Deformations of space curves lying on a del Pezzo surface

Hirokazu Nasu

Tokai University

June 12, 2025 2025 Algebraic Geometry Conference in Jeonju Hanok Village

Today's slide

Plan of Talk

- Hilbert schemes and deformation of flags
- Kleppe-Ellia conjecture and its generalization (Main result) (cf. arXiv:2501.15788)
- Applications and Examples

§1 Hilbert schemes and deformation of flags

the Hilbert scheme

Given a projective scheme X, and given Hilbert polynomial P,

$$\operatorname{Hilb}_P X = \{ C \subset X \mid \text{closed subscheme of } P(C) = P \}$$

is called the Hilbert scheme of X. The Hilbert scheme has the following nice properties:

- fine moduli scheme, i.e. it has a universal family $\mathscr{C} \subset X \times \operatorname{Hilb}_P X$ such that every deformation of C in X derived from \mathscr{C}
- projective (Hilb_P $X \hookrightarrow Gr$)
- existence of nice deformation theories, e.g., if C is a loc. c.i., then $H^0(N_{C/X})$ and $H^1(N_{C/X})$ resp. represent the tangent and obstruction spaces at [C].

while it also has "not so nice" properties: e.g.

- it may have bad singularities (e.g. non-reduced components),
- may be highly reducible (for some *P*).

Dimension of Hilb X

For simplicity, we assume C is a c.i. in X. Then

$$\underbrace{h^0(C,N_{C/X})-h^1(C,N_{C/X})}_{\text{exp.dim.}(=\chi(N_{C/X})\text{ if C is a curve)}} \leq \dim_{[C]} \operatorname{Hilb} X \leq \underbrace{h^0(C,N_{C/X})}_{\text{tangential dimension}}.$$

However, when $H^1(N_{C/X}) \neq 0$, it is hard to determine the dimension of **Hilb** X at [C] (depending on whether C is obstructed or not).

To resolve this problem, we take an intermediate variety $C \subset S \subset X$ and use Hilbert-flag scheme

$$\operatorname{HF} X = \big\{ (C, S) \; \big| \; C \subset S \subset X \big\} \subset \operatorname{Hilb} X \times \operatorname{Hilb} X.$$

Let

$$N_{(C,S)} := N_{C/X} \times_{N_{S/X}|_C} N_{S/X}$$

be the normal sheaf of (C, S) in X.

Naive question

Then

$$H^1(N_{(C,S)/X}) = 0 \Longrightarrow HF X$$
 is nonsingular at (C,S)

and if moreover $H^i(N_{(C,S)/X}) = 0$ for all i > 0, then HFX is of expected dimension

$$\chi(N_{(C,S)/X}) = \chi(N_{C/S}) + \chi(N_{S/X}).$$

Let $W_{C,S}$ be an irreducible component passing through (C,S), and $pr_1: \operatorname{HF} X \to \operatorname{Hilb} X, (C',S') \mapsto [C']$, the 1st projection.

Question 1

When is the image $pr_1(W_{C,S})$ of $W_{C,S}$ an irreducible component of Hilb X?

Stable degeneration

Let $C \subset S \subset X$ a sequence of closed subvarieties with $H^i(N_{(C,S)/X}) = 0$ for all i > 0.

Definition 2

We say C is stably degenerate or stably contained in S, if for every small global deformation C' of C in X, there exists a global deformation S' of S in X such that $S' \subset C'$.

We have the following implications:

$$(1) \Longrightarrow (2) \Longrightarrow (3)$$

where

- ② $pr_1: \operatorname{HF} X \to \operatorname{Hilb} X, (C', S') \mapsto [C']$ is smooth at (C, S).
- **3** *C* is stably degenerate and $pr_1(W_{C,S})$ is a component of Hilb *X*.

The implication "(2) \Longrightarrow (3)" follows from the fact that $pr_1' = pr_1|_{W_{C,S}}$ is locally surjective at [C].

