3/9/1 DIALOG(R)File 351:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

009565868 **Image available**
WPI Acc No: 1993-259416/*199333*

XRPX Acc No: N93-199571

Phase sensitive modulated multiplex scanning pattern imaging - using measuring duration per image element which is shorter than cycle duration of modulation, and multi-scanning each of several image elements during cycle

Patent Assignee: BUSSE G (BUSS-I)

Inventor: BUSSE G; WU D

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
DE 4203272 Al 19930812 DE 4203272 A 19920205 199333 B
DE 4203272 C2 19950518 DE 4203272 A 19920205 199524

Priority Applications (No Type Date): DE 4203272 A 19920205

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 4203272 A1 6 G01N-021/63 DE 4203272 C2 6 G01N-021/63

Abstract (Basic): DE 4203272 A

The scanning alternatively can be carrier out during corresp. segments of successive cycles. For the computing of phase angle and amplitude of the local modulation effect, three of four equidistantly timed evaluations per cycle are used, for simplifying the evaluation per image element.

The unit scanning the object being tested is a thermography camera performing phase sensitive modulation thermography, heat wave thermography and lock in thermography. The temp. of the object under test is modulated without contact by the absorption of electromagnetic radiation.

USE/ADVANTAGE - Thermography, electro-microscopy and tomography. Quick scanning pattern image method combined with low frequency effect modulation, to produce parameter cleaned phase images.

Dwg.2/2

Abstract (Equivalent): DE 4203272 C

A method of phase sensitive representation of an effect modulated object involves area modulated stimulation of the object to produce a modulation of local physical characteristics, sampling the object with an image repetition frequency higher than the modulation frequency and measuring the phase angle and amplitude of the modulation of the physical parameter.

The measurement of the phase angle and amplitude of the modulation of the physical parameter is achieved for each point on the object by sampling each individual image element a number of times during each modulation cycle.

USE/ADVANTAGE - The method combines fast raster image methods with low frequency effect modulation to produce parameter-free phase images, e.g. for producing phase angle images of low frequency thermal waves with fast thermographic scanning.

Dwg.1/2

Title Terms: PHASE; SENSITIVE; MODULATE; MULTIPLEX; SCAN; PATTERN; IMAGE; MEASURE; DURATION; PER; IMAGE; ELEMENT; SHORT; CYCLE; DURATION; MODULATE; MULTI; SCAN; IMAGE; ELEMENT; CYCLE

Derwent Class: P82; S02; S03; W04

International Patent Class (Main): G01N-021/63

International Patent Class (Additional): G01B-011/16; G01M-011/08;
G01M-013/00; G01N-021/84; G01N-025/72; G03B-042/00; G06F-015/66

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): S02-J03; S02-J04B1; S03-E01B; S03-E06B; S03-E06B1; S03-E08G; W04-M01E; W04-M01F

(51) Int. Cl.5:

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift (i) DE 42 03 272 A 1

DEUTSCHES PATENTAMT

Aktenz ichen: Anmeldetag:

P 42 03 272.5 5. 2.92

(43) Offenlegungstag:

12. 8.93

G 01 N 21/63 G 01 N 25/72 G 01 M 11/08 G 01 M 13/00 G 03 B 42/00 G 06 F 15/66

(71) Anmelder:

Busse, Gerd, Prof. Dr.rer.nat., 7252 Weil der Stadt,

(72) Erfinder:

Erfinder wird später genannt werden

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

MÜLLER, E.A.W.: Handbuch der zerstörungsfreien Materialprüfung, R. Oldenbourg München 1975; TIZIANI, H.J.: Kohärent-optische Verfahren in der

Oberflächenmeßtechnik. In: tm - Technisches Messen58, 1991, 6, S.228-234; STIEFEL, Günter W.: Fotothermische Wärmewellenana-lyse. In: TECHNISCHE RUNDSCHAU, 24/89, S.60-63; GRANZ, B.;

u.a.: Ultraschallbilder, dargestellt mit einer Transmissionskamera in Echtzeit. In: Siemens Forsch.- u. Entwickl.-Ber., Bd.17, 1988, Nr.4, S.204-212;

