PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/31, C07K 14/315, A61K 39/09, C12N 1/21

(11) International Publication Number: WO 99/42588

(43) International Publication Date: 26 August 1999 (26.08.99)

US

(21) International Application Number: PCT/CA99/00114

(22) International Filing Date: 17 February 1999 (17.02.99)

(71) Applicant (for all designated States except US): BIOCHEM VACCINS INC. [CA/CA]: 2323 boulevard du Parc Tech-

20 February 1998 (20.02.98)

(71) Applicant (for all designated States except US): BIOCHEM VACCINS INC. [CA/CA]; 2323 boulevard du Parc Technologique, Sainte-Foy, Québec G1P 4R8 (CA).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BRODEUR, Bernard, R. [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). RIOUX, Clément [CA/CA]; 1012 Jean-Charles Cantin, Ville de Cap Rouge, Québec G1Y 2X1 (CA). BOYER, Martine [CA/CA]; Apt. 204, 25 des Mouettes, Beauport, Québec G1E 7G1 (CA). CHARLEBOIS, Isabelle [CA/CA]; 410 Mirabel, St-Nicolas, Québec G7A 2L5 (CA). HAMEL, Josée [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). MARTIN, Denis [CA/CA]; 4728-G rue Gaboury, St-Augustin-de-Desmaures, Québec G3A 1E9 (CA).

(74) Agents: CÔTE, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GROUP B STREPTOCOCCUS ANTIGENS

(57) Abstract

(30) Priority Data:

60/075,425

Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
\mathbf{AU}	Australia	$\mathbf{G}\mathbf{A}$	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	\mathbf{GE}	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Сапада	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{Z}\mathbf{W}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

GROUP B STREPTOCOCCUS ANTIGENS

5

FIELD OF THE INVENTION

The present invention is related to antigens, more particularly protein antigens of group B streptococcus (GBS) bacterial pathogen which are useful as vaccine components for therapy and/or prophylaxis.

BACKGROUND OF THE INVENTION

15

Streptococcus are gram (+) bacteria that are differentiated by group specific carbohydrate antigens A through O found on their cell surface. Streptococcus groups are further distinguished by type-specific capsular polysaccharide antigens. Several serotypes have been identified for the Group B streptococcus (GBS): Ia, Ib, II, III, IV, V, VI, VII and VIII. GBS also contains antigenic proteins known as "C-proteins" (alpha, beta, gamma and delta), some of which have been cloned.

25

30

35

20

Although GBS is a common component of the normal human vaginal and colonic flora this pathogen has long been recognized as a major cause of neonatal sepsis and meningitis, late-onset meningitis in infants, postpartum endometritis as well as mastitis in dairy herds. Expectant mothers exposed to GBS are at risk of postpartum infection and may transfer the infection to their baby as the child passes through the birth canal. Although the organism is sensitive to antibiotics, the high attack rate and rapid onset of sepsis in neonates and meningitis in infants results in high morbidity and mortality.

To find a vaccine that will protect individuals from GBS infection, researches have turned to the type-specific antigens. Unfortunately these polysaccharides have proven to be poorly immunogenic in humans and are restricted to the particular serotype from which the polysaccharide originates. Further, capsular polysaccharide elicit a T cell independent response i.e. no IgG production.

Consequently capsular polysaccharide antigens are unsuitable as a vaccine component for protection against GBS infection.

Others have focused on the C-protein beta antigen which demonstrated immunogenic properties in mice and rabbit models. This protein was found to be unsuitable as a human vaccine because of its undesirable property of interacting with high affinity and in a non-immunogenic manner with the Fc region of human IgA. The C-protein alpha antigen is rare in type III serotypes of GBS which is the serotype responsible for most GBS mediated conditions and is therefore of little use as a vaccine component.

Therefore there remains an unmet need for GBS antigens that may be used as vaccine components for the prophylaxis and/or therapy of GBS infection.

SUMMARY OF THE INVENTION

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence selected from the group consisting of:

SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,

SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,

SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,

SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,

```
SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

In other aspects, there is provided vectors comprising polynucleotides of the invention operably linked to an expression control region, as well as host cells transfected with said vectors and methods of producing polypeptides comprising culturing said host cells under conditions suitable for expression.

In yet another aspect, there is provided novel polypeptides encoded by polynucleotides of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

```
Figure 1a is the DNA sequence of clone 1 (SEQ ID NO :1) with corresponding amino acid sequences for open reading frames; figure 1b is the amino acid sequence SEQ ID NO: 2; figure 1c is the amino acid sequence SEQ ID NO: 3; figure 1d is the amino acid sequence SEQ ID NO: 4; figure 1e is the amino acid sequence SEQ ID NO: 5; figure 1f is the amino acid sequence SEQ ID NO: 6;
```

Figure 2a is the DNA sequence of clone 2 (SEQ ID NO :7) with corresponding amino acid sequences for open reading frames; figure 2b is the amino acid sequence SEQ ID NO: 8; figure 2c is the amino acid sequence SEQ ID NO: 9; figure 2d is the amino acid sequence SEQ ID NO:10; figure 2e is the amino acid sequence SEQ ID NO:11; figure 2f is the amino acid sequence SEQ ID NO:12;

```
Figure 3a is the DNA sequence of clone 3 (SEQ ID NO :13)
    with corresponding amino acid sequences for open reading
    frames;
    figure 3b is the amino acid sequence SEQ ID NO:14;
    figure 3c is the amino acid sequence SEQ ID NO:15;
    figure 3d is the amino acid sequence SEQ ID NO:16;
    figure 3e is the amino acid sequence SEQ ID NO:17;
    figure 3f is the amino acid sequence SEQ ID NO:18;
    figure 3g is the amino acid sequence SEQ ID NO:19;
10
    figure 3h is the amino acid sequence SEQ ID NO:20;
    figure 3i is the amino acid sequence SEQ ID NO:21;
    Figure 4a is the DNA sequence of clone 4 (SEQ ID NO :22)
    with corresponding amino acid sequences for open reading
    frames;
15
    figure 4b is the amino acid sequence SEQ ID NO:23;
    figure 4c is the amino acid sequence SEQ ID NO:24;
    figure 4d is the amino acid sequence SEQ ID NO:25;
    figure 4e is the amino acid sequence SEQ ID NO:26;
20
    Figure 5a is the DNA sequence of clone 5 (SEQ ID NO :27)
    with corresponding amino acid sequences for open reading
    frames;
    figure 5b is the amino acid sequence SEQ ID NO:28;
    figure 5c is the amino acid sequence SEQ ID NO:29;
25
    figure 5d is the amino acid sequence SEQ ID NO:30;
    figure 5e is the amino acid sequence SEQ ID NO:31;
    Figure 6a is the DNA sequence of clone 6 (SEQ ID NO :32) ;
    figure 6b is the amino acid sequence SEQ ID NO:33;
30
    figure 6c is the amino acid sequence SEQ ID NO:34;
    figure 6d is the amino acid sequence SEQ ID NO:35;
    figure 6e is the amino acid sequence SEQ ID NO:36;
    Figure 7a is the DNA sequence of clone 7 (SEQ ID NO :37);
35
    figure 7b is the amino acid sequence SEQ ID NO:38;
```

