

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

	ndrés Manosalva Amaris ejandro Bello Torres
1. Mı	lestra que los números racionales $\mathbb Q$ no son localmente compactos.
2. Sea	$\{X_{lpha}\}$ una familia indexada de espacios no vacíos.
a) Demuestra que si $\prod X_{\alpha}$ es localmente compacto, entonces cada X_{α} es localmente compacto y X_{α} es compacto para todos los valores de α , salvo un número finito.
	Demostración. Recordemos que las proyecciones son mapeos continuos y abiertos, suponegamos que $\prod X_{\alpha}$ es localmente compacto. Sea $x \in \prod X_{\alpha}$, por la compacidad local existe un subespacio compacto C de $\prod X_{\alpha}$ que contiene a x y esta vecindad contiene un elemento de la base de $\prod X_{\alpha}$ que contiene a x , digamos U .
	Como estamos en la topología producto, entonces $U=\prod_{\alpha}U_{\alpha}$ donde $U_{\alpha}=X_{\alpha}$ para todo α salvo finitos índices, digamos α_1,\ldots,α_n . Sea $\beta\neq\alpha_i$ para todo $i=1,\ldots,n$, entonces $\pi_{\beta}(C)$ es un compacto que contiene a $\pi_{\beta}(U)=X_{\beta}$.
	Falta ver que los X_{α_i} , $i=1,\ldots,n$ son localmente compactos. Sean $y\in X_{\alpha_i}$ y $x\in\prod X_{\alpha_i}$ tales que $x_{\alpha_i}=y$. Existe un compacto C que contiene un elemento de la base U tal que U es vecindad x , entonces $\pi_{\alpha_i}(C)$ es un subespacio compacto de X_{α_i} que contiene a la vecindad $\pi_{\alpha_i}(U)$ de x .
ŀ) Prueba el recíproco, asumiendo el teorema de Tychonoff.
	Demostración. Sea $x \in \prod_{\alpha} X_{\alpha}$. Para cada α , existe un subespacio compacto C_{α} de X_{α} que contiene una vecindad U_{α} de x_{α} . Por hipótesis, para cada índice salvo finitos, podemos asumir que $C_{\alpha} = U_{\alpha} = X_{\alpha}$. Por el teorema de Tychonoff, $\prod_{\alpha} C_{\alpha}$ es compacto y contiene la vecindad $\prod_{\alpha} U_{\alpha}$ de x . Se sigue que $\prod_{\alpha} X_{\alpha}$ es localmente compacto.

- 3. Sea X un espacio localmente compacto. Si $f:X\to Y$ es continua, ¿se sigue que f(X) es localmente compacto? ¿Qué ocurre si f es continua y abierta? Justifica tu respuesta.
- 4. Demuestra que $[0,1]^{\omega}$ no es localmente compacto en la topología uniforme.
- 5. Si $f: X_1 \to X_2$ es un homeomorfismo entre espacios Hausdorff localmente compactos, demuestra que f se extiende a un homeomorfismo de sus compactificaciones por un punto.
- 6. Demuestra que la compactificación por un punto de \mathbb{R} es homeomorfa al círculo S^1 .

Demostración. Vamos a construir el homeomorfismo, este es la proyección estereográfica.

Por la ecuación de punto pendiente, la recta que se observa en el dibujo y que corta la circunferencia tiene la ecuación

$$y = \frac{-x}{a} + 1,$$

reemplazando esto en la ecuación del círculo $(x^2+y^2=1)$ obtenemos que

$$x^2 + \frac{x^2}{a^2} - \frac{2x}{a} = 0,$$

así pues

$$x\left(1+\frac{1}{a^2}\right) = \frac{2}{a},$$

esto es

$$x = \frac{2a}{a^2 + 1}.$$

Finalmente, al reemplazar x en la ecuación de la recta, obtenemos que

$$y = \frac{-2}{a^2 + 1} + 1$$

7. Demuestra que la compactificación por un punto de S_{Ω} es homeomorfa a \bar{S}_{Ω} .

8. Demuestra que la compactificación por un punto de \mathbb{Z}_+ es homeomorfa al subespacio $\{0\} \cup \{1/n \mid n \in \mathbb{Z}_+\}$ de \mathbb{R} .

9. Demuestra que si G es un grupo topológico localmente compacto y H es un subgrupo, entonces G/H es localmente compacto.

10. Demuestra que si X es un espacio de Hausdorff localmente compacto en el punto x, entonces para cada vecindad U de x, existe una vecindad V de x tal que \bar{V} es compacto y $\bar{V} \subset U$.