Convergent Sequences Part 2

 ${\it Rafael Reno S. Cantuba, PhD} \\ {\it MTH541M - Bridging Course for Real Analysis / Advanced Calculus}$

Some notes on subsequences

Given a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} , and a function $\mathbb{N}\to\mathbb{N}$ denoted by $i\mapsto N_i$ such that

$$i < j \implies N_i < N_j,$$
 (1)

we call $(a_{N_i})_{i\in\mathbb{N}}$ a subsequence of $(a_n)_{n\in\mathbb{N}}$.

Given a subsequence $(a_{N_i})_{i\in\mathbb{N}}$ of a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} , by the Trichotomy Law, the condition $i\neq j$ means that either i< j or i>j. Then by (1), we have either $N_i< N_j$ or $N_i> N_j$, which implies $N_i\neq N_j$. We have thus shown that $i\neq j$ implies $N_i\neq N_j$, and by contraposition,

$$N_i = N_j \implies i = j.$$
 (2)

Therefore, $i \mapsto N_i$ is injective. The converse

$$i = j \implies N_i = N_j,$$
 (3)

of (2) is true because $i \mapsto N_i$ is a function. Also, if $N_i < N_j$, then $N_i \neq N_j$, and by the contrapositive of (3), we have $j \neq j$.

Some notes on subsequences

If i > j, then we get, from (1), the contradiction $N_i > N_j$, and so the only possiblity is i < j. That is,

$$N_i < N_j \implies i < j.$$
 (4)

From (1)–(4), we obtain

$$i \leq j \iff N_i \leq N_j.$$
 (5)

Using an elementary proof, the equivalence (5) can be used to prove that the conditions

$$\forall \varepsilon > 0 \quad \exists N_I \in \mathbb{N} \quad \forall N_i \geq N_I \quad |a_{N_i} - a| < \varepsilon,$$
 (6)

$$\forall \varepsilon > 0 \quad \exists I \in \mathbb{N} \quad \forall i \geq I \quad |a_{N_i} - a| < \varepsilon,$$
 (7)

are equivalent. Hence, if the subsequence $(a_{N_i})_{i\in\mathbb{N}}$ converges to some $a\in\mathbb{R}$, both notations $\lim_{N_i\to\infty}a_{N_i}$ and $\lim_{i\to\infty}a_{N_i}$ are valid, and

furthermore,

$$\lim_{N_i\to\infty}a_{N_i}=a\iff\lim_{i\to\infty}a_{N_i}=a.$$

Some notes on subsequences

i.e., The limiting process for the convergent subsequence $(a_{N_i})_{i\in\mathbb{N}}$ is the same regardless of whether we view this limiting process in terms of the original indices, as in $N_i \to \infty$, or in terms of the 'secondary' indices, as in $i \to \infty$.

Another important property of a subsequence $(a_{N_i})_{i\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ is that

$$\forall i \in \mathbb{N} \ [i \leq N_i]. \tag{8}$$

If i=1, then by the fact that $N_i \in \mathbb{N}$, we have $N_i \geq 1=i$. Suppose $i \leq N_i$ for some $i \in \mathbb{N}$. Tending towards a contradiction, suppose $i+1 > N_{i+1}$. Since both i+1 and N_i are integers, we further have $i \geq N_{i+1}$. By the inductive hypothesis, $N_i \geq i \geq N_{i+1}$. But this contradicts $N_i < N_{i+1}$ because of (1) and i < i+1. Therefore, $i+1 \leq N_{i+1}$, and we have proven (8) by induction.

Proposition 1

If $(a_n)_{n\in\mathbb{N}}$ converges to $a\in\mathbb{R}$, then any convergent subsequence of $(a_n)_{n\in\mathbb{N}}$ also converges to a.

