High-Speed Wire Line Receivers

Lecture 6

JSSC 2005: 6.4-Gb/s CMOS SerDes core with FFE and DFE

- The CTLE is a combination of the responses of two amplifiers
- M1 & M2 have a fixed peaking determined by R_D and g_{m1,2} and M3 & M4 has no peaking
- The combined peaking level is adjusted by controlling the ratio of the tail currents to two amplifiers
- The IDAC ensures a fixed total current for both amplifiers → CTLE output commonmode is always fixed
- The frequency at which the peak occurs, referred to here as the pole position, is adjusted by the degeneration capacitor

$$\frac{V_o}{V_{in}} = \frac{R_L}{1/g_{m1,2} + (R_D/2)/(1/s C_{pole})} + g_{m3,4}R_L$$

Alternative CTLE Architectures

- A CTLE could have two parallel path: a DC path and a HF path
- $H_T(s) = (1-a+s/\omega_0)/(1+s/\omega_0)$
- DC gain= 1-a, HF gain= 1
- The CTLE has a zero at $\omega_z = \omega_o(1-a)$, and a pole at ω_o
- If 0<a<1, then the circuit provides HF boost = 1/(1-a)

ISSCC 2010: A 12Gb/s 39dB Loss-Recovery Receiver

- The first-stage G_{in} drives a second stage made of the amplifier G₁ in the forward path and the Rf-Cf low-pass filter followed by Gf in the feedback path
- RC degeneration creates the first zero
- RC filter in the feedback path introduces a second zero to help shape the frequency response
- Switching the current from G_{in} to G_f affects the low-frequency gain
- The variable resistor Rf controls the filter slope

$$V_{o} = \frac{R_{L}}{1/g_{m,in} + (R/2)//(2/s C_{pole})} V_{in} \times G_{1} - V_{o} \frac{1/s C_{f}}{R_{f} + 1/s C_{f}} g_{m,f} R_{L} \times G_{1}$$

M. Pozzoni et al., "A 12Gb/s 39dB loss-recovery unclocked-DFE receiver with bi-dimensional equalization," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010, pp. 164-165, doi: 10.1109/ISSCC.2010.5434006.

ISSCC 2010: A 12Gb/s 39dB Loss-Recovery Receiver

CTLE Drawbacks

- One of the main draw backs of CTLEs → it amplifies noise along with the signal
- This includes thermal noise and cross-talk
- A CTLE alone is usually insufficient for very long backplanes (>20dB of loss at the Nyquist frequency)
- Impact of channel reflections on the received signal is not easily cancelled using a CTLE which usually has a generic boost profile.
- It is important to use more sophisticated equalization techniques → DFEs

Un Equalized vs. Equalized Channel Response For Channel with Reflections

- Channel has 13dB loss at Nyquist (5GHz)
- The combined EQ stages provide up to 9.5dB of boost at Nyquist
- The channel impulse response shows significant pulse spreading before equalization
- Reflections result in residual ISI that is not easily cancelled by a CTLE

10Gbps Eye diagrams before & after the CTLE For Channel with Reflections

Reflections result in partial closure for the vertical/horizontal eye openings

Decision Feedback Equalizer (DFE)

- For low loss channels, the eye opening after the CTLE is reasonable and a sampler could be used to digitize the signal for the clock and data recovery
- If additional equalization is required a DFE is used to cancel residual ISI and near by reflections (why not far reflections?)
- A DFE is a <u>non-linear</u> equalizer which uses the past decisions to correct for post-cursor ISI before taking its new decisions

Inter Symbol Interference

- The transmitted symbols 0s and 1s are represented by $a_n = \pm 1$
- Past symbols add postcursor ISI to the main-cursor
- The eye closure can be directly calculated if the postcursor ISI terms are known
- If a_n and a_{n-1} have opposite polarity (i.e. a transition bit) the ISI terms subtract from the main cursor

