Algebra Lineare

Stefano Piccoli

9 febbraio 2022

Indice

In	trod	uzione	2	
	0.1	Equazioni a 3 variabili	2	
	0.2	Caso generale	3	
		0.2.1 Sistema omogeneo	3	
		0.2.2 Sistema omogeneo associato	3	
		0.2.3 Soluzione di un sistema	3	
		0.2.4 Trovare soluzioni comuni	4	
1	Ma	trici	5	
		1.0.1 Operazioni	5	
	1.1	Matrice a scalini	5	
	1.2	Algoritmo di Gauss	6	
		1.2.1 Casi possibili	7	
	1.3		8	
	1.4		8	
2	Spazi vettoriali 1			
		2.0.1 Somma	0	
		2.0.2 Moltiplicazione	0	
	2.1	Spazi vettoriali di dimensione n	.1	
		2.1.1 Somma	.1	
			.1	
	2.2		2	
3	Cor	nbinazioni lineari 1	3	
	3.1	Span	3	
	3.2		.5	
	3.3	-	6	
			7	

Introduzione

L'Algebra Lineare si occupa di trovare soluzioni ad equazioni e sistemi lineari.

$$\begin{cases} E1: x + y = 3 \\ E2: x + 2y = 5 \end{cases}$$

E2 - E1 : y = 5-3 = 2Sostituzione: x = 1

$$\begin{cases} E1: x + y = 3 \\ E2: 2x + 2y = 6 \end{cases}$$

$$E2 - E1 : 0 = 0$$

Hanno le stesse soluzioni (infinità)

$$\begin{cases} E1: x+y=3\\ E2: 2x+2y=5 \end{cases}$$

$$E2 - E1 : 0 = -1$$

Nessuna soluzione comune

Quindi abbiamo 1, ∞ o 0 soluzioni comuni. Così sarà in generale.

0.1 Equazioni a 3 variabili

Le soluzioni comuni di 3 equazioni lineari a 3 variabili corrispondono all'intersezione di 3 piani nello spazio tridimensionale. L'intersezione può essere di 3 tipi:

- Un punto (unica soluzione)
- Una retta o un piano
- $0 \ (\infty \ soluzioni)$

0.2 Caso generale

Un sistema di n equazioni lineari a m variabili.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_m \end{cases}$$
$$a_{ij}, b_i \in \Re$$
$$n, m > 0$$

0.2.1 Sistema omogeneo

Il sistema (E) è **omogeneo** se $b_1 = b_2 = \ldots = b_n = 0$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

0.2.2 Sistema omogeneo associato

Un sistema omogeneo associato è un sistema dove la parte prima parte è uguale ad un altro e i coefficienti dopo l'uguale sono $\mathbf{0}$.

0.2.3 Soluzione di un sistema

Soluzione di un sistema = soluzione di un caso particolare + soluzione dell'omogenea associata.

Esempio
$$2x + 3y = 5, n = 1, m = 2$$

Soluzione particolare

$$2x + 3y = 5$$
$$x = y = 1$$

Soluzione omogenea

$$2x + 3y = 0$$
$$x = -\frac{3}{2}y$$

Soluzione generale Definiamo s parametro nel ruolo di y.

$$x = 1 + \left(-\frac{3}{2}\right)s$$
$$y = 1 + s$$

0.2.4 Trovare soluzioni comuni

Per trovare soluzioni comuni di E è necessario semplificare. Le 3 operazioni utili per semplificare sono:

- A) Moltiplicare un'equazione E_i per una costante. $\lambda \neq 0$. $E_i \Rightarrow \lambda E_i$
- B) Moltiplicare un'equazione E_i per $\lambda \neq 0$ e fare la somma con E_j . $E_j \Rightarrow E_j + \lambda E_i$.
- C) Scambiare due equazioni.

Capitolo 1

Matrici

Per semplificare inseriamo i coefficienti delle equazioni in una **matrice** $n \cdot m$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

1.0.1 Operazioni

Le operazioni che potevamo usare per semplificare il sistema possiamo utilizzarle anche sulle matrici:

- A) Moltiplicare una riga per $\lambda \neq 0$. $R_i \Rightarrow \lambda \cdot R_i$.
- B) Sostituire la riga R_j con una somma. $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- C) Scambiare due righe.

