

InvenSense Inc.

1745 Technology Dr., San Jose, CA 95110 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 website: www.invensense.com

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

MotionApps v5.2.0-K APIs Specification

A printed copy of this document is **NOT UNDER REVISION CONTROL** unless it is dated and stamped in red ink as, "REVISION CONTROLLED COPY."

This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements or patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by Implication or otherwise under any patent or patent rights of InvenSense. This is an unpublished work protected under the United States copyright laws. This work contains proprietary and confidential information of InvenSense Inc. Use, disclosure or reproduction without the express written authorization of InvenSense Inc. is prohibited. Trademarks that are registered trademarks are the property of their respective companies.

This publication supersedes and replaces all information previously supplied. InvenSense sensors should not be used or sold for the development, storing, production and utilization of any conventional or mass-destructive weapons or any other weapons or life threatening applications, as well as to be used in any other life critical applications such as medical, transportation, aerospace, nuclear, undersea, power, disaster and crime prevention equipment.

Copyright ©2010 InvenSense Corporation.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Chapter 1

Purpose and Scope

This document is a guide to all of the functions available in the InvenSense MotionApps Platform Library (MPL), and corresponds with MotionApps Release v5.2.0-K.

The MPL contains the code for controlling the InvenSense devices, including activating and managing built in motion processing features. All of the source code is in ANSI C and can be compiled in C or C++ environments.

All functions available in the MPL are described in this document, including all parameters involved in the function calls. The functions are divided into modules as follows:

Module	Name	Description
Data Builder	Builds Sensor Data Structures	Builds the sensor structures and calls functions that need to use them.
HAL Outputs	HAL Outputs	Creates and holds information that a Android HAL layer might want.
Message Layer	Message Layer	Holds Messages
ML Math Func	Math Functions	Support Math Functions.
MPL	MPU Start	Handles init, start, and version properties.
Result_Holder	Result Holder	Holds various output results.
Start_Manager Start Manager		Sends start events.
Storage_Manager	Store Variables	Stores Internal States.

For more information on how to use these functions in a specific application, refer to InvenSense Application Notes.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Chapter 2

About this document

This document is automatically generated from the source files using Doxygen's output format in the LATEX. Heading, footer, and general document format are customized from the standard header template provided by Doxygen. The document is subdivided in the various sections, each describing the main source Modules composing the MPL and implementing specific features.

Every section starts with a brief description and an overview of the functions composing the module. Each of those functions is also fully documented in the analogous "Function Documentation" section. Clicking on the function prototype will lead to the portion of text full documentating it.

This **MotionApps Functional Specification** is best viewed in a PDF viewer, as it provides text hyperlinks and bookmarks on the left-hand side for ease of browsing. There is an Alphabatical Index of the modules and their functions available at the bottom of this document.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Index

3.1 Modules

Here is a list of all modules:

data_builder	
hal_outputs	
ml_math_func	
message_layer	
mpl	
results_holder	
start_manager	
storage_manager	
accel_calibration	
small_motion_compass_cal	
compass_fit	
compass_vector_cal	
fast_no_mot	
nine_axis_fusion	
gyro_tc	
heading_from_gyro	
mag_disturb	
motion_no_motion	
no_gyro_fusion	

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

2 Module Index

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Chapter 4

Module Documentation

4.1 data_builder

Motion Library - Data Builder Constructs and Creates the data for MPL.

Files

• file data_builder.c

Data Builder.

Functions

- void inv_accel_was_turned_off()
 - This should be called when the accel has been turned off.
- void inv_apply_calibration (struct inv_single_sensor_t *sensor, const long *bias)

Takes raw data stored in the sensor, removes bias, and converts it to calibrated data in the body frame.

• inv_error_t inv_build_accel (const long *accel, int status, inv_time_t timestamp)

Record new accel data for use when inv_execute_on_data() is called.

inv_error_t inv_build_compass (const long *compass, int status, inv_time_t times-tamp)

Record new compass data for use when inv_execute_on_data() is called.

• inv_error_t inv_build_gyro (const short *gyro, inv_time_t timestamp)

Record new gyro data and calls inv_execute_on_data() if previous sample has not been processed.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

• inv_error_t inv_build_quat (const long *quat, int status, inv_time_t timestamp)

quaternion data

• inv_error_t inv_build_temp (const long temp, inv_time_t timestamp)

Record new temperature data for use when inv_execute_on_data() is called.

• void inv_compass_was_turned_off ()

This should be called when the compass has been turned off.

void inv_disable_compass_soft_iron_matrix (void)

This subroutine disables the the soft iron transformation process.

void inv_enable_compass_soft_iron_matrix (void)

This subroutine enables the the soft iron transformation process.

• inv_error_t inv_execute_on_data (void)

After at least one of inv_build_gyro(), inv_build_accel(), or inv_build_compass() has been called, this function should be called.

• int inv_get_6_axis_compass_accel_timestamp (long sample_rate_us, inv_time_t *ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination.

• int inv_get_6_axis_gyro_accel_timestamp (long sample_rate_us, inv_time_t *ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination.

• int inv_get_9_axis_timestamp (long sample_rate_us, inv_time_t *ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination

• int inv_get_accel_accuracy (void)

Returns accuracy of accel.

• void inv_get_accel_bias (long *bias)

Get accel bias from MPL.

• void inv_get_accel_bias_dmp_units (long *bias)

Accel Bias in the form used by the DMP.

• int inv_get_accel_on ()

Helper function stating whether the acceleromter is on or off.

• long inv_get_accel_sensitivity (void)

Accel sensitivity.

• void inv_get_accel_set (long *data, int8_t *accuracy, inv_time_t *timestamp)

Gets a whole set of accel data including data, accuracy and timestamp.

void inv_get_compass_bias (long *bias)

Returns the current bias for the compass.

• int inv_get_compass_on ()

Helper function stating whether the compass is on or off.

• long inv_get_compass_sensitivity (void)

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 5

Compass sensitivity.

• void inv_get_compass_set (long *data, int8_t *accuracy, inv_time_t *timestamp)

Gets a whole set of compass data including data, accuracy and timestamp.

• void inv_get_compass_set_raw (long *data, int8_t *accuracy, inv_time_t *timestamp)

Gets a whole set of compass raw data including data, accuracy and timestamp.

void inv_get_compass_soft_iron_input_data (long *data)

This subroutine gets the fixed point Q30 compass data before the soft iron transformation.

void inv_get_compass_soft_iron_matrix_d (long *matrix)

Gets the 3x3 compass transform matrix in 32 bit Q30 fixed point format.

void inv_get_compass_soft_iron_matrix_f (float *matrix)

Gets the 3x3 compass transform matrix in 32 bit floating point format.

void inv_get_compass_soft_iron_output_data (long *data)

This subroutine gets the fixed point Q30 compass data after the soft iron transformation.

• int inv get factory accel bias mask ()

Get factory accel bias mask.

void inv_get_gyro (long *gyro)

Get's latest gyro data.

• int inv_get_gyro_accuracy (void)

Returns accuracy of gyro.

• void inv_get_gyro_bias (long *bias)

Get the gyro biases and temperature record from MPL.

void inv_get_gyro_bias_dmp_units (long *bias)

Gyro Bias in the form used by the DMP.

• int inv_get_gyro_on ()

Helper function stating whether the gyro is on or off.

• long inv_get_gyro_sensitivity (void)

Gyro sensitivity.

• void inv_get_gyro_set (long *data, int8_t *accuracy, inv_time_t *timestamp)

Gets a whole set of gyro data including data, accuracy and timestamp.

• void inv_get_gyro_set_raw (long *data, int8_t *accuracy, inv_time_t *timestamp)

Gets a whole set of gyro raw data including data, accuracy and timestamp.

• inv_time_t inv_get_last_timestamp ()

Get last timestamp across all 3 sensors that are on.

• int inv_get_mag_accuracy (void)

Returns accuracy of compass.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

• void inv_get_mpl_accel_bias (long *bias, long *temp)

Get Accel Bias.

6

• void inv_get_mpl_gyro_bias (long *bias, long *temp)

Get the mpl gyro biases.

• void inv_get_raw_compass (short *raw)

Gets last value of raw compass data.

• void inv_get_temp_set (long *data, int *accuracy, inv_time_t *timestamp)

Gets a whole set of temperature data including data, accuracy and timestamp.

• void inv_gyro_was_turned_off ()

This should be called when the gyro has been turned off.

• inv error tinv init data builder (void)

Initialize the data builder.

• void inv_quaternion_sensor_was_turned_off (void)

This should be called when the quaternion data from the DMP has been turned off.

• inv_error_t inv_register_data_cb (inv_error_t(*func)(struct inv_sensor_cal_t *data), int priority, int sensor_type)

Registers to receive a callback when there is new sensor data.

• void inv_reset_compass_soft_iron_matrix (void)

This subroutine resets the the soft iron transformation to unity matrix and disable the soft iron transformation process by default.

• void inv_set_accel_accuracy (int accuracy)

Sets the accel accuracy.

• void inv_set_accel_bandwidth (int bandwidth_hz)

Set Accel Bandwidth in Hz.

• void inv_set_accel_bias (const long *bias)

Sets the factory accel bias.

void inv_set_accel_bias_mask (const long *bias, int accuracy, int mask)

Sets the accel bias with control over which axis.

void inv_set_accel_orientation_and_scale (int orientation, long sensitivity)

Sets the orientation and sensitivity of the gyro data.

void inv_set_accel_sample_rate (long sample_rate_us)

Set Accel Sample rate in micro seconds.

• void inv_set_compass_bandwidth (int bandwidth_hz)

Set Compass Bandwidth in Hz.

• void inv_set_compass_bias (const long *bias, int accuracy)

Sets the compass bias.

• void inv_set_compass_disturbance (int dist)

Set the state of a compass disturbance.

• void inv_set_compass_orientation_and_scale (int orientation, long sensitivity)

Sets the Orientation and Sensitivity of the gyro data.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

7

4.1 data_builder

• void inv_set_compass_sample_rate (long sample_rate_us)

Set Compass Sample rate in micro seconds.

void inv_set_compass_soft_iron_input_data (const long *data)

This subroutine sets the compass raw data for the soft iron transformation.

• void inv set compass soft iron matrix d (long *matrix)

Sets the 3x3 compass transform matrix in 32 bit Q30 fixed point format.

• void inv_set_compass_soft_iron_matrix_f (float *matrix)

Sets the 3x3 compass transform matrix in 32 bit floating point format.

• void inv_set_gyro_bandwidth (int bandwidth_hz)

Set Gyro Bandwidth in Hz.

• void inv_set_gyro_bias (const long *bias)

Sets the factory gyro bias.

• void inv_set_gyro_orientation_and_scale (int orientation, long sensitivity)

Sets the Orientation and Sensitivity of the gyro data.

void inv_set_gyro_sample_rate (long sample_rate_us)

Set Gyro Sample rate in micro seconds.

• void inv_set_mpl_gyro_bias (const long *bias, int accuracy)

Sets the mpl gyro bias.

• void inv_set_quat_sample_rate (long sample_rate_us)

Set Quat Sample rate in micro seconds.

• void inv_temperature_was_turned_off ()

This should be called when the temperature sensor has been turned off.

inv_error_t inv_unregister_data_cb (inv_error_t(*func)(struct inv_sensor_cal_t *data))

Unregisters the callback that happens when new sensor data is received.

• void set_sensor_orientation_and_scale (struct inv_single_sensor_t *sensor, int orientation, long sensitivity)

Sets orientation and sensitivity field for a sensor.

4.1.1 Detailed Description

Motion Library - Data Builder Constructs and Creates the data for MPL.

4.1.2 Function Documentation

4.1.2.1 void inv_accel_was_turned_off()

This should be called when the accel has been turned off.

This is so that we will know if the data is contiguous.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev : 1.0 Date : 11/27/2013

Module Documentation

4.1.2.2 void inv_apply_calibration (struct inv_single_sensor_t * sensor, const long * bias)

Takes raw data stored in the sensor, removes bias, and converts it to calibrated data in the body frame.

Also store raw data for body frame.

Parameters

8

in,out	sensor	structure to modify
in		bias in the mounting frame, in hardware units scaled by
		2 ¹ 6. Length 3.

4.1.2.3 inv_error_t inv_build_accel (const long * accel, int status, inv_time_t timestamp)

Record new accel data for use when inv_execute_on_data() is called.

Parameters

in	accel	accel data, length 3. Calibrated data is in m/s ² scaled by
		2 ¹⁶ in body frame. Raw data is in device units in chip
		mounting frame.
in	status	Lower 2 bits are the accuracy, with 0 being inaccurate, and
		3 being most accurate. The upper bit INV_CALIBRATED,
		is set if the data was calibrated outside MPL and it is not
		set if the data being passed is raw. Raw data should be in
		device units, typically in a 16-bit range.
in	timestamp	Monotonic time stamp, for Android it's in nanoseconds.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.4 inv_error_t inv_build_compass (const long * compass, int status, inv_time_t timestamp)

Record new compass data for use when inv_execute_on_data() is called.

Parameters

in	compass	Compass data, if it was calibrated outside MPL, the units
		are uT scaled by 2^{16} . Length 3.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 9

in	status	Lower 2 bits are the accuracy, with 0 being inaccurate, and
		3 being most accurate. The upper bit INV_CALIBRATED,
		is set if the data was calibrated outside MPL and it is not
		set if the data being passed is raw. Raw data should be in
		device units, typically in a 16-bit range.
in	timestamp	Monotonic time stamp, for Android it's in nanoseconds.
out	executed	Set to 1 if data processing was done.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.5 inv_error_t inv_build_gyro (const short * gyro, inv_time_t timestamp)

Record new gyro data and calls inv_execute_on_data() if previous sample has not been processed.

Parameters

in	gyro	Data is in device units. Length 3.
in	timestamp	Monotonic time stamp, for Android it's in nanoseconds.
out	executed	Set to 1 if data processing was done.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.6 inv_error_t inv_build_quat (const long * quat, int status, inv_time_t timestamp)

quaternion data

Parameters

in	quat	Quaternion data. $2^30 = 1.0$ or $2^14=1$ for 16-bit data.
		Real part first. Length 4.
in	status	number of axis, 16-bit or 32-bit set INV_QUAT_3ELEME-
		NT if input quaternion has only 3 elements (no scalar). inv-
		_compute_scalar_part() assumes 32-bit data. If using 16-bit
		quaternion, shift 16 bits first before calling this function.
in	timestamp	
in	timestamp	Monotonic time stamp; for Android it's in nanoseconds.
out	executed	Set to 1 if data processing was done.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

10 Module Documentation

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.7 inv_error_t inv_build_temp (const long temp, inv_time_t timestamp)

Record new temperature data for use when inv_execute_on_data() is called.

Parameters

in	temp	Temperature data in q16 format.
in	timestamp	Monotonic time stamp; for Android it's in nanoseconds.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.8 void inv_compass_was_turned_off (

This should be called when the compass has been turned off.

This is so that we will know if the data is contiguous.

4.1.2.9 inv_error_t inv_execute_on_data (void)

After at least one of inv_build_gyro(), inv_build_accel(), or inv_build_compass() has been called, this function should be called.

It will process the data it has received and update all the internal states and features that have been turned on.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.10 int inv_get_6_axis_compass_accel_timestamp (long $sample_rate_us$, inv_time_t * ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination.

It does this by finding a raw sensor that has the closest sample rate that is at least as often desired. It also returns if that raw sensor has a new piece of data. Priority compass, accel on a tie

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 11

Returns

Returns 1, if the raw sensor being attached has new data, 0 otherwise.

4.1.2.11 int inv_get_6_axis_gyro_accel_timestamp (long sample_rate_us, inv_time_t * ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination.

It does this by finding a raw sensor that has the closest sample rate that is at least as often desired. It also returns if that raw sensor has a new piece of data. Priority is Quaternion-6axis, Quaternion 3-axis, Gyro, Accel

Returns

Returns 1, if the raw sensor being attached has new data, 0 otherwise.

4.1.2.12 int inv_get_9_axis_timestamp (long sample_rate_us, inv_time_t * ts)

Gets best timestamp and if there is a new piece of data for a 9-axis sensor combination.

It does this by finding a raw sensor that has the closest sample rate that is at least as often desired. It also returns if that raw sensor has a new piece of data. Priority is 9-axis quat, 6-axis quat, 3-axis quat, gyro, compass, accel on ties.

