live

Hyperparameter Tuning

Outline

- Overview of hyperparameter tuning
- Grid search
- Randomized

Overview of hyperparameter tuning

Kenapa perlu ketahui ini?

 Saat ini algoritma semakin kompleks, sehingga hyperparameter dipilih banyak

2. Tuning memerlukan waktu yang banyak

Apa itu **Parameter?**

- Nilai yang dihasilkan oleh model machine learning selama proses pembelajaran (output)
- 2. Tidak bisa disetting secara manual
- Ini akan diketahui dari algoritma yang kita pilih

Contoh: Linear Modelling

```
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
print(log_reg.coef_)
```


Koefisien adalah Parameter,

yang tidak kita tetapkan tapi dihasilkan selama pembelajaran

Cara cari Parameter?

- 1. Pahami algoritma yang kita gunakan
- 2. Jika perlu baca dokumentasi algoritma yang kita pilih (attributes section bukan parameter section)

```
Attributes: classes_: ndarray of shape (n_classes,)
A list of class labels known to the classifier.

coef_: ndarray of shape (1, n_features) or (n_classes, n_features)
Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary. In particular, when
multi_class='multinomial', coef_ corresponds to outcome 1 (True) and -coef_ corresponds to outcome 0
(False).

intercept_: ndarray of shape (1,) or (n_classes,)
Intercept (a.k.a. bias) added to the decision function.

If fit_intercept is set to False, the intercept is set to zero. intercept_ is of shape (1,) when the given
problem is binary. In particular, when multi_class='multinomial', intercept_ corresponds to outcome 1
(True) and -intercept_ corresponds to outcome 0 (False).
```

Sources: Scikit-Learn (Logistic Regression)

Jika non-linear, **Bagaimana?**

Random Forest tidak memiliki koefisien tapi berdasarkan cabang tangkai (node) untuk memisahkan feature dan value yang akan di split.

Apa itu **Hyperparameter?**

Sesuatu yang di **setting** sebelum pemodelan dan **tidak dipelajari algoritma**

Cara cari Hyperparameter?

- 1. Pahami algoritma yang kita gunakan
- Jika perlu baca dokumentasi algoritma yang kita pilih (parameter section)

Parameters:

penalty : {'l1', 'l2', 'elasticnet', None}, default='l2'
Specify the norm of the penalty:

- · None: no penalty is added;
- '12': add a L2 penalty term and it is the default choice;
- '11': add a L1 penalty term;
- 'elasticnet': both L1 and L2 penalty terms are added.

Sources: Scikit-Learn (Logistic Regression)

Bedah satu Hyperparameter.

<u>Tipe data dan defaultnya</u>

{'11', '12', 'elasticnet', None}, default='12'

<u>Definisi</u>

teknik yang digunakan untuk mengendalikan kompleksitas model dan mengurangi risiko overfitting

<u>Setting</u>

Contoh: Linear Modelling

```
log_reg = LogisticRegression(penalty = 'lasso')
log_reg.get_params()
```

```
{'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 100, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'lasso', 'random_state': None, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}
```


Catatan tentang Hyperparameter

Ada beberapa parameter yang tidak membantu pemodelan

Contoh: Random Forest

n_job : Mempercepat waktu pemodelan

random_state : Pemilihan acak data

verbose : Menampilkan informasi proses

Beberapa parameter tidak perlu digunakan dalam data training

<u>Kuncinya</u> adalah membaca paper atau literasi-literasi tertentu, untuk menentukan mana important dan tidak

Mana parameter yang perlu dahulu di tune?

- 1. Tergantung modelling yang kita gunakan
- 2. Perhatikan parameter yang conflict

Contoh: Linear Modelling

warning: The choice of the algorithm depends on the penalty chosen. Supported penalties by solver:

'lbfgs' - ['12', None]

'liblinear' - ['11', '12']

'newton-cg' - ['12', None]

'newton-cholesky' - ['12', None]

'saga' - ['12', None]

'saga' - ['elasticnet', '11', '12', None]

<u>Automating Hyperparameter</u>

Contoh: Linear Modelling

```
solver = ['lbfgs', 'liblinear', 'liblinear', 'sag', 'saga']
accuracy = []
for i in solver:
  model = LogisticRegression(solver = i)
  logreg = model.fit(X_train, y_train)
  pred = logreg.predict(X_test)
  acc = accuracy_score(y_test, pred)
  accuracy.append(acc)
```


Learning Curves

Contoh: Linear Modelling

```
plt.plot(solver, accuracy)
plt.gca().set(xlabel = 'solver', ylabel =
'accuracy', title = 'Solver vs Accuracy')
plt.show()
```


Grid search

Masih ingat ini?

