Задание №2. Транспортная задача

1. Цель работы:

Приобретение навыков построения математической модели и решения двухиндексных задач линейного программирования (транспортная задача).

Условие задачи:

Три склада снабжают 5 магазинов однотипным товаром. Тарифы на перевозки (Сіј), запас товара на складе (Аі) и потребности магазинов (Вј) приведены в таблице.

Исходные данные:

	B1	B2	В3	B4	B5	Запас (Аі)
A1	5	7	4	9	5	200
A2	7	4	3	4	7	205
A3	9	10	6	8	7	225
Потребность (Вј)	190	130	80	100	130	630

2. Теоретический материал

Математически транспортная задача формулируется следующим образом. Имеется ппотребителей и m-поставщиков однородного груза. Известны затраты на перевозку одной у.е. груза от i-го поставщика до j-го потребителя (Сij), запас груза поставщика (Ai) и объем потребностей потребителя (Вj). Размер поставки продукции от i-го поставщика до j-го потребителя обозначим через Xij, а общую сумму затрат на перевозку S. Необходимо составить такой план перевозки груза (Xij), при котором суммарные затраты на перевозку были бы минимальными (S → MIN).

2.1. Построение математической модели

Запишем математическую модель задачи:

Ограничение1: Объем поставок i-го поставщика должен равняться количеству имеющегося у него груза $(\sum_{i=1}^n x_{ij} = A_i)$:

$$\begin{cases}
X11 + x12 + x13 + x14 + x15 = 200 \\
X21 + x22 + x23 + x24 + x25 = 205 \\
X31 + x32 + x33 + x34 + x35 = 225
\end{cases}$$

Ограничение2: Объем поставок ј-му потребителю должен равняться его потребностям:

$$(\sum_{i=1}^{m} x_{ij} = B_j):$$

$$\begin{cases} X11 + x21 + x31 = 190 \\ X12 + x22 + x32 = 130 \\ X13 + x23 + x33 = 80 \\ X14 + x24 + x34 = 100 \\ X15 + x25 + x35 = 130 \end{cases}$$

Ограничение3: Значение Xij должно быть целым неотрицательным числом: Xij≥ 0

Общая сумма затрат на перевозку груза должна быть минимальной:

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij} \rightarrow min$$

 $S = 5*x11+7*x12+4*x13+9*x14+5*x15+7*x21+4*x22+3*x23+4*x24+7*x25+9*x31+10*x32+6*x33+8*x34+7*x35 \rightarrow min$

2.2. Решение задачи методом потенциалов

I этап. Определение начального базисного решения (первый опорный план).

Используем метод наименьшей стоимости – распределение перевозок начинаем с клетки с меньшей стоимостью (c23, c24, c22, c11, c15, c35, c32).

Опорный план должен содержать N=m+n-1=7 заполненных клеток.

	B1	B2	В3	B4	B5	Запас
A1	190				10	200
A2		25 !	80	100		205
A3		105			120	225
Потребность	190	130	80	100	130	630

II этап. Определение оптимальности начального базисного решения.

Обозначим, **Ui** –потенциал поставщика,

 $\mathbf{V}\mathbf{j}$ – потенциал потребителя.

Чтобы некоторый план был оптимальным необходимо и достаточно, чтобы потенциалы удовлетворяли следующим условиям:

$$Cij - (Ui + Vj) = 0$$
 для $xij > 0$ (1) $\Delta C_{ii} = C_{ii} - (Ui + Vj) \ge 0$ для $x_{ii} = 0$ (2)

Назначим U1=0 и определим потенциалы из уравнения (1):

$$C15 - (U1+V5)=0 \Rightarrow 5-0-V5=0 \Rightarrow V5=5$$

$$C35 - (U3+V5)=0 \Rightarrow 7-U3-5=0 \Rightarrow U3=2$$

$$C32 - (U3+V2)=0 \Rightarrow 10-2-V2=0 \Rightarrow V2=8$$

$$C22 - (U2+V2)=0 \Rightarrow 4-U2-8=0 \Rightarrow U2=-4$$

$$C23 - (U2+V3)=0 \Rightarrow 3-4-V3=0 \Rightarrow V3=7$$

$$C24 - (U2+V4)=0 \Rightarrow 4-4-V4=0 \Rightarrow V4=8$$

$$C11 - (U1+V1)=0 \Rightarrow 5-0-V1=0 \Rightarrow V1=5$$

Из уравнения (2) находим ΔC_{ii} .

