MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik

Examinator: Olof Sisask

Tentamensskrivning i Linjär algebra, MM5012 7.5 hp 25 augusti 2023

Lösningsförslag

- 1. (a) (1p) Låt v_1, v_2, \ldots, v_n vara n olika vektorer i ett vektorrum V över en kropp \mathbb{F} . Ange definitionen av att $\{v_1, v_2, \ldots, v_n\}$ är en bas för V.
 - (b) (2p) Visa att $\{1, x, x^2, x^3\}$ är en bas för $P_3(\mathbb{R})$.
 - (c) (2p) Låt $V = P_3(\mathbb{R})$ och låt

$$v_1 = 1 + x$$
, $v_2 = x + x^2$, $v_3 = x^2 + x^3$, $v_4 = x^3 + 1$

vara fyra element i V. Avgör om vektorerna $\{v_1, v_2, v_3, v_4\}$ är en bas för V eller inte (och kom ihåg att motivera noggrant).

Lösning

- (a) Mängden $\{v_1,\ldots,v_n\}$ utgör en bas för V om den spänner upp V och är linjärt oberoende.
- (b) Eftersom varje polynom $p(x) \in P_3(\mathbb{R})$ kan skrivas på formen $p(x) = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3$ för några skalärer a_i (dvs som en linjärkombination av vektorerna $1, x, x^2$ och x^3) så spänner mängden upp $P_3(\mathbb{R})$. Det räcker alltså nu att visa att vektorerna $1, x, x^2$ och x^3 är linjärt oberoende. Om $a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3$ är 0-polynomet för några skalärer a_i , då måste $a_0 = a_1 = a_2 = a_3 = 0$. Alltså är vektorerna linjärt oberoende, och därmed utgör mängden $\{1, x, x^2, x^3\}$ en bas för $P_3(\mathbb{R})$.
- (c) Vektorerna utgör inte en bas för V, eftersom de inte är linjärt oberoende:

$$v_1 - v_2 + v_3 - v_4 = 0$$

(dvs vi kan forma en icke-trivial linjärkombination av vektorerna som ger oss 0-vektorn).

Svar: Vektorerna utgör inte en bas för V.

- 2. (a) (2p) Låt $T: V \to V$ vara en linjär operator på ett F-vektorrum V. Ange definitionerna av begreppen egenvektor och egenvärde för T, samt vad det betyder för T att vara diagonaliserbar.
 - (b) (3p) Låt $T: \mathbb{R}^3 \to \mathbb{R}^3$ vara den linjära operatorn (på \mathbb{R} -vektorrummet \mathbb{R}^3) som ges av

$$T(x_1, x_2, x_3) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Beräkna alla egenvärden för T och baser för de tillhörande egenrummen, samt avgör om T är diagonaliserbar.

Lösning

- (a) En vektor $v \in V$ kallas en egenvektor för T med egenvärde $\lambda \in F$ om $v \neq 0_V$ och $T(v) = \lambda v$. Avbildningen T kallas diagonaliserbar om det finns en bas för V bestående av egenvektorer för T. Ekvivalent: om det finns en bas B för V sådan att matrisen $[T]_B^B$ är en diagonalmatris.
- (b) Vi har att $T(x_1, x_2, x_3) = (x_2, -x_1, x_3)$, så

$$T(x_1, x_2, x_3) = \lambda(x_1, x_2, x_3) \iff x_2 = \lambda x_1, \quad -x_1 = \lambda x_2, \quad x_3 = \lambda x_3.$$

Vi har en matrisrepresentation för T, och vi vet att T:s egenvärden motsvarar egenvärdena av den motsvarande matrisen. Dessa kan enligt utlärd sats hittas genom att lösa den karaktäristiska ekvationen $\det(A - tI) = 0$:

$$\begin{vmatrix} -t & 1 & 0 \\ -1 & -t & 0 \\ 0 & 0 & 1 - t \end{vmatrix} = 0 \iff (1 - t) \begin{vmatrix} -t & 1 \\ -1 & -t \end{vmatrix} = 0 \iff (1 - t)(t^2 + 1) = 0 \iff t = 1$$

