Part 5

IPDFA Using Value Contexts

Consider call chains σ_1 and σ_2 reaching S_p

Data flow value invariant:

If the data flow reaching S_p along σ_1 and σ_2 are identical, then

IIT Bombay

68/98

CS 618

Value Contexts: Key Ideas

Consider call chains σ_1 and σ_2 reaching S_p

- Data flow value invariant:
- If the data flow reaching S_p along σ_1 and σ_2 are identical, then
 - the data flow values reaching E_p for the two contexts will also be identical

IIT Bombay

68/98

CS 618

Consider call chains σ_1 and σ_2 reaching S_p

- Data flow value invariant:
 - If the data flow reaching S_p along σ_1 and σ_2 are identical, then
 - the data flow values reaching E_p for the two contexts will also be identical
- We can reduce the amount of effort by using
 - \triangleright Data flow values at S_p as value contexts
 - Maintaining distinct data flow values in p for each value context

The state of the s

- A value context is defined by a particular input data flow value reaching a procedure
- It is used to enumerate the summary flow functions in terms of (input → output) pairs
- In order to compute these pairs, data flow analysis within a procedure is performed separately for each context (i.e. input data flow value)
 When a new call to a procedure is encounterd, the pairs are consulted do
 - decide if the procedure needs to be analysed again
 - If it was already analysed once for the input value, output can be directly processed
 - Otherwise, a new context is created and the procedure is analysed for this new context

Understanding Value Contexts

CS 618

CS 618 Interprocedural DFA: IPDFA Using Value Contexts

Understanding Value Contexts

maintained for each context
(i.e. each procedure is analysed separately for each context)

Understanding Value Contexts

*S*5

Ci

70/98

Oct 2017 **IIT Bombay**

Understanding Value Contexts

Oct 2017

CS 618

IIT Bombay

• The set of value contexts is $VC = Procs \times L$

A value context $X = \langle proc, entryValue \rangle \in VC$ where $proc \in Procs$ and $entryValue \in L$

Defining Value Contexts

- The set of value contexts is VC = Procs × L
 - A value context $X = \langle proc, entry Value \rangle \in VC$ where $proc \in Procs$ and $entryValue \in L$
 - Supporting functions (CS is the set of call sites)
 - \triangleright exitValue: $VC \mapsto I$
 - ▶ transitions : $(VC \times CS) \mapsto VC$

Defining Value Contexts

- The set of value contexts is VC = Procs × L
 - A value context $X = \langle proc, entry Value \rangle \in VC$ where $proc \in Procs$ and $entryValue \in L$
 - Supporting functions (CS is the set of call sites)
 - ightharpoonup exitValue: $VC \mapsto I$

▶ transitions : $(VC \times CS) \mapsto VC$

eg. exitValue(X) = veg. $X \stackrel{C_i}{\rightarrow} Y$

IIT Bomb

Interprocedural Data Flow Analysis Using Value Contexts

- The method works with a collection of control flow graphs
 - No need of supergraph
 - ▶ No need to distinguish between C_i and R_i
 - ▶ No need of call $(C_i \rightarrow S_p)$ and return $(E_p \rightarrow E_i)$ edges Maintain a work list WL of entries (context, node)
- (in reverse post order of nodes within a procedure for forward flows)
- Notation:

$\langle p, v \rangle$	Context for procedure p with data flow value v
X m	Work list entry for context X for node m
X.v	Data flow value in context X is v
$Out_m[X]$	Data flow value of context X in Out_m
$X \stackrel{C_i}{\rightarrow} Y$	Transition from context X to context Y at call site C_i

• Select X|n from WL. Compute In_n .

CS 618

T Bombay

73/98

Oct 2017 IIT Bombay

CS 618

- - ▶ If $n = E_p$
 - ► If *n* is some other node

Select X|n from WL. Compute Inn.

▶ If $n = C_i$ calling procedure p

CS 618

- Select X|n from WL. Compute In_n .
 - ▶ If $n = C_i$ calling procedure pPropagate In_n to appropriate value context of the callee procedure p
 - ▶ If $n = E_p$
 - ▶ If *n* is some other node

- Select X|n from WL. Compute In_n .
 - ▶ If $n = C_i$ calling procedure p
 - ▶ If $n = E_p$ Propagate ln_n to appropriate value contexts of the callers of p

Interprocedural DFA: IPDFA Using Value Contexts

▶ If *n* is some other node

▶ If $n = E_p$

Interprocedural DFA: IPDFA Using Value Contexts

▶ If *n* is some other node

Select X|n from WL. Compute Inn.

▶ If $n = C_i$ calling procedure p

Compute Out_n

73/98

CS 618

Interprocedural DFA: IPDFA Using Value Contexts

► If *n* is some other node

Select X|n from WL. Compute Inn.

▶ If $n = E_p$

Update WL

▶ If $n = C_i$ calling procedure p

CS 618

Oct 2017 IIT Bombay

- Select X|n from WL. Compute In_n .
 - ▶ If $n = C_i$ calling procedure pPropagate In_p to appropriate value context of the callee procedure p
 - ▶ If $n = E_p$ Propagate In_n to appropriate value contexts of the callers of p
 - ► If *n* is some other node Compute *Out*_n

Update WL

CS 618

Update WL Repeat until WL is empty

Propagate In_n to appropriate value context of the callee procedure p

 \blacktriangleright If $n = E_p$ Propagate In_n to appropriate value contexts of the callers of p

An Overview

▶ If *n* is some other node Compute Out_n

Select X|n from WL. Compute Inn.

▶ If $n = C_i$ calling procedure p

Oct 2017 IIT Bomb

Select X|n from WL. Compute In_n . Let X.v be in In_n

CS 618

5

IIT Bomba

74/98

Oct 2017

Interprocedural Data Flow Analysis Using Value Contexts (2)

Select X|n from WL. Compute In_n . Let X.v be in In_n

• If $n = C_i$ calling procedure p

CS 618

IIT Bombay

74/98

Oct 2017

- Select X|n from WL. Compute In_n . Let X.v be in In_n
 - If $n = C_i$ calling procedure p• If some context $\langle p, v \rangle$ exists (say Y)

 - If it does not exist

IIT Bomb

/* p is the callee */

74/98

CS 618

Interprocedural Data Flow Analysis Using Value Contexts (2)

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p
 - ▶ If some context $\langle p, v \rangle$ exists (say Y) /* p is the callee */
 - record the transition $X \stackrel{C_i}{\rightarrow} Y$
 - $Out_{C_i}[X] = Out_{C_i}[X] \sqcap exitValue(Y)$
 - o if there is a change, add X|m, $\forall m \in succ(C_i)$ to WL
 - If it does not exist.

IIT Bom

Interprocedural Data Flow Analysis Using Value Contexts (2)

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p

- ▶ If it does not exist
- create a new context $Y = \langle p, v \rangle$
 - initialize $exitValue(Y) = \top$
 - record the transition $X \stackrel{C_i}{\rightarrow} Y$
 - o initialize $Out_m[Y] = T$ for all nodes m of procedure p
 - o add entries Y|m for all nodes m of procedure p to WL

/* p is the callee */

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p
 - ▶ If some context $\langle p, v \rangle$ exists (say Y) /* p is the callee */
 - record the transition $X \stackrel{C_i}{\rightarrow} Y$
 - $Out_{C_i}[X] = Out_{C_i}[X] \sqcap exitValue(Y)$
 - if there is a change, add X|m, $\forall m \in succ(C_i)$ to WLIf it does not exist.
 - create a new context $Y = \langle p, v \rangle$ /* p is the callee */
 - initialize $exitValue(Y) = \top$ • record the transition $X \stackrel{C_i}{\rightarrow} Y$

 - initialize $Out_m[Y] = \top$ for all nodes m of procedure p
 - o add entries Y m for all nodes m of procedure p to WL

Interprocedural DFA: IPDFA Using Value Contexts

Select X|n from WL. Compute In_n . Let X.v be in In_n

75/98

CS 618

Interprocedural DFA: IPDFA Using Value Contexts

Select X|n from WL. Compute In_n . Let X.v be in In_n • If $n = E_p$

CS 618

For all other nodes

IIT Bombay

 $/* E_p$ is an empty block */

CS 618

Interprocedural DFA: IPDFA Using Value Contexts

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = E_p$

 - Set exitValue(X) = v

For all other nodes

IIT Bomb

/* E_p is an empty block */

75/98

CS 618

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = E_n$
 - ▶ Set exitValue(X) = v
 - ▶ Find out all transitions $Z \stackrel{C_i}{\rightarrow} X$
 - Set $Out_{C_i}[Z] = Out_{C_i}[Z] \sqcap v$
 - If there is a change, add Z|m, $\forall m \in succ(C_i)$ to WL

Interprocedural DFA: IPDFA Using Value Contexts

Interprocedural Data Flow Analysis Using Value Contexts (3)

For all other nodes

Interprocedural DFA: IPDFA Using Value Contexts

CS 618

Select X|n from WL. Compute In_n . Let X.v be in In_n • If $n = E_p$

For all other nodes

$$\blacktriangleright \mathsf{Set} \; Out_n[X] = f_n(v)$$

IIT Bomb

/* E_p is an empty block */

75/98

CS 618

- Select X|n from WL. Compute In_n . Let X.v be in In_n • If $n = E_n$
 - _
 - Set exitValue(X) = v
 - Find out all transitions $Z \stackrel{C_i}{\rightarrow} X$
 - Set $Out_{C_j}[Z] = Out_{C_j}[Z] \sqcap v$ ○ If there is a change, add $Z|m, \forall m \in succ(C_i)$ to WL
 - For all other nodes

 - Set Out_n[X] = f_n(v)
 If there is a change, add X|m, ∀m ∈ succ(n) to WL

IIT Bombay

IIT Bombay

IIT Bombay

CS 618

. , , , ,

IIT Bombay

Available Expressions Analysis Using Value Contexts

Create a new context X_0 with BI which is 0 for available expressions analysis

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|S_m, X_0|C_1, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1

Create a new context X_0 with BI which is 0 for available expressions analysis Initialize $exitValue(X_0)$ to $\top = 1$ Initialize the work list with all nodes in procedure main for X_0 Initialize $Out_n[X_0]$ for all n in main to \top

 $X_{0}.0$

 E_{main}

 $C_1 \mid \text{call } p \mid$

print a * b

77/98

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|S_m, X_0|C_1, X_0|n_1, X_0|E_m]$$

