ON INDEXED TENSOR PRODUCTS OF EQUIVARIANT COMMUTATIVE OPERADS

NATALIE STEWART

ABSTRACT. We lift the Boardman-Vogt tensor product to a G-symmetric monoidal closed ∞ -category $\underline{Op}_G^{\otimes}$ of \mathcal{O}_{G} - ∞ -operads. Using this, we construct a G-symmetric monoidal colocalizing subcategory

$$\mathcal{N}_{(-)\infty}: \underline{\text{wIndex}}_G^{\otimes} \to \underline{\text{Op}}_G^{\otimes}$$

called the poset of weak \mathcal{N}_{∞} -G-operads, whose colocalization functor constructs the weak indexing system of admissible H-sets. Additionally, we combinatorially characterize $\underline{\text{wIndex}}_G^{\otimes}$, finding that the G-subcategory $\underline{\text{wIndex}}_G^{\text{uni},\vee} = \underline{\text{Op}}_G^{\text{uni},\otimes} \cap \underline{\text{wIndex}}_G^{\otimes}$ of unital weak \mathcal{N}_{∞} -G-operads is cocartesian G-symmetric monoidal, i.e. its indexed tensor products are indexed joins.

As a special case, we recognize Blumberg-Hill's \mathcal{N}_{∞} -operads as a symmetric monoidal sub-poset Index $_G^{\vee}$ \subset

As a special case, we recognize Blumberg-Hill's \mathcal{N}_{∞} -operads as a symmetric monoidal sub-poset Index $_G^{\vee} \subset \text{wIndex}_G^{\text{uni},\vee}$ confirming a conjecture of Blumberg-Hill. In particular, for I,J unital weak indexing systems and \mathcal{C} an $I \vee J$ -symmetric monoidal ∞ -category, we construct a canonical $I \vee J$ -symmetric monoidal equivalence

$$\underline{\operatorname{CAlg}}_{I}^{\otimes}\underline{\operatorname{CAlg}}_{I}^{\otimes}\mathcal{C} \simeq \underline{\operatorname{CAlg}}_{I \vee I}^{\otimes}\mathcal{C}$$

CONTENTS

1.	Introduct	tion	2
	1.1.	Summary of main results	2
	1.2.	Notation and conventions	(
	1.3.	Acknowledgements	(
2.	Equivaria	ant symmetric monoidal categories	-
	2.1.	Recollections on \mathcal{T} - ∞ -categories	
	2.2.	The homotopy \mathcal{T} -symmetric monoidal d -category	
	2.3.	A T-symmetric monoidal structure on non-equivariant overcategories	13
	2.4.	Examples of I -symmetric monoidal ∞ -categories	
3.		ant fibrous patterns	
	3.1.	Recollections on algebraic patterns	
	3.2.	Indexed Boardman-Vogt tensor products of \mathcal{T} -fibrous patterns	
	3.3.	Examples of algebraic patterns	23
4.	Equivaria	ant operads	
	4.1.	\mathcal{T} -operads and \mathcal{T} -symmetric sequences	
	4.2.	The $wIndex_T$ -valued support of a T -operad	
	4.3.	On the combinatorics of weak indexing systems	
	4.4.	\mathcal{O} -algebras in \mathcal{T} -symmetric monoidal d -categories	
	4.5.	Weak \mathcal{N}_{∞} \mathcal{T} -operads	
	4.6.	Operadic restriction and arity-borelification	
	4.7.	Examples of <i>I</i> -operads	
5.	-	ant algebras	
	5.1.	The monad for \mathcal{O} -algebras	
	5.2.	I-(co)cartesian rigidity, I-commutative monoids, and I-semiadditivity	
	5.3.	Tensor products of weak \mathcal{N}_{∞} \mathcal{T} -operads	
	5.4.	Norms and change of group functors on algebras and operads	
	5.5.	Algebraic K-theory and other \mathcal{T} -symmetric monoidal invariants	
6.	-	sons and future directions	
	6.1.	I-commutative algebras in G-1-categories	
	6.2.	$\mathcal{N}_{I\infty}$ operads and an ∞ -categorical genuine operadic nerve	54