(eftersom vi arbetar över kroppen $\mathbb R$). Alltså är 1 det enda egenvärdet. Det motsvarande egenrummet E_1 definieras av

$$E_1 = \{v \in \mathbb{R}^3 : T(v) = v\} = \{(x_1, x_2, x_3) : x_1 = x_2, x_2 = -x_1, x_3 = x_3\} = \{(0, 0, x_3) : x_3 \in \mathbb{R}\}.$$

Alltså har E_1 en bas $\{(0,0,1)\}.$

Eftersom T endast har 1 linjär oberoende egenvektor och \mathbb{R}^3 är 3-dimensionellt, så finns det ingen bas för \mathbb{R}^3 bestående av egenvektorer för T, och därmed är T inte diagonaliserbar.

Svar: Det enda egenvärdet är 1, med egenrum som har bas $\{(0,0,1)\}$. Avbildningen T är inte diagonaliserbar.

3. Betrakta polynomrummet $P_3(\mathbb{R})$ med inre produkten

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx$$
 (för $f, g \in P_3(\mathbb{R})$).

Låt V vara delmängden till $P_3(\mathbb{R})$ som består av alla polynom $p \mod \int_0^1 p(x) dx = 0$.

- (a) (1p) Visa att V är ett delrum till $P_3(\mathbb{R})$.
- (b) (2p) Bestäm en bas för V.
- (c) (2p) Bestäm två element i en $ortogonal\ bas$ för V samt ange hur en fullständig ortogonal bas för V kan hittas som innehåller dessa två.

Lösning

(a) Enligt delrumstestet räcker det att kolla att mängden V är icke-tom och att den är sluten under addition och skalärmultiplikation. Att den är icke-tom är enkelt, eftersom $0 \in V$. Sluten under addition: om $p, q \in V$, då är

$$\int_0^1 (p(x) + q(x)) \, dx = \int_0^1 p(x) \, dx + \int_0^1 q(x) \, dx = 0 + 0 = 0.$$

Slutligen, sluten under skalärmultiplikation: om $p \in V$ och $a \in \mathbb{R}$ så gäller det att

$$\int_0^1 ap(x) \, dx = a \int_0^1 p(x) \, dx = a \cdot 0 = 0.$$

(b) Ett godtyckligt polynom $p \in P_3(\mathbb{R})$ har formen $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$. Detta ligger i V om och endast om

$$\int_0^1 p(x) dx = 0 \iff a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 + \frac{1}{4}a_3 = 0.$$

Denna ekvation har en 3-dimensional lösningsmängd, som t.ex. spänns upp av $(a_0, a_1, a_2, a_3) \in \{(1, -2, 0, 0), (1, 0, -3, 0), (1, 0, 0, -4)\}$, vilket motsvarar att V är 3-dimensionell med bas

$$1-2x$$
, $1-3x^2$, $1-4x^3$.

(c) Vi använder Gram-Schmidts metod för detta. Först låter vi

$$u_1 = 1 - 2x$$

och noterar att

$$||u_1||^2 = \langle 1 - 2x, 1 - 2x \rangle = \int_0^1 (1 - 2x)^2 dx = \int_0^1 (1 - 4x + 4x^2) dx = \frac{1}{3}.$$

Vi tar sedan nästa vektor u_2 som

$$u_2 = (1 - 3x^2) - \frac{\langle 1 - 3x^2, u_1 \rangle}{\|u_1\|^2} u_1 = (1 - 3x^2) - \langle 1 - 3x^2, 1 - 2x \rangle \cdot 3 \ (1 - 2x).$$

Vi beräknar:

$$\langle 1 - 3x^2, 1 - 2x \rangle = \int_0^1 (1 - 3x^2)(1 - 2x) \, dx = \int_0^1 1 - 2x - 3x^2 + 6x^3 \, dx = \left[x - x^2 - x^3 + \frac{3}{2}x^4 \right]_0^1 = \frac{1}{2}.$$

