The winning objective for the duplicator (who aims to establish the equivalence of \mathcal{A} and \mathcal{B}) is to establish a partial isomorphism between \mathcal{A} and \mathcal{B} . As the meaning of the constant symbols c_1, \ldots, c_ℓ under both structures is supposed to be public for both opponents, the winning criterion adds the tuples $\overline{c}^{\mathcal{A}}$ and $\overline{c}^{\mathcal{B}}$ to the outcome $\langle \overline{a}, \overline{b} \rangle$.

Definition 1.6.13 (Winning outcomes). Recall that $Const = \{c_1, ..., c_\ell\}$ is the set of constant symbols in the underlying finite, relational vocabulary. An outcome

$$\langle \overline{a}, \overline{b} \rangle = \langle (a_1, \dots, a_k), (b_1, \dots, b_k) \rangle \in A^k \times B^k$$

of a k-round play is said to be winning (for the duplicator) iff the pair

$$\left\langle (\overline{\boldsymbol{\alpha}}, \overline{\boldsymbol{c}}^{\mathcal{A}}), (\overline{\boldsymbol{b}}, \overline{\boldsymbol{c}}^{\mathcal{B}}) \right\rangle \\ = \left\langle (\boldsymbol{\alpha}_1, \ldots, \boldsymbol{\alpha}_k, \boldsymbol{c}_1^{\mathcal{A}}, \ldots, \boldsymbol{c}_\ell^{\mathcal{A}}), (\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k, \boldsymbol{c}_1^{\mathcal{B}}, \ldots, \boldsymbol{c}_\ell^{\mathcal{B}}) \right\rangle \\ \in A^{k+\ell} \times B^{k+\ell}$$

defines a partial isomorphism between \mathcal{A} and \mathcal{B} . Otherwise, i.e., if $\langle (\overline{a}, \overline{c}^{\mathcal{A}}), (\overline{b}, \overline{c}^{\mathcal{B}}) \rangle$ does not define a partial isomorphism, the spoiler wins.

For the special case k=0 we get that the 0-round outcome, i.e., the initial game configuration $\langle \varepsilon, \varepsilon \rangle$ where no move has been performed so far, is winning if and only if the pair $\langle \overline{c}^{\mathcal{A}}, \overline{c}^{\mathcal{B}} \rangle$ defines a partial isomorphism. Here, ε denotes the empty tuple. Note that

- if the pair $\langle \overline{c}^{\mathcal{A}}, \overline{c}^{\mathcal{B}} \rangle$ does not define a partial isomorphism then there is no winning outcome. For example, if there are constant symbols c and d such that $c^{\mathcal{A}} = d^{\mathcal{A}}$, while $c^{\mathcal{B}} \neq d^{\mathcal{B}}$, then there is no winning outcome at all.
- if a k-round outcome $\langle (a_1,\ldots,a_k),(b_1,\ldots,b_k)\rangle$ is winning then the outcomes

$$\langle (a_1,\ldots,a_i),(b_1,\ldots,b_i)\rangle$$

of rounds $i=0,1,\ldots,k-1$, must be winning too. In fact, we even have the following stronger condition. If a k-round outcome $\langle (\alpha_1,\ldots,\alpha_k),(b_1,\ldots,b_k)\rangle$ is winning then so are all pairs $\langle (\alpha_{j_1},\ldots,\alpha_{j_m}),(b_{j_1},\ldots,b_{j_m})\rangle$ where j_1,\ldots,j_m is an arbitrary sequence of indices in $\{1,2,\ldots,k\}$.

