CS 680 PSet 1: Linear Algebra Self-Assessment

Due: September 8 at 11:59 PM

Upload a scanned or typed copy on Gradescope.

Question 1:

- (a) Given points $\mathbf{p}_1 = (1, 6, 5)$ and $\mathbf{p}_2 = (5, 3, -7)$, solve for \mathbf{v}_2 the vector from \mathbf{p}_1 to \mathbf{p}_2 .
- (b) Given a third point $\mathbf{p}_3 = (1, 6, 4)$, solve for \mathbf{v}_3 the vector from \mathbf{p}_1 to \mathbf{p}_3 .
- (c) Find the values for the magnitudes of \mathbf{v}_2 and \mathbf{v}_3 .
- (d) Solve for the unit vectors in the directions of \mathbf{v}_2 and \mathbf{v}_3 .

Question 2:

- (a) Solve for the vector (cross) product $\mathbf{v}_2 \times \mathbf{v}_3$.
- (b) Solve for $\mathbf{v}_3 \times \mathbf{v}_2$.
- (c) Solve for the scalar (dot) product $\mathbf{v}_3 \cdot \mathbf{v}_2$.

Question 3:

- (a) If two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal, what is the value of their scalar (dot) product?
- (b) If two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are parallel, what is the value of their cross product?

Question 4:

Which of the following are unit vectors? (a) $(\frac{1}{2}, -\frac{1}{2}, 0)$ (b) (0, -1, 0) (c) $\frac{1}{7}(-2, 3, 6)$

Question 5:

We are given two non-zero vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Assume the angle between \mathbf{u} and \mathbf{v} satisfies $0 < \theta < \frac{\pi}{2}$. Use dot products and/or cross products of \mathbf{u} and \mathbf{v} to give expressions for:

(a) $\cos \theta$ (b) $\sin \theta$ (c) A vector perpendicular to both **u** and **v**.

Question 6:

Given three square matrices $\mathbf{Q}, \mathbf{R}, \mathbf{S} \in \mathbb{R}^{n \times n}$, which statements are true **in general**? If the statement is false, please correct it.

(a)
$$(\mathbf{QRS})^{-1} = \mathbf{Q}^{-1}\mathbf{R}^{-1}\mathbf{S}^{-1}$$

- (b) $\mathbf{Q}\mathbf{R} = \mathbf{R}\mathbf{Q}$
- (c) $(\mathbf{QRS})^T = \mathbf{S}^T \mathbf{R}^T \mathbf{Q}^T$
- $(\mathrm{d}) \ (\mathbf{R} + \mathbf{S})\mathbf{Q} = \mathbf{S}\mathbf{Q} + \mathbf{R}\mathbf{Q}$

Question 7:

Given a square matrix $\mathbf{A} \in \Re^{n \times n}$ whose columns form an orthonormal basis:

- (a) What is the dot product of any pair of columns in \mathbf{A} ?
- (b) What is the inverse of **A**?