MAC 5711 - Análise de Algoritmos

Rodrigo Augusto Dias Faria Departamento de Ciência da Computação - IME/USP

23 de setembro de 2015

Lista 1

1. Lembre-se que l
g \boldsymbol{n} denota o logaritmo na base 2 de $\boldsymbol{n}.$ Usando a definição de notação
 O, prove que

(a)
$$3^n$$
 não é $O(2^n)$

Vamos assumir por contradição que 3^n é $O(2^n)$, então podemos assumir que existem as variáveis c > 0 e $n_0 > 0$ tal que:

$$3^n \le c2^n, \forall n \ge n_0$$

Vamos dividir os dois lados por 2^n :

$$\frac{3^n}{2^n} \le \frac{c2^n}{2^n}, \forall n \ge n_0$$
$$\frac{3^n}{2^n} \le c, \forall n \ge n_0$$

Note que $3^n > 2^n$ e quando $n \to \infty$, então $\frac{3^n}{2^n} \to \infty$, logo podemos concluir que não importa quão grande seja a constante c sempre vai existir algum n suficientemente grande tal que:

$$3^n > c2^n$$

Portanto podemos concluir que $3^n \notin O(2^n)$. \square

(b) $\log_{10} n \notin O(\lg n)$

Se existem as constantes c > 0 e $n_0 > 0$ tal que:

$$\log_{10} n \le c \lg n, \forall n \ge n_0$$

então $\log_{10} n$ é $O(\lg n)$. Veja que uma das propriedades dos logaritmos nos diz que:

$$\log_c a = \frac{\log_b a}{\log_b c}$$

Disso concluimos que:

$$\log_{10} n = \frac{\lg n}{\lg 10}$$

Portanto se fizermos $c = \frac{1}{\lg 10}$ e $n_0 = 1$ temos que

$$\log_{10} n \le \frac{\lg n}{\lg 10}, \forall n \ge 1$$

Portanto podemos concluir que $\log_{10} n = O(\lg n)$. \square

(c) $\lg n \notin O(\log_{10} n)$

Se existem as constantes c > 0 e $n_0 > 0$ tal que:

$$\lg n \le c \log_{10} n, \forall n \ge n_0$$

Então $\lg n = O(\log_{10} n)$. Note que pela propriedade dos logaritmos mostrada no exercício anterior podemos concluir que:

$$\lg n = \frac{\log_{10} n}{\log_{10} 2}$$

Logo se fizermos $c = \frac{1}{\log_{10} 2}$ e $n_0 = 1$ então teremos:

$$\lg n \le \frac{\log_{10} n}{\log_{10} 2}, \forall n \ge 1$$

Portanto podemos concluir que $\lg n = O(\log_{10} n)$. \square

2. Usando a definição de notação O, prove que

(a)
$$n^2 + 10n + 20 = O(n^2)$$

Se existem as constantes c > 0 e $n_0 > 0$, tal que:

$$n^2 + 10n + 20 \le cn^2, \forall n \ge n_0$$

Então $n^2 + 10n + 20 = O(n^2)$. Note também a seguinte relação:

$$n^2 + 10n + 20 \le n^2 + 10n^2 + 20n^2 = 31n^2$$

Logo se fizermos c = 31 e $n_0 = 1$ teremos que:

$$n^2 + 10n + 20 \le 31n^2, \forall n \ge 1$$

Portanto podemos concluir que $n^2 + 10n + 20 = O(n^2)$. \square

(b)
$$\lceil n/3 \rceil = O(n)$$

Se existem as constantes c > 0 e $n_0 > 0$ tal que:

$$\lceil n/3 \rceil \le cn, \forall n \ge n_0$$

Então $\lceil n/3 \rceil = O(n)$. Note também a seguinte relação.

$$\lceil \frac{n}{3} \rceil \le \frac{n}{3} + 1 \le \frac{n}{3} + n = \frac{4n}{3}, \forall n \ge 1$$

Logo se fizermos c = 4/3 e $n_0 = 1$, teremos:

$$\lceil n/3 \rceil \le \frac{4n}{3}, \forall n \ge 1$$

Portanto podemos concluir que $\lceil n/3 \rceil = O(n)$. \square

(c)
$$\lg n = O(\log_{10} n)$$

Se existem as constantes c > 0 e $n_0 > 0$ tal que:

$$\lg n \le c \log_{10} n, \forall n \ge n_0$$

Então $\lg n = O(\log_{10} n)$. Note que pela propriedade dos logaritmos mostrada no exercício 1-(b) podemos concluir que:

$$\lg n = \frac{\log_{10} n}{\log_{10} 2}$$

Logo se fizermos $c = \frac{1}{\log_{10} 2}$ e $n_0 = 1$ então teremos:

$$\lg n \le \frac{\log_{10} n}{\log_{10} 2}, \forall n \ge 1$$

Portanto podemos concluir que $\lg n = O(\log_{10} n)$. \square

$$(d) n = O(2^n)$$

Se existem as constantes c > 0 e $n_0 > 0$ tal que:

$$n \le 2^n, \forall n \ge n_0$$

Então $n = O(2^n)$. Note trivialmente que se fizermos c = 1 e $n_0 = 1$, teremos:

$$n \le 2^n, \forall n \ge 1$$

Portanto podemos concluir que $n = O(2^n)$. \square

(e) n/1000 não é O(1)

