Баллов: 1 Эффект резонансного поглощения гамма квантов ядрами возможен потому, что
а. гамма квант поглощается свободным ядром
Закон сохранения момента импульса следует из: с. изотропности пространства
Протон в S - состоянии захватывается ядром ${}_5B^{11}$ ($J^p=3/2^-$) в реакции ${}_5B^{11}+p={}_6C^{12^*}$. Четность и возможные спины составного ядра ${}_6C^{12^*}$ равны: \bigcirc с. 1^- и 2^-
Чему равен спин ядра атома ^{85}Rb , если в сильном магнитном поле каждый из подуровней его терма $^{2S}1/2$ расщепляется на шесть компонент?: $_{a.}5/2$
Ядро углерода ${}^{12}C_{}$ ($E_{CB} = 92,16_{\mathrm{M} \rightarrow \mathrm{B})}$ поглощает тепловой нейтрон ($E_n = 0.025_{\mathrm{3B}}$). Энергия возбуждения составного ядра ${}^{13}C_{}$ ($E_{CB} = 97,11_{\mathrm{M} \rightarrow \mathrm{B})}$ равна (в МэВ): ${}^{\circ}$ с. ${}^{\circ}$ 4,95
"Спаривание" нуклонов обусловлено взаимодействием: о d. нейтронов или протонов одной подоболочки с противоположными спинами
Какая частица X , возникает в реакции ${}^7Li + X o {}^7Be + n$? \bigcirc b. протон Длина волны протона и электрона с кинетической энергией $T=10$ МэВ равна: \bigcirc а. протон - 1.4 Фм; электрон - 20 Фм
Возможные значения полного момента j нейтрона с орбитальным моментом $1=2$ (спин нейтрона $s=1/2$):
В капельной модели при малой деформации ядра энергия связи: а. уменьшается за счет поверхностной энергии и кулоновских сил
Определить тип ядерной реакции $^6Li(d,\alpha)^4He$. Удельные энергии связи ядер: $\varepsilon(d)$ $=$ $1.11_{ ext{M} ext{9B}};$ $\varepsilon(\alpha)$ $=$ $7.08_{ ext{M} ext{9B}};$ $\varepsilon(^6Li)$ $=$ $5.33_{ ext{M} ext{9B}}.$ \odot с. реакция экзотермическая
В модели ядерных оболочек спин и четность основного состояния ядра кремния ^{29}Si : $_{\rm c.}1/2^+$
$T = A_{MD}$

Главный механизм потери энергии электронов с кинетической энергией T=4МэВ в железе, заключается в: \odot с. ионизационных потерях

В модели ядерных оболочек основное состояние ядра лития 7L 1:

$$\circ$$
 a. $1s_{1/2}^41p_{3/2}^3$

Мультипольность наиболее вероятного гамма - перехода $2^+ \to 3^-$:

$$\stackrel{\circ}{\bigcirc}$$
 b. электрический диполь $\stackrel{\circ}{E}1$

Сумма масс покоя частиц, образующихся в конечном состоянии в экзотермической реакции - о b. меньше суммы масс покоя первичных частиц
Для какого ядра энергия связи протона равна энергии связи нейтрона: \bigcirc а. 2H
В процессе деления ядер с массовым числом A больше 110 на два равных осколка энергия: \circ с. выделяется
Порог реакции $d(p,\gamma)^3 He$: \bigcirc а. реакция экзотермическая
Собственный момент ядра (спин) является: с. аксиальным вектором
Протоны и нейтроны в ядре: ○ а. движутся с нерелятивистскими скоростями
Найти орбитальный момент, уносимый альфа-частицей ($s_{\alpha} = 0$, внутренняя четность $P_{\alpha} = 1$)в распаде $Po_{84}^{207} \rightarrow Pb_{82}^{203} + He_{2}^{4}$. Состояние начального и конечного ядер $\left(5/2\right)^{-}$. \circ с. 0 , 2 , 4 Выбрать из этих утверждений истинное: \circ с. Удельная энергия связи большинства ядер постоянна
$_{12}^{12}$ С $(J^p\!=\!0^+)_{\text{поглощает нейтрон в}}^{13}$ - состоянии, в результате чего образуется ядро $_6^{13}$ С $_8^*$ возбужденном состоянии с квантовыми характеристиками J^p
Собственный момент ядра (спин) является: с. аксиальным вектором
Если период полураспада изотопа 131 Іравен 193 часам, то во сколько раз число распадов N_1 ядер радиоактивного иода 131 Ів течение первых суток больше числа распадов N_2 в течение вторых суток? $_{a.}\frac{N_1}{N_2}=1.09$
Определить изоспин дейтрона d : \bigcirc d. 0
В какой из ядерных реакций может образоваться изотоп 8Be ? $_{\rm c.}~p+^{11}B \to ^8Be+lpha$
Оценить верхнюю границу спектра позитронов, испускаемых при бета+ -распаде ядра Si^{27} -> Al^{27} + e^+ + v_{e} . Учесть, что после распада один из электронов в оболочке дочернего атома оказывается "лишним", $\mathrm{M}_a(Si^{27}) = 25137.961_{\mathrm{M} \to \mathrm{B}_{\mathrm{f}}} \mathrm{M}_a(Al^{27}) = 25133.150_{\mathrm{M} \to \mathrm{B}_{\mathrm{f}}} m_e = 0.511_{\mathrm{M} \to \mathrm{B}_{\mathrm{f}}} m_{\upsilon} = 0$ \odot b. 3.789 M $_{\mathrm{B}}$

В модели ядерных оболочек спин и четность основного состояния ядра кислорода ¹⁷ O:

 $\bigcirc a p + {}^{7}Li \rightarrow {}^{8}Be + \gamma$

Изомеры это:

b. Возбужденные состояния ядер с одинаковым количеством протонов

Определить мультипольность γ - кванта, испущенного возбужденным ядром ${}^{16}_{8}$ О $_{1}^{7} = 1^{-}$, $E^* = 7,12$ МэВ)
при переходе на нижележащий уровень с квантовыми характеристиками ($J^p = 2^+, E^* = 6,92_{ ext{M} ext{9}B}$): \odot с. $E1$
Протон и нейтрон и находятся в состояниях $I_{1,s,j}>_p=I_{1,1/2,3/2}>_n$ $I_{1,s,j}>_n=I_{1,1/2,3/2}>_n$ соответственно. Какие значения может иметь полный момент системы ? \bigcirc а. $0,1,2,3$ Энергия связи изотопов некоторого ядра: \bigcirc а. растет с ростом числа нуклонов
Зеркальные ядра 7L и 7Be составляют:
\bigcirc с. изотопический дублет Длина волны протона с кинетической энергией 10 МэВ (в ед. Ферми): Выберите один ответ. \bigcirc а. 1.4
Энергия отделения протона в ядре $^{12}_{6}$ С через энергии связи ядер $^{6}_{6}$ С $_{\rm H}$ $^{12}_{5}$ В $_{6}$ Е $_{CB}$ ($^{12}_{C}$) = 92,16 $_{\rm M}$ $_{\rm H}$ $_{\rm S}$; $^{12}_{\rm C}$ $^{11}_{\rm B}$) = 76,2 $_{\rm M}$ $_{\rm H}$ $_{\rm S}$ $_{\rm B}$ $_{\rm B}$ $_{\rm S}$ $_{\rm C}$ $_{\rm C}$ $^{12}_{\rm B}$ $_{\rm S}$ $_{\rm S$
Спектр электронов при бета распаде имеет непрерывный характер потому, что:
\odot а. Процесс бета распада не является двухчастичным В модели ядерных оболочек спин и четность основного состояния ядра калия ^{39}K : $_{ m d.}$ $^{3}/^{2}$
Оценить верхнюю границу спектра позитронов, испускаемых при бета+ -распаде ядра Si^{27} -> Al^{27} + e^+ + v_e . Учесть, что после распада один из электронов в оболочке дочернего атома оказывается "лишним", $\mathrm{M}_a(Si^{27}) = 25137.961_{\mathrm{M} \to \mathrm{B}_{\mathrm{I}}} \mathrm{M}_a(Al^{27}) = 25133.150_{\mathrm{M} \to \mathrm{B}_{\mathrm{I}}} m_e = 0.511_{\mathrm{M} \to \mathrm{B}_{\mathrm{I}}} m_v = 0$ Выберите один ответ. \odot с. $3.789~\mathrm{M} \to \mathrm{B}$
Какую минимальную энергию T minдолжен иметь дейтрон, чтобы в результате неупругого рассеяния на ядре $10B_{\rm BO3}$ будить состояние с энергией E_{BO3} $\delta=1.75_{\rm M3B}$? (m _d =2.14 а.е.м., m _B =10.01 а.е.м.). \odot а. $1.75_{\rm M3B}$ \odot b. $2.1_{\rm M3B}$ \odot c. $53_{\rm M3B}$
Переносчиком сильного взаимодействия является:
При поглощении нейтрона в S-состоянии ядром ${}^{10}_5B(J^p\!=\!3^+)$ образуется составное ядро ${}^{11}_5B^*$ в возбужденном состоянии с квантовыми характеристиками J^p : $\bigcirc_{\bf d.} 5/2^+_{\bf u} 7/2^+$
Мультипольность наиболее вероятного гамма - перехода $2^+ \to 3^-$: \odot b. электрический диполь $E1$
Для какого ядра энергия связи нуклона равна его полной энергии связи? \odot а. 2H

Измерение формы линий резонансного поглощения гамма-квантов ядрами основано на:
 ○ с. доплеровском смещении линий за счет относительного движения источника и приемника
Протон и нейтрон и находятся в состояниях $I_{1,s,j}>_p=I_{1,\ 1/2,\ 3/2}>_u$ $I_{1,s,j}>_n=I_{1,\ 1/2,\ 3/2}>,$ соответственно. Какие значения может иметь полный момент системы ? \circ c. $0,1,2,3$
Определить мультипольность γ -кванта если ядро 8Be поглощает γ -квант, в результате чего вылетает протон с орбитальным моментом $L=1$, а конечное ядро образуется в основном состоянии (спин и четность 7Li $J^P=3/2^-$, а $^8BeJ^P=0^+$)? 0 d. M 1, E 2 и M 3
$E = -lpha ig(A/2 - Z ig)^2 / A_{ m B}$ модели Томаса-Ферми является следствием:
 b. подчинения нуклонов статистике Ферми
Возможные значения полного момента j нейтрона с орбитальным моментом $1=2$ (спин нейтрона $s=1/2$): 0 а. $3/2$; $5/2$
Аннигиляция электрон - позитронной пары $e^+ + e^- \to \gamma_{\text{невозможна вследствие}}$: \odot b. нарушения законов сохранения энергии и импульсов
Найти орбитальный момент, уносимый альфа-частицей ($s_{\alpha} = 0$, внутренняя четность $P_{\alpha} = 1$) в распаде $Po_{84}^{207} \to Pb_{82}^{203} + He_{2}^4$. Состояние начального и конечного ядер ($5/2$).
Закон сохранения, нарушающийся за счет электромагнитных взаимодействий: О d. Закон сохранения изоспина
Энергия отделения нейтрона в ядре 12 С через энергии связи ядер 6 С $_{\rm u}$ 12 С $_{\rm ECB}$
Собственный момент ядра (спин) определяется как:
а. максимальное значение проекции суммарного орбитального и спинового моментов составляющих его нуклонов
Определить мультипольность γ - кванта, испущенного возбужденным ядром ${}^{16}_8{\rm O}(J^p_i=1^-)$ при переходе в основное состояние с $J^p_f=0^+$:
В теории сильного взаимодействия протон и нейтрон: е. одинаковые частицы с различной проекцией изоспина
Мультипольность наиболее вероятного гамма - перехода $2^+ \to 3^-$:

У нестабильных ядер:

b. Энергии связи меньше нуля

Главный механизм потери энергии электронов с кинетической энергией $T=4\,\mathrm{MpB}$ в железе, заключается в:

с. ионизационных потерях

Какая частица ${
m X}$, возникает в реакции ${
m ^{23}}Na+d
ightarrow {
m ^{24}}Na+{
m X}$?

d. протон

Электрический дипольный момент ядра обращается в ноль в случае, когда спин ядра ${\it J}$ равен:

d. во всех случаях

При поглощении нейтрона в S-состоянии ядром ${}^{10}_5B(J^p\!=\!3^+)$ образуется составное ядро ${}^{11}_5B^*$ в возбужденном состоянии с квантовыми характеристиками J^p : Выберите один ответ.

Спектр электронов при бета распаде имеет непрерывный характер потому, что:

b. Процесс бета распада не является двухчастичным

В модели ядерных оболочек основное состояние ядра лития 7Li :

$$_{\text{a.}}$$
 $1s_{1/2}^41p_{3/2}^3$

Количество компонент сверхтонкой структуры атомного терма $^{2S_1/2}$ атома Li^6 (спин ядра Li^6 равен 1) равно: \odot с. 2

Если говорят, что спин ядра равен J, то имеют в виду: Выберите один ответ.

