九州大学大学院数理学府 平成17年度修士課程入学試験 数学専門科目問題(数学コース)

- 注意 問題 [1][2][3][4][5][6][7][8][9] の中から 2 題を選択して解答せよ.
 - 以下 N は自然数の全体、 R は実数の全体、 C は複素数の全体を表す.
- [1] 5文字 $\{1,2,3,4,5\}$ 上の置換全体からなる 5 次対称群 S_5 を考える.
 - (1) 任意の群 G に対してその中心を $Z(G) = \{z \in G | xz = zx, \forall x \in G\}$ と定義する. Z(G) は G の正規部分群であることを示せ.
 - (2) S_5 の中心 $Z(S_5)$ を求めよ.
 - (3) S_5 の位数 2 の元の個数を求めよ.
 - (4) S_5 の位数 3 の元の個数を求めよ. また,位数 3 の部分群の個数を求めよ.
 - (5) S_5 の位数 6 の部分群の個数を求めよ.
- [2] X を有限集合とし、A を X から実数体 \mathbb{R} への写像全体のなす集合とする.
 - (1) $f, g \in A$ に対して $f + g, fg \in A$ を

$$(f+g)(x) = f(x) + g(x),$$

$$(fg)(x) = f(x)g(x)$$

で定義すると、 A は単位元をもつ可換環になることを示せ.

(2) $y \in X$ に対し、 $\chi_y \in A$ を

$$\chi_y(x) = \begin{cases} 1, & x = y, \\ 0, & x \neq y \end{cases}$$

で定義される写像とする。 \mathfrak{a} を、A 自身とは一致しない A のイデアルとする。このとき、 $f(z) \neq 0$ を満たす $f \in \mathfrak{a}$ と $z \in X$ が存在するならば、 $\chi_z \in \mathfrak{a}$ となることを示せ。

(3) Aの任意の極大イデアルは、ある $z \in X$ によって

$$\{ f \in A \mid f(z) = 0 \}$$

と表されることを示せ.

- [3] 以下では \mathbb{F}_3 を 3 元体とし、そのある代数閉包を \mathbb{F}_3 とする.
 - (1) 3元体 \mathbb{F}_3 上のモニックな 2 次既約多項式をすべて求めよ.
 - (2) (1) で求めた多項式の内の一つを選び、その \mathbb{F}_3 における根を α とする. このとき、 $\frac{1}{2\alpha+1}$ を α の整式として表せ.
 - (3) \mathbb{F}_3 の 0 以外の元がつくる乗法群を \mathbb{F}_3^{\times} とする. (1) で求めた多項式の根が \mathbb{F}_3^{\times} の中で生成する部分群の位数をそれぞれ求めよ.
- [4] 閉区間 [0,1] を I と表す. 正方形 $I \times I$ に対して, 関係

$$(0,t) \sim (1,t)$$
 $(\forall t \in I),$
 $(s,0) \sim (s,1)$ $(\forall s \in I)$

で生成される同値関係 \sim を考え, $X=(I\times I)/\sim$ をその同値関係による商空間(等化空間)とする. (すなわち,正方形の対辺 $\{0\}\times I$ と $\{1\}\times I$, $I\times \{0\}$ と $I\times \{1\}$ を,それぞれ向きを合わせて同一視して得られる商空間を X とする.)

- (1) X はコンパクトであることを示せ.
- (2) $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ を単位円周としたとき、積空間 $T^2 = S^1 \times S^1$ はハウスドルフであることを示せ、
- (3) 写像 $f: I \times I \to T^2$ を,

$$f(s,t) = ((\cos 2\pi s, \sin 2\pi s), (\cos 2\pi t, \sin 2\pi t))$$

で定める. このとき、連続写像 $F: X \to T^2$ で、 $f = F \circ \pi$ となるものが一意的に存在することを示せ、ここで、 $\pi: I \times I \to X$ は自然な射影(商写像、等化写像)である.

- (4) $F: X \to T^2$ は同相写像となることを示せ.
- (5) $I \times I$ に対して、関係

$$(0,t) \sim' (1,1-t)$$
 $(\forall t \in I),$
 $(s,0) \sim' (1-s,1)$ $(\forall s \in I)$

によって生成される同値関係 \sim ' を新たに考え, $Y = (I \times I)/\sim$ ' を商空間とする. $X \succeq Y$ は同相となるかを理由と共に答えよ.