Steps for Regression Model with Sklearn

Basic steps for regression model with sklearn

Import Library

```
In [30]:
```

```
import pandas as pd
import numpy as np
```

import CSV as DataFrame

```
In [31]:
```

```
df = pd.read_csv(r"https://github.com/YBI-Foundation/Dataset/raw/main/Fish.csv")
```

Get first five rows of DataFrame

```
In [32]:
```

```
df.head()
```

Out[32]:

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
0	1	Bream	242.0	11.5200	4.0200	23.2	25.4	30.0
1	1	Bream	290.0	12.4800	4.3056	24.0	26.3	31.2
2	1	Bream	340.0	12.3778	4.6961	23.9	26.5	31.1
3	1	Bream	363.0	12.7300	4.4555	26.3	29.0	33.5
4	1	Bream	430.0	12.4440	5.1340	26.5	29.0	34.0

Get information of Dataframe

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 8 columns):
    Column
            Non-Null Count Dtype
    Category 159 non-null
0
                             int64
 1
    Species 159 non-null object
 2
    Weight 159 non-null float64
    Height 159 non-null float64
Width 159 non-null float64
 3
              159 non-null float64
 4
    Width
 5
    Length1 159 non-null float64
6
    Length2 159 non-null float64
    Length3 159 non-null
                            float64
dtypes: float64(6), int64(1), object(1)
memory usage: 10.1+ KB
```

Get the summary of Statistics

```
In [34]:
```

In [33]:

```
df.describe()
```

Out[34]:

	Category	Weight	Height	Width	Length1	Length2	Length3
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	3.264151	398.326415	8.970994	4.417486	26.247170	28.415723	31.227044
std	1.704249	357.978317	4.286208	1.685804	9.996441	10.716328	11.610246
min	1.000000	0.000000	1.728400	1.047600	7.500000	8.400000	8.800000
25%	2.000000	120.000000	5.944800	3.385650	19.050000	21.000000	23.150000
50%	3.000000	273.000000	7.786000	4.248500	25.200000	27.300000	29.400000
75%	4.500000	650.000000	12.365900	5.584500	32.700000	35.500000	39.650000
max	7.000000	1650.000000	18.957000	8.142000	59.000000	63.400000	68.000000

Get Shape of Dataframe

```
In [35]:
```

```
df.shape
```

Out[35]:

(159, 8)

Get Columns Name

```
In [36]:
df.columns
Out[36]:
Index(['Category', 'Species', 'Weight', 'Height', 'Width', 'Length1',
       'Length2', 'Length3'],
      dtype='object')
Define y(dependent or label or target variable) and X(Independent
or feature or attribute variable)
In [37]:
y = df['Weight']
In [38]:
y.shape
Out[38]:
(159,)
In [39]:
у
Out[39]:
0
      242.0
1
      290.0
2
      340.0
3
      363.0
4
      430.0
154
       12.2
155
       13.4
156
       12.2
```

```
4 430.0 ...

154 12.2
155 13.4
156 12.2
157 19.7
158 19.9
Name: Weight, Length: 159, dtype: float64

In [40]:

X = df[['Height', 'Width', 'Length1', 'Length2', 'Length3']]

In [41]:

X.shape

Out[41]:
```

(159, 5)

In [42]:

Χ

Out[42]:

	Height	Width	Length1	Length2	Length3
0	11.5200	4.0200	23.2	25.4	30.0
1	12.4800	4.3056	24.0	26.3	31.2
2	12.3778	4.6961	23.9	26.5	31.1
3	12.7300	4.4555	26.3	29.0	33.5
4	12.4440	5.1340	26.5	29.0	34.0
154	2.0904	1.3936	11.5	12.2	13.4
155	2.4300	1.2690	11.7	12.4	13.5
156	2.2770	1.2558	12.1	13.0	13.8
157	2.8728	2.0672	13.2	14.3	15.2
158	2.9322	1.8792	13.8	15.0	16.2

159 rows × 5 columns

In [43]:

```
X = df.drop(['Category', 'Species', 'Weight'], axis=1)
```

In [44]:

X.shape

Out[44]:

(159, 5)

In [45]:

Χ

Out[45]:

	Height	Width	Length1	Length2	Length3
0	11.5200	4.0200	23.2	25.4	30.0
1	12.4800	4.3056	24.0	26.3	31.2
2	12.3778	4.6961	23.9	26.5	31.1
3	12.7300	4.4555	26.3	29.0	33.5
4	12.4440	5.1340	26.5	29.0	34.0
154	2.0904	1.3936	11.5	12.2	13.4
155	2.4300	1.2690	11.7	12.4	13.5
156	2.2770	1.2558	12.1	13.0	13.8
157	2.8728	2.0672	13.2	14.3	15.2
158	2.9322	1.8792	13.8	15.0	16.2

159 rows × 5 columns

Get Train-test-split

```
In [46]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [47]:
```

```
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3, random_state=2254)
```

```
In [48]:
```

```
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

Out[48]:

```
((111, 5), (48, 5), (111,), (48,))
```

In [49]:

```
from sklearn.linear_model import LinearRegression
```

In [50]:

```
model = LinearRegression()
```

```
In [51]:
model.fit(X_train,y_train)
Out[51]:
LinearRegression()
Get Model Predict
In [52]:
y_pred = model.predict(X_test)
In [53]:
y_pred.shape
Out[53]:
(48,)
In [54]:
y_pred
Out[54]:
array([ 97.60167573, 207.54843243, 780.99118651, 314.35487958,
       184.0777877 ,
                      264.00423771,
                                     910.99010236, 675.57027966,
       -142.73337046, 136.4269669, 366.75314755, 148.83449827,
       854.9511332 , -156.28548494, 603.99701666, 772.93235553,
       805.87775427, -73.78143302, 107.69984752, 336.836344
       141.18908263, 540.15716962,
                                     269.71879309, 557.81810424,
       537.78191451, 1069.34781139, 140.95436387, 851.50030651,
       140.661948 , 544.52810125, 168.05667942,
                                                   34.51185187,
       211.52578448, 222.41188512, 1173.29180627, -140.50715608,
       685.82296775, 168.59291828, 116.85419698,
                                                  48.06538509,
       804.04105263, 173.80858453, 656.36650026, 688.94027394,
       745.79272923, 389.38869184, 379.89889292, 650.11124831])
Get Model Evaluation
In [55]:
from sklearn.metrics import mean squared error, mean absolute error, mean absolute percenta
In [56]:
mean_squared_error(y_test,y_pred)
```

Out[56]:

21543.221470572124

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MSE = mean squared error n = number of data points Yi = observed values hat(Yi) = predicted values

In [57]:

mean_absolute_error(y_test,y_pred)

Out[57]:

101.58037604551602

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

MAE = mean absolute error

yi = prediction

xi = true value

n = total number of data points

In [58]:

mean_absolute_percentage_error(y_test,y_pred)

Out[58]:

1.2883877664090626

$$M = rac{1}{n} \sum_{t=1}^n \left| rac{A_t - F_t}{A_t}
ight|$$

M = mean absolute percentage error

n = number of times the summation iteration happens

A_t = actual value

F t = forecast value

```
In [60]:
```

r2_score(y_test, y_pred)

Out[60]:

0.870932399883171

$$R^2 = 1 - rac{RSS}{TSS}$$

R² = coefficient of determination

RSS = sum of squares of residuals

TSS = total sum of squares

Get Future Predictions

Lets select a random sample from existing dataset as new value

Steps to follow

- 1. Extract a random row using sample function
- 2. Separate X and y
- 3. Predict

```
In [61]:
```

```
df_new = df.sample(1)
```

```
In [62]:
```

df_new

Out[62]:

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
34	1	Bream	950.0	17.6235	6.3705	38.0	41.0	46.5

```
In [63]:
```

```
X_new = df_new[['Height','Width','Length1','Length2','Length3']]
```

In [64]:

```
X_new.shape
```

Out[64]:

(1, 5)

```
In [65]:

y_pred_new = model.predict(X_new)

In [66]:

y_pred_new

Out[66]:
    array([884.8896656])

In []:
```