Construa um autômato que reconheça a linguagem $L_1 = \{0^n 1^n \mid n \geq 0\}$

- ullet L_1 não é uma linguagem regular
- ullet Não é possível construir um autômato finito para L_1
- Precisamos de um autômato de pilha

Autômato de Pilha

- Autômato finito + Memória LIFO
- Reconhece linguagens livre de contexto

Linguagens Livre de Contexto

- $L_1 = \{0^n 1^n | n \ge 0\}.$
- Verificar parêntese
- Análise sintática de linguagens de programação

Autômato de Pilha de Reconhece

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

Definição Formal Autômato de Pilha

- ullet 6-tupla: $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$
 - $\circ Q$ Conjunto finito de estados
 - \circ Σ Alfabeto de entrada
 - \circ Γ Alfabeto de pilha
 - $\circ~\delta:Q imes\Sigma_arepsilon imes \Sigma_arepsilon imes$
 - $\circ \ q_0 \in Q$ Estado inicial
 - \circ $F \subseteq Q$ Estados finais

Computação com Autômato de Pilha

Configuração do autômato

- $ullet \ q \in Q$ Estado atual da máquina
- abc Entrada não processada
- xyz Conteúdo da pilha

Sequência de configurações

$$[p,ab,xy] \vdash [q,b,zy]$$

- ullet $((p,a,x) o (q,z))\in \delta$
- $ullet \ b \in \Sigma^* \ {
 m e} \ y \in \Gamma^*$

M aceita w se

$$[q_0, w, arepsilon] dash_M^* [q_f, arepsilon, arepsilon]$$

 $ullet \ q_f \in F$

$$M_1=(Q,\Sigma,\Gamma,\delta,q_1,F)$$

- $Q = \{q_1, q_2, q_3, q_4\}$ Conjunto finito de estados
- $\Sigma = \{0,1\}$ Alfabeto de entrada
- $\Gamma = \{\$, 0\}$ Alfabeto de pilha
- $F = \{q_1, q_4\}$ Estados finais
- δ Função de transição

Input:	0			1			arepsilon		
Pilha:	0	\$	Θ	0	\$	Θ	0	\$	arepsilon
$\overline{q_1}$									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,oldsymbol{arepsilon})\}$					
q_3				$\{(q_3,oldsymbol{arepsilon})\}$				$\{(q_4,oldsymbol{arepsilon})\}$	
q_4									

Exemplo de Linguagens Livre de Contexto (LLC)

- $ullet \ L_2 = \{ w \# w^{\mathcal{R}} \mid w \in \{0,1\}^* \}$
- $ullet \ L_3 = \{ww^{\mathcal{R}} \mid w \in \{0,1\}^*\}$
- $ullet \ L_4 = \{a^ib^jc^k \mid i,j,k \geq 0 \ \land \ (i=j \ \lor \ j=k)\}$

A Forma de uma LLC

Equivalência Entre Autômato de Pilha e Autômato de Pilha Determinístico

Autômatos de pilha determinísticos reconhecem um subconjunto das linguagens reconhecidas pelos autômatos de pilha.

LLC Inerentemente Ambígua

- ullet Exemplo: $L_4 = \{a^i b^j c^k \mid i,j,k \geq 0 \ \land \ (i=j \ \lor \ j=k)\}$
- LLC ⊃ LLC não ambígua ⊃ LLC Determinística
- Autômato de Pilha ⊃ Autômato de Pilha Determinístico

LLC: Fechamento Sob as Operações

- \checkmark União $L_a \cup L_b = \{w \mid w \in L_a \ \lor \ w \in L_b\}$
- ullet ullet Concatenação $L_a \cdot L_b = \{wz \mid w \in L_a \ \land \ z \in L_b\}$
- \checkmark Estrela de Kleene L^*
- \checkmark Intersecção com linguagem regular $L \cap R = \{w \mid w \in L \ \land \ w \in R\}$
- imes Complemento $eg L = \{ w \mid w
 otin L \}$
- ullet X Intersecção $L_a \cap L_b = \{ w \mid w \in L_a \ \land \ w \in L_b \}$
 - $egin{aligned} \circ \ L_5 = \{a^nb^nc^k \mid n,k \geq 0\} \in \mathsf{LLC} \end{aligned}$
 - $egin{aligned} \circ \ L_6 = \{a^k b^n c^n \mid n,k \geq 0\} \in \mathsf{LLC} \end{aligned}$
 - $egin{aligned} \circ \ L_7 = L_5 \cap L_6 = \{a^nb^nc^n \mid n \geq 0\}
 otin \mathsf{LLC} \end{aligned}$