MTH307

- Discrete Mathematics

MTH307

- Discrete Mathematics

Principles And Techniques In Combinatorics by Chuan Chong Chen and Khee-meng Koh

MTH307

- Discrete Mathematics

Principles And Techniques In Combinatorics by Chuan Chong Chen and Khee-meng Koh

Grading scheme:

Qizzes: 30%

Midsem: 30%

Final: 40%

 A_1 ,

 A_1, A_2

 A_1, A_2 finite sets

 A_1, A_2 finite sets $A_1 \cap A_2 = \emptyset$

 A_1, A_2 finite sets $A_1 \cap A_2 = \emptyset$

 A_1, A_2 finite sets $A_1 \cap A_2 = \emptyset$ the then

$$A_1, A_2$$
 finite sets
 $A_1 \cap A_2 = \emptyset$ the

$$A_1 \cup$$

then

 A_1, A_2 finite sets

 $A_1 \cap A_2 = \emptyset$ then

 $A_1 \cup A_2$

 A_1, A_2 finite sets $A_1 \cap A_2 = \emptyset$ then $|A_1 \cup A_2|$

$$|A_1 \cup A_2|$$

$$A_1, A_2$$
 finite sets $A_1 \cap A_2 = \emptyset$ then

$$|A_1 \cup A_2| = |A_1| +$$

$$A_1, A_2$$
 finite sets $A_1 \cap A_2 = \emptyset$ then

$$|A_1 \cup A_2| = |A_1| + |A_2|$$

$$A_1, A_2$$
 finite sets $A_1 \cap A_2 = \emptyset$ then

$$|A_1 \cup A_2| = |A_1| + |A_2|$$

$$A_1, A_2$$
 finite sets $A_1 \cap A_2 = \emptyset$ then

$$|A_1 \cup A_2| = |A_1| + |A_2|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

 A_1, A_2, \ldots, A_k finite sets

$$A_i \cap A_j = \emptyset$$
 for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

Example.

L.

 A_1, A_2, \dots, A_k finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

Example.

A

E

 A_1, A_2, \dots, A_k finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

Example.

|A|

E

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

Example.

$$|A| = 10$$

|B|

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$A \cap B$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = ?$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = ?$$

because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = ?$$

because,
$$\underbrace{|A \cap B|}_{2} + |A \setminus A \cap B| = |A|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = ?$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = ??$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = ??$$

because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = ??$$

because,
$$\underbrace{|A \cap B|}_{2} + |B \setminus A \cap B| = |B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = ??$$

because,
$$\underbrace{|A \cap B|}_{2} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

 $|B| = 15$
 $|A \cap B| = 3$
 $|A \cup B| = ??$

$$|A \setminus A \cap B| = 7$$

because, $|A \cap B| + |A \setminus A \cap B| = |A|$
 3

$$|B \setminus A \cap B| = 12$$

because, $\underbrace{|A \cap B|}_{3} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = 12$$

because,
$$\underbrace{|A \cap B|}_{3} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$$

 $|A \cup B|$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = 12$$

because,
$$\underbrace{|A \cap B|}_{3} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$$

$$|A \cup B| = |A \setminus A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|B \setminus A \cap B| = 12$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cap B| = 12$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$|A| = 10$$

 $|B| = 15$
 $|A \cap B| = 3$
 $|A \cup B| = ??$

$$|A \setminus A \cap B| = 7$$

because,
$$\underbrace{|A \cap B|}_{3} + |A \setminus A \cap B| = \underbrace{|A|}_{10}$$

$$|B \setminus A \cap B| = 12$$

because, $|A \cap B| + |B \setminus A \cap B| = |B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because, $|A \cap B| + |A \setminus A \cap B| = |A|$
 3

$$|B \setminus A \cap B| = 12$$

because,
$$\underbrace{|A \cap B|}_{3} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cap B| = 12$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then
$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \cap B| + |A \setminus A \cap B| = |A|$$

$$|B \setminus A \cap B| = 12$$
because,
$$|A \cap B| + |B \setminus A \cap B| = |B|$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
because,
$$|A \setminus A \cap B| = |A| - |A \cap B|$$

$$|B \setminus A \cap B| = 12$$

because, $\underbrace{|A \cap B|}_{3} + |B \setminus A \cap B| = \underbrace{|B|}_{15}$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= (|A| - |A \cap B|)$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because,
$$|A \setminus A \cap B| = |A| - |A \cap B|$$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= (|A| - |A \cap B|) + (|B| - |A \cap B|)$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because, $|A \setminus A \cap B| = |A| - |A \cap B|$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= (|A| - |A \cap B|) + (|B| - |A \cap B|)$$
$$+ |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because, $|A \setminus A \cap B| = |A| - |A \cap B|$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= |A| - |A \cap B| + |B| - |A \cap B|$$
$$+ |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because, $|A \setminus A \cap B| = |A| - |A \cap B|$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= |A| - |A \cap B| + |B| - |A \cap B|$$
$$+ |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
$$A_i \cap A_j = \emptyset \text{ for } i \neq j \text{ then}$$

