In the Claims

1. (currently amended) A compound of the formula (la), (lb) or (lc)

$$Q_1 = X_1$$
 $Q_1 = X_2 = Q_1$ $Q_1 = X_2 = Q_2$
(Ia) (Ib) (Ic)

in which

 Q_1 is a benzofuran-2-one of the formula (IIa), and Q_2 is a benzofuran-2-one of the formula (IIb)

$$R_3$$
 R_4
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_2
 R_1
 R_2
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4
 R_5
 R_5
 R_7
 R_8
 R_9
 R_9

in which

R₁, R₂, R₃, R₄, R₁₀₀, R₂₀₀, R₃₀₀ or R₄₀₀ independently of one another are hydrogen, halogen, hydroxyl, cyano, ether, nitro, an amine, amide, imine, urethane, sulfonamide, ester, carboxylic acid or sulfonic acid radical or carboxylic salt, sulfonic salt or C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl, C₆-C₂₄aryloxy, C₆-C₂₄arylthio, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl, O-thienyl, O-benzo[b]thienyl, O-dibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofu-

09/518,464 - 2 - PL/2-21988/A

ranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-perimidinyl, O-carbazolyl, O-phenanthridinyl, O-perimidinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl, S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-pyrazinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinoliyl, S-carbazolyl, S-phthalazinyl, S-phenzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

R₁ and R₂, R₂ and R₃, R₃ and R₄ or R₁₀₀ and R₂₀₀, or R₂₀₀ and R₃₀₀, R₃₀₀ and R₄₀₀, independently of one another in each case together are divalent radicals[[,]] selected from the group consisting of such as polycyclic radicals, or 1,3-butadien-1,4-ylene and or -CH=CH-NH-, the two last radicals forming an additional fused-on 5- or 6-membered ring, and

 X_1 is a hydrazone or imine radical, with the proviso that, if R_1 , R_2 , R_3 and R_4 are hydrogen, or at least one R_1 , R_2 , R_3 or R_4 is methyl, the hydrazone radical is excluded, or, if R_1 , R_2 , R_3 or R_4 is hydrogen, X_1 is not phenylimine- or 4-dimethylamine-phenylimine, or X_1 is a methylene radical,

$$=c^{Q_3}$$

in which

 Q_3 is a primary or secondary amine radical and Q_4 is hydrogen or C_1 - C_{24} alkyl, -CO- $(C_1$ - C_{24} alkyl), -CO- $(C_1$ - C_{24} alkyl), C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, -CO- $(C_6$ - C_{24} aryl), -CO- $(C_6$ - C_{24} aryl), C_6 - C_{24} aryloxy, a primary or secondary amine radical, C_6 - C_{12} arylthio, C_7 - C_{25} aralkyl, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl,

09/518,464 - 3 - PL/2-21988/A

pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, Obenzo[b]thienyl, O-dibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, Obenzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, Ophenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, Opyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, Opurinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, Oquinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, Obenzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl Sthienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, Sphenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, Spyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, Squinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazo-IVI. S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 Q_4 is not hydrogen and Q_3 is not a primary or secondary amine radical if R_3 is hydrogen, methoxy or hydroxyl and R_1 , R_2 and R_4 are hydrogen, and

X₂ is thienyl, furyl, 2H-pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrazinyl, pyridazinyl, morpholin, piperidyl, piperazinyl, or is

$$\begin{array}{c|c}
 & Q_5 & Q_6 \\
\hline
 & C - X_3 - C
\end{array}$$

in which

09/518,464 - 4 - PL/2-21988/A

X₃ is a single bond, C₆-C₂₄arylene, thienylene, benzo[b]thienylene, dibenzo[b,d]thienylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, isobenzofuranylene, dibenzofuranylene, phenoxythinylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, benzimidazolylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, quinolylene, isoguinolylene, phthalazinylene, naphthyridinylene, quinoxalinylene, quinazolinylene, cinnolinylene, pteridinylene, carbazolylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, isoxazolylene, furazanylene or phenoxazinylene 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24}) arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen, C2-C24alkenylene, in which bi(C6-C24)arylene, bipyrrdylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C2-C24alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

in which

R₄₂ and R₄₄ independently of one another are hydrogen, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl or thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl,

with the proviso that if R_1 , R_2 , R_3 , R_4 , R_{100} , R_{200} , R_{300} , R_{400} are all tert-butyl or all hydrogen, Q_5 and Q_6 are hydrogen, X_3 is not 1,4-phenylene, and

