Architecture des Ordinateurs (AO)

Akli ABBAS

Université Akli Mohand Oulhadj - Bouira Département d'Informatique 2ème année - Licence informatique 2018 - 2019

Email: abbasakli@gmail.com

Disponible sur:

https://sites.google.com/a/esi.dz/a-abbas/

Contenu de la matière

- f 0 Chapitre f 1 : Organisation générale de l'unité centrale d'un Ordinateur
 - Généralités sur l'Ordinateur
 - Architecture de Base :
 Le modèle de Harvard et de Von Neumann, Processeur, Mémoire et Bus
- Chapitre 2 : Architecture Interne des Processeurs
 - Introduction
 - Les Registres
 - Unité Arithmétique et Logique (UAL)
 - Unité de Commande (U.C)
 - Jeu d'instruction
 - Mode d'adressage
 - Étapes d'exécution d'un instruction
- Ochapitre 3 : Étude des cas : Processeur 80x86
- Chapitre 4 : Architectures des processeurs récents

Objectifs

- Comprendre l'architecture d'une machine von newman.
- Comprendre les étapes de déroulement de l'exécution d'une instruction.
- Comprendre le principe des différents modes d'adressage.

Les prérequis

Représentation des nombres

- Système de numérique (base 10, base 2, base 8, Base 16)
- Le système binaire
- Organisation des donnée (Bit, octets, Mot)
- Système hexadécimal
- Opération arithmétique sur le bit
- Opération logique sur les bit

Algèbre de Boole

- Fonction booléenne et table de vérité
- Manipulation algébrique et expression booléenne
- Formes canonique
- Simplification des fonctions booléenne
- ...

Chapitre 1

Organisation générale de l'unité centrale d'un Ordinateur

- Généralités sur l'Ordinateur
- Architecture de Base :
 - Le modèle de Harvard et de Von Neumann, Processeur, Mémoire et Bus

Qu'est ce qu'un programme?

• Un programme est un ensemble d'instructions exécutées dans un ordre bien déterminé.

Un programme est généralement écrit dans un langage évolué (Pascal,

- Un programme est exécuté par un processeur (machine).
- C, VB, Java, etc.).
- Les instructions qui constituent un programme peuvent être classifiées en 4 catégories :
 - Les Instructions d'affectations : permet de faire le transfert des données
 - Les instructions arithmétiques et logiques.
 - Les Instructions de branchement (conditionnelle et inconditionnelle)
 - Les Instructions d'entrées sorties.

- Un **programme** écrit dans un **langage de haut niveau** (Pascal, C...) doit être traduit dans le **langage de la machine** pour d'être exécuté par le processeur.
- Langage machine :

Est la suite de bits qui est interprétée (compréhensible) par le processeur. C'est le seul langage que le processeur puisse traiter. Il est composé d'instructions et de données **codées en binaire**. (Ex. 10110000 01100001)

Problème : le langage machine est difficile à comprendre par l'humain.

Idée : trouver un langage compréhensible par l'homme qui sera ensuite converti en langage machine \mapsto **Langage d'assemblage**

langage assembleur :exprimer les instructions élémentaires (binaire) de façon symbolique. Il représente le langage machine sous une forme lisible par un humain. (Ex. mov 61)

Une instruction assembleur = une instruction machine

Exemple : $10110000 \ 01100001$ (instruction machine) = mov 61 (instruction assembleur)

Comment s'exécute un programme dans la machine?

- Pour comprendre le mécanisme d'exécution d'un programme ⇒ il faut comprendre le mécanisme de l'exécution d'une instruction .
- Pour comprendre le mécanisme de l'exécution d'une instruction ⇒ il faut connaître l'architecture de la machine (processeur) sur la quelle va s'exécuter cette instruction.

que veut-on dire par architecture?

L'architecture d'un système représente l'organisation de ses différentes composantes et de leurs interconnexions.

Deux types d'architecture d'ordinateur :

- Le Modèle de Harvard
- 2 Le Modèle de Von Neumann

Le Modèle de Harvard (1944)

L'architecture de type **Harvard** est une conception qui sépare physiquement la **mémoire de données** et la **mémoire programme**. L'accès à chacune des deux mémoires s'effectue via deux bus distincts.

- Séparation des mémoires programme et données
 - Un bus de données programme,
 - Un bus de données pour les données,
 - Un bus d'adresse programme,
 - Un bus d'adresse pour les données.
- Meilleure utilisation du CPU :
- Chargement du programme et des données en parallèle

Le Modèle de Von Neumann (1946)

L'architecture **Von Neumann** est la base des architectures des ordinateurs et elle est composée : d'un **processeur (CPU)**, d'une **mémoire principale** et d'un **dispositifs d'entrées sorties** pour communiquer avec l'extérieur.

- Un seul chemin (bus) d'accès à la mémoire;
 - Un bus de données (programme et données),
 - Un bus d'adresse (programme et données)
- 2 Limite l'accès à la mémoire.
- Architecture des processeurs d'usage général;

Le processeur

- Le processeur, parfois appelé CPU (Central Processing Unit) est un circuit électronique qui est divisé en deux parties :
 - **Unité de commande (U.C)** est responsable de la lecture en mémoire et du décodage des instructions machine;
 - Unité de traitement, appelée aussi Unité Arithmétique et Logique (U.A.L.), exécute les instructions machine qui manipulent les données.
- Pour chaque instruction machine, le processeur effectue schématiquement les opérations suivantes :
 - 1 lire en mémoire l'instruction à exécuter;
 - effectuer le traitement correspondant;
 - passer à l'instruction suivante.

