		(SMISIB HWZ
2.16		Expand MIPS register to 128 registers
		4 times as many instructions
	1)	Each of the register fields (is, it, id) would need to be
		movensed to 7 bils as 2 = 128. The finet field may
		need to increase as well to encapsulate the new instructions
		However, this depends on how many instructions there
		were to begin with. The instruction no longer fits m 32 bits.
	2)	Each of the register fields (15, 11) would need to be increased
		to 7 bits as well. This would increase the total number
		of bits needed to 36, unless some are taken from.
		the mondate.
	3)	Decrease - now that there are more instructions, its possible
		that multiple small instructions could have been combined
		into one. This would decrease the size of the program.
		Larger registers can combat spilling, which decreases
		overall piogram size.
		Increase - Now that the instructions themsolves are larger
		(no longer 32 bits), this may morease the size of a 'word',
		effectively increasing programsize.
7.39		CPI: Arith: 1 Load/Store: 10 Branch: 3 3800
		500M 300M 100M
	1)	Arith: 400 Load/Store: (300 × 11) = 3300 Branch: (100 × 3.3) = 330 4020
		This is not a good design choice. Reducing arithmetic instructions
		is nice, but they required few cycles to begin with. Increasing
		the clock cycle time adversely affects the other more costly
		instructions to a greater degree. The new design will actually
		cause the program to take longer to execute.
	2)	Original: (1×500) + (10×300) + (3×100) = 3800
		New # 1: (0.5 x 500) + (10 x 300) - (3 x 100) = 3550 1.07 x speedup
		New = 2: (0.1 × 500) + (10 × 300) + (3×100) = 3350 1.13 × speedup

10 2	.40	70% anthometre 10%. Load Store 20 branch
	1)	ZCPI 6 CPI 3CPI
		$(0.7 \times 2) + (0.1 \times 6) + (0.2 \times 3) = 2.6$ average CPI
	2)	75x improvement in overall performance
		Performance can be defined by IPC (instructions per cycle)
		IPC = CP1 IPC = 2.6 = 0.3846
		If we increase this by 25 x> 0.3846 x 1.25 = 0.481 IPC
		$CPI = \frac{1}{1PC}$ $CPI = \frac{1}{0.481} = 2.08$
		We are aiming for a CPI of 7.08.
		$(0.7 \times ?) \cdot (0.(\times 6) \cdot (0.2 \times 3) = 2.08$
		$(0.7 \times ?) = 0.88$
		? = 1.257
		Arithmetre instructions should take, on average, 1.257 CPI.
	3)	50". Improvement in overall performance
		IPC = 0,3846
		Increase this by 50x> 0.3846 x 1.5 = 0.577 IPC
		CPI = 0.517 = 1.733
		We are aiming for a CPI of 1.733
		$(0.7 \times ?) + (0.1 \times 6) + (0.2 \times 3) = 1.733$
		$(0.7 \times ?) = 0.533$
		? = 0.7614
		Arithmetic instructions should take, on average, 0.7614 CPI.