03_Dynamics and Well-Posedness

1. Well-Posedness for Smooth Systems

Well-Posedness

Global Well-Posedness

2. Solution Concept and Well-Posedness for Switched Systems

Classical Generalization

Sliding Mode and Differential Inclusion

Well-posedness Result for Sliding Mode

3. Event-Times Criterion

Conceptions

Solution Concept Relate to Event-Times

4. Well-Posedness for Hybrid Automata

Well-Posedness for Hybrid Automata

5. Well-Posedness for Complementarity Systems

Theorem for Well-Posedness for LCS

Theorem for Initial Well-Posedness for LCS

Summary

1. Well-Posedness for Smooth Systems

For smooth system, we consider smooth system presented by differential equations.

Well-Posedness:

given initial conditions, does there exist a solution and is it unique?

Well-Posedness

Theorem for local existence and uniqueness of solutions

Let f(t,x) be piece-wise continuous in t and satisfy the following Lipschitz condition: there exist L>0 and r>0 such that

$$\|f(t,x)-f(t,y)\|\leqslant L\|x-y\|$$

for all x and y in neighborhood $B := \{x \in \mathbb{R}^n \mid \|x - x_0\| < r\}$ of x_0 and for all $t \in [t_0, t_1].$

Then there exists $\delta>0$ such that unique solution exists on $[t_0,t_0+\delta]$ starting in x_0 at t_0 .

Global Well-Posedness

Theorem: Global Lipschitz Condition

Suppose f(t,x) is piece-wise continuous in t and satisfies

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

for all x,y in \mathbb{R}^n and for all $t\in [t_0,t_1].$

Then unique solution exists on $[t_0, t_1]$ for any initial state x_0 at t_0 .

Note:

It is a sufficient condition, not an necessary condition

2. Solution Concept and Well-Posedness for Switched Systems

For switched system, we assume it has **discontinuous** differential equations.

For example:

- if x in interior of C_− or C₊: just follow!
- if $f_{-}(x)$ and $f_{+}(x)$ point in same direction: just follow!
- if $f_+(x)$ points towards C_+ and $f_-(x)$ points towards C_- : At least two trajectories

 $f_+(x)$ points towards C_- and $f_-(x)$ points towards C_+ \rightarrow no classical solution

If one would **allow that the state evolves only according to one of the dynamics**, then in the third class, there will be two solutions, and in the first case, there will be no solutions.

So, we need **generalization of the solution concept.**

Classical Generalization

- **Relaxation:** spatial (hysteresis) Δ , time delay τ , smoothing ϵ (use a continuous function to approximate the 'gap')
- Chattering/Infinitely Fast Switching

Sliding Mode and Differential Inclusion

Filippov's Convex Definition

Convex combination of both dynamics

$$\dot{x} = \lambda f_+(x) + (1-\lambda)f_-(x)$$
 with $0 \leqslant \lambda \leqslant 1$

such that x moves ("slides") along surface $\phi(x)=0$

Differential Inclusion

 $\dot{x} \in F(x)$ with set-valued

For example

$$F(x) = \{f_{+}(x)\} \qquad (\phi(x) > 0)$$

$$F(x) = \{f_{-}(x)\} \qquad (\phi(x) < 0),$$

$$F(x) = \{\lambda f_{+}(x) + (1 - \lambda) f_{-}(x) \mid \lambda \in [0, 1]\} \quad (\phi(x) = 0),$$

Generalization of Solution Concept:

Function $x:[a,b]\to\mathbb{R}^n$ is **solution** of $\dot{x}\in F(x)$ if x is **absolutely continuous** and **satisfies** $\dot{x}(t)\in F(x(t))$ for almost all $t\in [a,b]$

Example

$$\frac{1}{\sqrt{(\kappa)}}$$

$$\phi(x) = x_2, f_+(x) = (x_1^2, -x_1 + \frac{1}{2}x_1^2)^\mathsf{T}, \ f_-(x) = (1, x_1^2)^\mathsf{T}$$

Sliding for
$$x_0 = (1,0)^T$$
 as $f_+(x_0) = (1,-\frac{1}{2})^T$ and $f_-(x_0) = (1,1)^T$

Sliding behavior: find convex combination such that $\phi(x) = 0$

$$\frac{d\phi}{dt}(x(t)) = \frac{d\phi}{dx}\dot{x}(t) = \dot{x}_2(t) = \lambda(-x_1 + \frac{1}{2}x_1^2) + (1 - \lambda)x_1^2 = 0 \quad \Rightarrow$$

$$\frac{d\phi}{dx} \cdot \frac{\partial x_1}{\partial t} \cdot \frac{\partial \phi}{\partial x_2} \cdot \frac{\partial x_2}{\partial t} \quad \lambda(x) = \frac{x_1}{\frac{1}{2}x_1 + 1}$$

Sliding mode is valid as long as $\lambda(x) \in [0,1]$, "invariant"

$$\dot{x}_1=\lambda x_1^2+(1-\lambda)=\frac{2x_1^3-x_1+2}{x_1+2}$$
 as long as $0\leqslant x_1\leqslant 2$
$$f_-(x_1=\left[\begin{smallmatrix} f_-(x_1)&-1\\ & -1\end{smallmatrix}\right]$$
 hs_dyn.10

Well-posedness Result for Sliding Mode

Theorem: A well-posedness result for sliding mode

Assume

- ullet f_- and f_+ are continuously differentiable $\left(C^1
 ight)$
- ϕ is C^2 , discontinuity vector $h(x) := f_+(x) f_-(x)$ is C^1

If for each x with $\phi(x) = 0$ at least one of the conditions

- $f_+(x)$ points towards C_- or
- $f_{-}(x)$ points towards C_{+}

holds (where for different points x a different condition may hold), then the **Filippov solutions exist and are unique**

