

Matrices of Pairwise Measures

成对度量矩阵

成对距离矩阵、亲近度矩阵、相关性系数矩阵, 都是图

吸取昨天的教训, 为今天而活, 为明天的希望。重要的是不要停止提问。

Learn from yesterday, live for today, hope for tomorrow. The important thing is to not stop questioning.

—— 阿尔伯特·爱因斯坦 (Albert Einstein) | 理论物理学家 | 1879 ~ 1955

- ◀ sklearn.metrics.pairwise.euclidean distances() 计算成对欧氏距离矩阵
- ◀ sklearn.metrics.pairwise distances() 计算成对距离矩阵
- ◀ metrics.pairwise.linear kernel() 计算线性核成对亲近度矩阵
- ◀ metrics.pairwise.manhattan distances() 计算成对城市街区距离矩阵
- ◀ metrics.pairwise.paired_cosine_distances(X,Q) 计算 X 和 Q 样本数据矩阵成对余弦距离矩阵
- ◀ metrics.pairwise.paired_euclidean_distances(X,Q) 计算 X 和 Q 样本数据矩阵成对欧氏距离矩阵
- ◀ metrics.pairwise.paired manhattan distances(X,Q) 计算 X 和 Q 样本数据矩阵成对城市街区距离矩阵
- ◀ metrics.pairwise.polynomial_kernel() 计算多项式核成对亲近度矩阵
- ◀ metrics.pairwise.rbf_kernel() 计算 RBF 核成对亲近度矩阵
- ◀ metrics.pairwise.sigmoid_kernel() 计算 sigmoid 核成对亲近度矩阵

19.1 成对距离矩阵

看了上一章的内容,大家是否想到成对距离矩阵就可以看做是一个邻接矩阵?

完全图

图 1 给出 12 个样本数据在平面上的位置。相信大家还记得**成对距离矩阵** (pairwise distance matrix) 这个概念。图 2 所示 12 个样本数据成对欧氏距离矩阵的热图。图 3 展示如何计算欧氏距离矩阵。

这个欧氏距离矩阵为一个对称矩阵。主对角线上元素为某点和自身的距离,显然距离为 0; 非主对 角线元素为成对距离。

图 4 所示为基于图 2 的无向图。而这个无向图还是一个**完全图** (complete graph)。本书前文介绍过,一个完全图是指每一对不同的节点都有一条边相连,形成了一个全连接的图。换句话说,如果一个无向图中的每两个节点之间都存在一条边,那么这个图就是一个完全图。

下面让我们仔细观察图4这幅无向图。

图 1.12 个样本数据

图 2.12 个样本数据成对距离构成的方阵热图

图 3. 计算成对欧氏距离矩阵

图 4 中所有边根据欧氏距离大小用红黄蓝颜色映射渲染。红色表示两点距离近,蓝色表示两点距离远。这幅图还标记了几个成对距离值。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 4. 基于成对距离矩阵的无向图, 完全图

代码 1 绘制图 4, 下面聊聊其中关键语句。

- ◎利用广播原则和 numpy.linalg.norm()计算欧氏距离。大家也可以试着使用以下两个函数: scipy.spatial.distance.pdist()和 sklearn.metrics.pairwise_distances()。
 - b用 seaborn.heatmap()绘制成对距离矩阵热图。
 - 创建无向图实例。
 - ●利用两层 for 循环来添加节点、边。请大家思考如何简化这段代码。
 - 用 networkx.get_node_attributes()获取节点的属性,比如本例中的位置信息。
 - 创建字典,将节点的整数索引标签转换为小写字母。
 - 句创建节点索引对(i,j)表示图的一条边、值是格式化的字符串、表示节点之间距离。
 - 创建列表包含图中所有边的权重。
 - 用 networkx.draw_networkx()绘制图。其中,pos 包含节点位置信息。with_labels=True 表示在绘图中显示节点标签。

labels=labels 是一个字典,指定每个节点的标签。它将节点索引与相应的小写字母关联起来。 edge_vmin=0 和 edge_vmax=10 参数定义了边的颜色的最小和最大值。在这种情况下,边的颜色基于 edge_weights 的值。

