Lab_Hierarchical clustering

KUMAR GAURAV 20122065

import pandas as pd

df = pd.read_csv('Mall_Customers.csv')

df.head()

₽		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

df['Age'].hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7efc2c001710>

df['Annual Income (k\$)'].hist(color = 'r')

<matplotlib.axes._subplots.AxesSubplot at 0x7efc2b9a7090>

import matplotlib.pyplot as plt

plt.plot(df['Age'],df['Annual Income (k\$)'])
plt.legend()
plt.show()

No handles with labels found to put in legend.

data = df.iloc[:,3:5]
data

	Annual Income (k\$)	Spending Score (1-100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40
195	120	79
196	126	28
197	126	74
198	137	18
199	137	83

200 rows × 2 columns

import scipy.cluster.hierarchy as shc

memory usage: 3.2 KB

```
plt.figure(figsize=(10,7))
plt.title("Customer Dendograms")
dend = shc.dendrogram(shc.linkage(data, method='ward'))
```


from sklearn.cluster import AgglomerativeClustering

cluster = AgglomerativeClustering(n_clusters=5, affinity= 'euclidean',linkage = 'ward')
cluster.fit_predict(data)

#You can see the cluster labels from all of your data points. Since we had five clusters,

data		head	()
uucu	•	IICuu	\	,

	Annual Income (k\$)	Spending Score (1-100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40

plt.figure(figsize=(10, 7))
plt.scatter(data.iloc[:,0], data.iloc[:,1], c=cluster.labels_, cmap='rainbow')
plt.show()

#You can see the data points in the form of five clusters.
#The data points in the bottom right belong to the customers
#with high salaries but low spending. These are the customers
#that spend their money carefully. Similarly, the customers
#at top right (green data points), these are the customers
#with high salaries and high spending

✓ 0s completed at 4:26 PM

×