Variable Markups with Heterogeneous Demand and Productivity

Juan Holguín UWO Sergio Ocampo UWO Sergio Salgado Wharton

June, 2024

Markup dispersion

- Important for productivity, labor share, inequality, welfare, etc.

Dixit, Stiglitz, 1976; Atkeson, Burstein, 2008; Dhingra, Morrow, 2019; Edmond, Midrigan, Xu 2015, 2023; Yeh, Macaluso, Hershbein 2022; Baqaee, Farhi, Sangani, 2024; Boar, Midrigan, 2024; Hasenzagl, Pérez, 2024.

Markup dispersion

- Important for productivity, labor share, inequality, welfare, etc.

Dixit, Stiglitz, 1976; Atkeson, Burstein, 2008; Dhingra, Morrow, 2019; Edmond, Midrigan, Xu 2015, 2023; Yeh, Macaluso, Hershbein 2022; Baqaee, Farhi, Sangani, 2024; Boar, Midrigan, 2024; Hasenzagl, Pérez, 2024.

- More-productive/Higher-demand firms have market power → Higher markups
 - → Misallocation because high-markup (more-productive) firms are "too small"

Markup dispersion

- Important for productivity, labor share, inequality, welfare, etc.

Dixit, Stiglitz, 1976; Atkeson, Burstein, 2008; Dhingra, Morrow, 2019; Edmond, Midrigan, Xu 2015, 2023; Yeh, Macaluso, Hershbein 2022; Baqaee, Farhi, Sangani, 2024; Boar, Midrigan, 2024; Hasenzagl, Pérez, 2024.

- More-productive/Higher-demand firms have market power \longrightarrow Higher markups
 - → Misallocation because high-markup (more-productive) firms are "too small"
- Measured markups from production function estimation show:
 - Large markup dispersion concentrated in small firms
 - Both: Small firms with "high"-markups & large firms with "low"-markups
 - Indicative of relevant role of demand heterogeneity for markup dispersion

De Loecker, Goldberg, Khandelwal, Pavcnik 2016; De Loecker, Eeckhout, Unger 2020; Raval 2023; Blum, Claro, Horstmann, Rivers, 2024.

What we want

- 1. Model of firm competition capable of matching distribution of markups and firm size
 - Generate small firms with high markups + large firms with low markups
 - Disentangle role of heterogeneity in productivity, demand, and market concentration

What we want

- 1. Model of firm competition capable of matching distribution of markups and firm size
 - Generate small firms with high markups + large firms with low markups
 - Disentangle role of heterogeneity in productivity, demand, and market concentration

What we want

- 1. Model of firm competition capable of matching distribution of markups and firm size
 - Generate small firms with high markups + large firms with low markups
 - Disentangle role of heterogeneity in productivity, demand, and market concentration

- 2. Measurement exercise to better understand markup distribution
 - Relative role of demand heterogeneity + productivity + concentration

- 1. Extend models of oligopoly (Atkeson & Burstein) and variable elasticity of demand (Kimball)
 - Introduce idiosyncratic elasticity of demand shifters

- 1. Extend models of oligopoly (Atkeson & Burstein) and variable elasticity of demand (Kimball)
 - Introduce idiosyncratic elasticity of demand shifters
- 2. Analytical characterization of elasticities & markups with flexible demand

- 1. Extend models of oligopoly (Atkeson & Burstein) and variable elasticity of demand (Kimball)
 - Introduce idiosyncratic elasticity of demand shifters
- 2. Analytical characterization of elasticities & markups with flexible demand
- 3. Match measured distribution of markups & market shares (Colombia, India, US)
 - Markups from production function (Raval 2023, De Loecker, et al 2016, De Loecker, et al 2020)

- 1. Extend models of oligopoly (Atkeson & Burstein) and variable elasticity of demand (Kimball)
 - Introduce idiosyncratic elasticity of demand shifters
- 2. Analytical characterization of elasticities & markups with flexible demand
- 3. Match measured distribution of markups & market shares (Colombia, India, US)
 - Markups from production function (Raval 2023, De Loecker, et al 2016, De Loecker, et al 2020)
- 4. Demand heterogeneity is the **key** ingredient to match markup distribution
 - Large markup dispersion among similarly-productive firms (Blum, Claro, Horstmann, Rivers 2024)
 - Larger firms not necessarily more productive (Smith, et al 2024; U.S. Retail)

- 1. Extend models of oligopoly (Atkeson & Burstein) and variable elasticity of demand (Kimball)
 - Introduce idiosyncratic elasticity of demand shifters
- 2. Analytical characterization of elasticities & markups with flexible demand
- 3. Match measured distribution of markups & market shares (Colombia, India, US)
 - Markups from production function (Raval 2023, De Loecker, et al 2016, De Loecker, et al 2020)
- 4. Demand heterogeneity is the **key** ingredient to match markup distribution
 - Large markup dispersion among similarly-productive firms (Blum, Claro, Horstmann, Rivers 2024)
 - Larger firms not necessarily more productive (Smith, et al 2024; U.S. Retail)

Soon: Misallocation and decomposition of firm heterogeneity (productivity & demand factors)

Model of Variable Markups

Firm problem(s)

1. Cost minimization: Choose flexible inputs

- Results in firm's cost function (productivity, input prices)
- FOC used to estimate production function → Measured markups
 ▶opt. 1 ▶opt. 2

Firm problem(s)

1. Cost minimization: Choose flexible inputs

▶ details

- Results in firm's cost function (productivity, input prices)
- FOC used to estimate production function → Measured markups
- opt. 1 → opt. 2 → opt.

