Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

March 6, 2020

■ Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity

- Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity
- E.g., the alldiff $(x_1, ..., x_n)$ constraint forces that all the values of integer variables $x_1, ..., x_n$ must be different
- **E**.g., the $alo(x_1, ..., x_n)$ constraint forces that at least one of the Boolean variables $x_1, ..., x_n$ is set to true.
- E.g., the $amo(x_1,...,x_n)$ constraint forces that at most one of the Boolean variables $x_1,...,x_n$ is set to true.

- Global constraints are classes of constraints defined by a Boolean formula of arbitrary arity
- E.g., the alldiff $(x_1, ..., x_n)$ constraint forces that all the values of integer variables $x_1, ..., x_n$ must be different
- E.g., the $alo(x_1,...,x_n)$ constraint forces that at least one of the Boolean variables $x_1,...,x_n$ is set to true.
- E.g., the $amo(x_1, ..., x_n)$ constraint forces that at most one of the Boolean variables $x_1, ..., x_n$ is set to true.
- The dual graph translation does not work well in practice.

AC for Non-binary Problems

- Can be naturally extended from the binary case
- Value $a \in d_i$ is AC wrt. (non-binary) constraint $c \in C$ iff there exists an assignment τ (the support of a) such that:
 - ullet au assigns a value to exactly the variables in $\operatorname{scope}(c)$
 - $lack au[x_i] = a$
 - lacktriangle c(au) holds
- Constraint $c \in C$ is AC iff every $a \in d_i$ of every $x_i \in \text{scope}(c)$ has a support in c
- A CSP is AC if all its constraints are AC
- For non-binary constraints, arc consistency is also called hyperarc consistency, generalized arc consistency or domain consistency

- Consider the constraint 3x + 2y + z > 3 over $x, y, z \in \{0, 1\}$
- Value 1 for x is AC: $\tau = (x \mapsto 1, y \mapsto 1, z \mapsto 1)$ is a support
- \blacksquare Value 0 for x is not AC: it does not have any support.
- Hence, the constraint is not AC

- Note that AC depends on the syntax
- Consider $x_1 \in \{1, 2\}$, $x_2 \in \{1, 2\}$, $x_3 \in \{1, 3, 4\}$
- Case 1: constraints are $x_i \neq x_j$ for all i < j
 - All constraints are arc-consistent
- Case 2: there is only one constraint alldiff (x_1, x_2, x_3)
 - Value 1 for x_1 is AC because $\tau = (x_1 \mapsto 1, x_2 \mapsto 2, x_3 \mapsto 3)$ is a support for it.
 - lack Value 1 for x_3 is not AC: does not have any support
 - Hence, the constraint is not AC

Enforcing AC: Revise(i, c)

- Natural extension of binary case
- lacktriangle Removes values from the domain of x_i without a support in c

```
// Let (x_1,\ldots,x_{i-1},x_i,x_{i+1}\ldots,x_k) be the scope of c function \operatorname{Revise}(i,c) change := false for each a\in d_i do if \forall_{a_1\in d_1,\ldots,a_{i-1}\in d_{i-1},a_{i+1}\in d_{i+1},\ldots,a_k\in d_k} \ \neg c(x_1\leftarrow a_1,\ldots,x_i\leftarrow a,\ldots,x_k\leftarrow a_k) remove a from d_i change := \operatorname{true} return change
```

The time complexity of Revise(i,c) is $O(k \cdot |d_1| \cdots |d_k|)$ (assuming that evaluating a constraint takes linear time in the arity)

AC-3

- The natural extension of binary AC-3
- $(i,c) \in Q$ means that "we cannot guarantee that all domain values of x_i have a support in c"

```
procedure \operatorname{AC3}(X,D,C) Q:=\{(i,c)\mid c\in C, x_i\in\operatorname{scope}(C)\} while Q\neq\emptyset do (i,c):=\operatorname{Fetch}(Q)\ //\ \operatorname{selects}\ \operatorname{and}\ \operatorname{removes} if \operatorname{Revise}(i,c) then Q:=Q\cup\{(j,c')|\ c'\in C, c'\neq c, j\neq i, \{x_i,x_j\}\subseteq\operatorname{scope}(c')\}
```