 E_p

 $n_3 \mid t = a * b$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1

Compute the data flow values for S_m for context X_0

 $X_{0}.0$

 $X_0.1$

 E_{main}

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|C_1, X_0|n_1, X_0|E_m]$$

read a, \overline{b} t := a * b

call p

print a * b

 E_p

 $n_3 \mid t = a * b$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1

Compute the data flow values for S_m for context X_0

It does not change

$$WL = [X_0 | C_1, X_0 | n_1, X_0 | E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1

Oct 2017 **IIT Bombay**

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|S_p, X_1|n_2, X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

Create a new context X_1 with entry value 1

Record the transition to X_1 Initialize $exitValue(X_1)$ to $\top = 1$ Add all nodes of procedure p to the

work list for X_1

Initialize $Out_n[X_1]$ for all n in p to \top

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|S_p, X_1|n_2, X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

Oct 2017 IIT Bombay

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|n_2, X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

CS 618

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|n_2, X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

Oct 2017 **IIT Bombay**

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|n_2, X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
•	

Oct 2017

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

Oct 2017 IIT Bombay

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1

$$WL = [X_1|C_2, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

Since there is no context for p with value 0, create context X_2 Record the transition to X_2 Initialize $exitValue(X_2)$ to $\top=1$ Add all nodes of procedure p to the work list for X_2 Initialize $Out_n[X_2]$ for all p in p to \top

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|S_p, X_2|n_2, X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

Oct 2017 IIT Bombay

$$WL = [X_2|S_p, X_2|n_2, X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

IIT Bombay

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|n_2, X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

CS 618

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

Oct 2017 **IIT Bombay** **CS 618**

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|n_2, X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

IIT Bombay

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

IIT Bombay

$$WL = [X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

p has context X_2 with value 0 so no need to create a new context

$$WL = [X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

p has context X_2 with value 0 so no need to create a new context Record the transition from con-

text X_2 to itself

$$WL = [X_2|C_2, X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

p has context X_2 with value 0 so no need to create a new context Record the transition from context X_2 to itself

Use the $exitValue(X_2)$ to compute

 $Out_{C_2}[X_2]$

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

$$WL = [X_2|n_3, X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

Available Expressions Analysis Using Value Contexts

$$WL = [X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p,0 \rangle$	1

$$WL = [X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	1

At E_p the values from S_p and n_3 are merged for context X_2

$$WL = [X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

At E_p the values from S_p and n_3 are merged for context X_2 $exitValue(X_2)$ is set to 0

$$WL = [X_2|E_p, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

are merged for context X_2 $exitValue(X_2)$ is set to 0 Since X_2 has transitions $X_1 \stackrel{C_2}{\rightarrow} X_2$ and $X_2 \stackrel{C_2}{\rightarrow} X_2$, $Out_{C_2}[X_1]$ and $Out_{C_2}[X_2]$ become 0

At E_p the values from S_p and n_3

$$WL = [X_2|n_3, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

E

 $X_{2}.0$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

are merged for context X_2 $exitValue(X_2)$ is set to 0 Since X_2 has transitions $X_1 \stackrel{C_2}{\to} X_2$ and $X_2 \stackrel{C_2}{\to} X_2$, $Out_{C_2}[X_1]$ and $Out_{C_2}[X_2]$ become 0

Since $Out_{C_2}[X_2]$ changes, $X_2|n_3$ is

added to the work list

At E_p the values from S_p and n_3

 E_{main}

Available Expressions Analysis Using Value Contexts

 $X_{2}.0$

 $X_{2}.1$

$$WL = [X_2|n_3, X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

 $X_2.0$

 E_p $X_{2}.0$ $X_{1}.0$

 $n_3 \mid t = a * b$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p,0 \rangle$	0

There is no change in $Out_{n_2}[X_2]$

(because it was initialized to \top)

Oct 2017

 E_{main}

print a * b

Available Expressions Analysis Using Value Contexts

 $X_{2}.0$

 $X_{2}.1$

$$WL = [X_1|n_3, X_1|E_\rho, X_0|n_1, X_0|E_m]$$

print a * b

 $X_2.0$

 E_p $X_{2}.0$ $X_{1}.0$

 $n_3 \mid t = a * b$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

There is no change in $Out_{n_2}[X_2]$ (because it was initialized to \top)

IIT Bombay

 E_{main}

 E_{main}

Oct 2017

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|n_3, X_1|E_p, X_0|n_1, X_0|E_m]$$

 $X_2.0$

 E_p $X_{2}.0$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

There is no change in $Out_{n_3}[X_1]$ either

IIT Bombay

 $X_2.1$

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|E_p, X_0|n_1, X_0|E_m]$$

 $X_{2}.0$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

There is no change in $Out_{n_3}[X_1]$ either

IIT Bombay

$$WL = [X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

At E_p the values from S_p and n_3 are merged for context X_1

IIT Bombay

Available Expressions Analysis Using Value Contexts

$$WL = [X_1|E_p, X_0|n_1, X_0|E_m]$$

 $X_{2}.0$

 $X_{1}.1$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

At E_p the values from S_p and n_3 are merged for context X_1 $exitValue(X_1)$ remains 1

Oct 2017

$$WL = [X_1|E_p, X_0|n_1, X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

At E_p the values from S_p and n_3 are merged for context X_1 $exitValue(X_1)$ remains 1 Since X_1 has transition $X_0 \stackrel{C_1}{\to} X_1$.

