1 Асимптотические оптимальные оценки

Пусть сл. векторы $\xi_n, \xi \in \mathbb{R}^K$, и определены на (Ω, \mathcal{F}, P) . Пусть функция распределения ξ_n есть $F_n(x)$, хар. ф-ция есть $\phi_n(t)$, а распределение есть Q_n . Для вектора ξ функцию распределения, хар. ф-цию и распреденеие обозначим F(x), $\phi(t)$, Q соответственно.

Опр. 1. Функция распределения $F_n(x)$ сходится κ F(x) при $n \to \infty$ в основном (пишем $F_n(x) \Rightarrow F$), если $F_n(x) \to F(x)$ $\forall x \in C(F)$

Опр. 2. Распределение Q_n сходится к распределению Q слабо (пишем $Q_n \xrightarrow{w} Q$), если \forall непреревной и ограниченной $g: \mathbb{R}^K \to \mathbb{R}^1$

$$\int_{\mathbb{R}^K} g(x)Q_n(dx) \to \int_{\mathbb{R}^K} g(x)Q(dx)$$

или, эквивалентно, $Eg(\xi_n) \to Eg(\xi)$.

Теорема 1.

Следующие условия эквивалентны:

- 1. $F_n(x) \Rightarrow F$
- 2. $Q_n \xrightarrow{w} Q$
- 3. $\phi_n(t) \to \phi \ \forall t \in \mathbb{R}^K$

Если выполненое любое из условий 1-3, будем писать $\xi_n \xrightarrow{d} \xi$ и говорить, что ξ_n сходится $\kappa \ \xi$ по распределению.

Теорема 2 (О наследовании сходимости).

Пусть сл. векторы $\xi_n, \xi \in \mathbb{R}^K, H : \mathbb{R}^K \to \mathbb{R}^1$ Тогда:

- 1. Ecnu $\xi_n \xrightarrow{d} \xi$, mo $H(\xi_n) \xrightarrow{d} H(\xi)$
- 2. Ecnu $\xi_n \xrightarrow{P} \xi$, mo $H(\xi_n) \xrightarrow{P} H(\xi)$

Лемма Слуцкого

Пусть $\xi_n, \xi, \eta_n, a \in \mathbb{R}^1, \xi_n \xrightarrow{d} \xi$, $a \eta_n \xrightarrow{P} a$. Тогда:

- 1. $\xi_n + \eta_n \xrightarrow{d} \xi + a$
- 2. $\xi_n \eta_n \stackrel{d}{\to} a \xi$

Доказательство. Достаточно показать, что вектор

$$(\xi_n, \eta_n)^T \xrightarrow{d} (\xi, a)^T \tag{1}$$

Действительно, если (1) верно, то при H(x,y)=x+y в силу Теоремы 2 получаем пункт 1 леммы, а при H(x,y)=xy - пункт 2.

Для доказательства 1, проверим, что хар. ф-ция вектора $(\xi_n, \eta_n)^T$ сходится к хар. функции вектора $(\xi, \eta)^T$. Имеем:

$$|\operatorname{E} e^{it\xi_n + is\eta_n} - \operatorname{E} e^{it\xi + isa}| \le |\operatorname{E} e^{it\xi_n + is\eta_n} - \operatorname{E} e^{it\xi_n + isa}| + |\operatorname{E} e^{it\xi_n + isa} - \operatorname{E} e^{it\xi + isa}| = \alpha_n + \beta_n$$

$$\alpha_n \le \mathrm{E}|e^{it\xi_n}(e^{it\eta_n + isa})| = \mathrm{E}|e^{it\eta_n + isa}| = \mathrm{E}g(\eta_n), \ g(x) := |e^{isx} - e^{isa}|$$

Ф-ция g(x) непрерывна и ограничена, а т.к. $\eta_n \xrightarrow{d} a$, то в силу Теоремы 2 $\mathrm{E} g(\eta_n) \to \mathrm{E} g(a) = 0$ Итак, $\alpha \to 0$.

$$\beta_n = |\mathrm{E} e^{isa} (e^{it\xi_n} - e^{it\xi})| = |e^{isa} \mathrm{E} (e^{it\xi_n} - e^{it\xi})| = |\mathrm{E} (e^{it\xi_n} - e^{it\xi})| \to 0$$
 т.к. $\xi_n \xrightarrow{d} \xi$ и $\phi_n(t) \to \phi(t)$.

Пусть наблюедние $X \sim P_{\theta}, \; \theta \in \Theta \subseteq \mathbb{R}^K,$ а $\hat{\theta}_n$ - оценка θ

Опр. 3. Если $n^{1/2}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \Sigma(\theta)) \ \forall \theta \in \Theta \ u \ ковариционная матрица <math>0 < \Sigma(\theta) < \infty, \ mo$ $\hat{\theta}_n$ называется асимптотической нормальной оценкой.

Опр. 4. Если $\hat{\theta}_n \stackrel{\mathrm{P}}{\to} \theta \ \forall \theta \in \Theta$, то $\hat{\theta}_n$ называется состоятельной оценкой.

Замечание. Дальше $\theta \in \Theta \subseteq \mathbb{R}^1$, то есть θ и $\hat{\theta}_n$ - скаляры.

Если $\hat{\theta}_n$ - состоятельная оценка θ , то при больших и $\hat{\theta}_n \approx \theta$ с вероятностью, близкой к единице.

Если $\hat{\theta}_n$ - асимптотическая нормальная оценка θ (так как θ и $\hat{\theta}_n$ скаляры:

$$n^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta)) \ 0 < \sigma^2 < \infty, \ \forall \theta \in \Theta), \text{ To:}$$

- 1. $\hat{\theta}_n$ состоятельная оценка θ , так как $\hat{\theta}_n \theta = n^{-1/2} n^{1/2} (\hat{\theta}_n \theta) \xrightarrow{P} 0$ в силу п. 2 леммы Слуцкого.
- 2. Скорость сходимости $\hat{\theta}_n$ к θ есть $O(n^{1/2})$
- 3. При больших n со сл. в. $n^{1/2}(\hat{\theta}_n \theta)$ можно обращаться (с осторожностью!) как с Гауссовской величиной.

