

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 60-246568

(43)Date of publication of application : 06.12.1985

(51)Int.CI.

H01M 8/02

(21)Application number : 59-103220

(71)Applicant : FUJI ELECTRIC CORP RES & DEV
LTD
FUJI ELECTRIC CO LTD

(22)Date of filing : 22.05.1984

(72)Inventor : KOSHIIISHI TAMOTSU

(54) MANUFACTURE OF RIBBED AND GROOVED SEPARATOR FOR FUEL CELL

(57)Abstract:

PURPOSE: To get a ribbed and grooved separator whose projecting part is filled compactly, by molding with pressure a mixture of preset quantity of graphite and phenol resin, on condition that the resin is not carbonized.

CONSTITUTION: A ribbed and grooved separator 2 is formed by molding with pressure a mixture of phenol resin 25~30wt% and graphite powder 70~75wt%, at the temperature that the resin is not carbonized. For example, the molding material is got by mixing graphite powder in resol phenol resin, kneading this mixture thoroughly between heat rolls, and powdering it. Then, the separator is formed by pouring this molding material in a metal mold uniformly, and increasing pressure and heating this material for 10min on the condition that 160 ±5° C, 300kg/cm².

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A) 昭60-246568

⑫ Int.Cl.¹
H 01 M 8/02

識別記号
E - 7623-5H

⑬ 公開 昭和60年(1985)12月6日

審査請求 未請求 発明の数 1 (全4頁)

⑭ 発明の名称 燃料電池用リップ付セパレーターの製造方法

⑮ 特願 昭59-103220
⑯ 出願 昭59(1984)5月22日

⑰ 発明者 奥石 保 横須賀市長坂2丁目2番1号 株式会社富士電機総合研究所内

⑱ 出願人 株式会社 富士電機総合研究所 横須賀市長坂2丁目2番1号

⑲ 出願人 富士電機株式会社 川崎市川崎区田辺新田1番1号

⑳ 代理人 弁理士 山口巖

明細書

1. 発明の名称 燃料電池用リップ付セパレーターの製造方法

2. 特許請求の範囲

フェノール樹脂25～30重量%と黒鉛粉末70～75重量%とからなる混合物を、樹脂が黒鉛化しない温度にて加圧注型することにより、リップ付セパレーターを成形することを特徴とする燃料電池用リップ付セパレーターの製造方法。

3. 発明の詳細な説明

[発明の属する技術分野]

本発明は、燃料電池に用いられる平板形及びみぞ付セパレーターの製造方法に関する。

[従来技術とその問題点]

焼成型燃料電池には、現在単電池構造としてみぞ付電極型とみぞ付バイボーラ形の2種類が知られ、前者には平板状の、後者にはみぞ付のセパレーターがそれぞれ使用されている。これらのセパレーターは、単電池相互の間に燃料ガスと空気が混合しないよう両者を分離する役割を果すもので

あり、当然セパレーター自身のガスの不透過性が要求されている。そのほか、電池構成部材(品)としての導電性の良いこと、電解質に侵されないこと、なども必要特性として要求されている。

このセパレーターを製造する方法の一つとして、黒鉛粉末と樹脂粉末との混合物を加圧、加熱成形して所望の形とする方法(技術)は良く知られている。そして、前記の電気抵抗及び電解質に対する要求を満足するため、この成形物は通常炭化処理が行なわれている。しかしながら、有機物である樹脂はこの炭化処理により当然熱分解し、重量にて約50%前後のものが揮発する。この結果、黒鉛樹脂混合物成形品中には樹脂の揮発による気孔が多数残存することとなり、ガス透過性を生ずる。このガス透過性を無くする方法として、炭化の条件や材料中の黒鉛量あるいは黒鉛の粒度及び粒度分布を工夫する方法(例えば特開昭57-72273)などが検討されているが、材料の配合により炭化条件を選択し、しかも複雑で精度の高い制御を行なわなければならないなどの問題があ