Next we define an equivalence \cong_k between structures that identifies exactly those structures \mathcal{A} and \mathcal{B} where the duplicator can play in such a way that the outcome $\langle \overline{a}, \overline{b} \rangle$ after the k-th round is winning, no matter how the spoiler behaves. We formalize this by means of winning strategies for the duplicator. Informally, a *strategy* for the duplicator is a function that provides the duplicator's decisions. That is, a k-round strategy takes as input the outcome $\langle (a_1,\ldots,a_i),(b_1,\ldots,b_i)\rangle$ of the i-th round (where $0\leqslant i< k$) and the move of the spoiler in the (i+1)-st round, i.e., an element a_{i+1} of structure $\mathcal A$ or an element b_{i+1} of structure $\mathcal B$. The strategy then provides a response by the duplicator, i.e., an element b_{i+1} of structure $\mathcal B$, if the spoiler has chosen an element of structure $\mathcal A$, or an element a_{i+1} of structure $\mathcal A$ if the spoiler has chosen an element of structure $\mathcal B$. A k-round strategy can be formalized as a function

$$\delta: \bigcup_{0\leqslant i < k} (A^{i+1} \times B^i \, \cup \, A^i \times B^{i+1}\,) \, \to A \cup B,$$

where $A^0 = B^0 = \{\epsilon\}$ consists of the empty tuple, such that for all $0 \le i < k$ and elements $a_1, \ldots, a_i, a_{i+1} \in A$ and $b_1, \ldots, b_i, b_{i+1} \in B$:

$$S((a_1,...,a_i),(b_1,...,b_i,b_{i+1})) \in A$$

 $S((a_1,...,a_i,a_{i+1}),(b_1,...,b_i)) \in B$

Thus, if the spoiler chooses \mathcal{A} and the element $a_{i+1} \in A$ in the i-th round then strategy \mathcal{S} tells the duplicator to pick the element $b_{i+1} = \mathcal{S}((a_1, \ldots, a_i, a_{i+1}), (b_1, \ldots, b_i)) \in B$.

A S-outcome is any pair $\langle (a_1,\ldots,a_k),(b_1,\ldots,b_k)\rangle \in A^k \times B^k$ such that for each index i with $0 \le i < k$:

$$\alpha_{i+1} \, = \, \mathbb{S}(\,(\alpha_1, \ldots, \alpha_i), (b_1, \ldots, b_i, b_{i+1})\,) \ \, \text{or} \ \, b_{i+1} \, = \, \mathbb{S}(\,(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}), (b_1, \ldots, b_i)\,)$$

That is, the S-outcomes are exactly the outcomes that can be obtained when the duplicator's decisions rely on strategy S, while the spoiler can behave in an arbitrary way. Strategy S is called a k-round winning strategy (for the duplicator) iff each S-outcome is winning, i.e., iff for each S-outcome $\langle \overline{a}, \overline{b} \rangle \in A^k \times B^k$ the pair $\langle (\overline{a}, \overline{c}^{\mathcal{A}}), (\overline{b}, \overline{c}^{\mathcal{B}}) \rangle$ defines a partial isomorphism between \mathcal{A} and \mathcal{B} .

Definition 1.6.14 (k-round game equivalence $\cong_{\mathbf{k}}$ **).** Let $\mathbf{k} \in \mathbb{N}$ and \mathcal{B} structures for *Voc*. Then, k-round-game-equivalence of \mathcal{A} and \mathcal{B} is defined by:

$$\mathcal{A} \cong_k \mathcal{B} \quad \stackrel{\scriptscriptstyle def}{\Longleftrightarrow} \quad \left\{ \begin{array}{l} \text{the duplicator has a k-round winning strategy} \\ \text{in the Ehrenfeucht-Fra\"iss\'e game for \mathcal{A} and \mathcal{B}} \end{array} \right.$$

For the case k=0 this means: $\mathcal{A}\cong_0\mathcal{B}$ iff $\langle \overline{c}^{\mathcal{A}}, \overline{c}^{\mathcal{B}} \rangle$ defines a partial isomorphism.