La mémoire principale

- La mémoire principale (MP) permet de stocker les informations (instructions et données).
- Les différentes informations que l'on trouve dans la mémoire principale :

• Toute information manipulée par le processeur est sous forme binaire.

Structure de la mémoire principale

• La mémoire est divisée en emplacements de taille fixe (en général 1 octet = 8 bits) utilisés pour stocker instructions et données.

 Dans une mémoire de taille N, on a N emplacements mémoires, numérotés de 0 à N-1. Chaque emplacement est repéré par son numéro, appelé adresse.

Structure de la mémoire principale (2)

• La capacité (taille) de la mémoire est le nombre d'emplacements, exprimé en général en kilo-octets ou en méga-octets, voire plus.

1 K (Kilo)	2^{10}	= 1024
1 M (Méga)	2^{20}	= 1048 576
1 G (Giga)	2^{30}	= 1 073 741 824
1 T (Téra)	2^{40}	= 1 099 511 627 776

- Deux opérations sont possibles sur la mémoire :
 - **Écriture** : le processeur fournit une valeur et une adresse, et la mémoire range la valeur à l'emplacement indiqué par l'adresse ;
 - Lecture : le processeur demande à la mémoire la valeur contenue à l'emplacement dont il indique l'adresse. Le contenu de l'emplacement lu reste inchangé.

Unité de transfere entre la mémoire et le processeur

- Les opérations de lecture et d'écriture portent en général sur plusieurs octets contigus en mémoire : un **mot** mémoire.
- La taille d'un mot mémoire dépend du type de processeur :
 - 1 octet dans les processeurs 8 bits (ex. Motorola 6502);
 - 2 octets dans les processeurs 16 bits (ex. Intel 8086);
 - 4 octets dans les processeurs 32 bits (ex. Intel 80486 ou Motorola 68030).
 - 8 octets dans les processeurs 64 bits (ex. Les Itanium d'Intel, AMD64 de AMD ou Intel 64 d'Intel)

Les différents type de mémoire

RAM = mémoire vive = mémoire système = mémoire volatile

- rapidité d'accès : essentielle pour fournir rapidement les données au processeur.
- **volatilité** : les données sont perdues d'es que l'ordinateur cesse d'être alimenté en électricité.
- SRAM (Static RAM) :
 - 1 utilise des bascules pour mémoriser l'info;
 - 2 très rapide mais coûteuse en composants;
 - 3 temps d'accès : de l'ordre de 1 ns;
 - utilisée pour le cache, par exemple.
- DRAM (Dynamic RAM) :
 - utilise des charges de condensateurs (plus économique);
 - 2 moins rapide que la SRAM, nécessite des rafraîchissements;
 - 3 temps d'accès : de l'ordre de 10 ns;
 - utilisée pour la mémoire principale.

Bus

- Les informations échangées entre composants de l'ordinateur circulent sur des **bus**.
- **Bus** : est un ensembles de *n* fils parallèles servant à relier un ou plusieurs composants de l'ordinateur et à transporter *n* signaux binaires.
- **Objectif** : réduire le nombre de voies nécessaires à la communication des différents composants.

Bus

Caractéristiques :

- Largeur : nombre de lignes physiques sur lesquelles les données sont envoyées = nombre de bits transmis en parallèle.
- **Fréquence (en Hz)** : nombre de paquets de données envoyés ou reçus par seconde.
- Débit maximal (ou taux de transfert maximal, bande passante) :
 quantité de données transportées par unité de temps :
 Débit maximal (en Mo/s) = largeur du bus (en octets) x fréquence (en Hz).

Exemple

Largeur 2 octets et fréquence 133 MHz ⇒ 266 Mo/s

Bus

■ Type : Il existe trois types de bus : de données, d'adresses et de commande (ou de contrôle).

Bus de données

- Le bus de données est un bus bidirectionnel(←→) permettant de transférer l'information entre les différents composants (Ex. entre la mémoire et le CPU).
- L'information peut être :
 - Une instruction à exécuter par le processeur (mémoire → CPU)
 - Donnée stockée en mémoire (mémoire → CPU)
 - lacktriangle Donnée produite par un traitement du processeur (CPU \longrightarrow mémoire).

La largeur de bus de données détermine la taille des mots mémoires auxquels on peut accéder.

Exemple

Le bus de données a une largeur de 16 fils \Rightarrow les mots mémoires accessibles (ou modifiables) ont 16 bits.

Bus d'adresses

- Le bus d'adresse est un bus unidirectionnel (→); seul le processeur envoie des adresses.
- La largeur de bus d'adresses détermine la taille de la mémoires (le nombre d'emplacements). S'il est compose de n fils \Rightarrow On utilise donc des adresses de n bits \Rightarrow La mémoire peut posséder au maximum 2^n emplacements (adresses 0 à 2^{n-1}).

Bus d'adresses

Exercice

Quel est le nombre minimal des fils nécessaire pour adresser cette mémoire?

Bus d'adresse

Mémoire Principale			
		0	123
		1	211
	пr	2	12
	Décodeur	3	65
	éco	4	98
	Ď	5	120
		6	128
		_	0.01

Solution

- 0 à 7 emplacements \Rightarrow 8 emplacements
- $8 = 2^3 \Rightarrow 3$ fils sont nécessaires

Bus d'adresses

Exercice

Supposant que le processeur veut lire le 5ème emplacement (12), Quel sera le contenu du bus d'adresse ainsi que le bus de données?

Bus de commande

- C'est par ce bus que le microprocesseur indique la nature des opérations qu'il veut effectuer.
- Dans notre exemple il a une largeur d'un fil et donc le microprocesseur ne peut passer que deux commandes (la lecture et l'écriture)