

SQL é o sabre de luz de um Cientista de Dados

Query de pessoas que não tomaram a 2º dose da vacina do COVID-19 (1)

- •Selecionar **pessoas** que ainda não tomaram a 2ª dose
 - Esta é uma tabela de transação
 - √ e não de entidades

```
FROM `basedosdados.br_ms_vacinacao_covid19.microdados_vacinacao` v
WHERE v.vacina != '88'
GROUP BY v.id_paciente
HAVING min(v.data_aplicacao) = max(v.data_aplicacao)
LIMIT 10
```

* O LIMIT é opcional (recomendável) para testes

Query de pessoas que não tomaram a 2º dose da vacina do COVID-19 (2) − Sub-select

```
select sum( CASE
      WHEN vagg.vacina='86' THEN
           case when (DATE_DIFF(current_date, vagg.data_aplicacao, day) > 30) then 1 else 0 end
      ELSE
          case when (DATE_DIFF(current_date, vagg.data_aplicacao, day) > 90) then 1 else 0 end
      END ) AS naotomou2aDose
     , vagg.uf, vagg.vacina
from 'basedosdados.br ms vacinacao covid19.microdados vacinacao' vagg
where vagg.id_paciente in
 SELECT distinct(v.id paciente)
  FROM `basedosdados.br_ms_vacinacao_covid19.microdados_vacinacao` v
  WHERE v.vacina != '88'
  GROUP BY v.id_paciente
  HAVING min(v.data_aplicacao) = max(v.data_aplicacao)
group by uf, vacina;
```

Pivot Table (Tabela Dinâmica)

- Operação de manipulação de dados realizada em vários softwares
 - SQL, MS Excel, Google Sheets, Data Studio, Pandas, entre outros
- Transforma dados dispostos em linhas
 - Para o equivalente na forma de colunas

	Country	Quarter	Year	Revenue
1.	United States	Q3	2017	\$198.51
2.	Hong Kong	Q3	2017	\$70.21
3.	Canada	Q3	2017	\$52.74
4.	Mexico	Q3	2017	\$42.36
5.	United States	Q4	2017	\$36.37
6.	Venezuela	Q3	2017	\$33.49
7.	Ireland	Q4	2017	\$27.25
8.	Australia	Q3	2017	\$27.10

		2017
Country	Q3	Q4
United States	\$198.51	\$36.37
Hong Kong	\$70.21	
Canada	\$52.74	\$6.42
Venezuela	\$33.49	-
Australia	\$27.10	\$15.70
Mexico	\$42.36	- 5

Pivot Table no Google Sheets

- Copie para uma tabela sua, selecione o intervalo de células e
 - Clique em Data -> Pivot table (ou Dados > Tabela dinâmica)

Reshaping / Pivoting (Pivotar)

Método pivot

- 3 argumentos: index, columns, values
 - ✓ df.pivot(index='Aluno', columns='Disciplina', values='Objetiva')
 - a função melt() faz a operação de despivotar

E quando houver valores repetidos?

- Pivotar com o mesmo método pivot() gera exceção
 - Neste caso, use o método pivot_table

Disability Objective Disavveive

✓ mean é a métrica padrão de cálculo sobre a de agregação

	Aluno	Disciplina	Objetiva	Discursiva
0	AlunoA	Portugues	8.5	6.0
1	AlunoA	Matematica	7.5	6.5
2	AlunoA	Geografia	9.0	7.5
3	AlunoA	Geografia	10.0	7.0
4	AlunoA	História	9.0	8.0
5	AlunoB	Portugues	8.5	8.5
6	AlunoB	Matematica	7.5	7.5
7	AlunoB	Geografia	9.0	9.0
8	AlunoB	História	10.0	10.0
8	AlunoB	História	10.0	10.

Disciplina	Geografia	História	Matematica	Portugues
Aluno				
AlunoA	9.5	9.0	7.5	8.5
AlunoB	9.0	10.0	7.5	8.5

Reshaping / Pivoting com Índice Hierárquico

- Método stack/unstack (Pivotar com índice hierárquico)
 - o stack = empilhar

Pivot Table no Pandas

- 2 Exemplos
 - Link para o caderno Colab de Teoria <u>aqui</u>
- Tempo para a Atividade 2.1: 10min
 - O dataset está na aba Orders (desta planilha)
 - Link para o caderno Colab de Atividade <u>aqui</u>

Google Data Studio

https://support.google.com/datastudio/?hl=pt-BR

Dimensões e Métricas

- Dimensões são atributos usados para
 - o descrever, segmentar/agrupar, organizar e ordenar dados
 - ✓ Data, idade, sexo, cidade, dispositivo, etc.

Qual a equivalência com uma query SQL?

