EDAN65: Compilers, Lecture 05 A

LL parsing Nullable, FIRST, and FOLLOW

Görel Hedin

Revised: 2024-09-10

Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:

how to select the correct production p for X, based on the lookahead token.

p1: X -> γ_1 p2: X -> γ_2

Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:

how to select the correct production p for X, based on the lookahead token.

p1: X ->
$$\gamma_1$$

p2: X -> γ_2

- Which tokens can occur in the FIRST position?
- Can one of the productions derive the empty string? I.e., is it "Nullable"?
- If it is Nullable, which tokens can occur in the FOLLOW position?

Steps in constructing an LL(1) parser

- 1. Write the grammar on canonical form
- 2. Compute Nullable, FIRST, and FOLLOW.
- 3. Use them to construct a table. It shows what production to select, given the current lookahead token.
- 4. Conflicts in the table? The grammar is not LL(1).
- 5. No conflicts? Straightforward implementation using table-driven parser or recursive descent.

	t ₁	t ₂	t ₃	t ₄
X_1	p1	p2		
X ₂		р3	р3	p4

Construct the LL(1) table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" ID ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε
```

	ID	"="	","	"{"	"}"
statement					
assignment					
compoundStmt					
statements					

Construct the LL(1) table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" ID ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε
```

	ID	"="	";"	"{"	"}"
statement					
assignment					
compoundStmt					
statements					

For each production p: $X \rightarrow \gamma$, we are interested in:

FIRST(γ) – the tokens that occur first in a sentence derived from γ .

Nullable(γ) – is it possible to derive ε from γ ? And if so:

FOLLOW(X) – the tokens that can occur immediately after an X-sentence.

Construct the LL(1) table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" ID ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε
```

	ID	"="	","	"{"	"}"
statement					
assignment					
compoundStmt					
statements					

To construct the table, look at each production $p: X \to \gamma$. Compute the token set FIRST(γ). Add p to each corresponding entry for X. Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add p to each corresponding entry for X.

Construct the LL(1) table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" ID ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε
```

	ID	"="	","	"{"	"}"
statement	p1			p2	
assignment	р3				
compoundStmt				p4	
statements	p5			p5	p6

To construct the table, look at each production $p: X \to \gamma$. Compute the token set FIRST(γ). Add p to each corresponding entry for X. Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add p to each corresponding entry for X.

Dealing with End of File:

```
p1: varDecl -> type ID optlnit
p2: type -> "integer"
p3: type -> "boolean"
p4: optlnit -> "=" INT
p5: optlnit -> ε
```

	ID	integer	boolean	"="	","	INT	
varDecl							
type							
optlnit							

Dealing with End of File:

```
p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> ε
```

	ID	integer	boolean	"="	","	INT	\$
S							
varDecl							
type							
optlnit							

Dealing with End of File:

```
p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> ε
```

	ID	integer	boolean	"="	","	INT	\$
S		p0	p0				
varDecl		p1	p1				
type		p2	рЗ				
optlnit				p4			p5

Ambiguous grammar:

```
p1: E -> E "+" E
p2: E -> ID
p3: E -> INT
```

	"+"	ID	INT
Е			

Ambiguous grammar:

	"+"	ID	INT
Е		p1, p2	p1, p3

Collision in a table entry! The grammar is not LL(1)

An ambiguous grammar is not even LL(k) – adding more lookahead does not help.

Unambiguous, but left-recursive grammar:

```
p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT
```

	!! *!!	ID	INT
Е			
F			

Unambiguous, but left-recursive grammar:

```
p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT
```

	!! *!!	ID	INT
Е		p1,p2	p1,p2
F		р3	p4

Collision in a table entry! The grammar is not LL(1)

A grammar with left-recursion is not even LL(k) – adding more lookahead does not help.

Grammar with common prefix:

```
p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"
```

	!! *!!	ID	INT	"("	")"
E					
F					

Grammar with common prefix:

	11*11	ID	INT	"("	")"
Е		p1,p2	p1,p2	p1,p2	
F		р3	p4	p5	

Collision in a table entry! The grammar is not LL(1)

A grammar with common prefix is not LL(1). Some grammars with common prefix are LL(k), for some k, – but not this one.

Summary: constructing an LL(1) parser

- 1. Write the grammar on canonical form
- 2. Compute Nullable, FIRST, and FOLLOW.
- 3. Use them to construct a table. It shows what production to select, given the current lookahead token.
- 4. Conflicts in the table? The grammar is not LL(1).
- 5. No conflicts? Straight forward implementation using table-driven parser or recursive descent.