Например, пусть дисперсия предельного Гауссовского закона $\sigma^2(\theta)$ будет непреревной ф-цией θ . Тогда

$$\frac{n^{1/2}(\hat{\theta}_n - \theta)}{\sigma(\hat{\theta}_n)} = \underbrace{\frac{n^{1/2}(\hat{\theta}_n - \theta)}{\sigma(\theta)}}_{\stackrel{d}{\longrightarrow} N(0,1)} \underbrace{\frac{\sigma(\theta)}{\sigma(\hat{\theta}_n)}}_{\stackrel{P}{\longrightarrow} 1} \xrightarrow{d} \eta \sim N(0,1)$$

в силу п. 2 леммы Слуцкого. Значит,

$$P_{\theta}(|\frac{n^{1/2}(\hat{\theta}_n - \theta)}{\sigma(\hat{\theta}_n)}| < \xi_{1-\alpha/2}) \to P(|\eta| < \xi_{1-\alpha/2}) = 1 - \alpha$$

То есть примерно с вероятностью $1-\alpha$ выполнено неравенство, или эквивалентно раскроем по модулю

$$\hat{\theta}_n - n^{-1/2} \sigma(\hat{\theta}_n) \xi_{1-\alpha/2} < \theta < \hat{\theta}_n + n^{-1/2} \sigma(\hat{\theta}_n) \xi_{1-\alpha/2}$$

Асимптотический доверительный интервал уровня $1-\alpha$

4. Асимптотические Гауссовские оценки можно сравнивать между собой: Если $n^{1/2}(\hat{\theta}_{i,n}-\theta) \xrightarrow{d} N(0,\sigma_i^2(\theta)), i=1,2,\ldots$, то можно посчитать асимптотическую относительную эффективность (AOЭ):

$$e_{1,2} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}$$

Напомним,
$$e_{1,2} = \lim_{n \to \infty} \frac{n'(x)}{n(x)}$$
, где $n^{1/2}(\hat{\theta}_{1,n} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta))$ и $n^{1/2}(\hat{\theta}_{2,n'} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta))$.

Вопрос: Есть ли такая оценка θ_n^* , что АОЭ $e_{\theta_n^*,\hat{\theta}_n}(\theta) \ge 1 \ \forall \hat{\theta}_n$ и всех $\theta \in \Theta$, то есть эффективнее всех остальных?

Если да, то θ_n^* требует не больше наблюдений, чем любая $\hat{\theta}_n$, чтобы достичь одинаковой с $\hat{\theta}_n$ точности. Ясно, что пределеная дисперсия $n^{1/2}(\theta_n^*-\theta)$ должна быть не больше асимптотической дисперсии $n^{1/2}(\hat{\theta}_n-\theta)$ для любой асимптотической Гауссовской оценки $\hat{\theta}_n$. Но какова самая маленькая асимптотическая дисперсия у $n^{1/2}(\hat{\theta}_n-\theta)$?

Теорема Бахадура

Пусть X_1, \ldots, X_n - н. о. р. сл. в., X_1 имеет плотность вероятности $f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$, по мере ν . Пусть выполнены следующие условия:

- 1. Θ интервал.
- 2. Носитель $N_f = \{x : f(x, \theta) > 0\}$ не зависит от θ .
- 3. $\forall x \in N_f$ плотность $f(x,\theta)$ дважды непрерывно дифференцируема по θ
- 4. Интеграл $\int f(x,\theta)\nu(dx)$ можно дважды дифференцировать по θ , внося знак дифференцирования под знак интеграла.
- 5. Информация Фишера $0 < i(\theta) < \infty \ \forall \theta \in \Theta$
- 6. $\left|\frac{\partial^2}{\partial \theta^2} \ln(f(x,\theta))\right| \le M(x) \ \forall x \in N_f, \ \theta \in \Theta, \ E_\theta M(X_1) < \infty$

Тогда, если $n^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$, то $\sigma^2(\theta) \ge \frac{1}{i(\theta)}$ всюду за исключением множества Лебеговой меры нуль.

Замечание. Если вдобавок $\sigma^2(\theta)$ и $i(\theta)$ непрерывны, то $\sigma^2(\theta) \geq \frac{1}{i(\theta)}$ при всех $\theta \in \Theta$.

Доказательство. Без доказательства.

Опр. 5. Если $\theta, \hat{\theta}_n \in \mathbb{R}^1$ и $n^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \frac{1}{i(\theta)}), n \to \infty, \forall \theta \in \Theta, причем <math>0 < i(\theta) < \infty,$ то $\hat{\theta}_n$ называется асимптотически эффективной оценкой.

Вопрос: Вообще можно ли найти такую оценку $\hat{\theta}_n$? Да

Дальше $X=(X_1,\ldots,X_n),\ X\sim \mathrm{P}_{\theta},\ \theta\in\Theta\subseteq\mathbb{R}^1$. Условие (A):

- 1. Θ интервал, $P_{\theta_1} \neq P_{\theta_2}$ при $\theta_1 \neq \theta_2$.
- 2. X_1, \ldots, X_n независимые одинаково распределенные случайные величины
- 3. X_1 имеет плотность вероятности $f(x,\theta)$ по мере ν
- 4. Носитель $N_f = \{x : f(x, \theta) > 0\}$ не зависит от θ .
- 5. Плотность вектора X есть $p(x,\theta) = \prod_{i=1}^n f(x_i,\theta)$.

Опр. 6. Функция $p(X, \theta)$ как функция θ при фиксированном X называется **правдоподобием** функции.

$$L_n(X, \theta) = \ln p(X, \theta) = \sum_{i=1}^n \ln f(X_i, \theta)$$

называется логарифмическим правдоподобием.

Пусть θ_0 будет истинное значение параметра.

Лемма 1 (Неравенство Йенсена). Пусть g(x) выпукла книзу борелевская функция, $E|\xi| < \infty$, $E|g(\xi)| < \infty$. Тогда $g(E\xi) \le Eg(\xi)$. Если ξ не является почти наверное константой и g строго выпукла, то неравенство строгое.

Теорема 3 (Экстремальное свойство правдоподобия).

