

Human-Digital Content Interaction for Immersive 4D Home Entertainment The 1st New Zealand-Korea Strategic Research Partnership Workshop

Human-Digital Content Interaction for Immersive 4D Home Entertainment 2015

Research Activities of NZ team
Taehyun rhee (VUW), Mark Billinghurst (HitLabNZ)

Research Activities

Ewha W. Univ.

Hand Animation and Force Feedback

- Interference-free Hand Modeling
- Grasp Planning and Synthesis
- Haptic Rendering

Victoria Univ.

Perception-based Rendering

- Perceptually optimized rendering for reducing simulator discomfort in HMD
- Perceptually optimized rendering for seamless composites

Korea Univ.

Interaction Techniques using Wearable Devices

- Pinch-based Interaction
- Vibro-tactile Pseudo-haptic Feedback
- Full-body Interaction using Wearable Sensors

U. of Canterbury

Augmented Hand Interaction

- Augmenting immersive movie scene with user's body and environment
- Physical simulation-based natural hand gesture interaction in immersive movie

Victoria University

Interactive & Immersive

 Provide a visualisation solution for immersive presentation in interactive applications

Challenge: human friendly immersive visualisation

- Maximise immersive filling
 - A stereo visualisation covering a wide field of view
- Minimise visual discomfort
 - reducing simulator sickness in HMD
 - → Nausea, eye fatigue, headache

Research Aim 1

 "Perceptually optimised rendering for reducing visual discomfort in HMD"

Research Activities

- Investigating human discomfort factors in HMD
- Develop rendering solution to minimise the discomfort factors
- Perceptually optimise the rendering parameters

Challenge: interactive seamless composites

- Maximise visual quality
 - Seamless blending btw virtual objects and the background cinematic scene
- Minimise computing time
 - Real-time rendering to support interactions

TEST

Observations

 Human visual system is not sensitive to perceive local illumination changes

Research Aim 2

 "Perceptually optimised rendering for seamless composites"

Research Activities

- Interactive IBL rendering using perceptually optimised HDR radiance map
- Illumination composites from virtual to real world scene
 - Interactive differential rendering
- Mutual global illumination btw real and virtual objects

Example

University of Canterbury

Challenge: compelling experience of being in the cinematic scene

- HMD based immersive movies
 - 360 view of the movie (virtual) scene
- But,
 - Where did my body go?
 - Can I interact with the scene, as I do in the real world?

Research Aims

- Where did my body go?
 - → Augmenting user's body into the cinematic scene

- Can I interact with the scene, as I do in the real world?
 - → Physically based human hand interaction

Research Aim 1

- Augmenting the user's body and environment into the cinematic scene
 - Augmented Virtuality
 - ✓ Augmenting the virtual (cinematic) scene with live real world imagery

Vision

Seamless blending of the user's body and environment into cinematic experience

Research Activities for Aim 1

- Hardware setup and keying based user's body augmentation
- Physical environment reconstruction and augmentation
- Realistic rendering integration and user evaluation

Setup to Capture the Real World

AR Rift

Mixing User's Body into Movie

- Chroma Keying
 - Skin colour
 - Green or Blue background
- Depth Keying
 - Depth camera

Mixing User's Environment

- Reconstruction and tracking of physical objects in user's environment
- Use of physical objects in user's environment as Tangible interfaces

Integrate Realistic Rendering and User Evaluation

- Integration of Realistic Image Based Rendering Methods
 - Collaboration with VUW & Ewha Univ.
- User Evaluation
 - Assess how user experience / presence is improved with introducing user's body and other physical objects into the movie scene

Research Aim 2

Physically based human hand interaction

- Normal free-hand input natural for AR/VR interaction
 - Unencumbered, bi-manual
 - Supports rich interaction

Vision

Interacting with cinematic content as naturally as with real world objects

Research Activities for Aim 2

- Skeletal motion tracking for gesture interaction
- Hand volume based physical interaction
- Haptic feedback integration and user evaluation

Skeletal Motion Tracking

- Track hand motion
 - Depth camera input
- Create skeleton
 - Multi-layered approach
- Gesture recognition

Multi-Layered Approach

5. Gesture Recognition

- Static Gestures
- Dynamic Gestures
- Context based Gestures

4. Modeling

- Hand recognition/modeling
- Rigid-body modeling
 - 3. Classification/Tracking
 - 2. Segmentation
 - 1. Hardware Interface

Hand Volume Based Interaction

- Represent hands as collections of spheres
- Physics engine for real world interaction

Haptic Feedback Integration

- Explore haptic feedback
 - Vibro-tactile, force feedback
 - Collaboration with Korea Univ. & Ewha Univ
- User evaluation

HDI²

With and without haptics

Early Results

- HMD AR View
 - Viewpoint tracking
- Two hand input
 - Skeleton interaction, occlusion

TEAM New Zealand

- Project Leader
 - Taehyun Rhee, Victoria University of Wellington
- Co-Leader
 - Mark Billinghurst, University of Canterbury
- Key Researcher
 - Gun Lee, University of Canterbury
 - J.P. Lewis, Victoria University of Wellington (Weta Digital)
 - Gina Grimshaow, Victoria University of Wellington
- Students
 - 1 PhD, 3 Master per year (+ other researcher)