```
figure 7c is the amino acid sequence SEQ ID NO:39; figure 7d is the amino acid sequence SEQ ID NO:40; figure 7e is the amino acid sequence SEQ ID NO:41;
```

Figure 8 is the DNA sequence of a part of clone 7 including a signal sequence (SEQ ID NO :42);

Figure 9 is the DNA sequence of a part of clone 7 without a signal sequence (SEQ ID NO :43);

10 Figure 9a is the amino acid sequence (SEQ ID NO:44);

Figure 10 represents the distribution of anti-GBS ELISA titers in sera from CD-1 mice immunized with recombinant GBS protein corresponding to the SEQ ID NO:39.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to novel antigenic polypeptides of group B streptococcus (GBS) characterized by the amino acid sequence selected from the group consisting of:

SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,

SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,

SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,

10 SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,

SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24,

SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29,

SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34,

SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,

15 SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

A preferred embodiment of the invention includes SEQ ID NO:39 and SEQ ID NO:44.

20

30

A further preferred embodiment of the invention is SEQ ID NO :39.

A further preferred embodiment of the invention is SEQ ID NO :44.

As used herein, "fragments", "derivatives" or "analogs" of the polypeptides of the invention include those polypeptides in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably conserved) and which may be natural or unnatural.

The terms «fragments», «derivatives» or «analogues» of polypeptides of the present invention also include polypeptides which are modified by addition, deletion,

substitution of amino acids provided that the polypeptides retain the capacity to induce an immune response.

By the term «conserved amino acid» is meant a substitution of one or more amino acids for another in which the antigenic determinant (including its secondary structure and hydropathic nature) of a given antigen is completely or partially conserved in spite of the substitution.

- 10 For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity, which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence may be selected from other members 15 of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, 20 asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- 25 Preferably, derivatives and analogs of polypeptides of the invention will have about 70% identity with those sequences illustrated in the figures or fragments thereof. That is, 70% of the residues are the same. More preferably polypeptides will have greater than 95% homology. In another preferred embodiment, derivatives and analogs of polypeptides of the invention will have fewer than about 20 amino acid residue substitutions, modifications or deletions and more preferably less than 10. Preferred substitutions are those known in the art as conserved i.e. the substituted residues share physical or chemical properties such as hydrophobicity, size, charge or functional groups.

Furthermore, in those situations where amino acid regions are found to be polymorphic, it may be desirable to vary one or more particular amino acids to more effectively mimic the different epitopes of the different GBS strains.

Also included are polypeptides which have fused thereto other compounds which alter the polypeptides biological or pharmacological properties i.e. polyethylene glycol (PEG) to increase half-life; leader or secretory amino acid sequences for ease of purification; prepro- and pro- sequences; and (poly) saccharides.

Moreover, the polypeptides of the present invention can be modified by terminal -NH₂ acylation (eg. by acetylation, or thioglycolic acid amidation, terminal carbosy amidation, e.g. with ammonia or methylamine) to provide stability, increased hydrophobicity for linking or binding to a support or other molecule.

20

25

10

Also contemplated are hetero and homo polypeptide multimers of the polypeptide fragments, analogues and derivatives. These polymeric forms include, for example, one or more polypeptides that have been cross-linked with cross-linkers such as avidin/biotin, gluteraldehyde or dimethyl-superimidate. Such polymeric forms also include polypeptides containing two or more tandem or inverted contiguous sequences, produced from multicistronic mRNAs generated by recombinant DNA technology.

Preferably, a fragment, analog or derivative of a polypeptide of the invention will comprise at least one antigenic region i.e. at least one epitope.

In order to achieve the formation of antigenic polymers

(i.e. synthetic multimers), polypeptides may be utilized having bishaloacetyl groups, nitroarylhalides, or the like,

where the reagents being specific for thio groups. Therefore, the link between two mercapto groups of the different peptides may be a single bond or may be composed of a linking group of at least two, typically at least four, and not more than 16, but usually not more than about 14 carbon atoms.

In a particular embodiment, polypeptide fragments, analogs and derivatives of the invention do not contain a methionine (Met) starting residue. Preferably, polypeptides will not incorporate a leader or secretory sequence (signal sequence). The signal portion of a polypeptide of the invention may be determined according to established molecular biological techniques. In general, the polypeptide of interest may be isolated from a GBS culture and subsequently sequenced to determine the initial residue of the mature protein and therefor the sequence of the mature polypeptide.

- According to another aspect, there is provided vaccine compositions comprising one or more GBS polypeptides of the invention in admixture with a pharmaceutically acceptable carrier diluent or adjuvant.
- Suitable adjuvants include oils i.e. Freund's complete or incomplete adjuvant; salts i.e. AlK(SO₄)₂, AlNa(SO₄)₂, AlNH₄(SO₄)₂, Al(OH)₃, AlPO₄, silica, kaolin; saponin derivative; carbon polynucleotides i.e. poly IC and poly AU and also detoxified cholera toxin (CTB) and E.coli heat
- labile toxin for induction of mucosal immunity. Preferred adjuvants include QuilATM, AlhydrogelTM and AdjuphosTM.

 Vaccines of the invention may be administered parenterally by injection, rapid infusion, nasopharyngeal absorption, dermoabsorption, or bucal or oral.

Vaccine compositions of the invention are used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection, in particular group A streptococcus (pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia as well as Staphylococcus aureus. General information about Streptococcus is available in Manual of Clinical Microbiology by P.R.Murray et al. (1995, 6th Edition, 10 ASM Press, Washington, D.C.). More particularly group B streptococcus, agalactiae. In a particular embodiment vaccines are administered to those individuals at risk of GBS infection such as pregnant women and infants for sepsis, meningitis and pneumonia as well as immunocompromised 15 individuals such as those with diabetes, liver disease or cancer. Vaccines may also have veterinary applications such as for the treatment of mastitis in cattle which is mediated by the above mentioned bacteria as well as E.coli.

The vaccine of the present invention can also be used for the manufacture of a medicament used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection, in particular group A streptococcus (pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia as well as Staphylococcus aureus. More particularly group B streptococcus, agalactiae.

Vaccine compositions are preferably in unit dosage form of about 0.001 to 100 µg/kg (antigen/body weight) and more preferably 0.01 to 10 µg/kg and most preferably 0.1 to 1 µg/kg 1 to 3 times with an interval of about 1 to 12 weeks intervals between immunizations, and more preferably 1 to 6

weeks.

30

According to another aspect, there is provided polynucleotides encoding polypeptides of group B

- 5 streptococcus (GBS) characterized by the amino acid sequence selected from the group consisting of:
 - SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,
 - SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,
 - SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,
- 10 SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,
 - SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24,
 - SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29,
 - SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34,
 - SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,
- SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

Preferred polynucleotides are those illustrated in figures la (SEQ ID NO: 1), 2a (SEQ ID NO: 7), 3a (SEQ ID NO: 13), 4a (SEQ ID NO: 22), 5a (SEQ ID NO: 27), 6a (SEQ ID NO: 32), 7a (SEQ ID NO: 37), 8 (SEQ ID NO: 42) and 9 (SEQ ID NO: 43) which correspond to the open reading frames, encoding polypeptides of the invention.

- Preferred polynucleotides are those illustrated in figures 1a (SEQ ID NO: 1), 2a (SEQ ID NO: 7), 3a (SEQ ID NO: 13), 4a (SEQ ID NO: 22), 5a (SEQ ID NO: 27), 6a (SEQ ID NO: 32), 7a (SEQ ID NO: 37), 8 (SEQ ID NO: 42) and 9(SEQ ID NO: 43) and fragments, analogues and derivatives thereof.
 - More preferred polynucleotides of the invention are those illustrated in Figures 7 (SEQ ID NO: 37), 8 (SEQ ID NO: 42) and 9 (SEQ ID NO: 43).
- Most preferred polynucleotides of the invention are those illustrated in Figures 8 (SEQ ID NO : 42) and 9 (SEQ ID NO :

43).

It will be appreciated that the polynucleotide sequences illustrated in the figures may be altered with degenerate codons yet still encode the polypeptides of the invention.

Due to the degeneracy of nucleotide coding sequences, other polynucleotide sequences which encode for substantially the same polypeptides of the present invention may be used in the practice of the present invention. These include but are not limited to nucleotide sequences which are altered by the substitution of different codons that encode the same amino acid residue within the sequence, thus producing a silent change.

15

20

Accordingly the present invention further provides polynucleotides which hybridize to the polynucleotide sequences herein above described (or the complement sequences thereof) having 50% and preferably at least 70% identity between sequences. More preferably polynucleotides are hybridizable under stringent conditions i.e. having at least 95% identity and most preferably more than 97% identity.

By capable of hybridizing under stringent conditions is meant annealing of a nucleic acid molecule to at least a region of a second nucleic acid sequence (whether as cDNA, mRNA, or genomic DNA) or to its complementary strand under standard conditions, e.g. high temperature and/or low salt content, which tend to disfavor hybridization of noncomplementary nucleotide sequences. A suitable protocol is described in Maniatis T. et al., Molecular cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, 1982, which is herein incorporated by reference.

35

In a further aspect, polynucleotides encoding polypeptides

of the invention, or fragments, analogs or derivatives thereof, may be used in a DNA immunization method. That is, they can be incorporated into a vector which is replicable and expressible upon injection thereby producing the antigenic polypeptide in vivo. For example polynucleotides may be incorporated into a plasmid vector under the control of the CMV promoter which is functional in eukaryotic cells. Preferably the vector is injected intramuscularly.

10

According to another aspect, there is provided a process for producing polypeptides of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host cell and recovering the expressed polypeptide product. Alternatively, the polypeptides can be produced according to established synthetic chemical techniques i.e. solution phase or solid phase synthesis of oligopeptides which are ligated to produce the full polypeptide (block ligation).

20

For recombinant production, host cells are transfected with vectors which encode the polypeptide, and then cultured in a nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. 25 Suitable vectors are those that are viable and replicable in the chosen host and include chromosomal, non-chromosomal and synthetic DNA sequences e.g. bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA. The polypeptide sequence may be incorporated in the vector at the 30 appropriate site using restriction enzymes such that it is operably linked to an expression control region comprising a promoter, ribosome binding site (consensus region or Shine-Dalgarno sequence), and optionally an operator (control element). One can select individual components of the 35 expression control region that are appropriate for a given

host and vector according to established molecular biology principles (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, N.Y., 1989 incorporated herein by reference). Suitable promoters include but are not limited to LTR or SV40 promoter, E.coli lac, tac or trp promoters and the phage lambda P. promoter. Vectors will preferably incorporate an origin of replication as well as selection markers i.e. ampicillin resistance gene. Suitable bacterial vectors include pET, pQE70, pQE60, pQE-9, pbs, pD10 phagescript, psiX174, pbluescript SK, pbsks, pNH8A, 10 pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 and eukaryotic vectors pBlueBacIII, pWLNEO, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL. Host cells may be bacterial i.e. E.coli, Bacillus subtilis, Streptomyces; fungal i.e. Aspergillus niger, Aspergillus 15 nidulins; yeast i.e. Saccharomyces or eukaryotic i.e. CHO,

Upon expression of the polypeptide in culture, cells are
typically harvested by centrifugation then disrupted by
physical or chemical means (if the expressed polypeptide is
not secreted into the media) and the resulting crude extract
retained to isolate the polypeptide of interest.
Purification of the polypeptide from culture media or lysate
may be achieved by established techniques depending on the
properties of the polypeptide i.e. using ammonium sulfate or
ethanol precipitation, acid extraction, anion or cation
exchange chromatography, phosphocellulose chromatography,
hydrophobic interaction chromatography, hydroxylapatite
chromatography and lectin chromatography. Final

COS.

The polypeptide may be expressed with or without a leader or secretion sequence. In the former case the leader may be removed using post-translational processing (see US

purification may be achieved using HPLC.

4,431,739; 4,425,437; and 4,338,397 incorporated herein by reference) or be chemically removed subsequent to purifying the expressed polypeptide.

- According to a further aspect, the GBS polypeptides of the invention may be used in a diagnostic test for streptococcus infection in particular GBS infection. Several diagnostic methods are possible, for example detecting streptococcus organism in a biological sample, the following procedure may be followed:
 - a) obtaining a biological sample from a patient;
 - b) incubating an antibody or fragment thereof reactive with a GBS polypeptide of the invention with the biological sample to form a mixture; and
- 15 c) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of streptococcus.

Alternatively, a method for the detection of antibody specific to a streptococcus antigen in a biological sample containing or suspected of containing said antibody may be performed as follows:

- a) isolating a biological sample from a patient;
- b) incubating one or more GBS polypeptides of the invention or fragments thereof with the biological sample to form a mixture; and

30

c) detecting specifically bound antigen or bound fragment in the mixture which indicates the presence of antibody specific to streptococcus.

One of skill in the art will recognize that this diagnostic test may take several forms, including an immunological test such as an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay or a latex agglutination assay, essentially to determine whether antibodies specific for the protein are present in an organism.

The DNA sequences encoding polypeptides of the invention may also be used to design DNA probes for use in detecting the presence of streptococcus in a biological sample suspected of containing such bacteria. The detection method of this invention comprises:

- a) isolating the biological sample from a patient;
- b) incubating one or more DNA probes having a DNA sequence encoding a polypeptide of the invention or fragments thereof with the biological sample to form a mixture; and
- c) detecting specifically bound DNA probe in the mixture which indicates the presence of streptococcus bacteria.
- The DNA probes of this invention may also be used for detecting circulating streptococcus i.e. GBS nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing streptococcus infections. The probe may be synthesized using conventional techniques and may be immobilized on a solid phase, or may be labeled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of the GBS polypeptides of the invention.

25

10

Another diagnostic method for the detection of streptococcus in a patient comprises:

- a) labeling an antibody reactive with a polypeptide of the invention or fragment thereof with a detectable label;
- 30 b) administering the labeled antibody or labeled fragment to the patient; and
 - c) detecting specifically bound labeled antibody or labeled fragment in the patient which indicates the presence of streptococcus.

35

A further aspect of the invention is the use of the GBS

polypeptides of the invention as immunogens for the production of specific antibodies for the diagnosis and in particular the treatment of streptococcus infection. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole antibody or an antigenbinding fragment thereof and may in general belong to any 10 immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a recombinant antibody or antibody fragment. The term 15 recombinant antibody or antibody fragment means antibody or antibody fragment which were produced using molecular biology techniques. The antibody or antibody fragments may be polyclonal, or preferably monoclonal. It may be specific for a number of epitopes associated with the GBS 20 polypeptides but is preferably specific for one.

EXAMPLE 1 Murine model of lethal Group B Streptococcus (GBS) infection

25

30

35

The mouse model of GBS infection is described in detail in Lancefield et al (J Exp Med 142:165-179,1975). GBS strain C388/90 (Clinical isolate obtained in 1990 from the cephalorachidian fluid of a patient suffering from meningitis, Children's Hospital of Eastern Ontario, Ottawa, Canada) and NCS246 (National Center for Streptococcus, Provincial Laboratory of Public Health for Northern Alberta, Edmonton, Canada) were respectively serotyped as type Ia/c and type II/R.

To increase their virulence, the GBS strains C388/90 (serotype Ia/c) and NCS 246 (serotype II/R) were serially passaged through mice as described previously (Lancefield et al. J Exp Med 142:165-179, 1975). Briefly, the increase of virulence was monitored using intraperitoneal inoculations of serial dilutions of a subculture in Todd-Hewitt broth obtained from either the blood or spleen of infected mice. After the last passage, infected blood samples were used to inoculate Todd-Hewitt broth. After an incubation of 2 hours at 37°C with 7% CO2, glycerol at a final concentration of 10 10% (v/v) was added to the culture. The culture was then aliquoted and stored at -80° C for use in GBS challenge experiments. The number of cfu of GBS present in these frozen samples was determined. The bacterial concentration necessary to kill 100% (LD100) of the 18 weeks old mice were 15 determined to be 3.5X10⁵ and 1.1X10⁵ respectively for GBS strain C388/90 and NCS246, which corresponded to a significant increase in virulence for both strains. Indeed, the LD100 recorded before the passages for these two strains was higher than 10° cfu. 20

In a bacterial challenge, a freshly thawed aliquot of a virulent GBS strain was adjusted to the appropriate bacterial concentration using Todd-Hewitt broth and 1ml was 25 injected intraperitoneally to each female CD-1 mouse. The mice used for the passive protection experiments were 6 to 8 weeks old, while the ones used for the active protection experiments were approximately 18 weeks old at the time of the challenge. All inocula were verified by colony counts. Animals were observed for any sign of infection four times 30 daily for the first 48 h after challenge and then daily for the next 12 days. At the end of that period, blood samples were obtained from the survivors and frozen at -20°C. spleen obtained from each mouse that survived the challenge was cultured in order to identify any remaining GBS. 35

EXAMPLE 2 Immunization and protection in mice with formaldehyde killed whole GBS cells

- Formaldehyde killed GBS whole cells were prepared according to the procedures described in Lancefield et al (J Exp Med 142:165-179,1975). Briefly, an overnight culture on sheep blood agar plates (Quelab Laboratories, Montreal, Canada) of a GBS strain was washed twice in PBS buffer (phosphate buffered-saline, pH7.2), adjusted to approximately 3X10° cfu/mL and incubated overnight in PBS containing 0.3% (v/v) formaldehyde. The killed GBS suspension was washed with PBS and kept frozen at -80°C.
- 15 Female CD-1 mice, 6 to 8 weeks old (Charles River, St-Constant, Québec, Canada), were injected subcutaneously three times at two weeks interval with 0.1 ml of formaldehyde killed cells of GBS strain C388/90 (~6X10'GBS), or 0.1 ml of PBS for the control group. On the day before the immunization, AlhydrogelTM (Superfos Biosector, Frederikssund, Denmark) at a final concentration of 0.14 mg or 0.21 mg of Al, was added to these preparations and incubated overnight at 4°C with agitation. Serum samples were obtained from each mouse before the beginning of the

immunization protocol and two weeks after the last

injection. The sera were frozen at -20°C.

25

Eight mice in each control group injected with PBS and the group immunized with formaldehyde killed whole cells GBS strain C388/90 (Ia/c) were challenged with 1.5X104 cfu of GBS strain C388/90 (Ia/c) one week after the third injection. All mice immunized with the formaldehyde killed GBS whole cells survived the homologous challenge while, within 5 days after the challenge, only 4 out of the 8 mice injected with PBS survived from the infection. In order to increase the mortality rate in the control groups, the

bacterial suspension had to be adjusted according to the age of the mice at the time of the bacterial challenge. In subsequent challenge experiments, when mice were older than 15 weeks, the bacterial inoculum was increased to concentrations between 3.0X10⁵ and 2.5X10⁶ cfu.

Table 1 Immunization of CD1 mice with formaldehyde killed whole cells of GBS and subsequent homologous challenge [strain C388/90 (Ia/c)] and heterologous challenge [strain NCS246 (II/R)].

antigenic preparations used for immunization ¹	number of living mice 14 days after the bacterial challenge (% Survival)					
	homologous challenge: strain C388/90 (la/c)	heterologous challenge: strain NCS246 (II/R)				
1st infection	st infection					
formaldehyde killed cells of GBS strain C388/90 (la/c) ²	8/8 (100) ³	n.d. ⁵				
control PBS	4/8 (50)	n.d.				
2nd infection	nd infection					
formaldehyde killed cells of GBS strain C388/90 (la/c)	6/6 (100) ⁴	0/6 (0) ⁶				
control PBS	2/6 (33)	0/6 (0)				

¹ alhydrogel™ at a final concentration of 0.14 mg or 0.21mg of Al was used;

² approximately 6X10⁷ cfu;

⁵ not done;

10

15

20

25

5

In another experiment, one group of 12 mice corresponding to a control group was injected with PBS, while a second group of 12 mice was immunized with formaldehyde killed whole cells of GBS strain C388/90 (Ia/c). Six mice from each of these two groups were challenged with 2.1X10⁶ cfu of the GBS strain C388/90 (Ia/c) (Table I). As the first challenge experiment, all mice immunized with the GBS strain C388/90 (Ia/c) survived the homologous challenge. Only two out of the 6 mice injected with PBS survived the infection.

intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS C388/90 (la/c) suspension adjusted to 1.5X10⁴ cfu;

⁴ intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS C388/90 (la/c) suspension adjusted to 2.1X10⁶ cfu;

⁶ intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS NCS246 (II/R) suspension adjusted to 1.2X10⁵ cfu.

The remaining 6 mice in both groups were then used one week later to verify whether this antigenic preparation could confer cross protection against strain NCS246 (II/R) which produce a serologically distinct capsule. None of the mice infected with this second GBS strain survived the infection. The later result suggested that most of the protective immune response induced by formaldehyde killed strain C388/90 is directed against the capsular polysaccharide and that it could be restricted to strains of that particular serotype. These results clearly indicated that this particular model of infection can be efficiently used to study the protection conferred by vaccination.

15

10

EXAMPLE 3 Immunization of rabbit with formaldehyde killed whole GBS cells and passive protection in mice

A New Zealand rabbit (2.5 kg, Charles River, St-Constant, Québec, Canada) was immunized with formaldehyde killed 20 cells of GBS strain C388/90 (Ia/c) to obtain hyperimmune This rabbit was injected subcutaneously three serum. times at three weeks interval with approximately 1.5X109 cfu of formaldehyde killed whole cells of GBS strain C388/90 (Ia/c). Freund's complete adjuvant (Gibco BRL 25 Life Technologies, Grand Island, New York) was used as the adjuvant for the first immunization, while Freund's incomplete adjuvant (Gibco BRL) was used for the following two injections. Serum samples were obtained before the beginning of the immunization protocol and two weeks after 30 the last injection. The sera were frozen at -20°C.

The ability of this particular rabbit hyperimmune serum to passively protect mice against a lethal infection with GBS

was also evaluated. Intraperitoneal injection of mice with either 15 or 25 μ L of hyperimmune rabbit serum 18 hours before the challenge protected 4 out of 5 mice (80%) against the infection. Comparatively, survival rates lower than 20% were recorded for mice in the control group injected with PBS or serum obtained from a rabbit immunized with meningococcal outer membrane preparation. This result clearly indicates that the immunization of another animal species with killed GBS cells can induce the production of antibodies that can passively protect mice. This reagent will also be used to characterize clones.

Table 2 Passive protection of CD-1 mice conferred by rabbit serum obtained after immunization with formaldehyde killed group B whole streptococci (strain C388/90 (Ia/c)) antigenic preparation

groups	number of living mice 14 days after the bacterial challenge with GBS strain C388/90 (Ia/c) ²	% survival
rabbit hyperimmune serum² - 25 μl	4/5	80
rabbit hyperimmune serum¹ - 15 μl	4/5	80
control rabbit serum - 25 μl	1/5	20
control PBS	1/10	10

Freund's complete adjuvant was used for first immunization, and Freund's incomplete adjuvant for the following two injections;

25

10

15

intraperitoneal challenge with 1 ml Todd-Hewitt culture medium containing GBS C388/90 (Ia/c) suspension adjusted to 2X104 cfu.

EXAMPLE 4 Recombinant production of His.Tag-GBS fusion protein

The coding region of a GBS gene was amplified by PCR (DNA Thermal Cycler GeneAmp PCR system 2400 Perkin Elmer, San Jose, CA) from the genomic DNA of GBS strain C388/90 (Ia/c) using the oligos that contained base extensions for the addition of the restriction sites BglII (AGATCT) and HindIII (AAGCTT), respectively. The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen 10 (Chatsworth, CA), digested with the restriction enzymes BglII and HindIII (Pharmacia Canada Inc Baie d'Urfe, Canada), and extracted with phenol:chloroform before ethanol precipitation. The pET-32b(+) vector (Novagen, Madison, WI) containing the thioredoxin-His. Tag sequence was digested 15 with the restriction enzymes BglII and HindIII, extracted with phenol:chloroform, and then ethanol precipitated. The BglII-HindIII genomic DNA fragment was ligated to the BglII-HindIII pET-32b(+) vector to create the coding sequence for thioredoxin-His.Tag-GBS fusion protein whose gene was under 20 control of the T7 promoter. The ligated products were transformed into E. coli strain XLI Blue MRF' (\Delta(mcrA) 183\Delta (mcrCB-hsdSMR-mrr)173 endAl supE44 thi-1 recAl gyrA96 relAl lac [F'proAB lacIqZΔM15Tn10 (Tetr)]c) (Stratagene, La Jolla, CA) according to the method of Simanis (Hanahan, D. DNA 25 Cloning, 1985, D.M. Glover (ed.), pp. 109-135). The recombinant pET plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing (Taq Dye Deoxy Terminator Cycle Sequencing kit, ABI, Foster City, CA). The 30 recombinant pET plasmid was transformed by electroporation (Gene Pulser II apparatus, BIO-RAD Labs, Mississauga, Canada) into E. coli strain AD494 (DE3) (∆ara leu7697 ΔlacX74 ΔphoA PvuII phoR ΔmalF3 F'[lac*(lacIq) pro] 35 trxB::Kan (DE3)) (Novagen, Madison, WI). In this strain of

E. coli, the T7 promoter controlling expression of the fusion protein, is specifically recognized by the T7 RNA polymerase (present on the $\lambda DE3$ prophage) whose gene is under the control of the lac promoter which is inducible by isopropyl- β -D-thio-galactopyranoside (IPTG).

The transformant AD494(DE3)/rpET was grown at 37°C with agitation at 250 rpm in LB broth (peptone 10g/L, Yeast extract 5g/L, NaCl 10g/L) containing 100µg of ampicillin (Sigma-Aldrich Canada Ltd., Oakville, Canada) per mL until the A₆₀₀ reached a value of 0.6. In order to induce the production of the thioredoxin-His.Tag-GBS fusion protein, the cells were incubated for 2 additional hours in the presence of IPTG at a final concentration of 1mM. The bacterial cells were harvested by centrifugation.

The recombinant fusion protein produced by AD494(DE3)/rpET32 upon IPTG induction for 2h was partially obtained as insoluble inclusion bodies which were purified from endogenous E. coli proteins by the isolation of insoluble 20 aggregates (Gerlach, G.F. et al 1992, Infect. Immun. 60:892). Induced cells from a 500 mL culture were resuspended in 20 mL of 25% sucrose-50mM Tris-HCl buffer (pH8.0) and frozen at -70°C. Lysis of cells in thawed suspension was achieved by the addition of 5mL of a solution 25 of lysozyme (10mg/mL) in 250mM Tris-HCl buffer (pH8.0) followed by an incubation of 10 to 15 min on ice, and the addition of 150mL of detergent mix (5 parts of 20mM Tris-HCl buffer [pH7.4]-300mM NaCl-2% deoxycholic acid-2% Nonidet P-40 and 4 parts of 100mM Tris-HCl buffer [pH8]-50mM EDTA-2% 30 Triton X-100) followed by 5 min incubation on ice. Upon sonication, protein aggregates were harvested by centrifugation for 30 min at 35,000 X g and a sample of the soluble cellular fraction was kept. The aggregated proteins were solubilized in 6M guanidine hydrochloride. 35

presence of the fusion protein in both the soluble and insoluble fractions was shown by Western Blot analysis using the serum of a mouse injected with formaldehyde killed cells of GBS strain C388/90 (Ia/c) that survived a bacterial challenge with the corresponding GBS strain.

The purification of the fusion protein from the soluble fraction of IPTG-induced AD494 (DE3) / rpET was done by affinity chromatography based on the properties of the 10 His. Tag sequence (6 consecutive histidine residues) to bind to divalent cations (Ni2+) immobilized on the His.Bind metal chelation resin (Novagen, Madison, WI). The purification method used are those described in the pET system Manual, 6th Edition (Novagen, Madison, WI). Briefly, the pelleted cells obtained from a 100mL culture induced with IPTG was 15 resuspended in 4mL of Binding buffer (5mM imidazole-500mM NaCl-20mM Tris-HCl pH7.9), sonicated, and spun at 39,000 X g for 20 min to remove debris. The supernatant was filtered $(0.45\mu m \text{ pore size membrane})$ and deposited on a column of His.Bind resin equilibrated in Binding buffer. The column 20 was then washed with 10 column volumes of Binding buffer followed by 6 column volumes of Wash buffer (20mM imidazole-500mM NaCl-20mM Tris-HCl pH7.9). The thioredoxin-His.Tag-GBS fusion protein was eluted with Elute buffer (1M 25 imidazole-500mM NaCl-20mM Tris-HCl pH7.9). The removal of the salt and imidazole from the sample was done by dialysis against 3 X 1 liter PBS at 4°C.

The quantities of fusion protein obtained from either the soluble or insoluble cytoplasmic fractions of *E. coli* were estimated by Coomassie staining of a sodium dodecyl sulfate (SDS)-polyacrylamide gel with serial dilutions of these proteins and a bovine serum albumin standard (Pierce Chemical Co. Rockford, Ill.).

EXAMPLE 5 Recombinant production of GBS protein under control of lambda P_L promoter

The DNA coding region of a GBS protein was inserted
downstream of the promoter λP_L into the translation vector pURV22. This plasmid was derived from p629 (George et al, 1987, Bio/Technology 5:600) from which the coding region for a portion of the herpes simplex virus type I (HSV-I) glycoprotein (gD-1) was removed and the ampicillin
resistance gene replaced by a kanamycin cassette obtained from the plasmid vector pUC4K (Pharmacia Biotech Canada Inc., Baie D'Urfe, Canada). The vector contained a cassette of the bacteriophage λ cI857 temperature sensitive repressor gene from which the functional P_R promoter had been deleted.
The inactivation of the cI857 repressor by temperature increase from the ranges of 30-37°C to 37-42°C resulted in

increase from the ranges of 30-37°C to 37-42°C resulted in the induction of the gene under the control of λ P_L. The translation of the gene was controlled by the ribosome binding site cro followed downstream by a BglII restriction site (AGATCT) and the ATG: ACTAAGGAGGTTAGATCTATG.

Restriction enzymes and T4 DNA ligase were used according to suppliers (Pharmacia Biotech Canada Inc., Baie D'Urfe, Canada; and New England Biolabs Ltd., Mississauga, Canada).

- Agarose gel electrophoresis of DNA fragments was performed as described by Sambrook et al. (Molecular cloning : A laboratory Manual, 1989, Cold Spring Harbor Laboratory Press, N.Y). Chromosomal DNA of the GBS bacteria was prepared according to procedures described in Jayarao et al
- (J. Clin. Microbiol., 1991, 29:2774). DNA amplification reactions by polymerase chain reaction (PCR) were made using DNA Thermal Cycler GeneAmp PCR system 2400 (Perkin Elmer, San Jose, CA). Plasmids used for DNA sequencing were purified using plasmid kits from Qiagen (Chatsworth, CA).
- 35 DNA fragments were purified from agarose gels using Qiaex II

gel extraction kits from Qiagen (Chatsworth, CA). Plasmid transformations were carried out by the method described by Hanahan (DNA Cloning, Glover (ed.) pp, 109-135, 1985). The sequencing of genomic DNA inserts in plasmids was done using synthetic oligonucleotides which were synthesized by 5 oligonucleotide synthesizer model 394 (the Perkin-Elmer Corp., Applied Biosystems Div. (ABI), Foster City, CA). The sequencing reactions were carried out by PCR using the Taq Dye Deoxy Terminator Cycle Sequencing kit (ABI, Foster City, 10 CA) and DNA electrophoresis was performed on automated DNA sequencer 373A (ABI, Foster City, CA). The assembly of the DNA sequence was performed using the program Sequencer 3.0 (Gene Codes Corporation, Ann Arbor, MI). Analysis of the DNA sequences and their predicted polypeptides was performed with the program Gene Works version 2.45 (Intelligenetics, 15 Inc., Mountain View CA).

The coding region of the GBS gene was amplified by PCR from GBS strain C388/90 (Ia/c) genomic DNA using oligos that contained base extensions for the addition of restriction 20 sites BglII (AGATCT) and XbaI(TCTAGA), respectively. The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen (Chatsworth, CA), digested with the restriction enzymes BglII and XbaI, and extracted with phenol:chloroform before ethanol precipitation. The pURV22 25 vector was digested with the restriction enzymes BglII and XbaI, extracted with phenol:chloroform, and ethanol precipitated. The BglII-XbaI genomic DNA fragment was ligated to the BglII-XbaI pURV22 vector in which the GBS gene was under the control of the λPL promoter. The ligated 30 products were transformed into E. coli strain XLI Blue MRF' $(\Delta (mcrA) 183\Delta (mcrCB-hsdSMR-mrr) 173 endA1 supE44 thi-1 recA1$ gyrA96 relA1 lac[F' proAB lac1qZAM15 Tn10(Tetr)]c) (Stratagene, La Jolla CA) according to the methods described in Hanahan, supra. Transformants harboring plasmids with the 35

insert were identified by analysis of lysed cells submitted to electrophoresis on agarose gel (Sambrook et al, <u>supra</u>). The recombinant pURV22 plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

The transformant XLI Blue MRF'/rpURV22 was grown at 34°C with agitation at 250 rpm in LB broth containing $50\mu g$ of kanamycin per mL until the A_{600} reached a value of 0.6. In order to induce the production of the fusion protein, the cells were incubated for 4 additional hours at 39°C. The bacterial cells were harvested by centrifugation , resuspended in sample buffer, boiled for 10 min and kept at -20°C.

15

30

35

10

EXAMPLE 6 Subcloning GBS protein gene in CMV plasmid pCMV-GH

The DNA coding region of a GBS protein was inserted in phase downstream of the human growth hormone (hGH) gene which was under the transcriptional control of the cytomegalovirus (CMV) promoter in the plasmid vector pCMV-GH (Tang et al, Nature, 1992, 356:152). The CMV promoter is non functional in E. coli cells but active upon administration of the plasmid in eukaryotic cells. The vector also incorporated the ampicillin resistance gene.

The coding region of the gene was amplified by PCR from genomic DNA of GBS strain C388/90 (Ia/c) using the oligos that contained base extensions for the addition of the restriction sites BglII (AGATCT) and HindIII (AAGCTT). The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen (Chatsworth, CA), digested with the restriction enzymes BglII and HindIII, and extracted with phenol:chloroform before ethanol precipitation. The pCMV-GH vector (Laboratory of Dr. Stephen

A. Johnston, Department of Biochemistry, The University of Texas, Dallas, Texas) containing the human growth hormone to create fusion proteins was digested with the restriction enzymes BamHI and HindIII, extracted with phenol:chloroform, and ethanol precipitated. The 1.3-kb BglII-HindIII genomic DNA fragment was ligated to the BamHI -HindIII pCMV-GH vector to create the hGH-GBS fusion protein under the control of the CMV promoter. The ligated products were transformed into E. coli strain DH5 α [ϕ 80 lacZ Δ M15 endA1 recAl hsdR17 ("K-"K+) supE44 thi-1λ gyrA96 relAl Δ(lacZYA-10 argF) U169] (Gibco BRL, Gaithersburg, MD) according to the methods described by Hanahan, supra. Transformants harboring plasmids with the insert were identified by analysis of lysed cells submitted to electrophoresis on agarose gel (Sambrook, J. et al , supra). The recombinant 15 pCMV plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

20

EXAMPLE 7 Immunological activity of GBS protein to GBS challenge

Four groups of 12 female CD-1 mice (Charles River, St25 Constant, Quebec, Canada) of 6 to 8 weeks were injected subcutaneously three times at three week intervals with 0.1mL of the following antigenic preparations: formaldehyde killed cells of GBS strain C388/90 (~6X10⁷ cfu), 20μg of thioredoxin-His.Tag-GBS fusion protein obtained from the insoluble (inclusion bodies) or 20μg of the fusion protein, affinity purified (nickel column), from the soluble cytoplasmic fraction in E.coli, or 20μg of affinity purified (nickel column) thioredoxin-His.Tag control polypeptide. 20μg of QuilATM (Cedarlane Laboratories Ltd, Hornby, Canada)

was added to each antigenic preparation as the adjuvant. Serum samples were obtained from each mouse before immunization (PB) and on days 20 (TB1), 41 (TB2) and 54 (TB3) during the immunization protocols. Sera were frozen at -20°C.

5

An increase of the ELISA titers was recorded after each injection of the fusion protein indicating a good primary response and a boost of the specific humoral immune response after each of the second and third administration. At the 10 end of the immunization period, the means of reciprocal ELISA titers was 456,145 for the group immunized with 20µg of fusion protein obtained from inclusion bodies compared to 290,133 for the group of mice immunized with the protein from soluble fraction in E.coli. The latter result suggests 15 that the protein obtained from inclusion bodies could be more immunogenic than the soluble protein. Analysis of mice sera in ELISA using the affinity purified thioredoxin-His. Tag to coat plates showed that negligible antibody titers are made against the thioredoxin-His. Tag portion of 20 the fusion protein. The reactivity of the sera from mice injected with the recombinant fusion protein was also tested by ELISA against formaldehyde killed whole cells of GBS strain C388/90. The antibodies induced by immunization with recombinant fusion protein also recognized their specific 25 epitopes on GBS cells indicating that their conformation is close enough to the native streptococcal protein to induce cross-reactive antibodies.

To verify whether the immune response induced by immunization could protect against GBS infection, mice were challenged with 3.5X10⁵ cfu of GBS strains C338/90(Ia/c) and 1.2X10⁵ cfu of strain NCS246(II/R) the results of which are illustrated in tables 3 and 4 respectively. Mice immunized with control thioredoxin-His.Tag peptide were not protected against challenge with either GBS strain while those

immunized with formaldehyde killed C388/90 whole cells only provided protection against homologous challenge. The thioredoxin-His.Tag-GBS fusion protein of the invention protected mice from challenge with both GBS strains. Blood and spleen culture of these mice did not reveal the presence of any GBS.

PCT/CA99/00114 WO 99/42588

Table 3 Survival from GBS strain C388/90 (Ia/c) challenge¹

immunizing agent	no. mice surviving challenge	% survival
thioredoxin-His.Tag²	1 / 6	17
formaldehyde killed C388/90 cells³	6 / 6	100
thioredoxin-His.Tag-GBS fusion (inclusion body preparation)4	6 / 6	100
thioredoxin-His.Tag-GBS fusion (cytoplasmic fraction)4	6 / 6	100

intraperitoneal administration with 1 ml Todd-Hewitt culture medium adjusted to 3.5X10⁵ cfu;

² 20µg administered; posterior legs paralyzed in surviving mouse; GBS detected in blood and spleen; 6X107 cfu administered;

^{4 20}μg administered.

Table 4 Survival from GBS strain NCS246 (II/R) challenge¹

immunizing agent	no. mice surviving challenge	% survival
thioredoxin-His.Tag2	0 / 6	0
formaldehyde killed C388/90 cells ³	2 / 6	34
thioredoxin-His.Tag-GBS fusion (inclusion body preparation) ²	5 / 5 ⁴	100
thioredoxin-His.Tag-GBS fusion (cytoplasmic fraction)2	6 / 6	100

intraperitoneal administration with 1 ml Todd-Hewitt culture medium containing GBS NCS246(II/R) suspension adjusted to 1.2X10⁵ cfu.

15

EXAMPLE 8 Immunization with recombinant GBS protein confers protection against experimental GBS infection

This example illustrates the protection of mice against fatal GBS infection by immunization with the recombinant protein corresponding to the SEQ ID NO:39.

Groups of 10 female CD-1 mice (Charles River) were immunized subcutaneously three times at three-week intervals with 20 μg of recombinant protein purified from E. coli strain BLR (Novagen) harboring the recombinant pURV22 plasmid vector containing the GBS gene corresponding to SEQ ID NO:42 in presence of 20 μg of QuilATM adjuvant (Cedarlane Laboratories Ltd, Hornby, Canada) or, as control, with

² 20µg administered;

³ 6X10⁷ cfu administered;

^{10 4} one mouse died during immunization.

QuilATM adjuvant alone in PBS. Blood samples were collected from the orbital sinus on day 1, 22 and 43 prior to each immunization and fourteen days (day 57) following the third injection. One week later the mice were challenged with approximately 10⁴ to 10⁶ CFU of various virulent GBS strains. Samples of the GBS challenge inoculum were plated on TSA/5% sheep blood agar plates to determine the CFU and to verify the challenge dose. Deaths were recorded for a period of 14 days and on day 14 post-challenge, the surviving mice were sacrificed and blood and spleen were tested for the presence of GBS organisms. The survival data are shown in table 5.

Prechallenge sera were analyzed for the presence of antibodies reactive with GBS by standard immunoassays. Elisa and immunoblot analyses indicated that immunization with recombinant GBS protein produced in *E. coli* elicited antibodies reactive with both, recombinant and native GBS protein. Antibody responses to GBS are described in Example 9.

10

15

Table 5. Ability of recombinant GBS protein corresponding to SEQ ID NO: 39 to elicit protection against 8 diverse GBS challenge strains

5

	Challenge	strain		
Immunogen	Designation	Type	No. alive:	No. dead 1
rGBS protein none	C388/90	Ia/c	8 : 2 0 : 10	(P<0.0001)
rGBS protein none	NCS 246	II/R	10 : 0 3 : 7	(P=0.0012)
rGBS protein none	ATCC12401	Ib	10 : 0 3 : 7	(P=0.001)
rGBS protein none	NCS 535	V	10 : 0 5 : 5	(P=0.01)
rGBS protein none	NCS 9842	VI	10 : 0 0 : 10	(P<0.0001)
rGBS protein NCS 915-F ³ none	NCS 915	III	7 : 3 1 : 9 4 : 6	(P=0.0007) ²
rGBS protein NCS 954-F	NCS 954	III/R	7 : 3 4 : 6	(P=0.002)
none	•		1:9	
rGBS protein COH1-F	COH1	III	4 : 6 3 : 7	(P=0.0004)
none	·		0:10	

Groups of 10 mice per group were used, the number of mice surviving to infection and the number of dead mice are indicated. The survival curves corresponding to recombinant GBS protein-immunized animals were compared to the survival curves corresponding to mock-immunized animals using the log-rank test for nonparametric analysis.

All hemocultures from surviving mice were negative at day 14 20 post-challenge. Spleen cultures from surviving mice were negative except for few mice from experiment MB-11.

² Comparison analysis to NCS915-F-immunized animals.

^{15 &}lt;sup>3</sup> Animals were immunized with formaldehyde-killed GBS in presence of QuilATM adjuvant.

EXAMPLE 9 Vaccination with the recombinant GBS protein elicits an immune response to GBS

Groups of 10 female CD-1 mice were immunized subcutaneously with recombinant GBS protein corresponding to SEQ ID NO:39 as described in Example 8. In order to assess the antibody response to native GBS protein, sera from blood samples collected prior each immunization and fourteen days after the third immunization were tested for antibody reactive with GBS cells by ELISA using plates coated with 10 formaldehyde-killed GBS cells from type III strain NCS 954, type Ib strain ATCC12401, type V strain NCS 535 or type VI strain NCS 9842. The specificity of the raised antibodies for GBS protein was confirmed by Western blot analyses to GBS cell extracts and purified recombinant antigens. The 15 results shown in Figure 10 clearly demonstrate that animals respond strongly to recombinant GBS protein used as immunogens with median reciprocal antibody titers varying between 12000 and 128000, for sera collected after the third immunization, depending of the coating antigen. All 20 preimmune sera were negative when tested at a dilution of 1 :100. GBS-reactive antibodies were detectable in the sera of each animal after a single injection of recombinant GBS protein.

25

Example 10 Antigenic conservation of the GBS protein of the present invention

Monoclonal antibodies (MAbs) specific to the GBS protein of the present invention were used to demonstrate that this surface antigen is produced by all GBS and that it is also antigenically highly conserved.

A collection of 68 GBS isolates was used to evaluate the reactivity of the GBS-specific MAbs. These strains were 10 obtained from the National Center for Streptococcus, Provincial Laboratory of Public Health for Northern Alberta, Canada; Centre Hospitalier Universitaire de Quebec, Pavillon CHUL, Quebec, Canada; American Type Culture Collection, USA; Laboratoire de Sante Publique du Quebec, Canada; and Dept. 15 of Infectious Disease, Children's Hospital and Medical Center, Seattle, USA. All eight Mabs were tested against the following panel of strains: 6 isolates of serotype Ia or Ia/c, 3 isolates of serotype Ib, 4 isolates of serotype II, 14 isolates of serotype III, 2 isolates of serotype IV, 2 20 isolates of serotype V, 2 isolates of serotype VI, 2 isolates of serotype VII, 1 isolate of serotype VIII, 10 isolates that were not serotyped and 3 bovine S. agalactiae strains. MAb 3A2 was also reacted with additional GBS: 9 isolates of serotype Ia/c and 10 isolates of serotype V. 25 The strains were grown overnight on blood agar plates at 37°C in an atmosphere of 5% CO2. Cultures were stored at -70°C in heart infusion broth with 20% (v/v) glycerol.

To obtain the GBS protein-specific MAbs, mice were immunized three times at three-week intervals with 20 μg of purified recombinant GBS protein (SEQ ID NO :44) in the presence of 20% QuilATM adjuvant. Hybridoma cell lines were generated by fusion of spleen cells recovered from immunized mice with the nonsecreting SP2/O myeloma cell line as described

previously (Hamel, J. et al. 1987. J. Med. Microbiol. 23:163-170). Hybrid clone supernatants were tested for specific antibody production by ELISA using formaldehyde inactivated GBS and purified recombinant GBS protein (SEQ ID NO :39 or 44) as coating antigen, as previously described (Hamel, J. et al. 1987. J. Med. Microbiol. 23:163-170). Specific hybrid were cloned by limiting dilutions, expanded, and frozen in liquid nitrogen. Production of recombinant GBS protein was presented in Examples 4 & 5. Purified recombinant GBS protein or formaldehyde inactivated GBS were 10 resolved by electrophoresis by using the discontinuous buffer system of Laemmli as recommended by the manufacturer and then transfer onto nitrocellulose membrane for Western immunoblotting as described previously (Martin et al. 1992. Infect. Immun. 60:2718-2725). 15

Western immunoblotting experiments clearly indicated that all eight MAbs recognized a protein band that corresponded to the purified recombinant GBS protein (SEQ ID NO :39).

20 These MAbs also reacted with a protein band present in every GBS isolates tested so far. The reactivity of these GBS-specific MAbs are presented in Table 6. Each MAb reacted well with all 46 GBS. In addition, these MAbs also recognized the 3 S. agalactiae strains of bovine origin that were tested. MAb 3A2 also recognized nineteen GBS; 9 isolates of serotype Ia/c and 10 of serotype V. The other MAbs were not tested against these additional strains.

These results demonstrated that the GBS protein (SEQ ID NO :39) was produced by all the 65 GBS and the three 3 S. agalactiae strains of bovine origin that were tested so far. More importantly, these results clearly demonstrated that the epitopes recognized by these eight GBS-specific MAbs were widely distributed and conserved among GBS. These results also indicated that these epitopes were not

restricted to serologically related isolates since representatives of all known GBS serotypes including the major disease causing groups were tested.

In conclusion, the data presented in this example clearly demonstrated that the GBS protein of the present invention is produced by all GBS and that it is antigenically highly conserved.

10

agalactiae S_{\cdot} different MAbs with eight GBS protein-specific as evaluated by Western immunoblots Reactivity of . 9 Table

			-		\neg			_		_	T		T	1	_	7
ha	•	Bovine	(3)	3		3	2	3	m	,	2	m	,	5	(*)	,
hir the MA	Dy circ rin	TOTAL	(26)	46		46	31	O.H	46	7 4	40	46	,	4.6	46	0
Maha Hay the Maha	ecognizaca.	MT (1012	(OT) [N]	10		10	0	TO	10		10	10		10	10	2 +
- 0	rains	VIII	(1)		ŧ	-		-	-				•		,	-4
	riae st	VIT	(2)	2	3	2	C	7	2	2	7	0	3	7	c	7
	agalaci	VT	(2)	2	1	2		7	2	3	7	2	7	7	c	7
	ω.	Λ	(2)	í	4	2		~	2	7	~	C	7	7	C	~
	otype of	111	(2)	ì	1	2	3	2	C	7	2	C	7	2	(``
	ser	111	(7)	1	1 '	4	4	4		‡	4		4	4	'	7
	each	± ±	11	(=)	41	A	7	4	,	4	4	,	4	4	1	7
	oer of	ત્1	(2)	(5)	η	C	ו	~		ກ	~) (Υ)	~	,	~
	Number	ŀ	1a or 12 /2 (6)	- !	9	9	0	v		9	7		9	2	0	7
	Mabs			,	3221	C 1 K L	2AIC	6011	1750	8B9	0011	7770	12B12	1001	TOLTT	0000
•												,				

by recognized were serotype of strains 10 and Ia/c serotype 1 Nine additional strains of serot: MAb 3A2. 2 These strains were not serotyped

10

WE CLAIM:

1. An isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

- 2. A polynucleotide according to claim 1, wherein said polynucleotide encodes a polypeptide having at least 95% identity to the second polypeptide.
- An isolated polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide having a sequence selected from the group consisting of:

 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

4. An isolated polynucleotide that is complementary to the polynucleotide of claim 1.

- 5. An isolated polynucleotide that is complementary to the polynucleotide of claim 3.
- 6. The polynucleotide of claim 1, wherein said polynucleotide is DNA.
- 7. The polynucleotide of claim 3, wherein said polynucleotide is DNA.
- 8. The polynucleotide of claim 1, wherein said polynucleotide is RNA.
- 9. The polynucleotide of claim 3, wherein said polynucleotide is RNA.
- 10. A polynucleotide which hybridizes under stringent conditions to a second polynucleotide having a sequence selected from the group consisting of:

 SEQ ID NO: 1, SEQ ID NO: 7, SEQ ID NO: 13, SEQ ID NO: 22, SEQ ID NO: 27, SEQ ID NO: 32, SEQ ID NO: 37, SEQ ID NO: 42 and SEQ ID NO: 43 or fragments, analogues or derivatives thereof.
- 11. A polynucleotide which hybridizes under stringent conditions to a second polynucleotide having a sequence selected from the group consisting of : SEQ ID NO : 37, SEQ ID NO : 42 and SEQ ID NO : 43.
- 12. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 37.

13. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 42.

- 14. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 43.
- 15. A polynucleotide according to claim 10 wherein said polynucleotide has at least 95% complementarity to the second polynucleotide.
- 16. A polynucleotide according to claim 11 wherein said polynucleotide has at least 95% complementarity to the second polynucleotide.
- 17. A vector comprising the polynucleotide of claim 1, wherein said polynucleotide is operably linked to an expression control region.
- 18. A vector comprising the polynucleotide of claim 3, wherein said polynucleotide is operably linked to an expression control region.
- 19. A host cell transfected with the vector of claim 17.
- 20. A host cell transfected with the vector of claim 18.
- 21. A process for producing a polypeptide comprising culturing a host cell according to claim 19 under conditions suitable for expression of said polypeptide.
- 22. A process for producing a polypeptide comprising culturing a host cell according to claim 20 under condition suitable for expression of said polypeptide.

23. An isolated polypeptide having at least 70% identity to a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:35, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

- 24. The isolated polypeptide of claim 23 having a sequence according to SEQ ID NO: 39.
- 25. The isolated polypeptide of claim 23 having a sequence according to SEQ ID NO: 44.
- 26. An isolated polypeptide capable of generating antibodies having binding specificity for a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

27. The isolated polypeptide of claim 26 having a sequence according to SEQ ID NO: 39.

- 28. The isolated polypeptide of claim 26 having a sequence according to SEQ ID NO: 44.
- 29. An isolated polypeptide having an amino acid sequence selected from the group consisting of:

 SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,
- 30. The isolated polypeptide of claim 29 having an amino acid sequence according to SEQ ID NO: 39.

derivatives thereof.

SEQ ID NO:40 and SEQ ID NO:41 or fragments, analogs or

- 31. An isolated polypeptide having an amino acid sequence according to SEQ ID NO: 44.
- 32. An isolated polypeptide according to any one of claims 29 to 31, wherein the N-terminal Met residue is deleted.
- 33. An isolated polypeptide according to any one of claims 29 to 30, wherein the secretory amino acid sequence is deleted.
- 34. A vaccine composition comprising a polypeptide according to any one of claims 23 to 31 and a pharmaceutically acceptable carrier, diluent or adjuvant.

35. A vaccine composition comprising a polypeptide according to claim 32 and a pharmaceutically acceptable carrier, diluent or adjuvant.

- 36. A vaccine composition comprising a polypeptide according to claim 33 and a pharmaceutically acceptable carrier, diluent or adjuvant.
- 37. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 34.
- 38. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 35.
- 39. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 36.
- 40. A method according to any one of claims 37 to 39, wherein said animal is a bovine.
- 41. A method according to any one of claims 37 to 39, wherein said animal is a human.

42. A method according to any one of claims 37 to 39, wherein said bacterial infection is selected from the group consisting of group A streptococcus and group B streptococcus.

- 43. A method according to claim 42, wherein said bacterial infection is group B streptococcus.
- 44. Use of a vaccine composition according to claim 34 for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to or infected with streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 45. Use of a vaccine composition according to any one of claims 35 to 36 for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to or infected with streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 46. Use of a vaccine composition according to any one claims 23 to 31 for the manufacture of a vaccine for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 47. Use of a vaccine composition according to claim 32 for the manufacture of a vaccine for the therapeutic or

prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.

48. Use of a vaccine composition according to claim 33 for the manufacture of a vaccine for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.

S G K	E P A	N R F S	W A K	N K L	L I N G	60
•	AACTCTAGCA T L A	GCAACTATCT A T I L	TATTTTTTGC F F A	AGTTCAATTC V Q F	ATAGGTCTTA I G L K	120
AACCAGATTA P D Y	CCCTGGAAAA P G K	ACCTACTTTA T Y F I	TTATCCTATT I L L	GACAGCATGG T A W	ACTTTGATGG T L M A	180
CATTAGTAAC L V T	TGCTTTAGTG A L V	GGATGGGATA G W D N	ATAGGTATGG R Y G	TTCCTTCTTG S F L	TCGTTATTAA S L L I	240
TATTATTATT L L F	CCAGCTTGGT Q L G	TCAAGCGCAG S S A G	GAACTTACCC T Y P	AATAGAATTG I E L	AGTCCTAAGT S P K F	300
TCTTTCAAAC F Q T	AATTCAACCA I Q P	TTTTTACCGA F L P M	TGACTTACTC T Y S	TGTTTCAGGA V S G	TTAAGAGAGA L R E T	360
CCATCTCGTT I S L	GACGGGAGAC T G D	GTTAACCATC V N H Q	AATGGAGAAT W R M	GCTAGTAATC L V I	TTTTTAGTAT F L V S	420
CATCGATGAT S M I	ACTTGCTCTT L A L	CTTATTTATC L I Y R	GTAAACAAGA K Q E	AGATTAATAG D	AAAGTATCTA	480
GTGATAGACT	AACAGTATGA	TATGGTATGT	CAAAGTATTT	AGGAGGAGAA	GATATGTCTA M S T	540
CTTTAACAAT L T I	AATTATTGCA I I A	ACATTAACTG T L T A		TTTTTATATT F Y I	ATGTATTTGG M Y L E	600
AGACGTTAGC T L A	CACCCAGTCA T Q S	AATATGACTG N M T G	GGAAGATTTT K I F	TAGTATGTCT S M S	AAAGAAGAGT K E E L	660
TGTCATATTT S Y L	ACCCGTTATT P V I	AAACTTTTTA K L F K		TGTATACAAC V Y N	GGCTTGATTG G L I G	720
GCCTATTCCT L F L	CCTTTATGGG L Y G	TTATATATTT L Y I S	CACAGAATCA Q N Q	AGAAATTGTA E I V	GCTGTTTTTT A V F L	780
TAATCAATGT I N V	ATTGCTAGTT L L V	GCTATTTATG A I Y G		AGTTGATAAA V D K	AAAATCTTAT K I L L	840
TAAAACAGGG K Q G	TGGTTTACCT G L P	ATATTAGCTC I L A L	TTTTAACATT L T F	CTTATTTTAA L F	TACTACTTAG	900
CCGTTCGATT	TAGTTGAACG	GCTTTTAGTA	ATCATTTTT	TCTCATAATA	CAGGTAGTTT	960
AAGTAATTTG	TCTTTAAAAA	TAGTATAATA	TAACTACGAA	TTCAAAGAGA	GGTGACTTTG	1020
MTE		ACATACTAAA H T K			TCGTGTCGTT R V V	1080
GGTCAAGGTC G Q G Q		TTTTTTACAT F L H		TAAGTAGTCG S S R	CTATTTTGAT Y F D	1140
		TAAGTATTAC K Y Y			TAGAGGGCAT R G H	1200
GGCAAAAGTC G K S H		AAATACCATT N T I			TGACTTAAAG D L K	1260

GATATCTTAG TTCATTTAGA GATTGATAAA GTTATATTGG TAG	GCCATAG CGATGGTGCC 1320 G H S D G A
AATTTAGCTT TAGTTTTTCA AACGATGTTT CCAGGTATGG TTA N L A L V F Q T M F P G M V A	AGAGGGCT TTTGCTTAAT 1380 R G L L N
TCAGGGAACC TGACTATTCA TGGTCAGCGA TGGTGGGATA TTC S G N L T I H G Q R W W D I I	2110
TATAAATTCC TTCACTATTT AGGGAAACTC TTTCCGTATA TGAY K F L H Y L G K L F P Y M E	AGGCAAAA AGCTCAAGTT 1500 R Q K A Q V
ATTTCGCTTA TGTTGGAGGA TTTGAAGATT AGTCCAGCTG ATT	TTACAGCA TGTGTCAACT 1560 L Q H V S T
CCTGTAATGG TTTTGGTTGG AAATAAGGAC ATAATTAAGT TAA	AATCATTC TAAGAAACTT 1620 N H S K K L
ASYFPRGEFYSLVGI	TTTGGGCA TCACATTATT 1680 F G H H I I
AAGCAAGATT CCCATGTTTT TAATATTATT GCAAAAAAGT TTA K Q D S H V F N I I A K K F I	NDTLK
GGAGAAATTG TTGAAAAAGC TAATTGAAAA AGTCAAATCA CTO G E I V E K A N	
TGTATTTTT ATATCTGTTT TAGTGCTTAT TATTGTTGAA ATO	FATTCATT TGAAACGAAC 1860 I H L K R T
1	>
ISVEQLKSVFGQLS	CCAATGA ATCTTTTCTT 1920 PMN LF L
I S V E Q L K S V F G Q L S AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGZ I I L V G V I A V L P T T G	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N
I S V E Q L K S V F G Q L S AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGA I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAG G L L R T D K S K R Y I L Q	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N
I S V E Q L K S V F G Q L S AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGA I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAG G L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N GGGGTTGC GCATGGCTTT 2100 G L R M A F
I S V E Q L K S V F G Q L S AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGA I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAC G L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I TTATGGTAAA AAAGGTCAAG AGAAGAGTGA CCTAAGAGAA GTC Y G K K G Q E K S D L R E V	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N GGGGTTGC GCATGGCTTT 2100 G L R M A F GACTCGTT TTTTACCCTA 2160 T R F L P Y
I S V E Q L K S V F G Q L S AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGA I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAC G L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I TTATGGTAAA AAAGGTCAAG AGAAGAGTGA CCTAAGAGAA GTC Y G K K G Q E K S D L R E V TCTTATTTCT GGTCTGTCAT TTATTAGTGT GATTGCCTTA ATC L I S G L S F I S V I A L I	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N GGGTTGC GCATGGCTTT 2100 G L R M A F GACTCGTT TTTTACCCTA 2160 T R F L P Y CATGAGCC ATATTTTCA 2220 M S H I F H
AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGAT I I L V G V I A V L P T T G TGGACTTTA CGTACAGATA AAAGCAAAAG GTATATTTA CAGG L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I TTATGGTAAA AAAGGTCAAG AGAAGAGTGA CCTAAGAGAA GTG Y G K K G Q E K S D L R E V TCTTATTTCT GGTCTGTCAT TTATTAGTGT GATTGCCTTA ATG L I S G L S F I S V I A L I TGCCAAAGCT AGTGTTGATT ACTATTATTT GGTATTAATT GGTATTAATTA	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N GGGGTTGC GCATGGCTTT 2100 G L R M A F GACTCGTT TTTTACCCTA 2160 T R F L P Y CATGAGCC ATATTTTCA 2220 M S H I F H GGCTAGTA TGTATTTCC 2280 A S M Y F P
AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGAT I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAGG L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I TTATGGTAAA AAAGGTCAAG AGAAGAGTGA CCTAAGAGAA GTG Y G K K G Q E K S D L R E V TCTTATTTCT GGTCTGTCAT TTATTAGTGT GATTGCCTTA ATG L I S G L S F I S V I A L I TGCCAAAGCT AGTGTTGATT ACTATTATTT GGTATTAATT GGTATTATTT TTGCCAAAGCT AGTGTTGATT ACTATTATTT TTGCTATTTATTATT TTGCTATTTATTATT TTGCTATTTTATTT	PMNLFL ATATGACT TTGTACTGAA 1980 YDFVLN GACTAGTT GGTGTATCAA 2040 TSWCIN GGGTTGC GCATGGCTTT 2100 GLRMAF GACTCGTT TTTTACCCTA 2160 TRFLPY CATGAGCC ATATTTTCA 2220 MSHIFH GGCTAGTA TGTATTTTCC 2280 ASMYFP CGGGAGATA TGCCATCTAG 2340 GDMPSS
AATTATCCTT GTGGGGGTTA TCGCTGTCTT ACCGACAACC GGAT I I L V G V I A V L P T T G TGGACTTTTA CGTACAGATA AAAGCAAAAG GTATATTTTA CAGG L L R T D K S K R Y I L Q CACTTTTAAT AACTTGTCAG GATTCGGTGG CTTAATCGAT ATT T F N N L S G F G G L I D I TTATGGTAAA AAAGGTCAAG AGAAGAGTGA CCTAAGAGAA GTOY G K K G Q E K S D L R E V TCTTATTTCT GGTCTGTCAT TTATTAGTGT GATTGCCTTA ATG L I S G L S F I S V I A L I TGCCAAAGCT AGTGTTGATT ACTATTATTT GGTATTAATT GGTATTATTTATTATTT TGGATTTCT GTCATTATTT TTGTTATTTATTT TTGTTATTTATTT TTGTTATTTAT	P M N L F L ATATGACT TTGTACTGAA 1980 Y D F V L N GACTAGTT GGTGTATCAA 2040 T S W C I N GGGGTTGC GCATGGCTTT 2100 G L R M A F GACTCGTT TTTTACCCTA 2160 T R F L P Y CATGAGCC ATATTTTTCA 2220 M S H I F H GGCTAGTA TGTATTTTCC 2280 A S M Y F P CGGAGATA TGCCATCTAG 2340 G D M P S S ATGTGCGG CCGCAGCATT 2400 C A A A A F

0 1	G C	A	V G	I	TGTATC V S	CCTT!	ATTCC(I P	C GG1 G	'GGAT' G L	TAG G	GAAGT S	rttt F	'GA E	2520
ATTAGT L V	TCTA L F	TTTAC. T	AGGGT G F	TTGC' A	TGCCGA A E	GGGA	CTACC! L P	r aa <i>i</i> K	AGAAA E T	CTG V	TGGTT V		NTG W	2580
GTTATT L L	ractt y	TATCG R	TTTAG L A		CTATAT Y I		CCATTO P F	C TTT	rgcag A g	GTA I	TCTAT Y	TTTC F	TT F	2640
TATCCA I H	Y L	TTAGG G	TAGTC S Q	AAAT. I	AAATCA N Q		TATGA Y E	A AAT N	rgtcc V p	CGA K	AAGA(E		GT V	2700
ATCAAC S T	V L	CTACA Q	AACCA T M	TGGT V	GAGCCA S H		ATGCG M R	r ATT I >	TTAG L G	GTG A	CATT(AT I	2760
ATTTTC F S	CAACA T A		TTTTG F E	AAAA' N	TATTAC I T		ATTATO	G TGO W	STTGC: L Q	AGA K	AGCTA L	AGGC G	TT L	2820
GGACCO D P	CATTA (CAAGA E	ACAAA Q M	TGTT.	ATGGCA W Q		CCAGG' P G	r TT <i>I</i> L	ATTGC' L L	IGG G	GGGT7	TTGT C	TT F	2880
TATTCT I L	L A	R	AACTA T I	D	TCAAAA Q K	V	K N	A	TTTTC F P	I	TTGCT A	TTAT I	I	2940
CTGGAT W I	TACT T L				TCTTAA L N							ATCT S		3000
W F	I L	L	L L	G	CTTATT L L	V :	I K	P	T L	Y	K	K	Q	3060
ATTTAT F I			GGAAG E E	AGCG R	TATTAA I K			C ATT	TATCG' I V	rta S	GTTTA L		GG G	3120
V L			TGCAG A G		ACTATT L F		ATCAGO I R	G GCI A	CATA' H I		CAGGT G		'AG S	3180
V L TATTGA	F Y AACGC R L	I CTGCA H	A G TTATA Y I	L TCAT. I	L F AGCATG A W	P GGAG E	I R CCGATA P I	A A GCA A	H I ATTGG L A	T CTA T	G CGTT(L	G SATT I	S CT L	3180 3240
V L TATTGA I E TACTCA T L	F Y AACGC R L CGTT V Y	I CTGCA H TATTT. L	A G TTATA Y I ATGTT C L	TCAT. I TGGT	L F AGCATG A W TAAGAT K I	GGAGGE TTTAG	I R CCGATA P I CAAGGA Q G	A GCA A A A AAA	H I ATTGG L A ATCTT	T CTA T GTC Q	G CGTTC L AGATT	G EATT I IGGT G	S CT L 'GA D	
V L TATTGA I E TACTCT T L TGTGTT V F	F Y AACGC R L ICGTT V Y ICAAT N V	I CTGCA H TATTT L GTGGA D	A G TTATA Y I ATGTT C L TCGTT R Y	TCAT. I TGGT V ATAA. K	L F AGCATG A W TAAGAT K I AAAACT K L	GGAGGE TTTAGL ACTTGL	I R CCGATA P I CAAGGA Q G CAAGCA	A GCA A AAA K T TAC	H I ATTGG L A ATCTT S C CGGTG G G	T CTA T GTC Q GTT S	G CGTTC L AGATT I CTTCC	G EATT I IGGT G GAT	S CT L GA D 'AG S	3240
V L TATTGA I E TACTCA T L TGTGTA V F CGGTTA G L	F Y AACGC R L ICGTT V Y ICAAT N V IAGCC A F	I CTGCA H TATTT L GTGGA D TTTTT	A G TTATA Y I ATGTT C L TCGTT R Y AAATG N D	TCAT. I TGGT V ATAA. K ATAA.	L F AGCATG A W TAAGAT K I AAAACT K L AAGGCT R L	GGAGGE TTTAG L ACTTG L CTAC'	I R CCGATA P I CAAGGA Q G CAAGCA Q A TGGTAGW Y	A GCA A AAA K T TAC Y C CAA	H I ATTGG L A ATCTT S C CGGTG G G AAAAA K N	T CTA T GTC Q GTT S ATG	G CGTTC L AGATT I CTTCC S GAGAA	G EATT I EGGT D EGAT D	S CT L GA D AG S TG C	32 4 0 3300
V L TATTGA I E TACTCT T L TGTGTT V F CGGTTT G L CGTTGC V A	F Y AACGC R L ICGTT V Y ICAAT N V IAGCC A F CGTTC F Q	I CTGCA H TATTT L GTGGA D TTTTT L CAATT F	TTATA Y I ATGTT C TCGTT R Y AAATG N D TGTAA V I	TCAT. I TGGT V ATAA K ATAA K TTGT V	L F AGCATG A W TAAGAT K I AAAACT K L AAGGCT R L CAATAA N N	GGAGGE TTTAGL ACTTGL CTACTY TAAAT	I R CCGATA P I CAAGGA Q G CAAGCA Q A TGGTACA W Y TGTCTA	A GCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	H I ATTGG L A ATCTT S C CGGTG G G AAAAA K N TATGG	T CTA T GTC GTT S ATG GGG	GCTTCC LAGATT ICTTCC SCAGAN EAACCN P	G EATT I IGGT G EGAT D AGAT AGCC	S CT L GA D AG S TG C	3240 3300 3360 3420
TATTGATE TACTCT T L TGTGTT V F CGGTTT G L CGTTGC V A TGATGAT D D	F Y AACGC R L ICGTT V Y ICAAT N V IAGCC A F CGTTC F Q ACACT T Y	I CTGCA H TATTT L GTGGA D TTTTT L CAATT F TATAT I	TTATA Y I ATGTT C I TCGTT R Y AAATG N D TGTAA V I TCGTG R E	TCAT. I TGGT V ATAA K ATAA K TTGT V AAGC A	AGCATGA W TAAGATKI AAAACTKL AAGGCTRL CAATAANN TATTGA	GGAGGE TTTAGL ACTTGL CTAC' Y TAAA' K ATCG'	I R CCGATA P I CAAGGA Q G CAAGC' Q A TGGTAC W Y TGTCT' C L TTTAT' F I	A GCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	H I ATTGG L A ATCTT S C CGGTG G G AAAAA K N TATGG M G TGATG	T CTA GTC GTTS ATG GGG E CTG	GCGTTCC LAGATT ICTTCC SCAGATE AACCT PATAACK	G EATT I EGGT D AGAT AGCO AGCO A	S CT L GA D AG S C GG G GA	3240 3300 3360 3420 3540
TATTGATE TACTCT T L TGTGTT V F CGGTTT G L CGTTGC V A TGATGAT D D	F Y AACGC R L CGTT V Y CAAT N V CAAT N V CGTTC F Q ACACT T Y ACCTT L V	CTGCA H TATTT L GTGGA D TTTTT L CAATT F TATAT I GTTTT F	TTATA Y I ATGTT C L TCGTT R Y AAATG N D TGTAA V I TCGTG R E TTACA Y S	TCAT. I TGGT V ATAA. K ATAA. K TTGT V AAGC. A GTAT. I	L F AGCATG A W TAAGAT K I AAAACT K L AAGGCT R L CAATAA N N TATTGA I E TGGACA G Q	GGAGGE TTTAGL ACTTGL CTAC' Y TAAA' K ATCG' S GAAG' K	I R CCGATA P I CAAGGA Q G CAAGCA Q A TGGTACA W Y TGTCTA TTTAT F I TTGACA L T	A GCAA A AAA K TAC Y C CAA Q T ATT I GAT A CTA	H I ATTGG L A ATCTT S C CGGTG G G AAAAA K N CATGG M G CGATG D A ACTTT L L	TTA GTQ GTTS ATG GGG TAC TAC H	GCGTTC L AGATT I CTTCC S GAGAME AACCM P ATAACM K ATGACME	G SATT I GGT GGAT D AGCO AGCO A CTA L STAT	S CT L GA D AG S C GG G G G G G	3240 3300 3360 3420

G N K Y K P F	R N A	L N R V E K D G F Y	3720
TTTCGAAGTT GTACAATCGC F E V V Q S P	CACATAGTCA H S Q	AGAGCTACTA AATAGTTTGG AAGAGATTTC E L L N S L E E I S	3780
TAATACTTGG TTAGAAGGAC N T W L E G R		AGGTTTCTCA CTAGGATATT TTAATAAAGA G F S L G Y F N K D	3840
TTATTTCCAA CAAGCCCCAA Y F Q Q A P I	TAGCTTTGGT A L V	AAAAAATGCT GAACACGAAG TTGTTGCTTT K N A E H E V V A F	3900
TGCTAATATT ATGCCAAACT A N I M P N Y	ATGAAAAGAG E K S	TATTATCTCT ATTGATTTAA TGCGTCACGA I I S I D L M R H D	3960
TAAACAGAAA ATTCCGAATG K Q K I P N G	GCGTTATGGA V M D	TTTCCTCTTT TTATCATTAT TCTCTTATTA F L F L S L F S Y Y	4020
TCAAGAGAAG GGATACCACT Q E K G Y H Y	ATTTTGATTT F D L	GGGGATGGCA CCTTTATCAG GAGTTGGTCG G M A P L S G V G R	4080
CGTTGAAACA AGTTTTGCTA V E T S F A K	AAGAGAGAAT E R M	GGCGTATCTT GTCTATCATT TCGGTAGTCA A Y L V Y H F G S H	4140
TTTCTACTCA TTTAATGGTT F Y S F N G L	TACACAAGTA H K Y	TAAGAAGAAG TTTACACCAT TGTGGTCGGA K K K F T P L W S E	4200
ACGTTATATT TCTTGTTCTC R Y I S C S R		GTTAATTTGT GCTATTTGTG CCCTATTAAT L I C A I C A L L M	4260
GGAAGATAGT AAAATTAAGA E D S K I K I		AGCTTTATTT GGCAATTAAA AAGAGCATGT	4320
CATGCGACAT GCTCTTTTA	AATCATTTAA	TACCATTGAT TGCTTGAATC TACTTTATAA	4380
TATGATGTGC TTTTAAATAT	TGTTTAGCTA	CTGTAGCTGC TGATTTATGC TTTACAGCTA	4440
CTTGGTAGTT CATTTCTTGC	ATTTCTTTTT	CAGTGATATG ACCAGCAAGT TTATTGAGAG	4500
CTTTTTTTAC TTGA (SEQ	ID NO:1)		4514

FIG. 1a [clonel-dna/aa]

SGKEPANRFS	WAKNKLLING	FIATLAATIL	FFAVQFIGLK	PDYPGKTYFI	50
ILLTAWTLMA	LVTALVGWDN	RYGSFLSLLI	LLFQLGSSAG	TYPIELSPKF	100
FQTIQPFLPM	TYSVSGLRET	ISLTGDVNHQ	WRMLVIFLVS	SMILALLIYR	150
KQED (SEQ	ID NO:2)				154
		FIG. 1	b		
MSTLTIIIAT	LTALEHFYIM	YLETLATQSN	MTGKIFSMSK	EELSYLPVIK	50
LFKNQGVYNG	LIGLFLLYGL	YISQNQEIVA	VFLINVLLVA	IYGALTVDKK	100
ILLKQGGLPI	LALLTFLF (SEQ ID NO:3	3)		118
		FIG. 1	C		
MTENWLHTKD	GSDIYYRVVG (OGOPTVFT.HG	NST.SSRVEDK	OTAVECEVVO	5 0
					50
	KSHAKLNTIS I				100
LALVFQTMFP	GMVRGLLLNS (GNLTIHGQRW	WDILLVRIAY	KFLHYLGKLF	150
PYMRQKAQVI	SLMLEDLKIS I	PADLQHVSTP	VMVLVGNKDI	IKLNHSKKLA	200

FIG. 1d

247

SYFPRGEFYS LVGFGHHIIK QDSHVFNIIA KKFINDTLKG EIVEKAN

(SEQ ID NO:4)

MIHLKRTISV	EQLKSVFGQL	SPMNLFLIIL	VGVIAVLPTT	GYDFVLNGLL	50
RTDKSKRYIL	QTSWCINTFN	NLSGFGGLID	IGLRMAFYGK	KGQEKSDLRE	100
VTRFLPYLIS	GLSFISVIAL	IMSHIFHAKA	SVDYYYLVLI	GASMYFPVIY	150
WISGHKGSHY	FGDMPSSTRI	KLGVVSFFEW	GCAAAAFIII	GYLMGIHLPV	200
YKILPLFCIG	CAVGIVSLIP	GGLGSFELVL	FTGFAAEGLP	KETVVAWLLL	250
YRLAYYIIPF	FAGIYFFIHY	LGSQINQRYE	NVPKELVSTV	LQTMVSHLMR	300
ILGAFLIFST	AFFENITYIM	WLQKLGLDPL	QEQMLWQFPG	LLLGVCFILL	350
ARTIDQKVKN	AFPIAIIWIT	LTLFYLNLGH	ISWRLSFWFI	LLLLGLLVIK	400
PTLYKKQFIY	SWEERIKDGI	IIVSLMGVLF	YIAGLLFPIR	AHITGGSIER	450
LHYIIAWEPI	ALATLILTLV	YLCLVKILQG	KSCQIGDVFN	VDRYKKLLQA	500
YGGSSDSGLA	FLNDKRLYWY	QKNGEDCVAF	QFVIVNNKCL	IMGEPAGDDT	550
YIREAIESFI	DDADKLDYDL	VFYSIGQKLT	LLLHEYGFDF	MKVGEDALVN	600
LETFTLKGNK	YKPFRNALNR	VEKDGFYFEV	VQSPHSQELL	NSLEEISNTW	650
LEGRPEKGFS	LGYFNKDYFQ	QAPIALVKNA	EHEVVAFANI	MPNYEKSIIS	700
IDLMRHDKQK	IPNGVMDFLF	LSLFSYYQEK	GYHYFDLGMA	PLSGVGRVET	750
SFAKERMAYL	VYHFGSHFYS	FNGLHKYKKK	FTPLWSERYI	SCSRSSWLIC	800
AICALLMEDS	KIKIVK (SE	EQ ID NO:5)			816

FIG. 1e

MRILGAFLIF	STAFFENITY	IMWLQKLGLD	PLQEQMLWQF	PGLLLGVCFI	50
LLARTIDQKV	KNAFPIAIIW	ITLTLFYLNL	GHISWRLSFW	FILLLGLLV	100
IKPTLYKKQF	IYSWEERIKD	GIIIVSLMGV	LFYIAGLLFP	IRAHITGGSI	150
ERLHYIIAWE	PIALATLILT	LVYLCLVKIL	QGKSCQIGDV	FNVDRYKKLL	200
QAYGGSSDSG	LAFLNDKRLY	WYQKNGEDCV	AFQFVIVNNK	CLIMGEPAGD	250
DTYIREAIES	FIDDADKLDY	DLVFYSIGQK	LTLLHEYGF	DFMKVGEDAL	300
VNLETFTLKG	NKYKPFRNAL	NRVEKDGFYF	EVVQSPHSQE	LLNSLEEISN	350
TWLEGRPEKG	FSLGYFNKDY	FQQAPIALVK	NAEHEVVAFA	NIMPNYEKSI	400
ISIDLMRHDK	QKIPNGVMDF	LFLSLFSYYQ	EKGYHYFDLG	MAPLSGVGRV	450
ETSFAKERMA	YLVYHFGSHF	YSFNGLHKYK	KKFTPLWSER	YISCSRSSWL	500
ICAICALLME	DSKIKIVK	(SEQ ID NO	: 6)		518

FIG. 1f

AATTTTGATA TCGAAACAAC N F D I E T T	AACTTTTGAG GCAA T F E A M	TGAAAA AGCACGCGTC I K K H A S	ATTATTGGAG L L E	60
AAAATATCTG TTGAGCGTTC K I S V E R S	TTTTATTGAA TTTG F I E F D	ATAAAC TTCTATTAGO K L L L A	ACCTTATTGG P Y W	120
CGTAAAGGAA TGCTGGCACT R K G M L A L	AATAGATAGT CATG		ATGCTTAAAA C L K	180
AATAGGGAAT TACAATTAAG N R E L Q L S	CGCCTTTTTG TCCC		TTTATTTGAG L F E	240
ACATCAGAAC AAGCTTGGGC T S E Q A W A	ATCACTCATC TTGA S L I L S		CACAAAGACT T K T	300
TTTTTAAAAA AATGGAAGAC F L K K W K T	ATCAACTCAC TTTC S T H F Q		TATAGTGGAT I V D	360
GTTTATCGTA TTCGTGAACA V Y R I R E Q	AATGGGATTG GCTA M G L A K		TTATGGAAAA Y G K	420
ACTATAATAA AACAAGCGGA T I I K Q A E	AGGTATTCGC AAAG G I R K A	CAAGAG GCTTGATGGT R G L M V	TGATTTCGAA D F E	480
AAAATAGAAC AACTAGATAG K I E Q L D S	TGAGTTAGCA ATCC E L A I H		AGTTGTCAAT V V N	540
GGTGGCACCT TAATCAAGAA G G T L I K K	ATTAGGAATA AAAC L G I K P		AGATATTATC D I I	600
TCTCAAATTG AATTAGCCAT S Q I E L A I	TGTTTTAGGA CAAC V L G Q L	TGATTA ATGAAGAAGA I N E E E	GGCTATTTTA A I L	660
CATTTTGTTA AGCAGTACTT H F V K Q Y L	GATGGATTAG AGAG M D	GATTAT ATGAGCGATT	TTTTAGTAGA L V D	720
TGGATTGACT AAGTCGGTTG G L T K S V G		TTTAGT AATGTTTCAT F S N V S F	TTATCATCCA I I H	780
TAGTTTAGAC CGTATTGGGA S L D R I G I		GGAACT GGAAAGACAA G T G K T T	CACTATTAGA L L D	840
TGTTATTTCG GGTGAATTAG V I S G E L G		CGTTCC CCTTTTTCAT R S P F S S	CAGCTAATGA A N D	900
TTATAAGATT GCTTATTTAA Y K I A Y L K		TTTGAT GATTCTCAGA F D D S Q T	CAATTTTGGA I L D	960
CACCGTACTT TCTTCTGACT	TAAGAGAGAT GGCT R E M A		AATTATTGCT L L L	1020
TAATCACTAC GAAGAAAGTA N H Y E E S K	AGCAATCACG TCTA Q S R L		AAATGGATTC M D S	1080
TTTAGATGCT TGGTCTATTG L D A W S I E				1140
TGATTTGCAG TTGTCGGTTG D L Q L S V G	GTGAATTATC AGGA E L S G		TTCAATTAGC Q L A	1200

	TTAAATGATG L N D A	CAGATTTATT D L L	GCTCTTAGAC L L D	GAACCTACTA E P T N	ACCACTTAGA H L D	1260
	ATTGCATGGT I A W L	TAACGAATTT T N F	TTTGAAAAAT L K N	AGTAAAAAGA S K K T	CAGTGCTTTT V L F	1320
	GATCGTTATT O R Y F	TTCTAGACAA L D N	TGTTGCAACA V A T	CGTATTTTTG R I F E	AATTAGATAA L D K	1380
AQIT	T E Y Q	AAGGCAATTA G N Y	Q D Y	V R L R	A E Q	1440
DERD	O A A S	GTTTACATAA L H K	K K Q	L Y K Q	E L A	1500
TTGGATGCGT A W M R I	r Q P Q	ARA	T K Q	Q A R I	N R F	1560
TCAAAATCTA A Q N L K	KNDL	H Q T	S D T	S D L E	M T F	1620
E T S R	RIGK	AAAAGGTTAT K V I			TTTCTTACCC S Y P	1680
D K S I	I L K D	F N L	L I Q	AATAAAGACC N K D R	GTATTGGCAT I G I	1740
VGDN	1 G V G	GAAAGTCAAC K S T	L L N	TTAATTGTTC L I V Q	AAGATTTACA D L Q	1800
P D S G	S N V S	I G E	TIR	GTAGGTTACT V G Y F	TTTCACAACA S Q Q	1860
L H N M	1 D G S	K R V	I N Y	L Q E V	TTGCAGATGA A D E	1920
V K T S	S V G T	CAACAAGTGT T S V	T E L	TTGGAACAAT L E Q F	TTCTCTTTCC L F P	1980
	H G T Q	I A K	L S G	GGTGAGAAA G E K K	AAAGACTTTA R L Y	2040
r r k i	LIE	AAAAGCCTAA K P N	V L L	CTTGATGAGC L D E P	CGACAAATGA T N D	2100
CTTAGATATT G L D I A	A T L T	V L E	N F L	Q G F G	G P V	2160
	S H D R	Y F L	D K V	A N K I	I A F	2220
	DIRE	F F G	N Y T	D Y L D	E K A	2280
~	NNE	V I S	K K E	S T K T	S R E	2340
_	RKRM	S Y F	E K Q	E W A T	I E D	2400
CGATATTATG A	TALIGGAAA	ATACTATCAC	TCGTATAGAA	AATGATATGC	AAACATGTGG	2460

D	I	M	I	L	E	N	T	I	T	R	I	E		N D	M	Q I	T	С	G	
TAC	STG# D	ATTTT F	ACZ T		GTI L	TAT S	CTG		TACA Q	AAZ K			'A	GATG D A		_	ATG.		CACT L	2520
TCT L		AAAAG K	TA: Y	rga D	CCC R	TT Y	ATG/ E	AGTI Y	ACCT L	TAG	GTG/ E	AGTT. L	'A	GACA D T		GAT I	TAT	CCG' R	rccg P	2580
ATT I	rtan I	TAAAA K N			GAC D	CCA Q	AGCI A		rgca A		ATTA L		'C R	GACA Q	AAG S	TTT L	ACG R	CGC(CTAT Y	2640
GAT D	ltta L	AGATA D K			GAI D	TAC T	AGCI A	ATA: Y	rtca s	GA(CCC' P		T	TAGA D	TCA H	TTT L	GAC T	CTC S	ATAC Y	2700
TAC Y	CGAA E	K I			AAC K	STC S	AGGI G	ATT(F	CTTT F	GT(V	CAT'		G E	AGAG. R	AGA D	TGA E	GAT'	TAT'	rggc G	2760
TG1 C	rggc G	CGGCT G F			CCG P	CT L	GAAI K	AAA: N	ICTA L	AT:	rgcz A		A M	TGCĄ	GAA K	GGT V	GTA Y	CAT'	rgca A	2820
GA/ E	ACGI R	TTTCC F R			AAC K	G G	GCT:	rgc: A	TACT T	GA:	rtti L		A K	AAAT M	GAT I	TGA E	AGT. V	AGAZ E	AGCT A	2880
CGI R	AAA <i>I</i> K	ATTG I G			AG <i>I</i> R	ACA Q	ACT:	TTA: Y	L L	GA0 E	GAC T		A S	GTAC' T	TTT L	GAG S	TAG R	GGCI A	AACT T	2940
GC0 A	GTI V	TATA Y K			ATC M	G G	ATA'	rtg: C	IGCC A	TTA L	ATC S		C P	CAAT	AGC A	AAA N	TGA' D	TCAI Q	AGGT G	3000
CAT H	rac <i>i</i> T	AGCTA A M		GAT D	'AT'I	TTG W	GAT(GAT:	raaa K		rtt: L	ATAA	.G	TTGA	AAG	TGG	ATT	AGT(GAAC	3060
ATO	GGAI	TAAT	TA	ГТТ	'TG <i>I</i>	AGA	TAA	GAG	GAAA	GA	AAA	GGAG.	A	CATA	TAT M _	GGC A	ATA Y	TAT'	rtgg W	3120
TC: S	rati Y	TTGA L K				CCC P	CAA'	TTG(W	GTTA L	TG(W	GCT' L	TGAT D	T L	TACT.	AGG G	AGC A	TAT	GCT: L	rttt F	3180
GT(V	GACO T	GTTA V I			GGI G	TA <i>I</i> M	GCC(CACI T	AGCC A	TTI L	AGC(A		'A M	TGAT	TGA D	TAA N	TGG G	CGT: V	TACA T	3240
AA! K	AGG1 G	TGATC D R			'GG <i>I</i> G	AGT V	TTA;		GTGG W	ACC T	GTT(F		A M	TGTT F		ATT F	TGT V		ACTA L	3300
GG:	rati I	TATTG I G		CGT R	'ATT	TAC T	GAT(GGC'. A	TTAC Y	GCI A	ATC' S		C R	GCTT.	AAC T	GAC T	AAC. T	AAT(M	GATT I	3360
	AGA1 D	TATGC M R	GT2	AAT N		TAT M	GTA'				rca. Q		T Y	ACTC S		TCA H		ATA' .Y		3420
	GAT <i>I</i> I	AGGTG G V			TC# S		AGT V		ACGT R		GAC T		G D		TTT F	TGT V		GAT M	GCAA Q	3480
		rgaaa E M			TT# L		TTT:		CCTA L	GTZ V	AAC' T		'A M	TGGT. V	AAT M	GAT I	TTT	TAG S	CGTG V	3540
GT: V		SATAC I L				SAG S	TCC:		TTTG L	GC' A			G V	TAGC A	GGT V	TGC A		GCC' P		3600
		AGGAG G V							TATA					CTTT		TGA		ACA		3660

ACTATGCTTG ATAAAATCAA	TCAATATGTT CGTGAAAATT	TAACAGGGTT ACGCGTTGTT	3720
T M L D K I N	Q Y V R E N L	T G L R V V	
AGAGCCTTTG CAAGAGAGAA	TTTTCAATCA CAAAAATTTC	AAGTCGCTAA CCAACGTTAC	3780
R A F A R E N	F Q S Q K F Q	V A N Q R Y	
ACAGATACTT CAACTGGTCT	TTTTAAATTA ACAGGGCTAA	CAGAACCACT TTTCGTTCAA	3840
T D T S T G L	F K L T G L T	E P L F V Q	
ATTATTATTG CAATGATTGT I I I A M I V	GGCTATCGTT TGGTTTGCTT A I V W F A L	TGGATCCCTT ACAAAGAGGT D P L Q R G	3900
GCTATTAAAA TAGGGGATTT	AGTTGCTTTT ATCGAATATA	GCTTCCATGC TCTCTTTTCA	3960
A I K I G D L	V A F I E Y S	F H A L F S	
TTTTTGCTAT TTGCCAATCT	TTTTACTATG TATCCTCGTA	TGGTGGTATC AAGCCATCGT	4020
F L L F A N L	F T M Y P R M	V V S S H R	
ATTAGAGAGG TGATGGATAT	GCCAATCTCT ATCAATCCTA	ATGCCGAAGG TGTTACGGAT	4080
I R E V M D M	P I S I N P N	A E G V T D	
ACGAAACTTA AAGGGCATTT	AGAATTTGAT AATGTAACAT	TCGCTTATCC AGGAGAAACA	4140
T K L K G H L	E F D N V T F	A Y P G E T	
GAGAGTCCCG TTTTGCATGA	TATTTCTTTT AAAGCTAAGC	CTGGAGAAAC AATTGCTTTT	4200
E S P V L H D	I S F K A K P	G E T I A F	
ATTGGTTCAA CAGGTTCAGG I G S T G S G	AAAATCTTCT CTTGTTAATT K S S L V N L	TGATTCCACG TTTTTATGAT I P R F Y D	4260
GȚGACACTTG GAAAAATCTT	AGTAGATGGA GTTGATGTAA	GAGATTATAA CCTTAAATCA	4320
V T L G K I L	V D G V D V R	D Y N L K S	
CTTCGCCAAA AGATTGGATT L R Q K I G F	TATCCCCCAA AAAGCTCTTT I P Q K A L L		4380
GAGAATTTAA AATATGGAAA	AGCTGATGCT ACTATTGATG	ATCTTAGACA AGCGGTTGAT	4440
E N L K Y G K	A D A T I D D	L R Q A V D	
ATTTCTCAAG CTAAAGAGTT	TATTGAGAGT CACCAAGAAG	CCTTTGAAAC GCATTTAGCT	4500
I S Q A K E F	I E S H Q E A	F E T H L A	
GAAGGTGGGA GCAATCTTTC	TGGGGGTCAA AAACAACGGT	TATCTATTGC TAGGGCTGTT	4560
E G G S N L S	G G Q K Q R L	S I A R A V	
GTTAAAGATC CAGATTTATA V K D P D L Y	TATTTTTGAT GATTCATTTT I F D D S F S	CTGCTCTCGA TTATAAGACA A L D Y K T	4620
GACGCTACTT TAAGAGCGCG D A T L R A R	TCTAAAAGAA GTAACCGGTG L K E V T G D		4680
GCTCAAAGGG TGGGTACGAT	TATGGATGCT GATCAGATTA	TTGTCCTTGA TGAAGGCGAA	4740
A Q R V G T I	M D A D Q I I	V L D E G E	
ATTGTCGGTC GTGGTACCCA	CGCTCAATTA ATAGAAAATA	ATGCTATTTA TCGTGAAATC	4800
I V G R G T H	A Q L I E N N	A I Y R E I	
GCTGAGTCAC AACTGAAGAA A E S Q L K N	CCAAAACTTA TCAGAAGGAG Q N L S E G E	AGTGATTGTA TGAGAAAAA M R K K >	4860

ATCTGTTTTT TTGAGATTAT GGTCTTACCT AACTCGCTAC AAAG	
GATTTTTTT AAAGTTTTAT CTAGTTTTAT GAGTGTTCTG GAGCO	CTTTTA TTTTAGGGTT 4980 F I L G L
AGCGATAACA GAGTTGACTG CTAACCTTGT TGATATGGCT AAGGGA A I T E L T A N L V D M A K G	
ATTGAACGTT CCTTATATTG CTGGTATTTT GATTATTTAT TTTTT	
TGAATTAGGT TCTTATGGCT CAAATT (SEQ ID NO:7)	5126

FIG. 2a

NFDIETTTFE	AMKKHASLLE	KISVERSFIE	FDKLLLAPYW	RKGMLALIDS	50
HAFNYLPCLK	NRELQLSAFL	SQLDKDFLFE	TSEQAWASLI	LSMEVEHTKT	100
FLKKWKTSTH	FQKDVEHIVD	VYRIREQMGL	AKEHLYRYGK	TIIKQAEGIR	150
KARGLMVDFE	KIEQLDSELA	IHDRHEIVVN	GGTLIKKLGI	KPGPQMGDII	200
SQIELAIVLG	QLINEEEAIL	HFVKQYLMD	(SEQ ID NO:	8)	229

FIG. 2b

Mangrander	KSVGDKTVFS	NVSFIIHSLD	RIGIIGVNGT	GKTTLLDVIS	50
GELGFDGDRS	PFSSANDYKI	AYLKQEPDFD	DSQTILDTVL	SSDLREMALI	100
KEYELLLNHY	EESKQSRLEK	VMAEMDSLDA	WSIESEVKTV	LSKLGITDLQ	150
LSVGELSGGL	RRRVQLAQVL	LNDADLLLLD	EPTNHLDIDT	IAWLTNFLKN	200
SKKTVLFITH	DRYFLDNVAT	RIFELDKAQI	TEYQGNYQDY	VRLRAEQDER	250
DAASLHKKKQ	LYKQELAWMR	TQPQARATKQ	QARINRFQNL	KNDLHQTSDT	300
SDLEMTFETS	RIGKKVINFE	NVSFSYPDKS	ILKDFNLLIQ	NKDRIGIVGD	350
NGVGKSTLLN	LIVQDLQPDS	GNVSIGETIR	VGYFSQQLHN	MDGSKRVINY	400
LQEVADEVKT	SVGTTSVTEL	LEQFLFPRST	HGTQIAKLSG	GEKKRLYLLK	450
ILIEKPNVLL	LDEPTNDLDI	ATLTVLENFL	QGFGGPVITV	SHDRYFLDKV	500
ANKIIAFEDN	DIREFFGNYT	DYLDEKAFNE	QNNEVISKKE	STKTSREKQS	550
RKRMSYFEKQ	EWATIEDDIM	ILENTITRIE	NDMQTCGSDF	TRLSDLQKEL	600
DAKNEALLEK	YDRYEYLSEL	DT (SEQ II	NO:9)		622

FIG. 2c

MIIRPIIKND DQAVAQLIRQ SLR	AYDLDKP DTAYSDPHLD HLTSYYEKIE 5	50
KSGFFVIEER DEIIGCGGFG PLK	NLIAEMQ KVYIAERFRG KGLATDLVKM 10	0 (
IEVEARKIGY RQLYLETAST LSR	ATAVYKH MGYCALSQPI ANDQGHTAMD 15	50
IWMIKDL (SEQ ID NO:10)	15	57

FIG. 2d

MAIIWSILKR	IBMMTMTDFF	GAMLEVIVIL	GMPTALAGMI	DNGVTKGDRT	50
GVYLWTFIMF	IFVVLGIIGR	ITMAYASSRL	TTTMIRDMRN	DMYAKLQEYS	100
HHEYEQIGVS	SLVTRMTSDT	FVLMQFAEMS	LRLGLVTPMV	MIFSVVMILI	150
TSPSLAWLVA	VAMPLLVGVV	LYVAIKTKPL	SERQQTMLDK	INQYVRENLT	200
GLRVVRAFAR	ENFQSQKFQV	ANQRYTDTST	GLFKLTGLTE	PLFVQIIIAM	250
IVAIVWFALD	PLQRGAIKIG	DLVAFIEYSF	HALFSFLLFA	NLFTMYPRMV	300
VSSHRIREVM	DMPISINPNA	EGVTDTKLKG	HLEFDNVTFA	YPGETESPVL	350
HDISFKAKPG	ETIAFIGSTG	SGKSSLVNLI	PRFYDVTLGK	ILVDGVDVRD	400
YNLKSLRQKI	GFIPQKALLF	TGTIGENLKY	GKADATIDDL	RQAVDISQAK	450
EFIESHQEAF	ETHLAEGGSN	LSGGQKQRLS	IARAVVKDPD	LYIFDDSFSA	500
LDYKTDATLR	ARLKEVTGDS	TVLIVAQRVG	TIMDADQIIV	LDEGEIVGRG	550
THAQLIENNA	IYREIAESQL	KNQNLSEGE	(SEQ ID NO:	11)	579

FIG. 2e

MRKKSVFLRL	WSYLTRYKAT	LFLAIFLKVL	SSFMSVLEPF	ILGLAITELT	50
ANLVDMAKGV	SGAELNVPYI	AGILIIYFFR	GVFYELGSYG	SN	92
(SEQ ID NO:	:12)				

FIG. 2f

AATTTGGAAG TGCTCTATCA	ACAGTTGAAG	TAAAGGAGAT	TATTAGTGAA	GAAAACATAT	60
F G S A L S	T V E V	K E I	I S E	E N I W	
GGTTATATCG GCTCAGTTGC	TGCCATTTTA	CTAGCTACTC	ATATTGGAAG	TTACCAACTT	120
L Y R L S C	C H F T	S Y S	Y W K	L P T W	
GGTAAGCATC ATATGGGTCT M G L	AGCAACAAAG A T K	GACAATCAGA D N Q I	TTGCCTATAT A Y I	TGATGACAGC D D S	180
AAAGGTAAGG CAAAAGCCCC	TAAAACAAAC	AAAACGATGG	ATCAAATCAG	TGCTGAAGAA	240
K G K A K A P	K T N	K T M D	Q I S	A E E	
GGCATCTCTG CTGAACAGAT	CGTAGTCAAA	ATTACTGACC	AAGGCTATGT	GACCTCACAC	300
G I S A E Q I	V V K	I T D Q	G Y V	T S H	
GGTGACCATT ATCATTTTTA	CAATGGGAAA	GTTCCTTATG	ATGCGATTAT	TAGTGAAGAG	360
G D H Y H F Y	N G K	V P Y D	A I I	S E E	
TTGTTGATGA CGGATCCTAA	TTACCGTTTT	AAACAATCAG	ACGTTATCAA	TGAAATCTTA	420
L L M T D P N	Y R F	K Q S D	V I N	E I L	
_	CAATGGCAAC N G N	TATTATGTTT Y Y V Y		AGGTAGTAAG G S K	480
CGCAAAAACA TTCGAACCAA	ACAACAAATT	GCTGAGCAAG	TAGCCAAAGG	AACTAAAGAA	540
R K N I R T K	Q Q I	A E Q V	A K G	T K E	
GCTAAAGAAA AAGGTTTAGC	TCAAGTGGCC	CATCTCAGTA	AAGAAGAAGT	TGCGGCAGTC	600
A K E K G L A	Q V A	H L S K	E E V	A A V	
AATGAAGCAA AAAGACAAGG	ACGCTATACT	ACAGACGATG	GCTATATTTT	TAGTCCGACA	660
N E A K R Q G	R Y T	T D D G	Y I F	S P T	
GATATCATTG ATGATTTAGG	AGATGCTTAT	TTAGTACCTC	ATGGTAATCA	CTATCATTAT	720
D I I D D L G	D A Y	L V P H	G N H	Y H Y	
ATTCCTAAAA AGGATTTGTC	TCCAAGTGAG	CTAGCTGCTG	CACAAGCCTA	CTGGAGTCAA	780
I P K K D L S	P S E	L A A A	Q A Y	W S Q	
AAACAAGGTC GAGGTGCTAG	ACCGTCTGAT	TACCGCCCGA	CACCAGCCCC	AGGTCGTAGG	840
K Q G R G A R	P S D	Y R P T	P A P	G R R	
AAAGCCCCAA TTCCTGATGT	GACGCCTAAC	CCTGGACAAG	GTCATCAGCC	AGATAACGGT	900
K A P I P D V	T P N	P G Q G	H Q P	D N G	
GGCTATCATC CAGCGCCTCC	TAGGCCAAAT	GATGCGTCAC	AAAACAAACA	CCAAAGAGAT	960
G Y H P A P P	R P N	D A S Q	N K H	Q R D	
GAGTTTAAAG GAAAAACCTT	TAAGGAACTT	TTAGATCAAC	TACACCGTCT	TGATTTGAAA	1020
E F K G K T F	K E L	L D Q L	H R L	D L K	
TACCGTCATG TGGAAGAAGA	TGGGTTGATT	TTTGAACCGA	CTCAAGTGAT	CAAATCAAAC	1080
Y R H V E E D	G L I	F E P T	Q V I	K S N	
GCTTTTGGGT ATGTGGTGCC	TCATGGAGAT	CATTATCATA	TTATCCCAAG	AAGTCAGTTA	1140
A F G Y V V P	H G D	H Y H I	I P R	S Q L	
TCACCTCTTG AAATGGAATT	AGCAGATCGA	TACTTAGCTG	GCCAAACTGA	GGACAATGAC	1200
S P L E M E L	A D R	Y L A G	Q T E	D N D	
TCAGGTTCAG AGCACTCAAA	ACCATCAGAT	AAAGAAGTGA	CACATACCTT	TCTTGGTCAT	1260

S	G	S	E	Н	S	K	P	S	D	·K	Ė	V	Т	Н	·T	F	L	G	Н	
C(R	GCA1 I	rca <i>i</i> K	AAG A		ACGG G	SAAA K	AGG G	CTT L	'AGAT D	GG G	TAA K	ACC P	AT Y	ATGA D	TAC	CGAG S	TGA D	ATGC A	TTAT Y	1320
G' V	rtti F	TAC S	STA K	AAGA E	ATC S	CAT	TCA H	TTC	AGTG V	GA D	TAA K	ATC S	AG G	GAGT V	TAC T	CAGC A	TAP K	ACA H	CGGA G	1380
GZ D	ATC <i>E</i> H	ATTI F	CC H	ACTA Y	TAT I	'AGG G	ATT F	TGG G	AGAA E	CT L	TGA E	ACA Q	TA. Y	ATGA E	GTI L	GGA D	TGA E	AGGT V	CGCT A	1440
A. N	ACTO W	GGI V	GA K	AAGC A		AGG G	TCA Q	AGC A	TGAT D	GA E	GCT L	TGC A	TG A	CTGC A	TTI L	'GGA D	TCA Q	AGGA E	ACAA Q	1500
G(G	GCAA K	AGA E	AA K	AACC P	ACT L	CTT F	TGA D	CAC T	TAAA K	AA K		GAG S	TC R	GCAA K	AGT V	'AAC T	AAA K	AGA D	TGGT G	1560
A/ K	AAGI V	'GGG G	CT Y	ATAT M	'GAT M	GCC P	AAA K	AGA D	TGGT G	AA K	GGA D	CTA Y	TT F	TCTA'	TGC A	TCG R	TGA D	TCA Q	ACTT L	1620
G <i>I</i> D	TTT L	'GAC T	TC Q	AGAT I	TGC A	CTT F	TGC A	CGA E	ACAA Q	GA. E	ACT. L	AAT M	GC L	TTAA K	AGA D	TAA K	GAA K	GCA H	TTAC Y	1680
CO R	TTA Y	TGA D	CA I	TTGT V	TGA D	CAC T	AGG' G	TAT I	TGAG E		ACG. R	ACT L	TG A	CTGT: V	AGA D	TGT V	GTC S	AAG S	TCTG L	1740
CC P	GAT M	GCA H	TG A	CTGG G	TAA N	TGC A	TAC'	TTA Y	CGAT D	AC'	TGG G	AAG S	TT S	CGTT:	rgt V	TAT I	CCC	ACA H	TATT I	1800
G <i>P</i> D	ATCA H	TAT	CC H	ATGT V	CGT V	TCC P	GTA' Y	rtc: S	ATGG W	TTC L	GAC(T	GCG R	CG D	ATCA(GAT I	TGC A	AAC. T	AGT V	CAAG K	1860
TA Y	TGT V	GAT M	GC Q	AACA H	CCC P	CGA E	AGT'	rcg: R	rccg P	GA!	rgtz V	ATG W	GT S	CTAA(K	GCC. P	AGG G	GCA H	TGA E	AGAG E	1920
TC S	AGG G	TTC S	GG V	TCAT I	TCC. P	AAA N	TGT: V	raco T	GCCT P	CT!	rga: D	TAA K	AC R	GTGCT A	rgg G	TAT M	GCC.	AAA(N	CTGG W	1980
CA Q	I AA	TAT I	CC H	ATTC S	TGC' A	TGA E	AGA/ E	AGT: V	rcaa Q	AAA K	AGC(A	CCT.	AG A	CAGA <i>I</i> E	AGG' G	TCG R	TTT'	TGC A	AACA T	2040
CC P	AGA D	CGG G	CT Y	ATAT'	TTT(F	CGA D	TCC?	ACG <i>I</i> R	AGAT D		ĽŢŦ(L	GGC A	CA K	AAGAA E	AAC' T	TTT F	TGT: V	ATG(GAAA K	2100
GA D	TGG G	CTC S	CT F	TTAG S	CAT(CCC P	AAGA R	AGC! A	AGAT D	GG(G	CAGT S	rtc. S	AT L	TGAGA R	AAC T	CAT	TAA! N	TAA <i>I</i> K	ATCT S	2160
GA D	TCT: L	ATC S	CC Q	AAGC! A	TGA(E	gtg W	GCA/ Q	ACA <i>I</i> Q	AGCT A	CA <i>I</i> Q	AGA(E	GTTI L	AT L	TGGCA A		GAA K	AAA' N	TAC:	rggt G	2220
GA D	TGC' A	TAC'	TG D	ATAC:	GGA'	raa K	ACCO P	CAAA K	AGAA E	AAC K	GCAA Q	ACA(Q	GG A	CAGAT D		GAG S	CAA: N	rga <i>i</i> E	AAAC N	2280
CA Q	ACA(Q	GCC P	AA S	GTGAZ E	AGC(A	CAG S	TAAA K	AGAA E	AGAA E	AAA K	AGA <i>A</i> E	ATCA S	AG D	ATGAC D		TAT I	AGA(_	TTTA L	2340
CC P	AGA(CTA' Y	TG G	GTCTI L	AGA:	rag R	AGCA A	ACC T	CTA L				A7 I	TCAAT N	'CAI Q		AGC! A		AAAA K	2400
GC A	TAA! N	rat(CG D	ATCC:	raac K	GTA Y	TCTC L	ATT I	TTTC	CA.	ACC <i>P</i> P	AG A Z E	AG G	GTGTC V	CAI Q	ATT F	TTA:	raat N	TAAA K	2460

AATGGTGAAT N G E L	TGGTAACTTA V T Y	TGATATCAAG D I K	ACACTTCAAC T L Q Q	AAATAAACCC I N P	TTAACCAAAA	2520
GAAGATCTCA	TTGTTAAAGC	ACTGCTTTGT	CAAAGCAAGT	TACGGTGATT	TTGAAGTCAT	2580
TCTATGTAAC	GAGTAGTGAT	AAAAGTTGGA	TAATAGCGGT	TTTCTTTTGC	AAAGAAATGG	2640
TATCCATGTT	AGAATAGTAA	AAAAAGAGGA	GGATTCTTGG	ACTAATGTCA	AATAAGTAGA	2700
CAGAAAACTG	TGTTATTTTA .K	TTGCGTTAAA I A N F	ATAATTTTCT Y N E	TCTTTCTGAT E K Q	TAGGGGTTAG N P T L	2760
TCCTAGATTA	GCCGTATGTG	GGTTGTAATT	GTTATAAAAA	TTCTCAATGT	ATTCAAAGCA	2820
G L N	A T H	P N Y N	N Y F	N E I	Y E F C	
GTCTAATTGA	ACCTGTTTGA	TATTTTGATA	ATGTTTTCGG	TTGATTTGTC	TATGCTTTAA	2880
D L Q	V Q K	I N Q Y	H K R	N I Q	R H K L	
ATACTTGAAA	AATGCTTCAG	TTACGGCATT	ATCATAAGGA	TATCCAGGAT	TAGAAAAAGA	2940
Y K F	F A E	T V A N	D Y P	Y G P	N S F S	
ATGCATGATA H M <	TTGGCACTGC	ACCCTAATAG	TGAGACGCAA	GAAAAACACT	TTTAGGCAAT A I	3000
CAGTTTTCTG	TACTGTACAG	GCGACTGGTC	GTTTAATCTC	TGTTGAATTC	TAGTTTCATT	3060
L K R	Y Q V	P S Q D	N L R	Q Q I	R T E N	
ATAAAATGTA	ATGTAATTTT	TAACAATATT	TGTTATACTA	TCTTTGTTGT	ATTTTCTCCT	3120
Y F T	I Y N	K V I N	T I S	D K N	Y K R R	
ATTATGGAAA	TAAAAGGTTT	CAGTCTTTAG	GACGGTGTGA	AACCATTCAA	TACAGGCATT	3180
N H F	Y F T	E T K L	V T H	F W E	I C A N	
ATCTGCAGGT	GTTCCTTTTC	GAGACATTGA	GCGGATAATG	TCTTTTTCCG	TGCAAGCCTG	3240
D A P	T G K	R S M S	R I I	D K E	T C A Q	
GTAGTAAGCC Y Y A <	ATAGAAGTAT M	ACACTGAGCC	TTGGTCACTG	TGTAAGATTG	CTCCTTTATT	3300
TAGGCAATTT	TAACTGATTA	AGGGTGTCTA	GTACAAAATC	CGTGTCCTGA	CAATCTGAGA	3360
K P L K	L Q N	L T D	L V F D	T D Q	C D S	
TAGTGTAAGC	TATAATTTCT	CGGTTATAGA	GATTCATAAT	TGATGAGAGA	TACAATTTAC	3420
I T Y A	I I E	R N Y	L N M I	S S L	Y L K	
AGTTACCGAA	ATATAGGTAG	GTAATATCTG	TTACGAGCTT	TTCCTTAGGC	TTATCGGCAT	3480
C N G F	Y L Y	T I D	T V L K	E K P	K D A	
GGAAATCCCG H G D R	ACTCAATTTA S L K		AATAATAAGC L Y Y A		TTGGGAACTT N P V	3540
TCTTGGTACG	TGTCCGACAA	AGCCAGCCAT	TATTTTTCAT	GATACGATAG	ACTTTCTTTG	3600
K K T R	T R C	L W G	N N K M	I R Y	V K K	
TATTAACAGT	CAATCCGTGG	ATTTTTTTGA	GCAATCGTGT	AATGGTACGA	TAGCCATAAA	3660
T N V T	L G H	I K K	L L R T	I T R	Y G Y	
TAAAGTGATT I F H N	CTCCATACAG E M <	AGCTGTTCAA	TTAATTCAAT	AAGGTCATCT	TTTTTTGCGG	3720

CTTCTCATAC	TCCTTTTTCC	AACGGTAATA	GGTCGACCGC	TTGACCTTAA	AACAGTCTAG	3780
AATGAAAACT	ATCGGGTAGT	TGTTTTTATA	GTCTTCCACA	AGCTTGATAA		3840
ATCGATTTCC I S K	TTATCAAGCC R I L G		TTTAAGAGGT K L L	CAACCTGTAA D V Q L	-101111101	3900
TCCACTTCAG E V E	ACAGATGTTC S L H E		CCGTAGGTAT G Y T	ATTGCTTGCC Y Q K G	1-10110011011	3960
TGAAAACGAT H F R	AAAGCTCCTC Y L E E		CATTTCATCC W K M	AAGTATAGAT W T Y I	TTGACTATTA Q S N	4020
TTTTTGATGC N K I	CTAAAGTCTC G L T E		CTGTTAGACT R N S	TGCCTGCTTT K G A K	CTTCATATCG K M D	4080
ATGCAAGCCA I C A	GCTTAGTTTC L K T E		GCTTTTTTAA A K K	CCATAATAAA V M	ACATTCCTGT	4140
TTCTAGTTTA	CTAAATTTCA	ACAGGAGTGT	TTTTCTTTTG	TCTCATTTTA	GGGATTCAGT	4200
GCCTATTGTT	GTCATCAATT	ATTTTTCTAA	ATTCCCCGGA	CTTAAATTGT	GACCCTTGGT	4260
CGGAATGAAA	GAGAAGTGTT	CCTTCAATCT	TTCTTTTATT	AAGTGAAAAG	GCAACACTTT	4320
TCTGTACAAC	ATTTATAAAG	TGTTTTTCTA	GGCAATTAAT . A I L	CTTTTAGTCA R K T	TTGGTGTTTG M P T Q	4380
GTAGTTGAGA	CTACCATGAA	TGCGGTGGTA	ATTCCACCAA	TGAACATAGT	CTTTAGTCTT	4440
Y N L	S G H	I R H Y	N W W	H V Y	D K T K	
AAGAGCTAGT	TCTTCCAGCA	ATTGAAAGGT	TTCTTGATAA	ACAAATTCAA	TTTTGAAAGC	4500
L A L	E E L	L Q F T	E Q Y	V F E	I K F A	
ACGATACGTA	CTTTCAGCTA	CGGCATTGTC	ATAAGGATAA	CCAGCCTGAC	TAAGCGAACG	4560
R Y T	S E A	V A N D	Y P Y	G A Q	S L S R	
TGTGATTCCA	AAGGCTTCCA	ATATTTCATC	AATTAACTGA	TTATCAAACT	CTTTGCCACG	4620
T I G	F A E	L I E D	I L Q	N D F	E K G R	
ATCTGAATGG	AACATCTTGA	CTTTGGTCAG	GGCGTAAGGG	ATGCTTTGTA	TGGCTTGCTT	4680
D S H	F M K	V K T L	A Y P	I S Q	I A Q K	
AACGAGTTCA	GCGGTCTTGT	GCCAACCAAG	AGACAGGCCG	ATGATTTCAC	GGTTGTATAG	4740
V L E	A T K	H W G L	S L G	I I E	R N Y L	
GTCAATGATG	AGGCAAACAT	AAGCCCAACG	ATTGCCTACA	CGAACATAGG	TTAAGTCAGT	4800
D I I	L C V	Y A W R	N G V	R V Y	T L D T	
GACTAAGGCT	TGTAGTGGTC	TTTCTTGCTT	AAATTGCCTG	TCTAAGTGGT	TGGGAATAGG	4860
V L A	Q L P	R E Q K	F Q R	D L H	N P I P	
GGCTTCATTC	TTGCCTCTAG	AATGTGGTTT	GAAGGTGGCT	TTCTGATAAA	CAGAAACCAA	4920
A E N	K G R	S H P K	F T A	K Q Y	V S V L	
ATTGAGTCGC	TTCATAATGC	GTCGAATCCG	ACGACGTGAA	AGTGTGATAC	CTTCGTTATT	4980
N L R	K M I	R R I R	R R S	L T I	G E N N	
CAAGCATATT	TTGATTTTTC	TGGATCCGTA	TCTAGACTCG	CTATCGAGAA	AAATTCTTTT	5040
L C I	K I K	R S G Y	R S E	S D L	F I R K	

AATAGTTTCT TCAAACTCCG TTTCAGATAC TGACTCCACG GCTTGATAGT AATAACTTGA 5100

		E S V S I		AGT AATAACTTGA Y Y S S	5100
		ACATCTT TGAAAT C M K S 3			5160
GATTATTTCC CT I I E I (SEQ ID NO	R K T G	AATCACC GCTGCT Y D G S S FIG. 3	S A K P Y		5215
FGSALSTVEV (SEQ ID NO		LYRLSCCHFT FIG. 3			40
MGIÄTKDNOT	AVIDDSKCKA	WA DWWNIWMAN	OTCAUDCTCA		
		KAPKTNKTMD AIISEELLMT			50
				VINEILDGYV	100
	LKPGSKRKNI	22-00-2		GLAQVAHLSK	150
				GNHYHYIPKK	200
		GARPSDYRPT			250
HQPDNGGYHP	APPRPNDASQ	NKHQRDEFKG	KTFKELLDQL	HRLDLKYRHV	300
EEDGLIFEPT	QVIKSNAFGY	VVPHGDHYHI	IPRSQLSPLE	MELADRYLAG	350
QTEDNDSGSE	HSKPSDKEVT	HTFLGHRIKA	YGKGLDGKPY	DTSDAYVFSK	400
ESIHSVDKSG	VTAKHGDHFH	YIGFGELEQY	ELDEVANWVK	AKGQADELAA	450
ALDQEQGKEK	PLFDTKKVSR	KVTKDGKVGY	MMPKDGKDYF	YARDQLDLTQ	500
		VDTGIEPRLA			550
		QIATVKYVMQ			600
		SAEEVQKALA			650
		RTINKSDLSQ			700
		EASKEEKESD			750
		VQFYNKNGEL			
		· Xr THIMADTT	ATTUTUTHOO	TME	793

FIG. 3c

(SEQ ID NO:15)

MTDPNYRFKQ	SDVINEILDG	YVIKVNGNYY	VYLKPGSKRK	NIRTKQQIAE	5(
QVAKGTKEAK	EKGLAQVAHL	SKEEVAAVNE	AKRQGRYTTD	DGYIFSPTDI	100								
IDDLGDAYLV	PHGNHYHYIP	KKDLSPSELA	AAQAYWSQKQ	GRGARPSDYR	150								
PTPAPGRRKA	PIPDVTPNPG	QGHQPDNGGY	HPAPPRPNDA	SQNKHQRDEF	200								
KGKTFKELLD	QLHRLDLKYR	HVEEDGLIFE	PTQVIKSNAF	GYVVPHGDHY	250								
HIIPRSQLSP	LEMELADRYL	AGQTEDNDSG	SEHSKPSDKE	VTHTFLGHRI	300								
KAYGKGLDGK	PYDTSDAYVF	SKESIHSVDK	SGVTAKHGDH	FHYIGFGELE	350								
QYELDEVANW	VKAKGQADEL	AAALDQEQGK	EKPLFDTKKV	SRKVTKDGKV	400								
GYMMPKDGKD	YFYARDQLDL	TQIAFAEQEL	MLKDKKHYRY	DIVDTGIEPR	450								
LAVDVSSLPM	HAGNATYDTG	SSFVIPHIDH	IHVVPYSWLT	RDQIATVKYV	500								
MQHPEVRPDV	WSKPGHEESG	SVIPNVTPLD	KRAGMPNWQI	IHSAEEVQKA	5 5 0								
LAEGRFATPD	GYIFDPRDVL	AKETFVWKDG	SFSIPRADGS	SLRTINKSDL	600								
SQAEWQQAQE	LLAKKNTGDA	TDTDKPKEKQ	QADKSNENQQ	PSEASKEEKE	650								
SDDFIDSLPD	YGLDRATLED	HINQLAQKAN	IDPKYLIFQP	EGVQFYNKNG	700								
ELVTYDIKTL	QQINP (SEC	ID NO:16)			715								
FIG. 3d													
MHSFSNPGYP	YDNAVTEAFF	KYLKHRQINR	KHYQNIKQVQ	LDCFEYIENF	50								
YNNYNPHTAN	LGLTPNQKEE	NYFNAIK (S	SEQ ID NO:17	')	77								
		FIG. 3	е										
MAYYQACTEK	DIIRSMSRKG	TPADNACIEW	FHTVLKTETF	YFHNRRKYNK	50								
				Q ID NO:18)	86								
		FIG. 3	İ										
MENHFIYGYR	TITRLLKKIH	GLTVNTKKVY	RIMKNNGWLC	RTRTKKVPNL	50								
				SSTMNT VNDE									

FIG. 3g

126

IIAYTISDCQ DTDFVLDTLN QLKLPK (SEQ ID NO:19)

MVKKAYSWET	KLACIDMKKA	GKSNRVIMET	LGIKNNSQIY	TWMKWYENEE	50
LYRFHQGVGK	QYTYGKGLEH	LSEVEQLQLQ	VDLLKKYRGL	IRKSIK	96
(SEQ ID NO:	20)				

FIG. 3h

IRYPKASSGD	YGTKREIITA	NKDKYSISKM	CRWLNMPHSS	YYYQAVESVS	50
ETEFEETIKR	IFLDSESRYG	SRKIKICLNN	EGITLSRRRI	RRIMKRLNLV	100
SVYQKATFKP	HSRGKNEAPI	PNHLDRQFKQ	ERPLQALVTD	LTYVRVGNRW	150
AYVCLIIDLY	NREIIGLSLG	WHKTAELVKQ	AIQSIPYALT	KVKMFHSDRG	200
KEFDNQLIDE	ILEAFGITRS	LSQAGYPYDN	AVAESTYRAF	KIEFVYQETF	250
QLLEELALKT	KDYVHWWNYH	RIHGSLNYQT	PMTKRLIA (S	SEO ID NO:21	288

FIG. 3i

N	TTT(L >	GAA K	AG A	CAGA E	ATT: L	ATC S	TGT: V	AGAZ E	AGAT D		GCA Q		TA T	CAGC:	AAC. T	AGT V	TTA: Y		raaa K	60
TC' S	IGC' A	TCA'	rg G	GTTC:	AACI T	ACC P	ACA: Q	AGAZ E			raa: N			CGAC'		TTT L	AGC:		TAT Y	120
CT L	AAG' S	TCAZ Q	AT F	TTGA' D	TTT'	rga E	AGG'	rcc: P	IGCT A		TGC' A			TAGA' D	TGT' V	TAC T	AGC(CATT	180
AT'	rca H	CGAZ E	AG D	ACTT(CTC S	AGG G	TGAZ E	AAA <i>I</i> K	ACTT L		AGT <i>I</i> V			ATGA:	AGA' D	IGA D	CTG1 C	CATO M	GGA G	240
CCI P	ATT(L	GAG(S	CA M	TGAA' N	rgc <i>i</i> A	AGG G	TGT	CTT(F	CCAG Q	TT:	rga: D		AA T	CTAA'	rga: D	rga D	TAAT N		TATC I	300
GC'. A	rct: L	raat N	rT F	TCCG'	Y Y	CCC P	ACAI Q	AGG(G	GACA T		rgc: A			CTATO	CCAI Q	AAC	TAAC		rgag E	360
AAI K	ACT:	raac N	CG G	GAGT: V	rga <i>i</i> E	AAA K	AGT(GACT T	CTT L	TC: S		CCA!	rg E	AACA(CAC T	ACC P	ACAC H	TAT Y	rgta V	420
CC: P	TAT(M	GGA(D	D D	ATGAI E	ATT <i>I</i> L	AGT V	ATCA S	AAC(T	CTTA L		AGC: A			ATGA! E	AAA(K			GGI G	CTT L	480
AA/ K	AGG <i>I</i> G	ACAT H	rg E	AACA(GGTT V	TAT I	TGG:	rgg1 G	r G GG G		ATT:		rc R	GCTT!		rga E		GG1 G		540
GC <i>I</i> A	ATA(Y	CGG1 G	PT A	CCAT(GTT(F	CCC P	AGG! G	AGAT D	rgaa E	AA(N	CACT T	TAT(M	GC H	ATCA/ Q	AGC: A			STAC Y		600
CCI	CTTA	AGA	A.A	TATA	TTT	CCG	TTC	GC1	GCT	ATO	CTAC	CGC	AG	AAGC	rat(CTA	TGAA	TTF	ATC	660

E	PI	E	N	I	F	R	S	A	A	I	Y	A	E	A	I	Y	E	L	I	
F	AAAT	'AAA	ATA	ATC	CTT	AAAC	TAA	AT <i>F</i>	ATGTG	ATO	CAA	TGF	ATA	AAGG	GTG	GTG	AAG	ACA	TGAA	720
F	AGTG	TCT	TTG	CCI	CTT	TTCA	TAA	AGGI	TAGA	TTI	rgg.	AGA	CT	TTAT M !_	GAC T	CTGA D	_	GGA E	AAAA K	780
Į	ATTA I	TTA K	AAG A	CAA	TAA K	AAAG S	TGA D	TTC S	CACAG Q	AAT N	CA Q	AAA N	TT. Y	ATAC T	AGA E	AAA N	TGG G	TAT I	TGAT D	840
E	CTT	TGT F	TTG A	CTG A	CTC P	CTAA K	AAC T	AGC A	TAGG R	ATC I				TTGG G	CCA Q	AGC A	ACC P	TGG G	TTTA L	900
K	AAA T	CTC Q	AAG E		CAA R	GACT L	CTA Y	TTG W	GAAA K		'AA K			GAGA D	TCG R		ACG R	CCA Q	GTGG W	960
C	TTG G	GAG V	TTG D	ATG E	AAG E	AGAC T	ATT F	TTA Y	CCAT H	TCT S				TTGC A		'TTT L	ACC'	_	AGAT D	1020
Ŀ	Y	Y	P	G	K	G	K	S	G	D	L	P	P	CTAG R	K	G	F	A	E	1080
A	TAA. W	GGC. H	ACC P	CTC L	TTA' I	TTTT L	AAA K	AGA E	AATG M	CCT P	'AA' N	rgt V	TC Q	AATT L		CTT L	GCT/ L		TGGT G	1140
Q	AGT. Y	ATG A	CTC Q	AGA K	AAT. Y	ATTA Y	TCT L	TGG G	AAGC S	TCC				AAAA N	TCT L	AAC T	AGAZ E	AAC T	AGTT V	1200
A	AAG A	CTT. Y	ACA K	AAG D	ACT: Y	ATCT L	ACC P	CGA D		TTA L		CCT L	GG V	TTCA	CCC P	ATC S	ACC	GCG2 R	AAAT N	1260
Q	AAA I	TTT W	GGC L	TAA K	AGA K	AGAA N	TCC.	ATG W	GTTT F	GAA E	AA. K	AGA D	TC L	TAAT		TGA D	TTTZ L	ACAZ Q	AAAG K	1320
A	TAG' V	TAG A	CAG D	ATA I	TTT' L	TAAA K	AGA D		AGGA	TAG	GAC	STT	GG	TATG	AGA R				CTAC L H	1380
A	CAC	GTA' Y	PTT F	TTC S	CTA' Y	TGAT D	TGT	CAA Q	ACGG T A	CAT		GAG E		CTAT			GGT:		ACAG I G	1440
G	ŤGAZ E	ATT' F	rat I	CAC	GAC T	AGAA E	CAT H		GATT D L		CAA N			TTAC			CAA(GATG V	1500
T	TCC' P	rga: D	TTA Y	TAG' S	TGC: A	TAT Y	TGT	CAA Q	AAAA K I	TAG D		CAT		TAAT(AAA K	TATO		AATC N R	1560
G.	ATT!	raaz K	AAA K	AGG:	AAT! I	rgaa E	ATC	GGT G	TATT Y F	TTA K	AA (SAT.	AG R	GGAA'			ATTT I I		GATT O Y	1620
A	TTTI L	AAAI K	AAA N	TAA	AGA! E	ATTT F	GAT'	TTA L	AAAC K L	TAT L				CCAT(AAT N			TATG Y D	1680
A	TTA: Y	ICT(GCA Q	AGA E	AGA! E	AGCT A	CTG.	AAA K	GTAC V P		CAF	***	GG G	AGCT:		AGC S	AGAT R I			1740
A	ATC	GTA:	rgg	AAT'	TTG	CCAT	AGG	CCG	TGTG	GAA	.GCG	SCA	CG	TTTT	AGC	TCA	CTTI	'GA	TAT	1800
G	GTT	rtc	GTA	AGT'	TAAI	ACTT	AGA'	TGT.	AGAA	GAT	TTA	AA	AC	CGTT	rga.	AAC	GCA	TTC	SAAG	1860
C	GCA:	rtt:	rca	TAA	AGA:	rgtt	ATC'	TAA	GGGG	TTA	GCI	TT	TG	AACT	AAA	TAC	CAAA	\TCC	بالبلات	1920

TATCTATATG	GGAATGAAAA	ACTTTATCGC	TATGCTTTAG	AGATACTCAA	ACAGCTTGGT	1980
TGTAAACAAT	ACTCTATAGG	CTCTGACGGT	CATATTCCTG	AACATTTTTG	TTATGAATTT	2040
GATAGACTTC	AAGGTCTGCT	AAAGGACTAT	CAAATTGATG	AAAATCATTT	GATATGAGGA	2100
AATTTTTGAT	AAAAAAGCTA	GGCAATATTG	CTTAGCTTTT	TTGTAATGCT	ATTGATAGTT	2160
TTAGTGAAAA	TTTCAAAAAA	ATAAAGAAAT	CATTTACTTG	TTGCAAGCGC	TTGCGTAAAT	2220
TGTTATGATT	TTATTGGTAA	CAATTCATTA	AAAAAGGAGA		AAGAAAAGAC R K D	2280
TTATTTGGTG L F G D	ATAAACAAAC K Q T	TCAATACACG Q Y T	ATTAGAAAGT I R K L		AGTAGCTTCA V A S	2340
GTTACAACAG V T T G	GGGTATGTAT V C I	TTTTCTTCAT F L H	AGTCCACAGG S P Q V	TATTTGCTGA F A E	AGAAGTAAGT E V S	2400
GTTTCTCCTG V S P A	CAACTACAGC T T A	GATTGCAGAG I A E	TCGAATATTA S N I N	ATCAGGTTGA Q V D	CAACCAACAA N Q Q	2460
TCTACTAATT S T N L	TAAAAGATGA K D D	CATAAACTCA I N S	AACTCTGAGA N S E T	CGGTTGTGAC V V T	ACCCTCAGAT P S D	2520
ATGCCGGATA M P D T	CCAAGCAATT K Q L	AGTATCAGAT V S D	GAAACTGACA E T D T	CTCAAAAGGG Q K G	AGTGACAGAG V T E	2580
CCGGATAAGG P D K A	CGACAAGCCT T S L	GCTTGAAGAA L E E	AATAAAGGTC N K G P		TAAAAATACC K N T	2640
TTAGATTTAA L D L K	AAGTAGCACC V A P	ATCTACATTG S T L	CAAAATACTC Q N T P		TTCTCAAGCT S Q A	2700
ATAGGTGCTC I G A P	CAAGCCCTAC S P T	CTTGAAAGTA L K V	GCTAATCAAG A N Q A	CTCCACGGAT P R I	TGAAAATGGT E N G	2760
TACTTTAGGC Y F R L	TACATCTTAA H L K	AGAATTGCCT E L P	CAAGGTCATC Q G H P	CTGTAGAAAG V E S	CACTGGACTT T G L	2820
TGGATATGGG W I W G	GAGATGTTGA D V D	TCAACCGTCT Q P S	AGTAATTGGC S N W P	CAAATGGTGC N G A	TATCCCTATG I P M	2880
ACTGATGCTA . T D A K	AGAAAGATGA K D D	TTACGGTTAT Y G Y	TATGTTGATT Y V D F	TTAAATTATC K L S	TGAAAAACAA E K Q	2940
CGAAAACAAA R K Q I	TATCTTTTTT S F L	AATTAATAAC I N N	AAAGCAGGGA K A G T	CAAATTTAAG N L S	CGGCGATCAT G D H	3000
CATATTCCAT '	TATTACGACC	TGAGATGAAC	CAACTTTCCA	ТТСТПСТТТ		3060
	AACCCCTCAA.	AGAAGGGTAT	GTCCGTATTA	ACTATTTGAG '	TTCCTCTAGT S S S	3120
AACTATGACC I N Y D H	ACTTATCAGC A	ATGGCTCTTT W L F	AAAGATGTTG (K D V A	CAACCCCYTC 1	AACAACTTGG T T W	3180
CCAGATGGTA (P D G S	GTAATTTTGT (N F V	GAATCAAGGA N Q G	CTATATGGAA (L Y G R	GGTATATTGA :	IGTATCACTA V S L	3240

K	T	N N	A.	. CCAA	E E	I I		F	TCTA L	I	CTT L	'AGA D	TG E		TAA K	GAC T	AGG G	AGA D	ATGCA A	3300
G1 V	GAA K	AGT V	TC	AACC P	CAA N	CGA D	CTA Y	TGT V	TTTT F			TTT L		CTAA N	CCA H	TAA N	CCA Q	AAT I	TTTT F	3360
GI V	'AAA K	AGA D	TA K	AGGA D	TCC P	AAA K	GGT V	TTA Y	TAAT N			TTA Y		ACAT I		TCA Q	AGT V		GCTA L	3420
AA K	AGGA D	ATGC A	CC Q	AACA Q	AAT I	TGA D	TTT L	AAC T	AAGT S			AGC A		GTTT F		AAC T	TCT L	_	TGGG G	3480
GT V	'AGA D	TAA K	AA T	CTGA E	AAT I	TTT L	AAA K	AGA E	ATTG L			GAC T		ATAA K		TCA Q	AAA N	TGC A		3540
CA Q	AAT I	TTC S	TG D	ATAT	CAC T	TCT L	CGA D		TAGT S			TCT L		TAAT		CAA K	AGG G		CTTT F	3600
AA N	TCC P	TAA K	AC Q	AAGG G	TCA H	TTT F	CAA N	CAT. I	ATCT S	TA: Y	ΓΑΑ' Ν	TGG' G	TA N	ACAA: N	rgt V	CAT M	GAC.	AAG R	GCAA Q	3660
TC S	TTG W	GGA. E	AT F	TTAA K	AGA D	CCA Q	ACT'	TTA Y	TGCT A	TA: Y	rag' S	rgg/ G	AA N	ATTTA L	AGG" G	IGC A	AGT V	_	CAAT N	3720
CA Q	AGA D	TGG' G	TT S	CAAA K	AGT' V	TGA E	AGC(CAG S	CCTC L	TG(W	STC2	ACC(GA S	GTGCT A	rga: D	rag s	TGT V	CAC' T	TATG M	3780
AT I	TAT I	TTA' Y	rg D	ACAA K	AGA' D	TAA N	CCA Q	AAA N	CAGG R	GTT V	rgt <i>i</i> V	AGC(A	GA T	CTACO	CCC P	CCT L	TGT	GAAZ K	AAAT N	3840
AA N	TAA K	AGG: G	rg V	TTTG(W	GCA(Q	GAC T	GATI I	ACT' L	TGAT D	ACT T		ATT <i>I</i> L	AG G	GTATT I	TAAZ K	AAA N	CTA:	TAC'	rggt G	3900
TA Y	CTA' Y	TTA: Y	rc L	TTTA(Y	CGAZ E	AAT I	AAA! K		AGGT G	AAC K	GAT D	raac K	G V	TTAAG K	ATT I	rtt L	AGA:	rcc: P	TAT Y	3960
GC. A	AAA(K	GTC <i>I</i> S	T. L	TAGCA A	AGA(E	gtg W	GGA:	rag: s	TAAT N	ACI T	GTI V	raat N	D D	ATGAT D	TATI	TAA K	AAC(raaa K	4020
GCI A	AGC: A	TTTT F	V V	TAAAT	rcc <i>i</i> P	AAG S	TCAA Q		rgga [.] G		CA; Q		TT L	TAAGI S	TTI F	GC A	TAA <i>I</i> K	AAT1 I	GCT A	4080
AA' N	rtt: F	raa <i>r</i> K	AG G	GAAG <i>I</i> R	ACA <i>I</i> Q	AGA D	TGCT A	rgt: V	I I	TAC Y	GA <i>F</i> E		AC H	ATGTA V	AGA R	AGA D	CTT(F	CACI T	TTCT S	4140
GA: D		ATCI S	L	TGGAT D	rgg <i>r</i> G	AAA K	ATTA L	AA. K	AAAT N	CAA Q	TTI F	G G	A. T	CCTTT F	'GCA A	AGC A	CTT1 F	TCA S	AGAG E	4200
AAI K	ACT <i>I</i> L	AGAI D	Y	ATTTA L	ACA(Q	GAA K	ATTA L	AGG <i>I</i> G	AGTT V	ACA T	CAC H	ATI I	C Q	AGCTT L	TTA L	CC P	GGT <i>I</i> V	ATTO L	SAGT S	4260
TA: Y	rtti F	rati Y	'G V	TTAAT N	GA <i>A</i> E	TA/ M	GGA1 D	'AAC K	STCA S	CGC R	TCA S	ACA T	AG A	CTTAC Y	ACT T	TC S	CTCF S	AGAC D	CAAT N	4320
AA' N	Y Y	CAAT N	T W	GGGGC G	TAT Y	GA D	CCCA	Q Q	SAGC S	TAT Y	TTI F	'GC'I A	C L	TTTCT S	GGG G	AT M	GTAI Y			4380
AA! K	ACC <i>P</i> P	AAAA K	G D	ATCCA P	ATCA S	AGC A	ACGI R	'ATC	GCC A	GAA E	TTA L	AAA K	C .	AATTA L	ATA I	CA H	TGAI	ATT T	CAT	4440

AAACGTGGCA K R G M		ACTTGATGTC L D V	GTCTATAATC V Y N H	ACACTGCAAA T A K	AACTTATCTC T Y L	4500
TTTGAGGATA F E D I	TAGAACCTAA E P N	TTATTATCAC Y Y H	TTTATGAATG F M N E	AAGATGGTTC D G S	ACCAAGAGAA P R E	4560
AGTTTTGGAG S F G G		AGGAACCACT G T T	CATGCAATGA H A M S	GTCGTCGTGT R R V	TTTGGTTGAT L V D	4620
TCCATTAAAT S I K Y	ATCTTACAAG L T S	TGAATTTAAA E F K	GTTGATGGTT V D G F	TCCGTTTTGA R F D	TATGATGGGA M M G	4680
GATCATGATG D H D A	CGGCTGCGAT A A I	TGAATTAGCT C	TATAAAGAAG Y K E A	CTAAAGCTAT K A I	TAATCCTAAT N P N	4740
ATGATTATGA M I M I	TTGGTGAGGG G E G	CTGGAGAACA '	TTCCAAGGCG F Q G D	ATCAAGGTCA Q G Q	GCCGGTTAAA P V K	4800
CCAGCTGACC P A D Q	AAGATTGGAT D W M	GAAGTCAACC (GATACAGTTG D T V G	GCGTCTTTTC V F S	AGATGATATT D D I	4860
CGTAATAGCT R N S L	TGAAATCTGG K S G	TTTTCCAAAT (GAAGGTACTC E G T P	CAGCTTTCAT A F I	CACAGGTGGC T G G	4920
CCACAATCTT P Q S L	TACAAGGTAT Q G I	TTTTAAAAAT A	ATCAAAGCAC I K A Q	AACCTGGGAA P G N	TTTTGAAGCA F E A	4980
GATTCGCCAG D S P G	GAGATGTGGT D V V	GCAGTATATT (ATAACCTTAC N L T		5040
GTGATTGCAA V I A K		(SEQ ID NO:	:22)			5058
	·	F	IG. 4a			

NLKAELSVED	EQYTATVYGK	SAHGSTPQEG	VNGATYLALY	LSQFDFEGPA	50
RAFLDVTANI	IHEDFSGEKL	GVAYEDDCMG	PLSMNAGVFQ	FDETNDDNTI	100
ALNFRYPQGT	DAKTIQTKLE	KLNGVEKVTL	SDHEHTPHYV	PMDDELVSTL	150
LAVYEKQTGL	KGHEQVIGGG	TFGRLLERGV	AYGAMFPGDE	NTMHQANEYM	200
PLENIFRSAA	IYAEAIYELI	K (SEQ ID	NO:23)		221

FIG. 4b

MTDLEKIIKA	IKSDSQNQNY	TENGIDPLFA	APKTARINIV	GQAPGLKTQE	50			
ARLYWKDKSG	DRLRQWLGVD	EETFYHSGKF	AVLPLDFYYP	GKGKSGDLPP	100			
RKGFAEKWHP	LILKEMPNVQ	LTLLVGQYAQ	KYYLGSSAHK	NLTETVKAYK	150			
DYLPDYLPLV	HPSPRNQIWL	KKNPWFEKDL	IVDLQKIVAD	ILKD	194			
(SEQ ID NO:24)								

FIG. 4c

MRDNHLHTYF SYDCQ	TAFED YINGFT	SEFI TTEHFDLSNI	YTGQDDVPDY	50
SAYCQKIDYL NQKYG	NRFKK GIEIGY	KDR ESDILDYLKN	KEFDLKLLSI	100
HHNGRYDYLQ EEALK	VPTKG AFSRLL	(SEQ ID NO:25	5)	126

FIG. 4d

MKRKDLFGDK	QTQYTIRKLS	VGVASVTTGV	CIFLHSPQVF	AEEVSVSPAT	50
TAIAESNINQ	VDNQQSTNLK	DDINSNSETV	VTPSDMPDTK	QLVSDETDTQ	100
KGVTEPDKAT	SLLEENKGPV	SDKNTLDLKV	APSTLQNTPD	KTSQAIGAPS	150
PTLKVANQAP	RIENGYFRLH	LKELPQGHPV	ESTGLWIWGD	VDQPSSNWPN	200
GAIPMTDAKK	DDYGYYVDFK	LSEKQRKQIS	FLINNKAGTN	LSGDHHIPLL	250
RPEMNQVWID	EKYGIHTYQP.	LKEGYVRINY	LSSSSNYDHL	SAWLFKDVAT	300
PSTTWPDGSN	FVNQGLYGRY	IDVSLKTNAK	EIGFLILDES	KTGDAVKVQP	350
NDYVFRDLAN	HNQIFVKDKD	PKVYNNPYYI	DQVQLKDAQQ	IDLTSIQASF	400
TTLDGVDKTE	ILKELKVTDK	NQNAIQISDI	TLDTSKSLLI	IKGDFNPKQG	450
HFNISYNGNN	VMTRQSWEFK	DQLYAYSGNL	GAVLNQDGSK	VEASLWSPSA	500
DSVTMIIYDK	DNQNRVVATT	PLVKNNKGVW	QTILDTKLGI	KNYTGYYYLY	550
EIKRGKDKVK	ILDPYAKSLA	EWDSNTVNDD	IKTAKAAFVN	PSQLGPQNLS	600
FAKIANFKGR	QDAVIYEAHV	RDFTSDRSLD	GKLKNQFGTF	AAFSEKLDYL	650
QKLGVTHIQL	LPVLSYFYVN	EMDKSRSTAY	TSSDNNYNWG	YDPQSYFALS	700
GMYSEKPKDP	SARIAELKQL	IHDIHKRGMG	VILDVVYNHT	AKTYLFEDIE	750
			RVLVDSIKYL		800
			EGWRTFQGDQ		850
			FITGGPQSLQ		900
GNFEADSPGD	VVQYIAAHDN	LTLHDVIAKS	I (SEQ ID	NO:26)	931

FIG. 4e

1 Q S	TTGACAGAA L T E	G GTCAACTTCO G Q L R	G TTCTGATATO S D I	CCTGAGTTCO P E F E	C GTGCTGGTGA R A G D	60
TACTGTACG	F GTTCACGCT	A AAGTTGTTGA K V V E	A AGGTACTCGC G T R		C AGATCTTTGA	120
AGGTGTTGT:	I ATCTCACGT	A AAGGTCAAGG K G Q G	AATCTCAGAA I S E	ATGTACACAC M Y T V	TACGTAAAAT	180
TTCTGGTGGT	T ATCGGTGTA	G AGCGTACATT E R T F	CCCAATTCAC	C ACTCCTCGTG	TTGATAAAAT D K I	240
CGAAGTTGTT E V V	CGTTATGGT	A AAGTACGTCG K V R R		TACTACTTAC	GCGCATTGCA A L O	300
AGGTAAAGCT	GCACGTATT	A AAGAAATCCG	TCGTTAATTT	TGATGATCAG	ATTTTAAAAA	360
TGCTTGGTTG	TTTGAGGAT	A GTAACTATGT	TTTAAAACTG	GACAACCAAG	ACGTAAAAA	420
TCTGCCTGTG	GGCAGTTTT:	T TTACTAGGTC	CCCTTAGTTC	AATGGATATA . H I Y		480
CCTAAGGAGT G L S	AATTGCTGGT Y N S T	T TCGATTCCGG	CAGGGGACAT C P V	ATTCATTGCA Y E N C		540
GGTTTAGAGO P K S	TATTTTGCCC	CAAATTTCTC L N R	TGATTAAGTT Q N L	TATCGTTCCT K D N R		600
TCTTGTAATT E Q L	GATGTGCGTA Q H A Y	A AACTTCTAAA ' V E L	GTGATATTTA T I N	AATTCTCGTG L N E H	ATCTAAAACT D L V	660
TGAGAGATGG Q S I	AAATTAGATA S I L Y	GCTTGCAAAT S A F	GTATGCCTGA T H R	GAGAGTGCAC L S H V	TCGTACCTCG R V E	720
CGACCAGTTA R G T	TTTTTCGGAT	AGTTTTATTG T K N	ACTGCATTAT V A N	TTGAAAGTTT N S L K	GTCGAATAAT D F L	780
CTGTCGTTTT R D N	TATTTTTTGT K N K T	AAATTCATGC F E H	AAAAAAAATA L F F	ATGTATCATT L T D N	GTCAATTGGT D I P	840
ATATTTCTGA I N R	TACTACTTTT I S S K	GTTTTTTGTT N K T	GGCAGGTATC P L Y	TTTGGTTGAA R Q N F	ATGATAATCC H Y D	900
CAAGTTTTAT W T K	TAATTGATAA N I S L	ATATTTGTTA Y K N	GTGTAATCAA T Y D	TATCATTAAC I D N V	TGTTAAACCT T L G	960
AAACATTCAG L C E	CGAAGCGCAT A F R M	GCCAGTTTTA	GCGATGAGGT	ATAACGCTGC	ATACGATTGA	1020
TGTTGTGATT	,	AATTTTTATC	AAGCGTAAGT	ATTCATTGGT	TTCAAGAAAT	1080
TTTATCTCTA	TTTACGCCCC	TTATTTTTTG	CTTTAACCTT	AGTGAATAAA	CAAAAATTTT	1140
TTTCTATATA	TCCCTCGTGA	ACAGCCATGG	ATACGCAGGC	TTTTACATGT	ATGTTAAAAC	1200
GCTTTACTGT	ATCTTGCACA	TGCGTTTGAC	TATAATGATT	TATGACTTGT	TGATATTTAG	1260

CCCACCCGTT GTCGCGTTTA CGGAAATACG CCATTGATAT ACTCCACATT AGCTAAAGAA 138 CAGGGTGTTC AAGGCTACCT TGATGGAAAA GGCTCTCTTA GAGATATTTG TAAATGGTAT 144 GATATCTCAA GTCGCTCTGT TCTCCAAAAG TGGATAAAAC GGTATACTAG TGGTGAAGAC 150 TTGAAAGCCA CTAGTAGAGG ATATAGCCGT ATGAAACAAG GAAGGCAAGC CACATTTGAA 156 GAACGTGTAG AGATTGTTAA CTACACCATT GCCCATGGGA AAGACTATCA AGCAGCTATT 162 GAGAAGTTTG GTGTTCCTA CCAACAAATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAT 168 GGCTCACAAG GTTTGGTTGA TAGACCATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAT 168 GGCTCACAAG GTTTGGTTGA TAGACCATG AAAGGGTTGG AAGGTAAGCC TGATTTAACC 174 GAGATTGAGC AACTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 180 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 192 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 198 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAAATCAAGG 204 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 206 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTCG TATGACAACA TTTATTAATC 210 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTCG TATGACAACA TTTTTTAATC 222 AAGAAAAATAT TCTTAATCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 222 AAGAAAAATTA TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACA 234 CTTATTCACTT TCTTCAATAC GGTCTGGGGG CAAAGCTTA TCTCAGTGCG ATTAAAGACC 234 CTGATTAACGG TTCTTATTC GCTTATGAGA TTAGTCACAA CAATGAAAT CACTTGTTAT 2400 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 246 CTTATCCATG TCCTCATATCC CAAAGAATA TCCAGGAGCC ACACCTATCA TCCATAGCGA 252 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAA GTTTCTTTGG 256 GTTTTTCAAG ACTTATATC CCAAAGAATA CCGTTATATC ATACAACAAG CTTGTTTTG 256 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTTATGAT AATTGACTACA 264 CTTATCCATG TCCCGGATTG CAAATGTTT TGATAATCAA CAACCATACT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGGAATTCA GGAATCAGT TACCATCATA TATCTTTTTT TATTGACTGT 276 CTTATCCATG GGAGCCTT TACCACCTTAA GAATACATC TATCTTTTAT TATTGACTGT 276 CTTATTCCAG GGAGCCTT TATCTTCAT TAACCGTTCTA AACTTGCTAA AATTGCTCAA CACCTTCAA AACTTGC							
CAGGGTGTTC AAGGCTACCT TGATGGAAAA GGCTCTCTTA GAGATATTTG TAAATGGTAT 144 GATATCTCAA GTCGCTCTGT TCTCCAAAAG TGGATAAAAC GGTATACTAG TGGTGAAGAC 150 TTGAAAGCCA CTAGTAGAGG ATATAGCCGT ATGAAACAG GAAGGCAAGC CACATTTGAA 156 GAACGTGTAG AGATTGTTAA CTACACCATT GCCCATGGGA AAGACTATCA AGCAGCTATT 162 GAACGTGTAG AGATTGTTAA CTACACCATT TATTCTTGGG TGCGTAAACT TGAATGAAGAA 168 GGCTCACAAG GTTTGGTTG TAGACGTGTG AAAGGGTTAG AGAGTAACC TGATTTAACC 174 GAGATTGAC AACTTTAACT CAAGATTAAA CAATTGGAG AACGTAATCG TCTCTTAGAA 180 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 GAGATGAGC TTTACCAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 TAGGTAAGCA TTTACCAAGAA TCAAAGAATTA TTACGATGAG GAATCTAATG 192 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCCG TCAGGCTAT TACAAGTGGC 198 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAAACAGAA TTTATAAACA AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAACC 204 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAACC 222 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 228 ATGTCAACCTA TCTTCAATAC GGTTAGCAAG CTATGACAACA ATTCTGGGGA 246 CTAAACCATA TCTTCAATAC GGTTAGCAAG CTAAAGCTTA TCTCAAGGAA TGGTGCACAG 228 ATGTCAACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 234 CTAATAACCG TCTCATATAC GCTTATGAGA TCCAGGAGCC ACACCTATCA TCCATAGCGA 246 CTAAGCCATT AAAAAGGGGC TAGAGCTCAA TCCAGGGAGC ACACCTATCA TCCATAGCGA 246 CTTATCCATG TCCCGGATTG GCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCGAC 250 CTTATCCATG TCCCGGATTG GCAAATGTAT TCAAGGAGC ACACCTATCA TCCATAGCGA 246 CTTATCCATG TCCCGGATTG AAATCTAT TCAAGAGAAC TTTTTTGGCACA CAACCATACA AATTAAACAA 270 CCTGACTCCT CTAGAATCTA AACCACCTTAA GAAATACAC TCTTATGATA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GAAATCAGT TACAACCAC TATCATTCTAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GAAATCAGT TACAACCAC TATCATACAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GAAATCAGT TACAACCAC TACCTCTAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GAATCAGT TACAACCAT AATTTGCTAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GAATCAGT TACAACTAA TTCATCAGTT 276 CTACTTGACA GGGACCGTT CAGATCAGT TACACTCTA AATTTG	TGGAAGTAAT	ATTGCAAAGT	AATATATTTC	CTATTATATG	TTTATACGAT	ATTCGATATT	1320
TIGARAGCCA CTAGTAGAGG ATATAGCCGT ATGAAACAC GAACTATCA AGCACTATTGAA TIGAAAGCCA CTAGTAGAGG ATATAGCCGT ATGAAACAAG GAAGGCAAGC CACATTTGAA GAACGTGTAG AGATTGTTAA CTACACCATT GCCCATGGGA AAGACTATCA AGCAGCTATT GAGAAGGTTTG GTGTTCCTA CCAACAAATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAA GAGATGTTG GTGTTCCTA CCAACAAATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAA GGCTCACAAG GTTTGGTTGA TAGACCGTTG AAAGGGTTGG AGAGTAGGCC TGATTTAACC GAGAATTGAGC ACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA ATCGAGGTTA GTTTACTAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TAAGGAATTA TTACGATGAG GAATCTAATG TGCCTATTCA GGCCTTATCC CAACTCTTGA AGGGGTCCG TTCAGGCTAT TACAAGTGGC TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTG ATTGATGACA ATTCTGGGGA AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTG ATTGATGAAC ATTCTGGGGA AAGAAAAATAT TCTTAATCGT GTTAGCCATG CTTGTACAAA AGCTGGTGA AGATTTTACG CTAGTTCACCTA TCTTCAATAC GGTCTGGGGG CTAAAGCTTA TCCAAGGAAA TGGTGCACAG AAGAAAAATAT TCTTAATCG GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG CTATATCACCTA TCTTCAATAC GGTCTGGGGG CTAAAGCTTA TCCAAGTACA CTCATTGAGAA AGGAACCATT AAAAAGGGGC TAGAGCTCAA TCCAAGGACC ACCCTATCA TCCATAGCGA ATGGTCACCTA TCTTCAATAC GCTTATGAGA TCCAGGAGCC ACACCTATCA TCCATAGCGA CTTATCCACT TCCAGGATCT ACACCTTAA GAAATACAAC CCAACCTGAAC GTTCTTTTGG GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA CTTATCCACT TCCAGGATCT ACACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA CTTATCCACT TCCAGGATCT ACACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA CTTATCCACT TCCAGGATCT ACACCTTAA GAAATACAAC TCTTTATGAT AGTTCTTTGG GTTTTTCAAG ACTGAGATTCA ACACCTTAA GAAATACAAC TCTTTATTAT ATTTAACCTGT TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA CCTGACTCCT CTAGAATTCG AGTTCTTACAA CACACAACGT TATCAATCAA AATTAAACAA CCTGACTCCT CTAGAATTCG AGTTCTTA ACCCTTTAA AATTTGCTAA AATGCTACA CAAAAATTAG CGGGGCCTT TAGTTTCTT TAACCGATCA	CCCACCCGTT	GTCGCGTTTA	CGGAAATACG	CCATTGATAT	ACTCCACATT	AGCTAAAGAA	1380
TTGAAAGCCA CTAGTAGAGG ATATAGCCGT ATGAAACAAG GAAGGCAAGC CACATTTGAA 156 GAACGTGTAG AGATTGTTAA CTACACCATT GCCCATGGGA AAGACTATCA AGCAGCTATT 162 GAGAAGTTTG GTGTTTCCTA CCAACAAATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAT 168 GGCTCACAAG GTTTGGTTGA TAGACGTGTG AAAGGGTTGG AGAGTAGGCC TGATTTAACC 174 GAGATTGAGC AACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 180 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 192 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCCG TTCAGGCTAT TACAAGTGGC 198 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG 204 AACTTCGTAG ACTCTACAAT GGTATCTTGA GTTATCGCCG TATGACAACA TTTATTAATC 210 GTCAACTTG GACAACTTAA AACAAGAAAC GTTATCGCGG TATGACAACA TTTATTAACC 220 GTCAACTTG GACAACTTAA AACAAGAAAC GTTGATGAAA AGCTGGTGA ATTCTGGGGA 216 GTAAACTGC CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGA ATTCTGGGGA 216 GTAAACTG CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGA ATTCTGGGGA 220 AAGAAAAAATA TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGTTAAGAGC 220 ATGTAAACGG TTCTAATACC GGTCTGGGAG CTAAAGCTTA TCTCAGAGAAC CATTGTTAT 240 GAAGACCATT AAAAAGGGC TAGAGCTCAA TCCAGGCCC ACACCTATCA TCCATAGCGA 246 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGGCC ACACCTATCA TCCATAGCGA 246 CTTATCCATG TCCCGGATTG GCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 250 CTTATCCATG TCCCGGATTG GCAAAGATA CCGTTATACA CACCTATCA TCCATAGCGA 264 CTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTCTTTGG 250 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAAATGCAT TACAACAAC TCTTATGATA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAAATGCAT TACAACAAC TCTTATGATA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAATTCTACAA CACACAACGT TATCAATCAA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAATTCTTA TACCTGTCT ACCTTCATACA AATTAACTA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAATTCTTA TACCTGTCT AACTTTTATT ATTTGACTAA AATAGCTACA 280 AAAAATTGAG CGAATCAAA AGCTTTCAT TACCTGTCT TCCCTCGACC 280 CAAAAAATGAG CCATTAAAA AACCTGGCT ATTTTTCCT CCTAAAAATT ATCTTCATA TACAACACAC TCTCCTCGACC 280 CAAAAAAA	CAGGGTGTTC	AAGGCTACCT	TGATGGAAAA	. GGCTCTCTTA	GAGATATTTG	TAAATGGTAT	1440
GAACGTGTAG AGATTGTTAA CTACACCATT GCCCATGGGA AAGACTATCA AGCAGCTATT 162 GAGAAGTTTG GTGTTTCCTA CCAACAAATT TATTCTTGGG TGCGTAAGCT TGAGAAGAAAT 168 GGCTCACAAG GTTTGGTTGA TAGACCGTGT AAAGGGTTGG AGAGTAAGCC TGATTTAACC 174 GAGATTGAGC AACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 180 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 GTGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCCG TTCAGGATGA CAACTCATCA GGCCTATTCA GGCCTATTCA GGCCTATCA GGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCCG TTCAGGCTAT TACCAAGTGGC 198 CTCAATCGTCA AAAAACAGAT TTTGGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG 204 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 210 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGAGAACA TTTTTTACGGCA 216 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGAGAACA ATTCTGGGGA 216 GTCAACTTGG GACAACTTAA AACAAGAAAC GCATACAAAA AGCTGGTGAC AGATTTTACG 222 AAGAAAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 228 ATGTCACCTA TCTCAATAC GGTCTGGGAG CTAAAGCTTA TCCCAGAAA TGGTGCACAG 228 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCCCAGAAA TGGTGCACAG 228 ATGTAAACGG TTCTATATC GCTTATGAGA TAGCCACAA CAATGAAATC CACTTGTTAT 240 GAAGACCATT AAAAAGGGC TAGAGCTCAA TCCAGGGCC ACACCTATCA TCCATAGCGA 246 CTTATCCATG TCCCGGATTG GCAAAGATA CCGTTATATC ATACCAGAAA GTTTCTTGG GTTTTCCAG ACTGGAGTCT ACCACCTTAA GAAATACAAC CCAACTGAAA GTTTCTTTGG 256 GTTTTTCAAG ACTGGATTC ACCACCTTAA GAAATACAAC TCTTATGATA AGTTGCTCAC 250 CTTATCCATG TCCCGGATTG ACACCTTAA GAAATACAAC TCTTATGATA AATTAACAA 270 CCTGACTCCT CTAGAATTCA GAATTCTACAA CACACAACGT TATCAATCAA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAATTCTACAA CACACAACGT TATCAATCAA AATTAACACA 270 CCTGACTCCT CTAGAATTCA GAATTCTTCT TAACCTGTT ACCTTTTTTT ATTTTTTTTTT	GATATCTCAA	GTCGCTCTGT	TCTCCAAAAG	TGGATAAAAC	GGTATACTAG	TGGTGAAGAC	1500
GAGAAGTTTG GTGTTTCCTA CCAACAAATT TATCTTGGG TGCGTAAGCT TGAGAAGAAT 168 GGCTCACAAG GTTTGGTTGA TAGACGTGTG AAAGGGTTGG AGAGTAAGCC TGATTTAACC 174 GAGATTGAGC AACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 180 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 186 TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 192 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 198 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATCAAAA GCTAATGGCT AAAATCAAGG 204 AACTCCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 210 GTCAACTTGG GACAACTTA AACAAGAAAC GGATTCGTTG ATTGATGACA ATTCTGGGGA 216 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 222 AAGAAAAATT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 228 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 234 CGTATAAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 2400 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCCTATCA TCCATAGCGA 2460 CTTATCCATG TCCCGGATTG GCAAATGTAT TCGAGGAGC ACACCTATCA TCCATAGCGA 2600 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAAACAA CATTCTTAGA GTTTCTTTGG CTTTTTCAGA ACTGAGACCATT ACCACGATTA ACCACCTATA ACAACAAGA TTCTTTTGG CTTTTTCAGA ACTGAGACCATT ACCACGATA TCCAGGAGCC ACACCCTATCA TCCATAGCGA 2600 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAAACAA CAATGAAATC CACTTGTTAT 2600 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAAACAA CTTTATGATCGA ACTTCTTTGG CTTTTTCAGA ACTGAGTCAA ACCACCTATCA ACTTCTTTAGA ACTTGGTCAA ACTTCATAACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GAAATCAGT TATCATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GAAATCAGT TATCTTTTAT ATTTGACTGT 2760 CTACTTGACA GGGGCCTT CAGAATCAGT TGCATAACTT ATCTTTTAT ATTTGACTGT 2760 CACTTGACCAC CCACTTAAACT TACCTTTATATC AATTTCAATCAA	TTGAAAGCCA	CTAGTAGAGG	ATATAGCCGT	ATGAAACAAG	GAAGGCAAGC	CACATTTGAA	1560
GGCTCACAAG GTTTGGTTGA TAGACGTGTG AAAGGGTTGG AGAGTAGGCC TGATTTAACC 174 GAGATTGAGC AACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 18.0 ATCGAGGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 18.6 TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 19.2 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 19.8 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATCAAAA GCTAATGGCT AAAATCAAGG 20.4 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 21.0 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACA ATTCTGGGGA 21.6 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTACG 22.2 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGGCTCA TAACCAGAAA TGGTGCACAG 22.8 ATGTCACCTA TCTTCAATAC GGTCTGGGGA CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 23.4 TGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAAAT CACTTGTTAT 24.0 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 25.2 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATGACA CAATGAAAAC CTGGTCTGAC 25.2 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATCACAA CAATGAAAAC CTGGTCTGAC 25.2 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATCACAA CAATGAAAAC CTGGTCTGAC 25.2 CTTATCCATG TCCCGGATTG ACACCCTTAA GAAATACAA CTCTTATGATG AGTTCTTTGG 25.2 CTTATCCATG TCCCGGATTG AAATCTTA ACACCACAACGT TATCAATCAA AATTAAACAA 27.0 CCTGACTCCT CTAGAATTCA GAAATCAGT TATCATACAA AATTAAACAA 27.0 CCTGACTCCT CTAGAATTCA GAAATCAGT TACAACAACGT TATCAATCAA AATTAAACAA 27.0 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 27.6 CTACTTGACA GGGAGCCTT CAGATTCCTT AACCTTCTA AATTTGCTAA AATTAACCAA 28.2 AAAAAATGAG CCATTTAATG CTTATTTCTT AACCTTCTA AATTTGCTAA AATTAACCAA 28.2 AAAAAATGAG CCATTTAATG CTTATTTCTT AACCTTCTA AATTTCCATA TTCATCAGTT 29.4 AAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 29.4 AAAAATTGAG CGTGAGGCTT TTTGTTTCAT AACCTTCTA AATTTCCATA TTCATCAGTT 29.4 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 29.4 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 29.4 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 29.4 AAAAA	GAACGTGTAG	AGATTGTTAA	CTACACCATT	GCCCATGGGA	AAGACTATCA	AGCAGCTATT	1620
ARGATTGAGC AACTTTAACT CAAGATTAAA CAATTGGAGG AACGTAATCG TCTCTTAGAA 1800 ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 1860 TAGGTAAGCA TTTAGCGGAG TCCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 1920 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 1980 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG 2040 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2100 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACA ATTCTGGGGA 2160 TTAGTTCAGT CATTCGTCG GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTACG 2220 AAGAAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGGA CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 2400 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAAACAC CCACACTACA TCCATAGCGA 2500 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAACAC CCACACTACA TCCATAGCGA 2640 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAAACAC CCACACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCACAA CACACCAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACCTT ATCTTATTAT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTCGTT AACCCTTCA AATTTGCTAA AATAACACA 2820 AAAAAATGAG CCATTTAATG CTTATTCTT ATACTGTTTTA ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTCGTT AACCTTTCTA AATTTGCTAA AATAACCAA 2820 AAAAAATAGA CGGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 CTAAAAAATAA AACCTGAAAAAAAAAAAAAAAAAAAAAA	GAGAAGTTTG	GTGTTTCCTA	CCAACAAATT	TATTCTTGGG	TGCGTAAGCT	TGAGAAGAAT	1680
ATCGAGGTTA GTTTACTAAA AAAGTTAGAA GACATCAAAC GAGGAAACAG ACGGTAAGAC 1866 TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 1926 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 1986 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATCAAA GCTAATGGCT AAAATCAAGG 2046 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2106 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGAAC ATTCTGGGGA 2166 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTACG 2226 AAGAAAATAT TCTTAATCGT GAATTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2286 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTATC GCTTATGAGA TCAGAGACC ACACCTATCA TCCATAGCGA 2460 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 TTGAGGTAGT CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTTGTTTATC GCTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATCAC CCAACCTGAAA GTTTCTTTGG 2560 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATCAAAC TCTTATGATA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGT TGCATAACCT TATCTATGAT ACTTTTTTGG 2560 CCTGACTCCT CTAGAATTCA GGAATCACT TACAACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGT TGCATAACCT TATCTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTCATT AACCTTCTA AATTTGCTAA AATAGCTACA 2820 AAAAAATGAA GCGTGAGGCTT TTTGTTTCAT TAACCGATCA TCCTCCGGACC 2880 AAAAAATTGAG CCATTAAATG CTTATTTCTT TAACCGTTTT GCCTCACGCT CTCCTGGACC 2880 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAACCGATTA ATTTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTTGATA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGGCGCTCCA 3000	GGCTCACAAG	GTTTGGTTGA	TAGACGTGTG	AAAGGGTTGG	AGAGTAGGCC	TGATTTAACC	1740
TAGGTAAGCA TTTAGCGGAG TTCCAAGTAA TCAAGAATTA TTACGATGAG GAATCTAATG 1920 TGCCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTCG TTCAGGCTAT TACAAGTGGC 1980 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATCAAAA GCTAATGGCT AAAATCAAGG 2040 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2100 GTCAACTTGG GACAACTTAA AACAAGAAC GGATTCGTTG ATTGATGACACA ATTCTGGGGA 2160 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACACA ATTCTGGGGA 2160 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACAAC ATTCTGGGGA 2220 AAGAAAAATAT TCTTAATCGT GAATTTACAG CCACAGGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 GGAAGACCATT AAAAAAGGGGC TAGAGCTCAA TCCAGGAGC ACACCTATCA TCCATAGCGA 2460 GAAGACCATT AAAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 GTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCTACAA CACCACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGT TGCATAACCT TCTTATGATG AGTTGGTCAA 2640 CCTGACTCCT CTAGAATTCA GGAATCAGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGGCCGTT CAGATTGCTT AACCTTCTTA AATTTTGCTAA AATAGCTACA 2820 AAAAAATGAG CCATTTAATG CTTATTTCTT AACCTTTCTA AATTTTCCATA TTCATCAGCT 2880 AAAAAATGAG CCATTTAATG CTTATTTCTT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCAG GAGCCGTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCAG GAGCCATCAA AGCTTCGATA AGGTTGATA AAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTTCCTG CGTAAAAATTT ATGGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTTCCTG CGTAAAAATTT ATGGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTTCCTG CGTAAAAATTT ATGGCGCTCCA 3000 CTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GAGATTGAGC	AACTTTAACT	CAAGATTAAA	CAATTGGAGG	AACGTAATCG	TCTCTTAGAA	1800
TECCTATTCA GGCCTTATGC CAACTCTTGA AGGGGTCTG TTCAGGCTAT TACAAGTGGC 1980 TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG 2040 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2100 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGAAC ATTCTGGGGA 2160 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 2220 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 GGAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAAC CACTCATCA TCCATAGCGA 2460 TTGAGGTAGT CAATATACTT CCAAAGAATA CGGTTATATC ATACAACAAG CTGGTCTGAC 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 CCTGACTCCT CTAGAATTCA GAATCACAA CACCACACCT TATCCATGAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GAATCACAA CACCACACCT TATCCATCA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GAATCACAT TACATCAAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GAATCACGT TGCATAACCTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATTAACCAA 2800 CCTGACTCCT CTAGAATTCA GAATCACTT AACCTTTCTA AATTTGCTAA AATTAACCAA 2800 AAAAATTGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 AAAAAATGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2800 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000	ATCGAGGTTA	GTTTACTAAA	AAAGTTAGAA	GACATCAAAC	GAGGAAACAG	ACGGTAAGAC	1860
TCAATCGTCA AAAAACAGAT TTTGAGACAA AAAATACAAA GCTAATGGCT AAAATCAAGG 2040 AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2100 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACA ATTCTGGGGA 2160 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 2220 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTATC GCTTATGAGA TCAGAGACC ACACCTATCA TCCATAGCGA 2460 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CTAACACAGA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAC TCTTATGATG AGTTGGTCAA 2640 TGAGTGGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTCTA AATTTGCTAA AATAACCAA 2820 AAAAAATGAG CCATTTAATG CTTATTTCTT AACCTTTCTT GCCTCCAGCC 2880 AAAAAATGAG CCATTTAATG CTTATTTCTT AACCTTCTT AATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCGTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCCTCCA 3000 CTAAAAAATAAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGT	TAGGTAAGCA	TTTAGCGGAG	TTCCAAGTAA	TCAAGAATTA	TTACGATGAG	GAATCTAATG	1920
AACTTCGTAG ACTCTACAAT GGTATCTTAG GTTATCGCCG TATGACAACA TTTATTAATC 2100 GTCAACTTGG GACAACTTAA AACAAGAAAC GGATTCGTTG ATTGATGACA ATTCTGGGGA 2160 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 2220 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 2400 GAAGACCATT AAAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 CTTATCCATG CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2560 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2820 AAAAAATGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TCCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCACGATT AAAAGATAA AAAAGGTAATA AGCTTCCATA TAAACGAATGA TATTTCCATA TACAACAAT AAAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 30000 CTAAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT AAGCGCTCCA 300000000000000000000000000000000000	TGCCTATTCA	GGCCTTATGC	CAACTCTTGA	AGGGGTCTCG	TTCAGGCTAT	TACAAGTGGC	1980
GTCAACTTGG GACAACTTAA AACAAGAAC GGATTCGTTG ATTGATGAC ATTCTGGGGA 2220 TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTTACG 2220 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 2400 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 TTGAGGGTAGT CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATTAGCTACA 2820 AGAAAAACGAG CCATTTAATG CTTATTTCTT ATACCTGTTT GCCTCACGCT CTCCTCGACC 2880 AAAAAATGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TACACGATT AAAGGTAATA 3000 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATAAAAAA ACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000	TCAATCGTCA	AAAAACAGAT	TTTGAGACAA	AAAATACAAA	GCTAATGGCT	AAAATCAAGG	2040
TTAGTTCAGT CATTCGTCGT GTTAGCCATG CTTGTACAAA AGCTGGTGAC AGATTTACG 2220 AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 2280 ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 2340 TGTATAACGG TTCTATTACC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 2400 GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 2460 CTTAGCGTAGT CAATATACTT CCAAAGAATA CCGTTATACC ATACAACAAG CTGGTCTGAC 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTATT ATTTGACTGT 2700 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTCTA AATTTGCTAA AATAGCTACA 2820 AGAAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTTT GCCTCCACGCT CTCCTCGACC 2880 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATTAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATTA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3000 CTAAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3000 CTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCAA 3000 CTAAAAATAAA TATTTAAAAAAAAAAAAAAAAAAAAA	AACTTCGTAG	ACTCTACAAT	GGTATCTTAG	GTTATCGCCG	TATGACAACA	TTTATTAATC	2100
AAGAAAATAT TCTTAATCGT GAATTTACAG CCACAGCTCA TAACCAGAAA TGGTGCACAG 228 CATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 234 CATGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 240 CAAGAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 246 CATGTATCCATG TCCCGGATTG GCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 252 CATGTCTCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 258 CAACTGTCAC ACCCCTTATCAACAA ACTTAAACAA 270 CAACTGACA CACACTGAAA AATTAAACAA 270 CAACTGACA CACACTGACA AATTAAACAA 270 CAACTGACA GGGAGCCGT CAGAATTCA AACCATGCAT AACTTTTATT ATTTGACTGT 276 CAACAAACACG CAACTGACA CACACTGACA CACACTGACA AATTAAACAA 270 CAACATGACA GGGAGCCGT CAGAATTCAA AACCATTCAA AATTAAACAA AATAACCAA 282 CAACAAACGA CACACTGACA AATTAAACAA 270 CAACAACGA CACACTGACA AATTAAACAA 270 CAACATTGACA GGGAGCCGT CAGAATTCAA AACCATTCAA AATTTGACTGT 276 CAACAAACGA CACACAGA AATTAAACAA AATAACAA 270 CAACAAACGA CACACAGA AATTAAACAA AATAACAA 270 CAACAAACGA CAACGATAACTA AATTTGACTGA CAACAAACGA CAACAACGA AATTAAACAA AATAACAA 270 CAACAAACGA CAACAACGA AATTAAACAA AATAACAA 270 CAACAAACGA CAACAACGA AATTAAACAA AATAACAA 270 CAACAAACGA CAACAACGA AATTAAAAAA AACCTGCTT AAACCTTTCTA AATTTGCTAA AATAACAA AATAACAA 282 CAACAAAAAATTGAA CAACAAACGA CAACAAACGA CAACAACGT TATTTATTAAAAAA AACCTTGCTA AACCTTTCTA AATTTTCATAA AATAACAA 282 CAACAAAAAATTGAA CAACAAACGA CAACAAACGT TATTTTCATAAAAAAAATTAAAAAA AACCTGGACT AAAAAATTAAAAAA AACCTGGACT AAAAAATTAAAAAA AACCTGGACT ATTTTTCCTG CGTAAAAATTA AAAAGGTAAAAA AAAAAAAAAA	GTCAACTTGG	GACAACTTAA	AACAAGAAAC	GGATTCGTTG	ATTGATGAAC	ATTCTGGGGA	2160
ATGTCACCTA TCTTCAATAC GGTCTGGGAG CTAAAGCTTA TCTCAGTGCG ATTAAAGACC 234 CTGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 240 CTAAGACCAT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 246 CTTTTGAGGTAGT CAATATACTT CCAAAGAATA CCGTTATTATC ATACAACAAG CTGGTCTGAC 252 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 258 CTAATGTGAGAA ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 264 CTGATGTGGAC CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACCT ATCTTTTATT ATTTGACTGT 276 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATTAGACAA 282 CTACTTGACA GGGAGCCGTT CAGATTCCT AACCTTTCTA AATTTGCTAA AATAGCTACA 282 CTACTTGACA CGTGAGGCT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 294 CTACTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 300 CCTAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 30 CCTAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 30 CCTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 30 CCTAAAAATAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 30 CCTAAAAATAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 30 CCTAAAAATTT ATGCGCTCCA 30 CCTAAAATTT ATGCGCTCCAA 30 CCTAAAATTT ATGCGCTCCAA 30 CCTAAAATTT ATGCGCTCCAA 30 CCTAAAATTT ATGCGCTCCAA 30 CCTAAAATTT ATGCGCT	TTAGTTCAGT	CATTCGTCGT	GTTAGCCATG	CTTGTACAAA	AGCTGGTGAC	AGATTTTACG	2220
TGTATAACGG TTCTATTATC GCTTATGAGA TTAGTCACAA CAATGAAATC CACTTGTTAT 240 CGAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 246 CGAAGACACAT CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 252 CGTTATACCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 258 CGTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 264 CGTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 270 CCCGGACTCCT CTAGAATTCA GGAATCAGA TGCATAACCT ATCTTTATT ATTTGACTGT 276 CCTGACCTCCT CTAGAATTCA GGAATCAGGT TGCATAACCT ATCTTTTATT ATTTGACTGT 282 CAAAAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTGGACC 288 CAAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 294 CCTGAAAAATAA AGCCTTCGATA AGCTTGCTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATT AAAGGATAATA 300 CCTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATT ATGCGCTCCA 300 CCTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATT ATGCGCTCCA 300 CCTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATT ATGCGCTCCA 300 CCTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATT ATGCGCTCCA 300 CCTAAAAATTA ATGCGCTCCA 300 CCTAAAAATTA ATGCGCTCCA 300 CCTAAAAATTA ATGCGCTCCA 300 CCTAAAAATTA ATTTTTTCCTG CGTAAAAATTT ATGCGCTCCA 300 CCTAAAAATTA ATGCGAAAATTA ATGCGAAAATTA ATGCGCTCA ATTTTTTCCTG CGTAAAAATTA ATGCGCTCA 300 CCTAAAAATTA ATGCGAAAATTA ATGCGAAAATTA ATGCAAAATTA ATGCAAAATTA ATGCAAAATTA ATGCAAAAATTA ATGCAAAAATAAAAAAAAAA	AAGAAAATAT	TCTTAATCGT	GAATTTACAG	CCACAGCTCA	TAACCAGAAA	TGGTGCACAG	2280
GAAGACCATT AAAAAGGGGC TAGAGCTCAA TCCAGGAGCC ACACCTATCA TCCATAGCGA 24600 TTGAGGTAGT CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 25200 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 25800 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 26400 TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 27000 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTATT ATTTGACTGT 27600 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 28800 AAAAATTGAG CCATTTAATG CTTATTTCTT ATACCGATGA TATTTCCATA TTCATCAGTT 29400 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 30000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 30000	ATGTCACCTA	TCTTCAATAC	GGTCTGGGAG	CTAAAGCTTA	TCTCAGTGCG	ATTAAAGACC	2340
TTGAGGTAGT CAATATACTT CCAAAGAATA CCGTTATATC ATACAACAAG CTGGTCTGAC 2520 CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2820 AGAAAACGAG CCATTTAATG CTTATTTCTT ATACCGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	TGTATAACGG	TTCTATTATC	GCTTATGAGA	TTAGTCACAA	CAATGAAATC	CACTTGTTAT	2400
CTTATCCATG TCCCGGATTG GCAAATGTAT TGATAATGCA CCAACTGAAA GTTTCTTTGG 2580 GTTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2880 AAAAAATGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 CTGTTTTCCGA GAGCCATCAA AGCTTCCATA TTCATCAGTT 2940 CTGTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCAA 3060 CTAAAAATAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCAA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCAA 3	GAAGACCATT	AAAAAGGGGC	TAGAGCTCAA	TCCAGGAGCC	ACACCTATCA	TCCATAGCGA	2460
GTTTTCAAG ACTGAGTCTT ACCACCTTAA GAAATACAAC TCTTATGATG AGTTGGTCAA 2640 TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2820 AAAAAATGAG CCTTATTATT CTTTTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 CTGTTTCCGA GAGCCATCAA AGCTTCCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA ATGTTTTTTTTTTTTTT	TTGAGGTAGT	CAATATACTT	CCAAAGAATA	CCGTTATATC	ATACAACAAG	CTGGTCTGAC	2520
TGATGTGCA CGTTATATCG AATTCTACAA CACACACGT TATCAATCAA AATTAAACAA 270 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTATT ATTTGACTGT 276 CCTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 282 CAAAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 288 CAAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 294 CCTAAAAAATAA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 300 CCTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAAATTT ATGCGCTCCA 306 CCTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 306 CCTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 306 CCTAAAAATAA TATATAAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAAATTT ATGCGCTCCA 306 CCTAAAAATTT ATGCGCTCCA 306 CCTAAAAATTA 306 CCTAAAAATTT ATGCGCTCCA 306 CCTAAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTT ATGCGCTCAAAATTTAAAA	CTTATCCATG	TCCCGGATTG	GCAAATGTAT	TGATAATGCA	CCAACTGAAA	GTTTCTTTGG	2580
TGATGTGGCA CGTTATATCG AATTCTACAA CACACAACGT TATCAATCAA AATTAAACAA 2700 CCTGACTCCT CTAGAATTCA GGAATCAGGT TGCATAACTT ATCTTTTATT ATTTGACTGT 2760 CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2820 AGAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 AAAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 CTAAAAAATAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAATTT ATGCGCTCCA 3060 CTAAAAATTA ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3060 CTAAAATTA ATGCGCTCCA 3	GTTTTTCAAG	ACTGAGTCTT	ACCACCTTAA	GAAATACAAC	TCTTATGATG	AGTTGGTCAA	2640
CTACTTGACA GGGAGCCGTT CAGATTGCTT AACCTTTCTA AATTTGCTAA AATAGCTACA 2820 AGAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 AAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	TGATGTGGCA	CGTTATATCG	AATTCTACAA	CACACAACGT	TATCAATCAA	AATTAAACAA	2700
AGAAAACGAG CCATTTAATG CTTATTTCTT ATACTGTCTT GCCTCACGCT CTCCTCGACC 2880 AAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	CCTGACTCCT	CTAGAATTCA	GGAATCAGGT	TGCATAACTT	ATCTTTTATT	ATTTGACTGT	2760
AAAAATTGAG CGTGAGGCTT TTTGTTTCAT TAAACGATGA TATTTCCATA TTCATCAGTT 2940 TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAAATAA TATATAAAAA AACCTGGCCT ATTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	CTACTTGACA	GGGAGCCGTT	CAGATTGCTT	AACCTTTCTA	AATTTGCTAA	AATAGCTACA	2820
TGTTTTCCGA GAGCCATCAA AGCTTCGATA AGGTCGATAA TTCCAGGAAT AAAGGTAATA 3000 CTAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	AGAAAACGAG	CCATTTAATG	CTTATTTCTT	ATACTGTCTT	GCCTCACGCT	CTCCTCGACC	2880
CTAAAAATAA TATATAAAAA AACCTGGCCT ATTTTTCCTG CGTAAAATTT ATGCGCTCCA 3060	AAAAATTGAG	CGTGAGGCTT	TTTGTTTCAT	TAAACGATGA	TATTTCCATA	TTCATCAGTT	2940
	TGTTTTCCGA	GAGCCATCAA	AGCTTCGATA	AGGTCGATAA	TTCCAGGAAT	AAAGGTAATA	3000
ATGCCGCCCA AAAGAACGTT AATAAAACAT AAACTACTAT GTTAGCATAA GACTTTATTT 3120	СТАААААТАА	TATATAAAAA	AACCTGGCCT	ATTTTTCCTG	CGTAAAATTT	ATGCGCTCCA	3060
	ATGCCGCCCA	AAAGAACGTT	AATAAAACAT	AAACTACTAT	GTTAGCATAA	GACTTTATTT	3120

TTACAACTGA	ATTTCATATA	AATGGATTAG	AGTAAGGGA	r aaaagaaati	AGCATAGCTC	3180
TTTTGAAAAT	AAAAAATTA	ATATAATATG	GAAAAAATT	TATTTCATA	ACGTTTCATA	3240
AAAGGTATGT	AATCTAGTAT	TTAGGCAACA	CTATTTTGT	CACTGGTGTCT	AGTAACTTAT	3300
AGATTGATAA	TTTTACTAGT	AAACGTAATT	CTTCGCTTT	A AGAGTTAAAT	GTCTATTTAT	3360
TGTAAGCTAA	ATTGGGAGGT	GAACTTATGT	AAAATTAGAT	AGGTACTGTC	AAGTACGGGA	3420
TGATTATTGA	AACAGCCAGT	ATGCATCATA	AAATCTGTAT	TGCTTAATAA	CTATTTCCTT	3480
AACCAGACAT	CAGTTCATTG	TTTATCATCG	CTACCCTAAG	TCTAGTTTTT	TCAATAGAGC	3540
ATTAGGTAGT	TTTTGATAAT	AAAACTATAT	AAACATGAGA	ATTAGATTTC	GTATTGCATT	3600
CTTCATAATG	AGTTATTTGA	GATTTTCCTT	TGAATAAATA	GATACGAAAT	TCAGTAACTT	3660
CATATATAAA	CGGCTCTATC	ATTGAGATAG	TTTGTCAAAT	GAAGAAATTT	TTAATGGAAA	3720
TAGTTTTAAA	AACATTAGTT	GTAGGCGATG	TAAAAATATT	AATCCAGTGG	ATGCAATAGT	3780
TGCGGAGTAA	AAATAGAGAG	GAGTAATTAG	GAAGTGATAA	AAAATGCTAT	AGCATATATT	3840
ACCAGAAAAA	AAAATAGAAC	ACTTATTATA	TTTGCTATTT	TAACAATTGT	TCTTTCTTGC	3900
TTGTATTCAT	GTTTAACAAT	AATGAAATCA M K S	AGTAATGAAA S N E I		TTTATATGAA L Y E	3960
AGTTCTAATT S S N S	CTTCAATATC S I S	AATTACAAAA I T K	AAAGATGGTA K D G K	AATATTTTAA Y F N	TATTAATCAA I N Q	4020
TTTAAGAATA F K N I	TTGAAAAAAT E K I	AAAAGAGGTT K E V	GAAGAAAAA E E K I	TATTTCAATA F Q Y	TGATGGATTA D G L	4080
GCAAAATTGA A K L K	AAGATCTTAA D L K	AGTAGTTAGT V V S	GGTGAGCAAA G E Q S	GTATAAATAG I N R	AGAAGATTTA E D L	4140
TCTGACGAAT S D E F	TTAAAAATGT K N V	TGTTTCACTA V S L	GAAGCTACAA E A T S	GTAATACTAA N T K	AAGAAATCTT R N L	4200
TTATTTAGTA L F S S	GTGGAGTATT G V F	TAGTTTTAAA S F K	GAAGGAAAAA E G K N	ATATAGAAGA I E E	AAATGATAAG N D K	4260
AATTCAATTC N S I L	TTGTTCATGA V H E	AGAATTTGCT E F A	AAACAAAACA K Q N K	AACTAAAATT L K L	GGGTGATGAA G D E	4320
ATTGATCTTG . I D L E	AATTACTAGA L L D	TACGGAAAAA T E K	AGTGGAAAAA S G K I	TAAAAAGTCA K S H	TAAATTTAAA K F K	4380
ATTATAGGAA '	TCTTTTCTGG F S G	TAAAAAACAG K K Q	GAAACATATA E T Y T	CAGGATTATC G L S	ATCTGATTTT S D F	4440
AGCGAAAATA ' S E N M	rggtttttgt . V F V	AGATTATTCA D Y S	ACTAGCCAAG T S Q E	AAATATTAAA I L N	TAAATCAGAG K S E	4500
AATAATAGAA 1 N N R I	ITGCAAATAA A A N K		TATTCTGGTA Y S G S	GTTTAGAATC L E S	TACAGAGCTT T E L	4560
GCCTTAAACA A	AATTGAAAGA (CTTTAAAATT	GATAAGTCAA	AGTATTCTAT	TAAGAAAGAT	4620

A L N K	L K D	F K I	D K S K Y S I K K D	
AATAAAGCAT N K A F	TCGAAGAGTC E E S	TTTAGAGTCA L E S	GTGAGTGGAA TAAAACATAT AATTAAAATA V S G I K H I I K I	4680
ATGACTTATT M T Y S	CGATTATGTT I M L	AGGTGGAATA G G I	GTTGTTCTTT CATTAATCTT GATTCTATGG V V L S L I L I L W	4740
TTAAGAGAAA L R E R	GAATTTATGA I Y E	AATAGGTATA I G I	TTTTTATCTA TTGGAACAAC TAAGATACAA F L S I G T T K I Q	4800
ATTATAAGGC I I R Q	AATTTATATT F I F	TGAGTTAATA E L I	TTCATATCAA TACCAAGTAT AATATCCTCC F I S I P S I I S S	4860
TTATTTTAG L F L G	GGAATCTACT N L L	ATTAAAAGTA L K V	ATTGTAGAAG GATTTATTAA CTCAGAGAAC I V E G F I N S E N	4920
TCAATGATTT S M I F	TCGGTGGAAG G G S	TTTAATAAAT L I N	AAAAGCAGTT TTATGTTAAA CATAACAACA K S S F M L N I T T	4980
CTTGCAGAAA L A E S	GTTATTTAAT Y L I	ATTAATAAGT L I S	ATTATTGTTT TATCAGTTGT AATGGCCTCT I I V L S V V M A S	5040
TCATTAATAT S L I L	F K K	PQE	ATATTATCAA AAATAAGTTA GGAGCAAATA I L S K I S .	5100
ATGGATATAT M D I L	TAGAAATAAA E I K	GAATGTAAAT N V N	TACAGTTACG CAAATTCTAA AGAAAAAGTT Y S Y A N S K E K V	5160
L S G V	N Q K	F E L	GGAAAGTTTT ATGCGATAGT AGGGAAGTCA G K F Y A I V G K S	5220
GGAACAGGAA G T G K	S T L	L S L	CTTGCAGGAC TTGATAAAGT TCAAACAGGA L A G L D K V Q T G	5280
AAAATCTTGT K I L F	K N E	DIE	K K G Y S N H R K N	5340
AATATATCTT N I S L	V F Q	N Y N	TTAATAGATT ATTTATCGCC GATTGAAAAT L I D Y L S P I E N	5400
ATTAGACTAG I R L V	N K S	V D E	SILFELGLDK	5460
K Q I K	R N V	M K L	S G G Q Q R V A I	5520
A R A L	V S D	API	ATACTAGCTG ATGAGCCTAC CGGTAACCTA I L A D E P T G N L	5580
GACAGTGTTA D S V T	CTGCTGGAGA A G E	AATAATT ((SEQ ID NO:27)	5607

FIG. 5a

TÖSTIEGÖTK	SUIPERRAGU	TVRVHAKVVE	GTRERIQIFE	GVVISRKGQG	50
ISEMYTVRKI	SGGIGVERTF	PIHTPRVDKI	EVVRYGKVRR	AKLYYLRALQ	100
GKAARIKEIR	R (SEQ ID	NO:28)			111
		FIG. 5	b		
				KSSIRNIPID	50
NDTLFFLHEF	TKNKNDRLFD	KLSNNAVNKT	IRKITGREVR	VHSLRHTFAS	100
YLISISQVLD	HENLNITLEV	YAHQLQEQKD	RNDKLNQRNL	GQNSSKPLFT	150
CNEYVPCRNR	TSNYSLGGSC	YIH (SEQ	ID NO:29)		173
		FIG. 5	C		
VVICANIE TENIN					
				KEVEEKIFQY	50
			VSLEATSNTK		100
			GDEIDLELLD		150
KFKIIGIFSG	KKQETYTGLS	SDFSENMVFV	DYSTSQEILN	KSENNRIANK	200
ILMYSGSLES	TELALNKLKD	FKIDKSKYSI	KKDNKAFEES	LESVSGIKHI	250
IKIMTYSIML	GGIVVLSLIL	ILWLRERIYE	IGIFLSIGTT	KIQIIRQFIF	300
ELIFISIPSI	ISSLFLGNLL	LKVIVEGFIN	SENSMIFGGS	LINKSSFMLN	350
ITTLAESYLI	LISIIVLSVV	MASSLILFKK	PQEILSKIS		389
(SEQ ID NO:	30)				
		FIG. 5	d		
			GKFYAIVGKS		50
			NISLVFQNYN		100
IRLVNKSVDE	SILFELGLDK	KQIKRNVMKL	SGGQQQRVAI	ARALVSDAPI	150
ILADEPTGNL	DSVTAGEII	(SEQ ID NO:	31)		169

FIG. 5e

CATATGACAA	TATTTTTCAA	AGTCTACATC	ACTTACTCGC	CTGTCGTGGA	AAATCTGGCA	60
ATACATTAAT	CGACCAATTA	GTTGCTGATG	GTTTACTTCA	TGCAGATAAT	CACTACCATT	120
TTTTCAATGG	GAAGTCTCTG	GCCACTTTCA	ATACTAACCA	ATTGATTCGC	GAAGTTGTCT	180
ATGTTGAAAT	ATCCTTAGAT	ACTATGTCTA	GTGGTGAACA	TGATTTAGTA	AAAGTTAACA	240
TTATCAGACC	CACTACCGAG	CATACTATCC	CCACGATGAT	GACAGCTAGC	CCCTATCATC	300
AAGGTATCAA	TGATCCTGCC	GCAGACCAAA	AAACATACCA	AATGGAGGGT	GCGCTAGCAG	360
TTAAACAGCC	TAAACACATA	CAAGTTGACA	CAAAACCATT	TAAAGAAGAA	GTAAAACATC	420
CTTCAAAATT	ACCCATCAGC	CCTGCAACTG	AAAGCTTCAC	ACACATTGAC	AGTTATAGTC	480
TCAATGACTA	TTTTCTTTCT	CGTGGTTTTG	CTAATATATA	CGTTTCAGGT	GTGGGTACTG	540
CTGGCTCTAC	GGGTTTCATG	ACCAGTGGGG	ATTACCAACA	AATACAAAGC	TTTAAAGCAG	600
TCATTGATTG	GTTAAATGGT	AAGGTTACTG	CATTCACAAG	TCATAAACGA	GATAAACAAG	660
TCAAGGCTGA	TTGGTCAAAC	GGCCTTGTAG	CAACCACAGG	TAAATCTTAT	CTCGGTACCA	720
TGTCAACTGG	TTTAGCAACA	ACTGGCGTTG	AGGGGCTGAA	AGTCATTATC	GCTGAAGCCG	780
CAATCTCCAC	ATGGTATGAT	TATTATCGAG	AAAATGGGCT	TGTGTGTAGT	CCAGGCGGCT	840
ACCCCGGTGA	AGATTTAGAC	GTTTTAACAG	AATTAACATA	CTCACGAAAC	CTCTTAGCTG	900
GTGATTACAT	CAAAAACAAC	GATTGCTATC	AAGCATTGTT	AAATGAACAA	TCAAAAGCAA	960
TTGACCGTCA	AAGTGGGGAT	TACAACCAAT	ACTGGCATGA	CCGTAATTAC	CTAACTCACG	1020
TCAATAATGT	CAAAAGTCGA	GTAGTTTACA	CTCATGGACT	ACAGGATTGG	AATGTTAAGC	1080
CAAGACATGT	CTACAAAGTT	TTCAATGCAT	TGCCTCAAAC	CATCAAAAAA	CACCTTTTTT	1140
TACATCAAGG	TCAACATGTG	TATATGCATA	ATTGGCAGTC	GATTGATTTT	CGTGAAAGCA	1200
TGAATGCCTT	ACTAAGCCAA	GAACTACTTG	GCATTGACAA	TCATTTCCAA	TTAGAAGAGG	1260
TCATTTGGCA	AGATAATACT	ACTGAGCAAA	CTTGGCAAGT	TTTAGATGCT	TTCGGAGGAA	1320
ACCATCAAGA	GCAAATTGGT	TTAGGTGATA	GTAAAAAACT	TATTGATAAC	CATTATGACA	1380
AAGAAGCCTT	TGATACTTAT	TGTAAAGACT	TCAATGTGTT	CAAAAATGAT	CTTTTCAAGG	1440
GAAATAATAA	AACCAATCAA	ATCACTATTA	ATCTTCCTCT	AAAGAAAAAT	TATCTCCTGA	1500
ATGGACAGTG	CAAACTCCAT	CTACGTGTTA	AAACTAGTGA	CAAAAAGGCC	ATTTTATCAG	1560
CCCAAATCTT	AGACTATGGT	CCTAAAAAAC	GATTCAAAGA	TACACCAACC	ATCAAATTCT	1620
TAAACAGCCT	TGATAATGGT	AAAAATTTTG	CCAGAGAAGC	TTTACGTGAA	CTCCCGTTTA	1680
CTAAAGATCA	TTATCGTGTC	ATCAGTAAAG	GTGTCTTGAA	CCTTCAAAAT	CGTACAGACT	1740
TACTTACAAT	TGAGGCTATC	GAGCCAGAAC	AATGGTTTGA	TATCGAGTTT	AGCCTCCAAC	1800
	TCAATTGAGT					1860
TTGAACATAC	CATTCGAGAT	AATGCTAGTT	ACTCTATAAC	AGTAGATTTG	AGTCAATCTT	1920
ATTTAACTAT	CCCAACTAAT	CAAGGAAATT	AACTTATGAA	ACTTCTTACT	AAAGAACGGT	1980
TTGATGATTC	TCAACACTTT	TGGTACCAGA	TCAATTTATT	ACAAGAGAGT	AACTTCGGAG	2040
	CCATGATAAT					2100
TACAAGGTTC	CGGAAGTTCG	AATCATTTCT	GGTATTTTGG	CAATACTACT	GATACTTCCA	2160
TCCTTATGAT	TGCTCATTTA	AATCGAAAAT	TCTATATTCA	GGTTAATTTA	AAGGACTTTG	2220
	CAATTTAATA					2280
	CGATACCCTA					2340
AACGCGAGGG	AGACTGATTA	ATGTCATCTT	ATTGGAATAA	CTATCCTGAA	СТТАААААА	2400

	ATATTGATGA	AACCAATCAA	CTAATTCAAG	AAAGAATACA	GGTCAGAAAT	AAAGATATTG	2460
	AAGCGGCGCT	AAGCCAACTC	ACAGCTGCGG	GAGGAAAACA	GCTCAGACCA	GCATTCTTTT	2520
	ACCTTTTTTC	TCAACTTGGT	AATAAGGAGA	ATCAAGATAC	TCAGCAACTA	AAGAAAATCG	2580
	CTGCTTCTTT	AGAAATCCTT	CACGTTGCTA	CATTAATCCA	TGATGATGTC	ATTGATGACT	2640
	CACCACTAAG	ACGTGGAAAT	ATGACCATTC	AAAGCAAGTT	TGGCAAAGAC	ATCGCAGTTT	2700
	ATACTGGGGA	TTTACTTTTC	ACAGTCTTTT	TCGATCTTAT	TTTAGAATCT	ATGACTGATA	2760
	CACCATTTAT	GAGGATTAAT	GCAAAATCTA	TGCGTAAAAT	TCTCATGGGA	GAATTGGACC	2820
	AGATGCACCT	TCGTTACAAT	CAACAACAAG	GTATCCATCA	CTATTTACGT	GCGATTTCAG	2880
	GTAAGACAGC	CGAACTCTTT	AAATTAGCTA	GCAAAGAAGG	AGCTTACTTT	GGTGGTGCAG	2940
	AGAAGGAGGT	TGTTCGTCTA	GCAGGCCATA	TCGGCTTTAA	CATTGGTATG	ACATTCCAAA	3000
	TTTTGGATGA	TATCCTGGAT	TATACTGCAG	ATAAAAAAAC	ATTTAATAAG	CCTGTCTTAG	3060
	AGGATTTAAC	ACAAGGCGTT	TACAGCCTTC	CTCTACTTCT	TGCCATTGAA	GAAAATCCTG	3120
	ATATTTTCAA	ACCTATTTTA	GATAAAAAA	CAGATATGGC	TACTGAAGAC	ATGGAAAAA	3180
	TTGCTTATCT	CGTCGTTTCC	CATAGAGGTG	TTGACAAAGC	TCGCCATCTA	GCTCGTAAAT	3240
		AGCTATTAGT					3300
	TGCTACAATT	AACTAATTAC	CTTTTAAAAC	GCAAAATTTA	AATAATAAA	AAACATTCCA	3360
	CAATGCTAGA	AAAGCAGTTA	GGGAATGTTT	TTTTATTATC	ATTTATTTAT	CGCACCTATC	3420
	AATCATCATA	GATCACCATC	ATCAGCGGCT	TTCAGCTGAC	GGTAACGTTG	ACTACTTTGA	3480
	GACAATTCTT	GAGGAGAACC	TTCCAACTCT	AATTGCCCAT	TTTCTATAAA	TAAGATACGA	3540
	TCAGCATGTT	CAATACCTTT	TAAGTGATGT	GTAATCCAAA	CTAAGGTCTT	ACCTTCCAAT	3600
	TCTTTCATAA	ATACCCTTAG	TAAGGCTTGT	TCAGTAATAG	GATCAAGTCC	AACAGTTGGC	3660
	TCATCTAAGA	TAACAATTGG	GACATCTTTT	AGTAAGATTC	TAGCCAAAGC	AATTCTATGC	3720
	CTTTCGCCAC	CTGAAAACCT	AAGTCCAGCT	TCATCAACCA	TTGTATAGAG	ACCATCTGAT	3780
	AAATCAGTGA	CCATCTCTTT	CAATCCAACT	CGTTCAAGAA	CTTTCCATAC	ATCTTCTTCA	3840
	CTAGCATCTT	GGTTTCCAAT	GCGAATGTTA	TTTAGCAGGG	TTGTATTAAA	AAGGTAGGGC	3900
	GCTTGTTGTA	TCACTCCAAT	ATAGTTAGAA	ATGCAATCAC	CAACTATTGA	AACATCAGCA	3960
	CCGCCTAGGG	TAATCTTCCC	TTGACTTGCT	TTCAAGTCGC	CACGAAGTAG	ACTAGCTAAG	4020
	GTACTCTTGC	CAGAACCACT	CCGCCCTAAA	ATAGCAATTT	TTTCTCCTTC	TTTAATATCC	4080
	AAATCTAAAT	GATGCAAAAC	CCATTTCTCT	TGTGGCTTAT	ACTGGAAACT	TAAATTCTTG	4140
,	ACGGAAAAAT	CATATGGCTT	ATTAGGCAAT	T (SEQ ID	NO:32)		4171

FIG. 6a

YUI	NIFQSLHH	LLACRGKSGN	TLIDQLVADG	LLHADNHYHF	FNGKSLATFN	50
TNO	QLIREVVY	VEISLDTMSS	GEHDLVKVNI	IRPTTEHTIP	TMMTASPYHQ	100
GIN	NDPAADQK	TYQMEGALAV	KQPKHIQVDT	KPFKEEVKHP	SKLPISPATE	150
SFT	THIDSYSL	NDYFLSRGFA	NIYVSGVGTA	GSTGFMTSGD	YQQIQSFKAV	200
IDV	VLNGKVTA	FTSHKRDKQV	KADWSNGLVA	TTGKSYLGTM	STGLATTGVE	250
GLF	KVIIAEAA	ISTWYDYYRE	NGLVCSPGGY	PGEDLDVLTE	LTYSRNLLAG	300
DYI	KNNDCYQ	ALLNEQSKAI	DRQSGDYNQY	WHDRNYLTHV	NNVKSRVVYT	350
HGI	LQDWNVKP	RHVYKVFNAL	PQTIKKHLFL	HQGQHVYMHN	WQSIDFRESM	400
NAI	LLSQELLG	IDNHFQLEEV	IWQDNTTEQT	WQVLDAFGGN	HQEQIGLGDS	450
KKI	TIDNHYDK	EAFDTYCKDF	NVFKNDLFKG	NNKTNQITIN	LPLKKNYLLN	500
GQC	KLHLRVK	TSDKKAILSA	QILDYGPKKR	FKDTPTIKFL	NSLDNGKNFA	550
REF	ALRELPFT	KDHYRVISKG	VLNLQNRTDL	LTIEAIEPEQ	WFDIEFSLQP	600
SIY	QLSKGDN	LRIILYTTDF	EHTIRDNASY	SITVDLSQSY	LTIPTNQGN	649
(SE	Q ID NO:	:33)				
			TOTAL C	L.		

FIG. 6b

MKLLTKERFD	DSQHFWYQIN	LLQESNFGAV	FDHDNKNIPQ	VVATIVDDLQ	50
GSGSSNHFWY	FGNTTDTSIL	MIAHLNRKFY	IQVNLKDFDF	ALNLIAINNW	100
KSLLQTQLEA	LNDTLAIFQ	(SEQ ID NO):34)		119

FIG. 6c

MSSYWNNYPE	LKKNIDETNQ	LIQERIQVRN	KDIEAALSQL	TAAGGKQLRP	50
AFFYLFSQLG	NKENQDTQQL	KKIAASLEIL	HVATLIHDDV	IDDSPLRRGN	100
MTIQSKFGKD	IAVYTGDLLF	TVFFDLILES	MTDTPFMRIN	AKSMRKILMG	150
ELDQMHLRYN	QQQGIHHYLR	AISGKTAELF	KLASKEGAYF	GGAEKEVVRL	200
AGHIGFNIGM	TFQILDDILD	YTADKKTFNK	PVLEDLTQGV	YSLPLLLAIE	250
ENPDIFKPIL	DKKTDMATED	MEKIAYLVVS	HRGVDKARHL	ARKFTEKAIS	300
DINKLPQNSA	KKQLLQLTNY	LLKRKI (SE	EQ ID NO:35)		326

FIG. 6d

LPNKPYDFSV	KNLSFQYKPQ	EKWVLHHLDL	DIKEGEKIAI	LGRSGSGKST	50
LASLLRGDLK	ASQGKITLGG	ADVSIVGDCI	SNYIGVIQQA	PYLFNTTLLN	100
NIRIGNQDAS	EEDVWKVLER	VGLKEMVTDL	SDGLYTMVDE	AGLRFSGGER	150
HRIALARILL	KDVPIVILDE	PTVGLDPITE	QALLRVFMKE	LEGKTLVWIT	200
HHLKGIEHAD	RILFIENGQL	ELEGSPQELS	QSSQRYRQLK	AADDGDL	247
(SEQ ID NO:	:36)				

FIG. 6e

AATTCTATTT	GGAGGTTTTT	CTTGAATAAA	TGGTTAGTTA	AGGCAAGTTC	CTTAGTTGTT	60
TTAGGTGGTA	TGGTTTTATC	TGCGGGTTCC	CGAGTTTTAG	CGGATACTTA	TGTCCGTCCA	120
ATTGATAATG	GTAGAATTAC	AACAGGTTTC	AATGGTTATC	CTGGACATTG	TGGGGTGGAT	180
TATGCTGTTC	CGACTGGAAC	GATTATTAGG	GCAGTGGCAG	ATGGTACTGT	GAAATTTGCA	240
GGAGCTGGAG	CCAACTTTTC	TTGGATGACA	GACTTAGCAG	GAAATTGTGT	CATGATTCAA	300
CATGCGGATG	GAATGCATAG	TGGTTACGCT	CATATGTCAC	GTGTGGTGGC	TAGGACTGGG	360
GAAAAAGTCA	AACAAGGAGA	TATCATCGGT	TACGTAGGAG	CAACTGGTAT	GGCGACGGGA	420
CCTCACCTTC	ATTTTGAATT	TTTACCAGCT	AACCCTAATT	TTCAAAATGG	TTTCCATGGA	480
CGTATCAATC	CAACGTCACT	AATTGCTAAC	GTTGCGACCT	TTAGTGGAAA	AACGCAAGCA	540
TCAGCTCCAA	GCATTAAGCC	ATTACAATCA	GCTCCTGTAC	AGAATCAATC	TAGTAAATTA	600
AAAGTGTATC	GAGTAGATGA	ATTACAAAAG	GTTAATGGTG	TTTGGTTAGT	CAAAAATAAC	660
ACCCTAACGC	CGACTGGGTT	TGATTGGAAC	GATAATGGTA	TACCAGCATC	AGAAATTGAT	720
GAGGTTGATG	CTAATGGTAA	TTTGACAGCT	GACCAGGTTC	TTCAAAAAGG	TGGTTACTTT	780
ATCTTTAATC	CTAAAACTCT	TAAGACTGTA	GAAAAACCCA	TCCAAGGAAC	AGCTGGTTTA	840
ACTTGGGCTA	AGACACGCTT	TGCTAATGGT	AGTTCAGTTT	GGCTTCGCGT	TGACAACAGT	900
CAAGAACTGC				GTTTTAAATG		960
TACTAACTAA	GTACAATTTC	TTTAAACCGT	CTGAAAATAA	TTTTATAGTC	CAGTAAAGTG	1020
				TGAAGCAATG		1080
AAAAGGTACT	ATTGACATCG	ACAATGGCAG	CTTCGCTATT	ATCAGTCGCA	AGTGTTCAAG	1140
CACAAGAAAC	AGATACGACG	TGGACAGCAC	GTACTGTTTC	AGAGGTAAAG	GCTGATTTGG	1200
TAAAGCAAGA	CAATAAATCA	TCATATACTG	TGAAATATGG	TGATACACTA	AGCGTTATTT	1260
CAGAAGCAAT	GTCAATTGAT	ATGAATGTCT	TAGCAAAAAT	TAATAACATT	GCAGATATCA	1320
				TCAGAAGAGT	CATACTGCCA	1380
	AATAGAAACA					1440
				TTCTCTCAAT		1500
				AATGAAGACA		1560
			-	AGCTGTTAGT		1620
				TTCAGAAGTT		1680
				AACAACAGTA		1740
				ACCGGTAAGA		1800
				AGAAACTGGT		1860
				AACAGCTACA		1920
				AGCTCCAACA		1980
				TCCTGAAAAT		2040
				TTATGGAGTT		2100
				TTTAGCAGTC		2160
				CTCTACACAA		2220
				CTCAAATACA		2280
				TGGCGTTACT		2340
ATGACCATGT	TCACGTATCA	TTTAACAAAT	AATATAAAAA	AGGAAGCTAT	TTGGCTTCTT	2400

TTTTATATGC CTTGAATAGA	CTTTCAAGGT	TCTTATCTAA	TTTTTATTAA	ATTGAGGAGA	2460
TTAAGCTATA AGTCTGAAAC	TACTTTCACG	TTAACCGTGA	CTAAATCAAA	ACGTTAAAAC	2520
TAAAATCTAA GTCTGTAAAG	ATTATTGAAA	ACGCTTTAAA	AACAGATATA	ATAAGGTTTG	2580
TAGATATCTA AAATTAAAAA	AGATAAGGAA	GTGAGAATAT	GCCACATCTA	AGTAAAGAAG	2640
CTTTTAAAAA GCAAATAAAA	AATGGCATTA	TTGTGTCATG	TCAAGCTTTG	CCTGGGGAGC	2700
CTCTTTATAC TGAAAGTGGA	GGTGTTATGC	CTCTTTTAGC	TTTGGCAGCT	CAAGAAGCAG	2760
GAGCGGTTGG TATAAGAGCC	AATAGTGTCC	GCGACATTAA	GGAAATTCAA	GAAGTTACTA	2820
ATTTACCTAT CATCGGCATT	ATTAAACGTG	AATATCCTCC	ACAAGAACCA	TTTATCACTG	2880
CTACGATGAC AGAGGTGGAT	CAATTAGCTA	GTTTAGATAT	TGCAGTAATA	GCCTTAGATT	2940
GTACACTTAG AGAGCGTCAT	GATGGTTTGA	GTGTAGCTGA	GTTTATTCAA	AAGATAAAAG	3000
GGAAATATCC TGAACAGTTG	CTAATGGCTG	ATATAAGTAC	TTTTGAAGAA	GGTAAAAATG	3060
CTTTTGAAGC AGGAGTTGAT	TTTGTGGGTA	CAACTCTATC	TGGATACACA	GATTACAGCC	3120
GCCAAGAAGA AGGACCGGAT	ATAGAACTCC	TTAATAAGCT	TTGTCAAGCC	GGTATAGATG	3180
TGATTGCGGA AGGTAAAATT	CATACTCCTA	AGCAAGCTAA	TGAAATTAAT	CATATAGGTG	3240
TTGCAGGAAT TGTAGTTGGT	GGTGCTATCA	CTAGACCAAA	AGAAATAGCG	GAGCGTTTCA	3300
TCTCAGGACT TAGTTAAAAG	TGTTACTCAA	AAATCAAAAT	CAAAATAAAA	AAGGGGAATA	3360
GTTATGAGTA TCAAAAAAG	TGTGATTGGT	TTTTGCCTCG	GAGCTGCAGC	ATTATCAATG	3420
TTTGCTTGTG TAGACAGTAG	TCAATCTGTT	ATGGCTGCCG	AGAAGGATAA	AGTCGAAATT	3480
(SEQ ID NO:37)					

FIG. 7a

NSIWRFFLNK	WLVKASSLVV	LGGMVLSAGS	RVLADTYVRP	IDNGRITTGF	50
NGYPGHCGVD	YAVPTGTIIR	AVADGTVKFA	GAGANFSWMT	DLAGNCVMIQ	100
HADGMHSGYA	HMSRVVARTG	EKVKQGDIIG	YVGATGMATG	PHLHFEFLPA	150
NPNFQNGFHG	RINPTSLIAN	VATFSGKTQA	SAPSIKPLQS	APVQNQSSKL	200
KVYRVDELQK	VNGVWLVKNN	TLTPTGFDWN	DNGIPASEID	EVDANGNLTA	250
DQVLQKGGYF	IFNPKTLKTV	EKPIQGTAGL	TWAKTRFANG	SSVWLRVDNS	300
QELLYK (S	SEQ ID NO:38	3)			306

FIG. 7b

MKMNKKVLLT	STMAASLLSV	ASVQAQETDT	TWTARTVSEV	KADLVKQDNK	50
SSYTVKYGDT	LSVISEAMSI	DMNVLAKINN	IADINLIYPE	TTLTVTYDQK	100
SHTATSMKIE	TPATNAAGQT	TATVDLKTNQ	VSVADQKVSL	NTISEGMTPE	150
		KEVLAQEQAV			200
		VSPASVAAET			250
VKVVTPKVET	GASPEHVSAP	AVPVTTTSTA	TDSKLQATEV	KSVPVAQKAP	300
TATPVAQPAS	TTNAVAAHPE	NAGLQPHVAA	YKEKVASTYG	VNEFSTYRAG	350
DPGDHGKGLA	VDFIVGKNQA	LGNEVAQYST	QNMAANNISY	VIWQQKFYSN	400
TNSIYGPANT	WNAMPDRGGV	TANHYDHVHV	SFNK (SEQ	ID NO:39)	434

FIG. 7c

MPHLSKEAFK	KQIKNGIIVS	CQALPGEPLY	TESGGVMPLL	ALAAQEAGAV	50
GIRANSVRDI	KEIQEVTNLP	IIGIIKREYP	PQEPFITATM	TEVDQLASLD	100
IAVIALDCTL	RERHDGLSVA	EFIQKIKGKY	PEQLLMADIS	TFEEGKNAFE	150
AGVDFVGTTL	SGYTDYXRQE	EGPDIELLNK	LCQAGIDVIA	EGKIHTPKQA	200
NEINHIGVAG	IVVGGAITRP	KEIAERFISG	LS (SEQ II	NO:40)	232

FIG. 7d

MSIKKSVIGF CLGAAALSMF ACVDSSQSVM AAEKDKVEI (SEQ ID NO:41)

39

FIG. 7e

3 max 2 3 max	202222222000	3 000 mm 0 3 0 3			
ATGAAAATGA				CAGCTTCGCT	50
ATTATCAGTC	GCAAGTGTTC	AAGCACAAGA	AACAGATACG	ACGTGGACAG	100
CACGTACTGT	TTCAGAGGTA		TGGTAAAGCA	AGACAATAAA	150
TCATCATATA	CTGTGAAATA	TGGTGATACA	CTAAGCGTTA	TTTCAGAAGC	200
AATGTCAATT	GATATGAATG	TCTTAGCAAA	AATTAATAAC	ATTGCAGATA	250
TCAATCTTAT	TTATCCTGAG	ACAACACTGA	CAGTAACTTA		300
AGTCATACTG	CCACTTCAAT	GAAAATAGAA	ACACCAGCAA	CAAATGCTGC	350
TGGTCAAACA	ACAGCTACTG	TGGATTTGAA	AACCAATCAA	GTTTCTGTTG	400
CAGACCAAAA	AGTTTCTCTC	AATACAATTT	CGGAAGGTAT	GACACCAGAA	450
GCAGCAACAA	CGATTGTTTC	GCCAATGAAG	ACATATTCTT	CTGCGCCAGC	500
TTTGAAATCA	AAAGAAGTAT	TAGCACAAGA	GCAAGCTGTT	AGTCAAGCAG	550
CAGCTAATGA	ACAGGTATCA	ACAGCTCCTG	TGAAGTCGAT	TACTTCAGAA	600
GTTCCAGCAG	CTAAAGAGGA	AGTTAAACCA	ACTCAGACGT	CAGTCAGTCA	650
GTCAACAACA	GTATCACCAG	CTTCTGTTGC	CGCTGAAACA	CCAGCTCCAG	700
TAGCTAAAGT	AGCACCGGTA	AGAACTGTAG	CAGCCCCTAG	AGTGGCAAGT	750
GTTAAAGTAG	TCACTCCTAA	AGTAGAAACT	GGTGCATCAC	CAGAGCATGT	800
ATCAGCTCCA	GCAGTTCCTG	TGACTACGAC	TTCAACAGCT	ACAGACAGTA	850
AGTTACAAGC	GACTGAAGTT	AAGAGCGTTC	CGGTAGCACA	AAAAGCTCCA	900
ACAGCAACAC	CGGTAGCACA	ACCAGCTTCA	ACAACAAATG	CAGTAGCTGC	950
ACATCCTGAA	AATGCAGGGC	TCCAACCTCA	TGTTGCAGCT	TATAAAGAAA	1000
AAGTAGCGTC	AACTTATGGA	GTTAATGAAT	TCAGTACATA	CCGTGCAGGT	1050
GATCCAGGTG	ATCATGGTAA	AGGTTTAGCA	GTCGACTTTA	TTGTAGGTAA	1100
AAACCAAGCA	CTTGGTAATG	AAGTTGCACA	GTACTCTACA	CAAAATATGG	1150
CAGCAAATAA	CATTTCATAT	GTTATCTGGC		TTACTCAAAT	1200
ACAAATAGTA	TTTATGGACC	TGCTAATACT	TGGAATGCAA	TGCCAGATCG	1250
TGGTGGCGTT	ACTGCCAACC	ATTATGACCA	TGTTCACGTA	TCATTTAACA	
AATAA			TOTTORCGIA	TCATITAACA	1300
					1305

(SEQ ID NO:42)

FIG. 8

CAAGAAACAG	ATACGACGTG	GACAGCACGT	ACTGTTTCAG	AGGTAAAGGC	50
TGATTTGGTA	AAGCAAGACA	ATAAATCATC	ATATACTGTG		100
ATACACTAAG	CGTTATTTCA	GAAGCAATGT	CAATTGATAT		150
GCAAAAATTA	ATAACATTGC	AGATATCAAT	CTTATTTATC	CTGAGACAAC	200
ACTGACAGTA	ACTTACGATC	AGAAGAGTCA	TACTGCCACT	TCAATGAAAA	
TAGAAACACC	AGCAACAAAT	GCTGCTGGTC	AAACAACAGC	TACTGTGGAT	250
TTGAAAACCA	ATCAAGTŢTC	TGTTGCAGAC	CAAAAAGTTT	CTCTCAATAC	300
AATTTCGGAA	GGTATGACAC	CAGAAGCAGC	AACAACGATT	GTTTCGCCAA	350
TGAAGACATA	TTCTTCTGCG	CCAGCTTTGA	AATCAAAAGA	AGTATTAGCA	400
CAAGAGCAAG	CTGTTAGTCA	AGCAGCAGCT	AATGAACAGG	TATCAACAGC	450 500
TCCTGTGAAG	TCGATTACTT	CAGAAGTTCC	AGCAGCTAAA	GAGGAAGTTA	550
AACCAACTCA	GACGTCAGTC	AGTCAGTCAA	CAACAGTATC	ACCAGCTTCT	600
GTTGCCGCTG	AAACACCAGC	TCCAGTAGCT	AAAGTAGCAC	CGGTAAGAAC	650
TGTAGCAGCC	CCTAGAGTGG	CAAGTGTTAA	AGTAGTCACT	CCTAAAGTAG	700
AAACTGGTGC	ATCACCAGAG	CATGTATCAG	CTCCAGCAGT	TCCTGTGACT	750
ACGACTTCAA	CAGCTACAGA	CAGTAAGTTA	CAAGCGACTG	AAGTTAAGAG	800
CGTTCCGGTA	GCACAAAAAG	CTCCAACAGC	AACACCGGTA	GCACAACCAG	850
CTTCAACAAC	AAATGCAGTA	GCTGCACATC	CTGAAAATGC	AGGGCTCCAA	900
CCTCATGTTG	CAGCTTATAA	AGAAAAAGTA	GCGTCAACTT	ATGGAGTTAA	950
TGAATTCAGT	ACATACCGTG	CAGGTGATCC	AGGTGATCAT	GGTAAAGGTT	1000
TAGCAGTCGA	_	GGTAAAAACC		TAATGAAGTT	1050
GCACAGTACT		TATGGCAGCA	AATAACATTT	CATATGTTAT	1100
CTGGCAACAA		CAAATACAAA	TACTATTAT	GGACCTGCTA	1150
ATACTTGGAA	TGCAATGCCA	GATCGTGGTG	GCGTTACTGC	CAACCATTAT	1200
GACCATGTTC		TAACAAATAA	(SEQ ID		1230
			, 2 5		1230

FIG. 9

QETDTTWTAR	TVSEVKADLV	KQDNKSSYTV	KYGDTLSVIS	EAMSIDMNVL	50
AKINNIADIN	LIYPETTLTV	TYDQKSHTAT	SMKIETPATN	AAGQTTATVD	100
LKTNQVSVAD	QKVSLNTISE	GMTPEAATTI	VSPMKTYSSA	PALKSKEVLA	150
QEQAVSQAAA	NEQVSTAPVK	SITSEVPAAK	EEVKPTQTSV	SQSTTVSPAS	200
VAAETPAPVA	KVAPVRTVAA	PRVASVKVVT	PKVETGASPE	HVSAPAVPVT	250
TTSTATDSKL	QATEVKSVPV	AQKAPTATPV	AQPASTTNAV	AAHPENAGLQ	300
	ASTYGVNEFS				350
AQYSTQNMAA	NNISYVIWQQ	KFYSNTNSIY	GPANTWNAMP	DRGGVTANHY	400
DHVHVSFNK	(SEQ ID NO:				409

FIG. 9a

Fig. 10

1 / 63

SEQUENCE LISTING

<110> BioChem Vaccins RIOUX, Clément DENIS, Martin BRODEUR, Bernard R. HAMEL, Josée CHARLEBOIS, Isabelle BOYER, Martine <120> NOVEL GROUP B STREPTOCOCCUS ANTIGENS <130> 12806-9PCT <150> 60/075,425 <151> 1998-02-20 <160> 44 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 4514 <212> DNA <213> Streptococcus <220> <221> CDS <222> (3)...(464) <221> CDS <222> (534)...(887) <223> <221> CDS <222> (1024)...(1767) <221> CDS <222> (1841)...(4288) <221> CDS <222> (2735)...(4288) <400> 1

ta tct ggc aaa gag cca gct aat cgt ttt agt tgg gct aaa aat aaa

1

Ser Gly Lys Glu Pro Ala Asn Arg Phe Ser Trp Ala Lys Asn Lys

10

47

					ttc Phe		_			_	_					95
	_	_			ata Ile	_				_			_			143
					ttg Leu							_				191
_		_			gat Asp		-					_	_			239
					ctt Leu 85				_							287
					ttt Phe								_			335
		_		_	tta Leu	_				_	_	_		-	_	383
				-	atg Met		-				_		_	_		431
					tat Tyr						taat	agaa	aag t	catct	agtga	484
taga	actaa	aca g	gtate	gatat	ig gt	tatgt	caaa	a gta	attta	agga	ggag	gaaga	Me	_	et act er Thr	542
					gca Ala					_	_					590
					tta Leu									_		638
					gaa Glu 195											686
					gta Val											734

				-					-	-	gtt Val 235		tta Leu	782
											gtt Val			830
											ctt Leu			878
tta Leu	taa	tacta	act t	cagco	egtte	cg at	ittag	gttga	a acq	ggcti	tta			927
								atg	act	gag	aac aac Asn	tgg		987 1041
								_	_	_	ggt Gly			1089
											cgc Arg			1137
											att Ile			1185
											acc Thr 340			1233
											cat His			1281
											aat Asn			1329
											ctt Leu			1377
											gat Asp			1425
											aaa Lys 420			1473

	at atg yr Met 425														1521
	ag att ys Ile 40												_	_	1569
	tg gtt eu Val														1617
	ct tct la Ser														1665
	at cac is His														1713
aaa aa Lys Ly	ag ttt ys Phe 505	atc Ile	aac Asn	gat Asp	acg Thr	ttg Leu 510	aaa Lys	gga Gly	gaa Glu	att Ile	gtt Val 515	gaa Glu	aaa Lys	gct Ala	1761
aat to Asn *	ga aaaa *	agtca	aaa t	cact	gact	et ct	gtga	attaa	a aat	itgta	attt	ttta	atato	ctg	1817
ttttag	gtgct (tatta	attgt	t ga	Me						g Th			et gtt er Val	1870
gag ca	gtgct (aa cta ln Leu	aag	agt	gtt	Me 52 ttt	et I] 20 ggg	le Hi	ls Le	eu Ly tot	/s Ai 52 cca	rg Th	nr Il	le Se	er Val	1870 1918
gag ca Glu Gl 530 tta at	aa cta	aag Lys ctt	agt Ser gtg	gtt Val 535	Me 52 ttt Phe gtt	et I] 20 999 Gly atc	caa Gln gct	tta Leu gtc	tct Ser 540	cca Pro	atg Met	aat Asn	ctt Leu gga	ttc Phe 545	
gag ca Glu Gl 530 tta at Leu Il	aa cta ln Leu ct atc	aag Lys ctt Leu ctg	agt Ser gtg Val 550	gtt Val 535 ggg Gly	Me 52 ttt Phe gtt Val	ggg Gly atc Ile	caa Gln gct Ala	tta Leu Stc Val 555	tct Ser 540 tta Leu	cca Pro	atg Met aca Thr	aat Asn acc Thr	ctt Leu gga Gly 560	ttc Phe 545 tat Tyr	1918
gag ca Glu Gl 530 tta at Leu Il gac tt Asp Ph	aa cta ln Leu tt atc le Ile	aag Lys ctt Leu ctg Leu 565	agt Ser gtg Val 550 aat Asn	gtt Val 535 999 Gly gga Gly	ttt Phe gtt Val ctt Leu tgt	ggg Gly atc Ile tta Leu	caa Gln gct Ala cgt Arg 570	tta Leu gtc Val 555 aca Thr	tct Ser 540 tta Leu gat Asp	cca Pro ccg Pro aaa Lys	atg Met aca Thr agc Ser	aat Asn acc Thr aaa Lys 575	ctt Leu gga Gly 560 agg Arg	ttc Phe 545 tat Tyr tat Tyr	1918
gag ca Glu Gl 530 tta at Leu Il gac tt Asp Ph att tt Ile Le	aa cta ln Leu tt atc le Ile tt gta ne Val ta cag eu Gln 580 gt ggc ly Gly	aag Lys ctt Leu ctg Leu 565 act Thr	agt Ser gtg Val 550 aat Asn agt Ser	gtt Val 535 ggg Gly gga Gly tgg Trp	ttt Phe gtt Val ctt Leu tgt Cys	ggg Gly atc Ile tta Leu atc Ile 585	caa Gln gct Ala cgt Arg 570 aac Asn	tta Leu gtc Val 555 aca Thr act Thr	tct Sev 540 ttau gat Asp ttte atg	cca Pro ccg Pro aaa Lys aat Asn	atg Met aca Thr agc ser aac Asn 590	aat Asn acc Thr aaa Lys 575 ttg Leu	ctt Leu gga Gly 560 agg Arg	ttc Phe 545 tat Tyr tat Tyr	1918 1966 2014

WO 99/42588

					ctg Leu										atg Met	2206
					gcc Ala										gta Val	2254
					atg Met										ggt Gly	2302
					tat Tyr										ata Ile	2350
					tct Ser 695											2398
ttt Phe	ata Ile	att Ile	atc Ile	ggt Gly 710	tat Tyr	tta Leu	atg Met	ggc	att Ile 715	cat His	cta Leu	cca Pro	gtt Val	tat Tyr 720	aaa Lys	2446
					tgt Cys										ctt Leu	2494
					gga Gly										ttt Phe	2542
					cct Pro										ctt Leu	2590
					tat Tyr 775										ttc Phe 785	2638
					ggt Gly											2686
					tca Ser						_	-	_		ttg Leu	2734
					gca Ala										_	2782
					atg Met											2830

	caa atg Gln Met		Gln Ph									2878
ttt att Phe Ile	ctc tta Leu Leu	gct aga Ala Arg 870	act at Thr Il	t gat e Asp	caa Gln 875	aaa Lys	gtg Val	aaa Lys	aat Asn	gct Ala 880	ttt Phe	2926
	gct att Ala Ile 885	Ile Trp			Thr							2974
	att agt Ile Ser 900			r Phe								3022
	tta gtc Leu Val											3070
	gaa gag Glu Glu		Lys As									3118
gga gtt Gly Val	cta ttt Leu Phe	tat att Tyr Ile 950	gca gg Ala Gl	a cta y Leu	cta Leu 955	ttc Phe	cct Pro	atc Ile	agg Arg	gct Ala 960	cat His	3166
att aca Ile Thr	ggt ggt Gly Gly 965	agt att Ser Ile	gaa co Glu Ar	c ctg g Leu 970	cat His	tat Tyr	atc Ile	ata Ile	gca Ala 975	tgg Trp	gag Glu	3214
ccg ata Pro Ile	gca ttg Ala Leu 980	gct acg Ala Thr	ttg at Leu Il 98	e Leu	act Thr	ctc Leu	gtt Val	tat Tyr 990	tta Leu	tgt Cys	ttg Leu	3262
	att tta Ile Leu 5							Asp				3310
	cgt tat Arg Tyr		Leu Le				Gly					3358
	tta gcc Leu Ala					Leu					Lys	3406
	gaa gat Glu Asp 104!	Cys Val			Phe					Asn		3454
	att atg Ile Met 1060		Pro Al						Ile			3502

gct Ala	att Ile 107	Glu	tcg Ser	ttt Phe	att Ile	gat Asp 1080	Asp	gct Ala	gat Asp	aag Lys	cta Leu 108	Asp	tat Tyr	gac Asp	ctt Leu	3550
gtt Val 109	Phe	tac Tyr	agt Ser	att Ile	gga Gly 109!	Gln	aag Lys	ttg Leu	aca Thr	cta Leu 110	Leu	tta Leu	cat His	gag Glu	tat Tyr 1105	3598
ggt Gly	ttt Phe	gac Asp	ttt Phe	atg Met 111	Lys	gtt Val	ggt Gly	gag Glu	gat Asp 111!	Ala	tta Leu	gtt Val	aat Asn	tta Leu 112		3646
			Leu	Lys	Gly		Lys		Lys					Ala	cta Leu	3694
			Glu					Tyr					Gln		cca Pro	3742
cat His	agt Ser 1159	Gln	gag Glu	cta Leu	cta Leu	aat Asn 1160	Ser	ttg Leu	gaa Glu	gag Glu	att Ile 116	Ser	aat Asn	act Thr	tgg Trp	3790
	Glu		cgt Arg			Lys					Gly				aaa Lys 1185	3838
gat Asp	tat Tyr	ttc Phe	caa Gln	caa Gln 1190	Ala	cca Pro	ata Ile	gct Ala	ttg Leu 1199	Val	aaa Lys	aat Asn	gct Ala	gaa Glu 1200	His	3886
			gct Ala 1205	Phe					Pro					Ser	att Ile	3934
			Asp					Asp					Pro		ggc	3982
		Asp	ttc Phe				Ser					Tyr			aag Lys	4030
			tat											gtt Val		4078
		nis	Tyr	Pne	1255		ψ±γ			1260			-		1265	
cgc	gtt	gaa	aca Thr	agt	1255 ttt Phe	gct	aaa	gag	aga	1260 atg Met	gcg	tat	ctt		tat Tyr	4126

			Thr					Glu					Cys		cgt Arg	4222
		Trp					Ile					Met			agt Ser	4270
	Ile		att Ile				gctti	tat 1	ttgg	caati	ta aa	aaag	agca	t		4318
aata tact	atgat tggt	tgt (gctti	ttaa: tttc:	at at	ttgtt	tag	c ta	ctgta	agct	gct	gatt	tat q	gctti	ctttat tacagc attgag	4378 4438 4498 4514
	<2 <2	212>	2 154 PRT Stre	epto	cocci	ıs										
Ser		100> Lvs	2 Glu	Pro	Ala	Asn	Ara	Phe	Ser	Trn	Δla	Lve	Δan	Laze	T.en	
1				5					10			_		15		
Leu	Ile	Asn	Gly 20	Phe	Ile	Ala	Thr	Leu 25	Ala	Ala	Thr	Ile	Leu 30	Phe	Phe	
Ala	Val	Gln 35	Phe	Ile	Gly	Leu	Lys 40	Pro	Asp	Tyr	Pro	Gly 45	Lys	Thr	Tyr	
Phe	Ile 50	Ile	Leu	Leu	Thr	Ala 55	Trp	Thr	Leu	Met	Ala 60		Val	Thr	Ala	
Leu 65		Gly	Trp	Asp			Tyr	Gly	Ser			Ser	Leu	Leu		
	Leu	Phe	Gln		70 Gly	Ser	Ser	Ala		75 Thr	Tyr	Pro	Ile		80 Leu	
Ser	Pro	Lys	Phe	85 Phe	Gln	Thr	Ile	Gln	90 Pro	Phe	Leu	Pro	Met	95 Thr	Tyr	
Ser	Val	Ser	100 Gly	Leu	Arg	Glu	Thr	105 Ile	Ser	Leu	Thr	Gly	110 Asp	Val	Asn	
His	Gln	115 Trp	Arg	Met	Leu	Val	120 Ile	Phe	Leu	Val	Ser	125 Ser	Met	Tle	Len	
	130					135					140					
145	пси	пец	Ile	TYL	150	пур	GIII	GIU	Asp							
	<2 <2	210> 211> 212> 213>	118	eptod	cocci	ls										
	< 4	100>	3													
Met 1	Ser	Thr	Leu	Thr 5	Ile	Ile	Ile	Ala	Thr 10	Leu	Thr	Ala	Leu	Glu 15	His	
Phe	Tyr	Ile	Met 20	Tyr	Leu	Glu	Thr	Leu 25		Thr	Gln	Ser	Asn 30		Thr	

9 / 63

