Erik 2024-03-01

Friday, March 1, 2024 4:29 PM

Hodina 1..marca ...

Hodina 1. marca 2024

Program

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli: všelijaké derivácie
- 3. Minimá a maximá
- 4. Domáca úloha (nová)
- 5. Program na budúci týždeň

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://github.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, je možné, že sa bude týždeň od týždňa líšiť.

1. Domáca úloha

Príklad 1

Ktorý obdĺžnik má pri konštantnom obsahu najmenší obvod?

Riešenie

Hľadáme maximum x + y za podmienky xy = S = const.

Jednoduché riešenie:

$$xy = S \implies y = \frac{S}{x}$$

a teda minimalizujeme funkciu

$$o(x) = x + \frac{S}{x}$$

V okolí minima alebo maxima sa funkcia pri malej zmene x prakticky nemení, teda jej dotyčnica v tom mieste má nulovú smernicu, čiže minimum budeme hľadať tam, kde o'(x)=0. Môžeme tak dostať minimum aj maximum, takže sa v riešeniach musíme rozobrať, ktoré je čo.

$$o'(x) = (x + \frac{S}{x})' = 1 + S(x^{-1})' = 1 + S(-1)x^{-2} = 1 - \frac{S}{x^2} = 0$$
$$x = \pm \sqrt{S}$$

Záporné riešenie zahadzujeme (v skutočnosti zodpovedá maximu, ale nespadá do prípustných hodnôt), kladné znamená, že $y=S/x=\sqrt{S}=x$ a teda obdĺžnik s namenším obvodom je štvorec. Kladné riešenie zodpovedá minimu, ako vidieť z grafu. Pretože derivácia $o'(x)=1-S/x^2$ je pre $x<\sqrt{S}$ záporná a na opačnej strane kladná, znamená to, že máme minimum.

Systematickejšie riešenie:

Minimum bude tam, kde sa modrá čiara x+y=const dotkne červenej xy=S. Inak povedané, v optime musí byť normálový vektor na obmedzenie kolineárny s prírastkom cieľovej funkcie. Ešte inak, dotyčnice k obmedzeniu a k cieľovej funkcii v optime musia mať rovnaký smer. Preto namiesto o(x,y)=x+y optimalizujeme funkciu $\underline{L(x,y)}=o(x,y)-\lambda (xy-S)$. Derivácie tejto funkcie podľa x,y,λ musia byť nulové:

$$L = x + y - \lambda(xy - S)$$

$$\frac{\partial L}{\partial x} = 0 \implies 1 - \lambda y = 0$$

$$\frac{\partial L}{\partial y} = 0 \implies 1 - \lambda x = 0$$

$$\frac{\partial L}{\partial x} = 0 \implies xy = S$$

takže máme $x=y=1/\lambda$ a z tretej rovnice máme $\lambda^2=1/S \implies \lambda=1/\sqrt{S}.$ Odtiaľ $x=y=\sqrt{S}$ a máme predchádzajúce riešenie.

Príklad 2

Aký najväčší obdĺžnik (v zmysle plochy) vieme vpísať do polkruhu?

Príklad 3

Aký najväčší kužeľ môžeme vpísať do gule? (v zmysle podielu obsahu kužeľa a gule)

Príklad 4

Adam a Barbora 2: Adam s Barborou sa prechádzajú po cestičke pri pláži. Cestička vedie rovnobežne s brehom mora vo vzdialenosti 50 m. Zrazu vietor zhodí Barbore klobúk a odnesie ho presne do bodu K 200 m nižšie na rozhraní pláže a mora. Adam ho chce zachrániť, kým ho spláchne vlna . Po cestičke beží rýchlosťou 8 km/h, ale v piesku len rýchlosťou 3 km/h. Ako dlho má

Niekoľko príkladov na zahriatie a povznesenie mysle

1. Všelijaké derivácie: súčin

Majme funkciu $f(x) \times g(x)$, napríklad $y = x \ln x$. Ako spočítam deriváciu?

