Predicting Object Depth from Segmented RGB Image

Ahmed AlMutawa, Austin Anderson, Rohit Raje, John Stechschulte, Wade Wu

Θ = a * # pixels high a -> scalar conversion from pixels to degrees a ≈ Camera Field of View/Total Pixel Height For Kinect:

 $a_{vert} \approx 43^{\circ}/480$ pixels $a_{horiz} \approx 57^{\circ}/640$ pixels $d \approx h/a_{vert}^{*}$ # pixels high

From: https://msdn.microsoft.com/en-us/library/jj131033.aspx

Basic Features

- Num. pixels (and inverse sqrt)
- Pixel width (and inverse)
- Pixel height (and inverse)
- Object location (x and y)

Engineered Features

- Corner detection
- Sparse filtering
- Principal Component Analysis
- Hough Transform
- Water filling algorithm

1	Bias	
2	1/sqrt(# pixels)	
3	Width (dx)	
4	Height (dy)	
5	x-position	
6	y-position	
7	1/dx	
8	1/dy	
9	Number of corners	
10	PCA eig. 1	

Best and Worst Object Classes

Class	Test error (m)
'toilet paper'	0.14
'tea kettle'	0.15
'placemat'	0.19
'sink'	0.21
'paper towel'	0.24

Class	Test error (m)
'pipe'	11.25
'flower pot'	10.12
'classroom board'	8.44
'mail shelf'	7.21
'bicycle'	6.66

Observation Index

Conclusions and future work

- Some object classes outperformed the baseline
- One major surprise: effectiveness of y-position feature
- Learned as much about the training data as we did about the problem

- Incorporate segmentation
- Better data augmentation for improved training
- Tune preprocessing parameters for each object class