基于翻译的无监督跨语言迁移学习

张梅山

天津大学新媒体与传播学院

CCF-NLP 走进华南理工大学(2020.9.6)

Source Language (English) resource-rich

Well-trained models with large annotations

Target Language (Portuguese) resource-pool

How to supervise?

Model Transfer

- Building cross-lingual models on language-independent features,
- such as cross-lingual word representations, universal POS tags which can be transferred into target languages directly.

Annotation Adaptation

- Based on a large-scale parallel corpus between the source and target languages
- ☐ The source-side sentences are annotated with SRL tags automatically by a source SRL labeler
- ☐ The source annotations are projected onto the target-side sentences in accordance of word alignments.

Translation-based (Our method)

- ☐ Translate the annotated sentences into target languages.
- □ Align the annotated information.
- ☐ Train a target model for a specific task.

Two Tasks

➤ Dependency Parsing (EMNLP 2019)

➤ Sematic Role Labeling (ACL 2020)

TreeBank Translation

- Tiedemann et al. (2014) EMNLP
- Tiedemann (2015)
- Tiedemann and Agic' (2016) JAIR

Our idea

- Derive Code-Mixed Treebank by partial translation to minimum noise
- Transfer knowledge between languages by Cross-lingual word representations

from English (en) to Swedish (sv)

Meishan Zhang, Yue Zhang and Guohong Fu. Cross-Lingual Dependency Parsing Using Code-Mixed TreeBank. EMNLP 2019

Partial Translation

- Hyper-parameter λ to control the ratio of translation
- $\lambda = 0$, no source word is substituted or deleted it is a source language dependence tree
- $\lambda = 1$, all words are target language it is a source language dependence tree

Word Substitution

 Substitutes the source words with the target translations source → target

Word Substitution

• For each target word f_j , obtain the most confidently aligned source word e_i by their alignment probability

$$p_j = p(e_i|f_j)$$

• Sort the target words by p_j , choosing the top $[m\lambda]$ words with highest alignment probabilities for substitution (m is the length of target sentence)

Word Deletion

• Removes several unaligned source words

Word Deletion

• For each source word e_i who has no aligned target word, accumulate the probabilities

$$r_i = \sum_j p(e_i|f_j)$$

• Sort the source words by r_i , choosing the top $\lceil k\lambda \rceil$ words with lowest score for deletion (k is the num of these source words)

Sentence Reordering

Reorder the partially translated sentence

Sentence Reordering

- Continuous target spans are reordered to make the final sentence contain grammatical phrases
- Continuous spans of target words interrupted by source word are reordered according to their order in the machine translation

Parser Model

• BiAffine Parser From Dozat and Manning (2016)

Parser Model

• Input:

$$x_n = e(w_n) \oplus e(c_n) \oplus e(t_n)$$

Word, Cluster and POS tag embedding

• BiLSTM:

$$h_n^{lstm} = BiLSTM(x_n)$$

MLP:

$$h_n^{dep} = MLP^{dep}(h_n^{lstm})$$

$$h_n^{head} = MLP^{head}(h_n^{lstm})$$

Output:

$$s_{i \cap j} = BiAffine(h_i^{dep}, h_j^{head})$$

Datasets

- Universal Dependency Treebanks (v2.0)
 - Source language: English (EN)
 - Six target language: Spanish (ES), German (DE), French
 (FR), Italian (IT), Portuguese (PT) and Swedish (SV)
- Google Translate as machine translation system

Experiment Settings

- Delex (McDonald et al., 2013):

 Model without cross-lingual word representations
- PartProj (Lacroix et al., 2016):

 Model trained on the corpus by projecting only the source dependencies
- Src (Guo et al., 2015):
 Model trained on the Source English treebank
- Tgt (Tiedemann and Agi' c, 2016):

 Model trained on the fully translated Target treebank
- Mix (Ours):

 Model trained on the Code-Mixed treebank

Influence of The Translation Ratio λ

- Performance improves after translating, demonstrating the effectiveness of syntactic transferring, and reaches the peak when $\lambda = 0.7$
- There is a significant drop when λ grows from 0.8 to 0.9 because the newly added dependency are mostly noisy

Mixing with Source TreeBank

Model	UAS	LAS
Src	79.52	69.54
Tgt	79.34	69.96
Mix	80.33	71.29
Src + Tgt	80.12	71.16
Src + Mix	80.91	71.73

