

Sequence Listing

<110> Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Fong, Sherman
Gao, Wei-Qiang
Goddard, Audrey
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Smith, Victoria
Stewart, Timothy A.
Tumas, Daniel
Watanabe, Colin K.
Williams, P. Mickey
Wood, William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2830P1C61

<150> 09/946374
<151> 2001-09-04

<150> 60/098716
<151> 1998-09-01

<150> 60/098723
<151> 1998-09-01

<150> 60/098749
<151> 1998-09-01

<150> 60/098750
<151> 1998-09-01

<150> 60/098803
<151> 1998-09-02

<150> 60/098821
<151> 1998-09-02

<150> 60/098843
<151> 1998-09-02

<150> 60/099536
<151> 1998-09-09

<150> 60/099596
<151> 1998-09-09

<150> 60/099598
<151> 1998-09-09

<150> 60/099602
<151> 1998-09-09

<150> 60/099642
<151> 1998-09-09

<150> 60/099741
<151> 1998-09-10

<150> 60/099754
<151> 1998-09-10

<150> 60/099763
<151> 1998-09-10

<150> 60/099792
<151> 1998-09-10

<150> 60/099808
<151> 1998-09-10

<150> 60/099812
<151> 1998-09-10

<150> 60/099815
<151> 1998-09-10

<150> 60/099816
<151> 1998-09-10

<150> 60/100385
<151> 1998-09-15

<150> 60/100388
<151> 1998-09-15

<150> 60/100390
<151> 1998-09-15

<150> 60/100584
<151> 1998-09-16

<150> 60/100627
<151> 1998-09-16

<150> 60/100661
<151> 1998-09-16

<150> 60/100662
<151> 1998-09-16

<150> 60/100664
<151> 1998-09-16

<150> 60/100683

<151> 1998-09-17

<150> 60/100684
<151> 1998-09-17

<150> 60/100710
<151> 1998-09-17

<150> 60/100711
<151> 1998-09-17

<150> 60/100848
<151> 1998-09-18

<150> 60/100849
<151> 1998-09-18

<150> 60/100919
<151> 1998-09-17

<150> 60/100930
<151> 1998-09-17

<150> 60/101014
<151> 1998-09-18

<150> 60/101068
<151> 1998-09-18

<150> 60/101071
<151> 1998-09-18

<150> 60/101279
<151> 1998-09-22

<150> 60/101471
<151> 1998-09-23

<150> 60/101472
<151> 1998-09-23

<150> 60/101474
<151> 1998-09-23

<150> 60/101475
<151> 1998-09-23

<150> 60/101476
<151> 1998-09-23

<150> 60/101477
<151> 1998-09-23

<150> 60/101479
<151> 1998-09-23

<150> 60/101738
<151> 1998-09-24

<150> 60/101741
<151> 1998-09-24

<150> 60/101743
<151> 1998-09-24

<150> 60/101915
<151> 1998-09-24

<150> 60/101916
<151> 1998-09-24

<150> 60/102207
<151> 1998-09-29

<150> 60/102240
<151> 1998-09-29

<150> 60/102307
<151> 1998-09-29

<150> 60/102330
<151> 1998-09-29

<150> 60/102331
<151> 1998-09-29

<150> 60/102484
<151> 1998-09-30

<150> 60/102487
<151> 1998-09-30

<150> 60/102570
<151> 1998-09-30

<150> 60/102571
<151> 1998-09-30

<150> 60/102684
<151> 1998-10-01

<150> 60/102687
<151> 1998-10-01

<150> 60/102965
<151> 1998-10-02

<150> 60/103258
<151> 1998-10-06

<150> 60/103314
<151> 1998-10-07

<150> 60/103315
<151> 1998-10-07

<150> 60/103328

<151> 1998-10-07

<150> 60/103395
<151> 1998-10-07

<150> 60/103396
<151> 1998-10-07

<150> 60/103401
<151> 1998-10-07

<150> 60/103449
<151> 1998-10-06

<150> 60/103633
<151> 1998-10-08

<150> 60/103678
<151> 1998-10-08

<150> 60/103679
<151> 1998-10-08

<150> 60/103711
<151> 1998-10-08

<150> 60/104257
<151> 1998-10-14

<150> 60/104987
<151> 1998-10-20

<150> 60/105000
<151> 1998-10-20

<150> 60/105002
<151> 1998-10-20

<150> 60/105104
<151> 1998-10-21

<150> 60/105169
<151> 1998-10-22

<150> 60/105266
<151> 1998-10-22

<150> 60/105693
<151> 1998-10-26

<150> 60/105694
<151> 1998-10-26

<150> 60/105807
<151> 1998-10-27

<150> 60/105881
<151> 1998-10-27

<150> 60/105882
<151> 1998-10-27

<150> 60/106023
<151> 1998-10-28

<150> 60/106029
<151> 1998-10-28

<150> 60/106030
<151> 1998-10-28

<150> 60/106032
<151> 1998-10-28

<150> 60/106033
<151> 1998-10-28

<150> 60/106062
<151> 1998-10-27

<150> 60/106178
<151> 1998-10-28

<150> 60/106248
<151> 1998-10-29

<150> 60/106384
<151> 1998-10-29

<150> 60/108500
<151> 1998-10-29

<150> 60/106464
<151> 1998-10-30

<150> 60/106856
<151> 1998-11-03

<150> 60/106902
<151> 1998-11-03

<150> 60/106905
<151> 1998-11-03

<150> 60/106919
<151> 1998-11-03

<150> 60/106932
<151> 1998-11-03

<150> 60/106934
<151> 1998-11-03

<150> 60/107783
<151> 1998-11-10

<150> 60/108775

<151> 1998-11-17

<150> 60/108779
<151> 1998-11-17

<150> 60/108787
<151> 1998-11-17

<150> 60/108788
<151> 1998-11-17

<150> 60/108801
<151> 1998-11-17

<150> 60/108802
<151> 1998-11-17

<150> 60/108806
<151> 1998-11-17

<150> 60/108807
<151> 1998-11-17

<150> 60/108848
<151> 1998-11-18

<150> 60/108849
<151> 1998-11-18

<150> 60/108850
<151> 1998-11-18

<150> 60/108851
<151> 1998-11-18

<150> 60/108852
<151> 1998-11-18

<150> 60/108858
<151> 1998-11-18

<150> 60/108867
<151> 1998-11-17

<150> 60/108904
<151> 1998-11-18

<150> 60/108925
<151> 1998-11-17

<150> 60/113296
<151> 1998-12-22

<150> 60/114223
<151> 1998-12-30

<150> 60/129674
<151> 1999-04-16

<150> 60/141037
<151> 1999-06-23

<150> 60/144758
<151> 1999-07-20

<150> 60/145698
<151> 1999-07-26

<150> 60/162506
<151> 1999-10-29

<150> 09/218517
<151> 1998-12-22

<150> 09/284291
<151> 1999-04-12

<150> 09/403297
<151> 1999-10-18

<150> 09/872035
<151> 2001-06-01

<150> 09/882636
<151> 2001-06-14

<150> PCT/US99/00106
<151> 1999-01-05

<150> PCT/US99/20111
<151> 1999-09-01

<150> PCT/US99/21194
<151> 1999-09-15

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US00/00219
<151> 2000-01-05

<150> PCT/US00/00376
<151> 2000-01-06

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04342
<151> 2000-02-18

<150> PCT/US00/05004

<151> 2000-02-24

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/06884
<151> 2000-03-15

<150> PCT/US00/13705
<151> 2000-05-17

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/30873
<151> 2000-11-10

<150> PCT/US00/30952
<151> 2000-11-08

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/06666
<151> 2001-03-01

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-07-09

<160> 477

<210> 1
<211> 43
<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-43

<223> Sequence - Artificial

<400> 1
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 2

<211> 41

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-41

<223> Sequence - Artificial

<400> 2
cagaaacag ctatgaccac ctgcacacct gcaaatccat t 41

<210> 3

<211> 1110

<212> DNA

<213> Homo sapiens

<400> 3
ccaatcgccc ggtgcgggtgg tgcagggtct cgggctagtc atggcgtccc 50
cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcggtt 100
ctgctaatactt acacttttat tttctggatc actggcggtt tccttcttgc 150
agttggcatt tggggcaagg tgaggctgga gaattacttt tctcttttaa 200
atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc 250
attattcttt tgggcaccctt tggttgtttt gctacctgcc gagcttctgc 300
atggatgcta aaactgtatg caatgtttct gactctcggtt tttttggcg 350
aactggtcgc tgccatcgta ggatttgggtt tcagacatga gattaagaac 400
agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
agattataga agccatgcag tagacaagat cccaaaatacg ttgcattgtt 500
gtggtgtcac cgattataga gattggacag atactaatat ttactcagaa 550
aaaggatttc ctaagagttt ctgtaaactt gaagattgtt ctccacagag 600
agatgcagac aaagtaaaca atgaagggtt ttttataaag gtgtatgacca 650
ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
tgcttccaac tgattgaaat ctttctcgcc tactgccwct ctctgtccat 750

aacaataaac cagtatgaga tagtgtaacc caatgttatct gtgggcctat 800
tcctctctac cttaaggac atttagggtc cccctgtga attagaaaagt 850
tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900
caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
ataggctgat tcaatcaaga tccgtgctcg cagtggctg attcaatcaa 1000
gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
atcggtgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100
taaatgaagt 1110

<210> 4
<211> 245
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-42
<223> Signal Peptide

<220>
<221> TRANSMEM
<222> 19-42, 61-83, 92-114, 209-230
<223> Transmembrane Domains

<220>
<221> misc_feature
<222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.

<220>
<221> misc_feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.

<220>
<221> misc_feature
<222> 134-138
<223> N-Glycosylation Site.

<220>
<221> misc_feature
<222> 160-168, 160-169
<223> Tyrosine Kinase Phosphorylation Site.

<220>
<221> unsure
<222> 233
<223> unknown amino acid

<400> 4
Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Lys Pro Val Ile Thr

1	5	10	15											
Cys	Phe	Lys	Ser	Val	Leu	Leu	Ile	Tyr	Thr	Phe	Ile	Phe	Trp	Ile
				20				25					30	
Thr	Gly	Val	Ile	Leu	Leu	Ala	Val	Gly	Ile	Trp	Gly	Lys	Val	Ser
				35				40					45	
Leu	Glu	Asn	Tyr	Phe	Ser	Leu	Leu	Asn	Glu	Lys	Ala	Thr	Asn	Val
				50				55					60	
Pro	Phe	Val	Leu	Ile	Ala	Thr	Gly	Thr	Val	Ile	Ile	Leu	Leu	Gly
				65				70					75	
Thr	Phe	Gly	Cys	Phe	Ala	Thr	Cys	Arg	Ala	Ser	Ala	Trp	Met	Leu
				80				85					90	
Lys	Leu	Tyr	Ala	Met	Phe	Leu	Thr	Leu	Val	Phe	Leu	Val	Glu	Leu
				95				100					105	
Val	Ala	Ala	Ile	Val	Gly	Phe	Val	Phe	Arg	His	Glu	Ile	Lys	Asn
				110				115					120	
Ser	Phe	Lys	Asn	Asn	Tyr	Glu	Lys	Ala	Leu	Lys	Gln	Tyr	Asn	Ser
				125				130					135	
Thr	Gly	Asp	Tyr	Arg	Ser	His	Ala	Val	Asp	Lys	Ile	Gln	Asn	Thr
				140				145					150	
Leu	His	Cys	Cys	Gly	Val	Thr	Asp	Tyr	Arg	Asp	Trp	Thr	Asp	Thr
				155				160					165	
Asn	Tyr	Tyr	Ser	Glu	Lys	Gly	Phe	Pro	Lys	Ser	Cys	Cys	Lys	Leu
				170				175					180	
Glu	Asp	Cys	Thr	Pro	Gln	Arg	Asp	Ala	Asp	Lys	Val	Asn	Asn	Glu
				185				190					195	
Gly	Cys	Phe	Ile	Lys	Val	Met	Thr	Ile	Ile	Glu	Ser	Glu	Met	Gly
				200				205					210	
Val	Val	Ala	Gly	Ile	Ser	Phe	Gly	Val	Ala	Cys	Phe	Gln	Leu	Ile
				215				220					225	
Gly	Ile	Phe	Leu	Ala	Tyr	Cys	Xaa	Ser	Arg	Ala	Ile	Thr	Asn	Asn
				230				235					240	
Gln	Tyr	Glu	Ile	Val										
				245										

<210> 5

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 5

cccacgcgtc cggcgccgtg gcctcgcgtc catcttgcc gttctctcg 50

acctgtcaca aaggagtcgc gccggccgccc cggccccctc cctccggtgg 100
gcccgggagg tagagaaagt cagtgccaca gccccaccgc gctgctctga 150
gccctggca cgcgaaacgg gagggagtct gagggttggg gacgtctgtg 200
agggagggga acagccgctc gagcctgggg cggcgacc ggactggggc 250
cggggtaggc tctggaaagg gcccggaga gaggtggcgt tggtcagaac 300
ctgagaaaca gccgagaggt tttccaccga ggcccgcgt tgagggatct 350
gaagaggttc ctagaagagg gtgtccctc ttccgggggt cctcaccaga 400
agaggttctt ggggtcgcc cttctgagga ggctgcggct aacagggccc 450
agaactgcca ttggatgtcc agaatcccct gtagttgata atgttggaa 500
taagctctgc aactttctt ggcattcagt tgtaaaaac aaataggatg 550
caaattcctc aactccaggt tatgaaaaca gtacttgaa aactgaaaac 600
tacctaaatg atcgtcttg gttggccgt gttcttagcg agcagaagcc 650
ttggccaggg tctgttgtt actctcgaag agcacatagc ccacttccta 700
gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750
tgacagtgga acagatgaca gtgttgacac ccaacagcaa cagggcgaga 800
acagtgcaagt acccactgct gacacaagga gccaaccacg ggacctgtt 850
cggccaccaa ggagggccg aggacctcat gagccaagga gaaagaaaca 900
aaatgtggat gggctagtgt tggacacact ggcagtaata cggactctt 950
tagataagta agtatctgac tcacggtcac ctccagtgg 1000
ttctgcccgg aaccatgact ttaggactcc ttcaagttccct ttaggacata 1050
ctcgccaagc cttgtgctca cagggcaaag gagaatattt taatgctccg 1100
ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150
actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200
ctatgatctt tattagag 1218

<210> 6
<211> 117
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-16
<223> Signal Peptide

<220>
<221> misc_feature
<222> 18-24, 32-38, 34-40, 35-41, 51-57
<223> N-Myristoylation Site.