1.1 Matrice a scalini

Una matrice $n \cdot m$ è detta a **a scalini** se:

- 1. Le righe sono **in fondo**.
- 2. Il primo elemento di ogni riga, se esiste, è **a destra** del primo elemento ≠ 0 della riga precedente. Un tale elemento è detti **Pivot**.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} SI \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} NO$$

1.2 Algoritmo di Gauss

- 1. Se la matrice è gia in forma a scalini si termina. END.
- 2. Si cerca il primo elemento $\neq 0$ della prima colonna $\neq 0$.
- 3. Scambiando le righe possiamo supporre che questo elemento è il **pivot** della prima riga. Lo segniamo con p.
- 4. Se siamo in forma a scalini si **termina**. **END**.
- 5. Si annullano tutti gli elementi della colonna di p con operazioni di tipo $R_j \Rightarrow R_j + \lambda \cdot R_i$.
- 6. Se siamo in forma a scalini si **termina**. **END**.
- 7. Si ricomincia con la matrice ottenuta **escludendo** la prima riga.

Esempio

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 3 & -1 & 1 & 10 \\ 1 & 5 & 2 & 1 \end{bmatrix}$$

Il **pivot** della prima riga è 1, ora devo annullare tutti gli elementi della colonna del pivot.

$$\xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 6 & 2 & -2 \end{bmatrix}$$

La prima riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 2 & 1 & 1 \\
0 & 6 & 2 & -2
\end{bmatrix}$$

Nella seconda riga il **pivot** è 2, si procede annullando le colonne sotto il pivot.

La seconda riga è **completata**, si ripete l'algoritmo escludendola.

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & -1 & 5 \end{bmatrix}$$

L'algoritmo termina poiché -1 è un **pivot** e non ci sono colonne da annullare.

Conclusioni La matrice ritrasformata in sistema di equazioni è la seguente:

$$\begin{cases} x_1 - x_2 + 3x_4 = 0 \\ 2x_2 + x_3 + x_4 = 0 \\ -x_3 - 5x_4 = 0 \end{cases}$$

La colonna di x_4 è senza pivot quindi x_4 è detta variabile libera, e può assumere qualsiasi valore nel sistema. Sostituiamo la variabile libera x_4 con il parametro t.

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ -x_3 - 5t = 0 \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 + x_3 + t = 0 \\ x_3 = -5t \end{cases} \begin{cases} x_1 - x_2 + 3t = 0 \\ 2x_2 - 5t + t = 0 \\ x_3 = -5t \end{cases}$$

$$\begin{cases} x_1 - x_2 + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 - 2t + 3t = 0 \\ x_2 = 2t \\ x_3 = -5t \end{cases} \begin{cases} x_1 = -t \\ x_2 = 2t \\ x_3 = -5t \end{cases}$$

L'equazione ha infinite soluzioni che possono essere parametrizzate in t.

1.2.1 Casi possibili

Se nella forma a scalini:

- 1. Ogni colonna "non aggiunta" ha un pivot $\Leftrightarrow \exists$ unica soluzione
- 2. C'è un pivot nell'ultima colonna ⇔ ∄ soluzione
- 3. C'è una colonna "non aggiunta" senza pivot e l'ultima colonna non ne ha $\Leftrightarrow \exists \infty$ soluzioni

1.3 Matrice ridotta a scalini

Una matrice è in forma ridotta a scalini se:

- È in forma a scalini
- Ogni **pivot** $\grave{e} = 1$
- Ogni **pivot** è l'unico elemento $\neq 0$ nella sua colonna

Esempi

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{SI} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{NO (A scalini ma non ridotta)}$$

1.4 Algoritmo di Gauss-Jordan

L'algoritmo produce una matrice in forma **ridotta** a scalini attraverso operazioni del tipo A, B, C.

- 1. Con l'algoritmo di Gauss si riduce a scalini la matrice.
- 2. Nelle colonne dei pivot gli elementi della colonna superiore e a sinistra nella riga sono già = 0. Annullare gli elementi sopra il pivot nella colonna con **operazioni del tipo B** $(R_j \Rightarrow R_j + \lambda \cdot R_i)$.
- 3. In ogni riga si **cerca il pivot** (se esiste). Se il pivot $\lambda \neq 1$, si moltiplica la riga per $\frac{1}{\lambda}$.

