MCQ-Question bank

UNIT-1

LOGICS

1.	Let <i>p</i> be the proposition "It is sunny this afternoon" and <i>q</i> be the proposition "We will go swimming", Which of the following is the symbolic form the statement "We will go swimming only			nd q be the proposition "We will go		
	it is sunny this afternoon".					
		atternoon.	B)	a		
	A) $p \rightarrow q$					
•	<u>C)</u> <i>p</i> ∨ <i>q</i>		D)	$p \wedge q$		
2.		• • • • • • • • • • • • • • • • • • • •	es not	have eight legs, then he is not an insect"		
	and "George is		1	Ι		
		pes not have eight legs	B)	George is not an insect		
	C) George ha	as eight legs	D)	Can't conclude anything from the given		
				hypothesis		
3.	Contrapositive	statement of the statement $\neg p \rightarrow \neg$	$\neg q$ is:			
	A) $\neg p \rightarrow \neg q$	1	B)	$p \rightarrow q$		
	C) $\neg q \rightarrow p$		D)	$q \rightarrow p$		
4.	In proving $\sqrt{5}$ as	s irrational, we begin with assumpt	tion √3	5 is rational in which type of proof?		
	A) Direct pro		B)	Proof by Contradiction		
	C) Mathemat	tical Induction	D)	Not Indirect Proof		
5.	If $P(k) = k^2 (k +$	3) $(k^2 - 1)$ is true, then what is P(k	(+1)?			
	A) $(k + 1)^2 (k + 1)^2 = 0$	$(k^2 + 3) (k^2 - 1)$	B)	$(k + 1)^2 (k + 4) (k^2 - 1)$		
		(+ 4) k (k + 2)	D)	(k + 1) (k + 4) k (k +2)		
6.	Which of the fol	lowing statement is logically equiv	/alent	to the statement $(\sim p \lor q)$		
	A) $(p \land q)$		B)	$(p \rightarrow q)$		
	C) $(\sim p \land q)$		D)	$(p \lor \sim q)$		
7.	Which rule of in	ference is used in this argument "	If it ha	ils today, then local office will be closed. The		
	local office is no	ot closed today. Thus, it did not ha		У".		
	A) Simplifica		B)	Modus tollens		
		cal Syllogism	D)	Conjunction		
8.	- 1	tatement $p \rightarrow \sim q$ is:	T 5)	T		
	A) $p \rightarrow q$		B)	$\sim p \rightarrow q$		
	C) $q \rightarrow \sim p$		D)	$\sim p \rightarrow \sim q$		
9.		sequence of the statement $(p \lor a)$	~	q is:		
	A) q		B)	p		
	C) ~q		D)	\ ~p		
10.	A \	lowing statement is logically equiv				
	A) $p \wedge q$		B)	$\sim (p \lor q)$		
44	C) $\sim (p \land q)$		D)	$p \vee q$		
11.		$(2) < 2^n$, then for which least posit		eger the statement P(n) is true?		
	A) 3		B)	4		
40	C) 5	leuring is not a Dula of infance 0	D)	6		
12.		lowing is not a Rule of inference?	D)			
	A) $[p \land (p \rightarrow p)]$	$ \frac{(q)] \to q}{(q \to r)] \to (p \to r)} $	B)	$ \begin{bmatrix} (p \to q) \land \sim p \end{bmatrix} \to \sim q \\ \begin{bmatrix} (p \to q) \land q \end{bmatrix} \to p $		
	C) $ [(p \rightarrow q)]$	$\wedge (q \to r) \rightarrow (p \to r)$	D)	$\lfloor \lfloor (p \to q) \land q \rfloor \to p$		

