Vector Field Mid Review

Yifan Li

November 2023

1 Coordinate

There are three commonly used coordinates: rectangular (Cartesian), cylindrical, and spherical coordinates. You need to know their conversions.

Proposition 1.1. Conversion of coordinates

Conversion	Formulae		
$(r,\theta,z) \to (x,y,z)$	$x = r \cos \theta$	$y = r \sin t het a$	z = z
$(x,y,z) \to (r,\theta,z)$	$r = \sqrt{x^2 + y^2}$	$\tan \theta = y/x$	z = z
$(\rho, \phi, \theta) \to (r, \theta, z)$	$r = \rho \sin \theta$	$\theta = \theta$	$z = \rho \cos \phi$
$(r, \theta, z) \to (\rho, \phi, \theta)$	$\rho = \sqrt{r^2 + z^2}$	$\tan \phi = r/z$	$\theta = \theta$
$(\rho, \phi, \theta) \to (x, y, z)$	$x = \rho \sin \phi \cos \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
$(x,y,z) \to (\rho,\phi,\theta)$	$\rho = \sqrt{x^2 + y^2 + z^2}$	$\cos\phi = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$	$\tan \theta = \frac{y}{x}$

There is another thing that is important for the conversion of coordinates. When we integrate along a curve, we may need to know the "element" of arc length, ds. In addition, we also need to consider the "element" of the area of a surface or that of volume. Thanks to Renjing and Prof. Andrew, they brought me a fabulous way to think about the element, div and curl.

Consider the conversion of coordinate $(x^1, \ldots, x^n) \to (u^1, \ldots, u^n)$. Then the position can be written as

$$\vec{r}(u^1, \ldots, u^n) = x^1 \hat{e}_{x^1} + \ldots + x^n \hat{e}_{x^n}$$

Take the differentiation, we get

$$d\vec{r}(u^1, \ldots, u^n) = \sum_{i=1}^n \frac{\partial \vec{r}}{\partial u^i} du^i.$$

We hope that $\{\frac{\partial \vec{r}}{\partial u^i}\}$ forms a basis. To check whether the new coordinate system (u^1, \ldots, u^n) is acceptable (the vectors above is a basis), we need to check the determinant

$$\left| \frac{\partial \vec{r}}{\partial u^1} \quad \dots \quad \frac{\partial \vec{r}}{\partial u^n} \right|$$

If the determinant is not 0, then the conversion is bijective. The determinant above is called Jacobian, denoted by

$$J(u^1, \dots, u^n) = \begin{vmatrix} \frac{\partial x^1}{\partial u^1} & \dots & \frac{\partial x^1}{\partial u^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial u^1} & \dots & \frac{\partial x^n}{\partial u^n} \end{vmatrix}$$

However, one may find that $\{\frac{\partial \vec{r}}{\partial u^1}, \dots, \frac{\partial \vec{r}}{\partial u^n}\}$ may not be unit vectors, thus we need to normalize them.

$$\vec{e_1} = \frac{1}{h_1} \frac{\partial \vec{r}}{\partial u^1}, \dots, \vec{e_n} = \frac{1}{h_n} \frac{\partial \vec{r}}{\partial u^n}$$
$$h_1 = \|\frac{\partial \vec{r}}{\partial u^1}\|, \dots, h_n = \|\frac{\partial \vec{r}}{\partial u^n}\|$$

For an orthogonal coordinate system, $d\vec{r}$ can be rewritten as

$$d\vec{r} = \frac{\partial \vec{r}}{\partial u_1} du_1 + \frac{\partial \vec{r}}{\partial u_2} du_2 + \dots + \frac{\partial \vec{r}}{\partial u_n} du_n = h_1 du_1 \vec{e_1} + \dots + h_n du_n \vec{e_n}.$$
(1)

Then the element of square of arc length can be written as

$$ds^{2} = d\vec{r} \cdot d\vec{r} = h_{1}^{2} du_{1}^{2} + \ldots + h_{n}^{2} du_{n}^{2}$$
(2)

and

$$dV = dx_1 dx_2 dx_3 = \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(u_1, u_2, \dots, u_n)} du_1 du_2 du_3.$$

The statements above might be abstract, so an example is given below.