а. <mark>максимальное возможное значение проекции спина</mark>

Константы в законе Гейгера-Неттола (время в секундах, кинетическая энергия E в $M \ni B$) равны $C_1 = 150$ и $C_2 = 55$. Период полураспада при изменении E от 4 до 9 $M \ni B$, заключен в интервале:

Выберите один ответ.

$$0.10^{-5}-10^{20}c$$

Закон Гейгера-Неттола объясняется:

b. туннельным переходом алфа-частицы через потенциальный барьер

Схема распада протона в ядре:

Выберите один ответ.

$$a. p \rightarrow n + e^+ + v_e$$

Какое процентное содержание изотопа Th^{234} (продукта альфа-распада U^{238}) будет в образце, если период полураспада U^{238} - 7×10^5 лет, период полураспада Th^{234} - 24дня, а содержание изотопа U^{238} в этом образце составляет 12%.? Выберите один ответ.

$$\circ$$
 c $1.1 \times 10^{-7} \%$

$$= 1s_{1/2}^4 1p_{3/2}^8 1p_{1/2}^4 1d_{5/2}^9$$

Возможные значения полного момента j протона с орбитальным моментом 1=0 (спин протона s=1/2): Выберите один ответ.

$$c_{\rm c.}1/2$$

Ядро ^{10}B из возбужденного состояния с энергией 0.72МэВ распадается путем испускания γ -квантов с периодом полураспада $T_{1/2} = 6.7 \cdot 10^{-10} c$. Порядок неопределенности в энергии ΔE испущенного γ

-кванта:

Выберите один ответ.

При удалении из ядра одного нуклон спин ядра:

Выберите один ответ.

Переносчиком сильного взаимодействия является:

Выберите один ответ.

Определить спин ядра ^{42}K , если в сильном магнитном поле каждый из подуровней терма $^{2S}1/2$ расщепляется на пять компонент:

Выберите один ответ.

Чему равен спин ядра $^{59}C_{o}$, основной терм которого $^{4}F_{9/2}$ содержит восемь компонент сверхтонкого расщепления?

Выберите один ответ.

$$c \frac{1}{b} 7/2$$

Если период полураспада изотопа 131 Іравен 193часам, то во сколько раз число распадов 131 Іядер радиоактивного иода 131 Ів течение первых суток больше числа распадов 131 в течение вторых суток? Выберите один ответ.

$$\frac{N_1}{N_2} = 1.09$$

Какие из реакций 1) $e^- + p \rightarrow n + v_{e\,2}$ $e^+ + n \rightarrow p + \tilde{v}_{e\,3}$ $e + n \rightarrow p + \gamma_4$ $e + n \rightarrow \pi^- + \gamma$ возможны?

Выберите один ответ.

Изотоны это:

Выберите один ответ.

С с. Ядра с одинаковым количеством нейтронов

Время
$$t$$
, необходимое электрону с приведенной длиной волны см для пролета расстояния $L=200$ м с $m_e=9,1\cdot 10^{-31}$): Выберите один ответ. $m_e=1,8\cdot 10^{-5}$ с

В модели ядерных оболочек основное состояние изотопа углерода ^{13}C : Выберите один ответ.

c
$$a. \frac{1s_{1/2}^4 1p_{3/2}^8 1p_{1/2}^1}{1}$$

Длина волны протона и электрона с кинетической энергией T=10МэВ равна: Выберите один ответ.

Произойдет ли следующая ядерная реакция $^7Li+p o p+^5He_7$ Выберите один ответ.

Указать основное состояние ядра магния ^{25}Mg по модели ядерных оболочек: Выберите один ответ.

$$\circ \ \ _{\text{b.}} 1s_{1/2}^4 1p_{3/2}^8 1p_{1/2}^4 1d_{5/2}^9$$

$$^{238}_{92}$$
U , распадаясь до изотопа $^{206}_{82}$ Pb , испытывает: Выберите один ответ.

$$\circ$$
 $_{ extbf{b.}}$ $_{ extbf{8}}lpha$ - превращений и $_{ extbf{b}}$ - превращений и $_{ extbf{b}}$

Закон сохранения момента импульса следует из: Выберите один ответ.

Собственный момент ядра (спин) определяется как: Выберите один ответ.

с. максимальное значение проекции суммарного орбитального и спинового моментов составляющих его нуклонов

Время t, необходимое фотону с длиной волны см для пролета расстояния $L=200\,\mathrm{m}$: Выберите один ответ.

Расположите ядра $_{10}$ Ne 18 , $_{8}$ O 18 и $_{9}$ F 18 в порядке убывания их масс: Выберите один ответ.

Сумма масс покоя частиц, образующихся в конечном состоянии в экзотермической реакции -Выберите один ответ.

Вклад "энергии симметрии" $a_3(A-2Z)^2/A < 0_{\rm B}$ энергию связи ядра обусловлен тем, что: Выберите один ответ.

а. для наиболее стабильных ядер $Z \sim N$

Период полураспада $^{'}\Gamma_{1}/2$ и вероятность Pраспада в единицу времени связаны между собой соотношением: Выберите один ответ.

$$c_{\rm c.} T_{1/2} = \ln 2/P$$

Оценить энергию кулоновского отталкивания двух протонов на расстоянии $1\Phi_{\rm M}$: Выберите один ответ.
О а. 10 ГэВ
С b. 100MэB
° 1.5
\circ d. $0,1_{ ext{M} ightarrow ext{B}}$
Протон в S - состоянии захватывается ядром ${}_5B^{11}$ ($J^p=3/2^-$) в реакции ${}_5B^{11}+p={}_6C^{12*}$. Четность и возможные
спины составного ядра ${}_{6}\mathrm{C}^{12^{*}}$ равны:
Выберите один ответ.
о <mark>d. 1 и</mark> 2
В модели ядерных оболочек основное состояние изотопа углерода ^{13}C : Выберите один ответ.
c $\frac{1s_{1/2}^41p_{3/2}^81p_{1/2}^1}{1}$
Существование барьера деления ядра обусловлено: Выберите один ответ.
С а. преобладанием поверхностных сил над кулоновскими
Оценить минимальную энергию протона, при которой возможна реакция $p+d \to p+p+n$? (m _d =2.14 а.е.м.): Выберите один ответ. С а. $\boxed{3.34}$ МэВ
Число нуклонов A в ядрах семейства нептуния ${}^{237}_{93}Np$ описывается формулой: Выберите один ответ. С $_{ m d.}$ $A=4n+1$
Закон сохранения энергии следует из: Выберите один ответ. С а. однородности времени
Вклад "энергии симметрии" $a_3(A-2Z)^2/A$ $<$ $0_{\rm B}$ энергию связи ядра обусловлен тем, что: Выберите один ответ. \sim а. для наиболее стабильных ядер $Z\sim N$
Из закона Гейгера-Неттола следует, что: Выберите один ответ.
С с. период полураспада экспоненциально зависит от энергии альфа распада
23 N а $_{\rm C}E_{CB}=186,56$ $_{\rm M9B})$ теплового нейтрона энергия возбуждения возникающего 24 N а $_{\rm C}E_{CB}=193,52_{ m M9B})$ равна (в МэВ): Выберите один ответ.
В модели ядерных оболочек спин и четность основного состояния ядра кислорода ¹⁷ О:

Выберите один ответ.

