

College of Earth and Mineral Sciences

PENNSTATE

(O

AD-A207

AFOSR-TR- 69-0392

SMITTER RESEARCH (AFSC)

ු යනු යුතු**රු** දෙස **is** . Ja - 198 190-12. -

Chief, Technical Information Division

Approved for public release; distribution unlimited.

Grant No. AFOSR-85-0298 Final Report to

Air Force Office of Scientific Research Bolling, AFB, DC 20332

HIGH TEMPERATURE OXIDATION STUDIES ON ALLOYS CONTAINING DISPERSED PHASE PARTICLES AND CLARIFICATION OF THE MECHANISM OF GROWTH OF SIO2

> Submitted to: Dr. Liselotte J. Schioler Submitted by: R. Yan, B. Munn and Dr. G. Simkovich

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

January

4 12 064

PENN STATE College of Earth and Mineral Sciences

Undergraduate Majors

Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science; Mineral Economics; Mining Engineering, Petroleum and Natural Gas Engineering; Earth Sciences, Geosciences; Geography; Meteorology.

Graduate Programs and Fields of Research

Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science; Mineral Economics; Mining Engineering, Mineral Processing, Petroleum and Natural Gas Engineering;

Geochemistry and Mineratogy, Geology, Geophysics; Geography; Meteorology.

Universitywide Interdisciplinary Graduate Programs Involving EMS Faculty and Students

Earth Sciences, Ecology, Environmental Pollution Control Engineering, Mineral Engineering Management, Solid State Science.

Associate Degree Programs

Metallurgical Engineering Technology (Shenango Valley Campus).

Interdisciplinary Research Groups Centered in the College

C. Drew Stahl Center for Advanced Oil Recovery, Center for Advanced Materials, Coal Research Section, Earth System Science Center, Mining and Mineral Resources Research Institute, Ore Deposits Research Group.

Analytical and Characterization Laboratories (Mineral Constitution Laboratories)

Services available include: classical chemical analysis of metals and silicate and carbonate rocks; X-ray diffraction and fluorescence; electron microscopy and diffraction; electron microprobe analysis; atomic absorption analysis; spectrochemical analysis; surface analysis by secondary ion mass spectrometry (SIMS); and scanning electron microscopy (SEM).

The Pennsylvania State University, in compliance with federal and state laws, is committed to the policy that all persons shall have equal access to programs, admission, and employment without regard to race, religion, sex, national origin, handicap, age, or status as a disabled or Vietnam-era veteran. Direct all affirmative action inquiries to the Affirmative Action Officer, Suzanne Brooks, 201 Willard Building, University Park, PA 16802; (814) 863-0471.

Produced by the Penn State Department of Publications

A.307161

REPORT DOCUMENTATION PAGE						
18. REPORT, SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS				
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
		APPROVED FOR PUBLIC REVERSE;				
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		DISTRIBUTION UNLIMITED				
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		S. MONITORING ORGAN	IZATION REPO	RT NUMBER(S	3)	
		AFOSR	·TR · 8	9 - 0 3	92	
6. NAME OF PERFORMING ORGANIZATION Bb. OFFICE SYMBOL Dept. of Met. Sci. & Eng(11 applicable)		78. NAME OF MONITORI	ING ORGANIZA	TION		
The Pennsylvania State Univ	AFOSR INC					
6c. ADDRESS (City. State and ZIP Code) 206 B Steidle Building	7b. ADDRESS (City, State and ZIP Code)					
University Park, PA 16802	BLDG, 410					
onlyerolly rath, in 10002		BOLLENG AFB. DC 20332-6448				
Sa. NAME OF FUNDING/SPONSORING	86. OFFICE SYMBOL	9. PROCUREMENT INST	RUMENT IDEN	TIFICATION N	JMBER	
ORGANIZATION (If applicable) AFOSR		AFOSK 05, 2000				
NC		10. SOURCE OF FUNDING NOS.				
8c. ADDRESS (City, State and ZIP Code) Bolling AFB			PROJECT	TASK	WORK UNIT	
Washington, D.C. 20332		ELEMENT NO.	NO.	NO.	NO.	
		-APOSR	9 5=079 6			
11. TITLE (Include Security Classification) N BACK High Temperature OxidationGrowth of \$102		101102F	2306	AZ		
12. PERSONAL AUTHOR(S) G. Simkov						
13a TYPE OF REPORT 13b. TIME C		14. DATE OF REPORT ()	(r. Mo. Day)	15. PAGE C	OUNT	
	5Aug. 850 31Dec. 8					
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES	ontinue on reverse if necessa	ary and identify t	y block number	,		
FIELD GROUP SUB. GR.						
	1					
19. ASSTRACT (Continue on reverse if necessary and identify by block number)						
A wide variety of high temperature oxidation tests have been conducted on Fe and Ni based alloys. Especially, the effects of dispersion phase particles on the oxidation properties were well studied.						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SECURITY CLASSIFICATION				
UNCLASSIFIED/UNLIMITED 🛍 SAME AS RPT. 🗌 DTIC USERS 🗆		UNCLASSIFIED				
228. NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE NUMBI (Include Area Code)	ER 22	OFFICE SYM	BOL		
SCHOLER		(202) 767	-4933	NE		

