Lamperti Transform for the processes X and V Renzo Miguel Caballero Rosas

March 20, 2020

New model for the SDE: $\theta_t = \theta_0$ in the diffusion

$$\begin{split} & X_t \colon \, \mathrm{d} X_t = \left(\dot{p}_t - \theta_t (X_t - p_t) \right) \mathrm{d} t + \sqrt{2 \theta_0} \alpha X_t (1 - X_t) \, \mathrm{d} W_t \\ & V_t \colon \, \mathrm{d} V_t = - \theta_t V_t \, \mathrm{d} t + \sqrt{2 \theta_0} \alpha (V_t + p_t) (1 - V_t - p_t) \, \mathrm{d} W_t \end{split}$$

Lamperti transform for V_t :

$$\begin{aligned} \psi(V_t,t) &= \int \frac{1}{\sqrt{2\theta_0}\alpha(u+p_t)(1-u-p_t)} \,\mathrm{d}u \bigg|_{u=V_t} = -\sqrt{\frac{2}{\alpha\theta_0}} \arcsin\left(\sqrt{1-V_t-p_t}\right), \\ &= -\sqrt{\frac{2}{\alpha\theta_0}} \arcsin\left(\sqrt{1-X_t}\right). \end{aligned}$$

We can see that for every $t=t^*$, the primitive function of $\frac{1}{\sigma(v,t^*)}$ is well defined for all $v\in \left[-p(t^*),1-p(t^*)\right]\subset [-1,1]$ (recall $v=x-p_t$, and $x\in [0,1]$; then, when x=0 and x=1, we have that v=-p and x=1-p, respectively).

Identities for the Lamperti transform of V_t :

- $\psi(V_t,t) = -\sqrt{rac{2}{lpha heta_0}} \operatorname{arcsin}(\sqrt{1-V_t-p_t}).$
- $\psi_{\nu}(V_t, t) = \frac{1}{\sigma(V_t, t)} = \frac{1}{\sqrt{2\alpha\theta_0(V_t + p_t)(1 V_t p_t)}}$
- $\psi_{VV}(V_t,t) = \frac{d}{dv} \left[\frac{1}{\sigma(V_t,t)} \right] = -\frac{\sigma_v(V_t,t)}{\sigma^2(V_t,t)} = -\frac{1}{\sigma^2(V_t,t)} \cdot \sqrt{\frac{\alpha\theta_0}{2}} \frac{1 2V_t 2p_t}{\sqrt{(V_t + p_t)(1 V_t p_t)}}.$
- $\qquad \qquad \psi_t(V_t,t) = \frac{\dot{p}_t}{\sqrt{2\alpha\theta_0(V_t+p_t)(1-V_t-p_t)}}.$

Recall $V_t = X_t - p_t$. Then ψ_v , ψ_{vv} , and ψ_t are not defined when $X_t = 0$ or $X_t = 1$. However, this only happens in the boundary of the domain (0,1).

Can we apply Itô's lemma to ψ ? Maybe as the singularities are in the boundary, it is possible despite that we are not strictly in the hypothesis of the lemma.

SDE for $Z_t = \psi(V_t, t)$: (Verified with Mathematica)

By Itô's lemma, if $\psi(v,t)$ is $C^2([-p_t,1-p_t])$ for v and $C^1([0,T])$ for t, then:

$$dZ_t = \left(\psi_t + \psi_v \cdot f + \frac{1}{2} \psi_{vv} \cdot \sigma^2 \right) dt + \psi_v \cdot \sigma dW_t.$$

If we substitute the terms related with $\psi(V_t,t)$ from slide (3), we have

$$\begin{split} \mathrm{d}Z_t &= \left[\frac{\dot{p}_t}{\sqrt{2\alpha\theta_0(V_t + p_t)(1 - V_t - p_t)}}\right. \\ &\left. - \frac{\theta_t V_t}{\sqrt{2\alpha\theta_0(V_t + p_t)(1 - V_t - p_t)}} - \frac{1}{2}\sqrt{\frac{\alpha\theta_0}{2}} \frac{1 - 2V_t - 2p_t}{\sqrt{(V_t + p_t)(1 - V_t - p_t)}}\right] \mathrm{d}t + 1 \cdot \mathrm{d}W_t. \end{split}$$

Recall
$$Z_t = -\sqrt{\frac{2}{\alpha\theta_t}} \arcsin\left(\sqrt{1-V_t-p_t}\right)$$
, where $Z_t \in \left[-\frac{\pi}{\sqrt{2\alpha\theta_t}},0\right]$.