ERMERT, H.: Mikroskopie mit thermischen Well n. In: Phys., Bl.42, 1986, Nr.2, S.56-58;

PELZL, J.;

BEIN, B.K.: Festkörperuntersuchungen mit thermischen Wellen. In: Phys., Bl. 46, 1990, Nr.1, S.12-17:

IWAHASHI, Yoshihisa;

et.al.: Single-aperture speckle shearing interferometry with a single grating. In: APPLIED OPTICS,15. January 1984, Vol.23, No.2, S. 247-249; TRANSIENT THERMAL IMAGING SYSTEM. In: IBM Techni- cal Disclosure Bulletin, Vol.28, No.7, Dec.1985, S.3037-3039: NAKAMURA, Hiromichi; et.al.: Nondestructive and Noncontact Observation of Microdefects in GaAs Wafers with a New Photo-Thermal-Radiation Micros-cope. In: Japanese Journal of Applied Physics, Vol.24, No.11, Nov. 1985,pp. L-876-L879; JP 62-137550 A. In: Patents Abstracts of Japan,

P-640, Nov. 26, 1987, Vol.11, No.362;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Verfahren zur phasenempfindlichen effektmodulierten Rasterabbildung
- Die Erfindung betrifft ein Abbildungsverfahren, das trotz tieffrequenter Effektmodulation eine kurze Bildaufbauzeit ermöglicht

Das Verfahren beruht darauf, daß die Effektmodulation simultan im ganzen Rasterbildbereich angewendet wird und daß während eines Modulationszyklus wiederholt (mindestens drei Mal) viele Bildelemente abgefragt werden, wobei anschließend auf jedes Bildelement der abgelegten Bildfolge eine auf dem Lockin-Prinzip beruhende zeitliche Signalanalyse angewendet wird, die den lokalen Phasenwinkel bezüglich der Effektmodulation ermittelt und als Phasenwinkelbild darstellt.

Beschreibung

Die Erfindung betrifft ein Abbildungsverfahren, das trotz tieffrequenter Effektmodulation eine kurze Bildaufbauzeit ermöglicht.

Rasterbildverfahren haben in den letzten Jahren an Bedeutung gewonnen. Bekannte Beispiele sind Thermographie, Elektronenmikroskopie und — in neuerer Zeit — Tomographie. Dieser Aufschwung wurde insbesondere durch die Verbesserung von Aufnahme- und Auswertungsmedien ermöglicht, also im wesentlichen im Rechnerbereich durch Hard- und Software.

Der Kontrastmechanismus, der solchen Bildern zugrundeliegt, hängt im allgemeinen nicht nur von der physikalischen Eigenschaft ab, an deren schneller Erfassung man interessiert ist, sondern von einem Eigenschaftsensemble. Daher besteht hohes Interesse an der Reduktion der Einflußparameter, wobei Eichverfahren nicht immer zielführend sind.

Die Situation wird im folgenden am Beispiel der Thermographie erläutert, die als schnelles Rasterbildverfahren zum Erfassen von Bauteildefekten eingesetzt wird, wobei man vorzugsweise instationäre Wärmeleitungsvorgänge ausnutzt. Der Kontrastmechanismus, die Änderung der thermischen Infrarotemission, enthält (aufgrund des Stefan-Boltzmann-Gesetzes) neben der interessierenden Ortsabhängigkeit der Temperatur auch die des Emissionskoeffizienten und, sofern die Wärmezufuhr durch Absorption zugeführter Strahlung erfolgt, auch noch die Ortsabhängigkeit des zugehörigen Absorptionskoeffizienten. Diese Beimischung störender Strukturen behindert die für die Qualitätssicherung (z. B. Turbinenschaufeln, Wärmedämmung im Bauwesen) relevante bildhafte Erfassung von Wärmeleitungsvorgängen, die zur Erfassung verborgener Fehler führt.

