Universidade Estadual de Santa Cruz - UESC

Departamento de Ciências Exatas e Tecnológicas - DCET

CET083 - Probabilidade e Estatística

Curso de Ciência da Computação

Prof. José Cláudio Faria

Correção computacional usando R (http://www.r-project.org/)

Matriculas = 202121141 - 202121148

Os dados foram simulados computacionalmente e tem finalidades apenas acadêmicas e didáticas para fins de avaliação.

AED: Apresentações tabulares e gráficas

I.I (1.0) Diagrama de caixa (boxplot) para Y1 e Y2

1.1.1 (0.5) Antes e após a eliminação de possíveis outliers - sem distinção de sexo

Figura 1 – Diagrama de caixa de Y1 (un) e Y2 (un) antes e após a eliminação de outliers, UESC/BA - 2023.

1.1.2 (0.5) Após a eliminação de possíveis outliers - com distinção de sexo

Figura 2 - Diagrama de caixa de Y1 (un) e Y2 (un) (sexo masculino e feminino, respectivamente), UESC/BA - 2023.

I.2 (I.0) Para YI

1.2.1 (0.5) Apresentações tabulares

Tabela 1 – Tabela de distribuição de frequência de Y1 (un) (sexo masculino), UESC/BA – 2023

Class limits	f	rf ı	rf(%)	cf	cf(%)	
[16.75,19.37)	18	0.01	1.28	18	1.28	
[19.37,21.99)	39	0.03	2.77	57	4.05	
[21.99,24.61)	61	0.04	4.34	118	8.39	
[24.61,27.23)	129	0.09	9.17	247	17.57	
[27.23,29.85)	225	0.16	16.00	472	33.57	
[29.85,32.47)	283	0.20	20.13	755	53.70	
[32.47,35.09)	225	0.16	16.00	980	69.70	
[35.09, 37.72)	215	0.15	15.29	1195	84.99	
[37.72,40.34)	127	0.09	9.03	1322	94.03	
[40.34,42.96)	53	0.04	3.77	1375	97.80	
[42.96,45.58)	22	0.02	1.56	1397	99.36	
[45.58,48.2)	9	0.01	0.64	1406	100.00	

Tabela 2 – Tabela de distribuição de frequência de Y1 (un) (sexo feminino), UESC/BA – 2023

Class limits f	r	f rf(%) cf	cf	(%)	
[17.563,20.276)	14	0.02	2.36	14	2.36	
[20.276,22.989)	27	0.05	4.55	41	6.90	
[22.989,25.703)	46	0.08	7.74	87	14.65	
[25.703,28.416)	70	0.12	11.78	157	26.43	
[28.416,31.129)	97	0.16	16.33	254	42.76	
[31.129,33.843)	107	0.18	18.01	361	60.77	
[33.843,36.556)	96	0.16	16.16	457	76.94	
[36.556,39.269)	70	0.12	11.78	527	88.72	
[39.269,41.983)	39	0.07	6.57	566	95.29	
[41.983,44.696)	21	0.04	3.54	587	98.82	
[44.696,47.409)	7	0.01	1.18	594	100.00	

Figura 3 – Histograma e polígono de frequência acumulada de Y1 (un) (sexo masculino), UESC/BA - 2023.

