AMENDMENT TO THE CLAIMS

1. (Currently amended) A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator interposed between said positive electrode and said negative electrode, and an electrolyte,

wherein said positive electrode comprises a positive electrode active material comprising a particle of a composite oxide represented by a general formula:

$$Li_xMe_{1-v-z}M_vL_zO_2$$
,

where said element Me is Ni and/or Co at least one transition metal element except Ti,

Mn, Y and Zr, said element M is at least one selected from the group consisting of Mg, Ti, and

Zn, and said element L is at least one selected from the group consisting of Al, Ca, Ba, Sr, Y and

Zr,

said element M is uniformly distributed in said particle, and said element L is distributed more in a surface portion of said particle than an inside of said particle,

said general formula satisfies $1 \le x \le 1.05$, $0.005 \le y \le 0.1$ and $0 < z \le 0.05$, said separator comprises a plurality of laminated monolayer films, said plurality of monolayer films each have a microporous structure, and a positive electrode-side monolayer film selected from said plurality of monolayer films which faces said positive electrode comprises polypropylene.

2-3. (Canceled)

4. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein said element Me includes Ni and Co, said element M is Mg, said element L is Al, said general formula satisfies $0.005 \le y \le 0.03$ and $0.01 \le z \le 0.05$.

5. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein said positive electrode-side monolayer film further comprises polyethylene, and the amount of said polypropylene is not less than 60 wt% relative to the total amount of said polypropylene and said polyethylene.

6. (Cancelled)

- 7. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein when a radius of said particle is r, said element L is distributed in a region within 0.3r from the surface of said particle at a concentration not less than 1.2 times higher than that in a region within 0.3r from the center of said particle.
- 8. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein at least one selected from said plurality of monolayer films has a pore closing temperature of 110 to 140°C.
- 9. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 8, wherein said monolayer film having a pore closing temperature of 110 to 140°C does not face said positive electrode and comprises polyethylene.
- 10. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 9, wherein said monolayer film having a pore closing temperature of 110 to 140°C further comprises polypropylene, and the amount of said polypropylene is not greater than 20 wt% relative to the total amount of said polyethylene and said polypropylene.

- 11. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 8, wherein said at least one monolayer film having a pore closing temperature of 110 to 140°C in said plurality of monolayer films has a thickness of not less than 8 μ m.
- 12. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein said positive electrode-side monolayer film has a thickness of not less than 0.2 μm and not greater than 5 μm .
- 13. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein at least one of said plurality of monolayer films is formed by drawing a sheet obtained by extrusion in two directions.
- 14. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 9, wherein when said positive electrode-side monolayer film has an average pore size D1 based on a total pore volume measured by a mercury intrusion method, and said monolayer film having a pore closing temperature of 110 to 140°C has an average pore size D2 based on a total pore volume measured by a mercury intrusion method, D1 < D2 is satisfied.
- 15. (Original) The non-aqueous electrolyte secondary battery in accordance with claim 1, wherein said battery is charged by a charge control system whose end-of-charge voltage is set to not less than 4.3 V.

16. (Withdrawn) A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator interposed between said positive electrode and said negative electrode, and an electrolyte,

wherein said positive electrode comprises a positive electrode active material comprising a particle of a composite oxide represented by a general formula:

$$Li_xCo_{1-y-z}M_yL_zO_2$$
,

where said element M is at least one selected from the group consisting of Mg, Ti, Mn and Zn, and said element L is at least one selected from the group consisting of Al, Ca, Ba, Sr, Y and Zr,

said general formula satisfies $1 \le x \le 1.05$,

$$0.005 \le y \le 0.1$$
 and $0 \le z \le 0.05$,

said separator comprises a plurality of laminated monolayer films,
said plurality of monolayer films each have a microporous structure, and
a positive electrode-side monolayer film selected from said plurality of monolayer films which
faces said positive electrode comprises polypropylene.