

M The Oslo Modeling Language

- Server stacks (eg .NET) allow post-deployment configuration
 - But as server farms scale, manual configuration becomes problematic
 - Better to drive server configurations from a central repository
- M is a new modeling language for such configuration data
 - Ad hoc modeling languages remarkably successful in Unix/Linux world
 - M is in development (first "beta" Nov. 2008; most recent Nov. 2009)

Dynamic IT The Problem

Development Data
Architecture, Source
Code, etc.

Planning Data Requirements KPIs, SLAs, etc.

sharing between tools/runtimes in the application lifecycle

Operation Data Health, Policies, etc. KPIs, SLAs, etc.

ISV Data

Rules, Process Models, etc.

Dynamic IT Our Approach

AMBERPOINT

Planning Data

Requirements KPIs, SLAs, etc.

Development Data

Architecture, Source Code, etc.

Operation Data

Health, Policies, etc. KPIs, SLAs, etc.

ISV Data

Rules, Process Models, etc.

Tools/runtimes focus on experience/features (eg DSLs), data is shared in common models in SQL Server; M is language for typing and querying these models

Demo

- modules, functions, recursion (fact.m)
- types, entities, refinements (constraints.m)
- tagged unions, DSLs (WhileSimpler.m)
- collections, from-where-select, accumulate (types1.m and CauldronAccumulate.m)
- Types as predicates over values (typeful)
- Generating instances of types (inhabited)
 - Generating correct system configurations
 - Generating instances at runtime: enumerating multiple correct and incorrect system configurations

The Core of the M Language

- A value may be a general value (integer, text, boolean, null)
- Or a collection (an unordered list of values),
- Or an entity (a finite map from string labels to values)

```
    The expression
```

```
( from n in { 5, 4, 0, 9, 6, 7, 10}
where n < 5
select {Num=>n, Flag=>(n>0)} )
```

has the type

{Num:Integer; Flag:Logical;}*

and evaluates to

```
{{Num=>4,Flag=>true},
{Num=>0, Flag=>false}}
```


Interdependent Types and Expressions

- A **refinement** type *T* where *e* consists of the values of type *T* such that boolean expression *e* holds
- A **typecase** expression e in T returns a boolean to indicate whether the value of e belongs to type T
 - {x=>1, y=>2} in {x:Any;} returns true (due to subtyping)
- A **type ascription** e:T requires that e have type T
 - Verify statically if possible
 - Compile to (e in T)? e: throw "type error" if necessary

Primitive Types in D minor

 Named types (can be recursive)

X

type *X* : *T*;

Top type

Any

Scalar types

Integer32

Text

Logical

Collection types

{ T* }

Entity types (at least field /)

{ *I* : *T* }

Refinement types (for a pure e)

(T where e)

Some Derived Types

Empty type

Empty ≡ Any where false

Singleton type

 $\{e\}$ = Any where value==e

Null type

Null ≡ {null}

Union type

 $T \mid U \equiv \text{Any where}$ (value in $T \mid | \text{value in } U$)

Nullable type

Nullable $T \equiv T \mid \{\text{null}\}\$

Some More Derived Types

Intersection type

 $T \& U \equiv \text{Any where}$ (value in T & & value in U)

Negation type

- $!T \equiv Any where !(value in T)$
- Multi-field entity type

$$\{f_1:T_1;f_2:T_2\} \equiv \{f_1:T_1\} \& \{f_2:T_2\}$$

 Closed entity type (enforce eta)

closed $\{f_1:T_1; f_2:T_2\} \equiv \{f_1:T_1; f_2:T_2\}$ where value == $\{f_1 => value.f_1, f_2 => value.f_2\}$

Self type

Self(value) $U \equiv \text{Any where (value in } U)$

Type-checking

- Type assignment relation (E $\vdash e : T$)
 - if $E \vdash e : \{l : T\}$ then $\Gamma \vdash e . l : T$ (field selection)
 - if $E \vdash e : T$ and $E \vdash T <: U$ then $E \vdash e : U$ (subsumption)
 - if $E \vdash e : T$ and e pure then $E \vdash e : T$ where value == e (singleton)
 - This is just a specification of what a type-checker should do
- Type-checking algorithm by "bidirectional rules" (as e.g. in C#)
 - $E \vdash e \rightarrow T$ (type synthesis) and $E \vdash e \leftarrow T$ (type checking)
- Subtyping decided semantically, by external SMT prover
 - $E \vdash T <: U \text{ when Axioms } \models F[\mid E \mid] => F[\mid T \mid](x) => F[\mid U \mid](x)$

Purity

- D minor side-effects: non-termination and non-determinism
- The e in the type (T where e) has to be "pure"
 - Pure expressions have a (unique) normal form
- Checking expression purity:
 - $-f(e_1, ..., e_n)$ should terminate ("bad" uses of recursion disallowed)
 - e in T (and e: T) should terminate even when T is recursive (recursive types used with "in" need to be "contractive")
 - from x in e_1 let y = e_2 accumulate e_3 should converge (" $\lambda x y$. e_3 " needs to be associative and commutative)

; M entities

First-order theories

- Semantics given with respect to a particular logical model
- We use SMT-LIB (+Z3 extensions) to axiomatize this model
- Sorted first-order logic +

(VMap (array String Value)))

Logical model

The semantic domain of values

Axiomatization of function and predicate symbols

Axiomatizing collections

Finiteness of bags

```
:assumption (forall (a (array Value Int))
  (iff (Finite a) (= (default a) 0)))
```

Only positive indices in bags

```
:assumption (forall (a (array Value Int))
  (iff (Positive a) (forall (v Value) (>= (select a v) 0))
```

Collections are finite bags with positive indices

Collection membership

```
:assumption (forall (v Value) (a (array Value Int))
  (iff (v_mem v (C a)) (> (select a v) 0)))
```

Semantics

Semantics of types:

```
F[| T |](x) is a FOL formula where x ranges over sort Value

F[| Any |](x) = true

F[| { T^* } |](x) = In_C(x) \wedge (forall (y Value) v_mem y x => F[| T |](y))

F[| T where e |](x) = F[| T |](x) \wedge let value = x in [| e |] = v_tt ...
```

- Logical soundness: If $E \vdash e : T$ then $F[\mid E \mid] => F[\mid T \mid]([\mid e \mid])$
- Semantics of pure expressions: [| e |] is a FOL term

```
[|e_1 + e_2|] = O_Sum [|e_1|] [|e_2|]

[|e in T|] = if F[|T|]([|e|]) then v_tt else v_ff ...
```

- Full abstraction: If e, e' are pure then $e \rightarrow v + e'$ iff [|e|] = [|e'|]; in particular $e \rightarrow v + e'$ iff [|e|] = v

THE END