Пусть выполнено Условие (A). Пусть $E_{\theta_0}|\ln f(X_1,\theta)| < \infty, \ \forall \theta \in \Theta.$ Тогда

$$P_{\theta_0}(p(X, \theta_0) > p(X, \theta)) \to 1, \ n \to \infty, \ \theta_0 \neq \theta$$

Доказательство.

$$p(X, \theta_0) > p(X, \theta) \Leftrightarrow \ln p(X, \theta_0) > \ln p(X, \theta) \Leftrightarrow$$

$$\eta_n := n^{-1} \sum_{i=1}^n \ln \left(\frac{f(X_i, \theta)}{f(X_i, \theta_0)} \right) < 0$$

То есть надо показать, что $P_{\theta_0}(\eta_n < 0) \to 1$. Но по слабому закону больших чисел:

$$\eta_n = n^{-1} \sum \ln \left(\frac{f(X_i, \theta)}{f(X_i, \theta_0)} \right) \xrightarrow{P} E_{\theta_0} \ln \left(\frac{f(X_1, \theta)}{f(X_1, \theta_0)} \right)$$

Возьмем функцию $-\ln x$ - строго выпукла вниз и $\frac{f(X_1,\theta)}{f(X_1,\theta_0)}$ не является п.н. константой (так как иначе если плотности п.н. совпадают, то и распределения при разных значениях совпадают, что противоречит Условию(A)(1)).

В силу неравенства Йенсена:

$$E_{\theta_0} \ln \frac{f(X_1, \theta)}{f(X_1, \theta_0)} < \ln E_{\theta_0} \frac{f(X_1, \theta)}{f(X_1, \theta_0)} = \ln \int_{N_t} \frac{f(x, \theta)}{f(x, \theta_0)} f(x, \theta_0) \nu(dx) = \ln 1 = 0$$

Но если η_n сходится по вероятности к отрицательному числу, то $P_{\theta_0}(\eta_n < 0) \to 1$

В силу теоремы 3 естественно брать оценкой то значение θ , которое максимизирует $p(X,\theta)$ при данном X

Опр. 7. Случайная величина $\hat{\theta}_n \in \Theta$ называется **оценкой максимального правдоподо- бия** (о.м.п.), если $p(X, \hat{\theta}_n) = \max_{\theta \in \Theta} p(X, \theta)$, или эквивалентно $L_n(X, \hat{\theta}_n) = \max_{\theta \in \Theta} L_n(X, \theta)$

Итак, о.м.п $\hat{\theta}_n = \arg \max_{\theta \in \Theta} L_n(X, \theta)$.

Если в $\forall \theta \in \Theta$ максимум не достигается, то о.м.п. не существует.

Если Θ - интервал, $L_n(X,\theta)$ - гладкая по θ функция, то θ удовлетворяет уравнению правдоподобия

$$\frac{\partial}{\partial \theta} L_n(X, \theta) = 0 \tag{2}$$

Теорема 4 (О состоятельности решения уравнения правдоподобия).

Пусть выполнено Условие (A). Пусть $\forall x \in N_f \exists$ непрерывная производная $f'_{\theta}(x,\theta)$. Тогда уравнение (2) с вероятностью, стремящейся к 1 при $n \to \infty$ имеет решение $\in \Theta$. При этом среди всех таких решений есть такой корень $\hat{\theta}_n$, что он является состоятельнаой оценкой θ_0

Доказательство. Пусть $S_n = \{\omega\}$, при которых уравнение (2) имеет решение для $\theta \in \Theta$. Тогда теорема 4 утверждает:

- 1. $P_{\theta_0}(S_n) \to 1$.
- 2. Существует такое решение $\hat{\theta}_n \in \Theta$, что

$$P_{\theta_0}(|\hat{\theta}_n - \theta_0| < \varepsilon, S_n) \to 1, \ n \to \infty, \ \forall \varepsilon > 0$$

Докажем пункт 1: Выберем малое a > 0 так, что на $(\theta_0 - a, \theta_0 + a) \subseteq \Theta$. Пусть

$$S_n^a = \{\omega : L_n(X, \theta_0) > L_n(X, \theta_0 - a), L_n(X, \theta_0) > L_n(X, \theta_0 + a)\}$$

В силу теоремы 3 $P_{\theta_0}(S_n^a) \to 1$

При $\omega \in S_n^a$ функция $L_n(X,\theta)$ имеет локальный максимум $\hat{\theta}_n^a$ на интервале $(\theta_0 - a, \theta_0 + a)$

Значит, $\frac{\partial}{\partial \theta} L_n(X, \hat{\theta}_n^a) = 0$. Тогда $P_{\theta_0}(S_n) \geq P_{\theta_0}(S_n^a) \to 1$, так как $S_n^a \subseteq S_n$, и пункт 1 доказан. Докажем пункт 2: $\forall n$ при $\omega \in S_n$ может существать целое множество корней $\{\theta_n^*\}$. Выберем в этом множестве корень $\hat{\theta}_n$, ближайший к θ_0 . Это можно сделать, так как функция $\frac{\partial}{\partial \theta} L_n(x,\theta)$ непрерывна по θ , и последовательность корней есть корень. Этот корень $\hat{\theta}_n$ и есть состоятельная оценка θ . Покажем это:

 \forall малого $\varepsilon > 0$:

$$P_{\theta_0}(|\hat{\theta}_n - \theta_0| < \varepsilon, S_n) \ge P_{\theta_0}(|\hat{\theta}_n^{\varepsilon} - \theta_0| < \varepsilon, S_n^{\varepsilon})$$
(3)

Так как
$$S_n^{\varepsilon} \subseteq S_n$$
, $(\omega : |\hat{\theta}_n^{\varepsilon} - \theta_0| < \varepsilon) \subseteq (\omega : |\hat{\theta}_n - \theta_0| < \varepsilon)$
Но $P_{\theta_0}(|\hat{\theta}_n^{\varepsilon} - \theta_0| < \varepsilon, S_n^{\varepsilon}) = P_{\theta_0}(S_n^{\varepsilon}) \to 1$, значит в силу (3)

$$P_{\theta_0}(|\hat{\theta}_n - \theta_0| < \varepsilon, S_n) \to 1$$

Замечание. Пусть

 $\theta_n^* = \begin{cases} cocm. \ \kappa opho \ ypaвнения \ npaвдonoдoбия, \ ecли \ oh \ cyщ. \\ \theta', \ \theta' \in \Theta, uhaчe \end{cases}$

Тогда случайная величина θ_n^* всегда определена, и $\theta_n^* \xrightarrow{P} \theta_0$, так как

$$P(|\theta_n^* - \theta_0| < \varepsilon) = P(|\hat{\theta}_n - \theta_0| < \varepsilon, S_n) + P(|\theta' - \theta_0| < \varepsilon, \overline{S}_n) \to 1$$

Ясно, что

$$\frac{\partial}{\partial \theta} L_n(X, \theta_n^*) = \overline{\overline{o}}_p(1) \tag{4}$$

Tак как производная отлична от нуля только на \overline{S}_n .