Example 1.1. Consider the cylindrical coordinate, we know that a point in the space can be written as $\vec{r} = (r\cos\theta, r\sin\theta, z)$. Then we have

$$h_1 = h_r = \left\| \frac{\partial \vec{r}}{\partial r} \right\| = \left\| (\cos \theta, \sin \theta, 0) \right\| = 1$$

$$h_2 = h_\theta = \left\| \frac{\partial \vec{r}}{\partial \theta} \right\| = \left\| (-r \sin \theta, r \cos \theta, 0) \right\| = r$$

$$h_3 = h_z = \left\| \frac{\partial \vec{r}}{\partial z} \right\| = \left\| (0, 0, 1) \right\| = 1$$

thus we have

$$\vec{e_r} = (\cos \theta, \sin \theta, 0)$$
$$\vec{e_\theta} = (-\sin \theta, \cos \theta, 0)$$
$$\vec{e_z} = (0, 0, 1)$$

One can check that they are orthogonal and satisfy the right-hand rule. It also explains that it is $r d\theta$ in $d\vec{r} = dr \vec{e_r} + r d\theta \vec{e_\theta} + dz \vec{e_z}$ instead of $d\theta$ itself.

Remark: You can also use dimension (unit) analysis to check that there should be an r in the coefficient of e_{θ} .

2 Gradient, Divergence and Curl

2.1 Directional Derivative

Before we introduce the gradient, we need to know what is the directional derivative.

Definition 2.1. Given a scalar field f (in fact it is just a scalar function) and a vector v, the directional derivative of f in the direction $\vec{v} = v_1, \ldots, v_n$ at point p is defined to be

$$\left. \frac{\partial f}{\partial v} \right|_p = \lim_{t \to 0} \frac{f(p+tv)}{t}.$$

One may check that $\frac{\partial f}{\partial v} = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}) \cdot \vec{v}$

If we restrict $\|\vec{v}\| = 1$, we may find that

$$\left|\frac{\partial f}{\partial v}\right| \le \left\|\left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)\right\|,$$
 (3)

the equal holds when \vec{v} is parallel to $(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$.

Note that here scalar field and vector field can be regarded as functions $f: \mathbb{R}^n \to \mathbb{R}$ and $\vec{A}: \mathbb{R}^n \to \mathbb{R}^n$, respectively.

2.2 Gradient

From the inequality(3), it is quite nature to define the vector $(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$.

Definition 2.2. Gradient

Given a scalar field f, the gradient of f is defined to be

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right). \tag{4}$$

The gradient indicates the direction the scalar field increases the most rapidly. In addition, its norm is the rate of the maximum increase.

2.3 Divergence

Definition 2.3. Divergence

The divergence of a vector field $\vec{A} = (f_1, f_2, \dots, f_n)$ is defined to be

$$\operatorname{div} \vec{A} = \nabla \cdot \vec{A} = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \cdot \vec{A} = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}$$
 (5)

We can not get anything intuitively from the definition. To have a better understanding, we may start with the Gauss theorem

$$\iiint_{V} \operatorname{div} \vec{A} \, dV = \iint_{S} \vec{A} \cdot \vec{n} \, ds \tag{6}$$

divide each side by ||V|| and let $||V|| \to 0$, we get

$$\operatorname{div} \vec{A} = \lim_{\|V\| \to 0} \frac{1}{\|V\|} \iint_{S} \vec{A} \cdot \vec{n} \, ds \tag{7}$$

One may find that the divergence is the flux of the vector field on an element of volume.

2.4 Curl

Definition 2.4. For a vector field $\vec{A} = (f, g, h)$, we may define its curl as

$$\operatorname{curl} \vec{A} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f & g & h \end{vmatrix}$$
 (8)

It is also hard to understand what is curl from the definition. Hence one can try to use Stokes' theorem which contains curl for help.

$$\oint_C \vec{A} \cdot d\vec{r} = \iint_S \operatorname{curl} \vec{A} \cdot \vec{n} \, dS.$$

Divide each side by ||S|| (the area of surface) and let $||S|| \to 0$, then we get

$$\operatorname{curl} \vec{A} \cdot \vec{n} = \lim_{\|S\| \to 0} \frac{1}{\|S\|} \oint_C \vec{A} \cdot d\vec{r} \tag{9}$$

Since $||\operatorname{curl} \vec{A} \ge |\operatorname{curl} \vec{A} \cdot \vec{n}|$, one may find that the curl of a vector space can be regarded as the maximum of circulating flow on an element of area.

3 Some Basic Method for Integration

3.1 Line Integral

Integrate on Scalar Field Let f be a scalar function and C a curve. Then we may have a parametric representation $s: I \to \mathbb{R}^n$, s = s(t) for the curve C.

