```
En un calorimetro cuyo equivalente en agua es 79,3 [g] se mezclan 122,5 [g] de agua a 273 [K] con 958,7 [g] de aceite a 500 [K].

Calcular la temperatura final de la mezcla.

Caceite=0,6 cal/g*C

Cague=1 cal/g*C

Importante!!

1) Expresar el resultado en Kelvin

2) Utilizar 2 decimales de precisión separados con coma.

Respuesta:
```


Pregunta 4
Correcta
Puntúa 2,50
sobre 2,50

P Marcar

DETERMINAR LA CANTIDAD DE CALOR ABSORBIDA POR UNA MASA DE 49**g** DE AIRE AL PASAR DE 82**C** A 158 **C** . DATOS CALOR ESPECÍFICO DEL AIRE **0.240 K CAL/KG C.** EXPRESAR EL RESULTADOS EN **KCAL**.

Respuesta: 0,89

PARA EL MODULO

PARA EL ANGULO

Pregunta **2**Correcta
Puntúa 2,5

sobre 2,5

Marcar pregunta

Un gas ideal (γ =1,4), se expande adiabáticamente desde un volumen inicial de 3 [m³] y una presión inicial de 588157 [pa], hasta un volumen final de 8 [m³]. Luego, desde ese punto, se comprime isotérmicamente hasta el volumen inicial 3 [m³].

¿Cuál es el trabajo en el tramo isotérmico W?.

Importante!!!

- 1) Expresar el resultado en [J]
- 2) Redondear al entero próximo.

Respuesta: -1169011 🗸

112960

Una máquina térmica ideal de gas opera en un ciclo de Carnot entre 202 [°C] y 130 [°C]. Absorbe 67540 [cal] a la temperatura superior.

Por el 100% del puntaje del ejercicio responda:

¿Qué cantidad de trabajo por ciclo ess capaz de ejecutar esta máquina?

Importante!!! 1) Expresar el resultado en [cal]; 2) Utilizar un decimal de precisión separado por coma.

O bien, por el 25% del puntaje del ejercicio responda:

¿Qué eficiencia tiene esta máquina?

Importante!!! 1) Expresar el resultado en [%]; 2) Utilizar un decimal de precisión separado por coma.

Respuesta: 10237,6

Un sistema experimenta una transformación isobárica desde un punto 1 en donde la presión es 637076 [Pa] y el volumen 2,7 [/], hasta un punto 2 de volumen 5629 [cm³]. En esta transformación el sistema absorbe 1999 [cal]. Luego experimenta una transformación isocórica hasta un punto 3.

Por el 100% del puntaje del ejercicio responda:

Si la $\Delta U_{TOTAL} = 7350$ J (desde el punto 1 al punto 3), calcule la cantidad de calor durante la segunda transformación (Q23).

O bien, por el 66.6% del puntaje del ejercicio responda esta pregunta alternativa:

¿Cuál es la variación de energía interna desde el punto 1 al punto 2 (ΔU₁₂)?

Datos que pueden servir:

1 cal = 4.186 J 1 atm = 101325 Pa 1 I = 1000 cm3 = 0.001 m3

Importante!!!

- 1) Expresar el resultado en [J]
- 2) Redondear al entero próximo.

Respuesta: 848

.

Una carga $\mathbf{q}_1 = 34$ [μ C] se coloca sobre el eje x en la posición $\mathbf{x} = -0.5$ m; otra carga $\mathbf{q}_2 = 20$ [μ C] se coloca sobre el eje y en $\mathbf{y} = 1.5$ [\mathbf{m}] y una $\mathbf{q}_3 = 29$ [μ C] se posiciona en el origen del sistema de coordenadas (ver Fig).

Calcular el modulo del campo eléctrico resultante en el punto P ubicado sobre el eje x a una distancia de 2 [m] del origen.

Importante!!!

- 1) Expresar el resultado en [N/C]
- 2) Redondear al entero próximo.

Respuesta:

2) |F| : 0,30 N $F_{y} = |K| | |q_{3}| | |q_{2}| |$ $F_{y} = |Q_{x}| | |Q_{y}| | |Q_{x}| |Q_{x}| | |Q_{x}| |Q_{x}| | |Q_{x}| |Q_{x}| |Q_{x}| | |Q_{x}| |Q_{x}| | |Q_{x}| |Q_{x}| | |Q_{x}| |Q_{x}| |$

Un recipiente de aluminio de 550 gramos de masa contiene 106 gramos de agua a una temperatura de 25 °C. Se deja caer dentro del mismo un bloque de acero de masa = 192 gramos que está a una temperatura de 88 °C.

Calcular la temperatura final del sistema considerando que no hay pérdidas de calor hacia el medio ambiente.

Datos que pueden servir:

Calor específico Aluminio: 0,217 [cal/g.ºC]; Calor específico Agua: 1,000 [cal/g.ºC]; Calor específico Acero: 0,114 [cal/g.ºC]

Importante!!!

- 1) Expresar el resultado en [°C]
- 2) Utilizar 2 decimales de precisión separados con coma.

Respuesta:

Un gas ideal (y=1,4), se expande adiabáticamente desde un volumen inicial de 4 [m³] y una presión inicial de 732886 [pa], hasta un volumen final de 9 [m³]. Luego, desde ese punto, se comprime isotérmicamente hasta el volumen inicial 4 [m³].

¿Cuál es el trabajo en el tramo isotérmico W?

Importante!!!

- 1) Expresar el resultado en [J]
- 2) Redondear al entero próximo.

Respuesta:

Un gas ideal (y=1,4), se expande adiabáticamente desde un volumen inicial de 4 [m³] y una presión inicial de 732886 [pa], hasta un volumen final de 9 [m³]. Luego, desde ese punto, se comprime isotérmicamente hasta el volumen inicial 4 [m³].

¿Cuál es el trabajo en el tramo isotérmico W?.

Importante!!!

- 1) Expresar el resultado en [J]
- 2) Redondear al entero próximo.

Respuesta:

Pregunta 3 Correcta Puntúa 2,5 sobre 2,5 Marcar pregunta

En un calorímetro cuyo equivalente en agua es despreciable, se mezclan 57,8 [g] de vapor de agua a una temperatura de 100 [°C] y 295,5 [g] de hielo a una temperatura de 0 [°C].

¿Qué temperatura final alcanza la mezcla?

Datos:

 $Ce_{agua} = 1$ [cal/g K] $L_f = 80$ [cal/g] $L_v = 540$ [cal/g]

Importante!!!

- 1) Expresar el resultado en [°C]
- 2) Utilizar 2 decimales de precisión separados por coma.

Respuesta: 37,79

Un gas ideal (y=1,4), se expande adiabáticamente desde un volumen inicial de 3 [m³] y una presión inicial de 453859 [pa], hasta un volumen final de 9 [m³]. Luego, desde ese punto, se comprime isotérmicamente hasta el volumen inicial 3 [m³]. ¿Cuál es el trabajo en el tramo isotérmico W?. Importante!!!

1) Expresar el resultado en [J]
2) Redondear al entero próximo.

