Limiti

Andrea Canale

May 20, 2025

Contents

T	Ret	ta reale estesa	2
	1.1	Proprietà definitivamente vere	3
2	Limite finito al finito		
	2.1	Definizione	3
	2.2	Proprietà algebriche	4
3	Limite finito all'infinito		
	3.1	Definizione	5
	3.2	Limiti per eccesso e per difetto	6
	3.3	Asintoti	7
4	Limite infinito al finito		
	4.1	Definizione	7
	4.2	Limiti destri e sinistri	8
		4.2.1 Limite destro	9
		4.2.2 Limite sinistro	9
	4.3	Esistenza di un limite	9
	4.4	Casi di non esistenza di un limite	9
5	Limite infinito all'infinito		
	5.1	Definizione	11
	5.2	Proprietà algebriche	11
	5.3	Casi particolari	12
6	Def	inizione generale dei limiti	12
7	Fur	ozioni limitate	13

Esistenza dei limiti per funzioni monotone su intervalli illimitati 13 Teoremi sui limiti 14 14 9.2.214 9.3.115 16 16 10 Funzioni asintotiche 16 11 Limiti notevoli 16 17

1 Retta reale estesa

La retta reale estesa è un'estensione dei numeri reali \mathbb{R} compresi di $+\infty$ e $-\infty$ Si dice **intorno di** $+\infty$ un qualsiasi intervallo del tipo: $(a, +\infty)$ ed è denotato come $I_a(+\infty)$

Si dice **intorno di** $-\infty$ un qualsiasi intervallo del tipo: $(a, -\infty)$ ed è denotato come $I_a(-\infty)$

1.1 Proprietà definitivamente vere

Si dice che una proprietà è definitivamente vera per $x \to +\infty$ se esiste $a \in \mathbb{R}$ tale che la proprietà è vera $\forall x \in I_a(+\infty)$

2 Limite finito al finito

I limiti finito al finito sono limiti della forma

$$\lim_{x \to c} f(x) = l$$

Cioè che se x si avvicina a c, la funzione assumerà il valore l

2.1 Definizione

Sia $f: I_{\delta}(c) \setminus c \to \mathbb{R}$ e sia $l \in \mathbb{R}$, si dice che f tende ad l per x che tende a c se $\forall \epsilon > 0$, uno scarto scelto arbitrariamente, esiste $\delta > 0$, tale che $|x - c| < \delta \Longrightarrow |f(x) - l| < \epsilon$ con $x \neq c$

Quest'ultima condizione rende possibile l'esistenza del limite anche se la funzione non è definita in \boldsymbol{c}

Quindi ϵ agisce sull'asse y mentre δ sull'asse x. Dato l, $\forall \epsilon > 0$ cerchiamo di definire δ sull'asse x che sarà dato dall'intersezione tra f(x) nelle coordinate $(x_0 + \delta, l + \epsilon)$ e $(x_0 - \delta, l - \epsilon)$. Se la funzione è definita in questo intervallo(e non ne esce) e tende ad assumere il valore l nel punto x_0 allora il limite esiste.

In termini di intorni questo è equivalente a:

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{Tale che } x \in I_{\delta}(c) \setminus \{c\} \implies f(x) \in I_{\epsilon}(f)$$

Cioè che se x sta nell'intorno di raggio δ , allora f(x) st
ta nell'intorno di raggio ϵ

In termini di proprietà definitivamente vere:

$$\forall \epsilon > 0 \ f(x) \in I_{\epsilon}(l) \ \text{def. vera per } x \to c$$

Il limite non calcola l'andamento della funzione in f(c)

2.2 Proprietà algebriche

Dati $\lim_{x\to c} f(x) = l$ e $\lim_{x\to c} g(x) = m$, allora valgono le seguenti proprietà:

•
$$\lim_{x \to c} f(x) + g(x) = l + m$$

- $\lim_{x \to c} f(x) \cdot g(x) = l \cdot m$
- $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{l}{m} \text{ se } m \neq 0$

