UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Título del trabajo

Autor: Nombre del Autor

Director: Nombre del Director

Jurados: Nombre del jurado 1 (pertenencia) Nombre del jurado 2 (pertenencia) Nombre del jurado 3 (pertenencia)

Resumen

Acá va el resumen del trabajo. Debe ser lo más breve posible. No más de dos o tres párrafos, de unas cuatro o cinco oraciones cada uno. Leyendo esto debe quedar muy claro en qué consiste el trabajo realizado, por qué el trabajo es importante, por qué el trabajo muestra que el estudiante aplicó correctamente lo aprendido en la Carrera y qué información va a encontrar el lector en esta Memoria.

No usar en este resumen ninguna referencia bibliográfica del tipo [1], ni tampoco notas a pie de página ni siglas que no estén aclaradas como parte de este texto, ni tipografía en negritas, subrayada o cursiva. Dicho de otra forma, el texto en este resumen debe ser escrito de forma tal que si se recorta el mismo y se lo pega en un archivo .txt entonces este conserve su formato y sea perfectamente entendible sin ningún agregado adicional, es decir, quede autocontenido.

Agradecimientos

Agradecimientos personales. [OPCIONAL]

No olvidarse de agradecer al tutor.

No vale poner anti-agradecimientos (este trabajo fue posible a pesar de...)

Índice general

Re	sume	en	III
1.	Intro	oducción General	1
	1.1.	Aprendiendo LATEX	1
		1.1.1. Una introducción (no tan corta) a LATEX	1
		1.1.2. Guía matemática rápida para LATEX	1
	1.2.	Utilizando esta plantilla	2
		1.2.1. Acerca de esta plantilla	2
	1.3.	Qué incluye esta plantilla	2
		1.3.1. Carpetas	2
		1.3.2. Archivos	3
	1.4.	Entorno de trabajo	4
		1.4.1. Configurando TexMaker	5
	1.5.	Personalizando la plantilla en el archivo memoria.tex	6
	1.6.	El código del archivo memoria.tex explicado	6
2.	Intro	oducción Específica	9
	2.1.	Estilo y convenciones	9
		2.1.1. Uso de mayúscula inicial para los título de secciones	9
		2.1.2. Este es el título de una subsección	9
		2.1.3. Figuras	10
		2.1.4. Tablas	11
		2.1.5. Ecuaciones	12
3.		eño e Implementación	13
	3.1.	Análisis del software	13
4.		ayos y Resultados	15
	4.1.	Pruebas funcionales del hardware	15
5.		clusiones	17
		Conclusiones generales	17
	5.2.	Próximos pasos	17
Bi	bliog	rafía	19

Índice de figuras

1.1.	Entorno de trabajo del texMaker	5
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	10
2.2.	Imagen tomada de la página oficial del procesador ¹	10
2.3.	El lector no sabe por qué de pronto aparece esta figura	11

Índice de Tablas

2.1.	caption corto																														1	1
 .	cap non con to	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		1

Dedicado a... [OPCIONAL]

Introducción General

1.1. Aprendiendo LATEX

LATEX no es WYSIWYG (What You See is What You Get), a diferencia de los procesadores de texto como Microsoft Word o Pages de Apple o incluso LibreOffice en el mundo open-source. En lugar de ello, un documento escrito para LATEX es en realidad un archivo de texto simple, llano que *no contiene formato*. Nosotros le decimos a LATEX cómo deseamos que se aplique el formato en el documento final escribiendo comandos simples entre el texto, por ejemplo, si quiero usar *texto en cursiva para dar énfasis*, escribo \emph{texto} y pongo el texto en cursiva que quiero entre medio de las llaves. Esto significa que LATEX es un lenguaje del tipo «mark-up», muy parecido a HTML.

1.1.1. Una introducción (no tan corta) a LATEX

Si usted es nuevo a LATEX, hay un muy buen libro electrónico - disponible gratuitamente en Internet como un archivo PDF - llamado, «A (not so short) Introduction to LATEX». El título del libro es generalmente acortado a simplemente *lshort*. Puede descargar la versión más reciente en inglés (ya que se actualiza de vez en cuando) desde aquí: http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

Está disponible en varios idiomas además del inglés. Se puede encontrar la versión en español en la lista en esta página: http://www.ctan.org/tex-archive/info/lshort/

1.1.2. Guía matemática rápida para LATEX

Si usted está escribiendo un documento con mucho contenido matemático, entonces es posible que desee leer el documento de la AMS (American Mathematical Society) llamado, «A Short Math Guide for LATEX». Se puede encontrar en línea en el siguiente link: http://www.ams.org/tex/amslatex.html en la sección «Additional Documentation» hacia la parte inferior de la página.

