Convolution

Example-1: The impulse response of LTI system is- $h[n] = \{1, 2, 1, -1\}$ and the input sequence is $x[n] = \{1, 2, 3, 1\}$. Determine y[n].

Soln: We have -

$$h[n] = \{1, 2, 1, -1\}$$
$$x[n] = \{1, 2, 3, 1\}$$

We know

$$y[n] = \sum_{k=-\alpha}^{\alpha} x[k]. h[n-k]$$

$$k => x_{low} = 0$$
, $x_{high} = 3$

$$0 \le k \le 3$$

$$n = > h_{low} + x_{low} = -1 + 0 = -1$$

 $h_{high} + x_{high} = 2 + 3 = 5$

$$h_{high} + x_{high} = 2 + 3 = 5$$

$$-1 < n < 5$$

$$y [-1] = \sum_{k=0}^{3} x[k] \cdot h[-1 - k]$$

$$= x [0] \cdot h [-1] + x [1] \cdot h [-2] + x [2] \cdot h [-3] + x [3] \cdot h [-4]$$

$$= 1.1 + 2.0 + 3.0 + 1.0$$

$$= 1 + 0 + 0 + 0$$

$$= 1$$

$$y [0] = \sum_{k=0}^{3} x[k] \cdot h[0 - k]$$

$$= x [0] \cdot h [0] + x [1] \cdot h [-1] + x [2] \cdot h [-2] + x [3] \cdot h [-3]$$

$$= 1.2 + 2.1 + 3.0 + 1.0$$

$$= 2 + 2 + 0 + 0$$

$$= 4$$

$$y [1] = \sum_{k=0}^{3} x[k] \cdot h[1 - k]$$

$$= x [0] \cdot h [1] + x [1] \cdot h [0] + x [2] \cdot h [-1] + x [3] \cdot h [-2]$$

$$= 1.1 + 2.2 + 3.1 + 1.0$$

$$= 1 + 4 + 3 + 0$$

$$= 8$$

$$y [2] = \sum_{k=0}^{3} x[k] \cdot h[2 - k]$$

$$= x [0] \cdot h [2] + x [1] \cdot h [1] + x [2] \cdot h [0] + x [3] \cdot h [-1]$$

$$= 1.-1 + 2.1 + 3.2 + 1.1$$

Example-2: The impulse response of LTI system is- $h[n] = \{1, 2, -1\}$ and the input sequence is $x[n] = \{4, 1, 2, 5\}$. Determine y[n].

Using the formula-

$$y[n] = \sum_{k=-\alpha}^{\alpha} x[k]. h[n-k]$$

We get,

$$y[n] = \{4, 9, 0, 8, 8, -5\}$$

h[n] x[n]	1	2	-1
4	4	8	-4
1	1	2	-1
2	2	4	-2
5	5	10	-5

Correlation

Example-1: Determine the Cross-Correlation sequence $r_{xy}(l)$ of the following sequences: -

$$x[n] = [1, 2, 3, 4]$$
 and $y[n] = [4, 3, 2, 1].$

Soln: We have,

$$x[n] = [1, 2, 3, 4]$$
 and

$$y[n] = [4, 3, 2, 1].$$

We know the equation for Cross-Correlation -

$$r_{xy}(l) = \sum_{n=-\alpha}^{\alpha} x[n]. y[n-l]$$

xlen = 4 and ylen = 4

$$k => x_{low} = 0$$
, $x_{high} = 3 \mid 0 \le n \le 3$
tlen = xlen+ylen-1 = 4+4-1 = 7
 $l_{min} = -(tlen - xlen) = -(7 - 4) = -3$
 $l_{max} = tlen - ylen = 7 - 4 = 3$

