

Limites du modèle DAC

	Dossier médical	Ordonnance
Médecin	RW	RW
Patient (Attaquant)	-	R
Application piégée	RW	RW

Application s'exécutant pour le compte du médecin (hérite des droits du médecin dans DAC) Transfert illégal non contrôlé par DAC

Limites du modèle DAC

MAC

- MAC = Mandatory Access Control
 - Contrôle d'accès obligatoire
- MAC ajoute des étiquettes à chaque sujet et objet
- Une politique d'accès contient les règles d'accès permises pour chaque sujet et objet
- Politique par défaut
 - REFUSÉ (« Deny ») : l'accès n'est pas permis, à moins qu'il y ait une règle indiquant le contraire dans la politique d'accès
- Les règles et étiquettes peuvent seulement être changées par un administrateur avec un logiciel de confiance (« trusted »)

Politique de sécurité multiniveau

- Exemple classique de contrôle d'accès MAC
- Etiquette = niveau de sécurité
- Exemple

Public ≤ Confidentiel ≤ Secret

Politique de sécurité multiniveau

- Les utilisateurs reçoivent un niveau d'habilitation
 - Les utilisateurs s'engagent à ne pas diffuser n'importe comment les informations qu'ils détiennent
- Les informations reçoivent un niveau de classification
 - Mesure la confidentialité de l'information

Conditions de sécurité (Modèle de Bell & LaPadula)

- No Read Up
 - Un sujet s peut lire un objet o si :
 - niveau_classification(o) ≤ niveau_habilitation(s)
- No Write Down
 - Un sujet s peut modifier un objet o si :
 - niveau_habilitation(s) ≤ niveau_classification(o)

- Objectif du « No write down »
 - Soit un programme s'exécutant au niveau « Secret »
 - Ce programme peut lire des données classées « Secret »
 - Mais le « No write down » empêche un éventuel piège contenu dans ce programme de transmettre les données lues vers un utilisateur qui ne serait pas habilité au niveau « Secret »

Utilisateur habilité

« Secret »

	Dossier médical (classé S)	Ordonnance (classé P)
Médecin (habilité S)	RW	RW
Attaquant (habilité P)	-	R
Application piégée (niveau S)	RW	R W

Transfert illégal bloqué par Bell et LaPadula

	Dossier médical (classé S)	Ordonnance (classé P)
Médecin (habilité S)	RW	RW
Attaquant (habilité P)	-	R
Application piégée (niveau courant S)	RW	₽₩
Application piégée (niveau courant P)	PW	RW

Intérêt du niveau courant : le médecin doit travailler au niveau P pour pouvoir écrire l'ordonnance

MAC

- Conditions de Bell & LaPadula trop rigides
- Aujourd'hui utilisation d'un autre modèle MAC
 - DTE (Domain Type Enforcement)
 - Implanté dans SELinux (Security Enhanced Linux)

Pourquoi RBAC?

- DAC est de gestion difficile car chaque usager est un cas individuel
 - Considérez des compagnies de milliers d'employés
- DAC suppose que les usagers sont propriétaires des ressources et peuvent transférer les droits sur elles,
 - Tandis que normalement c'est l'organisation qui est propriétaire des ressources, et veut en retenir le contrôle

RBAC

- RBAC = Role Based Access Control
- RBAC est basé sur deux points
 - Le fait que dans les organisations les employés sont affectés à des rôles
 - Comptable, programmeur, docteur, infirmière, technicien ...
 - Les rôles sont organisés en hiérarchies
 - Le fait que chaque employé, pour exécuter son rôle, a besoin de certaines permissions

RBAC

- RBAC s'appuie sur la notion organisationnelle de rôle pour associer des permissions de sécurité aux différents rôles
- Le rôle devient un mécanisme pour associer des permissions aux usagers

RBAC

RBAC Concept de session

- Pour utiliser ses rôles, un usager doit activer des sessions
- Une session est un processus qui agit pour un usager
 - En changeant de session, un usager peut activer de nouveaux rôle(s)
 - P.ex. un employé de banque Paul peut activer un rôle quand il est aux prêts et un autre rôle quand il est aux investissements
- Pour accéder à une session, un sujet doit s'authentifier
- Un sujet peut se trouver dans plusieurs sessions simultanément

UR:

Un rôle peut être affecté à plusieurs utilisateurs Plusieurs rôles peuvent être affectés à un utilisateur

RBAC Hiérarchique

- On peut introduire une hiérarchie de rôles
- Propriété de cette hiérarchie
 - Héritage des permissions

Si Comptable Salaire a une permission, alors le Chef
Salaire et le Directeur de Comptabilité l'ont aussi

RBAC avec contraintes

- Les contraintes sont un élément extrêmement important de RBAC
 - Les contraintes servent à empêcher certaines situations indésirables
- Exemple : contrainte de cardinalité
 - Il ne doit y avoir qu'un seul utilisateur affecté au rôle de directeur

RBAC avec contraintes

- Contraintes de « séparation des pouvoirs »
 - En anglais : « Separation of duty » (SOD)
 - Ce sont les contraintes les plus importantes
 - Exemple : Celui qui approuve un chèque (rôle R1) ne peut pas être celui qui le signe (rôle R2)
 - Dans RBAC, cela se traduit par une contrainte qui rend impossible qu'un utilisateur soit affecté à R1 et R2
- SOD statique (SSOD) ou dynamique (DSOD)
 - SSOD : la séparation s'applique en toute situation
 - DSOD : la séparation s'applique uniquement dans une même session

AGLP

AGLP

- Access Global Local Permissions
- Implémentation de RBAC sous Windows
- Repose sur les Active Directory(AD)

Éléments

- Groupe « Globaux »
 - regroupement des utilisateurs, typiquement selon leur rôles
 - généralement définis sur des serveurs de domaine globaux (d'où le nom)
- Groupes « <u>L</u>ocaux »
 - auxquels sont attribués des Permissions sur des ressources
 - généralement définis et résidants sur les serveurs où ces ressources se trouvent (d'où le nom)
 - les membres sont exclusivement des groupes globaux