APPENDIX A:

Pending Claims Showing Amendments after Response to Office Action dated 10/24/00

- 1. (Amended three times) A method of identifying a candidate substance that inhibits the aggregation of a mammalian aggregate-prone amyloid protein, comprising:
 - (a) contacting a yeast cell that expresses a chimeric [an] aggregate-prone amyloid protein comprising a mammalian aggregate-prone amyloid peptide with said candidate substance under conditions effective to allow aggregated amyloid formation; and
 - (b) determining the ability of said candidate substance to inhibit the aggregation of the aggregate-prone amyloid protein.
- 3. The method of claim 1, wherein the mammalian aggregate-prone amyloid protein comprises a PrP or β -amyloid polypeptide.
- 4. [Cancelled]
- 7. (Amended twice) The method of claim 1 [4], wherein the chimeric protein comprises at least an aggregate forming domain of a mammalian aggregate-prone amyloid protein operably attached to a detectable marker protein.
- 8. The method of claim 7, wherein said marker protein is green fluorescent protein or luciferase.

9.	The method of claim 7, wherein said marker protein is a drug-resistance marker protein.
10.	The method of claim 7, wherein said marker protein is a hormone receptor.
11.	The method of claim 10, wherein said hormone receptor is a glucocorticoid receptor.
12. least ar	(Amended twice) The method of claim $\underline{1}$ [4], wherein the chimeric protein comprises at a aggregate forming domain of PrP or β -amyloid.
13. acids 1	The method of claim 12, wherein the chimeric protein comprises as least about amino -42 of β -amyloid protein.
14. Sup35 protein	(Amended twice) The method of claim $\underline{1}$ [4], wherein the chimeric protein comprises in which the N-terminal domain has been replaced by amino acids 1-42 of β -amyloid a.
15. amyloi	The method of claim 1, wherein any aggregation of the mammalian aggregate-prone id protein is detected by the ability of the aggregated protein to bind Congo Red.
16. amyloi	The method of claim 1, wherein any aggregation of the mammalian aggregate-prone id protein is detected by increased protease resistance of the aggregated protein.
17.	The method of claim 1, wherein the aggregate-prone amyloid protein is labeled.

25013110.1 2

- 18. The method of claim 17, wherein the label is a radioactive isotope, a fluorophore, or a chromophore.
- 19. The method of claim 18, wherein the label is ³⁵S.
- 20. The method of claim 18, wherein the fluorophore comprises a green fluorescent protein polypeptide.
- 22. The method of claim 1, wherein said yeast cell overexpresses Hsp104.
- 37. The method of claim 1, wherein aggregated amyloid formation is evidenced by the formation of fibrillary material.
- 38. A method of identifying a candidate substance that inhibits mammalian aggregate-prone amyloid proteins from forming a fibril, comprising:
 - (a) contacting a yeast cell that expresses an aggregate-prone amyloid protein comprising a mammalian aggregate-prone amyloid protein with the candidate substance under conditions effective to allow fibril formation; and
 - (b) determining the ability of said candidate substance to inhibit the aggregate-prone amyloid protein from forming a fibril.

39. The method of claim 38, wherein the aggregate-prone amyloid protein comprises a PrP or β-amyloid polypeptide.

40. The method of claim 38, wherein the aggregate-prone amyloid protein is a chimeric protein.

25013110.1 4

APPENDIX B:

Claims Pending after Response to Office Action dated October 24, 2000

- 1. A method of identifying a candidate substance that inhibits the aggregation of a mammalian aggregate-prone amyloid protein, comprising:
 - (a) contacting a yeast cell that expresses a chimeric aggregate-prone amyloid protein comprising a mammalian aggregate-prone amyloid peptide with said candidate substance under conditions effective to allow aggregated amyloid formation; and
 - (b) determining the ability of said candidate substance to inhibit the aggregation of the aggregate-prone amyloid protein.
- 3. The method of claim 1, wherein the mammalian aggregate-prone amyloid protein comprises a PrP or β -amyloid polypeptide.
- 7. The method of claim 1, wherein the chimeric protein comprises at least an aggregate forming domain of a mammalian aggregate-prone amyloid protein operably attached to a detectable marker protein.
- 8. The method of claim 7, wherein said marker protein is green fluorescent protein or luciferase.
- 9. The method of claim 7, wherein said marker protein is a drug-resistance marker protein.

1

10. The method of claim 7, wherein said marker protein is a hormone receptor.

12. The method of claim 1, wherein the chimeric protein comprises at least an aggregate forming domain of PrP or β -amyloid. 13. The method of claim 12, wherein the chimeric protein comprises as least about amino acids 1-42 of β-amyloid protein. 14. The method of claim 1, wherein the chimeric protein comprises Sup35 in which the Nterminal domain has been replaced by amino acids 1-42 of β-amyloid protein. 15. The method of claim 1, wherein any aggregation of the mammalian aggregate-prone amyloid protein is detected by the ability of the aggregated protein to bind Congo Red. 16. The method of claim 1, wherein any aggregation of the mammalian aggregate-prone amyloid protein is detected by increased protease resistance of the aggregated protein. 17. The method of claim 1, wherein the aggregate-prone amyloid protein is labeled. 18. The method of claim 17, wherein the label is a radioactive isotope, a fluorophore, or a chromophore.

2

The method of claim 10, wherein said hormone receptor is a glucocorticoid receptor.

11.

The method of claim 18, wherein the fluorophore comprises a green fluorescent protein polypeptide.
The method of claim 1, wherein said yeast cell overexpresses Hsp104.

The method of claim 18, wherein the label is ³⁵S.

19.

- 37. The method of claim 1, wherein aggregated amyloid formation is evidenced by the formation of fibrillary material.
- 38. A method of identifying a candidate substance that inhibits mammalian aggregate-prone amyloid proteins from forming a fibril, comprising:
 - (a) contacting a yeast cell that expresses an aggregate-prone amyloid protein comprising a mammalian aggregate-prone amyloid protein with the candidate substance under conditions effective to allow fibril formation; and
 - (b) determining the ability of said candidate substance to inhibit the aggregate-prone amyloid protein from forming a fibril.
- 39. The method of claim 38, wherein the aggregate-prone amyloid protein comprises a PrP or β-amyloid polypeptide.

3

40. The method of claim 38, wherein the aggregate-prone amyloid protein is a chimeric protein.

25013111.1 4