$$\Delta C12 = C12 - (U1 + V2) = 7 - (0 + 8) = -1$$

$$\Delta$$
C13 = C13 –(U1 + V3)= 4-(0+7)= -3

$$\Delta C14 = C14 - (U1 + V4) = 9 - (0+8) = 1$$

$$\Delta C21 = C21 - (U2 + V1) = 7 - (-4 + 5) = 6$$

$$\Delta C25 = C25 - (U2 + V5) = 7 - (-4 + 5) = 6$$

$$\Delta C31 = C31 - (U3 + V1) = 9 - (2 + 5) = 2$$

$$\Delta$$
C33 = C33 –(U3 + V3)= 6-(2+7)= -3
 Δ C34 = C34 –(U3 + V4)= 8-(2+8)= -2

Так как Δ C12, Δ C13, Δ C33, Δ C34<0, то план неоптимальный.

III этап. Улучшение плана.

- **1.** Выбрать клетку с наименьшим значением ΔСij (ΔС33).
- **2.** Для данной клетки строим прямоугольник, одна из вершин которого находится в выбранной клетке (знак +), а остальные в занятых клетках (чередуем знаки). В отрицательных вершинах выбираем наименьшее число и прибавляем его к положительным вершинам:

Получили новый план:

	B1	B2	В3	B4	B5	Запас
A1	190				10	200
A2		105 ;		1007		205
A3		25 👢	80		120	225
Потребность	190	130	80	100	130	630

Повторяем этапы II и III до получения оптимального плана $\Delta \text{Cij} > 0$.

Проверяем оптимальность полученного плана:

Назначим U1=0 и определим потенциалы из уравнения (1):

$$C15 - (U1+V5)=0 \Rightarrow 5-0-V5=0 \Rightarrow V5=5$$

 $C35 - (U3+V5)=0 \Rightarrow 7-U3-5=0 \Rightarrow U3=2$
 $C32 - (U3+V2)=0 \Rightarrow 10-2-V2=0 \Rightarrow V2=8$
 $C22 - (U2+V2)=0 \Rightarrow 4-U2-8=0 \Rightarrow U2=-4$
 $C33 - (U3+V3)=0 \Rightarrow 6-2-V3=0 \Rightarrow V3=4$

$$C24 - (U2+V4)=0 \Rightarrow 4--4-V4=0 \Rightarrow V4=8$$

 $C11 - (U1+V1)=0 \Rightarrow 5-0-V1=0 \Rightarrow V1=5$

Из уравнения (2) находим ΔC_{ii}

$$\Delta$$
C12 = C12 -(U1 + V2)= 7-(0+8)= -1
 Δ C13 = C13 -(U1 + V3)= 4-(0+0)= 4
 Δ C14 = C14 -(U1 + V4)= 9-(0+8)= 1
 Δ C21 = C21 -(U2 + V1)= 7-(-4+5)= 6
 Δ C25 = C25 -(U2 + V5)= 7-(-4+5)= 6
 Δ C31 = C31 -(U3 + V1)= 9-(4+5)= 0
 Δ C34 = C34 -(U3 + V4)= 8-(2+8)= -2
 Δ C34 = C34 -(U3 + V4)= 8-(2+8)= -2

Так как $\Delta C34 < 0$, то план неоптимальный.

Улучшаем план:

Получили новый план:

	B1	B2	B3	B4	B5	Запас
A1	190				10	200

A2		130		75		205
A3			80	25	120	225
Потребность	190	130	80	100	130	630

Проверяем его оптимальность:

$$\Delta C12 = 1$$
; $\Delta C13 = 0$; $\Delta C14 = 3$; $\Delta C21 = 4$; $\Delta C23 = 1$; $\Delta C25 = 4$; $\Delta C31 = 2$; $\Delta C32 = 2$

Так как все $\Delta \text{Cij} > 0$, то план оптимальный.

Транспортные расходы S=3340.

Транспортная задача с открытой моделью

Для решения транспортной задачи с открытой моделью необходимо преобразовать ее в закрытую.

- 1. Если запасы превышают потребности, необходимо ввести фиктивный (n+1) пункт назначения, т.е. в таблице добавить столбец Вфикт. Спрос фиктивного потребителя полагаем равный небалансу, все тарифы равны нулю.
- 2. Если потребности превышают запасы, вводится фиктивный поставщик Афикт., запас груза у которого равен недостающему количеству груза, все тарифы дополнительной строки таблицы равны нулю.

