

Tutorial: Additional information for gene expression analysis

BIOTECH-7005-BIOINF-3000

Zhipeng Qu

School of Biological Sciences, The University of Adelaide

October 18th, 2022

Outline

- 1 Multiple mapping issue
- 2 Gene count normalisation
- 3 Over-representation analysis

Short reads can be mapped to multiple features (genes/transcripts)

- Identical/similar sequences in different genes (e.g. gene family, repetitive elements)
- Different transcription isoforms from same gene

Species	Aligner	Read length	multiple mapping rate (%)
Human	STAR	PE100	4.88
Mouse	STAR	PE100	15.72
Rat	STAR	PE75	12.07
Arabidopsis	STAR	PE150	1.41
Rice	Tophat2	PE150	43.7
Soybean	Tophat2	PE150	26.4

Strategies for handling multiple mapping

- Use uniquely mapping reads only
- Simple "rescue" method. Uniformly divide each multi-mapping read to all of the positions it maps to. In other words, a read mapping to 10 positions will count as 10% of a read at each position.
- "Rescue" method using Expectation-Maximization model
 - E-step (Expectation) Give transcript abundances, estimate the probability of each read mapping to each transcript
 - M-step (Maximization) Update the abundances by redistributing the reads
 - Go to step 1 (E-step) until convergence

"Rescue" method using Expectation-Maximization model

$$\begin{split} f_{\rm blue} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33 {+} 0.5 {+} 1 {+} 0.5)/5 = 0.47 \end{split}$$

"Rescue" method using Expectation-Maximization model

$$\begin{split} f_{\rm blue} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33 {+} 0.5 {+} 1 {+} 0.5)/5 = 0.47 \end{split}$$

$$\begin{split} f_{\rm blue} &= (0.27 {+} 0.5 {+} 0.36)/5 = 0.23 \\ f_{\rm green} &= (0.27 {+} 0.5 {+} 0.36)/5 = 0.23 \\ f_{\rm red} &= (0.47 {+} 0.64 {+} 1 {+} 0.64)/5 = 0.55 \end{split}$$

"Rescue" method using Expectation-Maximization model

$$\begin{split} f_{\rm blue} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm green} &= (0.33 {+} 0.5 {+} 0.5)/5 = 0.27 \\ f_{\rm red} &= (0.33 {+} 0.5 {+} 1 {+} 0.5)/5 = 0.47 \end{split}$$

$$\begin{split} f_{\rm blue} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm green} &= (0.27 + 0.5 + 0.36)/5 = 0.23 \\ f_{\rm red} &= (0.47 + 0.64 + 1 + 0.64)/5 = 0.55 \end{split}$$

. . .

Pachter L. Models for transcript quantification from RNA-Seq. arXiv. 2011

2 Gene count normalisation: RPKM and TPM

RNA-Seq is a relative abundance measurement of RNA expression level

- Short reads are RNA fragments randomly picked and sequenced from library
- Additional information, such as levels of "spike-in" transcripts, are required for absolute measurements
- Normalization of read count is needed to compare gene/transcript abundance
 - RPKM/FPKM (Reads/Fragments Per Kilobase Million)
 - 2 TPM (Transcripts Per Million)

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

We assume:

- 1) The genome has 4 genes
- 2) The RNA-Seq dataset has three replicates

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Replicate 3 has much more reads than the other two replicates

	Gene ID	Length	Rep1	Rep2	Rep3
	Α	2 kb	10	12	30
L	В	4 kb	20	25	60
	С	1 kb	5	8	15
	D	10 kb	0	0	1

Gene B is twice as long as gene A, which might explain why it always gets twice as many reads

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

	Total reads:	35	45	106
"Per Million" scaling factors	Tens of reads:	3.5	4.5	10.6

- In this example, we scale the total read counts by 10 instead of 1,000,000
- Million (1,000,000) was chosen just because it made the numbers look nice (Standard RNA-Seq datasets usually have multiple million reads)

"Per Million"

scaling factors

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Count table

Total reads: →Tens of reads:

35 3.5 45

106 10.6

4.5

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	2.86	2.67	2.83
В	4 kb	5.71	5.56	5.66
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.09

RPM table

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	2.86	2.67	2.83
В	4 kb	5.71	5.56	5.66
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.09

RPM table

Scale Per Kilobase

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009

RPKM table

RPKM summary

Gene ID	Length	Rep1	Rep2	Rep3
A	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Count table

