Метрическая и топологическая проективность, инъективность и плоскость банаховых модулей

Немеш Норберт Тиборович 23 декабря 2016 г.

МГУ имени М.В. Ломоносова

Определения

Банахов А-модуль P называется *проективным*, если для любого допустимого эпиморфизма $\xi: X \to Y$ и любого морфизма $\phi: P \to Y$ существует морфизм $\psi: P \to X$ делающий диаграмму

коммутативной.

Банахов А-модуль P называется *проективным*, если для любого допустимого эпиморфизма $\xi: X \to Y$ и любого морфизма $\phi: P \to Y$ существует морфизм $\psi: P \to X$ делающий диаграмму

коммутативной.

Какие эпиморфизмы считать допустимыми?

ullet Метрическая теория: ξ — строгая коизометрия, т.е. $\xi(B_X)=B_Y$

Банахов А-модуль P называется *проективным*, если для любого допустимого эпиморфизма $\xi: X \to Y$ и любого морфизма $\phi: P \to Y$ существует морфизм $\psi: P \to X$ делающий диаграмму

коммутативной.

Какие эпиморфизмы считать допустимыми?

- Метрическая теория: ξ строгая коизометрия, т.е. $\xi(B_X)=B_Y$
- Топологическая теория: ξ открытое отображение

Банахов А-модуль P называется *проективным*, если для любого допустимого эпиморфизма $\xi: X \to Y$ и любого морфизма $\phi: P \to Y$ существует морфизм $\psi: P \to X$ делающий диаграмму

коммутативной.

Какие эпиморфизмы считать допустимыми?

- ullet Метрическая теория: ξ строгая коизометрия, т.е. $\xi(B_X)=B_Y$
- Топологическая теория: ξ открытое отображение
- ullet Относительная теория: ξ имеет дополняемое ядро

Банахов A-модуль J называется *инъективным*, если для любого допустимого мономорфизма $\xi:Y\to X$ и любого морфизма $\phi:Y\to J$ существует морфизм $\psi:X\to J$ делающий диаграмму

коммутативной.

Банахов A-модуль J называется *инъективным*, если для любого допустимого мономорфизма $\xi:Y\to X$ и любого морфизма $\phi:Y\to J$ существует морфизм $\psi:X\to J$ делающий диаграмму

$$X \qquad \|\phi\| = \|\psi\|$$

$$\int_{-\infty}^{\psi} \int_{-\infty}^{\psi} Y$$

коммутативной.

Какие мономорфизмы считать допустимыми?

• Метрическая теория: ξ — изометрия

Банахов A-модуль J называется *инъективным*, если для любого допустимого мономорфизма $\xi:Y\to X$ и любого морфизма $\phi:Y\to J$ существует морфизм $\psi:X\to J$ делающий диаграмму

коммутативной.

Какие мономорфизмы считать допустимыми?

- Метрическая теория: ξ изометрия
- Топологическая теория: ξ вложение с замкнутым образом

Банахов A-модуль J называется *инъективным*, если для любого допустимого мономорфизма $\xi:Y\to X$ и любого морфизма $\phi:Y\to J$ существует морфизм $\psi:X\to J$ делающий диаграмму

коммутативной.

Какие мономорфизмы считать допустимыми?

- Метрическая теория: ξ изометрия
- ullet Топологическая теория: ξ вложение с замкнутым образом
- ullet Относительная теория: ξ имеет дополняемый образ

Банахов A-модуль F называется π лоским, если модуль F^* инъективен.

Гомологическая теория банаховых пространств

- Метрическая инъективность (Kelly, Nachbin, Goodner, Hasumi 1950–1958)
- Метрическая плоскость (Grothendieck, 1955)
- Топологическая проективность (Köthe, 1966)
- Топологическая плоскость (Retherford, 1972)

Основные результаты

Проективные идеалы

Теорема

Замкнутый идеал коммутативной банаховой алгебры, обладающий ограниченной аппроксимативной единицей топологически проективен тогда и только тогда, когда он обладает единицей.

Проективные идеалы

Теорема

Замкнутый идеал коммутативной банаховой алгебры, обладающий ограниченной аппроксимативной единицей топологически проективен тогда и только тогда, когда он обладает единицей.

Теорема

Замкнутый идеал коммутативной банаховой алгебры, обладающий сжимающей аппроксимативной единицей метрически проективен тогда и только тогда, когда он обладает единицей нормы 1.

Проективные идеалы

Теорема

Замкнутый идеал коммутативной банаховой алгебры, обладающий ограниченной аппроксимативной единицей топологически проективен тогда и только тогда, когда он обладает единицей.

Теорема

Замкнутый идеал коммутативной банаховой алгебры, обладающий сжимающей аппроксимативной единицей метрически проективен тогда и только тогда, когда он обладает единицей нормы 1.

Теорема

Замкнутый левый идеал C^* -алгебры метрически или топологически проективен тогда и только тогда, когда он обладает самосопряженной правой единицей.

Определение (Lindenstrauss-Pełczyński, 1968)

Пространство E называется \mathcal{L}_{ρ} -пространством если существует константа C>0 такая, что для любого конечномерного подпространства F в E существует конечномерное подпространство G в E C-изоморфное конечномерному ℓ_{ρ} пространству и содержащее F.

Пример

- $L_1 \in \mathscr{L}_1$
- $C(K) \in \mathscr{L}_{\infty}$

Определение

Банахова алгебра A называется аменабельной, если все её правые, левые и двусторонние модули *относительно* плоские.

Определение

Банахова алгебра A называется аменабельной, если все её правые, левые и двусторонние модули *относительно* плоские.

Теорема

Над аменабельной банаховой алгеброй всякий банахов модуль, являющийся \mathscr{L}_1 -пространством, топологически плоский.

