	Méthodes de point fire	
G Rayelson Navlon pour	•	
	$\begin{cases} co \in [a,b] \\ e = \begin{cases} (e & m > 1 \end{cases} \end{cases}$	avec f(re) = re - f(re)
Rem: $f(x) = 2c$		=> - \frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\
restrun pointfire de f	$\Rightarrow \varphi(2) = 0$	re est un zéro de q
		. ^

Def: rec [a.b] est un point fixe de f & f(re) = re rec [a;b] est un zero de p & f(re) = 0

Pour Newton, les points fixes de f sont les géres de q
Th: soit fune fonction continue sur [a; b] et (rem) mein la sente définie par fro G [a; b] (rem) mein neiro nezi
(ren) men la sente définie par [xo G [a; b] (ren) men la sente définie par [xo G [a; b] (ren) men la sente définie par [xo G [a; b]]
Si (rem) converge vers P alors P = g(l)
Rem: La traduction: si fest continue, la Cimite est foncement un point fire de f
La Onne dit pur que la suite conveye (ni même qu'elle existe)
Le prouve que si Newton converge, alors la limite est un gerocle p
Idee des mélhodes de point fixe: shouver f dont les points fixes
Idee des méthodes de point fixe: houver of dont les points fixes sont les zoros ele qu'elle oformer (ven) et montrer qu'elle converse

je continue can polynôme

3 une solution à y(v) = 0 dans [v;1] (on moins une) $(p 2^{3} + 22^{2} - 1 = 0 =) 22^{2} = 1 - 2^{3} =) 2^{2} = 1 - 2^{3}$ or $\forall re \in [0,1]$; $1-r^2 > 0$, donc $re = \sqrt{1-r^2}$ Ly On pose $g: [0,1] \rightarrow \mathbb{R}$ $ne \mapsto \sqrt{1-re^3}$ ed on a {(v) = re => y(v) = 0 ie les points firer de f sont les zorus de q 6 On pourrait aussi poser f(re) = re3 + 2re2-1+re

On forme la suite ne 40, m40 tant que Vrai faire

mant

ne a sqrt ((1-nexx3)/2)

affishe m, re

fin tantque Sorlie: 0,0.7071 0.56853 La suite semble conveyer 0.63884 0.60798 & mais pas thes vite 0.62260 0.61510 0.61902 0.61758 0.61825 0.61794 0.61808

Kem 6 No =0 $\frac{1-2e_{n-1}^{3}}{n} = \frac{1-2e_{n-1}^{3}}{n} = 1$ L'edistence de la suite neut pas gonontie re c [0:1] Pence [0:1] Co Le programme peut planter d'une certaine étération Le Il fant de la stabilité Def: Soit f: Dp > 1R et [a;b] C Dg On dit que [a;b] est stuble pour { => f([a,b]) = [a,b]

4 Pan l'ecture du TV:

$$\begin{array}{lll}
Ly & f(\Sigma-1;iJ) = [U,iJ] \subseteq [-1,iJ] & [-1,iJ] & dable par f \\
Ly & f(\Sigma-1;oJ) = [U,iJ] \times [-1,iJ] & [-1,iJ] & dable par f \\
Ly & f(\Sigma,iJ) = [U,iJ] \subseteq [O,iJ] & [U,iJ] & dable par f
\end{array}$$

4 Par lecture gruphique: le gruphe de f doit être contenu dans le carré [a;b] x [a;b]

Prop: Ai f'est continue sen [a;b]
. [a,b] stuble par f
alors, ilexiste (au moins) en point fixe de f dans [a;b]

ic: toute fonction continue sur en interalle stable admet un point fixe dans cet intervalle

Un thoronne de convergence avec viteste gelométrique

Soit of continue sur l'intervalle [u;to]

Laborable par f

gélérirable sur Ja;to[

(ren) la surte

[reve [a;to]

ren = f(ren) n > 1

Theoreme: Si & re & Ju, b [| f (re) | \le le avec le \(\) I

alors up f admet un unique point fire ret (uniatt)

(s la soute (ren) conveye vers ret (conveyene)

(s \(\text{Ym} \in \text{N}, \) \| \(\text{N} \in \text{N}, \) \| \(\text{N} \)

la existere déjà conne. On rajoute l'unicité giûce à l'hypothèse 1f'(v) (1 Kom Les fa 3 ere conclusion implique la cloudième par la sente géométhique , de raison la → de premier terme 15-al Le La condition n'est que respirante (pas néassaire) Schema d'étude: 4 trouver q dont les points fires sont les zeros de q 4 delamina en interalle «tuble 6 majorer la l'obrivé'el par un nombre L1 Le délerminer n pour avoir la précision souhaitée 4 calarla re, rez, ..., ren