11. STUDIES ON ALLOYS CONTAINING DISPERSED PHASE PARTICLES AND CLARGETCATION OF THE MECHANISM OF GROWN OF SIDZ

Grant No. AFOSR-85-0298

Final Report

to

Air Force Office of Scientific Research Bolling, AFB, DC 20332

HIGH TEMPERATURE OXIDATION STUDIES ON ALLOYS CONTAINING DISPERSED PHASE PARTICLES AND CLARIFICATION OF THE MECHANISM OF GROWTH OF SiO₂

Submitted to: Dr. Liselotte J. Schioler

Submitted by: R. Yan, B. Munn and Dr. G. Simkovich

January 1989

-				
Accesion For				
DTIC	nounced			
By				
Availability Codes				
Dist	Avail and for Special			
A-1				

Introduction

In most binary transition metal alloys, additions of Cr are used to promote the formation of a protective Cr_2O_3 layer. Once formed, this layer acts as a barrier between the metal and its environment and, thereby, prolongs service life of the alloy. The ability to form such a layer depends upon a complex interaction of variables; the most influencial being the concentration of Cr present in the alloy. In fact, there is a critical concentration of Cr, below which, a complete, protective Cr_2O_3 scale will not form. Under the severe conditions employed in this investigation, upwards of 18 weight percent Cr is required to form a protective layer in the binary Ni-Cr and Fe-Cr alloys.

Previous investigations have shown that the presence of small amounts of finely dispersed oxides or nitrides such as ThO₂, Y₂O₃, TiO₂, Si₃N₄ and TiN can significantly effect the oxidation behavior of binary Ni-Cr, Fe-Cr, and Co-Cr alloys. The beneficial effects of these oxide/nitride additions were increased oxidation resistance, an enhanced scale adhesion, and a decreased concentration of Cr necessary to form the protective Cr₂O₃ layer. However, previous investigations have been limited to studying alloys containing Cr concentrations between 14-20 weight percent and dispersed oxide additions of only 1-2 volume percent.

In the present investigation, a broader composition range of dispersion containing alloys was studied in the hope of gaining a better understanding on the effects of oxide dispersions and the mechanisms involved in the oxidation process. To do this, the Cr concentration was varied between 0 to 15 weight percent with dispersed oxide additions up to 40 volume percent. The dispersed oxide/nitride employed in this investigation was Si₃N₄ and SiO₂ because of their relative abundance, high temperature stability although their effect on transition metal alloys is relatively unknown.

Page 1

The experimental procedure involved processing elemental powders by simple powder metallurgical techniques. This was followed by kinetic studies using an automatic recording semi-micro-balance under the desired conditions of 1 atmosphere O₂ and temperatures of 1273 and 1373^O K. The specimens were held isothermally at the test temperature for approximately 50 hours. Surface topographies of oxidized specimens were then examined by Scanning Electron Microscopy. Transverse sections of representative specimens were also prepared and examined both optically and by SEM techniques in order to determine the distribution of elements in the oxide scales. Finally, standard x-ray diffraction techniques were employed to identify the phases present in the scale. To try and better understand the growth characteristics of the scales, series of short term oxidation tests of 5, 10, 15, and 30 minutes were done in O₂ at 1273^O K.

The following discussion summarizes the work and results obtained on a number of Fe-Cr-Si₃N₄, Ni-Cr-SiO₂ and Fe-Cr-SiO₂ alloys and, also, discusses the possible mechanisms involved in the oxidation process of these alloys.

