

Session 2: Ecotoxicological Databases

Theoretical Ecotoxicology

Offen im Denken

About me

- Helena S. Bayat
- BSc in Environmental Toxicology at UC Davis
 - » Mass spectrometry of aged smoke compounds
- MSc in Environmental Science at University of Copenhagen
 - » Modelling mixture toxicity under stressful food regime
- Currently doing PhD with RESIST project
 - » Multiple stressors in freshwater
 - » Built a database for thermal tolerance

Learning objectives

- Understand what a database is and relevance to ecotoxicology
- Introduce a selection of ecotoxicological databases
- Know where to look for ecotoxicological information

What are databases?

What are databases?

Why do we need them?

Consider:

- You have 5 sampling sites
 - » At each you have taken biological samples
 - > Invertebrates
 - → Fish
 - » You also have chemical data for each
 - Chemical concentration
 - » How would you collect and store all this different data?

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Consider:

Chem sample id	Site id	Chemical id	Concentration
C1	S1	7440-50-8	5
C2	S1	2921-88-2	2
С3	S1	138261-41- 3	1
C4	S2	7440-50-8	4

Chemical id	Chemical name	Usage date
7440-50-8	copper	8-2022
2921-88-2	chlorpyrifos	10-2022
138261-41- 3	imidacloprid	7-2022

Fish sample id	Site id	Cottus	Salmo	
F1	S1	5	2	
F2	S2	2	3	
F3	S3	3	4	
F4	S4	4	2	
F5	S5	1	0	

Invert sample id	Site id	Gammarus	Hydropsyche	Rhyacophila
11	S1	10	2	5
12	S1	8	5	1
13	S1	7	1	0
14	S2	12	0	1
15	S2	4	1	2

Consider:

Relational databases

- Relational database management systems (RDMS)
- Developed by Edgar F. Codd for IBM in 1970

Image from IBM

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California The relational view (or model) of data described in Section 1 appears to be superior in several respects to the graph or network model [3, 4] presently in vogue for non-inferential systems. It provides a means of describing data with its natural structure only—that is, without superimposing any additional structure for machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal independence be-

employee (man#, name, birthdate, jobhistory, children) jobhistory (jobdate, title, salaryhistory) salaryhistory (salarydate, salary) children (childname, birthyear)

Fig. 3(a). Unnormalized set

employee' (man#, name, birthdate)
jobhistory' (man#, jobdate, title)
salaryhistory' (man#, jobdate, salarydate, salary)
children' (man#, childname, birthyear)

Fig. 3(b). Normalized set

Ç

- Data is accessed using Structured Query Language (SQL)
 - » Standardized in 1987, ISO 9075:1987
- Tables connected by keys

database.schema.table.column

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Consider:

Chem sample id	Site id	Chemical id	Concentration
C1	S1	7440-50-8	5
C2	S1	2921-88-2	2
С3	S1	138261-41- 3	1
C4	S2	7440-50-8	4

Chemical id	Chemical name	Usage date
7440-50-8	copper	8-2022
2921-88-2	chlorpyrifos	10-2022
138261-41- 3	imidacloprid	7-2022

Fish sample id	Site id	Cottus	Salmo	
F1	S1	5	2	
F2	S2	2	3	
F3	S3	3	4	
F4	S4	4	2	
F5	S5	1	0	

Invert sample id	Site id	Gammarus	Hydropsyche	Rhyacophila
11	S1	10	2	5
12	S1	8	5	1
13	S1	7	1	0
14	S2	12	0	1
15	S2	4	1	2

Offen im Denken

SQL software

Free and open source (FOSS)

Proprietary

SQL queries

Query: instructions for retrieving subsets of data

```
SELECT
  city_name,
  country,
  population
FROM cities
WHERE country = 'Austria'
```

The query's steps don't happen in the order they're written:

(In reality query execution is much more complicated than this. There are a lot of optimizations.)

JULIA EVANS @b0rK

Offen im Denken

SQL queries

- INNER JOIN
- LEFT JOIN
- RIGHT JOIN
- FULL JOIN

SQL vs R

SQL

- Used with databases
- Data on disk
- Unlimited rows, 250-1600 columns
- Can be slow

R

- Programming language
- Data in memory
- Limited but fast
- Can use packages to connect to databases and send SQL queries

SQL logic in R

- Joins
- Selecting, filtering, grouping, etc
- Part of the tidyverse and data.table

SELECT

FROM + JOIN

WHERE ...

GROUP BY ...

HAVING

ORDER BY ...

LIMIT ...

Offen im Denken

SQL logic in R

- Joins
- Selecting, filtering, grouping, etc.
- Part of the tidyverse and data.table

For more information:

R for Data Science https://r4ds.hadley.nz/

data.table
https://cran.r-
project.org/web/packages/data.table/vignettes/datatable-
intro.html

SELECT ...

FROM + JOIN

WHERE ...

GROUP BY ...

HAVING

ORDER BY ...

LIMIT ...

Large databases for ecological data

freshwaterecology.info

EPA ECOTOX Database

- Large!
- Ecotoxicological test results from published studies and grey literature
- Automatically updated
- Hosted by the United States Environmental Protection Agency (USEPA)

Some reminders for working in R

- Working directory
- Make a folder → keep code organized
- Make comments
- Troubleshooting
 - » Check if working directory is set to correct folder
 - » Check spelling
 - » Extra or wrongly placed dots, dashes, etc cause errors in the code
 - » Use Stack Overflow or AI tools when stuck

Time for an exercise

UNIVERSITÄT
DUISBURG
ESSEN

Offen im Denken