Forward Kinematics

EE366/CE366/CS380: Introduction to Robotics

Dr. Basit Memon

Electrical and Computer Engineering Habib University

January 31, February, 7, 2024

Table of Contents

- 1 What is Kinematics?
- 2 Approaches to Forward (Direct) Kinematics
- 3 Denavit-Hartenberg (DH) Convention
- 4 DH Frame Assignment Rules and Examples
- 5 DH Homogeneous Transformation requires only four parameters.
- 6 References

Table of Contents

- 1 What is Kinematics?
- 2 Approaches to Forward (Direct) Kinematic
- 3 Denavit-Hartenberg (DH) Convention
- 4 DH Frame Assignment Rules and Examples
- 5 DH Homogeneous Transformation requires only four parameters
- 6 References

General Terminology

Forward Kinematics: Calculation of position and orientation of end-effector from its joint coordinates.

Inverse Kinematics: Determine the values of the joint coordinates, given the end-effector's position and orientation.

Kinematics establishes link between joint and task variables.

6/59 Basit Memon Forward Kinematics EE366

Given a robotic manipulator, what is the kinematic mapping?

- Joint Coordinates: *q*
- Task Coordinates: r
- Forward kinematic mapping: f such that r = f(q)
- Inverse kinematic mapping: f such that $q = f^{-1}(r)$
- How to find f?

Kinematic mapping f is a homogeneous transformation.

Figure: Source: Robotics-Modeling, Planning and Control

$$f(q) = {}^{b}T_{e}(q)$$

$$= \begin{bmatrix} {}^{b}n_{e}(q) & {}^{b}S_{e}(q) & {}^{b}a_{e}(q) & {}^{b}p_{e}(q) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ How do you find this transform?

Table of Contents

- 1 What is Kinematics
- 2 Approaches to Forward (Direct) Kinematics
- 3 Denavit-Hartenberg (DH) Convention
- 4 DH Frame Assignment Rules and Examples
- 5 DH Homogeneous Transformation requires only four parameters.
- 6 References

1. Find f by inspection.

Figure: Source: Modern Robotics

1. Find f by inspection.

Figure: Source: Modern Robotics

$$= L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3)$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3)$$

Transformation is not always obvious by inspection.

Figure: Source: Robotics-Bajd

■ Tedious for more links and 3D geometries.

Assign frames and write homogeneous transformation sequentially.

Figure: Source: Robotics-Baid

Attach reference frames to each link.

Assign frames and write homogeneous transformation sequentially.

Figure: Source: Robotics-Modeling, Planning and Control

- Attach reference frames to each link.
- Find required homogeneous transformation as a compounded transformation.

$${}^{b}T_{e} = {}^{0}T_{n}$$

= ${}^{0}T_{1}{}^{1}T_{2}\cdots{}^{i-1}T_{i}\cdots{}^{n-1}T_{n}$.

Systematic approach applied to 3R planar arm

Systematic approach applied to 3R planar arm

Figure: Source: Modern Robotics

■ MATLAB Live Script – FK3R

Systematic approach: Algorithm

- 1 Find each ${}^kT_{k+1}$.
- Find global transformation

$${}^{0}T_{n} = {}^{0}T_{1} {}^{1}T_{2} \cdots {}^{n-1}T_{n}$$

Computationally, to avoid unnecessary multiplications and additions:

$${}^{0}T_{n} = \begin{bmatrix} {}^{0}R_{n} & {}^{0}p_{n} \\ \mathbf{0} & 1 \end{bmatrix}$$
$${}^{0}R_{n} = {}^{0}R_{1} & {}^{1}R_{2} \cdots {}^{n-1}R_{n}$$
$${}^{i}p_{j} = {}^{i}p_{(j-1)} + {}^{i}R_{j-1} & {}^{j-1}p_{j}$$

 ${}^{0}p_{n}$ can be obtained by solving the above recursively.

Systematic approach: Algorithm

- 1 Find each ${}^kT_{k+1}$.
- Find global transformation

$${}^{0}T_{n} = {}^{0}T_{1} {}^{1}T_{2} \cdots {}^{n-1}T_{n}$$

- Step 1 is dependent on the frame assignment.
- Process is streamlined by using convention for frame assignment, specifically Denavit-Hartenberg convention.
 - This is not the only convention.

Table of Contents

- Denavit-Hartenberg (DH) Convention

Joints in Denavit-Hartenberg (DH) Convention [1]

Figure: Source: Robot Modeling and

- Robot manipulator: Set of rigid links connected by joints.
- Joint is either revolute or prismatic, i.e. 1 dof joint.
- What about other joints?
 - Modeled as a sequence of single dof joints with zero length links in between.

Denavit-Hartenberg (DH) Naming Convention [1]

Figure: Source: Robot Modeling and

- Robot manipulator with n joints has n + 1 links.
- Links numbered from 0 to n. Link 0 is base.
- Joints numbered from 1 to n.
- Joint *i* connects link i 1 to link *i*.
- Location of joint i is fixed wrt link i 1. When joint i moves, link i moves.

The DH Process [1]

Figure: Source: Robot Modeling and

- Attach frame *i* rigidly to link *i*. Joint *i* moves, frame *i* moves.
- From frame assignment, find DH parameters, (a, α, d, θ) , and compute A_i :

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i} c\alpha_{i} & s\theta_{i} s\alpha_{i} & a_{i} c\theta_{i} \\ s\theta_{i} & c\theta_{i} c\alpha_{i} & -c\theta_{i} s\alpha_{i} & a_{i} s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Homogeneous transformation $A_i = {}^{i-1}T_i$ represents motion of frame i with respect to i-1.

Table of Contents

- 1 What is Kinematics
- 2 Approaches to Forward (Direct) Kinematic
- 3 Denavit-Hartenberg (DH) Convention
- 4 DH Frame Assignment Rules and Examples
- 5 DH Homogeneous Transformation requires only four parameters.
- 6 References

Assignment of base frame

- z_0 is along axis of rotation or translation of Joint 1.
- Choice of x_0 and y_0 is arbitrary, as long as right-hand rule is satisfied.

How to assign other frames?

Figure: source: Robot Modeling and Control

- Choose axis z_i along the axis of joint i+1. For revolute, this is axis of rotation; for prismatic, the axis of translation.
- The origin O_i is at the intersection of axis z_i with the common normal between axes z_{i-1} and z_i .
 - Normal: Shortest line segment connecting z_{i-1} and z_i , and perpendicular to both.
 - If z_i and z_{i-1} are not coplanar, it is unique.

How to assign other frames?

Figure: source: Robot Modeling and Control

- Axis x_i is along the direction of the common normal, pointing from Joint i to Joint i + 1.
- Choose axis y_i , according to right-hand rule.
- Repeat the process iteratively.

Physical Interpretation of four parameters

Figure: source: Robot Modeling and Control

- Link Length (a_i) : Distance between axes z_{i-1} and z_i and is measured along the axis x_i
- Link Twist (α_i) : Angle from z_{i-1} to z_i measured about x_i
- Joint i-1 origin o_{i-1} to the intersection of x_i with z_{i-1} , measured along z_{i-1}
 - Joint Angle (θ_i) : Angle from x_{i-1} to x_i measured about z_{i-1} https://youtu.be/rA9tm0gTln8

Special Case-1: z_{i-1} is parallel to z_i

- Infinitely many common normals between z_{i-1} and z_i .
- \blacksquare Freedom to choose O_i
- Typically x_i chosen as normal passing through O_{i-1} .
- $\alpha_i = 0.$

Figure: Source: Robot Modeling and

- Choose z_0 (axis of rotation of joint 1, base frame)
- x_0 and y_0 are chosen as shown.
- z_1 is axis of rotation of joint 2.
- \blacksquare z_0 and z_1 are parallel.
 - Choose x_1 as the perpendicular through O_0 .
- End-effector frame is arbitrary.