 $\mathit{Будем}$ называть θ_n^* обобщенным состоятельным корнем уравнения правдоподобия

Теорема 5 (Об асимптотической эффективности состоятельности решения).

Пусть $X = (X_1, \ldots, X_n)$, $\{X_i\}$ - н.о.р. сл.в., и удовлетворяются предположения Теоремы Бахадура, в которых условия 3 и 6 заменены на предположения о третьей, а не второй производной. То есть

$$\left|\frac{\partial^3}{\partial \theta^3} \ln f(x,\theta)\right| \le M(x) \ \forall x \in N_f, \ \forall \theta \in \Theta, \ \mathcal{E}_{\theta_0} M(X_1) < \infty$$

Тогда, если θ_n^* - обобщенный состоятельный корень из теоремы 4, то

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \frac{1}{i(\theta_0)})$$

 $To\ ecmb\ heta_n^*$ - acumnmomuчecкая эффективная оценка.

Доказательство. Будем обозначать $\frac{\partial}{\partial \theta}L_n(X,\theta), \frac{\partial^2}{\partial \theta^2}L_n(X,\theta), \dots$ через $L'_n(\theta), L_n^{(2)}(\theta), \dots$ Для фиксированного X в силу формулы Тейлора и последнего замечания:

$$\overline{\overline{o}}_p(1) = L_n'(\theta_n^*) = L_n'(\theta_0) + L_n^{(2)}(\theta_0)(\theta_n^* - \theta_0) + \frac{1}{2}L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0)^2, \ \widetilde{\theta}_n \in (\theta_0, \theta_n^*)$$

Отсюда,

$$n^{1/2}(\theta_n^* - \theta_0) = -\frac{n^{-1/2}L_n'(\theta_0) + \overline{\overline{o}}_p(1)}{n^{-1}(L_n^{(2)}(\theta_0) + \frac{1}{2}L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0))}$$
(5)

Рассмотрим числитель (5) и покажем, что

$$n^{-1/2}L'_n(\theta_0) = n^{-1/2} \sum_{i=1}^n \frac{f'_{\theta}(X_i, \theta_0)}{f(X_i, \theta_0)} \xrightarrow{d} \xi \sim N(0, i(\theta_0))$$
 (6)

Действительно,

$$E_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)} = \int_{N_f} \frac{f'_{\theta}(x, \theta_0)}{f(x, \theta_0)} f(x, \theta_0) \nu(dx) = 0$$

$$D_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)} = E_{\theta_0} \left(\frac{\partial}{\partial \theta} \ln f(X_1, \theta_0)\right)^2 - \underbrace{\left(E_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)}\right)^2}_{\text{no onp.}} \stackrel{=}{\underset{\text{no onp.}}{=}} i(\theta_0)$$

Так как f, f' - борелевские функции, то случайные величины $\left\{\frac{f'_{\theta}(X_i, \theta_0)}{f(X_i, \theta_0)}, i = 1, \dots, n\right\}$ - н.о.р., соотношение (6) следует из Центр. пред. Теоремы.

В силу Леммы Слуцкого числитель (5) $\xrightarrow{\mathbf{P}} N(0, i(\theta_0))$

Теперь рассмотрим знаменатель (5):

$$n^{-1}L_n^{(2)}(\theta_0) = n^{-1} \sum_{i=1}^n \left[\frac{f_{\theta}^{(2)}(X_i, \theta_0)}{f(X_i, \theta_0)} - \left(\frac{f_{\theta}'(X_i, \theta_0)}{f(X_i, \theta_0)} \right)^2 \right] \xrightarrow{P} -i(\theta)$$
 (7)

Действительно, в силу ЗБЧ

$$n^{-1} \sum_{i=1}^{n} \frac{f_{\theta}^{(2)}(X_{i}, \theta_{0})}{f(X_{i}, \theta_{0})} \xrightarrow{P} E_{\theta_{0}} \frac{f_{\theta}^{(2)}(X_{1}, \theta_{0})}{f(X_{1}, \theta_{0})} = \int_{N_{f}} \frac{f_{\theta}^{(2)}(x, \theta_{0})}{f(x, \theta_{0})} f(x, \theta_{0}) \nu(dx) = 0$$
$$n^{-1} \sum_{i=1}^{n} \left(\frac{f_{\theta}'(X_{i}, \theta_{0})}{f(X_{i}, \theta_{0})} \right)^{2} \xrightarrow{P} E_{\theta_{0}} \left(\frac{\partial}{\partial \theta} \ln f(X_{1}, \theta_{0}) \right)^{2} = i(\theta)$$

Применяя лемму Слуцкого, получим (7).

Далее рассмотрим второе слагаемое в знаменете (5)

$$\left|\frac{1}{2n}L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0)\right| \le \frac{1}{2}|\theta_n^* - \theta_0|n^{-1}\sum_{i=1}^n M(X_i) \xrightarrow{P} 0 \tag{8}$$

В силу (7) и (8) и Леммы Слуцкого знаменатель (5) сходится по вероятности к $-i(\theta_0)$ Значит, что вся дробь (5) сходится по распределению к $\frac{1}{i(\theta_0)}\xi \sim N(0,\frac{1}{i(\theta_0)})$

Оценки максимального правдоподобия для векторого параметра

Пусть $X=(X_1,\ldots,X_n)$ - н.о.р., $X_1\sim f(x,\theta),\ \theta\in\Theta\subseteq\mathbb{R}^k,\ \Theta$ - открытое множество Тогда логарифмические правдоподобие имеет вид

$$L_n(X,\theta) = \sum_{i=1}^n \ln f(X_i,\theta)$$

Система уравнений правдоподобия

$$\frac{\partial L_n(X,\theta)}{\partial \theta_i} = 0, \ i = 1, 2, \dots, k$$

При условиях регулярности, похожих на условия теоремы 5, показыватся:

- 1. С вероятностью, стремящейся к единице при $n \to \infty$, система уравнений (1) имеет такое решение $\hat{\theta}_n \in \Theta$, что $\hat{\theta}_n$ сходится к истинному значению θ_0 .
- 2. Соответствующая оценка θ_n^* асимптотически нормальна. А именно

$$n^{1/2}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, I^{-1}(\theta_0)), \ n \to \infty$$

Здесь $I(\theta) > 0$ - матрица информации Фишера, то есть

$$I(\theta) = (I_{ij}(\theta)), \ I_{ij}(\theta) = \mathcal{E}_{\theta} \left\{ \frac{\partial \ln f(X, \theta)}{\partial \theta_i} \cdot \frac{\partial \ln f(X, \theta)}{\partial \theta_j} \right\}$$

Пример. $X = (X_1, ..., X_n)$, где $\{X_i\}$ - н.о.р., $X_1 \sim N(0, \sigma^2)$, $a < \theta < b$, $a \ u \ b$ - известные конечные числа, дисперсия σ^2 известна. Построим асимптотически эффективную оценку θ_n^* для θ .

Здесь
$$p(x,\theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\theta)^2}$$
, значит

$$L_n(X,\theta) = \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2$$

Уравнение правдоподобия имеет вид

$$\frac{\partial L_n(X,\theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \theta) = 0$$

Его решение существует и единственно, это \overline{X} , причем в т. $\theta = \overline{X}$ $L_n(X,\theta)$ достигает максимума, так как $\frac{\partial^2 L_n(X,\overline{X})}{\partial \theta^2} = -\frac{1}{\sigma^2} < 0$ Таким образом, если $a < \overline{X} < b$, то о.м.п. сущесвтует и равна \overline{X} , в противном случае

о.м.п. не существует. Если положить

$$\theta_n^* = \begin{cases} \overline{X}, \ a < \overline{X} < b \\ \frac{a+b}{2}, \ \overline{X} \notin (a,b) \end{cases} \tag{9}$$

То в силу теоремы 5 (её условия выполнены, проверьте сами), θ_n^* - асимптотически эффективная оценка, то есть

$$n^{1/2}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \sigma^2) \tag{10}$$

Напомним, что в этой модели $i(\theta) = \frac{1}{\sigma^2}$. Справедливость (10) с θ_n^* из (9) легко проверить непосредственно.

Пример. Если Θ - компакт (то есть отрезок [a, b]), то о.м.п. существует всегда, так как непрерывная функция на отрезке всегда достигает своего максимума. Значит значение o.m.n.

$$\theta_n^* = \begin{cases} \overline{X}, \ a < \overline{X} < b \\ a, \ \overline{X} < a \\ b, \ \overline{X} > b \end{cases}$$

Но на границах теряется асимптотическая Гауссовость.

2 Проверка статистических гипотез

 $X=(X_1,\ldots,X_n)$ имеет плотность вероятности $p(X,\theta)$ по мере $\mu,\ \theta\in\Theta\subseteq\mathbb{R}^1$

Опр. 8. Предположение вида $H_0: \theta \in \Theta_0$, где $\Theta_0 \in \Theta$, называется параметрической гипотезой. Альтернатива $H_1: \theta \in \Theta_1$, где $\Theta_1 \in \Theta \backslash \Theta_0$

Опр. 9. Если $\Theta_0(\Theta_1)$ состоит из одной точки, то гипотеза H_0 (альтернатива H_1) называется простой. В противном случае $H_0(H_1)$ - сложная

Постановка задачи:

Необходимо построить правило (статистический критерий - test), который позволяет заключить, согласуется ли наблюдение X с H_0 или нет.

Правило.

Выберем в множестве значений x вектора X (у нас либо $x = \mathbb{R}^n$, либо $x = N_p \subseteq \mathbb{R}^n$ носитель плотности) подмножество S. Если $X \in S$, то H_0 отвергается и принимается H_1 . Если $X \in \overline{S} = X \setminus S$, то H_0 принимается.

Опр. 10. Множество S называется критическим множеством или критерием, \overline{S} - область принятия гипотезы.

Опр. 11. Ошибка 1-го рода - принять H_1 , когда верна H_0 . Вероятность ошибки 1-го рода $\alpha = P(H_1|H_0)$ (это условная запись, а не условная вероятность). Ошибка 2-го рода - принять H_0 , когда верна H_1 . Вероятность ошибки 2-го рода $\beta = P(H_0|H_1)$.

Опр. 12. Мощность критерия S называется функция $W(S,\theta) = W(\theta) := P_{\theta}(X \in S)$ (вероятность отвергнуть H_0 , когда значение параметра есть θ).

Тогда

$$\alpha = \alpha(\theta) = W(\theta), \ \theta \in \Theta_0;$$

 $\beta = \beta(\theta) = 1 - W(\theta), \ \theta \in \Theta_1$

Опр. 13. Обычно H_0 более важна. Поэтому рассматривают критерии такие, что

$$\alpha(\theta) = W(\theta) = P_{\theta}(X \in S) \le \alpha \ \forall \theta \in \Theta_0$$

Число α называют **уровнем значимости критерия**. Пишут S_{α} - критерий уровня α . Обычно α - маленькое число, которое мы задаем сами.

Опр. 14. Если критерий $S_{\alpha}^* \in \{S_{\alpha}\}$ и $\forall \theta \in \Theta_1$ и $\forall S_{\alpha} \ W(S_{\alpha}^*, \theta) \geq W(S_{\alpha}, \theta)$, то критерий S_{α}^* называется **РНМ-критерием (равномерно наиболее мощным)**.

Если $H_0: \theta=\theta_0,\ H_1: \theta=\theta_1$ (то есть H_0 и H_1 - простые), то задача отыскания РНМ-критерия заданного уровня α имеет вид:

$$P_{\theta_0}(X \in S_{\alpha}^*) \le \alpha,$$

 $P_{\theta_1}(X \in S_{\alpha}^*) \ge P_{\theta_1}(X \in S_{\alpha}) \ \forall S_{\alpha}$

Положим для краткости: $p_0(x) := p(x, \theta_0)$, $E_0 = E_{\theta_0}$, $p_1(x) = p(x, \theta_1)$, $E_1 = E_{\theta_1}$ Введем множество

$$S(\lambda) = \{x : p_1(x) - \lambda p_0(x) > 0\}, \lambda > 0$$

Теорема 6 (Лемма Неймана-Пирсона).

