计算液体力学基础及应用课程期末作业.....程序调试最终版

学号: 134212059 姓名: 徐影

Contents

- CFD模型示意图
- 一、拟一维喷管理论解求解
- 二、拟一维喷管的CFD求解
- 三、理论值与CFD解的对比

CFD模型示意图

两圆弧直径为10米,喉部直径为0.59米,长为3米

```
clear all;
I=imread('xuying.png'); imshow(I)
```


一、拟一维喷管理论解求解

喷管内马赫数的变化公依赖于面积比A/A0,所以可以将Ma作为x的函数

$$\frac{A}{1} \frac{A}{A_0} = \frac{\left[h_0 + 2r - 2\sqrt{r^2 - (x - 1.5)}\right]^2}{h_0^2}$$
$$\frac{A^2}{2} \frac{A^2}{A_0^2} = \frac{1}{Ma^2} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} Ma^2\right)\right]^{\frac{\gamma + 1}{\gamma - 1}}$$

采用隐函数绘图给出理论的马赫数解

```
gamma=1.4;h0=59/100;% 取学生学号后两位数的十分之一作喉部直径 syms x Ma A_x y;% xz为x坐标,Ma为马赫数 A_x=((10.59-2*sqrt(25-(x-1.5)^2))/0.59)^2;% A_x为面积系数 figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,468]);plot_Ma=A_x^2-(2/(gamma+1)+(gamma-1)/(gamma+1)*y^2)^((gamma+1)/(gamma-1))/y^2; subplot(1,2,1);gca=ezplot(plot_Ma,[0,3]);xlabel('x');ylabel('马赫数');title('采用隐函数求解的马赫数结果');grid on;%得到两条曲线,由递增规律选取上升曲线段,从该曲线上得到一系列点的坐标为[x0,Ma0] load tk.mat;x_0=tk(:,1);Ma_0=tk(:,2);% 这里load的数据采用某算法从上面出的图取点拟合得到,用到polyval和polyfit函数 subplot(1,2,2);plot(x_0,Ma_0);xlabel('x');ylabel('马赫数');title('马赫数的理论解');grid on;
```


求出马赫数后,压力、密度、温度的变化都是Ma的函数,求出理论值并绘图

$$\frac{p}{1.} \frac{p}{p_0} = \left(1 + \frac{\gamma - 1}{2} M a^2\right)^{-\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho}{\rho_0} = \left(1 + \frac{\gamma - 1}{2} M a^2\right)^{-\frac{1}{\gamma - 1}}$$

$$\frac{T}{T_0} = \left(1 + \frac{\gamma - 1}{2} M a^2\right)^{-1}$$

```
p_0=(1+(gamma-1)/2*Ma_0.^2).^(-gamma/(gamma-1));
rho_0=(1+(gamma-1)/2*Ma_0.^2).^(-1/(gamma-1));
t_0=(1+(gamma-1)/2*Ma_0.^2).^-1;
figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.5*468,1.5*468]);
subplot(3,1,1);plot(x_0,p_0);title('压力比理论值');xlabel('x');ylabel('p');grid on;
subplot(3,1,2);plot(x_0,rho_0);title('密度比理论值');xlabel('x');ylabel('rho');grid on;
subplot(3,1,3);plot(x_0,t_0);title('温度比理论值');xlabel('x');ylabel('T');grid on;
```


二、拟一维喷管的CFD求解

```
L=3;N=31;dx=L/(N-1);x=linspace(0,L,N);C=0.5;n=2000;student_num=59;
A=((10+student_num/100-2*((25-((x-1.5).^2))).^0.5)/(student_num/100)).^2;%面积比A/A_0与x坐标的关系
```

第一步,密度比、温度比、速度比的初始条件设定

```
1. \rho = 1 - 0.314x
2. T = 1 - 0.2314x
3. V = (0.1 + 0.9x)\sqrt{T}
```

```
Rou=1-0.3146*x;rhobi=zeros(1,n);T=1-0.2314*x;V=(0.1+1.09*x).*sqrt(T);
P_rou_t=zeros(size(Rou));P_v_t=zeros(size(Rou));P_T_t=zeros(size(Rou));
P_rou_t_2=zeros(size(Rou));P_v_t_2=zeros(size(Rou));P_T_t_2=zeros(size(Rou));
```

第二步,预估步

第三步,并求Δt,求rou, V, T的预测量

1.
$$a = \sqrt{T}$$

$$(\Delta t)_i^t = C \frac{\Delta x}{a_i^t + V_i^t} = C \frac{\Delta x}{\sqrt{T_i^t} + V_i^t}$$
2. $\Delta t = min\left(\Delta t_1^t, \Delta t_2^t, \dots, \Delta t_N^t\right)$

第四步,修正步

第五步, 求平均时间导数

最后,得到t+Delta t时刻流动参数的修正值为

$$\begin{split} \rho_i^{\ t+\Delta t} &= \rho_i^{\ t} + \left(\frac{\partial \rho}{\partial t}\right)_{av} \Delta t \\ 1. \quad V_i^{t+\Delta t} &= V_i^t + \left(\frac{\partial V}{\partial t}\right)_{av} \Delta t \\ 2. \quad T_i^{t+\Delta t} &= T_i^t + \left(\frac{\partial T}{\partial t}\right)_{av} \Delta t \end{split}$$

第七步,边界条件处理

```
for j=1:n
         temp=Rou(16);
% 第二步, 预估步
                     P\_rou\_t(i) = -V(i) * ((Rou(i+1) - Rou(i)) / dx) - Rou(i) * ((V(i+1) - V(i)) / dx) - Rou(i) * V(i) * ((log(A(i+1)) - log(A(i))) / dx);
                     P_{-}v_{-}t(i) = -V(i) * ((V(i+1)-V(i))/dx) - ((T(i+1)-T(i))/dx + ((Rou(i+1)-Rou(i))/dx) * T(i)/Rou(i)) * 1/1.4;
                    P_{-}T_{-}t(i) = -V(i) * ((T(i+1)-T(i))/dx) - 0.4*T(i) * ((V(i+1)-V(i))/dx) + V(i) * ((\log(A(i+1)) - \log(A(i)))/dx));
           end
% 第三步,并求 At, 求rou, V, T的预测量
           dt = C*(dx./(V(2:30) + sqrt(T(2:30)))); dt = min(dt);
           Rou1(2:30)=Rou(2:30)+P_rou_t(2:30).*dt;
           V1(2:30) = V(2:30) + P v t(2:30).*dt;
           T1(2:30) = T(2:30) + P_T_t(2:30) \cdot *dt;
          V1(1)=V(1);T1(1)=T(1);Rou1(1)=Rou(1);
 % 第四步,修正步
           for i=2:30
                    Prout 2(i)=-V1(i)*((Rou1(i)-Rou1(i-1))/dx)-Rou1(i)*((V1(i)-V1(i-1))/dx)-Rou1(i)*(I)*((Iog(A(i))-Iog(A(i-1)))/dx);
                    P \ v \ t \ 2(i) = -V1(i) * ((V1(i) - V1(i-1))/dx) - ((T1(i) - T1(i-1))/dx + ((Rou1(i) - Rou1(i-1))/dx) * T1(i)/Rou1(i)) * (1) * ((V1(i) - V1(i-1))/dx) * ((V1(i) - V1(i-
                    P_{\_}T_{\_}t_{\_}2(i) = -V1(i)*((T1(i)-T1(i-1))/dx) - 0.4*T1(i)*(((V1(i)-V1(i-1))/dx)+V1(i)*((\log(A(i))-\log(A(i-1)))/dx));
           end
% 第五步, 求平均时间导数
           P_rou_av=(P_rou_t+P_rou_t_2)/2;
           P_v_av = (P_v_t + P_v_t_2)/2;
           P_T_{av} = (P_T_t + P_T_t_2)/2;
% 最后,得到t+Delta t时刻流动参数的修正值为
           Rou(2:30) = Rou(2:30) + P_rou_av(2:30).*dt;
           T(2:30) = T(2:30) + P_T_{av}(2:30).*dt;
           V(2:30) = V(2:30) + P_v_av(2:30).*dt;
           P(2:30) = Rou(2:30) . *T(2:30);
% 第七步, 边界条件处理
           V(1) = 2*V(2) - V(3);
```

```
V(31)=2*V(30)-V(29);
Rou(31)=2*Rou(30)-Rou(29);
T(31)=2*T(30)-T(29);

p=Rou.*T;
Ma=V./sqrt(T);
rhobi(j)=abs((temp-Rou(16))/temp); % 计算后一次时间步与前一时间步之间的密度比的变化情况,以此检验CFD过程收敛性质end
```

最终结果的绘图

figure('Color',[1 1 1]);set(gcf,'position',[0,0,1.2*468,1.5*468]);
subplot(3,1,1);plot(1:n,rhobi);xlabel('x');ylabel('Ma');title('相对密度比');grid on;% 密度比收敛情况绘图
subplot(3,1,2);plot(x,Ma);title('喷管内马赫数分布');xlabel('x');ylabel('Ma');grid on;% 马赫数CFD值绘图
subplot(3,1,3);plot(x,p);title('喷管内压力分布');xlabel('x');ylabel('p');grid on; % 压力分布CFD值绘图
shu=[x;A;Ma;V;T;p;Rou];