При преобразовании открытой задачи в закрытую, целевая функция не меняется т.к. все слагаемые соответствующие дополнительным перевозкам равнялись нулю.

3. Порядок выполнения работы в MS Excel

- 3.3. Ввод исходных данных в таблицу.
- 3.4. Создание таблицы План перевозок.
- 3.5. Ввести формулы для ограничения1 и ограничения2:

		_							
	Α	В	С	D	Е	F	G		Ī
1				П					
2		B1	B2	В3	B4	B5	Запас		
3	A1	5	7	4	9	5	200		
4	A2	7	4	3	4	7	205		
5	A3	9	10	6	8	7	225		
6	Потребность	190	130	80	100	130			
7		Пла	н перево	зок:			Ограничение1		
8	A1						=CYMM(B8:F8)		Ц
9	A2						=CYMM(B9:F9)		
10	A3						=CYMM(B10:F10)		
	Ограничение2	=CYMM (B8:B10)	=СУММ (С8:С10)		=CVMM (E8:E10)	=CYMM (F8:F10)			
11									
12	Целевая функция	=СУММП	РОИЗВ(В	3:F5;B8:F1	0)				Ų.
14 -	⊢ → Н _Лист1 _ Лист2	2 / Лист3	*				IIII	• 1	

3.6. Ввести формулу для расчета целевой функции:

=СУММПРОИЗВ
(B3:F5;B8:F10)

3.7. Выполнить команду Данные – Поиск решения:

3.8. Установка параметров решения задачи:

3.9. Анализ результатов решения:

	А	В	C C	D	Е	F	G	Н
	B -3-3	D4	D	5	D 4	ם	2	Исполь-
<u> </u>	Пост-к	B1	B2	В3	B4	B5	За⊓ас	зовано
2	A1	5	7	4	9	5	200	
3	A2	7	4	3	4	7	205	
4	A3	9	10	6	8	7	225	
5	Пртребность	190	130	80	100	130	630	630
6		190	0	0	0	10		200
7		0	130	0	75	0		205
8		0	0	80	25	120		225
9	Удовлет-но	190	130	80	100	130	·	
10	Целевая ф-я	3340						

3.10. Ввести исходные данные в программу MathCAD и выполнить решение:

4. Выводы:

Полученные решения полностью совпадает с расчетом, выполненным методом потенциалов.

5. Варианты задач:

Задача №1

Составить план развозки сырья с 3-х сладов на 4 предприятия. Тарифы на перевозки приведены в таблице:

	П1	П2	П3	Π4	Запас
Склад I	8	1	9	7	110
Склад II	4	6	2	12	190
Склад III	3	5	8	9	90
Потребности	80	60	170	80	

Задача №2

Имеется три пункта поставки однородного груза и пять пунктов потребления этого груза. На пунктах поставки груз находится соответственно в количествах 230, 250, 170 (тонн) груза. В пункты потребления требуется доставить соответственно 140, 90, 160, 110, 150 (тонн) груза. Составить план развозки сырья с 3-х сладов на 5 предприятий. Тарифы на перевозки приведены в таблице:

	П1	П2	ПЗ	П4	П5
Склад I	40	19	25	25	35
Склад II	49	26	27	18	38
Склад III	46	27	36	40	45

Составить план развозки товара с 3-х складов в 3 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	Запас
Склад I	2	3	4	15
Склад II	11	6	10	1
Склад III	4	1	2	21
Потребности	10	20	10	

Задача №4

Составить план развозки товара с 3-х складов в 3 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	4	5	Запас
Склад I	20	23	20	15	24	320
Склад II	29	25	16	19	29	280
Склад III	6	11	10	9	8	250
Потребности	150	140	110	230	220	

Задача №5

На складах хранится мука, которую надо развести на хлебопекарни. Тарифы на перевозку (руб/т), ежемесячные запасы муки на складе и потребности хлебопекарен приведены в таблице. Составить план перевозки муки со складов при условии, что со склада №3 на ХП№3 следует перевести 50т.