3-Tap DFE Operation

- ISI is directly subtracted from the incoming signal via a feedback FIR filter
- Sampler takes the decision on the corrected signal x_c(n)
- Unlike CTLE, DFE Can boost high frequency content without noise and crosstalk amplification
- Cannot cancel pre-cursor ISI

DFE (Cont'd)

The analog equalized signal of the DFE can be expressed as:

$$x_c(n) = x(n) - \sum_{k=1}^{N} T_k y(n-k)$$

- N is the number of DFE taps, and T_k are the DFE tap weights
- Optimum DFE tap weights/polarities are unknown a priori and are determined via adaptive algorithms
- The decision y(n) is made based on the equalized signal x_c(n)

$$y(n) = \text{sgn}(x_c(n)) = \text{sgn}(x(n) - \sum_{k=1}^{N} T_k y(n-k))$$

- The DFE input x(n) is an analog signal whereas, it's output y(n) is a digital signal ±1
- Hence the non-linear nature

DFE HF Boost Calculation

- DFE is a non linear equalizer, however with some approximations one can analyze it in a linear fashion
- The comparator sign function can be linearized as follows:

$$y(n) = x_c(n) / dlev$$

where *dlev* is the average signal level **after equalization** in (V)

$$x_c(n) \approx x(n) - \sum_{k=1}^{N} T_k x_c(n-k) / dlev$$

$$H_c(z) = \frac{1}{1 + \sum_{k=1}^{N} T_k z^{-k} / dlev}$$

where T_k is the actual tap weights in (V)

y(n)

+dlev

DFE HF Boost Calculation

 Problem: For a 2-tap DFE the normalized taps $T_1=0.25 \& T_2=0.1$ Calculate the high frequency boost at Nyquist

Solution:

$$-z(f=F_N)=e^{j\omega Tb}=e^{j(2\pi Fb/2)Tb}=-1$$

$$-z(f=0)=1$$

$$-z(f=F_N)=e^{j\omega Tb}=e^{j(2\pi Fb/2)Tb}=-1$$
 $\longrightarrow H_c(f=f_N)=\frac{1}{1-T_1+T_2}$

$$H_c(f=0) = \frac{1}{1+T_1+T_2}$$

DFE HF Boost Calculation

$$H_c(f=0) = \frac{1}{1+T_1+T_2} = -2.6dB$$

$$H_c(f = f_N) = \frac{1}{1 - T_1 + T_2} = 1.4dB$$

- Boost at Nyquist = 4dB
- Note that the DFE provides a positive boost value for the HF portion of the signal but at the same time it attenuates the DC portion of the signal
- This implies that there is a limit on how much boost can be obtained from a DFE since it eventually reduces the amplitude of the non-transition bits → similar to Tx pre-emphasis

DFE Feedback loop latency

 Once the DFE comparator takes a decision it has to propagate through the multiplier and the summer and be ready before the next clock edge

$$T_{regen} + T_{mult} + T_{sum} + T_{setup} < T_{clk}$$

- T_{setup} is the comparator setup time, and $T_{regen} = T_{ck-Q}$
- For 10Gbps, the sum of these delays has to be less than 100ps
- Consequent taps don't have the same tough timing constraint due to the relaxed T_{regen}
- Capacitance at the summing node limits the maximum number of DFE taps

1-Tap DFE Feedback loop Unrolling

- 2 decisions are made a priori; one with an offset +T₁ and the other with -T₁
- After the following bit decision settles the MUX output automatically selects the correct output
- Eliminates T_{mult} and $T_{sum} \rightarrow$ allows operating at higher speeds
- Also, T_{setup} in this case is much smaller \rightarrow since the comparator is not resolving a small signal as in previous case
- Double the area, and double the loading on the CTLE output

JSSC 2005: 6.4-Gb/s CMOS SerDes core with FFE and DFE

- The DFE uses a speculative approach for the first feedback tap & dynamic feedback for taps two through five
- The speculative DFE feedback sums both + and first feedback tap weights with the received signal
- Both values are then sliced to a binary value
- The correct slicer output is selected by the previously detected data bit value

