Отчёт по лабораторной работе №6

Дисциплина: Архитектура компьютера

Абакумов Тимофей Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Символьные и численные данные в NASM	. 7
	3.2 Выполнение арифметических операций в NASM	. 12
	3.3 Выполнение заданий для самостоятельной работы	. 16
4	Выводы	18

Список иллюстраций

პ.⊥	создание нового фаила	/
3.2	Копирование файла	7
3.3	Вставка программы	8
3.4	Запуск программы	9
3.5	Изменение программы	9
3.6	Запуск программы	9
3.7	Создание нового файла	10
3.8	Создание нового файла	10
3.9	Запуск программы	11
3.10	Изменение программы	11
3.11	Запуск программы	11
3.12	Создание нового файла	12
3.13	Изменение программы	12
3.14	Запуск программы	13
3.15	Изменение программы	14
3.16	Запуск программы	14
3.17	Создание файла	14
3.18	Изменение программы	15
3.19	Запуск программы	16
3.20	Создание файла	16
3.21	Изменение программы	17
3.22	Запуск программы	17

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

Порядок выполнения лабораторной работы

- 1. Символьные и численные данные в NASM.
- 2. Выполнение арифметических операций в NASM.
- 3. Выполнение заданий для самостоятельной работы.

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

 Для начала создадим каталог для программам лабораторной работы № 6, перейдём в него и создадим файл lab6-1.asm с помощью утилиты touch (рис. 3.1).

```
taabakumov@dk3n55 ~ $ mkdir ~/work/arch-pc/lab06
taabakumov@dk3n55 ~ $ cd ~/work/arch-pc/lab06
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ touch lab6-1.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.1: Создание нового файла

2. Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. 3.2).

Рис. 3.2: Копирование файла

3. После этого откроем созданный файл lab6-1.asm, вставим в него программу вывода значения регистра eax (рис. 3.3).

Рис. 3.3: Вставка программы

```
Код программы из пункта 3:
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

4. Создадим исполняемый файл программы и запустим его. Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6 (рис. 3.4).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-1
i
```

Рис. 3.4: Запуск программы

5. Далее изменим в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 3.5).

Рис. 3.5: Изменение программы

6. Создадим новый исполняемый файл программы и запустим его. Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран (рис. 3.6).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-1
taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.6: Запуск программы

7. Создадим новый файл lab6-2.asm с помощью утилиты touch (рис. 3.7).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ touch lab6-2.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.7: Создание нового файла

8. Введём в файл текст другой программы для вывода значения регистра eax (рис. 3.8).

```
mc [taabakumov@dk3n55]:~/work/arch-pc/lab06

lab6-2.asm [----] 9 L:[ 1+ 8 9/ 9] *(117 / 117b)
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax, '6'
mov ebx, '4'
add eax, ebx
call iprintLF
call quit
```

Рис. 3.8: Создание нового файла

```
Код программы из пункта 8:
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

9. Создадим и запустим исполняемый файл lab6-2 (рис. 3.10). Теперь вывод число 106, потому что программа позволяет вывести именно число, а не

символ, хотя все еще происходит именно сложение кодов символов "6" и "4" (рис. 3.9).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-2
106
taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.9: Запуск программы

10. Заменим в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4. Заменим в тексте программы функцию iprintLF на iprint (рис. 3.13). (рис. 3.10).

Рис. 3.10: Изменение программы

11. Создадим и запустим новый исполняемый файл. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10 (рис. 3.11).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-2
```

Рис. 3.11: Запуск программы

3.2 Выполнение арифметических операций в NASM

12. Создадим файл lab6-3.asm с помощью утилиты touch (рис. 3.12).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ touch lab6-3.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.12: Создание нового файла

13. Введём в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 3.13).

```
mc[taabakumov@dk3n55]:~/work/arch-pc/lab06

Q ≡ x

lab6-3.asm [----] 41 L:[ 11+20 31/ 31] *(1423/1423b) <EOF> [*][X]

GLOBAL _start
_start:
_start:
;---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
;---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати
call iprintLF ; из 'edi' остаток) в виде символов
call quit ; вызов подпрограммы завершения
1 Помощь 2 Сохран 3 Блок 43амена 5 Копия 6 Пер~ть 7 Поиск 8 Уда~ть 9 МенюмС 10 Выход
```

Рис. 3.13: Изменение программы

```
Код программы из пункта 13:
```

%include 'in out.asm'; подключение внешнего файла

SECTION .data

div: DB 'Результат:',0

rem: DB 'Остаток от деления:',0

SECTION .text

```
GLOBAL start
start:
mov eax, 5; EAX=5
mov ebx,2; EBX=2
mul ebx; EAX=EAX*EBX
add eax,3; EAX=EAX+3
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx,3; EBX=3
div ebx; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат:'
mov eax,edi; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
mov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления:'
mov eax,edx; вызов подпрограммы печати значения
call iprintLF; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы завершения
```

14. Создаю исполняемый файл и запускаю его (рис. 3.14).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 3.14: Запуск программы

15. Изменим программу так, чтобы она вычисляла значение выражения f(x) = (4*6+2)/5 (рис. 3.15).

