Темы, выносимые на промежуточный экзамен по курсу «Уравнения математической физики» (3 сессия)

- 1. Банахово и гильбертово пространства. Финитная функция. Пространства $C^k(\Omega), C^k(\overline{\Omega}), \overset{\circ}{C^k}(\Omega), C^\infty(\Omega), L_p(\Omega), L_{p,loc}(\Omega)$. Нормы и скалярные произведения. Определение обобщенной производной (по С.Л.Соболеву).
- 2. Обобщенная производная. Основные свойства. Примеры вычисления обобщенных производных. Примеры, когда обобщенная производная не существует.
- 3. Пространство $H^1(\Omega)$. Полнота пространства $H^1(\Omega)$. Сильная и слабая сходимость.
- 4. След функции класса $H^1(\Omega)$ на поверхности размерности n-1. Лемма о следе. Примеры вычисления следов. Формулы интегрирования по частям для функций класса $H^1(\Omega)$. Пространство $\overset{\circ}{H}^1(\Omega)$.
- 5. Неравенство Пуанкаре-Фридрихса.

Учебно-методические материалы по дисциплине

- В.С. Владимиров. Уравнения математической физики. М.: Физматлит., 2002. 400 с.
- Михайлов В.П. Лекции по уравнениям математической физики: Учеб. пособие для вузов. -- М.: Физматлит. 2001. -- 208 с.
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: МГУ, Наука, 2004.-798с.
- Михлин С.Г. Курс математической физики. СПб.: Лань, 2002. 576с.
- Сборник задач по уравнениям математической физики / Под ред. В.С. Владимирова. М.: Физматлит., 2004.

Дополнительная литература

- О. А. Ладыженская. Краевые задачи математической физики. М.: Наука, 1988. 386 с.
- Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов Дифференциальные уравнения математической физики. М.: Гос. изд. ф.-м. литер., 1962. 767 с.
- С. Л. Соболев. Уравнения математической физики. ≈ М.: ГИТТЛ, 1966. 444 с., изд. 4-ое.
- И. Г. Петровский. Лекции об уравнениях с частными производными. М.: ГИТТЛ, 1953.

•	А. Фридман. Уравнения с частными производными параболического типа М.: Мир, 1968 427 с.

Тема 1: Определение пространств

Варианты заданий

- 1. Дать определение пространства $C^k(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 2. Дать определение пространства $C^k(\overline{\Omega})$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 3. Дать определение пространства $C^k(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 4. Дать определение пространства $L_p(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 5. Дать определение пространства $L_{2,loc}(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 6. Дать определение пространства $H^k(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 7. Дать определение пространства $H^1(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 8. Дать определение пространства $H^1(\Omega)$. Выписать норму и скалярное произведение, если они определены. Указать, является ли оно банаховым, гильбертовым.
- 9. Доказать полноту пространства $H^{1}(\Omega)$.

Тема: Обобщённая производная (по Соболеву)

Варианты заданий

- 1. Дать определение α -обобщённой производной.
- 2. Доказать единственность α -обобщённой производной.
- 3. Доказать независимость α -обобщённой производной от последовательности операций обобщённого дифференцирования.
- 4. Доказать, что если функция f(x) имеет α -обобщённую производную в области Ω , то она имеет α -обобщённую производную в любой подобласти Ω , и эти производные совпадают в этой подобласти.
- 5. Найти первую обобщённую производную функции f(x) = |x| в области
- a) $\Omega = (-5, 7)$; 6) $\Omega = (5, 7)$.
- 6. Найти первую обобщённую производную функции f(x) = |x-2| в области
- a) $\Omega = (-5, 7), \delta$ $\Omega = (5, 7).$
- 7. Найти первую обобщённую производную функции $f(x) = |x| \sin x$ в области
- a) $\Omega = (-1, 1)$; 6) $\Omega = (\pi, 7\pi)$.
- 8. Найти вторую обобщённую производную функции $f(x) = |x| \sin x$ в области
- a) $\Omega = (-1, 1)$; 6) $\Omega = (\pi, 7\pi)$.
- 9. Доказать, что функция $f(x) = \operatorname{sign} x$ не имеет первой обобщённой производной в области $(-a;a), \ a>0.$

Тема: След функции

Варианты заданий

- 1. Дать определение следа функции из класса $H^1(\Omega)$ на $\partial\Omega$.
- 2. Найти след $f|_{\partial\Omega}$ функции $f(x)=\begin{cases} 0,&|x|<1,\\ 1/2,&|x|=1,\end{cases}$ на границе $\partial\Omega$ области $\Omega=(-1;1).$
- 3. Найти след $f|_{\partial\Omega}$ функции $f(x)=egin{cases} 7,&|x|<1,\\1,&|x|=1 \end{cases}$ на границе $\partial\Omega$ области $\Omega=(-1;1).$
- 4. Выписать неравенство о следе функции из класса $H^1(\Omega)$ на $\partial\Omega$.

Вариант экзаменационного задания

- 1. Дать определение пространств $L_{2,loc}(\Omega)$ и $L_2(\Omega)$. Выписать норму и скалярное произведение этих пространств, если они определены. Указать, являются ли они банаховыми, гильбертовыми.
- 2. Доказать независимость α -обобщённой производной от последовательности операций обобщённого дифференцирования.
- 3. Найти первую обобщённую производную функции f(x) = |x-2| в области
- a) $\Omega = (-5, 7)$; 6) $\Omega = (5, 7)$.
- 4. Найти след $f|_{\partial\Omega}$ функции $f(x)=\begin{cases} 7, & |x|<1,\\ 1, & |x|=1, \end{cases}$ на границе области $\Omega=(-1;1).$
- 5. Выписать неравенство о следе функции из класса $H^1(\Omega)$ на $\partial\Omega$.
- 6. Запишите неравенство Пуанкаре-Фридрихса (Стеклова) в пространстве $\overset{0}{H}^{1}(\Omega)$