Aulas 7

- Representação de números em vírgula flutuante
- A norma IEEE 754
 - Operações aritméticas em vírgula flutuante
 - Precisão simples e precisão dupla
 - Casos particulares; representação desnormalizada
 - Técnicas de arredondamento
- Unidade de vírgula flutuante do MIPS (coprocessador 1)
 - Instruções da FPU do MIPS
 - Análise de um exemplo de tradução de C para assembly

Bernardo Cunha, José Luís Azevedo

Representação de quantidades fracionárias

- A codificação de quantidades numéricas com que trabalhámos até agora esteve sempre associada à representação de números inteiros
- A representação posicional de inteiros pode também ser usada para representar números racionais considerando-se potências negativas da base

 Esta representação designa-se por "representação em vírgula fixa"

Representação de quantidades fracionárias

- A representação de quantidades fracionárias em vírgula fixa coloca de imediato a questão da divisão do espaço de armazenamento para as partes inteira e fracionária
- Quantos bits devem ser reservados para a parte inteira e quantos para a parte fracionária, sabendo nós que o espaço de armazenamento é limitado?
- O número de bits da parte inteira determina a gama de valores representáveis (24, no exemplo anterior)
- O número de bits da parte fracionária, determina a precisão da representação (passos de 2⁻⁴ = 0.0625, no exemplo anterior)

Representação de números em Vírgula Flutuante

• Exemplo: -23.45129 (vírgula fixa). A mesma quantidade pode também ser representada recorrendo à notação científica:

$$-2.345129 \times 10^{1} \qquad -(2\times10^{0}+3\times10^{-1}+4\times10^{-2}+5\times10^{-3}+...+9\times10^{-6})\times10^{1}$$

$$-0.2345129\times10^{2} \qquad -(0\times10^{0}+2\times10^{-1}+3\times10^{-2}+4\times10^{-3}+...+9\times10^{-7})\times10^{2}$$

- São representações do mesmo valor em que a posição da vírgula tem de ser ponderada, na interpretação numérica da quantidade, pelo valor do expoente de base 10
- Esta técnica, em que a vírgula pode ser deslocada sem alterar o valor representado, designa-se também por representação em vírgula flutuante (VF)
- A representação em VF tem a vantagem de não desperdiçar espaço de armazenamento com os zeros à esquerda da quantidade representada
- No primeiro exemplo, o número de dígitos diferentes de zero à esquerda da vírgula é igual a um: diz-se que a representação está normalizada

Representação de números em Vírgula Flutuante

 A representação de quantidades em vírgula flutuante, em sistemas computacionais digitais, faz-se recorrendo à estratégia descrita no slide anterior, mas usando agora a base dois:

$$N = (+/-) 1.f \times 2^{Exp}$$

(representação em binário de uma quantidade real, no formato de vírgula flutuante normalizada)

• Em que:

- f parte fracionária representada por n bits
- **1.f** mantissa (também designada por significando)
- Exp expoente da potência de base 2 representado por *m* bits

Representação de números em Vírgula Flutuante

- O problema da divisão do espaço de armazenamento coloca-se também neste caso, mas agora na determinação do número de bits ocupados pela parte fracionária e pelo expoente
- Essa divisão é um compromisso entre gama de representação e precisão:
 - Aumento do número de bits da parte fracionária ⇒ maior precisão na representação
 - Aumento do número de bits do expoente ⇒ maior gama de representação

• Um bom *design* implica compromissos adequados!

Norma IEEE 754 (precisão simples)

- A representação é normalizada: o bit à esquerda do ponto binário é sempre 1. Como é sempre 1, esse bit não é explicitamente representado (hidden bit)
- A parte fracionária (23 bits) pode então tomar valores compreendidos entre:
- E os limites de representação da mantissa (1.f) são:

Norma IEEE 754 (precisão simples)

 O expoente é codificado em excesso de 127 (2ⁿ⁻¹-1, n=8 bits). Ou seja, é somado ao expoente verdadeiro (Exp) o valor 127 para obter o código de representação

(i.e. E = Exp + 127, em que E é o expoente codificado)

$$N = (-1)^S 1.f \times 2^{Exp} = (-1)^S 1.f \times 2^{E-127}$$

- O código 127 representa, assim, o expoente zero; códigos maiores do que 127 representam expoentes positivos e códigos menores que 127 representam expoentes negativos
- Os códigos 0 e 255 são reservados. O expoente pode, desta forma, tomar valores entre -126 e +127 [códigos 1 a 254].

