Marcelo Salles Olinger

PREDIÇÃO DE CONFORTO TÉRMICO EM ESCRITÓRIOS VENTILADOS NATURALMENTE POR MEIO DE REDES NEURAIS ARTIFICIAIS

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Engenharia de Engenharia Civil.

Orientador: Profa. Ana Paula Melo, Dra.

Florianópolis

2019

1 RESULTADOS

1.1 PARÂMETROS DE ENTRADA

Ao analisar o banco de dados disponibilizado, obteve-se as distribuições de ocorrência em relação aos parâmetros observados (Figura 1.1).

Figura 1.1: Distribuições de ocorrência

Figura 1.1: Continuação

Tanto os edifícios, quanto as salas existentes no banco de dados apresentam predominantemente formato retangular, a partir do qual considera-se que definir as simulações baseando-se em modelos de edificações retangulares, com salas retangulares, representa adequadamente as tipologias de edifícios encontradas na cidade de São Paulo. A absortância da cobertura foi definida com o valor fixo de 0,7, valor aproximado para uma cobertura de cor cinza.

Observou-se que esquadrias do tipo maxim-ar são predominantes. Os objetos do *Airflow Network* não modelam especificamente este tipo de esquadria. Porém, optou-se por considerar as janelas como não pivotantes. Considerar uma janela como horizontalmente pivotante implicaria na consideração de que a abertura acontece simultaneamente em cima e embaixo da janela. No caso da janela maxim-ar, por mais que a abertura aconteça em um eixo horizontal, apenas a parte inferior da janela abre.

O uso de elementos de sombreamento é pouco explorado nas edificações existentes. De qualquer maneira, considerou-se a modelagem de sombreamento horizontal sobre as aberturas da edificação, por considerar o potencial do sombreamento para bloquear a entrada de radiação nas zonas térmicas simuladas. Esse parâmetro foi variado a partir do ângulo de sombreamento formado entre a base da abertura e a proteção solar, localizada no topo da abertura. A maioria das salas observadas possuem ventilação cruzada, mas a ventilação unilateral é uma estratégia com ocorrência considerável.

As informações relacionadas ao tipo de vidro não permitem definir valores relacionados ao fator solar (FS). Observa-se apenas a ocorrência de vidros laminados e vidro comum incolor. Optou-se por variar o fator solar dos vidros nas simulações para avaliar o impacto deste parâmetro nos resultados de conforto térmico.

Como as simulações de referência foram modeladas como pavimentos da edificação, o parâmetro relacionado ao número de pavimento das edificações foi transformado no parâmetro "altura do pavimento".

A Tabela 1.1 apresenta os limites mínimos e máximos atribuídos aos diferentes parâmetros contínuos variados nas simulações, assim como os parâmetros variados pela lógica "sim/não". A velocidade do ar foi variada com valores discretos, de acordo com a Tabela ?? do Capítulo ??.

Parâmetro	Valores	
Área da sala (m²)	20 - 100	
Razão L:C da sala (-)	0,4 - 2,5	
Pé-direito (m)	2,3 - 3,2	
Azimute (°)	0 - 360	
Altura do pavimento (m)	0 - 50	
Absortância da parede (-)	0,2 - 0,8	
Transmitância da parede (W/m²K)	0,5 - 4,4	
Capacidade térmica da parede (kJ/m ² K)	0,22 - 450,00	
PAF (-)	0,1 - 0,6	
Fator solar do vidro (-)	0,20 - 0,87	
Sombreamento (°)	0 - 80	
Densidade de ocupação (pessoa/m²)	0,05 - 0,20	
Fator de abertura da janela (-)	0,2 - 1,0	
Razão L:C do edifício (-)	0,2 - 1,0	
Cobertura exposta	Sim / Não	
Piso exposto	Sim / Não	
Ventilação	Cruzada / Unilateral	
Velocidade do ar (m/s)	0,0 - 1,2	

