

DYNAMIC PROGRAMMING AND ALIGNMENT ALGORITHMS

Today's Instructor

Dr. Kurt Wollenberg, Ph.D. in Genetics

Ongoing Computational Biology projects:

- Hepatitis B molecular evolution
- CLAG protein family evolution

- Bioinformatics and Computational Biosciences Branch (BCBB), NIAID
- National Institutes of Health, Bethesda, MD USA.
- Contact our team via email:
 - Email: bioinformatics@niaid.nih.gov
 - Instructor: <u>kurt.wollenberg@nih.gov</u>

Class Materials

- Directory on Uganda ACE server:
 - File directory: user@kla-ac-bio-03:/home/bcbb_teaching_files
 - Large data files
- NIAID github repository:
 - https://github.com/niaid/ACE-2020
 - Code
 - Data files
 - Copies of lecture slides

and BLAST: Basic Local Alignment Search Tool

- Sequence Alignment: Assigning homology to sites among a group of known sequences
- BLAST: Alignment of one sequence with many unknown sequences

- Sequence Alignment: Assigning homology to sites among a group of known sequences
 - Alignment of single loci
 - Clustal(W,X,Omega), MUSCLE, TCoffee, MAFFT
 - Alignment of overlapping contigs
 - Sequencher, Lasergene
 - Alignment of short reads
 - BWA, Bowtie, SOAP, MAQ

Single locus

```
>GeneA Human
ATGGGCCTTATATGCGTGATGCTGAAAG
>GeneA Gorilla
ATGGGACTTATCTGCGTGATGCTGACAG
>GeneA Macaque
ATGGGTCTCATATGTGTGATGCTTACAG
>GeneA Mouse
ATGGCCCTGATATGCGTGATGCTGAACG
>GeneA Sheep
ATGGCCCTAATATGC---AGGCTGAACG
```

Overlapping contigs

ATGGGCCTTATATGCGTGATGCTGAAAG
TTATATGCGTGATGCTGAAAGGGCTTAG
ATATGCGTGATGCTGAAAGGGCTTAGAAAT
TGCGTGATGCTGAAAGGGCTTAGAAATT
ATGCTGAAAGGGCTTAGAAATTCGG
AAAGGGCTTAGAAATTCGG
CGGCTAGGCCTCC

TACCCGGAATATACGCACTA

CACTACGACTTTCCCGAATCTTTAAGCC
CTTTCCCGAATCTTTAAGCCGATCCGGA

Short reads

HOMOLOGY vs. ANALOGY

common ancestry

convergence

University of Nebraska Department of Entomology

Pairing of sites based on an assessment of homology

Homology assessed using Substitution Matrices

HBA HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ ++++LS+LH KL

HBB HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++++ KV + +A ++ ++ ++++++ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

HBA HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS++G+DL++H+D+A+ALD++AH+

F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Substitution Matrices

Derived mathematically

Derived from data

"A substitution matrix (even one derived by arbitrarily assigning probabilities to pairs) is a statement of the probability of observing these pairs in real alignment."

DNA Substitution Matrices

- Single parameter Jukes-Cantor
 - Equal base frequencies
 - Uniform rates of change
- Two parameter Kimura
 - Equal base probabilities
 - Two rates of change

DNA Substitution Matrices

- More parameters HKY
 - Unequal base frequencies
 - Two rates of change
- Fully parameterized GTR
 - Unequal base probabilities
 - Six rates of change

Jukes-Cantor Substitution Probabilities

$$P_{ij}(t) = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\mu t}i = j\\ \frac{1}{4} - \frac{1}{4}e^{-4\mu t}i \neq j\\ \frac{4}{4} - \frac{4}{4}e^{-4\mu t}i \neq j \end{cases}$$

Jukes-Cantor Substitution Probabilities

$$\mu t = 0.25$$

	Α	С	G	Т
Α	0.5259	0.1580	0.1580	0.1580
С	0.1580	0.5259	0.1580	0.1580
G	0.1580	0.1580	0.5259	0.1580
Т	0.1580	0.1580	0.1580	0.5259