1.2. Utilizando esta plantilla

Si usted está familiarizado con LATEX, entonces puede explorar la estructura de directorios de esta plantilla y proceder a personalizarla agregando su información en el bloque *INFORMACIÓN DE LA PORTADA* en el archivo memoria.tex.

Se puede continuar luego modificando el resto de los archivos siguiendo los lineamientos que se describen en la sección 1.5 en la página 6.

Asegúrese de leer el capítulo 2 acerca de las convenciones utilizadas para las Memoria de los Trabajos Finales de la Carrera de Especialización en Sistemas Embebidos de FIUBA.

Si es nuevo en LATEX se recomienda que continue leyendo el documento ya que contiene información básica para aprovechar el potencial de esta herramienta.

1.2.1. Acerca de esta plantilla

Esta plantilla LATEX está basada originalmente en torno a un archivo de estilo LATEX creado por Steve R. Gunn de la University of Southampton (UK), department of Electronics and Computer Science. Se puede encontrar su trabajo original en el siguiente sitio de internet: http://www.ecs.soton.ac.uk/~srg/softwaretools/document/templates/

El archivo de Gunn, **ecsthesis.cls** fue posteriormente modificado por Sunil Patel quien creó una plantilla esqueleto con la estructura de carpetas. El template resultante se puede encontrar en el sitio web de Sunil Patel: http://www.sunilpatel.co.uk/thesis-template

El template de Patel se publicó a través de http://www.LaTeXTemplates.com desde donde fue modificado muchas veces en base a solicitudes de usuarios. La versión 2.0 y subsiguientes representan cambios significativos respecto a la versión de la plantilla modificada por Patel, que es de hecho, dificilmente reconocible. El trabajo en la versión 2.0 fue realizado por Vel Gayevskiy y Johannes Böttcher.

Uno de los primeros graduados de la Carerra de Especialización en Sistemas Embebios de la UBA, el Ing. Patricio Bos modificó los contenidos de la versión 2.3 para crear una plantilla altamente adaptada a la Carrera de Especialización de la UBA.

1.3. Qué incluye esta plantilla

1.3.1. Carpetas

Esta plantilla se distribuye como una único archivo .zip que se puede descomprimir en varios archivos y carpetas. Los nombres de las carpetas son (o pretender ser) auto-explicativos.

Appendices – Esta es la carpeta donde se deben poner los apéndices. Cada apéndice debe ir en su propio archivo .tex. Se incluye un ejemplo y una plantilla en la carpeta.

Chapters – Esta es la carpeta donde se deben poner los capítulos de la memoria. Cada capítulo debe ir un su propio archivo .tex por separado. Se ofrece por defecto, la siguiente estructura de capítulos y se recomienda su utilización dentro de lo posible:

- Capítulo 1: Introducción general
- Capítulo 2: Introducción específica
- Capítulo 3: Diseño e implementación
- Capítulo 4: Ensayos y resultados
- Capítulo 5: Conclusiones

Esta estructura de capítulos es la que se recomienda para las memorias de la especialización.

Figures – Esta carpeta contiene todas las figuras de la memoria. Estas son las versiones finales de las imágenes que van a ser incluidas en la memoria. Pueden ser imágenes en formato *raster*¹ como .png, .jpg o en formato vectoriales² como .pdf, .ps. Se debe notar que utilizar imágenes vectoriales disminuye notablemente el peso del documento final y acelera el tiempo de compilación por lo que es recomendable su utilización siempre que sea posible.

1.3.2. Archivos

También están incluidos varios archivos, la mayoría de ellos son de texto plano y se puede ver su contenido en un editor de texto. Después de la compilación inicial, se verá que más archivos auxiliares son creados por LaTeX o BibTeX, pero son de uso interno y que no es necesario eliminarlos o hacer nada con ellos. Toda la información necesaria para complilar el documento se encuentra en los archivos .tex y en las imágenes de la carpeta Figures.

referencias.bib - este es un archivo importante que contiene toda la información bibliográfica y de referencias que se utilizará para las citas en la memoria en conjunto con BibTeX. Usted puede escribir las entradas bibliográficas en forma manual, aunque existen también programas de gestión de referencias que facilitan la creación y gestión de las referencias y permiten exportarlas en formato BibTeX. También hay disponibles sitios web como books.google.com que permiten obtener toda la información necesaria para una cita en formato BibTeX.

