Robustness of pre-trained speech models

Kuan Po, Huang Hung-yi, Lee

National Taiwan University

Publication

- Kuan Po Huang, Yu-Kuan Fu, Yu Zhang, and Hung-yi Lee. "Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation". In: arXiv preprint arXiv:2203.16104 (2022).
- Submitted to Interspeech 2022.
- https://arxiv.org/abs/2203.16104

Improving Distortion Robustness of Self-supervised Speech Processing Tasks with Domain Adaptation

Kuan Po Huang¹ Yu-Kuan Fu² Yu Zhang³

Hung-yi Lee⁴

¹Graduate Institute of Computer Science and Information Engineering, National Taiwan University ²Department of Physics, National Taiwan University ³Google Brain

⁴Graduate Institute of Communication Engineering, National Taiwan University

 124 {r09922005, b07202024, hungyilee}@ntu.edu.tw, 3 ngyuzh@google.com

SUPERB

Domain mismatch

The training data and testing data have different distributions.

results from https://arxiv.org/abs/2203.16104

Recording environments

Speech distortions

<u>reverberation</u>

white noise

Speech distortions

domestic noise transportation noise

Domain mismatch

Performance of SUPERB baselines in different domains of speech.

m: Musan noise, g: Gaussian noise, r: Reverberation

IC (Acc)				ER (Acc)		KS (Acc)			
clean	m+g+r	fsd50k	clean	m+g+r	fsd50k	clean	m+g+r	fsd50k	
99.47	96.94	97.47	63.96	57.33	60.55	97.14	93.38	93.80	

				ASR (WER)									
	SID (Acc	2)	c	lean	m+	-g+r	fsd	50k	CHi	ME3			
clean	m+g+r	fsd50k	w/o	w/ LM	w/o	w/ LM	w/o	w/LM	w/o	w/ LM			
84.97	65.51	77.61	6.72	4.88	10.16	7.94	9.62	7.57	33.4	29.26			

Domain adaptation

Large amount of unlabeled target domain data.

- Upstream continual training
- Domain adversarial training

Domain adaptation

Upstream continual training

target domain data

Upstream continual training results

Performance of SUPERB baselines with upstream continually trained.

m: Musan noise, g: Gaussian noise, r: Reverberation

		20000	IC (Acc)				ER (Ac		999	KS (Acc)		
	continual	clea	an m+g	g+r fs	d50k	clean	m+g+r	fsd50k	cle	an m-	+g+r	fsd50k
baseline oracle	-	99.4 99.5	96. 55 <u>99</u>		7.47 8.21	63.96 70.41	57.33 69.31	60.55 69.31	97. 97.		3.38 6.46	93.80 95.26
w/o DAT w/o DAT	libri 100hr mgr libri 960hr mgr	99.3			7.94 7.89	64.42 67.28	62.30 67.47	60.65 65.62	96. 97.		4.87 6.11	93.90 94.77
	continual	clean	SID (Acc	e) fsd50k		lean w/ LM	m+ w/o	ASR (V g+r w/ LM		150k w/ LM	CH w/o	iME3 w/ LM
baseline oracle		84.97 86.63	65.51 80.05	77.61 82.74	6.72 5.17	4.88 4.18	10.16 6.57		9.62 6.69	7.57 5.45	33.4 22.98	29.26 20.57
w/o DAT w/o DAT	libri 100hr mgr libri 960hr mgr	87.02 86.40	70.91 74.46	80.96 81.47	6.23 5.92	4.87 4.84	8.04 7.19	6.47 6.00	7.90 7.15	6.38 5.87	27.82 23.83	24.27 20.81

Domain adaptation

Domain adversarial training

Binary / Multi-domain setting

Binary-domain

Binary cross entropy loss:

treat all distorted speech as the same domain

Multi-domain

Cross entropy loss

Entropy loss: uniform probability distribution

Domain adversarial training results

	continual	clean	IC (Acc) m+g+r	fsd50k	clean	ER (Acc) m+g+r	fsd50k	clean	KS (Acc) m+g+r	fsd50k
baseline oracle	-	99.47 99.55	96.94 99.34	97.47 98.21	63.96 70.41	57.33 69.31	60.55 69.31	97.14 97.57	93.38 96.46	93.80 95.26
$\begin{array}{c} \text{DAT } \lambda = 0.01 \\ \text{DAT } \lambda = 0.001 \end{array}$		99.47 99.60	98.68 98.60	97.47 97.63	Cross 68.85 69.10	Entropy Lo 63.59 <u>65.90</u>	oss (CE) 63.50 64.29	97.44 97.24	95.26 95.65	94.64 94.55
$\begin{array}{c} \text{DAT } \lambda = 0.01 \\ \text{DAT } \lambda = 0.001 \end{array}$	-	99.55 99.58	98.47 98.27	97.36 97.52	En 63.87 64.15	tropy Loss 59.91 61.75	(E) 59.26 59.54	96.92 97.05	94.94 94.87	94.06 94.13
$\begin{array}{c} \text{DAT } \lambda = 0.01 \\ \text{DAT } \lambda = 0.001 \end{array}$	į	99.68 99.60	98.39 98.97	Bi 97.57 97.89	nary Cro 66.18 68.76	64.33 64.52	Loss (BC 62.86 64.52	E) 96.98 97.27	95.10 95.59	93.93 93.90

