GATE Computer Science & IT

BASIC COMPUTER ORGANIZATION AND ARCHITECTURE

Practice Questions Booklet

ANALYSIS OF CSO IN GATE PAPER

Years	Marks
2015	5
2016	8
2017	12
2018	10
2019	9
2020	10
2021 Set -1	8
2021 Set -2	9

CSO GATE SYLLABUS

- Number System: Octal, Hexadecimal and Decimal Representation, Complements, l's Complement, 2's Complement, Fixed-Point Representation, Floating-Point Representation, Binary Codes *etc*.
- ➤ Cache Memory: Associative Mapping, Direct Mapping, Set-Associative Mapping and Writing into Cache *etc*.
- ➤ **Instruction Sets:** Addressing Modes and Formats: Three-Address Instructions, Two Address Instructions, One-Address Instructions and Zero-Address Instructions, Data Transfer and Manipulation Instruction *etc*.
- > **Assembly Language**: Rules of the Language, Translation to Binary *etc.*
- ➤ **Instruction Pipelining**: Ideal Instruction Pipeline, Data Dependency, Handling of Branch Instructions *etc*.
- **External Memory**: Disk Structure and Disk Data transfer.
- ➤ **Input-Output Organization:** Input-Output Interface, Memory-Mapped I/O, Modes of Transfer, Programmed Interrupt-Initiated I/O, Priority Interrupt, Direct Memory Access (DMA), DMA Controller and DA Transfer *etc*.
- > ALU, Data-Path and Control Unit.

CSO GATE REFERENCE BOOKS

- Computer Organization by Carl Hamature
- Computer System and Architecture by M. Morris Mano
- ➤ Computer Organization and Architecture by William Stallings
- Computer Organization and Design by David A. Patterson and John L. Hennessy

TABLE OF CONTENTS

S. No.	CHAPTERS	P. No.
1	NUMBER SYSTEM	1
2	CACHE ORANIZATION	14
3	INSTRUCTION SET ARCHITECTURE	32
4	INSTRUCTION PIPELINE	44
5	INPUT-OUTPUT AND CONTROL UNIT	62

UNITS AND ABBREVIATIONS

- Units of File size (how big a file is on your computer) is usually measured in units of "kilobytes", "megabytes", and "gigabytes." In this computing (binary, but not data transfer) usage, 'K' (uppercase) represents a multiplier of 1,024, 'B' (uppercase) represent bytes and 'b' (lowercase) represent bits. Other abbreviations use this same base of 1,024:
 - **1 KB** (one KiloByte) = 1,024 Bytes (approximately 1 thousand Bytes)
 - 1 MB (one MegaByte) = 1,024 KB (approximately 1 million Bytes)
 - **1 GB** (one GigaByte) = 1,024 MB (approximately 1 billion Bytes)
 - **1 TB** (one TeraByte) = 1,024 GB (approximately 1 trillion Bytes)
- **Units of Data transfer** on the other hand is expressed in **bits**. In this computing (data transfer) usage '**k**' (lowercase) represents a multiplier of 1,000. In bit rates the abbreviations are as follows:
 - 1 **kbps** = 1,000 bits per second
 - 1 **Mbps** = 1,000,000 bits per second.
 - 1 **Gbps** = 1,000,000,000 bits per second.

Where:-

kbps (kilobits/sec) means *thousands of bits per second* (where "thousand"= 10³) **mbps** or Mbps (megabits/sec) means *millions of bits per second* (where "millions"= 106) **gbps** or Gbps (gigabits/sec) means *billions of bits per second* (where "billion"= 109) **tbps** (terabits/sec) means *trillions of bits per second* (where "trillions"= 10¹²) **pbps** (petabits/sec) means *quadrillions of bits per second* (where "trillions"= 10¹²)

Units of Time

- 1 second = 10^3 milliseconds (ms)
- 1 second = 10⁶ microseconds (μs)
- 1 second = 10⁹ nanoseconds (ns)
- 1 second = 10^{12} picoseconds (ps)
- 1 second = 10¹⁵ femtoseconds (fs)
- 1 milliseconds (ms) = 10⁻³ seconds
- 1 microseconds (μs) = 10-6 seconds
- 1 nanoseconds (ns) = 10⁻⁹ seconds
- 1 picoseconds (ps) = 10⁻¹² seconds
- 1 femtoseconds (fs) = 10⁻¹⁵second

NUMBER SYSTEM			
Q1.	1. The binary representation of the hexadecimal number 3B7F is		
	(a) 0100 1001 1110 1101	(b) 0011 1011 0111 1111	
	(c) 0010 0100 0000 1010	(d) 0110 0011 1011 1100	
Q2.	The decimal representation of the binary numb	er (10011010010) ₂ is	
Q3.	The binary representation of the decimal number	per (54321) ₁₀ is	
	(a) 11000001111000001	(b) 1101 0100 0011 0001	
	(c) 11000000111000001	(d) 10011100000011001	
Q4.	The binary representation of the decimal numb	er (654321.015625) ₁₀ is	
	(a) 100100010010010010100100	(b) 00000010010001111.100001	
	(c) 10010001001000000.000001	(d) 1001 1111 1011 1111 0001. 000001	
Q5.	The hexadecimal representation of the decimal	number (54321) ₁₀ is	
	(a)1011	(b) D431	
	(c) 3023	(d) 3039	
Q6.	The hexadecimal representation of the decimal	number (654321.015625) ₁₀ is	
	(a)1C140.00	(b) 9 FBF1.04	
	(c) 0E240.01	(d) 9 FBF1.01	
Q7.	The octal representation of the hexadecimal nu	mber (A7C8) ₁₆ is	
	(a) (123456) ₈	(b) (123614) ₈	
	(c) (123710) ₈	(d) (1010011111001000) ₂	
Q8.	The octal representation of the decimal number	r (668) ₁₀ is	
	(a) (1234) ₈	(b) (2341) ₈	
	(c) (3412) ₈	(d) (4123) ₈	
Q9.	The octal representation of the decimal number	(52345) ₁₀ is	
	(a) 12345	(b) 146 171	
	(c) 30071	(d) 17003	
Q10.	The octal representation of the decimal number	r (561234.015625) ₁₀ is	
	(a) 123456.11	(b) 2 110 122.10	
	(c) 113600.11	(d) 2 110 122.01	

Q11.	The octal representation of the hexa	decimal number (ABCDE) ₁₆ is
	(a) 2777565	(b) 2777650
	(c) 6435210	(d) 2536336
Q12.	The octal representation of the hexa	decimal number (FEDCBA.AB) ₁₆ is
	(a) 77556272.516	(b) 12345670.116
	(c) 23451671.116	(d) 77556272.526
Q13.	The following numbers are representations:	ented in hexadecimal, octal, binary, and decimal,
	respectively. Which answer specifie	s four unique integer numbers?
	(a) 0x050, 062, 0z000101000, 50	(b) 0x050, 070, 0z001010000, 62
	(c) 0x032, 062, 0z001100010, 62	(d) 0x062, 062, 0z010000010, 62
Q14.	Which of the following representation	on(s) is/are equivalent to 0z010101010101?
	(a) (555) ₈	(b) (1365) ₁₀
	(c) 0x555	(d) (1031) ₁₁
Q15.	How many different values can be	represented using four digits in the hexadecimal
	system?	
Q16.		exadecimal number (ABC.DEF)16 is
	(Round off to two decimal places)	
Q17.	The base-3 representation of the bas	se-81 number (74)(34)(3) ₍₈₁₎ is
Q18.	What is decimal equivalent of (5477	211) ₇ ?
Q19.	The base-27 representation of the b	ase-3 number (12211022) ₃ is
Q20.	Find a digit d such that d111 ₆ = 1d4	67
Q21.	Solve the equation $1xx6_0 = 1x010_5$ for	or the missing digit. Then x=
~		
Q22.	If $(x876)_{16} = (114166)_8$ Then $x =$	
~=	(101 0)10 (111100)0 111011 /	

Q23.	If $(7654)_x + (3210)_x = (13064)_x$, where $x > 0$, then positive x is	
	(a) 5 (b) 6	
	(c) 8 (d) 9	
Q24.	If $(555)_{10} = (x)_5$, then $x = $	
Q25.	If $(33332222)_4 = (1x8702)_9$, then $x = $	
Q26.	What can be the possible value of x, if $(33)_x + (11)_x = (110)_x$?	
Q27.	If (753) _x (in base-x number system) is equal to (384) _y (in base-y number system), the	
	possible values of x and y are	
	(a) 7, 12 (b) 13, 9	
	(c) 8, 11 (d) 9, 13	
Q28.	Consider the equation $(43)_x = (y3)_8$ where x and y are unknown. The number of	
	possible solutions is	
Q29.	Let $X = (1100)_7$ and $Y = (453)_7$ then what is the value of $(X-Y)_7$ is?	
Q30.	The roots of the quadratic equation $ x^2 - 11x + 22 = 0 $ are given by $x = 3$ and $x = 6$	
	What is the base of the numbers?	
O31	The roots of the cubic equation $x^3 + 23x^2 + 142x + 120 = 0$ are given by $x = 1, x = 10$ and	
Q31.		
	X =12. What is the base of the numbers:	
Q32.	For what value of b the equation is satisfied $(1234)_b + (5432)_b = (6666)_b$	
	(a) 6 (b) 7	
	(c) 10 (d) Any value > 6	
Q33.	Convert the fractional decimal number 194.03125 to binary with a maximum of	
	six places to the right of the binary point.	
	(a) 01000010.00001 (b) 01000010.00001	
	(c) 11000011.10001 (d) 11000010.00001	
Q29. Q30. Q31.	Consider the equation $(43)_x = (y3)_8$ where x and y are unknown. The number of possible solutions is	

Q34.	What is the smallest unsigned number that can	be represented using a sequence of 23
	bits?	
	(a) 0	(b) $-(2^{22}-1)$
	$(c) -2^{23} - 1$	(d) $2^{23}-1$
Q35.	What is the largest unsigned number that can be	pe represented using a sequence of 32
	bits?	
	(a) -2^{31}	(b) 2 ³¹ – 1
	$(c) - (2^{32} - 1)$	(d) 2 ³² – 1
Q36.	What is the smallest signed number (most nega	ative) using a sequence of 32-bits that
	can be represented in signed magnitude?	
	(a) -2^{31}	(b) $-(2^{31}-1)$ (d) $2^{31}-1$
	(c) $2^{32}-1$	(d) 2 ³¹ – 1
Q37.	What is the largest signed number (most positive) using a sequence of 32 bits that can	
	be represented in signed magnitude?	
	(a) -2 ³¹	(b) $-(2^{31}-1)$
	(c) $2^{32}-1$	(d) $2^{31}-1$
Q38.	What is the smallest signed number (most negative) using a sequence of 32 bits that	
	can be represented in one's complement?	
	(a) -2 ³¹	(b) $-(2^{31}-1)$
	(c) $2^{32}-1$	(d) $2^{31}-1$
Q39.	What is the largest signed number (most positiv	re) using a sequence of 32 bits that can
	be represented in one's complement?	, 0 1
	(a) -2^{31}	(b) $-(2^{31}-1)$
	(c) $2^{32}-1$	(d) $2^{31}-1$
Q40.	What is the smallest signed number (most nega	ative) using a sequence of 32 bits that
	can be represented in two's complement?	
	(a) -2^{31}	(b) $-(2^{31}-1)$
	(c) $2^{32}-1$	(d) $2^{31}-1$

Q41.	What is the largest signed number (most positive) using a sequence of 32 bits that can	
	be represented in two's complement?	
	(a) -2 ³¹	(b) $-(2^{31}-1)$
	(c) $2^{32}-1$	(d) $2^{31}-1$
Q42.	Which one of the following	g is the 8-bit two's complement representation of the sign
	magnitude number (010010	001) _{sm} .
	(a) (011101111) _{2's}	(b) (000010001) _{2's}
	(c) (011101110) _{2's}	(d) (010010001) _{2's}
Q43.	Match the following 6-b	oit representations of -25 with the names of these
	representations:	
	6-bit representations	names of representations
	1. 100111	i) one's complement
	2. 111001	ii) biased with B=2 ⁵
	3. 110101	iii) signed magnitude
	4. 100110	iv) two's complement
	5. 000111	v) unknown
	(a)1-iv, 2-iii,3-v,4-i,5-ii	(b) 1-iv, 2-ii,3-v,4-i,5-iii
	(c) 1-v, 2-ii,3-iv,4-i,5-iii	(d)None of these
Q44.	Which of the following num	nbers is NOT -1 in the specified representation?
	(a) 1111 1110 in 8-bit 1's con	nplement
	(b) 1000 0001 in 8-bit biased	representation with a bias of 128
	(c) 1 01111111 00000000000000000000000000	00000000000 in 32-bit IEEE floating point format
	(d) 1111 1111 in 8-bit 2's con	nplement
Q45.	Which of the following nu	mber is the 8-bit two's complement representation for (-
	89) ₁₀ ?	
	(a) (10111101) _{2s}	
	(b) (10111110) _{2s}	
	(c) 01000010 _{2s}	
	(d) none of the above	

Q46.	What will be the correct result when two 8-bit 2's complement numbers 11001111 and
	10001111 are added?
	(a) 0101 1110 carry = 1, overflow = 0
	(b) 0101 1110 carry = 0, overflow = 1
	(c) 0101 1110 carry = 1, overflow = 1
	(d) 0101 1110 carry = 0, overflow = 0
Q47.	Which of the following number is the 3-digit 6's complement representation for (48) ₁₀ ?
	(a) 4406s
	(b) 4346s
	(c) 4356s
	(d) 4366s
Q48.	What is the value represented by the 8-bit 2's complement fixed point number
	1101.1010 _{2s} ?
	(a) 13.225 ₁₀
	(b) -2.3125 ₁₀
	(c) -2.375 ₁₀
	(d)-3.3125 ₁₀
Q49.	Which of the following statements about 8-bit two's complement is/are correct?
	(a) The most significant bit has a weight of −26
	(b) The representable range is −128 to +127
	(c) The representable range is −127 to +128
	(d) To calculate $-x$ from x , we flip all the bits and add 1
Q50.	When do we need to use sign extension?
200.	(a) When we convert an n-bit 2's complement value to the 1's complement version.
	(b) When we convert an n-bit 1's complement value to the 2's complement version.
	(c) When we have an n-bit 2's complement value and we want to use it as the same
	value with fewer bits.
	(d) When we have an n-bit 2's complement value and we want to use it as the same
	value with more bits.

Q51.	Consider the results of adding the following pairs of six-bit (i.e. one sign bit and five
	data bits) two's complement number. Which of the operation is/are cause overflow?

(d) None of the above

Q52. Consider the results of subtracting the following pair of six-bit (i.e. one sign bit and five data bits) two's complement number. Which of the operation is/are cause overflow?

(d) None of the above

Q53. The following two values

- (a) A is larger
- (b) B is larger
- (c) A and B are equal
- (d) Can't say anything, data insufficient

Q54.	X is an 8-bit two's complement number with value 10100010. What is the result of	
	operation X >> 2?	
	(a) 11101000	(b) 00101000
	(c) 11010110	(d) 10101000
Q55.	[MSQ]	
	Assume that	
	(i) A, B and C are 8-bit two's complement nur	mbers,
	(ii) A = 11100001,	
	(iii) B = 01001001, and,	
	(iv) $C = 00010010$.	
	Which one of the following operations canno	t causes an overflow?
	(a) A >> 2	(b) A + B
	(c) B << 1	(d) A + C
Q56.	For the number -74 which option has the	correct 8-bit binary values for all three
	representations: 1's complement, 2's complem	nent and signed magnitude respectively?
	(a) 1011 0110, 1011 0101, 1100 1010	(b) 1011 0101, 1011 0110, 1100 1010
	(c) 1011 0101, 1011 0100, 1100 1010	(d) 1100 1010, 1011 0110, 1011 0101
Q57.	[MSQ]	
	Which of the following statements about 8-bi	t two's complement are correct?
	(a) The largest positive number is $127 = 2^7 - 1$	L.
	(b) The least negative number is $-127 = -(27)$	- 1).
	(c) Adding 11111110 and 00000010 produces	an overflow.
	(d) Adding 01111110 and 00000010 produces	an overflow.
Q58.	In which of the following coding schemes that	at 0111 represents the smallest value?
	(a) The standard 4-bit Gray code	(b) The BCD code
	(c) The 84-2-1 code	(d) The 2421 code
Q59.	We have number 11001 in gray code then it's	decimal equivalent is:

Q60.	How many of following statement is/are	correct?	
	S1: To convert a decimal integer to base 4 form, repeated multiplication by 4 is		
	used.		
	S2: In the Gray code sequence, two consecutive code values differ by one bit.		
	(a) only s1	(b) only s2	
	(c) both s1 & s2	(d) none of them	
Q61.	Which of the following weighted decimal	codes is not self-complementing?	
	(a) 2421 code	(b) 3132 code	
	(c) 5211 code	(d) 4421 code	
Q62.	Which of the following is/are self-comple	ementary code?	
	(a) 2421		
	(b) 4. Data Link Layer Medium Access Co	ontrol Question & solution Excess-3	
	(c) 5211		
	(d) 84-21		
Q63.	If we add the following two decimal digit	ts, 7+6, in excess-3 code what will be the sum.	
	(a) 0001 0000	(b) 0001 0011	
	(c) 0000 1011	(d) 0100 0110	
Q64.	Which of the following statements is/are	true?	
	(a) The sign-and-magnitude scheme has t	wo representations for zero.	
	(b) The BCD is a self-complementing code	e.	
	(c) To convert a decimal integer to base 4	forms, repeated multiplication by 4 is used.	
	(d) In the Gray code sequence, two consecutives	cutive code values differ by one bit.	
Q65.	Given the space of N bits, if the absol	ute magnitudes of the largest positive and	
	negative values that the space can repre	sent are the same, the number system being	
	used can be:		
	(a) 1's complement only		
	(b) 2's complement only		
	(c) sign-and-magnitude only		
	(d) Both (a) and (c)		