2 AED: medidas estatísticas básicas(3.0)

2.1 (1.5) AED: Medidas determinadas a partir dos vetores

2.1.1 (0.5) Tendencia central

Tabela 3 – Medidas de tendência central (sexo masculino), UESC/BA – 2023

	n	m	md
Υ1	32.14806	32.20	40
Ŷ2	27.88495	27.88	33

Tabela 4 – Medidas de tendência central (sexo feminino), UESC/BA – 2023

		n	m	md	
Y1	32.1	3113	32.20	0 1	1
Ŷ2	27.7	3128	27.88	8 1	7

2.1.2 (0.5) Posição

Tabela 5 – Quartis dos usuários (sexo masculino), UESC/BA - 2023

	25%	50%	75%
Y1	28.6825	32.20	36.045
Ŷ2	24.4850	27.88	31.415

Tabela 6 – Quartis dos usuários (sexo feminino), UESC/BA – 2023

7	25%		50%	75%		
Y1	28.	.09	32.20	36.2125		
Ŷ2	23.	96	27.88	31.1975		

Tabela 7 – Decis dos usuários (sexo masculino), UESC/BA – 2023

10%	2	0%	3	30%	4(0%	50	0%	60	0%		70%	8	0%	(90%	
Y1 25	.300	27.	80	29.	395	30.	76	32	. 20	33.	57	35.	.135	36	.84	39	.000
Ŷ2 21	.345	23.	68	25.	310	26.	68	27	. 88	29.	20	30.	680	32	.31	34	. 365

Tabela 8 – Decis dos usuários (sexo feminino), UESC/BA – 2023

10%	20%	30%	40%	50%	60%	70%	6 809	%	90%
Y1 24	291 2	6.936 2	9.078	30.690	32.20	33.558	35.212	37.178	39.525
Ŷ2 20.	603 2	3.142 2	4.708	26.316	27.88	28.838	30.394	32.156	34.918

2.1.3 (0.5) Dispersão

Tabela 9 — Dispersão dos usuários (sexo masculino), UESC/BA — 2023

a.1	t variâ	ncia d.pad	drão	c.v	
Y1	30.80	29.36864	5.419284	16.85727	
Ŷ2	28.96	25.44752	5.044554	18.09060	

Tabela 10 – Dispersão dos usuários (sexo feminino), UESC/BA – 2023

a.1	t variâ	ncia d.pad	drão	c.v	
Υ1	29.20	33.31210	5.771664	17.96284	
Ŷ2	28.03	28.80493	5.367023	19.35368	

2.2 AED: Medidas determinadas a partir de apresentações tabulares (1.5)

Tabela 11 – Tabela de distribuição de frequência reconstruída de publicação, UESC/BA – 2023

-	class	es f	rf	(%) c	F(%)	
1	[10,	020)	9	3.85	3.85	
2	[20,	030)	19	8.12	11.97	
3	[30,	040)	27	11.54	23.50	
4	[40,	050)	38	16.24	39.74	
5	[50,	060)	49	20.94	60.68	
6	[60,	070)	38	16.24	76.92	
7	[70,	080)	27	11.54	88.46	
8	[80,	090)	18	7.69	96.15	
9	[90,	100)	9	3.85	100.00	

2.2.1 (0.5) Tendencia central

Tabela 12 – Medidas de tendência central

	m	md mo
medida	54.87179	54.89796 55

2.2.2 (0.5) Posição

Tabela 13 – Medidas de posição: quartis

25%	50%	75%		
quartil	41.2963	54.89796	68.81579	

Tabela 14 – Medidas de posição: decis

10%	20%	30%	40%	50%	60%		70%	80%	90%
decil	27.57895	36	.96296 44	1 50.15789	54.89796	59.67347	65.73684	71.89474	81.33333

2.2.3 (0.5) Dispersão

Tabela 15 – Medidas de dispersão

amplitude	variân	cia	d.padı	rão	(c.v	
medida	80	390	1545	19.	.75233	35.	99724

3 AED: Medidas estatísticas de associação e regressão linear (4.0)

3.1 (1.5) Associação

3.1.1 (0.5) Estimativas: covariância e correlação linear simples

Tabela 16 – Matriz de variâncias e covariâncias (sexo masculino), UESC/BA – 2023

Y.	L	YZ	2
Y1	29.	36864	25.71211
Y2	25.	71211	25.44752

Tabela 17 – Matriz de variâncias e covariâncias (sexo feminino), UESC/BA – 2023

Y1	. Y2	
Y1	33.31210 -	-23.38178
Y2	-23.38178	28.80493

Tabela 18 – Matriz de correlações lineares simples (sexo masculino), UESC/BA – 2023

Y1	Y2	
Y1	1.0000000	0.9405307
Y2	0.9405307	1.0000000

Tabela 19 – Matriz de correlações lineares simples (sexo feminino), UESC/BA – 2023

Y1	. Y2
Y1	1.0000000 -0.7548196
Y2	-0.7548196 1.0000000

3.1.2 (0.5) Diagrama de dispersão dos dados

Figura 5 – Diagrama de dispersão de Y1 (un) e Y2 (un) (sexo masculino e feminino, respectivamente), UESC/BA – 2023

3.1.3 (0.5) Comparação de estudos semelhantes

Avaliar resposta e justificativa!