• Métricas são medidas quantitativas extraídas dos dados

Device Category (*) metri	CS → Users ③ ↓	New Users (7)	Sessions 7	Bounce Rate	Pages / Session	Avg. Session Duration
	14,695 % of Total: 100.00% (14,695)	12,640 % of Total: 100.09% (12,629)	17,749 % of Total: 100.00% (17,749)	45.37% Avg for View: 45.37% (0.00%)	4.25 Avg for View: 4.25 (0.00%)	00:02:54 Avg for View: 00:02:54 (0.00%)
1. desktop	10,117 (69.49%)	8,520 (67.41%)	12,409 (69.91%)	42.99%	4.42	00:03:11
2. mobile	4,153 (28.53%)	3,851 (30.47%)	4,990 (28.11%)	50.48%	3.84	00:02:13
3. tablet	289 (1.99%)	269 (2.13%)	350 (1.97%)	56.86%	4.08	00:02:42

Fonte: https://www.hotjar.com/google-analytics/glossary/dimensions-and-metrics/

Data Connectors e Data Sources

- Conectores
 - conectam o Data Studio aos seus dados
 - ✓ Existem conectores nativos/Google/gratuitos e de terceiros
 - Você também pode criar seu próprio conector.
- Data Sources (Origem de dados)
 - Ao conectar seus dados, um objeto Data Source
 - ✓ será criado no seu Data Studio
 - Representam uma instância particular de um conector e uma base de dados
 - Uma maneira segura de filtrar dados ao compartilha-los

Conectores do Google

Google Connectors (19)

Connectors built and supported by Data Studio Learn more

Google Analytics

By Google

Connect to Google Analytics.

Google Ads

By Google

Connect to Google Ads performance report data.

Google Sheets

By Google

Connect to Google Sheets.

BigQuery

By Google

Connect to BigQuery tables and custom gueries.

File Upload

By Google

Connect to CSV (commaseparated values) files.

Campaign Manager 360

By Google

Connect to Campaign Manager 360 data.

Cloud Spanner

By Google

Connect to Google Cloud Spanner databases.

Cloud SQL for MySQL

By Google

Connect to Google Cloud SQL for MySQL databases.

Display & Video 360

By Google

Connect to Display & Video 360 report data.

Conector do Google Sheets

Conector do Google Sheets

Campo Calculado (Calculated Field)

- Transformar, classificar ou fazer cálculos com seus dados
 - Cálculos matemáticos, manipulação de textos, datas, dados geográficos, lógica (Se Então, AND, OR)
- Criar novas métricas e dimensões derivadas dos seus dados
- O campo pode ser calculado para cada registro (linha)
 - de dados de um gráfico/tabela que o inclua
- Exemplo:

```
FÓRMATAR FÓRMULA

1 CONCAT (UPPER ( LastName ) , ', ', UPPER ( FirstName ) )

CANCELAR SALVAR
```

Conector do Google Sheets

- Faça uma cópia desta planilha, crie um data source
 - Demonstração
 - ✓ 5 min para criar o data souce

Google Sheets

By Google

The Google Sheets connector allows you to access data stored in a Google Sheets worksheet.

datasus morbidade

LEARN MORE REPORT AN ISSUE

ALL ITEMS	Spreadsheet	Worksheet	Q	Options
OWNED BY ME	pivot_table	revenue		Use first row as headers
SHARED WITH ME	Backlog_Busca dataset_tribo_sgd	Orders		Include hidden and filtered cells
STARRED	FormularioInscricaoPython_TriboCD Nomes de Serviços #Gov360			Column headers must be unique. Columns with empty headers will no
URL	[MBA IDP] Av. 1° bloco - notas			Optional Range, e.g. A1:B52
OPEN FROM GOOGLE DRIVE 🔼	history (Responses)			

Atividade 2.2 (5 min)

2.2) Calcular o Subtotal de vendas (em \$) por produto, e mostra-lo numa tabela

	ProductName	Record Count 🕶	subtotal
1.	Raclette Courdavault	54	82.280
2.	Guaraná Fantástica	51	5.062,5
3.	Camembert Pierrot	51	53.618
4.	Gorgonzola Telino	51	17.462,5
5.	Gnocchi di nonna Alice	50	47.994
6.	Tarte au sucre	48	53.391,9
7.	Jack's New England Clam	47	9.466,65
8.	Rhönbräu Klosterbier	46	8.951,25
9.	Chang	44	20.083
10.	Pavlova	43	20.207,1
		1 - 77 / 77	< >

Conceitos envolvidos

- Dimensões;
- Métricas; e
- Campos Calculados;

- Resolução e criação de Labels para o enunciado do exercício
 - Criar campo calculado, definir a dimensão e a métrica
- Quais operações foram realizadas para mostrar a coluna subtotal?