Q66.	What is the IEEE-754 32-bit floating point format representation of 16?
	(a) 0 10000101 10000000000000000000000000
	(b) 0 00000100 00000000000000000000000000
	(c) 0 10000011 10000000000000000000000000
	(d) 0 10000011 00000000000000000000000000
Q67.	Given the following hexadecimal form in the IEEE 754 single-precision floating-point
	number representation: 0xC4EFC000. What decimal value does it represent?
	(rounded off to three decimal places)
Q68.	Given the following hexadecimal value in the IEEE 754 single-precision floating point
	number representation: 0xC4127000. What decimal value does it represent?
	(Round off to two decimal places)
Q69.	Given the following hexadecimal representation in IEEE 754 single-precision floating-
	point number system: 0x42CE8000. What decimal value does it represent?
	(Round off to two decimal places)
Q70.	Given the following binary value in the IEEE 754 single-precision floating-point
	number representation: 0 10000111 11110100000000000000000000
	does it represent? (Round off to two decimal places)
Q71.	Given the following binary value in the IEEE 754 single-precision floating-point
	number representation: 1 10000011 01100010000000000000000000
	does it represent?(Round off to two decimal places)
Q72.	What is the hexadecimal representation of a decimal number -3.5 in IEEE-754 single-
	precision floating-point system?
	(a) 0xC0E00000
	(b) 0xC0700000
	(c) 0xC0600000
	(d) 0xC0F00000

Q73.	What is the hexadecimal representation of a decimal number -75.35 in IEEE-754 single-		
	precision floating-point system?		
	(a) 0xC20F0000	(b) 0xC20E0000	
	(c) 0xC296B333	(d) 0xC10E0000	
Q74.	What is the hexadecimal representation of a	decimal number 52.21875 in IEEE-754	
	single-precision floating-point system?		
	(a) 0x40200000	(b) 0x41200000	
	(c) 0x42E87000	(d) 0x4250E000	
Q75.	Assuming IEEE single-precision floating point	nt numbers (with an 8-bit exponent),	
	Which of the following has the greatest value?		
	(a) 0x00000000	(b) 0x00000001	
	(c) 0x50000000	(d) 0xC0000000	
Q76.	Given the following hexadecimal representation	n in IEEE 754 single-precision floating-	
	point number system: 0x4305C000. What decimal value does it represent?		
	(a) 5.75	(b) 66.875	
	(c) 133.75	(d) 267.5	
Q77.	Computer A uses the following 32-bit floating	point representation of real numbers:	
	S Mantissa Exponent		
	31 30 76 0		
	Computer B uses the following floating point re	epresentation scheme:	
	S Mantissa Exponent		
	31 30 87 0		
	Which of the following statements is true with regard to Computer B's method of		
	representing floating-point numbers over Computer A's method?		
	(a) both the range and precision are increased	1	
	(b) the range is increased but the precision is de		
	(c) the range is decreased but the precision is in	creased	
	(d) both the range and precision are decreased		

	For a 7-bit normalized floating-point format: (-1) ^s ×(.FFFF)×(2 ^{EE}) where FFFF is		
	unsigned and EE is two's complement, what is the smallest positive value you an		
	represent just after 0?		
	(a) 0.5	(b) 0.25	
	(c) 0.125	(d) 0.28125	
For no	ext three questions consider a floating-por	int representation with a sign bit in the	
leftmo	st position, followed by a three-bit base 4 exp	oonent and represented as 1's complement,	
follow	ed by a normalized six-bit fraction. Zero is re	presented by the bit pattern 0 000 000000	
Q79.	What decimal number is represented by the	bit pattern: 1 110 010000?	
Q80.	What is the bit pattern (in decimal) for the	e smallest non-zero positive representable	
	number?		
Q81.	What is the bit pattern for the largest positive	ve representable number?	
Q82.	Consider a hypothetical 10-bit similar to IE	EE floating point representation including	
	all special cases. There is a sign bit in the mo	ost significant bit. The next five bits are the	
	two's complement exponent. The last 4 bi	ts is the normalized fraction. What is the	
	floating-point representation for 0.125?		
	(a) 0x130	(b) 0x230	
	(c)0x1D0	(d)0x103	
Q83.	(c)0x1D0 Express the floating-point number 1.63 in	. ,	
Q83.		n binary notation using 1-bit sign, 3-bit	
Q83.	Express the floating-point number 1.63 in	n binary notation using 1-bit sign, 3-bit	
Q83.	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for	n binary notation using 1-bit sign, 3-bit	
Q83.	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order.	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in	
	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A	
For ne	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point	
For ne	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55 xt four question, suppose a designer create	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point ponent and 8 bits for mantissa. It has all the	
For ne number proper	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55 xt four question, suppose a designer create er that uses 1 bit for sign, 7 bits for biased exp	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point ponent and 8 bits for mantissa. It has all the	
For ne number proper	Express the floating-point number 1.63 in exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55 xt four question, suppose a designer create er that uses 1 bit for sign, 7 bits for biased experties of IEEE 754 (e.g., ±0, ±∞, NAN, Denorm	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point ponent and 8 bits for mantissa. It has all the nalized number) just with different ranges,	
For ne numbe proper precisi	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55 xt four question, suppose a designer create extraction of IEEE 754 (e.g., ±0, ±∞, NAN, Denormon & representations	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point ponent and 8 bits for mantissa. It has all the nalized number) just with different ranges,	
For ne numbe proper precisi	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) 0x5D (c) 0x55 xt four question, suppose a designer create extraction of IEEE 754 (e.g., ±0, ±∞, NAN, Denormon & representations	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point conent and 8 bits for mantissa. It has all the nalized number) just with different ranges,	
For ne number proper precisi Q84.	Express the floating-point number 1.63 is exponent in excess-4 notation (100 stands for the same order. (a) $0x5D$ (c) $0x55$ xt four question, suppose a designer create extra that uses 1 bit for sign, 7 bits for biased expresses of IEEE 754 (e.g., ± 0 , $\pm \infty$, NAN, Denormon & representations What is the biasing value in this representations	n binary notation using 1-bit sign, 3-bit or 0), and 4-bit un normalized mantissa in (b) 0x6B (d) 0x2A a variant similar to an IEEE floating point conent and 8 bits for mantissa. It has all the nalized number) just with different ranges,	

Q87. [MSQ]

Which of the following is not the floating point representation of decimal number -0.1325 using the design above in hexadecimal is?

(a) BC80

(b) CC40

(c) BB31

(d) None of these

For the next five questions, Consider the following 16-bit floating point representation similar to IEEE floating point format. There is a sign bit in the most significant bit to represent sign of the number. The next five bits are the exponent. The exponent stored in Excess – 15 notations. The last ten bits are the mantissa. The mantissa stored in sign-magnitude representation. The rules are like those in the IEEE standard (normalized, denormalized, representation of 0, infinity, and NAN)

Q88. What is the smallest positive normal number greater than zero in decimal?

(a)
$$2^{-14} \times (1 + \frac{0}{1024})$$

(b)
$$2^{-14} \times (0 + \frac{1023}{1024})$$

(c)
$$2^{-14} \times (0 + \frac{1}{1024})$$

(d)
$$2^{15} \times (1 + \frac{1023}{1024})$$

Q89. What is the largest positive normal number greater than zero in decimal?

(a)
$$2^{-14} \times (1 + \frac{0}{1024})$$

(b)
$$2^{-14} \times (0 + \frac{1023}{1024})$$

(c)
$$2^{-14} \times (0 + \frac{1}{1024})$$

(d)
$$2^{15} \times (1 + \frac{1023}{1024})$$

Q90. What is the smallest positive subnormal number greater than zero in decimal?

(a)
$$2^{-14} \times (1 + \frac{0}{1024})$$

(b)
$$2^{-14} \times (0 + \frac{1023}{1024})$$

(c)
$$2^{-14} \times (0 + \frac{1}{1024})$$

(d)
$$2^{15} \times (1 + \frac{1023}{1024})$$

Q91. What is the largest positive subnormal number greater than zero in decimal?

(a)
$$2^{-14} \times (1 + \frac{0}{1024})$$

(b)
$$2^{-14} \times (0 + \frac{1023}{1024})$$

(c)
$$2^{-14} \times (0 + \frac{1}{1024})$$

(d)
$$2^{15} \times (1 + \frac{1023}{1024})$$

Q92. What is the largest positive normal number less than one in above floating-point representation?

(a) 0x3BFF

(b) 0x3C00

(c) 0x3C01

(d) 0x3555

CA	CHE	OR	A NT	[7 A	TIO	N
L.A	CHE	UK	AIN.	IZA	110	ハ

For next two questions consider a direct mapped cache having 8 cache lines. Each cache line consists of 2 words, and each word is one byte. The address bus consists of 7 bits.

- **Q 1.** Which one of the following statements is correct?
 - (a) The index field consists of 2 bits.
 - (b) The index field consists of 1 bit.
 - (c) The tag field of the cache consists of 3 bits.
 - (d) The tag field of the cache consists of 2 bits.
- **Q 2.** Which one of the following statements is correct?
 - (a) The total number of bytes for storing data in the cache is 16 bytes.
 - (b) The total number of bytes for storing data in the cache is 32 bytes.
 - (c) The total number of bytes for storing data in the cache is 8 bytes.
 - (d) The total number of bytes for storing data in the cache is 8K bytes
- Q 3. Assume a 2-way set-associative word addressable cache is being used in a system with a 24-bit address using an 8-word block size. How many sets are there if the cache has 1024 lines, i.e., 8K words? _____

For the next three questions, consider 32-bit byte addressable physical memory and 2 MB cache with blocks of size 8KB each:

- **Q4.** How many bits in the tag, index and offset fields of the cache address respectively if the cache is direct mapped?
 - (a) 19, 6, 13

(b) 19, 0, 13

(c) 11, 8, 13

- (d) 11,8,12
- Q 5. How many bits in the tag, index and offset fields of the cache address respectively if the cache is 4 -way set-associative?
 - (a) 13, 6, 13

(b) 19, 0, 13

(c) 11, 8, 13

- (d) 11,8,12
- **Q 6.** How many bits in the tag, index and offset fields of the cache address respectively if the cache is full associative?
 - (a) 13, 6, 13

(b) 19, 0, 13

	(c) 11, 8, 13	(d) 11,8,12	
For ne	ext two questions, consider a 2-way se	t-associative cache with following	
specif	ication:		
• wc	ord size: 32 bits		
• cac	the block size: 2048 bits		
• ph	ysical address size: 32 bits		
• Nu	umber of blocks in cache: 2048		
• me	emory is word addressable		
Q 7.	How many bits are used for tag, inde	x and offset if memory is word addressable?	
	(a) 13, 11, 8	(b) 14, 10, 6	
	(c) 16, 10 and 6	(d) 10, 11, 11	
Q 8.	How many bits are used for tag, inde	x and offset if memory is byte addressable?	
	(a) 13, 11, 8	(b) 14, 10, 8	
	(c) 16, 10 and 6	(d) 10, 11, 11	
For no	ext two questions consider two diffe	erent cache configurations for an 8-bit processor.	
Both o	caches have two 16-byte blocks (for	a total capacity of 32 bytes), but one is direct-	
mappe	ed and the other is two-way set associa	ative.	
Q 9.	For the direct-mapped cache, how	many bits are in the tag, index, and offset	
	respectively?		
	(a) 5,1,1	(b) 3,1,4	
	(c) 2,2,4	(d) 4,1,2	
Q 10.	For the two-way set associative cache	e, how many bits are in the tag, index, and offset?	
	(a) 3,1,4	(b) 4,0,4	
	(c) 5,0,3	(d) 2,2,4	
T-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
For next two questions consider a direct-mapped cache design with a 32-bit address and			
byte-addressable memory, the following bits of the address are used to access the cache			
,	me word size is 32 bit)		
Tag	Index Offset		
31-10	9-5 4-0		
Q 11.	What is the size of cache line in word	ls?	

Q 12.	How many lines does the cache have?		
For ne	ext two questions, consider the 16 Kbyte cache with following specification:		
• Ea	ch block will hold 32 bytes of data (not including tag, valid bit, etc.)		
• Th	e cache would be 2-way set associative		
• Ph	ysical addresses are 32 bits		
• Da	ata is addressed to the word and words are 32 bits long		
Q 13.	How many blocks would be in this cache?		
0.11			
Q 14.	How many bits of tag are stored with each block entry?		
Q 15.	Consider a byte-addressable 4-way set associative cache with a full data capacity of 8192		
	bytes. Each cache block consists of 4 words, and each word is 4 bytes long. The number		
	of bits in the set-index field and the number of bits in the offset field of the memory		
	address is		
	(a) Set-index = 4 bits; Offset = 2 bits		
	(b)Set-index = 6 bits; Offset = 2 bits		
	(c)Set-index = 6 bits; Offset = 4 bits		
	(d)Set-index = 7 bits; Offset = 4 bits		
Q 16.	Consider a cache with a size of 256 bytes and a block size of 16 bytes. In which cache		
	index (in decimal) the memory address 28E7 ₁₆ is mapped if cache is direct mapped		
	cache and if cache is a 2-way set-associative cache respectively?		
	(a) 7 and 15 (b) 15 and 7		
	(c) 14 and 6 (d) 14 and 7		
Q 17.	Assume a 2-way set-associative word addressable cache with 1024 lines is being used in		
	a system with a 24-bit address using an 8-word block size. If a block containing the		
	address (7BE453) ₁₆ is stored in the cache, what would the tag be?		
	(a) 0x7BE (b) 0x3DF		
	(c) 0x7BE4 (d) data insufficient		
O 18	Given a 16-KB two-way associative cache with 32-byte cache lines and a 64-bit address		
Q 10.			
	space there will be x bits used for the index. If that same cache were fully-associative		

	you'd need y bits to be used for the index. Then $x^*y =$		
Q 19.	Consider the processors have a 256kB 16-way set associative L2 cache with a 64-byte		
	cache line size. How many cache lines will be there?		
	(a) 2048	(b) 512	
	(c) 256	(d) 4096	
Q 20.	Consider system:		
	A processor has a direct mapped cach	ne	
	Data words are 8 bits long (i.e. 1 byte)		
	Data addresses are to the word		
	A physical address is 20 bits long		
	• The tag is 11 bits		
	Each block holds 16 bytes of data		
	How many blocks are in this cache?		
Q 21.	Assume you have a 2-way set associative	e cache.	
	Words are 4 bytes		
	Addresses are to the byte		
	Each block holds 512 bytes		
	• There are 1024 blocks in the cache		
	If you reference a 32-bit physical address	- and the cache is initially empty - how	
	many data words are brought into the cache with this reference?		
Q 22.	Consider a cache with 32-bit addresses,	768 blocks, and a block size of 128 bytes. Tags	
	are 17 bits. How many sets are there, and	what is the associatively of the cache?	
	(a) 128 sets, 6-way set associatively.	(b) 256 sets, 3-way set associatively.	
	(c) 128 sets, 8-way set associatively.	(d) Data inadequate	
Q 23.	An 8-way set-associative cache memory	allows a maximum of 256 different MM blocks	
	to map to the same cache set. A block is	s 8-byte long. The MM is 16 MB. What are the	
	sizes (in bits) of the tag, set and byte field	ls, respectively?	
	(a) 9, 13, and 2.	(b) 17, 3, and 3.	

(c) 18, 3, and 3

- (d) 8, 13, and 3
- **Q 24.** Which of the following accurately computes the set index for a cache with 8-byte blocks and 32 sets?(Assume I being physical address)
 - (a) INDEX = (I/8) % 32;

(b) INDEX = $(I \gg 3) \& 31$;

(c) INDEX = (I & 0XF8) / 8;

(d) All of the above

For the next seven questions, consider the direct mapped cache organization of a computer shown below. Computer uses 32-bit data words and 32-bit word addresses.

- **Q 25.** What are the maximum number words of data from main memory that can be stored in the cache at any one time?
 - (a) 4

(b)8

(c) 16

- (d)32
- Q 26. How many bits of the address are used to select which line of the cache is accessed?
 - (a) 4

(b)8

(c) 16

(d)32

- Q 27. How many bits wide is the tag field?
 - (a) 24

(b) 28

(c) 26

- (d) 25
- Q 28. Assume that memory location 0x0002045C was present in the cache. Using the row and column labels from the figure, in what cache line could we find the data from that memory location?

