20 Funktionenkörper einer Prävarietät

Definition 46 (orig. 43). Für eine Prävarietät X sind die rationalen Funktionenkörper aller nichtleeren affin-offenen Teilmengen in natürlicher Weise zu einander isomorph. Diesen Körper K(X) nennen wir den **rationalen Funktionenkörper**von X.

Proof. $\emptyset \neq U, V \subseteq X$ affine, offene Untervarietäten. Da X irreduzibel ist, gilt nach Satz 13:

$$\emptyset \neq U \cap V \subseteq U$$
 offen.

Nach Definition von \mathcal{O}_X ist

$$\mathcal{O}_X(U) \subseteq \mathcal{O}_X(U \cap V) \subseteq K(U) = \operatorname{Quot}(\mathcal{O}_X(U)).$$

Das impliziert $\operatorname{Quot}(\mathcal{O}_X(U \cap V)) = K(U)$. Aus Symmetriegründen ist aber damit auch bereits $K(V) = \operatorname{Quot}(\mathcal{O}_X(U \cap V))$.

Remark 47 (orig. 44). Bildung des des Funktionenkörpers $K(\cdot)$ ist **nicht** funktoriell! Für $X \to Y$ Morphismus affiner Varietäten ist die Abbildung auf den Koordinatenringen $\Gamma(Y) \to \Gamma(X)$ i.A. **nicht** injektiv, induziert also keine Abbildung $K(Y) \hookrightarrow K(X)$.

Jedoch: Eine Isomorphie $X \xrightarrow{\sim} Y$ induziert $K(Y) \xrightarrow{\sim} K(X)$. Allgemeiner sei $X \xrightarrow{\varphi} Y$ Morphismus mit $\operatorname{im}(\varphi) \subseteq Y$ offen (\Rightarrow dicht. Später: $X \xrightarrow{\varphi} Y$ dominant, gdw. $\operatorname{im}(\varphi) \subseteq Y$ dicht) induziert in funktioreller Weise eine Abbildung $K(Y) \hookrightarrow K(X)$.

Proposition 48 (orig. 45). Sei X eine Prävarietät, $V \subseteq U \subseteq X$ offen. Dann gilt:

- (i) $\mathcal{O}_X(U) \subseteq K(X)$ ist k-Unteralgebra.
- (ii) $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ ist Inklusion von Teilmengen des Funktionenkörpers K(X).
- (iii) Insbesondere gilt für $U, V \subseteq X$ offen:

$$\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \cap \mathcal{O}_X(V).$$

Proof.

(ii) Sei $\mathcal{O}_X(X) \ni f: X \to k$. Dann ist $f^{-1}(0) \subseteq X$ abgeschlossen, da für $W \subseteq X$ affin-offen beliebig gilt, dass

$$f^{-1}(0) \cap W = V(f|_W).$$

Dazu macht man sich klar: "abgeschlossen" ist eine lokale Eigenschaft, affin-offene W bilden eine Basis der Topologie.

$$\Rightarrow \mathcal{O}_X(U) \hookrightarrow \mathcal{O}_X(V), f \mapsto f|_V$$
 ist injektiv für $\emptyset \neq V \subseteq U \subseteq X$ offen.

$$\Rightarrow V \subseteq f^{-1}(0)$$
$$\Rightarrow f^{-1}(0) = U$$
$$\Rightarrow f \equiv 0.$$

(i) $U\supseteq W$ affin-offene Untervarietät.

$$\mathcal{O}_X(W) \hookrightarrow K(W)$$
 k-Algebran
$$\oint \mathcal{O}_X(U)$$

(iii) TODO. \Box