Bilgisayar Mühendisliği Bölümü Bursa Teknik Üniversitesi

BLM510 – Kablosuz İletişim

Kablosuz Haberleşme Temelleri

Konular

QSinyal Tanımı

QBant Genişliği Tanımı

QGürültü Etkileri, Hata Oranı

QModülasyon

QDijitalleştirme

QÇoklama

Qİletim Ortamı

QFrekans Tahsisi

İletim Temelleri

QBilgi nasıl iletilir?

- O Elektromanyetik Sinyaller
- O TV, Radyo, İnternet vb.

!Sinyal

- O Zamanın bir fonksiyonudur.
- O 3 bileşeni vardır:
 - ü Genlik (A) : Sinyal gücü
 - ü Frekans (F): Döngü sayısı Faz
 - ü (/):Göreceli pozisyon
- O Sinyal için sinüs dalgası ü s(t)=Agünah(2)Pft+J)
- O Analog veya dijital
- O Dalga boyu (λ):
 - $\ddot{\mathsf{u}}$ 1 çevrimin kapladığı mesafe λ
 - $\ddot{\mathbf{u}} = c^*T = c/f$

Analog: Sinyalde kesinti yok

Dijital: Sinyal yoğunluğu ayrıktır

Zayıflama:

Sinyal Üzerindeki Etkiler

İletim boyunca sinyal genliğinde azalma

Data transmitted:

Çarpıtma:

Bir sinyalin farklı frekans bileşenlerinin karışması

Noise:

Gürültü:

Sinyal olmadığında kanalda kanal gürültüsü adı verilen rastgele frekans karışımları oluşur

Sampling times:

Hata:

Dijital sinyaller gürültüyle birleştirildiğinde bazı bitler hatalı alınabilir

Sinyal/Bant Genişliği/Veri Hızı

QSinyal birçok frekansı içerebilir

OSinüzoidlerin birleşimi

QSpektrum:

OBir sinyalin içerdiği frekans aralığı OŞekildeki sinyal frekansları içerir arasında*F*Ve*3f*

OSpektrumun genişliğine ne ad verilir? bant genişliği OŞeklin bant genişliği: 3f - f = 2f

OBant genişliğinin artırılması dalgayı oluşturur daha kare gibi görünüyor (yani dijital sinyal)

OBu nedenle, bant genişliğinin artırılması şu konularda yardımcı olur: Alıcı taraftaki bozulmayı azaltır.

günah(2)Pft)+(1/3) günah(2)P3ft)

Bant genişliği = 7f – f = 6f

Belirli bir bant genişliği ile ne kadar veri iletişimi sağlayabiliriz?

Kanal Kapasitesi

QKanal Kapasitesi:

OGürültü, zayıflama, bozulma vb. veri hızını sınırlar Bir kanalda başarılabilecek olan.

OVerilerin iletilebileceği maksimum hız Belirli bir iletişim yolu üzerinden iletilen kapasiteye Kanal kapasitesi denir

QGürültü:

ODaha fazla veri hızı elde etmek için en aza indirilmelidir

QNyquist Bant Genişliği:

OHata içermeyen bir kanal varsayılır (gürültü yok)

Veri hızı=2 bit/sn

QGürültü durumunda: Shannon Kapasite Formülü

Teorik üst sınır
$$\rightarrow C = Blog_2(1+SNR)$$

QSNR:

OSinyal Gürültü Oranı: Sinyal Gücü / Gürültü Gücü (genellikle desibel olarak gösterilir)

OUlaşılabilir veri hızına üst sınır koyar SNRdb=10günlük10

sinyal.güç gürültü.güç

Örnek

vShannon sonucu :Eğer gerçek bilgi oranı Kanal, hatasız kanal kapasitesinden daha az ise, hata tespiti ve düzeltmesi kullanılarak hatasız iletim elde etmek teorik olarak mümkündür

Q40 Hz'de bir telefon kanalının (3400 Hz) kapasitesini bulun dB SNR?

```
C = W log2 (1+SNR)

SNR =40 dB; 40 =10 log10 (SNR); 4 = log10 (SNR);

SNR=10.000

C = 3400 log2(10001) = 44,8 kbps
```

QNyquist formülüne göre kaç sinyal seviyesi var?

```
ihtiyacımız var mı?
```

```
44.8*1000 = 2*3400*log<sub>2</sub>(M)
448 = 68 * log<sub>2</sub>(E)E = 96
```

Analog ve Dijital

QAnalog ve dijital tabela nasıl

OAnalog sinyaller (sürekli)
üTel, bükümlü çift, koaksiyel kablo
ODijital sinyaller (ayrık) şu şekilde olabilir:
üKablolu ortam – Kablosuz bağlantı
yok üDijital sinyal nasıl yayılır

QDijital veriler temsil edilebilir

Ne

yapar mi

Bu kodlama nasıl yapılır?

QÇözüm modülasyondur:

ODijital verileri, analog bir sinyal üretilecek şekilde modüle edin OModem klasik bir örnek olabilir

QMotivasyon:

Yalnızca analog iletim olanakları mevcut olduğunda, dijital verileri analog sinyallere dönüştürmek için modülasyon gerekir

QDijital modülasyon nasıl yapılır?

