NP 与 NP 完全性

岳镝

2025年5月16日

《理论计算机科学基础》

回忆: 语言和判定问题

- ▶ 只需要回答"是"或者"否"的问题被称为判定问题
- ▶ 用 {0,1}* 表示所有有限长度的二进制串组成的集合
- ▶ 子集 $L \subseteq \{0,1\}^*$ 称为一个语言
- ▶ L 对应的判定问题: 输入 $x \in \{0,1\}^*$, 问 $x \in L$?
- ▶ 判定问题 Ⅱ 对应的语言:回答为"是"的实例组成的集合

$$\Pi = \langle D_{\Pi}, \Upsilon_{\Pi} \rangle$$

$$D_{\Pi} = \{0,1\}^* \qquad \Upsilon_{\Pi} = L$$

NP 类

▶ P: 多项式时间可判定的语言集合

► NP: 多项式时间可验证的语言集合

NP 类

- ▶ P: 多项式时间可判定的语言集合
- ▶ NP: 多项式时间可验证的语言集合

定义(验证机、Verifier)

- 称算法V为语言L的验证机,若满足 (1) 若 $x \in L$,则存在w 使得 $V(x,w) = \mathrm{acc}$
- (2) 若 $x \notin L$,则任意 w 均有 V(x, w) = rej

NP 类

- n polynomial
- ▶ B 多项式时间可判定的语言集合
- ND 多项式时间可验证的语言集合 non-deterministic 定义(验证机, Verifier)

称算法 V 为语言 L 的验证机, 若满足

- (1) 若 $x \in L$, 则存在 w 使得 V(x, w) = acc
- (2) 若 $x \notin L$, 则任意 w 均有 V(x,w) = rej

多项式时间可验证

- "短"<u>证据·</u> $|w| = \operatorname{poly}(|x|)$

生=(スノンスマンコス3)ハ(スマンスマグな)

- \triangleright 3-SAT: x 是公式, w 是成真赋值
- ightharpoonup 哈密顿回路: x 是图 w 是图中 的哈密顿回路

回忆: 图灵机模型

Read	State	Write	Move
(90,0)	21	0	左
(90.1)	92	l	左
(93,0)	90	1	左
(93.1)	90	1	左
(gacc,0)	Pacc		acc
(grej,1)	9 rej		rej

回忆: 图灵机模型

图灵机是一个 7 元组 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$

- (1) Q 是状态集合
- (2) Σ 是输入字母表,即 $\Sigma = \{0,1\}$
- (3) Γ 是纸带字母表,包含空白字符。 $\Sigma \subseteq \Gamma$
- (4) $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ 称为转移函数
- (5) $q_0 \in Q$ 称为初始状态
- (6) $q_{acc} \in Q$ 称为接受状态
- (7) $q_{\text{rej}} \in Q$ 称为拒绝状态

回忆: 图灵机模型

非确定型图灵机 (NTM) 是一个 7 元组

$$N = (Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rej})$$

- (1) Q 是状态集合
- (2) Σ 是输入字母表,即 $\Sigma = \{0,1\}$
- (3) Γ 是纸带字母表,包含空白字符。 $\Sigma \subseteq \Gamma$
- (4) $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$ 称为转移函数
- (5) $q_0 \in Q$ 称为初始状态
- (6) $q_{acc} \in Q$ 称为接受状态
- (7) $q_{\text{rej}} \in Q$ 称为拒绝状态

称 \overline{W} 接受 x 当且仅当 \overline{W} 在输入 x 上存在一个接受计算分支

例子:哈密顿回路问题的一个非确定型判定算法(图灵机)

- 1. 任党 $v_0 \in V$, $S \leftarrow \{v_0\}$
- 2. For i = 1, 2, ..., n-1 do
- 3. **作** 证券 $v_i \in V$
- 4. 若 $v_i \in S$, 立即拒绝
- 5. 若 $(v_{i-1}, v_i) \notin E$,立即拒绝
- 6. $S \leftarrow S \cup \{v_i\}$
- 7. 若 $(v_{n-1}, v_0) \in E$,接受;否则拒绝

定理 (NP 等价定义)

语言 L 多项式时间可验证 \iff 存在 L 的非确定型多项式时间

判定算法 (图灵机)

aisen verifier V

Construct N-Algorithm

=: Given N-Alg. A

Construct verifier V

A: of Input x

- 1. Guess w.
- 2. Output V(x,w)

XEL, X知证据=?