- Let $m = \max_i \{|d_i|\}, e = |C| \text{ and } k = \max_c \{|\operatorname{scope}(c)|\}$
- Time complexity: $O(e \cdot k^3 \cdot m^{k+1})$
- Space complexity: $O(e \cdot k)$

AC for non-binary constraints

- Enforcing AC with generic algorithms is exponentially expensive in the maximum arity of the CSP
- Only practical with constraints of very small arity
- Is it possible to develop constraint-specific algorithms?

```
procedure Revise(c) // removes every arc-inconsistent value a \in d_i for all x_i \in X(c) endprocedure
```

- Next: alldiff constraint
- ... but first a diversion to matching theory

Begin Matching Theory

Definitions

- Given a graph G = (V, E), a matching M is a set of pairwise non-incident edges
- A vertex is matched or covered if it is an endpoint of some $e \in M$, and it is free otherwise
- A maximum matching is a matching that contains the largest possible number of edges

(edges in the matching, in blue)

In particular, a perfect matching matches all vertices of the graph

■ We have to organize one round of a football league. Compatibility relation between teams is given by a graph

Perfect matchings \leftrightarrow feasible arrangements of matches

Bipartite Matching

- Graph G=(V,E) is bipartite if there is a partition (L,R) of V (i.e., $L\cup R=V, L\cap R=\emptyset$) such that each $e\in E$ connects a vertex in L to one in R
- Now focus on maximum bipartite matching problem: given a bipartite graph, find a matching of maximum size
- From now on, assume $|V| \leq 2|E|$ (isolated vertices can be removed)

Example (I)

- Assignment problem:
 - lack n workers, m tasks
 - lack list of pairs (w,t) meaning: "worker w can do task t"

Maximum matchings tell how to assign tasks to workers so that the maximum number of tasks are carried out

Example (II)

 \blacksquare We have n variables $x_1, ..., x_n$

Variable x_i can take values in $D_i \subseteq \mathbb{Z}$ finite $(1 \le i \le n)$

Constraint alldifferent $(x_1, ..., x_n)$ imposes that variables should take different values pairwise

$$D_1 = \{1\}$$
 $D_2 = \{1, 2, 3\}$
 $D_3 = \{4\}$

Matchings covering $x_1, ..., x_n$ correspond to solutions to alldifferent $(x_1, ..., x_n)$

Example (II)

 \blacksquare We have n variables $x_1, ..., x_n$

Variable x_i can take values in $D_i \subseteq \mathbb{Z}$ finite $(1 \le i \le n)$

Constraint alldifferent $(x_1, ..., x_n)$ imposes that variables should take different values pairwise

$$D_1 = \{1\}$$
 $D_2 = \{1, 2, 3\}$
 $D_3 = \{4\}$

Matchings covering $x_1, ..., x_n$ correspond to solutions to alldifferent $(x_1, ..., x_n)$

Note that matchings covering x_1, \ldots, x_n are maximum. However, a maximum matching may not cover x_1, \ldots, x_n

Augmenting Paths

Let M be a matching of G = (V, E) (not necessarily bipartite).

We view paths as sequences of edges rather than sequences of vertices.

- An alternating path is a simple path in which the edges belong alternatively to M and not to M.
- An alternating cycle is a cycle in which the edges belong alternatively to M and not to M.
- An augmenting path is an alternating path that starts and ends at different free vertices.
- Berge's Lemma. A matching is maximum if and only if it does not have any augmenting path.

Properties (I)

- lacktriangle An alternating cycle has as many edges in M as not in M
- lacktriangle An augmenting path has 1 more edge not in M than in M
- Given two sets $A, B \subseteq X$:
 - lack their difference is $A B = \{x \mid x \in A \text{ and } x \notin B\}$
 - lack their symmetric difference is $A \oplus B = (A B) \cup (B A)$

If P is an augmenting path wrt. M, then $M\oplus P$ is a matching and $|M\oplus P|=|M|+1$

I.e., if we paint edges $\in M$ in blue and edges $\not\in M$ in red, then flipping the colors of P results in a valid matching

Proof of Berge's Lemma (I)

Let us prove the contrapositive:

G has a matching larger than M if and only if

G has an augmenting path wrt. M

 (\Leftarrow) Just proved in the last slide.

