MATH 2111 Matrix Algebra and Applications

Week 11 Tutorial

1. Find a basis for Nul A, where A is given by:

(i)
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -2 & 1 \\ 3 & -1 & 0 \end{bmatrix}$ (iv) $\begin{bmatrix} 1 & 0 & -1 & 1 \\ -1 & 2 & 1 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$.

2. Find a basis for Row A, where A is given by:

(i)
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$ (iii) $\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$ (iv) $\begin{bmatrix} 1 & 3 & -2 & -1 \\ 2 & -1 & 4 & 3 \\ 3 & -5 & 10 & 7 \\ 4 & 5 & 0 & 1 \\ 5 & 1 & 6 & 6 \end{bmatrix}$.

3. Find a basis for $\operatorname{Col} A$, using only the columns of A, where A is given by:

(i)
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 6 & -1 \\ -1 & -3 & 2 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 1 & 2 & 2 & 2 \\ 3 & 2 & 5 & 10 & 7 \\ 1 & 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 8 & 5 \end{bmatrix}$.

4. Find a basis for Row A for each matrix A in Q2, using only the rows of A.

5. Given that \mathcal{B} is a basis for \mathbb{R}^3 . Find the \mathcal{B} -coordinate vectors of \mathbf{v} :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} -2\\-1\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\-4 \end{bmatrix} \right\}; \quad \text{(i) } \mathbf{v} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad \text{(ii) } \mathbf{v} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \quad \text{(iii) } \mathbf{v} = \begin{bmatrix} 1\\1\\3 \end{bmatrix}.$$

6. Let $\mathcal{B} = \{1 + t, 1 - t, t - t^2\}$ be a basis for \mathbb{P}_2 . Find the vectors (polynomials) $p(t) \in \mathbb{P}_2$ with the following \mathcal{B} -coordinate vectors:

(i)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

7. Let \mathcal{B} be a basis of V and let S be a set of vectors in V. If the set of \mathcal{B} -coordinate vectors of S forms a basis for \mathbb{R}^n , is S a basis for V?

8. Find the standard matrix of the \mathcal{B} -coordinate mapping relative to the following basis for \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\2 \end{bmatrix} \right\}.$$

9. Find the dimensions of the following subspaces:

(i)
$$H = \left\{ \begin{bmatrix} s + 2t + 3u \\ s - t - 2u \\ t + u \\ s - 3u \end{bmatrix} \mid s, t, u \in \mathbb{R} \right\}$$
 (ii) $H = \left\{ \begin{bmatrix} 2s + 3t \\ 3s - 2t \\ s + t \end{bmatrix} \mid s, t \in \mathbb{R}, s - 3t = 0 \right\}.$

10. Find the nullity of each of the following matrices.

(i)
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ (iii) $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{bmatrix}$ (iv) $A = \begin{bmatrix} 1 & 3 & 2 & 2 & 4 \\ 2 & 6 & 4 & 3 & 8 \\ 3 & 0 & 6 & 2 & -1 \end{bmatrix}$.

11. Find the row rank of each of the following matrices.

$$(i) \ A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad (ii) \ A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 4 & -2 \end{bmatrix} \quad (iii) \ A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 3 & 2 \\ 1 & 7 & -6 & 1 \end{bmatrix}.$$

12. Find the column rank of each of the following matrices.

$$\text{(i) } A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{bmatrix} \quad \text{(ii) } A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 3 \\ 1 & 0 & -2 \end{bmatrix} \quad \text{(iii) } A = \begin{bmatrix} 1 & 2 & 3 & 2 & 4 \\ 2 & -1 & 1 & 1 & 3 \\ -1 & 3 & 2 & 1 & 1 \end{bmatrix}.$$

13. Let $A = \begin{bmatrix} -1 & 4 & 6 \\ -3 & 7 & 9 \\ 1 & -2 & -2 \end{bmatrix}$. Determine whether the following vectors are eigenvectors of A.

14. For the given matrix A and the given eigenvector \mathbf{v} , find the corresponding eigenvalue.

(i)
$$A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (ii) $A = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$
(iii) $A = \begin{bmatrix} 5 & 9 & 7 \\ 4 & 10 & 7 \\ -8 & -18 & -13 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ (iv) $A = \begin{bmatrix} -3 & 6 & 10 \\ -8 & 13 & 20 \\ 4 & -6 & -9 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 5 \\ 0 \\ 2 \end{bmatrix}$.

15. Consider the same matrices A given in Q14. For the given eigenvalue λ , find the corresponding collection of eigenvectors.

(i)
$$\lambda = -1$$
 (ii) $\lambda = 1 - \sqrt{3}$ (iii) $\lambda = 1$ (iv) $\lambda = -1$.

Answers for checking:

1. (i)
$$\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$
 (ii) ϕ (iii) $\left\{ \begin{bmatrix} \frac{1}{4}\\\frac{3}{4}\\1 \end{bmatrix} \right\}$ (iv) $\left\{ \begin{bmatrix} \frac{1}{6}\\-\frac{3}{2}\\\frac{7}{6}\\1 \end{bmatrix} \right\}$.

2. (i)
$$\left\{\begin{bmatrix}1\\2\\1\end{bmatrix}\right\}$$
 (ii) $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$

(iii)
$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$
 (iv) $\left\{ \begin{bmatrix} 1\\0\\\frac{10}{7}\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-\frac{8}{7}\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.

3. (i)
$$\left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\5\end{bmatrix}\right\}$$
 (ii) $\left\{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}1\\-1\\2\end{bmatrix}\right\}$ (iii) $\left\{\begin{bmatrix}1\\3\\1\\2\end{bmatrix},\begin{bmatrix}1\\2\\1\\1\end{bmatrix},\begin{bmatrix}2\\10\\3\\8\end{bmatrix}\right\}$.

4. (i)
$$\left\{\begin{bmatrix}1\\2\\1\end{bmatrix}\right\}$$
 (ii) $\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}3\\5\end{bmatrix}\right\}$ (iii) $\left\{\begin{bmatrix}-2\\1\\1\end{bmatrix},\begin{bmatrix}1\\-2\\1\end{bmatrix}\right\}$

(iv)
$$\left\{ \begin{bmatrix} 1\\3\\-2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\4\\3 \end{bmatrix}, \begin{bmatrix} 5\\1\\6\\6 \end{bmatrix} \right\}$$
.

5. (i)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ (iii) $\begin{bmatrix} -4 \\ 17 \\ 13 \end{bmatrix}$.

6. (i)
$$0(t)$$
 (ii) $1+t$ (iii) $3+2t-3t^2$

8.
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & 2 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$
, which is actually $\begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix}^{-1}$.

14. (i) 3 (ii)
$$1 + \sqrt{3}$$
 (iii) 0 (iv) 1.

15. (i)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ s \in \mathbb{R}, s \neq 0$$
 (ii)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = s \begin{bmatrix} -1 \\ \sqrt{3} \end{bmatrix}, \ s \in \mathbb{R}, s \neq 0.$$

(iii)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} -\frac{9}{4} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{7}{4} \\ 0 \\ 1 \end{bmatrix}$$
, $s, t \in \mathbb{R}$, not both zeros.

(iv)
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, s \in \mathbb{R}, s \neq 0.$$