

Compléter avec le symbole qui convient :

1. 4...N

4. N...D

- **2.** $2, 5 \dots \mathbb{N}$
- **3.** $-6...\mathbb{Z}$

5. 4, 5 . . . ℚ

Compléter avec le symbole d'appartenance \in ou de non-appartenance \notin :

- 1. 3...] 1; 5]
- **4.** $7...] \infty; 7]$
- **2.** $-2 \dots] -1; 0]$
- 5. π ...]3, 14; 3, 15[
- 3. $10^{-3} \dots [0; +\infty[$
- **6.** $0 \dots [-\sqrt{3}; \sqrt{3}]$

Déterminer tous les nombres entiers relatifs appartenant à l'intervalle]-2; 2,9].

Déterminer un intervalle contenant $\sqrt{17}$ et dont les bornes sont deux nombres entiers consécutifs.

Quels sont les réels qui appartiennent à la partie de la droite numérique représentée en « foncé »?

Écrire leur ensemble sous forme d'intervalle :

Dans chacun des cas suivants, représenter l'ensemble des nombres vérifiant la condition donnée sur une droite graduée puis écrire cet ensemble sous forme d'intervalle :

- 1. $-4 < x \le 1$
- **2.** $x > \frac{3}{2}$
- 3. $x \le -1$

Dans chacun des cas suivants, écrire sous forme d'intervalle l'ensemble des nombres vérifiant la condition donnée :

- 1. $x \ge 1$
- **2.** 2 < x
- **3.** $11 > x \geqslant 10$

Traduire chacune des informations ci-dessous par une ou des inégalités :

- 1. $x \in [-1; 7[$
- **2.** $x \in]-\infty;-5]$
- 3. $x \in [-2; +\infty[$

Soit I = [-1; 5] et J = [3; 10].

Dire si chacun des nombres suivants appartient à I, à J, à $I \cap J$, à $I \cup J$:

a. 4

c. 10

b. -1

d. 8

Représenter les intervalles I et J de deux couleurs différentes sur la même droite réelle. Donner ensuite leur réunion et leur intersection.

- **1.** I = [-6; 7] et J = [-2; 9]
- **2.** I =]-3; 8] et J =]-5; 6]
- **3.** $I =]-\infty$; 2] et J = [3; 5]
- **4.** $I =]-\infty$; 3] et $J = [0; +\infty[$

- 1. Sur un même axe, et avec des couleurs différentes, représenter les intervalles I = [-3; 5], J =]0; 2] et $K = [0; +\infty[$.
- **2.** Parmi ces affirmations ci-dessous, lesquelles sont justes?
 - **a.** $I \subset J$
- c. $J \subset K$
- **b.** $J \subset I$
- **d.** $I \subset K$

Soit $A = \{a; k; d; f; m; u\}, B = \{u; d; m; b\}$ et $C = \{a; d; f\}.$

- **1.** B est-il inclus dans A? Justifier.
- **2.** Écrire avec des accolades les ensembles : $A \cup B$, $A \cup C$ et $A \cap B$ et $A \cap C$.

Dans chacun des cas suivants, proposer une écriture plus simple :

- **1.** $A = 4x \times 3$
- $2. B = n + 5 \times n \times n$
- **3.** $C = 2 \times y + 6$
- 4. $D = z \times 1 \times z$
- **5.** $E = 2s \times 4t$
- **6.** $F = 3 \times x \times 4 \times x \times x$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$\begin{array}{ccc} & & & & \\ \hline & & & \\ -5 & & & -1 \end{array} \longrightarrow {}^{x}$	
$2 \leqslant x < 7$	x	
	x	$]-2;+\infty[$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$ \begin{array}{ccc} & & \downarrow & \\ \hline & 0 & & 9 \end{array} $	
$2 < x \leqslant 9$	x	
	\xrightarrow{x}	$]-\infty;6]$

Simplifier:

- 1. $x \times x^2$
- **2.** $(3u)^2$
- **4.** $(2x)^3 \times (4u^3)$
- 5. $\frac{10^5}{10^{-2}}$

x est un nombre réel non nul. Écrire les nombres suivants sous la forme x^n avec n un entier relatif.

- 1. $A = \left(\frac{1}{x^{-4}}\right)^3$ 2. $B = \frac{x^{-8} \times x^5}{x^3 \times x^{-10}}$ 3. $C = ((x^3)^2)^4$

- **4.** $D = \left(\frac{x^{-3}}{x^7}\right)^3$

Les nombres a et b étant non nuls, écrire plus simple-

- 1. $(a^{-2}b^3)^{-4}$
- **2.** $a^2b^{-2}a^{-3}b^3$ **3.** $\left(\frac{a}{b}\right)^{-1}$
- 4. $a^{-6}(a^3 \times b^{-2})^2$

On considère les deux nombres :

$$A = \frac{777\,777\,777\,777\,777\,775}{777\,777\,777\,777\,777\,777\,777} \text{ et } B = \frac{777\,777\,777\,777\,777\,775}{777\,777\,777\,777\,777\,775}.$$

- **1.** Comparer A et B.
- **2.** Calculer C = A 1 et D = 1 B.
- **3.** Comparer C et D.
- 4. Quel est, entre A et b, le nombre le plus proche de 1? Justifier.