Hem 830-11-15 NAS 1:60:4/39

ARDY O & HAL

NASA Technical Paper 1139

COMPLETED ORIGINAL

Effects of Mass Addition on Blunt-Body Boundary-Layer Transition and Heat Transfer

George E. Kaattari

JANUARY 1978

(69)

NASA Technical Paper 1139

Effects of Mass Addition on Blunt-Body Boundary-Layer Transition and Heat Transfer

George E. Kaattari Ames Research Center Moffett Field, California

Scientific and Technical Information Office

SYMBOLS

- a_s area-averaged mass-flow coefficient on porous model surface
- A cross section area of porosity probe tube
- b_S area-averaged function of local mass-flow coefficient and surface pressure on porous model surface
- B stagnation point mass-flow heating rate parameter, $\frac{\dot{m}\Delta H}{\dot{q}_0}$
- B' mass-flow heating rate parameter, reference 9
- $\underline{\underline{B}}$ area-averaged mass-flow heating rate parameter, $\frac{\dot{\underline{m}}\Delta H}{\dot{\underline{q}}_{os}}$
- c_s local mass-flow coefficient on porous model surface
- c_f skin friction coefficient
- c specific heat of air or calorimeter slug
- k roughness height
- m local mass-flow addition rate
- m free-stream mass-flow rate
- m area-averaged mass-flow addition rate to a given location, s
- $\underline{\underline{m}}^*$ mass-flow rate ratio, $\frac{\underline{\dot{m}}}{\underline{\dot{m}}_{\infty}}$
- P pressure
- \dot{q}_{o} reference heat transfer coefficient (stagnation point value on hemisphere model at $\dot{m} = 0$)
- \dot{q}_{os} local heat transfer coefficient at s with $\dot{\underline{m}} = 0$
- $\frac{\dot{q}}{os}$ area-averaged heat transfer coefficient up to location s on model surface with \dot{m} = 0
- \dot{q}_{s} , \dot{q} local heat transfer coefficient at s with $\dot{m} \neq 0$
- Re Reynolds number
- r normal distance to point on model surface from axis of symmetry

- s radial distance from model apex (stagnation point) measured along model surface
- t time, sec
- T temperature, K
- T' turbulence intensity, reference 8
- ΔH heat-transfer driving potential, $c_p(T_{tt} T_w)$
- θ momentum thickness
- μ viscosity of air
- p air density or calorimeter density
- τ calorimeter slug lengting
- azimuthal angle on model surface
- ψ stagnation point heating rate ratio, $\frac{\dot{q}}{\dot{q}_0}$
- ψ' function of B', reference 9
- ψ heating rate ratio, $\frac{\dot{q}_s}{\dot{q}_{o_s}}$

Subscripts:

- D model diameter
- ex external surface of model
- in internal surface of model
- lam laminar
- st stagnation point
- trns transition point on model surface
- tt tunnel total condition
- turb turbulent
- w model wall or surface
- free-stream condition

EFFECTS OF MASS ADDITION ON BLUNT-BODY BOUNDARY-LAYER

TRANSITION AND HEAT TRANSFER

George E. Kaattari

Ames Research Center

SUMMARY

Heat-transfer data were obtained on blunt models at Mach number 7.32 and free-stream Reynolds numbers in the range of 0.6×10^6 to 5.2×10^6 to investigate the effect of ablation on boundary-layer transition. Ablation was simulated by mass addition of air through the porous surface of the models. The ratio of the mass addition rate to the free-stream mass flow was varied from 0 to 0.5. The models were 17.8 cm in diameter and consisted of hemispheres, spherical segments, and blunted 60° cones.

The data were compared with various applicable boundary-layer codes in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes.

INTRODUCTION

Vehicles entering planetary atmospheres at high speeds are enveloped by high-temperature shock layers. At sufficiently high speeds, certain surface materials may ablate from the vehicle in gaseous form and protect the vehicle at the expense of surface material mass loss. The transferred heat from the high-temperature shock envelope is expended by converting a thin layer of the vehicle surface into hot ablative products that are subsequently carried away by the external flow field. Problems then arise in predicting the effect of ablation of heat transfer (particularly in the turbulent flow regime) and in predicting the effect of ablation on the transition from laminar to turbulent flow.

Much experimental and theoretical study has been devoted to predicting laminar heat transfer in the presence of ablation for both blunt and slender configurations. These studies (refs. 1-5) indicate a reduction in heat transfer and have produced correlations and theory relating the heat transfer decrease as a function of the ablation rate. Along with ablation, the effects of surface roughness and free-stream turbulence on transitional and turbulent flow have been studied (refs. 6-9). Some results of these investigations are compared with the results of the present investigation.

Studies of heat transfer in the literature are largely restricted to low ablation rates. The present investigation involves massive rates, approaching those anticipated for Jovian atmosphere entry. The primary purpose, along

with providing boundary-layer transition data, is to determine to what extent massive ablation affects turbulent heat transfer rates. This aspect of ablation is important both in planetary exploration and in military application since, if the heating rate is significantly increased, nonuniform heat shield erosion and attendant thermal stress and aerodynamic stability problems may arise.

EXPERIMENTAL CONSIDERATIONS

Models

The models used consisted of three 6.35-mm-thick porous, stainless steel headers in the forms of a hemisphere, a 60° blunt cone, and a spherical segment, as shown in figure 1. The headers were made interchangeable to a steel pressure chamber to which air was led through piping. The assembled header. chamber, and support system are shown in figure 2. Each header was provided with 15 to 16 calorimeters. A calorimeter (fig. 1) consisted of a 1.6-mmdiameter, 1.27-mm-long copper slug tightly fitted into a cavity at the end of a 2.4-mm-diameter, 13.7-mm-long insulating dowel. A chromel-constantan junction was peened to the base of the slug and the wire leads passed through the dowel to a male plug. Each calorimeter was press-fitted to the header hole so that the dowel and slug surface were flush to the header external surface. Each header was also provided with five 1.6-mm stainless steel tube pressure taps. Figure 1 gives the location of the calorimeters and pressure taps for each header. Although the figure indicates spacing of the calorimeters in a single radial plane, they were actually arranged in a spiral 360° pattern to reduce "downwind" interference effects. Not shown in figure 1 are thermocouples that were interdigitated with the calorimeter locations and spotted to the internal surface of the header. These thermocouples monitored the entering air temperature during the tests. The pressure taps were located in a single radial plane as indicated.

The models were intended to have uniform porosity. No attempt was made to "tailor" header porosity to simulate ablated mass addition rate distribution of actual atmospheric entry. Pretest porosity surveys of the headers indicated the presence of manufacturing imperfections resulting in deviation from uniform porosity. Figure 3 shows a plot of representative mass-flow rate variations with radial distance s determined from the porosity surveys. Except for deficiencies near the stagnation region existing for the hemispherical models and the conical models (not shown), the porosity deviation was generally within ±10% of the mean value.

Initial tests were made to check out the systems and to determine the feasibility of the thermocouple installation. Some model degradation occurred during these initial tests. The hemispherical and spherical segment models were refurbished, and the conical model was replaced since the original model proved to have a nearly impervious nose section. The refurbishing and replacement resulted in models with somewhat different porosity distributions. The altered models were tested to a higher mass-flow rate range in the second

phase of the investigation. To distinguish the results presented herein, the models are referred to by phase number, that is, by model 1 or model 2.

Test Conditions and Procedures

The tests were performed in the Ames 3.5-Foot Hypersonic Wind Tunnel at Mach number 7.32. A description of the facility and its operations appears in reference 11. The Reynolds number, based on model diameter, ranged from 0.6×10^6 to 5.2×10^6 and the temperature from 660 to 880 K.

A test run established a predetermined flow rate of air through the model at about 27° C, the flow being gaged with a swirlmeter. The model was then inserted into the tunnel windstream for about 1-1/2 sec, during which interval a shadowgraph picture of the model was taken and the time-temperature history of the model calorimeters was recorded. The pressure transducers reached equilibrium well within the insertion time. The mass-flow rate ratios with respect to free-stream flow varied from 0.0 to a maximum value of about 0.5 for cone model 2 at the lower Reynolds number range.

Data Reduction

Mass-addition rate distribution—Pretest porosity surveys of the model headers were required to determine mass-addition flow rates as a function of radial location, s. This was accomplished by pressurizing the chamber and holding to the external header surface a 6.4-mm-diameter "sniffer" tube attached to a low-capacity floatmeter. Floatmeter readings were taken at 6.4-mm intervals in the radial direction and at 5° intervals in the azimuthal direction. The local conductance $\mathbf{c_g}$ at each location on the header surface was then evaluated with the equation

$$\dot{m}_{e} = c_{s}A(P_{in}^{2} - P_{ex}^{2}) \tag{1}$$

where

m = flow rate measured by the floatmeter

A = area of the "sniffer" tube

P = chamber pressure

P = external (atmosphere) pressure

The local conductances were area-integrated to determine the mean conductance. This conductance coefficient was then checked with a high-capacity venturi meter by passing air through the header. The resulting flow rate was compared with that calculated by equation (1) using the mean conductance and total header area. The comparison gave satisfactory agreement for a wide

range of chamber pressures. Proportional adjustments to the local values of $c_{\rm s}$ were made to bring the calculated flow rate into exact agreement with the venturi-meter measurements.

The mass-addition flow rate distribution used in this investigation was defined as the area-integrated unit mass flow to the radial position s of interest. The mass flow rate determinations for the test runs involved a variable external pressure $P_{\mbox{ex}}$ as well as the variable conductance coefficient $c_{\mbox{g}}$. These were taken into account by equation (2).

$$\frac{\dot{\mathbf{m}}}{\mathbf{s}} = \mathbf{a}_{\mathbf{s}} \mathbf{P}_{\mathbf{in}}^2 - \mathbf{b}_{\mathbf{s}} \mathbf{P}_{\mathbf{tt}}^2 \tag{2}$$

where P_{tt} is the tunnel total pressure. The coefficients a_s and b_s were tabulated as functions of radial location s, dependent on the local conductance of each model and the external pressure suitably related to the tunnel total pressure. Detailed derivation of equation (2) is given in the appendix.

The mass-flow rate distributions for all test runs of the investigation, calculated with equation (2), are presented in tables 1 to 4.

Heating rate distribution— The heat transfer rates were calculated from calorimeter temperature versus time transients recorded while the model was in the tunnel stream. The usual formula was applied, namely

$$\dot{q}_s = \rho c_p \tau \left(\frac{dT}{dt} \right)$$
 (3)

Because of slight misalignments in positioning the calorimeter surfaces flush to the external header surface, repeatable scatter in the heat transfer rates was noted. The magnitude of the scatter was determined by comparing the no-flow results of the present tests with unpublished test results of identically proportioned, solid thin-skin models tested in the same tunnel and flow conditions. Correction factors were determined for each calorimeter such that the ablation model results at the condition of no-flow were made to agree with those of the solid thin-skin models.

Transition location— The tested models had a decreasing heating rate distribution with distance s from the stagnation point at the lower Reynolds numbers and at near-zero mass addition rates. This distribution is characteristic of laminar heating for the model shapes considered. The transition from laminar to turbulent flow at certain increased mass addition rates was made evident by sudden increases in heating rates occurring beyond a definite location s. This location or transition point \mathbf{s}_{trns} in the present investigation was defined as the last location beyond which point a reversal to an increased heating rate occurred. The transition point is evident in figures 4(a)-(e). The transition point and other significant features of the heating rate distributions are labeled in figure 4(c) where they are particularly well defined.

RESULTS AND DISCUSSION

Experiment

The heat-transfer distribution results for the range of variables test are presented in figures 4 to 9 in the form of normalized heat-transfer coefficients plotted as a function of distance s from the stagnation point location of the models. A nominal mass addition rate ratio parameter $\underline{\mathbf{m}}^{\bigstar}$ is associated with each curve of the figures. The test numbers and pertinent flow variables are also indicated. The reference heat-transfer coefficient \dot{q}_0 is the theoretical stagnation point value for a 17.8-cm-diameter hemisphere with no mass addition at the test conditions of each run.

Table 1 contains tabulations of the mass addition flow rate distributions \underline{m} as a function of s for each run presented in figures 4 to 9. The value of the free-stream mass-flow rate \underline{m}_{∞} of each run is also listed for convenience in determining the local mass addition flow rate ratio $(\underline{m}^* = \underline{m}/\underline{m}_{\infty})$ if desired.

Hemispherical models— The results for hemispherical model 1 are presented in figure 4. The mass addition initially decreased the level of heating over the entire model surface with increasing \underline{m}^* and indicated the presence of a laminar boundary layer. Then, with further increases in \underline{m}^* , a transition to a turbulent boundary layer occurred, as indicated by a rapid increase in beating rates beginning at definite locations s as previously described (at s = 2.5 cm in fig. 4(a) and at s = 5.8 cm in fig. 4(c)). The transition location shifted progressively to lower values of s with increasing values of \underline{m}^* , as is particularly evident from figures 4(c) and 4(e). Continued increases in \underline{m}^* ultimately decreased the heating rates, as is shown in figure 4(d). Note that the heating rates at, and near, the stagnation point s = 0 are relatively insensitive to \underline{m}^* . This phenomenon was also noted in a similar investigation of a hemisphere reported in reference 1.

The heating rate distributions for hemispherical model 2 are presented in figure 5. Most of the data were taken at higher mass addition flow rate ratios \underline{m}^* than with model 1. Tests with model 2 were also run at a lower Reynolds number (0.5×10^6) . The mass addition rate distribution of the two models (tables 1 and 2) differs somewhat, model 2 being less permeable to flow near the stagnation point. Model 2 also had a local flow rate irregularity at $s\approx 1.3$ cm, which caused a conspicuous perturbation in the heating rate in that vicinity. The transition point movement with increasing \underline{m}^* is apparent in figure 5(e).

Spherical segment models— The results for the spherical segment models are presented in figure 6. The effect of small negative mass addition rates, shown in the data of figures 6(a) and 6(c), causes large increases in heating rates, undoubtedly due to partial inspiration of the oncoming hot airstream. Positive values of mass addition affected the heat transfer in a similar manner as that noted for the hemispherical models. In the case of the spherical model, however, no progressive movement toward the stagnation region

occurred at the lowest Reynolds numbers (fig. 6(a)) and the transition location became established at s = 3.3 cm and remained fixed for values of m* from 0.018 to 0.079. A perceptible shift of the transition point from s = 3.6 cm to s = 2.5 cm occurs in the range of m* presented in the intermediate Reynolds number range (fig. 6(b)). The largest Reynolds number data (fig. 6(c)) exhibit the same behavior as those of figure 6b; however, calorimeter malfunction precluded definite fixes for the transition location. The large increase in heating rate in the stagnation regions at Reynolds number 4.93×10^6 with $m^* = 0.004$ (round symbols, fig. 6(c)) was probably due to combined effects of mass addition and tunnel free-stream turbulence since, at this Reynolds number, enhanced heating rates were also found at $m^* = 0$ in preliminary tests of a thin-skin nonporous version of the spherical segment model (dashed-line curve). The spherical segment model did not exhibit the stagnation point heating rate insensitivity to mass addition to the degree noted for the hemispherical models.

The heating rate distributions for the spherical segment model 2 are presented in figure 7. Model 2 generally exhibited higher heating rates near the stagnation point than did model 1 under similar flow conditions. The difference in heating rates was probably due to differences in the mass addition rate distributions between the models (tables 2 and 4). Model 2 had a somewhat irregular mass flow distribution, with minimum values near s=0. Model 1 had a nearly constant mass flow distribution over the entire model surface. The nonuniform mass addition rate distribution of model 2 may have caused its somewhat earlier transition to turbulent flow.

Conical models— The test results for conical model 1 are presented in figure 8. The effects of mass addition on the heating rate distribution followed the pattern of the hemispherical models. The transition point moved forward (towards s=0) with increasing values of \underline{m}^* (figs. 8(a), 8(c), and 8(e)). Large heating rate increases resulted when transition—to—turbulent flow was attained at the larger Reynolds numbers (fig. 8(c), run 63Cl and fig. 8(e), run 70Cl). The range of s which was relatively impervious to flow is noted (0 < s < 3.4) in figure 8. However, there is a small effect of mass "leakage" in this region which, at the highest Reynolds number (fig 8(e)), was sufficient to cause early transition to turbulent flow (runs 71Cl and 73Cl).