SDE for $Z_t = \psi(V_t, t)$: (Computed with Mathematica)

$$\mathrm{d}Z_t = \underbrace{\left[\frac{\alpha\theta_0\cos(Z_t\sqrt{2\alpha\theta_0}) - \theta_t\cos(Z_t\sqrt{2\alpha\theta_0}) + 2\theta_tp_t + 2\dot{p}_t - \theta_t}{\sqrt{\alpha\theta_0}\sqrt{1 - \cos(2Z_t\sqrt{2\alpha\theta_0})}}\right]}_{f(Z_t,t)}\mathrm{d}t + 1\cdot\mathrm{d}W_t.$$

$$\lim_{z\to 0^-} f(z,t) = \infty \times \left[\frac{\mathrm{sign}\left(2\theta_tp_t + 2\dot{p}_t + \alpha\theta_0 - 2\theta_t\right)}{\mathrm{sign}(\alpha)\mathrm{sign}(\theta_0)}\right].$$

$$\lim_{z\to \left[\frac{-\pi}{\sqrt{2\alpha\theta_0}}\right]^+} f(z,t) = \infty \times \left[\frac{\mathrm{sign}\left(2\theta_tp_t + 2\dot{p}_t - \alpha\theta_0\right)}{\mathrm{sign}(\alpha)\mathrm{sign}(\theta_0)}\right].$$

We want to find the correct conditions for θ_t .

To simplify the SDE, Mathematica has used:

$$\sin^2(x) - \sin^4(x) = \sin^2(x)\cos^2(x) = \frac{1}{4}\sin^2(2x) = \frac{1}{8}(1 - \cos(4x)).$$

Limit when $z \rightarrow 0^-$:

Recall we have a bijective mapping $Z_t([0,1]) = \begin{bmatrix} -\pi \\ \sqrt{2\alpha\theta_0}, 0 \end{bmatrix}$. This helps the intuition, as when $X_t = 1$, we expect the diffusion to be negative, and $z \to 0^-$ is equivalent to $x \to 1^-$.

We want $\lim_{z\to 0^-} f(z,t)$ to be $-\infty$ or zero, so we do not escape from z=0 to z>0 (x=1 to x>1). Then, we need $\alpha\theta_0-2\theta_t+2\theta_tp_t+2\dot{p}_t\leq 0$. Then:

▶ If $p_t < 1$, we have that $\theta_t \ge \frac{\alpha \theta_0 + 2\dot{p}_t}{2(1-p_t)}$.

Limit when
$$z \to \left[\frac{-\pi}{\sqrt{2\alpha\theta_0}}\right]^+$$
:

Recall we have a bijective mapping $Z_t([0,1]) = \left[\frac{-\pi}{\sqrt{2\alpha\theta_0}},0\right]$. This helps the intuition, as when $X_t = 0$, we expect the diffusion to be positive, and $z \to \frac{-\pi}{\sqrt{2\alpha\theta_0}}^+$ is equivalent to $x \to 0^+$.

We want $\lim_{z \to \left[\frac{-\pi}{\sqrt{2\alpha\theta_0}}\right]^+} f(z,t)$ to be $+\infty$ or zero, so we do not escape from $z = \frac{-\pi}{\sqrt{2\alpha\theta_t}}$ to $z < \frac{-\pi}{\sqrt{2\alpha\theta_t}}$ (x=0 to x < 0). Then, we need $2\theta_t p_t + 2\dot{p}_t - \alpha\theta_0 \ge 0$. Then:

▶ If $p_t > 0$, we have that $\theta_t \ge \frac{\alpha \theta_0 - 2\dot{p}_t}{2p_t}$.

