Time Series Analysis – MND a.s.

Dušan Fedorčák 09/2021

Background

- Ph.D. in computer science at VŠB-TU Ostrava
 - Neural networks & unsupervised self-organization
- Experienced in simulations
 - flood prediction system for MSK
 - traffic monitoring & prediction systems
- Experienced in computer graphics & scientific visualization
 - GIS related real-time 3D visualizations
- 5+ years in applied ML and artificial intelligence
 - Lead researcher in GoodAI general artificial intelligence
 - CTO in Neuron Soundware sound processing via Deep Learning
 - Lead ML in Merlon Intelligence Inc. natural language processing

Content

DAY 1

- Introduction
- Classical time series analysis
 - Decomposition of time series
 - ARIMA models
- Theoretical window
 - State space models generalization
 - Neural Networks & Recurrent NNs
 - Time series specifics
 - lunch break –
- Practical examples
 - Rainfall-runoff simulation toy example
 - Trampoline jumping classification
 - Local Weather Forecast regression

DAY 2

- Product Design & ML
 - Stories from the wild
- Practical Examples (in random order)
 - Exoplanets Hunting
 - Mobile Motion Sensing
 - lunch break -
 - Manufacturing Process Modeling
 - Financial distress prediction
 - Google Drive Folder with data
 - GitHub repository with example sources

Content

- Google Drive Folder with data
- GitHub repository with source codes

- Introduction
- Classical analysis
 - Univariate TS example decomposition, stationarity & ARIMA
- Theoretical window
 - Neural Networks & Recurrent Neural Networks
 - Time series specifics

Practical examples

- Rainfall-runoff simulation toy example, regression, Keras
- Trampoline jumping classification
- Human motion data coding session, classification, pre-training

- lunch break -

- Product Design & ML stories from the wild
- Exoplanet Hunting coding session, unbalanced data, data augmentation
- Financial Distress coding session, regression/classification
- Factory Process regression, missing data, custom loss

Time series – example data

Time series – example tasks

Time Series – classical terminology

Forecasting

Given the past and the present observation, what will the future look like?

Filtering

 Given the past and the present observation, how should I update my estimate of the true state of nature?

Smoothing

 Given a complete dataset, what can I infer about the true state of nature in the past?

Regression

Given a time series of two phenomena, what is the association between them?

Time Series – classical analysis & modeling

- Time Series Decomposition
 - Inflation, trend, seasonality, differencing
- ARIMA models
 - http://people.duke.edu/~rnau/411home.htm

State Space Models

- State Space Models
 - A dynamic system that evolves over time
 - Knowing the current state of the model is enough to predict the future
 - The true state of the system is **not directly observable**
- Model Description
 - o State
 - $\mathbf{x}_{t} \sim N(\mathbf{x}_{t}, P_{t})$
 - State Equation
 - $\mathbf{x}_{t} = \mathbf{F} \mathbf{x}_{t-1} + N(0, \mathbf{Q})$ sometimes without noise
 - Observation Equation
 - $y_t = Hx_t + N(0, R)$

Kalman Filter

- Evolve state
 - $x'_{t} = Fx_{t-1}$ $P'_{t} = FP_{t-1}F^{T} + Q$
- Integrate observation

$$\circ P_t = (I - K_t H) P'_t$$

- Kalman Gain
 - $\circ K_t = P'_t H^T (HP'_t H^T + R)^{-1}$
- ARIMA and Kalman Filter
 - ARIMA can be viewed as a state space model
 - ARIMA can be fitted with MLE via Kalman Filter
 - https://bookdown.org/rdpeng/timeseriesbook/maximum-likelihood-with-the-kalman-filter.html
 - https://towardsdatascience.com/the-kalman-filter-and-maximum-likelihood-9861666f6742

Hidden Markov Model

- Model Description
 - \circ HMM (λ) can be viewed as a state space model
 - Finite set of hidden states

•
$$\mathbf{Q} = \{q_1, q_2, ..., q_n\}, \ \boldsymbol{\pi} = \{\pi_1, \pi_2, ..., \pi_n\} - \text{init}$$

- **n** number of states (hyperparameter)
- Set of observations

$$\mathbf{O}_{i} = (o^{1}, o^{2}, o^{3}, ..., o^{T})$$

Transition probability matrix & emissions

■
$$A = (a_{00}, ..., a_{nn}), B = q_i \rightarrow 0$$

- Model Capabilities
 - \circ $P(O|\lambda)$ Give prob. of O being produced by λ forward-backward alg.
 - \circ $P(\mathbf{q}_1, ..., \mathbf{q}_t | \mathbf{O}, \lambda)$ Give most likely sequence of states for given \mathbf{O} Viterbi alg.
 - $\mathbf{O} \Rightarrow \lambda$ Model must be trainable with \mathbf{O} Baum-Welch alg.