The heating rate distributions for cone model 2 are presented in figure 9. Comparison of the data between models 1 and 2 at approximately the same flow conditions (run 45Cl and 42C2) indicates turbulent flow for model 2 and transitional flow for model 1. The differences in heat transfer rates between the models must then be due to gross differences in mass addition rate distributions (tables 5 and 6). Model 1 had an nearly impervious nose section; model 2 was porous over the entire surface. Table I indicates, however, that the mass flow rate distribution for model 2 varied in an irregular manner. A particularly "high spot" occurred at s = 1.27 cm. This is reflected in the heating rate data of figure 9 by a substantially reduced heating rate at this location. It shoul be clarified that the irregular mass flow distribution of model 2 was in respect to azimuthal location. The radial or s-wise distribution was fairly uniform upstream of each calorimeter location; thus, "high

spots" of mass addition were only apparent locally and were not instrumental in promoting early flow transition.

Correlations

The results of the investigation were examined and attempts were made to correlate the results. Limited comparisons were made with the results of other investigations.

Laminar heating rates— A semiempirical method for correlating the effect of mass addition on laminar heat transfer distribution is described and compared with a more sophisticated method and with experimental results of the present investigation.

The effect of mass addition on stagnation point heating (ref. 2) is generally well predicted for laminar flow by

$$\psi = \frac{\dot{q}_{s}}{\dot{q}_{o}}$$

$$= 1 - 0.72B + 0.13B^{2}$$
(4)

The term ψ is the ratio of the heat transfer coefficient \dot{q}_8 at the stagnation point in the presence of mass addition with respect to the heat transfer coefficient \dot{q}_0 with no mass addition. The independent variable $B = \dot{m}\Delta H/\dot{q}_0$ is the mass addition parameter. Equation (4) was found to apply to locations other than the stagnation point when the term ψ was redefined as $\psi = \dot{q}_0/\dot{q}_0$, or the ratio of the heat transfer coefficient at location s in the presence of mass addition with respect to the coefficient at the same location with no mass addition. The mass addition parameter B is modified to $B = \dot{m}\Delta H/\dot{q}_{OS}$. The term \dot{m} is the area-averaged mass-addition rate to the location s and s is the area-averaged, inverse heat transfer coefficient (no mass addition) to the same location

$$\dot{q}_{os}^{-1} = \frac{\int_{o}^{s} r \frac{ds}{\dot{q}_{os}}}{\int_{o}^{s} r ds}$$
(5)

Equation (4) in the modified form was tested for the hemispherical model by correlating surface heating rates generated with the boundary-layer code reported in reference 5. The results are shown in figure 10(a) for various mass addition rate distributions. The agreement is considered good. Some small second-order deviations from perfect agreement are apparent.

Experimentally determined surface heating data for the hemispherical models were similarly correlated with equation (4). The results are shown in figure ± 0 (b). Note that the conspicuous perturbations in the heat transfer coefficients of model 2 at s ≈ 1.7 cm (shown previously in fig. 5) do not impair the correlation of figure 10(b) (solid symbols).

The correlation of the heating data over the spherical segment model surfaces with modified equation (4) is shown in figure 10(c). Generally fair agreement is indicated except for the data of run 97SS2.

The data of conical model 1 (fig. 10(d)) correlates well, with the exception of some data points of run 45C° and an isolated data point of run 63Cl. Only the data of model 1 were considered since most of the model 2 data were taken at high mass-addition rates where transition occurred close to the stagnation point.

No effect of Reynolds number was apparent in the correlations of the data of figures 10.

Anomalous stagnation point heating— In the experimental results, the heating rates at the stagnation point were relatively insensitive to mass addition rates. This fact was most evident for the hemispherical model data. In reference 1, similar results were noted for a hemispherical model tested at Mach number 5 with nitrogen gas for mass addition. The results of reference 1 and the present data are compared in figure 11(a). The free-stream Reynolds number based on model diameter is closely matched. Statistically, the present results indicate less effect of mass addition than those of reference 1, although the results overlap at Reynolds number 5.2×10⁶. No consistent effect of free-stream Reynolds number is evident in figure 11(a) in the data of reference 1 or of the present investigation.

The effect of mass addition on stagnation point heating for the spherical segment model is shown in figure 11(b). The data indicate that the heat transfer rates are reduced significantly compared to those for the hemispherical model. The data tend to approach the lominar distribution, but nevertheless are still far above theoretical expectations at large injection rates.

The effect of mass addition on the stagnation point heating of the conical models is not well documented. Model 1 was impervious to mass addition at the stagnation point and only three test runs performed in the mass addition range, 0 < \underline{B} < 3, with conical model 2. These runs gave values of \dot{q}/\dot{q}_{0} ranging from 1.01 to 0.95, indicating the least effect of mass addition on the stagnation point heating among the three configurations tested.

The apparent configuration effect on the stagnation point heating indicated by the present data is probably a scale effect due to nose radius, which primarily affects the stagnation point velocity gradient.

High heating rates (above laminar) at the stagnation point can be caused by free-stream turbulence (ref. 6). The difference in the two sets of data in figure 11(a) may then be ascribed to the turbulence levels in the facilities used. A peculiarity of the heating rate distribution immediately downstream of the stagnation point occurs in the present data and is particularly evident for the hemispherical models in the ψ - B coordinate plots of figure 12. The data of the indicated runs do not correlate with the predicted laminar (dash line) curve, but plot on a series of parallel curves. Apparently, the enhancement due to turbulence at the stagnation point does

not persist downstream, and the flow tends to be laminar-like up to the point where transition ultimately occurs.

Boundary-layer transition—Gaseous mase addition from a body surface forms a layer that interfaces with the external flow. At small mass addition rates, the layer is this and the interface is stable. When mass addition is increased, the layer thickens and, ultimately, the interface becomes unstable. Turbulent mixing with the external flow ensues with concomitant increase in heat transfer to the body surface. The beginning of instability, or transition, was evident in the data previously described where a succent increase in heating rates occurred with increased mass addition. The problem of predicting the occurrence of transition as affected by mass addition is complicated by other contributing factors. Two significant parameters have received experimental and theoretical study (refs. 6-9) and are discussed in the light of the present investigation.

Effect of free-stream turbulence: While free-stream turbulence was not an experimental variable in this investigation, it is an important factor in comparing data from different facilities. A correlation between computed transition Reynolds numbers utilizing the test conditions and tunnel turbulence level T of the present investigation was found by Mr. Wilcox of DCW Industries and is presented in reference 8. This theoretically based correlation relates the boundary-layer edge Reynolds number to the local flow rate momentum thickness Reynolds number at the transition location of the hemispherical models by

$$\frac{\text{Re}_{\text{trns}}}{43000} = 1 + 41 \exp\left(-\frac{13}{12} \frac{\text{m}\theta_{\text{trns}}}{\mu \text{w}}\right)$$
 (6)

Experimental transition point Reynolds numbers for the hemispherical models are shown in figure 13. The data are represented by sets of two points. The lower point of each set indicates incipient transition. The upper point (with arrowhead) represents completed transition. The data sets bracket the theoretical correlation curve at all Reynolds numbers. However, in general, the experimental values indicate earlier transition than is predicted, particularly at the lower Reynolds numbers. The relatively poor correlation at the lower Reynolds numbers (lower surface pressures) may possibly be attributed to "mass-flow roughness" or minute jetting action, which tends to be suppressed at the higher Reynolds numbers.

Effect of surface roughness: A degree of surface roughness existed in the models of the present investigation because of the permeable, porous structure necessary to permit mass flow through the surface. A photomicrograph of the hemispherical model surface section (fig. 14) %hows a fairly consistent surface texture in terms of "valley-to-peak" height. This dimension was taken as the roughness parameter k of the model. The experimental transition Reynolds number based on momentum thickness was compared with those given by the correlation relationship of reference 9, where combined roughness and mass addition rates are taken into account

$$Re_{\theta_{trns}} \left(\frac{1}{\psi'} \frac{k}{v_{trns}} \right)^{0.7} = 215$$
 (7)

where

$$\psi' = \left[\frac{B'}{10} + \left(1 + \frac{B'}{4} \right) \frac{\rho_e}{\rho_v} \right]$$

Qualifications for application of the above correlation relationship are stated in reference 9: "A computed value of 255 must be reached or exceeded at the sonic point location; if this condition is satisfied, the transition zone is predicted to physically begin at the surface point where this parameter attains a value of 215. If predicted to occur, the transition zone will always be located in the subsonic flow region." The correlation relationship (eq. (7)) was tested with the hemispherical model data. The results are shown in figure 15. The data group labeled Reg < 255 and two data points with transition occurring beyond the sonic point do not meet the qualifications quoted above and also do not correlate. The remaining data meet the qualifications and are in fair accord with the indicated PANT correlation curve.

Turbulent heating rates— The ψ — \underline{B} curves of figures 10(a) through 10(d), discussed previously, relate the heating rate in the presence of mass addition with reference to a no-mass-addition laminar heating rate as a function of the mass flow rate parameter. Satisfactory correlation of the experimental results over the model surfaces was obtained at low mass-addition rates. Logically, the effect of mass-addition in the cases where turbulent heating is predominant should be measured with respect to a no-mass-addition turbulent heating rate reference. A correlation of the data on this premise was made and is described in the following paragraph.

Turbulent flow factor: The procedure for correlating the turbulent heating rate data of this investigation was simply to multiply the laminar based coordinates $\underline{\psi}$ and \underline{B} by the factor $q_0/q_{0\text{turb}}$, thus shifting them to a turbulent heating rate reference. Numerical values for the factor were obtained by applying Reynolds analogy (proportionality) between heat and skin friction coefficients

$$\frac{c_{\text{flam}}}{c_{\text{furb}}} = \frac{1.328 \times \text{Re}^{-0.5}}{0.072 \times \text{Re}^{-0.2}} = \frac{q_{\text{o}}}{q_{\text{oturb}}} = \frac{18.44}{\text{Re}^{0.3}}$$
(8)

The numerical values for the skin friction coefficients $c_{\mathbf{f}}$ were taken from reference 10.

Turbulent heat transfer correlations: The turbulent flow factor defined in equation (8) was applied to the laminar parameters ψ and \underline{B} to convert them to turbulent flow parameters

$$\left(\frac{18.44}{\text{Re}_{\infty}^{0.3}}\right) \underline{\psi} = \underline{\psi}_{\text{turb}}$$

and

$$\left(\frac{18.44}{\text{Re}_{\infty}^{0\cdot3}}\right)\underline{B} = \underline{B}_{\text{turb}}$$

Turbulent data were taken as the values downstream of the peak heating rate after transition (see fig. 4(c)). The turbulent data of the hemispherical models were plotted in the above defined ψ_{turb} - \underline{B}_{turb} coordinates of figure 16(a) as case I. All data of both models and Reynolds numbers correlate except for the data of model 1 at the highest Reynolds number (solid symbols). The data from the hemispherical model at this Reynolds number (fig. 4(e)) show a more pronounced shift of the transition point with mass addition than is generally the case with the data at lower Reynolds numbers. An attempt to account for the fact that the flow was not fully turbulent over the entire model surface in all cases was made in the following approximate manner: The local reference qos (eq. (5)) was assumed to retain laminar values up to the midpoint location between the transition point and peak turbulent heating point and then to assume the fully turbulent value to the point in question. The "weighted" reference gos was used to modify the values of ψ_{turb} and $\underline{B}_{\text{turb}}$. The data, plotted in the modified coordinates, are shown as case II in figure 16(a). The high Reynolds number data in this case correlates with the data at the lower values. The scatter of the data is random and the correlation is considered satisfactory.

The data of conical model 1 was plotted only in the fully turbulent coordinates defined by equation (9). The results are shown in figure 16(b). An excellent correlation of the data in the Reynolds number range tested is evident. The high degree of correlation is due, in part, to the fact that the plotted data were confined to runs having approximately the same transition point location. In addition, the reference coefficients \dot{q}_{OS} and \dot{q}_{OS} are relatively independent of s in the transition region; thus, ψ_{turb} and \underline{B}_{turb} are less sensitive to transition point shifts than in the case of the hemispherical model. In this regard, preliminary plots of the data in "transition modified" coordinates indicated no significant changes to the degree of correlation shown by the fully turbulent correlation shown in figure 16(b).

Correlation of conical model 2 and the spherical model data was not attempted. Thermocouple failures in the region of anticipated turbulent flow for conical model 2 precluded well-defined indications of turbulent heating. Data for the spherical models did not indicate the development of fully turbulent flow as was well-noted by the "peak heating" locations evident for the hemispherical models and conical model 1.

CONCLUSIONS

An experimental investigation was made of the effects of mass addition on the heat transfer to hemispheres, spherical segments, and blunted 60° cone models at Mach number of 7.4 in free-stream Reynolds number range 0.6 to 5.2×10^6 based on model diameter. The ratio of mass-addition rate to free-stream mass flow was varied from 0 to about 0.5. The results of this investigation were compared with empirically derived correlations and with the applicable results of various computer codes. Significant features of the data and conclusions drawn from comparisons of the data with applicable boundary-layer theories follow.

The theoretically predicted effect of mass addition on stagnation point heating in laminar flow (ref. 2) was extended by an empirical, area-averaged heating reference technique to correlate laminar heat transfer distributions over the models' surfaces. The method was in good agreement with the results of both experiment and the laminar boundary-layer code of reference 5.

Anomalously high stagration point heating based on laminar theory was noted in the data of the present investigation. The same results were found in a similar investigation reported in reference 1. Enhanced stagnation point heating is generally believed to be due to free-stream turbulence. The data of the present investigation at low mass addition rates seem to indicate that the anomalous stagnation point heating is due to localized turbulence with subsequent downstream flow tending to become laminar.

The effect of free-stream turbulence on boundary-layer transition has been investigated theoretically (ref. 7). Using this work as a basis, and utilizing the tunnel test conditions and turbulence level of the present investigation, reference 8 presents a formula (eq. (6)) relating the boundary-layer edge transition Reynolds number to the local momentum thickness and ablation rate for the hemispherical model. This relationship correlated the experimental data satisfactorily, particularly at the higher Reynolds number where transition was markedly abrupt.

The effect of surface roughness on transition has been investigated theoretically (ref. 9). This work presents a correlation of momentum thickness Reynolds number at transition as a function of local mass flow, momentum thickness, and roughness parameter (eq. (7)). Although not a considered variable in the present investigation, roughness measurements were available for the hemispherical model and some experimental confirmation of the correlation was found. The correlation was limited in extent due to qualifying restrictions.

The empirical correlation parameters ψ and \underline{B} for laminar flow heat-transfer distributions were modified by application of Reynolds analogy, and correlation of heat-transfer distribution data was extended to areas of turbulent flow on the conical and hemispherical models.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, Sept. 8, 1977

APPENDIX

DERIVATION OF MASS-FLOW RATES

The computation required for the area-averaged mass-flow rate distribution for each test run was cast into a convenient form requiring only the measured model internal pressure, the tunnel total pressure, and tabulated factors predetermined for each model. The derivation of the form used in the computation follows.

The local mass-flow rate associated with the differential area element, rdods, at the radial distance, r, from the stagnation point is

$$\dot{m} = \frac{c_s (P_{in}^2 - P_{ex}^2) r d\phi ds}{r d\phi ds}$$
(A1)

 $P_{\mbox{in}}$ and $P_{\mbox{ex}}$ are the local internal and external pressures on the porous header, and $c_{\mbox{s}}$ is the flow coefficient at location r.

