Варианты задания

Варианты задания на весенний семестр 2022/2023 уч.года Вариант 1. Двухканальная передающая ячейка с управляемым усилением в каналах и фильтрацией в соседних каналах.

Рис.1.1 - Базовая структурная схема.

Таблица 1.1 - Пофамильное распределение вариантов

	таолица 1.1 - тофимильное риспревеление вириинтов								
№	1.1	1.2	1.3	1.4	1.5	1.6	1.7		
ФИО	Воробьев С.С.	Сюкосев Д.Д.	Сергеев Д.А.	Тарасов А.А.	Коротков А.А.	Черников А.В.	Бараев Н.Г.		
<i>Fc</i> , ГГц	5,2	11,1	7,0	8,1	3,0	2,9	6,1		
Кр, дБ, не менее	34	35	39	39	34	42	43		
$\Delta F_{-3 ext{dB}}$, ГГц, не менее	0,3	0,65	0,4	0,45	0,15	0,17	0,35		
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3		
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	4,544,8	9,610,3	6,06,4	7,07,5	2,62,75	2,52,7	5,35,6		
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	5,65,9	11,912,6	7,557,9	8,79,2	3,253,4	3,13,3	6,66,9		
ΔA_{stop} , дБ, не менее	35	28	35	35	32	35	28		
P1dBout, дБмВт, не менее	31	30	30	30	27	32	28		
Диапазон управления аттенюатора, дБ, не менее	19	25	21	21	18	21	24		
Шаг перестройки аттенюатора, дБ, не более	1	1	1	1	1	1	1		
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5		

Рис.1.2 – Пояснение к ТЗ на АЧХ канала

- 1. Аттенюатор должен быть аналоговым или иметь шаг перестройки не более заданного.
- 2. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение ТЗ.
- 3. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 4. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Ф1), фильтр Ф1 и выходной усилитель мощности УМ2 можно поменять местами. При этом требования по форму АЧХ должны выполняться.
- 5. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1} = F_c 0.5\Delta F_{-3dB}$ и $F_{p2} = F_c + 0.5\Delta F_{-3dB}$.

Вариант 2. Двухканальная передающая ячейка с управляемым фазовым сдвигом в каналах и фильтрацией в соседних каналах.

Рис.2.1 - Базовая структурная схема.

Таблица 2.1 - Пофамильное распределение вариантов

NC.	2.1	2.2	2.2	2.4	2.5	2.6	2.7
№	2.1	2.2	2.3	2.4	2.5	2.6	2.7
ФИО	Ежикова Г.В.	Великороднов А.В.	Сухов К.А.	Евдокимов Д.Ю.	Цолина А.Н.	Ермилов Р.А.	Орехов В.А.
<i>Fc</i> , ГГц	7,0	8,0	10	4,5	10,4	2,7	9,1
Кр, дБ, не менее	36	41	42	45	43	44	40
$\Delta F_{-3 ext{dB}}$, ГГц, не менее	0,4	0,5	0,6	0,25	0,6	0,15	0,55
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	6,06,45	6,97,4	8,69,25	3,94,1	8,99,6	2,32,5	7,88,4
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	7,57,9	8,69,1	10,7511,35	4,855,1	11,211,8	2,93,0	9,810,3
ΔA_{stop} , дБ, не менее	32	31	31	34	30	31	25
P1dBout, дБмВт, не менее	27	31	30	28	27	32	29
Шаг фазы фазовращателя, град, не более	12	6	12	12	6	12	6
Диапазон перестройки фазовращателя, град, не менее	360	360	360	360	360	360	360
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5

Рис. 2.2 – Пояснение к ТЗ на АЧХ канала

- 1. Фазовращатель должен быть аналоговым или дискретным с шагом фазы не более заданного.
- 2. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение ТЗ.
- 3. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 4. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Ф1), фильтр Ф1 и выходной усилитель мощности УМ2 можно поменять местами.
- 5. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.