Kalman Filter vs. Hidden Markov Model

Kalman Filter

- Continuous state
- Generic state & observation equation
- Linear dynamic system
- Fusion of sensor readings and controls
- ARMA models implementation

Hidden Markov Model

- Discrete set of states
- N-states hyperparameter
- Emission & Transition tables
- Speech recognition
- Time series segmentation

Neural networks

Connected Neurons

- Directed graph
- Dense connections
- Convolutions
- Recurrency
- Signal gates

Universal function approximator

- Trainable with data
- Backpropagation
- Deep vs. shallow architecture

$$y = s(\sum w_i x_i - \theta)$$

$$y = s(\Sigma w_i x_i - \theta) = s(w_1 x_1 + w_2 x_2 - \theta)$$

$$ax + by + c = 0$$
$$y = s(\sum w_{i}x_{i} - \theta) = s(w_{1}x_{1} + w_{2}x_{2} - \theta)$$

Machine

Neural networks – Backpropagation

Neural networks - Backpropagation

Machine

Learning College

Time Series with Neural Networks

Neural Networks

- How to express time domain
- How to prepare training data
- How to design the model
- How to train & test the model

How neural network fits?

Recurrent Neural Networks

RNN – Vanishing gradients

Long short-term memory – LSTM

RNN and sequence data

Forecasting – encoder & decoder

! testing set!

! testing set!

! testing set!

! testing set!

! testing set!

Feature Encoding – Seasonal dummy variables

Sun	0	0	0	0
Mon	1	0	0	0
Tue	0	1	0	0
Wed	0	0	1	0
Thu	0	0	0	1
Fri	0	0	0	0
Sat	0	0	0	0

- (hour of day, day of week, ...)
- Numerical variables
- One-hot encoding

https://medium.com/life-at-hopper/ai-in-travel-part-2-representing-cyclic-and-geographic-features-4ada33dd0b22 https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Feature Encoding – Seasonal dummy variables

- Circular encoding
- Positional embedding (transformers)

https://medium.com/life-at-hopper/ai-in-travel-part-2-representing-cyclic-and-geographic-features-4ada33dd0b22 https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Feature Encoding II

- Exchange for extra dimension
 - 1D Convolution & pooling
 - Short-Time Fourier Transform

Speech recognition

Time series prediction from textual data

Time series prediction from textual data

Pre-training with additional data

Transfering model & exposing feature layer

Fine-tuning with time series target data

Fine-tuning with time series target data

ML & Product Design

- ML should solve problems
 - Easily solvable by human ⇒ scale up & automate
 - \circ Not easily solvable by human \Rightarrow too complex or not sensitive enough
- Automation is a spectrum
 - Collaboration instead of full automation
 - No automation
 - Scored set of possible decisions
 - Narrowed set of decision to approve
 - Veto before automatic execution
 - Full automation
- Models are imperfect
 - Right evaluation metrics
 - Expectation control / Automation bias
- End-to-end models?
 - Explainability
 - Configurability

ML Tips & Tricks

Known your data

- Visualize everything you can
- Try to find patterns ⇒ become the model yourself
- Look for noisy labels / missing data
- Make sure your preprocessing is correct (especially vectorized code)

Start with simple models

- Build training & evaluation loop
- Choose simple architectures first ⇒ less room for errors
- Build baseline models for comparison ⇒ even simple heuristics are useful

Train iteratively

- \circ Train without inputs \Rightarrow yields another baseline model
- Overfit one batch ⇒ something is off if you can't get zero loss
- Overfit the training set as far as you can

Regularize

- Early stopping ⇒ best evaluation loss
- Make the model smaller ⇒ less space for overfitting
- Get more training data ⇒ more labels, data augmentation, pre-training