OBir sinyalin 3 özelliğinden birinde veya daha fazlasında işlem OBunlar genlik, frekans ve fazdır

Q**Üç ana teknik**

OSORU: Genlik Kaydırma Anahtarlaması – optik fiber üzerinden dijital veri OFSK:

Frekans Kaydırma Anahtarlaması – koaksiyel kablo kullanan LAN'larda OPSK: Faz

Kaydırma Anahtarlaması – 802.11 Ağları

ASK, FSK ve PSK

Figure 6.2 Modulation of Analog Signals for Digital Data

Diğer dijital modülasyon teknikleri

Qİkili Frekans Kaydırma Anahtarlaması (BFSK)

Oİki farklı frekans kullanır

QÇoklu Frekans Kaydırma Anahtarlaması (MFSK)

Oİki frekanstan fazlası kullanılıyor

QGauss Frekans Kaydırmalı Anahtarlama (GFSK)

OTemel frekanstan iki seviyeli kayma: Bluetooth bunu kullanır

Qİkili Faz Kaydırmalı Anahtarlama (BPSK)

OBitleri temsil etmek için kullanılan iki ifade: Uydu Sistemlerinde

QDiferansiyel Faz Kaydırmalı Anahtarlama (DPSK)

OÖnceki bit'e göre faz kayması

QDört seviyeli (QPSK) ve Çok seviyeli Faz Kaydırma Anahtarlaması

OHer eleman 1 bitten fazlasını temsil eder

O802.11b ağlarında Diferansiyel QPSK (DQPSK) kullanılır

QDörtlü Genlik Modülasyonu (QAM)

OASK ve PSK'nın birleşimi

OAynı taşıyıcı frekansında aynı anda gönderilen iki farklı sinyal OKablosuz Sensör Ağlarında kullanılmaya başlandı

Örnekler

4-QAM 1 amplitude, 4 phases

Constellation diagram

8-QAM 2 amplitudes, 4 phases

Q4-PSK veya QPSK:
Her aşama
aynı genliğe sahip
2 bit veriyi temsil
eder ve
sıklık

- QÖrnek: 8-QAM (3 bit = 1 sembol)
- QSemboller 000 ve 001 aynı faza sahip φ, Ancak farklı genlik. 000 ve 100 aynı genliğe sahiptir ancak farklı faz

Analog Sinyallerin Modülasyonu

QDijital Modülasyonun bir motivasyonu vardı

ONeydi o?

QAnalog modülasyon nedir ve arkasındaki fikir nedir?

OBazen iletim için daha yüksek bir frekansa ihtiyaç duyulabilir O Modülasyon, frekans bölmeli çoğullama sağlamaya yardımcı olacaktır

Q3 tip analog modülasyon

OGenlik Modülasyonu (AM) O Frekans Modülasyonu (FM) O Faz Modülasyonu (PM)

AM ve FM Örneği

Dijitalleştirme

QAnalog verilerin dijital sinyallere dönüştürülmesi

ODijital veriler daha sonra NRZ-L kullanılarak iletilebilir üNRZ-L dijital sinyalleri iletmenin bir yolu

ODijital veriler daha sonra NRZ-L dışındaki kodlar kullanılarak iletilebilir ODijital veriler daha sonra analog sinyale dönüştürülebilir OBir kodek kullanılarak yapılan analogdan dijitale dönüştürme

Çoklama

QTek bir ortamda birden fazla sinyalin taşınması

Oİletim ortamının kapasitesi genellikle gerekli kapasiteyi aşar. tek bir sinyalin iletimi

Oİletim ortamının daha verimli kullanılması:

üBirden fazla sinyali birleştirin

QArtan veri hızı maliyet etkinliği sağlar

Oİletim ve alım ekipmanları

QAnalog çoklama

OFrekans Bölmeli Çoklama (FDM)

QDijital Çoklama

OZaman Bölmeli Çoğullama (TDM)

FDM Örneği

Bulaşma

QAnalog sinyallerin birleştirilmesi

OGerçeklerden yararlanır ortamın yararlı bant genişliğinin, belirli bir sinyalin gerekli bant genişliğini aşması

TDM Örneği

QDijital teknik verileri birleştir

OGerçeklerden yararlanır Ortamın ulaşılabilir bit hızının, dijital sinyalin gerekli veri hızını aşması

Each time slot duration is T seconds.

Sinyaller için İletim Ortamı

QVerici ve alıcı arasındaki fiziksel yoldur

OYönlendirilmiş ortamlar: Bakır, optik fiber vb. gibi katı ortamlar.

ORehbersiz ortam: Atmosfer veya dış uzay: Kablosuz İletim

Qİşte telekomünikasyon için elektromanyetik spektrum:

Genel Frekans Aralıkları

QMikrodalga frekans aralığı

O1 GHz ila 40 GHz OUydu haberleşmelerinde kullanılır

QRadyo frekans aralığı

O3 KHz ila 300 GHz OAnalog

olabilir: TV, Radyo

OVeya dijital: Cep telefonları, kablosuz ağlar

QKızılötesi frekans aralığı

OYaklaşık 3x1011 ila 2x1014 Hz

OYerel noktadan noktaya iletişimde kullanışlıdır sınırlı alanlarda çok noktalı uygulamalar

Frekans Düzenlemeleri

QFederal İletişim Komisyonu (FCC)

OEyaletler arası ve uluslararası iletişimleri düzenlemekle görevli radyo, televizyon, tel, uydu ve kablo

OFarklı cihazlar arasındaki parazitleri önleyin

Frekansa Göre Radyo Spektrumunun Mevcut Tahsisi