2. Profit maximization: Choose price given demand

- Demand for goods within a market comes from Kimball market aggregator
- Demand for market's goods from CES aggregator: $\frac{P_m}{P} = \alpha_m \left(\frac{Y_m}{Y} \right)^{-\frac{1}{\gamma}}$

▶ details

- Firms act strategically within but not across markets (take P and Y as given)

Demand within markets: Kimball

- Output within markets $\{Y_i^m\}$ aggregated into Y_m with Kimball aggregators

$$1 = \sum_{i=1}^{N_m} \Upsilon_i \left(\frac{y_i^m}{Y_m} \right) \qquad \left(\text{CES: } \Upsilon \left(\frac{y_i^m}{Y_m} \right) = \left(\frac{y_i^m}{Y_m} \right)^{\frac{\nu-1}{\nu}} \right)$$

Key: Firm-specific functions $\Upsilon_i \longrightarrow \text{Idiosyncratic demand shifters}$

Demand within markets: Kimball

- Output within markets $\{Y_i^m\}$ aggregated into Y_m with Kimball aggregators

$$1 = \sum_{i=1}^{N_m} \Upsilon_i \left(\frac{y_i^m}{Y_m} \right) \qquad \left(\text{CES: } \Upsilon \left(\frac{y_i^m}{Y_m} \right) = \left(\frac{y_i^m}{Y_m} \right)^{\frac{\nu-1}{\nu}} \right)$$

Key: Firm-specific functions $\Upsilon_i \longrightarrow \text{Idiosyncratic demand shifters}$

- Firm (inverse) demand

$$\frac{p_i^m}{P_m} = \frac{\Upsilon_i'\left(\frac{y_i^m}{Y_m}\right)}{\sum_i \Upsilon_i'\left(\frac{y_i^m}{Y_m}\right) \frac{y_i^s}{Y_m}} \qquad \left(\text{CES: } \frac{p_i^m}{P_m} = \left(\frac{y_i^m}{Y_m}\right)^{\frac{-1}{\nu}}\right)$$

- P_m : Market m' ideal price index, i.e., $P_m Y_m = \sum_i p_i^m y_i^m$

The firm problem

$$\max p_i^m y_i^m - C_i (y_i^m)$$

s.t.
$$\underbrace{\frac{p_i^m}{P_m} = \frac{\Upsilon_i'\left(\frac{y_i^m}{Y_m}\right)}{\sum_j \Upsilon_j'\left(\frac{y_j^m}{Y_m}\right)\frac{y_j^s}{Y_m}}}_{\text{Own Demand}}; \qquad \underbrace{1 = \sum_{i=1}^{N_m} \Upsilon_i\left(\frac{y_i^m}{Y_m}\right);}_{\text{Market Aggregation}}; \qquad \underbrace{\frac{P_m}{P} = \alpha_m\left(\frac{Y_m}{Y}\right)^{-\frac{1}{\gamma}}}_{\text{Market Demand}}.$$

Maximize over quantities (Cournot) or prices (Bertrand)

The firm problem

$$\max \quad p_i^m y_i^m - C_i \left(y_i^m \right)$$

$$\text{s.t.} \qquad \underbrace{\frac{p_i^m}{P_m} = \frac{\Upsilon_i'\left(\frac{Y_i^m}{Y_m}\right)}{\sum_j \Upsilon_j'\left(\frac{Y_j^m}{Y_m}\right)\frac{Y_j^s}{Y_m}}}_{\text{Own Demand}}; \qquad \underbrace{1 = \sum_{i=1}^{N_m} \Upsilon_i\left(\frac{Y_i^m}{Y_m}\right);}_{\text{Market Aggregation}}; \qquad \underbrace{\frac{P_m}{P} = \alpha_m\left(\frac{Y_m}{Y}\right)^{-\frac{1}{\gamma}}}_{\text{Market Demand}}.$$

- Maximize over quantities (Cournot) or prices (Bertrand)

Next: Use demand structure to characterize markups analytically

Markups and Demand Elasticities

$$p_i^m = \underbrace{\frac{1}{1 - \frac{1}{\overline{\varepsilon}_i^m}}}_{\mu_i^m: \, \mathsf{Markup}} C_i^i \left(y_i^m \right) \qquad \mathsf{where} \qquad \underbrace{\overline{\varepsilon}_i^m \equiv -\left(\frac{\partial \log p_i^m}{\partial \log y_i^m} \right)^{-1}}_{\mathsf{Firm's \, Demand \, Elasticity}}$$

$$p_{i}^{m} = \underbrace{\frac{1}{1 - \frac{1}{\overline{\varepsilon}_{i}^{m}}}}_{\mu_{i}^{m}: \, Markup} C_{i}^{'}\left(y_{i}^{m}\right) \qquad \text{where} \qquad \underbrace{\overline{\varepsilon}_{i}^{m} \equiv -\left(\frac{\partial \log p_{i}^{m}}{\partial \log y_{i}^{m}}\right)^{-1}}_{\text{Firm's Demand Elasticity}}$$

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\left(-y_{i}^{m} \frac{\partial \log \Upsilon_{i}^{\prime} \left(\frac{y_{i}^{m}}{Y_{m}}\right)}{\partial y_{i}^{m}}\right)}_{\varepsilon_{i}^{m}: \text{Own-Demand Elasticity}}$$

$$p_{i}^{m} = \underbrace{\frac{1}{1 - \frac{1}{\overline{\varepsilon}_{i}^{m}}} C_{i}^{'}(y_{i}^{m})}_{\mu_{i}^{m}: \, Markup} \quad \text{where} \quad \underbrace{\overline{\varepsilon}_{i}^{m} \equiv -\left(\frac{\partial \log p_{i}^{m}}{\partial \log y_{i}^{m}}\right)^{-1}}_{\text{Firm's Demand Elasticity}}$$

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\left(-y_{i}^{m} \frac{\partial \log \Upsilon_{i}^{'} \left(\frac{y_{i}^{m}}{Y_{m}}\right)}{\partial y_{i}^{m}}\right)}_{\varepsilon_{i}^{m}: \text{Own-Demand Elasticity}} + \underbrace{\left(-y_{i} \frac{\partial \log \left(\frac{Y_{m}}{Y}\right)^{-\frac{1}{\gamma}}}{\partial y_{i}^{m}}\right)}_{\text{Granular Effect}}$$

$$p_{i}^{m} = \underbrace{\frac{1}{1 - \frac{1}{\overline{\varepsilon}_{i}^{m}}} C_{i}^{'}(y_{i}^{m})}_{\mu_{i}^{m}: \, Markup} \quad \text{where} \quad \underbrace{\overline{\varepsilon}_{i}^{m} \equiv -\left(\frac{\partial \log p_{i}^{m}}{\partial \log y_{i}^{m}}\right)^{-1}}_{\text{Firm's Demand Elasticity}}$$

