Robotics [IIT-Jodhpur] Practical 2: Motion Analysis (Forward Dynamics) of 1-link robot

For the 1-link robot, shown in Fig. 1, equation of motion of which is given by EoM: $I_{zz}\ddot{\theta} = \tau - mgl_c \cos\theta$ or

Forward Dynamics:
$$\ddot{\theta} = I_{zz}^{-1}(\tau - mgl_c \cos \theta)$$

[Inputs: τ , $\theta(t = 0)$, $\dot{\theta}$ ($t = 0$)][Output: $\theta(t)$, $\dot{\theta}$ (t)]

- 1. Perform the simulation (forward dynamics) of the 1-link robot free fall under gravity, i.e., $\tau = 0$, for the time period of T=3 sec and initial joint angle and joint velocity as $\theta(t=0) = 0 \, rad, \dot{\theta}(t=0) = 0 \, rad/s$
- 2. Plot θ vs t, $\dot{\theta}$ vs t and $\ddot{\theta}$ vs t
- 3. Animate the system

Repeat the above steps for

a)
$$\theta(0) = \frac{\pi}{3} rad, \dot{\theta}(0) = 0 \text{ rad/s}$$

b) $\theta(0) = \frac{\pi}{3} rad, \dot{\theta}(0) = 0.1 \text{ rad/s}$

b)
$$\theta(0) = \frac{\pi}{3} rad, \dot{\theta}(0) = 0.1 \text{ rad/s}$$

c) Input torque τ = torque obtained using inverse dynamics in practical 1

Assume m = 1 kg, l = 1 m, $l_c = 0.5 \text{m}$, $I_{zz} = \frac{1}{3} m l^2$ and $g = 9.81 \text{ m/s}^2$.

Figure 1: A 1-link robot

Hint:

- Represent it in terms of two first order differential equation using state space form, i.e., $y_1 = \theta$, $y_2 = \dot{\theta}$ and $\dot{y}_1 = \dot{\theta}$, $\dot{y}_2 = \ddot{\theta}$.
- Use Ordinary Differential Equation (ODE) solver "ode45"