EXAM COVER-SHEET

Name of the Exam:	Statistical Theory (Probability
	and Decision Theory)
Time and Date:	3:30-5:30pm
	16.02.2023
Examiner:	Prof. Dr. C. Jentsch,
	Prof. Dr. M. Demetrescu

To be completed by the exam participant:

First name:		
Last name:	Mat. Nr.:	
Degree:		
I hereby declare that I am capable of taking the exam!		
Date and signature of the exam participant		

Further information for the exam:

- Read the next page carefully!
- Good Luck with the Exam!

Examination in Statistical theory (Winter Term 2022/2023) Examination regulation

Feb. 16, 2023, 15:30

Premliminary remarks:

- 1. Please read the instructions carefully
- 2. You are not permitted to use any auxilliary tools
- 3. Write your name and enrollment (matriculation) number on every sheet of paper!
- 4. The exam consists of 6 pages (including title pages) and 6 problem sets, check for completeness!
- 5. Don't use a pencil
- 6. Round your solutions to 2 decimal places or use fractions
- 7. For all tests use a significance level of 5%, if nothing else is specified
- 8. You have 60 min. in total to answer the exam questions

Good Luck!

1 Probability Theory

Problem 1.1(30 pts) Let $\Omega = \{1, 2, 3, 4\}$ and $A = \{1\}$.

- a) 3 pts. State the general properties of a σ -Algebra
- b) **2 pts.** Find $A = \sigma(A)$ (the smallest σ -Algebra containing A)
- c) 4 pts. Let $A_2 = \mathcal{P}(\Omega)$, is $A \cup A_2$ also a σ -Algebra ? If yes, show it.
- d) 10 pts. Let X_n such that:

$$P(X_n = 1) = \frac{n-1}{n}$$
 $P(X_n = 2) = \frac{1}{n}$

Show that $X_n \stackrel{p}{\longrightarrow} 1$

e) 11 pts. Compute the characteristic function $\varphi_{X_n}(t) = \mathbb{E}[\exp(itX_n)]$ and use this to show that:

$$X_n \stackrel{d}{\longrightarrow} 1$$

2 Decision Theory

Problem 2.1 (30 pts) Let $\{X_1,...,X_n\} \stackrel{iid}{\sim} \operatorname{Exp}(\theta)$ random sample such that:

$$f_{X_i}(x;\theta) = \theta \exp(-\theta x) 1_{\mathbb{R}_+}(x) \quad \forall i \in \{1,...,n\}$$

It therefore holds that: $\mathbb{E}(X_i) = \frac{1}{\theta}, Var(X_i) = \frac{1}{\theta^2}$ for all $i \in \{1, ..., n\}$. Now consider we want to estimate $\mathbb{E}(X)$ with the quadratic loss $L(\delta, \theta) = \left(\delta - \frac{1}{\theta}\right)^2$

- a) 4 pts. Characterize this decision problem with $\mathcal{X}, \Theta, D, L$
- b) **6 pts.** Find the maximum likelihood estimator for $\mathbb{E}(X) = \frac{1}{\theta}$ **Hint**: First find the ML-estimator for θ . It then holds, that: $\hat{\mathbb{E}}(X)_{ML} = \frac{1}{\theta}$
- c) **4 pts.** Find the risk of the ML-estimator $\hat{\theta}_{ML}$
- d) **6 pts.** Compute the risk of the following estimator and compare it to the ML-estimator:

$$\hat{\theta}_2 = \frac{1}{n+1} \sum_{i=1}^n x_i$$