Definitions and Constraints

- two players
 - first player A(lice)
 - second player B(ob)
- turn based
 - A, B, A, B
- both players have complete information
- no randomness
- positions (states)
 - finite set of positions with one or more starting positions
 - repeating moves (infinite loops) are considered draws
- moves (transition from one position to the next)
 - each position has a set of possible moves/next positions
 - * potentially no legal move
 - normal play
 - * first player who cannot move loses
 - every game ends after a finite number of moves
 - * e.g. chess prevents the same move 3 times in a row
 - * some exceptions exist
- might be asymmetric
 - e.g. Fuchs und Henne
 - [[Examples of Combinatorial Games]]

First-Player and Second-Player Win games

- some games favor the first (starting) or second player
- one player may have a major advantage due to the starting position or being able to move first or second
- therefore this player always wins
 - assuming both players play optimally

Levels of Game Solutions

- ultra-weakly solved
 - known who wins but not how
- weakly solved
 - strategy is known
 - must be followed from the very start on
- strongly solved

- known from any valid state
- ultra-strongly solved
 - know for any move during any game state whether it wins/loses/draws
 - also know in how many half-moves

Game-Tree vs State-Space Complexity

Game-Tree Complexity Number of nodes the complete decision tree for a whole game has

State-Space Complexity Number of states which can

be reached from the start state by valid moves

game	state-space	game-tree	branching
	complexity	complexity	factor
Tic Tac Toe	10^{3}	10^{5}	5
Nine Men's Morris	10^{10}	10^{50}	10-30
Pyraos	10^{11}	1033	9
Awari	10^{12}	1032	5-6
Connect-4	10^{14}	10^{21}	5-7
Abalone	10^{25}	10^{180}	65-70
Reversi	10^{28}	10 ⁵⁸	5-15
Chess	10^{50}	10^{123}	35
Go	10^{171}	10^{360}	300-400

Storing Game States

- needs to be efficient and complete
- move generator
 - creates successors of game states
- identify final states
 - win
 - lose
 - draw
- equivalent game states
 - allow transitions to the same successor state
 - must not be perfectly identical
 - * reflections
 - * rotations
 - * inversion
 - * color-change
 - fingerprint/canonical state

```
* store only one of the equivalent states
```

* ???

```
Processing Game States
```

```
Initialize S with the starting state
  \forall non-processed states s \in S DO
   /* process newly added states */
     \forall successors t of s DO
       compute canonical state t' of t
       IF t' \notin S THEN add t' to S
  /st\ S contains all states which are reachable from the start
  state via valid moves */
• state code

    non-negative integer

       WIN: code odd: number of half-moves in which a win
       can be forced (if player plays perfect).
       LOSE: code even: number of half-moves in which the
       game is at most lost (if opponent plays perfect).
       DRAW: special code, e.g. -1; no number of half-moves
       possible.
    - draw does not contain the number of half moves
        * due to circles/infinite loops
        * exceptions exist such as Connect 4
    - determine action based on code
           Init all states without valid moves (with code 0, draw, ...)
           /* terminal states without successors */
           IF successor state with even code exists THEN
              code := (smallest even \stackrel{\smile}{\text{code}} of a succesor state) + 1
              /* WIN in that number of moves */
           ELSE IF successor state with draw code exists THEN
              code := draw
              /* DRAW */
           ELSE
              code := (largest (odd) code of a successor state) + 1
              /* LOSE in that number of moves */
    - compute codes
```

```
Init all states without valid moves /* terminal states without successors */
Init all remaining states with 'undefine.'

FOR k := 1 TO max-depth /* k = \# of half-moves */

\forall states s \in S with still undefined code DO

IF k is odd THEN

IF s has a successor with code k-1 THEN

code of s is k/* WIN state */

ELSE /* k is even */

IF all successors of s have odd codes THEN

code of s is k/* LOSE state */

Set all 'undefined' states to draw.
```