Week 10 Assignment

Tan Yee Jian

March 27, 2020

1. *Proof.* Given an open covering \mathcal{G} of $E = \{x_0\} \cup \bigcup_{n=1}^{\infty} K_n$, we want to find a finite subcover.

First, x_0 must belong to some open cover $G \in \mathcal{G}$. Then since G is open, there exists r > 0 such that $B[x_0, r] \subseteq G$. I claim that G contains infinitely many K_n , that is, there is a $N \in \mathbb{N}$ such that for all n > N, $G \supseteq \bigcup_{n=N}^{\infty} K_n$.

To prove the claim, we use the r as given above (such that $B[x_0, r] \subseteq G$). We have $N_1, N_2 \in \mathbb{N}$ such that

$$\forall x \in K_n, n \ge N_1, \rho(x, x_0) < r/2$$

due to the convergence of $(x_n)_{n=1}^{\infty}$. Also,

$$\forall x \in K_n, n \geq N_2, K_n < r/2$$

due to the convergence of the diameters. Set $N = \max\{N_1, N_2\}$, then we have

$$\forall x \in K_n, n \ge N, \rho(x, x_0) \le \rho(x, x_n) + \rho(x_n, x_0)$$

$$< K_n + r/2$$

$$< r/2 + r/2$$

$$< r$$

$$: x \in B[x_0, r]$$

which implies $K_n, K_{n+1}, \dots \subseteq B[x_0, r] \subseteq G \implies \{x_0\} \cup \bigcup_{n=N}^{\infty} K_n \subseteq G$ as desired.

Now, we only have finitely many compact sets K_1, \ldots, K_{N-1} left. Clearly \mathcal{G} must also be an open covering for each of them, which compactness gives us finite subcovers for each K_1, \ldots, K_{N_1} . The union of

all these subcovers with G as found above is an open covering for E, and furthermore is a finite union of finite sets, which must be a finite set too. Then we have found our finite subcover given an arbitrary open covering \mathcal{G} , and thus E satisfies the Heine-Borel property and is compact.

2. Proof. $\bigcup_{x \in M} B[x, r_x]$ must be an open covering of M (trivially because it definitely contains all the points in M) where r_x is such that $f(B[x, r_x])$ is a finite set.

Since M is compact, we use the Heine-Borel property: given the open covering $\bigcup_{x\in M} B[x,r_x]$, there must be a finite subcover, i.e. x_1,\ldots,x_n such that

$$M \subseteq \bigcup_{i=1}^{n} B[x_i, r_{x_i}]$$

$$\therefore f(M) \subseteq f(\bigcup_{i=1}^{n} B[x_i, r_{x_i}])$$

$$= \bigcup_{i=1}^{n} f(B[x_i, r_{x_i}])$$

which $\bigcup_{i=1}^{n} f(B[x_i, r_{x_i}])$ is a finite union of finite sets, and therefore its subset, f(M) must also be finite.

- 3. Proof. Since our domain is a closed set, which means for every $x \in \overline{E}$, there is a sequence that converges to x. I claim that $\widetilde{f}: \overline{E} \to \overline{F}$ such that $\widetilde{f}(x) = \lim_{n \to \infty} f(x_n)$, where $(x_n)_{n=1}^{\infty}$ is a sequence in M converging to x, is the function we desired. But we need to check a few things, namely that 1. \widetilde{f} is well-defined, 2. $\widetilde{f}(x) = f(x)$ given $x \in E$, and lastly, 3. \widetilde{f} is continuous.
 - (a) Proof: \widetilde{f} is well-defined. Choose two sequences in M that converges to x, $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$. We want to show that

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = \widetilde{f}(x)$$

.

Consider the sequence (x_1,y_1,x_2,y_2,\dots) . We claim that since the two sequences forming it are convergent hence Cauchy, the new sequence is also Cauchy. If so, then the sequence $(f(x_1),f(y_1),f(x_2),f(y_2),\dots)$ is also Cauchy since f preserves Cauchy sequences. Since N is complete, then $(f(x_1),f(y_1),f(x_2),f(y_2),\dots)$ converges to some value in N. Then its subsequences, $(f(x_n))_{n=1}^{\infty}$ and $(f(x_n))_{n=1}^{\infty}$ must both converge to the same value, which is $\widetilde{f}(x)$ by definition, which gives us $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \widetilde{f}(x)$ as desired. This shows that \widetilde{f} is well-defined.

Now we will fill in the proof for the claim that $(x_1, y_1, x_2, y_2, ...)$ is Cauchy. Since $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ are both convergent, then given any $\epsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that

$$\forall n > N_1, \rho(x_n, x) < \frac{\epsilon}{2}$$

and

$$\forall n > N_2, \rho(y_n, x) < \frac{\epsilon}{2}$$

.

Therefore, letting $N = \max\{N_1, N_2\}$, given any $\epsilon > 0$, given p, q > N, we note that

$$\rho(x_p, y_q) \le \rho(x_p, x) + \rho(x, y_q) < \frac{\epsilon}{2}$$

$$\rho(x_p, x_q) \le \rho(x_p, x) + \rho(x, x_q) < \frac{\epsilon}{2}$$

$$\rho(y_p, y_q) \le \rho(y_p, x) + \rho(x, y_q) < \frac{\epsilon}{2}$$

which shows that any two terms from x_N onwards is at most ϵ apart with each other, hence $x_1, y_1, x_2, y_2, \ldots$ is Cauchy.

(b) Proof: $\widetilde{f}(x) = f(x)$ for all $x \in E$

Using well-definedness we shown above, it is sufficient to examine any sequence in \overline{E} that converges to x. Namely, the sequence (x, x, \ldots) is such a convergent sequence, and thus,

$$\forall x \in E, \widetilde{f}(x) = \lim_{n \to \infty} f(x) = f(x)$$

.

(c) Proof: \widetilde{f} is continuous.

We prove this by contradiction. Suppose \widetilde{f} is not continuous at $a \in \overline{E}$. Then $\exists \epsilon > 0$ such that $\forall \delta > 0, \rho(x, a) < \delta \implies \tau(\widetilde{f}(x), \widetilde{f}(a)) \geq \epsilon$.

For that given ϵ , we choose the sequence $(x_n)_{n=1}^{\infty}$ from E such that

$$\rho(x_k, a) < \frac{1}{k}$$

. We claim that $(x_n)_{n=1}^{\infty}$ converges to a. To show that, let $\epsilon' > 0$ be given. Then we can choose N such that $\frac{1}{N} < \epsilon'$, thus for any $n \geq N$,

$$\rho(x_n, a) < \frac{1}{n} \le \frac{1}{N} < \epsilon'$$

, which shows that $(x_n)_{n=1}^{\infty}$ converges to a.

Therefore $(x_n)_{n=1}^{\infty}$ is also Cauchy. The image of this sequence under f, $(f(x_n))_{n=1}^{\infty}$ is Cauchy since f preserves Cauchy sequences. Then under completeness of $\langle N, \tau \rangle$, $(f(x_n))_{n=1}^{\infty}$ converges to $\widetilde{f}(a)$. However, by definition of convergence of sequences, this implies that for any $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n > N$,

$$\tau(f(x_n), \widetilde{f}(a)) = \tau(\widetilde{f}(x_n), \widetilde{f}(a)) < \epsilon$$

, a contradiction. Therefore \widetilde{f} is continuous.