ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 8.662— 2009 (ИСО 20765-1:2005)

Государственная система обеспечения единства измерений

ГАЗ ПРИРОДНЫЙ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГАЗОВОЙ ФАЗЫ

Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8

ISO 20765-1:2005

Natural gas — Calculation of thermodynamic properties —
Part 1: Gas phase properties for transmission and distribution applications
(MOD)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 180 «Государственная служба стандартных справочных данных»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. № 1043-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 20765-1:2005 «Газ природный. Расчетное определение термодинамических свойств. Часть 1. Свойства газовой фазы для целей транспортирования и распределения газа» (ISO 20765-1:2005 «Natural gas Calculation of thermodynamic properties Part 1: Gas phase properties for transmission and applications») путем изменения его структуры для приведения в соответствие с правилами, установленными в ГОСТ Р 1.5 (подразделы 4.2 и 4.3), а также путем изменения отдельных фраз (слов, значений, показателей, ссылок), которые выделены в тексте полужирным курсивом.

Внесение указанных технических отклонений направлено на учет особенностей объекта стандартизации, характерных для Российской Федерации, а также связано с целесообразностью использования ссылочных национальных и межгосударственных стандартов вместо ссылочных международных стандартов.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5).

Сравнение структуры настоящего стандарта со структурой указанного международного стандарта приведено в дополнительном приложении ДА.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

ı	Область применения	ı
2	Нормативные ссылки	1
3	Термины, определения и обозначения	1
	3.1 Термины и определения	1
	3.2 Обозначения	2
4	Термодинамические основы метода	4
	4.1 Сущность метода	4
	4.2 Фундаментальное уравнение состояния для свободной энергии Гельмгольца	5
	4.3 Термодинамические свойства, получаемые из свободной энергии Гельмгольца	7
5	Метод расчета свойств	9
	5.1 Входные переменные	9
	5.2 Переход от давления к относительной плотности	9
	5.3 Проведение основных вычислений	0
6	Условия применения	C
	6.1 Давление и температура	0
	6.2 Газ, подготовленный для транспортирования по магистральным газопроводам	0
7	Оценка неопределенностей расчета свойств	1
	7.1 Неопределенности расчета свойств для газа, подготовленного для транспортирования	
	по магистральным газопроводам	1
	7.2 Влияние неопределенностей входных переменных	3
	Оформление результатов расчетов	3
Пр	риложение А (справочное) Исходные положения для фундаментального уравнения состояния	
	для свободной энергии Гельмгольца	
	риложение В (обязательное). Идеально-газовая свободная энергия Гельмгольца	
	риложение С (обязательное). Уравнение состояния для свободной энергии Гельмгольца 1	
	риложение D (обязательное) Подробная информация по уравнению состояния	
	риложение Е (справочное). Учет следовых компонентов	
	риложение F (справочное) Реализация метода	
Пр	риложение G (справочное) Примеры расчетов	2
Пр	риложение ДА (справочное) Сопоставление структуры настоящего стандарта со структурой	
	примененного в нем международного стандарта	
Б١	иблиография	8

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ГАЗ ПРИРОДНЫЙ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГАЗОВОЙ ФАЗЫ

Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8

State system for ensuring the uniformity of measurements. Natural gas. Gas phase thermodynamic properties. Methods of calculation for transmission and distribution applications on base of the AGA8 fundamental equation of state

Дата введения — 2011—01—01

1 Область применения

Настоящий стандарт устанавливает методы расчетного определения термических и калорических свойств (термодинамических свойств) природного газа, **подготовленного для транспортирования и распределения по магистральным газопроводам,** при условии его нахождения только в газовой фазе.

Стандарт распространяется на подготовленные для транспортирования по магистральным газопроводам газы в диапазонах давления p и температуры t, при которых на практике осуществляют транспортирование и распределение газов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.417—2002 Государственная система обеспечения единства измерений. Единицы величин

ГОСТ 31369—2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности, числа Воббе на основе компонентного состава (ИСО 6976-1:1995, MOD)

ГОСТ 31371.1—2008 Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 1. Руководство по проведению анализа (ИСО 6974-1:2000, МОD)

При мечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены термины по *ГОСТ 8.417,* ГОСТ 31371.1, с учетом [1]—[6], а также следующие термины с соответствующими определениями:

3.1.1 **неидеальная составляющая свойства** (residual property): Составляющая термодинамического свойства, которая определяется неидеальным (реальным) поведением газа или гомогенной га-

FOCT P 8.662—2009

зовой смеси, то есть представляет собой разницу между термодинамическим свойством реального газа или газовой смеси и идеально-газовой составляющей этого свойства газа или газовой смеси при тех же самых температуре и плотности.

3.1.2 калорическое свойство (caloric property): Характеристика газа или гомогенной газовой смеси, которую можно рассчитать по фундаментальному уравнению состояния (с привлечением данных об идеально-газовых значениях теплоемкости, энтальпии и энтропии).

П р и м е ч а н и е — Вычисление калорических свойств по настоящему стандарту применимо к внутренней энергии, энтальпии, энтропии, изохорной теплоемкости, изобарной теплоемкости, коэффициенту Джоуля-Томсона, показателю изоэнтропы (адиабаты), скорости звука.

3.1.3 **термическое свойство** (volumetric property): Характеристика газа или гомогенной газовой смеси, которые можно рассчитать по термическому уравнению состояния.

Примечание — Настоящий стандарт распространяется на такие термические свойства, как фактор сжимаемости и плотность; **перевод термина дан в соответствии с [6].**

- 3.1.4 **термодинамическое свойство** (thermodynamic property): Термическое или калорическое свойство.
- 3.1.5 **уравнение состояния** (equation of state): Математическое выражение взаимосвязи между параметрами состояния газа или гомогенной газовой смеси.

Примечание — В этой части следует учитывать различия между двумя видами уравнения состояния, а именно: 1) термическим уравнением состояния, которое устанавливает взаимосвязь между такими параметрами состояния, как давление, температура и объем, занимаемый заданным количеством вещества; 2) фундаментальным уравнением состояния, которое устанавливает взаимосвязь между плотностью, температурой и свободной энергией Гельмгольца.

3.2 Обозначения

3.2.1 Условные обозначения

Условные обозначения величин приведены в таблице 1.

Таблица 1 — Условные обозначения величин

Обозначение	Наименование величины	Единицы измерений
a _n	Константа уравнения	1
$(A_{0, 1})_i$	Коэффициент уравнения состояния идеального газа	1
$(A_{0,2})_i$	Коэффициент уравнения состояния идеального газа	1
b_n	Коэффициент уравнения состояния реального газа	1
В	Второй вириальный коэффициент	м ³ /кмоль
B _{0, i}	Коэффициент уравнения состояния идеального газа	1
B_n^*	Коэффициент уравнения	1
B_{nij}^{\star}	Параметр бинарного взаимодействия	1
C _n	Коэффициент уравнения состояния реального газа	1
c_{p}	Молярная изобарная теплоемкость	кДж/(кмоль · K)
c _v	Молярная изохорная теплоемкость	кДж/(кмоль · K)
C _{0, i}	Коэффициент уравнения состояния идеального газа	1
C_n	Коэффициент уравнения состояния реального газа	1
C _p	Удельная изобарная теплоемкость	кДж/(кг · K)
C _v	Удельная изохорная теплоемкость	кДж/(кг · K)
D	Удельная (массовая) плотность	кг/м ³
$D_{0,i}$	Коэффициент уравнения состояния идеального газа	1

Продолжение таблицы 1

Обозначение	Наименование величины	Единицы измерени
E _i	Энергетический параметр в расчетных уравнениях	1
E _{0, i}	Коэффициент уравнения состояния идеального газа	1
E _{ij}	Энергетический параметр бинарного взаимодействия	1
= [*] nij	Энергетический параметр бинарного взаимодействия	1
=	Молярная свободная энергия Гельмгольца	кДж/кмоль
n	Коэффициент уравнения	1
=	Коэффициент уравнения	1
=_i	Высокотемпературный параметр в уравнениях	1
= _{0, i}	Коэффициент уравнения состояния идеального газа	1
g_n	Коэффициент уравнения	1
3	Коэффициент уравнения	1
\mathbf{G}_i	Ориентационный параметр	1
3 _{0, i}	Коэффициент уравнения состояния идеального газа	1
$\hat{\boldsymbol{\beta}}_{ij}$	Ориентационный параметр бинарного взаимодействия	1
∍* ∂ _{nij}	Ориентационный параметр бинарного взаимодействия	1
1	Молярная энтальпия	кДж/кмоль
1	Удельная энтальпия	кДж/кг
$H_{0,i}$	Коэффициент уравнения состояния идеального газа	1
I _{0, i}	Коэффициент уравнения состояния идеального газа	1
J _{0, i}	Коэффициент уравнения состояния идеального газа	1
ζ_n	Коэффициент уравнения состояния AGA8	1
<	Параметр размера для смеси	(м³/кмоль) ^{1/3}
ζ,	Параметр размера для компонента	(м³/кмоль) ^{1/3}
⟨ ij	Параметр размера для бинарного взаимодействия	1
-	Температура нормировки	К
И	Молярная масса смеси	кг/кмоль
M_i	Молярная масса <i>i</i> -го компонента	кг/кмоль
V	Число компонентов в газовой смеси	1
	Давление	МПа
η_n	Коэффициент уравнения	1
Q	Коэффициент уравнения	1
Q_i	Квадрупольный параметр	1
7	Универсальная газовая постоянная — 8,314510*	кДж/(кмоль · K)
6	Молярная энтропия	кДж/(кмоль · K)
S_n	Коэффициент уравнения	1
S	Удельная энтропия	кДж/(кг · K)

FOCT P 8.662—2009

Окончание таблицы 1

Обозначение	Наименование величины	Единицы измерений
S _i	Дипольный параметр	1
T	Температура	К
u	Молярная внутренняя энергия	кДж/кмоль
u_n	Коэффициент уравнения состояния AGA8	1
U	Удельная внутренняя энергия	кДж/кг
V	Коэффициент уравнения	1
V_{ij}	Параметр бинарного взаимодействия	1
W	Скорость звука	м/с
W_n	Коэффициент уравнения	1
W_i	Параметр ассоциации	1
X	Молярная доля	1
X	Вектор значений молярной доли компонентов в смеси $(x_1, x_2, x_3, x_i, x_{21})$	1
Z	Фактор сжимаемости	1
δ	Относительная плотность	1
φ	Относительная свободная энергия Гельмгольца	1
k	Показатель адиабаты	1
μ	Коэффициент Джоуля-Томсона	К/МПа
ρ	Молярная плотность	кмоль/м ³
τ	Обратная относительная температура	1

^{*} Приведенное в настоящей таблице значение универсальной газовой постоянной R не является самым современным из принятых международным метрологическим сообществом. Однако это значение было широко распространено во время разработки уравнения AGA8 и поэтому оно оставлено здесь. Расхождение между приведенным значением и значением, принятым в настоящее время, меньше чем $5 \cdot 10^{-6}$

3.2.2 Подстрочные индексы

Индексы в условных обозначениях величин означают следующее:

- i для i-го компонента (от i = 1 до N);
- i для второго (i-го) компонента в бинарном взаимодействии (от i = 2 до N);
- n номер коэффициента в уравнении состояния (от n = 1 до 58);
- 0 для идеально- газового состояния;
- r для неидеальной составляющей;
- δ частная производная по относительной молярной плотности;
- θ для стандартного состояния (T_{θ} = 298,15 K, p_{θ} = 0,101325 МПа);
- au частная производная по обратной относительной температуре.

4 Термодинамические основы метода

4.1 Сущность метода

Метод настоящего стандарта основывается на концепции, что для подлежащего транспортированию по газопроводу природного газа имеются данные о результатах анализа его полного компонентного состава, используемые для вычисления термодинамических свойств газа. Эти данные совместно с температурой и плотностью, характеризующими состояние газа, составляют комплекс входных переменных для рассматриваемого метода. На практике в качестве входных переменных более удобно

использовать температуру и давление. В таком случае сначала необходимо преобразовывать эти параметры состояния в температуру и плотность.

В настоящем стандарте представлены уравнения, в которых свободная энергия Гельмгольца выражается как функция плотности, температуры и состава смеси; по этим уравнениям термодинамические свойства выражают через свободную энергию Гельмгольца и ее производные по температуре и плотности.

В настоящем методе используют результаты детального анализа молярного состава смеси, то есть должны быть указаны все компоненты, присутствующие в смеси в количествах, превышающих 0,00005 молярной доли (50 миллионных частей молярной доли) 1). Для типичного природного газа такой анализ должен включать алканы, примерно до C_7 или C_8 , совместно с азотом, диоксидом углерода и гелием. Обычно изомеры алканов свыше C_5 объединяют с нормальными изомерами с учетом молярной массы.

Для некоторых природных газов следует учитывать дополнительные компоненты, такие как углеводороды C_9 и C_{10} , водяной пар и сероводород. Для коммунально-бытовых газов необходимо учитывать наличие водорода и окиси углерода.

В настоящем методе используют результаты анализа компонентного состава, рассчитанного на 21 компонент. Эти компоненты могут присутствовать в природном газе в качестве основных или второстепенных составляющих (6.2). Любой «следовой» компонент, который не входит в число 21 определяемого, можно приблизительно учитывать совместно с определяемым компонентом.

4.2 Фундаментальное уравнение состояния для свободной энергии Гельмгольца

4.2.1 Исходные положения

Примечание — Исходные положения для фундаментального уравнения состояния для свободной энергии Гельмгольца приведены в приложении A.

4.2.2 Свободная энергия Гельмгольца

Свободную энергию Гельмгольца f гомогенной газовой смеси при заданных давлении и температуре выражают как сумму идеально-газовой составляющей f_0 и неидеальной составляющей f_r , характеризующей поведение реального газа, согласно уравнению

$$f(\rho, T, X) = f_0(\rho, T, X) + f_r(\rho, T, X),$$
 (1)

которое при безразмерном представлении свободной энергии в виде $\phi = f/(R \cdot T)$ преобразуют в уравнение

$$\varphi(\delta, \tau, X) = \varphi_0(\delta, \tau, X) + \varphi_r(\delta, \tau, X), \tag{2}$$

где X — вектор молярных долей смеси;

au — обратная (безразмерная) относительная температура, связанная с температурой T по соотношению

$$\tau = L/T, \tag{3}$$

где L = 1 K.

Поскольку, согласно статистической термодинамике, свободная энергия Гельмгольца представляет собой непосредственный результат числа и типов молекулярных взаимодействий в смеси и является тем самым непосредственной функцией молярной плотности и молярных долей молекул в смеси, в уравнения (1) и (2) в качестве входных переменных записывают соответственно ρ — молярную плотность и δ — относительную плотность, а не давление ρ .

Относительную плотность δ связывают с молярной плотностью ρ по уравнению

$$\delta = K^3 \cdot \rho, \tag{4}$$

где *K* — смесевой параметр размера.

Идеально-газовую составляющую ϕ_0 относительной свободной энергии Гельмгольца получают из уравнений для идеально-газовой изобарной теплоемкости (4.2.2) и избыточной составляющей ϕ_r из уравнения состояния AGA8 (4.2.3).

¹⁾ млн-1 — несистемная единица.

4.2.3 Идеально-газовая составляющая свободной энергии Гельмгольца

Идеально-газовую составляющую свободной энергии Гельмгольца через энтальпию h_0 и энтропию s_0 выражают в соответствии с уравнением

$$f_0(\rho, T, X) = h_0(T, X) - R \cdot T - T \cdot s_0(\rho, T, X).$$
 (5)

В свою очередь, энтальпию h_0 и энтропию s_0 выражают через идеально-газовую изобарную теплоемкость $c_{0, p}$ по уравнениям (6) и (7), где в качестве пределов интегрирования устанавливают температуры $T_{\rm A}$ и T:

$$h_0(T, X) = \int c_{0, p} dT + h_{0, \theta};$$
 (6)

$$s_0(\rho, T, X) = \int \frac{c_{0, p}}{T} dT - R \cdot \ln\left(\frac{\rho}{\rho_{\theta}}\right) - R \cdot \ln\left(\frac{T}{T_{\theta}}\right) + s_{0, \theta} - R \cdot \sum_{i=1}^{N} x_i \cdot \ln x_i.$$
 (7)

Стандартное состояние для нулевых значений энтальпии и энтропии устанавливают при T_{θ} = 298,15 K и p_{θ} = 0,101325 MPa для идеальной нереагирующей газовой смеси. Константы интегрирования $h_{0,\,\theta}$ и $s_{0,\,\theta}$ устанавливают далее так, чтобы следовать этому условию. Стандартную (идеально-газовую) плотность $\rho_{\,\theta}$ определяют по соотношению $\rho_{\,\theta}$ = $\rho_{\,\theta}/(R\cdot T_{\,\theta})$.

