Cairo University

MTHS114

Credit hour system

Faculty of Engineering

Fall 2023

Numerical Analysis

Assignment 10

Numerical Solution of PDE's

1. Use finite difference method to set the equations that solve numerically the following partial differential equation: $u_{xx} + u_{yy} = 2u$.

with initial and boundary conditions:

$$u(0,y)=y^2$$

u(x.1.5) = 4.

$$u(x, 0) = e^x$$

$$u_x(1.5, y) = 2y$$
. (use backward difference.)

where
$$0 \le x$$
, $y \le 1.5$

$$(h = k = \frac{1}{2})$$

Write the obtained equations in a matrix form.

2. Find numerically the solution of the partial differential equation: $u_{tt} = 9u_{xx}$ at the points u(0.1, 0.1), u(0.2, 0.1), u(0.3, 0.1) and u(0.1, 0.2), With the following initial and boundary conditions:

$$u(x,0) = 3\sin 5\pi x$$

$$u_t(x,0) = 0$$
 (use central difference)

$$u(0,t) = u(0.4,t) = 0$$

$$0 \le x \le 0.4$$
 and $t \ge 0$

(Let
$$h = k = 0.1$$
).

u(1,t)=0.

3. Use finite difference method to set the equations that solve numerically the following partial differential equation: $u_{xt} = u_{tt} - u_{xx} + e^{-xt}$.

with boundary conditions: u(0, t) = 0

and initial conditions:

$$u(x,0)=1-x$$

$$u(x, 0) = 1 - x$$
 $u_t(x, 0) = e^x$. (use CD)

where $0 \le x \le 1$ and $0 \le t$. $(h = \frac{1}{4})$ and $k = \frac{1}{2}$. Write the equations of u for the first two lines (i.e. t = 1/2).

4. Use finite difference method to find $u(1, \frac{1}{3})$ and $u(1, \frac{2}{3})$ for the following partial differential equation: $u_{xx} + u_{yy} = u$ for $0 \le x, y \le 1$, with the below initial and boundary conditions:

$$u(0, y) = 2\cos y$$

$$u(x,0) = \ln(x+1)$$

$$u_{1}(1, y) = 2y$$
 (B.D.)

$$u_{x}(x,0) = 2x$$
 (C.D.)

Let
$$h = k = \frac{1}{3}$$

5. Solve the linear system of equations obtained by the finite difference method, for The given partial differential equation: $u_{xx} + u_{yy} - 16u_x = 0$, at the grid points of the section shown below (with $h = k = \frac{1}{4}$). Knowing that u = 75 on all boundaries. Use central difference for u_x

6. For the figure shown below, use finite difference method to set the equations that solve numerically the following partial differential equation:

$$u_{xx} + u_{yy} = uxy$$

At the given points: $u_{1,0}$, $u_{1,-1}$, $u_{-2,1}$, $u_{2,1}$, $u_{2,2}$, $u_{3,3}$, $u_{3,2}$. (Do not solve it). With the following boundary conditions:

$$u(x,1) = 1$$
 $u(1,y) = 1.$

$$u(x, y) = 0$$
 on rhombus boundaries.

$$u(x, y) = 9$$
 on the line joining the points $(0,-1)$ and $(-1,0)$

$$u(x, y) = 27$$
 on the parabolas: $y = \frac{2}{3}(x^2 - 1)$ and $x = \frac{2}{3}(y^2 - 1)$.

$$u_x(-1, y) = 0$$
 and $u_y(x, -1) = 0$ (use central difference)

Where
$$-1 \le x, y \le 2$$
 $(h = k = \frac{1}{2})$

(Hint: The four sides of the rhombus are:

$$y = \pm 0.5$$
, $y = 4x - 1.5$ and $y = 4x + 1.5$

7. Use finite difference method to <u>write</u> the linear system of equations that solves the Poisson equation: $u_{xx} + u_{tt} = 2$, at the shown grid points of the shape in the figure below. (h = k = 0.5)

The initial and boundary conditions are: u(x,0) = 8, u(x,1.5) = 4, and u(x,y) = 0 on the sides.

8. For the figure shown below, use finite difference method to <u>write</u> the equations that solve numerically the following partial differential equation:

$$u_{xx} + u_{yy} = u + \cos xy$$

for the points: $u_1, u_2, u_3, \dots u_9$, with the following boundary conditions:

u(x,y)=2 on the large semicircle u(x,y)=1 on the small semicircle u(x,y)=0 on the triangle $(h=k=\frac{1}{2})$ (Do not solve it)

9. For the figure shown below, use finite difference method to <u>write</u> the equations that solve numerically the following partial differential equation:

$$u_{xx} + u_{yy} + 2u = e^x$$

for the points: u(0, 0.5), u(0.5, 1), u(1, 0.5), u(-0.5, -0.5), u(-1, 0), with the following boundary conditions:

u(x, y) = 2 on the semicircle

u(x, y) = 1 on the two straight lines of the triangle

 $u_y = 0$ on the insulated boundaries: $y = \pm 1$ (use Central Difference)

(Do not solve the equations)