Пусть для некоторого $\lambda > 0$ и критерия R (когда X попадает в R, то H_0 отвергается) выполнено:

1. $P_0(X \in R) \leq P_0(X \in S(\lambda))$ Тогда:

2.
$$P_1(X \in R) \leq P_1(X \in S(\lambda))$$

3.
$$P_1(X \in S(\lambda)) \ge P_0(X \in S(\lambda))$$

Замечание. $X \in S(\lambda) \Leftrightarrow \frac{p_1(x)}{p_0(x)} > \lambda$. Так как $p_1(X)$ и $p_0(X)$ - правдоподобие, то критерий называется критерием отношения правдоподобия Неймана-Пирсона.

Замечание. Утверждение 3 для $S(\lambda)$ означает, что

$$P(H_1|H_1) \ge P(H_1|H_0) \Leftrightarrow W(S(\lambda), \theta_1) \ge W(S(\lambda), \theta_0)$$

Это свойство назывется несмещенностью критерия $S(\lambda)$

Доказательство. Дальше для краткости $S(\lambda) = S$. Пусть $I_R(x) = \begin{cases} 1, x \in \mathbb{R} \\ 0, x \notin \mathbb{R} \end{cases}$, $I_S(x)$ определяем аналогично. Тогда Условие (A) имеет вид:

$$E_0 I_R(x) \le E_0 I_S(x) \tag{1}$$

Докажем пункт 2: Верно неравенство

$$I_R(x)[p_1(x) - \lambda p_0(x)] \le I_S(x)[p_1(x) - \lambda p_0(x)] \tag{2}$$

Действительно, если $(p_1(x) - \lambda p_0(x)) > 0$, то $I_S(x) = 1$ и (2) очевидно.

Если же $p_1(x) - \lambda p_0(x) \le 0$, то правая часть (2) есть ноль, а левая \le нуля.

Итак, (2) верно: интегрируем это неравенство по $x \in \mathbb{R}^n$:

$$E_{1}I_{R}(X) - \lambda E_{0}I_{R}(X) \leq E_{1}I_{S}(X) - \lambda E_{0}I_{S}(X)$$

$$E_{1}I_{S}(X) - E_{1}I_{R}(X) \geq \lambda \underbrace{\left[E_{0}I_{S}(X) - E_{0}I_{R}(X)\right]}_{\geq 0 \text{ по условию (1)}}$$
(3)

В силу (1), (3) и условия $\lambda > 0$ получаем:

$$E_1I_S(X) \ge E_1I_{\mathbb{R}}(X)$$

Докажем пункт 3: Пусть $\lambda \ge 1$. Из определения S $p_1(x) > p_0(x) \ \forall x \in S$. Отсюда

$$P_0(X \in S) = \int_{\mathbb{R}^n} I_S(X) p_0(x) \mu(dx) \le \int_{\mathbb{R}^n} I_S(X) p_1(x) \mu(dx) = P_1(X \in S)$$

То есть $P(H_1|H_0) \le P(H_1|H_1)$

Пусть $\lambda < 1$. Рассмотрим $\overline{S} = \{x: p_1(x) \le \lambda p_0(x)\}$. При $\lambda < 1$ $p_1(x) < p_0(x)$ при $x \in \overline{S}$. Отсюда

$$P_1(X \in \overline{S}) = \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_1(x) \mu(dx) \le \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_0(x) \mu(dx) = P_0(X \in \overline{S})$$

То есть
$$1 - P_1(X \in S) \le 1 - P_0(X \in S)$$
, откуда $P_1(X \in S) \ge P_0(X \in S)$

Пример. $X = (X_1, \dots, X_n), \{X_i\}$ - н.о.р., $X_1 \sim N(\theta, \sigma^2)$, дисперсия σ^2 известна. Построим наиболее мощный критерий для проверки $H_0: \theta = \theta_0$ против $H_1: \theta = \theta_1$ (в случае $\theta_1 > \theta_0$). Уровень значимости возьмем α .

1. Имеем

$$p_{0} = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}\right\}, \ p_{1} = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}\right\};$$

$$S(\lambda) = \left\{x : p_{1}(x) - \lambda p_{0}(x) > 0\right\} \underset{\partial \text{enum na } p_{0}}{\Leftrightarrow} \exp\left\{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left[(x_{i} - \theta_{1})^{2} - (x_{i} - \theta_{0})^{2}\right]\right\} > \lambda \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n} \left[(x_{i} - \theta_{1})^{2} - (x_{i} - \theta_{0})^{2}\right] < \lambda_{1} = -2\sigma^{2} \ln \lambda \underset{\text{apu} \notin \text{memuka}}{\Leftrightarrow} (\theta_{0} - \theta_{1}) \sum_{i=1}^{n} x_{i} \leq \lambda_{2} \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n} x_{i} > \widetilde{\lambda}, \ \widetilde{\lambda}(\lambda, n, \sigma^{2}, \theta_{0}, \theta_{1})$$

 $Ита\kappa$,

$$S(\lambda) = \left\{ x : \sum_{i=1}^{n} x_i > \widetilde{\lambda} \right\}$$
 при некотором $\widetilde{\lambda}$

2. Определим $\widetilde{\lambda}=\widetilde{\lambda}_{\alpha}$ из уравнения

$$\alpha = P_{\theta_0}(X \in S(\widetilde{\lambda}_{\alpha})) = P_{\theta_0}\left(\sum_{i=1}^n X_i > \widetilde{\lambda}_{\alpha}\right)$$

Преобразуем левую сумму в стандартную Гауссовскую величину. Тогда

$$\alpha = P_{\theta_0} \left(\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (X_i - \theta_0) > \frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{n}\sigma} \right) = 1 - \Phi \left(\frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{\pi}\sigma} \right)$$

 $\max \kappa a \kappa \frac{1}{\sqrt{n}\sigma} \sum_{i} (X_i - \theta_0) \sim N(0, 1) \ npu \ H_0.$

