

ADA 128036

(12)
AD-F 300 236

AD

MEMORANDUM REPORT ARBRL-MR-03262

(Supersedes IMR No. 740)

BOUNDARY-LAYER TRIP EFFECTIVENESS AND
COMPUTATIONS OF AERODYNAMIC HEATING
FOR XM797 NOSE-TIP CONFIGURATIONS

Walter B. Sturek
Lyle D. Kayser
Donald C. Mylin

DTIC
S E L E C T
APR 28 1983

A

April 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC FILE COPY

83 04 28 133

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-03262	2. GOVT ACCESSION NO. AD-A128 036	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) BOUNDARY-LAYER TRIP EFFECTIVENESS AND COMPUTATIONS OF AERODYNAMIC HEATING FOR XM797 NOSE-TIP CONFIGURATIONS	5. TYPE OF REPORT & PERIOD COVERED Final	
7. AUTHOR(s) W. B. Sturek, L. D. Kayser, and D. C. Mylin	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BLL Aberdeen Proving Ground, Maryland 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS RDT&E 1L162618AH80	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory (DRDAR-BLA-S) Aberdeen Proving Ground, MD 21005	12. REPORT DATE April 1983	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 33	
	15. SECURITY CLASS. (of this report) Unclassified	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report)		
18. SUPPLEMENTARY NOTES This report supersedes IMR. No. 740		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Army is examining a new concept for limiting the range of the training round for the M735 projectile. This training round, designated the XM797, now employs an explosive placed within the nose cap which is ignited by aerodynamic heating. This report documents results of a recent firing program conducted at the BRL Transonic Range in which M735 projectiles with modified nose-tips were tested. The purpose of these tests was to determine the effectiveness of boundary-layer trips in generating turbulent boundary layers on		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

the projectile nose. Also reported are results of computations of the in-depth temperature response of XM797 nose-cap configurations for several flight conditions.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ILLUSTRATIONS.....	5
LIST OF TABLES.....	7
I. INTRODUCTION.....	9
II. TRANSONIC RANGE TESTS.....	9
A. Background.....	9
B. Models.....	9
C. Test Procedure.....	9
D. Discussion of Spark Shadowgraphs.....	9
III. AERODYNAMIC HEATING COMPUTATIONAL STUDY.....	10
A. Background.....	10
B. Model and Flow Field Conditions.....	11
C. Discussion of Computed Results.....	11
IV. CONCLUSIONS.....	11
V. RECOMMENDATION.....	12
REFERENCES.....	30
DISTRIBUTION LIST.....	31

Accession For	P
NTIS CRA&I	P
DTIC TAB	P
Unannounced	P
Justification	P
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Nose-Tip Photograph with BL Trip-A and BL Trip-B.....	13
2	Spark Shadowgraphs, No BL Trip.....	14
a.	Round 19461, Wall Temp = 294K(530R), β = 1.3°.....	14
b.	Round 19459, Wall Temp = 294K(530R), β = 1.7°.....	15
c.	Round 19465, Wall Temp = 325K(585R), β = 1.7°.....	16
d.	Round 19463, Wall Temp = 325K(585R), β = 1.9°.....	17
3	Spark Shadowgraphs, BL Trip-A.....	18
a.	Round 19855, Wall Temp = 242K(435R), β = 0.2°.....	18
b.	Round 19460, Wall Temp = 294K(530R), β = 1.5°.....	19
c.	Round 19464, Wall Temp = 325K(585R), β = 2.2°.....	20
4	Spark Shadowgraphs, BL Trip-B.....	21
a.	Round 19856, Wall Temp = 242K(435R), β = 0.2°.....	21
b.	Round 19842, Wall Temp = 294K(530R), β = 0.4°.....	22
c.	Round 19843, Wall Temp = 325K(585R), β = 0.4°.....	23
5	XM797 Nose-Tip Geometry, Computational Configuration.....	24
6	Critical Node Temperature-Time History for a Stainless Steel Nose Tip with Long (P1) and Short (P2) Cavities.....	25
a.	Cold Projectile, Wall Temp = 242K(435R).....	25
b.	Hot Projectile, Wall Temp = 325K(585R).....	26
7	Critical Node Temperature-Time History for a Stainless Steel Nose Tip with Intermediate Length Cavity.....	27

THIS PAGE IS BLANK-NOT FILMED

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Summary of Aerodynamic Data.....	28
2	Input Parameters.....	29

REMOVED FROM BLACK-OUT FILM

I. INTRODUCTION

The Army is currently performing development testing of projectiles to determine the feasibility of a new concept for a training round for the M735 projectile. This training round, designated the XM797, now employs an explosive placed within the nose cap which is ignited by aerodynamic heating.

