

PRINCIPAIS VESTÍGIOS EM LOCAIS DE ACIDENTES DE TRÂNSITO

PRINCIPAIS VESTÍGIOS A CONSTATAR

Sempre que o perito chega a um local para atender uma ocorrência, seja de morte violenta, de acidente de trânsito ou suicídio, ele deve adotar determinados procedimentos. De modo geral, a estrutura dos levantamentos é semelhante, mas existem peculiaridades. Por exemplo, ao chegar ao local de morte violenta, o perito deve coletar informações iniciais, como a data, a hora da morte violenta e os responsáveis pelo atendimento, isolamento e preservação do local – da mesma forma ocorre no local de crime contra o patrimônio e no local de acidente de trânsito.

No local de acidente de trânsito, o perito deve detectar a trajetória dos veículos, a zona ou ponto de colisão entre os veículos, os pontos de repouso etc. Para isso, ele deve fazer o levantamento descritivo do local – descrever detalhadamente o que aconteceu no local (as características das vias, as características dos veículos e vestígios encontrados) –, o levantamento fotográfico – do geral para o específico – e o levantamento topográfico – desenho esquemático ou croqui do local, representando os vestígios, os veículos e as vias. Para realizar esses levantamentos, o perito precisa reconhecer os vestígios.

VESTÍGIO

- Os vestígios encontrados no local devem ser descritos em detalhes;
- Fotografados e desenhados pelo perito criminal;
- · Levantamento descritivo textual;
- Levantamento fotográfico;
- Levantamento topográfico (croqui/desenho esquemático);
- Imagens de satélite (opcional);
- Imagens aéreas por drones (opcional);
- Filmagens (opcional);
- · Outros.

		1 ' (/ '	~ 1 '1'	C 1 / C	, , <u>, , , , , , , , , , , , , , , , , </u>
The .	AC LAWANTAMANTAC	Obridatorios	COO O DOCCTITIVO	A totogratico a c) topogratico
UUS.:	os levantamentos	UDITUATORIOS :	3au u u c suniivu.	. U IUIUUI AIIUU 🗲 U	, lubuulalibu.

S	
) V	
01	
A	

1. Marcas pneumáticas

Obs.: as marcas pneumáticas são vestígios deixados quando o veículo produz frenagem brusca no pavimento. Ocorre atrito entre as rodas e o asfalto, o que gera o aquecimento e derretimento da borracha do pneu, que é depositada na superfície da via. Esse vestígio é importante pois permite a estimação da velocidade e da trajetória dos veículos.

- · Vestígio muito importante no local;
- · Permite estimar a velocidade;
- · Classificadas pelas características;
- No registro descritivo das marcas pneumáticas deve constar:
- 1. Extensão em metros;
- 2. Localização;
- 3. Referência de pontos de início e término;
- 4. Características particulares: distorções e interrupções.
- Classificação:

-		
٠		

ANOTAÇÕES

Obs.: trata-se da marca de frenagem de um atropelamento que, geralmente, é retilínea.

A) Frenagem

- Atrito do pneu com a superfície;
- Travamento das rodas pelo acionamento dos freios;
- Ao ser freado o veículo produz marcas contínuas e de cor escura;
- Processo de fusão da borracha pela elevação de temperatura gerada pelo atrito;
- Geralmente são retilíneas;
- Valor investigativo: determinar a trajetória e a velocidade;
- Freios ABS produzem marcas mais tênues e seccionadas.

Obs.: o freio ABS produz um travamento pausado das rodas, ou seja, em um curto intervalo de tempo (infinitesimal), o que marca o pavimento de forma tênue.

- O veículo 1 (viatura de polícia) trafegava no acostamento e o veículo 2 trafegava na faixa da direita.
- O veículo 2, para acessar o posto de combustível, atingiu o veículo 1.

ES	
٩ÇÕE	
ОТ/	
AN	

Obs.: "amarrar" a marca de frenagem significa situá-la na via, a representando no desenho com linhas de medida/cota.

- A extremidade anterior do V1 estava a 1, do canto.
- · Há 12,5 metros de marca de frenagem.
- · A mudança de direção na marca de frenagem indica onde ocorreu o impacto entre os veículos.

- Demonstra o acidente entre uma moto e um automóvel.
- Sítio de colisão (SC) é o local onde ocorreu o impacto entre os veículos.