Определить частицу X в реакции ${}^{23}Na+p \rightarrow {}^{20}Ne+X$. Выберите один ответ.

Укажите, в какой из ядерных реакций может образоваться изотоп 8Be ? Выберите один ответ.

$$c = \alpha + \alpha \rightarrow 8Be + \gamma$$

В результате бета+-распада ядро $27Si~Si^{27} \Rightarrow Al^{27} + e^+ + Ve_{\text{переходит в "зеркальное" ядро}}~27Al$.

Максимальная энергия позитронов
$$3.48$$
МэВ. Оценить радиус этих ядер ($m_p = 938.3_{\text{МэВ}}$, $m_n = 939.6_{\text{МэВ}}$, $m_e = 0.511_{\text{МэВ}}$, $m_v = 0$).

Выберите один ответ.

Порог реакции фоторасщепления $\gamma + ^{12}C \rightarrow ^{11}B + p_{:}$ Выберите один ответ.

Закон Гейгера-Неттола объясняется:

Выберите один ответ.

Эффект внутренней конверсии электронов заключается в: Выберите один ответ.

b. вырывании моноэнергетических электронов внутренних оболочек за счет прямой передачи энергии возбужденным ядром

Энергия симметрии $E = -\alpha (A/2-Z)^2/A_{
m B}$ модели Томаса-Ферми является следствием: Выберите один ответ.

Время t, необходимое протону с длиной волны см для пролета расстояния L=200 м ($m_p=1,67\cdot 10^{-27}$ кг):

Выберите один ответ.

$$\frac{1}{5}$$
 $\frac{3.2 \cdot 10^{-2}}{3.2 \cdot 10^{-2}}$

Мультипольность наиболее вероятного гамма - перехода $2^+ \to 3^-$: Выберите один ответ.

$$\circ$$
 b. электрический диполь $E1$

Если радиус ядра $R=1.3A^{1/3}\Phi$ м, то масса единицы объема ядерной материи равна: Выберите один ответ.

Количество компонент сверхтонкой структуры основного терма атома азота
$$^{15}N(^4S_{3/2})$$
 при спине ядра равном $^{1/2}$, равно:

Выберите один	ответ.
о b. 🔼	
Порог реакции	$^{32}S($

 $S(\gamma,p)^{31}P$.

Выберите один ответ

с. **8.864 МэВ**

Закон сохранения, нарушающийся за счет электромагнитных взаимодействий: Выберите один ответ.

с. Закон сохранения изоспина

Зеркальные ядра это:

Выберите один ответ.

а. Частный случай изобарных ядер

Спин ядра ${}^{42}K$ равен 2. Может ли в сильном магнитном поле терм ${}^{2}S_{1/2}$ расщепиться на на шесть компонент: Выберите один ответ.

с. <mark>Нет</mark>

Если энергия связи дейтрона $E_{CB}(2,1) = 2.2_{\text{M3B, то масса ядра}} \, ^2\mathrm{H}\,_{\mathrm{B}}$ энергетических единицах равна: Выберите один ответ.

 $_{\rm c.} 1875,7_{\rm MaB}$

В модели ядерных оболочек спин и четность основного состояния ядра кремния ^{29}S i: Выберите один ответ.

Мультипольность наиболее вероятного гамма - перехода $2^+ \to 3^-$: Выберите один ответ.

с. электрический диполь E1

Основной механизм потери энергии электронов с кинетической энергией $T=10\,$ МэВ в свинце: Выберите один ответ.

d. ионизационные потери

Укажите, в какой из ядерных реакций может образоваться изотоп 8Be ? Выберите один ответ.

$$p+7Li\rightarrow 8Be+\gamma$$

В модели ядерных оболочек основное состояние изотопа углерода ^{13}C : Выберите один ответ.

$$c \left[\frac{1s_{1/2}^4 1p_{3/2}^8 1p_{1/2}^1}{s_{1/2}^4 p_{3/2}^8 1p_{1/2}^1} \right]$$

 $^{15}Nig({}^4S_{3/2}ig)$ при спине ядра Количество компонент сверхтонкой структуры основного терма атома азота равном 1/2, равно: Выберите один ответ.

c. 2

Период полураспада $^{T_1/2}$ и вероятность Pраспада в единицу времени связаны между собой соотношением: Выберите один ответ.

 $C_{b} \left[\frac{T_{1/2} = \ln 2/P}{T_{1/2}} \right]$

а. промежуточные бозоны

Выберите один ответ.

Выберите один ответ. с. парафин

с. кинетические энергии продуктов реакции минимальны

Для защиты от потока быстрых нейтронов предпочтительнее использовать:

Южный федеральный университет

Физический факультет ФИЗИКАЯДРАИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ ФИО , группа № IV курс Изотопы это: . Ядра с одинаковым количеством протонов Изотоны это: . Ядрасодинаковым количеством нейтронов Зеркальные ядра это: . Частный случай изобарных ядер Какое из утверждений является истинным? . Удельная энергия связи большинства ядер постоянна Оценить плотность ядерной материи, считая, что радиус ядра R=1.3A1/3 Фм. . 180 млн. тонн см-3 Оценить импульс фотона в единицах МэВ/с, если его длина волны = 3 10-11см.. . 0.66 МэВ/с Отрицательный вклад «энергии симметрии» а3(A-2Z)2/A в энергию связи ядра обусловлен тем, что: . для наиболее стабильных ядер Z ~ N Оценить энергию связи ядра С11 если энергия отделения нейтрона от ядраС12 равна 18.8 МэВ, а энергия связиядраС12 равна 92.2 МэВ. . 73.4 МэВ Масса нейтрального атома 8О16 maт = 14899,089 МэВ. Оценить удельную энергию связи ядра 8О16 (масса нейтрального атома 1Н1 тат = 938,78 МэВ). . 7,5 МэВ/нуклон Не пользуясь таблицами изотопов, расположите ядра 10Ne18, 8O17 и 9F18 в порядке возрастания их масс: . 9F18 --8O17 -10Ne18 Найти возможные значения полного момента ј протона с орбитальным моментом l = 0 (спин протона s = 1/2). . 1/2 Сверхтонкая структура атомных спектров обусловлена: . взаимодействием магнитного момента ядра с магнитным полем электронной оболочки Чему равен орбитальный момент дейтрона, если спин дейтрона равен 1, а четность дейтрона положительна: . 0 или 2 Спин некоторого ядра равен 5/2. Какие из ядер могу обладать таким спином: . O17 . Mg25 Спин некоторого ядра равен 0. Какие из ядер могут обладать таким спином: . 20Ca40 . 14Si30 На основании одночастичной модели оболочек определить значения спина и четности ЈР основного состояния изотопа кислорода 8О17.