Proof of Berge's Lemma (II)

 (\Rightarrow) Let M' be a matching in G larger than M.

Each vertex of $M \oplus M'$ has degree at most two: incident with ≤ 1 edge from M and ≤ 1 edge from M'

So $M \oplus M'$ is a vertex-disjoint union of simple paths and cycles.

Furthermore, paths and cycles in $M \oplus M'$ are alternating (wrt. M, and wrt. M')

Edges $\in M$, $\not\in M'$ Edges $\in M'$, $\not\in M$

Proof of Berge's Lemma (III)

 (\Rightarrow) (cont.) Since |M'|>|M|, $M\oplus M'$ must contain at least one connected component that has more edges from M' than from M.

Such a component is a simple path in G that starts and ends at different vertices with edges $\notin M$.

The extreme vertices are free.

So the path is augmenting.

Aug. Paths in Bipartite Graphs

- **Idea:** Starting from the empty matching, increase the size of the current matching by finding augmenting paths
- Now assume the graph is bipartite.
- For finding augmenting paths, do the following:
 - Mark vertices as matched or free.
 - 2. Start DFS (Depth First Search) or BFS (Breadth First Search) from each of the free vertices in L.
 - 3. Traverse edges $\notin M$ from L to R.
 - 4. Traverse edges $\in M$ from R to L.
 - 5. Stop successfully if a free vertex from R is reached.
 - 6. Stop with failure if search terminates without finding a free vertex from R.
- lacksquare Cost: O(|E|)

Algorithm

```
int MAX_BIPARTITE_MATCHING(bipartite_graph G) {
    M = Ø;
    P = AUG_PATH(G, M);
    while (P != NULL) {
        M = M \oplus P;
        P = AUG_PATH(G, M);
    }
    return M.size();
}
```

- lacksquare Cost: O(|V||E|)
 - lacktriangle Each iteration costs O(|E|)
 - lacktriangle At each iteration 2 new vertices are matched (one from L and one from R)

So at most $\min(|L|, |R|) = O(|V|)$ iterations suffice

Bipartite graph $G = (L \cup R, E)$

Initially matching M is empty.

Blue edges: $e \in M$

Red edges: $e \notin M$

Let us look for an augmenting path using DFS.

Mark vertices as matched (m) or free (f).

Start at a free vertex in L.

Left \rightarrow right: red edges

 $\mathsf{Right} \to \mathsf{left}$: blue edges

Found a free vertex in R.

Found an augmenting path.

Flip colors of augmenting path and a new M is obtained

Let us look for another augmenting path.

By symmetry.

Let us look for another augmenting path.

Mark vertices as matched (m) or free (f).

Start at a free vertex in L.

Left \rightarrow right: red edges

 $\mathsf{Right} \to \mathsf{left}$: blue edges

Found a free vertex in R.

Found an augmenting path.

Flip colors of augmenting path and a new M is obtained

By symmetry.

No more augmenting paths, M is a maximum matching

Hopcroft-Karp Algorithm

- If P_1, \ldots, P_k are vertex-disjoint augmenting paths wrt. M, then $M \oplus (P_1 \cup \cdots \cup P_k)$ is a matching of |M| + k edges
- **Idea:** instead of finding 1 augmenting path per iteration, let us find a maximal set of vertex-disjoint shortest augmenting paths. This reduces the number of iterations from O(|V|) to $O(\sqrt{|V|})$

```
int HOPCROFT_KARP(bipartite_graf G) {
    M = 0;
    S = MAXIMAL_SET_VD_SHORTEST_AUG_PATHS(G, M);
    while (S != 0) {
        M = M ⊕ U{ P | P ∈ S };
        S = MAXIMAL_SET_VD_SHORTEST_AUG_PATHS(G, M);
    }
    return M.size();
}
```

