3 Kinematik und Dynamik

Computer Animation & Kollisionsdetektion Wintersemester 2011/12

• (Numerische) Lösungsverfahren für gewöhnliche Differentialgleichung (Anfangswertproblem):

$$y'(t) = F(t, y(t)), \quad y(t_0) = y_0$$

- Ziel: Suche zu vorgegebenen Zeitpunkten $t_1 < t_2 < t_3 < t_4 < ...$ Näherungen y_n für die exakte Lösung $y(t_n)$ Spezialfall: äquidistante Schrittweite: $t_n = t_0 + nh$
- Es gibt verschiedene Ansätze:
 - Explizite und implizite
 - Einschritt-Verfahren und Mehrschritt-Verfahren

		explizit	implizit
	Einschritt	$y_{n+1} = \varphi_F(t_n, y_n)$	$\Phi_F(t_n, t_{n+1}, y_n, y_{n+1}) = 0$
	Mehrschritt	$y_{n+1} = \psi_F(t_n, t_{n-1},, y_n, y_{n-1},)$	$\Psi_F(t_{n+1}, t_{n-1},, y_{n+1}, y_n, y_{n-1},) = 0$

- Einfache Integrationsverfahren für Systeme 1. Ordnung für y'(t) = F(t, y(t)), $y'(0) = y_0$
- Explizites Eulerverfahren (für feste Schrittweite h>0)

$$\begin{aligned} t_0 &= 0 \; ; \; y_0 = y_0 \; ; \\ \text{do while } \{ \; t_i < t_{end} \} \\ t_{i+1} &= t_i + h \; , \quad y_{i+1} = y_i + h \cdot F(t_i, y_i) \end{aligned}$$

• Implizites Eulerverfahren (für feste Schrittweite h>0)

$$\begin{aligned} t_0 &= 0 \; ; \; y_0 = y_0 \; ; \\ \text{do while } \{ \; t_i < t_{end} \} \\ t_{i+1} &= t_i \; + h \; , \quad y_{i+1} = y_i \; + h \cdot F(t_{i+1}, y_{i+1}) \end{aligned}$$

Beim impliziten Verfahren muss ein GS gelöst werden !!

- besser: Heun explizit
 - bestimme Ableitung am Punkt $(t_i, y_i) : k_1 = F(t_i, y_i)$
 - mache Eulerschritt
 - bestimme Ableitung am Zielpunkt : k₂
 - mache einen Schritt mit Ableitung $(k_1+k_2)/2$
- PseudoCode:

```
- do while \{ t_i < t_{end} \}

t_{i+1} = t_i + h,

k_1 = F(t_i, y_i), k_2 = F(t_{i+1}, y_i + hk_1)

y_{i+1} = y_i + h \cdot (k_1 + k_2)/2
```

oder: Heun implizit

$$y_{i+1} = y_i + h \cdot (F(t_i, y_i) + F(t_{i+1}, y_{i+1}))/2$$

noch besser: Runge-Kutta 4. Ordnung

$$- k_1 = F(t_i, y_i)$$

$$- k_2 = F(t_i + h/2, y_i + h/2 k_1)$$

$$- k_3 = F(t_i + h/2, y_i + h/2 k_2)$$

$$- k_4 = F(t_i + h, y_i + h k_3)$$

$$- y_{i+1} = y_i + h(k_1 + 2k_2 + 2k_3 + k_4)/6$$

- lokaler Fehler:
 Fehler, der in einem Schritt gemacht wird
- globaler Fehler: (→ Konvergenzordnung-Ordnung)
 Fehler, der bis zum Zielpunkt gemacht wird.
 Unter guten Bedingungen ("Stabilität") gilt:
 Konsistenzordnung = Konvergenzordnung
- Bsp. Euler:
 - man berücksichtigt den linearen Anteil
 - es bleibt quadratischer Fehler
 - — → lokaler Fehler Euler ist O(h²)
 - Zielpunkt sei x_{end}, d.h. man braucht x_{end}/h Schritte
 - wenn man also h halbiert, hat man den Fehler pro Schritt geviertelt, braucht aber doppelt soviele Schritte
 - → globaler Fehler O(h)

Fehlerordnung: falls Fehler = O(h^p) dann Ordnung p;

Fehlerordnung - im günstigsten Fall (bei Stabilität!)

