

Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu

Towarzystwo Upowszechniania Wiedzy i Nauk Matematycznych

Międzynarodowy Konkurs Matematyczny KANGUR 2013

Student

Klasy II i III liceów oraz II, III i IV techników

Czas trwania konkursu: 75 minut

Podczas konkursu nie wolno używać kalkulatorów!

Pytania po 3 punkty

1.	Która	z następujących	liczb jest	najwięl	ksza?
----	-------	-----------------	------------	---------	-------

- A) 2013
- B) 2^{0+13}
- C) 20^{13}
- D) 201^3
- E) $20 \cdot 13$

- 2. Bok przedstawionego na rysunku obok ośmiokąta foremnego ma długość 10. Ile jest równy promień okręgu wpisanego w mały ośmiokat wyznaczony przez przekatne dużego ośmiokata, łączące co trzeci jego wierzchołek?
- A) 10
- B) 7.5
- C) 5
- D) 2.5
- E) 2

- 3. Dany jest graniastosłup, który ma 2013 ścian (łącznie z podstawami). Ile krawędzi ma ten graniastosłup?
- A) 2011
- B) 2013
- C) 4022
- D) 4024
- E) 6033

- 4. Pierwiastek trzeciego stopnia z liczby 3³³ jest równy
- A) 3^3 .
- B) 3^{3^3-1}
- C) 3^{2^3} .
- D) 3^{3^2} .
- E) $(\sqrt{3})^3$.
- 5. Rok 2013 zapisujemy za pomocą czterech kolejnych cyfr: 0, 1, 2, 3. Ile lat upłynęło od ostatniego roku zapisywanego za pomocą czterech kolejnych cyfr?
- A) 467
- B) 527
- C) 581
- D) 693
- E) 779
- 6. Dany jest kwadrat podzielony na 36 identycznych kwadracików oraz leżące na nim koło. Każdy mały kwadracik, który ma więcej niż jeden punkt wspólny z kołem, został zacieniowany. Który z następujących rysunków nie mógł powstać w ten sposób?

B)

C)

D)

 \mathbf{E})

7. Niech $x \in \mathbb{R}$ spełnia warunek $2 < x < 3$. Ile z poniższych warunków spełni	7.	Niech $x \in \mathbb{R}$ spełn	a warunek $2 < x$	< 3. Ile z	poniższych	warunków	spełnia	x?
--	----	--------------------------------	-------------------	------------	------------	----------	---------	----

 $4 < x^2 < 9;$ 4 < 2x < 9; 6 < 3x < 9; $0 < x^2 - 2x < 3$

A) 0

B) 1

C) 2

D) 3

E) 4

8. Sześciu herosów pojmało 20 łotrów. Pierwszy heros pojmał jednego łotra, drugi dwóch, a trzeci trzech. Czwarty heros pojmał więcej łotrów niż którykolwiek z pozostałych pięciu. Najmniejsza możliwa liczba łotrów pojmanych przez czwartego herosa jest równa

A) 7.

B) 6.

C) 5.

D) 4.

E) 3.

9. Rysunek obok przedstawia nieprzezroczysta piramide ABCDS o podstawie kwadratowej ABCD, której wierzchołek S leży w środku krawędzi szkieletu sześcianu. Patrzymy na piramidę z góry, z dołu, z tyłu, z przodu, z lewa i z prawa. Który z następujących rysunków nie przedstawia żadnego z tych widoków?

B)

C)

10. Pewna substancja, przechodząc ze stanu stałego w stan ciekły, zwiększa swoją objętość o $\frac{1}{12}$ swojej objetości poczatkowej. O jaka część maleje objetość tej substancji przy przechodzeniu ze stanu ciekłego w stan stały?

A) O $\frac{1}{10}$.

B) $O(\frac{1}{11})$.

C) O $\frac{1}{12}$. D) O $\frac{1}{13}$.

E) O $\frac{1}{14}$.

Pytania po 4 punkty

11. Remigiusz układa identyczne płytki w kształcie pięciokata foremnego po obwodzie okręgu, stykając je krawędziami. Na razie ułożył trzy płytki – rysunek obok. Ilu płytek potrzeba, by pokryć w ten sposób cały okrąg?

A) 8

B) 9

C) 10

D) 11

E) 12

12. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją liniową o własności f(2013) - f(2001) = 100. Ile jest równe f(2031) - f(2013)?

A) 75

B) 100

C) 120

D) 150

E) 180

13. Dana jest funkcja f określona na zbiorze liczb całkowitych i o wartościach całkowitych. Gerwazy powiedział o tej funkcji: Dla każdego parzystego x liczba f(x) jest parzysta. Protazy, słysząc to, wygłosił zaprzeczenie tego zdania. Co powiedział Protazy?