Proof of Proposition 1

Suppose $(a_{N_i})_{i\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$ that converges to $b\in\mathbb{R}$, and let $\varepsilon>0$. The conditions $a=\lim_{\substack{n\to\infty\\N_i\to\infty}}a_{N_i}$ imply that there exist $N,N_I\in\mathbb{N}$ such that

$$n \ge N \implies |a - a_n| = |a_n - a| < \frac{\varepsilon}{2},$$
 (9)

$$N_i \geq N_I \implies |a_{N_i} - b| < \frac{\varepsilon}{2}.$$
 (10)

Let us consider those indices N_i such that $i > \max\{N, N_I\}$. Using (8), we have $N_i \ge i > N$, so the conclusion of (9) is true for $n = N_i$. Also using (8), we have $N_i \ge i > N_I$, so the conclusion of (10) is also true. By the triangle inequality,

$$|a-b|=|(a-a_{N_i})+(a_{N_i}-b)|\leq |a-a_{N_i}|+|a_{N_i}-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

That is $|a-b|<\varepsilon$ for an arbitrary $\varepsilon>0$. Therefore, a=b. \square

The limit superior of a sequence

Let us return our attention to an arbitrary sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} . Given $n\in\mathbb{N}$, let us collect the terms of the sequence "at index n and beyond" in the following set:

$${a_k : k \ge n} = {a_n, a_{n+1}, a_{n+2}, \ldots}.$$
 (11)

If the set (11) has an upper bound $M \in \mathbb{R}$, then its supremum

$$\sup_{k>n} a_k := \sup\{a_k : k \ge n\} = \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\},$$
 (12)

exists as an element of \mathbb{R} . Otherwise, we define $\sup_{k \geq n} a_k$ as ∞ . Note

that the number $\sup_{k \ge n} a_k$ depends on n, and so we now have a new sequence

<mark>sequence</mark>

$$\sup a_k, \quad \sup a_k, \quad \sup a_k, \quad \dots, \quad \sup a_k, \quad \dots$$

$$k \ge 1 \qquad k \ge 2 \qquad k \ge 3 \qquad \qquad k \ge n$$
(13)

of extended real numbers, where in the subscripts after the " $k \ge$ " we find the indices of the terms of the sequence (13).

The limit superior of a sequence

Observe that the supremum (12) of (11) need not be one of the terms in (11), and so it is important to note here that (13) is not necessarily a subsequence of $(a_n)_{n\in\mathbb{N}}$. If the set of all terms in the sequence (13) has a lower bound $M'\in\mathbb{R}$, then the infimum

$$\frac{\limsup a_n}{n \to \infty} = \inf_{n \in \mathbb{N}} \sup_{k \ge n} a_k := \inf \left\{ \sup_{k \ge n} a_k : n \in \mathbb{N} \right\},$$

$$= \inf \left\{ \sup_{k \ge 1} a_k, \sup_{k \ge 2} a_k, \ldots \right\},$$

of the set of all terms of (13) exists as an element of \mathbb{R} . Otherwise, we define $\limsup a_n$ as $-\infty$. We call the number

 $\limsup_{n\to\infty} a_n$ the $\liminf_{n\to\infty}$ of the sequence $(a_n)_{n\in\mathbb{N}}$.

Lemma 2

Let $M \in \mathbb{R}$, and consider a sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} . If $a_n \leq M$ for any $n \in \mathbb{N}$, then $\limsup_{n \to \infty} a_n \leq M$.

Since $a_n \leq M$ for any index n, in particular, given $k \in \mathbb{N}$, we have $a_n \leq M$ 'at index k and beyond.' That is,

$$k \geq n \implies a_k \leq M$$
,

which means that M is an upper bound of $\{a_k : k \ge n\}$, and the relationship of this upper bound to the supremum is

$$\sup_{k\geq n}a_k \leq M.$$

But since $\inf_{n\in\mathbb{N}}\sup_{k\geq n}a_k$ is a lower bound of $\left\{\sup_{k\geq n}a_k:n\in\mathbb{N}\right\}$, we

further have

$$\inf_{n\in\mathbb{N}}\sup_{k\geq n}a_k \leq \sup_{k\geq n}a_k \leq M.$$

Therefore,
$$\limsup_{n\to\infty} a_n \leq M$$
.

