

Datenbanken 1

Prof. Dr. Uta Störl

Hochschule Darmstadt – Fachbereich Informatik

Sommersemester 2016

Organisatorische Vorbemerkungen

Vorlesungsunterlagen

- Online unter https://www.fbi.h-da.de/organisation/personen/stoerl-uta/lehre/datenbanken-1.html
- werden im Laufe des Semesters jeweils einige Tage vor der Vorlesung online bereit gestellt

Praktikum (gemeinsam mit Michael Roth)

- Voraussetzung für Teilnahme: PAD 1 bestanden und PAD 2 begonnen (d.h. mindestens einmal die Klausur mitgeschrieben)
- Termine und Aufgabenstellungen auf der Homepage
- Teilnahmepflicht + Testatpflicht am Praktikumstermin
- Vorlage der Vorbereitungsaufgaben(!) am Anfang des Praktikums

Offenes Labor Datenbanken (Tutor Yorrik Schwappacher)

- Dienstag, 16.00 19.15 Uhr D14/112
- Möglichkeit zum Üben, Fragen stellen, Praktika vor- und nachbereiten etc.

Organisatorische Vorbemerkungen

Klausur

- An- bzw. Abmeldung ausschließlich über das OBS
- erlaubte Hilfsmittel: 1 (beidseitig) beschriebenes/bedrucktes A4-Blatt
- Beispielklausur wird online bereitgestellt
- bestandenes Praktikum ist Voraussetzung für die Teilnahme

Datenbanken 1

- Kapitel 1: Einführung -

Einführung

Inhalt des Kapitels

- Einführung in das Thema Datenbanken
- Überblick über die in der Lehrveranstaltung Datenbanken behandelten Themen
- Exemplarisches Mini-Beispiel, um erste Grundbegriffe für das Entwerfen von Datenbankmodellen kennen zu lernen

Lernziele

 Kennenlernen von Grundbegriffen für das Entwerfen von Datenbankmodellen

Einsatzgebiete für Datenbanken

- Finanzwesen
 - Kontoverwaltung, Überweisungen, Depots, ...
- ERP (Enterprise Resource Planning Systeme, z.B. SAP R/3)
 - Personalverwaltung, Buchhaltung, Produktbestände, Controlling
- eBusiness
 - Shop-Systeme, Produktkataloge, Aufträge
- Bibliothek
 - Volltextsuche, Entleihe
- Decision Support
 - statistische Auswertungen in großen Handelsketten u.ä.
- CAD-Systeme
 - Konstruktionsdaten
- Geographische Informationssysteme
 - Topologische Daten
 - Satellitendaten

Beispiele für große Datenbanken

Große Datenmenge

Walmart: 2,5 Petabyte (2008)

eBay: 9,2 Petabyte (2013)

– ...

Hoher Durchsatz

UPS: 1,1 Milliarden SQL-Statements pro Stunde (2005)

– ...

Große Anzahl Datenbanktabellen

- SAP R/3-Installation der Deutschen Telekom AG:
 - > 13.000 Datenbanktabellen

– ...

Kategorien von Datenbankanwendungen

OLTP (Online Transaction Processing)

- viele (kurze) Verarbeitungsvorgänge (Transaktionen) mit (meist) einfachen Lese- und Schreiboperationen
- viele parallele Benutzer
- schnelle Antwortzeiten wichtig
- hoher Datendurchsatz wichtig
- z.B. Buchungssystem

DSS (Decision Support Systems)

- komplexe (lange) Verarbeitungsvorgänge hauptsächlich Leseoperationen
- wenige parallele Benutzer
- relativ unkritische Antwortzeiten
- z.B. Data Warehouses (OLAP, Online Analytical Processing)

Wichtige Grundbegriffe

Kürzel	Begriff	Erläuterung
DB	Datenbank	Strukturierter von DBMS verwalteter Datenbestand
DBMS	Datenbankmanagementsystem	Software zur Verwaltung von Datenbanken
DBS	Datenbanksystem	DBMS plus Datenbank(en)

Konkrete Systeme (Auswahl)

- Hierarchische Datenbanken und Netzwerkdatenbanken
 - IMS (IBM), UDS (Siemens)
- (Objekt-)Relationale DBMS
 - Oracle, IBM DB2, Microsoft SQL Server,
 Sybase (gekauft von SAP), Informix (gekauft von IBM),
 Teradata, ...
 - PostgreSQL, MySQL (gekauft von Oracle), MariaDB (Fork von MySQL), FireBird, SQLite, ...
- Objektorientierte DBMS
 - Versant, db4o, ObjectStore, ...
- XML-DBMS
 - BaseX, Tamino (Software AG), ...
- NoSQL-DBMS
 - MongoDB, Couchbase, Cassandra, HBase, ...

