Fundamentals of Solid State Physics

Optical Emission

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Optical Emission

Optical Emission

- Thermal radiation 热辐射
- Photoluminescence 光致发光
- Electroluminescence 电致发光
- Others
 - □ Chemiluminescence 化学发光
 - □ Bioluminescence 生物发光
 - □ Sonoluminescence 声致发光
 - **---**

Thermal Radiation 热辐射

- Blackbody Radiation 黑体辐射
 - **S**(λ) radiation power per unit area per unit wavelength (W/m²/nm)

$$S(\lambda) = \frac{2\pi hc^2}{\lambda^5 (e^{\frac{hc}{\lambda k_B T}} - 1)}$$

Wavelength (nm)

Thermal Radiation 热辐射

- Blackbody Radiation 黑体辐射
 - **S**(λ) radiation power per unit area per unit wavelength (W/m²/nm)

$$S(\lambda) = \frac{2\pi hc^2}{\lambda^5 (e^{\frac{hc}{\lambda k_B T}} - 1)}$$

Photoluminescence 光致发光

Photoluminescence Photon energy Emission

GFP 绿色荧光蛋白

M. Chalfie, *et al.*, *Science* 263, 802 (1994)

absorption emission

neuron cells

Electroluminescence 电致发光

lightning

cathode ray tube (CRT)

fluorescent lamp

Electroluminescence 电致发光

LED Spectrum

Light Emission Efficiency

Direct bandgap semiconductors like GaAs, GaN are more suitable for LEDs and lasers Indirect bandgap semiconductors
like silicon do not emit light efficiently
more non-radiative recombinations

10

Materials Choices for Light Emission

Everything can emit light

Pickle (腌黄瓜) at 120 V

Organic LED

Small Molecules

Others

Bioluminescence

Others

Chemiluminescence 化学

Triboluminescence 摩擦

Bioluminescence 生物

Sonoluminescence 超声

Lighting 照明技术

Incandescent bulb 白炽灯

Fluorescent lamp 荧光灯

LED lamp

Q: What are the differences?

Mysteries Remain

"All these 50 years of pondering have not brought me any closer to answering the question, 'what are light quanta?' "

---- Albert Einstein in 1951

This Class

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
 - \Box Origin of Dielectric constant (ε) and Refractive index (n)
 - Optical absorption, reflection, refraction, emission
- Magnetic Properties (Week 15)

Next Class

- Introduction (Week 1)
- Materials and Crystal Structures (Week 2–3)
- Electronic Properties (Week 4–12)
- Thermal Properties (Week 13)
- Optical Properties (Week 14)
- Magnetic Properties (Week 15)
 - Origin of Magnetics
 - Diamagnetism, Paramagnetism, Ferromagnetism
 - Superconductivity

Thank you for your attention