A Short Course on Quantile Regression

Xuming He (University of Michigan)

Course Outline:

- 1. Introduction to quantile regression
- 2. Basic properties of quantile regression estimates
- 3. Inference on quantile regression
- 4. Algorithm by linear programming; computer code by R and SAS
- 5. Examples
- 6. Nonparametric quantile curves
- 7. Censored quantile regression
- 8. Applications

1 Introduction to Quantile Regression

1.1 What is regression? (College GPA versus High School GPA)

1.2 Quantile Regression versus Mean Regression

Quantile. Let Y be a random variable with cumulative distribution function CDF $F_Y(y) = P(Y \le y)$. The τ th quantile of Y is

$$Q_{\tau}(Y) = \inf\{y : F_Y(y) \ge \tau\},\$$

where $0 < \tau < 1$ is the quantile level.

- $Q_{0.5}(Y)$: median, the second quartile
- $Q_{0.25}(Y)$: the first quartile, 25th percentile
- $Q_{0.75}(Y)$: the third quartile, 75th percentile

Note: $Q_{\tau}(Y)$ is a **nondecreasing function** of τ , i.e.

$$Q_{\tau_1}(Y) \leq Q_{\tau_2}(Y) \text{ for } \tau_1 < \tau_2.$$

Conditional quantile. Suppose Y is the response variable, and \mathbf{X} is the p-dimensional predictor. Let $F_Y(y|\mathbf{X}=\mathbf{x})=P(Y\leq y|\mathbf{X}=\mathbf{x})$ denote the conditional CDF of Y given $\mathbf{X}=\mathbf{x}$. Then the τ th conditional quantile of Y is defined as

$$Q_{\tau}(Y|\mathbf{X} = \mathbf{x}) = \inf\{y : F_Y(y|\mathbf{x}) \ge \tau\}.$$

Least squares linear (mean) regression model:

$$Y = \mathbf{X}^T \boldsymbol{\beta} + U, \quad E(U) = 0.$$

Thus

$$E(Y|\mathbf{X} = \mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta},$$

where β measures the marginal change in the mean of Y due to a marginal change in \mathbf{x} .

Linear quantile regression model:

$$Q_{\tau}(Y|\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}(\tau), \quad 0 < \tau < 1,$$

where $\beta(\tau) = (\beta_1(\tau), \cdots, \beta_p(\tau))^T$ is the quantile coefficient that may depend on τ ;

- the first element of \mathbf{x} is one corresponding to the intercept, i.e. $\mathbf{x} = (1, x_2, \dots, x_p)^T$;
- so that $Q_{\tau}(Y|\mathbf{x}) = \beta_1(\tau) + x_2\beta_2(\tau) + \cdots + x_p\beta_p(\tau)$;
- $\beta(\tau)$ is the marginal change in the τ th quantile due to the marginal change in \mathbf{x} .

Note that $Q_{\tau}(Y|\mathbf{x})$ is a nondecreasing function of τ for any given \mathbf{x} .

Example: location-scale shift model

$$Y_i = \beta_1 + \beta_2 Z_i + (1 + \gamma Z_i) \epsilon_i, \quad \epsilon_i \stackrel{i.i.d.}{\sim} F(\cdot).$$

The conditional quantile function

$$Q_{\tau}(Y|\mathbf{X}_i) = \beta_1(\tau) + \beta_2(\tau)Z_i,$$

where

- $\mathbf{X}_i = (1, Z_i)^T$;
- $\beta_1(\tau) = \beta_1 + F^{-1}(\tau)$ is nondecreasing in τ ;
- $\beta_2(\tau) = \beta_2 + \gamma F^{-1}(\tau)$ may depend on τ . That is, the covariate is allowed to have a different impact on different quantiles of the Y distribution.

Location-shift model: $\gamma = 0$, so that $\beta_2(\tau) = \beta_2$ is constant across quantile levels.

1.3 Quantile Treatment Effect

Quantile Treatment Effect

- $Z_i = 0$: control; $Z_i = 1$: treatment
- $Y_i|Z_i=0 \sim F$ (control distribution) and $Y_i|Z_i=1 \sim G$ (treatment distribution)
- Mean treatment effect:

$$\Delta = E(Y_i|Z_i = 1) - E(Y_i|Z_i = 0) = \int y dG(y) - \int y dF(y).$$

Quantile treatment effect:

$$\delta(\tau) = Q_{\tau}(Y|Z_i = 1) - Q_{\tau}(Y|Z_i = 0) = G^{-1}(\tau) - F^{-1}(\tau).$$

Thus

$$\Delta = \int_0^1 G^{-1}(u)du - \int_0^1 F^{-1}(u)du = \int_0^1 \delta(u)du.$$

• Equivalent quantile regression model (with binary covariate):

$$Q_{\tau}(Y|Z) = \alpha(\tau) + \delta(\tau)Z.$$

• Location shift:

$$F(y) = G(y + \delta) \Rightarrow \delta(\tau) = \Delta = \delta.$$

• Scale shift: $\Delta = \delta(0.5) = 0$, but $\delta(\tau) \neq 0$ at other quantiles.

1.4 Advantages of Quantile Regression

Why Quantile Regression?

Case 1: Quantile regression allows us to study the impact of predictors on different quantiles of the response distribution, and thus provides a complete picture of the relationship between Y and X.

Example: More Severe Tropical Cyclones?

- ullet $Y_i: \max$ wind speeds of tropical cyclones in North Atlantic
- X_i : year 1978-2009

 $\underline{\mathbf{Case}\ 2:}$ robust to outliers in y observations.

Case 3: estimation and inference are distribution-free.

1.5 Estimation

Suppose we observe a random sample $\{y_i, \mathbf{x}_i, i = 1, \dots, n\}$ of (Y, \mathbf{X}) .

