4.1 Time evolution of superpositions

Slides: Video 4.1.1 Introduction to time evolution of superpositions

4.1 Time evolution of superpositions

Slides: Video 4.1.2 Superposition for the particle in a box

Text reference: Quantum Mechanics for Scientists and Engineers

Section 3.6 ("Simple linear superposition in an infinite potential well")

Suppose we have an infinitely deep potential well

a "particle in a box"

with the particle in a linear superposition for example, with equal parts of the first and second states of the well

$$\Psi(z,t) = \frac{1}{\sqrt{L_z}} \left[\exp\left(-i\frac{E_1}{\hbar}t\right) \sin\left(\frac{\pi z}{L_z}\right) + \exp\left(-i\frac{E_2}{\hbar}t\right) \sin\left(\frac{2\pi z}{L_z}\right) \right]$$

Note for each eigenfunction in the superposition

it is multiplied by the appropriate complex exponential time-varying function

$$\exp\left(-i\frac{E_n}{\hbar}t\right)$$

This superposition is also normalized

$$\Psi(z,t) = \frac{1}{\sqrt{L_z}} \left[\exp\left(-i\frac{E_1}{\hbar}t\right) \sin\left(\frac{\pi z}{L_z}\right) + \exp\left(-i\frac{E_2}{\hbar}t\right) \sin\left(\frac{2\pi z}{L_z}\right) \right]$$

From this superposition

$$\Psi(z,t) = \frac{1}{\sqrt{L_z}} \left[\exp\left(-i\frac{E_1}{\hbar}t\right) \sin\left(\frac{\pi z}{L_z}\right) + \exp\left(-i\frac{E_2}{\hbar}t\right) \sin\left(\frac{2\pi z}{L_z}\right) \right]$$

we can multiply it by its complex conjugate to get the probability density

$$\left|\Psi(z,t)\right|^{2} = \frac{1}{L_{z}} \left[\sin^{2}\left(\frac{\pi z}{L_{z}}\right) + \sin^{2}\left(\frac{2\pi z}{L_{z}}\right) + 2\cos\left(\frac{E_{z} - E_{1}}{\hbar}t\right) \sin\left(\frac{\pi z}{L_{z}}\right) \sin\left(\frac{2\pi z}{L_{z}}\right)\right]$$

$$\left[\exp\left(-i\frac{E_{1}}{\hbar}t\right) \sin\left(\frac{\pi z}{L_{z}}\right) + \exp\left(-i\frac{E_{2}}{\hbar}t\right) \sin\left(\frac{2\pi z}{L_{z}}\right) \right]$$
 multiplied by its complex conjugate
$$\times \left[\exp\left(+i\frac{E_{1}}{\hbar}t\right) \sin\left(\frac{\pi z}{L_{z}}\right) + \exp\left(+i\frac{E_{2}}{\hbar}t\right) \sin\left(\frac{2\pi z}{L_{z}}\right) \right]$$

$$= \sin^{2}\left(\frac{\pi z}{L_{z}}\right) + \sin^{2}\left(\frac{2\pi z}{L_{z}}\right) + \sin\left(\frac{\pi z}{L_{z}}\right) \sin\left(\frac{2\pi z}{L_{z}}\right) \left[\exp\left(i\frac{E_{2}-E_{1}}{\hbar}t\right) + \exp\left(-i\frac{E_{2}-E_{1}}{\hbar}t\right) \right]$$

$$= \sin^{2}\left(\frac{\pi z}{L_{z}}\right) + \sin^{2}\left(\frac{2\pi z}{L_{z}}\right) + 2\cos\left(\frac{E_{2}-E_{1}}{\hbar}t\right) \sin\left(\frac{\pi z}{L_{z}}\right) \sin\left(\frac{2\pi z}{L_{z}}\right)$$

