Calculs approchés d'intégrales

Dans tout le problème, a et b désignent deux réels tels que a < b. Pour tout entier naturel p non nul, on note $(x_i)_{i \in \llbracket 0,p \rrbracket}$ la subdivision régulière de [a,b] de pas $\frac{b-a}{p}$. Ainsi, pour tout $i \in \llbracket 0,p \rrbracket$,

$$x_i = a + i \frac{b - a}{p}.$$

Une méthode d'intégration est d'ordre au moins n si elle est exacte sur les polynômes de degrés inférieurs ou égaux n et non exacte pour au moins un polynôme de degré n+1.

Partie I : Méthode des rectangles à gauche

La méthode composée des rectangles à gauche consiste à découper le segment [a,b] en p sous-segments puis à appliquer la méthode simple des rectangles à gauche sur chacune de ces subdivisions :

$$I_p^g(f) = \frac{b-a}{p} \sum_{i=0}^{p-1} f(x_i).$$

Dans toute cette partie, f désigne une fonction de classe \mathscr{C}^1 sur le segment [a,b]. On note F une primitive de f et $M_1 = \sup_{[a,b]} |f'|$.

1. Montrer que, pour tout $i \in [0, p-1]$,

$$|F(x_{i+1}) - F(x_i) - (x_{i+1} - x_i)F'(x_i)| \le \frac{M_1}{2}(x_{i+1} - x_i)^2.$$

2. En déduire que

$$\left| \int_{[a,b]} f - I_p^g(f) \right| \leqslant \frac{M_1(b-a)^2}{2p}.$$

- **3.** Montrer que cette borne est atteinte pour $f: x \mapsto x a$.
- 4. Montrer que la méthode des rectangles à gauche est d'ordre 0.

Partie II : Méthode des rectangles médians

La méthode composée des rectangles médians consiste à découper le segment [a,b] en p sous-segments puis à appliquer la méthode simple des rectangles médians sur chacune de ces subdivisions :

$$I_p^m(f) = \frac{b-a}{p} \sum_{i=0}^{p-1} f\left(\frac{x_i + x_{i+1}}{2}\right).$$

Dans toute cette partie, f désigne une fonction de classe \mathscr{C}^2 sur le segment [a,b]. On note F une primitive de f et $M_2 = \sup_{[a,b]} |f''|$. Pour tout

entier
$$i \in [0, p-1]$$
, on pose $\gamma_i = \frac{x_i + x_{i+1}}{2}$

- **5.** Soit $i \in [0, p-1]$.
 - a) Montrer que

$$(x_{i+1} - x_i)f(\gamma_i) = \int_{x_i}^{x_{i+1}} \left(f(\gamma_i) + (t - \gamma_i)f'(\gamma_i) \right) dt.$$

b) En déduire que

$$|F(x_{i+1}) - F(x_i) - (x_{i+1} - x_i)F'(\gamma_i)| \le \frac{M_2}{24}(x_{i+1} - x_i)^3.$$

6. Montrer que

$$\left| \int_{[a,b]} f - I_p^m(f) \right| \leqslant \frac{M_2(b-a)^3}{24p^2}$$

- 7. Montrer que cette borne est atteinte pour $f: x \mapsto (x-a)^2$.
- $\pmb{8.}$ Montrer que la méthode des rectangles médians est d'ordre 1.

Partie III : Méthode des trapèzes

La méthode composée des trapèzes consiste à découper le segment [a,b] en p sous-segments puis à appliquer la méthode simple des trapèzes sur chacune de ces subdivisions :

$$I_p^t(f) = \frac{b-a}{p} \sum_{i=0}^{p-1} \frac{f(x_i) + f(x_{i+1})}{2}.$$

On suppose dans cette partie que f est une fonction de classe \mathscr{C}^2 et on note $M_2 = \sup_{[a,b]} |f''|$. Pour tout $i \in [0,p-1]$, on note φ_i l'approximation affine sur $[x_i,x_{i+1}]$ de f et $g_i = f - \varphi_i$.

9. À l'aide d'intégrations par parties, montrer que, pour tout $i \in [0, p-1]$,

$$\int_{x_i}^{x_{i+1}} f''(t)(t-x_i)(x_{i+1}-t) dt = -2 \int_{x_i}^{x_{i+1}} g_i(t) dt.$$

10. En déduire que

$$\left| \int_{[a,b]} f - I_p^t(f) \right| \leqslant \frac{M_2(b-a)^3}{12p^2}.$$

- **11.** Montrer que cette borne est atteinte pour $f: x \mapsto (x-a)^2$.
- 12. Montrer que la méthode des trapèzes est d'ordre 1.
- 13. Montrer que, lorsque $f'' \ge 0$ (en particulier lorsque f est convexe), pour tout entier naturel $p, \int_{[a,b]} f \leqslant I_p^t(f)$.

Partie IV: Méthode de Simpson

La méthode composée de Simpson consiste à découper le segment [a,b] en p sous-segments puis à approcher, sur chacune de ces subdivisions, la fonction f par un polynôme de degré inférieur ou égal à 2:

$$I_p^s(f) = \frac{b-a}{6p} \sum_{i=0}^{p-1} \left[f(x_i) + 4f\left(\frac{x_i + x_{i+1}}{2}\right) + f(x_{i+1}) \right].$$

14. Soit $g \in \mathscr{C}^5([a,b],\mathbb{R})$ une fonction impaire. On note $K_5 = \sup_{[a,b]} |g^{(5)}|$.

En utilisant la formule de **Taylor** avec reste intégral pour g et g', montrer que

$$\left| g(x) - \frac{x}{3} (g'(x) + 2g'(0)) \right| \leqslant \frac{K_5}{180} |x|^5.$$

On suppose dans cette partie que f est une fonction de classe \mathscr{C}^4 sur le segment [a,b]. On pose $M_4 = \sup |f^{(4)}|$.

15. Montrer que, pour tout $i \in [0, p-1]$,

$$\left| F(x_{i+1}) - F(x_i) - \frac{1}{6p} \left[f(x_{i+1}) + f(x_i) + 4f\left(\frac{x_{i+1} + x_i}{2}\right) \right] \right| \leqslant \frac{M_4(x_{i+1} - x_i)}{2880}$$

Poser
$$g: t \mapsto F\left(\frac{x_{i+1}+x_i}{2}+t\right) - F\left(\frac{x_{i+1}+x_i}{2}-t\right)$$
.

16. En déduire que

$$\left| I_p^s(f) - \int_a^b f(t) \, dt \right| \le \frac{M_4(b-a)^5}{2880p^4}.$$

On peut montrer que la méthode de Simpson est d'ordre 3. On peut augmenter le nombre des nœuds où est évaluée la fonction à intégrer (2 nœuds pour la méthode des trapèzes, 3 pour la méthode de Simpson,...). Ces méthodes sont appelées méthodes de Newton-Cotes. Cependant, lorsque le nombre de nœuds dépasse 8, des coefficients négatifs apparaissent ce qui engendre des erreurs d'arrondis.