Mean and Least Squares Estimation (LSE)

- $E(Y) = \mu_Y = \arg\min_a E\{(Y a)^2\}.$
- Sample mean solves $\min_a \sum_{i=1}^n (y_i a)^2$.
- The least squares $\sum_{i=1}^{n} (y_i \mathbf{x}_i^T \beta)^2 = minimum$ is consistent for conditional mean $E(y|x) = \mathbf{x}^T \beta$.

Median and Least Absolute Deviation (LAD)

- Median $Q_{0.5}(Y) = \arg\min_a E|Y a|$
- Sample median solves $\min_a \sum_{i=1}^n |y_i a|$.
- \bullet Assume $med(y|x)=x^T\beta(0.5),$ then $\hat{\beta}(0.5)$ can be obtained by solving

$$\min_{\beta} \sum_{i=1}^{n} |y_i - \mathbf{x}_i^T \beta|.$$

Quantile Regression at quantile level $0 < \tau < 1$

• τ th quantile of Y:

$$Q_{\tau}(Y) = \arg\min_{a} E\{\rho_{\tau}(Y - a)\},\$$

where $\rho_{\tau}(u) = u\{\tau - I(u < 0)\}$ is the quantile loss function.

ullet auth sample quantile of Y solves

$$\min_{a} \sum_{i=1}^{n} \rho_{\tau}(y_i - a).$$

How to verify? Look at the gradient of the objective function as a function of a:

$$\tau \sum_{i} I(y_i - a > 0) = (1 - \tau) \sum_{i} I(y_i - a < 0).$$

• Assume $Q_{\tau}(Y|\mathbf{X}) = \mathbf{X}^T \boldsymbol{\beta}(\tau)$, then

$$\hat{\boldsymbol{\beta}}(\tau) = argmin_{\boldsymbol{\beta}} \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{x}_i^T \boldsymbol{\beta}).$$

2 Basic Properties of Quantiles and Quantile Regression

2.1 Linear Programming (LP)

Linear programming (standard minimization problem)

$$\min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{y}^T \mathbf{b},$$

subject to the constraints

$$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T,$$

and $y_1 \geq 0, \dots, y_m \geq 0$. Here **A** is $m \times n$ matrix, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$.

The dual maximization problem

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x}, \quad s.t. \ \mathbf{A} \mathbf{x} \le \mathbf{b} \ \text{and} \ \mathbf{x} \ge 0.$$

Note that the linear quantile regression model can be rewritten as

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta}(\tau) + e_i = \mathbf{x}_i^T \boldsymbol{\beta}(\tau) + (u_i - v_i),$$

where $u_i = e_i I(e_i > 0)$, $v_i = |e_i| I(e_i < 0)$.

Therefore,
$$\min_{\mathbf{b}} \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{x}_i^T \mathbf{b})$$

$$\Leftrightarrow \min_{\{\mathbf{b}, \boldsymbol{u}, \boldsymbol{v}\}} \tau 1_n^T \boldsymbol{u} + (1 - \tau) 1_n^T \boldsymbol{v}$$

s.t.
$$\mathbf{y} - \mathbf{X}^T \mathbf{b} = \boldsymbol{u} - \boldsymbol{v}$$

$$\mathbf{b} \in \mathbb{R}^p, \quad \mathbf{u} \ge 0, \quad \mathbf{v} \ge 0.$$

This is a standard linear programming (minimization) program.

2.2 Basic Properties

- 1. Basic equivariance properties. Let A be any $p \times p$ nonsingular matrix, $\gamma \in \mathbb{R}^p$, and a > 0 is a constant. Let $\hat{\beta}(\tau; y, \mathbf{X})$ be the estimator in the τ th quantile regression based on observations (y, \mathbf{X}) . Then for any $\tau \in [0, 1]$,
 - (i) $\hat{\boldsymbol{\beta}}(\tau; ay, \mathbf{X}) = a\hat{\boldsymbol{\beta}}(\tau; y, \mathbf{X});$
 - (ii) $\hat{\boldsymbol{\beta}}(\tau; -ay, \mathbf{X}) = -a\hat{\boldsymbol{\beta}}(1 \tau; y, \mathbf{X});$
 - (iii) $\hat{\boldsymbol{\beta}}(\tau; y + \mathbf{X}\gamma, \mathbf{X}) = \hat{\boldsymbol{\beta}}(\tau; y, \mathbf{X}) + \boldsymbol{\gamma};$
 - (iv) $\hat{\boldsymbol{\beta}}(\tau; y, \mathbf{X}A) = A^{-1}\hat{\boldsymbol{\beta}}(\tau; y, \mathbf{X}).$

2. Equivariance property: quantiles are equivariant to monotone transformations. Suppose $h(\cdot)$ is an increasing function on \mathbb{R} . Then for any variable Y,

$$Q_{h(Y)}(\tau) = h \left\{ Q_{\tau}(Y) \right\}.$$

3. Interpolation: a basic solution from LP interpolates p observations. If the first column of the design matrix is one corresponding to the intercept, then there are at least p zero, and at most $n\tau$ negative and $n(1-\tau)$ positive residuals $y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau)$.

2.3 Subgradient Condition

Define

$$R(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{x}_i^T \boldsymbol{\beta}).$$

- Piecewise linear and continuous.
- Differentiable except at points such that $y_i \mathbf{x}_i^T \boldsymbol{\beta} = 0$.

