Stochastic Network Modeling Homework 3 - Solutions

Juan Pablo Royo Sales Universitat Politècnica de Catalunya

September 22, 2020

Problem 3.1

3.1.1

$P(X(0), X(1), X(2)) = P(X(1) \cap X(2))$	(1a)
= P(X(1))P(X(2))	(1b)
= (p+q)(p+q)	(1c)
$= p^2 + 2pq + q^2$	(1d)

3.1.2

$$P(X(2) = a) = qq$$
 (2a)
 $P(X(2) = b) = 0$ (2b)
 $P(X(2) = c) = qp + pq = 2pq$ (2c)
 $P(X(2) = d) = 0$ (2d)
 $P(X(2) = e) = pp$ (2e)
(2f)

Problem 3.2

3.2.1

3.2.1(a)

3.2.1(b)

3.2.1(c)

3.2.2

3.2.2(a)

$$P = \begin{bmatrix} q & p & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & q & p \end{bmatrix}$$

3.2.2(b)

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

3.2.2(c)

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 3.3

3.3.1

It is not a MC because the $\sum_{j} p_{ij} > 1$.

3.3.2

I think it is possible because we use that extra state to go back from a to a', then from a' to a again and after to b. The same for the case of e.

Problem 3.4

3.4.1

Let 0 be the Initial State or Loosing. Let 2 be the state to get 2 equal dice.

Let 3 be the state to get 3 equal dice.

$$\pi(0) = \begin{bmatrix} 20/36 & 1/36 & 15/36 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\pi(0) = (\pi_0(0), \pi_2(0), \pi_3(0)) \tag{3a}$$

$$= (20/36, 1/36, 15/36) \tag{3b}$$

3.4.2

$$\pi_2(\infty) = P(X(\infty) = 2) \tag{4a}$$

$$= P(X(\infty - 1) = 0)P(X(\infty) = 2|X(\infty - 1) = 0)$$
 (4b)

$$= 15/36 * 20/36 \tag{4c}$$

$$=25/108$$
 (4d)

3.4.3

I am not sure how to calculate this. I think it should be summing up over all $\pi_k(0)p_{ki}(n)$ but i am not sure.