Lecture 8 Exercise

1)

a)
$$L(\alpha, \beta) = p(x_1, x_2, \dots, x_n | \alpha, \beta) = \prod_{i=1}^n \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x_i^{\alpha-1} (1 - x_i)^{\beta-1}$$
$$= \frac{\Gamma(\alpha+\beta)^n}{\Gamma(\alpha)^n \Gamma(\beta)^n} \prod_{i=1}^n x_i^{\alpha-1} (1 - x_i)^{\beta-1}$$

b) Log-likelihood function:

$$\begin{split} \ell(\alpha,\beta) &= logL(\alpha,\beta) \\ &= nlog\big(\Gamma(\alpha+\beta)\big) - nlog\big(\Gamma(\alpha)\big) - nlog\big(\Gamma(\beta)\big) \\ &+ (\alpha-1)\sum_{i=1}^{n} logx_i + (\beta-1)\sum_{i=1}^{n} \log(1-x_i) \end{split}$$

Negative log-likelihood function:

$$L = -\ell(\alpha, \beta) = n(\log(\Gamma(\alpha)) + \log(\Gamma(\beta)) - \log(\Gamma(\alpha + \beta)))$$
$$+ (1 - \alpha) \sum_{i=1}^{n} \log x_i + (1 - \beta) \sum_{i=1}^{n} \log(1 - x_i)$$

c)

$$\frac{\partial L}{\partial \alpha} = n \frac{\partial}{\partial \alpha} \log(\Gamma(\alpha)) - n \frac{\partial}{\partial \alpha} \log(\Gamma(\alpha + \beta)) - \sum_{i=1}^{n} \log x_i$$

$$\frac{\partial L}{\partial \beta} = n \frac{\partial}{\partial \beta} \log(\Gamma(\beta)) - n \frac{\partial}{\partial \beta} \log(\Gamma(\alpha + \beta)) - \sum_{i=1}^{n} \log(1 - x_i)$$

d) Gradient descent algorithm:

- Initialize α_0 , β_0
- Assign learning rate γ , max iteration maxIter
- For t = 1: maxIter

$$\begin{aligned} &\circ \ \alpha_{t} = \alpha_{t-1} - \gamma \frac{\partial L}{\partial \alpha} \\ &= \alpha_{t-1} - \gamma \left(n \frac{\partial}{\partial \alpha} \log(\Gamma(\alpha)) - n \frac{\partial}{\partial \alpha} \log(\Gamma(\alpha + \beta)) - \sum_{i=1}^{n} \log x_{i} \right) \\ &\circ \ \beta_{t} = \beta_{t-1} - \gamma \frac{\partial L}{\partial \beta} \\ &= \beta_{t-1} - \gamma \left(n \frac{\partial}{\partial \beta} \log(\Gamma(\beta)) - n \frac{\partial}{\partial \beta} \log(\Gamma(\alpha + \beta)) - \sum_{i=1}^{n} \log(1 - x_{i}) \right) \end{aligned}$$

- $\circ~$ If ($\alpha_t < 0$), reinitialize α_t since α_t has to be greater than 0
- \circ Same for β_t
- o If $|\alpha_t \alpha_{t-1}| < \epsilon$ and $|\beta_t \beta_{t-1}| < \epsilon$, terminate for loop
- End for
- Return α , β

```
function dL_da(sample, a, b)
    n = length(sample);
    return n * (digamma(a) - digamma(a + b)) - sum(log.(sample));
end

function dL_db(sample, a, b)
    n = length(sample);
    return n * (digamma(b) - digamma(a + b)) - sum(log.(1 .- sample));
end
```

```
function grad_descent_beta(sample)
   n = length(sample);
   max_iter = 1000;
   epsilon = 1e-3;
   lr = 1e-3;
   # Initialize parameters
   alpha = rand() * 10;
   beta = rand() * 10;
   for i = 1:max_iter
        alpha_new = alpha - lr * dL_da(sample, alpha, beta);
       beta_new = beta - lr * dL_db(sample, alpha, beta);
       alpha_new = max(alpha_new, 1e-3);
       beta_new = max(beta_new, 1e-3);
        if abs(alpha_new - alpha) < epsilon && abs(beta_new - beta) < epsilon
            alpha = alpha_new;
            beta = beta_new;
            break;
        end
       alpha = alpha_new;
       beta = beta_new;
   return alpha, beta;
```

```
grad_descent_beta(sample)

v 0.0s
(2.111670869420904, 2.1709783392577395)
```

```
sample_sizes = collect(2:1000)
est_alpha = zeros(length(sample_sizes))
est_beta = zeros(length(sample_sizes))
for i = 1:length(sample_sizes)
    sample = rand(d, sample_sizes[i])
    a, b = grad_descent_beta(sample)
    est_alpha[i] = a
    est_beta[i] = b
myplot1 = plot(x=sample_sizes, y=est_alpha, Geom.line,
    Guide.xlabel("Sample Size"),
    Guide.ylabel("Estimated Alpha"),
    Guide.title("Consistency of Alpha"),
    Theme(background_color="white")
myplot2 = plot(x=sample_sizes, y=est_beta, Geom.line,
    Guide.xlabel("Sample Size"),
    Guide.ylabel("Estimated Beta"),
    Guide.title("Consistency of Beta"),
    Theme(background_color="white")
final_plot = hstack(myplot1, myplot2)
draw(PNG("estimation.png", 10inch, 5inch), final_plot)
```


Observation:

For small sample size < 100, $\hat{\alpha}$ and $\hat{\beta}$ seems to be noisy and deviates from true value 2.0. Increasing the sample size helps them converge to the true value (2.0, 2.0), with small deviation around the true value. Therefore, Beta Distribution is consistent when increasing the sample size.