UNIT-II

SET THEORY

1.	Which of the following statement is not correct?				
	A)	A reflexive relation has a cycle of length	B)	The matrix of reflexive relation must have all	
		one at every vertex.		1's in its main diagonal.	
	C)	If <i>R</i> is reflexive relation on <i>A</i> , then	D)	The matrix of reflexive relation must have all	
		Domain(R) = Range(R) = A.		0's in its main diagonal.	
2.	If $p = (2,3,4,7)$ is a permutation of the set $A = \{1,2,3,4,5,6,7,8\}$ then p^{-1} is:				
	A)	(4,7,2,3)	B)	(7,4,3,2)	
	C)	(7,4,2,3)	D)	(3,4,7,2)	
3.		complete graph with eight vertices has			
	A)	64	B)	24	
	C)	28	D)	36	
4.		mple graph can have			
	A)	multiple edges	B)	self loops	
	<u>C</u>)	parallel edges	D)	no multiple edges, self loops and parallel	
		paramereages		edges	
5.	Let	$A = \{1,2,3,4,5,6\}$ and R be the relation on A , define	ned b		
	A)	Symmetric relation	B)	Reflexive	
	C)	Equivalence	D)	Transitive relation	
6.	If A	$=\{1,2,3\}$ and $p=\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ then $p^{-1}=$	•		
		\ <u>\</u> \ <u>\</u> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		(1 2 2)	
	A)	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	B)	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	
	C)	$(1 \ 2 \ 3)$	D)	$(1 \ 2 \ 3)$	
	Ĺ	(2 3 1)		1 2 3	
7.	If a graph G has 7 vertices whose degrees are 2, 4, 6, 5, 7, 8, 10, then number of edges in graph G			5, 7, 8, 10, then number of edges in graph G	
	is:				
	A) C)	12 42	B)	21	
8.	/	42 ch of the following can have loops and multipl	<u> </u>		
0.	A)	Simple graphs	e eug B)	multi graphs	
	C)	Both A and B	D)	Neither of A and B.	
9.	/	$A = \{1,2,3,4,5,6\}$ and R be the relation on A, de			
	A)	Reflexive relation	B)	Symmetric relation	
	C)	Transitive relation	D)	Equivalence relation	
10.					
	A)	$(1 \ 2 \ 3)$	B)	(1 2 3)	
		$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$	•	(2 3 1)	
	C)	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	D)	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	
11.	_	graph G has 7 vertices whose degrees are 2,	4, 6, 5	5, 7, 8, 10, then number of edges in graph G	
	is:	24	D/	10	
	A)	21 42	B)	12	
12.	C)		D)	84	
12.		degree of a pendant vertex is :	B)	1	
	A) C)	2	D)	3	
<u> </u>	(U	4	ט)	J	