Lemma 3

If $-\infty < \limsup_{n \to \infty} a_n < \infty$, then there exists a subsequence $(a_{N_i})_{i \in \mathbb{N}}$ of $(a_n)_{n \in \mathbb{N}}$ such that for any $i \in \mathbb{N}$,

$$\left| a_{N_i} - \limsup_{n \to \infty} a_n \right| < \frac{1}{i}. \tag{14}$$

Suppose $-\infty < \limsup_{n \to \infty} a_n < \infty$, and let $i \in \mathbb{N}$. Since $\frac{1}{i} > 0$, the number

$$\frac{1}{i} + \limsup_{n \to \infty} a_n \tag{15}$$

exceeds the infimum of

$$\left\{ \sup_{k\geq 1} a_k, \quad \sup_{k\geq 2} a_k, \quad \sup_{k\geq 3} a_k, \quad \dots, \quad \sup_{k\geq n} a_k, \quad \dots \right\}$$
(16)

and is hence not a lower bound of (16). That is, the set (16) has an element not bounded below by (\geq) the number (15). This element has an index M_i that appears after the " $k \geq$ " and so we have

$$\sup_{k \ge M_i} a_k < \frac{1}{i} + \limsup_{n \to \infty} a_n. \tag{17}$$

We note here that (17) cannot be possible if $\limsup_{n\to\infty} a_n = -\infty$, in

which case there shall be no number below

$$\frac{1}{i} + \limsup_{n \to \infty} a_n = \frac{1}{i} - \infty = -\infty$$
. Hence, the assumption

 $\limsup_{n\to\infty} a_n > -\infty$ is important. Since $-\frac{1}{i} < 0$, the number

$$-\frac{1}{i} + \sup_{k > M_i} a_k \tag{18}$$

is less than the <mark>supremum</mark> of

$$\{a_{M_i}, a_{M_i+1}, a_{M_i+2}, \ldots\}$$
 (19)

which means that (18) is not an upper bound of (19), and so (19) has an element not bounded above by $(\not\leq)$ the number (18).

This element has an index N_i which is one of the indices $M_i, M_i + 1, \ldots$, which means $N_i \geq M_i$. We now have the inequality

$$a_{N_i} > -\frac{1}{i} + \sup_{k \ge M_i} a_k. \tag{20}$$

Since $\sup_{k \ge M_i} a_k$ is in (16) and $\limsup_{n \to \infty} a_n$ is a lower bound of (16), we can further extend the inequality (20) as

$$a_{N_i} > -\frac{1}{i} + \sup_{k \ge M_i} a_k \ge -\frac{1}{i} + \limsup_{n \to \infty} a_n.$$
 (21)

The strict inequality in (21) would not be possible for the case $\limsup_{n\to\infty} a_n = \infty$, because in such a case, there would be no number above $-\frac{1}{i} + \limsup_{n\to\infty} a_n = -\frac{1}{i} + \infty = \infty$, and this tells us that the assumption $\limsup_{n\to\infty} a_n < \infty$ is important.

Recall earlier that $N_i \geq M_i$, so a_{N_i} is in (19), and since $\sup_{k \geq M_i} a_k$ is an upper bound of (19), the inequality (17) can be extended as

$$a_{N_i} \le \sup_{k \ge M_i} a_k < \frac{1}{i} + \limsup_{n \to \infty} a_n.$$
 (22)

From (21) and (22), we get

$$-\frac{1}{i} + \limsup_{n \to \infty} a_n < a_{N_i} < \frac{1}{i} + \limsup_{n \to \infty} a_n,$$

$$-\frac{1}{i} < a_{N_i} - \limsup_{n \to \infty} a_n < \frac{1}{i},$$
(23)

from which we obtain (14).