Above we observed that if an outcome $\langle (a_1, \ldots, a_k), (b_1, \ldots, b_k) \rangle$ after the k-th round is winning then the outcome $\langle (a_1, \ldots, a_i), (b_1, \ldots, b_i) \rangle$ of the i-th round is winning too. This yields the monotonicity of the game-equivalence relations in the number of rounds:

Lemma 1.6.15. If $A \cong_k B$ and $k \geqslant 1$ then $A \cong_i B$ for all $i \in \mathbb{N}$, i < k.

Proof. obvious, as each k-round winning strategy is also an i-round winning strategy, provided that i < k.

Example 1.6.16 (Games on sets). For an example, we regard the empty vocabulary. Thus, structures are just nonempty sets. Assuming that A and B are sets with |A|, $|B| \ge k$ we have $A \cong_k B$. Let us see how a winning strategy for the duplicator works.

Let $\langle (a_1, ..., a_i), (b_1, ..., b_i) \rangle$ be the current game configuration (i.e., outcome) after the i-th round, where $0 \le i < k$. W.l.o.g., the spoiler chooses structure \mathcal{A} in the first step.

- If the spoiler picks an element $a_{i+1} \in A \setminus \{a_1, ..., a_i\}$ then the duplicator responds with an element $b_{i+1} \in B \setminus \{b_1, ..., b_i\}$.
- If the spoiler picks an element a_{i+1} in $\{a_1, \dots, a_i\}$, say $a_{i+1} = a_j$, then the duplicator chooses the element $b_{i+1} = b_i$.

It is now easy to see that the outcome $\langle (a_1,\ldots,a_m),(b_1,\ldots,b_m)\rangle$ of each round $m\leqslant k$ defines a partial isomorphism, as $\{a_1,\ldots,a_m\}$ and $\{b_1,\ldots,b_m\}$ viewed as multisets are isomorphic. Thus, the duplicator wins after k rounds.

Example 1.6.17 (Games on graphs). We consider the two graphs shown in Figure 14 viewed as structures over Voc_{graph} . We have $\mathcal{A} \cong_0 \mathcal{B}$ as there are no constant symbols in Voc_{graph} , but

Figure 14: Game on graphs: $A \cong_0 \mathcal{B}$, but $A \ncong_1 \mathcal{B}$

 $\mathcal{A} \not\cong_1 \mathcal{B}$. The latter follows by the fact that none of the possible 1-round outcomes $\langle a_1, b \rangle$ or $\langle a_2, b \rangle$ defines a partial isomorphism, since (b, b) is an edge in \mathcal{B} , while (a, a) is not an edge in \mathcal{A} for both nodes $a = a_1$ and $a = a_2$ in \mathcal{A} .

Let us now regard the graphs shown in Figure 15 on page 95. Graph $\mathcal A$ consisting of a simple cycle of length 3. Graph $\mathcal B$ has the infinite node-set $\mathbb Z$ and an edge from each element $\mathfrak n$ to its successor $\mathfrak n+1$. Then, $\mathcal A\cong_1\mathcal B$ since no node in $\mathcal A$ or $\mathcal B$ has a self-loop and there are no constant symbols. Hence, all pairs $\langle \mathfrak a,\mathfrak b\rangle$ consisting of a node $\mathfrak a$ in $\mathcal A$ and a node $\mathfrak b$ in $\mathcal B$ define a partial isomorphism.

Figure 15: Game on graphs: $A \cong_1 B$, but $A \not\cong_2 B$

Moreover, we have $\mathcal{A} \not\cong_2 \mathcal{B}$. To see why, we observe that the spoiler wins each play where she selects structure \mathcal{B} and the element $b_1=0$ in the first round and the element $b_2=2$ (or any other element different from 0,-1 and 1) in the second round. The reason is that the duplicator can choose an arbitrary node $\mathfrak{a}_1 \in \{1,2,3\}$ in the first round, but has to pick either \mathfrak{a}_1 again or a predecessor or successor of \mathfrak{a}_1 in the second round. But since $\mathfrak{b}_1=0$ and $\mathfrak{b}_2=2$ are not connected via an edge in \mathcal{B} and $\mathfrak{b}_1 \neq \mathfrak{b}_2$, the duplicator has no chance to make a move such that the resulting outcome of the second round defines a partial isomorphism.

