Annual Computer Security Applications Conference 2023

Secure Softmax/Sigmoid for Machine-learning Computotion

Yu Zheng*, Qizhi Zhang*, Sherman S. M. Chow Yuxiang Peng, Sijun Tan, Lichun Li, Shan Yin

Rundown

- Secure Machine Learning Background
 - Secret share: 2 computing parties + 1 commodity server

Against semi-honest adversary

Rundown

- Secure Machine Learning Background
 - Secret share: 2 computing parties + 1 commodity server

- Against semi-honest adversary
- Non-Linearity Challenges and Sigmoid/Softmax in Crypto
- New Protocols for Nonlinear Functions
 - Local-sigmoid via Fourier series
 - Quasi-softmax via ordinary differential equation

Rundown

- Secure Machine Learning Background
 - Secret share: 2 computing parties + 1 commodity server

- Against semi-honest adversary
- Non-Linearity Challenges and Sigmoid/Softmax in Crypto
- New Protocols for Nonlinear Functions
 - Local-sigmoid via Fourier series
 - Quasi-softmax via ordinary differential equation
- Experiments and System Performance
- Conclusion

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.
- Most SML frameworks support simpler inference tasks
- ACA LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21], CryptFlow2 [CCS'20], etc.

Secure Machine Learning

- Machine learning attains great performance
- Privacy concerns over sensitive data, e.g., health, finance.
- Most SML frameworks support simpler inference tasks
- ACA LLAMA [PoPets'22], GForce [Usenix Sec'21], SiRNN [S&P'21], CryptFlow2 [CCS'20], etc.
- Training is more complicated to do with cryptography
 - It produces fluctuating computation results.
 - It requires non-linear computation such as those in activation layers.

Crypto. Challenges in Secure Training

- Crypto. excels primarily with finite fields and linear functions.
 - Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.
 - Secure protocols for exact computation of non-linearity are known to be heavyweight.

Crypto. Challenges in Secure Training

- Crypto. excels primarily with finite fields and linear functions.
 - Accuracy: expand finite field to cater to fluctuating ranges.
- But, increase computational & communication overheads.
 - Secure protocols for exact computation of non-linearity are known to be heavyweight.
- Not until recently, start to have secure training frameworks.
- CrypTen [NeurlPS'21], CryptGPU [S&P'21], Piranha [Usenix Sec'22], etc.
 - Support more complex activation, including softmax and sigmoid.
 - Achieve high computational performance over AlexNet (60M param) and VGG-16 (138M param).

Communication Bottleneck

- However, large communication overhead persists as a major concern.
 - Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.

Communication Bottleneck

- However, large communication overhead persists as a major concern.
 - Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.
- Informally, sigmoid/softmax combine e^{x} , 1/x, or Σe^{x} .
 - e^x and 1/x are unbounded and continuous.

Communication Bottleneck

- However, large communication overhead persists as a major concern.
 - Prominently, Piranha, a GPU platform for secure computation, reports 94%+ of the training time consumed by communication in a wide-area network (WAN) setting.
- Informally, sigmoid/softmax combine e^{x} , 1/x, or Σe^{x} .
 - e^x and 1/x are unbounded and continuous.
- Securely computing them with efficiency is challenging.
 - Existing works either separately approximate or replace them.
 - Below, we detail secure sigmoid and softmax one by one.

• Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) $\mapsto \overline{[0, 1]}$.

Binary classification.

It squashes any input to a value in (0,1).

Diminishing Gradient Zone

^{*}Figure is from Google image.

• Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) $\mapsto \overline{[0, 1]}$.

 \rightarrow [0, 1]. Diminishing Gradient Zone

Binary classification.

It squashes any input to a value in (0,1).

ABY-series protocols [CCS'18, Usenix Sec'21].

- x + 0.5 for |x| < 0.5; x = 0 or x = 1.
- Requires comparison to identify pieces.

Relatively inaccurate approx. near to 0. -6

- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).

