## 8.7 Normalizes database schema to improve performance

Time: 6 periods

#### **Learning Outcomes**

- Describes the functional dependencies and categorizes them
- Describes abnormalities of an improperly designed table when modifying in terms of insert, update and delete
- Describes the zero normal form
- Explains the abnormalities which are reduced after the first normal form
- Lists the conditions for executing the second normal form
- Explains the abnormalities which are reduced after the second normal form
- Explains the abnormalities which are reduced after the third normal form

#### Normalization

Normalization is a process to evaluate and correct the table structure

Normalization is a another **DB design tool** 

## Why Normalization? A Case Study

- BCG company manages building group projects
- Purpose of BCG's data
  - o Indicate the number of hours spent on each project
  - o Indicate the hourly rate for each employee
  - o To generate report about each project
  - o Also auxiliary data reporting

| PROJ_NUM   | PROJ_NAME    | EMP_NUM | EMP_NAME               | JOB_CLASS             | CHG_HOUR | HOURS |
|------------|--------------|---------|------------------------|-----------------------|----------|-------|
| 15         | Evergreen    | 103     | June E. Arbough        | Elect, Engineer       | 84.50    | 23.8  |
|            |              | 101     | John G. News           | Database Designer     | 105.00   | 19.4  |
|            |              | 105     | Alice K. Johnson *     | Database Designer     | 105.00   | 35.7  |
|            |              | 106     | √/Illiam Smithfield    | Programmer            | 35.75    | 12.6  |
|            |              | 102     | David H. Senior        | Systems Analyst       | 96.75    | 23.8  |
| 18         | Amber Wave   | 114     | Annelise Jones         | Applications Designer | 48.10    | 24.8  |
|            |              | 118     | James J. Frommer       | General Support       | 18.36    | 45.3  |
|            |              | 104     | Anne K. Ramoras *      | Systems Analyst       | 96.75    | 32.   |
|            |              | 112     | Darlene M. Smithson    | DSS Analyst           | 45.95    | 44.   |
| 22         | Rolling Tide | 105     | Alice K. Johnson       | Database Designer     | 105.00   | 64.   |
|            |              | 104     | Anne K. Ramoras        | Systems Analyst       | 96.75    | 48.   |
|            |              | 113     | Delbert K. Joenbrood * | Applications Designer | 48.10    | 23.   |
|            |              | 111     | Geoff B. Wabash        | Clerical Support      | 26.87    | 22.   |
|            |              | 106     | √Villiam Smithfield    | Programmer            | 35.75    | 12.   |
| 25         | Starflight   | 107     | Maria D. Alonzo        | Programmer            | 35.75    | 24.   |
|            |              | 115     | Travis B. Bawangi      | Systems Analyst       | 96.75    | 45.   |
| UK.        |              | 101     | John G. News *         | Database Designer     | 105.00   | 56.   |
| 10         |              | 114     | Annelise Jones         | Applications Designer | 48.10    | 33.   |
| lin record |              | 108     | Ralph B. Washington    | Systems Analyst       | 96.75    | 23.   |
| 10         | 62           | 118     | James J. Frommer       | General Support       | 18.36    | 30.   |
|            |              | 112     | Darlene M. Smithson    | DSS Analyst           | 45.95    | 41.4  |

# **Unnormalised Normal Form (UNF)**

 Definition: A relation is unnormalised when it has not had any normalisation rules applied to it, and it suffers from various anomalies.

This only tends to occur where the relation has been designed using a 'bottom-up approach'. i.e., the capturing of attributes to a 'Universal Relation' from a screen layout, manual report, manual document, etc...

#### **Normalization**

- Normalization is a process to evaluate and correct the table structure
- Purpose
  - o To eliminate data redundancies
- Normalization process
  - o Goes through a number of stages
  - o Each stage is a "normal form(NF)"
- First stage is called the first normal form(1NF)
- Generally, a higher normal form is better than a lower normal form, i.e. (n+1)-NF is better than n-NF
- **3NF** or **BCNF** is the furthest we go, for most situations
- Higher normal forms has less redundancies
  - o But not always desirable. Why?