- §2.1 Kleppe-Ellia conjecture §2.2 Geralized Kleppe-Ellia conjectur
- §2.3 Main resul

§2 Kleppe-Ellia conjecture and its generalization

- §2.1 Kleppe-Ellia conjecture
 - 2.2 Geralized Kleppe-Ellia conjectu
- §2.3 Main resul

Mumford's example and Kleppe's generalization

Given a projective scheme, we denote by $\mathbf{Hilb}^{sc} X$ the Hilbert scheme of smooth connected curves in X, i.e.,

$$\mathbf{Hilb}^{sc} X = \{ C \subset X \mid C : \text{smooth connected curve} \}.$$

Theorem 3 (Mumford'62, a pathology)

 $Hilb^{sc} \mathbb{P}^3$ contains a generically non-reduced component.

Every its general member, i.e., a smooth curve $C \subset \mathbb{P}^3$, was contained in a smooth cubic surface $S_3 \subset \mathbb{P}^3$.

Later, Kleppe['87] generalized this example systematically by using the cooordinate of $(a; b_1, ..., b_6)$ of [C] in Pic $S_3 \simeq \mathbb{Z}^7$:

$$C \sim a\mathbf{l} - \sum_{i=1}^{6} b_i \mathbf{e}_i \qquad \longleftrightarrow \qquad (a; b_1, \dots, b_6)$$

where $l = [O_{\mathbb{P}^2}(1)]$ and e_i (i = 1, ..., 6) are 6 exceptional curves.

§2.1 Kleppe-Ellia conjecture

2.2 Geralized Kleppe-Ellia conjecture

§2.3 Main result

Kleppe-Ellia conjecture

He proposed a conjecture, which can be reformulated as follows:

Conjecture (Kleppe'87, modified by Ellia'87)

Let $C \subset S_3 \subset \mathbb{P}^3$ be a smooth curve of degree $d \geq 14$ and genus g lying on a smooth cubic surface $S_3 \subset \mathbb{P}^3$. Then C is stably degenerate if

- C is linearly normal, and
- **③** C is general in [C] ∈ Pic S_3 .

K-E conj. is non-trivial only if C is not 3-normal ($\Leftrightarrow H^1(I_C(3)) \neq 0$). In fact, otherwise, $pr_1: \operatorname{HF} \mathbb{P}^3 \longrightarrow \operatorname{Hilb} \mathbb{P}^3$ is smooth at (C,S) by

$$H^0(N_{(C,S)/\mathbb{P}^3}) \xrightarrow{p_1} H^0(N_{C/\mathbb{P}^3}) \longrightarrow \underbrace{H^1(N_{S/\mathbb{P}^3}(-C))}_{\simeq H^1(I_C(3))} \longrightarrow 0.$$

Moreover, the first two assumptions are necessary for the conclusion.

- §2.1 Kleppe-Ellia conjecture

Some remarks

K-E conjecture is Known to be true if

- C is not 3-normal and g >> d (Kleppe'87 and Ellia'87), or
- C is 2-normal, i.e. $H^1(I_C(2)) = 0$ (N'23)

- §2.1 Kleppe-Ellia conjecture
 - .2 Geralized Kleppe-Ellia conjecture
- §2.3 Main result

Del Pezzo surfaces

Definition 4

A smooth projective surface S is called del Pezzo if $-K_S$ is ample.

Every del Pezzo surface S is isomorphic to a blow-up of \mathbb{P}^2 (at 9-n points) or $\mathbb{P}^1 \times \mathbb{P}^1$. The number $n = (-K_S)^2$ is called the *degree* of S, and $1 \le n \le 9$.

Example 1 (del Pezzo surfaces)

degree n	a description of S_n	$-K_S$
:	:	
3	cubic surface $S_3 \subset \mathbb{P}^3$	
4	quartic c.i. $S_{2,2} \subset \mathbb{P}^4$	
5	lin. section $[Gr(2,5) \hookrightarrow \mathbb{P}^9] \cap \mathbb{L}^{(5)}$	v.a.
:	:	

- §2.1 Kleppe-Ellia conjecture
- 82.2 detailed t

Why on del Pezzo?

Proposition 5 (smoothness of flag-scheme)

Let $C \subset S = S_n \subset \mathbb{P}^n$ be a smooth curve of degree d and genus g lying on a del Pezzo surface S_n ($n \geq 3$). Then the Hilbert-flag scheme $\mathbf{HF} \mathbb{P}^n$ is nonsingular at (C, S) of expected dimension

$$\chi(N_{(C,S)/\mathbb{P}^n})=d+g+n^2+9,$$

and $H^i(N_{(C,S)/\mathbb{P}^n}) = 0$ for all i > 0.

