Appl. No. 10/749,910 Amdt. dated March 9, 2006 Reply to Office Action of December 19, 2005 **PATENT**

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	 (Currently Amended) A memory controller, comprising:
2	at least one bus interface, each bus interface being for connection to at least one
3	respective device for receiving memory access requests;
4	a memory interface, for connection to a memory device over a memory bus;
5	a plurality of buffers; and
6	control logic, for placing received memory access requests into a queue of
7	memory access requests,
8	wherein, in response to a received memory access request requiring multiple data
9	bursts over the memory bus, data from each of said multiple data bursts is stored in a respective
10	buffer of said plurality of buffers, and [[.]]
11	wherein, for a wrapping memory access request requiring multiple buffers, data
12	required for a beginning and an end of the wrapping memory access request are stored in a single;
13	buffer of the plurality of buffers.
1	2. (Currently Amended) A memory controller as claimed in claim 1,
2	wherein, when returning data to the respective device from which a memory access request
3	requiring multiple data bursts over the memory bus was received, data is read out from a first
4	part of one of said buffers the single buffer, then data is read out from at least one other of said
5	buffers, then data is read out from a second part of said one of said buffers the single buffer.
1	3. (Original) A memory controller as claimed in claim 1, wherein said
2	plurality of buffers is located in said memory interface.
1	Claim 4. (Canceled).

9.

Appl. No. 10/749,910 Amdt. dated March 9, 2006 Reply to Office Action of December 19, 2005 **PATENT**

1	5. (Original) A memory controller as claimed in claim 1, wherein the control
2	logic determines whether a received read access request is a wrapping request which requires
3	multiple memory bursts, and, if so, the control logic allocates each of said memory bursts to a
4	respective one of said buffers.
1	6. (Original) A memory controller as claimed in claim 1, wherein the
	· · · · · · · · · · · · · · · · · · ·
2	memory controller is a SDRAM controller, and said memory interface is suitable for connection
3	to a SDRAM memory device over said memory bus.
1	7. (Currently Amended) In a memory controller, comprising: at least one bus
2	interface, each bus interface being for connection to at least one respective device for receiving
3	memory access requests; a memory interface, for connection to a memory device over a memory
4	bus; a plurality of buffers; and control logic, for placing received memory access requests into a
5	queue of memory access requests, a method of retrieving data comprising:
6 -	in response to a received memory access request requiring multiple data bursts
7	over the memory bus, storing data from each of said multiple data bursts in a respective buffer o
8	said plurality of buffers, [[.]]
9	wherein, for a wrapping memory access request, data required for a beginning and
10	an end of the wrapping memory access request are stored in a single buffer of the plurality of
11	buffers.
1	8. (Currently Amended) A method as claimed in claim 7, further comprising
2	when returning data to the respective device from which a memory access request requiring
3	multiple data bursts over the memory bus was received, reading data out from a first part of ene
4	of said buffers single buffer, then reading data out from at least one other of said buffers, then
5	reading data out from a second part of said one of said buffers the single buffer.

(Original) A method as claimed in claim 7, comprising storing said data

from each of said multiple data bursts in a respective buffer in said memory interface.

Appl. No. 10/749,910 Amdt. dated March 9, 2006 Reply to Office Action of December 19, 2005 **PATENT**

1	10. (Original) A method as claimed in claim 7, comprising storing said data
2	from each of said multiple data bursts in a respective buffer in said bus interface to which the
3	respective device from which the memory access request was received.
1	11. (Original) A method as claimed in claim 7, comprising determining
2	whether a received read access request is a wrapping request which requires multiple memory
3	bursts, and, if so, allocating each of said memory bursts to a respective one of said buffers.
1	12. (Original) A method as claimed in claim 7, wherein the memory controlle
2	is a SDRAM controller, and said memory interface receives data from a SDRAM memory
3	device over said memory bus in SDRAM bursts.
1	13. (Currently Amended) A programmable logic device, wherein the
2	programmable logic device includes a memory controller, comprising:
3	at least one bus interface, each bus interface being for connection to at least one
4	respective device formed within the programmable logic device for receiving memory access
5	requests;
6	a memory interface, for connection to an external memory device over a memory
7	bus;
8	a plurality of buffers; and
9	control logic, for placing received memory access requests into a queue of
10	memory access requests,
11	wherein, in response to a received memory access request requiring multiple data
12	bursts over the memory bus, data from each of said multiple data bursts is stored in a respective
13	buffer of said plurality of buffers, and [[.]]
14	wherein, for a wrapping memory access request, data required for a beginning and
15	an end of the wrapping memory access request are stored in a single buffer of the plurality of
16	buffers.

Appl. No. 10/749,910 Amdt. dated March 9, 2006 Reply to Office Action of December 19, 2005

PATENT

- 1 14. (New) A memory controller as recited in claim 1, wherein each of the 2 plurality of buffers includes a plurality of sub-buffers, data required for the beginning and the 3 end of the wrapping memory access request being stored in separate sub-buffers of the single 4 buffer.
- 1 15. (New) A memory controller as recited in claim 14, wherein the control logic is operable to record the value of a pointer indicating the sub-buffer from which data required for the end of the wrapping memory is to be retrieved from the single buffer.
- 1 16. (New) A method as recited in claim 7, wherein each of the plurality of buffers includes a plurality of sub-buffers, data required for the beginning and the end of the wrapping memory access request being stored in separate sub-buffers of the single buffer.
- 1 17. (New) A method as recited in claim 16, wherein the control logic is 2 operable to record the value of a pointer indicating the sub-buffer from which data required for 3 the end of the wrapping memory is to be retrieved from the single buffer.