Tabela 1.1: Limites mínimos e máximos dos parâmetros

1.2 SIMULAÇÕES SIMPLIFICADAS

1.2.1 Cálculo do coeficiente de pressão pelo método analítico

Ao comparar os valores dos coeficientes de pressão (Cp's) das medições em túnel de vento da Universidade Politécnica de Tóquio (TPU) e os valores dos Cp's obtidos pelo método analítico (MA), obteve-se um gráficos de pontos. A Figura 1.2 apresenta a comparação para as 25 geometrias diferentes, para cada fachada, e para cada ponto disponibilizado pela TPU. Como os valores calculados pelo MA são únicos para cada fachada, e a TPU oferece valores diferentes para diversos pontos ao longo das fachadas, os pontos no gráfico da Figura 1.2 distribuem-se horizontalmente. É possível observar que a faixa de valores dos Cp's disponibilizados pela TPU é maior do que faixa de valores calculados pelo MA. Enquanto o menor valor de Cp disponibilizado pela TPU é -1,40, e o maior valor é 1,08, pelo MA o valor mínimo é igual a -0,96 e o máximo é igual a 0,60.

Figura 1.2: Comparação entre os valores de Cp das 25 geometrias

Dentre as geometrias analisadas, a proporção com a maior diferença absoluta média entre os valores dos Cp's foi igual a 0,344, para a geometria da edificação *highrise* com proporções de largura, profundidade e altura igual a 2:1:2 (Figura 1.3).

A partir da comparação conduzida, decidiu-se comparar as diferenças nos resultados de simulações termoenergéticas utilizando como base uma tipologia com proporções de largura, profundidade e altura igual a 2:1:2.

Os resultados das 1000 simulações foram comparados por gráficos de pontos. A comparação entre as médias anuais de trocas de ar por hora (ACH), apresentada na Figura 1.4, mostra que o MA faz com que as simulações subestimem as trocas de ar nas simulações, possivelmente devido aos menores valores dos Cp's obtidos pelo método. A diferença média foi igual a -0,67 para o ACH, com o erro absoluto do 95° percentil (AE95) é igual a 5,23 ACH.

Figura 1.4: Comparação entre as médias anuais do ACH

Apesar dessas diferenças nas trocas de ar, a comparação entre as temperaturas operativas médias, apresentada na Figura 1.5, mostra que a diferença média da temperatura operativa é 0,04 °C, sendo que o AE95 é igual a 0,31 °C. Essas diferenças são confirmadas como pouco significativas ao se analisar a Figura 1.6, com a comparação da fração de horas em desconforto (EHF). A média de diferença do EHF nos casos analisados foi igual a 0,0037, com o AE95 igual a 0,0277. Por tanto, considerou-se que a utilização do MA para calcular os valores dos Cp's é uma alternativa adequada para a simplificação das simulações termoenergéticas.

Figura 1.5: Comparação entre as médias das temperaturas operativas

Figura 1.6: Comparação entre os resultados de EHF

1.2.2 Representação da envoltória com duas camadas

Os resultados das simulações com as paredes equivalentes subestimaram o EHF em 0,0107 na média, quando comparados aos resultados das simulações com as paredes de referência. Os resultados das simulações para a parede de gesso com isolamento resultaram em um erro absolto médio igual a 0,0100, e um AE95 igual a 0,0604 para o EHF (Figura 1.7).

Figura 1.7: Comparação entre os resultados de EHF para a parede de gesso com isolamento

A representação da parede de alvenaria apresenta-se mais adequada considerando-se apenas metade da parede para definir a capacidade térmica. Enquanto que, para a parede com a capacidade térmica total o erro absoluto médio foi igual a 0,0209, e o AE95 foi igual a 0,0650, para a parede de alvenaria com metade da capacidade térmica considerada, o erro médio absoluto foi igual a 0,0189, e o AE95 foi igual a 0,0604.