Esempio Partiamo da una matrice già ridotta a scalini dall'algoritmo di Gauss.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \ 3 & 2 & -1 & | & 0 \ 4 & -3 & 1 & | & -1 \ 5 & -2 & 2 & | & 2 \end{bmatrix} \xrightarrow{\text{Algoritmo di Gauss}} \begin{bmatrix} 2 & 1 & -1 & | & -1 \ 0 & 1 & 1 & | & 3 \ 0 & 0 & 1 & | & 2 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Ora applichiamo l'algoritmo di Gauss-Jordan alla matrice a scalini per trasformarla in matrice ridotta a scalini.

$$\begin{bmatrix} 2 & 1 & -1 & | & -1 \\ 0 & 1 & 1 & | & 3 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Si azzerano gli elementi nelle colonne dei pivot che sono $\neq 0$.

$$\begin{bmatrix} 2 & 1 & -1 & & -1 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 2 & 0 & -2 & & -4 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix} \xrightarrow{R_1 + 2R_3} \begin{bmatrix} 2 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & 2 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

Ora nelle colonne dei pivot tutti gli elementi sono = 0 eccetto il pivot. Si individuano i pivot $\neq 1$ e si procede con la loro trasformazione a 1. Si moltiplicano le righe con i pivot $\neq 1$ per il loro reciproco.

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Conclusioni

$$\begin{cases} x_1 = 0 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

Capitolo 2

Spazi vettoriali

Si parla di **spazi vettoriali** quando definiamo punti e vettori nel piano \mathbb{R}^2 . Un **punto** di \mathbb{R}^2 si può descrivere con **due coordinate** (x_1, x_2) , ma anche con un **vettore** (una freccia) dall'**origine** (0,0) a (x_1, x_2)

2.0.1 Somma

Si può fare la **somma** di due vettori:

- Sulle coordinate: $(x_1, x_2) + (x'_1 + x'_2) := (x_1 + x'_1, x_2 + x'_2)$
- Geometricamente: Legge del parallelogramma dove la diagonale del parallelogramma è la somma dei due vettori.

2.0.2 Moltiplicazione

Un vettore può essere moltiplicato con uno scalare $\lambda \in \mathbb{R}$.

- Sulle **coordinate**: $\lambda(x_1, x_2) := (\lambda x_1, \lambda x_2)$
- Geometricamente: La lunghezza è moltiplicata da λ ma l'angolo non cambia.

Spazi vettoriali di dimensione n 2.1

Si definisce
$$\mathbb{R}^n:=\left\{\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}:x_i\in\mathbb{R}\right\}$$
 uno **spazio n-dim standard** o spa-

zio dei vettori colonna.

Un spazio vettoriale di dimensione 2 corrisponde ad un piano, di dimensione 3 ad uno spazio euclideiano.

Definizione Uno spazio vettoriale su \mathbb{R} è un insieme V che ammette due tipi di operazioni:

- Somma: $v_1, v_2 \in V \to v_1 + v_2 \in V$.
- Prodotto con $\lambda \in \mathbb{R} : v \in V \to \lambda \cdot v \in V$.

Le operazioni devono soddisfare:

1.
$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$
 5. $(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$

5.
$$(\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$$

$$2. \ v_1 + v_2 = v_2 + v_1$$

6.
$$\lambda \cdot (v_1 + v_2) = \lambda \cdot v_1 + \lambda \cdot v_2$$

3.
$$^{1}\exists !0 \in V : 0 + v = v + 0 = v \ \forall v$$

7.
$$(\lambda_1 \cdot \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v)$$

4.
$$\forall v \ \exists ! - v \in V : v + (-v) = (-v) + v = 0$$

8.
$$1 \cdot v = v$$

2.1.1Somma

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix} := \begin{bmatrix} x_1 + x'_1 \\ x_2 + x'_2 \\ \vdots \\ x_n + x'_n \end{bmatrix}$$

2.1.2 Moltiplicazione

$$\lambda \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \vdots \\ \lambda \cdot x_n \end{bmatrix} \lambda \in \mathbb{R}.$$

 $[\]overline{} = \text{Esiste un unico}$

2.2 Sottospazi vettoriali

Sia V uno spazio vettoriale. Un sottospazio $W \subset V$ è un sottoinsieme tale che

• Dati due vettori nel sottospazio, la loro somma sarà nel sottospazio.

$$v_1, v_2 \in W \Rightarrow v_1 + v_2 \in W$$

• Dato un vettore nel sottospazio, il prodotto con un qualsiasi scalare è contenuto nel sottospazio.

$$v \in W \Rightarrow \lambda v \in W \ \forall \lambda$$

Un sottospazio $W \subset V$ è uno spazio vettoriale.