Неидеальную составляющую свободной энергии Гельмгольца $\varphi_0 = f_0/(R \cdot T)$ определяют, используя уравнения (6) и (7), как функцию δ , τ и X, по уравнению

$$\varphi_0(\delta, \tau, X) = -\tau \int \frac{c_{0, p}}{R \cdot \tau^2} d\tau + \frac{h_{0, \theta} \cdot \tau}{R \cdot L} - 1 + \int \frac{c_{0, p}}{R \cdot t} d\tau + \ln\left(\frac{\delta}{\delta_{\theta}}\right) + \ln\left(\frac{\tau_{\theta}}{t}\right) - \frac{s_{0, \theta}}{R} + \sum_{i=1}^{N} x_i \cdot \ln x_i$$
(8)

(более подробную информацию см. в приложении В).

4.2.4 Неидеальная составляющая свободной энергии Гельмгольца

В настоящем стандарте неидеальную составляющую свободной энергии Гельмгольца получают путем использования уравнения состояния AGA8. Записывая фактор сжимаемости как функцию относительной плотности, обратной относительной температуры и молярных долей компонентов, уравнение состояния AGA8 представляют в виде следующего уравнения

$$Z = 1 + \frac{B \cdot \delta}{K^3} - \delta \sum_{n=13}^{18} C_n \cdot \tau^{u_n} + \sum_{n=13}^{58} C_n \cdot \tau^{u_n} \cdot \delta^{b_n} (b_n - c_n \cdot k_n \cdot \delta^{k_n}) \exp(-c_n \cdot \delta^{k_n}), \tag{9}$$

где

В — второй вириальный коэффициент;

 C_n — функция молярных долей компонентов;

 $u_{n}, b_{n}, c_{n}, k_{n}$ — коэффициенты уравнения состояния и функции молярных долей компонентов.

Фактор сжимаемости Z связывают с неидеальной составляющей относительной свободной энергии Гельмгольца φ , согласно уравнению

$$Z = 1 + \delta \cdot \varphi_{r \delta}, \tag{10}$$

где $\phi_{r,\,\delta}$ — частная производная от ϕ_r по относительной плотности при постоянных τ и X.

Путем исключения *Z*, используя уравнения (9) и (10) и интегрирование по относительной плотности, приходят к уравнению для неидеальной составляющей относительной свободной энергии Гельмгольца

$$\varphi_{r}(\delta, \tau, X) = \frac{B \cdot \delta}{K^{3}} - \delta \sum_{n=13}^{18} C_{n} \cdot \tau^{u_{n}} + \sum_{n=13}^{58} C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \exp(-C_{n} \cdot \delta^{k_{n}})$$
(11)

(более подробную информацию см. в приложении С).

4.2.5 Относительная свободная энергия Гельмгольца

Исходя из возможности рассчитать все термодинамические свойства по фундаментальному уравнению состояния (2) для относительной свободной энергии Гельмгольца ϕ , путем использования уравнения (8) для идеально-газовой составляющей ϕ 0 и уравнения (11) для неидеальной составляющей ϕ 0 относительную свободную энергию Гельмгольца ϕ 0 представляют в виде уравнения

$$\varphi(\delta, \tau, X) = -\tau \int \frac{c_{0,p}}{R \cdot \tau^{2}} d\tau + \frac{h_{0,\theta} \cdot \tau}{R} - 1 + \int \frac{c_{0,p}}{R \cdot \tau} d\tau + \ln\left(\frac{\delta}{\delta_{\theta}}\right) + \ln\left(\frac{\tau_{\theta}}{\tau}\right) - \frac{s_{0,\theta}}{R} + \sum_{i=1}^{N} x_{i} \cdot \ln x_{i} + \dots$$

$$\dots + \frac{B \cdot \delta}{K^{3}} - \delta \sum_{n=13}^{18} C_{n} \cdot \tau^{u_{n}} + \sum_{n=13}^{58} C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \exp(-c_{n} \cdot \delta^{k_{n}}).$$

$$(12)$$

4.3 Термодинамические свойства, получаемые из свободной энергии Гельмгольца

4.3.1 Исходные положения

Каждое из термодинамических свойств можно выразить в явном виде через относительную свободную энергию Гельмгольца ϕ и различные производные от нее. Требуемые производные ϕ_{τ} , $\phi_{\tau\tau}$, ϕ_{δ} , $\phi_{\delta\delta}$ и $\phi_{\tau\delta}$ определяют по уравнениям:

$$\varphi_{\tau} = \left(\frac{\partial \varphi}{\partial \tau}\right)_{\delta, X}; \varphi_{\tau\tau} = \left(\frac{\partial^{2} \varphi}{\partial \tau^{2}}\right)_{\delta, X}; \varphi_{\delta} = \left(\frac{\partial \varphi}{\partial \delta}\right)_{\tau, X}; \varphi_{\delta\delta} = \left(\frac{\partial^{2} \varphi}{\partial \delta^{2}}\right)_{\tau, X}; \varphi_{\tau\delta} = \left[\frac{\partial}{\partial \tau}\left(\frac{\partial \varphi}{\partial \delta}\right)_{\tau, X}\right]_{\delta, X}.$$
(13)

Каждую производную определяют в виде суммы идеально-газовой составляющей (приложение В) и неидеальной составляющей (приложение С). Вводят подстановки, приведенные в уравнениях, для упрощения получения требуемых аналитических выражений:

$$\varphi_{1} = \left[\frac{\partial (\delta^{2} \cdot \varphi_{\delta})}{\partial \delta} \right]_{T \times X} = 2 \cdot \delta \cdot \varphi_{\delta} + \delta^{2} \cdot \varphi_{\delta\delta}; \tag{14}$$

$$\phi_2 = -\tau^2 \left[\frac{\partial}{\partial_{\tau}} \left(\frac{\delta \cdot \phi_{\delta}}{\tau} \right) \right]_{\delta, X} = \delta \cdot \phi_{\delta} - \tau \cdot \delta \cdot \phi_{\tau \delta}. \tag{15}$$

(более детальные выражения для ϕ_{τ} , $\phi_{\tau\tau}$, ϕ_{δ} , ϕ_{1} и ϕ_{2} см. в приложении C; необходимые общие выражения для различных термодинамических свойств приведены в 4.3.2.1—4.3.2.9 [уравнения (17)—26)]: в уравнениях (19)—(24) нижние символы относятся к молярным величинам (то есть отнесенным к 1 киломолю), и соответствующие верхние символы относятся к массовым величинам (то есть отнесенным к 1 килограмму); переход от молярных переменных к массовым достигается делением на молярную массу M).

 Π р и м е ч а н и е — В этих уравнениях R — молярная газовая постоянная; соответственно R/M — массовая газовая постоянная.

Молярную массу M смеси получают на основе компонентного состава X и молярных масс M_i компонентов по уравнению

$$M = \sum_{i=1}^{N} x_i \cdot M_i. \tag{16}$$

Значения молярных масс M_i компонентов приведены в [7] и [8], в которых эти значения являются идентичными значениям, приведенным в ГОСТ 31369.

П р и м е ч а н и е — Значения, приведенные для молярных масс, в большинстве случаев не идентичны современным значениям, применяемым в международной метрологической практике. Они представляют собой значения, которые были использованы в основном при получении уравнения состояния AGA8 и в этой связи оставлены без изменений; расхождения во всех случаях не превышают 0,001 кг/кмоль.

В уравнениях (20), (21) и (23)—(26) основные выражения для свойств h, s, c_p , μ , k и w представляют в нескольких вариантах для того, чтобы полученные значения свойств можно было использовать для упрощения последующих вычислений. Такой подход можно применять в случаях, когда необходимо определять несколько или все термодинамические свойства. В каждом подпункте сначала представлены основные термодинамические соотношения, а далее вспомогательные выражения.

4.3.2 Уравнения для термодинамических свойств

4.3.2.1 Фактор сжимаемости и плотность

Выражение для фактора сжимаемости Z представляют согласно уравнению

$$Z = \delta \cdot \varphi_{\delta}, \tag{17}$$

где ϕ_{δ} — производная от свободной энергии Гельмгольца по относительной молярной плотности [см. также уравнение (10)]. Молярную плотность ρ и удельную (массовую) плотность D связывают с давлением согласно уравнению

$$\rho = D/M = p/(Z \cdot R \cdot T). \tag{18}$$

Значения фактора сжимаемости Z, рассчитываемые по настоящему стандарту, как правило, не должны отличаться от значений, рассчитываемых по стандарту [1]. Для этого выход из итерационного процесса при расчете плотности на шаге 4 блок-схемы расчета термодинамических свойств (рисунок F.1, приложение F) должен проводиться по критерию разности абсолютных значений рассчитанного и заданного (входного) давления; эта разность должна быть меньше 10-6 МПа.

4.3.2.2 Внутренняя энергия

Выражение для внутренней энергии и представляют согласно уравнению

$$\frac{u}{R \cdot T} = \frac{U \cdot M}{R \cdot T} = \tau \cdot \varphi_{\tau} \,. \tag{19}$$

4.3.2.3 Энтальпия

Выражение для энтальпии h представляют согласно уравнению

$$\frac{h}{R \cdot T} = \frac{H \cdot M}{R \cdot T} = \tau \cdot \varphi_{\tau} + \delta \cdot \varphi_{\delta} = \frac{u}{R \cdot T} + Z = \frac{U \cdot M}{R \cdot T} + Z. \tag{20}$$

4.3.2.4 Энтропия

Выражение для энтропии в представляют согласно уравнению

$$\frac{s}{R} = \frac{S \cdot M}{R} = \tau \cdot \varphi_{\tau} - \varphi = \frac{u}{R \cdot T} - \varphi = \frac{U \cdot M}{R \cdot T} - \varphi. \tag{21}$$

4.3.2.5 Изохорная теплоемкость

Выражение для изохорной теплоемкости $c_{\scriptscriptstyle \mathrm{V}}$ представляют согласно уравнению

$$\frac{c_{v}}{R} = \frac{C_{v} \cdot M}{R} = -\tau^{2} \cdot \varphi_{\tau\tau} . \tag{22}$$

4.3.2.6 Изобарная теплоемкость

Изобарную теплоемкость $c_{\scriptscriptstyle D}$ определяют по уравнению

$$\frac{c_{p}}{R} = \frac{C_{p} \cdot M}{R} = -\tau^{2} \cdot \varphi_{\tau\tau} + \frac{\varphi_{2}^{2}}{\varphi_{1}} = \frac{c_{v}}{R} + \frac{\varphi_{2}^{2}}{\varphi_{1}} = \frac{C_{v} \cdot M}{R} + \frac{\varphi_{2}^{2}}{\varphi_{1}}.$$
 (23)

4.3.2.7 Коэффициент Джоуля-Томсона

Выражение для коэффициента Джоуля-Томсона μ представляют уравнением

$$\mu \cdot R \cdot \rho = \frac{\mu \cdot R \cdot D}{M} = \frac{\varphi_2 - \varphi_1}{\varphi_2^2 - (\tau^2 \cdot \varphi_{\tau\tau} \cdot \varphi_1)} = \frac{R}{c_p} \left(\frac{\varphi_2}{\varphi_1} - 1 \right) = \frac{R}{C_p \cdot M} \left(\frac{\varphi_2}{\varphi_1} - 1 \right). \tag{24}$$

4.3.2.8 Показатель адиабаты

Выражение для показателя адиабаты к представляют согласно уравнению

$$k = \frac{\varphi_1 - \frac{\varphi_2^2}{\tau^2 \cdot \varphi_{\tau\tau}}}{\delta \cdot \varphi_s} = \frac{\varphi_1 + \frac{R}{c_v} \varphi_2^2}{Z} = \frac{\varphi_1 + \frac{R}{c_v \cdot M} \varphi_2^2}{Z} = \frac{\varphi_1 \cdot \frac{C_p}{C_v}}{Z} = \frac{\varphi_1}{Z} \cdot \frac{C_p}{c_v} = \frac{\varphi_1}{Z} \cdot \frac{C_p}{C_v}.$$
(25)

4.3.2.9 Скорость звука

Выражение для скорости звука w представляют согласно уравнению

$$\frac{w^2 \cdot M}{R \cdot T} = \varphi_1 - \frac{\varphi_2^2}{\tau^2 \cdot \varphi_{TT}} = Z \cdot k = \varphi_1 \frac{c_p}{c_v} = \varphi_1 \frac{C_p}{C_v}.$$
 (26)

5 Метод расчета свойств

5.1 Входные переменные

При характеристике сущности метода, устанавливаемого в настоящем стандарте, предполагают использование относительной плотности, обратной относительной температуры и молярного компонентного состава в качестве входных переменных. На практике в качестве входных переменных обычно чаще используют абсолютное давление, абсолютную температуру и молярный компонентный состав. Соответственно на основе этих данных необходимо сначала рассчитать обратную относительную температуру и относительную плотность. Переход от абсолютной температуры к обратной относительной температуре осуществляют, используя соотношение (3).

Переход от давления к относительной плотности проводят по 5.2.

Если вместо давления p в качестве входной переменной приводят удельную (массовую) плотность D, значения δ получают непосредственно без проведения процедур по 5.2, а именно, как δ = $D \cdot K^3/M$, где M — молярная масса, определяемая по уравнению (16). Компонентный состав необходимо определять для следующих 21 компонента: азота, диоксида углерода, метана, этана, пропана, H-бутана, изобутана (2-метилпропана), H-пентана, изопентана (2-метилбутана), H-гексана, H-гептана, H-октана, H-нонана, H-декана, водорода, кислорода, углерода, воды, сероводорода, гелия и аргона (о допустимых пределах молярных долей компонентов, устанавливаемых рассматриваемым методом, — см. 6.2). Какой-либо следовой компонент, присутствующий в газе, но не идентифицируемый в числе перечисленных 21 компонента, можно приблизительно учитывать в совокупности с подходящим из перечисленных выше (приложение E). Сумма молярных долей компонентов должна быть равна единице.

Если это условие не выполняется, необходимо проверить качество проведенного компонентного анализа, в том числе на полноту учета количества компонентов. Нельзя переходить к решению последующих задач, пока не будет обнаружен источник этой проблемы. Если не установлены молярные доли гептана, октана, нонана и декана, можно использовать суммарную фракцию C_{6+} . Необходимо провести при этом анализ влияния подобных приближений на искажение конечных результатов.

П р и м е ч а н и е — Если состав газа известен в объемных долях, его необходимо пересчитать в молярные доли, используя метод по ГОСТ 31369.

5.2 Переход от давления к относительной плотности

Комбинируя уравнения (4), (9) и (18), получают уравнение

$$\frac{p \cdot \tau \cdot K^3}{\delta \cdot R \cdot L} = Z = 1 + \frac{B \cdot \delta}{K^3} - \delta \sum_{n=13}^{18} C_n \cdot \tau^{u_n} + \sum_{n=13}^{58} C_n \cdot \tau^{u_n} \cdot \delta^{b_n} (b_n - c_n \cdot k_n \cdot \delta^{k_n}) \exp(-c_n \cdot \delta^{k_n}). \tag{27}$$

Если входные переменные выражены через давление, обратную относительную температуру и компонентный состав, используя уравнение (27), можно определить приведенную молярную плотность δ . Значения параметров $B(\tau, X)$, $C_n(X)$, K(X) и коэффициентов b_n , $c_n k_n$ и u_n уравнения (27) можно получить из уравнений и таблиц, представленных в приложении D [уравнений (D.1), (D.6) и (D.11), и таблицы D.1 соответственно] для этих характеристик. Численные значения параметров для всех индивидуальных компонентов и их бинарного взаимодействия, также требуемые для решения уравнений (D.1), (D.6) и (D.11), представлены в таблицах D.2 и D.3 соответственно.

Решение можно получить подходящим численным методом. На практике применяют стандартный алгоритм решения уравнения состояния относительно плотности как наиболее удобный и достаточно корректный. В таких алгоритмах обычно используют начальное приближение для значения плотности (часто идеально-газовое приближение) и продолжают расчеты путем итерационных вычислений p и δ для того, чтобы найти значение δ , которое воспроизводит известное значение p в пределах заданного уровня точности. В рассматриваемом методе в качестве допустимого критерия устанавливают условие,

что давление, рассчитываемое из вычисленных значений относительной молярной плотности δ , должно воспроизводить исходное значение p в пределах (1/10⁶) **МПа.**

5.3 Проведение основных вычислений

Для проведения вычислений в целом необходимо выполнение нижеследующих условий.

