

COMP90038 Algorithms and Complexity

Lecture 19: Warshall and Floyd (with thanks to Harald Søndergaard & Michael Kirley)

Casey Myers
Casey.Myers@unimelb.edu.au
David Caro Building (Physics) 274

- Dynamic programming is an algorithm design technique that is sometimes applicable when we want to solve a recurrence relation and the recursion involves overlapping instances.
- In Lecture 16 we achieved a spectacular performance improvement in the calculation of Fibonacci numbers by switching from a naïve top-down algorithm to one that solved, and tabulated, smaller sub-problems.
- The bottom-up approach used the tabulated results, rather than solving overlapping sub-problems repeatedly.
- That was a particularly simple example of dynamic programming.

- Since all values S(1) to S(n) need to be found anyway, we may as well proceed from the bottom up, storing intermediate results in an array S as we go.
- Given an array C that holds the coin values, the recurrence relation tells us what to do:

```
function CoinRow(C[1..n])

S[0] \leftarrow 0

S[1] \leftarrow C[1]

for i \leftarrow 2 to n do

S[i] \leftarrow max\{S[i-1], S[i-2] + C[i]\}

return S[n]
```


• We can say the same thing formally, as a recurrence relation:

$$S(i) = max{S(i-1), S(i-2) + v_i}$$

- This holds for i > 1.
- We need two base cases: S(0) = 0 and $S(1) = v_1$.

- In Lecture 5 we looked at the knapsack problem.
- Given n items with
 - weights: w_1, w_2, \dots, w_n
 - values: v_1, v_2, \dots, v_n
 - knapsack of weight capacity W.
- Find the most valuable selection of items that will fit in the knapsack.
- We assume that all entities involved are positive integers.

• First fill the leftmost column and top row, then proceed row by row:

```
for i \leftarrow 0 to n do
    K[i,0] \leftarrow 0
for j \leftarrow 1 to W do
    K[0,j] \leftarrow 0
for i \leftarrow 1 to n do
    for j \leftarrow 1 to W do
         if j < w_i then
              K[i,j] \leftarrow K[i-1,j]
         else
              K[i, j] \leftarrow max(K[i-1, j], K[i-1, j-w_i] + v_i)
return K[n, W]
```

• The algorithm has time (and space) complexity $\Theta(nW)$.

• A directed graph:

• And the adjacency matrix for this graph:

	E	F	G	Н
E	[0	1	0	1]
F	1	0	1	0
G	1	0	0	0
Н	Lo	0	0	0

Directed Graphs

• A directed graph:

• And the adjacency matrix for this graph:

	E	F	G	Н
E	[0	1	1	1]
F	1	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
G	1	0	0	0
Н	LO	0	0	0]

Dynamic Programming and Graphs

- In the last lecture we looked at dynamic programming.
- We now apply dynamic programming to two graph problems: For dynamic programming to be useful, the optimality principle must hold:
 - Computing the transitive closure of a directed graph; and
 - Finding shortest distances in weighted directed graphs.

- Warshall's algorithm computes the transitive closure of a binary relation (or a directed graph), presented as a matrix.
- An edge (a, z) is in the transitive closure of graph G iff there is a path in G from a to z.
- Warshall's algorithm was not originally thought of as an instance of dynamic programming but it fits the bill.

Transitive Closure over a State Space

- Transitive closure is important in all sorts of applications where we want to see of some "goal start" is reachable from some "initial state".
- For example is there a sequence of steps that will allow the containers of a ship to be reorganised in a certain way?

Reasoning about Transitive Closure

- Assume the nodes of graph G are numbered from 1 to n.
- Ask the question: Is there a path from node *i* to node *j* using only nodes that are no larger than some k as "stepping stones"?

