CIRCUITOS DIGITAIS

ÁLGEBRA BOOLEANA

Definição

- A álgebra de Booleana é um sistema matemático composto por operadores, regras, postulados e teoremas.
- A álgebra booleana usa funções e variáveis, como na álgebra convencional, que podem assumir apenas um dentre dois valores
 - {Falso, Verdadeiro} raciocínio humano
 - {Desligado, Ligado} circuitos de chaveamento
 - {0, 1} sistema binário
 - {0v, +5v} eletrônica digital
- A álgebra booleana trabalha com dois operadores, o operador AND, simbolizado por (.) e o operador OR, simbolizado por (+).
 - O operador AND é conhecido como produto lógico e o operador OR é conhecido como soma lógica
 - Os mesmos correspondem, respectivamente, às operações de interseção e união da teoria dos conjuntos.

Porta Lógica NÃO (NOT) ou Complemento

- Complementa o sinal de entrada. Se o sinal de entrada for 0 ela produz uma saída 1, se a entrada for 1 ela produz uma saída 0
 - Função Booleana

$$X = \overline{A}$$

Representação gráfica

А	Х
0	1
1	0

Porta Lógica E (AND)

- Combina sinais de entrada equivalentemente a um circuito em série. Produz uma saída 1, se todos os sinais de entrada forem 1. Senão produz 0
 - Função Booleana

$$X = A \cdot B$$

Representação gráfica

А	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica OU (OR)

- Combina dois ou mais sinais de entrada equivalentemente a um circuito paralelo. Produz uma saída 1, se qualquer um dos sinais de entrada for 1. Senão produz 0
 - Função Booleana

$$X = A + B$$

Representação gráfica

А	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Porta NÃO E (NAND)

- Equivale a uma porta AND seguida por uma porta NOT. Ela produz uma saída que é o inverso da saída produzida pela porta AND
 - Função Booleana

$$X = \overline{A \cdot B}$$

Representação gráfica

А	В	<u> </u>
0	0	1
0	1	1
1	0	1
1	1	l o

Porta NÃO OU (NOR)

- Equivale a uma porta OR seguida por uma porta NOT. Ela produz uma saída que é o inverso da saída produzida pela porta OR
 - Função Booleana

$$X = \overline{A + B}$$

Representação gráfica

А	В	X
0	0	1
0	1	0
1	0	
1	1	0

Porta OU Exclusivo (XOR)

- A porta XOR produz 0 na saída 0 quando todos os bits de entrada são iguais e saída 1 quando pelo menos um dos bits de entrada é diferente dos demais
 - Função Booleana

$$X = A \oplus B$$

Representação gráfica

А	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Propriedades da Álgebra Booleana

Postulados

A . 0 = 0	A + 0 = A	A + 1 = 1	A . 1 = A
$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$	A + A = A	A . A = A

Propriedade Comutativa

A + B = B + A	A . B = B . A

Propriedade Associativa

$$(A + B) + C = A + (B + C)$$
 $(A. B) . C = (B. C) . A$

Propriedade Distributiva

Teorema de De Morgan

$$\overline{A} \cdot \overline{B} \cdot \overline{C} \cdot ... = \overline{A + B + C + ...}$$
 $\overline{A} + \overline{B} + \overline{C} + ... = \overline{A \cdot B \cdot C \cdot ...}$

Aplicação das Leis da Álgebra Booleana

- Aplicando os postulados e leis da álgebra Booleana as funções Booleanas podem ser minimizadas
 - O circuito equivalente pode ser menor
 - Variáveis de entrada podem ser eliminadas da função equivalente
- Exemplos:

a)
$$S1 = X \cdot Y + X \cdot \overline{Y} \rightarrow X$$

b)
$$S2 = X + X \cdot \overline{Y} \rightarrow X$$

c) S3 =
$$(\overline{X + Y + \overline{Z}}) \cdot (X + \overline{Y} + Z + \overline{W}) \cdot 0 \rightarrow 1$$

d)
$$S4 = 1 + X \cdot \overline{Y \cdot Z} + \overline{W \cdot Z + Z} \cdot Y \rightarrow 1$$

e) S5 = X . Y +
$$(\overline{X + Y})$$
 . $(\overline{X} + Y)$ \rightarrow X + Y

f) S6 =
$$(\overline{X} + \overline{Y} + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z) \cdot (\overline{X} + Y + \overline{Z}) \cdot (\overline{X} + Y + Z) \rightarrow X$$

Operações diferentes / erros comuns

Diferença entre os circuitos

Precedência das Operações

1 - ()

2 - NOT

3 - **AND**

4 - OR

Exemplos:

A.B+C'

(A.B+C)'

A.(B+C)'

Expressões Booleanas x Circuitos

A + B . C'

Exercício: desenhar o circuito

Construção da tabela-verdade - considerar a precedência!