Atividade 2.3 (5 min)

2.3) Mostrar numa tabela o Subtotal de vendas (em \$) por categoria

	CategoryName	subtotal ▼
1.	Beverages	309.582,25
2.	Dairy Products	269.128,3
3.	Meat/Poultry	190.682,69
4.	Confections	190.328,54
5.	Seafood	149.059,53
6.	Condiments	122.343
7.	Produce	111.395
8.	Grains/Cereals	106.848
		1-8/8 < >

• Resolução

- Definir a dimensão (Categoria)
- Definir o campo da métrica (subtotal)
 - ✓ Assegurar-se de que a função de agregação é a que você deseja

Atividade 2.4 (5 min)

2.4) Calcular a média de vendas (em \$) por categoria

	CategoryName	subtotal +
1.	Meat/Poultry	1.102,21
2.	Produce	819,08
3.	Beverages	766,29
4.	Dairy Products	735,32
5.	Confections	569,85
6.	Condiments	566,4
7.	Grains/Cereals	545,14
8.	Seafood	451,7
		1-8/8 < >

• Resolução

- Definir a dimensão (Categoria)
- Definir o campo da métrica (subtotal)
 - ✓ Assegurar-se de que a função de agregação é a que você deseja

Atividade 2.5 (5 min)

2.5) Calcular a média de vendas (em \$) por categoria e o share de cada shipper em \$ (a parte que coube a cada transportador entregar)

	CategoryName	Shipper	subtotal +
1.	Meat/Poultry	2	1.354,81
2.	Meat/Poultry	3	1.002,51
3.	Produce	3	934,31
4.	Beverages	3	903,21
5.	Beverages	2	834,39
6.	Meat/Poultry	1	818,02
7.	Produce	2	812,03
8.	Dairy Products	1	782,22
			1-24/24 < >

Resolução

- Definir as dimensões (Categoria e ShipperID)
- Definir o campo da métrica (subtotal)
 - ✓ Assegurar-se de que a função de agregação é a que você deseja

Funções do Google Data Studio

- REGEXP_MATCH
 - REGEXP_MATCH(CategoryName, 'Bev.* | Dai.*')

- COUNT
 - Conta registros
- DISTINCT_COUNT
 - Conta registros distintos

Resumo

Retornará "true" se X corresponder a Y. Caso contrário, retornará "false".

X

Um campo ou uma expressão.

- SUM, AVG, MEDIAN, MIN, MAX, ABS
 - STDDEV, VARIANCE, PERCENTILE

Funções do Google Data Studio

- IF
 - IF(condition, true_result, false_result)
 - ✓ IF(Price > 20, "Caro", "Barato")
 - ✓ IF(REGEXP_MATCH(UF,'DF|GO|MT|MS')=TRUE, 'Centro-Oeste', 'Outro')

CAST

- Serve para conversão de tipos
 - ✓ CAST(Price AS TEXT)

CAST(X AS TYPE)

Resumo

Definir o campo ou a expressão para TIPO, onde TIPO pode ser NUMBER ou TEXT. Não é permitido usar campos agregados em CAST.

X AS TYPE

X é um campo ou uma expressão. TYPE pode ser NUMBER ou TEXT.

Função CASE

- Útil para classificar dados
 - Exemplo 1
 - ✓ CASE
 WHEN STARTS_WITH (CEP, '708') THEN 'DF'
 ELSE 'Outro' END
 - Exemplo 2
 - ✓ CASE
 WHEN REGEXP_MATCH (FirstName, 'Anne.* | Janet.*') THEN 'Equipe1'
 WHEN REGEXP_MATCH (FirstName, 'Michael.* | Steven.*') THEN 'Equipe2'
 ELSE 'Equipe3' END

Filtro

- Serve para filtrar (não mostrar) linhas/registros
 - De um gráfico ou tabela
- Qual o equivalente no SQL ?
- Exemplos:
 - Filtrar registros com valores nulos
 - ✓ Regex
 - Filtrar categorias indesejadas
 - Filtrar outliers

Atividade 2.6 (5 min)

2.6) Filtrar os resultados do exercício 4 não deixando aparecer as categorias Confections e Condiments

	CategoryName	Shipper	subtotal +
1.	Meat/Poultry	2	1.354,81
2.	Meat/Poultry	3	1.002,51
3.	Produce	3	934,31
4.	Beverages	3	903,21
5.	Beverages	2	834,39
6.	Meat/Poultry	1	818,02
7.	Produce	2	812,03
8.	Dairy Products	1	782,22 1 - 18 / 18 〈 〉

Resolução

Adicionar um filtro à tabela baseado, por exemplo, numa regex

Funções de Texto (algumas)

- CONCAT(X, Y [, Z, ...])
 - Retorna um texto que é a concatenação de X e Y (e Z e outros).
- CONTAINS_TEXT(X, text)
 - Retorna TRUE se X contiver texto. Caso contrário, retorna FALSE.
 Diferencia maiúsculas de minúsculas.
- REGEXP_EXTRACT(X, regular_expression)
 - Retorna a primeira substring correspondente em "X", que corresponde ao padrão de expressão regular.

