2024年普通高等学校招生全国统一考试 (天津卷)

数学

本试卷分为第1卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120 分钟。第1卷1至3页,第Ⅱ卷4至6页。

答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定 位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考 试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!

第1卷(选择题)

注意事项:

- 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其他答案标号。
- 2 木卷共 9 小题, 每小题 5 分, 共 45 分。

参考公式:

- 如果事件 A, B 互斥, 那么 P(A∪B) = P(A) + P(B).
- 如果事件 A,B 相互独立, 那么 P(AB) = P(A)P(B).
- 球的体积公式 $V = \frac{4}{3}\pi R^3$, 其中 R 表示球的半径.
- 圆锥的体积公式 $V = \frac{1}{3}Sh$, 其中 S 表示圆锥的底面面积, h 表示圆锥的高.
- 一. 选择题: 在每小题给出的四个选项中, 只有一项是符合题目要求的.
- 1, 集合 $A = \{1,2,3,4\}, B = \{2,3,4,5\}, 则 A \cap B = ()$
 - (A) $\{1,2,3,4\}$ (B) $\{2,3,4\}$ (C) $\{2,4\}$

- $(D) \{1\}$
- 2, 设 $a,b \in R$, 则" $a^3 = b^3$ "是" $3^a = 3^b$ "的()
 - (A) 充分不必要条件
- (B) 必要不充分条件

(C) 充要条件

(D)既不充分也不必要条件

下列图中,相关性系数最大的是()

- 下列函数是偶函数的是()

- (A) $\frac{e^x x^2}{x^2 + 1}$ (B) $\frac{\cos x + x^2}{x^2 + 1}$ (C) $\frac{e^x x}{x + 1}$ (D) $\frac{\sin x + 4x}{e^{|x|}}$
- - (A) a > b > c (B) b > a > c (C) c > a > b (D) b > c > a

- 6, 若a,b为两条直线, m为一个平面, 则下列结论中正确的是()待修正
 - A. 若a//m, $m \subset \beta$,则a//b
 - B. 若a//m, b//m, 则a//b

 - D. 若a//m, $b \perp m$, 则 $a \cup b$ 相交
- 7, 已知函数 $f(x) = \sin 3\left(\omega x + \frac{\pi}{3}\right)$ 的最小正周期为 π .则函数在[$-\frac{\pi}{12}$, $\frac{\pi}{6}$]的最小值是()

- 8, 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 、 F_2 . P 是双曲线右支上一点, 且直线 PF_2 的斜率为 $2.\triangle PF_1F_2$ 是面积为 8 的直角三角形,则双曲线的方程为()
 - (A) $\frac{x^2}{8} \frac{y^2}{2} = 1$ (B) $\frac{x^2}{8} \frac{y^2}{4} = 1$ (C) $\frac{x^2}{2} \frac{y^2}{8} = 1$ (D) $\frac{x^2}{4} \frac{y^2}{8} = 1$

- 9, 一个五面体 ABC DEF. 已知AD//BE//CF,且两两之间距离为 1.并已知AD = 1,BE = 2, CF = 3. 则该五面体的体积为()

 - (A) $\frac{\sqrt{3}}{6}$ (B) $\frac{3\sqrt{3}}{4} + \frac{1}{2}$ (C) $\frac{\sqrt{3}}{2}$

2024年普通高等学校招生全国统一考试 (天津卷)

数学

第Ⅱ卷

注意事项:微信公众号: 玩转数学黄老师编辑

- 1 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 2 本卷共11小题,共105分。
- 二. 填空题: 本大题共 6 小题, 每小题 5 分, 共 30 分. 试题中包含两个空的, 答对 1 个的给 3 分, 全部答对的给 5 分.
- 10, 已知 i 是虚数单位, 复数 (√5 i)·(√5 + 2i) = ____.
- 11, $E\left(\frac{3}{x^3} + \frac{x^3}{3}\right)^6$ 的展开式中, 常数项为_____.
- 12, $(x-1)^2 + y^2 = 25$ 的圆心与抛物线 $y^2 = 2px(p>0)$ 的焦点重合, A 为两曲线的交点, 求原点到直线 OF的距离 _____.
- 13, A, B, C, D, E 五种活动, 甲、乙都要选择三个活动参加.(1) 甲选到 A 的概率为 _____; 己 知乙选了 A 活动, 他再选择 B 活动的概率为 _____.
- 14, 在正方形 ABCD 中,边长为 1.E 为线段 CD 的三等分点, $CE = \frac{1}{2}DE$, $\overrightarrow{BF} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BC}$, 则 $\lambda + \mu = \underline{}$; F 为线段 BE 上的动点,G 为AF 中点,则 $\overrightarrow{AF} \cdot \overrightarrow{DG}$ 的最小值为 $\underline{}$.

15, 若函数 $f(x) = 2\sqrt{x^2 - ax} - |ax - 2| + 1$ 有零点,则 a 的取值范围为 _____.

三. 解答题: 本大题共 5 小题, 共 75 分. 解答应写出文字说明, 证明过程或演算步骤.

16. (本小题 14.0 分)

在 $\triangle ABC$ 中 , $\cos B = \frac{9}{16}$, b = 5, $\frac{a}{c} = \frac{2}{3}$.

- (1) 求 a;
- (2)求 sinA;
- (3)求 $\cos(B-2A)$.

17. (本小题 15.0 分)

已知 $AD \perp AB$, $AA_1 \perp AD$.其中 AB = AD = 2, DC = 1. N 是 B_1C_1 的中点, M是 DD_1 的中点.

- (1)求证 D₁N// 半面 CB₁M;
- (2)求平面 CB_1M 与平面 BB_1CC_1 的夹角余弦值;
- (3)求点 B 到平面 CB_1M 的距离.

18. (本小题 15.0 分)

已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 椭圆的离心率 $e = \frac{1}{2}$. 左顶点为 A, 下顶点为 B, C 是线段 OB 的中点,其中 $S_{\Delta ABC} = \frac{3\sqrt{3}}{2}$.

- (1)求椭圆方程.
- (2) 过点 $\left(0, -\frac{3}{2}\right)$ 的动直线与椭圆有两个交点 P, Q .在 y 轴上是否存在点 T 使得 $\overrightarrow{TP} \cdot \overrightarrow{TQ} \leq 0$. 若存在求出这个 T点纵坐标的取值范围,若不存在请说明理由.

19. (本小题 15.0 分)

已知数列 $\{a_n\}$ 是等比数列.其前 n 项和为 S_n .若 $a_1=1, S_2=a_3-1$.

- (1)求数列 $\{a_n\}$ 前 n 项和为 S_n ;
- (2)设 $b_n = \begin{cases} k & ; n = a_k \\ b_{n-1} + 2k & ; a_k < n < a_{k+1} \end{cases}$ 其中 k 是大于 1 的正整数.
 - (i) 当 $n = a_{k+1}$ 时,求证: $b_{n-1} \ge a_k \cdot b_n$;
 - (ii) $\Re \sum_{i=1}^{S_n} b_i$.

20. (本小题 16.0 分)

设函数 $f(x) = x \ln x$.

- (1) 求 f(x) 图像上点 (1, f(1)) 处的切线方程;
- (2) 若 $f(x) \ge a(x \sqrt{x})$ 在 $x \in (0, + ∞)$ 时恒成立,求 a 的取值范围;
- (3)若 $x_1, x_2 \in (0,1)$ 证明 $|f(x_1) f(x_2)| \le |x_1 x_2|^{\frac{1}{2}}$.