 $Out_{C_1}[X_0]$ becomes 1

IIT Bombay

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|n_1, X_0|E_m]$$

CS 618

 $X_{2}.0$

 $X_{1}.1$

exitValue
1
1
0

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|n_1, X_0|E_m]$$

CS 618

 $X_{2}.0$

 $X_{1}.1$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0
•	

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|E_m]$$

CS 618

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

CS 618

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|E_m]$$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$	0

Available Expressions Analysis Using Value Contexts

$$WL = [X_0|E_m]$$

ContextexitValue $X_0 = \langle main, 0 \rangle$ 1 $X_1 = \langle p, 1 \rangle$ 1		
$X_1 = \langle p, 1 \rangle$ 1	Context	exitValue
(1 / /	$X_0 = \langle main, 0 \rangle$	1
V / 0\ 0	$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p, 0 \rangle$ 0	$X_2 = \langle p, 0 \rangle$	0

CS 618

Available Expressions Analysis Using Value Contexts

 $X_{2}.0$

 $X_{2}.0$

 $X_{2}.1$

call p

 $n_3 \mid t = a * b$

 $X_{1}.1$

 $X_{1}.1$

 $X_2.0$

 E_p

 $X_{2}.0$

 $X_{1}.0$

 $X_{1}.0$

Context	exitValue
$X_0 = \langle main, 0 \rangle$	1
$X_1 = \langle p, 1 \rangle$	1
$X_2 = \langle p,0 \rangle$	0

Work list is empty and the analysis is over

Vork list is nalysis is ove

Oct 2017

 C_1

 $X_{0}.1$

 $X_{0}.1$

 E_{main}

 $X_{0}.1$

call p

 $n_1 \mid \text{print } a * b$

CS 618

A Trace of Value Context Based Analysis (1) Addition

	S. No.	Work List	Sel. node	Data flow value	New context	New trans.	exit value	to the work list
	1				$X_0 = \langle m, 0 \rangle$		X ₀ .1	$X_0 S_m, X_0 C_1, X_0 n_1, X_0 E_m$
	2	$X_0 S_m, X_0 C_1, X_0 n_1, X_0 E_m$	S _m	$Out_{S_m}[X_0] = 1$				
-	3	$X_0 C_1, X_0 n_1, X_0 E_m$	C ₁		$X_1 = \langle p, 1 \rangle$	$X_0 \stackrel{C_1}{\rightarrow} X_1$	X ₁ .1	$X_1 S_p, X_1 n_2,$ $X_1 C_2, X_1 n_3,$ $X_1 E_p$
	4	$X_1 S_p, X_1 n_2, X_1 C_2,$ $X_1 n_3, X_1 E_p, X_0 n_1,$ $X_0 E_m$	S_p	$Out_{S_p}[X_1] = 1$				
	5	$X_1 n_2, X_1 C_2, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	<i>n</i> ₂	$Out_{n_2}[X_1]=0$				
	6	$X_1 C_2, X_1 n_3, X_1 E_\rho, X_0 n_1, X_0 E_m$	<i>C</i> ₂		$X_2 = \langle p, 0 \rangle$	$X_1 \stackrel{C_2}{\rightarrow} X_2$	X ₂ .1	$X_2 S_p, X_2 n_2,$ $X_2 C_2, X_2 n_3,$ $X_2 E_p$
	7	$X_2 S_p, X_2 n_2, X_2 C_2,$ $X_2 n_3, X_2 E_p, X_1 n_3,$ $X_1 E_p, X_0 n_1, X_0 E_m$	S_p	$Out_{S_p}[X_2]=0$				
								5.700

A Trace of Value Context Based Analysis (2)

S. No.	Work List	Sel. node	Data flow value	New context	New trans.	exit value	Addition to the work list
8	$X_2 n_2, X_2 C_2, X_2 n_3, X_2 E_p, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	<i>n</i> ₂	$Out_{n_2}[X_2]=0$				
9	$X_2 C_2, X_2 n_3, X_2 E_p, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	C_2	$Out_{C_2}[X_2]=1$		$X_2 \stackrel{C_2}{\rightarrow} X_2$		
10	$X_2 n_3, X_2 E_p, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	<i>n</i> ₃	$Out_{n_3}[X_2]=1$				
11	$X_2 E_p, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	Ep	$Out_{E_p}[X_2] = 0$ $Out_{C_2}[X_2] = 0$ $Out_{C_2}[X_1] = 0$			X ₂ .0	$X_2 n_3$
12	$X_2 n_3, X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	<i>n</i> ₃	No change				
13	$X_1 n_3, X_1 E_p, X_0 n_1, X_0 E_m$	n ₃	$Out_{n_3}[X_1]=1$				
14	$X_1 E_p, X_0 n_1, X_0 E_m$	Ep	$Out_{E_p}[X_1] = 1$ $Out_{C_1}[X_0] = 1$			X ₁ .1	
15	$X_0 n_1,X_0 E_m$	n_1	$Out_{n_1}[X_0] = 1$				
16	$X_0 E_m$	Em	$Out_{E_m}[X_0] = 1$				

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p
 - ▶ If some context $\langle p, v \rangle$ exists (say Y)
 - record the transition $X \stackrel{C_i}{\rightarrow} Y$
 - $Out_{C_i}[X] = Out_{C_i}[X] \sqcap exitValue(Y)$
 - o if there is a change, add X|m, $\forall m \in succ(C_i)$ to WL