ES	
ĄĆ <u>Ó</u>	
01	
A	

 Antes do sítio de colisão não há marcas de frenagem, pois os freios foram acionados no momento do impacto.

b) Derrapagem

- Produzidas pelos pneus sem o travamento total;
- Os pneus continuam em movimento rotativo/curvilíneo, com deslocamento divergente da orientação do eixo longitudinal do veículo;
- · Ao derrapar ou girar, os veículos produzem na via marcas de forma curvilínea.

^		
		do o condutor aciona os freios e tenta fazer mudança de direção. Ao tentar fazer a
0	bs.:	: as marcas de derrapagem são produzidas com o travamento parcial das rodas quan-

ES	
٩ÇÕ٤	
OT/	
AN	

mudança de direção, as rodas não freiam completamente, mas também não ficam totalmente livres, o que leva o condutor a perder o controle do veículo. As marcas são diferentes e indicam perda de controle do veículo por parte do condutor. A metodologia de detectar marcas de derrapagem é a mesma das marcas de frenagem.

Obs.: as marcas de frenagem são, geralmente, retilíneas, ou seja, só apresentam mudança de direção no momento do impacto; as de derrapagem, contudo, são curvas.

S	۱
W	j
Õ	۱
Ū	ŀ
⋖	
_	•
0)
Z	
⋖	

Obs.: a derrapagem por aceleração é denominada "arrancada".

c) Marcas de Aceleração

- Semelhantes às marcas de frenagem;
- Características diferentes em suas regiões iniciais;
- Pela aplicação de grande quantidade de torque nas rodas;
- São observadas distorções no começo e clareamento progressivo, ou seja, são mais escuras no início.

- · A primeira imagem representa a marca de frenagem ou de aceleração. As rodas dos veículos estão alinhadas, ou seja, o volante está reto.
- A segunda imagem representa a marca de derrapagem por desaceleração. As rodas e o veículos estão direcionados em sentidos diferentes. Há linhas diagonais saindo da linha de derrapagem.
- A terceira imagem representa a marca de derrapagem em aceleração. O sulco do pneu e as marcas de derrapagem estão no mesmo sentido. Ocorre a arrancada.
- A quarta imagem representa a marca de derrapagem em rolamento livre.

ES	
01	
A B	

Estimativa da velocidade pelas marcas de frenagem

Obs.: o perito mede o comprimento da marca de derrapagem, utiliza a fórmula física e consulta uma tabela – coeficiente de atrito. O coeficiente de atrito é uma constante física relacionada à resistência ao atrito entre uma superfície e outra. Por exemplo, há um coeficiente de atrito para o contato entre pneu e asfalto seco, entre pneu e asfalto molhado, entre calçamento e pneu, entre pneu e terra etc. O coeficiente de atrito também é utilizado para estimar a velocidade quando uma motocicleta cai e arrasta (mede-se o arrastamento e o calcula na fórmula junto ao coeficiente de atrito da superfície da moto com o pavimento).

- Método simples;
- Muito usado;
- Baseia-se no coeficiente de atrito K;
- $V = (2gkd)^{1/2}$, (m/s);
- $V = 15,938 \times (d_x \times K)^{1/2}, (km/h);$
- K é <u>adimensional</u>; <u>depende do atrito pneu/piso</u>;
- Medida de resistência à movimentação de uma superfície sobre a outra;
- Obtido por tabelas ou experimentalmente;
- Permite estimar a velocidade em vários tipos de superfície;
- Depende da natureza das superfícies.

	Veículos de passeio		camir	caminhões	
	Seco	ûmido	seco	úmido	
asfalto novo	0,85	0,60	0,60	0,42	
asfalto velho	0,70	0,55	0,49	0,39	
asfalto escorregadio	0,55	0,35	0,39	0,25	
concreto novo	0,85	0,55	0,60	0,39	
concreto velho	0,70	0,55	0,49	0,39	
pedra limpa	0,60	0,40	0,42	0,28	
pedregulho	0,65	0,65	0,46	0,46	
terra dura	0,65	0,70	0,46	0,49	

v	1
ш	J
ĭC	ו
ũ	j
ā	۱
\mathbf{F}	•
'n	١
\succeq	,
_	

terra solta	0,50	0,55	0,35	0,39
areia sobre pavimento	0.45	0,30	0,32	0,21
barro sobre pavimento	0,45	0,30	0,32	0,21
barro sobre pedra	0,40	0,25	0,28	0,18

Tabela 9-2. Coeficientes de atrito para diversos tipos de piso. Accidentologia Vial y Pericia. Victor A. Irureta. Ediciones La Rocca. 1996.