Vamos assumir por contradição que n/1000 = O(1), e portanto que existem as constantes c > 0 e $n_0 > 0$ tal que:

$$n/1000 \le c, \forall n \ge n_0$$

Note que quando $n \to \infty$, então $n/1000 \to \infty$, portanto não importa quão grande seja c, com certeza existe um n suficientemente grande tal que:

Logo podemos concluir que $n/1000 \notin O(1)$. \square .

(f)
$$n^2/2$$
 não é $O(n)$

Vamos assumir por contradição que $n^2/2 = O(n)$, e portanto que existem as constantes c > 0 e $n_0 > 0$ tal que:

$$n^2/2 \le cn, \forall n \ge n_0$$

Dividindo os dois lados por n teremos:

$$\frac{n^2}{2n} \le \frac{cn}{n}, \forall n \ge n_0$$
$$\frac{n}{2} \le c, \forall n \ge n_0$$

Note que quando $n\to\infty$, então $\frac{n}{2}\to\infty$, portanto não importa quão grande seja c com certeza existe um n suficientemente grande tal que:

$$n^2/2 > cn$$

Portanto podemos concluir que $n^2/2$ não é O(n). \square

1. Resolva as recorrências abaixo:

(a)
$$T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

(b)
$$T(n) = 8T(\lfloor n/2 \rfloor) + \Theta(n^2)$$

(c)
$$T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n^3)$$

Vamos simplificar a recorrência acima escolhendo a função n^3 para representar $\Theta(n^3)$ e vamos também assumir que n é uma pontência de 2 e assim podemos remover o operador chão. Logo podemos simplificar T(n) para:

$$T(n) = 2T(n/2) + n^3$$

Vamos encontrar uma formula fechada para recorrência acima pelo metódo da expansão, para isso vamos assumir que $n = 2^k$ e $k = \lg n$.

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + n^3 \\ T(\frac{n}{2}) &= 2\left[2T(\frac{n}{2^2}) + \left(\frac{n}{2}\right)^3\right] + n^3 = 2^2T(\frac{n}{2^2}) + 2\left(\frac{n}{2}\right)^3 + n^3 \\ T(\frac{n}{2^2}) &= 2^2\left[2T(\frac{n}{2^3}) + \left(\frac{n}{2^2}\right)^3\right] + 2\left(\frac{n}{2^2}\right)^3 + n^3 = 2^3T(\frac{n}{2^3}) + 2^2\left(\frac{n}{2^2}\right)^3 + 2\left(\frac{n}{2}\right)^3 + n^3 \\ T(\frac{n}{2^3}) &= 2^3\left[2T(\frac{n}{2^4}) + \left(\frac{n}{2^2}\right)^3\right] + 2^2\left(\frac{n}{2^2}\right)^3 + 2\left(\frac{n}{2}\right)^3 + n^3 = \\ &= 2^4T(\frac{n}{2^4}) + 2^3\left(\frac{n}{2^3}\right)^3 + 2^2\left(\frac{n}{2^2}\right)^3 + 2\left(\frac{n}{2}\right)^3 + n^3 \end{split}$$

Note que podemos desenvolver os termos gerados pela função n^3 da seguinte maneira:

$$2^{3} \left(\frac{n}{2^{3}}\right)^{3} + 2^{2} \left(\frac{n}{2^{2}}\right)^{3} + 2 \left(\frac{n}{2}\right)^{3} + n^{3} =$$

$$2^{3} \frac{n^{3}}{2^{9}} + 2^{2} \frac{n^{3}}{2^{6}} + 2 \frac{n^{3}}{2^{3}} + n^{3} =$$

$$\frac{n^{3}}{2^{6}} + \frac{n^{3}}{2^{4}} + \frac{n^{3}}{2^{2}} + n^{3}$$

Por essas expansão podemos supor que esse sumatório até k pode ser da seguinte forma:

$$\sum_{i=0}^{k-1} \frac{n^3}{2^i} = n^3 \sum_{i=0}^{k-1} \frac{1}{2^{2i}}$$

Logo voltando para a recorrência podemos e considerando que $k = \lg n$ teremos

$$T(n) = 2^{k}T(n/2^{k}) + n^{3} \sum_{i=0}^{k-1} \frac{1}{2^{2i}}$$

$$T(n) = 2^{\lg n}T(n/2^{\lg n}) + n^{3} \sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}}$$