Figure: Source: Robot Modeling and Control

■ DH Parameters:

Link	a _i	α_i	d _i	θ_i
1	a_1	0	0	θ_1
2	a ₂	0	0	θ_2

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i} c\alpha_{i} & s\theta_{i} s\alpha_{i} & a_{i} c\theta_{i} \\ s\theta_{i} & c\theta_{i} c\alpha_{i} & -c\theta_{i} s\alpha_{i} & a_{i} s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Link	a _i	α_i	di	θ_i		
1	a_1	0	0	θ_1		
2	a ₂	0	0	θ_2		

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i} c\alpha_{i} & s\theta_{i} s\alpha_{i} & a_{i} c\theta_{i} \\ s\theta_{i} & c\theta_{i} c\alpha_{i} & -c\theta_{i} s\alpha_{i} & a_{i} s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} c\theta_1 & -s\theta_1 & 0 & a_1 c\theta_1 \\ s\theta_1 & c\theta_1 & 0 & a_1 s\theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c\theta_2 & -s\theta_2 & 0 & a_2 c\theta_2 \\ s\theta_2 & c\theta_2 & 0 & a_2 s\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & a_{1} c\theta_{1} \\ s\theta_{1} & c\theta_{1} & 0 & a_{1} s\theta_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c\theta_2 & -s\theta_2 & 0 & a_2 c\theta_2 \\ s\theta_2 & c\theta_2 & 0 & a_2 s\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${0 \atop 2}T = A_1 A_2$$

$$= \begin{bmatrix} c_{12} & -s_{12} & 0 & a_1 c_1 + a_2 c_{12} \\ s_{12} & c_{12} & 0 & a_1 s_1 + a_2 s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Frame n – End-effector or Tool Frame

Figure: Source: Robot Modeling and Control

- Freedom of choice.
- lacksquare O_n is often placed symmetrically between fingers.
- z_n is typically labeled a and called "approach" direction.
- \blacksquare y_n is labeled s and is "sliding" direction.
- x_n is labeled n and is "normal" direction, normal to the plane formed by a and s.

Special Case-2: z_{i-1} intersects z_i

- x_i is chosen normal to plane formed by z_i and z_{i-1} .
- Positive direction of x_i is arbitrary.
- Origin O_i is at intersection of z_i and z_{i-1} .
- $a_i = 0$.

Example-2: Three-Link Cylindrical Robot

35/59 Basit Memon Forward Kinematics EE366

Example-2: Three-Link Cylindrical Robot

- Choose z_0 (axis of rotation of joint 1, base frame)
- x_0 and y_0 are chosen as shown.
- z_1 is axis of translation of joint 2.
- \blacksquare z_0 and z_1 intersect.
 - O_1 is chosen at joint 1.
 - \blacksquare x_1 is orthogonal to both z_0 and z_1

Example-2: Three-Link Cylindrical Robot

- z_2 is axis of translation of joint 3.
- \blacksquare z_1 and z_2 intersect.
 - lacksquare O_2 is chosen at point of intersection.
 - x_2 is orthogonal to plane formed by z_1 and z_2
- Tool frame is chosen at end of link 3.

Figure: Source: Robot Modeling and Control

Example-2: Three-Link Cylindrical Robot

Figure: Source: Robot Modeling and Control

■ DH Parameters:

Link	a _i	α_i	di	θ_i
1	0	0	L_1	θ_1
2	0	-90°	d_2	0
3	0	0	d_3	0

$$= \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & L_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example-3: Spherical Wrist

Figure: Source: Robotics–Modeling, Planning and Control

Control

Example-3: Spherical Wrist

Link	ai	$a_i \mid \alpha_i$		θ_i	
1	0	-90°	0	θ_4	
2	0	90°	0	θ_5	
3	0	0	d_6	θ_6	

Figure: Source: Robotics–Modeling, Planning and

Control

Example-3: Spherical Wrist

Link	a _i	α_i	d _i	θ_i
1	0	-90°	0	θ_4
2	0	90°	0	θ_5
3	0	0	d_6	θ_6

$${}_{6}^{3}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Rotation matrix is same as ZYZ Euler angles rotation, wrt {3} frame.