<220>
<221> misc_feature
<222> 22-26, 50-54, 113-117
<223> Casein Kinase II Phosphorylation Site.

<400> 6
Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
1 5 10 15
Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
20 25 30
Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
35 40 45
Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
50 55 60
Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
65 70 75
Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
80 85 90
His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
95 100 105
Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
110 115

<210> 7
<211> 756
<212> DNA
<213> Homo sapiens

<400> 7
ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50
gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
gaggtccccgg ttcctaacgg actgcaagat ggaggaaggc gggAACCTAG 150
gaggcctgat taagatggtc catctactgg tcttgcagg tgcctgggc 200
atgcaaATGT gggTgacctt cgtctcaggc ttcctgcttt tccGAAGCCT 250
tccccgacat accttcggac tagtgcagag caaaACTCTTC cccttctact 300
tccacatctc catgggctgt gccttcata acctctgcat cttggcttca 350
cagcatgctt gggctcagct cacattctgg gagGCCAGCC agctttacct 400
gctgttcctg agccttacgc tggccactgt caacGCCGC tggctggaac 450

cccgacacc acgtgccatg tggccctgc aaaccgtgga gaaggagcga 500
ggcctgggtg gggaggtacc aggcagccac cagggtcccc atccctaccg 550
ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
tccgctacca tgggctgtcc tcttttgca atctgggctg cgccctgagc 650
aatgggctct gtctcgctgg cttgccctg gaaataagga gcctcttagca 700
tggccctgc atgctaataa atgcttcttc agaaatgaaa aaaaaaaaaa 750
aaaaaaaa 756

<210> 8
<211> 189
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-24
<223> Signal Peptide

<220>
<221> misc_feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.

<220>
<221> misc_feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.

<220>
<221> misc_feature
<222> 54-65
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.

<220>
<221> misc_feature
<222> 82-86
<223> Casein Kinase II Phosphorylation Site.

<220>
<221> TRANSMEM
<222> 86-103, 60-75
<223> Transmembrane Domain

<220>
<221> misc_feature
<222> 144-151
<223> Tyrosine Kinase Phosphorylation Site.

<400> 8
Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
1 5 10 15

Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr
 20 25 30
 Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr
 35 40 45
 Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile
 50 55 60
 Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln
 65 70 75
 His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr
 80 85 90
 Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp
 95 100 105
 Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val
 110 115 120
 Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln
 125 130 135
 Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr
 140 145 150
 Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser
 155 160 165
 Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala
 170 175 180
 Gly Leu Ala Leu Glu Ile Arg Ser Leu
 185

<210> 9
 <211> 1508
 <212> DNA
 <213> Homo sapiens

<400> 9
 aattcagatt ttaagccat tctgcagtgg aatttcatga actagcaaga 50
 ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100
 agggggaaaa atgctctttt gggtgctagg cctcctaatac ctctgtggtt 150
 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200
 tacatttta tcactggatg tgactcgggc tttggaaact tggcagccag 250
 aactttgtat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300
 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350
 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400

gaagaaccaa gttggggaga aaggctctg gggctgatc aataatgctg 450
gtgttcccg cgtctggct cccactgact ggctgacact agaggactac 500
agagaaccta ttgaagtgaa cctgttgga ctcatcagtg tgacactaaa 550
tatgottcct ttggtaaga aagctcaagg gagagttatt aatgtctcca 600
gtgttggagg tcgccttgca atcgttggag gggctatac tccatccaaa 650
tatgcagtgg aaggttcaa tgacagctta agacgggaca tgaaagctt 700
tggtagtcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750
cagatccagt aaaggtaatt gaaaaaaaaac tcgccatttg ggagcagctg 800
tctccagaca tcaaacaaca atatggagaa gttacattt aaaaaagtct 850
agacaaactg aaaggcaata aatcctatgt gaacatggac ctctccgg 900
tggtagatg catggaccac gctctaaca gtctttccc taagactcat 950
tatgccgctg gaaaagatgc caaaattttc tggatacctc tgttcacat 1000
gccagcagct ttgcaagact tttattgtt gaaacagaaa gcagagctgg 1050
ctaattccaa ggcagtgtga ctcaagctaac cacaaatgtc tcctccaggc 1100
tatgaaattt ggcgatttca agaacacatc tcctttcaa cccatttcc 1150
tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200
agggagtccc accatcgctg gtggatatccc agggccctg ctcaagttt 1250
ctttgaaaag gagggctgga atggcacatc acataggcaa gtcctgcct 1300
gtatttaggc ttgcctgct tggtagatg taaggaaat tgaaagactt 1350
gcccattcaa aatgatctt accgtggct gccccatgct tatggtcccc 1400
agcatttaca gtaacttgg aatgttaagt atcatcttt atctaaatat 1450
taaaagataa gtcaacccaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaa 1508

<210> 10
<211> 319
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-17
<223> Signal Peptide

<220>
<221> misc_feature

<222> 36-47, 108-113, 166-171, 198-203, 207-212

<223> N-myristoylation Sites.

<220>

<221> misc_feature

<222> 39-42

<223> Glycosaminoglycan Attachment Site.

<220>

<221> TRANSMEM

<222> 136-152

<223> Transmembrane Domain

<220>

<221> misc_feature

<222> 161-163, 187-190 and 253-256

<223> N-glycosylation Sites.

<400> 10

Met	Leu	Phe	Trp	Val	Leu	Gly	Leu	Leu	Ile	Leu	Cys	Gly	Phe	Leu
1				5					10				15	

Trp	Thr	Arg	Lys	Gly	Lys	Leu	Lys	Ile	Glu	Asp	Ile	Thr	Asp	Lys
						20		25						30

Tyr	Ile	Phe	Ile	Thr	Gly	Cys	Asp	Ser	Gly	Phe	Gly	Asn	Leu	Ala
					35			40					45	

Ala	Arg	Thr	Phe	Asp	Lys	Lys	Gly	Phe	His	Val	Ile	Ala	Ala	Cys
					50			55					60	

Leu	Thr	Glu	Ser	Gly	Ser	Thr	Ala	Leu	Lys	Ala	Glu	Thr	Ser	Glu
					65			70					75	

Arg	Leu	Arg	Thr	Val	Leu	Leu	Asp	Val	Thr	Asp	Pro	Glu	Asn	Val
				80				85					90	

Lys	Arg	Thr	Ala	Gln	Trp	Val	Lys	Asn	Gln	Val	Gly	Glu	Lys	Gly
				95				100					105	

Leu	Trp	Gly	Leu	Ile	Asn	Asn	Ala	Gly	Val	Pro	Gly	Val	Leu	Ala
				110				115					120	

Pro	Thr	Asp	Trp	Leu	Thr	Leu	Glu	Asp	Tyr	Arg	Glu	Pro	Ile	Glu
			125					130					135	

Val	Asn	Leu	Phe	Gly	Leu	Ile	Ser	Val	Thr	Leu	Asn	Met	Leu	Pro
					140				145				150	

Leu	Val	Lys	Lys	Ala	Gln	Gly	Arg	Val	Ile	Asn	Val	Ser	Ser	Val
					155				160				165	

Gly	Gly	Arg	Leu	Ala	Ile	Val	Gly	Gly	Tyr	Thr	Pro	Ser	Lys	
					170			175					180	

Tyr	Ala	Val	Glu	Gly	Phe	Asn	Asp	Ser	Leu	Arg	Arg	Asp	Met	Lys
					185				190				195	

Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys
200 205 210

Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala
215 220 225

Ile Trp Glu Gln Leu Ser Pro Asp Ile Lys Gln Gln Tyr Gly Glu
230 235 240

Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser
245 250 255

Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His
260 265 270

Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys
275 280 285

Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala
290 295 300

Leu Gln Asp Phe Leu Leu Lys Gln Lys Ala Glu Leu Ala Asn
305 310 315

Pro Lys Ala Val

<210> 11
<211> 2720
<212> DNA
<213> Homo sapines

<400> 11
gcgggctgtt gacggcgctg cgatggctgc ctgcgagggc aggagaagcg 50
gagctctcggtt ttcctctca gtcggacttcc tgacgcccggc agtggcgaaa 100
gccctttgggg ccgtcgccac cactgttagtc atgtaccac cggccggcc 150
gccgcctcat cgggacttca tctcggtgac gctgagcttt ggcgagagct 200
atgacaacag caagagttgg cggcggcgct cgtgctggag gaaatggaag 250
caactgtcga gattgcagcg gaatatgatt ctcttcctcc ttgcctttct 300
gcttttctgt ggactcctct tctacatcaa cttggctgac cattggaaag 350
ctctggcttt caggcttagag gaagagcaga agatgaggcc agaaattgct 400
gggttaaac cagcaaattcc acccgcttta ccagctcctc agaaggcgga 450
caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500
acatccagcg gggaccacct cacctgcaga ttagaccccc aagccaagac 550
ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagccctgt 600
ggatccccgc ccggaaggag atccgcagag gacagtcatc agctggaggg 650

gagcggtgat cgagcctgag cagggcaccg agtcccttc aagaagagca 700
gaagtgccca ccaagcctcc cctgccaccg gccaggacac agggcacacc 750
agtgcacatcg aactatcgcc agaagggcgt gattgacgtc ttcctgcatt 800
catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850
gtgtccaggt ctttcagtga gtgggttggc ctccgtctca cactgatcga 900
cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950
ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000
aacctgtttg agagcacgat ccgcattcctg gggggctcc tgagtgccta 1050
ccacotgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100
atcggctaat gcctgccttc agaacaccat ccaagattcc ttactcgat 1150
gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200
cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250
gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300
cacatccacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350
caataccac acgtggcctct tcacccaccc gggcgtattc acgctggcgc 1400
ccagggccga cagctactat gagtacctgc tgaagcagtg gatccaggc 1450
gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500
tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcaccttg 1550
tgggggagct tgcccacggc cgcttcagtg ccaagatgga ccacctggtg 1600
tgcttcctgc cagggacgct ggctctggc gtctaccacg gcctgcccgc 1650
cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700
accggcagat ggagacgggg ctgagtcggc agatcgtgca cttcaacctt 1750
taccccccagc cggccgtcg ggacgtggag gtcaagccag cagacaggca 1800
caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850
tcacagggga ccgcaaatac caggactggg gctggagat tctgcagagc 1900
ttcagccgat tcacacgggt cccctcggt ggctattctt ccatcaacaa 1950
tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000
tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050
aacctgctca gcctggacgc ctacgtgttc aacaccgaag cccaccctct 2100

gcctatctgg acccctgcct agggtgatg gctgctggtg tggggacttc 2150
gggtgggcag aggcacccctg ctgggtctgt ggcattttcc aaggggccac 2200
gtagcacccgg caaccgccaa gtggcccagg ctctgaactg gctctggct 2250
cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt 2300
cagtcttgggt gtgatgcggg gtggctggg ccgctggagc ctccgcctgc 2350
ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag 2400
gtctctgtgg gccgaccaga gggggcttc gaggtggtcc ctggtaactgg 2450
ggtgaccgag tggacagccc agggtgcagc tctgcccggg ctcgtgaagc 2500
ctcagatgtc cccaatccaa gggctggag gggctgccgt gactccagag 2550
gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat 2600
cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc 2650
tagctcacgg gcccctccag tggaatgggt ctttcggtg gagataaaag 2700
ttgatttgct ctaaccgcaa 2720

<210> 12
<211> 699
<212> PRT
<213> Homo sapiens

<220>
<221> TRANSMEM
<222> 21-40 and 84-105
<223> Transmembrane Domain (type II)

<400> 12
Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser
1 5 10 15
Gln Ser Asp Phe Leu Thr Pro Pro Val Gly Gly Ala Pro Trp Ala
20 25 30
Val Ala Thr Thr Val Val Met Tyr Pro Pro Pro Pro Pro Pro
35 40 45
His Arg Asp Phe Ile Ser Val Thr Leu Ser Phe Gly Glu Ser Tyr
50 55 60
Asp Asn Ser Lys Ser Trp Arg Arg Ser Cys Trp Arg Lys Trp
65 70 75
Lys Gln Leu Ser Arg Leu Gln Arg Asn Met Ile Leu Phe Leu Leu
80 85 90
Ala Phe Leu Leu Phe Cys Gly Leu Leu Phe Tyr Ile Asn Leu Ala
95 100 105

Asp His Trp Lys Ala Leu Ala Phe Arg Leu Glu Glu Glu Gln Lys
 110 115 120
 Met Arg Pro Glu Ile Ala Gly Leu Lys Pro Ala Asn Pro Pro Val
 125 130 135
 Leu Pro Ala Pro Gln Lys Ala Asp Thr Asp Pro Glu Asn Leu Pro
 140 145 150
 Glu Ile Ser Ser Gln Lys Thr Gln Arg His Ile Gln Arg Gly Pro
 155 160 165
 Pro His Leu Gln Ile Arg Pro Pro Ser Gln Asp Leu Lys Asp Gly
 170 175 180
 Thr Gln Glu Glu Ala Thr Lys Arg Gln Glu Ala Pro Val Asp Pro
 185 190 195
 Arg Pro Glu Gly Asp Pro Gln Arg Thr Val Ile Ser Trp Arg Gly
 200 205 210
 Ala Val Ile Glu Pro Glu Gln Gly Thr Glu Leu Pro Ser Arg Arg
 215 220 225
 Ala Glu Val Pro Thr Lys Pro Pro Leu Pro Pro Ala Arg Thr Gln
 230 235 240
 Gly Thr Pro Val His Leu Asn Tyr Arg Gln Lys Gly Val Ile Asp
 245 250 255
 Val Phe Leu His Ala Trp Lys Gly Tyr Arg Lys Phe Ala Trp Gly
 260 265 270
 His Asp Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe
 275 280 285
 Gly Leu Gly Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile
 290 295 300
 Leu Gly Leu Arg Lys Glu Phe Glu Glu Ala Arg Lys Trp Val Ser
 305 310 315
 Lys Lys Leu His Phe Glu Lys Asp Val Asp Val Asn Leu Phe Glu
 320 325 330
 Ser Thr Ile Arg Ile Leu Gly Gly Leu Leu Ser Ala Tyr His Leu
 335 340 345
 Ser Gly Asp Ser Leu Phe Leu Arg Lys Ala Glu Asp Phe Gly Asn
 350 355 360
 Arg Leu Met Pro Ala Phe Arg Thr Pro Ser Lys Ile Pro Tyr Ser
 365 370 375
 Asp Val Asn Ile Gly Thr Gly Val Ala His Pro Pro Arg Trp Thr
 380 385 390
 Ser Asp Ser Thr Val Ala Glu Val Thr Ser Ile Gln Leu Glu Phe

395	400	405
Arg Glu Leu Ser Arg Leu Thr Gly Asp Lys Lys Phe Gln Glu Ala 410	415	420
Val Glu Lys Val Thr Gln His Ile His Gly Leu Ser Gly Lys Lys 425	430	435
Asp Gly Leu Val Pro Met Phe Ile Asn Thr His Ser Gly Leu Phe 440	445	450
Thr His Leu Gly Val Phe Thr Leu Gly Ala Arg Ala Asp Ser Tyr 455	460	465
Tyr Glu Tyr Leu Leu Lys Gln Trp Ile Gln Gly Gly Lys Gln Glu 470	475	480
Thr Gln Leu Leu Glu Asp Tyr Val Glu Ala Ile Glu Gly Val Arg 485	490	495
Thr His Leu Leu Arg His Ser Glu Pro Ser Lys Leu Thr Phe Val 500	505	510
Gly Glu Leu Ala His Gly Arg Phe Ser Ala Lys Met Asp His Leu 515	520	525
Val Cys Phe Leu Pro Gly Thr Leu Ala Leu Gly Val Tyr His Gly 530	535	540
Leu Pro Ala Ser His Met Glu Leu Ala Gln Glu Leu Met Glu Thr 545	550	555
Cys Tyr Gln Met Asn Arg Gln Met Glu Thr Gly Leu Ser Pro Glu 560	565	570
Ile Val His Phe Asn Leu Tyr Pro Gln Pro Gly Arg Arg Asp Val 575	580	585
Glu Val Lys Pro Ala Asp Arg His Asn Leu Leu Arg Pro Glu Thr 590	595	600
Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys 605	610	615
Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe 620	625	630
Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln 635	640	645
Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe 650	655	660
Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp 665	670	675
Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala 680	685	690

His Pro Leu Pro Ile Trp Thr Pro Ala
695

<210> 13
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 13
cgccagaagg gcgtgattga cgtc 24

<210> 14
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 14
ccatccttct tcccagacag gccg 24

<210> 15
<211> 44
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-44
<223> Synthetic construct.

<400> 15
gaaggctgtg tccaggtcct tcagttagtg gtttggcctc ggtc 44

<210> 16
<211> 1524
<212> DNA
<213> Homo sapiens

<400> 16
ggcgccgcgt aggcccgaaa ggccggggccg gccgggctgc gagcgcctgc 50
cccatgcgcc gccgcctctc cgcacgatgt tcccctcgcg gagaaagcg 100
gcgcagctgc cctgggagga cggcaggtcc gggttgtct ccggcggcct 150
ccctcgaaag tggccgtct tccacctgtt cgtggcctgc ctctcgctgg 200
gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250

cgggcagtca gggacaagg gcaggagacc tcgggcctc cccgtgcctg 300
ccccccagag ccgcgcctg agcactggga agaagacgca tcctgggcc 350
cccacccgcct ggcagtgcgt gtgccttcc gogaacgcct cgaggagctc 400
ctggtcttcg tgccccacat ggcgcgcctc ctgagcagga agaagatccg 450
gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500
cagcgctcat caacgtggc ttcctggaga gcagcaacag cacggactac 550
attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600
tggcttcct gaggctggc cttccacgt ggcctcccg gagctccacc 650
ctctctacca ctacaagacc tatgtcgccg gcatcctgct gctctccaag 700
cagcactacc ggctgtgcaa tggatgtcc aaccgcttct gggctgggg 750
ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800
ttttccgccc ctcggaaatc acaactgggt acaagacatt tcgccacctg 850
catgacccag cctggcgaa gagggaccag aagcgcatcg cagctaaaaa 900
acaggagcag ttcaaggtgg acagggaggg aggccctgaac actgtgaagt 950
accatgtggc ttcccgact gccctgtctg tggcgccggc cccctgcact 1000
gtcctaaca tcatgttggc ctgtgacaag accgccacac cctggtgac 1050
attcagctga gctggatggc cagtgaggaa gcctgtacct acaggccata 1100
ttgctcaggc tcaggacaag gcctcaggc gtgggcccag ctctgacagg 1150
atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200
ggccgccaag gcaggcttgg gctggccag gacacgtggg gtgcctggga 1250
cgctgcttgc catgcacagt gatcagagag aggctgggt gtgcctgtc 1300
cgggacccccc cctgccttcc tgctcacccct actctgaccc cttcacgtg 1350
cccaggcctg tggtagtgg ggagggctga acaggacaac ctctcatcac 1400
cctactctga ctccttac gtgcaggc ctgtggtag tggggaggc 1450
tgaacaggac aacctctcat caccggaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaa 1524

<210> 17
<211> 327
<212> PRT
<213> Homo sapiens

<220>

<221> sig_peptide
 <222> 1-42
 <223> Signal peptide.

 <220>
 <221> misc_feature
 <222> 19-25, 65-71, 247-253, 285-291, 303-310
 <223> N-myristoylation site.

 <220>
 <221> misc_feature
 <222> 27-31
 <223> cAMP- and cGMP-dependent protein kinase phosphorylation site.

 <220>
 <221> TRANSMEM
 <222> 29-49
 <223> Transmembrane domain (type II).

 <220>
 <221> misc_feature
 <222> 154-158
 <223> N-glycosylation site.

 <220>
 <221> misc_feature
 <222> 226-233
 <223> Tyrosine kinase phosphorylation site.

 <400> 17

Met	Phe	Pro	Ser	Arg	Arg	Lys	Ala	Ala	Gln	Leu	Pro	Trp	Glu	Asp
1				5					10				15	

Gly	Arg	Ser	Gly	Leu	Leu	Ser	Gly	Gly	Leu	Pro	Arg	Lys	Cys	Ser
				20				25					30	

Val	Phe	His	Leu	Phe	Val	Ala	Cys	Leu	Ser	Leu	Gly	Phe	Phe	Ser
					35				40				45	

Leu	Leu	Trp	Leu	Gln	Leu	Ser	Cys	Ser	Gly	Asp	Val	Ala	Arg	Ala
				50				55					60	

Val	Arg	Gly	Gln	Gly	Gln	Glu	Thr	Ser	Gly	Pro	Pro	Arg	Ala	Cys
					65			70					75	

Pro	Pro	Glu	Pro	Pro	Pro	Glu	His	Trp	Glu	Glu	Asp	Ala	Ser	Trp
					80				85				90	

Gly	Pro	His	Arg	Leu	Ala	Val	Leu	Val	Pro	Phe	Arg	Glu	Arg	Phe
								95					105	

Glu	Glu	Leu	Leu	Val	Phe	Val	Pro	His	Met	Arg	Arg	Phe	Leu	Ser
					110				115				120	

Arg	Lys	Lys	Ile	Arg	His	His	Ile	Tyr	Val	Leu	Asn	Gln	Val	Asp
								125					135	

His	Phe	Arg	Phe	Asn	Arg	Ala	Ala	Leu	Ile	Asn	Val	Gly	Phe	Leu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

140	145	150
Glu Ser Ser Asn Ser Thr Asp Tyr Ile Ala Met His Asp Val Asp		
155	160	165
Leu Leu Pro Leu Asn Glu Glu Leu Asp Tyr Gly Phe Pro Glu Ala		
170	175	180
Gly Pro Phe His Val Ala Ser Pro Glu Leu His Pro Leu Tyr His		
185	190	195
Tyr Lys Thr Tyr Val Gly Gly Ile Leu Leu Leu Ser Lys Gln His		
200	205	210
Tyr Arg Leu Cys Asn Gly Met Ser Asn Arg Phe Trp Gly Trp Gly		
215	220	225
Arg Glu Asp Asp Glu Phe Tyr Arg Arg Ile Lys Gly Ala Gly Leu		
230	235	240
Gln Leu Phe Arg Pro Ser Gly Ile Thr Thr Gly Tyr Lys Thr Phe		
245	250	255
Arg His Leu His Asp Pro Ala Trp Arg Lys Arg Asp Gln Lys Arg		
260	265	270
Ile Ala Ala Gln Lys Gln Glu Gln Phe Lys Val Asp Arg Glu Gly		
275	280	285
Gly Leu Asn Thr Val Lys Tyr His Val Ala Ser Arg Thr Ala Leu		
290	295	300
Ser Val Gly Gly Ala Pro Cys Thr Val Leu Asn Ile Met Leu Asp		
305	310	315
Cys Asp Lys Thr Ala Thr Pro Trp Cys Thr Phe Ser		
320	325	

<210> 18
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 18
gcgaacgctt cgaggagtcc tgg 23

<210> 19
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence

<222> 1-24
<223> Synthetic construct

<400> 19
gcagtgcggg aagccacatg gtac 24

<210> 20
<211> 46
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.

<400> 20
cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46

<210> 21
<211> 494
<212> DNA
<213> Homo sapiens

<400> 21
caatgtttgc ctagccacct cccccaaggcc cctttaccta tgctgctgct 50
aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
gactggtcgg tgccccagaaa gtcttcttg ccactgacgc ccccatcagg 150
gattgggcct tctttcccccc ttcccttctg tgtctcctgc ctcatcgccc 200
tgccatgacc tgcaagccaaag cccagccccg tggggaaagggg gagaaaagtgg 250
gggatggcta agaaagctgg gagatagggg acagaagagg gtagtgggtg 300
ggctagggggg gctgccttat ttaaagtgggt tgtttatgat tcttatacta 350
atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataaa 450
taaacagttt aaagctgaaa aaaaaaaaaa aaaaaaaaaa aaaa 494

<210> 22
<211> 73
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-15
<223> Signal peptide.

<220>
<221> misc_feature
<222> 3-18

<223> Growth factor and cytokines receptors family.

<400> 22

Met Leu Leu Leu Thr Leu Leu Leu Leu Leu Leu Lys Gly
1 5 10 15

Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
20 25 30

Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser
35 40 45

Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
50 55 60

Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
65 70

<210> 23

<211> 2883

<212> DNA

<213> Homo sapiens

<400> 23

gggaccatg cggccgtgac ccccggtcc ctagaggccc agcgcagccg 50
cagcgacaa aggagcatgt ccgcgcggg gaaggccgt cctccggccg 100
ccataaggct ccggtcgccc ctgggcccgc gccgcgtcc tgcccggccg 150
ggctccgggg cggcccgcta ggccagtgcg ccgcgcgtcg cccgcaggc 200
cccgccccgc agcatggagc cacccggacg ccggcggggc cgcgccgc 250
ccgcgtgtt gctgccgtc tcgctgttag cgctgctcgc gctgctggga 300
ggcggcggcg gcggcggcgc cgccgcgtc cccgcggct gcaagcacga 350
tggcgccccc cgaggggtcg gcagggcggc gggcgccgccc gagggcaagg 400
tggtgtgcag cagcctggaa ctcgcgcagg tcctgcccc agatactctg 450
cccaaccgca cggtcacccct gattctgagt aacaataaga tatccgagct 500
gaagaatggc tcattttctg ggttaagtct ccttcaaaga ttggacctcc 550
gaaacaatct tattagtagt atagatccag gtgcctctg gggactgtca 600
tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650
agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700
atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750
cggtcttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800
gtggatgcat cgctggtaa aggagaagaa catcacgta cgggatacca 850

ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900
caggagctgt tgacatgcga ccctccgctt gaattgccgt ctttctacat 950
gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000
agtgcatggc ttcataatatt gatcaggaca tgcaagtgtt gtggtatcat 1050
gatgggagaa tagtgaaac cgatgaatcg caaggtatTT ttgttgaaaa 1100
gaacatgatt cacaactgct ctttgattgc aagtgccta accatttcta 1150
atattcaggc tggatctact ggaaattggg gctgtcatgt ccagacaaa 1200
cgtggaaata atacgaggac tgtggatatt gtggtatttag agagttctgc 1250
acagtaCTgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300
ggcccaaaac attggcaggc attactgcat atctgcagtg tacgcggAAC 1350
accatggca gtggatata tcccggaaac ccacaggatg agagaaaAGC 1400
ttggcgcaga tgtgatagag gtggcttttgc ggcagatgt gattattctc 1450
gctgtcagta tgcaaATgt gtcactagag ttctttatAT gtttaatcat 1500
atgcCcctca atcttaccaa tgccgtggca acagctcgac agttactggc 1550
ttacactgtg gaagcagCCA acttttctga caaaatggat gttatatttgc 1600
tggcagaaat gattgaaaaaa ttggaaatgt ttaccaagga ggaaaaatca 1650
aaagagctag gtgacgtgt ggttgcattt gcaagtaaca tcatgttggc 1700
tcatgtacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750
ggattgtgca gtgtcttcag cgcatggta cctaccggct agccggtgga 1800
gctcacgttt attcaacata ttcacccaaatttgcattgtt aagcttatgt 1850
catcaagtct actggcttca cggggatgac ctgtaccgtt ttccagaaag 1900
tggcagcctc tgatcgtaca ggactttcggtt attatggag gcgggatcca 1950
gaggaaacc tggataagca gctgagctt aagtgcataatg ttcaaatAC 2000
atTTTcgagt ctggcactaa aggtatgtt cattctgcaat tcatttaaga 2050
ctatttacag ttaaattttaga atgctccaaa tggttgcattt cgcaaaataa 2100
ccttattttaa agatTTTTT ttgcaggaag ataggtatta ttgcTTTGC 2150
tactgtttta aagaaaaacta accaggaaga actgcattac gactttcaag 2200
ggcccttaggc atTTTGCCT ttgattccct ttcttcacat aaaaatatca 2250
gaaattacat ttataactg cagtggata aatgcaaaata tactattgtt 2300

acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgtttttt 2350
gctcctgatt ttaagacaat aagatgttt catggccccc taaaagtatc 2400
atgaggcctt ggcactgcgc ctgccaagcc tagtgagaa gtcaaccctg 2450
agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500
acacaaatat gtcataatc ttttttaaa aaaagtatc cattgaagca 2550
agcaaaatga aagcattttt actgattttt aaaattgggt cttagatat 2600
atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650
ctaatttgaac cacattttt tcacttagct ttctgtggc atgtgtatt 2700
gtattctctg cggttttaa tctcacagta ctttatttct gtctgtccc 2750
tcaataatac cacaacaat attccagtca ttttaatggc tgcataataa 2800
ctgatccaac aggtgttagg tggtctgggt tagtgtgagc actcaataaa 2850
tattgaatga atgaacgaaa aaaaaaaaaaaa aaa 2883

<210> 24
<211> 616
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-33
<223> Signal peptide.

<220>
<221> TRANSMEM
<222> 13-40
<223> Transmembrane domain (type II).

<400> 24
Met Glu Pro Pro Gly Arg Arg Gly Arg Ala Gln Pro Pro Leu
1 5 10 15
Leu Leu Pro Leu Ser Leu Leu Ala Leu Leu Leu Gly Gly
20 25 30
Gly Gly Gly Gly Ala Ala Ala Leu Pro Ala Gly Cys Lys His
35 40 45
Asp Gly Arg Pro Arg Gly Ala Gly Arg Ala Ala Gly Ala Ala Glu
50 55 60
Gly Lys Val Val Cys Ser Ser Leu Glu Leu Ala Gln Val Leu Pro
65 70 75
Pro Asp Thr Leu Pro Asn Arg Thr Val Thr Leu Ile Leu Ser Asn
80 85 90

Asn Lys Ile Ser Glu Leu Lys Asn Gly Ser Phe Ser Gly Leu Ser
 95 100 105
 Leu Leu Glu Arg Leu Asp Leu Arg Asn Asn Leu Ile Ser Ser Ile
 110 115 120
 Asp Pro Gly Ala Phe Trp Gly Leu Ser Ser Leu Lys Arg Leu Asp
 125 130 135
 Leu Thr Asn Asn Arg Ile Gly Cys Leu Asn Ala Asp Ile Phe Arg
 140 145 150
 Gly Leu Thr Asn Leu Val Arg Leu Asn Leu Ser Gly Asn Leu Phe
 155 160 165
 Ser Ser Leu Ser Gln Gly Thr Phe Asp Tyr Leu Ala Ser Leu Arg
 170 175 180
 Ser Leu Glu Phe Gln Thr Glu Tyr Leu Leu Cys Asp Cys Asn Ile
 185 190 195
 Leu Trp Met His Arg Trp Val Lys Glu Lys Asn Ile Thr Val Arg
 200 205 210
 Asp Thr Arg Cys Val Tyr Pro Lys Ser Leu Gln Ala Gln Pro Val
 215 220 225
 Thr Gly Val Lys Gln Glu Leu Leu Thr Cys Asp Pro Pro Leu Glu
 230 235 240
 Leu Pro Ser Phe Tyr Met Thr Pro Ser His Arg Gln Val Val Phe
 245 250 255
 Glu Gly Asp Ser Leu Pro Phe Gln Cys Met Ala Ser Tyr Ile Asp
 260 265 270
 Gln Asp Met Gln Val Leu Trp Tyr Gln Asp Gly Arg Ile Val Glu
 275 280 285
 Thr Asp Glu Ser Gln Gly Ile Phe Val Glu Lys Asn Met Ile His
 290 295 300
 Asn Cys Ser Leu Ile Ala Ser Ala Leu Thr Ile Ser Asn Ile Gln
 305 310 315
 Ala Gly Ser Thr Gly Asn Trp Gly Cys His Val Gln Thr Lys Arg
 320 325 330
 Gly Asn Asn Thr Arg Thr Val Asp Ile Val Val Leu Glu Ser Ser
 335 340 345
 Ala Gln Tyr Cys Pro Pro Glu Arg Val Val Asn Asn Lys Gly Asp
 350 355 360
 Phe Arg Trp Pro Arg Thr Leu Ala Gly Ile Thr Ala Tyr Leu Gln
 365 370 375
 Cys Thr Arg Asn Thr His Gly Ser Gly Ile Tyr Pro Gly Asn Pro

380 385 390

Gln Asp Glu Arg Lys Ala Trp Arg Arg Cys Asp Arg Gly Gly Phe
 395 400 405

Trp Ala Asp Asp Asp Tyr Ser Arg Cys Gln Tyr Ala Asn Asp Val
 410 415 420

Thr Arg Val Leu Tyr Met Phe Asn Gln Met Pro Leu Asn Leu Thr
 425 430 435

Asn Ala Val Ala Thr Ala Arg Gln Leu Leu Ala Tyr Thr Val Glu
 440 445 450

Ala Ala Asn Phe Ser Asp Lys Met Asp Val Ile Phe Val Ala Glu
 455 460 465

Met Ile Glu Lys Phe Gly Arg Phe Thr Lys Glu Glu Lys Ser Lys
 470 475 480

Glu Leu Gly Asp Val Met Val Asp Ile Ala Ser Asn Ile Met Leu
 485 490 495

Ala Asp Glu Arg Val Leu Trp Leu Ala Gln Arg Glu Ala Lys Ala
 500 505 510

Cys Ser Arg Ile Val Gln Cys Leu Gln Arg Ile Ala Thr Tyr Arg
 515 520 525

Leu Ala Gly Gly Ala His Val Tyr Ser Thr Tyr Ser Pro Asn Ile
 530 535 540

Ala Leu Glu Ala Tyr Val Ile Lys Ser Thr Gly Phe Thr Gly Met
 545 550 555

Thr Cys Thr Val Phe Gln Lys Val Ala Ala Ser Asp Arg Thr Gly
 560 565 570

Leu Ser Asp Tyr Gly Arg Arg Asp Pro Glu Gly Asn Leu Asp Lys
 575 580 585

Gln Leu Ser Phe Lys Cys Asn Val Ser Asn Thr Phe Ser Ser Leu
 590 595 600

Ala Leu Lys Val Cys Tyr Ile Leu Gln Ser Phe Lys Thr Ile Tyr
 605 610 615

Ser

<210> 25
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24

<223> Synthetic construct

<400> 25
gaggactcac caatctggtt cggc 24

<210> 26
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 26
aactggaaag gaaggctgtc tccc 24

<210> 27
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 27
gtaaaaggaga agaacatcac ggtacgggat accaggtgt tttatcctaa 50

<210> 28
<211> 683
<212> DNA
<213> Homo sapiens

<400> 28
gcgtgggat gtctaggagc tcgaagggtgg tgctggcct ctcggtgctg 50
ctgacggcgg ccacagtggc cggcgatcat gtgaagcagc agtggacca 100
gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgg 150
aaaaagaaaa cattcgtctt ttgggagaac agattattt gactgagcaa 200
cttgaagcag aaagagagaa gatgttattt gcaaaaaggat ctcaaaaatc 250
atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgt 300
gtgtgttgat ggagagtagc ttagtagtat cttcatctt tttttggc 350
actgtccctt taaacttgat caaataaagg acagtggtc atataagtta 400
ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450
tttggaaagag tctgtctggg tgatcctggt agaagccccca ttagggtcac 500
tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550

ggaagggatg gatacttagca tccacctgag tagtctgatc agtcggcatg 600
atgacgaagc cacgagaaca tcgacacctg aaggactgga ggaaggtgaa 650
gtggagggag agacgctcct gatcgctgaa tcc 683

<210> 29
<211> 81
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-21
<223> Signal peptide.

<400> 29
Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu
1 5 10 15
Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp
20 25 30
Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln
35 40 45
Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile
50 55 60
Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala
65 70 75
Lys Gly Ser Gln Lys Ser
80

<210> 30
<211> 2128
<212> DNA
<213> Homo sapiens

<400> 30
ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50
tacagcctgt tccaaagtgtg gcttaatccg tctccaccac cagatcttc 100
tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggttaacccg 150
caccaccatc acaaccacca cgacgtcatc ttccggccctg gggccccca 200
tgatcgtggg gtcccccctcg gcccgtac acgacac agccccctggg tctccttcgc 250
ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300
gggcgcctgg acgggggtcca tgggcaactg gtccatgttc acctgggtgt 350
tctgcttctc cgtgaccctg atcatcctca tcgtggagct gtgcgggctc 400
caggccccgt tccccctgtc ttggcgcaac ttccccatca ctttcgcctg 450

ctatgcggcc ctcttctgcc tctcgccctc catcatctac cccaccacct 500
atgtccagtt cctgtcccac ggccggttcgc gggaccacgc catcgccgcc 550
accttcttct cctgcattcgc gtgtgtggct tacgccaccg aagtggcctg 600
gaccggggcc cgccccggcg agatcaactgg ctatatggcc accgtacccg 650
ggctgctgaa ggtgctggag accttcgttg cctgcattcat cttcgcttc 700
atcagcgacc ccaacctgta ccagcaccag ccggccctgg agtgggtgcgt 750
ggcggtgtac gccatctgct tcattcttagc ggccatcgcc atcctgctga 800
acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850
tcggggctgg ctttgctgtc tgtcccttc tatgccaccg cccttgttct 900
ctggcccttc taccagttcg atgagaagta tggcgccag cctcgccgt 950
cgagagatgt aagctgcagc cgcaGCCatg cctactacgt gtgtgcctgg 1000
gaccggccgac tggctgtggc catccgtacg gccatcaacc tactggcgta 1050
tgtggctgac ctgggtgcact ctgcccaccc ggtttttgtc aaggcttaag 1100
actctcccaa gaggctcccg ttccctctcc aacctcttgc ttcttcttgc 1150
ccgagttttc ttatggagt acttctttcc tccgccttcc ctctgtttc 1200
ctcttcctgt ctcccctccc tcccacccctt ttcttcttcc cccaatttcc 1250
tgcaactctaa ccagttcttg gatgcattttt cttccttccc ttcccttgc 1300
ctgtttcctt cctgtgttgt tttgttgcac acatcctgtt ttccacccctg 1350
agctgtttctt ctttttcttt tctttttttt tttttttttt ttttaagacg 1400
gattctcaact ctgtggccca ggctggagtg cagtggtgcg atctcagctc 1450
actgcaaccc ccgccttcctg ggttcaagcg attctccctcc cccagccctcc 1500
caagtagctg ggaggacagg tgtgagctgc cgccacccagc ctgtttctct 1550
ttttccactc ttcttttttc tcattttttt tctgggttgc ctgtcggttt 1600
tcttatctgc ctgttttgca agcacccctt cctgtgtcct tgggagccct 1650
gagacttctt tctctcccttg cctccacccca cctccaaagg tgctgagctc 1700
acatccacac cccttgacgc cgtccatgcc acagcccccc aagggggcccc 1750
attgccaaag catgcctgccc caccctcgct gtgccttagt cagtggtac 1800
gtgtgtgtgt gtgtgtgttt ggggggtggg ggggtggtag ctggggattt 1850
ggccctcttt ctcccagttgg aggaaggtgt gcagtgtact tcccctttaa 1900

ataaaaaaac atatatataat atatattgg aggtcagtaa tttccaatgg 1950
gcgggaggca ttaagcaccg accctgggtc cctaggcccc gcctggcact 2000
cagccttgcc agagattggc tccagaattt ttgccaggt tacagaacac 2050
ccactgccta gaggccatct taaaggaagc aggggctgga tgcccttcat 2100
cccaactatt ctctgtggta tgaaaaag 2128