Поставщик	ХП1	ХП2	ХП3	ХП4	Запас
C1	400	600	800	200	80
C2	300	100	500	600	70
C3	500	200	100	600	90
Потребности	80	50	50	60	

Задача №6

На 3 базы А1, А2 и А3 поступает однородный груз в количестве 6, 8 и 10 ед. Необходимо перевести его в 4 магазина В1,В2, В3 и В4 в количестве 4, 6, 8 и 8 ед. Тарифы на перевозку приведены в таблице.

Поставщик	B1	B2	B3	B4
A1	1	2	4	3
A2	4	3	8	5
A3	2	7	6	3

Задача №7

Найти решение транспортной задачи, исходные данные которой приведены в таблице, при условии, что из A2 в B4 доставляется не более 40 ед. груза.

Поставщик	B1	B2	B3	B4	B5	Запас
A1	5	3	2	4	8	160
A2	7	6	5	3	1	90
A3	8	9	4	5	2	140
Потребности	90	60	80	70	90	

Составить план развозки товара с 3-х складов в 3 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	Запас
Склад I	2	3	4	15
Склад II	11	6	10	1
Склад III	4	1	2	21
Потребности	10	20	10	

Задача №9

Составить план развозки товара с 3-х складов в 3 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	4	5	Запас
Склад І	20	23	20	15	24	320
Склад II	29	25	16	19	29	280
Склад III	6	11	10	9	8	250
Потребности	150	140	110	230	220	

Задача №10

Пять автопарков (АП) города с ежемесячной потребностью в бензине соответственно в 40, 30, 80, 60 и 50 т снабжаются четырьмя бензохранилищами (БХ) вместимостью 55, 70, 35 и 100 т соответственно. Доставка горючего осуществляется автотранспортом. Средние транспортные затраты на 1 т приведены в таблице. Составить план перевозки горючего, обеспечивающий минимальные суммарные транспортные затраты при условии, что из бензохранилища БХ2 весь запас бензина поставляется в АПЗ.

Пост-к/ Потребитель	B1	B2	В3	B4	B5
Бх1	6	5	9	7	4
Бх2	10	11	8	3	2
Бх3	12	8	7	9	6
Бх4	10	7	12	3	5

Задача №11

Завод имеет три цеха А,Б и В и четыре склада №1, 2, 3 и 4. Цех А производит 30 тыс изделий, цех Б – 40 тыс., цех В – 20 тыс. изделий. Пропускная способность складов за то же время характеризуется следующими значениями: склад №1 – 25 тыс. изделий, склад №2 – 30 тыс.

изделий, склад №3 – 35 тыс. изделий, склад №4 – 15 тыс. изделий. Стоимость перевозки из цеха A на склады №1, 2, 3 и 4 одной тысячи изделий равна 2, 3, 0.5 и 4 у.е. Из цеха Б – 3, 2, 5 и 1 у.е., а из цеха В – 4, 3, 2 и 6. у.е. Составить план перевозки изделий на склады при условии, что склады №1 и №4 следует загрузить полностью.

Задача №12

Заводы 1, 2 и 3 выпускают одинаковую продукцию в количестве 40, 20 и 50 единиц с себестоимостью 1, 3 и 7 условных единиц соответственно. Изделия поставляются в пункты А, Б и В в количестве 30, 25 и 45 единиц с тарифами, приведенными в таблице. Составить наиболее экономный план доставки груза, учитывающий затраты на ее производство и доставку.

Поставщик	B1	B2	В3
A1	8	7	14
A2	4	10	9
A3	11	10	9

Задача №13

Составить план развозки товара с 3-х складов в 4 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	4	5	Запас
Склад I	20	23	20	15	24	320
Склад II	29	25	16	19	29	280
Склад III	6	11	10	9	8	250
Потребности	150	140	110	230	220	

Задача №14

Имеется три пункта поставки однородного груза и пять пунктов потребления этого груза. На пунктах поставки груз находится соответственно в количествах 230, 250, 170 (тонн) груза. В пункты потребления требуется доставить соответственно 140, 90, 160, 110, 150 (тонн) груза. Составить план развозки сырья с 3-х сладов на 5 предприятий. Тарифы на перевозки приведены в таблице:

	П1	П2	П3	П4	П5
Склад I	40	19	25	25	35
Склад II	49	26	27	18	38
Склад III	46	27	36	40	45

Задача №15

Составить план развозки товара с 3-х складов в 3 магазина. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	4	5	Запас
Склад І	20	23	20	15	24	320

Склад II	29	25	16	19	29	280
Склад III	6	11	10	9	8	250
Потребности	150	140	110	230	220	

Составить оптимальный план перевозки лекарств с минимальными затратами из аптечных складов в пять аптек города: аптека № 7, 15, 23, 50 и 62. Запасы лекарств на складе, заявки аптек и тарифы на перевозки указаны в таблице.