Norma IEEE 754 – Exemplo (precisão simples)

Exemplo: Qual o valor, em decimal, representado em **0x41580000**?

0 10000010 10110000000000000000000

Expoente =
$$130 - offset = 130 - 127 = 3 \Leftrightarrow (Exp = E - offset)$$

A quantidade representada (R) será então: +1.1011 × 23

$$R = +1.1011 \times 2^{3} = (1 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}) \times 2^{3}$$

$$= +1.6875 \times 8 = +13.5$$
 $(+1.1011 \times 2^3 = +1101.1_2 = +13.5)$

Norma IEEE 754 – Exemplo (precisão simples)

• Exemplo: codificar no formato vírgula flutuante IEEE 754 precisão simples, o valor -12593.75₁₀ x 10⁻³

$$-12593.75 \times 10^{-3} = -12.59375$$

Parte inteira:
$$12_{10} = 1100_{2}$$

Parte fracionária:
$$0.59375_{10} = 0.10011_2$$

$$12.59375_{10} = 1100.10011_2 \times 2^0$$

Normalização:
$$1100.10011_2 \times 2^0 = 1.10010011_2 \times 2^3$$

Expoente codificado:
$$+3 + 127 = 130_{10} = 10000010_2$$

1 10000010 10010011000000000000000

0xC1498000

0.59375 \times 2 MSb 1 18750 0.18750 × 2 0.37500 0.37500 \times 2 0.75000 0.75000 \times 2 1.50000 0.50000 \times 2

1,00000

LSb

Norma IEEE 754 (precisão simples)

• A gama de representação suportada por este formato será portanto:

$$\pm [1.175494 \times 10^{-38}, 3.402824 \times 10^{+38}]$$

- Qual o número de dígitos à direita da vírgula na representação em decimal (casas decimais)?
- Partindo de uma representação com "n" dígitos fracionários na base "r", o número máximo de dígitos na base "s" que garante que a mudança de base não acrescenta precisão à representação original é:

$$m = \left| n \frac{\log r}{\log s} \right|$$
 L. $\int \acute{e}$ o operador *floor*

• Assim, de modo a não exceder a precisão da representação original, a representação em decimal deve ter, no máximo, 6 casas decimais:

$$m = \left| n \frac{\log r}{\log s} \right| = \left| 23 \frac{\log 2}{\log 10} \right| = 6$$

• Ou, sabendo que o n° de bits por casa decimal = $\log_2(10) \cong 3.3$), o número de casas decimais é $\lfloor 23 / 3.3 \rfloor = 6$ casas decimais

Norma IEEE 754 (precisão simples)

- Nas operações com quantidades representadas neste formato podem ocorrer situações de *overflow* e de *underflow*:
 - Overflow: quando o expoente do resultado n\u00e3o cabe no espa\u00e3o que lhe est\u00e1 destinado → E > 254)

 Underflow: caso em que o expoente é tão pequeno que também não é representável → E < 1)

Norma IEEE 754 – Adição / Subtração

Exemplo: $N = 1.1101 \times 2^0 + 1.0010 \times 2^{-2}$

1º Passo: Igualar os expoentes ao maior dos expoentes

 $a = 1.1101 \times 2^0$ $b = 0.010010 \times 2^0$

2º Passo: Somar / subtrair as mantissas mantendo os expoentes

 $N = 1.1101 \times 2^0 + 0.010010 \times 2^0 = 10.000110 \times 2^0$

3º Passo: Normalizar o resultado

 $N = 10.000110 \times 2^0 = 1.0000110 \times 2^1$

4º Passo: Arredondar o resultado e renormalizar (se necessário)