#### Normal forms

| NORMAL FORM                   | CHARACTERISTIC                                             |  |  |
|-------------------------------|------------------------------------------------------------|--|--|
| First normal form (1NF)       | Table format, no repeating groups, and PK identified       |  |  |
| Second normal form (2NF)      | 1NF and no partial dependencies                            |  |  |
| Third normal form (3NF)       | 2NF and no transitive dependencies                         |  |  |
| Boyce-Codd normal form (BCNF) | Every determinant is a candidate key (special case of 3NF) |  |  |
| Fourth normal form (4NF)      | 3NF and no independent multivalued dependencies            |  |  |

#### **Normalization Objectives**

- To ensure tables have the following characteristics:
  - o Each table represents a single subject
  - No duplication, i.e., no data item will be unnecessarily stored in more than one table
  - o All attributes in a table are uniquely identified by a primary key
  - Each table is **void of anomalies** for data insertion, updating, or deletion

#### First Normal Form (1NF)

- A table must not contain repeating groups
  - o A **repeating group** is a group of entries/records that exist for any single key attribute occurrence
- Informally
  - o A "key" should not identify a group of records
  - o A "key" should identify one record
- 1NF is to get rid of repeating groups

#### A table not in 1NF

| PROJ_NUM      | PROJ_NAME    | EMP_NUM | EMP_NAME               | JOB_CLASS             | CHG_HOUR | HOURS |
|---------------|--------------|---------|------------------------|-----------------------|----------|-------|
| 15            | Evergreen    | 103     | June E. Arbough        | Elect. Engineer       | \$84.50  | 23.8  |
|               |              | 101     | John G. News           | Database Designer     | \$105.00 | 19.4  |
|               |              | 105     | Alice K. Johnson *     | Database Designer     | \$105.00 | 35.7  |
|               |              | 106     | ∨Villiam Smithfield    | Programmer            | \$35.75  | 12.6  |
| $\overline{}$ |              | 102     | David H. Senior        | Systems Analyst       | \$96.75  | 23.8  |
| 18            | Amber Wave   | 114     | Annelise Jones         | Applications Designer | \$48.10  | 24.6  |
|               |              | 118     | James J. Frommer       | General Support       | \$18.36  | 45.3  |
|               |              | 104     | Anne K. Ramoras *      | Systems Analyst       | \$96.75  | 32.4  |
|               |              | 112     | Darlene M. Smithson    | DSS Analyst           | \$45.95  | 44.0  |
| 22            | Rolling Tide | 105     | Alice K. Johnson       | Database Designer     | \$105.00 | 64.7  |
|               |              | 104     | Anne K. Ramoras        | Systems Analyst       | \$96.75  | 48.4  |
|               |              | 113     | Delbert K. Joenbrood * | Applications Designer | \$48.10  | 23.6  |
|               |              | 111     | Geoff B. Wabash        | Clerical Support      | \$26.87  | 22.0  |
|               |              | 106     | vVilliam Smithfield    | Programmer            | \$35.75  | 12.8  |
| 25            | Starflight   | 107     | Maria D. Alonzo        | Programmer            | \$35.75  | 24.6  |
|               |              | 115     | Travis B. Bawangi      | Systems Analyst       | \$96.75  | 45.8  |
|               |              | 101     | John G. News *         | Database Designer     | \$105.00 | 56.3  |
|               |              | 114     | Annelise Jones         | Applications Designer | \$48.10  | 33.1  |
|               |              | 108     | Ralph B. Washington    | Systems Analyst       | \$96.75  | 23.6  |
|               |              | 118     | James J. Frommer       | General Support       | \$18.36  | 30.5  |
|               |              | 112     | Darlene M. Smithson    | DSS Analyst           | \$45.95  | 41.4  |

## Conversion to 1NF

- To achieve 1NF, you should
  - o Eliminate the repeating groups by making sure each attribute contains an appropriate data value
  - o Identify the **Primary Key (PK)**
  - o Identify all dependencies