Returns

Returns 1, if the raw sensor being attached has new data, 0 otherwise.

4.1.2.13 int inv_get_accel_accuracy (void)

Returns accuracy of accel.

Returns

Accuracy of accel with 0 being not accurate, and 3 being most accurate.

4.1.2.14 void inv_get_accel_bias (long * bias)

Get accel bias from MPL.

Parameters

in	bias	Accel bias in hardware units scaled by 2^{16} . In chp mount-
Generated or	Wed Nov 27 2013 10	ing frame. Length 3. 5:25:55 for MLSDK by Doxygen

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.1.2.15 void inv_get_accel_bias_dmp_units (long * bias)

Accel Bias in the form used by the DMP.

Parameters

12

out	bias	Accel Bias in the form used by the DMP. It is scaled appro-
		priately and is in the body frame as needed.

4.1.2.16 int inv_get_accel_on ()

Helper function stating whether the acceleromter is on or off.

Returns

TRUE if accel if on, 0 if accel if off

4.1.2.17 long inv_get_accel_sensitivity (void

Accel sensitivity.

Returns

A scale factor to convert device units to g's scaled by 2^{16} such that $g_s = device_units * sensitivity / <math>2^{30}$. Typically it works out to be the maximum accel value in g's * 2^{15} .

4.1.2.18 void inv_get_accel_set (long * data, int8_t * accuracy, inv_time_t * timestamp)

Gets a whole set of accel data including data, accuracy and timestamp.

Parameters

out	data	Accel Data where $1g = 2^{16}$
out	accuracy	Accuracy 0 being not accurate, and 3 being most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.19 void inv_get_compass_bias (long * bias)

Returns the current bias for the compass.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 13

Parameters

out	bias	Compass bias in hardware units scaled by 2 ¹ 6. In mount-
		ing frame. Length 3.

4.1.2.20 int inv_get_compass_on ()

Helper function stating whether the compass is on or off.

Returns

TRUE if compass if on, 0 if compass if off

4.1.2.21 long inv_get_compass_sensitivity (void)

Compass sensitivity.

Returns

A scale factor to convert device units to micro Tesla scaled by 2^{16} such that uT = device_units * sensitivity / 2^{30} . Typically it works out to be the maximum uT * 2^{15} .

4.1.2.22 void inv_get_compass_set (long * data, int8_t * accuracy, inv_time_t * timestamp)

Gets a whole set of compass data including data, accuracy and timestamp.

Parameters

out	data	Compass Data where $1 \text{ uT} = 2^{16}$
out	accuracy	Accuracy 0 being not accurate, and 3 being most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.23 void inv_get_compass_set_raw (long * data, int8_t * accuracy, inv_time_t * timestamp)

Gets a whole set of compass raw data including data, accuracy and timestamp.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

Parameters

14

out	data	Compass Data where 1 uT = 2^{16}
out	accuracy	Accuracy 0 being not accurate, and 3 being most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.24 void inv_get_compass_soft_iron_input_data (long * data)

This subroutine gets the fixed point Q30 compass data before the soft iron transformation.

Parameters

out	the	pointer of the 3x1 vector compass data in MPL format
-----	-----	--

4.1.2.25 void inv_get_compass_soft_iron_matrix_d (long * matrix)

Gets the 3x3 compass transform matrix in 32 bit Q30 fixed point format.

Parameters

out	the	pointer of the 3x3 matrix in Q30 format

4.1.2.26 void inv_get_compass_soft_iron_matrix_f (float * matrix)

Gets the 3x3 compass transform matrix in 32 bit floating point format.

Parameters

out	the	pointer of the 3x3 matrix in floating point format	

4.1.2.27 void inv_get_compass_soft_iron_output_data (long * data)

This subroutine gets the fixed point Q30 compass data after the soft iron transformation.

Parameters

out the pointer of the 3x1 vector compass data in MPL format
--

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 15

4.1.2.28 int inv_get_factory_accel_bias_mask ()

Get factory accel bias mask.

Parameters

in	bias	Accel bias mask 1 is set, 0 is not set, Length $3 = x,y,z$.	
----	------	--	--

4.1.2.29 void inv_get_gyro (long * gyro)

Get's latest gyro data.

Parameters

|--|

4.1.2.30 int inv_get_gyro_accuracy (void)

Returns accuracy of gyro.

Returns

Accuracy of gyro with 0 being not accurate, and 3 being most accurate.

4.1.2.31 void inv_get_gyro_bias (long * bias)

Get the gyro biases and temperature record from MPL.

Parameters

in	bias	Gyro bias in hardware units scaled by 2 ¹ 6. In chip mount-
		ing frame. Length 3.

4.1.2.32 void inv_get_gyro_bias_dmp_units (long * bias)

Gyro Bias in the form used by the DMP.

Parameters

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

out	bias	Gyro Bias in the form used by the DMP. It is scaled ap-
		propriately and is in the body frame as needed. If this bias
		is applied in the DMP then any quaternion must have the
		flag INV_BIAS_APPLIED set if it is a 3-axis quaternion,
		or INV_QUAT_6AXIS if it is a 6-axis quaternion

4.1.2.33 int inv_get_gyro_on ()

Helper function stating whether the gyro is on or off.

Returns

16

TRUE if gyro if on, 0 if gyro if off

4.1.2.34 long inv_get_gyro_sensitivity (void)

Gyro sensitivity.

Returns

A scale factor to convert device units to degrees per second scaled by 2^{16} such that degrees_per_second = device_units * sensitivity / 2^{30} . Typically it works out to be the maximum rate * 2^{15} .

4.1.2.35 void inv_get_gyro_set (long * data, int8_t * accuracy, inv_time_t * timestamp)

Gets a whole set of gyro data including data, accuracy and timestamp.

Parameters

out	data	Gyro Data where 1 dps = 2^16
out	accuracy	Accuracy 0 being not accurate, and 3 being most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.36 void inv_get_gyro_set_raw (long * data, int8_t * accuracy, inv_time_t * timestamp)

Gets a whole set of gyro raw data including data, accuracy and timestamp.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder 17

Parameters

out	data	Gyro Data where 1 dps = 2^{16}
out	accuracy	Accuracy 0 being not accurate, and 3 being most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.37 inv_time_t inv_get_last_timestamp ()

Get last timestamp across all 3 sensors that are on.

This find out which timestamp has the largest value for sensors that are on.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.1.2.38 int inv_get_mag_accuracy (void)

Returns accuracy of compass.

Returns

Accuracy of compass with 0 being not accurate, and 3 being most accurate.

4.1.2.39 void inv_get_mpl_accel_bias (long * bias, long * temp)

Get Accel Bias.

Parameters

out	bias	Accel bias
out	temp	Temperature where $1 \text{ C} = 2^{16}$

4.1.2.40 void inv_get_mpl_gyro_bias (long * bias, long * temp)

Get the mpl gyro biases.

Parameters

in	bias	Gyro calibrated bias. Length 3.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.1.2.41 void inv_get_raw_compass (short * raw)

Gets last value of raw compass data.

Parameters

18

out	raw	Raw compass data in mounting frame in hardware u	inits
	7011	Length 3.	ints.

4.1.2.42 void inv_get_temp_set (long * data, int * accuracy, inv_time_t * timestamp)

Gets a whole set of temperature data including data, accuracy and timestamp.

Parameters

out	data	Temperature data where 1 degree $C = 2^{16}$
out	accuracy	0 to 3, where 3 is most accurate.
out	timestamp	The timestamp of the data sample.

4.1.2.43 void inv_gyro_was_turned_off()

This should be called when the gyro has been turned off.

This is so that we will know if the data is contiguous.

4.1.2.44 void inv_quaternion_sensor_was_turned_off (void)

This should be called when the quaternion data from the DMP has been turned off.

This is so that we will know if the data is contiguous.

4.1.2.45 void inv_set_accel_accuracy (int accuracy)

Sets the accel accuracy.

Parameters

in	accuracy	Accuracy rating from 0 to 3, with 3 being most accurate.
----	----------	--

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder

19

4.1.2.46 void inv_set_accel_bandwidth (int bandwidth_hz)

Set Accel Bandwidth in Hz.

Parameters

in	bandwidth	Gyro bandwidth in Hz
	hz	

4.1.2.47 void inv_set_accel_bias (const long * bias)

Sets the factory accel bias.

Parameters

in	bias	Accel bias in hardware units (+/- 2 gee full scale assumed)
		scaled by 2^{16} . In chip mounting frame. Length of 3.

4.1.2.48 void inv_set_accel_bias_mask (const long * bias, int accuracy, int mask)

Sets the accel bias with control over which axis.

Parameters

in	bias	Accel bias, length 3. In HW units scaled by 2^{16} in body
		frame
in	accuracy	Accuracy rating from 0 to 3, with 3 being most accurate.
in	mask	Mask to select axis to apply bias set.

4.1.2.49 void inv_set_accel_orientation_and_scale (int *orientation*, long *sensitivity*)

Sets the orientation and sensitivity of the gyro data.

Parameters

	in	orientation	A scalar defining the transformation from chip mounting to
ı			the body frame. The function inv_orientation_matrix_to
1			scalar() can convert the transformation matrix to this scalar
4			and describes the scalar in further detail.
ſ	in	sensitivity	
			device_units * sensitivity / 2^30 . Typically it works out to
			be the maximum g_value $*2^{15}$.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.1.2.50 void inv_set_accel_sample_rate (long sample_rate_us)

Set Accel Sample rate in micro seconds.

Parameters

20

in	sample	Set Accel Sample rate in us	
	rate_us		

4.1.2.51 void inv_set_compass_bandwidth (int bandwidth_hz)

Set Compass Bandwidth in Hz.

Parameters

in	bandwidth	Gyro bandwidth in Hz
	hz	

4.1.2.52 void inv_set_compass_bias (const long * bias, int accuracy)

Sets the compass bias.

Parameters

in	bias Length 3, in body frame, in hardware units scaled by 2 ¹	
		to allow fractional bit correction.
in	accuracy	Accuracy of compass data, where 3=most accurate, and
		0=least accurate.

4.1.2.53 void inv_set_compass_disturbance (int *dist*)

Set the state of a compass disturbance.

Parameters

in	dist	1=disturbance, 0=no disturbance

4.1.2.54 void inv_set_compass_orientation_and_scale (int *orientation*, long sensitivity)

Sets the Orientation and Sensitivity of the gyro data.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

21

4.1 data_builder

Parameters

2		A cooley defining the transformation from this mounting to	
in	orientation	A scalar defining the transformation from chip mounting to	
		the body frame. The function inv_orientation_matrix_to	
		scalar() can convert the transformation matrix to this scalar	
		and describes the scalar in further detail.	
in	sensitivity	A scale factor to convert device units to uT such that uT =	
		device_units * sensitivity / 2^30 . Typically it works out to	
		be the maximum uT_value $*2^15$.	

4.1.2.55 void inv_set_compass_sample_rate (long sample_rate_us)

Set Compass Sample rate in micro seconds.

Parameters

in	sample	Set Gyro Sample rate in micro seconds.
	rate_us	

4.1.2.56 void inv_set_compass_soft_iron_input_data (const long * data)

This subroutine sets the compass raw data for the soft iron transformation.

Parameters

int]	the pointer of the 3x1	vector compass raw data in MPL format

4.1.2.57 void inv_set_compass_soft_iron_matrix_d (long * matrix)

Sets the 3x3 compass transform matrix in 32 bit Q30 fixed point format.

Parameters

in	the	pointer of the 3x3 matrix in Q30 format
----	-----	---

4.1.2.58 void inv_set_compass_soft_iron_matrix_f (float * matrix)

Sets the 3x3 compass transform matrix in 32 bit floating point format.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev : 1.0 Date : 11/27/2013

22 Module Documentation

Parameters

in	the	pointer of the 3x3 matrix in floating point format

4.1.2.59 void inv_set_gyro_bandwidth (int bandwidth_hz)

Set Gyro Bandwidth in Hz.

Parameters

in	bandwidth	Gyro bandwidth in Hz		
	hz			, in the second second

4.1.2.60 void inv_set_gyro_bias (const long * bias)

Sets the factory gyro bias.

Parameters

in	bias	Gyro bias in hardware units (+/- 2000 dps full scale as-
		sumed) scaled by 2 ¹ 6. In chip mounting frame. Length
		of 3.

4.1.2.61 void inv_set_gyro_orientation_and_scale (int *orientation,* long *sensitivity*)

Sets the Orientation and Sensitivity of the gyro data.

Parameters

in	orientation	A scalar defining the transformation from chip mounting to	
		the body frame. The function inv_orientation_matrix_to	
		scalar() can convert the transformation matrix to this scalar	
		and describes the scalar in further detail.	
in	sensitivity	A scale factor to convert device units to degrees per second	
		scaled by 2^{16} such that degrees_per_second = device	
		units * sensitivity / 2 ³ 0. Typically it works out to be the	
		maximum rate $*2^{15}$.	

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.1 data_builder

23

4.1.2.62 void inv_set_gyro_sample_rate (long sample_rate_us)

Set Gyro Sample rate in micro seconds.

Parameters

in	sample	Set Gyro Sample rate in us
	rate_us	

4.1.2.63 void inv_set_mpl_gyro_bias (const long * bias, int accuracy)

Sets the mpl gyro bias.

Parameters

in	bias	Gyro bias in hardware units scaled by 2^{16} (+/- 2000 dps	
		full scale assumed). In chip mounting frame. Length 3.	
in	accuracy	Accuracy of bias. $0 = least$ accurate, $3 = most$ accurate.	

4.1.2.64 void inv_set_quat_sample_rate (long sample_rate_us)

Set Quat Sample rate in micro seconds.

Parameters

ſ	in	sample	Set Quat Sample rate in us
	T11	sampie	Set Quat Sample rate in us
		rate_us	

4.1.2.65 void inv_temperature_was_turned_off()

This should be called when the temperature sensor has been turned off.

This is so that we will know if the data is contiguous.

4.1.2.66 void set_sensor_orientation_and_scale (struct inv_single_sensor_t * sensor, int orientation, long sensitivity)

Sets orientation and sensitivity field for a sensor.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

Parameters

24

	out	sensor	Structure to apply settings to
	in	orientation	Orientation description of how part is mounted.
Γ	in	sensitivity	A Scale factor to convert from hardware units to standard
			units (dps, uT, g).

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.2 hal_outputs 25

4.2 hal_outputs

Motion Library - HAL Outputs Sets up common outputs for HAL.

Files

• file hal_outputs.c

HAL Outputs.

Functions

• inv_error_t inv_disable_hal_outputs (void)

Turns off creation and storage of HAL type results.

• inv_error_t inv_enable_hal_outputs (void)

Turns on creation and storage of HAL type results.

• inv_error_t inv_generate_hal_outputs (struct inv_sensor_cal_t *sensor_cal)

Main callback to generate HAL outputs.

int inv_get_sensor_type_accelerometer (float *values, int8_t *accuracy, inv_time_t *timestamp)

Acceleration (m/s^2) in body frame.

• int inv_get_sensor_type_geomagnetic_rotation_vector (float *values, int8_t *accuracy, inv_time_t *timestamp)

This corresponds to Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR.

• int inv_get_sensor_type_gravity (float *values, int8_t *accuracy, inv_time_t *timestamp)

Gravity vector (m/s^2) *in Body Frame.*

int inv_get_sensor_type_gyroscope (float *values, int8_t *accuracy, inv_time_t *timestamp)

Gyroscope calibrated data (rad/s) in body frame.

int inv_get_sensor_type_gyroscope_raw (float *values, int8_t *accuracy, inv_-time_t *timestamp)

Gyroscope raw data (rad/s) in body frame.

• int inv_get_sensor_type_linear_acceleration (float *values, int8_t *accuracy, inv_time_t *timestamp)

Linear Acceleration (m/s $^{\wedge}$ 2) in Body Frame.

int inv_get_sensor_type_magnetic_field (float *values, int8_t *accuracy, inv_-time_t *timestamp)

Compass data (uT) in body frame.

int inv_get_sensor_type_magnetic_field_raw (float *values, int8_t *accuracy, inv_time_t *timestamp)

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

Compass raw data (uT) in body frame.

