Outline

Unit 8: Inter-Annotator Agreement

Statistics for Linguists with $\mathsf{R}-\mathsf{A}$ SIGIL Course

Designed by Stefan Evert¹ and Marco Baroni²

¹Computational Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

> ²Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

Reliability & agreement Introduction

Reliability & agreement Introduction

Outline

Reliability & agreement

Introduction

Chance agreement & Kappa

Kappa as a sample statistic

Extensions of Kappa

Introduction

Manually annotated data will be used for ...

1. Linguistic analysis

- ▶ Which factors determine a certain choice or interpretation?
- ▶ Are there syntactic correlates of the container-content relation?
- 2. Machine learning (ML)
 - ► Automatic semantic annotation, e.g. for text mining
 - Extend WordNet with new entries & relations
 - Online semantic analysis in NLP pipeline (e.g. dialogue system)

Crucial issue: Are the annotations correct?

- ML learns to make same mistakes as human annotator
- Inconclusive & misleading results from linguistic analysis

Validity vs. reliability

(terminology from Artstein & Poesio 2008)

- ▶ We are interested in the **validity** of the manual annotation
 - i.e. whether the annotated categories are correct
- ▶ But there is no "ground truth"
 - ▶ Linguistic categories are determined by human judgement
 - ► Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - ▶ i.e. whether human coders¹ consistently make same decisions
 - ► Assumption: high reliability implies validity
- ► How can reliability be determined?

Reliability & agreement Introduction

Easy & hard tasks

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- ► Decision rules, linguistic tests
- ► Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, ...
- \rightarrow IAA = 98.5% (POS tagging) IAA \approx 93.0% (syntax)

Subjective tasks

- ► Based on speaker intuitions
- Short annotation instructions
- ► Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, ...
- \Rightarrow IAA = $\frac{48}{70}$ = 68.6% (HW) $IAA \approx 70\%$ (word senses)

[NB: error rates around 5% are considered acceptable for most purposes]

Reliability & agreement Introduction

Inter-annotator agreement

- ► Multiple coders annotate same data (with same guidelines)
- ► Calculate Inter-annotator agreement (IAA)

Sentence	A	В	agree?
Put tea in a heat-resistant jug and add the boiling water.	yes	yes	✓
Where are the batteries kept in a phone?	no	yes	Х
Vinegar's usefulness doesn't stop inside the house.	no	no	✓
How do I recognize a room that contains radioactive materials?	yes	yes	✓
A letterbox is a plastic, screw-top bottle that contains a small notebook and a unique rubber stamp.	yes	no	X

→ Observed agreement between A and B is 60%

Reliability & agreement

Introduction

Is 70% agreement good enough? □

sigil.r-forge.r-project.org

¹The terms "annotator" and "coder" are used interchangeably in this talk.

Observed vs. chance agreement

Observed vs. chance agreement

Outline

Reliability & agreement

Observed vs. chance agreement

Chance agreement & Kappa

Kappa as a sample statistic

Extensions of Kappa

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Reliability & agreement Observed vs. chance agreement

But 90% agreement is certainly a good result? i.e. it indicates high reliability

Thought experiment 1

Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"

[or they enjoyed too much sun & Bordeaux wine yesterday]

- ► How much agreement would you expect?
- Annotator decisions are like coin tosses:

25% both coders randomly choose "yes" (= $0.5 \cdot 0.5$)

25% both coders randomly choose "no" (= $0.5 \cdot 0.5$)

50% agreement purely by chance

 \rightarrow IAA = 70% is only mildly better than chance agreement

SIGIL (Evert & Baroni)

Reliability & agreement Observed vs. chance agreement

Thought experiment 2

- ► Assume A and B are lazy coders with a proactive approach
 - ▶ They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - ► So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- ► How much agreement would you expect now?
- ► Annotator decisions are like tosses of a biased coin:

both coders randomly choose "yes" (= $.95 \cdot .95$) 0.25% both coders randomly choose "no" (= $.05 \cdot .05$)

90.50% agreement purely by chance

► IAA = 90% might be no more than chance agreement

SIGIL (Evert & Baroni) sigil.r-forge.r-project.org sigil.r-forge.r-project.org

Measuring inter-annotator agreement

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for chance agreement! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement

 A_e ... expected agreement by chance

General form of chance-corrected agreement measure *R*:

$$R = \frac{A_o - A_e}{1 - A_e}$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Measuring inter-annotator agreement

Some general properties of *R*:

 $R = 1 = \frac{1 - A_e}{1 - A_e}$ ► Perfect agreement:

 $R = 0 = \frac{A_e - A_e}{1 - A_e}$ ► Chance agreement:

 $R = \frac{-A_e}{1 - A_e}$ ► Perfect disagreement:

Various agreement measures depending on precise definition of A_e :

- ightharpoonup R = S for random coin tosses (Bennett *et al.* 1954)
- $ightharpoonup R = \pi$ for shared category distribution (Scott 1955)
- $ightharpoonup R = \kappa$ for individual category distributions (Cohen 1960)

Kappa Contingency tables

Outline

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Kappa as a sample statistic

Extensions of Kappa

Kappa Contingency tables

Contingency tables for annotator agreement

coder A	code		
coder A	yes	no	
yes	24	8	32
no	24 14	24	38
	38	32	70

	code		
coder A	yes	no	
yes	n ₁₁ n ₂₁	n ₁₂	n_1 .
no	n ₂₁	<i>n</i> ₂₂	<i>n</i> ₂ .
	n. ₁	n. ₂	Ν

	coder		
coder A	yes	no	
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂ p ₂₂	<i>p</i> ₁ .
no	p_{21}	<i>p</i> ₂₂	p_2 .
	$p_{\cdot 1}$	<i>p</i> . ₂	p

Contingency tables for annotator agreement

Contingency table of **proportions** $p_{ij} = \frac{n_{ij}}{N}$

coder A	coder		
coder A	yes		
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

coder A	code		
coder A	yes	no	
yes	p_{11}	p ₁₂	<i>p</i> ₁ .
no	<i>p</i> ₂₁	<i>p</i> ₂₂	<i>p</i> ₂ .
	<i>p</i> . ₁	<i>p</i> . ₂	p

Relevant information can be read off from contingency table:

- ightharpoonup Observed agreement $A_0 = p_{11} + p_{22} = .686$
- ► Category distribution for coder A: $p_{i} = p_{i1} + p_{i2}$
- ► Category distribution for coder B: $p_{ij} = p_{1j} + p_{2j}$

sigil.r-forge.r-project.org

Kappa Chance agreement & Kappa

Calculating the expected chance agreement

- ▶ How often are annotators expected to agree if they make random choices according to their category distributions?
- ▶ Decisions of annotators are independent → multiply marginals

coder A	coder	В		coder A	coder B		
coder A	yes	no		coder A	yes	no	
yes	.248	.209 .248	.457	yes	$p_1 \cdot p_{\cdot 1}$	$p_1 \cdot p_{\cdot 2}$ $p_2 \cdot p_{\cdot 2}$	<i>p</i> ₁ .
no	.295	.248	.543	no	$p_2 \cdot p_{\cdot 1}$	p_2 . · $p_{\cdot 2}$	<i>p</i> ₂ .
	.543	.457	1		<i>p</i> .1	p .2	р

Expected chance agreement:

$$A_e = p_1 \cdot p_{.1} + p_2 \cdot p_{.2} = 49.6\%$$

Outline

The Kappa coefficient

Chance agreement & Kappa

Kappa as a sample statistic

Extensions of Kappa

Chance agreement & Kappa

Sanity check: Is it plausible to assume that annotators always flip coins?

- ▶ No need to make such strong assumptions
- ▶ Annotations of individual coders may well be systematic
- ▶ We only require that choices of A and B are statistically independent, i.e. no common ground for their decisions

Definition of the Kappa coefficient

(Cohen 1960)

Formal definition of the **Kappa** coefficient:

$$A_o = p_{11} + p_{22}$$

$$A_e = p_1 \cdot p_{\cdot 1} + p_2 \cdot p_{\cdot 2}$$

$$\kappa = \frac{A_o - A_e}{1 - A_e}$$

In our example:
$$A_0 = .343 + .343 = .686$$

$$A_{\rm e} = .248 + .248 = .496$$

$$\kappa = \frac{.686 - .496}{1 - .496} = 0.376 !!$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Chance agreement & Kappa

Scales for the interpretation of Kappa

► Landis & Koch (1977)

Krippendorff (1980)

► Green (1997)

and many other suggestions . . .

Other agreement measures

(Scott 1955; Bennett et al. 1954)

- 1. π estimates a common category distribution \bar{p}_i
 - goal is to measure chance agreement between arbitrary coders, while κ focuses on a specific pair of coders

$$A_e = (\bar{p}_1)^2 + (\bar{p}_2)^2$$

$$\bar{p}_i = \frac{1}{2}(p_{i\cdot} + p_{\cdot i})$$

- 2. S assumes that coders actually flip coins ...
 - i.e. equiprobable category distribution $\bar{p}_1 = \bar{p}_2 = \frac{1}{2}$

$$A_e = \frac{1}{2}$$

Much controversy whether π or κ is the more appropriate measure, but in practice they often lead to similar agreement values!

sigil.r-forge.r-project.org

Statistical inference

Random variation of agreement measures

Outline

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Extensions of Kappa

An example from Di Eugenio & Glass (2004)

coder A	code	er B			coder A	coder	В	
coder A	yes	no			coder A	yes	no	
yes	70 0	25	95		yes	.467	.167 .367	.633
no	0	55	55		no	.000	.367	.367
	70	80	150	•		.467	.533	1

- ► Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$
- ► Scott (1955): $A_o = .833$, $A_e = .505$, $\pi = .663$
- ➤ Krippendorff (1980): data show tentative agreement according to κ , but should be discarded according to π
- What do you think?

sigil.r-forge.r-project.org

Statistical inference Random variation of agreement measures

More samples from the same annotators . . .