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$

because, $|A \setminus A \cap B| = |A| - |A \cap B|$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$

$$= |A| - |A \cap B| + |B| - |A \cap B|$$

$$+ |A \cap B|$$

$$= |A| + |B| - |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets
 $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k|$$

Example.

$$|A| = 10$$

$$|B| = 15$$

$$|A \cap B| = 3$$

$$|A \cup B| = ??$$

$$|A \setminus A \cap B| = 7$$
 because,

$$|A \setminus A \cap B| = |A| - |A \cap B|$$

$$|B \setminus A \cap B| = 12$$

because, $|B \setminus A \cap B| = |B| - |A \cap B|$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$
$$= 7 + 12 + 3$$
$$= 22$$

$$|A \cup B| = |A \setminus A \cap B| + |B \setminus A \cap B| + |A \cap B|$$

$$= |A| - |A \cap B| + |B| - |A \cap B|$$

$$+ |A \cap B|$$

$$= |A| + |B| - |A \cap B|$$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$A_1, A_2, \dots, A_k$$
 finite sets $A_i \cap A_j = \emptyset$ for $i \neq j$ then

$$|A_1 \cup A_2 \cup \ldots \cup A_k| = |A_1| + |A_2| + \cdots + |A_k|$$

 A_1 ,

 A_1, A_2

 A_1, A_2 finite sets

 A_1, A_2 finite sets

 A_1, A_2

finite sets

 $A_1 \times$

 A_1, A_2 finite sets

 $A_1 \times A_2$

 A_1, A_2 finite sets

 $|A_1 \times A_2|$

$$A_1, A_2$$
 finite sets

$$|A_1 \times A_2| = |A_1| \times$$

$$A_1, A_2$$
 finite sets

$$|A_1 \times A_2| = |A_1| \times |A_2|$$

$$A_1, A_2$$
 finite sets

$$|A_1 \times A_2| = |A_1| \times |A_2|$$

$$A_1, A_2$$
 finite sets

$$|A_1 \times A_2| = |A_1| \times |A_2|$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1,x_2,\ldots,x_r)$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

$$(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$$

$$A_1, A_2, \ldots, A_k$$
 finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

A B C D E F G H $(3, 2, 4) \rightarrow$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

$$(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$$

$$A_1, A_2, \ldots, A_k$$
 finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

A B D E F G H $(3,2,4) \rightarrow C$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

$$(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$$

$$A_1, A_2, \ldots, A_k$$
 finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

A DEFGH $(3,2,4) \rightarrow CB$

Example. Number of ways to arrange r distinct objects out of n objects?

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$A_1, A_2, \ldots, A_k$$
 finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

A DE GH
$$(3,2,4) \rightarrow CBF$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$|X_r| =$$

$$A_1, A_2, \ldots, A_k$$
 finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

A DE GH $(3,2,4) \rightarrow CBF$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]|$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1})$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \ldots, x_r) \sim (x_r, x_1, \ldots, x_{r-1}) \sim \ldots$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation.

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation. Splits into equivalence classes

$$X_r := \sqcup A_k$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation. Splits into equivalence classes

$$X_r := \sqcup A_k$$

$$|X_r| := \sum_{i=1}^{|C_r|} |A_k| =$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation. Splits into equivalence classes

$$X_r := \sqcup A_k$$

$$|X_r| := \sum_{i=1}^{|C_r|} |A_k| = |C_r|r$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation.

Splits into equivalence classes

$$X_r := \sqcup A_k$$

$$|X_r| := \sum_{i=1}^{|C_r|} |A_k| = |C_r|r$$

$$|C_r| =$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation.

Splits into equivalence classes

$$X_r := \sqcup A_k$$

$$|X_r| := \sum_{i=1}^{|C_r|} |A_k| = |C_r|r$$

$$|C_r| = \frac{n!}{(n-r)!r}$$

 A_1, A_2, \ldots, A_k finite sets

$$|A_1 \times A_2 \times \ldots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|$$

Example. Number of ways to arrange r distinct objects out of n objects?

 X_r : total number of arrangements

Each arrangement,

$$(x_1, x_2, \dots, x_r) \in A \times (A \setminus x_1) \times \dots \times (A \setminus \{x_1, x_2, \dots, x_{r-1}\})$$

$$[n] := \{1, 2, \dots, n\}$$

$$[n] \times [n-1] \times \cdots \times [n-r+1] \to X_r$$

 $(n_1, n_2, \dots, n_r) \to (x_{n_1}, x_{n_2}, \dots, x_{n_r})$

Is a bijection

$$|X_r| = |[n]| \times |[n-1]| \times \ldots \times |[n-r+1]| = \frac{n!}{(n-r)!}$$

Example. Number of ways to arrange r distinct objects out of n objects in a circle?

 C_r : set of circular arrangements Define the relation,

$$(x_1, x_2, \dots, x_r) \sim (x_r, x_1, \dots, x_{r-1}) \sim \dots$$

 \sim is an equivalence relation.

Splits into equivalence classes

$$X_r := \sqcup A_k$$

$$|X_r| := \sum_{i=1}^{|C_r|} |A_k| = |C_r|r$$

$$|C_r| = \frac{n!}{(n-r)!r}$$