Bounded sequences and the Bolzano-Weierstrass Theorem

Given a real number M>0, we say that a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} is bounded by M if $|x_n|\leq M$ for all $n\in\mathbb{N}$. Any sequence bounded by some positive real number is a bounded sequence.

Lemma 4

If $c \in \mathbb{R}$ and if $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are bounded sequences in \mathbb{R} , then the sequences

$$(a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}, \qquad c(a_n)_{n\in\mathbb{N}}, \qquad (a_n)_{n\in\mathbb{N}}(b_n)_{n\in\mathbb{N}},$$

are also bounded.

Suppose $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are bounded by M and N, respectively. By routine computations using the properties of inequalities in \mathbb{R} , we find that the sequences $(a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}$, $c(a_n)_{n\in\mathbb{N}}$ and $(a_n)_{n\in\mathbb{N}}(b_n)_{n\in\mathbb{N}}$ are bounded by M+N, $|c|\cdot M$ and MN, respectively. \square

Corollary 5

The set $\ell^{\infty}(\mathbb{R})$ of all bounded sequences in \mathbb{R} is an associative algebra over \mathbb{R} that is unital and commutative.

Proof of Corollary 5

All the algebraic properties, except closure, of the three operations—addition of sequences as vector addition, left-multiplication by a constant as scalar multiplication, and multiplication of sequences as vector multiplication—that were discussed in the previous lecture are valid for all sequences, and, in particular, for all the sequences in $\ell^{\infty}(\mathbb{R})$. The closure of $\ell^{\infty}(\mathbb{R})$ under the said three operations is asserted in Lemma 4.

Lemma 6

If $(a_n)_{n\in\mathbb{N}}$ is bounded, then $-\infty < \limsup_{n\to\infty} a_n < \infty$.

If for any $n \in \mathbb{N}$, we have $|a_n| \leq M$, or equivalently

$$-M \le a_n \le M, \tag{24}$$

then, in particular, $a_n \leq M$, and by Lemma 2, we have

$$\limsup_{n \to \infty} a_n \le M < \infty. \tag{25}$$

By (24), we have $-M \le a_n$ for any index n, and in particular for any index $k \ge n$. Thus means that -M is a lower bound of $\{a_k : k \in \mathbb{N}\}$, but since $\sup_{k > n} a_k$ is an upper k > n

bound of $\{a_k : k \in \mathbb{N}\}$, we have

$$-M \le \sup_{k \ge n} a_k. \tag{26}$$

Since (26) holds for any $n \in \mathbb{N}$, we find that -M is a lower bound of $\left\{\sup_{k \geq n} a_k : n \in \mathbb{N}\right\}$, and is thus less than or equal to the infimum of $\left\{\sup_{k \geq n} a_k : n \in \mathbb{N}\right\}$. That is,

$$-M \leq \inf_{n \in \mathbb{N}} \sup_{k > n} a_k = \limsup_{n \to \infty} a_n,$$

which, in conjunction with (25), gives us $-\infty < M \le \limsup a_n < \infty$.

We summarize in the following the logical relationship between the notions of boundedness and convergence of a sequence in \mathbb{R} .

Theorem 7

- **1** A convergent sequence in \mathbb{R} is bounded.
- $oldsymbol{Q}$ A bounded sequence in $\mathbb R$ is not necessarily convergent.
- § [The Bolzano-Weierstrass Theorem.] A bounded sequence in \mathbb{R} has a convergent subsequence.

Proof of Theorem 7(i)

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} , and suppose $a=\lim_{n\to\infty}a_n$ for some $a\in\mathbb{R}$. In symbols,

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N \ [|a_n - a| < \varepsilon].$$
 (27)

 $|a_n - a| < 1$.

