Abschlussprüfung Sommer 2015 Lösungshinweise

IHK

IT-System-Elektroniker IT-System-Elektronikerin 1190

Ganzheitliche Aufgabe I Fachqualifikationen

Allgemeine Korrekturhinweise

Die Lösungs- und Bewertungshinweise zu den einzelnen Handlungsschritten sind als Korrekturhilfen zu verstehen und erheben nicht in jedem Fall Anspruch auf Vollständigkeit und Ausschließlichkeit. Neben hier beispielhaft angeführten Lösungsmöglichkeiten sind auch andere sach- und fachgerechte Lösungsalternativen bzw. Darstellungsformen mit der vorgesehenen Punktzahl zu bewerten. Der Bewertungsspielraum des Korrektors (z. B. hinsichtlich der Berücksichtigung regionaler oder branchenspezifischer Gegebenheiten) bleibt unberührt.

Zu beachten ist die unterschiedliche Dimension der Aufgabenstellung (nennen – erklären – beschreiben – erläutern usw.). Wird eine bestimmte Anzahl verlangt (z. B. "Nennen Sie fünf Merkmale …"), so ist bei Aufzählung von fünf richtigen Merkmalen die volle vorgesehene Punktzahl zu geben, auch wenn im Lösungshinweis mehr als fünf Merkmale genannt sind. Bei Angabe von Teilpunkten in den Lösungshinweisen sind diese auch für richtig erbrachte Teilleistungen zu geben.

In den Fällen, in denen vom Prüfungsteilnehmer

- keiner der fünf Handlungsschritte ausdrücklich als "nicht bearbeitet" gekennzeichnet wurde,
- der 5. Handlungsschritt bearbeitet wurde,
- einer der Handlungsschritte 1 bis 4 deutlich erkennbar nicht bearbeitet wurde,

ist der tatsächlich nicht bearbeitete Handlungsschritt von der Bewertung auszuschließen.

Ein weiterer Punktabzug für den bearbeiteten 5. Handlungsschritt soll in diesen Fällen allein wegen des Verstoßes gegen die Formvorschrift nicht erfolgen!

Für die Bewertung gilt folgender Punkte-Noten-Schlüssel:

Note 1 = 100 - 92 Punkte Note 2 = unter 92 - 81 Punkte Note 3 = unter 81 - 67 Punkte Note 5 = unter 50 - 30 Punkte Note 6 = unter 30 - 0 Punkte

1. Handlungsschritt (25 Punkte)

aa) 2 Punkte

Schutzleiteranschluss oder Potenzialausgleichsanschluss

ab) 5 Punkte

- Fehlerfall, Gehäuse steht unter Spannung
- Durch fehlende Verbindung zwischen Gehäuse und Schutzleiter kein Fehlerstrom
- Damit keine automatische Abschaltung der Betriebsspannung
- Lebensgefahr durch zu hohe Berührungsspannung

1 Punkt

1 Punkt 1Punkt

2 Punkte

ac) 2 Punkte

- Querschnitt der Leitung
- Farbe der Leitung
- u. a

ba) 4 Punkte, 2 x 2 Punkte

Vorteil Single Feed Input gegenüber Dual Feed Input:

- Geringerer Anschluss- und Materialaufwand

Vorteil Dual Feed Input gegenüber Single Feed Input:

- Höhere Ausfallsicherheit durch zwei getrennte Netze

bb) 12 Punkte

6 Punkte: Verbindung innerhalb der Unterverteilung und Anschluss der USV

2 Punkte: Kabelname (bsp. A,B,C,D,E)

2 Punkte: Aderanzahl und Querschnitt der Kabel

2 Punkte: Nennstrom 125 A

2. Handlungsschritt (25 Punkte)

a) 9 Punkte, 9 x 1 Punkt

Fehler	Auswirkung	Fehlerbehebung
Client 2 (Chefredaktion) falsches Gateway	Keine Kommunikation mit anderen Netzen möglich	Gateway 10.10.1.30 eintragen
Client 5 (Besprechungsraum) falsche Subnetzmaske	Keine Kommunikation möglich	Subnetzmaske 255.255.255.224 eintragen
Client 1 (Chefredaktion) falsche IP-Adresse	Keine Kommunikation möglich	IP-Adresse ändern, z. B. in 10.10.1.3

Andere Lösungen sind möglich.

b) 3 Punkte, 3 x 1 Punkt

- Netzwerkdrucker
- Server
- Router

c) 8 Punkte

	Drucker Chefredaktion	Drucker Besprechungsraum	
IP	10.10.1.1	10.10.2.1	
SN	255.255.255.224	255.255.255.224	
GW	10.10.1.30	10.10.2.30	
DNS 10.10.4.1		10.10.4.1	

da) 3 Punkte

- Automatisch generiert
- Reservierter IP-Adressbereich
- IPv4 APIPA wird verwendet

db) 2 Punkte

- DHCP-Server ist nicht erreichbar
- DHCP-Server weist keine Adresse zu
- u. a.