/* p is the callee */

80/98

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p
 - ▶ If some context $\langle p, v \rangle$ exists (say Y)
 - record the transition $X \stackrel{C_i}{\rightarrow} Y$
 - $\circ \ \ \textit{Out}_{\textit{C}_{i}}[X] = \boxed{\textit{Out}_{\textit{C}_{i}}[X] \ \ \sqcap \ } \textit{exitValue}(Y)$
 - if there is a change, add X|m, $\forall m \in succ(C_i)$ to WL

IIT Bombay

/* p is the callee */

80/98

Select X|n from WL. Compute In_n . Let X.v be in In_n

- If $n = C_i$ calling procedure p
 - - record the transition $X \stackrel{C_i}{\to} Y$
 - $\circ \quad Out_{C_i}[X] = \boxed{Out_{C_i}[X] \ \sqcap \ \text{exitValue}(Y)}$
 - ∘ if there is a change, add X|m, $\forall m \in succ(C_i)$ to WL

Analogy:

- ► At the intraprocedural level, we merge the values at the entry of a loop to compute the glb across all iterations of the loop
- ▶ At the interprocedural level, we want to compute the glb across repeated calls at the same call site (perhaps in a loop)

IIT Bombay

Partially Available Expressions Analysis Using Value Contexts

This example illustrates non-termination of analysis if the exitValue is not merged with the previous Out value

We assume that procedure main calls procedure p (and not q) and the expression a * b is partially available on entry to p

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0

We create context X_1 for entry value 1 with exitValue as $0 (\top \text{ for }$ partially available expressions analysis)

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0

81/98

Oct 2017

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle \rho, 1 \rangle$	0

Value 1 reaches q and a new context must be created for it

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0

81/98

We create context X_2 for value 1 reaching q and record a transition from X_1 to X_2 on C_2

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0

81/98

Oct 2017

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0

The expression is killed in node n_2 and data flow value 0 reaches the call site C_3 that calls p

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0

We create context X_3 for the new value (0) reaching p and record transition from X_2 to X_3 on C_3

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0

Oct 2017

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0

And now the value 0 reaches q at call site C_2

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

We create context X_4 for the new value (0) reaching p and record transition from X_3 to X_4 on C_2

81/98

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

And now the value 0 reaches p at call site C_3

IIT Bombay

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

We already have context X_3 with entry value 0 for p so no need to analyse p again

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

We use the exitValue for X_3 to compute Out_{C_3} for the context X_4 (because of the transition $X_4 \stackrel{C_3}{\rightarrow} X_3$)

The analysis of p is not yet over for any context, and so we get the \top value

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0
·-	

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	0

The analysis of q for X_4 is now and the *exitValue* of X_4 becomes 1 This change in X_4 must be propagated to X_3 in the caller p (identified from the transition $X_3 \stackrel{C_2}{\longrightarrow} X_4$)

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

The analysis of q for X_4 is now and the *exitValue* of X_4 becomes 1 This change in X_4 must be propagated to X_3 in the caller p (identified from the transition $X_3 \stackrel{C_2}{\longrightarrow} X_4$)

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

 Out_{C_2} becomes 1 for X_3 which changes the value at In_{n_2} for X_3 to 1

Partially Available Expressions Analysis Using Value Contexts

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1
•	

 Out_{C_2} becomes 1 for X_3 which changes the value at In_{n_2} for X_3 to 1

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

 In_{C_2} becomes 1 for X_3 Since we have a context for q with entry value 1 (X_2) , we remove the transition $X_3 \stackrel{C_2}{\rightarrow} X_4$ and add the transition $X_3 \stackrel{C_2}{\rightarrow} X_2$

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

 In_{C_2} becomes 1 for X_3 Since we have a context for q with entry value 1 (X_2) , we remove the transition $X_3 \stackrel{C_2}{\rightarrow} X_4$ and add the transition $X_3 \stackrel{C_2}{\rightarrow} X_2$

 $X_{4}.1$

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1
•	•

We use the exitValue of X_2 to compute the value of X_3 in Out_{C_3}

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

The value of X_3 in In_{n_2} once again becomes 0

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1

81/98

The value of X_3 in In_{C_3} once again becomes 0 The transition from X_3 needs to be restored to $X_3 \stackrel{C_2}{\to} X_4$ removing the transition $X_3 \stackrel{C_2}{\rightarrow} X_2$

exitValue
0
0
0
1

The value of X_3 in In_{C_3} once again becomes 0 The transition from X_3 needs to be restored to $X_3 \stackrel{C_2}{\to} X_4$ removing the transition $X_3 \stackrel{C_2}{\rightarrow} X_2$

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0
$X_2 = \langle q, 1 \rangle$	0
$X_3 = \langle p, 0 \rangle$	0
$X_4 = \langle q, 0 \rangle$	1
_	

81/98

 X_4 to compute Out_{C_2} for X_3 which once again becomes 0 Thus we are back to the

same situation

We use the exitValue of

Context	exitValue
$X_1 = \langle p, 1 \rangle$	0

- The process would not terminate so long as the processing of the nodes in the loop continues
- If the work list organization allows processing of E_p , then the exitValue of X_3 will also change to 1 which will lead to termination
- Our underlying flow functions are monotonic and a fixed point exists; non-termination is caused by the algorithm because its progress depends on the order of the nodes in the work list
- We avoid this problem by taking a meet at the exit of call nodes when the exit values of existing contexts are used at the call sites in the callers

