

Electromagnetic Emissions Test Report
Application for Grant of Equipment Authorization
pursuant to
FCC Part 15 Subpart C
on the
Kin Yip Industrial
Transmitter
Model: iTrip Nano 4G (P1454)

FCC ID: VYB1454

GRANTEE: Kin Yip Industrial

1930 Flat B, 11/F Hung Mou Ind. Bldg. 62 Hung To Roa Kowloon, Hong Kons

Kowloon, Hong Kong

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC Site Registration #: IC 4549-4

REPORT DATE: November 10, 2008

FINAL TEST DATE: September 9, September 12

and October 24, 2008

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	12/12/2008	Initial Release	-

File: R73686 Rev 1 Page 2 of 18

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	6
DEVICES OPERATING IN THE 88-108 MHZ FM BANDGENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	7 7 8
TEST SITE	9
GENERAL INFORMATIONRADIATED EMISSIONS CONSIDERATIONS	9 9
MEASUREMENT INSTRUMENTATION	9
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	10 10 10
TEST PROCEDURES	11
EUT AND CABLE PLACEMENT	11 15 16 RSS 210
SAMPLE CALCULATIONS - RADIATED EMISSIONSSAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data
EXHIBIT 2: Test Measurement Data
EXHIBIT 3: Photographs of Test Configurations
EXHIBIT 4: Proposed FCC ID Label & Label Location
EXHIBIT 5: Detailed Photographs
EXHIBIT 6: Operator's Manual
EXHIBIT 7: Block Diagram
EXHIBIT 8: Schematic Diagrams
EXHIBIT 9: Theory of Operation
EXHIBIT 10: RF Exposure Information

SCOPE

An electromagnetic emissions test has been performed on the Kin Yip Industrial model iTrip Nano 4G (P1454) pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Kin Yip Industrial model iTrip Nano 4G (P1454) and therefore apply only to the tested sample. The sample was selected and prepared by Michael O'Connor of Griffin Technology.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R73686 Rev 1 Page 5 of 18

STATEMENT OF COMPLIANCE

The tested sample of Kin Yip Industrial model iTrip Nano 4G (P1454) complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

DEVICES OPERATING IN THE 88-108 MHz FM BAND

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.239 (a)	RSS 210 A2.8	Bandwidth and operating range	180kHz	Bandwidth less than 200kHz contained in the 88 – 108 MHz band	
15.239 (b)	RSS 210 A2.8 (1)	Fundamental Field Strength	47.7dBuV/m @ 93.1MHz (-0.3dB)	250uV/m at 3m	Complies
15.239 (c) / 15.209	RSS 210 Table 2	Radiated Spurious Emissions, 30 – 540 MHz	34.7dBμV/m @ 264.247MHz (- 11.3dB)	Refer to table in limits section	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna integral to the EUT	Refer to standard	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	34.7dBµV/m @ 264.247MHz (-11.3dB)	Refer to table in limits section	Complies - Note 2
15.207	RSS GEN Table 2	AC Conducted Emissions		-	N/A – Note 1
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies

Note 1 – The EUT is powered from the iPod and does not allow for charging of the iPod while connected.

Note 2 - Preliminary testing showed that emissions during receive operation were equal to or less than the emissions during the transmit operation.

File: R73686 Rev 1 Page 6 of 18

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4 ± 3.0
Radiated Emissions Radiated Emissions Radiated Emissions	0.015 to 30 30 to 1000 1000 to 40000	$\pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Kin Yip Industrial model iTrip Nano 4G (P1454) is a portable FM transmitter that is designed to transmit audio information from an iPod or a computer. For this testing, the EUT was placed on a table-top. The EUT is powered from an iPod and does not allow for passing thru charging of the iPod while connected.

The sample was received on 9/9/2008 and tested on September 9, September 12 and October 24, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Kin Yip	P1454 (iTrip	FM Transmitter	N/A	VYB1454
	Nano 4G)			

ANTENNA SYSTEM

The antenna is integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 4 cm wide by 0.6 cm deep by 3 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R73686 Rev 1 Page 7 of 18

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Apple	iPod Nano	MP3 player	N/A	DoC

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
Poit	Connected To	Description	Shielded or Unshielded	Length(m)	
iPod Nano	EUT	Direct connection	-	-	
30pin					

EUT OPERATION

During emissions testing, the EUT was configured to continuously transmit a file of music at the selected frequency.

File: R73686 Rev 1 Page 8 of 18

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on September 9, September 12 and October 24, 2008 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
Chamber 4	211948	IC 4549-4	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

File: R73686 Rev 1 Page 9 of 18

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R73686 Rev 1 Page 10 of 18

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R73686 Rev 1 Page 11 of 18

Typical Test Configuration for Radiated Field Strength Measurements

File: R73686 Rev 1 Page 12 of 18

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R73686 Rev 1 Page 13 of 18

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

File: R73686 Rev 1 Page 14 of 18

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

File: R73686 Rev 1 Page 15 of 18

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RADIATEDFUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS - 15.239 and RSS 210 A2.9

Frequency Range (MHz)	Limit for Fundamental @ 3m	Limit for all signals outside of the occupied bandwidth @ 3m
88 - 108	250 uV/m 48 dBuV/m	General limits apply

The occupied bandwidth is limited to 200kHz.