Требуемый набор входных переменных имеется в наличии. С этим выверенным набором входных переменных: относительной плотностью δ , обратной относительной температурой τ и компонентным составом X используют фундаментальное уравнение состояния для вычисления относительной свободной энергии Гельмгольца и других термодинамических свойств. Согласно уравнению (12) определяют относительную свободную энергию Гельмгольца как $\phi = \phi_0 + \phi_r$. Согласно уравнению (11) определяют неидеальную составляющую свободной энергии Гельмгольца ϕ_r как функцию относительной плотности δ , обратной относительной температуры τ и молярного компонентного состава X. Идеально-газовую составляющую ϕ_0 , определяемую уравнением (8), получают согласно уравнению (В.3) приложения В таким образом, чтобы выразить ϕ как представлено в уравнении

$$\varphi = \sum_{i=1}^{N} x_{i} \cdot \{ (A_{0,1})_{i} + (A_{0,2})_{i} \cdot \tau + B_{0,i} \cdot \ln \tau + C_{0,i} \cdot \ln[\sinh(D_{0,i} \cdot \tau)] - E_{0,i} \cdot \ln[\cos h(F_{0,i} \cdot \tau)] + \dots
\dots + G_{0,i} \cdot \ln[\sinh(H_{0,i} \cdot \tau)] - I_{0,i} \cdot \ln[\cos h(J_{0,i} \cdot \tau)] + \ln x_{i} \} + \ln\left(\frac{\delta}{\delta_{\theta}}\right) + \ln\left(\frac{\tau_{\theta}}{\tau}\right) + \dots
\dots + \frac{B \cdot \delta}{K^{3}} - \delta \sum_{n=13}^{18} C_{n} \cdot \tau^{u_{n}} + \sum_{n=13}^{58} C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \exp(-c_{n} \cdot \delta^{k_{n}}).$$
(28)

Значения всех коэффициентов $(A_{0,1})_i$, $(A_{0,2})_i$, и от $B_{0,i}$ до $J_{0,i}$ для идеального газа даны в приложении В для всех из 21 возможного компонента газа.

Производные от ϕ по (относительной) плотности и (обратной приведенной) температуре, которые необходимы для вычислений различных термодинамических свойств, можно получить из уравнений (C.2)—(C.6) (приложение C). Наконец, различные термодинамические свойства можно рассчитать по уравнениям (17)—(26). Значения коэффициентов b_n , c_n , k_n и u_n и параметров C_n , являющихся функциями молярных долей компонентов, приведены в приложении D.

Более подробное изложение процедур вычислений представлено в приложении F.

6 Условия применения

6.1 Давление и температура

Метод настоящего стандарта применим только к газам, подготовленным для транспортирования по магистральным газопроводам (6.2), в диапазонах давлений и температур, при которых обычно осуществляют транспортирование и распределение газа. Соответствующие диапазоны давлений и температур представлены в таблице 2. Настоящий метод применим только к смесям в газообразном состоянии, и на него распространяется специальное ограничение, что он не должен применяться для каких-либо условий, когда расчетное значение фактора сжимаемости может быть менее 0,5.

Т а б л и ц а 2 — Условия применения метода (давление и температура) для газа, подготовленного для транспортирования по магистральным газопроводам

Давление (абсолютное), МПа	0 < <i>p</i> ≤ 30
Температура, К	250 ≤ <i>T</i> ≤ 350

6.2 Газ, подготовленный для транспортирования по магистральным газопроводам

Газом, подготовленным для транспортирования по магистральным газопроводам, следует считать природный (или ему подобный) газ, снабженный данными о компонентном составе — содержании основных и второстепенных компонентов в диапазонах молярных долей, указанных в таблице 3.

Возможные следовые компоненты природного газа и конкретные рекомендации по их учету—см. приложение F. Общее суммарное содержание следовых компонентов не должно превышать 0,0005 молярной доли.

 $0 \le x \text{ Ar} \le 0,0002$

Порядковый номер <i>і</i>	Компонент	Диапазон значений молярной долг
1	Азот	$0 \le x N_2 \le 0.20$
2	Диоксид углерода	$0 \le x \text{ CO}_2 \le 0.20$
3	Метан	$0.7 \le x \text{ CH}_4 \le 1.00$
4	Этан	$0 \le x C_2 H_6 \le 0.10$
5	Пропан	$0 \le x C_3 H_8 \le 0,035$
6 + 7	<i>н</i> -Бутан + изобутан	$0 \le x C_4 H_{10} \le 0.015$
8 + 9	н-Пентан + изопентан	$0 \le x C_5 H_{12} \le 0,005$
10	<i>н</i> -Гексан	$0 \le x C_6 H_{14} \le 0,001$
11	<i>н</i> -Гептан	$0 \le x C_7 H_{16} \le 0,0005$
12 + 13 + 14	<i>н</i> -Октан + <i>н</i> -нонан + <i>н</i> -декан	$0 \le x C_8 + \le 0,0005$
15	Водород	$0 \le x H_2 \le 0.10$
17	Моноксид углерода	$0 \le x \text{ CO} \le 0.03$
18	Вода	$0 \le x H_2O \le 0,00015$
20	Гелий	0 ≤ <i>x</i> He ≤ 0,005
16	Кислород	$0 \le x \ O_2 \le 0,0002$
19	Сероводород	$0 \le x \text{ H}_2\text{S} \le 0,0002$

Таблица 3 — Диапазоны значений молярных долей основных и второстепенных компонентов природного газа

7 Оценка неопределенностей расчета свойств

7.1 Неопределенности расчета свойств для газа, подготовленного для транспортирования по магистральным газопроводам

Аргон

7.1.1 Диаграммы неопределенностей для метана

21

В качестве примера для неопределенностей, которые можно ожидать для смесей, содержащих молярную долю метана, близкую к единице, на рисунках 1—3 представлены соответственно диаграммы неопределенностей для фактора сжимаемости, скорости звука и энтальпии чистого метана. Неопределенность, выраженная с 95%-ной доверительной вероятностью, данная для каждой области, представляет наибольшее значение в пределах суммы неопределенности в заслуживающих доверия справочных данных и разницы между справочными данными и значениями свойства, рассчитанного методом настоящего стандарта. Использованные справочные данные рассчитаны по уравнениям, приведенным в [10].

X — температура, K; Y — давление, МПа; а — диапазон относительной расширенной неопределенности \pm 0,08 %; b — диапазон относительной расширенной неопределенности \pm 0,04 %

Рисунок 1 — Диаграмма расширенной неопределенности для фактора сжимаемости метана Z

X — температура, K; Y — давление, МПа; а — диапазон относительной расширенной неопределенности \pm 0,20 %; b — диапазон относительной расширенной неопределенности \pm 0,05 %

Рисунок 2 — Диаграмма расширенной неопределенности для скорости звука в метане w

X — температура, К; Y — давление, МПа; а — диапазон абсолютной расширенной неопределенности \pm 3 кДж/кг; b — диапазон абсолютной расширенной неопределенности \pm 2 кДж/кг; с — диапазон абсолютной расширенной неопределенности \pm 1 кДж/кг

Рисунок 3 — Диаграмма расширенной неопределенности для энтальпии метана H

7.1.2 Диаграммы неопределенностей для природного газа

В качестве примера неопределенностей, которые можно ожидать для природного газа, на рисунках 4—6 представлены соответственно диаграммы неопределенностей для фактора сжимаемости, скорости звука и энтальпии. Неопределенность, выраженная с 95%-ной доверительной вероятностью, дана для каждой области наибольших отклонений (для широкого спектра природных газов) между измеренным значением свойств и значением, рассчитанным с использованием метода настоящего стандарта. Для фактора сжимаемости экспериментальные значения взяты из [10]; для скорости звука — из [11]; а для энтальпии — из [12].

П р и м е ч а н и е 1 — Для всех газов диаграмма неопределенности для плотности идентична по форме диаграмме для фактора сжимаемости.

П р и м е ч а н и е 2 — Для всех газов неопределенность для показателя адиабаты приблизительно в два раза больше неопределенности для скорости звука.

X — температура, K; Y — давление, МПа; а — диапазон относительной расширенной неопределенности \pm 0,4 %; b — диапазон относительной расширенной неопределенности \pm 0,2 %; c — диапазон относительной расширенной неопределенности \pm 0,1 %

Рисунок 4 — Диаграмма расширенной неопределенности для фактора сжимаемости природного газа Z

X — температура, K; Y — давление, $M\Pi a; a$ — диапазон относительной расширенной неопределенности \pm 2,0 %; b — диапазон относительной расширенной неопределенности \pm 0,8 %; c — диапазон относительной расширенной неопределенности \pm 0,2 %

Рисунок 5 — Диаграмма расширенной неопределенности для скорости звука в природном газе w

X— температура, K; Y— давление, МПа; а— диапазон относительной расширенной неопределенности \pm 0,20 %; b— диапазон относительной расширенной неопределенности \pm 0,05 %

Рисунок 6 — Диаграмма расширенной неопределенности для энтальпии природного газа *H*

Для свойств, отличных от фактора сжимаемости, плотности (для которой диаграмма неопределенности такая же, как и для фактора сжимаемости), скорости звука и энтальпии, недостаток заслуживающих доверия (уровня рекомендуемых) экспериментальных данных делает невозможным обеспечение достоверных оценок неопределенностей. Однако можно дать некоторые рекомендации.

Для газов при низких давлениях (ниже, как правило, 1 МПа), ведущих себя подобно идеальному газу (фактор сжимаемости более чем 0,95), можно ожидать, что все калорические свойства должны быть получены с малой неопределенностью. Это следует из того факта, что в рассматриваемом частном случае большая часть каждого свойства определяется из идеально-газовой части свободной энергии Гельмгольца, которая будучи рассчитана прямо из высокоточных данных по изобарной теплоемкости идеального газа (приложение В) сама является высокоточной. В таком случае неопределенности для плотности, фактора сжимаемости, скорости звука, изохорной и изобарной теплоемкости, показателя адиабаты и коэффициента Джоуля-Томпсона находятся в пределах 0,1 %.

7.2 Влияние неопределенностей входных переменных

Пользователь должен иметь в виду, что неопределенности входных величин (давления, температуры и молярных долей компонентов) будут давать дополнительную неопределенность при расчете любого свойства. При решении любой конкретной задачи, когда дополнительная неопределенность вносит существенные коррективы, пользователь должен определить ее значение.

8 Оформление результатов расчетов

В соответствии с единицами величин, приведенными в разделе 4, значения рассчитанных термодинамических свойств должны быть записаны с числом знаков после запятой, указанным в таблице 4. В результатах расчетов необходимо указывать значения температуры, давления (или плотности) и компонентный состав, для которых получены результаты. Использованный метод расчета должен содержать ссылку на настоящий стандарт.

Для проверки не следует использовать лишние цифры (см. пример в приложении G).

FOCT P 8.662—2009

Таблица 4 — Оформление результатов

Обозначение	Свойство	Единицы величин	Количество знаков
Z	Фактор сжимаемости	_	4
ρ	Молярная плотность	кмоль/м ³	3
D	Плотность	кг/м ³	4
и	Молярная внутренняя энергия	кДж/кмоль	0
U	Удельная внутренняя энергия	кДж/кг	1
h	Молярная энтальпия	кДж/кмоль	0
Н	Удельная энтальпия	кДж/кмоль	1
s	Молярная энтропия	кДж/(кмоль · K)	2
S	Удельная энтропия	кДж/(кг · К)	3
c_{v}	Молярная изохорная теплоемкость	кДж/(кмоль · K)	2
C_{v}	Удельная изохорная теплоемкость	кДж/(кг · К)	3
$C_{\rm p}$	Удельная изобарная теплоемкость	кДж/(кг · К)	3
μ	Коэффициент Джоуля-Томсона	К/МПа	2
κ	Показатель адиабаты		2
w	Скорость звука	м/с	1

Приложение A (справочное)

Исходные положения для фундаментального уравнения состояния для свободной энергии Гельмгольца

Уравнение состояния [8] AGA8 было опубликовано в 1992 г. Комитетом по измерениям при транспортировке газа Американской газовой ассоциации как метод для высокоточных вычислений фактора сжимаемости. В этой связи оно является объектом рассмотрения. Для вычислений на основе уравнения состояния AGA8 всех термодинамических свойств необходимо выполнить два основных требования:

- а) уравнение должно быть математически преобразовано к виду, где избыточная свободная энергия Гельмгольца представляется в явном виде, то есть в виде фундаментального уравнения состояния для свободной энергии Гельмгольца. На основе соответствующих соотношений [8] можно рассчитывать все избыточные термодинамические свойства из избыточной свободной энергии Гельмгольца и ее производных по температуре и плотности как параметров состояния;
- b) для расчета калорических свойств необходимо наличие идеально-газовой составляющей свободной энергии Гельмгольца как функции температуры. В этом случае целесообразно использовать соответствующие соотношения [13], [14] для идеально-газовой изобарной теплоемкости. При этом также требуются производные свободной энергии Гельмгольца по параметрам состояния.

Преимущество применения в совокупности идеально-газовой и неидеальной составляющих свободной энергии Гельмгольца состоит в том, что производные, необходимые для вычисления термодинамических свойств, можно получить в аналитической форме. Следовательно, нет необходимости в численном интегрировании с использованием соответствующих компьютерных программ; вычислительные проблемы можно упростить и время вычисления сократить.

Предлагаемый метод вычислений следует применять в прикладных программах, в частности в программах, которые можно использовать при транспортировании и распределении газа.

Приложение В (обязательное)

Идеально-газовая свободная энергия Гельмгольца

В.1 Вычисление идеально-газовой составляющей свободной энергии Гельмгольца

а) Идеально-газовую изобарную теплоемкость индивидуального компонента по [13], [15] можно записать в следующем виде

$$\frac{(C_{0,p})_{i}}{R} = B_{0,i} + C_{0,i} \left[\frac{D_{0,i} \cdot \tau}{\sin h (D_{0,i} \cdot \tau)} \right]^{2} + E_{0,i} \left[\frac{F_{0,i} \cdot \tau}{\cos h (F_{0,i} \cdot \tau)} \right]^{2} + G_{0,i} \left[\frac{H_{0,i} \cdot \tau}{\sin h (H_{0,i} \cdot \tau)} \right]^{2} + \dots
\dots + I_{0,i} \left[\frac{J_{0,i} \cdot \tau}{\cos h (J_{0,i} \cdot \tau)} \right]^{2}.$$
(B.1)

Уравнение (В.1) можно обобщить на случай N-компонентной смеси, используя следующее уравнение

$$\frac{c_{0,p}}{R} = \sum_{i=1}^{N} x_i \frac{(c_{0,p})_i}{R}.$$
 (B.2)

b) Это уравнение для идеально-газовой изобарной теплоемкости $c_{0,\,p}$ можно включить в уравнение (8) для относительной свободной энергии Гельмгольца ϕ_0 . В результате получают уравнение

$$\phi_{0} = \sum_{i=1}^{N} x_{i} \cdot \{(A_{0,1})_{i} + (A_{0,2})_{i} \cdot \tau + B_{0,i} \cdot \ln \tau + C_{0,i} \cdot \ln \left[\sin h \left(D_{0,i} \cdot \tau\right)\right] - E_{0,i} \cdot \ln \left[\cos h \left(F_{0,i} \cdot \tau\right)\right] + \dots \\
\dots + G_{0,i} \cdot \ln \left[\sin h \left(H_{0,i} \cdot \tau\right)\right] - I_{0,i} \cdot \ln \left[\cos h \left(J_{0,i} \cdot \tau\right)\right] + \ln x_{i}\} + \ln \left(\frac{\delta}{\delta_{\theta}}\right) + \ln \left(\frac{\tau_{\theta}}{\tau}\right).$$
(B.3)

В уравнении (В.3) константы $(A_{0,\ 1})_i$ и $(A_{0,\ 2})_i$ связывают с константами интегрирования $(s_{0,\ \theta})_i$ и $(h_{0,\ \theta})_i$ уравнения (8) в соответствии с уравнениями:

$$(A_{0,1})_i = -(s_{0,0})_i/R + B_{0,i} - 1;$$
 (B.4)

$$(A_{0,2})_i = (h_{0,0})_i / R \cdot L.$$
 (B.5)

Важно отметить, что в уравнении (В.3) ϕ_0 является функцией относительной молярной плотности δ реального газа, а не относительной молярной плотности идеального газа и, следовательно, не может быть полностью рассчитана до тех пор, пока значение δ неизвестно (см. приложение D). Уравнение (В.3) используют для расчета относительной свободной энергии Гельмгольца идеального газа.

с) Наиболее достоверные из известных в научной литературе данные об идеально-газовой изобарной теплоемкости [14] $c_{0, p}$ были использованы в качестве исходных данных для получения численных значений констант с A_0 до J_0 для каждого из 21 индивидуального компонента, рассматриваемого в настоящем стандарте.