3 Limite finito all'infinito

I limiti finito al infinito sono limiti della forma

$$\lim_{x \to \pm \infty} f(x) = l$$

Cioè che se x tende a ∞ , la funzione assumerà il valore l

3.1 Definizione

Sia $f: I_{\delta}(c) \setminus c \to \mathbb{R}$ e sia $l \in \mathbb{R}$, si dice che f tende ad l per x che tende a ∞ se $\forall \epsilon > 0$, uno scarto scelto arbitrariamente, esiste N > 0, che dipende da ϵ , tale che $\forall x \mid x > N \implies |f(x) - l| < \epsilon \text{ con } x \neq c$

In altre parole, un limite di questo tipo, indica che dopo un certo punto N, la funzione tenderà a l senza mai arrivarci($< \epsilon$). Notiamo che la funzione sta in questo intervallo $[l - \epsilon, l + \epsilon]$ senza mai uscirne.

In termini di intorni questo è equivalente a:

$$\forall \epsilon > 0 \ \exists N > 0 \ \text{Tale che} \ x \in I_N(+\infty) \setminus \{c\} \implies f(x) \in I_{\epsilon}(l)$$

Questo limite funziona ugualmente con $-\infty$, semplicemente cambiano gli intorni e si ragiona nel primo quadrante.

3.2 Limiti per eccesso e per difetto

Dato $c \in \mathbb{R}$ e $l \in \mathbb{R}$, se $\lim_{x \to c^+} f(x) = l$ e f(x) > l definitivamente per $x \to c$, si dice che f tende a l per eccesso(o dall'alto) se $x \to c$ e si scrive:

$$\lim_{x \to c} f(x) = l^{+}$$

Cioè quando la funzione tende ad un valore l positivo e f(x) > l.

Dato $c \in \overline{\mathbb{R}}$ e $l \in \overline{\mathbb{R}}$, se $\lim_{x \to c^+} f(x) = l$ e f(x) < l definitivamente per $x \to c$, si dice che f tende a l per difetto(o dal basso) se $x \to c$ e si scrive:

$$\lim_{x \to c} f(x) = l^{-}$$

Ad esempio $\lim_{x \to +\infty} \frac{1}{x} = 0^+$ e $\lim_{x \to -\infty} \frac{1}{x} = 0^-$

Ovviamente esistono casi dove non si può fare questa distinzione, ad esempio se la funzione passa da valori negativi a positivi di continuo: $\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$

3.3 Asintoti

Se esiste almeno un limite finito all'infinito data una funzione f(x), abbiamo gli asintoti:

- Se esiste $\lim_{x \to +\infty} f(x) = l$, la retta di equazione y=l si dice asintoto orizzontale destro
- Se esiste $\lim_{x\to -\infty} f(x) = l$, la retta di equazione y=l si dice asintoto orizzontale sinistro

Se f ha un asintoto orizzontale, allora $f^{'}$ ha un asintoto orizzontale y=0 cioè la funzione derivata smette di crescere.

4 Limite infinito al finito

I limiti infinito al finito sono limiti della forma

$$\lim_{x\to c} f(x) = \pm \infty$$

Cioè che se x tende a c, la funzione diventerà arbitrariamente grande (positivamente o negativamente).

4.1 Definizione

Sia $f: I_{\delta}(c) \setminus c \to \mathbb{R}$, si dice che f tende ad $+\infty$ per x che tende a c se $\forall M > 0$, fissata arbitrariamente, esiste $\delta > 0$, tale che $0 < |x - c| < \delta \implies f(x) > M$ con $x \neq c$

In altre parole, un limite di questo tipo, indica che dopo un certo punto M, la funzione sarà sempre sopra alle retta y=M. Cioè f(x)>M $\forall M$

In termini di intorni questo è equivalente a:

$$\forall M > 0 \; \exists \delta > 0 \; \text{Tale che} \; x \in I_{\delta}(c) \setminus \{c\} \implies f(x) \in I_{M}(+\infty)$$

In termini di proprietà vera definitivamente, $\forall M>0, f\left(x\right)>M$ definitivamente vera per $x\rightarrow c$

Nel caso in cui $\lim_{x\to c} f(x) = +\infty$, la retta di equazione x=c viene detto asintoto verticale per x

Questo limite funziona ugualmente con $-\infty$.

