Recherche Opérationnelle I

Nadia Brauner

Nadia.Brauner@imag.fr

Programmation linéaire

Plan

Programmation linéaire

- 1 Introduction à la programmation linéaire
- 2 Interprétation géométrique
- Bases et points extrêmes

4 L'algorithme du simplexe

Plan

- 1 Introduction à la programmation linéaire
- 2 Interprétation géométrique
- Bases et points extrêmes

4 L'algorithme du simplexe

Cadre de la PL

Programmation linéaire

nombre fini de variables réelles, contraintes linéaires, objectif linéaire

Variables $x_1, x_2 \dots x_n$ réelles

Contrainte générique (contrainte i) :

Interprétation géométrique

$$\sum_{i=1}^n a_{ij} \mathbf{x}_j \leq b_i$$

Fonction-objectif générique (à maximiser / minimiser) :

$$f(x_1, x_2 \dots x_n) = \sum_{j=1}^n c_j x_j$$

Exemple: culture de courgettes et navets

Contraintes concernant les quantités d'engrais et d'anti-parasites

- 8ℓ engrais A disponible
 - $\rightarrow 2\ell/m^2$ nécessaires pour courgettes, $1\ell/m^2$ pour navets
- 7ℓ engrais B disponible
 - $\rightarrow 1\ell/m^2$ nécessaires pour courgettes, $2\ell/m^2$ pour navets
- 3ℓ anti-parasites disponible
 - $\rightarrow 1\ell/m^2$ nécessaires pour navets

Objectif : produire le maximum (en poids) de légumes, sachant que rendements = $4kg/m^2$ courgettes, $5kg/m^2$ navets

Exemple : culture de courgettes et navets

Variables de décision

- x_c : surface de courgettes
- x_n : surface de navets

Fonction objectif $\max 4x_c + 5x_n$

Contraintes

- $2x_c + x_n \le 8$ (engrais A)
- $x_c + 2x_n \le 7$ (engrais B)
- $x_n \le 3$ (anti-parasites)
- $x_c \ge 0$ et $x_n \ge 0$

Intérêt de la PL

Problème général d'optimisation sous contraintes

⇒ AUCUNE méthode GÉNÉRALE de résolution !!

Problème linéaire quelconque

⇒ existence de méthodes de résolution générales et efficaces

Ces méthodes sont efficaces en théorie et en pratique

⇒ existence de nombreux logiciels de résolution : Excel, CPLEX, Mathematica, LP-Solve...

Cadre restrictif

- variables réelles
- contraintes linéaires
- objectif linéaire

8

Représentation in extenso

- max $4x_c + 5x_n$
- $2x_c + x_n \le 8$ (engrais A)
- $x_c + 2x_n \le 7$ (engrais B)
- $x_n < 3$ (anti-parasites)
- $x_c > 0$ et $x_n > 0$

Représentation matricielle

$$\max \quad (4 \quad 5) \begin{pmatrix} x_c \\ x_n \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_c \\ x_n \end{pmatrix} \le \begin{pmatrix} 8 \\ 7 \\ 3 \end{pmatrix}$$

$$x_c \ge 0 \qquad x_n \ge 0$$

Représentation in extenso

$$\max z = \sum_{j} c_{j} x_{j}$$

$$s.c. \qquad \sum_{j} a_{ij} x_{j} \quad \begin{cases} \leq \\ \geq \\ = \end{cases} \quad b_{i} \qquad i = 1, 2 \dots m$$

$$x_{j} \qquad \geq \qquad 0 \qquad j = 1, 2 \dots n$$

ullet second membre $b=\left(egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight)$

• matrice de format $m \times n$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \ddots & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

• coût (ou profit) $c = (c_1, c_2 \dots c_n)$

• n var. de décision
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Représentation matricielle

$$\max z = cx$$

s.c.
$$Ax \left\{ \begin{array}{l} \leq \\ \geq \\ = \end{array} \right\} b$$

$$x \geq 0$$

Vocabulaire

- x_i variable de décision du problème
- $x = (x_1, \dots, x_n)$ solution réalisable (admissible) ssi elle satisfait toutes les contraintes
- ensemble des solutions réalisables = **domaine** ou région admissible
- $x = (x_1, \dots, x_n)$ solution optimale ssi elle est réalisable et optimise la fonction-objectif
- contraintes inégalité ou égalité linéaire
 - $a_{11}x_1 + a_{12}x_2 ... + a_{1n}x_n < b_1$
 - $a_{21}x_1 + a_{22}x_2 ... + a_{2n}x_n > b_2$
 - $a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3$
- fonction objectif (ou fonction économique) linéaire
 - $\max / \min c_1 x_1 + c_2 x_2 \dots + c_n x_n$