Schon früh wurde deswegen die photothermische Infrarotradiometrie entwickelt (P.-E. Nordal, S.O. Kanstad, Phys. Scripta 20, 659, (1979)), bei der durch intermittierende fokussierte Beleuchtung eine Temperaturmodulation erzeugt wird, die sich als Wärmewelle ins Prüflingsinnere ausbreitet. Diskontinuitäten führen zu einer Störung des Wärmetransportes und damit zu einer weiteren Phasenverschiebung zwischen Infrarotsignal und optischer Anregung. Wesentlich ist dabei, daß dieser mit Lockin-Technik ermittelte ermittelte Phasenwinkel weder von der optischen Absorption noch vom Infrarotemissionskoeffizienten im Oberflächenbereich abhängt (A. Rosencwaig, G. Busse, Appl. Phys. Lett. 36, 725 (1980)), so daß tatsächlich durch sukzessive punktweise Messung nur die relevanten Strukturen erfaßt werden, nämlich die der thermischen Eigenschaften. Die Attraktivität dieses Verfahrens beruht auch darauf, daß die Tiefenreichweite bei der Fehlererfassung von der Modulationsfrequenz abhängt, so daß durch Frequenzvariation Tiefenprofile möglich sind (G. Busse, A. Rosencwaig, Appl. Phys. Lett. 36, 815 (1980)). Diese Messungen dauern jedoch lange, denn an jedem einzelnen Rasterpunkt muß die Wärmewelle erneut erzeugt werden, und nach dem Abwarten des jeweiligen Einlaufverhaltens wird über etliche Perioden dieser niederfrequenten Modulation der Phasenwinkel ermittelt. Die Bildaufbauzeit ist also deutlich größer als das Produkt aus der Periodendauer dieser Modulation und der Anzahl der Bildelemente.

Es hat deswegen nicht an Versuchen gefehlt, die schnelle Rasterfähigkeit der Thermographie mit der optischen zeitabhängigen Anregung zu verbinden. Man verwendete beispielsweise kurze Laserpulse (A. C. Tam, Infrared Phys. 25, 305 (1985)) oder einen mit dem Abtastvorgang mitgeführten Laserstrahl ("flying spot", Y.Q. Wang, P.K. Kuo, L.D. Favro, R.L. Thomas; "Photothermal Phenomena II", Springer Ser. Opt. Sci. 62, 24 (1990)). Beide Wege können aber die oben beschriebenen Vorteile der Phasenwinkelmessung weder ausnutzen noch ersetzen.

Der Erfindung liegt die Aufgabe zugrunde, schnelle Rasterbildverfahren mit niederfrequenter Effektmodulation zu kombinieren und dadurch parameterbereinigte Phasenbilder zu erzeugen. Ein Beispiel ist die Erzeugung von Phasenwinkelbildern tieffrequenter thermischer Wellen mittels schneller Thermographieabrasterung.

Die Lösung der Aufgabe erfolgt nach der Erfindung durch die kennzeichnenden Merkmale des Anspruchs 1. Weiterbildungen des erfindungsgemäßen Verfahrens und Anwendungen sind in den Unteransprüchen angegeben

Das erfindungsgemäße Verfahren beruht darauf, daß die Wärmewelle nicht mehr sukzessiv und ausschließlich im jeweiligen Rasterpunkt erzeugt wird, sondern simultan im ganzen Bildbereich, so daß während eines Modulationszyklus wiederholt (mindestens drei Mal) viele Bildelemente abgefragt werden und daß auf jedes Bildelement der dabei abgelegten Bildfolge eine zeitliche Signalanalyse angewendet wird, die den lokalen Phasenwinkel bezüglich der Modulation ermittelt.

Das Verfahren wird beispielhaft an seiner Anwendung auf die Thermographie erläutert, wobei offensichtlich ist, daß die Besonderheiten der so erhaltenen "phasenempfindlichen Modulationsthermographie" oder "Wärmewellenthermographie" auch auf andere Rasterbildverfahren mit entsprechendem Vorteil zu übertragen sind.