JSSC 2005: 6.4-Gb/s CMOS SerDes core with FFE and DFE

- The DFE correction is added to the signal by pulling weighed currents from either the +ve/-ve leg of a differential amplifier output using switched current cells
- The tail current sources in the switched current cells set the desired tap weight
- Pass gates are used to XOR(or multiply) the data value with the tap weight sign
- A small amount of capacitive degeneration is used to extend the bandwidth of the summers while minimizing power

JSSC 2007: 10-Gb/s Receiver With Adaptive Optical Dispersion Equalizer in 0.13-µm CMOS

- Polarity switches are removed from the feedback loop to minimize delay around the DFE loop → higher speed operation
- C₁ is always assumed negative to minimize capacitance at the summation node
- The polarity of C2 can be reversed by switching on/off the appropriate differential pair
- A high gain stage is added before the sampler to increase the eye opening
- The least mean square (LMS) algorithm is used to iteratively update the DFE coefficient

A. Momtaz et al., "A Fully Integrated 10-Gb/s Receiver With Adaptive Optical Dispersion Equalizer in 0.13um CMOS," in IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 872-880, April 2007.

ISSCC 2011: multi-standard-compliant transceiver in 40nm digital CMOS technology

- DFE comparators can use a common-source topology to allow operating from a low supply voltage
- An identical branch is added for comparator offset cancelation
- DFE tap branches use a scaled version of the main comparator: tap 1 branch being
 ½ the main branch, & taps 2 to 5 being ¼ the main branch
- Scaling helps reduce the summing node capacitance & DFE power consumption
- The differential voltage T_{1P}-T_{1N} determines the DFE tap weight

M. Ramezani et al., "An 8.4mW/Gb/s 4-lane 48Gb/s multi-standard-compliant transceiver in 40nm digital CMOS technology," 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 352-354.

ISSCC 2009: Serial I/O with DFE-IIR Equalization

- Half rate DFEs/CDRs allow operating the VCO at ½ the data rate at the expense of using 2 DFE samplers (Even & ODD)
- For Channels with a very long tail, A DFE requires many taps to be effective (power and area penalty)
- 1st DFE tap (H1) is feed back directly to cancel the large first ISI post-cursor
- The two half-rate outputs are multiplexed and fed back to a full-rate CT-IIR filter G(s)
- G(s) matches the exponentially decaying tail of the channel impulse response using a single feedback tap

Yong Liu, Byungsub Kim, T. O. Dickson, J. F. Bulzacchelli and D. J. Friedman, "A 10Gb/s compact low-power serial I/O with DFE-IIR equalization in 65nm CMOS," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 182-183.

ISSCC 2009: Serial I/O with DFE-IIR Equalization

- The integrating summer output current is injected into a resettable PMOS latch
- The output of the merged summer/slicer stage is further regenerated by a two-stage latch
- The CT-IIR filter with integrated MUX adopts a fully differential structure
- G(s) has adjustable time-constant via changing R_D & C_D, & amplitude via I_D & R_D
- The IIR filter output is fed to a G_m that is matched to the input G_m
- An additional G_m is added for comparator offset cancelation
- Clocked Mux provides addition UI delay to start at 2nd tap ISI precursor

STRONG ARM LATCH COMPARATOR

- When (CLK = 0) the comparator operates in the reset phase
- When CLK= V_{DD} , the circuit operates in the regenerative phase M_{tail} turns ON, while $M_{7.8}$ turn OFF
- Output voltages (Outp, Outn), which were pre-charged to VDD, start to discharge with different discharging rates depending on the corresponding input voltage (INN/INP)
- Assuming V_{INP} > V_{INN}, Outp discharges faster than Outn
- Hence Outp, falls down to V_{DD}-|V_{thp}| before Outn, M5 will turn on initiating the latch regeneration caused by back-to-back inverters (M3-M6)
- Outn pulls to VDD and Outp discharges to ground

