Web Traffic Analysis

Ritvik - Dhupkar

Objectives

Impute missing data for the missing 'hits rows'

	row_num	locale	day_of_week	hour_of_day	agent_id	entry_page	path_id_set	traffic_type	session_duration	hits	
0	1	L1	Saturday	23	1	2100	34308;0;183	1	617	\N	
1	2	L3	Sunday	8	9	2113	32131;0	2	0	\N	
2	3	L3	Saturday	14	9	2100	34330;0	6	17	/N	
3	4	L2	Saturday	14	8	2116	89172;0	3	3	11	
4	5	L5	Friday	9	2	2100	31777;0	1	610	67	

*Web_traffic_analysis_CatBoost_FINAL.ipynb: final CatBoost model (use for evaluation)

randomforest-and-eda.ipynb: RandomForest model and EDA

Insights on Missing Data

36% of hits data and 2% of session_duration data is missing

Missing Data Percentage Across Columns

row_num	0.000000
locale	0.000000
day_of_week	0.000000
hour_of_day	0.000000
agent_id	0.000000
entry_page	0.000000
path_id_set	2.150245
traffic_type	0.000000
session_duration	0.000421
hits	36.372649

Insights on Missing Data

The missing data is randomly distributed across the domain and there is no correlation in missing Data between columns

Missing Data distribution across columns

No correlation of missing Data across columns

Methodology

Perform Exploratory Data Analysis to understand Factors affecting Hits

Extract features from Web Traffic Information like locale, traffic type, etc.

Clean categorical features: Group low frequency categories of the columns agent_id and entry_page into the new category '999'

Perform One-Hot-Encoding on categorical features

Transform hits and session_duration using log-transform (for Random Forest only) and box-cox transform respectively

Train a Regression Tree Models to Predict the missing values of 'hits'. The Random Forest Model and Catboost model are used

List of Features

Variable	type	Treatment		
row_num	index	index		
locale	categorical	one hot encoding		
day_of_week	numeric			
hour_of_day	numeric	<u> </u>		
agent_id	categorical	Group unimportant Categories & one hot encoding		
entry_page	categorical	Group unimportant Categories & one hot encoding		
path_id_set	categorical	one hot encoding		
traffic_type	categorical	one hot encoding		
session_duration	numeric			
hits		log_tranform (Random Forest) Catboost (None)		

Exploratory Data Analysis on Factors affecting Hits

Log Transformation on hits

The Session Duration and hits are heavily right tailed, so a box-cox transformation (session_duration) and a log transformation (hits) is applied on them to normalize them,

Transforming categorical variables

The top 6 most frequently occurring agent_ids and top 7 most frequent entry_page are maintained as categories

The remaining categories with frequency of 5% are grouped together and labeled '999'

Bi-Variate Analysis on hits

Avg. hits vs Locale

Avg. hits vs agent_id

Locale L3 has a significantly lower avg. hits than others

Avg. hits are similar across agent ids

Bottom 5% of least frequently occurring agent ids are grouped together as agent_id = '999'

Bi-Variate Analysis on hits

Avg. hits vs traffic_type

entry_page 2100 has an average hits of 70 while average_hits for other entry pages are lower

Avg. hits differ across traffic types

Bottom 5% of least frequently occurring entry_types are grouped together as entry_type= '999'

Correlation of continuous variables with log_hits

Box_sess : box_cox transformation of session_duration

Path_length2: length of path computed from path_id variable (number of destinations visited)

Path_length and session_duration are highly correlated with log_hits

Random Forest model Results

Methodology

Perform transformations on categorical variables as listed above. One Hot Encoding is performed on Categorical variables

Transform hits to log_hits. Use log_hits as target variable for training

Take box-cox transform of session_duration

Train the model on available values of hits and perform hyperparameter tuning

Predict the hits on test data with missing values for hits. Take inverse log transform to obtain final predicted values of hits

Validation RMSE = 55.8

hits: Actual values of hits in validation set
Hits pred: hits predicted by Random Forest model

CatBoost model Results

Methodology

From the result plots of the Random Forest, model it is clear that it fails to effectively model 'count data'

The CatBoost model with objective ='Poisson' is used to model the data. This uses a poisson loss function which is used for modelling count data.

One Hot Encoding on categorical variables is performed internally in the CatBoost library

Hits instead of 'log_hits' is used as the target variable as a poisson loss function is used

Validation RMSE = 46.4

hits: Actual values of hits in validation set Hits_pred: hits predicted by CatBoost model

Conclusion

CatBoost model is better able to predict missing platform hits using a poisson loss function

Missing hits: predictions