Zum Verständnis des Versahrens sei daran erinnert, daß die Ermittlung von Amplitude und Phase effektmodulierter Signalverläuse üblicherweise mittels eines Lockin-Verstärkers erfolgt, der den gemessenen Signalverlaus jeweils mit zwei um 90° versetzten kohärenten Reserenzsignalen multipliziert und integriert. Diese Signalverarbeitung kann auch ein Rechner übernehmen. Für sinusartige Modulation und digitale Datenanalyse läßt sich dieser Prozeß dahingehend vereinfachen, daß bereits mit drei Datenpunkten pro Modulationszyklus der Phasenwinkel zu bestimmen ist, die Verwendung einer größeren Datenanzahl erhöht lediglich die Genauigkeit. Werden während eines Modulationszyklus an einem Bildelement x₁ 4 zeitlich äquidistante Signalwerte S₁(x₁), ... S₄(x₁) ermittelt, so ist der Phasenwinkel φ an diesem Bildelement gegeben durch

$$g(x_1) = \arctan \frac{(S_1(x_1) - S_3(x_1))}{(S_2(x_1) - S_4(x_1))}$$
(G1.1)

5

10

15

20

25

35

55

60

die Amplitude ist gegeben durch

$$A (x_1) = \sqrt{(S_1(x_1) - S_3(x_1))^2 + (S_2(x_1) - S_4(x_1))^2}$$
 (G1.2)

dabei ist x1 ein willkürliches Element aus dem Laufindex x der Bildelemente.

Wird das von einer Thermographiekamera beobachtete Prüfobjekt von einer sinusartig intensitätsmodulierten Lichtquelle beleuchtet, so stellt sich absorptionsbedingt nach anfänglichem Übergangsverhalten (B. Rief, VDI Fortschrittsberichte, Reihe 5, Nr. 145 (1988)) eine Temperaturmodulation an der Oberfläche und im Inneren des Prüfobjektes ein, die sich als Wärmewelle ausbreitet. Ein schnelles ortsaufgelöst abrasterndes Radiometer (= Thermographiekamera) erfaßt nacheinander die Modulationsphase aller einzelnen Bildelemente x, wobei die zeitliche Verzögerung beim Erfassen benachbarter Bildelemente einem Phasenwinkel entspricht, der aus Modulations- und Bilddaten zu bestimmen ist. Er führt letztlich zu einer in x linearen Korrektur des Phasenbildes. Werden pro Beleuchtungszyklus 4 Thermographiebilder aufgenommen (s. Bild 1), so hat man für jedes Bildelement 4 Signalwerte, aus denen gemäß Gl.1 die lokale Phase φ und daraus nach Abzug der in x linearen verzögerungsbedingten Korrektur die auf die niederfrequente Effektmodulation bezogene absolute Phase bestimmt wird. Die Erfassung vieler Bildelemente während eines Modulationszyklus (Multiplexvorteil) erlaubt also den Aufbau eines Phasenbildes während einer einzigen Periodendauer, wenngleich die Mittelung über mehrere Zyklen zur Rauschreduzierung sinnvoll ist.

Die Gesamtheit der lokalen Mittelwerte der Bilder S₁ bis S₄ entspricht dem klassischen Thermographiebild mit durch statische optische Beleuchtung angeregtem Wärmefluß. Dieses Bild wird durch die Intensitätsverteilung der optischen Beleuchtung und die Absorption sowie durch den Infrarotemissionskoeffizienten beeinflußt, aber auch durch die Temperaturverteilung. Ähnlich verhält es sich mit dem Amplitudenbild (Gl. 2). Hingegen enthält das Phasenbild wegen der Quotientenbildung (Gl. 1) nur noch die Temperaturmodulation, ist also auf die für den Wärmetransport relevante Meßgröße reduziert. Inhomogenität der Beleuchtung oder der Absorptionsoder Emissionseigenschaften äußert sich nur noch durch inhomogen verteiltes Rauschen im Phasenwinkelbild. Das patentgemäße Verfahren wurde mit der in Bild 2 gezeigten Anordnung erprobt, wobei eine konventionelle Projektorlampe (15 V, 150 W) als sinusartig modulierte Lichtquelle zum Einsatz kam. Hierbei ist als wesentlich zu beachten, daß "Übersprechen" im infraroten Spektralbereich vermieden wird, daß also die Thermographiekamera nicht von modulierten Infrarotanteilen der Lampe erreicht wird. Sehr wirksame Infrarotfilterung ist z. B. mit einer Wasserschicht zu erreichen, wobei die Niederspannungslampe direkt im Wasser betrieben werden kann.

