Московский физико-технический институт (государственный университет)

Лабораторная работа № 4.3.2 (Общая физика: оптика)

Дифракция света на ультразвуковой волне в жидкости

Работу выполнил: Балдин Виктор, Б01-303 **Цель работы:** изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическое введение

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m \ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

2 Определение скорости ультразвука по дифракционной картине

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной $\sigma=2$ деления, или 8 мкм.

Исследуем изменения дифракционной картины на зеленом свете. При

Рис. 2: Схема для наблюдения дифракции на акустической решетке

увеличении частоты УЗ-генератора и приближении к 1,1 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы 1-4 ниже. На основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3-6. Коэффициенты углов наклонов прямых для всех зависимостей сведены в таблицу 5.

m	-3	-2	-1	0	1	2	3
x_m , дел	-115	-78	-37	0	38	74	106
x_m , MKM	-460	-312	-148	0	152	296	424

Таблица 1: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}168~{\rm M}\Gamma{\rm q}$

Рис. 3: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}168~{\rm M}\Gamma$ ц

m			-2						4
x_m , дел	-150	-116	-81	-38	0	38	80	120	154
x_m , MKM	-600	-464	-324	-152	0	152	320	480	616

Таблица 2: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}219~{\rm M}\Gamma{\rm ц}$

Рис. 4: График зависимость $x_m(m)$ при частоте генератора $\nu=1,219~{
m M}\Gamma$ ц

m	-3	-2	-1	0	1	2	3
x_m , дел	-116	-80	-38	0	45	86	126
x_m , MKM	-464	-320	-152	0	180	344	504

Таблица 3: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}248~{\rm M}\Gamma{\rm ц}$

m	-2	-1	0	1	2
x_m , дел	-94	-43	0	45	85
x_m , MKM	-376	-172	0	180	340

Таблица 4: Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1{,}331~{\rm M}\Gamma{\rm q}$

Рис. 5: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}248~{\rm M}\Gamma$ ц

Рис. 6: График зависимость $x_m(m)$ при частоте генератора $\nu=1{,}331~{\rm M}\Gamma$ ц

ν , М Γ ц	b, MKM	σ_b , MKM	Λ , mkm	$\Delta\Lambda$, mkm	v, м/с	Δv , м/с
1,168	148,9	1,7	1289	15	1507	17
1,219	154,8	1,3	1240	10	1512	12
1,258	163,0	1,4	1178	10	1482	13
1,331	178	3	1076	19	1432	26

Таблица 5: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v

Ошибка при определении Λ и v не превышает 2%. Согласно справочным данным, при комнатной температуре скорость ультразвуковой волны в воде составляет примерно 1490 м/с. Значения, полученные экспериментально, с достаточной точностью соотносятся с ними.

3 Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке 7.

Рис. 7: Схема для наблюдения дифракции методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: C=0.06 мм.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x \iff I(x) = m^2\cos^2\Omega x = m^2\frac{1 + \cos^22\Omega x}{2}$$
(6)

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=0,06), соответствующее n темным полосам акустической решетки. Формулы

для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{7}$$

Расчеты также приведены в таблице 6. Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.

ν, Мгц	Количество делений	во делений Количество темных полос		a. 10 m/a	Δv , 10 m/c
ν , with	шкалы окуляра N	акустической решетки n	11, MM	v, 10 M/C	Δv , 10 M/C
1,220	150	15	1,29	157	7
1,259	150	16	1,20	151	8
1,271	175	18	1,24	157	8

Таблица 6: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v методом темного поля

4 Вывод

В работе изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде. Решетка наблюдалась методом темного поля.