ANOVA con dos factores

En la unidad sobre contraste de *k* medias exploramos la metodología para analizar el efecto de un factor (una variable cualitativa) en la media de distintas poblaciones. Sin embargo ¿qué sucede si se quiere evaluar el efecto de dos variables cualitativas a la vez? En psicología sabemos que toda conducta es multicausal ¿cómo medir la interacción de dos variables en un atributo? En estos casos es pertinente hacer uso del ANOVA de dos factores (Two way ANOVA).

Encontramos entonces que se busca estudiar el efecto de dos factores a la vez:

Factor A con i = 1, 2, 3, ..., a niveles y **Factor B** con j = 1, 2, 3, ..., b niveles.

Las distintas combinaciones de A_iB_j se aplican a un número (n) de unidades. Esto nos permite estudiar, tanto los efectos independientes de A y B (también llamados Efectos principales de A y B) como la interacción entre las mismas (AB).

El ANOVA de dos factores suele tener una nomenclatura particular por la cantidad de niveles que hay en cada factor. Por ejemplo un ANOVA con diseño factorial 2x5 tendrá dos niveles del factor A y cinco niveles del B, mientras que uno de 4x4 tendrá cuatro niveles, tanto en el factor A como en el B.

Al igual que en el ANOVA de un factor se tiene como supuestos la normalidad de datos en todos los grupos, así como la independencia y homogeneidad de las varianzas. Se sugiere además asegurar que los tamaños de las muestras de los distintos grupos sean similares. Hay medidas paliativas para disminuir el efecto de este suceso, pero son un proceso más complejo del que se revisará en esta unidad.

El modelo en el que sostiene el ANOVA de dos factores es el siguiente modelo lineal:

 $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$ en donde i = 1, 2, ..., a; j = 1, 2, ..., b; k = 1, 2, ..., n. μ : Media general; α_i : Efecto del nivel i del factor A; β_j : Efecto del nivel j del factor B; $(\alpha\beta)_{ij}$: Efecto de la interacción entre los niveles; ϵ_{ijk} : Error aleatorio (Se espera que tenga distribución normal y media 0)

En lo que concierne al análisis podemos dividir el trabajo en dos estadios:

Contraste global. En este caso se tienen tres contrastes, uno para el efecto principal de A, otros para el de B y otro para la interacción de AB. El contraste de efectos principales se realiza evaluando la similitud o diferencia entre los distintos niveles de A (μ_{1} % = μ_{2} % = μ_{3} %) y B (μ_{3} % = μ_{3} %) de forma independiente, mientras que la interacción AB mide si las diferencias en efectos de un factor en todos los niveles del otro factor. La siguiente tabla sirve para esclarecer en qué consisten estos contrastes:

		Factor B		
Factor A	Nivel B1	Nivel B2	Nivel B3	Efecto de A
Nivel A1	μ_{11}	μ_{12}	μ_{13}	$\mu_{1^{35}_{17}}$
Nivel A2	μ_{21}	μ_{22}	μ_{23}	$\mu_{2^{35}_{17}}$
Nivel A3	μ_{31}	μ_{32}	μ_{33}	$\mu_{3^{35}_{17}}$
Efecto de B	$\mu_{\scriptscriptstyle 177}^{\scriptscriptstyle 35}$	µ ₁₇₂	$\mu_{^{35}3}$	µ 3535

Contrastes específicos: Siguiendo la lógica Ad Hoc o Post Hoc de las unidades anteriores. Puede emplearse un contraste para dos medias independientes.

Ejercicio de ANOVA two-way (simetría.sav)

Un grupo de investigadores desea estudiar el efecto de la simetría de los rostros en la percepción de atractivo físico. Asimismo, desean saber si el sexo de los participantes es una variable que pueda influenciar los puntajes. Además, desean conocer si existen interacciones entre la simetría (1 = con simetría; 2 = sin simetría) y el sexo (1 = hombre; 2 = mujer). Para este fin crean una escala de un único ítem en la que deben puntuar el atractivo de los rostros que se les va presentando (1 = sin atractivo y 8 = sumamente atractivo) y se sabe que los gráficos presentan una distribución normal. La base de datos es simetría.sav. Lleva a cabo los análisis solicitados. La ruta para el Anova de dos vías es:

Analizar -> modelo lineal general - univariada -> variable dependiente -> Puntajes -> factores fijos -> sexo y simetría -> gráficos -> eje horizontal -> simetría -> líneas separadas -> sexo -> click en añadir -> continuar -> opciones -> mostrar medias para: sexo, simetría y sexo*simetría -> continuar -> ok.

UNIANOVA Puntaje BY Sexo Simetría /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /PLOT=PROFILE(Simetría*Sexo) /PRINT=HOMOGENEITY DESCRIPTIVE /CRITERIA=ALPHA(.05) /DESIGN=Sexo Simetría Sexo*Simetría.

Prueba de igualdad de Levene de varianzas de error^a

Variable dependiente: Puntaje

F	df1	df2	Sig.
,761	3	44	,522

Prueba la hipótesis nula que la varianza de error de la variable dependiente es igual entre grupos.

a. Diseño: Interceptación + Sexo + Simetría + Sexo *

Simetría

Concluimos que existe homoegeneidad de varianzas (p > .05)

Pruebas de efectos inter-sujetos

Variable dependiente: Puntaje

Origen	Tipo III de suma de cuadrados	gl	Cuadrático promedio	F	Sig.
Modelo corregido	73,417ª	3	24,472	36,093	,000
Interceptación	630,750	1	630,750	930,268	,000
Sexo	33,333	1	33,333	49,162	,000
Simetría	33,333	1	33,333	49,162	,000
Sexo * Simetría	6,750	1	6,750	9,955	,003
Error	29,833	44	,678		
Total	734,000	48			
Total corregido	103,250	47			

a. R al cuadrado = ,711 (R al cuadrado ajustada = ,691)

Podemos concluir que hay efecto de acuerdo al sexo (p = .00), y de acuerdo a la simetría (p < .00). Asimismo, podemos concluir que la intracción entre ambos es significativa (p = .03)

Estadísticos descriptivos

Variable dependiente: Puntaje

			Desviación	
Sexo	Simetría	Media	estándar	N
hombre	sin simetría	1,58	,515	12
	con simetría	4,00	,853	12
	Total	2,79	1,414	24
mujer	sin simetría	4,00	,853	12
	con simetría	4,92	,996	12
	Total	4,46	1,021	24
Total	sin simetría	2,79	1,414	24
	con simetría	4,46	1,021	24
	Total	3,62	1,482	48

Podemos ver las medias. Los hombres se sienten más atraídos por los rostros simétricos, de igual manera que las mujeres. En general los rostros simétricos resultan más atractivos para los participantes, más allá del sexo.

A nivel gráfico, vemos que existe interacción dado que ambas pendientes no son paralelas.