Fe-Si₃N₄ and Fe-Cr-Si₃N₄ Alloys

Si₃N₄ was first choosen as fine, dispersed particles due to its low solubility and strengthening effect in the Fe base alloys. Si₃N₄ also can serve as the Si source for the growth of a protective SiO₂ scale. In this study, Fe-Cr alloys with and without the addition of 10 vol% Si₃N₄ particles were made by conventional powder metallurgy method and then oxidized at 1173 and 1273^O K in 1 atm of O₂. The oxidation kinetic results (shown on Fig.1) confirm that the addition of Si₃N₄ significantly reduces the

oxidation rates in comparison to that of pure Fe. Similar behavior is observed on the series of Fe-Cr alloys (i.e., Fe-3Cr, Fe-5Cr, Fe-7Cr, Fe-9cr, and Fe-14Cr). The incorporated Si₃N₄ reduces not only the oxidation rate but also the weight gain during the initial oxidation period even in an alloy containing only 3 wt% of Cr.

The previous investigations of Fe-Cr alloys usually utilized high Cr content (about 14-20 wt%) in order to get continuous protective layer on the surface. In the present study, the results indicate that the critical bulk concentration of Cr necessary for forming a continuous Cr₂O₃ layer is significantly reduced to about 5% in the presence of large amounts of Si₃N₄ dispersions in alloys prior to sintering. This reduction may result from increased nucleation of Cr₂O₃ on the remaining Si₃N₄ or the formed SiO₂ particles. As a matter of fact, the motion of Fe is slowed down in the continuous external Cr₂O₃ scale under which SiO₂ layers may form to provide additional oxidation resistance.

The variation of Cr content in the Fe-Cr alloys containing dispersion of Si₃N₄ greatly effects the oxidation behavior. These results are illustrated in Fig. 2 and 3. From Fig. 3, little difference between the weight gains after two different oxidation times is observed. This indicates that the formation of the protective scale is virtually completed within 20 hours in the Fe-Cr alloys with the presence of SiO₂ from the decomposition of Si₃N₄ particles as well as the unreacted nitride particles.

Upon the completion of kinetic measurements, the oxidized specimen were examined with scanning electron microscope to evaluate the grain size from the surface topographies as well as the stacking sequence and thickness of the different oxide layers from the transverse section views. Fairly fine oxide grains and a smooth oxide surface are observed on the alloys with Si₃N₄ while large oxide grains are formed on the alloys

without Si_3N_4 . Thus, the number of grain boundaries which may increase diffusion of Cr is higher in the alloy systems with Si_3N_4 dispersions.

Inert platinum markers, initially placed on the alloy surface prior to oxidation, were found on the top of the Cr_2O_3 which formed on an Fe-9Cr alloy with Si_3N_4 after 50 hours of oxidation at 1273^O K while the Pt markers were in the middle of the oxide scale formed on an Fe-9Cr alloy without Si_3N_4 after 72 hours of oxidation at 1273^O K. This difference in marker position shows the change of oxide growth mechanism due to the presence of Si_3N_4 dispersion. The growth mechanism changes from predominantly outward ion motion to anion inward motion.

Phase identification of the oxide scale was done by X-ray diffraction analysis utilizing diffractometer and Debye-Sherrer techniques. The oxide in Fe-Cr alloys with Si₃N₄ consisted of Fe₂O₃, Cr₂O₃ and SiO₂. In addition, Fe₂O₃ and SiO₂ were detected in pure Fe with 10 vol% of Si₃N₄. On the other hand, the oxides in Fe-Cr alloys without Si₃N₄ consisted of Fe₂O₃, Fe₃O₄, Cr₂O₃ and some FeCr₂O₄. The amount of Fe₂O₃ decreased as the Cr content was increased until no Fe₂O₃ was detected in the Fe-9Cr with Si₃N₄. FeO was not found in these alloys except for the case of pure Fe oxidation. As the Cr content was increased, the ratio of Fe₂O₃/Fe₃O₄ increased and no Fe₃O₄ was detected in the Fe-14Cr alloys.

Fe-SiO₂ and Ni-SiO₂ Alloys

Additions of SiO₂ (up to 20 volume percent) to pure Fe reduced the weight gained by the Fe based alloys as can be seen in Figure 4 and, also, increased their oxidation resistance as can be seen in the decrease in parabolic rate constant as a function of SiO₂

in Figure 5. However, the effect was a modest one and large weight gains occurred regardless of the amount of SiO₂ present. Scale examination revealed no significant changes in scale appearance or composition when compared to those of pure Fe, but SiO₂ particles were found at the alloy/scale interface and in the scale near the interface. Therefore, the increased oxidation resistance (i.e. decreased K_p values) was the result of the SiO₂ particles effectively blocking the transport of ionic species at the alloy/scale interface as well as in the oxide scale itself.

