Discrete Mathematics HW10

20180617 You SeungWoo

November 25, 2023

Problem 1

Proof. Proof by induction. Let P(j) be the given statement for j vertices. Consider P(j = 1). This means the tree contains only one vertex, unique. Therefore, P(1) is true.

Suppose P(j = n) is true, consider P(j = n + 1). Since the preorder and the number of children of each vertex are given, we can find one leaf vertex v which appears at first, because v has no children. Since v is in preorder, we can find its parent w(just preceding v).

Now, remove v in the given preorder and decrease the number of children of w by 1. This result is the same as the statement in P(n). This means we get the unique tree except one vertex v. The last step is to return to origin: put v in its previous position and add 1 to the number of children of w. This last step is also unique(only one way), so we get the unique tree with n+1 vertices. Therefore, P(n+1) is true.

Proof. Proof by (strong) induction. Let k be the number of operators. Then we need to prove the number of symbols is k+1. Consider k=0. Then by the definition of Well-formed formula (WFF), it has the form x which is one symbol. Therefore, k=0 is true.

Suppose $k \leq n$ is true, consider k = n + 1. Note that the form of WFF is *XY if WFF has at least one binary operator. Remove the * appears in front. Then the remains XY has n operators. Since X is WFF, it has $0 \leq m \leq n$ operators so has m+1 symbols. Similarly, Y has $0 \leq n - m \leq n$ operators so has n - m + 1 symbols. Thus XY has n operators and n+2 symbols. Now, add the removed operator. Then we get n+1 operators and n+2 symbols, true.

Solution. Skipped. Very easy, so try it! The answer is:

• Prefix: $- \cup AB \cap A - BA$

• Postfix: $AB \cup ABA - \cap -$

• In fix: $(A \cup B) - (A \cap (B-A))$

- (a) Proof. Proof by induction. Note that we need to find optimal vertex cover. Denote the optimal vertex cover of a graph G is $V^*(G)$. Let P(j) be the statement: $|V^*(K_j)| = j 1$. Consider P(j = 2). Then it is only a line, so just choose any one vertex. It is an optimal vertex cover, therefore P(2) is true. Suppose P(j = n) is true. Consider P(j = n + 1). Remove one vertex(denote u) and its connected edges in K_{n+1} . Then the graph is K_n . By the induction hypothesis, it has $V^*(K_n)$ with size n 1. This means K_n consists of:
 - n-1 vertices which are in $V^*(K_n)$
 - 1 vertex(denote v) which is not in $V^*(K_n)$

Now, add u and its edges to origin. Then we get K_{n+1} with n-1 vertices in $V^*(K_{n+1})$. If u is not in $V^*(K_{n+1})$, then there is the edge (u,v) which does not satisfy the definition of vertex cover. This implies $u \in V^*(K_{n+1})$. Therefore, $|V^*(K_{n+1})| = (n-1) + 1 = n$, true.

(b) Proof. Proof by induction. This problem is proved by the following:

Show that $V^*(G) \leq n-1$ for any simple undirected (connected) graph G.

Similarly in (a), let P(j) be the statement: $|V^*(G_n)| \le n-1$. Note that G_n means any graph with n vertices. Consider P(j=2). Then it is only a line, so $V^*(G_2) = 1$. Therefore, P(2) is true. Suppose P(j=n) is true. Consider P(j=n+1). Remove one vertex(denote u) and its connected edges in G_{n+1} . Then the graph is a subgraph of G_{n+1} (denote G_n). By the induction hypothesis, it has $V^*(G_n)$ with size at most n-1. This means G_n consists of:

- at most n-1 vertices which are in $V^*(G_n)$
- at least 1 vertex which are not in $V^*(G_n)$

Now, add u and its edges to origin. Then we get G_{n+1} with at most n-1 vertices in $V^*(G_{n+1})$. Since there is at least 1 vertex which are not in $V^*(G_n)$, u must in $V^*(G_{n+1})$. Therefore, $|V^*(G_{n+1})| \le (n-1)+1=n$, true.

Solution. Skipped. You can do it in 3 weighing.

5

Solution. Skipped. The answer is

- 3 if only find bad coin
- 4 if find bad coin and determine lighter or heavier

Solution. Total 11 trees.

Solution. I found 12, but I'm not sure if these are the only ones. Try it!

Solution. Follow the algorithm:

Step 1 Let $P = (a_1, a_2, \dots, a_{n-2})$ be a Prüfer code. Then we have the tree with n nodes.