Α	В	С	C'	B.C'	A+B.C'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

 $A \cdot B + C'$

 $(A \cdot B + C)'$

 $A \cdot (B + C)'$

Α	В	С	C'	A.B	A.B+C'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

A.B+C'

(A . B + C)'

 $A \cdot (B + C)'$

Α	В	С	A.B	A.B+C	(A.B+C)'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

A. B + C'

(A . B + C)'

 $A \cdot (B + C)'$

Α	В	С	B+C	(B+C)'	A.(B+C)'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

A.B+C'

(A . B + C)'

 $A \cdot (B + C)'$

 $A \cdot (B + C')$

Α	В	С	C'	B+C'	A.(B+C')
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Comparando as saídas dos quatro circuitos:

Exemplos:

A. B + C'

(A . B + C)'

 $A \cdot (B + C)'$

Α	В	С	A.B+C'	(A.B+C)'	A.(B+C)'	A.(B+C')
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Extração da função booleana correspondente

 Dado o circuito abaixo, descreva com funções Booleanas cada porta

Circuitos com 1, 2 ou mais Níveis Lógicos

- Existem infinitas possibilidades para implementar a mesma lógica combinacional, utilizando 1, 2 ou mais níveis de portas lógicas
- Lógica com 1 nível é aplicada apenas para circuitos muito simples
 - A complexidade do circuito deve ser resolvida na própria porta
- Lógica multinível aplicada a maior parte dos circuitos customizados
- Lógica 2 níveis aplicada normalmente aplicada a circuitos pré-fabricados e/ou regulares, tais como PLAs (matrizes lógicas programáveis)
- Exemplo de circuitos equivalentes implementados com 2 e 3 níveis de portas lógicas

Obtenção de Funções Booleanas em 2 Níveis

- Uma mesma lógica Booleanas pode ser obtida por diversas funções diferentes, mas equivalentes, com diversos níveis de lógica
- Funções Booleanas em 2 níveis
 - Soma de produtos
 - lista as combinações das variáveis para as quais a função de saída vale 1
 - Produto de Somas
 - lista as combinações das variáveis para as quais a função de saída vale 0

Exemplo

X	Υ	Ζ	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Soma de Produtos

$$S = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z + XYZ$$

$$S = \Sigma(0, 2, 5, 7)$$

Produto de Somas

$$S = (X+Y+\overline{Z}) (X+\overline{Y}+\overline{Z}) (\overline{X}+Y+Z) (\overline{X}+\overline{Y}+Z)$$

$$S = \Pi (1, 3, 4, 6)$$

Representação → Forma de Onda

^{*} Floyd, cap 3

Representação → Forma de Onda

^{*} Floyd, cap 3

Representação → Forma de Onda

^{*} Floyd, cap 3

Exercícios Lógicos

Extraia as funções lógicas e implemente as mesmas utilizando portas lógicas. Faça as tabelas verdade e extraia a soma de produtos e o produto de somas. Por fim, desenhe o circuito e a forma de onda correspondente a tabela verdade

- 1. O caixa forte de um banco funciona com um sistema de chaves. Três pessoas têm as chaves: o gerente, seu auxiliar e o tesoureiro. A porta abre com, pelo menos, duas das três chaves, sendo que uma delas tem que ser a do tesoureiro
- 2. O alarme de um carro possui interruptores para ligar/desligar nas duas portas da frente e um interruptor geral. O alarme soará se qualquer uma ou ambas as portas forem abertas quando o interruptor geral estiver ligado
- 3. Uma casa possui um sistema de sensores e um cachorro dão suporte a um sistema de alarme ser disparado, avisando uma suposta tentativa de invasão. O alarme soará sempre que o cachorro da casa estiver latindo e qualquer um de 2 sensores, um instalado na janela e o outro na porta, for acionado
- 4. Um laboratorista químico possui 4 produtos químicos A, B, C e D, que devem ser guardados em um depósito. Por conveniência, é necessário mover um ou mais produtos de um depósito para outro de tempos em tempos. A natureza dos produtos é tal, que é perigoso guardar B e C juntos, a não ser que A esteja no mesmo depósito. Também é perigoso guardar C e D juntos se B não estiver no depósito. Escreva uma expressão lógica S, de tal forma que, S=1 sempre que existir uma combinação perigosa no depósito

Exercícios

- 5. O diretor de uma empresa solicitou ao departamento de Recursos Humanos (RH) a contratação de um funcionário que atenda a um dos requisitos Abaixo:
- Sexo Masculino, com curso superior ou
- Sexo Feminino com curso superior e idade mínima de 30 anos ou
- Sem curso superior com experiência na área ou
- Sexo Feminino, menor de 30 anos, com curso superior.

O gerente de RH, lendo tais requisitos, e usando seus conhecimentos de lógica, resolveu simplificá-los considerando cada característica como uma variável lógica:

- M = sexo Masculino
- S = com curso Superior
- E = com Experiência
- I = Idade mínima 30

Exercícios

6. No circuito acima, que possui cinco entradas — A, B, C, D e E — e uma saída f (A, B, C, D, E), qual opção apresenta uma expressão lógica equivalente à função f (A, B, C, D, E)?

$$\overline{A.B} + \overline{C.D} + D.E$$

$$(A + B) (C + D) + D E$$

III.
$$\overline{A.B} + \overline{C.D} + D + E$$