Ćwiczenia z ANALIZY NUMERYCZNEJ

Lista nr 4

30 października $2024\,\mathrm{r}.$

Zajęcia 5 listopada 2024 r. Zaliczenie listy **od 6 pkt.**

- **L4.1.** I punkt Niech $[a_0, b_0], [a_1, b_1], \ldots$ będzie ciągiem przedziałów zbudowanym za pomocą metody bisekcji zastosowanej do lokalizacji zer funkcji f ciągłej w przedziale $[a_0, b_0],$ niech ponadto $m_{n+1} := \frac{1}{2}(a_n + b_n), \ \alpha = \lim_{n \to \infty} m_n \text{ oraz } e_n := \alpha m_{n+1}.$
 - (a) Wykaż, że $[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$ (n = 0, 1, ...).
 - (b) Ile wynosi długość przedziału $[a_n, b_n]$ (n = 0, 1, ...)?
 - (c) Wykaż, że $(1) |e_n| \le 2^{-n-1}(b_0 a_0) (n \ge 0).$
 - (d) Czy może zdarzyć się, że $a_0 < a_1 < a_2 < \ldots < a_N$, gdzie N jest dowolną ustaloną liczbą nauturalną? Jeśli tak, to podaj odpowiedni przykład.
- **L4.2.** 1 punkt lle kroków według metody bisekcji należy wykonać, żeby wyznaczyć zero α z błędem bezwzględnym mniejszym niż zadana liczba $\varepsilon>0$?
- **L4.3.** Włącz komputer! 1 punkt Wykonaj 5 pierwszych kroków metody bisekcji dla funkcji f(x) = x 0.49 i wartości początkowych $a_0 = 0$, $b_0 = 1$. Porównaj wartości błędów $|e_n|$ $(1 \le n \le 5)$ z ich oszacowaniami (1) (oznaczenia jak w zadaniu **L4.1**). Skomentuj wyniki.
- **L4.4.** Włącz komputer! 1 punkt Stosując metodę bisekcji, wyznaczyć wszystkie zera funkcji $f(x) = x^2 \arctan(x+2)$ z błędem bezwzględnym nie większym niż 10^{-6} . Wskazówka: Naszkicuj wykresy funkcji $g(x) = x^2$ i $h(x) = \arctan(x+2)$.
- **L4.5.** Włącz komputer! 2 punkty Przybliżenie odwrotności liczby R>0 można obliczać bez wykonywania dzieleń za pomocą wzoru

$$x_{n+1} := x_n(2 - x_n R)$$
 $(n = 0, 1, ...)$

dla odpowiednio dobranej wartości x_0 .

- (a) Sprawdź, że powyższy wzór można zinterpretować jako wykonanie kroku metody Newtona dla pewnej funkcji f.
- (b) Udowodnij, że jeśli $x_n \in (0, R^{-1})$, to $x_{n+1} \in (x_n, R^{-1})$.

- (c) Udowodnij, że dla dowolnego $x_0 \in (0, R^{-1})$ zachodzi $\lim_{n \to \infty} x_n = \frac{1}{R}$. Dla jakiego doboru punktów początkowych powyższa metoda jest zbieżna?
- (d) Sprawdź eksperymentalnie (dla różnych wartości R oraz x_0), ile średnio iteracji trzeba wykonać, aby uzyskać dokładność bliską maszynowej.
- **L4.6.** Włącz komputer! 1 punkt Stosując metodę Newtona, zaproponuj algorytm numerycznego obliczania $\frac{1}{\sqrt{a}}$ (a>0) jedynie za pomocą operacji +, -i, czyli bez wykonywania dzieleń. Opracowaną metodę **sprawdź eksperymentalnie**, w tym zbadaj m.in. jak warto dobierać x_0 oraz ile średnio iteracji wystarczy do osiągnięcia satysfakcjonujących wyników.
- **L4.7.** Włącz komputer! 1 punkt Niech będzie (*) $a = m 2^c$, gdzie c jest liczbą całkowitą, a m ułamkiem z przedziału $[\frac{1}{2}, 1)$. Biorąc pod uwagę postać (*), zaproponuj efektywną metodę obliczania \sqrt{a} , otrzymaną przez zastosowanie metody Newtona do wyznaczania zera pewnej funkcji f. Ustal eksperymentalnie dla jakich wartości x_0 metoda jest zbieżna.
- **L4.8.** 2 punkty Niech $f \in C^2(\mathbb{R})$. Załóżmy, że f'(x) > 0 i f''(x) > 0 dla $x \in \mathbb{R}$. Ponadto, niech α będzie pierwiastkiem równania f(x) = 0. Wykaż, że jest to jedyny pierwiastke, a metoda Newtona daje ciąg do niego zbieżny dla dowolnego przybliżenia początkowego x_0 .
- **L4.9.** Włącz komputer! 1 punkt r-krotne zero α funkcji f(x) jest pojedynczym zerem funkcji $g(x) := \sqrt[7]{f(x)}$. Jaką postać ma wzór opisujący metodę Newtona zastosowaną do funkcji g(x)? Wykonując odpowiednie testy numeryczne, sprawdź otrzymaną w ten sposób metodę. Czy jest ona warta polecenia?

(-) Paweł Woźny