EX²: Exploration with Exemplar Models for Deep Reinforcement Learning

Justin Fu*, John D. Co-Reyes*, Sergey Levine University of California, Berkeley

* equal contribution

Introduction

Problem: Efficient exploration in high-dimensional spaces. Most methods require building a generative model over the state, such as dynamics (P(s'|a,s)) or counting (P(s,a)) or P(s).

Approach:

- ► Train discriminators to classify new states against previously seen states. Easily classifiable states are "novel".
- Augment the reward with a novelty bonus to encourage the policy to visit new states.

Key Insights:

- Our algorithm can be interpreted as approximating count/density-based exploration.
- Our algorithm also resembles a GAN, except the generator (policy) and discriminator are cooperative.

Discriminators and Density Estimation

 \triangleright We consider classifying an "exemplar" x^* as a positive against negatives $x' \sim P(x)$. Letting $Q(x) = \delta_{x^*}(x)$ denote a delta function around x^* , we optimize a discriminator $D:\mathcal{X} \to [0,1]$ via a standard cross-entropy loss:

$$D^* = \operatorname{argmax}_D\{E_{x \sim Q(x)}[\log D(x)] - E_{x \sim P(x)}[\log 1 - D(x)]\}$$

 \triangleright Since the distribution A^* is known, we can show that when evaluated at $x^* \in X^*$,

$$D^*(x^*) = \frac{1}{1 + P(x^*)}$$

Thus, we can recover density estimates P(x) for x in the positive set \mathcal{X}^* as:

$$P(x) = \frac{1 - D^*(x)}{D^*(x)}$$

- ► Continuous distributions: By adding noise to the exemplar distribution Q(x), we can show an analogous result in the continuous
- ► These results hold for optimal discriminators. We also find that a slightly suboptimal discriminators found in practice, along with injecting noise to the data distribution P(x) will generalize and smooth density estimates.
 - Injecting Gaussian noise into the negative distribution P(x) results in a method similar to KDE with Gaussian kernels.

Amortized Exemplar Model

▶ In practice, training a single discriminator for every state is prohibitively expensive. We instead condition the discriminator on the exemplar x^* , which we refer to as the amortized exemplar model.

▶ This architecture has the appearance of an similarity function (in a "reference equality" sense) - it is trained to output 0 when $x \neq x^*$ and 1 when $x = x^*$. (= denoting "reference" rather than "value" equality)

Exploration with Exemplar Models

▶ We consider the reinforcement learning problem of finding a policy that maximizes expected returns:

$$\pi^* = \operatorname{argmax}_{\pi} \{ E_{\tau \sim \pi} [\sum_{t=0}^{T} R(s_t, a_t)] \}$$

▶ We adopt the count-based exploration paradigm, and add a reward bonus to states with low P(s), where P(s) is the distribution over all states visited by the algorithm during training.

Algorithm Diagram

References

- [1] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. Vime: Variational information maximizing exploration. In Advances in Neural Information Processing Systems (NIPS), 2016.
- [2] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement learning. In Advances in Neural Information Processing Systems (NIPS), 2017.

Experimental Results

Atari-Venture SparseHalfCheetah

 $\mathsf{Doom}+$

Tasks:

- ▶ SwimmerGather: A hierarchical task that requires moving a 3-link robot to collect pellets for reward.
- ► SparseHalfCheetah: 6-DoF cheetah needs to move past a specified distance threshold.
- ► **DoomMyWayHome**+: A sparse, goal based visual navigation task inside a maze.
- ► Atari: Three Atari games (Freeway, Frostbite, Venture) requiring exploration.

Task	K-Ex.(ours)	Amor.(ours)	VIME [1]	TRPO	Hashing [2]	KDE	Histogram
2D Maze	-104.2	-132.2	-135.5	-175.6	-	-117.5	-69.6
${\sf SparseHalfCheetah}$	3.56	173.2	98.0	0	0.5	0	_
SwimmerGather	0.228	0.240	0.196	0	0.258	0.098	_
Freeway (Atari)	_	33.3	_	16.5	33.5	-	_
Frostbite (Atari)	_	4901	_	2869	5214	_	_
Venture (Atari)	_	900	_	121	445	_	_
${\sf DoomMyWayHome}$	0.740	0.788	0.443	0.250	0.331	0.195	_

Table: Median (and mean in parentheses) scores

Figure: SwimmerGather (left) and Venture (right)

Figure: SparseHalfCheetah (left) and DoomMyWayHome+ (right)

Video results online:

https://sites.google.com/view/ex2exploration/home

Conclusions

We have presented:

- ► A method to obtain point density estimates using discriminators.
- ► An exploration method based on training only discriminative models that is scalable to high-dimensional observations such as images.