

7.2 Word Vectors

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

Representing Words

- To process meaning, we have to process the individual words in a sentence
- We need a representation of the words in a document that we cane input to models like neural networks
- Relational view of meaning: encode relations between words into their representations

One-Hot Encodings

- How is a word represented?
 - By the text string itself;
 - Or by an index into a vocabulary.

Couch	1	0	0	
Elephant	0	1	0	
Sofa	0	0	1	

- One-hot encoding:
 - Vocabulary size = V
 - Each word is represented by a vector of length V
 - All values in the vector are zero...
 - ...except the value corresponding to the index of the word in V.
- A sparse representation that doesn't allow us to compare words.

Word Representations

- Can we replace the one-hot encoding with a better word representation?
- The representation should capture various aspects of a word's semantics...

Desiderata for Word Representations: Synonyms and Antonyms

Desirata for Word Representations: Hypernyms, Hyponyms, Meronyms

Desirata for Word Representations: Similarity

Desirata for Word Representations: Associations & Semantic Fields

Semantic field/Topic

Desirata for Word Representations: Semantic Frames

Sam buys a book from Ling Ling sells a book to Sam

Desirata for Word Representations: Connotation

Vector Semantics

- Represent words as points in a multi-dimensional space (embeddings)
 - Different dimensions correspond to different aspects of meaning
 - Compose meaning of multiple words using arithmetic
- Distributional hypothesis
 - We know a word by the company it keeps (Firth 1957)
 - Learn a word's vector from the other words that occur near it (its context)

Term-Document Matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V			
battle	1	0	7	13	Word vector		
good	114	80	62	89			
fool	36	58	1	4			
wit	20	15	2	3			
bristol	Document vector	Counts from Shakespeare plays. Figure 6.3, from Chapter 6, Speech and Language Processing, 3 rd edition draft, Jurafsky & Martin (2019).					

Summary

- Many aspects of meaning can't be represented by a bag-of-words
- One-hot encodings and term-document matrices provide one way to represent words numerically
- Better representations would capture relations such as equivalence, opposites, parts of objects, categories, similarity, semantic frames
- The distributional hypothesis proposes that meaning can be learned from the context a word is used in
- Word embeddings make use of this hypothesis to provide better word representations