Masters Doctoral Thesis.cls – este es un archivo importante. Es el archivos con la clase que le informa a LATEX cómo debe dar formato a la memoria. El usuario de la plantilla no debería necesitar modificar nada de este archivo.

memoria.pdf – esta es su memoria con una tipografía bellamente compuesta (en formato de archivo PDF) creado por LATEX. Se distribuye con la plantilla y después de compilar por primera vez sin hacer ningún cambio se debería obtener una versión idéntica a este documento.

¹https://en.wikipedia.org/wiki/Raster_graphics

²https://en.wikipedia.org/wiki/Vector_graphics

memoria.tex – este es un archivo importante. Este es el archivo que tiene que compilar LATEX para producir la memoria como un archivo PDF. Contiene un marco de trabajo y estructuras que le indican a LATEX cómo diagramar la memoria. Está altamente comentado para que se pueda entender qué es lo que realiza cada línea de código y por qué está incluida en ese lugar. En este archivo se debe completar la información personalizada de las primeras sección según se indica en la sección 1.5.

Archivos que *no* forman parte de la distribución de la plantilla pero que son generados por LATEX como archivos auxiliares necesarios para la producción de la memoria.pdf son:

memoria.aux – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex.

memoria.bbl – este es un archivo auxiliar generado por BibTeX, si se borra BibTeX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Mientras que el archivo .bib contiene todas las referencias que hay, este archivo .bbl contine sólo las referencias que han sido citadas y se utiliza para la construcción de la bibiografía.

memoria.blg – este es un archivo auxiliar generado por BibTeX, si se borra BibTeX simplemente lo regenera cuando se compila el archivo principal **memoria.tex**.

memoria.lof — este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Le indica a LATEX cómo construir la sección *Lista de Figuras*.

memoria.log – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Contiene mensajes de LATEX. Si se reciben errores o advertencias durante la compilación, se guardan en este archivo .log.

memoria.lot – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Le indica a LATEX cómo construir la sección *Lista de Tablas*.

memoria.out – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex.

De esta larga lista de archivos, sólo aquellos con la extensión .bib, .cls y .tex son importantes. Los otros archivos auxiliares pueden ser ignorados o borrados ya que LATEX y BibTeX los regenerarán durante la compilación.

1.4. Entorno de trabajo

Ante de comenzar a editar la plantilla debemos tener un editor LATEX instalado en nuestra computadora. En forma análoga a lo que sucede en lenguaje C, que se puede crear y editar código con casi cualquier editor, exiten ciertos entornos de trabajo que nos pueden simplificar mucho la tarea. En este sentido, se recomienda, sobre todo para los principiantes en LATEX la utilización de TexMaker, un programa gratuito y multi-plantaforma que está disponible tanto para windows como para sistemas GNU/linux.

La versión más reciente de TexMaker es la 4.5 y se puede descargar del siguiente link: http://www.xm1math.net/texmaker/download.html. Se puede consultar el manual de usuario en el siguiente link: http://www.xm1math.net/texmaker/doc.html.

1.4.1. Configurando TexMaker

La instalación de TexMaker se encarga de instalar todos los paquetes necesarios de LATEX. Una vez instalado el programa y abierto el archivo memoria.tex se debería ver una pantalla similar a la figura 1.1.

FIGURA 1.1: Entorno de trabajo del texMaker.

Notar que existe una vista llamada Estructura a la izquierda de la interface que nos permite abrir desde dentro del programa los archivos individuales de los capítulos. A la derecha se encuentra una vista con el archivo propiamente dicho para su edición. Hacia la parte inferior se encuentra una vista del log con información de los resultados de la compilación. En esta última vista pueden aparecen advertencias o *warning* que normalmente pueden ser ignorados y también los errores que se indican en color rojo.

Recordar que el archivo que se debe compilar con PDFLaTex es memoria.tex, si trataramos de compilar alguno de los capítulos directamente nos saldría un error. Para salvar la molestia de tener que cambiar de archivo para compilar, se puede definer el archivo memoria.tex como "documento maestro" yendo al menú opciones ->"definir documento actual como documento maestro", lo que nos permite compilar cualquier archivo, sea memoria.tex, el capítulo donde estemos trabajando o incluso un apéndice si lo hubiera y texmaker se encargará automáticamente de compilar memoria.tex.

En el menú herramientas se encuentran las opciones de compilación. Para producir un archivo PDF a partir de un archivo .tex se debe ejecutar PDFLaTeX (el shortcut es F6). Para incorporar nueva bibliografía se debe utilizar la opción Bib-TeX del mismo menú herramientas (el shortcut es F11).