	(a) 4	(b) 5	(c) 6	(d) 7
Q 29.	What would the value of the tag field have to be for the cache row in which the above			
	data appears?			
	(a) 0x000204	(b) 0x00020	(c) 0x0002045	(d) 0x00204
Q 30.	When an access causes a	cache miss, how many	bytes need to be feto	ched from memory
	to fill the appropriate ca	che location(s) and satis	fy the request?	
	(a) 4	(b)8	(c) 16	(d)32
For ne	ext four questions conside	r a 64 KB, 2-way set-ass	ociative cache with 3	32-Bytes blocks in a
32-bit	byte addressable system, i	n which a byte address	is of the form b31, b3	0,, b1, b0
Q 31.	What is the total number	of cache blocks in the ca	ache	<u> </u>
	(a) 2 K blocks	(b) 4 K blocks	(c) 512 blocks	(d) 1 K blocks
Q 32.	Identify the address bits	that are used for indexi	ng a block in the cach	le
	(a) b15, b14,, b6, b5 (1	1 bits)		
	(b) b13, b12,, b5, b4 (1	0 bits)		
	(c) b14, b13,, b5, b4 (1	1 bits)		
	(d) b14, b13,, b6, b5 (1	0 bits)		
		·VI		
Q 33.	Identify the address bits	that are used as a tag for	r a block in the cache	
	(a) b31, b30,, b17, b16	(16 bits)		
	(b) b31, b30,, b15, b14	(18 bits)		
	(c) b31, b30,, b16, b15	(17 bits)		
	(d) b30, b29,, b16, b15	(16 bits)		
Q 34.	What is the total number	of bits used as tags for	all the blocks in the c	ache?
	(a) 136 K bits		(b) 68 K bits	
	(c) 17 K bits		(d) 34 K bits	
Q 35.	How many possible locate	tions are there for storin	g the address 0x45E4	l in a 64KB
	4 -way set-associative wr	ite back cache with 32 b	yte cache lines?	
	(a) 1		(b) 4	

	(c) 16	(d) 2048
0.00	``	. ,
Q 36.	Consider a 256 byte, direct mapped cache that uses 13 bits for tag and 2 bits for block	
	offset. Given that memory is byte address	ssable, what is the maximum number of
	megabytes that memory can hold?	_
Q 37.	Suppose you have a word-addressed memor	ry hierarchy system with the following
	parameters:	
	• Block size = 16 words	
	• Main memory size = 64 blocks	
	• Cache size = 8 blocks	
	Suppose your cache is set-associative with 4	sets (i.e., 2 cache blocks per set). The
	tag values in the cache are:	
	TAG Cache Block Number	Set Number
	0000 0 0100 1	0
	1000 2	1
	1001 3 1100 4	1 2
	1000 5	2
	0110 6	3
	1101 7	3
	Accessing which of the following memory a	aaresses:
	(1) 0x37A and	
	(2) 0x22C results in cache hit?	
	(a) Only (1) will result in cache hit	
	(b) Only (2) will result in cache hit	
	(c) Both will result in cache hit	
	(d) Both will result in cache miss	
Q 38.	A byte-addressable machine with 32-bit	memory addresses has a cache with the
	following properties:	
	16byte cache blocks	
	8KB of data in the cache	
	 Direct mapped 	

Write through

1 valid bit/block

	How many bits of metadata are required for each cache entry?		
Q 39.	Consider a direct mapped cache with a 32-bit address divided as follows:		
	bits $0 - 3 = offset$		
	bits 4 - 14 = index		
	bits 15 - 31 = tag		
	How much space is required to store the tags for the cache?(in KB)		
Q 40.	Consider a 4-way set associative write-back cache of size 64KB. Each cache block holds 8		
	words of 4 bytes each. Physical addresses are 32 bits long. Assuming that the 64KB of		
	cache refers purely to "usable cache" - i.e. cache that is used only to store data or		
	instructions, and not overheads like tag bits, what is the actual overall cache size		
	including the overheads?KB		
The fo	llowing next four questions ask you to evaluate alternative cache designs using patterns		
of men	mory references taken from running programs. Each of the caches under consideration		
has a	total capacity of 8 (4-byte) words, with one word stored in each cache line. The cache		
design	ns under consideration are:		
DM: a	direct-mapped cache.		
S2: a 2	-way set-associative cache with a least-recently-used replacement policy.		
FA: a f	fully-associative cache with a least-recently-used replacement policy.		
The qu	uestions below present a sequence of addresses for memory reads. You should assume		
the se	quences repeat from the start whenever you see "". Keep in mind that byte addressing		
is use	d; addresses of consecutive words in memory differ by 4. Each question asks which		
cache(s) give the best hit rate for the sequence. Answer by considering the steady-state hit rate,		
i.e., th	e percentage of memory references that hit in the cache after the sequence has been		
repeat	ed many times.		
Q 41.	Which cache(s) have the best hit rate for the sequence 0, 16, 4, 36,		
	(a) DM (b) S2		
	(c) FA (d) Both B and C		
Q 42.	Which cache(s) have the best hit rate for the sequence 0, 4, 8, 12, 16, 20, 24, 28, 32,		
	•••		
	(a)DM (b) S2		

	(c) FA	(d) All give same
Q 43.	Which cache(s) have the best hit rate for the sequence 0, 4, 8, 12, 16, 20, 24, 28,	
	32, 28, 24, 20, 16, 12, 8, 4,	
	(a) DM	(b) S2
	(c) FA	(d) All have same performance
Q 44.	Which cache(s) have the best hit rate for the seque	ence 0, 4, 8, 12, 32, 36, 40, 44,
	16,	
	(a) DM	(b) S2
	(c) FA	(d) All have same performance
For th	e next three questions, consider the following se	equence of memory references given as
word	addresses: 22, 10, 27, 21, 23, 30, 4, 22, 7, 35, 5, 3	1, 10, 27, and 21. Assume the cache is
initiall	y empty.	
Q 45.	How many of the above references a cache hit i	s if 64 bytes direct mapped cache with
	block size of 8 bytes and a word size of 4 bytes is	used?
Q 46.	How many of the above references a cache hit	is if a 64 bytes 2-way set associative
	cache, with block size of 8 bytes, a word size of	4 bytes, and LRU replacement policy is
	used?	
Q 47.	How many of the above references a cache hit is i	f a 64 byte Fully associative cache, with
	block size of 8 bytes, a word size of 4 by	tes, and LRU replacement policy is
	used?	
Q 48.	Consider a direct mapped cache memory with t	total 16 cache blocks (0-15) and a main
	memory with 256 blocks (0-255). Assuming that	at initially the cache did not have any
	memory block. Consider the following sequence	of memory block references: 3, 180, 43,
	2, 191, 88, 190, 14, 181, 44, 186, and 253. Which	memory blocks will be present in the
	cache after the above sequence of memory block	references?
	(a) 2, 3, 180, 181, 88, 186, 43, 44, 253, 14, 191	
	(b) 3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253	
	(c) 3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186	

	(d) 3, 180, 43, 2, 191, 190, 88, 14, 181, 44, 186		
Q 49.	Consider a 2-way set associative cache memory with 8 sets (0-7) and total 16 cache		
	blocks (0-15) and a main memory with 256 blocks (0-255). Assuming that initially the		
	cache did not have any memory block. Consider the following sequence of memory		
	block references: 3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253. Which memory blocks		
	will be present in the cache after the following sequence of memory block references if		
	LRU policy is used for cache block replacement?		
	(a) 3,180,43,2,191,14,181		
	(b) 2, 191, 88, 190, 14, 181		
	(c) 14, 181, 44, 186, 253		
	(d) 88,2,186,3,43,180,44,181,253,190,14,191		
Q 50.	A designer makes a mistake and builds a cache that has a MRU (most recently used)		
	replacement policy instead of an LRU replacement policy. What is left in a 4-entry, fully		
	associative, MRU cache with 1 byte lines after the following address accesses: 1, 2, 3, 4,		
	5,3, 5, 1, 5, 2		
	(a) 1,2,3,5 (b)2, 5, 1, 3		
	(c) 4,2,5,3 (d)both a and b		
Q 51.	Consider a 64-byte cache with 8 byte blocks, an associativity of 2 and LRU block		
	replacement. Virtual addresses are 16 bits. The cache is physically tagged. The processor		
	has 16KB of physical memory. What is the total number of tag bits in		
	cache?		
Q 52.	What data will be in a 4-entry, fully-associative, LRU cache with one word per line after		
	the following memory accesses word address: 0, 1, 2, 3, 4, 5, 3, 2, 1?		
	(a) 1, 2, 3, 4 (b) 1, 2, 3, 5		
	(c) 1, 3, 4, 5 (d) 1, 2, 4, 5		
Q 53.	Assume you have a fully associative cache with 4 entries. For the following memory		
	block address sequence, which entry becomes at the end? Assume that LRU police is		
	used for replacement.		
	8952659103		
	(a) 3, 9, 5, 10 (b) 9,5,2,10		

	(c) 8,9,5,10	(d) 9,5,2,3		
Q 54.	Assume you have a 2-way set-associative LRU cache with 4 entries and a cache line size			
	of 1 bytes. What will the hit (H) miss (M) pattern	be for the following access pattern: 0 1		
	2370381?			
	(a) M MMMMM H M M	(b)MMMMM H M M H		
	(c) M MMMM H H M M	(d) M MMMM H H M H		
For ne	ext two questions consider the access pattern A, B	B, C, B, A where each letter corresponds		
to a ur	nique cache block. You are to assume there were r	no accesses to any block before this, and		
that al	l conflict is random.			
Q 55.	The probability of the second access to "A" being	g a hit on a direct-mapped cache		
	with 4 lines is closest to:			
Q 56.	For a fully-associative cache with 2 lines the prob	pability of a hit is closest to		
For ne	ext four questions Assume the cache with 8 blocks	. If following memory block		
addres	address access in the given sequence 0, 0, 8, 8, 16, 16, 24, 32, 40, 44, 0, 8, 16, 24, 1, 2,			
3, 4, 1,	3, 4, 1, 2, 3, 4			
What i	is cache hit(in %) rate in following four cases?			
Q 57.	Cache is direct mapped			
Q 58.	Cache is 2-way set associative assume LRU Repla	cement		
~				
O 59.	Cache is 4-way set associative assume LRU replac	rement		
Q 60.	Cache is fully associative assume LRU replacement	nt		
Q 61.	Consider a fully associative cache with 8 cache b	locks (numbered 0-7) and the following		
	sequence of memory block requests: 4, 3, 25, 8, 1	9, 6, 25, 8, 16, 35, 45, 22, 8, 3, 16, 25, 7 If		
	LRU replacement policy is used, which cache blo	ock will have memory block 7?_		
Q 62.	If you have a 32-bit address space (addresses	s are 32 bits) and you have a 4-way		
	associative cache that uses 5 bits as the set index	and 4 bits as the byte offset, how large		

	is the data portion of the cache (in bytes)?	
For th	e next three questions, Consider a direct mapped of 8 words, with block 2 word per	
block.	The following sequence of accesses to memory block 0, 5, 2, 7, 4, 0 and 4 is repeated 10	
times.		
Q 63.	The number of compulsory misses	
Q 64.	The number of conflict misses	
Q 65.	The number of capacity misses	
Q 66.	Consider a 2-way set associative cache with 256 blocks and uses LRU replacement,	
	initially the cache is empty. Conflict misses are those misses which occur due the	
	contention of multiple blocks for the same cache set. Compulsory misses occur due to	
	first time access to the block. The following sequence of accesses to memory blocks	
	(0,128,256,128,0,128,256,128,1,129,257,129,1,129,257,129) is repeated 10 times. The	
	number of conflict misses experienced by the cache is	
Q 67.	Which one of the following statements is/are correct?	
	(a) Compulsory misses cannot be reduced by increasing the size of the cache.	
	(b) Increasing the associativity of the cache can increase conflict misses.	
	(c) Capacity misses can be reduced by increasing the associativity of the cache.	
	(d) Compulsory misses can be reduced by increasing the associativity of the cache.	
Q 68.	Which one of the following statements is/are correct?	
	(a) Accessing a set-associative cache is faster than accessing a direct mapped cache.	
	(b) Compulsory misses cannot be totally avoided.	
	(c) A capacity miss occurs when a replaced cache line needs to be accessed again.	
	(d) Compared with a direct mapped cache, a fully associative cache has a larger tag field.	

- **Q 69.** Match the column for each of the following suggested changes in set associative cache with a reason why the change might make things worse, assuming that the total size of the cache (i.e., the total amount of data it can store) must remain the same
 - 1. Increase the block size
- i. Decreases cache's ability to capture spatial locality
- 2. Decrease the block size
- Decreases cache's ability to capture temporal locality, because the cache stores fewer total blocks.
- 3. Decrease the set associativity
- iii. Slows cache-hit time.
- 4. Increase the set associativity
- iv. Increases potential for conflict misses
- (a) 1-ii, 2-iii, 3-i, 4-iv
- (b)1-iii,2-i,3-iv,4-ii
- (c) 1-iv, 2-i, 3-ii, 4-iii
- (d)1-ii,2-i,3-iv,4-iii
- **Q 70.** Which of the following statement(s) is/are true?
 - (a) It is possible for Conflict Misses in Set-Associative Cache Mapping.
 - (b) Cache block search time in Direct Mapped Caches is larger than that of other Cache Organization.
 - (c) Increasing Cache Line size helps decreasing the Cache Miss Ratio for programs having Spatial Locality.
 - (d) Decreasing Cache Line sizes could decrease Conflict Misses.
- **Q 71.** Which one of the following statements is/are correct?
 - (a) Temporal locality means a recently accessed data item is likely to be accessed again in the near future.
 - (b) Spatial locality means variables should be stored close to each other.
 - (c) Temporal locality means a temporary variable is more frequently used than a global variable.

(d) Spatial locality means a branch instruction should not branch to an instruction that is too far away. Q 72. Which is the fastest cache mapping function? (a) Direct mapping (b) Set associative mapping (c) Fully associative mapping (d) Cannot say anything Q 73. Which is the slowest cache mapping function? (a) Direct mapping (b) Set associative mapping (c) Fully associative mapping (d) Cannot say anything Which cache mapping function is most likely to thrash, i.e., two blocks contending with Q 74. each other to be stored in the same line? (a) Direct mapping (b) Set associative mapping (c) Fully associative mapping (d) Cannot say anything Q 75. The problem with a cache that uses a *write through* policy is/are that: (a) It runs the risk of leaving main memory invalid for a long period of time. (b) It cannot be used with multiple CPUs even if the CPUs are watching main memory for an update. (c) It slows down the write process. (d) It requires additional overhead in the cache to keep track of which blocks have been modified. Q 76. Which of the following statements is/are not true about caches? (a) Caches do not have to be as big as the data the program needs to access (b) It takes longer to access a cache if it is full (c) Cache memories are faster than memories used for DRAM

	(d) Caches only help if the application reuses its data	
Q 77.	77. Which one of the following is/are correct statement?	
	(a) In a set associative cache, blocks in memory that map to the same set are stored contiguously in memory.	
	(b) All other things equal, direct mapped caches have a lower tag overhead than fully associative caches.	
	(c) Bigger cache blocks always lead to a higher hit rate.	
	(d) On every store instruction, a write back cache will write to main memory	
Q 78.	3. A cache has a 95% hit ratio, an access time of 100ns on a cache hit, and an access time	
	800ns on a cache miss. What is the effective access time?ns	
Q 79.	Assume a memory access to main memory on a cache "miss" takes 40 ns and a memory	
	access to the cache on a cache "hit" takes 10 ns. If 75% of the processor's memory	
	requests result in a cache "hit", what is the average memory access time?	
	(1) 22 5	
	(a) 17.5 ns (b) 32.5 ns	
	(a) 17.5 ns (b) 32.5 ns (c) 40.0 ns (d) 7.5 ns	
Q 80.		
Q 80.	(c) 40.0 ns (d) 7.5 ns	
Q 80.	(c) 40.0 ns (d) 7.5 ns Consider a cache with following specification	
Q 80.	(c) 40.0 ns (d) 7.5 ns Consider a cache with following specification Hit rate: 92%	
Q 80.	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle	
Q 80.	 (c) 40.0 ns (d) 7.5 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles 	
	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle)	
	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2	
	(c) 40.0 ns (d) 7.5 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2 nanoseconds. The memory read and writes times are both 50 nanoseconds. The	
	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2 nanoseconds. The memory read and writes times are both 50 nanoseconds. The proportion of writes is 15%, and the hit ratio is 90%. What is the average effective	
	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2 nanoseconds. The memory read and writes times are both 50 nanoseconds. The proportion of writes is 15%, and the hit ratio is 90%. What is the average effective memory access time?	
	(c) 40.0 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2 nanoseconds. The memory read and writes times are both 50 nanoseconds. The proportion of writes is 15%, and the hit ratio is 90%. What is the average effective memory access time? (a) 6.1 nanoseconds (b) 7 nanoseconds	
Q 81.	(c) 40.0 ns (d) 7.5 ns Consider a cache with following specification Hit rate: 92% Hit latency: 2 cycle Memory access time: 124 cycles What is the average memory access latency? (in cycle) Your machine has a write-back cache. The cache read and writes times are both 2 nanoseconds. The memory read and writes times are both 50 nanoseconds. The proportion of writes is 15%, and the hit ratio is 90%. What is the average effective memory access time? (a) 6.1 nanoseconds (b) 7 nanoseconds (c) 13.45 nanoseconds (d) 3.4 nanoseconds	

	(a) 90%	(b) 70%	
	(c) 80%	(d) 81.8%	
Q 83.	A direct mapped cache consists of eight	t blocks. Byte-addressable main memory	
	contains 4K block of eight bytes each. Access time for cache is 22 ns and the time		
	required to fill a cache slot from main memory is 300ns. (This time allows us to		
	determine the block is missing and bring it into cache.) Assume a request is always		
	started in parallel to both cache and to main memory. If a block is missing from cache,		
	the entire block is brought into cache and the access is restarted. Initially, the cache is		
	empty and cache hit rate is 80%. What is the effective access time for this program in		
	nanoseconds?		
Q 84.	Consider the following memory system:		
	• Level 1 cache: 91% hit rate, 1-cycle access time.		
	• Level 2 cache: 98% hit rate, 15-cycle access time.		
	Memory: 140-cycle access time.		
	What is the average memory access time in cycles for the above memory system?		
	(Round off to two decimal places)		
Q 85.	Assume that the local hit rate for our L1 cache is 40% and the local hit rate for our L2		
	cache is also 40%. The hit time for the L1 cach	he is 5 cycles, the hit time for the L2 cache is	
	25 cycles, and access time for main memory	is 100 cycles. The average memory access	
	time in cycles is		
Q 86.	Your machine has a write-through cache. The		
	nanoseconds. The memory read and writes times are both 50 nanoseconds. The		
	proportion of writes is 15%, and the hit ratio is 90%. What is the average effective		
	memory access time?		
	(a) 6.1 nanoseconds	(b) 5.9 nanoseconds	
	(c) 7 nanoseconds	(d) 13.45nanoseconds	
Q 87.	Consider the following cache system:		
	• L1 has a hit time of 2 cycles, and hits 90%	of the time.	
	• L2 has a hit time of 15 cycles, and hits 95%	% of the time.	
	• L3 has a hit time of 25 cycles, and hits 99%	% of the time.	
	• Main Memory has an access time of 100 cy	ycles.	