 $X_{4}.1$

- The overall data flow values Γ are sets of X.v where X is a context and $v \in L$ is the underlying data flow value.
- We merge underlying data flow values only if the contexts are same

$$\Gamma_1 \uplus \Gamma_2 = \begin{cases}
X.w \mid X.u \in \Gamma_1 \land X.v \in \Gamma_2 \Rightarrow w = u \sqcap v, \\
X.u \in \Gamma_1 \land X.v \notin \Gamma_2 \Rightarrow w = u, \\
X.u \notin \Gamma_1 \land X.v \in \Gamma_2 \Rightarrow w = v
\end{cases}$$

Effectively, if a context does not exist in Γ , its value is \top in Γ

- Data flow variables for node n in procedure p are In(p, n) and Out(p, n)
- The flow function for node n in procedure p is f(p, n)

We assume the following auxiliary functions

- Function context maintains the context information context(p, v) returns the context of procedure p for entry value v If no such context exists, the function creates a new context and returns it
- If context X does not exist, the function returns $\top \in L$

Function exitValue(X) returns the exit value of context X

 Function gpred extends the predcessor relation pred (which is local to a procedure) to a global level across procedures

$$gpred(p, n) = \begin{cases} \{(q, m) \mid \text{ call site } m \text{ in } q \text{ calls } p\} & n \text{ is } S_p \\ \{(p, m) \mid m \in pred(n)\} & \text{otherwise} \end{cases}$$

84/98

otherwise

otherwise

We define data flow equations for a forward data flow analysis

CS 618

$$In(p,n) = \begin{cases} \left\{ X.v \mid X = context(p,v), Y.v \in In(q,m), & n \text{ is } S_p \\ (q,m) \in gpred(p,n) \right\} \\ \biguplus_{(p,m) \in gpred(p,n)} Out(p,m) & \text{otherwise} \end{cases}$$

 $Out(p, n) = \begin{cases} Out(p, n) \biguplus \left\{ X.v \mid X.v' \in In(p, m), & n \text{ calls } q \\ Y = context(q, v'), \\ v = exitValue(Y) \right\} \\ \left\{ X.v \mid X.v' \in In(p, m), v = f(p, n)(v') \right\} & \text{ otherwise} \end{cases}$

The role of value contexts in context sensitivity

- Value contexts preserve interprocedurally valid paths
- Value contexts consider only interprocedurally valid paths

We explain this with the help of an example by illustrating paths using a staircase diagram

Context Transition Table

Context	exitValue
X_0 : $\langle main, 0 \rangle$	1
$X_1: \langle p, 0 \rangle$	1
$X_2: \langle p,1\rangle$	1

Context Transition Graph

We explain the data flow value at the entry of C_2 by dividing the paths into the following two categories:

- A. Paths in which the innermost recursion is along the call at C_2 .
- B. Paths in which the innermost recursion is along the call at C_3 .

We draw the staircase diagrams of the example paths in the two categories

IIT Bombay

87/98

CS 618

88/98

CS 618

Oct 2017 IIT Bombay

 $S_m \rightarrow C_1$

Innermost Recursion Along the Call at C_2

88/98

$$S_{p} \longrightarrow C_{2} \longrightarrow n_{1} \longrightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{m} \longrightarrow C_{1} \longrightarrow E_{m}$$

Oct 2017

CS 618

Innermost Recursion Along the Call at C_2

CS 618

Innermost Recursion Along the Call at C_2

CS 618

Innermost Recursion Along the Call at C_2

CS 618

Blis 0

88/98

$$S_{p} \longrightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

CS 618

Blis 0

88/98

$$S_{p} \xrightarrow{} E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad$$

CS 618

 n_1 kills the liveness of aNew context is not required

$$S_{p} \xrightarrow{} E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

CS 618

 n_2 generates the liveness of a New context is required

CS 618

exitValue of X_1 is 0

$$(X_{1}.0) S_{p} \longrightarrow X_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \longrightarrow X_{2} \longrightarrow n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \longrightarrow X_{1} \longrightarrow n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{m} \longrightarrow C_{1} \longrightarrow X_{0} \longrightarrow E_{m}(X_{0}.0)$$

Oct 2017

CS 618

exitValue of X_2 is 0

$$(X_{1}.0) S_{p} \longrightarrow X_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{2}.0) S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow p_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \longrightarrow X_{1} \longrightarrow p_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow p_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{m} \longrightarrow C_{1} \longrightarrow X_{0} \longrightarrow E_{m}(X_{0}.0)$$

CS 618

exitValue of X_1 remains 0

CS 618

exitValue of X_1 remains 0

88/98

Oct 2017

CS 618

exitValue of X_0 is 0

$$(X_{1}.0) S_{p} \longrightarrow X_{1} \longrightarrow E_{p} (X_{1}.0)$$

$$(X_{2}.0) S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow P_{p} (X_{2}.1)$$

$$(X_{1}.0) S_{p} \longrightarrow C_{3} \longrightarrow X_{1} \longrightarrow P_{2} \longrightarrow E_{p} (X_{1}.0)$$

$$(X_{1}.0) S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow P_{1} \longrightarrow P_{p} (X_{1}.0)$$

$$(X_{0}.0) S_{m} \longrightarrow C_{1} \longrightarrow X_{0} \longrightarrow E_{m} (X_{0}.0)$$

