Aufgabe 2 "Dreiecksbeziehungen"-Dokumentation

37. Bundeswettbewerb Informatik 2018/19 - 2. Runde

Lukas Rost

Teilnahme-ID: 48125

29. April 2019

Inhaltsverzeichnis

1	Lösı	ungsidee	1	
	1.1	Mathematische Präzisierung der Aufgabenstellung	1	
	1.2	Intuitive Beschreibung der Lösungsidee	4	
	1.3	Mathematische Präzisierung des Algorithmus	2	
	1.4	Laufzeitbetrachtung und NP-Vollständigkeit	4	
	1.5	Erweiterungen	2	
2	Umsetzung			
	2.1	Allgemeine Hinweise zur Benutzung	2	
	2.2	Struktur des Programms und Implementierung der Algorithmen	4	
3	Beispiele			
	3.1	Beispiel 1	4	
	3.2	Beispiel 2	4	
	3.3	Beispiel 3	6	
	3.4	Beispiel 4	6	
	3.5	Beispiel 5	6	
	3.6	Eigene Beispiele	4	
4	Que	ellcode	2	

1 Lösungsidee

1.1 Mathematische Präzisierung der Aufgabenstellung

Bei der Eingabe handelt es sich um eine Menge $D = \{d_1, ..., d_n\}$ von Dreiecken d_i . Jedes Dreieck ist dabei durch seine drei Eckpunkte vollständig definiert $(d_i = \{p_1, p_2, p_3\})$. Ein Eckpunkt ist dabei wiederum ein Punkt $p_i = (x_i, y_i)$ des \mathbb{R}^2 .

Die Aufgabenstellung fordert nun, dass eine Abbildung D' = f(D) gefunden werden soll. Diese ordnet der Menge D eine Bildmenge D' zu. Für diese müssen bestimmte Bedingungen gelten:

• Für jedes $d \in D'$ gilt:

$$\forall (x,y) \in d : y \ge 0 \land x \ge 0 \tag{1}$$

Alle Punkte müssen also über oder auf der x-Achse sowie rechts oder auf der y-Achse liegen.

• Für jedes $d \in D'$ gilt:

$$\exists (x,y) \in d : y = 0 \tag{2}$$

Es muss also in jedem Dreieck mindestens einen Punkt geben, der auf der x-Achse liegt. Die Menge aller solchen Punkte eines Dreiecks sei N_i (anschaulich die Menge der Straßenecken).

• Für jedes $d \in D'$ und jedes $e \in D'$ gilt:

$$d \cap e = \emptyset \tag{3}$$

 $d\cap e$ stellt dabei die Schnittfläche der beiden Dreiecke dar. Es dürfen sich also keine zwei Dreiecke überlappen.

Eine Dreiecksanordnung wird als **erlaubt** bezeichnet, wenn sie diese Bedingungen erfüllt. Die Menge der erlaubten Dreiecksanordnungen sei dabei E.

Nun ist eine Dreiecksanordnung D' gesucht, die **optimal** ist. Eine optimale Dreiecksanordnung sei dabei folgendermaßen definiert:

• D' minimiert den folgenden Wert über alle erlaubten Dreiecksanordnungen E:

$$\max_{d_i \in D'} \min_{d_j \in D'} \inf_{n \in N_i} |n.x - m.x| \tag{4}$$

Der Minimums-Term bildet dabei den Abstand zwischen zwei Dreiecken als minimalen Abstand der Straßenecken, während der Maximums-Term den maximalen solchen Abstand berechnet.

Die optimale Dreiecksanordnung D' bildet die Ausgabe des Algorithmus, der f(D) möglichst effizient berechnen soll.

- 1.2 Intuitive Beschreibung der Lösungsidee
- 1.3 Mathematische Präzisierung des Algorithmus
- 1.4 Laufzeitbetrachtung und NP-Vollständigkeit
- 1.5 Erweiterungen
- 2 Umsetzung
- 2.1 Allgemeine Hinweise zur Benutzung
- 2.2 Struktur des Programms und Implementierung der Algorithmen
- 3 Beispiele
- 3.1 Beispiel 1
- 3.2 Beispiel 2
- 3.3 Beispiel 3
- 3.4 Beispiel 4
- 3.5 Beispiel 5
- 3.6 Eigene Beispiele
- 4 Quellcode