FICHE DE COURS 4

Bases de l'électrocinétique

	•		^ -			<i>c</i> .	`	•	•		
	alle le	SIOD (etre (capable	de	taire	anres	avoir	annris	mon	COLLES
-	que je	aois	CLI C	capabic	uc	Iuiic	apics	avon	арриз		Cours

Définir une particule chargée et sa charge électrique.
Connaître la valeur de la charge électrique élémentaire.
Citer les différents porteurs de charge usuels.
Distinguer matériau conducteur et isolant.
Définir le courant électrique et citer les trois origines possibles de la circulation d'un courant.
Citer la convention d'orientation selon les porteurs de charge positif.
Définir et justifier l'expression de l'intensité électrique comme un débit algébrique net de charge électrique par unité de temps à travers une surface donnée.
Donner des ordres de grandeur pour d'intensité électrique.
Expliquer l'ARQS et justifier son domaine de validité.
Définir le potentiel électrostatique, la tension électrique et donner des ordres de grandeurs
Repérer et dénombrer les noeuds, les branches et les mailles dans un circuit électrique.
Démontrer et appliquer les lois de Kirchhoff : branches, noeuds et mailles.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Valeurs numériques autour de la charge :

$$e \simeq 1,602 \times 10^{-19} \,\mathrm{C}$$
 ; $c \simeq 3,00 \times 10^8 \,\mathrm{m \, s^{-1}}$

☐ Intensité électrique :

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

□ ARQS:

$$\frac{L}{c} \ll \tau$$

avec L longueur caractéristique du circuit, c la célérité de l'onde électrique et τ le temps caractéristique d'évolution du phénomène électrique.

 $\hfill \square$ Tension électrique :

$$u_{AB} = V_A - V_B$$
 orientée de B vers A

et additivité des tensions :

$$u_{AC} = u_{AB} + u_{BC}$$

☐ Loi des nœuds :

$$\sum_{k} \epsilon_{k} i_{k} = 0 \quad \text{avec} \quad \epsilon_{k} = \begin{cases} -1 & \text{si la flèche du courant s'éloigne du noeud} \\ +1 & \text{si la flèche du courant arrive au noeud} \end{cases}$$

 \square Loi des mailles :

$$\sum_{k} \epsilon_k u_k = 0 \quad \text{avec} \quad \epsilon_k = \begin{cases} -1 & \text{si la flèche de la tension } u_k \text{ est orientée dans le sens opposé à la maille} \\ +1 & \text{si la flèche de la tension } u_k \text{ est orientée dans le sens de la maille} \end{cases}$$