3D Mesh Classification with Graph Neural Networks

Giovanni Bindi

Università degli Studi di Firenze

6th November 2020

Introduction

Aim

Being able to correctly classify faces identities.

Methodology

Training Graph Neural Networks.

Data

Using graph representation of 3D meshes.

Geometric Deep Learning - [1]

Model

Figure 1: Geometric Deep Learning handles non-euclidean data

Graph Neural Network

Neural networks on graphs

- Firstly proposed by Gori & al [2] in 2005
- Definitive follow-up [3] in 2009
- ▶ Idea: use NNs to learn a node representation
- ▶ **How**: iteratively approaching the fixed point of a *dynamical* system
- Pro: Theoretical guarantees of convergence
- Con: Inefficient
- ► Con: Sharing parameters ⇒ no hierarchical feature extraction
- Con: No edge information

Graph Convolution - 1

Figure 2: Different approaches for convolutional filters: images (left) vs. graphs (right)

Graph Convolution - 2

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a graph. Suppose we have a feature vector $\mathbf{x}_{v} \in \mathbb{R}^{d}$ for every node $v \in \mathcal{V}$. Given a weight matrix $\mathbf{W} \in \mathbb{R}^{f \times d}$ we define:

$$\mathbf{g}_{v} = \mathbf{W}\mathbf{x}_{v} \tag{1}$$

Defining the set of neighbors (usually first-order) of v as \mathcal{N}_{v} , given an activation function $\sigma(\cdot)$, the v node hidden representation $\mathbf{h}_{V} \in \mathbb{R}^{f}$ is calculated as

$$\mathbf{h}_{v} = \sigma \left(\sum_{u \in \mathcal{N}_{v}} \alpha_{vu} \mathbf{g}_{u} \right) \tag{2}$$

There are many possibilities on the definition of α_{vu} , one of them is interpreting as an attention weight that measures the connective strength between the node v and its neighbor u.

Graph Attention Networks (GAT) - [4]

Inspired by the recent advances of attention models, the authors propose to define the α_{VU} coefficients as:

$$\alpha_{vu} = \operatorname{softmax}_{u}(e_{vu}) = \frac{\exp(e_{vu})}{\sum_{w \in \mathcal{N}_{v}} \exp(e_{vw})}$$
(3)

where

$$e_{vu} = a(\mathbf{g}_v, \mathbf{g}_u) = a(\mathbf{W}\mathbf{x}_v, \mathbf{W}\mathbf{x}_u) \tag{4}$$

and $a: \mathbb{R}^f \times \mathbb{R}^f \to \mathbb{R}$ is a self-attention mechanism: a single layer feedforward neural network with weights $\mathbf{a} \in \mathbb{R}^{2f}$. Finally:

$$\alpha_{vu} = \frac{\exp\left(\text{LeakyReLU}(\mathbf{a}^{\mathsf{T}}[\mathbf{W}\mathbf{x}_{v}||\mathbf{W}\mathbf{x}_{u}])\right)}{\sum_{w \in \mathcal{N}_{v}} \exp\left(\text{LeakyReLU}(\mathbf{a}^{\mathsf{T}}[\mathbf{W}\mathbf{x}_{v}||\mathbf{W}\mathbf{x}_{w}])\right)}$$
(5)

GAT: Multi-Head Attention - [4]

Figure 3: Multi-head attention with H=3

Multi-head attention of order *H*: *H* copies (each with different parameters) of Eq. $(5) \rightarrow$ concatenated or averaged.

