Teoria grafów — podstawy

dr inż. Bartłomiej Pawlik

9 września 2024

Przykład 1

Rozpatrzmy parę zbiorów:

$$\begin{split} V(G) &= \{1, 2, 3, 4, 5, 6\}, \\ E(G) &= \Big\{\{1, 2\}, \ \{1, 4\}, \ \{1, 5\}, \{2, 3\}, \ \{2, 5\}, \ \{3, 4\}, \ \{3, 5\}, \ \{5, 6\}\Big\}. \end{split}$$

Jak można przedstawić graficznie te zbiory? Przykładowa reprezentacja to:

Grafem nazywamy parę zbiorów $G = \big(V(G), E(G)\big)$, gdzie V(G) to **zbiór** wierzchołków, a E(G) (**zbiór krawędzi**) to zbiór nieuporządkowanych par elementów zbioru V(G).

Parę zbiorów spełniającą powyższą definicję nazywa się niekiedy **grafem** nieskierowanym.

Definicja

- ullet Rzędem grafu G nazywamy liczbę jego wierzchołków |V(G)|.
- ullet Rozmiarem grafu G nazywamy liczbę jego krawędzi |E(G)|.
- Wierzchołki x i y nazywamy **końcami krawędzi** $\{x,y\}$.
- Krawędź $\{x, x\}$ nazywamy **pętlą**.

Przykład

Rząd grafu G z przykładu 1 wynosi 6, a jego rozmiar to 8.

Oznaczenie

Rząd grafu oznaczamy przez n, a jego rozmiar przez m. Krawędź $\{u,v\}$ będziemy często zapisywać w postaci uv.

Definicja

B. Pawlik

Dany jest graf G i wierzchołki $u, v, w \in V(G)$.

- ullet Jeżeli $uv\in E(G)$, to u nazywamy **wierzchołkiem sąsiednim** do v i do krawędzi uv. Krawędź uv nazywamy **krawędzią sąsiednią** do wierzchołka u i do wierzchołka v.
- ullet Jeżeli $uv,vw\in E(G)$, to uv jest **krawędzią sąsiednią** do krawędzi vw.

Na powyższym rysunku przedstawiono fragment grafu, w którym

- ullet wierzchołki u i v są sąsiednie, bo istnieje krawędź uv,
- ullet wierzchołki v i w są sąsiednie, bo istnieje krawędź vw,
- ullet wierzchołki u i w nie są sąsiednie, bo nie istnieje krawędź uw,
 - krawędzie uv i vw są sąsiednie, bo mają wspólny wierzchołek v . \Longrightarrow

9 września 2024

Rysunek grafu to jego reprezentacja graficzna. Zwyczajowo, wierzchołki zaznacza się punktami, a krawędzie - odcinkami między punktami.

Uwaga!

W tym wykładzie rozważamy wyłącznie grafy **skończone**, czyli grafy mające skończone rzędy i rozmiary.

Multigrafem (grafem z krawędziami wielokrotnymi) nazywamy graf, w którym krawędzie mogą się powtarzać (E(G) jest multizbiorem).

Grafem prostym nazywamy graf nie zawierający pętli ani krawędzi wielokrotnych.

Stwierdzenie

Jeżeli G jest grafem prostym, to

$$0 \leqslant |E(G)| \leqslant {|V(G)| \choose 2}.$$

- Jeżeli |E(G)| = 0, to G nazywamy grafem pustym.
- ullet Jeżeli $|E(G)|=inom{|V(G)|}{2}$, to G nazywamy grafem pełnym (kliką).

Stopniem $\deg v$ wierzchołka v w grafie G nazywamy liczbę krawędzi sąsiednich z v (pętle liczą się dwukrotnie).

Przykład

Stopnie wierzchołków grafu G z przykładu 1 wynoszą

$$\deg(1) = 3,$$

$$\deg(2) = 3,$$

$$\deg(3) = 3,$$

$$deg(4) = 2$$
,

$$\deg(5) = 4,$$

$$\deg(6) = 1.$$

• Minimalnym stopniem $\delta(G)$ grafu G nazywamy najmniejszy ze stopni wierzchołków w grafie G:

$$\delta(G) = \min_{v \in V(G)} \deg v.$$

• Maksymalnym stopniem $\Delta(G)$ grafu G nazywamy największy ze stopni wierzchołków w grafie G:

$$\Delta(G) = \max_{v \in V(G)} \deg v.$$

Zauważmy, że jeśli v jest wierzchołkiem grafu G, to

$$0 \leqslant \delta(G) \leqslant \deg v \leqslant \Delta(G) \leqslant n - 1.$$

Przykład

Minimalne i maksymalne stopnie wierzchołków grafu G z przykładu 1 wynoszą

$$\delta(G) = 1$$
 oraz $\Delta(G) = 4$.