```
Gly Lys Ile Phe Ser Met Ser Lys Glu Glu Leu Ser Tyr Leu Pro Val
Ile Lys Leu Phe Lys Asn Gln Gly Val Tyr Asn Gly Leu Ile Gly Leu
                         55
Phe Leu Leu Tyr Gly Leu Tyr Ile Ser Gln Asn Gln Glu Ile Val Ala
65
                     70
                                                              80
Val Phe Leu Ile Asn Val Leu Leu Val Ala Ile Tyr Gly Ala Leu Thr
                85
                                     90
                                                          95
Val Asp Lys Lys Ile Leu Leu Lys Gln Gly Gly Leu Pro Ile Leu Ala
            100
                                 105
                                                     110
Leu Leu Thr Phe Leu Phe
        115
      <210> 4
      <211> 247
      <212> PRT
      <213> Streptococcus
      <400> 4
Met Thr Glu Asn Trp Leu His Thr Lys Asp Gly Ser Asp Ile Tyr Tyr
                                                          15
Arg Val Val Gly Gln Gly Gln Pro Ile Val Phe Leu His Gly Asn Ser
            20
                                 25
                                                     30
Leu Ser Ser Arg Tyr Phe Asp Lys Gln Ile Ala Tyr Phe Ser Lys Tyr
Tyr Gln Val Ile Val Met Asp Ser Arg Gly His Gly Lys Ser His Ala
Lys Leu Asn Thr Ile Ser Phe Arg Gln Ile Ala Val Asp Leu Lys Asp
65
                     70
                                                              80
Ile Leu Val His Leu Glu Ile Asp Lys Val Ile Leu Val Gly His Ser
                85
                                     90
                                                          95
Asp Gly Ala Asn Leu Ala Leu Val Phe Gln Thr Met Phe Pro Gly Met
            100
                                 105
Val Arg Gly Leu Leu Leu Asn Ser Gly Asn Leu Thr Ile His Gly Gln
                            120
                                                 125
Arg Trp Trp Asp Ile Leu Leu Val Arg Ile Ala Tyr Lys Phe Leu His
    130
                        135
                                            140
Tyr Leu Gly Lys Leu Phe Pro Tyr Met Arg Gln Lys Ala Gln Val Ile
145
                    150
                                         155
                                                             160
Ser Leu Met Leu Glu Asp Leu Lys Ile Ser Pro Ala Asp Leu Gln His
                165
                                     170
                                                         175
Val Ser Thr Pro Val Met Val Leu Val Gly Asn Lys Asp Ile Ile Lys
            180
                                 185
                                                     190
Leu Asn His Ser Lys Lys Leu Ala Ser Tyr Phe Pro Arg Gly Glu Phe
        195
                            200
Tyr Ser Leu Val Gly Phe Gly His His Ile Ile Lys Gln Asp Ser His
    210
                        215
                                             220
Val Phe Asn Ile Ile Ala Lys Lys Phe Ile Asn Asp Thr Leu Lys Gly
225
                    230
                                         235
                                                             240
Glu Ile Val Glu Lys Ala Asn
                245
      <210> 5
      <211> 816
      <212> PRT
```

<213> Streptococcus

	<	400>	5												
Met 1			Leu	Lys 5	Arg	Thr	Ile	Ser	Val 10	Glu	Gln	Leu	Lys	Ser 15	Val
Phe	Gly	Gln	Leu 20	Ser	Pro	Met	Asn	Leu 25	Phe	Leu	Ile	Ile	Leu 30		Gly
		35	Val				40					45			-
	50		Thr			55					60				_
65			Thr		70					75					80
			Arg	85					90					95	
			Glu 100					105					110	_	
		115	Ser				120					125			
	130		Val			135					140				
145			Val		150					155					160
			Met	165					170					175	
			Trp 180 Ile					185					190		_
		195	Ala				200					205			_
	210		Leu			215					220				
225			Val		230					235					240
			Phe	245					250					255	
			260 Asn					265					270		_
		275	Gln				280					285			
	290		Phe			295					300			_	
305			Lys		310					315					320
			Gly	325					330					335	
			340 Gln					345					350		
		355	Thr				360					365			
	370		Trp			375					380				_
385			Tyr		390					395					400
			Ile	405					410					415	
<u>.</u> -	L	<u>I</u>	420			- weak		425		<u> </u>	VUL	LIC U	430	+ Y +	TTC

Ala	Gly	Leu 435	Leu	Phe	Pro	Ile		Ala			Thr	Gly 445	Gly	Ser	Ile
Glu	Arg 450	Leu	His	Tyr	Ile	Ile 455	Ala	Trp	Glu	Pro	Ile 460	Ala	Leu	Ala	Thr
Leu 465	Ile	Leu	Thr	Leu	Val 470			Cys				Ile		Gln	Gly 480
				485					490					Lys 495	~
Leu	Leu	Gln	Ala 500	Tyr	Gly	Gly	Ser		Asp		_		Ala 510	Phe	Leu
		515					520					525		Cys	
	530					535			-	_	540			Gly	
Pro 545	Ala	Gly	Asp	Asp		Tyr			Glu	Ala 555	Ile	Glu	Ser	Phe	Ile 560
				565					570					Ile 575	_
			580					585					590	Met	_
		595					600					605		Lys	_
	610					615					620			Lys	
625					630					635				Leu	640
				645					650					Pro 655	
			660					665					670	Gln	
		675					680					685		Phe	
	690					695					700			Leu	
705					710					715				Leu	720
				725					730		-			Phe 735	-
			740					745					750	Ser	
		755					760					765		His	
	770					775					780			Pro	
785					790					795				Ile	800
Ala	Ile	Cys	Ala	Leu 805	Leu	Met	Glu	Asp	Ser 810	Lys	Ile	Lys	Ile	Val 815	Lys

<210> 6

<211> 518

<212> PRT

<213> Streptococcus

<400> 6

WO 99/42588

Met 1	Arg	Ile	Leu	Gly 5	Ala	Phe	Leu	Ile	Phe 10	Ser	Thr	Ala	Phe	Phe 15	Glu
Asn	Ile	Thr	Tyr 20	Ile	Met	Trp	Leu	Gln 25	Lys	Leu	Gly	Leu	Asp 30	Pro	Leu
Gln	Glu	Gln 35	Met	Leu	Trp	Gln	Phe 40	Pro	Gly	Leu	Leu	Leu 45	Gly	Val	Cys
Phe	Ile 50	Leu	Leu	Ala	Arg	Thr 55	Ile	Asp	Gln	Lys	Val 60	Lys	Asn	Ala	Phe
Pro 65	Ile	Ala	Ile	Ile	Trp 70	Ile	Thr	Leu	Thr	Leu 75	Phe	Tyr	Leu	Asn	Leu 80
				85					90			Leu		95	
			100					105				Gln	110		_
		115				_	120	-				Val 125			
	130					135					140	Ile	_		
145					150					155					Glu 160
				165					170			Tyr		175	
			180					185			_	Asp	190		
		195					200				-	Gly 205			
	210					215					220	Trp			_
225					230					235		Val			240
				245					250			Tyr		255	
			260					265				Asp	270		
		275					280					Leu 285			_
	290					295					300	Val Arg			
305					310					315		Val			320
				325					330			Ser		335	
			340					345				Tyr	350		
		355					360					365 Asn			_
	370					375					380				
<u> </u>	val		1110	1114		11011	110	MCC	110	395	1 7 1	Giu	пуъ	261	400
385	Val		Asn	T,e11	390 Met	Δτα	Hie	Aen	Laze		Tare	Tle	Dro	Z c c	
385 Ile	Ser	Ile		405	Met				410	Gln	-	Ile		415	Gly
385 Ile Val	Ser Met	Ile Asp	Phe 420	405 Leu	Met Phe	Leu	Ser	Leu 425	410 Phe	Gln	Tyr	Ile Tyr Ser	Gln 430	415 Glu	Gly Lys

Arg																
	Val 450	Glu	Thr	Ser	Phe	Ala 455	Lys	Glu	Arg	Met	Ala 460	Tyr	Leu	Val	Tyr	
His 465	Phe	Gly	Ser	His	Phe 470	Tyr	Ser	Phe	Asn	Gly 475	Leu	His	Lys	Tyr	Lys 480	
Lys	Lys	Phe	Thr	Pro 485	Leu	Trp	Ser	Glu	Arg 490	Tyr	Ile	Ser	Cys	Ser 495	Arg	
Ser	Ser	Trp	Leu 500	Ile	Cys	Ala	Ile	Cys 505	Ala	Leu	Leu	Met	Glu 510	Asp	Ser	
Lys	Ile	Lys 515	Ile	Val	Lys											
	<210> 7 <211> 5126 <212> DNA <213> Streptococcus															
	< 2	220>														
			> > CDS > (1)(687)													
	<221> CDS <222> (701)(2557)															
	<221> CDS <222> (2566)(3036)															
		<221> CDS <222> (3106)(4842)														
			CDS (4850)(5125)													
		222>	(485	50).	(51	L25)										
	< 4	100>	7													
	<4 ttt		7 atc	gaa	aca	aca										48
Asn 1 tca	ttt Phe	100> gat	7 atc Ile gag	gaa Glu 5	aca Thr	aca Thr	Thr	Phe gag	Glu 10 cgt	Ala	Met ttt	Lys	Lys	His 15 ttt	Ala	48 96
Asn 1 tca Ser	ttt Phe tta Leu	100> gat Asp	7 atc Ile gag Glu 20 tta	gaa Glu 5 aaa Lys	aca Thr ata Ile	aca Thr tct Ser	Thr gtt Val	Phe gag Glu 25 cgt	Glu 10 cgt Arg	Ala tct Ser	Met ttt Phe	Lys att Ile ctg	gaa Glu 30 gca	His 15 ttt Phe	Ala gat Asp	
Asn 1 tca Ser aaa Lys	ttt Phe tta Leu ctt Leu	ttg Leu	7 atc Ile gag Glu 20 tta Leu gct	gaa Glu 5 aaa Lys gca Ala	aca Thr ata Ile cct Pro	aca Thr tct Ser tat Tyr	Thr gtt Val tgg Trp 40 cta	Phe gag Glu 25 cgt Arg	Glu 10 cgt Arg aaa Lys	tct Ser gga Gly	Met ttt Phe atg Met	att Ile ctg Leu 45	Lys gaa Glu 30 gca Ala	His 15 ttt Phe cta Leu	Ala gat Asp ata Ile	96
Asn 1 tca Ser aaa Lys gat Asp	ttt Phe tta Leu ctt Leu agt ser 50 tta	ttg Leu cta Leu 35	7 atc Ile gag Glu 20 tta Leu gct Ala	gaa Glu 5 aaa Lys gca Ala ttt Phe	aca Thr ata Ile cct Pro aat Asn	aca Thr tct Ser tat Tyr tat Tyr 55	Thr gtt Val tgg Trp 40 cta Leu cag	Phe gag Glu 25 cgt Arg cca Pro	Glu 10 cgt Arg aaa Lys tgc Cys	tct Ser gga Gly tta Leu	Met ttt Phe atg Met aaa Lys 60 gat	att Ile ctg Leu 45 aat Asn	Lys gaa Glu 30 gca Ala agg Arg	His 15 ttt Phe cta Leu gaa Glu ttt	Ala gat Asp ata Ile tta Leu gag	96 144

cac His	aca Thr	aag Lys	act Thr 100	ttt Phe	tta Leu	aaa Lys	aaa Lys	tgg Trp 105	aag Lys	aca Thr	tca Ser	act Thr	cac His 110	ttt Phe	caa Gln	336
aaa Lys	gat Asp	gtt Val 115	gag Glu	cat His	ata Ile	gtg Val	gat Asp 120	gtt Val	tat Tyr	cgt Arg	att Ile	cgt Arg 125	gaa Glu	caa Gln	atg Met	384
gga Gly	ttg Leu 130	gct Ala	aaa Lys	gaa Glu	cat His	ctt Leu 135	tat Tyr	cgt Arg	tat Tyr	gga Gly	aaa Lys 140	act Thr	ata Ile	ata Ile	aaa Lys	432
									ggc Gly							480
aaa Lys	ata Ile	gaa Glu	caa Gln	cta Leu 165	gat Asp	agt Ser	gag Glu	tta Leu	gca Ala 170	atc Ile	cat His	gat Asp	agg Arg	cat His 175	gag Glu	528
ata Ile	gtt Val	gtc Val	aat Asn 180	ggt Gly	ggc Gly	acc Thr	tta Leu	atc Ile 185	aag Lys	aaa Lys	tta Leu	gga Gly	ata Ile 190	aaa Lys	cct Pro	576
									caa Gln						gtt Val	624
tta Leu	gga Gly 210	caa Gln	ctg Leu	att Ile	aat Asn	gaa Glu 215	gaa Glu	gag Glu	gct Ala	att Ile	tta Leu 220	cat His	ttt Phe	gtt Val	aag Lys	672
Leu	Gly 210 tac	Gln	Leu	Ile gat	Asn	Glu 215	Glu gat t	Glu at a Me	gct Ala atg a et Se	Ile agc g	Leu 220 gat t	His tt t	Phe ta g	Val gta g	Lys	672 721
cag Gln 225	Gly 210 tac Tyr	ttg Leu	Leu atg Met	gat Asp	Asn taga	Glu 215 agagg	Glu gat t gat	Glu at a Me 23 aag	Ala atg a et Se	Ile agc e er As	Leu 220 gat t sp Ph	His tt t ne Le	Phe ta g u Va 23	Val gta g al As gtt	Lys gat sp tca	
cag Gln 225 gga Gly	Gly 210 tac Tyr ttg Leu	ttg Leu act Thr	atg Met aag Lys 240 cat	gat Asp tcg Ser	taga gtt Val	Glu 215 agagg ggt Gly gac	Glu gat Asp	Glu at aag Lys 245	Ala atg a et Se 30 acg	Ile agc ger As gtc Val	Leu 220 gat t sp Ph ttt Phe	His tt t e Le agt Ser	Phe ta g u Va 23 aat Asn 250	Val gta g al As gtt Val	Lys gat sp tca ser	721
cag Gln 225 gga Gly ttt Phe	Gly 210 tac Tyr ttg Leu atc Ile	ttg Leu act Thr atc Ile 255	Leu atg Met aag Lys 240 cat His	gat Asp tcg Ser agt ser	Asn taga gtt Val tta Leu cta	Glu 215 gagg ggt Gly gac Asp	gat tagt Arg 260	Glu at a Me 23 aag Lys 245 att Ile	Ala tg a t Se o acg Thr	Ile gc g er As gtc Val att Ile	Leu 220 gat t sp Ph ttt Phe att Ile	His tt t ne Le agt Ser ggt 265 gaa	Phe ta g u Va aat Asn 250 gtc Val	Val gta g al As gtt Val aat Asn	Lys gat sp tca ser gga Gly	721 769
cag Gln 225 gga Gly ttt Phe act Thr	Gly 210 tac Tyr ttg Leu atc Ile gga Gly 270	ttg Leu act Thr atc 11e 255 aag Lys	atg Met aag Lys 240 cat His aca Thr	gat Asp tcg Ser agt ser aca Thr	taga gtt Val tta Leu cta Leu	gage ggt ggt gac Asp tta Leu 275	gat to gat Asp cgt Asp tca	at a Me 23 aag Lys 245 att Ile gtt Val	Ala atg a at Se 30 acg Thr ggg Gly	gc ger As gtc Val att Ile	Leu 220 gat t sp Ph tte Phe att Ile ggty 280 gat	His tt t e Le agt Ser ggt 265 gaa Glu tat	ta of ta value aag	Val gta g al As gtt Val aat Asn ggt Gly	Lys gat sp tca ser gga Gly ttt Phe	721 769 817

•

PCT/CA99/00114

acc Thr	gta Val	ctt Leu	tct Ser 320	tct Ser	gac Asp	tta Leu	aga Arg	gag Glu 325	atg Met	gct Ala	tta Leu	att Ile	aaa Lys 330	gaa Glu	tat Tyr	1009
gaa Glu	tta Leu	ttg Leu 335	ctt Leu	aat Asn	cac His	tac Tyr	gaa Glu 340	gaa Glu	agt Ser	aag Lys	caa Gln	tca Ser 345	cgt Arg	cta Leu	gag Glu	1057
aaa Lys	gta Val 350	atg Met	gca Ala	gaa Glu	atg Met	gat Asp 355	tct Ser	tta Leu	gat Asp	gct Ala	tgg Trp 360	tct Ser	att Ile	gag Glu	agc Ser	1105
gaa Glu 365	gtc Val	aaa Lys	aca Thr	gta Val	tta Leu 370	tcc Ser	aaa Lys	tta Leu	ggt Gly	att Ile 375	act Thr	gat Asp	ttg Leu	cag Gln	ttg Leu 380	1153
tcg Ser	gtt Val	ggt Gly	gaa Glu	tta Leu 385	tca Ser	gga Gly	gga Gly	tta Leu	cga Arg 390	aga Arg	cgt Arg	gtt Val	caa Gln	tta Leu 395	gcg Ala	1201
caa Gln	gta Val	tta Leu	tta Leu 400	aat Asn	gat Asp	gca Ala	gat Asp	tta Leu 405	ttg Leu	ctc Leu	tta Leu	gac Asp	gaa Glu 410	cct Pro	act Thr	1249
aac Asn	cac His	tta Leu 415	gat Asp	att Ile	gac Asp	act Thr	att Ile 420	gca Ala	tgg Trp	tta Leu	acg Thr	aat Asn 425	ttt Phe	ttg Leu	aaa Lys	1297
aat Asn	agt Ser 430	aaa Lys	aag Lys	aca Thr	gtg Val	ctt Leu 435	ttt Phe	ata Ile	act Thr	cat His	gat Asp 440	cgt Arg	tat Tyr	ttt Phe	cta Leu	1345
gac Asp 445	aat Asn	gtt Val	gca Ala	aca Thr	cgt Arg 450	att Ile	ttt Phe	gaa Glu	tta Leu	gat Asp 455	aag Lys	gca Ala	cag Gln	att Ile	aca Thr 460	1393
gaa Glu	tat Tyr	caa Gln	ggc Gly	aat Asn 465	tat Tyr	cag Gln	gat Asp	tat Tyr	gtc Val 470	cga Arg	ctt Leu	cgt Arg	gca Ala	gaa Glu 475	caa Gln	1441
gac Asp	gag Glu	cgt Arg	gat Asp 480	gct Ala	gct Ala	agt Ser	tta Leu	cat His 485	aaa Lys	aag Lys	aaa Lys	cag Gln	ctt Leu 490	tat Tyr	aaa Lys	1489
						cgt Arg										1537
caa Gln	cag Gln 510	gct Ala	cgt Arg	att Ile	aat Asn	cgt Arg 515	ttt Phe	caa Gln	aat Asn	cta Leu	aaa Lys 520	aac Asn	gat Asp	tta Leu	cac His	1585
caa Gln 525	aca Thr	agc Ser	gat Asp	aca Thr	agc Ser 530	gat Asp	ttg Leu	gaa Glu	atg Met	aca Thr 535	ttt Phe	gaa Glu	aca Thr	agt Ser	cga Arg 540	1633

								tac Tyr 555		1681
								aaa Lys		1729
								tta Leu		1777
								tct Ser		1825
								aat Asn		1873
gat Asp								gat Asp 635		1921
								gaa Glu		1969
								tta Leu		2017
							_	gaa Glu	_	2065
								att Ile		2113
								cct Pro 715		2161
		Ser						aat Asn		2209
		720								
	att	ttt			atc			aat Asn		2257

atc Ile 765	Ser	aaa Lys	aaa Lys	gag Glu	agt Ser 770	acc Thr	aag Lys	aca Thr	agt Ser	cgt Arg 775	gaa Glu	aag Lys	caa Gln	agt Ser	cgt Arg 780	2353
aaa Lys	aga Arg	atg Met	tct Ser	tac Tyr 785	ttt Phe	gaa Glu	aaa Lys	caa Gln	gaa Glu 790	tgg Trp	gcg Ala	aca Thr	att Ile	gaa Glu 795	gac Asp	2401
												gaa Glu				2449
												tta Leu 825				2497
tta Leu	gat Asp 830	gca Ala	aaa Lys	aat Asn	gaa Glu	gca Ala 835	ctt Leu	cta Leu	gaa Glu	aag Lys	tat Tyr 840	gac Asp	cgt Arg	tat Tyr	gag Glu	2545
tac Tyr 845	tac ctt agt gag ttagacac atg att atc cgt ccg att att aaa aat gat Tyr Leu Ser Glu LeuAspThrMet Ile Ile Arg Pro Ile Ile Lys Asn Asp 850 855 860														n Asp	2595
gac Asp	caa Gln	gca Ala	gtt Val 865	gca Ala	caa Gln	tta Leu	att Ile	cga Arg 870	caa Gln	agt Ser	tta Leu	cgc Arg	gcc Ala 875	tat Tyr	gat Asp	2643
tta Leu	gat Asp	aaa Lys 880	cct Pro	gat Asp	aca Thr	gca Ala	tat Tyr 885	tca Ser	gac Asp	cct Pro	cac His	tta Leu 890	gat Asp	cat His	ttg Leu	2691
acc Thr	tca Ser 895	tac Tyr	tac Tyr	gaa Glu	aaa Lys	ata Ile 900	gag Glu	aag Lys	tca Ser	gga Gly	ttc Phe 905	ttt Phe	gtc Val	att Ile	gag Glu	2739
gag Glu 910	aga Arg	gat Asp	gag Glu	att Ile	att Ile 915	gly	tgt Cys	Gly	ggc Gly	ttt Phe 920	ggt Gly	ccg Pro	ctg Leu	aaa Lys	aat Asn 925	2787
cta Leu	att Ile	gca Ala	gag Glu	atg Met 930	cag Gln	aag Lys	gtg Val	tac Tyr	att Ile 935	gca Ala	gaa Glu	cgt Arg	ttc Phe	cgt Arg 940	ggt Gly	2835
aag Lys	gly ggg	ctt Leu	gct Ala 945	act Thr	gat Asp	tta Leu	gtg Val	aaa Lys 950	atg Met	att Ile	gaa Glu	gta Val	gaa Glu 955	gct Ala	cga Arg	2883
aaa Lys	att Ile	999 960	tat Tyr	aga Arg	caa Gln	ctt Leu	tat Tyr 965	tta Leu	gag Glu	aca Thr	gcc Ala	agt Ser 970	act Thr	ttg Leu	agt Ser	2931
agg Arg	gca Ala 975	act Thr	gcg Ala	gtt Val	tat Tyr	aag Lys 980	cat His	atg Met	gga Gly	tat Tyr	tgt Cys 985	gcc Ala	tta Leu	tcg Ser	caa Gln	2979

									Ala	atg Met 1000				Met		3027
	gat Asp		taag	gttga	aaa g	gtgga	attag	gt ga	aacat	iggat	t taa	attat	cttt			3076
gaga	ataag	gag g	gaaaq	gaaaa	ag ga	agaca	atat	Met		tat Tyr		_	Ser		ttg Leu	3129
		Tyr					Trp			tta Leu		Gly				3177
	Val					Gly				gcc Ala	Leu					3225
Asp					Lys					Gly					acg Thr	3273
				Ile					Gly	att Ile L075				Ile	acg Thr 1080	3321
			Ala					Thr		aca Thr			Arg		atg Met	3369
		Asp					Leu			tac Tyr		His			tat Tyr	3417
	Gln					Ser				cgt Arg	Met				act Thr	3465
Phe					Phe	Ala		Met	Ser	tta Leu 1						3513
act Thr 1145				Met					Val	atg Met 1155				Thr		3561
			Ala					Val		atg Met			Leu	_		3609
		Leu					Lys			cct Pro		Ser	_			3657

	Thr				aaa Lys	Ile					Arg				aca Thr	3705
Gly	tta Leu 1210	cgc Arg	gtt Val	gtt Val	Arg	gcc Ala 1215	ttt Phe	gca Ala	aga Arg	Glu	aat Asn 1220	ttt Phe	caa Gln	tca Ser	caa Gln	3753
aaa Lys 1225	ttt Phe	caa Gln	gtc Val	Ala	aac Asn 1230	caa Gln	cgt Arg	tac Tyr	Thr	gat Asp 1235	act Thr	tca Ser	act Thr	Gly	ctt Leu 1240	3801
ttt Phe	aaa Lys	tta Leu	Thr	999 Gly L245	cta Leu	aca Thr	gaa Glu	Pro	ctt Leu 1250	ttc Phe	gtt Val	caa Gln	Ile	att Ile 1255	att Ile	3849
gca Ala	atg Met	Ile	gtg Val 1260	gct Ala	atc Ile	gtt Val	Trp	ttt Phe 1265	gct Ala	ttg Leu	gat Asp	Pro	tta Leu 1270	caa Gln	aga Arg	3897
ggt Gly	Ala	att Ile 1275	aaa Lys	ata Ile	Gly aaa	Asp	tta Leu 280	gtt Val	gct Ala	ttt Phe	Ile	gaa Glu 1285	tat Tyr	agc Ser	ttc Phe	3945
His	gct Ala 1290	ctc Leu	ttt Phe	tca Ser	Phe	ttg Leu 295	cta Leu	ttt Phe	gcc Ala	Asn	ctt Leu L300	ttt Phe	act Thr	atg Met	tat Tyr	3993
cct Pro 1305	cgt Arg	atg Met	gtg Val	Val	tca Ser 1310	agc Ser	cat His	cgt Arg	Ile	aga Arg 1315	gag Glu	gtg Val	atg Met	Asp	atg Met 320	4041
cca Pro	atc Ile	tct Ser	Ile	aat Asn .325	cct Pro	aat Asn	gcc Ala	Glu	ggt Gly L330	gtt Val	acg Thr	gat Asp	Thr	aaa Lys 1335	ctt Leu	4089
aaa Lys	gly	His	tta Leu .340	gaa Glu	ttt Phe	gat Asp	Asn	gta Val 345	aca Thr	ttc Phe	gct Ala	Tyr	cca Pro .350	gga Gly	gaa Glu	4137
aca Thr	Glu	agt Ser 1355	Pro	Val	ttg Leu	His	Asp	Ile	tct Ser	Phe	Lys	Ala	Lys	cct Pro	gga Gly	4185
Glu	aca Thr L370	att Ile	gct Ala	ttt Phe	att Ile 1	ggt Gly .375	tca Ser	aca Thr	ggt Gly	Ser	gga Gly .380	aaa Lys	tct Ser	tct Ser	ctt Leu	4233
gtt Val 1385	aat Asn	ttg Leu	att Ile	Pro	cgt Arg 1390	ttt Phe	tat Tyr	gat Asp	Val	aca Thr 395	ctt Leu	gga Gly	aaa Lys	Ile	tta Leu 400	4281
gta Val	gat Asp	gga Gly	Val	gat Asp 405	gta Val	aga Arg	gat Asp	Tyr	aac Asn .410	ctt Leu	aaa Lys	tca Ser	Leu	cgc Arg 415	caa Gln	4329

		Gly				caa Gln	Lys					Thr			ata Ile	4377
	Glu					Gly					Thr				ctt Leu	4425
Arg					Ile	tct Ser 1455				Glu						4473
caa Gln 1465	gaa Glu	gcc Ala	ttt Phe	Glu	acg Thr 1470	cat His	tta Leu	gct Ala	Glu	ggt Gly L475	Gly 999	agc Ser	aat Asn	Leu	tct Ser 1480	4521
			Lys			tta Leu		Ile					Val			4569
		Leu				gat Asp	Asp					Leu			aag Lys	4617
	Asp					gcg Ala 1					Val					4665
Thr					Ala	caa Gln 1535				Thr						4713
				Leu		gaa Glu			Ile					Thr		4761
			Ile			aat Asn		Ile					Ala			4809
		Lys				tta Leu	Ser							Arg I		4858
			Phe			tta Leu		Ser				_	Tyr			4906
		Phe				ttt Phe	Leu					Ser		_	_	4954
	Leu					tta Leu 1					Thr					5002

21 / 63