- ABY-series protocols [CCS'18, Usenix Sec'211

- Piecewise linear approx.
- Chebyshev polynomial
 - [CCS'21 Workshop]
 - Linear to #terms
 - Possibly result in gradient exp

- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).
- ABY-series protocols [CCS'18, Usenix Sec'21].
 - Piecewise linear approx.
- Chebyshev polynomial [CCS'21 workshop]
- How about their communication costs?

Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	-	~800	-	5
Polyn. (5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1

- Sigmoid(x) = $e^x/(e^x + 1)$: (-inf, +inf) \mapsto [0, 1].
 - It squashes any input to a value in (0,1).
- ABY-series protocols [CCS'18, Usenix Sec'21].
 - Piec
- -Cheby Can we expect <40 bits online in 1 round?</p>
- · How about their continuous canon co

Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	_	~800	-	5
Polyn. (5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1

- Local-Sigmoid definition.
 - Sigmoid in [-a, a].
 - High accuracy in range.
 - Bounded error out of range

Sigmoid Function and Its Derivative

^{*}Figure is from Google image.

- Local-Sigmoid definition.
 - Sigmoid in [-a, a].
 - High accuracy in range.
 - Bounded error out of range
- Fourier approximation.
 - LSig(x) = $a + b\sin(xk)$.
 - Mask t, shared value $\Delta = x-t$.
 - No secure comparison is required.
 - $-\sin(\Delta + t) = \sin(\Delta)\cos(t) + \cos(\Delta)\sin(t)$

Sigmoid Function and Its Derivative

Jointly compute LSig(x) = $a + b \sin((\Delta + t)k)$ online.

[x]₀[Δ]₀[t]₀

• Public parameters a, b, k.

- P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1$.
- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]

- Jointly compute LSig(x) = $a + b \sin((\Delta + t)k)$ online. Public parameters a, b, k.
 - Public parameters a, b, k.
 - P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1$.
 - P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
 - P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.

• Jointly compute $LSig(x) = a + bsin((\Delta + t)k)$ online.

• Public parameters a, b, k.

•
$$P_0$$
 holds $[\Delta]_0 = [x]_0 - [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 - [t]_1$

- P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
- P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
- P_0 and P_1 locally compute $\sin(\Delta \mathbf{k})$, $\cos(\Delta \mathbf{k})$

 $\sin(\Delta \mathbf{k}),\cos(\Delta \mathbf{k})$

$$\sin(\Delta \mathbf{k}),\cos(\Delta \mathbf{k})$$

$$[x]_1 \Delta [t]$$

- Jointly compute $LSig(x) = a + bsin((\Delta + t)k)$ online.
 - Public parameters a, b, k.
 - P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1 \sin(\Delta k), \cos(\Delta k), [U]_0, [V]_0$
 - P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
 - P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
 - P_0 and P_1 locally compute $\sin(\Delta k)$, $\cos(\Delta k)$.
- Secret-shared outputs
 - P₀ gets $a + b(\sin(\Delta k)[v]_0 + \cos(\Delta k)[v]_0)$.
 - P₁ gets $a + b(\sin(\Delta k)[v]_1 + \cos(\Delta k)[U]_1)$.

 $\sin(\Delta \mathbf{k}),\cos(\Delta \mathbf{k}),[U]_1,[V]_1$

$$[x]_1 \triangle [t]$$

- Jointly compute LSig(x) = $a + b \sin((\Delta + t)k)$ online.
 - Public parameters a, b, k.
 - P_0 holds $[\Delta]_0 = [x]_0 [t]_0$; P_1 holds $[\Delta]_1 = [x]_1 [t]_1 \sin(\Delta k), \cos(\Delta k), [U]_0, [V]_0$
 - P_0 sends $[\Delta]_0$; P_1 sends $[\Delta]_1$. [1 round]
 - P_0 and P_1 compute $\Delta = [\Delta]_0 + [\Delta]_1$.
 - P_0 and P_1 locally compute $\sin(\Delta k)$, $\cos(\Delta k)$.
- Secret-shared outputs
 - P₀ gets $a + b(\sin(\Delta k)[v]_0 + \cos(\Delta k)[v]_0)$.
- P_1 gets $a + b(\sin(\Delta k)[v]_1 + \cos(\Delta k)[v]_1)$. What are $[v]_0, [v]_0, [t]_0$ and $[v]_1, [v]_1, [t]_1$?

