Gewöhnliche Differentialgleichungen - Übungsblatt 0

Wintersemester 2021/22

Prof. Dr. Anna Marciniak-Czochra, Christian Düll

Abgabe: keine Abgabe, dieses Blatt wird nicht bewertet

Dieses Blatt dient zur Wiederholung einiger wichtiger Konzepte aus der Analysis und der linearen Algebra, die wir im Verlauf des Semester benötigen werden.

Aufgabe 1

(a) Zeigen Sie, dass sich die Gleichung $x + y + z = \sin(xyz)$ in einer Umgebung V von $(0,0,0) \in \mathbb{R}^3$ eindeutig nach z auflösen lässt, d.h. auf einer geeigneten Umgebung U von (0,0) existiert eine Funktion u mit der Eigenschaft, dass

$$\{(x, y, u(x, y)) \mid (x, y) \in U\}$$

die Lösungsmenge obiger Gleichung in V darstellt.

(b) Berechnen Sie die partiellen Ableitungen von u an der Stelle (0,0).

Aufgabe 2

Gegeben sei die Matrix
$$A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 1 & a \\ 0 & 2 & 2a \end{pmatrix}$$
 mit $a \in \mathbb{R}$.

- (a) Bestimmen Sie in Abhängigkeit von $a \in \mathbb{R}$ die Eigenwerte der Matrix A. Für welche Werte von a besitzt die Matrix nur einfache Eigenwerte?
- (b) Bestimmen Sie für alle Werte von a die zu den Eigenwerten gehörigen Eigenvektoren und Eigenräume.

Aufgabe 3

Beweisen Sie, dass die Funktion

$$f:[0,\infty)\to [0,\infty), \qquad f(x)=rac{x+rac{1}{2}}{x+1}$$

strikt kontraktiv bzgl $|\cdot|$ ist und bestimmen Sie den Fixpunkt von f.

Aufgabe 4

Überprüfen Sie, ob die folgenden Abbildungen $f: M \to M$ strikt kontraktiv bzgl. der jeweils angegebenen Metrik d sind.

(a)
$$M = [1, \infty), d(x, y) = |x - y|, f(x) = x + \frac{1}{x}$$
.

(b)
$$M = \mathbb{R}^2$$
, $d(x,y) = ||x - y||_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$, $f(x) = \frac{1}{2}(\sin x_1, \cos x_2)$.

1

(c)
$$M = \mathbb{R}^2$$
, $d(x,y) = ||x - y||_2$, $f(x) = \frac{1}{2}(x_1 + x_2, x_2)$

(d)
$$M = \mathbb{R}^2$$
, $d(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$, $f(x) = \frac{1}{2}(x_1 + x_2, x_2)$.