Значения констант ($A_{0,1}$), и ($A_{0,2}$), а также констант с $B_{0,i}$ до $J_{0,i}$, используемые в уравнении (В.3), приведены в таблице В.1.

FOCT P 8.662—2009

1071,29 1090,53 1027,29 893,765 1671,69 903,185 341,109 $\mathcal{J}_{0,\;j}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6,0198914,7824 -4,46921 -8,3726716,1388 -1,37560,01393 $I_{0,\,i}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 955,312 1905,02 1826,59 1693,79 483,553 1031,38 1914,10 1919,37 1750,24 1062,82 1760,46 1693,07 1651,71 2507,37 1740,06 1774,25 H_{0, ′} 0 0 0 0 0 В.1 — Значения констант уравнения (В.3) для идеально-газовой составляющей свободной энергии Гельмгольца 13,1974 25,1423 33,4032 1,56039 24,4618 38,6164 53,3415 58,3657 19,1921 3,06904 0,90066 2,03366 8,74432 33,1688 48,1731 43,5561 _, 0 0 0 0 0 198,018 326,843 223,284 200,893 183,636 859,207 815,064 836,264 704,525 1141,41 178,410 865,070 340,538 336,195 1116,69 814,882 380,562 910,237 847,181 п. ., 0 0 -0,1466038,1235 -1,060443,19700 33,8029 0,45444 6,89406 5,25156 20,1101 26,8142 0,00493 0,98763 1,00243 0,00460 1,23722 21,8360 43,4931 1,01334 30,4707 **E**0, ' 0 0 479,856 919,306 438,270 182,326 922 156,854 228,734 1550,45 268,795 1833,63 164,947 662,738 820,659 559,314 468,270 178,670 292,503 169,789 2235,71 D_{0, 7} 0 0 58, 6,60569 15,6865 0,95806 0,01059 0,76315 9,44893 8,95043 11,7618 18,0241 0,13732 4,33939 8,97575 13,7266 21,0069 1,07558 1,02865 3,11942 2,04452 11,6977 ر. آ 0 0 4,06714 4,00263 4,02939 4,00088 4,33944 2,47906 3,50146 3,50055 3,50002 4,00392 3,50031 **B**_{0, /} 2,5 2,5 4 4 4 4 4 4 4 4 -38957,80933 -38525,50276 -51198,30946 -52746,83318 -57104,81056 -15999,69151-45215,83000 -60546,76385 -66600,12837 -74131,45483 -23639,65301 -31236,63551 -2635,24412 -4902,17152 -5836,94370 -2318,32269 -7766,73308 -2801,72907 -6069,03587 -745,37500-745,37500 $(A_{0,2})_{i}$ 35,53603 42,42766 39,99940 48,86978 52,69477 67,79407 71,63669 15,74399 15,74399 23,26530 50,40669 48,37597 57,77391 18,77280 23,15547 27,27642 27,28069 26,35604 22,49931 42,22997 62,95591 $(A_{0,1})_{i}$ Моноксид углерода Диоксид углерода Сероводород Компонент **Л**зопентан Кислород Водород Изобутан *н*-Пентан н-Гексан *ч*-Гептан *н*-Октан *н*-Декан н-Нонан н-Бутан Пропан Метан Вода Гелий Аргон Этан Азот блица 7 <u>9</u> 4 15 9 1 8 9 9 6 9 $\stackrel{\leftarrow}{\sim}$ N က 4 2 _ ω 20 7 α

В.2 Производные от идеально-газовой составляющей свободной энергии Гельмгольца

Для вычисления ряда термодинамических свойств необходимо иметь первые и вторые частные производные от идеально-газовой составляющей свободной энергии Гельмгольца φ_0 [уравнение (В.3)] по обратной относительной температуре τ . Необходимые для этого математические выражения представляют в виде уравнений:

$$\phi_{0,\tau} = \left(\frac{\partial \phi_{0}}{\partial \tau}\right)_{\delta,x_{i}} = \sum_{i=1}^{N} x_{i} \cdot \left[(A_{0,2})_{i} + \frac{(B_{0,i} - 1)}{\tau} + C_{0,i} \cdot D_{0,i} \frac{\cos h (D_{0,i} \cdot \tau)}{\sin h (D_{0,i} \cdot \tau)} - E_{0,i} \cdot F_{0,i} \frac{\sin h (F_{0,i} \cdot \tau)}{\cos h (F_{0,i} \cdot \tau)} + \dots \right. \\
\left. \dots + G_{0,i} \cdot H_{0,i} \frac{\cos h (H_{0,i} \cdot \tau)}{\sin h (H_{0,i} \cdot \tau)} - I_{0,i} \cdot J_{0,i} \frac{\sin h (J_{0,i} \cdot \tau)}{\cos h (J_{0,i} \cdot \tau)} \right]; \tag{B.6}$$

$$\varphi_{0,\tau\tau} = \left(\frac{\partial^{2} \varphi_{0}}{\partial \tau^{2}}\right)_{\delta,x_{i}} = -\tau^{-2} \left(\frac{c_{0,p}}{R} - 1\right) = \sum_{i=1}^{N} x_{i} \cdot \left\{-\frac{(B_{0,i} - 1)}{\tau^{2}} - C_{0,i} \left[\frac{D_{0,i}}{\sin h (D_{0,i} \cdot \tau)}\right]^{2} - E_{0,i} \left[\frac{F_{0,i}}{\cos h (F_{0,i} \cdot \tau)}\right]^{2} - \dots \right.$$

$$\dots - G_{0,i} \left[\frac{H_{0,i}}{\sin h (H_{0,i} \cdot \tau)}\right]^{2} - I_{0,i} \left[\frac{J_{0,i}}{\cos h (J_{0,i} \cdot \tau)}\right]^{2} \right\}. \tag{B.7}$$

Приложение С (обязательное)

Уравнение состояния для свободной энергии Гельмгольца

С.1 Вычисление свободной энергии Гельмгольца

Относительную свободную энергию Гельмгольца для газовой смеси заданного состава рассчитывают по уравнению

$$\varphi = \varphi_0 + \frac{B \cdot \delta}{K^3} - \delta \sum_{n=13}^{18} C_n \cdot \tau^{u_n} + \sum_{n=13}^{58} C_n \cdot \tau^{u_n} \cdot \delta^{b_n} \cdot \exp(-c_n \cdot \delta^{k_n}), \tag{C.1}$$

где ϕ_0 рассчитывают в соответствии с приложением В. Ту часть уравнения (С.1), которая учитывает неидеальную составляющую свободной энергии Гельмгольца (вся правая часть уравнения, за исключением ϕ_0) определяют из уравнения (11). Уравнения для расчета функций $B(\tau, X)$, $C_n(X)$ и K(X) в уравнении (С.1) приведены в D.1. Значения различных констант в уравнении (С.1) даны в D.2.

С.2 Производные от свободной энергии Гельмгольца

Для вычисления совокупности термодинамических свойств требуются первые и/или вторые частные производные по обратной относительной температуре и/или по относительной плотности от относительной свободной энергии Гельмгольца. Необходимые для этого математические выражения записывают в виде уравнений:

$$\tau \cdot \varphi_{\tau} = \tau \left(\frac{\partial \varphi}{\partial \tau} \right)_{\delta, X} = \tau \cdot \varphi_{0, \tau} + \frac{\delta}{K^3} \cdot \sum_{n=1}^{18} u_n \cdot B_n^* \cdot \tau^{u_n} - \delta \sum_{n=13}^{18} u_n \cdot C_n \cdot \tau^{u_n} + \dots$$

$$\dots + \sum_{n=13}^{58} u_n \cdot C_n \cdot \tau^{u_n} \cdot \delta^{b_n} \cdot \exp(-c_n \cdot \delta^{k_n});$$
(C.2)

$$\tau^{2} \cdot \varphi_{\tau\tau} = \tau^{2} \left(\frac{\partial^{2} \varphi}{\partial \tau^{2}} \right)_{\delta X} = \tau^{2} \cdot \varphi_{0,\tau\tau} + \frac{\delta}{K^{3}} \cdot \sum_{n=1}^{18} (u_{n}^{2} - u_{n}) \cdot B_{n}^{*} \cdot \tau^{u_{n}} - \delta \sum_{n=13}^{18} (u_{n}^{2} - u_{n}) \cdot C_{n} \cdot \tau^{u_{n}} + \dots \dots + \sum_{n=13}^{58} (u_{n}^{2} - u_{n}) \cdot C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \cdot \exp(-c_{n} \cdot \delta^{k_{n}});$$
(C.3)

$$\delta \cdot \varphi_{\delta} = \delta \left(\frac{\partial \varphi}{\partial \delta} \right)_{\tau, X} = 1 + \frac{B \cdot \delta}{K^{3}} - \delta \sum_{n=13}^{18} C_{n} \cdot \tau^{u_{n}} + \dots$$

$$\dots + \sum_{n=13}^{58} C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \cdot (b_{n} - c_{n} \cdot k_{n} \cdot \delta^{k_{n}}) \cdot \exp(-c_{n} \cdot \delta^{k_{n}});$$
(C.4)

$$\varphi_{1} = (\delta^{2} \cdot \varphi_{\delta})_{\delta} = \left[\frac{\partial (\delta^{2} \cdot \varphi_{\delta})}{\partial \delta} \right]_{\tau, X} = 1 + 2 \cdot \frac{B \cdot \delta}{K^{3}} - 2 \cdot \delta \sum_{n=13}^{18} C_{n} \cdot \tau^{u_{n}} + \dots
\dots + \sum_{n=13}^{58} C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \cdot [b_{n} - (1 + k_{n})c_{n} \cdot k_{n} \cdot \delta^{k_{n}} + (b_{n} - c_{n} \cdot k_{n} \cdot \delta^{k_{n}})^{2}] \exp(-c_{n} \cdot \delta^{k_{n}});$$
(C.5)

$$\varphi_{2} = -\tau^{2} (\delta \cdot \varphi_{\delta} / \tau)_{\tau} = -\tau^{2} \left[\frac{\partial (\delta \cdot \varphi_{\delta} / \tau)}{\partial \tau} \right]_{\delta, X} = 1 + \frac{\delta}{K^{3}} \cdot \sum_{n=1}^{18} (1 - u_{n}) \cdot B_{n}^{*} \cdot \tau^{u_{n}} - \delta \sum_{n=13}^{18} (1 - u_{n}) \cdot C_{n} \cdot \tau^{u_{n}} + \dots \right.$$

$$\dots + \sum_{n=13}^{58} (1 - u_{n}) \cdot C_{n} \cdot \tau^{u_{n}} \cdot \delta^{b_{n}} \cdot (b_{n} - c_{n} \cdot k_{n} \cdot \delta^{k_{n}}) \exp(-c_{n} \cdot \delta^{k_{n}}). \tag{C.6}$$

Уравнения и константы, необходимые для расчета по уравнениям (С.2)—(С.6), приведены в приложении D.

Приложение D (обязательное)

Подробная информация по уравнению состояния

D.1 Вспомогательные уравнения

Для расчета по уравнению (C.1) необходимо определить значения второго вириального коэффициента $B(\tau, X)$ функций $C_n(X)$ и параметра размера K(X). Кроме того, так как уравнение (C.1) включает в качестве аргумента относительную молярную плотность δ , необходимо получить ее значение при задании давления в качестве входной переменной. Эти шаги рассматриваются в перечислениях а)—d):

а) второй вириальный коэффициент рассчитывают по уравнениям (D.1)—(D.5) с использованием необходимых констант из таблиц D.1—D.3:

$$B(\tau, X) = \sum_{n=1}^{18} B_n^* \cdot \tau^{u_n},$$
 (D.1)

$$B_n^* = a_n \sum_{i=1}^N \sum_{j=1}^N x_j \cdot x_j \cdot B_{nij}^* \cdot E_{ij}^{u_n} \cdot (K_i K_j)^{3/2},$$
 (D.2)

где
$$B_{ni}$$

$$B_{nij}^{*} = (G_{ij} + 1 - g_{n})^{g_{n}} (Q_{i}Q_{j} + 1 - q_{n})^{q_{n}} (\sqrt{F_{i}F_{j}} + 1 - f_{n})^{f_{n}} (S_{i}S_{j} + 1 - s_{n})^{s_{n}} (W_{i}W_{j} + 1 - w_{n})^{w_{n}};$$
(D.3)

$$E_{ij} = E_{ij}^* \cdot \sqrt{E_i E_j}, \tag{D.4}$$

где

$$G_{ii} = G_{ii}^* \cdot (G_i + G_i) / 2;$$
 (D.5)

b) функции C_n (для n от 13 до 58) рассчитывают по уравнениям (D.6)—(D.10) с использованием необходимых констант из таблиц D.1—D.3:

$$C_n(X) = a_n(G + 1 - g_n)^{g_n} (Q^2 + 1 - q_n)^{q_n} (F + 1 - f_n)^{f_n} V^{u_n},$$
(D.6)

где

$$V^{5} = \left(\sum_{i=1}^{N} x_{i} \cdot E_{i}^{5/2}\right)^{2} + 2 \cdot \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_{j} \cdot (V_{ij}^{5} - 1) (E_{i}E_{j})^{5/2};$$
(D.7)

$$G = \sum_{i=1}^{N} x_i G_i + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_i x_j (G_{ij}^* - 1) (G_i + G_j);$$
 (D.8)

$$Q = \sum_{i=1}^{N} x_i \cdot Q_i; \tag{D.9}$$

$$F = \sum_{i=1}^{N} x_i^2 \cdot F_i. \tag{D.10}$$

В таблице D.2 F_i равны нулю для всех компонентов, за исключением водорода, для которого F_{15} = 1,0, а W_i равны нулю для всех компонентов, за исключением воды, для которой W_{18} = 1,0. Многие из параметров бинарного взаимодействия в таблице D.3 равны единице;

с) смесевой параметр размера K(X) рассчитывают по уравнению (D.11) с использованием необходимых констант из таблиц D.2 и D.3

$$K(X)^{5} = \left(\sum_{i=1}^{N} x_{i} \cdot K_{i}^{5/2}\right)^{2} + 2 \cdot \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_{i} \cdot x_{j} \cdot (K_{ij}^{5} - 1)(K_{i}K_{j})^{5/2}.$$
 (D.11)

Многие значения K_{ij} равны единице;

d) относительную молярную плотность δ (p, τ , X) определяют в результате решения уравнения (D.12) (это уравнение получено из уравнения (27) настоящего стандарта, преобразованного к явному виду для давления)

$$p = \frac{\delta \cdot R \cdot L}{\tau \cdot K^3} \left[1 + \frac{B \cdot \delta}{K^3} - \delta \cdot \sum_{n=13}^{18} C_n \cdot \tau^{u_n} + \sum_{n=13}^{58} C_n \cdot \tau^{u_n} \cdot \delta^{b_n} \left(b_n - c_n \cdot k_n \cdot \delta^{k_n} \right) \exp\left(-c_n \cdot \delta^{k_n} \right) \right]. \tag{D.12}$$

FOCT P 8.662—2009

Уравнение (D.12) решают с использованием стандартных алгоритмов расчета плотности по уравнению состояния.

D.2 Значения констант для уравнения состояния

Настоящий раздел содержит значения всех констант, необходимых для использования уравнения состояния AGA8 в уравнениях (С.1) и (D.1)—(D.12). В таблице D.1 даны значения констант самого уравнения состояния. В таблице D.2 представлены значения характеристических параметров, определяющих свойства индивидуальных компонентов смеси. В таблице D.3 даны значения параметров бинарного взаимодействия между молекулами различных компонентов смеси.