- Source treebank is complementary with the translated treebanks, Src + mix gives the best performance
- But its improvement over mix is smaller than that of src+tgt over tgt, because mix contains relatively more source than the fully translated target treebank

Ablation Studies

Model	UAS	LAS
Mix	80.33	71.29
-Sentence Reordering	79.79	70.47
Word Deletion	79.82	70.64
-Both	79.46	69.59

- Word Deletion and Sentence Reordering are important
- Without both, the performance is only comparable with the baseline

Lang	De	lex	Part	Proj	S	rc	T	gt	Src	+ Tgt	M	ix	Src	+ Mix LAS
Lang.	UAS	LAS												
DE	64.10	53.77	69.90	61.28	66.87	57.46	70.84	62.30	72.41	63.74	71.41	63.46	72.78	64.38
ES	71.53	63.33	75.81	66.83	75.63	65.85	76.49	67.39	77.00	67.95	81.18	71.80	81.44	71.66
FR	75.13	67.26	75.54	67.63	78.13	70.63	76.91	69.39	78.75	71.17	83.20	76.32	83.77	76.48
IT	77.71	69.27	77.71	69.27	81.11	72.83	79.30	71.65	81.56	74.09	85.30	77.43	86.13	78.38
PT	74.03	67.70	79.44	71.30	77.37	69.36	78.32	70.67	79.73	71.84	83.54	75.34	84.05	75.89
AVG	72.50	64.27	75.68	67.26	75.82	67.23	76.37	68.28	77.89	69.76	80.93	72.87	81.63	73.36

Final Results

Model	DE	ES	FR	IT	PT					
TreeBank Transferring										
This	72.78	81.44	83.77	86.13	84.05					
Guo15	60.35	71.90	72.93	_	_					
Guo16	65.01	79.00	77.69	78.49	81.86					
TA16	75.27	76.85	79.21	_	_					
	Anı	notation	Project	ion						
MX14	74.30	75.53	70.14	77.74	76.65					
RC15	79.68	80.86	82.72	83.67	82.07					
LA16	75.99	78.94	80.80	79.39	_					
TreeBank Transferring + Annotation Projection										
RC17	82.1	82.6	83.9	84.4	84.6					

Comparison with Previous Work

- ➤Our method:
 - Model transfer
 - Corpus translation

Hao Fei, Meishan Zhang and Donghong Ji. Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. ACL 2020

shallow semantic parsing, recognizing the predicate-argument structure, such as: who did what to whom, where and when, etc.

Dependency-based: head of arguments

• Predicate: send

• Argument:

Core roles: I(A0), them(A1), you(A2)

Modifying roles: out(AM-DIR), tomorrow(AM-TMP)

Step1: Translating

Source sentence Target sentence

发送反馈

Step2: Projecting

alignment probabilities: $a(f_j|e_i)$

POS tag distributions: $p(t_*|f_j)$

Confidence score of the projection:

$$score(e_i \rightarrow f_j, r_{e_i}) = a(f_j|e_i)p(t_{e_i}|f_j)$$

- ◆Projection rules:
 - Fine-grained:

Ideal:

(a) one-one target-source alignment.

Problematic:

- (b) predicate-argument collision, keep only the predicate,
- (c) argument-argument collision, keep the one with higher confidence.
- Overall:

Using threshold value α to remove low confidence projections.

(a) One-to-one projection.

(b) Predicate-argument collision. Only keep predicate.

```
US assault provoked the battle
US-angriff provozierte die schlacht
(A0) (provoke.01) (A1)
(A1)
(DS-angriff provozierte die schlacht (A1)
```

(c) Argument-argument collision. Only keep the one with higher confidence.

SRL Model

- ➤ Standard sequence labeling problem
 - Input representations:
 - word form
 - POS tag
 - predicate indicator

$$oldsymbol{x}_i = oldsymbol{v}_{w_i} \oplus oldsymbol{v}_{(i==p)}$$

• Obtain the representation via PGN:

$$egin{aligned} m{h}_1 \cdots m{h}_n &= ext{PGN-BiLSTM}(m{x}_1 \cdots m{x}_n, m{e}_{\mathcal{L}}) \ &= ext{BiLSTM}_{m{V}_{\mathcal{L}}}(m{x}_1 \cdots m{x}_n) \end{aligned}$$

• Decode via CRF:

PGN

- Experiments
- ➤ Universal Proposition Bank (V1.0)

 Assemble the *English* based on the English EWT subset from the UDT (V1.4) and the English corpus in PB (V3.0).