Определение

Банахова алгебра A называется аменабельной, если все её правые, левые и двусторонние модули *относительно* плоские.

Теорема

Над аменабельной банаховой алгеброй всякий банахов модуль, являющийся \mathscr{L}_1 -пространством, топологически плоский.

Теорема (J.R. Retherford, 1972)

 \mathcal{L}_1 -пространства — это в точности топологически плоские банаховы пространства.

Инъективные C^* -алгебры

Определение (Dubinsky-Pełczyński-Rosenthal, 1972) Говорят, что банахово пространство E имеет свойство l.u.st. если E^{**} изоморфно дополняемому подпространству некоторой банаховой решетки.

Инъективные C^* -алгебры

Определение (Dubinsky-Pełczyński-Rosenthal, 1972)

Говорят, что банахово пространство E имеет свойство l.u.st. если E^{**} изоморфно дополняемому подпространству некоторой банаховой решетки.

Теорема

Если C^* -алгебра топологически инъективна как правый модуль над собой, то

- А имеет свойство l.u.st:
- A субоднородная C*-алгебра;
- A есть *-подалгебра в $M_n(C(K))$

Инъективные $\overline{AW^*}$ -алгебры

Определение

 $A\dot{W}^*$ алгебра — это C^* -алгебра в которой у любого подмножества правый алгебраический аннулятор порожден некоторой проекцией.

Инъективные AW^* -алгебры

Определение

 AW^* алгебра — это C^* -алгебра в которой у любого подмножества правый алгебраический аннулятор порожден некоторой проекцией.

$$W^* \subset AW^* \subset C^*$$

Инъективные AW^* -алгебры

Определение

 AW^* алгебра — это C^* -алгебра в которой у любого подмножества правый алгебраический аннулятор порожден некоторой проекцией.

$$W^* \subset AW^* \subset C^*$$

Теорема

 AW^* -алгебра A топологически инъективна как правый модуль над собой тогда и только тогда, когда

$$A = \bigoplus_{i=1}^{N} M_{n_i}(C(K_i)),$$

где K_i — стоуновы пространства.

Свойство Данфорда-Петтиса

Определение (Grothendieck, 1953) Говорят, что банахово пространство E имеет свойство Данфорда-Петтиса, если для любого банахова пространства F всякий слабо компактный оператор $T: E \to F$ будет вполне непрерывным.

Свойство Данфорда-Петтиса

Определение (Grothendieck, 1953) Говорят, что банахово пространство E имеет свойство Данфорда-Петтиса, если для любого банахова пространства F всякий слабо компактный оператор $T: E \to F$ будет вполне непрерывным.

Пример

Обладают	Не обладают
L_1 , $C(K)$	рефлексивные пространства

Свойство Данфорда-Петтиса

Определение (Grothendieck, 1953)

Говорят, что банахово пространство E имеет свойство Данфорда-Петтиса, если для любого банахова пространства F всякий слабо компактный оператор $T:E\to F$ будет вполне непрерывным.

Пример

Обладают	Не обладают
L_1 , $C(K)$	рефлексивные пространства

Теорема

Если банахова алгебра является \mathscr{L}_1 - или \mathscr{L}_∞ -пространством, то все её топологически проективные, инъективные и плоские модули имеют свойство Данфорда-Петтиса.

Итог: большинство модулей гомологически нетривиальны.

Итог: большинство модулей гомологически нетривиальны.

Причина: категория банаховых модулей очень большая.

Итог: большинство модулей гомологически нетривиальны.

Причина: категория банаховых модулей очень большая.

Пример маленькой категории

$$A=B(\Omega,\Sigma)$$

Итог: большинство модулей гомологически нетривиальны.

Причина: категория банаховых модулей очень большая.

Пример маленькой категории

$$A = B(\Omega, \Sigma)$$

$$\mathsf{Ob}(\mathsf{C}) = \{L_p(\Omega,\mu) : 1 \leq p \leq \infty, \mu - \sigma$$
-аддитивная мера $\}$

Итог: большинство модулей гомологически нетривиальны.

Причина: категория банаховых модулей очень большая.

Пример маленькой категории

$$A = B(\Omega, \Sigma)$$

$$\mathsf{Ob}(\mathsf{C}) = \{ \mathit{L}_p(\Omega, \mu) : 1 \leq p \leq \infty, \mu - \sigma$$
-аддитивная мера $\}$

$$\mathsf{Hom}(\mathsf{C}) = \{ M_g : L_p(\Omega, \mu) \to L_q(\Omega, \nu) : f \mapsto gf \}$$

Итог: большинство модулей гомологически нетривиальны.

Причина: категория банаховых модулей очень большая.

Пример маленькой категории

$$A = B(\Omega, \Sigma)$$

$$\mathsf{Ob}(\mathsf{C}) = \{L_p(\Omega,\mu) : 1 \leq p \leq \infty, \mu - \sigma$$
-аддитивная мера $\}$

$$\mathsf{Hom}(\mathsf{C}) = \{ M_g : L_p(\Omega, \mu) \to L_q(\Omega, \nu) : f \mapsto gf \}$$

Теорема

В категории С все модули являются проективными, инъективными и плоскими в смысле метрической, топологической и относительной теории.

Ссылки

- Немеш Н. Метрически и топологически проективные идеалы банаховых алгебр // Матем. Заметки. — 2016. — Т. 99, № 4. — С. 526–533.
- Немеш Н. Топологически инъективные C*-алгебры // Функц. анал. и прил. — 2016. — Т. 50, № 2. — С. 88–91.
- Немеш Н. Гомологическая тривиальность категории модулей L_ρ // Вест. Моск. ун-та. Сер. 1. Математика. Механика. 2016. Т. 71, № 4. С. 3–12.