Capacités attendues:

- ☐ Estimer graphiquement ou encadrer une intégrale, une valeur moyenne.
- ☐ Calculer une intégrale, une valeur moyenne
- ☐ Calculer l'aire sous une courbe ou entre deux courbes.
- ☐ Interpréter une intégrale, une valeur moyenne dans un contexte issu d'une autre discipline.

Intégrale comme aire sous une courbe

Exercice 1

Sur le graphique ci-contre sont données la droite représentant une fonction f ainsi qu'une surface colorée.

Déterminer par lecture graphique la valeur de l'intégrale $\int_{-2}^{1} f(x) dx$.

Exercice 2

Calculer la valeur de l'intégrale $\int_0^4 (-x+4) dx$.

Exercice 3

Sur le graphique ci-contre sont représentées la courbe représentative d'une fonction f définie sur [-2; 4] ainsi qu'une surface colorée.

- 1. Déterminer par lecture graphique l'expression de f(x).
- 2. Déterminer la valeur de l'intégrale $\int_{-2}^{2} f(x) dx$.

Exercice 4

Calculer chaque intégrale :

1.
$$\int_0^2 3 \, dx$$

2.
$$\int_{-1}^{4} 2 \, dx$$

$$3. \int_0^1 x \, dx$$

4.
$$\int_0^5 (t+1) dt$$

1.
$$\int_0^2 3 \, dx$$
 2. $\int_0^4 2 \, dx$ 3. $\int_0^1 x \, dx$ 4. $\int_0^5 (t+1) \, dt$ 5. $\int_1^1 (1-u) \, du$

Estimer une intégrale par la méthode des rectangles

Exercice 5

Voici la courbe représentative d'une fonction f dans un repère orthonormal (O; I; J).

On note

$$I = \int_{-1}^{2} f(x) \mathrm{d}x$$

Encadrer I par 2 entiers.

Exercice 6

Voici la courbe représentative d'une fonction g dans un repère orthonormal (O ; I ; J).

On note

$$J = \int_0^3 g(x) \mathrm{d}x$$

- 1. Encadrer J par 2 entiers.
- 2. Encadrer J par 2 multiples de 0,25 (compter les petits carreaux).

Exercice 7

La fonction f définie sur $[0 ; +\infty[$ par $f(x)=\sqrt{x}$ est représentée dans le repère ci-contre.

Utiliser les rectangles représentés pour estimer la valeur de l'intégrale $\int_0^4 f(x)\,dx.$

Exercice 8

f est la fonction définie sur l'intervalle $[0\ ;\ 1]$ par $f(x)=e^x.$

- 1. Utiliser les rectangles de même largeur largeur représentés ci-contre pour déterminer un encadrement de l'intégrale $I=\int_0^1 e^x\,dx$.
- 2. En quel nombre n d'intervalles de même longueur doiton subdiviser $[0\;;\;1]$ pour obtenir un encadrement de I d'amplitude 0,1?

