

2024 年秋离散数学

数理逻辑部分习题

— .	命题逻辑的基本概念							
1.	对一个可满足的命题公式, 其否定。							
	A. 不是重言的	B. 不是可满足的	C. 还是可满足的	D. 不是矛盾的				
2.	命题公式 $\neg(P \land Q) \rightarrow R$ 具有 个使其为真的指派。							
	A. 2	B. 3	C. 4	D. 5				
3.	命题公式 $P \lor ((Q \lor R) \land S)$	的波兰表达式是。						
4.	设 P :天下雨, Q :他在室内运动,则命题"除非天下雨,否则他不在室内运动"可转化为。							
5.	. 请写出一个满足以下要求的命题公式并写出求解过程。							
	1. 具有 P, Q, R 三个变元							
	2. 只有两个联结词(可使用 ¬, ∧, ∨, →, ↔)							
	3. 恰好具有五个使其为真的	1指派						
6.	6. 命题公式 $(P \land (P \rightarrow Q)) \rightarrow Q$ 是。							
	A. 矛盾时	B. 蕴含式	C. 重言式	D. 等值式				
7.	下面哪个命题公式是重言式	?						
	A. $(P \to Q) \land (Q \to P)$		B. $(P \wedge Q) \to P$					
	C. $(\neg P \lor Q) \land \neg (\neg P \land \neg Q)$		D. $\neg (P \lor Q)$					
8.	B_{i} 设 P : "你陪伴我", Q : "你代我叫车子", R : "我将出去"。则命题"除非你陪伴我或代我叫车子, 否则我将不出							
	写成命题演算公式:。							
9.	9. 设 p,r 为真命题, q,s 为假命题, 则复合命题 $(p \to q) \leftrightarrow (\neg r \to s)$ 的真值为 。							
二. 命题逻辑的等值和推理演算								
10. 下面有 个命题联结词集合是完备集。								
	• $\{\neg, \land\}$							
	• {¬ \/}							

• $\{\neg, \rightarrow\}$ • $\{\neg, \leftrightarrow\}$

• $\{\lor, \rightarrow\}$

• $\{\land, \rightarrow\}$

• $\{\lor,\uparrow\}$

 {↓} C. 6 A. 4 B. 5 D. 7 11. 下列推理式正确的是 ____。 A. $(P \to R) \lor (Q \to R) \Rightarrow (P \lor Q) \to R$ B. $(P \vee Q) \wedge (\neg P \vee R) \Rightarrow (Q \vee R)$ C. $P \lor Q \Rightarrow P$ D. $(P \lor Q) \to (P \lor R) \Rightarrow Q \to R$ 12. 命题公式 $G = \neg P \rightarrow \neg Q \land R$ 的主析取范式是 ____。 13. $P \rightarrow Q \lor R \rightarrow S$ 的对偶式为 _____。 14. 证明下列推理关系:如果李华在光明中学上学,那么他不是初中生,就是高中生。如果李华是初中生,那么他需要参 加中考。如果李华是高中生,那么他经常给外国的友人写信。如果李华经常给外国的友人写信,那么他的英文写作 能力很强。李华的英文写作能力不强。从而知:如果李华在光明中学上学,那么他需要参加中考。 15. 下面哪一组命题公式是等值的? A. $\neg P \land \neg Q, P \lor Q$ B. $A \to (B \to A), \neg A \to (A \to \neg B)$ C. $Q \to (P \lor Q), \neg Q \land (P \lor Q)$ D. $\neg A \lor (A \land B), B$ 16. 命题公式 $\neg (P \land Q) \rightarrow R$ 的主析取范式中含极小项的个数为 ____ 。 A. 8 B. 3 C. 5 D. 0 17. 逻辑联结词或非 ↓ 可以定义为: $x \downarrow y = \neg(x \lor y)$ 。将公式 $\neg(x \lor y) \land z$ 转换成只用 ↓ 表示的公式 ____ 。 18. $(p \land q) \lor (\neg p \land \neg q)$ 的主合取范式是 _____。 19. 任用一种推理方法证明: $(a \to \beta) \land (\beta \to \gamma) \land (\delta \to \neg \gamma) \Rightarrow \neg (a \land \delta)$ 20. 已知命题公式 $G = \neg (P \rightarrow Q) \land R$,则 G 的主析取范式是 ____。 21. $P \downarrow Q = \neg (P \lor Q)$, 用或非联结词表示出 $P \to Q$ 为 ____ 。 22. 设命题公式 $G = \neg (P \to Q), H = P \to (Q \to \neg P), 则 G 与 H 的关系是 ____。$ D. 以上都不是 $A. G \Rightarrow H$ B. $H \Rightarrow G$ C. G = H23. 下面 4 个推理定律中, 不正确的是 ____。 A. $A \Rightarrow (A \lor B)$ B. $(A \lor B) \land \neg A \Rightarrow B$ C. $(A \to B) \land A \Rightarrow B$ D. $(A \to B) \land \neg B \Rightarrow A$ 24. 设 A, B 都是命题公式,则 $A \rightarrow B$ 为可满足式是 $A \Rightarrow B$ 的 ____ 。 A. 充分而非必要条件 B. 必要而非充分条件