Reasoning about Transitive Closure

- Assume the nodes of graph G are numbered from 1 to n.
- Ask the question: Is there a path from node *i* to node *j* using only nodes that are no larger than some *k* as "stepping stones"?
- Such a path either uses node k as a stepping stone, or it doesn't.
- So an answer is: There is such a path if and only if we can

step from *i* to *j* using only nodes $\leq k - 1$, or

step from i to k using only nodes $\leq k-1$, and then step from k to j using only nodes $\leq k-1$.

• If G's adjacency matrix is A then we can express the recurrence relation as

$$R_{ij}^{0} = A[i,j]$$

 $R_{ij}^{k} = R_{ij}^{k-1} \text{ or } (R_{ik}^{k-1} \text{ and } R_{kj}^{k-1})$

• If G's adjacency matrix is A then we can express the recurrence relation as

$$R_{ij}^{0} = A[i,j]$$

$$R_{ij}^{k} = R_{ij}^{k-1} \text{ or } \left(R_{ik}^{k-1} \text{ and } R_{kj}^{k-1}\right)$$

Use the existing path created in the previous step

• If G's adjacency matrix is A then we can express the recurrence relation as

$$R_{ij}^{0} = A[i,j]$$

$$R_{ij}^{k} = R_{ij}^{k-1} \text{ or } \left(R_{ik}^{k-1} \text{ and } R_{kj}^{k-1}\right)$$

Or create a new path using k as an intermediate step

• If G's adjacency matrix is A then we can express the recurrence relation as

$$R_{ij}^{0} = A[i,j]$$

 $R_{ij}^{k} = R_{ij}^{k-1} \text{ or } (R_{ik}^{k-1} \text{ and } R_{kj}^{k-1})$

• This gives us a dynamic programming algorithm:

```
function Warshall (A[1..n, 1..n])

R^0 \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^k[i,j] \leftarrow R^{k-1}[i,j] or (R^{k-1}[i,k]) and R^{k-1}[k,j])

return R^n
```


- If we allow input A to be used for the output, we can simplify things.
- Namely, if $R^{k-1}[i,k]$ (that is, A[i,k]) is 0, then the assignment is doing nothing. And if it is 1, and if A[k,j] is also 1, then A[i,j] gets set to 1. So:

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

if A[i, k] then

if A[k, j] then

A[i, j] \leftarrow 1
```

• But now we notice that A[i, k] does not depend on j, so testing it can be moved outside the innermost loop.

• This leads to a better version of Warshall's algorithm:

for
$$k \leftarrow 1$$
 to n do
for $i \leftarrow 1$ to n do
if $A[i, k]$ then
for $j \leftarrow 1$ to n do
if $A[k, j]$ then
 $A[i, j] \leftarrow 1$

• If each row in the matrix is represented as a bit-string, the innermost for loop (and *j*) can be gotten rid of—instead of iterating, just apply the "bitwise or" of row k to row i.

k = 1: nothing, not change

	1	2	3	4	5	6	7
1	r 0	1	0	0	1	0	0
2	0	0	1	0	0	0	0
3	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0
5	0	1	0	0	0	1	0
6	0	0	0	1	0	0	1
7	0	0	0	1	0	0	0

k = 2: *i* values A[i, k]: 1, 5 j values A[k, j]: 3

$$A[1,3] = 1$$

 $A[5,3] = 1$

	1	2	3	4	5	6	7
_1	٥٦	1	0	0	1	0	07
2	0	0	1	0	0	0	0
3	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0
5	0	1	0	0	0	1	0
6	0	0	0	1	0	0	1
7	Γ^0	0	0	1	0	0	07

k = 3: *i* values A[i, k]: 1, 2, 4, 5 j values A[k, j]: 6,7

$$A[1,6] = 1, A[1,7] = 1$$

 $A[2,6] = 1, A[2,7] = 1$
 $A[4,6] = 1, A[4,7] = 1$
 $A[5,6] = 1, A[5,7] = 1$

	1	2	3	4	5	6	7
1	Γ 0	1	1	0 0	1	0	ر0
2	0	0	1	0	0	0	0
3	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0
5	0	0 1	1	0 0 1	0	1	0
6	0	0	0	_	0	0	1
7	L_0	0	0	1	0	0	07

k = 4: *i* values A[i, k]: 6, 7 j values A[k, j]: 3,6,7

$$A[6,3] = 1, A[6,6] = 1, A[6,7] = 1$$

 $A[7,3] = 1, A[7,6] = 1, A[7,7] = 1$

		1	2	3	4	5	6	7
	1	Γ0	1	1 1 0	0	1	1	17
	2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0 0	1	0	0 0	1	1
	3	0	0	0	0	0	1	1
	4	0	0	1	0	0	1	1
	5	0	1	1 0	0	0	1	1
	6 7	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	1	0 0 0	0	1
1	7	L_0	0	0	1	0	0	07

Example of Running Warshall's Algorithm

k = 5: *i* values A[i, k]: 1 j values A[k, j]: 2,3,6,7

$$A[1,2] = 1, A[1,3] = 1,$$

 $A[1,6] = 1, A[1,7] = 1$

	1	2	3	4	5	6	7
1	Γ0	1	1	0 0 0	1	6 1 1 1 1	1٦
2	0	1 0 0 0	1 1 0 1	0	0	1	1
3	0	0	0	0	0	1	1
	0	0	1	0	0	1	1
5	0	1	1	0	0	1	1
6	0	0	1 1	1	0	1	1 1
7	L_0	0	1	1	0	1	1

k = 6: <i>i</i> values $A[i, k]$: 1,2,3,4,5,6,7
j values $A[k, j]$: 3,4,6,7

		1	2	3	4	5	6	7
	1	Γ0	1	1	0	1	1	ן 1
	2	0	0	1	0	0	1	1
	3	0	0	0	0	0	1	1 1 1
	4	0	0	1	0	0	1	1
7	5	0	1	1	0	0	1	1
	6	0	0	1	1	0	1	1
	7	L_0	0	1	1	0	1	1

k = 7: *i* values A[i, k]: 1,2,3,4,5,6,7 j values A[k, j]: 3,4,6,7

		1	2	3	4	5	6	7
1	Г	0	1	1	1	1	1 1	1 ⁻ 1 1 1 1
2		0	0	1	1	0	1	1
3		0	0	1	1	0	1	1
4		0	0	1	1 1	0	1	1
5		0	1	1	1	0	1 1 1 1	1
6		0	0	1	1	0	1	1
7	L	0	0	1	1	0	1	1

	1	2	3	4	5	6	7
1	Γ0	1	1	1	1	1	ر1
2	0	0	1	1	0	1	1
3	0	0	1	1	0	1	1
4	0	0		1		1	1
5	0	1	1	1	0	1	1
6	0	0	1	1	0	1	1
7	L^0	0	1	1	0	1	1

	a	b	c	a
a	[0	1	0	[0
b	0	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
c	0	0	0	0
d	11	0	1	0

Example of Running Warshall's Algorithm: Extended

