## Lithium-ion aging: Negative electrode



- In the next lessons, we'll seek to describe aging qualitatively.¹
- In negative electrode, aging observed at three scales:
  - □ At the surface of the electrode particles
  - Within the electrode particles themselves
  - □ Within the composite electrode structure (active materials; conductive additives; binder; current collector; porosity; etc)



- In this lesson, our focus is on aging mechanisms that take place at particle surfaces
- We will assume that a graphitic carbon is used as the negative-electrode active material, although similar results hold for silicon as well

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade?

## Negative electrode aging at surface of particles



- Graphitic negative electrodes operate at voltages outside electrochemical stability window of electrolyte components
- Reductive electrolyte decomposition takes place at the electrode/ electrolyte interface when the electrode (and cell) is in the charged state
- This occurs mainly—but not only—at beginning of cycling, especially during "formation" cycle
- The decomposition products form a "solid-electrolyte interphase" (SEI) surface film covering the electrode's surface



Dr. Gregory L. Plett University of Colorado Colorado Springs

4.1.3: Negative-electrode aging processes at particle surface

# Properties of SEI



- The SEI is a passivating layer, which slows/prevents further reaction between graphite and electrolyte
  - □ Lithium is consumed when SEI film forms, lowering capacity of cell
  - SEI is porous, allowing de/intercalation of Li from/to graphite, but increases resistance of ion transfer
- SEI composition is complex and not uniform
  - Various products form, then decompose, then form more stable products

<sup>&</sup>lt;sup>1</sup>Much of this is from: Vetter et al., "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, 147, 2005, 269-281.

## Breakdown of SEI; regrowth



- High temperatures contribute to breakdown of SEI, which can lead to new SEI forming on exposed graphite
- Pores in SEI also allow some solvent to penetrate to graphite surface, reacting and growing more SEI film
- Trace water in electrolyte combines with ionized fluorine to form hydrofluoric acid (HF), which attacks the SEI-new SEI forms
- Whenever SEI forms/grows, lithium is lost and so cell capacity decreases



Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade?

4.1.3: Negative-electrode aging processes at particle surface

### Anode poisoning; lithium plating



- Products of positive-electrode degradation also end up as part of SEI (anode poisoning):
  - □ If not electrically conductive, increases resistance
  - □ Can plug pores, blocking lithium from cycling, causing capacity fade
- At low temperatures, diffusion in particles slows:
  - □ If charging is forced, local overpotential can attain level that causes lithium plating on particle surface
  - Capacity irreversibly lost; dendrites can form and grow, eventually leading to internal short circuit



Dr. Gregory L. Plett | University of Colorado Colorado Spring

Battery State-of-Health (SOH) Estimation | **How does lithium-ion cell health degrade?** | 5 of 7

4.1.3: Negative-electrode aging processes at particle surface

# Summary of surface effects



■ Table summarizes surface effects (bold = more severe):

| Cause                                                     | Effect                          | Leads to                     | Enhanced by                        |
|-----------------------------------------------------------|---------------------------------|------------------------------|------------------------------------|
| Continuous low-rate electrolyte decomposition builds SEI  | Li loss,<br>impedance rise      | Capacity fade,<br>Power fade | High temperatures, high cell SOC   |
| Decrease of accessible surface area due to SEI growth     | Impedance rise                  | Power fade                   | High temperatures, high cell SOC   |
| Changes in porosity due to volume change and SEI growth   | Impedance rise                  | Power fade                   | High cycling rate, high cell SOC   |
| Metallic Li plating, subsequent electrolyte decomposition | Lithium (electro-<br>lyte) loss | Capacity (power) fade        | Low temperature, high charge rates |

4.1.3: Negative-electrode aging processes at particle surface

#### **Credits**



■ Image of lithium-ion electrode on slide 1 courtesy Sangwoo Han, used with permission

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | How does lithium-ion cell health degrade? | 7 of 7