Контрольное домашнее задание № 1.6

Рассматривается множество проектов $\mathbf{X} = \left\{ \mathbf{x}^i, i = \overline{1, N} \right\}$ информационной системы. Каждый проект $\mathbf{x}^i \in \mathbf{X}$ оценивается векторным показателем эффективности $\mathbf{F}(\mathbf{x}^i) = \left\lceil f_1(\mathbf{x}^i), f_2(\mathbf{x}^i) \right\rceil^T$, компоненты которого требуется максимизировать.

Множество достижимых векторных оценок ${f F}({f X})$ определяется системой ограничений:

$$\begin{cases}
\frac{f_1^2}{4n^2} + \frac{(f_2 - n)^2}{n_2} \le 1, \\
-f_1 + f_2 \le n, \\
f_1 + f_2 \ge 2n.
\end{cases} \tag{1}$$

Требуется определить оптимальный по Парето проект $\mathbf{x}^* \in \mathbf{X}$, используя следующие методы.

- 1. Метод обобщенной функции. В качестве обобщенной функции использовать линейую свертку. Решить задачу для вариантов:
- a) $\mu_1 = 0.2$; $\mu_2 = 0.8$;
- b) $\mu_1 = 0.3$; $\mu_2 = 0.7$;
- c) $\mu_1 = 0.7$; $\mu_2 = 0.3$.
- 2. Метод обобщенной функции. В качестве обобщенной функции использовать функцию Гермейера.
- 3. Метод главного критерия (пороговой оптимизации). Решить задачу для вариантов:
 - а) f_1 главный критерий; $\gamma_2 = 1.8n$;
 - b) f_2 главный критерий; $\gamma_1 = 1.4n$.
 - 4. Метод «идеальной точки».

Для формирования исходных данных сгенерировать случайным образом в пространстве критериев (f_1, f_2) N = 500 точек, равномерно распределенных на множестве достижимых векторных оценок $\mathbf{F}(\mathbf{X})$, заданном системой ограниченийнеравенств (1).

B(1) n - номер варианта (совпадает с номером исполнителя по списку). Разработать программное обеспечение решения поставленной задачи в среде Python.