MDLE - Aula Prática 3

Pedro Diogo

Instituto Superior de Engenharia de Lisboa Mestrado em Engenharia Informática e de Computadores Lisboa, Portugal A47573@alunos.isel.pt

Gonçalo Fonseca

Instituto Superior de Engenharia de Lisboa Mestrado em Engenharia Informática e Multimédia Lisboa, Portugal A50185@alunos.isel.pt

I. VISUALIZAR OS DADOS

A.

Ao utilizar a função **sdf_schema** do Spark, esta retorna um dicionário como apresentado na Figura 1.O dicionário mostra cada atributo existente como chave, que inclui dentro de cada um o seu nome e o tipo de variável.

Figura 1: sdf_schema()

В.

Ao chamar a função **head**, esta apresenta as primeiras n linhas do *dataframe* "df". Na Figura 2 está apresentado o *output*:

Figura 2: head()

Como podemos ver, a função retorna as 6 primeiras instâncias do dataset e indica o total de colunas (atributos), que neste contexto são 545.

C.

O código disponibilizado que chama a função **stopifnot** encontra-se entre as linhas 50 e 62 do ficheiro **AP3.R** anexado.

O código guarda em variáveis o número de linhas e colunas, usando as funções **sdf_nrow** e **sdf_ncol** do Spark, respetivamente. Depois, guarda em variáveis o número esperado de

linhas e de colunas, definido por nós. Por fim, recorrendo à função **stopifnot** são verificadas se as condições entre os valores das variáveis geradas e esperadas são iguais. No caso de existir alguma inconsistência, haverá um *output* com a frase "XXX == YYY is not TRUE", onde XXX e YYY são as variáveis criadas.

Posto isto, de forma a garantir que está a funcionar, colocouse o valor correto no valor expectável das linhas (2910) e de colunas (546, 545 atributos mais 1 coluna para a classe). Como esperado a função validou a dimensão dos dados e prosseguiu com o *script*.

II. SELEÇÃO DE ATRIBUTOS

A.

O código da linha 69 do ficheiro **AP3.R** serve para reduzir a dataframe *df* para as *features* nos índices da variável idx: 1, 2, 5, 6, 9, 10, 11, 14, 16, 17, 19, 21, 24, 25, 26, 31, 32, 33, 34, 35, 41, 44, 49, 50, 54.

В.

O resultado da seleção do ponto anterior mostra que a dataframe *df.sel* tem as colunas selecionadas de acordo com a variável idx. Pode parecer incorreto mas tendo em conta que o índice 1 corresponde à coluna "CLASS", o 2 ao atributo 1, etc, o resultado é o desejado. Na Figura 3 encontra-se o retorno da função **head** na dataframe *df.sel*.

Figura 3: Dataframe df.sel

A.

Numa primeira abordagem, definimos a semente (123) para que os resultados fossem consistentes e comparáveis entre as várias técnicas que aplicámos ao dados. Posteriormente definiu-se o peso da divisão de dados de treino (2/3) e teste (1/3) e recorreu-se à função **sdf_random_split** para repartir os dados.

В.

De forma a obter o número de instâncias para cada classe, experimentou-se executar a função **table** para os dois datasets (treino e teste) e usando a função print() para apresentar o resultado na linha de comandos. Ambos os resultados deram o *output* "table of extent 0". Tal acontece visto que as variáveis df.train e df.test são **dataframes do Spark**, e a função **table** usa **dataframes de R ou vetores**.

Para ser possível realizar o pedido neste exercício, o código presente entre as linhas 96 e 104 foi criado. Basicamente usando a função **collect** sobre os dataframes do Spark, passámos a ter dataframe do R. Os resultados das variáveis *train_table* e *test_table* encontram-se na Figura 4.

```
Training dataset counts:

0 1
1375 75

Test dataset counts:

0 1
700 40
```

Figura 4: Contagem das classes dos datasets com R.

Para garantir que estes dados são os corretos, fez-se a mesma contagem mas usando o Spark com o código presente entre as linhas 110 a 121 no ficheiro AP3.R.

Os resultados encontram-se na Figura 5.

Figura 5: Contagem das classes dos datasets com Spark.

С.

Para validar a amostragem feita para os dados treino e teste, utilizou-se um modelo de *Random Forest*.

D.

De seguida, e usando o código disponibilizado no módulo "helperfunctions.R", gerou-se a matriz de confusão para a aprendizagem feita pelo modelo anterior. Os resultados estão presentes na Figura 6.

```
Confusion Matrix and Statistics: Random Forest Model - Baseline

0 1
0 698 2
1 33 7
False Positive Rate: 0.825
Accuracy: 0.953
Kappa: 0.271
Pos Pred Value: 0.175
Neg Pred Value: 0.997
```

Figura 6: Resultados para random split.

IV. USO DE TÉCNICAS DE AMOSTRAGEM DE CORREÇÃO DE DESEQUILÍBRIO

Α.