Поставщик	Nº7	Nº15	Nº23	Nº50	Nº62	Запас
A1	10	11	6	7	8	160
A2	10	11	8	9	12	150
A3	12	12	10	12	14	150
Заказ	50	200	60	100	40	

Задача №17

Три кирпичных завода снабжают кирпичом 5 строительных объектов. Потребность объектов в кирпиче 230, 220, 130, 170, 190 упаковок. Объем производства заводов: 240 уп., 360 уп., 180 уп. Цены на транспортировку кирпича от заводов к каждому из объектов приведены в таблице. Составить план развозки кирпича.

	Объект 1	Объект 2	Объект 3	Объект 4	Объект 5
1-й завод	8	7	5	10	12
2-й завод	13	8	10	7	6
3-й завод	12	4	11	9	10

Задача №18

Составить план развозки товара с 3-х складов в 4 магазина. Тарифы на перевозки, приведены в таблице:

	1	2	3	4	Запас
Склад I	1	7	9	5	120
Склад II	4	2	6	8	280
Склад III	3	8	1	2	160
Потребности	130	220	60	70	

Задача №19

На трех лесоводствах в преддверии нового года имеются елки в количестве 200, 300, 400 ед., который необходимо доставить на четыре елочных базара в количестве, соответственно 300, 200, 150, 250 ед. Затраты на перевозку одной елки заданы в таблице:

	Б1	Б2	Б3	Б4
1	6	5	6	5
II	4	4	7	7
III	3	6	8	9

На трех лесоводствах в преддверии нового года имеются елки в количестве 200, 300, 400 ед., который необходимо доставить на четыре елочных базара в количестве, соответственно 300, 200, 150, 250 ед. Затраты на перевозку одной елки заданы в таблице:

	Б1	Б2	Б3	Б4
1	6	5	6	5
II	4	4	7	7
III	3	6	8	9

Задача №21

На трех складах имеется товар в количестве 150, 90, 120 ед., который необходимо доставить на четыре базара в количестве, соответственно 40, 120, 20, 180 ед. Затраты на перевозку единицы товара заданы в таблице:

	Б1	Б2	Б3	Б4
1	8	10	9	7
II	4	6	2	5
III	3	5	8	9

Задача №22

Составить план развозки товара с 3-х складов в 4 магазина. Тарифы на перевозки, приведены в таблице:

	1	2	3	4	Запас
Склад I	1	7	9	5	20
Склад II	4	2	6	8	80
Склад III	3	8	1	2	60
Потребности	30	20	60	40	

Задача №23

На трех лесоводствах в преддверии нового года имеются елки в количестве 200, 300, 400 ед., который необходимо доставить на четыре елочных базара в количестве, соответственно 300, 200, 150, 250 ед. Затраты на перевозку одной елки заданы в таблице:

	Б1	Б2	Б3	Б4
1	6	5	6	5
II	4	4	7	7
III	3	6	8	9

Задача №24

На трех лесоводствах в преддверии нового года имеются елки в количестве 250, 250, 300 ед., который необходимо доставить на четыре елочных базара в количестве, соответственно 100, 200, 150, 250 ед. Затраты на перевозку одной елки заданы в таблице:

	Б1	Б2	Б3	Б4
1	6	5	6	5
II	4	4	7	7
III	3	6	8	9

Составить план развозки товара с 3-х складов в 5 магазинов. Тарифы на перевозки, запас на складе и потребности потребителя приведены в таблице:

	1	2	3	4	5	Запас
Склад І	15	23	20	15	24	220
Склад II	19	25	16	19	29	180
Склад III	16	19	18	12	25	150
Потребности	150	40	110	130	120	

6. Вопросы для самоконтроля

- 1. Какова постановка транспортной задачи?
- 2. В чем отличие транспортной задачи с закрытой и открытой моделью?
- 3. Запишите математическую модель транспортной задачи.
- 4. Назовите исходные и искомые параметры транспортной задачи.
- 5. Назовите основные этапы решения задачи в MS Excel.
- 6. Каким образом в MS Excel задается критерий оптимизации целевой функции?