深远海船舶作业智能体数据规范 (Data Specification)

一、数据总体要求

1. 数据来源

来自船舶甲板机械设备、推进系统、动力定位系统、发电机组等关键子系统。 所有数据需以时间序列结构化格式 (CSV 或 JSON) 存储。 文件命名需遵循统—映射表 (详见第六部分)。

2. 文件编码与格式

文件编码: UTF-8 (无 BOM)

3. 数据精度与采样频率

- . 时间戳最小间隔建议 ≤ 1 秒;
- . 电压、电流、功率类数据保留 1~2 位小数;
- 各设备采样频率不同, 需在元数据文件中注明(详见第七部分)。

二、数据结构与字段定义

模块	关键字段	字段类型	单位/格式	描述
A架设备	csvTime	string	YYYY-MM-DD HH:MM:SS	时间戳
	Ajia-0_v	float		A架右舷角度
	Ajia-3_v	float	A	电流通道3数值
	Ajia-5_v	float	А	电流通道5数值
	key_action	string	枚举	标注关键动作
	running_status	bool	True/False	当前运行状态
动力定位系统	csvTime	string	YYYY-MM-DD HH:MM:SS	时间戳
	P3_33	float	kW	推进变频器功率
	dp_status	string	枚举	"ON DP" / "OFF DP"
折臂吊车	csvTime	string	YYYY-MM-DD HH:MM:SS	时间戳
	13-11-6_v	float	kW	功率
	stage_field	string	枚举	"待机"/"工作" 阶段
发电机系统	csvTime	string	YYYY-MM-DD HH:MM:SS	时间戳
	P1_66	float	kW	有功功率
	P1_88.14	bool	True/False	是否额定转速
	P3_15	float	kW	推进功率
航行状态表	dp_status	string	枚举	当前DP状态
	·			

三、数据清洗与预处理规则

1. 时间格式规范化:

df[IcsvTime I] = pd.to_datetime(df[IcsvTime I],format=I%Y-%m-%d % H:%M:%S I)

2. 异常值与缺失值处理

- . 缺失值 (null/error) 跳过;
- . 连续零值超过10个时过滤;
- . 异常负值需检查是否设备休眠或信号反转。

3. 单位换算

. 电流、电压除以10; 频率除以100; 1MJ = 1kWh / 3.6。

4. 多源数据对齐

. 采用时间戳匹配, 采样频率不同使用线性插值。

四、数据标注规范

标注对象	规则说明			
A架动作识别	电流>0表示"有电流";=0表示"回到位"。			
动力定位阶段判定	dp_status 为 "ON DP" 表示开始, "OFF DP" 表示结束			
深海作业阶段	通过 A架 stage_field 区分"布放/回收"。			
报警机制	按阈值规则触发报警。			

五、报警与安全阈值参考

设备	参数	阈值	说明	
发电机	滑油压力	< 210 kPa	预警	
发电机	滑油压力	< 180 kPa	停机	
A架	电流状态	= 0	" 摆回到位"	
推进器	功率	≥ 1000 kW	航渡状态	

六、文件组织与命名规范

内容	示例	说明
输入数据文件夹	/data/input_data/	原始设备数据
输出数据文件夹	/data/output_data/	清洗 / 分析结果
命名格式	{设备名}_{编号}.csv	例如 Ajia_plc_1.csv
字段完整性		必须包含 csvTime + 关键字段

七、元数据与描述文件

```
示例:

"device ": "A架吊机",

" sampling_rate ": "1s ", "data_format ": " CSV",

" columns ": [" csvTime ", "Ajia-0_v ", "Ajia-3_v ", "Ajia-5_v ", "key_action"], "description ": " 记录A架作业全过程电流与角度变化",

" version ": " v1.0"
}
```

八、数据版本与追踪

- 每次数据更新须在 metadata.json 中更新 version;
 - . 建议使用 Git LFS 管理大型CSV文件;
 - 所有数据操作过程需日志记录 (清洗、合并、插值步骤)。