<210> 31
<211> 322
<212> PRT
<213> Homo sapiens

<400> 31
Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr Thr
1 5 10 15
Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg
20 25 30
Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val
35 40 45
Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp
50 55 60
Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys
65 70 75
Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu
80 85 90
Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe
95 100 105
Ala Cys Tyr Ala Ala Leu Phe Cys Leu Ser Ala Ser Ile Ile Tyr
110 115 120
Pro Thr Thr Tyr Val Gln Phe Leu Ser His Gly Arg Ser Arg Asp
125 130 135
His Ala Ile Ala Ala Thr Phe Phe Ser Cys Ile Ala Cys Val Ala
140 145 150
Tyr Ala Thr Glu Val Ala Trp Thr Arg Ala Arg Pro Gly Glu Ile
155 160 165
Thr Gly Tyr Met Ala Thr Val Pro Gly Leu Leu Lys Val Leu Glu
170 175 180
Thr Phe Val Ala Cys Ile Ile Phe Ala Phe Ile Ser Asp Pro Asn
185 190 195
Leu Tyr Gln His Gln Pro Ala Leu Glu Trp Cys Val Ala Val Tyr
200 205 210

Ala Ile Cys Phe Ile Leu Ala Ala Ile Ala Ile Leu Leu Asn Leu
 215 220 225
 Gly Glu Cys Thr Asn Val Leu Pro Ile Pro Phe Pro Ser Phe Leu
 230 235 240
 Ser Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr Ala Leu
 245 250 255
 Val Leu Trp Pro Leu Tyr Gln Phe Asp Glu Lys Tyr Gly Gly Gln
 260 265 270
 Pro Arg Arg Ser Arg Asp Val Ser Cys Ser Arg Ser His Ala Tyr
 275 280 285
 Tyr Val Cys Ala Trp Asp Arg Arg Leu Ala Val Ala Ile Leu Thr
 290 295 300
 Ala Ile Asn Leu Leu Ala Tyr Val Ala Asp Leu Val His Ser Ala
 305 310 315
 His Leu Val Phe Val Lys Val
 320

<210> 32
 <211> 3680
 <212> DNA
 <213> Homo sapiens

<400> 32
 gaacgtgcca ccatgccag ctaattttt 50
 tttcaccatg ttggccaggc tggcttgaa ctcgtgacct catgatccgc 100
 tcacccctggc ctccccaaagt gctgggattt caggcatgag ccactgacgc 150
 ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200
 taaacattgg gcactacagt gaccaaaaaca gactgaattc cccaaagagcc 250
 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagagcca 300
 ttattactca ctatgactaa gggtcacaaa tgggtacgt tgatggagag 350
 tgatttgtta agagactaca gagggaggac agactaccaa gagggggggcc 400
 aggaaaagctc ctctgacgag gtggatttc agcccaaact ggaagaatga 450
 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500
 cactcactac actttggcct gagaaaaatag catgggattg gaggaggctg 550
 gggaaacacc acttctgccg acctggcag gaggcattga gggcttgaga 600
 aaggggcaatg gcagtagcag tagaaaggac aggtagggag cagggacttt 650
 gcagggtaatg tcatttagtc ttatcaacag atatggcaa gcaaagccag 700

2001-2009

gggagaattg atggtaatgc tgaggtttg agccaggcta gatggacag 750
tggtgttga tcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800
agaaggtgtg ggggttggt ttccatcttg ccgagtctgc cgaaatgtgg 850
atggaaagac caagaggagg agcaaggggc agagggaaag ggaatcttaa 900
agaagtcctg gatgccacac tcttcttcct tcctcctctt ccctcctc 950
agaggtctca ctcgtggttc ttcatttcct gccctgcctc catctcctct 1000
gggtgctggg aaagtggagg attagctgaa gtttgcttc tcggggcctg 1050
tctaatctc cattgcttcc tggaggaca taattcacct gtcctagctt 1100
cttatcatct tacatttccc tgtagccact gggacatatg tgggttcct 1150
tcctagctcc tgtctcctcc tcatgcctt gctgggtatg ggcattgttag 1200
gggaaaggtc attgctgtca gaggggcact gactttctaa tgggttacc 1250
caaggtgaat gttggagaca cagtcgcgtat gctgccaag tcccgccag 1300
ccctaactat ccaggagatc gctgcgtgg ccaggtcctc cctgcattgtt 1350
atgcagcccc tcccatgtt ctggccactt tgtccttct cctccgttt 1400
gcacatccct ttggaactgt ttcctgttag tacatgctgg ggtctccct 1450
ttctccctt gctcaggtga atctcagccc cttctccac ccaaagggttc 1500
acatggatcc taactactgc cacccttcca cctccctgca cctgtgctcc 1550
ctggcctggt ccttaccag gcttctccac cctccctat ctccaggtat 1600
ttcccagggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650
gccgagtggc tcacctcatt gagtggagg gctggagcaa gccgagtgcac 1700
tcacctgctg ccctggaatc agcctttcc tcctattcag acctcagcga 1750
ggcgaacaa gaggctcgct ttgcagcagg agtggcttag cagtttgcca 1800
tcgcggaaagc caagctccga gcatggtctt cggtggatgg cgaggactcc 1850
actgatgact cctatgatga ggactttgct gggggatgg acacagacat 1900
ggctggcag ctgcccctgg ggccgcaccc ccaggaccc ttcaccggcc 1950
accggttctc ccggcctgtg cgccaggcgt ccgtggagcc tgagagcgcac 2000
tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtcagccct 2050
ggaggatggg ttgttggct ccccgcccc gctggcctcc cagctgctgg 2100
gcgtgagct gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150

cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgccct 2200
cacagagtcc tgccttccc ccgcggagga ggagccagcc ccctgcaagg 2250
actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300
caaggctctg acctggcctc ttctgggtg gtgtccttag atgaggatga 2350
ggcagagcca gaggaacagt gaccacatc atgcctggca gtggcatgca 2400
tccccggct gctgccaggg gcagagcctc tgtgcccaga tggtggctca 2450
aggctcccag cagagctcca cagcctagag ggctcctggg agcgctcgct 2500
tctccgttgt gtgtttgca tgaaagtgtt tggagaggag gcaggggctg 2550
ggctggggc gcatgtcctg cccccactcc cggggcttgc cgggggttgc 2600
ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650
ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700
agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750
accccccacc ctccccatgc ctctcttcc tctgctttc ttctcacttc 2800
cgagtccatg tgcagtgtttt gatagaatca cccccacctg gaggggctgg 2850
ctcctgccct cccggagcct atgggttgag ccgtccctca agggcccctg 2900
cccagctggg ctcgtgtgt gcttcattca cctctccatc gtctctaaat 2950
cttcctcttt ttccctaaag acagaaggtt ttgggtctgt ttttcagtc 3000
ggatcttctc ttctctggaa ggctttggaa tggatgaaagc atgtaccctc 3050
caccctttc ctggcccccct aatggggcct gggcccttcc ccaaccctc 3100
ctaggatgtg cgggcagtgt gctggcgcct cacagccagc cgggctgccc 3150
attcacgcag agctctctga gcgggaggtg gaagaaagga tggctctggt 3200
tgccacagag ctgggacttc atgttcttct agagagggcc acaagagggc 3250
cacaggggtg gccgggagtt gtcagctgat gcctgctgag aggcaggaat 3300
tgtgccagtg agtgacagtc atgagggagt gtctcttctt ggggaggaaa 3350
gaaggttagag cctttctgtc tgaatgaaag gccaaggcta cagtagaggg 3400
ccccccccca gccagggtgt taatgcccac gtatggagg cctctggcag 3450
atcctgcatt ccaaggtcac tggactgtac gtttttatgg ttgtggaaag 3500
ggtgggtggc tttagaatta agggccttgtt aggcttggc aggttaagagg 3550
gccccaggta agaacgagag ccaacggca caagcattct atatataagt 3600

ggctcattag gtgtttat ttgttctattt aagaatttgtt tttattaaat 3650
taatataaaa atctttgtaa atctctaaaa 3680

<210> 33
<211> 335
<212> PRT
<213> Homo sapiens

<400> 33
Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro
1 5 10 15
Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser
20 25 30
Ser Leu Ala Gln Val Asn Leu Ser Pro Phe Ser His Pro Lys Val
35 40 45
His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu
50 55 60
Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu
65 70 75
Ser Pro Gly Ile Ser Gln Val Val Lys Asp His Val Thr Lys Pro
80 85 90
Thr Ala Met Ala Gln Gly Arg Val Ala His Leu Ile Glu Trp Lys
95 100 105
Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala
110 115 120
Phe Ser Ser Tyr Ser Asp Leu Ser Glu Gly Glu Gln Glu Ala Arg
125 130 135
Phe Ala Ala Gly Val Ala Glu Gln Phe Ala Ile Ala Glu Ala Lys
140 145 150
Leu Arg Ala Trp Ser Ser Val Asp Gly Glu Asp Ser Thr Asp Asp
155 160 165
Ser Tyr Asp Glu Asp Phe Ala Gly Gly Met Asp Thr Asp Met Ala
170 175 180
Gly Gln Leu Pro Leu Gly Pro His Leu Gln Asp Leu Phe Thr Gly
185 190 195
His Arg Phe Ser Arg Pro Val Arg Gln Gly Ser Val Glu Pro Glu
200 205 210
Ser Asp Cys Ser Gln Thr Val Ser Pro Asp Thr Leu Cys Ser Ser
215 220 225
Leu Cys Ser Leu Glu Asp Gly Leu Leu Gly Ser Pro Ala Arg Leu
230 235 240

Ala Ser Gln Leu Leu Gly Asp Glu Leu Leu Leu Ala Lys Leu Pro
245 250 255

Pro Ser Arg Glu Ser Ala Phe Arg Ser Leu Gly Pro Leu Glu Ala
260 265 270

Gln Asp Ser Leu Tyr Asn Ser Pro Leu Thr Glu Ser Cys Leu Ser
275 280 285

Pro Ala Glu Glu Glu Pro Ala Pro Cys Lys Asp Cys Gln Pro Leu
290 295 300

Cys Pro Pro Leu Thr Gly Ser Trp Glu Arg Gln Arg Gln Ala Ser
305 310 315

Asp Leu Ala Ser Ser Gly Val Val Ser Leu Asp Glu Asp Glu Ala
320 325 330

Glu Pro Glu Glu Gln
335

<210> 34
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct

<400> 34
tgtccttgc cccagacttc tgtcc 25

<210> 35
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 35
ctggatgcta atgtgtccag taaatgatcc ccttatcccc tcgcgatgct 50

<210> 36
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 36

ttccactcaa tgaggtgagc cactc 25
<210> 37
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-23
<223> Synthetic construct.

<400> 37
ggcgagccct aactatccag gag 23

<210> 38
<211> 39
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-39
<223> Synthetic construct.

<400> 38
ggagatcgct gcgctggcca ggtcctccct gcatggtat 39

<210> 39
<211> 22
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.

<400> 39
ctgctgcaaa gcgagcctct tg 22

<210> 40
<211> 2084
<212> DNA
<213> Homo sapiens

<400> 40
ggttcctggg cgctctgtta cacaaggcaag atacagccag ccccacctaa 50
ttttgttcc ctggcacccct cctgctcagt ggcacattgt cacacttaac 100
ccatctgttt tctctaattgc acgacagatt cctttcagac aggacaactg 150
tgatatttca gttcctgatt gtaaataacct cctaaggctg aagcttctgt 200
tactagccat tgtgagcttc agtttcttca tctgcaaaaat gggcataata 250
caatctattc ttgccacatc aaggattgt tattccttta aaaaaaaaaacc 300

aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350
caacgttgtt ttattcactt ctatcgaaaa gccatggaaa agaaaatcaa 400
gacataaaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450
taaacctatt tctttggaaa gtgaagcaaa cttaaactca gataaagaaa 500
atataaccac ctcaaatttc aaggcgagtc attccccctcc tttgaatcta 550
cccaacaaca gccacggaat aacagatttc tccagtaact catcagcaga 600
gcattcttg ggcagtctaa aaccacatc taccatttcc acaagccctc 650
ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700
gatgaagatc ttttgcacat ctcagcacat cccaatgcta cacctgctct 750
gtcttcagaa aacttcactt ggtctttgggt caatgacacc gtggaaactc 800
ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850
ccatctgtga ccccccttgc agtggAACCA agtggatggc ttaccacaaa 900
cagtgatagc ttcaactgggt ttaccctta tcaagaaaaa acaactctac 950
agcctacctt aaaattcacc aataattcaa aactcttcc aaatacgtca 1000
gatccccaaa aagaaaaatag aaatacagga atagtattcg gggccatttt 1050
aggtgctatt ctgggtgtct cattgcttac tcttggatggc tacttggatgt 1100
gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150
agaaatgaac cagttctgcg attagacaat gcaccggAACCTT cttatgatgt 1200
gagttttggg aattcttagct actacaatcc aactttgaat gattcagcca 1250
tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300
cctccacttc gtacttctgt atagaactaa cagaaaaag gcgttaaaca 1350
gcaagtgtca tctacatcct agcctttga caaattcatc tttcaaaagg 1400
ttacacaaaa ttactgtcac gtggatTTG tcaaggagaa tcataaaAGC 1450
aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggTTTC 1500
tttcttacaa tttttggcca tcctgaggca tttactaagt agccttaatt 1550
tgtatTTAG tagtattttc ttagtagaaa atatttgatgg aatcagataa 1600
aactaaaaAGA tttcaccatt acagccctgc ctcataacta aataataaaa 1650
attattccac caaaaaattc taaaaacaatg aagatgactc tttactgctc 1700
tgcctgaagc cctagtagacca taattcaaga ttgcattttc ttaaatgaaa 1750

attgaaaggg tgcttttaa agaaaatttgc acttaaagct aaaaagagga 1800
catagccag agtttctgtt attggaaat tgaggcaata gaaatgacag 1850
acctgtattc tagtacgtta taattttcta gatcagcaca cacatgatca 1900
gcccaactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950
aggaaagctg accctaccca ggaaagtaat agttcttta aaagtcttca 2000
aaggttttgga aatttttaac ttgtcttaat atatcttagg cttcaatttat 2050
ttgggtgcct taaaaactca atgagaatca tggt 2084

