# Norwegian University of Science and Technology Department of Mathematical Sciences



Faglig kontakt under eksamen: Kristian Gjøsteen, tlf. 73 59 35 20

# EKSAMEN I SIF5023 KRYPTOGRAFI

onsdag 18. desember 2002 Kl. 9-14

Sensur: uke 2

Hjelpemidler: A

### Problem 1

We make RSA with n=31.41=1271, and  $y=e(x)=x^{23} \mod n$  is the encryption function. Write the decryption function. Find the decryption exponent.

#### Problem 2

The field F

$$F = \mathbb{Z}_2[x]/(x^3 + x + 1) = \{a_0 + a_1\alpha + a_2\alpha^2\}$$

where  $a_i \in \mathbb{Z}_2$ ,  $\alpha^3 + \alpha + 1 = 0$ , is used as the plaintext and ciphertext domain. The encryption function is given by the formula

$$z = e(y) = (\alpha^2 + 1)y + \alpha.$$

Find  $(\alpha^2 + 1)^{-1}$  in F. Write explicitly the decryption function y = d(z).

#### Problem 3

Find integers x such that

$$x \equiv 2^{37686} \mod{155},$$
  
 $x \equiv 3^{1456} \mod{65}.$ 

What such x, if any, satisfy  $0 \le x < 1000$ ?

#### Problem 4

It is known that

$$a^{3}b^{10}c^{3} + a^{2}b^{13}c^{8} \equiv 0 \mod{101}$$
$$a^{2}b^{7}c^{10} - a^{4}b^{12}c^{11} \equiv 0 \mod{101}$$

101 is a prime and c is a generator of the multiplicative group. Find logarithms:  $\log_c a, \log_c b$ .

# Problem 5

Given a prime p = 112233445543 determine if there exists x, such that

$$x^2 \equiv 22 \mod p$$

(without finding the solution itself). Explain, mention the relevant theorems.

# Problem 6

The same message (a 4-digits credit card password) was sent twice from A go B using the same El Gamal setup with p = 10007. The El Gamal cipher-texts happened to be

$$(7;30)$$
 ,  $(49;139)$ .

Find the message. Explain!

Hint:  $7 \cdot 7 = 49$ .

#### Problem 7

How many roots has the polynomial

$$f(x) = x^{134} + x^{127} + x^7 + 1$$

in  $\mathbb{F}_{2^n}$ , where n = 1463? Explain.

(Remember, the groups is cyclic and 127 + 7 = 134.)

#### Problem 8

Count the number of points on the curve

$$y^2 = (x+1)^3$$

over  $\mathbb{Z}_p$ , p = 1619. Explain how you got your answer.