	The Average Welliory Access Time (in terms of cycles) of cache is		
	(Rounded off to two decimal places)		
For ne	ext three questions, consider a system with CPI of 1.2 cycles assuming memory access		
always	s results in cache hit. Processor run at 2 GHz. Consider a program running on this system		
has 30	% Load and store instructions. The processor has an I-cache with miss rate of 2% and a		
D-cach	ne with miss rate of 5%. The hit time is 1 clock cycle. The miss penalty for both the cache		
is 50 n	S.		
Q 88.	What is the average memory access time for instruction access in clock cycles?		
Q 89.	What is the average memory access time for data access in clock cycles?		
Q 90.	What is the overall CPI including both instruction and data access?		
Q 91. A machine has a base CPI of 2 clock cycles. Assume that instruction miss rat			
	and the data miss rate is 6%, and on average, 30% of all instructions contain one data		
	reference. The miss penalty for the instruction and data cache is 10 cycles. What is the		
	average CPI?		
Q 92.	Compute the average memory access time for a 4-way set-associative, unified L2 cache		
	with 64B blocks and a 95% hit rate. The access time for this 1MB cache is 8 cycles, and it		
	take 80 cycles to move a 64B block from memory to the cacheCycles		
Q 93.	Suppose we have a cache that has an access time of 5ns, and a main memory with an		
	access time of 80ns. If 10,000 accesses take a total of 70 microseconds. What is the miss		
	rate of your cache?		
Q 94.	Suppose that in 1000 memory reference there are 40 misses in the first level cache and 20		
	misses in the second level cache. Assume miss penalty from the L2 cache to memory is		
	100 cycles the hit time of the L2 cache is 10 clock cycles. The hit time of the L1 cache is 1		
	clock cycle. If there are 1.5 memory references per instruction. What is the average stall		
	cycle per instruction?		
	(a) 3.4 cycles		
	(b) 3.5 cycles		

	(c) 3.2 cycles	
	(d) 3.6 cycles	
Q 95.	Consider a two-level cache hierarchy with L1 and L2 caches. An application	
	incurs 2.8 memory accesses per instruction on average. For this application, the miss	
	rate of L1 cache is 10%; the L2 cache experiences, on average, 10 misses	
	per 1000 instructions. The miss rate of L2 expressed correct to two decimal places is	
	·	
For	r the next two questions, consider three machines with different cache	
config	gurations:	
	Cache 1: Direct-mapped with one-word blocks	
	Cache 2: Direct-mapped with four-word blocks	
	Cache 3: Two-way set associative with four-word blocks	
The	e following miss rate measurements have been made:	
	• Cache 1: Instruction miss rate is 4%; data miss rate is 8%.	
	• Cache 2: Instruction miss rate is 2%; data miss rate is 5%.	
	• Cache 3: Instruction miss rate is 2%; data miss rate is 4%.	
For th	ese machines, one-half of the instructions contain a data reference. Assume that	
the ca	che miss penalty is 6 + Block size in words. The ideal CPI for this workload is 2.0.	
Q 96.	Which cache spends the most cycles on cache misses?	
	(a) Cache 1 (b) Cache 2 (c) Cache 3 (d) Both a and b	
Q 97.	Which cache has the best performance?	
~ ***	(a) Cache 1 (b) Cache 2 (c) Cache 3 (d) Both b and c	
	(a) such 2 (b) such 3	

INSTRUCTION SET ARCHITECTURE

Q1. Match the following instruction to its appropriate addressing mode:

Instructions		Addressing Mode	
1.	MOV AL, 35H	i.	Direct Mode
2.	MOV AX,CX	ii.	Base addressing
3.	MOV AX, [BX]	iii.	Register mode
4.	ADD AL,[0301]	iv.	Register Indirect mode
5.	MOV AL,[BX+05]	v.	Immediate mode
6.	MOVL 12(R5),R3	vi.	Displacement mode

(a) 1-v, 2-iii,3-iv,4-i,5-ii, 6-vi

(b) 1-iii, 2-v,3-iv,4-i,5-ii, 6-vi

(c) 1-v, 2-iii,3-iv,4-i,5-vi, 6-ii

(d) 1-v, 2-iii, 3-i, 4-iv, 5-ii, 6-vi

Q 2. Match List I with List II and select the correct answer. Assume that A and B are memory addresses.

List I	List II
A. Immediate addressing	1. LD A
B. Implied addressing	2. MOV R1, R2
C. Register addressing	3. SUB A, #20
D. Direct addressing	4. PUSH

(b)
$$A - 2$$
, $B - 1$, $C - 3$, $D - 4$

Q 3. Match List-I with the List-II and select the correct answer.

List I	List II
S1: ADD R1, R2, 100(R3)[R3]	I. Displacement addressing
S2: Add R4,100(R1)	II. Scaled addressing
S3:Add R3,(R1+R2)	III. Index/base addressing
S4:Add R1,(R2)+	IV. Auto increment addressing

- (c) S1 II, S2 II, S3 IV, S4 III
- (d) S1 I, S2 III, S3 II, S4 IV

For the next four questions, suppose we have the instruction Load 1000. Given memory and register R1 contain the values below:

Memory

1000	1400
1100	400
1200	1000
1300	1100
1400	1300

R1 200

Assuming R1 is implied in the indexed addressing mode; determine the actual value loaded into the accumulator using the following addressing modes:

- Q 4. In Immediate addressing the actual value loaded into the accumulator is_____
- **Q 5.** In Direct addressing the actual value loaded into the accumulator is _____
- Q 6. In Indirect addressing the actual value loaded into the accumulator is_____
- Q7. In Indexed addressing the actual value loaded into the accumulator _____
- **Q 8.** What is the SOURCE ADDRESSING MODE for the instruction:

ADD AX,[1000]

//AX←MEM[1000]

- (a) Register Direct
- (b) Immediate
- (c) Memory Direct
- (d) Register Indirect
- **Q 9.** What is the DESTINATION ADDRESSING MODE for the instruction?

ADD AX, [1000]

//AX←MEM[1000]

- (a) Register Direct
- (b) Immediate

	(c) Memory Direct		
	(d) Register Indirect		
For ne	xt two questions, refer to a processor with an accur	nulator and two registers, R1 and R2.	
At son	ne point in the execution of a program, R1 contains	40, R2 contains 50, Memory location	
40 con	tains 50, location 50 contains 60, and location 60 con	tains 70.	
Q 10.	What will be the value in the accumulator A after	the processor executes the following	
	instruction?		
	Load A, $m(R1)$ // A \leftarrow Mem[R1]		
	(a) 40	(b) 50	
	(c) 60	(d) can't be determined	
Q 11.	What will be the value in the accumulator A after	the processor executes the following	
	instruction?		
	Load A, m[R1] // A \leftarrow Mem[R2]		
	(a) 40	(b) 50	
	(c) 60	(d) can't be determined	
Q 12.	What will be the value in the accumulator A after the processor executes the following		
	instruction?		
	Loadi A, #40 // A ← 40		
	(a) 40	(b) 50	
	(c) 60	(d) can't be determined	
Q 13.	Consider an 8-bit register that has the initial data 10010101. If we apply the following		
	operations sequentially on given register:		
	 Arithmetic Shift-right by one bit Logical Shift-left by one bit 		
	3. Logical Shift-right by one bit		
	4. Circular Shift-left by one bit		
	5. Circular Shift-right by one bit		
	6. Arithmetic Shift-left by one bit		
	The content of 8-bit register at the end of the six operations (in binary) is		

Q 14. What is the content of AL (in binary) after executing the following code? Assume that all register can store 8-bit data and the 2's complement number representation is used for the negative data.(Consider initial value of AL is 01010101) MOV BL, AL // BL ← AL MOV CL, 3 // CL **←** 3 SHL AL, CL // left shift the contain of AL register MOV CL, 2 // CL ← 2 // left shift the contain of BL register SHL BL, CL ADD AL, BL $//AL \leftarrow AL + BL$ (a)11111100 (b)00000100 (c) 11111000 (d) 10101010 Q 15. A certain processor executes the following set of machine instructions sequentially. $// R_0 \leftarrow 0$ MOV R_0 , # 0 $// R_1 \leftarrow Mem[R_0 + 100]$ MOV R_1 , $100(R_0)$ $// R_1 \leftarrow R_1 + Mem[R_0 + 200]$ ADD R_1 , 200(R_0) MOV $100(R_0)$, R_1 // [100+R0]←R1 Assuming that memory location 100 contains the value 35 (Hex), and the memory location 200 contains the value A4 (Hex), what could be said about the final result? (a) Memory location 100 contains value A4 (b) Memory location 100 contains value DA (c) Memory location 100 contains value D9 (d) Given data is insufficient to decide

Q 16. A stack-based processor executes the following set of machine instructions sequentially. 1. PUSH A 2. PUSH B 3. SUB 4. PUSH C 5. ADD 6. PUSH D 7. PUSH E 8. ADD 9. DIV 10. POP Y Initially A, B, C, D and E contain the values 20, 6, -4, 6 and 4 respectively, what is the result in Y after execution the given program? A stack-based processor executes the following set of machine instructions sequentially. Q 17. 1. PUSH 100 2. PUSH 200 3. ADD 4. POP 300 Assuming that (I) Memory location 100 contains the value 53 (Hex) and memory location 200 contains the value 4C (Hex). (II) The stack is byte organized and the stack pointer is at 00FF, and that (III)All PUSH and POP instructions have a memory operand. Which of the following could the final result be? (a) Memory location 300 contains the value 9F (b) Memory location 00FD contains the value 9F (c) Memory location 00FF contains a value 100

(d) Memory location 00FE contains a value 200

For ne	 ext four questions, consider the	following code fragment:	
1. loo j	p: SUBI R3, R1, #3	// R3 = R1 - 3	
2. BEQZ R3, label1		// if R3 equals to zero jump to label1	
3. AD	DI R4, R4, #2	// R4 = R4 + 2	
4. labe	el1 : ADDI R1, R1, #1	// R1 = R1 + 1	
5. BNI	E R1, R2, loop	// if R1 is not equals to R2 then jump to loop	
Assun	ne that the initial values of R1,	R2 and R4 are 3, 6 and 10 respectively. After completion of	
the ab	ove code fragments		
Q 18.	What is the final contents of re	egister R1?	
Q 19.	How many times instruction I ₃ is executed ?		
Q 20.	How many times instruction I ₅ is executed ?		
_			
Q 21.	What is the final contents of re	egister R4?	
0.00			
Q 22.			
	s1 = 0X00000005		
	s2 = 0X00000003 s3 = 0XFFFFFFC		
		registers s1 through s4 after executing the following	
	instructions?	registers si unough s4 after executing the following	
	1. SLT s1, s1, s2 // Set on less than (signed) if s1 < s2 then s1 = 1, otherwise s1=0		
		ess than (signed) if $s1 < s3$ then $s2 = 1$, otherwise $s2 = 0$	
	3. SLTU s3, s1, s2 // Set on less than unsigned if s1 < s2 then s3 = 1 otherwise s3=0		
	4. SLTU s4, s1, s3		
	(a) s1=0, s2=0, s3=0 and s4=1		
	(b)s1=0, s2=0, s3=0 and s4=0		
	(c) s1=0, s2=0, s3=1 and s4=0		
	(d) s1=0, s2=1, s3=1 and s4=1		

Q 23. Consider the following MIPS assembly code:

```
1. SLT t0, t1, t2 // set t0 if t1< t2, otherwise set t0=0
```

4. ADDI t4, 0, 1
$$//$$
 t4 = 0 + 1

Assume that the variables a, b, c, d, 1 and x are assigned to registers t1, t2, t3, t4, s0 and s1 respectively. Which high-level language code fragment does the above assembly code closely correspond?

(a) if
$$((a < b) && (c = = 0)) d = 1;$$

(b) if
$$((a < b) \mid | (c = 0)) d = 1;$$

(c) if
$$(a < b) d = 1$$
;

(d) none of the above

Q 24. When a particular high-level language code fragment is compiled, it produces the following set of machine instructions.

1. MOV
$$R_1$$
, #j // $R_1 \leftarrow j$

2.
$$BEQZ R_1$$
, label // if R_1 is equal to zero then jump to label

3. MOV
$$R_2$$
, #0 // $R_2 \leftarrow 0$

5. label :MOV
$$R_2$$
, R_3 // $R_2 \leftarrow R_3$

Assuming that values p and q are stored in registers R2 and R3 respectively, to which high-level language code fragment does the above machine code closely correspond?

(a) if
$$(j \ge 0)$$
 p = q; else p = 0;

(b) if
$$(j ==0)$$
 $q = p$; else $q = 0$;

(c) if
$$(j ==0)$$
 $p = q$; else $p = 0$;

(d) if
$$(j == 0) p = 0$$
; else $p = q$;

For the next four questions, consider the following program segment. Here R1, R2 and R3 are the general purpose registers. 1. MOV R1, (1000) $// R1 \leftarrow M[1000]$ $// R2 \leftarrow M[R3]$ 2. MOV R2, (R3) 3. LOOP: ADD R2, R1 $// R2 \leftarrow R1 + R2$ $// M[R3] \leftarrow R2$ 4. MOV (R3), R2 5. INC R3 $// R3 \leftarrow R3 + 1$ 6. DEC R1 $// R1 \leftarrow R1 - 1$ 7. **BNZ LOOP** // Branch on not zero 8. HALT // Stop Assume that memory location 1000 contains 100 and the base address of array is store in register R3 and the base address of array is 500. All the number is in decimal. 500 | 501 | 502 503 599 600 Memory Location 100 100 100 100 100 100 Contain Q 25. After the completion of this program, the content of memory location 599 is: _ O 26. The content of memory location 600 is: _ O 27. How many times the instruction of program is executed:_ Q 28. The number of memory references for accessing the data in executing the program completely is:__ Q 29. Consider the following assembly code. 1. Loop: STLI t0, s0, 10 //Set on less than immediate if s0 < 10 then t0 = 1; 2. BEQ t0, zero, exit // if t0 is equal to zero then jump to exit 3. SLL t1, s0, 2 // shift logically left s0 by 2 and store in t1 4. ADD t1, t1, s2 // t1 = t1 + s25. ADD t2, s1, s0 // t2 = s1 + s06. SW t2, 0(t1) // Mem[t1+0] = t2// s0 = s0 + 17. ADDI s0, s0, 1 8. JMP Loop // jump to loop 9. exit: // stop Assume that the variables a and b are assigned to registers s0 and s1 respectively and the base address of the array D is in register s2. The initial value of variable a and b is 0 and 10 respectively. what is the value of s0 register after the execution of given code?

For the next two questions, consider the following program segment. Here R1, R2 and R3 are the general purpose registers.

Instructions	Meaning
1. LOAD R _{1,} (R ₀)	$R_1 \leftarrow M[[r_0]]$
2. ADD R ₁ , R ₂	$R_1 \leftarrow R_1 + R_2$
3. AND R ₃ , R ₂	R ₃ ←R ₃ && R ₂
4. ADD R ₃ , R ₄	$R_3 \leftarrow R_3 + R_4$
5. LOAD (R ₀), R ₃	$M[[R_0]] \leftarrow R_3$
6. SUB R ₁ , R ₃	$R_1 \leftarrow R_1 - R_3$
7. HALT	HALT
8. OR R ₂ , R ₁	$R_2 \leftarrow R_2 \mid \mid R_1$
9. ADD R ₂ , R ₁	$R_2 \leftarrow R_2 + R_1$

Suppose this processor has 32-bits Load/Store instruction, 16-bits ALU, BRANCH and HALT instructions. Program has been loaded in the memory with a starting address of 1000 (in decimal). Assuming the memory is word addressable and word size is 16 - bits.

- Q 30. If an interrupt occurs during the execution of the instruction "HALT", what return address will be pushed on to the stack?
- **Q 31.** Let the clock cycles required for various operations be as follows:

Instruction Type	Clock Cycles
Register to/from memory transfer	3
ADD/SUB with both operands in register	2
AND/OR with both operands in register	1
Instruction fetch and decode	2

What will be the total number of clock cycles required to execute the program___

For th	e next two question	s, Consider the follo	wing program segment. Here R1, R2 a	and R3 are
the ge	neral-purpose regist	ers.		
	Instruction	Operation	Instruction size (no. of words)	
	MOV R1, (3000)	R1 ← m[3000]	2	5
LOO	P: MOV R2, (R3)	R2 ← M[R3]	1	
	ADD R2, R1	R2 ← R1 + R2	1	
	MOV (R3), R2	M[R3] ← R2	1	
	INC R3	R3 ← R3 +1	1	
	DEC R1	R1 ← R1 - 1	1	
	BNZ LOOP	Branch on not zero	2	
	HALT	Stop	1	
Assun	ne that the content	of memory location	3000 is 10 and the content of the reg	gister R3 is
2000.	The content of each	of the memory loca	tions from 2000 to 2010 is 100. The p	program is
loaded	d from the memory	location 1000. All	the numbers are in decimal. Assum	ie that the
memo	ory is word addressa	ble.		
Q 32.	Q 32. The number of memory references for accessing the data in executing the program			e program
	completely is			
Q 33.	Assume that the n	nemory is word add	ressable. After the execution of above	e program,
	the content of memory location 2010 is			
Q 34.	A processor has 40 distinct instruction and 24 general purpose registers. A 32-bit			s. A 32-bit
	instruction word ha	as an opcode, two reg	gisters operands and an immediate op	erand. The
	number of bits available for the immediate operand field is (if fixed size instruction			instruction
	format is used)	·		
Q 35.	There are 50 registe	ers and total 55 instru	ıctions available in a general-purpose	computer.

