Image-Based Rock-Climbing Simulator Artificial Intelligence Final Project

Julius Elinson

Harvey Mudd College CS 151

May 2, 2013

Rock Climbing

Rock Climbing

Problem Definition

- Routes are color-delimited
- Use any subset of designated grips to get to the top
- Difficulty determined by size, spacing and surface properties of the grips
- Climbers have to determine a path

Rock Climbing

Challenges

Rock Climbing

Challenges

- Physically-viable arrangements
- Balance forces
- Minimize muscle strain
- Path efficiency

Rock Climbing

Challenges

- Physically-viable arrangements
- Balance forces
- Minimize muscle strain
- Path efficiency

Scope Constraints

- Motion in 2D plane no overhang
- Depth correlated to grip size

Solution Specifications

Input:

- A low-resolution color photo of a rock wall
- Single pixel selection by user that maps to one of the grips in the desired route

Solution Specifications

Input:

- A low-resolution color photo of a rock wall
- Single pixel selection by user that maps to one of the grips in the desired route

Output:

- A viable path that minimizes a specified cost function
- Rendering of climber positions along the solution path
- Strain analysis

Solution Specifications

Input:

- A low-resolution color photo of a rock wall
- Single pixel selection by user that maps to one of the grips in the desired route

Output:

- A viable path that minimizes a specified cost function
- Rendering of climber positions along the solution path
- Strain analysis

Tools:

- OpenCV Library
- Qt C++ Framework

Pipeline

Pipeline

Image Processing

- Route Detection
- Grip Analysis

Pipeline

Image Processing

- Route Detection
- Grip Analysis

Heuristic Analysis

Modeling Grip Support

Pipeline

Image Processing

- Route Detection
- Grip Analysis

Heuristic Analysis

Modeling Grip Support

Physics Engine

- Modeling a Human
- Simulation Motion

Pipeline

Image Processing

- Route Detection
- Grip Analysis

Heuristic Analysis

Modeling Grip Support

Physics Engine

- Modeling a Human
- Simulation Motion

Path Search

- Starting a Route
- BFS & A*

Image Processing

Image Processing

Steps:

Convert to HSV color space

Image Processing

- Convert to HSV color space
- Threshold image by hue of user selection

Image Processing

- Convert to HSV color space
- Threshold image by hue of user selection
- Denoise image using dilation & erosion

Image Processing

- Convert to HSV color space
- Threshold image by hue of user selection
- Denoise image using dilation & erosion
- Represent grips as contour

Grip Analysis

Grip Analysis

Physical Properties:

- Area
- Perimeter

- Center of Mass
- Convexity Defects

Grip Analysis

Orientation Estimation

Grip Analysis

Orientation Estimation

Grip Heuristics

Grip Heuristics

Binary Criteria:

- Can it support a hand or just a foot?
- Can it support two limbs?

Grip Heuristics

Binary Criteria:

- Can it support a hand or just a foot?
- Can it support two limbs?

Force as a Continuous Variable:

$$F = f(a, p, d, N, \theta)$$

where a is area, p is perimeter, d are the convexity defects, N is the normal field, and θ is the angle at which the grip is grabbed.

Grip Heuristics

Binary Criteria:

- Can it support a hand or just a foot?
- Can it support two limbs?

Force as a Continuous Variable:

$$F = f(a, p, d, N, \theta)$$

where a is area, p is perimeter, d are the convexity defects, N is the normal field, and θ is the angle at which the grip is grabbed.

As an approximation,

$$F = a \cdot N[\theta] + \text{hardlim}(d) \cdot |d|.$$

Physics Engine

Modeling a Human

- 4 point mass limbs
- A center of mass, which is not necessarily the geometric center of limbs
- Limbs have minimum and maximum distances from center

Physics Engine

Modeling a Human

- 4 point mass limbs
- A center of mass, which is not necessarily the geometric center of limbs
- Limbs have minimum and maximum distances from center

Challenge is exploring possibilities for the center of mass.

Center of Mass

Center of Mass

Search

Constraints

- Move one limb at a time
- Configuration should be reasonable
- Analyze forces and ensure the grips can support the climber

Search

Constraints

- Move one limb at a time
- Configuration should be reasonable
- Analyze forces and ensure the grips can support the climber

Exploration

- Allow limbs to be on no grips or to share
- Assign strain for each move and for distance of the move
- Cost function to minimize strain and maximize height

Search

Constraints

- Move one limb at a time
- Configuration should be reasonable
- Analyze forces and ensure the grips can support the climber

Exploration

- Allow limbs to be on no grips or to share
- Assign strain for each move and for distance of the move
- Cost function to minimize strain and maximize height

Starting

- Search permutations of 4 lowest grips for viable position
- Search higher if necessary, provided it can be reached from the ground

Progress

Progress

Image Processing

- Route Detection
- Grip Analysis

Heuristic Analysis

Modeling Grip Support

Physics Engine

- Modeling a Human
- Simulation Motion

Path Search

- Starting a Route
- BFS & A*