25. 设命题公式 $G = \neg (P \to Q) \lor (Q \land (\neg P \to R))$, 求 G 的主析取范式。

D. 既非充分也非必要条件

C. 充分必要条件

三. 谓词逻辑的基本概念

四. 谓词逻辑的等值和推理演算

	用, 是一种 的是一种的。					
26.	若个体域为整数集合,下列公式中 不是命题。					
	A. $(\forall x)(\forall y)(x \cdot y = x)$		B. $(\forall x)(\exists y)(x \cdot y = 1)$			
	C. $(\forall x)(x \cdot y = x)$		D. $(\exists x)(\exists y)(x \cdot y = 2)$			
27.	27. 设个体域 $D=\{a,b\}$,则公式 $(\exists x)(F(x)\wedge G(x))$ 消去量词后可表示为。					
	A. $(F(a) \wedge F(b)) \vee (G(a) \wedge F$	G(b))	B. $(F(a) \vee F(b)) \wedge (G(a) \vee F(b))$	/G(b))		
	C. $(F(a) \wedge G(a)) \vee (F(b) \wedge G(b))$		D. $(F(a) \vee G(a)) \wedge (F(b) \vee G(b))$			
28.	设 $P(x,y)$ 表示 $x < y$ 。当个体域为 时, 公式 $(\forall x)(\exists y)P(y,x)$ 不是普遍有效的。					
	A. 自然数集	B. 整数集	C. 有理数集	D. 实数集		
29.	求公式 $(\forall x)(P \to Q(x)) \lor R(a)$ 的真值为 ,其中 $P:6>3,\ Q(x):x\leq 3,\ R(x):x>3,\ \text{而 }a=3,$ 论域为 $\{-2,3,6\}_{\circ}$					
30.	公式 $(\forall x) ((P(x) \to Q(x)) \land (\exists y) R(y)) \land S(z)$ 的自由变元是 , 全称量词的辖域为 。					
31.	设 $A(x):x$ 是人, $B(x):x$ 犯错误, 命题"没有人不犯错误"符号化为。					
	A. $(\forall x)(A(x) \land B(x))$		B. $\neg(\exists x)(A(x) \to \neg B(x))$			
	C. $\neg(\exists x)(A(x) \land B(x))$		D. $\neg(\exists x)(A(x) \land \neg B(x))$			
32.	. 设 $R(x)$ 表示 x 是实数, $E(x,y)$ 表示 $x=y$, 则语句"对所有的实数 x , 都存在实数 y , 使得 $x=y$ " 的符号化为					
22	- °					
	公式 $(\exists x)(P(x) \leftrightarrow Q(x)) \rightarrow ((\exists x)P(x) \rightarrow (\exists x)Q(x))$ (是/不是) 普遍有效的。					
	公式 $\neg((\forall x)F(x) \to (\exists y)G(y)) \land (\exists y)G(y)$ (是/不是) 不可满足的。					
35.	. 设 I 是如下一个解释: $D = \{a,b\}, P(a,a) = 1, P(a,b) = 0, P(b,a) = 1, P(b,b) = 0,$ 则在解释 I 下真值为 1 的公式是 。					
	A. (A) $\exists x \exists y P(x, y)$	B. (B) $\forall x \forall y P(x, y)$	C. (C) $\forall x P(x, x)$	D. (D) $\forall x \exists y P(x, y)$		
36.	下列描述中正确的是。					
	A. 不是所有谓词逻辑公式都能化成 Skolem 标准形B. 把谓词公式化为前束范式时对于量词的次序排列有要求C. 每个谓词公式都能化成唯一的前束范式					
	D. 这些说法都不对					

