Algorithms Cheat Sheet Pocket Edition

Marcin Woch

Mathematical Operations

Arithmetics

Operation	Algorithm	Input	Output	Complexity
Addition	Schoolbook	Two n-digit numbers matrices	One $n + 1$ -digit number	O(n)
Subtraction	Schoolbook	Two n -digit numbers matrices	One $n + 1$ -digit number	O(n)
Multiplication	Schoolbook	Two n -digit numbers matrices	One $2n$ -digit number	$O(n^2)$
Multiplication	3-way Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n^{\log_3 5}) \approx O(n^{1.465})$
Multiplication	k-way Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O\left(n^{\frac{\log(2k-1)}{\log k}}\right)$
Multiplication	Mixed-level Toom-Cook algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n2^{\sqrt{2\log n}}\log n)$
Multiplication	Karatsuba algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n^{\log_2 3}) \approx O(n^{1.585})$
Multiplication	Schönhage-Strassen algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n \log n \log \log n)$
Multiplication	Harvey-Hoeven algorithm	Two n -digit numbers matrices	One $2n$ -digit number	$O(n \log n)$
Multiplication	Pointer machine ¹	Two n -digit numbers matrices	One $2n$ -digit number	O(n)
Multiplication	Unit Cost RAM machine ¹	Two n -digit numbers matrices	One $2n$ -digit number	O(n)
Division	Schoolbook	Two n -digit numbers matrices	One n -digit number	$O(n^2)$
Division	Burnikel–Ziegler Divide-and-Conquer ²	Two n -digit numbers matrices	One n -digit number	$O(M(n)\log n)$
Division	Newton-Raphson division ²	Two n-digit numbers matrices	One n -digit number	O(M(n))
Square root	Newton's method ²	One n -digit number	One n -digit number	O(M(n))
Modular exponentation	Repeated multiplication and reduction ²	Two n -digit integers, k -bit exponent	One n -digit integer	$O(M(n)2^k)$
Modular exponentation	Exponentiation by squaring ²	Two n -digit integers, k -bit exponent	One n -digit integer	O(M(n)k)
Modular exponentation	Exponentiation with Montgomery reduction ²	Two n -digit integers, k -bit exponent	One n -digit integer	O(M(n)k)

 $^{^{1}}$ Theoretical model only 2 M(n) - The complexity of an implemented multiplication algorithm

Matrix Algebra

Operation	Algorithm	Input	Output	Complexity
Multiplication	Schoolbook	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^3)$
Multiplication	Strassen's	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{\log_2 7}) = O(n^{2.807})$
Multiplication	Coppersmith-Winograd	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{2.376})$
Multiplication	Alman-Williams	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{2.3728596})$
Multiplication	Duan, Wu, Zhou	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{2.3719})$
Multiplication	Williams, Xu, Xu, Zhou	Two $n \times n$ matrices	One $n \times n$ matrix	$O(n^{2.3716})$
Multiplication	Schoolbook	One $n \times m$ matrix, one $m \times p$ matrix	One $n \times p$ matrix	O(nmp)
Inversion	Gauss-Jordan elimination	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^3)$
Inversion	Strassen algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.807})$
Inversion	Coppersmith-Winograd algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.376})$
Inversion	Optimised CW algorithm	One $n \times n$ matrix	One $n \times n$ matrix	$O(n^{2.373})$
			One $m \times m$	_
SVD	Bidiagonalization, QR algorithm	One $m \times n$ matrix $(m \leq n)$	One $m \times n$ matrix	$O(m^2n)$
			One $n \times n$	
Determinant	Laplace expansion	One $n \times n$ matrix	One number	O(n!)
Determinant	Division free algorithm	One $n \times n$ matrix	One number	$O(n^4)$
Determinant	LU decomposition	One $n \times n$ matrix	One number	$O(n^3)$
Determinant	Bareiss algorithm	One $n \times n$ matrix	One number	$O(n^3)$
Determinant	Fast matrix multiplication	One $n \times n$ matrix	One number	$O(n^{2.373})$
Back substitution	Back substitution algorithm	Triangular matrix	n solutions	$O(n^2)$

Polynomials

Operation	Algorithm	Input	Output	Complexity
Polynomial evaluation	Direct	One polynomial of degree n and integer coefficients	One number	O(n)
Polynomial evaluation	Horner's algorithm	One polynomial of degree n and integer coefficients	One number	O(n)
Polynomial gcd	Euclid's algorithm	Two polynomials of degree n and integer coefficients	One number	$O(n^2)$
Polynomial gcd	Lehmer's algorithm (Fast Euclidean) ³	Two polynomials of degree n and integer coefficients	One number	$O(M(n)\log n)$