Folgende Befunde bestätigen, daß die mit diesem Verfahren erhaltenen Phasenbilder die bekannten Vorteile der Wärmewellenbilder besitzen:

a) Die Modulationsfrequenz bestimmt die Tiefenreichweite. Eine Rechtecknut an der Rückseite einer CFK-Probe mit variablem Abstand zur Frontseite wurde bis zu der aus Wärmewellenmessungen bekannten Tiefe erfaßt. Durch Messungen bei unterschiedlichen Frequenzen erhält man die vollständige Tiefeninformation der thermischen Strukturen im Sinne einer Wärmewellentomographie.

b) Eine CFK-Probe mit einer Rückseitennut als thermischer Struktur und einem weißen Frontseitenstreifen als optischer und Infrarotstruktur zeigt im Amplituden- und Thermographiebild eine Mischung beider Strukturarten, im Phasenwinkelbild hingegen nur die relevante thermische Struktur.

Auch die transmittierte Wärmewelle kann zur Strukturabbildung verwendet werden (G. Busse, DBP 30 34 944). Dazu eignen sich insbesondere platten- oder flächenhafte Prüfobjekte. In dem Fall wird die periodische Beleuchtung auf der der Thermographiekamera entgegengesetzten Seite aufgebracht.

Am Beispiel der phasenempfindlichen Modulationsthermographie wurde die Kombination aus Effektmodulation und Rasterabbildung demonstriert, wobei der Vorteil in der Parameterreduktion liegt. Die Übertragung auf andere Modulationsarten (z. B. Modulation durch periodische elektrische Beheizung) und andere Bildregistriereinrichtungen ist für den Fachmann naheliegend, wobei die jeweilige Anregungskorrelation die Reduktion des Rasterbildes auf die signifikanten Bildgrößen erlaubt.

Im folgenden wird die Erfindung anhand von Skizzen erläutert. Es zeigen

Bild 1 das Verfahrensprinzip der phasenempfindlichen Thermographie,

Bild 2 einen Versuchsaufbau zur Verfahrensanwendung.

Während eines Intensitätsmodulationszyklus (Bild 1, Kurve I und Intervall T) der Lampe erfolgen 4 Bildrastervorgänge, bei denen jeweils alle Bildkoordinaten x durchlaufen werden. Die dabei an der Koordinate x_1 erfaßten Infrarotsignale sind durch 4 Kreise auf der S(t)-Kurve dargestellt, die sich für x_1 aus den Meßsignalen ergibt. Bild 2 zeigt schematisch eine Thermographieeinrichtung und eine mit sinusförmiger Intensitätsmodulation betriebene Halogenlampe, die zur Elimination ihres Infrarotspektrums in Wasser betrieben wird. Die Thermographiekamera besteht aus I = Infrarotdetektor, O = Infrarotabbildungsoptik (z. B. aus Germanium) und S = Rastervorrichtung. Diese wird von $R = Rechner mit der Steuerung der Lampe L koordiniert, die sich in einem den infraroten Spektralbereich abblockenden Wasserbad W befindet. Ihre auf das Prüfobjekt P gerichtete intensitätsmodulierte Strahlung erzeugt dort eine Temperaturmodulation und eine dadurch verursachte Modulation der thermischen Infrarotemission, die ortsaufgelöst und phasenempfindlich erfaßt wird. Der Rechner R ermittelt aus den 4 Bildern <math>S_1$ bis S_4 gemäß G_1 1 das Phasenwinkelbild $\phi(x)$, bei Bedarf auch nach G_1 2 das Amplitudenbild A(x) und als Mittelwert der 4 Bilder das Thermographiebild.