Kimura Two-Parameter Substitution Model

If the probability of **transitions** (A \Leftrightarrow G, C \Leftrightarrow T) is different from the probability of **transversions** (A \Leftrightarrow T, G \Leftrightarrow T, A \Leftrightarrow C, G \Leftrightarrow C), then there are two relative rate parameters expressed as the transition/transversion rate ratio κ

Kimura Two-Parameter Substitution Probabilites

$$P_{ij}(t) = \begin{cases} \frac{1}{4} - \frac{1}{4}e^{-4\mu t}i \neq j, transversion \\ \frac{1}{4} + \frac{1}{4}e^{-4\mu t} - \frac{1}{2}e^{-2(\kappa+1)\mu t}i \neq j, transition \\ \frac{1}{4} + \frac{1}{4}e^{-4\mu t} + \frac{1}{2}e^{-2(\kappa+1)\mu t}i = j \end{cases}$$

Kimura Two-Parameter Substitution Probabilites

$$\mu t = 0.25 \kappa = 2.0$$

	Α	С	G	Т
Α	0.4535	0.1580	0.2304	0.1580
С	0.1580	0.4535	0.1580	0.2304
G	0.2304	0.1580	0.4535	0.1580
Т	0.1580	0.2304	0.1580	0.4535

SUBSTITUTION MODELS

Protein Score Matrices Similarity of Amino Acids

Protein Score Matrices

- Derived from empirical data
- Account for depth of relationship among the data
- Expressed as log-odds ratio:
 - Logarithm of the ratio of the probabilities of two residues being aligned due to homology versus random chance

Protein Score (Substitution) Matrices

The log-odds ratio: $s(a,b) = log(p_{ab}/q_aq_b)$

q_a = frequency of residue a in the data

p_{ab} = probability that residues a and b have been derived from a common ancestor

Protein Score (Substitution) Matrices

 PAM250: Based on phylogenies where all sequences differ by no more than 15%.

BLOSUM62: Based on clusters of sequences with greater than 62% identical residues.

 Both matrices: log odds values are scaled and rounded to the nearest integer values.

Protein Score (Substitution) Matrices

How do two sequences get "aligned"?

- Global alignment (Needleman-Wunsch)
 - Assign homology across the entire sequence
 - Clustal
- Local alignment (Smith-Waterman)
 - Assign homology for subsequences
 - MUSCLE and BLAST
 - Good for aligning very divergent sequences

HEAGAWGHEE ⇔ **PAWHEAE**

Build a matrix of score values for all site pairs

PAM250

H E A G A W G H E E P 0 -1 1 0 1 -6 0 0 -1 -1 A -1 0 2 1 2 -6 1 -1 0 0 W -3 -7 -6 -7 -6 17 -7 -3 -7 -7 H 6 1 -1 -2 -1 -3 -2 6 1 1 E 1 4 0 0 0 -7 0 1 4 4 A -1 0 2 1 2 -6 1 -1 0 0 E 1 4 0 0 0 -7 0 1 4 4

BLOSUM62

What about gaps?

- Score penalty for opening
- Score penalty for extending

Penalties are log probabilities of a gap of a specific length

Standard gap costs

Substitution Matrix	Gap Costs (Open, Extend)
PAM30	(9,1)
PAM70	(10,1)
BLOSUM80	(10,1)
BLOSUM62	(10,1)
BLOSUM45	(15,2)

Dynamic Programming: Calculate a matrix of alignment scores

BLOSUM62

Dynamic Programming

- 1) Calculate a full matrix
- 2) Traceback to get the Global Alignment

HEAGAWGHEE

AWHEAE

Local Alignment

- Alignment of subsequences
- Good for aligning very divergent sequences

Score Calculation

- Minimum score is zero
- Traceback begins at the highest score
- Score = $0 \rightarrow$ End of subsequence

Local Alignment

A W G H E A W - H E

Repeat Match

H E A G A W G H E e H E A e

p A W - H E a e

Overlap Match

HEAGAWGHEe
pAW-HEae

Scoring alignments and expect values

Score := Value in the dynamic programming matrix where the traceback began.