Podstawowe twierdzenie teorii grafów (L. Euler, 1736)

Suma stopni wszystkich wierzchołków skończonego grafu prostego G jest dwa razy większa od liczby jego krawędzi:

$$\sum_{v \in V(G)} \deg v = 2 \cdot |E(G)|.$$

Dowód.

Niech G będzie skończonym grafem prostym. Niech S oznacza liczbę wszystkich par (v,e), gdzie $v \in V(G)$ oraz $e \in E(G)$ takich, że wierzchołek v przylega do krawędzi e.

- Liczba krawędzi do których przylega ustalony wierzchołek v wynosi $\deg v$, więc $S = \sum_{v \in V(G)} \deg v$.
- Z drugiej strony do każdej krawędzi przylegają dokładnie dwa różne wierzchołki, więc $S=2\cdot |E(G)|$, co kończy dowód.

Powyższy (zaproponowany przez Eulera) dowód stanowi przykład jednej z podstawowych kombinatorycznych metod dowodzenia równości, tzw. double counting proof.

Twierdzenie 1

Jeżeli graf prosty G ma co najmniej dwa wierzchołki, to ma co najmniej jedną parę wierzchołków tego samego stopnia.

Dowód.

Niech n będzie liczbą wierzchołków grafu G. Załóżmy niewprost, że każdy wierzchołek ma inny stopień. Jedyną możliwością jest, aby ciąg stopni wierzchołków wyglądał następująco:

$$0, 1, 2, \ldots, n-1.$$

Zatem istnieje wierzchołek, który nie jest połączony krawędzią z żadnym innym wierzchołkiem (stopień 0) oraz wierzchołek połączony krawędzią z każdym innym wierzchołkiem (stopień n-1). Te dwa wierzchołki nie są połączone krawędzią (0) i są połączone krawędzią (n-1) - sprzeczność.

Uwaga!

Podstawowe twierdzenie teorii grafów jest często nazywane Lematem o uściskach dłoni. Pierwsza nazwa służy podkreśleniu fundamentalnego charakteru wyniku, druga — wskazująca na bardzo naturalną interpretację (poniżej) — była stosowana przez Leonharda Eulera.

Poglądowe ujęcie powyższych twierdzeń:

- Lemat o uściskach dłoni
 - Dla dowolnej grupy osób witających się uściskiem dłoni, sumaryczna liczba wymienionych uścisków jest parzysta.
 - Twierdzenie 1
 - Wśród n osób, które ściskały między sobą dłonie, istnieje para osób które wykonały tyle samo uścisków.

Macierz sąsiedztwa grafu G to macierz $A_G=[a_{ij}]$, w której a_{ij} określa liczbę krawędzi od i-tego do j-tego wierzchołka.

Oczywiście w przypadku grafu prostego macierz A_G jest symetryczna i jej elementami wyłącznie liczby 0 i 1.

Stwierdzenie

Niech A_G będzie macierzą sąsiedztwa grafu G. Wtedy dla dowolnego $n\in\mathbb{N}$ mamy $(A_G)^n=[t_{ij}]$, gdzie t_{ij} oznacza liczbę różnych dróg długości n od i-tego do j-tego wierzchołka.

Macierz incydencji grafu G to macierz $B_G = [b_{ij}]$, w której

$$B_{ij} = \left\{ \begin{array}{ll} 1, & \text{gdy wierzchołek } v_i \text{ jest końcem krawędzi } e_j \\ 0, & \text{gdy wierzchołek } v_i \text{ nie jest końcem krawędzi } e_j \end{array} \right.$$

Wniosek

- ullet Suma elementów w i-tym wierszu macierzy incydencji grafu G wynosi $\deg v_i.$
- ullet Suma elementów w j-tej kolumnie macierzy incydencji grafu G wynosi 2.

Graf H nazywamy **podgrafem** grafu G, jeżeli $V(H) \subset V(G)$ oraz $E(H) \subset E(G)$. Mówimy też, że graf G jest **nadgrafem** grafu H.

Często będziemy stosować następujące oznaczenia:

Niech G będzie grafem i niech $v \in V(G)$ oraz $e \in E(G)$.

- \bullet Przez G-e oznaczamy podgraf grafu G otrzymany przez usunięcie krawędzi e.
- ullet Przez G-v oznaczamy podgraf grafu G otrzymany przez usunięcie wierzchołka v i wszystkich krawędzi do niego sąsiednich.

Definicja

Podgraf H grafu G nazywamy **podgrafem indukowanym przez zbiór wierzchołków** $W\subset V(G)$, jeżeli W=V(H) oraz H zawiera wszystkie krawędzie grafu G łączące wierzchołki ze zbioru W.

Niech G = (V(G), E(G)) będzie grafem.

