ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Software Engineering (SE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 1 Hour 30 Minutes

FULL MARKS: 100

Math 4241: Integral Calculus and Differential Equations

		Programmable calculators are not allowed. Do not write anything on the question paper. There are 4 (four) questions. Answer any 3 (three) of them. Figures in the right margin indicate marks.	100
1.	a)	What are anti-derivative and integral curves? Find the anti-derivative of sin x and draw the integral curves.	12
	b)		6
	c)	Evaluate the following integrals:	15.33
	7.	i. $\int x^3 \sqrt{x^2 + 1} dx$ ii. $\int \frac{1}{x^2} \sqrt{2 - \frac{1}{x}} dx$ iii. $\int \frac{e^x}{4 + e^{2x}} dx$	
2.	a)	A particle moves on a coordinate line with acceleration $a = \frac{d^2s}{dt^2} = 15\sqrt{t} - \frac{3}{\sqrt{t}}$ subject to the	8.33
		condition $s'(1) = 4$ and $s(1) = 0$, then answer the following questions: i. The velocity v in terms of t . ii. The position s in terms of t .	
	b)	Find the reduction formula $\int \cos^n x dx$ and using reduction formula evaluate $\int \cos^5 x dx$	10
	c)	Evaluate the following integrals	15
	0)	i. $\int \tan^{-1} x dx$ ii. $\int \cos^3 x \sin^2 x dx$ iii. $\int \sec^3 x \tan x dx$	
3.	a)	Solve the followings:	12
	-7	i. $(x^2 + 4)\frac{dy}{dx} = 3$, $y(2) = 0$ ii. $(t^2 + 2t)\frac{dx}{dt} = 2x + 2$ $(t, x > 0)$, $x(1) = 1$	
	b)	Use the Heaviside method to evaluate $\int \frac{x+3}{2x^3-8x} dx$	10
	c)	Evaluate the following integrals:	11.33
		i. $\int \frac{e^t}{e^{2t} + 3e^t + 2} dt$ ii. $\int \frac{1}{x^{\frac{3}{2}} - \sqrt{x}} dx$	
4.	a)	Find the area of $f(x) = x^3$ on the interval [2, 6] using right endpoints.	10
	b)	Sketch the region whose are represented by the definite integral and evaluate the integral using appropriate formula.	10
		i. $\int_{1}^{3} 2x-1 dx$:: $\int_{1}^{3} \sqrt{1-x^{2}} dx$	

13.33 c) If $f(x) = \begin{cases} 2x & x \le 1 \\ 2 & x > 1 \end{cases}$ then find i. $\int_{0}^{1} f(x) dx$ ii. $\int_{0}^{1} f(x) dx$