03 JANVIER 2019

RAPPORT ADS-B

SECURITE DES OBJETS MOBILES COMMUNIQUANT

MAHAMAN BACHIR ATTOUMAN OUSMANE

UPHF VALENCIENNES

Master CDSI

Table des matières

1.	C	Construction des blocs	2
		xécution	
		ecture et compréhension du code python :	
	3.1.		
	3.2.	. Reconstruction de la trame au format standard	3
	3.3.	. Trame de taille 112	3
	3.4.	. Trame de taille 56	4
4.	D	Décoder la position de l'avion	5
	4.1.	. Recherche des bits indiquant la latitude et la longitude	5
	4.2.	. Calcul de la latitude	5
5.	G	Gestion du Parity Check :	6
	4.1	Ecriture de la fonction	6
	4.2	Appel de la fonction	6

Rapport ADS-B

1. Construction des blocs

Nous reproduisons exactement les blocs donnés en cours et changeons osmocom source par file source, nous y indiquons le chemin des captures données en cours. Pour le dernier bloc nous écrivons aussi le script python donné en cours.

Résultat :

Fig.1 Blocs Gnu-Radio

2. Exécution

Fig.2 Scope

```
10957.56 m
     0x424117 vitesse =
                          876
                               km/h
                                    cap =
                                             195 deg
19
     0x424117 vitesse =
                         876
                               km/h
                                             195 deg
                                     cap =
     0x424117
                10934.7 m
     0x471f52 vitesse =
                         892
                               km/h
                                             103 deg
                                    cap =
19
     0x471f52 vitesse =
                         892
                               km/h cap =
                                            103 deg
19
     0x471f52 vitesse =
                          892
                               km/h
                                             103 deg
                                     cap
11
     0x424117
                10858.5 m
12
     0x471f52
                10652.76 m
11
     0x424117
                10843.26 m
19
     0x471f52 vitesse =
                               km/h
                                     cap = 103 deg
                         892
     0x424117
                10843.26 m
19
     0x424117
                               km/h
                                             199 deg
              vitesse =
                          866
                                     cap =
19
     0x424117 vitesse =
                          866
                               km/h
                                     cap
                                             199 deg
                               km/h
     0x424117 vitesse =
                          866
                                     cap
                                             199 deg
19
     0x424117 vitesse =
                         866
                               km/h
                                            199 deg
                                     cap =
11
     0x424117
                10972.8 m
19
     0x424117 vitesse =
                         865
                               km/h
                                             199 deg
                                     cap =
12
     0x4ca1d0
                11277.6 m
12
     0x471f52
                10668.0 m
19
     0x471f52 vitesse =
                         890
                               km/h
                                            103 deg
                                     cap =
19
                                             194 deg
     0x424117 vitesse =
                          879
                               km/h
                                     cap =
19
                          879
                                             193 deg
     0x424117 vitesse =
                               km/h
                                     cap =
12
     0x471f52
                10660.38 m
     0x471f52 vitesse =
                               km/h
                          892
                                     cap =
                                             103 deg
19
     0x471f52 vitesse =
                         892
                               km/h
                                     cap =
                                            103 deg
                                             199 deg
     0x424117 vitesse =
                          866
                               km/h
                                     cap
                                            199 deg
     0x424117 vitesse =
                         866
                               km/h
                                     cap =
                10972.8 m
     0x424117
```

Fig.3 Données issues des trames

3. Lecture et compréhension du code python :

3.1. Sélection de la trame

Analysons d'abord la fonction « Work » :

Le bloc python reçoit des données binaires initialement dans « input items [0] » Ces données sont copiés dans notre variable « trame ». Ensuite il cherche les trames non vides. (Avec (np. Where ==1) [0].

Nous vérifions les 14 premiers bits (le préambule dans « sr ») pour savoir s'il s'agit d'une trame ADS-B, bien synchronisée. Si c'est le cas la trame est décodée, le préambule sera pas la suite « enlevé ».

3.2. Reconstruction de la trame au format standard

En fait sur chaque 2 bits les données utiles se trouvent sur le MSB (à gauche), le deuxième étant toujours l'opposé du précedent, si on a **100110101101** la trame sera constituée des bits en rouge.

Ensuite selon la taille de la trame elle est décodée selon l'énoncé du standard.

3.3. Trame de taille 112

Pour décoder la trame la première chose à faire était de vérifier que le champ Downlink Format est égal à 17, identifiant des communications civile ADS-B. Ces trames avec df = 17 peuvent alors être décodées. Les champs sont convertis d'abord en décimal avant traitement.

- Nous avons ensuite les identifiants uniques à chaque aéronef

-Les bits 32 à 37 (Tc) donne le code qui définit le type de données contenues dans la suite des données de la trame.

Ensuite avec un tableau de format type code (tel que celui-ci-dessous fig1.), Nous somme alors capable de savoir quelles données sont situés à quel position dans la trame

3.4. Trame de taille 56

Le même procédé est appliqué. Il s'agit de lire la documentation explicitant le format des trames et de le traduire en code.