Notation 1.6.18 (Equivalence \cong_k for pointed structures). Let \mathcal{A} and \mathcal{B} be structures with domains A and B, respectively. If $\alpha \in A$ and $b \in B$ then the notation

$$(\mathcal{A}, \mathfrak{a}) \cong_{\mathsf{k}} (\mathfrak{B}, \mathfrak{b})$$

will be used to denote that the duplicator has a k-round winning strategy when a and b are treated as the meaning of a new constant symbol. In particular, for $k \ge 1$, this requires the existence of a k-round strategy which responds with b (resp. a) whenever the spoiler chooses a (resp. b). More precisely: $(\mathcal{A},a) \cong_k (\mathcal{B},b)$ iff there exists a k-round strategy \mathcal{S} for the duplicator such that for each \mathcal{S} -outcome $\langle \overline{a}, \overline{b} \rangle \in A^k \times B^k$ the pair

$$\langle (\overline{a}, \overline{c}^{\mathcal{A}}, a), (\overline{b}, \overline{c}^{\mathcal{B}}, b) \rangle$$

defines a partial isomorphism between \mathcal{A} and \mathcal{B} . Each such strategy \mathcal{S} will be called a winning strategy for $(\mathcal{A}, \mathfrak{a}) \cong_k (\mathcal{B}, \mathfrak{b})$.

Lemma 1.6.19 (Recursive characterization of \cong_k). Let \mathcal{A} , \mathcal{B} structures for the same relational vocabulary Voc. Then, we have:

- (a) $A \cong_0 B$ iff A and B fulfill the same atomic sentences.
- (b) For $k \ge 1$: $A \cong_k B$ iff
 - (1) for each $a \in A$ there exists $b \in B$ such that $(A, a) \cong_{k-1} (B, b)$,
 - (2) for each $b \in B$ there exists $a \in A$ such that $(A, a) \cong_{k-1} (B, b)$.

Proof. Recall that we assume that $c_1, ..., c_\ell$ are the constant symbols of *Voc* and that we write, e.g., $\overline{c}^{\mathcal{A}}$ for the tuple $(c_1^{\mathcal{A}}, ..., c_\ell^{\mathcal{A}})$.

ad (a). The outcome after a 0-round play is the tuple $\langle \varepsilon, \varepsilon \rangle$ where ε denotes the empty sequence. Thus:

$$\mathcal{A} \cong_{0} \mathcal{B}$$

iff the 0-round outcome $\langle \varepsilon, \varepsilon \rangle$ is winning

iff $\ \langle \overline{c}^{\mathcal{A}}, \overline{c}^{\mathcal{B}} \rangle$ defines a partial isomorphism between \mathcal{A} and \mathcal{B}

iff the following two conditions hold:

- for all $1 \le i < j \le \ell$: $c_i^{\mathcal{A}} = c_i^{\mathcal{A}}$ iff $c_i^{\mathcal{B}} = c_i^{\mathcal{B}}$
- for all n-ary predicate symbols P and $i_1, ..., i_n \in \{1, ..., \ell\}$:

$$(c_{i_1}^\mathcal{A}, \dots, c_{i_n}^\mathcal{A}) \in P^\mathcal{A} \text{ iff } (c_{i_1}^\mathcal{B}, \dots, c_{i_n}^\mathcal{B}) \in P^\mathcal{B}$$

iff \mathcal{A} and \mathcal{B} fulfill the same atomic sentences

Note that the atomic sentences over Voc are the formulas of the form " $c_{i_1} = c_{i_2}$ " or $P(c_{i_1}, \ldots, c_{i_n})$ where P is an n-ary predicate symbol and $i_1, \ldots, i_n \in \{1, \ldots, \ell\}$.