10. For the figure shown below, use finite difference method to <u>write</u> the equations that solve numerically the following partial differential equation:

$$u_{xx} + u_{yy} + 2u = 3|xy|$$

for the points: $u_{-2,2}$, $u_{2,1}$, $u_{3,2}$, $u_{0,-4}$ with the following boundary conditions:

$$u(x, y) = 5$$
 on the circle

$$u(x, y) = 4$$
 on the hexagon

11. Write the equations required for solving the Partial Differential Equation: $u_{tt}=u_x+u$, for the first two lines, where $0 \le x \le 1$, $t \le 0$ and a mesh with $h=\frac{1}{3}$ and $k=\frac{1}{4}$. The initial and boundary conditions are: $u_t(x,0)=5x$, u(1,t)=1, u(x,0)=4 and u(0,t)=5y. (Use central difference for u_x , forward difference for u_{tt} , and backward difference for the boundary $u_t(x,0)$)

12. Write the equations that solve the partial differential equation $u_{yy} = 3u_{xx} + u\cos x$ at the six indicated points in the figure below, with the shown initial and boundary conditions. (h = k = 0.5). Use central difference on the insulated boundary.

13. Write the steps required for solving the Partial Differential Equation: $u_t = u_{xx}$, where $0 \le x, t \le 1$ and a square mesh of size 0.1. The initial and boundary conditions are: u(0,t) = u(1,t) = k and $u(x,0) = \sin 2\pi x$.

(Use forward difference for the PDE)

$$2u_{xx} + u_{yy} + e^{x^2}u = y^2 \cos x ,$$

at the points indicated in the figure below, with h = 0.5 and k = 0.1.

The initial and boundary conditions are:

$$u = \sin \left| \frac{x}{y} \right|$$
 on the semi-ellipse

 $u = x^2 y^2$ on both quarter circles

 $u_y(x, 0) = 2$, Use backward difference

15. Write the equations that solve the partial differential equation $u_{tt} = u_{xx} + u$ at the five points indicated in the figure below, with the shown initial and boundary conditions. (h = k = 0.5). Use central difference on the insulated boundary.

16. A steel rod is attached to two iron sheets of a propeller as shown in the figure. Assuming the thickness of the rod is negligible, write the equations that solve the partial differential equation $3u_{yy} + 2u_{xx} - u = e^{|xy|}$ at the four points indicated, with h = 0.5 and k = 0.2. The boundary conditions are as follows:

$$u=\sin x^2y^2$$
 , on the quarter ellipse $u=8$ on the straight lines $u_y(x,0)=0$ (use central difference).

 $2u_{yy} + 3u_{xx} - u_x = \ln|xy|$, at the indicated points on the figure below, where the initial and boundary conditions are as follows:

$$u_y = 0$$
 on the line $y = 0.5$

u = 12 on the two quarter circles.

u = 18 on the x-axis.

Use central difference for all partial derivatives (h = 0.25 and k = 0.2) [8]

18. Find the solution of the partial differential equation: $u_{xx} - 2u_x = u_{tt}$ at the point

(0.4,-0.3), where $0 \le x \le 0.8$ and $t \ge -0.9$. The initial and boundary conditions are:

 $u(0,t) = u(0.8,t) = t^2$, u(x,-0.9) = 1 and $u_t(x,-0.9) = x$ (use forward difference).

The mesh size is : h = 0.2 and k = 0.3

 $x^2u_{xx}+yu_{yy}-u=0$, at all points on the figure below, where the initial and boundary conditions are as follows:

$$u_{y} = 0$$
 on the line $y = -0.25$

$$u = 7$$
 on the ellipse whose equation is: $\frac{x^2}{4} + y^2 = 1$

$$u = 5$$
 on the straight lines.

Use central difference for all partial derivatives (h = 1 and k = 0.5)

20. Write the equations that solve the partial differential equation: $3\,u_{xx}+2u_{tt}=5$ at the points: (0,0), (0.4, 0) and (-0.4, -0.25) in the region bounded by the straight lines

 $x = \pm 0.4$ and the functions y = |x| + 0.25 and y = -|x| - 0.25.

The initial and boundary conditions are:

 $u_{\chi}(\pm 0.4, y) = 1$ (use Central difference) and u = 0 elsewhere. (h = 0.4) and k = 0.25)

 $u_{xx} + yu_{yy} - 4u = 0$, at all points on the figure below, where the initial and boundary conditions are given by:

 $u_y = 0$ on the line $y = \pm 0.8$.

u = 4 on the circle whose equation is: $x^2 + y^2 = 0.16$

u = 5 on the straight lines.

Use central difference for all partial derivatives (h = 0.5 and k = 0.6) [8]

22. Find the solution of the partial differential equation: $2u_{xx} - u_{tt} + u_x + 20 = 0$ at the points: (0.25,0.1), (0.25,0.2) and (0.5,0.1) in the region bounded by the straight lines $x \ge 0$ and $0 \le t \le 0.5$, given the following initial and boundary conditions: $u_x(0,t) = 0$ (B.D), u(0,t) = 4t and u(x,0) = u(x,0.5) = 2. (h = 0.25) and k = 0.1)