Cioè quando la funzione tende ad un valore l negativo e f(x) < l.

4.2 Limiti destri e sinistri

A volte succede che i limiti vadano per un intervallo a $+\infty$ e per un altro a $-\infty$, in questo caso si parla di limite destro e sinistro. Ad esempio:

4.2.1 Limite destro

Per indicare il limite destro scriviamo:

$$\lim_{x \to c^+} f(x) = l$$

Nel nostro esempio abbiamo: $\lim_{x\to c^+} f(x) = +\infty$

4.2.2 Limite sinistro

Per indicare il limite sinistro scriviamo:

$$\lim_{x \to c^{-}} f(x) = l$$

Nel nostro esempio abbiamo: $\lim_{x\to c^-} f(x) = -\infty$

4.3 Esistenza di un limite

Un limite esiste, se e solo se, esistono sia il limite destro sia quello sinistro con lo stesso valore l per $x \to c$.

4.4 Casi di non esistenza di un limite

- Funzioni periodiche come seno, coseno, ecc...
- Infinite oscillazione per $x \to c$

Ad esempio la funzione $sin(\frac{1}{x})$:

Invece se le oscillazioni si riducono, il limite $x \to 0$ esiste ed è 0:

5 Limite infinito all'infinito

I limiti infinito all'infinito sono limiti della forma

$$\lim_{x \to \infty} f(x) = \pm \infty$$

Studiamosolo il caso $\lim_{x\to+\infty} f(x) = +\infty$, cioè che se x diventa molto grande, la funzione diventerà arbitrariamente grande. Gli altri sono analoghi.

5.1 Definizione

Sia $f: I_{\delta}(c) \setminus c \to \mathbb{R}$, si dice che f tende ad $+\infty$ per x che tende a $+\infty$ se $\forall M > 0$, fissata arbitrariamente, esiste N > 0, tale che $x > N \implies f(x) > M$ con $x \neq c$

In altre parole, un limite di questo tipo, indica che dopo un certo punto M, la funzione sarà sempre sopra alle retta y=M e che questa funzione continua ad essere f(x)>M con il proseguire dei valori x>N

In termini di intorni questo è equivalente a:

$$\forall M > 0 \; \exists N > 0 \; \text{Tale che} \; x \in I_N(+\infty) \setminus \{c\} \implies f(x) \in I_M(+\infty)$$

5.2 Proprietà algebriche

Dati:

- $\lim_{x\to c} f(x) = l$
- $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = +\infty$
- $\lim_{x \to c} k(x) = 0^+$

Allora valgono le seguenti proprietà:

- $\lim_{x\to c} f(x) \pm g(x) = \pm \infty$ dove il segno della somma corrisponde a quello del risultato
- $\lim_{x\to c} g(x) + h(x) = +\infty$ cioè $+\infty + \infty = +\infty$
- $\lim_{x\to c} \frac{f(x)}{g(x)} = 0$ cioè $\frac{l}{\pm \infty} = 0$
- $\lim_{x\to c} \frac{g(x)}{h(x)} = \infty$ cioè $+\infty \cdot +\infty = +\infty$

•
$$\lim_{x\to c} \frac{f(x)}{k(x)} = \begin{cases} +\infty \text{ se } l > 0 \\ -\infty \text{ se } l < 0 \end{cases}$$
 cioè che per $\frac{l}{0} = \infty$ valgono indeterminato se $\mathbf{l} = \mathbf{0}$

le regole dei segni

5.3 Casi particolari

Casi come:

- $\frac{\infty}{\infty}$
- $\frac{0}{0}$
- $\frac{+\infty}{-\infty}$
- $\infty \cdot 0$