Equation (Al) is integrated in the azimuthal direction ...

$$\frac{\dot{\mathbf{m}}}{\dot{\mathbf{m}}} = \frac{\mathrm{d}\phi \int_{0}^{\mathbf{S}} c_{\mathbf{S}} (P_{\mathbf{1n}}^{2} - P_{\mathbf{ex}}^{2}) \mathbf{r} \, d\mathbf{s}}{\mathrm{d}\phi \int_{0}^{\mathbf{S}} \mathbf{r} \, d\mathbf{s}} \tag{A2}$$

The value of P_{in} is constant for a given run. The variable P_{ex} is a function of s and of the tunnel total pressure P_{tt} .

from
$$P_{ex} = f(s,M_{\infty})P_{tt}$$

$$P_{ex} = \frac{P}{P_{st}} \frac{P_{st}}{P_{tt}} P_{tt}$$
since
$$\frac{P}{P_{st}} = f(s) \text{, theory or experiment}$$
and
$$\frac{P_{st}}{P_{tt}} = f(M_{\infty}) \text{, a constant}$$

Substituting the above into equation (A2)

$$\underline{\dot{m}} = \frac{\int_{0}^{s} c_{s}[P_{in}^{2} - f^{2}(s, M_{\infty})P_{tt}^{2}]r \, ds}{\int_{0}^{s} r \, ds} = a_{s}P_{in}^{2} - b_{s}P_{tt}^{2}$$
 (A3)

REFERENCES

- Feldhuhn, R. H.: Heat Transfer from a Turbulent Boundary Layer on a Porous Hemisphere. AIAA Paper 76-119, 1976.
- Marvin, Joseph G.; and Pope, Ronald B.: Laminar Convective Heating and Ablation in the Mars Atmosphere. AIAA Journal, vol. 5, no. 2, 1967, pp. 240-248.
- Yoshikawa, Kenneth K.: Linearized Theory of Stagnation Point Heat and Mass Transfer at Hypersonic Speeds. NASA TN D-5246, 1969.
- Howe, John T.; and Viegas, John R.: Solutions of the Ionized Radiating Shock Layer, Including Reabsorption and Foreign Species Effects, and Stagnation Region Heat Transfer. NASA TR R-159, 1963.
- Marvin, Joseph G.; and Sheaffer, Yvonne S.: A Method for Solving the Nonsimilar Laminar Boundary-Layer Equations Including Foreign Gas Injection. NASA TN D-5516, 1969.
- Traci, R. M.; and Wilcox, D. C.: Analytical Study of Freestream Turbulence Effects on Stagnation Point Flow and Heat Transfer. AIAA 7th Fluid and Plasma Dynamics Conference, Palo Alto, Calif., June 17-19, 1974.
- Wilcox, D. C.: Turbulence-Model Transition Predictions for Blunt-Body Flows. Interim Scientific Report, DCW-R-03-01, AFOSR-TR-74-1714, 1974.
- Wilcox, David C.: Combined Effects of Freestream Turbulence and Mass Addition on Blunt-Body Heating and Transition. Interim Scientific Report, DCW-R-11-02, 1977.
- Reda, D. C.; and Leverance, R. A.: Boundary-Layer Transition Experiments on Pre-Ablated Graphite Nosetips in a Hyperballistics Range. NSWC/WOL/TR 76-71, 1976.
- Prandtl, Ludwig; and Tietjens, O. G.: Applied Hydro and Aeromechanics, McGraw-Hill Book Company, Inc., 1934.
- Stainback, Calvin P.; Wagner, Richard D.; Owen, Kevin F.; and Horstman, Clifford C.: Experimental Studies of Hypersonic Boundary Layer Transition and Effects of Wind-Tunnel Disturbances. NASA TN D-7453, 1974.

TABLE 1.- MASS ADDITION RATE DISTRIBUTION, HEMISPHERICAL MODEL 1

Run	77H1	78H1	79H1	80H1	81H1	82H1	83H1	84H1	88H1	89H1	95H1
in_	3.068	2.949	2.973	3.001	3.016	3.015	3.020	3.006	6.147	6.213	5.971
s=0.00	0.0021	0.0104	0.0434	0.0550	0.0713	0.0871	0.109	0.120	0.0022	0.0258	0.0387
.85	.0026	.0128	.0530	.0671	.0869	.106	.133	.147	.0031	.0317	.0475
1.68	.0030	.0143	.0587	.0744	.0964	.118	.147	.163	.0039	.0356	.0531
2.51	.0039	.0160	.0641	.0810	.105	.128	.160	.176	.0067	.0409	.0598
3.35	.0046	.0169	.0664	.0838	.108	.132	.165	.182	.0084	.0436	.0631
4.19	.0049	.0176	.0678	.0854	.110	.134	.168	.185	.0104		.0660
5.03	.0058	.0182	.0684	.0861	.111	.135	.168	.186	.0129	.0487	.0685
5.87	.0063	.0186	.0682	.0856	.110	.134	.167	.184	.0158		.0705
6.70	.0068	.0190	.0678	.0849	.109	.132	.165	.182	.0180		.0720
7.54	.0074	.0193	.0674	.0843	.108	.131	.163	.180	.0202		.0734
8.38	.0078	.0195	.0668	.0835	.107	.129	.161	.177			.0742
9.22	.0082	.0200	.0673	.0840	.107	.130	.161	.178	.0237		.0761
10.06	.0085	.0200	.0666	.0830	.106	.128	.159	.176	.0247		.0763
10.90	.0086	.0199	.0659	.0820	.105	.127	.157	.173			.0762
11.73	.0089	0202	.0662	.0823	.105	.127	.157	.173			.0775
12.57	.0090	.0201	د 065ء	.0812	.104	.125	.155	.171	.0270	.0593	.0771
Run	91H1	92H1	93H1	94H1	99H1	100H	1 10	01H1	102H1	103H1	104H1
'n	6.248	6.268	6.127	5.891	13.378	12.99		.710	13.197	12.824	12.352
s=0.00	0.0569	0.0792	0.0891	0.111	-0.0127	0.00	48 0	.0218	0.0372	0.0550	0.934
.85	.0695	.0967	.109	.135	0141	.00		.0279	.0467	.0684	.115
1.68	.0775	.108	.121	.150	0137	.00		.0328	.0537	.0776	.129
2.51	.0862	.119	.133	.165	0048	.02		.0453	.0681	.0937	.149
3.35	.0902	.124	.139	.171	.0012	.02		.0528	.0764	.103	.159
4.19	.0935	.127	.143	.176	.0093	.03		.0616	.0858	.112	.169
5.03	.0960	.130	.145	.178	.0195	.04	61	.0716	.0961	.122	.179
5.87	.0976	.131	.146	.178	.0317	.05	79	.0829	.107	.133	.188
6.70	.0987	.132	.147	.178	.0414	.06		.0917	.116	.141	.195
7.54	.0997	.132	.147	.178	.0511	.07	64	.101	.125	.149	.202
8.38	.100	.132	.147	.1/8	.0582	.08		.107	.131	.155	.206
9.22	.102	.134	.149	.180	.0658	.09	07	.114	.139	.162	.213
10.06	.102	.133	.148	.178	.0704	.09		.118	.142	.165	.215
10.90	.101	.132	.146	.177	.0737	.09	79	.121	.145	.167	.216
	.103	.134	.148	.178	.0788	.10	3	.126	.150	.172	.221
11.73 12.57	1.203		12.00	.176	.0809	.10		.127	.151	.173	.220

TABLE 2.- MASS ADDITION RATE DISTRIBUTION, HEMISPHERICAL MODEL 2

	,													
Run	60H2	70H2	90H2	61H2	67H2	62H2	63H2	64H2	87H2	71//2	91312	75H2	68H2	77H2
ń,	1.563	1.477	1.524	1.563	1.522	1.559	1.569	1.500	1.531	2.956	3.004	3.076	2.926	3.195
s=0.00	-0.0005	0.0028	0.0038	0.0129	0.0207	0.0267	0.0394	0.0564	0.104	0.0013	0.0072	0.0122	0.0197	0.0265
.85	0009	.0050	.0067	.0227	.0365	.0472	.0695	.0996	.183	.0022	.0127	.0215	.0347	.0467
1.68	0008	.0047	.0063	.0213	.0341	.0441	.0649	.0930	.171	.0022	.0120	.0202	.0326	.0437
2.51	0013	.0076	.0101	.0342	.0549	.0709	.104	.149	.275	.0036	.0194	.0326	.0524	.0703
3.35	0013	.0088	.0115	.0389	.0623	.0805	.118	.169	. 312	.0046	.9225	.0375	.0600	.0802
4.19	0013	.0093	.0123	.0412	.0661	.0853	.125	.180	. 330	.0052	.0242	.0400	.0638	.0852
5.03	0012	.0097	.0127	.0422	.0675	.0870	.128	.183	. 336	.0059	.0252	.0414	.0657	.0875
5.87	0011	.0104	.0135	.0445	.0713	.0919	.133	.193	. 355	.0069	.0273	.0443	.0699	.0929
6.70	0010	.0109	.0141	.0463	.0739	.0953	.140	.200	.367	.0077	.0288	.0464	.0729	.0967
7.54	0009	.0110	.0143	.0465	.0741	.0954	.140	.200	. 367	.0083	.0293	.0469	.0734	.0972
8.38	0008	.0111	.0144	.0466	.0742	.0955	.140	.200	.367	.0086	.0297	.0473	.0738	.0976
9.22	0008	.0109	.0141	.0466	.0730	.0939	.138	.197	. 361	.0084	.0291	.0465	.0725	.0959
10.06	0006	.0107	.0138	.0467	.0707	.0909	.133	.190	. 349	.0088	.0289	.0456	.0707	.0934
10.90	0005	.0114	.0147	.0468	.0745	.0958	.140	.200	. 368	.0099	.0310	.0486	.0751	.0988
11.73	0004	.0111	.0142	.0453	.0721	.0926	.133	.194	. 356	.0097	.0301	.0471	.0727	.0957
12.57	0003	.0111	.0143	.0454	.0722	.0927	.133	.194	.356	.0099	.0303	.0474	.0730	.0959
-	20113	4500		05.00	-									
Run	79H2	65H2	82H2	85H2	88H2	72H2	76H2	92H2	69H2	78H2	80H2	66H2	8 3H2	89н2
Run å_	79H2 3.217	65H2 2.985	82H2 2.966	85H2 2.996	88H2 3.625	72H2 5.966	76H2 6.204	92H2 5.913	69H2 5.879	78H2 6.406	80H2 6.434	66H2 5.947	83H2 5.742	89H2 6.258
											6.434	5.947	5.742	6.258
s=0.00 .85	3.217	2.985	2.966	2.996	3.625	5.966	6.204	5.913	5.879	6.406			5.742 0.0606	0.0913
±	3.217 0.0402	0.0542	0.0674	0.0821	0.0976	5.966	9.9067	0.9089	5.879 0.0137	0.0206	0.0341 .0600	5.947 0.0501 .0882	5.742 0.0606 .107	0.0913 .161
s=0.00 .85 1.68 2.51	3.217 0.0402 .0710 .0664 .107	2.985 0.0542 .0957	2.966 0.0674 .119	0.0821 .145	0.0976 .172	5.966 -0.9043 0076	9.0067 .0116	0.9089 .C155	5.879 0.0137 .0241	0.0206 .0363	0.0341	5.947 0.0501 .0882 .0829	5.742 0.0606 .107 .100	0.0913 .161 .151
s=0.00 .85 1.68 2.51 3.35	3.217 0.0402 .0710 .0664 .107 .122	0.0542 .0957 .0894 .144 .164	0.0674 .119 .111 .179 .203	2.996 0.0821 .145 .135	0.0976 .172 .161	5.966 -0.9653 (076 (066	9 9067 .0116 .0114	0.9089 .C155 .0151	0.0137 .0241 .0230	0.0206 .0363 .0344	0.0341 .0600 .0566	5.947 0.0501 .0882	5.742 0.0606 .107 .100 .162	0.0913 .161 .151 .243
s=0.00 .85 1.68 2.51 3.35 4.19	3.217 0.0402 .0710 .0664 .107 .122 .129	0.0542 .0957 .0894 .144 .164 .174	2.966 0.0674 .119 .111 .179 .203 .216	2.996 0.0821 .145 .135 .217	3.625 0.0976 .172 .161 .259	-0.9643 (076 (066 (102	9 9067 .0116 .0114 .0187	0.9089 .0155 .0151 .0246	0.0137 .0241 .0230 .0374	0.0206 .0363 .0344 .0556	0.0341 .0600 .0566 .0912	0.0501 .0882 .0829 .134	0.0606 .107 .100 .162 .185	0.0913 .161 .151 .243 .277
**-0.00 .85 1.68 2.51 3.35 4.19 5.03	3.217 0.0402 .0710 .0664 .107 .122 .129 .132	2.985 0.0542 .0957 .0894 .144 .164 .174 .177	2.966 0.0674 .119 .111 .179 .203 .216 .220	2.996 0.0821 .145 .135 .217 .247 .262 .267	3.625 0.0976 .172 .161 .259 .294	-0.9643 (076 (066 (102 (393)	9.0067 .0116 .0114 .0187 .0234	0.9089 .0155 .0151 .0246 .0301	0.0137 .0241 .0230 .0374 .0446	0.0206 .0363 .0344 .0556 .0653	0.0341 .0600 .0566 .0912 .106	0.0501 .0882 .0829 .134 .154	5.742 0.0606 .107 .100 .162	0.0913 .161 .151 .243 .277 .295
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.67	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140	2.985 0.0542 .0957 .0894 .144 .164 .174 .177 .188	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336	5.966 -0.9043 (076 (066 (102 (-)993 0086	9.9067 .0116 .0114 .0187 .0234 .0260	0.9089 .0155 .0151 .0246 .0301	0.0137 .0241 .0230 .0374 .0446 .0485	0.0206 .0363 .0344 .0556 .0653	0.0341 .0600 .0566 .0912 .106	5.947 0.0501 .0882 .0829 .134 .154 .164	5.742 0.0606 .107 .100 .162 .185 .197	6.258 0.0913 .161 .151 .243 .277 .295 .303
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.67 6.70	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145	2.985 0.0542 .0957 .0894 .144 .164 .174 .177 .188 .195	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336 .348	5.966 -0.9043 0076 0066 0102 0393 0086 0062 0039 0018	9.0067 .0116 .0114 .0187 .0234 .0260 .0291	0.9089 .0155 .0151 .0246 .0301 .0332 .0363	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520	0.0206 .0363 .0344 .0356 .0653 .0704	0.0341 .0600 .0566 .0912 .106 .113	5.947 0.0501 .0882 .0829 .134 .154 .164 .170	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335
**************************************	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336 .348	5.966 -0.9043 0076 0066 0102 0993 0086 0062 0039 0018 .0003	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367	0.9089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.67 6.70 7.54 8.38	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293 .294	3.625 0.0976 .172 .161 .259 .294 .311 .318 .348 .348 .348	5.966 -0.9043(076(066(10209930086006200390018 .0003	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404	0.9089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.67 6.70 7.54 8.38 9.22	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146 .146	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195 .196 .192	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242 .238	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293 .294 .289	3.625 0.0976 .172 .161 .259 .294 .311 .318 .348 .348 .348 .349	5.966 -0.9043(076(066(10209930086006200390018 .0003	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404 .0395	0.9089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468 .0484	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654 .0641	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897 .0880	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136 .137	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192 .194 .190	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231 .227	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339 .333
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.87 6.70 7.54 8.38 9.22 10.06	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146 .146 .144	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195 .196 .192 .187	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242 .238 .231	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293 .294 .289 .280	3.625 0.0976 .172 .161 .259 .294 .311 .318 .348 .348 .348 .349 .343 .332	5.966 -0.9643(076(066(10209930086006200390018 .0003 .0019 .0017	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404 .0395 .0408	0.2089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468 .0484	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654 .0641 .0646	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897 .0880 .0877	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136 .137	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192 .194 .190 .186	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231 .227 .222	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.87 6.70 7.54 8.38 9.22 10.06 10.90	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146 .146 .146 .147	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195 .196 .192 .187 .197	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242 .238 .231 .244	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293 .294 .289 .280 .295	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336 .348 .349 .343 .332 .350	5.966 -0.9043(076(066(10209930086006200390018 .0003 .0019 .0017 .0043	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404 .0395 .0408	0.2089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468 .0484 .0473 .0484	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654 .0641 .0646 .0704	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897 .0880 .0877 .0947	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136 .137	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192 .194 .190 .186 .199	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231 .227 .222 .236	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339 .333 .325 .344
**-0.00 .85 1.68 2.51 3.35 4.19 5.03 5.67 6.70 7.54 8.38 9.22 10.06 10.90 11.73	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146 .146 .144 .140 .147	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195 .196 .192 .187 .197	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242 .242 .238 .231 .244 .236	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .294 .289 .280 .295 .285	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336 .348 .349 .343 .343 .350 .339	5.966 -0.9643(076(066(10209930086006200390018 .0003 .0019 .0017 .0043 .0069	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404 .0395 .0408 .0454	5.913 0.2089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468 .0484 .0473 .0484 .0533 .0523	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654 .0641 .0646 .0704 .0687	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897 .0880 .0877 .0947	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136 .137 .135 .133	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192 .194 .190 .186 .199 .193	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231 .227 .222 .236 .229	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339 .333 .325 .344 .333
**************************************	3.217 0.0402 .0710 .0664 .107 .122 .129 .132 .140 .145 .146 .146 .146 .146 .147	2.985 0.0542 .0957 .0894 .144 .164 .177 .188 .195 .195 .196 .192 .187 .197	2.966 0.0674 .119 .111 .179 .203 .216 .220 .233 .241 .242 .242 .238 .231 .244	2.996 0.0821 .145 .135 .217 .247 .262 .267 .283 .293 .293 .294 .289 .280 .295	3.625 0.0976 .172 .161 .259 .294 .311 .318 .336 .348 .349 .343 .332 .350	5.966 -0.9043(076(066(10209930086006200390018 .0003 .0019 .0017 .0043	9.0067 .0116 .0114 .0187 .0234 .0260 .0291 .0333 .0367 .0388 .0404 .0395 .0408	0.2089 .C155 .0151 .0246 .0301 .0332 .0363 .0410 .0446 .0468 .0484 .0473 .0484	5.879 0.0137 .0241 .0230 .0374 .0446 .0485 .0520 .0575 .0616 .0638 .0654 .0641 .0646 .0704	6.406 0.0206 .0363 .0344 .0556 .0653 .0704 .0743 .0810 .0860 .0882 .0897 .0880 .0877 .0947	0.0341 .0600 .0566 .0912 .106 .113 .118 .127 .133 .136 .137	5.947 0.0501 .0882 .0829 .134 .154 .164 .170 .181 .190 .192 .194 .190 .186 .199	5.742 0.0606 .107 .100 .162 .185 .197 .204 .217 .227 .229 .231 .227 .222 .236	6.258 0.0913 .161 .151 .243 .277 .295 .303 .322 .335 .338 .339 .333 .325 .344