The purposes of this report are to: (1) document the results of a recent firing program conducted at the BRL Transonic Range in which M735 projectiles with modified nose tips were tested and (2) report the results of computations of the in-depth temperature response of XM797 nose-cap configurations for several flight conditions.

II. TRANSONIC RANGE TESTS

A. Background

The primary purpose for the firing tests was to determine the effectiveness of two boundary-layer trip configurations, one recommended by BRL (Trip-A) and the other simulating the configuration employed by AVCO on the latest version of the XM797 (Trip-B).

B. Models

The projectiles tested were standard M735 shell which were modified by cutting off the nose caps and replacing them with steel parts machined to have the outer configuration of the XM797. Three nose-cap configurations were tested: no trip, Trip-A, and Trip-B. A picture of the two shapes with boundary-layer trips is shown in Figure 1. Both boundary-layer trips were formed using a coarse knurl having approximately 1.5mm between parallel ridges of the knurl. Both boundary-layer trips were 6mm in length. TRIP-B started at approximately 1.5mm from the nose and the TRIP-A started 19mm from the nose.

C. Test Procedure

A summary of the test conditions is given in Table 1. Tests were conducted for three conditioning temperatures to simulate artic, standard, and desert climates. Spark shadowgraphs of the flow over the shell and standard aerodynamic coefficient data were obtained. The aerodynamic coefficient data are also summarized in Table 1.

D. Discussion of Spark Shadowgraphs

Spark shadowgraphs of the nose region of the shell for each test are shown in Figures 2, 3, and 4 for no trip, TRIP-A, and TRIP-B, respectively. The range data show that angles of attack (α) and angles of sideslip (β) varied from 0.1 to 2.2 degrees at the spark-shadowgraph station. The film plates are located in the horizontal plane and therefore show angles of sideslip but do not show angles of attack.

Figures 2a and 2c indicate that the boundary layer remains laminar on the 12-degree conical section and becomes transitional on the 8-degree conical

section. The boundary layer is not definitely fully turbulent until the cylindrical body is reached. Figures 2b and 2d indicate that the boundary layer becomes transitional near the junction of the 12- and 8-degree conical sections and that the flow is turbulent midway along the 8-degree conical section. No consistent trend with wall temperature is observed.

Figures 3a, 3b, and 3c show that Trip-A has had a significant effect on the boundary-layer development. The boundary layer appears to be successfully tripped in that there is no tendency for the boundary-layer to relaminarize downstream of the trip. Also, note that the outer edge of the boundary layer is irregular downstream of the trip in contrast to the outer edge of the viscous layer for Figure 2. It is also apparent that the lee side viscous layer is more effectively tripped than the wind side (bottom side in these pictures); Figure 3c shows this effect to be substantial for a projectile yaw of 2.2°. This suggests that the BRL trip configuration is not fully satisfactory.

Figures 4a, 4b, and 4c show that Trip-B is not as effective as Trip-A. Trip-B generates some turbulence on the nose; but, on the aft part of the 8-degree conical section, the turbulence seems to be decaying and the boundary layer becoming thinner, which indicates a tendency toward relaminarization of the boundary layer. Looking closely in the vicinity of the trip, it is apparent that the trip disturbs the boundary layer; however, the boundary layer shows a tendency toward relaminarization immediately downstream of the trip. Past experience in the BRL wind tunnels has shown that boundary-layer trips placed too far forward on a model were not effective in generating a turbulent boundary layer even though the trip provided considerable disturbance to the boundary layer.