Max. Vertex-Disjoint Shortest AP

- Let us find a maximal set of vertex-disjoint shortest augmenting paths
- lacktriangle Let l be the length of the shortest augmenting paths wrt. M
 - **Goal:** compute a maximal (not necessarily maximum) set of vertex-disjoint augmenting paths of length l
- Phase 1: compute length l and augmenting paths of length l
 - 1. BFS but start simultaneously at all free vertices in L
 - 2. Traverse edges $\not\in M$ from L to R
 - 3. Traverse edges $\in M$ from R to L
 - 4. If a free vertex is found in R: current distance is l, the length of the shortest augmenting paths
 - 5. Complete BFS after finding all free vertices in R at distance l

Max. Vertex-Disjoint Shortest AP

- We need augmenting paths to be vertex-disjoint
- Phase 2: ensure vertex-disjointness and maximality

 Let X be the set of all free vertices in R at distance l
 - 1. Compute DFS from $u \in X$ to the free vertices in L, using the BFS distances to guide the search:
 - the DFS is only allowed to follow edges that lead to an unused vertex in the previous distance layer
 - the DFS must alternate between matched and unmatched edges.
 - 2. Once an augmenting path is found, mark its vertices as *used* and continue the DFS from the next $u \in X$.
- **Cost of Phase 1:** O(|E|) (1 single BFS!)
- Cost of Phase 2: O(|E|) (1 single DFS!)

- Theorem. Let:
 - lacktriangle length of a shortest augmenting path wrt. M
 - $igoplus P_1, \dots, P_k = \text{a maximal set of vertex-disjoint shortest augmenting paths wrt. } M$

 - lacktriangle = a shortest augmenting path with respect to M'

Then |P| > l.

■ I.e., from one iteration to the next one, the length of the shortest augmenting path increases

Proof. Let us consider two cases:

1. P is vertex-disjoint from P_1, \ldots, P_k . By contradiction.

Since P is an augmenting path wrt. M' and is vertex-disjoint from P_1, \ldots, P_k , P is an augmenting path wrt. M.

Then $|P| \geq l$.

If |P| = l, then P is a shortest augmenting path wrt. M.

But this contradicts the maximality of P_1, \ldots, P_k .

So
$$|P| > l$$
.

2. P is not vertex-disjoint from P_1, \ldots, P_k .

By def.,
$$M' = M \oplus (P_1 \cup \ldots \cup P_k)$$
.

So
$$M \oplus M' = (M \oplus M) \oplus (P_1 \cup \ldots \cup P_k) = P_1 \cup \ldots \cup P_k$$
.

So
$$H := M \oplus M' \oplus P = (P_1 \cup \ldots \cup P_k) \oplus P$$
.

But H is a set of vertex-disjoint cycles and simple paths.

And
$$|M' \oplus P| - |M| = |M' \oplus P| - |M'| + |M'| - |M| = k + 1$$

So there are at least k+1 simple paths in H that use more edges from $M' \oplus P$ than from M.

Each of these is an augmenting path wrt. M.

So H contains $\geq k+1$ vertex-disjoint augmenting paths with respect to M, each of which of length $\geq l$.

```
(cont.) So |H| = |(P_1 \cup \ldots \cup P_k) \oplus P| \ge (k+1)l.
 Hence |(P_1 \cup \ldots \cup P_k) - P| + |P - (P_1 \cup \ldots \cup P_k)| \ge (k+1)l
 As P_1, \ldots, P_k are vertex-disjoint and have length l,
 they contribute to |(P_1 \cup \ldots \cup P_k) - P| with at most kl distinct edges.
 So P - (P_1 \cup \ldots \cup P_k) contributes with at least l edges to the inequality.
 I.e., |P - (P_1 \cup \ldots \cup P_k)| \ge l. So |P| = |P \cap (P_1 \cup \ldots \cup P_k)| + |P - (P_1 \cup \ldots \cup P_k)| \ge l + |P \cap (P_1 \cup \ldots \cup P_k)|
```

Now let us see that $|P \cap (P_1 \cup \ldots \cup P_k)| \geq 1$

Let v be a vertex shared by P and some P_i .

As P_i is an augmenting path wrt. M, there is an edge $e \in P_i - M$ with endpoint v.

