Lemma. If $(\alpha, \alpha)(\beta, \beta) \neq 0$ and $|\alpha| = |\beta|$, then $\alpha = \beta$.

Proof. Without loss of generality, suppose α is a prefix of β . Then $\alpha = \beta \beta'$ for some β . But $|\alpha| = |\beta|$, so $|\beta'| = 0$, meaning $\beta' = s(\beta)$. Thus $\alpha = \beta s(\beta) = \beta$. \square

An immediate consequence of this is that for any given length, a filter contains at most one element corresponding to a path of that length. Furthermore, if ζ is a filter, and $(\alpha, \alpha) \in \zeta$ such that $|\alpha| = n$, we can restrict α to any length $0 \le m < n$ to produce a unique element of length m inside ζ .

Theorem.
$$\hat{E}_0 = \{ \xi_\alpha : \alpha \in E^* \} \cup \{ \eta_x : x \in E^\infty \}$$

Proof. First we show that ξ_{α} and η_x are filters. Let α be a finite path and let x be an infinite path. Consider (β,β) , $(\gamma,\gamma) \in \xi_{\alpha}$ with $|\beta| = m$, $|\gamma| = n$. Reading edges left to right, β contains the first m edges of α and γ contains the first n edges of α . Without loss of generality, assume $m \leq n$. We can extend β by the next n-m edges of α to produce γ . Thus β is a prefix of γ , so $(\beta,\beta)(\gamma,\gamma) = (\gamma,\gamma) \in \xi_{\alpha}$. A similar argument shows that η_x is closed under multiplication. So both ξ_{α} and η_x are prefilters on E(S(E)). Next, let $(\beta,\beta) \in \xi_{\alpha}$, and let $(\delta,\delta) \in E(S(E))$ so that $(\beta,\beta) \leq (\delta,\delta)$. Then $\beta = \delta\delta'$ for some $\delta' \in E^*$. Thus $\alpha = \beta\beta' = \delta\delta'\beta'$. Therefore δ is a prefix of α , so $(\delta,\delta) \in \xi_{\alpha}$. Like before, a very similar argument works for η_x . So both ξ_{α} and η_x are filters. Going the other way, take a filter $\zeta \in \hat{E_0}$. We do this in cases.

Case 1. ζ is finite. Let (α, α) be the minimum element inside ζ . Since ζ is a filter, For $(\beta, \beta) \in E(S(E))$, $(\alpha, \alpha) \leq (\beta, \beta) \Longrightarrow (\beta, \beta) \in \zeta$. However, by the definition of the minimal element, $(\beta, \beta) \in \zeta \Longrightarrow (\alpha, \alpha) \leq (\beta, \beta)$. Thus $(\beta, \beta) \in \zeta$ if and only if $(\alpha, \alpha) \leq (\beta, \beta) \iff \beta$ is a prefix of α . So $\zeta = \xi_{\alpha}$.

Case 2. ζ is infinite. By the lemma above, we can get an idea of what elements of ζ look like. For each nonnegative integer, ζ contains precisely one element corresponding to a path of that length. Because we require nonzero product between elements, every path in the filter is a prefix of every longer path also contained inside the filter. All of this given, we can find an $x \in E^{\infty}$ such that every path inside ζ is a prefix of x. By the uniqueness of filter elements, it follows that $\zeta = \xi_{\Omega}$.

We have shown that a nonempty subset $\zeta \subset E(S(E))$ is a filter if and only if it is of the form ξ_{α} or η_x . Thus $\hat{E}_0 = \{\xi_{\alpha} : \alpha \in E^*\} \cup \{\eta_x : x \in E^{\infty}\}$.

Theorem. Let E be a directed graph, and $\alpha \in E^*$ such that $|r^{-1}\{s(\alpha)\}| = \infty$. Let $X, Y \subseteq_{fin} E(S(E))$, and Z be a finite cover of $E^{X,Y}$. If $\xi_{\alpha} \in \mathcal{U}(X,Y)$, then $\xi_{\alpha} \cap Z \neq \emptyset$.

Proof. First note:

$$E^{X,Y} = \{ e \in E(S(E)) \colon e \le x \ \forall x \in x \text{ and } ey = 0 \ \forall y \in Y \}$$
$$= \{ e \in E(S(E)) \colon e \le \min(X) \text{ and } ey = 0 \ \forall y \in Y \}$$
$$= E^{\{\min(X)\},Y}$$

Letting min(X) = (x, x),

$$E^{X,Y} = \{(xx', xx'): x' \in E^*, r(x') = s(x) \text{ and } (xx', xx')y = 0 \ \forall y \in Y\}$$

Consider the set $C:=\{(\alpha b,\alpha b)\colon b\in E^1,\ s(\alpha)=r(b)\}$. By the assumption that $s(\alpha)$ is an infinite receiver, C is infinite. Given $y\in Y$, let ν be the path corresponding to y. Since $\xi_\alpha\in \mathcal{U}(X,Y),\ \nu$ is not a prefix of α , and thus not a proper prefix of αb for any b. Thus, if $(\alpha b,\alpha b)y\neq 0$, αb is a prefix of ν . Then for $\beta\neq b,\ \alpha\beta$ cannot be a prefix of ν . So there is at most one element of C such that $(\alpha b,\alpha b)y\neq 0$. By the assumption that Y is finite, all but finitely many elements of C are inside $E^{\{(x,x)\},Y}$. Therefore, if Z is a cover of $E^{X,Y}$, Z is an outer cover of the infinite set $E^{X,Y}\cap C$. Because Z is finite, $\exists z\in Z$ with $(\alpha b,\alpha b)z\neq 0$ for infinitely many $(\alpha b,\alpha b)\in E^{X,Y}\cap C$. If ν is the path corresponding to ν , then for every ν , either ν is a prefix of ν , or ν is a prefix of ν . All the ν is a prefix of ν , no other can be a prefix of ν . So ν is a prefix of ν for infinitely many ν . Thus $|\nu|\leq |\alpha|+1$. If $|\nu|=|\alpha|+1$, we have a contradiction: ν 0 for all ν 1 is ν 2 in ν 3. Thus ν 3 is a prefix of ν 4. Therefore ν 4 is a prefix of ν 5 is a prefix of ν 6. Thus ν 5 is a prefix of ν 6. Therefore ν 8 for all ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore ν 9 is a prefix of ν 9 is a prefix of ν 9. Therefore