Вариант 3. Двухканальная приемная ячейка с управляемым усилением в каналах и фильтрацией в соседних каналах.

Рис.3.1 - Базовая структурная схема.

Таблица 3.1 - Пофамильное распределение вариантов

$N_{\underline{0}}$	3.1	3.2	3.3	3.4	3.5	3.6	3.7
145	3.1	3.4	3.3	3.4	3.3	3.0	3.7
ФИО	Шилин Н.А.	Журин А.Д.	Пушкарев А.Д.	Перфильев Д.М.	Жуков Н.С.	Пивоваров Д.А.	Музюкин Е.В.
Fc , $\Gamma\Gamma$ ц	11,2	3,8	4,2	7,7	9,8	5,1	3,2
Кр, дБ, не менее	39	38	41	43	38	39	36
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,65	0,2	0,25	0,45	0,6	0,3	0,2
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	9,710,35	3,23,5	3,63,85	6,67,1	8,59,05	4,44,7	2,72,95
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	12,012,7	4,14,3	4,554,7	8,38,8	10,5511,1	5,55,8	3,53,6
ΔA_{stop} , дБ, не менее	32	30	31	32	32	31	27
Кш, дБ, не более	2,6	2,7	2,1	2,7	3,0	3,1	2,9
Диапазон управления аттенюатора, дБ, не менее	20	25	24	20	26	25	26
Шаг перестройки аттенюатора, дБ, не более	1	1	1	1	1	1	1
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5

Рис. 3.2 – Пояснение к ТЗ на АЧХ канала

- 1. Аттенюатор должен быть аналоговым или иметь шаг перестройки не более заданного.
- 2. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение ТЗ.
- 3. Усилители МШУ1 и МШУ1 не обязательно должны быть одним устройством, могут являться каскадными.
- 4. Предпочтительно чтобы первым устройством был фильтр Ф1, однако, если из-за потерь на фильтре Ф1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 5. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1} = F_c 0.5\Delta F_{-3dB}$ и $F_{p2} = F_c + 0.5\Delta F_{-3dB}$.
- 6. При расчете Кш канала строить упрощенную модель (только в один канал, при задании свойств сумматора учитывать только омические потери, без потерь на деление).

Вариант 4. Двухканальная приемная ячейка с управляемым фазовым сдвигом в каналах и фильтрацией в соседних каналах.

Рис.4.1 - Базовая структурная схема.

Таблица 4.1 - Пофамильное распределение вариантов

№	4.1	4.2	4.3	4.4	4.5	4.6	4.7
ФИО	Съедин А.В.	Нелюбов Г.В.	Смагин И.А.	Зинченко А.А.	Мамаев Н.Е.	Жадовец Д.В.	Гуськов А.В.
<i>Fc</i> , ГГц	7,5	5,8	6,0	3,9	8,1	5,0	11,5
Кр, дБ, не менее	41	36	37	43	42	44	35
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,45	0,35	0,36	0,2	0,47	0,3	0,7
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, F_{sl} F_{s2} , $\Gamma\Gamma$ ц	6,56,9	5,15,35	5,25,55	2,43,6	7,07,5	4,34,6	9,910,6
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	8,18,5	6,256,6	6,456,8	4,24,4	8,79,2	5,355,6	12,3513,05
ΔA_{stop} , дБ, не менее	34	29	27	28	26	32	31
Кш, дБ, не более	2,9	2,9	2,5	2,3	2,7	3,2	3,5
Шаг фазы фазовращателя , град, не более	6	12	6	6	12	6	12
Диапазон перестройки фазовращателя , град, не менее	360	360	360	360	360	360	360
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5

Рис.4.2 – Пояснение к ТЗ на АЧХ канала

- 1. Фазовращатель должен быть аналоговым или дискретным с шагом фазы не более заданного. Полный диапазон перестройки должен быть в 360° .
- 2. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение Т3.
- 3. Усилители МШУ1 и МШУ1 не обязательно должны быть одним устройством, могут являться каскадными.
- 4. Предпочтительно чтобы первым устройством был фильтр Ф1, однако, если из-за потерь на фильтре Ф1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 5. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 6. При расчете Кш канала строить упрощенную модель (только в один канал, при задании свойств сумматора учитывать только омические потери, без потерь на деление).