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\left(-y_{i}^{m} \frac{\partial \log \Upsilon_{i}^{'} \left(\frac{y_{i}^{m}}{Y_{m}}\right)}{\partial y_{i}^{m}}\right)}_{\varepsilon_{i}^{m}: \text{Own-Demand Elasticity}} + \underbrace{\left(-y_{i} \frac{\partial \log \left(\frac{Y_{m}}{Y}\right)^{-\frac{1}{\gamma}}}{\partial y_{i}^{m}}\right)}_{\text{Granular Effect}} - \underbrace{\left(y_{i}^{m} \frac{\partial \log \sum_{j} \Upsilon_{j}^{'} \left(\frac{y_{i}^{m}}{Y_{m}}\right) \frac{y_{i}^{m}}{Y_{m}}}{\partial y_{i}^{m}}\right)}_{\text{Substitution Effects}}$$

$$p_{i}^{m} = \underbrace{\frac{1}{1 - \frac{1}{\overline{\varepsilon}_{i}^{m}}} C_{i}^{'}(y_{i}^{m})}_{\mu_{i}^{m}: \, Markup} \quad \text{where} \quad \underbrace{\overline{\varepsilon}_{i}^{m} \equiv -\left(\frac{\partial \log p_{i}^{m}}{\partial \log y_{i}^{m}}\right)^{-1}}_{\text{Firm's Demand Elasticity}}$$

- Demand Elasticity depends on more than Kimball aggregator Υ_i through competition!

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\left(-y_{i}^{m} \frac{\partial \log \Upsilon_{i}^{'} \left(\frac{y_{i}^{m}}{Y_{m}}\right)}{\partial y_{i}^{m}}\right)}_{\varepsilon_{i}^{m}: \text{Own-Demand Elasticity}} + \underbrace{\left(-y_{i} \frac{\partial \log \left(\frac{Y_{m}}{Y}\right)^{-\frac{1}{\gamma}}}{\partial y_{i}^{m}}\right)}_{\text{Granular Effect}} - \underbrace{\left(y_{i}^{m} \frac{\partial \log \sum_{j} \Upsilon_{j}^{'} \left(\frac{y_{i}^{m}}{Y_{m}}\right) \frac{y_{i}^{m}}{Y_{m}}}{\partial y_{i}^{m}}\right)}_{\text{Substitution Effects}}$$

- Key: Demand elasticity depends only on own-elasticities and market shares $\{arepsilon_i^{m}, \sigma_i^{m}\}$

Proposition: Equilibrium demand elasticity — Cournot

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\frac{1}{\gamma}}_{\text{Market Elasticity}} \sigma_{i}^{m} + \underbrace{\left(\frac{1}{\varepsilon_{i}^{m}} \left(1 - \sigma_{i}^{m}\right) + \frac{1}{\overline{\varepsilon}_{-i}^{m}} \sigma_{i}^{m}\right)}_{\text{Variety Elasticity}} \left(1 - \sigma_{i}^{m}\right)$$

where σ_i^m is firm i's market revenue share (Domar weight), ε_i^m its "own elasticity", and

$$\frac{1}{\bar{\varepsilon}_{-i}^{m}} \equiv E_{\sigma} \left[\frac{1}{\varepsilon_{j}^{m}} \middle| j \neq i \right] = \sum_{j \neq i} \frac{1}{\varepsilon_{j}^{m}} \frac{\sigma_{j}^{m}}{1 - \sigma_{i}^{m}}$$

is the average elasticity of its competitors.

Proposition: Equilibrium demand elasticity — Cournot

$$\frac{1}{\overline{\varepsilon}_{i}^{m}} = \underbrace{\frac{1}{\gamma}}_{\text{Market Elasticity}} \sigma_{i}^{m} + \underbrace{\left(\frac{1}{\varepsilon_{i}^{m}} \left(1 - \sigma_{i}^{m}\right) + \frac{1}{\overline{\varepsilon}_{-i}^{m}} \sigma_{i}^{m}\right)}_{\text{Variety Elasticity}} \left(1 - \sigma_{i}^{m}\right)$$

where σ_i^m is firm i's market revenue share (Domar weight), ε_i^m its "own elasticity", and

$$\frac{1}{\bar{\varepsilon}_{-i}^{m}} \equiv E_{\sigma} \left[\frac{1}{\varepsilon_{j}^{m}} \middle| j \neq i \right] = \sum_{j \neq i} \frac{1}{\varepsilon_{j}^{m}} \frac{\sigma_{j}^{m}}{1 - \sigma_{i}^{m}}$$

is the average elasticity of its competitors.

- Elasticity of large firms reflects market's elasticity (monopoly) over variety's elasticity.
- Elasticity of small firms reflects "own elasticity" (monopolistic competition)

Proposition: Equilibrium markups — Cournot

$$\frac{1}{\mu_{i}^{m}} = \underbrace{\frac{\gamma - 1}{\gamma}}_{\text{Monopoly Markup}} + \underbrace{\left(\frac{1}{\gamma} - \frac{1}{\varepsilon_{i}^{m}}\right)\left(1 - \sigma_{i}^{m}\right)}_{\text{"}i" \text{ vs Market}} + \underbrace{\left(\frac{1}{\varepsilon_{i}^{m}} - E_{\sigma}\left[\frac{1}{\varepsilon_{j}^{m}}\right]\right)\sigma_{i}^{m}}_{\text{"}i" \text{ vs Competitors "}i"}$$

Proposition: Equilibrium markups — Cournot

$$\frac{1}{\mu_{i}^{m}} = \underbrace{\frac{\gamma - 1}{\gamma}}_{\text{Monopoly Markup}} + \underbrace{\left(\frac{1}{\gamma} - \frac{1}{\varepsilon_{i}^{m}}\right)\left(1 - \sigma_{i}^{m}\right)}_{\text{"}i" \text{ vs Market}} + \underbrace{\left(\frac{1}{\varepsilon_{i}^{m}} - E_{\sigma}\left[\frac{1}{\varepsilon_{j}^{m}}\right]\right)\sigma_{i}^{m}}_{\text{"}i" \text{ vs Competitors "}i"}$$

Higher markup μ_i^m if

- "Own elasticity" $\left(\varepsilon_{i}^{m}\right)$ lower than market's $\left(\gamma\right)$
- "Own variety" is elastic relative to market average (limiting substitution effects)

Matching the joint distribution of markups (μ) and market shares (σ)

Estimation:

Data: Manufacturing

Markups: Recover markups from cost minimization FOC

$$\mu_i = \frac{\epsilon^x}{s^x} = \frac{\text{Output Elasticity wrt } x}{\text{Input } x \text{ Share}}$$

Data: Manufacturing

Markups: Recover markups from cost minimization FOC

details

$$\mu_i = \frac{\epsilon^x}{s^x} = \frac{\text{Output Elasticity wrt } x}{\text{Input } x \text{ Share}}$$

Colombia (1985–1989)

- ▶ details
- Revenue + Expenditure
- $\epsilon_{G(i)}^{x}$: Cost-shares (Raval 2023; Foster, Haltiwanger, Syverson 2008)

Firm level

India (2005–2008)

Establishment levelQuantity + Prices

Pavcnik 2016)

- by product & input
- ε_i^x: Trans-log technology
 (De Loecker, Goldberg, Khandelwal,
- Avoid "output-price bias" \longrightarrow Consistent markup estimates

(Bond, Hashemi, Kaplan, Zoch 2021)

U.S. (1985–1989)

- Publicly traded firms

Firm level

details

- Revenue + Expenditure
- ϵ_i^x : Cobb-Douglas tech.

 ϵ_i^{x} : Cobb-Douglas tech. (De Loecker, Eeckhout, Unger 2020)

Distribution of Markups and Market Shares

(i) Dispersion concentrated in small firms (ii) Both small-high-markup & large-low-markup firms

Distribution of Markups and Market Shares

Next: Recover $\{\varepsilon_i^m\}$ that match $\{\mu_i^m, \sigma_i^m\}$ distribution \longrightarrow Role of elasticity dispersion

Recover elasticities from equilibrium markups $\vec{\mu}^m = f(\vec{\sigma}^m, \vec{\varepsilon}^m)$

$$\vec{\mu}^{m} = f(\vec{\sigma}^{m}, \vec{\varepsilon}^{m})$$

"Own" elasticities that match markups and market shares 🛛 🖼 🕕

Recover elasticities from equilibrium markups

$$\vec{\mu}^m = f(\vec{\sigma}^m, \vec{\varepsilon}^m)$$

India: Markups & Market Shares

Avg. $V_{\sigma}(\log \mu_{i}^{m}) = 0.29$

India: Recovered Elasticities & Market Shares

Turning off idiosyncratic demand shifters

Oligopolistic Competition with CES Demand: (Atkeson & Burstein 2008)

- Variation in market shares → Variation in markups

Counterfactual: Match avg. market markup with
$$\tilde{\varepsilon}_m$$
: $\frac{1}{\tilde{\mu}_i^m} = \frac{\gamma - 1}{\gamma} + \left(\frac{1}{\gamma} - \frac{1}{\tilde{\varepsilon}_m}\right) \left(1 - \sigma_i^m\right)$

Turning off idiosyncratic demand shifters

Oligopolistic Competition with CES Demand: (Atkeson & Burstein 2008)

- Variation in market shares → Variation in markups

Counterfactual: Match avg. market markup with
$$\tilde{\varepsilon}_m$$
: $\frac{1}{\tilde{\mu}_i^m} = \frac{\gamma - 1}{\gamma} + \left(\frac{1}{\gamma} - \frac{1}{\tilde{\varepsilon}_m}\right) \left(1 - \sigma_i^m\right)$

Oligopolistic Competition with VES Demand: (Atkeson & Burstein 2008 + Kimball 1995)

- Variation in market shares + size → Variation in markups

Counterfactual: Common
$$\Upsilon$$
 from Klenow & Willis (2016) $\longrightarrow \tilde{\varepsilon}_{i,m} = \nu_m \left(\frac{y_{i,m}}{Y_m}\right)^{-\frac{\vartheta_m}{\nu_m}}$

- Choose $\{\nu_m, \theta_m\}$ to match $\{\mu_i^m\}$ while being consistent with $\{\sigma_i^m\}$

Elasticity dispersion is key for markup dispersion

India: Markups & Market Shares

India: Distribution of Markups

	Data/Full Model	A&B + Kimball		8A	B + CES
	$V_{\sigma}(\log \mu)$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log ilde{\mu})$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log ilde{\mu})$
India	0.29	0.011	0.18	0.0002	-0.03
Colombia	0.07	0.006	0.16	0.0005	0.02
US	0.03	0.002	0.25	0.0003	-0.004

Estimation:

Demand Parameters

Estimating demand parameters

- No conditions placed so far over demand aggregators Υ_i

- Standard functional forms give tractable elasticity: $\varepsilon_i^m = f\left(\frac{y_i^m}{Y}; \boldsymbol{\nu_i^m}, \theta_m\right)$

$$\varepsilon_{i}^{m} = f\left(\frac{y_{i}^{m}}{Y}; \boldsymbol{\nu_{i}^{m}}, \theta_{m}\right)$$

Estimating demand parameters

- No conditions placed so far over demand aggregators Υ_i

• examples

- Standard functional forms give tractable elasticity: $\varepsilon_i^m = f\left(\frac{y_i^m}{Y}; \boldsymbol{\nu_i^m}, \theta_m\right)$
- Identify $\{\nu_i^m\} + \theta_m$ from changes in elasticities as size changes:

 \bullet θ estimates

$$\frac{d\log\varepsilon_{i}^{m} = -\left(\frac{\boldsymbol{\xi}_{i}^{m}}{\varepsilon_{i}^{m}}\right)\overline{\left(\frac{\varepsilon_{i}^{m}}{1+\varepsilon_{i}^{m}}\right)}d\log\sigma_{i}^{m}}{\operatorname{Regress change in elasticity on change in market share}} \qquad \text{where} \qquad \underline{\boldsymbol{\xi}_{i}^{m}} \equiv -\frac{p_{i}^{m}}{P_{m}}\frac{\partial\log\varepsilon_{i}^{m}}{\partial\left(\frac{p_{i}^{m}}{P_{m}}\right)}}$$