TABLE 3.- MASS ADDITION RATE DISTRIBUTION, SPHERICAL SEGMENT MODEL 1

Run	15881	14551	17551		18SS1	32551	33551	20551	27551
m _{on}	3.196	3.308	3.049	3.115	3.18Q	3.072	3.073	6.250	6.182
s=0.00	-0.0086	0.0034	0.027	7 0.0611	0.0909	0.188	0.267	-0.0068	0.0590
.89	0084	.0034	.027	8 .0614	.0912	.189	.268	0056	.0601
1.78	0081	.0039	.027	0 .0593	.0882	.182	.259	0055	.0581
2.67	0077	.0039	.027		.0885	.183	.259	0040	.0596
3.56	0074	.0044	.027		.0872	.180	.255	0030	.0595
4.45	0071	.0044	.027				.255	0019	.0606
4.90	0069	.0049	.027			.180	.255	0011	.0614
5.33	0067	.0049	.027				.256	0003	.0622
5.79	0066	.0049	.027	9 .0598	.0881	.181	.258	.0004	.0629
6.22	0065	.0049	.027			7 77 7	.251	.0003	.0617
6.68	0062	.0054	.027				.252	.0014	.0628
7.11	0060	.0054	.027				.247	.3017	.0620
7.57	0057	.0059	.027				.247	.0028	.0631
8.00	0054	.0059	.027				.248	.0040	.0642
8.26	0053	.0059	.027	.0575	.0844	.172	.243	.0042	.0634
Rem	21551	21	3553	22SS1	30SS1	35551	38551	39551	40551
Run	21SS1 6.374		8SS1 .286	22SS1 6.065	30SS1 6.097	35SS1 12.642	38SS1 12.529	39SS1 11.087	40SS1 12.363
ń,	6.374	6	.286	6.065	6.097	12.642	12.529	11.087	12.363
	0.108	6	.286	6.065 0.217	6.097 0.292	0.0162	12.529	0.231	12.363
± s=0.00	6.374	0	.286 .162 .163	0.217 .218	6.097 0.292 .293	0.0162 .0207	12.529 0.146 .150	0.231 .235	12.363 0.314 .319
s=0.00 .89	6.374 0.108 .109	0.	.286	6.065 0.217	6.097 0.292	0.0162	12.529	0.231 .235 .227	12.363
s=0.00 .89 1.78	0.108 .109 .105	0	. 286 . 162 . 163 . 158	0.217 .218 .211	6.097 0.292 .293 .284	0.0162 .0207 .0198	12.529 0.146 .150 .145	0.231 .235	12.363 0.314 .319 .308
m _∞ s=0.00 .89 1.78 2.67	0.108 .109 .105 .107	6.0	.286 .162 .163 .158 .159	0.217 .218 .211 .212	0.292 .293 .284 .285	0.0162 .0207 .0198 .0259	12.529 0.146 .150 .145 .151	0.231 .235 .227 .232	12.363 0.314 .319 .308 .314
**s=0.00 .89 1.78 2.67 3.56	0.108 .109 .105 .107	6.0	.286 .162 .163 .158 .159	0.217 .218 .211 .212 .209	6.097 0.292 .293 .284 .285 .281	0.0162 .0207 .0198 .0259 .0292	12.529 0.146 .150 .145 .151 .152	0.231 .235 .227 .232 .232	12.363 0.314 .319 .308 .314 .312
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45	0.108 .109 .105 .107 .106	6.0	.286 .162 .163 .158 .159 .158	0.217 .218 .211 .212 .209 .211	6.097 0.292 .293 .284 .285 .281 .282	0.0162 .0207 .0198 .0259 .0292 .0337	12.529 0.146 .150 .145 .151 .152 .157	0.231 .235 .227 .232 .232 .236	12.363 0.314 .319 .308 .314 .312 .317
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90	0.108 .109 .105 .107 .106 .107	6.0	.286 .162 .163 .158 .159 .158 .159 .159	0.217 .218 .211 .212 .209 .211 .211	6.097 0.292 .293 .284 .285 .281 .282	0.0162 .0207 .0198 .0259 .0292 .0337 .0368	12.529 0.146 .150 .145 .151 .152 .157 .160	0.231 .235 .227 .232 .232 .236 .238	12.363 0.314 .319 .308 .314 .312 .317 .320
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22	0.108 .109 .105 .107 .106 .107 .108 .109 .109	6.0	.286 .162 .163 .158 .159 .158 .159 .159	0.217 .218 .211 .212 .209 .211 .211 .212	0.292 .293 .284 .285 .281 .282 .283 .284	0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398	12.529 0.146 .150 .145 .151 .152 .157 .160 .163	0.231 .235 .227 .232 .232 .236 .238 .241	12.363 0.314 .319 .308 .314 .312 .317 .320 .323
**************************************	0.108 .109 .105 .107 .106 .107 .108 .109	0	.286 .162 .163 .158 .159 .158 .159 .159 .160	0.217 .218 .211 .212 .209 .211 .211 .212 .213	0.292 .293 .284 .285 .281 .282 .283 .284	0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398	12.529 0.146 .150 .145 .151 .152 .157 .160 .163 .166	0.231 .235 .227 .232 .232 .236 .238 .241 .244	12.363 0.314 .319 .308 .314 .312 .317 .320 .323 .326
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11	0.108 .109 .105 .107 .106 .107 .108 .109 .109 .107	6	.286 .162 .163 .158 .159 .158 .159 .160 .161 .158 .159	6.065 0.217 .218 .211 .212 .209 .211 .211 .212 .213 .209 .210 .207	6.097 0.292 .293 .284 .285 .281 .282 .283 .284 .285 .279 .281 .276	0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398 .0428	12.529 0.146 .150 .145 .151 .152 .157 .160 .163 .166 .162	0.231 .235 .227 .232 .232 .236 .238 .241 .244 .239	12.363 0.314 .319 .308 .314 .312 .317 .320 .323 .326 .320
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11 7.57	0.108 .109 .105 .107 .106 .107 .108 .109 .109	6	.286 .162 .163 .158 .159 .158 .159 .160 .161 .158	6.065 0.217 .218 .211 .212 .209 .211 .211 .212 .213 .209 .210 .207 .208	6.097 0.292 .293 .284 .285 .281 .282 .283 .284 .285 .279 .281 .276 .277	12.642 0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398 .0428 .0417 .0462	12.529 0.146 .150 .145 .151 .152 .157 .160 .163 .166 .162 .167	0.231 .235 .227 .232 .232 .236 .238 .241 .244 .239 .243	12.363 0.314 .319 .308 .314 .312 .317 .320 .323 .326 .320 .325
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11 7.57 8.00	0.108 .109 .105 .107 .106 .107 .108 .109 .107 .109 .107 .108 .109	6	.286 .162 .163 .158 .159 .159 .159 .160 .161 .158 .159 .157 .158	0.217 .218 .211 .212 .209 .211 .211 .212 .213 .209 .210 .207 .208 .209	6.097 0.292 .293 .284 .285 .281 .282 .283 .284 .285 .279 .281 .276 .277 .278	12.642 0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398 .0428 .0417 .0462 .0465 .0511 .0556	12.529 0.146 .150 .145 .151 .152 .157 .160 .163 .166 .162 .167 .165	11.087 0.231 .235 .227 .232 .236 .238 .241 .244 .239 .243 .240	12.363 0.314 .319 .308 .314 .312 .317 .320 .323 .326 .320 .325 .320
m _∞ s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11 7.57	0.108 .109 .105 .107 .106 .107 .108 .109 .109 .107 .109	6	.286 .162 .163 .158 .159 .158 .159 .160 .161 .158 .159 .157	6.065 0.217 .218 .211 .212 .209 .211 .211 .212 .213 .209 .210 .207 .208	6.097 0.292 .293 .284 .285 .281 .282 .283 .284 .285 .279 .281 .276 .277	12.642 0.0162 .0207 .0198 .0259 .0292 .0337 .0368 .0398 .0428 .0417 .0462 .0465 .0511	12.529 0.146 .150 .145 .151 .152 .157 .160 .163 .166 .162 .167 .165 .169	11.087 0.231 .235 .227 .232 .236 .238 .241 .244 .239 .243 .240 .244	12.363 0.314 .319 .308 .314 .312 .317 .320 .323 .326 .320 .325 .320 .324