S. Babayan-Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 343-352, Feb. 2014.

STRONG ARM LATCH COMPARATOR

- Needs to be followed by an R-S latch to form a D-flip flop
- RS latch holds output data during latch pre-charge phase (CLK=0)
- Strong-Arm flip-flop has the advantage of no static power dissipation and full CMOS output levels
- M₁ and M₂ are usually the dominant contributors to the comparator mismatch
- The Strong ARM latch draws high transient currents from the supply
- Differential Kickback current appears at the input due to the unequal rate of drop of the latch outputs which couples to the inputs through C_{GDMN1} & C_{GDMN2}
- CM kickback noise currents is a lot worse due to the turn ON/OFF of Mtail which couples the CLK to the inputs through C_{GDMtail} & C_{GSMN1.2}

B. Nikolic, V. G. Oklobdzija, V. Stojanovic, Wenyan Jia, James Kar-Shing Chiu and M. Ming-Tak Leung, "Improved sense-amplifier-based flip-flop: design and measurements," in IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 876-884, June 2000.

High-Speed CML Samplers/Flip-Flops

- A D-flip flop can simply be implemented using master slave latches
- The latch consists of a pre-amplifier A_{pre} and a regeneration circuit with a re-generation time constant τ_{reg}
- In track mode, clk is high and the output tracks the input with a gain A_{pre} , if input large enough the output will saturate at $v_{o-p} = V_F = I_B R$
- In the latch (regeneration) mode, the positive feedback results in an exponential increase in the output $v_o \propto v_{initial} exp(+t/\tau_{req})$
- Until the current is fully steered and v_{o-p}=V_F=I_BR

Automatic Gain Control Loop

- The AGC loop is responsible for adjusting the VGA gain to achieve a constant swing at either the VGA or CTLE output
- It consists of an envelope detector which compares the long-term average peak-topeak swing of the signal with a reference generated from the band-gap
- The AGC loop has a slow response, so even if it encountered an under equalized eye
 it rejects the HF information and will only see the outer eye peak-to-peak
- During boost calibration, if the CTLE DC gain changes the AGC loop must be allowed enough time to adjust the signal amplitude

DFE Tap weight Adaptation

- Adaptive algorithms for DFE tap weights:
 - Sign-sign LMS is typically used (derivative of the well-known leastmean square (LMS) algorithm)
 - Sign based zero forcing (ZF)
- An extra sampler is added for adaptation using SS-LMS
- Updates for the tap coefficients are based only on the sign of the data and the measured error

$$T_{n+1}^k = T_n^k + \mu x \operatorname{sign}(e_n) x \operatorname{sign}(y_{n-k})$$

where n is the time instant, k is the tap index, μ is the adaptation loop gain

• y_n is the received data and e_n is the error of the received signal with respect to the desired data level dlev

$$e_n = x_c(n) - dlev$$
 if $x_c(n) > 0$

- For any **X01** transition if e_n is -ve (under-equalized) T^l increments by μ
- For any **0X1** transition if e_n is -ve (under-equalized) T^2 increments by μ

V. Stojanovic et al., "Autonomous dual-mode (PAM2/4) serial link transceiver with adaptive equalization and data recovery," in IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 1012-1026, April 2005.

DFE Tap weight Adaptation (Cont'd)

• dlev can be detected using an analog peak detector or a second loop can be created to track the signal level dlev

$$dlev_{n+1} = dlev_n + \mu x sign(e_n)$$

$$e_n = x_c(n) - dlev$$
 if $x_c(n) > 0$

- For any 1 transition if e_n is +ve dlev increments by μ
- For any 1 transition if e_n is -ve *dlev* decrements by μ
- Typically, the *dlev* adaptation loop should settle first before the DFE tap weights start adaptation
- Depending on the DFE implementation the value of dlev might need to be re-adjusting for each change in the tap weights
- Dlev can also be used by the AGC for VGA gain control

dLevinit

80

dLev [mV]

number of updates

number of updates

On-chip Eye Opening Monitor (EOM)