Таблица D.1 — Коэффициенты уравнения состояния

n	a _n	b _n	c _n	k _n	u _n	g_n	q_n	f_n	s _n	w _n
1	0,153832600	1	0	0	0,0	0	0	0	0	0
2	1,341953000	1	0	0	0,5	0	0	0	0	0
3	-2,998583000	1	0	0	1,0	0	0	0	0	0
4	-0,048312280	1	0	0	3,5	0	0	0	0	0
5	0,375796500	1	0	0	-0,5	1	0	0	0	0
6	-1,589575000	1	0	0	4,5	1	0	0	0	0
7	-0,053588470	1	0	0	0,5	0	1	0	0	0
8	0,886594630	1	0	0	7,5	0	0	0	1	0
9	-0,710237040	1	0	0	9,5	0	0	0	1	0
10	-1,471722000	1	0	0	6,0	0	0	0	0	1
11	1,321850350	1	0	0	12,0	0	0	0	0	1
12	-0,786659250	1	0	0	12,5	0	0	0	0	1
13	$2,291290 \times 10^{-9}$	1	1	3	-6,0	0	0	1	0	0
14	0,157672400	1	1	2	2,0	0	0	0	0	0
15	-0,436386400	1	1	2	3,0	0	0	0	0	0
16	-0,044081590	1	1	2	2,0	0	1	0	0	0
17	-0,003433888	1	1	4	2,0	0	0	0	0	0
18	0,032059050	1	1	4	11,0	0	0	0	0	0
19	0,024873550	2	0	0	-0,5	0	0	0	0	0
20	0,073322790	2	0	0	0,5	0	0	0	0	0
21	-0,001600573	2	1	2	0,0	0	0	0	0	0
22	0,642470600	2	1	2	4,0	0	0	0	0	0
23	-0,416260100	2	1	2	6,0	0	0	0	0	0
24	-0,066899570	2	1	4	21,0	0	0	0	0	0
25	0,279179500	2	1	4	23,0	1	0	0	0	0
26	-0,696605100	2	1	4	22,0	0	1	0	0	0
27	-0,002860589	2	1	4	-1,0	0	0	1	0	0
28	-0,008098836	3	0	0	-0,5	0	1	0	0	0
29	3,150547000	3	1	1	7,0	1	0	0	0	0
30	0,007224479	3	1	1	-1,0	0	0	1	0	0

Окончание таблицы D.1

n	a _n	b _n	c _n	k _n	u _n	g_n	q_n	f_n	s _n	w _n
31	-0,705752900	3	1	2	6,0	0	0	0	0	0
32	0,534979200	3	1	2	4,0	1	0	0	0	0
33	-0,079314910	3	1	3	1,0	1	0	0	0	0
34	-1,418465000	3	1	3	9,0	1	0	0	0	0
35	$-5,99905 \times 10^{-17}$	3	1	4	-13,0	0	0	1	0	0
36	0,105840200	3	1	4	21,0	0	0	0	0	0
37	0,034317290	3	1	4	8,0	0	1	0	0	0
38	-0,007022847	4	0	0	-0,5	0	0	0	0	0
39	0,024955870	4	0	0	0,0	0	0	0	0	0
40	0,042968180	4	1	2	2,0	0	0	0	0	0
41	0,746545300	4	1	2	7,0	0	0	0	0	0
42	-0,291961300	4	1	2	9,0	0	1	0	0	0
43	7,294616000	4	1	4	22,0	0	0	0	0	0
44	-9,936757000	4	1	4	23,0	0	0	0	0	0
45	-0,005399808	5	0	0	1,0	0	0	0	0	0
46	-0,243256700	5	1	2	9,0	0	0	0	0	0
47	0,049870160	5	1	2	3,0	0	1	0	0	0
48	0,003733797	5	1	4	8,0	0	0	0	0	0
49	1,874951000	5	1	4	23,0	0	1	0	0	0
50	0,002168144	6	0	0	1,5	0	0	0	0	0
51	-0,658716400	6	1	2	5,0	1	0	0	0	0
52	0,000205518	7	0	0	-0,5	0	1	0	0	0
53	0,009776195	7	1	2	4,0	0	0	0	0	0
54	-0,020487080	8	1	1	7,0	1	0	0	0	0
55	0,015573220	8	1	2	3,0	0	0	0	0	0
56	0,006862415	8	1	2	0,0	1	0	0	0	0
57	-0,001226752	9	1	2	1,0	0	0	0	0	0
58	0,002850908	9	1	2	0,0	0	1	0	0	0

Таблица D.2 — Характеристические параметры индивидуальных компонентов

i	Компонент	Моляр- ная масса <i>М_і,</i> кг/кмоль	Энерге- тический параметр <i>Е_і</i>	Параметр размера <i>К_і</i> (м³/кмоль) ^{1/3}	Ориен- тационный параметр <i>G_i</i>	Квадру- польный параметр Q _i	Высоко- темпера- турный параметр F_i	Диполь- ный пара- метр Ѕ _;	Параметр ассоциации W_{i}
1	Азот	28,0135	99,737780	0,4479153	0,027815	0,0	0,0	0,0	0,0
2	Диоксид углерода	44,010	241,960600	0,4557489	0,189065	0,690000	0,0	0,0	0,0

Окончание таблицы D.2

i	Компонент	Моляр- ная масса <i>М_г,</i> кг/кмоль	Энерге- тический параметр <i>Е_і</i>	Параметр размера <i>K_i</i> (м³/кмоль) ^{1/3}	Ориен- тационный параметр G_i	Квадру- польный параметр Q _;	Высоко- темпера- турный параметр <i>F</i> ;	Диполь- ный пара- метр Ѕ _і	Параметр ассоциации <i>W_i</i>
3	Метан	16,043	151,318300	0,4619255	0,0	0,0	0,0	0,0	0,0
4	Этан	30,070	244,166700	0,5279209	0,079300	0,0	0,0	0,0	0,0
5	Пропан	44,097	298,118300	0,5837490	0,141239	0,0	0,0	0,0	0,0
6	<i>н</i> -Бутан	58,123	337,638900	0,6341423	0,281835	0,0	0,0	0,0	0,0
7	Изобутан	58,123	324,068900	0,6406937	0,256692	0,0	0,0	0,0	0,0
8	<i>н</i> -Пентан	72,150	370,682300	0,6798307	0,366911	0,0	0,0	0,0	0,0
9	Изопентан	72,150	365,599900	0,6738577	0,332267	0,0	0,0	0,0	0,0
10	<i>н</i> -Гексан	86,177	402,636293	0,7175118	0,289731	0,0	0,0	0,0	0,0
11	<i>н</i> -Гептан	100,204	427,722630	0,7525189	0,337542	0,0	0,0	0,0	0,0
12	<i>н</i> -Октан	114,231	450,325022	0,7849550	0,383381	0,0	0,0	0,0	0,0
13	<i>н</i> -Нонан	128,258	470,840891	0,8152731	0,427354	0,0	0,0	0,0	0,0
14	<i>н</i> -Декан	142,285	489,558373	0,8437826	0,469659	0,0	0,0	0,0	0,0
15	Водород	2,0159	26,957940	0,3514916	0,034369	0,0	1,0	0,0	0,0
16	Кислород	31,9988	122,766700	0,4186954	0,021000	0,0	0,0	0,0	0,0
17	Моноксид углерода	28,010	105,534800	0,4533894	0,038953	0,0	0,0	0,0	0,0
18	Вода	18,0153	514,015600	0,3825868	0,332500	1,067750	0,0	1,582200	1,0
19	Сероводород	34,082	296,355000	0,4618263	0,088500	0,633276	0,0	0,390000	0,0
20	Гелий	4,0026	2,610111	0,3589888	0,0	0,0	0,0	0,0	0,0
21	Аргон	39,948	119,629900	0,4216551	0,0	0,0	0,0	0,0	0,0

Т а б л и ц а $\,$ D.3 — Параметры бинарного взаимодействия

i	j	Пара ко	мпонентов	E _{ij} *	V_{ij}	K_{ij}	G_{ij}^*
1	2	Азот	Диоксид углерода	1,022740	0,835058	0,982361	0,982746
1	3	Азот	Метан	0,971640	0,886106	1,003630	1,0
1	4	Азот	Этан	0,970120	0,816431	1,007960	1,0
1	5	Азот	Пропан	0,945939	0,915502	1,0	1,0
1	6	Азот	<i>н</i> -Бутан	0,973384	0,993556	1,0	1,0
1	7	Азот	Изобутан	0,946914	1,0	1,0	1,0
1	8	Азот	<i>н-</i> Пентан	0,945520	1,0	1,0	1,0
1	9	Азот	Изопентан	0,959340	1,0	1,0	1,0
1	15	Азот	Водород	1,086320	0,408838	1,032270	1,0
1	16	Азот	Кислород	1,021000	1,0	1,0	1,0
1	17	Азот	Моноксид углерода	1,005710	1,0	1,0	1,0

Продолжение таблицы D.3

		ие таолицы D.3		1		1	
i	j	Пара ког	ипонентов	E_{ij}^*	V_{ij}	κ_{ij}	G_{ij}^*
1	18	Азот	Вода	0,746954	1,0	1,0	1,0
1	19	Азот	Сероводород	0,902271	0,993476	0,942596	1,0
2	3	Диоксид углерода	Метан	0,960644	0,963827	0,995933	0,807653
2	4	Диоксид углерода	Этан	0,925053	0,969870	1,008510	0,370296
2	5	Диоксид углерода	Пропан	0,960237	1,0	1,0	1,0
2	6	Диоксид углерода	<i>н-</i> Бутан	0,897362	1,0	1,0	1,0
2	7	Диоксид углерода	Изобутан	0,906849	1,0	1,0	1,0
2	8	Диоксид углерода	<i>н</i> -Пентан	0,859764	1,0	1,0	1,0
2	9	Диоксид углерода	Изопентан	0,726255	1,0	1,0	1,0
2	10	Диоксид углерода	<i>н</i> -Гексан	0,855134	1,066638	0,910183	1,0
2	11	Диоксид углерода	<i>н</i> -Гептан	0,831229	1,077634	0,895362	1,0
2	12	Диоксид углерода	<i>н</i> -Октан	0,808310	1,088178	0,881152	1,0
2	13	Диоксид углерода	<i>н</i> -Нонан	0,786323	1,098291	0,867520	1,0
2	14	Диоксид углерода	<i>н</i> -Декан	0,765171	1,108021	0,854406	1,0
2	15	Диоксид углерода	Водород	1,281790	1,0	1,0	1,0
2	17	Диоксид углерода	Моноксид углерода	1,500000	0,900000	1,0	1,0
2	18	Диоксид углерода	Вода	0,849408	1,0	1,0	1,673090
2	19	Диоксид углерода	Сероводород	0,955052	1,045290	1,007790	1,0
3	5	Метан	Пропан	0,994635	0,990877	1,007619	1,0
3	6	Метан	<i>н</i> -Бутан	0,989844	0,992291	0,997596	1,0
3	7	Метан	Изобутан	1,019530	1,0	1,0	1,0
3	8	Метан	<i>н</i> -Пентан	0,999268	1,003670	1,002529	1,0
3	9	Метан	Изопентан	1,002350	1,0	1,0	1,0
3	10	Метан	<i>н</i> -Гексан	1,107274	1,302576	0,982962	1,0
3	11	Метан	<i>н</i> -Гептан	0,880880	1,191904	0,983565	1,0
3	12	Метан	<i>н</i> -Октан	0,880973	1,205769	0,982707	1,0
3	13	Метан	<i>н</i> -Нонан	0,881067	1,219634	0,981849	1,0
3	14	Метан	<i>н</i> -Декан	0,881161	1,233498	0,980991	1,0
3	15	Метан	Водород	1,170520	1,156390	1,023260	1,957310
3	17	Метан	Моноксид углерода	0,990126	1,0	1,0	1,0
3	18	Метан	Вода	0,708218	1,0	1,0	1,0
3	19	Метан	Сероводород	0,931484	0,736833	1,000080	1,0
4	5	Этан	Пропан	1,022560	1,065173	0,986893	1,0
4	6	Этан	<i>н</i> -Бутан	1,013060	1,250000	1,0	1,0
4	7	Этан	Изобутан	1,0	1,250 000	1,0	1,0
4	8	Этан	<i>н</i> -Пентан	1,005320	1,250000	1,0	1,0

Окончание таблицы D.3

i	j	Пара ког	мпонентов	E _{ij}	V _{ij}	K_{ij}	G_{ij}^{\star}
4	9	Этан	Изопентан	1,0	1,250000	1,0	1,0
4	15	Этан	Водород	1,164460	1,616660	1,020340	1,0
4	18	Этан	Вода	0,693168	1,0	1,0	1,0
4	19	Этан	Сероводород	0,946871	0,971926	0,999969	1,0
5	6	Пропан	<i>н</i> -Бутан	1,004 900	1,0	1,0	1,0
5	15	Пропан	Водород	1,034787	1,0	1,0	1,0
6	15	<i>н</i> -Бутан	Водород	1,300000	1,0	1,0	1,0
7	15	Изобутан	Водород	1,300000	1,0	1,0	1,0
10	19	<i>н</i> -Гексан	Сероводород	1,008692	1,028973	0,968130	1,0
11	19	<i>н</i> -Гептан	Сероводород	1,010126	1,033754	0,962870	1,0
12	19	<i>н</i> -Октан	Сероводород	1,011501	1,038338	0,957828	1,0
13	19	<i>н</i> -Нонан	Сероводород	1,012821	1,042735	0,952441	1,0
14	19	н-Декан Сероводород		1,014089	1,046966	0,948338	1,0
15	17	Водород	Моноксид углерода	1,100000	1,0	1,0	1,0

Параметры взаимодействия для любой пары компонентов, не приведенные в таблице D.3, равны 1,0.

Приложение E (справочное)

Учет следовых компонентов

Для того чтобы рассчитать, используя метод, устанавливаемый в настоящем стандарте, термодинамические свойства природного газа или подобной смеси, которая содержит следы одного или более компонентов, не включенных в таблицу 3, необходимо включить каждый такой следовой компонент в один из 21 основного и второстепенного компонентов, для которых было разработано уравнение AGA8. Рекомендации по такому включению даны в таблице E.1.

Таблица Е.1 — Включение следовых компонентов

Следовой компонент	Формула	Рекомендованное включение	Номер компонента по таблице D.2
2,2-Диметилпропан (нео-пентан)	C ₅ H ₁₂	<i>н</i> -Пентан	8
2-Метилпентан	C ₆ H14	<i>н</i> -Гексан	10
3-Метилпентан	C ₆ H ₁₄	<i>н</i> -Гексан	10
2,2-Диметилбутан	C ₆ H ₁₄	<i>н</i> -Гексан	10
2,3-Диметилбутан	C ₆ H ₁₄	<i>н</i> -Гексан	10
Этилен (этен)	C ₂ H ₄	Этан	4
Пропилен (пропен)	C ₃ H ₆	Пропан	5
1-Бутен	C ₄ H ₈	<i>н-</i> Бутан	6
цис-2-Бутен	C ₄ H ₈	<i>н</i> -Бутан	6
транс-2-Бутен	C ₄ H ₈	<i>н</i> -Бутан	6
2-Метилпропен	C ₄ H ₈	<i>н</i> -Бутан	6
1-Пентен	C ₅ H ₁₀	<i>н</i> -Пентан	8
Пропадиен	C ₃ H ₄	Пропан	5
1,2-Бутадиен	C ₄ H ₆	<i>н</i> -Бутан	6
1,3-Бутадиен	C ₄ H ₆	<i>н</i> -Бутан	6
Ацетилен (этин)	C_2H_2	Этан	4
Циклопентан	C ₅ H ₁₀	<i>н</i> -Пентан	8
Метилциклопентан	C ₆ H ₁₂	<i>н</i> -Гексан	10
Этилциклопентан	C ₇ H ₁₄	<i>н-</i> Гептан	11
Циклогексан	C ₆ H ₁₂	<i>н</i> -Гексан	10
Метилциклогексан	C ₇ H ₁₄	<i>н</i> -Гептан	11
Этилциклогексан	C ₈ H ₁₆	<i>н</i> -Октан	12
Бензол	C ₆ H ₆	<i>н</i> -Пентан	8
Толуол (метилбензол)	C ₇ H ₈	<i>н</i> -Гексан	10
Этилбензол	C ₈ H ₁₀	<i>н</i> -Гептан	11
о-Ксилен	C ₈ H ₁₀	<i>н</i> -Гептан	11

FOCT P 8.662—2009

Окончание таблицы Е.1

Следовой компонент	Формула	Рекомендованное включение	Номер компонента по таблице D.2
Все остальные С ₆ углеводороды	_	<i>н</i> -Гексан	10
Все остальные С ₇ углеводороды	_	<i>н</i> -Гептан	11
Все остальные C ₈ углеводороды	_	<i>н</i> -Октан	12
Все остальные С ₉ углеводороды	_	<i>н</i> -Нонан	13
Все остальные C ₁₀ углеводороды	_	<i>н-</i> Декан	14
Все остальные углеводороды	_	<i>н</i> -Декан	14
Метанол (метиловый спирт)	CH₃OH	Этан	4
Метантиол (метилмеркаптан)	CH₃SH	Пропан	5
Аммиак	NH ₃	Метан	3
Циановодород	HCN	Этан	4
Карбонилсульфид (оксисульфид углерода)	cos	<i>н-</i> Бутан	6
Сероуглерод	CS ₂	<i>н</i> -Пентан	8
Диоксид серы	SO ₂	<i>н</i> -Бутан	6
Оксид азота	N ₂ O	Диоксид углерода	2
Неон	Ne	Аргон	21
Криптон	Kr	Аргон	21
Ксенон	Xe	Аргон	21

Каждая рекомендация основана на оценке того, что такое включение приводит к наилучшей точности описания полного набора термодинамических свойств. Параметры, учитываемые при такой оценке, включают молярную массу, энергетический параметр (связанный с критической температурой) и параметр размера (связанный с критическим объемом). Поскольку не существует универсального включения, которое одинаково хорошо подходило бы для всех свойств, нет ничего необычного в том, что пользователь может предпочесть какое-либо альтернативное включение для своей конкретной задачи, когда, например, надо рассчитывать только одно свойство. По этой причине рекомендации не являются обязательными. Применение метода, с использованием следовых компонентов, необходимо подробно документировать.