Additions of SiO₂ (up to 20 volume percent) to pure Ni increased slightly the weight gained by these alloys. Examination of the oxide scale revealed no significant changes in either scale appearance or composition as compared to that which formed on the pure Ni. Therefore, the slight decrease in oxidation resistance was thought to be caused by the SiO₂ particles increasing the cation vacancy concentration in the p-type NiO scale. An increase in the vacancy concentration would have effectively accelerated the diffusion of ionic species through the scale and ultimately result in a decrease in oxidation resistance for the Ni alloys containing SiO₂. In general, the addition of SiO₂ to either pure Fe or Ni had a relatively small effect on the overall oxidation behavior of the alloys.

Ni-6Cr-SiO2 and Fe-6Cr-SiO2 Alloys

The presence of SiO₂ dispersions in Ni-6Cr alloys significantly effected their oxidation behavior as shown in Figure 6. During the early stages of oxidation, the oxidation kinetics of the Ni-6Cr alloys containing 5 and 10 volume percent SiO₂ were similar to that of the binary Fe-6Cr alloy. However, after a relatively short period of time, the oxidation rates were markedly reduced. These sudden reductions in the oxidation rates were apparently due to the completion of a protective oxide scale

underneath the initially formed NiO. SEM and x-ray analysis of these scales revealed a thin Cr₂O₃ layer adjacent to the alloy/scale interface which caused the dramatic reduction in oxidation rates. The time required to develop a complete, protective Cr₂O₃ layer was reduced as the volume percent of SiO₂ dispersion in the alloy increased. A schematic of the overall oxidation process of Ni-6Cr-SiO₂ alloys with (a) low volume percents and (b) high volume percents of SiO₂ is shown in Figure 7. Alloys containing low volume percents of SiO₂ formed a protective Cr₂O₃ layer underneath the initially formed NiO scale. As the SiO₂ was increased, a Cr₂O₃ layer developed more readily further reducing the amount of Ni containing oxides which formed.

Additions of SiO₂ to Fe-6Cr alloys had little effect on their oxidation behavior as shown in Figure 8. The scales that formed were thick and consisted primarily of Fe-Cr spinel and Fe₂O₃. Only a small amount of Cr₂O₃ was detected; therefore, it can be concluded that no protective layer developed at any stage in the oxidation process of the alloys.

Ni-9Cr-SiO2, Ni-12Cr-SiO2, and Ni-15Cr-SiO2 Alloys

The oxidation behavior of alloys containing 9 to 15 weight percent Cr displayed a dramatic decrease in oxidation rate upon the addition of up to 40 volume percent SiO₂. Weight gains ranged from approximately 4 mg/cm² for a Ni-9Cr-5%SiO₂ alloy to a low of 0.6 mg/cm² for a Ni-15Cr-40%SiO₂ alloy. The small weight gains observed were expected since an increase in Cr content would have resulted in the development of a protective Cr₂O₃ layer in a shorter period of time. Consequently, the amount of Ni containing oxides that formed decreased, causing a reduction in the overall weight gained by the alloys. Also, increasing additions of SiO₂, from 5 to 40 volume percent, had a

diminishing effect on the overall weight gained by the alloys the higher the Cr content. In other words, the difference between the weight gained by an alloy containing only 5 volume percent SiO₂ and that of an alloy containing 40 volume percent SiO₂ decreased the higher the Cr content in the alloy. This difference was upwards of 3 mg/cm² in the Fe-9Cr alloys containing 5 and 40 volume percent SiO₂, and less than 1 mg/cm² in the Fe-15Cr alloys containing 5 and 40 volume percent SiO₂.