$$r_{xy}(-3) = \sum_{n=0}^{3} x[n]. y[n+3]$$

$$= x [0]. y [3] + x [1]. y [4] + x [2]. y [5] + x [3]. y [6]$$

$$= 1.1 + 2.0 + 3.0 + 4.0$$

$$= 1 + 0 + 0 + 0$$

$$= 1$$

$$r_{xy}(-2) = \sum_{n=0}^{3} x[n]. y[n+2]$$

$$= x [0]. y [2] + x [1]. y [3] + x [2]. y [4] + x [3]. y [5]$$

$$= 1.2 + 2.1 + 3.0 + 4.0$$

$$= 2 + 2 + 0 + 0$$

$$= 4$$

$$r_{xy}(-1) = \sum_{n=0}^{3} x[n]. y[n+1]$$

$$= x [0]. y [1] + x [1]. y [2] + x [2]. y [3] + x [3]. y [4]$$

$$= 1.3 + 2.2 + 3.1 + 4.0$$

$$= 3 + 4 + 3 + 0$$

$$= 10$$

$$r_{xy}(0) = \sum_{n=0}^{3} x[n]. y[n+0]$$

$$= x [0]. y [0] + x [1]. y [1] + x [2]. y [2] + x [3]. y [3]$$

$$= 1.4 + 2.3 + 3.2 + 4.1$$

$$= 4 + 6 + 6 + 4$$

$$= 20$$

$$r_{xy}(1) = \sum_{n=0}^{3} x[n] \cdot y[n-1]$$

$$= x[0] \cdot y[-1] + x[1] \cdot y[0] + x[2] \cdot y[1] + x[3] \cdot y[2]$$

$$= 1.0 + 2.4 + 3.3 + 4.2$$

$$= 0 + 8 + 9 + 8$$

$$= 25$$

$$r_{xy}(2) = \sum_{n=0}^{3} x[n] \cdot y[n-2]$$

$$= x[0] \cdot y[-2] + x[1] \cdot y[-3] + x[2] \cdot y[-4] + x[3] \cdot y[-5]$$

$$= 1.0 + 2.0 + 3.4 + 4.3$$

$$= 0 + 0 + 12 + 12$$

$$= 124$$

$$r_{xy}(3) = \sum_{n=0}^{3} x[n] \cdot y[n-3]$$

$$= x[0] \cdot y[-3] + x[1] \cdot y[-2] + x[2] \cdot y[-1] + x[3] \cdot y[0]$$

$$= 1.0 + 2.0 + 3.0 + 4.4$$

$$= 0 + 0 + 0 + 16$$

$$= 16$$

So, we have-

$$r_{xy}(l) = \{1, 4, 10, 20, 25, 24, 16\}$$

x[n]	1	2	3	4
1	1	2	8	4
2	2	4	6	8
3	3	6	9	12
4	4	8	12	16

DFT

Example-1: Find the DFT of the sequence $x[n] = \{1, 1, 0, 0\}$. Sketch the magnitude and phase spectrum, real part and imaginary part. Also find the power spectrum: -

We know the equation for Cross-Correlation -

$$X(k) = \sum_{n=-\alpha}^{\alpha} x[n]. e^{-j.2.\pi . k. n/N}$$

Here, k and n = 0, 1, 3...... N-1

$$X(0) = \sum_{n=0}^{3} x[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot 0 \cdot n/4}$$

$$= \sum_{n=0}^{3} x[n] \cdot e^{0}$$

$$= x[0] + x[1] + x[2] + x[3]$$

$$= 1 + 1 + 0 + 0$$

$$= 2$$

$$X(1) = \sum_{n=0}^{3} x[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot 1 \cdot n/4}$$
$$= \sum_{n=0}^{3} x[n] \cdot e^{-j \cdot \pi \cdot n/2}$$
$$= 1 - j$$

$$X(2) = 0$$

$$X(3) = 1 + j$$

<u>DFT:</u> $X(k) = \{2, 1 - j, 0, 1 + j\}$

Real Part: Real(X(k)) = {2, 1, 0, 1}

<u>Imaginary part:</u> $Imag(X(k)) = \{0, -1, 0, 1\}$

Magnitude Spectrum: abs $(X(k)) = \{2, \sqrt{2}, 0, \sqrt{2}\}$

Phase Spectrum: phase(X(k)) = {0, -45, -90, 45} # in degree

<u>Power Spectrum:</u> $pow(abs(X(k)), 2) = \{4, 2, 0, 2\}$