

Msc thesis Mathematical Modelling and Computation

The dynamics of adaptive neuronal networks: influence of topology on synchronisation Simon Aertssen, s181603

Supervisors Erik Martens and Poul Hjorth

February 1st 2021 Department of Applied Mathematics and Computer Science

Contents

- 1. Introduction
- 2. The Theta Neuron Model
- 3. Network Topologies
- 4. Mean Field Reductions
- 5. Investigation: Mean Field Reductions for undirected graphs
- 6. Hebbian Learning and Synaptic Plasticity
- 7. Investigation: Emerging Network Topologies
- 8. Conclusion and Discussion

Introduction

Introduction

The Theta Neuron Model

The Theta Neuron Model

• SNIC bifurcation

Excitable regime: I < 0

Bifurcation: I=0

Periodic regime: I > 0

Features of the model

The Theta Neuron Model

Network Topologies Network Topologies

Mean Field Reductions

Mean Field Reductions

Investigation: Mean Field Reductions for undirected graphs

Investigation: Mean Field Reductions for undirected graphs

Hebbian Learning and Synaptic Plasticity

Hebbian Learning and Synaptic Plasticity

Investigation: Emerging Network Topologies

Investigation: Emerging Network Topologies

Conclusion and Discussion

Conclusion and Discussion