Alltså är

$$u_2 = (1 - 3x^2) - \frac{3}{2}(1 - 2x) = -\frac{1}{2} + 3x - 3x^2.$$

Vektorerna u_1, u_2 utgör två element i en ortogonal bas för V, då de ligger i V och är ortogonala mot varande (per Gram–Schmidt). För att hitta ett tredje element i den ortogonala basen för V kan vi fortsätta Gram–Schmidt processen genom att ta

$$u_3 = (1 - 4x^3) - \frac{\langle 1 - 4x^3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle 1 - 4x^3, u_2 \rangle}{\|u_2\|^2} u_2.$$

Svar: Vektorerna 1-2x, $-\frac{1}{2}+3x-3x^2$ utgör två element i en ortogonal bas för V.

4. Avgör vilka av följande avbildningar som är diagonaliserbara relativt en ON-bas (för respektive vektorrum).

(a)
$$L_A: \mathbb{R}^3 \to \mathbb{R}^3$$
 där $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$

(b)
$$L_B: \mathbb{R}^3 \to \mathbb{R}^3 \text{ där } B = \begin{pmatrix} 10 & -1 & 2 \\ -1 & 20 & 3 \\ 2 & 3 & 30 \end{pmatrix}$$

(c)
$$L_C: \mathbb{C}^2 \to \mathbb{C}^2$$
 där $C = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$

(d)
$$L_D: \mathbb{C}^2 \to \mathbb{C}^2$$
 där $D = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$

Lösning Den reella spektralsatsen säger att en linjär operator L_X på \mathbb{R}^n är diagonaliserbar relativt en ON-bas för \mathbb{R}^n om och endast om matrisen X är symmetrisk, dvs omm $X = X^*$. Detta ger omedelbart att avbildningen i (a) inte är diagonaliserbar relativt en ON-bas för \mathbb{R}^3 , medans den i (b) är det, då matrisen B är symmetrisk.

Den komplexa spektralsatsen säger att en linjär operator L_X på \mathbb{C}^n är diagonaliserbar relativt en ONbas för \mathbb{C}^n om och endast om matrisen X är normal, dvs omm X och X^* kommuterar $(X X^* = X^* X)$, där X^* är X:s adjungerade matris.

För (c) beräknar vi:

$$CC^* = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Alltså är $C^* = 2C^{-1}$, så C och C^* kommuterar. Alltså är L_C diagonaliserbar relativt en ON-bas för \mathbb{C}^2 .

För (d):

$$D D^* = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix} = \begin{pmatrix} 2 & -2i \\ 2i & 2 \end{pmatrix},$$

medans

$$D^* D = \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} = \begin{pmatrix} 2 & 2i \\ \star & \star \end{pmatrix}.$$

Alltså är $D^*D \neq DD^*$, så L_D är inte diagonaliserbar relativt en ON-bas för \mathbb{C}^2 , enligt den komplexa spektralsatsen.

Svar: Avbildningarna L_B och L_C är ortogonalt diagonaliserbara, och L_A och L_D är inte det.

- 5. (a) (1p) Låt $A \in M_{n \times n}(\mathbb{R})$. Ange definitionen av att A är en ortogonal matris.
 - (b) (4p) Beräkna en singulärvärdesuppdelning av matrisen

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{2 \times 3}(\mathbb{R}).$$

Lösning

- (a) Matrisen A kallas ortogonal om $AA^* = A^*A = I$.
- (b) Vi söker, per definition, en faktorisering $A=U\,\Sigma\,V^*$ där U och V är ortogonala matriser och

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{pmatrix},$$

där $\sigma_1 \ge \sigma_2 \ge 0$ är A:s singulärvärden.

Vi vet att de nollskilda singulärvärdena för A precis motsvarar kvadratrötterna ur de nollskilda egenvärdena till A^*A , så vi beräknar denna matris.

Vi har att

$$A^*A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

För att hitta egenvärdena beräknar vi det karateristiska polynomet

$$\det(A^*A - t \cdot I) = (1 - t)((1 - t)^2 - 1) = (1 - t)(2 - t)(-t).$$

Alltså är egenvärdena 0, 1 och 2, och därmed är singulärvärdena $\sigma_1 = \sqrt{2}$ och $\sigma_2 = 1$. Alltså ges matrisen Σ av

$$\Sigma = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

För att hitta matrisen V beräknar vi egenvektorer för A^*A motsvarande egenvärdena.

