DM d'Alix 0

Yvann Le Fay

Août 2019

1 Partie I. Les nombres de Liouville

Un nombre algébrique est un nombre complexe qui est racine d'un polynôme à coefficients dans Q, un nombre transcendant est un nombre complexe qui n'est pas algébrique.

Partie A. Développement décimal illimité

On note dans cette partie α un nombre réel de l'intervalle [0,1]. On pose pour tout $n \in \mathbb{N}^*$, $a_n =$ $E(10^{n}\alpha) - 10E(10^{n-1}\alpha).$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $a_n \in [0; 9]$.
- Montrer que pour tout n∈ N*, ^{E(10ⁿα)}/_{10ⁿ} = ∑ⁿ_{k=1} a_k/_{10^k} = 0,a₁a₂...a_n.
 En déduire que la suite u_n = ∑ⁿ_{k=1} a_k/_{10^k} converge vers un réel que l'on précisera. La suite $0, a_1 a_2 \dots a_n \dots$ est appelée développement décimal illimité (propre) du réel α .
- 4. Dans cette question, le nombre α est un rationnel de forme irréductible $\frac{p}{a}$.
 - (a) On note r_k le reste de la division euclidienne de $10^k p$ par q. Montrer qu'il existe deux entiers n < m tels que $r_n = r_m$.
 - (b) Montrer que pour tout $i \in \mathbb{N}^*, a_{n+i} = E(10^i \frac{r_n}{q}) 10E(10^{i-1} \frac{r_n}{q}) = a_{m+i}$. On pourra écrire que $10^n \alpha = q_n q + r_n$ pour un certain entier q_n . En déduire que la suite $(a_k)_{k \in \mathbb{N}}$ est périodique à partir
- 5. On note pour $n \ge 1$, $u_n = \sum_{k=1}^n \frac{1}{10^{k!}}$ et $v_n = \sum_{k=1}^{n!} \frac{1}{10^k}$.
 - (a) Montrer que pour tout $n \geq 1$, $u_n \leq v_n$. Montrer que la suite v_n converge et enfin que la suite u_n converge vers un réel $\alpha \in [0,1]$.
 - (b) Déterminer la suite (a_k) du développement décimal illimité de α . En déduire que α est un nombre irrationnel.

1.2 Partie B. Nombres de Liouville

- 1. Dans toute cette partie on note α un nombre algébrique irrationnel et $P(X) = \sum_{k=0}^{n} a_k X^k$, un polynôme de $\mathbb{Q}[X]$. On pose $I_{\alpha} = \{U \in \mathbb{Q}[X] : U(\alpha) = 0\}$.
 - (a) Montrer que I_{α} est un sous-groupe du groupe $(\mathbb{Q}[X], +)$.
 - (b) Justifier l'existence d'un polynôme μ_{α} appartenant à I_{α} et qui est unitaire et de degré minimal.
 - (c) Montrer que si $U \in I_{\alpha}$ alors $\mu_{\alpha} \mid U$.
 - (d) Montrer que $I_{\alpha} = \mu_{\alpha} \mathbb{Q}[X]$. Discuter de l'unicité du polynôme μ_{α} .
- 2. Montrer que le polynôme μ_{α} n'a aucune racine rationnelle et que les racines de μ_{α} sont simples.
- 3. On note d le degré de μ_{α} .
 - (a) Montrer qu'il existe un polynôme $P \in \mathbb{Z}[X]$ de degré d tel que $P(\alpha) = 0$.
 - (b) Pour tous $\frac{p}{q} \in \mathbb{Q}$, montrer qu'il existe un entier $N \in \mathbb{Z}^*$ tel que $P\left(\frac{p}{q}\right) = \frac{N}{q^d}$. En déduire que $\left|P\left(\frac{p}{q}\right)\right| \ge \frac{1}{q^d}.$
- 4. On note $\frac{p}{a}$ un rationnel de l'intervalle $[\alpha 1, \alpha + 1]$.
 - (a) Montrer q'il existe $c_{p,q} \in [\alpha 1, \alpha + 1]$ tel que $P\left(\frac{p}{q}\right) = \left(\frac{p}{q} \alpha\right)P'(c_{p,q})$.
 - (b) Justifier l'existence de $\max_{[\alpha-1,\alpha+1]}|P'|=C$ et montrer que C>0.
 - (c) On pose $C' = \min(1, 1/C)$. Montrer que pour tout rationnel $\frac{p}{q} \in \mathbb{Q}$, $\left|\alpha \frac{p}{q}\right| \ge \frac{C'}{q^d}$.

