Actuarial Data Science: R in Insurance

Data Analytics Day

November 2019 Yuan Tian

Agenda

- Why R
- Example of using R in Insurance
 - Pricing
 - Reserving
 - Data Visualisation
 - Linking to Excel, Access Database, SQL
- Learning resources and next steps
- Hands-on session with short exercises

Why R

- Popular choice for actuaries ,scientists and academics
 - Easy and fun to learn : coding not complex
 - Already been studied and developed by many actuaries
 - Many practical package exists: ChainLadder, GoogleVis, GLM...
 - New IFOA Exam Syllabus
- Easy to share the output, e.g. writing reports, building dashboards
 - R Markdown : html, pdf, excel data...
 - R Shiny: interactive web tool
- Free!
- Data Science and Data Analytics skills :
 - MUST HAVE FOR ACTUARIES!

R vs Python

Parameter	ta R	Python	₽ Pa File
Objective	Data Analysis and Statistical Modeling	Data Science, Web Development, Embedded Systems	Comparison between
Workability	Consists of many easy to use packages	Can easily perform matrix computation as well as optimization	R Programming
Integration	Locally Run Programs	Programs integrated with web-app for easy deployment	and Python
Database Handling Capacity	Poses problem for handling large dataset	Can handle large data easily without any fault	R
IDE	Rstudio, R GUI	Spyder, IPython, Jupyter Notebook	25
Essential Packages and library	ggplot2, tidyverse, caret	Numpy, pandas, scipy, scikit-learn, TensorFlow	

Python: multi-purpose programming language

R: statistical computing and graphical computation

Actuary vs Data Scientist

- Business Awareness, communicating insights to the business
- Core technical actuarial skills
- On going training, qualifications, CPD...

- Lack of:

- Limited skills to deal with unstructured data
- Large data analysis e.g web scraping
- Visual representation ability
- Programing skills

R Examples

R examples - R Reporting RMarkdown

This Package works in Rstudio allowing to add narrative text alongside a consistent set of exhibits

- Reports have same structure every time
- Actuaries concentrate on interpretation and narrative
- Ad-hoc exhibits can be added to appendices and reproduced easily without adding workload
- Reports can be output to Word, pdf, html
- Attached in the Appendix

https://rmarkdown.rstudio.com/

R examples -R Reporting RMarkdown

- Open your Rstudio
- Open this html file :

R Markdown Doc 2019.html

- Try the examples!
- · Let's do it together!

Let's try this example together:

ggplot2 examples

Example 1: Midwest data

```
library(ggplot2)
midwest <- read.csv("http://goo.gl/G1K41K")
options(scipen=999)
theme set(theme bw()) # pre-set the bw theme.
data("midwest", package = "ggplot2")
# Scatterplot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
  geom point(aes(col=state, size=popdensity)) +
  geom smooth(method="loess", se=F) +
  xlim(c(0, 0.1)) +
  ylim(c(0, 500000)) +
  labs(subtitle="Area Vs Population",
      y="Population",
      x="Area",
       title="Scatterplot",
       caption = "Source: midwest")
plot(gg)
```


Source data and code: http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

R examples - Data Visualization ggplot2

r	manufactı	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
1 8	audi	a4	1.8	1999	4	auto(I5)	f	18	29	p	compact
2 8	audi	a4	1.8	1999	4	manual(m	f	21	29	р	compact
3 8	audi	a4	2	2008	4	manual(m	f	20	31	р	compact
4 8	audi	a4	2	2008	4	auto(av)	f	21	30	р	compact
5 8	audi	a4	2.8	1999	6	auto(I5)	f	16	26	p	compact
6 8	audi	a4	2.8	1999	6	manual(m	f	18	26	p	compact

Source data and code: http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

R examples - Data Visualization leaflet

- Output Geographical Information to a map using leaflet package
- Interactive maps allow zooming and slicing
- Widely used in personal line motor pricing and Nat Cat perils aggregation management

R examples Data Visualization googleVis

- Web interactive plot (use google chrome)
- R interface to google chart
- Author: Markus Gesmann (He is also the author of other actuarial R packages e.g. MBBEFD)

https://cran.r-project.org/web/packages/googleVis/vignettes/ googleVis_examples.html

R examples -**Data Visualization plotly**

- Web interactive plot examples :https://plot.ly/r/

SwissR Search SwissR SwissR Plotly Fundamentals Basic Charts

https://plot.ly/ggplot2/getting-started/#plotly-for-r

- The Basic R package : GLM
- Package MGCV : GAM
 - Generalised Additive Models
- Package XGBoost
 - Efficient linear model solver and tree learning algorithms

Dataset:

age	workclass	education	educational.n um	marital.status	race	gender	hours.per.wee	income
2	5 Private	11th	7	Never-married	Black	Male	40	<=50K
3	8 Private	HS-grad	9	Married-civ-spous	White	Male	50	<=50K
2	8 Local-gov	Assoc-acdm	12	Married-civ-spous	White	Male	40	>50K
4	4 Private	Some-college	10	Married-civ-spous	Black	Male	40	>50K
3	4 Private	10th	6	Never-married	White	Male	30	<=50K
6	3 Self-emp-not-inc	Prof-school	15	Married-civ-spous	White	Male	32	>50K
2	4 Private	Some-college	10	Never-married	White	Female	40	<=50K
5	5 Private	7th-8th	4	Married-civ-spous	White	Male	10	<=50K
6	5 Private	HS-grad	9	Married-civ-spous	White	Male	40	>50K
3	6 Federal-gov	Bachelors	13	Married-civ-spous	White	Male	40	<=50K