<210> 41
<211> 334
<212> PRT
<213> Homo sapiens

<400> 41
Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr
1 5 10 15
Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn
20 25 30
Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys
35 40 45
Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu
50 55 60
Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu
65 70 75
Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn
80 85 90
Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr
95 100 105
Ile Ser Thr Ser Pro Pro Leu Ile His Ser Phe Val Ser Lys Val
110 115 120
Pro Trp Asn Ala Pro Ile Ala Asp Glu Asp Leu Leu Pro Ile Ser
125 130 135
Ala His Pro Asn Ala Thr Pro Ala Leu Ser Ser Glu Asn Phe Thr
140 145 150
Trp Ser Leu Val Asn Asp Thr Val Lys Thr Pro Asp Asn Ser Ser
155 160 165
Ile Thr Val Ser Ile Leu Ser Ser Glu Pro Thr Ser Pro Ser Val
170 175 180
Thr Pro Leu Ile Val Glu Pro Ser Gly Trp Leu Thr Thr Asn Ser
185 190 195

Asp Ser Phe Thr Gly Phe Thr Pro Tyr Gln Glu Lys Thr Thr Leu
200 205 210

Gln Pro Thr Leu Lys Phe Thr Asn Asn Ser Lys Leu Phe Pro Asn
215 220 225

Thr Ser Asp Pro Gln Lys Glu Asn Arg Asn Thr Gly Ile Val Phe
230 235 240

Gly Ala Ile Leu Gly Ala Ile Leu Gly Val Ser Leu Leu Thr Leu
245 250 255

Val Gly Tyr Leu Leu Cys Gly Lys Arg Lys Thr Asp Ser Phe Ser
260 265 270

His Arg Arg Leu Tyr Asp Asp Arg Asn Glu Pro Val Leu Arg Leu
275 280 285

Asp Asn Ala Pro Glu Pro Tyr Asp Val Ser Phe Gly Asn Ser Ser
290 295 300

Tyr Tyr Asn Pro Thr Leu Asn Asp Ser Ala Met Pro Glu Ser Glu
305 310 315

Glu Asn Ala Arg Asp Gly Ile Pro Met Asp Asp Ile Pro Pro Leu
320 325 330

Arg Thr Ser Val

<210> 42
<211> 1594
<212> DNA
<213> Homo sapiens

<400> 42
aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50
gccttaccgc gcagccccaa gattcactat ggtgaaaatc gccttcaata 100
ccccttaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150
ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200
tgccacccag gaaaaagagg gtcctctgg gagatgtatg cttaactct 250
taggccttc attcatcttgcaggactta ttgttggtgg agcctgcatt 300
tacaagtact tcatgcccaa gagcaccatt taccgtggag agatgtgctt 350
ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400
tcctgcctgt gactgaggag gctgacattc gtgaggatga caacattgca 450
atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500
tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550

ggaactgcta tctgatgcc ctcaatactt ctattgttat gcctccaaaa 600
aatctggtag agctcttgg caaactggcg agtggcagat atctgcctca 650
aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700
ttagtaacct tggcatctt atttaccaac tttgcaataa cagaaagtcc 750
ttccgccttc gtcgcagaga cctcttgctg gtttcaaca aacgtccat 800
tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850
ccaagatctg tcaagagtaa gaggcaacag atagagtgtc cttggtaata 900
agaagtcaga gatttacaat atgactttaa cattaaggtt tatggatac 950
tcaagatatt tactcatgca tttactctat tgcttatgct taaaaaaaaag 1000
aaaaaaaaaaa aaaactacta accactgcaa gctcttgtca aattttagtt 1050
taattggcat tgcttgaaaa ttgaaactga aattacatga gtttcatttt 1100
ttcttgcattt ttatagggtt tagatttctg aaagcagcat gaatatatca 1150
cctaacatcc tgacaataaa ttccatccgt tgttttttt gttgtttgt 1200
tttttctttt ccttaagta agctctttat tcattttatg gtggagcaat 1250
tttaaaattt gaaatatttt aaattgtttt tgaactttt gtgtaaaata 1300
tatcagatct caacattgtt gttttttt gtttttcatt ttgtacaact 1350
ttcttgaatt tagaaattac atcttgcag ttctgttagg tgctctgtaa 1400
ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450
aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500
tgttaggtg ctgaatgctg taaggagttt aggttgtatg aattctacaa 1550
ccctataata aattttactc tataaaaaaa aaaaaaaaaa aaaa 1594

<210> 43
<211> 263
<212> PRT
<213> Homo sapiens

<400> 43
Met Val Lys Ile Ala Phe Asn Thr Pro Thr Ala Val Gln Lys Glu
1 5 10 15
Glu Ala Arg Gln Asp Val Glu Ala Leu Leu Ser Arg Thr Val Arg
20 25 30
Thr Gln Ile Leu Thr Gly Lys Glu Leu Arg Val Ala Thr Gln Glu
35 40 45
Lys Glu Gly Ser Ser Gly Arg Cys Met Leu Thr Leu Leu Gly Leu

50	55	60
Ser Phe Ile Leu Ala Gly Leu Ile Val Gly Gly Ala Cys Ile Tyr		
65	70	75
Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr Arg Gly Glu Met Cys		
80	85	90
Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu Arg Gly Gly Glu		
95	100	105
Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile Arg Glu Asp		
110	115	120
Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe Ser Asp		
125	130	135
Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met Thr		
140	145	150
Ala Tyr Leu Asp Leu Leu Leu Gly Asn Cys Tyr Leu Met Pro Leu		
155	160	165
Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe		
170	175	180
Gly Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val		
185	190	195
Arg Glu Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val Ser Asn		
200	205	210
Leu Gly Ile Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe		
215	220	225
Arg Leu Arg Arg Arg Asp Leu Leu Leu Gly Phe Asn Lys Arg Ala		
230	235	240
Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile		
245	250	255
Val Glu Thr Lys Ile Cys Gln Glu		
260		

<210> 44
 <211> 24
 <212> DNA
 <213> Artificial

<220>
 <221> Artificial sequence
 <222> 1-24
 <223> Synthetic construct.

<400> 44
 gaaagacacg acacagcagc ttgc 24

<210> 45

<211> 20
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-20
<223> Synthetic construct.

<400> 45
g g g a a c t g c t a t c t g a t g c c 20

<210> 46
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.

<400> 46
c a g g a t c t c c t c t t g c a g t c t g c a g c 26

<210> 47
<211> 28
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-28
<223> Synthetic construct.

<400> 47
c t t c t c g a a c c a c a t a a g t t t g a g g c a g 28

<210> 48
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 48
c a c g a t t c c c t c c a c a g c a a c t g g g 25

<210> 49
<211> 1969
<212> DNA
<213> Homo sapiens

<400> 49
g g a g g a g g g a g g g c g g c a g c c c a g a g c a g c c c 50

1001011111111111

cacggactct ctcttccagc ccaggtgccccc cccactctcg ctccattcgg 100
cgggagcacc cagtcctgtcg cgccaaggaa ctggtcctgg gggcaccatg 150
gtttcggcgg cagccccag cctcctcatc cttctgttgc tgctgctggg 200
gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250
tgaggatgt ggccggtagt ggggaggccg agggctcgcc ggcctcctcc 300
ccgagcctcc cgccaccctg gaccccgccct ctcagccca catcgatggg 350
cccccagccc acaaccctgg ggggccccatc acccccccacc aacttcctgg 400
atggatagt ggacttcttc cgccagtacg tcatgtctat tgctgtggg 450
ggctccctgg ctttctgtct gatgttcatc gtctgtgccg cggtcatcac 500
ccggcagaag cagaaggcct cgccctatta cccatcgcc ttcccaaga 550
agaagtacgt ggaccagagt gaccgggccc ggggccccccg ggccttcaagt 600
gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650
ctcccgccag ctccaggccc acatcttggc cgccaccctg aacctcaagt 700
cccccaccag ggctgcactg ggcgggtggg acggagccag gatgggtggag 750
ggcaggggccc cagaggaaga ggagaaggc agccaggagg gggaccagga 800
agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850
cgtgctcagg ggtccttggg gggctgtgg tggccggta gggccaagg 900
gagctggaag ggtctctttt gttagccctg gaagcccagg gaccagtggg 950
tccccccgaa agccctgtg cttgcagcag tgtccacccc agtgtctaacc 1000
agtccctcccg ggctgccagc cctgactgtc gggcccccac gtggcacct 1050
ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100
cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150
cagaaatgct ggtccccggt gccccggagg aatcttacca agtgcacca 1200
tccttcaccc cagcagcccc aaagggtac atcctacagc acagctcccc 1250
tgacaaagtg agggagggca cgtgctcctg tgacagccag gataaaacat 1300
cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaacc 1350
tacttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400
aatactgctc ttaattttcc tgaaggtggc cccctgttcc tagttggtcc 1450
aggatttaggg atgtgggta tagggcattt aaatcctctc aagcgctctc 1500

caagcacccc cggcctgggg gtgagttct catcccgcta ctgctgctgg 1550
gatcagggtt aatgaatgga actttcctg tctggcctcc aaagcagcct 1600
agaagctgag gggctgtgt tgaggggacc tccaccctgg ggaagtccga 1650
ggggctgggg aagggtttct gacgcccagc ctggagcagg gggccctgg 1700
ccacccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750
gtcagtcctc gacagggagc ctgggctccg tcctgctta gggaggctct 1800
ggcaggaggt cctctcccc atccctccat ctggggctcc cccaacctct 1850
gcacagctct ccaggtgctg agatataatg caccagcaca ataaaccttt 1900
attccggcct gaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1950
aaaaaaaaaaa aaaaaaaga 1969

<210> 50
<211> 283
<212> PRT
<213> Homo sapiens

<400> 50
Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu
1 5 10 15
Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu
20 25 30
Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu
35 40 45
Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro
50 55 60
Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly
65 70 75
Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe
80 85 90
Phe Arg Gln Tyr Val Met Leu Ile Ala Val Val Gly Ser Leu Ala
95 100 105
Phe Leu Leu Met Phe Ile Val Cys Ala Ala Val Ile Thr Arg Gln
110 115 120
Lys Gln Lys Ala Ser Ala Tyr Tyr Pro Ser Ser Phe Pro Lys Lys
125 130 135
Lys Tyr Val Asp Gln Ser Asp Arg Ala Gly Gly Pro Arg Ala Phe
140 145 150
Ser Glu Val Pro Asp Arg Ala Pro Asp Ser Arg Pro Glu Glu Ala
155 160 165

Leu Asp Ser Ser Arg Gln Leu Gln Ala Asp Ile Leu Ala Ala Thr
170 175 180

Gln Asn Leu Lys Ser Pro Thr Arg Ala Ala Leu Gly Gly Gly Asp
185 190 195

Gly Ala Arg Met Val Glu Gly Arg Gly Ala Glu Glu Glu Glu Lys
200 205 210

Gly Ser Gln Glu Gly Asp Gln Glu Val Gln Gly His Gly Val Pro
215 220 225

Val Glu Thr Pro Glu Ala Gln Glu Glu Pro Cys Ser Gly Val Leu
230 235 240

Glu Gly Ala Val Val Ala Gly Glu Gly Gln Gly Glu Leu Glu Gly
245 250 255

Ser Leu Leu Leu Ala Gln Glu Ala Gln Gly Pro Val Gly Pro Pro
260 265 270

Glu Ser Pro Cys Ala Cys Ser Ser Val His Pro Ser Val
275 280

<210> 51
<211> 1734
<212> DNA
<213> Homo sapiens

<400> 51
gtggactctg agaagccag gcagttgagg acaggagaga gaaggctgca 50
gaccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100
gcacagagac gcagagcaag ggcggcaagg aggagacctt ggtggagga 150
agacactctg gagagagagg gggctggca gagatgaagt tccagggcc 200
cctggcctgc ctcctgctgg ccctctgcct gggcagtggg gaggtggcc 250
ccctgcagag cggagaggaa agcactggaa caaatattgg ggaggccctt 300
ggacatggcc tgggagacgc cctgagcgaa ggggtggaa aggccattgg 350
caaagaggcc ggaggggcag ctggctctaa agtcagttag gcccattggcc 400
aagggaccag agaagcagtt ggcactggag tcaggcaggt tccaggcttt 450
ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgctct 500
gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550
acggagcaga tgctgtccgc ggctcctggc agggggtgcc tggccacagt 600
ggtgcttggg aaacttctgg aggcatggc atctttggct ctcaagggtgg 650
ccttggaggg cagggccagg gcaatcctgg aggtctgggg actccgtggg 700

tccacggata ccccgaaac tcagcaggca gctttggaaat gaatcctcag 750
ggagactccct ggggtcaagg aggcaatgga gggccaccaa actttggac 800
caacactcag ggagctgtgg cccagcctgg ctatggtca gtgagagcca 850
gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900
ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950
cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000
gcagtggcag cagcagtggc agcagcagtgc gcggcagcag tggcggcagc 1050
agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100
tgagtcctcc tggggatcca gcaccggctc ctccctccggc aaccacggtg 1150
ggagcggcgg aggaaatgga cataaaacccg ggtgtaaaaa gccaggaaat 1200
gaagcccgcg ggagcgggaa atctgggatt cagggcttca gaggacaggg 1250
agtttccagc aacatgaggg aaataagcaa agagggcaat cgccctccttg 1300
gaggctctgg agacaattat cggggcaag ggtcgagctg gggcagtgg 1350
ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400
tggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450
gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500
ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550
ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600
aaataaacct tagctgcccc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734