- A) Dla każdego parzystego x liczba f(x) jest nieparzysta.
- B) Dla każdego nieparzystego x liczba f(x) jest parzysta.
- C) Dla każdego nieparzystego x liczba f(x) jest nieparzysta.
- D) Istnieje parzyste x, dla którego liczba f(x) jest nieparzysta.
- E) Istnieje nieparzyste x, dla którego liczba f(x) jest nieparzysta.

				www.kangur-mat.pl
14. Ile dodatn liczbami całkov	vitymi?		e zarówno $\frac{1}{3}n$ jak i	3n są trzycyfrowymi
A) 12	B) 33	C) 34	D) 100	E) 300
	funkcja $W(x) = (a - $ oniższych rysunków. N		b. Wykres tej funkc	eji jest przedstawiony
A) y	x B)	y x C		y x $E)$
•	ostokąt i kwadrat, przy	~	0 0 0	własność, że można je ł. Ile nieprzystających
A) 1	B) 2	C) 3	D) 4	E) 5
Ile rozwiązań n	obok przedstawiony na równanie $f(f(f(x)))$ B) 3 C) 2)) = 0?	$: \mathbb{R} \to \mathbb{R}.$ $\to \mathbb{E} 0$	4 y 2 x x x x x x x x x x x x x x x x x x
$\dot{z}e AN = A0 $	e ABC wybrano na b C oraz $ BM = BC $ ° (rysunek obok)?	_ ~		43°

- B) 89°
- $C) 90^{\circ}$
- D) 92°

- 19. Ile par dodatnich liczb całkowitych (x, y) spełnia równanie $x^3y^3 = 6^{12}$?
- A) 6
- B) 8
- C) 10
- D) 12
- E) Inna liczba.
- 20. Urna zawiera 900 kul ponumerowanych kolejnymi liczbami naturalnymi od 100 do 999. Onufry wyjmuje losowo kilka kul i dla każdej z nich liczy sumę cyfr zamieszczonej na niej liczby. Jaka jest najmniejsza liczba kul, które Onufry powinien wyjąć, aby mieć pewność, że przynajmniej trzy z wyjętych kul dają tę samą sumę cyfr?
- A) 51
- B) 52
- C) 53
- D) 54
- E) 55

Pytania po 5 punktów

- **21.** Ile istnieje par liczb całkowitych (x, y), takich że $x \le y$ oraz xy = 5(x + y)?
- A) 4

B) 5

- E) 8
- **22.** Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją spełniającą warunek f(x+5) = f(x) dla każdego $x \in \mathbb{R}$. Jeżeli $f(x) = x^2$ dla $x \in \langle -2; 3 \rangle$, to f(2013) jest równe
- A) 0.

B) 1.

C) 2.

- E) 9.
- 23. Suma n początkowych dodatnich liczb całkowitych wyraża się liczbą trzycyfrową o równych cyfrach. Ile jest równa suma cyfr liczby n?
- A) 6

B) 9

C) 12

D) 15

E) 18

© Kangourou Sans Frontières

www.math-ksf.org

z nim wierzchołki.	Odcięte części r	ozdzielono. Jaką br	yłą jest część zaw	ierająca środek sześcianu?
A) Czworościane D) Dwunastościa	m foremnym. nem foremnym.	B) Sześcianen	· · · · · · · · · · · · · · · · · · ·	niościanem foremnym. udziestościanem foremnym.
25. Ile rozwiązań	(x,y), gdzie x i g	y są liczbami rzeczy	wistymi, ma rówi	nanie $x^2 + y^2 = x + y $?
A) 1	B) 5	C) 8	D) 9	E) Nieskończenie wiele.
taką że $f(2n) = 1$ przez $f^k(n)$ liczbę	$f(2n+1) = n \mathrm{d} l$	a każdego $n \in \mathbb{N}$.), gdzie symbol f v	Dla dowolnego na	zy od zera), będzie funkcją, turalnego $k>0$ oznaczmy
A) 0 B) 4026	C) 2^{2012}	D) 2^{2013}	E) Nieskończenie wiele.
- *	orzecina dokładni	e cztery z tych pros	-	Prosta a przecina dokładnie ecina dokładnie n prostych,
A) 4	B) 5	C) 6	D) 7	E) Inna liczba.
tan: wysokiego i n mogłem wywniosk nym, a gdy odpow Bergamutanie? A) Obaj byli pra B) Obaj byli kłan C) Wysoki był pr D) Wysoki był kł	niskiego. Zapytał kować, kim oni b viedział, wiedziało wdomówni.	em wysokiego, czy yli. Wówczas zapyt em już, do jakiego t ki kłamcą.	obaj są prawdom tałem niskiego, cz	potkałem dwóch Bergamu- łówni, ale z odpowiedzi nie zy wysoki jest prawdomów- z nich. Kim byli napotkani
29. Ciąg (a_n) zad	any jest następu	jąco: $a_1 = 1, \ a_{m+n}$	$= a_m + a_n + mn.$	Ile jest równe a_{100} ?
				4950 E) 5050
każde z innej drog zjeżdża innym zja przez te auta?	gi. Żadne z aut n zdem. Ile jest ws	obok rondo wjeżdża ie objeżdża całego szystkich możliwośc d) 60 D)	ronda i każde z ni ci opuszczenia ron	ich da

24. Sześcian ABCDEFGH przecięto płaszczyzną przechodzącą przez trzy wierzchołki sąsiadujące z wierzchołkiem A (tj. połączone krawędzią z punktem A). W taki sam sposób, dla każdego z pozostałych siedmiu wierzchołków, przecięto sześcian płaszczyzną przechodzącą przez trzy sąsiadujące