Controlled drift:

From both orange conditions in slides (6) and (7), we create a more restrictive condition:

$$\max\left(\frac{\alpha\theta_0+2\dot{p}_t}{2(1-p_t)},\frac{\alpha\theta_0-2\dot{p}_t}{2p_t}\right) \leq \frac{\alpha\theta_0+|2\dot{p}_t|}{2\min(1-p_t,p_t)}.$$

Then, we choose

$$\theta_t = \max\left(\theta_0, \frac{\alpha\theta_0 + |2\dot{p}_t|}{2\min(1 - p_t, p_t)}\right). \tag{1}$$

Recall that in the paper, we start by choosing $\theta_t = \max\left(\theta_0, \frac{|\dot{p}_t|}{\min(1-p_t, p_t)}\right)$. Our new condition (1) is slightly more restrictive.

Limits when $p_t \approx 0$ and $p_t \approx 1$:

It $p_t pprox 0$, then $heta_t = rac{lpha heta_t + |2\dot{p}_t|}{2p_t}$, and we have the limit:

$$\lim_{z o \left[rac{-\pi}{\sqrt{2lpha heta_0}}
ight]^+} f(z,t) = \infty imes ext{sign}(|\dot p_t| + \dot p_t).$$

As $p_t \approx 0$, it is reasonable to assume $\dot{p}_t \geq 0$. Then, the limit is $+\infty$.

It $p_t pprox 1$, then $heta_t = rac{lpha heta_t + |2\dot{p}_t|}{2(1-p_t)}$, and we have the limit:

$$\lim_{z\to 0^-} f(z,t) = \infty \times \operatorname{sign}(\dot{p}_t - |\dot{p}_t|).$$

As $p_t \approx 1$, it is reasonable to assume $\dot{p}_t \leq 0$. Then, the limit is $-\infty$.

Conditions summary:

- First model: $\theta_t^{first} = \max\left(\theta_0, \frac{|\dot{p}_t|}{\min(1-p_t, p_t)}\right)$.
- New condition from Lamperti: $\theta_t^{lamperti} = \max\left(\theta_0, \frac{\alpha\theta_0 + |2\dot{p}_t|}{2\min(1-p_t, p_t)}\right)$. Notice $\theta_t^{first} \leq \theta_t^{lamperti}$.
- Professor Kebaier's condition: $0 < \alpha < 1/2$, $\alpha < p_t < 1-\alpha$, and $\theta_t^{kebaier} = \max\left(\theta_0, \frac{|\dot{p}|}{\min(p-\alpha,1-p-\alpha)}\right)$.

Now, given $p_t \approx \alpha$, we have that $\theta_t^{lamperti} = \theta_t^{kebaier}$ if $\theta_0 = \frac{|2\dot{p}_t|}{p_t - \alpha} > 0$. Then, which is more restrictive depends on $|\dot{p}_t|$ and p_t .

Now, given $p_t \approx 1 - \alpha$, we have that $\theta_t^{lamperti} = \theta_t^{kebaier}$ if $\theta_0 = \frac{|2\dot{p}_t|}{1 - p_t - \alpha} > 0$. Then, which is more restrictive depends on $|\dot{p}_t|$ and p_t .

We can see that, we can have $\theta_t^{lamperti} > \theta_t^{kebaier}$ or $\theta_t^{lamperti} < \theta_t^{kebaier}$, depending on the values of p_t and \dot{p}_t .

Particular questions:

- In slide (3), we can see that the Lamperti transform $\psi(v,t)$ has undefined partial derivatives when x=0, or x=1. This is a consequence of the singularities of $\frac{1}{\sigma(v,t)}$ when x=0, or x=1. What can we say about the SDE of $Z_t=\psi(V_t,t)$ in the sense of existence and unicity? Can we use Itô's lemma considering that the singularities are in the boundary of the domain?
- In slide (5), the limits for the drift when Z_t touch the boundaries of its domain depend on α . Then, the condition for Z_t to stay always in $\left[\frac{-\pi}{\sqrt{2\alpha\theta_0}},0\right]$ also depends on α . This is not intuitive because the condition for X_t to be in [0,1], and there is a bijective mapping between X_t and Z_t , so they both should require the same condition.