Algebra Qualifying Exam Fall 1993

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

- **1.** Let p be an odd prime. If the congruence $x^2 \equiv -1 \pmod{p}$ has a solution, show that $p \equiv 1 \pmod{4}$.
- 2. Prove, or give a counterexample to the assertion that any torsion-free abelian group is free.
- **3.** Let G be a group of order 2p, where p is an odd prime. Suppose that G has a normal Sylow 2-subgroup. Show that G is cyclic.
- 4. Prove, or give a counterexample.
 - (a) Each ideal of Z[x] is principal.
 - (b) If I is a maximal ideal of Z, then I[x] is maximal ideal of Z[x]. Here, I[x] is the ideal of Z[x] consisting of polynomials with coefficients in I.
- **5.** Consider the ring $R = Z[\sqrt{5}] = \{a + b\sqrt{5} | a, b \in Z\}$. Show that the element $3 \in R$ is irreducible but not prime. (Hint: Note that $3|(4+\sqrt{5})(4-\sqrt{5})$.)
- **6.** Let $f(x) = x^4 + 1$. Is f(x) irreducible over
 - (a) \mathbb{R} ?
 - (b) ℚ?
 - (c) ℂ?
 - (d) F_{16} ? (Finite field of 16 elements.)
 - (e) F_7 ? (Finite field of 7 elements.)
- 7. Let f(x) be an irreducible polynomial of degree 3 in $\mathbb{Q}[x]$, and assume that f(x) has a non-real root. Prove that if K is a splitting field over \mathbb{Q} for f(x), then $Gal(K/\mathbb{Q}) \cong S_3$.
- **8.** Give as long a list as possible of square matrices
 - (a) Each matrix has characteristic polynomial $(x-2)^4(x-3)$.
 - (b) Each matrix has minimal polynomial $(x-2)^2(x-3)$.
 - (c) No two matrices on the list are similar.
- **9.** Let V be a n-dimensional vector space over the complex field C. Assume that $S, T : V \to V$ are linear transformations such that ST = TS. Show that T and S have a common eigenvector in V. Must they also have a common eigenvalue?