ad (b). Let now $k \geqslant 1$. Let us first assume that $\mathcal{A} \cong_k \mathcal{B}$. We now show statement (1). Let $\alpha \in A$ and let \mathcal{S} be a k-round winning strategy for the duplicator. Strategy \mathcal{S} tells the duplicator to answer by an element

$$b = S(\langle a, \varepsilon \rangle) \in B$$

in structure \mathcal{B} , provided that the spoiler has chosen structure \mathcal{A} and the element $\alpha \in A$ in the first round. Using strategy \mathcal{S} also for the next k-1 rounds, the duplicator will win from the game position $\langle \alpha, b \rangle$ within k-1 rounds. But this yields a (k-1)-round winning strategy for $(\mathcal{A}, \alpha) \cong_{k-1} (\mathcal{B}, b)$. This shows statement (1). Statement (2) follows by a symmetric argument.

Vice versa, (1) and (2) induce a strategy for the duplicator to react on the spoiler's first move such that she will win the play after k-1 further rounds when following the winning strategies for $(\mathcal{A}, \alpha) \cong_{k-1} (\mathcal{B}, b)$ from the second round on. Hence, there is a winning strategy for k rounds, which yields $\mathcal{A} \cong_k \mathcal{B}$.

For the sake of completeness let us formalize the last argument and provide the precise definition of a winning strategy S for $\mathcal{A} \cong_k \mathcal{B}$. By assumptions (1) and (2) and the axiom of choice, there exist functions $f: A \to B$ and $g: B \to A$ such that

$$(\mathcal{A}, \alpha) \cong_{k-1} (\mathcal{B}, f(\alpha))$$
 and $(\mathcal{A}, g(b)) \cong_{k-1} (\mathcal{B}, b)$

for all $a \in A$ and $b \in B$. For each pair (a,b) with $(\mathcal{A},a) \cong_{k-1} (\mathcal{B},b)$ we pick a winning strategy $S_{a,b}$ for $(\mathcal{A},a) \cong_{k-1} (\mathcal{B},b)$. The definition of S is then as follows:

for all $a, a_1, \ldots, a_{i+1} \in A$, $b, b_1, \ldots, b_{i+1} \in B$ and $0 \le i < k-1$. Since we are only interested in the S-outcomes, the definition of $S_{a,b}$ is irrelevant if $(\mathcal{A},a) \not\cong_{k-1} (\mathcal{B},b)$. Each S-outcome has the form

$$\langle (a, a_1, ..., a_{k-1}), (b, b_1, ..., b_{k-1}) \rangle$$

where $(\mathcal{A}, \mathfrak{a}) \cong_{k-1} (\mathcal{B}, \mathfrak{b})$ and $\langle (\mathfrak{a}_1, \dots, \mathfrak{a}_{k-1}), (\mathfrak{b}_1, \dots, \mathfrak{b}_{k-1}) \rangle$ is a $\mathcal{S}_{\mathfrak{a}, \mathfrak{b}}$ -outcome. As $\mathcal{S}_{\mathfrak{a}, \mathfrak{b}}$ is a (k-1)-round winning strategy for $(\mathcal{A}, \mathfrak{a}) \cong_{k-1} (\mathcal{B}, \mathfrak{b})$, the pair

$$\langle (a_1, \dots, a_{k-1}, \overline{c}^{\mathcal{A}}, a), (b_1, \dots, b_{k-1}, \overline{c}^{\mathcal{B}}, b) \rangle$$

defines a partial isomorphism. But then the pair

$$\langle (\alpha,\alpha_1,\ldots,\alpha_{k-1},\overline{c}^{\mathcal{A}}),(b,b_1,\ldots,b_{k-1},\overline{c}^{\mathcal{B}})\rangle$$

induced by the given S-outcome defines a partial isomorphism too. Hence, the duplicator wins all S-plays. \Box

The goal is now to show that the game-equivalence \cong_k of structures $\mathcal A$ and $\mathcal B$ implies that $\mathcal A$ and $\mathcal B$ cannot be distinguished by FOL-sentences where the nesting of quantifiers is bounded above by k. Even the converse holds, i.e., structures that agree on all such FOL-sentences are identified by \cong_k .