X的过程-A的"住选"方话

1(x,w)

把心看成年次分支的路径

多项式时间变换 (Karp 归约)

定义 (多项式时间变换, Karp 归约)

称映射 $f: \{0,1\}^* \to \{0,1\}^*$ 是语言 A 到语言 B 的多项式时间 变换 (Karp 归约), 若满足

- $\{ (1)$ <u>f</u> 多项式时间可计算 $(2) \ \forall x, x \in A$ 当且仅当 $f(x) \in B$

此时称 A 多项式时间变换 (Karp 归约) 到 B; 记作 $A \leq_p B$

1. Compute
$$y = f(x)$$

1. Compute
$$y = f(x)$$

2. Compute $y \in B$ $\begin{cases} Yes \rightarrow x \in A \\ No \rightarrow x \notin A \end{cases}$

多项式时间变换 (Karp 归约)

定义 (多项式时间变换, Karp 归约)

称映射 $f: \{0,1\}^* \to \{0,1\}^*$ 是语言 A 到语言 B 的多项式时间变换 (Karp 归约),若满足

- (1) f 多项式时间可计算
- (2) $\forall x, x \in A$ 当且仅当 $f(x) \in B$

此时称 A 多项式时间变换 (Karp 归约) 到 B; 记作 $A \leq_p B$

要点

- ▶ 直觉: \leq_p 是一种关于"难度"的偏序
- ightharpoonup f 多项式时间可计算
- ▶ "当且仅当" 需要验证两个方向
- ▶ 请对比课上讲的 Turing 归约 (Cook 归约)

EXA SATE NPC

IE HCENPC

SAT & HC

多项式时间变换 (Karp 归约)

例: 证明 $3-SAT \leq_p CLIQUE$

补充内容: Cook 归约

定义 (Cook 归约)

补充内容: Cook 归约

定义 (Cook 归约)

称问题 A 可 Cook 归约到问题 B,若存在多项式时间的谕示图 灵机 M,使得对于计算 B 的任意算法 f,均满足 M^f 计算 A。 其中 M^f 表示允许 M 以算法 f 的计算结果作为谕示。记作 $A \leq_T B$

- ▶ 谕示图灵机 M^f : M 在运行过程中,允许使用任意输入 x 向 $f(\cdot)$ 提问,并在 O(1) 时间得到回复 f(x)
- ▶ 在M 的视角下: 类似于请求神谕 (oracle), 只关心结果 f(x), 并不关心 $f(\cdot)$ 具体是怎么计算的

补充内容: Cook 归约

例:证明 3-SAT 搜索问题 $\leq_T 3-SAT$ 判定问题

补充内容: 其他复杂性类

定义 (coNP)

称语言 $L \in \text{coNP}$,若 $\overline{L} \in \text{NP}$

例子

- ► $L = \{\phi : \phi(x_1, x_2, ..., x_n) \$ **不可满足** $\}$
- ► FACTOR = $\{\langle x, y \rangle : x \text{ 存在不超过 } y \text{ 的非平凡因子} \}$

性质

- $ightharpoonup P \subset NP \cap coNP$
- ▶ 注意: coNP 不是 NP 的补集!

补充内容: 其他复杂性类

定义 (PCP)

给定函数 $r, q: \mathbb{N} \to \mathbb{N}$ 。称语言 $L \in PCP(r, q)$,若存在多项式时间随机算法 V,满足以下条件:

- (1) 若 $x \in L$,则存在 w,满足 V(x, w) = acc
- (2) 若 $x \notin L$, 则任意 w, $\Pr[V(x, w) = acc] \le 1/2$
- (3) 对于输入 $\langle x, w \rangle$, V 至多使用 r(|x|) 个随机比特,访问 w 的至多 q(|x|) 个比特

补充内容: 其他复杂性类

定义 (PCP)

给定函数 $r, q: \mathbb{N} \to \mathbb{N}$ 。称语言 $L \in PCP(r, q)$,若存在多项式时间随机算法 V,满足以下条件:

- (1) 若 $x \in L$,则存在 w,满足 V(x, w) = acc
- (2) 若 $x \notin L$, 则任意 w, $\Pr[V(x, w) = acc] \le 1/2$
- (3) 对于输入 $\langle x, w \rangle$, V 至多使用 r(|x|) 个随机比特,访问 w 的至多 q(|x|) 个比特

定理 (PCP 定理)

$$NP = PCP(O(\log n), O(1))$$

可能的应用场景:签到、批改作业、复习期末考试...