Web Performance: Wieso und wie?

Agenda

Wieso? Metriken Tools Praxis

Wieso Web Performance wichtig ist

Web Performance beeinflusst...

Web Performance Metriken

0s

URL in der Browserleiste eingegeben und Enter oder: auf einen Link geklickt, ein Formular abgeschickt...

Verbindungsaufbau:

DNS Lookup Verbindungsaufbau TLS Negotiation

Server schickt die Response zurück:

Datenbankzugriffe Logik HTML generieren

...

Time to First Byte: Erstes Byte der Antwort vom Server kommt beim Client an

TTFB

TTFB

Time to First Byte: Erstes Byte der Antwort vom Server kommt beim Client an

Laden render-blockierender Resourcen: CSS, JS...

Laden von Fonts

FCP

First Contentful Paint: Erste Teile des angeforderten Inhalts werden angezeigt

FCP

First Contentful Paint: Erste Teile des angeforderten Inhalts werden angezeigt

Laden & Anzeigen vom Largest Content Element

Oft ein Hero-Bild oder der Cookie Banner

LCP

Largest Contentful Paint: Größtes Element im Viewport wurde gerendert

Largest Contentful Paint: Größtes Element im Viewport wurde gerendert

JavaScript

Hydration Event Loop Blocking

TTI

Time to Interactive: Die Zeit bis die Seite User Input entgegennimmt

Core Web Vitals:

Beeinflussen das Google Ranking

Largest Contentful Paint:

Größtes Element im Viewport wurde gerendert

Cumulative Layout Shift:

Layoutverschiebungen beim weiteren Laden

Interaction to next Paint:

Die Zeit bis die Seite visuell auf User Interaktionen reagiert

Tools

Tools

Chromium-basierte Browser

treo.sh

webpagetest.org

Maßnahmen

Wir setzen uns Höchstwerte, um Regressionen zu vermeiden:

- Zeitbasiert: z.B. auf Basis einer der Metriken
- Mengenbasiert: z.B. File Transfer Size (JS, Bilder...)
- Regelbasiert: z.B. Lighthouse Score

Auf diesen Werten definieren wir Alerting, oder lassen den Build fehlschlagen.

In der Praxis

Bei komoot

Wir konnten bei der komplexen React Anwendung:

- LCP von über 3 Sekunden auf 2,6 Sekunden verringern
- **INP** konstant auf unter 200ms bringen
- **Build** schlug fehl, wenn das JS-Bundle zu groß wurde

Noch mehr zu Web Performance?

imPuls

Anhand eines praktischen Beispiels werfen wir gemeinsam einen Blick auf Performanceanalysen und -optimierungen. Anschließend nehmen wir uns Zeit für mitgebrachten Fragen und Beispiele.

Workshop

Quick Check

Mit unserem kostenlosen Quick Check analysieren wir die Performance eurer Website und identifizieren konkrete Verbesserungsmöglichkeiten.

Was kann ich jetzt machen?

Schauen wir noch mal

auf den Ladevorgang