Esempio

1.
$$\left\{ \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \in \mathbb{R}^2 : t_1 + t_2 = 0 \right\} \subset \mathbb{R}^2$$
 è un sottospazio. In generale

$$\left\{ \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_m \end{bmatrix} \in \mathbb{R}^m : \begin{cases} a_{11}t_1 + a_{12}t_2 + \dots + a_{1m}t_m = 0 \\ a_{21}t_1 + a_{22}t_2 + \dots + a_{2m}t_m = 0 \\ \vdots \\ a_{n1}t_1 + a_{n2}t_2 + \dots + a_{nm}t_m = 0 \end{cases} \right\} \subset \mathbb{R}^m$$

è sottospazio.

Quindi le soluzioni di un sistema di equazioni lineari omogenei a n variabili definiscono un sottospazio di \mathbb{R}^m .

Non definiscono un sottospazio di \mathbb{R}^m le soluzioni di equazioni lineari non omogenee (coefficiente $\neq 0$).

Capitolo 3

Combinazioni lineari

Sia V uno spazio vettoriale, $v_1, v_2, \ldots, v_m \in V$. Una combinazione lineare di v_1, \ldots, v_m è una somma $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m \in V$, dove $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$.

La combinazione lineare è detta **banale** se $\lambda_1 = \cdots = \lambda_m = 0$.

Esempio

$$V = \mathbb{R}^2, \ v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Allora $-2v_1 + 1v_2 = 0$ è combinazione lineare non banale.

3.1 Span

Siano $v_1, \ldots, v_m \in V$ m vettori. Il **sottospazio generato** da v_1, \ldots, v_m è:

$$Span(v_1, v_2, ..., v_m) := \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m : \lambda_1, \dots, \lambda_m \in \mathbb{R}\}$$

Quindi Span è l'insieme di tutte le combinazioni lineari. $Span(v_1, v_2, ..., v_m) \subset V$ è un sottospazio.

Esempi

1.

$$\mathbb{R}^2 = Span\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$$

 $Span\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}, Span\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\} \subset \mathbb{R}^2$ sono due rette, rispettivamente dell'asse x e v.

2.

$$W := \left\{ \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \in \mathbb{R}^3 : t_1 = 0 \right\}$$
 Allora $W = Span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \right\}.$

Quindi un sottospazio può essere lo span di vettori diversi.

Verificare che $Span(v_1,v_2,v_3)=Span(v_1,v_2,v_3,v_4)=\mathbb{R}^3$

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Se $v = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^3$ applicando l'**Algoritmo di Gauss** si ottiene:

$$\begin{bmatrix} 1 & 1 & 0 & b_1 \\ 2 & 0 & 0 & b_2 \\ 3 & 1 & 1 & b_3 \end{bmatrix} \xrightarrow[R_3 - 3R_1]{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & b_1 \\ 0 & -2 & 0 & b_2 - 2b_1 \\ 0 & -2 & 1 & b_3 - 3b_1 \end{bmatrix}$$

$$\xrightarrow{R3-R2} \begin{bmatrix}
1 & 1 & 0 & b_1 \\
0 & -2 & 0 & b_2 - 2b_1 \\
0 & 0 & 1 & b_3 - b_1 - b_2
\end{bmatrix}$$

3 pivots nelle 3 colonne a sinistra (non ci interessa a destra) quindi

$$\begin{cases} x_1 + x_2 = b_1 \\ 2x_1 = b_2 \\ 3x_1 + x_2 + x_3 = b_3 \end{cases}$$

ammette un' unica soluzione $\lambda_1, \lambda_2, \lambda_3$:

$$\lambda_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Il vettore generale v è contenuto in $Span(v_1, v_2, v_3)$.