 Q_5 and Q_6 independently of one another are hydrogen, C_6 - C_{24} aryl, C_6 - C_{24} aryloxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryloxy, C_6 - C_{24} arylthio, thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl,

09/518,464 - 5 - PL/2-21988/A

benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthridinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzo[b]thienyl, O-dibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, Oisobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, Ocarbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, Operimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, Ofurazanyl or O-phenoxazinyl S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, Sdibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, Striazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, Spurinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, S-naphthyridinyl, S-quinoxalinyl, Squinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, Sphenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, S-phenazinyl, S-isothiazolyl, Sphenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

$$X_2$$
 is Q_7 Q_8 Q_8 Q_8

in which

Q₇ and Q₈ independently of one another are Q₅ or Q₆, and

X₄ is C₆-C₂₄arylene, A₅-A₁₈heteroarylene, a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C₆-C₂₄)arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen C₂-C₂₄alkenylene, in which bi(C₆-C₂₄)arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C₂-C₂₄alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

or

09/518.464 - 6 - PL/2-21988/A

$$X_2$$
 is $N-NH-X_4-HN-N$ or $N-N=1$.

2. (currently amended) A compound according to claim 1 of the formula (XVI)

$$\begin{bmatrix} R_{13} & R_{113} & X \\ R_{112} & R_{12} & 0 \end{bmatrix}$$
 (XVI)

in which

n is 1 or 2, and

if n is 1

X is a hydrazone or imine radical, with the proviso that, if R_{12} , R_{13} , R_{112} and R_{113} are hydrogen, or at least one R_{12} , R_{13} , R_{112} or R_{113} is methyl, the hydrazone radical is excluded, or, if R_{12} , R_{13} , R_{112} or R_{113} is hydrogen, $X[X_1]$ is not phenylimine- or 4-dimethylamine-phenylimine,

or $X[X_1]$ is a methylene radical,

$$=c_{Q_4}^{Q_3}$$

in which

Q₃ is a primary or secondary amine radical and Q₄ is hydrogen or C₁-C₂₄alkyl,

-CO-(C₁-C₂₄alkyl), -CO-O-(C₁-C₂₄alkyl), C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-C₂₄aryl,

-CO-O-(C_6 - C_{24} aryl), -CO-(C_6 - C_{24} aryl), C_6 - C_{24} aryloxy, a primary or secondary amine radical, C_6 - C_{12} arylthio, C_7 - C_{25} aralkyl, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl,

09/518,464 - 7 - PL/2-21988/A

indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzothienyl, O-dibenzothienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2Hpyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, Opyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, Oquinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, Ophenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, Ophenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl S-thienyl, S-benzothienyl, Sdibenzothienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, Sbenzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, Spyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, Sisoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phthalazinyl, Snaphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, Sbenzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenanthrolinyl, Sphenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl, or

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 Q_4 is not hydrogen and Q_3 is not a primary or secondary amine radical if R_{13} is hydrogen, methoxy or hydroxyl and R_{12} , R_{112} and R_{113} are hydrogen,

and

if n is 2

X is thienyl, furyl, 2H-pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrazinyl, pyridazinyl, morpholin, piperidyl, piperazinyl, or is

$$\begin{array}{c|c} & Q_5 & Q_6 \\ \hline & C - X_3 - C \end{array}$$

in which

X₃ is a single bond, C₆-C₂₄arylene, thienylene, benzothienylene, dibenzothienylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, isobenzofuranylene, dibenzofuranylene, phenoxythinylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, benzimidazolylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, quinolylene, isoguinolylene, phthalazinylene, naphthyridinylene, quinoxalinylene, quinazolinylene, cinnolinylene, pteridinylene, carbazolylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, isoxazolylene, furazanylene or phenoxazinylene 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent polyether, polyimine, polyamine radical, or bi(C₆-C₂₄)arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen, C2-C24alkenylene, in which bi(C6-C24)arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C2-C24alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR 44R 42-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-, in which

