Lineær algebra noter - Lineære uafhængighed

Lukas Peter Jørgensen, 201206057, DA4

14. august 2014

Indhold

Indhold			1
1	Disposition		1
2	$\frac{2.2}{2.3}$	Lineær uafhængighed	
1	Dis 1. TB	sposition 3D	

2 Noter

2.1 Lineær uafhængighed

Et sæt $\{v_1,v_2,\ldots,v_n\}$ af vektorer er lineært uafhængige såfremt der gælder at linear kombinationen imellem dem kun giver 0 når alle c_i 'erne er 0.

Hvis der eksisterer et $c_i \neq 0$ så vil mindst en af vektorerne kunne skrives som en linear kombination af de andre.

2.2 Spanning set

$$V = span(v_1, v_2, \dots, v_n)$$
 hvis:

$$\forall x \in V, \exists c_1, c_2, \dots, c_n : x = c_1 v_1, c_2 v_2, \dots, c_n v_n$$

Altså x er en lineær kombination af vektorerne i spanning sættet.

2.3 Basis

Et spanning sæt er en basis hvis disse er lineært uafhængige.

2.4 Theorem 3.3.1

$$x_1, x_2, \dots, x_n \in \mathbb{R}^n$$
$$X = (x_1, x_2, \dots, x_n)$$

 x_1, x_2, \dots, x_n lin. afh. iff X singulær

$$c_1x_1 + c_2x_2 + \dots + c_nx_n = 0$$
$$Xc = 0$$

Xc har ikke-trivielle løsninger hvis og kun hvis X er singulær. Hvis X ikke er singulær, er den invertibel. Hvis X er invertibel findes der en invers matrix X^{-1} som man kan gange på ligningen:

$$X^{-1}Xc = 0X^{-1}$$

$$c = 0 \implies lin.uafh.$$

2.5 Theorem 3.4.1

Hvis $V = span(v_1, v_2, \dots, v_n)$ så for ethvert sæt af vektorer i V $(u_1, u_2, \dots, u_m), m > n$ så er u_i 'erne indbyrdes lineært afhængige.

Da $V = span(v_1, v_2, ..., \vdash_n)$ kan u_i 'erne skrives som en linearkombination af v_i 'erne.

$$u_i = \sum_{j=1}^n a_{ij} v_j, \quad a_{ij} \in \mathbb{F}$$

For at finde ud af om u_i 'erne er uafhængige må der ikke være en ikke-triviel løsning til:

$$\sum_{i=1}^{m} c_i u_i = 0$$

Hvis vi erstatter u_i med en linearkombination af v_j 'erne får vi:

$$\sum_{i=1}^{m} c_i \sum_{i=1}^{n} a_{ij} v_j = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{ij} c_i) v_j$$

Hvis vi nu nøjes med at kigge på produktet af $a_{ij}c_i$ får vi:

$$\sum_{i=1}^{m} a_{ij}c_i = 0, \text{ for } j = 1, \dots, n$$

Her er der flere ubekendte end der er ligninger da m > n, det er desuden et homogent system (b=0) derfor gælder teorem 1.2.1 der siger at der må være en ikke-triviel løsning.

 \mbox{Vi} skal nu vise at løsninger til:

$$\sum_{i=1}^{m} a_{ij}c_i = 0, \text{ for } j = 1, \dots, n$$

også er løsninger til:

$$\hat{c_1}u_1 + \hat{c_2}u_2 + \dots + \hat{c_m}u_m = 0$$

Hvor $\{\hat{c_1}, \dots, \hat{c_m}\}, c_i \neq 0$ for flere c_i 'er. Hvilket løsningerne er, da vi kan indsætte 0:

$$\sum_{j=1}^{n} \sum_{i=1}^{m} 0v_j = 0$$