П р и м е ч а н и е — Набор следовых компонентов по таблице Е.1 и таблице 3 настоящего стандарта соответствует ГОСТ 31369.

Приложение F (справочное)

Реализация метода

Настоящее приложение представляет общую последовательность действий, необходимых для вычисления термодинамических свойств в соответствии с настоящим стандартом. Метод достаточно сложный, поэтому для его применения необходимо использовать компьютерные программы. В настоящем приложении обсуждаются вычислительные аспекты метода. На рисунке F.1 приведена блок-схема процесса вычислений термодинамических свойств с использованием компьютерных программ.

Рисунок F.1 — Блок-схема процесса вычислений термодинамических свойств

Шаг 1

Для расчета необходимо ввести молярную долю x_i каждого компонента природного газа, абсолютную температуру T и абсолютное давление p.

FOCT P 8.662—2009

В рассматриваемом методе температуру задают в градусах Кельвина (К), а давление в мегапаскалях (МПа). Если используют какие-либо другие единицы измерения, их нужно перевести в градусы Кельвина или мегапаскали. Для этого необходимо использовать переводные коэффициенты на основе положений ГОСТ 8.417 с учетом стандарта [3].

Иногда вместо давления p в качестве входной величины используют массовую плотность D. В таком случае все вычисления выполняют, как обычно, но с учетом содержания последней ступени шага 4.

Шаг 2

- а) Для заданных значений x_n используя уравнения (D.2)—(D.5), рассчитывают значения $B_n^*(X)$.
- b) Таким же образом для заданных значений x_i , используя уравнения (D.6)—(D.10), рассчитывают значения $C_o(X)$.
 - с) По уравнению (D.11) рассчитывают значения смесевого параметра размера K(X).
 - d) Рассчитывают следующие значения:
 - относительной температуры τ_{θ} по уравнению (3) при $T = T_{\theta}$;
 - относительной плотности δ_{θ} идеального газа при стандартных условиях по уравнению (4) при $\ \rho = \rho_{\theta}$. Плотность идеального газа при стандартных условиях $\ \rho_{\theta}$ определена в пункте 4.2.3.

Шаг 3

- а) Для заданного значения T по уравнению (3) рассчитывают τ , а затем, используя значения $B_n(X)$ [шаг 2, перечисление а)], по уравнению (D.1) рассчитывают значения второго вириального коэффициента $B(\tau, X)$.
- b) Таким же образом, для заданных значений T, используя значения $C_n(X)$ [шаг 2, перечисление b)], рассчитывают значения $C_n(X) \cdot \tau^{u_n}$ для n от 13 до 58.

Шаг 4

- а) Подставляют рассчитанные значения $B(\tau, X)$, $C_n(X) \cdot \tau^{u_n}$ и K(X) [шаг 3, перечисления a), b) и шаг 2, перечисление c)] соответственно в уравнение (D.12). Это уравнение для p, которое было задано в шаге 1, теперь содержит одно неизвестное относительную плотность δ .
- b) Решают это уравнение относительно δ . Требуемое решение может быть получено с использованием подходящего численного метода, но на практике наиболее подходящим алгоритмом может быть стандартный алгоритм нахождения плотности из уравнения состояния. Такие алгоритмы обычно используют для первоначальной оценки плотности (часто в приближении идеального газа) и итеративным путем находят такое значение δ , которое воспроизводит значение ρ с заранее заданной точностью. Подходящим критерием в настоящем случае является тот, при котором рассчитанное давление при заданной молярной плотности δ отличается от заданного значения давления ρ менее чем на (1/10 6) **МПа.**

Если в качестве входной величины вместо давления p используют массовую плотность D, то δ вычисляют непосредственно без итераций как $\delta = D \cdot K^3/M$, где M(X) — молярная масса, рассчитанная из уравнения (16) настоящего стандарта.

Шаг 5

Подставляют δ и δ_{θ} в уравнение (B.3) вместе с различными константами и функциями обратной относительной температуры τ для расчета идеально-газовой части ϕ_0 относительной свободной энергии Гельмгольца. Используют также уравнения (B.6) и (B.7) для расчета первой и второй частных производных ϕ_0 по обратной относительной температуре.

Шаг 6

Используют уравнение (В.1) для расчета общей относительной свободной энергии Гельмгольца $\,\,\phi$ ($\delta,\,\tau,\,X$). Рассчитывают по уравнениям (С.2) и (С.4) первые частные производные $\,\,\phi_{\tau}\,$ и $\,\,\phi_{\delta}$ по обратной относительной температуре и относительной плотности соответственно. Уравнение (С.3) используют для расчета второй частной производной $\,\,\phi_{\tau\tau}\,$ по обратной относительной температуре, уравнение (С.5) — для расчета $\,\,\phi_{1}\,$ и уравнение (С.6) — для расчета $\,\,\phi_{2}.\,$

Шаг 7

- а) Используют уравнения (17) (26) настоящего стандарта для расчета полного набора термодинамических свойств: фактора сжимаемости Z; плотности ρ ; внутренней энергии u; энтальпии h; энтропии s; изохорной теплоемкости c_p ; коэффициента Джоуля-Томсона μ ; показателя адиабаты k и скорости звука w.
- b) На основе уравнений (18) (23) можно представлять термодинамические свойства, рассчитанные на основе значений молярной (при использовании символов нижнего регистра) или массовой (при использовании символов верхнего регистра) доли. Для преобразования молярных величин в массовые используют молярную массу смеси M(X), которую рассчитывают по уравнению (16).

Шаг 8

Возврат на шаг 1 (выбор новых входных переменных) или окончание вычислений.

Приложение G (справочное)

Примеры расчетов

Следующие примеры расчетов приведены для целей проверки программных решений (таблицы G.1—G.7).

Таблица G.1 — Составы газа в молярных долях

	<u>'</u>		1 1				
i	Компонент	Газ 1	Газ 2	Газ 3	Газ 4	Газ 5	Газ 6
1	Азот	0,003000	0,031000	0,009617	0,100000	0,057000	0,117266
2	Диоксид углерода	0,006000	0,005000	0,015021	0,016000	0,076000	0,011093
3	Метан	0,965000	0,907000	0,859284	0,735000	0,812000	0,825198
4	Этан	0,018000	0,045000	0,084563	0,033000	0,043000	0,034611
5	Пропан	0,004500	0,008400	0,023022	0,007400	0,009000	0,007645
6	<i>н-</i> Бутан	0,001000	0,001500	0,006985	0,000800	0,001500	0,002539
7	Изобутан	0,001000	0,001000	_	0,000800	0,001500	_
8	<i>н</i> -Пентан	0,000300	0,000400	0,001218	0,000400	_	0,000746
9	Изопентан	0,000500	0,000300	_	0,000400	_	_
10	<i>н</i> -Гексан	0,000700	_	0,000228	0,000200	_	0,000225
11	<i>н-</i> Гептан	_	_	0,000057	0,000100	_	0,000110
12	<i>н</i> -Октан	_	_	0,000005	0,000100	_	0,000029
13	<i>н</i> -Нонан	_	_	_	0,000100	_	_
14	<i>н</i> -Декан	_	_	_	0,000100	_	_
15	Водород	_	_	_	0,095000	_	_
16	Кислород	_	0,000100	_	0,000100	_	_
17	Моноксид углерода	_	_	_	0,010000	_	_
18	Вода	_	0,000100	_	0,000100	_	_
19	Сероводород	_	0,000100	_	0,000100	_	_
20	Гелий	_	_	_	0,000200	_	0,000538
21	Аргон	_	0,000100	_	0,000100	_	_
	Сумма	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000

Таблица G.2 — Результаты для газа 1

<i>р</i> , МПа	T, K	Z	<i>D</i> , кг/м³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	S, кДж/(кг · K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг · K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5	250	0,81996	49,295	-280,49	-179,06	-2,4223	1,6906	2,8342	6,153	1,366	372,27
5	260	0,84544	45,971	-260,09	-151,32	-2,3134	1,6910	2,7219	5,658	1,360	384,59
5	270	0,86643	43,196	-240,26	-124,51	-2,2122	1,6963	2,6450	5,219	1,354	395,93
5	290	0,89888	38,764	-201,60	-72,61	-2,0268	1,7189	2,5559	4,473	1,344	416,29
5	310	0,92262	35,331	-163,45	-21,93	-1,8578	1,7541	2,5191	3,861	1,333	434,32

Окончание таблицы G.2

Phi			толицы О.2									
5 350 0,95433 30,253 -86,50 +78,77 -1,5523 1,8517 2,5299 2,918 1,311 465,51 10 250 0,65444 123,524 -353,94 -272,98 -3,0522 1,7996 4,3448 4,218 1,782 379,77 10 260 0,70771 109,834 -323,30 -232,25 -2,8924 1,7836 3,8367 4,162 1,663 389,14 10 270 0,75082 99,693 -295,99 -195,68 -2,7543 1,774 3,4993 4,010 1,591 399,53 10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,			Z					С _∨ , кДж/(кг · K)	С _р , кДж/(кг · K)	μ, K/MΠa	k	
10 250 0,65444 123,524 -353,94 -272,98 -3,0522 1,7996 4,3448 4,218 1,782 379,77 10 260 0,70771 109,834 -323,30 -232,25 -2,8924 1,7836 3,8367 4,162 1,663 389,14 10 270 0,75082 99,693 -295,99 -195,68 -2,7543 1,774 3,4993 4,010 1,591 399,53 10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 <t< td=""><td>5</td><td>330</td><td>0,94052</td><td>32,558</td><td>-125,21</td><td>+28,36</td><td>-1,7006</td><td>1,7991</td><td>2,5140</td><td>3,350</td><td>1,322</td><td>450,59</td></t<>	5	330	0,94052	32,558	-125,21	+28,36	-1,7006	1,7991	2,5140	3,350	1,322	450,59
10 260 0,70771 109,834 -323,30 -232,25 -2,8924 1,7836 3,8367 4,162 1,663 389,14 10 270 0,75082 99,693 -295,99 -195,68 -2,7543 1,774 3,4993 4,010 1,591 399,53 10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0800 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	5	350	0,95433	30,253	- 86,50	+78,77	-1,5523	1,8517	2,5299	2,918	1,311	465,51
10 260 0,70771 109,834 -323,30 -232,25 -2,8924 1,7836 3,8367 4,162 1,663 389,14 10 270 0,75082 99,693 -295,99 -195,68 -2,7543 1,7744 3,4993 4,010 1,591 399,53 10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,4561 1,9219 3,1348 1,478 1,742 524,40												
10 270 0,75082 99,693 -295,99 -195,68 -2,7543 1,774 4 3,4993 4,010 1,591 399,53 10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 7-9,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	10	250	0,65444	123,524	-353,94	-272,98	-3,0522	1,7996	4,3448	4,218	1,782	379,77
10 290 0,81567 85,439 -247,10 -130,06 -2,5197 1,7762 3,1098 3,609 1,508 420,07 10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	10	260	0,70771	109,834	-323,30	-232,25	-2,8924	1,7836	3,8367	4,162	1,663	389,14
10 310 0,86170 75,657 -202,21 -70,03 -2,3194 1,7984 2,9143 3,199 1,458 439,05 10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24	10	270	0,75082	99,693	-295,99	-195,68	-2,7543	1,774 4	3,4993	4,010	1,591	399,53
10 330 0,89573 68,371 -159,12 -12,86 -2,1407 1,8349 2,8144 2,821 1,424 456,36 10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590	10	290	0,81567	85,439	-247,10	-130,06	-2,5197	1,7762	3,1098	3,609	1,508	420,07
10 350 0,92162 62,653 -116,71 +42,90 -1,9766 1,8816 2,7685 2,485 1,397 472,24 15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835	10	310	0,86170	75,657	-202,21	-70,03	-2,3194	1,7984	2,9143	3,199	1,458	439,05
15 250 0,61821 196,147 -418,04 -341,57 -3,4519 1,7957 4,5000 1,992 2,912 471,92 15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,96677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838	10	330	0,89573	68,371	-159,12	-12,86	-2,1407	1,8349	2,8144	2,821	1,424	456,36
15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985	10	350	0,92162	62,653	-116,71	+42,90	-1,9766	1,8816	2,7685	2,485	1,397	472,24
15 260 0,66179 176,182 -382,78 -297,64 -3,2797 1,8035 4,2711 2,250 2,461 457,75 15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985												
15 270 0,70350 159,598 -350,25 -256,26 -3,1234 1,8058 4,0056 2,404 2,179 452,49 15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666	15	250	0,61821	196,147	-418,04	-341,57	-3,4519	1,7957	4,5000	1,992	2,912	471,92
15 290 0,77530 134,830 -292,19 -180,93 -2,8541 1,8115 3,5532 2,473 1,865 455,55 15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892	15	260	0,66179	176,182	-382,78	-297,64	-3,2797	1,8035	4,2711	2,250	2,461	457,75
15 310 0,83097 117,682 -240,52 -113,05 -2,6276 1,8298 3,2590 2,363 1,704 466,04 15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552	15	270	0,70350	159,598	-350,25	-256,26	-3,1234	1,8058	4,0056	2,404	2,179	452,49
15 330 0,87368 105,145 -192,45 -49,79 -2,4298 1,8618 3,0835 2,179 1,607 478,79 15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 - 329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 350 0,91175 126,	15	290	0,77530	134,830	-292,19	-180,93	-2,8541	1,8115	3,5532	2,473	1,865	455,55
15 350 0,90677 95,519 -146,25 +10,79 -2,2516 1,9049 2,9838 1,976 1,541 491,98 20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,6	15	310	0,83097	117,682	-240,52	-113,05	-2,6276	1,8298	3,2590	2,363	1,704	466,04
20 250 0,67617 239,112 -455,05 -371,41 -3,6627 1,7770 3,9985 0,950 4,102 585,72 20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	15	330	0,87368	105,145	-192,45	-49,79	-2,4298	1,8618	3,0835	2,179	1,607	478,79
20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 - 329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	15	350	0,90677	95,519	-146,25	+10,79	-2,2516	1,9049	2,9838	1,976	1,541	491,98
20 260 0,70215 221,406 -421,87 -331,54 -3,5063 1,7927 3,9666 1,146 3,439 557,37 20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 - 329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40												
20 270 0,73004 205,063 -389,76 -292,23 -3,3580 1,8044 3,8892 1,314 2,965 537,78 20 290 0,78592 177,345 -329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	20	250	0,67617	239,112	-455,05	-371,41	-3,6627	1,7770	3,9985	0,950	4,102	585,72
20 290 0,78592 177,345 - 329,47 -216,69 -3,0880 1,8238 3,6552 1,529 2,380 518,08 20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	20	260	0,70215	221,406	-421,87	-331,54	-3,5063	1,7927	3,9666	1,146	3,439	557,37
20 310 0,83593 155,978 -274,20 -145,98 -2,8521 1,8472 3,4238 1,596 2,060 513,90 20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	20	270	0,73004	205,063	-389,76	-292,23	-3,3580	1,8044	3,8892	1,314	2,965	537,78
20 330 0,87771 139,550 -222,67 -79,35 -2,6437 1,8798 3,2500 1,564 1,867 517,31 20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	20	290	0,78592	177,345	- 329,47	-216,69	-3,0880	1,8238	3,6552	1,529	2,380	518,08
20 350 0,91175 126,664 -173,49 -15,59 -2,4561 1,9219 3,1348 1,478 1,742 524,40	20	310	0,83593	155,978	-274,20	-145,98	-2,8521	1,8472	3,4238	1,596	2,060	513,90
	20	330	0,87771	139,550	-222,67	-79,35	-2,6437	1,8798	3,2500	1,564	1,867	517,31
30 250 0,85042 285,176 -495,51 -390,31 -3,8898 1,7794 3,4974 0,198 5,600 767,57	20	350	0,91175	126,664	-173,49	-15,59	-2,4561	1,9219	3,1348	1,478	1,742	524,40
30 250 0,85042 285,176 -495,51 -390,31 -3,8898 1,7794 3,4974 0,198 5,600 767,57			_									
	30	250	0,85042	285,176	-495,51	-390,31	-3,8898	1,7794	3,4974	0,198	5,600	767,57
30 260 0,85828 271,697 -465,71 -355,30 -3,7525 1,7943 3,5033 0,285 4,865 732,95	30	260	0,85828	271,697	-465,71	-355,30	-3,7525	1,7943	3,5033	0,285	4,865	732,95
30 270 0,86815 258,660 -436,27 -320,29 -3,6203 1,8074 3,4962 0,369 4,276 704,27	30	270	0,86815	258,660	-436,27	-320,29	-3,6203	1,8074	3,4962	0,369	4,276	704,27
30 290 0,89215 234,343 -378,74 -250,73 -3,3718 1,8338 3,4549 0,522 3,421 661,74	30	290	0,89215	234,343	-378,74	-250,73	-3,3718	1,8338	3,4549	0,522	3,421	661,74
30 310 0,91899 212,820 -323,23 -182,27 -3,1435 1,8642 3,3874 0,636 2,860 634,97	30	310	0,91899	212,820	-323,23	-182,27	-3,1435	1,8642	3,3874	0,636	2,860	634,97
30 330 0,94570 194,277 -269,72 -115,30 -2,9341 1,9009 3,3096 0,702 2,488 619,80	30	330	0,94570	194,277	-269,72	-115,30	-2,9341	1,9009	3,3096	0,702	2,488	619,80
30 350 0,97032 178,527 -217,87 -49,83 -2,7415 1,9443 3,2399 0,725 2,233 612,55	30	350	0,97032	178,527	-217,87	-49,83	-2,7415	1,9443	3,2399	0,725	2,233	612,55

Таблица G.3 — Результаты для газа 2

Taon	гица	G.3 — Pea	ультаты	ція газа 2							
<i>р</i> , МПа	T, K	Z	<i>D</i> , кг/м³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	Ѕ, кДж/(кг ⋅ K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг ⋅ K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5	250	0,81260	52,014	-271,30	-175,17	-2,2227	1,6407	2,7730	6,314	1,363	362,01
5	260	0,83929	48,423	-251,33	-148,07	-2,1164	1,6406	2,6549	5,800	1,356	374,23
5	270	0,86121	45,443	-231,98	-121,95	-2,0178	1,6455	2,5747	5,346	1,350	385,45
5	290	0,89498	40,712	-194,31	-71,50	-1,8375	1,6675	2,4823	4,575	1,339	405,56
5	310	0,91961	37,066	-157,20	-22,31	-1,6734	1,7020	2,4437	3,945	1,328	423,33
5	330	0,93815	34,131	-120,03	+26,46	-1,5210	1,7460	2,4373	3,420	1,318	439,35
5	350	0,95244	31,698	-82,41	+75,33	-1,3772	1,7973	2,4520	2,977	1,307	454,03
10	250	0,64076	131,925	-345,46	-269,66	-2,8402	1,7534	4,3299	4,203	1,814	370,85
10	260	0,69620	116,751	-314,83	-229,18	-2,6814	1,7366	3,8017	4,186	1,680	379,36
10	270	0,74112	105,612	-287,73	-193,05	-2,5450	1,7264	3,4488	4,052	1,600	389,27
10	290	0,80858	90,125	-239,57	-128,62	-2,3146	1,7263	3,0431	3,663	1,510	409,27
10	310	0,85633	79,609	-195,61	-70,00	-2,1191	1,7470	2,8408	3,252	1,458	427,89
10	330	0,89156	71,829	-153,56	-14,34	-1,9450	1,7821	2,7375	2,869	1,422	444,91
10	350	0,91833	65,750	-112,23	+39,86	-1,7856	1,8272	2,6893	2,528	1,394	460,53
15	250	0,61032	207,758	-407,94	-335,74	-3,2223	1,7438	4,3653	1,917	3,030	467,74
15	260	0,65329	186,629	-373,37	-293,00	-3,0546	1,7529	4,1673	2,194	2,536	451,45
15	270	0,69507	168,913	-341,36	-252,55	-2,9019	1,7560	3,9192	2,368	2,227	444,66
15	290	0,76800	142,331	-284,21	-178,82	-2,6383	1,7614	3,4767	2,470	1,887	445,90
15	310	0,82503	123,945	-233,50	-112,47	-2,4170	1,7784	3,1815	2,376	1,714	455,43
15	330	0,86891	110,552	-186,46	-50,78	-2,2240	1,8090	3,0038	2,200	1,611	467,59
15	350	0,90295	100,306	-141,36	+8,18	-2,0506	1,8504	2,9023	1,999	1,543	480,37
20	250	0,67318	251,145	-442,98	-363,34	-3,4193	1,7252	3,8586	0,905	4,254	582,02
20	260	0,69828	232,806	-410,74	-324,83	-3,2683	1,7412	3,8355	1,100	3,552	552,40
20	270	0,72551	215,770	-379,46	-286,77	-3,1247	1,7531	3,7699	1,273	3,048	531,56
20	290	0,78093	186,633	-320,57	-213,41	-2,8624	1,7725	3,5558	1,504	2,425	509,77
20	310	0,83125	164,023	-266,51	-144,57	-2,6328	1,7952	3,3337	1,585	2,085	504,20
20	330	0,87364	146,606	-216,12	-79,70	-2,4300	1,8265	3,1630	1,563	1,882	506,69
20	350	0,90832	132,950	-168,11	-17,68	-2,2475	1,8671	3,0485	1,484	1,750	513,14
30	250	0,85223	297,570	-481,33	-380,51	-3,6328	1,7290	3,3785	0,178	5,753	761,58
30	260	0,85951	283,704	-452,42	-346,68	-3,5001	1,7437	3,3860	0,264	4,991	726,46
30	270	0,86884	270,261	-423,84	-312,84	-3,3724	1,7563	3,3804	0,348	4,380	697,27
30	290	0,89195	245,102	-367,95	-245,55	-3,1320	1,7818	3,3435	0,501	3,492	653,73
30	310	0,91822	222,731	-313,95	-179,26	-2,9109	1,8113	3,2820	0,618	2,909	625,94
30	330	0,94465	203,377	-261,85	-114,34	-2,7079	1,8467	3,2096	0,689	2,521	609,85
30	350	0,96924	186,890	-211,36	-50,84	-2,5211	1,8887	3,1434	0,716	2,256	601,84

Таблица G.4 — Результаты для газа 3

		,	для газа 3							
р, <i>Т</i> МПа К		<i>D</i> , кг/м³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	Ѕ, кДж/(кг ⋅ K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг ⋅ K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5 25	0,76537	59,066	-269,33	-184,68	-2,0757	1,6370	2,9473	7,323	1,346	337,60
5 26	0,80006	54,331	-248,22	-156,20	-1,9640	1,6390	2,7632	6,681	1,335	350,48
5 27	0 0,82789	50,560	-228,09	-129,20	-1,8621	1,6448	2,6444	6,123	1,327	362,19
5 29	0,86987	44,802	-189,42	-77,82	-1,6785	1,6676	2,5110	5,197	1,314	382,96
5 31	0 0,89992	40,512	-151,69	-28,27	-1,5132	1,7033	2,4532	4,454	1,303	401,08
5 33	0,92230	37,133	-114,07	+20,58	-1,3605	1,7490	2,4371	3,845	1,293	417,27
5 35	0,93944	34,372	-76,08	+69,39	-1,2169	1,8025	2,4468	3,338	1,283	432,01
10 25	0,54763	165,102	-364,22	-303,66	-2,7530	1,7569	5,0940	3,980	2,113	357,74
10 26	0,61607	141,116	-327,13	-256,27	-2,5670	1,7581	4,4023	4,275	1,818	358,90
10 27	0 0,67330	124,338	-295,47	-215,05	-2,4114	1,7509	3,8718	4,311	1,665	365,91
10 29	0,75890	102,706	-241,97	-144,60	-2,1594	1,7453	3,2499	4,028	1,518	384,45
10 31	0 0,81833	89,102	-195,19	-82,96	-1,9538	1,7610	2,9493	3,610	1,448	403,07
10 33	0,86148	79,509	-151,42	-25,65	-1,7746	1,7936	2,7981	3,195	1,405	420,32
10 35	0,89394	72,244	-108,94	+29,48	-1,6124	1,8383	2,7246	2,818	1,374	436,16
15 25	0,55363	244,969	-425,70	-364,46	-3,0925	1,6683	4,2479	1,522	4,017	495,98
15 26	0,59147	220,476	-389,85	-321,81	-2,9252	1,7245	4,2561	1,878	3,129	461,36
15 27	0 0,63262	198,500	-355,38	-279,81	-2,7667	1,7545	4,1247	2,169	2,584	441,89
15 29	0,71230	164,138	-292,85	-201,46	-2,4865	1,7795	3,7029	2,476	2,024	430,12
15 31	0 0,77873	140,449	-238,00	-131,20	-2,2521	1,7973	3,3438	2,498	1,768	434,56
15 33	0,83089	123,654	-188,16	-66,86	-2,0509	1,8254	3,1099	2,370	1,630	444,63
15 35	0,87154	111,152	-141,13	-6,18	-1,8723	1,8652	2,9713	2,181	1,544	456,50
20 25	0,63829	283,304	-455,68	-385,08	-3,2503	1,6330	3,6681	0,689	5,499	623,08
20 26	0,65852	264,036	-423,75	-348,00	-3,1048	1,6939	3,7376	0,883	4,420	578,61
20 27	0 0,68213	245,459	-392,00	-310,52	-2,9634	1,7329	3,7499	1,074	3,658	545,96
20 29	0,73518	212,039	-330,66	-236,34	-2,6983	1,7788	3,6430	1,392	2,727	507,12
20 31	0 0,78830	184,992	-273,52	-165,40	-2,4617	1,8099	3,4460	1,565	2,238	491,84
20 33	0,83557	163,950	-220,40	-98,41	-2,2522	1,8426	3,2602	1,609	1,961	489,08
20 35	0,87537	147,553	-170,21	-34,66	-2,0646	1,8828	3,1229	1,568	1,790	492,61
30 25	0,83636	324,314	-489,03	-396,53	-3,4269	1,6274	3,1918	0,083	7,038	806,85
30 26	0,84062	310,260	-460,88	-364,19	-3,3001	1,6891	3,2684	0,170	5,975	760,08
30 27	0,84737	296,388	-432,51	-331,29	-3,1760	1,7285	3,3056	0,255	5,148	721,87
30 29	0,86661	269,821	-376,14	-264,96	-2,9390	1,7791	3,3181	0,416	3,976	664,88
30 31	0 0,89085	245,547	-321,02	-198,84	-2,7185	1,8185	3,2888	0,554	3,220	627,21
30 33	0,91713	224,056	-267,45	-133,55	-2,5144	1,8582	3,2373	0,655	2,721	603,62
30 35	0,94297	205,462	-215,40	-69,39	-2,3256	1,9022	3,1792	0,711	2,386	590,21

Таблица G.5 — Результаты для газа 4

1 8 0 1	гица	G.5 — Pes	ультаты	цля газа 4							
<i>р</i> , МПа	T, K	Z	<i>D</i> , кг/м³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	Ѕ, кДж/(кг · K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг ⋅ K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5	250	0,86904	47,932	-258,79	-154,48	-1,9276	1,5661	2,4858	4,934	1,388	380,47
5	260	0,88770	45,120	-240,75	-129,93	-1,8313	1,5711	2,4268	4,553	1,381	391,19
5	270	0,90333	42,697	-222,99	-105,89	-1,7405	1,5787	2,3846	4,212	1,375	401,25
5	290	0,92789	38,700	-187,95	-58,75	-1,5721	1,6012	2,3351	3,624	1,363	419,70
5	310	0,94608	35,507	-153,09	-12,27	-1,4171	1,6322	2,3170	3,135	1,352	436,38
5	330	0,95989	32,875	-118,03	+34,06	-1,2723	1,6702	2,3194	2,724	1,341	451,66
5	350	0,97058	30,655	-82,51	+80,60	-1,1354	1,7137	2,3362	2,373	1,330	465,83
10	250	0,76451	108,971	-307,61	-215,84	-2,4455	1,6397	3,2234	3,620	1,644	388,42
10	260	0,79990	100,145	-284,54	-184,68	-2,3232	1,6350	3,0195	3,458	1,591	398,57
10	270	0,82933	93,013	-262,77	-155,26	-2,2122	1,6342	2,8720	3,279	1,553	408,55
10	290	0,87507	82,072	-221,73	-99,89	-2,0143	1,6439	2,6846	2,915	1,500	427,47
10	310	0,90854	73,949	-182,54	-47,32	-1,8389	1,6664	2,5828	2,575	1,463	444,85
10	330	0,93373	67,593	-144,19	+3,75	-1,6793	1,6983	2,5303	2,268	1,435	460,82
10	350	0,95309	62,436	-106,06	+54,10	-1,5311	1,7374	2,5087	1,996	1,412	475,61
15	250	0,73016	171,146	-352,65	-265,01	-2,7866	1,6584	3,5832	2,156	2,200	439,07
15	260	0,76682	156,696	-325,88	-230,15	-2,6498	1,6628	3,3901	2,210	2,024	440,12
15	270	0,79939	144,745	-300,76	-197,13	-2,5252	1,6645	3,2203	2,212	1,901	443,82
15	290	0,85295	126,300	-254,21	-135,44	-2,3047	1,6724	2,9664	2,116	1,744	455,05
15	310	0,89384	112,748	-210,88	-77,84	-2,1125	1,6910	2,8071	1,955	1,648	468,17
15	330	0,92527	102,316	-169,34	-22,74	-1,9402	1,7195	2,7118	1,774	1,582	481,59
15	350	0,94973	93,985	-128,69	+30,91	-1,7824	1,7559	2,6588	1,594	1,534	494,74
		I	1 1		ı .	ı					
20	250	0,76132	218,856	-385,55	-294,17	-3,0056	1,6435	3,4981	1,204	2,925	517,02
20	260	0,78917	203,013	-358,14	-259,62	-2,8700	1,6606	3,4071	1,307	2,608	506,85
20	270	0,81592	189,083	-331,85	-226,07	-2,7434	1,6709	3,3011	1,376	2,379	501,64
20	290	0,86386	166,274	-282,42	-162,14	-2,5149	1,6865	3,0987	1,425	2,080	500,19
20	310	0,90341	148,737	-236,27	-101,81	-2,3137	1,7065	2,9428	1,392	1,898	505,16
20	330	0,93530	134,959	-192,28	-44,09	-2,1332	1,7344	2,8364	1,313	1,777	513,17
20	350	0,96086	123,862	-149,56	+11,91	-1,9684	1,7697	2,7694	1,213	1,691	522,60
		l				ı					
30	250	0,90169	277,178	-425,72	-317,48	-3,2589	1,6277	3,1843	0,332	4,207	674,76
30	260	0,91296	263,228	-399,63	-285,66	-3,1341	1,6528	3,1774	0,405	3,733	652,25
30	270	0,92529	250,102	-373,94	-253,98	-3,0145	1,6706	3,1554	0,469	3,361	634,98
30	290	0,95124	226,500	-323,99	-191,54	-2,7914	1,6975	3,0844	0,567	2,830	612,24
30	310	0,97647	206,413	-276,02	-130,68	-2,5884	1,7233	3,0021	0,619	2,482	600,60
30	330	0,99923	189,486	-229,72	-71,40	-2,4031	1,7532	2,9292	0,633	2,244	595,98
30	350	1,01893	175,204	-184,62	-13,39	-2,2324	1,7885	2,8744	0,619	2,073	595,76