显示各参量最终计算结果

fprintf('%6s\t%12

X	A/A_0	Ma	v/v_0	T/T_0	p/p_0	rho
0.0	3. 1709	0.1859	0.1859	1.0000	1.0000	1.0000
0.1	2.8156	0.2124	0.2121	0.9975	0.9915	0.9939
0.2	2.5056	0.2389	0.2383	0.9956	0.9847	0.9890
0.3	2. 2361	0.2711	0.2700	0.9922	0.9728	0.9805
0.4	2.0030	0.3056	0.3038	0.9885	0.9602	0.9714
0.5	1.8022	0.3451	0.3422	0.9834	0.9433	0.9591
0.6	1.6303	0.3882	0.3838	0.9775	0.9234	0.9447
0.7	1. 4844	0.4364	0.4298	0.9700	0.8989	0.9267
0.8	1.3617	0.4891	0.4794	0.9611	0.8701	0.9054
0.9	1.2600	0.5469	0.5331	0.9502	0.8362	0.8800
1.0	1. 1771	0.6096	0.5903	0.9374	0.7974	0.8507
1.1	1.1116	0.6776	0.6508	0.9224	0.7536	0.8170
1.2	1.0620	0.7507	0.7142	0.9051	0.7053	0.7792
1.3	1.0273	0.8289	0.7800	0.8855	0.6532	0.7376
1.4	1.0068	0.9119	0.8475	0.8636	0.5982	0.6927
1.5	1.0000	0.9998	0.9160	0.8394	0.5416	0.6452
1.6	1.0068	1.0921	0.9849	0.8132	0.4847	0.5960
1.7	1.0273	1.1887	1.0534	0.7853	0.4288	0.5461
1.8	1.0620	1.2893	1. 1210	0.7559	0.3753	0.4964
1.9	1. 1116	1.3934	1. 1869	0.7255	0.3250	0.4480
2.0	1. 1771	1.5009	1.2507	0.6943	0.2788	0.4015
2.1	1.2600	1.6113	1.3119	0.6629	0.2371	0.3576
2.2	1. 3617	1.7245	1. 3705	0.6315	0.2001	0.3168
2.3	1. 4844	1.8398	1. 4258	0.6006	0. 1678	0. 2795
2.4	1.6303	1.9576	1.4782	0.5702	0.1400	0. 2455
2.5	1.8022	2.0764	1. 5269	0.5408	0.1163	0.2151
2.6	2.0030	2. 1983	1.5732	0.5122	0.0962	0. 1879

2.7	2. 2361	2.3192	1.6153	0.4851	0.0796	0.1641
2.8	2. 5056	2.4452	1.6562	0.4587	0.0654	0. 1426
2.9	2.8156	2.5664	1.6916	0.4344	0.0543	0.1249
3.0	3.1709	2.6967	1.7270	0.4101	0.0440	0.1072

三、理论值与CFD解的对比

马赫数分布CFD与理论马赫数对比 压力分布的CFD结果与理论值对比 密度分布的CFD结果与理论值对比

```
figure('Color', [1 1 1]);set(gcf,'position', [0,0,1.2*468,1.5*468]); load tk. mat;x_0=tk(:,1);Ma_0=tk(:,2);gamma=1.4; % 这里load的数据采用某算法从上面出的图取点拟合得到,用到polyval和polyfit函数 p_0=(1+(gamma-1)/2*Ma_0.^2).^(-gamma/(gamma-1)); rho_0=(1+(gamma-1)/2*Ma_0.^2).^(-1/(gamma-1)); t_0=(1+(gamma-1)/2*Ma_0.^2).^-1; subplot(3,1,1);plot(x,Ma,'ok',x_0,Ma_0);title('马赫数分布的CFD解与理论值对比');xlabel('x');ylabel('Ma');legend('CFD解','理论解');grid on;% 马赫数CFD值绘图 subplot(3,1,2);plot(x,p,'ok',x_0,p_0);title('压力分布的CFD解与理论值对比');xlabel('x');ylabel('p');legend('CFD解','理论解');grid on; % 压力分布CFD值绘图 subplot(3,1,3);plot(x,Rou,'ok',x_0,rho_0);xlabel('x');ylabel('rho');title('相对密度比的CFD解与理论值对比');legend('CFD解','理论解');grid on;% 密度比收敛情况绘图 disp('从结果对比可以看出,采用CFD数值解的结果与解析解很接近,表明数值解可以达到理想的精度。')
```

从结果对比可以看出,采用CFD数值解的结果与解析解很接近,表明数值解可以达到理想的精度。

Published with MATLAB® R2013b