← Back Disease Detection with Computer Vision Practice Quiz • 30 min • 10 total points				
	Congratulations! You passed!			
	Grade received 95% To pass 80% or higher	Go to	nextitem	
	Which of the following is not one of the key challenges f lecture? Class imbalance Multiple tasks	or AI diagnostic algorithms that is discussed in the	1/3 point:	
	Dataset size Inflexible models Correct This was not discussed as one of the key challeng avoid underfitting.	es, but more complex models can be used to fit data, to		
	You find that your training set has 70% negative example.	es and 30% positive. Which of the following techniques	1/1 point	
	will NOT help for training this imbalanced dataset?			
	Oundersampling negative examples Oversampling positive examples			
	Oversampling negative examples Reweighting examples in training loss			
	Correct Given that the model is being trained on more neg will bias the model even more towards making a r	gative examples, sampling even more negative samples negative prediction.		
	What is the total loss from the normal (non-mass) examples in this example dataset?			
	Please use the natural logarithm in your calculation. Wil Also, to get the total loss, please add up the losses from	1/1 point		
	Example	P(positive)		
	P1 Normal	0.6		
	P3 Normal	0.3		
	P5 Mass	0.4		
	O -0,4			
	○ 0.00 ⑤ 1.27			
	○ 2.19			
	\odot Correct Since these are negative examples, the losses will be $-log(1-P(positive))$.			
	For P1, $-log(1-0.6)=0.91.$ For P3 $-log(1-0.3)=0.36.$			
	The sum is $0.91+0.36=1.27.$			
	4. What is the typical size of medical image dataset?		1/1 point	
	~10 thousand to 100 thousand images			
	○ ~1 million or more images			
	○ ~1 to 1 hundred images			
	○ ~ 1 hundred to 1 thousand images			
		000 labeled images. Fewer than 1000 is typically too few or datasets will have millions of images due to the cost of		

8. Why is it bad to have the same patients in both training and test sets?	1/1 point
Leaves too few images for the training set	
Overly optimistic test performance	
Leaves too few images for the test set	
O None of these above	
 Correct Having images from the same patient is bad because it has been shown that the model may learn patient-specific features that are not generalizable to other patients. 	
Let's say you have a relatively small training set (~5 thousand images). Which training strategy makes the most sense?	1/1 point
Retraining the last layer of a pre-trained model	
 Correct By using a pre-trained model, you can make use of its ability to recognize lower level features, and then fine tune the last few layers using your dataset. 	
Retraining all layers of a pre-trained model	
Train a model with randomly initialized weights	
Retraining the first layer of a pre-trained model	
10. Now let's say you have a very large dataset (~1 million images). Which training strategies will make the most sense?	0.5/1.point
Retraining the first layer of a pretrained model	
Retraining the last layer of a pretrained model	
This should not be selected It is possible to tune the last layer of a pre-trained model, but if you have a large dataset, you can improve your performance by training more than just the last layer.	
Retraining all layers of a pretrained model	
Training a model with randomly initialized weights.	
Correct Given a very large dataset, you have the option of training a new model instead of using a pre-trained model.	