Введение в SQL

Часть 1

Стандарты SQL

1986	SQL- 86	SQL- 87	Первый вариант стандарта, принятый институтом ANSI и одобренный ISO в 1987 году.
1989	SQL- 89	FIPS 127-1	Немного доработанный вариант предыдущего стандарта
1992	SQL- 92	SQL2, FIPS- 127-2	Значительные изменения (ISO 9075); уровень Entry Level страндарта SQL-92 был принят как стандарт FIPS-127-2
1999	SQL: 1999	SQL3	Добавлена поддержка регулярных выражений, рекурсивных запросов, поддержка триггеров, базовые процедурные расширения, нескалярные типы данных и некоторые объектноориентированные возможности.
2003	SQL: 2003		Введены расширения для работы с XML данными, оконные функции(применяемые для работы с OLAP-базами данных), генераторы последовательностей и основанные на них типы данных, появление команды MERGE.
2006	SQL: 2006		Функциональность работы с XML-данными знгачительно расширена. возможность совместно использовать в запросаз SQL и XQuery
2008	SQL: 2008		Улучшены возм-ти оконных фун-й, устранены некот. неоднозначности стандарта SQL:2003

Delete в MERGE, изменение данных в операторе Select, изменение синтаксиса вызова процедур,

строк, (регулярные выражения применительно к строкам), в т.ч работа с оконными функциями

стандартизация возврата запросом процента от всех строк (не количества), возможность отключать ограничения на данные в таблице(CHECK, UNIQUE, REFERRENCE), улучшение работы оконных ф-й

Поддержка JSON, функция LISTAGG (перечисление через запятую значений поля), распознавание шаблонов

Многомерные массивы

Изменения

Год

2011

2016

2019

SQL:

2011

SQL:

2016

SQL:

2019

Назв

ание

Др.

назва ние

Cостав SQL

SQL (structured query language)

Data Definition Language (DDL) язык определения данных

- •Data Manipulation Language (DML) язык манипулирования данными
- Transaction Control Language (TCL)
- Data Control Language (DCL)

Состав SQL

DDL vs DML

	DDL	DML
+	CREATE	INSERT
_	DROP	DELETE
Δ	ALTER	UPDATE

Тип данных	Объявления	Реализация Microsoft SQL Server	Реализация MySQL
boolean (Логически й)	BOOLEAN		BOOL, BOOLEAN, TINYINT(1).
character	CHAR	CHAR[(M)], NCHAR[(M)](unicode)	CHAR [(M)]
(Символьны й)	VARCHAR	VARCHAR[(M)], NVARCHAR[(M)](uni code)	VARCHAR[(M)]
bit	BIT,	BIT	BIT
(Битовый)	BIT VARYING		BIT[(M)]

Символьные типы данных

- Char(7)
- Лесоповал —— "Лесопов"
- Лес "Лес — "

- Varchar(7)
- Лесоповал —— "Лесопов"
- Лес
 "Лес"

Character Large object

- •до 2 ГБ
- •Нет значения по умолчанию
- •Поиск по шаблону (like) не возможен
- •Ограниченная сортировка и индексы

CHARSET IN COLLATION

- CHARACTER SET кодировка
 SHOW CHARACTER SET;
- Collation правила сравнения и хранения данных
- Collation это набор правил (например, одно правило): «сравни коды»

SHOW CHARACTER SET LIKE 'utf%';

CHARSET кодировка

кодировка	описание	collation по умолчанию	Макс длина
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
ascii	US ASCII	ascii_general_ci	1
big5	Big5 Traditional Chinese	big5_chinese_ci	2
binary	Binary pseudo charset	binary	1
cp1250	Windows Central European	cp1250_general_ci	1
cp1251	Windows Cyrillic	cp1251_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8	UTF-8 Unicode	utf8_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4