III. AERODYNAMIC HEATING COMPUTATIONAL STUDY

A. Background

A series of computations of the in-depth temperature response of XM797 nose-cap configurations to aerodynamic heating has been accomplished using the Acurex/Aerotherm ABRES Shape Change Code - 1979 Version (ASCC-79), Reference 1. The purpose of this brief computational study was to examine the effect on the in-depth temperature resource of varying the location of the powder cavity in the nose for the XM797. Recent firing tests, Reference 2, indicated that

-
1. Sandhu, S. S., and Murray, A. L., "Reentry Vehicle Technology (REV-TECH) Program. Volume III. Improved Capabilities of the ARBES Shape Change Code (ASCC 79)," Acurex Report TR-79-10/AS, Acurex Corporation/Aerotherm, 485 Clyde Avenue, Mountain View, California 94042, prepared for Space and Missile Systems Organisation, Air Force Systems Command, Los Angeles, California 90009, July 1979.
 2. Hudgins, H., Private Communication, Results of XM797 August 1981 Firing Data.

the XM797 functioned; however, the functioning time was, in general, too soon for hot conditioned rounds and too late for cold conditioned rounds. Additionally, the difference between the functioning times for the hot and cold conditioning extremes was greater than desired.

B. Model and Flow Field Conditions

A schematic drawing of the model geometry used in this study is shown in Figure 5. The internal powder cavity was modelled as an adiabatic cavity. Results have been obtained for three cavity geometries indicated as A(original configuration), B, and C.

In performing a computation using the ASCC-79 code, a considerable quantity of input data is required. The values used for the surface roughness parameters are given in Table 2. Of particular interest here, the location of boundary-layer transition was fixed at 15mm from the tip of the model.

C. Discussion of Computed Results

Examples of the in-depth temperature response as a function of time are shown in Figures 6 and 7. These figures display the temperature-time history of points P2, P3, and P4 (Figure 5) for cavities A, B, and C, respectively. Firing test functioning times for the original cavity configuration (A), correlated well with the time for the temperature at position P2 to reach 1000R. This makes it convenient (and sufficiently accurate for comparative purposes here) to evaluate the effect of the different cavity configurations by comparing the time for positions P2, P3, and P4 to reach 1000R.

Using these criteria, Figure 6a indicates a functioning time of 2.55 seconds and 3.5 seconds for cavities A and C, respectively, for cold conditioned shell. Figure 6b indicates a functioning time of 1.65 seconds and 2.35 seconds for cavities A and C, respectively, for hot conditioned shell. These results predict that changing the cavity location will have a significant effect on the functioning time. Further, these results indicate that the difference between the functioning time for the different conditioning temperatures ($dt = 2.55 - 1.65 = 0.90$ for A and $dt = 3.50 - 2.35 = 1.15$ for B) is increased by moving the cavity rearward in the nose cap.

Figure 7 indicates a functioning time of 2.1 seconds for hot conditioned shell and 3.2 seconds for the cold conditioned shell for cavity B. The functioning time difference is $3.2 - 2.1 = 1.10$ seconds.

IV. CONCLUSIONS

1. Examination of the spark shadowgraphs of the flow over the simulated XM797 nose caps indicate that:

- a. The BRL design boundary-layer trip (Trip-A) resulted in a turbulent boundary-layer immediately downstream of the trip.
- b. The boundary-layer trip designated as Trip-B did not produce a reliable turbulent boundary-layer immediately downstream of the trip; however,

Trip-B did produce greater turbulence in the boundary layer development than the no-trip cases.

c. Small projectile yaw causes considerable asymmetry in the boundary layer development. This makes it important that any boundary-layer trip be placed where it will perform effectively.

2. The computational results indicate that:

a. Moving the powder cavity rearwards results in a delay in the functioning time.

b. Moving the powder cavity rearward does not result in a significant reduction of the difference in functioning times between hot and cold conditioned shell.

V. RECOMMENDATION

It is recommended that the configuration of the boundary-layer trip employed on the XM797 be placed no closer to the projectile tip than 15mm and that the trip extend to 26mm from the projectile leading edge.