The computer allows only 2-address instructions, where one operand is a register and		
another is a memory location. The memory is byte addressable with $64 \mathrm{KB}$ in size. The		
minimum number of bits to encode the instruction will be		

For next three questions consider the system that has a memory unit with 16 bits per word.			
The instruction set consists of 200 different operations. All instructions have an operation code			
part (c	opcode) and an address part (allowing for only one address). Each instruction is stored in		
one w	ord of memory.		
Q 36.	How many bits are needed for the opcode?		
O 27	How we are hite and left for the address ment of the instruction?		
Q 37.	How many bits are left for the address part of the instruction?		
Q 38.	If the memory is byte addressable then the maximum allowable size for memory (in		
	bytes) is		
For ne	ext two questions, suppose a 32-bit instruction uses register addressing mode with the		
follow	ing format:		
	OPCODE DEST SRC1 SRC2		
Assum	e that there are 242 opcodes in the instructions set and 64 registers in register set		
Q 39.	The minimum number of bits required to represent the opcodes is		
Q 40.	Let the minimum number of bits required to represent the SRC1, SRC2 and DEST		
	registers are x, y and z respectively, then the value of x+y+z is		
Q 41.	Consider a processor with 64 registers and an instruction set of size twelve. Each		
	instruction has five distinct fields, namely, opcode, two source register identifiers, one		
	destination register identifier, and twelve-bit immediate value. Each instruction must be		
	stored in memory in a byte-aligned fashion. If a program has 100 instructions, the		
	amount of memory (in bytes) consumed by the program text is		

Q 42.	A computer uses extensible opcode technique. It has 16-bit instructions which have 6-		
	bits address field. It supports one address, two address instructions only. If there are		
	eight two address instructions, then the maximum numbers of one address instructions		
	are		
For the	e next four questions, in a computer instruction format, the instruction length is 11 bits		
	e size of an address field is 4 bits. The computer support:		
	ddress instructions		
• 1-a	ddress instructions		
• 0-a	ddress instructions		
All thr	ee type of instruction must be exist in the computer (i.e. there is at least one		
instruc	etion from each type)		
Q 43.	What is the maximum number of instruction with 0-address?		
Q 44.	What is the maximum number of instruction with 1-address?		
Q 45.	What is the maximum number of instruction with 2-address?		
Q 46.	How many maximum number of instruction supported by this computer?		
Q 47.	Consider a machine with x bits long instruction and 8 registers. We need to use 3 bits to		
	specify a unique register. Suppose machine encode the following class of instructions:		
	Class A: 4 instructions with 2 registers		
	Class B: 255 instructions with 1 register		
	Class C: 16 instructions with 0 registers		
	The minimum value of x in the extensible opcode technique to encode the above class of instruction is		
For ne	xt two questions, consider the machine in which instructions are 12 bits in length and		
addres	ses are 4 bits in length. There are 3 classes of instructions:		
Class	A: 2 addresses		
Class 1	B: 1 address		
Class	C: 0 addresses		
All the	ree type of instruction must be exist in the computer (i.e. there is at least one		
	ction from each type)		
Q 48.	What is the maximum total number of instruction possible in machine?		
Q 49.	What is the minimum total number of instruction possible in machine?		
Q 50.	Consider a machine where each instruction is 4 bytes long. Conditional and		
	unconditional branch instructions use PC-relative addressing mode with Offset		
	specified in bytes to the target location of the branch instruction. Also, the Offset is		
	always with respect to the address of the next instruction in the program sequence.		

Consider the following instruction sequence:
Instruction i: DD R2,R3,R4
Instruction i+1: SUB R5,R6,R7
Instruction i+2: SEQ R1,R9,R10
Instruction i+3: ADD R1, R2, R3
Instruction i+4: BEQZ R1, Offset
If the target of the branch instruction is i, the decimal value of Offset will be

		INSTRUCTION PIPELINE	
For ne	xt six questions , sup	pose we have the following functional units with the given	
latenci	es in a processor:		
IF	2 ns		
ID	2 ns		
EX	3 ns		
MEM	6 ns		
WB	2 ns		
Q 1.	If we use these units to build a single-cycle implementation (non-pipeline), what is the		
	cycle time (in ns) of pipeline processor?		
Q 2.	How long (in ns)	does it take to execute a single instruction in non-pipeline	
	processor?		
Q 3.	If we use these units	to build our usual 5-stage pipeline processor, what is the cycle time	
	of pipeline processo	r?	
Q 4.	How long (in ns) does it take to execute a single instruction in pipeline	
	processor?		
Q 5.	How long does it to	ake to execute N instructions using this pipeline, where N is some	
	arbitrary large num	per?	
	(a) (6N) ns	(b) $(6 \times 5 + (N - 1) \times 6)$ ns	
	$(c)6 \times (4+N) \text{ ns}$	(d)Both(b)&(c)	

Q 6.	What is the speedup of this pipelined proces	sor over the non-pipeline processor?_	
Q 7.	What is the cycle time for non-pipelined	processor and what is the latency of an	
	instruction?		
	(a) 550ps, 2750ps	(b) 570ps, 2850ps	
	(c) 1700ps, 1700ps	(d) 1800ps, 1800p	
Q 8.	What is the cycle time for pipelined processor	or and what is the latency of an instruction?	
	(a) 550ps, 2750ps	(b) 570ps, 2850ps	
	(c) 550ps, 2850ps	(d) 1800ps, 1800ps	
		VIV	
Q 9.	What is the throughput (in MIPS) of the nor	n-pipelined and pipelined respectively?	
	(a) 588.24, 1754.39	(b) 555.56, 1754.39	
	(c) 555.56, 1818.18	(d) 588.24, 1818.18	
Q 10.	Comparing the time T1 taken for a single in	nstruction on a pipelined CPU with time T2	
	taken on a non-pipelined but identical CPU, we can say that		
	(a) T1 ≥ T2		
	(b) T1 ≤ T2		
	(c) T1 < T2		
	(d) T1 is T2 plus the time taken for one instru	action fetch cycle	
Q 11.	A non pipelined single cycle processor of	perating at 100 MHz is converted into a	
	synchronous pipelined processor with five s	stages requiring 1nsec, 1.5nsec, 4nsec, 3nsec,	
	and 0.5nsec, respectively. The speedup of the	ne pipeline processor for a large number of	
	instructions is		
Q 12.	A non pipelined single cycle processor of	perating at 100 MHz is converted into a	
	synchro-nous pipelined processor with fiv	re stages requiring 2.5nsec, 1.5nsec, 2nsec,	
	1.5nsec and 2.5nsec, respectively. The delay of the latches is 0.5nsec. The speedup of the		
	pipeline processor for a large number of inst	ructions is	
	(a) 4.5	(b) 4.0	
	(c) 3.33	(d) 3.0	

Q 13.	Consider a 5-stage single cycle machine (non-pipeline), and a 5-stage pipeline machine.
	The cycle time of the non-pipeline is five times that of pipeline. Assume that there are
	no stalls in the pipeline. What is the speedup achieved over non-pipeline if pipeline
	phase time is 2 ns?
Q 14.	A pipeline P operating at 1 GHz has a speedup factor of 5 and operating at 60%
	efficiency. How many stages are there in the pipeline?
Q 15.	Consider two different machines; the first has a single cycle data path i.e., a single non
	pipelined machine with a cycle time of 4 ns. The second is a pipelined machine with
	four pipeline stages and a cycle time of 1 ns. What is the speedup of the pipeline
	machine versus the single cycle machine for the very large number of
	instructions?
Q 16.	In a 5-stage pipelined system, assume that stages 1 and 4 take 2ns each, stages 2 and 5
	take 3ns each, and stage 3 takes 1ns. What is the speed-up attained for the pipelined
	system as compared to the non-pipelined system, if 50 instructions are executed?
	(a)2.500
	(b)3.333
	(c)3.395
	(d)3.667
Q 17.	Suppose the four stages in a 4-stage pipeline take the following timing: 2ns, 3ns, 4ns,
	and 2ns. Given 1000 instructions, what is the speedup of the pipelined processor
	compared to the non-pipelined single-cycle processor?
Q 18.	The five stages of a certain pipeline take 2 ns, 3 ns, 4 ns, 5 ns, and 2 ns. If there are 20
	instructions, what is the maximum speed up in the execution time of a pipeline
	implementation compared to a single-cycle implementation?
	(a) 2.50 (b) 2.67
	(c) 5.00 (d)3.20
Q 19.	Consider the 5 stages of the processor have the following latencies:

		Fetch	Decode	Execute	Memory	Write back		
		300ps	400ps	350ps	500ps	100ps		
	Assume that when pipelining, each pipeline stage costs 20ps extra for the registers							
	between pipeline stages. If you could split one of the pipeline stages into 2 equal halves,							
	which one would you choose?							
	(a) Writ	te back				(b) F	etch	
	(c) Deco	ode				(d) N	Memory	
Q 20.	The s	tage d	elays in	a 5-stage	e pipeline	process a	re 800nsec,	400nsec, 900nsec,
	400nse	ec and 30	00nsec, re	spectively	. The thi	rd stage is	replaced wit	h a functionality
	equiva	lent de	sign invo	lving thre	ee stages v	vith respectiv	ve delays 550	Insec, 350nsec and
	350nsec. What will be change in the throughput of the pipeline processor?				sor?			
	(a) It is	increas	ses by 12.5	5%				
	(b) It is	decrea	ses by 12.	5%				
	(c) It is	increas	ses by 12.2	25% increa	se			
	(d) It is	s decrea	ses by 12.	25%				
Q 21.	The sta	age dela	ays in a 4	stage pip	peline are 8	300, 500, 400	and 300 picc	seconds. The first
	stage i	is repla	ced with	a function	onally equ	iivalent desig	gn involving	two stages with
	respect	tive del	ays 600 a	nd 350 pi	coseconds.	The through	nput increase	of the pipeline is
	9	6.		PY				
For the	e next t	wo que	stions, Co	onsider a s	system in v	which it takes	s 8 cycles to c	omplete execution
		_	ck period		,		J	1
Q 22.	T		_		e machine?	?	_GHz	
				•				(1)
Q 23.	What i	is the to	otal numb	er ot inst	ructions p	er second ex	ecuted by sy	stem (in million)?
Q 24.		- -	-					and was converted
					ge pipelin	e, what wo	uld the pipe	elined processor's
			ck rate be					(4) = 0 ===
	(a) 0.5	GHz		(b) 500	GHz	(c) 5	GHz	(d) 50 GHz
Q 25.	A sing	le-cycle	processor	r design w	vith a 1 GF	Iz clock is co	nverted to a t	en-stage, perfectly
	1							

	balanced, pipelined	design. What will be t	he clock period of th	e new design?
	(a) 0.1 GHz	(b) 10 GHz	(c) 1000 GHz	(d) 100 GHz
Q 26.	Consider a non-pipe	elined processor with a	a clock rate of 2.5 GI	Hz and average cycles per
	instruction of 5. Th	e same processor is 1	upgraded to a pipe	lined processor with five
	stages but due to t	he internal pipeline o	delay, the clock spe	ed is reduced to 2 GHz.
	Assume there are r	no stalls in the pipelin	ne. The speed up a	chieved in this pipelined
	processor is			
Q 27.	A 5-stage pipeline	d processor has Inst	ruction Fetch (IF),	Instruction Decode (ID),
	Instruction Execution	n (IE), Memory Acces	s (MA) and Write Ba	ack (WB) stages. All stages
	take 1 clock cycle ea	ch for any instruction.	Consider the follow	ing code fragment:
	Instruction	Meaning of instr	ruction	
	Load R1, [1000]	// R1 = N	4[1000]	
	Load R3, 5(R2)	// R3 = N	1[R2 + 5]	
	MUL R4, R1, R6	// R4 = R	11 x R6	
	DIV R5, R1, R6	// R5 = R	1 / R6	
	SUB R6, R2, R7	// R6 = R	12 – R7	
	What is the num	ber of clock cycles	needed to execute	the above sequence of
	instructions on 5-sta	age pipeline processer	?	
Q 28.	A 5-stage pipeline	d processor has Inst	ruction Fetch (IF),	Instruction Decode (ID),
	Instruction Executio	n (IE), Memory Access	s (MA) and Write Ba	ack (WB) stages. All stages
	take 1 clock cycle ea	ch for any instruction.	Consider the follow	ing code fragment:
	Instruction 1	Meaning of instruction	ι	
	Load R1, [1000]	//R1 = MEM[1]	000]	
	Load R3, 5(R2)	//R3 = MEM[R]	2 + 5]	
	MUL R4, R1, R3	$// R4 = R1 \times R3$		
	DIV R5, R1, R4	// R5 = R1 / R4	:	
	SUB R6, R4, R5	// R6 = R4 - R5		
	What is the number	of clock cycles needed	to execute the above	e sequence of instructions
	on 5-stage pipeline p	processer?		
Q 29.	A 5-stage classical	pipelined processor h	as Instruction Fetch	(IF), Instruction Decode
	(ID), Instruction Exe	ecution (IE), Memory	Access (MA) and W	rite Back (WB) stages. All
	stages take 1 clock c	vele each for any instri	action Consider the	following code fragment:

Instruction Meaning of instruction MOV R3, R7 // R3←R7 LD R8, (R3) //R8 = MEM[R3]ADD R3, R3, 4 // R3 = R3 + 4LOAD R9, (R3) //R9 = MEM[R3]What is the number of clock cycles needed to execute the above sequence of instructions on 5-stage pipeline processer? _____ A 5-stage classical pipelined processor has Instruction Fetch (IF), Instruction Decode Q 30. (ID), and Instruction Execute (EX), Memory Access (MA) and Write Back (WB) stages. The IF, ID, MA and WB stages take 1 clock cycle each for any instruction. The EX stage takes 1 clock cycle for ADD and SUB instructions, 3 clock cycles for MUL instruction, and 6 clock cycles for DIV instruction respectively. Consider the following sequence of instructions: Meaning of instruction Instruction I_0 :MUL R_2 , R_0 , R_1 $R_2 \leftarrow R_0 * R_1$ *I*₁:DIV R₅ ,R₃ ,R₄ $R_5 \leftarrow R_3/R_4$ I_2 : ADD R_2 , R_5 , R_2 $R_2 \leftarrow R_5 + R_2$ $R_5 \leftarrow R_2 - R_6$ I_3 :SUB R_5 , R_2 , R_6 What is the number of clock cycles needed to execute the above sequence of instructions? _____ Consider a pipelined processor with the following four stages: Instruction Fetch (IF), Q 31. Instruction Decode and Operand Fetch (ID), Instruction Execute (EX), and Write Back (WB). The IF, ID and WB stages take one clock cycle each to complete the operation. The number of clock cycles for the EX stage depends on the instruction. The ADD and SUB instructions need 1 clock cycle, the MUL instruction needs 3 clock cycles and the DIV instruction needs 5 clock cycles in the EX stage respectively. Consider the following sequence of instructions: Instruction Meaning of instruction $R2 \leftarrow R0 * R1$ I0: MUL R2 ,R0 ,R1 I1: DIV R5 ,R3 ,R4 $R5 \leftarrow R3 / R4$ I2: ADD R2 ,R5 ,R2 $R2 \leftarrow R5 + R2$ I3: SUB R5 ,R2 ,R6 $R5 \leftarrow R2 - R6$ What is the number of clock cycles taken to complete the following sequence of instructions? The instruction pipeline of a RISC processor has the following stages: Instruction Q 32.

Fetch (IF), Instruction Decode (ID), Operand Fetch (OF), Perform Operation (PO) and Writeback (WB). The IF, ID, OF and WB stages take 1 clock cycle each for every instruction. Consider a sequence of 100 instructions. In the PO stage, 30 instructions take 3 clock cycles each, 30 instructions take 2 clock cycles each, and the remaining 40 instructions take 1 clock cycle each. Assume that there are no stalls in the pipeline. The number of clock cycles required for completion of execution of the sequence of instructions is _____.

Q 33. A 5-stage pipelined processor has Instruction Fetch (IF), Instruction Decode (ID), Instruction Execution (IE), Memory Access (MA) and Write Back (WB) stages. All stages take 1 clock cycle each for any instruction. Consider the following code fragment:

I6: STORE R3, 50(R1) // MEM[R1+50] = R3

What is the number of clock cycles needed to execute the above sequence of instructions on 5-stage pipeline processer with operand forwarding? _____

Q 34. A 5-stage pipelined processor has Instruction Fetch (IF), Instruction Decode (ID), Instruction Execution (IE), Memory Access (MA) and Write Back (WB) stages. All stages take 1 clock cycle each for any instruction. Consider the following code fragment:

What is the number of clock cycles needed to execute the above sequence of instructions on 5-stage pipeline processer without operand forwarding but the register file can be

	read and written in the same cycle. The write takes place during the first half of the		
	cycle and the read takes place during the second half of the cycle?		
Q 35.	A 5-stage pipelined processor has Instruction Fetch (IF), Instruction Decode (ID),		
	Operand Fetch (OF), Perform Operation(PO)and Write Operand(WO)stages. The IF, ID,		
	OF and WO stages take 1 clock cycle each for any instruction. The PO stage takes 2 clock		
	cycles for ADD and SUB instructions, 5 clock cycles for MUL instruction, and 6 clock		
	cycles for DIV instruction respectively. Assume no operand forwarding but a split-cycle		
	register file (i.e. the register file can be read and written in the same cycle.) is in used.		
	Instruction Meaning of instruction		
	I0: MUL R2, R0, R1 $//R2 \leftarrow R0 *R1$		
	I1: DIV R5, R3, R4 $//$ R5 \leftarrow R3/R4		
	I2: ADD R2, R5, R2 $//R2 \leftarrow R5+R2$		
	I3: SUB R5, R2, R6 //R5 ←R2-R6		
	What is the number of clock cycles needed to execute the following sequence of		
	instructions?		
Q 36.	Consider a 2GHz pipelined processor with the following four stages: Instruction Fetch		
	(IF), Instruction Decode and Operand Fetch (ID), Execute (EX) and Write Back (WB).		
	The IF, ID and WB stages take one clock cycle each to complete the operation. The		
	number of clock cycles for the EX stage depends on the instruction. The ADD and SUB		
	instructions need 2 clock cycle and the MUL instruction needs 5 clock cycles in the EX		
	stage.		
	Instruction Meaning of instruction		
	ADD R2, R1, R0; $//R2+R1\rightarrow R0$		
	MUL R0, R3, R4; //R0*R3→R4		
	SUB R4, R5, R6; $//$ R4 – R5 \rightarrow R6		
	Operand forwarding is not used in the pipelined processor. What is the time (in		

	ns) to complete the above instruction:			
Q 37.	Consider the ideal five sta	age in-order pipelining processor and the following sequence		
~	of instructions is executed			
	Instruction	Meaning of instruction		
	ADD R1, R2, R3	$// R1 \leftarrow R2 + R3$		
	SUB R4, R5, R6	// R4 ← R5 - R6		
	SUB R7, R8, R9	$// R7 \leftarrow R8 + R9$		
	ADD R10, R11, R12	// R10 ← R11 + R12		
	ADD R13, R14, R15	$// R13 \leftarrow R14 + R15$		
	During the fifth cycle of ex	ecution, which registers (in the register file) are being		
	read and which register wi	ill be written?		
	(a) Written: R1; Read: R12, R11			
	(b) Written: R1, R12; Read: R11			
	(c) Written: R11; Read: R12			
	(d) Written: None; Read: R	12, R11		
0.20				
Q 38.		stage in-order pipelining and the following sequence of		
	instructions is executed or	•		
		Meaning of instruction (/ P1 = MEMIO + POI		
	LW R1, 0(R0); LW R2, 4(R0;	// R1 = MEM[0 + R0] // R2 = MEM[4 + R0]		
	ADD R3, R1, R2;	// R3 = R1 + R2		
	SW R3, 8(R0);	// MEM[8+R0] = R3		
	LW R4, 12(R0);	// R4 = MEM[12 + R0]		
	ADD R5, R3, R4;	// R5 = R3 + R4		
	SW R5, 16(R0);	// MEM[16+R0] = R5		
	` ′			

