Assignment for Lecture 7

Zhihan Li

1600010653

May 26, 2018

Question 1

Proof Suppose $f \in C^4[a,b]$.

Assume a and b to be -1 and 1 respectively, and it remains to prove the existence of $\xi \in [-1,1]$ such that

$$\int_{-1}^{1} f(x) dx - \frac{1}{3} (f(-1) + 4f(0) + f(1)) = -\frac{1}{90} f^{(4)}(\xi).$$
 (1)

Consider

$$P(x) = \frac{1}{2}f(-1)x(x-1) - f(0)(x+1)(x-1) + \frac{1}{2}f(1)(x+1)x + \left(-\frac{1}{2}f(-1) - \frac{1}{2}f(1) - f^{(1)}(0)\right)(x+1)x(x-1).$$
(2)

and d(x) := f(x) - P(x). It can be verified that d satisfies d(-1) = d(0) = d(1) = d'(0) = 0. For $x \in (-1,0) \cup (0,1)$, there exists (proof postponed) $\xi_x \in [-1,1]$, such that

$$f(x) - P(x) = \frac{1}{24}x^{2}(x-1)(x+1)f^{(4)}(\xi_{x}).$$
 (3)

Therefore from continuity of $f^{(4)}$ there exists ξ_3 , such that

$$\int_{-1}^{1} f(x) dx - \frac{1}{3} (f(-1) + 4f(0) + f(1))$$

$$= \int_{-1}^{1} f(x) dx - \int_{-1}^{1} P(x) dx$$

$$= \int_{-1}^{1} \frac{1}{24} x^{2} (x - 1) (x + 1) f^{(4)} (\xi_{x}) dx$$

$$= \frac{1}{24} \int_{-1}^{1} x^{2} (x - 1) (x + 1) dx f^{(4)} (\xi)$$

$$= -\frac{1}{90} f^{(4)} (\xi)$$
(4)

as desired.

Existence of ξ_x : Without loss of generality, assume $x \in (0,1)$. Consider

$$Q(y) = f(y) - P(y) - \frac{f(x) - P(x)}{x^2(x-1)(x+1)} y^2(y-1)(y+1),$$
 (5)

which satisfies Q(-1) = Q(0) = Q(1) = Q'(0) = Q(x) = 0. Applying Rolle's mean value theorem, there exists $\xi_x \in [-1, 1]$ such that $Q^{(4)}(\xi_x) = 0$, which is equivalent to

$$f(x) - P(x) = \frac{1}{24} f^{(4)}(\xi) x^2 (x - 1) (x + 1).$$
 (6)

Question 2

Proof Let the (equally spaced) interpolation nodes be $x_0 = a, x_1, \dots, x_n = b$ respectively,

$$\phi_k(x) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{x - x_j}{x_k - x_j},$$
(7)

and

$$P_n(x) = \sum_{k=0}^{n} f(x_k) \phi_k(x)$$
(8)

and therefore the Newton-Cotes formula can be written as

$$I = \int_{a}^{b} P_{n}(x) dx = \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} \phi_{k}(x) dx.$$
 (9)

When $f(x) = x^n$, Lagrangian interpolation yields $f = P_n$, and therefore

$$I = \int_{a}^{b} P_{n}(x) dx = \int_{a}^{b} f(x) dx$$
 (10)

exactly.

If *n* is even, then n+1 is odd. It suffices to prove that for the case $f(x) = \left(x - \frac{a+b}{2}\right)^{n+1}$,

$$I = \int_{a}^{b} P_{n}(x) dx = \int_{a}^{b} f(x) dx = 0.$$
 (11)

Note that $\phi_k(x) = \phi_{n-k}(a+b-x)$ follows from definition, and therefore

$$2I = \sum_{k=0}^{n} f(x_k) \left(\int_{a}^{b} \phi_k(x) dx + \int_{a}^{b} \phi_{n-k}(a+b-k) dx \right)$$

$$= \sum_{k=0}^{n} (f(x_k) + f(x_{n-k})) \int_{a}^{b} \phi_k(x) dx = 0$$
(12)

as desired.

Question 3

Answer The result is shown in table 1. Error corresponds to $|I - \pi|$ here.

