```
In [16]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
```

```
In [17]: df = pd.read_csv('carlogistic.csv')
df
```

Out[17]:

	Car Model	Mileage	Sell Price(\$)	Age(yrs)
0	BMW X5	69000	18000	6
1	BMW X5	35000	34000	3
2	BMW X5	57000	26100	5
3	BMW X5	22500	40000	2
4	BMW X5	46000	31500	4
5	Audi A5	59000	29400	5
6	Audi A5	52000	32000	5
7	Audi A5	72000	19300	6
8	Audi A5	91000	12000	8
9	Mercedez Benz C class	67000	22000	6
10	Mercedez Benz C class	83000	20000	7
11	Mercedez Benz C class	79000	21000	7
12	Mercedez Benz C class	59000	33000	5

```
In [18]: %matplotlib inline
   plt.xlabel('Mileage')
   plt.ylabel('Sell Price($)')
   plt.scatter(df['Mileage'],df['Sell Price($)'],color='red')
```

Out[18]: <matplotlib.collections.PathCollection at 0x222a2ca00a0>


```
In [19]: %matplotlib inline
    plt.xlabel('Age(yrs)')
    plt.ylabel('Sell Price($)')
    plt.scatter(df['Age(yrs)'],df['Sell Price($)'],color='blue')
```

Out[19]: <matplotlib.collections.PathCollection at 0x222a28bc0d0>


```
In [20]: le = LabelEncoder()
    dfle = df
    dfle['Car Model'] = le.fit_transform(dfle['Car Model'])
    dfle
```

Out[20]:

	Car Model	Mileage	Sell Price(\$)	Age(yrs)
0	1	69000	18000	6
1	1	35000	34000	3
2	1	57000	26100	5
3	1	22500	40000	2
4	1	46000	31500	4
5	0	59000	29400	5
6	0	52000	32000	5
7	0	72000	19300	6
8	0	91000	12000	8
9	2	67000	22000	6
10	2	83000	20000	7
11	2	79000	21000	7
12	2	59000	33000	5

```
In [21]: X = dfle[['Car Model', 'Mileage', 'Age(yrs)']].values
Out[21]: array([[
                      1, 69000,
                                    6],
                      1, 35000,
                                    3],
                      1, 57000,
                                    5],
                                    2],
                      1, 22500,
                      1, 46000,
                                    4],
                      0,59000,
                                    5],
                      0, 52000,
                                    5],
                      0, 72000,
                                    6],
                      0, 91000,
                                    8],
                      2, 67000,
                                    6],
                                    7],
                      2, 83000,
                      2, 79000,
                                    7],
                      2, 59000,
                                    5]], dtype=int64)
In [22]: Y = dfle[['Sell Price($)']].values
Out[22]: array([[18000],
                 [34000],
                 [26100],
                 [40000],
                 [31500],
                 [29400],
                 [32000],
                 [19300],
                 [12000],
                 [22000],
                 [20000],
                 [21000],
                 [33000]], dtype=int64)
In [23]: | ct = ColumnTransformer([('Car Model', OneHotEncoder(), [0])], remainder = 'passthrough'
In [24]: X=ct.fit transform(X)
Out[24]: array([[0.00e+00, 1.00e+00, 0.00e+00, 6.90e+04, 6.00e+00],
                 [0.00e+00, 1.00e+00, 0.00e+00, 3.50e+04, 3.00e+00],
                 [0.00e+00, 1.00e+00, 0.00e+00, 5.70e+04, 5.00e+00],
                 [0.00e+00, 1.00e+00, 0.00e+00, 2.25e+04, 2.00e+00],
                 [0.00e+00, 1.00e+00, 0.00e+00, 4.60e+04, 4.00e+00],
                 [1.00e+00, 0.00e+00, 0.00e+00, 5.90e+04, 5.00e+00],
                 [1.00e+00, 0.00e+00, 0.00e+00, 5.20e+04, 5.00e+00],
                 [1.00e+00, 0.00e+00, 0.00e+00, 7.20e+04, 6.00e+00],
                 [1.00e+00, 0.00e+00, 0.00e+00, 9.10e+04, 8.00e+00],
                 [0.00e+00, 0.00e+00, 1.00e+00, 6.70e+04, 6.00e+00],
                 [0.00e+00, 0.00e+00, 1.00e+00, 8.30e+04, 7.00e+00],
                 [0.00e+00, 0.00e+00, 1.00e+00, 7.90e+04, 7.00e+00],
                 [0.00e+00, 0.00e+00, 1.00e+00, 5.90e+04, 5.00e+00]])
```

```
In [25]: X=X[:,1:]
Out[25]: array([[1.00e+00, 0.00e+00, 6.90e+04, 6.00e+00],
                [1.00e+00, 0.00e+00, 3.50e+04, 3.00e+00],
                [1.00e+00, 0.00e+00, 5.70e+04, 5.00e+00],
                [1.00e+00, 0.00e+00, 2.25e+04, 2.00e+00],
                [1.00e+00, 0.00e+00, 4.60e+04, 4.00e+00],
                [0.00e+00, 0.00e+00, 5.90e+04, 5.00e+00],
                [0.00e+00, 0.00e+00, 5.20e+04, 5.00e+00],
                [0.00e+00, 0.00e+00, 7.20e+04, 6.00e+00],
                [0.00e+00, 0.00e+00, 9.10e+04, 8.00e+00],
                [0.00e+00, 1.00e+00, 6.70e+04, 6.00e+00],
                [0.00e+00, 1.00e+00, 8.30e+04, 7.00e+00],
                [0.00e+00, 1.00e+00, 7.90e+04, 7.00e+00],
                [0.00e+00, 1.00e+00, 5.90e+04, 5.00e+00]])
In [26]: model1 = LinearRegression()
         model1.fit(X,Y)
Out[26]: LinearRegression()
In [28]:
         mercedez = model1.predict([[0, 1, 45000, 4]])
         mercedez
Out[28]: array([[36991.31721062]])
In [29]:
         bmw = model1.predict([[1, 0, 86000, 7]])
Out[29]: array([[11080.74313219]])
In [30]: model1.score(X,Y)
Out[30]: 0.9417050937281082
```