Notation 1.6.20 (Quantifier rank, FOL[k]-formulas). The *quantifier rank* of a FOL-formula (over an arbitrary vocabulary) is defined as the maximal depth of quantifier nesting. Formally,

$$\begin{array}{ll} qr(\varphi) & \stackrel{\scriptscriptstyle def}{=} & 0 \quad \text{if } \varphi = \textit{true} \text{ or } \varphi \text{ is an atomic formula} \\ qr(\varphi_1 \wedge \varphi_2) & \stackrel{\scriptscriptstyle def}{=} & \max\{qr(\varphi_1),qr(\varphi_2)\} \\ qr(\neg \varphi) & \stackrel{\scriptscriptstyle def}{=} & qr(\varphi) \\ qr(\forall x. \varphi) & \stackrel{\scriptscriptstyle def}{=} & qr(\varphi) + 1 \end{array}$$

We write FOL[k] for the set of FOL-formulas of quantifier rank at most k where the vocabulary is assumed to be fixed. If $x_1, ..., x_n$ are pairwise distinct variables then

$$FOL[k](x_1,...,x_n)$$

denotes the set of all formulas ϕ over the given vocabulary with $qr(\phi) \leq k$ and $Free(\phi) \subseteq \{x_1, \dots, x_n\}$. Occasionally, we write $FOL[k](\emptyset)$ to denote the set of all FOL[k]-sentences, i.e., formulas $\phi \in FOL[k]$ with $Free(\phi) = \emptyset$.

E.g., the quantifier rank of an atomic formula or any boolean combination of atomic formulas is 0. Formulas $\exists x.P(x,y)$ and $\exists x.P(x,y) \land \forall y.R(y)$ have quantifier rank 1. An example for a formula with quantifier rank 2 is

$$\exists z.R(z) \land \forall x \exists y.P(x,y),$$

while the quantifier rank of $\exists z. (R(z) \land \forall x \exists y. (P(x,y) \land P(y,z)))$ is 3.

Before studying the relation between \cong_k and equivalence of structures for FOL[k]-formulas, we will establish some important properties of FOL[k]. The first observation is that, up to logical equivalence \equiv , there are only finitely many FOL[k]-sentences. Stated differently, for each $k \in \mathbb{N}$ there exist FOL[k]-sentences ϕ_1, \ldots, ϕ_r such that for each FOL[k]-sentence ψ there is some index $i \in \{1, \ldots, r\}$ with $\psi \equiv \phi_i$. This, of course, requires a finite relational vocabulary.

Lemma 1.6.21 (Finiteness of FOL[k](x_1,...,x_n) up to equivalence). Given a finite relational vocabulary and n variables $x_1,...,x_n$, then, for each $k \in \mathbb{N}$, there are only finitely many equivalence classes of formulas $\phi \in FOL[k](x_1,...,x_n)$.

Proof. As the vocabulary is supposed to be relational, i.e., there are no function symbols of arity ≥ 1 . Hence, all terms are either constant symbols or variables. Furthermore, the set of constant symbols is finite, say $Const = \{c_1, \dots, c_\ell\}$. The argument is now by induction on k:

Basis of induction. FOL[0]($x_1,...,x_n$) consists of all boolean combinations of true and the atomic formulas $t_1 = t_2$ and $P(t_1,...,t_m)$ where the t_i 's are either constant symbols or in $\{x_1,...,x_n\}$. Thus, the t_i 's belong to the finite set $\{c_1,...,c_\ell,x_1,...,x_n\}$. However, up to equivalence \equiv , there are only finitely many such boolean combinations.

