Convex Sets

Ye Shi

ShanghaiTech University

Outline

1 Affine and Convex Sets

XEBn

2 Some Important Examples

- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Definition of Affine Set

Line: through x_1, x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 0.6$$

$$\theta = 0$$

$$\theta = -0.2$$

- * Affine set: contains the line through any two distinct points in the set
- Example: solution set of linear equations $\{x | Ax = b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations) $\chi_1, \chi_2, A\chi_1 = b, A\chi_2 = b$

$$A \left[\theta X_1 + (H\theta) X_2\right] = \theta A X_1 + (H\theta) A X_2 = b$$

Definition of Convex Set

Line segment: between x_1 and x_2 : all points

$$\boldsymbol{x} = \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2$$

with $0 < \theta < 1$

Convex set: contains line segment between any two points in the set

$$\boldsymbol{x}_1, \boldsymbol{x}_2 \in C, 0 \le \theta \le 1 \implies \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in C$$

Examples (one convex, two nonconvex sets)

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Examples: Hyperplanes and Halfspaces

Hyperplane: set of the form $\{x|a^Tx=b\}(a\neq 0)$

Halfspace: set of the form $\{x|a^Tx \leq b\}(a \neq 0)$

$$a^{T}x \ge b$$

$$a^{T}x \le b$$

- **a** is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

hyperplane: $ax_1 = b$, $ax_2 = b$,

 $\alpha^{T}(\theta X_{1} + (H\theta) X_{2}) = b, \quad \theta \in \mathbb{R}$

half space: $a^{T}x_{1} \leq b$, $a^{T}x_{2} \leq b$

 $\alpha^{T}(\theta x_{1} + (1-\theta) x_{2}) \leq b, \quad \theta \in [0, 1]$

Example: Polyhedra

JAX+Y=b

Solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$ $C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Examples: Euclidean Balls and Ellipsoids

Euclidean) Ball with center x_c and radius r:

$$B(\boldsymbol{x}_c,r) = \{\boldsymbol{x} | \|\boldsymbol{x} - \boldsymbol{x}_c\|_2 \le r\} = \{\boldsymbol{x}_c + r\boldsymbol{u} | \|\boldsymbol{u}\|_2 \le 1\}$$

$$\begin{array}{c} \mathbf{x} - \mathbf{x}_c = \mathbf{y} \cdot \mathbf{v} \\ \mathbf{x} - \mathbf{x}_c = \mathbf{y} \cdot \mathbf{v} \end{array}, \quad \|\mathbf{y} \cdot \mathbf{v}\|_2 \le \mathbf{y} \Rightarrow \quad \|\mathbf{x}\|_2 \le 1$$

$$\mathbf{x} - \mathbf{x}_c = \mathbf{y} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} = 1$$

Ellipsoid: set of the form

$$E(\boldsymbol{x}_c, \boldsymbol{P}) = \{\boldsymbol{x} | (\boldsymbol{x} - \boldsymbol{x}_c)^T \boldsymbol{P}^{-1} (\boldsymbol{x} - \boldsymbol{x}_c) \leq 1\}$$
$$= \{\boldsymbol{x}_c + \boldsymbol{A} \boldsymbol{u} | \|\boldsymbol{u}\|_2 \leq 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite), A square and nonsingular Y = X = A V

$$X-X_{C} = A N,$$

$$A = P^{\frac{1}{2}}$$

PT = QTATA

Convex Combination and Convex Hull

Convex combination of x_1, \dots, x_k : any point x of the form

$$\boldsymbol{x} = \theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2 + \dots + \theta_k \boldsymbol{x}_k$$

with
$$\theta_1 + \cdots + \theta_k = 1, \theta_i \ge 0$$

 ${}^{\bullet \bullet}$ Convex hull conv S: set of all convex combinations of points in S

Conic Combination and Convex Cone

Conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$\boldsymbol{x} = \theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2$$

with $\theta_1 \geq 0, \theta_2 \geq 0$

Convex cone: set that contains all conic combinations of points in the set

Convex Cones: Norm Balls and Norm Cones

- Norm: a function $\|\cdot\|$ that satisfies
 - $\|\boldsymbol{x}\| > 0$; $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$

notation: $\|\cdot\|$ general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ a particular norm