Checking Data Variables e.g. factor affect earnings, boxplot, variable correlation

Checking Data Variables e.g. factor affect earnings, variable correlation

Using 80% 20% rule to split main dataset into train and test data

Using train data for model fitting

> formula <- income~.			
> logit <- glm(formula, data = data	train, famil	y = 'binomial')	
> summary(logit)			
Call:			
glm(formula = formula, family = "bi	nomial", data	= data_train)	
Deviance Residuals:			
Min 1Q Median 3Q	Max		
-2.6844 -0.5912 -0.2637 -0.0689	3.1938		
Coefficients: (1 not defined becaus	e of singular.	ities)	
	Estimate St	d. Error z value	Pr(> z)
(Intercept)	-6.430439	0.260757 -24.661	< 2e-16 ***
age	0.029573	0.001392 21.238	< 2e-16 ***
workclassLocal-gov	-0.611243	0.093477 -6.539	6.19e-11 ***
workclassPrivate	-0.516368	0.078468 -6.581	4.68e-11 ***

table_mat <- table(data_test\$income, predict > 0.5)										
> table_	mat									
	FALSE TE	RUE								
<=50K	6373	187								
>50K	1107 12	240								

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

accuracy Test <-	sum(diag(table	mat)) /	<pre>sum(table mat)</pre>
> accuracy Test			
[1] 0.8268709			

R examples -Data Processing and Manipulation in R

#Linking R to Excel

library(readxl)

library(readr)

examplefile<-"C:/Users/sgartiyu/Desktop/R/multiTimelineActuaryvsDatascience.csv" input<-read csv(examplefile)

examplefilexl<-"C:/Users/sgartiyu/Desktop/R/multiTimelineActuaryvsDatascience.xlsx"

inputexcel<-read_excel(examplefilexl,sheet="data") ---

#Linking R to SQL

library(odbc)

con <- dbConnect(odbc(),

Driver = "SOLServer". Server = "mysalhost",

Database = "mydbname",

UID = "myuser",

Port = 1433

#Manipulation

#data manipulation

library(dplyr)

library(tidyr)

library(data.table)

Library(DT)

R examples - Reserving ChainLadder

- The ChainLadder package written by Markus Gesmann allows standard reserving methods to be applied to development triangles
 - Chain Ladder
 - BF Cape Cod
 - Mack Method
 - Bootstrapping
 - •

R examples - Reserving ChainLadder

dev										
origin	1	2	3	4	5	6	7	8	9	10
2002	358	1125	1735	2218	2746	3320	3466	3606	3834	3901
2003	352	1236	2170	3353	3799	4120	4648	4914	5339	
2004	291	1292	2219	3235	3986	4133	4629	4909		
2005	311	1419	2195	3757	4030	4382	4588			
2006	443	1136	2128	2898	3403	3873				
2007	396	1333	2181	2986	3692					
2008	441	1288	2420	3483						
2009	359	1421	2864							
2010	377	1363								
2011	344									

	Latest	Dev.To.Da	Ultimate	IBNR	Mack.S.E	CV(IBNR)
2002	3,901	1	3,901	0	0	NaN
2003	5,339	0.9828	5,432	93.3	71.4	0.765
2004	4,909	0.9129	5,378	468.6	118.4	0.253
2005	4,588	0.8662	5,297	708.5	130.5	0.184
2006	3,873	0.7975	4,857	983.7	260.3	0.265
2007	3,692	0.7225	5,110	1,418.10	409.9	0.289
2008	3,483	0.6154	5,659	2,176.50	557.3	0.256
2009	2,864	0.4223	6,782	3,918.00	873.9	0.223
2010	1,363	0.2417	5,640	4,277.30	970.4	0.227
2011	344	0.0693	4,967	4,623.30	1,360.90	0.294

 $\frac{https://gist.github.com/mages/3687713/659b2826d429823ff4ddb139d4d1bf46fe794dac}{https://rawgit.com/mages/GIRO2012/master/Using_R_in_Insurance_GIRO_2012.html}$

R Shiny Dashboard

 A quick, powerful way of creating and delivering management information, and a welcome user interface to R

http://shiny.rstudio.com/

- An example : insurance frequency severity simulation tool
- https://tychobra.shinyapps.io/freq-sev-claims-sim/

Resource and next steps

Useful R packages/Tools

- ChainLadder for reserving triangles and methods
- Dplyr for data manipulation and data cleaning
- R glm for generalised linear modelling
- Leaflet for geographical analysis
- Ggplot2 for data visualisation
- RMarkdown for reports
- KNN for spatial smoothing
- XGBoost for pricing and wider regression application

Source data and code: http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Resources

- The best way to learn a programing language is to USE
 IT!
- Data Science online course
- Google
- Keep practising
- Kaggle Competition

Appendix:Online Resources

- Courses to get you started
 - DataCamp: Introduction to R (free course)
 - Coursera: Machine Learning (Andrew Ng)

Appendix: Popular R packages for actuaries

<u>actuar:</u> Loss distributions modelling, risk theory (including ruin theory), simulation of compound hierarchical models and credibility theory

ChainLadder: Reserving methods in R

copula: Multivariate Dependence with Copulas

cplm: Monte Carlo EM algorithms and Bayesian methods for fitting Tweedie compound Poisson linear models

evir: Extreme Values in R

fitdistrplus: Help to fit of a parametric distribution to non-censored or censored data

lifecontingencies: Package to perform actuarial evaluation of life contingencies

lossDev: A Bayesian time series loss development model

mondate: R package to keep track of dates in terms of months