<210> 52

<211> 440

<212> PRT

<213> Homo sapiens

<400> 52

Met	Lys	Phe	Gln	Gly	Pro	Leu	Ala	Cys	Leu	Leu	Leu	Ala	Leu	Cys
1					5				10				15	

Leu	Gly	Ser	Gly	Glu	Ala	Gly	Pro	Leu	Gln	Ser	Gly	Glu	Glu	Ser
					20				25				30	

Thr	Gly	Thr	Asn	Ile	Gly	Glu	Ala	Leu	Gly	His	Gly	Leu	Gly	Asp
					35				40				45	

Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly

50	55	60
Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr		
65	70	75
Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly		
80	85	90
Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala		
95	100	105
Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gln Ala Glu Asp Val		
110	115	120
Ile Arg His Gly Ala Asp Ala Val Arg Gly Ser Trp Gln Gly Val		
125	130	135
Pro Gly His Ser Gly Ala Trp Glu Thr Ser Gly Gly His Gly Ile		
140	145	150
Phe Gly Ser Gln Gly Gly Leu Gly Gly Gln Gly Gln Gly Asn Pro		
155	160	165
Gly Gly Leu Gly Thr Pro Trp Val His Gly Tyr Pro Gly Asn Ser		
170	175	180
Ala Gly Ser Phe Gly Met Asn Pro Gln Gly Ala Pro Trp Gly Gln		
185	190	195
Gly Gly Asn Gly Gly Pro Pro Asn Phe Gly Thr Asn Thr Gln Gly		
200	205	210
Ala Val Ala Gln Pro Gly Tyr Gly Ser Val Arg Ala Ser Asn Gln		
215	220	225
Asn Glu Gly Cys Thr Asn Pro Pro Pro Ser Gly Ser Gly Gly Gly		
230	235	240
Ser Ser Asn Ser Gly Gly Ser Gly Ser Gln Ser Gly Ser Ser Ser		
245	250	255
Gly Ser Gly Ser Asn Gly Asp Asn Asn Asn Gly Ser Ser Ser Ser Gly		
260	265	270
Gly Ser Ser Ser Gly Ser Ser Ser Gly Ser Ser Ser Gly Gly Ser		
275	280	285
Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Asn Ser Gly Gly Ser		
290	295	300
Arg Gly Asp Ser Gly Ser Glu Ser Ser Trp Gly Ser Ser Thr Gly		
305	310	315
Ser Ser Ser Gly Asn His Gly Gly Ser Gly Gly Asn Gly His		
320	325	330
Lys Pro Gly Cys Glu Lys Pro Gly Asn Glu Ala Arg Gly Ser Gly		
335	340	345

Glu Ser Gly Ile Gln Gly Phe Arg Gly Gln Gly Val Ser Ser Asn
350 355 360

Met Arg Glu Ile Ser Lys Glu Gly Asn Arg Leu Leu Gly Gly Ser
365 370 375

Gly Asp Asn Tyr Arg Gly Gln Gly Ser Ser Trp Gly Ser Gly Gly
380 385 390

Gly Asp Ala Val Gly Gly Val Asn Thr Val Asn Ser Glu Thr Ser
395 400 405

Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser
410 415 420

Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg
425 430 435

Ser Ser Arg Ile Pro
440

<210> 53

<211> 3580

<212> DNA

<213> Homo sapiens

<400> 53

gaccggtccc tccggtcctg gatgtgcgga ctctgctgca gcgagggctg 50
caggcccccc gggcggtgct caccgtgccc tggctggtgg agtttctctc 100
ctttgctgac catgttgttc ctttgctgga atattaccgg gacatcttca 150
ctctcctgct ggcgcctgcac cggagcttgg tggctcgca ggagagtgag 200
ggaaagatgt gtttcctgaa caagctgctg ctacttgctg tcctgggctg 250
gctttccag attcccacag tccctgagga ttgttcttt ctggaagagg 300
gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350
gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400
catcggagag ctccggaaac tgctcgcttc gtgggtgtca ggcagttagtg 450
gacggagtg 500
gggcttcatg agaaaaatca cccccaccac taccaccagg
ctgggagccc agccttccca gaccagccag gggctgcagg cacagctcgc 550
ccaggcctt ttccacaacc agccgcctc cttgcgcgg accgttagtg 600
tcgtggcaga aagaattgga tcaaactgtg tcaaacatat caaggctaca 650
ctggtgccag atctggtgcg ccagggcagag tcacttctcc aagagcagct 700
ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750
tgtgttccca gctgtgcct cacggggccc aggcattggc cctggggcgg 800

gagttctgtc aaaggaagag ccctggggct gtgcgggcgc tgcttccaga 850
ggagaccccg gcagccgttc tgagcagtgc agagaacatt gctgtggggc 900
ttgcaacaga gaaagcctgt gcttggctgt cagccaacat cacagcactg 950
atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000
tcctgaacct gctgcccggg gggagcggag gggctgtcc cgccctgac 1050
tgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100
agagcatctg gaacagctcc taggccagct gggccagacg ctgcggtgcc 1150
gccagttcct gtgcccacct gctgagcagc atctggaaa gtgctctgtg 1200
gagttagctt ccctcctcgt tgcagatcaa attcctatcc tagggcccc 1250
ggcacagtac aggctggaga gagggcaggg tcgaaggctt ctgcacatgc 1300
tgcttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350
ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400
gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450
tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500
tggccagggg actttgctga agaatttagca acactgtcta atctgtttct 1550
agccgagccc cacctgccag aacccagct aagagcctgt gagttggtgc 1600
agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650
ctgccttggg cattgcacca gaaccctgga ccccccgcctc acgaggaggg 1700
ccaagtgccc aatgcagacc ctcactggtt ggggtgttagc tgggtctaca 1750
gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800
atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850
cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900
atactaaatg aaatgaggtg tgtggcttg tcaacacaga attcaagcct 1950
catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000
cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050
cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100
ataaaatgcct aacacaggcc gggctgggtg gctcatgcct gtaatcccag 2150
cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200
accagcctgg ccaacatggc aaaacccat ctctactaaa aataaaaaaa 2250

ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 2300
gatgaggcag gagacacctgct tgaacctgga ggtggagggt gcagtgagcc 2350
gaggtcgcac cactgcactc cagtcgtgggt aacagagcga gactttctag 2400
aaaaaggccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450
tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500
ctccctgacc agggaccaag cacagggcat ttagagctt ttagaataaa 2550
ctggttttct ttaaaaaaaaaaaa aaaaaaaaaaaa agggcggccg ccctttttt 2600
tttttttttt tttttttttt tttttttttt tttttttttt taaaaaggc 2650
ttttattaaa attctccccca cacgatggct cctgcaatct gccacagctc 2700
tggggcgtgt cctgttaggaa aaggccctgt tttccctgag gcggggctgg 2750
gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800
tctagctgct tcttgccggg cacagagctg cggggctgg gggcaccggg 2850
agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900
accctgaggt gctcctgaga tgctgggtcc accctgagtg gcacggggag 2950
cagctgtggc cggtgctcct tcytaggcca gtcctgggaa aactaagctc 3000
gggccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050
gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100
cagcggcctg gagcgcctct ctcctgagcc tcagtttccc tttccgtcta 3150
atgaagaaca tgccgtctcg gtgtctcagg gctattagga ctgccctca 3200
ggaagtggcc ttggacgagc gtcatgttat tttcacaact gtcctgcac 3250
gttggcctgg gcacgtcatg gaatggccca tgtccctctg ctgcgtggac 3300
gtcgcggtcg ggagtgcgca gccagaggcg gggccagacg tgcgcctggg 3350
ggtgagggga ggcgccccgg gagggcctca caggaagttg ggctcccgca 3400
ccaccaggca gggcgggctc ccggccgcgc cgccgccacc accgtccagg 3450
ggccggtaga caaatggaa gtcgcgttg ggctcgctgc gcagcaggtt 3500
gccctttagt cagtgcggca ggcgcgtcgtc cgccagctgg aagcagcgcc 3550
cgtccaccag cacgaacagc cggtgcgcct 3580

<210> 54

<211> 280

<212> PRT

<213> Homo sapiens

<400> 54

Met	Cys	Phe	Leu	Asn	Lys	Leu	Leu	Leu	Ala	Val	Leu	Gly	Trp	
1		5				10					15			
Leu	Phe	Gln	Ile	Pro	Thr	Val	Pro	Glu	Asp	Leu	Phe	Phe	Leu	Glu
		20				25						30		
Glu	Gly	Pro	Ser	Tyr	Ala	Phe	Glu	Val	Asp	Thr	Val	Ala	Pro	Glu
	35					40						45		
His	Gly	Leu	Asp	Asn	Ala	Pro	Val	Val	Asp	Gln	Gln	Leu	Leu	Tyr
	50					55						60		
Thr	Cys	Cys	Pro	Tyr	Ile	Gly	Glu	Leu	Arg	Lys	Leu	Leu	Ala	Ser
	65					70						75		
Trp	Val	Ser	Gly	Ser	Ser	Gly	Arg	Ser	Gly	Gly	Phe	Met	Arg	Lys
	80					85						90		
Ile	Thr	Pro	Thr	Thr	Thr	Ser	Leu	Gly	Ala	Gln	Pro	Ser	Gln	
	95					100						105		
Thr	Ser	Gln	Gly	Leu	Gln	Ala	Gln	Leu	Ala	Gln	Ala	Phe	Phe	His
	110					115						120		
Asn	Gln	Pro	Pro	Ser	Leu	Arg	Arg	Thr	Val	Glu	Phe	Val	Ala	Glu
	125					130						135		
Arg	Ile	Gly	Ser	Asn	Cys	Val	Lys	His	Ile	Lys	Ala	Thr	Leu	Val
	140					145						150		
Ala	Asp	Leu	Val	Arg	Gln	Ala	Glu	Ser	Leu	Leu	Gln	Glu	Gln	Leu
	155					160						165		
Val	Thr	Gln	Gly	Glu	Gly	Gly	Asp	Pro	Ala	Gln	Leu	Leu	Glu	
	170					175						180		
Ile	Leu	Cys	Ser	Gln	Leu	Cys	Pro	His	Gly	Ala	Gln	Ala	Leu	Ala
	185					190						195		
Leu	Gly	Arg	Glu	Phe	Cys	Gln	Arg	Lys	Ser	Pro	Gly	Ala	Val	Arg
	200					205						210		
Ala	Leu	Leu	Pro	Glu	Glu	Thr	Pro	Ala	Ala	Val	Leu	Ser	Ser	Ala
	215					220						225		
Glu	Asn	Ile	Ala	Val	Gly	Leu	Ala	Thr	Glu	Lys	Ala	Cys	Ala	Trp
	230					235						240		
Leu	Ser	Ala	Asn	Ile	Thr	Ala	Leu	Ile	Arg	Arg	Glu	Val	Lys	Ala
	245					250						255		
Ala	Val	Ser	Arg	Thr	Leu	Arg	Ala	Gln	Gly	Pro	Glu	Pro	Ala	Ala
	260					265						270		
Arg	Gly	Glu	Arg	Arg	Gly	Cys	Ser	Arg	Ala					
	275					280								

<210> 55
<211> 2401
<212> DNA
<213> Homo sapiens

<400> 55
tcccttgaca ggtctggtgg ctgggtcggg gtctactgaa ggctgtctt 50
atcaggaaac tgaagactct ctgcgtttgc cacagcagtt cctgcagctt 100
ccttgaggtg tgaacccaca tccctgcccc cagggccacc tgcaaggacgc 150
cgacacacctac ccctcagcag acgcccggaga gaaaatgagta gcaacaaaga 200
gcagcggtca gcagtgttcg tgatcccttt tgccctcatc accatcctca 250
tcctctacag ctccaacagt gccaatgagg tcttccattt cggctccctg 300
cggggccgta gccgcccggacc tgtcaacctc aagaagtggaa gcatcaactga 350
cggctatgtc cccattctcg gcaacaagac actgccctct cggtgccacc 400
agtgtgtgat tgtcagcagc tccagccacc tgctggcac caagctggc 450
cctgagatcg agcgggctga gtgtacaatc cgcatgaatg atgcacccac 500
caactggctac tcagctgatg tggcaacaa gaccacctac cgcgtcgtgg 550
cccattccag tgtgttcccg tgcgtgagga ggccccagga gtttgtcaac 600
cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650
gaagccccag ggcagcctcg tgcgtgtgat ccagcgagcg ggctgggtgt 700
tccccaaacat ggaagcatat gccgtctctc ccggccgcat gcgcaattt 750
gacgacctct tccggggta gacgggcaag gacagggaga agtctcattt 800
gtgggtgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850
accacgtgca tgtctatggc atggcccccc ccaactactg cagccagcgg 900
ccccgcctcc agcgcatgcc ctaccactac tacgagccca agggccgg 950
cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000
accgcttcat caccgagaaa agggctttct catcggtggc ccagctgtat 1050
ggcatcacct tctcccaccc ctcctggacc taggccaccc agcctgtggg 1100
acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150
ggaccatctt ctggccaatc aaggcttgct ggagtgtctc ccagccaatc 1200
agggccttga ggaggatgta tcctccagcc aatcagggcc tggggaatct 1250
gttggcgaat caggatttggagtttgc tggtaatca ggggtgtctt 1300