Figura 1.8: Comparação entre os resultados de EHF para a parede de alvenaria com capacidade térmica total

Figura 1.9: Comparação entre os resultados de EHF para a parede de alvenaria com metade da capacidade térmica

O caso com as maiores diferenças no EHF foi para uma edificação em contato com o solo, com cobertura exposta, e um fator de abertura da janela igual a 0,23. Apesar das diferenças nos resultados, o uso da parede equivalente facilita a parametrização da transmitância térmica e da capacidade térmica. Por esse motivo, considerou-se as diferenças pouco significativas, e a parede equivalente foi adotada para simplificar as simulações.

1.2.3 Condição de contorno das paredes adjacentes à edificação

A simplificação das simulações adotando-se apenas uma zona térmica foi avaliada para duas condições de contorno. Os resultados mostram que a maneira mais adequada de representar as paredes adjacentes à circulação da edificação é considerando-as como adiabáticas. Considerar as paredes adjacentes à circulação como *Outdoors*, faz com que os resultados do EHF sejam subestimados em 0,0868 em média, como AE95 igual a 0,1865 (Figura 1.10).

Figura 1.10: Comparação entre os resultados de EHF para parede *Outdoors*

Os resultados das simulações considerando-se as paredes voltadas para o corredor como adiabáticas subestimaram o EHF em

0,0051 na média, como AE95 igual a 0,0804 (Figura 1.11).

Figura 1.11: Comparação entre os resultados de EHF para parede adiabática

A partir dos resultados obtidos, definiu-se as paredes voltadas para a circulação como adiabáticas no desenvolvimento das simulações simplificadas.

1.2.4 Modelagem da ventilação natural na simulação simplificada

Nesta etapa do trabalho as simulações foram conduzidas para se obter duas respostas: (1) se é adequado o uso do coeficiente de pressão equivalente (Cp_{eq}) para ser associado à porta da zona térmica; (2) qual deveria ser o coeficiente de fluxo mássico de ar adotado para o objeto AirflowNetwork:MultiZone:Surface:Crack.

Para analisar simultaneamente o desempenho do Cp_{eq} e dos coeficientes de fluxo mássico de ar, o gráfico da Figura 1.12 foi gerado, observando-se as raízes dos erros médios quadráticos (RMSE). É possível observar que as simulações desenvolvidas utilizando-se o Cp_{eq} obtiveram resultados com RMSE menores do que as simulações desenvolvidas utilizando-se o Cp obtido diretamente pelo MA. Para a definir o coeficiente de fluxo mássico de ar, levou-

se em conta inicialmente os erros relacionados ao ACH. No entanto, foi identificada uma fronteira de Pareto entre os erros analisados, que mostra como a busca por menores erros de ACH aumenta os erros relacionados ao EHF. O resultado dessa análise levanta duas suspeitas. A primeira é de que as diferenças maiores nas trocas de ar anulem erros relacionados à definição das paredes adjacentes à edificação como adiabáticas. A segunda hipótese, é de que os maiores erros relacionados ao MACH sejam em casos onde as diferenças nas trocas de ar não sejam relevantes para alterar a temperatura operativa nas zonas térmicas e, consequentemente, o EHF.

Figura 1.12: Eficiência de Pareto entre EHF e ACH médio

Como o desenvolvimento das simulações é voltado para obter a maior precisão possível para os resultados de EHF, optou-se por definir o coeficiente de fluxo mássico de ar com valor igual a 0,8, pois as simulações desenvolvidas utilizando-se este valor estão na fronteira de Pareto, e resultaram nos menores erros de EHF.

1.2.5 Análise de sensibilidade

As Figuras 1.13, 1.14 e 1.15 apresentam os resultados das análises de sensibilidade (AS) para efeitos de primeira ordem e efeitos totais, relacionados ao ACH, às temperaturas operativas das zo-

nas, e ao EHF. Os índices apresentados são proporcionais às influências entre os dados de entrada e saída.