Oct 2017

CS 618

IIT Bombay

Interprocedural DFA: IPDFA Using Value Contexts

For this example, the innermost call determines the exitValue of contexts

$$(X_{1}.0) S_{p} \longrightarrow X_{1} \longrightarrow E_{p} (X_{1}.0)$$

$$(X_{2}.0) S_{p} \longrightarrow C_{2} \longrightarrow X_{2} \longrightarrow n_{1} \longrightarrow E_{p} (X_{2}.1)$$

$$(X_{1}.0) S_{p} \longrightarrow C_{3} \longrightarrow X_{1} \longrightarrow n_{2} \longrightarrow E_{p} (X_{1}.0)$$

$$(X_{1}.0) S_{p} \longrightarrow C_{2} \longrightarrow X_{1} \longrightarrow n_{1} \longrightarrow E_{p} (X_{1}.0)$$

$$(X_{0}.0) S_{m} \longrightarrow C_{1} \longrightarrow X_{0} \longrightarrow E_{m} (X_{0}.0)$$

CS 618

Innermost Recursion Along the Call at C_3

Interprocedural DFA: IPDFA Using Value Contexts

89/98

 $S_m \rightarrow C_1 \longrightarrow E_m$

Oct 2017

CS 618

Innermost Recursion Along the Call at C_3

89/98

CS 618

 $S_{p} \rightarrow C_{2} \longrightarrow n_{1} \rightarrow E_{p}$ $\downarrow \qquad \qquad \downarrow$ $S_{m} \rightarrow C_{1} \longrightarrow E_{m}$

Innermost Recursion Along the Call at C_3

Interprocedural DFA: IPDFA Using Value Contexts

$$S_{p} \rightarrow C_{3} \qquad \qquad \qquad n_{2} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S_{p} \rightarrow C_{2} \qquad \qquad \qquad n_{1} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{m} \rightarrow C_{1} \qquad \qquad \downarrow$$

Oct 2017

CS 618

T Bombay

Innermost Recursion Along the Call at C_3

$$S_{p} \rightarrow C_{2} \qquad \qquad n_{1} \rightarrow E_{p}$$

$$S_{p} \rightarrow C_{3} \qquad \qquad n_{2} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

CS 618

$$S_{p} \rightarrow C_{3} \cdots \rightarrow n_{2} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S_{p} \rightarrow C_{2} \cdots \rightarrow n_{1} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{p} \rightarrow C_{3} \cdots \rightarrow n_{2} \rightarrow E_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad$$

CS 618

Interprocedural DFA: IPDFA Using Value Contexts

Blis 0

New context is not required

 n_1 kills the liveness of a

Oct 2017

n_1 kills the liveness of a

New context is not required

Innermost Recursion Along the Call at C_3

 n_2 generates the liveness of a New context is required

Oct 2017

Innermost Recursion Along the Call at C_3

 n_1 kills the liveness of a New context is not required

innermost recorded vilong the can at e₃

 n_2 generates the liveness of a New context is not required

$$S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{2} \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{1} \cdots X_{0} \cdots N_{1} \longrightarrow E_{m}(X_{0}.0)$$

Oct 2017

exitValue of X_2 is 1 (after merging with previous value 0)

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots X_{2} \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots \cdots X_{1} \cdots \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots X_{1} \cdots \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots X_{1} \cdots \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{m} \longrightarrow C_{1} \cdots \cdots X_{0} \cdots \cdots X_{0} \cdots \cdots X_{0} \cdots \cdots X_{0}$$

Oct 2017

CS 618

exitValue of X_1 is 1 (after merging with previous value 0)

89/98

IIT Bombay

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots X_{2} \cdots \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots \cdots X_{1} \cdots \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots \cdots X_{1} \cdots \cdots \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots \cdots \cdots \cdots \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots \cdots \cdots \cdots \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots \cdots \cdots \cdots \cdots \cdots \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

Oct 2017

 X_2 remains 1

exitValue of

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{2}.1) S_{p} \longrightarrow C_{2} \cdots X_{2} \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots X_{1} \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

Oct 2017

CS 618

exitValue of X_1 remains 1

Oct 2017

CS 618

exitValue of X_1 remains 1 89/98

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{2}.1) S_{p} \longrightarrow C_{2} \cdots X_{2} \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots x_{1} \cdots x_{1} \longrightarrow C_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots x_{1} \cdots x_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$X_{1} \longrightarrow X_{1} \cdots X_{1} \cdots X_{1} \cdots X_{1} \cdots X_{1} \cdots x_{1} \longrightarrow E_{p}(X_{1}.0)$$

exitValue of X_0 is 1 (after merging with previous value 0)

IIT Bombay

89/98

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{2}.1) S_{p} \longrightarrow C_{2} \cdots X_{2} \cdots n_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots n_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots n_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

 $(X_0.1)S_m \longrightarrow \stackrel{\downarrow}{C_1} \longrightarrow E_m(X_0.0)$

Oct 2017

Again, the innermost call determines the exitValue of contexts The final values at the entry of C_3 are 1 (union of 1 and 0)

$$(X_{2}.1) S_{p} \longrightarrow X_{2} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots N_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{2}.1) S_{p} \longrightarrow C_{2} \cdots X_{2} \cdots N_{1} \longrightarrow E_{p}(X_{2}.1)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{3} \cdots X_{1} \cdots N_{2} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{1}.1) S_{p} \longrightarrow C_{2} \cdots X_{1} \cdots N_{1} \longrightarrow E_{p}(X_{1}.0)$$

$$(X_{0}.1) S_{m} \longrightarrow C_{1} \cdots X_{0} \cdots N_{1} \longrightarrow E_{m}(X_{0}.0)$$

Oct 2017

Tutorial Problem #1 for Value Contexts

CS 618

1. int a,b,c;

2. void main() c = a*b;

4. p();

5.}

8.