RSS 210 allows the fundamental field strength to be 1000uV/m at 30m at these specific frequencies 88.1; 88.3; 88.5; 107.7; 107.9 MHz is1000uV/m at 30m for FM devices.

File: R73686 Rev 1 Page 16 of 18

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R73686 Rev 1 Page 17 of 18

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R73686 Rev 1 Page 18 of 18

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R73686 Rev 1 Exhibit Page 1 of 10

Radiated Emissions, 30 - 1,000 MHz, 10-Sep-08

Ena	ineer:	rvare	as

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	213	19-Mar-09
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	29-Nov-08
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1543	12-Nov-08
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	13-Jun-09

, 13-Sep-0	8
Engineer:	biin

Linginieer. Djirig				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1633	11-Aug-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	23-May-09

Radiated Emissions, 30 - 1,000 MHz, 24-Oct-08

Engineer: Rafael and Joseph

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	19-Sep-09
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	13-Jun-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	29-May-09

EXHIBIT 2: Test Measurement Data

10 Pages

File: R73686 Rev 1 Exhibit Page 2 of 10

Ellic	ott S company	EM	C Test Data
Client:	Kin Yip (Griffin)	Job Number:	J72974
Model:	iTrip Nano 4G (P1454)	Test-Log Number:	T72994
		Project Manager:	Sheareen
Contact:	Jeff Altheide		
Emissions Spec:	FCC 15.239	Class:	В
Immunity Spec:	-	Environment:	-

For The

Kin Yip (Griffin)

Model

iTrip Nano 4G (P1454)

Date of Last Test: 10/24/2008

1112	_ company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Model:	iTrip Nano 4G (P1454)	Test-Log Number:	T72994
		Project Manager:	Sheareen
Contact:	Jeff Altheide		
Emissions Spec:	FCC 15.239	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a portable FM transmitter that is designed to transmit audio information from an iPod or a computer. For this testing, the EUT was placed on a table-top. The EUT is powered via iPod.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Kin Yip	P1454 (iTrip Nano 4G)	FM Transmitter	N/A	VYB1454

EUT Antenna (Intentional Radiators Only)

The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of plastic . It measures approximately 4 cm wide by 0.6 cm deep by 3 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

1112	_ company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Model:	iTrip Nano 4G (P1454)	T-Log Number:	T72994
		Project Manager:	Sheareen
Contact:	Jeff Altheide		
Emissions Spec:	FCC 15.239	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

The following information was collected during the test sessions(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Apple	iPod Nano	MP3 player	N/A	DoC

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID		
-	-	-	_	_		

Cabling and Ports

Port	Connected To	Cable(s)					
		Description	Shielded or Unshielded	Length(m)			
iPod Nano 30pin	EUT	Direct connection	-	-			

EUT Operation During Emissions Tests

During emissions testing, the EUT was configured to continuously transmit a file of music at the selected frequency.

	An 2012 Company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Madal	iTrip Nano 4G (P1454)	T-Log Number:	T72994
wodei.	1111p Nailo 4G (P1454)	Account Manager:	Sheareen
Contact:	Jeff Altheide		
Standard:	FCC 15.239	Class:	В

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/24/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None

Joseph Cadigal

Test Location: Fremont Chamber #4 EUT Voltage: Battery

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and maniplulation of cable position.

Ambient Conditions: Temperature: 21.9 °C

Rel. Humidity: 41 %

Rel. Humidity:

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, Fundamental Measurements	FCC 15.239	Doce	47.7dBuV/m @
l	RE, Fundamental Measurements	FCC 13.239	Pass	93.1MHz (-0.3dB)
2				34.7dBµV/m @
	RE, 30 - 1000 MHz	FCC 15.239	Pass	264.247MHz (-11.3dB)
				, , ,
3	Bandwidth Measurements	FCC 15.239	Pass	180kHz

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

	An ZZZZZZ company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Madalı	iTrip Nano 4G (P1454)	T-Log Number:	T72994
Model.	1111p Natio 4G (P1454)	Account Manager:	Sheareen
Contact:	Jeff Altheide		
Standard:	FCC 15.239	Class:	В

Run #1a: Fundamental

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample , Elliott tag 2008-2506

