

On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets

Fabio B Dias

PhD candidate UTAS/CSIRO

fabio.dias@utas.edu.au

Supervised by
Catia M Domingues
Simon J Marsland
Stephen Rintoul
Nathan L Bindoff

acknowledge to
Stephen M Griffies
Richard Matear
Russ Fiedler
Will Hobs
Andy Hogg
Nic Hannah

and others

Motivation

- Thermal expansion of the seawater corresponds to ~30-50% of the sea level changes
- One of the main sources of uncertainties in projections
- No improvements since last CMIPs
- Lack understanding of the processes behind ocean heat uptake and vertical heat transport

Ocean heat budget

$$Cp \
ho_0 \ \partial_t \ \Theta \ dz = -\nabla_s \ F \ dz$$

$$F = ADV + DIA + KPP + SWP + EIT + SUB + CON + PME + RIV + FRZ$$

- Explains ocean heat content changes due to different processes
- Explicitly represented or parameterised
 - Depend on model resolution/computational resources
- Current generation (1degree ~ 100km)
 - only resolves large-scale circulation (advection)
- Current knowledge:
 - Southern Ocean (south of 30°S) dominates the vertical transport:

Global vertical heat balance

- Near-stable 1000-yr ACCESS-OM2 run forced with JRA55-do RYF
- New framework:
 - combine large-scale advection + eddy-induced transport = SUPER-RESIDUAL TRANSPORT (dashed red line)
 - reveals two depth-based regimes:
 - (a) mixed layers
 - (b) ocean interior

Super-residual framework

Impact of the framework

- Link between largest processes and small-scale mixing
 - formation and spread/destruction of dense water masses
- Intermodel comparison independent of model resolution
 - Large-scale and mesoscale processes combined
 - Eddy-permitting -> inconsistency resolved or parameterised
- Calibration of simple climate models: advective-diffusive balance