We are not interested in a particular sample, but rather want to know how often coders agree in general (for this task).

 \blacktriangleright Sampling variation of κ

[NB: A_e is expected chance agreement, not value in specific sample]

More samples from the same annotators . . .

Kappa as a sample statistic

Outline

Chance agreement & Kappa

Statistical inference for Kappa

Kappa as a sample statistic

Extensions of Kappa

Kappa is a sample statistic $\hat{\kappa}$

$$\begin{array}{c|cccc} & + & - \\ + & \pi_{11} & \pi_{12} \\ - & \pi_{21} & \pi_{22} \end{array}$$

$$\alpha_o = \pi_{11} + \pi_{12}$$
 $\alpha_e = \pi_{1\cdot} \cdot \pi_{\cdot 1} + \pi_{2\cdot} \cdot \pi_{\cdot 2}$

population

$$\kappa = \frac{\alpha_o - \alpha_e}{1 - \alpha_e}$$

$$\begin{array}{c|cccc} & + & - \\ + & p_{11} & p_{12} \\ - & p_{21} & p_{22} \end{array}$$

$$\begin{array}{ccc} + & - \\ \hline p_{11} & p_{12} \end{array} \qquad \begin{array}{ccc} A_o = p_{11} + p_{12} \\ A_e = p_{1} \cdot p_{.1} + p_{2} \cdot p_{.2} \end{array}$$

$$\hat{\kappa} = \frac{A_o - A_e}{1 - A_e}$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Sampling variation of $\hat{\kappa}$

(Fleiss et al. 1969; Krenn et al. 2004)

- \triangleright Standard approach: show (or hope) that $\hat{\kappa}$ approximately follows Gaussian distribution if samples are large enough
- ▶ Show (or hope) that $\hat{\kappa}$ is unbiased estimator: $E[\hat{\kappa}] = \kappa$
- ▶ Compute standard deviation of $\hat{\kappa}$ (Fleiss *et al.* 1969: 325):

$$(\hat{\sigma}_{\hat{\kappa}})^2 = rac{1}{N \cdot (1 - A_e)^4} \cdot \ \left(\sum_{i=1}^2 p_{ii} \left[(1 - A_e) - (p_{\cdot i} + p_{i \cdot})(1 - A_o) \right]^2 + (1 - A_o)^2 \sum_{i \neq i} p_{ij} (p_{\cdot i} + p_{j \cdot})^2 - (A_o A_e - 2A_e + A_o)^2
ight)$$

sigil.r-forge.r-project.org

Statistical inference Kappa as a sample statistic

Sampling variation of $\hat{\kappa}$

(Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

$$\kappa \in [\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}]$$

▶ For the example from Di Eugenio & Glass (2004), we have

$$\kappa \in [0.562, 0.783]$$
 with $\hat{\sigma}_{\hat{\kappa}} = .056$

- comparison with threshold .067 is pointless!
- ► How accurate is the Gaussian approximation?
 - Simulation experiments indicate biased $\hat{\kappa}$, underestimation of $\hat{\sigma}_{\hat{\kappa}}$ and non-Gaussian distribution for skewed marginals
 - ► Confidence intervals are reasonable for larger samples
- ► Recent work on improved estimates (e.g. Lee & Tu 1994)

Extensions of Kappa

Outline

Chance agreement & Kappa

Kappa as a sample statistic

Outlook

Extensions of Kappa

Extensions of Kappa: Multiple categories

- \triangleright Straightforward extension to C > 2 categories
 - \rightarrow C \times C contingency table of proportions p_{ii}
- ▶ Observed agreement: $A_o = \sum_{i=1}^{\infty} p_{ii}$
- Expected agreement: $A_e = \sum_{i=1}^{C} p_{i.} \cdot p_{.i}$
- $\blacktriangleright \text{ Kappa: } \hat{\kappa} = \frac{A_o A_e}{1 A_a}$
- **Equation** for $\hat{\sigma}_{\hat{\kappa}}$ also extends to C categories
- ightharpoonup Drawback: $\hat{\kappa}$ only uses diagonal and marginals of table, discarding most information from the off-diagonal cells