The directional derivative of $R(\beta)$ in the direction w

$$\nabla R(\boldsymbol{\beta}, \boldsymbol{w}) = \frac{d}{dt} R(\boldsymbol{\beta} + \mathbf{x}_i^T \boldsymbol{w} t)|_{t=0}.$$

Note that

$$\frac{d}{dt}\rho_{\tau}(y - \mathbf{x}^{T}\boldsymbol{\beta} - \mathbf{x}^{T}\boldsymbol{w}t)|_{t=0}$$

$$= \frac{d}{dt}(y - \mathbf{x}^{T}\boldsymbol{\beta} - \mathbf{x}^{T}\boldsymbol{w}t) \left\{ \tau - I(y - \mathbf{x}^{T}\boldsymbol{\beta} - \mathbf{x}^{T}\boldsymbol{w}t < 0) \right\}|_{t=0}$$

$$= \begin{cases}
-\mathbf{x}^{T}\boldsymbol{w}\tau, & y - \mathbf{x}^{T}\boldsymbol{\beta} > 0 \\
-\mathbf{x}^{T}\boldsymbol{w}(1 - \tau), & y - \mathbf{x}^{T}\boldsymbol{\beta} < 0 \\
-\mathbf{x}^{T}\boldsymbol{w}\{\tau - I(-\mathbf{x}^{T}\boldsymbol{w} < 0)\}, & y - \mathbf{x}^{T}\boldsymbol{\beta} = 0
\end{cases}$$

$$= \mathbf{x}^{T}\boldsymbol{w}\psi_{\tau}^{*}(y - \mathbf{x}^{T}\boldsymbol{\beta}, -\mathbf{x}^{T}\boldsymbol{w}), \qquad (2.1)$$

where

$$\psi_{\tau}^{*}(u,v) = \begin{cases} \tau - I(u < 0), & u \neq 0 \\ \tau - I(v < 0), & u = 0. \end{cases}$$

Thus

$$\nabla R(\boldsymbol{\beta}, \boldsymbol{w}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{T} \boldsymbol{w} \psi_{\tau}^{*} (y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}, -\mathbf{x}_{i}^{T} \boldsymbol{w}).$$
 (2.2)

Note

$$abla R(\hat{\boldsymbol{\beta}}, \boldsymbol{w}) \geq 0 \text{ for all } \boldsymbol{w} \in \mathbb{R}^p \text{ with } \|\boldsymbol{w}\| = 1$$

$$\Leftrightarrow \hat{\boldsymbol{\beta}} = argmin_{\boldsymbol{\beta}} R(\boldsymbol{\beta}).$$

Theorem 1 If (y, X) are in general positions (i.e. if any p observations of them yield a unique exact fit), then there exists a minimizer of $R(\beta)$ of the form $b(h) = X(h)^{-1}y(h)$ if and only if, for some $h \in \mathcal{H}$,

$$-\tau 1_p \le \boldsymbol{\xi}(h) \le (1-\tau)1_p,$$

where $\boldsymbol{\xi}(h)^T = \sum_{i \in \bar{h}} \psi_{\tau} \{y_i - \mathbf{x}_i^T \mathbf{b}(h)\} \mathbf{x}_i^T X(h)^{-1}$, and \bar{h} is the complement of h.

Proof. In linear programming, vertex solutions (basic solutions) correspond to points at which p observations are interpolated, i.e. $(y(h), X(h)) = \{(y_i, \mathbf{x}_i), i \in h\}$. That is, the basic solutions pass through these n points as

$$\mathbf{b}(h) = X(h)^{-1}y(h), \quad h \in \mathcal{H}^* = \{h \in \mathcal{H}^* : |X(h)| \neq 0\}.$$

For any ${\boldsymbol w} \in \mathbb{R}^p$, reparameterize to get ${\boldsymbol v} = X(h){\boldsymbol w}$, i.e. ${\boldsymbol w} = X(h)^{-1}{\boldsymbol v}$.

For a basic solution $\mathbf{b}(h)$ to be the minimizer, we need for all $\boldsymbol{v} \in \mathbb{R}^p$,

$$-\sum_{i=1}^{n} \psi_{\tau}^{*} \{ y_{i} - \mathbf{x}_{i}^{T} \mathbf{b}(h), -\mathbf{x}_{i}^{T} X(h)^{-1} \boldsymbol{v} \} \mathbf{x}_{i}^{T} X(h)^{-1} \boldsymbol{v} \ge 0.$$
 (2.3)

WLOG, assume $X(h) = (\mathbf{x}_1^T, \cdots, \mathbf{x}_p^T)^T$.

• If $i \in h$, $\mathbf{x}_i^T X(h) = \mathbf{e}_i^T$, where \mathbf{e}_i is a p-dimensional vector containing all zeros except the ith element being of 1. Thus $\mathbf{e}_i \mathbf{v} = v_i$.

- If (y, X) are in general position, none of the residuals $y_i \mathbf{x}_i^T \mathbf{b}(h)$ with $i \in \overline{h}$ is zero. If y_i 's have a density wrt Lesbesgue measure, then with probability one (y, X) are in general position.
- The space of directions $v \in \mathbb{R}^p$ is spanned by $v = \pm \mathbf{e}_k, k = 1, \dots, p$. So (2.3) holds for any $v \in \mathbb{R}^p$ iff the inequality holds for $\pm \mathbf{e}_k, k = 1, \dots, p$.

Therefore, (2.3) becomes

$$0 \le -\sum_{i \in h} \psi_{\tau}^* \{0, -v_i\} v_i - \boldsymbol{\xi}(h)^T \boldsymbol{v}, \tag{2.4}$$

where $\boldsymbol{\xi}(h)^T = \sum_{i \in \bar{h}} \psi_{\tau} \{y_i - \mathbf{x}_i^T \mathbf{b}(h)\} \mathbf{x}_i^T X(h)^{-1}$.

