

COURSE INTRODUCTION

Khóa Học Thiết Kế Vi Mạch Cơ Bản - Trung Tâm Đào Tạo Thiết Kế Vi Mạch ICTC

COURSE INTRODUCTION

SUMMARY

HOMEWORK

QUESTION

SELF-LEARNING

1. K-map

2. Combinational Circuit

3. Sequential Circuit

KARNAUGH MAP

Karnaugh map it is a graphical representation of a truth table for a Boolean function. Karnaugh maps are helpful for simplifying Boolean expressions and minimizing the number of terms in a logic function.

KARNAUGH MAP – 2 VARIABLES

K-map to represent F(A,B) - SOP

Α	В	minterms		
0	0	$\overline{A}\overline{B}$	m0	
0	17	$\overline{A}B$	m1	
1	0	$A\overline{\mathrm{B}}$	m2	
1	1	AB	m3	

FNTEB		В
Ā	$\overline{A}\overline{B}$	ĀB
Α	$A\overline{B}$	AB

AE	3 0	1
0	TEMO	m1
1	m2	m3

KARNAUGH MAP – 2 VARIABLES

Optimize K-map rules:

- ☐ Make the group of 1s, which are adjacent to each other.
- ☐ This group should be in the power of 2. For example, in case of the 2 variables map, we can make the group of two 1s or group of four 1s, but can not make the group of three 1s.
- ☐ Ensure that during the grouping, all the 1s in the maps are covered.
- ☐ During grouping, even if the 2 groups overlap with each other, it's alright.
- ☐ After grouping, keep the common variables (not change) in each group.

KARNAUGH MAP – 2 VARIABLES GROUPING

KARNAUGH MAP – 2 VARIABLES

$$F(A,B) = A'.B' + A'.B + A.B$$

Α	В	F
0	0	1
0	1	10
1	0	0
1	1	1

$$F(A,B) = A'.B + A.B'$$

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F(A,B) = A'.B + A.B'$$

KARNAUGH MAP – 3 VARIABLES

K-map to represent F(A,B,C) - SOP

Α	В	С	minterms
0	0	0	m0
0	OTR	ALI	m1
90	TG1 ' '	0	m2
0	1	1	m3
1	0	0	m4
1	0	1	m5
1	1	0	m6
1	1	1	m7

KARNAUGH MAP – 3 VARIABLES

Simplify below Boolean function: $F(A,B,C) = \sum (0,1,3,5)$

Α	В	С	F
0	0	0	JG1CE
0	OTR	ALI	1
0	(4)	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

$$F(A,B,C) = A'.B' + A'.C + B'.C$$

KARNAUGH MAP – 3 VARIABLES - GROUPING

$$F(A,B,C) = \sum (0,2)$$

$$F(A,B,C) = \sum (4,6)$$

KARNAUGH MAP – 3 VARIABLES

<u>Practice</u>: simplify below Boolean function

$$F(A,B,C) = \sum (0,1,2,4,5,6)$$

$$F(A,B,C)=$$

$$F(A,B,C) = \sum (0,1,2,3,4,6)$$

$$F(A,B,C)=$$

KARNAUGH MAP – 3 VARIABLES

When the SOP Boolean functions is not enough (lack of variables to form a minterm).

For example:

$$F(A,B,C) = A' + A.B' + A.B.C'$$

Α	В	С	F
0	0	0	NG1CL
0	TOTE	RAIN	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

A	3C 00	01	11	10
0	m0	m1	m3	m2
1	m4	m5	mŽ	m6

A [3C 00	01	11	10
0	1	1	1	1
1	1	1		1

$$F(A,B,C)=$$

KARNAUGH MAP – 3 VARIABLES

When the SOP Boolean functions is not enough (lack of variables to form a minterm).

