

Medical AI Research: Predicting postoperative blood transfusion for CABG patients

Capstone Preliminary Presentation, March 19, 2024

Team: Jenny Tsai ¹ & Jichong Wu ¹ **Collaborator:** Dr. Puneet Gupta ² **Advisor:** Professor Amir Jafari ¹

¹George Washington University

² George Washington University Hospital

Overview

Introduction Modeling & Results

Data Preprocessing Conclusions

Analysis Strategy Next Steps

Introduction

Coronary Artery Bypass Graft (CABG) is a common cardiac surgery

May cause major bleeding which needs blood transfusion

Blood transfusion is associate with:

- Higher risks of mortality after surgery
- Higher odds of readmission and heart failure within 30 days

Research Gap

Previous research*:

- A single cardiac surgery center in Austria
- N = 3782 (2010-2019)
- Random Forest:RUC: 0.76-0.86

In the current project:

- US national database <u>ACS NSQIP</u>
- N = 8587 (2018-2022)
- Basic models + Neural Networks + Feature engineering/selection

*Tschoellitsch et al. (2022)

Objectives

- Develop models that can best predict which patients need blood transfusion
- Improve patient selection and education
- Enhance physician preoperative awareness
- Inform periop guidelines for CABG patients
- Experiment with different DS techniques (e.g., feature selection, feature engineering, synthetic data) applied in basic and advanced models to achieve best outcomes
- Develop a full set of modules that can be reused in the future, which covers preprocessing, feature selection and feature engineering, and modeling

Data Preprocessing

Datasets

- Participant Use Data File (PUF) on the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP)
- Year 2018 2022 (N = 8587, # of features = 294)

Key preprocessing steps:

- Basic clean-up (e.g., recode values, correct data type)
- Remove columns with over 50% missing values
- 3. Impute with mean (numeric) and most frequent values (categorical)
- 4. Standardize all numeric features
- 5. Remove post-operative and irrelevant features by expert

Final dataset size:

N = 8587, # of features = 41

Analysis Strategy

Data

Modules and Utilities

class - data pre-processing class - baseline mod		class - baseline models			class - feature engineering	utility
			class name	methods		
datasci	.size()	DecisionTree	PCA	PCA_Reduced_Feature()	featurewiz	file_compare()
	.recode()	RandomForest		Reduced_Feature_Space_Plot()	featuretools	glossary()
	.missingReport()	SVM		Reduced_Feature_Space_Heatmap()		Model_Predict()
	.remove_all_nan_columns()	LogReg		Explained_Variance_Ratio()		Model_Report()
	.impute_all()	GradientBoosting		Reduced_Feature_Space_Plot()		Model_Accuracy()
	.imputation()	XGB		Reduced_Feature_Space_Heatmap()		Model_Mean_Accuracy()
	.standardize()	NaiveBayesGaussianNB		PCA_New_df()		Model_RMSE()
	.eda()	KNN				Model_F1()
	.featureSelection()	TPOT				Model_Confusion_Matrix()
						Plot_Confusion_Matrix()
						Plot_Decision_Tree()
						Model_ROC_AUC_Score()
						Plot_ROC_AUC()
						Plot_Random_Forest_Feature_Importances()
						Model_Results_Table()
						Plot_ROC_Combined()
						Calc_Plot_VIF()
						Calc_Top_Corr()
						Plot_Heatmap_Top_Corr

Model Results

Receiver Operating Characteristic (ROC) Plot - Comparison

False Positive Rate

Gradient Boosting n_estimators=300, learning_rate=0.05 OTHBLEED

 AUC-Decision Tree - gini=0.874 AUC-Decision Tree - entropy=0.872 AUC-SVM - linear=0.851 AUC-SVM - rbf=0.470 AUC-GaussianNB=0.814 — AUC-LogisticRegression=0.858 AUC-Gradient Boosting=0.934 — AUC-XGBoost=0.882 AUC-Random Forest=0.889 AUC-KNN=0.521

0.8

XGBoost

Random Forest

1.0

0.8

n_estimators=100, eta=0.3 OTHBLEED

n_estimators=100, 20_features OTHBLEED

n_neighbors=3 OTHBLEED

OTHBLEED

OTHBLEED

Model Name

SVM - linear

Random Forest

SVM - rbf GaussianNB

KNN

Decision Tree - gini

LogisticRegression

Decision Tree - entropy

69.491525 0.552345

0.25 55.528652 0.666868

0.25 52.945924 0.685960

0.25 71.751412 0.531494

0.25 73.930589 0.510582

0.25 72.558515 0.523846

0.25 59.967716 0.632711

0.25 73.930589 0.510582

Parameters

C=1.0, gamma=auto OTHBLEED

C=1.0, gamma=0.2 OTHBLEED

n_neighbors=3 OTHBLEED

OTHBLEED

OTHBLEED

max_depth=3, min_samples_leaf=5 OTHBLEED

max_depth=3, min_samples_leaf=5 OTHBLEED

n_estimators=100, eta=0.3 OTHBLEED

n_estimators=100, 20_features OTHBLEED

Gradient Boosting n_estimators=300, learning_rate=0.05 OTHBLEED

0.721558

0.767803 0.801463

0.685814

0.789397

0.619534

Target Test Size Accuracy Mean Accuracy (10 folds)

83.2

83.2

86.8

84.4

72.0

87.2

89.6

85.2

78.4

88.0

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

1.0

0.8

0.2

86.9 0.409878

86.9 0.409878

86.0 0.363318

83.9 8.394968

79.5 0.529150

86.7 0.357771

90.7 0.322490

88.6 0.384708

81.6 0.464758

85.4 0.346410

0.4

Receiver Operating Characteristic (ROC) Plot - Comparison

— AUC-Decision Tree - gini=0.724 — AUC-Decision Tree - entropy=0.724

— AUC-Gradient Boosting=0.801 — AUC-XGBoost=0.789 AUC-Random Forest=0.793

8.0

— AUC-SVM - linear=0.746

— AUC-GaussianNB=0.686 — AUC-LogisticRegression=0.768

— AUC-SVM - rbf=0.500

AUC-KNN=0.620

RMSE F1-score (macro avg) ROC-AUC score

0.737500

0.737500

0.735331

0.457701

0.628639

0.751738

0.789071

0.737775

0.502872

0.874408

0.872159

0.851136

0.469741

0.814315

0.858306

0.933649

0.881638

0.521388

0.888747

0.6

False Positive Rate

Post-training Analysis

Conclusions

- 1. PUFYEAR, ASACLAS, RACE_NEW may cause multicollinearity.
- 2. **Gradient Boosting**, XGBoost, Random Forest perform the best.
- 3. **Synthetic data generation** techniques (DataSynthesizer using Bayesian networks) significantly improve model performance.
- 4. **Race, days from preoperative labs to operation, operation time**, other procedure, BMI, sex, length of hospital stay, shortness of breath, age, preoperative blood test measures
- 5. days from preoperative labs to operation, operation time may have a negative impact on model results while other procedure, BMI have a positive effect.

Next Steps

Improve model performance by:

- Add more samples (older datasets from 2015-2017)
- Recategorize target variable (intra vs. postop blood transfusion)
- Other ways to generate synthetic data (e.g., realtabformer)
- Conduct post-training analysis (continued) to study impacts of features to model performance
- Neural networks (e.g., CNN, transformers)

Thank You!

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC