

Lecture 03: Attention mechanism

Anastasia Yanina

Words alignment

Attention

Attention

Main idea:

on each step of the **decoder**, use **direct connection to the encoder** to focus on a particular part of the source sequence

Attention output Seq2seq with attention Weighted sum of all encoder states

Attention distribution

Attention scores

Encoder

Attention output **Attention** Concatenate distribution **Attention** scores Encoder

Attention output **Attention** distribution Attention scores Encoder

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T \mathbf{h}_1, \dots, \mathbf{s}^T \mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , where $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention provides interpretability

- We may see what the decoder was focusing on
- We get word alignment for free!

Attention advantages

- "Free" word alignment
- Better results on long sequences

Image source: Neural Machine Translation by Jointly Learning to Align and Translate

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- ullet Additive attention: $oldsymbol{e}_i = oldsymbol{v}^T anh(oldsymbol{W}_1 oldsymbol{h}_i + oldsymbol{W}_2 oldsymbol{s}) \in \mathbb{R}$
 - \circ $extbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, extbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Self-Attention

Self-Attention at a High Level

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

Self-Attention at a High Level

What are the query, key, value vectors?

They're abstractions that are useful for calculating and thinking about attention.

STEP 2:

calculate a score

(score each word of the input sentence against the current word) Input

Embedding

Queries

Keys

Values

Score

STEP 5:

multiply each value vector by the softmax score

STEP 6:

sum up the weighted value vectors

Self-Attention

STEP 1: create Query, Key, Value

STEP 3: divide by $\sqrt{d_k}$

STEP 2: calculate scores

STEP 4: softmax

STEP 5: multiply each value vector by the softmax score

STEP 6: sum up the weighted value vectors

Self-Attention: Matrix Calculation

Pack embeddings into matrix **X**

Multiply X by weight matrices we've trained (Wk, Wq, Wv)

Image source: https://jalammar.github.io/illustrated-transformer/

Self-Attention: Matrix Calculation

Image source: https://jalammar.github.io/illustrated-transformer/

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Why Multi-Head Attention?

Attention head: Who

Attention head: Did What?

Attention head: To Whom?

Attention vs. Multi-Head Attention

Attention: a weighted average

Multi-Head Attention:

parallel attention layers with different linear transformations on input and output.

Outro

- Attention mechanism allows to "attend all positions" in the original sequence (or any other input with internal structure)
- Attention mechanism requires more computational resources than original seq2seq models
- Change of the model architecture affects the training procedure, so be careful with intuitive explanations

Transformer outro

The Encoder Side

the word in each position flows through its own path in the encoder 43

Output

The Transformer: recap

Like BatchNorm

but normalize along all features representing latent vector

More info:

<u>Layer Normalization</u>

Image source: https://jalammar.github.io/illustrated-transformer/

Thinking Machines Image source: https://jalammar.github.fo/illustrated-transformer/

The Decoder

Image source: https://jalammar.github.io/illustrated-transformer/

Image source: https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1 2 3 4 5 6 OUTPUT

The masked decoder input

Image source: https://jalammar.github.io/illustrated-transformer/

Final Linear and Softmax Layer

Image source: https://jalammar.github.io/illustrated-transformer/

Output

Image source: Attention Is All You Need, Neural Information Processing Systems 2017

Positional Encoding

Positional encoding requirements

- Positional encoding should be unique for every position in the sequence
- Distance between two same positions should be preserved with sequences of different length
- The positional encoding should be deterministic
- It would be great if it would work with long sequences (longer than any sequence in the training set)

Positional Encoding

Image source: https://jalammar.github.io/illustrated-transformer/

Positional Encoding: why sin and cos?

$$\vec{p_t}^{(i)} = f(t)^{(i)} = \begin{cases} \sin(\omega_k t), & \text{if } i = 2k \\ \cos(\omega_k t), & \text{if } i = 2k + 1 \end{cases}$$

$$\omega_k = \frac{1}{10000^{2k/d}} \qquad \vec{p_t} = \begin{cases} \sin(\omega_1 . t) \\ \cos(\omega_1 . t) \\ \sin(\omega_2 . t) \\ \cos(\omega_2 . t) \\ \vdots \\ \sin(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \end{cases}$$
 t stays for position in the original sequence k is the index of the element in the positional vector

$$\sin(\omega_2.t)$$
 $\cos(\omega_2.t)$
 \vdots

Positional Encoding

Positional Encoding

Image source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional Encoding: why sin and cos?

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.

$$M \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$

Positional Encoding: why sin and cos?

$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$
$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k t) \cos(\omega_k \phi) + \cos(\omega_k t) \sin(\omega_k \phi) \\ \cos(\omega_k t) \cos(\omega_k \phi) - \sin(\omega_k t) \sin(\omega_k \phi) \end{bmatrix}$$

$$M_{\phi,k} = \begin{bmatrix} \cos(\omega_k \phi) & \sin(\omega_k \phi) \\ -\sin(\omega_k \phi) & \cos(\omega_k \phi) \end{bmatrix}$$

Outro and Q&A

- Transformer is novel and very powerful architecture
- It is worth it to understand how Self-Attention works
- Physical analogues can help you

Further readings are available in the repo