COMMUNICATIONS

Wang Minxi John (2101925) Ng Zi Hao (2102893)

Low Li Pin (2101542)

Table of Contents

O3UART (ESP8266)

02UART (M5StickC Plus)

O4
Bluetooth (HC05)

Overview

- Pico Board
- Communication protocol used:
 - PICO -> ESP01 (UART)
 - PICO -> HC05 (UART)
 - PICO -> M5STICKC PLUS (UART)

MQTT (M5Stick)

Overview

- Flask Web Application displaying data collected from the car
 - o Functions:
 - Send starting node
 - Send direction of the car (left, front, right, back)

- Display event (hump detected, turning, etc)
- Display distance travelled

- Display car speed
- Display barcode information
- Display number of turns
- Display map nodes

Program Flowchart

•

- M5StickC Plus
 - o TX -> G32
 - o RX -> G33
 - o Databits -> 8
 - StopBits -> 1
 - ParityBits -> None
- Pico Board
 - o TX -> G1
 - o RX -> G0
 - o Databits -> 8
 - StopBits -> 1
 - ParityBits -> None
- UARTO

- MQTT
 - HiveMQ Broker
 - Broker URL
 - 3eb3b23922da49208766dd4507ecd30c.sl.eu.hive mq.cloud
 - Created 10 user accounts
 - user-1 -> user-10
 - SSL enabled (for secure MQTT)

- SSL protocol (TLSv1.2)
- Web Application
 - CA_CERTS
 - CERTFILE
 - KEYFILE

Functions

	Main Functions	
M5StickC Plus	initiate_UART()	
	if uart1.any():	
Pico Board	uart_puts();	
Web Application	@mqtt_client.on_message()	

Video Demo

Actual Setup

Breadboard View

Config

Pico Config-UARTO

TX_PIN 0, RX_PIN 1 Baud Rate 115200

Databits 8 | Stopbits 1 | Parity None

Pin Connection-

Pico GPO (TX) -> ESPO1 (RX)

Pico GP1 (RX) -> ESP01 (TX)

Pico 3V3-> ESP01 (VCC)

Pico GND -> ESP01 (GND)

Pico 3V3 -> ESP01 (EN)

Commands

- 1) Set up UARTO on Pico
- 2) Set mode with "AT+CWMODE=1"
- 3) Set connection with "AT+CWJAP="ssid", "password""
- 4) Get IP with "AT+CIFSR"
- 5) Get ID by listening to first occurrence of "+IPD" by using strstr to check UARTO RX interrupt string
- 6) Set multiple connections with "AT+CIPMUX=1"
- 7) Start server with "AT+CIPSERVER=1,80"
- 8) Send data with "AT+CIPSEND=<ID>", wait for ">", then send data
- 9) Close IPD connection with "AT+CIPCLOSE=<ID>"

Finite State Machine

Testing

Conducted black box testing

- 1) Testing Criteria
 - a) Debug through UARTO should be displayed through Putty Serial
 - o) "Wifi Connected", "IP" should display through Putty Serial
 - c) Connection details should display through Putty Serial when requesting resources through browser
 - d) JSON resources should be available through browser

Testing Results

JSON results from requesting resource at IP address of PICO (ESP01)


```
COM4 - PuTTY
AT+CWMODE=1
AT+CWJAP="pico test1", "testtest"
WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT IP
AT+CIFSR
+CIFSR:STAIP, "192.168.25.168"
+CIFSR:STAMAC, "ac:0b:fb:c8:4a:e4"
AT+CIPMUX=1
AT+CIPSERVER=1,80
WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT IP
0, CONNECT
+IPD, 0, 331:GET / HTTP/1.1
Host: 192.168.25.168
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.
Accept: */*
Origin: http://127.0.0.1:8080
Referer: http://127.0.0.1:8080/
Accept-Encoding: gzip, deflate
Accept-Language: en-US, en; q=0.9
```

Putty showing resources being requested

Performance

Parameters:

ESP01 connected through a router Target Device -> Router (Less than 1m)

Router -> ESP01 (Less than 1m)

Average Latency (Calculated by taking average of response time): (483 + 186 + 193 + 219) / 4 = 270.25 ms

Throughput: ~6Mbps Max Range: ~200m

```
C:\Users\johnn>ping 192.168.25.168

Pinging 192.168.25.168 with 32 bytes of data:
Reply from 192.168.25.168: bytes=32 time=483ms TTL=255
Reply from 192.168.25.168: bytes=32 time=186ms TTL=255
Reply from 192.168.25.168: bytes=32 time=193ms TTL=255
Reply from 192.168.25.168: bytes=32 time=219ms TTL=255
Ping statistics for 192.168.25.168:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 186ms, Maximum = 483ms, Average = 270ms
```

Using CMD ping to measure latency

Demo

•

04 Bluetooth

Actual Setup

Schematic View

Config

Pico Config-

UARTO
TX_PIN 0, RX_PIN 1

Baud Rate 9600

Databits 8 | Stopbits 1 | Parity None

Pin Connection-

Pico GPO (TX) -> HCO5 (RX)

Pico GP1 (RX) -> HC05 (TX)

Pico VSYS -> HC05 (VCC)

Pico GND -> HC05 (GND)

Testing

Conducted black box testing

- 1) Testing Criteria
 - a) 'HC05' should show up in bluetooth devices
 - b) 'HC05' should be connectable through bluetooth
 - Serial comms should be avail once bluetooth connected and able to connect
 - d) Output should display 'R' (Sent by Pico) everytime something is inputted from Device to Pico

Testing Results

Serial connected through Bluetooth using Putty

 Shows the 'R' being returned on every keystroke

Serial Bluetooth Terminal (Android)

Troubleshooting

- Hold BOOTSEL (black button) on HC05 and connect to VSYS to enter BOOT MODE (Slow red flash every 2s)
- 2) Send the following command through PICO UART to HC05 to restore default settings
- 3) Reconnect HC05

4. Restore default			
Command	Respond	Parameter	
AT+ORGL	OK	9 <u>-</u> 7	

Default state:

Slave mode, pin code: 1234, device name: H-C-2010-06-01, Baud 38400bits/s.

Performance

Parameters:

Target device is placed within 10cm of HC05

Average Latency (Calculated by taking average of response time): [(191-136) + (997-887) + (818-778) + (843-667) + (562-444)] / 5 = 99.8ms

Throughput: 2.1Mbps(Max) / 160 kbps

Max Range: ~10m

Using Serial Bluetooth Terminal for testing

Demo

•

Comparison

Chose ESP01:

- Lightest weight (Car already very heavy)
- High Range
- Enough
 Throughput
 (Only sending
 JSON)
- Acceptable Latency

Thank You!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**