$$T(n) = nT(n/n) + n^{3} \sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}}$$

$$T(n) = nT(1) + n^{3} \sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}}$$

$$T(n) = n + n^{3} \sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}}$$

Agora vamos simplificar essa formula fechada resolvendo o somatório. Note que esse somatório é uma serie geometrica de razão r = 1/4, logo:

$$\sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}} = \frac{(1/4)^{\lg n} - 1}{1/4 - 1}$$

$$\sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}} = \frac{1^{\lg n}/4^{\lg n} - 1}{3/4}$$

$$\sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}} = -\frac{4}{3} \left[\frac{1}{(2^{\lg n})^2} - 1 \right]$$

$$\sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}} = -\frac{4}{3} \left[\frac{1}{n^2} - 1 \right]$$

$$\sum_{i=0}^{\lg n-1} \frac{1}{2^{2i}} = \frac{4}{3} - \frac{4}{3n^2}$$

voltando a recorrência teremos:

$$T(n) = n + n^{3} \left[\frac{4}{3} - \frac{4}{3n^{2}} \right]$$

$$T(n) = n + \frac{4n^{3}}{3} - \frac{4n}{3}$$

$$T(n) = n \left[1 - \frac{4}{3} + \frac{4n^{2}}{3} \right]$$

$$T(n) = n \left[\frac{4n^{2}}{3} - \frac{1}{3} \right]$$

$$T(n) = n \left[\frac{4n^{2} - 1}{3} \right]$$

Agora vamos provar que a formula fechada acima vale para a recorrência T(n) para isso vamos assumir que $n = 2^k$, portanto a formula fechada em função de 2^k será:

$$T(2^{k}) = 2^{k} \left[\frac{2^{2k} 4 - 1}{3} \right]$$
$$T(2^{k}) = 2^{k} \left[\frac{2^{2k+2} - 1}{3} \right]$$

Vamos provar por indução em k

• caso base: Para k = 0 teremos:

$$T(2^{0}) = T(1) = 2^{0} \left[\frac{2^{2.0+2} - 1}{3} \right] = \frac{2^{2} - 1}{3} = \frac{3}{3} = 1$$

• Hipótese de indução: Vamos assumir que a formula abaixo vale para k > 1:

$$T(2^{k-1}) = 2^{k-1} \left[\frac{2^{2(k-1)+2} - 1}{3} \right] = 2^{k-1} \left[\frac{2^{2k} - 1}{3} \right]$$

• **Prova**: Vamos provar que a formula fechada vale para qualquer k:

$$T(2^{k}) = 2\left[2^{k-1} \left[\frac{2^{2k} - 1}{3}\right]\right] + 2^{3k}$$

$$= 2^{k} \left[\frac{2^{2k} - 1}{3}\right] + 2^{3k}$$

$$= \frac{2^{3k}}{3} - \frac{2^{k}}{3} + 2^{3k}$$

$$= 2^{3k} \left[\frac{1}{3} + 1\right] - \frac{2^{k}}{3}$$

$$= 2^{3k} \left[\frac{4}{3}\right] - \frac{2^{k}}{3}$$

$$= \frac{2^{3k}2^{2}}{3} - \frac{2^{k}}{3}$$

$$= \frac{2^{3k+2} - 2^{k}}{3}$$

$$= 2^{k} \left[\frac{2^{2k+2} - 1}{3}\right]$$

Logo concluímos que a formula é válida. \square

Conforme demonstrado no exercício a recorrência $T(n) = n \left[\frac{4n^2-1}{3}\right]$ para n sendo uma potência de 2. Portanto podemos concluír que $T(n) = \Theta(n^3)$.

(d)
$$T(n) = 7T(\lfloor n/3 \rfloor) + \Theta(n^2)$$

(e)
$$T(n) = 2T(|9n/10|) + \Theta(n)$$

2. Escreva um algoritmo que ordena uma lista de n itens dividindo-a em três sublistas de aproximadamente n/3 itens, ordenando cada sublista recursivamente e intercalando as três sublistas ordenadas. Analise seu algoritmo concluindo qual é o seu consumo de tempo.

Para este exercício, devemos efetuar uma alteração no MERGESORT para a divisão do vetor A em três partições utilizando o MERGE duas vezes ao final para intercalar as três partes ordenadas em um único vetor.