Table 1 Errors of different integration methods

1/h	Trapezoid	Simpson	Romberg 3	Romberg 4	Romberg 5	Gauss 2
1	1.41593e-01	8.25932e-03	5.24993e-04	6.86983e-06	1.16879e-08	5.94833e-03
2	4.15927e-02	2.40261e-05	1.44054e-06	1.51930e-08	5.98170e-11	1.72394e-05
3	1.85157e-02	8.72654e-07	4.40069e-08	2.38405e-11	9.85878e-14	6.20794e-07
4	1.04162e-02	1.51131e-07	7.55277e-09	2.35811e-13	8.88178e-16	1.07469e-07
5	6.66654e-03	3.96506e-08	1.98203e-09	3.10862e-14	0.00000e+00	2.81956e-08
8	2.60416e-03	2.36497e-09	1.18244e-10	8.88178e-16	4.44089e-16	1.68175e-09
10	1.66666e-03	6.20008e-10	3.09996e-11	4.44089e-16	0.00000e+00	4.40895e-10
20	4.16667e-04	9.68825e-12	4.84501e-13	0.00000e+00	4.44089e-16	6.88960e-12
30	1.85185e-04	8.49987e-13	4.21885e-14	4.44089e-16	0.00000e+00	6.04850e-13
40	1.04167e-04	1.51879e-13	7.99361e-15	0.00000e+00	0.00000e+00	1.07914e-13
50	6.66667e-05	3.95239e-14	2.22045e-15	0.00000e+00	0.00000e+00	2.84217e-14

Question 4

Proof Suppose zeros of ϕ_i are $x_1 < x_2 < \cdots < x_k$ with k < i, and without loss of generality assume $\phi_i, -\phi_i, \cdots, (-1)^k \phi_i$ are positive on $(x_k, b], (x_{k-1}, x_k), \cdots, (x_1, x_2), [a, x_1)$ respectively. (We may change the sign of ϕ_i by multiplying -1, and ignore repeated zeros away if signs do not change around ϕ_i) Consider

$$\psi(x) = (x - x_1)(x - x_2) \cdots (x - x_k). \tag{13}$$

Because $\deg g = k < i$ and consequently

$$\psi \in \operatorname{span} \langle \phi_0, \phi_1, \cdots, \phi_{i-1} \rangle,$$
 (14)

therefore

$$\int_{a}^{b} \rho(x) \phi_i(x) \psi(x) dx = 0.$$
(15)

However, this contradicts $\rho \phi_i \psi$ being continuous and non-negative, with finite points reaching equality.

As a result, $k \ge i$. Note that k > i can be ruled out because of the degree constraint, and therefore we can conclude k = i.

Question 5

Proof Because L_n is n-th Legendre polynomial, therefore

$$f_{i}(x) = \prod_{\substack{j=1\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(16)

satisfies deg $f_i = 2n - 2 \le 2n - 1$ and the quadrature is exact for f_i . Note that the quadrature gives

$$I = \sum_{k=1}^{n} A_k l_i(x_k) = \sum_{k=1}^{n} A_k \delta_{ik} = A_i$$

$$= \int_{a}^{b} f_i(x) dx > 0$$
(17)

as desired.

Question 6

Proof It suffices to prove the case a = 0, b = 1.

Because

$$\int_{a}^{b} 1 \, \mathrm{d}x = 1 = \frac{1}{6} (1 + 4 + 1), \tag{18}$$

$$\int_{a}^{b} x \, \mathrm{d}x = \frac{1}{2} = \frac{1}{6} \left(0 + 4 \cdot \frac{1}{2} + 1 \right),\tag{19}$$

$$\int_{a}^{b} x^{2} dx = \frac{1}{3} = \frac{1}{6}0 + 4 \cdot \frac{1}{4} + 1,$$
(20)

$$\int_{a}^{b} x^{3} dx = \frac{1}{4} = \frac{1}{6}0 + 4 \cdot \frac{1}{8} + 1,$$
(21)

$$\int_{a}^{b} x^{4} dx = \frac{1}{5} \neq \frac{5}{24} = \frac{1}{6}0 + 4 \cdot \frac{1}{16} + 1,$$
 (22)

therefore the quadrature applies for polynomials of degree no greater than 3 exactly. That is, algebraic precision of the quadrature is 3.