• If $v = e_i$, we have

$$0 \le -(\tau - 1) - \xi_i(h), \quad i = 1, \dots, p.$$

ullet If $oldsymbol{v}=-\mathbf{e}_i$, we have

$$0 \le \tau + \xi_i(h), \quad i = 1, \cdots, p.$$

That is,

$$-\tau 1_p \le \boldsymbol{\xi}(h) \le (1-\tau)1_p.$$

Remark 1 The total score:

$$\left\| \sum_{i=1}^{n} \mathbf{x}_{i} \psi_{\tau} \{ y_{i} - \mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau) \} \right\| \leq C p \max_{i=1,\dots,n} \|\mathbf{x}_{i}\|.$$

2.4 Consistency

Coefficient estimator in linear quantile regression model

$$\hat{\boldsymbol{\beta}}(\tau) = argmin_{\mathbf{b} \in \mathbb{R}^p} \sum_{i=1}^n \rho_{\tau}(y_i - \mathbf{x}_i^T \mathbf{b}).$$

Classical Sufficient Regularity Conditions

- A1 The distribution functions of Y given \mathbf{x}_i , $F_i(\cdot)$, are absolutely continuous with continuous densities $f_i(\cdot)$ that are uniformly bounded away from 0 and ∞ at $\xi_i(\tau) = Q_{\tau}(Y|\mathbf{x}_i)$.
- A2 There exist positive definite matrices D_0 and D_1 such that
 - (i) $\lim_{n\to\infty} n^{-1} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T = D_0;$
 - (ii) $\lim_{n\to\infty} n^{-1} \sum_{i=1}^n f_i \{\xi_i(\tau)\} \mathbf{x}_i \mathbf{x}_i^T = D_1;$
 - (iii) $\max_{i=1,\dots,n} \|\mathbf{x}_i\| = o(n^{1/2}).$

Theorem 2 Under Conditions A1 and A2 (i), $\hat{\beta}(\tau) \stackrel{p}{\rightarrow} \beta(\tau)$.

Sketch of the proof:

- 1. Define $\bar{\rho}_{\tau}(y \mathbf{x}^T \mathbf{b}) = \rho_{\tau}(y \mathbf{x}^T \mathbf{b}) \rho_{\tau}\{y \mathbf{x}^T \boldsymbol{\beta}(\tau)\}.$
- 2. Use the uniform law of large numbers to show that

$$\sup_{\mathbf{b}\in\mathcal{B}} n^{-1} \sum_{i=1}^{n} \left[\bar{\rho}_{\tau}(y_i - \mathbf{x}_i^T \mathbf{b}) - E\left\{ \bar{\rho}_{\tau}(y_i - \mathbf{x}_i^T \mathbf{b}) \right\} \right] = o_p(1),$$

where \mathcal{B} is a compact subset of \mathbb{R}^p . Reference: Pollard (1991).

- 3. Note that $\hat{\boldsymbol{\beta}}(\tau) \to \boldsymbol{\beta}(\tau)$ holds if for any $\epsilon > 0$, $\bar{Q}(\mathbf{b}) \equiv n^{-1} \sum_{i=1}^n E\left\{\bar{\rho}_{\tau}(y_i \mathbf{x}_i^T \mathbf{b})\right\}$ is bounded away from zero with probability approaching one for any $\|\mathbf{b} \boldsymbol{\beta}(\tau)\| \geq \epsilon$; see e.g. Lemma 2.2 of White (1980).
- 4. Under Conditions A1 and A2 (i), $\bar{Q}(\mathbf{b})$ has a unique minimizer $\boldsymbol{\beta}(\tau)$ and Step 3 goes through.
- 5. The convergence is thus proven.

2.5 Asymptotic Normality

Theorem 3 Under Conditions A1 and A2,

$$n^{1/2} \left\{ \hat{\beta}(\tau) - \beta(\tau) \right\} \stackrel{d}{\to} N \left(0, \tau(1-\tau) D_1^{-1} D_0 D_1^{-1} \right).$$

For the i.i.d. error models, i.e. $f_i\{\xi_i(\tau)\}=f_\epsilon(0)$, the above result can be simplified as

$$n^{1/2} \left\{ \hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}(\tau) \right\} \stackrel{d}{\to} N \left(0, \frac{\tau(1-\tau)}{f_{\epsilon}^2(0)} D_0^{-1} \right).$$

 $D_0 \approx n^{-1} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T$, but D_1 is harder to compute.

Sketch of the proof

- 1. The solution satisfies $n^{-1/2} \sum_{i=1}^n \mathbf{x}_i \psi_{\tau} \{ y_i \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau) \} = o_p(1)$.
- 2. $n^{-1} \sum_{i=1}^{n} \mathbf{x}_{i} (\psi_{\tau} \{y_{i} \mathbf{x}_{i}^{T} \boldsymbol{\beta}\} \psi_{\tau} \{y_{i} \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{0}\})$ can be well approximated by it expectation $b(\boldsymbol{\beta}) b(\boldsymbol{\beta}_{0})$, uniformly for $\boldsymbol{\beta}$ in a neighborhood of $\boldsymbol{\beta}_{0}$.
- 3. Plug in the estimate $\hat{\beta}(\tau)$, and then use Taylor expansion on $b(\beta) b(\beta_0) = D_1(\beta \beta_0) + \cdots$.
- 4. $n^{-1/2} \sum_{i=1}^{n} \mathbf{x}_i \psi_{\tau} \{ y_i \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau) \} = -D_1(\hat{\boldsymbol{\beta}}(\tau) \boldsymbol{\beta}_0) + \cdots$

Reference: He and Shao (1996).

3 Inference

3.1 Wald-type Test

3.1.1 Asymptotic Normality

• Asymptotic normality in *i.i.d.* settings

$$n^{1/2} \left\{ \hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}(\tau) \right\} \stackrel{d}{\to} N \left(0, \frac{\tau(1-\tau)}{f_{\epsilon}^2(0)} D_0^{-1} \right),$$

where
$$D_0 = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T$$
.

