SENTIMENT CLASSIFICATION WITH CUSTOM NAMED ENTITY RECOGNITION

Ganga Babu M, Daniel.V, Bhagavathi Perumal, Narendar Punithan, Pradeep Kumar S

- When it comes to sentiment analysis challenges, there are quite a few things that companies struggle
 with in order to obtain sentiment analysis accuracy. Sentiment or emotion analysis can be difficult in
 natural language processing simply because machines have to be trained to analyze and understand
 emotions as a human brain does.
- While we typically look at emotion to capture feelings, such as anger, sadness, joy, fear, hesitation, sentiment is a higher-level classifier that divides the spectrum of emotions into positive, negative, and neutral. In our project we upgraded the spectrum to five set of emotions into Negative, Partially-Negative, Neutral, Partially-Positive & Positive.
- To build a classification model out of unprocessed text data/reviews using ML techniques to deal with information extraction from the real-world data/pipline on desired resources based on polarity of the reviews for sentiment analysis.

- Data are extracted from 'Digital content and entertainment industry' sourced from <u>Data</u>
 (cornell.edu)
- DATA: Movie Review Data extracted for the use of sentiment-analysis experiments which was
 orchestrated on 2002 at Cornell University, New York by <u>Bo Pang & Lillian Lee</u>.

Real Time Prediction Data Set

Realtime data set is getting curated from our own choice such as <u>Yelp</u> & IMDB.

Suggested Solution & EDA

Solution:

- Cleanse the Data through web scrapping process with the help of BeautifulSoup & Regular Expression Libraries.
- Pass the real time data to sentiment prediction Pipeline and get prediction from Built Model prepared from IMDB Movie review data

- With the help of Hugging Face Bert AutoTokenizer which comprises a BertForSequenceClassification of 12 BERT Layers which are BertSelfAttention mechanism a combination of Autoencoder and feedbacks.
- It took three hours to auto label each and every review for a corpus of 27K reviews, Such a way polarities are created for Movie Dataset.
- Built Bert model by onecycle policy with max lr of 2e-05
- Trainable params: 109,476,869 / Total params: 109,476,869
- Size of the model build tf model.h5: 1314.47 MB

```
BertForSequenceClassification
 -BertModel: 1-1
    └BertEmbeddings: 2-1
         LEmbedding: 3-1
                                                      81,315,072
         LEmbedding: 3-2
                                                      393,216
         LEmbedding: 3-3
                                                      1,536
         LayerNorm: 3-4
                                                      1,536
         Dropout: 3-5
     └─BertEncoder: 2-2
         └─ModuleList: 3-6
              BertLayer: 4-1
                   LBertAttention: 5-1
                        □BertSelfAttention: 6-1
                             Linear: 7-1
                                                      590,592
                                                      590,592
                             Linear: 7-3
                                                       590,592
                             Dropout: 7-4
                          BertSelfOutput: 6-2
                              -linear: 7-5
                                                      590,592
                             LayerNorm: 7-6
                                                      1,536
                             LDropout: 7-7
                    -BertIntermediate: 5-2
                        Linear: 6-3
                                                      2,362,368
                     -BertOutput: 5-3
                        Linear: 6-4
                                                       2,360,064
                        LayerNorm: 6-5
                                                      1,536
                        Dropout: 6-6
```


Algorithm

Dense Embeddings

word2Vec, KMeans, Gensim, Rule-based NLP, TextBlob vs VADER BERT- AutoModel: HuggingFace Auto-tokeniser & Ktrain DNN -Hidden Layer

Bert - Pretrained Model

Bert - Pretrained Model

learner.validate	class	names=preproc.	get	classes()	1

	precision	recall	f1-score	support
Negative	0.00	0.00	0.00	903
Neutral	0.35	0.37	0.36	2398
Partially_Negative	0.16	0.11	0.13	1359
Partially_Positive	0.27	0.47	0.34	1821
Positive	0.04	0.03	0.03	360
accuracy			0.47	6841
macro avg	0.16	0.19	0.17	6841
weighted avg	0.23	0.27	0.24	6841

Algorithms, Solution and Conclusions

Comparison to benchmark:

- Comparing performance to a benchmark definitely sets a higher "bar" than comparing to any other model experimented.
- TextBlob: Accuracy-83.98 | VADER: 80.29% | Ktrain Hugging face AutoTokenizer: 47%
- Even though TextBlob and Vader sets higher bar both failed during prediction. TextBlob failed to provide 0.1% of neutral sentiments when compared to TextBlob Vader was good.

Amount of data fed during labelling

Neutral 2055
Partially_Positive 1577
Partially_Negative 1189
Negative 736
Positive 284

In Total 22000 for Training purpose

Prediction on final Model:

Sentiment Predicted on real-time data from IMDB movie: The suicide squad 2021

Bert AutoTranformer results

Thank You