• int inv_get_sensor_type_orientation (float *values, int8_t *accuracy, inv_time_t *timestamp)

This corresponds to Sensor.TYPE_ORIENTATION.

int inv_get_sensor_type_rotation_vector (float *values, int8_t *accuracy, inv_-time_t *timestamp)

 $This\ corresponds\ to\ Sensor. TYPE_ROTATION_VECTOR.$

• inv_error_t inv_init_hal_outputs (void)

Initializes hal outputs class.

• inv_error_t inv_start_hal_outputs (void)

Turns on generation of HAL outputs.

• inv_error_t inv_stop_hal_outputs (void)

Turns off generation of HAL outputs.

4.2.1 Detailed Description

Motion Library - HAL Outputs Sets up common outputs for HAL.

4.2.2 Function Documentation

4.2.2.1 inv_error_t inv_enable_hal_outputs (void)

Turns on creation and storage of HAL type results.

Returns

26

Returns INV_SUCCESS if successful or an error code if not.

4.2.2.2 inv_error_t inv_generate_hal_outputs (struct inv_sensor_cal_t * sensor_cal)

Main callback to generate HAL outputs.

Typically not called by library users.

Parameters

in	sensor_cal	Input variable to take sensor data whenever there is new
		sensor data.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

www.invensense.com

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.2 hal_outputs 27

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.2.2.3 int inv_get_sensor_type_accelerometer (float * values, int8_t * accuracy, inv_time_t * timestamp)

Acceleration (m/s $^{\land}$ 2) in body frame.

Parameters

out	values	Acceleration in m/s ² includes gravity. So while not in motion, it should return a vector of magnitude near 9.81 m/s ²
out	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
		most accurate.
out	timestamp	The timestamp for this sensor. Derived from the timestamp
		sent to inv_build_accel().

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.4 int inv_get_sensor_type_geomagnetic_rotation_vector (float * values, int8_t * accuracy, inv_time_t * timestamp)

This corresponds to Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR.

Similar to SENSOR_TYPE_ROTATION_VECTOR, but using a magnetometer instead of using a gyroscope. Fourth element = estimated_accuracy in radians (heading confidence).

Parameters

	out	values	Length 4.
ſ	out	accuracy	is not defined.
	out	timestamp	in (ns) for Android.

Returns

Returns 1 if the data was updated, 0 otherwise.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

28

Module Documentation

4.2.2.5 int inv_get_sensor_type_gravity (float * values, int8_t * accuracy, inv_time_t * timestamp)

Gravity vector (m/s 2) in Body Frame.

Parameters

out	values	Gravity vector in body frame, length 3, (m/s ²)
out	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
		most accurate.
out	timestamp	The timestamp for this sensor. Derived from the timestamp
		sent to inv_build_accel().

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.6 int inv_get_sensor_type_gyroscope (float * values, int8_t * accuracy, inv_time_t * timestamp)

Gyroscope calibrated data (rad/s) in body frame.

Parameters

out	values	Rotation Rate in rad/sec.
out	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
		most accurate.
out	timestamp	The timestamp for this sensor. Derived from the timestamp
		sent to inv_build_gyro().

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.7 int inv_get_sensor_type_gyroscope_raw (float * values, int8_t * accuracy, inv_time_t * timestamp)

Gyroscope raw data (rad/s) in body frame.

Parameters

out	values	Rotation Rate in rad/sec.
out	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
		most accurate.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.2 hal_outputs 29

out	timestamp	The timestamp for this sensor. Derived from the timestamp
		sent to inv_build_gyro().

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.8 int inv_get_sensor_type_linear_acceleration (float * values, int8_t * accuracy, inv_time_t * timestamp)

Linear Acceleration (m/s²) in Body Frame.

Parameters

out	values	Linear Acceleration in body frame, length 3, (m/s ^{\(\chi\)} 2). May
		show accel biases while at rest.
out	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
		most accurate.
out	timestamp	The timestamp for this sensor. Derived from the timestamp
		sent to inv_build_accel().

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.9 int inv_get_sensor_type_magnetic_field (float * values, int8_t * accuracy, inv_time_t * timestamp)

Compass data (uT) in body frame.

Parameters

out	values	Compass data in (uT), length 3. May be calibrated by hav-
		ing biases removed and sensitivity adjusted
out	accuracy	Accuracy 0 to 3, $3 = most$ accurate
out	timestamp	Timestamp. In (ns) for Android.

Returns

Returns 1 if the data was updated or 0 if it was not updated.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.2.2.10 int inv_get_sensor_type_magnetic_field_raw (float * values, int8_t * accuracy, inv_time_t * timestamp)

Compass raw data (uT) in body frame.

Parameters

30

out	values	Compass data in (uT), length 3. May be calibrated by hav-
		ing biases removed and sensitivity adjusted
out	accuracy	Accuracy 0 to 3, $3 = most$ accurate
out	timestamp	Timestamp. In (ns) for Android.

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.11 int inv_get_sensor_type_orientation (float * values, int8_t * accuracy, inv_time_t * timestamp)

This corresponds to Sensor.TYPE_ORIENTATION.

All values are angles in degrees.

Parameters

out	values	Length 3, Degrees.			
		• values[0]: Azimuth, angle between the magnetic north direction and the y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South, 270=West			
		• values[1]: Pitch, rotation around x-axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.			
>		• values[2]: Roll, rotation around y-axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.			

Note

This definition is different from yaw, pitch and roll used in aviation where the X axis is along the long side of the plane (tail to nose). Note: This sensor type exists for legacy reasons, please use getRotationMatrix() in conjunction with remap-CoordinateSystem() and getOrientation() to compute these values instead. Important note: For historical reasons the roll angle is positive in the clockwise direction

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.2 hal_outputs 31

(mathematically speaking, it should be positive in the counter-clockwise direction).

Parameters

01	ut	accuracy	Accuracy of the measurment, 0 is least accurate, while 3 is
			most accurate.
01	ut	timestamp	The timestamp for this sensor.

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.12 int inv_get_sensor_type_rotation_vector (float * values, int8_t * accuracy, inv_time_t * timestamp)

This corresponds to Sensor.TYPE_ROTATION_VECTOR.

The rotation vector represents the orientation of the device as a combination of an angle and an axis, in which the device has rotated through an angle θ around an axis $\{x, y, z\}$.

The three elements of the rotation vector are $\{x*\sin(\theta/2), y*\sin(\theta/2), z*\sin(\theta/2)\}$, such that the magnitude of the rotation vector is equal to $\sin(\theta/2)$, and the direction of the rotation vector is equal to the direction of the axis of rotation.

The three elements of the rotation vector are equal to the last three components of a unit quaternion $\{x*\sin(\theta/2), y*\sin(\theta/2), z*\sin(\theta/2)\}$. The 4th element is $\cos(\theta/2)$.

Elements of the rotation vector are unitless. The x,y and z axis are defined in the same way as the acceleration sensor. The reference coordinate system is defined as a direct orthonormal basis, where:

-X is defined as the vector product Y.Z (It is tangential to the ground at the device's current location and roughly points East). -Y is tangential to the ground at the device's current location and points towards the magnetic North Pole. -Z points towards the sky and is perpendicular to the ground.

Parameters

out		Length 5, 4th element being the w angle of the originating 4 elements quaternion and 5th element being the heading accuracy at 95%.
out	accuracy	Accuracy is not defined
out	timestamp	Timestamp. In (ns) for Android.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

32 Module Documentation

Returns

Returns 1 if the data was updated or 0 if it was not updated.

4.2.2.13 inv_error_t inv_init_hal_outputs (void)

Initializes hal outputs class.

This is called automatically by the enable function. It may be called any time the feature is enabled, but is typically not needed to be called by outside callers.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.2.2.14 inv_error_t inv_start_hal_outputs (void)

Turns on generation of HAL outputs.

This should be called after inv_stop_hal_outputs() to turn generation of HAL outputs back on. It is automatically called by inv_enable_hal_outputs().

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.2.2.15 inv_error_t inv_stop_hal_outputs (void)

Turns off generation of HAL outputs.

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.3 ml_math_func

33

4.3 ml_math_func

Motion Library - Math Functions Common math functions the Motion Library.

Files

• file ml math func.c

Math Functions.

Functions

int get_highest_bit_position (unsigned long *value)

Auxiliary function used by testLimitsAndScale() Find the highest nonzero bit in an unsigned 32 bit integer:

• float inv_angle_diff (float ang1, float ang2)

Finds the minimum angle difference angl-ang2 such that difference is between [-M_-PI,M_PI].

• short inv_big8_to_int16 (const unsigned char *big8)

Converts a big endian byte stream into a 16-bit integer (short)

• long inv_big8_to_int32 (const unsigned char *big8)

Converts a big endian byte stream into a 32-bit long.

• uint32_t inv_checksum (const unsigned char *str, int len)

bernstein hash, derived from public domain source

void inv_convert_to_body (unsigned short orientation, const long *input, long *output)

Uses the scalar orientation value to convert from chip frame to body frame.

void inv_convert_to_body_with_scale (unsigned short orientation, long sensitivity, const long *input, long *output)

Uses the scalar orientation value to convert from chip frame to body frame and apply appropriate scaling.

void inv_convert_to_chip (unsigned short orientation, const long *input, long *output)

Uses the scalar orientation value to convert from body frame to chip frame.

• long inv_fast_sqrt (long x0)

Calculates square-root of a fixed-point number (30 bit mantissa, positive) Input must be a positive scaled ($2^{\circ}30$) integer The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

• unsigned long inv_get_gyro_sum_of_sqr (const long *gyro)

The gyro data magnitude squared : $(1 \text{ degree per second})^2 = 2^6 = 2^G YRO_MA-G_SQR_SHIFT.$

• unsigned char * inv_int16_to_big8 (short x, unsigned char *big8)

34

MA v5.2.0-K APIs Specification

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

Converts a 16-bit short to a big endian byte stream.

• unsigned char * inv_int32_to_big8 (long x, unsigned char *big8)

Converts a 32-bit long to a big endian byte stream.

• long inv_inverse_sqrt (long x0, int *rempow)

Calculates 1/square-root of a fixed-point number (30 bit mantissa, positive): Q1.30 Input must be a positive scaled (2^3 0) integer The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

• short inv_little8_to_int16 (const unsigned char *little8)

Converts a little endian byte stream into a 16-bit integer (short)

• long inv_one_over_x (long x0, int *pow)

Calculates 1/x of a fixed-point number (30 bit mantissa) Input must be a scaled (2^30) integer (+/-) The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

• unsigned short inv_orientation_matrix_to_scalar (const signed char *mtx)

Converts an orientation matrix made up of 0,+1, and -1 to a scalar representation.

• long inv_q29_mult (long a, long b)

Performs a multiply and shift by 29

• long inv_q30_mult (long a, long b)

Performs a multiply and shift by 30.

• void inv_q_add (long *q1, long *q2, long *qSum)

Performs a fixed point quaternion addition.

• void inv_q_mult (const long *q1, const long *q2, long *qProd)

Performs a fixed point quaternion multiply.

• void inv_q_norm4 (float *q)

Performs a length 4 vector normalization with a square root.

void inv_q_rotate (const long *q, const long *in, long *out)

Rotates a 3-element vector by Rotation defined by Q.

• long inv_q_shift_mult (long a, long b, int shift)

Performs a multiply and shift by shift.

• void inv_quaternion_to_rotation (const long *quat, long *rot)

Converts a quaternion to a rotation matrix.

• void inv_quaternion_to_rotation_vector (const long *quat, long *rot)

Converts a quaternion to a rotation vector.

double inv_vector_norm (const float *x)

find a norm for a vector

• float inv_wrap_angle (float ang)

Wraps angle from (-M_PI,M_PI].

• int test_limits_and_scale (long *x0, int *pow)

Auxiliary function used by inv_OneOverX(), inv_fastSquareRoot(), inv_inverseSqrt().

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.3 ml_math_func

35

4.3.1 Detailed Description

Motion Library - Math Functions Common math functions the Motion Library.

4.3.2 Function Documentation

4.3.2.1 int get_highest_bit_position (unsigned long * value)

Auxiliary function used by testLimitsAndScale() Find the highest nonzero bit in an unsigned 32 bit integer:

Parameters

in value, length 1.		
-------------------------	--	--

Returns

highes bit position.

4.3.2.2 float inv_angle_diff (float ang1, float ang2)

Finds the minimum angle difference ang1-ang2 such that difference is between [-M_-PI,M_PI].

Parameters

in	ang1	
in	ang2	

Returns

angle difference ang1-ang2

4.3.2.3 void inv_convert_to_body (unsigned short *orientation*, const long * *input*, long * *output*)

Uses the scalar orientation value to convert from chip frame to body frame.

Parameters

	in	orientation	A scalar that represent how to go from chip to body frame
ſ	in	input	Input vector, length 3
	out	output	Output vector, length 3

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.3.2.4 void inv_convert_to_body_with_scale (unsigned short *orientation*, long sensitivity, const long * input, long * output)

Uses the scalar orientation value to convert from chip frame to body frame and apply appropriate scaling.

Parameters

36

in	orientation	A scalar that represent how to go from chip to body frame
in	sensitivity	Sensitivity scale
in	input	Input vector, length 3
out	output	Output vector, length 3

4.3.2.5 void inv_convert_to_chip (unsigned short *orientation*, const long * *input*, long * *output*)

Uses the scalar orientation value to convert from body frame to chip frame.

Parameters

	in	orientation	A scalar that represent how to go from chip to body frame
Ī	in	input	Input vector, length 3
	out	output	Output vector, length 3

4.3.2.6 long inv_fast_sqrt (long *x0*)

Calculates square-root of a fixed-point number (30 bit mantissa, positive) Input must be a positive scaled (2^{30}) integer The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

Parameters

in	x0,length	1

Returns

scaledSquareRoot on success or zero.

4.3.2.7 unsigned long inv_get_gyro_sum_of_sqr (const long * gyro)

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.3 ml_math_func

37

Parameters

in	gyro	Gyro data scaled with 1 dps = 2^{16}
----	------	--

Returns

the computed magnitude squared output of the gyroscope.

4.3.2.8 long inv_inverse_sqrt (long x0, int * rempow)

Calculates 1/square-root of a fixed-point number (30 bit mantissa, positive): Q1.30 - Input must be a positive scaled (2^{30}) integer The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

Corresponding square root of the power of two is returned. Caller must scale final result by 2^{\wedge} rempow (while avoiding overflow).

Parameters

in	x0,length	1
out	rem-	1
	pow,length	

Returns

scaledSquareRoot on success or zero.

4.3.2.9 long inv_one_over_x (long x0, int * pow)

Calculates 1/x of a fixed-point number (30 bit mantissa) Input must be a scaled (2^30) integer (+/-) The number is scaled to lie between a range in which a Newton-Raphson iteration works best.

Corresponding multiplier power of two is returned. Caller must scale final result by 2^p ow (while avoiding overflow).

Parameters

in	x,length	1
out	pow,length	1

Returns

scaledOneOverX on success or zero.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

Module Documentation

4.3.2.10 unsigned short inv_orientation_matrix_to_scalar (const signed char * mtx)

Converts an orientation matrix made up of 0,+1, and -1 to a scalar representation.

Parameters

38

in	mtx	Orientation matrix to convert to a scalar.	

Returns

Description of orientation matrix. The lowest 2 bits (0 and 1) represent the column the one is on for the first row, with the bit number 2 being the sign. The next 2 bits (3 and 4) represent the column the one is on for the second row with bit number 5 being the sign. The next 2 bits (6 and 7) represent the column the one is on for the third row with bit number 8 being the sign. In binary the identity matrix would therefor be: 010_001_000 or 0x88 in hex.

4.3.2.11 long inv q29 mult (long a, long b)

Performs a multiply and shift by 29.

These are good functions to write in assembly on with devices with small memory where you want to get rid of the long long which some assemblers don't handle well

Parameters

in	a	
in	b	

Returns

((long long)a*b)>>29

4.3.2.12 long inv_q30_mult (long a, long b)

Performs a multiply and shift by 30.

These are good functions to write in assembly on with devices with small memory where you want to get rid of the long long which some assemblers don't handle well

Parameters

in	a	
in	b	

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.3 ml_math_func

39

Returns

((long long)a*b)>>30

4.3.2.13 void inv_q_add (long * q1, long * q2, long * qSum)

Performs a fixed point quaternion addition.

Parameters

in	q1	First Quaternion term, length 4. 1.0 scaled to 2 ³⁰		
in	q2	Second Quaternion term, length 4. 1.0 scaled to 2 ³⁰		
out	qSum	Sum after quaternion summation. Length 4. 1.0 scaled to		
		2^30.		