edge_cmap=plt.cm.RdYlBu 指定用于边缘着色的颜色映射。

```
import numpy as np
   import networkx as nx
   import matplotlib.pyplot as plt
   import seaborn as sns
   # 12个坐标点
   points = np.array([[1,6],[4,6],[1,5],[6,0],
                        [3,8],[8,3],[4,1],[3,5],
                        [9,2],[5,9],[4,9],[8,4]])
   # 可视化散点
   fig, ax = plt.subplots(figsize = (6,6))
   plt.scatter(points[:,0],points[:,1])
   ax.set_xlim(0,10); ax.set_ylim(0,10); ax.grid()
   ax.set_aspect('equal', adjustable='box')
   # 计算成对距离矩阵
0 D = np.linalg.norm(points[:, np.newaxis, :] - points, axis=2)
   # 请尝试使用
   # scipy.spatial.distance.pdist()
   # sklearn.metrics.pairwise_distances()
   # 可视化成对距离矩阵
   plt.figure(figsize=(8,8))
b sns.heatmap(D, square = True,
                cmap = 'RdYlBu', vmin = 0, vmax = 10,
                xticklabels = [], yticklabels = [])
   # 创建无向图
\bigcirc G = nx.Graph()
   #添加节点和边
   for i in range(12):
       G.add_node(i, pos=(points[i, 0], points[i, 1]))
       # 使用pos属性保存节点的坐标信息
       for j in range(i + 1, 12):
            G.add_edge(i, j, weight=D[i, j])
            # 将距离作为边的权重
   # 请思考如何避免使用 for 循环
   # 增加节点/边属性
e pos = nx.get_node_attributes(G, 'pos')
f labels = {i: chr(ord('a') + i) for i in range(len(G.nodes))}
g edge_labels = {(i, j): f'{D[i, j]:.2f}' for i, j in G.edges}
h edge_weights = [G[i][j]['weight'] for i, j in G.edges]
   # 可视化图
   fig, ax = plt.subplots(figsize = (6,6))
   nx.draw_networkx(G, pos, with_labels=True,
                      labels=labels, node_size=100,
                      node_color='grey', font_color='black',
                      edge_vmin = 0, edge_vmax = 10,
                      edge_cmap=plt.cm.RdYlBu,
                      edge_color=edge_weights, width=1, alpha=0.7)
   ax.set_xlim(0,10); ax.set_ylim(0,10); ax.grid()
   ax.set_aspect('equal', adjustable='box')
```

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徵课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

设定阈值

图 4 这幅图的 12 个散点似乎可以分为两簇 (cluster)。而欧氏距离大小就可以帮我们"切割"!

如图 5 所示为欧氏距离截断阈值设置为 6 的图; 也就说, 超过 6 的边全部删除, 保留不超过 6 的 边。这幅图中两簇散点似乎还有点"藕断丝连"。图6所示为截断阈值对邻接矩阵的影响。

进一步将截断阈值收缩到 4, 我们便得到图7这幅图。这幅图中数据被分割成两簇。

图 5. 基于成对距离矩阵的无向图,截断阈值 = 6

图 6. 截断阈值为 6 对成对欧氏距离矩阵影响

图 7. 基于成对距离矩阵的无向图, 截断阈值 = 4

代码 2 对代码 1 稍微改进, 请大家自行比较异同。

```
# 计算成对距离矩阵
0 D = np.linalg.norm(points[:, np.newaxis, :] - points, axis=2)
  # 设定阈值
  threshold = 6
  D_{threshold} = D
D_threshold[D_threshold > threshold] = 0
  # 超过阈值置零
  # 创建无向图
G_threshold = nx.Graph(D_threshold, nodetype=int)
  # 用邻接矩阵创建无向图
  #添加节点和边
  for i in range(12):
      G_threshold.add_node(i, pos=(points[i, 0], points[i, 1]))
  # 取出节点位置
  pos = nx.get_node_attributes(G_threshold, 'pos')
  # 增加节点属性
  node_labels={i: chr(ord('a') + i) for i in range(len(G_threshold.nodes))}
  edge_weights = [G_threshold[i][j]['weight'] for i, j in G_threshold.edges]
```

代码 2. 对距离矩阵设定阈值 | 😌 Bk6_Ch19_02.ipynb

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

19.2 亲近度矩阵: 高斯核函数

通过高斯核函数,我们可以很容易把距离转化为"亲近度"

$$\exp\left(-\frac{d_{i,j}^2}{2\sigma^2}\right) = \exp\left(-\frac{\left\|\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}\right\|_2^2}{2\sigma^2}\right)$$
(1)