In generale Se $v_1, v_2, \ldots, v_n \in V$ sono vettori tali che v_n è combinazione lineare di $v_1, v_2, \ldots, v_{n-1} \Rightarrow Span(v_1, v_1, \ldots, v_n) = Span(v_1, v_1, \ldots, v_{n-1})$.

3.2 Dipendenza lineare

I vettori $v_1, v_2, \dots, v_m \in V$ sono linearmente indipendenti se

$$\lambda v_1 + \lambda_2 v_2 + \dots + \lambda_m V_m = 0$$

vale solo per $\lambda_1 = \cdots = \lambda_m = 0$. Altrimenti sono linearmente dipendenti.

Geometricamente Vettori linearmente dipendenti hanno la stessa retta.

Proposizione v_1, v_2, \dots, v_m sono **linearmente dipendenti** $\Leftrightarrow \exists i : v_i$ è combinazione lineare dei $v_j \forall j \neq i$.

Verificare se m vettori sono linearmente indipendenti

$$v_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, v_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, v_{m} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}$$

L'equazione $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_m v_m = 0$ vale se e solo se $(\lambda_1, \dots, \lambda_m)$ è soluzione del sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1m}x_m = 0 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = 0 \end{cases}$$

dove **x** sostituisce λ e lo 0 dell'equazione corrisponde al vettore $\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Quindi v_1, \ldots, v_m sono **linearmente indipendenti** \Leftrightarrow il sistema ammette **solo la soluzione banale**, cioè $x = (0, \ldots, 0)$.

Esempio Verificare che i seguenti vettori di \mathbb{R}^3 siano **linearmente indipendenti**.

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Dobbiamo cercare le soluzioni del sistema lineare omogeneo con la matrice dei coefficienti associata.

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 3 & 1 & 1 & 4 \end{bmatrix}$$

Algoritmo di Gauss:

$$\frac{R_2 - 2R_1}{R_3 - 3R_1} \rightarrow
\begin{bmatrix}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & -2 & 1 & -2
\end{bmatrix}
\xrightarrow{R_3 - R_2}
\begin{bmatrix}
1 & 1 & 0 & 2 \\
0 & -2 & 0 & -2 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Ci sono 3 pivots e una variabile libera $\Rightarrow \infty$ soluzioni. Il sistema ammette soluzioni non banali \Rightarrow i vettori sono linearmente dipendenti.

3.3 Base

Un sistema v_1, \ldots, v_n di vettori è una **base** di V se:

- i vettori v_1, \dots, v_n sono linearmente indipendenti
- ullet $Span(v_1,\ldots,v_n)=V$

Esempio Base standard di \mathbb{R}^n :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Si osserva
$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n.$$
Dunque $Span(e_1, \dots, e_n) = \mathbb{R}^n$ e $\lambda_1 e_1 + \dots + \lambda_n e_n = 0$ se e solo se $\lambda_1 = \dots = \lambda_n = 0.$

3.3.1 Coordinate

Sia v_1, \ldots, v_n una base di V e $v \in V$ un vettore. Allora

$$\exists ! \ \alpha_1, \ldots, \alpha_n : v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$$

ovvero **ogni vettore** si scrive in un modo **unico** come **combinazione lineare** degli **elementi della base**.

Gli α_i sono le **coordinate** di v rispetto alla **base**.

Trovare le coordinate di un vettore rispetto alla base

Sappiamo da esercizi precedenti che $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ sono

una **base** di \mathbb{R}^3 . Trovare le coordinate di $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ rispetto a questa base.

$$\alpha_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Applichiamo l'algoritmo di Gauss-Jordan.

$$\begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 2 & 0 & 0 & | & 2 \\ 3 & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow[R_3 - 3R_1]{} \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & -2 & 0 & | & 2 \\ 0 & -2 & 1 & | & 1 \end{bmatrix} \xrightarrow[R_2 \to \frac{1}{2}R_2]{} \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Quindi
$$\begin{cases} \alpha_1 = 1 \\ \alpha_2 = -1 \\ \alpha_3 = -1 \end{cases}$$
 e 1 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ + -1 $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ + -1 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$