6.3.	Conjectures and future directions	55
Appendix A.	Fibrous patterns vs operads: the atomic orbital case	56
A.1.	<i>I</i> -operads as fibrous patterns	56
A.2.	Pullback of fibrous patterns along Segal morphisms and sound extendability	58
A.3.	Segal morphisms between effective burnside patterns	59
A.4.	Monadicity of fibrous patterns under a weak-cartesian assumption	60
Appendix B.	On core-preserving wide subcategories	61
References		62

1. Introduction

1.1. Summary of main results. Homotopy-coherent algebraic structures in genuine-equivariant mathematics are naturally founded in the notion of G-commutative monoids. In the context of this paper, the ∞ -category of G-commutative monoids in an ∞ -category \mathcal{D} is the ∞ -category of product-preserving functors

$$CMon_G(\mathcal{D}) := Fun^{\times}(Span(\mathbb{F}_G), \mathcal{D}),$$

where \mathbb{F}_G denotes the category of finite G-sets. The ∞ -category of small G-symmetric monoidal ∞ -categories is $\mathsf{CMon}_G(\mathsf{Cat})$, where Cat denotes the ∞ -category of small ∞ -categories.

Give $\mathcal{C}^{\otimes} \in \mathsf{CMon}_G(\mathsf{Cat})$ a G-symmetric monoidal ∞ -category, the product-preserving functor

$$\iota_H : \operatorname{Span}(\mathbb{F}) \xrightarrow{* \mapsto G/H} \operatorname{Span}(\mathbb{F}_G)$$

constructs a symmetric monoidal ∞ -category $\mathcal{C}_H^{\otimes} := \iota_H^* \mathcal{C}^{\otimes}$ whose underlying ∞ -category \mathcal{C}_H is the value of \mathcal{C}^{\otimes} on the orbit G/H. For all subgroups $K \subset H \subset G$, the covariant and contravariant functoriality of \mathcal{C}^{\otimes} then yield symmetric monoidal restriction and norm functors

$$\operatorname{Res}_{K}^{H}: \mathcal{C}_{H}^{\otimes} \to \mathcal{C}_{K}^{\otimes},$$
$$N_{K}^{H}: \mathcal{C}_{K}^{\otimes} \to \mathcal{C}_{H}^{\otimes}.$$

We use this structure to encode algebras in \mathcal{C}^{\otimes} , for which we need operads.

Various notions of G-operad have been introduced for this. In Section 4.1 we introduce an ∞ -category Op_G of \mathcal{O}_G - ∞ -operads (henceforth G-operads) equivalent to that of [NS22]. Given $\mathcal{O}^{\otimes} \in \operatorname{Op}_G$ a G-operad and $S \in \mathbb{F}_H$ an H-set for some $H \subset G$, we construct a space of S-ary operations $\mathcal{O}(S)$, together with operadic composition maps

(1)
$$\mathcal{O}(S) \otimes \bigotimes_{H/K_i \in \mathrm{Orb}(S)} \mathcal{O}(T_i) \to \mathcal{O}\left(\bigsqcup_{H/K_i \in \mathrm{Orb}(S)} \mathrm{Ind}_{K_i}^H T_i\right),$$

operadic restriction maps

(2)
$$\mathcal{O}(S) \to \mathcal{O}(\operatorname{Res}_K^H S),$$

and equivariant symmetric group action

(3)
$$\operatorname{Aut}_{H}(S) \times \mathcal{O}(S) \to \mathcal{O}(S),$$

the with Eqs. (2) and (3) ascending to a structure of a G-symmetric sequence; we go on to show in Corollary 4.23 that this structure is monadic under a reducedness assumption.

Definition 1.1. We say that \mathcal{O}^{\otimes} has at least one color when $\mathcal{O}(*_H)$ is nonempty for all subgroups $H \subset G$, and we say \mathcal{O}^{\otimes} has at most one color if $\mathcal{O}(*_H) \in \{*, \emptyset\}$ for all $H \subset G$. We say that \mathcal{O}^{\otimes} has one color if it has at least one color and at most one color.

¹ In this paper we will call ∞-categories ∞-categories and 0-truncated ∞-categories 1-categories. We hope this prevents avoidable confusion in older readers.

² In this paper, "orbits" refer to transitive G-sets, i.e. objects of the orbit category \mathcal{O}_G .