The integral of f along C can be written as

$$\int_C f(s) ds = \lim_{\delta_{s_i} \to 0} \sum_{i=1}^N f(s_i) \delta_{s_i}$$

By equation(2), we know that the integral can be written as

$$\int_{I} f(s(t)) \sqrt{h_1^2 (\frac{ds_1}{dt})^2 + \ldots + h_n^2 (\frac{ds_n}{dt})^2} dt$$
 (10)

For rectangular coordinates, equation(10) is

$$\int_{I} f(s(t)) \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \ldots + \left(\frac{dx_n}{dt}\right)^2} dt$$

For cylindrical coordinates, equation (10) is

$$\int_I f(s(t)) \sqrt{(\frac{dr}{dt})^2 + r^2(\frac{d\theta}{dt})^2 + (\frac{z}{dt})^2} \, dt$$

In this case, the line integral is transformed into proper integral.

Integral on Vector Field Let $\vec{F}(x,y,z) = (f(x,y,z),g(x,y,z),h(x,y,z))$ a vector field, C a curve in \mathbb{R}^3 with representation $\vec{r}(t)$. Then the line integral of \vec{F} along C is

$$\int_C \vec{F}(x,y,z) \cdot d\vec{r} = \int_C f(x,y,z) \, dx + g(x,y,z) \, dy + h(x,y,z) \, dz$$

To calculate the integral, one could use $d\vec{r} = \frac{d\vec{r}(t)}{dt} dt$ and compute the inner product $\vec{F} \cdot \frac{d\vec{r}(t)}{dt}$ first and integral along I. It would not be so hard.

3.2 Fundamental Theorem of Line Integral

Theorem 3.1. If $\vec{F} = \nabla \phi$ for some scalar field ϕ , then

$$\int_C \vec{F} \cdot d\vec{r} = \phi(p_1) - \phi(p_0)$$

where p_1 and p_0 are the end point and starting point, correspondingly. Proof.

$$\begin{split} \int_{C} \vec{F} \cdot d\vec{r} &= \int_{C} \frac{\partial \phi}{\partial x} \, dx + \frac{\partial \phi}{\partial y} \, dy + \frac{\partial \phi}{\partial z} \, dz \\ &= \int_{a}^{b} \left(\frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt} \right) dt \\ &= \int_{a}^{b} \frac{d}{dt} \phi(x(t), y(t), z(t)) \, dt \\ &= \phi(x(t), y(t), z(t))_{t=a}^{t=b} = \phi(p_{1}) - \phi(p_{0}) \end{split}$$

Theorem 3.2. Let $\vec{F}(x,y) = (f(x,y), g(x,y))$ where f and g have continuous first partial derivatives in an open simple connected region, then

$$\exists \phi(\nabla \phi = \vec{F}) \Leftrightarrow (\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x})$$

at each point of the region.

3.3 Green's Theorem

Theorem 3.3. Let R be a simply connected plane region whose boundary is a piecewise smooth closed curve C oriented counterclockwise. If f and g have continuous first derivatives on some open set containing the region R, then

$$\int_{C} f(x,y) dx + g(x,y) dy = \iint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dA$$
 (11)

Proof. The proof is on pages 47-50 of the note for Chapter 3.

In fact, one can regard it as the 2-dim version of Stokes' theorem.

4 Surface Integration

Before we step into the surface integration, we may introduce the orientation first. For a curve, the orientation is the direction of the derivative of the representation $\vec{r}(t)$. However, the surface would have two normal vectors, so we need to define its orientation.

Definition 4.1. Oriented Surface

Let $S(u,v): D \to \mathbb{R}^3$ be a parametric representation of the surface S. Define $\vec{n}: S(D) \to S^3$ mapping each point on the surface to the unit sphere. We say that S is oriented by \vec{n} if for any curve $\alpha(t)$ on the surface, $\vec{n} \circ \alpha$ is continuous.

Intuitively, one could think that the normal vector changes continuously on the surface.

In addition, if there is \vec{n} such that the surface S is oriented, we say S is orientable, and \vec{n} an orientation of S. Otherwise, S is not orientable.

Notice: The Möbius strip is an example of non-orientable surfaces.

Definition 4.2. Surface Integrals

Let S be surface, g a scalar field. Then the integral of g on S is defined to be

$$\iint_{S} g \, dS = \lim \sum_{i=1}^{m} g_i \, \delta S_i \tag{12}$$

where m is the (supremum) area of δS_i .

The definition is not so convenient to compute the integral, so we need a further theorem.

Theorem 4.1. If we can project the surface injectively onto the subset R of the x-y plane, we have

$$\iint_{S} g \, dS = \iint_{R} g \, \frac{dx \, dy}{|\vec{n} \cdot \vec{k}|}$$

where \vec{n} is the unit orientation of surface and $\vec{k} = (0, 0, 1)$.

Remark: the inner product of \vec{n} and \vec{k} should be always > 0 or < 0 since it is also continuous and the denominator should not be 0.