• Asymptotic normality in *non-i.i.d.* settings

$$n^{1/2}\{\hat{\beta}(\tau) - \beta(\tau)\} \stackrel{d}{\to} N\left(0, \tau(1-\tau)D_1(\tau)^{-1}D_0D_1^{-1}(\tau)\right),$$

where

$$D_1(\tau) = \lim_{n \to \infty} n^{-1} \sum_{i=1}^n f_i \{ \mathbf{x}_i^T \boldsymbol{\beta}(\tau) \} \mathbf{x}_i \mathbf{x}_i^T.$$

Asymptotic covariance between quantiles

$$\operatorname{Acov}\left(\sqrt{n}\{\hat{\boldsymbol{\beta}}(\tau_i) - \boldsymbol{\beta}(\tau_i)\}, \sqrt{n}\{\hat{\boldsymbol{\beta}}(\tau_j) - \boldsymbol{\beta}(\tau_j)\}\right)$$

$$= (\tau_i \wedge \tau_j - \tau_i \tau_j) D_1(\tau_i)^{-1} D_0 D_1^{-1}(\tau_j).$$

3.1.2 Wald Test for General Linear Hypotheses

Define the coefficient vector $\boldsymbol{\theta} = (\boldsymbol{\beta}(\tau_1)^T, \dots, \boldsymbol{\beta}(\tau_m)^T)^T$.

- Null hypothesis $H_0: R\theta = r$.
- Test statistic

$$T_n = n(R\hat{\boldsymbol{\theta}} - \boldsymbol{r})^T (RV^{-1}R^T)^{-1} (R\hat{\boldsymbol{\theta}} - \boldsymbol{r}),$$

where V is the $mp \times mp$ matrix with the ijth block

$$V(\tau_i, \tau_j) = (\tau_i \wedge \tau_j - \tau_i \tau_j) D_1(\tau_i)^{-1} D_0 D_1^{-1}(\tau_j).$$

- Under H_0 , $T_n \xrightarrow{d} \chi_q^2$, where q is the rank of R.
- Drawback: the covariance matrix involves the unknown density functions (nuisance parameters), i.e. $f_i\{\mathbf{x}_i^T\boldsymbol{\beta}(\tau)\}$ in Non-IID settings, and $f_{\epsilon}(0)$ in IID settings.
- Reference: Koenker and Machado (1999).

3.1.3 Estimation of Asymptotic Covariance Matrix

1. IID settings:

$$\operatorname{var}\{n^{1/2}\hat{\boldsymbol{\beta}}(\tau)\} \approx \frac{\tau(1-\tau)}{\hat{f}_{\epsilon}^{2}(0)}\hat{D}_{0}^{-1},$$

where $\hat{D}_0 = n^{-1} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T$.

Estimation of $f_{\epsilon}(0) = f_{\epsilon}\{F_{\epsilon}^{-1}(\tau)\}\$

• Sparsity parameter:

$$s(\tau) = \frac{1}{f\{F^{-1}(\tau)\}}.$$

• Note $F\{F^{-1}(t)\}=t$. Differentiate both side with respect to t, we get

$$f\{F^{-1}(t)\}\frac{d}{dt}F^{-1}(t) = 1 \Leftrightarrow \frac{d}{dt}F^{-1}(t) = s(t).$$

That is, the sparsity parameter s(t) is simply the derivative of quantile function $F^{-1}(t)$ wrt t.

• Difference quotient estimator

$$\hat{s}_n(t) = \frac{\hat{F}^{-1}(t + h_n | \bar{\mathbf{x}}) - \hat{F}^{-1}(t - h_n | \bar{\mathbf{x}})}{2h_n},$$

where $h_n \to 0$ as $n \to \infty$, and $\hat{F}^{-1}(t|\bar{\mathbf{x}}) = \bar{\mathbf{x}}^T \hat{\boldsymbol{\beta}}(t)$ is the estimated tth conditional quantile of Y given $\bar{\mathbf{x}} = n^{-1} \sum_{i=1}^n \mathbf{x}_i$. This is advantageous in small to moderate sample sizes where computing the whole process $\hat{\boldsymbol{\beta}}(\tau)$ is tractable. For large samples, it is preferable to use residual-based estimator

$$\hat{s}_n(t) = \frac{\hat{F}_n^{-1}(t + h_n) - \hat{F}_n^{-1}(t - h_n)}{2h_n},$$

where $\hat{F}_n^{-1}(\cdot)$ is the empirical quantile function of estimated residuals $\hat{\epsilon}_i = y_i - \mathbf{x}_i^T \hat{\beta}(\tau)$, i = 1, ..., n.

Non-IID settings:

$$\operatorname{var}\{n^{1/2}\hat{\boldsymbol{\beta}}(\tau)\} \approx \tau (1-\tau)\hat{D}_1(\tau)^{-1}\hat{D}_0\hat{D}_1^{-1}(\tau).$$

The main challenge is the estimation of $D_1(\tau)$.

Hendricks-Koenker Sandwich

- Suppose the conditional quantiles of Y given ${\bf x}$ are linear at quantile levels around $\tau.$
- Then fit quantile regression at $(\tau \pm h_n)$ th quantiles, resulting in $\hat{\beta}(\tau h_n)$ and $\hat{\beta}(\tau + h_n)$.
- Estimate $f_i\{\xi_i(\tau)\}$ by

$$\tilde{f}_i\{\xi_i(\tau)\} = \frac{2h_n}{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau + h_n) - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau - h_n)},$$

where $\xi_i(\tau) = Q_{\tau}(Y|\mathbf{x}_i)$.

 In finite sample studies, quantiles may cross so that the upper quantiles may be estimated to be smaller than lower quantiles. A modified estimator to account for this issue:

$$\hat{f}_i\{\xi_i(\tau)\} = \max\left(0, \frac{2h_n}{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau + h_n) - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau - h_n) - \epsilon}\right),\,$$

where ϵ is a small positive constant to avoid zero denominator.