Obs.: o coeficiente de atrito de asfalto velho é muito utilizado.

Tipo de situação	coeficiente
Caminhão deslizando sobre sua lateral sobre concreto	0.30 - 0.40
Veículo de passeio deslizando apoiado sobre o teto em concreto	0.30
Veículo de passeio deslizando apoiado sobre o teto em asfalto áspero	0.40
Veículo de passeio deslizando apoiado sobre o teto em cascalho	0.50 - 0.70
Veículo de passeio deslizando apoiado sobre o teto em grama seca	0.50
Superficies metálicas deslizando sobre asfalto	0.40
Superficie metálica deslizando sobre terra	0.20
Metal em atrito com metal (fricção lateral)	0.60
Veículo com veículo (passeio)	0.55
Freio motor engatado em marcha pesada	0.10
Freio motor engatado em marcha leve	0.10 - 0.20
Rolamento livre sem engrenagem e pneus com calibragem normal	0.01
Rolamento livre sem engrenagem e pneus com calibragem parcial	0.013
Rolamento livre sem engrenagem e pneus vazios	0.017
Deslizando sobre neve compacta	0.15
Deslizando sobre gelo ou granizo	0.07
Motocicleta deslizando tombada	0.55 - 0.70
Corpo humano deslizando	1.10
Corpo humano rolando	0.80

Tabela 9-3. Coeficientes de atrito para diferentes situações.

Obs.: o coeficiente de motocicleta deslizando em lombada é muito utilizado.

ES	
٩ÇÕE	
ОТ/	
AN	

EXERCÍCIOS DE FIXAÇÃO

1. (AUTORAL/2020) Um automóvel atropelou um pedestre em uma via que a velocidade máxima permitida era de 40 km/h. Antes de atingir a vítima o condutor tentou parar o veículo, realizando frenagem brusca. Durante o levantamento pericial de local, o perito criminal verificou que o veículo produziu 23,0 metros de marca de frenagem no pavimento. Constatou ainda que a via era plana, o asfalto era antigo e que, quando o acidente aconteceu, o tempo e o pavimento estavam secos. Com base nessas informações, estime a velocidade desenvolvida pela veículo quando realizou a frenagem.

COMENTÁRIO

Dados: 23 min frenagem;

K = 0.70:

V = 15,938. √d_€. K

V ≅ 16 √d_€. K

 $V = 16 \sqrt{23}.0,7$

 $V \cong 16 \sqrt{16.16}$

 $V \cong 16.4 = 64 \text{ km/h}$

Estima-se que o veículo estava em velocidade não inferior a 64 km/h.

2. Marcas de fricção metálicas

- · Produzidas quando partes da estrutura do veículo deslizam contra a superfície, riscando, sem retirada significativa de material do pavimento;
- Utilizadas para o cálculo de velocidades dos veículos;
- É necessário conhecer os coeficientes de atrito K. 3. Marcas de sulcagens
- Quando partes metálicas atingem a pista de forma violenta;
- Comuns em colisões frontais;

ES	
0	
IOTA	
A	

10

- Abaixamento da estrutura;
- Definem o "ponto de colisão" (PC);
- Podem definir pontos das trajetórias;
- Extensão, início e término registradas.

Obs.: as marcas de fricção metálica são as marcas de atrito entre superfícies metálicas e pavimentos, geralmente produzidas pós colisão. Por exemplo, em uma colisão entre um automóvel e motocicleta, a motocicleta cai e deixa marcas de arrastamento. Essas marcas são medidas e inseridas na fórmula física, com o coeficiente específico de deslizamento de motocicleta em asfalto para estimar a velocidade.

ES	
ĄĊ <u>Ŏ</u> Ę	
01 <u>'</u>	
A	

11

3. Marcas de sulcagens

As marcas de fricção metálica removem camadas superficiais do asfalto; as marcas de sulcagens, contudo, removem camadas profundas do asfalto. Isso ocorre, geralmente, na região de impacto entre um veículo e outro. Quando o impacto é violento ao ponto de haver deformação da latarias, considera-se que o abaixamento das estruturas foi gerado pela remoção considerável de asfalto do pavimento. Essas marcas permitem determinar onde ocorreu a interação exata entre os veículos.