4.3.2.14 void inv_q_mult (const long * q1, const long * q2, long * qProd)

Performs a fixed point quaternion multiply.

Parameters

in	q1	First Quaternion Multicand, length 4. 1.0 scaled to 2 ³⁰
in	q2	Second Quaternion Multicand, length 4. 1.0 scaled to $2^{\wedge}30$
out		Product after quaternion multiply. Length 4. 1.0 scaled to 2^{3} 0.

4.3.2.15 void inv_q_norm4 (float *q)

Performs a length 4 vector normalization with a square root.

Parameters

in,out		q	vector to normalize. Returns [1,0,0,0] is magnitude is zero.

4.3.2.16 long inv_q_shift_mult(long *a,* long *b,* int *shift*)

Performs a multiply and shift by shift.

These are good functions to write in assembly on with devices with small memory where you want to get rid of the long long which some assemblers don't handle well

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

40

Module Documentation

Parameters

in	а	First multicand
in	b	Second multicand
in	shift	Shift amount after multiplying

Returns

((long long)a*b)<<shift

4.3.2.17 void inv_quaternion_to_rotation (const long * quat, long * rot)

Converts a quaternion to a rotation matrix.

Parameters

in	quat	4-element quaternion in fixed point. One is 2 ³ 0.	
out	rot	Rotation matrix in fixed point. One is 2^{30} . The First 3	
		elements of the rotation matrix, represent the first row of the	
		matrix. Rotation matrix multiplied by a 3 element column	
		vector transform a vector from Body to World.	

4.3.2.18 void inv_quaternion_to_rotation_vector (const long * quat, long * rot)

Converts a quaternion to a rotation vector.

A rotation vector is a method to represent a 4-element quaternion vector in 3-elements. To get the quaternion from the 3-elements, The last 3-elements of the quaternion will be the given rotation vector. The first element of the quaternion will be the positive value that will be required to make the magnitude of the quaternion 1.0 or $2^{\circ}30$ in fixed point units.

Parameters

in	quat	4-element quaternion in fixed point. One is 2^{30} .
out	out rot Rotation vector in fixed point. One is 2^30.	

4.3.2.19 double inv_vector_norm (const float * x)

find a norm for a vector

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.3 ml_math_func

41

Parameters

in	а	vector [3x1]
out	output	the norm of the input vector

4.3.2.20 float inv_wrap_angle (float ang)

Wraps angle from (-M_PI,M_PI].

Parameters

ang Angle in radians to wrap	in	ang	Angle in radians to wrap			
------------------------------	----	-----	--------------------------	--	--	--

Returns

Wrapped angle from (-M_PI,M_PI]

4.3.2.21 int test_limits_and_scale (long * x0, int * pow)

Auxiliary function used by inv_OneOverX(), inv_fastSquareRoot(), inv_inverseSqrt().

Finds the range of the argument, determines the optimal number of Newton-Raphson iterations and . Corresponding square root of the power of two is returned. Restrictions: Number is represented as Q1.30. Number is between the range 2 < x < 0

Parameters

in	x,length	1
out	pow,length	1

Returns

of NR iterations, x0 scaled between log(2) and log(4) and 2^N scaling (N=pow)

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

42 Module Documentation

4.4 message_layer

Motion Library - Message Layer Holds Low Occurance messages.

Files

• file message_layer.c

Holds Low Occurance Messages.

Functions

• long inv_get_message_level_0 (int clear)

Returns Message Flags for Level 0 Messages.

• void inv_set_message (long set, long clear, int level)

Sets a message.

4.4.1 Detailed Description

Motion Library - Message Layer Holds Low Occurance messages.

4.4.2 Function Documentation

4.4.2.1 long inv_get_message_level_0 (int *clear*)

Returns Message Flags for Level 0 Messages.

Levels are to allow expansion of more messages in the future.

Parameters

in	clear	If set, will clear the message. Typically this will be set for
		one reader, so that you don't get the same message over and
		over.

Returns

bit field to corresponding message.

4.4.2.2 void inv_set_message (long set, long clear, int level)

Sets a message.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.4 message_layer

43

Parameters

in	set	The flags to set.	
in	clear	Before setting anything this will clear these messages,	
		which is useful for mutually exclusive messages such a mo-	
		tion or no motion message.	
in	level	Level of the messages. It starts at 0, and may increase in the	
		future to allow more messages if the bit storage runs out.	

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

44 Module Documentation

4.5 mpl

Motion Library - Start Point Initializes MPL.

Files

• file mpl.c

MPL start point.

• file quaternion_supervisor.c

Performs the quaternion fusion.

Functions

• inv_error_t inv_disable_quaternion (void)

Disables generating the gyro and accel quaternion.

• inv_error_t inv_enable_quaternion ()

Turns on quaternion computation.

• inv_error_t inv_get_version (char **version)

used to get the MPL version.

• inv_error_t inv_init_mpl (void)

Initializes the MPL.

• inv_error_t inv_init_quaternion (void)

Initializes all quaternion data.

• void inv_set_quaternion (long *quat)

Set the quaternion to the given value.

• inv_error_t inv_start_mpl (void)

Starts the MPL.

• inv_error_t inv_start_quaternion (void)

Starts gyro and accel quaternion generation.

• inv_error_t inv_stop_quaternion (void)

Stops gyro and accel quaternion generation.

• int inv_verify_6x_fusion_data (float *data)

Verify that the 6-axis quaternion data is correctedly encrypted.

4.5.1 Detailed Description

Motion Library - Start Point Initializes MPL. Motion Library Example Architecture.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.5 mpl 45

4.5.2 Function Documentation

4.5.2.1 inv_error_t inv_enable_quaternion ()

Turns on quaternion computation.

This must be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. inv_start_quaterion() and inv_stop_quaternion() are used to start and stop this feature. This feature is started automatically and inv_start_quaterion() would only need to be called after turning this feature off with inv_stop_quaternion().

Returns

INV_SUCCESS=0 on success, a non-zero error code otherwise.

4.5.2.2 inv_error_t inv_get_version (char ** version)

used to get the MPL version.

Parameters

version | a string where the MPL version gets stored.

Returns

INV_SUCCESS if successful or a non-zero error code otherwise.

4.5.2.3 inv_error_t inv_init_mpl (void)

Initializes the MPL.

Should be called first and once

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.5.2.4 inv_error_t inv_init_quaternion (void)

Initializes all quaternion data.

This is called automatically by the enable function. It may be called any time the feature is enabled, but is typically not needed to be called by outside callers.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

46 Module Documentation

Returns

INV_SUCCESS=0 on success, a non-zero error code otherwise.

4.5.2.5 void inv_set_quaternion (long * quat)

Set the quaternion to the given value.

Parameters

ſ	in	quat	What to set quaternion to.	Fixed point scaled by 2^{30} , -
			Length 4.	

4.5.2.6 inv_error_t inv_start_mpl (void)

Starts the MPL.

Typically called after inv_init_mpl() or after a inv_stop_mpl() to start the MPL back up an running.

Returns

INV_SUCCESS if successful or a non-zero error code otherwise.

4.5.2.7 inv_error_t inv_start_quaternion (void)

Starts gyro and accel quaternion generation.

Automatically called by inv_enable_quaterion() and therefor would only need to be called after inv_stop_quaternion().

Returns

INV_SUCCESS=0 on success, a non-zero error code otherwise.

4.5.2.8 inv_error_t inv_stop_quaternion (void)

Stops gyro and accel quaternion generation.

Call inv_start_quaternion() to turn this back on after the stop command.

Returns

INV SUCCESS=0 on success, a non-zero error code otherwise.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.5 mpl 47

4.5.2.9 int inv_verify_6x_fusion_data (float * data)

Verify that the 6-axis quaternion data is correctedly encrypted.

Parameters

in	data	Quaternion data to be compared with our version stored in-
		ternally. If encrypted correctly, return 1. If no DMP is used
		in the 6-axis quaternion, return 2. If encrypted incorrectly,
		return 0. If quaternion data is identity, return -1.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.6 results_holder

Motion Library - Results Holder Holds the data for MPL.

Files

48

• file results_holder.c

Results Holder for HAL.

Functions

• inv_error_t inv_enable_results_holder()

Turns on storage of results.

• inv_error_t inv_generate_results (struct inv_sensor_cal_t *sensor_cal)

Callback that gets called everytime there is new data.

• inv_error_t inv_get_6axis_quaternion (long *data, inv_time_t *timestamp)

Returns a quaternion based only on gyro and accel.

• inv_error_t inv_get_6axis_quaternion_float (float *data, inv_time_t *timestamp)

Returns a quaternion based only on gyro and accel.

• int inv_get_acc_state ()

Gets the accel state set by inv_set_acc_state()

• inv_error_t inv_get_accel (long *data)

Returns 3-element vector of accelerometer data in body frame.

float inv_get_accel_compass_confidence_interval (void)

Get 6 axis (accel and compass) 95% heading confidence interval for quaternion.

• inv_error_t inv_get_accel_float (float *data)

Returns 3-element vector of accelerometer float data.

• inv_error_t inv_get_accel_quaternion (long *data)

Returns a quaternion based only on accel.

void inv_get_compass_bias_error (long *bias_error)

Get's compass bias error.

• int inv_get_compass_state ()

Get's the compass state.

• void inv_get_earth_magnetic_local_field_parameter (struct local_field_t *parameters)

Returns the parameters of earth magnetic field local field.

• inv_error_t inv_get_geomagnetic_quaternion (long *data, inv_time_t *timestamp)

Returns a quaternion based only on compass and accel.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.6 results_holder

49

• inv_error_t inv_get_geomagnetic_quaternion_float (float *data, inv_time_t *timestamp)

Returns a quaternion based only on compass and accel.

• inv_error_t inv_get_gravity (long *data)

Gets gravity vector.

• inv_error_t inv_get_gyro_float (float *data)

Returns 3-element vector of gyro float data.

• float inv_get_heading_confidence_interval (void)

Get 9 axis 95% heading confidence interval for quaternion.

• int inv_get_large_mag_field ()

Returns non-zero if there is a large magnetic field.

• inv_error_t inv_get_linear_accel (long *data)

Returns 3-element vector of accelerometer data in body frame with gravity removed.

• inv_error_t inv_get_linear_accel_float (float *data)

Returns 3-element vector of linear accel float data.

• enum compass_local_field_e inv_get_local_field_status (void)

Returns the status of earth magnetic field local field parameters.

• void inv_get_mag_scale (long *data)

Gets the compass sensitivity.

• int inv_get_motion_state (unsigned int *cntr)

Returns the motion state.

• enum compass_local_field_e inv_get_mpl_mag_field_status (void)

Returns the status of mpl calibrated magnetic field local field parameters.

• void inv_get_mpl_magnetic_local_field_parameter (struct local_field_t *parameters)

Returns the parameters of mpl calibrated magnetic field local field.

• inv_error_t inv_get_quaternion (long *data)

Returns a quaternion.

• inv_error_t inv_get_quaternion_float (float *data)

Returns a quaternion.

• void inv_get_quaternion_set (long *data, int *accuracy, inv_time_t *timestamp)

Returns a quaternion with accuracy and timestamp.

• inv_error_t inv_get_quaternion_validity (int *value)

Returns the status of the authenticity of the quaternion data.

• inv_error_t inv_get_result_holder_status (long *rh_status)

Returns the status of the result holder.

• int inv_got_accel_bias ()

Sets state of if we know the accel bias.

• int inv_got_compass_bias ()

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

50

Sets state of if we know the compass bias.

• inv_error_t inv_init_results_holder (void)

Initializes results holder.

• void inv_set_acc_state (int state)

Sets the accel state.

• void inv_set_accel_bias_found (int state)

Sets whether we know the accel bias.

• void inv_set_accel_compass_confidence_interval (float ci)

Set 6 axis (accel and compass) 95% heading confidence interval for quaternion.

• void inv_set_compass_bias_error (const long *bias_error)

Set compass bias error.

• void inv_set_compass_bias_found (int state)

Sets whether we know the compass bias.

• void inv_set_compass_state (int state)

Sets the compass state.

• void inv_set_earth_magnetic_local_field_parameter (struct local_field_t *parameters)

Set the parameters of earth magnetic field local field.

• void inv_set_heading_confidence_interval (float ci)

Set 9 axis 95% heading confidence interval for quaternion.

• void inv_set_large_mag_field (int state)

Set to non-zero if there as a large magnetic field.

• void inv_set_local_field_status (enum compass_local_field_e status)

Set the status of earth magnetic field local field parameters.

inv_error_t inv_set_local_magnetic_field (float intensity, float inclination, float declination)

Set the magnetic field local field struct object.

• void inv_set_mag_scale (const long *data)

Sets the compass sensitivity.

• void inv set motion state (unsigned char state)

Sets the motion state.

• void inv_set_mpl_mag_field_status (enum compass_local_field_e status)

Set the status of mpl calibrated magnetic field local field parameters.

• inv_error_t inv_set_mpl_magnetic_local_field_parameter (struct local_field_t *parameters)

Set the parameters of mpl calibrated magnetic field local field This API is used by mpl only.

• inv_error_t inv_set_quaternion_validity (int value)

Set the status of the authenticity of the quaternion data.

• inv_error_t inv_set_result_holder_status (long rh_status)

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

51

4.6 results_holder

Set the status of the result holder.

• inv_error_t inv_start_results_holder (void)

Function to turn on this module.

4.6.1 Detailed Description

Motion Library - Results Holder Holds the data for MPL.

4.6.2 Function Documentation

4.6.2.1 inv_error_t inv_generate_results (struct inv_sensor_cal_t * sensor_cal)

Callback that gets called everytime there is new data.

It is registered by inv_start_results_holder().

Parameters

in	sensor_cal	New sensor data to process.	

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.2 inv_error_t inv_get_6axis_quaternion (long * data, inv_time_t * timestamp)

Returns a quaternion based only on gyro and accel.

Parameters

out	data	6-axis gyro and accel quaternion scaled such that 1.0 =
		2^30.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.3 inv_error_t inv_get_6axis_quaternion_float (float * data, inv_time_t * timestamp)

Returns a quaternion based only on gyro and accel.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

52 Module Documentation

Parameters

out	data	6-axis gyro and accel quaternion.	
-----	------	-----------------------------------	--

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.4 int inv_get_acc_state ()

Gets the accel state set by inv_set_acc_state()

Returns

accel state.

4.6.2.5 inv_error_t inv_get_accel (long * data)

Returns 3-element vector of accelerometer data in body frame.

Parameters

out	data	3-element vector of accelerometer data in body frame
-----	------	--

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.6 float inv_get_accel_compass_confidence_interval (void)

Get 6 axis (accel and compass) 95% heading confidence interval for quaternion.

Returns

Confidence interval in radians.

4.6.2.7 inv_error_t inv_get_accel_float (float * data)

Returns 3-element vector of accelerometer float data.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.6 results_holder 53

Parameters

out	data	3-element vector of accelerometer float data
-----	------	--

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.8 inv_error_t inv_get_accel_quaternion (long * data)

Returns a quaternion based only on accel.

Parameters

	out	data	3-axis accel quaternion scaled such that $1.0 = 2^30$.	
--	-----	------	---	--

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.9 void inv_get_compass_bias_error (long * bias_error)

Get's compass bias error.

See inv_set_compass_bias_error() for setting.

Parameters

out	bias_error	Accuracy as to how well the compass bias is known. It is	3
		the error squared.	

4.6.2.10 int inv_get_compass_state ()

Get's the compass state.

Returns

the compass state that was set with inv_set_compass_state()

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

54 Module Documentation

4.6.2.11 void inv_get_earth_magnetic_local_field_parameter (struct local_field_t * parameters)

Returns the parameters of earth magnetic field local field.

Parameters

out	the	parameters of earth magnetic field local field

Returns

N/A

4.6.2.12 inv_error_t inv_get_geomagnetic_quaternion (long * data, inv_time_t * timestamp)

Returns a quaternion based only on compass and accel.

Parameters

out	data 6-axis compass and accel quaternion scaled such that $1.0 = 2^30$.
	$2^{\wedge}30.$

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.13 inv_error_t inv_get_geomagnetic_quaternion_float (float * data, inv_time_t * timestamp)

Returns a quaternion based only on compass and accel.