<u>Automating Hyperparameter</u>

Contoh: Linear Modelling

```
solver = ['lbfgs', 'liblinear', 'liblinear', 'sag', 'saga']
accuracy = []
for i in solver:
  model = LogisticRegression(solver = i)
  logreg = model.fit(X_train, y_train)
  pred = logreg.predict(X_test)
  acc = accuracy_score(y_test, pred)
  accuracy.append(acc)
```

Akan menjadi pertanyaan apabila parameternya lebih dari satu yang digunakan. Akan dibuat nested loop kan?

solver dengan max_iter

Catatan: Parameter tidak hanya linear relationship tapi exponential antar parameter

```
def func_iter(solver, max_iter):
 model = LogisticRegression(solver = solver,
          max_iter = max_iter)
 pred = model.fit(X_train, y_train).predict(
         X test)
  return([solver, max_iter, accuracy_score(
        y_test, pred)])
result = []
for solv in solver:
 for iter in max_iter:
   result.append(func_iter(solver, max_iter))
```


Masih ingat ini?

Jika terdapat:

- 5 value parameter untuk parameter 1
- 2. 10 value parameter untuk parameter 2 Secara total terdapat 50 iterasi value parameter

Bagaimana jika cross validation untuk 10 kali? Bisa 500 iterasi value parameter

LALU, bagaimana jika lebih dari 2 parameter?

Pada akhirnya kita tidak bisa nested loop secara berkala, tidak efektif

Apa itu **Grid Search?**

Mencoba value parameter dalam algoritma dari hyperparameter yang kita gunakan dan menemukan mana yang terbaik

Tutorial dalam Scikit-Learn

GridSearchCV dan selanjutnya melakukan

- 1. Penentuan algoritma yang dipilih
- 2. Penentuan hyperparameter akan dituning
- 3. Range value dalam hypeparameter
- 4. Pilih mana hasil yang terbaik

Input umum digunakan dari GridsearchCV

Diantaranya terbagi:

: algoritma yang digunakan (contoh, logistic regression). PILIH satu. estimator

: hyperparameter dengan value yang digunakan (contoh, max_iter). Bentuk **dict.** param_grid

: bagaimana kita membuat cross validation (masukan **k**, misal 5 fold, 10 fold dan disesuaikan) CV

: apa yang akan di evaluasi dalam model scoring

> Catatan mengecek evaluasi metrik: from sklearn import metrics metrics.SCORERS.keys()

Memahami Output dari

Dimana terdapat 3 hasil:

Result log

Random search

Apa itu Random Search?

Ini masih sama dengan GridSearch, kita masih mendefine parameter, maupun estimator. Hanya yang membedakan

adalah pengambilan grid secara random

Lalu ini berfungsi?

- Berdasarkan Bengio & Bergstra (2012), terdapat dua alasan
- 1. Tidak semua hyperparameter itu penting
- 2. Probability Trick

Best params dengan warna hijau.

Hanya 5 dari 100 atau 0.05 peluang berhasil atau (1 – 0.05) peluang tidak berhasil

Dan untuk setiap perulangan, memiliki peluang untuk peluang tidak berhasil (1 - 0.05) ^ n

n: jumlah percobaan

Lalu berapakah perulangan percobaan atau (n) agar mendapatkan peluang 95% diberhasil?

- 1. Jika peluang tidak berhasil adalah (1 0.05) ^ n
- 2. Maka perlu (1 peluang tidak berhasil) atau sama dengan (1 (1 0.05) ^ n)
- 3. Dari hasil tersebut didapati $n \ge 59$ dari $(1 (1 0.05) \land n) \ge 0.95$

Dengan uji coba sedikit, maka probalitas akan tinggi untuk mendapatkan berhasil tanpa perlu semua spot dianalisa

Tutorial dalam Scikit-Learn

RandomizedSearchCV dan selanjutnya melakukan

- 1. Penentuan algoritma yang dipilih
- 2. Penentuan hyperparameter akan dituning
- 3. Range value dalam hypeparameter
- 4. Penetuan sampel yang akan diambil
- 5. Pilih mana hasil yang terbaik

Bedanya

GridSearchCV dengan RandomizedSearchCV

```
sklearn.model_selection.GridSearchCV(estimator, param_grid,
        scoring=None, fit_params=None,
        n_jobs=None,
        refit=True, cv='warn', verbose=0,
        pre_dispatch='2*n_jobs',
        error_score='raise-deprecating',
        return_train_score='warn')
```

```
sklearn.model_selection.RandomizedSearchCV(estimator,
       param_distributions, n_iter=10,
       scoring=None, fit_params=None,
       n_jobs=None, refit=True,
       cv='warn', verbose=0,
       pre_dispatch='2*n_jobs',
       random_state=None,
       error_score='raise-deprecating',
       return_train_score='warn')
```

Terdapat dua perbedaan:

n iter

Jumlah sampel untuk pengambilan parameter

param_distributions

ini sedikit beda dengan param_grid, berguna sebagai distribution sampling

(defaultnya equal, semua kombinasi memiliki peluang yang sama)

Conclusion

Kesamaan GridSearchCV dengan RandomizedSearchCV

- Keduanya digunakan untuk automating hyperparamater
- Penentuan grid dimana berisikan parameter termasuk dengan value yang dipilih
- 3. Penentuan mekanisme cross-validation dan scoring

Ingat, model terbaik akan muncul dari GRID yang kita pilih

Perbedaan GridSearchCV

dengan RandomizedSearchCV

- GridSearch Mencari mendalam untuk semua kombinasi di grid/ruang sampel dan tanpa sampling metodologi (Membutuhkan proses yang panjang, namun memastikan pasti dapat parameter terbaik)
- RandomizedSearch Mencari subpengumpulan secara acak dengan menentukan bagaimana bentuk pengambilannya (bentuk defaultnya adalah uniform) (Membutuhkan proses yang singkat namun belum pasti mendapatkan parameter terbaik)

Lalu antara GridsearchCV dengan RandomizedSearchCV mana yang dipilih?

- Semakin banyak data yang dimiliki, lebih baik menggunakan RandomizedSearch
- Semakin banyak hyperparameter yang dimiliki, lebih baik menggunakan RandomizedSearch
- 3. Jika kamu tidak mempunyai waktu banyak untuk menunggu, lebih baik menggunakan **RandomizedSearch**

Ingat, randomizedSearch memperbesar peluang mendapatkan hasil yang baik, walaupun bukan terbaik yah!

Sebelumnya

Saat kita menggunakan GridsearchCV dengan RandomizedSearchCV adalah pencarian tanpa informasi (artinya setiap iterasi hyperparameter tidak belajar dari iterasi sebelumnya)

informed

Informed Search

Adapun tutorialnya sebagaimana berikut:

- 1. Lakukan random search
- 2. Melihat area yang bagus untuk diobservasi lebih lanjut
- 3. Melakukan Grid Search ke area tersebut
- 4. Lanjutkan sampai mendapatkan hasil yang optimal

Keuntungan Informed Search

- Melakukan optimalisasi dari GridsearchCV dan RandomizedsearchCV
 Dimana mencari secara luas dengan Random Search, kemudian secara detail dengan Grid Search
- 2. Proses penggunaan akan lebih efisien dan saling menginformasi setiap tahapan yang dilakukan

Jika Kita memiliki hyperparameter sebagai berikut:

max_depth_list	dari 1 sampai dengan 65
min_sample_list	dari 3 sampai dengan 17
learn_rate_list	dari 0.01 sampai dengan 150 dengan 150 value

Maka secara total ada 134400 iterasi loh.

Temukan Kesimpulan

Manky.