PROBABILISTIC INFERENCE AND LEARNING LECTURE 18 CLUSTERING

Philipp Hennig 19 December 2018

UNIVERSITÄT TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

Last Lecture: Debrief

eberhard karls UNIVERSITÄT TÜBINGEN

Feedback dashboa

Last Lecture: Debrief

eberhard karls UNIVERSITÄT TUBINGEN

Detailed Feedbac

Things you did not like:

- + Can we have an example exam???
- + it's too cold!
- please repeat questions from the audience
- don't force interactivity
- While you're right about ψ |psʌi|, for psychology, the only admissible pronounciation is |sʌɪ'kalədʒi|

Things you did not understand:

- the arg max part was too fast
- why is this algorithm presented if it is not generally useful?

Things you enjoyed:

intro and outlook

- 0. Introduction to Reasoning under Uncertainty
- 1. Probabilistic Reasoning
- 2. Probabilities over Continuous Variables.
- 3. Gaussian Probability Distributions
- Gaussian Parametric Regression
- 5. More on Parametric Regression
- 6. Gaussian Processes
- 7. More on Kernels & GPs
- 8. A practical GP example
- 9. Markov Chains, Time Series, Filtering
- 10 Classification
- 11. Empirical Example of Classification
- 12. Bayesianism and Frequentism 13. Stochastic Differential Equations

- 14. Exponential Families
- 15. Graphical Models
- 16. Factor Graphs
 - 17. The Sum-Product Algorithm 18 Mixture Models
 - 19. The EM Algorithm
 - 20. Variational Inference
 - 21. Monte Carlo

22. Markov Chain Monte Carlo

- 23. An Example Project
- 24. An Example Project
- 25. An Example Project 26. An Example Project
- 27 Outlook

28 Revision

Unsupervised, Supervised, Generative, Discriminative

a **supervised** problem that can be solved **discriminatively** in a *linear* fashion

Unsupervised, Supervised, Generative, Discriminative

a **supervised** problem that can be solved **discriminatively** in a *nonlinear* fashion

a **supervised** problem that can be solved **generatively** (in a Gaussian fashion?)

Unsupervised, Supervised, Generative, Discriminative

https://www.stat.cmu.edu/ larry/all-of-statistics/=data/faithful.dat

a clustering of the unsupervised problem

Task types

```
Supervised given input-output pairs [x_i \in \mathbb{X}, y_i \in \mathbb{Y}]_{i=1,...,n} = (X_{train}, Y_{train}), predict y_{test}(x_{test})
```

Regression $\mathbb{Y} = \mathbb{R}^d$

Classification $\mathbb{Y} \subset \mathbb{N} = \sigma(\mathbb{R}^d)$

Structured Output $\mathbb{Y} \simeq f(\mathbb{R}^d)$

Time Series $X = \mathbb{R}$

Unsupervised given collection $[x_i \in X]_{i=1,...,n}$

Generative Modelling assume $x_i \sim p$. Make more $x_j \sim p$

Clustering assign a class $c_i \in [1, ..., C]$ for each x_i (why?)

Note: there are many more task types and sub-types (semi-supervised, dimensionality reduction, matrix factorization, causal inference, ...)

We will see that **Clustering** is a subtype of (or even the same thing as?) Generative Modelling. Clustering is also primarily a way to reduce dimensionality/complexity; it should be used carefully if the goal is to "discover" structure.

One of the oldest Clustering Methods

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

in the dark days of the 20th century

Hugo Steinhaus [1887-1972]

- born in Jasło (then Austro-Hungary), died in Wrocław
- + PhD 1911, Göttingen with David Hilbert
- in hiding during the "third Reich"
- + PhD Advisor to Stefan Banach and Marc Kac
- ★ Keeper of the Scottish Book
- + Steinhaus, H. (1957). Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci. 4 (12): 801-804.

Given $\{x_i\}_{i=1,\dots,n}$

Init Set k means $\{m_k\}$ to random values

Assign each datum x_i to its nearest mean. One could denote this by an integer variable

$$k_i = \arg\min_k ||m_k - x_i||^2$$

or by binary responsibilities

$$r_{ki} = \begin{cases} 1 & \text{if } k_i = k \\ 0 & \text{else} \end{cases}$$

Update set the means to the sample mean of each cluster

$$m_k - \frac{1}{R_k} \sum_{i}^{n} r_{ki} x_i$$
 where $R_k := \sum_{i} r_{ki}$

Repeat until the assignments do not change

k-means always converges

EBERHARD KARLS UNIVERSITAT TUBINGEN

for an interesting reason

Definition (Lyapunov Function)

In the context of iterative algorithms, a *Lyapunov Function J* is a positive function of the algorithm's state variables that decreases in each step of the algorithm.