Step 2 Make a list $L = (1, 2, \dots, n)$.

Step 3 Find the first number $a \in P$. Find the smallest number $b \in L$ but $b \notin P$. Remove them and add an edge (a, b) to the tree.

Step 4 If $P \neq \emptyset$, then return to the Step 3. If not, continue to next.

Step 5 We have only 2 values in L: let them be b_1 and b_2 . Then just remove them and add an edge (b_1, b_2) to the tree. Done!

Note that the above algorithm gives well solution: the result is always given, well-formed, and unique. Now, draw the first tree. Let P = (1, 1, 1, 1). Then we have 6 nodes. Let L = (1, 2, 3, 4, 5, 6).

$$P = (\cancel{1}, 1, 1, 1)$$

 $L = (1, \cancel{2}, 3, 4, 5, 6)$

$$P = (1, 1, 1, 1)$$

 $L = (1, 2, 3, 4, 5, 6)$

$$P = (\cancel{1}, \cancel{1}, \cancel{1}, 1)$$

 $L = (1, \cancel{2}, \cancel{3}, \cancel{4}, 5, 6)$

$$\begin{split} P &= (\cancel{1}, \cancel{1}, \cancel{1}, \cancel{1}) \\ L &= (1, \cancel{2}, \cancel{3}, \cancel{4}, \cancel{5}, 6) \end{split}$$

$$P = (\cancel{1}, \cancel{1}, \cancel{1}, \cancel{1})$$

$$L = (\cancel{1}, \cancel{2}, \cancel{3}, \cancel{4}, \cancel{5}, \cancel{6})$$

Draw the second tree. Let P=(1,1,4,4) (You can make another code). Then we have 6 nodes. Let L=(1,2,3,4,5,6).

$$P = (\cancel{1}, \cancel{1}, 4, 4)$$

 $L = (1, \cancel{2}, \cancel{3}, 4, 5, 6)$

$$P = (1, 1, 4, 4)$$

 $L = (1, 2, 3, 4, 5, 6)$

$$\begin{split} P &= (\cancel{1}, \cancel{1}, \cancel{4}, \cancel{4}) \\ L &= (\cancel{1}, \cancel{2}, \cancel{3}, 4, \cancel{5}, 6) \end{split}$$

$$\begin{split} P &= (\cancel{1}, \cancel{1}, \cancel{4}, \cancel{4}) \\ L &= (\cancel{1}, \cancel{2}, \cancel{3}, \cancel{4}, \cancel{5}, \cancel{6}) \end{split}$$

Solution. Follow the algorithm:

Step 1 Create adjacency matrix M for the given graph.

Step 2 Replace all the diagonals of M with the degree of nodes. For example, if deg(1) = 3, then put $m_{1,1} = 3$ which is an element of M.

Step 3 Replace all non-diagonal 1's with -1.

Step 4 Remove any one row and one column of M. Let the remained be M^* .

Step 5 Calculate det M^* . This is the total number of spanning trees. Done!

Note that Step 4 and Step 5 are the same as calculate co-factor for any element of M. Co-factor for all the elements will be same. Now, let the graph be

For the graph, the adjacency matrix is

$$M = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Replace all the diagonals of M with the degree of nodes.

$$M = \begin{pmatrix} 3 & 1 & 1 & 0 & 1 \\ 1 & 3 & 0 & 1 & 1 \\ 1 & 0 & 3 & 1 & 1 \\ 0 & 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{pmatrix}$$

Replace all non-diagonal 1's with -1.

$$M = \begin{pmatrix} 3 & -1 & -1 & 0 & -1 \\ -1 & 3 & 0 & -1 & -1 \\ -1 & 0 & 3 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{pmatrix}$$

Remove any one row and one column of M. I choose the last row and last column. Let the remained be M^* .

$$M^* = \begin{pmatrix} 3 & -1 & -1 & 0 \\ -1 & 3 & 0 & -1 \\ -1 & 0 & 3 & -1 \\ 0 & -1 & -1 & 3 \end{pmatrix}$$

 $\det M^* = 45$. Therefore, there are total 45 spanning trees.

This algorithm comes from $Matrix\ Tree\ Theorem$, also called $Kirchhoff's\ Theorem$: [the number of nonidentical spanning trees of a graph G is equal to any cofactor of its Laplacian matrix.]