In the Claims

Claims 1-15 and 27-29 are pending in the application with claims 1, 3-6, 8, 10, 11, 13, and 28 amended herein and new claim 29 added herein.

(currently amended) A capacitor fabrication method comprising:
 forming undoped, rugged polysilicon over a substrate;

forming a first capacitor electrode comprising TiN over a substrate the rugged polysilicon, the first electrode having an innermost surface area per unit area and an outermost surface area per unit area that are both greater than an outer surface area per unit area of the substrate, the innermost surface of the first electrode comprising a surface of the first electrode that is firstly formed over the substrate, and the outermost surface of the first electrode comprising a surface of the first electrode that is lastly formed over the substrate;

- 2. (previously presented) The method of claim 1 wherein the first electrode consists of TiN.
- 3. (currently amended) The method of claim 1 further comprising forming rugged polysilicon over the substrate, the first electrode being over the rugged polysilicon wherein the substrate comprises a bulk semiconductive wafer.
- 4. (currently amended) The method of claim [[3]] 1 wherein the rugged polysilicon is undoped the first electrode is on and in contact with the rugged polysilicon.

- 5. (currently amended) The method of claim [[3]] 1 wherein the rugged polysilicon comprises hemispherical grain polysilicon.
- 6. (currently amended) The method of claim [[3]] 1 wherein the forming the rugged polysilicon comprises using a seed density sufficiently small to yield at least some spaced apart grains.
- 7. (previously presented) The method of claim 1 wherein the outermost surface area of the first electrode is at least 30% greater than the outer surface area of the substrate.
- 8. (currently amended) The method of claim 1 wherein the forming the first electrode comprises A capacitor fabrication method comprising:

chemisorbing a layer of a first precursor at least one monolayer thick over [[the]] <u>a</u> substrate;

chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer, a chemisorption product of the first and second precursor layers being comprised by [[the]] a first capacitor electrode comprising TiN over the substrate, the first electrode having an innermost surface area per unit area and an outermost surface area per unit area that are both greater than an outer surface area per unit area of the substrate, the innermost surface of the first electrode comprising a surface of the first electrode that is firstly formed over the substrate, and the outermost surface of the first electrode comprising a surface of the first electrode that is lastly formed over the substrate;

- 9. (original) The method of claim 1 wherein the dielectric layer comprises Ta₂O₅, ZrO₂, WO₃, Al₂O₃, HfO₂, barium strontium titanate, or strontium titanate.
- 10. (currently amended) A capacitor fabrication method comprising: forming an opening in an insulative layer over a substrate, the opening having sides and a bottom;

forming a layer of polysilicon over the sides and bottom of the opening;
removing the polysilicon layer from over the bottom of the opening;
converting at least some of the polysilicon layer to <u>undoped</u> hemispherical grain polysilicon;

conformally forming a first capacitor electrode on and in contact with the hemispherical grain polysilicon, the first electrode being sufficiently thin that the first electrode has an outermost surface area per unit area greater than an outer surface area per unit area of the substrate underlying the first electrode and the outermost surface of the first electrode comprising a surface of the first electrode that is lastly formed;

- 11. (currently amended) The method of claim 10 wherein the hemispherical grain polysilicon is undoped first electrode consists of TiN.
- 12. (original) The method of claim 10 wherein the converting the polysilicon comprises using a seed density sufficiently small to yield at least some spaced apart grains.

13. (currently amended) The method of claim 10 wherein the forming the first electrode comprises A capacitor fabrication method comprising:

forming an opening in an insulative layer over a substrate, the opening having sides and a bottom;

forming a layer of polysilicon over the sides and bottom of the opening;

removing the polysilicon layer from over the bottom of the opening;

converting at least some of the polysilicon layer to hemispherical grain polysilicon;

chemisorbing a layer of a first precursor at least one monolayer thick on the converted polysilicon;

chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer, a chemisorption product of the first and second precursor layers being comprised by [[the]] a first capacitor electrode on and in contact with the hemispherical grain polysilicon, the first electrode being sufficiently thin that the first electrode has an outermost surface area per unit area greater than an outer surface area per unit area of the substrate underlying the first electrode and the outermost surface of the first electrode comprising a surface of the first electrode that is lastly formed;

forming a capacitor dielectric layer on the first electrode; and forming a second capacitor electrode over the dielectric layer.

14. (original) The method of claim 10 wherein the first electrode comprises TiN.

6

15. (original) The method of claim 10 wherein the dielectric layer comprises Ta₂O₅, ZrO₂, WO₃, Al₂O₃, HfO₂, barium strontium titanate, or strontium titanate.

Claims 16-26 (cancelled)

- 27. (previously presented) The method of claim 1 wherein the TiN forms a continuous layer within the first electrode.
- 28. (currently amended) A capacitor fabrication method comprising:

 forming an opening in an insulative layer over a substrate, the opening having
 sides defined by an exposed surface of the insulative layer and having a bottom defined
 by an exposed surface of the substrate;

forming a layer of polysilicon over the sides and bottom of the opening;
removing the polysilicon layer from over the bottom of the opening;
converting at least some of the polysilicon layer to <u>undoped</u> hemispherical grain polysilicon;

conformally forming a continuous first capacitor electrode having an innermost surface on and in contact with the hemispherical grain polysilicon and having an opposing outermost surface that is a lastly formed surface of the first electrode, the first electrode being sufficiently thin that the first electrode has an outermost surface area per unit area greater than a combined surface area per unit area of the sides and bottom of the opening underlying the first electrode;

29. (new) A capacitor fabrication method comprising:

forming an opening in an insulative layer over a substrate, the opening having sides defined by an exposed surface of the insulative layer and having a bottom defined by an exposed surface of the substrate;

forming a layer of polysilicon over the sides and bottom of the opening; removing the polysilicon layer from over the bottom of the opening; converting at least some of the polysilicon layer to hemispherical grain polysilicon;

chemisorbing a layer of a first precursor at least one monolayer thick on the converted polysilicon;

chemisorbing a layer of a second precursor at least one monolayer thick on the first precursor layer, a chemisorption product of the first and second precursor layers being comprised by a continuous first capacitor electrode having an innermost surface on and in contact with the hemispherical grain polysilicon and having an opposing outermost surface that is a lastly formed surface of the first electrode, the first electrode being sufficiently thin that the first electrode has an outermost surface area per unit area greater than a combined surface area per unit area of the sides and bottom of the opening underlying the first electrode;