图 8 所示为参数 σ 对高斯核函数的影响。

图 8. 将欧氏距离转化为亲近度

图 9 所示为利用高斯核函数将成对欧氏距离矩阵转化为亲近度矩阵。而这个亲近度矩阵可以作为创 建无向图的邻接矩阵。

图 9. 成对欧氏距离矩阵转化为亲近度矩阵, 高斯核

本例中, 我们不绘制自环, 因此将亲近度矩阵的对角线元素设置为 0, 具体如图 10 所示。

图 10. 亲近度矩阵对角线置 0, 不绘制自环

图 11 所以为基于亲近度矩阵绘制的无向图。这幅图中,我们用不同的颜色映射渲染,代表边的权重。

类似上一节,通过设定阈值,我们可以利用亲近度矩阵来"分割"数据点,具体如图 12 和图 13 所示。

这也告诉我们类似成对距离矩阵、亲近度矩阵、协方差矩阵、相关性系数矩阵,都可以看做是无向图的邻接矩阵。请大家特别注意这一观察矩阵的全新视角。

图 11. 基于亲近度矩阵的无向图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

图 12. 阈值 0.4 对亲近度矩阵影响

图 13. 基于亲近度矩阵的无向图,设置亲近度阈值为 0.4

Bk6_Ch19_03.ipynb 完成本节示例,下面聊聊代码 3 中关键语句。

- ②定义了高斯核函数, sigma 的默认值为 1。
- 利用自定义高斯核函数将欧氏距离矩阵转换为亲近度矩阵。
- ⓒ利用 numpy.fill_diagonal()将亲近度矩阵对角线元素置 0,因为不需要自环。
- ●利用 add_node()增加节点。
- ⊕提取节点位置信息。
- f numpy.copy()创建亲近度矩阵副本。
- ③ 亲近度矩阵中低于阈值的元素置 Θ。这和上节示例相反,请大家注意。
- ●基于以上亲近度矩阵 (邻接矩阵) 创建无向图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

```
# 自定义高斯核函数
a def gaussian_kernel(distance, sigma=1.0):
       return np.exp(- (distance ** 2) / (2 * sigma ** 2))
   # 计算成对距离矩阵
  D = np.linalg.norm(points[:, np.newaxis, :] - points, axis=2)
  # 距离矩阵转化为亲近度矩阵, 高斯核
b K = gaussian_kernel(D,3)
   # 参数sigma设为3
onp.fill_diagonal(K, 0)
   # 将对角线元素置0, 不画自环
  # 创建无向图
  G = nx.Graph(K, nodetype=int)
  # 用邻接矩阵创建无向图
  #添加节点和边
  for i in range(12):
      G.add_node(i, pos=(points[i, 0], points[i, 1]))
  # 取出节点位置
pos = nx.get_node_attributes(G, 'pos')
   # 增加节点属性
  node_labels = {i: chr(ord('a') + i) for i in range(len(G.nodes))}
  edge_weights = [G[i][j]['weight'] for i, j in G.edges]
edge_labels = {(i, j): f'{K[i, j]:.2f}' for i, j in G.edges}
  # 设定高斯核阈值
  threshold = 0.4
f K_threshold = np.copy(K)
  # 副本, 非视图
G K_threshold[K_threshold < threshold] = 0</pre>
   # 低于阈值置零, 改为小于号
   # 创建无向图
6 G_threshold = nx.Graph(K_threshold, nodetype=int)
  # 用邻接矩阵创建无向图
   #添加节点和边
   for i in range(12):
      G_threshold.add_node(i, pos=(points[i, 0], points[i, 1]))
   # 取出节点位置
  pos = nx.get_node_attributes(G_threshold, 'pos')
   # 增加节点属性
   node_labels = {i: chr(ord('a') + i) for i in
   range(len(G_threshold.nodes))}
   edge_weights = [G_threshold[i][j]['weight'] for i, j in G_threshold.edges]
   edge_labels={(i,j):f'{K_threshold[i,j]:.2f}' for i,j in G_threshold.edges}
```

代码 3. 基于亲近度矩阵的无向图 | Bk6_Ch19_03.ipynb

利用同样的思路,根据亲近度矩阵,我们可以把鸢尾花数据(前两特征,不考虑标签)大致划分成两簇,结果如所示图 14。请大家自行学习 Bk6_Ch19_04.ipynb。

图 14. 用亲近度矩阵划分鸢尾花数据

19.3 相关性系数矩阵

受到前文内容启发,大家是否发现协方差矩阵(图 15)、相关性系数矩阵都可以看做邻接矩阵;也就是说,每个协方差矩阵,每个相关性系数矩阵,都是一副图!