When \mathcal{O}^{\otimes} has one color, an \mathcal{O} -algebra in the G-symmetric monoidal ∞ -category \mathcal{C}^{\otimes} can intuitively be viewed as a tuple $(X_H \in \mathcal{C}_H)_{G/H \in \mathcal{O}_G}$ satisfying $X_K \simeq \operatorname{Res}_K^H X_H$, together with $\mathcal{O}(S)$ -actions

$$\mu_S: \mathcal{O}(S) \otimes X_H^{\otimes S} \to X_H$$

for all $S \in \mathbb{F}_H$ and $H \subset G$, homotopy-coherently compatible with the maps Eqs. (1) to (3), where we write

$$X_H^{\otimes S} := \bigotimes_{H/K \in \operatorname{Orb}(S)} N_K^H \operatorname{Res}_K^H X_H.$$

for the indexed tensor products in \mathcal{C}^{\otimes} . In this paper, we are concerned with defining indexed tensor products of \mathcal{O} -algebras, as well as \mathcal{P} -algebras in the resulting G-symmetric monoidal ∞ -category. Mirroring the nonequivariant case, we will accomplish this by realizing the operad of \mathcal{O} -alebras in \mathcal{P} as the internal hom with respect to a symmetric monoidal structure on the ∞ -category of G-operads.

Theorem A. There exists a G-symmetric monoidal ∞ -category $\underline{\operatorname{Op}}_G^{\otimes}$ with the following properties:

- (1) The H-value ∞ -category of $\underline{\operatorname{Op}}_G^{\otimes}$ is Op_H as in [NS22].
- (2) In the case G = e, there exists an equivalence of symmetric monoidal ∞ -categories

$$\operatorname{Op}_{e}^{\otimes} \simeq \operatorname{Op}_{\infty}^{\otimes}$$

where $\operatorname{Op}_{\infty}^{\otimes}$ is the Boardman-Vogt symmetric monoidal ∞ -category of ∞ -operads of [BS24]; in particular, the tensor product of $\operatorname{Op}_e^{\otimes}$ agrees under this equivalence with the Boardman-Vogt tensor product of [BV73; HM23; HA].

- (3) The underlying norm functor $N_H^G: \operatorname{Op}_H \to \operatorname{Op}_G$ satisfies $N_H^G \mathcal{O}^{\otimes} \simeq \operatorname{Ind}_H^G \mathcal{O}^{\otimes}$.
- (4) The underlying tensor functor $-\otimes \mathcal{O}: \operatorname{Op}_G \to \operatorname{Op}_G$ has is right adjoint to $\operatorname{Alg}_{\mathcal{O}}^{\otimes}(-)$ as in [NS22].
- (5) The underlying G- ∞ -category of $\underline{\mathbf{Alg}}_{\mathcal{O}}^{\otimes}(\mathcal{P})$ is the G- ∞ -category of algebras $\underline{\mathbf{Alg}}_{\mathcal{O}}(\mathcal{P})$; the associated ∞ -category is the ∞ -category of algebras $\mathbf{Alg}_{\mathcal{O}}(\mathcal{P})$.
- (6) When C is G-symmetric monoidal, $\mathbf{Alg}_{\mathcal{O}}^{\otimes}(C)$ is G-symmetric monoidal.
- (7) When \mathcal{O} is reduced and \mathcal{C} is G-symmetric monoidal, the forgetful G-functor $\underline{\mathbf{Alg}}_{\mathcal{O}}(\mathcal{C}) \to \mathcal{C}$ lifts to an G-symmetric monoidal functor

$$\underline{\mathbf{Alg}}^{\otimes}_{\mathcal{O}}(\mathcal{C}) \to \mathcal{C}^{\otimes}.$$

Remark 1.2. After this introduction, we replace \mathcal{O}_G with an atomic orbital ∞ -category \mathcal{T} for the remainder of the paper; we prove Theorem A as well as other theorems in this introduction in this setting, greatly generalizing the stated results, at the cost of intuition.

References. $\underline{\operatorname{Op}}_{G}^{\otimes}$ is constructed in Definition 4.1, and statements (1) and (3) are Remark 4.2. The remining statements are Corollaries 4.13 and 4.71.

