Principales Piezas Genéticas

¿cómo funciona la biología sintética?

Manipulación del dogma central de la biología molecular

¿para qué?

Para alterar el **FENOTIPO**

Genes → Proteínas → Fenotipo

¿Qué es el Fenotipo?

¿Fue esta manipulación inventada por la biología sintética?

Historia

- Selección artificial
- Ing. genética
- Biología sintética

Comparten objetivos y aplicaciones*:

generar organismos con cualidades mejoradas (ej: más productivos o resistentes, menos susceptibles, con más azúcar, crecimiento acelerado, etc.)

E incluso metodologías: ambas la ing. Genética y la biolo sintética se llevan a cabo mediante la clonación Lo que más las distingue entre sí, es su

ALCANCE

Selección: dispone únicamente de lo que existe en la naturaleza y la capacidad natural de cruzarlo entre sí.

Ing. genética: capacidad de expresar genes específicos en organismos previamente incompatibles, aún depende del pool de genes existente.

Biología sintética: síntesis de genes artificiales y optimización de los mismos para un amplio alcance de su expresión (regulación).

Dogma Central de la Biología Molecular

PRINCIPALES PARTES

Conceptos de Interés

"Chasis"

"Plásmido"

"Ensamblaje"

"Reportero"

Chasis

Plásmido

Ensamblaje

Reportero

PRINCIPALES PARTES

Promotor

- Secuencia de ADN que regula la transcripción al señalar el inicio de la misma.
- Es reconocido por la ARN-pol.
- Upstream CDS
- Inducible/ reprimible/constitutivo
- Define el ARNm

Definición, función, parte del dogma

RBS

- Secuencia de ADN que se une al ribosoma (ribosome binding site) y por ende regula la traducción dependiendo de su afinidad
- Upstream del CDS, downstream del promotor
- Genéricos/específicos

Terminador

- Secuencia de ADN que detiene la **transcripción** normalmente por mecanismos físicos (bucle)
- Downstream CDS

Constructo mínimo

CONSIDERACIONES

¿por qué elijo una parte específica sobre otra?

LÍMITES Y ORIENTACIÓN

Dónde inicio? Dónde termino? Qué es FW? Qué es RV?

Transcripción

- Promotor
- Terminador

Traducción

- RBS (no es donde inicia, pero si no está, no puede iniciar)
- Inicio: ATG
- Final: UGA UAA UAG

FUERZA

Se traduce como cantidad de proteína final

Promotor

- Nivel de regulación: transcripción

RBS

- Nivel de regulación: traducción

Typical gene organization

¿qué pasa si combino

fuerzas?

REGULACIÓN

¿cómo hago que algo esté encendido siempre o solo a veces?

Tipos de Promotores

- Inducibles
 - Ejemplos
 - Base: operones

iGEM Heidelberg, 2017

Constitutivos

iGEM HSI Taiwan, 2016

Otros tipos de regulación

- Modificación del ADN: CRISPR, recombinasas
- Operadores: represión
- Tags (ARN y Proteínas): para degradación, procesamiento, etc.

¿Para qué era todo esto?

Región codificante: CDS

Alta eficiencia enzimática (capacidad de catálisis/tasas de rendimiento), expresión optimizada para el chasis (optimización de codones), tags, colas de histidina, sitios de reconocimiento, sitios de restricción, etc. etc.