Applications

Feuille de TD: Programmation linéaire

- Production de vins
- Publicité
- Fabrication d'huile d'olives
- Bergamote

Caseine:

- Cucumbers and onions
- Perfumes
- Dairy Products
- Apples

Forme canonique d'un PL

- maximisation
- toutes les variables sont non négatives
- toutes les contraintes sont des inéquations du type "\le "

$$\max z = \sum_{j} c_{j} x_{j}$$

 $s.c.$ $\sum_{j} a_{ij} x_{j} \leq b_{i}$ $i = 1, 2 ... m$
 $x_{j} \geq 0$ $j = 1, 2 ... n$

forme matricielle

Forme standard d'un PL

- maximisation
- toutes les variables sont non négatives

Interprétation géométrique

toutes les contraintes sont des équations

$$\max z = \sum_{j} c_{j} x_{j}$$

$$s.c. \quad \sum_{j} a_{ij} x_{j} = b_{i} \quad i = 1, 2 \dots m$$

$$x_{j} \geq 0 \quad j = 1, 2 \dots n$$

forme matricielle

$$\max z = cx
 s.c. Ax = b
 x \ge 0$$

Passage entre les formes

ullet équation o inéquation

$$ax = b \iff \begin{cases} ax \leq b \\ ax \geq b \end{cases}$$

- $\max \leftrightarrow \min \quad \max f(x) = -\min -f(x)$
- ullet inéquation o équation : ajouter une variable d'écart

$$ax \le b \iff ax + s = b, \quad s \ge 0$$

 $ax \ge b \iff ax - s = b, \quad s \ge 0$

ullet variable non contrainte o variables positives

$$x \leq 0 \iff \begin{cases} x = x^+ - x^- \\ x^+, x^- \geq 0 \end{cases}$$

Passage entre les formes

Feuille de TD : Programmation linéaire

Exercice Formes linéaires et canoniques

Linéariser un problème non linéaire

e; : expression linéaire des variables de décision

• **obj**: min max $\{e_1, e_2 \dots e_n\}$

$$\begin{cases}
\min y \\
y \ge e_i & i = 1, 2 \dots n
\end{cases}$$

• **obj**: $\max \min\{e_1, e_2 \dots e_n\}$

• **obj** : min |*e*₁|

$$|e_1| = \max(e_1, -e_1) \quad \left\{ egin{array}{ll} \min y \ y \geq e_1 \ y \geq -e_1 \end{array}
ight. \quad \left\{ egin{array}{ll} \min e^+ + e^- \ e_1 = e^+ - e^- \ e^+, e^- \geq 0 \end{array}
ight.$$

Linéariser un problème non linéaire

Feuille de TD : Programmation linéaire

Exercice Linéarisation

Un peu d'histoire

- années 30-40 : Kantorovitch, économiste soviétique
 - \Rightarrow modèles linéaires pour la planification et l'optimisation de la production
- années 40-50 : Dantzig, mathématicien américain
 - \Rightarrow algorithme du simplexe
- application historique
 - Opérations Vittles et Plainfare pour ravitaillement de la trizone pendant le blocus de Berlin par pont aérien (23 juin 1948 – 12 mai 1949)
 - simplexe exécuté à la main (des milliers de variables), jusqu'à 12 000 tonnes de matériel par jour!
- 1975 : prix Nobel économie Kantorovitch
- XXIème siècle : logiciels de PL disponibles partout, utilisation de la PL dans tous les domaines industriels...

