Combinatorial Optimization: homework 1

Claudio Arbib*

1 Graphs

1.1 Definitions

A symmetric graph is d-regular if all of its vertices have the same degree d. A 3-regular graph is also called cubic.

Theorem 1 Any bridgeless cubic graph G admits a perfect matching.

Definition 1 A d-regular graph G = (V, E) is factorable into $G_1 = (V, E_1), \ldots, G_p = (V, E_p)$ if the G_i 's are regular and $E = E_1 \cup \ldots \cup E_p$. If p = d then we say that G is 1-factorable (because all of its factors G_i are 1-regular).

Definition 2 An edge-colouring of a symmetric graph G assigns a colour to each edge of G in such a way that no two adjacent edges are coloured the same.

The least number of colours required for an edge-colouring of a graph G is called the *chromatic index* of G.

An *interval graph* draws the binary relation of non-empty intersection between intervals of \mathbb{R} . A *split graph* is a graph whose vertex set can be partitioned into a clique and a stable set. A *chord* in a cycle C is an edge whose endpoints are not adjacent in C.

Definition 3 A symmetric graph G is chordal (or triangulated) if every induced cycle of G has a chord.

1.2 Exercises

Exercise 1 Draw a cubic graph with chromatic index 3 and one with chromatic index 4.

Exercise 2 Show that any cubic graph has chromatic index ≤ 4 .

Exercise 3 Show that any interval graph is chordal.

Exercise 4 Show that any split graph is chordal.

 $^{^*}$ Università degli Studi dell'Aquila, Dept. of Computer Engineering, Computer Science, and Mathematics, L'Aquila, Italy; e-mail: claudio.arbib@univaq.it

2 0-1 LP formulations

2.1 Problems

Problem 1 (EQUICUT) Given a symmetric graph G = (V, E), |V| even, and a weight function $c : E \to \mathbb{R}$, find a partition of V into equally sized subsets V_1, V_2 such that the total weight of the set of edges with one endpoint in V_1 and the other in V_2 is minimized.

Problem 2 (COMPLETE BALANCED BIPARTITE SUBGRAPH) Given a symmetric graph G = (V, E), find a (not necessarily induced) complete bipartite subgraph $B = (V_1 \cup V_2, V_1 \times V_2)$ of G such that $|V_1| = |V_2|$ is maximum.

Problem 3 (SET COVERING) Given a discrete finite set S (ground set) and subsets S_1, \ldots, S_m of S, find a minimum cardinality set C^* of indexes such that $\bigcup_{i \in C^*} S_i = S$

Problem 4 (SET PACKING) Given a discrete finite set S (ground set) and subsets S_1, \ldots, S_m of S, find a maximum cardinality set P^* of indexes such that $S_i \cap S_j = \emptyset$ for all $i, j \in P^* : i \neq j$.

Problem 5 (SCHEDULING COMMON OPERATIONS) Given a discrete finite set S (ground set), subsets S_1, \ldots, S_m of S and positive integers d_1, \ldots, d_m , find a linear order $\sigma: S \to \mathbb{N}$ of the elements of S such that the number of indexes i for which $\sigma(j) > d_i$ for some $j \in S_i$ is minimized.

2.2 Exercises

Exercise 5 Formulate Problem k as 0-1 linear programming, k = 1, ..., 5.

Exercise 6 Can Problem 4 be formulated as STABLE SET? And as VERTEX COVERING? On which graph?

Exercise 7 Can Problem 5 be formulated as STABLE SET? And as VERTEX COVERING? On which graph?