Week Il (ribsheet Notes: 23

LEAST SQUARES

Super useful in Stats, ML, and their applications when to use: 1) overdetermined systems

- more equations than unknowns
- real world: more samples than features
- 2) to deal with noise and errors

Given system $A\vec{x} = \vec{b}$ where A and \vec{b} are known, approximate \vec{b} with $\vec{b} = A\vec{x}$:

Span(A): by defin, all the linear combinations of A's cols another interpretation: if we vary \vec{x} , all values of $A\vec{x}$

the best $A\vec{x}$ must be the <u>projection</u> of \vec{b} onto spon (A).

Formula: $A^TA\vec{x} = A^T\vec{b}$ "normal equations"

$$\vec{x} = (\vec{A} \vec{A}) \vec{A} \vec{b}$$

Requirement: A has linearly independent columns