Plan

- 1 Introduction à la programmation linéair
- 2 Interprétation géométrique
- Bases et points extrêmes

4 L'algorithme du simplexe

Exemple : culture de courgettes et navets

Variables de décision

- x_c : surface de courgettes
- x_n : surface de navets

Fonction objectif $\max 4x_c + 5x_n$

Contraintes

- $2x_c + x_n \le 8$ (engrais A)
- $x_c + 2x_n \le 7$ (engrais B)
- $x_n \le 3$ (anti-parasites)
- $x_c \ge 0$ et $x_n \ge 0$

Interpréter les contraintes courgettes et navets

- $2x + y \le 8 \Rightarrow$ demi-plan de \mathbb{R}^2
- $x + 2y \le 7 \Rightarrow \text{demi-plan}$
- $y \le 3 \Rightarrow \text{demi-plan}$
- $x \ge 0$ et $y \ge 0 \Rightarrow$ demi-plans

Ensemble des solutions réalisables = intersection de ces demi-plans : polyèdre

Optimiser l'objectif

Les **lignes de niveau** $\{4x + 5y = \text{constante}\}\$ sont des droites parallèles

Interprétation géométrique

Géométrie d'un PL

L'ensemble des solutions réalisables est toujours un **polyèdre** (intersection de demi-espaces)

Les lignes de niveau $\{f = \text{constante}\}\$ de la fonction-objectif f sont des **hyperplans affines** $(n = 2 \Rightarrow \text{droite}, n = 3 \Rightarrow \text{plan...})$

Géométrie d'un PL

Optimum atteint au bord

L'optimum de la fonction-objectif, s'il existe, est atteint en (au moins) un **sommet** du polyèdre.

Justification mathématique : les dérivées partielles de f(x) = c.x ne s'annulent jamais, et le domaine $\{x \mid \sum_{j=1}^n a_{ij}x_j \leq b_i, i=1,\ldots,m\}$ est compact \Rightarrow l'optimum est atteint au bord...

Solutions d'un PL

La région admissible peut être

- vide
 - nb solutions optimales : 0
- non vide, bornée
 - ullet nb solutions optimales : 1 ou ∞
- non vide, non bornée
 - ullet nb solutions optimales : 0 ou 1 ou ∞

Proposer des exemples de PL pour chacun des cas

Feuille de TD : Programmation linéaire

• Exercice Résolution graphique

Plan

1 Introduction à la programmation linéair

- 2 Interprétation géométrique
- Bases et points extrêmes
- 4 L'algorithme du simplexe

Rappels

$$\begin{array}{cccc}
\text{max} & z &= cx \\
\text{s.c.} & Ax &\leq b \\
& x &\geq 0
\end{array}$$

- A matrice $m \times n$
- $\bullet \ x = (x_1 x_2 \dots x_n)$
- $\bullet \ b = (b_1 \ b_2 \dots b_m)$
- $c = (c_1 c_2 \dots c_n)$
- Les contraintes définissent un polyèdre
- Une solution optimale est un sommet du polyèdre

Comment énumérer les sommets d'un polyèdre ?

Passage à la forme standard

Forme standard

On peut rajouter des variables d'écart :

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \Leftrightarrow \sum_{j=1}^{n} a_{ij} x_j + e_i = b_i, e_i \ge 0$$

PL standard:

$$\begin{array}{rcl}
\text{max} & z(x) & = & c.x \\
\text{s.c} & Ax & = & b \\
& x & \ge & 0
\end{array}$$

On travaille dans un espace de dimension plus grande, mais toutes les contraintes sont des égalités.

Manipulations algébriques plus aisées

Passage à la forme standard

$$\max z = 4x + 5y$$
s.c.
$$2x + y \le 8$$

$$x + 2y \le 7$$

$$y \le 3$$

$$x, y \ge 0$$

max
$$z = 4x + 5y$$

s.c. $2x + y + e_1 = 8$
 $x + 2y + e_2 = 7$
 $y + e_3 = 3$
 $x, y, e_1, e_2, e_3 > 0$

- 9 points intéressants (intersection de contraintes)
- 5 points admissibles

énumération de ces 9 points comme solution de la forme standard (solutions de base)

S.C.	2x	+)	y +	e_1		= 8	
	X	+ 2	У	-	$\vdash e_2$	= 7	
		J	У		$+ e_3$	$_{3} = 3$	
	х,	у	,	$e_1,$	$e_2, \qquad e_3$	≥ 0	
X	У	e_1	e_2	<i>e</i> ₃	sol de base	admiss.	pt extrême
0	0	8	7	3	~	V	(0,0)
<u>0</u>	8	<u>0</u>	-9	-5	V	X	
<u>0</u>	3.5	4.5	<u>0</u>	-0.5	V	X	
<u>0</u>	3	5	1	<u>0</u>	✓	✓	(0,3)
4	<u>0</u>	<u>0</u>	3	3	V	✓	(4,0)
7	<u>0</u>	-6	<u>0</u>	3	V	X	
	0			<u>0</u>	×	X	
3	2	<u>0</u>	<u>0</u>	1	V	✓	(3,2)
2.5	3	<u>0</u>	-1.5	<u>0</u>	✓	X	
1	3	3	<u>0</u>	<u>0</u>	✓	✓	(1,3)