From Node To Graph Classification

Figure 4: Learning nodes representations

Figure 5: Graph classification

The top-k pooling mechanism has been applied: let $k \in [0,1]$ and $\mathbf{H} \in \mathbb{R}^{N \times f}$ the feature matrix (with $N = |\mathcal{V}|$). Firstly

$$\mathbf{y} = \frac{\mathbf{H}\mathbf{p}}{\|\mathbf{p}\|_2} \tag{6}$$

is computed where $\mathbf{p} \in \mathbb{R}^f$ is a learnable vector of parameters, then

$$\mathbf{i} = \mathsf{top-}k(\mathbf{y}, k) \tag{7}$$

and finally new features \mathbf{H}' and adjacency matrix \mathbf{A}' :

$$\begin{cases}
\mathbf{H}' = (\mathbf{H} \odot \sigma(\mathbf{y}))_{\mathbf{i}} \\
\mathbf{A}' = \mathbf{A}_{\mathbf{i},\mathbf{i}}
\end{cases} (8)$$

where, usually, $\sigma(\cdot) = \tanh(\cdot)$.

Readout: Global Attention - [6]

Suppose we want to describe our graph \mathcal{G} with a vector $\mathbf{p}_{\mathcal{G}} \in \mathbb{R}^p$. Let $g: \mathbb{R}^f \to \mathbb{R}^p$ a neural network, then a possible solution is

$$\mathbf{p}_{\mathcal{G}} = \sum_{\mathbf{v} \in \mathcal{V}} \alpha_{\mathbf{v}}^{\mathbf{p}} g(\mathbf{h}_{\mathbf{v}}) \tag{9}$$

where $\alpha_{\nu}^{\rho} \in [0,1]$ is a global attention coefficient for the node ν calculated by another neural network f as

$$\alpha_{v}^{p} = \operatorname{softmax}(f(\mathbf{H}))_{v} \tag{10}$$

where the softmax is applied across nodes, and not across features.

Data: Bosphorus & FRGC

- Bosphorus [7]:
 - ▶ 105 identities
 - ▶ 2889 meshes
 - ▶ mesh / id \approx 28
 - Every mesh has
 - \sim 6k nodes.
 - \sim 40k edges

 - \sim 13k faces
- FRGC [8]:
 - ▶ 466 identities
 - ▶ 3948 meshes
 - ▶ mesh / id ≈ 8
 - Same structure
 - as Bosphorus

Experiments & Results •00000

Network Architecture & Hyperparameters

#	Layer		
1	GAT(3, 32, H = 2)		
2	InstanceNorm		
3	Top-k		
4	GAT(64, 128, H = 2)		
5	InstanceNorm		
6	Top-k		
7	GAT(256, 512, H = 2)		
8	InstanceNorm		
9	GlobalAttention(512,512)		
10	Dropout		
11	Dense $(512, 512)$		
12	Dropout		
13	Dense $(512, 256)$		
14	Dropout		
15	Dense $(256, C)$		

Pre-processing

- Norm vertices to [0, 1]³
- Filtering out identities with number of meshes: $N_m < T_{low} \lor N_m > T_{up}$
- ▶ 70% train / 30% test split
- 3-Fold cross validation
- 300 epochs
- Batch size: 16

Experiments & Results 000000

- ▶ Starting learning rate: $\lambda = 10^{-4}$
- ► Top-k with k = 0.3
- Dropout p = 0.5

Bosphorus

- Filtered out identities with $N_m > 34 \text{ meshes} \rightarrow$ 1294 training and 555 testing examples
- ▶ **76** identities left

Experiments & Results 000000

mesh / id \approx 24

Dataset	Split	Accuracy
Bosphorus	Train	99.4 %
Bosphorus	Test	90.6 %

FRGC

- Filtered out identities with $N_m < 16$ meshes \rightarrow 997 training and 472 testing examples
- ▶ **78** identities left
- mesh /id pprox 18

Dataset	Split	Accuracy
FRGC	Train	100 %
FRGC	Test	92.1 %

Conclusions & Further Developments

- CNN-like Graph Neural Network on 3D meshes
- Con: Did not reach SOTA performances
- Pro: Easily customizable model
- Could be a **baseline** for future architectures

