Step-1

A matrix N is normal if it commutes with N^H .

i.e., if $NN^H = N^H N$, then N is normal.

Suppose N is a matrix with ortho normal eigen vectors.

So, we have $U^{-1}NU = \Lambda$

Or, $N = U\Lambda U^{-1}$

To show N commutes with itself, let us consider $NN^H = (U\Lambda U^{-1})(U\Lambda U^{-1})^H$

 $= (U\Lambda U^{-1})((U^{-1})^H \Lambda^H U^H)$

 $=U\Lambda\Big(\Big(U^{-1}\Big)\Big(U^{-1}\Big)^H\Big)\Lambda^HU^H\underset{\hat{\mathbf{a}}\in [\hat{\mathbf{a}}\in [(1)]}{\hat{\mathbf{a}}}$

Since U is the unitary matrix, we have $U^H = U^{-1}$ and so,

$$(U^{-1})(U^{-1})^{H} = U^{-1}U = I \quad \hat{a} \in \hat{a} \in \hat{a} \in [2]$$

$$= UU^{-1}$$

$$= (U^{-1})^{H} (U^{-1}) \quad \hat{a} \in \hat{a} \in [2] \in [3]$$

Step-2

Using (2) in (1), we get $NN^H = U(\Lambda \Lambda^H)U^H$

Since Λ is a diagonal matrix, we follow that $\Lambda\Lambda^H = \Lambda^H\Lambda$

So, $NN^H = U(\Lambda^H I \Lambda)U^H$

$$= U\Lambda^{H} (U^{-1}U)\Lambda U^{H}$$

$$= ((U^{H})^{H} \Lambda^{H} U^{-1})(U\Lambda U^{H})$$

$$= ((U^{H})^{H} \Lambda^{H} U^{H})(U\Lambda U^{H})$$

$$= (U\Lambda U^{H})^{H} (U\Lambda U^{H})$$

$$= N^{H} N$$

Therefore, N is a normal matrix.