```
aac ctt gtt gat atg gct aag gga gtt tct ggg gca gaa ttg aac gtt
                                                                     5050
Asn Leu Val Asp Met Ala Lys Gly Val Ser Gly Ala Glu Leu Asn Val
   1640
                        1645
                                             1650
cct tat att gct ggt att ttg att att tat ttt ttc aga ggt gtt ttc
                                                                     5098
Pro Tyr Ile Ala Gly Ile Leu Ile Ile Tyr Phe Phe Arg Gly Val Phe
1655
                    1660
                                         1665
                                                             1670
tat gaa tta ggt tct tat ggc tca aat t
                                                                     5126
Tyr Glu Leu Gly Ser Tyr Gly Ser Asn
                1675
       <210> 8
       <211> 229
       <212> PRT
       <213> Streptococcus
       <400> 8
Asn Phe Asp Ile Glu Thr Thr Thr Phe Glu Ala Met Lys Lys His Ala
 1
                                     10
                                                          15
Ser Leu Leu Glu Lys Ile Ser Val Glu Arg Ser Phe Ile Glu Phe Asp
             20
                                 25
                                                      30
Lys Leu Leu Ala Pro Tyr Trp Arg Lys Gly Met Leu Ala Leu Ile
Asp Ser His Ala Phe Asn Tyr Leu Pro Cys Leu Lys Asn Arg Glu Leu
     50
                         55
Gln Leu Ser Ala Phe Leu Ser Gln Leu Asp Lys Asp Phe Leu Phe Glu
65
                     70
                                          75
                                                              80
Thr Ser Glu Gln Ala Trp Ala Ser Leu Ile Leu Ser Met Glu Val Glu
                 85
                                     90
                                                          95
His Thr Lys Thr Phe Leu Lys Lys Trp Lys Thr Ser Thr His Phe Gln
Lys Asp Val Glu His Ile Val Asp Val Tyr Arg Ile Arg Glu Gln Met
                             120
Gly Leu Ala Lys Glu His Leu Tyr Arg Tyr Gly Lys Thr Ile Ile Lys
                         135
                                             140
Gln Ala Glu Gly Ile Arg Lys Ala Arg Gly Leu Met Val Asp Phe Glu
                     150
145
                                         155
                                                              160
Lys Ile Glu Gln Leu Asp Ser Glu Leu Ala Ile His Asp Arg His Glu
                 165
                                     170
                                                          175
Ile Val Val Asn Gly Gly Thr Leu Ile Lys Lys Leu Gly Ile Lys Pro
             180
                                 185
Gly Pro Gln Met Gly Asp Ile Ile Ser Gln Ile Glu Leu Ala Ile Val
        195
                             200
                                                  205
Leu Gly Gln Leu Ile Asn Glu Glu Glu Ala Ile Leu His Phe Val Lys
    210
                         215
                                              220
Gln Tyr Leu Met Asp
225
      <210> 9
      <211> 622
      <212> PRT
```

<213> Streptococcus

	< 4	400>	9												
Met 1	Ser	Asp	Phe	Leu 5	Val	Asp	Gly	Leu	Thr 10	Lys	Ser	Val	Gly	Asp 15	Lys
Thr	Val	Phe	Ser 20	Asn	Val	Ser	Phe	Ile 25	Ile	His	Ser	Leu	Asp 30	Arg	Ile
Gly	Ile	Ile 35	Gly	Val	Asn	Gly	Thr 40	Gly	Lys	Thr	Thr	Leu 45	Leu	Asp	Val
	50					55				Arg	60				
Ala 65	Asn	Asp	Tyr	Lys	Ile 70	Ala	Tyr	Leu	Lys	Gln 75	Glu	Pro	Asp	Phe	Asp 80
				85					90	Ser				95	
			100					105		Leu			110		
		115					120			Ala		125			
	130					135				Thr	140				
145					150					155				_	Leu 160
				165					170	Leu				175	
			180					185		Asp			190		
		195					200			Lys		205			
	210					215				Ala	220				
225					230					Gly 235					240
				245					250	Asp				255	
			260					265		Ala			270		
		275					280			Arg		285	_		
	290					295				Asp	300				
305					310					Lys 315					320
				325					330	Ile		_		335	
			340					345		Ile		_	350		
		355					360			Val		365			
	370					375				Ile	380		_		
385					390					Lys 395					400
				405					410	Ser		_		415	
Val	Thr	Glu	Leu 420	Leu	Glu	Gln	Phe	Leu 425	Phe	Pro	Arg	Ser	Thr 430	His	Gly

23 / 63