$$N = 1.0000 \, 110 \times 2^1 = 1.0001 \times 2^1$$

1.0000 11 + 0.0000 10 1.0001 01

Exemplo com 4 bits fracionários

Norma IEEE 754 – Multiplicação

Exemplo: $N = (1.1100 \times 2^{0}) \times (1.1001 \times 2^{-2})$

1º Passo: Somar os expoentes

Exp. Resultado = 0 + (-2) = -2

2º Passo: Multiplicar as mantissas

 $Mr = 1.1100 \times 1.1001 = 10.101111$

3º Passo: Normalizar o resultado

 $N = 10.1011111 \times 2^{-2} = 1.01011111 \times 2^{-1}$

4º Passo: Arredondar o resultado e renormalizar (se necessário)

$$N = 1.0101 111 \times 2^{-1} = 1.0110 \times 2^{-1}$$

Exemplo com 4 bits fracionários

Norma IEEE 754 – Divisão

Exemplo: $N = (1.0010 \times 2^{0}) / (1.1000 \times 2^{-2})$

1º Passo: Subtrair os expoentes

Exp. Resultado = 0 - (-2) = 2

2º Passo: Dividir as mantissas

Mr = 1.0010 / 1.1000 = 0.11

3º Passo: Normalizar o resultado

$$N = 0.11 \times 2^2 = 1.1 \times 2^1$$

4º Passo: Arredondar o resultado

$$N = 1.1 \times 2^1 = 1.1000 \times 2^1$$

Exemplo com 4 bits fracionários

Norma IEEE 754 (precisão dupla)

 A norma IEEE 754 suporta a representação de quantidades em precisão simples (32 bits)

$$N = (-1)^S 1.f \times 2^{(E-127)}$$
 (Precisão simples - tipo float)

• e em precisão dupla (64 bits)

$$N = (-1)^S 1.f \times 2^{(E-1023)}$$
 (Precisão dupla - tipo double)

Norma IEEE 754 (precisão dupla)

$$N = (-1)^S 1.f \times 2^{Exp} = (-1)^S 1.f \times 2^{E-1023}$$

- Na codificação do expoente, os códigos 0 e 2047 são reservados.
 O expoente pode então tomar valores entre -1022 e +1023
 [códigos 1 a 2046]
- A gama de representação suportada pelo formato de precisão dupla será:

Norma IEEE 754 – casos particulares

- A norma IEEE 754 suporta ainda a representação de alguns casos particulares:
 - A quantidade zero; essa quantidade não seria representável de acordo com o formato descrito até aqui
 - +/-infinito (inf). Gama de representação excedida; divisão por 0. Exemplos: 1.0 / 0.0, -1.0 / 0.0
 - Resultados não numéricos (NaN Not a Number). Exemplo:
 0.0 / 0.0, inf / inf, nan * 2
 - Afim de aumentar a resolução (menor quantidade representável) é ainda possível usar um formato de mantissa desnormalizada no qual o bit à esquerda do ponto binário é zero

Norma IEEE 754 – casos particulares

Precisão Simples		Precisão Dupla		Representa
Expoente	Parte Frac.	Expoente	Parte Frac.	
0	0	0	0	0
0	≠ 0	0	≠ 0	Quantidade desnormalizada
1 a 254	qualquer	1 a 2046	qualquer	Nº em vírgula flutuante normalizado
255	0	2047	0	Infinito
255	≠ 0	2047	≠ 0	NaN (Not a Number)

Norma IEEE 754 – representação desnormalizada

- Representação com mantissa desnormalizada: assume-se que o bit à esquerda do ponto binário é 0
- O expoente codificado "E" é 0; o expoente verdadeiro é -126 (precisão simples) ou -1022 (precisão dupla)
- Permite a representação de quantidades cada vez mais pequenas (underflow gradual)
- Gama de representação com mantissa desnormalizada, em precisão simples:

$$\pm [1 \times 2^{-23} \times 2^{-126}, 1.0 \times 2^{-126}]$$

- As operações aritméticas são efetuadas com um número de bits da parte fracionária superior ao disponível no espaço de armazenamento
- Desta forma, na conclusão de qualquer operação aritmética é necessário proceder ao arredondamento do resultado por forma a assegurar a sua adequação ao espaço que lhe está destinado
- As técnicas mais comuns no processo de arredondamento do resultado (o qual introduz um erro) são:
 - Truncatura
 - Arredondamento simples
 - Arredondamento para o par (ímpar) mais próximo