In fact, $H^i(N_{C/S}) = H^i(N_{S/\mathbb{P}^n}) = 0$ for i > 0, which implies $C \subset S$ and $S \subset \mathbb{P}^n$ have nice (unobstructed) deformations and hence so does (C,S) in \mathbb{P}^n .

- 2.1 Kleppe-Ellia conjecture
- §2.2 Geralized Kleppe-Ellia conjecture

Generalized Kleppe-Ellia conjecture

Toward a generalization, we study the deformations of space curves lying on a del Pezzo surface of degree.

Conjecture (generalized K-E conj.)

Let $C \subset S_n \subset \mathbb{P}^n$ be a smooth connected curve lying on a smooth del Pezzo surface $S_n \subset \mathbb{P}^n$ of degree $n \geq 3$. Then C is stably degenerate if

- 2 C is linearly normal,
- **3** $\deg(C) > 9$ for n = 3 and $\deg(C) > 2n$ for $n \ge 4$, and C is general in $[C] \in \operatorname{Pic} S_n$.

Remark 6

$$(1) \Longleftrightarrow \chi(N_{(C,S)/\mathbb{P}^n}) \ge \chi(N_{C/\mathbb{P}^n}).$$

- Kleppe-Ellia conjecture
- .2 Geralized Kleppe-Ellia conjecture
- §2.3 Main result

Main result

We focus on the case n = 4, i.e. $S \simeq S_4$ is a smooth complete intersection

$$S_{2,2} = (2) \cap (2) \subset \mathbb{P}^4$$
.

We see that $N_{S/\mathbb{P}^4} \simeq O_S(2)^{\oplus 2} \simeq O_S(-2K_S)^{\oplus 2}$ and hence

$$H^1(N_{S/\mathbb{P}^4}(-C)) \simeq H^1(O_S(-C-2K_S))^{\oplus 2} \simeq H^1(I_C(2))^{\oplus 2}.$$

Then it follows from a general theory that C is stably degenerate if C is 2-normal.

Theorem 7 (N'25)

Let $C \subset \mathbb{P}^4$ be a smooth connected curve of degree d>8 contained in a smooth c.i. $S=S_{2,2}\subset \mathbb{P}^4$. Then

- If C is 2-normal, then C is unobstructed and stably degenerate.
- ② If $O_C(2)$ is non-special and C is not 2-normal, then C is unobstructed, but not stably degenerate.
- ③ If $h^1(O_C(2)) \ge h^1(I_C(2)) = 1$ and C is general in $[C] \in \operatorname{Pic} S$, then C is obstructed and stably degenerate.

- .1 Kleppe-Ellia conjecture
- 2 Geralized Kleppe-Ellia conjectur
- §2.3 Main result

Main result (continued)

C is 2-normal (resp. $O_C(2)$ is nonspecial) if (d, g) belongs to the region [I] (resp. [IV] except the 6 pairs corresponding to \circ).

Applications

Corollary 8

Generalized K-E conjecture holds to be true, if n = 4 and $h^1(I_C(2)) = 1$.

Let $C \subset S = S_{2,2} \subset \mathbb{P}^4$ be as in Theorem 7, and $W_{C,S}$ the irreducible component of $\operatorname{HF} \mathbb{P}^4$ passing through (C,S),and put

$$W_{C,S} := pr_1(\mathcal{W}_{C,S}) \cap \operatorname{Hilb}^{sc} \mathbb{P}^4$$
.

Then we have the following 3 possibilities for $W_{C,S}$:

degeneration of C	Is C obstructed?	$W_{C,S} \subset \operatorname{Hilb}^{sc} \mathbb{P}^4$
stable	NO	gen.smooth component
stable	YES	gen.non-reduced component
unstable	YES/NO	not a component

Analogy of Mumford's example

Example 2

 $\mathbf{Hilb}^{sc} \mathbb{P}^4$ contains a generically non-reduced irreducible component W whose general member C satisfies

- C is contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$,
- ② there exists a line E on S such that C belongs to a complete linear system $\Lambda := |-3K_S + 2E| \ (\simeq \mathbb{P}^{29})$ on S, and
- o dim W = 55, $h^0(C, N_{C/\mathbb{P}^4}) = 57$, and C is of degree 14 and genus 16.