.5/2+

Нейтрон и протон находятся в состояниях с (l,s,j) n = $1,1/2,3/2$ и (l,s,j) p = $1,1/2,3/2$, соответственно. Какие значения может иметь полный момент системы j ?
. 0, 1,2, 3
Активность радиоактивного препарата это . число распадов ядер за 1 сек
Используя значения масс атомов, оценить верхнюю границу спектра позитронов, испускаемых при бета+ распада ядра $Si27 => Al27 + e+ + ve$. Указание: учесть, что после распада один из электронов в оболочке дочернего атома оказывается «лишним», $Ma(Si27) = 25137.961 \text{ M} \Rightarrow \text{B}$, $Ma(Al27) = 25133.150 \text{ M} \Rightarrow \text{B}$, $me = 0.511 \text{ M} \Rightarrow \text{B}$, $mv = 0$.
Содержание изотопа U238 в некотором образце составляет 12% . Какое процентное содержание изотопа Th234 (продукта альфа-распада U238) будет в этом образце, если период полураспада U238 - $7*105$ лет, а Период полураспада Th234 — 24 дня? . 1.2*10-7 %
Энергетический спектр электронов при бета распаде имеет непрерывный спектр потому, что: . Процесс бета распада не является двухчастичным
Резонансное поглощение гамма квантов ядрами (эффект Мессбауэра) возможно потому, что . гамма квант поглощается свободным ядром
Определить тип и мультипольности гамма -перехода 2+3- . электрический диполь E1
Порог реакции соответствует значению кинетической энергии налетающей частицы, при которой: . кинетические энергии продуктов реакции минимальны
В экзотермической реакции сумма масс покоя частиц, образующихся в конечном состоянии, . меньше суммы масс покоя первичных частиц
Идентифицировать частицу X в реакции $23Na+p$ $20Ne+X$. . ядро гелия
Найти энергию и порог реакции фоторасщепления С 6(,) 6. Энергия связи E(C11)=73.4 12 . nC 11 Мэв, E(C12)=92.2 МэВ, mn=939.57 МэВ 18.7 МэВ
С каким орбитальным моментом могут вылетать протоны в реакции $C12 + .> B11 + p$ если поглотился $E2$ фотон. Состояния ядра $C12 - 0+$, и ядра $B11\ 3/2-$, соответственно, (sp=1/2, Pp=1).
. 1, 3
Процент выполнения - Оценка -
Южный федеральный университет Физический факультет ФИЗИКА ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ ФИО, группа № IV курс
Изобары это: Ядра с одинаковым массовым числом

Изомеры это: Возбужденные состояния ядер с одинаковым количеством протонов

Какое из утверждений является ложным?

Масса ядра всегда больше суммы масс составляющих его нуклонов

Энергия связи ядра определяется как

Разность масс составляющих его нуклонов и массы ядра

Оценить длины волн протона и электрона с кинетической энергией Т = 10 МэВ.

протон – 1.4 Фм; электрон – 20 Фм

Считая, что разность энергий связи зеркальных ядер определяется только различием энергий кулоновскогоотталкивания в этих ядрах, оценить радиусы зеркальных ядер 23Na, 23Mg. Ecg(23Na) = 186.56 MэB,Ecg(23Mg) = 181.72

3.9 Фм

Вклад «энергии спаривания» a4A-1/2 в энергию связи ядра обусловлен тем, что:

в изобарном ряду четно-четные ядра обладают наибольшей энергией связи

Массы нейтрона и протона в энергетических единицах равны, соответственно, mn = 939.6 MэB иmp = 938.3 МэВ. Оценить массу ядра 2H в энергетических единицах, если энергия связи дейтронаЕсв(2,1) =2.2 МэВ.

1875,7 МэВ

Не пользуясь таблицами изотопов, расположите ядра 10Ne18, 8O17 и 9F18 в порядке возрастания их удельной энергии связи:

10Ne18 - 9F18 - 8O17

Найти возможные значения полного момента j нейтрона с орбитальным моментом l=2 (спин нейтрона s=1/2). 3/2, 5/2

Состояние ядра называется четным, если

волновая функция симметрична относительно зеркальных отражений

Число компонент сверхтонкой структуры атомного терма 2S1/2 атома Li6 (спин ядра Li6 равен 1) равно 2

Спин ядра определяется как:

максимальное значение проекции суммарного орбитального и спинового моментовсоставляющих его нуклонов

Спин некоторого ядра равен 2. Какие из ядер могу обладать таким спином:

Kr77

На основании одночастичной модели оболочек определить значение спина и четности JP основногосостояния изотопа кислорода 8O18.

0+

На основании одночастичной модели оболочек определить значения спина и четности ЈР основногосостояния изотопа кислорода - 8015.

1/2-

Соотношение между периодом полураспада T1/2 и вероятностью Pраспада в единицу времени имеет вид: $T1/2 = \ln 2/P$

Во сколько раз число распадов N1 ядер радиоактивногоиода 131I в течение первых суток больше числараспадов N2 в течение вторых суток? Период полураспада изотопа 131I равен 193 часам.

N1/N2 = 1.09

Ядро 27Si в результате бета+-распада Si27 => Al27 + e+ + ve переходит в "зеркальное" ядро 27Al.Максимальная энергия позитронов 3.48 MэB. Оценить радиус этих ядер (mp = 938.3 MэB, mn = 939.6 МэB,me = 0.511 МэB, mv = 0).

4.3 Фм

Энергия альфа частиц, вылетающих из какого-либо ядра в процессе распада радиоактивных ядер, имеетодно и то же значение потому, что:

Масса дочернего ядра намного больше массы альфа частицы

Закон Гейгера-Неттола гласит, что:

период полураспада экспоненциально зависит от энергии альфа распада

Определить тип и мультипольности гамма - переход 2- 0+

магнитный квадруполь М2

Явление ядерной изомерии состоит

в существовании долгоживущих возбужденных ядер

В эндотермической реакции сумма масс покоя частиц, образующихся в конечном состоянии,

больше суммы масс покоя первичных частиц

Является ли реакция 6Li(d,)4He эндотермической или экзотермической? Удельные энергии связи ядер:(d) = 1.11 МэВ; () = 7.08 МэВ; (6Li) = 5.33 МэВ.

реакция экзотермическая

22. 4 M₃B

Найти энергию и порог реакции 16 13 (,) 8 6 O n C б . Энергия связи E(O16)=127.6 M9B, E(C13)=97.1 M9B,E(He4)=28.3 M9B, mp=938.28 M9B, mn=939.57 M9B.

-2.2 МэВ и 2,35 МэВ

Определить орбитальный момент, уносимый альфа-частицей (s.=0, внутренняя четность P.=1) в распаде $207\ 203\ 484\ 82\ 2\ PoPbHe\dot{\Gamma}\ddot{E}$ + . Состояние начального и конечного ядер (5/2)-.