- **Drogą** nazywamy ciąg wierzchołków (v_1,v_2,\ldots,v_n) w grafie G taki, że $v_iv_{i+1}\in E(G)$ dla każdego $1\leqslant i\leqslant n-1$.
- Ścieżką nazywamy drogę w której każdy wierzchołek występuje co najwyżej jeden raz.
- Cyklem nazywamy drogę w której $v_1=v_n$ oraz wszystkie pozostałe wierzchołki występują co najwyżej jeden raz.
- Cyklem niewłaściwym nazywamy drogę w której $v_1=v_n$.
- ullet Graf G jest **spójny**, gdy dla każdej pary jego wierzchołków istnieje ścieżka zawierająca te wierzchołki.
- Maksymalny (w sensie zawierania) podgraf spójny danego grafu nazywamy składową spójności.

Izomorfizm grafów

Przykład

Czy można uznać poniższe rysunki za dwie różne reprezentacje graficzne tego samego grafu?

Tak!

Funkcję $f:V(G) \to V(H)$ nazywamy **izomorfizmem** grafów G i H, jeżeli f jest bijekcją zachowującą sąsiedztwo wierzchołków. Grafy G i H nazywamy **izomorficznymi**, gdy istnieje izomorfizm f między tymi grafami i oznaczamy to przez $G\cong H$.

- ullet Jeżeli G i H są grafami ważonymi, to f zachowuje również wagi krawędzi.
- ullet Jeżeli G i H są multigrafami, to f zachowuje również liczbę krawędzi między danymi wierzchołkami.

Niektóre niezmienniki izomorfizmów

- rząd
- rozmiar
- liczba wierzchołków danego stopnia
- liczba składowych spójności
- liczba pętli i krawędzi wielokrotnych
- liczba cykli danej długości
- liczba ścieżek

Uwaga!

Powyższe niezmienniki stanowią warunki konieczne, ale niewystarczające dla istnienia izomorfizmu.

Przykład

Wszystkie z dokładnością do izomorfizmu grafy proste rzędu 4.

Graf pusty E_n

$$V(E_n) = \{1, 2, \dots, n\},$$

$$E(E_n) = \emptyset.$$

Graf pełny (klika) K_n

$$V(K_n) = \{1, 2, \dots, n\},\ E(K_n) = \{\{i, j\} : i, j \in V(K_n), i \neq j\}.$$

Ścieżka P_n

$$V(P_n) = \{1, 2, \dots, n\},\$$

$$E(P_n) = \{\{i, i+1\} : i \in \{1, 2, \dots, n-1\}\}.$$

Cykl C_n (dla $n \geqslant 3$)

$$V(C_n) = \{1, 2, \dots, n\},\$$

$$E(C_n) = \{\{i, j\} : i, j \in V(C_n), |i - j| \equiv_n 1\}.$$

Graf pełny dwudzielny $K_{m,n}$

Graf w którym zbiór wierzchołków można podzielić na dwa rozłączne podzbiory V_1, V_2 takie, że

$$E(K_{m,n}) = \big\{ \{i,j\}: i \in V_1, j \in V_2 \big\}.$$

K_{18,18}
A. Kircher (1669)
Ars Magna Sciendi Sive Combinatoria

Inne

• Graf dwudzielny - graf w którym zbiór wierzchołków można podzielić na dwa rozłączne podzbiory V_1, V_2 takie, że

$$E(G) \subset \{\{i, j\} : i \in V_1, j \in V_2\}.$$

- Drzewo graf spójny nie zawierający cykli.
- Las graf nie zawierający cykli.
- ullet Graf r-regularny graf w którym stopień każdego wierzchołka wynosi r.

Definicja

Jeżeli $\deg v=1$ dla pewnego wierzchoła $v\in V(G)$, to v nazywamy liściem.

Twierdzenie

Graf G jest dwudzielny wtedy i tylko wtedy, gdy G nie zawiera cyklu nieparzystej długości.

Dowód. (1/2)

 (\Rightarrow) Jeżeli G jest grafem dwudzielnym, to $V(G)=V_1\cup V_2$, gdzie $V_1\cap V_2=\emptyset$. Niech (v_1, v_2, \dots, v_l) będzie cyklem długości l.

Załóżmy (bez straty ogólności),

 $\dot{z}e \ v_1 \in V_1$. Wtedy

- $v_2 \in V_2$.
- $v_3 \in V_1$
- $\bullet v_4 \in V_2$
- ...,
- $v_1 \in V_2$

Ogólnie $v_i \in V_1$ wtedy i tylko wtedy, gdy i jest liczbą nieparzystą. Zatem l jest liczbą parzystą.

Dowód. (2/2)

(⇐)

Zakładamy, że G nie zawiera cyklu nieparzystej długości.

Graf G jest dwudzielny wtedy i tylko wtedy, gdy każda jego składowa jest grafem dwudzielnym, więc możemy założyć, że G jest spójny.

Niech $x \in V(G)$ i niech V_1 bedzie zbiorem wierzchołków, których odległość od xjest nieparzysta i niech $V_2 = V \setminus V_1$. Nie ma krawędzi łączących dwa wierzchołki ze zbioru V_i , bo gdyby taka krawędź istniała, to G zawierałby cykl nieparzystej długości. Zatem G jest dwudzielny.

