

المملكة العربية السعودية وزارة التعليم كلية الحاسب قسم علوم الحاسب

Course: CS 432 "Artificial Intelligence" Second Semester 1445 (452)

IDS

Marks 20 / 20

Midterm Exam Duration: 1 hour 15 minutes Monday 25 / 3 / 2024

| dent l     | Name:                  |                        |        |                 |          |            | Studer                        | nt ID:                                         |
|------------|------------------------|------------------------|--------|-----------------|----------|------------|-------------------------------|------------------------------------------------|
| Q          | uestion                |                        | 1      | 2               | 3        | 4          | 5                             | Total                                          |
| A          | llocated ma            | ırk                    | 4      | 3               | 4        | 3          | 6                             | 20                                             |
| E          | arned mark             |                        |        |                 |          |            |                               |                                                |
| Ques<br>i. | Mark all algorithm     | with these co          | costs  | $d_{ij}$ that 1 | make ru  | unning     | Breadth-l                     | [4 marks<br>Cost Search (U<br>First Search (BF |
|            | $\mathbf{a}.$ $d_i$    |                        |        |                 |          |            | $\mathbf{d.}  d_{ij} = \cdot$ |                                                |
|            |                        | $j=\alpha, \ \alpha>0$ |        |                 |          |            | $\mathbf{e.}  d_{ij} = 1$     |                                                |
|            | $\mathbf{c.}$ $d_{ij}$ | $j=\alpha, \ \alpha<0$ |        |                 |          |            | <b>f.</b> None                | e of the above                                 |
| ii.        | In the con             | text of search         | algo   | rithms, th      | e set of | all leaf   | nodes ava                     | ailable for expan                              |
|            | at any giv             | en point is ca         | alled  |                 |          |            |                               |                                                |
| iii.       | A non-ob               | servable prob          | olem   | is a            |          | pr         | oblem.                        |                                                |
|            | <b>a.</b> C            | ontingency             |        |                 |          |            | <b>b.</b> Conf                | ormant                                         |
| iv.        | Let $h_l(n)$           | be an admiss           | sible  | heuristic       | , and le | t $h_2(n)$ | be an ina                     | admissible heuri                               |
|            |                        | $+ h_2)/2$ is nec      |        |                 |          | . ,        |                               |                                                |
|            | <b>a.</b> Ti           |                        |        | 9 4444111       |          |            | <b>5.</b> False               | ;                                              |
| Giver      |                        | goal node, fi          | ll the | followin        | g table? | , -        |                               | [3 marks e, and d as the de                    |
|            |                        | Algorithm              | Tin    | ne compl        | exity    | Space o    | complexi                      | ty                                             |
|            |                        | BFS                    |        |                 |          |            |                               |                                                |
|            |                        | DFS                    |        |                 |          |            |                               |                                                |
|            |                        | DLS                    |        |                 |          |            |                               |                                                |
|            |                        | נעע                    |        |                 |          |            |                               |                                                |

## Question 3: Intelligent Agents

[2+2 *Marks*]

**i.** Fill the following table by mentioning the performance measure, environment, actuators, and sensors (PEAS).

| Type of Agent  | Performance | Environment | Actuators      | Sensors   |
|----------------|-------------|-------------|----------------|-----------|
|                | Measure     |             | how the action | n perform |
| Medical supply |             |             |                |           |
| delivery drone |             |             |                |           |
|                |             |             |                |           |
|                |             |             |                |           |

| ii.   | Catego | orize the | environn | ent into | various t | ypes, | e.g. single | e vs | multi-age | nt |
|-------|--------|-----------|----------|----------|-----------|-------|-------------|------|-----------|----|
| Envir | onment | types:    |          |          |           | ,     |             |      | ,         |    |

.

## Question 4: Heuristics

[1.5 + 1.5 marks]

Here, you are asked to compare different heuristics and to determine which, if any, dominate each other. You are executing Tree Search through this graph (i.e., you do not remember previously visited nodes). The start node is S, and the goal node is G. The actual step costs are shown next to each link. Heuristics are given in the following table. As is usual in your book,  $h^*$  is the true (= optimal) heuristic; here,  $h_i$  are various other heuristics.



i. Which heuristic functions are admissible among  $h_1$ ,  $h_2$  and  $h_3$ ?

| ii. | Which o | of the following | g statements | are true's |
|-----|---------|------------------|--------------|------------|
|-----|---------|------------------|--------------|------------|

**a.**  $h_1$  dominates  $h_2$ :

**b.**  $h_1$  dominates  $h_3$ : \_\_\_\_\_

**c.**  $h_2$  dominates  $h_1$ : \_\_\_\_\_

**d.**  $h_2$  dominates  $h_3$ :

**e.**  $h_3$  dominates  $h_1$ :

**f.**  $h_3$  dominates  $h_2$ : \_\_\_\_\_

## Question 5: Graph Search

[1+1+1+1.5+1.5 marks]

Consider the search graph provided next, where A is the start node and G represents the goal. The arcs are labeled with the cost of traversing them. List the sequence of node visits and the final path for the following algorithms.

When everything is the same, nodes should be visited in alphabetical order.



| Node | A   | В | С | D | E   | F | $\boldsymbol{G}$ |
|------|-----|---|---|---|-----|---|------------------|
| h(n) | 9.5 | 9 | 8 | 7 | 1.5 | 4 | 0                |

i. BFS: Order of visiting \_\_\_\_\_\_ Path \_\_\_\_\_

ii. DFS: Order of visiting \_\_\_\_\_\_Path \_\_\_\_\_

iii. UCS: Order of visiting \_\_\_\_\_\_Path \_\_\_\_

iv. Greedy Search:

*Order of visiting* \_\_\_\_\_\_ *Path* \_\_\_\_\_

v. A\* Search:

*Order of visiting* \_\_\_\_\_\_ *Path* \_\_\_\_\_