$11a_{140} (K11a_{140})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{32} + u^{31} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{32} + u^{31} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} - 2u^{7} + u^{5} + 2u^{3} - u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 3u^{10} + 3u^{8} + 2u^{6} - 4u^{4} + u^{2} + 1 \\ -u^{12} + 4u^{10} - 6u^{8} + 2u^{6} + 3u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{20} + 5u^{18} - 11u^{16} + 10u^{14} + 2u^{12} - 13u^{10} + 9u^{8} + 2u^{6} - 5u^{4} + u^{2} + 1 \\ u^{22} - 6u^{20} + 17u^{18} - 26u^{16} + 20u^{14} - 13u^{10} + 10u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{26} + 7u^{24} + \dots + u^{2} + 1 \\ u^{26} - 8u^{24} + \dots - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{26} + 7u^{24} + \dots + u^{2} + 1 \\ u^{26} - 8u^{24} + \dots - 2u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=4u^{31}-40u^{29}-4u^{28}+184u^{27}+36u^{26}-484u^{25}-148u^{24}+728u^{23}+340u^{22}-420u^{21}-420u^{20}-556u^{19}+116u^{18}+1316u^{17}+444u^{16}-872u^{15}-652u^{14}-292u^{13}+236u^{12}+772u^{11}+244u^{10}-316u^{9}-260u^{8}-124u^{7}+36u^{6}+116u^{5}+44u^{4}-4u^{3}-12u^{2}-12u-14u^{14}+36u^{14}-44u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{32} + u^{31} + \dots - 2u - 1$
c_2	$u^{32} + 19u^{31} + \dots - 8u^2 + 1$
c_3, c_8, c_9	$u^{32} - u^{31} + \dots - 2u - 1$
c_4	$u^{32} + 3u^{31} + \dots + 202u + 77$
c_6, c_7, c_{10} c_{11}	$u^{32} + 3u^{31} + \dots + 16u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{32} - 19y^{31} + \dots - 8y^2 + 1$
c_2	$y^{32} - 11y^{31} + \dots - 16y + 1$
c_3, c_8, c_9	$y^{32} - 31y^{31} + \dots - 16y^2 + 1$
c_4	$y^{32} - 19y^{31} + \dots - 95320y + 5929$
c_6, c_7, c_{10} c_{11}	$y^{32} + 41y^{31} + \dots - 112y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.868634 + 0.432115I	-3.34862 + 4.04370I	-6.04453 - 7.13519I
u = -0.868634 - 0.432115I	-3.34862 - 4.04370I	-6.04453 + 7.13519I
u = 1.04533	-6.54630	-13.9220
u = -0.026700 + 0.917936I	-14.7670 - 5.6087I	-9.35181 + 2.83991I
u = -0.026700 - 0.917936I	-14.7670 + 5.6087I	-9.35181 - 2.83991I
u = 0.012118 + 0.901786I	-8.30499 + 2.26267I	-6.08064 - 2.91656I
u = 0.012118 - 0.901786I	-8.30499 - 2.26267I	-6.08064 + 2.91656I
u = -1.083140 + 0.341712I	-3.37831 + 1.66824I	-9.56243 - 0.35146I
u = -1.083140 - 0.341712I	-3.37831 - 1.66824I	-9.56243 + 0.35146I
u = 1.076920 + 0.423315I	-2.77345 - 5.10982I	-6.71803 + 8.18202I
u = 1.076920 - 0.423315I	-2.77345 + 5.10982I	-6.71803 - 8.18202I
u = 0.756512 + 0.350926I	0.83897 - 1.64134I	1.45053 + 5.73960I
u = 0.756512 - 0.350926I	0.83897 + 1.64134I	1.45053 - 5.73960I
u = -0.804096	-1.07276	-10.5910
u = 1.157410 + 0.314330I	-9.45578 + 0.50238I	-13.25888 + 0.22265I
u = 1.157410 - 0.314330I	-9.45578 - 0.50238I	-13.25888 - 0.22265I
u = -1.110460 + 0.463462I	-8.33031 + 8.05747I	-10.74797 - 7.46464I
u = -1.110460 - 0.463462I	-8.33031 - 8.05747I	-10.74797 + 7.46464I
u = -0.163704 + 0.669811I	-5.64755 - 3.79286I	-7.65510 + 3.79891I
u = -0.163704 - 0.669811I	-5.64755 + 3.79286I	-7.65510 - 3.79891I
u = -0.522402 + 0.426932I	-2.44365 - 0.31845I	-3.24811 - 0.20471I
u = -0.522402 - 0.426932I	-2.44365 + 0.31845I	-3.24811 + 0.20471I
u = -1.267860 + 0.464164I	-12.21500 + 2.58352I	-9.43681 - 0.14752I
u = -1.267860 - 0.464164I	-12.21500 - 2.58352I	-9.43681 + 0.14752I
u = 1.263650 + 0.477439I	-12.11660 - 7.17755I	-9.14770 + 5.86389I
u = 1.263650 - 0.477439I	-12.11660 + 7.17755I	-9.14770 - 5.86389I
u = -1.268830 + 0.488464I	-18.5604 + 10.6275I	-12.35486 - 5.78214I
u = -1.268830 - 0.488464I	-18.5604 - 10.6275I	-12.35486 + 5.78214I
u = 1.280210 + 0.458189I	-18.7882 + 0.7378I	-12.72584 + 0.13438I
u = 1.280210 - 0.458189I	-18.7882 - 0.7378I	-12.72584 - 0.13438I
-		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.144298 + 0.527794I	-0.269618 + 1.333490I	-2.86164 - 5.19756I
u = 0.144298 - 0.527794I	-0.269618 - 1.333490I	-2.86164 + 5.19756I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{32} + u^{31} + \dots - 2u - 1$
c_2	$u^{32} + 19u^{31} + \dots - 8u^2 + 1$
c_3, c_8, c_9	$u^{32} - u^{31} + \dots - 2u - 1$
c_4	$u^{32} + 3u^{31} + \dots + 202u + 77$
c_6, c_7, c_{10} c_{11}	$u^{32} + 3u^{31} + \dots + 16u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{32} - 19y^{31} + \dots - 8y^2 + 1$
c_2	$y^{32} - 11y^{31} + \dots - 16y + 1$
c_3,c_8,c_9	$y^{32} - 31y^{31} + \dots - 16y^2 + 1$
c_4	$y^{32} - 19y^{31} + \dots - 95320y + 5929$
c_6, c_7, c_{10} c_{11}	$y^{32} + 41y^{31} + \dots - 112y + 1$