 $\sin(\Delta \mathbf{k}),\cos(\Delta \mathbf{k}),[\cup]_1,[\vee]_1$

$$[x]_1 \Delta [t]$$

- •What are $[U]_{0'}[V]_{0'}[t]_{0}$ and $[U]_{1'}[V]_{1'}[t]_{1}$?
 - $\sin(t\mathbf{k}) = [U]_0 + [U]_1$; $\cos(t\mathbf{k}) = [V]_0 + [V]_1$; $t = [t]_0 + [t]_1$
 - Randomness independent to private x.
 - Generated by a crypto commodity server.
 - In a pre-computation phase offline.

- •What are $[U]_{0}, [V]_{0}, [t]_{0}$ and $[U]_{1}, [V]_{1}, [t]_{1}$?
 - $\sin(t\mathbf{k}) = [U]_0 + [U]_1$; $\cos(t\mathbf{k}) = [V]_0 + [V]_1$; $t = [t]_0 + [t]_1$
 - Randomness independent to private x.
 - Generated by a crypto commodity server.
 - In a pre-computation phase offline.
- Optimize offline communication?
 - Use PRF with a synchronized counter.
 - P_0 generate $[U]_{0'}[V]_{0'}[t]_0$ using the same $ext{key}_0$.
 - &P₁ generate [t]₁ using the same key₁.
 - © computes and sends $[U]_1, [V]_1$ to P_1 .

Communication Costs

Achieved < 40bits online in 1 round!</p>

Protocol	Offline (bits)	Online (bits)	Overall (bits)	Round
ABY-series	-	~800	_	5
Polyn. (K=5,8)	320 ~ 512	1280 ~ 2048	1600 ~ 2560	1
Ours (m=4, K=5)	640	36	676	1
Ours (m=4, K=8)	1024	36	1060	1
Ours (m=5, K=5)	640	38	678	1
Ours (m=5, K=8)	1024	38	1062	1

- Softmax(x) = $e^{z_{-}i}/(\Sigma e^{z_{-}i})$: $R^m \mapsto [0, 1]^m$.
 - It squashes any input vector to a probability vector.
 - Multi-classification.

- Softmax(x) = $e^{z_{-}i}/(\Sigma e^{z_{-}i})$: $R^m \mapsto [0, 1]^m$.
 - It squashes any input vector to a probability vector.
- Crypten [NeurlPS'22] follows exact computation.
 - It requires secure maximum, exponentiation, and division.
 - Secure maximum takes O(log m) rounds for removing the largest input and mitigating overflow of $e^{z_{-j}}$ and $\Sigma e^{z_{-j}}$.

- Softmax(x) = $e^{z_{-}i}/(\Sigma e^{z_{-}i})$: $R^m \mapsto [0, 1]^m$.
 - It squashes any input vector to a probability vector.
- Crypten [NeurlPS'22] follows exact computation.
 - It requires secure maximum, exponentiation, and division.
 - Secure maximum takes O(log m) rounds for removing the largest input and mitigating overflow of $e^{z_{-j}}$ and $\Sigma e^{z_{-j}}$.
- •ASM protocol replaces exponential function with ReLU.
 - It is adopted in SecureNN [PoPETS'19], Falcon [PoPETS'21].
 - It relies on manual efforts in tuning the model [Keller and Sun, ICML'22].

•How about their communication costs?

Protocol	#Class	Online (bits)	Overall (bits)	Round
ASM protocol	10	_	3M	704
ASM protocol	100	-	30M	704
ASM protocol	1000	-	302M	704
Crypten	10	783250	982K	171
Crypten	100	8536390	11M	300
Crypten	1000	86067790	108M	430

-How a Can we expect <10% communication costs in <35 rounds?