TYPE Code	Format	Horizontal protection limit (HPL)	95% Containment radius, μ and ν, on horizontal and vertical position error	Altitude type (see §A.2.3.2.4)	NUC
0	No position information			Barometric altitude or no altitude information	0
1	Identification (Category Set D)			Not applicable	
2	Identification (Category Set C)			Not applicable	
3	Identification (Category Set B)			Not applicable	
4	Identification (Category Set A)			Not applicable	
5	Surface position	HPL < 7.5 m	μ < 3 m	No altitude information	9
6	Surface position	HPL < 25 m	3 m ≤ <i>µ</i> < 10 m	No altitude information	8
7	Surface position	HPL < 185.2 m (0.1 NM)	10 m ≤ μ < 92.6 m (0.05 NM)	No altitude information	7
8	Surface position	HPL > 185.2 m (0.1 NM)	(0.05 NM) 92.6 m ≤ µ	No altitude information	6

9	Airborne position	HPL < 7.5 m	μ < 3 m	Barometric altitude	9
10	Airborne position	7.5 m ≤ HPL < 25 m	3 m ≤ µ < 10 m	Barometric altitude	8
11	Airborne position	25 m ≤ HPL < 185.2 m (0.1 NM)	10 m ≤ μ < 92.6 m (0.05 NM)	Barometric altitude	7
12	Airborne position	185.2 m (0.1 NM) ≤ HPL < 370.4 m (0.2 NM)	92.6 m (0.05 NM) ≤ µ < 185.2 m (0.1 NM)	Barometric altitude	6
13	Airborne position	370.4 m (0.2 NM) ≤ HPL < 926 m (0.5 NM)	185.2 m (0.1 NM) ≤ µ < 463 m (0.25 NM)	Barometric altitude	5
14	Airborne position	926 m (0.5 NM) ≤ HPL < 1 852 m (1.0 NM)	463 m (0.25 NM) ≤ µ < 926 m (0.5 NM)	Barometric altitude	4
15	Airborne position	1 852 m (1.0 NM) ≤ HPL < 3 704 m (2.0 NM)	926 m (0.5 NM) ≤ µ < 1 852 m (1.0 NM)	Barometric altitude	3
16	Airborne position	3.704 km (2.0 NM) ≤ HPL < 18.52 km (10 NM)	1.852 km (1.0 NM) ≤ µ < 9.26 km (5.0 NM)	Barometric altitude	2
17	Airborne position	18.52 km (10 NM) ≤ HPL < 37.04 km (20 NM)	9.26 km (5.0 NM) ≤ µ < 18.52 km (10.0 NM)	Barometric altitude	1
18	Airborne position	HPL ≥ 37.04 km (20 NM)	18.52 km (10.0 NM) ≤ μ	Barometric altitude	0

Fig1. Tableau de format type code

- 4. Décoder la position de l'avion
 - 4.1. Recherche des bits indiquant la latitude et la longitude

Nous cherchons d'abord quel est le type code de la position :

Il s'agit de TC = [9 à 19]. A l'aide du document fourni « ADS-B for dummies »

Number of bits	Contents
5	Format type code
2	Surveillance status
1	Single antenna flag
12	Altitude
1	Time
1	CPR format
17	CPR encoded latitude
17	CPR encoded longitude
56 bits tota	al

On sait que les données commencent à partir du 32è bit

Donc l'altitude est comprise entre 32 + 8 = 40 et $40 + 12 - 1 = 51^{\text{ème}}$ bits dans notre liste S [40:52]

De meme la latitude est située entre le $54^{\text{ème}}$ et le $54 + 17 - 1 = 70^{\text{ème}}$ bits soit S [54 :71] en code python

Aussi la longitude est située entre le $71^{\text{ème}}$ et le $71 + 17 - 1 = 87^{\text{ème}}$ bits soit S [71 :88] en python

4.2. Calcul de la latitude

Pour trouver la latitude nous devons effectuer d'abord certains calculs à partir des données brutes , la procédure que nous avons suivi réf : https://mode-s.org/decode/adsb/airborne-position.html , cependant nous traiterons uniquement la latitude nord ,

Étant donné que le but du travail est de comprendre les procédures type pour le décodage des trames. Pour la longitude une démarche similaire est à suivre.

```
i = int(S[53],2)
lat= int(S[54:71],2)
lon = int(S[71:88],2)
lat_cpr_even = lat /131072
lon_cpr_even = lon/131072
lat_cpr_odd = lat / 131072
lon_cpr_odd = lon/131072
dlat_even = 90 /60
dlat_even = 90 /60
dlat_odd = 90/59
j = floor (59 * lat_cpr_even - 60 * lat_cpr_odd + 0.5)
latitude = float(dlat * (3*60 + lat_cpr_even))
print tc, " ",hex(ica024), "latitude = ",latitude," deg Nord"
```

Nous plaçons le code juste au-dessous du calcul de l'altitude.

5. Gestion du Parity Check:

Le Parity check permet de savoir de savoir si les données ont été altérées durant la transmission. Pour l'ADS-B le Parity check se trouve sur les 24 derniers bits de la trame donc S [-24 :]. Le polynôme générateur est donné sur le site officiel de ADS-B, ainsi que l'algorithme de vérification du Parity check que nous adaptons en python

Comme résultat si le CRC = 0 la trame est intègre sinon altérée alors pas besoin de la traiter Notre code fonctionne de la façon suivante « if check(trame) : la trame est bonne »

4.1 Ecriture de la fonction

Fig. Parity check

4.2 Appel de la fonction

Avant de décoder une trame nous vérifions d'abord qu'elle est intègre sinon on passe à la trame suivante. Nous modifierons alors la fonction decodetrame (). Nous y insérons l'appel de notre fonction check() juste avant le décodage des trames.

-