0, 2, 4

Процент выполнения -

Оценка -

Вопрос	Вопрос
Если приведенная длина волны фотона	Состоящее из четного числа протонов и нечетного
$\lambda = 3 \cdot 10^{-11}$ см, то его импульс в единицах МэВ/с: A) 0.66	числа нейтронов ядро имеет: а) Полуцелый спин
Какая частица X возникает в реакции: $Na^{23} + d \rightarrow Na^{24} + X$	Осуществима ли реакция (Т α =10MэВ)
а) Протон	$Li^7 + \alpha \rightarrow B^{10} + n$ a) Да
Существование барьера деления ядра обусловлено:	Сверхтонкая структура основного терма атома Ве9
а) преобладанием поверхностных сил над кулоновскими	(S_0^1) содержит количество компонент: а) 1
Переносчиком электромагнитного взаимодействия	Мультипольность наиболее вероятного гамма-
является: а) фотон	перехода 2 ⁺ →3 ⁻ : a) E1
Если радиус ядра R=1.3 A ^{1/3} Фм, то масса единицы объема ядерной материи равна: а) 180 млн тонн/см ³	Найти орбитальный момент, уносимый альфачастицей (Sa=1, внутренняя четность Pa=1) в распаде: $Po_{84}^{207} \rightarrow Pb_{82}^{203} + He_2^4$
	Состояние начального и конечного ядер $(5/2)^{-}$ а) $0,2,4$

В капельной модели при малой деформации ядра энергия связи: а) Уменьшается за счет поверхностной	Протон в S-состоянии захватывается ядром B_5^{11} ($J^p=3/2$) в реакции: $B_5^{11}+p\to C_6^{12*}$. Четность и
энергии и кулоновских сил	возможные спины составного ядра C_6^{12*} равны: а) 1- и 2-
В модели ядерных оболочек спин и четность ядра меди <i>Cu</i> ⁶³ : а) 3/2 ⁻	Если период полураспада I ¹³¹ равен 193 часам, то во сколько раз число распадов N1ядер радиоактивного йода I ¹³¹ в течение первых суток
a) 3/2	больше числа распадов N2 в течение вторых суток (N1/N2): а) 1,09
Масса нейтрона: а) Больше суммы масс протона и электрона	Закон сохранения импульса следует из: а) Однородности пространства
Возможна ли следующая реакция: $Li^7 + n \rightarrow \gamma + Be^8$ а) Her	Спин ядра K^{42} равен 2. Может ли в сильном магнитном поле терм $^2\mathrm{S}_{1/2}$ расщепиться на 6 компонент:
Зеркальные ядра: а) Частный случай изобарных ядер	Компоненты сверхтонкой структуры терма трития ${}^3{\rm H}({}^2{\rm S}_{1/2})$ при спине ядра равном $1/2$ а) 2
Выбрать из этих утверждений ложное: а) Масса ядра всегда больше суммы составляющих его нуклонов	Возможные значения полного момента ј протона с орбитальным моментом l=2 (спин нейтрона s=1/2): а) 3/2,5/2
Оценить энергию кулоновского отталкивания двух протонов на расстоянии 1 Фм а) 1,5 МэВ	Энергия симметрии $E = (-\alpha(A/2 - z)^2)/A$ в модели Томаса – Ферми является следствием: а) Подчинения нуклонов статистике Ферми
Оценить минимальную энергию протона, при которой возможна реакция: $p+d \to p+p+n$ a) 3,34 M \ni B	Закон сохранения, нарушающийся за счет электромагнитных взаимодействий: а) Закон сохранения изоспина
Чему равен спин ядра атома Rb^{85} , если в сильном магнитном поле каждый из подуровней его терма $2S_{1/2}$ расщепляется на 6 компонент?	Если энергия связи дейтрона равна 2,2 МэВ, то масса ядра дейтрона в энергетических единицах равна (МэВ): а) 1875.7
Протоны и нейтроны в ядре: а) Движутся с нерелятивистскими скоростями b)	Компоненты сверхтонкой структуры терма трития ${}^3{\rm H}({}^2{\rm S}_{1/2})$ при спине ядра равном $1/2$ b) 2
Определить орбитальный момент дейтрона, если его спин равен 1, а четность – положительна: а) 0 или 2	Возможные значения полного момента ј протона с орбитальным моментом l=2 (спин нейтрона s=1/2): b) 3/2,5/2
Определить значение спина и четность основного состояния ядра O_8^{18} а) 0^+	Найти энергию синтеза Q реакции, если удельные энергии связи равны в МэВ $\epsilon(2,1)=1,11$, $\epsilon(6,3)=5,33$, $\epsilon(4,2)=7,08$: $H_1^2 + Li_3^6 \rightarrow He_2^4 + He_2^4$ a) 22.4
Для ядра, находящегося выше дорожки стабильности, процесс, увеличивающий энергию связи, представляет собой:	Собственный момент ядра (спин) является: а) Аксиальным вектором