<u>UNIT-III</u>

NUMERICAL METHODS

A) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ B) $x_{n+1} =$	The Newton- Raphson formula to find the $(n + 1)^{tn}$ approximation to the root of $f(x) = 0$ is:					
,	$x_n + \frac{f(x_n)}{f'(x_n)}$					
C) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$ D) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$	$x_n - \frac{f'(x_n)}{f''(x_n)}$					
	The first approximation to a real root of the equation $x^3 - 2x^2 - 2 = 0$ in (2,3) by Regula-Falsi					
method is	method is					
A) 2.95 B) 2.22						
C) 2.56 D) 2.09						
3. For the heat equation $u_t = 0.5u_{xx}$, $h = k = 1$, the value of mesh rat	For the heat equation $u_t = 0.5u_{xx}$, $h = k = 1$, the value of mesh ratio parameter α is					
A) 1 B) 0.5						
C) 0.25 D) 2						
4. The Fourier series expansion of x^3 in the interval $-1 \le x \le 1$, p	eriodic with $f(x + 2) = f(x)$ has:					
A) Only Sine terms B) Only C	Cosine terms					
	ine terms and a non-zero constant					
5. The method which approximates curve as tangent to find root of an a	algebraic equation is:					
A) Newton-Raphson method B) Regula	a-Falsi method					
C) Runge-Kutta method D) Modif	ied Euler's method					
6. The Modified Euler's iteration formula to find better approximation	of y_1 of the first order ordinary					
differential equation is:						
differential equation is: A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$	$y_0 = y_0 + h[f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{dy}{dx} = 2xy$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{1}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{dy}{dx} = 2xy$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ B) 2 C) 1.02 D) 1	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ A) 0 B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ A) 0 B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ A) 0 B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ O B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$ A) $y_0 + hf(x_0, y_0)$ B) $hf(x_0)$ C) $hf(x_0 + \frac{h}{2}, y_0)$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ O B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$ A) $y_0 + hf(x_0, y_0)$ B) $hf(x_0)$ C) $hf(x_0 + \frac{h}{2}, y_0)$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{2}$ C) $\frac{dy}{dx} = \frac{h}{2}$ D) $\frac{dy}{dx} = \frac{h}{2}$ S. In Runge – Kutta method of order four, the formula for $\frac{dy}{dx} = \frac{h}{2}$ C) $\frac{dy}{dx} = \frac{h}{2}$ B) $\frac{dy}{dx} = \frac{h}{2}$ C) $\frac{dy}{dx} = \frac{h}{2}$ D) $\frac{dy}{dx} = \frac{h}{2}$ D) $\frac{dy}{dx} = \frac{h}{2}$ P. For the heat equation $\frac{dy}{dx} = \frac{h}{2}$ D) $\frac{dy}{dx} = \frac{h}{2}$ D. For the heat equation $\frac{dy}{dx} = \frac{h}{2}$ D. For the heat equation $\frac{dy}{dx} = \frac{h}{2}$ P. For t	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ O B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$ A) $y_0 + hf(x_0, y_0)$ B) $hf(x_0)$ C) $hf(x_0 + \frac{h}{2}, y_0)$ D) $hf(x_0)$ 9. For the heat equation $2u_t = u_{xx}$, $h = k = 1$, the value of mesh ration A) 1	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(x_0) = \frac{h}{h}$ 0 B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{h}{h}$ A) $y_0 + hf(x_0, y_0)$ B) $hf(x_0)$ C) $hf(x_0 + \frac{h}{2}, y_0)$ D) $hf(x_0)$ D) $hf(x_0)$ 9. For the heat equation $2u_t = u_{xx}$, $h = k = 1$, the value of mesh ratio A) 1 C) 0.5 D) 2 10. A root of the equation $f(x) = 0$ lies in the interval [a,b] if,	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_0, y_0)]$ B) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_0, y_0)]$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1, h = 0.1, \text{ the value of } y_1$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(0)$ is A) 0	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1$, $h = 0.1$, the value of $y_1 = \frac{h}{2} \frac{y_0}{2}$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(0)$ is	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1$, $h = 0.1$, the value of $y_1 = \frac{h}{2} \frac{y_0}{2}$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(0) = \frac{1}{2}$ A) 0 B) 2 C) 1.02 D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{1}{2}$ A) $y_0 + hf(x_0, y_0)$ B) $hf(x_0 = \frac{1}{2})$ C) $hf(x_0 + \frac{h}{2}, y_0)$ D) $hf(x_0 = \frac{h}{2})$ 9. For the heat equation $2u_t = u_{xx}$, $h = k = 1$, the value of mesh ration $\frac{h}{2}$ C) 0.5 D) 2 10. A root of the equation $f(x) = 0$ lies in the interval $[a,b]$ if, $[a,b]$ $[a,b]$ $[b,b]$ C) $[a,b]$ The root of the equation $x^2 - 12 = 0$ lies in the interval	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1$, $h = 0.1$, the value of $y_1 = \frac{h}{2} \frac{y_0}{2}$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(0) = \frac{1}{2}$ B. D) 1 8. In Runge – Kutta method of order four, the formula for $k_1 = \frac{1}{2}$ A. $y_0 + hf(x_0, y_0)$ B. $hf(x_0 + \frac{h}{2}, y_0)$ P. For the heat equation $2u_t = u_{xx}$, $h = k = 1$, the value of mesh ration A. 1 B. D.25 C. D.5 D. 2 10. A root of the equation $f(x) = 0$ lies in the interval $[a,b]$ if, A. $f(a)f(b) > 0$ B. $f(a)f(a)f(a)f(a)f(a)f(a)f(a)f(a)f(a)f(a)$	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1$, $h = 0.1$, the value of $y_1 = \frac{h}{2} \frac{y_0}{2}$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					
A) $y_1^{(n+1)} = y_0 - \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ B) $y_1^{(n+1)}$ C) $y_1^{(n+1)} = y_0 + [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ D) $y_1^{(n+1)}$ 7. Using Euler's method for the initial value problem $\frac{dy}{dx} = 2xy$, $y(0)$ is	$y_0 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(n)})]$ $y_0 = 1$, $h = 0.1$, the value of $y_1 = \frac{h}{2} \frac{y_0}{2}$ $y_0 = \frac{h}{2} \frac{y_0}{2}$					

13.	The Taylor's series formula to find y_1 for the first order ODE $y' = f(x, y)$ for given h is:			
	A)	$y_1 = y_0 - \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' - \frac{h^3}{3!} y_0''' + \cdots$	B)	$y_1 = \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \frac{h^3}{3!} y_0''' + \cdots$
	C)	$y_1 = y_0 + \frac{h}{1!} y_0' + \frac{h^2}{2!} y_0'' + \frac{h^3}{3!} y_0''' + \cdots$	D)	$y_1 = \frac{h}{1!} y_0' - \frac{h^2}{2!} y_0'' + \frac{h^3}{3!} y_0''' + \cdots$
14.	The forward difference approximation for $\frac{\partial u}{\partial x}$ is:			
		$\frac{u_{i,j}-u_{i-1,j}}{h}+O(h)$		$\frac{u_{i+1,j}-u_{i,j}}{h}+O(h)$
	C)	$\frac{u_{i+1,j}-u_{i-1,j}}{2h} + O(h^2)$	D)	$\frac{u_{i-1,j}-2u_{i,j}+u_{i+1,j}}{h^2}+O(h^2)$

