An Approximation Scheme for the Knapsack Problem

CS 511

Iowa State University

December 8, 2008

The Knapsack Problem: Problem Definition

Input: Set of n objects, where item i has value $v_i > 0$ and weight $w_i > 0$; a knapsack that can carry weight up to W.

Goal: Fill knapsack so as to maximize total value.

The Knapsack Problem

Example

Suppose W = 11.

Value	Weight
1	1
6	2
18	5
22	6
28	7
	1 6 18 22

- $S_1 = \{1, 2, 5\} \Rightarrow w(S_1) = 10, v(S_1) = 35.$
- $S_2 = \{3,4\} \Rightarrow w(S_2) = 11, v(S_2) = 40.$

Knapsack is NP-complete

Definition (Knapsack, Decision Version)

Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \le W \quad \text{and} \quad \sum_{i \in S} v_i \ge V \quad ?$$

Theorem

Knapsack is NP-complete.

Proof.

Reduction from Subset-Sum.

A Dynamic Programming Algorithm

Subproblems

For each i and v, find the minimum weight of a subset of $\{1, \ldots, i\}$ that yields value exactly v.

Substructure

- Case 1: Optimum solution for $\{1, ..., i\}$ does not contain item i.
 - Optimum solution is the minimum weight of a subset of $\{1, \ldots, i-1\}$ that achieves exactly value v.
- Case 2: Optimum solution for $\{1, ..., i\}$ contains item i.
 - Item i consumes weight w_i .
 - Optimum solution is w_i plus the minimum weight of a subset of $\{1, \ldots, i-1\}$ that achieves exactly value $v-v_i$

A Dynamic Programming Algorithm

Definition

 $\operatorname{opt}(i, v)$ is the minimum weight of a subset of $\{1, \ldots, i\}$ that yields value exactly v.

Recurrence Relation

$$\mathsf{opt}(i,v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, \ v > 0 \\ \mathsf{opt}(i-1,v) & \text{if } v_i > v \\ \mathsf{min}\{\mathsf{opt}(i-1,v), \ w_i + \mathsf{opt}(i-1,v-v_i)\} & \text{otherwise} \end{cases}$$

A Dynamic Programming Algorithm

Algorithm

- For $0 \le i \le n$, $0 \le v \le nv_{\text{max}}$, compute opt(i, v), where $v_{\text{max}} = \max_i v_i$.
- 2 Return $V^* = \max\{v : \operatorname{opt}(n, v) \leq W\}$

Run time

- Dominated by Step 1:
 - $O(n^2 v_{\text{max}})$ values to compute, O(1) time per value.
- Total: $O(n^2 v_{\text{max}})$.
- Not polynomial.
- However, run time is pseudopolynomial.

Knapsack Approximation Algorithm

Algorithm

Input: An instance $(\{w_i\}, \{v_i\}, W)$ of Knapsack, and a real number $\epsilon > 0$ (the precision parameter).

1 Let θ , the scaling factor, be

$$\theta = \frac{\epsilon v_{\mathsf{max}}}{n}.$$

② (Rounding) For i = 1, 2, ..., n, let

$$\hat{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil.$$

- **3** Run the dynamic programming algorithm using values \hat{v}_i , original weights w_i and original knapsack size W.
- \odot Return the set S of items found in step 2.

Knapsack Approximation Algorithm

Run time

• Dominated by step 3:

$$O(n^2 \hat{v}_{\mathsf{max}}) = O\left(n^2 \left\lceil \frac{v_{\mathsf{max}}}{\theta} \right\rceil\right) = O\left(\frac{n^3}{\epsilon}\right)$$

• Polynomial for each fixed ϵ .

Knapsack Approximation Algorithm

Intuition

Let

$$\hat{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil \qquad \bar{\mathbf{v}}_i = \left\lceil \frac{\mathbf{v}_i}{\theta} \right\rceil \theta$$

- Optimal solution to problems with \hat{v}_i or \bar{v}_i are equivalent.
- \bar{v}_i s are close to v_i s, so optimal solution using \bar{v}_i s is nearly optimal.
- \hat{v}_i s are small and integral, so dynamic programming algorithm is fast.

Knapsack Approximation Algorithm: Analysis

Theorem

If S is solution found by our algorithm and S^* is any other feasible solution then $(1+\epsilon)\sum_{i\in S}v_i\geq \sum_{i\in S^*}v_i$.

Proof.

$$\begin{split} \sum_{i \in S^*} v_i & \leq \sum_{i \in S^*} \overline{v}_i, \quad \text{ since we round up} \\ & \leq \sum_{i \in S} \overline{v}_i, \quad \text{ since rounded instance is solved optimally} \\ & \leq \sum_{i \in S} (v_i + \theta), \quad \text{ since we round up by at most } \theta \\ & \leq \sum_{i \in S} v_i + n\theta, \quad \text{ since } |S| \leq n \\ & \leq (1 + \epsilon) \sum_{i \in S} v_i, \quad \text{ since } n\theta = \epsilon v_{\text{max}} \text{ and } v_{\text{max}} \leq \sum_{i \in S} v_i \end{split}$$

Knapsack Approximation Algorithm: Final Comments

- **Summary:** For every fixed ϵ , there exists a polynomial-time approximation algorithm for the knapsack problem.
 - Running time is $O(n^3/\epsilon)$.
- In fact, we have a family of approximation algorithms for knapsack, one per choice of ϵ . That is, we have a polynomial-time approximation scheme (PTAS).
- Even better: Our algorithms are polynomial in n and $1/\epsilon$, so we have a fully polynomial-time approximation scheme (FPTAS).
 - lacktriangle Wouldn't have been the case if running time had been, say, $O(n^{1/\epsilon})$.