Scores are a function of length of the sequences

Expect (**E**) value := Number of matches expected due to chance, with a score greater than **S**, based on a stochastic sequence model.

P value := Probability of finding at least one match with score ≥ **S**

$$P = 1 - e^{-E(S)}$$

BLAST

(Basic Local Alignment Search Tool)

How does BLAST work?

- Create a list of query sequence "words"
 - -Word lengths: 11 nucleotides, 3 amino acids
- Create a list of neighborhood words
 - -Similar to query words and above a score threshold
- Search for matches in the database
- Extend matches
 - —Below threshold? Discard!
 - –Above threshold? Keep it!
- Format and output maximally extended matches

BLAST

(Basic Local Alignment Search Tool)

How does BLAST work?

How does BLAST evaluate matches?

It uses (local) alignment scores.

The Many Flavors of BLAST

- BLASTn and BLASTp
- short, nearly-exact match BLAST
- Translated BLAST
 - BLASTx nt → aa ⇒ protein db
 - tBLASTn aa ⇒ protein db ← DNA db
 - tBLASTx nt → aa ⇒ protein db ← DNA db
- PSI-BLAST (Position-Specific Iterated BLAST)
- bl2seq

short, nearly-exact match BLAST

- Increase Expect threshold
- Reduce word size (7 for nt, 2 for aa)
- Turn off low complexity filter
- Protein: Use a more stringent substitution matrix

PSI-BLAST

(Position-Specific Iterated BLAST)

- Perform initial BLASTp search
- Generate a sequence profile from results
- BLASTp using the profile
- Iterate until no new sequences are found
- Convergence

Sequence Profile

VGERGLEEDKRKRSAWMQC
MGETALRRKKEDEERTANVYT
FGEAAMPGGPHQSRSAFAWV

The Progressive Alignment Algorithm

Programs

- ClustalW2
 - Your own computer
 - Web Server
 - Other sequence analysis packages
- MUSCLE
 - Your own computer
 - Web Server
 - Other sequence analysis packages
- MAFFT
 - Your own computer
 - Web Server
 - Other sequence analysis packages

NEVER

directly input the output of a MSA program into an analysis program!

ALWAYS

inspect the alignment to correct or improve it.

Multiple Sequence Alignment Editors

Commercial Software

- Geneious
- MacVector
- MegAlign (Lasergene)

Public Domain Software

- AliView
- Seaview
- GeneDoc
- BioEdit
- MEGA

Web Resources

ClustalW2

http://www.clustal.org/

Muscle

http://www.drive5.com/muscle/index.htm

MAFFT

http://mafft.cbrc.jp/alignment/server/

AliView

https://github.com/AliView/AliView

MEGA

https://megasoftware.net

PAIRWISE ALIGNMENT

MEGAX

- 1. Under "Align" choose "Perform BLAST search"
- 2. Use query sequence NM_000575
- 3. In the "Organism" field limit results to Mammals
- 4. Under "General Paramters" change "Max target sequences" to 250
- 5. Run the search
- 6. Unselect "All" results and choose specific sequences
- 7. Change view to "Genbank"
- 8. In Genbank view, change format to "FASTA(text)"
- 9. Add to Alignment (at top of MEGAX window)

PAIRWISE ALIGNMENT

MEGAX

- 1. Under "Edit" menu choose "Select All"
- 2. Click on the icon to run a Muscle alignment
- 3. These sequences include more than the coding sequence, so let's edit them
- 4. Search for motif ATGGCCAAA
- 5. Select and delete the block of sequence before the ATG
- 6. Search for motif TAGGCTC
- 7. Select and delete the block of sequence after TAG

PAIRWISE ALIGNMENT

MEGAX

- 1. Click on "Translated Protein Sequences"
- 2. Accept the standard code
- 3. Look for "?" sites
- 4. Select site 48 and click on "DNA Sequences"
- 5. Correct the split ATG codon
- 6. Continue and correct remaining misaligned codons
- 7. From the "Data" menu export the alignment as a fasta formatted file
- 8. To make the alignment the active data for further analysis, choose "Phylogenetic Analysis" from the "Data" menu