Example-4: Cylindrical Arm with Spherical Wrist

n 13	2	0	-90°	d_2	0
3	3	0	0	d ₃	0
V	4	0	-90°	0	θ_4
\mathcal{F}_{θ_1}	5	0	90°	0	θ_5
<u>.</u> .	6	0	0	d_6	θ_6

Link

 a_i

 α_i 0

 θ_i

 θ_1

 \bullet 6: θ_1 , d_2 , d_3 , θ_4 , θ_5 , θ_6

Basit Memon 42/59 Forward Kinematics EE366

Link	a _i	α_i	d _i	θ_i
1	0	-90°	0	θ_1
2	0	90°	d_2	θ_2
3	0	0	d_3	0
4	0	-90°	0	θ_4
5	0	90°	0	θ_5
6	0	0	d_6	θ_6

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} r_{11} &= c_1 \big[c_2 (c_4 c_5 c_6 - s_4 s_6) - s_2 s_5 c_6 \big] - d_2 (s_4 c_5 c_6 + c_4 s_6) \\ r_{21} &= s_1 \big[c_2 (c_4 c_5 c_6 - s_4 s_6) - s_2 s_5 c_6 \big] + c_1 (s_4 c_5 c_6 + c_4 s_6) \\ r_{31} &= -s_2 (c_4 c_5 c_6 - s_4 s_6) - c_2 s_5 c_6 \\ r_{12} &= c_1 \big[-c_2 (c_4 c_5 s_6 + s_4 c_6) + s_2 s_5 s_6 \big] - s_1 (-s_4 c_5 s_6 + c_4 c_6) \\ r_{22} &= -s_1 \big[-c_2 (c_4 c_5 s_6 - s_4 c_6) - s_2 s_5 s_6 \big] + c_1 (-s_4 c_5 s_6 + c_4 s_6) \\ r_{32} &= s_2 (c_4 c_5 s_6 + s_4 c_6) + c_2 s_5 s_6 \\ r_{13} &= c_1 (c_2 c_4 s_5 + s_2 c_5) - s_1 s_4 s_5 \\ r_{23} &= s_1 (c_2 c_4 s_5 + s_2 c_5) + c_1 s_4 s_5 \\ r_{23} &= s_1 (c_2 c_4 s_5 + s_2 c_5) + c_1 s_4 s_5 \\ r_{33} &= -s_2 c_4 s_5 + c_2 c_5 \\ d_x &= c_1 s_2 d_3 - s_1 d_2 + d_6 (c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5) \\ d_y &= s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) \\ d_z &= c_2 d_3 + d_6 (c_2 c_5 - c_4 s_2 s_5) \end{split}$$

Table of Contents

- DH Homogeneous Transformation requires only four parameters.

Denavit-Hartenberg (DH) Convention

Claim: Each homogeneous transformation A_i in a serial chain can be represented as a product of four basic transformations:

$$A_i = {}^{i-1}T_i = R_z(\theta_i)\operatorname{Trans}_z(d_i)\operatorname{Trans}_x(a_i)R_x(\alpha_i).$$

- Why do we care?
- We're representing transformation with four numbers $(\theta_i, d_i, a_i, \alpha_i)$ instead of six.
- Out of the four, three are constant called joint parameters and one is joint variable. For revolute joint, variable is θ and for prismatic, it is d.

$$q_i = \begin{cases} \theta_i & \text{if joint } i \text{ is revolute,} \\ d_i & \text{if joint } i \text{ is prismatic.} \end{cases}$$

DH Convention: What's the catch?

- Should we be able to represent a homogeneous transformation with just 4 numbers?
- The coordinate axes of the frames attached to the links have to be defined in the prescribed manner.
- The origin of a frame, in some case, would not even be physically on the link.

Constraints on the assignment of frames

For two frames $\{0\}$ and $\{1\}$, the homogeneous transformation, A, that takes coordinates from frame $\{1\}$ to those of frame $\{0\}$ can be represented as

$$A = {}^{0}T_{1} = R_{z}(\theta) \operatorname{Trans}_{z}(d) \operatorname{Trans}_{x}(a) R_{x}(\alpha),$$

such that a, d, θ, α are unique as long as the following conditions are satisfied:

- **DH1**) The axis x_1 is perpendicular to the axis z_0 ;
- (**DH2**) The axis x_1 intersects the axis z_0 .

