

Liquid Filtration: Effects of Chemical and Physical Factors on Filtration Performance for Microand Ultrafiltration Membranes

Handol Lee and David Y. H. Pui

Center for Filtration Research (CFR)

Mechanical Engineering

University of Minnesota

INTRODUCTION

- Micro- (100 nm ~ 1 µm) and ultra-filtration (10 nm ~ 100 nm) using membranes have been widely used and considered an effective technique to separate suspended particles from liquid in many industries.
- Retention mechanisms of colloidal particles are adsorption (PPD*<1, small particle) and size exclusion (PPD*>1, large particle), depending on particle and pore size.
- The performance (efficiency) of liquid filtration is hard to predict due to complex interactions between solid surfaces in liquid.
- Pore size alone cannot explain filter performance well.
- Both theoretical and experimental studies are important.

Modeling

- Interaction energy

Experiment

- Concentration measurement method
- Polydisperse particle filtration

OUTLINE

Modeling

- Two different membrane filters (PCTE* and PP*)
- Different chemical (ionic strength) and physical (filtration velocity) conditions
- Interaction energy between particle and filter

Experiment

- Different characterization methods for measuring liquid-borne particle concentration (NTA* and ES-SMPS*)
- Polydisperse particle filtration (PES*)

^{*}PCTE: Polycarbonate track-etched (Nuclepore filter)

^{*}PP: Polypropylene

^{*}PES: Polyethersulfone

^{*}NTA: Nanoparticle tracking analysis

^{*}ES-SMPS: Electrospray-scanning mobility particle sizer

Modeling

Polycarbonate track-etched (PCTE) and Polypropylene (PP) Filter Modeling

Filter and Particle System

PCTE (straight-through pore)

PP (fiber)

- Two membranes with straight-through pores (PCTE*) and fibers (PP*) are modeled.
- Particles smaller than absolute pore sizes are used to consider adsorption (sieving is excluded).
- Surface interactions between particle and filter in different chemical (ionic strength) and physical (filtration velocity) conditions are considered.

^{*}PP: Polypropylene membrane

^{*}PCTE: Polycarbonate track-etched membrane (Nuclepore filter)

Deposition Process (3 Steps)

- Particles are captured by membrane through 3 steps.
 - 1) TRANSPORT: Contact efficiency (air and liquid filtration)
 - 2) ADHESION: Interaction energy (liquid filtration)
 - 3) TORQUE: Detachment (liquid filtration)

Particle Transport (PCTE)

PCTE (straight-through pore)

- 4 deposition mechanisms are considered for PCTE membrane.
 - **Impaction on filter surface**
 - **Interception on pore opening**
 - **Diffusion on filter surface**
 - **Diffusion on pore walls**

To get transport efficiency ... **Aerosol filtration theory** Capillary tube model (Air to liquid)

*H. Lee, D. Segets, S. Süß, W. Peukert, S. Chen, D.Y.H. Pui, J. Memb. Sci. 524 (2017) 682–690.

Particle Transport (PP)

Transport

PP (fiber)

Polydisperse fibers (2D)

- Calculation domain with polydisperse fibers is generated based on SEM image (fiber diameter) and filter information (solidity).
- Ansys Fluent software is used for flow and particle simulation.

Particle Adhesion (DLVO Theory)

Adhesion

- Solution chemistry
- Particle/filter material
- Particle size
- Separation distance

Attachment ratio

= # of attached particles # of colliding particles

Obtained from TRANSPORT

DLVO theory* describes the force between charged surfaces interacting through a liquid medium.

- From total interaction energy curve, successful attachment ratio (successful adhesion) and corresponding adhesion energy can be obtained.
- Attachment energy (attraction) is used for calculating adhesion torque.

*DLVO: Derjaguin-Landau-Verwey-Overbeek

*H. Lee, D. Segets, S. Süß, W. Peukert, S. Chen, D.Y.H. Pui, J. Memb. Sci. 524 (2017) 682-690.

Adhesion and Hydrodynamic Torque

Torque

Adhesion torque is not a function of adhesion location, but hydrodynamic torque is a function of it due to flow velocity difference.

