SME0820 - Gestão da Qualidade - Questionário 7 e 8

Francisco Rosa Dias de Miranda 4402962 Heitor Carvalho Pinheiro 11833351

novembro 2021

```
library(tidyverse)
library(knitr)
library(qcc)
library(vMask)
set.seed(1238)
```

Geração dos dados

Foram gerados um total de 40 observações, provenientes de distribuições Normais independentes, de mesma média e variância amostrada de uma distribuição $\chi^2_{(\nu)}$. As 30 primeiras observações têm média $\mu=110$ e $\nu=1$. Já as 10 últimas, $\mu_2=112$ e $\nu=2$, respectivamente.

1	2	3	4	5
113.5960	110.1054	109.8060	109.9909	109.9835
110.6513	109.9392	110.0026	109.9971	109.9697
108.1505	110.1931	110.0616	109.9851	109.9957
113.2783	109.6346	110.0686	110.0038	109.9926
113.4769	110.7103	110.1520	109.9951	109.9817
106.9789	109.9956	110.1210	109.9993	110.0309

Característica da qualidade

Foram coletadas medições em milímetros do comprimento de mancais com flange de 2 parafusos, realizadas por cinco funcionários de forma independente. Nos primeiros 30 produtos, é assumido que o processo estava sob controle.

Em seguida, houve um problema na forma de injeção. A gerência foi notificada e o processo foi interrompido para reparos na máquina.

Graficos de controle

Gráfico de controle X-barra para a amostra toda

```
qcc(dados, type="xbar")
```



```
## List of 11
    $ call
                : language qcc(data = dados, type = "xbar")
                : chr "xbar"
##
    $ type
##
    $ data.name : chr "dados"
##
    $ data
                : num [1:40, 1:5] 114 111 108 113 113 ...
     ..- attr(*, "dimnames")=List of 2
##
    $ statistics: Named num [1:40] 111 110 110 111 111 ...
##
     ..- attr(*, "names")= chr [1:40] "1" "2" "3" "4" ...
##
                : int [1:40] 5 5 5 5 5 5 5 5 5 5 5 ...
##
    $ sizes
                : num 111
##
    $ center
                : num 0.966
##
    $ std.dev
                : num 3
##
    $ nsigmas
                : num [1, 1:2] 109 112
    $ limits
     ..- attr(*, "dimnames")=List of 2
##
```

```
## $ violations:List of 2
## - attr(*, "class")= chr "qcc"
```

Gráfico de controle X-barra para as primeiras observações

```
qcc(dados[1:30,], type="xbar")
```



```
## List of 11
   $ call
                : language qcc(data = dados[1:30, ], type = "xbar")
                : chr "xbar"
    $ type
   $ data.name : chr "dados[1:30, ]"
##
##
                : num [1:30, 1:5] 114 111 108 113 113 ...
     ..- attr(*, "dimnames")=List of 2
##
   $ statistics: Named num [1:30] 111 110 110 111 111 ...
##
     ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
##
                : int [1:30] 5 5 5 5 5 5 5 5 5 5 ...
##
   $ center
                : num 110
                : num 0.867
##
   $ std.dev
##
   $ nsigmas
                : num 3
   $ limits
                : num [1, 1:2] 109 111
     ..- attr(*, "dimnames")=List of 2
##
   $ violations:List of 2
   - attr(*, "class")= chr "qcc"
```

```
qcc(dados, type="R")
```



```
## List of 11
   $ call
                : language qcc(data = dados, type = "R")
   $ type
                : chr "R"
   $ data.name : chr "dados"
##
                : num [1:40, 1:5] 114 111 108 113 113 ...
##
   $ data
     ..- attr(*, "dimnames")=List of 2
##
   $ statistics: Named num [1:40] 3.79 0.712 2.043 3.644 3.495 ...
     ..- attr(*, "names")= chr [1:40] "1" "2" "3" "4" ...
##
               : int [1:40] 5 5 5 5 5 5 5 5 5 5 ...
##
   $ sizes
                : num 2.25
   $ center
                : num 0.966
##
   $ std.dev
   $ nsigmas
                : num 3
##
                : num [1, 1:2] 0 4.75
##
   $ limits
     ..- attr(*, "dimnames")=List of 2
##
   $ violations:List of 2
   - attr(*, "class")= chr "qcc"
```

```
qcc(dados, type="S")
```



```
## List of 11
   $ call
                : language qcc(data = dados, type = "S")
   $ type
                : chr "S"
   $ data.name : chr "dados"
##
                : num [1:40, 1:5] 114 111 108 113 113 ...
##
   $ data
     ..- attr(*, "dimnames")=List of 2
##
   $ statistics: Named num [1:40] 1.624 0.303 0.857 1.509 1.491 ...
     ..- attr(*, "names")= chr [1:40] "1" "2" "3" "4" ...
##
               : int [1:40] 5 5 5 5 5 5 5 5 5 5 ...
##
   $ sizes
               : num 0.936
   $ center
                : num 0.996
##
   $ std.dev
   $ nsigmas
                : num 3
##
                : num [1, 1:2] 0 1.96
##
   $ limits
     ..- attr(*, "dimnames")=List of 2
##
  $ violations:List of 2
   - attr(*, "class")= chr "qcc"
```

3.) Grafico da soma cumulativa

```
cusum(dados[1:32,])
```



```
## List of 14
                        : language cusum(data = dados[1:32, ])
    $ call
                        : chr "cusum"
    $ type
##
    $ data.name
                        : chr "dados[1:32, ]"
                        : num [1:32, 1:5] 114 111 108 113 113 ...
##
    $ data
     ..- attr(*, "dimnames")=List of 2
##
                        : Named num [1:32] 111 110 110 111 111 ...
     ..- attr(*, "names")= chr [1:32] "1" "2" "3" "4" ...
##
##
    $ sizes
                        : int [1:32] 5 5 5 5 5 5 5 5 5 5 5 ...
##
    $ center
                        : num 110
    $ std.dev
                        : num 0.882
                        : num [1:32] 0.596 0 0 0.341 1.36 ...
##
    $ pos
##
                        : num [1:32] 0 0 -0.988 0 0 ...
    $ neg
##
    $ head.start
                        : num O
    $ decision.interval: num 5
##
    $ se.shift
                        : num 1
                       :List of 2
    $ violations
    - attr(*, "class")= chr "cusum.qcc"
```

```
dm <- as.matrix(dados)</pre>
```

mask <- vMask.method4(data = dm, mu0 = mu1, sleep = "PressEnter")</pre>

CUSUM control chart and V-Mask on point (32, c32)

- 4.) CUMSUM tabular
- 5.) Mascara V
- 6.) Verificar a diferença na detecção de anomalias para as técnicas acima
- 7.) Estabelecer os Limites de Especificação
- 8.) Avaliar a capacidade do processo