Значит $\Phi\left(\frac{\tilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma}\right)=1-\alpha,\;\left(\frac{\tilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma}\right)=\xi_{1-\alpha}$ - квантиль станд. норм. закона уровня $1-\alpha$. Окончательно, $\tilde{\lambda}_{\alpha}=n\theta_{0}+\sqrt{n}\sigma\xi_{1-\alpha}$

3. Положим $S_{\alpha}^* = \{x : \sum_{i=1}^n x_i > \widetilde{\lambda}_{\alpha}\}$ Тогда $P_{\theta_0}(X \in S_{\alpha}^*) = \alpha$, u:

$$\forall S_{\alpha} \ P_{\theta_0}(X \in S_{\alpha}) \le \alpha = P_{\theta_0}(X \in S_{\alpha}^*)$$

Значит, выполнено условие 1 Леммы Неймана-Пирсона, и в силу пункта 2 этой леммы

$$P_{\theta_1}(X \in S_\alpha) \le P_{\theta_1}(X \in S_\alpha^*)$$

To есть S_{α}^* - наиболее мощный критерий уровня $\alpha.$

Так как S_{α}^* не зависит от θ_1 , то S_{α}^* - РНМ-критерий для $H_0: \theta = \theta_0$ против $H_1^+: \theta > \theta_1$ Мощность критерия S_{α}^* для H_0 при альт. H_1^+

$$W(\theta, S_{\alpha}^{*}) = P_{\theta} \left(\sum_{i=1}^{n} X_{i} > n\theta_{0} + \sqrt{n}\sigma \xi_{1-\alpha} \right) =$$

$$= P_{\theta} \left(\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (X_{i} - \theta) > \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma} + \xi_{1-\alpha} \right) = 1 - \Phi \left(\xi_{1-\alpha} + \frac{\sqrt{n}(\theta - \theta_{0})}{\sigma} \right)$$

О связи между доверительным оцениванием и проверкой гипотез

Опр. 15. Случайное подмножесто $\Theta^* = \Theta * (X, \alpha) \subseteq \Theta$ называется доверительным множеством уровня $1 - \alpha$, $0 < \alpha < 1$, если

$$P_{\theta}(\theta \in \Theta^*(X, \alpha)) \ge 1 - \alpha \ \forall \theta \in \Theta$$

- **Теорема 7.** 1. Пусть $\forall \theta_0 \in \Theta$ гипотеза $H_0: \theta = \theta_0$ при альтернативе $H_1: \theta \neq \theta_0$ имеет $S_{\alpha}(\theta_0)$ критерием уровня α . Пусть $\Theta^*(x,\alpha) = \{\theta: x \in \overline{S_{\alpha}}(\theta)\}$. тогда $\Theta^*(X,\alpha) = \{\theta \in \mathbb{Z}_{\alpha}(\theta)\}$ тогда $\Theta^*(X,\alpha) = \{\theta \in \mathbb{Z}_{\alpha}(\theta)\}$ тостроить доверительное множество уровня 1α . (Если есть критерий, то можно по этому построить доверительное множество)
 - 2. Если $\Theta^*(X,\alpha)$ доверительное множество уровня $1-\alpha$, то $\overline{S_{\alpha}}(\theta_0) = \{x : \theta_0 \notin \Theta(x,\alpha)\}$ есть обрасть применения гипотезы H_0 (следовательно и критерий).

Замечание. Пункт 2 означает, что если θ_0 попало в доверительное множество, то H_0 надо применять.

Доказательство. 1.

$$P_{\theta}(\theta \in \Theta^{*}(X, \alpha)) = P_{\theta}(X \in \overline{S_{\alpha}}(\theta)) = 1 - \underbrace{P_{\theta}(X \in S_{\alpha}(\theta))}_{<\alpha} \ge 1 - \alpha \ \forall \theta \in \Theta$$

2.

$$P_{\theta_0}(X \in S_{\alpha}(\theta_0)) = 1 - P_{\theta_0}(X \in \overline{S_{\alpha}}(\theta_0)) = 1 - \underbrace{P_{\theta_0}(\theta_0 \in \Theta^*(X, \alpha))}_{>1 - \alpha} \le 1 - (1 - \alpha) = \alpha$$

Пример. Пусть $X = (X_1, \dots, X_n)$, $\{X_i\}$ - н.о.р. сл.в., $X_1 \sim N(0, \sigma^2)$, $\theta \in \mathbb{R}^1$. Построим критерий для $H_0: \theta = \theta_0$ против $H_1: \theta \neq \theta_0$. Уровень значимости пусть будет α , $0 < \alpha < 1$. Построим доверительное множество для θ уровня $1 - \alpha$. Пусть $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ - оптимальная оценка θ . Тогда $\frac{n^{1/2}(\overline{X}-\theta)}{\sigma} \sim N(0,1)$,

$$P_{\theta}\left(\left|\frac{n^{1/2}(\overline{X}-\theta)}{\sigma}\right| < \xi_{1-\alpha/2}\right) = 1 - \alpha$$
$$\Phi(\xi_{1-\alpha/2}) = 1 - \alpha/2$$

То есть $\Theta^*(X,\alpha) = \{\theta : |\frac{n^{1/2}(\overline{X}-\theta)}{\sigma}| < \xi_{1-\alpha/2}\}$. В силу замечания к Теореме 7 $S_{\alpha}(\theta_0) = \{X : |\frac{n^{1/2}(\overline{X}-\theta_0)}{\sigma}| \ge \xi_{1-\alpha}\}$ есть критическое множество для H_0 . Мощность

$$W(\theta) = P_{\theta}(X \in S_{\alpha}(\theta_{0})) = P_{\theta}(\left|\frac{n^{1/2}(\overline{X} - \theta_{0})}{\sigma}\right| \ge \xi_{1-\alpha/2}) = 1 - P_{\theta}(\left|\frac{n^{1/2}(\overline{X} - \theta_{0})}{\sigma}\right| < \xi_{1-\alpha/2}) =$$

$$= 1 - P(-\xi_{1-\alpha/2} + \frac{n^{1/2}(\theta_{0} - \theta)}{\sigma} < \frac{n^{1/2}(\overline{X} - \theta)}{\sigma} < \xi_{1-\alpha} + \frac{n^{1/2}(\theta_{0} - \theta)}{\sigma}) =$$

$$= 1 - \left[\Phi(\xi_{1-\alpha/2} + \frac{n^{1/2}(\theta_{0} - \theta)}{\sigma}) - \Phi(-\xi_{1-\alpha/2} \frac{n^{1/2} + (\theta_{0} - \theta)}{\sigma})\right] =$$

$$= \left[\Phi(\xi_{\alpha/2} + \frac{n^{1/2}(\theta_{0} - \theta)}{\sigma}) + \Phi(\xi_{\alpha/2} + \frac{n^{1/2} + (\theta - \theta_{0})}{\sigma})\right]$$

****** TODO: вставить график *****

 $\Pi pu \, n \to \infty \, W(\theta) \to 1 \, \forall \theta \neq \theta_0!$. То есть $S_{\alpha}(\theta_0)$ состоятелен против любой фиксированной альтернативы.

