МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики
Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Прикладная математика и информатика»
Профиль подготовки: «Вычислительная математика и суперкомпьютерные
технологии»

Отчет по лабораторной работе «Современные проблемы прикладной математики и информатики»

Выполнил: сту	дент группы	ы 381903-3м
		Панов А.А.
	Подпись	

1. Постановка задачи

Рассматривается задача синтеза белка. Реакция моделируется следующим дифференциальным уравнением $\dot{x}(t,\tau)=f(t,\tau)$:

$$\dot{x}(t,\tau) = \frac{\alpha}{1 + x(t-\tau)^N} - x(t) \tag{1}$$

x — концентрация белка, $x \ge 0$

 α — отвечает за синтез белка, $\alpha \geq 0$

Точка равновесия x^* находится из условия (2):

$$f(x^*) = 0 (3)$$

В точке равновесия (условие 2), выполняется равенство $x(t-\tau)=x(t)$. Подставив данное условие в (1) получим следующее (3):

$$x^{N+1} + x - \alpha = 0 \tag{3}$$

Цель работы:

- 1. Для n = 2, 4, 6 найти точку равновесия из уравнения (3) с помощью метода Ньютона.
- 2. Исследовать устойчивость точки равновесия в зависимости от τ и α .
- 3. Построить бифуркационную границу $\alpha(\tau)$.

2. Решение

$$\dot{x}(t,\tau) = \frac{\alpha}{1 + x(t-\tau)^N} - x(t)$$

Метод Ньютона был реализован в предыдущем задании. Для исследования точки равновесия x^* на устойчивость делаются следующие шаги:

1. Делается замена $\xi(t) = x(t) - x^*$:

1.1.
$$\dot{\xi}(\xi, \xi_{\tau}) = \frac{\alpha}{1 + (\xi_{\tau} + \chi^*)^N} - \xi - \chi^*$$

- 1.2. При такой замене $\dot{\xi}(0,0) = 0$
- 2. $\dot{\xi}(\xi, \xi_{\tau})$ линеаризуется в окрестности ($\xi = 0, \xi_{\tau} = 0$):

$$2.1.\ \dot{\xi}(\xi,\xi_{\tau}) \approx \dot{\xi}(0,0) + \xi \xi_{t,\xi}^{"}(0,0) + \xi_{\tau} \xi_{t,\xi_{\tau}}^{"}(0,0) = \xi \xi_{t,\xi}^{"}(0,0) + \xi_{\tau} \xi_{t,\xi_{\tau}}^{"}(0,0)$$

2.2.
$$d(\frac{\alpha}{1+(\xi_{\tau}+x^*)^N}-\xi-x^*)=\frac{-\alpha nx^{*n-1}}{(1+(\xi_{\tau}+x^*)^N)^2}d\xi_{\tau}-d\xi$$

$$2.3. \ \dot{\xi}(0,0) \approx \frac{-\alpha n x^{*n-1}}{(1+x^{*N})^2} \xi_{\tau} - \xi = \lambda \xi_{\tau} - \xi, \lambda = \frac{-\alpha n x^{*n-1}}{(1+x^{*N})^2} = \frac{-n x^{*n+1}}{\alpha}$$

3. Рассмотрим решение вида $\xi = e^{st}$:

3.1.
$$se^{st} = \lambda e^{s(t-\tau)} - e^{st}$$
 – сократим на e^{st}

3.2.
$$s = \lambda e^{-s\tau} - 1$$

4.
$$s = \tilde{\alpha} + i\tilde{\beta}$$

Так как решение $\xi = e^{st}$, вещественная часть s должна быть меньше нуля

- 4.1. $\tilde{\alpha} > 0$ точка равновесия неустойчива
- 4.2. $\tilde{\alpha} < 0$ точка равновесия устойчива
- 4.3. $\tilde{\alpha} = 0$ точка равновесия меняет устойчивость
- 5. Найдем при каких условиях точка равновесия меняет устойчивость (подставим $\tilde{\alpha}=0$):

5.1.
$$i \tilde{\beta} = \lambda e^{-i \tilde{\beta} \tau} - 1 = \lambda \left(\cos \tilde{\beta} \tau - i \sin \tilde{\beta} \tau \right) - 1$$
 (по формуле Эйлера)

5.2.
$$\begin{cases} \lambda \cos \tilde{\beta} \tau = 1 \\ \lambda \sin \tilde{\beta} \tau = -\tilde{\beta} \end{cases}$$

5.3.
$$\lambda^2 = 1 + \tilde{\beta}^2$$

5.4. $abs(\tilde{\beta}) = \sqrt{\lambda^2 - 1}$, если $\lambda^2 - 1 < 0$, то биффуркцационная граница ∄

5.5.
$$au = abs\left(\frac{1}{\widetilde{\beta}}\arccos\frac{1}{\lambda}\right) = \frac{1}{\sqrt{\lambda^2-1}}abs\left(\arccos\frac{1}{\lambda}\right)$$
, так как $au \geq 0$

3. Вывод

Для n = 2,4,6 и α от 0 до 80 были построены следующие бифуркационные границы:

При $\alpha=0$ линеаризованная система упрощается до $\dot{\xi}=-\xi$, в таком случае состояние равновесия устойчиво; при $\tau=0$ система вырождается в систему «без запаздывания», для которой состояние равновесия также устойчиво.

Кривая $\alpha = \alpha(\tau)$ делит пространство на две подобласти: область устойчивости и неустойчивости. Т.к. при $\alpha = 0$ состояние равновесия устойчиво, то **область устойчивости** находится слева и под кривой $\alpha(\tau)$. Если же значение τ больше $\frac{1}{\sqrt{\lambda^2-1}}abs$ (arccos $\frac{1}{\lambda}$), то значение $\lambda \cos \tilde{\beta} \tau$ (из системы 5.2) будет больше 1, а значит и $\tilde{\alpha} > 0$ и точка равновесия будет неустойчивой.

При достаточно малых значениях α состояние равновесия устойчиво для всех τ .