Übersicht Datenbanksysteme

"Popularität" Datenbanksysteme

Warum Datenbankmanagementsysteme?

- Redundanzkontrolle
- Zugriffsbeschränkungen
- Aktionen anhand von Regeln
- Mehrbenutzerschnittstellen
- Beziehungen zwischen Daten
- Integritätsbedingungen
- Recovery

Bemerkung:

Es existieren auch formale Regeln die definieren, wann ein Softwaresystem wirklich ein Datenbankmanagementsystem ist. (Behandlung später)

Aufbau der Vorlesung Datenbanken 1

Phasen des Datenbankentwurfs

Anforderungsanalyse

Anforderungsanalyse

Aufgaben

- Identifikation der zu unterstützenden Aufgaben (Prozesse!)
- Sammeln der Anforderungen
- Filtern der relevanten Informationen
- Klassifikation (Einteilung) der Informationen

Ergebnis der Anforderungsanalyse ist im allgemeinen nicht formalisiert

Beispiel: Produktdaten eines PC-Herstellers

Bezeichnung: Notebook

Farbe: graublau

RAM: 4 GB

Preis: 679,00

. . .

Phasen des Datenbankentwurfs

Anforderungsanalyse

Konzeptioneller Entwurf

- Ergebnis des konzeptionellen Entwurfs ist ein konzeptuelles Modell
- Im Datenbankbereich wird für die Repräsenation des konzeptuellen Modells i.a. das Entity-Relationship-Modell (ER-Modell bzw. ERM) verwendet
 - entwickelt 1976 von Peter Chen
 - viele Erweiterungen und Weiterentwicklungen im Laufe der Jahre
 - Analogie zur objektorientierten Analyse-Phase (UML, 1997)

ER-Modell: Grundbegriffe – 1(2)

- Entity: Objekt der realen (bzw. der zu modellierenden) Welt.
- Entity-Set: Menge aller Entities mit gleichen oder ähnlichen Eigenschaften.
- *Entity-Typ*: Repräsentant der Objekte gleichen Typs.

Notation: Entity-Typ

ER-Modell: Grundbegriffe – 2(2)

• **Attribut**: repräsentiert eine Eigenschaft eines Entity-Typs, d.h. eine Eigenschaft, welche alle Entities dieses Entity-Typs besitzen.

 Weitere wichtige Grundbegriffe: Schlüssel, Beziehungen, Kardinalitäten von Beziehungen ... → siehe Kapitel 2

Mini-Beispiel: Kundenverwaltung

- Ein Unternehmen möchte seine Kunden in einer Datenbank verwalten
 - Was sind die betrachteten Entities?
 - Was ist der geeignete Entity-Typ?
 - Welche Eigenschaften hat der Entity-Typ?

Phasen des Datenbankentwurfs

Anforderungsanalyse

Logischer Entwurf

- Ergebnis des logischen Entwurfs ist ein logisches Modell
- Welches logische Modell verwendet wird, hängt vom Datenbankmodell des verwendeten Datenbankmanagementsystems ab
 - Analogie zur objektorientierten Design-Phase (Entscheidung für eine bestimmte Programmiersprache)
- Wichtigstes logisches Datenbankmodell ist das Relationenmodell (oder Relationales Modell)
 - Grundlagen 1970 von Edgar F. Codd

Phasen des Datenbankentwurfs: Beispiele

Relationenmodell

- extrem vereinfachte(!) Sicht: eine Relation ist eine Tabelle
- genaue Diskussion der Konzepte des Relationenmodells → Kapitel 3

KUNDE:	KNR	NAME	VORNAME	GEBURTSDATUM
	1001	Mario	Götze	03.06.1992
	1002	Podolski	Lukas	04.06.1985
	1003	Özil	Mesut	15.19.1988