MERGESORT3(A, p, r)

```
if p < r
1
        k = \lfloor (p+r)/3 \rfloor
2
        m = k + 1 + |(p+r)/3|
3
        MERGESORT3(A, p, k)
4
5
        MERGESORT3(A, k+1, m)
6
        MERGESORT3(A, m+1, r)
7
        Merge(A, p, k, m)
8
        MERGE(A, p, m, r)
```

Consumo de tempo

As linhas 1-3 consomem $\Theta(1)$. As linhas 4-5 têm consumo $T(\lceil n/3 \rceil)$ e a linha 6 tem consumo $T(n - \lceil 2n/3 \rceil)$, já que a terceira partição não tem tamanho exatamente de $\lceil n/3 \rceil$. Sabemos que o consumo do MERGE é $\Theta(n)$, logo:

$$T(n) = T(\lceil n/3 \rceil) + T(\lceil n/3 \rceil) + T(n - 2\lceil n/3 \rceil) + \Theta(n) + \Theta(n)$$

$$= 2T(\lceil n/3 \rceil) + T(\lceil n/3 \rceil) + \Theta(2n)$$

$$= 3T(\lceil n/3 \rceil) + \Theta(2n)$$

Como $\Theta(2n)$ é $\Theta(n)$:

$$T(n) = 3T(\lceil n/3 \rceil) + \Theta(n)$$

Simplificando a recorrência, temos:

$$T(n) = \begin{cases} 1, & n = 1 \\ 3T\left(\frac{n}{3}\right) + n, & n > = 2 \text{ potência de } 2 \end{cases}$$

Por expansão:

$$T(n) = 3T\left(\frac{n}{3}\right) + n$$

$$= 3\left(3T\left(\frac{n}{3^2}\right) + \left(\frac{n}{3}\right)\right) + n$$

$$= 3^2T\left(\frac{n}{3^2}\right) + n + n$$

$$= 3^2T\left(\frac{n}{3^2}\right) + n + n + n$$

$$= 3^3T\left(\frac{n}{3^3}\right) + n + n + n$$

$$= \dots$$

$$= 3^kT\left(\frac{n}{3^k}\right) + kn$$

Assumindo $k = \log_3 n \in 3^k = n$:

$$T(n) = nT\left(\frac{n}{n}\right) + \log_3 n$$
$$= T(1)n + \log_3 n(n)$$
$$= n + n(\log_3 n)$$

Portanto, $T(n) = n + n(\log_3 n) \in \Theta(n \log n)$.

Demonstração. Prova por indução em k.

Base: para n=1

$$T(1) = 1 = 1 + 1(\log_3 1) = 1 + 0 = 1$$

Hipótese de Indução: Assuma que $T(x) = x + x(\log_3 x)$ vale para 1 >= x < n

Passo: para n >= 2

$$T(n) = 3T\left(\frac{n}{3}\right) + n = 3\left(\left(\frac{n}{3}\right) + \left(\frac{n(\log_3 \frac{n}{3})}{3}\right)\right) + n$$

$$= 3\left(\frac{n}{3}\right) + 3\left(\left(\frac{n}{3}\right)\log_3 \frac{n}{3}\right) + n$$

$$= n + n + n\log_3 \frac{n}{3}$$

$$= 2n + n\log_3 n - n$$

$$= n + n\log_3 n$$
(por HI)

Como queríamos demonstrar!

2. Qual é o consumo de espaço do QUICKSORT no pior caso?

A avaliação de um algoritmo quanto ao consumo de espaço está relacionada com a necessidade de alocação de espaço adicional na pilha de recursão.

No pior caso, o QUICKSORT será executado uma vez para cada elemento da lista dada de tamanho n, ou seja, teremos n chamadas recursivas.

Isso significa que, com uma lista de n elementos, n novas chamadas serão adicionadas à pilha no pior caso, o que nos leva a uma complexidade de espaço O(n).

3. Quando um algoritmo recursivo tem como último comando executado, em algum de seus casos, uma chamada recursiva, tal chamada é denominada recursão de calda (tail recursion). Um exemplo de recursão de calda acontece no QUICKSORT.

```
Quicksort(A, p, r)

1 q = Partition(A, p, r)

2 Quicksort(A, p, q - 1)

3 Quicksort(A, q + 1, r)
```

Toda recursão de calda pode ser substituída por uma repetição. No caso do QUICKSORT, obtemos o seguinte:

```
Quicksort(A, p, r)

1 while p < r

2   q = \text{Partition}(A, p, r)

3   Quicksort(A, p, q - 1)

4   p = q + 1
```

Mostre como essa ideia pode ser usada (de uma maneira mais esperta) para melhorar significativamente o consumo de espaço no pior caso do QUICKSORT.

O benefício da utilização do loop ao invés da recursão de cauda é que, geralmente, precisamos de menos memória na pilha para ordenar todos os elementos do vetor A, já que a implementação sem a recursão de cauda reusa o ambiente da pilha (variáveis locais, parâmetros, etc) a cada iteração.

