Table of Contents

CHAPTER

1.	MELTING A		
	1.1	Backg	round re: melting
		1.1.1	Theories of melting, 3D, 2D, bulk
			a. 3D crystallites w/ stable surfaces melt from within via Born
			melting
			• or yet another structure
			b. 2D large crystallites melt by two-step process via hexatic
			phase
			c. 2D finite crystallites melt from perimeter
			• if melt from perimeter, dN/dt goes as $N^{1/2}$
		1.1.2	Expectations for 2D finite crystallites
	1.2	Exper	iment of Savage et. al
		1.2.1	Setup
		1.2.2	Tuneable Depletion potential
		1.2.3	Results
			a. N vs. t
			b. $< psi6 >^2 vs. N$
			c. C_6 vs. N, by layer
			d. No dependence of fast-melting feature on initial cluster size
			or melting rate
	1.3	Simula	
		1.3.1	Motivation
			a. Rule out any hydrodynamic effects causing fast-melting .
			b. Determine whether range of potential plays role in fast
			melting
			c. Justification for using Brownian dynamics
		1.3.2	GROMACS Simulations
			a. Brownian dynamics option
			b. Interparticle 'depletion' potential
			• Mimics that in experiment
			• $U(r) = 0 \text{ for } r > r_0 \dots \dots \dots \dots \dots \dots$
			• $U(r) = 4/(10r - 9)^{12} - 400a_0(r - r_0)^2$ for $r \le r_0$
			c. Temperature
			d. Effective well depth: $3.5k_BT$
			e. Time step: 2.5×10^{-5} (in GROMACS time units)
			f. $N = 100$ particles
			g. periodic box of size $L^1 = 18.0\sigma$
			h. particle area fraction of 24%

CHAPTER 1

MELTING A

- 1.1 Background re: melting
- 1.1.1 Theories of melting, 3D, 2D, bulk
- a. 3D crystallites w/ stable surfaces melt from within via Born melting CLOSED: 2010-07-04 Sun 15:28

In this case, melting can be viewed as nucleation and growth of fluid phase within the solid.

- or yet another structure.
 - or even another
- b. 2D large crystallites melt by two-step process via hexatic phase
- c. 2D finite crystallites melt from perimeter
- if melt from perimeter, dN/dt goes as $N^{1/2}$

- 1.1.2 Expectations for 2D finite crystallites
- 1.2 Experiment of Savage et. al
- 1.2.1 Setup
- 1.2.2 Tuneable Depletion potential
- 1.2.3 Results
- a. N vs. t
- **b.** < psi6 > 2 **vs. N**
- c. C_6 vs. N, by layer
- d. No dependence of fast-melting feature on initial cluster size or melting rate

1.3 Simulations

- 1.3.1 Motivation
- a. Rule out any hydrodynamic effects causing fast-melting
- b. Determine whether range of potential plays role in fast melting
- c. Justification for using Brownian dynamics
- 1.3.2 GROMACS Simulations
- a. Brownian dynamics option
- b. Interparticle 'depletion' potential
- Mimics that in experiment
- U(r) = 0 for $r > r_0$
- $U(r) = 4/(10r 9)^{12} 400a_0(r r_0)^2$ for $r \le r_0$ with the first term resembling hard sphere repulsion and the second term representing a two-body depletion potential. The parameters $a_0 = 1.0$ and $r_0 = 1.1$ were chosen to allow for a potential with a narrow width compared to the particle diameter. This potential has an effective particle diameter $\sigma = 1.0$, a width equal to 0.1 and an equilibrium inter-particle spacing $a \approx 1.01637$

- c. Temperature
- d. Effective well depth: $3.5k_BT$
- e. Time step: 2.5×10^{-5} (in GROMACS time units)
- f. N = 100 particles
- g. periodic box of size $L=18.0\sigma$
- h. particle area fraction of 24%