R₄₂ and R₄₄ independently of one another are hydrogen, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₂-C₂₄ alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl,

with the proviso that if R_{12} , R_{13} , R_{112} or R_{113} are all tert-butyl or all hydrogen, Q_5 and Q_6 are hydrogen, X_3 is not 1,4-phenylene, and Q_5 and Q_6 independently of one another are hydrogen, C_6 - C_{24} aryl, C_6 - C_{24} aryloxy, C_1 - C_{24} alkyl, C_1 - C_2 4 alkoxy, C_1 - C_2 4 alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkylthio, C_5

C₆-C₂₄aryl, C₆-C₂₄aryloxy, C₆-C₂₄arylthio, thienyl, benzothienyl, dibenzothienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl,

09/518,464 - 9 - PL/2-21988/A

benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzothienyl, Odibenzothienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazoyl, Opyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, Oisoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, Ophenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl S-thienvl. Sbenzothienyl, S-dibenzothienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, Sisobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, Simidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, Sindolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, Sphthalazinyl, S-naphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, Sphenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or Sphenoxazinyl.

or

$$X[[X_2]]$$
 is Q_7 NH- X_4 -HN

in which

 Q_7 and Q_8 independently of one another are Q_5 or Q_6 , and

 X_4 is C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene,a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24})arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraxquinoylfuranoylen C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C_2 - C_{24} alkenylene are optionally interrupted by one or more intermediate units selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

or

$$\underline{X} \hspace{-.1cm} \hspace{-.1cm} \hspace{-.1cm} \hspace{-.1cm} \underline{X} \hspace{-.1cm} \hspace{-.1cm}$$

and

 R_{12} , R_{112} , R_{13} and R_{113} independently of one another are hydrogen, halogen, OH, NO₂, R_{14} , OR₁₄, OC₉-C₁₈alkyl or SC₉-C₁₈alkyl, in which

 R_{14} is C_1 - C_{24} alkyl which is unsubstituted or substituted one or more times by oxo or by $COO^-X_5^+$ and which is uninterrupted or interrupted one or more times by O, N and/or S, or is C_7 - C_{18} aralkyl or C_6 - C_{12} aryl unsubstituted or substituted one or more times by halogen, OR_{16} , $NR_{16}R_{17}$, $COOR_{16}$, $CONR_{16}R_{17}$, $NR_{18}COR_{16}$ or $NR_{18}COOR_{16}$,

 X_5^+ is a cation H^+ , Na^+ , K^+ , $Mg^{++}_{y_2}$, $Ca^{++}_{y_2}$, $Zn^{++}_{y_2}$, $Al^{+++}_{1/3}$, or $(NR_{16}R_{17}R_{18}R_{19})^+$, and R_{16} and R_{17} independently of one another are hydrogen, C_6-C_{12} aryl, C_7-C_{10} aralkyl, or C_1-C_8 alkyl which is unsubstituted or substituted one or more times by halogen, hydroxyl or C_1-C_4 alkoxy, or R_{16} and R_{17} in $NR_{16}R_{17}$ or $CONR_{16}R_{17}$, together with the nitrogen atom connecting them, are pyrrolidine, piperidine, piperazine or morpholine each of which is unsubstituted or substituted from one to four times by C_1-C_4 alkyl,

and

 R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_8 alkyl, C_6 - C_{10} aryl or C_6 - C_{12} aralkyl, or R_{12} and R_{112} , R_{112} and R_{13} , R_{13} and R_{113} independently of one another are each together divalent radicals.

3-14. (canceled)

15. (currently amended) A method of preparing inks, or for coating materials, printing inks[[,]] mineral oils, lubricating greases, waxes or dyed or pigmented plastics, non-impact printing material or toners which comprises incorporating a colouring effective amount of a compound according to claim 1-or composition according to claim 12 or composition of matter according to claim 13 therein.

09/518,464 - 11 - PL/2-21988/A

16. (new) A method of preparing inks, coating materials, mineral oils, lubricating greases, waxes or dyed or pigmented plastics, non-impact printing material or toners which comprises incorporating a colouring effective amount of a compound according to claim **2** therein.

09/518,464 - 12 - PL/2-21988/A