Datenbanken 1

Datendefinition

- wichtigstes Datenbanksprache zur Datendefinition (und -manipulation) in relationalen DBMS: Structured Query Language (SQL)
- ausführliche Diskussion der wichtigsten Sprachkonzepte:
 → siehe Kapitel 4
- Beispiel:

```
CREATE TABLE Kunde (

Kundennummer integer PRIMARY KEY,

Name char(30) NOT NULL,

Vorname char(30) NOT NULL,

Geburtsdatum date
);
```


Datendefinition: Datentypen in SQL

- integer (oder auch integer4, int),
- smallint (oder auch integer2),
- float(p) (oder auch kurz float),
- **decimal**(p,q) und **numeric**(p,q) mit jeweils q Nachkommastellen,
- character(n) (oder kurz char(n), bei n = 1 auch char) für Zeichenketten (Strings) fester Länge n,
- **character varying**(*n*) (oder kurz **varchar**(*n*) für Strings variabler Länge bis zur Maximallänge *n*,
- bit(n) oder bit varying(n) analog für Bitfolgen, und
- date, time bzw. timestamp für Datums-, Zeit- und kombinierte Datums-Zeit-Angaben
- blob (binary large object) für sehr große binäre Daten
- clob (character large object) für sehr große Strings

Achtung: Gelegentlich verwenden Hersteller andere Bezeichnungen (beispielsweise bei Neuimplementierung von Datentypen – Oracle beispielsweise **varchar2**(*n*))

- Daten müssen eingefügt, gelesen und verändert werden können
- Beispiel für Einfügen (INSERT)

INSERT INTO Kunde VALUES (1001, 'Götze', 'Mario', '03.06.1991')

• Beispiele für Lesen (**SELECT**)

SELECT KNr, Name, Geburtsdatum **FROM** Kunde **WHERE** Name = 'Götze'

SELECT KNr, Name **FROM** Kunde

Datenmanipulation – 2(2)

Beispiel f
ür Änderung (UPDATE)

UPDATE Kunde **SET** Geburtsdatum = '03.06.1992' **WHERE** KNr = 1001

• Beispiele für Löschen (DELETE)

DELETE FROM Kunde **WHERE** Name = 'Götze'

DELETE FROM Kunde

Transaktionen

- Um die Aktionen mehrere Benutzer voneinander zu isolieren und/oder mehrere Aktionen logisch zusammenzufassen, verwendet man in Datenbanksystemen Transaktionen
- Eine Transaktion wird mit COMMIT beendet erst dann sind die Änderungen für andere Nutzer sichtbar:

INSERT INTO Kunde VALUES (1002, 'Götze', 'Mario', '03.06.1992');

SELECT * FROM Kunde;

COMMIT;

Indexe

- Datenbanken speichern teilweise Millionen von Daten in einer Tabelle (z.B. Verbindungsdaten Telekommunikation)
- ⇒ Lineares Durchsuchen würde viel zu lange dauern
- ⇒ Um den Zugriff auf häufig benötigte Daten zu optimieren, werden in Datenbanksystemen Indexe verwendet; meistens B-Bäume:

Datenbanken 1

Toolbasierte Datenbankmodellierung

Toolbasierte Datenbankmodellierung

Praktikum

- Datenbankentwurf mit dem Entity-Relationship-Modell und vertraut werden mit den verwendeten Software-Tools (PowerDesigner, Oracle)
- 2. Erweiterter Datenbankentwurf mit dem Entity-Relationship-Modell
- 3. Arbeit mit SQL (Datendefinition und Datenmanipulation)
- 4. Datenbankprogrammierung (Stored Procedures und Trigger)
- 5. Datenbankprogrammierung (JDBC und Transaktionen)

Praktikumsumgebung

Arbeit zu Hause / außerhalb des Labors

Arbeit zu Hause / außerhalb des Labors

Literaturempfehlungen

- G. Saake, A. Heuer und K.-U. Sattler: Datenbanken: Konzepte und Sprachen. MITP-Verlag, 5. Auflage 2013. auch ältere Auflagen geeignet!
- A. Kemper und A. Eickler: Datenbanksysteme. Oldenbourg Verlag, 8. Auflage, 2011.
 auch ältere Auflagen geeignet!
- R. Elmasri und S. B. Navathe: Grundlagen von Datenbanksystemen. (Bachelorausgabe). Pearson Studium, 3. Auflage, 2009.

Englische Literatur:

 C. J. Date: An Introduction to Database Systems. Addison-Wesley Systems Programming Series, 8th ed. 2003.

Datenbanken 1

Ausblick Datenbanken 2