Given $\mathcal{O}^{\otimes} \in \operatorname{Op_G^{oc}}$ a G-operad with one color and $\psi: T \to S$ a map of finite H-sets, we also define the space of multimorphisms⁴

$$\operatorname{Mul}_{\mathcal{O}}^{\psi}(T;S) := \prod_{U \in \operatorname{Orb}(S)} \mathcal{O}(T \times_{S} U).$$

We then define the subcategory⁵ $A\mathcal{O} \subset \mathbb{F}_G$ of \mathcal{O} -admissible maps by

$$A\mathcal{O} := \left\{ \psi : T \to S \mid \operatorname{Mul}_{\mathcal{O}}^{\psi}(T; S) \neq \emptyset \right\} \subset \mathbb{F}_{G}.$$

 $^{^3}$ The symmetric monoidal structure of [HA] is derived from a model-categorical structure, and as such, only its underlying tensor functor is known to be well-behaved. Our result mimics that of [BS24], as each symmetric monoidal structure is canonically induced from the Day convolution structure on G-symmetric monoidal ∞-category by the G-symmetric monoidal envelope (see Corollary 4.17), hence its coherences additionally satisfy a useful universal property.

⁴ We only make the assumption that \mathcal{O}^{\otimes} has one color for ease of exposition; throughout the remainder of text following the introduction, we will not make this assumption.

⁵ Throughout this paper, we say *subobject* to mean monomorphism in the sense of [HTT, § 5.5.6]; in the case the ambient ∞ -category is a 1-category, this agrees with the traditional notion.

In the case our objects are in the ∞ -category Cat of small ∞ -categories, we call this a *subcategory*; in the case that the containing ∞ -category is a 1-category, this is canonically expressed as a *wide subcategory* of a *full subcategory*, and it is uniquely determined by its morphisms, so we will express subcategories of \mathcal{C} a 1-category as a sub-poset of $2^{Mor(\mathcal{C})}$.

In essence, taking tensor products of Eq. (4) yields an action

$$\operatorname{Mul}_{\mathcal{O}}^{\psi}(T;S) \otimes X_{H}^{\otimes T} \to X_{H}^{\otimes S},$$

and $A\mathcal{O}$ consists of the pairs of arities over which this produces structure on X.

The fact that \emptyset accepts no maps from nonempty sets potentially obstructs construction of maps as in Eqs. (1) and (2), so $A\mathcal{O}$ can't be an *arbitrary* subcategory. In Sections 4.3 and 4.5, we combinatorially characterize the image of A in $Sub(\mathbb{F}_G)$ as the poset $wIndex_G$ of weak indexing systems, a weakened variant of the notion introduced in [BP21].

We say that a G-operad \mathcal{O}^{\otimes} is weakly unital if

$$\mathcal{O}(\varnothing_V) \in \begin{cases} * & \mathcal{O}(*_V) \neq \varnothing; \\ \varnothing & \mathcal{O}(*_V) = \varnothing. \end{cases}$$

We say that \mathcal{O}^{\otimes} is *unital* if it is weakly unital and has at least one color. we denote the full subcategory spanned by unital G-operads by $\operatorname{Op}_G^{\operatorname{uni}} \subset \operatorname{Op}_G$.

Theorem B. The following posets are each equivalent:

- (1) The poset $\operatorname{Sub}_{\operatorname{Cat}_G^{\otimes}}(\mathbb{F}_G^{\coprod})$ of G-symmetric monoidal subcategories of \mathbb{F}_G^{\coprod} .
- (2) The poset $Sub_{Op_G}(Comm_G)$ of sub-commutative G-operads
- (3) The category $Op_{G,<-1}$ of G-(-1)-operads.
- (4) The image $A(\operatorname{Op}_G) \subset \operatorname{Sub}_{\operatorname{Cat}}(\mathbb{F}_G)$
- (5) The sub-poset $\operatorname{wIndex}_G \subset \operatorname{Sub}_{\operatorname{Cat}}(\mathbb{F}_G)$ spanned by subcategories $I \subset \mathbb{F}_T$ which are closed under base change and automorphisms and satisfy the Segal condition that

$$T \to S \in I$$
 \iff $\forall U \in Orb(S), T \times_S U \to U \in I$

(6) The sub-poset $\operatorname{Sub}^{\operatorname{full}}_{\operatorname{\mathbf{Cat}}_G}(\underline{\mathbb{F}}_G)$ spanned by full G-subcategories $\mathcal{C} \subset \underline{\mathbb{F}}_G$ which are closed under self-indexed coproducts and have $*_H \in \mathcal{C}_H$ whenever $\mathcal{C}_H \neq \emptyset$.