The number of RAW, WAR and WAW data dependencies exist in this code respectively is (a) 5, 1, 2 (b) 6, 0, 2(c) 4, 1, 1 (d) 6, 0, 0Q 39. Consider the ideal five stage in-order pipelining processor and the following sequence of instructions is executed on the processor: Instruction Meaning of instruction ADD R1, R2, R3 $// R1 \leftarrow R2 + R3$ ADD R4, R2, R1 $// R4 \leftarrow R2 + R1$ $// R5 \leftarrow MEM[200 + R4]$ LW R5, 0(R4) $// R4 \leftarrow R5 + R2$ ADD R4, R5, R4 If the operand forwarding is not used then how many data dependencies can create hazards? Consider the ideal five stage in-order pipelining processor and the following sequence Q 40. of instructions is executed on the processor: Instruction Meaning of instruction LW R1, 40(R2) $// R1 \leftarrow MEM[40 + R2]$ ADD R2, R3, R0 $// R2 \leftarrow R3 + R0$ ADD R1, R1, R2 $// R1 \leftarrow R1 + R2$ SW R1, 20(R2) // MEM[20 + R2] = R1How many ANTI, TRUE and OUTPUT dependencies respectively are there in the above code? (a) 1, 3, 1 (b) 1, 4, 1 (c) 1, 3, 2(d) 1, 4, 2Q 41. Consider the ideal five stage in-order pipelining and the following sequence of instructions is executed on the processor: Instruction Meaning of instruction ADD R4, R2, R3 $// R4 \leftarrow R2 + R3$ SW R2, 100(R6) // MEM[100 + R6] = R2

LW R5, 200(R4) $// R5 \leftarrow MEM[200 + R4]$ SUB R5, R8, R6 $// R5 \leftarrow R8 - R6$ The number of RAW, WAR and WAW data dependencies exist in this code respectively is (a) 2,1,1 (b) 1,0,1 (c) 1,1,1(d) 1,1,0 Q 42. Consider the ideal five stage in-order pipelining processor and the following sequence of instructions is executed on the processor: Instruction Meaning of instruction ADDi R7, R7, 1 $// R7 \leftarrow R7 + 1$ SLL R8, R7, 2 // Shift R7 logical left by 2 bit ADD R8, R8, R14 $// R8 \leftarrow R8 + R14$ $// R8 \leftarrow MEM[0 + R8]$ LW R8, 0(R8) LW R8, 0(R8) $// R8 \leftarrow MEM[0 + R8]$ BNE R7, R22, TARGET // if R7 \neq R22 then jump to target Let the number of RAW, WAR and WAW dependencies exists in the code is x, y and z respectively, then the value of x + y + z is_____ Q 43. Consider a machine that has ideal five stage in-order pipelining processor. The machine uses delay slots to handle control dependences. The Jump targets, branch targets and destinations are resolved in the execute stage. What is the number of delay slots needed to ensure correct operation of pipeline processor?_____ Q 44. Consider a machine that has ideal five stage in-order pipelining processor. Instruction Meaning of instruction I1. ADD R5, R4, R3 $// R5 \leftarrow R4 + R3$ I2. OR R3, R1, R2 $// R3 \leftarrow R1 \mid \mid R2$ I3. SUB R7, R5, R6 $// R7 \leftarrow R5 - R6$ I4. Jump X // Jump to lable X I5. LW R10, (R7) $// R10 \leftarrow MEM[R7]$ I6. ADD R6, R1, R2

 $// R6 \leftarrow R1 + R2$

I7. X: HALT

Which instruction(s) in the assembly sequences above would you place in the delay slot(s)? Assume that the number of available delay slots is 2.

- (a)1st and 2nd instruction
- (b) 2nd and 3rd instruction
- (c) 2ndinstruction
- (c)Delay slot cannot be filled.

Q 45. Consider a machine that has ideal five stage in-order pipelining processor.

Which instruction(s) in the assembly sequences above would you place in the delay slot(s)? Assume that the number of available delay slots is 2.

- (a)1st and 2nd instruction
- (b) 2nd and 3rd instruction
- (c) 2nd only
- (d) Delay slot cannot be filled.

Q 46. Consider a machine that has ideal five stage in-order pipelining processor.

17. X: HALT

Which instruction(s) in the assembly sequences above would you place in the delay slot(s)? Assume that the number of available delay slots is 2.

- (a)1st and 2nd instruction
- (b) 2nd and 3rd instruction
- (c) 1st Only
- (d) Delay slot cannot be filled.

Q 47. Consider a machine that has ideal five stage in-order pipelining processor.

Instruction Meaning of instruction

I1. L1: LOAD R1, 8(R2) // R1 \leftarrow MEM[8 + R2]

I2. ADD R3, R1, R8 // R3 \leftarrow R1 + R8

I3. SUB R2, R1, R4 // R2 \leftarrow R1 - R4

I4. STORE R7, 12(R2) // MEM[12 + R2] = R7

I5. ADD R6, R2, R5 // R6 \leftarrow R2 + R5

I6. BEQ R6, R7, L1 // if R6 == R7 then jump to L1

Which instruction(s) in the assembly sequences above would you place in the delay slot(s)? Assume that the number of available delay slots is 2.

- (a) I₂ and I₄ instruction
- (b) I₃ and I₄instruction
- (c) I₂ and I₃instruction
- (d)Delay slot cannot be filled.

Q48. Register renaming solves the problem of:

- (a) Name Dependence
- (b) Output Dependence
- (c) Anti-Dependence
- (d) All of the above

Q 49. [MSQ]

Which of the following statements about pipelining is/are incorrect?

- (a) Pipelining reduces the latency of a single instruction.
- (b) Pipelining is invisible to the programmer.
- (c) Stalling the pipeline is the only method to handle structural hazards.

	(d)In pipeline memory reference may cause data hazards.
	(e)Bypassing and forwarding eliminates all data hazards.
Q 50.	Consider a classical 5 stage pipelined processor executes a program that consists of
	50,000 instructions. Because of hazards 10% of instructions are stalled by one cycle, 15%
	by 2 cycles and 10% by 3 cycles. How many cycles take execution of this program?
Q 51.	Consider a 8-stage instruction pipeline, where all stages are perfectly balanced. Assume
	that there is no cycle-time overhead of pipelining. When an application is executing on
	this 8-stage pipeline, the speedup achieved with respect to non-pipelined execution if
	30% of the instructions incur 2 pipeline stall cycles is
Q 52.	Consider a processor with following specifications
	Clock Rate 0.5 GHz
	CPI for ALU instructions 1
	CPI for Control instructions 2
	CPI for Memory instructions 2.7
	The average instruction execution time (in ns) for a program with 70% ALU
	instructions, 1% control instructions and 29% memory instructions is
	(Rounded off to three decimal places)
O 52	A program's execution time is 100 seconds. Suppose FP instructions account for 30% of
Q 53.	the execution time of the program and multiply instructions account for 10% of the
	execution time. How much faster would the program execute if we speed up FP
	instructions by a factor of 3 and multiply instructions by a factor of 5?
	(Rounded off to three decimal places)
Q 54.	Adding a faster floating-point unit to a machine will give a speedup of 5 on FP
Q 51.	instructions. The FP instructions make up 10% of the dynamic instruction count on the
	original machine and the average CPI for FP instructions on the original machine is 9
	cycles and the average CPI for all other instructions on the original machine is 1 cycle.
	What is the overall speedup of the machine due to this modification?
	(Rounded off to three decimal places)
	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For ne	For next three questions, consider a program has 109 instructions and 50% of these instructions		
are me	emory instructions. This program is executed on a processor that runs on a 2-GHz clock,		
execut	executes the memory instructions in an average 4.0 CPI, and executes the other instructions in		
an ave	rage 1.0 CPI.		
Q 55.	What is the overall average CPI of program?		
Q 56.	What is the time needed to execute this program?nsec		
Q 57.	What is the speedup when the memory instructions are improved by a factor of 4?		
Q 58.	Consider a non-pipelined processor with a clock rate of 5 gigahertz and average cycles		
	per instruction of four. The same processor is upgraded to a pipelined processor with		
	five stages; but due to the internal pipeline delay, the clock speed is reduced to 2.5		
	gigahertz. Assume that there are no stalls in the pipeline. The speed up achieved in this		
	pipelined processor is		
Q 59.	Consider a program running on a 5-stage pipeline processor; assume that 25%		
	instructions of program cause a single-cycle stall. If forwarding can eliminate 60% of the		
	stalls, but increases the clock cycle by 20%, what is the speedup obtained by using		
	forwarding?		
Q 60.	What is the average CPI of a processor with base CPI as 1, if it has 2 branch delay slots,		
	20% of the instructions are branches, and the branch delay slots can be filled only 50%		
	of the time?		
Q 61.	Consider the following code consisting of 100 load instructions in which each		
	instruction is dependent on the instruction immediately preceding		
	LW R2, 0(R1)		
	LW R3, 0(R2)		
	LW R4, 0(R3)		
	What would the average CPI be for this code in the 5-stage pipelined processor		
	without forwarding?		
Q 62.	Consider the following code consisting of 100 load instructions in which each		

instruction is dependent on the instruction immediately preceding

LW R2, 0(R1)

LW R3, 0(R2)

LW R4, 0(R3)

...

What would the average CPI be for this code in the 5-stage pipelined processor with

Q 63. Assume a processor with instruction frequencies and costs

- Integer ALU: 50%, 1 cycle
- Load: 20%, 5 cycles

forwarding? ____

- Store: 10%, 1 cycles
- Branch: 20%, 2 cycles

Which change would improve performance more of the processor?

- **i.** Branch prediction to reduce branch cost to 1 cycle.
- ii. Faster data memory to reduce load cost to 3 cycles.
- (a) (i) will improve performance
- (b) (ii) will improve more performance
- (c) Both improve same performance
- (d) Nothing improved performance
- Q 64. Consider two machines M1 and M2. For both machines, all instructions except for mispredicted branches take one cycle. Mispredicted branches take one cycle plus an additional misprediction penalty.
 - Machine A has a clock rate of 1.0 GHz and a misprediction penalty of 5 cycles.
 - Machine B has a clock rate of 2.0 GHz and a misprediction penalty of 20 cycles.

Branches are 25% of all instructions and 80% of branches are predicted correctly. Which of the following statement is correct?

- (a) Machine A is faster than Machine B
- (b) Machine B is faster than Machine A
- (c) Both are same
- (d) None of these

d only 40% what is the
vhat is the
1 \
places)
uctions) as
d calls 1%.
conditional
hase of the
nuch faster
1, M2, and
anches and
20% of all
20% of all and 5% are
nd 5% are
nd 5% are nstructions 11, M2 and
nstructions 11, M2 and e evaluated
nd 5% are nstructions 11, M2 and e evaluated nal branch
nd 5% are nstructions 11, M2 and e evaluated nal branch
nd 5% are nstructions 11, M2 and e evaluated nal branch
nstructions 11, M2 and e evaluated nal branch predicted-
11, M2 and e evaluated nal branch predicted-
11, M2 and e evaluated nal branch predicted-
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

An instruction pipeline has five stages, namely, instruction fetch (IF), instruction decode (ID), instruction execution (EX), memory access (MEM), and write back (WB) with stage latencies 1 ns, 3 ns, 2 ns, 1 ns, and 0.75 ns, respectively. To gain in terms of frequency, the designers have decided to split the ID stage into three stages (ID1, ID2, ID3) each of latency 1 ns. Also, the EX stage is split into two stages (EX1, EX2) each of latency 1 ns. The new design has a total of eight pipeline stages. A program has 20% branch instructions which execute in the EX stage and produce the next instruction pointer at the end of the EX stage in the old design and at the end of the EX2 stage in the new design. The IF stage stalls after fetching a branch instruction until the next instruction pointer is computed. All instructions other than the branch instruction have an average CPI of one in both the designs. The execution times of this program on the old and the new design are P and Q nanoseconds, respectively. The value of P/Q is _______.

For the next two questions, consider state diagram of the 1- bit and 2-bit dynamic branch predictor as show in figure:

Q 71. Assume that 1 indicates a taken branch and 0 indicate not taken branch. Assume also that this predictor starts in the "Not taken" state. What is the accuracy (in percent) of a 1-bit predictor if the last 24 instance of this branch pattern is 1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1 and 1? Assume that the most recent branch is

	represented in the least significant bit
Q 72.	Assume that 1 indicates a taken branch and 0 indicate not taken branch. Assume also
	that this predictor starts in the "strongly not taken" state. What is the accuracy (in
	percent) of a 2-bit predictor if the last 24 instance of this branch pattern is
	1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1 and 1? Assume that the most recent branch is
	represented in the least significant bit

	INPUT-OUTPUT AND CONTROL UNIT
Q1.	If a magnetic disc has 1024 cylinders, each containing 512 tracks of 256 sectors each, and
	each sector can contain 128 bytes, what is the maximum capacity (in GB) of the disk in
	bytes?
Q2.	According to the specifications of a particular hard disk a seek takes 3 msecs
	(thousandths of a second) between adjacent tracks. If the disk has 100 cylinders how
	long will it take for the head to move from the innermost cylinder to the outermost
	cylinder?
	(a) 30 microseconds (b) 300 msecs (c) 297 msecs (d) 3 microseconds
Q3.	Consider a disk pack with a seek time of 3 milliseconds and rotational speed of 10,000
	rotations per minute (RPM). It has 600 sectors per track and each sector can store 8K
	(213) bytes of data. How long (in milliseconds) does it take to read a random single
	sector on average?
Q4.	A hard disk system has the following parameters:
	• Number of tracks = 500
	• Number of sectors/track = 100
	• Number of bytes/sector =500
	Average seek time: 250 ms
	• Rotation speed =6000 rpm.
	What is the average time (in ms) taken for transferring a sector from the disk?
Q5.	A hard disk system has the following parameters:
	• Number of tracks = 3000
	• Number of sectors/track = 600
	Time taken by the head to move from one track to adjacent track =1 ms
	• Rotation speed = 7200 rpm.
	What is the average time (in ms) taken for reading a random sector from the disk
	(round up two decimal place)

For the	e next two questions, consider a disk with average seek time of 4 ms, rotation speed of		
15,000	15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish to read a file		
consist	ting of 2500 sectors for a total of 1.28 Mbytes.		
Q6.	What is the minimum total time (in ms) for the transfer the file if the sequential		
	organization is used i.e. the file occupies all of the sectors on 5 adjacent tracks (5 tracks \times		
	500 sectors/track = 2500 sectors)?		
Q7.	Consider the same hard disk given in the previous question. What is the minimum total		
	time (in sec) for the transfer the file if the random organization is used rather than		
	sequential organization, that is, accesses to the sectors are distributed randomly over the		
	disk?		
Q8.	A hard disk has 63 sectors per track, 10 platters each with 2 recording surfaces and 1000		
	cylinders. The address of a sector is given as a triple (C, H, S) , where C is the cylinder		
	number, H is the head/surface number and S is the sector number. Thus, the 1 st sector is		
	addresses as $(0, 0, 1)$, the 2^{nd} sector as $(0, 0, 2)$, and so on. The address $(400, 16, 16)$		
	29) corresponds to sector number:		
Q9.	Consider a hard disk with 16 recording surfaces (0-15) having 16384 cylinders (0-16383)		
	and each track contains 64 sectors (0-63). Data storage capacity in each sector is 512		
	bytes. Data are organized cylinder-wise and the addressing format is (Cylinder #,		
	Surface #, Sector #). A file of size 42797 KB is stored in the disk and the starting disk		
	location of the file is (1200, 9, 40). What is the cylinder number of the last sector of the		
	file, if it is stored in a contiguous manner?		
Q10.	When the processor constantly checks the status of an I/O device, this is called:		
	(a) Memory mapped I/O		
	(b) Asynchronous communication		
	(c) Interrupt-Driven I/O		
	(d) Polling		

Q11. What advantage(s) does Interrupt-Driven I/O have over polling?

- (a) Interrupt-Driven I/O is synchronous while polling is asynchronous
- (b) Interrupt-Driven I/O does not require any additional hardware
- (c) Interrupt-Driven I/O allows the computer to process other tasks while waiting for I/O
- (d) Interrupt-Driven I/O can be memory-mapped while polling cannot

Q12. [MSQ]

Which of the following statements below is/are true?

- (a) In polling, I/O devices set flags that must be periodically checked by the CPU
- (b) When using interrupts, the CPU interrupts I/O devices when an I/O event happens
- (c) The overhead of polling depends on the polling frequency
- (d) Polling is often a viable option for slow and asynchronous devices

Q13. When the processor treats I/O devices as locations in memory and uses the same instructions to access them, this is called:

- (a) Memory mapped I/O
- (b) Asynchronous communication
- (c) Synchronous communication
- (d) Interrupt-Driven I/O

Q14. [MSQ]

Which of the following is /are advantages of cycle stealing in DMA.