IIIIDI AAIIIIDIN SQL				
Тип данн ых	Объявлени я	Реализация Microsoft SQL Server	Реализация MySQL	
exact nume ric	NUMERIC	NUMERIC[(M[,D])]	DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]	
(Точные числ a)	DECIMAL	DECIMAL[(M[,D])]	DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]	
	SMALLIN T	SMALLINT	SMALLINT[(M)] [UNSIGNED] [ZEROFILL]	
	INTEGER	INT	INT[(M)] [UNSIGNED] [ZEROFILL] INTEGER[(M)] [UNSIGNED] [ZEROFILL]	
	TINYINT	TINYINT	TINYINT[(M)] [UNSIGNED] [ZEROFILL] -128 127 или 0255	
	BIGINT	BIGINT	BIGINT (8 байт)	

Тип данных	Объявления	Реализация Microsoft SQL Server	Реализация MySQL
арргохітаtе numeric (Округленн ые числа)	FLOAT	FLOAT[(N)]	FLOAT[(M,D)] [UNSIGNED] [ZEROFILL] REAL[(M,D)] [UNSIGNED] [ZEROFILL](если задан режим REAL_AS_FLOAT)
	REAL	REAL (эквивалентно Float(24))	
	DOUBLE PRECISI ON	DOUBLE PRECISION	DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED] [ZEROFILL](если не задан режим REAL_AS_FLOAT)

Тип данных	Объявления	Реализация Microsoft SQL Server	Реализация MySQL
datetime (Дата/время)	DATE	DATE	DATE
	TIME	TIME	TIME
	TIMESTAMP	DATETIME TIMESTAMP	DATETIME TIMESTAMP
interval (Интервал)	INTERVAL		С другим синтаксисом, но используются TIME и TIMESTAMP
LOB (Большой объект)	CHARACTER LARGE OBJECT,	TEXT, VARCHAR(MAX)	TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT
	BINARY LARGE OBJECT	VARBINARY(MAX) VARBINARY(n)	TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB
XML (Правильный XML документ)		XML	XML

Создание базы данных MySQL

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name [create_specification] ...

```
create_specification:
   [DEFAULT] CHARACTER SET [=] charset_name
   [DEFAULT] COLLATE [=] collation_name
```

Пример

• CREATE DATABASE IF NOT EXISTS my_db CHARACTER SET ='cp1251'

Создание таблиц

```
CREATE TABLE TableName
Описание 1,
Описание 2,
Ограничение 1,
```

Описания столбцов таблицы

- имя столбца, columnName
- тип данных столбца, dataType
- обязательность столбца, .[NOT NULL]| .[NULL]
- ограничения на данные столбца, [UNIQUE] [CHECK (searchCondition)]]
- значение столбца по умолчанию [DEFAULT defaultoption]
- признак первичного ключа, если первичный ключ не является составным [PRIMARY KEY]

Первичный ключ

• состав первичного ключа [PRIMARY KEY(ListOf Columns)]

Ограничения

Перед любым ограничением ВОЗМОЖНО CONSTRAINT name_of_Constraint

- Уникальность [UNIQUE(ListOfColumns)]
- Проверка значений [CHECK (searchCondition)]
- Внешний ключ [FOREIGN KEY (listOfForeignKeyColumns) REFERENCES ParentTableName [(listOfCandidateKeyColumns)], [MATCH [PARTIAL | FULL]] [ON UPDATE. referentialAction] [ON DELETE referentialAction] [, ...]]

Пример стандарт

Таблица студент (student)

CREATE TABLE student (

id st int NOT NULL AUTO INCREMENT

PRIMARY KEY,

surname varchar(20) NULL,

name varchar(20) NULL,

patronym varchar(20) DEFAULT NULL,

id gr int DEFAULT NULL,

CONSTRAINT fk gr in st FOREIGN KEY (id gr)

REFERENCES st group (id gr)

ON DELETE RESTRICT

ON UPDATE RESTRICT

Таб. кружки_студента (student_activity)

```
CREATE TABLE student activity (
```

id st int NOT NULL,

id cas int NOT NULL,

PRIMARY KEY (id st,id cas),

CONSTRAINT st_act_cas FOREIGN KEY

(id cas) REFERENCES cas activities

(id cas) ON DELETE RESTRICT

ON UPDATE RESTRICT,

CONSTRAINT st act stud FOREIGN KEY

(id st) REFERENCES student (id st)

