Module 7.3: Biased Coins and Bernoulli Trials MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Biased coins, Bernoulli trials

A fair coin corresponds to a uniform probability space with two outcomes, heads (H) and tails (T). Each of the outcomes has probability 1/2.

A **biased** coin corresponds (in general) to a **non-uniform** space with the same outcomes, H and T, that is parameterized by $Pr[H] = p \in [0, 1]$. It follows that Pr[T] = 1 - p.

The biased coin with parameter p is commonly invoked under a different name. A **Bernoulli trial** corresponds to a probability space with two outcomes, conventionally called "success" and "failure" that is parameterized by a probability of success which is p. The probability of failure is then 1-p.

Therefore flipping a biased coin is a Bernoulli trial in which heads is conventionally designated as success.

Biased coin flipped twice I

Problem. A biased coin has a probability 1/3 of showing heads. We flip this coin twice. What is the probability that we obtain one tails and one heads (in either order)?

Answer. There are four outcomes HH, HT, TH, TT. However, they are **not** equally likely. So, what is the probability distribution?

Consider an urn holding three identical marbles. On one of them we write H and on the others T_1 and T_2 . Assuming that each marble is equally likely to be extracted, sampling one marble corresponds to flipping our biased coin.

Now consider **two** such urns, U and U'. Sampling a marble from U then one from U' corresponds to flipping our biased coin **twice**.

Biased coin flipped twice II

Answer (continued). We now have $3 \cdot 3 = 9$ outcomes:

$$HH, HT_1, HT_2, T_1H, \dots T_1T_2, T_2H, \dots$$

Extractions from each urn happen in the same way so these 9 outcomes are **equally likely**. We have a **uniform space**.

The event of interest (a heads and a tails, in some order) is $\{HT_1, HT_2, T_1H, T_2H\}$.

That's 4 outcomes out of a total of 9, so its probability is 4/9.

Random permutations

Distinct objects a_1, \ldots, a_n . A **random permutation** of a_1, \ldots, a_n is an element of the **uniform** probability space whose outcomes are all the permutations. Each outcome has probability 1/n!.

Problem. Let $i, j \in [1..n]$ (not necessarily distinct). Calculate the probability that a_i occurs in position j in a random permutation.

Answer. Let E_{ij} be the event consisting of all outcomes in which a_i occurs in position j. The probability we want is $|E_{ij}|/n!$.

A permutation in E_{ij} can be constructed in two steps: (1) put a_i in position j (1 way) then (2) put any permutation of $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ in the rest of the positions ((n-1)!) ways).

By the multiplication rule $|E_{ij}| = 1 \cdot (n-1)! = (n-1)!$.

The answer is (n-1)!/n! = 1/n.