k = 1: i values A[i, k]: 4 j values A[k, j]: 2

$$A[4,2] = 1$$

	a	b	c	a
a	0	1	0	0
b	0	0	0	1
c	0	0	0	0
d	_1	0	1	0]

Example of Running Warshall's Algorithm: Extended

$$k = 2$$
: *i* values $A[i, k]$: 1, 4
j values $A[k, j]$: 4

$$A[1,4] = 1, A[4,4] = 1$$

	a	b	c	d
a	[0	1	0	0]
b	0	0	0	1
c	0	0	0	0
d	1	1	1	0]

Example of Running Warshall's Algorithm: Extended

k = 3: i values A[i, k]: 4 j values A[k, j]: -

	a	b	c	d
a	[0	1	0	1]
b	0	0	0	1
c	0	0	0	0
d	L 1	1	1	1

Example of Running Warshall's Algorithm: Extended

$$k = 4$$
: *i* values $A[i, k]$: 1,2,4
j values $A[k, j]$: 1,2,3,4

$$A[1,1] = 1, A[1,2] = 1, A[1,3] = 1, A[1,4] = 1$$

 $A[2,1] = 1, A[2,2] = 1, A[2,3] = 1, A[2,4] = 1$
 $A[4,1] = 1, A[4,2] = 1, A[4,3] = 1, A[4,4] = 1$

Analysis of Warshall's Algorithm

- The analysis is straightforward.
- Warshall's algorithm, as it is usually presented, is $\Theta(n^3)$, and there is no difference between the best, average, and worst cases.
- The algorithm has an incredibly tight inner loop, making it ideal for dense graphs.
- However, it is not the best transitive-closure algorithm to use for sparse graphs. For sparse graphs, you may be better off just doing DFS from each node v in turn, keeping track of which nodes are reached from v.

Floyd's Algorithm: All-Pairs Shortest-Paths

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights.
- It works for directed as well as undirected graphs.
- (It also works, in some circumstances, when there are non-positive weights in the graph, but not always.)
- We assume we are given a weight matrix W that holds all the edges' weights (for technical reasons, if there is no edge from node i to node j, we let $W[i, j] = \infty$).
- We will construct the distance matrix D, step by step.

Floyd's Algorithm

- We can use the same problem decomposition as we used to derive Warshall's algorithm. Again assume nodes are numbered 1 to n.
- This time ask the question: What is the shortest path from node i to node j using only nodes $\leq k$ as "stepping stones"?

	1	2	3	4
1	$\begin{bmatrix} 0 \\ \infty \\ \infty \\ \infty \end{bmatrix}$	5	∞	10
2	∞	0	3	∞
3	∞	∞	0	1
4	∞	∞	∞	0

Floyd's Algorithm

- We can use the same problem decomposition as we used to derive Warshall's algorithm. Again assume nodes are numbered 1 to *n*.
- This time ask the question: What is the shortest path from node i to node j using only nodes $\leq k$ as "stepping stones"?

	1	2	3	4
1	[0	5	∞	9
2	∞	0	3	∞
3	∞	∞	0	1
4	∞	∞	∞	$0 \rfloor$

Floyd's Algorithm

- We can use the same problem decomposition as we used to derive Warshall's algorithm. Again assume nodes are numbered 1 to n.
- This time ask the question: What is the shortest path from node i to node j using only nodes $\leq k$ as "stepping stones"?
- We either use node k as a stepping stone, or we avoid it. So again, we can