- Integrating an on-chip eye opening monitor (EOM) gives valuable information that can be used for:
 - Adjusting CDR sampling point
 - Optimizing Rx CTLE/DFE equalization
- EOM can be created by the same sampler used for DFE tap adaptation
- Sampler needs to have both variable voltage timing offsets

- The output of this sampler is compared with the main data sampler via an XOR and the BER can be calculated by accumulating the number of errors
- The voltage and timing offset of the monitor comparator are swept to produce a 2-D plot for BER

H. Noguchi, N. Yoshida, H. Uchida, M. Ozaki, S. Kanemitsu and S. Wada, "A 40-Gb/s CDR Circuit With Adaptive Decision-Point Control Based on Eye-Opening Monitor Feedback," in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2929-2938, Dec. 2008.

On-chip Eye Opening Monitor (EOM)

- If the samples of both comparators are in:
 - Region (1), the XOR outputs a "LOW" → low BER
 - Region (2), the XOR outputs a very high BER of 0.5 (assuming 1s and 0s are equally probable)
 - Region (3), the XOR outputs a BER of 0.25
 - The gradient of the 2-D BER plot provides a re-created eye diagram using the on-chip eye monitor

M. Ramezani et al., "An 8.4mW/Gb/s 4-lane 48Gb/s multi-standard-compliant transceiver in 40nm digital CMOS technology," 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 352-354.

LV-OIF-11G-SR Receiver specifications (JESD204B standard)

Figure 5 — Line termination at Receiver

operation									
Symbol	Parameter	Conditions	Min Max		Units				
Vtt	Termination Voltage	Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 1).	1.2 – 8%	1.2 + 5%	v				
		Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 2).	1.0 - 8%	1.0 + 5%	v				
		Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 3).	0.8 – 8%	0.8 + 5%	v				
Vrcm	Input Common Mode Voltage	Applies only to AC coupling	-0.05	1.85	V				
		Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 1).	720	Vtt – 10	mV				
		Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 2).	535	Vtt + 125	mV				
		Required only if DC-compliance is claimed. Line Termination circuit of Figure 5 with parameters as per (Note 3).	475	Vtt + 105	mV				
R_Vdiff	Input Differential Voltage		110	1050	mVppd				
Ztt	Vtt Source Impedance	At DC.	-	30	Ω				
Zrdiff	Receiver Differential Impedance	At DC.	80	120	Ω				
RLrdiff	Differential Input Return Loss	From 100 MHz to 0.75*baud rate relative to 100 Ω .	8		dB				
RLrcm	Common Mode Input Return Loss	From 100 MHz to 0.75*baud rate relative to 100 $\!\Omega$	6		dB				
NOTE 1 V	7tt = 1.2V Nominal								

NOTE 2 Vtt = 1.0V Nominal NOTE 3 Vtt = 0.8V Nominal

LV-OIF-11G-SR Receiver specifications (JESD204B standard)

R X1	1-R X1	R Y1	R Y2	R SJ-hf	R SJ-max	R BHPJ	TJ
(UI)	(UI)	(V)	(V)	(p-p UI)	(p-p UI)	(p-p UI)	(p-p UI)
0.35	0.65	0.055	0. 525	0.05	5	0.45	0.70

- NOTE 1 R_SJ-hf = Receive Sinusoidal Jitter, High Frequency
- NOTE 2 R_SJ-max = Receive Sinusoidal Jitter, Maximum
- NOTE 3 R_BHPJ = Receive Bounded High Probability Jitter Breakdown is 0.25 UIpp Uncorrelated, 0.20 UIpp Correlated
- NOTE 4 R X1 = TJ/2.
- NOTE 5 Unit Interval (UI) is specified in
- Table 6. However, for baud-rates greater than 11.1 Gsym/sec, UI shall be 90.09ps.
- NOTE 6 Total Jitter (TJ) includes high-frequency sinusoidal jitter (R_SJ-hf)
- NOTE 7 The Gaussian Jitter (GJ) portion of the Total Jitter (TJ) is defined with respect to a BER of 1e-15 (Q=7.94).