{points extrêmes} ← {solutions de base admissibles}

- Système linéaire Ax = b
- A format $m \times n$, rang $A = m \le n$
- Base de A: sous-matrice $B(m \times m)$ inversible de A A = (B, N)

$$(B, N)$$
 $\begin{pmatrix} x_B \\ x_N \end{pmatrix} = b$ ou $Bx_B + Nx_N = b$
 $\Rightarrow x_B = B^{-1}b - B^{-1}Nx_N$

- **Solution de base** associée à *B* :
 - $x_N = 0$ variables hors base
 - $x_B = B^{-1}b$ variables de base

Applications

Feuille de TD : Programmation linéaire

Exercice Bases *2

Base et solution de base

$$\begin{cases} 2x + y + e_1 = 8 \\ x + 2y + e_2 = 7 \\ y + e_3 = 3 \\ x, y, e_1, e_2, e_3 \ge 0 \end{cases}$$

Base initiale ? $\{e_1, e_2, e_3\}$ par exemple :

$$\begin{cases} 2x + y + e_1 = 8 \\ x + 2y + e_2 = 7 \\ y + e_3 = 3 \end{cases} \Leftrightarrow \begin{cases} e_1 = 8 - 2x - y \\ e_2 = 7 - x - 2y \\ e_3 = 3 - y \end{cases}$$

 e_1, e_2, e_3 = variables de base, x, y = variables hors base

Base et solution de base

$$\begin{cases} e_1 = 8 - 2x - y \\ e_2 = 7 - x - 2y \\ e_3 = 3 - y \end{cases}$$

- on met les variables hors base à 0
- on en déduit les valeur des variables de base

$$x = y = 0 \Rightarrow \begin{cases} e_1 = 8 - 2x - y = 8 \\ e_2 = 7 - x - 2y = 7 \\ e_3 = 3 - y = 3 \end{cases}$$

Bases et points extrêmes

- Ax = b, $x \ge 0$
- $(x_B, 0)$ associée à B est une **solution de base admissible** si $x_B \ge 0$
- {points extrêmes du polyèdre} ←⇒ {solutions de base admissibles du système linéaire correspondant}
- nombre de points extrêmes $pprox C_n^m = \frac{n!}{m!(n-m)!}$
- solution de base dégénérée : certaines variables de base sont nulles
- si A est inversible : solution de base unique

Bases et points extrêmes

Base voisine et pivotage

Bases voisines

Deux sommets voisins correspondent à deux bases B et B' telles qu'on remplace une variable de B pour obtenir B'

▶ passer à un sommet voisin = changer de base (base voisine)principe du pivotage

Bases et points extrêmes

Qui faire entrer dans la base ?

Essayons avec y: quelle est la valeur max que pourra avoir y?

•
$$e_1 = 8 - 2x - y \ge 0 \Rightarrow y \le 8$$

•
$$e_2 = 7 - x - 2y \ge 0 \Rightarrow y \le 3.5$$

•
$$e_3 = 3 - y \ge 0 \Rightarrow y \le 3$$

Bilan :
$$y_{\text{max}} = 3$$
, pour $y = y_{\text{max}}$ on a $e_1 = 5 - 2x$, $e_2 = 1 - x$, et $e_3 = 0$

► candidat pour une nouvelle base :

$$\{e_1, e_2, e_3\} \cup \{y\} \setminus \{e_3\} = \{e_1, e_2, y\}$$

$$(x, y, e_1, e_2, e_3) = (0, 3, 5, 1, 0)$$

Plan

1 Introduction à la programmation linéair

Interprétation géométrique

- Bases et points extrêmes
- 4 L'algorithme du simplexe

Vers un algorithme de résolution

- ▶ Méthode de résolution "naïve" : énumérer tous les sommets. calculer f sur ces points, prendre le sommet pour lequel f est optimisé :
 - fonctionne : nombre fini de sommets

Interprétation géométrique

• limitation : ce nombre peut être très grand en général...

L'algorithme du simplexe (G. B. Dantzig 1947) Algorithme itératif permettant de résoudre un problème de programmation linéaire.