- Estimator of $D_1(\tau)$:

$$\hat{D}_1(\tau) = n^{-1} \sum_{i=1}^n \hat{f}_i \{ \xi_i(\tau) \} \mathbf{x}_i \mathbf{x}_i^T.$$

3.2 Rank Score Test

Consider the model

$$Q_{\tau}(Y|\mathbf{x}_{i}, \boldsymbol{z}_{i}) = \mathbf{x}_{i}^{T} \boldsymbol{\beta}(\tau) + \boldsymbol{z}_{i}^{T} \boldsymbol{\gamma}(\tau),$$

and hypotheses

$$H_0: \boldsymbol{\gamma}(\tau) = 0$$
 v.s. $H_a: \boldsymbol{\gamma}(\tau) \neq 0$.

Here $\boldsymbol{\beta}(\tau) \in \mathbb{R}^p$ and $\boldsymbol{\gamma}(\tau) \in \mathbb{R}^q$.

Score function:

$$S_n = n^{-1/2} \sum_{i=1}^n \mathbf{z}_i^* \psi_{\tau} \{ y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau) \},$$

- $\bullet \ \psi_{\tau}(u) = \tau I(u < 0);$
- $\bullet \ oldsymbol{Z}^* = (oldsymbol{z}_i^*) = oldsymbol{Z} \mathbf{X} (\mathbf{X}^T \Psi \mathbf{X})^{-1} \mathbf{X}^T \Psi oldsymbol{Z},$
- $\Psi = \operatorname{diag}\left(f_i\{Q_\tau(Y|\mathbf{x}_i, \mathbf{z}_i)\}\right);$
- $\hat{m{\beta}}(au)$ is the quantile coefficient estimator obtained under H_0 .

Asymptotic property: Under H_0 , as $n \to \infty$,

$$S_n = AN(0, M_n^{1/2}), (3.1)$$

where $M_n = n^{-1} \sum_{i=1}^n z_i^* z_i^{*T} \tau (1-\tau)$.

Rank-score test statistic:

$$T_n = S_n^T M_n^{-1} S_n \xrightarrow{d} \chi_q^2$$
, under H_0 .

Simplification for i.i.d. settings

- $Z^* = (z_i^*) = \{I \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\} Z$: the residuals by projecting Z on \mathbf{X} ;
- $M_n = \tau (1 \tau) n^{-1} \sum_{i=1}^n z_i^* z_i^{*T};$
- so no need to estimate the nuisance parameters $f_i\{Q_{\tau}(Y|\mathbf{x}_i, \mathbf{z}_i)\}$.

Construction of confidence interval (CI) of $\gamma(\tau)$

- $\gamma(\tau)$ is a parameter of interest, corresponding to one of the covariates.
- Cl of $\gamma(\tau)$ can be constructed by inversion of rank score test.
- Consider the hypotheses

$$H_0: \gamma(\tau) = \gamma_0$$
 v.s. $H_a: \gamma(\tau) \neq \gamma_0$,

where γ_0 is a prespecified scalar.

- Reject H_0 if $T_n \ge \chi^2_{\alpha}(1)$, the $(1-\alpha)$ th quantile of $\chi^2(1)$, and vice versa.
- The collection of all the γ_0 for which H_0 is not rejected is taken to be the $(1-\alpha)$ th Cl of $\gamma(\tau)$.
- Reference: Koenker (2005)

A special case for illustration

$$y_i = \beta_0(\tau) + \beta_1(\tau)x_i + e_i$$

Hypothesis H_0 : $\beta_1(\tau) = 0$.

The quantile rank score test is used on

$$S_n = n^{-1/2} \sum_i (x_i - \bar{x}) \psi_\tau (y_i - Q(\tau))$$

where $Q(\tau)$ is the τ -th quantile of $\{y_i\}$.

c.f. Sign test at $\tau = 0.5$.

3.3 Bootstrap

Idea of the bootstrap

- Data X_1, \dots, X_n from F_{θ} .
- We can estimate θ from $T(F_n)$, where F_n is the empirical distribution of the sample.
- If we know F, we can draw samples of size n from F, and get many copies of $\hat{\theta}$ to obtain the variance of the estimate.
- The bootstrap uses F_n as an approximation to F, and draws samples from F_n instead.

3.3.1 Residual Bootstrap

For i.i.d. errors, location-shift model $y_i = \mathbf{x}_i^T \beta(\tau) + \epsilon_i$:

- Obtain the estimator $\hat{\beta}(\tau)$ using the observed sample, and residuals $\hat{\epsilon}_i = y_i \mathbf{x}_i^T \hat{\beta}(\tau)$.
- Draw bootstrap samples $\epsilon_i^*, i = 1, \dots, n$ from $\{\hat{\epsilon}_i, i = 1, \dots, n\}$ with replacement, and define $y_i^* = \mathbf{x}_i^T \hat{\beta}(\tau) + \epsilon_i^*$.
- Compute the bootstrap estimator $\hat{\beta}^*(\tau)$ by quantile regression using the bootstrap sample.
- Carry out inference by calculating the covariance of $\hat{\beta}(\tau)$ by the sample covariance of bootstrap estimators or construct CI using percentile methods.

3.3.2 Paired Bootstrap

- Generate bootstrap sample (y_i^*, \mathbf{x}_i^*) by drawing with replacement from the n pairs $\{(y_i, \mathbf{x}_i), i = 1, \dots, n\}$.
- Obtain the bootstrap estimator $\hat{\beta}^*(\tau)$ by quantile regression using the bootstrap sample.