Vanno discussi caso per caso, ad esempio:

$$g(x) = x^2 e h(x) = x con i limiti g(x) h(x) \rightarrow +\infty se x \rightarrow +\infty$$

Abbiamo due casi:

$$\frac{g(x)}{h(x)} = \frac{+\infty}{+\infty} = \frac{x^2}{x} = x \to \infty$$

$$\frac{h(x)}{g(x)} = \frac{+\infty}{+\infty} = \frac{x}{x^2} = \frac{1}{x} = \frac{1}{+\infty} = 0$$

6 Definizione generale dei limiti

Siano $c \in l \in \overline{\mathbb{R}}$, $\lim_{x \to c} f(x) = l$ esiste se e solo se $\forall I(l), \exists I(c)$ tale che se $x \in I(c) \setminus c\{c\} \implies f(x) \in I(l)$.

7 Funzioni limitate

In base agli asintoti trovati, le funzioni possono essere classificate come:

- Funzioni limitate superiormente se esiste un asintoto orizzontale destro sopra il quale la funzione non esiste
- Funzioni limitate inferiormente se esiste un asintoto orizzontale sinistro sotto il quale la funzione non esiste
- Funzioni limitate se sono limitate sia superiormente che inferiormente

Ad esempio sin(x)

8 Esistenza dei limiti per funzioni monotone su intervalli illimitati

Sia $f:(a,+\infty)\to\mathbb{R}$, allora $\exists \lim_{x\to\infty}f(x)=l$ e abbiamo 4 casi:

- Se f è crescente e superiormente limitata da un numero B, allora $l \in \mathbb{R}$ e $l \leq B.$
- Se f è crescente ma non è limitata superiormente, allora $l=+\infty$
- Se f è decrescente ed è inferiormente limitata da un numero B, allora $l \in \mathbb{R}$ e $l \geq B$
- Se f è decrescente ma non è limitata inferiormente, allora $l=-\infty$

Analogamente vale per $(-\infty, a)$ e per intervalli limitati.

9 Teoremi sui limiti

9.1 Primo teorema della permanenza del segno

Data una funzione $f: I(c) \setminus \{c\} \to \mathbb{R}$, se esiste finito $\lim_{x \to c} f(x) = l$, allora:

- Se l>0 o $l=+\infty,$ allora f(x)>0 def. vera per $x\to c$
- Se l < 0 o $l = -\infty$, allora f(x) < 0 def. vera per $x \to c$

9.2 Secondo teorema della permanenza del segno

Data una funzione $f: I(c) \setminus \{c\} \to \mathbb{R}$, se esiste finito $\lim_{x \to c} f(x) = l$, allora:

- Se $f(x) \ge 0$ def. vera per $x \to c$, allora $l \ge 0$
- Se $f(x) \leq 0$ def. vera per $x \to c$, allora $l \leq 0$

9.2.1 Osservazione

Se f(x)>0 non è detto che l>0, infatti per $f(x)=x^2,\ f(x)>0$ ma $\lim_{x\to 0}f(x)=0$

9.2.2 Dimostrazione

Supponiamo per assurdo che $f(x) \ge 0$ e $l \le 0$, per il primo teorema del segno abbiamo che f(x) < 0(per la condizione su l) ma abbiamo supposto $f(x) \ge 0$. Un assurdo.

Questi due teoremi descrivono l'andamento della funzione in un determinato intorno.

In particolare se il limite è positivo, la funzione è crescente, se il limite è negativo, la funzione è decrescente (vale la doppia implicazione).