Figura 1.13: AS de Sobol dos efeitos de primeira ordem e efeitos totais nas médias anuais de ACH

Figura 1.14: AS de Sobol dos efeitos de primeira ordem e efeitos totais nas temperaturas operativas

Figura 1.15: AS de Sobol dos efeitos de primeira ordem e efeitos totais no EHF

Os parâmetros mais influentes nas ACH, como esperado, são aqueles relacionados às aberturas da zona. O primeiro parâmetro de maior influência é o fator de abertura das janelas, seguido do parâmetro relacionado à exposição das paredes e à presença de VN cruzada ou unilateral. A área tem influência significativa, pois o cálculo das trocas de ar leva em conta o volume de ar na zona, que é diretamente relacionado à sua área. A altura do pavimento é determinante nos resultados do ACH, pois a velocidade do vento no EnergyPlus é calculada em função da altura da zona. A orientação da zona (azimute) não tem uma influência significativa de primeira ordem. No entanto, percebe-se uma influência mais significativa considerando-se os efeitos totais. O azimute é determinante para a definição dos coeficientes de pressão sobre as fachadas da edificação. Por isso, a influência deste parâmetro nos resultados das simulações depende de outros parâmetros, relacionados ao posicionamento e às áreas das aberturas na zona. A velocidade do ar não influencia os resultados relacionados ao ACH, pois é considerada apenas após o término das simulações, ao se calcular o EHF. A AS apresentou interações de segunda ordem significativas entre o fator de abertura das janelas e a presença de VN cruzada ou unilateral, com um índice de sensibilidade igual a 0,121. Contudo, o parâmetro com maiores interações de segunda ordem relacionados ao ACH foi o PAF, com a soma dos índices de segunda ordem igual a 0,300.

As análises relacionadas à temperatura operativa e ao EHF indicam relevância dos parâmetros relacionados à VN. Para ambas as análises, o parâmetro mais influente foi o fator de abertura da janela, enquanto o parâmetro relacionado à exposição das paredes e à presença de VN cruzada ou unilateral foi o terceiro mais influente. O contato com o solo apresentou-se como o segundo parâmetro mais influente nas médias anuais de temperatura operativa, considerando-se os esfeitos totais. No entanto, a influência deste parâmetro não é tão significativa no EHF. Isso indica que a influência do contato com o solo nas temperaturas operativas das zonas é mais significativa em faixas de temperatura que não interferem no cálculo do EHF, ou seja, consideravelmente a cima ou abaixo dos limites superiores de aceitabilidade estabelecidos pelo método de conforto adaptativo. Observa-se que os efeitos totais entre o segundo (contato com o solo) e o quarto (exposição da cobertura) índice de sensibilidade com valores mais altos na AS relacionada à média anual da temperatura operativa são expressivos. A transmitância das paredes, o azimute, e a razão entre a largura e o comprimento da sala também apresentam efeitos totais relevantes, apesar

dos baixos índices de sensibilidade para primeira ordem. Isso indica que há interações significativas entre esses parâmetros e os demais.

O movimento do ar apresenta-se como o segundo parâmetro mais influente nos resultados de EHF, o que indica um grande potencial de uso de ventiladores na busca por conforto térmico nos ambientes. A área da zona e a densidade de ocupação apresentaram-se mais influentes nos resultados de EHF, comparando-se aos resultados relacionados às médias anuais de temperatura operativa. O azimute, apesar de seu índice de sensibilidade baixo para a análise de primeira ordem, apresentou índices de segunda ordem expressivos. As interações de segunda ordem ocorrem relacionadas a parâmetros referentes à VN e a parâmetros referentes à radiação solar. A soma dos índices de segunda ordem do azimute em relação ao EHF foi igual a 0,177.