```
Thr Gln Ile Ala Lys Leu Ser Gly Gly Glu Lys Lys Arg Leu Tyr Leu
        435
                             440
Leu Lys Ile Leu Ile Glu Lys Pro Asn Val Leu Leu Leu Asp Glu Pro
                        455
                                             460
Thr Asn Asp Leu Asp Ile Ala Thr Leu Thr Val Leu Glu Asn Phe Leu
465
                     470
                                         475
                                                              480
Gln Gly Phe Gly Gly Pro Val Ile Thr Val Ser His Asp Arg Tyr Phe
                485
                                     490
Leu Asp Lys Val Ala Asn Lys Ile Ile Ala Phe Glu Asp Asn Asp Ile
            500
                                 505
                                                     510
Arg Glu Phe Phe Gly Asn Tyr Thr Asp Tyr Leu Asp Glu Lys Ala Phe
        515
                             520
Asn Glu Gln Asn Asn Glu Val Ile Ser Lys Lys Glu Ser Thr Lys Thr
    530
                         535
Ser Arg Glu Lys Gln Ser Arg Lys Arg Met Ser Tyr Phe Glu Lys Gln
545
                    550
                                         555
                                                              560
Glu Trp Ala Thr Ile Glu Asp Asp Ile Met Ile Leu Glu Asn Thr Ile
                565
                                     570
Thr Arg Ile Glu Asn Asp Met Gln Thr Cys Gly Ser Asp Phe Thr Arg
            580
                                 585
Leu Ser Asp Leu Gln Lys Glu Leu Asp Ala Lys Asn Glu Ala Leu Leu
        595
                             600
                                                 605
Glu Lys Tyr Asp Arg Tyr Glu Tyr Leu Ser Glu Leu Asp Thr
    610
                        615
                                             620
      <210> 10
      <211> 157
      <212> PRT
      <213> Streptococcus
      <400> 10
Met Ile Ile Arg Pro Ile Ile Lys Asn Asp Asp Gln Ala Val Ala Gln
Leu Ile Arg Gln Ser Leu Arg Ala Tyr Asp Leu Asp Lys Pro Asp Thr
Ala Tyr Ser Asp Pro His Leu Asp His Leu Thr Ser Tyr Tyr Glu Lys
                            40
Ile Glu Lys Ser Gly Phe Phe Val Ile Glu Glu Arg Asp Glu Ile Ile
                         55
Gly Cys Gly Gly Phe Gly Pro Leu Lys Asn Leu Ile Ala Glu Met Gln
65
                    70
                                                              80
                                         75
Lys Val Tyr Ile Ala Glu Arg Phe Arg Gly Lys Gly Leu Ala Thr Asp
                                                          95
Leu Val Lys Met Ile Glu Val Glu Ala Arg Lys Ile Gly Tyr Arg Gln
            100
                                 105
Leu Tyr Leu Glu Thr Ala Ser Thr Leu Ser Arg Ala Thr Ala Val Tyr
        115
                             120
                                                 125
Lys His Met Gly Tyr Cys Ala Leu Ser Gln Pro Ile Ala Asn Asp Gln
    130
                        135
                                             140
Gly His Thr Ala Met Asp Ile Trp Met Ile Lys Asp Leu
145
                    150
                                         155
      <210> 11
      <211> 579
      <212> PRT
```

<213> Streptococcus

24 / 63

<400> 11 Met Ala Tyr Ile Trp Ser Tyr Leu Lys Arg Tyr Pro Asn Trp Leu Trp Leu Asp Leu Leu Gly Ala Met Leu Phe Val Thr Val Ile Leu Gly Met Pro Thr Ala Leu Ala Gly Met Ile Asp Asn Gly Val Thr Lys Gly Asp Arg Thr Gly Val Tyr Leu Trp Thr Phe Ile Met Phe Ile Phe Val Val Leu Gly Ile Ile Gly Arg Ile Thr Met Ala Tyr Ala Ser Ser Arg Leu Thr Thr Thr Met Ile Arg Asp Met Arg Asn Asp Met Tyr Ala Lys Leu Gln Glu Tyr Ser His His Glu Tyr Glu Gln Ile Gly Val Ser Ser Leu Val Thr Arg Met Thr Ser Asp Thr Phe Val Leu Met Gln Phe Ala Glu Met Ser Leu Arg Leu Gly Leu Val Thr Pro Met Val Met Ile Phe Ser Val Val Met Ile Leu Ile Thr Ser Pro Ser Leu Ala Trp Leu Val Ala Val Ala Met Pro Leu Leu Val Gly Val Val Leu Tyr Val Ala Ile Lys Thr Lys Pro Leu Ser Glu Arg Gln Gln Thr Met Leu Asp Lys Ile Asn Gln Tyr Val Arg Glu Asn Leu Thr Gly Leu Arg Val Val Arg Ala Phe Ala Arg Glu Asn Phe Gln Ser Gln Lys Phe Gln Val Ala Asn Gln Arg Tyr Thr Asp Thr Ser Thr Gly Leu Phe Lys Leu Thr Gly Leu Thr Glu Pro Leu Phe Val Gln Ile Ile Ile Ala Met Ile Val Ala Ile Val Trp Phe Ala Leu Asp Pro Leu Gln Arg Gly Ala Ile Lys Ile Gly Asp Leu Val Ala Phe Ile Glu Tyr Ser Phe His Ala Leu Phe Ser Phe Leu Leu Phe Ala Asn Leu Phe Thr Met Tyr Pro Arg Met Val Val Ser Ser His Arg Ile Arg Glu Val Met Asp Met Pro Ile Ser Ile Asn Pro Asn Ala Glu Gly Val Thr Asp Thr Lys Leu Lys Gly His Leu Glu Phe Asp Asn Val Thr Phe Ala Tyr Pro Gly Glu Thr Glu Ser Pro Val Leu His Asp Ile Ser Phe Lys Ala Lys Pro Gly Glu Thr Ile Ala Phe Ile Gly Ser Thr Gly Ser Gly Lys Ser Ser Leu Val Asn Leu Ile Pro Arg Phe Tyr Asp Val Thr Leu Gly Lys Ile Leu Val Asp Gly Val Asp Val Arg Asp Tyr Asn Leu Lys Ser Leu Arg Gln Lys Ile Gly Phe Ile Pro Gln Lys Ala Leu Leu Phe Thr Gly Thr Ile Gly Glu Asn Leu Lys Tyr Gly Lys

