Distance

Definition: Distance

Let G be a graph and let $u, v \in V(G)$ such that u and v are connected:

• The *distance* between u and v, denoted by $d_G(u,v)$ or d(u,v), is the length of the shortest u-v path:

$$d_G(u, v) = d(u, v) = \min\{|P| | P \text{ is a } u - v \text{ path in } G\}$$

• To say that a u-v path P in G is *geodesic* means that:

$$|P| = d_G(u, v)$$

• The diameter of G is the greatest distance between any two vertices in G:

$$diam(G) = \max \{ d_G(u, v) \mid u, v \in V(G) \}$$

For a graph G or order n:

•
$$d_G(u,v) = 0 \iff u = v$$

•
$$d_G(u,v) = 1 \iff uv \in E(G)$$

•
$$0 \le d(u, v) < n$$

Example

a-b	a-c	a-d	a-e	b-c	b-d	b-e	c-d	c-e	d-e
$(a, b)^*$	(a,b,d,c)	(a, b, d)	(a,b,e)	(b, a, d, c)			$(c,d)^*$	(c,d,a,b,e)	(d, a, b, e)
(a,d,b)	$(a,d,c)^*$	$(a, d)^*$	(a,d,b,e)	$(b, d, c)^*$	$(b, d)^*$	(b,d,a,e)		$(c,d,a,e)^*$	$(d, a, e)^*$
(a, e, b)	(a, e, b, d, c)	(a, e, b, d)	$(a, e)^*$	(b, e, a, d, c)	(b, e, a, d)	$(b, e)^*$		(c,d,b,a,e)	(d,b,a,e)
								$(c,d,b,e)^*$	$(d,b,e)^*$
d = 1	d=2	d = 1	d = 1	d=2	d=1	d=1	d=1	d=3	d=2

Theorem

Let G be a graph with $u, v \in V(G)$ and let $P = (u = v_0, v_1, \dots, v_k = v)$ be a u - v geodesic in G. For all i such that $0 \le i \le k$:

$$d(u, v_i) = i$$

Proof. Assume $0 \le i \le k$.

Since $(u = v_0, v_1, \dots, v_i)$ is a $u - v_i$ path of length i in G, it must be that case that $d(u, v_i) \leq i$.

ABC: There exists a shorter $u - v_i$ path in G: $(u = w_0, w_1, \dots, w_\ell = v_i)$ for $\ell < i$.

Let $W = (u = w_0, w_1, \dots, w_\ell = v_i, \dots v_k = v)$. W is a u - v walk in G of length:

$$\ell + (k-i) = k - (i-\ell) < k$$

So there exists a u - v path in G of length < k, contradicting the minimality of P.

$$d(u, v_i) = i$$

Theorem

Let G be a graph with $u,v\in V(G)$ such that $d(u,v)=\operatorname{diam}(G). \ \forall \ w\in V(G), \ w\neq u,v$:

v appears in no u-w geodesic in ${\cal G}.$

Proof. Assume $w \in V(G), w \neq u, v$ and P is a u - w geodesic in G.

ABC: v is contained in P.

Then $P=(u,\ldots,v,\ldots,w)$ and the u-v subpath must be geodesic. But $u,v\neq w$, and so d(u,w)>d(u,v), contradicting the maximality of d(u,v).

 $\therefore v$ cannot appear in any u-w geodesic in G.