Un nombre de Liouville est un nombre irrationnel α pour tous entiers d>0, toutes constantes C'>0, il existe $\frac{p}{q}\in\mathbb{Q}$ tel que $\left|\alpha-\frac{p}{q}\right|<\frac{C}{q^d}$. En particulier, un nombre de Liouville n'est pas un nombre algébrique.

1.3 Partie C. Où l'on exhibe un nombre transcendant

On note α le réel obtenu à la question 1.1.5. On veut montrer que α est un nombre de Liouville. On suppose par l'absurde que α est un nombre algébrique. Il existe alors C'>0 et $d\in\mathbb{N}^*$ tel que pour tous rationnels $\frac{p}{q}$, $\left|\alpha-\frac{p}{q}\right|\geq\frac{C'}{q^d}$.

- 1. Montrer pour tous entiers n, p strictements positifs que $0 \le u_{n+p} u_n \le \frac{10}{9 \times 10^{(n+1)!}}$. En déduire que $0 \le \alpha u_n \le \frac{10}{9 \times 10^{(n+1)!}}$.
- 2. Montrer que pour tous $n \in \mathbb{N}^*$, $\frac{C'}{10^{dn!}} \leq \frac{10}{9 \times 10^{(n+1)!}}$.
- 3. Expliquer pour quoi l'inégalité précédente ne peut pas être vérifiée pour tout entier n non nul. Conclure C'est le premier exemple de nombre transcendant connu. Mais ce la laisse entier la question de la transcendance des nombres usuels comme π , e et il faudra attendre les résultats de Lindemann et de Hermitte pour avoir confirmation du caractère transcendant de ces nombres. La partie suivante étudie quelques propritétés des nombres algébriques.

2 Partie II. Les nombres algébriques

Pour α , β deux nombres algébriques, on note $\mathbb{Q}[\alpha] = \{P(\alpha) : P \in \mathbb{Q}[X]\}$ et $\mathbb{Q}[\alpha, \beta] = \{P(\alpha, \beta) : P \in \mathbb{Q}[X, Y]\}$. On pourra utiliser librement que \mathbb{C} est un \mathbb{Q} -espace vectoriel.

2.1 Partie A. Structure de $\mathbb{Q}[\alpha]$

On notera μ_{α} le polynôme minimal de α et d son degré.

- 1. Montrer que ($\mathbb{Q}[\alpha]$, +, ×) est un anneau.
- 2. (a) Montrer que $(\mathbb{Q}[\alpha], +, \cdot)$ est un \mathbb{Q} -ev.
 - (b) Montrer que pour tout $x \in \mathbb{Q}[\alpha]$, il existe $P \in \mathbb{Q}_{d-1}[X]$ tel que $x = P(\alpha)$.
 - (c) En déduire que la famille $(1,\alpha,\ldots\alpha^{d-1})$ est une base de $\mathbb{Q}[\alpha]$.
- 3. On fixe x_0 un élément non nul de $\mathbb{Q}[\alpha]$ et f l'application

$$f: \begin{cases} \mathbb{Q}[\alpha] \to \mathbb{Q}[\alpha] \\ x \mapsto xx_0 \end{cases}$$

Montrer que f est une application linéaire injective. Montrer que $(\mathbb{Q}[\alpha], +, \cdot)$ est un corps.

2.2 Partie B. Le théorème de l'élément primitif

On note $\alpha_1, \ldots, \alpha_d$ et β_1, \ldots, β_q les racines respectivement de μ_{α} et μ_{β} dans \mathbb{C} . On convient que $\alpha_1 = \alpha$ et $\beta_1 = \beta$.