3

Patentansprüche

- 1. Verfahren zur phasenempfindlichen effektmodulierten Multiplex-Rasterabbildung, dadurch gekennzeichnet, daß die Meßdauer pro Bildelement wesentlich kürzer ist als die Zyklusdauer der Modulation, so daß während eines Zyklus (oder während entsprechender Segmente aufeinanderfolgender Zyklen) jedes von mehreren Bildelementen mehrfach abgefragt wird zur Berechnung von Phasenwinkel und Amplitude des lokalen Modulationseffektes.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Vereinfachung der Auswertung pro Bildelement drei oder vier zeitlich äquidistante Auswertedaten pro Zyklus benutzt werden.
- 3. Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Vorrichtung eine Thermographiekamera ist ("Phasenempfindliche Modulationsthermographie", "Wärmewellenthermographie", "Lockin-Thermographie").
- 4. Verfahren nach Ansprüchen 1 3, dadurch gekennzeichnet, daß die Temperatur des Prüfobjektes berührungslos durch Absorption elektromagnetischer Strahlung moduliert wird.
- 5. Verfahren nach Ansprüchen 1-4, dadurch gekennzeichnet, daß die Thermographieeinrichtung störende Infrarotanteile des Spektrums der Strahlungsquelle durch Infrarotfilter oder durch Betrieb unter Wasser eliminiert werden.
- 6. Verfahren nach Ansprüchen 1-5, dadurch gekennzeichnet, daß die von der Effektmodulation beaufschlagte Seite und die von der Rasterabbildungseinrichtung beobachtete Seite des Prüfobjektes verschieden sind.
- 7. Verfahren nach Ansprüchen 1-3 oder 5-6, dadurch gekennzeichnet, daß die Temperatur des Prüfobjektes durch einen Gasstrom oder Flüssigkeitsstrom moduliert wird.
- 8. Verfahren nach Ansprüchen 1-3 oder 5-6, dadurch gekennzeichnet, daß die Temperaturmodulation elektrisch (direkt, kapazitiv oder induktiv) durch von außen angebrachte oder im Prüflingsinneren aktivierte Heizquellen erfolgt.
- 9. Verfahren nach Ansprüchen 1-3, dadurch gekennzeichnet, daß die periodische Wärmeerzeugung unter Ausnutzung des mechanischen Verlustwinkels bei Schwingungsbeaufschlagung des Prüfobjektes erfolgt ("Lockin- Vibrothermographie").
- 10. Verfahren nach Ansprüchen 1-2, 4 oder 6-9, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Einrichtung die Modulation der Abmessungen erfaßt (Holographie-, Speckle- oder Shearographie-einrichtung).
- 11. Verfahren nach Ansprüchen 1-2, 4 oder 6-10, dadurch gekennzeichnet, daß die Modulation der Abmessungen des Prüfobjektes nicht thermisch erzeugt wird, sondern durch modulierte Quellung infolge modulierter Beaufschlagung mit Gasen oder Flüssigkeiten.
- 12. Verfahren nach Ansprüchen 1-2, 4 oder 6-11, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Einrichtung ein optisches Mikroskop ist.
- 13. Verfahren nach Ansprüchen 1-2, 4 oder 6-11, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Einrichtung ein Elektronenmikroskop ist.
- 14. Verfahren nach Ansprüchen 1-2, 4 oder 6-11, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Einrichtung ein akustisches Mikroskop ist.
- 15. Verfahren nach Ansprüchen 1-2, 4 oder 6-11, dadurch gekennzeichnet, daß die das Prüfobjekt abrasternde Einrichtung eine Tomographieeinrichtung ist.
- 16. Verfahren nach Ansprüchen 1-2, 4 oder 6-11, dadurch gekennzeichnet daß die das Prüfobjekt abrasternde Einrichtung eine Mikrowellenrastereinrichtung ist.

Hierzu 2 Seite(n) Zeichnungen

4

5

10

15

20

25

30

35

40

45

50

55

60

65

Bild 1

::.. :<u>.</u>.

Numm r Int. Cl.⁵: DE 42 03 272 A1 G 01 N 21/63