Furthermore, setting wIndex_G^{uni} = $A(Op_G^{uni})$, there is an equivalence

$$wIndex_G^{uni} \simeq Transf_G \times Fam_G$$

whose image $\operatorname{Transf}_G \times \{\mathcal{O}_G\} \subset \operatorname{Sub}_{\operatorname{Cat}}(\mathbb{F}_G)$ under (5) is the indexing systems of [BP21; GW18; Rub21a].

References. The sliced G-symmetric monoidal envelope is shown to implement (1) \iff (2) in Corollary 4.17. Then in Remark 4.66, we show that (2) and (3) are equivalent as subcategories. We combinatorially characterize $A(\operatorname{Op}_G)$ in Section 4.3, constructing equivalences (4) \iff (5) \iff (6) as Proposition 4.26 and Proposition 4.38. We construct the equivalence (3) \iff (4) in Corollary 4.67 by constructing a fully faithful right adjoint to

(5)
$$A: \operatorname{Op}_{\mathcal{T}} \xrightarrow{\longleftarrow} \operatorname{wIndex}_{G} : \mathcal{N}_{(-)\infty}.$$

The remaining equivalence is Theorem 4.52.

Using this, under the assumption that \mathcal{O}^{\otimes} is *unital*, the information of $A\mathcal{O}$ may be understood as simply specifying the colors over which \mathcal{O}^{\otimes} prescribes a binary multiplication

$$X_H^{\otimes 2} \to X_H$$

and the maps $K \to H$ over which \mathcal{O}^{\otimes} prescribes a transfer

$$X_K \to X_H$$
.

In general, we find that a full subcategory $\mathcal{C} \subset \operatorname{Op}_G$ has a terminal object if and only if it there exists a weak indexing system I such that $\mathcal{C} = \operatorname{Op}_I \subset \operatorname{Op}_G$ is spanned by the G-operads satisfying $A\mathcal{O} \leq I$, in which case the terminal object is the G-operad $\mathcal{N}_{I\infty}^{\otimes}$ constructed in Eq. (5). These G-operads are called weak \mathcal{N}_{∞} -G-operads.

We may understand $\mathcal{N}_{I\infty}^{\otimes}$ in a hands-on manner in many ways; for instance, it is constructed explicitly in Proposition 4.4. On the other hand, the equivalence (2) \iff (5) Theorem B shows that $\mathcal{N}_{I\infty}^{\otimes}$ is uniquely identified by the property

(6)
$$\mathcal{N}_{I\infty}(S) = \begin{cases} * & \operatorname{Ind}_{H}^{G}S \to G/H & \text{is in } I; \\ \emptyset & \text{otherwise.} \end{cases}$$

Alternatively, we may see this indirectly using the existence of free G-operads on symmetric sequences (see Corollary 4.23) and the equivalence $\operatorname{Op}_I \simeq \operatorname{Op}_{T,/\mathcal{N}_r^{\otimes}}$.

In fact, there are many weak \mathcal{N}_{∞} -G-operads of interest outside of the world of \mathcal{N}_{∞} -G-operads:

Example 1.3. Given $\mathcal{F} \subset \mathcal{O}_G^{\mathrm{op}}$ a G-family, the operad $\mathrm{triv}_{\mathcal{F}}^{\otimes} := \mathcal{N}_{\mathbb{F}_{\mathcal{F}}^{\cong}}^{\otimes}$ is characterized by a natural equivalence

$$\underline{\mathbf{Alg}}_{\mathrm{triv}_{\mathcal{F}}}^{\otimes}(\mathcal{C}) = \mathrm{Bor}_{\mathcal{F}}^{G}(\mathcal{C}^{\otimes}),$$

in Proposition 4.15, where $Bor_{\mathcal{F}}^G$ is the \mathcal{F} -Borelification discussed in Section 4.6.

Example 1.4. Additionally, given R a transfer system, Theorem B constructs an associated unital weak \mathcal{N}_{∞} -G-operad Norm $_R^{\otimes}$ with no binary multiplications; we see that algebras over this G-operad are G-objects with R-indexed unital norms in ref.