- Adhesion torque is obtained from total DLVO interaction curve, and hydrodynamic torque can be accessed by flow simulation.
- Away from stagnation points, higher hydrodynamic force acts on particles.
 - Easily detached from surface

Particle Tracking Analysis Using UDF

User defined function (UDF*) is **START** incorporated in Ansys Fluent for particle tracking. Generate random number (R) All three steps are imbedded in and calculate asec and apri **UDF** for all individual particles. TRANSPORT Track distance between particle and filter **ESCAPE** Reach secondary minimum No Yes ADHESION $\alpha_{\text{sec}} + \alpha_{\text{pri}} > R$ $\alpha_{sec} > R$ No No Yes Yes Calculate Thyd and Tadh Calculate Thyd and Tadh **TORQUE** at primary minimum at secondary minimum Final efficiency Thyd < Tadh **TRAP**

No

Filtration Efficiency (PCTE and PP)

Particle Trajectory (PP Membrane)

Higher ionic strength enhances adhesion, reducing double layer repulsion.

Experiment

Characterization of Polydisperse Particles

Concentration Measurement Method 1

 For evaluation of membrane filter, accurate concentration measurement methods are required with proper purposes.

Nanoparticle Tracking Analysis (NTA)

- NTA can measure particle size and concentration.
- Detection range of particle size is from 20 nm to 1 µm.
- Linear relation between prepared and measured concentration is obtained.

Concentration Measurement Method 2

 For evaluation of membrane filter, accurate concentration measurement methods are required with proper purposes.
 Electrospray-Scanning Mobility Particle Sizer (ES-SMPS)

- ES-SMPS is based on aerosolization method.
- Detection range of particle size is from 1 nm to larger particles.
- Linear relation between airborne and liquid-borne particle concentration is obtained.

SEM, NTA and ES-SMPS (Monodisperse Particle)

- Generally, NTA and ES-SMPS measure particle size well.
- Standard deviations obtained by ES-SMPS are more accurate (Au 40 nm and PSL 40 nm).

1000

SEM, NTA and ES-SMPS (Monodisperse Particle)

NTA and ES-SMPS (Polydisperse Particle)

Au 40 nm + PSL 100, 150, 240 nm Mixture

- NTA cannot distinguish four different sizes correctly due to the nature of NTA operating conditions (e.g., camera level)
- ES-SMPS can analyze particle sizes and concentrations as well.
 - ES-SMPS can be used for polydisperse particle filtration tests.

Monodisperse Particle Filtration

- Monodisperse particles were filtered by 0.03 μm (30 nm) rated PES* membrane (Polyethersulfone).
- Relatively low efficiency of 60 nm PSL particles were obtained.

Polydisperse Particle Filtration 1

PSL 60 + 100 nm Mixture

- Retention efficiency of 60 nm PSL particles was significantly enhanced when challenging the membrane with 100 nm PSL particles (mixture).
- Pressure drop increases in monodisperse (superposition) and polydisperse particle cases were similar.
 Adsorption
 Size exclusion

Efficiency increase (60 nm)

No breakthrough

Initial state Final state
Liquid Filtration: Effects of Chemical and Physical Factors on Filtration Performance for Micro- and Ultrafiltration Membranes

Polydisperse Particle Filtration 1

PSL 100 + 150 nm Mixture

- Retention efficiencies of monodisperse and polydisperse particles are similar.
- Pressure drop increase of polydisperse particle case was much larger than monodisperse particle case.

Pressure drop increase (polydisperse)

Thicker cake layer Higher packing density

CONCLUSION

Modeling

- Adsorption of colloidal particles onto membrane can be predicted by three steps (transport, interaction and force analysis).
- Simulation methods using CFD can be applied to different structures of membranes.
- Depending on chemical and physical conditions, filtration performance varies significantly (PPD<1).

Experiment

- NTA and ES-SMPS methods are useful for characterizing colloidal particles.
- ES-SMPS can be used for polydisperse particle filtration tests.
- Different mixture conditions result in different loading characteristics (efficiency and pressure drop).

Thank you Q & A