För egenvärdet 2 subtraherar vi 2 från diagonalelementen och räknar ut nollrummet till matrisen

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \sim \quad \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Nollrummet, och därmed egenrummet E_2 , spänns alltså upp enhetsvektorn

$$v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

För egenvärdet 1 räknar vi liknande:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Här spänns egenrummet E_1 upp av enhetsvektorn

$$v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Dessa två vektorer kommer utgöra de första två kolonnerna av V. Som den tredje kolonnen tar vi enhetsvektorn

$$v_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$

som är ortogonal mot v_1 och v_2 . Alltså har vi

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}.$$

Det sista steget är att hitta en matris U som uppfyller villkoren, vilket vi gör genom att bestämma dess kolonner u_1, u_2, u_3 . För detta använder vi att $Av_i = \sigma_i u_i$ för i = 1, 2, dvs att $u_i = \frac{1}{\sigma_i} Av_i$:

$$u_1 = \frac{1}{\sqrt{2}} A v_1 = \frac{1}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$u_2 = \frac{1}{1} A v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Dessa två vektorer utgör kolonnerna av den ortogonala matrisen U:

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Alltså har vi:

Svar: En singulärvärdesuppdelning ges av $A = U \Sigma V^*$, där

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad V = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}.$$

- 6. (a) (1p) Låt V och W vara vektorrum över samma kropp F. Ange definitionen av att en avbildning $T:V\to W$ är $linj\ddot{a}r$.
 - (b) (3p) Låt $T: V \to W$ vara en bijektiv linjär avbildning och låt $T^{-1}: W \to V$ vara den inversa avbildningen, som uppfyller $T^{-1}(T(v)) = v$ för alla $v \in V$. Bevisa att T^{-1} är linjär.
 - (c) (1p) Låt $T: \mathbb{R}^2 \to P_1(\mathbb{R})$ ges av T(a,b) = 2a + (a+b)x. Ange en formel för den inversa avbildningen $T^{-1}: P_1(\mathbb{R}) \to \mathbb{R}^2$.

Lösning

- (a) Avbildningen T kallas linjär om det gäller att T(u+v)=T(u)+T(v) och T(av)=aT(v) för alla vektorer $u,v\in V$ och skalärer $a\in F$.
- (b) Vi börjar med att visa att $T^{-1}(w+z)=T^{-1}(w)+T^{-1}(z)$ för alla $w,z\in W$. Låt $w,z\in W$. Eftersom T är bijektiv finns det $u,v\in V$ sådana att T(u)=w och T(v)=z, nämligen $u=T^{-1}(w)$ och $v=T^{-1}(z)$. Därför är

$$T^{-1}(w+z) = T^{-1}(T(u) + T(v)) = T^{-1}(T(u+v)) = u + v = T^{-1}(w) + T^{-1}(z).$$

Vid den andra likheten här använde vi att T är linjär.

Vi visar härnäst att $T^{-1}(aw) = aT^{-1}(w)$ för alla vektorer $w \in W$ och skalärer $a \in F$. Låt igen $v = T^{-1}(w)$, så att w = T(v). Då är

$$T^{-1}(aw) = T^{-1}(aT(v)) = T^{-1}(T(av)) = av = aT^{-1}(w).$$

Alltså är T^{-1} linjär.

(c) Låt $r + tx \in P_1(\mathbb{R})$. Då är

$$T^{-1}(r+tx) = (a,b)$$

$$\iff T(a,b) = r + tx$$

$$\iff 2a + (a+b)x = r + tx$$

$$\iff 2a = r \text{ och } a + b = t$$

$$\iff a = \frac{1}{2}r \text{ och } b = t - \frac{1}{2}r.$$

Alltså ges T^{-1} av

$$T^{-1}(r+tx) = (\frac{1}{2}r, t - \frac{1}{2}r).$$