Вариант 5. Передающая ячейка усиления и фильтрации с детектированием уровня выходной мощности.

Рис. 5.1 - Базовая структурная схема.

Таблица 5.1 - Пофамильное распределение вариантов

№	5.1	5.2	5.3	5.4	5.5	5.6	5.7
ФИО	Юмашев О.М.	Дзех А.П.	Пузикова В.Н.	Моржаков К.Д.	Жуков Д.А.	Богомолов Е.С.	Рогалев Р.Е.
Fc , $\Gamma\Gamma$ ц	6,3	11,5	4,4	9,6	9,3	3,6	7,2
Кр, дБ, не менее	36	36	40	44	42	45	38
$\Delta F_{-3 ext{dB}}$, $\Gamma\Gamma$ ц, не менее	0,35	0,7	0,35	0,56	0,55	0,2	0,43
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	5,45,8	9,910,65	3,84,05	8,38,9	8,08,6	3,13,3	6,26,6
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	6,757,1	12,413,05	4,755,0	10,310,7	10,010,6	3,94,1	7,88,2
ΔA_{stop} , дБ, не менее	30	36	37	31	33	31	30
P1dBout, дБмВт, не менее	36	33	35	36	34	36	37
Динамический диапазон выходной мощности, Сдин, дБ	27	25	25	26	26	25	26
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5

Рис. 5.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 3. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Ф1), фильтр Ф1 и выходной усилитель мощности УМ2 можно поменять местами.
- 4. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 5. Ячейка должна быть способна измерять значения выходной мощности в диапазоне от (P1dBout-Сдин) до P1dBout. Это означает, что диапазон возможной выходной мощности с учетом переходного ослабления направленного ответвителя должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот.
- 6. Для получения указанного P1dBOut рекомендовано использовать балансную схему сложения мощностей на выходном УМ.

Вариант 6. Приемная ячейка усиления и фильтрации с детектированием мощности с защитой от кратковременного входного импульса большой мощности.

Рис. 6.1 - Базовая структурная схема.

Таблица 6.1 - Пофамильное распределение вариантов

<u>№</u>	6.1	6.2	6.3	6.4	6.5	6.6	6.7
ФИО	Канапухин А.А.	Зезюлин М.А.	Павлов С.П.	Чекан М.М.	Кубачанов Б.Ш.	Осипов Д.К.	Молчанов А.А.
Fc , $\Gamma\Gamma$ ц	4,3	2,5	9,9	4,7	7,7	8,9	6,2
Кр, дБ, не менее	43	41	33	40	34	42	35
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,25	0,15	0,6	0,28	0,45	0,5	0,35
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	3,74,0	2,152,3	8,59,15	4,04,35	6,67,1	7,78,2	5,35,7
Верхний диапазон запирания, F_{s3} F_{s4} , $\Gamma\Gamma$ Ц	4,654.9	2,72,8	10,611,2	5,055,35	8,258,70	9,610,1	6,77,1
ΔA_{stop} , дБ, не менее	26	27	28	31	32	26	32
Кш, дБ, не более	3,1	2,3	2,6	2,7	3,1	3,1	2,5
Диапазон ожидаемых входных мощностей, Pin, дБмВт	-4010	-4315	-4010	-4517	-4215	-4312	-4010
КСВН, не более	1,5	1,5	1,5	1,5	1,5	1,5	1,5
Уровень кратковременной входной помехи, Рпом, Вт	19	20	20	19	18	16	17

