MAT1375, Classwork13, Fall2025

Ch13. Exponential and Logarithmic Functions I

1. Definition of the **Exponential Function**:

A function f is called an exponential function f with b x = b for any real number x if $f(x) = c \cdot b^x$,

for some |c| number c and |c| real number b which is called the |c| .

2. Please circle the given function if it is an **exponential function**:

$$(1)f(x) = 2^{x}. \qquad (2)g(x) = 3^{x+1}. \qquad (3)h(x) = e^{x}. \qquad (4)k(x) = \left(\frac{1}{5}\right)^{x}. \qquad (5)l(x) = x^{2}.$$

$$(4)k(x) = \left(\frac{1}{5}\right)^{x}. \qquad (5)l(x) = x^{2}.$$

$$(5)l(x) = x^{2}.$$

$$(6)l(x) = x^{2}.$$

$$(7)l(x) = x^{2}.$$

$$(8)l(x) = x^{2}.$$

$$(8)l(x) = x^{2}.$$

$$(9)l(x) = x^{2}.$$

$$(9)l(x)$$

Euler's number $e = 2.71828182\cdots$ irrational number which is still a real number

3. Graph the given functions:

(a)
$$f(x) = 3^x$$
.

Domain: $(-\infty, \infty)$; Range: $(0, \infty)$

Asymptote: H.A. y=0.

(b)
$$g(x) = \left(\frac{1}{3}\right)^x = \left(3^{-1}\right)^x = 3^{-\infty}$$

Domain: $(-\infty, \infty)$; Range: $(0, \infty)$.

Asymptote: HA, Y=0.

4	Characteristics	of Expone	ntial Function	on of $f(x)$	$(x) = h^x$
┱.	Characteristics	of Exposic	muai i umcuv	JII OI / (,	$\iota_I - \nu$.

(a) The domain of f: ______; The Range of f: ______.

(b) There is x-intercept. In fact, f approaches, but never touches

(c) Its y-intercept is _____.

(d) For b > 1, $f(x) \rightarrow$ ____ as $x \rightarrow \infty$, $f(x) \rightarrow$ ___ as $x \rightarrow -\infty$.

(e) For 0 < b < 1, $f(x) \rightarrow \underline{\hspace{1cm}}$ as $x \rightarrow \infty$, $f(x) \rightarrow \underline{\hspace{1cm}}$ as $x \rightarrow -\infty$.

(f) f is one-to-one and has an function.

6. What is the 4-steps strategy to find the inverse of a given function? Can it be used to find the inverse function of $f(x) = b^x$?

7. Definition of Logarithmic Function:

For x > 0 and b > 0, $b \ne _{--}$, the logarithmic of x with base b is defined by the equivalence

$$x = b^y \iff y = \log_b(x).$$

This computes the inverse of the exponential function $y = b^x$ with base b. (We exchange ____ and ___ to get $x = b^y$ and solve for).

8. Rewrite the equation as a logarithmic equation.

a)
$$3^4 = x$$
.

b)
$$e^x = 17$$
.

a)
$$3^4 = x$$
. b) $e^x = 17$. c) $2^{7a} = 53$. d) $b^3 = 8$.

d)
$$b^3 = 8$$