For example:

$$F(A,B,C) = A' + A.B' + A.B.C'$$

Α	В	С	minterms
0	0	0	NG1CL
0	TOTE	RAIN	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	

$$F(A,B,C) = A' + B' + C'$$

HOMEWORK

Homework1:

☐ As we already used K-map to simplified the expression in above example. Let's use Boolean Algebra to prove that:

KARNAUGH MAP – 4 VARIABLES

K-map to represent F(A,B,C,D) - SOP

А	В	С	D	minterms
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	RI	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	m11	m10

KARNAUGH MAP – 4 VARIABLES - GROUPING

Grouping of 4 and 8, as long as the 1s are adjacent

KARNAUGH MAP – 4 VARIABLES

$F(A,B,C,D) = \sum (0,2,5,9,1)$	0)
---------------------------------	----

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14 \
10	m8	m9	m11	m10

C AB	D 00	01	11	10
00	1		ITER	1
01	NININ	IG 1CE	711	
11				
10		1		1

KARNAUGH MAP – 4 VARIABLES

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14 \
10	m8	m9	m11	m10

AB	D 00	01	11	10
00	1,		ITER	1
01	AININ	(615F	115.	
11				
10				; <u>-</u> ;

F(A,B,C,D) = A'.B'.D' + A'.B.C'.D + A.B'.C'.D + B'.C.D'

KARNAUGH MAP – 4 VARIABLES

 $F(A,B,C,D) = \sum (4,5,6,7,9,13,14,15)$

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4 C	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	m11	m10

C AB	D 00	01	11	10
00			ITER	
01	AININ	IG 1CE	1	1
11		1	1	1
10		1		

KARNAUGH MAP – 4 VARIABLES

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14 \
10	m8	m9	m11	m10

$$F(A,B,C,D) = A'.B + BC + A.C'.D$$

KARNAUGH MAP – 4 VARIABLES

<u>Practice</u>: simplify below $F(A,B,C,D) = \sum (0,1,5,6,7,8,9,13,15)$

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	m11	m10

C AB	D	00	01	11	10
00				ITER	
01	A	INI	IG CE		
11					
10					

$$F(A,B,C,D) =$$

KARNAUGH MAP – 4 VARIABLES

<u>Practice</u>: simplify below $F(A,B,C,D) = \sum (0,1,4,5,7,8,9,11,12,13,15)$

C AB	D 00	01	11	10
00	m0	m1	m3	m2
01	m4	m5	m7	m6
11	m12	m13	m15	m14
10	m8	m9	m11	m10

C AB	D	00	01	11	10
00				ITER	
01	A	INI	IG CE		
11					
10					

$$F(A,B,C,D) =$$

HOMEWORK

Homework2:

- A circuit has 4 inputs A,B,C,D and 1 output Y. Design a combinational logic for Y to set Y to 1 whenever 2 or more inputs are equal to 1. Otherwise, Y is 0. Use SOP form.
- *Investigate 5 variable K-map and do the same requirement as above homework. Use SOP form.

COMBINATIONAL CIRCUIT

Below is some characteristics of combinational circuit:

- No feedback: do not have feedback paths, meaning there are no elements that store information about previous inputs or outputs.
- ☐ Instantaneous Output: The output is a function only of the current input values, and there is no concept of time or sequence.
- ☐ **Truth Table**: The behavior of a combinational circuit is fully described by a truth table, which lists all possible combinations of input values and their corresponding output values.
- **Logic Gates**: Combinational circuits are constructed using basic logic gates such as AND, OR, NOT, XOR, and others.

SEQUENTIAL CIRCUIT

Below is some characteristics of combinational circuit:

- ☐ Clock Signal: The clock signal determines when the circuit should update its state, ensuring that changes happen at specific intervals.
- State Transition: The behavior of a sequential circuit is often described using a state diagram, which illustrates how the circuit transitions from one state to another based on input and clock signals.
- Finite State Machines: Sequential circuits are often implemented as finite state machines, where the circuit can exist in a finite number of states, and transitions between states are governed by specified conditions.

SUMMARY

SUMMARY:

- ☐ Karnaugh map is a very effective way to simplify Boolean functions.
- ☐ Combinational logic has no feedback path, the output changes immediately based on input.
- ☐ Sequential logic has feedback path to store the current state.