## A table in 1NF

# PK: PROJ\_NUM + EMP\_NUM

|          | _            |         |                        |                       |          |       |
|----------|--------------|---------|------------------------|-----------------------|----------|-------|
| PROJ_NUN | PROJ_NAME    | EMP_NUM | EMP_NAME               | JOB_CLASS             | CHG_HOUR | HOURS |
| 15       | Evergreen    | 103     | June E. Arbough        | Elect. Engineer       | 84.50    | 23.8  |
| 15       | Evergreen    | 101     | John G. News           | Database Designer     | 105.00   | 19.4  |
| 15       | Evergreen    | 105     | Alice K. Johnson *     | Database Designer     | 105.00   | 35.7  |
| 15       | Evergreen    | 106     | William Smithfield     | Programmer            | 35.75    | 12.6  |
| 15       | Evergreen    | 102     | David H. Senior        | Systems Analyst       | 96.75    | 23.8  |
| 18       | Amber Wave   | 114     | Annelise Jones         | Applications Designer | 48.10    | 24.6  |
| 18       | Amber Wave   | 118     | James J. Frommer       | General Support       | 18.36    | 45.3  |
| 18       | Amber Wave   | 104     | Anne K. Ramoras *      | Systems Analyst       | 96.75    | 32.4  |
| 18       | Amber Wave   | 112     | Darlene M. Smithson    | DSS Analyst           | 45.95    | 44.0  |
| 22       | Rolling Tide | 105     | Alice K. Johnson       | Database Designer     | 105.00   | 64.7  |
| 22       | Rolling Tide | 104     | Anne K. Ramoras        | Systems Analyst       | 96.75    | 48.4  |
| 22       | Rolling Tide | 113     | Delbert K. Joenbrood * | Applications Designer | 48.10    | 23.6  |
| 22       | Rolling Tide | 111     | Geoff B. Wabash        | Clerical Support      | 26.87    | 22.0  |
| 22       | Rolling Tide | 106     | ∕Villiam Smithfield    | Programmer            | 35.75    | 12.8  |
| 25       | Starflight   | 107     | Maria D. Alonzo        | Programmer            | 35.75    | 24.6  |
| 25       | Starflight   | 115     | Travis B. Bawangi      | Systems Analyst       | 96.75    | 45.8  |
| 25       | Starflight   | 101     | John G. News *         | Database Designer     | 105.00   | 56.3  |
| 25       | Starflight   | 114     | Annelise Jones         | Applications Designer | 48.10    | 33.1  |
| 25       | Starflight   | 108     | Ralph B. Washington    | Systems Analyst       | 96.75    | 23.6  |
| 25       | Starflight   | 118     | James J. Frommer       | General Support       | 18.36    | 30.5  |
| 25       | Starflight   | 112     | Darlene M. Smithson    | DSS Analyst           | 45.95    | 41.4  |

## **1NF Summary**

- All key attributes are defined
- No repeating groups in table
- All attributes are dependent on the primary key(PK)

## **Functional Dependency**

- The base of further normalization
- A particular relationship between two attributes
- Definition:
- For any relation R, attribute B is functionally dependent on attribute A if, for every valid instance of A, the value of A uniquely determines **the value of B**, represented as  $A \rightarrow B$ . A is called **determinant**.
- Example:
  - o **Tax file number** → name, address, birthdate
  - o **Vehicle identification No.** → make, model, colour
  - o **ISBN**  $\rightarrow$  book title

#### Visualizing dependencies

## 1NF Dependency Diagram



#### Second Normal Form (2NF)

What is the problem of 1NF?



- There should be **NO partial dependencies** in a table
  - o Part of the PK should not identify a subset of attributes in the same relation
- Goal of 2NF is to remove partial dependencies
- How?

#### Conversion to 2NF

- To achieve 2NF, you should
  - o Identify each **key component** and its corresponding **dependent** attributes
  - o Each key component and its attributes form a new table
  - o **Keep the key components** in the original table
- At this point, most anomalies are removed

#### A table in 2NF



## 2NFSummary

- Already in 1NF
- Includes no partial dependencies
  - o No attribute dependent on a portion of primary key
- Still possible to exhibit transitive dependency
  - Attributes may be functionally dependent on non-key attributes

**Question:** If a table is already in 1NF and its PK contains only one attribute, is it already in 2NF?

## Third Normal Form (3NF)

What's the problem with 2NF?



- There should be **NO transitive dependencies** in a table
  - o The PK determines attribute A, which itself is a key to attribute **B** in the same table
- Goal of 3NF is to remove transitive dependencies
- How?

#### Conversion to 3NF

- To achieve 3NF, you should
  - o Identify the transitive determinant and its dependent attributes
  - o Transitive determinant (new PK) and its dependent attributes form a new table
  - o Remove the dependent attributes from the original table, and **keep** the transitive determinant in the original table

#### A table in 3NF



## **Higher Level Normal Form**

- Tables in **3NF perform suitably** in business transactional databases
- Higher order normal forms useful on occasion
- Boyce Codd normal form (BCNF)
  - o A special case of 3NF

#### **Stages of Normalization**



#### Reference

Lecture notes - Dr. Dilani Wickramaarachchi (University of Kelaniya) Teachers Guide (2108)