CS 228: Logic for CS

S. Krishna

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA/NFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists a FO sentence φ such that $L = L(\varphi)$.

For a sentence φ , $L(\varphi) = \{ w \in \Sigma^* \mid w \models \varphi \}$

Agenda

- ► FO-definable ⇒ regular
- ▶ Given an FO formula φ , construct a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$
- ▶ If $L(A_{\varphi}) = \emptyset$, then φ is unsatisfiable
- ▶ If $L(A_{\omega}) \neq \emptyset$, then φ is satisfiable

FO to Regular Languages

- ▶ Every FO sentence φ over words can be converted into a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$.
- Start with atomic formulae, construct DFA for each of them.
- Conjunctions, disjunctions, negation of formulae easily handled via union, intersection and complementation of of respective DFA
- Handling quantifiers?

Atomic Formulae to DFA

- ▶ $Q_a(x)$: All words which have an a. Need to fix a position for x, where a holds.
- ▶ baab satisfies $Q_a(x)$ with assignment x = 1 or x = 2.
- ► Think of this as baab or baab 0100
- The first row is over Σ, and the second row captures a possible assignment to x
- ▶ Think of an extended alphabet $\Sigma' = \Sigma \times \{0,1\}$, and construct an automaton over Σ' .
- Deterministic, not complete.

CS 228 S. Krishna IIT Bombay

Atomic Formulae to DFA : S(x, y)

▶ bab satisfies S(x, y) with assignment x = 0 or y = 1 or x = 1, y = 2.

- ► Think of this as 100 or 010 010 001
- ► The first row is over Σ , and the second, third rows capture a possible assignment to x, y
- ► Think of an extended alphabet $\Sigma' = \Sigma \times \{0, 1\}^2$, and construct an automaton over Σ' .
- Deterministic, not complete.

CS 228 S. Krishna IIT Bombay

Atomic Formulae to DFA : x < y

bab satisfies x < y with assignment x = 0 or y = 1 or x = 1, y = 2 or x = 0, y = 2.

CS 228 S Krishna IIT Bombay

Simple Formulae to DFA

- $ightharpoonup x < y \wedge Q_a(y)$
- ▶ $\Sigma' = \Sigma \times \{0, 1\} \times \{0, 1\}$
- ▶ Obtain intersection of DFA for x < y and $Q_a(y)$

CS 228 IIT Bombay S. Krishna

Formulae to DFA

▶ Given $\varphi(x_1, ..., x_n)$, a FO formula over Σ , consider the extended alphabet

$$\Sigma' = \Sigma \times \{0,1\}^n$$

- Assign values to x_i at every position as seen in the cases of atomic formulae
- \triangleright Keep in mind that every x_i can be assigned 1 at a unique position