Note this probability density

$$\left|\Psi(z,t)\right|^{2} = \frac{1}{L} \left[\sin^{2}\left(\frac{\pi z}{L}\right) + \sin^{2}\left(\frac{2\pi z}{L}\right) + 2\cos\left(\frac{E_{2} - E_{1}}{\hbar}t\right) \sin\left(\frac{\pi z}{L}\right) \sin\left(\frac{2\pi z}{L}\right)\right]$$

has a part that is oscillating in time

at an angular frequency
$$\omega_{21} = (E_2 - E_1)/\hbar = 3E_1/\hbar$$

Note also that the absolute energy origin does not matter here for this measurable quantity only the energy difference $E_2 - E_1$ matters

Particle in a box

As a reminder here are the first few particlein-a-box energy levels and their associated wavefunctions plotted with the orange dashed lines as horizontal axes

The n=1 spatial eigenfunction $\psi_1(z)$ is plotted here with the bottom of the box as its horizontal axis

For the probability density $|\psi_1(z)|^2$

note the different shape

Multiplying by the time dependent factor gives

$$\Psi_1(z,t) = \exp\left(-i\frac{E_1}{\hbar}t\right)\psi_1(z)$$

The probability densities are the same

$$\left|\Psi_1(z,t)\right|^2 = \left|\psi_1(z)\right|^2$$

Similarly

The n=2 spatial eigenfunction $\psi_2(z)$ is plotted here

with the bottom of the box as its horizontal axis

The probability density

$$|\psi_2(z)|^2$$

is a positive function

Multiplying by the time dependent factor gives

$$\Psi_2(z,t) = \exp\left(-i\frac{E_2}{\hbar}t\right)\psi_2(z)$$

The probability densities are the same

$$\left|\Psi_{2}(z,t)\right|^{2} = \left|\psi_{2}(z)\right|^{2}$$

An equal superposition of the two oscillates

at the angular frequency

$$\omega_{21} = (E_2 - E_1) / \hbar = 3E_1 / \hbar$$

$$\left|\Psi(z,t)\right|^2 = \left|\Psi_1(z,t) + \Psi_2(z,t)\right|^2$$

$$= |\psi_1(z)|^2 + |\psi_2(z)|^2$$

$$+2\cos\left(\frac{E_2-E_1}{\hbar}t\right)\psi_1(z)\psi_2(z)$$

An equal superposition of the two oscillates

at the angular frequency

$$\omega_{21} = (E_2 - E_1) / \hbar = 3E_1 / \hbar$$

$$\left|\Psi(z,t)\right|^2 = \left|\Psi_1(z,t) + \Psi_2(z,t)\right|^2$$

$$= |\psi_1(z)|^2 + |\psi_2(z)|^2$$

$$+2\cos\left(\frac{E_2-E_1}{\hbar}t\right)\psi_1(z)\psi_2(z)$$

4.1 Time evolution of superpositions

Slides: Video 4.1.4 Superposition for the harmonic oscillator

Text reference: Quantum Mechanics for Scientists and Engineers

Section 3.6 ("Harmonic oscillator example")

Superpositions and oscillation

```
Quite generally
  if we make a linear combination of two
    energy eigenstates
     with energies E_a and E_b
        the resulting probability distribution
         will oscillate at the (angular)
         frequency
                \omega_{ab} = |E_a - E_b|/\hbar
```

Superpositions and oscillation

So, if we have a superposition wavefunction

$$\Psi_{ab}(\mathbf{r},t) = c_a \exp\left(-i\frac{E_a}{\hbar}t\right)\psi_a(\mathbf{r}) + c_b \exp\left(-i\frac{E_b}{\hbar}t\right)\psi_b(\mathbf{r})$$

then the probability distribution will be

$$\left|\Psi_{ab}\left(\mathbf{r},t\right)\right|^{2} = \left|c_{a}\right|^{2} \left|\psi_{a}\left(\mathbf{r}\right)\right|^{2} + \left|c_{b}\right|^{2} \left|\psi_{b}\left(\mathbf{r}\right)\right|^{2}$$

$$+2\left|c_{a}^{*}\psi_{a}^{*}\left(\mathbf{r}\right)c_{b}\psi_{b}\left(\mathbf{r}\right)\right|\cos\left[\frac{\left(E_{a}-E_{b}\right)t}{\hbar}-\theta_{ab}\right]$$
where $\theta_{ab} = \arg\left(c_{a}\psi_{a}\left(\mathbf{r}\right)c_{b}^{*}\psi_{b}^{*}\left(\mathbf{r}\right)\right)$