Principe d'amélioration locale

À partir d'un sommet, chercher un sommet voisin qui améliore l'objectif.

Principe d'amélioration locale (maximisation) :

Soit x_0 sommet non optimum. Alors il existe x, un sommet **voisin** de x_0 , tel que $f(x) > f(x_0)$.

▶ Méthode de résolution : on part d'un sommet x_0 quelconque, on passe à un sommet voisin pour lequel f augmente, et ainsi de suite.

Remarque : on passe d'un problème **continu** (variables réelles) à un problème **discret** (nombre fini de sommets)...

Programmation linéaire

Illustration 2D : courgettes et navets

$$x_0 = (0,0), z = 0 \rightarrow x = (0,3), z = 15$$

 $x_0 = (0,3), z = 15 \rightarrow x = (1,3), z = 19$
 $x_0 = (1,3), z = 19 \rightarrow x = (3,2), z = 22$

plus d'amélioration locale possible ⇒ optimum

z = 4x + 5y

Bases et points extrêmes

Programmation linéaire

Illustration concrète

► Standardisation :

Maximiser
$$z = 4x + 5y$$

s.c.
$$\begin{cases}
2x + y \le 8 \\
x + 2y \le 7 \\
y \le 3 \\
x, y \ge 0
\end{cases}$$

Maximiser
$$z = 4x + 5y$$

s.c.
$$\begin{cases}
2x + y + e_1 = 8 \\
x + 2y + e_2 = 7 \\
y + e_3 = 3 \\
x, y, e_1, e_2, e_3 \ge 0
\end{cases}$$

Bases et points extrêmes

Base initiale ? $\{e_1, e_2, e_3\}$ par exemple :

$$\begin{cases} 2x + y + e_1 = 8 \\ x + 2y + e_2 = 7 \\ y + e_3 = 3 \end{cases} \Leftrightarrow \begin{cases} e_1 = 8 - 2x - y \\ e_2 = 7 - x - 2y \\ e_3 = 3 - y \end{cases}$$

 e_1, e_2, e_3 = variables de base, x, y = variables hors base

Solution de base associée

- on met les variables hors base à 0
- ▶ on en déduit :
 - valeur des variables de base
 - valeur de z

ici :
$$x = y = 0 \Rightarrow \begin{cases} e_1 = 8 - 2x - y = 8 \\ e_2 = 7 - x - 2y = 7 \\ e_3 = 3 - y = 3 \end{cases}$$
 et $z = 4x + 5y = 0$

Changement de base

Observation essentielle : $z = 4x + 5y = 0 \Rightarrow$ on peut augmenter z si x ou y rentre dans la base.

Essayons avec y: quelle est la valeur max que pourra avoir y?

•
$$e_1 = 8 - 2x - y \ge 0 \Rightarrow y \le 8$$

•
$$e_2 = 7 - x - 2y \ge 0 \Rightarrow y \le 3.5$$

•
$$e_3 = 3 - y \ge 0 \Rightarrow y \le 3$$

Bilan : $y_{\text{max}} = 3$, pour $y = y_{\text{max}}$ on a $e_1 = 5 - x$, $e_2 = 1 - x$, et $e_3 = 0$

► candidat pour une nouvelle base :

$$\{e_1, e_2, e_3\} \cup \{y\} \setminus \{e_3\} = \{e_1, e_2, y\}$$

Nouvelle base
$$\{e_1, e_2, y\}$$

$$\begin{cases}
e_1 = 8 - 2x - y \\
e_2 = 7 - x - 2y \\
e_3 = 3 - y
\end{cases} \Rightarrow \begin{cases}
e_1 = 8 - 2x - y = 5 - 2x + e_3 \\
e_2 = 7 - x - 2y = 1 - x + 2e_3 \\
y = 3 - e_3
\end{cases}$$

Exprimons z en fonction des variables hors base

$$z = 4x + 5y = 15 + 4x - 5e_3$$

Solution de base associée

$$x = e_3 = 0 \Rightarrow \begin{cases} e_1 = 5 - 2x + e_3 = 5 \\ e_2 = 1 - x + 2e_3 = 1 \end{cases}$$
 et $z = 15$
 $y = 3 - e_3 = 3$

Itération

 $z = 15 + 4x - 5e_3$ peut encore augmenter si x entre dans la base

Si x entre, qui sort ?