Protoco	, , , , , , , , , , , , , , , , , , , ,			nd
ASM protocol	10	-	<u>, </u>	/04
ASM protocol	100	-	30M	704
ASM protocol	1000	-	302M	704
Crypten	10	783250	982K	171
Crypten	100	8536390	11M	300
Crypten	1000	86067790	108M	430

 Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- •For an input vector **x** and iteration step *r*, we instantiate a <u>vector</u> function QSMax **g**(), which is an ordinary differential equation solved by Euler formula.

```
    g(0) = [1/m, ..., 1/m]
    for i = 1, ..., r do
    g(i/r) = g((i-1)/r) + (x - <x,g((i-1)/r)>1)*g((i-1)/r)/r
    g(r/r) = g(1), iteratively limits to real softmax.
```

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- •For an input vector **x** and iteration step *r*, we instantiate a <u>vector</u> function QSMax **g**(), which is an ordinary differential equation solved by Euler formula.

```
• g(0) = [1/m, ..., 1/m]

for i = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r
```

- • $\mathbf{g}(r/r) = \mathbf{g}(1)$, iteratively limits to real softmax.
- Notably, loop function contains only two multiplications and additions.

- Formulate Quasi-Softmax (QSMax) capturing probability distribution of softmax's outputs.
- •For an input vector **x** and iteration step *r*, we instantiate a <u>vector</u> function QSMax **g**(), which is an ordinary differential equation solved by Euler formula.

```
• g(0) = [1/m, ..., 1/m]

for i = 1, ..., r do

g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r
```

- • $\mathbf{g}(r/r) = \mathbf{g}(1)$, iteratively limits to real softmax.
- Notably, loop function contains only two multiplications and additions.

Jointly compute QSMax(x) online.

•
$$g(0) = [1/m, ..., 1/m]$$
 for $i = 1, ..., r$ do $g(i/r) = g((i-1)/r) + (x - < x, g((i-1)/r) > 1)*g((i-1)/r)/r$

Jointly compute QSMax(x) online.

•
$$g(0) = [1/m, ..., 1/m]$$

for $i = 1, ..., r$ do

$$i = 1, ..., r do$$

$$g(i/r) = g((i-1)/r) + (x - < x, g((i-1)/r) > 1)*g((i-1)/r)/r$$

$$[1/m, ..., 1/m]$$
 $[\mathbf{x}]_0 = [\mathbf{x}]_0/r$
 P_0
 $-1)/r)/r$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{1} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{1} / r$$

$$\begin{bmatrix} 0, \dots, 0 \end{bmatrix}$$

$$P_{1}$$

- Jointly compute QSMax(x) online.
 - g(0) = [1/m, ..., 1/m] for i = 1, ..., r do

$$g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r$$

- Jointly invoke secure multiplication π .
 - Inner product with m dimensions parallelly.

Jointly compute QSMax(x) online.

•
$$g(0) = [1/m, ..., 1/m]$$
 [x
for $i = 1, ..., r$ do [q]₀=
 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r$

$$[1/m, ..., 1/m]$$
 $[\mathbf{x}]_0 = [\mathbf{x}]_0/r$
 $[\mathbf{q}]_0 = (\Sigma[\mathbf{p}_i]_0)$

- Jointly invoke secure multiplication π .
 - Inner product with m dimensions parallelly.

$$[\mathbf{q}]_{1} = (\Sigma[\mathbf{p}_{i}]_{1})_{1}$$
$$[\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r$$
$$[0, \dots, 0]$$
$$P_{1}$$

Jointly compute QSMax(x) online

•
$$g(0) = [1/m, ..., 1/m]$$
 [x
for $i = 1, ..., r$ do [w]₀=
 $g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r$

$$[1/m, ..., 1/m]$$
 $[\mathbf{x}]_0 = [\mathbf{x}]_0/r$
 $[\mathbf{w}]_0 = [\mathbf{x}]_0 - [\mathbf{q}]_0$

- Jointly invoke secure multiplication π .
 - Inner product with m dimensions parallelly.

