

Wiskundebijles functions

The INFDEV@HR Team

Functions

Wiskunde-bijles - functions

The INFDEV@HR Team

Hogeschool Rotterdam Rotterdam, Netherlands

Wiskundebijles functions

INFDEV@HR Team

Functions

Functions

Wiskundebijles functions

The INFDEV@HR Team

Functions

Specification

- A function f is a mathematical entity with the following attributes:
- F-1 f has a **domain** and a **codomain**, each of which be a set.
- F-2 For every element x of the domain, f has a **value** at x, which is an element of the codomain and is denoted f(x).
- F-3 The domain, the codomain, and the value f(x) for each x in the domain are all determined completely by the function.
- F-4 Conversely, the data consisting of the domain, the codomain, and the value f(x) for each element x of the domain completely determine the function f.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Arrow notation

- $f: S \longrightarrow T$ is a succint way of saying that the function f has domain S and codomain T. It could also be read as 'Let f be a function from S to T'.
- One also says that f is of type 'S arrow T'.

Barred arrow notation

- Used to provide an anonymous notation for functions. For example the function from \mathbb{R} to \mathbb{R} that squares its input can be denoted $x \longmapsto x^2 : \mathbb{R} \longrightarrow \mathbb{R}$.
- The barred arrow goes from data to da, whereas the long arrow goes from domain to codomain.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Examples of functions

(i) $x \longmapsto x^2 : \mathbb{R} \longrightarrow \mathbb{R}^+$

(ii) $x \longmapsto x^2 : \mathbb{R} \longrightarrow \mathbb{R}$

(iii) $x \longmapsto x^2 : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$

(iv) $x \longmapsto x^2 : \mathbb{R}^+ \longrightarrow \mathbb{R}$

Wiskundebijles functions

The INFDEV@HR Team

Functions

The graph of a function

- $\bullet \ f: S \longrightarrow T \ \text{is the set of ordered pairs:} \ \{(x,f(x))|x \in S\}.$
- The graph of a function from S to T is a relation from S to T with the restriction that it must have the **functional property** that for all $s \in S$, there is one and only one $t \in T$ such that (s,t) is in the graph.

Wiskundebijles functions

The INFDEV@HR Team

Functions

The image of a function

- Is its set of values; that is, the image of $f:S\longrightarrow T$ is $\{t\in T|\exists s\in S \text{ for which } f(s)=t\}.$
- The image of the previous example is the set of non-negative reals.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Injective (one-to-one)

• A function $f: S \longrightarrow T$ is **injective** if whenever $s \neq s'$ in S, then $f(s) \neq f(s')$ in T.

Example

- The function $x \mapsto x^2 : \mathbb{R} \to \mathbb{R}$ is not injective since it takes 2 and -2 and returns the same value, namely 4.
- On the other hand $x \longmapsto x^3 : \mathbb{R} \longrightarrow \mathbb{R}$ is injective.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Surjective

- A function $f: S \longrightarrow T$ if its image is T.
- •

Examples

- The identity function is a surjective function.
- $x \longmapsto x^2 : \mathbb{R} \longrightarrow \mathbb{R}^+$ is a surjective function.
- $x \mapsto x^2 : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a surjective function.

Bijective

 A function is bijective if it is surjective and injective. It is also called one to one correspondence.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Coordinate functions

- If S and T are sets, the cartesian product $S \times T$ is equipped with two **coordinate** or **projection** functions $proj_1: S \times \longrightarrow S$ and $proj_2: S \times \longrightarrow T$.
- ullet The coordinate functions are surjective if S and T are both nonempty.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Notation - $\langle \overline{f}, g \rangle$

• If X,S and T are sets, and $f:X\longrightarrow S$ and $g:X\longrightarrow T$ are functions, then the function $\langle f,g\rangle:X\longrightarrow S\times T$ is defined by $\langle f,g\rangle(x)=(f(x),g(x))$ for all $x\in X$

Wiskundebijles functions

The INFDEV@HR Team

Functions

Cartesian product

- If X,Y,S and T are sets, and $f:X\longrightarrow S$ and $g:Y\longrightarrow T$ are functions, then the function $f\ timesg:X\times Y\longrightarrow S\times T$ is defined by (f,g)(x,y)=(f(x),g(y))
- It is called the **cartesian product** of the functions f and g.

Wiskundebijles functions

The INFDEV@HR Team

Functions

Composite function

- If $f:S\longrightarrow T$ and $g:T\longrightarrow U$, then the **composite** function $g\circ f:S\longrightarrow U$ is defined to be the unique function with domain S and codomain U for which $(g\circ f)(x)=g(f(x))$ for all $x\in S$.
- ullet In computer science literatures f;g is often used for $g\circ f$
- It is neccessay to insist that the codomain of f be the domain of g for the composite $g \circ f$ to be defined

Wiskundebijles functions

The INFDEV@HR Team

Functions

Restriction

- If $f: S \longrightarrow T$ and $A \subseteq S$, then the **restriction** of f to A is the composity $f \circ i$, where $i: A \longrightarrow S$ is the inclusion function.
- The square squaring function in $x \mapsto x^2 : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is the restriction to \mathbb{R}^+ of the squaring function in $x \mapsto x^2 : \mathbb{R} \longrightarrow \mathbb{R}^+$

Wiskundebijles functions

The INFDEV@HR Team

Functions

Functions in theory and practice

- The concept of a function can be explicitly defined in terms of its domain, codomain, and graph.
- Precisely, a function $f:S\longrightarrow T$ could be defined as an ordered triple (S,Γ,T) with the property that Γ is a subset of the cartesian $S\times T$ with the functional property (Γ) is the graph of f.
- For $x \in S, f(x)$ is the unique element $y \in T$ for which $(x,y) \in \Gamma$

Wiskundebijles functions

The INFDEV@HR Team

Functions

Homomorphism

• Let S and T e sets, and let Hom(S,T) denote the set of all functions with domain S and codomain T. Let $f:T\longrightarrow V$ be a function. The function

$$Hom(S,f): Hom(S,T) \longrightarrow Hom(S,V)$$

is defined by

$$Hom(S, f)(g) = f \circ g$$

This is it!

Wiskundebijles functions

The INFDEV@HR Team

Functions

The best of luck, and thanks for the attention!