Chapitre 7

Fonction Logarithme Népérien

7.1 Définition et Représentation de $x \mapsto \ln x$

Définition:

- $x \mapsto e^x$ est 1 bijection de \mathbb{R} sur \mathbb{R}_+^*
- \bullet on peut donc définir sa bijection réciproque de \mathbb{R}_+^* sur $\mathbb{R},$ notée $x\mapsto \ln x$
- par définition, on a : $y = \ln x \Leftrightarrow x = e^y$, $\forall x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}$

Remarque, exemple:

- clairement, en réfléchissant avec $x \mapsto e^x$, on a : $\ln 1 = 0$ et $\ln e = 1$
- un peu moins évident, mais tout aussi clair est : $\lim_{x\to 0^+} \ln x = -\infty$ et $\lim_{x\to +\infty} \ln x = +\infty$ en effet, en posant $x=e^y$, on obtient par exemple : $\lim_{x\to 0^+} \ln x = \lim_{e^y\to 0^+} \ln e^y = \lim_{e^y\to 0^+} y = -\infty \text{ , (la dernière affirmation grâce au graphe de } y\mapsto e^y)$

Représentation de $x \mapsto \ln x$:

- par définition, $x \mapsto \ln x$ et $x \mapsto e^x$ sont réciproques l'une de l'autre
- la représentation graphique de la fonction $x \mapsto \ln x$ est donc la même que celle $x \mapsto e^x$: il suffit de permuter les axes x et y
- bref, les 2 fonctions $x \mapsto \ln x$ et $x \mapsto e^x$ sont symétriques par rapport à la droite y = x

Propriété:

- $x \mapsto \ln x$ est strictement croissante
- $\forall a , b \in \mathbb{R}_+^*$, on a :
 - $\ln a = \ln b \Leftrightarrow a = b$
- $\ln a < 0 \Leftrightarrow a < 1$
- $\ln a = 0 \Leftrightarrow a = 1$

- $\ln a < \ln b \Leftrightarrow a < b$
- $\ln a > 0 \Leftrightarrow a > 1$
 - $\ln a = 1 \Leftrightarrow a = e$

Remarque, exemple:

- Résoudre : ln(2-2x) = 1
- Résoudre : $\ln(2x+1) < -1$

Propriétés de $x \mapsto \ln x$ 7.2

Proviété: $\forall a, b \in \mathbb{R}_+^*$, $\forall n \in \mathbb{Z}$

- relation fonctionnelle: $\ln(ab) = \ln a + \ln b$
- $\ln \frac{a}{b} = \ln a \ln b$ $\ln(a^n) = n \ln a$ $\ln \frac{1}{a} = -\ln a$ $\ln \sqrt{a} = \frac{1}{2} \ln a$

Remarque, exemple:

 $\bullet\,$ exprimer l
n 200 en fonction de l
n 2 et l
n 5

• Déterminer le plus petit entier n tq : $2^n > 10000$

• $\ln \sqrt{2x+3} = \ln(6-x) - \frac{1}{2} \ln x$

7.3 Étude de $x \mapsto \ln x$

Propriété:

• <u>Dérivée</u>: $\forall x \in \mathbb{R}_+^*$, $\left| (\ln x)' = \frac{1}{x} \right|$

• comme vu en début de cours, $\lim_{x\to 0^+} \ln x = -\infty$ et $\lim_{x\to +\infty} \ln x = +\infty$

• Limite de référence : $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

• <u>Croissance comparée</u>: $\lim_{x\to 0^+} x \ln x = 0$ et $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$

• <u>Dérivée d'1 fonction composée</u>: $(\ln u)' = \frac{u'}{u}$ <u>où</u> u est 1 fonction strictement positive

Remarque, exemple:

• il faut s'entraîner à démontrer ces différentes propriétés

• voici le tableau de variations de la fonction $x \mapsto \ln x$ ainsi que son graphe :

 $T^{ale} S - Math 13.net$ 2019 - 2020

• étudier $f(x) = \ln(1+x^2)$

• étudier $g(x) = x^2 - 4x - 4 \ln x$

•
$$(u_n)$$
 tq : $\forall n \leq 1$, $u_n = (1 + \frac{1}{n})^n$

- mq $\lim_{n \to +\infty} u_n = e$
- mq (u_n) est croissante
- que fait l'algorithme ci-dessous? retrouver (en le programmant) les résultats affichés par Python
- que pensez-vous de la vitesse de CV de la suite?

```
from math import *
u,k = 2,1
while abs(u-exp(1))>0.001:
    k+=1
    u=(1+1/k)**k
print("rang :",k)
print("U_n :",u)
rang: 1359
U_n: 2.7172823988811725
```

 $T^{ale} S$ - Math13.net

7.4 Logarithme Décimal

Définition - Propriété :

 \bullet on appelle $\underline{\textit{logarithme d\'ecimal}}$ la fonction :

$$\forall x \in \mathbb{R}_+^* , \boxed{\log x = \ln_{10} x = \frac{\ln x}{\ln 10}}$$

- on dit aussi *logarithme en base 10* très utile en physique / chimie
- comme $\ln 10 \simeq 2.3$, la courbe de $x \mapsto \log x$ est la même que celle de $x \mapsto \ln x$ en "écrasée"

Remarque, exemple:

- quel est le nombre de chiffre de 2017^{2017} ?
- une très belle application du logarithme décimal en probabilité est la loi de Benford (traité partie : simulation en TS) et que nous verrons en DM si nous en avons le temps ...

