Билет 13: Сформулируйте теоремы о переходе к пределу в неравенстве (в двух неравенствах) для функций. Пользуясь определением предела функции по Гейне и соответствующей теоремой для последовательностей, докажите одну из них.

Теорема (о переходе к пределу в неравенстве). Пусть функции f(x), g(x) определены в некоторой проколотой окрестности точки a - $\overset{\circ}{O}_r(a)$, и пусть в этой окрестности выполнено неравенство $f(x) \le g(x)$, а также существуют пределы $\lim_{x \to a} f(x) = b$ и $\lim_{x \to a} g(x) = c$. Тогда $b \le c$.

Доказательство. Из определения предела по Гейне следует, что для любой последовательности $\{x_n\}$ такой, что $\lim_{n\to\infty} x_n = a$ и $x_n \neq a$ $(n\in {\bf N})$ будет справедливо $\lim_{n\to\infty} f\left(x_n\right) = a$ и $\lim_{n\to\infty} g\left(x_n\right) = b$. Кроме того, с некоторого номера n_0 (когда члены последовательности $\{x_n\}$ попадут в $\overset{\circ}{O}_{\mathcal{E}}(a)$) будет выполняться неравенство $f\left(x_n\right) \leq g\left(x_n\right)$. Применив теорему о предельном переходе в неравенстве к последовательностям $\{f\left(x_n\right)\}$ и $\{g\left(x_n\right)\}$, получим нужное нам неравенство $b \leq c$.

Теорема (о переходе к пределу в двух неравенствах). Пусть функции f(x), g(x), h(x) определены в некоторой проколотой окрестности точки $a - \mathring{O}_r(a)$, и пусть в этой окрестности выполнено неравенство $f(x) \le h(x) \le g(x)$, а также существуют и равны пределы $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b$. Тогда существует предел $\lim_{x \to a} h(x) = b$.

Доказательство. Из условий теоремы следует, что для любой последовательности $\{x_n\}$ такой, что $\lim_{n\to\infty} x_n = a$ и $x_n \neq a$ $(n\in \mathbf{N})$ будет справедливо $\lim_{n\to\infty} f\left(x_n\right) = \lim_{n\to\infty} g\left(x_n\right) = b$, а также, что с некоторого номера n_0 (когда члены последовательности $\{x_n\}$ попадут в $\overset{\circ}{O}_{\mathcal{E}}(a)$) будет выполняться неравенство $f\left(x_n\right) \leq h(x_n) \leq g\left(x_n\right)$. Применим теорему о предельном переходе в двух неравенствах к последовательностям $\{f\left(x_n\right)\}, \{g\left(x_n\right)\}, \{h\left(x_n\right)\}$. Получим существование предела $\lim_{n\to\infty} h(x_n) = b$ для любой последовательности $\{x_n\}$, сходящейся к a $(x_n \neq a)$. Следовательно, для функции h(x) в $\overset{\circ}{O}_{\mathcal{E}}(a)$ выполнены все условия существования предела по Гейне.