Algorithm for constructing an LL(1) table

```
initialize all entries table [X_i, t_j] to the empty set. for each production p: X \to \gamma for each t \in FIRST(\gamma) add p to table [X, t] if Nullable(\gamma) for each t \in FOLLOW(X) add p to table [X, t]
```

	t ₁	t ₂	t ₃	t ₄
X ₁	p1	p2		
X ₂		p3	р3	p4

If some entry has more than one element, then the grammar is not LL(1).

Exercise: what is Nullable(X)?

Z -> d
Z -> X Y Z
γ -> ε
Y -> c
X -> Y
X -> a

	Nullable
X	
Y	
Z	

Solution: what is Nullable(X)

Z -> d
Z -> X Y Z
3 <- Y
Y -> c
X -> Y
X -> a

	Nullable
X	true
Y	true
Z	false

```
X => Y => \epsilon yes, X is Nullable Y => \epsilon yes, Y is Nullable Z => XYZ => YYZ => * Z => XYZ ... no, Z is not Nullable, we cannot derive \epsilon
```

Definition of Nullable

Definition of Nullable

Definition

```
Nullable(\gamma) is true iff the empty sequence can be derived from \gamma, i.e., iff there exists a derivation \gamma =>* \epsilon (\gamma is a sequence of terminals and nonterminals)
```

Definition of Nullable

Definition

Nullable(γ) is true iff the empty sequence can be derived from γ , i.e., iff there exists a derivation $\gamma = > * \epsilon$ (γ is a sequence of terminals and nonterminals)

The equations for Nullable are recursive.

How would you write a program that computes Nullable (X)?

Just using recursive functions could lead to nontermination!

Fixed-point problems

Fixed-point problems

Computing Nullable(X) is an example of a *fixed-point problem*.

These problems have the form:

```
x == f(x)
```

Can we find a value x for which the equation holds (i.e., a solution)? x is then called a *fixed point* of the function f.

Fixed-point problems can (sometimes) be solved using iteration:

Guess an initial value x_0 , then apply the function iteratively, until the fixed point is reached:

```
x_1 := f(x_0);
x_2 := f(x_1);
...
x_n := f(x_{n-1});
until x_n == x_{n-1}
```

This is called a fixed-point iteration, and x_n is the fixed point.

Implement Nullable by a fixed-point iteration

Implement Nullable by a fixed-point iteration

```
represent Nullable as an array nlbl[] of boolean variables initialize all nlbl[X] to false  
repeat  
changed = false  
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n do newValue = nlbl(\gamma_1) || ... || nlbl(\gamma_n)  
if newValue != nlbl[X] then  
nlbl[X] = newValue  
changed = true  
fi  
do  
until !changed  
where nlbl(\gamma) is computed using the current values in nlbl[].
```

Implement Nullable by a fixed-point iteration

The computation will terminate because

- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)

Exercise: compute Nullable(X)

nlbl[]

Z -> d	
Z -> X Y Z	
γ -> ε	
Y -> c	
X -> Y	
X -> a	

	iter ₀	iter ₁	iter ₂	iter ₃
X	f			
Y	f			
Z	f			

In each iteration, compute:

```
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n newValue = nlbl(\gamma_1) || ... || nlbl(\gamma_n)
```

where $nlbl(\gamma)$ is computed using the current values in nlbl[].

Solution: compute Nullable(X)

nlbl[]

Z -> d
Z -> X Y Z
3 <- Y
Y -> c
X -> Y
X -> a

	iter ₀	iter ₁	iter ₂	iter ₃
X	f	f	t	t
Y	f	t	t	t
Z	f	f	f	f

In each iteration, compute:

```
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n newValue = nlbl(\gamma_1) || ... || nlbl(\gamma_n)
```

where $nlbl(\gamma)$ is computed using the current values in nlbl[].

Definition of FIRST

Definition of FIRST

FIRST(γ) is the set of tokens that can occur *first* in sentences derived from γ : FIRST(γ) = {t \in T | γ =>* t δ }

Definition of FIRST

FIRST(γ) is the set of tokens that can occur *first* in sentences derived from γ :

FIRST(γ) = {t \in T | γ =>* t δ }

Do case analysis to get equation system for FIRST, given
$$G=(N,T,P,S)$$

FIRST(ε) == Ø (1)

FIRST(t) == { t } (2)

where t ∈ T, i.e., t is a terminal symbol

FIRST(X) == FIRST(γ_1) U ... U FIRST(γ_n) (3)

where X -> γ_1 , ... X -> γ_n are all the productions for X in P

FIRST(sα) == FIRST(s) U (if Nullable(s) then FIRST(α) else Ø fi) (4)

where s ∈ N U T, i.e., s is a nonterminal or a terminal and α is the rest of the sequence

The equations for FIRST are recursive. Compute using fixed-point iteration.

