Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Following a consistent programming style often helps readability. Programmable devices have existed for centuries. Use of a static code analysis tool can help detect some possible problems. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Techniques like Code refactoring can enhance readability. One approach popular for requirements analysis is Use Case analysis. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Programmable devices have existed for centuries. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them.