Deconstructing Data Center Load Balancing with Network Traffic Profiles

Saim Salman

Brown University

Antonio Marsico

British Telecommunications

Gianni Antichi
Queen Mary University of London

Theophilus Benson

Brown University

Dynamically configurable load balancer.

Link Utilization

Queue Occupancy

Heavy Hitter

Can adapt to traffic conditions

Use the correct measurement metric

- Programmable and extensive load balancer framework
- Each data center host regularly sends its network traffic profile to the centralized controller
- Reconfigures dynamically based on traffic patterns, communication patterns and the topology.

Although all data center load balancing techniques try to lower flow completion time (FCT) and keep the network links as utilized as possible they leverage different design choices. This is because data-centers are plagued with uncertainties:

Traffic Pati	terns
Traffic can be dynamic production data centers.	highly in level

Communication Patterns			
There	is		high
variability	/	in	the
communi	ca	tior	۱

Data

patterns in

Centers.

5	. f a:1
Expansion	+ failures
can	cause
asymmetri	es in the
network topology.	

Topology

Scheme	Granularity	Measurement Primitive	Designed For
ECMP	Flow	None	Generic topologies
Let It Flow	Flowlet	None	Asymmetric Topologies
Hedera / MicroTE	Flow	Heavy Hitter	Optimizing FCT for Elephant Flows
DRILL	Packet	Queue Occupancy	Best Performance when network load higher than 80%
Conga	Flowlet	Link Utilization	2-Tier Topologies
Hula	Flowlet	Link Utilization	Scalable Topologies

Takeaway: No one measurement primitive is solely superior to the other.

EXPERIMENTS

		Intra-Pod	Inter-Pod	
			Neighbors	Network- Wide
<u>_</u>	Hula			
Web	Hula-OQ			
Se	Hula-HH			
<u>ش</u> ق	Hula			✓
Data Mining	Hula-OQ			
	Hula-HH			

Conducted experiments using the Hula NS2 codebase and varied the *measurement primitive, traffic and communication pattern*. The table summaries our findings from out experiments.

Scheme

HULA: An in-network load balancer that uses *link* utilization as measurement primitive
HULA-OQ: Used queue length as measurement primitive
HULA-HH: Used heavy hitter as measurement primitive

Traffic Patterns

Web Search: Characterized by a prevalence of short flows Data Mining: More long flows than Web Search.

Communication Patterns

Intra-Pod: Most of the traffic resides in the same pod. Inter-Pod: Majority of the traffic would be directed towards a neighbor or have to traverse the entire data center (network-wide)

Takeaway: The choice of measurement primitive is predicated on the traffic patterns, communication patterns and network topology.