```
Ala Asp Ala Thr Ile Asp Asp Leu Arg Gln Ala Val Asp Ile Ser Gln
                             440
Ala Lys Glu Phe Ile Glu Ser His Gln Glu Ala Phe Glu Thr His Leu
    450
                         455
                                             460
Ala Glu Gly Gly Ser Asn Leu Ser Gly Gly Gln Lys Gln Arg Leu Ser
465
                    470
                                         475
                                                              480
Ile Ala Arg Ala Val Val Lys Asp Pro Asp Leu Tyr Ile Phe Asp Asp
                485
                                     490
Ser Phe Ser Ala Leu Asp Tyr Lys Thr Asp Ala Thr Leu Arg Ala Arg
            500
                                 505
Leu Lys Glu Val Thr Gly Asp Ser Thr Val Leu Ile Val Ala Gln Arg
        515
                             520
Val Gly Thr Ile Met Asp Ala Asp Gln Ile Ile Val Leu Asp Glu Gly
    530
                         535
Glu Ile Val Gly Arg Gly Thr His Ala Gln Leu Ile Glu Asn Asn Ala
545
                    550
                                         555
                                                              560
Ile Tyr Arg Glu Ile Ala Glu Ser Gln Leu Lys Asn Gln Asn Leu Ser
                565
                                     570
                                                          575
Glu Gly Glu
      <210> 12
      <211> 92
      <212> PRT
      <213> Streptococcus
      <400> 12
Met Arg Lys Lys Ser Val Phe Leu Arg Leu Trp Ser Tyr Leu Thr Arg
 1
                 5
                                                          15
Tyr Lys Ala Thr Leu Phe Leu Ala Ile Phe Leu Lys Val Leu Ser Ser
            20
                                 25
                                                     30
Phe Met Ser Val Leu Glu Pro Phe Ile Leu Gly Leu Ala Ile Thr Glu
                            40
                                                 45
Leu Thr Ala Asn Leu Val Asp Met Ala Lys Gly Val Ser Gly Ala Glu
                         55
                                             60
Leu Asn Val Pro Tyr Ile Ala Gly Ile Leu Ile Ile Tyr Phe Phe Arg
65
                    70
                                         75
Gly Val Phe Tyr Glu Leu Gly Ser Tyr Gly Ser Asn
                85
                                     90
      <210> 13
      <211> 5215
      <212> DNA
      <213> Streptococcus
      <220>
      <221> CDS
      <222> (3)...(122)
      <221> CDS
      <222> (133)...(2511)
      <221> CDS
      <222> (367)...(2511)
      <221> CDS
```

```
<222> (2946)...(2716)
      <223> of complementary strand
      <221> CDS
      <222> (3252)...(2995)
      <223> of complementary strand
      <221> CDS
      <222> (3676) ... (3299)
      <223> of complementary strand
      <221> CDS
      <222> (4124)...(3837)
      <223> of complementary strand
      <221> CDS
      <222> (5214)...(4351)
      <223> of complementary strand
      <400> 13
aa ttt gga agt gct cta tca aca gtt gaa gta aag gag att att agt
                                                                       47
   Phe Gly Ser Ala Leu Ser Thr Val Glu Val Lys Glu Ile Ile Ser
                    5
    1
                                         10
                                                              15
gaa gaa aac ata tgg tta tat cgg ctc agt tgc tgc cat ttt act agc
                                                                       95
Glu Glu Asn Ile Trp Leu Tyr Arg Leu Ser Cys Cys His Phe Thr Ser
                 20
                                      25
                                                           30
tac tca tat tgg aag tta cca act tgg taagcatcat atg ggt cta gca
                                                                      144
Tyr Ser Tyr Trp Lys Leu Pro Thr Trp
                                              Met Gly Leu Ala
             35
                                  40
aca aag gac aat cag att gcc tat att gat gac agc aaa ggt aag gca
                                                                      192
Thr Lys Asp Asn Gln Ile Ala Tyr Ile Asp Asp Ser Lys Gly Lys Ala
 45
                     50
aaa gcc cct aaa aca aac aaa acg atg gat caa atc agt gct gaa gaa
                                                                      240
Lys Ala Pro Lys Thr Asn Lys Thr Met Asp Gln Ile Ser Ala Glu Glu
                 65
                                      70
                                                           75
ggc atc tct gct gaa cag atc gta gtc aaa att act gac caa ggc tat
                                                                      288
Gly Ile Ser Ala Glu Gln Ile Val Val Lys Ile Thr Asp Gln Gly Tyr
             80
                                  85
                                                      90
gtg acc tca cac ggt gac cat tat cat ttt tac aat ggg aaa gtt cct
                                                                      336
Val Thr Ser His Gly Asp His Tyr His Phe Tyr Asn Gly Lys Val Pro
         95
                             100
                                                 105
tat gat gcg att att agt gaa gag ttg ttg atg acg gat cct aat tac
                                                                      384
Tyr Asp Ala Ile Ile Ser Glu Glu Leu Leu Met Thr Asp Pro Asn Tyr
    110
                        115
                                             120
cgt ttt aaa caa tca gac gtt atc aat gaa atc tta gac ggt tac gtt
                                                                      432
Arg Phe Lys Gln Ser Asp Val Ile Asn Glu Ile Leu Asp Gly Tyr Val
125
                    130
                                         135
                                                              140
```

					aag Lys		 _	480
	_				gag Glu			528
					caa Gln			576
					aaa Lys 200			624
					aca Thr			672
					aat Asn			720
					gct Ala			768
					ccg Pro		cgc Arg	816
					att Ile 280			864
					ggt Gly			912
					aaa Lys			960
			_		gat Asp		_	1008
					Gly 999		_	1056
					tat Tyr 360	_		1104

gga Gly 365	gat Asp	cat His	tat Tyr	cat His	att Ile 370	atc Ile	cca Pro	aga Arg	agt Ser	cag Gln 375	tta Leu	tca Ser	cct Pro	ctt Leu	gaa Glu 380	1152
atg Met	gaa Glu	tta Leu	gca Ala	gat Asp 385	cga Arg	tac Tyr	tta Leu	gct Ala	ggc Gly 390	caa Gln	act Thr	gag Glu	gac Asp	aat Asn 395	gac Asp	1200
tca Ser	ggt Gly	tca Ser	gag Glu 400	cac His	tca Ser	aaa Lys	cca Pro	tca Ser 405	gat Asp	aaa Lys	gaa Glu	gtg Val	aca Thr 410	cat His	acc Thr	1248
ttt Phe	ctt Leu	ggt Gly 415	cat His	cgc Arg	atc Ile	aaa Lys	gct Ala 420	tac Tyr	gga Gly	aaa Lys	ggc Gly	tta Leu 425	gat Asp	ggt Gly	aaa Lys	1296
cca Pro	tat Tyr 430	gat Asp	acg Thr	agt Ser	gat Asp	gct Ala 435	tat Tyr	gtt Val	ttt Phe	agt Ser	aaa Lys 440	gaa Glu	tcc Ser	att Ile	cat His	1344
tca Ser 445	gtg Val	gat Asp	aaa Lys	tca Ser	gga Gly 450	gtt Val	aca Thr	gct Ala	aaa Lys	cac His 455	gga Gly	gat Asp	cat His	ttc Phe	cac His 460	1392
tat Tyr	ata Ile	gga Gly	ttt Phe	gga Gly 465	gaa Glu	ctt Leu	gaa Glu	caa Gln	tat Tyr 470	gag Glu	ttg Leu	gat Asp	gag Glu	gtc Val 475	gct Ala	1440
aac Asn	tgg Trp	gtg Val	aaa Lys 480	gca Ala	aaa Lys	ggt Gly	caa Gln	gct Ala 485	gat Asp	gag Glu	ctt Leu	gct Ala	gct Ala 490	gct Ala	ttg Leu	1488
gat Asp	cag Gln	gaa Glu 495	caa Gln	ggc	aaa Lys	gaa Glu	aaa Lys 500	cca Pro	ctc Leu	ttt Phe	gac Asp	act Thr 505	aaa Lys	aaa Lys	gtg Val	1536
agt Ser	cgc Arg 510	aaa Lys	gta Val	aca Thr	aaa Lys	gat Asp 515	ggt Gly	aaa Lys	gtg Val	ggc Gly	tat Tyr 520	atg Met	atg Met	cca Pro	aaa Lys	1584
gat Asp 525	ggt Gly	aag Lys	gac Asp	tat Tyr	ttc Phe 530	tat Tyr	gct Ala	cgt Arg	gat Asp	caa Gln 535	ctt Leu	gat Asp	ttg Leu	act Thr	cag Gln 540	1632
att Ile	gcc Ala	ttt Phe	gcc Ala	gaa Glu 545	caa Gln	gaa Glu	cta Leu	atg Met	ctt Leu 550	aaa Lys	gat Asp	aag Lys	aag Lys	cat His 555	tac Tyr	1680
cgt Arg	tat Tyr	gac Asp	att Ile 560	gtt Val	gac Asp	aca Thr	ggt Gly	att Ile 565	gag Glu	cca Pro	cga Arg	ctt Leu	gct Ala 570	gta Val	gat Asp	1728
gtg Val	tca Ser	agt Ser 575	ctg Leu	ccg Pro	atg Met	cat His	gct Ala 580	ggt Gly	aat Asn	gct Ala	act Thr	tac Tyr 585	gat Asp	act Thr	gga Gly	1776

agt Ser	tcg Ser 590	ttt Phe	gtt Val	atc Ile	cca Pro	cat His 595	att Ile	gat Asp	cat His	atc Ile	cat His 600	gtc Val	gtt Val	ccg Pro	tat Tyr	1824
tca Ser 605	tgg Trp	ttg Leu	acg Thr	cgc Arg	gat Asp 610	cag Gln	att Ile	gca Ala	aca Thr	gtc Val 615	aag Lys	tat Tyr	gtg Val	atg Met	caa Gln 620	1872
cac His	ccc Pro	gaa Glu	gtt Val	cgt Arg 625	ccg Pro	gat Asp	gta Val	tgg Trp	tct Ser 630	aag Lys	cca Pro	Gly aaa	cat His	gaa Glu 635	gag Glu	1920
tca Ser	ggt Gly	tcg Ser	gtc Val 640	att Ile	cca Pro	aat Asn	gtt Val	acg Thr 645	cct Pro	ctt Leu	gat Asp	aaa Lys	cgt Arg 650	gct Ala	ggt Gly	1968
atg Met	cca Pro	aac Asn 655	tgg Trp	caa Gln	att Ile	atc Ile	cat His 660	tct Ser	gct Ala	gaa Glu	gaa Glu	gtt Val 665	caa Gln	aaa Lys	gcc Ala	2016
cta Leu	gca Ala 670	gaa Glu	ggt Gly	cgt Arg	ttt Phe	gca Ala 675	aca Thr	cca Pro	gac Asp	ggc Gly	tat Tyr 680	att Ile	ttc Phe	gat Asp	cca Pro	2064
cga Arg 685	gat Asp	gtt Val	ttg Leu	gcc Ala	aaa Lys 690	gaa Glu	act Thr	ttt Phe	gta Val	tgg Trp 695	aaa Lys	gat Asp	ggc Gly	tcc Ser	ttt Phe 700	2112
agc Ser	atc Ile	cca Pro	aga Arg	gca Ala 705	gat Asp	ggc Gly	agt Ser	tca Ser	ttg Leu 710	aga Arg	acc Thr	att Ile	aat Asn	aaa Lys 715	tct Ser	2160
gat Asp	cta Leu	tcc Ser	caa Gln 720	gct Ala	gag Glu	tgg Trp	caa Gln	caa Gln 725	gct Ala	caa Gln	gag Glu	tta Leu	ttg Leu 730	gca Ala	aag Lys	2208
aaa Lys	aat Asn	act Thr 735	ggt Gly	gat Asp	gct Ala	act Thr	gat Asp 740	acg Thr	gat Asp	aaa Lys	ccc Pro	aaa Lys 745	gaa Glu	aag Lys	caa Gln	2256
cag Gln	gca Ala 750	gat Asp	aag Lys	agc Ser	aat Asn	gaa Glu 755	aac Asn	caa Gln	cag Gln	cca Pro	agt Ser 760	gaa Glu	gcc Ala	agt Ser	aaa Lys	2304
gaa Glu 765	gaa Glu	aaa Lys	gaa Glu	tca Ser	gat Asp 770	gac Asp	ttt Phe	ata Ile	gac Asp	agt Ser 775	tta Leu	cca Pro	gac Asp	tat Tyr	ggt Gly 780	2352
cta Leu	gat Asp	aga Arg	gca Ala	acc Thr 785	cta Leu	gaa Glu	gat Asp	cat His	atc Ile 790	aat Asn	caa Gln	tta Leu	gca Ala	caa Gln 795	aaa Lys	2400
gct Ala	aat Asn	atc Ile	gat Asp 800	cct Pro	aag Lys	tat Tyr	ctc Leu	att Ile 805	ttc Phe	caa Gln	cca Pro	gaa Glu	ggt Gly 810	gtc Val	caa Gln	2448

ttt tat aat aaa aat ggt gaa ttg gta act tat gat atc aag aca ctt Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr Tyr Asp Ile Lys Thr Leu 815 820 825	2496
caa caa ata aac cct taaccaaaag aagatctcat tgttaaagca ctgctttgtc Gln Gln Ile Asn Pro 830	2551
aaagcaagtt acggtgattt tgaagtcatt ctatgtaacg agtagtgata aaagttggat	2611
aatagcggtt ttcttttgca aagaaatggt atccatgtta gaatagtaaa aaaagaggag	2671
gattcttgga ctaatgtcaa ataagtagac agaaaactgt gttattttatt	2726
taaaataatt ttcttctttc tgattagggg ttagtcctag attagccgta tgtgggttgt	2786
aattgttata aaaattctca atgtattcaa agcagtctaa ttgaacctgt ttgatatttt	2846
gataatgttt teggttgatt tgtetatget ttaaataett gaaaaatget teagttaegg	2906
cattatcata aggatatcca ggattagaaa aagaatgcat gatattggca ctgcacccta	2966
atagtgagac gcaagaaaaa cacttttaggcaatcagtt ttctgtactg tacaggcgac	3025
tggtcgttta atctctgttg aattctagtt tcattataaa atgtaatgta	3085
atatttgtta tactatcttt gttgtatttt ctcctattat ggaaataaaa ggtttcagtc	3145
tttaggacgg tgtgaaacca ttcaatacag gcattatctg caggtgttcc ttttcgagac	3205
attgagcgga taatgtcttt ttccgtgcaa gcctggtagt aagccataga agtatacact	3265
gagecttggt cactgtgtaa gattgeteet ttatttaggeaatt ttaactgatt	3319
aagggtgtct agtacaaaat ccgtgtcctg acaatctgag atagtgtaag ctataatttc	3379
toggttatag agattoataa ttgatgagag atacaattta cagttacoga aatataggta	3439
ggtaatatet gttacgaget ttteettagg ettateggea tggaaateee gaeteaattt	3499
attatctgtt aaataataag ctttacccaa attgggaact ttcttggtac gtgtccgaca	3559
aagccagcca ttattttca tgatacgata gactttcttt gtattaacag tcaatccgtg	3619
gatttttttg agcaatcgtg taatggtacg atagccataa ataaagtgat tctccataca	3679
gagetgttea attaatteaa taaggteate tttttttgeg getteteata eteetttte	3739 3799
caacggtaat aggtcgaccg cttgacctta aaacagtcta gaatgaaaac tatcgggtag ttgtttttat agtcttccac aagcttgata agacttactttatcgatt tccttatcaa	3/99
gcctcgatac ttttttaaga ggtcaacctg taattgtaat tgttccactt cagacagatg	3917
ttccaagcct ttaccgtagg tatattgctt gccaacacct tgatgaaaac gataaagctc	3977
ctcgttttcg taccatttca tccaagtata gatttgacta ttatttttga tgcctaaagt	4037
ctccataata actctgttag acttgcctgc tttcttcata tcgatgcaag ccagcttagt	4097
ttcccatgaa tatgcttttt taaccataat aaaacattcc tgtttctagt ttactaaatt	4157
tcaacaggag tgtttttctt ttgtctcatt ttagggattc agtgcctatt gttgtcatca	4217
attatttttc taaattcccc ggacttaaat tgtgaccctt ggtcggaatg aaagagaagt	4277
gttccttcaa tctttctttt attaagtgaa aaggcaacac ttttctgtac aacatttata	4337
aagtgttttt ctaggcaattaatc ttttagtcat tggtgtttgg tagttgagac	4391
taccatgaat gcggtggtaa ttccaccaat gaacatagtc tttagtctta agagctagtt	4451
cttccagcaa ttgaaaggtt tcttgataaa caaattcaat tttgaaagca cgatacgtac	4511
tttcagctac ggcattgtca taaggataac cagcctgact aagcgaacgt gtgattccaa	4571
aggettecaa tattteatea attaaetgat tateaaaete tttgeeaega tetgaatgga	4631
acatcttgac tttggtcagg gcgtaaggga tgctttgtat ggcttgctta acgagttcag	4691
cggtcttgtg ccaaccaaga gacaggccga tgatttcacg gttgtatagg tcaatgatga	4751
ggcaaacata agcccaacga ttgcctacac gaacataggt taagtcagtg actaaggctt	4811
gtagtggtct ttcttgctta aattgcctgt ctaagtggtt gggaataggg gcttcattct	4871
tgcctctaga atgtggtttg aaggtggctt tctgataaac agaaaccaaa ttgagtcgct	4931
tcataatgcg tcgaatccga cgacgtgaaa gtgtgatacc ttcgttattc aagcatattt	4991
tgatttttct ggatccgtat ctagactcgc tatcgagaaa aattcttta atagtttctt	5051
caaactccgt ttcagatact gactccacgg cttgatagta ataacttgag tgtggcatat	5111
tragcageg acacatettt gaaatgetgt atttateett attagcagtg attattteee	5171
tttttgtgcc ataatcaccg ctgcttgctt taggatatct aatt <210> 14	5215
<211> 40	
<212> PRT	

31 / 63

<213> Streptococcus <400> 14 Phe Gly Ser Ala Leu Ser Thr Val Glu Val Lys Glu Ile Ile Ser Glu 10 Glu Asn Ile Trp Leu Tyr Arg Leu Ser Cys Cys His Phe Thr Ser Tyr 20 25 30 Ser Tyr Trp Lys Leu Pro Thr Trp 35 <210> 15 <211> 793 <212> PRT <213> Streptococcus <400> 15 Met Gly Leu Ala Thr Lys Asp Asn Gln Ile Ala Tyr Ile Asp Asp Ser 10 Lys Gly Lys Ala Lys Ala Pro Lys Thr Asn Lys Thr Met Asp Gln Ile 25 Ser Ala Glu Glu Gly Ile Ser Ala Glu Gln Ile Val Val Lys Ile Thr 35 Asp Gln Gly Tyr Val Thr Ser His Gly Asp His Tyr His Phe Tyr Asn 50 55 60 Gly Lys Val Pro Tyr Asp Ala Ile Ile Ser Glu Glu Leu Leu Met Thr Asp Pro Asn Tyr Arg Phe Lys Gln Ser Asp Val Ile Asn Glu Ile Leu 90 Asp Gly Tyr Val Ile Lys Val Asn Gly Asn Tyr Tyr Val Tyr Leu Lys 100 105 110 Pro Gly Ser Lys Arg Lys Asn Ile Arg Thr Lys Gln Gln Ile Ala Glu 115 120 125 Gln Val Ala Lys Gly Thr Lys Glu Ala Lys Glu Lys Gly Leu Ala Gln Val Ala His Leu Ser Lys Glu Glu Val Ala Ala Val Asn Glu Ala Lys 150 155 Arg Gln Gly Arg Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Ser Pro Thr 165 170 Asp Ile Ile Asp Asp Leu Gly Asp Ala Tyr Leu Val Pro His Gly Asn 180 185 190 His Tyr His Tyr Ile Pro Lys Lys Asp Leu Ser Pro Ser Glu Leu Ala 195 200 205 Ala Ala Gln Ala Tyr Trp Ser Gln Lys Gln Gly Arg Gly Ala Arg Pro 215 220 Ser Asp Tyr Arg Pro Thr Pro Ala Pro Gly Arg Arg Lys Ala Pro Ile 225 230 235 Pro Asp Val Thr Pro Asn Pro Gly Gln Gly His Gln Pro Asp Asn Gly 245 250 255 Gly Tyr His Pro Ala Pro Pro Arg Pro Asn Asp Ala Ser Gln Asn Lys 260 265 270 His Gln Arg Asp Glu Phe Lys Gly Lys Thr Phe Lys Glu Leu Leu Asp 280 285 Gln Leu His Arg Leu Asp Leu Lys Tyr Arg His Val Glu Glu Asp Gly 290 295 300 Leu Ile Phe Glu Pro Thr Gln Val Ile Lys Ser Asn Ala Phe Gly Tyr 305 310 315 320

WO 99/42588

PCT/CA99/00114

			His	325					330					335	
			Glu 340					345		_			350		
		355	Asp				360					365			
	370		Thr			375					380				
385			Lys		390					395					400
			His	405					410					415	
			His 420					425					430		
		435	Ala				440					445			
	450		Leu			455					460				
465			Val		470					475					480
			Lys	485					490				_	495	
			Gln 500					505					510	_	_
		515	Tyr				520					525			_
	530		Asp			535					540	_			
545			Gly		550					555					560
			Tyr	565					570					575	
			Gln 580					585			•		590		
		595	Glu				600					605			
	610	AIA	GIY	Met	PIO	ASII	rrci				H 1 C	ser	Ala	GIU	GLU
A CY T	Gln	Larg	ΔΊα	T.611	Λla	615			Ile		620				
625			Ala		630	615 Glu	Gly	Arg	Phe	Ala 635	620 Thr	Pro	Asp	Gly	Tyr 640
625 Ile	Phe	Asp	Pro	Arg 645	630 Asp	615 Glu Val	Gly Leu	Arg Ala	Phe Lys 650	Ala 635 Glu	620 Thr Thr	Pro Phe	Asp Val	Gly Trp 655	Tyr 640 Lys
625 Ile Asp	Phe Gly	Asp Ser	Pro Phe 660	Arg 645 Ser	630 Asp Ile	615 Glu Val Pro	Gly Leu Arg	Arg Ala Ala 665	Phe Lys 650 Asp	Ala 635 Glu Gly	620 Thr Thr Ser	Pro Phe Ser	Asp Val Leu 670	Gly Trp 655 Arg	Tyr 640 Lys Thr
625 Ile Asp Ile	Phe Gly Asn	Asp Ser Lys 675	Pro Phe 660 Ser	Arg 645 Ser Asp	630 Asp Ile Leu	615 Glu Val Pro Ser	Gly Leu Arg Gln 680	Arg Ala Ala 665 Ala	Phe Lys 650 Asp Glu	Ala 635 Glu Gly Trp	620 Thr Thr Ser Gln	Pro Phe Ser Gln 685	Asp Val Leu 670 Ala	Gly Trp 655 Arg Gln	Tyr 640 Lys Thr
625 Ile Asp Ile Leu	Phe Gly Asn Leu 690	Asp Ser Lys 675 Ala	Pro Phe 660 Ser Lys	Arg 645 Ser Asp Lys	630 Asp Ile Leu Asn	615 Glu Val Pro Ser Thr 695	Gly Leu Arg Gln 680 Gly	Arg Ala Ala 665 Ala Asp	Phe Lys 650 Asp Glu Ala	Ala 635 Glu Gly Trp	620 Thr Thr Ser Gln Asp 700	Pro Phe Ser Gln 685 Thr	Asp Val Leu 670 Ala Asp	Gly Trp 655 Arg Gln Lys	Tyr 640 Lys Thr Glu Pro
625 Ile Asp Ile Leu Lys 705	Phe Gly Asn Leu 690 Glu	Asp Ser Lys 675 Ala Lys	Pro Phe 660 Ser Lys Gln	Arg 645 Ser Asp Lys Gln	630 Asp Ile Leu Asn Ala 710	Glu Val Pro Ser Thr 695 Asp	Gly Leu Arg Gln 680 Gly Lys	Arg Ala Ala 665 Ala Asp Ser	Phe Lys 650 Asp Glu Ala Asn	Ala 635 Glu Gly Trp Thr Glu 715	620 Thr Thr Ser Gln Asp 700 Asn	Pro Phe Ser Gln 685 Thr	Asp Val Leu 670 Ala Asp Gln	Gly Trp 655 Arg Gln Lys Pro	Tyr 640 Lys Thr Glu Pro Ser 720
625 Ile Asp Ile Leu Lys 705 Glu	Phe Gly Asn Leu 690 Glu Ala	Asp Ser Lys 675 Ala Lys Ser	Pro Phe 660 Ser Lys Gln Lys	Arg 645 Ser Asp Lys Gln Glu 725	630 Asp Ile Leu Asn Ala 710 Glu	Glu Val Pro Ser Thr 695 Asp	Gly Leu Arg Gln 680 Gly Lys	Arg Ala Ala 665 Ala Asp Ser Ser	Phe Lys 650 Asp Glu Ala Asn Asp 730	Ala 635 Glu Gly Trp Thr Glu 715 Asp	620 Thr Thr Ser Gln Asp 700 Asn Phe	Pro Phe Ser Gln 685 Thr Gln Ile	Asp Val Leu 670 Ala Asp Gln Asp	Gly Trp 655 Arg Gln Lys Pro Ser 735	Tyr 640 Lys Thr Glu Pro Ser 720 Leu
Asp Ile Leu Lys 705 Glu Pro	Phe Gly Asn Leu 690 Glu Ala Asp	Asp Ser Lys 675 Ala Lys Ser Tyr	Pro Phe 660 Ser Lys Gln	Arg 645 Ser Asp Lys Gln Glu 725 Leu	630 Asp Ile Leu Asn Ala 710 Glu Asp	Glu Val Pro Ser Thr 695 Asp Lys Arg	Gly Leu Arg Gln 680 Gly Lys Glu Ala	Arg Ala Ala 665 Ala Asp Ser Ser Thr 745	Phe Lys 650 Asp Glu Ala Asn Asp 730 Leu	Ala 635 Glu Gly Trp Thr Glu 715 Asp Glu	620 Thr Thr Ser Gln Asp 700 Asn Phe Asp	Pro Phe Ser Gln 685 Thr Gln Ile His	Asp Val Leu 670 Ala Asp Gln Asp Ile 750	Gly Trp 655 Arg Gln Lys Pro Ser 735 Asn	Tyr 640 Lys Thr Glu Pro Ser 720 Leu Gln

33 / 63

Glu Gly Val Gln Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr Tyr Asp Ile Lys Thr Leu Gln Gln Ile Asn Pro <210> 16 <211> 715 <212> PRT <213> Streptococcus <400> 16 Met Thr Asp Pro Asn Tyr Arg Phe Lys Gln Ser Asp Val Ile Asn Glu Ile Leu Asp Gly Tyr Val Ile Lys Val Asn Gly Asn Tyr Tyr Val Tyr Leu Lys Pro Gly Ser Lys Arg Lys Asn Ile Arg Thr Lys Gln Gln Ile Ala Glu Gln Val Ala Lys Gly Thr Lys Glu Ala Lys Glu Lys Gly Leu Ala Gln Val Ala His Leu Ser Lys Glu Glu Val Ala Ala Val Asn Glu Ala Lys Arg Gln Gly Arg Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Ser Pro Thr Asp Ile Ile Asp Asp Leu Gly Asp Ala Tyr Leu Val Pro His Gly Asn His Tyr His Tyr Ile Pro Lys Lys Asp Leu Ser Pro Ser Glu Leu Ala Ala Gln Ala Tyr Trp Ser Gln Lys Gln Gly Arg Gly Ala Arg Pro Ser Asp Tyr Arg Pro Thr Pro Ala Pro Gly Arg Arg Lys Ala Pro Ile Pro Asp Val Thr Pro Asn Pro Gly Gln Gly His Gln Pro Asp Asn Gly Gly Tyr His Pro Ala Pro Pro Arg Pro Asn Asp Ala Ser Gln Asn Lys His Gln Arg Asp Glu Phe Lys Gly Lys Thr Phe Lys Glu Leu Leu Asp Gln Leu His Arg Leu Asp Leu Lys Tyr Arg His Val Glu Glu Asp Gly Leu Ile Phe Glu Pro Thr Gln Val Ile Lys Ser Asn Ala Phe Gly Tyr Val Val Pro His Gly Asp His Tyr His Ile Ile Pro Arg Ser Gln Leu Ser Pro Leu Glu Met Glu Leu Ala Asp Arg Tyr Leu Ala Gly Gln Thr Glu Asp Asn Asp Ser Gly Ser Glu His Ser Lys Pro Ser Asp Lys Glu Val Thr His Thr Phe Leu Gly His Arg Ile Lys Ala Tyr Gly Lys Gly Leu Asp Gly Lys Pro Tyr Asp Thr Ser Asp Ala Tyr Val Phe Ser Lys Glu Ser Ile His Ser Val Asp Lys Ser Gly Val Thr Ala Lys His Gly Asp His Phe His Tyr Ile Gly Phe Gly Glu Leu Glu Gln Tyr

34 / 63