Fam.	Lang.	Train	Dev	Test	Pred.	Arg.
TE C	EN	10,907	1,631	1,633	41,359	100,170
IE.Ge	DE	14,118	799	977	23,256	58,319
	FR	14,554	1,596	298	26,934	44,007
IE.Ro	IT	12,837	489	489	26,576	56,893
IE.KO	ES	28,492	3,206	1,995	81,318	177,871
	PT	7,494	938	936	19,782	41,449
Ura	FI	12,217	716	648	27,324	60,502

- ➤ Multi-lingual word form representations
 - (1)multi-lingual Word Embedding (Emb), via MUSE,
 - (2) multi-lingual ELMo, pre-trained on the blended corpus,
 - (3) multi-lingual BERT, officially released version (base, cased).
- > SRL Translation
 - (1)Google Translation System.
 - (2) fastAlign for word alignment.
 - (3)each POS tagger trained on UDT (v1.4) for each language.

Universal best projection threshold: 0.4

- > Cross-lingual transfer from English
 - Multilingual word representations.

☐ Translated target.

TGT > SRC

□PGN-LSTM is good.

Model	DE	FR	IT	ES	PT	FI	Avg				
SRC											
Emb	42.7	51.0	42.6	40.1	43.9	30.0	41.7				
BERT	43.2	53.1	44.4	41.2	44.2	31.6	43.0				
ELMo	46.8	54.6	43.0	42.1	46.1	33.9	44.4				
TGT											
Emb	49.4	51.3	45.5	48.4	46.9	38.7	46.7				
BERT	53.0	54.3	49.1	51.3	48.8	41.1	49.6				
ELMo	54.6	55.3	49.7	53.6	49.8	43.9	51.1				
SRC & TGT (ELMo)											
BASIC	59.2	61.7	55.1	58.3	53.7	47.6	55.8				
PGN	65.0	64.8	58.7	62.5	56.0	54.5	60.3				
MoE	63.2	63.3	56.7	60.3	55.0	50.6	58.2				
MAN-MoE	64.3	65.3	57.1	62.8	55.2	52.3	59.4				

➤ Fine-grained bilingual transfer

are all source languages useful for a target language?

Source	EN	DE	FR	IT	ES	PT	FI
EN		65.0	64.8	58.7	62.5	56.0	54.5
DE	63.2		63.9	60.4	65.8	53.4	50.5
FR	60.1	53.7		63.3	63.6	62.1	51.3
IT	60.2	58.9	65.3		65.1	58.6	48.6
ES	60.1	57.3	64.9	64.1		67.0	50.7
PT	57.3	58.6	65.1	63.5	67.8		40.9
FI	50.7	52.1	64.6	53.6	60.3	51.6	
ALL	65.7	68.8	66.1	64.8	68.7	69.2	58.6

- languages belonging to one family can benefit each other greatly (i.e., EN-DE, FR-IT-ES-PT).
- multi-source transfer (i.e., All) can obtain better performances across all languages.

➤ Fine-grained bilingual transfer

- Visualizing the language ID embeddings $e_{\mathcal{L}}$.
- Calculating the Euclidean distances in between.
- Overall tendency is highly similar to the results in **Fine-grained bilingual transfer.**
- The PGN-BiLSTM works by effectively capturing the language-aware settings.

- ➤ Bilingual transfer under all kinds of settings by each source languages
 - languages belonging to one family can benefit each other.
 - TGT&SRC > TGT > SRC
 - Emb < BERT < ELMo
 - Language-aware encoder > Basic encoder