$$\frac{d}{dx}(f(x)g(x)) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \lim_{h \to 0} g(x+h) + f(x) \lim_{h \to 0} \frac{f(x+h) - g(x)}{h} = f'(x(g(x) + f(x)g'(x))$$

Ešte raz::

$$(f(x)g(x))' = f'(x(g(x) + f(x)g'(x)$$

Príklad

$$(x \ln x)' = (x)' \ln x + x(\ln x)' = \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

Vložka: derivácia $\ln x$

$$(\ln x)' = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \ln\left(1 + \frac{h}{x}\right)^{1/h}$$
$$= \lim_{h \to 0} \ln\left(1 + \frac{h}{x}\right)^{\frac{x}{h}} = \ln\left(e^{1/x}\right) = \frac{1}{x}$$

2. Všelijaké derivácie: zložené funkcie

Majme funkciu $g\circ f(x)\equiv g(f(x))$. Aká je jej derivácia?

$$(g(f(x))))' = \lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{h} = \lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} h$$

$$= \frac{dg}{df} \cdot \frac{df}{dx}$$

Príklad

$$\left(\sqrt{1+x^2}\right)' = \frac{1}{2}(1+x^2)^{-\frac{1}{2}} \cdot 2x = \frac{x}{\sqrt{1+x^2}}$$

$$\left(\sqrt{1+x^2}\right)' = \frac{\partial}{\partial u} \cdot \frac{\partial u}{\partial x} = \left(u^{\lambda/2}\right)' \cdot \left(2\right) = \frac{x}{\sqrt{1+x^2}}$$

$$= \frac{\lambda}{2} u^{-\frac{\lambda}{2}} 2x = \frac{2x}{2\sqrt{1+x^2}}$$

3. Všelijaké derivácie: derivácia inverznej funkcie

Majme funkciu $\,y=f(x)\,$ a nech je $\,x=f^{-1}(y)\,$ je inverzná funkcia. Formálne:

$$dy = f'(x)dx$$
 : $dx = \frac{1}{f'(x)}dy$

takže

$$(f^{-1}(x))' = \frac{1}{f'(y)}|_{y=f^{-1}(x)}$$

Najprv píšeme deriváciu v termínoch y, aby bolo jasné, čo sa má derivovať a čo iba dosadiť. Je to trocha jemná argumentácia, treba si osvojiť.

Príklady

$$\frac{1}{\varrho y} | y = \ln x$$

$$(e^x)' = e^x \quad \therefore \quad (\ln x)' = \frac{1}{e^{\ln x}} \equiv \frac{1}{x}$$

$$(\sin x)' = \cos x \quad \therefore \quad (\arcsin x)' = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}$$

$$\sqrt{1 - \sin^2(\arccos(x))}$$

4. Všelijaké derivácie: viac premenných

Majme funkciu z=f(x,y). Táto funkcia sa zjavne mení pri zmene x i y, preto má dva druhy derivácií:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \quad \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Tieto derivácie teda berieme podľa jednej premennej, pričom ostatné premenné držíme na konštantnej hodnote.

Príklad

$$S = -\sum_i p_i \ln p_i \ rac{\partial S}{\partial p_i} = -\ln p_i - 1$$

5. Všelijaké derivácie: implicitné funkcie

Niekedy máme funkciu, definovanú vzťahom F(x,y)=0 a nie je úplne ľahké vyjadriť y v termínoch x, aby sme mohli derivovať obvyklým spôsobom.

Vtedy postupujeme takto: F(x,y)=0 je konštantná funkcia, takže

$$\underline{dF} = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0 \quad \therefore \quad \frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}.$$

Príklad

$$F(x,y) = \begin{cases} x^2 + y^2 = r^2 \end{cases} \therefore \frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}$$

$$\frac{dy}{dx} = -\frac{x}{y} \qquad \frac{d(\frac{1}{2}y^2)}{d(\frac{1}{2}x^2)} \qquad d(\frac{1}{2}x^2) \qquad d(C)$$

$$\frac{dy}{dx} = -\frac{x}{y} \qquad \frac{d(\frac{1}{2}y^2)}{d(\frac{1}{2}x^2)} \qquad d(C)$$

$$\frac{d(\frac{1}{2}y^2)}{d(\frac{1}{2}x^2)} \qquad d(C) = 0$$

 $d\left(\frac{1}{2}y^{2} + \frac{1}{2}x^{2} - C\right) = 0$ $f'(bx) = \lim_{h \to 0} \frac{f(k(x+h)) - f(kx)}{h} = \lim_{h \to 0} \frac{f(kx+h) - f(kx)}{h}$

6. Všelijaké d	erivácie: rôzne fun	kcie
= lef (u)n.	$y_{\mu} = f(x)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
dh dex	h any constant	$\frac{\mathrm{d}x}{0}$
06	k, any constant	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x_{2}	1
<u>k</u>	x^{z}	$\frac{2x}{2}$
		$3x^{2}$
	x^n , any constant n	nx^{n-1}
	e^x	e^x
	e^{kx}	ke^{kx}
	$\ln x = \log_{\mathrm{e}} x$	$\frac{1}{x}$
	$\sin x$	$\cos x$
	$\sin kx$	$k\cos kx$
	$\cos x$	$-\sin x$
	$\cos kx$	$-k\sin kx$
	$\tan x = \frac{\sin x}{\cos x}$	$\sec^2 x$
	$\tan kx$	$k \sec^2 kx$
	$\csc x = \frac{1}{\sin x}$	$-{\rm cosec}x\cotx$
	$\sec x = \frac{1}{\cos x}$	$\sec x \tan x$
	$\cot x = \frac{\cos x}{\sin x}$	$-\csc^2 x$
	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
	$\cos^{-1} x$	$\frac{\sqrt{1-x^2}}{-1}$ $\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$
	$\tan^{-1} x$	$\frac{\sqrt{1-x^2}}{1+x^2}$
	$\cosh x$	$\sinh x$
	$\sinh x$	$\cosh x$
	$\tanh x$	$\mathrm{sech}^2 x$
	$\operatorname{sech} x$	$-\mathrm{sech}x\tanh x$
	$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$
	$\coth x$	$-\mathrm{cosech}^2 x$
	$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
	$\sinh^{-1} x$	1
		$\sqrt{x^2+1}$

Príklad: Tangens

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = (\sin x)' \frac{1}{\cos x} + \sin x \left(\frac{1}{\cos x}\right)' = 1 + \sin x \frac{-1}{\cos^2 x} (-\sin x) = \frac{1}{\cos^2 x}$$

Príklad: Arkustangens

 $\tanh^{-1} x$

$$(\arctan x)' = \frac{1}{(\tan y)'}|_{y=\arctan x} = \cos^2(\arctan x) = \frac{\cos^2(\arctan x)}{\cos^2(\arctan x) + \sin^2(\arctan x)}$$
$$= \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$$

Minimá a maximá

Domáca úloha (nová)

Nájdi prvú deriváciu funkcií (netreba všetko, ale treba prepočítať čo najviac typov a použiť rôzne metódy na kontrolu, kde sa dá.

a)
$$y = x^2 + 2x + 1$$

a)
$$y = x^2 + 2x + 1$$
 j) $y = x + \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x}$ s) $y = \sin x + \cos x + \tan x$

s)
$$y = \sin x + \cos x + \tan x$$

b)
$$y = 4x^3 - 3x^2 + 2x - 1$$
 k) $y = \sqrt[3]{x^8} - \sqrt[4]{x^7} + \sqrt[5]{x^6}$ **t**) $y = \log x - \ln x + \log_5 x$

$$y = \sqrt[3]{x^8} - \sqrt[4]{x^7} + \sqrt[5]{x^6}$$

$$y = \log x - \ln x + \log_5 x$$

c)
$$y = \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2$$
 I) $y = \frac{1}{\sqrt[3]{2x^4}} - \frac{1}{\sqrt[4]{2x^3}}$ u) $y = 3 \arcsin x - 2 \arctan x$