Constraints on the assignment of frames

Figure: Source: Robot Modeling and Control

Homogeneous Transformation between links

$$A_{i} = R_{z}(\theta_{i}) \operatorname{Trans}_{z}(d_{i}) \operatorname{Trans}_{x}(a_{i}) R_{x}(\alpha_{i})$$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i} c\alpha_{i} & s\theta_{i} s\alpha_{i} & a_{i} c\theta_{i} \\ s\theta_{i} & c\theta_{i} c\alpha_{i} & -c\theta_{i} s\alpha_{i} & a_{i} s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \end{bmatrix}$$

Proof of the claim

- We'll show that if the assumptions are true then this A matrix can be written in the form shown on previous slide.
- By (DH1) x_1 is perpendicular to z_0 .

$$\begin{bmatrix}
 r_{11} & r_{21} & r_{31}
\end{bmatrix}
 \begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix} = 0$$

$$\Rightarrow r_{31} = 0$$

Proof: (DH1) gives required rotation matrix.

So,

$${}^{0}R_{1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ 0 & r_{32} & r_{33} \end{bmatrix}$$

■ Since ${}^{0}R_{1}$ is rotation matrix,

$$r_{11}^2 + r_{21}^2 = 1$$
$$r_{32}^2 + r_{33}^2 = 1$$

lacksquare Hence, there exist unique heta and lpha such that

$$(r_{11}, r_{21}) = (c\theta, s\theta)$$
 and $(r_{33}, r_{32}) = (c\alpha, s\alpha)$.

■ Using properties of rotation matrix, it can be shown that the matrix has requisite form.

Proof: (DH1) gives required rotation matrix - Steps

So,
$${}^{0}R_{1} = \begin{bmatrix} c\theta & r_{12} & r_{13} \\ s\theta & r_{22} & r_{23} \\ 0 & s\alpha & c\alpha \end{bmatrix}$$

$$r_{12}^{2} + r_{22}^{2} = c^{2}\alpha$$

$$r_{13}^{2} + r_{23}^{2} = s^{2}\alpha$$

$$r_{12}c\theta + r_{22}s\theta = 0$$
(1)
(2)

$$r_{13}c\theta + r_{23}s\theta = 0 (4)$$

$$r_{12}r_{13} + r_{22}r_{23} + c\alpha s\alpha = 0 (5)$$

From (1) and (3),

$$(r_{12}, r_{22}) = (-s\theta c\alpha, c\theta c\alpha)$$
 or $(s\theta c\alpha, -c\theta c\alpha)$

Similarly, from (2), (4), and (5),

$$(r_{13}, r_{23}) = (s\theta s\alpha, -c\theta s\alpha)$$
 or $(-s\theta s\alpha, c\theta s\alpha)$

Proof: (DH1) gives required rotation matrix - Steps

Two possibilities are:

$$\begin{bmatrix} c\theta & s\theta c\alpha & -s\theta s\alpha \\ s\theta & -c\theta c\alpha & c\theta s\alpha \\ 0 & s\alpha & c\alpha \end{bmatrix} \text{ or } \begin{bmatrix} c\theta & -s\theta c\alpha & s\theta s\alpha \\ s\theta & c\theta c\alpha & -c\theta s\alpha \\ 0 & s\alpha & c\alpha \end{bmatrix}$$

The determinant of left one is -1 where as the one on right is +1.

$$\begin{vmatrix} c\theta & -s\theta c\alpha & s\theta s\alpha \\ s\theta & c\theta c\alpha & -c\theta s\alpha \\ 0 & s\alpha & c\alpha \end{vmatrix} = c\theta(c\theta c^2\alpha + c\theta s^2\alpha) - s\theta(-s\theta c^2\alpha - s\theta s^2\alpha) = 1$$

Proof: (DH2) gives required position vector.

Figure: Source: Robot Modeling and Control

■ (DH2) implies

$${}^{0}p_{1} = d_{i} {}^{0}z_{0} + a_{i} {}^{0}x_{1}$$

$$= d_{i} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + a_{i} \begin{bmatrix} c\theta_{i} \\ s\theta_{i} \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} a_{i} c\theta_{i} \\ a_{i} s\theta_{i} \\ d_{i} \end{bmatrix}$$

Table of Contents

- 1 What is Kinematics
- 2 Approaches to Forward (Direct) Kinematic
- 3 Denavit-Hartenberg (DH) Convention
- 4 DH Frame Assignment Rules and Examples
- 5 DH Homogeneous Transformation requires only four parameters
- 6 References

1] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar.
Robot modeling and control.
John Wiley & Sons, 2020.