- 1. Montrer qu'il existe $c \in \mathbb{Q}$ tel que $\alpha_i + c\beta_j \neq \alpha + c\beta$ pour tous $(i,j) \in [1;d] \times [2;q]$. Le nombre c peut-il être nul? On fixe un tel c.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $(\alpha + c\beta)^n \in \text{Vect}((a^i\beta^j)_{i,j})$. En déduire que $z = \alpha + c\beta$ est un nombre algébrique. On note $P(X) = \mu_{\alpha}(z cX)$ et $Q(X) = \mu_{\beta}(X)$.
- 3. Montrer que les coefficients de P(X) sont dans $\mathbb{Q}[z]$.
- 4. (a) Montrer que le reste de la division euclidienne de P par Q est un polynôme à coefficients dans $\mathbb{Q}[z]$.
 - (b) En déduire que $\Delta(X) = P \wedge Q$ est un polynôme à coefficients dans $\mathbb{Q}[z]$.
 - (c) Montrer que $\Delta(X) = X \beta$.
 - (d) Montrer que $\beta \in \mathbb{Q}[z]$ puis que $\alpha \in \mathbb{Q}[z]$.
- 5. Montrer que $\mathbb{Q}[\alpha, \beta] = \mathbb{Q}[z]$.
- 6. Montrer que l'ensemble des nombres algébriques est un sous-corps de \mathbb{C} .

2.3 Partie C. Méthode de Tchirnhauss de rechercue du polynôme minimal

- Si $Q \in \mathbb{Q}[X]$ alors pour tout $s \in \mathbb{C}$, on note $Q_s(X) = Q(s X)$.
- 1. On pose $P = X^2 + X + 1$ et $Q = X^2 2$. Donner une CNS sur le nombre s pour que P et Q_s aient une racine commune. On admet que la condition s'écrit $\Delta(s) = 0$ où Δ est un polynôme.
- 2. Déterminer les racines de $\Delta(s)$.
- 3. (a) trouver un polynôme à coefficients dans Q dont $j + \sqrt{2}$ est racine, en déduire le polynôme minimal de $j + \sqrt{2}$.
 - (b) Même question pour $\sqrt{2} + \sqrt{3}$.

3 III. Les polynômes cyclotomiques

On dit que z est une racine primitive n-ième de l'unité si $\langle z \rangle = \mathbb{U}_n$. On note Z_n l'ensemble des racines primitives n-ièmes de l'unité. On appelle n-ième polynôme cyclotomique le polynôme,

$$\phi_n(X) = \prod_{z \in Z_n} (X - z)$$

- 1. Soit $k \in [0; n-1]$. Montrer que $e^{\frac{2ik\pi}{n}} \in Z_n$ si et seulemnet si $k \wedge n = 1$. On note $\varphi(n) = |Z_n|$.
- 2. Soient m et n deux entiers premiers entre eux. Vérifier que l'application $\Psi:(u,v)\in Z_n\times Z_m\mapsto uv\in Z_{nm}$ est une bijection. En déduire que $\varphi(nm)=\varphi(n)\varphi(m)$.
- 3. Montrer que $\sum_{d|n} \varphi(d) = n$. En déduire le degré de $\prod_{d|n} \phi_d(X)$.
- 4. Soit $n \in \mathbb{N}^*$,
 - (a) Montrer que les racines complexes du polynôme $X^n 1$ sont simples.
 - (b) Montrer que $X^n 1 \mid \prod_{d \mid n} \phi_d(X)$ puis que $X^n 1 = \prod_{d \mid n} \phi_d(X)$.
 - (c) Justifier que $\phi_n(X) \in \mathbb{Z}[X]$ pour tout $n \in \mathbb{N}^*$.
- 5. Soient $p \in \mathbb{P}$ et $m \in \mathbb{N}$ tel que $p \nmid m$.
 - (a) Soit $a \in \mathbb{N}$ tel que $\phi_m(a) = 0 \mod p$. Montrer que $p \nmid a$ et que m est le plus petit entier naturel non nul tel que $a^m = 1 \mod p$.
 - (b) En déduire que l'ensemble des nombres premiers p tels que p=1 dans $\mathbb{Z}/m\mathbb{Z}$ est infini.