```
Glu Leu Asp Glu Val Ala Asn Trp Val Lys Ala Lys Gly Gln Ala Asp
                             360
Glu Leu Ala Ala Leu Asp Gln Glu Gln Gly Lys Glu Lys Pro Leu
    370
                         375
                                             380
Phe Asp Thr Lys Lys Val Ser Arg Lys Val Thr Lys Asp Gly Lys Val
385
                    390
                                         395
                                                              400
Gly Tyr Met Met Pro Lys Asp Gly Lys Asp Tyr Phe Tyr Ala Arg Asp
                405
                                     410
                                                         415
Gln Leu Asp Leu Thr Gln Ile Ala Phe Ala Glu Gln Glu Leu Met Leu
            420
                                 425
                                                     430
Lys Asp Lys Lys His Tyr Arg Tyr Asp Ile Val Asp Thr Gly Ile Glu
        435
                            440
                                                 445
Pro Arg Leu Ala Val Asp Val Ser Ser Leu Pro Met His Ala Gly Asn
    450
                        455
Ala Thr Tyr Asp Thr Gly Ser Ser Phe Val Ile Pro His Ile Asp His
465
                    470
                                         475
                                                             480
Ile His Val Val Pro Tyr Ser Trp Leu Thr Arg Asp Gln Ile Ala Thr
                485
                                     490
Val Lys Tyr Val Met Gln His Pro Glu Val Arg Pro Asp Val Trp Ser
            500
                                 505
                                                     510
Lys Pro Gly His Glu Glu Ser Gly Ser Val Ile Pro Asn Val Thr Pro
        515
                             520
Leu Asp Lys Arg Ala Gly Met Pro Asn Trp Gln Ile Ile His Ser Ala
    530
                        535
                                             540
Glu Glu Val Gln Lys Ala Leu Ala Glu Gly Arg Phe Ala Thr Pro Asp
545
                    550
                                         555
Gly Tyr Ile Phe Asp Pro Arg Asp Val Leu Ala Lys Glu Thr Phe Val
                565
                                     570
Trp Lys Asp Gly Ser Phe Ser Ile Pro Arg Ala Asp Gly Ser Ser Leu
            580
                                 585
                                                     590
Arg Thr Ile Asn Lys Ser Asp Leu Ser Gln Ala Glu Trp Gln Gln Ala
                            600
                                                 605
Gln Glu Leu Leu Ala Lys Lys Asn Thr Gly Asp Ala Thr Asp Thr Asp
                   615
Lys Pro Lys Glu Lys Gln Gln Ala Asp Lys Ser Asn Glu Asn Gln Gln
                    630
                                         635
Pro Ser Glu Ala Ser Lys Glu Glu Lys Glu Ser Asp Asp Phe Ile Asp
                645
                                    650
Ser Leu Pro Asp Tyr Gly Leu Asp Arg Ala Thr Leu Glu Asp His Ile
            660
                                 665
                                                     670
Asn Gln Leu Ala Gln Lys Ala Asn Ile Asp Pro Lys Tyr Leu Ile Phe
        675
                            680
                                                 685
Gln Pro Glu Gly Val Gln Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr
                        695
                                             700
Tyr Asp Ile Lys Thr Leu Gln Gln Ile Asn Pro
705
                    710
                                         715
      <210> 17
      <211> 77
      <212> PRT
      <213> Streptococcus
      <400> 17
Met His Ser Phe Ser Asn Pro Gly Tyr Pro Tyr Asp Asn Ala Val Thr
```

35 / 63

Glu Ala Phe Phe Lys Tyr Leu Lys His Arg Gln Ile Asn Arg Lys His Tyr Gln Asn Ile Lys Gln Val Gln Leu Asp Cys Phe Glu Tyr Ile Glu 35 40 45 Asn Phe Tyr Asn Asn Tyr Asn Pro His Thr Ala Asn Leu Gly Leu Thr 50 Pro Asn Gln Lys Glu Glu Asn Tyr Phe Asn Ala Ile Lys 65 70 <210> 18 <211> 86 <212> PRT <213> Streptococcus <400> 18 Met Ala Tyr Tyr Gln Ala Cys Thr Glu Lys Asp Ile Ile Arg Ser Met Ser Arg Lys Gly Thr Pro Ala Asp Asn Ala Cys Ile Glu Trp Phe His 20 25 Thr Val Leu Lys Thr Glu Thr Phe Tyr Phe His Asn Arg Arg Lys Tyr 35 Asn Lys Asp Ser Ile Thr Asn Ile Val Lys Asn Tyr Ile Thr Phe Tyr 55 60 Asn Glu Thr Arg Ile Gln Gln Arg Leu Asn Asp Gln Ser Pro Val Gln 75 80 Tyr Arg Lys Leu Ile Ala 85 <210> 19 <211> 126 <212> PRT <213> Streptococcus <400> 19 Met Glu Asn His Phe Ile Tyr Gly Tyr Arg Thr Ile Thr Arg Leu Leu 10 Lys Lys Ile His Gly Leu Thr Val Asn Thr Lys Lys Val Tyr Arg Ile 20 25 30 Met Lys Asn Asn Gly Trp Leu Cys Arg Thr Arg Thr Lys Lys Val Pro 35 Asn Leu Gly Lys Ala Tyr Tyr Leu Thr Asp Asn Lys Leu Ser Arg Asp Phe His Ala Asp Lys Pro Lys Glu Lys Leu Val Thr Asp Ile Thr Tyr 70 75 Leu Tyr Phe Gly Asn Cys Lys Leu Tyr Leu Ser Ser Ile Met Asn Leu 90 95 Tyr Asn Arg Glu Ile Ile Ala Tyr Thr Ile Ser Asp Cys Gln Asp Thr 100 105 Asp Phe Val Leu Asp Thr Leu Asn Gln Leu Lys Leu Pro Lys 115 120 <210> 20 <211> 96 <212> PRT <213> Streptococcus

36 / 63

<400> 20 Met Val Lys Lys Ala Tyr Ser Trp Glu Thr Lys Leu Ala Cys Ile Asp Met Lys Lys Ala Gly Lys Ser Asn Arg Val Ile Met Glu Thr Leu Gly Ile Lys Asn Asn Ser Gln Ile Tyr Thr Trp Met Lys Trp Tyr Glu Asn Glu Glu Leu Tyr Arg Phe His Gln Gly Val Gly Lys Gln Tyr Thr Tyr Gly Lys Gly Leu Glu His Leu Ser Glu Val Glu Gln Leu Gln Leu Gln Val Asp Leu Leu Lys Lys Tyr Arg Gly Leu Ile Arg Lys Ser Ile Lys <210> 21 <211> 288 <212> PRT <213> streptococus <400> 21 Ile Arg Tyr Pro Lys Ala Ser Ser Gly Asp Tyr Gly Thr Lys Arg Glu Ile Ile Thr Ala Asn Lys Asp Lys Tyr Ser Ile Ser Lys Met Cys Arg Trp Leu Asn Met Pro His Ser Ser Tyr Tyr Tyr Gln Ala Val Glu Ser Val Ser Glu Thr Glu Phe Glu Glu Thr Ile Lys Arg Ile Phe Leu Asp Ser Glu Ser Arg Tyr Gly Ser Arg Lys Ile Lys Ile Cys Leu Asn Asn Glu Gly Ile Thr Leu Ser Arg Arg Ile Arg Arg Ile Met Lys Arg Leu Asn Leu Val Ser Val Tyr Gln Lys Ala Thr Phe Lys Pro His Ser Arg Gly Lys Asn Glu Ala Pro Ile Pro Asn His Leu Asp Arg Gln Phe Lys Gln Glu Arg Pro Leu Gln Ala Leu Val Thr Asp Leu Thr Tyr Val Arg Val Gly Asn Arg Trp Ala Tyr Val Cys Leu Ile Ile Asp Leu Tyr Asn Arg Glu Ile Ile Gly Leu Ser Leu Gly Trp His Lys Thr Ala Glu Leu Val Lys Gln Ala Ile Gln Ser Ile Pro Tyr Ala Leu Thr Lys Val Lys Met Phe His Ser Asp Arg Gly Lys Glu Phe Asp Asn Gln Leu Ile Asp Glu Ile Leu Glu Ala Phe Gly Ile Thr Arg Ser Leu Ser Gln Ala Gly Tyr Pro Tyr Asp Asn Ala Val Ala Glu Ser Thr Tyr Arg Ala Phe Lys Ile Glu Phe Val Tyr Gln Glu Thr Phe Gln Leu Leu Glu Glu Leu Ala Leu Lys Thr Lys Asp Tyr Val His Trp Trp Asn Tyr His Arg Ile His Gly Ser Leu Asn Tyr Gln Thr Pro Met Thr Lys Arg Leu Ile Ala

<2 <2	212>	505 DNA		cocci	ıs						
<2	220> 221> 222>	CDS	((663)							
	221>		3)	. (134	14)						
	221>		52).	(1	739)						
	221>		56).	(50	058)						
		0.0									
	100>			.	.	 	 				
										gca Ala 15	48
										gtt Val	96
										gaa Glu	144
										gaa Glu	192
										atg Met	240
								_		aat Asn 95	288
										gat Asp	336
										aaa Lys	384
										gac Asp	432

	tta Leu												480
	gga Gly												528
	cgg Arg											act Thr	576
	cat His		_	_			_				_	tcg Ser	624
_	gct Ala 210		_							taaa	aataa	atc	673
	aaact ttcat				atg	act	gac	ttg	gaa	aaa			733 786
	gca Ala												834
	gat Asp						_						882
	caa Gln							_					930
	aaa Lys												978
	ttt Phe 295												1026
	cca Pro								_		_		1074
	gag Glu						_	_					1122
	acc Thr												1170

tcc Ser	gca Ala	cat His 360	aaa Lys	aat Asn	cta Leu	aca Thr	gaa Glu 365	aca Thr	gtt Val	aaa Lys	gct Ala	tac Tyr 370	aaa Lys	gac Asp	tat Tyr	1218
		gat Asp													att Ile	1266
		aag Lys													tta Leu 405	1314
		ata Ile	_								ggata	agg (agtt		atg et	1364
		aat Asn														1412
ttt Phe	gag Glu	gac Asp 435	tat Tyr	att Ile	aat Asn	ggt Gly	ttt Phe 440	aca Thr	ggt Gly	gaa Glu	ttt Phe	atc Ile 445	acg Thr	aca Thr	gaa Glu	1460
cat His	ttt Phe 450	gat Asp	tta Leu	tca Ser	aat Asn	cct Pro 455	tac Tyr	acc Thr	ggt Gly	caa Gln	gac Asp 460	gat Asp	gtt Val	cct Pro	gat Asp	1508
tat Tyr 465	agt Ser	gct Ala	tat Tyr	tgt Cys	caa Gln 470	aaa Lys	ata Ile	gat Asp	tat Tyr	ctt Leu 475	aat Asn	cag Gln	aaa Lys	tat Tyr	gga Gly 480	1556
		ttt Phe														1604
		att Ile														1652
ttg Leu	tca Ser	atc Ile 515	cat His	cat His	aat Asn	ggt Gly	agg Arg 520	tat Tyr	gat Asp	tat Tyr	ctg Leu	caa Gln 525	gaa Glu	gaa Glu	gct Ala	1700
		gta Val											taat	cgta	atg	1749
aagt ataa ggga tact caag	taaa agat atga ctat ggtct	act to get to a a a a a a a a a a a a a a a a a a	agat atct actt gctct aaag	gtag taagg tato gacg ggact	ga ag gg gt gg ct gg to	gattt tago tatgo catat caaat	taaaa tttt ttta tcct tgat	gaa gaa gaa gaa gaa	gtttg actaa gataa acatt aaata	gaaa aata ctca cttt catt	cgca ccaa aaca gtta tgat	aatto aatco agctt atgaa atga	gaa g cct t cgg t att t agg a	gcgca tato tgta gata aatt	ttcgt atttc tatat aacaa agactt tttga gtgaaa	1809 1869 1929 1989 2049 2109 2169

atttcaaaaa aata tttattggta acaa			atg aaa a		tta 2283
ttt ggt gat aaa Phe Gly Asp Lys 550			Arg Lys L		
gta gct tca gtt Val Ala Ser Val 565		Val Cys Ile		_	_
gta ttt gct gaa Val Phe Ala Glu 580			_		_
gag tcg aat att Glu Ser Asn Ile					
gat gac ata aac Asp Asp Ile Asn 615	Ser Asn Ser				
ccg gat acc aag Pro Asp Thr Lys 630			Thr Asp T		
gtg aca gag ccg Val Thr Glu Pro 645		Thr Ser Leu			
cct gtt tca gat Pro Val Ser Asp 660					
ttg caa aat act Leu Gln Asn Thr					
cct acc ttg aaa Pro Thr Leu Lys 695	Val Ala Asn				
ttt agg cta cat Phe Arg Leu His 710			Gly His P		
act gga ctt tgg Thr Gly Leu Trp 725		Asp Val Asp			
cca aat ggt gct Pro Asn Gly Ala 740					

						tta Leu										2955
						gca Ala										3003
						gag Glu										3051
tac Tyr	ggt Gly 805	ata Ile	cat His	act Thr	tat Tyr	caa Gln 810	ccc Pro	ctc Leu	aaa Lys	gaa Glu	999 Gly 815	tat Tyr	gtc Val	cgt Arg	att Ile	3099
aac Asn 820	tat Tyr	ttg Leu	agt Ser	tcc Ser	tct Ser 825	agt Ser	aac Asn	tat Tyr	gac Asp	cac His 830	tta Leu	tca Ser	gca Ala	tgg Trp	ctc Leu 835	3147
ttt Phe	aaa Lys	gat Asp	gtt Val	gca Ala 840	acc Thr	ссу Хаа	tca Ser	aca Thr	act Thr 845	tgg Trp	cca Pro	gat Asp	ggt Gly	agt Ser 850	aat Asn	3195
ttt Phe	gtg Val	aat Asn	caa Gln 855	gga Gly	cta Leu	tat Tyr	gga Gly	agg Arg 860	tat Tyr	att Ile	gat Asp	gta Val	tca Ser 865	cta Leu	aaa Lys	3243
						ggt Gly										3291
gga Gly	gat Asp 885	gca Ala	gtg Val	aaa Lys	gtt Val	caa Gln 890	ccc Pro	aac Asn	gac Asp	tat Tyr	gtt Val 895	ttt Phe	aga Arg	gat Asp	tta Leu	3339
gct Ala 900	aac Asn	cat His	aac Asn	caa Gln	att Ile 905	ttt Phe	gta Val	aaa Lys	gat Asp	aag Lys 910	gat Asp	cca Pro	aag Lys	gtt Val	tat Tyr 915	3387
aat Asn	aat Asn	cct Pro	tat Tyr	tac Tyr 920	att Ile	gat Asp	caa Gln	gtg Val	cag Gln 925	cta Leu	aag Lys	gat Asp	gcc Ala	caa Gln 930	caa Gln	3435
						caa Gln										3483
						aaa Lys										3531
						gat Asp 970										3579

		ggc gac Gly Asp 985	Phe As			Gly					3627
		aac aat Asn Asn 1000			Gln					Lys	3675
		gct tat Ala Tyr 5		Leu					Asn		3723
		gtt gaa Val Glu	Ala Se					Ala	_	_	3771
	Met Ile	att tat Ile Tyr					Arg				3819
		gtg aaa Val Lys 1065	Asn As			Trp					3867
		ggt att Gly Ile 1080			Gly					Tyr	3915
		ggt aag Gly Lys 5		Lys			_		Tyr	_	3963
-	_	gag tgg Glu Trp	Asp Se		_			Asp			4011
	Lys Ala	gct ttt Ala Phe		_			Gly				4059
		aaa att Lys Ile 1145	Ala As			Arg					4107
		cat gta His Val 1160			Ser				_	Asp	4155
		aat caa Asn Gln 5		Phe		-			Glu		4203
		cag aaa Gln Lys	Leu Gl				_	Leu			4251

	ttg Leu 120!	Ser					Asn					Ser			aca Thr	4299
	Tyr					Asn					Gly				cag Gln 1235	4347
	tat Tyr				Ser					Glu						4395
	gca Ala			Ala					Leu					His		4443
	ggc		Gly					Val					Thr	_		4491
	tat Tyr 1289	Leu					Glu					His.				4539
	Asp					Glu					Gly				acc Thr 1315	4587
	cat His				Arg					Asp						4635
	agt Ser			Lys					Arg					Gly	gat Asp	4683
	gat Asp		Ala					Ala					Lys		att Ile	4731
aat Asn	cct	aat	atq	att	atq	att	aat	gag	aac	taa	arra	aca	ttc	caa	ggc	4779
	Pro 1365	Asn	Met	Ile	Met	Ile 1370	Gly	Glu	Gly	Trp	Arg 1375	Thr	Phe	Gln	Gly	
	Pro 1365 caa Gln	Asn ggt	Met	Ile	Met	Ile 1370 aaa Lys	Gly) cca	Glu gct	Gly gac	Trp	Arg 1375 gat Asp	Thr tgg	Phe atg	Gln aag	Gly tca	4827
Asp 1380 acc	Pro 1365 caa Gln	Asn ggt Gly aca	Met cag Gln	ccg Pro	gtt Val 1389 gtc Val	Ile 1370 aaa Lys ttt	Gly cca Pro	Glu gct Ala gat	gac Asp	caa Gln 1390 att Ile	Arg 1375 gat Asp	tgg Trp	Phe atg Met	Gln aag Lys ttg	tca Ser 1395 aaa Lys	4827 4875

44 / 63

caa tct tta caa ggt att ttt aaa aat atc aaa gca caa cct ggg aat 4971 Gln Ser Leu Gln Gly Ile Phe Lys Asn Ile Lys Ala Gln Pro Gly Asn 1430 1435 1440 ttt gaa gca gat tcg cca gga gat gtg gtg cag tat att gct gca cat 5019 Phe Glu Ala Asp Ser Pro Gly Asp Val Val Gln Tyr Ile Ala Ala His 1445 1450 1455 gat aac ctt acc ttg cat gat gtg att gca aaa tca att 5058 Asp Asn Leu Thr Leu His Asp Val Ile Ala Lys Ser Ile 1460 1465 1470 <210> 23 <211> 221 <212> PRT <213> streptococcus <400> 23 Asn Leu Lys Ala Glu Leu Ser Val Glu Asp Glu Gln Tyr Thr Ala Thr 5 1 10 15 Val Tyr Gly Lys Ser Ala His Gly Ser Thr Pro Gln Glu Gly Val Asn 25 30 Gly Ala Thr Tyr Leu Ala Leu Tyr Leu Ser Gln Phe Asp Phe Glu Gly Pro Ala Arg Ala Phe Leu Asp Val Thr Ala Asn Ile Ile His Glu Asp 50 Phe Ser Gly Glu Lys Leu Gly Val Ala Tyr Glu Asp Asp Cys Met Gly 65 70 75 80 Pro Leu Ser Met Asn Ala Gly Val Phe Gln Phe Asp Glu Thr Asn Asp Asp Asn Thr Ile Ala Leu Asn Phe Arg Tyr Pro Gln Gly Thr Asp Ala 100 105 110 Lys Thr Ile Gln Thr Lys Leu Glu Lys Leu Asn Gly Val Glu Lys Val 120 Thr Leu Ser Asp His Glu His Thr Pro His Tyr Val Pro Met Asp Asp 130 135 140 Glu Leu Val Ser Thr Leu Leu Ala Val Tyr Glu Lys Gln Thr Gly Leu 145 150 155 160 Lys Gly His Glu Gln Val Ile Gly Gly Gly Thr Phe Gly Arg Leu Leu 165 170 Glu Arg Gly Val Ala Tyr Gly Ala Met Phe Pro Gly Asp Glu Asn Thr 180 185 Met His Gln Ala Asn Glu Tyr Met Pro Leu Glu Asn Ile Phe Arg Ser 195 200 205 Ala Ala Ile Tyr Ala Glu Ala Ile Tyr Glu Leu Ile Lys 210 215 220 <210> 24

<211> 194

<212> PRT

<213> streptococcus

<400> 24

45 / 63

Met Thr Asp Leu Glu Lys Ile Ile Lys Ala Ile Lys Ser Asp Ser Gln 10 Asn Gln Asn Tyr Thr Glu Asn Gly Ile Asp Pro Leu Phe Ala Ala Pro 20 25 Lys Thr Ala Arg Ile Asn Ile Val Gly Gln Ala Pro Gly Leu Lys Thr 35 Gln Glu Ala Arg Leu Tyr Trp Lys Asp Lys Ser Gly Asp Arg Leu Arg 50 55 60 Gln Trp Leu Gly Val Asp Glu Glu Thr Phe Tyr His Ser Gly Lys Phe 70 Ala Val Leu Pro Leu Asp Phe Tyr Tyr Pro Gly Lys Gly Lys Ser Gly 85 90 Asp Leu Pro Pro Arg Lys Gly Phe Ala Glu Lys Trp His Pro Leu Ile 100 105 110 Leu Lys Glu Met Pro Asn Val Gln Leu Thr Leu Leu Val Gly Gln Tyr 115 120 125 Ala Gln Lys Tyr Tyr Leu Gly Ser Ser Ala His Lys Asn Leu Thr Glu 135 140 Thr Val Lys Ala Tyr Lys Asp Tyr Leu Pro Asp Tyr Leu Pro Leu Val 145 150 155 160 His Pro Ser Pro Arg Asn Gln Ile Trp Leu Lys Lys Asn Pro Trp Phe 165 170 175 Glu Lys Asp Leu Ile Val Asp Leu Gln Lys Ile Val Ala Asp Ile Leu 180 185 190 Lys Asp

<210> 25 <211> 126 <212> PRT

<213> streptococcus

<400> 25

Met Arg Asp Asn His Leu His Thr Tyr Phe Ser Tyr Asp Cys Gln Thr Ala Phe Glu Asp Tyr Ile Asn Gly Phe Thr Gly Glu Phe Ile Thr Thr Glu His Phe Asp Leu Ser Asn Pro Tyr Thr Gly Gln Asp Asp Val Pro Asp Tyr Ser Ala Tyr Cys Gln Lys Ile Asp Tyr Leu Asn Gln Lys Tyr 55 60 Gly Asn Arg Phe Lys Lys Gly Ile Glu Ile Gly Tyr Phe Lys Asp Arg Glu Ser Asp Ile Leu Asp Tyr Leu Lys Asn Lys Glu Phe Asp Leu Lys 90 Leu Leu Ser Ile His His Asn Gly Arg Tyr Asp Tyr Leu Gln Glu Glu 100 110 Ala Leu Lys Val Pro Thr Lys Gly Ala Phe Ser Arg Leu Leu 115 120 125

<210> 26

<211> 931

<212> PRT

<213> streptococcus

<400> 26

WO 99/42588

Met 1	Lys	Arg	Lys	Asp 5	Leu	Phe	Gly	Asp	Lys 10	Gln	Thr	Gln	Tyr	Thr 15	Ile
Arg	Lys	Leu	Ser 20	Val	Gly	Val	Ala	Ser 25	Val	Thr	Thr	Gly	Val 30	Cys	Ile
Phe	Leu	His 35	Ser	Pro	Gln	Val	Phe 40	Ala	Glu	Glu	Val	Ser 45	Val	Ser	Pro
Ala	Thr 50	Thr	Ala	Ile	Ala	Glu 55		Asn	Ile	Asn	Gln 60	Val	Asp	Asn	Gln
Gln 65	Ser	Thr	Asn	Leu	Lys 70	Asp	Asp	Ile	Asn	Ser 75	Asn	Ser	Glu	Thr	Val 80
Val	Thr	Pro	Ser	Asp 85	Met	Pro	Asp	Thr	Lys 90		Leu	Val	Ser	Asp 95	Glu
Thr	Asp	Thr	Gln 100	Lys	Gly	Val	Thr	Glu 105	Pro	Asp	Lys	Ala	Thr 110	Ser	Leu
Leu	Glu	Glu 115	Asn	Lys	Gly	Pro	Val 120	Ser	Asp	Lys	Asn	Thr 125	Leu	Asp	Leu
	130					135					140	-	Thr		
145					150					155			Gln		160
				165					170				Leu	175	
			180					185					Asp 190		
		195					200					205	Thr		
	210					215					220		Ser		
225					230					235	_		Gly		240
				245					250				Met	255	
			260					265					Pro 270		_
		275					280					285	Asn	_	
	290					295					300		Ser		
305					310					315		_	Gly		320
				325					330			_	Phe	335	
			340					345					Pro 350		
-		355					360					365	Val	•	_
	370					375					380	-	Gln		
385					390					395			Ala		400
				405					410			_	Glu	415	_
			420					425				_	Ile		
Asp	THE	435	ьys	ser	ьeu	ьeu	11e 440	тте	туѕ	GTÅ	Asp	Phe 445	Asn	Pro	ьys

Gln	Gly 450	His	Phe	Asn	Ile	Ser 455	Tyr	Asn	Gly	Asn	Asn 460	Val	Met	Thr	Arg
Gln 465	Ser	Trp	Glu	Phe	Lys 470	Asp	Gln	Leu	Tyr	Ala 475	Tyr	Ser	Gly	Asn	Leu 480
Gly	Ala	Val	Leu	Asn 485	Gln	Asp	Gly	Ser	Lys 490	Val	Glu	Ala	Ser	Leu 495	
Ser	Pro	Ser	Ala 500	Asp	Ser	Val	Thr	Met 505		Ile	Tyr	Asp	Lys 510		Asn
Gln	Asn	Arg 515	Val	Val	Ala	Thr	Thr 520		Leu	Val	Lys	Asn 525		Lys	Gly
Val	Trp 530	Gln	Thr	Ile	Leu	Asp 535	Thr	Lys	Leu	Gly	Ile 540		Asn	Tyr	Thr
Gly 545	Tyr	Tyr	Tyr	Leu	Tyr 550	Glu	Ile	Lys	Arg	Gly 555	Lys	Asp	Lys	Val	Lys 560
Ile	Leu	Asp	Pro	Tyr 565	Ala	Lys	Ser	Leu	Ala 570	Glu	Trp	Asp	Ser	Asn 575	Thr
Val	Asn	Asp	Asp 580	Ile	Lys	Thr	Ala	Lys 585	Ala	Ala	Phe	Val	Asn 590	Pro	Ser
Gln	Leu	Gly 595	Pro	Gln	Asn	Leu	Ser 600	Phe	Ala	Lys	Ile	Ala 605	Asn	Phe	Lys
Gly	Arg 610	Gln	Asp	Ala	Val	Ile 615	Tyr	Glu	Ala	His	Val 620	Arg	Asp	Phe	Thr
Ser 625	Asp	Arg	Ser	Leu	Asp 630	Gly	Lys	Leu	Lys	Asn 635	Gln	Phe	Gly	Thr	Phe 640
Ala	Ala	Phe	Ser	Glu 645	Lys	Leu	qaA	Tyr	Leu 650	Gln	Lys	Leu	Gly	Val 655	Thr
His	Ile	Gln	Leu 660	Leu	Pro	Val	Leu	Ser 665	Tyr	Phe	Tyr	Val	Asn 670	Glu	Met
Asp	Lys	Ser 675	Arg	Ser	Thr	Ala	Tyr 680	Thr	Ser	Ser	Asp	Asn 685	Asn	Tyr	Asn
Trp	Gly 690	Tyr	Asp	Pro	Gln	Ser 695	Tyr	Phe	Ala	Leu	Ser 700	Gly	Met	Tyr	Ser
Glu 705	Lys	Pro	Lys	Asp	Pro 710	Ser	Ala	Arg	Ile	Ala 715	Glu	Leu	Lys	Gln	Leu 720
Ile	His	Asp	Ile	His 725	Lys	Arg	Gly	Met	Gly 730	Val	Ile	Leu	Asp	Val 735	Val
Tyr	Asn	His	Thr 740	Ala	Lys	Thr	Tyr	Leu 745	Phe	Glu	Asp	Ile	Glu 750	Pro	Asn
Tyr	Tyr	His 755	Phe	Met	Asn	Glu	Asp 760	Gly	Ser	Pro	Arg	Glu 765	Ser	Phe	Gly
Gly	Gly 770	Arg	Leu	Gly	Thr	Thr 775	His	Ala	Met	Ser	Arg 780	Arg	Val	Leu	Val
Asp 785	Ser	Ile	Lys	Tyr	Leu 790	Thr	Ser	Glu	Phe	Lys 795	Val	Asp	Gly	Phe	Arg 800
Phe	Asp	Met	Met	Gly 805	Asp	His	Asp	Ala	Ala 810	Ala	Ile	Glu	Leu	Ala 815	Tyr
Lys	Glu	Ala	Lys 820	Ala	Ile	Asn	Pro	Asn 825	Met	Ile	Met	Ile	Gly 830	Glu	Gly
Trp	Arg	Thr 835	Phe	Gln	Gly	Asp	Gln 840	Gly	Gln	Pro	Val	Lys 845	Pro	Ala	Asp
Gln	Asp 850	Trp	Met	Lys	Ser	Thr 855	Asp	Thr	Val	Gly	Val 860	Phe	Ser	Asp	Asp
Ile 865	Arg	Asn	Ser	Leu	Lys 870	Ser	Gly	Phe	Pro	Asn 875	Glu	Gly	Thr	Pro	Ala 880
Phe	Ile	Thr	Gly	Gly 885	Pro	Gln	Ser	Leu	Gln 890	Gly	Ile	Phe	Lys	Asn 895	Ile

48 / 63

Lys Ala Gln Pro Gly Asn Phe Glu Ala Asp Ser Pro Gly Asp Val Val 900 905 910 Gln Tyr Ile Ala Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala 915 920 925 Lys Ser Ile 930 <210> 27 <211> 5607 <212> DNA <213> streptococcus <220> <221> CDS <222> (2) ... (301) <400> 27 a att caa agt ttg aca gaa ggt caa ctt cgt tct gat atc cct gag ttc 49 Ile Gln Ser Leu Thr Glu Gly Gln Leu Arg Ser Asp Ile Pro Glu Phe 1 15 10 cgt gct ggt gat act gta cgt gtt cac gct aaa gtt gtt gaa ggt act 97 Arg Ala Gly Asp Thr Val Arg Val His Ala Lys Val Val Glu Gly Thr 20 25 30 cgc gaa cgt att cag atc ttt gaa ggt gtt gtt atc tca cgt aaa ggt 145 Arg Glu Arg Ile Gln Ile Phe Glu Gly Val Val Ile Ser Arg Lys Gly 35 40 45 caa gga atc tca gaa atg tac aca gta cgt aaa att tct ggt ggt atc 193 Gln Gly Ile Ser Glu Met Tyr Thr Val Arg Lys Ile Ser Gly Gly Ile 50 55 60 ggt gta gag cgt aca ttc cca att cac act cct cgt gtt gat aaa atc Gly Val Glu Arg Thr Phe Pro Ile His Thr Pro Arg Val Asp Lys Ile 65 70 75 gaa gtt gtt cgt tat ggt aaa gta cgt cgt gct aaa ctt tac tac tta 289 Glu Val Val Arg Tyr Gly Lys Val Arg Arg Ala Lys Leu Tyr Tyr Leu 85 90 95 cgc gca ttg caa ggtaaagctg cacgtattaa agaaatccgt cgttaatttt 341 Arq Ala Leu Gln 100 gatgatcaga ttttaaaaat gcttggttgt ttgaggatag taactatgtt ttaaaactgg 401 acaaccaaga cgtaaaaaat ctgcctgtgg gcagtttttt tactaggtcc ccttagttca 461 atggatataa caactccctc ctaaggagta attgctggtt cgattccggc aggggacata 521 ttcattgcat gtaaatagcg gtttagagct attttgcccc aaatttctct gattaagttt 581 atcgttccta tctttttgtt cttgtaattg atgtgcgtaa acttctaaag tgatatttaa 641 attctcgtga tctaaaactt gagagatgga aattagatag cttgcaaatg tatgcctgag 701 agagtgcact cgtacctcgc gaccagttat ttttcggata gttttattga ctgcattatt 761 tgaaagtttg tcgaataatc tgtcgttttt attttttgta aattcatgca aaaaaaataa 821 tqtatcattg tcaattggta tatttctgat actacttttg ttttttgttg gcaggtatct 881 ttggttgaaa tgataatccc aagttttatt aattgataaa tatttgttag tgtaatcaat 941 atcattaact gttaaaccta aacattcagc gaagcgcatg ccagttttag cgatgaggta 1001

	tacgattgat					1061
	tcaagaaatt					1121
	aaaaattttt					1181
	tgttaaaacg					1241
atgacttgtt	gatatttagt	ggaagtaata	ttgcaaagta	atatatttcc	tattatatgt	1301
ttatacgata	ttcgatattc	ccacccgttg	tcgcgtttac	ggaaatacgc	cattgatata	1361
ctccacatta	gctaaagaac	agggtgttca	aggctacctt	gatggaaaag	gctctcttag	1421
agatatttgt	aaatggtatg	atatctcaag	tcgctctgtt	ctccaaaagt	ggataaaacg	1481
gtatactagt	ggtgaagact	tgaaagccac	tagtagagga	tatagccgta	tgaaacaagg	1541
aaggcaagcc	acatttgaag	aacgtgtaga	gattgttaac	tacaccattg	cccatgggaa	1601
agactatcaa	gcagctattg	agaagtttgg	tgtttcctac	caacaaattt	attcttgggt	1661
gcgtaagctt	gagaagaatg	gctcacaagg	tttggttgat	agacgtgtga	aagggttgga	1721
gagtaggcct	gatttaaccg	agattgagca	actttaactc	aagattaaac	aattggagga	1781
acgtaatcgt	ctcttagaaa	tcgaggttag	tttactaaaa	aagttagaag	acatcaaacg	1841
aggaaacaga	cggtaagact	aggtaagcat	ttagcggagt	tccaagtaat	caagaattat	1901
	aatctaatgt					1961
tcaggctatt	acaagtggct	caatcgtcaa	aaaacagatt	ttgagacaaa	aaatacaaag	2021
ctaatggcta	aaatcaagga	acttcgtaga	ctctacaatg	gtatcttagg	ttatcgccgt	2081
	ttattaatcg	_	_			2141
	ttctggggat					2201
	gattttacga					2261
	ggtgcacaga					2321
	ttaaagacct	_	_			2381
	acttgttatg				_	2441
	ccatagcgat		-			2501
	tggtctgacc				_	2561
	tttctttggg			_		2621
	gttggtcaat			_		2681
	attaaacaac		_		_	2741
	tttgactgtc					2801
	atagctacaa					2861
	tcctcgacca		_			2921
	tcatcagttt					2981
	aaggtaatac					3041
	tgcgctccaa					3101
	actttatttt	_			_	3161
	gcatagctct					3221
	cgtttcataa					3281
	gtaacttata		_	- -	_	3341
	tctatttatt					3401
	agtacgggat					3461
	tatttcctta			_		3521
	caatagagca					3581
	tattgcattc					3641
	cagtaacttc				_	3701
	taatggaaat					3761
	tgcaatagtt					3821
	gcatatatta					3881
	ctttcttgct					3941 4001
	ttatatgaaa					4061
	attaatcaat					
	gatggattag					4121
	gaagatttat			_		4181
	agaaatcttt					4241
	aatgataaga					4301
actadaatty	ggtgatgaaa	cigatettga	actactagat	acyyaaaaaa	ycygaaaaat	4361

4421

4481

4541

4601

4661

4721

4781

4841

4901

4961

5021

5081

5141

5201

5261

5321

5381

5441

5501

5561

5607

```
aaaaagtcat aaatttaaaa ttataggaat cttttctggt aaaaaacagg aaacatatac
aggattatca totgatttta gogaaaatat ggtttttgta gattattcaa otagocaaga
aatattaaat aaatcagaga ataatagaat tgcaaataaa attttaatgt attctggtag
tttagaatct acagagcttg ccttaaacaa attgaaagac tttaaaattg ataagtcaaa
gtattctatt aagaaagata ataaagcatt cgaagagtct ttagagtcag tgagtggaat
aaaacatata attaaaataa tgacttattc gattatgtta ggtggaatag ttgttctttc
attaatcttg attctatggt taagagaaag aatttatgaa ataggtatat ttttatctat
tggaacaact aagatacaaa ttataaggca atttatattt gagttaatat tcatatcaat
accaagtata atatcctcct tatttttagg gaatctacta ttaaaagtaa ttgtagaagg
atttattaac tcagagaact caatgatttt cggtggaagt ttaataaata aaagcagttt
tatgttaaac ataacaacac ttgcagaaag ttatttaata ttaataagta ttattgtttt
atcagttgta atggcctctt cattaatatt atttaagaaa ccacaagaaa tattatcaaa
aataagttag gagcaaataa tggatatatt agaaataaag aatgtaaatt acagttacgc
aaattctaaa gaaaaagttt tgtcaggagt aaatcaaaaa tttgaacttg gaaagtttta
tgcgatagta gggaagtcag gaacaggaaa atccacactt ctttccttac ttgcaggact
tgataaagtt caaacaggaa aaatcttgtt taagaatgaa gatatagaaa agaaaggata
tagtaatcac agaaaaaata atatatcttt ggtatttcaa aattataatt taatagatta
tttatcgccg attgaaaata ttagactagt aaataaatca gtagatgaga gtatcttgtt
cgaattaggt ttagataaaa aacaaataaa aagaaatgtt atgaaattat ctggtggtca
gcaacaaagg gtagctattg ctagggcact ggtatcagat gccccaataa tactagctga
tgagcctacc ggtaacctag acagtgttac tgctggagaa ataatt
<210> 28
      <211> 111
      <212> PRT
      <213> streptococcus
       <400> 28
Ile Gln Ser Leu Thr Glu Gly Gln Leu Arg Ser Asp Ile Pro Glu Phe
                  5
 1
                                     10
                                                         15
Arg Ala Gly Asp Thr Val Arg Val His Ala Lys Val Val Glu Gly Thr
                                                     30
Arg Glu Arg Ile Gln Ile Phe Glu Gly Val Val Ile Ser Arg Lys Gly
                    40
Gln Gly Ile Ser Glu Met Tyr Thr Val Arg Lys Ile Ser Gly Gly Ile
Gly Val Glu Arg Thr Phe Pro Ile His Thr Pro Arg Val Asp Lys Ile
                     70
65
                                         75
                                                             80
Glu Val Val Arg Tyr Gly Lys Val Arg Arg Ala Lys Leu Tyr Tyr Leu
                 85
Arg Ala Leu Gln Gly Lys Ala Ala Arg Ile Lys Glu Ile Arg Arg
             100
                                 105
      <210> 29
      <211> 173
      <212> PRT
      <213> streptococcus
      <400> 29
Met Arg Phe Ala Glu Cys Leu Gly Leu Thr Val Asn Asp Ile Asp Tyr
Thr Asn Lys Tyr Leu Ser Ile Asn Lys Thr Trp Asp Tyr His Phe Asn
             20
Gln Arg Tyr Leu Pro Thr Lys Asn Lys Ser Ser Ile Arg Asn Ile Pro
         35
Ile Asp Asn Asp Thr Leu Phe Phe Leu His Glu Phe Thr Lys Asn Lys
```

Asn Asp Arg Leu Phe Asp Lys Leu Ser Asn Asn Ala Val Asn 65 70 75 Ile Arg Lys Ile Thr Gly Arg Glu Val Arg Val His Ser Leu 85 90 Thr Phe Ala Ser Tyr Leu Ile Ser Ile Ser Gln Val Leu Asp 100 105 110	80 Arg His 95 His Glu Glu Gln
Thr Phe Ala Ser Tyr Leu Ile Ser Ile Ser Gln Val Leu Asp	95 His Glu Glu Gln
100 105 110	Glu Gln
Agn Tou Agn Tla Why Tan Glu 17-1 man his 17-1 - Give Tan Gi	
Asn Leu Asn Ile Thr Leu Glu Val Tyr Ala His Gln Leu Gln 115 120 125	Asn Ser
Lys Asp Arg Asn Asp Lys Leu Asn Gln Arg Asn Leu Gly Gln 130 135 140	
Ser Lys Pro Leu Phe Thr Cys Asn Glu Tyr Val Pro Cys Arg 145 150 155	Asn Arg 160
Thr Ser Asn Tyr Ser Leu Gly Gly Ser Cys Tyr Ile His 165 170	
<210> 30	
<211> 389	
<212> PRT	
<213> streptococcus	
<400> 30	
Met Lys Ser Ser Asn Glu Ile Glu Lys Ala Leu Tyr Glu Ser 1	15
Ser Ser Ile Ser Ile Thr Lys Lys Asp Gly Lys Tyr Phe Asn 20 25 30	
Gln Phe Lys Asn Ile Glu Lys Ile Lys Glu Val Glu Glu Lys 35 40 45	
Gln Tyr Asp Gly Leu Ala Lys Leu Lys Asp Leu Lys Val Val 50 55 60	
Glu Gln Ser Ile Asn Arg Glu Asp Leu Ser Asp Glu Phe Lys 70 75	80
Val Ser Leu Glu Ala Thr Ser Asn Thr Lys Arg Asn Leu Leu 85 90	95
Ser Gly Val Phe Ser Phe Lys Glu Gly Lys Asn Ile Glu Glu 100 105 110	
Lys Asn Ser Ile Leu Val His Glu Glu Phe Ala Lys Gln Asn 115 120 125	-
Lys Leu Gly Asp Glu Ile Asp Leu Glu Leu Leu Asp Thr Glu 130 135 140	
Gly Lys Ile Lys Ser His Lys Phe Lys Ile Ile Gly Ile Phe 145 150 155	160
Lys Lys Gln Glu Thr Tyr Thr Gly Leu Ser Ser Asp Phe Ser 165 170	175
Met Val Phe Val Asp Tyr Ser Thr Ser Gln Glu Ile Leu Asn 180 185 190	
Glu Asn Asn Arg Ile Ala Asn Lys Ile Leu Met Tyr Ser Gly 195 200 205	Ser Leu
Glu Ser Thr Glu Leu Ala Leu Asn Lys Leu Lys Asp Phe Lys 210 215 220	Ile Asp
Lys Ser Lys Tyr Ser Ile Lys Lys Asp Asn Lys Ala Phe Glu 225 230 235	Glu Ser 240
Leu Glu Ser Val Ser Gly Ile Lys His Ile Ile Lys Ile Met 245 250	255
Ser Ile Met Leu Gly Gly Ile Val Val Leu Ser Leu Ile Leu 260 265 270	Ile Leu

52 / 63

