

Programming with R: datasheet 2 The basics of R programming computing

I The data.frame type

The data frame class is a class used in R to contain data that is not necessarily of the same type. A data frame type object can mix numeric, logical or character strings variables (quantitative and qualitative variables).

	UE	population	superficie (km²)
France	Oui	66259012	643427
Suisse	Non	8061516	41277
Espagne	Oui	47737941	505370
Norvège	Non	5147792	323802
Belgique	Oui	11239755	30528
Allemagne	Oui	80996685	357022

• Let construct this table under R:

tableau=data.frame(UE=c("Oui",...,"Oui"),population=c(66259012,

...,80996685),superficie=c(643427,...,357022),row.names=c("France",...,"Allemagne")); tableau

- ① We notice that the individuals are classified by rows and the variables by columns. The call of an element of the table is done as for an element of a matrix table [2,3]
- ① We can also call several elements of the table by means of a vector table [c (2,4), 1]
- ① You can also call elements with the names given to variables or individuals. tableau["France","UE"] ou tableau["France",] ou tableau[,"UE"]. Une commande équivalente à tableau[,"superficie"] consiste à écrire : tableau\$superficie.
- We can add a column (a vector x) to a df object of type data.frame with: x=seq(6)

df=data.frame(tableau, "nom_nouvelle_colonne"=x); df

- You can delete rows or columns from a df object of type data.frame with: df=df[-2,] ou df=df[-2] ou df=df[-c(2,3),]
- ① You can use the function <code>subset(df,condition,col)</code> to find part of the data.frame. The <code>df</code> argument will indicate the data.frame variable to use. The condition argument, of type Boolean, will give a restriction on the individuals to select in <code>df</code> and the col argument will be a vector indicating the variables <code>/</code> columns to select in <code>df</code>. The col argument can be the number of columns to select or their name (<code>2:3</code> ou <code>c(2,3)</code> or <code>c("population","superficie")</code>), by default all columns are kept.

subset(tableau,tableau\$UE=="Oui",1:2)

Applications:

- 1) What is the population of Spain?
- 2) What are the population and area of the first three countries?
- 3) What are all the data for France and Germany?
- 4) Show the population of countries in the EU with an area greater than 50,000km²?
- 5) Add a column named "*Num*", made up of the first six integers to array.
- 6) Select in "table" only columns 2, 3 and 4 of the countries in the EU.

II Importing a text file

Copy the data from the Excel file in a text file.

Tmp=read.table("w:/ file_path / filename ",header=T,dec=",")

The option header=T allows you to specify that the first row corresponds to the name of the variables. The option dec="," allows you to specify the separator between the integer and decimal part of a number (usually it will be "," or "."). The option sep=" the field separator character. Values on each line of the file are separated by this character. The sep=" (the default for read.table) the separator is 'white space', that is one or more spaces, tabs, newlines or carriage returns".

Errors that do not allow data to be imported into R come from the fact that database is not cleaned. To clean the base, it will be necessary to

- ① remove spaces;
- ① change commas in numbers (-> unrecognized numeric variable);
- ① deal with missing values (replace with NA);
- ① ...

Applications:

- 1) Test if the variable Taille (size) is numeric with the command *is.numeric(Tmp\$Taille)*.
- 2) Calculate the minimum given by the students for the 5th Group (Nombre5) number between 0 and 99.
- 3) Type the command min(Tmp\$Nombre5,na.rm=TRUE).
- 4) Calculate the maximum weight (poids) given by the students.
- 5) What data is transmitted by M. LEGRAND?
- 6) Give the characteristics of the teacher (*Poids* and *Taille*) transmitted by all students of the male D1 group (*Demi*). We will also indicate the name of the student.
- 7) Give the teacher weight (*poids*) estimates for all students in group D1.

III Basic functions in one-variable descriptive statistics

Functions	Descriptions		
mean(x)	Returns the mean of the elements of vector x		
var(x)	Returns the estimated variance of the population from the sample composed of the elements of the vector x		
sd(x)	Returns the estimated standard deviation of the population from the sample composed of the elements of vector x		
median(x)	Returns the median from the sample composed of the elements of vector x		
quantile(x,p)	Returns the lower-order quantiles of all the probabilities of vector p from the sample composed of the elements of vector x		
summary(x)	Return of the characteristics (minimum, first quartile, second quartile, mean, third quartile, maximum) for the series composed of the elements of the vector x (when x is a vector of numeric data)		
summary(x)	Returns the counts of all modalities of factor x (when x is a vector of non-numeric data)		
summary(df)	Return for all the variables composing the data.frame df information relating a numeric or non-numeric variable.		

cut(x,breaks=y)	Returns the membership class of the element of the series x according to the
	divisions contained in y

PS: The limits in following breaks (a_1,a_2,a_3,a_4) form closed open intervals. $a_1;a_2,a_2;a_3,a_3;a_4$ Data without a class will be counted in an NA class..

Applications:

- 1) Calculate the means of the estimates of the teacher's weight (poids) in group D1 (then D2).
- 2) Calculate the average of the first random numbers (*Nombre1*) of the students in group D2?
- 3) Estimate the variance of the size (*Taille*) of the teacher, we will take all the students.
- 4) Calculate the variance of the sample of the teacher's weight (*poids*), we will take all the students.
- 5) Calculate the median of the sample consisting of the first random number (*Nombre1*) between 0 and 99 given by the students (Men=*M*).
- 6) Calculate the deciles of the sample consisting of the first random number (*Nombre1*) between 0 and 99 given by the students (Men).
- 7) Calculate the coefficients of variation, skewness and kurtosis of the teacher's heights (taille) of all students.
- 8) Summarize the series by these main characteristics (function *summary*).
- 9) Display the division of the series made up of the second random number (*Nombre2*) between 0 and 99 given by the students (Men =M and Women=M) according to the following breakdown:
-]-1; 9],]9; 19],]19; 29],]29; 39],]39; 49],]49; 59],]59; 69],]69; 79],]79; 89],]89; 99]. We can add class names ("c0","c1",...) by adding the argument labels=c("c0","c1",...) in the function *cut*. It will be necessary to respect that the number of classes obtained with breaks corresponds to the number of class names. *table(cut(...))*

IV Basic functions in descriptive statistics with two variables

Functions	Descriptions		
table(x,y)	Returns the contingency table between the x and y factors		
cov(x,y)	Returns the covariance between x and y		
cor(x,y)	Returns the correlation coefficient between x and y		

Applications:

- 1) Give the contingency table for the factors Group (*Demi*) and Sex.
- 2) Calculate the covariance between the first random number (*Nombre1*) and the second (*Nombre2*).
- 3) Calculate the correlation coefficient between the first random number (*Nombre1*) and the second (*Nombre2*).