```
step from i to j using only nodes \leq k-1, or
```

step from i to k using only nodes $\leq k-1$, and then step from k to j using only nodes $\leq k-1$.

Floyd's Algorithm

• If G's weight matrix is W then we can express the recurrence relation for minimal distances as follows:

$$D_{ij}^{0} = W[i,j]$$

$$D_{ij}^{k} = \min \left(D_{ij}^{k-1}, D_{ik}^{k-1} + D_{kj}^{k-1} \right)$$

And then the algorithm follows easily:

```
function FLOYD(W[1..n, 1..n])
D \leftarrow W
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
D[i,j] \leftarrow min(D[i,j], D[i,k] + D[k,j])
return D
```

Example of Running Floyd's Algorithm

• The initial distance matrix (for the unweighted graph above).

$$k = 1$$
: *i* values $D[i, k]$: 2,3,4
j values $D[k, j]$: 2,3,4

$$D[2,3] = 1 + 1 = 2$$

 $D[3,2] = 1 + 1 = 2$

Example of Running Floyd's Algorithm

• Distance matrix after first round (k = 1).

k = 2: *i* values
$$D[i, k]$$
: 1,3,4,5
j values $D[k, j]$: 1,3,4,5
 $D[1,5] = 1 + 1 = 2$
 $D[3,5] = 2 + 1 = 3$
 $D[5,1] = 1 + 1 = 2$

Example of Running Floyd's Algorithm

- Distance matrix after second round (k = 2).
- In this example, no change happens in the following round (k = 3).

		2			
1	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$	1	1	1	2
2	1	0	2	1	1
3	1	2	0	1	3
4	1	1	1	0	1
5	L2	1	3	1	0-

Example of Running Floyd's Algorithm

- Distance matrix after second round (k = 2).
- In this example, no change happens in the following round (k = 3).

Example of Running Floyd's Algorithm

• Distance matrix after fourth round (k = 4).

In this example, no further change happens for k = 5, so this is the final result.

		2			
1	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$	1	1	1	27
2	1	0	2	1	1
3	1	2	0	1	2
4	1	1	1	0	1
5	L ₂	1	2	1	0

Example of Running Floyd's Algorithm

	a	b	c	d
a	0	∞	3	∞
b	2	0	∞	∞
c	∞	7	0	1
d	6	∞	∞	0]

	a	b	c	d
a	[0	∞	3	∞
b	2	0	5	∞
c	∞	7	0	1
d	6	∞	9	0]

Example of Running Floyd's Algorithm

$$\Rightarrow \begin{array}{c} \begin{array}{c} a \\ b \\ c \\ d \end{array} \begin{bmatrix} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{array}$$

a

Example of Running Floyd's Algorithm

	1	2			5		
1	Γ0	9	∞	∞	7 4 ∞ ∞ 0 4 ∞	∞	∞
2	9	0	5	∞	4	∞	∞
3	∞	5	0	6	∞	2	6
4	∞	∞	6	0	∞	7	6
5	7	4	∞	∞	0	4	∞
6	∞	∞	2	7	4	0	7
7	L^∞	∞	6	6	∞	7	0

V[2,5] = 9 + 7 = 10, V[5,2] = 7 + 9 = 10	_	1	O	9		1		
	3	∞	5	0	6	∞	2	6
	4	∞	∞	6	0	∞	7	6
	5	7	4	∞	∞	0	4	∞
	6	∞	∞	2	7	4	0	7
	3 4 5 6 7	L^{∞}	∞	6	6	∞	7	0 -

Example of Running Floyd's Algorithm: Extended

7

 ∞

 ∞

6

 ∞

k = 2: <i>i</i> values $D[i, k]$: 1,3,5	
j values $D[k, j]$: 1,3,5	
D[1,3] = 9 + 5 = 14, D[1,5] = 9 + 4 = 13	
D[3,1] = 5 + 9 = 14, D[3,5] = 5 + 4 = 9	
D[5,1] = 4 + 9 = 13, D[5,3] = 4 + 5 = 9	

I	2	3	4	5	6	7	
Γ 0	9	14	∞	7	∞	∞ 7	
9	0	5	∞	4	∞	∞	
14	5	0	6	9	2	6	
∞	∞	6	0	∞	7	6	
7	4	9	∞	0	4	∞	
∞	∞	2	7	4	0	7	
L_∞	∞	6	6	∞	7	07	

Example of Running Floyd's Algorithm

5

6

A Sub-Structure Property

- For a dynamic programming approach to be applicable, the problem must have a certain "sub-structure" property that allows for a compositional solution.
- Shortest-path problems have the property: if $x_1 x_2 \cdots x_i \cdots x_n$ is a shortest path from x_1 to x_n then $x_1 x_2 \cdots x_i$ is a shortest path from x_1 to x_i .
- Longest-path problems don't have that property. In our sample graph 1-3-4-2-5 is a longest path from 1 to 5, but 1-3-4-2 is not a longest path from 1 to 2 (since 1-3-4-5-2 is longer).

Coming Up Next

- Greedy techniques
 - Prim's algorithm (Levitin Section 9.1)
 - Dijkstra's algorithm (Levitin Section 9.3).