Step of induction . Let us now assume that $k \geqslant 1$. Then, $FOL[k](x_1, \ldots, x_n)$ is the set of all formulas that can be written as boolean combinations of formulas $\psi \in FOL[k-1](x_1, \ldots, x_n)$ and formulas $\forall y.\psi$ where $\psi \in FOL[k-1](x_1, \ldots, x_n, y)$. Note that, due to the possibility of bounded renaming, one variable $y = y_k$ is sufficient to cover all equivalence classes. By induction hypothesis, there are only finitely many equivalence classes of formulas in $FOL[k-1](x_1, \ldots, x_n)$ and in $FOL[k-1](x_1, \ldots, x_n, y)$. This yields the claim.

Corollary 1.6.22 (Only finitely many FOL[k]-sentences up to equivalence). For each $k \in \mathbb{N}$ and finite relational vocabulary, the set of FOL[k]-sentences is finite up to equivalence \equiv .

Notation 1.6.23 (Rank-k-types). As before, let *Voc* be a finite relational vocabulary. If A is a structure for *Voc* then

$$\begin{aligned} FOL[k](\mathcal{A}) &\stackrel{\text{def}}{=} & \left\{ \varphi \in FOL[k] \, : \, \textit{Free}(\varphi) = \varnothing \, \, \text{and} \, \, \mathcal{A} \models \varphi \, \right\} \\ &= & \left\{ \varphi : \varphi \, \, \text{is a FOL}[k]\text{-sentence with} \, \, \mathcal{A} \models \varphi \, \right\} \end{aligned}$$

is called the *rank*-k-*type* over \mathcal{A} . A formula-set \mathfrak{R} is said to be a rank-k type if $\mathfrak{R} = FOL[k](\mathcal{A})$ for some structure \mathcal{A} for Voc.

The rank-k-type of a structure A can be viewed as the FO-theory of A restricted to the FOL[k]-sentences. The following is immediate from the definition of rank-k-types:

Lemma 1.6.24. FOL[k](\mathcal{A}) = FOL[k](\mathcal{B}) iff \mathcal{A} and \mathcal{B} agree on all FOL[k]-sentences.

Rank-k-types are sets of FOL[k]-sentences that are closed under equivalence, i.e., if \mathfrak{R} is a rank-k-type and $\phi \in \mathfrak{R}$ then all FOL[k]-sentences ψ with $\phi \equiv \psi$ are contained in \mathfrak{R} . Note that if $\phi \in \mathfrak{R} = FOL[k](\mathcal{A})$ then $\mathcal{A} \models \phi$, and therefore $\mathcal{A} \models \psi$ for all formulas ψ such that $\phi \equiv \psi$. Hence, by Corollary 1.6.22:

Corollary 1.6.25 (Finiteness of the set of rank-k-types). For finite relational vocabulary Voc, the set

$$\{ FOL[k](A) : A \text{ is a structure for } Voc \}$$

consisting of all rank-k-types over Voc is finite.

Even a stronger result can be established that asserts that each rank-k-type \Re is *defined* by some FOL[k]-formula θ in the sense that \Re agrees with the set of FOL[k]-sentences that are consequences of θ . More precisely:

Lemma 1.6.26 (FOL[k]-definability of the rank-k-types). Let Voc be a finite relational vocabulary and let $\mathfrak{R}_1, \ldots, \mathfrak{R}_s$ be the rank-k-types of Voc. Then, there are FOL[k]-sentences $\theta_1, \ldots, \theta_s$ such that for all $i \in \{1, \ldots, s\}$:

- $\mathfrak{R}_i = \{ \psi : \psi \text{ is a FOL}[k] \text{-sentence with } \theta_i \Vdash \psi \}$
- for each structure A we have: $A \models \theta_i$ iff $FOL[k](A) = \mathfrak{R}_i$.

Furthermore, each FOL[k]-sentence is equivalent to the disjunction of some of the θ_i 's.

