Sampling and hypothesis tests Part 2: Central limit theorem, bootstrap and confidence interval

By: Noureddin Sadawi, PhD University of London

Central limit theorem

- If we have a numeric dataset (its distribution does not matter).
- If we take a sufficient number of samples from this data and calculate the mean of each sample, these means will approximate a normal distribution (see next topic).
- The more samples we take, and the bigger they are, the closer to a normal distribution the sample means will be.
- Moreover, the mean of these means will be approximately the same as that of the original dataset.
- It has many applications in statistical studies.

Standard error

- The standard error is a single metric that sums up the variability in the sampling distribution for a statistic.
- The standard error can be estimated using a statistic based on the standard deviation s of the sample values, and the sample size n.'

Standard error =
$$SE = \frac{S}{\sqrt{n}}$$

Key ideas

- 'The frequency distribution of a sample statistic tells us how that metric would turn out differently from sample to sample.
- This sampling distribution can be estimated via the bootstrap, or via formulas that rely on the central limit theorem.
- A key metric that sums up the variability of a sample statistic is its standard error.'

The bootstrap

- One easy and effective way to estimate the sampling distribution of a statistic, or of model parameters, is to draw additional samples, with replacement, from the sample itself and recalculate the statistic or model for each resample.
- This procedure is called the bootstrap, and it does not necessarily involve any assumptions about the data or the sample statistic being normally distributed.'

Key ideas

- 'The bootstrap (sampling with replacement from a data set) is a powerful tool for assessing the variability of a sample statistic.
- The bootstrap can be applied in similar fashion in a wide variety of circumstances, without extensive study of mathematical approximations to sampling distributions.
- It also allows us to estimate sampling distributions for statistics where no mathematical approximation has been developed.
- When applied to predictive models, aggregating multiple bootstrap sample predictions (bagging) outperforms the use of a single model.'

Confidence intervals (CIs)

The confidence interval (CI) is another way to understand the potential error in a sample estimate.

'Confidence level

 The percentage of confidence intervals, constructed in the same way from the same population, that are expected to contain the statistic of interest.

Interval endpoints

The top and bottom of the confidence interval.

(Bruce and Bruce Practical statistics for data scientists, second edition, 2020).

Confidence intervals are used to represent an estimate as a range instead of a single number.

Algorithm

- 'Given a sample of size n, and a sample statistic of interest, the algorithm for a bootstrap confidence interval is as follows:
- 1. Draw a random sample of size n with replacement from the data (a resample).
- 2. Record the statistic of interest for the resample.
- 3. Repeat steps 1-2 many (R) times.
- 4. For an x% confidence interval, trim [(100-x) / 2]% of the R resample results from either end of the distribution.
- 5. The trim points are the endpoints of an x% bootstrap confidence interval.'

Example

Bootstrap confidence interval for the annual income of loan applicants, based on a sample of 20.

Key ideas

- 'Confidence intervals are the typical way to present estimates as an interval range.
- The more data you have, the less variable a sample estimate will be.
- The lower the level of confidence you can tolerate, the narrower the confidence interval will be.
- The bootstrap is an effective way to construct confidence intervals.'