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Extensions of Kappa: Weighted Kappa

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn *et al.* 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- \triangleright Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\hat{\kappa} = \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e}$$

$$D_o = 1 - A_o = \sum_{i \neq j} p_{ij} \rightsquigarrow \sum_{i \neq j} w_{ij} p_{ij}$$

$$D_e = 1 - A_e = \sum_{i \neq j} p_{i\cdot} \cdot p_{\cdot j} \rightsquigarrow \sum_{i \neq j} w_{ij} (p_{i\cdot} \cdot p_{\cdot j})$$

9. Inter-annotator agreement

sigil.r-forge.r-project.org

Extensions of Kappa

Extensions of Kappa: Multiple annotators

(Krenn et al. 2004)

▶ Naive strategy: compare each annotator against selected "expert", or consensus annotation after reconciliation phase

BK	kappa	homog	homogeneity	
vs. NN	value	min	max	size
7	.775	71.93%	82.22%	10.29
9	.747	68.65%	79.77%	11.12
10	.700	64.36%	75.85%	11.49
4	.696	64.09%	75.91%	11.82
1	.692	63.39%	75.91%	12.52
6	.671	61.05%	73.33%	12.28
5	.669	60.12%	72.75%	12.63
2	.639	56.14%	70.64%	14.50
11	.592	52.40%	65.65%	13.25
3	.520	51.70%	64.33%	12.63
8	.341	33.68%	49.71%	16.03
12	.265	17.00%	35.05%	18.05

Extensions of Kappa

Extensions of Kappa: Multiple annotators

- \blacktriangleright Better approach: compute $\hat{\kappa}$ for each possible pair of annotators, then report average and standard deviation
- Extensions of agreement coefficients to multiple annotators are mathematical implementations of this basic idea (see Artstein & Poesio 2008 for details)
- ▶ If sufficiently many coders (= test subjects) are available. annotation can be analysed as psycholinguistic experiment
 - ► ANOVA, logistic regression, generalised linear models
 - ▶ correlations between annotators → systematic disagreement

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

sigil.r-forge.r-project.org

Final remarks

Outline

Chance agreement & Kappa

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

sigil.r-forge.r-project.org

Outlook Final remarks

Suggested reading & materials

Artstein & Poesio (2008)

Everyone should at least read this article.

R package **irr** (inter-rater reliability)

Lacks confidence intervals → to be included in corpora package.

Different types of non-reliability

- 1. Random errors (slips)
 - ▶ Lead to chance agreement between annotators
- 2. Different intuitions
 - Systematic disagreement
- 3. Misinterpretation of tagging guidelines
 - ► May not result in disagreement → not detected

Final remarks

References I

- Artstein, Ron and Poesio, Massimo (2008). Survey article: Inter-coder agreement for computational linguistics. Computational Linguistics, 34(4), 555-596.
- Bennett, E. M.; Alpert, R.; Goldstein, A. C. (1954). Communications through limited questioning. Public Opinion Quarterly, 18(3), 303-308.
- Brants, Thorsten (2000). Inter-annotator agreement for a German newspaper corpus. In Proceedings of the Second International Conference on Language Resources and Evaluation (LREC 2000), Athens, Greece.
- Carletta, Jean (1996). Assessing agreement on classification tasks: the kappa statistic. Computational Linguistics, 22(2), 249-254.
- Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
- Di Eugenio, Barbara and Glass, Michael (2004). The kappa statistic: A second look. Computational Linguistics, 30(1), 95–101.
- Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72(5), 323-327.
- Green, Annette M. (1997). Kappa statistics for multiple raters using categorical classifications. In Proceedings of the Twenty-Second Annual SAS Users Group International Conference (online), San Diego, CA.

References II

- Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agreement for a collocation identification task. In Proceedings of KONVENS 2004, pages 89-96, Vienna, Austria.
- Krippendorff, Klaus (1980). Content Analysis: An Introduction to Its Methodology. Sage Publications, Beverly Hills, CA.
- Landis, J. Richard and Koch, Gary G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
- Lee, J. Jack and Tu, Z. Nora (1994). A better confidence interval for kappa (κ) on measuring agreement between two raters with binary outcomes. Journal of Computational and Graphical Statistics, 3(3), 301–321.
- Scott, William A. (1955). Reliability of content analysis: The case of nominal scale coding. Public Opinion Quarterly, 19(3), 321-325.
- Véronis, Jean (1998). A study of polysemy judgements and inter-annotator agreement. In Proceedings of SENSEVAL-1, Herstmonceux Castle, Sussex, UK.

SIGIL (Evert & Baroni) 9. Inter-annotator agreement

sigil.r-forge.r-project.org 42 / 42

