

Programmazione Lineare Intera: Algoritmo Cutting Plane

Daniele Vigo
D.E.I. – Università di Bologna
daniele.vigo@unibo.it

rev. 1.0 - 2023

Algoritmi generali per PLI

- Metodi esatti tradizionali (anni 60-oggi):
 - Metodo dei piani di taglio (cutting planes)
 - Branch-and-Bound
 - Programmazione Dinamica
- •
- Metodi esatti più avanzati (anni 90-oggi):
 - Branch-and-Bound + Cutting planes =
 Branch-and-Cut
 - Branch-and-Price/Column generation

Algoritmo Cutting Planes

- Sia P un problema di PLI
 - x*: soluzione ottima (di valore z*)
- C(P) = rilassamento continuo di P
 - x^{C} : soluzione ottima di C(P) (di valore z^{C})
- Un iperpiano $\alpha x \ge \alpha_0$ si dice piano di taglio (cutting plane) se:
 - 1. x^C non è più ammissibile ($\alpha x^C < \alpha_0$)
 - 2. è valido per ogni soluzione intera del problema originale ($\alpha x \ge \alpha_0 \ \forall x$ ammissibile e intera)

Algoritmo Cutting Planes (2)

Algoritmo Cutting Planes (3)

Algoritmo cutting planes (P) begin

- 1. risolvi il rilassamento C(P) ottenendo x^C
- 2. if C(P) è illimitato o impossibile then stop;
- 3. while x^{C} non è intero do
- 4. determina un cutting plane $\alpha x \ge \alpha_0$ ed aggiungilo ai vincoli di P
- 5. risolvi il rilassamento C(P) ottenendo x^C
- 6. if C(P) è impossibile then stop;
- 7. end while
- end (si ha $x^* = x^C$)

Algoritmo Cutting Planes (4)

- La procedura determina la soluzione ottima di P:
 - C(P) contiene tutte e sole le soluzioni intere di P (più altre non intere)
 - I tagli aggiunti non eliminano soluzioni intere
 - C(P) e P hanno la stessa funzione obiettivo

 La procedura è molto efficace quando la soluzione ottima del problema C(P) non è troppo diversa da quella del problema P

Algoritmo Cutting Planes (5)

SVANTAGGI:

- Il numero delle iterazioni del ciclo while non è polinomiale
- Il problema di PL da risolvere per C(P) diventa ad ogni iterazione sempre più grande
 - ⇒lunghi tempi di calcolo

 Come si generano in modo automatico i piani di taglio ?

Tagli di Gomory (1958)

- $\forall y \in \mathbb{R}^1, \lfloor y \rfloor = \max \{q \text{ intero: } q \leq y\}$
- Sia Y il tableau finale di C(P):
 - Elementi del tableau y_{ij} , i = 0,...,m; j = 0,...,n
 - β = colonne nella base ottima \mathcal{B} ; $x_{\beta(0)} = -z$
- \forall riga del tableau i = 0,, m si ha:

$$y_{i0} = x_{\beta(i)} + \sum_{A_j \notin B} y_{ij} x_j \qquad (\alpha)$$
$$x \ge 0 \Rightarrow \sum_{A_i \notin B} \left[y_{ij} \right] x_j \le \sum_{A_i \notin B} y_{ij} x_j \Rightarrow$$

Tagli di Gomory (2)

intera ∀ x intera

$$y_{i0} = x_{\beta(i)} + \sum_{A_i \notin B} y_{ij} x_j \tag{\alpha}$$

$$\Rightarrow x_{\beta(i)} + \sum_{A_j \notin B} \left[y_{ij} \right] x_j \le y_{i0}$$

$$\Rightarrow x_{\beta(i)} + \sum_{A_i \notin B} \lfloor y_{ij} \rfloor x_j \le \lfloor y_{i0} \rfloor \quad (\beta)$$

• (β) è il taglio di Gomory (violato da x^C)

Tagli di Gomory (3)

• $(\alpha) - (\beta)$:

$$\sum_{A_i \notin B} (y_{ij} - \lfloor y_{ij} \rfloor) x_j \ge (y_{i0} - \lfloor y_{i0} \rfloor)$$

• $f_{ij} = y_{ij} - \lfloor y_{ij} \rfloor$ (parte frazionaria di y_{ij}); $0 \le f_{ij} \le 1$:

$$\sum_{A_j \notin \mathbf{B}} f_{ij} x_j \ge f_{i0}$$

taglio di Gomory in forma frazionaria corrispondente alla riga i (generatrice del taglio)

Tagli di Gomory (4)

 Moltiplicando per -1 ed aggiungendo una variabile slack

$$-\sum_{A_i \notin \mathbf{B}} f_{ij} x_j + x_s = -f_{i0}$$

- Se si aggiunge al tableau finale di C(P) il taglio
- 1. non si elimina alcun punto intero ammissibile
- 2. il nuovo tableau contiene una base che non è ammissibile per il problema
 - si deve riottimizzare il problema o utilizzare un algoritmo specializzato (simplesso duale)