Code

Experiments & Results 000000

https://github.com/w00zie/3d_face_class

Experiments & Results 00000

References I

- M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and [1]P. Vandergheynst, "Geometric deep learning: Going beyond euclidean data", CoRR, vol. abs/1611.08097, 2016. arXiv: 1611.08097. [Online]. Available: http://arxiv.org/abs/1611.08097.
- [2] M. Gori, G. Monfardini, and F. Scarselli, "A new model for earning in raph domains", vol. 2, Jan. 2005, 729–734 vol. 2, ISBN: 0-7803-9048-2. DOI: 10.1109/IJCNN.2005.1555942.
- [3] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model", IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009. DOI: 10.1109/TNN.2008.2005605.

References II

- [4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks, 2018. arXiv: 1710.10903 [stat.ML].
- [5] H. Gao and S. Ji, "Graph u-nets", CoRR, vol. abs/1905.05178, 2019. arXiv: 1905.05178. [Online]. Available: http://arxiv.org/abs/1905.05178.
- Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, Gated 161 graph sequence neural networks, 2017. arXiv: 1511.05493 [cs.LG].
- [7] A. Savran, N. Alyuz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, and L. Akarun, "Bosphorus database for 3d face analysis", Jan. 2008, pp. 47–56. DOI: 10.1007/978-3-540-89991-4 6.

References III

- [8] P. J. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. (Chang, K. Hoffman, J. Margues, J. Min, and W. Worek, "Overview of the face recognition grand challenge", vol. 1, Jul. 2005, 947–954 vol. 1. ISBN: 0-7695-2372-2. DOI: 10.1109/CVPR.2005.268.
- [9] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, "Instance normalization: The missing ingredient for fast stylization", CoRR, vol. abs/1607.08022, 2016. arXiv: 1607.08022. [Online]. Available: http://arxiv.org/abs/1607.08022.

Vertex Normalization

Let $\mathbf{x}_{v} \in \mathbb{R}^{d}$ the vector of initial features for node $v \in \mathcal{V}$. Let $\mathbf{X} = [\mathbf{x}_{1}, \dots, \mathbf{x}_{N}]^{\mathsf{T}} \in \mathbb{R}^{N \times d}$ the feature matrix of the whole graph, being $N = |\mathcal{V}|$. For each node we define a mapping from $\mathbb{R}^{d} \to [0, 1]^{d}$ as following:

$$M = \max_{i \in \{1, \dots, N\}} \max_{j \in \{1, \dots, d\}} \mathbf{X}_{ij}$$

$$m = \min_{i \in \{1, \dots, N\}} \min_{j \in \{1, \dots, d\}} \mathbf{X}_{ij}$$

$$\alpha = \frac{1}{M - m}$$

$$\mathbf{x}_{v}^{n} = \alpha(\mathbf{x}_{v} - m\mathbf{1})$$

where $\mathbf{1} = [1, \dots, 1]^{\mathsf{T}} \in \mathbb{R}^d$. It is possible to show that this transformation scales the distances by a factor α^2 :

$$d(\mathbf{x}_{v}^{n}, \mathbf{x}_{u}^{n}) = \|\mathbf{x}_{v}^{n} - \mathbf{x}_{u}^{n}\|_{2} = \alpha^{2} \|\mathbf{x}_{v} - \mathbf{x}_{u}\|_{2} = \alpha^{2} d(\mathbf{x}_{v}, \mathbf{x}_{u})$$

Instance Normalization - [9]

Normalization is applied on each element \mathbf{h}_{v} of every batch \mathcal{B} :

$$\mathbf{h}_{\nu} = \frac{\mathbf{h}_{\nu} - \mathbb{E}[\mathbf{h}_{\nu}]}{\mathsf{Var}[\mathbf{h}_{\nu}] + \epsilon} \odot \gamma + \beta$$

where $\mathbf{h}_{\mathbf{v}}, \gamma, \beta \in \mathbb{R}^f$ and \odot is the element-wise multiplication.