- (a) It increases the maximum I/O transfer rate.
- (b) It reduces the interference by the DMA controller in the CPU's memory access.
- (c) It is beneficially employed for I/O device with shorter bursts of data transfer.
- (d) None of the above

Q15. The main reason for implementing DMA in a computer system is

- (a) To free off the CPU from cache coherency problems.
- (b) To simplify the writing of interrupt service routines
- (c) To remove the need for a buffer on the device interface
- (d) To speed up the transfer of data between an interface and the main memory

Q16.	In a non-vectored interrupt, the address of interrupt service routine is	
	(a) Obtained from interrupt address table.	
	(b) Supplied by the interrupting I/O device.	
	(c) Obtained through Vector address generator device.(d) Assigned to a fixed memory location.	
Q17.	Which of the following I/O methods requires the CPU to initialize the I/O device? i. Programmed I/O	
	ii. Interrupt driven I/O	
	iii. Direct memory access	
	(a) ii and iii only	(b) iii only
	(c) i and ii only	(d) All of the above
Q18.	Which of the following I/O methods requires the CPU be able to use interrupts?	
	i. Programmed I/O	
	ii. Interrupt driven I/O	
	iii. Direct memory access	
	(a) ii and iii only	(b) iii only
	(c) i and ii only	(d) All of the above
Q19.	Which of the following I/O methods requires the CPU to act as a bridge for moving	
	data between the I/O device and main memory? i. Programmed I/O	
	ii. Interrupt driven I/O	
	iii. Direct memory access	
	(a) ii and iii only	(b) iii only
	(c) i and ii only	(d) All of the above
Q20.	A vectored interrupt is one which (a) Does not require all device interfaces to be polled (b) Does not require the cpu to check the interrupt line at the end of each" Fetch and Execute" cycle (c) Reduces the number of control lines needed on the bus (d) Removes the need to enable interrupts on the interface	

Q21.	In order to execute a program, instructions must be transferred from memory along a		
	bus to the CPU. If the bus has 8 data lines, at most one 8 bit byte can be transferred	d at a	
	time. How many memory accesses would be needed in this case to transfer a 3	32 bit	
	instruction from memory to the CPU?		
	(a) 1 (b) 2 (c) 3 (d) 4		
Q22.	Consider a printer which can print 20 pages per minute where a page consists of	4000	
	characters (1 character = 1 byte). it takes 50 microseconds by CPU to handle a inter-	rupt.	
	How much CPU time per minute is consumed in handling the interrupt if output is	sent	
	to the printer one character at a time?%		
Q23.	Assume the number of clock cycles for a polling operation, including transferring to	to the	
~	polling routine, accessing the device, and restarting the user program, is 400 cycles,		
	a 500 MHz clock. The mouse must be polled 30 times a second to ensure that no		
	movement is missed. Fraction of CPU time (in %) consumed for polling is		
Q24.	Suppose we want to read 5000 bytes in programmed I/O mode of transfer, when	e the	
	bus width is 16 bits. Each time an interrupt occurs, it takes 10 microseconds to serv		
	(i.e. transfer 16 bits). The CPU time required to read 5000 bytes ismilliseconds	S.	
025			
Q25.	Consider a system employing interrupt-driven I/O for a particular device that translation is the state of 10000 leaves and the state of 10000 leaves a system employing interrupt-driven I/O for a particular device that translation is the state of 10000 leaves as the state of 10		
	data at an average of 10000 bytes per second on a continuous basis. If inte	-	
	processing takes 50 µs, what fraction(in percent) of CPU time is consumed by this	3 I/O	
	device if it interrupts for every byte?		
Q26.	The size of the data count register of a DMA controller is 16 bits. The processor need		
	transfer a file of 32 Mbytes from disk to main memory. The memory is byte address	sable.	
	The minimum number of times the DMA controller needs to get the control of	of the	
	system bus from the processor to transfer the file from the disk to main memory	ory is	
Q27.	A hard disk with a transfer rate of 1 Mbytes/ second is constantly transferring da	ata to	
	memory using DMA. The processor runs at 500 MHz, and takes 500 and 1000	clock	
	cycles to initiate and complete DMA transfer respectively. If the size of the transfer	er is 1	
	Kbytes, what is the percentage of processor time consumed for the tra	nsfer	
	operation?(Rounded off to three decimal places)		

Q28.	A DMA controller transfers 4 byte words from an input device to memory in one clock
	cycle using cycle stealing. The input device transmits data at a rate of 9600 bytes per
	second. The CPU is fetching and executing instructions at an average rate of 1,000,000
	instructions per second. Assume that size of each instruction is4bytes. The CPU will be
	slowed down because of the DMA transfer by percent.
Q29.	A hard drive with a maximum transfer rate of 1MB/sec is connected to a 32-bit, 10
	MIPS CPU operating at a clock frequency of 100 MHz. Assume that the I/O interface is
	DMA based and it takes 500 clock cycles for the CPU to set-up the DMA controller. Also
	assume that the interrupt handling process at the end of the DMA transfer takes an
	additional 300 CPU clock cycles. If the data transfer is done using 2000Bytes blocks,
	what is the percentage of the CPU time consumed in handling the hard drive?
For the	e next two questions, consider a system in which bus cycle takes 500 ns. Transfer of bus
contro	l in either direction, from processor to device or vice-versa, takes 250 ns. One of the I/O
device	has data transfer rate of 75 KB/sec and employs DMA. Data are transferred one byte at
a time.	
Q30.	Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus master
	ship prior to the start of block transfer and maintains control of the bus until the whole
	block is transferred. For how long (in nanoseconds) would the device tie up with the
	bus when transferring a block of 256 bytes?(Rounding to 2 decimal places)
Q31.	Now suppose we employ DMA in a cycle stealing mode. That is, the DMA interface
	gains bus master ship prior to the start of each byte of data to be transferred and then
	return control to the CPU after each byte of data transferred. For how long (in
	nanoseconds) would the device tie up with the bus when transferring a block of 256
	bytes? (Rounding to 2 decimal places)

Q32. Consider the following sequence of microinstructions

- t1: MAR \leftarrow (PC)
- t2: MBR \leftarrow (memory), PC \leftarrow (PC) + 1
- t3: IR \leftarrow (MBR)
- t4: MAR \leftarrow (PC)
- t5: MBR \leftarrow (memory), PC \leftarrow (PC) + 1
- t6: $R1 \leftarrow R1 + (MBR)$

What operations do the following instructions perform?

- (a) Add the number NUM to register R1.
- (b) Add contents of memory location NUM to register R1.
- (c) Add contents of the memory location whose address is at memory location NUM to register R1
- (d) None of the above

Q33. Consider the following sequence of micro-operations

- t1: MAR \leftarrow (PC)
- t2: MBR←(memory);
- PC←PC+1
- t3: IR←(MBR)

Which of the following cycle is performed by this sequence in the instruction cycle?

(a) Fetch cycle

(b) Execute cycle

(c) Indirect cycle

(d) Interrupt cycle

Q34. Consider the following sequence of micro-operations

- t1: MAR←(IR address)
- t2: MBR←(memory)
- t3: R1←R1+(MBR)

Which of the following cycle is performed by this sequence in the instruction cycle?

(a) Fetch cycle

(b) Execute cycle

(c) Indirect cycle

(d) Interrupt cycle

Q35.	Consider the following sequence of micro-op	perations
	t1: MBR←(PC)	
	t2: MAR←save-address;	
	PC←routine-address;	
	t3: memory←(MBR)	
	Which of the following cycle is performed by	this sequence in the instruction cycle?
	(a) Fetch cycle	(b) Execute cycle
	(c) Indirect cycle	(d) Interrupt cycle
Q36.	Consider the following sequence of micro-op-	erations
	t1: MAR←(IR address)	
	t2: MBR←(memory)	
	t3: IR address←(MBR address)	
	Which of the following cycle is performed by	this sequence in the instruction cycle?
	(a) Fetch cycle	(b) Execute cycle
	(c) Indirect cycle	(d) Interrupt cycle
Q37.	Which of the following set of control signals	can be used to transfer data from register
	R4 to register R5?	
	(a) R4out, R5in	(b) R4out, MARin, MDRout
	(c) R5out, R4in	(d) R5out, MARin, R4in
Q38.	Which of the following statements are true w	hen the control signals PCout, MARin, and
	READ are activated simultaneously?	
	1. Content of PC is made available in the inter-	nal processor bus
	2. The content of PC is moved to MAR and MI	OR
	3. The instruction fetch operation is activated	
	4. The content of PC is moved to MAR	
	(a) 1 and 3 only	
	(b) 2, 3 and 4 only	
	(c) 2 and 4 only	
	(d) 1, 3 and 4 only	

For the next two questions, consider the following Single data path of a CPU.

Using one bus, the CPU registers and the ALU use a single bus to move outgoing and incoming data. Since a bus can handle only a single data movement within one clock cycle, two-operand operations will need two cycles to fetch the operands for the ALU. PC can incremented locally and all other operations including GPRs are to be carried out in the ALU. Two clock cycles are needed for memory read operation – the first one for loading address in the MAR and the next one for loading data from the memory bus into the MDR. Additional registers may also be needed to buffer data for the ALU. The instruction "Add R1, R2, R0". This instruction adds the contents of source registers R1 and R2, and stores the results in destination register R0.

Q39. The minimum number of clock cycles needed for fetch cycle of this instruction is:__

Q40. The minimum number of clock cycles needed for execute cycle of this instruction is:

Q41. Consider the following path diagram

Consider An instruction: $R0 \leftarrow R1 + R2$.the following steps are used to execute it over the given data path. Assume that PC is incremented appropriately. The subscripts r and q indicate read and write operations, respectively.

1. $R2_r$, $TEMP1_r$, ALU_{ADD} , $TEMP2_W$

2. R1 _r , TEMP1 _W
3. PC _r , MAR _W , MEM _r
4. TEMP2 _{r,} R0 _w
5.MDR _R , IR _W
Which one of the following is the correct order of execution of the above steps?
(a)2,1,4,5,3
(a)2,1,4,5,3 (b)1,2,4,3,5 (c)3,5,2,1,4
(c)3,5,2,1,4
(d)3,5,1,2,4

For the next five questions, the system shown in the figure below uses a control memory of 1024 word of 32 bits each. The microinstruction has three fields as shown in the diagram. The micro-operation field has 16 bits.

Q42.	How many bits are there in the branch address field?
Q43.	How many bits are there in the select field?
Q44.	If there are 16 status bits in the system, how many bits of the branch logic are used to select a status bit?
Q45.	How many bits are left to select an input for the multiplexers?
Q46.	If the control memory in the figure above has 4096 words of 24 bits each, How many bits are there in the control address register?

Q47.	Which of the following statements are true for horizontal microinstruction encoding?				
	(a) If there are k control signals, every c	ontrol word stored in control memory (CM)			
	consists of k bits, one bit for every control signal.				
	(b) Parallel activation of several micro-operations in a single time step can be				
	performed. (c) Parallel activation of several micro-operations in a single time step				
	cannot be performed.				
	(d)Both (a) and (b) is correct.				
Q48.	Consider the instruction set architecture of	of a general-purpose machine. Suppose that a			
	total of 20 control signals are present, out	of which 7 are mutually exclusive while the			
	rest are not. The number of bits required	in the control word (for microprogramming)			
	will beat least				
Q49.	Suppose an instruction set architecture of	a general-purpose machine has a total of 126			
	control signals. The number of bits requir	ed in control word for horizontal and vertical			
	micro-instruction encoding are:				
	(a) 126, 7	(b) 128, 7			
	(c) 7, 126	(d) 126, 8			
Q50.	Consider the control unit in which the cor	atrol signals can be divided into the following			
	mutually exclusively groups?				
	Group 1 : 23 control signals to activate ga	tes that transfer data from the internal bus to			
	the register/ALU input.				
	Group 2 : 20 control signals to activate ga	tes that transfer data from the registers to the			
	internal bus.				
	Group 3 : 32 control signals to specify ALU	J operation.			
	Group 4: 8 control signals to specify shifte	er operation.			
	How many bits of the control words can l	be saved by using vertical microprogramming			
	over horizontal microprogramming?				
OE1	Horr many address and data lines will be	thoughous 1(M + 22 money existens 2 (a) 24			
Q51.	•	there for a 16M x 32 memory system? (a) 24			
	and 5	(b) 20 and 32 (d) Nana of the above			
	(c) 24 and 32	(d) None of the above			

Q52.	Assume that a 1G x 1 DRAM memory cell array is organized as 1M rows and 1K	
	columns. The number of address bits required to select a row and a column will be:	
	(a) 20 and 10	
	(b) 30 and 1	
	(c) 220 and 210	
	(d) None of the above	
Q53.	To build a 1G x 16 memory system, the number of 256M x 8 memory modules required	
	will be	
Q54.	RAM chip has a capacity of 1024 words of 8 bits each. The number of 2-to-4 decoders	
	with enable lines needed to construct a 16K x 16 RAM system will be	

<u>Marks</u>	s:50 Computer System Organization Test-1 Time:40min		
For nex	xt three questions find possible radix of the numbers in each of following operations:-		
Q1.	41/3=13;		
Q2.	23 + 44 + 14 + 32 = 223;		
Q3.	$41 = 5^2$;		
Q4.	A 32-bit IEEE-754 floating-point number consists of 1 sign bit, 8 exponent bits and 23 mantissa		
	bits. Given that +0.1 is represented, in hexadecimal, as 3DCCCCCC, give the first 12 binary		
	digits of -0.4.		
	(a) 1011 1101 1100 (b) 1011 1110 0100		
	(c) 1011 1110 1100 (d) 0011 1110 1100		
Q5.	A 32-bit IEEE-754 floating point number consists of 1 sign bit, 8 exponent bits and 23 mantissa		
	bits. What decimal number is represented by 40D00000?		
	(a) 6.5 (b) 1.625 (c) 0.625 (d) 2.5		
Q6.	The sexagesimal number system is a number system with base 60. How many bits of		
	information is conveyed with two sexagesimal digits? (To write a number in sexagesimal, use a		
	space to separate digits, e.g., 13 53 26).		
Q7.	Suppose we use a floating-point representation with a sign bit, a 4-bit exponent in excess		
	7notation and a 5-bit unnormalized fractional mantissa with no hidden bit. Then, the largest		
	number that can be represented is		
	(a) 31×2^3 (b) 31×2^8 (c) 31×2^{13} (d) 0.31×2^8		
Q8.	Multiply the following 4 bit two's complement numbers: 1001×0110 . What is the result in		
	decimal?		
Q9.	Look at the following bit-pattern:		
	1010010100010100		
	Which of the following statements could be true?		
	(A) This is an odd integer.		
	(B) This is a positive integer in sign-magnitude notation.		
	(C) This is a negative integer in two's complement notation.		
	(D) This is an integer in two's complement notation that is greater than 32,768.		

Q10.	Which of the following addition will result in overflow in 2's complement number system?			
	i) 11010110	ii) 10111001	iii) 01011101	iv) 00100110
	+10101001	+11010110	+00100001	+01011010
	(A)i& ii	(B)ii & iii	(C)i& iv (D))ii & iv
Q11.	What is the largest positive	ve number that can l	pe represented in 1	2 bits in two's complement
	representation?(in hexadeci	mal)		
Q12.	What will be the signed two	o's complement binar	y number 11001 wh	en we store in 8 bits?
	(A)11111001	(B) 1111000	01 (C) 1001	1001 (D) 00011001
Q13.	If the floating-point number	r storage on a certain	system has a sign	bit, a 3-bit exponent and a 4-
	bit significant. What is su	m of largest positive	and the smallest	positive number that can be
	stored on this system if the	ne storage is normali	zed? (Assume no	bits are implied, there is no
	biasing, exponents use two	o's complement notati	on, and exponents	of all zeros and all ones are
	allowed.) ?			
Q14.	Whatarethevaluesof A, Ba	ndC.		
	• $(4401)_{10} = (A)_5$			
	• $(1518)_{10} = (B)_7$			
	• $(677)_{10} = (C)_9$	VI		
	(A) A=120101, B=6642, C			
	(B) A=120101, B=4266, C			
	(C) A=202010, B=4266, C			
	(D) A=120101, B=4266, C	=832		
Q15.	Given the 8-bit binary num			
		_	the computer us	es signed magnitude, one's
	complement and two's com			
	(A) -29(signed magnitude),	_	_	
	(B)-49(signed magnitude),	_	_	
	(C) 177(signed magnitude)	•	•	
	(D) -49(signed magnitude),	-100(one's compleme	ent), -99(two's comp	piement)

Q16.	Which of the following number is the 4-digit 6's complement representation for -48 ₁₀ ?			
	(A)441 _{6s}	(B) 434 _{6s}	(C) 435 _{6s}	(D) 440 _{6s}
Q17.	Which of the following is equ	ivalent to binary 11001	010?	
	i) 512 ₈	ii) 100 ₁₀	iii) 202 ₁₀	iv) 312 ₈
	v) CA ₁₆			
	(A) iii,iv,v	(B) i,iii,iv	(C)ii,iv,v	(D) i,ii,v
Q18.	$(12A)_{16} = (x)_8$. What is x?			
	(A) 470	(B) 508	(C) 452	(D) 57
Q19.	Converting (11011.01) ₂ to ba	se 8 yields which of the	following results?	
	(A)33.2	(B)63.2	(C)63.1	(D)33.1
Q20.	$(2.3)_4 + (1.2)_4 = (y)_4$. What	is y?		
Q21.	Which one of the following is	s the correct sequence of	the numbers repres	sented in the series given
	below $(2)_3,(10)_4,(14)_6,(22)_7$			
	(A)2,3,4,5,6,		(B)2,4,6,10,1	2
	(C) 2,4,10,16,		(D)2,4,6,10,1	6
Q22.	How Many 1's are present in	the binary representation	n of (4x4096)+(9x2	56)+7
	(A)8		(B)9	
	(C)6		(D)7	
Q23.	What is the sum of maximu	m and minimum values	s (in decimal) that	can be represented by a
	four-bit base (-2) system?			
Q24.	A new Binary Coded Pentary	(BCP) number system	is proposed in whic	h every digit of a base-5
	number is represented by its of	corresponding 3-bit bina	ry code. For examp	le, the base-5 number 24
	will be represented by its	BCP code 010100.	In this number s	system, the BCP code
	100010011001 corresponds to	the following number is	in base-5 system?	
	(A) 423	(B) 1324	(C) 2201	(D) 4231
Q25.	The roots of the quadratic eq	uation $5x^2-50x+125=0$	are 5 and 8. Find the	he base(positive)system
	in which this equation is write	ten?		