So $e \in M'$ and e is the only edge of M' with endpoint v.

As v is matched in M', $v \in P$ and P is an augmenting path wrt. M', there is a unique edge in $P \cap M'$ with endpoint v, which must be e.

So we have that $e \in P \cap P_i$, that $|P \cap (P_1 \cup \ldots \cup P_k)| \ge 1$, and |P| > l

Complexity of Hopcroft-Karp

- lacktriangle We already know that each iteration takes O(|E|) time.
- **Theorem.** Hopcroft-Karp runs in $O(\sqrt{|V|}|E|)$ time. (actually, in $O(\sqrt{\min(|L|,|R|)}|E|)$ time)
- Best known algorithm for bipartite matching.
- **Lema.** Hopcroft-Karp takes at most $2\sqrt{\min(|L|,|R|)}$ iterations.
- **Proof.** Wlog. let us assume that $|L| \le |R|$. After $\sqrt{|L|}$ iterations:
 - either the algorithm terminated because a maximum matching was found, or
 - 2. a matching M was obtained for which the shortest augmenting path (wrt. M) has length $\geq 2\sqrt{|L|}+1$

Complexity of Hopcroft-Karp

■ **Proof.** (contd.)

Assume 2. Let M' be a maximum matching of G.

 $M' \oplus M$ contains at least |M'| - |M| vertex-disjoint augmenting paths with respect to M.

Each of those paths has length $\geq 2\sqrt{|L|} + 1$.

Since each vertex of $M' \oplus M$ has degree ≤ 2 , $M' \oplus M$ is a vertex-disjoint union of simple paths and cycles. As the graph G is bipartite:

- 1. In a simple path $P \subseteq M' \oplus M$ of odd length, the number of vertices from L is (|P|+1)/2, which is $\geq |P|/2$.
- 2. In a simple path $P \subseteq M' \oplus M$ of even length, the number of vertices from L is |P|/2 or 1+|P|/2, which is $\geq |P|/2$.
- 3. In a cycle $C \subseteq M' \oplus M$ (thus, of even length, as it is alternating), the number of vertices from L is |C|/2.

By vertex-disjointness, there are $\geq \frac{|M'\oplus M|}{2}$ vertices from L in $M'\oplus M$. So in L there are at least $\frac{|M'\oplus M|}{2}$ different vertices.

31 / 47

Complexity of Hopcroft-Karp

■ **Proof.** (contd.)

Thus

$$2|L| \ge |M' \oplus M| \ge (|M'| - |M|)(2\sqrt{|L|} + 1)$$

So
$$|M'| - |M| \le \frac{2|L|}{2\sqrt{|L|}+1} = \frac{2\sqrt{|L|}\sqrt{|L|}}{2\sqrt{|L|}+1} \le \frac{(2\sqrt{|L|}+1)\sqrt{|L|}}{2\sqrt{|L|}+1} = \sqrt{|L|}.$$

Hence, after another at most $\sqrt{|L|}$ iterations, the algorithm is guaranteed to find a maximum matching.

Bipartite graph $G = (L \cup R, E)$

Initially matching M is empty.

Blue edges: $e \in M$

Red edges: $e \notin M$

Let us look for a maximal set of shortest augmenting paths using BFS.

Mark vertices as matched (m) or free (f).

Start at **all** free vertices in **L**.

Left \rightarrow right: red edges

 $\mathsf{Right} \to \mathsf{left} \colon \mathsf{blue} \ \mathsf{edges}$

Shortest augmenting path has length 1.

Found all free vertices in R at distance 1.

Found maximal set of shortest aug. paths. (note that it is **not** maximum)

Flip colors of augmenting paths and new M is obtained

Another maximal set of shortest augmenting paths?

Mark vertices as matched (m) or free (f).

Start at all free vertices in L.

Left \rightarrow right: red edges

 $Right \rightarrow left: blue edges$

Shortest augmenting path has length 3.

Found all free vertices in R at distance 3.

