REQUISITOS PREVIOS Y NOTACIÓN

También suponemos que los alumnos están familiarizados con funciones del cálculo elemental, como sen x, cos x, e^x y log x (escribimos log x para el logaritmo natural, que a veces se denota por $\ln x$ o $\log_e x$). Se espera que los alumnos conozcan, o repasen conforme transcurre el curso, las reglas básicas de diferenciación e integración para funciones de una variable, como la regla de la cadena, la regla del cociente, integración por partes y demás.

El valor absoluto de un número $a \in \mathbf{R}$ se escribe |a| y se define como

$$|a| = \begin{cases} a & \text{si} \quad a \ge 0 \\ -a & \text{si} \quad a < 0. \end{cases}$$

Por ejemplo, |3| = 3, |-3| = 3, |0| = 0 y |-6| = 6. La desigualdad $|a+b| \le |a|+|b|$ siempre se cumple. La distancia de a a b está dada por |a-b|. Así, la distancia de b a b a b desta de b a b está dada por b.

Si escribimos $A \subset \mathbf{R}$, queremos decir que A es un subconjunto de \mathbf{R} . Por ejemplo, A podría ser igual al conjunto de los enteros $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.

El símbolo $A \cup B$ significa la unión de A y B, la colección cuyos elementos son elementos de A o B. Así

$$\{\ldots,-3,-2,-1,0\} \cup \{-1,0,1,2,\ldots\} = \{\ldots,-3,-2,-1,0,1,2,\ldots\}.$$

De manera análoga, $A \cap B$ significa la intersección de A y B; esto es, este conjunto está formado por aquellos elementos de A y B que están tanto en A como en B. Así, la intersección de los dos conjuntos anteriores es $\{-1,0\}$.

Escribiremos $A \setminus B$ para denotar los elementos de A que no están en B. Así,

$$\{\ldots, -3, -2, -1, 0\} \setminus \{-1, 0, 1, 2, \ldots\} = \{\ldots, -3, -2\}.$$

También podemos especificar conjuntos como en los ejemplos siguientes:

$$\{a \in \mathbf{R} | a \text{ es un entero}\} = \{\dots, -3, -2, -1, 0, 1, 2, \dots\}$$

 $\{a \in \mathbf{R} | a \text{ es un entero par}\} = \{\dots, -2, 0, 2, 4, \dots\}$
 $\{x \in \mathbf{R} | a \le x \le b\} = [a, b].$

Una función $f = A \rightarrow B$ es una regla que asigna a cada $a \in A$ un elemento específico f(a) de B.

El hecho de que la función f mande a a f(a) se denota simbólicamente por:

$$a \mapsto f(a)$$

Por ejemplo $f(x) = \frac{x^3}{1-x}$ asigna el numero $\frac{x^3}{1-x}$ a cada $x \ne 1$ en R. Podemos especificar una función f dando la regla para f(x). Así, la función f anterior se puede definir por la regla.

$$x \mapsto x^3/(1-x)$$

Si $A \subset \mathbf{R}$, $f: A \subset \mathbf{R} \to \mathbf{R}$ significa que f asigna un valor en \mathbf{R} , f(x), a cada $x \in A$. El conjunto A se llama dominio de f, y decimos que f tiene contradominio \mathbf{R} , pues es ahí donde se toman los valores de f. La gráfica de f consiste de los puntos (x, f(x)) en el plano (figura 0.3). Generalmente una asociación (= función = transformación = asociación) $f: A \to B$, donde $A \neq B$ son conjuntos, es una regla que asigna a cada $x \in A$ un punto específico $f(x) \in B$.

Figura 0.3 Gráfica de una función con el intervalo semiabierto A como dominio.

La notación $\sum_{i=1}^{n} a_i$ significa $a_1 + \cdots + a_n$ donde a_1, \ldots, a_n son números dados. La suma de los primeros n enteros es

$$1+2+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}.$$

La derivada de una función f(x) se denota por f'(x) o

$$\frac{df}{dx}$$
,

y la integral indefinida se escribe

$$\int_a^b f(x) \, dx.$$

Si hacemos y = f(x), la derivada también se denota por

$$\frac{dy}{dx}$$
.

Se supone que los lectores conocen la regla de la cadena, la integración por partes y otras reglas que gobiernan al cálculo de funciones de una variable. En particular, deberán saber cómo diferenciar e integrar funciones exponenciales, logarítmicas y trigonométricas. Al final del libro hay una breve tabla de derivadas e integrales, adecuadas para las necesidades de este libro.

Las siguientes notaciones se usan como sinónimos: $e^x = \exp x$, $\ln x = \log x$ y $\operatorname{sen}^{-1} x = \operatorname{arcsen} x$.

El final de una demostración se denota por el símbolo ■, mientras que el final de un ejemplo u observación se denota por el símbolo ▲. El material opcional más teórico o los ejercicios más difíciles están precedidos por una estrella: *.