Contrôle de rattrapage

Exercice 1:

Soit l'amplificateur à MOSFET. V_{DD} = 20 V, R_1 = R_2 = 1 $M\Omega$ et R_L = 10 $k\Omega$. Le MOSFET a les paramètres suivants: la transconductance g_m = 5000 μ S, k_n = 5 mA, et λ = 0. Pour I_D = 1.25mA, V_{GS} = 2.5V et V_{DS} = 3V,

- 1- Trouver R_D et R_S.
- 2- Trouver le gain en tension A_V et quelle sera la valeur de v_o si v_i = 9mV,?

Exercice 2:

Soit les circuits RC, trouver, si les trois résistances sont égales ainsi que les trois condensateurs:

- 1- l'atténuation B (Vs/Ven)
 - 2- et la fréquence de résonance.
- 3- Sous quelles conditions y aura-t-il oscillations, si ces circuits représentent le circuit de rétroaction de l'oscillateur à déphasage?

Exercice 3:

Soit l'amplificateur différentiel polarisé avec V⁺=+15V et V=-15V, R_C =47 k Ω , R_B =100 k Ω , R_e =68 k Ω , v₂ =1 mV, β = 275.

1- Utiliser la 2^{ème} approximation pour trouver la tension différentielle de sortie et Z_{in} , sachant que $r_e = \frac{25 \ mV}{I_C}$.

2- Pour $I_{in(pol)}$ = 600 nA, $I_{in(off)}$ = 100 nA et $V_{in(off)}$ = 1 m V, quelle sera la tension d'erreur totale à la sortie?

Contrôle de sattrapage du 16 juin 2015. Exercice mel: bywals UM = ROID4 JOS4 RSID (6) UM = (R1+R2) IP => IP = $\frac{Von}{R_4R_7} = \frac{20}{2.10^6} = 10^5 A$ $R_{x}I_{p} = V_{GS} + R_{5}I_{D} = 20 R_{5} = \frac{R_{z}I_{p} - V_{GS}}{I_{D}} = \frac{1.16.10^{-2.5}}{1.25163} = \frac{7.65}{1.251}$ Rs = 6000 2 = 6 kr. E RIIRI Togs Dandys & Ry & Re I Vint. ROMPL = 7.6.103. 10.163 = 4,32 kz. Av = Nout = - (ROURL) gm. rogs = - (ROURL) gm Av = - 4,32.18. 5.16.106 = - 21,6. No = Av. N: = - 21,6,9,103 = -0,1944 = -194,4 pmV. $\left(R - \frac{\delta}{\omega c}\right) \hat{I}_1 - R \hat{I}_2 = \hat{OL}_3 = \hat{Ven}$ $\hat{I}_{A} \left(2R - \frac{\partial}{\partial u_{c}}\right) \hat{I}_{1} - R\hat{I}_{3} = 0.$ O \hat{L}_1 $-R\hat{L}_2$ $\left(2R-\frac{\delta}{W_C}\right)\hat{L}_3=0$