Parameters

out	data	6-axis compass and accel quaternion.

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

55

4.6 results_holder

4.6.2.14 inv_get_gravity (long * data)

Gets gravity vector.

Parameters

out	data	gravity vector in body frame scaled such that $1.0 = 2^{\circ}30$.
-----	------	---

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.15 inv_error_t inv_get_gyro_float (float * data)

Returns 3-element vector of gyro float data.

Parameters

out	data	3-element vector of gyro float data

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.16 float inv_get_heading_confidence_interval (void)

Get 9 axis 95% heading confidence interval for quaternion.

Returns

Confidence interval in radians.

4.6.2.17 int inv_get_large_mag_field ()

Returns non-zero if there is a large magnetic field.

See inv_set_large_mag_field() for setting this variable.

Returns

Returns non-zero if there is a large magnetic field.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

56

Module Documentation

4.6.2.18 inv_error_t inv_get_linear_accel (long * data)

Returns 3-element vector of accelerometer data in body frame with gravity removed.

Parameters

out	data	3-element vector of accelerometer data in body frame with
		gravity removed

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.19 inv_error_t inv_get_linear_accel_float (float * data)

Returns 3-element vector of linear accel float data.

Parameters

out	data	3-element vector of linear aceel float data

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.20 enum compass_local_field_e inv_get_local_field_status (void)

Returns the status of earth magnetic field local field parameters.

Parameters

out	N/A	

Returns

status of local field, defined in enum compass_local_field_e

4.6.2.21 void inv_get_mag_scale (long * data)

Gets the compass sensitivity.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

57

4.6 results_holder

Parameters

out	data	Length 3, sensitivity for each compass axis scaled such that
		$1.0 = 2^30.$

4.6.2.22 int inv_get_motion_state (unsigned int * cntr)

Returns the motion state.

Parameters

out	cntr	Number of previous times a no motion event has occured in	l
		a row.	

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.23 enum compass_local_field_e inv_get_mpl_mag_field_status (void)

Returns the status of mpl calibrated magnetic field local field parameters.

Parameters

1,,,1	out N/A
-------	-----------

Returns

status of local field, defined in enum compass_local_field_e

4.6.2.24 void inv_get_mpl_magnetic_local_field_parameter (struct local_field_t * parameters)

Returns the parameters of mpl calibrated magnetic field local field.

Parameters

out	the	parameters of earth magnetic field local field
-----	-----	--

Returns

N/A

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.6.2.25 inv_error_t inv_get_quaternion (long * data)

Returns a quaternion.

Parameters

58

out	data	9-axis quaternion scaled such that $1.0 = 2^30$.	

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.26 inv_error_t inv_get_quaternion_float (float * data)

Returns a quaternion.

Parameters

out	data	9-axis quaternion.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.27 void inv_get_quaternion_set (long * data, int * accuracy, inv_time_t * timestamp)

Returns a quaternion with accuracy and timestamp.

Parameters

out	data	9-axis quaternion scaled such that $1.0 = 2^{30}$.
out	accuracy	Accuracy of quaternion, 0-3, where 3 is most accurate.
out	timestamp	Timestamp of this quaternion in nanoseconds

4.6.2.28 inv_error_t inv_get_quaternion_validity (int * value)

Returns the status of the authenticity of the quaternion data.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.6 results_holder

59

Parameters

out	value	Authenticity of the quaternion data.
-----	-------	--------------------------------------

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.29 inv_error_t inv_get_result_holder_status (long * rh_status)

Returns the status of the result holder.

Parameters

out	rh_status	Result holder status.		
-----	-----------	-----------------------	--	--

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.30 int inv_got_accel_bias ()

Sets state of if we know the accel bias.

Returns

return 1 if we know the accel bias, 0 if not. it is set with inv_set_accel_bias_found()

4.6.2.31 int inv_got_compass_bias ()

Sets state of if we know the compass bias.

Returns

return 1 if we know the compass bias, 0 if not. it is set with inv_set_compass_bias_found()

4.6.2.32 inv_error_t inv_init_results_holder (void)

Initializes results holder.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev : 1.0 Date : 11/27/2013

Module Documentation

This is called automatically by the enable function inv_enable_results_holder(). It may be called any time the feature is enabled, but is typically not needed to be called by outside callers.

Returns

60

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.33 void inv_set_acc_state (int state)

Sets the accel state.

See inv_get_acc_state() to get the value.

Parameters

in state value to set accel state to.				<i></i>
	in	state	value to set accel state to.	

4.6.2.34 void inv_set_accel_bias_found (int state)

Sets whether we know the accel bias.

Parameters

in	state	Set to 1 if we know the accel bias. Can be retrieved with
		inv_got_accel_bias()

4.6.2.35 void inv_set_accel_compass_confidence_interval (float ci)

Set 6 axis (accel and compass) 95% heading confidence interval for quaternion.

Parameters

in ci Confidence interval in radians.	
---------------------------------------	--

4.6.2.36 void inv_set_compass_bias_error (const long * bias_error)

Set compass bias error.

See inv_get_compass_bias_error()

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.6 results_holder 61

Parameters

in	bias_error	Set's how accurate we know the compass bias. It is the error
		squared.

4.6.2.37 void inv_set_compass_bias_found (int state)

Sets whether we know the compass bias.

Parameters

in	state	Set to 1 if we know the compass bias.	Can be retrieved with	h
		inv_got_compass_bias()		

4.6.2.38 void inv_set_compass_state (int state)

Sets the compass state.

Parameters

in	state	Compass state. It can be retrieved with inv_get_compass
		state().

4.6.2.39 void inv_set_earth_magnetic_local_field_parameter (struct local_field_t * parameters)

Set the parameters of earth magnetic field local field.

Parameters

in	the	earth magnetic field local field parameters.

4.6.2.40 void inv_set_heading_confidence_interval (float ci)

Set 9 axis 95% heading confidence interval for quaternion.

Parameters

7	in	ci	Confidence interval in radians.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

62 Module Documentation

4.6.2.41 void inv_set_large_mag_field (int state)

Set to non-zero if there as a large magnetic field.

See inv_get_large_mag_field() for getting this variable.

Parameters

in	state	value to set for magnetic field strength. Should be non-zero
		if it is large.

4.6.2.42 void inv_set_local_field_status (enum compass_local_field_e status)

Set the status of earth magnetic field local field parameters.

Parameters

in status of earth magnetic field local field parameters.			
	in	status	of earth magnetic field local field parameters.

4.6.2.43 inv_error_t inv_set_local_magnetic_field (float intensity, float inclination, float declination)

Set the magnetic field local field struct object.

Parameters

in	status	of earth magnetic field local field parameters.

4.6.2.44 void inv_set_mag_scale (const long * data)

Sets the compass sensitivity.

Parameters

in		Length 3, sensitivity for each compass axis scaled such that $1.0 = 2^{3}$ 0.
----	--	---

4.6.2.45 void inv_set_motion_state (unsigned char state)

Sets the motion state.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.6 results_holder

63

Parameters

in	state	motion state where INV_NO_MOTION is not moving and
		INV_MOTION is moving.

4.6.2.46 void inv_set_mpl_mag_field_status (enum compass_local_field_e status)

Set the status of mpl calibrated magnetic field local field parameters.

Parameters

in status of earth magnetic field local field parameters.	in	status of earth magnetic field local field parameters.	
---	----	--	--

4.6.2.47 inv_error_t inv_set_mpl_magnetic_local_field_parameter (struct local_field_t * parameters)

Set the parameters of mpl calibrated magnetic field local field This API is used by mpl only.

Parameters

in	the	earth magnetic field local field parameters.

Returns

INV_SUCCESS if successful INV_ERROR_INVALID_PARAMETER if invalid input pointer

4.6.2.48 inv_error_t inv_set_quaternion_validity (int value)

Set the status of the authenticity of the quaternion data.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.6.2.49 inv_error_t inv_set_result_holder_status (long rh_status)

Set the status of the result holder.

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

64 Module Documentation

4.6.2.50 inv_error_t inv_start_results_holder (void)

Function to turn on this module.

This is automatically called by inv_enable_results_holder(). Typically not called by users.

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.7 start_manager

65

4.7 start_manager

Motion Library - Start Manager Start Manager.

Files

• file start_manager.c

This handles all the callbacks when inv_start_mpl() is called.

Functions

- inv_error_t inv_execute_mpl_start_notification (void)

 Callback all the functions that want to be notified when inv_start_mpl() was called.
- inv_error_t inv_init_start_manager (void)

Initilize the start manager.

- inv_error_t inv_register_mpl_start_notification (inv_error_t(*start_cb)(void))

 Register a callback to receive when inv_start_mpl() is called.
- inv_error_t inv_unregister_mpl_start_notification (inv_error_t(*start_cb)(void))

Removes a callback from start notification.

4.7.1 Detailed Description

Motion Library - Start Manager Start Manager.

4.7.2 Function Documentation

4.7.2.1 inv_error_t inv_execute_mpl_start_notification (void)

Callback all the functions that want to be notified when inv start mpl() was called.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.7.2.2 inv_error_t inv_init_start_manager (void)

Initilize the start manager.

Typically called by inv_start_mpl();

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

66 Module Documentation

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.7.2.3 inv_error_t inv_register_mpl_start_notification (inv_error_t(*)(void) start_cb

Register a callback to receive when inv_start_mpl() is called.

Parameters

in	start_cb	Function callback that will be called when inv_start_mpl()
		is called.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.7.2.4 inv_error_t inv_unregister_mpl_start_notification (inv_error_t(*)(void) $start_cb$)

Removes a callback from start notification.

Parameters

|--|

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.8 storage_manager

67

4.8 storage_manager

Motion Library - Stores Data for functions.

Files

• file storage_manager.c

Load and Store Manager.

Defines

• #define NUM_STORAGE_BOXES 20

Max number of entites that can be stored.

Functions

• inv_error_t inv_get_mpl_state_size (size_t *size)

Returns the memory size needed to perform a store.

• void inv_init_storage_manager ()

Should be called once before using any of the storage methods.

- inv_error_t inv_load_mpl_states (const unsigned char *data, size_t length)
 - This function takes a block of data that has been saved in non-volatile memory and pushes to the proper locations.
- inv_error_t inv_register_load_store (inv_error_t(*load_func)(const unsigned char *data), inv_error_t(*save_func)(unsigned char *data), size_t size, unsigned int key)

Used to register your mechanism to load and store non-volative data.

• inv_error_t inv_save_mpl_states (unsigned char *data, size_t sz)

This function fills up a block of memory to be stored in non-volatile memory.

4.8.1 Detailed Description

Motion Library - Stores Data for functions.

4.8.2 Function Documentation

4.8.2.1 inv_error_t inv_get_mpl_state_size (size_t * size)

Returns the memory size needed to perform a store.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

68 Module Documentation

Parameters

out	size	Size in bytes of memory needed to store.	
-----	------	--	--

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.8.2.2 void inv_init_storage_manager ()

Should be called once before using any of the storage methods.

Typically called first by inv_init_mpl().

4.8.2.3 inv_error_t inv_load_mpl_states (const unsigned char * data, size_t length)

This function takes a block of data that has been saved in non-volatile memory and pushes to the proper locations.

Multiple error checks are performed on the data.

Parameters

in	data	Data that was saved to be loaded up by MPL
in	length	Length of data vector in bytes

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.8.2.4 inv_error_t inv_register_load_store (inv_error_t(*)(const unsigned char *data) load_func, inv_error_t(*)(unsigned char *data) save_func, size_t size, unsigned int key)

Used to register your mechanism to load and store non-volative data.

This should typical be called during the enable function for your feature.

Parameters

in	load_func	function pointer you will use to receive data that was stored
		for you.
in	save_func	function pointer you will use to save any data you want
		saved to non-volatile memory between runs.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.8 storage_manager

69

in	size	The size in bytes of the amount of data you want loaded and
		saved.
in	key	The key associated with your data type should be unique
		across MPL. The key should change when your type of data
		for storage changes.

Returns

Returns INV_SUCCESS if successful or an error code if not.

4.8.2.5 inv_error_t inv_save_mpl_states (unsigned char * data, size_t sz)

This function fills up a block of memory to be stored in non-volatile memory.

Parameters

ſ	out	data	Place to store data, size of sz, must be at least size returned
			by inv_get_mpl_state_size()
Ī	in	SZ	Size of data.

Returns

Returns INV_SUCCESS if successful or an error code if not.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.9 accel_calibration

Accel calibration.

Files

70

• file accel_auto_cal.c Accel calibration.

Defines

#define INV_ACCEL_CAL_SAVE_KEY (8230)
 Change this key if the definition of the struct auto_cal_obj_t changes.

Functions

- inv_error_t inv_disable_in_use_auto_calibration (void)

 Disables an algorithm to set accel biases.
- inv_error_t inv_enable_in_use_auto_calibration (void)

Turns on an algorithm to set accel biases.

- inv_error_t inv_init_in_use_auto_calibration (void)
 - Init in-use auto calibration.
- inv_error_t inv_start_in_use_auto_calibration (void)

Start accel bias calibration.

inv_error_t inv_stop_in_use_auto_calibration (void)

Turns on an algorithm to set accel biases.

4.9.1 Detailed Description

Accel calibration.

4.9.2 Define Documentation

4.9.2.1 #define INV_ACCEL_CAL_SAVE_KEY (8230)

Change this key if the definition of the struct auto_cal_obj_t changes.

Previous keys: 8227, 8228, 8229

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.9 accel_calibration

71

4.9.3 Function Documentation

4.9.3.1 inv_error_t inv_disable_in_use_auto_calibration (void)

Disables an algorithm to set accel biases.

Typically called once per session. See inv_stop_in_use_auto_calibration() to stop the algorithm.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.9.3.2 inv_error_t inv_enable_in_use_auto_calibration (void)

Turns on an algorithm to set accel biases.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.9.3.3 inv_error_t inv_start_in_use_auto_calibration (void)

Start accel bias calibration.

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by invs.top_in_use_auto_calibration().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.9.3.4 inv_error_t inv_stop_in_use_auto_calibration (void)

Turns on an algorithm to set accel biases.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

72 Module Documentation

4.10 small_motion_compass_cal

Calibrates a compass quickly using gyro's but is less accurate than other algorithms.

Files

• file compass_bias_w_gyro.c

Functions

- inv_error_t inv_disable_compass_bias_w_gyro (void)
 - Turns off a compass bias from from gyro aglorithm.
- inv_error_t inv_enable_compass_bias_w_gyro (void)
 - Turns on a compass bias from from gyro aglorithm.
- void inv_init_compass_bias_w_gyro ()
 - Initializes/Resets this module.
- inv_error_t inv_start_compass_bias_w_gyro (void)
 - Allows the user to start the coarse compass bias algorithm.
- inv_error_t inv_stop_compass_bias_w_gyro (void)
 - Allows the user to stop the coarse compass bias algorithm.

4.10.1 Detailed Description

Calibrates a compass quickly using gyro's but is less accurate than other algorithms.

4.10.2 Function Documentation

4.10.2.1 inv_error_t inv_disable_compass_bias_w_gyro (void)

Turns off a compass bias from from gyro aglorithm.

It is typically only called once per session. It does not return a motion state.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.10 small_motion_compass_cal

73

4.10.2.2 inv_error_t inv_enable_compass_bias_w_gyro (void)

Turns on a compass bias from from gyro aglorithm.

This may be called after inv_enable_mpl() and before inv_start_mpl(). It is typically only called once per session. It will automatically turn off, when the more precise algorithms determine a compass bias solution.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.10.2.3 void inv_init_compass_bias_w_gyro ()

Initializes/Resets this module.

Called by inv_enable_compass_from_gyro().

4.10.2.4 inv_error_t inv_start_compass_bias_w_gyro (void)

Allows the user to start the coarse compass bias algorithm.

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_compass_bias_w_gyro().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.10.2.5 inv_error_t inv_stop_compass_bias_w_gyro (void)

Allows the user to stop the coarse compass bias algorithm.

To start the algorithm back up call inv_start_compass_bias_w_gyro()

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

74 Module Documentation

4.11 compass_fit

A precise compass bias algorithm.

Files

• file compass_fit.c

Functions

- inv_error_t inv_disable_compass_fit (void)

 Disables the compass fit algorithm.
- inv_error_t inv_enable_compass_fit (void)

 Enables the compass fit algorithm.
- void inv_init_compass_fit ()

Initializes/Resets this module.