The existence of a Lyapunov function means that one can think about the algorithm in question as an optimization routine for J. It also guarantees convergence of the algorithm at a *local* (not necessarily global!) minimum of J

Aleksandr M. Lyapunov (1857–1918)

k-means always converges ...


```
procedure k-MEANS(x, k)
      m \leftarrow RAND(k)
                                                                                                                    // initialize
    while not converged do
   r \leftarrow \text{FIND}(\min(||m - x||^2))
                                                                                                           // set responsibilities
    m \leftarrow rx \oslash r1
                                                                                                                  // set means
      end while
       return m
end procedure
                                Consider J(r,m) := \sum_{i=1}^{n} \sum_{k=1}^{k} r_{ik} ||x_i - m_k||^2
```

- step 4 always decreases J (by definition)
- + step 5 always decreases J, because

$$\frac{\partial}{\partial m_k}J(r,m) = -2\sum_{i}^{n}r_{ik}(x_i - m_k) = 0 \quad \Rightarrow \quad m_k = \frac{\sum_{i}r_{ik}x_i}{\sum_{i}r_{ik}} \qquad \frac{\partial^2 J(r,m)}{\partial m_k^2} = 2\sum_{i}r_{ik} > 0$$

k-means can work well

Run 2

+ replace the hard assignments $r_{ik} = \mathbb{I}(\arg\min_k ||m_k - x_i||^2)$ with the softmax

$$r_{ik} = \frac{\exp(-\beta ||m_k - x_i||^2)}{\sum_{k'} \exp(-\beta ||m_{k'} - x_i||^2)}$$

+ β is the *stiffness*. For $\beta \rightarrow \infty$, get back *k*-means

shared responsibility allows overlap ($\sigma := eta^{-1/2}$)

- + k-means is a simple algorithm that always finds a stable clustering
- + the resulting clusterings can be unintuitive. They do not capture shape of clusters or their number, and are subject to random fluctuations
- + soft k-means can address some of these issues by allowing points to be partly assigned to several clusters at the same time. But it requires tuning the stiffness parameter β

a probabilistic interpretation of k-means yields clarity and allows fitting all parameters

$$p(x \mid \pi, \mu, \Sigma) = \sum_{j}^{K} \pi_{j} \mathcal{N}(x; \mu_{j}, \Sigma_{j})$$
 $\pi_{j} \in [0, 1], \sum_{j} \pi_{j} = 1$

(a)

0.5

0.5

0.5

$$\pi_j \in [0,1], \quad \sum_i \pi_j = 1$$

0

for the Gaussian mixture mod-

+ Given dataset $[x_i]_{i=1,...,n}$, want to learn generative model (π,μ,Σ)

$$p(x \mid \pi, \mu, \Sigma) = \prod_{i}^{n} \sum_{i}^{k} \pi_{i} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j}) \tag{*}$$

for the Gaussian mixture mode

+ Given dataset $[x_i]_{i=1,...,n}$, want to learn generative model (π,μ,Σ)

$$p(X \mid \pi, \mu, \Sigma) = \prod_{i}^{n} \sum_{j}^{k} \pi_{j} \mathcal{N}(X_{i}; \mu_{j}, \Sigma_{j}) \tag{*}$$

+ Ideally, want Bayesian inference

$$p(\pi, \mu, \Sigma \mid x) = \frac{p(x \mid \pi, \mu, \Sigma) \cdot p(\pi, \mu, \Sigma)}{p(x)}$$

for the Gaussian mixture mode

+ Given dataset $[x_i]_{i=1,\dots,n}$, want to learn generative model (π,μ,Σ)

$$p(X \mid \pi, \mu, \Sigma) = \prod_{i}^{n} \sum_{j}^{k} \pi_{j} \mathcal{N}(X_{i}; \mu_{j}, \Sigma_{j}) \qquad (\star)$$

Ideally, want Bayesian inference

$$p(\pi, \mu, \Sigma \mid x) = \frac{p(x \mid \pi, \mu, \Sigma) \cdot p(\pi, \mu, \Sigma)}{p(x)}$$

+ likelihood is not an exponential family - no obvious conjugate prior

posterior (and likelihood) do not factorize over $\mu,\pi,\Sigma!$ $\mu\not\perp\!\!\!\!\perp\pi\mid {\it x}$

for the Gaussian mixture mod

Let's try to maximize the likelihood (\star) for π, μ, Σ (tool 1)

$$\log p(X \mid \pi, \mu, \Sigma) = \sum_{i}^{n} \log \left(\sum_{j}^{k} \pi_{j} \mathcal{N}(X_{i}; \mu_{j}, \Sigma_{j}) \right)$$