$$[\mathbf{w}]_1 = [\mathbf{x}]_1 - [\mathbf{q}]_1$$

 $[\mathbf{x}]_1 = [\mathbf{x}]_1/r$
 $[0, \dots, 0]$

- Jointly compute QSMax(x) online
 - g(0) = [1/m, ..., 1/m]for i = 1, ..., r do

$$g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r$$

- Jointly invoke secure multiplication π .
 - Inner product with *m* dimensions parallelly.
 - Element-wise product with m dimensions.

```
[1/m, ..., 1/m]

[\mathbf{x}]_0 = [\mathbf{x}]_0/r

[\mathbf{w}]_0 = [\mathbf{x}]_0 - [\mathbf{q}]_0
                                     \Pi \mapsto [t]_{\cap}, [t]
      [w]_1 = [x]_1 - [q]
             [\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r
```

Jointly compute QSMax(x) online

```
• g(0) = [1/m, ..., 1/m]

for i = 1, ..., r do
g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r
```

• Jointly invoke secure multiplication
$$\pi$$
.

- Inner product with m dimensions parallelly.
- Element-wise product with m dimensions.

```
[1/m, ..., 1/m]
[\mathbf{x}]_0 = [\mathbf{x}]_0/r
[\mathbf{p}]_0 = [\mathbf{x}]_0 - [\mathbf{q}]_0
[\mathbf{g}((i-1)/r)]_0 + [\mathbf{f}]_0
```

$$[\mathbf{g}((i-1)/r)]_{1} + [\mathbf{f}]_{1}$$

$$[\mathbf{p}]_{1} = [\mathbf{x}]_{1} - [\mathbf{q}]_{1}$$

$$[\mathbf{x}]_{1} = [\mathbf{x}]_{1}/r$$

$$[0, ..., 0]$$

$$P_{1}$$

- Jointly compute QSMax(x) online
 - g(0) = [1/m, ..., 1/m]for i = 1, ..., r do

$$g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1) * g((i-1)/r)/r$$

- Jointly invoke secure multiplication π .
 - Inner product with *m* dimensions parallelly.
 - Element-wise product with m dimensions.

- Jointly compute QSMax(x) online
 - **g**(0) = [1/m, ..., 1/m] **for** i = 1, ..., r **do**

$$g(i/r) = g((i-1)/r) + (x - \langle x, g((i-1)/r) \rangle 1)*g((i-1)/r)/r$$
• Jointly invoke secure multiplication π .

- Inner product with m dimensions parallelly.
 - Element-wise product with *m* dimensions.
- Secret-shared outputs.
 - P₀ gets [g(1)]₀.
 - P₁ gets [g(1)]₀.

Communication Costs

-Achieved < 10% communication costs in 32 rounds!</p>

Protocol	#Class	Online (bits)	Overall (bits)	Round
ASM protocol	10	-	3M	704
Crypten		783K	982K	171
Ours		63K	84K	32
ASM protocol	100	-	30M	704
Crypten		8.5M	11M	300
Ours		616K	821K	32
ASM protocol	1000	-	302M	704
Crypten		86M	108M	430
Ours		6M	8M	32

Experiments & System Performance

- Datasets: MNIST, CIFAR-10
- Models: AlexNet, LeNet, VGG-16, ResNet, Networks A-B-C-D.
- Communication reduces by 57%-77%.
- Accuracy
 - reaches a higher accuracy for AlexNet, VGG-16 compared with Piranha [Usenix Sec'22].
 - reaches a similar accuracy for Networks A-B-C-D compared with SPDZ-QT [Keller and Sun, ICML'22].
- Training time
 - 10%-60% speed-up in LAN & 56%-78% speed-up in WAN.

Conclusion

- Propose two cryptography-friendly approximations for secure computation of softmax and sigmoid, leading to expedited private training with much lower communication.
- Provide both C++ & Python implementation for different programming preference.
- Shed light on protocol design for bounded nonlinear functions, avoiding unbounded intermediate functions (e^x , 1/x).
- Extend the realm of secure computation to encompass solutions for differential equations with rational polynomial or trigonometric functions coefficients.