7.5 Bac Type 2017

7.5.1 Amérique du Sud 2017

La chocolaterie Delmas décide de commercialiser de nouvelles confiseries : des palets au chocolat en forme de goutte d'eau. Pour cela, elle doit fabriquer des moules sur mesure qui doivent répondre à la contrainte suivante : pour que cette gamme de bonbons soit rentable, la chocolaterie doit pouvoir en fabriquer au moins 80 avec 1 litre de pâte liquide au chocolat.

Partie A: modélisation par une fonction

Partie A: modélisation par une fonction

Le demi contour de la face supérieure du palet sera modélisé par une portion de la courbe de la fonction f définie sur]0; $+\infty[$ par :

$$f(x) = \frac{x^2-2x-2-3\ln x}{x}.$$

La représentation graphique de la fonction f est donnée ci-dessous.

 $T^{ale} S - Math 13.net$ 2019 - 2020

Le repère est orthogonal d'unité 2 cm en abscisses et 1 cm en ordonnées.

Soit φ la fonction définie sur]0; +∞[par :

$$\varphi(x) = x^2 - 1 + 3\ln x.$$

- a. Calculer $\varphi(1)$ et la limite de φ en 0.
- **b.** Étudier les variations de φ sur]0; $+\infty[$. En déduire le signe de $\varphi(x)$ selon les valeurs de x.
- 2. a. Calculer les limites de f aux bornes de son ensemble de définition.
 - **b.** Montrer que sur]0; $+\infty[:f'(x) = \frac{\varphi(x)}{x^2}$. En déduire le tableau de variation de f.
 - c. Prouver que l'équation f(x) = 0 admet une unique solution α sur]0; 1]. Déterminer à la calculatrice une valeur approchée de α à 10⁻² près. On admettra que l'équation f(x) = 0 a également une unique solution β sur [1; +∞[avec β ≈ 3,61 à 10⁻² près.
 - **d.** Soit F la fonction définie sur]0; $+\infty[$ par :

$$F(x) = \frac{1}{2}x^2 - 2x - 2\ln x - \frac{3}{2}(\ln x)^2.$$

Montrer que F est une primitive de f sur]0; $+\infty[$.

Partie B: résolution du problème

Dans cette partie, les calculs seront effectués avec les valeurs approchées à 10^{-2} près de α et β de la partie A.

Pour obtenir la forme de la goutte, on considère la courbe représentative C de la fonction f restreinte à l'intervalle [α ; β] ainsi que son symétrique C' par rapport à l'axe des abscisses.

Les deux courbes C et C' délimitent la face supérieure du palet. Pour des raisons esthétiques, le chocolatier aimerait que ses palets aient une épaisseur de 0,5 cm. Dans ces conditions, la contrainte de rentabilité serait-elle respectée?

 $T^{ale} S$ - Math13.net

7.5.2 Antilles - Guyane 2017

Dans tout l'exercice, n désigne un entier naturel strictement positif. Le but de l'exercice est d'étudier l'équation

$$(E_n): \qquad \frac{\ln(x)}{x} = \frac{1}{n}$$

ayant pour inconnue le nombre réel strictement positif x.

Partie A

Soit la fonction f définie et dérivable sur $[1; +\infty[$ telle que, pour tout nombre réel x supérieur ou égal à 1,

$$f(x) = \frac{1}{x} \ln(x).$$

On note \mathscr{C} la courbe représentative de f dans un repère orthonormé.

- 1. Démontrer que la courbe & admet une asymptote horizontale.
- **2.** Déterminer la fonction dérivée f' de la fonction f sur $[1; +\infty[$.
- 3. Étudier les variations de la fonction f sur $[1; +\infty[$.

Partie B

On considère la suite (u_n) définie par

$$u_n = \int_1^2 \frac{1}{x^{n+1}} \ln(x) dx$$
 pour tout entier naturel n .

1. Démontrer que $u_0 = \frac{1}{2}[\ln(2)]^2$.

Interpréter graphiquement ce résultat.

 Prouver que, pour tout entier naturel n et pour tout nombre réel x de l'intervalle [1; 2], on a

$$0\leqslant \frac{1}{x^{n+1}}\ln(x)\leqslant \frac{1}{x^{n+1}}\ln(2).$$

3. En déduire que, pour tout entier naturel 1 n, on a

$$0 \leqslant u_n \leqslant \frac{\ln(2)}{n} \left(1 - \frac{1}{2^n}\right).$$

4. Déterminer la limite de la suite (un).