ON DELETE RESTRICT

ON UPDATE RESTRICT

Создание таблиц MySQL

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
 tbl_name (create_definition,...)
 [table_options] [partition_options]

table_options

- AUTO_INCREMENT [=] value
- AVG_ROW_LENGTH [=] value
- [DEFAULT] CHARACTER SET [=] charset_name
- | CHECKSUM [=] {0 | 1}
- [DEFAULT] COLLATE [=] collation_name
- COMMENT [=] 'string'
- COMPRESSION [=] {'ZLIB'|'LZ4'|'NONE'}
- CONNECTION [=] 'connect string'
- | {DATA | INDEX} DIRECTORY [=] 'absolute path to directory'
- DELAY KEY WRITE [=] {0 | 1}
- ENCRYPTION [=] {'Y' | 'N'}
- | ENGINE [=] engine name
- INSERT METHOD [=] { NO | FIRST | LAST }
- KEY BLOCK SIZE [=] value
- | MAX ROWS [=] value
- MIN_ROWS [=] value
- PACK_KEYS [=] {0 | 1 | DEFAULT}
- PASSWORD [=] 'string'
- ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
- STATS_AUTO_RECALC [=] {DEFAULT | 0 | 1}
- STATS_PERSISTENT [=] {DEFAULT | 0 | 1}
- STATS_SAMPLE_PAGES [=] value
- TABLESPACE tablespace_name
- UNION [=] (tbl_name[,tbl_name]...)

Storage engine

механизм хранения	Описание
InnoDB	Транзакционно-безопасные таблицы с блокировкой строк и внешними ключами. Механизм хранения по умолчанию.
MyISAM	Бинарный переносимый механизм хранения, в основном используемый для систем с только чтением или в основном чтением
MEMORY	Таблицы, хранящиеся только в оперативной памяти
CSV	Таблицы, хранящие строки с данными, разделенными запятыми
ARCHIVE	Механизм хранения ARCHIVE создает специальные таблицы, в которых хранятся большие объемы неиндексированных данных на очень небольшом месте.
EXAMPLE	Движок EXAMPLE - это заглушка, которая ничего не делает. Его цель - служить примером в исходном коде MySQL, который иллюстрирует, как начать писать новые механизмы хранения.
FEDERATED	механизм хранения для работы с удаленными таблицами (remote)
HEAP	Синоним таблиц MEMORY
MERGE	Коллекция таблиц MyISAM, используемые как одна таблица
NDB	Кластерные, отказоустойчивые таблицы на основе памяти, поддерживающие транзакции и внешние ключи.

Tafinula ctypeut (student)

таолица студент (student)	тао. кружки_студента (student_activity)
CREATE TABLE `student` (CREATE TABLE `student_activity` (
`id_st` int NOT NULL AUTO_INCREMENT	`id_st` int NOT NULL,
PRIMARY KEY ,	`id_cas` int NOT NULL,
`surname` varchar(20) DEFAULT NULL,	PRIMARY KEY ('id_st', 'id_cas'),
`name` varchar(20) DEFAULT NULL,	CONSTRAINT `st_act_cas` FOREIGN KEY
`patronym` varchar(20) DEFAULT NULL,	('id_cas') REFERENCES 'cas_activities' ('id_cas')
`id_gr` int DEFAULT NULL,	ON DELETE RESTRICT
CONSTRAINT `fk_gr_in_st` FOREIGN KEY (`id_gr`)	ON UPDATE RESTRICT,
REFERENCES `st_group` (`id_gr`)	CONSTRAINT `st_act_stud ` FOREIGN KEY
ON DELETE RESTRICT ON UPDATE RESTRICT	('id_st') REFERENCES 'student' ('id_st')
) ENGINE=InnoDB	ON DELETE RESTRICT
AUTO_INCREMENT=1000	ON UPDATE RESTRICT
DEFAULT CHARSET=utf8mb4) ENGINE=InnoDB
COLLATE=utf8mb4_0900_ai_ci;	DEFAULT CHARSET=utf8mb4
	COLLATE=utf8mb4_0900_ai_ci;