a) β ⁺ распад и К-захват	
Наблюдаемая сверхтонкая структура атомных	Дать определение активности радиоактивного
спектров обусловлена:	препарата:
 а) взаимодействием магнитного момента ядра с магнитным полем электронной 	а) Число распадов ядер в единицу времени
оболочки	
Оценить верхнюю границу спектра позитронов,	Ядро углерода ¹² ₆ С (Есв=92,16 МэВ) поглощает
испускаемых при β^+ распаде ядра	тепловой нейтрон (En=0,025 эВ). Энергия
$Si^{27} \rightarrow Al^{27} + e^+ + \vartheta_e$. Учесть, что после распада	возбужденного состояния ядра ¹³ С (Есв=97,11
один из электронов в оболочке дочернего ядра	МэВ) равна (в МэВ):
оказывается «лишним». Ответы в МэВ. а) 3.789	a) 4.95
a) 5.767	
Время t, необходимое фотону с длиной волны 10 ⁻⁹	Сверхтонкая структура основного терма хлора
м для пролета расстояния в 200 м:	35 Cl (P_1^2) при спине равном 3/2 содержит
a) 6,6*10 ⁻⁷ c	количество компонент:
T 0.025	a) 4
При поглощении теплового нейтрона (En=0.025	Закон сохранения энергии следует из: а) Однородности времени
эВ) ядром ²³⁶ ₉₄ Ри (Есв=1788,42 МэВ), образуется	а, однородности времени
ядро ²³⁷ ₉₄ <i>Pu</i> (Есв=1794,28 МэВ) в возбужденном	
состоянии с энергией (в МэВ):	
a) 5.86	
Число протонов и нейтронов, которое может	Спонтанное деление ядра возможно, когда:
содержать вторая оболочка ядра:	a) $(\mathbb{Z}^2/A) > 47$
a) 12	11-8
Возможные значения полного момента ј протона с орбитальным моментом $l=0$ (спин протона $s=1/2$)	Найти энергию синтеза Q реакции, если удельные энергии связи равны в МэВ $\epsilon(2,1)=1,11$,
a) 1/2	$\epsilon(6,3)=5,33, \epsilon(4,2)=7,08$:
,	$H_1^2 + Li_3^6 \rightarrow He_2^4 + He_2^4$
	b) 22.4
Эффект внутренней конверсии электронов	Энергия отделения нейтрона в ядре ¹³ ₆ С через
заключается в: а) Вырывании моноэнергетических	энергии связи ${}^{12}{}_{6}$ С и ${}^{13}{}_{6}$ С (E(12,6)=92,16 МэВ,
электронов внутренних оболочек за счет	E(13,6)=97,11 M ₃ B):
прямой передачи энергии	a) 4.95
возбужденным ядром	0
«Спаривание» нуклонов обусловлено взаимодействием:	Основной механизм потери электронов с кинетической энергией T=10 МэВ в свинце:
а) Нейтронов или протонов одной	а) Ионизационные потери
оболочки с противоположными	
спинами	Т.
Распад фотонов на e ⁻ и e ⁺ в вакууме невозможен	Длина волны протона и электрона с кинетической энергией T=10 МэВ равна:
вследствие: а) Нарушения законов сохранения	а) Протон – 1,4 Фм, Электрон – 20 Фм
энергии и импульсов	
Укажите возможные одночастичные переходы при	Закон Гейгера — Нетолла объясняется: а) Туннельным переходом альфа-частицы
поглощении ядром $^{12}_{6}$ E1 гамма-кванта:	а) туннельным переходом альфа-частицы через потенциальный барьер
a) ${}_{1/2}^{1}S \rightarrow {}_{1/2}^{2}P$,
b) $\frac{1}{3/2}p \to \frac{2}{3/2}d$	
c) ${}_{1/2}^{1}S \rightarrow {}_{5/2}^{2}P$	
d) $_{1/2}S \rightarrow _{3/2}P$	T
В экспериментах по рассеянию альфа-частиц с	Порог реакции фоторасщепления
энергией T=22 МэВ на ²⁰⁸ Р можно определить: а) Раднус ядра	$\gamma + C^{12} \rightarrow C^{11} + n (B \text{ M} \ni B)$
При поглощении гамма-кванта ядром 4Не	а) 18.721 Число компонент зеемановского расщепления
вылетает нейтрон с орбитальным моментом In=2	подуровней сверхтонкой структуры терма
(спин и четность 3He Jp=1/2+). Все возможные	

мультипольности гамма-кванта, если конечное ядро образуется в основном состоянии, равны: а) M1, E2 и M3 Собственный момент ядра равен: а) Сумме спинов и орбитальных моментов нуклонов Определить мультипольность гамма-кванта, испущенного возбужденным ядром O_8^{16} ($J^p=1^-$, $E^*=7.12$ МэВ) при переходе на нижележащий уровень с квантовыми характеристиками ($J^p=2^+$, $E^*=6.92$ МэВ) а) E1	 ²Р _{3/2} атома ³⁵ Cl (спин ядра – 3/2) в слабом магнитном поле: а) 9 b) 18 c) 16 d) 8 Произойдет ли следующая реакция: Li₃⁷ + p → p + p + Li₃⁶ а) Нет Изотоны – это: а) Ядра с одинаковым количеством нейтронов
Неравномерную зависимость энергии отделения нейтрона от ядра можно объяснить: а) Спариванием нейтронов	Оценить энергию и порог реакции фоторасщепления $C_6^{12}(\gamma,n)C_6^{11}$. Энергия связи $E(11,6)=73,4$ МэВ, $E(12,6)=92,2$ МэВ, $m_n=939,57$ МэВ. Ответ в МэВ: <i>а)</i> 18,7
Изотопы – это: а) Ядра с одинаковым количеством протонов	Какая частица X возникает в результате реакции: $^{7}\text{Li} + \text{X} \rightarrow ^{7}\text{Be} + \text{n}$ а) Протон
Количество компонент сверхтонкой структуры атомного терма 2 S $_{1/2}$ атома 6 Li (спин ядра равен 1) равно:	Абсолютное значение вектора спина в единицах постоянной Планка равно: а) $(J(J+1))^{1/2}$
Число нуклонов А в ядрах семейства нептуния ²³⁷ Np ₉₃ описывается формулой: а) 4n+1	Вычислить энергию связи ядра C^{11} , если энергия отделения нейтрона от ядра C^{12} равна 18.8 МэВ, а энергия связи ядра C^{12} равна 92,2 МэВ: а) 73,4
В модели ядерных оболочек спин и четность основного состояния ядра кремния: Si_{14}^{29} а) $\frac{1}{2}^{+}$	Определить тип ядерной реакции: $Li^6(d,a)He^4$ $\varepsilon(Li^6)=5,33$ МэВ , $\varepsilon(d)=1,11$ МэВ , $\varepsilon(a)=7,08$ МэВ а) Экзотермическая
Найти орбитальный момент L уносимый альфа частицей при распаде изотопа урана: U_{92}^{229} -> Th_{90}^{225} a) 0	Найти орбитальный момент трития, образовавшегося в реакции: $Al^{27} + He_2^4 = H_1^3 + Si^{28}$ Даны спины и четности ядер и частиц ($J^p(He_2^4) = 0^+, J^p(Al^{27}) = \frac{5^+}{2},$ $J^p(H_1^3) = \frac{1^+}{2}, J^p(Si^{28}) = 0^+$) Ответ: $l=2$
Спектр электронов при бета распаде имеет непрерывный характер потому что: а) Процесс бета-распада не является двухчастичным	Протон и нейтрон находятся в состояниях: $I_{l,s,j}=I_{1,1/2,3/2}$ протон и $I_{l,s,j}=I_{1,1/2,3/2}$ нейтрон Какие значения может иметь полный момент системы?
Возможна ли следующая реакция $Li_3^7 + n = He_2^4 + He_2^4$ а) Нет	Какое процентное содержание изотопа Th 234 (продукта альфа-распада U^{238}) будет в образце, если период полураспада U^{238} - $7*10^5$ лет, период