TABLE 4.- MASS ADDITION RATE DISTRIBUTION, SPHERICAL SEGMENT MODEL 2

Run															_	-
### 0.00	Run	4552	97552	3882		6552				11552	8552	98552	24552	9552	12552	13882
8.89 0015 .0117 .0306 .0626 .119 .225 .534 0054 .0094 .0166 .0293 .0439 .0755 .101 .138 1.78 0017 .0133 .0349 .0713 .135 .257 .608 0062 .0095 .0189 .0334 .0500 .0859 .115 .157 2.67 0021 .0166 .0434 .0887 .168 .319 .756 0075 .0120 .0236 .0417 .0623 .107 .143 .195 3.56 0021 .0166 .0434 .0887 .168 .319 .756 0074 .0121 .0237 .0418 .0624 .107 .143 .195 3.56 0021 .0162 .0471 .0960 .182 .496 .816 0069 .0142 .0267 .0462 .0684 .117 .155 .212 4.90 0020 .0174 .0452 .0923 .175 .478 .786 0071 .0132 .0252 .0440 .0655 .112 .149 .203 5.33 0021 .0191 .0496 .101 .192 .522 .860 0075 .0147 .0278 .0484 .0718 .123 .163 .223 5.79 0020 .0189 .0488 .0995 .188 .514 .846 0073 .0146 .0275 .0477 .0708 .121 .160 .219 6.22 0020 .0189 .0489 .0995 .188 .514 .846 0073 .0146 .0275 .0479 .0709 .121 .160 .219 6.26 0021 .0209 .0540 .110 .208 .568 .935 0077 .0155 .0308 .0532 .0786 .134 .177 .243 7.11 0018 .0187 .0482 .0979 .185 .505 .831 0063 .0151 .0278 .0476 .0703 .119 .158 .216 7.57 0018 .0183 .0472 .0961 .182 .496 .816 0064 .0147 .0272 .0467 .0689 .117 .155 .212 8.00 0016 .0168 .0430 .0874 .165 .497 .742 0058 .0156 .0249 .0426 .0628 .107 .142 .193 8.23 0015 .0164 .0422 .0857 .162 .442 .727 .0052 .0135 .0246 .0420 .0618 .105 .119 .189 8.00 0.210 0.312 0.994 .0315 0.624 -0.0242 .00186 .0222 .00921 .0167 .0274 .0371 .0474 .0585 .0586 .107 .142 .193 8.23 .0015 .0164 .0422 .0857 .165 .497 .0276 .0247 .0292 .0115 .0246 .0628 .0319 .0472 .0319 .0318 .0318	i.	1.616	1.675	1.552	1.420	1.630	1.442	1.494	3.070	2.956	3.054	3.176	2.813	3.032	3.075	3.192
8.89 0015 .0117 .0306 .0626 .119 .225 .534 0054 .0094 .0166 .0293 .0439 .0755 .101 .138 1.78 0017 .0133 .0349 .0713 .135 .257 .608 0062 .0095 .0189 .0334 .0500 .0859 .115 .157 2.67 0021 .0166 .0434 .0887 .168 .319 .756 0075 .0120 .0236 .0417 .0623 .107 .143 .195 3.56 0021 .0166 .0434 .0887 .168 .319 .756 0074 .0121 .0237 .0418 .0624 .107 .143 .195 3.56 0021 .0162 .0471 .0960 .182 .496 .816 0069 .0142 .0267 .0462 .0684 .117 .155 .212 4.90 0020 .0174 .0452 .0923 .175 .478 .786 0071 .0132 .0252 .0440 .0655 .112 .149 .203 5.33 0021 .0191 .0496 .101 .192 .522 .860 0075 .0147 .0278 .0484 .0718 .123 .163 .223 5.79 0020 .0189 .0488 .0995 .188 .514 .846 0073 .0146 .0275 .0477 .0708 .121 .160 .219 6.22 0020 .0189 .0489 .0995 .188 .514 .846 0073 .0146 .0275 .0479 .0709 .121 .160 .219 6.26 0021 .0209 .0540 .110 .208 .568 .935 0077 .0155 .0308 .0532 .0786 .134 .177 .243 7.11 0018 .0187 .0482 .0979 .185 .505 .831 0063 .0151 .0278 .0476 .0703 .119 .158 .216 7.57 0018 .0183 .0472 .0961 .182 .496 .816 0064 .0147 .0272 .0467 .0689 .117 .155 .212 8.00 0016 .0168 .0430 .0874 .165 .497 .742 0058 .0156 .0249 .0426 .0628 .107 .142 .193 8.23 0015 .0164 .0422 .0857 .162 .442 .727 .0052 .0135 .0246 .0420 .0618 .105 .119 .189 8.00 0.210 0.312 0.994 .0315 0.624 -0.0242 .00186 .0222 .00921 .0167 .0274 .0371 .0474 .0585 .0586 .107 .142 .193 8.23 .0015 .0164 .0422 .0857 .165 .497 .0276 .0247 .0292 .0115 .0246 .0628 .0319 .0472 .0319 .0318 .0318	e=0.00	-0.0018	0.0155	0.0374	0.0730	0.140	0.263	0.623	-0.0065	0.0095	0.0191	0.0340	0.0509	0.087	8 0 117	0.360
1.78																
2.67 0021 .0166 .0434 .0887 .168 .319 .756 0075 .0120 .0236 .0417 .0623 .107 .143 .195																
3.56 0021 .0166 .0.34 .0887 .168 .319 .756 0074 .0121 .0237 .0418 .0624 .107 .143 .195 4.45 0019 .0182 .0471 .0960 .182 .496 .816 0069 .0142 .0267 .0462 .0684 .117 .155 .212 .290 .0174 .0452 .0923 .175 .478 .786 0071 .0132 .0252 .0440 .0655 .112 .149 .203 .333 0021 .0191 .0496 .101 .192 .522 .860 0075 .0147 .0278 .0484 .0718 .123 .163 .223 .5.79 0020 .0189 .0488 .0995 .188 .514 .846 0071 .0146 .0275 .0477 .0708 .121 .160 .219 .6.68 .0021 .0209 .0540 .110 .208 .568 .935 0077 .0165 .0308 .0532 .0786 .134 .177 .243 .7.57 .0018 .0187 .0482 .09979 .185 .505 .831 0063 .0151 .0278 .0476 .0703 .119 .158 .216 .7.57 .0018 .0183 .0472 .0961 .182 .496 .816 0064 .0147 .0272 .0467 .0689 .117 .155 .212 .8.00 0016 .0168 .0430 .0874 .165 .497 .742 .0058 .0156 .0249 .0426 .0628 .107 .142 .193 .8.25 .0015 .0164 .0422 .0857 .165 .447 .727 .0058 .0156 .0249 .0426 .0628 .107 .142 .193 .8.25 .0015 .0164 .0422 .0857 .165 .442 .727 .0058 .0156 .0249 .0426 .0628 .107 .142 .193 .178 .255 .0015 .0164 .0422 .0857 .165 .442 .727 .0052 .0135 .0246 .0420 .0618 .105 .139 .189 .180 .268 .338 .442 .335 .0189 .0169 .0200 .0799 .144 .236 .339 .384 .503 .610 .0226 .0198 .0199 .0266 .0313 .0246 .0420 .0618 .105 .139 .189 .180 .266 .338 .442 .335 .0198 .0169 .0200 .0799 .144 .236 .339 .384 .453 .566 .255 .379 .478 .626 .758 .0276 .0247 .0292 .114 .205 .334 .453 .545 .545 .656 .356 .255 .379 .478 .626 .758 .0276 .0247 .0292 .114 .205 .334 .453 .545 .656 .356 .356 .395 .498 .666 .758 .0276 .0247																
4.45 0019 .0182 .0471 .0990 .182 .496 .816 0069 .0142 .0267 .0462 .0684 .117 .155 .212						6								2		
4.90																
5.33 0021 .0191 .6496 .101 .192 .522 .860 0075 .0147 .0278 .0484 .0718 .123 .163 .223 5.79 0020 .0189 .0488 .0995 .188 .514 .846 0071 .0148 .0277 .0479 .0709 .121 .161 .219 6.62 0020 .0189 .0489 .0995 .188 .514 .846 0071 .0148 .0277 .0479 .0709 .121 .161 .219 6.68 0021 .0209 .0540 .110 .208 .568 .935 0077 .0165 .0308 .0532 .0766 .134 .177 .243 7.11 0018 .0187 .0482 .0961 .182 .496 .816 0064 .0147 .0272 .0467 .0703 .119 .158 .216 .757 0052 .0135 .0246 .0426 .0428 .107 .142 .193				1												
5.79 0020 .0189 .0488 .0995 .188 .514 .846 0073 .0146 .0275 .0477 .0708 .121 .160 .219 6.22 0020 .0189 .0489 .0995 .188 .514 .846 0071 .0148 .0277 .0479 .0709 .121 .161 .219 6.68 0021 .0209 .0540 .110 .208 .568 .915 0077 .0165 .0308 .0532 .0786 .134 .177 .243 7.11 0018 .0187 .0482 .0979 .185 .505 .831 0063 .0151 .0278 .0476 .0703 .119 .158 .216 7.57 0018 .0188 .0490 .0826 .816 0064 .0147 .0272 .0467 .0689 .117 .155 .212 8.00 016 .0168 .0430 .0874 .165 .497 .742																
6.220020																
Run							1									
7.11																
T.57 0018 .0183 .0472 .0961 .182 .496 .816 0064 .0147 .0272 .0467 .0689 .117 .155 .212																
8.00 0016 .0168 .0430 .0874 .165 .497 .742 0058 .0136 .0249 .0426 .0628 .107 .142 .193 .189 Run 14SS2 15SS2 17SS2 101SS2 104SS2 96SS2 27SS2 99SS2 25SS2 26SS2 102SS2 103SS2 106SS2 6.149 s=0.00 0.210 0.312 0.394 0.515 0.624 -0.0242 0.0186 0.0222 0.0921 0.167 0.274 0.371 0.447 0.539 .89 .180 .268 .338 .442 .535 -0.198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .438 .527 2.67 .255 .379 .478 .626 .758 0276 .0243				1	1											
Run 148S2 158S2 178S2 1018S2 1048S2 278S2 278S2 278S2 28SS2 28SS2 28SS2 102SS2 102SS2 105SS2 105SS2 m. 3.114 3.213 2.97Z 2.941 3.068 6.140 6.003 6.254 5.779 5.848 5.953 6.128 6.232 6.149 s=0.00 0.210 0.312 0.394 0.515 0.624 -0.0242 0.0186 0.0222 0.0921 0.167 0.274 0.371 0.447 0.539 .89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .144 .236 .319 .384 .463 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292																
\$\frac{\pi_m}{m}\$ \$3.114 \$3.213 \$2.972 \$2.941 \$3.068 \$6.140 \$6.003 \$6.254 \$5.779 \$5.848 \$5.953 \$6.128 \$6.232 \$6.149 \$\pi_0.00 0.210 0.312 0.394 0.515 0.624 -0.0242 0.0186 0.0222 0.0921 0.167 0.274 0.371 0.447 0.539 .89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .488 .527 2.67 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .204 .335 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 <t< td=""><td>8.25</td><td>0015</td><td></td><td>.0422</td><td>.0857</td><td></td><td></td><td></td><td>0052</td><td></td><td></td><td>.0420</td><td>.0618</td><td>.105</td><td>.139</td><td></td></t<>	8.25	0015		.0422	.0857				0052			.0420	.0618	.105	.139	
\$\frac{\pi_m}{m}\$ \$3.114 \$3.213 \$2.972 \$2.941 \$3.068 \$6.140 \$6.003 \$6.254 \$5.779 \$5.848 \$5.953 \$6.128 \$6.232 \$6.149 \$\pi_0.00 0.210 0.312 0.394 0.515 0.624 -0.0242 0.0186 0.0222 0.0921 0.167 0.274 0.371 0.447 0.539 .89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .488 .527 2.67 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .204 .335 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>																_
s=0.00 0.210 0.312 0.394 0.515 0.624 -0.0242 0.0186 0.0222 0.0921 0.167 0.274 0.371 0.447 0.539 .89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .438 .527 2.67 .255 .379 .478 .626 .758 0276 .0243 .0288 .114 .204 .336 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225	Run	11000														
.89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .438 .527 2.67 .255 .379 .478 .626 .758 0276 .0243 .0288 .114 .204 .334 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .475 .569 .685 5.33 .291 .432 .345	Private .	14882	15SS2	17883	101882	104882	96552	27882	99882	2555	2 2635	2 1028	S2 10:	3882	106552	105882
.89 .180 .268 .338 .442 .535 0198 .0169 .0200 .0799 .144 .236 .319 .384 .463 1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .438 .527 2.67 .255 .379 .478 .626 .758 0276 .0243 .0288 .114 .204 .334 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .475 .569 .685 5.33 .291 .432 .345																
1.78 .205 .305 .384 .503 .610 0226 .0191 .0227 .0909 .164 .268 .363 .438 .527 2.67 .255 .379 .478 .626 .758 0276 .0243 .0288 .114 .204 .335 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .473 .569 .685 5.33 .291 .432 .545 .713 .864 0270 .0315 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536	à.	3.114	3.213	2.972	2.941	3.068	6.140	6.003	6.254	5.77	9 5.84	8 5.9	53 6.	128	6.232	6.149
2.67 .255 .379 .478 .626 .758 0276 .0243 .0288 .114 .204 .335 .452 .545 .656 3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .473 .569 .685 5.33 .291 .432 .545 .713 .864 0270 .0315 .0366 .133 .236 .384 .518 .623 .750 5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 <	s=0.00	3.114 0.210	0.312	0.394	0.515	3.068 0.624	6.140	6.003	6.254	5.77	9 5.84	8 5.9 7 0.2	53 6. 74 0.	371	0.447	6.149 0.539
3.56 .255 .379 .478 .626 .758 0276 .0247 .0292 .114 .205 .334 .453 .545 .656 4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .473 .569 .685 5.33 .291 .432 .545 .713 .864 0270 .0315 .0366 .133 .236 .384 .518 .623 .750 5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 <	s=0.00 .89	3.114 0.210 .180	3.213 0.312 .268	2.972 0.394 .338	0.515 .442	3.068 0.624 .535	6.140 -0.0242 0198	6.003 0.018 0.016	6.254 6 0.022 9 .020	5.77 2 0.09 0 .07	9 5.84 21 0.16 99 .14	8 5.9 7 0.2 4 .2	53 6. 74 0. 36 .	.128 .371 .319	6.232 0.447 .384	6.149 0.539 .463
4.45 .276 .410 .517 .676 .819 0250 .0310 .0359 .127 .225 .365 .493 .592 .712 4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .473 .569 .685 5.33 .291 .432 .545 .713 .864 0270 .0315 .0366 .133 .236 .384 .518 .623 .750 5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 <	s=0.00 .89 1.78	3.114 0.210 .180 .205	3.213 0.312 .268 .305	2.97Z 0.394 .338 .384	2.941 0.515 .442 .503	3.068 0.624 .535 .610	6.140 -0.0242 0198 0226	6.003 0.018 0.016 0.019	6.254 6 0.022 9 .020 1 .022	5.77 2 0.09 0 .07 7 .09	9 5.84 21 0.16 99 .14 09 .16	8 5.9 7 0.2 4 .2 4 .2	53 6. 74 0. 36 .	.128 .371 .319 .363	6.232 0.447 .384 .438	6.149 0.539 .463 .527
4.90 .266 .395 .498 .651 .789 0259 .0281 .0327 .121 .215 .350 .473 .569 .685 5.33 .291 .432 .545 .713 .864 0272 .0315 .0366 .133 .236 .384 .518 .623 .750 5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 .689 .828 0229 .0342 .0391 .132 .232 .374 .504 .606 .728 7.57 .277 .410 .518 <	s=0.00 .89 1.78 2.67	3.114 0.210 .180 .205 .255	3.213 0.312 .268 .305 .379	2.972 0.394 .338 .384 .478	2.941 0.515 .442 .503 .626	3.068 0.624 .535 .610 .758	6.140 -0.0242 0198 0226 0276	6.003 0.018 3 .016 5 .019 6 .024	6.254 6 0.0222 9 .0200 1 .0223 3 .0280	5.77 2 0.09 0 .07 7 .09 8 .11	9 5.84 21 0.16 99 .14 09 .16 4 .20	8 5.9 7 0.2 4 .2 4 .2 4 .3	53 6. 74 0. 36 68 35	.128 .371 .319 .363 .452	6.232 0.447 .384 .438 .545	6.149 0.539 .463 .527 .656
5.33 .291 .432 .545 .713 .864 027c .0315 .0366 .133 .236 .384 .518 .623 .750 5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 .689 .828 0229 .0342 .0391 .132 .232 .374 .504 .606 .728 7.57 .277 .410 .518 .677 .820 0230 .0331 .0379 .129 .227 .367 .495 .594 .714 8.00 .252 .373 .471 .616 .745 0200 .0308 .0353 .118 .208 .335 .451 .541 .650	s=0.00 .89 1.78 2.67 3.56	3.114 0.210 .180 .205 .255 .255	3.213 0.312 .268 .305 .379 .379	2.972 0.394 .338 .384 .478 .478	2.941 0.515 .442 .503 .626 .626	3.068 0.624 .535 .610 .758 .758	6.140 -0.0242 0198 0226 0276 0276	6.003 0.018 0.016 0.019 0.024 0.024	6.254 6 0.022 9 .0200 1 .022 3 .0280 7 .029	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11	9 5.84 21 0.16 99 .14 09 .16 4 .20 4 .20	8 5.9 7 0.2 4 .2 4 .3 5 .3	53 6. 74 0. 36 68 34 .	.128 .371 .319 .363 .452 .453	6.232 0.447 .384 .438 .545 .545	6.149 0.539 .463 .527 .656 .656
5.79 .286 .425 .536 .701 .849 0264 .0316 .0366 .131 .233 .378 .510 .613 .738 6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 .689 .828 0229 .0342 .0391 .132 .232 .374 .504 .606 .728 7.57 .277 .410 .518 .677 .820 0230 .0331 .0379 .129 .227 .367 .495 .594 .714 8.00 .252 .373 .471 .616 .745 0200 .0308 .0353 .118 .208 .335 .451 .541 .650	\$=0.00 .89 1.78 2.67 3.56 4.45	3.114 0.210 .180 .205 .255 .255 .276	3.213 0.312 .268 .305 .379 .379 .410	2.972 0.394 .338 .384 .478 .478 .517	2.941 0.515 .442 .503 .626 .626 .676	3.068 0.624 .535 .610 .758 .758 .819	6.140 -0.0242 0198 0226 0276 0276	6.003 0.018 0.016 0.019 0.024 0.024 0.031	6.254 6 0.022 9 .0200 1 .022 3 .0280 7 .029 0 .0359	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12	9 5.84 21 0.16 99 .14 09 .16 4 .20 4 .20 7 .22	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3	53 6. 74 0. 36 68 36 34 65	.128 .371 .319 .363 .452 .453 .493	6.232 0.447 .384 .438 .545 .545 .592	6.149 0.539 .463 .527 .636 .656
6.22 .287 .425 .536 .708 .849 0256 .0325 .0375 .132 .234 .379 .511 .614 .739 6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 .689 .828 0229 .0342 .0391 .132 .232 .374 .504 .606 .728 7.57 .277 .410 .518 .677 .820 0230 .0331 .0379 .129 .227 .367 .495 .594 .714 8.00 .252 .373 .471 .616 .745 0200 .0308 .0353 .118 .208 .335 .451 .541 .650	**************************************	3.114 0.210 .180 .205 .255 .255 .276 .266	3.213 0.312 .268 .305 .379 .379 .410 .395	2.972 0.394 .338 .384 .478 .478 .517 .498	2.941 0.515 .442 .503 .626 .626 .676 .651	3.068 0.624 .535 .610 .758 .758 .819 .789	6.140 -0.0242 0198 0226 0276 0276 0250 0259	6.003 2	6.254 6 0.022 9 .0200 1 .022 3 .0280 7 .029 0 .0359 1 .032	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12 7 .12	9 5.84 21 0.16 99 .14 09 .16 4 .20 4 .20 7 .22 1 .21	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 5 .3	53 6. 74 0. 36 68 . 34 . 65 . 50 .	.128 .371 .319 .363 .452 .453 .493	6.232 0.447 .384 .438 .545 .545 .592 .569	6.149 0.539 .463 .527 .656 .656 .712 .685
6.68 .317 .470 .593 .775 .939 0276 .0366 .0421 .147 .259 .419 .565 .679 .817 7.11 .282 .418 .527 .689 .828 0229 .0342 .0391 .132 .232 .374 .504 .606 .728 7.57 .277 .410 .518 .677 .820 0230 .0331 .0379 .129 .227 .367 .495 .594 .714 8.00 .252 .373 .471 .616 .745 0200 .0308 .0353 .118 .208 .335 .451 .541 .650	s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33	3.114 0.210 .180 .205 .255 .255 .276 .266 .291	3.213 0.312 .268 .305 .379 .379 .410 .395 .432	2.972 0.394 .338 .384 .478 .478 .517 .498 .545	2.941 0.515 .442 .503 .626 .626 .676 .651 .713	3.068 0.624 .535 .610 .758 .758 .819 .789 .864	6.140 -0.0242 0198 0226 0276 0250 0259 0250	6.003 2	6.254 6 0.022: 9 .0200 1 .022: 3 .0280 7 .029: 0 .0359 1 .032: 5 .0360	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12 7 .12 6 .13	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 6 .3	53 6. 74 0. 36 68 34 34 34 65 50 84	.128 .371 .319 .363 .452 .453 .493 .473 .518	6.232 0.447 .384 .438 .545 .545 .592 .569 .623	6.149 0.539 .463 .527 .656 .656 .712 .685 .750
7.57 .277 .410 .518 .677 .8200230 .0331 .0379 .129 .227 .367 .495 .594 .714 8.00 .252 .373 .471 .616 .7450200 .0308 .0353 .118 .208 .335 .451 .541 .650	s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79	3.114 0.210 .180 .205 .255 .255 .276 .266 .291 .286	3.213 0.312 .268 .305 .379 .379 .410 .395 .432 .425	2.972 0.394 .338 .384 .478 .478 .517 .498 .545 .536	2.941 0.515 .442 .503 .626 .626 .676 .651 .713 .701	3.068 0.624 .535 .610 .758 .758 .819 .789 .864 .849	6.140 -0.0242 0198 0226 0276 0250 0259 0264	6.003 0.018 0.019 0.024 0.024 0.031 0.031 0.031	6.254 6 0.022: 9 .0200 1 .022: 3 .0280 7 .029: 0 .0359 1 .032: 5 .0366 6 .0366	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12 7 .12 6 .13 6 .13	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3	53 6. 74 0. 36 68 34 34 65 50 84 78	.128 .371 .319 .363 .452 .453 .493 .473 .518	6.232 0.447 .384 .438 .545 .545 .592 .569 .623 .613	6.149 0.539 .463 .527 .656 .656 .712 .685 .750 .738
8.00 .252 .373 .471 .616 .745 0200 .0308 .0353 .118 .208 .335 .451 .541 .650	s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22	3.114 0.210 .180 .205 .255 .255 .276 .266 .291 .286 .287	3.213 0.312 .268 .305 .379 .410 .395 .432 .425	2.972 0.394 .338 .384 .478 .478 .517 .498 .545 .536	2.941 0.515 .442 .503 .626 .626 .676 .651 .713 .701 .708	3.068 0.624 .535 .610 .758 .758 .819 .789 .864 .849	6.140 -0.0242 0198 0226 0276 0256 0259 0254 0256	6.003 0.018 0.019 0.024 0.024 0.031 0.031 0.031 0.032	6.254 6 0.022: 9 .0200 1 .022: 3 .0280 7 .029: 0 .0359 1 .032: 5 .0366 6 .0366 5 .037:	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12 7 .12 6 .13 6 .13	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23 2 .23	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 5 .3 6 .3 3 .3 4 .3	53 6. 74 0. 36 68 34 65 50 84 78 79	.128 .371 .319 .363 .452 .453 .493 .473 .518 .510	6.232 0.447 .384 .438 .545 .545 .592 .569 .623 .613	6.149 0.539 .463 .527 .656 .656 .712 .685 .750 .738 .739
	s=0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68	3.114 0.210 .180 .205 .255 .276 .266 .291 .286 .287 .317 .282	3.213 0.312 .268 .305 .379 .410 .395 .432 .425 .425	2.972 0.394 .338 .384 .478 .478 .517 .498 .545 .536 .536	2.941 0.515 .442 .503 .626 .626 .676 .651 .713 .701 .708 .775	3.068 0.624 .535 .610 .758 .758 .819 .789 .864 .849 .939 .828	6.140 -0.0242 0198 0276 0276 0259 0259 0256 0256 0256	6.003 0.018 0.019 0.024 0.024 0.031 0.031 0.031 0.032 0.036	6.254 6 0.022: 9 .0200 1 .022: 3 .0280 7 .029: 0 .0359 1 .032: 5 .0360 6 .0360 5 .037: 6 .042:	5.77 2 0.09 0 .07 7 .09 8 .11 9 .12 7 .12 6 .13 6 .13 5 .13 1 .14 1 .13	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23 2 .23 7 .25 2 .23	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 6 .3 3 .3 4 .3 9 .4 2 .3	53 6. 74 0. 36 68 3. 34 65 50 84 78 79 19 74	.128 .371 .319 .363 .452 .453 .493 .473 .518 .510 .511 .565 .504	6.232 0.447 .384 .438 .545 .545 .592 .569 .623 .613 .614 .679	6.149 0.539 .463 .527 .656 .656 .712 .685 .750 .738 .739 .817 .728
8.26	\$-0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11	3.114 0.210 .180 .205 .255 .276 .266 .291 .286 .287 .317 .282	3.213 0.312 .268 .305 .379 .410 .395 .432 .425 .425 .470 .418	2.972 0.394 .338 .384 .478 .517 .498 .545 .536 .536 .536 .593 .527	2.941 0.515 .442 .503 .626 .626 .676 .651 .713 .701 .708 .775 .689	3.068 0.624 .535 .610 .758 .819 .789 .864 .849 .849 .828 .820	6.140 -0.0242019802760276025002500250025002500250025002500250	6.003 2 0.018 3 .016 5 .019 6 .024 6 .024 7 .024 8 .031 9 .031 9 .031 9 .032 9 .034 10 .03	6.254 6 0.022: 9 .0201 1 .022: 3 .028: 7 .029: 0 .035: 1 .032: 5 .036: 6 .036: 5 .037: 6 .042: 2 .039:	5.77 2 0.09 0 .07 7 .09 8 .11 2 .11 9 .12 7 .12 6 .13 6 .13 1 .14 1 .13 9 .12	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23 2 .23 7 .25 2 .23 9 .22	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 6 .3 3 .3 4 .3 9 .4 2 .3	53 6. 74 0. 36 68 34 34 65 50 84 78 79 19 74 67	.128 .371 .319 .363 .452 .453 .493 .493 .518 .510 .511 .565 .504	6.232 0.447 .384 .438 .545 .545 .592 .569 .623 .613 .614 .679 .606	6.149 0.539 .463 .527 .656 .656 .712 .685 .750 .738 .739 .817 .728 .714
	\$-0.00 .89 1.78 2.67 3.56 4.45 4.90 5.33 5.79 6.22 6.68 7.11 7.57 8.00	3.114 0.210 .180 .205 .255 .255 .276 .266 .291 .286 .287 .317 .282 .277 .252	3.213 0.312 .268 .305 .379 .379 .410 .395 .432 .425 .425 .470 .418 .410 .373	2.972 0.394 .338 .384 .478 .478 .517 .498 .545 .536 .536 .536 .593 .527 .518 .471	2.941 0.515 .442 .503 .626 .626 .676 .651 .713 .701 .708 .775 .689 .677	3.068 0.624 .535 .610 .758 .758 .819 .789 .864 .849 .939 .828 .820 .745	6.140 -0.0242019802760276025002500250025002500250025002500250	6.003 2 0.018 3 .016 5 .019 6 .024 6 .031 7 .031 8 .031 8 .031 9 .036 9 .036 1 .037 1 .030 1 .030	6.254 6 0.022; 9 .0206 1 .022; 3 .0286 7 .029; 0 .035; 1 .036; 6 .0366 5 .037; 6 .042; 2 .039; 1 .037; 8 .035	5.77 2 0.09 0 .07 7 .09 8 .11 9 .12 7 .12 6 .13 6 .13 1 .14 1 .13 9 .12 3 .11	9 5.84 21 0.16 99 .14 09 .16 4 .20 7 .22 1 .21 3 .23 2 .23 7 .25 2 .23 9 .22 8 .20	8 5.9 7 0.2 4 .2 4 .3 5 .3 5 .3 6 .3 3 .3 4 .3 9 .4 2 .3 7 .3 8 .3	53 6. 74 0. 36 68 34 34 65 50 84 78 79 19 74 67 35 67 35	.128 .371 .319 .363 .452 .453 .493 .493 .518 .510 .511 .565 .504 .495	6.232 0.447 .384 .438 .545 .545 .592 .669 .623 .613 .614 .679 .606 .594 .541	6.149 0.539 .463 .527 .656 .656 .712 .685 .738 .739 .817 .728 .714