Por exemplo, em caso de colisão frontal, na faixa encontrada a marca de sulcagem decorrente da colisão, é possível identificar o local do impacto. Ao saber o local do impacto e qual faixa trafegava o veículo, sabe-se qual veículo invadiu a faixa do outro. O veículo que trafegava pela faixa onde há as marcas estava na faixa correta; o veículo que trafegava na faixa oposta atravessou sua faixa em direção à faixa em que ocorreu o impacto.

ES	
Ç	
IOTA	
AN	

- · Quando partes metálicas atingem a pista de forma violenta;
- · Comuns em colisões frontais;
- · Abaixamento da estrutura;
- · Definem o "ponto de colisão" (PC);
- · Podem definir pontos das trajetórias;
- Extensão, início e término registradas.

Ų	
کِ	
2	
Ž	

ANOTACÕES

Obs.: a colisão ocorreu na faixa do caminhão (V1), que foi invadida pelo automóvel (V2).

4. Fragmentos

- Quebra das estruturas, com desprendimento de fragmentos;
- Peças de vidro, plásticos ou fibra;
- Noção do ponto em que ocorreu a colisão;
- Identificação de veículo evasor;
- · Frequentes: vidros, faróis, plásticos, lanternas, faróis, grades frontais, capas de para--choques, calotas, lascas de pintura, retrovisores, placa etc.;
- Auxiliam na determinação de trajetórias, do "ponto de colisão" e no estabelecimento da dinâmica do acidente.
- Obs.1: esses fragmentos tendem a se projetar no sentido de marcha do veículo (princípio da inércia, "corpos em movimento tendem a permanecer em movimento"). Ao sofrer uma desaceleração brusca com rompimento de fragmentos, os fragmentos do veículo são projetados para frente. Com isso, é possível identificar onde ocorreu o impacto e a trajetória do veículo.
- Obs.2: existem métodos para estimar a velocidade dos veículos com base na projeção dos fragmentos, contudo, no Brasil, os locais de acidente de trânsito, geralmente, não são bem isolados, o que leva aos fragmentos serem indevidamente movimentados antes de ocorrer a perícia.

S	
Ö,	
Ϋ́	
Š	
⋖.	

Obs.: por um limpador de para-brisa, por exemplo, é possível descobrir o ano e o modelo do veículo. É comum, em casos de atropelamento, que o condutor deixe o local do acidente. Com a análise dos fragmentos deixados, é possível identificar o veículo do condutor.

Obs.: a caminhonete deixou a pista e capotou. Há fragmentos – forro da caçamba, pedaços de plásticos de lanternas e uma garrafa que foi alterada.

5. Marcas de fricção de corpo flácido

- Choque entre veículo e pedestre;
- · Marcas aparência de alimpaduras;
- Deposição de tecidos: pele, sangue, cabelo, fragmentos ósseos etc.;
- Importância: determinação de trajetórias posteriores ao impacto.

Obs.: por vezes, é possível identificar a alimpadura do calçado do pedestre no asfalto, ou seja, o atrito do calçado com o asfalto no momento do impacto.

ES	
١ÇÕ	
ФТОІ	
AN	

6. Concentração de sangue

- · As vítimas de acidentes, feridas, ao imobilizar-se sobre a superfície asfáltica, produzem concentrações de sangue.
- São vestígios que auxiliam na identificação do ponto onde a vítima permaneceu caída.

ES	
ÇÕ	
OTA	
AN	

7. Fluidos

- Os danos do impacto da colisão causam vazamento de fluidos mecânicos;
- Radiador, motor, freios, direção hidráulica;
- Importantes na determinação de pontos de colisão ou de trajetórias dos veículos.

8. Posição de repouso final dos veículos

Obs.: existem métodos de estimativa de velocidade que demandam um levantamento de local de acidente detalhado. Ao medir as distâncias e os ângulos em que os veículos entraram e saíram da colisão, e os pontos de repouso dos veículos em relação ao

ES	
ďĊÕE	
01	
A	

ponto do acidente, é possível estimar a velocidade dos veículos. O ponto de repouso deve ser fotografado, documentado no croqui, e feito as medições e amarrações. Se a distância entre o ponto de repouso e o ponto de colisão for pequena, sabe-se que as velocidades não eram elevadas; se a distância for grande, sabe-se que velocidades eram, provavelmente, elevadas.