Критерий Фишера (F-критерий) в Гауссовской линейной регрессией

Опр. 16. Если $\xi \sim N(0,1), \ \eta_k \sim \chi^2(k), \ \xi \ u \ \eta_k$ независимы, а константа $\mu \in \mathbb{R}^1, \ mo \ c.r.s.$

$$t_k(\mu) \stackrel{d}{=} \frac{\xi + \mu}{\sqrt{\frac{1}{k}\eta_k}} \sim S(k, \mu)$$

имеет нецентральное распределение Стьюдента с k степенями свободы и параметром нецентральности μ

Опр. 17. Если $\xi_i \sim N(0,1), i=1,\ldots,k, \ u \ \{\xi_1,\ldots,\xi_k\}$ независимы, а $\Delta^2 = *******$ тогда $\eta_k(\Delta) \stackrel{d}{=} \xi_1^2 + \ldots + \xi_k^2 \sim \chi^2(k,\Delta^2)$

имеет нецентральное распределение xu-квадрат с k степенями свободы и параметром нецентральности Δ^2

Опр. 18. Если $\eta_k \sim \chi^2(k, \Delta^2)$, $\nu_m \sim \chi^2(m)$, $u \eta_k u \nu_m$ независимы, то сл.в.

$$f_{k,m}(\Delta) \stackrel{d}{=} \frac{\frac{1}{k}\eta_k}{\frac{1}{m}\nu_m} \sim F(k, m, \Delta^2)$$

имеет нецентральное распределение Фишера с (k,m) степенями свободы и параметром нецентральности Δ^2

Лемма 2. 1. Распределение сл.в. $\eta_k \sim \chi^2(k, \Delta^2)$ зависит лишь от Δ , но не от a_1, \ldots, a_k . А именно

$$\eta_k \stackrel{d}{=} (z_1 + \Delta)^2 + z^2 + \ldots + z^k$$

 (z_1,\ldots,z_k) - *H.o.p.* N(0,1) *c.n.e.*

2. Если вектор $\xi \in \mathbb{R}^k, \xi \sim N(a, \Sigma), \Sigma > 0$, то

$$\xi^T \Sigma^{-1} \xi \sim \chi^2(k, \Delta^2), \Delta =$$

Доказательство. 1. *****

Пусть $\xi = (\xi_1, ..., \xi_k)^T$, ортог матр.

$$C = \begin{pmatrix} \frac{a_1}{\Delta} & \cdots & \frac{a_k}{\Delta} \\ \cdots & \cdots & \cdots \end{pmatrix}, \ \nu = C\xi$$

Тогда
$$\eta_k \stackrel{d}{=} |\xi|^2 = |\nu|^2$$
, так как C - ортог. Но $\nu = C \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} + C\dot{\xi} = \begin{pmatrix} \Delta \\ 0 \\ \vdots \\ 0 \end{pmatrix} + Z$, где

$$\dot{\xi} = \xi - E\xi, z = C\dot{\xi} \sim N(0, E_k) \text{ Итак, } \eta_k \stackrel{d}{=} |\nu|^2 = (z_1 + \Delta)^2 + z_2^2 + \ldots + z_k^2$$

2.
$$\xi^T \Sigma^{-1} \xi = |\Sigma^{-1/2} \xi|^2$$
, причем $\Sigma^{-1/2} \xi \sim N(\Sigma^{-1/2} a, \mathbf{E}_k)$. Отсюда $|\Sigma^{-1/2} \xi|^2 \sim \chi^2(k, \Delta^2)$ с $\Delta^2 = |\Sigma^{-1/2} a|^2 = a^T \Sigma^{-1} a$

Лемма 3. Случайная величина $t_k(\mu)$ обладает следующим свойством стохастической упорядоченности. при $\mu_2 > \mu_1$

Аналогично

$$P(\eta_k(\Delta_2) > xi) > P(\eta_k(\Delta_1) > x), \Delta_2 > \Delta_1$$
(5)

Доказательство. *****

Заметим, что, если ξ и η - независимые случайные величины, и $\mathrm{E}|\phi(\xi,\eta)|<\infty$, то

$$E\phi(\xi,\eta) = E\left\{ (E\phi(\xi,\eta)|_{\xi=\eta}) \right\}$$
(7)

В силу (7)

$$P(t_k(\mu_2) > x) = P(\frac{\xi + \mu_2}{\sqrt{\frac{1}{k}\eta_k}} > x) = EI(\xi > x\sqrt{\frac{1}{k}\eta_k} - \mu_2) =$$

= $E\{1 - I()\}$

Обратимся к линейной гауссовской модели $X = Z_c + \mathcal{E}$, где $X = (X_1, \dots, X_n)^T$ - наблюдение; $Z - (n \times p)$ - матрица регрессора p < n; $\mathcal{E} \sim N(0, \sigma^2 \mathbf{E}_n)$; $c = (c_1, \dots, c_p)^T$; \underline{c} и σ^2 неизвестны. Расммотрим новый вектор $\beta = Ac$, $A - (k \times p)$ - матрица, $rank(A) = k, k \leq p$.

Построим для β доверительное множество уровня $1-\alpha$

Пусть \hat{c}_n - о.п.к. для c, \hat{s}_n^2 - о.п.к. для σ^2 . Пусть $\hat{\beta}_n = A\hat{c}_n$. Так как $\hat{c}_n \sim N(e, \sigma^2(Z^TZ)^{-1})$