Domain adversarial training results

		1	- 0.00000000000000000000000000000000000	- E	ASR (WER)								
		2-1079	SID (Acc)			clean m+g+r			fsd50k		CHiME3		
	continual	clean	m+g+r	fsd50k	w/o	w/ LM	w/o	w/ LM	w/o	w/LM	w/o	w/LM	
baseline	-	84.97	65.51	77.61	6.72	4.88	10.16	7.94	9.62	7.57	33.4	29.26	
oracle	-	86.63	80.05	82.74	5.17	4.18	6.57	5.37	6.69	5.45	22.98	20.57	
			Cross Entropy Loss (CE)										
DAT $\lambda = 0.01$	S.T.	86.49	71.82	79.76		4.60	11.74	9.97	11.39	12.27	44.43	41.51	
$DAT \lambda = 0.001$	-	87.44	72.28	79.94	6.29	5.77	9.70	9.00	9.67	8.68	32.98	29.03	
		1			Ent	ropy Los	s (E)						
DAT $\lambda = 0.01$	-	90.01	75.23	84.04		4.45	11.79	10.23	8.64	7.25	40.02	37.45	
DAT $\lambda = 0.001$	-	90.50	73.43	84.46	6.01	4.59	9.97	7.74	8.88	7.31	32.77	28.90	
1 000 to 000 to 1000 to		Binary Cross Entropy Loss (BCE)											
DAT $\lambda = 0.01$	-	89.25	73.71	82.12	6.23	4.68	9.68	7.56	9.18	7.38	31.20	28.72	
DAT $\lambda = 0.001$	10 0	90.96	78.69	84.67	6.35	4.72	9.45	7.34	9.11	7.38	32.25	27.88	

Domain adversarial training with continual training

122 N	continual	clean	IC (Acc) m+g+r	fsd50k	clean	ER (Acc) m+g+r	fsd50k	clean	KS (Acc) m+g+r	fsd50k
(a) baseline (b) oracle	-	99.47 99.55	96.94 99.34	97.47 98.21	63.96 70.41	57.33 69.31	60.55 69.31	97.14 97.57	93.38 96.46	93.80 95.26
(c) w/o DAT (d) w/o DAT	libri 100hr mgr libri 960hr mgr	99.45 99.39	98.63 98.84	97.94 97.89	64.42 67.28	62.30 67.47	60.65 65.62	96.92 97.12	94.87 96.11	93.90 94.77
		ľ			Cross	Entropy Lo	ss (CE)			
(e) DAT $\lambda = 0.01$ (f) DAT $\lambda = 0.001$	-	99.47 99.60	98.68 98.60	97.47 97.63	68.85 69.10	63.59 65.90	63.50 64.29	97.44 97.24	95.26 95.65	94.64 94.55
2		ľ			Cross	Entropy Lo	ss (CE)			
(g) DAT $\lambda = 0.001$ (h) DAT $\lambda = 0.001$	libri 100hr mgr libri 960hr mgr	99.66 99.55	99.45 99.39	98.55 98.31	69.95 71.71	66.64 69.12	67.47 69.40	96.85 97.05	95.42 96.27	94.09 96.46

Domain adversarial training with continual training

	8		SID (Acc	.)		lean	mJ		(WER)	150k	CHiME3	
	continual	clean	m+g+r	fsd50k		w/ LM	w/o	g+r w/ LM	w/o	w/LM	w/o	w/LM
(a) baseline (b) oracle	2 - 3 -	84.97 86.63	65.51 80.05	77.61 82.74		4.88 4.18	10.16 6.57	7.94 5.37	9.62 6.69	7.57 5.45	33.4 22.98	29.26 20.57
(c) w/o DAT (d) w/o DAT	libri 100hr mgr libri 960hr mgr	87.02 86.40	70.91 74.46	80.96 81.47		4.87 4.84	8.04 7.19	6.47 6.00	7.90 7.15	6.38 5.87	27.82 23.83	24.27 20.81
(e) DAT $\lambda = 0.01$ (f) DAT $\lambda = 0.001$:- :-	86.49 87.44	71.82 72.28	79.76 79.94	6.16	Entropy L 4.60 5.77	oss (CE 11.74 9.70	9.97 9.00	11.39 9.67	12.27 8.68	44.43 32.98	41.51 29.03
(g) DAT $\lambda = 0.001$ (h) DAT $\lambda = 0.001$	libri 100hr mgr libri 960hr mgr	88.70 89.08	79.59 80.27	83.57 85.04	5.75	Entropy L 4.82 4.61	oss (CE 7.30 6.82	6.21 5.69	7.21 6.67	6.15 5.62	25.60 23.44	22.73 20.71

Future plan - Robustness of DistilHuBERT

Performance degradation for DistilHuBERT when speech has distortions.

	KS	SID	IC	$\mathbf{E}\mathbf{R}$
original distilHuBERT	0.9516 0.8572	0.6741		\

Future plan - Robustness of DistilHuBERT

Future plan - Robustness of DistilHuBERT

overall training objective

$$\sum_{i}^{N} \mathcal{L}_{Distil}^{i} + \sum_{\substack{i,\ j \ i
eq j}}^{N} \left(\mathcal{D}(z_{i}) - \mathcal{D}(z_{j}')
ight)$$

$$\mathcal{L}_{Distil}^{i} = |z_i - z_i'|_1 + \lambda \log \sigma \Big(cossim(z_i, z_i') \Big)$$

The End

Thanks for listening.