Notar que para actualizar las tablas de contenidos se debe ejecutar PDFLaTeX dos veces. Esto se debe a que es necesario actualizar algunos archivos auxiliares antes de obtener el resultado final. En forma similar, para actualizar las referecias se debe ejecutar primero PDFLaTeX, después BibTeX y finalmente PDFLaTeX dos veces por idénticos motivos.

1.5. Personalizando la plantilla en el archivo memoria. tex

Para personalizar la plantilla se debe incorporar la información propia en los distintos archivos .tex.

Primero abrir **memoria.tex** con TexMaker (o el editor de su preferencia). Se debe ubicar dentro del archivo el bloque de código titulado *INFORMACIÓN DE LA PORTADA* donde se deben incorporar los primeros datos personales con los que se constuirá automáticamente la portada.

1.6. El código del archivo memoria.tex explicado

El archivo memoria.tex contiene la estructura de la memoria y se encuentra densamente comentado para explicar qué páginas, secciones y elementos de formato el código LATEX está creando en cada línea. Cada elemento de mayor jerarquía del documento está dividido en bloques con nombres en mayúsculas para que resulte evidente qué es lo que hace esa porción de código en particular. Inicialmente puede parecer que hay mucho código LATEX, pero es principalmente código para dar formato a la memoria y al estar ya definido, no requiere intervención del usuario de la plantilla.

Se debe comenzar por chequear que la información en la portada es correcta.

Luego viene el resumen que contiene una versión abreviada de su trabajo. Se debería poder utilizar como un documento independiente para describir el contenido de su trabajo.

A continuación se encuentra la sección opcional de agradecimientos.

El índice de contenidos, las listas de figura de tablas se generan en forma automática y no requieren intervención ni edición manual por parte del usuario de la plantilla.

La siguiente página es opcional y puede contener una dedicatorio de una línea, en caso de que usted quiere dedicarle el trabajo a alguien.

Finalmente, se encuentra el bloque donde se incluyen los capítulos y los apéndices. Por defecto se incluyen los 5 capítulos propuestos que se encuentran en la carpeta /Chapters. Cada capítulo se debe escribir en un archivo .tex separado y se debe poner en la carpeta *Chapters* con el nombre **Chapter1**, **Chapter2**, etc... El código para incluir capítulos desde archivos externos se muestra a continuación.

```
\include{Chapters/Chapter1}
\include{Chapters/Chapter2}
\include{Chapters/Chapter3}
\include{Chapters/Chapter4}
```

\include{Chapters/Chapter5}

Los apéndices también deben ir en archivos .tex separados y se deben ubicar dentro de la carpeta *Appendices*. Los apéndices vienen comentados con el caracter % por defecto y para incluirlos se debe eliminar dicho caracter.

Luego del preambulo, los capítulos y los apéndices, finalmente viene la bibliografía. El estilo bibliográfico (llamado <code>authoryear</code>) es utilizado por LATEX para generar las referencias y es un estilo con todas las características necesarias para su composición. No se debe subestimar lo agradecido que estarán sus lectores al encontrar que las referencias se encuentran a un clic de distancia. Por supuesto, esto depende de que usted haya puesto la url correspondiente en el archivo BibTex en primer lugar.

Introducción Específica

La idea de esta sección es presentar el tema de modo que cualquier persona que no conoce el tema pueda entender de qué se trata y por qué es importante realizar este trabajo y cuál es su impacto.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como Capítulo, Sección o subsección según corresponda. Por ejemplo: "En el Capítulo 1 se explica tal cosa", o "En la Sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Entre párrafos sucesivos dejar un espacio, como el que se observa entre este párrafo y el anterior. Pero las oraciones de un mismo párrafo van en forma consecutiva, como se observa acá. Luego, cuando se quiere poner una lista tabulada se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se sugiere utilizar *texto en cursiva* donde se considere <u>apropiado</u>.

Se sugiere que la escritura sea impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio". En lo posible hablar en tiempo pasado, ya que la memoria describe un trabajo que ya fue realizado.

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria, utilizado el formato establecido por IEEE en [2]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP, la cual se describe en detalle en [6]".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que es incorrecto escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es la siguiente: "Se eligió utilizar un cuadrado azul para el logo, el cual se ilustra en la figura 2.1".

FIGURA 2.1: Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

FIGURA 2.2: Imagen tomada de la página oficial del procesador¹.

¹https://goo.gl/images/i7C70w

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3: El lector no sabe por qué de pronto aparece esta figura.

