- 2) Sea *G* una gráfica.
 - *a*) Demuestra que, si *G* es simple, entonces cada ciclo de longitud mínima en *G* es una subgráfica inducida por vértices.

Recordemos que un ciclo es un circuito que no repite vértices salvo el primero que es igual al último y una gráfica inducida es una subgráfica que contiene todos los vértices de *C* y todas las aristas de *G* que conectan los vértices de *C*.

Dem: Por contrapuesta.

Sea G un agráfica simple y $C = \{v_1, v_2, \dots, v_n, v_1\}$ un ciclo en G, si C no es una subgráfica inducida por vértices de G, entonces C no es de longitud mínima.

Como C no es inducida por vértices, por definción de ser gráfica inducida por vértices existe una arista $uv \in E_G$ tal que $uv \notin E_C$ para u,v no consecutivos, esto pasa por definción de G, al ser simple la arista faltante no es arista múltiple o un lazo, por lo que la arista tiene que incidir a dos vertices no consecutivos en G.

Entonces se puede divir C en dos ciclos, en particular el ciclo C' que está formado por la arista que vive en G que atraviesa el ciclo C ya que une los vértices u,v, lo que la combierte en un ciclo más pequeño que C. Esto implica que si el ciclo C no es inducido entonces no es de longitud mínima, lo que es equivalente a decir que si C es un ciclo más pequeño entonces es inducido por vértices.

b) Prueba que lo anterior no es necesariamente cierto si *G* no es simple. Daremos un contrajemplo.

Cosiderece la siguiente gráfica

Figura 1: contrajemplo.

Notemos el ciclo $C = \{v_1, e_6, v_1\}$ de longitud minima 1 y como para que C sea una subgráfica inducida por G(G[C]) debe ocurrir que E_C contenga todas las aristas de G que une a los vertices en V_C pero vemos que esto no pasa porque el lazo $e_7 \notin E_C$ pero $e_7 \in E_G$ por lo que no es una subgráfica inducida por vértices.

7) Sea G una gráfica con $V_G = \{v_1, v_2, \dots, v_n\}$, y sea A su matriz de adyacencia asociada a dicho ordenamiento de V_G . Demuestra que, para cada entero no negativo k, el número de $v_i v_j - caminos$ de longitud k es $(A^k)_{i,j}$

Sea $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ una matriz de adyacencia asociada al ordenamiento de la gráfica G. Lo demostraremos por inducción fuerte.

Casos Base: k=1, que es la longitud del $v_iv_j-camino$, este existe si y solo si $v_iv_j\in E_G$ pero esto está dado por la matriz de adyacencia asociada que es A y como sabemos que una potencia de matrices se define recursivamente como $A^k=A\cdot A^{k-1}$, sustituyendo $A^1=A\cdot A^{1-1}=A\cdot I_A=A$ porque la matriz de adyacencias es una matriz cuadrada. Entonces se tiene que la longitud del $v_iv_j-camino$ de longitud k=1 es la matriz de adyacencias A.

Hipótesis de inducción: Nosostros afirmamos que para todo entero n < k no negativo es verdad que el número de $v_i v_j - camino$ de longitud n es $A^n = (a_{il}) =$.

Paso inductivo: Por demostrar que se cumple para k Sabemos que la potencia de una matriz de define recursivamente como $A^k = A_{i,l}^{k-1} \cdot A_{lj}$, pero por hipótesis de inducción el número de caminos de n desde v_i a v_l es $A^{k-1} = A^n = (a_{il})$ donde A_{il}^n cuenta de los caminos de longitud n desde v_i hasta v_l y donde A_{lj} existe si y solo si es igual a 1 por lo que indica la posibilidad de moverse de v_l a v_j en al menos un paso, i.e $\{v_0, v_1, \ldots, v_l, v_j\}$. Por definción de la multiplicación, Número de caminos de longitud k desde v_i hasta v_j es $(A_{il}^n \cdot A_{lj}) = \sum_{l=1}^m (A^n)_{i,l} \cdot A_{l,j} = (A^k)_{ij}$