Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Informatik

Beleuchtung und Schattierung

Informatik **Prof. Dr. Thomas Koller**Dozent

T direkt +41 41 349 35 38 thomas.koller@hslu.ch

Materialeigenschaften

- Wodurch unterscheiden sich die Materialeigenschaften von Objekten?
- An was erkennen wir, dass ein Objekt auch Plastik, Glas, Metall, Holz etc. besteht?

Computer Graphics

The bright line along the edge of the bookshelf results from the glossy reflection of sunlight.

Brushed metal generates stretched-out highlights.

Caustics cast by a glass of water in sunlight.

Photo oder CG?

Photo oder CG?

Verschiedene Beleuchtungsmodelle

Computer Graphics

Standardbeleuchtungsmodell

- Ein physikalisch korrektes Beleuchtungsmodell ist relativ aufwendig zu berechnen (auschlaggebend sind die sogenannten Fresnel-Gleichungen aus der Physik)
- Üblicherweise wird deshalb vor allem für interaktive Programme - ein vereinfachtes Beleuchtungsmodell verwendet
- Das Modell simuliert diffuse und spiegelnde Reflektion
- Raytracing und Radiosity verwenden zum Teil aufwendigere Beleuchtungsmodelle

Diffuse Reflektion (Lambert Modell)

- Gleichmässige Abstrahlung des Lichts in alle Richtungen
- Eigenschaften eines matten, nicht glänzenden Materials

Energie

- die Energie einer beleuchteten Fläche ist proportional zum Cosinus zwischen Lichtrichtung und Flächennormalen

Berechung der diffusen Reflektion

Term für die diffuse Reflektion:

$$I_d = I_L \cdot k_d \cdot \cos \varphi$$

mit

$$\cos \varphi = \vec{N} \cdot \vec{L}$$

wobei N die Flächennormale,

L die Richtung zur Lichtquelle,

Id die reflektierte Intensität und

IL die Intensität der Lichtquelle bezeichnet

Beispiel

- Kugel aus verschiedenen Richtungen beleuchtet

Beleuchtete Fläche

SpiegeInde Reflektion

- Simulation der Spiegelung auf glänzenden Oberflächen wie Plastik, Metall oder lackiertes Holz

Phong Modell

- Die Intensität des Lichts nimmt mit $cos^n \varphi$ ab, wobei φ der Winkel zwischen der idealen Reflektionsrichtung und der betrachteten Richtung ist.

$$I_s = I_L \cdot k_s \cdot \cos^{n_s} \phi$$

Berechnung der Reflektionsrichtung

Projektion von L auf N

Länge verdoppeln

Computer Graphics

Phong Koeffizient

Phong Koeffizent

$$I_s = I_L \cdot k_s \cdot \cos^{n_s} \phi$$

Scattering

Figure 27.13 The symmetric grooves all have their tops at the same height. Light arriving at an angle (downward-pointing black arrows) can be reflected in the mirror direction (the dashed green arrow), or reflect back toward the source or in other directions (red).

Modell

Farbe

- Die Reflektionskonstanten k_d und k_s hängen von der Wellenlänge ab.
- Im einfachen Beleuchtungsmodell werden sie durch Konstanten für die Farben rot, grün und blau bestimmt.
- Beispiel: rotes Objekt aus Plastik:

$$k_d = (0.6, 0, 0,),$$

 $k_s = (0.35, 0.35, 0.35)$

Abschwächung des Lichts

- Die Energie des Lichts nimmt mit dem Quadrat des Abstands ab, dadurch werden die Objekte allerdings schnell zu dunkel
- Häufig findet deshalb das folgende, flexiblere Modell Verwendung

$$f_{\text{Att}} = \frac{1}{(c_1 + c_2 d + c_3 d^2)}$$

Lichtquellen

Ambiente Lichtquelle

Direktionale Lichtquelle

Punkt Lichtquelle

Lichtquellen

Spot Lichtquelle

Verteilte Lichtquelle

Schattierung

- Die Schattierung bestimmt an welchen Orten die Beleuchtung berechnet wird

- Man unterscheidet zwischen
 - Konstanter Schattierung
 - Gouraud Schattierung
 - Phong Schattierung

Konstante Schattierung

- pro Polygon wird nur eine
 Farbe berechnet
- Eignet sich nicht für gekrümmte Objekte

Gouraud Schattierung

- Berechnung der Farbe an jedem Eckpunkt des Polygons
- Lineare Interpolation der Farbe im Innern des Polygons

Phong Schattierung

- Interpolation des Normalenvektors im Innern des Polygons
- Beleuchtungsberechnung für jeden Pixel