GPGPU Programming 2018S Lab3

R06921017 詹少宏

本次實驗當中,我針對Hierarchical Jacobi 做加速以及分析。首先,以原本的Jacobi架構為基礎,並迭代 20000 次所產生的圖為基準,分析不同 Hierarchical 的架構的運作時間以及圖片的mean square error (MSE)。

實驗一:

在總合迭代數皆固定為 20000 的條件之下,改變downsampling的scale,每種 scale的 downsampling 皆迭代 2000 次,舉例來說,若架構中將圖片縮小 4 及 4 ,則兩種scale 先分別 迭代2000次,最後的原scale 圖上再迭代 (20000-2000-2000)=16000 次。實驗結果如下表所示:

Index	Iteration of each scale					Running	MSE
	1/16	1/8	1/4	1/2	1	Time (sec)	
1	0	0	0	0	20000	3.78	0.00
2	0	0	0	2000	18000	3.40	0.71
3	0	0	2000	2000	16000	3.06	0.89
4	0	2000	2000	2000	14000	2.68	0.58
5	2000	2000	2000	2000	12000	2.47	0.38

上表可知,當 hierarchical 層數增加後,時間有大輻下降,而與原圖的 mse 皆小於1, 而當 hierarchical 增加到 1/8 與 1/16 時,速度與 mse 皆趨於飽和,並沒有顯著的變化。

實驗二:

我們延用已經收斂的原圖為基礎,並使用2層的hierarchical架構(即實驗一中的index 2),再固定scale = 1 的iteration 為8000 之下,藉由調整 scale = $\frac{1}{2}$ 的迭代次數來觀查 mse 的變化,結果如下表所示:

Iteration of	each scale	Running Time	MSE	
1/2	1	(sec)		
500	8000	1.44	3.49	
1000	8000	1.45	2.76	
2000	8000	1.46	1.31	
4000	8000	1.57	1.05	

由實驗可知,當增加 ½ scale 的 iteration 次數,運算時間並沒有顯著增加,然而MSE 卻大輻下降,可證明 hierarchical 確時可以加速 Jacobi 的收斂。