- Posições finais que os veículos assumem;
- Estabelecimento da dinâmica;
- · Determinação das velocidades;
- Comparadas com o ponto de colisão;
- Definem as movimentações residuais no pós-colisão;
- · Para registro da posição de um veículo, utilizam-se as coordenadas cartesianas, "amarrando";
- Nem sempre a posição em que o veículo foi encontrado é a de repouso.

'n	
کِ	
<u></u>	
Ź	

Obs.: a representação em desenho é importante caso seja necessário fazer uma reprodução simulada do acidente. Modernamente, inclusive, a disciplina "perícias de acidente de trânsito" é chamada de "reconstrução de acidentes de trânsito". Os americanos utilizam essa terminologia e a perícia brasileira possui muita influência da perícia americana e da argentina – pois há, nesses países, centros de estudos.

9. Avarias

- Danos:
- Deformações produzidas pelo impacto das estruturas;
- · Descrição detalhada das avarias;
- Determinação da sede de impacto;
- Sede de impacto: ponto (ou região) do impacto na estrutura do veículo;
- Descrever a direção de aplicação da força de impacto da colisão.

AAD - Angulo anterior direito	LME - lateral mediana esquerda
APD - ångulo posterior direito	LPE - lateral posterior esquerds
APE - Angulo posterior esquerdo	PAE - porção anterior esquerda
AAE - Angulo anterior esquerdo	PAM - porção anterior mediana
LAD - lateral anterior direita	PAD - porção anterior direita
LMD - lateral mediana direita	PPE - porção posterior esquerda
LPD - lateral posterior direita	PPM - porção posterior mediana
LAE - lateral anterior esquerda	PPD - porcão posterior direita

٠,	
کُر ک	
<u>^</u>	
¥	

Para a altura considere o seguinte:

Obs.: na imagem acima, as avarias no veículo concentram-se na lateral anterior esquerda com a força atuando da esquerda para a direita.

10. Principais tipos de avarias

- · Amassamento: partes metálicas dúcteis;
- · Quebramento: peças que fraturam; plásticos e fibras;

ES	
Õ	
IOTA	
A	

- Ruptura/deformação: pneus e capas de para-choque;
- Empenamento: peças longas que entortam;

Exemplo: amassamento do paralama e do capô; ruptura da capa do para-choque; quebramento do farol e da calota.

EXERCÍCIOS DE FIXAÇÃO

- 2. (AUTORAL/2020) Acerca da perícia em locais de acidentes de trânsito, julgue os itens:
 - Apesar de os fatores humanos causarem acidentes, os fatores viários e veiculares são preponderantes no aumento dessas estatísticas;
 - A documentação descritiva, por meio de fotografias e de desenho, dos vestígios de acidentes, são imprescindíveis.
 - Marca pneumática é sinônimo de marca de frenagem.
 - 4) As marcas de frenagens permitem estimar a velocidade de veículos.
 - 5) As marcas de fricção metálicas e as sulcagens são vestígios que podem ser deixados na via pelo acidente e trazem vários informações ao perito, como a posição de repouso das vítimas.

COMENTÁRIO

7	1. Em 90% dos casos, os fatores humanos são predominantes.
Ses	
ANOTAÇÕES	

- 2. O básico do levantamento de trânsito consiste no levantamento descritivo, fotográfico e topográfico (croqui, desenho esquemático e, opcionalmente, imagens de satélite, imagens de *drones* etc.).
- 3. Marca pneumática é o gênero e marca de frenagem é a espécie. Marcas de derrapagem também é um tipo de marca pneumática.
- 5. As marcas de fricção metálicas e as sulcagens dão a noção de onde ocorreu o impacto entre os veículos, ou seja, identificam o trajetória dos veículos no pós-impacto. Não se relaciona com a posição de repouso da vítima manchas de sangue, marcas de arrastamento de corpo flácido com fluidos biológicos etc.

GABARITO

4	~ 4	1	/1_
	64	KM.	/n

		_		_	
7	г.	C;	Г.	\sim .	_
		· ·	т.	ι.	ᆮ
	┗,	Ο,	┗,	Ο,	_

Este material foi elaborado pela equipe pedagógica do Gran Cursos Online, de acordo com a aula preparada e ministrada pelo professor Laécio Carneiro Rodrigues.

A presente degravação tem como objetivo auxiliar no acompanhamento e na revisão do conteúdo ministrado na videoaula. Não recomendamos a substituição do estudo em vídeo pela leitura exclusiva deste material.

ES	
ÇÕ	
∆T0I	
A	