TABLE 5.- MASS ADDITION RATE DISTRIBUTION, CONICAL MODEL 1

Run	43C1	52C1	44C1	45C1	46C1	47C1	48C1	49C1	50C1	51C1	53C1	54C1	63C1
A.	3.392	3.083	3.374	3.016	3.127	3.128	2.960	3.157	3.044	3.025	6.084	6.031	6.222
s=0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
.94	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
1.96	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2.97	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3.99	0006	.0013	.0015	.0030	.0105	.0137	.0176	.0215	.0254	.0298	0022	.0004	.0036
5.00	0015	.0036	.0042	.0081	.0281	.0372	.0474	.0582	.0689	.0792	0057	.0016	.0120
5.51	0022	.0052	.0062	.0118	.0411	.0538	.0694	.0846	.100	.116	0078	.0025	.0148
6.02	0029	.0074	.0086	.0166	.0572	.0753	.0963	.118	.139	.161	0108	.0038	.0208
6.53	0035	.0090	.0105	.0201	.0694	.0914	.117	.143	.169	.195	0132	.0048	.0255
7.04	0042	.0109	.0127	.0244	.0836	.111	.141	.173	.204	.236	0156	.0059	.0309
7.54	0044	.0117	.0136	.0261	.0895	.118	.151	.184	.218	.252	0166	.0066	.0333
8.05	0045	.0124	.0145	.0275	.0944	.124	.159	.194	.230	.266	0171	.0072	.0354
8.56	0045	.0127	.0148	.0281	.0963	.127	.152	.198	.234	.270	0171	.0077	.0364
9.07	0046	.0129	.0151	.0286	.0978	.129	.165	.201	.238	.275	0171	.0079	.0370
9.32	0045	.0129	.0150	.0284	.0968	.128	.163	.200	.236	.273	0171	.0079	.0368
Run	57C1	64C1	58C1	5901	60C1	6101	6201	65C1	66C1	69C1	70C1	7101	73C1
Run	57C1 6.502	64C1 6.243	58C1 6.247	59C1 6.191	60C1 6.157	61C1 6.258	62CJ 6.320	65C1 5.949	66C1 6,166	69C1	70C1 12.654	71C1 12.854	73C1 13.024
ň,	6.502	6.243	6.247	6.191	6.157	6.258	6.320	5.949	6.166	12.559	12.654	12.854	13.024
s=0.00	6.502 0.000	0.000	0.000	0.000	0.000	6.258 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
s=0.00 .94	0.000 .000	6.243 0.000 .000	6.247 0.000 .000	0.000 .000	6.157 0.000 .000	6.258 0.000 .000	0.000 .000	0.000 .000	6.166 0.000 .000	0.000 .000	0.000 .000	0.000 .000	0.000 .000
s=0.00 .94 1.96	0.000 .000 .000	6.243 0.000 .000	6.247 0.000 .000	0.000 .000 .000	6.157 0.000 .000	6.258 0.000 .000	0.000 .000 .000	0.000 .000 .000	0.000 .000 .000	0.000 .000 .000	0.000 .000 .000	0.000 .000 .000	0.000 .000 .000
s=0.00 .94 1.96	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	6.157 0.000 .000 .000	6.258 0.000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000	0.000 .000 .000 .000
m _m s=0.00 .94 1.96 2.97 3.99	0.000 .000 .000 .000 .000 .0078	6.243 0.000 .000 .000 .000 .0103	0.000 .000 .000 .000 .000 .0132	0.000 .000 .000 .000 .000 .0171	0.000 .000 .000 .000 .000	6.258 0.000 .000 .000 .000 .0249	6.320 0.000 .000 .000 .000 .0279	0.000 .000 .000 .000 .000 .0347	0.000 .000 .000 .000 .000 .0396	0.000 .000 .000 .000 .000 0024	0.000 .000 .000 .000 .000 .0079	0.000 .000 .000 .000 .000	0.000 .000 .000 .000 .000 .0328
m _m s=0.00 .94 1.96 2.97 3.99 5.00	6.502 0.000 .000 .000 .000 .0078 .0213	6.243 0.000 .000 .000 .000 .0103 .0284	6.247 0.000 .000 .000 .000 .0132 .0362	0.000 .000 .000 .000 .000 .0171 .0460	0.000 .000 .000 .000 .000 .0200 .0543	6.258 0.000 .000 .000 .000 .0249 .0665	6.320 0.000 .000 .000 .000 .0279 .0748	5.949 0.000 .000 .000 .000 .0347 .0929	0.000 .000 .000 .000 .000 .0396 .106	0.000 .000 .000 .000 .000 0024 0050	0.000 .000 .000 .000 .000 .0079 .0226	0.000 .000 .000 .000 .000 .0177 .0488	0.000 .000 .000 .000 .000 .0328 .0890
**************************************	0.000 .000 .000 .000 .000 .0078 .0213 .0312	6.243 0.000 .000 .000 .000 .0103 .0284 .0416	6.247 0.000 .000 .000 .000 .0132 .0362 .0533	0.000 .000 .000 .000 .000 .0171 .0460 .0670	6.157 0.000 .000 .000 .000 .0200 .0543 .0792	6.258 0.000 .000 .000 .000 .0249 .0665 .0973	6.320 0.000 .000 .000 .000 .0279 .0748 .109	5.949 0.000 .000 .000 .000 .0347 .0929 .135	6.166 0.000 .000 .000 .000 .0396 .106 .155	0.000 .000 .000 .000 .000 0024 0050 0064	0.000 .000 .000 .000 .000 .0079 .0226 .0338	0.000 .000 .000 .000 .000 .0177 .0488 .0719	0.000 .000 .000 .000 .000 .0328 .0890 .131
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437	6.243 0.000 .000 .000 .000 .0103 .0284 .0416	6.247 0.000 .000 .000 .000 .0132 .0362 .0533 .0743	6.191 0.000 .000 .000 .000 .0171 .0460 .0670 .0934	6.157 0.000 .000 .000 .0200 .0543 .0792 .110	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136	6.320 0.000 .000 .000 .000 .0279 .0748 .109 .152	5.949 0.000 .000 .000 .000 .0347 .0929 .135 .188	6.166 0.000 .000 .000 .000 .0396 .106 .155 .215	12.559 0.000 .000 .000 .000 0024 0050 0064 0078	0.000 .000 .000 .000 .000 .0079 .0226 .0338 .0481	0.000 .000 .000 .000 .000 .0177 .0488 .0719	0.000 .000 .000 .000 .000 .0328 .0890 .131 .183
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437 .0533	6.243 0.000 .000 .000 .000 .0103 .0284 .0416 .0582 .0704	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743	6.191 0.000 .000 .000 .000 .0171 .0460 .0670 .0934 .113	6.157 0.000 .000 .000 .0200 .0543 .0792 .110 .135	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136 .165	6.320 0.000 .000 .000 .000 .0279 .0748 .109 .152 .184	5.949 0.000 .000 .000 .000 .0347 .0929 .135 .188 .228	6.166 0.000 .000 .000 .000 .0396 .106 .155 .215	12.559 0.000 .000 .000 .000 0024 0050 0064 0078 0087	0.000 .000 .000 .000 .0079 .0226 .0338 .0481 .0592	0.000 .000 .000 .000 .0177 .0488 .0719 .101	13.024 0.000 .000 .000 .000 .0328 .0890 .131 .183 .223
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437 .0533 .0645	6.243 0.000 .000 .000 .000 .0103 .0284 .0416 .0582 .0704 .0856	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743 .0905 .109	6.191 0.000 .000 .000 .000 .0171 .0460 .0670 .0934 .113 .137	6.157 0.000 .000 .000 .0200 .0543 .0792 .110 .135 .162	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136 .165	6.320 0.000 .000 .000 .000 .0279 .0748 .109 .152 .184 .223	5.949 0.000 .000 .000 .000 .0347 .0929 .135 .188 .228 .276	6.166 0.000 .000 .000 .000 .0396 .106 .155 .215 .251 .316	12.559 0.000 .000 .000 .000 0024 0050 0064 0078 0087 0101	0.000 .000 .000 .000 .0079 .0226 .0338 .0481 .0592 .0719	0.000 .000 .000 .000 .0177 .0488 .0719 .101 .123 .150	13.024 0.000 .000 .000 .0328 .0890 .131 .183 .223 .269
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437 .0533 .0645 .0689	6.243 0.000 .000 .000 .000 .0103 .0284 .0416 .0582 .0704 .0856 .0914	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743 .0905 .109 .117	6.191 0.000 .000 .000 .0171 .0460 .0670 .0934 .113 .137 .147	0.000 .000 .000 .000 .0200 .0543 .0792 .110 .135 .162	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136 .165 .199 .213	6.320 0.000 .000 .000 .000 .0279 .0748 .109 .152 .184 .223 .238	5.949 0.000 .000 .000 .0347 .0929 .135 .188 .228 .276 .295	6.166 0.000 .000 .000 .0396 .106 .155 .215 .251 .316 .337	12.559 0.000 .000 .000 .000 0024 0050 0064 0078 0087 0101 0096	0.000 .000 .000 .000 .0079 .0226 .0338 .0481 .0592 .0719	12.854 0.000 .000 .000 .0177 .0488 .0719 .101 .123 .150 .161	13.024 0.000 .000 .000 .0328 .0890 .131 .183 .223 .269 .289
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437 .0533 .0645 .0689 .0729	6.243 0.000 .000 .000 .000 .0103 .0284 .0416 .0582 .0704 .0856 .0914 .0968	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743 .0905 .109 .117 .124	6.191 0.000 .000 .000 .0171 .0460 .0670 .0934 .113 .137 .147 .155	0.000 .000 .000 .000 .0200 .0543 .0792 .110 .135 .162 .174	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136 .165 .199 .213 .225	6.320 0.000 .000 .000 .0279 .0748 .109 .152 .184 .223 .238 .251	5.949 0.000 .000 .000 .000 .0347 .0929 .135 .188 .228 .276 .295 .312	6.166 0.000 .000 .000 .0396 .106 .155 .215 .251 .316 .337 .356	12.559 0.000 .000 .000 .00000240050006400780087010100960090	12.654 0.000 .000 .000 .000 .0079 .0226 .0338 .0481 .0592 .0719 .0730 .0833	12.854 0.000 .000 .000 .0177 .0488 .0719 .101 .123 .150 .161 .171	13.024 0.000 .000 .000 .0328 .0890 .131 .183 .223 .269 .289 .305
**** s=0.00 .94 1.9697 3.99 5.00 5.51 6.02 6.53 7.04 7.54 8.05 8.56	6.502 0.000 .000 .000 .0078 .0213 .0312 .0437 .0533 .0645 .0689 .0729 .0748	6.243 0.000 .000 .000 .0103 .0284 .0416 .0582 .0704 .0856 .0914 .0968 .0988	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743 .0905 .109 .117 .124 .126	6.191 0.000 .000 .000 .0171 .0460 .0670 .0934 .113 .137 .147 .155 .158	0.000 .000 .000 .000 .0200 .0543 .0792 .110 .135 .162 .174 .183 .187	6.258 0.000 .000 .000 .0249 .0665 .0973 .136 .165 .199 .213 .225 .229	6.320 0.000 .000 .000 .0279 .0748 .109 .152 .184 .223 .238 .251 .256	5.949 0.000 .000 .000 .0347 .0929 .135 .188 .228 .276 .295 .312 .317	6.166 0.000 .000 .000 .0396 .106 .155 .215 .251 .316 .337 .356 .362	12.559 0.000 .000 .000 .000 0024 0050 0064 0078 0087 0101 0096 0090 0074	12.654 0.000 .000 .000 .0079 .0226 .0338 .0481 .0592 .0719 .0730 .0833 .0865	12.854 0.000 .000 .000 .0177 .0488 .0719 .101 .123 .150 .161 .171 .176	13.024 0.000 .000 .000 .0328 .0890 .131 .183 .223 .269 .289 .305 .313
**************************************	6.502 0.000 .000 .000 .000 .0078 .0213 .0312 .0437 .0533 .0645 .0689 .0729	6.243 0.000 .000 .000 .000 .0103 .0284 .0416 .0582 .0704 .0856 .0914 .0968	6.247 0.000 .000 .000 .0132 .0362 .0533 .0743 .0905 .109 .117 .124	6.191 0.000 .000 .000 .0171 .0460 .0670 .0934 .113 .137 .147 .155	0.000 .000 .000 .000 .0200 .0543 .0792 .110 .135 .162 .174	6.258 0.000 .000 .000 .000 .0249 .0665 .0973 .136 .165 .199 .213 .225	6.320 0.000 .000 .000 .0279 .0748 .109 .152 .184 .223 .238 .251	5.949 0.000 .000 .000 .000 .0347 .0929 .135 .188 .228 .276 .295 .312	6.166 0.000 .000 .000 .0396 .106 .155 .215 .251 .316 .337 .356	12.559 0.000 .000 .000 .00000240050006400780087010100960090	12.654 0.000 .000 .000 .000 .0079 .0226 .0338 .0481 .0592 .0719 .0730 .0833	12.854 0.000 .000 .000 .0177 .0488 .0719 .101 .123 .150 .161 .171	13.024 0.000 .000 .000 .0328 .0890 .131 .183 .223 .269 .289 .305