- inv_error_t inv_start_compass_fit (void)
 - Starts the compass fit algorithm.
- inv_error_t inv_stop_compass_fit (void)

 Stops the compass fit algorithm.

4.11.1 Detailed Description

A precise compass bias algorithm.

4.11.2 Function Documentation

4.11.2.1 inv_error_t inv_disable_compass_fit (void)

Disables the compass fit algorithm.

Should only be called once per library load when you wish to remove this functionality. See inv_stop_compass_fit() if you wish to simply stop the algorithm.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.11 compass_fit

75

4.11.2.2 inv_error_t inv_enable_compass_fit (void)

Enables the compass fit algorithm.

This should only be called once per library load. See inv_start_compass_fit() and inv_stop_compass_fit() for starting and stopping. Automatically calls inv_start_compass_fit() and inv_init_compass_fit(). Mutually exclusive with inv_enable_vector_compass_cal().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.11.2.3 void inv_init_compass_fit ()

Initializes/Resets this module.

Called by inv_enable_compass_fit().

4.11.2.4 inv_error_t inv_start_compass_fit (void)

Starts the compass fit algorithm.

This is automatically called by inv_enable_compass_fit() and only needs to be called after a call to inv_stop_compass_fit().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.11.2.5 inv_error_t inv_stop_compass_fit (void)

Stops the compass fit algorithm.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

76 Module Documentation

4.12 compass_vector_cal

A compass calibration algorithm that is mutually exclusive with compass_fit.

Files

• file compass_fit.c

Functions

- inv_error_t inv_disable_vector_compass_cal (void)
 Disables a precise compass bias algorithm.
- inv_error_t inv_enable_vector_compass_cal (void)

 Enables a precise compass bias algorithm.
- inv_error_t inv_init_vector_compass_cal (void)

Initializes/Resets this module.

- inv_error_t inv_start_vector_compass_cal (void)
 - Allows the user to start a precise compass bias algorithm.
- inv_error_t inv_stop_vector_compass_cal (void)

 Allows the user to stop a precise compass bias algorithm.

4.12.1 Detailed Description

A compass calibration algorithm that is mutually exclusive with compass_fit.

4.12.2 Function Documentation

4.12.2.1 inv_error_t inv_disable_vector_compass_cal (void)

Disables a precise compass bias algorithm.

Should only be called once per library load when you wish to remove this functionality. See inv_stop_vector_compass_cal() if you wish to simply stop the algorithm.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.12 compass_vector_cal

77

4.12.2.2 inv_error_t inv_enable_vector_compass_cal (void)

Enables a precise compass bias algorithm.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state. Mutually exclusive with inv_enable_compass_fit().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.12.2.3 inv_error_t inv init vector compass cal (void)

Initializes/Resets this module.

Called by inv_enable_vector_compass_cal(). If you are calling this for testing, you probably also want to call inv_init_adv_fusion_obj()

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.12.2.4 inv_error_t inv_start_vector_compass_cal (void)

Allows the user to start a precise compass bias algorithm.

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_vector_compass_cal().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.12.2.5 inv_error_t inv_stop_vector_compass_cal (void)

Allows the user to stop a precise compass bias algorithm.

To start the algorithm back up call inv_start_vector_compass_cal()

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

78

4.13 fast_no_mot

Fast no motion algorithm used to set the gyro bias.

Files

• file fast_no_motion.c

Fast no motion algorithm.

Functions

• void int_set_fast_nomot_gyro_threshold (long long thresh)

Sets internal threshold for fast no motion.

inv_error_t inv_disable_fast_nomot (void)

Turns off a faster Motion/No Motion to set gyro biases (see inv_enable_fast_nomot()).

• inv_error_t inv_enable_fast_nomot (void)

Turns on a faster Motion/No Motion to set gyro biases.

• void inv_fast_nomot_set_gyro_bias (struct inv_sensor_cal_t *sensor_cal)

Used to set gyro bias when no motion is detected.

• void inv_get_fast_nomot_accel_param (long *cntr, long long *param)

This is used to help set inv_set_fast_nomot_accel_threshold().

• void inv_get_fast_nomot_compass_param (long *cntr, long long *param)

 $This is used to help set inv_set_fast_nomot_compass_threshold().$

long long inv_get_fnm_gyro_no_motion_param (void)

Get gyro parameters.

inv_error_t inv_init_fast_nomot (void)

Initializes the fast no motion algorithm.

• void inv_set_default_number_of_samples (int count)

Set default number of samples.

• void inv_set_fast_nomot_accel_threshold (long long thresh)

Used to set internal threshold.

• void inv_set_fast_nomot_compass_threshold (long long thresh)

Used to set internal threshold.

• inv_error_t inv_start_fast_nomot (void)

Allows the user to start the fast no motion algorithm.

• inv_error_t inv_stop_fast_nomot (void)

Allows the user to stop the fast no motion algorithm.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.13 fast_no_mot 79

4.13.1 Detailed Description

Fast no motion algorithm used to set the gyro bias.

4.13.2 Function Documentation

4.13.2.1 inv_error_t inv_disable_fast_nomot (void)

Turns off a faster Motion/No Motion to set gyro biases (see inv_enable_fast_nomot()).

It is typically only called once per session. It does not return a motion state. It is mutually exclusive with inv_enable_motion_no_motion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.13.2.2 inv_error_t inv_enable_fast_nomot (void)

Turns on a faster Motion/No Motion to set gyro biases.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state. It is mutually exclusive with inv_enable_motion_no_motion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.13.2.3 void inv_fast_nomot_set_gyro_bias (struct inv_sensor_cal_t * sensor_cal)

Used to set gyro bias when no motion is detected.

Parameters

in	sensor_cal,: pointer of the sensor data strurcture

4.13.2.4 void inv_get_fast_nomot_accel_param (long * cntr, long long * param)

This is used to help set inv_set_fast_nomot_accel_threshold().

cntr is incremented each time there is a new value of param. 100 new values should be sorted from low to high and the 97th value should be used as the threshold parameter

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

for inv_set_fast_nomot_accel_threshold(). The compass must be on.

Parameters

80

out	cntr	Counter for when param changes
out	param	Parameter used to help set threshold

4.13.2.5 void inv_get_fast_nomot_compass_param (long * cntr, long long * param)

This is used to help set inv_set_fast_nomot_compass_threshold().

cntr is incremented each time there is a new value of param. 100 new values should be sorted from low to high and the 97th value should be used as the threshold in inv_set_fast_nomot_compass_threshold(). The compass must be on.

Parameters

out	cntr	Counter for when param changes
out	param	Parameter used to help set threshold

4.13.2.6 inv_error_t inv_init_fast_nomot (void)

Initializes the fast no motion algorithm.

Automatically called by inv_enable_fast_nomot(). Not typically called by the user.

Returns

INV SUCCESS on success or an error code if call was not successful.

4.13.2.7 void inv set default number of samples (int count)

Set default number of samples.

Not typically called by users.

Parameters

in N Number of samples to use for algorithm	
---	--

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.13 fast_no_mot

81

4.13.2.8 void inv_set_fast_nomot_accel_threshold (long long thresh)

Used to set internal threshold.

This may need to be set based upon device environment. See inv_get_fast_nomot_-accel_param() for values a range of values to set this too.

Parameters

in	thresh	

4.13.2.9 void inv_set_fast_nomot_compass_threshold (long long thresh)

Used to set internal threshold.

This may need to be set based upon device environment. See inv_get_fast_nomot_compass_param() for values a range of values to set this too.

Parameters

in	thresh	

4.13.2.10 inv_error_t inv_start_fast_nomot (void)

Allows the user to start the fast no motion algorithm.

It is automatically in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_fast_nomot().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.13.2.11 inv_error_t inv_stop_fast_nomot (void)

Allows the user to stop the fast no motion algorithm.

See inv_start_fast_nomot() to start the algorithm back up.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

82

4.14 nine axis fusion

Performs nine axis sensor fusion.

Files

• file fusion_9axis.c

Performs nine axis sensor fusion.

Functions

- inv_error_t inv_9x_fusion_enable_jitter_reduction (int en)

 This enables the jitter reduction feature.
- inv_error_t inv_9x_fusion_set_mag_fb (double fb)

 This sets the magnetic feedback.
- inv_error_t inv_9x_fusion_use_timestamps (int en)

Use timestamps when evaluating compass correction gain.

- inv_error_t inv_disable_9x_sensor_fusion ()
 - Disables the 9 axis sensor fusion algorithm.
- inv_error_t inv_enable_9x_sensor_fusion (void)

Enables the 9 axis sensor fusion algorithm.

- void inv_init_9x_fusion (void)
 - Initializes the algorithm.
- inv_error_t inv_start_9x_sensor_fusion (void)
 - Starts the 9 axis sensor fusion.
- inv_error_t inv_stop_9x_sensor_fusion (void)
 - Stops the 9 axis sensor fusion from running.
- int inv_verify_9x_fusion_data (float *data)

Verify that the 9-axis quaternion data is correctedly encrypted.

4.14.1 Detailed Description

Performs nine axis sensor fusion.

4.14.2 Function Documentation

4.14.2.1 inv_error_t inv_9x_fusion_enable_jitter_reduction (int en)

This enables the jitter reduction feature.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.14 nine_axis_fusion

83

Parameters

in	en	Should be non-zero to enable the feature. Initialized to 0,	
		i.e. off	

Returns

heading correction angle

4.14.2.2 inv_error_t inv_9x_fusion_set_mag_fb (double fb)

This sets the magnetic feedback.

Increasing it results in faster compass correction in the 9 axis quaternion.

Parameters

in	fb	Desired magnetic feedback value. Typical value is 1. Also,
		initialized to 1 in inv_init_9x_fusion.

Returns

heading correction angle

4.14.2.3 inv_error_t inv_9x_fusion_use_timestamps (int en)

Use timestamps when evaluating compass correction gain.

This feature should be used when the MPL is not receiving compass data at a constant rate.

Parameters

	1	in	en	1 to enable the feature.
--	---	----	----	--------------------------

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.14.2.4 inv_error_t inv_disable_9x_sensor_fusion ()

Disables the 9 axis sensor fusion algorithm.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

Module Documentation

84

Should only be called once per library load when you wish to remove this functionality. See inv_stop_9x_sensor_fusion() if you wish to simply stop the algorithm.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.14.2.5 inv_error_t inv_enable_9x_sensor_fusion (void)

Enables the 9 axis sensor fusion algorithm.

This should only be called once per library load. See inv_start_9x_sensor_fusion() and inv_stop_9x_sensor_fusion() for starting and stopping. Automatically calls inv_start_9x_sensor_fusion() and inv_init_9x_fusion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.14.2.6 void inv_init_9x_fusion (void)

Initializes the algorithm.

Automatically called by inv_enable_9x_sensor_fusion(). Not normally called by users.

4.14.2.7 inv_error_t inv_start_9x_sensor_fusion (void)

Starts the 9 axis sensor fusion.

Automatically called by inv_enable_9x_sensor_fusion() and only needs to be called after stopping with inv_stop_9x_sensor_fusion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.14.2.8 inv_error_t inv_stop_9x_sensor_fusion (void)

Stops the 9 axis sensor fusion from running.

See inv_start_9x_sensor_fusion() to start it back up again.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.14 nine_axis_fusion

85

4.14.2.9 int inv_verify_9x_fusion_data (float * data)

Verify that the 9-axis quaternion data is correctedly encrypted.

Parameters

in	data	Quaternion data to be compared with our version stored in-
		ternally. If encrypted correctly, return 1. If no DMP is used
		in the 9-axis quaternion, return 2. If encrypted incorrectly,
		return 0. If quaternion data is identity, return -1.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.15 gyro_tc

Gyro Temperature Compensation algorithm.

Files

86

• file gyro_tc.c

Gyro bias temperature compensation.

Defines

• #define INV_GTC_SAVE_KEY (308)

Change this key if the definition of the struct inv_gtc changes.

Functions

- inv_error_t inv_disable_gyro_tc (void)
 - Enable the gyro temp comp algorithm.
- inv_error_t inv_enable_gyro_tc (void)
 - Enable the gyro temp comp algorithm.
- inv_error_t inv_init_gyro_ts (void)
 - Reset the gyro temp slope.
- inv_error_t inv_start_gyro_tc (void)
 - Registers callback to receive new temperature data.
- inv_error_t inv_stop_gyro_tc (void)
 - Unregisters callback.

4.15.1 Detailed Description

Gyro Temperature Compensation algorithm.

4.15.2 Define Documentation

4.15.2.1 #define INV_GTC_SAVE_KEY (308)

Change this key if the definition of the struct inv_gtc changes.

Previous keys: -none-

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.15 gyro_tc 87

4.15.3 Function Documentation

4.15.3.1 inv_error_t inv_disable_gyro_tc (void)

Enable the gyro temp comp algorithm.

Returns

INV_SUCCESS if successful.

4.15.3.2 inv_error_t inv_enable_gyro_tc (void)

Enable the gyro temp comp algorithm.

Returns

INV_SUCCESS if successful.

4.15.3.3 inv_error_t inv_init_gyro_ts (void)

Reset the gyro temp slope.

Returns

INV_SUCCESS if successful.

4.15.3.4 inv_error_t inv_start_gyro_tc (void)

Registers callback to receive new temperature data.

Returns

INV_SUCCESS if successful.

4.15.3.5 inv_error_t inv_stop_gyro_tc (void)

Unregisters callback.

Returns

INV_SUCCESS if successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

88 Module Documentation

4.16 heading_from_gyro

A less accurate but fast algorithm for 9 axis sensor fusion.

Files

• file heading_from_gyro.c

Functions

- inv_error_t inv_disable_heading_from_gyro (void)
 - Turns off a heading from gyro.
- inv_error_t inv_enable_heading_from_gyro (void)

Turns on a heading from gyro algorithm which performs sensor fusion when the compass bias hasn't been fully solved for.

• void inv_init_heading_from_gyro (void)

Initializes/Resets this module.

- inv_error_t inv_start_heading_from_gyro (void)
 - Registers callback to recieve gyro and compass data.
- inv_error_t inv_stop_heading_from_gyro (void)

Unregisters callback.

4.16.1 Detailed Description

A less accurate but fast algorithm for 9 axis sensor fusion.

4.16.2 Function Documentation

4.16.2.1 inv_error_t inv_disable_heading_from_gyro (void)

Turns off a heading from gyro.

It is typically only called once per session.

Returns

INV_SUCCESS if successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.16 heading_from_gyro

89

4.16.2.2 inv_error_t inv_enable_heading_from_gyro (void)

Turns on a heading from gyro algorithm which performs sensor fusion when the compass bias hasn't been fully solved for.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session.

Returns

INV_SUCCESS if successful.

4.16.2.3 void inv_init_heading_from_gyro (void)

Initializes/Resets this module.

Called by inv_enable_heading_from_gyro().

Returns

INV_SUCCESS if successful.

4.16.2.4 inv_error_t inv_start_heading_from_gyro (void)

Registers callback to recieve gyro and compass data.

Returns

INV_SUCCESS if successful.

4.16.2.5 inv_error_t inv_stop_heading_from_gyro (void)

Unregisters callback.

Returns

INV_SUCCESS if successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

4.17 mag_disturb

Determines magnetic disturbances and sets compass accuracy appropriately.

Files

90

• file mag_disturb.c

Functions

- inv_error_t inv_disable_magnetic_disturbance (void)
 - Turns off a magnetic disturbance algorithm (see inv_enable_magnetic_disturbance()).
- void inv_disable_magnetic_disturbance_logging (void)
 - Disables the magnetic disturbance algorithm's verbose mode.
- inv_error_t inv_enable_magnetic_disturbance (void)
 - Enables a magnetic disturbance algorithm.
- void inv_enable_magnetic_disturbance_logging (void)
 - Enables the magnetic disturbance algorithm's verbose mode.
- inv_error_t inv_start_magnetic_disturbance (void)
 - Allows the user to start the magnetic disturbance algorithm.
- inv_error_t inv_stop_magnetic_disturbance (void)
 - Allows the user to stop the magnetic disturbance algorithm.

4.17.1 Detailed Description

Determines magnetic disturbances and sets compass accuracy appropriately.

4.17.2 Function Documentation

4.17.2.1 inv_error_t inv_disable_magnetic_disturbance(void)

Turns off a magnetic disturbance algorithm (see inv_enable_magnetic_disturbance()).