To maximize w.r.t. μ set gradient of log likelihood to 0:

$$\nabla_{\mu_j} \log p(\mathbf{x} \mid \pi, \mu, \Sigma) = -\frac{1}{2} \sum_{i}^{n} \underbrace{\frac{\pi_j \mathcal{N}(\mathbf{x}_i; \mu_j, \Sigma_j)}{\sum_{j'} \pi_j \mathcal{N}(\mathbf{x}_i; \mu_j, \Sigma_j)}}_{=:t_{ji}} \Sigma_j(\mathbf{x}_i - \mu_j)$$

$$\nabla_{\mu_j} \log p = 0$$
 $\Rightarrow \mu_j = \frac{1}{R_j} \sum_{i=1}^n r_{ji} X_i$ $R_j := \sum_{i=1}^n r_{ji}$

for the Gaussian mixture mod

Let's try to maximize the likelihood (\star) for π, μ, Σ (tool 1)

$$\log p(X \mid \pi, \mu, \Sigma) = \sum_{i}^{n} \log \left(\sum_{j}^{k} \pi_{j} \mathcal{N}(X_{i}; \mu_{j}, \Sigma_{j}) \right)$$

To maximize w.r.t. Σ set gradient of log likelihood to 0 (note $\partial \log |\Sigma^{-1}|/\partial \Sigma = \Sigma$):

$$\nabla_{\Sigma_{j}} \log p(\mathbf{x} \mid \pi, \mu, \Sigma) = -\frac{1}{2} \sum_{i}^{n} \underbrace{\frac{\pi_{j} \mathcal{N}(\mathbf{x}_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'} \pi_{j} \mathcal{N}(\mathbf{x}_{i}; \mu_{j}, \Sigma_{j})}}_{=: \tau_{ji}} \left((\mathbf{x}_{i} - \mu_{j})(\mathbf{x}_{i} - \mu_{j})^{\mathsf{T}} - \Sigma_{j} \right)$$

$$\nabla_{\Sigma_j} \log p = 0 \quad \Rightarrow \Sigma_j = \frac{1}{R_j} \sum_{i=1}^n r_{ji} (x_i - \mu_j) (x_i - \mu_j)^{\mathsf{T}} \qquad R_j := \sum_{i=1}^n r_{ji}$$

Let's try to maximize the likelihood (\star) for π , μ , Σ (tool 1)

$$\log p(X \mid \pi, \mu, \Sigma) = \sum_{i}^{n} \log \left(\sum_{j}^{k} \pi_{j} \mathcal{N}(X_{i}; \mu_{j}, \Sigma_{j}) \right)$$

To maximize w.r.t. π , enforce $\sum_i \pi_i = 1$ by introducing Lagrange multiplier λ and optimize

$$\nabla_{\pi_{j}} \log p(x \mid \pi, \mu, \Sigma) + \lambda \left(\sum_{j} \pi_{j} - 1 \right) = \sum_{i}^{n} \frac{\mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'} \pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})} + \lambda$$

$$0 = \sum_{i}^{n} \pi_{j} \frac{\mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'} \pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})} + \lambda \pi_{j} = \sum_{i}^{n} r_{ij} + \lambda \pi_{j}$$

$$\sum_{i} \pi_{j} = 1 \Rightarrow \lambda = -N \qquad \Rightarrow \qquad \pi_{j} = \frac{R_{j}}{n}$$

If we know the responsibilities r_{ij} , we can optimize μ, π analytically. And if we know μ, π , we can set r_{ij} ! Thus

- 1. initialize μ, π (e.g. random μ , uniform π)
- 2. Set

$$r_{ij} = \frac{\pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'}^{k} \pi_{j'} \mathcal{N}(x_{i}; \mu_{j'}, \Sigma_{j'})}$$

3. Set

$$R_{j} = \sum_{i} r_{ji}$$
 $\mu_{j} = \frac{1}{R_{j}} \sum_{i}^{n} r_{ij} x_{i}$ $\Sigma_{j} = \frac{1}{R_{j}} \sum_{i}^{n} r_{ij} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{\mathsf{T}}$ $\pi_{j} = \frac{R_{j}}{n}$

+ Note that π is essentially given through r_{ij} , thus can be incorporated into the first step