3.2 Regressão linear (2.5)

3.2.1 (1.0) Ajustamento

Tabela 20 – Polinômio grau I, UESC/BA – 2023

Est	timate Std.	Error	t value	Pr(> t)
(Intercept)	1.9643	0.7747	2.536	0.0349 *
X	1.2067	0.1306	9.240 1	.53e-05 ***

Tabela 21 – Polinômio grau II, UESC/BA – 2023

	Estimate Std.	Error	t value	Pr(> t)
(Intercept) 1.23724	1.02771	1.204	0.26776
X	1.69750	0.47862	3.547	0.00939 **
I(X^2)	-0.04908	0.04608	-1.065	0.32217

3.2.2 (0.5) Diagrama de dispersão com modelos ajustados

Figura 6 – Diagrama de dispersão dos dados, modelos ajustados e respectivos r², UESC/BA - 2023.

3.2.3 (0.5) Qual modelo melhor explica o fenômeno em estudo? Avaliar resposta!

O segundo modelo é o mais adequado para explicar os dados. No caso de um modelo quadrático, quanto maior for o valor de R² (coeficiente de determinação), mais explicativo é o modelo. Isso significa que ele fornece uma compreensão mais precisa da amostra, uma vez que o coeficiente de determinação é o principal critério utilizado para selecionar o melhor modelo. Além disso, o modelo quadrático também é preferível quando consideramos a orientação dos dados, pois ele mostra a tendência dos dados. Por exemplo, se a curva quadrática estiver voltada para baixo, indica que os dados estão diminuindo, enquanto se estiver voltada para cima, indica que os dados estão aumentando.

3.2.4 (0.5) Critérios de ajustamento e escolha de modelos. Avaliar resposta!

Não é apropriado fazer comparações diretas entre os modelos de ajuste estatístico devido à natureza controversa dessas questões. Por exemplo, ao ajustar uma regressão linear simples com intercepto zero a uma amostra de pares de dados usando R e Python, é possível encontrar diferenças que tornam os modelos controversos. Portanto, é importante considerar que existem variações e nuances nas abordagens estatísticas e de programação que podem levar a resultados divergentes, o que contribui para a falta de comparabilidade entre os modelos.

4 Contextualização (1.0) Avaliar resposta!

O artigo intitulado "ANÁLISE EXPLORATÓRIA DE DADOS DA CONDUTIVIDADE ELÉTRICA NAS ÁGUAS DO SISTEMA AQUÍFERO SERRA GERAL NO RIO GRANDE DO SUL E SANTA CATARINA" utiliza conceitos básicos da estatística descritiva e gráficos de distribuições amostrais para realizar o tratamento estatístico dos parâmetros. O método da Boxplot foi adotado para identificar valores anômalos, e o artigo destaca a vantagem desse método, que simplifica a classificação em poucas categorias com significados específicos.

A análise do artigo, considerando os temas abordados durante a disciplina, revela uma excelente utilização de representações tabulares. Além disso, o artigo faz bom uso de diagramas e de um modelo digital do terreno, o que contribui para uma compreensão mais aprofundada do conteú do apresentado, utilizando uma linguagem técnica adequada.

Os autores do artigo são Marcos Alexandre de Freitas, Ari Roisenberg e José Leonardo Silva Andriotti, e foi publicado em 2016. O artigo pode ser acessado em: https://rigeo.cprm.gov.br/xmlui/handle/doc/15584. Acesso em 03 de Dezembro de 2022.