而协方差矩阵、相关性系数矩阵都是特殊的格拉姆矩阵;推而广之,格拉姆矩阵也都可以看做是邻接矩阵,进而从图的视角来观察分析。

本节和大家讨论如何用相关性矩阵构造无向图。

图 15. 协方差矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本节采用的将相关性系数矩阵转换为邻接矩阵的规则很简单;举个例子,给定如下相关性系数矩阵

$$\begin{bmatrix} 1 & 0.7 & 0.9 & 0.85 \\ 0.7 & 1 & 0.65 & 0.5 \\ 0.9 & 0.65 & 1 & 0.92 \\ 0.85 & 0.5 & 0.92 & 1 \end{bmatrix}$$
 (2)

设定阈值为 0.8; 如果相关性系数小于 0.8, 邻接矩阵对应位置置 0; 如果相关性系数不小于 0.8, 邻接矩阵相应位置置 1。由于不绘制自环,邻接矩阵对角线元素置 0。因此,(2) 对应的邻接矩阵为

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$(3)$$

我们很容易根据上述邻接矩阵绘制对应的无向图。

Bk6_Ch19_05.ipynb 中加载 428 个有效股价数据;因此,邻接矩阵的大小为 428 \times 428。 图 16 (a) 所示为基于相关性系数矩阵创建的无向图;图 16 (b) 展示其中最大分量子图。 图 17 则展示其中前 4 大社区;这也相当于对股票的聚类。

图 16. 基于相关性系数矩阵创建的无向图,阈值为 0.8

图 17. 无向图中前 4 大社区, 阈值为 0.8

Bk6_Ch19_05.ipynb 有完整运算代码,下面仅仅聊聊代码 4 中关键语句。

- 可 pandas.read_pickle()加载.pkl数据,本书之前也用过这个数据集。
- ▶用 pct_change()方法计算股票收盘价日收益率。
- ©用 dropna() 方法将整列、整行都为 NaN 的删除。
- 可用 corr() 方法计算日收益率的相关性系数矩阵。
- 曾按前文介绍的映射规则、将相关性系数矩阵转化为邻接矩阵。
- ❶ 将邻接矩阵对角线元素置 0,不画自环。
- 可用 networkx.from_numpy_array() 基于邻接矩阵创建无向图。
- 用 networkx.relabel_nodes() 将非负整数的节点名称修改为股票代码。
- ①用 networkx.connected_components() 提取无向图中连通分量,将其中最大连通分量取出; 然后用 subgraph() 方法构造子图。
- in networkx.algorithms.community.centrality.girvan_newman() 将图划分成社区。
 - 🕓 取出各个社区的节点,结果为嵌套列表,子列表元素为社区节点。
 - ●根据子列表长度由大到小 (社区由大到小) 排列嵌套列表元素。

Bk6_Ch19_05.ipynb 有可视化函数,请大家自行学习。此外,请大家修改相关性系数阈值 (比如 0.7、0.9) 并观察无向图变化。

```
# 加载数据
a df = pd.read_pickle('stock_levels_df_2020.pkl')
  # 计算日收益率
b returns_df = df['Adj Close'].pct_change()
  # 整列、整行都为NaN的删除
  returns_df.dropna(axis = 1,how='all', inplace = True)
  returns_df.dropna(axis = 0, how='all', inplace = True)
  # 计算相关性系数矩阵
d corr = returns_df.corr()
  # 将相关性系数矩阵转换为邻接矩阵
  A = corr.copy()
  # 设定阈值
  threshold = 0.7
  # 低于阈值,置0
\sqcap A[A < threshold] = 0
e # 超过阈值, 置1
A[A >= threshold] = 1
f A = A - np.identity(len(A))
  # 将对角线元素置0, 不画自环
  # 创建图
G = nx.from_numpy_array(A.to_numpy())
  # 修改节点名称
G = nx.relabel_nodes(G, dict(enumerate(A.columns)))
  # 最大连通分量
Gcc = G.subgraph(sorted(nx.connected_components(G),
                         key=len, reverse=True)[0])
  pos_Gcc = {k: pos[k] for k in list(Gcc.nodes())}
  # 取出子图节点坐标
  # 划分社区
f) communities = girvan_newman(G)
  node_groups = []
k for com in next(communities):
      node_groups.append(list(com))
  # 按子列表长度 (社区) 由大到小排列
node_groups.sort(key=len, reverse = True)
```

代码 4. 基于相关性系数矩阵创建的无向图 | GB Bk6_Ch19_04.ipynb

成对距离矩阵、协方差矩阵、相关性系数矩阵可以看作无向图的邻接矩阵,其中邻接矩阵中的元素表示图中节点之间的关系。成对距离矩阵反映节点间的距离或相似度,协方差矩阵描述变量间的线性依

赖性;相关性系数矩阵进一步衡量变量间的关系强度和方向。这些矩阵通过节点间的关系强度,映射出无向图的结构,揭示数据间的内在联系。

矩阵就是图,图就是矩阵!

相信有了这章内容,大家更能领会到这句话的精髓。此外,本书后文将介绍更多和图有关的矩阵。