Ordnung(globale Fehler) = Ordnung(lokaler Fehler)-1

	lokal	global
Euler	O(h ²)	O(h)
Heun	O(h ³)	O(h ²)
Runge-Kutta	O(h ⁵)	O(h ⁴)

- bisher: explizite Verfahren
- Alternative: implizite Verfahren (sind i.d.R. stabiler)
- impliziter Euler:
 - suche Zielpunkt (t_{i+1}, y_{i+1}) , der eine Steigung besitzt, die der Verbindung von (t_i, y_i) nach (t_{i+1}, y_{i+1}) entspricht
 - math.: $y_{i+1} = y_i + hF(t_{i+1}, y_{i+1})$
 - Problem: dies erfordert Suche
 - Lösen eines Gleichungssystems
 - oder Iteration (Predictor Corrector)
- ähnlich für Heun und Runge-Kutta
- warum implizit?
 - → stabiler (d.h. globale Fehlerordnung = lokale -1 auch auch bei 'großen' Schrittweiten)

2D-Beispiel:

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = F(t, [x(t), y(t)]) = \begin{bmatrix} -y(t) \\ x(t) \end{bmatrix}$$

exakte Lösung ist Kreisbahn $[R \cdot \cos(t - t_0), R \cdot \sin(t - t_0)]$

$$[R \cdot \cos(t - t_0), R \cdot \sin(t - t_0)]$$

- Prädiktor-Korrektor-Methode für implizite Verfahren
- Iteration für impliziten Euler

Iteration f
ür impliziten Heun

```
- k_1 = F(t_i, y_i)

k_2 = F(t_{i+1}, y_i + hk_1)

y_{i+1}^{(0)} = y_i + h (k_1+k_2)/2 // (Prädiktor)

do until convergence (k=0,1,2,...)

y_{i+1}^{(k+1)} = y_i + h (k_1+F(t_{i+1}, y_{i+1}^{(k)}))/2 // (Korrektor)
```

3.6 Beispiel: explizites Euler: $O(\tau)$

3.6 Beispiel: explizites Heun $O(\tau^2)$

Heun (Runge-Kutta 2. Ordnung) -- explizit

Heun (Runge-Kutta 2. Ordnung) -- explizit

Heun (Runge-Kutta 2. Ordnung) -- explizit

3.6 Beispiel: klassisches Runge-Kutta $O(\tau^4)$

3.6 Beispiel: Vergleich ($O(\tau^1) O(\tau^2) O(\tau^4)$)

3.6 Integrationsverfahren - Mehrschrittverfahren

explizite Mehrschritt-Verfahren: Adams-Bashforth

$$t_{i+1} = t_i + h;$$
 $y_{i+1} = y_i + h \cdot \left[\frac{3}{2}F(t_i, y_i) - \frac{1}{2}F(t_{i-1}, y_{i-1})\right]$

$$t_{i+1} = t_i + h;$$
 $y_{i+1} = y_i + h \cdot \left[\frac{23}{12} F(t_i, y_i) - \frac{16}{12} F(t_{i-1}, y_{i-1}) + \frac{5}{12} F(t_{i-2}, y_{i-2}) \right]$

- Vorteil: pro Schritt nur eine Auswertung von F(t,y)!
- Nachteile
 - Anfangswerte
 - Schrittweiten-Steuerung ist schwierig
- implizite Mehrschritt-Verfahren: Adams-Moulton

$$t_{i+1} = t_i + h;$$
 $y_{i+1} = y_i + h \cdot \left[\frac{5}{12}F(t_{i+1}, y_{i+1}) + \frac{8}{12}F(t_i, y_i) - \frac{1}{12}F(t_{i-1}, y_{i-1})\right]$

Kombination: Prädiktor-Korrektor

3.6 Integrationsverfahren - Zusammenfassung

Fehleranalyse:

- Lokaler Fehler (Konsistenz)
- Globaler Fehler (Konvergenz)
- Falls Stabiltät:
 Konvergenzordnung = Konsistenzordnung (= lok. Fehlerordnung -1)
- Gute Einschritt-Verfahren: Konv.-Ord. = #(Auswertung von F)
- Gute Mehrschritt-Verfahren: Konv.-Ord = "Tiefe"

Explizit vs. implizit

- Implizite Verfahren sind "stabiler" (unabhängig von Schrittweite)
- Implizite erforden Lösen eines nichtlinearen Gleichungssystems
- Gute implizite haben u.U. bessere Fehlerordnung
- Kompromiss: Prädiktor-Korrektor-Verfahren

Einschritt vs. Mehrschritt

- Bei gleicher Ordnung pro nur eine Auswertung von F
- Einschritt erlaubt Schrittweiten-Steuerung