Estimating demand parameters

- No conditions placed so far over demand aggregators ↑;

- examples
- Standard functional forms give tractable elasticity: $\varepsilon_i^m = f\left(\frac{y_i^m}{V}; \boldsymbol{\nu_i^m}, \theta_m\right)$
- Identify $\{\nu_i^m\} + \theta_m$ from changes in elasticities as size changes:

$$\bullet$$
 θ estimates

$$d\log \varepsilon_i^m = -\left(\frac{\boldsymbol{\xi}_i^m}{\varepsilon_i^m}\right) \underbrace{\left(\frac{\varepsilon_i^m}{1 + \varepsilon_i^m}\right)}^{\text{"Observed"}} d\log \sigma_i^m \qquad \text{where} \qquad \boldsymbol{\xi}_i^m \equiv -\frac{p_i^m}{P_m} \frac{\partial \log \varepsilon_i^m}{\partial \left(\frac{p_i^m}{P_m}\right)}$$
Regress change in elasticity on change in market share

here
$$\xi_i^m \equiv -rac{P_i^m}{P_m} rac{\partial \log arepsilon_i^m}{\partial \left(rac{P_i^m}{P_m}
ight)}$$

- Choose θ_m to match regression coefficient + Given θ_m set $\{\nu_i^m\}$ to match $\{\sigma_i^m \left(\frac{{V_i^m}}{{V_m}} \right) \}$
- Recover model objects like (relative) marginal costs $\left\{ \frac{\lambda_i^m}{\lambda_m} \right\}$

Distribution of marginal costs, markups, and market shares

India: Mrg. Costs & Markups

India: Mrg. Costs & Market Shares

Avg.
$$\rho_{\sigma}(\log \lambda_{i,m}, \mu_{i,j}) = -0.61$$

- Firms with lower marginal costs tend to have higher markups ... but large variation
- Firms with higher market share have higher marginal costs!

Conclusions

Conclusions

- Analytical model of variable markups with idiosyncratic demand elasticity shifters
 - Merge variable elasticity of demand + oligopolistic competition
- Match observed distribution of markups and firm size
 - Account for high-markup small firms and low-markup large firms
- Variation in elasticities of demand is key to account for markup dispersion

Soon:

- US Annual Survey of Manufactures + US Economic Census + Chilean Data
- Role of different heterogeneity dimensions for misallocation

Extra

Cost minimization (and markup estimation)

$$C\left(y|\left\{p_{n}\right\}_{n=1}^{N},\left\{K_{m}\right\}_{m=1}^{M}\right)=\min_{\left\{x_{n}\right\}_{n=1}^{N}}\sum_{n=1}^{N}p_{n}\cdot x_{n}\quad\text{s.t. }\overline{y}\leq zF\left(x_{1},\ldots,x_{N},K_{1},\ldots,K_{M}\right)$$

Variable inputs: $\{x_n\}_{n=1}^N$

Fixed inputs: $\{K_m\}_{m=1}^M$

Scale: y

Cost minimization (and markup estimation)

$$C\left(y|\left\{p_{n}\right\}_{n=1}^{N},\left\{K_{m}\right\}_{m=1}^{M}\right)=\min_{\left\{x_{n}\right\}_{n=1}^{N}}\sum_{n=1}^{N}p_{n}\cdot x_{n} \quad \text{s.t. } \overline{y}\leq zF\left(x_{1},\ldots,x_{N},K_{1},\ldots,K_{M}\right)$$

Variable inputs: $\{x_n\}_{n=1}^N$ Fixed inputs: $\{K_m\}_{m=1}^M$

Scale: v

Optimality links markup with input elasticities ϵ_{x_0} and input shares s_{x_0} (observed)

$$\underbrace{\mu}_{\mathsf{Markup}} = \frac{p}{\lambda} = \underbrace{py}_{\mathsf{p}_{n} \mathsf{x}_{n}} \quad \epsilon_{\mathsf{x}_{n}} = \frac{\epsilon_{\mathsf{x}_{n}}}{\mathsf{s}_{\mathsf{x}_{n}}}$$
Input Share

- Marginal cost $\lambda = C'(y)$ is the relevant multiplier
- Use IO production function estimation to recover elasticity ϵ_{x_0} and markups

- Final good producers aggregate across markets *m*:

$$\min_{\{Y_m\}} \sum_{m=1}^M P_m Y_m \qquad \text{s.t. } Y \leq \left(\sum_{m=1}^M \alpha_m Y_m^{\frac{\gamma-1}{\gamma-1}}\right)^{\frac{\gamma}{\gamma-1}}$$

- Markets face a constant elasticity of demand γ

$$\frac{P_m}{P} = \alpha_m \left(\frac{Y_m}{Y}\right)^{-\frac{1}{\gamma}}$$

- We assume there are many markets so firms do not act strategically across markets
 - Take Y and P as given

Market shares and demand

Lemma: Firm demand satisfies

$$\frac{\partial Y_m}{\partial y_i^m} = \frac{p_i^m}{P_m}$$
 and $\frac{\partial P_m}{\partial p_i^m} = \frac{y_i^m}{Y_m}$

So that market share σ_i^m satisfy

$$\sigma_i^m \equiv \frac{p_i^m y_i^m}{P_m Y_m} = \frac{y_i^m}{Y_m} \frac{\partial Y_m}{\partial y_i^m} = \frac{p_i^m}{P_m} \frac{\partial P_m}{\partial p_i^m}.$$

Market shares and demand

Lemma: Firm demand satisfies

$$\frac{\partial Y_m}{\partial y_i^m} = \frac{p_i^m}{P_m}$$
 and $\frac{\partial P_m}{\partial p_i^m} = \frac{y_i^m}{Y_m}$

So that market share σ_i^m satisfy

$$\sigma_i^m \equiv \frac{p_i^m y_i^m}{P_m Y_m} = \frac{y_i^m}{Y_m} \frac{\partial Y_m}{\partial y_i^m} = \frac{p_i^m}{P_m} \frac{\partial P_m}{\partial p_i^m}.$$

- Demand system restricts responses to changes in firms' output and prices
- This links firms' choices of output and prices to changes their market shares $\left\{\sigma_i^{\it m}\right\}$

Proposition: Equilibrium elasticities — Bertrand

$$\overline{\varepsilon}_{i}^{m} = \underbrace{\gamma}_{\text{Market Elasticity}} \sigma_{i}^{m} + \underbrace{\varepsilon_{i}^{m} \frac{E_{\sigma} \left[\varepsilon_{j}^{m} | j \neq i\right]}{E_{\sigma} \left[\varepsilon_{j}^{m}\right]}}_{\text{Variety Elasticity}} (1 - \sigma_{i}^{m})$$

where σ_i^m is firm *i*'s market share, ε_i^m its "own elasticity", and $E_{\sigma}[x_j] = \sum_j x_j \sigma_j^m$ is the average with respect to expenditure in market m.

