Лабораторная работа № 3

<u> Детерминированные вычислительные процессы с</u> <u>управлением по аргументу. Численное</u> <u>интегрирование.</u>

Цель работы: научиться реализовывать алгоритмы численного интегрирования посредством детерминированных циклических вычислительных процессов с управлением по аргументу с помощью Free Pascal.

Оборудование: PC, Lazarus

Задача № 1

Постановка задачи: написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника левых частей. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3.

$$\int_{0.5}^{1.3} \frac{\sin(0.5x + 0.4)dx}{1.2 + \cos(x^2 + 0.4)} \approx h * \sum_{i=a}^{b-h} f(i);$$

$$f(i) = \frac{\sin(0.5i + 0.4)}{1.2 + \cos(i^2 + 0.4)};$$

Список идентификаторов (обозначение переменных):

Таблица 1

Имя	Смысл	Тип	
a	real	Значение нижнего предела интегрирования	
b	real	Значение верхнего предела интегрирования	
n	real	Кол-во шагов	
h	real	Величина шага	
s	real	Сумма значений функции	
X	real	Параметр цикла	
intg	real	Значение интеграла	

```
program Zadacha1;
var h,x,a,b,s, intg, n:real;
begin
a:=0.5;
b:=1.3;
writeln('vvedite kolichestvo shagov');
readln (n);
h:= (b-a)/n;
s:=0;
x:=a;
```

```
while x \le (b-h) do 
begin 
 s := s + (\sin(0.5*x + 0.4)/(1.2 + \cos(x*x + 0.4))); 
 x := x + h; 
end; 
intg:= h*s; 
writeln(intg:3:10); 
readln; 
end.
```

Результаты выполненной работы:

Анализ результатов вычисления: Программа вычисляет определенный интеграл методом левых частей и выводит его на экран. Чем больше количество отрезков разбиения, тем точнее результат.

Задача №2

Постановка задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника левых частей. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3..

$$\int_{0.5}^{1.3} \frac{\sin(0.5x + 0.4)dx}{1.2 + \cos(x^2 + 0.4)} \approx h * \sum_{i=a+h}^{b} f(i);$$

$$f(i) = \frac{\sin(0.5i + 0.4)}{1.2 + \cos(i^2 + 0.4)};$$

Список идентификаторов (обозначение переменных):

Таблица 2

Имя	Смысл	Тип	
a	real	Значение нижнего предела интегрирования	
b	real	Значение верхнего предела интегрирования	
n	real	Кол-во шагов	
h	real	Величина шага	
s	real	Сумма значений функции	
X	real	Параметр цикла	
intg	real	Значение интеграла	

```
program Zadacha2;
var h,x,a,b,s, intg, n:real;
begin
 a = 0.5;
 b:=1.3;
 writeln('vvedite kolichestvo shagov');
 readln (n);
 h := (b-a)/n;
 s:=0;
 x := a+h;
 while x<=b do
     begin
        s := s + (\sin(0.5 * x + 0.4)/(1.2 + \cos(x * x + 0.4)));
        x := x+h;
     end;
 intg:= h*s;
 writeln(intg:3:15);
 readln;
end.
```

Результаты выполненной работы:

Анализ результатов вычисления: Программа вычисляет определенный интеграл методом правых частей и выводит его на экран. Чем больше количество отрезков разбиения, тем точнее результат.

Задача №3

Постановка задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом трапеций. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы.

$$\int_{0.5}^{1.3} \frac{\sin(0.5x + 0.4)dx}{1.2 + \cos(x^2 + 0.4)} \approx h * (\frac{f(a) + f(b)}{2} + \sum_{i=a+h}^{b-h} f(i));$$

$$f(i) = \frac{\sin(0.5i + 0.4)}{1.2 + \cos(i^2 + 0.4)};$$

Список идентификаторов (обозначение переменных):

Таблица 3

Имя	Смысл	Тип	
a	real	Значение нижнего предела интегрирования	
b	real	Значение верхнего предела интегрирования	
n	real	Кол-во шагов	
h	real	Величина шага	
S	real	Сумма значений функции	
X	real	Параметр цикла	
intg	real	Значение интеграла	
ya	real	Значение функции при аргументе равном а	
yb	real	Значение функции при аргументе равном b	

```
program Zadacha3;
var h,x,a,b,s,intg,n,ya,yb :real;
begin
 a = 0.5;
 b:=1.3;
 writeln('vvedite kolichestvo shagov');
 readln (n);
 h := (b-a)/n;
 s:=0;
 x := a+h;
 ya := (\sin(0.5*a+0.4)/(1.2+\cos(a*a+0.4)));
 yb:=(\sin(0.5*b+0.4)/(1.2+\cos(b*b+0.4)));
 while x<=(b-h) do
     begin
        s := s + (\sin(0.5 \cdot x + 0.4)/(1.2 + \cos(x \cdot x + 0.4)));
        x := x+h;
     end;
 intg:= h*(((ya+yb)/2)+s);
 writeln(intg:3:15);
 readln;
end.
```

Результаты выполненной работы:

Анализ результатов вычисления: Программа вычисляет определенный интеграл методом трапеций и выводит его на экран. Чем больше количество отрезков разбиения, тем точнее результат.

Задача №4

Постановка задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом парабол. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы.

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}(f(a) + 4*(f(a+h) + f(a+3h) + \dots + f(b-h)) + 2*(f(a+2h) + \dots + f(a+4h) + \dots + f(b-2h)) + f(b))$$

Список идентификаторов (обозначение переменных):

Таблица 4

Имя	Смысл	Тип	
a	real	Значение нижнего предела интегрирования	
b	real	Значение верхнего предела интегрирования	
n	real	Кол-во шагов	
h	real	Величина шага	
X	real	Параметр цикла	

intg	real	Значение интеграла
ya	real	Значение функции при аргументе равном а
yb	real	Значение функции при аргументе равном b
s1	real	Сумма значений функции в нечетных шагах
s2	real	Сумма значений функции в четных шагах

```
program Zadacha4;
var h,x,a,b,s1,s2,intg,n,ya,yb :real;
begin
a:=0.5;
b:=1.3;
writeln('vvedite kolichestvo shagov');
readln (n);
h:= (b-a)/(2*n);
s1:=0;
s2:=0;
ya:=(sin(0.5*a+0.4)/(1.2+cos(a*a+0.4)));
yb:=(sin(0.5*b+0.4)/(1.2+cos(b*b+0.4)));
x:=a+h;
```

Результат выполненной работы:

Анализ результатов вычисления: Программа вычисляет определенный интеграл методом парабол и выводит его на экран. Чем больше количество отрезков разбиения, тем точнее результат.

Таблица сравнений результатов

Таблица 5

N Количество разбиений	Н	I Метод левых частей прямоугольника	I Метод правых частей прямоугольника	I Метод трапеций	I Метод парабол
10	0,08	0.5155068634267	0.4912519135624	0.4540807490	0.451950951168
100	0,008	0.4482529342067	0.4458274392203	0.4423797770	0.442269563193
1000	0,0008	0.4525631131044	0.4523205636058	0.4519488519	0.451948637832
10000	0,00008	0.4519114688000	0.4518872138502	0.4518500702	0.451850058915

Вывод.

Вывод: Наиболее точным способом вычисления определенного интеграла является метод Симпсона (метод парабол). Для того, чтобы повысить точность любого метода, необходимо задать большее количество отрезков разбиения.