The connection to (soft) k-means

Refinement of soft k-means and k-means with cluster probabilities

Set
$$\Sigma_j = \beta^{-1}I$$
 for all $j = 1, \dots, k$

- 1. initialize μ, π (e.g. random μ , uniform π)
- 2. Set

$$r_{ij} = \frac{\pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'}^{k} \pi_{j'} \mathcal{N}(x_{i}; \mu_{j'}, \Sigma_{j'})} = \frac{R_{j} \exp(-\beta \|x_{i} - m_{j}\|^{2})}{\sum_{j'} R_{j'} \exp(-\beta \|x_{i} - m_{j'}\|^{2})}$$

3. Set

$$R_j = \sum_i r_{ij} \qquad \mu_j = \frac{1}{R_j} \sum_i^n r_{ij} x_i \qquad \left(\Sigma_j = \frac{1}{R_j} \sum_i^n r_{ij} (x_i - \mu_j) (x_i - \mu_j)^\mathsf{T} \qquad \pi_j = \frac{R_j}{n} \right)$$

the EM algorithm is a refinement of soft k-means

- + For $\beta \rightarrow \infty$, get back k-means
- + What is r_{ij} ?

Introducing a Latent Variable Simplifies Things

- + consider binary $z_j \in \{0; 1\}$ with $\sum_j z_j = 1$ ("one-hot")
- + what is p(x, z)? Let's write it as $p(x, z) = p(x \mid z)p(z)$ with

$$p(z_{j} = 1) = \pi_{j} \qquad \Rightarrow p(z) = \prod_{j} \pi_{j}^{z_{j}}$$

$$p(x \mid z_{j} = 1) = \mathcal{N}(x; \mu_{j}, \Sigma_{j}) \qquad \Rightarrow p(x \mid z) = \prod_{j}^{k} \mathcal{N}(x \mid \mu_{k}, \Sigma_{j})^{z_{k}}$$

$$p(x) = \sum_{j} p(z = j)p(x \mid z = j) = \sum_{j}^{k} \pi_{j} \mathcal{N}(x; \mu_{j}, \Sigma_{j})$$

$$p(x, z \mid \pi, \mu, \Sigma) = \prod_{i}^{n} \prod_{j}^{k} \pi_{j}^{z_{ij}} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})^{z_{ij}}$$

$$p(z_{ij} = 1 \mid x_{i}, \mu, \Sigma) = \frac{p(z_{ij} = 1)p(x_{i} \mid z_{ij} = 1, \mu_{j}, \Sigma_{j})}{\sum_{j'}^{k} p(z_{ij'} = 1)p(x_{i} \mid z_{ij'} = 1, \mu_{j}, \Sigma_{j})}$$

$$= \frac{\pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}{\sum_{j'} \pi_{j} \mathcal{N}(x_{i}; \mu_{j}, \Sigma_{j})}$$

$$= r_{ij}$$

 r_{ij} is the marginal posterior probability ([E]xpectation) for $z_{ij} = 1!$

Given μ, Σ , have a simple distribution for z. And, given z, μ, Σ show up in a tractable form.

The Expectation Maximization Algorithm

Refinement of soft k-means and k-means with cluster probabilities

Set
$$\Sigma_j = \beta^{-1}I$$
 for all $j = 1, \ldots, k$

- 1. initialize μ, π (e.g. random μ , uniform π)
- 2. Compute **EXPECTED** value of *z*:

$$r_{ij} = \frac{\pi_j \mathcal{N}(x_i; \mu_j, \Sigma_j)}{\sum_{j'}^k \pi_{j'} \mathcal{N}(x_i; \mu_{j'}, \Sigma_{j'})} = \frac{R_j \exp(-\beta \|x_i - m_j\|^2)}{\sum_{j'} R_{j'} \exp(-\beta \|x_i - m_{j'}\|^2)}$$

3. MAXIMIZE Likelihood

$$R_j = \sum_i r_{ji} \qquad \mu_j = \frac{1}{R_j} \sum_i^n r_{ij} x_i \qquad \left(\Sigma_j = \frac{1}{R_j} \sum_i^n r_{ij} (x_i - \mu_j) (x_i - \mu_j)^\mathsf{T} \qquad \pi_j = \frac{R_j}{n} \right)$$

the EM algorithm is an iterative maximum likelihood algorithm.

Does it converge?

Summary:

- + Clustering is a paradigm to learn a generative model for data by mapping it into a low-dimensional discrete space of generating distributions
- + classic algorithms like k-means do not capture this view, but they implicitly do it anyway
- the probabilistic formulation helps clarify the setting, but also to fix pathologies
- + the EM algorithm fits a probabilistic model by alternating between
 - 1. computing the expectation of the cluster membership for each datum
 - 2. maximizing the likelihood of the cluster parameters

After Christmas, we will return to EM and find that it is a special case of a more general inference scheme.