Figure 1. Nose-Tip Photograph with BL Trip-A and BL Trip-B

Figure 2. Spark Shadowgraphs, No BL Trip

- a. Round 19461, Wall Temp = 294K(530R), $\beta = 1.3^\circ$

Figure 2. Spark Shadowgraphs, No BL Trip
b. Round 19459, Wall Temp = 294K (530R), $\beta = 1.7^\circ$

Figure 2. Spark Shadowgraphs, No BL Trip
c. Round 19465, Wall Temp = 325K(585R), $\beta = 1.7^\circ$

Figure 2. Spark Shadowgraphs, No BL Trip
d. Round 19463, Wall Temp = 325K(585R), $\beta = 1.9^\circ$

Figure 3. Spark Shadowgraphs, Bl. Trip-A

a. Round 19855, Wall Temp = 242K(435R), $\beta = 0.2^\circ$

Figure 3. Spark Shadowgraphs, BL Trip-A
b. Round 19460, Wall Temp = 294K (530R), $\beta = 1.5^\circ$

Figure 3. Spark Shadowgraphs, BL Trip-A
c. Round 19464, Wall Temp = 325K (585R), $\beta = 2.2^\circ$

Figure 4. Spark Shadowgraphs, Bl Trip-8

a. Round 19856, Wall Temp = 242K (435R), $\beta = 0.2^\circ$

ROUND: 19842
TRIP: TRIP-B
PAU T: 294K(530R)
ETA: 0.4°

Figure 4. Spark Shadowgraphs. BL Trip-B
b. Round 19842, Wall Temp = 294K(530R), $\beta = 0.4^\circ$

NAME: 19843
BL TRIP: TRIP-B
PROJ T: 325K(585R)
ETA: 0.4°

Figure 4. Spark Shadowgraphs, BL Trip-B
c. Round 19843, Wall Temp = 325K (585R), $\beta = 0.4^\circ$

XM797 NOSE TIP

Figure 5. XM797 Nose-Tip Geometry, Computational Configuration

Figure 6. Critical Nose Temperature-Time History for a Stainless Steel Nose Tip with Long (P1) and Short (P2) Cavities

a. Cold Projectile, Wall Temp = 242K(43R)

Figure 6. Critical Nose Temperature-Time History for a Stainless Steel Nose Tip with Long (P1) and Short (P2) Cavities
 b. Hot Projectile, Wall Temp = 325K (535R)

Figure 7. Critical Node Temperature-Time History for a Stainless Steel Nose Tip with Intermediate Length Cavity

TABLE 1. SUMMARY OF AERODYNAMIC DATA

BL TRIP	T _W °K(°R)	ROUND	*U _M -M/S	*M	C _D	C _{H_a}	YAWAW - Deg	
None	242(435)	19854	1507	4.40	.302(.5)**	-23.0(.8)	0.83	
None	294(530)	19459	1478	4.24	.335(.6)	-24.4(.4)	2.04	
None	294(530)	19461	1496	4.29	.324(.5)	-23.4(.9)	2.20	
None	325(585)	19463	1499	4.32	.324(.9)	-23.4(.9)	1.35	
None	325(585)	19465	1509	4.33	.324(.8)	-23.1(.8)	2.14	
A	242(435)	19855	1516	4.42	.324(.7)	-22.2(.7)	1.72	
28	A	242(435)	19857	1527	4.44	.319(.7)	-22.4(.6)	1.62
A	294(530)	19460	1502	4.31	.322(.6)	-23.2(.7)	1.41	
A	325(585)	19464	1515	4.36	.321(.6)	-23.0(.7)	1.64	
B	242(435)	19856	1523	4.43	.314(.7)	-22.4(.6)	1.65	
B	294(530)	19842	1493	4.37	.306(.9)	-23.3(1.0)	0.97	
B	325(585)	19843	1530	4.47	.302(.7)	-22.2(.9)	1.03	

*Velocity and Mach Number at the muzzle.

**Values in parentheses under coefficient data are estimated RMS deviations (percent) between the measurements and a hypothetical set of true measurements free from observation errors.

