High Pressure Leaching of Mongolian MoS₂- Concentrate

Aims:

- Conversion efficiency of MoS, to MoO,
- Investigation of reaction kinetics
- Intensifying of high pressure leaching of Mo-concentrate

Material:

Molybdenit (MoS₂)- concentrate from Erdenetiin ovoo/Mongolia Flemental composition of the MoS -concentrate in wt %

	Composit		of the Moo ₂ concentrate in wt. 70			
Мо	Cu	S	Fe	Re	SiO2	moisture + oil
48,1	3,96	32	4,04	0,03	1,48	10

Mineralogical analysis of the MoS₂-concentrate in wt. %

MoS2	CuFeS2	Cu2S	CuS	FeS	
83.4	1.17	0.38	0.26	3.34	

Test equipment:

- 2 dm³, Autoclav Engineers, USA
- temperature control system ± 1°C
- electrical heating mantle, water cooling system
- fast acid injection device

Particle size distribution

particle size [mm]	%		
> 0,16	0,25		
> 0,10	0,87		
> 0,08	2,75		
0,044	18,69		
< 0,044	77,45		

- titanium vessel volume:
- max. permissible pressure:
- max. temperature:
- max. stirring speed:

- $= 1 dm^3$
- = 100 bar
- = 300 °C
- = 3000 rpm
- online sampling

Experimental parameters:

100 g Mo-concentrate sample weight: ratio of mass between H_2SO_4 and MoS_2 : a/o = 0,2 Stirring speed: n = 1000 rpmleaching tempereture: 200°C, 220°C and 240°C leaching time (interval for sampling):

> 15 min., 30 min., 45 min., 60 min., 90 min., 120 min.

oxygen partial pressure: 5 bar, 15 bar and 25 bar 30 bar, 40 bar and 50 bar total pressure:

Main leaching chemistry

$$MoS_2(s) + 9/2O_2(g) + 2H_2O(l) \Leftrightarrow MoO_3(s) + 2H_2SO_4(aq)$$

$$CuFeS_2(s) + H_2SO_4(aq) + 1/2O_2(g) \Leftrightarrow CuS(s) + FeSO_4(aq) + S^0 + H_2O(l)$$

$$Cu_2S(s)+H_2SO_4(aq)+5/2O_2(g) \Leftrightarrow 2CuSO_4(aq)+H_2O(l)$$

$$CuS(s)+2O_2(g)\Leftrightarrow CuSO_4(aq)$$

$$FeS_2(s)+7/2O_2(g)+H_2O(l) \Leftrightarrow FeSO_4(aq)+H_2SO_4(aq)$$

$$2S^0 + 3O_2(g) + 2H_2O(l) \Leftrightarrow 2H_2SO_4(aq)$$

Results:

Conclusions:

- •Increasing of conversion efficiency of MoS, to MoO, with increasing leaching temperaure, time and partial pressure of oxygen
- Dissolved molybdenum is constant during the leaching.
- Accompanying elements are solved quick and almost completely.

Contact: Dipl.- Ing. Myagmarsuren Bayanmunkh IME Metallurgische Prozesstechnik und Metallrecycling RWTH Aachen, Mbayan@ime-aachen.de Tel. +49 (0) 241 80 95861

Fax: +49 (0 241 80 92154)

