Exercise 11.5

Wang Yue from CS Elite Class

March 16, 2021

8.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3+2}}$$

Let
$$a_n = (-1)^n \frac{n}{\sqrt{n^3+2}}, b_n = \frac{n}{\sqrt{n^3+2}} = \frac{1}{\sqrt{n+\frac{2}{n^2}}}, c_n = n + \frac{2}{n^2}$$

Let
$$f(x) = x + \frac{2}{x^2}, x \ge 1$$

: when
$$x < 2$$
, $f(1) = 1 + 2 = 3 > f(2) = 2 + \frac{1}{2} = \frac{5}{2}$

Let
$$f(x) = x + \frac{2}{x^2}, x \ge 1$$

 \therefore when $x < 2, f(1) = 1 + 2 = 3 > f(2) = 2 + \frac{1}{2} = \frac{5}{2}$
 \therefore when $x \ge 2, f'(x) = 1 - \frac{4}{x^3} > \frac{1}{2} > 0, f(x)$ is increasing
 $\therefore \forall n \in N_+, c_n$ is increasing
 $\therefore \forall n \in N_+, b_n$ is decreasing, $b_{n+1} < b_n$
 $\therefore \lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{n^3 + 2}{n^2} = \lim_{n \to \infty} \frac{3n^2}{2n} = \infty$
 $\therefore \lim_{n \to \infty} b_n = 0$
 $\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}}$ is convergent

$$\therefore \forall n \in N_+, c_n \text{ is increasing}$$

$$\therefore \forall n \in N_+, b_n \text{ is decreasing, } b_{n+1} < b_n$$

$$\therefore \lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{n^3 + 2}{n^2} = \lim_{n \to \infty} \frac{3n^2}{2n} = \infty$$

$$\therefore \lim_{n\to\infty} b_n = 0$$

$$\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3+2}} \text{ is convergent}$$

9.
$$\sum_{n=1}^{\infty} (-1)^n e^{-n}$$

Let
$$b_n = e^{-n} = \frac{1}{e^n}, a_n = (-1)^n b_n$$

Let
$$b_n = e^{-n} = \frac{1}{e^n}$$
, $a_n = (-1)^n b_n$
 $\therefore e^{n+1} > e^n$ and $\lim_{n \to \infty} e^n = \infty$

$$\therefore b_{n+1} < b_n \text{ and } \lim_{n \to \infty} b_n = 0$$

$$\therefore b_{n+1} < b_n \text{ and } \lim_{n \to \infty} b_n = 0$$

$$\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n e^{-n} \text{ is convergent}$$

12.
$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$$

Let
$$b_n = ne^{-n}$$
, $a_n = (-1)^{n+1}b_n$

Let
$$b_n = ne^{-n}$$
, $a_n = (-1)^{n+1}b_n$
Let $f(x) = xe^{-x}$, $x \ge 1$, then $f'(x) = (1-x)e^{-x} \le 0$, $f(x)$ is decreasing Also,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$$

$$b_{n+1} < b_n$$
 and $\lim_{n \to \infty} b_n = 0$

$$\therefore b_{n+1} < b_n \text{ and } \lim_{n \to \infty} b_n = 0$$

$$\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n} \text{ is convergent}$$

13.
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{\frac{2}{n}}$$

Let
$$b_n = e^{\frac{2}{n}}, a_n = (-1)^{n-1}b_n$$

Let $f(x) = e^{\frac{2}{x}}$, obviously f(x) is decreasing, and

$$\lim_{x \to \infty} f(x) = e^{\lim_{x \to \infty} \frac{2}{x}} = 1$$

- $\begin{array}{l} \therefore b_{n+1} < b_n \text{ and } \lim_{n \to \infty} b_n = 0 \\ \therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n-1} e^{\frac{2}{n}} \text{ is convergent} \end{array}$

14. $\sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$

- Let $b_n = \arctan n, a_n = (-1)^{n-1}b_n$
 - $y = \arctan x$ is increasing and

$$\lim_{n\to\infty}\arctan n=\frac{\pi}{2}\neq 0$$

- $\therefore b_{n+1} > b_n$ and $\lim_{n \to \infty} b_n \neq 0$ $\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is divergent

17.
$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{\pi}{n})$$

- Let $b_n = \sin(\frac{\pi}{n}), a_n = (-1)^n b_n$
 - $f(x) = \sin(\frac{\pi}{x})$ is decreasing when $x \ge 1$ and

$$\lim_{x \to \infty} f(x) = \sin(\lim_{x \to \infty} \frac{\pi}{x}) = \sin 0 = 0$$

- $\therefore b_{n+1} < b_n \text{ and } \lim_{n \to \infty} b_n = 0$ $\therefore \sum_{n=1}^{\infty} a_n = (-1)^n b_n \text{ is convergent}$

18. $\sum_{n=1}^{\infty} (-1)^n \cos(\frac{\pi}{n})$

- Let $b_n = \cos(\frac{\pi}{n})$, $a_n = (-1)^n b_n$, and let $f(x) = \cos(\frac{\pi}{x})$, $x \ge 1$ $\therefore x \ge 1$ $\therefore 0 < \frac{\pi}{x} \le \pi$ $\therefore y = \cos x$ is decreasing when $0 < x \le \pi$, and $y = \frac{\pi}{x}$ is also decreasing
 - $f(x) = \cos(\frac{\pi}{x})$ is increasing
 - $\therefore b_{n+1} > b_n$

$$\therefore \lim_{n \to \infty} b_n = \cos(\lim_{n \to \infty} \frac{\pi}{n}) = \cos 0 = 1 \neq 0$$

- $\therefore \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n b_n \text{ is divergent}$
- **33.** $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+p}$
- Let $a_n = \frac{(-1)^n}{n+p}$, $b_n = \frac{1}{n+p}$ \therefore for all $p \in R$, b_n is decreasing and $\lim_{n \to \infty} b_n = 0$ \therefore for all $p \in R$, $b_{n+1} < b_n$ and $\lim_{n \to \infty} b_n = 0$ \therefore for all $p \in R$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+p}$ is convergent.

34.
$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$$

Let
$$a_n = (-1)^{n-1} \frac{(\ln n)^p}{n}, b_n = \frac{(\ln n)^p}{n}, f(x) = \frac{(\ln x)^p}{x}, x \ge 2$$

$$f'(x) = \frac{p(\ln x)^{p-1} - (\ln x)^p}{x^2} = \frac{(\ln x)^{p-1}(p - \ln x)}{x^2}$$

- \therefore when $x < e^p, p > \ln x, f(x)$ is increasing;
- \therefore when $x > e^p, p < \ln x, f(x)$ is decreasing

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{p(\ln n)^{p-1}}{n} = \lim_{n\to\infty} \frac{p(p-1)(\ln n)^{p-2}}{n} = \dots = \lim_{n\to\infty} \frac{p!}{n} = 0$$

For $p \ge \ln 2$, $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$ is convergent.