Fe-9Cr-SiO2 and Fe-12Cr-SiO2 Alloys

Additions of up to 20 volume percent of SiO₂ to Fe-9Cr alloys dramatically reduced the overall weight gained by the alloys as can be seen by comparing Figures 9 and 10. The parabolic rate constants shown in Figure 11 also decreased dramatically upon the addition of SiO₂ which indicated a significant change in the scale behavior upon the addition of SiO₂. SEM and X-ray analysis of the scales formed on the SiO₂ containing alloys revealed the presence of a thin Cr₂O₃ layer adjacent to the alloy/scale interface. The overall oxidation process of the Fe-9Cr-SiO₂ alloys is shown in Figure 12 and is similar to that proposed for the Ni-Cr alloys containing low volume percents SiO₂. During the early stages of oxidation, the alloy surface was covered by Fe rich oxides. Consequently, the Cr₂O₃ layer developed underneath the initially formed Fe rich oxide layer which dramatically increased the oxidation resistance of the Fe-9Cr alloys containing SiO₂.

The oxidation behavior of Fe-12Cr alloys with SiO₂ additions (up to 20 volume percent) are shown in Figure 13. These results were inconsistent and unexpected due to the relatively large weight gains found for the Fe-12Cr alloys containing 5 and 10 volume percent of SiO₂. The large weight gains were determined to be the result of an

absence in the development of a complete, protective Cr₂O₃ layer. One possible explanation for the absence of this layer was that during the early stages of oxidation the thin Cr-rich film that may have been formed transformed from a protective to a non-protective type of film. Consequently, the increase in diffusion of Fe ions through the non-protective scale could have resulted in the relatively large weight gains observed in the Fe-12Cr alloys containing 5 and 10 volume percent SiO₂.

The significant improvement in oxidation resistance in both the Ni-Cr and Fe-Cr alloys containing SiO₂ was the result of the development of a protective Cr₂O₃ layer. The level of Cr required to develop such a layer was significantly lower than that which would be required to form a protective layer in the binary Ni-Cr and Fe-Cr alloys. Therefore, it was concluded that the SiO₂ dispersions had a significant role in the overall oxidation behavior of these alloys.

Enhancement of Cr2O3 formation

The role that Si₃N₄ or SiO₂ dispersions played in the overall oxidation process of both the Ni-Cr and Fe-Cr alloys was difficult to determine. However, it would appear that the Si₃N₄ or SiO₂ dispersions enhanced the transport of Cr through an increase in short circuit diffusion paths as well as providing additional low energy nucleation sites for the first formed oxides, in particular Cr₂O₃. These conclusions on how dispersion phase enhanced the formation of a protective Cr₂O₃ layer are briefly discussed in the following paragraphs.

The addition of Si₃N₄ or SiO₂ dispersions, resulted in a significant reduction in the grain size of both the Ni-Cr and Fe-Cr alloys. Since grain boundaries have been known

to be rapid diffusion paths for the transport of Cr, any increase in boundary area would have effectively enhanced the transport of Cr to the surface and increased the amount of Cr available to develop a protective Cr_2O_3 layer. Once at the surface, interfacial boundaries (i.e. the boundaries created between the alloy/SiO₂ particles) acted as rapid diffusion paths for the lateral transport of Cr. Thus, the accelerated transport of Cr along such boundaries could ultimately result in the development of a continuous protective Cr_2O_3 layer. However, another possible mechanism exists that could have aided in the formation of a protective layer.

The presence of SiO₂ particles at the surface also acted as physical discontinuities and, as such, were low energy sites for oxide nucleation (i.e. heterogeneous versus homogeneous nucleation). This could have reduced the distance between Cr₂O₃ nuclei which would have limited to an extent the lateral growth necessary for the impingement of Cr₂O₃ grains and the development of a Cr₂O₃ layer. The SiO₂ particles were, therefore, preferential sites for oxide nucleation which could have aided in the development of a protective Cr₂O₃ layer in both the Ni-Cr-SiO₂ and Fe-Cr-SiO₂ alloys.

In general, the Si₃N₄ or SiO₂ dispersions appear to have enhanced mechanisms already inherent to the oxidation process of the Ni-Cr and Fe-Cr alloys. However, the SiO₂ dispersions had a greater influence on the oxidation behavior of the Ni-Cr alloys suggesting its effects were not independent of the base metal.

SiO₂ Growth Mechanism Study

According to previous studies, it is generally agreed that the growth of SiO₂ scale is mostly due to the inward interstitial diffusion of oxydant species which contain both charged oxygen ions and noncharged oxygen molecules or atoms. The possible influence

of electronic species (i.e., electrons and electron holes) on the SiO₂ growth at high temperature was also studied in this project.