	полураспада Th ²³⁴ - 24 дня, а содержание изотопа
	U ²³⁸ в этом образце составляет 12%
12	a) 1.1*10 ⁻⁷ %
Энергия отделения протона в ядре ¹² ₆ Счерез	Сумма масс покоя частиц, образующихся в конечном состоянии в экзотермической реакции:
энергии связи ядер ${}^{12}{}_{6}$ Си ${}^{11}{}_{5}$ В(Есв(12,6)=92,16	а) Меньше суммы масс покоя первичных
МэВ, Есв(11,5)=76,2 МэВ равна (в МэВ):	частиц
a) 15.96	
Порог реакции $^{32}S(\gamma_{i}p)^{31}P$	Для какого ядра энергия связи нуклона равна его
a) 8,864 M ₂ B	полной энергии связи: a) ² H
	а) н
Закон сохранения момента импульса следует из: а) Изотропности пространства	При каких относительных орбитальных моментах количества движения протона возможна ядерная
	реакция $r + ^7L_1 \rightarrow ^8Be^* \rightarrow \alpha + \alpha$ (спин и четность 7L_1
	$J^P = 3/2$
	а) Всех нечетных
Измерение формы линий резонансного	Если говорят, что спин ядра равен J , то
поглощения гамма-квантов ядрами основано на:	имеют в виду
а) Доплеровском смещении линий за счет	а) Максимальное возможное значение
относительного движения источника и	проекции спина
приемника	
Константы в законе Гейгера-Неттола (время в	Схема распада протона в ядре:
секундах, кинетическая энергия Е в МэВ)	a) $p \rightarrow n + e^+ + \nu_e$
равны C_1 =150 и C_2 =55. Период полураспада	a) p hit c ive
при изменении Е от 4 до 9 МэВ, заключен в	
интервале:	
a) 10^{-5} - 10^{20} c	
	10
Указать основное состояние ядра ²⁵ Mg по	Указать основное состояние ядра ¹³ С по
модели ядерных оболочек	модели ядерных оболочек
$1s_{1/2}^{4}1p_{3/2}^{8}1p_{1/2}^{4}1d_{5/2}^{9}$	a) $1s_{1/2}^{4}1p_{3/2}^{8}1p_{1/2}^{1}$
a)	,
Ядро ¹⁰ В из возбужденного состояния с	При удалении из ядра одного нуклона спин ядра:
энергией 0.72 МэВ распадается путем	а) Обязательно изменится
испускания гамма-квантов с периодом	
полураспада $T_{1/2}$ =6.7*10 ⁻¹⁰ с. Порядок	
неопределенности в энергии ΔЕ испущенного	
гамма-кванта (в эВ):	
a) 10 ⁻⁷	
Переносчиком сильного взаимодействия является:	Переносчиком слабого взаимодействия является:
а) Глюон	а) промежуточные бозоны
Соотношение между периодом полураспада $T_{1/2}$	В модели ядерных оболочек основное
и средним временем жизни т имеет вид:	состояние ядра 7Li:
a) $T_{1/2} = \tau^* \ln 2$	$1s_{1/2}^{2}1r_{2/2}^{3}$
/ X/ M	a) [1/2 · 3/2]
В эндотермических ядерных реакциях порог	Какие из ядер могут обладать J=2
реакции соответствует значению кинетической	a) Kr ⁷⁷
энергии налетающей частицы, при которой	·· <i>,</i>
а) Кинетические энергии продуктов	
реакции минимальны Найти орбитальные моменты, с	Преодоление барьера деления ядра
которыми могут вылетать протоны в реакции	обусловлено:
$C^{12}+\gamma \to B^{11}+p$ если поглотился E2 фотон.	а) Преобладанием кулоновских сил
p com nonormed L2 words.	над поверхностными

Состояния ядра $C^{12}=0^+$, и ядра $B^{11}=3/2^-$, $(s_p=1/2, Pp=1)$ а) 1,3	
Для тяжелых ядер соотношение между энергиями связи протона E_p и протона E_n имеют вид: а) $E_p < E_n$	Электрический дипольный момент ядра обращается в ноль в случае, когда спин ядра Ј равен а) Во всех случаях
Изомеры – это: а) Возбужденные состояния ядер с одинаковым количеством протонов	Спин ядра при β распаде: а) Обязательно изменится на полуцелую величину
Кварковая структура протона: а) Uud	Количество компонент сверхтонкой структуры атомного терма ⁴ S _{3/2} атома ¹⁵ N (спин ядра равен 1/2) равно: а) 2 b) 3 c) 4 d) 6
Для защиты от потока быстрых нейтронов предпочтительнее использовать а) вода	Укажите, в какой из ядерных реакций может образоваться изотоп 8 Be: а) $p+^7Li \rightarrow ^8Be+\gamma$
Укажите, в какой из ядерных реакций может образоваться изотоп 8 Be a) $\alpha + \alpha \to ^8Be + \gamma$	В результате β+ распада ядро 27 Si $_{Si^{27}} \Rightarrow Ai^{27} + \varepsilon^+ + V\varepsilon$ переходит в "зеркальное" ядро 27 Al. Максимальная энергия позитронов 3.48 МэВ. Оценить радиус этих ядер ($_{p}=938.3$ МэВ, $_{n}=939.6$ МэВ, $_{e}=0.511$ МэВ, $_{v}=0$).
Определить спин ядра ⁴² К, если в сильном магнитном поле каждый из подуровней терма ² S _{1/2} расщепляется на 5 компонент: а) 2	Чему равен спин ядра ⁵⁹ Со, основной терм которого ⁴ F _{9/2} содержит 8 компонент сверхтонкого расщепления? а) 7/2
Какие из реакций 1) $e^- + p \rightarrow n + v_{e2}$ $e^+ + n \rightarrow p + \tilde{v}_{e3}$ $e + n \rightarrow p + \gamma_4$ $e + n \rightarrow \pi^- + \gamma_{\text{возможны}}$?	Произойдет ли следующая ядерная реакция $Li^7 + p \rightarrow p + He^5$ а) Нет
238 ₉₂ U, распадаясь до изотопа ²⁰⁶ ₈₂ Pb, испытывает: а) 8α и 6β превращений	Собственный момент ядра (спин) определяется как а) Максимальное значение проекции суммарного орбитального и спинового моментов составляющих его нуклонов
Расположите ядра $_{10}$ Ne 18 , $_{8}$ O 18 и $_{9}$ F 18 в порядке убывания их масс а) $10^{N}e^{18}{9}F^{18}{8}O^{18}$	У нестабильных ядер а) Энергия связи меньше нуля
Чему равен характерный размер нуклона: а) Несколько Ферми	В модели ядерных оболочек спин и четность основного состояния ядра кислорода ¹⁷ О а) 5/2 ⁺
Определить частицу X в реакции $Na^{23} + p \rightarrow X + Ne^{20}$ а) Ядро гелия	Из закона Гейгера-Неттола следует, что а) период полураспада экспоненциально зависит от энергии альфа распада

Вклад "энергии симметрии" $a_3(A\!-\!2Z)^2/A\!<\!0_{\rm B\ энергию\ связи\ ядра}$ обусловлен тем, что:

а) для наиболее стабильных ядер $Z \sim N$

Период полураспада T_{1/2} и вероятность Р распада в единицу времени связаны между собой соотношением:

$$T_{1/2} = \ln 2/P$$