• Truncatura (exemplo com 2 bits na parte fracionária: d=2)

val	Trunc(val)	Erro
x.00	Х	0
x.01	Х	-1/4
x.10	Х	-1/2
x.11	Х	-3/4

Erro médio =
$$(0 - 1/4 - 1/2 - 3/4) / 4$$

= -3/8

 Mantém-se a parte inteira, desprezando qualquer informação que exista à direita do ponto binário

 Arredondamento simples (exemplo com 2 bits na parte fracionária: d=2)

val	Arred(val)	Erro
x.00	X	0
x.01	X	x - x.25 = -1/4
x.10	x + 1	(x+1) - x.5 = +1/2
x.11	x + 1	(x+1) - x.75 = +1/4

Erro médio

$$= (0 - 1/4 + 1/2 + 1/4) / 4$$
$$= +1/8$$

• Soma-se 1 ao 1º bit à direita do ponto binário e trunca-se o resultado (arred(val) = trunc(val + 0.5))

 O erro médio é mais próximo de zero do que no caso da truncatura, mas ligeiramente polarizado do lado positivo

 Arredondamento para o par mais próximo (exemplo com 2 bits na parte fracionária: d=2)

val	Arred(val)	Erro	val	Arred(val)	Erro
x0.00	x0	0	x1.00	x1	0
x0.01	х0	-1/4	x1.01	x1	-1/4
x0.10	х0	-1/2	x1.10	x1 + 1	+1/2
x0.11	x1	+1/4	x1.11	x1 + 1	+1/4

 Semelhante à técnica de arredondamento simples, mas decidindo, para o caso "xx.10", em função do primeiro bit à esquerda do ponto binário

• Erro médio = (0 - 1/4 - 1/2 + 1/4) / 4 + (0 - 1/4 + 1/2 + 1/4) / 4= -1/8 + 1/8 = 0

O que fica à direita de b_{23}	Exemplo	Resultado
< 0.5	1.b ₁ b ₂ b ₂₂ b ₂₃ 011	Round down : bits à direita de b_{23} são descartados
> 0.5	1.b ₁ b ₂ b ₂₂ b ₂₃ 101	Round up : soma-se 1 a b_{23} (propagando o <i>carry</i>)
= 0.5	1.b ₁ b ₂ b ₂₂ 1 100	Round up : soma-se 1 a b_{23} (propagando o <i>carry</i>) (*)
= 0.5	1.b ₁ b ₂ B ₂₂ 0 100	Round down : bits à direita de b_{23} são descartados (*)
= 0.5	1.b ₁ b ₂ B ₂₂ 1 100	Round down : bits à direita de b_{23} são descartados (**)
= 0.5	1.b ₁ b ₂ b ₂₂ 0 100	Round up: soma-se 1 a b ₂₃ (propagando o carry) (**)

^(*) Arredondamento para o par mais próximo.

^(**) Arredondamento para o **impar mais próximo**.

Norma IEEE 754 – arredondamentos

• Os valores resultantes de cada fase intermédia do cálculo de uma operação aritmética são armazenados com três bits adicionais, à direita do bit menos significativo da mantissa (i.e., para o caso de precisão simples, com pesos 2⁻²⁴, 2⁻²⁵ e 2⁻²⁶)

- Objetivos: 1) ter bits suplementares para a pós-normalização e 2) minimizar o erro introduzido pelo processo de arredondamento
 - G Guard Bit;
 - R Round bit
 - S Sticky bit Resultado da soma lógica de todos os bits à direita do bit R (i.e., se houver à direita de R pelo menos 1 bit a '1', então S='1')

Norma IEEE 754 – arredondamentos

Norma IEEE 754 – arredondamentos

Exercícios

- Na conversão de uma quantidade codificada em formato IEEE754 precisão simples para decimal, qual o número máximo de casas decimais com que o resultado deve ser apresentado? E se o valor original estiver representado em formato IEEE754 precisão dupla?
- Determine a representação em formato IEEE754 precisão simples da quantidade real 19,1875. Determine a representação da mesma quantidade em precisão dupla
- Determine o valor em decimal da quantidade representada em formato IEEE754, precisão simples, como 0xC19AB000
- Determine o valor em decimal da quantidade representada em formato IEEE754, precisão simples, como 0x80580000