Équations aux dérivées partielles - Série 6

Considérons l'équation des ondes dans le domaine borné (0,1):

$$\left\{ \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \, \forall (x, t) \in (0, 1) \times \mathbb{R}_*^+, \right.$$

avec $u(x,0) = u_0$, $\frac{\partial u}{\partial t}(x,0) = u_1(x)$, u_1u_0 et u_1 périodiques de période 1 et u_1 à moyenne nulle

$$\int_0^1 u_1(x) \, dx = 0.$$

On discrétise le domaine en utilisant un maillage régulier $(t_n, x_j) = (n\Delta t, j\Delta x), \forall n \geq 0, j \in \{0, 1, ..., N+1\}$ où $\Delta x = 1/(N+1)$ et $\Delta t > 0$.

Problème 1. Considérons d'abord le θ -schéma centré

$$\frac{u_{j}^{n+1} - 2u_{j}^{n} + u_{j}^{n-1}}{\Delta t^{2}} - \theta \frac{u_{j+1}^{n+1} - 2u_{j}^{n+1} + u_{j-1}^{n+1}}{\Delta x^{2}} - (1 - 2\theta) \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}} - \theta \frac{u_{j+1}^{n-1} - 2u_{j}^{n-1} + u_{j-1}^{n-1}}{\Delta x^{2}} = 0.$$

$$(1)$$

avec $0 \le \theta \le 1/2$.

1. Montrer que si $1/4 \le \theta \le 1$, le θ -schéma centré est inconditionnellement stable en norme L^2 . Si $0 \le \theta < 1/4$, il est stable sous la condition

$$\frac{\Delta t}{\Delta x} < \sqrt{\frac{1}{1 - 4\theta}}.$$

Considérons maintenant le cas limite où $\Delta t/\Delta x = (1-4\theta)^{-1/2}$ avec $0 \le \theta < 1/4$. Montrer que le schéma est instable dans ce cas, en vérifiant que $u_j^n = (-1)^{j+n}(2n-1)$ est une solution.

2. On admettera que l'énergie discrete suivante

$$E^{n} = \sum_{j=0}^{N} \left(\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} \right)^{2} + a_{\Delta x}(u^{n+1}, u^{n}) + \theta a_{\Delta x}(u^{n+1} - u^{n}, u^{n+1} - u^{n})$$

est une approximation d'ordre 1 en espace et en temps de l'énergie continue définie en cours. Ici on a noté pour tout $u, v \in \mathbb{R}^{n+1}$, $u = (u_j)_{0 \le j \le N}$, $v = (v_j)_{0 \le j \le N}$

$$a_{\Delta x}(u,v) = \sum_{j=0}^{N} \frac{u_{j+1} - u_j}{\Delta x} \cdot \frac{v_{j+1} - v_j}{\Delta x}.$$

Montrer que le θ -schéma centré conserve l'énergie discrete, c.a.d. $E^n=E^0$ pour tout n>0.

Problème 2. Considérons le schéma de Lax-Friedrichs appliqué à l'équation des ondes écrite comme système du premier ordre

$$\frac{1}{2\Delta t} \begin{pmatrix} 2v_j^{n+1} - v_{j+1}^n - v_{j-1}^n \\ 2w_j^{n+1} - w_{j+1}^n - w_{j-1}^n \end{pmatrix} - \frac{1}{2\Delta x} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_{j+1}^n - v_{j-1}^n \\ w_{j+1}^n - w_{j-1}^n \end{pmatrix} = 0$$
 (2)

Ici v a la signification d'un déplacement et w, d'une déformation. Montrer que ce schéma est stable en norme L^2 sous la condition CFL $\Delta t \leq \Delta x$ et qu'il est précis à l'ordre 1 en espace et en temps si le rapport $\Delta t/\Delta x$ est gardé constant lorsque Δt et Δx tendent vers 0.

Problème 3. Considérons le schéma de Lax-Wendroff appliqué à l'équation des ondes écrite comme système du premier ordre

$$\frac{1}{\Delta t} \begin{pmatrix} v_j^{n+1} - v_j^n \\ w_j^{n+1} - w_j^n \end{pmatrix} - \frac{1}{2\Delta x} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_{j+1}^n - v_{j-1}^n \\ w_{j+1}^n - w_{j-1}^n \end{pmatrix} - \frac{\Delta t}{2\Delta x^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} v_{j+1}^n - 2v_j^n + v_{j-1}^n \\ w_{j+1}^n - 2w_j^n + w_{j-1}^n \end{pmatrix} = 0$$
(3)

Montrer que ce schéma est stable en norme L^2 sous la condition CFL $\Delta t \leq \Delta x$ et qu'il est précis à l'ordre 2 en espace et en temps.