# SDM4 in R: Understanding and Comparing Distributions (Chapter 4)

Nicholas Horton (nhorton@amherst.edu)

August 12, 2017

## Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples in the Fourth Edition of *Stats: Data and Models* (2014) by De Veaux, Velleman, and Bock. More information about the book can be found at http://wps.aw.com/aw\_deveaux\_stats\_series. This file as well as the associated R Markdown reproducible analysis source file used to create it can be found at http://nhorton.people.amherst.edu/sdm4.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignettes (http://cran.r-project.org/web/packages/mosaic). A paper describing the mosaic approach was published in the *R Journal*: https://journal.r-project.org/archive/2017/RJ-2017-024.

### Chapter 4: Understanding and comparing distributions

#### Section 4.1: Comparing groups with histograms

See Figure 4.1 on page 85

```
library(mosaic); library(readr)
options(digits=3)
Hopkins <-
read_delim("http://nhorton.people.amherst.edu/sdm4/data/Hopkins_Forest_2011.txt", delim="\t")
names (Hopkins)
##
    [1] "Season"
                       "AvgWindSpeed" "Month"
                                                       "Day"
                       "AvgTempC"
    [5] "DayofYear"
                                       "AvgTempF"
                                                      "MaxWindSpeed"
   [9] "AvgBarom"
                       "Precip"
histogram(~ AvgWindSpeed, width=0.5, center=0.24,
          xlab="Average wind speed (mph)", data=Hopkins)
```



Here we reproduce Figure 4.2 on page 85



```
favstats(~ AvgWindSpeed, data=filter(Hopkins, Summer==TRUE))
```

```
## min Q1 median Q3 max mean sd n missing ## 0 0.35 0.71 1.62 5.47 1.11 1.1 183 0
```

```
histogram(~ AvgWindSpeed, width=0.5, center=0.24, xlab="Average winter wind speed (mph)", data=filter(Hopkins, Winter==TRUE))
```



favstats(~ AvgWindSpeed, data=filter(Hopkins, Winter==TRUE))

```
## min Q1 median Q3 max mean sd n missing ## 0.02 0.84 1.72 2.66 6.73 1.9 1.29 182 0
```

Section 4.2: Comparing groups with boxplots

Here we reproduce Figure 4.3 on page 87

bwplot(AvgWindSpeed ~ as.factor(Month), data=Hopkins)



Section 4.3: Outliers

```
filter(Hopkins, Month==2, AvgWindSpeed > 6) # in February
```

```
## # A tibble: 1 x 12
     Season AvgWindSpeed Month Day DayofYear AvgTempC AvgTempF MaxWindSpeed
##
                   <dbl> <int> <int>
                                          <int>
                                                   <dbl>
                                                            <dbl>
##
## 1 Winter
                    6.73
                             2
                                             50
                                                   -5.09
                                                             22.8
                                                                          39.5
                                  19
## # ... with 4 more variables: AvgBarom <dbl>, Precip <dbl>, Summer <lgl>,
       Winter <lgl>
```

filter(Hopkins, Month==6, AvgWindSpeed > 3.9) # in June

```
## # A tibble: 1 x 12
                                 Day DayofYear AvgTempC AvgTempF MaxWindSpeed
##
     Season AvgWindSpeed Month
                                                   <dbl>
                                                            <dbl>
##
                   <dbl> <int> <int>
                                          <int>
## 1 Summer
                    3.93
                             6
                                            153
                                                    14.7
                                                             58.5
                                                                           38.8
                                    2
## # ... with 4 more variables: AvgBarom <dbl>, Precip <dbl>, Summer <lgl>,
       Winter <lgl>
```

#### Section 4.4: Timeplots: Order, please!

See Figures 4.4 through 4.6 starting on page 92

xyplot(AvgWindSpeed ~ DayofYear, data=Hopkins)



xyplot(AvgWindSpeed ~ DayofYear, type="1", data=Hopkins)



xyplot(AvgWindSpeed ~ DayofYear, type=c("p", "smooth"), lwd=3, data=Hopkins)



Section 4.5: Re-expressing data: A first look

See Figure 4.7 on page 94

```
CEO <- read_delim("http://nhorton.people.amherst.edu/sdm4/data/CEO_Salary_2012.txt", delim="\t") favstats(~ One_Year_Pay, data=CEO)
```

```
## min Q1 median Q3 max mean sd n missing ## 0 3.88 6.97 13.4 131 10.5 11.5 500 0
```

```
histogram(~ One_Year_Pay, width=2.5, center=1.24, data=CEO)
```



Figure 4.8 on page 95

## [1] 497

```
nrow(CEO) # let's get rid of the CEO's with 0 salaries...
## [1] 500

CEO <- filter(CEO, One_Year_Pay > 0)
nrow(CEO)
```

```
CEO <- mutate(CEO, log10salary = log10(One_Year_Pay*1000000))
histogram(~ log10salary, width=.25, center=.124, data=CEO)
```



On the log 10 scale, we can roughly interpret the values as the number of digits in the CEO salary.