Fundamental Measurements

Frequency	Level	Pol	FCC 1	15.239	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT Flat								
88.100	39.8	V	48.0	-8.2	AVG	1	3.6	Setting 0
88.100	46.4	Н	48.0	-1.6	AVG	258	2.1	Setting 0
98.100	38.8	V	48.0	-9.2	AVG	0	1.9	Setting 0
98.100	46.2	Н	48.0	-1.8	AVG	261	1.7	Setting 0
107.900	37.9	V	48.0	-10.1	AVG	178	2.7	Setting 0
107.900	44.5	Н	48.0	-3.5	AVG	268	2.9	Setting 0
EUT Side								
88.100	37.4	V	48.0	-10.6	AVG	360	3.6	Setting 0
88.100	44.0	Н	48.0	-4.0	AVG	271	2.5	Setting 0
98.100	36.4	V	48.0	-11.6	AVG	206	1.9	Setting 0
98.100	43.5	Н	48.0	-4.5	AVG	288	1.8	Setting 0
107.900	35.6	V	48.0	-12.4	AVG	360	2.6	Setting 0
107.900	42.6	Н	48.0	-5.4	AVG	283	2.9	Setting 0
EUT Uprigh	t			5	•	•		-
88.100	44.4	V	48.0	-3.6	AVG	174	1.0	Setting 0
88.100	27.0	Н	48.0	-21.0	AVG	228	4.0	Setting 0
98.100	46.0	V	48.0	-2.0	AVG	2	1.0	Setting 0
98.100	23.0	Н	48.0	-25.0	AVG	233	1.6	Setting 0
107.900	45.2	V	48.0	-2.8	AVG	82	1.0	Setting 0
107.900	22.1	Н	48.0	-25.9	AVG	238	1.1	Setting 0

Worst Case Peak Reading

	· · · · · · · · · · · · · · · · · · ·	9						
Frequency	Level	Pol	FCC 1	15.239	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
EUT Flat								
88.100	48.0	Н	68.0	-20.0	Peak	258	2.1	Setting 0

	An ZAZZS company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Madali	iTrip Nano 4G (P1454)	T-Log Number:	T72994
wouei.		Account Manager:	Sheareen
Contact:	Jeff Altheide		
Standard:	FCC 15.239	Class:	В

Run #2a: Radiated Emissions, 30 - 1000 MHz, EUT Flat

Low Channel at 88.1 MHz

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample, Elliott tag 2008-2506

Setting = 0

Frequency	Level	Pol	FCC 1	15.239	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
88.097	48.0	Н	-	-	Peak	268	2.5	Fundamental
264.247	34.3	Н	46.0	-11.7	Peak	269	1.0	
264.247	34.7	Н	46.0	-11.3	QP	269	1.0	QP (1.00s)
176.182	16.9	Н	43.5	-26.6	Peak	89	2.0	

	An 2225 Company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Madal	iTrip Nano 4G (P1454)	T-Log Number:	T72994
wodei.		Account Manager:	Sheareen
Contact:	Jeff Altheide		
Standard:	FCC 15.239	Class:	В

Run #2b: Radiated Emissions, 30 - 1000 MHz, EUT Flat

Middle Channel at 98.1 MHz

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample, Elliott tag 2008-2506

Setting = 0

Frequency	Level	Pol	FCC 1	5.239	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
98.081	47.5	Н	-	-	Peak	254	3.0	Fundamental
196.210	19.7	Н	43.5	-23.8	Peak	257	1.0	
294.267	20.9	Н	46.0	-25.1	Peak	264	1.0	

	An 2012 Company		
Client:	Kin Yip (Griffin)	Job Number:	J72974
Madal	iTrip Nano 4G (P1454)	T-Log Number:	T72994
wodei.	1111p Nailo 4G (P1454)	Account Manager:	Sheareen
Contact:	Jeff Altheide		
Standard:	FCC 15.239	Class:	В

Run #2c: Radiated Emissions, 30 - 1000 MHz, EUT Upright

High Channel at 107.9 MHz

EUT and Test Configuration Details:

EUT configured to transmit a song and volume was set to maximum.

FCC Sample, Elliott tag 2008-2506

Setting = 0

Frequency	Level	Pol	FCC 15.239		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
107.897	46.7	V	1	-	Peak	360	1.0	Fundamental
215.780	16.5	V	46.0	-29.5	Peak	177	1.0	

EXHIBIT 3: Photographs of Test Configurations

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 4 of 10

EXHIBIT 5: Detailed Photographs of Kin Yip Industrial Model iTrip Nano 4G (P1454)Construction

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 5 of 10

EXHIBIT 6: Operator's Manual for Kin Yip Industrial Model iTrip Nano 4G (P1454)

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 6 of 10

EXHIBIT 7: Block Diagram of Kin Yip Industrial Model iTrip Nano 4G (P1454)

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 7 of 10

EXHIBIT 8: Schematic Diagrams for Kin Yip Industrial Model iTrip Nano 4G (P1454)

Pages

File: R73686 Rev 1 Exhibit Page 8 of 10

EXHIBIT 9: Theory of Operation for Kin Yip Industrial Model iTrip Nano 4G (P1454)

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 9 of 10

EXHIBIT 10: RF Exposure Information

Uploaded as a separate document

File: R73686 Rev 1 Exhibit Page 10 of 10