LTspice and SPICE Simulation

Simulation of Circuits

What is the Voltage at Vb? SPICE is one of the alternatives to solving the problem by hand.

Menus: Left Side of Toolbar

Menus: Right Side of Toolbar

Components: Common Names

- Sources
 - Current Source "current"
 - Voltage Source "voltage"
- Switches
 - Switch "sw"
- Bipolar Junction Transistors (BJT's)
 - NPN BJT "npn"
 - PNP BJT "pnp"
- Metal-Oxide Semiconductor Field Effect
 —
 Transistors (MOSFET's)
 - N-Channel MOSFET "nmos"
 - P-Channel MOSFET "pmos"

Components: Voltage Sources

Interesting Settings Under "Advanced"

Voltage Sources: Sine Waves

Voltage Sources: Square Wave

Voltage Sources: Triangular Waves

http://www.analog.com/en/technical-articles/ltspice-generating-triangular-sawtooth-waveforms.html

Components: Switches

Spice Directive is **REQUIRED**

- ".model VALUE SW()"
 - Simplest Switch
 - "VALUE" is the Value (Name) of the Switch

"SW(...)" Additional Parameters:

- On Resistance: "Ron="
- Off Resistance: "Roff="
- Trigger Voltage: "Vt="
- Hysteresis Voltage: "Vh="

Component Attribute Editor

• (Right-Click) the Component

Components: Op-Amps

.tran 0 10m 0 10u uic

Net Names can be used to connect terminals without wires.

Voltage Sources can be cascaded in series. This particular arrangement is a common for +/- V.

Components: Transformers

- Inductors are coupled using a spice directive
 - "K# L# L# Coupling"
 - Multiple Inductors can be mutually coupled by listing them before the coupling coefficient.
- Coupling ranges from 0 (none) to 1 (complete)

Simulation: AC Analysis

Simulation: Transient Analysis

Simulate the Presented Assuming Sources Were Just Connected

- When to Stop [S]: (Keep this small)
 - A few periods/few time constants
 - Shorter will capture transients
 - Longer takes longer to simulate
 - (100's ms) likely sufficient
 - Time between successive calculations
 - Smaller times are more accurate
 - Much smaller than resolution
 - (1 us) good to 100 kHz
 - (100 ns) good to 1 MHz
 - (10 ns) good to 10 MHz
 - ...

Skip initial operating point solution

- Translated: "Don't guess the steady-state solution before simulating"
- · Highly Recommended.

Simulation: Simple Plotting

Simulation: Advanced Plotting

Simulation: Known Issues

Discontinuities

- Discontinuous functions and their derivatives tend to break the simulation.
 - E.g. Ideal Diodes, Perfect Switches
 - ".options gmin=1e-10" [1]
 - ".options abstol=1e-10" [1]
 - ".options reltol=0.003" [1]
 - ".options cshunt=1e-15" [1]
- Magnetic Components
 - Shorting voltage sources into inductors
 - Transformers
 - http://www.ltwiki.org/index.php?title=Transformers

Additional Resources

- Analog Devices LTspice Download
 - http://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
- (Unofficial) LTspice Wiki
 - http://www.ltwiki.org/index.php?title=Main_Page
- Great Walk Though(s)
 - http://denethor.wlu.ca/ltspice/#IIIE