Found maximal set of shortest aug. paths

Flip colors of augmenting path and a new M is obtained

No more augmenting paths, M is a maximum matching

End Matching Theory

Arc Consistency for alldiff

[reminder]

- Consider $x_1 \in \{1, 2\}$, $x_2 \in \{2, 3\}$, $x_3 \in \{2, 3\}$ and the constraint $\mathtt{alldiff}(x_1, x_2, x_3)$
 - Value 1 for x_1 is AC since $\tau = (x_1 \mapsto 1, x_2 \mapsto 2, x_3 \mapsto 3)$ is a support for it.
 - Value 2 for x_1 is not AC: it does not have any support (no room left for x_2, x_3)
 - ♦ After enforcing AC: $x_1 \in \{1\}, x_2 \in \{2, 3\}, x_3 \in \{2, 3\}$

Value Graph of alldiff

Given variables $X = \{x_1, \ldots, x_n\}$ with domains D_1, \ldots, D_n , the value graph of $\mathrm{alldiff}(x_1, \ldots, x_n)$ is the bipartite graph $G = (X \cup \bigcup_{i=1}^n D_i, E)$ where $(x_i, v) \in E$ iff $v \in D_i$

alldiff
$$(x_1, x_2, x_3)$$

 $D_1 = \{1, 2\}$
 $D_2 = \{2, 3\}$
 $D_3 = \{2, 3\}$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 2$$

$$D_3 = \{2, 3\} \qquad x_3 = 3$$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 3$$

$$D_3 = \{2, 3\} \qquad x_3 = 2$$

- We say a matching M covers a set S iff every vertex in S is covered (i.e, is an endpoint of an edge in M)
- \blacksquare Solutions to alldiff(X) = matchings covering X

alldiff
$$(x_1, x_2, x_3)$$

$$D_1 = \{1, 2\} \qquad x_1 = 1$$

$$D_2 = \{2, 3\} \qquad x_2 = 3$$

$$D_3 = \{2, 3\} \qquad x_3 = 2$$

$$x_3 \longrightarrow 3$$

- \blacksquare A matching covering X is a maximum matching
- \blacksquare There are solutions to alldiff(X) iff size of maximum matchings is |X|

Algorithm for checking feasibility of $\operatorname{alldiff}(X)$: (with Hopcroft-Karp, in time $O(dn\sqrt{n})$, where n=|X|, $d=\max_i\{|D_i|\}$)

// Returns true iff there is a solution to $\operatorname{alldiff}(X)$
// G is the value graph of $\operatorname{alldiff}(X)$
M = COMPUTE_MAXIMUM_MATCHING(G)
if (|M| < |X|) return false
return true

return true

Algorithm for checking feasibility of $\operatorname{alldiff}(X)$: (with Hopcroft-Karp, in time $O(dn\sqrt{n})$, where n=|X|, $d=\max_i\{|D_i|\}$)
// Returns true iff there is a solution to $\operatorname{alldiff}(X)$
// G is the value graph of $\operatorname{alldiff}(X)$
M = COMPUTE_MAXIMUM_MATCHING(G)
if (|M| < |X|) return false
else REMOVE_EDGES_FROM_GRAPH(G, M)

- But in addition to check feasibility we want to find arc-inconsistent values
- Assume alldiff(X) has a solution. Then: value v from the domain of variable x is arc-inconsistent iff there is no solution to alldiff(X) that assigns value v to x iff there is no matching covering X that contains edge (x,v) iff there is no maximum matching that contains edge (x,v)
- So we have to remove the edges not contained in any maximum matching
- lacktriangle Next: we'll extend the algorithm to do so using the maximum matching M

- We want to remove the edges not contained in any maximum matching
- We will identify the complementary set: the edges contained in some maximum matching
- We say an edge is vital if it belongs to all maximum matchings
- **Theorem.** Let M be an arbitrary maximum matching. An edge belongs to some maximum matching iff
 - it is vital; or
 - lack it belongs to an alternating cycle wrt. M; or
 - lacktriangle it belongs to an even-length simple alternating path starting at a free vertex wrt. M

- We want to remove the edges not contained in any maximum matching
- We will identify the complementary set: the edges contained in some maximum matching
- We say an edge is vital if it belongs to all maximum matchings
- **Theorem.** Let M be an arbitrary maximum matching. An edge belongs to some maximum matching iff
 - it is vital; or
 - lack it belongs to an alternating cycle wrt. M; or
 - lacktriangle it belongs to an even-length simple alternating path starting at a free vertex wrt. M