11. 12. }

6. void p()

7. { if (...)

{ p();

a = a*b;

9. 10.

Is a*b available?

 E_{main}

 S_{main}

 C_1

 S_p

 E_p

IIT Bombay

rutorial Problem #2 for Value Contexts

Interprocedural DFA: IPDFA Using Value Contexts

Perform interprocedural live variables analysis using value contexts

Observe the change in edges in the transition diagram

91/98

92/98

"

CS 618

Perform interprocedural available expressions analysis using value contexts

```
main()
{
    c = a*b;
    p();
}

main()
{
    while (a > b)
    {
        p();
        a = a*b;
    }
}
```

Observe the change in edges in the transition diagram

Oct 2017 IIT Bombay

Perform interprocedural available expressions analysis using value contexts

```
7. p()
                   8. { if (...)
                   9. \{ a = a*b; \}
                   10.
                            p();
   main()
                   11.
                   12. else if (...)
3. c = a*b;
                   13. \{c = a * b;
4. p();
                   14.
                        p();
     a = a*b;
                   15.
                            c = a;
                   16.
                   17.
                         else
                   18.
                              ; /* ignore */
                   19. }
```

IIT Bombay

main()

CS 618

Tutorial Problem #5 for Value Contexts

Interprocedural DFA: IPDFA Using Value Contexts

Perform interprocedural live variables analysis using value contexts

```
a = 5; b = 3;
c = 7; d = 2;
                        b = 2;
                        if (b < d)
p();
                                                a = 1;
a = a + 2;
                           c = a+b;
                                                p();
e = c+d;
                        else
                                                a = a*b;
d = a*b;
                           q();
q();
                        print c+d;
print a+c+e;
```

Context sensitivity: e is live on entry to p but not before its call in main

IIT Bomba

CS 618

```
a = 5; b = 3;
                      p()
c = 7; d = 2;
                      \{ /*\{a,d,e\}*/
/*{a,d}*/
                        b = 2:
p();
                        if (b < d)
/*{a,b,c,d}*/
                          /*{a,b,d,e}*/
a = a + 2:
                           c = a+b:
e = c+d;
                        else
/*{a,b,e}*/
                          /*{d,e}*/
d = a*b;
                           q();
/*{d,e}*/
                        /*{a,b,c,d,e}*/
q();
                        print c+d;
/*{a,c,e}*/
print a+c+e;
```

```
q()
  /*{d,e}*/
  a = 1;
  /*{a,d,e}*/
  p();
  /*{a,b,c,d,e}*/
  a = a*b;
```

95/98

Oct 2017

main()

CS 618

```
{    x = &y;
    z = &x;
    y = &z;
    p(); /* C1 */
}

p()
{    if (...)
    {      p(); /* C2 */
        x = *x;
}
```

Value contexts method requires three contexts as shown below in the transition diagram

IIT Bombay

Reaching Definitions Analysis in GCC 4.0

Program	LoC	# <i>F</i>	#C	3K length bound			Proposed Approach			
				K	#CS	Max	Time	#CS	Max	Time
hanoi	33	2	4	4	100000+	99922	3973×10^{3}	8	7	2.37
bit_gray	53	5	11	7	100000+	31374	2705×10^{3}	17	6	3.83
analyzer	288	14	20	2	21	4	20.33	21	4	1.39
distray	331	9	21	6	96	28	322.41	22	4	1.11
mason	350	9	13	8	100000+	22143	432×10^{3}	14	4	0.43
fourinarow	676	17	45	5	510	158	397.76	46	7	1.86
sim	1146	13	45	8	100000+	33546	1427×10^{3}	211	105	234.16
181_mcf	1299	17	24	6	32789	32767	484×10^{3}	41	11	5.15
256_bzip2	3320	63	198	7	492	63	258.33	406	34	200.19

- LoC is the number of lines of code,
- #F is the number of procedures,
- #C is the number of call sites,
- #CS is the number of call strings
- Max denotes the maximum number of call strings reaching any node.
- Analysis time is in milliseconds.

(Implementation was carried out by Seema Ravandale.)

Oct 2017 **IIT Bomba**

- Compromising on precision may not be necessary for efficiency.
- Separating the necessary information from redundant information is much more significant.
- Data flow propagation in real programs seems to involve only a small subset of all possible values.
 - Much fewer changes than the theoretically possible worst case number of changes.
- A precise modelling of the process of analysis is often an eye opener.

Some Observations

- Compromising on precision may not be necessary for efficiency.
- Separating the necessary information from redundant information is much more significant.
- Data flow propagation in real programs seems to involve only a small subset of all possible values.
 - Much fewer changes than the theoretically possible worst case number of changes.
- A precise modelling of the process of analysis is often an eye opener.

```
# distinct tagged values =

Min (# actual contexts, # actual data flow values)
```