3.3.3 MCMB

Markov chain marginal bootstrap (mcmb) (He and Hu, 2002, Kocherginsky, Mu and He, 2005). Instead of solving a p-dimensional estimating equation for each bootstrap replication, MCMB solves p one-dimensional estimating equations.

Model:

$$Q_{\tau}(Y_i|\mathbf{x}_i) = \mathbf{x}_i^T \boldsymbol{\beta}(\tau), \quad \boldsymbol{\beta}(\tau) \in \mathbb{R}^p,$$

where $\mathbf{x}_i = (x_{i,1}, \cdots, x_{i,p})^T$.

Procedure

- (i) Calculate $r_i = y_i \mathbf{x}_i^T \hat{\boldsymbol{\beta}}(\tau)$. Define $\boldsymbol{z}_i = \mathbf{x}_i \psi_{\tau}(r_i) \bar{\boldsymbol{z}}$ with $\bar{\boldsymbol{z}} = n^{-1} \sum_{i=1}^n \mathbf{x}_i \psi_{\tau}(r_i)$, where $\psi_{\tau}(r) = \tau I(r < 0)$.
- (ii) Step 0: let $\boldsymbol{\beta}^{(0)} = \hat{\boldsymbol{\beta}}(\tau)$.
- (iii) Step k: for each integer $1 \leq j \leq p$ in the ascending order, draw with replacement from z_1, \dots, z_n to obtain $z_1^{j,k}, \dots, z_n^{j,k}$. Solve $\beta_j^{(k)}$ as the solution to

$$\sum_{i=1}^{n} x_{i,j} \psi_{\tau} \left\{ y_{i} - \sum_{l < j} x_{i,l} \beta_{l}^{(k)} - \sum_{l > j} x_{i,l} \beta_{l}^{(k-1)} - x_{i,j} \beta_{k}^{(k)} \right\}$$

$$= \sum_{i=1}^{n} z_{i}^{j,k}.$$

(iv) Repeat Step (iii) until K replications $\boldsymbol{\beta}^{(k)}, k=1,\cdots,K$ are obtained. The variance of $\hat{\boldsymbol{\beta}}(\tau)$ is then estimated by the sample variance of $\{\boldsymbol{\beta}^{(k)}, k=1,\cdots,K\}$.

Some Other Bootstrap Methods

- Bootstrap estimating equations: Parzen, Ying, and Wei (1994).
- Generalized bootstrap: Bose and Chatterjee (2003).
- Wild bootstrap: Feng, He and Hu (2011).
- Bayesian methods: Yang, Wang and He (2016).

Recommendations:

- Rank-score methods are quite reliable unless some covariate is heavily skewed.
- Paired bootstrap is slightly conservative.
- Wald-type methods are all right for large-sample problems.
- MCMB is useful when the dimension is high.

given by Professor Ying Wei

5 Examples

given by Professor Ying Wei

6 Nonparametric quantile curves

6.1 Introduction

Given data (x_i, y_i) , want to capture the dependence of y on x. Regression model:

$$y_i = f(x_i) + e_i.$$

Nonparametric Models

- Motivation: the underlying regression function is so complicated that no reasonable parametric model would be adequate
- ullet Do not assume any specific form of f. More flexible.
- Infinite dimensional parameters.

6.2 Local Polynomial

Local constant quantile regression

Define $f_{\tau}(x)=Q_{\tau}(Y|x=x)$: τ th conditional quantile of Y given X=x. That is $f_{\tau}(x)=argmin_a E\{\rho_{\tau}(Y-a)|X=x\}$.

The local constant quantile estimator of $f_{\tau}(x)$ is

$$\hat{f}_{\tau}(x) = argmin_a \sum_{i=1}^{n} \rho_{\tau}(y_i - a) K\left(\frac{x - x_i}{h}\right),$$

- h > 0 is the bandwidth parameter,
- $K(\cdot)$ is the kernel function,
- points within [x h, x + h] receive positive weights (except Gaussian kernel).

Local linear quantreg

ullet Approximate $f_{\tau}(x)$ by a linear function

$$f_{\tau}(z) = f_{\tau}(x) + f'_{\tau}(x)(z - x) \doteq a + b(z - x),$$

for z in a neighborhood of x.

- ullet Estimating $f_{ au}(x)$ is equivalent to estimating a
- Estimating $f'_{\tau}(x)$ is equivalent to estimating b
- Local linear estimator of $f_{\tau}(x)$ is $\hat{f}_{\tau}(x) = \hat{a}$, where \hat{a} and \hat{b} minimize

$$\sum_{i=1}^{n} \rho_{\tau} \left\{ y_i - a - b(x_i - x) \right\} K\left(\frac{x - x_i}{h}\right).$$

How to choose h

- When estimating f(x), only points within [x h, x + h] receive positive weights (except Gaussian kernel).
- smaller h: rougher estimates, relying heavily on the data near x, smaller bias, larger variance
- larger h: more averaging range, smoother estimates, larger bias, smaller variance

Bandwidth Selection (*m*-fold cross validation)

- Randomly divide the data into m non-overlapped and roughly equal-sized parts D_1, \dots, D_m .
- For the ith part, fit the model using the data from the test data, "predict" the τ th conditional quantiles, and calculate the quantile prediction error as

$$\sum_{j \in D_i} \rho_{\tau} \left\{ Y_j - \hat{f}_{\tau}(x_j)_{-D_i} \right\}.$$

- Repeat this procedure for $i=1,\cdots,m$, and calculate the averaged quantile prediction error.
- Select h with the smallest averaged prediction error.