Proof: \Leftarrow) Let us consider all cases:

- If edge e is vital, then by definition it belongs to a maximum matching
- If e belongs to an alternating cycle P wrt. maximum matching M, then M and $M \oplus P$ are maximum matchings, one contains e and the other does not
- Similarly if e belongs to an even-length path starting at a free vertex that is alternating wrt. maximum matching M

Proof: \Rightarrow) Let e be an edge that belongs to a maximum matching. Let us assume that e is not vital.

Two cases:

Suppose $e \in M$. Since e is not vital, there exists a maximum matching M' such that $e \notin M'$. Then $e \in M \oplus M'$. But $M \oplus M'$ is a vertex-disjoint union of:

Proof: \Rightarrow) Let e be an edge that belongs to a maximum matching. Let us assume that e is not vital.

Two cases:

Suppose $e \in M$. Since e is not vital, there exists a maximum matching M' such that $e \notin M'$. Then $e \in M \oplus M'$. But $M \oplus M'$ is a vertex-disjoint union of:

Recall that M, M' are maximum matchings

Proof: \Rightarrow) Let e be an edge that belongs to a maximum matching. Let us assume that e is not vital.

Two cases:

Suppose $e \notin M$. Let M' be a maximum matching such that $e \in M'$ (which exists by hypothesis). Then the same argument as before applies.

Orienting Edges

- It simplifies things to orient edges:
 - lacktriangle Edges $e \in M$ are oriented from left to right
 - lacktriangle Edges $e \notin M$ are oriented from right to left

Orienting Edges

- lacktriangle Corollary. Let M be an arbitrary maximum matching. An edge belongs to some maximum matching iff
 - it belongs to a cycle, or
 - lack it belongs to a simple path starting at a free vertex wrt. M, or
 - it is vital

in the oriented graph.

Removing Arc-Inconsistent Edges

- We will actually identify AC edges, and the remaining ones will be non-AC
- An edge (u, v) belongs to a cycle in a digraph G iff u, v belong to the same strongly connected component (SCC) of G

REMOVE_EDGES_FROM_GRAPH(G, M)

- 0) Mark all edges in G as UNUSED
- 1) Compute SCC's, and mark as USED edges with vertices in same SCC
- 2) Do a depth-first search from free vertices, and mark as USED edges in simple paths starting at free vertices
- 3) Mark UNUSED edges of M as VITAL
- 4) Remove remaining UNUSED edges

Time complexity: linear in the size of the value graph

Computing SCC's

- Given a directed graph G = (V, E), SCC's can be computed in time O(|V| + |E|), e.g. with Kosaraju's algorithm:
 - 1. Do DFS
 - 2. Reverse the direction of the edges
 - 3. Do DFS in reverse chronological order of finish times wrt. step 1.
 - 4. Each tree in the previous DFS forest is a SCC

- Variables $\{w, x, y, z\}$
- Domains

$$d(w) = \{b, c, d, e\},\$$

$$d(x) = \{b, c\},\$$

$$d(y) = \{a, b, c, d\},\$$

$$d(z) = \{b, c\}$$

- We assume we already have a maximum matching
- All variables are covered

■ Direct the edges

Compute SCC's

Compute all simple paths starting at a free vertex

- Remove unused edges that are not vital
- After enforcing arc consistency:

$$d(w) = \{d, e\},\$$

 $d(x) = \{b, c\},\$
 $d(y) = \{a, d\},\$
 $d(z) = \{b, c\}$

Complexity

- Consider CSP with a single constraint $\operatorname{alldiff}(x_1,\ldots,x_k)$ where $m=\max_i\{|D_i|\}$
- Cost of enforcing AC with AC-3: $O(k^3m^{k+1})$
- lacktriangle Cost of enforcing AC with bipartite matching: $O(km\sqrt{k})$
 - Cost of constructing maximum matching: $O(km\sqrt{k})$
 - lacktriangle Cost of removing edges: O(km)