Задание 3

N = 800

 $\tau = 0.001$

 $\varepsilon = 0.00001$

Метод решения	Количество потоков										
	1	4		8		20		40		80	
	T1	T4	S4	Т8	S8	T20	S20	T40	S40	T80	S80
#pragma for	~32.04	~8.64	~3.75	~5.02	~6.45	~3.46	~9.36	~3.26	~9.93	~4.51	~7.18
#pragma parallel	~29.25	~14.87	~1.97	~7.33	~3.99	~3.72	~7.86	~2.5	~11.7	~3.19	~9.16

Исследование

Для проведения исследования были взяты те же параметры и количество потоков = 20.

Взяв за основу параметры «(static, 5)», я решила изменить для начала первый, перебрав static, dynamic и guided. Так как последние два в принципе действия похожи, их результат был близок, но на 0.7с больше, чем при использовании static, что помогло остановить выбор на нем.

Далее, экспериментальным путем я выяснила, что увеличение второго параметра в большую сторону влекло за собой положительные изменения лишь вплоть до значения 40, улучшив время работы программы с 3.46 до 2.75с (на ~20%).

Что и делает параметры «(static, 40)» оптимальными.

Вывод

Изучив изменения коэффициента ускорения вариантов 1 и 2, согласно графику, использование первого варианта более целесообразно, особенно учитывая, что возможно подобрать идеальные параметры для каждого количества потоков, что дает ему больше преимуществ над вариантом 2.