Valeur max de x :

•
$$e_1 = 5 - 2x + e_3 > 0 \Rightarrow x < 2.5$$

•
$$e_2 = 1 - x + 2e_3 \ge 0 \Rightarrow x \le 1$$

•
$$y = 3 - e_3 \ge 0 \Rightarrow$$
 aucune contrainte sur x

Bilan : $x_{max} = 1$ et e_2 sort.

Nouvelle base $\{e_1, y, x\}$

$$\begin{cases} e_1 = 3 + 2e_2 - 3e_3 \\ x = 1 - e_2 + 2e_3 \\ y = 3 - e_3 \\ z = 19 - 4e_2 + 3e_3 \end{cases}$$

Itération (suite)

 $z = 19 - 4e_2 + 3e_3$ peut encore augmenter si e_3 entre dans la base

Si e₃ entre, qui sort? Valeur max de e_3 :

• $e_1 = 3 + 2e_2 - 3e_3 > 0 \Rightarrow e_3 < 1$

Interprétation géométrique

- $x = 1 e_2 + 2e_3 \ge 0 \Rightarrow$ aucune contrainte sur e_3
- $v = 3 e_3 > 0 \Rightarrow e_3 < 3$

Bilan : $e_{3_{max}} = 1$, e_1 sort. Nouvelle base $\{e_3, y, x\}$:

$$\begin{cases} e_3 = 1 + 2/3e_2 - 1/3e_1 \\ x = 3 + 1/3e_2 - 2/3e_1 \\ y = 2 - 2/3e_2 + 1/3e_1 \\ z = 22 - 2e_2 - e_1 \end{cases}$$

Terminaison

On a
$$z = 22 - 2e_2 - e_1$$
, donc $z^* \le 22$

Or la solution de base x = 3, y = 2, $e_3 = 1$ donne z = 22

▶ optimum

La condition de terminaison concerne les coefficients de z exprimée avec les variables hors base.

Coûts réduits

B, une base de Ax = b la fonction objectif :

$$z = cx = c_B x_B + c_N x_N$$

$$= c_B B^{-1} b - (c_B B^{-1} N - c_N) x_N$$

$$= z_0 - \sum_{j=1}^{n} (c_B B^{-1} a^j - c_j) x_j$$

$$= z_0 - \sum_{j=1}^{n} (z_j - c_j) x_j$$

 $z_j - c_j = c_B B^{-1} a^j - c_j$ est le coût réduit de la variable hors base x_j

à chaque itération

$$z = z_0$$
 coûts réduits 0

$$x_B = \bigoplus$$

à l'optimum

$$\begin{array}{ccc} & x_N & x_B \\ z & = z_0^* & \bigcirc & 0 \end{array}$$

$$x_B = \bigoplus$$

Principe heuristique : faire rentrer en base la variable avec le coefficient le plus grand Qui faire sortir?

Bases et points extrêmes

Principe du quotient minimal

colonne pivot x_1 second membre > 0quotient $a_1 > 0$ b_1 b_2 $a_2 < 0$ $a_3 < 0$ *b*₃ $a_4 = 0$ b_4

ligne
$$r$$
 $\frac{b_r}{a_r} = \min\left\{-\frac{b_i}{a_i}|a_i < 0\right\}$

Pivotage

Phase II

Données : un programme linéaire et une solution de base admissible

Résultat : une solution de base admissible optimale ou déclarer "Pl non borné"

- Choix d'une colonne (variable) entrante
 - choisir une variable hors base x_i (colonne) ayant un coût réduit négatif
 - s'il n'existe pas de colonne entrante : STOP, la solution de base est optimale
- Choix d'une ligne (variable) sortante
 - Choisir une ligne r minimisant le quotient
 - s'il n'existe pas de ligne sortante : STOP le tableau courant est non borné
- Mise à jour de la base et du tableau
 - pivoter autour de a_{ri} et retourner en (1)

- Solution de base dégénérée si une ou plusieurs variables de base sont zéros (plus de bijection entre les solutions de base admissibles et les points extrêmes)
- Si toutes les solutions de base admissibles sont non dégénérées, l'algorithme du simplexe termine après un nombre fini d'itérations

Phase I

La Phase II de l'algorithme du simplexe prend en entrée une base réalisable. La Phase I permet de trouver une première base réalisable.

Découvrez la Phase I

• Caseine: Phase I*

• Feuille d'exercice: Simplexe *2