Curves on $S_{2,2} \subset \mathbb{P}^4$ (analogy of Mumford's ex.)

Standard coordinate

Let D be a divisor on a smooth c.i. $S_{2,2} \subset \mathbb{P}^4$, i.e., a quartic del Pezzo surface. Then there exists a suitable blow-up $\varepsilon: S_{2,2} \to \mathbb{P}^2$ such that

$$[D] = a - \sum_{i=1}^5 b_i \mathbf{e}_i,$$

in ${\rm Pic}\, S_{2,2}\simeq \mathbb{Z}^6,$ where ${\rm I}=[\varepsilon^*O_{\mathbb{P}^2}(1)]$ and e_i 's are 5 exceptionals, and such that

$$b_1 \ge \dots \ge b_5$$
 and $a \ge b_1 + b_2 + b_3$. (1)

Then the set of 6-tuples $(a; b_1, ..., b_5)$ of integers is called standard coordinate of [D] in $Pic S_{2,2}$.

A criterion

Theorem 9 (N'25)

Let $C \subset S_{2,2} \subset \mathbb{P}^4$ be a smooth curve of degree $d \geq 10$ of genus $g \geq 2d-12$, contained in a smooth c.i. $S_{2,2}$ in \mathbb{P}^4 .Let $(a; b_1, \ldots, b_5)$ be the standard coordinate of [C] in $\operatorname{Pic} S_{2,2} \simeq \mathbb{Z}^6$. Then

- ① If $b_5 \ge 2$, then C is unobstructed and stably degenerate.
- ② If $b_5 = 1$ and $b_4 \ge 2$. then C is obstructed and stably degenerate.
- **1** If $b_5 = 0$, then C is not stably degenerate.

Examples

Table: curves on $S_{2,2}$ and stable degeneration

(d,g)	$(a; b_1, b_2, b_3, b_4, b_5)$	$W(a; b_1, b_2, b_3, b_4, b_5)$
(14, 16)	(8; 2, 2, 2, 2, 2)	unobstructed and stab.degenerate
(14, 16)	(9;4,3,2,2,2)	unobstructed and stab.degenerate
(14, 16)	(9;3,3,3,3,1)	obstructed and stab.degenerate
(15, 18)	(9; 4, 2, 2, 2, 2)	unobstructed and stab.degenerate
(15, 18)	(9;3,3,3,2,1)	obstructed and stab.degenerate
:	:	:
(18, 24)	(9; 2, 2, 2, 2, 1)	obstructed and stab.degenerate
(18, 24)	(10; 4, 3, 3, 1, 1)	$unknown (h^1(I_C(2)) = 2)$
(18, 24)	(10; 3, 3, 3, 3, 0)	not stab.degenerate $(h^1(I_C(2)) = 3)$
(18, 24)	(11; 6, 3, 2, 2, 2)	unobstructed and stab.degenerate
:	:	:

further questions

- **1** Deformations of curves lying on del Pezzo $S_n \subset \mathbb{P}^n$ of degree $n \geq 5$.
- Deformation of degenerate curves on del Pezzo manifold of higher dimension (> 3).
- Study the relation to other examples of obstructed curves C ⊂ Pⁿ (or non-reduced components of Hilb^{sc} Pⁿ).
 [Y. Choi–H. Iliev–S. Kim'24] have recently proved the existence of many non-reduced components of Hilb^{sc} Pⁿ of higher dimensional projective space Pⁿ by using ruled surfaces.
- 4 ...

References

D. Mumford.

Further pathologies in algebraic geometry.

Amer. J. Math., 84:642-648, 1962.

S. Mukai and H. Nasu

Obstructions to deforming curves on a 3-fold, I: A generalization of Mumford's example and an application to Hom schemes.

H. Nasu.

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold.

Annales de L'Institut Fourier, 60(2010), no. 4, 1289-1316.

H. Nasu.

Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface. *Internat. J. Math.*, 28(13):1750099, 30, 2017.

H Nasu

Obstructions to deforming space curves lying on a smooth cubic surface.

Manuscripta Math., 172 (2023), pp.31-55.