It is typically only called once per session. See inv_stop_magnetic_disturbance() to stop the algorithm

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.17 mag_disturb

91

4.17.2.2 void inv_disable_magnetic_disturbance_logging (void)

Disables the magnetic disturbance algorithm's verbose mode.

Debugging info are typically turned off in a production build as the extensive logging may cause performance degradation.

4.17.2.3 inv_error_t inv_enable_magnetic_disturbance (void)

Enables a magnetic disturbance algorithm.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.17.2.4 void inv enable magnetic disturbance logging (void)

Enables the magnetic disturbance algorithm's verbose mode.

The verbose mode causes the algorithm to print debugging information at every step of execution. Debugging info are typically turned off in a production build as the extensive logging may cause performance degradation.

4.17.2.5 inv_error_t inv start magnetic disturbance (void)

Allows the user to start the magnetic disturbance algorithm.

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_magnetic_disturbance().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.17.2.6 inv_error_t inv_stop_magnetic_disturbance (void)

Allows the user to stop the magnetic disturbance algorithm.

To start the algorithm back up call inv_start_no_gyro_fusion()

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

Module Documentation

4.18 motion_no_motion

A motion detection algorithm that is used to set gyro bias when the device is not moving.

Files

92

• file motion_no_motion.c

A motion detection algorithm that is used to set gyro bias when the device is not moving.

Functions

• inv_error_t inv_disable_motion_no_motion (void)

Turns off Motion/No Motion to set gyro biases (see inv_enable_motion_no_motion()).

• inv_error_t inv_enable_motion_no_motion ()

Turns on Motion/No Motion used to set gyro biases.

• inv_error_t inv_init_motion_no_motion (void)

Initializes the motion no motion algorithm.

• inv_error_t inv_set_no_motion_time (long time_ms)

Allows the user to set the time to be in a no motion state before setting the gyro bias.

• inv_error_t inv_start_motion_no_motion (void)

Allows the user to start the no motion algorithm.

• inv_error_t inv_stop_motion_no_motion (void)

Allows the user to stop the no motion algorithm.

4.18.1 Detailed Description

A motion detection algorithm that is used to set gyro bias when the device is not moving.

4.18.2 Function Documentation

4.18.2.1 inv_error_t inv_disable_motion_no_motion (void)

Turns off Motion/No Motion to set gyro biases (see inv_enable_motion_no_motion()).

It is typically only called once per session. It does not return a motion state. It is mutually exclusive with inv_enable_fast_nomot().

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.18 motion_no_motion

93

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.18.2.2 inv_error_t inv_enable_motion_no_motion()

Turns on Motion/No Motion used to set gyro biases.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state. It is mutually exclusive with inv_enable_motion_no_motion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.18.2.3 inv_error_t inv_init_motion_no_motion (void)

Initializes the motion no motion algorithm.

Automatically called by inv_enable_motion_no_motion(). Not typically called by the user.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.18.2.4 inv_error_t inv_set_no_motion_time (long time_ms)

Allows the user to set the time to be in a no motion state before setting the gyro bias.

Parameters

in	time_ms	Time in milliseconds. Default is 8000ms or 8 seconds.

Returns

INV SUCCESS on success or an error code if call was not successful.

4.18.2.5 inv_error_t inv_start_motion_no_motion (void)

Allows the user to start the no motion algorithm.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

Module Documentation

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_motion_no_motion().

Returns

94

INV_SUCCESS on success or an error code if call was not successful.

4.18.2.6 inv_error_t inv_stop_motion_no_motion (void)

Allows the user to stop the no motion algorithm.

See inv_start_motion_no_motion() to start the algorithm back up.

Returns

INV_SUCCESS on success or an error code if call was not successful.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.19 no_gyro_fusion

95

4.19 no_gyro_fusion

Accel/Compass Sensor fusion.

Files

• file no_gyro_fusion.c

Accel/Compass Sensor fusion.

Functions

• inv_error_t inv_disable_no_gyro_fusion (void)

Turns off a sensor fusion using accel and compass only (see inv_enable_no_gyro_fusion()).

• inv_error_t inv_enable_no_gyro_fusion (void)

Enables a sensor fusion using accel and compass only.

• inv_error_t inv_init_no_gyro_fusion (void)

Initializes the algorithm.

• inv_error_t inv_start_no_gyro_fusion (void)

Allows the user to start the sensor fusion using accel and compass only algorithm.

• inv_error_t inv_stop_no_gyro_fusion (void)

Allows the user to stop the sensor fusion using accel and compass only algorithm.

• int inv_verify_no_gyro_fusion_data (float *data)

Verify that the 6-axis geomagnetic quaternion data is correctedly encrypted.

4.19.1 Detailed Description

Accel/Compass Sensor fusion.

4.19.2 Function Documentation

4.19.2.1 inv_error_t inv_disable_no_gyro_fusion (void)

Turns off a sensor fusion using accel and compass only (see inv_enable_no_gyro_fusion()).

It is typically only called once per session. See inv_stop_no_gyro_fusion() to stop the algorithm

Returns

INV_SUCCESS on success or an error code if call was not successful.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

96 Module Documentation

4.19.2.2 inv_error_t inv_enable_no_gyro_fusion (void)

Enables a sensor fusion using accel and compass only.

This may be called after inv_init_mpl() and before inv_start_mpl(). It is typically only called once per session. It does not return a motion state.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.19.2.3 inv_error_t inv_init_no_gyro_fusion (void

Initializes the algorithm.

Automatically called by the enable function.

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.19.2.4 inv_error_t inv_start_no_gyro_fusion (void)

Allows the user to start the sensor fusion using accel and compass only algorithm.

It is automatically called in start mode after an enable. This function only needs to be called to start after a stop command generated by inv_stop_no_gyro_fusion().

Returns

INV_SUCCESS on success or an error code if call was not successful.

4.19.2.5 inv_error_t inv_stop_no_gyro_fusion (void)

Allows the user to stop the sensor fusion using accel and compass only algorithm.

See inv_start_no_gyro_fusion() to start the algorithm back up call inv_start_no_gyro_fusion()

Returns

INV_SUCCESS on success or an error code if call was not successful.

Generated on Wed Nov 27 2013 16:25:55 for MLSDK by Doxygen

CONFIDENTIAL & PROPRIETARY

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

4.19 no_gyro_fusion

97

4.19.2.6 int inv_verify_no_gyro_fusion_data (float * data)

Verify that the 6-axis geomagnetic quaternion data is correctedly encrypted.

Parameters

in	data	Quaternion data to be compared with our version stored in-
		ternally. If encrypted correctly, return 1. If encrypted incor-
		rectly, return 0. If quaternion data is identity, return -1.

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date : 11/27/2013

Index

INV_GIC_SAVE_KEY	inv_get_9_axis_timestamp, 11
gyro_tc, 86	inv_get_accel_accuracy, 11
	inv_get_accel_bias, 11
accel_calibration, 70	inv_get_accel_bias_dmp_units, 12
inv_disable_in_use_auto_calibration,	inv_get_accel_on, 12
71	inv_get_accel_sensitivity, 12
inv_enable_in_use_auto_calibration, 71	inv_get_accel_set, 12
inv_start_in_use_auto_calibration, 71	inv_get_compass_bias, 12
inv_stop_in_use_auto_calibration, 71	inv_get_compass_on, 13
	inv_get_compass_sensitivity, 13
compass_fit, 74	inv_get_compass_set, 13
inv_disable_compass_fit, 74	inv_get_compass_set_raw, 13
inv_enable_compass_fit, 74	inv_get_compass_soft_iron_input_data
inv_init_compass_fit, 75	14
inv_start_compass_fit, 75	inv_get_compass_soft_iron_matrix
inv_stop_compass_fit, 75	d, 14
compass_vector_cal, 76	inv_get_compass_soft_iron_matrix
inv_disable_vector_compass_cal, 76	f, 14
inv_enable_vector_compass_cal, 76	inv_get_compass_soft_iron_output
inv_init_vector_compass_cal, 77	data, 14
inv_start_vector_compass_cal, 77	inv_get_factory_accel_bias_mask, 14
inv_stop_vector_compass_cal, 77	inv_get_gyro, 15
data_builder, 3	inv_get_gyro_accuracy, 15
inv_accel_was_turned_off, 7	inv_get_gyro_bias, 15
inv_apply_calibration, 7	inv_get_gyro_bias_dmp_units, 15
inv_appry_canoration, / inv_build_accel, 8	inv_get_gyro_on, 16
inv_build_compass, 8	inv_get_gyro_sensitivity, 16
inv_build_gyro, 9	inv_get_gyro_set, 16
inv_build_quat, 9	inv_get_gyro_set_raw, 16
inv_build_temp, 10	inv_get_last_timestamp, 17
inv_compass_was_turned_off, 10	inv_get_mag_accuracy, 17
inv_execute_on_data, 10	inv_get_mpl_accel_bias, 17
inv_get_6_axis_compass_accel_timestamp,	
10	inv_get_raw_compass, 17
inv_get_6_axis_gyro_accel_timestamp,	inv_get_temp_set, 18
11	inv_gyro_was_turned_off, 18

Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

INDEX 99

```
inv_quaternion_sensor_was_turned_- get_highest_bit_position
         off, 18
                                              ml_math_func, 35
    inv_set_accel_accuracy, 18
                                          gyro_tc, 86
                                              INV_GTC_SAVE_KEY, 86
    inv_set_accel_bandwidth, 18
                                              inv_disable_gyro_tc, 87
    inv_set_accel_bias, 19
    inv_set_accel_bias_mask, 19
                                              inv_enable_gyro_tc, 87
    inv_set_accel_orientation_and_scale,
                                              inv_init_gyro_ts, 87
                                              inv_start_gyro_tc, 87
    inv_set_accel_sample_rate, 20
                                              inv_stop_gyro_tc, 87
    inv_set_compass_bandwidth, 20
                                          hal outputs, 25
    inv_set_compass_bias, 20
                                              inv enable hal outputs, 26
    inv_set_compass_disturbance, 20
                                              inv_generate_hal_outputs, 26
    inv_set_compass_orientation_and_scale,
                                              inv get sensor type accelerometer, 27
                                              inv_get_sensor_type_geomagnetic_rotation-
    inv set compass sample rate, 21
    inv_set_compass_soft_iron_input_data,
                                                   vector, 27
                                              inv_get_sensor_type_gravity, 27
                                              inv_get_sensor_type_gyroscope, 28
    inv_set_compass_soft_iron_matrix_-
                                               inv_get_sensor_type_gyroscope_raw,
         d, 21
    inv_set_compass_soft_iron_matrix_-
                                               inv get sensor type linear acceleration,
         f. 21
    inv_set_gyro_bandwidth, 22
    inv_set_gyro_bias, 22
                                              inv_get_sensor_type_magnetic_field,
    inv_set_gyro_orientation_and_scale, 22
    inv_set_gyro_sample_rate, 22
                                              inv get sensor type magnetic field-
                                                   raw, 29
    inv_set_mpl_gyro_bias, 23
    inv_set_quat_sample_rate, 23
                                              inv_get_sensor_type_orientation, 30
    inv temperature was turned off, 23
                                              inv_get_sensor_type_rotation_vector,
    set_sensor_orientation_and_scale, 23
                                              inv_init_hal_outputs, 32
fast_no_mot, 78
                                              inv start hal outputs, 32
    inv disable fast nomot, 79
                                              inv stop hal outputs, 32
    inv enable fast nomot, 79
                                          heading_from_gyro, 88
    inv_fast_nomot_set_gyro_bias, 79
                                              inv disable heading from gyro, 88
    inv_get_fast_nomot_accel_param, 79
                                              inv_enable_heading_from_gyro, 88
    inv_get_fast_nomot_compass_param,
                                              inv init heading from gyro, 89
                                              inv_start_heading_from_gyro, 89
    inv init fast nomot, 80
                                              inv_stop_heading_from_gyro, 89
    inv_set_default_number_of_samples,
                                          inv_9x_fusion_enable_jitter_reduction
    inv_set_fast_nomot_accel_threshold,
                                              nine_axis_fusion, 82
                                          inv_9x_fusion_set_mag_fb
                                              nine_axis_fusion, 83
    inv_set_fast_nomot_compass_threshold,
                                          inv_9x_fusion_use_timestamps
    inv_start_fast_nomot, 81
                                              nine_axis_fusion, 83
    inv_stop_fast_nomot, 81
                                          inv_accel_was_turned_off
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

100 INDEX

```
data_builder, 7
                                              compass_vector_cal, 76
inv_angle_diff
                                         inv_enable_9x_sensor_fusion
                                              nine_axis_fusion, 84
    ml_math_func, 35
inv_apply_calibration
                                         inv_enable_compass_bias_w_gyro
    data_builder, 7
                                              small_motion_compass_cal, 72
inv build accel
                                         inv enable compass fit
    data_builder, 8
                                              compass_fit, 74
inv build compass
                                         inv enable fast nomot
    data builder, 8
                                              fast no mot, 79
inv build gyro
                                         inv enable gyro tc
    data builder, 9
                                              gyro_tc, 87
inv_build_quat
                                         inv_enable_hal_outputs
    data_builder, 9
                                              hal_outputs, 26
                                         inv_enable_heading_from_gyro
inv build temp
    data_builder, 10
                                              heading_from_gyro, 88
inv_compass_was_turned_off
                                         inv_enable_in_use_auto_calibration
    data_builder, 10
                                              accel_calibration, 71
inv_convert_to_body
                                         inv_enable_magnetic_disturbance
    ml_math_func, 35
                                              mag_disturb, 91
inv_convert_to_body_with_scale
                                         inv_enable_magnetic_disturbance_logging
    ml math func, 36
                                              mag disturb, 91
inv_convert_to_chip
                                         inv_enable_motion_no_motion
    ml math func, 36
                                              motion no motion, 93
inv_disable_9x_sensor_fusion
                                         inv_enable_no_gyro_fusion
    nine axis fusion, 83
                                              no gyro fusion, 95
inv disable compass bias w gyro
                                         inv_enable_quaternion
    small_motion_compass_cal, 72
                                              mpl, 45
inv_disable_compass_fit
                                         inv_enable_vector_compass_cal
    compass fit, 74
                                              compass_vector_cal, 76
inv_disable_fast_nomot
                                         inv_execute_mpl_start_notification
    fast_no_mot, 79
                                              start_manager, 65
inv_disable_gyro_tc
                                         inv_execute_on_data
    gyro_tc, 87
                                              data_builder, 10
inv_disable_heading_from_gyro
                                         inv_fast_nomot_set_gyro_bias
    heading_from_gyro, 88
                                              fast_no_mot, 79
inv_disable_in_use_auto_calibration
                                         inv_fast_sqrt
    accel calibration, 71
                                              ml_math_func, 36
inv disable magnetic disturbance
                                         inv generate hal outputs
    mag disturb, 90
                                              hal outputs, 26
inv_disable_magnetic_disturbance_logging inv_generate_results
    mag_disturb, 90
                                              results_holder, 51
inv_disable_motion_no_motion
                                         inv_get_6_axis_compass_accel_timestamp
    motion no motion, 92
                                              data builder, 10
inv disable no gyro fusion
                                         inv_get_6_axis_gyro_accel_timestamp
    no gyro fusion, 95
                                              data builder, 11
inv_disable_vector_compass_cal
                                         inv_get_6axis_quaternion
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