```
mc[taabakumov@dk3n55]:~/work/arch-pc/lab06

lab6-3.asm [-M--] 41 L:[ 10+19 29/ 29] *(1365/1365b) <EOF> [*][
_start:
; ---- Вычисление выражения
mov eax,4 ; EAX=5
mov ebx,6 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
```

Рис. 3.15: Изменение программы

16. Создадим и запустм новый исполняемый файл. Я посчитал для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно (рис. 3.16).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 5
Остаток от деления: 1
taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.16: Запуск программы

17. Создадим файл variant.asm с помощью утилиты touch (рис. 3.17).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ touch variant.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.17: Создание файла

18. Введём в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 3.18).

```
Variant.asm [----] 39 L:[ 1+15 16/ 25] *(392 / 491b) 0010 0х00А

%include произовы
SECTION data
msg: DB Индиперианта (0
SECTION 1658
x: RESB 80
SECTION text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x; вызов подпрограммы преобразования
call atoi; ASCII кода в число, 'eax=x'
xor edx,edx
mov edx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.18: Изменение программы

```
Код программы из пункта 18:
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите № студенческого билета:',0
rem: DB 'Ваш вариант:',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, eax=x
```

```
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

19. Создаю и запускаю исполняемый файл. Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 9 (рис. 3.19).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./variant
Введите № студенческого билета:
1132246828
Ваш вариант: 9
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ∏
```

Рис. 3.19: Запуск программы

3.3 Выполнение заданий для самостоятельной работы

20. Создадим файл lab6-4.asm с помощью утилиты touch (рис. 3.20).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ touch lab6-4.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.20: Создание файла

21. Откроем созданный файл для редактирования, введём в него текст программы для вычисления значения выражения 10+(31x-5). Это выражение было под вариантом 9 (рис. 3.21).

```
lab6-4.asm [---] 37 L:[ 1+20 21/28] *(1368/1823b) 0010 0x00A

Xinclude полотов ; подключение внешнего файла

SECTION data ; секция инициированных данных

msg: DB Несультов ,0

SECTION hos; секция не инициированных данных

x: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры, выделенный размер - 80 байт

SECTION test; Код программы

LStart; Началю программы

LStart; Точка входа в программы

Start; Точка входа в программы

mov eax, мsg; зались адреса выводимного сообщения в еах

call sprint; вызов подпрограммы печати сообщения

mov eax, x; вызов подпрограммы вводам сообщения

mov eax, x; вызов подпрограммы вреобразования

call start; ASCII кода в число, еах-х

mov edx, 31; зались значения 31 в регистр ebx

mul ebx; EAX=EAX=EBX = x-31

add eax, -5; еаx = eax-5 = (31*x-5)

add eax, 10; еаx = eax+10 = 10+(31*x)

mov edi, eax; запись результата вычисления в 'edi'

---- Вывод результата на экран

mov eax, rem; вызов подпрограммы печати

call sprint; сообщения 'Pesyльтат: '

mov eax, rem; вызов подпрограммы печати

call iprint; из 'edi' в виде синволов

call quit; вызов подпрограммы завершения
```

Рис. 3.21: Изменение программы

22. Создаю и запускаю исполняемый файл. При вводе значения 1, вывод - 36. Проведём еще один запуск исполняемого файла для проверки работы программы с другим значением на входе. При вводе значения 3, вывод - 98. Программа отработала верно (рис. 3.22).

```
taabakumov@dk3n55 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab-6 lab-4.o ld: невозможно найти lab-4.o: Нет такого файла или каталога taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab-6 lab-6.o ld: невозможно найти lab-6.o: Нет такого файла или каталога taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 1
Результат: 36taabakumov@dk3n55 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 3
Результат: 98taabakumov@dk3n55 ~/work/arch-pc/lab06 $
```

Рис. 3.22: Запуск программы

4 Выводы

При выполнении данной лабораторной работы я освоил арифметические инструкции языка ассемблера NASM.