Read count was:

- 1) Normalized for differences in sequencing depth
- 2) Normalized for gene length

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009

RPKM table

https://www.youtube.com/watch?v=TTUrtCY2k-w

TPM

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Count table

Scale Per Kilobase

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	5	6	15
В	4 kb	5	6.25	15
С	1 kb	5	8	15
D	10 kb	0	0	0.1

RPK table

TPM

Gene ID	Length	Rep1	Rep2	Rep3
A	2 kb	5	6	15
В	4 kb	5	6.25	15
С	1 kb	5	8	15
D	10 kb	0	0	0.1

RPK table

Total reads: 15 20.25 45.1

"Per Million" → Tens of reads: 1.5 2.025 4.51

Tens of reads: 1.5 2.025 4.51

In this example, we scale the total read counts by 10 instead of 1,000,000

https://www.youtube.com/watch?v=TTUrtCY2k-w

TPM

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	5	6	15
В	4 kb	5	6.25	15
С	1 kb	5	8	15
D	10 kb	0	0	0.1

RPK table

Total reads:

15

20.25

45.1 4.51

"Per Million" scaling factors

→Tens of reads:

1.5

2.025

3.326

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	3.33	2.96	3.326
В	4 kb	3.33	3.09	3.326
С	1 kb	3.33	3.95	3.326
D	10 kb	0	0	0.02

TPM table

TPM summary

Gene ID	Length	Rep1	Rep2	Rep3
A	2 kb	10	12	30
В	4 kb	20	25	60
С	1 kb	5	8	15
D	10 kb	0	0	1

Count table

Read count was:

- 1) Normalized for gene length
- 2) Normalized for differences in sequencing depth

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	3.33	2.96	3.326
В	4 kb	3.33	3.09	3.326
С	1 kb	3.33	3.09	3.326
D	10 kb	0	0	0.02

TPM table

https://www.youtube.com/watch?v=TTUrtCY2k-w

RPKM vs TPM

Gene ID	Length	Rep1	Rep2	Rep3
А	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009
	RPKM total:	4.29	4.5	4.25

RPKM table

TPM total:

10

10

10

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	3.33	2.96	3.326
В	4 kb	3.33	3.09	3.326
С	1 kb	3.33	3.09	3.326
D	10 kb	0	0	0.02

TPM table

https://www.youtube.com/watch?v=TTUrtCY2k-w

RPKM vs TPM

		· · · · · · · · · · · · · · · · · · ·		
Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	1.43	1.33	1.42
В	4 kb	1.43	1.39	1.42
С	1 kb	1.43	1.78	1.42
D	10 kb	0	0	0.009
	RPKM total:	4.29	4.5	4.25
	TPM total:	10	10	10

Gene ID	Length	Rep1	Rep2	Rep3
Α	2 kb	3.33	2.96	3.326
В	4 kb	3.33	3.09	3.326
С	1 kb	3.33	3.09	3.326

0

10 kb

https://www.youtube.com/watch?v=TTUrtCY2k-w

D

0.02

0

RPKM table

TPM table

 ${\small 3\ Over-representation\ analysis}\\$

Genes in pathway "cell cycle" (20)
Proportion in # total genes: 20/20000 = 0.001

Genes in pathway "cell cycle" (20)
Proportion in # total genes: 20/20000 = 0.001

DE genes in pathway "cell cycle": 10

Proportion in #DE genes: 10/100=0.1 >> 0.001

Genes in pathway "cell cycle" (20)
Proportion in # total genes: 20/20000 = 0.001

DE genes in pathway "cell cycle": 10

Proportion in #DE genes: 10/100=0.1 >> 0.001

What we can conclude: It is more likely that expression of genes in pathway "cell cycle" were perturbed between comparisons. We say "cell cycle" genes were over-represented in DE genes

Pathway/Ontologies	Total gene proportion	DE gene proportion	Over-represented?
Cell cycle	20/20,000 = 0.001	10/100 = 0.1	Likely
Development	3000/20,000 = 0.15	20/100 = 0.2	Unlikely
Cell death	100/20,000 = 0.005	20/100 = 0.2	Likely
Tissue development	300/20,000 = 0.015	1/100 = 0.01	Unlikely

We can use statistical test, such as Hypergeometric test to determine the statistical significance of this kind of over-representation analysis.

Thank you!