Marks	:50 Compute	<u>er System Or</u>	ganization [<u>Γest-2</u>	Time:40min
Q1.	How many lines will each way have in a 256kB, 4-way set associative cache with a 32-byte line				
	size?				
	(A) 8192	(B) 2048		(C) 1024	(D) 512
Q2.	What data will be in a 4-entr	ry, direct-map	ped cache v	vith one byte per	line after the following
	memory accesses? Address: 0), 1, 2, 3, 4, 5,	3, 2, 1, 2, 5		
	(A) 1, 2, 3, 4	(B) $0, 2, 4, 5$	5	(C) 2, 3, 4, 5	(D) 0, 1, 3, 4
Q3.	What percentage of the data in	n the array "da	ıta" will be r	eused at least one	ce from a 32kB
	fully-associative cache with a	64-byte line?			
	int data[1024]; // each int is 4	l byte			
	for (int i=0; i<=1023; i ++) {				
	data[i] += data[i+1];				
	data[i+1] -= data[i]				
	}				
	(A) 100%	(B) 75%		(C) 50%	(D) 25%
Q4.	Calculate the cache miss ratio	o for the previ	ous code (ni	umber of miss/nu	mber of cache accesses)
	assuming a 32kB fully associ	ative cache wi	th a 64-byte	line (i.e. all the	data fits in the cache and
	we don't have replacements).				
	(A) Around 8%				
	(B) Around 6%				
	(C) Around 4%				
	(D) 1.04%				
Q5.	Assume Physical address is	17 bit and ca	che memor	y of the compute	er has 32 blocks of 256
	words each. Each block is a	ssociated with	a "tag". If	each word has	16 bits, then each block
	contains a total of	bits if	PA is byte a	ddressable (inclu	ding the tag but not any
	other "additional" bits).				
Q6.	Consider a machine with a	write-back c	ache. The c	eache read and v	writes times are both 2
	nanoseconds. The memory r	ead and write	s times are	both 50 nanosec	onds. The proportion of
	writes is 15%, and the hi	t ratio is 90	%.What is	the average ef	fective memory access
	time?				

Your computer has 32-bit integers and a direct cache containing 128 32-byte cache lines. In the Q7. following code fragment, the compiler allocates a at address 0x800000 and b at address 0x801000. Before the execution of the code fragment, the arrays a and b have never been used. so they are not in the cache. What is the cache hit rate?(in percent) int b[1024]; int a[1024]; for (i = 0; i < 1024; i++) $\{ sum = a[i] + b[i] \}$ a[i]=a[i]+1;(A) 25(B) 75 (C) 35(D) 40 Compute the Average Memory Access Time (in cycles) of the following cache system: L1 Has a Q8. hit time of 2 cycles, and hits 90% of the time. L2 Has a hit time of 15 cycles, and hits 95% of the time. L3 Has a hit time of 25 cycles, and hits 99% of the time. Main Memory has an access time of 100 cycles.(Approx.) (C) 5 (A) 3(D) 6(B) 4 What is the probability that a 2-way associative cache with "N" lines will get a hit on an access Q9. with a distance of 2 (ABCA)? (A) $1-(2/N)^2$ (B) N^2-4/N^2 (C) Both A and B (D) None of them Consider a direct mapped cache with following characteristics Q10. Cache memory: 256 bytes Main memory: 1024 bytes Cache line size/block size: 4 bytes To which cache blocks the following main memory addresses will be mapped: Main memory address 0 Main memory address 100 Main memory address 256 (A) 0,25,0(B) 0,100,256 (C) 0,0,0(D) 0,5,8

Q11.	Assume a 8-way set-associative cache with 16-byte blocks. If the cache is 128 KB in size,
	compute the number of bits for the offset, index and tag respectively assuming a 32-bit address.
	(A) Offset=4 bit, index=10 bit, tag=18
	(B) Offset=4 bit, index=13 bit, tag=15
	(C) Offset=3 bit, index=10 bit, tag=19
	(D) None
Q12.	Assume a Fully Associative cache of 4K blocks, each block having four 32-bit words. The
	system is based on 32-bit physical address and uses byte addressing. What is the total number of
	tag bits in the cache?Kb
Q13.	Suppose that a cache has 1024 lines. Each line can store 4 consecutive bytes from a byte-
	addressable memory. What is the maximum size of that main memory?
	(A) 1024×4=4096 bytes
	(B) 1024 bytes
	(C) 1024×1024=1MB
	(D) There is no maximum size because there is no relation
Q14.	Consider a direct-mapped cache memory where each cache block holds two words. Assume that
	each word is a one byte and that each memory address is 4-bit number where
	• The first 2 bits (from left to right) are the tag bits.
	• The third bit is the set address (index).
	• The last bit is the offset from the beginning of the block.
	Assume that the following words are accessed in sequence, according to the following access
	pattern (from left to right): Word number: 0 1 3 2 4 3 5 15. What is the hit rate(in percent)?
	(A) 60 (B) 56 (C) 50 (D) 90
Q15.	The parameters of a hierarchical memory system are specified as follows:
	Main memory size = 8K blocks
	Cache memory size = 512 blocks
	Block size = 16 words
	What is the size of the tag field(in bit) if Set associative mapping with 16 blocks/set is
	used?bit

How many bits will be required to implement a 256KB four-way set associative cache? The O16. cache is physically-indexed cache, and has 64-byte blocks. Assume that there are 4 extra bits per entry: 1 valid bit, 1 dirty bit, and 2 LRU bits for the replacement policy. Assume that the physical address is 50 bits wide.____Kbit For next three questions assume $N \ge 4$ Q17. What is the probability that a direct-mapped cache with "N" lines will get a hit on an access with a distance of 2 (i.e in the reference string ABCA what is the probability of cache hit on the second reference of A)? (A) N-1/N(B) 1-(N-1/N)(C) $(N-1/N)^2$ (D) None What is the probability that fully-associative cache with "N" lines will get a hit on an access Q18. with a distance of 2 (ABCA)? (A)N-1/N(B) N^2-4/N^2 $(C) (N-1/N)^2$ (D) 1 Q19. Consider two caches. Both are 4 cache lines in size and each cache line is 16 bytes and both start with all lines marked invalid. The only difference is one is fully associative and one is out two-way associative. In which of the following reference stream 2-way associative cache would get a hit and the fully-associative cache would get no hits. i) 0x10, 0x20, 0x40, 0x60, 0x80, 0x10 ii) 0x10, 0x30, 0x50, 0x10(A) i) only (B) ii only (C) both i) & ii) (D) neither i nor ii

Q20.	Given a 16-KB two-way associative cache with 32-byte cache lines and a 64-bit address space
	there will be bits used for the index. If that same cache were fully-associative you'd need
	bits to be used for the index.
	(A) 8,8
	(B) 6,8
	(C) 8,0
	(D) 4,0
Q21.	If you have a 32-bit address space (addresses are 32 bits) and you have a 4-way associative cache
	that uses 5 bits as the set index and 4 bits as the byte offset, how large is the data portion of the
	cache (in bytes)?
Q22.	Which of these statements is true?
	(a) Direct-mapped caches usually have a lower miss rate than set-associative caches.
	(b) Direct-mapped caches have at least 2 blocks per set.
	(c) A direct-mapped cache will have more tag bits than a set-associative cache with the same
	capacity.
	(d) Direct-mapped caches do not need a replacement algorithm
Q23.	Consider an instance of a direct mapped cache
	Tag 00 01 10 11 0xBC 1 2 3 4 Line 0
	0xBC 1 2 3 4 Line 0 0x01 5 6 7 8 Line 1
	0x20 9 10 11 12 Line 2
	0x 1A 13 14 15 16 Line 3
	On which line physical adder 0x012 mapped?
	(A) Line 0
	(B) Line 1
	(C) line 2
	(D) Line 3
Q24.	Consider a direct map cache with 4 block, Following block address is given by system
	8,10,5,6,9,8,26,5. How many cache misses occur?
Q25.	Consider a 4 way set associative cache which is LRU, has 32 byte lines and is 512 B cache size.
	Assuming cache is initially empty and following block addresses are accessed-
	0,32,64,128,512,544,0,32,768. What is the cache hit ratio?
	·

Marks:	50	Computer system organiza	ation Test-3	Time:40min
Q1.	In order to set bits 7,5 and 3	3 of a byte, we can:		
	(A) logically XOR with 10	101000		
	(B) logically OR with 0101	0100		
	(C) logically AND with 01	010100		
	(D) logically OR with 1010	01000		
Q2.	The five stages of a 5-stages	ge pipeline take 2 ns, 3 ns	s, 1 ns, 4 ns, an	d 2 ns. If there are 100
	instructions, what is the ma	aximum speed up in the exe	ecution time of a	pipeline implementation
	compared to a single-cycle	implementation?		
	(A) 2.14		_a V	
	(B) 2.88			
	(C) 2.94			
	(D) 3.00			
Q3.	Your code is required to j	perform the function (M%)	16)*3. What sho	ould you do to eliminate
	multiplication and division.	, assuming M is 32 bits wide	??	
	(A) Shift M right by 16, the	n shift left by 3		
	(B) Shift M right by 4, shift	left by 1, and add current va	alue to itself.	
	(C) Shift M right by 4, save	the result to register, and ac	ld the saved resu	lt to current result twice.
	(D) AND M with 0000000H	Fh, save the result to register	, and add the sav	ed result to current result
	twice.			
For ne	xt three questions consider	a machine with 22-bit inst	ructions and 6-l	oit addresses. There are
	three types of instructions: 3	-Addr, 2-Addr and 1-Addr,	as shown below:	
3-Addı	4-bit 6-bit 6-bit	6-bit		
3 7 100	10-bit 6-bit	6-bit		
2-Addı				
1-Addı	r 16-bit	6-bit		
	e that there is at least one ins	truction for each type, and the	ha ancoding spac	ea is completely utilized
Assum	ic that there is at least one his	truction for each type, and the	ie encouring space	e is completely utilized.
Q4.	What is the maximum number			
	(A)4	(B)10	(C)14	(D)15

Q5.	What is the minimum number of 1-Addr instructions?
	$(A)2^{6}$
	$(B)2^{10}$
	$(C)2^{16}$
	$(D)2^{32}$
Q6.	What is the maximum number of 2-Addr instructions?
	(A)84
	(B)896
	(C)959
	(D)1023
Q7.	Consider the following code:
	li R0, 1 // load immediate
	sub R1, R1, R0
	Which of the following best describes its effect?
	(A) $R1 = 1 - R1$
	(B) It causes the value in register 'R1' to decrement by 1.
	(C) "li" loads '1' into register 'R1'; the "sub" instruction then sets it to '0'.
	(D) It does nothing: "R0" always holds a zero, even if "li" tries to store a '1' in it.
Q8.	What will be the contents of register R3 after execution of the code segment.(Assume register
	size is 1 byte)
	li R1, 17
	li R2, 2
	mult R1, R2 //Multiply
	mfhi R3 // store higher order byte of result to R3
	(A) 0. (B) 1. (C) 8. (D) 34.
Q9.	Suppose R0 is storing 10, R1 is storing 25. After the following instructions, what will be the
	value in R2?
	sub R2, R1, R0
	andi R2, R0, 3
	xor R2, R2, R0
	(A) 6
	(B) 9
	(C) 10
	(D) None of the above.

Q10.	Suppose word array A stores 0,1	,2,3,4,5,6,7,8,9, in thi	s order. Assume the starting	ng address of A
	is in \$s0. After the following	instructions, what wi	ll be the values this array	? Word size =4
	byte			
	addi R0, \$s0, 20			
	lw R1, 0(R0)			
	sw R1, -8(R0)			
	(A) 0,1,2,5,4,5,6,7,8,9			
	(B) 0,1,4,3,4,5,6,7,8,9			
	(C) 0,1,2,3,4,5,4,7,8,9			N
	(D) 0,1,3,5,4,6,2,7,8,9			
Q11.	Suppose R0 and R1 are holding	3 10 and 5, respective	ly. After the following in	structions, what
	will be in R0? SLT Set on less	than	VI	
	BNE – branch if not equal to zero	0		
	SLL Shift left logical			
	slt R0, R1, R0 (set R0 if R1 <r0)< th=""><th></th><th></th><th></th></r0)<>			
	bne R0, \$0, L1			r
	sll R0, R1, 2			
	j L1			
	L1: addi R0, R0, 1			
	(A) 1			
	(B) 2			
	(C) 21			
	(D) 12			
Q12.	Suppose word array A stores 0,1	,2,3,4,5,6,7,8,9, in thi	s order. Assume the starting	ng address of A
	is currently in \$s0. After the following the following states are the following states and the following states are the f	owing instructions, wh	at will be the value in R1?	
	SLL Shift left logical			
	BLT – branch if less than			
	ori R0, \$0, 18			
	L0: lw R1, 0(\$s0)			
	sll R1, R1, 2			
	blt R0, R1, L1			
	addi \$s0, \$s0, 8			
	j L0			
	L1:			
	(A) 2	(B) 3	(C) 6	(D) 24

Q13.	The 5 stages of the processor have the following latencies:						
		Fetch	Decode	Execute	Memory	Writeback	
		300ps	400ps	350ps	500ps	100ps	
	Let the free	quency of	non- pipelir	ne be x GHz	and pipelin	ned processor	be y GHz then what is
	x+y =?						
Q14.	If R0 is ho	olding 0, R	l is holding	g 1, what w	ill be the va	lue stored in	R2 after the following
	instructions	?					
	SRL Shif	ft right logi	cal				
	srl R1, R1,	1					
	bne R0, R1,	, L1					
	addi R2, R0), 1					W
	L1: addi R2	2, R0, 2					
	(A) 1.						
	(B) 2.						
	(C) 3.						
	(D) None of	f the above				V	
Q15.	Consider the	e following	code				
	lw R2, 0(R1)						
	lw R1, 40(R						
	sub R6, R1,						
	add R6, R2,						
	or R3, R6,						
	sw R6, 50()						
				complete th	e execution (of above code	on a 5-stage pipelined
241	processor w						
Q16.	Consider the		code				
	Loop: LW		(D2) D1				
	ADDIR1, I		(K2), K1				
	ADDI R2, I						
	SUB R4, R3						
	BNEZ R4, I	_	ua dananda	nev) WAD(anti-denende	nev) and WAY	W (output dependency)
			-		-		of WAR=y, number of
	WAW = z.		tile above (+z	ouc: Let IIu	mod of KA	vv — A, HUIHUCI	or wax-y, number of
	** A ** - Z.	imu aty	ı L				

Q17.	Consider the following loop.
	loop: SUBI R1,1,#1
	LD R3, 0(R2)
	LD R4, 4(R2)
	MUL R5,3,R4
	ADD R3,5,R6
	ADDI R2,2,#8
	BNEZ R1, loop
	ADD R10,11,R12
	Assume a 5-stage pipeline (IF ID EX MEM WB) without any forwarding or bypassing hardware,
	but with support for a register read and write in the same cycle. Also assume that branches are
	resolved in the ID stage and handled by stalling the pipeline. All stages take 1 cycle. How many
	cycles does the program take to execute?
Q18.	We have a processor with register-register arithmetic instructions that have the format R1 \rightarrow R2
	op R3. The pipeline for these instructions runs with a 100 MHz clock with the following
	stages: instruction fetch = 2 clocks, instruction decode = 1 clock, fetch operands = 1 clock,
	execute = 2 clocks, and store result = 1 clock. At what cycle per instruction rate can we execute
	the instructions when every instruction depends on the results of the previous
	instruction?
Q19.	Consider a machine with both an L1 cache and an L2 cache 90% of all accesses hit in L1 cache.
	The hit time is 5ns. The L2 cache has a hit time of 10 ns, a miss rate of 20% and a miss penalty
	of 75ns. The average memory access time is roughly
Q20.	A processor takes 280ns for the longest instruction. Then processor is pipelined with 14 (equal)
	stages . using pipeline registers that take 10ns. What percentage of the resulting cycle time is
	used for computation?
	(A) 33%
	(B) 66%
	(C) 96%
	(D) 100%

Q21. What is needed to resolve the following hazard? add R14, R1, R13 lw R1, 4(R14) add R14, R15, R15 addi R14, R12, 0 (A) Forwarding from WB to EX (B) Forwarding from WB to MEM (C) Can't resolve, need to stall (D)There is no hazard to resolve O22. What is needed to resolve the following hazard? lw R1, 4(R14) add R14, R1, R13 add R14, R15, R15 addi R14, R12, 0 (A) Forwarding from MEM to EX (B)Forwarding from WB to MEM (C)Can't resolve, need to stall (D)There is no hazard to resolve How many register need to be forwarded in the following code? Q23. xor R3, R4, R7 add R6, R4, R5 sub R2, R3, R4 beq R2, R3, done (A) 0(B) 1 (C) 2(D) 3A certain statistical observation made on a CPU executing a piece of code shows that the code Q24. 50% arithmetic/logic machine instructions each taking 1 clock cycle, 30% load /store has (memory reference) instructions each taking 2.0 clock cycles and 20% branch instructions each taking 1.5 clock cycles. What can be said about the average CPI (cycles per instruction) value of the processor? (A) 1.5 (B)1.4(C)0.71(D) Insufficient data to calculate

Q25.	A 11 bit CPU has an arithmetic unit adds bytes and then sets its V,C and Z f lag bits .the V bit is
	set if arithmetic overflow occurs in 2's complement arithmetic . the C-bit is set if a carry out is
	generated form the most significant bit during an operation . The Z -bit is set if the result is zero
	. if the decimal numbers 511 and 768 are added using 11 bit addition, what are the values of the
	V,C, and Z flag bits
	(A)V-0,C-0,Z-0
	(B)V-1,C-1,Z-0
	(C)V-1,C-0,Z-1
	(D)V-1C-0Z-0
	(D)V-1C-0Z-0