Harmonic oscillator

As a reminder here are the first two harmonic energy levels and their associated wavefunctions plotted with the orange dashed lines as horizontal axes

The n=0 spatial eigenfunction $\psi_0(z)$ is plotted here with the bottom of the parabolic well as its horizontal axis

For the probability density $\left|\psi_0(z)\right|^2$

note the narrower shape

Multiplying $\psi_0(z)$ by the time dependent factor gives

$$\Psi_0(z,t) = \exp\left(-i\frac{E_0}{\hbar}t\right)\psi_0(z)$$

The probability densities are the same

$$\left|\Psi_0(z,t)\right|^2 = \left|\psi_0(z)\right|^2$$

The n=1 spatial eigenfunction $\psi_1(z)$ is plotted here with the bottom of the parabolic well as its horizontal axis

For the probability density $|\psi_1(z)|^2$

note it is positive

Multiplying by the time dependent factor gives

$$\Psi_1(z,t) = \exp\left(-i\frac{E_1}{\hbar}t\right)\psi_1(z)$$

The probability densities are the same

$$\left|\Psi_1(z,t)\right|^2 = \left|\psi_1(z)\right|^2$$

An equal superposition of the two oscillates

at the angular frequency

$$\omega = (E_1 - E_0) / \hbar$$

$$\begin{aligned} \left|\Psi(z,t)\right|^2 &= \left|\Psi_0(z,t) + \Psi_1(z,t)\right|^2 \\ &= \left|\psi_0(z)\right|^2 + \left|\psi_1(z)\right|^2 \\ &+ 2\cos(\omega t)\psi_0(z)\psi_1(z) \end{aligned}$$

An equal superposition of the two oscillates

at the angular frequency

$$\omega = (E_1 - E_0) / \hbar$$

$$\begin{aligned} \left|\Psi(z,t)\right|^2 &= \left|\Psi_0(z,t) + \Psi_1(z,t)\right|^2 \\ &= \left|\psi_0(z)\right|^2 + \left|\psi_1(z)\right|^2 \\ &+ 2\cos(\omega t)\psi_0(z)\psi_1(z) \end{aligned}$$

4.1 Time evolution of superpositions

Slides: Video 4.1.6 The coherent state

Text reference: Quantum Mechanics for Scientists and Engineers

Section 3.6 ("Coherent state")

The coherent state

The coherent state for a harmonic oscillator of frequency ω is

$$\Psi_{N}(\xi,t) = \sum_{n=0}^{\infty} c_{Nn} \exp\left[-i\left(n + \frac{1}{2}\right)\omega t\right] \psi_{n}(\xi)$$
where
$$c_{Nn} = \sqrt{\frac{N^{n} \exp(-N)}{n!}}$$

and the $\psi_n(\xi)$ are the harmonic oscillator eigenstates

The coherent state

Incidentally, note that for the expansion coefficients c_{Nn}

$$\left|c_{Nn}\right|^2 = \frac{N^n \exp(-N)}{n!}$$

This is the Poisson distribution from statistics with mean N and standard deviation \sqrt{N} We will make no direct use of this here but in the end it explains, e.g., the Poissonian distribution of photons in a laser beam

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

Finite well superposition

Make an equal superposition of the first three states of a finite potential well as in our previous example Because the energies are not rationally related the superposition never repeats

Finite well superposition

Make an equal superposition of the first three states of a finite potential well as in our previous example Because the energies are not rationally related the superposition never repeats e.g., in the probability density in time