A profundidade das chamadas recursivas está relacionada com a ordem em que os elementos se encontram. Se, por exemplo, o vetor A está em ordem decrescente, teremos a execução no pior caso. Isso implica na forma em que cada partição é gerada.

Para ter um resultado ainda mais eficiente, os intervalos podem ser comparados para se certificar de que a maior partição é sempre processada de forma iterativa e a menor de forma recursiva, o que garante a menor profundidade de recursão possível para um determinado vetor de entrada e pivô.

```
HALF-TAIL-QUICKSORT(A, p, r)
   while p < r
1
2
        q = \text{Partition}(A, p, r)
        if (q-p) < (r-q)
3
            HALF-TAIL-QUICKSORT(A, p, q - 1)
4
5
            p = q + 1
6
        else
7
            Half-Tail-Quicksort(A, q + 1, r)
8
            r = q - 1
```

4. Considere o seguinte algoritmo que determina o segundo maior elemento de um vetor v[1..n] com $n \ge 2$ números positivos distintos.

```
Algoritmo Máximo (v, n)
```

- 1. $maior \leftarrow 0$
- 2. $segundo_maior \leftarrow 0$
- 3. para $i \leftarrow 1$ até n faça
- 4. se v[i] > maior
- 5. **então** segundo_maior \leftarrow maior
- 6. $maior \leftarrow v[i]$
- 7. senão se $v[i] > segundo_maior$
- 8. **então** $segundo_maior \leftarrow v[i]$
- 9. devolva segundo_maior

Suponha que a entrada do algoritmo é uma permutação de 1 a n escolhida uniformemente dentre todas as permutaçõees de 1 a n. Qual é o número esperado de comparações executadas na linha 6 do algoritmo? Qual é o número esperado de atribuições efetuadas na linha 7 do algoritmo?

Vamos calcular E[X] para o algoritmo dado. Seja:

A = número de vezes que a linha 5 do algoritmo foi executada

B = número de vezes que a linha 8 do algoritmo foi executada

$$X = A + B$$

$$X_i = \begin{cases} 1, & \text{se A ou B} \\ 0, & \text{c.c.} \end{cases}$$

Logo:

$$E[X_i] = 0 * Pr\{X_i = 0\} + 1 * Pr\{X_i = 1\} = Pr\{X_i = 1\}$$

Sabemos que a execução da linha 8 depende da avaliação da linha 5, logo: $E[X_i] = Pr\{A\} + (1 - Pr\{A\}) * Pr\{B|\bar{A}\}$

Como já vimos para a versão original do algoritmo MÁXIMO é $Pr\{A\} = \frac{1}{i}$. Para a probabilidade de execução da linha 8, temos que:

$$Pr\{B|\bar{A}\} = \frac{1}{1-i}$$

Portanto:

$$E[X_i] = \left(\frac{1}{i}\right) + \left(1 - \frac{1}{i}\right)\left(\frac{1}{i-1}\right)$$
$$= \left(\frac{1}{i}\right) + \left(\frac{i-1}{i}\right)\left(\frac{1}{i-1}\right)$$
$$= \frac{2}{i}$$

É fato que a linha 5 sempre será executada na primeira iteração, assumindo que v[1..n] contenha apenas inteiros positivos e n >= 2. Logo:

$$E[X_i] = 1 + \sum_{i=2}^{n} \frac{2}{i} = 1 + 2\sum_{i=2}^{n} \frac{1}{i}$$

6. (CLRS 8.4-3) Seja X uma variável aleatória que é igual ao número de caras em duas jogadas de uma moeda justa. Quanto vale $E[X^2]$? Quanto vale $E[X]^2$?

Como temos dois lançamentos, o espaço amostral é dado por:

$$S = \{CC, CK, KC, KK\}$$

Sabendo que a $Pr\{X = cara\} = 1/4$, temos que E[X]:

$$E[X] = 2 * \frac{1}{4} + 1 * \frac{1}{4} + 1 * \frac{1}{4} + 0 * \frac{1}{4}$$
$$= \frac{2+1+1}{4} + 0$$
$$= 1$$

Logo, para $E[X^2]$, temos:

$$E[X^{2}] = 2^{2} * \frac{1}{4} + 1^{2} * \frac{1}{4} + 1^{2} * \frac{1}{4} + 0^{2} * \frac{1}{4}$$

$$= \frac{4+1+1}{4} + 0$$

$$= \frac{3}{2}$$

e para $E^2[X]$, temos o produto das esperanças de X:

$$E^{2}[X] = E[X] * E[X]$$

= 1 * 1
= 1

1. Escreva uma função que recebe um vetor com n letras A's e B's e, por meio de trocas, move todos os A's para o início do vetor. Sua função deve consumir tempo O(n).