Proposition: Equilibrium elasticities — Bertrand

$$\overline{\varepsilon}_{i}^{m} = \underbrace{\gamma}_{\text{Market Elasticity}} \sigma_{i}^{m} + \underbrace{\varepsilon_{i}^{m} \frac{E_{\sigma} \left[\varepsilon_{j}^{m} | j \neq i\right]}{E_{\sigma} \left[\varepsilon_{j}^{m}\right]}}_{\text{Variety Elasticity}} (1 - \sigma_{i}^{m})$$

where σ_i^m is firm *i*'s market share, ε_i^m its "own elasticity", and $E_{\sigma}[x_j] = \sum_j x_j \sigma_j^m$ is the average with respect to expenditure in market m.

- Elasticity of larger firms reflects market's elasticity (monopoly) more than variety's elasticity. Elasticity of smaller firms reflects "own elasticity" (monopolistic competition)

Proposition: Equilibrium markups — Bertrand

$$\frac{\mathbf{1}}{\mu_{i}^{m}} = \mathbf{1} - \frac{\mathbf{1}}{\gamma \sigma_{i}^{m} + \varepsilon_{i}^{m} \left[\mathbf{1} - \frac{\varepsilon_{i}^{m}}{\mathsf{E}_{\sigma} \left[\varepsilon_{i}^{\mathsf{s}} \right]} \sigma_{i}^{m} \right]}$$

Aggregating Markups

Proposition: Market markup

$$\frac{1}{\mu_{m}} = \underbrace{\left(1 - \frac{1}{\gamma}\right)}_{\text{Monopoly Markup}} + \underbrace{\left(\frac{1}{\gamma} - E_{\sigma}\left[\frac{1}{\varepsilon_{i}^{m}}\right]\right)(1 - \text{HHI})}_{\text{Concentration}} + \underbrace{2\text{Cov}_{\sigma}\left(\sigma_{i}^{m}, \frac{1}{\varepsilon_{i}^{m}}\right)}_{\text{Distribution}}$$

- HHI = $\sum_{i} (\sigma_{i}^{m})^{2}$: market's Herfindahl-Hirschman index
- $\mathsf{Cov}_{\sigma}\left(x_{j},y_{j}\right)=\sum_{j=1}^{N_{s}}\left(x_{j}\right)\left(y_{j}-\mathsf{\textit{E}}_{\sigma}\left[y_{j}\right]\right)\sigma_{j}^{m}$: sales-weighted covariance

Proposition: Market markup

$$\frac{1}{\mu_{m}} = \underbrace{\left(1 - \frac{1}{\gamma}\right)}_{\text{Monopoly Markup}} + \underbrace{\left(\frac{1}{\gamma} - E_{\sigma}\left[\frac{1}{\varepsilon_{i}^{m}}\right]\right)(1 - \text{HHI})}_{\text{Concentration}} + \underbrace{2\text{Cov}_{\sigma}\left(\sigma_{i}^{m}, \frac{1}{\varepsilon_{i}^{m}}\right)}_{\text{Distribution}}$$

- HHI = $\sum_{i} (\sigma_{i}^{m})^{2}$: market's Herfindahl-Hirschman index
- $\mathsf{Cov}_{\sigma}\left(x_{j}, y_{j}\right) = \sum_{j=1}^{N_{s}} \left(x_{j}\right) \left(y_{j} \mathsf{E}_{\sigma}\left[y_{j}\right]\right) \sigma_{j}^{m}$: sales-weighted covariance

Two key forces

- 1. Concentration: $\uparrow \mu_m$ if varieties are less elastic than the market (Edmond, Midrigan, Xu 2015)
- 2. Distribution of elasticities: $\downarrow \mu_m$ if sales are concentrated in firms with a low ε_i^m
 - Large firms care more about market elasticity $\gamma < \bar{\varepsilon}_m$. It is small (niche) firms who increase avg. markups when their varieties are less elastic.

How to aggregate within markets

$$\mu_{m} = \frac{P_{m}}{\lambda_{m}} \qquad \text{where} \qquad \lambda_{m} = \sum_{i=1}^{N_{m}} \lambda_{i}^{m} \frac{y_{i}^{m}}{Y_{m}}$$
Market's Markup

How to aggregate within markets

$$\mu_{m} = \frac{P_{m}}{\lambda_{m}} \qquad \text{where} \qquad \underbrace{\lambda_{m} = \sum_{i=1}^{N_{m}} \lambda_{i}^{m} \frac{y_{i}^{m}}{Y_{m}}}_{\text{Market's Market's Mrg Cost}}$$

Correct measure of markups is weighted harmonic mean of markups:

$$\mu_m = \left[\sum_{i=1}^{N_m} \lambda_i^m \frac{y_i^m}{P_m Y_m}\right]^{-1} = \left[\sum_{i=1}^{N_m} \frac{1}{\mu_i^m} \sigma_i^m\right]^{-1}$$

Equilibrium markups depend on weighted harmonic mean of elasticity

$$\frac{1}{\mu_m} = \sum_{i=1}^{N_m} \frac{1}{\mu_i^m} \sigma_i^m = \sum_{i=1}^{N_m} \left(1 - \frac{1}{\overline{\varepsilon}_i^m}\right) \sigma_i^m = 1 - \frac{1}{\overline{\varepsilon}_m}$$