Implement FIRST by a fixed-point iteration

Implement FIRST by a fixed-point iteration

Implement FIRST by a fixed-point iteration

The computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T, the set of all tokens
- the number of possible changes is therefore finite

Solution: compute FIRST(X)

	Nullable	
X	t	
Y	t	
Z	f	

FIRST[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø			
Y	Ø			
Z	Ø			

In each iteration, compute:

```
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n newValue = FIRST(\gamma_1) U ... U FIRST(\gamma_n)
```

where $FIRST(\gamma)$ is computed using the current values in $FIRST[\]$.

Exercise: compute FIRST(X)

Z -> d
Z -> X Y Z
γ -> ε
Y -> c
X -> Y
X -> a

	Nullable	
X	t	
Y	t	
Z	f	

FIRST[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø	{a}	{a, c}	{a, c}
Y	Ø	{c}	{c}	{c}
Z	Ø	{a, c, d}	{a, c, d}	{a, c, d}

In each iteration, compute:

```
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n newValue = FIRST(\gamma_1) U ... U FIRST(\gamma_n)
```

where $FIRST(\gamma)$ is computed using the current values in $FIRST[\]$.

Definition of FOLLOW

Definition of FOLLOW

FOLLOW(X) is the set of tokens that can occur as the *first* token *following* X, in any sentential form derived from the start symbol S:

FOLLOW(X) =
$$\{t \in T \mid S =>^* \alpha X t \beta\}$$

Definition of FOLLOW

FOLLOW(X) is the set of tokens that can occur as the *first* token *following* X, in any sentential form derived from the start symbol S:

FOLLOW(X) =
$$\{t \in T \mid S =>^* \alpha X t \beta\}$$

The nonterminal X occurs in the right-hand side of a number of productions.

Let Y -> γ X δ denote such an occurrence, where γ and δ are arbitrary sequences of terminals and nonterminals.

Equation system for FOLLOW, given G=(N,T,P,S)

FOLLOW(X) == U FOLLOW(Y ->
$$\gamma X \delta$$
), (1) over all occurrences Y -> $\gamma X \delta$

and where

FOLLOW(Y ->
$$\gamma \times \delta$$
) == (2)
FIRST(δ) U (if Nullable(δ) then FOLLOW(Y) else Ø fi)

The equations for FOLLOW are recursive.

Compute using fixed-point iteration.

Implement FOLLOW by a fixed-point iteration

Implement FOLLOW by a fixed-point iteration

Implement FOLLOW by a fixed-point iteration

```
represent FOLLOW as an array FOLLOW[] of token sets initialize all FOLLOW[X] to the empty set  

repeat  
changed = false  
for each nonterminal X do  
newValue == U FOLLOW(Y -> \gamma \times \delta), for each occurrence Y -> \gamma \times \delta  
if newValue != FOLLOW[X] then  
FOLLOW[X] = newValue  
changed = true  
fi  
do  
until !changed  

where FOLLOW(Y -> \gamma \times \delta) is computed using the current values in FOLLOW[].
```

Again, the computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T

Exercise: compute FOLLOW(X)

The grammar has been extended with end of file, \$.

	Nullable	FIRST
X	t	{a, c}
Y	t	{c}
Z	f	{a, c, d}

FOLLOW[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø			
Υ	Ø			
Z	Ø			

In each iteration, compute:

newValue == U FOLLOW(Y -> $\gamma \times \delta$), for each occurrence Y -> $\gamma \times \delta$

where FOLLOW(Y -> $\gamma \times \delta$) is computed using the current values in FOLLOW[].

Solution: compute FOLLOW(X)

	Nullable	FIRST
X	t	{a, c}
Y	t	{c}
Z	f	{a, c, d}

The grammar has been extended with end of file, \$.

FOLLOW[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø	{a, c, d}	{a, c, d}	
Y	Ø	{a, c, d}	{a, c, d}	
Z	Ø	{\$ }	{\$}	

In each iteration, compute:

newValue == U FOLLOW(Y -> $\gamma \times \delta$), for each occurrence Y -> $\gamma \times \delta$

where FOLLOW(Y -> $\gamma \times \delta$) is computed using the current values in FOLLOW[].

Summary questions

- Construct an LL(1) table for a grammar.
- What does it mean if there is a collision in an LL(1) table?
- Why can it be useful to add an end-of-file rule to some grammars?
- How can we decide if a grammar is LL(1) or not?
- What is the definition of Nullable, FIRST, and FOLLOW?
- What is a fixed-point problem?
- How can it be solved using iteration?
- How can we know that the computation terminates?