Resposta

3. Sejam X[1..n] e Y[1..n] dois vetores, cada um contendo n números ordenados. Escreva um algoritmo $O(\lg n)$ para encontrar uma das medianas de todos os 2n elementos nos vetores X e Y.

Sabemos que a mediana de X e Y está em $i = \lfloor q/2 \rfloor$ e $j = \lfloor s/2 \rfloor$, respectivamente. Note que n = q + s é par, e é por isso que nós estamos usando a função **piso**.

Se X[i] é maior do que Y[j], significa que a mediana global está à esquerda de X[i] e à direita de Y[j]. Se X[i] é menor ou igual a Y[j], nós procuramos a mediana à esquerda de Y[j] e à direita de X[i].

A condição de parada dá-se quando p == q, o que significa que a mediana global está dentro do vetor X. Caso contrário, se r == s, a mediana está em Y.

O pseudocódigo FIND-MEDIAN mostra a operação descrita acima que, também, é o resultado do exercício 9.3-8 CLRS 3ed.

```
FIND-MEDIAN(X, Y, p, q, r, s)
   if p == q
    // We have found the median between p, q and r
 3
         return X[p]
    elseif r == s
 5
    // We have found the median between q, r and s
 6
         return Y[r]
   i = p + (q - p)/2
    j = r + (s - r)/2
9
   if X[i] > Y[j]
10
         q = i
11
         r = j
12
    else
13
         p = i
14
         s = j
   return FIND-MEDIAN(X, Y, p, q, r, s)
```

4. (CLRS 9.3-5) Para esta questão, vamos dizer que a mediana de um vetor A[p..r] com números inteiros é o valor que ficaria na posição $A[\lfloor (p+r)/2 \rfloor]$ depois que o vetor A[p..r] fosse ordenado.

Dado um algoritmo linear "caixa-preta" que devolve a mediana de um vetor, descreva um algoritmo simples, linear, que, dado um vetor A[p..r] de inteiros distintos e um inteiro k, devolve o k-ésimo mínimo do vetor. (O k-ésimo mínimo de um vetor de inteiros distintos é o elemento que estaria na k-ésima posição do vetor se ele fosse ordenado.)

Assumindo que o procedimento MEDIAN retorna a mediana do vetor A[p..r] em tempo linear, a versão modificada do SELECT abaixo retorna, então, o k-ésimo menor elemento de A[p..r].

O algoritmo usa o Partition determinístico para pegar um elemento da partição e utilizá-lo como parâmetro de entrada.

```
SELECTION(A, p, r, k)
    if p == r
 2
         return A[p]
 3
 4
    x = \text{Median}(A, p, r)
    q = PARTITION(x)
   k = q - p + 1
    if i == k
 7
 8
         return A[q]
 9
    elseif k < i
10
         return Selection (A, p, q - 1, k)
11
    else
12
         return Selection(A, p, q + 1, r, k - i)
13
```

8. (CLRS 8.3-2) Quais dos seguintes algoritmos de ordenação são estáveis: insertionsort, mergesort, heapsort, e quicksort. Descreva uma maneira simples de deixar qualquer algoritmo de ordenação estável. Quanto tempo e/ou espaço adicional a sua estratégia usa?

Os algoritmos estáveis são o insertionsort e o mergesort (versão do Cormen). Os demais não são estáveis.

Uma forma simples de deixar qualquer algoritmo de ordenação estável é criar um mecanismo de indexação que mantenha a ordem em que os elementos aparecem originalmente, ou seja, basta termos um índice para cada elemento de um vetor de n elementos.

Esse mecanismo necessita de $\Theta(n)$ espaço extra para armazenar os n índices do vetor de n elementos.

1. Desenhe a árvore de decisão para o Selectionsort aplicado a A[1..3] com todos os elementos distintos.

2. (CLRS 8.1-1) Qual a menor profundidade (= menor nível) que uma folha pode ter em uma árvore de decisão que descreve um algoritmo de ordenação baseado em comparações?

A menor profundidade da árvore de decisão é, coincidentemente, a cota inferior das alturas de todas as árvores de decisão nas quais aparecem uma folha (uma das n! permutações da entrada).

Também podemos dizer que é o melhor caso em tempo de execução de qualquer algoritmo de ordenação baseado em comparações.

Logo, é o caso em que apenas n-1 comparações são realizadas para ordenar o vetor que ocorre, por exemplo, quando o vetor já está ordenado.