TABLE 6 .- MASS ADDITION RATE DISTRIBUTION, CONICAL MODEL 2

				I	1					
Run	36C2	29C2	30C2	58C2	57C2	51C2	4 3C2	42C2	41C2	40C2
n_	1.513	1.737	1.455	1.585	1.560	1.567	3.072	3.059	2.885	2.936
s=0.00	-0.0010	0.0347	0.0876	0.196	0.473	0.706	-0.0038	0.0187	0.115	0.185
.64	0009	.0337	.0849	.189	.458	.683	0033	.0185	.112	.180
1.27	0011	.0461	.116	.259	.626	.934	0041	.0256	.153	.246
1.91	0008	.0360	.0907	.202	.489	.729	0030	.0202	.119	.192
2.54	0008	.0407	.102	.227	.550	.820	0030	.0231	.135	.217
3.18	0007	.0327	.0822	.183	.443	.661	0026	.0184	.109	.174
3.81	0007	.0338	.0851	.190	.458	.683	0027	.0190	.112	.180
4.45	0007	.0315	.0794	.177	.428	.638	0026	.0177	.105	.168
80.2	0008	.0338	.0850	.190	.458	.683	0028	.0190	.112	.180
5.72	0009	.0395	.0993	.221	.535	.797	0032	.0222	.131	.210
6.35	0007	.0293	.0737	.164	. 397	.592	0024	.0164	.0971	.157
6.99	0008	.0350	.0879	.196	.473	.704	0028	.0197	.116	.186
7.62	0008	.0361	.0908	.202	.489	.729	0029	.0203	.120	.192
8.26	0008	.0373	.0936	.209	.504	.752	0028	.0211	.124	.199
8.89	0007	.0350	.0880	.196	.473	.706	0026	.0199	.116	.187
9.53	0008	.0396	.0993	.221	.535	.797	0028	.0225	.131	. 211
Run	39C2	55C2	50C2	44C2	48C2	47C2	46C2	45C2	53C2	52C2
								4302	3302	3606
in_	2.806	3.139	3.170	5.964	6.080	6.004	5.625	5.918	6.116	5.978
s=0.00	0.262	3.139 0.434	3.170 0.695							
s=0.00 .64	0.262	0.434		5.964	6.080	6.004	5.625	5.918	6.116	5.978
s=0.00 .64 1.27	0.262 .254 .348	0.434 .421 .575	0.695 .673 .920	5.964 -0.0132 0112 0142	6.080 0.0181	6.004	5.625 0.276	5.918 0.365	6.116 0.425	5.978 0.708
s=0.00 .64 1.27 1.91	0.262 .254 .348 .271	0.434 .421 .575 .466	0.695 .673 .920 .718	5.964 -0.0132 0112 0142 0103	0.0181 .0191 .0274 .0220	6.004 0.149 .146 .201 .158	5.625 0.276 .269	5.918 0.365 .356	6.116 0.425 .014	5.978 0.708 .687
s=0.00 .64 1.27 1.91 2.54	0.262 .254 .348 .271 .306	0.434 .421 .575 .466 .506	0.695 .673 .920 .718 .808	5.964 -0.0132 0112 0142 0103 0098	6.080 0.0181 .0191 .0274 .0220 .0264	6.004 0.149 .146 .201 .158 .179	5.625 0.276 .269 .369	5.918 0.365 .356 .487	6.116 0.425 .014 .567	5.978 0.708 .687 .940
s=0.00 .64 1.27 1.91 2.54 3.18	0.262 .254 .348 .271 .306 .246	0.434 .421 .575 .466 .506 .407	0.695 .673 .920 .718 .808 .651	5.964 -0.0132 0112 0142 0103 0098 0088	0.0181 .0191 .0274 .0220 .0264 .0205	6.004 0.149 .146 .201 .158 .179 .143	5.625 0.276 .269 .369 .289	5.918 0.365 .356 .487 .381	6.116 0.425 .014 .567 .443	5.978 0.708 .687 .940 .735
s=0.00 .64 1.27 1.91 2.54 3.18 3.81	0.262 .254 .348 .271 .306 .246	0.434 .421 .575 .466 .506 .407	0.695 .673 .920 .718 .808 .651	5.964 -0.0132 0112 0142 0103 0098 0088 0093	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215	6.004 0.149 .146 .201 .158 .179 .143 .148	5.625 0.276 .269 .369 .289 .326	5.918 0.365 .356 .487 .381 .430	6.116 0.425 .014 .567 .443 .500	5.978 0.708 .687 .940 .735 .828
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45	0.262 .254 .348 .271 .306 .246 .255 .238	0.434 .421 .575 .466 .506 .407 .421	0.695 .673 .920 .718 .808 .651 .673	5.964 -0.0132 0112 0142 0103 0098 0088 0093 0068	0.0181 .0191 .0274 .0220 .0264 .0205 .0215	6.004 0.149 .146 .201 .158 .179 .143 .148 .138	5.625 0.276 .269 .369 .289 .326 .262 .271 .252	5.918 0.365 .356 .487 .381 .430 .346 .358 .334	6.116 0.425 .014 .567 .443 .500 .402	5.978 0.708 .687 .940 .735 .828 .666
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08	0.262 .254 .348 .271 .306 .246 .255 .238 .255	0.434 .421 .575 .466 .506 .407 .421 .393	0.695 .673 .920 .718 .808 .651 .673 .628	5.964 -0.0132 0112 0142 0103 0098 0088 0093 0068 0093	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210	6.004 6.149 .146 .201 .158 .179 .143 .148 .138	5.625 0.276 .269 .369 .326 .262 .271 .252 .271	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416	5.978 0.708 .687 .940 .735 .828 .666 .689 .643
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72	0.262 .254 .348 .271 .306 .246 .255 .238 .255	0.434 .421 .575 .466 .506 .407 .421 .393 .421	0.695 .673 .920 .718 .808 .651 .673 .628 .673	5.964 -0.0132 0112 0142 0103 0098 0088 0093 0068 0093 0108	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173	5.625 0.276 .269 .369 .326 .262 .271 .252 .271 .316	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485	5.978 0.708 .687 .940 .735 .828 .666 .689
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786	5.964 -0.0132 0112 0142 0103 0098 0088 0093 0068 0093 0108 0083	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128	5.625 0.276 .269 .369 .326 .262 .271 .252 .271 .316 .235	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35 6.99	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491 .365 .435	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786 .583	5.964 -0.0132 0112 0142 0103 0098 0093 0068 0093 0108 0083 0093	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181 .0220	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128 .153	5.625 0.276 .269 .369 .326 .262 .271 .252 .271 .316 .235 .280	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310 .370	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360 .430	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597 .712
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35 6.99 7.62	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221 .263 .271	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491 .365 .435	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786 .583 .696	5.964 -0.0132 0112 0142 0103 0098 0093 0068 0093 0108 0083 0093 0098	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181 .0220 .0230	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128 .153 .158	5.625 0.276 .269 .369 .326 .262 .271 .252 .271 .316 .235 .280 .289	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310 .370 .381	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360 .430 .454	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597 .712 .735
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35 6.99 7.62 8.26	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221 .263 .271 .280	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491 .365 .435 .449	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786 .583 .696 .718	5.964 -0.013201120142010300980088009300680093010800930098	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181 .0220 .0230 .0240	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128 .153 .158 .163	5.625 0.276 .269 .369 .289 .326 .262 .271 .252 .271 .316 .235 .280 .289 .299	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310 .370 .381 .394	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360 .430 .454 .458	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597 .712 .735 .758
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35 6.99 7.62 8.26 8.89	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221 .263 .271 .280 .264	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491 .365 .435 .449	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786 .583 .696 .718 .741	5.964 -0.0132011201420103009800880093006800930108009300980098	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181 .0220 .0230 .0240 .0230	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128 .153 .158 .163 .154	5.625 0.276 .269 .369 .326 .262 .271 .252 .271 .316 .235 .280 .289 .299 .281	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310 .370 .381 .394 .371	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360 .430 .454 .458 .431	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597 .712 .735 .758 .713
s=0.00 .64 1.27 1.91 2.54 3.18 3.81 4.45 5.08 5.72 6.35 6.99 7.62 8.26	0.262 .254 .348 .271 .306 .246 .255 .238 .255 .297 .221 .263 .271 .280	0.434 .421 .575 .466 .506 .407 .421 .393 .421 .491 .365 .435 .449	0.695 .673 .920 .718 .808 .651 .673 .628 .673 .786 .583 .696 .718	5.964 -0.013201120142010300980088009300680093010800930098	6.080 0.0181 .0191 .0274 .0220 .0264 .0205 .0215 .0196 .0210 .0249 .0181 .0220 .0230 .0240	6.004 6.149 .146 .201 .158 .179 .143 .148 .138 .148 .173 .128 .153 .158 .163	5.625 0.276 .269 .369 .289 .326 .262 .271 .252 .271 .316 .235 .280 .289 .299	5.918 0.365 .356 .487 .381 .430 .346 .358 .334 .358 .417 .310 .370 .381 .394	6.116 0.425 .014 .567 .443 .500 .402 .416 .388 .416 .485 .360 .430 .454 .458	5.978 0.708 .687 .940 .735 .828 .666 .689 .643 .689 .804 .597 .712 .735 .758

BLANK PAGE

Figure 1.- Porous model headers.

Figure 2.- Model support and details.

Figure 3.- Typical variation of mass flow rate with radial distance s with constant pressure drop across headers.

(a) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi}), 0.003 < \underline{m}^* < 0.027.$

Figure 4.- Heat transfer distribution over hemispherical model 1.

	RUN	ReD	Ttt	ė,	<u>m</u> *
۵	81H1	1.11x10 ⁶	769	9.36	0.034
۵	82H1	1.11x10 ⁶	768	9.47	0.041
0	83H1	1.12x10 ⁶	767	9.36	0.051
٥	84H1	1.10x10 ⁶	773	9.60	0.057

(b) $P_{tt} = 276 \text{ N/cm}^2 \text{ (400 psi), } 0.034 < \underline{m}^* < 0.057.$ Figure 4.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o m

o 88H1 2.29×10<sup>6</sup> 761 13.13 0.004

△ 89H1 2.37×10<sup>6</sup> 748 12.94 0.010

⊿ 95H1 2.12×10<sup>6</sup> 797 14.16 0.013
```


(c) $P_{tt} = 552 \text{ N/cm}^2$ (800 psi), 0.004 < \underline{m} * < 0.013.

Figure 4.- Continued.

```
RUN Re<sub>D</sub> T_{tt} \dot{q}_o \underline{m}^*

2 91H1 2.40x10<sup>6</sup> 740 12.50 0.016

92H1 2.42x10<sup>6</sup> 737 12.45 0.021

93H1 2.26x10<sup>6</sup> 767 13.54 0.024

94H1 2.01x10<sup>6</sup> 815 14.96 0.030
```


(d) $P_{tt} = 552 \text{ N/cm}^2$ (800 psi), 0.016 < \underline{m} * < 0.030.

Figure 4.- Continued.

	RUN	ReD	Ttt	٩̈٥	<u>m</u> *
\	99H1	5.66x10 ⁶	674	14.19	0.006
Δ	100H1	5.23x10 ⁶	707	16.31	0.008
Δ	101H1	4.96x10 ⁶	728	17.09	0.010
۵	102H1	5.38x10 ⁶	699	16.12	0.011
۵	103H1	5.06x10 ⁶	721	17.01	0.013
0	104H1	4.80x10 ⁶	733	17.30	0.018

(e) $P_{tt} = 1103 \text{ N/cm}^2 (1600 \text{ psi}), 0.006 < \underline{m} < 0.018.$

Figure 4.- Concluded.

(a) $P_{tt} = 138 \text{ N/cm}^2 (200 \text{ psi)}, 0 < \underline{m}^* < 0.029.$

Figure 5.- Heat transfer distribution over hemispherical model 2.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o 67H2 0.52x10<sup>6</sup> 832 7.81 0.047

□ 62H2 0.60x10<sup>6</sup> 736 6.17 0.059

◇ 63H2 0.61x10<sup>6</sup> 726 6.03 0.087

△ 64H2 0.54x10<sup>6</sup> 786 6.96 0.129

□ 87H2 0.57x10<sup>6</sup> 758 6.57 0.232
```


(b) $P_{tt} = 138 \text{ N/cm}^2$ (200 psi), 0.047 < \underline{m} * < 0.232.

Figure 5.- Continued.

```
RUN
O 71H2 1.03x10<sup>6</sup>
                       813
☐ 91H2 1.07x10<sup>6</sup> 794
                             10.17 0.010
           1.14x10<sup>6</sup> 763

♦ 75H2

                                     0.015
                              9.31
△ 68H2
           0.99 \times 10^{6}
                       832 10.82
                                     0.025
△ 77H2
           1.27x10<sup>6</sup> 717
                              8.36
                                     0.030
```


(c) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi)}, 0.003 < \underline{m}^* < 0.030.$

Figure 5.- Continued.

```
Re_D
    RUN
           1.30x10<sup>6</sup>
                       707
                              8.14 0.044
☐ 65H2 1.06x10<sup>6</sup>
                       799 10.19 0.064
82H2 1.04x10<sup>6</sup>
                       807
                             10.51
                                     0.079
Δ 85H2 1.07x10<sup>6</sup> 795
                             10.20 0.095
△ 88H2 1.16x10<sup>6</sup>
                       758
                              9.32 0.110
```


(d) $P_{tt} = 276 \text{ N/cm}^2$ (400 psi), 0.044 < \underline{m} * < 0.110.

Figure 5.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o m

O 72H2 2.11x10<sup>6</sup> 801 14.39 -0.001

□ 76H2 2.34x10<sup>6</sup> 753 12.83 0.007

◇ 92H2 2.05x10<sup>6</sup> 817 14.99 0.009

△ 69H2 2.02x10<sup>6</sup> 823 14.98 0.012

⊿ 78H2 2.55x10<sup>6</sup> 715 11.77 0.015
```


(e) $P_{tt} = 552 \text{ N/cm}^2 \text{ (800 psi), } -0.001 < \underline{m}^* < 0.015.$

Figure 5.- Continued.