9.3 Primo teorema del confronto

Date tre funzione $f, g, h : A \subset \mathbb{R} \to \mathbb{R}$, se valgono le seguenti ipotesi:

- $f(x) \le g(x) \le h(x) \ \forall x \in A$
- $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = l$ cioè la funzione più grande e la più piccola tendono allo stesso limite

Allora vale:

$$\lim_{x\to c}g(x)=l$$

9.3.1 Dimostrazione

Dalla definizione di limite, abbiamo $l-\epsilon < f(x) < l+\epsilon$ per un opportuno intorno $I(l)=(l-\epsilon,l+\epsilon)$ con $\epsilon>0$

Stessa cosa vale per h(x) dato che tendono allo stesso valore $l\colon l-\epsilon < h(x) < l+\epsilon.$

Allora dato che abbiamo imposto f(x) < g(x) < h(x), abbiamo sicuramente:

$$l - \epsilon < f(x) < g(x) < h(x) > l + \epsilon$$

9.4 Secondo teorema del confronto

Date $f,g:I(c)\backslash\{c\}\to\mathbb{R}$, supponiamo $f(x)\leq g(x)$ $\forall x$, allora valgono le seguenti proprietà:

- Se $\lim_{x\to c} f(x) = +\infty$, allora $\lim_{x\to c} g(x) = +\infty$
- Se $\lim_{x\to c} g(x) = -\infty$, allora $\lim_{x\to c} f(x) = -\infty$

9.4.1 Dimostrazione primo punto

Dato M>0, abbiamo f(x)>M def. vera $x\to c$ per la definizione di limite all'infinito.

Dato che abbiamo imposto f(x) < g(x), otteniamo $M < f(x) \ge g(x)$ def. vera per $x \to c$ e quindi vale la proprietà.

In altre parole questo teorema stabilisce che se $f(x) \leq g(x) \ \forall x$, allora possiamo ricavare il limite di f(x) o g(x).

10 Funzioni asintotiche

Due funzioni f e g si dicono asintotiche per $x \to c$ se:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = 1$$

e si scrive f g per $x \to c$.

Questo indica che per $x \to c, \, f$ e g si comportano allo stesso modo.

11 Limiti notevoli

I limiti notevoli sono forme di indeterminazione che si possono risolvere attraverso le proprietà delle funzioni coinvolte

•
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$
, infatti $\sin(x)$ x per $x \to 0$

•
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

11.1 Dimostrazione

Moltiplichiamo e dividiamo per $\frac{1+cos(x)}{1+cos(x)}$:

$$\frac{1-\cos(x)}{x^2}\cdot\frac{1+\cos(x)}{1+\cos(x)}$$

Adesso moltplichiamo solamente il numeratore:

$$\frac{1-\cos^2(x)}{x^2} \cdot \frac{1}{1+\cos(x)}$$

Notiamo che $cos^2(x) = sin^2(x)$, quindi possiamo riscrivere come:

$$\left(\frac{\sin(x)}{x}\right)^2 \cdot \frac{1}{1 + \cos(x)}$$

La prima parte è il limite notevole $\frac{sin(x)}{x}$ che tende a 1 per $x\to 0$. La seconda parte tende a $\frac{1}{2}$ facendo i conti.

Quindi abbiamo dimostrato il limite.

* * *

•
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$
, infatti $\log(1+x)$ x per $x\to 0$

• $\lim_{x\to 0} \frac{e^x-1}{x} = 1$, infatti e^x-1 x per $x\to 0$

11.2 Dimostrazione

Poniamo:

•
$$e^x - 1 = y$$
e quindi $e^x = 1 + y$

Ricordiamo inoltre:

•
$$e^{log(t)} = t$$

•
$$log e^z = z$$

Quindi:

$$x = log \ e^x = log(1+y)$$

Notiamo che $x \to 0$, implica $e^x - 1 \to 0$, quindi $y \to 0$.

Ora riscriviamo il limite come:

$$\lim_{y\to 0}\frac{y}{\log(1+y)}$$

Passando al reciproco otteniamo:

$$\lim_{y \to 0} \frac{1}{\frac{\log(1+y)}{y}} = 1$$

* * *

•
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{\alpha x}=1$$
, infatti $(1+x)^{\alpha}$ x per $x\to 0$

11.3 Osservazioni

- In tutti questi limiti, tranne nel secondo caso, abbiamo usato la pendenza della retta tangente in x=0
- Nel secondo caso abbiamo approssimato cox(x) in x = 0