Using Agent-Based Simulation to Investigate Behavioural Interventions in a Pandemic using Mobility Data

Jan de Mooij[†], Davide Dell'Anna[†], Parantapa Bhattacharya[‡],
Mehdi Dastani[†], Brian Logan[†], and Samarth Swarup[‡]

[†]Universiteit Utrecht, The Netherlands

[‡]University of Virginia, USA

AMPM Workshop
JURIX 2021

Epidemic simulation with norm-aware agents

Normative Reasoning

- Is a norm applicable to the agent and activity?
- Probability to comply with norm *n*:

•
$$p(n, act) = \frac{1}{1 + e^{(-k \cdot (x - x_0))}}$$

- *x* is (average) evidence for complying
- x_0 is agents **dis**trust
- k = 10 logistic growth rate
- Applying a norm transforms the activity act into an activity act by
 - Changing a modality or the duration
 - Cancelling the activity

Calibration

- Trust sampled from two Beta distributions: Beta(α , β)
 - $\alpha = \mu \cdot \kappa$
 - $\beta = (1 \mu) \cdot \kappa$
 - $\kappa = \alpha + \beta = 100$ (characterizes spread of distribution; fixed)
- μ is calibrated separately for conservative and progressive voters
- Trust decreases by fatigue
 - fixed rate fatigue factor *f*
 - starting at time step t_f

- Disease model:
 - Infectivity of symptomatic and asymptomatic agents
 - Per unit-time (5 minutes)
- Nelder-Mead minimisation of Root Mean Square Error
 - Mobility for behavior model
 - Case data vs. recovered agents for disease model
 - Termination condition: No improvement in next 10 runs

Calibration results

Calibrated Disease Progression

Thank you

Future Work

- Improved factors for decision making
- Include more demographic data in decision making
- Automated search for optimal policies

A Covid-19 Epidemic Simulation with Norm-aware Complex Agents

- Non-pharmaceutical interventions have been heavily used to limit the spread of Covid-19
- Important to understand the efficacy of these interventions
- Agent based simulation is an effective tool for this

Timeline of COVID-19 Restrictions in Virginia

Norms

Regimented (R)

- Businesses closed
- Reduce business capacity
 - (50% first, 10 max later)
- Schools closed
 - (k12 first, k12 & higher education later)
- Restaurants are closed; takeaway food only
- Non-Regimented (NR)
 - Allow wearing of face masks
 - Employees are required to wear masks
 - Teleworking is encouraged
 - Maintain physical distance
 - Keep groups small (<10)
 - Stay home
 - Wear masks at public indoor locations

6 Activity Types

- Home
- Work
- Shop
- School
- Religious
 - Other

First 0 EOs

First 3 EOs

First 1 EOs

First 9 EOs

From gyration to mobility index

Mobility Index

After smoothing

Counterfactual experiments

First 0 EOs

All interventions up to and including 0000-00-00

First 1 EOs

All interventions up to and including 2020-03-12

First 2 EOs

All interventions up to and including 2020-03-13

First 3 EOs

All interventions up to and including 2020-03-15

First 4 EOs

All interventions up to and including 2020-03-17

First 5 EOs

All interventions up to and including 2020-03-23

First 6 EOs

All interventions up to and including 2020-03-30

First 7 EOs

All interventions up to and including 2020-05-08

First 8 EOs

All interventions up to and including 2020-05-26

First 9 EOs

All interventions up to and including 2020-06-02

experiment-0-norms-until0000-00-00

experiment-1-norms-until2020-03-12

experiment-2-norms-until2020-03-13

experiment-3-norms-until2020-03-15

experiment-4-norms-until2020-03-17

experiment-5-norms-until2020-03-23 120000 100000 Number of agents 80000 60000 40000 Susceptible 20000 Infected Recovered 02-10 06-28 03-08 03-29 04-05 04-19 04-26 05-03 05-24 06-14 03-15 04-12 06-21 03-01 -22 05-17 05-31 20-90 03

Simulation day (month-day in 2020)

