Problems of Chemical Kinetics using

Wolfram Alpha.

In these problems, you have to:

- Write the *rate matrix* (**K** matrix).
- ullet Find the eigenvalues of the K matrix using the <code>Eigenvalues[]</code> function of WolframAlpha.
- Find the eigendecomposition of the **K** matrix using the Diagonalize[] function of *WolframAlpha*. Watch the cases (if any) when the **K** matrix is not diagonalizable.
- Find the matrix exponential $e^{\mathbf{K}t}$ using the MatrixExp[] function of *WolframAlpha*. Make sure you are really calling MatrixExp[] rather than Exp[].
- Multiply the resulting e^{Kt} matrix by an initial-concentration vector. Consider the case when only one reactant [A] is present ([A]₀ \neq 0, [B]₀ =[C]₀=...=0) as well as the case when all reactants are present at the beginning: [A]₀ \neq 0, [B]₀ \neq 0, [C]₀ \neq 0,... *Hint*: this matrix-vector multiplication and the previous step (e^{Kt} matrix calculation) can be done by *WolframAlpha* in a single step. Figure out yourself how.
- If possible, solve the original system of kinetic equations for the given initial concentrations directly, using the Solve[] function of *WolframAlpha*. Compare the results with those obtained previously by the matrix method.

The systems to do are the following ones:

- **1.** A \rightarrow B \rightarrow C with different rate constants $k_1 \neq k_2$.
- **2.** A \rightarrow B \rightarrow C with identical rate constants $k_1 = k_2 = k$.
- **3.** A \rightleftarrows B \rightarrow C with rate constants k_1, k_{-1}, k_2 .
- **4.** A \rightleftarrows B \rightarrow C with indentical rate constants $k_1 = k_{-1} = k_2 = k$.
- **5.** A \rightarrow B \rightleftarrows C with rate constants k_1, k_2, k_{-2} .
- **6.** A \rightarrow B, A \rightleftarrows C with rate constants k_1, k_2, k_{-2} .
- 7. A \rightarrow B \rightarrow C \rightarrow D with different rate constants $k_1 \neq k_2 \neq k_3$.
- **8.** A \rightarrow B \rightarrow C with identical rate constants $k_1 = k_2 = k_3 = k$.