Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 22 - Die Resolvente"

- 22/1: Sei X ein Banachraum, $A, T \in \mathcal{B}(X)$ mit $0 \in \rho(A)$, und setze B := A + T. Wir wissen (Neumannsche Reihe): Ist $||T|| < ||A^{-1}||^{-1}$, dann ist $0 \in \rho(B)$. Unter der Voraussetzung dass AT = TA, zeige die stärkere Aussage: Ist $r(T) < r(A^{-1})^{-1}$, dann ist $0 \in \rho(B)$. Warum ist diese Aussage eigentlich stärker als die obige?
- 22 / 2:*Sei $\mathcal{K}(\mathbb{C})$ die Menge aller kompakten Teilmengen von $\mathbb{C},$ und

$$d_H(M,N) := \max \big\{ \sup_{x \in M} \inf_{y \in N} |x - y|, \sup_{y \in N} \inf_{x \in M} |x - y| \big\}, \quad M, N \in \mathcal{K}(\mathbb{C}).$$

Es gilt dass d_H eine Metrik ist, die Hausdorff-Metrik.

Sei nun X ein Banachraum. Zeige:

- (a) Sind $A, B \in \mathcal{B}(X)$ mit AB = BA, dann ist $d_H(\sigma(A), \sigma(B)) \le r(A B)$.
- (b) Ist \mathcal{C} eine kommutative Teilalgebra von $\mathcal{B}(X)$, so ist die Funktion

$$\Sigma : \left\{ \begin{array}{ccc} (\mathcal{C}, \|.\|_{\mathcal{B}(X)}) & \to & (\mathcal{K}(\mathbb{C}), d_H) \\ A & \mapsto & \sigma(A) \end{array} \right.$$

stetig.