TABLE 2. INPUT PARAMETERS

K1 = 1, Intrinsic roughness height, mil
K2 = 1, Maximum turbulent roughness height, mil
*K3 = 4, Roughness near melt, mil
*K4 = 2, Laminar heating augmentation factor
 x_{TR} = 15mm, Location of transition from nose

*Hudgins, H., Modification to ASCC-79, private communication, LCWSL/ARRADCOM, Dover, NJ.

REFERENCES

1. Sandhu, S. S., and Murray, A. L., "Reentry Vehicle Technology (REV-TECH) Program. Volume III. Improved Capabilities of the ARBES Shape Change Code (ASCC 79)," Acurex Report TR-79-10/AS, Acurex Corporation/Aerotherm, 485 Clyde Avenue, Mountain View, California 94042, prepared for Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, California 90009, July 1979.
2. Hudgins, H., Private Communication, Results of XM797 August 1981 Firing Data.

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Communications Research and Development Command ATTN: DRSEL-ATDD Fort Monmouth, NJ 07703
10	Commander US Army Armament Research and Development Command ATTN: DRDAR-TDC DRDAR-TSS DRDAR-LCA-F Mr. D. Mertz Mr. E. Falkowski Mr. A. Loeb Mr. R. Kline Mr. S. Kahn Mr. S. Wasserman Mr. H. Hudgins Dover, NJ 07801	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L Rock Island, IL 61299	2	Commander US Army Missile Command ATTN: DRSMI-R DRSMI-RDK Mr. R. Deep Redstone Arsenal, AL 35898
1	Director US Army Armament Research and Development Command Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35898
1	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd. St. Louis, MO 63120	1	Commander US Army Tank Automotive Command ATTN: DRSTA-TSL Warren, MI 48090
		1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range NM 88002
		2	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709	1	Director NASA Ames Research Center ATTN: MS-227-8 Dr. L. Schiff Moffett Field, CA 94035
1	Commander US Naval Air Systems Command ATTN: AIR-604 Washington, D. C. 20360	1	Air Force Armament Laboratory ATTN: DLDL (Dr. D.C. Daniel) Eglin AFB, FL 32542
3	Commander David W. Taylor Naval Ship Research and Development Center ATTN: Dr. S. de los Santos Dr. Joanna Schot Mr. Stanley Gottlieb Bethesda, Maryland 20084	1	ACUREX Corporation/Aerotherm ATTN: Dr. M. J. Abbott 485 Clyde Avenue Mountain View, CA 94042
3	Commander US Naval Surface Weapons Center ATTN: Dr. T. Clare, Code DK20 Mr. P. Daniels Mr. D. A. Jones III Dahlgren, VA 22448	1	AVCO Corporation Research-Advanced Development Division 201 Lowell Street Wilmington, MA 01887
3	Commander US Naval Surface Weapons Center ATTN: Code 312 Dr. W. Yanta Dr. T. Zien Mr. R. Voisinet Silver Spring, MD 20910	1	Nielsen Engineering & Research, Inc. ATTN: Dr. S. Stahara 510 Clyde Avenue Mountain View, CA 94043
1	Commander US Naval Weapons Center ATTN: Code 3431, Tech Lib China Lake, CA 93555	2	Sandia Laboratories ATTN: Technical Staff, Dr. W.L. Oberkampf Aeroballistics Division 5631, H.R. Vaughn Albuquerque, NM 87115
1	Director NASA Langley Research Center ATTN: NS-185, Tech Lib Langley Station Hampton, VA 23365	1	Massachusetts Institute of Technology ATTN: Tech Library 77 Massachusetts Avenue Cambridge, MA 02139
		1	University of Delaware Mechanical and Aerospace Engineering Department ATTN: Dr. J. E. Danberg Newark, DE 19711

DISTRIBUTION LIST

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: DRSTE-T0-F

Dir, USACSL, Bldg. E3516, EA
ATTN: DRDAR-CLB-PA
DRDAR-CLN
DRDAR-CLJ-L

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address:

----- FOLD HERE -----

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLA-S
Aberdeen Proving Ground, MD 21005

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON, DC
POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLA-S
Aberdeen Proving Ground, MD 21005

----- FOLD HERE -----