6.3 B-splines

- B-splines are piecewise polynomials that are smoothly connected at the knots.
- B-spline representation is via a series of polynomial basis functions which have local support.
- Consider $x \in [0,1]$ with K=3 internal knots

$$\xi = (0.25, 0.50, 0.75)$$

Include the boundary knots:

$$\xi = (0, 0.25, 0.50, 0.75, 1), \quad \xi_0 = 0, \dots, \xi_{K+1} = \xi_4 = 1.$$

Summary: degree-p B-spline

• Define an augmented knot sequence:

$$\xi = (\xi_{-p}, \cdots, \xi_0, \xi_1, \cdots, \xi_K, \xi_{K+1}, \cdots, \xi_{K+p+1})$$

• For $i = -p, \cdots, K+p$, let

$$B_{i,0}(x) = \begin{cases} 1 & x \in [\xi_i, \xi_{i+1}) \\ 0 & \text{otherwise} \end{cases},$$

where $B_{i,0}(x) = 0$ if $\xi_i = \xi_{i+1}$.

• The ith B-spline basis function of degree j, $j=1,\cdots,p$ is given by

$$B_{i,j}(x) = \frac{x - \xi_i}{\xi_{i+j} - \xi_i} B_{i,j-1}(x) + \frac{\xi_{i+j+1} - x}{\xi_{i+j+1} - \xi_{i+1}} B_{i+1,j-1}(x),$$

for $i = -p, \dots, 0, \dots, K + p - j$.

How to estimate the quantile function given knots?

Given the B-spline basis functions of order p, the normalized basis functions add up to one, and the vector of basis functions is denoted by $\pi(x)$.

We approximate

$$f_{\tau}(x) = \pi(x)^T \alpha$$

for some coefficient α , and then estimate it by

$$\hat{\alpha} = argmin_{\alpha} \sum_{i} \rho_{\tau} (y_i - \pi(x_i)^T \alpha),$$

and

$$\hat{f}_{\tau}(x) = \pi(x)^T \hat{\alpha}.$$

How to choose K and knot locations

- For B-splines of degree p, suppose there are K internal knots, the knot locations can be chosen as the i/(K+1)th sample quantiles of x, $i=1,\cdots,K$.
- ullet The number of knots K can be chosen by minimizing the Schwartz Information Criterion

$$SIC(K) = \log \left[\sum_{i=1}^{n} \rho_{\tau} \{ y_i - \hat{f}_{\tau}(x_i) \} \right] + \frac{\log n}{n} e df,$$

where edf = K + p + 1 is the number of parameters in the model.

6.4 Quantile smoothing splines

• Estimate $f(\cdot)$ via minimizing the penalized objective function:

$$RSS(f,\tau,\lambda) = \sum_{i=1}^{n} \rho_{\tau} \{y_i - f(x_i)\} + \lambda V(f'),$$

- $-V(f') = \sum_{i=1}^{n-1} |f'(x_{i+1}) f'(x_i)|$ is the total variation penalty on f'
- $-\lambda$ is the smoothing parameter
- Basic property: the function f minimizing $RSS(f, \tau, \lambda)$ is a linear spline with knots at the points x_1, \dots, x_n .
- The solution at a general $\tau \in (0,1)$ can be obtained by using linear programming.
- Reference: Koenker, Ng, and Portnoy (1994)

6.5 Extensions

- additive model with $f_{\tau}(x_1, x_2) = f_1(x_1) + f_2(x_2)$
- partially linear model with $f_{\tau}(x,z) = x^T \beta_{\tau} + g_{\tau}(z)$
- single-index models with $f_{\tau}(x) = g_{\tau}(x^T \beta_{\tau})$

7 Censored quantile regression

7.1 Background

Data: $(\mathbf{x}_i, Y_i, \delta_i)$, $i = 1, \dots, n$, where

$$Y_i = \min(T_i, C_i), \quad \delta_i = I(T_i \le C_i).$$

Censored quantile regression:

$$T_i = \mathbf{x}_i^T \boldsymbol{\beta}_0(\tau) + e_i(\tau), \quad i = 1, \dots, n,$$

where $e_i(\tau)$ is the random error whose τ th quantile conditional on \mathbf{x}_i equals 0.

Why Censored Quantile Regression?

Example: Average Weekly Earnings v.s. Study Hours

7.2 Fixed Censoring

- Fixed censoring: the censoring times C_i are known for all observations, even for those subjects that are not censored. WLOG assume $C_i = C$.
- Examples of variables subject to fixed censoring:
 - viral load of HIV patients, antibody concentration in blood:
 censored due to detection limits;
 - age or salary in survey studies: censored due to top/bottom coding.

Identifiability under Censoring

- Conditional mean E(T|X) is **not identifiable**.
- But the conditional quantiles $Q_{\tau}(T|X)$ are identifiable for some τ .

40% right censoring (ed) at 200.

Identifiable quantile region: $\tau \in (0, 0.6)$.

Powell's Estimator

$$Q_{\tau}(T|\mathbf{x}_{i}) = \mathbf{x_{i}^{T}} \boldsymbol{\beta_{0}}(\tau), \quad Y_{i} = \min(T_{i}, C)$$

$$\Rightarrow \quad Q_{\tau}\{Y|\mathbf{x}_{i}\} = \min\{\mathbf{x_{i}^{T}} \boldsymbol{\beta_{0}}(\tau), \mathbf{C}\}.$$

Powell's estimator:

$$\hat{\boldsymbol{\beta}}(\tau) = argmin_{\boldsymbol{\beta} \in \mathbb{R}^p} \sum_{i=1}^n \rho_{\tau} \{ Y_i - \min(C, \mathbf{x}_i^T \boldsymbol{\beta}) \}.$$

- Computational challenges
 - non-convex objective function;
 - easy to get stuck at a local minimum.

References: Powell (1984, 1986)

7.3 Random Censoring

Assume C_i and T_i are conditionally independent given X_i .

Two iterative censored quantile regression algorithms:

- Portnoy (2003): split each censored point into two with proper weights.
- Peng and Huang (2008): use martingale-based estimating equations.

8 Applications

given by Professor Ying Wei