Basically, the experiment consisted of placing an inert electronic oxide conductor which acts as electronic short circuit path on the surface of pure silicon and then oxidizing them in dry oxygen atmosphere. Since Si is too brittle to drill a hole for inserting a inert conductor, fine Cr₂O₃ powders were pressed on the Si surface to serve as electronic conductor, as shown on Fig. 14. After oxidizing at 1200°C for 90 hours, the cross section area of the sample was examined by scanning electron microscopy (SEM) to determine whether the growth rate of SiO₂ is accelerated in the regions close to the conductor or not. Because of the poor conductivity of Si and SiO₂, a thin film of Au is coated on the samples to show better SEM images. It is still very difficult to have very clear and highly magnified SEM images. The result is shown on Fig. 15.

Only a very small difference of the growth rate was observed on the edges of Cr_2O_3 powder. The oxide layer is thicker in the region right next to the electronic conductors. We might find that the electronic species may act as a kind of transport defect which will promote the growth of SiO_2 . Since the exact thickness of the oxide layer is difficult to recognize, it is hard to get kinetic data through optical observation of these very thin oxide layer whose thickness is about 2-3 μ m.

REFERENCE

- 1. H. H. Davis, H. C. Graham, and I. A. Kvernes, Oxid. Met., 3, 431, (1971).
- 2. G. C. Wood, Corrosion Science, 2, 173, (1962).
- 3. C. Wagner, J. Electrochem. Soc., 103, 627, (1956).
- 4. C. S. Giggins, and F. S. Pettit, Met. Trans., 2, 1071, (1971).
- 5. A. Atkinson, Oxid. Met., 24, 177, (1985).
- 6. I. G. Wright, and B. A. Wilcox, Met. Trans., 5, 957, (1974).
- 7. H. Nagai, Y. Takebayashi, and H. Mitani, Met. Trans., 12a, 435, (1981).
- 8. J. Stringer, B. A. Wilcox, Met. Trans., <u>5.</u> 957, (1974).
- 9. S. W. Park, Ph.D. Thesis, The Pennsylvania State University, University Park, PA (1987).
- 10. P. J. Jorgenson, J. Chem. Phys., 37, 874, (1962).
- 11. E. A. Irene, J. Electrochem. Soc., 125, 1708, (1978).
- S.-W. Park and G. Simkovich, in "Alternate Alloying for Environmental Resistance", ed. by G. R. Smolik and S. K. Banerji, AIME, Wallendare, PA, pp. 233-247 (1987).

Fig. 1 Isothermal oxidation curves for pure Fe with and without an initial addition of 10% $\rm Si_3N_4$ (= 2.84 Si) at 1173 and 1273 K.

Fig. 2 Isothermal oxidation curves for Fe-Cr alloys with an initial addition of 10 v/o $\rm Si_3^{N_4}$ as a function of Cr content in 1 atm $\rm O_2$ at 1273 K.

Fig. 3 Weight gain in Fe-Cr alloys with an initial addition of 10 v/o Si_3N_4 (see Table 2); one for initial 20 hours and the other for 60 hours in 1 atm O_2 at 1273 K.

Fig. 4 Weight gain per unit area in O₂ for Fe-SiO₂ alloys at 1273 and 1373 K

Fig. 5 The relationship between parabolic rate constant (Kp) and volume percent SiO_2 in Fe-SiO₂ alloys

Weight gain per unit area in O₂ for Ni-6Cr-SiO₂ alloys at 1273 and 1373 K Fig. 6

Fig.7: Schematic representation of oxide formation on Ni-6Cr-SiO₂ alloys at (a) low volume percents and (b) high volume percents of SiO₂

Fig. 8 Weight gain per unit area in O₂ for Fe-6Cr-SiO₂ alloys at 1273 and 1373 K

Fig. 9: Weight gain per unit area in O2 for binary Fe-9Cr alloys at 1273 and 1373 K

Fig. 10 : Weight gain per unit area in O_2 for Fe-9Cr-Si O_2 alloys at 1273 and 1373 K

Fig. 11: The relationship between parabolic rate constant (Kp) and volume percent SiO₂ in Fe-9Cr-SiO₂ alloys

Fig. 12 Schematic representation of oxide formation on Fe-9Cr-SiO₂ alloys

Fig. 13 : Weight gain per unit area in O_2 for Fe-12Cr-Si O_2 alloys at 1273 K

Fig. 14 Surface morphology of the Si sample, white particles are Cr₂O₃ powders

Fig. 15 Cross section view of the oxide layer