3. Event-Times Criterion

Conceptions

Definition: Admissible Event Times Set

Set $\mathscr{E} \subset \mathbb{R}_+$ is **admissible event times set**, if it is **closed and countable**, and $0 \in \mathscr{E}$ (0: initial time)

Definition: Accumulation Points

- <u>left accumulation point</u>: $t \in \mathscr{E}$ is said to be <u>left accumulation point</u> of \mathscr{E} , if for all t' > t, $(t,t') \cap \mathscr{E}$ is not empty: e.g. bouncing ball
- <u>right accumulation point</u>: $t \in \mathscr{E}$ is said to be right <u>accumulation point</u> of \mathscr{E} , if for all t' < t, $(t',t) \cap \mathscr{E}$ is not empty:

Definition: Zeno Free

Admissible event times set \mathscr{E} (or the corresponding solution) is said to be **left (right) Zeno free**, if it **does not contain** any left (right) accumulation points

Solution Concept Relate to Event-Times

- If solution concept **left Zeno free**: only one solution from origin (Filippov's example)
- If solution concept right Zeno free: only local existence (bouncing ball)
- If solution concept **allows Zeno**, then multiple solutions from origin (Filippov's example) and global solutions for bouncing ball

4. Well-Posedness for Hybrid Automata

Definition: Hybrid Time Trajectory

-

<u>Hybrid time trajectory</u> $\tau=\{I_i\}_{i=0}^N$ is finite $(N<\infty)$ or infinite $(N=\infty)$ sequence of intervals of real line, such that

- $I_i = [\tau_i, \tau_i']$ with $\tau_i \leqslant \tau_i' = \tau_{i+1}$ for $0 \leqslant i < N$;
- if $N<\infty$, either $I_N=[au_N, au_N']$ with $au_N\leqslant au_N'
 eq\infty$ or $I_N=[au_N, au_N')$ with $au_N\leqslant au_N'\leqslant\infty$.

Note:

No left accumulations of event times!

Well-Posedness for Hybrid Automata

Definition: Initial Well-Posedness

If hybrid automaton is **non-blocking + deterministic**, that is:

- · no dead-lock
- no splitting of trajectories

Note:

- There exits theoretical condition for the initial well-posedness, but it is not easy to check
- Compared to well-posedness, IWP. do not need to consider the existence interval of the solution. The IWP. makes sure that there is a solution exists and time interval $[0,0^+]$

Dilemma of Statement about Hyrbid Automata

No statements by hybrid automata theory on existence, absence, or continuation

- beyond live-lock: an infinite number of jumps at one time instant, so no solution on $[0,\epsilon)$ for some $\epsilon>0$
- for left accumulations of event times ightarrow prevent uniqueness
- for right accumulations of event times \rightarrow prevent global existence

5. Well-Posedness for Complementarity Systems

$$egin{aligned} x(k+1) &= Ax(k) + Bz(k) + Eu(k) \ w(k) &= Cx(k) + Dz(k) + Fu(k) \ 0 &\leqslant w(k) \perp z(k) \geqslant 0 \end{aligned}$$

Well-Posedness

Given x(k),u(k) o x(k+1),z(k),w(k) uniquely determined

Theorem for Well-Posedness for LCS

Here, we regard the w(k) as w(k) = Mz(k) + q

Linear Complementarity Problem LCP(q,M)

Given vector $q \in \mathbb{R}^m$ and matrix $M \in \mathbb{R}^{m imes m}$ find $z \in \mathbb{R}^m$ such that

$$0 \leqslant (q + Mz) \perp z \geqslant 0$$

 $M\in\mathbb{R}^{m imes m}$ is **P-matrix**, if $\det M_{II}>0$ for all $I\subseteq\{1,\ldots,m\}$ (that is all subset of the set)

Theorem

Discrete-time LCS is well-posed if D is a P-matrix

Theorem for Initial Well-Posedness for LCS

Consider LCS:

$$\dot{x}(t) = Ax(t) + Bz(t), \quad w(t) = Cx(t) + Dz(t), \quad 0 \leqslant z(t) \perp w(t) \geqslant 0$$

Define

$$G(s) := C(s\mathscr{I} - A)^{-1}B + D \quad Q(s) = C(s\mathscr{I} - A)^{-1}$$

Theorem:

LCS is initially well-posed if and only if for all x_0 $LCP(Q(\sigma)x_0, G(\sigma))$ is uniquely solvable for sufficiently large $\sigma \in \mathbb{R}$

- "sufficiently large" means we just need to find one σ
- dynamical properties can now be linked to static results on LCPs which are abundant in literature!
- $G(\sigma)$ being P-matrix for sufficiently large σ is sufficient condition for initial well-posedness

Summary

- Solution concepts for smooth and switched systems:
 - well-posedness
 - sliding modes
 - Filippov solutions
- Event times
- Well-posedness for hybrid automata
- Well-posedness for complementarity systems

- Well-Posedness for Smooth System
 - Lipschitz condition
- Solution Concept and Well-Posedness for Switched Systems
 - Traditional: only allow one dynamics
 - o classical generations
 - Fillip's convex definition + sliding mode + differential inclusion + generalized solution concept
 - well-posedeness theorem
- Event-Time Criterion: countable + closed
 - Accumulation Points
 - Zeno Free
 - Solution Concepts
- Well-Posedeness for Hyrbid Automata
 - IWP.: non-blocking + deterministic
- Well-Posedeness for Comlementarity System
 - LCP(q,M), P-matrix
 - D is P-matrix → well-posed
 - IWP. $LCP(Q(\sigma)x_0, G(\sigma))$