经济学双学位 2016 秋季线性代数期中试题

_____ 学院 ____ 系 姓名 _____ 学号_____ 分数 2016/11/06

请注意所有答案和解答写在空白答题纸上,标明大题号和小题号一、填空题(本题共 10 小题,每小题 2 分,满分 20 分)。

(1)
$$(-2)^{\tau(54321)} = _____$$

(2)设A是四阶方阵,|A|=4,则 $|(A^{-1})^*|=______。$

(3)设
$$A = \begin{pmatrix} 9 & 2 & 4 \\ 1 & 0 & 0 \\ 1 & 3 & t \end{pmatrix}, r(A) = 2, 则 $t = \underline{\hspace{1cm}}$ 。$$

(4)设 $r(\alpha_1,\alpha_2,\alpha_3) = r(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = 3, r(\alpha_1,\alpha_2,\alpha_3,\alpha_5) = 4$,则

$$r(\alpha_1,\alpha_2,\alpha_3,\alpha_4+\alpha_5) = \underline{\hspace{1cm}}_{\circ}$$

(5)设矩阵
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
各列元素之和为 1,则 $(\mathbf{1},\mathbf{1},\mathbf{1})\begin{pmatrix} a_{11} & 2a_{12} & 3a_{13} \\ a_{21} & 2a_{22} & 3a_{23} \\ a_{31} & 2a_{32} & 3a_{33} \end{pmatrix}$ =______。

(6)设 4 阶行列式 |A| = 2,则 |-2A| = 。

(7)设矩阵
$$X$$
满足 $X\begin{pmatrix}0&2\\1/3&0\end{pmatrix}=\begin{pmatrix}2&1\\1&3\end{pmatrix}$,则 $X=$ _______.

(8)设n阶矩阵B的秩是n-1,则 B^* 的秩是_____。

(9)设 3 维列向量 α_1,α_2 线性无关,则齐次方程组 $(\alpha_1,\alpha_2,\alpha_1-2\alpha_2)(x_1,x_2,x_3)^{\rm T}$ 的一个基础解系是

$$(10) \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \underline{ } _{\circ}$$

- 二、选择题(本题共 10 小题,每小题 2 分,满分 20 分。每小题给出的四个选项中,只有一项是 符合题目要求的)。
- (1)设A,B,C均为n阶方阵,且 $|A|\neq 0$,则必有()。

(A) 若
$$AC = BC$$
,则 $A = B$ (B)若 $BC = O$,则 $B = O$ 或 $C = O$

(C) 若
$$BA = CA$$
, 则 $B = C$ (D) 若 $A^{-1}B = CA^{-1}$,则 $B = C$

(2)设
$$n$$
阶方阵 A 满足 $A^2-A-2E=O$,则必有()。

$$(A) A = 2E$$
 $(B) A = -E$ $(C) A - E$ 可逆 $(D) A$ 不可逆

(3)设向量组 $\alpha_1, \dots, \alpha_s$ 可用向量组 β_1, \dots, β_t 线性表示,并且 $\alpha_1, \dots, \alpha_s$ 线性无关,则必定成 立的是()。

$$(A)s > t$$
 $(B)s < t$ $(C)s \le t$ $(D)s = t$

(4)若方阵A,B,C满足ABC = E,则必定成立()。

$$(A)BAC = E$$
 $(B)ACB = E$ $(C)BCA = E$ $(D)CBA = E$

(5)设 $r(A_{m \times n}) = s < m$,则下列断言不成立的是()。

- (A) A有s个线性无关的行向量 (B) A有s个线性无关的列向量
- (C) A 的行向量组线性相关

 (\mathbf{D}) A 的列向量组线性相关

(6)设 η_1,η_2,η_3 是齐次方程组 $A_{m\times n}X=o$ 的一个基础解系,则下列向量组中也可作为

$$A_{m \times n} X = o$$
 的基础解系的是()。

(A)
$$\eta_1 + \eta_2, \eta_2 + \eta_3, \eta_3 - \eta_1$$
, (B) $\eta_1 + \eta_2, \eta_2 + \eta_3, \eta_1 + 2\eta_2 + \eta_3$

(C)
$$\eta_1, \eta_1 + \eta_2, \eta_1 - \eta_2$$
 (D) $\eta_1 + \eta_2, \eta_1 - \eta_2, \eta_3$

(7)若
$$\alpha_1 = (0,0,c_1)$$
, $\alpha_2 = (0,1,c_2)$, $\alpha_3 = (1,-1,c_3)$, $\alpha_4 = (-1,1,c_4)(c_1,c_2,c_3,c_4)$ 为任意常数),则下列向量组中必定线性相关的是()。

$$(A)\alpha_1, \alpha_2, \alpha_3$$
 $(B)\alpha_1, \alpha_2, \alpha_4$ $(C)\alpha_1, \alpha_3, \alpha_4$ $(D)\alpha_2, \alpha_3, \alpha_4$

(8)设A为三阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第三行得单位矩阵.

$$i \exists P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, 风 A = () .$$

(A)
$$P_1P_2$$
 (B) $P_1^{-1}P_2$ (C) P_2P_1 (D) $P_2P_1^{-1}$

(9)设 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 是 4阶矩阵, A^* 为A的伴随矩阵,若 $(1,0,1,0)^{\mathrm{T}}$ 是方程组AX=o的 一个基础解系,则 $A^*X = o$ 的一个基础解系为()。

$$(A)\alpha_1,\alpha_2$$
 $(B)\alpha_1,\alpha_3$ $(C)\alpha_1,\alpha_2,\alpha_3$ $(D)\alpha_1,\alpha_2,\alpha_4$

(10)设A为n阶非零矩阵,并且 $A^2 = O$,E为n阶单位矩阵,则()。

$$(A)$$
 $E-A$ 不可逆, $E+A$ 不可逆 (B) $E-A$ 不可逆, $E+A$ 可逆

$$(C) E - A$$
可逆, $E + A$ 可逆

$$(C) E - A$$
可逆, $E + A$ 可逆 $(D) E - A$ 可逆, $E + A$ 不可逆

三、计算题(本题共5小题,每小题10分,满分为50分)。

$$\begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ a & x & \cdots & a & a \\ x & a & \cdots & a & a & a \end{vmatrix}$$

(3)给定向量组

I: $\alpha_1 = (2,1,2,3), \alpha_2 = (-1,1,5,3), \alpha_3 = (0,-1,-4,-3), \alpha_4 = (1,0,-2,-1), \alpha_5 = (1,2,9,8).$

- (i) 求 r(I);
- (ii)求I的一个极大线性无关组II:
- (iii)用Ⅱ表示Ⅰ中的其余向量。

$$(4)(i) a$$
 为何值时方程组
$$\begin{cases} 6x_1 + 4x_2 + 5x_3 + 2x_4 + 3x_5 = 1 \\ 3x_1 + 2x_2 + 4x_3 + x_4 + 2x_5 = 3 \end{cases}$$
 有解?
$$\begin{cases} 3x_1 + 2x_2 - 2x_3 + x_4 = a \\ 9x_1 + 6x_2 + x_3 + 3x_4 + 2x_5 = 2 \end{cases}$$

- (ii)在有解时求方程组的一个特解和导出齐次方程组的一个基础解系。
- (5)给定矩阵

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

- (i)求|A|;
- (ii)求逆矩阵 A^{-1} ;
- (iii)求 $(A^{-1})^*$ 。
- 四、证明题(本题共1小题,满分为10分)。
- (1)证明: 若 $A_{m \times n}B_{n \times p} = O$,则 $r(A) + r(B) \le n$ 。