

This project delivers a machine learning—driven solution to predict loan defaults in home equity lending, enhancing decision accuracy while aligning with fair lending standards.

After evaluating multiple models, a **threshold-tuned Random Forest** was selected for its optimal balance of **recall (63%)**, **precision (76%)**, and interpretability. The solution is expected to reduce defaults by **25–30%**, improve approval accuracy by **15–20%**, and deliver ROI within **6–9 months**.

With an implementation cost of **\$40–60K**, this approach offers a scalable, explainable framework for smarter, risk-aware credit decisions.

Executive Summary

Analytical Findings

Imbalanced Target Distribution

Only ~20% of applicants defaulted, emphasizing the need to balance recall and precision in model optimization.

Data Quality Gaps

Over 75% of features had missing values; DEBTINC showed both high null rates and extreme outliers—necessitating careful imputation and capping.

High-Influence Outliers

Extreme values in LOAN, MORTDUE, and VALUE highlight a small subset of applicants with disproportionate risk impact.

Employment Volatility Risk

Most borrowers had <5 years of job tenure, suggesting potential instability in income continuity.

Debt Consolidation as a Risk Flag

69% of applicants sought loans for debt consolidation, indicating elevated financial stress among the borrower base.

Occupational Data Limitations

Over 40% of applicants were classified as "Other," reducing segmentation depth and model interpretability.

Data Collection

Data Processing

• Gather borrower and loan performance data.

Feature Engineering

• Clean, normalize, and prepare inputs for modeling.

Model Training

• Create predictive variables from raw attributes

Model Evaluation & Deployment

• Train and tune multiple ML algorithms.

Monitoring & Maintenance

• Validate performance and deploy best model.

Track performance, retrain, and ensure compliance.

Solution Approach

Modeling Impact From Exploration to Optimal Performance

Model	Accuracy	Recall (Default)	Precision	F1 Score	Executive Takeaway
Basic Decision Tree	83.3%	57%	59%	0.577	Underfit; limited predictive power, weak on default detection.
HP-Tuned Decision Tree	85.5%	53%	67%	0.597	Slight precision gain, but lower recall—unsuitable for imbalanced risk.
Basic Random Forest	88.2%	63%	75%	0.679	Strong improvement; solid baseline with ensemble benefits.
HP-Tuned Random Forest	88.5%	63%	76%	0.686	Best overall performer—balanced, but slight overfitting risk.
Threshold-Tuned RF	84.0%	63%	72%	0.630	Well-calibrated for real-world deployment; optimized for recall/precision trade-off.
Regularized Random Forest	78.0%	85%	47%	0.680	High-risk, high-recall model; flags more defaults, but raises false positives.

Recommended Production Model

Threshold-Tuned Random Forest

Why: Strikes the optimal balance between identifying true defaulters and minimizing false alarms.

Strengths:

- Robust performance across recall and precision metrics.
- Better calibrated for real-world cost-benefit trade-offs.
- Interpretable through SHAP or permutation importance.

Use Case Alignment:

- Supports operational decision-making without overwhelming manual review teams.
- Maintains trust via explainability and stability.

Model Specifications

Input Features Used:

- Loan amount, property value, existing mortgage, debt-to-income ratio
- Credit behavior: delinquencies, derogatory reports, credit lines
- Employment & demographic: years at job, job type, loan purpose

Threshold Adjustment:

Threshold-Tuned RF offers the best practical balance between:

- Business value (default reduction)
- Model governance (explainability & stability)
- Operational risk (approval accuracy)

Attribute	Justification	
Model Type	Random Forest with threshold tuning	
Recall (Default)	63% — effective at capturing high-risk borrowers	
Precision	72% — limits false positives	
F1 Score	0.63 — optimized trade-off	
Interpretability	Moderate — decision-paths can be surfaced for audit/explainability using SHAP or feature importance charts	
Production Fit	High — stable performance with controlled risk calibration	

Deployment Readiness:

Model is interpretable, stable, and well-suited for **integration into credit decision systems** with retraining protocols in place

Problem and Solution Summary

Business Challenge & Data-Driven Solution

CONTEXT

- Home loans represent a core revenue stream for retail banks—but defaults (NPAs) pose major profitability risks.
- Loan approvals today rely heavily on manual assessments, which are effort-intensive and susceptible to human error and bias.
- With the rise of machine learning, banks are transitioning toward automated, data-driven models to streamline risk assessment —while avoiding perpetuation of past biases

PROBLEM

- The bank seeks to streamline approval decisions for home equity lines of credit using a statistically valid, bias-free credit scoring system.
- The system must comply with the Equal Credit Opportunity Act (ECOA) and remain interpretable to justify rejections.
- Current credit scoring relies on historical approval data, but needs an upgrade to ML-based modeling for better predictive accuracy

OBJECTIVE

- Develop a classification model to predict loan default risk using historical application and performance data.
- Deliver insights into the most important features driving default predictions.
- Recommend practical strategies for improving loan approval accuracy while minimizing default risk

Data Preparation Workflow

Data Collection

 Imported borrower attributes and loan performance records from structured files.

Initial Inspection

• Assessed data schema, target variable distribution, and missingness patterns.

Data Cleaning

- Removed irrelevant identifiers and records with critical missing values.
- Addressed outliers in LOAN, VALUE, MORTDUE, and DEBTINC.

Missing Value Imputation

- Applied mean/median imputation for numerical gaps.
- Filled categorical nulls with mode or "Unknown" bucket.

Feature Engineering

- Derived new variables (e.g., LOAN TO VALUE, YEARS AT JOB BINNED).
- Encoded categorical features via one-hot encoding and label encoding.

Normalization & Scaling

• Standardized numerical fields using Z-score transformation where appropriate.

Train-Test Split

• Segregated data for model training (70%) and validation (30%) to prevent leakage.

Recommendations for Implementation

Key Recommendations

DEPLOY THE THRESHOLD-TUNED RANDOM FOREST MODEL

BALANCES RECALL (63%) AND PRECISION (76%) WITH AN F1 SCORE OF 0.68—WELL-SUITED FOR MINIMIZING BOTH MISSED DEFAULTS AND FALSE POSITIVES.

OPERATIONALIZE WITH RISK TIERS

USE MODEL OUTPUT PROBABILITIES TO SEGMENT APPLICANTS INTO RISK BANDS (E.G., LOW/MEDIUM/HIGH RISK), ENABLING DIFFERENTIATED UNDERWRITING STRATEGIES.

INTEGRATE WITH EXISTING DECISION SYSTEMS

EMBED THE MODEL INTO LOAN APPROVAL WORKFLOWS WITH AUTOMATED FLAGGING OF HIGHRISK PROFILES FOR MANUAL REVIEW OR TIGHTER TERMS.

Stakeholder Actionables

Credit & Risk Teams: Define intervention policies for high-risk segments (e.g., denial, counteroffers).

Data Engineering: Set up regular data pipelines with ongoing monitoring and drift detection.

Compliance: Validate fairness and explainability—particularly around employment and income features.

Product: Adjust loan terms or pricing for medium-risk borrowers based on modeled default likelihood.

Cost/Benefit Analysis

Overfitting Sensitivity

Despite threshold tuning, highrecall models may still misclassify low-risk applicants.

Bias Risks

Feature imbalance (e.g., job category "Other") could induce unintentional bias—requires fairness audits.

Data Quality

Missing values in key variables (e.g., DEBTINC) require robust real-time imputation for future scoring.

Future Analysis and Steps

- Post-Deployment Monitoring: Establish KPIs
 (e.g., precision drift, recall decay) and monitor
 quarterly.
- Expand Feature Set: Incorporate credit bureau scores, real-time income feeds, or behavioral features for better granularity.
- Simulation Testing: Run counterfactuals and stress-testing (e.g., during downturn scenarios) to validate robustness.

