Clustering

Oliver Brdiczka

PRIMA Research Group 03/05/2004

Overview

- Clustering
 - Explore "spatial" structure of data

Unsupervised Learning

- Statistical (temporal) Pattern Discovery
 - Explore temporal structure of data
- Classification
 - Connect data and human interpretation

Supervised Learning

Clustering

Input: large amounts of high dimensional (sensory) data

Objective: reduce data in dimension and/or amount

- Results are used for:
 - Visualization
 - Data Compression
 - Representation for statistical pattern discovery and modeling

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Partitioning vs. Projection

Projection

Many (N) high dimensional (d) data

Many (N) low dimensional (q) data

Partioning

Few (M) high dimensional (d) data

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Projection methods

Principal Component Analysis (PCA)

Minimize reconstruction error

- MDS (Multi Dimensional Scaling):
 - Sammon Mapping
- IsoMap

Probabilistic PCA

Maximum likelihood of model

Preserve

distances

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Partitioning methods

Kmeans, Kmedians

- Competitive Learning ("neural" Kmeans)
 - Self-Organizing Maps (SOM, Kohonen 1982)

Expectation Maximization (EM)

Kmeans

- Cluster center = mean of the objects in the cluster
- Algorithm:
 - (Arbitrarily) choose k centers as initial solution
 - Do until no changes:
 - Compute membership of each object to centers
 - Update cluster centers (=means) according to new memberships
- Kmeans with pruning:
 - Additional steps:
 - Elimination of empty (or weak) clusters
 - Merging of near clusters

Kmedians

- Cluster center = most centrally located object in the cluster
- Algorithm:
 - (Arbitrarily) choose k centers as initial solution
 - Repeat:
 - Randomly pick one of the k centers
 - Replace it with another randomly chosen object from the other (n-k) objects
 - Each object is assigned to the cluster with the closest representative

Competitive Learning

- Idea:
 - competition between neurons
 - One neuron in the competitive layer forms one cluster

Competitive Learning

- The neuron with the highest value for a data item is the winner
- New calculation of the weights of the winner neuron

- Self-Organizing Maps:
 - Additional treatment of "neighborhood"

Expectation Maximization (EM)

- EM = statistical model based on the finite
 Gaussian mixture model
- Cluster = Gaussian with mean, stddev.
 and sampling probability
- Basic algorithm:
 - Guess initial values for cluster parameters
 - Repeat until convergence:
 - Estimate the cluster probability for each instance (Expectation)
 - Re-estimate the parameters of the model using the probability score (Maximization)
 - Convergence criteria: e.g. likelihood of the model

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Hierarchical Clustering

- Decompose the data into several levels of clusters
- Dendrogram: a tree that splits the data recursively into smaller subsets
- Bottom-up approach (agglomerative)
- Top-down approach (divisive)
- Examples: BIRCH, CHAMELEON

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Density-based methods

- Epsilon-neighborhood: within a radius epsilon of a given object
- Core object: epsilon-neighborhood of an object contains at least MinPts
- Density-reachable:

p is within the epsilonneighborhood of q, q is core object

Density-based methods

- Steps:
 - Find core objects as new clusters
 - Iteratively split or merge density-reachable clusters
- Use R*-tree (multidim. balanced tree) for good performance
- Examples: DBScan, DENCLUE

- Projection methods (PCA ...)
- Partitioning methods (K-Means...)
- Hierarchical methods
- Density-Based methods
- Grid-based methods

Grid-based methods

- Quantize the space into a finite number of cells
- Perform clustering on the grid structure
- Examples: WaveCluster, CLIQUE

SUMMARY

- Partitioning methods:
 - Specify k, number of clusters (→ v-fold cross-validation)
 - No arbitrarily shaped clusters
- Hierarchical clustering:
 - results depends on the ordering of the data (divisive) o frequently used in biology/sociology
- Density-based clustering:
 - + Discover clusters of arbitrary shape
 - + Separate noise from data
 - Many parameters to be adjusted by supervisor
 - High complexity