

GPU Programming Applied to Industrial Problems

Introduction to scaling multi-node applications

Murilo Boratto

SENAI CIMATEC

UCX (Unified Comunication X Library)

NCCL

NVIDIA Collective Communication Library

Topology detection

Build graph with all GPUs, NICs, CPUs, PCI switches, NVLink, NVSwitch.

Topology injection for VMs.

Graph search

Extensive search to find optimal set of rings or trees.

Performance prediction of each algorithm and auto-tuning.

CUDA kernels

Optimized reductions and copies for a minimal SM usage.

CPU threads for network communication.

sendrecv

gather

scatter

alltoall

neighbor

CUDAWARE MPI

CUDA + MPI at GPUs

CUDAWARE-MPI

SENAI CIMATEC

SENAI CIMATEC

NVSHMEM

NVIDIA OpenSHMEM

https://github.com/muriloboratto/parallel-computing-applied

https://github.com/muriloboratto/GPU-programming

Tecnologia, Inovação e Educação para a Indústria

Murilo Boratto

murilo.boratto@fieb.org.br

Sistema FIEB

PELO FUTURO DA INOVAÇÃO

