Prop:
$$\lambda_n \leq \frac{u^T A u}{u^T u} \leq \lambda_1$$
 (A sym)

Each '=' holds if and only if u is the associated eigenvector.

Proof We prove the second inequality:

max uTAu = max (uT) A (u)

u +0 uTu = u+0 (|u|) A (|u|)

very

max vTAv

|w||=|

Let $A = U(\lambda_1)UT$ be the eigenvalue decomposition, then

VTAV = VTUNUTY = WTAW

$$= \lambda_1 W_1^2 + \lambda_2 W_2^2 + \dots + \lambda_n W_n^2$$
where $11W1 = 1$ $1 = 11V1 = 1$

Then
$$\max_{uvu=1} v^T A v = \max_{uvu=1} v^T U \wedge U^T v$$

$$\stackrel{W=U^{T}V}{=} \max_{|W|=1} W^{T} \wedge W$$

where the maximum value
$$\lambda_1$$
 is achieved if $W_1^2 = 1$ and $W_2^2 = W_2^2 = 0$. In this case, $W = (1, 0, -1, 0)^T$,

$$V = UW = \left(\begin{array}{c} u(0) & u(0) \\ u(0) & u(0) \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} u(0) \\ 0 \end{array} \right)$$

which is a normalized eigenvector

associated to
$$\lambda_1$$
 $u = \overline{M} = V = u^{(1)}$

Proof for the first inequality is similar with inax' replaced by "min"

Next, we generalize the proposition to any eigenvalue. Write the eigenvalue doesnip

$$A = U \wedge U = \begin{pmatrix} u & 1 \\ u & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix} \begin{pmatrix} u \\ u \end{pmatrix}$$

Let $S_k = spem\{u^{(i)}, u^{(k)}\}, S_o = \phi$

then
$$S_{k}^{\perp} = span \{ u^{(k+1)}, u^{(n)} \}$$

Kop:
$$u \perp S_{k-1}$$
 $u \perp U = 1$
 $u \perp S_{k-1}$ $u \perp U = 1$
 $u \perp S_{k-1}$

Then $\max_{\|v\|=1} \sqrt{1}Av = \max_{\|v\|=1} \sqrt{1}Av$

 $\frac{2}{\|w\|_{2}} \frac{w_{k_1}^2}{\|w\|_{2}} \frac{\lambda_k w_k^2 + \dots + \lambda_n w_n^2}{\|w\|_{2}}$

which achieves the maximum λ_k when $W_{k+1} = \dots = W_h = 0$

Recall: U) For ID sample points $y_1, \dots, y_n \in \mathbb{R}$ their sample mean is $u \stackrel{\text{def}}{=} 1 \stackrel{\Sigma}{=} y_j$

their sample variance is $\frac{1}{n} \sum_{j=1}^{n} (x_j - x_j)^2$