```
Trp Leu Arg Glu Arg Ile Tyr Glu Ile Gly Ile Phe Leu Ser Ile Gly
        275
                             280
Thr Thr Lys Ile Gln Ile Ile Arg Gln Phe Ile Phe Glu Leu Ile Phe
    290
                         295
                                             300
Ile Ser Ile Pro Ser Ile Ile Ser Ser Leu Phe Leu Gly Asn Leu Leu
305
                     310
                                         315
                                                              320
Leu Lys Val Ile Val Glu Gly Phe Ile Asn Ser Glu Asn Ser Met Ile
                325
                                     330
Phe Gly Gly Ser Leu Ile Asn Lys Ser Ser Phe Met Leu Asn Ile Thr
            340
                                 345
Thr Leu Ala Glu Ser Tyr Leu Ile Leu Ile Ser Ile Ile Val Leu Ser
        355
                             360
                                                 365
Val Val Met Ala Ser Ser Leu Ile Leu Phe Lys Lys Pro Gln Glu Ile
    370
                         375
                                             380
Leu Ser Lys Ile Ser
385
      <210> 31
      <211> 169
      <212> PRT
      <213> streptococcus
      <400> 31
Met Asp Ile Leu Glu Ile Lys Asn Val Asn Tyr Ser Tyr Ala Asn Ser
                                     10
Lys Glu Lys Val Leu Ser Gly Val Asn Gln Lys Phe Glu Leu Gly Lys
            20
Phe Tyr Ala Ile Val Gly Lys Ser Gly Thr Gly Lys Ser Thr Leu Leu
        35
                             40
                                                 45
Ser Leu Leu Ala Gly Leu Asp Lys Val Gln Thr Gly Lys Ile Leu Phe
Lys Asn Glu Asp Ile Glu Lys Lys Gly Tyr Ser Asn His Arg Lys Asn
                    70
                                         75
Asn Ile Ser Leu Val Phe Gln Asn Tyr Asn Leu Ile Asp Tyr Leu Ser
Pro Ile Glu Asn Ile Arg Leu Val Asn Lys Ser Val Asp Glu Ser Ile
            100
                                 105
                                                     110
Leu Phe Glu Leu Gly Leu Asp Lys Lys Gln Ile Lys Arg Asn Val Met
        115
                             120
                                                 125
Lys Leu Ser Gly Gly Gln Gln Gln Arg Val Ala Ile Ala Arg Ala Leu
                         135
                                             140
Val Ser Asp Ala Pro Ile Ile Leu Ala Asp Glu Pro Thr Gly Asn Leu
145
                    150
                                         155
                                                              160
Asp Ser Val Thr Ala Gly Glu Ile Ile
                165
      <210> 32
      <211> 4171
      <212> DNA
      <213> Streptococcus
      <400> 32
catatgacaa tatttttcaa agtctacatc acttactcgc ctgtcgtgga aaatctggca
atacattaat cgaccaatta gttgctgatg gtttacttca tgcagataat cactaccatt
ttttcaatgg gaagtctctg gccactttca atactaacca attgattcgc gaagttgtct
```

atgttgaaat atccttagat actatgtcta gtggtgaaca tgatttagta aaagttaaca

60

120

180

240

53 / 63

ttatcagacc cactaccgag catactatcc ccacgatgat gacagctagc ccctatcatc 300 aaggtatcaa tgatcctgcc gcagaccaaa aaacatacca aatggagggt gcgctagcag 360 ttaaacagcc taaacacata caagttgaca caaaaccatt taaaqaaqaa qtaaaacatc 420 cttcaaaatt acccatcagc cctgcaactg aaagcttcac acacattgac agttatagtc 480 tcaatgacta ttttctttct cgtggttttg ctaatatata cgtttcaggt gtgggtactg 540 ctggctctac gggtttcatg accagtgggg attaccaaca aatacaaagc tttaaagcag 600 tcattgattg gttaaatggt aaggttactg cattcacaag tcataaacga gataaacaag 660 720 tcaaggctga ttggtcaaac ggccttgtag caaccacagg taaatcttat ctcggtacca 780 tgtcaactgg tttagcaaca actggcgttg aggggctgaa agtcattatc gctgaagccg caatctccac atggtatgat tattatcgag aaaatgggct tgtgtgtagt ccaggcggct 840 accccggtga agatttagac gttttaacag aattaacata ctcacgaaac ctcttagctg 900 gtgattacat caaaaacaac gattgctatc aagcattgtt aaatgaacaa tcaaaagcaa 960 ttgaccgtca aagtggggat tacaaccaat actggcatga ccgtaattac ctaactcacg 1020 tcaataatgt caaaagtcga gtagtttaca ctcatggact acaggattgg aatgttaagc 1080 caagacatgt ctacaaagtt ttcaatgcat tgcctcaaac catcaaaaa cacctttttt 1140 tacatcaagg tcaacatgtg tatatgcata attggcagtc gattgatttt cgtgaaagca 1200 tgaatgcctt actaagccaa gaactacttg gcattgacaa tcatttccaa ttagaagagg 1260 tcatttggca agataatact actgagcaaa cttggcaagt tttagatgct ttcggaggaa 1320 accatcaaga gcaaattggt ttaggtgata gtaaaaaact tattgataac cattatgaca 1380 aagaagcctt tgatacttat tgtaaagact tcaatgtgtt caaaaatgat cttttcaagg 1440 gaaataataa aaccaatcaa atcactatta atcttcctct aaagaaaaat tatctcctga 1500 atggacagtg caaactccat ctacgtgtta aaactagtga caaaaaggcc attttatcag 1560 cccaaatctt agactatggt cctaaaaaac gattcaaaga tacaccaacc atcaaattct 1620 taaacagcct tgataatggt aaaaattttg ccagagaagc tttacgtgaa ctcccgttta 1680 ctaaagatca ttatcgtgtc atcagtaaag gtgtcttgaa ccttcaaaat cgtacagact 1740 tacttacaat tgaggctatc gagccagaac aatggtttga tatcgagttt agcctccaac 1800 caagtatata tcaattgagt aaaggtgata atctaaggat tatcctttat acaactgatt 1860 ttgaacatac cattcgagat aatgctagtt actctataac agtagatttg agtcaatctt 1920 atttaactat cccaactaat caaggaaatt aacttatgaa acttcttact aaagaacggt 1980 ttgatgattc tcaacacttt tggtaccaga tcaatttatt acaagagagt aacttcggag 2040 cagtttttga ccatgataat aaaaacattc cacaggttgt tgcaactatt gttgatgatt 2100 tacaaggttc cggaagttcg aatcatttct ggtattttgg caatactact gatacttcca 2160 tccttatgat tgctcattta aatcgaaaat tctatattca ggttaattta aaggactttg 2220 actttgcact caatttaata gctataaata attggaagag tctcctccaa actcaacttg aagctctaaa cgatacccta gcaatatttc aataaataag gtagaatgga gtgacaaagc aacgcgaggg agactgatta atgtcatctt attggaataa ctatcctgaa cttaaaaaaa 2400 atattgatga aaccaatcaa ctaattcaag aaagaataca ggtcagaaat aaagatattg 2460 aagcggcgct aagccaactc acagctgcgg gaggaaaaca gctcagacca gcattctttt 2520 accttttttc tcaacttggt aataaggaga atcaagatac tcagcaacta aagaaaatcg 2580 ctgcttcttt agaaatcctt cacgttgcta cattaatcca tgatgatgtc attgatgact 2640 caccactaag acgtggaaat atgaccattc aaagcaagtt tggcaaagac atcgcagttt 2700 atactgggga tttacttttc acagtctttt tcgatcttat tttagaatct atgactgata 2760 caccatttat gaggattaat gcaaaatcta tgcgtaaaat tctcatggga gaattggacc 2820 agatgcacct tcgttacaat caacaacaag gtatccatca ctatttacgt gcgatttcag 2880 gtaagacagc cgaactcttt aaattagcta gcaaagaagg agcttacttt ggtggtgcag 2940 agaaggaggt tgttcgtcta gcaggccata tcggctttaa cattggtatg acattccaaa 3000 ttttggatga tatcctggat tatactgcag ataaaaaaac atttaataag cctgtcttag 3060 aggatttaac acaaggcgtt tacagccttc ctctacttct tgccattgaa gaaaatcctg 3120 atattttcaa acctatttta gataaaaaa cagatatggc tactgaagac atggaaaaaa 3180 ttgcttatct cgtcgtttcc catagaggtg ttgacaaagc tcgccatcta gctcgtaaat 3240 ttactgagaa agctattagt gacataaata agctacccca gaactctgca aaaaaacagt 3300 tgctacaatt aactaattac cttttaaaac gcaaaattta aataataaaa aaacattcca 3360 caatgctaga aaagcagtta gggaatgttt ttttattatc atttatttat cgcacctatc 3420 aatcatcata gatcaccatc atcagcggct ttcagctgac ggtaacgttg actactttga 3480 gacaattett gaggagaace ttecaactet aattgeeeat tttetataaa taagataega 3540 tcagcatgtt caataccttt taagtgatgt gtaatccaaa ctaaggtctt accttccaat 3600

54 / 63

tcat cttt aaat ctag gctt ccg gtad aaat	ctaa cgcd cagt gcato gcato ctaa ctaa gaaaa	aga to cac of ca	aaca etgaa gettt cact cagaa gatga catat	aatto aaaco ctctt ccaa cttco accao	g ga et aa et ca et go et at et co	acato agtoo aatoo agaat agtoo agcoo	etttt eaget eaact egtta eagaa etget etaaa	agt to a total at a to	taaga tcaa tcaa tagca gcaat taagt	attc acca agaa aggg cac cgc attt	tago ttgt cttt ttgt caao caco ttto	ccaaa catag catta ctatt gaagt	agc aga aga aga aga aga aga aga aga aga	actadactadactadactadactadactadactadacta	tatgc ctatgc cctgat ccttca cagggc ccagca gctaag atatcc tcttg
		212>													
	<2	213>	Stre	eptoc	cocus	5									
	< 4	100>	33												
Tyr 1	Asp	Asn	Ile	Phe 5	Gln	Ser	Leu	His	His 10	Leu	Leu	Ala	Cys	Arg 15	Gly
Lys	Ser	Gly	Asn 20	Thr	Leu	Ile	Asp	Gln 25	Leu	Val	Ala	Asp	Gly 30	Leu	Leu
His	Ala	Asp 35	Asn	His	Tyr	His	Phe 40	Phe	Asn	Gly	Lys	Ser 45	Leu	Ala	Thr
Phe	Asn 50	Thr	Asn	Gln	Leu	Ile 55	Arg	Glu	Val	Val	Tyr 60	Val	Glu	Ile	Ser
Leu 65	Asp	Thr	Met	Ser	Ser 70	Gly	Glu	His	Asp	Leu 75	Val	Lys	Val	Asn	Ile 80
Ile	Arg	Pro	Thr	Thr 85	Glu	His	Thr	Ile	Pro 90	Thr	Met	Met	Thr	Ala 95	Ser
Pro	Tyr	His	Gln 100	Gly	Ile	Asn	Asp	Pro 105	Ala	Ala	Asp	Gln	Lys 110	Thr	Tyr
Gln	Met	Glu 115	Gly	Ala	Leu	Ala	Val 120	Lys	Gln	Pro	Lys	His 125	Ile	Gln	Val
Asp	Thr 130	Lys	Pro	Phe	Lys	Glu 135	Glu	Val	Lys	His	Pro 140	Ser	Lys	Leu	Pro
	Ser	Pro	Ala	Thr		Ser	Phe	Thr	His		Asp	Ser	Tyr	Ser	
145 Asn	Asp	Tyr	Phe	Leu 165	150 Ser	Arg	Gly	Phe	Ala 170	155 Asn	Ile	Tyr	Val	Ser 175	160 Gly
Val	Gly	Thr	Ala 180		Ser	Thr	Gly	Phe 185		Thr	Ser	Gly	Asp		Gln
Gln	Ile	Gln 195	Ser	Phe	_			Ile	Asp	Trp	Leu	Asn 205	Gly	Lys	Val
Thr	Ala 210	Phe							Lys	Gln	Val 220			Asp	Trp
Ser 225		Gly	Leu	Val	Ala 230		Thr	Gly	Lys	Ser 235		Leu	Gly	Thr	Met 240
	Thr	Gly	Leu	Ala 245		Thr	Gly	Val	Glu 250		Leu	Lys	Val	Ile 255	
Ala	Glu	Ala	Ala 260		Ser	Thr	Trp	Tyr 265		Tyr	Tyr	Arg	Glu 270		Gly
Leu	Val	Cys 275		Pro	Gly	Gly	Tyr 280		Gly	Glu	Asp	Leu 285		Val	Leu
Thr	Glu 290	Leu	Thr	Tyr	Ser	Arg 295		Leu	Leu	Ala	Gly 300		Tyr	Ile	Lys
Λαn		Agn	Cvc	Т ч гэх	Cln		T.011	TON	Nan	C7.11		Cor	Tard	λΙэ	Tle

Asn Asn Asp Cys Tyr Gln Ala Leu Leu Asn Glu Gln Ser Lys Ala Ile

55 / 63

305					310					J _ J					320
Asp	Arg	Gln	Ser	Gly 325	Asp	Tyr	Asn	Gln	Tyr 330	Trp	His	Asp	Arg	Asn 335	Tyr
Leu	Thr	His	Val 340	Asn	Asn	Val	Lys	Ser 345	Arg	Val	Val	Tyr	Thr 350	His	Gly
Leu	Gln	Asp 355	Trp	Asn	Val	Lys	Pro 360	Arg	His	Val	Tyr	Lys 365	Val	Phe	Asn
Ala	Leu 370	Pro	Gln	Thr	Ile	Lys 375	Lys	His	Leu	Phe	Leu 380	His	Gln	Gly	Gln
His 385		Tyr	Met	His	Asn 390	Trp	Gln	Ser	Ile	Asp		Arg	Glu	Ser	Met 400
	Ala	Leu	Leu	Ser 405	Gln	Glu	Leu	Leu	Gly 410		Asp	Asn	His	Phe 415	
Leu	Glu	Glu	Val 420	Ile	Trp	Gln	Asp	Asn 425		Thr	Glu	Gln	Thr 430		Gln
Val	Leu	Asp 435	Ala	Phe	Gly	Gly	Asn 440	His	Gln	Glu	Gln	Ile 445		Leu	Gly
Asp	Ser 450	Lys	Lys	Leu	Ile	Asp 455	Asn	His	Tyr	Asp	Lys 460	Glu	Ala	Phe	Asp
Thr 465	Tyr	Cys	Lys	Asp	Phe 470	Asn	Val	Phe	Lys	Asn 475	Asp	Leu	Phe	Lys	Gly 480
Asn	Asn	Lys	Thr	Asn 485	Gln	Ile	Thr	Ile	Asn 490	Leu	Pro	Leu	Lys	Lys 495	Asn
Tyr	Leu	Leu	Asn 500	Gly	Gln	Cys	Lys	Leu 505	His	Leu	Arg	Val	Lys 510	Thr	Ser
Asp	Lys	Lys 515	Ala	Ile	Leu	Ser	Ala 520	Gln	Ile	Leu	Asp	Tyr 525	Gly	Pro	Lys
	530		Lys			535					540				_
Asn 545	Gly	Lys	Asn	Phe	Ala 550	Arg	Glu	Ala	Leu	Arg 555	Glu	Leu	Pro	Phe	Thr 560
Lys	Asp	His	Tyr	Arg 565	Val	Ile	Ser	Lys	Gly 570	Val	Leu	Asn	Leu	Gln 575	Asn
_			Leu 580					585					590	~	
		595	Phe				600					605		_	-
	610		Arg			615					620				
625			Ala		630				Val	Asp 635	Leu	Ser	Gln	Ser	Tyr 640
Leu	Thr	Ile	Pro	Thr 645	Asn	Gln	Gly	Asn							
	< 2	210>	34												
		211>													
	<2	212>	PRT												
	< 2	213>	Stre	eptod	cocus	5									
Met	-	l00> Leu	34 Leu	Thr	Lys	Glu	Arg	Phe	Asp	Asp	Ser	Gln	His	Phe	Trp
1	~ 1	~ 7 -	7\	5	T	~ 7 =	a 3	G =	10	m 3	~3			15	~
			Asn 20					25			_		30		
HIS	Asp	Asn 35	Lys	Asn	тте	Pro	G1n 40	val	val	Ala	Thr	Ile 45	val	Asp	Asp

56 / 63

Leu Gln Gly Ser Gly Ser Ser Asn His Phe Trp Tyr Phe Gly Asn Thr Thr Asp Thr Ser Ile Leu Met Ile Ala His Leu Asn Arg Lys Phe Tyr Ile Gln Val Asn Leu Lys Asp Phe Asp Phe Ala Leu Asn Leu Ile Ala Ile Asn Asn Trp Lys Ser Leu Leu Gln Thr Gln Leu Glu Ala Leu Asn Asp Thr Leu Ala Ile Phe Gln <210> 35 <211> 326 <212> PRT <213> Streptococus <400> 35 Met Ser Ser Tyr Trp Asn Asn Tyr Pro Glu Leu Lys Lys Asn Ile Asp Glu Thr Asn Gln Leu Ile Gln Glu Arg Ile Gln Val Arg Asn Lys Asp Ile Glu Ala Ala Leu Ser Gln Leu Thr Ala Ala Gly Gly Lys Gln Leu Arg Pro Ala Phe Phe Tyr Leu Phe Ser Gln Leu Gly Asn Lys Glu Asn Gln Asp Thr Gln Gln Leu Lys Lys Ile Ala Ala Ser Leu Glu Ile Leu His Val Ala Thr Leu Ile His Asp Asp Val Ile Asp Asp Ser Pro Leu Arg Arg Gly Asn Met Thr Ile Gln Ser Lys Phe Gly Lys Asp Ile Ala Val Tyr Thr Gly Asp Leu Leu Phe Thr Val Phe Phe Asp Leu Ile Leu Glu Ser Met Thr Asp Thr Pro Phe Met Arg Ile Asn Ala Lys Ser Met Arg Lys Ile Leu Met Gly Glu Leu Asp Gln Met His Leu Arg Tyr Asn Gln Gln Gln Gly Ile His His Tyr Leu Arg Ala Ile Ser Gly Lys Thr Ala Glu Leu Phe Lys Leu Ala Ser Lys Glu Gly Ala Tyr Phe Gly Gly Ala Glu Lys Glu Val Val Arg Leu Ala Gly His Ile Gly Phe Asn Ile Gly Met Thr Phe Gln Ile Leu Asp Asp Ile Leu Asp Tyr Thr Ala Asp Lys Lys Thr Phe Asn Lys Pro Val Leu Glu Asp Leu Thr Gln Gly Val Tyr Ser Leu Pro Leu Leu Leu Ala Ile Glu Glu Asn Pro Asp Ile Phe Lys Pro Ile Leu Asp Lys Lys Thr Asp Met Ala Thr Glu Asp Met Glu Lys Ile Ala Tyr Leu Val Val Ser His Arg Gly Val Asp Lys Ala Arg His Leu Ala Arg Lys Phe Thr Glu Lys Ala Ile Ser Asp Ile Asn Lys Leu Pro Gln Asn Ser Ala Lys Lys Gln Leu Leu Gln Leu Thr Asn Tyr

```
305
                    310
                                         315
                                                              320
Leu Leu Lys Arg Lys Ile
                325
      <210> 36
      <211> 247
      <212> PRT
      <213> Streptococus
      <400> 36
Leu Pro Asn Lys Pro Tyr Asp Phe Ser Val Lys Asn Leu Ser Phe Gln
                                     10
Tyr Lys Pro Gln Glu Lys Trp Val Leu His His Leu Asp Leu Asp Ile
            20
Lys Glu Gly Glu Lys Ile Ala Ile Leu Gly Arg Ser Gly Ser Gly Lys
        35
                             40
                                                 45
Ser Thr Leu Ala Ser Leu Leu Arg Gly Asp Leu Lys Ala Ser Gln Gly
Lys Ile Thr Leu Gly Gly Ala Asp Val Ser Ile Val Gly Asp Cys Ile
                    70
                                                              80
                                         75
Ser Asn Tyr Ile Gly Val Ile Gln Gln Ala Pro Tyr Leu Phe Asn Thr
                85
                                     90
                                                         95
Thr Leu Leu Asn Asn Ile Arg Ile Gly Asn Gln Asp Ala Ser Glu Glu
            100
                                 105
                                                     110
Asp Val Trp Lys Val Leu Glu Arg Val Gly Leu Lys Glu Met Val Thr
                            120
Asp Leu Ser Asp Gly Leu Tyr Thr Met Val Asp Glu Ala Gly Leu Arg
    130
                        135
                                             140
Phe Ser Gly Gly Glu Arg His Arg Ile Ala Leu Ala Arg Ile Leu Leu
145
                    150
                                         155
                                                             160
Lys Asp Val Pro Ile Val Ile Leu Asp Glu Pro Thr Val Gly Leu Asp
                165
                                     170
                                                         175
Pro Ile Thr Glu Gln Ala Leu Leu Arg Val Phe Met Lys Glu Leu Glu
                              185
Gly Lys Thr Leu Val Trp Ile Thr His His Leu Lys Gly Ile Glu His
                            200
                                                 205
Ala Asp Arg Ile Leu Phe Ile Glu Asn Gly Gln Leu Glu Leu Glu Gly
    210
                        215
                                             220
Ser Pro Gln Glu Leu Ser Gln Ser Ser Gln Arg Tyr Arg Gln Leu Lys
225
                    230
                                         235
                                                             240
Ala Ala Asp Asp Gly Asp Leu
                245
      <210> 37
      <211> 3480
      <212> DNA
      <213> Streptococcus
      <400> 37
aattctattt ggaggttttt cttgaataaa tggttagtta aggcaagttc cttagttgtt
                                                                      60
ttaggtggta tggttttatc tgcgggttcc cgagttttag cggatactta tgtccgtcca
                                                                      120
attgataatg gtagaattac aacaggtttc aatggttatc ctggacattg tggggtggat
                                                                      180
tatgctgttc cgactggaac gattattagg gcagtggcag atggtactgt gaaatttgca
                                                                     240
ggagctggag ccaacttttc ttggatgaca gacttagcag gaaattgtgt catgattcaa
                                                                     300
                                                                     360
catgcggatg gaatgcatag tggttacgct catatgtcac gtgtggtggc taggactggg
gaaaaagtca aacaaggaga tatcatcggt tacgtaggag caactggtat ggcgacggga
                                                                     420
```

cctcaccttc	attttqaatt	tttaccaqct	aaccctaatt	ttcaaaatqq	tttccatqqa	480
			gttgcgacct			540
-			gctcctgtac			600
			gttaatggtg			660
			gataatggta			720
			gaccaggttc	_	_	780
			gaaaaaccca		_	840
			agttcagttt			900
			ttgattcatt		_	960
_			ctgaaaataa			1020
			aaataggaat			1080
			cttcgctatt			1140
			gtactgtttc			1200
			tgaaatatgg			1260
			tagcaaaaat	_		1320
			taacttacga			1380
			atgctgctgg		 -	1440
			accaaaaagt		_	1500
-			ttgtttcgcc			1560
			cacaagagca			1620
			agtcgattac			1680
			tcagtcagtc			1740
			ctaaagtagc			1800
			ctcctaaagt			1860
			ctacgacttc	_	_	1920
			tagcacaaaa			1980
			tagctgcaca	_		2040
			tagcgtcaac			2100
			atggtaaagg			2160
			ttgcacagta			2220
			aaaagtttta			2280
			cagatcgtgg			2340
			aatataaaaa			2400
			tcttatctaa			2460
			ttaaccgtga			2520
			acgctttaaa			2580
			gtgagaatat			2640
			ttgtgtcatg			2700
			ctcttttagc			2760
			gcgacattaa			2820
			aatatcctcc		_	2880
			gtttagatat	_		2940
			gtgtagctga			3000
			atataagtac			3060
			caactctatc			3120
			ttaataagct			3180
			agcaagctaa			3240
			ctagaccaaa			3300
			aaatcaaaat	-		3360
			ttttgcctcg			3420
			atggctgccg			3480
cogcegeg	unghoughay	country	~ - gg c c g c c g	agaaggataa	ageoguaace	2400

<210> 38

<211> 306

<212> PRT

<213> Streptococcus

WO 99/42588

59 / 63

PCT/CA99/00114

<400> 38 Asn Ser Ile Trp Arg Phe Phe Leu Asn Lys Trp Leu Val Lys Ala Ser 5 15 Ser Leu Val Val Leu Gly Gly Met Val Leu Ser Ala Gly Ser Arg Val 20 Leu Ala Asp Thr Tyr Val Arg Pro Ile Asp Asn Gly Arg Ile Thr Thr 40 Gly Phe Asn Gly Tyr Pro Gly His Cys Gly Val Asp Tyr Ala Val Pro Thr Gly Thr Ile Ile Arg Ala Val Ala Asp Gly Thr Val Lys Phe Ala 80 65 70 Gly Ala Gly Ala Asn Phe Ser Trp Met Thr Asp Leu Ala Gly Asn Cys 85 Val Met Ile Gln His Ala Asp Gly Met His Ser Gly Tyr Ala His Met 100 105 110 Ser Arg Val Val Ala Arg Thr Gly Glu Lys Val Lys Gln Gly Asp Ile 115 120 Ile Gly Tyr Val Gly Ala Thr Gly Met Ala Thr Gly Pro His Leu His 130 135 140 Phe Glu Phe Leu Pro Ala Asn Pro Asn Phe Gln Asn Gly Phe His Gly 145 150 160 155 Arg Ile Asn Pro Thr Ser Leu Ile Ala Asn Val Ala Thr Phe Ser Gly 165 170 Lys Thr Gln Ala Ser Ala Pro Ser Ile Lys Pro Leu Gln Ser Ala Pro 185 Val Gln Asn Gln Ser Ser Lys Leu Lys Val Tyr Arg Val Asp Glu Leu 195 200 205 Gln Lys Val Asn Gly Val Trp Leu Val Lys Asn Asn Thr Leu Thr Pro 210 215 220 Thr Gly Phe Asp Trp Asn Asp Asn Gly Ile Pro Ala Ser Glu Ile Asp 225 230 235 Glu Val Asp Ala Asn Gly Asn Leu Thr Ala Asp Gln Val Leu Gln Lys 245 250 Gly Gly Tyr Phe Ile Phe Asn Pro Lys Thr Leu Lys Thr Val Glu Lys 265 Pro Ile Gln Gly Thr Ala Gly Leu Thr Trp Ala Lys Thr Arg Phe Ala 275 280 285 Asn Gly Ser Ser Val Trp Leu Arg Val Asp Asn Ser Gln Glu Leu Leu 290 295 300 Tyr Lys 305 <210> 39 <211> 434 <212> PRT <213> Streptococcus <400> 39 Met Lys Met Asn Lys Lys Val Leu Leu Thr Ser Thr Met Ala Ala Ser 10 Leu Leu Ser Val Ala Ser Val Gln Ala Gln Glu Thr Asp Thr Trp 20 25 Thr Ala Arg Thr Val Ser Glu Val Lys Ala Asp Leu Val Lys Gln Asp 35 Asn Lys Ser Ser Tyr Thr Val Lys Tyr Gly Asp Thr Leu Ser Val Ile

	50					55					60				
Ser 65	Glu	Ala	Met	Ser	Ile 70						Ala	Lys	Ile	Asn	Asn 80
Ile	Ala	Asp	Ile	Asn 85	Leu	Ile	Tyr	Pro	Glu 90	Thr	Thr	Leu	Thr	Val 95	Thr
Tyr	Asp	Gln	Lys 100	Ser	His	Thr	Ala		Ser			Ile	Glu 110	Thr	Pro
Ala	Thr	Asn 115	Ala	Ala	Gly	Gln	Thr 120					Asp 125	Leu	Lys	Thr
Asn	Gln 130	Val	Ser	Val	Ala		Gln			Ser	Leu 140	Asn	Thr	Ile	Ser
Glu 145	Gly	Met	Thr	Pro	Glu 150		Ala		Thr	Ile 155	Val	Ser	Pro	Met	Lys 160
Thr	Tyr	Ser	Ser	Ala 165			Leu			-	Glu		Leu	Ala 175	Gln
Glu	Gln	Ala	Val 180	Ser	Gln	Ala	Ala	Ala 185	Asn	Glu	Gln	Val	Ser 190	Thr	Ala
		195	Ser				200					205			
	210		Gln			215					220				
225			Ala		230					235	_				240
			Ala	245					250		_			255	
			Thr 260					265					270		
		275	Thr				280					285			
	290		Ser			295					300				
305			Pro		310					315					320
			Leu	325					330				_	335	
			Gly 340					345		_	_		350	_	
		355	Gly				360					365	_	_	
	370		Gly			375					380				
385			Ile		390					395					400
			Ile	405					410					415	
Arg	Gly	Gly	Val 420	Thr	Ala	Asn	His	Tyr 425	Asp	His	Val	His	Val 430	Ser	Phe
Asn	Lys														

<210> 40

<211> 232

<212> PRT

<213> Streptococcus

<400> 40

```
Met Pro His Leu Ser Lys Glu Ala Phe Lys Lys Gln Ile Lys Asn Gly
                                     10
Ile Ile Val Ser Cys Gln Ala Leu Pro Gly Glu Pro Leu Tyr Thr Glu
            20
                                 25
                                                     30
Ser Gly Gly Val Met Pro Leu Leu Ala Leu Ala Ala Gln Glu Ala Gly
        35
Ala Val Gly Ile Arg Ala Asn Ser Val Arg Asp Ile Lys Glu Ile Gln
                         55
                                             60
Glu Val Thr Asn Leu Pro Ile Ile Gly Ile Ile Lys Arg Glu Tyr Pro
                    70
                                         75
Pro Gln Glu Pro Phe Ile Thr Ala Thr Met Thr Glu Val Asp Gln Leu
                                     90
                                                         95
Ala Ser Leu Asp Ile Ala Val Ile Ala Leu Asp Cys Thr Leu Arg Glu
            100
                                 105
                                                     110
Arg His Asp Gly Leu Ser Val Ala Glu Phe Ile Gln Lys Ile Lys Gly
        115
                             120
                                                 125
Lys Tyr Pro Glu Gln Leu Leu Met Ala Asp Ile Ser Thr Phe Glu Glu
                        135
                                             140
Gly Lys Asn Ala Phe Glu Ala Gly Val Asp Phe Val Gly Thr Thr Leu
145
                                         155
                    150
                                                              160
Ser Gly Tyr Thr Asp Tyr Xaa Arg Gln Glu Glu Gly Pro Asp Ile Glu
                165
                                     170
                                                         175
Leu Leu Asn Lys Leu Cys Gln Ala Gly Ile Asp Val Ile Ala Glu Gly
            180
                                 185
                                                     190
Lys Ile His Thr Pro Lys Gln Ala Asn Glu Ile Asn His Ile Gly Val
        195
                             200
Ala Gly Ile Val Val Gly Gly Ala Ile Thr Arg Pro Lys Glu Ile Ala
    210
                        215
                                             220
Glu Arg Phe Ile Ser Gly Leu Ser
225
                    230
      <210> 41
      <211> 39
      <212> PRT
      <213> Streptococcus
      <400> 41
Met Ser Ile Lys Lys Ser Val Ile Gly Phe Cys Leu Gly Ala Ala Ala
 1
                                     10
                                                          15
Leu Ser Met Phe Ala Cys Val Asp Ser Ser Gln Ser Val Met Ala Ala
            20
                                 25
                                                     30
Glu Lys Asp Lys Val Glu Ile
        35
      <210> 42
      <211> 1305
      <212> DNA
      <213> Streptococcus
      <400> 42
atgaaaatga ataaaaaggt actattgaca tcgacaatgg cagcttcgct attatcagtc
                                                                       60
gcaagtgttc aagcacaaga aacagatacg acgtggacag cacgtactgt ttcagaggta
                                                                      120
aaggctgatt tggtaaagca agacaataaa tcatcatata ctgtgaaata tggtgataca
                                                                      180
ctaagcgtta tttcagaagc aatgtcaatt gatatgaatg tcttagcaaa aattaataac
                                                                      240
attgcagata tcaatcttat ttatcctgag acaacactga cagtaactta cgatcagaag
                                                                      300
agtcatactg ccacttcaat gaaaatagaa acaccagcaa caaatgctgc tggtcaaaca
                                                                      360
```

62 / 63

PCT/CA99/00114

```
acagctactg tggatttgaa aaccaatcaa gtttctgttg cagaccaaaa agtttctctc
                                                                     420
aatacaattt cggaaggtat gacaccagaa gcagcaacaa cgattgtttc gccaatgaag
                                                                     480
acatattctt ctgcgccagc tttgaaatca aaagaagtat tagcacaaga gcaagctgtt
                                                                     540
agtcaagcag cagctaatga acaggtatca acagctcctg tgaagtcgat tacttcagaa
                                                                     600
gttccagcag ctaaagagga agttaaacca actcagacgt cagtcagtca gtcaacaaca
                                                                     660
gtatcaccag cttctgttgc cgctgaaaca ccagctccag tagctaaagt agcaccggta
                                                                     720
                                                                     780
agaactgtag cagcccctag agtggcaagt gttaaagtag tcactcctaa agtagaaact
ggtgcatcac cagagcatgt atcagctcca gcagttcctg tgactacgac ttcaacagct
                                                                     840
acagacagta agttacaagc gactgaagtt aagagcgttc cggtagcaca aaaagctcca
                                                                     900
acagcaacac cggtagcaca accagcttca acaacaaatg cagtagctgc acatcctgaa
                                                                     960
aatgcagggc tccaacctca tgttgcagct tataaagaaa aagtagcgtc aacttatgga
                                                                    1020
gttaatgaat tcagtacata ccgtgcaggt gatccaggtg atcatggtaa aggtttagca
                                                                    1080
gtcgacttta ttgtaggtaa aaaccaagca cttggtaatg aagttgcaca gtactctaca
                                                                    1140
caaaatatgg cagcaaataa catttcatat gttatctggc aacaaagtt ttactcaaat
                                                                    1200
acaaatagta tttatggacc tgctaatact tggaatgcaa tgccagatcg tggtggcgtt
                                                                    1260
actgccaacc attatgacca tgttcacgta tcatttaaca aataa
                                                                    1305
      <210> 43
      <211> 1230
      <212> DNA
      <213> Streptococcus
      <400> 43
caagaaacag atacgacgtg gacagcacgt actgtttcag aggtaaaggc tgatttggta
                                                                      60
aagcaagaca ataaatcatc atatactgtg aaatatggtg atacactaag cgttatttca
                                                                     120
gaagcaatgt caattgatat gaatgtctta gcaaaaatta ataacattgc agatatcaat
                                                                     180
cttatttatc ctgagacaac actgacagta acttacgatc agaagagtca tactgccact
                                                                     240
                                                                     300
tcaatgaaaa tagaaacacc agcaacaaat gctgctggtc aaacaacagc tactgtggat
ttgaaaacca atcaagtttc tgttgcagac caaaaagttt ctctcaatac aatttcggaa
                                                                     360
ggtatgacac cagaagcagc aacaacgatt gtttcgccaa tgaagacata ttcttctgcg
                                                                     420
ccagctttga aatcaaaaga agtattagca caagagcaag ctgttagtca agcagcagct
                                                                     480
aatgaacagg tatcaacagc tcctgtgaag tcgattactt cagaagttcc agcagctaaa
                                                                     540
gaggaagtta aaccaactca gacgtcagtc agtcagtcaa caacagtatc accagcttct
                                                                     600
gttgccgctg aaacaccagc tccagtagct aaagtagcac cggtaagaac tgtagcagcc
cctagagtgg caagtgttaa agtagtcact cctaaagtag aaactggtgc atcaccagag
                                                                     720
catgtatcag ctccagcagt tcctgtgact acgacttcaa cagctacaga cagtaagtta
                                                                     780
caagcgactg aagttaagag cgttccggta gcacaaaaag ctccaacagc aacaccggta
                                                                     840
gcacaaccag cttcaacaac aaatgcagta gctgcacatc ctgaaaatgc agggctccaa
                                                                     900
cctcatgttg cagcttataa agaaaaagta gcgtcaactt atggagttaa tgaattcagt
                                                                     960
acataccgtg caggtgatcc aggtgatcat ggtaaaggtt tagcagtcga ctttattgta
                                                                    1020
ggtaaaaacc aagcacttgg taatgaagtt gcacagtact ctacacaaaa tatggcagca
                                                                    1080
aataacattt catatgttat ctggcaacaa aagttttact caaatacaaa tagtatttat
                                                                    1140
ggacctgcta atacttggaa tgcaatgcca gatcgtggtg gcgttactgc caaccattat
                                                                    1200
gaccatgttc acgtatcatt taacaaataa
                                                                    1230
      <210> 44
      <211> 409
      <212> PRT
      <213> Streptococcus
      <400> 44
Gln Glu Thr Asp Thr Trp Thr Ala Arg Thr Val Ser Glu Val Lys
 1
                 5
                                    10
                                                         15
Ala Asp Leu Val Lys Gln Asp Asn Lys Ser Ser Tyr Thr Val Lys Tyr
            20
                                25
                                                     30
Gly Asp Thr Leu Ser Val Ile Ser Glu Ala Met Ser Ile Asp Met Asn
```

			35					40					45			
V	al	Leu 50	Ala	Lys	Ile	Asn	Asn 55	Ile	Ala	Asp	Ile	Asn 60	Leu	Ile	Tyr	Pro
			Thr	Leu	Thr			Tyr	Asp	Gln			His	Thr	Ala	
	55	Met	Lare	Ile	Glu	70 Thr	Dro	70 7 -	mb ~	7) a m	75	70 7	<i>α</i> 1	a1	mb	80
					85					90					95	
A	lla	Thr	Val	Asp	Leu	Lys	Thr	Asn	Gln 105	Val	Ser	Val	Ala	Asp	Gln	Lys
V	al	Ser	Leu 115	Asn	Thr	Ile	Ser	Glu 120	Gly	Met	Thr	Pro	Glu 125	Ala	Ala	Thr
T	hr	Ile		Ser	Pro	Met	Lys		Tyr	Ser	Ser	Ala		Ala	Leu	Lvs
		130					135					140				_
	45	Lys	GIU	Val	Leu	150	GIN	GIU	GIN	Ата	va1 155	Ser	Gin	Ala	Ala	Ala 160
A	sn	Glu	Gln	Val	Ser 165	Thr	Ala	Pro	Val	Lys 170		Ile	Thr	Ser	Glu 175	Val
P	ro	Ala	Ala	Lys		Glu	Val	Lys	Pro			Thr	Ser	Val		Gln
				180					185					190		
S	er	Thr	Thr 195	Val	Ser	Pro	Ala	Ser 200	Val	Ala	Ala	Glu	Thr 205	Pro	Ala	Pro
V	al		Lys	Val	Ala	Pro					Ala			Arg	Val	Ala
C	er	210 Val	Tare	Val	77 a 1	Thr			Wa I			220	70 7 -	0	D	~1
	25	val	шуъ	Val	val	230	PIO	пуѕ	val	GIU	235	GTÀ	Ата	ser	Pro	240
		Val	Ser	Ala	Pro		Val	Pro	Val	Thr		Thr	Ser	Thr	Ala	
					245					250					255	
A	sp	Ser	Lys	Leu 260		Ala	Thr	Glu	Val 265	Lys	Ser	Val	Pro	Val 270	Ala	Gln
L	ys	Ala	Pro	Thr	Ala	Thr	Pro	Val	Ala	Gln	Pro	Ala	Ser	_	Thr	Asn
_	,	** 7	275		1	_	- T	280		-: -			285			
А	lа	Val 290	Ala	Ala	His	Pro			Ala		Leu	Gln 300	Pro	His	Val	Ala
A	la		Lys	Glu	Lvs	Val					Glv	-	Asn	Glu	Phe	Ser
	05	- 2	4		-1	310				- 7	315	V 0.1	116011	Ciu	x 11C	320
Т	hr	Tyr	Arg	Ala			Pro		Asp		Gly		Gly	Leu	Ala 335	
A	.sp	Phe	Ile	Val						Leu	Gly	Asn	Glu			Gln
т	3.7.7°	Ser	Thr	340 Gln	Agn	Mot	λla	አገລ			Tlo		TT= ===	350	77.	TT
			355	Gln				360					365			-
G				Phe									Gly			Asn
T	hr	Trp	Asn	Ala	Met	Pro										Tvr
	85	-				390			4	- 4	395					400
A	ga	His	Val	His	Val 405	Ser	Phe	Asn	Lys							_

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/31, C07K 14/315, A61K 39/09,
C12N 1/21

(11) International Publication Number: WO 99/42588

(43) International Publication Date: 26 August 1999 (26.08.99)

(21) International Application Number: PCT/CA99/00114

(22) International Filing Date: 17 February 1999 (17.02.99)

(30) Priority Data: 60/075,425 20 February 1998 (20.02.98) US

(71) Applicant (for all designated States except US): BIOCHEM VACCINS INC. [CA/CA]; 2323 boulevard du Parc Technologique, Sainte-Foy, Québec G1P 4R8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODEUR, Bernard, R. [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). RIOUX, Clément [CA/CA]; 1012 Jean-Charles Cantin, Ville de Cap Rouge, Québec G1Y 2X1 (CA). BOYER, Martine [CA/CA]; Apt. 204, 25 des Mouettes, Beauport, Québec G1E 7G1 (CA). CHARLEBOIS, Isabelle [CA/CA]; 410 Mirabel, St-Nicolas, Québec G7A 2L5 (CA). HAMEL, Josée [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). MARTIN, Denis [CA/CA]; 4728-G rue Gaboury, St-Augustin-de-Desmaures, Québec G3A 1E9 (CA).

(74) Agents: CÔTE, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
23 March 2000 (23.03.00)

(54) Title: GROUP B STREPTOCOCCUS ANTIGENS

(57) Abstract

Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
\mathbf{AT}	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	$\mathbf{G}\mathbf{A}$	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	\mathbf{GE}	Georgia	MD	Republic of Moldova	\mathbf{TG}	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	\mathbf{TR}	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IIL	Israel	MR	Mauritania	\mathbf{UG}	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	\mathbf{YU}	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	\mathbf{SG}	Singapore		

PCT/CA 99/00114

a. classif IPC 6	C12N15/31 C07K14/315 A61K39	/09 C12N1/21	
	International Patent Classification (IPC) or to both national classification	fication and IPC	
	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classific CO7K C12N A61K	ation symbols)	
Documentat	tion searched other than minimum documentation to the extent tha	it such documents are included in the fields se	arched
Electronic de	ata base consulted during the international search (name of data	base and, where practical, search terms used)	
C DOCUME	ENTS CONSIDERED TO BE RELEVANT		
	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Category	Citation of document, with indication, where appropriate, of the	relevant pessages	
A	MICHEL J L ET AL: "Cloned alph C-protein antigens of group B S elicit protective immunity" INFECTION AND IMMUNITY., vol. 59, no. 6, June 1991 (1991 2023-2028, XP002107260 AMERICAN SOCIETY FOR MICROBIOLO WASHINGTON., US ISSN: 0019-9567 the whole document	treptococci -06), pages	1-48
"A" docume consider "E" earlier of filing of which citation other "P" docume other "P" "P" "P" docume other "P" "P" "P" "P" "P" "P" "P" "P" "P" "P	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but	"T" later document published after the integrated or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent.	ernational filing date the application but eory underlying the claimed invention t be considered to comment is taken alone claimed invention eventive step when the ore other such docu-
	han the priority date claimed	Date of mailing of the international sea	
	actual completion of the international search L5 December 1999	2 4 01 2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Lejeune, R	

3

PCT/CA 99/00114

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Delevent to chief No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	LACHENAUER C S ET AL: "Cloning and expression in Escherichia coli of a protective surface protein from type V group B Streptococci" ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol. 418, 9 December 1997 (1997-12-09), pages 615-618, XP002107261 SPRING ST., NY, US ISSN: 0065-2598 the whole document	1-48
P,X	DATABASE EMBL [Online] Accession number AF062533, 11 February 1999 (1999-02-11) SPELLERBERG B ET AL: "Streptococcus agalactiae Lmb (lmb) gene, complete cds; and unknown gene." XP002125180 98.9% identity between base 1-2514 of SEQ ID NO 13 and base 988-3501 of AF062533 Translation product (AC: Q9ZHG9) has 98.5% identity in 793 AA overlap with SEQ ID NO 15 and 98.5% identity in 715 AA overlap with SEQ ID 16 & SPELLERBERG B ET AL: "Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin" INFECTION AND IMMUNITY., vol. 67, no. 2, February 1999 (1999-02), pages 871-878, AMERICAN SOCIETY FOR MICROBIOLOGY. WASHINGTON., US ISSN: 0019-9567	1-10, 16-23,26
X	DATABASE EMBL [Online] Accession Number L23843, 4 January 1994 (1994-01-04) MACRINA F L ET AL: "ISN IS199 from Streptococcus mutans IS3 (Brathall serotype C) DNA fragment" XP002125181 79.6% identity between base 5212-4314 of SEQ ID NO 13 and base 312-1220 of L23843 Translation has 83.4% identity in 283 AA overlap with SEQ ID NO 21 -/	1,3-7,10

PCT/CA 99/00114

· · · · · · · · · · · · · · · · · · ·	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, or the relevant passages	
X	DATABASE EMBL [Online] Accession Number AF026542, 15 October 1997 (1997-10-15) HYNES W L ET AL: "Streptococcus pyogenes FF22 lantibiotic (scn) gene cluster region containing: scnK, scnR, streptococcin A-FF22 precursor (scnA), scnA1, scnM, scnT, scnF, scnE, scnG genes, complete cds, and tnpA gene, partial cds." XP002125182 88.2% identity between base 2607-2953 of SEQ ID NO 13 and base 10435-10777 of AF026542 Translation product (AC: 031057) has 95.8% identity in 71 AA overlap with SEQ ID NO 17	1-10, 16-23, 26
P,X	DATABASE GENESEQ [Online] Accession Number V52136, 23 October 1998 (1998-10-23) BARASH S C ET AL: "Streptococcus pneumoniae genome fragment SEQ ID NO:3" XP002125183 68.5% identity between base 2539-3319 of SEQ ID NO 37 and base 18492-19271 of V52136 Translation has 74.5% identity in 231 AA overlap with SEQ ID NO 40 & WO 98 18931 A (DOUGHERTY BRIAN A ;HUMAN GENOME SCIENCES INC (US); ROSEN CRAIG A) 7 May 1998 (1998-05-07)	1,3-7,10

ational application No. PCT/CA 99/00114

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 37-46 are directed to a method of treatment of the
	human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
	As a result of the prior review under R. 40.2(e) PCT, no additional fees are to be refunded.
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🛛	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	11-14,16,24,25,27,28,30,31 (completely), 1-10,15,17-23,26,29,32-48 (all partially) i.e. (group of) inventions 1, 3 and 7
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remari	con Protest X The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

An isolated polynucleotide encoding a polypeptide having a sequence selected from the group consisting of SEQ ID 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6 i.e. the open reading frames of clone 1 (SEQ ID NO 1). Also a vector comprising the polynucleotide, a host cell transformed therewith, an isolated polypeptide encoded by the polynucleotide, a vaccine composition comprising said polypeptide and a polynucleotide having a sequence SEQ ID NO 1.

2. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 2 (SEQ ID 7) with sequences SEQ ID NO 8-12.

3. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 3 (SEQ ID 13) with sequences SEQ ID NO 14-21.

4. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 4 (SEQ ID 22) with sequences SEQ ID NO 23-26.

5. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 5 (SEQ ID 27) with sequences SEQ ID NO 28-31.

6. Claims: 1-10,15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 6 (SEQ ID 32) with sequences SEQ ID NO 33-36.

7. Claims: 11-14,16,24,25,27,28,30,31 (all completely), 1-10, 15,17-23,26,29,32-48 (all partially)

Same as invention 1, but directed at polypeptides of clone 7 (SEQ ID 37) with sequences SEQ ID NO 38-41.

information on patent family members

Interr Dal Application No PCT/CA 99/00114

Patent document cited in search report		Publication date		atent family nember(s)	Publication date
WO 9818931	Α	07-05-1998	AU AU EP EP WO	5194598 A 6909098 A 0942983 A 0941335 A 9818930 A	22-05-1998 22-05-1998 22-09-1999 15-09-1999 07-05-1998