5.2 ABCD parameter

Module:5 Microwave Passive components

Course: BECE305L - Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 <u>Microwave Passive components</u> 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

5.2 ABCD parameter

1. ABCD Parameters Port

- The Z, Y, and S parameter representations can be used to characterize a microwave network with an arbitrary number of ports, but in practice many microwave networks consist of a cascade connection of two or more two-port networks
- define a 2 × 2 transmission, or ABCD, matrix, for each two-port network
- multiply the ABCD matrices of the individual two-ports
- ABCD matrix is defined for a two-port network in terms of the total voltages and currents (Note: I_2 is current flowing outward, and for inward current, $-I_2$)

$$V_1 = AV_2 + BI_2,$$
 $\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}.$

1. ABCD Parameters Port

$$V_1 = AV_2 + BI_2,$$

 $I_1 = CV_2 + DI_2,$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}.$$

$$A = \frac{V_1}{V_2} \bigg|_{I_2=0}$$

$$B = \frac{V_1}{I_2} \bigg|_{V_2 = 0}$$

$$C = \frac{I_1}{V_2} \bigg|_{I_2 = 0}$$

$$D = \frac{I_1}{I_2} \bigg|_{V_2 = 0}$$

1. ABCD Parame

• the left-hand side represents the voltage and current at port 1 of the network, while the column on the right-hand side represents the voltage and current at port 2

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}.$$

the cascade connection of two two-port networks

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}, \quad \begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} V_3 \\ I_3 \end{bmatrix}.$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & C_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} V_3 \\ I_3 \end{bmatrix},$$

- ABCD matrix of the cascade connection of the two networks is equal
- to the product of the ABCD matrices representing the individual twoports

1. ABCD Parame

 order of multiplication of the matrix must be the same as the order in which the networks are arranged

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & C_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} V_3 \\ I_3 \end{bmatrix},$$

2. Circuits and its ABCD parameters

$$A = 1$$

$$C = 0$$

$$B = Z$$

$$D = 1$$

$$A = 1$$

$$C = Y$$

$$B = 0$$

$$D = 1$$

$$A = \cos \beta \ell$$

$$C = j Y_0 \sin \beta \ell$$

$$B = j Z_0 \sin \beta \ell$$

$$D = \cos \beta \ell$$

$$A = N$$

$$C = 0$$

$$B = 0$$

$$D = \frac{1}{N}$$

2. Circuits and its ABCD parameters

$$A = 1 + \frac{Y_2}{Y_3}$$
 $B = \frac{1}{Y_3}$ $C = Y_1 + Y_2 + \frac{Y_1 Y_2}{Y_3}$ $D = 1 + \frac{Y_1}{Y_3}$

$$B = \frac{1}{Y_3}$$

$$D = 1 + \frac{Y_1}{Y_3}$$

$$\circ$$
 Z_1 Z_2 \circ Z_3

$$A = 1 + \frac{Z_1}{Z_3}$$
$$C = \frac{1}{Z_3}$$

$$B = Z_1 + Z_2 + \frac{Z_1 Z_2}{Z_3}$$
$$D = 1 + \frac{Z_2}{Z_3}$$

3. Evaluation of ABCD Parameters

- Find the ABCD parameters of a two-port network consisting of a series impedance Z between ports 1 and 2
- A is found by applying a voltage V1 at port 1, and measuring
- the open-circuit voltage V2 at port 2. Thus, A = 1.

$$A = 1$$
 $B = Z$ $C = 0$ $D = 1$

$$B = \frac{V_1}{I_2} \bigg|_{V_2 = 0} = \frac{V_1}{V_1/Z} = Z,$$

$$C = \frac{I_1}{V_2} \bigg|_{I_2 = 0} = 0$$

$$D = \frac{I_1}{I_2} \bigg|_{V_2 = 0} = \frac{I_1}{I_1} = 1.$$

4. Relation between S parameters and ABCD parameters

$$\frac{A + B/Z_0 - CZ_0 - D}{A + B/Z_0 + CZ_0 + D}$$

 S_{12}

$$\frac{2(AD - BC)}{A + B/Z_0 + CZ_0 + D}$$

$$S_{21}$$
 $\frac{2}{A+B/Z_0+CZ_0+D}$

$$S_{22}$$

$$\frac{-A + B/Z_0 - CZ_0 + D}{A + B/Z_0 + CZ_0 + D}$$

$$A \frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}}$$

$$B Z_0 \frac{(1+S_{11})(1+S_{22}) - S_{12}S_{21}}{2S_{21}}$$

$$C \qquad \frac{1}{Z_0} \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{2S_{21}}$$

$$D = \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{2S_{21}}$$