

Prédiction de crises d'épilepsie

Lorenzo CAMUS
Xavier CHARRAUDEAU

La donnée

Quelles données avons-nous utilisé?

Sur l'ensemble des données à notre disposition, nous avons décidé de travailler sur :

- Les examens d'une durée supérieure à 2min30s
- Les examens ne présentant pas trop de valeurs « vide » (< 9%)
- Les patients qui présentent au moins 50 secondes de crise sur l'ensemble de leurs enregistrements

Premier axe de recherche

A la recherche des indicateurs les plus importants:

hf
lf_hf_ratio
vlf
max_hr
lf
cvi
sd1
min_hr
sd2
sampen
median_nni
mean_hr
mean_nni
csi
Modified csi

Recherche du modèle optimum

Des modèles assez peu performants...

Category : Machine Learning

F1_score moyen (*): 0,23

Sensibilité : 0,40 Spécificité: 0,99

... qui ne fonctionnent que pour un petit nombre de patients:

Prise en compte des états antérieurs à une crise

Le facteur temps permet d'améliorer légèrement les performance:

Exemple graphique d'un examen

Patient 9578

Des prédictions compliquées

F1 score : 0.5

Sensibilité: 0.45

Spécificité: 0.95

Decision Tree

Des prédictions compliquées

F1 score: 0.89

Sensibilité: 0.95

Spécificité: 0.28

XGBoost Classifier

.... Mais encourageantes

F1 score: 1

Sensibilité: 1

Spécificité: 1

Decision Tree

Merci,

à bientôt!