A complexidade dos fenômenos representados junto às interações entre as diferentes variáveis exige um grande número de casos para reduzir incertezas, pois o método de AS utiliza uma base amostral. Por isso, existe uma incerteza associada aos índices de sensibilidade obtidos nas AS conduzidas, e a soma dos valores dos índices ultrapassa o valor 1. Entretanto, a aplicação da análise de sensibilidade global ofereceu resultados relevantes para o trabalho, com índices de sensibilidade condizentes aos comportamentos físicos representados pelas simulações.

Baseando-se nos resultados das AS, alguns dos parâmetros não foram considerados para o desenvolvimento do metamodelo. A Tabela 1.2 apresentam os parâmetros que tiveram seus valores fixos. O valor do pé-direito foi determinado considerando-se o valor encontrado com mais frequência na base de dados analisada. A capacidade térmica da parede foi estabelecida de acordo com o valor de uma parede de bloco cerâmico de dimensões 14x19x29 cm, e argamassa de 2,5 cm. Os parâmetros relacionados às proporções entre largura e profundidade das salas e edifícios foram determinados com valor igual a 1.

Parâmetro	Valor fixo
Razão L:C do edifício (-)	1
Razão L:C da sala (-)	1
Pé-direito (m)	2,5
Capacidade térmica (kJ/m ² K)	161

Tabela 1.2: Parâmetros com valores constantes.

1.2.6 Desenvolvimento do metamodelo

A partir das 20.000 simulações geradas para o treinamento da rede neural artificial (RNA). O metamodelo final foi definido com 14 parâmetros:

- Fator de abertura das janelas;
- Velocidade do ar;
- Condição de exposição das paredes e janelas;
- Área da sala;
- Densidade de ocupação;
- Altura do pavimento;
- Exposição da cobertura;
- Sombreamento horizontal;
- Contato com o solo;
- Transmitância das paredes;
- Absortância das paredes;
- Fator solar do vidro;
- Azimute da sala;
- PAF.

Os parâmetros variaram na mesma faixa de valores estabelecida na primeira etapa deste estudo. O ângulo do azimute da sala é determinado considerando-se o eixo entre a parede voltada para a circulação e a parede oposta.

O contato com o solo e a exposição da cobertura foram definidas como variáveis binárias, com o valor zero correspondendo à superfície adiabática, e 1 correspondendo à exposição. O parâmetro que representa a condição de exposição das paredes e janelas não foi representado com valores numéricos, e sim como uma variável de fatores, com cinco opções de exposição. Além das três opções apresentadas na Figura 1.16, considerou-se as exposições espelhadas. Os demais parâmetros foram normalizados com valores entre -1 e 1.

Figura 1.16: Condição de exposição das paredes e janelas.

O modelo de RNA final foi definido com duas camadas, umas de 50 nós, e a outra com 20. O algorítimo de otimização que obteve o melhor desempenho foi o *Adagrad's Optimizer*, disponibilizado pela biblioteca *TensorFlow*, com uma taxa de aprendizagem igual a 0,05.

A Figura 1.17 apresenta um gráfico de pontos comparando os resultados de EHF obtidos para as simulações e para as estimativas da RNA, a partir da base de dados desenvolvida para a validação do metamodelo. A base de dados para a validação teve apenas os parâmetros incluídos no treinamento da RNA variados. O erro absoluto médio do EHF para os casos de validação foi 0,0104, com o AE95 igual a 0,0226.

Figura 1.17: Condição de exposição das paredes e janelas.

Outra comparação foi conduzida com a amostragem utilizada para a AS. Essa base de dados estava disponível, e não foi utilizada pra o desenvolvimento da RNA, então ela foi escolhida para testar o desempenho da RNA quando todos os parâmetros avaliados neste estudo variam. A Figura 1.18 apresenta o gráfico de pontos comparando os resultados de EHF obtidos para as simulações e para as estimativas da RNA, a partir da base de dados da AS de sobol. O erro absoluto médio do EHF para os casos de validação foi 0,0104, com o AE95 igual a 0,0226.

Figura 1.18: Condição de exposição das paredes e janelas.

REFERÊNCIAS BIBLIOGRÁFICAS