った。

一般に透過性を無くする方法としては、この気泡中に樹脂を含浸し、硬化する方法が行なわれているが、透過性を完全に無くするためににはこの含浸硬化の操作を数回、場合によっては十数回も行なわなければならぬといふ問題があった。一方、樹脂に導電材料を混合して導電性を付与することは良く知られた方法であり、燃料電池においても導電材料としてカーボンや黒鉛を使用して導電性を付した材料を製作し、電極材料としての使用が試みられている。導電性は混合するカーボンあるいは黒鉛の量に左右され、当然のことながら混合量が増せば導電性は良好となる。セパレーターとして不欠陥の特性であるガス透過性は、混合量が増す程良好、すなわちガスが通るようになる。したがって黒鉛の混合量をどの範囲にし、導電性とガス透過性を同時に満足するかがこの場合の大きな問題であった。

このような導電性とガス透過性の相反する特性を同時に満たすものとして、米国特許第3,634,569

号がある。この特許は5～25%の熱硬化性フェノール樹脂と75～90%の黒鉛粉末からなる混合物を、最大熱処理温度約400°F(205°C)で加圧加熱してセパレーターを成形するもので、熱処理温度が低く樹脂を黒鉛化していないことから、ガス透過性を無くすための後処理が不要であることが理解される。しかしながら、この発明は、黒鉛粒子の粒径を選定して電気抵抗の小さな分離板を製造することに主眼がおかれており、このような分離板からリブ付セパレーターを形成することは開示されていない。

すなわちこのようないくつかの混合物から、リブ付セパレーターを得るには、まず平板状のセパレーターを成形してから、これに切削加工を施してリブを形成する方法が一般的であるが、このような製造方法は面倒であり、工程も複雑となる。好ましくは一般的な注型法により一工程で製作できれば好都合であるが、既に成形材料を型に流したのでは、リブ部に充填不足が生じ、良好なリブ付セパレーターを成形することができない。

[発明の目的]

本発明は上記に鑑みされたものであり、黒鉛とフェノール樹脂を混合したものを、樹脂を黒鉛化するとともなく、一般的の注型法により成形することを目的とする。

[発明の要点]

本発明は重量で70～75%の黒鉛粉末と重量で25～30%のフェノール樹脂を混合し、この混合物を原材料として目的とする形状のリブ付セパレーターを成形するに適した金型中に均一に配置した後、樹脂が黒鉛化しない温度で加圧加熱してフェノール樹脂を硬化させることにより、凸部に充填不足のない燃料電池用リブ付セパレーターを得ようとするものである。

[発明の実施例]

以下、本発明を実施例に基き説明する。

(1) 粒度100～325メッシュの黒鉛粉末をレジール型フェノール樹脂に重量で50～95%になるように混合した。この混合物をさらに熱ロール間で良く混練し粉碎していわゆる成形材

料とした。この成形材料を金型中に均一に注入して、160±5°C, 300kg/cm² (成形品の投影面積当たり), 10分の条件で加圧加熱し2×100×100mmの板を成形した。得られた成形板の導電性(電気抵抗), ガス透過性, 成形性(外観)を第1表に示す。

第1表

樹脂量(%)	電気抵抗(Ωcm)	ガス透過性	外観
5	4.1×10^{-3}	あり	部分的にカスレ
10	6.2×10^{-3}	"	"
15	1.6×10^{-2}	なし	"
20	2.4×10^{-2}	"	外観良好
25	3.0×10^{-2}	"	"
30	5.3×10^{-2}	"	"
35	8.8×10^{-2}	"	"
40	1.8×10^{-1}	"	"
45	2.4×10^{-1}	"	"
50	3.3×10^{-1}	"	"

第1表の電気抵抗は測定面積3.3㎟電極として水銀を用い、電極間に100, 200, 300mAの電流を通した時の電圧を測定し成形板の厚さ方向の比抵抗を測定した。ガス透過性の測定はガスとしては窒素ガスを使用し、測定面積は3.22㎟、差圧は1気圧の条件で10分間におけるガスもれの有無をガス流量計の変化により調べた。外観は成形後の成形板につき表面の「ムラ」「カスレ」「割れ」などの有無を目視で調べた。

この結果から、ガス透過性は樹脂量を15%以上とすれば無くすることが、また電気抵抗は樹脂量を30%以下にすれば一応の目安として良好と考えられる $10^{-3}\text{Ncm}^2/\text{A}$ 台のものが得られることがわかる。

(2) 実施例(1)の条件と同様な成形条件で樹脂量20, 25, 30%の材料を使用して、第1図に示すような深さ、幅ともに2㎟のリブ1を有するリブ付きセパレーター2を成形した。結果は、20%の材料で成形したセパレーターはリブ部分に充填不足を生じ、良好なセパレーターが得られなか

った。一方、この材料の成形性の目安となる高化式フロー・テスター（ノズル寸法1㎟×10㎟、荷重150kg/cm²、温度160℃、サンプル長1.5㎟）による流动性を第2図に示す。材料の流出率（流动性の目安となる）は、樹脂量25%以上ではフロー・テスターのテストに使用した試料量の70%以上が流出し、樹脂量26%以上で90%以上の流出が認められた。

すなわち、樹脂量25%以上であれば、上記の結果（実物成形及びフロー・テスターの結果）より良好なセパレーターを成形できることがわかる。
〔発明の効果〕

本発明によるセパレーターの製造方法は、鉛船とフェノール樹脂を混合したものを原材料として、一般的のプラスチックの成形方法を用いて成形することにより、電気導電性の良い、ガス透過性のないセパレーターが得られるものであり、この原材料の樹脂量が25～30%（重量）であることを特徴とするものである。すなわちこの範囲にて脂量を制限したために、導電性を得るために通常行

なわれるカーボン化をする必要がなく、カーボン化に伴う諸問題、例えばカーボン化温度、原材料の配合、通気性を無くするための後処理（樹脂含浸）を考慮する必要がなく、さらに前記の如く一般的の成形法が適用できるため、安易で経済的な方法であるという利点もある。

また、電解質に対してフェノール樹脂は硬化を十分に行なえば、電解質のりん酸に対し十分な耐食性を持つことは良く知られた事であり、耐食性のある黒船との混合物成形品である本発明のセパレーターは当然、電解質に対し十分な耐食性を持つものである。

4. 図面の簡単な説明

第1図は本発明で試作したリブ付きセパレーターの斜視図、第2図は黒船、フェノール樹脂混合物の樹脂量と流动性の関係を示す高化式フローテスターによる流出曲線である。

1…リブ、2…リブ付セパレーター。

オ1 図

オ2 図

手続補正書(山光)

昭和59年10月1日

特許庁
官

...審...查...室

1. 事件の表示

特願昭59-10520

2. 発明の名称

燃焼性セパレータ
の製造方法3. 補正をする者
事件との関係

出願人

住 所

横浜市神奈川区高島二丁目

名 称

株式会社

作 所

横浜市神奈川区高島二丁目

4. 代 理 人

(はか)名

住 所

川崎市川崎区田辺新田1番1号

氏 名

富士電機株式会社内

井理士 山 口 岩

Tel. (044) 333-7111 (内線4564)

5. 補正指令の日付

昭和 59年10月1日

6. 補正により増加する発明の数

7. 補正の対象

明細書第5頁第3行目に「黒船」とあるを「炭」

明細書第5頁第4行目に「注型」とあるを「成

8. 補正の内容

別紙の通り

1. 特許請求の範囲を下記のとおり訂正する。
 「フェノール樹脂25~30重量%と黒船粉末70~75重量%とからなる混合物を、樹脂が炭化しない温度にて加圧成型することにより、リブ付セパレータを成形することを特徴とする燃料電池用リブ付セパレータの製造方法。」
2. 明細書第3頁第3行目に「泡」とあるを「孔」と訂正する。
3. 明細書第3頁第14行目に「欠陥」とあるを「可欠」と訂正する。
4. 明細書第4頁第5行目に「黒船」とあるを「炭」と訂正する。
5. 明細書第4頁第17行目に「注型」とあるを「成型」と訂正する。
6. 明細書第4頁第18行目に「単に」とあるを削除する。
7. 明細書第4頁第19行目に「流したのでは」とあるを下記のとおり訂正する。
 「充填し加圧成形する成形方法においては、成形

材料の樹脂量が少ない程成形時の流动性が悪くなり、結果として」

8. 明細書第5頁第3行目に「黒船」とあるを「炭」と訂正する。
9. 明細書第5頁第4行目に「注型」とあるを「成型」と訂正する。
10. 明細書第5頁第11行目に「黒船」とあるを「炭」と訂正する。

代理人井理士 山 口 岩