								l
Target		SRC			TGT		SRC+TGT	SRC+TGT
	Emb	BERT	ELMo	Emb	BERT	ELMo	BASIC+ELMo	PGN+ELMo
					ource: I			
EN	47.32	51.62	52.82	55.04	59.20	60.48	61.05	63.21
FR	46.00	49.94	50.99	52.37	55.77	57.02	59.91	63.90
IT	40.90	43.68	45.06	48.01	51.62	52.91	57.94	60.38
ES	39.01	42.57	43.67	49.59	52.84	53.92	60.80	65.89
PT	38.25	41.73	43.07	41.44	45.76	46.94	49.14	53.40
FI	29.93	33.64	34.95	41.78	44.09	45.21	45.74	50.53
					ource: F			
EN	35.47	39.49	40.80	48.57	53.04	54.12	56.91	60.05
DE	40.01	43.86	45.24	41.33	45.16	46.54	50.53	53.69
IT	47.12	50.06	51.33	51.45	53.38	53.62	60.31	63.34
ES	40.46	44.01	45.09	50.36	53.77	54.79	58.61	63.62
PT	44.68	47.47	48.65	52.12	55.58	56.67	59.47	62.08
FI	26.44	30.92	32.07	40.71	43.97	45.05	48.76	51.31
				S	Source: I			
EN	37.07	39.49	40.96	47.10	51.26	52.40	54.05	60.13
DE	39.75	42.67	43.74	45.84	50.03	51.34	55.90	58.91
FR	47.39	50.08	51.28	54.45	57.29	58.78	60.03	65.30
ES	44.29	47.92	49.14	52.09	55.68	55.08	60.56	65.09
PT	42.18	46.54	47.60	49.38	53.85	54.96	57.02	58.65
FI	31.12	33.72	35.05	40.80	43.90	44.97	46.37	48.62
					ource: I			
EN	41.63	44.37	45.45	48.37	52.01	53.10	55.08	60.05
DE	36.32	39.65	40.73	44.21	47.90	49.37	51.11	57.27
FR	46.74	50.84	52.29	52.38	55.34	56.39	59.58	64.93
IT	41.39	45.42	46.82	50.10	53.01	54.01	58.83	64.09
PT	47.52	50.46	51.68	53.44	56.49	57.54	62.30	67.01
FI	29.46	32.19	33.33	39.27	42.95	44.07	47.91	50.72
					ource: I			
ĒÑ	34.83	38.09	39.27	43.16	46.09	47.50	53.12	57.30
DE	37.11	41.64	42.73	46.80	49.41	50.62	55.95	58.64
FR	42.05	46.28	47.61	49.07	52.78	54.15	58.64	65.12
IT	38.55	42.35	43.72	47.09	51.20	52.24	56.22	63.51
ES	39.58	44.01	45.02	46.57	50.61	52.06	60.84	67.81
FI	21.54	25.01	26.24	33.53	36.91	38.03	38.50	40.90
					Source: 1			
EN	32.99	35.99	37.38	37.83	40.48	41.65	46.80	50.70
DE	30.98	34.59	35.70	40.75	44.41	45.84	50.68	52.12
FR	39.52	43.85	44.97	48.35	50.82	52.30	56.82	64.63
IT	33.82	36.39	37.66	41.81	46.01	47.07	52.61	53.65
ES	35.23	39.56	40.61	43.43	47.81	49.10	55.48	60.37
PT	27.93	31.90	33.30	33.84	38.21	39.43	47.75	51.61

Multi-source transfer

- Similar tendencies with the single-source transfer as from English source.
- Overall performances are better then that in **Cross-lingual transfer** from single English source.

Model	EN	DE	FR	IT	ES	PT	FI	Avg			
SRC											
Emb	50.3	49.2	52.4	44.9	46.7	51.0	36.4	47.3			
BERT	51.8	50.6	54.0	45.3	51.3	51.8	38.1	49.0			
ELMo	53.6	51.6	56.7	51.3	57.4	52.6	39.7	51.8			
TGT											
Emb	56.5	51.6	55.2	47.1	50.0	53.2	40.4	50.6			
BERT	59.8	55.5	57.0	52.6	54.3	56.6	44.0	54.3			
ELMo	60.7	57.8	59.9	54.8	56.7	58.8	46.9	56.5			
	SRC & TGT (ELMo)										
BASIC	61.9	64.8	60.3	56.4	61.1	63.1	50.7	59.8			
PGN	65.7	68.8	66.1	64.8	68.7	69.2	58.6	66.0			
MoE	63.2	67.8	63.1	62.6	65.2	67.5	54.2	63.4			
MAN-MoE	64.0	68.5	67.2	65.7	67.5	69.0	57.5	65.6			

谢谢 Q/A?