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

```
\begin{table}[h]
\centering
\caption[caption corto]{caption largo más descriptivo}
\begin{tabular}{l c c}
\toprule
\textbf{Especie} & \textbf{Tamaño} & \textbf{Valor aprox.}\\
\midrule
Amphiprion Ocellaris & 10 cm & \$ 6.000 \\
Hepatus Blue Tang & 15 cm & \$ 7.000 \\
Zebrasoma Xanthurus & 12 cm & \$ 6.800 \\
\bottomrule
\hline
\end{tabular}
\label{tab:peces}
\end{table}
```

TABLA 2.1: caption largo más descriptivo

Especie	Tamaño	Valor aprox.
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, Fig. 2.1 o Tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria estas se deben numerar de la siguiente forma:

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que en el caso de las ecuaciones estas pueden ser referidas por su número, como por ejemplo "tal como describe la ecuación 2.1", pero también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para las ecuaciones se debe utilizar un tamaño de letra equivalente al utilizado para el texto del trabajo, en tipografía cursiva y preferentemente del tipo Times New Roman o similar. El espaciado antes y después de cada ecuación es de aproximadamente el doble que entre párrafos consecutivos del cuerpo principal del texto. Por suerte la plantilla se encarga de esto por nosotros.

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
ds^2 = c^2 dt^2 \left( \frac{d\sigma^2}{1-k\sigma^2} + \sigma^2\left[ d\theta^2 + \sin^2\theta d\phi^2 \right] \right)
\end{equation}
```

Y para la ecuación 2.2:

```
\begin{equation}
\label{eq:schrodinger}
\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
-i\hbar \frac{\partial\Psi}{\partial t}
\end{equation}
```

Diseño e Implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
  las líneas de código irían aquí...
  \end{lstlisting}
  A modo de ejemplo:
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
5 uint32_t sensorValue[MAX_SENSOR_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER]; //ON or OFF
8 state_t actuatorState[MAX_ACTUATOR_NUMBER]; //ON or OFF
void vControl() {
11
    initGlobalVariables();
12
13
    period = 500 ms;
    while (1) {
16
17
      ticks = xTaskGetTickCount();
18
19
      updateSensors();
20
21
      updateAlarms();
23
      controlActuators();
25
       vTaskDelayUntil(&ticks, period);
26
27
28 }
```

ALGORITMO 3.1: Pseudocódigo del lazo principal de control.

Ensayos y Resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.

Bibliografía

- [1] Mike Belshe, Roberto Peon y Martin Thomson. *Hypertext Transfer Protocol Version* 2 (*HTTP*/2). RFC 7540. Nov. de 2015. DOI: 10.17487/rfc7540. URL: https://rfc-editor.org/rfc/rfc7540.txt.
- [2] IEEE. *IEEE Citation Reference*. 1.^a ed. IEEE Publications, 2016. URL: http://www.ieee.org/documents/ieeecitationref.pdf (visitado 26-09-2016).
- [3] Jeffrey Mogul y col. *Hypertext Transfer Protocol HTTP/1.1*. RFC 2616. Mar. de 2013. DOI: 10.17487/rfc2616. URL: https://rfc-editor.org/rfc/rfc2616.txt.
- [4] NXP Semiconductors. *LPCOPEN v2.16 Drivers, Middleware and Examples*. Disponible: 2016-06-25. URL: http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/software-tools/lpcopen-libraries-and-examples:LPC-OPEN-LIBRARIES.
- [5] Proyecto CIAA. *CIAA Firmware Project*. Disponible: 2016-06-25. URL: https://github.com/ciaa/Firmware.
- [6] Proyecto CIAA. *Computadora Industrial Abierta Argentina*. Disponible: 2016-06-25. 2014. URL: http://proyecto-ciaa.com.ar/devwiki/doku.php?id=start.
- [7] Pablo Ridolfi. *Embedded software development workspace for microcontrollers*. Disponible: 2016-06-25. URL: https://github.com/pridolfi/workspace.
- [8] David Robinson. *The Common Gateway Interface (CGI) Version 1.1*. RFC 3875. Mar. de 2013. DOI: 10.17487/rfc3875. URL: https://rfc-editor.org/rfc/rfc3875.txt.
- [9] Savannah. *lwIP A Lightweight TCP/IP stack*. Disponible: 2016-06-25. URL: http://git.savannah.gnu.org/cgit/lwip/lwip-contrib.git.
- [10] Savannah. *lwIP Wiki Sample Web Server*. Disponible: 2016-06-25. URL: http://lwip.wikia.com/wiki/Sample_Web_Server.
- [11] H. Zimmermann. «OSI Reference Model The ISO Model of Architecture for Open Systems Interconnection». En: *IEEE Transactions on Communications* 28.4 (abr. de 1980), págs. 425-432. ISSN: 0090-6778. DOI: 10.1109/TCOM.1980.1094702.