Quantum Super Computers

Ralf Riedinger – Universität Hamburg 25.03.2025

Quantum Computers

Grover's algorithm

- Brute-force search time: $2^N \rightarrow 2^{N/2}$
- optimizers/MIP/AI training

Shor's algorithm

• Integer-factorization time: $\sim 2^{\sqrt[3]{N}} \rightarrow \sim N^2$

Quantum chemistry

Development of pharmaceuticals

Quantum simulations

Room temperature superconductors

Quantum astronomy

Imaging the surface of expolanets

Ralf Riedinger
University of Hamburg
Quantum Networks
Trapped Ions
Quantum Cryptography
Quantum Nanophotonics

NISQ – noisy intermediate scale

(NISQ) **Quantum Computer**

Advantage:

Speed-up $\propto \exp(\gamma N_{Oubit})$

for noisy computers

Processor capacity:

 $(\rightarrow \text{ up to few 1000 noisy qubits,})$ or 10s of error corrected qubits)

Neven's Law*

Network capacity:

Super-Computer = network of processors

- **Scalable (cost ∝ resources)**
- Capacity $\propto exp(\gamma t)$

Moore's Law*

"NISQ era"

Keck's Law*

^{*} Exponential improvement in time

beyond

intermediate scale

Quantum Super Computer
= network of Q-processors

- Advantage:
- ✓ Speed-up $\propto \exp(\gamma N_{Qubit})$ ✓ Scalable (cost \propto resources)
- \checkmark Capacity $\propto exp(\gamma t)$

Processor capacity:

Neven's Law*

Network capacity:

Required beyond NISQ

Super-Computer = network of processors

- \checkmark Capacity $\propto exp(\gamma t)$

Moore's Law*

Keck's Law*

^{*} Exponential improvement in time

Quantum Network Interfaces

- Nanophotonic Diamond Processors
 - Scalable technology, excellent network interfaces
 - @UHH: expand # of qubits, explore Q-networks

See also:

Bhaskar et al., Nature 2020, Stas et al., Science 2022

- Network Theory (Airbus + UHH)
 - Resource optimized network operation

See also:

Dawar et al., https://doi.org/10.48550/arXiv.2410.10512

Quantum Network Interfaces

With EleQtron/NXP/parityQC
 Conventional optical interfaces

See also: https://q-sea.de/

IonLinQ

Purcell-enhanced network interfaces

To trapped ion quantum computers

See also:

https://www.quantentechnologien.de/forschung/foerderung/nachwuchs wettbewerb-quantum-futur/ionling.html

Trapped Ions:

- ✓ long coherence
- ✓ high fidelity gates
- √"network ready" optical transitions

Charge-noise sensitive

Solution:

- Conductive mirrors no shielding needed
- Engineered mode density suppresses optical absorption

770

780

 \uparrow C > 1 possible

830

IonLinQ – "Plug-and-play" network adapter

UH Liti Uni

- Integrate in established processors linear trap
- Processor-compatible ion: Barium 138
 - Popular secondary/communication ion
 - Visible (493nm), fast ground state transition
 - Favorable branching ratio (sub-μs pumping)
 - Outlook: ¹⁷¹Yb⁺ sympathetic cooling, ¹³³Ba⁺
- Monolithic integration alignment free operation

NUMBER 14

PHYSICAL REVIEW LETTERS

6 OCTOBER 1986

Observation of Quantum Jumps

Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek^(a)

1. Institut für Experimentalphysik, Universität Hamburg, D-2000 Hamburg, Federal Republic of Germany (Received 12 May 1986)

We have recorded the laser-excited resonance fluorescence of one to three Ba⁺ ions and observed Bohr's "quantum jumps" when an ion decayed to the metastable ${}^{2}D_{5/2}$ state, suddenly

PHYSICAL REVIEW A, VOLUME 65, 053401

Raman cooling and heating of two trapped Ba+ ions

D. Reiß, K. Abich, W. Neuhauser, Ch. Wunderlich, and P. E. Toschek

Institut für Laser-Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany

(Received 15 March 2001; published 12 April 2002)

Quantum Cryptography

Quantum Thermodynamic Security bounds

$$W \gtrsim \sqrt{2^N p} \frac{\hbar}{t}$$

Scalable quantum-secured cryptography

Thank you for your attention

Quantum Super Computer

Diamond Nanophotonics

Ralf Riedinger
University of Hamburg
Quantum Networks

Funding: BMBF/DFG/DLR/ EU/HH