Conclusão

Essa sessão tem como objetivo, partindo dos dados dos testes da páginas anteriores, definir quais implementações são as mais desejáveis para realizar a fatoração QR.

Para os exemplos usados, tivemos melhoria significativa entre qr_GS e qr_GSM. Acrescentar mais uma etapa, o pivoteamento parcial não se mostrou muito útil, pode ser que eu não tenha testado com um exemplo conveniente, mas não me parece o caso.

Quanto à acurácia e ortogonalidade, não percebi nenhuma diferença significativa entre usar uma função baseada no método de Gram-Schmidt ou Householder.

Para lidar com matrizes má condicionadas, as funções qr_GSM, qr_GSP, qr_House_1 e qr_House_2 estão equiparadas, a diferença entre elas não é tão relevante, pois quando grande, a diferença fica na escala de 10^2 ou 10^3 .

Por fim, ressalto as funções preferíveis em cada caso:

Se
$$A \in \mathbb{M}^{m \times n}$$
, com $m \ge n$:

É recomendado o uso de qr_GSM, afinal é o caso mais simples dentre os que têm o seu nível de precisão.

```
Se A \in \mathbb{M}^{m \times n}, com m < n:
```

Prefira o uso de qr_House_2, pois esse caso, diferente de vários outros, é capaz de retorna uma fatoração funcional. Para o outro caso $(m \ge n)$, essa versão faz com que o resultado seja o mesmo que o do método de GS. Para o cenário em questão, essa fatoração se parece com a fatoração reotrnada por qr_House_1 para matrizes nas quais $m \ge n$