- Norm ball with center x_c and radius $r: \{x | ||x x_c|| \le r\}$
- Norm cone: $\{(\boldsymbol{x},t)\in\mathbb{R}^{n+1}|\|\boldsymbol{x}\|\leq t\}$

Euclidean norm cone or second-order cone (aka ice-cream cone)

Positive Semidefinite Cone

Notation

- \mathbb{S}^n is set of symmetric $n \times n$ matrices
- $\mathbb{S}^n_+ = \{ \boldsymbol{X} \in \mathbb{S}^n | \boldsymbol{X} \succeq 0 \}$: positive semidefinite $n \times n$ matrices

$$oldsymbol{X} \in \mathbb{S}^n_+ \quad \Longleftrightarrow \quad oldsymbol{z}^ op oldsymbol{X} oldsymbol{z} \geq 0 ext{ for all } oldsymbol{z}$$

 \mathbb{S}^n_+ is a convex cone

 $\mathbb{S}_{++}^n = \{ \boldsymbol{X} \in \mathbb{S}^n | \boldsymbol{X} \succ 0 \}$: positive definite $n \times n$ matrices

Example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+$

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Operations that Preserve Convexity

How to establish the convexity of a given set *C*

Apply the definition (can be cumbersome)

$$\boldsymbol{x}_1, \boldsymbol{x}_2 \in C, 0 \le \theta \le 1 \implies \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in C$$

- Show that C is obtained from simple convex sets(hyperplanes, halfspaces, norm balls, \cdots) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

- Intersection: if S_1, S_2, \ldots, S_k are convex, then $S_1 \cap S_2 \cap \cdots \cap S_k$ is convex (k can be any positive integer)
- Example 1: a polyhedron is the intersection of halfspaces and hyperplanes
- Example 2:

$$S = \{ x \in \mathbb{R}^m | |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2

Affine Function

suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is affine $(f(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \text{ with } \boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m)$

* the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{f(\boldsymbol{x}) | \boldsymbol{x} \in S\} \text{ convex}$$

the inverse image $f^{-1}(C)$ a convex set under f is convex $C \subseteq \mathbb{R}^m$ convex $\implies f^{-1}(C) = \{x \in \mathbb{R}^n | f(x) \in C\}$ convex

Examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x|x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbb{S}^p$)
- $\{(\boldsymbol{x},t)\in\mathbb{R}^{n+1}|\|\boldsymbol{x}\|\leq t\}$ is convex, so is

$$\{x \in \mathbb{R}^n | \|Ax + b\| \le c^T x + d\}$$

$$f(\kappa) = \begin{pmatrix} A \\ C^T \end{pmatrix} \kappa + \begin{pmatrix} b \\ d \end{pmatrix}$$

Perspective and Linear-fractional Function L

Perspective function
$$P: \mathbb{R}^{n+1} \to \mathbb{R}^n$$
 $X_{n+1} \to X_{n+1} \to X_{n+1}$

$$P(\boldsymbol{x},t) = \boldsymbol{x}/t, \quad \text{dom}P = \{(\boldsymbol{x},t)|t>0\}$$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = \frac{Ax + b}{c^Tx + d}, \quad \text{dom} f = \{x | c^Tx + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

2f C is convex, then $P(C) = \{(x,t) \in \mathbb{R}^{n+1} | x/t \in C, t > 0\}$ is going

improse $(x,t) \in P(C)$ $(y,c) \in P(C)$

Suppose $(X,t) \in P(c)$, $(Y,S) \in P(c)$, $\theta \in [0,1]$ We need to show $(X,t) + (I-\theta)(Y,S) \in P(c)$

$$\frac{\theta X + (H\theta)y}{\theta t + (H\theta)S} = u(\frac{\chi}{t}) + (Hu) \cdot \frac{y}{S}$$

$$U = \frac{\theta t}{\theta t + (1-\theta)S} \in [0,1]$$

Perspective and Linear-fractional Function II

Examples of a linear-fractional function

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- 5 Separating and Supporting Hyperplanes