3. Mostre que $lg(n!) \ge \frac{n}{4} lgn$ para $n \ge 4$ sem usar a fórmula de Stirling. n! pode ser escrito como um produtório:

$$\prod_{k=1}^{n} k$$

Também podemos escrever o produtório como um somatório, pela seguinte identidade (CLRS pp 1061 - 2ed):

$$lg\big(\prod_{k=1}^{n} k\big) = \sum_{k=1}^{n} lg(k)$$

Logo:

$$lg(n!) = \sum_{k=1}^{n} lg(k) = \sum_{k=1}^{\left\lfloor \frac{n}{4} \right\rfloor} lg(k) + \sum_{k=\left\lfloor \frac{n}{4} \right\rfloor+1}^{2\left\lfloor \frac{n}{4} \right\rfloor} lg(k) + \sum_{k=2\left\lfloor \frac{n}{4} \right\rfloor+1}^{3\left\lfloor \frac{n}{4} \right\rfloor} lg(k) + \sum_{k=3\left\lfloor \frac{n}{4} \right\rfloor+1}^{n} lg(k)$$

$$\geq \sum_{k=\left\lfloor \frac{n}{4} \right\rfloor+1}^{n} lg(k)$$

$$\geq \sum_{k=\left\lfloor \frac{n}{4} \right\rfloor+1}^{n} lg(\frac{n}{4})$$

$$\geq \sum_{k=\frac{n}{4}}^{n} lg(\frac{n}{4})$$

$$\geq \frac{n}{4} lg(\frac{n}{4}) = \frac{n}{4} (lg(n-lg(2))) = \frac{n}{4} (lg(n-2)) = \frac{n}{4} lg(n-\frac{1}{2})$$
(descartando 1/4 da son

$$\therefore lg(n!) \ge \frac{n}{4} lgn$$

4. (CLRS 8.1-3) Mostre que não há algoritmo de ordenação baseado em comparações cujo consumo de tempo é linear para pelo menos metade de n! permutações de 1 a n. O que acontece se trocarmos "metade" por uma fração de 1/n? O que acontece se trocarmos "metade" por uma fração de $1/2^n$?

Resposta: Assim como visto em aula uma árvore de decisão pode ser utilizada para representar o número de comparações executadas por um algoritmo. A árvore de decisão é uma árvore binária onde cada nó não folha é uma comparação e cada folha é uma permutação de entrada, o caminho da raiz da árvore até uma de suas folhas mostra a quantidade de comparações executadas para aquela permutação, portanto a distância da raiz para a folha mais distânte (altura da árvore) reflete o tempo gasto pelo pior caso do algoritmo.

Vamos verificar qual a altura da árvore de decisão para saber qual o tempo gasto no pior caso para pelo menos metade das possíveis permutações n!/2. Seja l o número de folhas do algoritmo e h a altura da árvore, como a árvore de decisão é uma árvore binária sabemos que ela terá no máximo 2^h folhas. Portanto temos a seguinte relação:

$$\frac{n!}{2} \le l \le 2^h$$

Calculando o logaritmo dos dois lados e sabendo que logaritmo é uma função monotonicamente crescente temos que:

$$\lg 2^h \ge \lg \frac{n!}{2}$$

$$h \ge \lg n! - \lg 2$$

$$h \ge \lg n! - 1$$

Como visto em aula $\lg n! \geq \frac{1}{2}n\lg n$, dessa inequação chegamos que $h \geq \lg n! \geq \frac{1}{2}n\lg n$. Disso podemos concluir que $h \geq \frac{1}{2}n\lg n - 1$, ou seja, mesmo utilizando apenas a metade das

permutações assintoticamente o algoritmo ótimo gasta $\Omega(n \lg n)$ no pior caso.

Trocando a "metade" por uma fração 1/n, podemos utilizar o mesmo raciocínio, definindo l como a quantidade de folhas da árvore de decisão e h a altura da árvore, teremos a seguinte inequação:

$$\frac{n!}{n} \le l \le 2^h$$

Calculando o logaritmo dos dois lados e sabendo que logaritmo é uma função monotonicamente crescente temos que:

$$\lg 2^h \ge \lg \frac{n!}{n}$$
$$h \ge \lg n! - \lg n$$
$$h \ge n \lg n - \lg n$$

Note $n \lg n - \lg n = \Theta(n \lg n)$, portanto podemos concluir que para uma fração de 1/n das permutações também mantem-se gasto de tempo de $\Omega(n \lg n)$ no pior caso.

Trocando a "metade" pela fração de $1/2^n$, podemos utilizar o mesmo raciocínio para calcular o pior caso de qualquer algoritmo de ordenação baseada em comparações. Seja l o número de folhas e h a altura da árvore teremos a seguinte relação:

$$\frac{n!}{2^n} \le l \le 2^h$$

Calculando o logaritmo dos dois lados e sabendo que logaritmo é uma função monotonicamente crescente temos que:

$$\lg 2^h \ge \lg(\frac{n!}{2^n})$$

$$h \ge \lg(n!) - \lg 2^n$$

$$h \ge n \lg n - n$$

Note que $n \lg n - n = \Theta(n \lg n)$, portanto da relação acima temos que mesmo para a fração de $1/2^n$ de permutações os algoritmos de ordenação que utilização comparações consomem tempo $\Omega(n \lg n)$ no pior caso.