Рис. 6.2 – Пояснение к ТЗ на АЧХ канала

- 1. Усилители МШУ1 и МШУ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 2. Предпочтительно чтобы первым устройством был фильтр Φ 1, однако, если из-за потерь на фильтре Φ 1 невозможно удовлетворить требования по Кш, то его можно перенести после первого МШУ.
- 3. Предпочтительно, чтобы ограничитель O1 стоял до первого МШУ1. Однако, если из-за потерь на ограничителе O1 невозможно удовлетворить на Кш, то его можно перенести после первого МШУ.
- 4. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 5. Ячейка должна быть способна корректно измерять возможные значения входной мощности Pin. Это означает, что данный диапазон возможной входной мощности с учетом прохождения через канал (О, МШУ, ППФ, ответвление в вторичное плечо НО) должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот.
- 6. Ячейка во всем диапазоне ожидаемых входных мощностей Pin должна работать в линейном режиме.
- 7. Ячейка должна выдерживать попадание кратковременной помехи указанной мощности Рпом (за счет внесения ограничителя мощности О1)

Вариант 7. Ячейка антенного ключа с фильтрацией в приемном канале.

Рис. 7.1 - Базовая структурная схема.

Таблица 7.1 - Пофамильное распределение вариантов

1 аолица 7.1 - Пофамильное распреоеление варианто										
№	7.1	7.2	7.3	7.4	7.5	7.6	7.7			
ФИО	Калошин Р.С.	Обухов А.И.	Диев М.А.	Сараєва М.М.	Петаев Д.С.	Федькин Е.В.				
Fc, ГГц	11,4	9,0	2,5	6,4	10,7	7,0	5,8			
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,7	0,55	0,15	0,35	0,65	0,4	0,35			
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3			
Нижний диапазон запирания, $F_{s.l.}$, $F_{s.j.}$, $\Gamma\Gamma$ ц	9,810,5	7,78,3	2,12,3	5,55,9	9,29,9	6,06,4	5,05,3			
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ Ц	12,313,0	9,710,2	2,72,8	6,97,2	11,512,1	7,67,9	6,36,6			
ΔA_{stop} , дБ, не менее	30	30	26	28	30	27	29			
Кр _{Тх} передающего канала, дБ, не менее	30	35	39	36	37	34	35			
P1dBout _{Tx} передающего канала, дБмВт, не менее	20	19	18	19	20	18	17			
Кр _{Rx} приемного канала, дБ, не менее	31	33	32	34	30	31	36			
Кш _{Rx} приемного канала, дБ, не более	3,4	3,7	3,9	3,6	3,4	3,3	3,5			

Рис. 7.2 – Пояснение к ТЗ на АЧХ канала

Общие условия:

- 1. Модель необходимо проверять отдельно для двух состояний режим передачи и режим приема.
- 2. КСВН для обоих состояний ячейки не должен превышать 1,5 во включенном канале в рабочей полосе частот.
- 3. Требования на AЧX канала одинаковы для приемного и передающего каналов.
- 4. В зависимости от достижимости результатов (по $P1dBout_{Tx}$ и Km_{Rx}) фильтр $\Pi\Pi\Phi 1$ может быть поставлен либо один в общей части (до ключа K1 со стороны антенны), либо два параллельных в приемном и передающем каналах.
- 5. Kp_{Tx} и $P1dBout_{Tx}$ (параметры передающего канала) проверяются, когда ключ K1 включен на режим передачи.
- 6. Kp_{Rx} и $Kш_{Rx}$ (параметры приемного канала) проверяются, когда ключ K1 включен на режим приема.
- 7. В параметрах как передающего, так и приемного каналов необходимо учитывать влияние свойств ключа К1 (потери на проход во включенном канале и предельный P1dB).
- 8. Необходимо оценить уровень развязки приемного канала от передающего в режиме передачи за счет развязки ключа К1. Нужно провертись, какой сигнал будет на приемном выходе в режиме передачи и приведет ли это к выходу из строя микросхем приемного канала.