Generalized Inequalities I

- A convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if
 - * *K* is closed (contains its boundary)
 - K is solid (has nonempty interior)
 - **№** *K* is pointed (contains no line)

min C^TX Sit. AX = b $GX \le h$ GX + S = h $S \ge 03$

Examples

nonnegative orthant

$$K = \mathbb{R}^{n}_{+} = \{ \boldsymbol{x} \in \mathbb{R}^{n} | x_{i} \geq 0, i = 1, \dots, n \}$$

positive semidefinite cone

$$K = \mathbb{S}^n_+ = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} | \boldsymbol{X} = \boldsymbol{X}^T \succeq \boldsymbol{0} \}$$

 \bullet nonnegative polynomials on [0, 1]:

$$K = \{ \boldsymbol{x} \in \mathbb{R}^n | x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

min f(x)

XER

Min C'd

XER

SER+

AX=b

Generalized Inequalities II

Generalized inequality defined by a proper cone *K*:

$$\boldsymbol{y} \succeq_K \boldsymbol{x} \iff \boldsymbol{y} - \boldsymbol{x} \succeq_K \boldsymbol{0} \text{ or } \boldsymbol{y} - \boldsymbol{x} \in K$$

Examples

ightharpoonup Componentwise inequality $(K = \mathbb{R}^n_+)$

$$\boldsymbol{y} \succeq_{\mathbb{R}^n_+} \boldsymbol{x} \iff y_i \geq x_i, \quad i = 1, \cdots, n$$

Matrix inequality $(K = \mathbb{S}^n_+)$

$$Y \succeq_{\mathbb{S}^n_+} X \iff Y - X$$
 positive semidefinite

Outline

- 1 Affine and Convex Sets
- 2 Some Important Examples
- 3 Operations that Preserve Convexity
- 4 Generalized Inequalities
- **5** Separating and Supporting Hyperplanes

Separating Hyperplane Theorem

If C and D are nonempty disjoint convex sets, there exist $a \neq 0$ and b, such that

$$a^T x \leq b \text{ for } x \in C, \quad a^T x \geq b \text{ for } x \in D$$

the hyperplane $\{x|a^Tx=b\}$ separates C and D

Supporting Hyperplane Theorem

Supporting hyperplane to set C at boundary point x_0 :

$$\{\boldsymbol{x}|\boldsymbol{a}^T\boldsymbol{x}=\boldsymbol{a}^T\boldsymbol{x}_0\}$$

where $\boldsymbol{a} \neq \boldsymbol{0}$ and $\boldsymbol{a}^T \boldsymbol{x} \leq \boldsymbol{a}^T \boldsymbol{x}_0$ for all $\boldsymbol{x} \in C$

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual Cones and Generalized Inequalities

 \triangleright **Dual cone** of a cone K:

$$K^* = \{ \boldsymbol{y} | \boldsymbol{y}^T \boldsymbol{x} \ge 0 \text{ for all } \boldsymbol{x} \in K \}$$

Examples

- $K = \mathbb{R}^n_+ \colon K^* = \mathbb{R}^n_+$ $K = \mathbb{S}^n_+ \quad K^* = \mathbb{S}^n_+$ $K = \{(\boldsymbol{x}, t) | ||\boldsymbol{x}||_2 \le t\} \colon K^* = \{(\boldsymbol{x}, t) | ||\boldsymbol{x}||_2 \le t\}$
- $K = \{(x,t) | \|x\|_1 < t\}: K^* = \{(x,t) | \|x\|_{\infty} < t\}$

First three examples are **self-dual** cones

Dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} \mathbf{0} \iff y^T x \geq 0 \text{ for all } x \succeq_K \mathbf{0}$$

$$x, y \in S^n$$
 $T_V(x, y) \ge 0$ for all $x \ge 0$.
 $x \ge y \in S^n_+$
 $x \ge y \in S^n_+$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in R^n$
 $x \ge y \ne S^n_+$ there exists $y \in S^n_+$

$$= \sum_{i=1}^{n} \lambda_i q_i^T \gamma q_i > 0$$

min
$$f(x) = X^T Y X$$

 $= Tr(x \cdot x^T \cdot Y)$
 $= Tr(x \cdot x^T \cdot Y)$

Reference

Chapter 2 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.