8. (CLRS 8.2-4) Descreva um algoritmo que, dados n inteiros no intervalo de 1 a k, preprocesse sua entrada e então responda em O(1) qualquer consulta sobre quantos dos n inteiros dados caem em um intervalo $[a \cdots b]$. O preprocessamento efetuado pelo seu algoritmo deve consomir tempo O(n+k).

Resposta: O algoritmo desenvolvido é baseado no algoritmo de $Counting\ Sort$ descrito no livro do Cormen. O algoritmo possuí duas rotinas, uma de preprocessamento que devolve um vetor de contagem C e um de consulta que retorna a quantidade de elementos conforme o enunciado. O algoritmo de preprocessamento abaixo recebe um vetor A de n inteiros

qualquer tal que seus elementos estão dentro do intervalo $[1 \cdots k]$ e realiza o preprocessamento devolvendo o vetor "C" do counting sort antes de ordena-lo no vetor B. Esse vetor possuí o índice do último valor no vetor ordenado de cada índice, por exemplo, C[x] = y, indica que o último elemento x está no índice y do vetor ordenado.

```
PREPROCESSAMENTO(A, k, n)

1 for i = 1 to k

2 C[i] = 0

3 for i = 1 to n

4 C[A[i]] = C[A[i]] + 1
```

5 **for** i = 2 **to** k6 C[i] = C[i] + C[i-1]

7 return C

O procedimento Contano Intervalo recebe o vetor gerado pelo Preprocessamento e os extremos do intervalo $[a\cdots b]$ e devolve a quantidade de elementos do vetor original A que estão dentro desse vetor.

CONTANOINTERVALO(C, a, b)

```
1 if a \le 1

2 a' = 1

3 else a' = C[a-1] + 1

4 return C[b] - a' + 1
```

Corretude

O procedimento de preprocessamento utiliza o counting sort disso sabemos que o vetor C[i] contém a quantidade de elementos menores ou iguais a i do vetor original, isso implica que o valor de C[i] é a posição do último elemento i (não o elemento da posição i) do vetor original no vetor ordenado, isso implica também que o valor de C[i-1]+1 é a posição do primeiro elemento i do vetor original A no vetor ordenado. Disso temos que C[b]-C[a-1]+1 é quantidade de elementos com os valores entre $[a\cdots b]$ do vetor original. Note que o if do procedimento ContanoIntervalo, apenas garante que $a-1 \geq 1$ para que não seja acessado uma posição fora do vetor C, caso isso ocorra consideramos que a posição inicial é 1, note que isso é válido para quando existem valores 1 em A e quando não existem.

Desempenho

Veja a tabela de gastos em cada linha do procedimento PREPROCESSAMENTO:

Linha	Tempo
1	$\Theta(k)$
2	$\Theta(k)$
3	$\Theta(n)$
4	$\Theta(n)$
5	$\Theta(k)$
6	$\Theta(k)$
7	$\Theta(1)$
Total	$\Theta(n+k)$

O procedimento gasta o tempo total $\Theta(n+k)$. O tempo gasto no procedimento Contano
Intervalo está expresso na tabela abaixo:

Linha	Tempo
1	$\Theta(1)$
2	$\Theta(1)$
3	$\Theta(1)$
4	$\Theta(1)$
Total	$\Theta(1)$

Portanto o algoritmo gasta tempo $\Theta(n+k)$ para o preprocessamento e tempo $\Theta(1)$ para a chamada a contagem dos elementos conforme enunciando do exercício.

CLRS (Outros)

A.1-7 Avalie o produtório $\prod_{k=1}^{n} 2(4^k)$.

$$\prod_{k=1}^{n} 2(4^{k}) = \prod_{k=1}^{n} 2((2^{2})^{k}) = \prod_{k=1}^{n} 2(2^{2k}) = \prod_{k=1}^{n} 2^{2k+1}$$

Se avaliarmos o produtório para n=3, por exemplo:

$$\prod_{k=1}^{n} 2^{2k+1} = 2^{2+1} \times 2^{4+1} \times 2^{6+1}$$

Percebemos que o expoente de 2 cresce em uma série aritmética:

$$\sum_{k=1}^{n} 2k + 1 = \sum_{k=1}^{n} 2k + \sum_{k=1}^{n} 1 = 2\sum_{k=1}^{n} k + n = 2\left(\frac{n(n+1)}{2}\right) + n = n(n+2)$$

Portanto:

$$\prod_{k=1}^{n} 2(4^k) = 2^{n(n+2)}$$