$$y = \frac{1}{\sqrt[3]{2x^4}} - \frac{1}{\sqrt[4]{2x^3}}$$

$$\mathbf{u}) \qquad y = 3 \arcsin x - 2 \arctan x$$

d)
$$y = -\frac{5x^8}{9} - \frac{8x^7}{13} - \frac{9x^6}{16}$$
 m) $y = \frac{\sqrt[5]{4x}}{5} + \sqrt[4]{\frac{1}{x^3}}$ **v**) $y = 5\cot x + 8\arccos x$

$$y = \frac{\sqrt[5]{4x}}{5} + \sqrt[4]{\frac{1}{x^3}}$$

$$y = 5\cot x + 8\arccos x$$

e)
$$y = (3x - 5)$$

n)
$$y = \sqrt{x^5 - \sqrt[4]{x^9}}$$

e)
$$y = (3x-5)^3$$
 n) $y = \sqrt{x^5} - \sqrt[4]{x^9}$ w) $y = \operatorname{arccot} x - 2\cot x$

f)
$$y = (\sqrt{x} - 1)^2 - (x^2 + 1)^4$$
 o) $y = \sqrt{x} - \sqrt{x} + \sqrt[3]{x^2} - \sqrt{x^3}$ x) $y = x - \ln x + 1$

$$v = \sqrt{x\sqrt{x}} + \sqrt[3]{x^2\sqrt{x^3}}$$

$$\mathbf{x}) \qquad \mathbf{y} = \mathbf{x} - \ln \mathbf{x} + 1$$

g)
$$y = x^{11} - x^9 + x^7 - x^5$$
 p) $y = \sqrt{x^3 \sqrt{x^5 \sqrt{x^7}}}$ y) $y = 2^x - 3e^x - 4^x$

$$y = \sqrt{x^3 \sqrt{x^5 \sqrt{x^7}}}$$

y)
$$y = 2^x - 3e^x - 4^x$$

h)
$$y = x^{-5} + x^{-7} + x^{-9} - 11$$

$$y = \frac{5x^{-3}.\sqrt{x^4}.\sqrt[3]{x^5}}{8x^9.\sqrt[5]{x^{-8}}.\sqrt[7]{x^{11}}.\sqrt[7]{x}}$$

h)
$$y = x^{-5} + x^{-7} + x^{-9} - 11$$
 q) $y = \frac{5x^{-9} \cdot \sqrt{x^4} \cdot \sqrt[3]{x^5}}{8x^9 \cdot \sqrt[5]{x^{-8}} \cdot \sqrt{x^{11}} \cdot \sqrt[3]{x}}$ **z**) $y = 5 \times 9^x - 4 \times 5^x + \frac{7^x}{\ln 7}$

i)
$$y = \frac{8}{x^8} - \frac{6}{x^6} + \frac{4}{x^4} - \frac{2}{x^2}$$
 r) $y = \sqrt{\frac{5\sqrt{x^7}}{6x^3}} + \frac{\sqrt[3]{x^{-0}} \cdot \sqrt{x^9}}{\sqrt[3]{4x\sqrt{x^5}}}$ Z) $y = -6e^x + 5^x - 5x + \frac{x}{5}$

$$y = \sqrt{\frac{5\sqrt{x^7}}{6x^3}} + \frac{\sqrt[3]{x^{-8}.\sqrt{x^9}}}{\sqrt{4x\sqrt{x^5}}}$$

$$y = -6e^x + 5^x - 5x + \frac{1}{2}$$

$$\mathbf{a}) \qquad y = x \ln x$$

$$y = x \ln x$$
 j) $y = \frac{1+x}{1-x}$

$$y = \frac{2x-1}{x+3}$$

$$\mathbf{b}) \qquad y = x^5 e^x$$

$$\mathbf{k}) \qquad y = \frac{x}{\tan x}$$

b)
$$y = x^5 e^x$$
 k) $y = \frac{x \ln x}{1 - x^2}$ **t**) $y = \frac{x \ln x}{1 - x^2}$

c)
$$y = \sin x \cos x$$

$$y = \frac{x^2}{\ln x}$$

e)
$$y = \sin x \cos x$$
 I) $y = \frac{x^2}{\ln x}$ u) $y = \frac{x^2 \ln x}{1 - \arctan x}$