3. Handlungsschritt (25 Punkte)

aa) 6 Punkte

- 3 Punkte für eine funktionsfähige Lösung 3 Punkte für die Nennung der Komponenten, Materialien

	Funktionsfähige Lösung	Komponenten, Materialien	
1.	Energieversorgung über PoE	PoE-fähiger APPoE-Switch2 Patchkabel	
2.	Energieversorgung über PoE	AP ohne PoEPoE-SwitchEthernet-Splitter2 Patchkabel	
3.	Energieversorgung über PoE	 PoE-fähiger AP Switch Ethernet-Injector Ethernet-Splitter 2 Patchkabel 1 Power Supply 	
4.	Energieversorgung über neue Elektroinstallation	 Elektroleitung (NYM 2 x 1,5 mm²) Steckdose Anschluss an freien Stromkreis der E-Verteilung Switch 2 Patchkabel 1 Power Supply 	

Andere Lösungen sind möglich.

ab) 9 Punkte

ba) 3 Punkte

- Netzschalter am Netzteil ist nicht eingeschaltet
- Pin 14 wurde nicht mit Masse verbunden
- Falsche Spannungsart am Multimeter eingestellt, AC statt DC
- Netzteil defekt
- Falsche Polarität am Messgerät eingestellt (nur bei analogen Messgeräten)

bb) 2 Punkte

Typenschild mit Erdungszeichen und Gerät der SK I hat einen Stecker mit Schutzkontakt (Schutzleiteranschluss)

Hinweis für Korrektor: Die maximale Prüffrist beträgt 24 Monate. Die nächste Prüfung muss 4.2017 erfolgen.

bd) 2 Punkte

Den Server gegen Inbetriebnahme sichern

4. Handlungsschritt (25 Punkte)

a) 6 Punkte

SIP:

Ein Netzwerkprotokoll der Anwendungsschicht, das, z. B. bei VoIP, dem Aufbau der Steuerung und dem Abbau von Sessions dient

SIP-Trunking:

Eine Technik, mit deren Hilfe VolP-Telefonanlagen mehrere Verbindungen zum Provider mit nur einem Account aufbauen können

b) 3 Punkte

- Erhöhte Sicherheit
- Geringere Netzlast
- Bessere Unterstützung für Quality of Service
- Höhere Flexibilität bei der Standortwahl der Telefone
- u. a.

ca) 6 Punkte

Allgemeine Einstellungen				
Name	IP_Phone_3			
IP-Adresse	☐ statisch ☑ dynamisch			
SIP-Proxy	10.0.7.1			
SIP-Registrar	10.0.7.1			
Sprach-Codec-Priorisierung				
1. Codec	G.711 aLaw			
2. Codec	G.729			
STUN-Einstellungen				
STUN-Server				
SIPS- und SRTP-Einstellungen				
SIPS	□ ja 🗵 nein			
SRTP	□ ja 🗷 nein			

cb) 5 Punkte

Mithilfe eines STUN-Servers können VoIP-Clients hinter einem NAT-Router ihre öffentliche IP und die verwendeten Ports ermitteln, die für den Verbindungsaufbau notwendig sind. Der Eintrag ist hier nicht notwendig, da sich die Telefone bei der Telefonanlage im lokalen Netzwerk registrieren.

d) 5 Punkte

Der PoE-Switch ist geeignet, da dessen Ausgangsleistung 180 W größer als die Leistungsaufnahme der 23 IP-Telefone (149 W) ist.

1 IP-Telefon, Klasse 2:

 $P_{max} = 6,49 W$

Gesamtleistung aller 23 Telefone:

 $P_{\text{qes}} = 23 * 6,49 W = 149 W$

Switch:

 $P_{PoF} = 180 \text{ W}$

5. Handlungsschritt (25 Punkte)

a) 3 Punkte

Standard	2,4 GHz	5 GHz
IEEE 802.11g	X	
IEEE 802.11n	Х	Х

b) 8 Punkte, 4 x 2 Punkte

2,4 GHz

Vorteile

- Hohe Produktreife der WLAN Produkte
- Große Verbreitung

Nachteile

- Nur drei überlappungsfreie Kanäle
- Zur Verfügung stehende Bandbreite ist geringer
- Frequenzband ist auch für andere Verwendungen freigegeben

5 GHz

Vorteile

- Zur Zeit wenig benutzter Frequenzbereich
- Sendeleistungen bis 200 mW/1W möglich
- 19 überlappungsfreie Kanäle
- Mehr Bandbreite möglich

Nachteile

- Stärkere Reglementierung
- Unterteilt in drei Bänder mit unterschiedlichen Freigabefestlegungen
- TPC und DFS ist bei vollen Funktionsumfang notwendig
- Keine Frequenzplanung durch DFS möglich
- Nur Bereich 5470 5725 MHz darf im Freien verwendet werden
- Geringe Marktdurchdringung bei WLAN-Clients
- u.a.

c) 5 Punkte

- Entsprechende maximale Sendeleistung 1.000 mW aus Anlage ermitteln
- Formel aus Anlage ermitteln
- Bezugswert 1 mW übernehmen
- Rechnung und Lösung

- 1 Punkt 1 Punkt
- 1 Punkt
- 2 Punkte

$$30 \text{ dB} = 10 * \log \left(\frac{1.000 \text{ mW}}{1 \text{ mW}} \right) \text{dB}$$

d) 5 Punkte

25 dB

An der Antenne darf die Sendeleistung von 30 dB nicht überschritten werden, die sich aus Antennengewinn (3 dB) und der Sendeleistung des Gerätes zusammensetzt.

Die Sendeleistung des AP ist auf 25 dB einzustellen: (25 dB + 3 dB) < 30 dB

e) 4 Punkte

- In diesem Frequenzbereich darf das WLAN andere Funkdienste (z. B. Radar) nicht stören.
- Der Access Point muss einen freien Kanal automatisch auswählen.