```
RUN Re<sub>D</sub> T<sub>π</sub> q

o m

O 80H2 2.58×10<sup>6</sup> 711 11.67 0.022

□ 66H2 2.08×10<sup>6</sup> 807 14.64 0.033

◇ 83H2 1.90×10<sup>6</sup> 851 16.16 0.040

Δ 89H2 2.39×10<sup>6</sup> 742 12.66 0.053
```


(f) $P_{tt} = 552 \text{ N/cm}^2$ (800 psi), 0.022 < \underline{m} * < 0.053.

Figure 5.- Concluded.

	RUN	ReD	Tn	ė,	m.
0	15881	1.30x10 ⁶	702	8.07	~ 202
	14881	1.44×10 ⁶	658	7.15	0.002
		1.15x10 ⁶			
Δ	31551	1.21×10 ⁶	733	8.49	0.018
Δ	18551	1.28x10 ⁶	706	7.91	0.027
0	32551	1.17×10 ⁶	748	8.94	0.056
۵	33551	1.17×10 ⁶	745	8.96	0.079

(a) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi)}, -0.002 < \underline{m}^* < 0.079$.

Figure 6.- Heat transfer distribution over spherical segment model 1.

(b) $P_{tt} = 552 \text{ N/cm}^2 (800 \text{ psi), } -0.001 < \underline{m}^* < 0.045.$

Figure 6.- Continued.

(c) $P_{tt} = 1103 \text{ N/cm}^2$ (1600 psi), 0.004 < \underline{m} * < 0.026.

Figure 6.- Concluded.

```
RUN ReD T<sub>tt</sub> q<sub>6</sub> m

O 94SS2 0.61x10<sup>6</sup> 758 6.78 -0.001
□ 97SS2 0.67x10<sup>6</sup> 714 5.97 0.010

◇ 3SS2 0.56x10<sup>6</sup> 784 7.00 0.027

Δ 21SS2 0.47x10<sup>6</sup> 849 7.97 0.060

Δ 6SS2 0.64x10<sup>6</sup> 722 6.09 0.099

Δ 20SS2 0.45x10<sup>6</sup> 877 8.56 0.214

C 100SS2 0.49x70<sup>6</sup> 854 8.33 0.487
```


(a) $P_{tt} = 138 \text{ N/cm}^2$ (200 psi), -0.001 < \underline{m} * < 0.487.

Figure 7.- Heat transfer distribution over spherical segment model 2.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o m

O 10SS2 1.13x10<sup>6</sup> 767 9.39 -0.002

□ 11SS2 1.03x10<sup>6</sup> 812 10.46 0.005

◇ 8SS2 1.12x10<sup>6</sup> 775 9.61 0.008

△ 98SS2 1.25x10<sup>6</sup> 725 8.57 0.013

△ 24SS2 0.90SS2<sup>6</sup> 878 11.97 0.022
```


(b) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi}), -0.002 < \underline{m}^* < 0.022.$

Figure 7.- Continued.

	RUN	ReD	T _{tt}	ġ,	m.
0	9552	1.09x10 ⁶	786	9.91	0.035
0	12552	1.14x10 ⁶	762	9.43	0.045
Δ	13882	1.27x10 ⁶	717	8.40	0.059
Δ	14552	1.18x10 ⁶	747	9.09	0.079
۵	15SS2	1.28x10 ⁶	712	8.34	0.114
۵	17552	1.04x10 ⁶	807	10.43	0.155
O	101SS2	1.00x10 ⁶	831	11.05	0.205
٥	104SS2	1.13x10 ⁶	770	9.73	0.238

(c) $P_{tt} = 276 \text{ N/cm}^2$ (400 psi), 0.035 < \underline{m} * < 0.238.

Figure 7.- Continued.

```
RUN Re<sub>D</sub> T_{tt} \dot{q}_{o} \underline{m}^{*}
O 96SS2 2.28x10<sup>6</sup> 764 13.44 -0.003
\square 27SS2 2.14x10<sup>6</sup> 796 14.20 0.005
\diamondsuit 99SS2 2.39x10<sup>6</sup> 743 12.70 0.006
\triangle 25SS2 1.93x10<sup>6</sup> 844 15.90 0.020
```


(d) $P_{tt} = 552 \text{ N/cm}^2 (800 \text{ psi)}, -0.003 < \underline{m}^* < 0.020$.

Figure 7.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q<sub>o</sub> m

O 26SS2 1.99x10<sup>6</sup> 831 15.46 0.035
□ 102SS2 2.09x10<sup>6</sup> 805 14.70 0.055

♦ 103SS2 2.26x10<sup>6</sup> 768 13.44 0.072

Δ 106SS2 2.37x10<sup>6</sup> 748 13.00 0.085

Δ 105SS2 2.29x10<sup>6</sup> 762 13.50 0.104
```


(e) $P_{tt} = 552 \text{ N/cm}^2 (800 \text{ psi)}, 0.035 < \underline{m}^4 < 0.104$.

Figure 7.- Concluded.

(a) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi)}, -0.001 < \underline{m}^* < 0.031.$

Figure 8.- Heat transfer distribution over conical model 1.

	RUN	ReD	Tn	ġ,	<u>m</u> •
0	47C1	1.17x10 ⁶	757	9.44	0.041
	48C1	1.06x10 ⁶	790	10.06	0.055
0	49C1	1.21x10 ⁶	743	9.13	0.063
Δ	50C1	1.14x10 ⁶	757	9.32	0.077
Δ	51C1	1.12x10 ⁶	764	9.53	0.090

(b) $P_{tt} = 276 \text{ N/cm}^2 \text{ (400 psi), 0.041 } < \underline{m}^{*} < 0.090.$

Figure 8.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o 53C1 2.23x10<sup>6</sup> 774 13.57 −0.003

□ 54C1 2.18x10<sup>6</sup> 783 13.98 0.001

o 63C1 2.37x10<sup>6</sup> 745 12.69 0.006

o 57C1 2.67x10<sup>6</sup> 693 10.95 0.012

o 64C1 2.39x10<sup>6</sup> 742 12.63 0.016

o 58C1 2.40x10<sup>6</sup> 740 12.51 0.020
```


(c) $P_{tt} = 552 \text{ N/cm}^2$ (800 psi), $-0.003 < \underline{m} < 0.020$.

Figure 8.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q<sub>o</sub> m*

○ 59C1 2.35x10<sup>6</sup> 751 12.98 0.026

□ 60C1 2.30x10<sup>6</sup> 758 13.31 0.031

◇ 61C1 2.42x10<sup>6</sup> 737 12.53 0.037

△ 62C1 2.48x10<sup>6</sup> 726 12.38 0.041

△ 65C1 2.09x10<sup>6</sup> 802 14.74 0.054

□ 66C1 2.31x10<sup>6</sup> 757 13.25 0.059
```


(d) $P_{tt} = 552 \text{ N/cm}^2$ (800 psi), $0.026 < \underline{m} \star < 0.059$.

Figure 8.- Continued.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

o 69C1 4.83×10<sup>6</sup> 738 17.33 -0.001

□ 70C1 4.93×10<sup>6</sup> 730 17.22 0.007

◇ 71C1 5.15×10<sup>6</sup> 711 16.71 0.014

△ 73C1 5.26×10<sup>6</sup> 705 16.62 0.024
```


(e) $P_{tt} = 1103 \text{ N/cm}^2 \text{ (1600 psi), } -0.001 < \underline{m}^* < 0.024.$ Figure 8.- Concluded.

(a) $P_{tt} = 138 \text{ N/cm}^2 (200 \text{ psi}), 0 < \underline{m}^* < 0.509.$

Figure 9.- Heat transfer distribution over conical model 2.

```
RUN Re<sub>D</sub> T<sub>tt</sub> q

d

d

43C2 1.13x10<sup>6</sup> 770 9.45 -0.001

42C2 1.13x10<sup>6</sup> 771 9.51 0.007

41C2 0.96x10<sup>6</sup> 847 11.25 0.045

40C2 1.00x10<sup>6</sup> 824 10.73 0.072

39C2 0.89x10<sup>6</sup> 884 12.09 0.106

55C2 1.20x10<sup>6</sup> 744 8.99 0.157

50C2 1.24x10<sup>6</sup> 726 8.50 0.248
```


(b) $P_{tt} = 276 \text{ N/cm}^2 (400 \text{ psi), -0.00!} < \underline{m}^* < 0.248.$ Figure 9.- Continued.

(c) $P_{tt} = 552 \text{ N/cm}^2 \text{ (800 psi)}, -0.002 < \underline{m} < 0.135.$

Figure 9.- Concluded.

(a) Data generated by boundary-layer code of reference 5 for hemispherical model.

Figure 10.- Correlation of laminar heating rate ratio $\underline{\psi}$ with mass addition parameter \underline{B} .

(b) Experimental data, hemispherical model.

Figure 10.- Continued.

(c) Experimental data, spherical segments.

Figure 10.- Continued.

(d) Experimental data, conical model 1.

Figure 10.- Concluded.

(a) Hemispherical model.

Figure 11.- Effect of mass addition on stagnation point heat transfer.

(b) Spherical segment model.

Figure 11.- Concluded.

Figure 12.- Typical heating rate distribution downstream of anonomously heated stagnation point, hemispherical model 1.

Figure 13.- Correlation of transition Reynolds numbers, hemispherical model.

Figure 14.- Photomicrograph of hemispherical model surface (20×).

Figure 15.- PANT boundary-layer transition correlation, hemispherical model.

CASE I. FULLY TURBULENT HEATING REFERENCE

CASE II. MODIFIED TURBULENT HEATING REFERENCE

(a) Experimental data, hemispherical models.

Figure 16.- Correlation of turbulent heating rate ratio ψ_{turb} with mass addition parameter B_{turb} .

(b) Experimental data, conical model 1.
Figure 16.- Concluded.

1. Nagar No. NASA TP-1139 2. This ad Salation EFFECTS OF MASS ADDITION ON BLUNT-BODY BOUNDARY-LAYER TRANSITION AND HEAT TRANSFER 7. Authoria Ceorge E. Kaattari 2. Privancing Organization Name and Address NASA Ames Research Center Noffett Field, California 94035 12. Sommaring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 15. Supprementary Name The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental duconsisted of heat transfer measurements from which boundary-layer transition were deduced. The data verified various applicable boundary-layer transitions in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 17. Now Work (Supputed by Authoria) Blunt-body heat transfer measurements from which boundary-layer codes it in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 18. Deviation Business Unlimited 19. Security Caset Left de negation Unclassified 19. Security Caset Left de negation Unclassified 19. Security Caset Left de negation Unclassified 20. Security Caset Left de negation Unclassified 21. No. of Pages 22. Poer 4. 50.						
### EFFECTS OF MASS ADDITION ON BLUNT-BODY BOUNDARY-LAYER TRANSITION AND HEAT TRANSFER Authorial Ceorge E. Kaattari		2. Government Acces	sion No.	3. Recipient's Catalog	No.	
S. Perturning Cognization Name and Address NASA Ames Research Center Moffett Field, California 94035 12. Sparmanny Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 15. Suppresentary Name The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental disconsisted of heat transfer measurements from which boundary-layer transitions were deduced. The data verified various applicable boundary-layer codes in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 17. Easy Work (Supposed by Audhorite) Blunt-body heat transfer Boundary-layer transition Binary boundary layers Transpiration cooling 18. Descript Camel left the pages Take Category - 34 19. Security Camel left the pages 10. No. of Pages 22. Prof.	4. Tich and Schools EFFECTS OF MASS ADDITION			78 nation Code		
NASA Ames Research Center Moffett Field, California 94035 12. Sourmarroy Agricy Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 15. Supplementary Notes 16. Abstract The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt comes, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental disconsisted of heat transfer measurements from which boundary-layer transitions were developed for the laminar and turbulent flow regimes. 17. Say Words (Supplementary Notes) 18. Descriptions Supplementary Notes 19. Say Words (Supplementary Notes) 10. Mass Addition on the Science of Mass Addition on the English Science of Mass Addition on the English Science of Mass Addition Consisted of air ejected through porous forward surfaces of the models. The experimental disconsisted of heat transfer measurements from which boundary-layer transition are developed for the laminar and turbulent flow regimes. 19. Say Words (Supplementary Notes) 10. Mass Model Supplementary Notes 11. Type of Report and Report Notes 12. Notes Report and Report Notes 13. Type of Report and Report Notes 14. Sponsoring Agency Code 15. Supplementary Notes 16. Supplementary Notes 17. Notes Report and Report Notes 18. Sponsoring Agency Code 19. Sponsoring Agency Code 19. Sponsoring Agency Code 19. Sponsoring Agency Code 19. Sponsoring Agency Report States 19. Sponsoring Agency Code 19. Sponsor					ration Report No.	
Moffett Field, California 94035 12. Sporturing Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 15. Supplementary Notes 16. Abstract The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental disconsisted of heat transfer measurements from which boundary-layer transition were deduced. The data verified various applicable boundary-layer codes in in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 17. Key Work (Supplement by Auchoria) Blunt-body heat transfer Boundary-layer transition Binary boundary layers Transpiration cooling 18. Distribution Statement Unlimited STAR Category - 34 19. Security Cannot led this regime 22. Proc*				san arang and a	00-21	
National Aeronautics and Space Administration National Aeronautics and Space Administration Nashington, D.C. 20546 16. Suppresentary Notes The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental duconsisted of heat transfer measurements from which boundary-layer codes is in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 17. Eay Work (Suppress of the Statement) 18. Description Statement Unlimited STAR Category - 34 19. Security Capacit left this report) 20. Security Capacit left this page) 21. No. of Pages 22. Pages 22. Pages 23. Pages 24. Pages 25. Pages 26. Security Capacit left this pages 27. No. of Pages 28. Pages 28. Pages 29. Security Capacit left this pages 20. Security Capacit left this pages 21. No. of Pages 22. Pages 23. Pages 24. Pages 25. Pages 26. Security Capacit left this pages 27. No. of Pages 28. Pages 28. Pages 29. Security Capacit left this pages 29. Security Capacit left this pages 20. Security Capacit left this pages 20. Security Capacit left this pages 21. No. of Pages 22. Pages 23. Pages 24. Pages 25. Pages 26. Security Capacit left this pages 27. No. of Pages 28. Pages 28. Pages 29. Security Capacit left this pages 29. Security Capacit left this pages 29. Security Capacit left this pages 29. Pages 20. Pages 20. Pages 20. Pages 20. Pages 20. Pages 21. No. of Pages 22. Pages 23. Pages 24. Pages 25. Pages 26. Pages 27. No. of Pages 28. Pages 29. Pages		-	1			
Washington, D.C. 20546 15. Supplementary Notes The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental disconsisted of heat transfer measurements from which boundary-layer transition were deduced. The data verified various applicable boundary-layer codes is in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 17. No. Within Chaptering Desired Line State Category - 34 18. Security Classified the pages 21. No. of Pages 22. No. of Pages 23. No. of Pages 24. No. of	12. Sporsoring Agency Name and Address					
The results are presented for an experimental investigation on the effects of mass addition on boundary-layer transitions for blunt bodies tested at Mach number 7.32. The model bodies tested were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental deconsisted of heat transfer measurements from which boundary-layer transition were deduced. The data verified various applicable boundary-layer codes is in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes. 12. Key Word (Suggested by Aucthoria) 13. Blunt-body heat transfer Boundary-layer transition Binary boundary layers Transpiration cooling 14. Duty Statement Unlimited STAR Category - 34 15. No. of Pages 12. No.		Space Admini	stration	14. Sponsoring Agency	Code	
Blunt-body heat transfer Boundary-layer transition Binary boundary layers Transpiration cooling STAR Category - 34 18 Security Cuest (of this page) 21 No. of Pages 22 Prior*	The results are preseffects of mass addition tested at Mach number 7.3 blunt cones, and spherica ejected through porous for consisted of heat transfewere deduced. The data win the laminar and transi	on boundary-1 2. The model 1 segments. rward surface r measurement erified vario tional flow r	ayer transition bodies tested The mass additi s of the models s from which bo ous applicable b regimes. Empiri	were hemisph ion consisted i. The exper- oundary-layer coundary-layer cal heating	bodies eres, of air imental data transitions r codes in rate data	
44 44	Blunt-body heat transfer Boundary-layer transition Binary boundary layers		Unlimited		34	