d)
$$y = 2^x x^2$$

$$\mathbf{m}) \qquad y = \frac{3^x}{2^x}$$

$$\mathbf{m}) \qquad y = \frac{3^x}{2^x} \qquad \qquad \mathbf{v}) \qquad y = \frac{x \sin x}{\cos x}$$

e)
$$y = x \arcsin x$$

$$\mathbf{n}) \qquad y = \frac{e^x}{y^3}$$

$$\mathbf{w}) \qquad y = \frac{\sin x \cos x}{\sin x - \cos x}$$

$$y = \frac{e^x + 1}{e^x - 1}$$

$$y = \sqrt{x} \arccos x$$

g)
$$y = \sqrt{x} \arccos x$$
 p) $y = \frac{\tan x}{\arctan x}$

y)
$$y = \frac{x-1}{(x^2+2)^2}$$

$$\mathbf{h)} \qquad y = x^2 \operatorname{arccot} x$$

q)
$$y = \frac{x^2 + 2x}{1 - x^2}$$

h)
$$y = x^2 \operatorname{arccot} x$$
 q) $y = \frac{x^2 + 2x}{1 - x^2}$ **z**) $y = \frac{x \arcsin x}{\arctan x}$

$$i) y = x^2 e^x \sin x$$

i)
$$y = x^2 e^x \sin x$$
 r) $y = \frac{2 \sin x}{\sin x - \cos x}$ Z) $y = \frac{\sin x + \cos x}{\sin x - \cos x}$

$$\mathbf{Z}) \qquad y = \frac{\sin x + \cos x}{\sin x - \cos x}$$

a)
$$y = (x^3 + 7x^2 - x + 1)^4$$
 j) $y = \ln(\arccos 2x)$ s) $y = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}$

$$y = \ln(\arccos 2x)$$

$$y = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}$$

b)
$$y = \sqrt{1 + 2x - x^2}$$
 k) $y = 2\arctan\sqrt{\sin x}$ **t**) $y = \sqrt{\sin 3x + 5}$

$$y = 2 \arctan \sqrt{\sin x}$$

$$y = \sqrt{\sin 3x + 5}$$

$$y = \ln(2x + 4)$$

$$y = \frac{\cos^2 x}{\cos x^2}$$

c)
$$y = \ln(2x + 4)$$
 I) $y = \frac{\cos^2 x}{\cos^2 x}$ u) $y = 5\sin^2 x - 2\cos x^3$

$$d) y = \sin x^2$$

m)
$$y = \ln(\ln(\ln x))$$
 v) $y = \sin^2 x^2$

$$v$$
) $v = \sin^2 x^2$

$$\mathbf{e}) \qquad y = 3^{\cos x}$$

n)
$$y = \ln^2 x - (\ln(\ln x))$$
 w) $y = x^2 \sqrt{1 + x^2}$

$$v = x^2 \sqrt{1 + x^2}$$

$$y = \sqrt{1 + e^{x}}$$

f)
$$y = \sqrt{1 + e^x}$$
 o) $y = x \arcsin \sqrt{\frac{x}{1 + x}}$ x) $y = x^{e^x}$

$$y = x^{e^x}$$

g)
$$y = \arcsin(\ln x)$$
 p) $y = \sqrt[3]{\ln(\sin x)}$ y) $y = (\ln x)^x$

$$y = \sqrt[3]{\ln(\sin x)}$$

$$y = (\ln x)^{\lambda}$$

$$\mathbf{h}) \qquad y = \cos(2x+3)$$

q)
$$y = \ln^4(x^2 + 1)$$

$$y = \cos(2x+3)$$
 q) $y = \ln^4(x^2+1)$ z) $y = (\sin x)^{\cos x}$

$$i) y = \arctan \sqrt{e^x - 1}$$

$$y = \arctan \sqrt{e^x - 1}$$
 $y = e^{\sqrt{x}} \sqrt{x^2 - 1}$ $y = (x^x)^x - x^{(x^x)}$

$$v = (r^{x})^{x} - r^{(x^{x})}$$

5. Program na budúci týždeň

· Budeme riešiť diferenciálne rovnice a integrovať.