The trick is to instantiate (27) at the value $\varepsilon=1$. That is, there exists $N\in\mathbb{N}$ such that

$$n \ge N \implies |a_n - a| < 1. \tag{28}$$

The next trick is to use the reverse triangle inequality in the conclusion of (28). If $n \ge N$, then

$$||a_n| - |a|| \le |a_n - a| < 1,$$
 $||a_n| - |a|| < 1,$
 $-1 < |a_n| - |a| < 1,$
 $|a_n| - |a| < 1,$
 $|a_n| < 1,$
 $|a_n| < 1,$

Proof of Theorem 7(i)

and so (28) becomes

$$n \ge N \implies |a_n| < 1 + |a|. \tag{29}$$

Recall that our goal here is to find some $M \in \mathbb{R}$ such that every term of $(a_n)_{n \in \mathbb{N}}$ has absolute value less than or equal to M. The inequality in (29) tells us that all terms 'at index N and beyond' already have an absolute value less than 1 + |a|. The only terms not covered are those with index N - 1 and below. Thus, we let

$$\frac{M}{M} := \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1+|a|\}. \tag{30}$$

If $n \ge N$, then by (29), $|a_n| < 1 + |a| \le M$, and if n < N, then by (30), $|a_n| \le M$. Combining these two cases, we have $|a_n| \le M$ for all $n \in \mathbb{N}$. Therefore, $(a_n)_{n \in \mathbb{N}}$ is bounded.

Proof of Theorem 7(ii)

Our goal here is to exhibit a sequence in \mathbb{R} that is both bounded and not convergent. For any $n \in \mathbb{N}$, let $\frac{\mathbf{a}_n}{\mathbf{a}_n} := (-1)^n$. That is $a_n = 1$ if n is even, and $a_n = -1$ if n is odd. Hence, $|a_n| = 1$, and consequently, $|a_n| \leq 1$ for any $n \in \mathbb{N}$, which means that $(a_n)_{n \in \mathbb{N}}$ is bounded. To show $(a_n)_{n\in\mathbb{N}}$ is not convergent, let $a\in\mathbb{R}$. We produce a value of ε by cases depending on the value of $|a-1| \geq 0$. If |a-1|=0, then we set $\varepsilon=\frac{1}{2}>0$, and if |a-1|>0, we set $\varepsilon = |a-1| > 0$. Let $N \in \mathbb{N}$. If |a-1| = 0, then a = 1, and we choose any odd $n \geq N$, for which $|a_n - a| = |-1 - 1| = 2 \geq \varepsilon$. If |a-1|>0, then we choose any even n>N, for which $|a_n-1|=|1-1|=0$, and by the triangle inequality,

$$\varepsilon = |a-1| \le |a-a_n| + |a_n-1| = |a-a_n| + 0,$$

and we still have $|a_n - a| \ge \varepsilon$. We have thus shown

$$\exists \varepsilon > 0 \quad \forall N \in \mathbb{N} \quad \exists n \geq N \ [|a_n - a| \geq \varepsilon],$$

with $a \in \mathbb{R}$ arbitrary. Therefore, $(a_n)_{n \in \mathbb{N}}$ does not converge to any element of \mathbb{R} .

Proof of Theorem 7(iii)

If $(a_n)_{n\in\mathbb{N}}$ is bounded, then by Lemma 6, we have $-\infty < \limsup_{n\to\infty} a_n < \infty$, which by Lemma 3 implies that there exists a subsequence $(a_{N_i})_{i\in\mathbb{N}}$ such that

$$\left|a_{N_i}-\limsup_{n\to\infty}a_n\right|<\frac{1}{i},$$

for any $i \in \mathbb{N}$. If $\varepsilon > 0$, then there exists [an integer] $I > \frac{1}{\varepsilon}$, and for any $i \geq I$,

$$\left|a_{N_i} - \limsup_{n \to \infty} a_n\right| < \frac{1}{i} \le \frac{1}{l} < \varepsilon.$$

Therefore, $(a_{N_i})_{i\in\mathbb{N}}$ is convergent.