- 37. 下面推理形式中正确的是 ____。其中 p,q 是和 x 无关的命题变项, 论域不为空。
 - A. $(\forall x)(P(x) \lor Q(x)) \Rightarrow ((\forall x)P(x) \lor (\forall y)Q(y))$
 - B. $((\forall x)P(x)) \to q) \Rightarrow (\forall x)(P(x) \to q)$
 - C. $(\forall x)(p \to Q(x)) \Rightarrow (p \to (\exists x)Q(x))$
 - D. $((\exists x)P(x) \land (\exists y)Q(y)) \Rightarrow ((\exists x)(P(x) \land Q(x)))$
- 38. 一个谓词公式的 Skolem 标准形是 $(\forall x)(P(x) \lor \neg Q(a,x))$, 那么这个公式本身是 (填可满足、不可满足或者不确定): _____.
- 39. 任用一种推理方法证明 $(\forall x)(P(x) \lor Q(x)) \land (\exists x)(\neg P(x)) \land (\forall x)(Q(x) \to \neg R(x)) \Rightarrow (\exists x)(\neg R(x))$
- 40. 求公式 $((\forall x)(\exists y)(P(x,y) \to Q(y))) \to (\forall x)(R(x) \to (\exists u)(\forall v)L(x,u,v))$ 的前東范式和 Skolem 标准形。
- 41. 下列各式哪个不正确?
 - A. $(\forall x)(P(x) \lor Q(x)) \Leftrightarrow (\forall x)P(x) \lor (\forall x)Q(x)$
 - B. $(\forall x)(P(x) \land Q(x)) \Leftrightarrow (\forall x)P(x) \land (\forall x)Q(x)$
 - C. $(\exists x)(P(x) \lor Q(x)) \Leftrightarrow (\exists x)P(x) \lor (\exists x)Q(x)$
 - D. $(\forall x)(P(x) \lor q) \Leftrightarrow (\forall x)P(x) \lor q$
- 42. 写出下列公式的前束范式 $(\exists x)(\forall y)(P(x,y)) \rightarrow (\exists z)(Q(z) \rightarrow R(z))$
- 43. 任用一种推理方法证明 $\exists x(R(x) \land W(x)), (\forall x)(P(x) \rightarrow Q(x)), (\forall x)(R(x) \rightarrow \neg Q(x)) \Rightarrow (\exists x)(W(x) \land \neg P(x))$
- 44. 设一阶逻辑公式 $G = \forall x P(x) \rightarrow \exists x Q(x), \text{则 G 的前束范式是 } __$ 。
- 45. 设谓词的论域为 $\{a,b\}$, 将表达式 $\forall x R(x) \rightarrow \exists x S(x)$ 中量词消去, 写成与之对应的命题公式是 ____。
- 46. 下列等值式不正确的是 ____。
 - A. $\neg(\forall x)A = (\exists x)\neg A$
 - B. $(\forall x)(B \to A(x)) = B \to (\forall x)A(x)$
 - C. $(\exists x)(A(x) \land B(x)) = (\exists x)A(x) \land (\exists x)B(x)$
 - D. $(\forall x)(\forall y)(A(x) \to B(y)) = (\exists x)A(x) \to (\forall y)B(y)$
- 47. 求公式 $((\forall x)(\exists y)(P(x,y)\to Q(y)))\to (\forall x)(R(x)\to (\exists u)(\forall v)L(x,u,v))$ 的前東范式和 Skolem 标准形。