In general, in Corollary 5.10, we characterize the ∞ -category of *I*-commutative monoids in \mathcal{C} a complete ∞ -category as

$$\mathrm{CMon}_I \mathcal{C} := \mathbf{Alg}_{\mathcal{N}_{I_{\infty}}}(\mathcal{C}^{\times}) \simeq \mathrm{Fun}^{\times}(\mathrm{Span}_I(\mathbb{F}_G), \mathcal{C}),$$

where $\operatorname{Span}_{I}(\mathbb{F}_{G}) \subset \operatorname{Span}(\mathbb{F}_{G})$ is the subcategory whose forward maps are in I; we define the ∞ -category of I-symmetric monoidal ∞ -categories as $\operatorname{CMon}_{I}\operatorname{Cat}$. We also show in Proposition 4.8 that I-symmetric monoidal ∞ -categories have underlying I-operads; for $\mathcal{C} \in \operatorname{CMon}_{I}\operatorname{Cat}$, we define the ∞ -category of I-commutative algebras in \mathcal{C} as

$$CAlg_I \mathcal{C} := \mathbf{Alg}_{\mathcal{N}_{I\infty}}(\mathcal{C}).$$

We show in Corollary 4.71, that analogs of Theorem A (5) and (6) hold for *I*-commutative algebra objects in *I*-symmetric monoidal categories.

We go on to compute the *I*-indexed tensor products in $\underline{\mathsf{CAlg}}_I^\otimes \mathcal{C}$ under a distributivity assumption; they are *I*-cocartesian, in the sense that their *I*-indexed tensor products are indexed coproducts (c.f. Section 5.2).

Theorem C. Let \mathcal{O}^{\otimes} be a G-operad. Then, the following properties are equivalenent.

- (a) The AO-symmetric monoidal ∞ -category $\underline{\mathbf{Alg}}_{AO}^{\otimes}\underline{\mathcal{S}}_{G}$ is AO-cocartesian.
- (b) The unique map $\mathcal{O}^{\otimes} \to \mathcal{N}_{A\mathcal{O}_{\infty}}^{\otimes}$ is an equivalence.

Furthermore, $\underline{\mathsf{CAlg}}_I^\otimes \mathcal{C}$ is I-cocartesian for any distributive I-symmetric monoidal ∞ -category \mathcal{C} and weak indexing system I.

In Corollary 5.10, we use this to prove that $CMon_I(C)$ is an I-semiadditive, I-symmetric monoidal category, in the sense that it is simultaneously cartesian and cocartesian. We use this to recognize I-commutative monoids within the world of [CLL24], hinting at an operadic presentation for equivariant lifts of [GGN15].

We say that an *I*-operad \mathcal{O}^{\otimes} is reduced if the (unique) map $\mathcal{O}^{\otimes} \to \mathcal{N}_{I_{\infty}}$ induces equivalences

$$\mathcal{O}(S) \simeq \mathcal{N}_{I_{\infty}}(S)$$
 $\forall S \in \mathbb{F}_{H}$ empty or transitive

(c.f. Eq. (6)). We characterize algebras in cocartesian *I*-symmetric monoidal categories in Theorem 5.5, and from this Theorem C entirely characterizes the tensor products of reduced *I*-operads with $\mathcal{N}_{I\infty}^{\otimes}$.

Corollary D. If \mathcal{O}^{\otimes} is an reduced I-operad, then the unique map $\mathcal{O}^{\otimes} \otimes \mathcal{N}_{I\infty}^{\otimes} \to \mathcal{N}_{I\infty}^{\otimes}$ is an equivalence.

This immediately characterizes many tensor products of weak \mathcal{N}_{∞} -operads, since $\mathcal{N}_{I\infty}$ is a *J*-operad whenever $I \leq J$. We go on to completely characterize indexed tensor products of weak \mathcal{N}_{∞} -operads, confirming Conjecture 6.27 of [BH15].

Theorem E. The functor $\mathcal{N}_{(-)\infty}^{\otimes}$: wIndex_G \rightarrow Op_G lifts to a G-symmetric monoidal colocalizing subcategory inclusion

$$\underbrace{\text{wIndex}_{G}^{\otimes}}_{A} \xrightarrow{1} \underbrace{\text{Op}_{G}^{\otimes}}_{A}$$

and the resulting G-symmetric monoidal structure on $\underline{wIndex}_G^{\otimes}$ is uniquely determined by the following conditions:

(1) the H-value category is $(\underline{\text{wIndex}}_G^{\otimes})_H = \text{wIndex}_H$, with tensor product

$$I \otimes J = \operatorname{Bor}_{\operatorname{cSupp}(I \cap I)}^G (I \vee J)$$

where $I \vee J$ is the join in wIndex_G;

- (2) the restriction functors are $\operatorname{Res}_H^G I = I \cap \mathbb{F}_H$; and
- (3) the norm functors are the left adjoint $\operatorname{Ind}_{H}^{G}I = \iota_{H_{1}}^{G}I \subset \mathbb{F}_{G}$ to $\operatorname{Res}_{H}^{G}$.