Kimball Aggregators

◆ back

Firm-specific parameters $\left\{\nu_i^m\right\}$ control "own elasticities" $\left\{\varepsilon_i^m\right\}$

1. Klenow & Willis (2016):
$$\varepsilon_i^m = \nu_i^m \left(\frac{y_i^m}{Y_m}\right)^{-\frac{\theta_m}{\nu_i^m}}$$

2. Dotsey & King (2005):
$$\varepsilon_i^m = \nu_i^m \left(1 - \frac{\theta_m}{1 + \theta_m} \frac{y_i^m}{Y_m}\right)^{-1}$$

3. CES:
$$\varepsilon_i^m = \nu_i^m$$

Super-elasticity is key for estimation:

- Klenow & Willis (2016):
$$\xi_i^m = \theta_m \cdot \left(\frac{y_i^m}{Y_m}\right)^{-\frac{\theta_m}{\nu_i^m}} \rightarrow \frac{\xi_i^m}{\varepsilon_i^m} = \frac{\theta_m}{\nu_i^m}; \qquad \frac{y_i^m}{Y_m} = \left(\frac{\varepsilon_i^m}{\nu_i^m}\right)^{-\frac{\nu_i^m}{\theta_m}}$$

- Choose θ_m to match regression coefficient + Given θ_m set $\left\{\nu_i^m\right\}$ to match $\left\{\sigma_i^m\left(\frac{\mathbf{y}_i^m}{\mathbf{Y}_m}\right)\right\}$

Relative output, prices, and marginal costs

- Relative Output: Inverting the "own-elasticity" for the Klenow & Willis ↑ we get

$$\frac{y_i^m}{Y_m} = \left(\frac{\varepsilon_i^m}{\nu_i^m}\right)^{-\frac{\nu_i^{m}}{\theta_m}}$$

- Relative Prices: Obtained to be consistent with market shares

$$\frac{p_i^m}{P_m} = \sigma_i^m \frac{Y_m}{y_i^m}$$

- Marginal Costs: Using markups definition we get

$$\frac{\lambda_i}{\lambda} = \frac{\frac{\rho_i}{\mu_i}}{\sum \frac{\rho_i}{\mu_i} \frac{y_i}{Y}} = \frac{\frac{1}{\mu_i} \frac{\rho_i}{P}}{\sum \frac{1}{\mu_i} \frac{\rho_i y_i}{PY}} = \frac{\frac{1}{\mu_i} \frac{\rho_i}{P}}{\sum \frac{\sigma_j}{\mu_i}} = \frac{\bar{\mu}}{\mu_i} \frac{\rho_i}{P}$$

where $\lambda \equiv \sum_{u_i} \frac{p_i}{Y}$ is the market's marginal cost

Estimate Kimball Parameters $\{\nu_m, \theta_m\}$

- 1. Measure: $\{\sigma_i^m, \mu_i^m\}$
- 2. Recover: Elasticity $\bar{\varepsilon}_i^m = \frac{\mu_i^m}{\mu_i^m 1}$ and "own-elasticity" $\{\varepsilon_i^m\}$ from eqm. markups
- 3. Match observed market shares: Under Klenow & Willis (2016)

$$\sigma_{i}^{m} = \frac{\Upsilon'\left(\frac{y_{i}^{m}}{Y_{m}}\right)\frac{y_{i}^{m}}{Y_{m}}}{\sum_{j} \Upsilon'\left(\frac{y_{j}^{m}}{Y_{m}}\right)\frac{y_{j}^{m}}{Y_{m}}} = \frac{exp\left(\frac{1}{\theta}\left(1-\left(\frac{y_{i}^{m}}{Y_{m}}\right)^{\frac{\theta}{\nu}}\right)\right)\frac{y_{i}^{m}}{Y_{m}}}{\sum_{j} exp\left(\frac{1}{\theta}\left(1-\left(\frac{y_{j}^{m}}{Y_{m}}\right)^{\frac{\theta}{\nu}}\right)\right)\frac{y_{j}^{m}}{Y_{m}}}$$

Given $\{\nu_m, \theta_m\}$, we choose $\left\{\frac{y_i^m}{Y_m}\right\}$ to match market shares $\{\sigma_i^m\}$

4. We choose $\{\nu_m, \theta_m\}$ to match $\{\mu\left(\varepsilon_i^m\right)\}$

Estimated β

$$\Delta \log \varepsilon_i^m = \beta \Delta \log \sigma_i^m$$

where
$$\beta = -\left(\frac{\boldsymbol{\xi_i^m}}{\varepsilon_i^m}\right)\left(\frac{\varepsilon_i^m}{1+\varepsilon_i^m}\right) = -\left(\frac{\boldsymbol{\theta_m}}{\nu_i^m}\right)\left(\frac{\varepsilon_i^m}{1+\varepsilon_i^m}\right)$$

β Colombia (1985–1989) -0.5 -1.5 Apparel -ootwear Rubber Others Metal Machinery **3everages** Chem. Prod

Matched θ

Polyester Yam

Polythene Bags

Cotton - Fabrics

Markups Estimation: Colombia

- 1. Data: 21 Manufacturing Industries 1980—1989 (Encuesta Anual Manufacturera)
 - Firm level: Total Revenues + Input Expenditures
- 2. Revenue-Based Production Function Estimation: (Raval 2023)
 - Cost share method to recover output elasticities ϵ_X (Foster, Haltiwanger, Syverson 2008)

$$\epsilon_{m,g}^{\mathsf{x}} = \frac{E(x_i P_i^{\mathsf{x}} | G(i) = g)}{E(x_i p_i^{\mathsf{x}} + w_i p_i^{\mathsf{w}} + k_i p_i^{\mathsf{k}} | G(i) = g)} = \frac{\mathsf{Avg. Input Expenditure in Group}}{\mathsf{Avg. Cost in Group}}$$

- Allows elasticities + labor-to-materials cost ratio to vary within markets
- Assume (i) Constant Returns to Scale (ii) FOC holds for all inputs (on average)
- 3. Markups: $\mu = \epsilon_{m,g}^{\chi} \cdot \frac{p_i q_i}{p_{\chi} x_i}$; Each market has G elasticity groups

Markups Estimation: India

- 1. Data: 23 Manufacturing Industries 2001–2008
 - Product level: Prices + Quantities
 - Establishment level: Input prices + quantities
- 2. Quantity-Based Production Function Estimation: (De Loecker, Goldberg, Khandelwal, Pavcnik 2016)
 - Control function approach to recover output elasticities ϵ^{x} (Olley, Pakes 1996; Levinhson, Petrin 2003; Ackerberg, Caves, Frazer 2015)
 - Trans-log production function at industry level (same across products, estimated w/ single-product)
 - Returns-to-scale by industry (Close to CRS: 0.96-1.04)
 - Robust to output price and input allocation biases
- 3. Markups: $\mu = \epsilon_i^x \cdot \frac{p_i q_i}{p_i x_i}$; Establishment specific output elasticity (depends on input level)

Markups Estimation: US

- 1. Data: 19 Manufacturing Industries 1980–1989
 - Firm level: Total Revenues + Input Expenditures
 - Publicly-traded firms
- 2. Revenue-Based Production Function Estimation: (De Loecker, Eeckhout, Unger 2020)
 - Control function approach to recover output elasticities ϵ^x (Olley, Pakes 1996; Levinhson, Petrin 2003; Ackerberg, Caves, Frazer 2015)
 - Cobb-Douglas production → Constant output elasticities within industry
 - Returns-to-scale by industry (Increasing Returns: 1.05–1.2)
 - Time-varying output elasticities
- 3. Markups: $\mu = \epsilon_{mt}^{x} \cdot \frac{p_{i}q_{i}}{p_{v}x_{i}}$; Each market-year pair mt has an output elasticity

Blum, Claro, Horstmann and Rivers (2024)

- 1. Data: Production function estimation over Chilean multiproduct firms
 - Product Level: Quantities + Prices
 - Firm Level: Input expenditures

2. Production Function Estimation:

- Gandhi, Navarro and Rivers (2020) on single product firms to estimate output elasticities
- Profit maximization → Markups are a general function of prices, quantities and a demand shifter.
- Recover markups after estimating output elasticities.

Data: Distribution of Markups

Avg. $V_{\sigma}(\log \mu_i^m) = 0.07$

India (2005-2008)

Avg. $V_{\sigma}(\log \mu_i^m) = 0.29$

U.S. (1985–1989)

Avg. $V_{\sigma}(\log \mu_i^m) = 0.03$

"Own" elasticities for Colombia

Recovered Elasticities & Market Shares

Avg. $V_{\sigma}(\log \varepsilon_{i,m}) = 1.02$

Distribution of Own Elasticities

Avg.
$$V_{\sigma}(\log \mu_{i,m}) = 0.07$$

"Own" elasticities for India

Recovered Elasticities & Market Shares

Avg. $V_{\sigma}(\log \varepsilon_{i,m}) = 0.96$

Distribution of Own Elasticities

Avg.
$$V_{\sigma}(\log \mu_{i,m}) = 0.29$$

"Own" elasticities for the U.S.

Recovered Elasticities & Market Shares

Avg. $V_{\sigma}(\log \varepsilon_{i,m}) = 0.30$

Distribution of Own Elasticities

Avg.
$$V_{\sigma}(\log \mu_{i,m}) = 0.03$$

Markup Counterfactual Colombia

Measured Markus vs. Model Markups

Distribution of Markups Differences

Markup Counterfactual Colombia

Distribution of Markups & Market Shares

Distribution of Markups

	Data	A&B	A&B + Kimbali		A&B + CES	
	$V_{\sigma}(\log \mu)$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log ilde{\mu})$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log \tilde{\mu})$	
Colombia	0.07	0.006	0.16	0.0005	0.02	

Markup Counterfactual U.S.

Distribution of Markups & Market Shares

Distribution of Markups

	Data	A&B	A&B + Kimball		B + CES
	$V_{\sigma}(\log \mu)$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log ilde{\mu})$	$V_{\sigma}(\log ilde{\mu})$	$ ho_{\sigma}(\log \mu, \log ilde{\mu})$
US	0.03	0.002	0.25	0.0003	-0.004

Distribution of marginal costs, markups, and market shares

Colombia: Mrg. Costs & Markups

Colombia: Mrg. Costs & Market Shares

Avg.
$$V_{\sigma}(\log \lambda_{i,m}) = 0.33$$

Avg. $\rho_{\sigma}(\log \lambda_{i,m}, \mu_{i,i}) = -0.89$

Distribution of marginal costs, markups, and market shares

US: Mrg. Costs & Markups

US: Mrg. Costs & Market Shares

Avg.
$$V_{\sigma}(\log \lambda_{i,m}) = 0.24$$

Avg. $\rho_{\sigma}(\log \lambda_{i,m}, \mu_{i,i}) = -0.76$

Demand elasticity shifters $\{\nu_i^m\}$ and marginal costs $\{\lambda_i^m\}$

Variances and correlations: Colombia

	μ	ε	ν	λ	$\frac{y}{Y}$	<u>p</u> P
μ	0.07					
ε	-0.87	1.02				
ν	-0.47	0.43	1.05			
λ	-0.89	0.70	0.41			
$\frac{y}{Y}$	0.25	-0.26				
<u>р</u> Р	-0.69	0.68	0.42	0.73	-0.18	0.14

Variances and correlations: US

	μ	ε	ν	λ	$\frac{y}{Y}$	p P
μ	0.03					
ε	-0.93	0.30				
ν	-0.85	0.48	0.30			
λ	-0.76	0.46	0.31	0.24		
$\frac{y}{Y}$	0.13	-0.09	-0.08	0.69	0.81	
<u>р</u> Р	-0.55	0.49	0.20	0.45	-0.21	0.14

Variances and correlations: India

	μ	ε	ν	λ	$\frac{y}{Y}$	p P
μ	0.29					
ε	-0.79	0.96				
ν	-0.73	0.86	0.87			
λ	-0.61	0.51	0.40	1.49		
$\frac{y}{Y}$	0.01	-0.04	-0.03	0.01	0.78	
<u>p</u> P	-0.29	0.26	0.20	0.85	-0.22	0.85