Para realizar *undersampling* do conjunto de treino, foi desenvolvido o código presente entre as linhas 145 e 163. O grande objetivo passa por igualar ou aproximar o a representatividade de ambas as classes (0 e 1). Como existe uma enorme discrepância entre a classe 0 que possui 1375 instâncias e a classe 1 que apenas conta com 75 instâncias, queremos reduzir o número de linhas cuja etiqueta é 0.

Ao aplicar esta técnica, obtivemos 75 instâncias para a classe positiva (classe 1) depois de realizar o *undersampling*. Para a classe negativa (classe 0), obteve-se 67 instâncias. Desta forma temos um número semelhante de instâncias para representar as duas classes.

В.

Posteriormente gerou-se a matriz de confusão para a aprendizagem feita pelo *random forest*. Os resultados estão presentes na Figura 7.

```
Confusion Matrix and Statistics: Random Forest Model - Undersample

0 1
0 564 136
1 8 32
False Positive Rate : 0.200
Accuracy : 0.805
Kappa : 0.241
Pos Pred Value : 0.800
Neg Pred Value : 0.806
```

Figura 7: Resultados para undersampling.

C.

Nesta alínea pretende-se chegar ao mesmo resultado da anterior mas com *oversampling*. Quer isto dizer que vamos aumentar o número de instâncias da classe minoritária (classe 1) de forma a igualar o número de instâncias da classe maioritária.

Com a abordagem descrita acima, obtivemos 1375 instâncias para ambas as classes depois de realizar o *oversampling*.

D.

De seguida gerou-se a matriz de confusão para a aprendizagem feita pelo *random forest* com os novos dados de treino. Os resultados estão presentes na Figura 8.

Confusion Matrix and Statistics: Random Forest Model - Oversample

0 1
0 610 90
1 8 32
False Positive Rate : 0.200
Accuracy : 0.868
Kappa : 0.341
Pos Pred Value : 0.800
Neg Pred Value : 0.871

Figura 8: Resultados para *oversampling*.

Ε.

A última técnica de amostragem de correção de desequilíbrio dos dados utilizada foi o *Boderline-SMOTE*. Este algoritmo tem como objetivo criar dados sintéticos, logo pode ser considerada como uma variante de *oversampling*.

A função **BLSMOTE** da *package* **smotefamily** [1], começa por classificar as observações da classe minoritária em 3 grupos: SAFE/DANGER/NOISE. A classificação olha para o número de vizinhos da classe maioritária para determinar em que grupo se enquadra a observação. Apenas observações classificadas como DANGER são usadas para gerar instâncias sintéticas.

A função recebe os dados em formato de dataframe do R, sem as etiquetas. Estas passadas como o segundo parâmetro da função. Para além destes dois argumentos, é passado um K que representa número de vizinhos mais próximos durante o processo de amostragem, um C que se trata do número de vizinhos mais próximos durante o cálculo do processo de nível seguro e por fim é passado um *method* que pode ser "type1" ou "type2". Estes métodos estão descritos em [2].

A figura 9 representa os resultados obtidos para um K=7, C=5 e o *method*=type1.

```
Confusion Matrix and Statistics: Random Forest Model - Borderline SMOTE

0 1
0 675 25
1 22 18
False Positive Rate : 0.550
Accuracy : 0.936
Kappa : 0.400
Pos Pred Value : 0.450
Neg Pred Value : 0.964
```

Figura 9: Resultados para BLSMOTE.

V. COMPARAÇÃO DOS RESULTADOS

Olhando para a Tabela I, podemos ver que para os rácio de falsos positivos, tanto as técnicas de *undersampling* e *oversampling* obtiveram o melhor resultado. Respetivamente à acurácia, obteve-se o melhor resultado sem aplicar qualquer técnica de amostragem. O valor da métrica Kappa mais alto foi para o BLSMOTE. Já o valor mais elevado de predições da classe positiva resultou mais uma vez no empate do *undersampling* e *oversampling*. Por fim o valor mais elevado de

predições da classe positiva foi obtido sem fazer amostragem dos dados.

Considerando o problema em questão (classificação utilizando um conjunto de dados desequilibrado), a técnica que obteve melhores resultados, foi o *Bordeline SMOTE*.

	F.P. Rate	Accuracy	Kappa	Pos Pred Value	Neg Pred Value
Baseline	0.825	0.953	0.271	0.175	0.997
Undersampling	0.200	0.805	0.241	0.800	0.806
Oversampling	0.200	0.868	0.341	0.800	0.871
Borderline smote k7	0.550	0.936	0.400	0.450	0.964

Tabela I: Métricas de avaliação no uso de técnicas de amostragem de correção de desequilíbrio.

REFERÊNCIAS

- [1] A Collection of Oversampling Techniques for Class Imbalance Problem Based on SMOTE [Em linha] [Consult. 21 abr. 2023]. Disponível em https://cran.r-project.org/web/packages/smotefamily/smotefamily.pdf
- [2] H. Han, W.-Y. Wang, e B.-H. Mao, «Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning», em Advances in Intelligent Computing, Berlin, Heidelberg, 2005, pp. 878–887. doi: 10.1007/11538059 91.