Corollary F. When I, J are weak indexing systems, we have

$$\mathcal{N}_{I\infty}^{\otimes} \otimes \mathcal{N}_{J\infty}^{\otimes} \simeq \mathcal{N}_{(I\otimes J)\infty}^{\otimes}$$

$$\mathcal{N}_{I\infty}^{\otimes} \times \mathcal{N}_{J\infty}^{\otimes} \simeq \mathcal{N}_{(I\cap J)\infty}^{\otimes}$$

$$\operatorname{Res}_{H}^{G} \mathcal{N}_{I\infty}^{\otimes} \simeq \mathcal{N}_{\operatorname{Res}_{H}^{G} I\infty}^{\otimes}$$

$$\operatorname{Ind}_{H}^{G} \mathcal{N}_{I\infty}^{\otimes} \simeq \mathcal{N}_{\operatorname{Ind}_{H}^{G} I\infty}^{\otimes}$$

$$\operatorname{CoInd}_{H}^{G} \mathcal{N}_{I\infty}^{\otimes} \simeq \mathcal{N}_{\operatorname{CoInd}_{H}^{G} I\infty}^{\otimes}$$

In particular, norms of I-commutative algebras are $CoInd_H^GI$ -commutative algebras, and when I, J are unital, we have

$$\underline{\operatorname{CAlg}}_{I}^{\otimes}\underline{\operatorname{CAlg}}_{I}^{\otimes}(\mathcal{C}) \simeq \underline{\operatorname{CAlg}}_{I \vee I}(\mathcal{C}).$$

Remark 1.5. By Theorem B and Corollary F, every unital weak \mathcal{N}_{∞} -operad I can canonically be expressed as

$$\mathcal{N}_{I\infty}^{\otimes} \simeq \operatorname{Norm}_{R(I)}^{\otimes} \otimes \mathbb{E}_{\infty,\mathcal{F}_I}^{\otimes}$$

for some canonically determined $R(I) \in \operatorname{Transf}_G$ and $\mathcal{F}_I \in \operatorname{Fam}_G$, where $\mathbb{E}_{\infty,\mathcal{F}}^{\otimes}$ parameterizes unital G objects whose H-values have compatible multiplications whenever $H \in \mathcal{F}$. The interpretation of Eq. (7) applied to this decomposition is that I-commutative algebras may be constructed as interchanging pairs of commutative algebra structures on fibers and unital norms, each indexed by I.

In view of Theorem E, a simple combinatorial argument (carried out as Corollary 4.58) gives the following inductive strategy for constructing C_{p^n} -commutative algebras one norm at a time.

Corollary G. Fix p prime and $n \ge 1$. For all k < n, write

$$I_{k-1}^k := \mathbb{F}_G^{\sim} \cup \operatorname{Hom}(C_{p^n}/C_{p^k}, C_{p^n}/C_{p^{k+1}}) \subset \mathbb{F}_{C_p}$$

Then, I_{k-1}^k is a weak indexing system, and

$$\underline{\mathsf{CAlg}}^{\otimes}_{I^n_{n-1}}\cdots\underline{\mathsf{CAlg}}^{\otimes}_{I^1_0}\underline{\mathsf{CAlg}}^{\otimes}\mathcal{C}\simeq\underline{\mathsf{CAlg}}^{\otimes}_{C_{p^n}}\mathcal{C}.$$

We offer various additional corollaries in Sections 4.7 and 5.5 concerning lifts of various functors in equivariant homotopy theory to functors between categories of *I*-commutative algebras; included among these are equivariant factorization homology and equivariant algebraic *K*-theory. We go on to state a family of conjectures concerning further properties of equivariant higher algebra in Section 6.3.

- 1.2. Notation and conventions.
- 1.3. Acknowledgements.