INDEX 101

```
results_holder, 51
                                               data_builder, 14
inv_get_6axis_quaternion_float
                                           inv_get_compass_state
    results_holder, 51
                                               results_holder, 53
inv_get_9_axis_timestamp
                                           inv_get_earth_magnetic_local_field_parameter
    data_builder, 11
                                               results_holder, 53
inv get acc state
                                           inv get factory accel bias mask
    results_holder, 52
                                               data_builder, 14
inv get accel
                                           inv get fast nomot accel param
    results holder, 52
                                               fast no mot, 79
inv get accel accuracy
                                          inv get fast nomot compass param
    data_builder, 11
                                               fast_no_mot, 80
inv_get_accel_bias
                                          inv_get_geomagnetic_quaternion
    data_builder, 11
                                               results_holder, 54
inv_get_accel_bias_dmp_units
                                           inv_get_geomagnetic_quaternion_float
    data_builder, 12
                                               results_holder, 54
inv_get_accel_compass_confidence_intervalinv_get_gravity
    results_holder, 52
                                               results_holder, 54
inv_get_accel_float
                                           inv_get_gyro
    results_holder, 52
                                               data_builder, 15
inv_get_accel_on
                                           inv_get_gyro_accuracy
    data builder, 12
                                               data builder, 15
                                           inv_get_gyro_bias
inv_get_accel_quaternion
    results holder, 53
                                               data builder, 15
inv_get_accel_sensitivity
                                           inv_get_gyro_bias_dmp_units
    data builder, 12
                                               data builder, 15
inv get accel set
                                           inv get gyro float
    data builder, 12
                                               results holder, 55
inv_get_compass_bias
                                           inv_get_gyro_on
    data_builder, 12
                                               data_builder, 16
inv_get_compass_bias_error
                                           inv_get_gyro_sensitivity
    results_holder, 53
                                               data_builder, 16
inv_get_compass_on
                                           inv_get_gyro_set
    data_builder, 13
                                               data_builder, 16
inv_get_compass_sensitivity
                                           inv_get_gyro_set_raw
    data_builder, 13
                                               data_builder, 16
inv_get_compass_set
                                           inv_get_gyro_sum_of_sqr
    data_builder, 13
                                               ml_math_func, 36
inv get compass set raw
                                           inv get heading confidence interval
    data builder, 13
                                               results holder, 55
inv_get_compass_soft_iron_input_data
                                           inv get large mag field
    data_builder, 14
                                               results_holder, 55
inv_get_compass_soft_iron_matrix_d
                                          inv_get_last_timestamp
    data builder, 14
                                               data builder, 17
inv get compass soft iron matrix f
                                          inv get linear accel
    data builder, 14
                                               results holder, 55
inv_get_compass_soft_iron_output_data
                                          inv_get_linear_accel_float
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

102 INDEX

```
results_holder, 56
                                          inv_get_sensor_type_magnetic_field
inv_get_local_field_status
                                               hal_outputs, 29
    results_holder, 56
                                          inv_get_sensor_type_magnetic_field_raw
inv_get_mag_accuracy
                                               hal_outputs, 29
    data_builder, 17
                                          inv_get_sensor_type_orientation
inv get mag scale
                                               hal outputs, 30
    results_holder, 56
                                          inv_get_sensor_type_rotation_vector
inv get message level 0
                                               hal outputs, 31
    message layer, 42
                                          inv get temp set
inv get motion state
                                               data builder, 18
    results_holder, 57
                                          inv_get_version
inv_get_mpl_accel_bias
                                               mpl, 45
    data_builder, 17
                                          inv_got_accel_bias
inv_get_mpl_gyro_bias
                                               results_holder, 59
    data_builder, 17
                                          inv_got_compass_bias
inv_get_mpl_mag_field_status
                                               results_holder, 59
    results_holder, 57
                                          inv_gyro_was_turned_off
inv_get_mpl_magnetic_local_field_parameter
                                               data_builder, 18
    results_holder, 57
                                          inv_init_9x_fusion
inv_get_mpl_state_size
                                               nine_axis_fusion, 84
    storage_manager, 67
                                          inv init compass bias w gyro
                                               small_motion_compass_cal, 73
inv_get_quaternion
    results holder, 57
                                          inv init compass fit
inv_get_quaternion_float
                                               compass_fit, 75
    results holder, 58
                                          inv init fast nomot
inv get quaternion set
                                               fast no mot, 80
    results holder, 58
                                          inv_init_gyro_ts
inv_get_quaternion_validity
                                               gyro_tc, 87
    results_holder, 58
                                          inv_init_hal_outputs
inv_get_raw_compass
                                               hal_outputs, 32
    data_builder, 17
                                          inv_init_heading_from_gyro
inv_get_result_holder_status
                                               heading_from_gyro, 89
    results_holder, 59
                                          inv_init_motion_no_motion
inv_get_sensor_type_accelerometer
                                               motion_no_motion, 93
                                          inv_init_mpl
    hal_outputs, 27
inv_get_sensor_type_geomagnetic_rotation-
                                               mpl, 45
                                          inv_init_no_gyro_fusion
         _vector
    hal outputs, 27
                                               no gyro fusion, 96
inv_get_sensor_type_gravity
                                          inv_init_quaternion
    hal outputs, 27
                                               mpl, 45
inv_get_sensor_type_gyroscope
                                          inv_init_results_holder
    hal_outputs, 28
                                               results_holder, 59
                                          inv init start manager
inv_get_sensor_type_gyroscope_raw
    hal outputs, 28
                                               start manager, 65
inv_get_sensor_type_linear_acceleration
                                          inv_init_storage_manager
    hal_outputs, 29
                                               storage_manager, 68
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0

Date : 11/27/2013

INDEX 103

```
inv_set_accel_compass_confidence_interval
inv_init_vector_compass_cal
    compass_vector_cal, 77
                                               results_holder, 60
inv_inverse_sqrt
                                          inv_set_accel_orientation_and_scale
    ml_math_func, 37
                                               data builder, 19
inv_load_mpl_states
                                          inv_set_accel_sample_rate
    storage_manager, 68
                                               data builder, 20
inv_one_over_x
                                          inv_set_compass_bandwidth
    ml math func, 37
                                               data builder, 20
inv_orientation_matrix_to_scalar
                                          inv set compass bias
    ml math func, 37
                                               data builder, 20
inv_q29_mult
                                          inv_set_compass_bias_error
    ml_math_func, 38
                                               results holder, 60
inv_q30_mult
                                          inv_set_compass_bias_found
    ml_math_func, 38
                                               results_holder, 61
                                          inv_set_compass_disturbance
inv_q_add
    ml_math_func, 39
                                               data_builder, 20
inv_q_mult
                                          inv_set_compass_orientation_and_scale
    ml_math_func, 39
                                               data_builder, 20
inv_q_norm4
                                          inv_set_compass_sample_rate
    ml_math_func, 39
                                               data_builder, 21
inv q shift mult
                                          inv_set_compass_soft_iron_input_data
    ml_math_func, 39
                                               data_builder, 21
inv_quaternion_sensor_was_turned_off
                                          inv_set_compass_soft_iron_matrix_d
    data_builder, 18
                                               data_builder, 21
inv quaternion to rotation
                                          inv set compass soft iron matrix f
    ml math func, 40
                                               data builder, 21
inv quaternion to rotation vector
                                          inv set compass state
    ml_math_func, 40
                                               results_holder, 61
inv_register_load_store
                                          inv_set_default_number_of_samples
    storage_manager, 68
                                               fast_no_mot, 80
inv_register_mpl_start_notification
                                          inv_set_earth_magnetic_local_field_parameter
    start_manager, 66
                                               results_holder, 61
inv_save_mpl_states
                                          inv_set_fast_nomot_accel_threshold
    storage_manager, 69
                                               fast_no_mot, 80
inv_set_acc_state
                                          inv_set_fast_nomot_compass_threshold
    results_holder, 60
                                               fast_no_mot, 81
inv_set_accel_accuracy
                                          inv_set_gyro_bandwidth
    data builder, 18
                                               data builder, 22
inv_set_accel_bandwidth
                                          inv_set_gyro_bias
    data builder, 18
                                               data builder, 22
inv_set_accel_bias
                                          inv_set_gyro_orientation_and_scale
    data_builder, 19
                                               data builder, 22
inv_set_accel_bias_found
                                          inv set gyro sample rate
    results holder, 60
                                               data builder, 22
inv_set_accel_bias_mask
                                          inv_set_heading_confidence_interval
    data_builder, 19
                                              results holder, 61
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

104 INDEX

```
inv_set_large_mag_field
                                          inv_start_motion_no_motion
    results_holder, 61
                                               motion_no_motion, 93
inv_set_local_field_status
                                          inv_start_mpl
    results holder, 62
                                               mpl, 46
inv_set_local_magnetic_field
                                          inv_start_no_gyro_fusion
    results holder, 62
                                               no_gyro_fusion, 96
                                          inv_start_quaternion
inv_set_mag_scale
    results holder, 62
                                               mpl, 46
                                          inv_start_results_holder
inv set message
                                               results holder, 63
    message layer, 42
inv_set_motion_state
                                          inv_start_vector_compass_cal
    results holder, 62
                                               compass_vector_cal, 77
inv_set_mpl_gyro_bias
                                          inv_stop_9x_sensor_fusion
    data_builder, 23
                                               nine_axis_fusion, 84
inv_set_mpl_mag_field_status
                                          inv_stop_compass_bias_w_gyro
    results_holder, 63
                                               small_motion_compass_cal, 73
inv_set_mpl_magnetic_local_field_parameteinv_stop_compass_fit
    results_holder, 63
                                               compass_fit, 75
inv_set_no_motion_time
                                          inv_stop_fast_nomot
    motion_no_motion, 93
                                               fast_no_mot, 81
inv_set_quat_sample_rate
                                          inv_stop_gyro_tc
    data_builder, 23
                                              gyro_tc, 87
inv_set_quaternion
                                         inv_stop_hal_outputs
    mpl, 46
                                              hal_outputs, 32
inv set quaternion validity
                                          inv stop heading from gyro
    results holder, 63
                                               heading_from_gyro, 89
inv set result holder status
                                          inv stop in use auto calibration
    results_holder, 63
                                               accel_calibration, 71
inv_start_9x_sensor_fusion
                                          inv_stop_magnetic_disturbance
    nine_axis_fusion, 84
                                               mag_disturb, 91
inv_start_compass_bias_w_gyro
                                          inv_stop_motion_no_motion
    small_motion_compass_cal, 73
                                               motion_no_motion, 94
inv_start_compass_fit
                                          inv_stop_no_gyro_fusion
    compass_fit, 75
                                               no_gyro_fusion, 96
inv_start_fast_nomot
                                          inv_stop_quaternion
    fast_no_mot, 81
                                               mpl, 46
inv_start_gyro_tc
                                          inv_stop_vector_compass_cal
    gyro tc, 87
                                               compass vector cal, 77
inv_start_hal_outputs
                                          inv_temperature_was_turned_off
    hal outputs, 32
                                               data builder, 23
inv_start_heading_from_gyro
                                          inv_unregister_mpl_start_notification
    heading_from_gyro, 89
                                               start_manager, 66
inv_start_in_use_auto_calibration
                                          inv vector norm
    accel calibration, 71
                                               ml math func, 40
inv_start_magnetic_disturbance
                                          inv_verify_6x_fusion_data
    mag_disturb, 91
                                               mpl, 46
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

INDEX 105

```
inv_verify_9x_fusion_data
                                               inv_start_motion_no_motion, 93
    nine_axis_fusion, 84
                                               inv_stop_motion_no_motion, 94
inv_verify_no_gyro_fusion_data
                                          mpl, 44
    no_gyro_fusion, 96
                                               inv_enable_quaternion, 45
                                               inv_get_version, 45
inv_wrap_angle
    ml\_math\_func, 41
                                               inv_init_mpl, 45
                                               inv_init_quaternion, 45
mag_disturb, 90
                                               inv_set_quaternion, 46
    inv_disable_magnetic_disturbance, 90
                                               inv_start_mpl, 46
    inv\_disable\_magnetic\_disturbance\_logging, inv\_start\_quaternion, 46
                                               inv_stop_quaternion, 46
    inv_enable_magnetic_disturbance, 91
                                               inv_verify_6x_fusion_data, 46
    inv_enable_magnetic_disturbance_logging,
                                          nine axis fusion, 82
    inv start magnetic disturbance, 91
                                               inv_9x_fusion_enable_jitter_reduction,
    inv stop magnetic disturbance, 91
message_layer, 42
                                               inv_9x_fusion_set_mag_fb, 83
    inv_get_message_level_0, 42
                                               inv_9x_fusion_use_timestamps, 83
    inv_set_message, 42
                                               inv_disable_9x_sensor_fusion, 83
ml_math_func, 33
                                               inv enable 9x sensor fusion, 84
    get highest bit position, 35
                                               inv init 9x fusion, 84
    inv angle diff, 35
                                               inv_start_9x_sensor_fusion, 84
    inv_convert_to_body, 35
                                               inv_stop_9x_sensor_fusion, 84
    inv_convert_to_body_with_scale, 36
                                               inv_verify_9x_fusion_data, 84
    inv_convert_to_chip, 36
                                          no gyro fusion, 95
    inv_fast_sqrt, 36
                                               inv_disable_no_gyro_fusion, 95
    inv_get_gyro_sum_of_sqr, 36
                                               inv_enable_no_gyro_fusion, 95
    inv_inverse_sqrt, 37
                                               inv_init_no_gyro_fusion, 96
    inv one over x, 37
                                               inv_start_no_gyro_fusion, 96
    inv_orientation_matrix_to_scalar, 37
                                               inv_stop_no_gyro_fusion, 96
    inv_q29_mult, 38
                                               inv verify no gyro fusion data, 96
    inv q30 mult, 38
    inv q add, 39
                                          results holder, 48
    inv_q_mult, 39
                                               inv generate results, 51
    inv_q_norm4, 39
                                               inv_get_6axis_quaternion, 51
    inv_q_shift_mult, 39
                                               inv_get_6axis_quaternion_float, 51
    inv quaternion to rotation, 40
                                               inv get acc state, 52
    inv quaternion to rotation vector, 40
                                               inv get accel, 52
    inv_vector_norm, 40
                                               inv_get_accel_compass_confidence_-
    inv wrap angle, 41
                                                    interval, 52
    test_limits_and_scale, 41
                                               inv_get_accel_float, 52
motion no motion, 92
                                               inv_get_accel_quaternion, 53
    inv disable motion no motion, 92
                                               inv get compass bias error, 53
    inv enable motion no motion, 93
                                               inv get compass state, 53
    inv_init_motion_no_motion, 93
                                               inv_get_earth_magnetic_local_field_-
    inv_set_no_motion_time, 93
                                                    parameter, 53
```


Doc : SW-MA-AND-REL-5.2.0-K

Doc Rev: 1.0 Date: 11/27/2013

106 INDEX

```
inv_get_geomagnetic_quaternion, 54 set_sensor_orientation_and_scale
inv_get_geomagnetic_quaternion_float,
                                          data_builder, 23
    54
                                      small_motion_compass_cal, 72
inv_get_gravity, 54
                                          inv_disable_compass_bias_w_gyro, 72
inv_get_gyro_float, 55
                                          inv_enable_compass_bias_w_gyro, 72
inv_get_heading_confidence_interval,
                                          inv_init_compass_bias_w_gyro, 73
    55
                                          inv_start_compass_bias_w_gyro, 73
inv get large mag field, 55
                                          inv stop compass bias w gyro, 73
inv get linear accel, 55
                                      start manager, 65
inv get linear accel float, 56
                                          inv_execute_mpl_start_notification, 65
inv_get_local_field_status, 56
                                          inv_init_start_manager, 65
                                          inv_register_mpl_start_notification, 66
inv_get_mag_scale, 56
inv_get_motion_state, 57
                                          inv_unregister_mpl_start_notification,
inv_get_mpl_mag_field_status, 57
                                               66
inv_get_mpl_magnetic_local_field_paratnetige_manager, 67
    57
                                          inv_get_mpl_state_size, 67
inv_get_quaternion, 57
                                          inv_init_storage_manager, 68
inv_get_quaternion_float, 58
                                          inv_load_mpl_states, 68
inv_get_quaternion_set, 58
                                          inv_register_load_store, 68
inv_get_quaternion_validity, 58
                                          inv_save_mpl_states, 69
inv_get_result_holder_status, 59
                                      test_limits_and_scale
inv_got_accel_bias, 59
                                          ml_math_func, 41
inv got compass bias, 59
inv_init_results_holder, 59
inv set acc state, 60
inv set accel bias found, 60
inv_set_accel_compass_confidence_-
    interval, 60
inv_set_compass_bias_error, 60
inv_set_compass_bias_found, 61
inv_set_compass_state, 61
inv_set_earth_magnetic_local_field_-
    parameter, 61
inv_set_heading_confidence_interval,
    61
inv_set_large_mag_field, 61
inv_set_local_field_status, 62
inv set local magnetic field, 62
inv_set_mag_scale, 62
inv set motion state, 62
inv_set_mpl_mag_field_status, 63
inv_set_mpl_magnetic_local_field_parameter,
    63
inv set quaternion validity, 63
inv_set_result_holder_status, 63
inv_start_results_holder, 63
```