Atividade 2.7 (5 min)

2.7) Criar equipes/times dos vendedores (FirstName). Anne e Janet na Equipe 1, Michael e Steven na Equipe 2 e os outros na Equipe 3. Criar uma tabela mostrando o desempenho dessas 3 equipes em cada uma das categorias de produto.

	equipe	CategoryName	subtotal -
1.	Equipe3	Beverages	212.600,25
2.	Equipe3	Seafood	97.734,02
3.	Equipe3	Produce	76.786,5
4.	Equipe1	Beverages	70.153,25
5.	Equipe1	Seafood	38.161,31
6.	Equipe2	Beverages	26.828,75
7.	Equipe2	Produce	21.016,75
8.	Equipe1	Produce	13.591,75
9.	Equipe2	Seafood	13.164,2
			1-9/9 <>

Resolução

- Criar um campo calculado para retornar o nome da equipe
- Adicionar as dimensões equipe e CategoryName
- Definir o campo da métrica (subtotal)
 - ✓ Assegurar-se de que a função de agregação é a que você deseja

Atividade 2.8 (5 min)

2.8) Criar um gráfico de linha do total de venda (\$) por mês

Resolução

- Altere o tipo da data no eixo X para mês e ano
- Para visualizar a série acumulada, ative a respectiva opção na aba Estilo

Atividade 2.9 (5 min)

2.9) Criar um gráfico de linha do total de venda (\$) por semana

- Resolução
 - Dica: altere o tipo da data no eixo X para semana e ano

Funções de Data

- CURRENT_DATE
 - Retorna a data atual de acordo com o fuso horário especificado ou padrão.
 - CURRENT_DATE("America/Sao_Paulo")
 - ✓ Fusos: https://en.wikipedia.org/wiki/List of tz database time zones
- DATE_DIFF
 - Diferença em número de dias
- DAY, HOUR, MONTH

Links úteis sobre funções

- Erros mais comuns ao usar funções
 - https://www.optimizesmart.com/formula-rejection-in-google-datastudio/
- Exemplos de uso das funções
 - https://www.sumified.com/data-studio-case-function-examples/

Produtos

29

Clientes

89

- Adicione um scorecard (visão geral) ao Dashboard
 - Inserir -> Visão geral (scorecard)
 - ✓ Arraste o campo calculado subtotal
 - para a região da métrica
 - Ou clique na métrica e defina o subtotal
 - Escolha a agregação apropriada
 - Defina o label (Nome)
- Algumas Funcionalidades
 - Definir um valor padrão
 - Agrupar Controles e Gráficos/Tabelas

Atividade 2.10 (5 min)

2.10) Criar um KPI (scorecard) com a quantidade total de produtos e outro com a quantidade total de clientes.

> Produtos 29

Clientes 89

Resolução

- Adicionar um scorecard (visão geral) ao dashboard
- Definir o campo da métrica

Recomendações de nomeclatura

- Use nomes consistentes (diminuem risco de equívocos)
 - Use prefixos de tipo
 - ✓ qt (quantidade), pct (%), dt (data)
 - E prefixos de temas
 - ✓ qtDistr qtVac
 - Exemplo: qtDistr1, qtDistr2, qtDistr3
 - qtVac1, qtVac2, qtVac3
 - Se estiver trabalhando em equipe,
 - ✓ Convenções são úteis para agilizar a comunicação
- Use uma regra de formação para nomes de filtros. Exemplo:
 - DATASOURCE_CAMPO_REGRA
 - ✓ IBGE Populacao ExcluirNA

Referências Bibliográficas

- KNAFLIC, C. N. (2018). Storytelling with data: a data visualization guide for business professionals.
- McKinney, W. (2018). Python for data analysis: Data wrangling with pandas, NumPy, and IPython.
- HURST, L. (2020). Hands on with Google Data Studio: a data citizen's survival guide. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119616238.
- WEXLER, S., SHAFFER, J., & COTGREAVE, A. (2017). The big book of dashboards: visualizing your data using real-world business scenarios.
- https://www.storytellingwithdata.com/podcast
- https://seaborn.pydata.org/
- https://pandas.pydata.org/docs/
- https://d3js.org
- https://numpy.org/doc/stable/reference/index.html