Tah knywku ctyneuta (student activity)

Partition (разделы)

Способ разделения	
1. RANGE По диапазону значений	PARTITION BY RANGE (store_id) (PARTITION p0 VALUES LESS THAN (10), PARTITION p1 VALUES LESS THAN (20), PARTITION p3 VALUES LESS THAN (30));
2. LIST По точному списку значений	PARTITION BY LIST(store_id) (PARTITION pNorth VALUES IN (3,5,6,9,17), PARTITION pEast VALUES IN (1,2,10,11,19,20))
3. HASH По хэшу указанного поля	PARTITION BY HASH(store_id) PARTITIONS 4;
4. КЕҮ по ключу.	PARTITION BY KEY(s1) PARTITIONS 10;

Partition (разделы)

```
partition options:
PARTITION BY
  [LINEAR] HASH(expr)
  [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
  RANGE{(expr) | COLUMNS(column list)}
  LIST{(expr) | COLUMNS(column list)}
[PARTITIONS num]
  [SUBPARTITION BY
  [LINEAR] HASH(expr)
  [LINEAR] KEY [ALGORITHM={1|2}] (column list) }
  [SUBPARTITIONS num]
 [(partition definition[,
  partition definition ...)]
```

partition_definition

```
partition definition:
  PARTITION partition name
    [VALUES
      {LESS THAN {(expr | value list) | MAXVALUE}
      IN (value list)}]
    [[STORAGE] ENGINE [=] engine name]
    [COMMENT [=] 'string']
    [DATA DIRECTORY [=] 'data_dir']
    [INDEX DIRECTORY [=] 'index dir']
    [MAX ROWS [=] max number of rows]
    [MIN ROWS [=] min number of rows]
    [TABLESPACE [=] tablespace name]
    [(subpartition definition [, subpartition definition] ...)]
```

Partition (пример)

```
    CREATE TABLE Timetable exam (

  Discipline name VARCHAR(30),
  group num VARCHAR(8),
  lecturer id INT,
  exam date DATE,
  note VARCHAR(500)
  ) ENGINE = MYISAM
  PARTITION BY RANGE( YEAR(exam_date) ) (
  PARTITION p old VALUES LESS THAN(2016),
  PARTITION p 2019 VALUES LESS THAN(2020),
  PARTITION p 2020 VALUES LESS THAN(MAXVALUE)
```

Удаление таблиц

DROP TABLE TableName [RESTRICT | CASCADE]

Изменение структуры таблиц

- ввести новый столбец в таблицу;
- удалить столбец из таблицы;
- ввести новое ограничение таблицы;
- удалить ограничение таблицы;
- задать для столбца значение, применяемое по умолчанию;
- удалить опцию, предусматривающую применение для столбца значения, заданного по умолчанию.

Изменение структуры таблиц

```
ALTER [IGNORE] TABLE tbl name alter spec [, alter spec ...]
alter specification: ADD [COLUMN] create definition [FIRST | AFTER column name
или ADD [COLUMN] (create definition, create definition,...)
или ADD INDEX [index name] (index col name,...)
или ADD PRIMARY KEY (index col name,...)
или ADD UNIQUE [index name] (index col name,...)
или ADD FULLTEXT [index name] (index col name,...)
или ADD [CONSTRAINT symbol] FOREIGN KEY index name (index col name,...)
   [reference definition]
или ALTER [COLUMN] col name {SET DEFAULT literal | DROP DEFAULT}
или CHANGE [COLUMN] old col name create definition
                                                           [FIRST | AFTER
   column_name]
или MODIFY [COLUMN] create definition [FIRST | AFTER column name]
или DROP [COLUMN] col name
или DROP PRIMARY KEY
или DROP INDEX index name
или DISABLE KEYS или ENABLE KEYS
или RENAME [TO] new tbl name
или ORDER BY col или table options
```

Пример

- Alter table st_group add column id_gr integer auto_increment;
- Alter table st_group drop primary key;
- Alter table st_group add primary key(id_gr);
- Alter table st_group rename to st_group2;