Proof. By Lemma 1.6.21, there are finitely many FOL[k]-sentences ϕ_1, \ldots, ϕ_r such that each sentence $\phi \in FOL[k]$ is equivalent to some of the ϕ_i 's. W.l.o.g., the ϕ_i 's are pairwise not equivalent. Each subset I of $\{1, \ldots, r\}$ specifies a rank-k-type \mathfrak{R}_I . More precisely, for $I \subseteq \{1, \ldots, r\}$, let θ_I be the following FOL[k]-sentence:

$$\theta_I \stackrel{\text{\tiny def}}{=} \bigwedge_{i \in I} \varphi_i \wedge \bigwedge_{\substack{1 \leqslant i \leqslant r \\ i \notin I}} \neg \varphi_i$$

Furthermore, we define:

$$\mathfrak{R}_{I} \, \stackrel{\text{\tiny def}}{=} \, \left\{ \, \psi : \psi \text{ is a FOL}[k] \text{-sentence with } \theta_{I} \Vdash \psi \, \, \right\}$$

We now show that:

- (1) FOL[k](\mathcal{A}) = \mathfrak{R}_I for each model \mathcal{A} for θ_I
- (2) for each structure \mathcal{A} there exists $I \subseteq \{1, ..., r\}$ such that $\mathcal{A} \models \theta_I$ and $FOL[k](\mathcal{A}) = \mathfrak{R}_I$.

Note that by (1) and (2) we get that \mathfrak{R}_I is a rank-k-type, provided that θ_I is satisfiable, and vice versa, each rank-k-type agrees with one of the formula-sets \mathfrak{R}_I . Thus, there are at most 2^r rank-k types, and each of them is defined by a FOL[k]-sentence as stated in the lemma.

ad (1). Let \mathcal{A} be a structure such that $\mathcal{A} \models \theta_I$. We have to show that $FOL[k](\mathcal{A}) = \mathfrak{R}_I$.

" \subseteq ": Let $\psi \in FOL[k](\mathcal{A})$. Then, ψ is a FOL[k]-sentence such that $\mathcal{A} \models \psi$. There is some index $i \in \{1, ..., r\}$ such that $\psi \equiv \varphi_i$. Hence, $\mathcal{A} \models \varphi_i$. As $\mathcal{A} \models \theta_I$ and θ_I is a conjunction of the formulas φ_j for $j \in I$ and the formulas $\neg \varphi_j$ for $j \notin I$, we get $i \in I$ and

$$\theta_{I} = \dots \wedge \phi_{i} \wedge \dots \Vdash \phi_{i} \equiv \psi,$$

and therefore $\theta_I \Vdash \psi$. But then $\psi \in \mathfrak{R}_I$.

- "\(\text{\text{"}}\)": Let $\psi \in \mathfrak{R}_I$. Then, ψ is a FOL[k]-sentence such that $\theta_I \Vdash \psi$. As \mathcal{A} is a model for θ_I we have $\mathcal{A} \models \psi$. But then $\psi \in \text{FOL}[k](\mathcal{A})$.
- ad (2). Let \mathcal{A} be a structure and $I \stackrel{\text{def}}{=} \big\{ i \in \{1, \dots, r\} : \mathcal{A} \models \varphi_i \big\}$. Obviously, we then have $\mathcal{A} \models \theta_I$, and therefore $FOL[k](\mathcal{A}) = \mathfrak{R}_I$ (by (1)).

It remains to explain the last statement of the lemma asserting that each FOL[k]-sentence is equivalent to a disjunction of some of the θ_I 's. Let ψ be a FOL[k]-sentence. Then, $\psi \equiv \varphi_i$ for some $i \in \{1, \dots, r\}$. Let $\mathfrak J$ be the set of all index-sets $I \subseteq \{1, \dots, r\}$ where θ_I is satisfiable and $i \in I$. Then, ψ is equivalent to $\bigvee_{I \in \mathfrak I} \theta_I$.