 $^{^3\,}M(n)$ - The complexity of an implemented multiplication algorithm

Number theory

Operation	Algorithm	Input	Output	Complexity
Greatest common divisor	Euclidean algorithm	Two n-digit integers	One integer	$O(n^2)$
Greatest common divisor	Binary GCD	Two n-digit integers	One integer	$O(n^2)$
Greatest common divisor	Left/right k-ary binary GCD	Two n-digit integers	One integer	$O(\frac{n^2}{\log n})$
Greatest common divisor	Stehle-Zimmermann algorithm ⁴	Two n-digit integers	One integer	$O(M(n) \log n)$
Greatest common divisor	Schönhage algorithm ⁴	Two n-digit integers	One integer	$O(M(n)\log n)$
Jacobi symbol	Stehle-Zimmermann algorithm ⁴	Two n-digit integers	0, -1 or 1	$O(M(n)\log n)$
Jacobi symbol	Schönhage algorithm ⁴	Two n-digit integers	0, -1 or 1	$O(M(n)\log n)$
Factorial	Bottom-up multiplication ⁴	One positive integer less than n	One integer	$O(M(n^2)\log n)$
Factorial	Binary splitting ⁴	One positive integer less than n	One integer	$O(M(n \log n) \log n)$
Factorial	Exponentiation of the prime factors of n^4	One positive integer less than n	One integer	$O(M(n \log n) \log \log n)$
Factorial	Exponentiation of the prime factors of n^4	One positive integer less than n	One integer	$O(M(n \log n))$
Primality test	AKS primality test n	n digit integer	True or false	$O(n^{6+O(1)})$
Primality test	AKS primality test with Agrawal's conjecturen	n digit integer	True or false	$O(n^3)$
Primality test	Elliptic curve test ⁵ - heuristical approach	n digit integer	True or false	$O(n^{4+\epsilon})$
Primality test	Baillie-PSW test ⁵	n digit integer	True or false	$O(n^{2+\epsilon})$
Primality test	Miller-Rabin test ⁵	n digit integer	True or false	$O(kn^{2+\epsilon})$
Primality test	Solovay-Strassen test ⁵	n digit integer	True or false	$O(kn^{2+\epsilon})$
Integer factorisation	General number field sieve ⁵	b-bit input integer	A set of factors	$O((1+\epsilon)^b)$
Integer factorisation	Shor's algorithm ⁴ ⁷	b-bit input integer	A set of factors	O(M(b)b)

 $^{^4~}M(n)$ - The complexity of an implemented multiplication algorithm $^5~\epsilon$ - a positive constant $^6~k$ - a positive constant $^7~$ Theoretical model, on quantum computer

Additional Operation

Special Functions - Elementary functions

Operation	Algorithm	Input	Output	Complexity
Discrete Fourier transform	Schoolbook	Size n data sequence	Set of complex number	$O(n^2)$
Discrete Fourier transform	Fast Fourier transform	Size n data sequence	Set of complex number	$O(n \log n)$
Golden ration	Newton's method ⁸			O(M(n))
Square root of 2	Newton's method ⁸			O(M(n))
Euler's number	Taylor series binary splitting of the exp. function ⁸			$O(M(n)\log n)$
Euler's number	Newton inversion of the natural logarithm ⁸			$O(M(n)\log n)$
Pi	Arctan series binary splitting in Machin's formula ⁸			$O(M(n)\log^2 n)$
Pi	Gauss-Legendre algorithm ⁸			$O(M(n)\log n)$
Euler's constant	Sweeney's method ⁸			$O(M(n)\log^2 n)$
Gamma function	Approx. of the incomplete gamma function ⁸	n digit number		$O(M(n)n^{\frac{1}{2}}\log^2 n)$
Gamma function	Hypergeometric series ⁸	Fixed ration number		$O(M(n)\log^2 n)$
Hypergeometric function	Borwein and Borwein ⁸	n-digit number		$O(M(n)n^{\frac{1}{2}}\log^2 n)$
Hypergeometric function	Hypergeometric series ⁸	Fixed rational number		$O(M(n)\log^2 n)$
Taylor series	Repeated argument reduction ⁸			$O(M(n)n^{\frac{1}{2}})$
Taylor series	FFT-based acceleration ⁸ ⁹			$O(M(n)n^{\frac{1}{3}}\log^2 n)$
Taylor series	Binary splitting + bit-burst ⁸			$O(M(n)\log^2 n)$
Arithmetic-geometric mean iteration	Arithmetic-geometric mean iteration ⁸			$O(M(n)\log n)$

 $^{^8\,}M(n)$ - The complexity of an implemented multiplication algorithm 9 Aplicability: exp. log, sin, cos, arctan

Sorting Algorithms

Name	Average	Worst	Stable
Quicksort	$n \log n$	n^2	No
Merge sort	$n \log n$	$n \log n$	Yes
In-place merge sort	-	$n \log^2 n$	Yes
Introsort	$n \log n$	$n \log n$	No
Heapsort	$n \log n$	$n \log n$	No
Insertion sort	$n^{\bar{2}}$	n^2	Yes
Block sort	$n \log n$	$n \log n$	Yes
Timsort	$n \log n$	$n \log n$	Yes
Selection sort	n^{2}	n^2	No
Cubesort	$n \log)$	$n \log n$	Yes
Shellsort	$n^{\frac{4}{3}}$	$n^{\frac{3}{2}}$	No
Bubble sort	n^2	n^2	Yes
Exchange sort	n^2	n^2	No
Tree sort	$n \log n$	$n \log n$	Yes
Cycle sort	n^2	$n^{\widetilde{2}}$	No
Library sort	$n \log)$	n^2	No
Patience sort	$n \log n$	$n \log n$	No
Smoothsort	$n \log n$	$n \log n$	No
Strand sort	n^{2}	$n^{\widetilde{2}}$	Yes
Tournament sort	$n \log n$	$n \log n$	No
Cocktail shaker sort	$n^{\widetilde{2}}$	$n^{\widetilde{2}}$	Yes
Comb sort	n^2	n^2	No
Gnome sort	n^2	n^2	Yes
Odd-even sort	n^2	n^2	Yes

Graphs

Operation	Algorithm	${\bf Input}$	Comment	Complexity
Explicit Graph Search	Depth First Search	V - vertices, E - edges		O(V + E)
Implicit Graph Search	Depth First Search	b - branching factor, d - depth		$O(b^d)$
Explicit Graph Search	Breadth First Search	V - vertices, E - edges		O(V + E)
Implicit Graph Search	Breadth First Search	b - branching factor, d - depth		$O(b^d)$
Shortest Path	Dijkstra's Algorithm	V - vertices, E - edges	Priority queue/heap	O(V + E)log V
Shortest Path	Dijkstra's Algorithm	V - vertices, E - edges	Array	$O(V ^2)$