<u>UNIT-IV</u>

FOURIER ANALYSIS

1.	What is the Fourier series expansion of the function $f(x)$ in the interval $(\alpha, \alpha + 2L)$?			
	A) $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$	B) $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$ D) $\sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right)$		
	$ \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=0}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) $			
2.	Which of the following functions is odd			
	A) $-x - x^3$	B) $\sin x^2 + x^5$ D) $e^{-x} + e^x$		
	C) $\cos 5x + 3e^{-x}$			
3.	Fourier transform of the function $f(t) = \underline{\dots}$			
	$\int_{-\infty}^{\infty} f(t)e^{-\omega t}dt$	$ \int_{0}^{\infty} f(t)e^{-i\omega t}dt $		
	$ \begin{array}{c c} C) & \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \end{array} $	$ \left \int_{0}^{\infty} f(t)e^{-\omega t}dt \right $		
4.	What is the Fourier series expansion of the function $f(x)$ in the interval $(c, c + 2\pi)$ A) $a_0 \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$			
	A) $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} b_n \sin(nx)$ C) $\sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} a_n \sin(nx)$			
	C) $1 + \sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} b_n \sin(nx)$	D) $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$		
5.	If the function $f(x)$ is even, then which of the following	ollowing is zero in the Fourier series		
	expansion of $f(x)$?			
	$A)$ a_n	$\frac{b}{b}$		
	C) a ₀	D) None of these		
6.	The Fourier series expansion of an odd periodic fu	T T		
	A) Sine terms	B) Constant term		

	C) Cosine terms	D) Both sine term and cosine terms		
7.	Which of the following is the Analysis equation of Fourier Transform?			
'*	A \	D/ 00		
	$F(w) = \int f(t)e^{jwt}dt$	$F(w) = \int_{-\infty}^{\infty} f(t)e^{-jwt}dt$		
	C)	D)		
	C) $F(w) = \int_{-\infty}^{-\infty} f(t)e^{jwt}dt$	D) $F(w) = \int_{-\infty}^{-\infty} f(t)e^{-jwt}dt$		
	0			
8.	If $f(x)$ is defined in $(-\pi, \pi)$, then the Fourier coefficient a_0 is			
	$A) \int_0^{2\pi} f(x) \ dx$	$ B \left \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \right $		
	C) $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$	B) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ D) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$		
9.	The Fourier series expansion of an odd periodic	function contains		
	A) Only cosine terms	B) Only constant term		
	C) Only sine terms	D) Both constant and cosine terms		
10.	The Fourier series expansion of an odd periodic			
	A) Cosine terms only	B) Constant and Cosine terms only		
	C) Sine terms only	D) Constant term and sine terms only		
11.	The constant term in the Fourier series for the for	unction $f(x) = x^2 - 2$ in (-2,2) is:		
	A) 4/3	B) -4/5		
	C) 2/3	D) -2/3		
12.	The term b_n in the half range Fourier Sine expansion $f(x)$ defined in $(0,\pi)$ is:			
	$A) \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$	B) $\frac{1}{\pi} \int_0^{\pi} f(x) \cos nx dx$		
	$C) \frac{1}{\pi} \int_0^{\pi} f(x) \sin nx dx$	D) $\frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$		
13.	If $F(x(t)) = X(\omega)$, is the Fourier transform of	the function $x(t)$, then $F(x(t-a)) =$		
	A) $e^{-ia\omega}X(\omega)$	B) $e^{-ia\omega}X(a\omega)$ D) $e^{-ia\omega}$		
	C) $e^{ia\omega}X(a\omega)$			
4.4		$X(\omega)$		
14.	The Fourier series expansion of x^3 in the interval $-1 \le x \le 1$, periodic with $f(x+2) = f(x)$			
	has:			
	A) Only Sine terms	B) Only Cosine terms		
	C) Both Sine and Cosine terms	D) Only Sine terms and a non-zero constant		