Таблица G.6 — Результаты для газа 5

Taoi	тица	G.6 — Pes	зультаты ,	для газа 5							
<i>р</i> , МПа	T, K	Z	<i>D</i> , кг/м ³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	Ѕ, кДж/(кг · K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг ⋅ K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5	250	0,80318	59,396	-242,65	-158,47	-1,8544	1,4628	2,5137	6,573	1,366	339,12
5	260	0,83151	55,166	-224,61	-133,98	-1,7583	1,4600	2,3924	6,033	1,358	350,87
5	270	0,85465	51,685	-207,23	-110,49	-1,6697	1,4623	2,3107	5,557	1,352	361,63
5	290	0,89010	46,204	-173,55	-65,34	-1,5083	1,4786	2,2162	4,752	1,340	380,87
5	310	0,91583	42,009	-140,52	-21,49	-1,3621	1,5066	2,1746	4,097	1,330	397,82
5	330	0,93514	38,648	-107,52	+21,85	-1,2266	1,5431	2,1636	3,552	1,319	413,10
5	350	0,95000	35,869	-74,21	+65,18	-1,0991	1,5860	2,1721	3,095	1,309	427,09
					ı						,
10	250	0,62007	153,875	-313,43	-248,44	-2,4222	1,5828	4,0693	4,219	1,854	347,10
10	260	0,67918	135,079	-284,65	-210,62	-2,2738	1,5612	3,5296	4,259	1,702	354,92
10	270	0,72701	121,518	-259,55	-177,25	-2,1478	1,5465	3,1678	4,154	1,613	364,35
10	290	0,79842	103,018	-215,60	-118,53	-1,9378	1,5382	2,7552	3,780	1,516	383,57
10	310	0,84864	90,670	-175,98	-65,69	-1,7616	1,5511	2,5508	3,365	1,461	401,47
10	330	0,88552	81,627	-138,36	-15,85	-1,6057	1,5781	2,4452	2,975	1,425	417,81
10	350	0,91347	74,608	-101,57	+32,47	-1,4636	1,6145	2,3933	2,625	1,397	432,78
		1			ı						
15	250	0,59162	241,909	-371,00	-308,99	-2,7653	1,5640	3,9904	1,867	3,179	443,96
15	260	0,63526	216,627	-339,09	-269,84	-2,6117	1,572 4	3,8221	2,172	2,622	426,12
15	270	0,67837	195,347	-309,54	-232,75	-2,4717	1,5737	3,5928	2,375	2,279	418,37
15	290	0,75450	163,524	-257,09	-165,36	-2,2307	1,5727	3,1655	2,519	1,910	418,53
15	310	0,81432	141,736	-211,02	-105,19	-2,0300	1,5819	2,8738	2,445	1,726	427,40
15	330	0,86034	126,024	-168,67	-49,64	-1,8563	1,6039	2,6961	2,275	1,619	439,00
15	350	0,89597	114,097	-128,32	+3,14	-1,7009	1,6364	2,5925	2,074	1,549	451,26
20	250	0.65690	200 525	402.27	-333,43	2.0277	1,5411	2 4074	0.000	1 105	555 64
20	260	0,65680	290,535	-402,27 -372,84	-298,50	-2,9377 -2,8007	1,5563	3,4974 3,4817	0,882 1,085	4,485 3,706	555,64 524,89
20	270	0,70966	248,978	-344,26	-263,93	-2,6702	1,5667	3,4250	1,268	3,153	503,23
20	290	0,76673	214,554	-290,51	-197,30	-2,4321	1,5811	3,2263	1,523	2,476	480,39
20	310	0,81910	187,877	-241,42	-134,96	-2,2241	1,5969	3,0121	1,623	2,112	474,20
20	330	0,86344	167,428	-195,95	-76,50	-2,0413	1,6201	2,8440	1,613	1,899	476,24
20	350	0,89979	151,484	-152,88	-20,85	-1,8776	1,6518	2,7288	1,539	1,762	482,29
			,	,	,		1 -		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
30	250	0,83685	342,041	-436,39	-348,68	-3,1243	1,5423	3,0500	0,178	6,046	728,22
30	260	0,84431	325,979	-410,15	-318,12	-3,0044	1,5556	3,0587	0,267	5,211	692,52
30	270	0,85396	310,360	-384,21	-287,55	-2,8891	1,5663	3,0535	0,353	4,547	662,93
30	290	0,87800	281,044	-333,54	-226,80	-2,6720	1,5864	3,0168	0,513	3,590	619,03
30	310	0,90548	254,934	-284,72	-167,04	-2,4727	1,6094	2,9555	0,638	2,970	591,15
30	330	0,93326	232,354	-237,77	-108,65	-2,2902	1,6372	2,8826	0,716	2,561	575,03
30	350	0,95918	213,156	-192,45	-51,70	-2,1226	1,6706	2,8144	0,748	2,284	566,97

Таблица G.7 — Результаты для газа 6

1 4 0 1	гица	G.7 — Pes	ynbraibi	для газа о	1	1					
<i>р</i> , МПа	T, K	Z	<i>D</i> , кг/м³	<i>U</i> , кДж/кг	<i>Н</i> , кДж/кг	Ѕ, кДж/(кг ⋅ K)	С _∨ , кДж/(кг · K)	С _р , кДж/(кг ⋅ K)	μ, Κ/ΜΠa	k	<i>w</i> , м/с
5	250	0,83409	53,718	-249,86	-156,78	-1,9766	1,5047	2,4866	5,831	1,377	358,07
5	260	0,85765	50,234	-231,91	-132,38	-1,8809	1,5060	2,3995	5,369	1,370	369,34
5	270	0,87716	47,297	-214,42	-108,71	-1,7916	1,5111	2,3387	4,959	1,364	379,78
5	290	0,90746	42,565	-180,20	-62,74	-1,6273	1,5306	2,2672	4,258	1,353	398,67
5	310	0,92971	38,866	-146,39	-17,75	-1,4772	1,5604	2,2372	3,680	1,342	415,50
5	330	0,94651	35,862	-112,50	+26,92	-1,3376	1,5981	2,2328	3,196	1,331	430,77
5	350	0,95949	33,356	-78,22	+71,68	-1,2059	1,6419	2,2458	2,785	1,320	444,83
10	250	0,69061	129,758	-309,46	-232,39	-2,5159	1,5943	3,5837	4,052	1,744	366,59
10	260	0,73764	116,813	-284,01	-198,40	-2,3825	1,5828	3,2360	3,953	1,650	375,82
10	270	0,77613	106,907	-260,85	-167,31	-2,2651	1,5765	2,9969	3,791	1,589	385,53
10	290	0,83479	92,540	-218,63	-110,57	-2,0623	1,5794	2,7096	3,405	1,514	404,49
10	310	0,87693	82,410	-179,37	-58,03	-1,8870	1,5985	2,5599	3,019	1,468	422,02
10	330	0,90828	74,743	-141,49	-7,70	-1,7297	1,6290	2,4816	2,666	1,434	438,08
10	350	0,93223	68,662	-104,13	+41,51	-1,5849	1,6679	2,4452	2,350	1,408	452,88
15	250	0,65598	204,914	-362,28	-289,08	-2,8628	1,5990	3,8350	2,067	2,659	441,19
15	260	0,69775	185,235	-332,75	-251,77	-2,7165	1,6047	3,6215	2,252	2,318	433,27
15	270	0,73655	168,978	-305,42	-216,65	-2,5839	1,6059	3,4055	2,351	2,097	431,46
15	290	0,80222	144,447	-256,08	-152,24	-2,3536	1,6102	3,0579	2,361	1,840	437,07
15	310	0,85292	127,096	-211,52	-93,50	-2,1576	1,6255	2,8339	2,234	1,699	447,78
15	330	0,89191	114,173	-169,67	-38,29	-1,9850	1,6522	2,6989	2,054	1,611	460,01
15	350	0,92220	104,113	-129,24	+14,83	-1,8287	1,6880	2,6214	1,860	1,549	472,47
20	250	0,70695	253,517	-395,37	-316,48	-3,0592	1,5823	3,5123	1,027	3,705	540,62
20	260	0,73374	234,868	-366,73	-281,58	-2,9223	1,5976	3,4611	1,198	3,165	519,12
20	270	0,76143	217,944	-339,14	-247,37	-2,7932	1,6076	3,3751	1,335	2,780	505,07
20	290	0,81476	189,632	-287,44	-181,97	-2,5595	1,6226	3,1631	1,493	2,298	492,26
20	310	0,86115	167,841	-239,84	-120,68	-2,3550	1,6413	2,9739	1,526	2,024	491,11
20	330	0,89949	150,949	-195,16	-62,67	-2,1736	1,6680	2,8360	1,479	1,854	495,66
20	350	0,93059	137,565	-152,31	-6,92	-2,0096	1,7028	2,7453	1,390	1,740	502,98
						,					
30	250	0,87498	307,248	-432,49	-334,85	-3,2743	1,5804	3,1034	0,229	5,159	709,77
30	260	0,88365	292,533	-406,36	-303,80	-3,1525	1,5973	3,1039	0,312	4,510	680,11
30	270	0,89405	278,420	-380,57	-272,82	-3,0356	1,6103	3,0917	0,390	3,994	656,03
30	290	0,91827	252,383	-330,30	-211,43	-2,8162	1,6331	3,0425	0,527	3,247	621,29
30	310	0,94424	229,607	-281,91	-151,25	-2,6155	1,6577	2,9731	0,622	2,758	600,30
30	330	0,96930	210,114	-235,30	-92,52	-2,4319	1,6873	2,9010	0,671	2,430	589,00
30	350	0,99197	193,580	-190,11	-35,14	-2,2631	1,7227	2,8401	0,681	2,202	584,13

Приложение ДА (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем международного стандарта

Таблица ДА.1

Габлица ДА.1					
Структура настоящего стандарта	Структура международного стандарта ИСО 20765-1:2005				
1 Область применения (1)	1 Область применения				
2 Нормативные ссылки (2)	2 Нормативные ссылки				
3 Термины, определения и обозначения (—)	3 Термины и определения				
3.1 Термины и определения (3)	_				
3.2 Обозначения (приложение А)	_				
4 Термодинамические основы метода (4)	4 Термодинамические основы метода				
4.1 Сущность метода (4.1)	4.1 Сущность метода				
4.2 Фундаментальное уравнение состояния для свободной энергии Гельмгольца (4.2)	4.2 Фундаментальное уравнение состояния для свободной энергии Гельмгольца				
4.3 Термодинамические свойства, получаемые из свободной энергии Гельмгольца (4.3)	4.3 Термодинамические свойства, получаемые из свободной энергии Гельмгольца				
5 Метод расчета свойств (5)	5 Метод вычислений				
5.1 Входные переменные (5.1)	5.1 Входные переменные				
5.2 Переход от давления к относительной плотности (5.2)	5.2 Переход от давления к приведенной плотности				
5.3 Проведение основных вычислений (5.3)	5.3 Проведение основных вычислений				
6 Условия применения (6)	6 Условия применения				
6.1 Давление и температура (6.1)	6.1 Давление и температура				
6.2 Газ, подготовленный для транспортирования по магистральным газопроводам (6.2)	6.2 Газ, подготовленный для транспортирования по магистральным газопроводам				
7 Оценка неопределенностей рачета свойств (7)	7 Оценка неопределенностей вычислений				
7.1 Неопределенности рачета свойств для газа, подготовленного для транспортирования по магистральным газопроводам (7.1)	7.1 Неопределенности вычислений для газа, подготовленного для транспортирования по магистральным газопроводам				
7.2 Влияние неопределенностей входных переменных (7.2)	7.2 Влияние неопределенностей входных переменных				
8 Оформление результатов расчетов (8)	8 Оформление результатов вычислений				
Приложение А Исходные положения для фундаментального уравнения состояния для свободной энергии Гельмгольца (4.2)	Приложение А Условные обозначения и единицы величин				
Приложение В Идеально-газовая свободная энергия Гельмгольца (приложение В)	Приложение В Идеально-газовая свободная энергия Гельмгольца				
Приложение С Уравнение состояния для свободной энергии Гельмгольца (приложение С)	Приложение С Уравнение состояния для свободной энергии Гельмгольца				
Приложение D Подробная информация по уравнению состояния (приложение D)	Приложение D Подробная информация по уравнению состояния				

Окончание таблицы ДА.1

Структура настоящего стандарта	Структура международного стандарта ИСО 20765-1:2005
Приложение Е Учет следовых компонентов (приложение E)	Приложение Е Учет следовых компонентов
Приложение F Реализация метода (приложение F)	Приложение F Реализация метода
Приложение G Примеры расчетов (приложение G)	Приложение G Примеры расчетов
Приложение ДА Сопоставление структуры настоящего стандарта со структурой примененного в нем международного стандарта (—)	_

П р и м е ч а н и е — После заголовков разделов (подразделов) настоящего стандарта в скобках приведены номера аналогичных разделов (подразделов) международного стандарта.

Библиография

[1] Международный стандарт ИСО 12213-2:2006 (ISO 12213-2:2006) Природный газ. Расчетное определение фактора сжимаемости. Часть 2. Расчет на основе данных о молярном компонентном составе (Natural gas — Calculation of calculation compression factor — Part 2: Calculation using molar-composition analysis)

[2] Международный стандарт ИСО 14532:2004

Газ природный. Словарь

(ISO 14532:2004 [3] Международный стандарт (Natural gas — Vocabulary)

ИСО 80000-5:2007 (ISO 80000-5:2007) Величины и единицы величин. Часть 5. Термодинамика

[4] Международный стандарт ИСО 80000-9:2009

(Quantities and units — Part 5: Thermodynamics)

(ISO 80000-9:2009) 51 Международный стандарт ИСС Величины и единицы величин. Часть 9. Физическая химия и молекулярная физика (Quantities and units — Part 9: Physical chemistry and molecular physics)

 Международный стандарт ИСО/МЭК Руководство 99:2007

[5] Международный стандарт ИСО/МЭК. Международный словарь основных и общих терминов в метрологии

Руководство 99:2007 (ISO/IEC GUIDE 99:2007) (International vocabulary of metrology — Basic and general concepts and

associated terms)
[6] Термодинамика. Основные понятия. Терминология. Буквенные обозначения величин. Сборник определений, вып. 103/Комитет научно-технической терминологии АН СССР. М.: Наука,1984 — С. 40

- [7] Starling, K.E. and Savidge, J.L. Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases. American Gas Association Transmission Measurements Committee Report No. 8, Second Edition, November 1992, and Errata No. 1, June 1993, Arlington
- [8] Schley, P., Jaeschke, M. and Busch, C. Berechnung kalorische Zustandsgrößen von Erdgasen mit der AGA8-DC92-Zustandsgleichung, gwf-Gas/Erdgas Vol. 139 (11), pp. 714—719, 1998
- [9] Wagner, W. and De Reuck, K.M. International Thermodynamic Tables of the Fluid State 13 Methane, Blackwell, Oxford, 1996
- [10] a) Jaeschke, M. and Humphreys, A.E. The GERG Databank of High Accuracy Compressibility Factor Measurements, GERG Technical Monograph TM4 (1990) and Fortschritt-Berichte VDI Series 6, No. 251 (1991)
 b) Jaeschke, M., Hinze, H.-M. and Humphreys, A.E. Supplement to the GERG Databank of High-Accuracy, Compression Factor Measurements, GERG Technical Monograph TM7 (1996) and Fortschritt-Berichte VDI Series 6, No. 355 (1997)

Примечание — Данные из [10](а) и [11](b) объединены с данными монографии GERG TM7 CD-ROM. Общее число использованных данных 7433.

- [11] a) Ewing, M.B. and Goodwin, A.R.H. J. Chem. Thermodynamics, Vol. 25, pp. 1503—1511 (1993)
 - b) Fawcett, D. Thesis, Murdoch University (June 1995)
 - c) Ingrain, D., Pinvidic, J.J. and Desenfant, P. Gaz de France, note to GERG WG1.3, 1 October 1993
 - d) Montel, F., Labes, P., Daridon, J.-L., Lagourette, B. and Xans, P. Proceedings of the 6th International Gas Research Conference, Cannes, France (November 1995) pp. 242—250 (Govt. Institutes Inc., Rockville, Maryland)
 - e) Le Noe, O. and Desenfant, P. Gaz de France, note to GERG WG1.3, 24 January 1996
 - f) Pack, D.J. Murdoch University, note to M. Jaeschke, 27 September 1996
 - g) Trusler, J.P.M. J. Chem. Thermodynamics, Vol. 26, pp. 751—763 (1994)
 - h) Trusler, J.P.M. and Costa Gomes, M.F. Report to GERG WG1.3, 19 October 1995
 - i) Younglove, B.A., Frederick, N.V. and McCarty, R.D. NIST Monograph 178, January 1993

Примечани е — Общее число данных, использованных из источников с [11](а) по [11](і), равно 1194.

- [12] Owren, G., Grini, P.G., Maehlum, H.S. and Jorstad, O. SINTEF Energy report for GERG WG 1.3 (1 August 1996) Примечание Общее число данных, взятых из [12], равно 206.
- [13] Aly, F.A. and Lee, L.L. Self Consistent Equations for Calculating the Ideal Gas Heat Capacity, Enthalpy and Entropy, Fluid Phase Equilibria, Vol. 6, pp. 169—179, 1981
- [14] Jaeschke, M. and Schley, P. Ideal-Gas Thermodynamic Properties for Natural-Gas Applications, Int. J. Thermophys., Vol. 16 (6), pp. 1381—1392, 1995)

УДК 662.76.001.4:006.354

OKC 75.060

Б19

Ключевые слова: природный газ, термодинамические свойства, метод расчета

Редактор *Л.И. Нахимова*Технический редактор *В.Н. Прусакова*Корректор *В.Г. Гришунина*Компьютерная верстка *В.И. Грищенко*

Сдано в набор 26.07.2010. Подписано в печать 13.10.2010. Формат $60x84^{1}/_{8}$. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 4,65. Уч.-изд. л. 4,00. Тираж 154 экз. Зак. 811.