生物信息学实验

tcttgtgcag tcagggctcg cgcacagtca atcagggttag agggggatt 1350
tctgagtcaa tctgaggcta aggacatgtc ctttccatg aggcttggt 1400
tcagagcccc aggaatggac cccccaatca ctccccactc tgctggata 1450
atgggtcct gtcccaagga gctggaaact tggtgtgcc ccctcaattt 1500
ccagcaccag aaagagagat tgtgtgggg tagaagctgt ctggaggccc 1550
ggccagagaa tttgtgggt tgtggaggtt gtggggcgg tggggaggc 1600
ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagacctg 1650
gacaaaccct tccccctctc tgggcaccct tctgcccaca ccagttcca 1700
gtcggagtc tgagaccctt tccacccccc ctacaagtgc ctcgggtct 1750
gtcctcccg tctggaccct cccagccact atcccttgct ggaaggctca 1800
gctcttggg gggctctggg tgacctcccc acctcctgga aaactttagg 1850
gtattttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900
acaaaaacctt aagctgtttt cttagccct cagccagctg ccattagctt 1950
ggctcttaaa gggccaggcc tcctttctg ccctctagca gggaggtttt 2000
ccaactgttg gaggcgcctt tggggctgcc ccttgcgtg gagtcactgg 2050
gggcttccga gggctccct cgaccctctg tcgtcctggg atggctgtcg 2100
ggagctgtat cacctgggtt ctgtccctg gctctgtatc aggacttta 2150
ttaaagctgg gcctcagtgg ggtgtgttg ttcctgctc ttctggagcc 2200
tggaaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250
gaggaggcca gcagctagcc attgcacact ggggtgatgg gtggggcgg 2300
tgactgcccc agacttggtt ttgtaatgtat ttgtacagga ataaacacac 2350
ctacgctccg gaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2400
a 2401

<210> 56
<211> 299
<212> PRT
<213> Homo sapiens

<400> 56
Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile Leu
1 5 10 15
Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala
20 25 30

Asn	Glu	Val	Phe	His	Tyr	Gly	Ser	Leu	Arg	Gly	Arg	Ser	Arg	Arg
				35				40						45
Pro	Val	Asn	Leu	Lys	Lys	Trp	Ser	Ile	Thr	Asp	Gly	Tyr	Val	Pro
				50				55						60
Ile	Leu	Gly	Asn	Lys	Thr	Leu	Pro	Ser	Arg	Cys	His	Gln	Cys	Val
				65				70						75
Ile	Val	Ser	Ser	Ser	Ser	His	Leu	Leu	Gly	Thr	Lys	Leu	Gly	Pro
				80				85						90
Glu	Ile	Glu	Arg	Ala	Glu	Cys	Thr	Ile	Arg	Met	Asn	Asp	Ala	Pro
				95				100						105
Thr	Thr	Gly	Tyr	Ser	Ala	Asp	Val	Gly	Asn	Lys	Thr	Thr	Tyr	Arg
				110				115						120
Val	Val	Ala	His	Ser	Ser	Val	Phe	Arg	Val	Leu	Arg	Arg	Pro	Gln
				125				130						135
Glu	Phe	Val	Asn	Arg	Thr	Pro	Glu	Thr	Val	Phe	Ile	Phe	Trp	Gly
				140				145						150
Pro	Pro	Ser	Lys	Met	Gln	Lys	Pro	Gln	Gly	Ser	Leu	Val	Arg	Val
				155				160						165
Ile	Gln	Arg	Ala	Gly	Leu	Val	Phe	Pro	Asn	Met	Glu	Ala	Tyr	Ala
				170				175						180
Val	Ser	Pro	Gly	Arg	Met	Arg	Gln	Phe	Asp	Asp	Leu	Phe	Arg	Gly
				185				190						195
Glu	Thr	Gly	Lys	Asp	Arg	Glu	Lys	Ser	His	Ser	Trp	Leu	Ser	Thr
				200				205						210
Gly	Trp	Phe	Thr	Met	Val	Ile	Ala	Val	Glu	Leu	Cys	Asp	His	Val
				215				220						225
His	Val	Tyr	Gly	Met	Val	Pro	Pro	Asn	Tyr	Cys	Ser	Gln	Arg	Pro
				230				235						240
Arg	Leu	Gln	Arg	Met	Pro	Tyr	His	Tyr	Tyr	Glu	Pro	Lys	Gly	Pro
				245				250						255
Asp	Glu	Cys	Val	Thr	Tyr	Ile	Gln	Asn	Glu	His	Ser	Arg	Lys	Gly
				260				265						270
Asn	His	His	Arg	Phe	Ile	Thr	Glu	Lys	Arg	Val	Phe	Ser	Ser	Trp
				275				280						285
Ala	Gln	Leu	Tyr	Gly	Ile	Thr	Phe	Ser	His	Pro	Ser	Trp	Thr	
				290				295						

<210> 57
<211> 4277
<212> DNA
<213> Homo sapiens

<400> 57
gtttctcata gttggcgctct tctaaaggaa aaacactaaa atgaggaact 50
cagcggaccg ggagcgacgc agcttgggg aagcatccct agctgttggc 100
gcagaggggc gaggctgaag ccgagtggcc cgaggtgtct gaggggctgg 150
ggcaaaggta aagagtttc agaacaagct tcctggaacc catgaccat 200
gaagtcttgt cgacatttat accgtcttag ggttagcagct cgaaactaga 250
agaagtggag tggccagg gacggcagta tctcttggt tgaccctggc 300
ggcctatggg acgttggctt cagacctttg tgatacacca tgctgcgtgg 350
gacgatgacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400
tcctcctagc cacagcaggc tgcttgctg acttgaacga ggtccctcag 450
gtcaccgtcc agcctgcgtc caccgtccag aagcccggag gcactgtgat 500
cttgggctgc gtggtggAAC ctccaaggat gaatgtaacc tggcgcctga 550
atggaaagga gctgaatggc tcggatgatg ctctgggtgt cctcatcacc 600
cacgggaccc tcgtcatcac tgcccttaac aaccacactg tggacggta 650
ccagtgtgtg gcccgatgc ctgcggggc tgtggccagc gtgccagcca 700
ctgtgacact agccaatctc caggacttca agtttagatgt gcagcacgtg 750
attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800
gagccacccc aaagcccagg tccggtagag cgtcaaacaa gagtggtgg 850
aggcctccag aggttaactac ctgatcatgc cctcaggaa cctccagatt 900
gtgaatgccca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950
cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000
tgcggcgtc caccgctgag gctggccga tcatctaccc cccagaggcc 1050
caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100
cagtggaaatc ccacccac gggtcacctg ggccaaggat gggtccagtg 1150
tcaccggcta caacaagacg cgcttcgtc tgagcaacct cctcatcgac 1200
accaccagcg aggaggactc aggacacctac cgctgcatgg ccgacaatgg 1250
ggttggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300
aacccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350
cagagtggcca agcttacctg tgaggtgcgt gggAACCCCC cgcctccgt 1400
gctgtggctg aggaatgtc tgccctcat ctccagccag cgccctccggc 1450

生物多样性

tctccgcag ggccctgcgc gtgctcagca tggggcctga ggacgaaggc 1500
gtctaccagt gcatggccga gaacgagggtt gggagcgccc atgccgtagt 1550
ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600
ctgagctggc tactggcaca cctcctgtat caccctcaa actcggcaac 1650
cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700
agtgggcct gcttccccga agtgtccagg agagaagggg caggggctc 1750
ccgcccaggc tcccatcatc ctcagctcgc cccgcacctc caagacagac 1800
tcatatgaac tggtgtggcg gcctcgcat gagggcagtg gccggcgcc 1850
aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900
acgattggac catctctggc attccagcca accagcacccg cctgaccctc 1950
accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000
ctgtgcggga gagggccaga cagccatggt cacctccga actggacggc 2050
ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100
gaccctggag ccagtccccaa gagcagcagc cagccagacc acggccgcct 2150
ctccccccca gaagctcccg acaggcccac catctccacg gcctccgaga 2200
cctcagtgtta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250
cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300
tctggccacc agcgccatcc ccccatcgcg gctgtccgtg gagatcacgg 2350
gcctagagaa aggcacctcc tacaagttc gagtccgggc tctgaacatg 2400
ctgggggaga gcgagcccg cgccccctct cggccctacg tgggtcgaaa 2450
ctacagcggt cgcgtgtacg agaggcccgt ggcaggtcct tatatcacct 2500
tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550
ccagcaagta acaacaacac cccaatccat ggctttata tctattatcg 2600
acccacagac agtgacaatg atagtgacta caagaaggat atggtggaaag 2650
gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700
gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750
cgtgatgatc tgtgagacca aagctcgaa gtcttctggc cagcctggtc 2800
gactgccacc cccaaactctg gccccaccac agccgcccct tcctgaaacc 2850
atagagcgac cggtgggcac tggggccatg gtggctcgct ccagcgcacct 2900

gccttatctg attgtcgaaa tcgtcctggg ctccatcgaa ctcatacatcg 2950
tcacccatccc ccccttctgc ttgtggaggg cctggctaa gcaaaaaacat 3000
acaacagacc tgggtttcc tcgaagtgcc cttccacccct cctgcccgtaa 3050
tactatggtg ccattgggag gactcccagg ccaccagggcc agtggacagc 3100
cctacccatcg tggcatcagt ggacgggcct gtgctaattgg gatccacatg 3150
aatagggct gccccctcgcc tgcaatggc tacccggca tgaagccccaa 3200
gcagcactgc ccaggcgagc ttcagcagca gagtgacacc agcagcctgc 3250
tgaggcagac ccatcttggc aatggatatg accccccaaag tcaccagatc 3300
acgaggggtc ccaagtcttag cccggacgag ggcttttct tatacacact 3350
gccccgacac tccactcacc agctgctgca gccccatcac gactgctgcc 3400
aacgccagga gcagcctgct gctgtggcc agtcaggggt gaggagagcc 3450
cccgacagtc ctgtcctgga agcagtgtgg gaccctccat ttcactcagg 3500
gccccatgc tgcttggcc ttgtgccagt tgaagaggtg gacagtccctg 3550
actcctgccca agtgagtgga ggagactgggt gtccccagca ccccgtaggg 3600
gcctacgtac gacaggaacc tggaatgcag ctctccccgg ggccactgggt 3650
gcgtgtgtct tttgaaacac cacctctcac aatttagca gaagctgata 3700
tcccagaaag actatatatt gtttttttttaaaaaaaaaa agaagaaaaaa 3750
agagacagag aaaattggta ttttatttttct tattatagcc atatttatat 3800
atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850
taaggagtcc taccctgttga ggttggagag ggaaaataaa gaagctgcc 3900
cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950
ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggccac 4000
agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050
tgagggaaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100
atggctggat ccggtgctac gggaaacatt ttccctaagat gcccattgaga 4150
acagaccaag atgtgtacag cactatgagc attaaaaaaac cttccagaat 4200
caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250
aataaatgtt tagtcttccc tgtaaaa 4277

<210> 58
<211> 1115

<212> PRT

<213> Homo sapiens

<400> 58

Met	Leu	Arg	Gly	Thr	Met	Thr	Ala	Trp	Arg	Gly	Met	Arg	Pro	Glu
1				5					10				15	
Val	Thr	Leu	Ala	Cys	Leu	Leu	Leu	Ala	Thr	Ala	Gly	Cys	Phe	Ala
				20					25				30	
Asp	Leu	Asn	Glu	Val	Pro	Gln	Val	Thr	Val	Gln	Pro	Ala	Ser	Thr
					35				40				45	
Val	Gln	Lys	Pro	Gly	Gly	Thr	Val	Ile	Leu	Gly	Cys	Val	Val	Glu
				50					55				60	
Pro	Pro	Arg	Met	Asn	Val	Thr	Trp	Arg	Leu	Asn	Gly	Lys	Glu	Leu
					65				70				75	
Asn	Gly	Ser	Asp	Asp	Ala	Leu	Gly	Val	Leu	Ile	Thr	His	Gly	Thr
					80				85				90	
Leu	Val	Ile	Thr	Ala	Leu	Asn	Asn	His	Thr	Val	Gly	Arg	Tyr	Gln
					95				100				105	
Cys	Val	Ala	Arg	Met	Pro	Ala	Gly	Ala	Val	Ala	Ser	Val	Pro	Ala
					110				115				120	
Thr	Val	Thr	Leu	Ala	Asn	Leu	Gln	Asp	Phe	Lys	Leu	Asp	Val	Gln
					125				130				135	
His	Val	Ile	Glu	Val	Asp	Glu	Gly	Asn	Thr	Ala	Val	Ile	Ala	Cys
					140				145				150	
His	Leu	Pro	Glu	Ser	His	Pro	Lys	Ala	Gln	Val	Arg	Tyr	Ser	Val
					155				160				165	
Lys	Gln	Glu	Trp	Leu	Glu	Ala	Ser	Arg	Gly	Asn	Tyr	Leu	Ile	Met
					170				175				180	
Pro	Ser	Gly	Asn	Leu	Gln	Ile	Val	Asn	Ala	Ser	Gln	Glu	Asp	Glu
					185				190				195	
Gly	Met	Tyr	Lys	Cys	Ala	Ala	Tyr	Asn	Pro	Val	Thr	Gln	Glu	Val
					200				205				210	
Lys	Thr	Ser	Gly	Ser	Ser	Asp	Arg	Leu	Arg	Val	Arg	Arg	Ser	Thr
					215				220				225	
Ala	Glu	Ala	Ala	Arg	Ile	Ile	Tyr	Pro	Pro	Glu	Ala	Gln	Thr	Ile
					230				235				240	
Ile	Val	Thr	Lys	Gly	Gln	Ser	Leu	Ile	Leu	Glu	Cys	Val	Ala	Ser
					245				250				255	
Gly	Ile	Pro	Pro	Pro	Arg	Val	Thr	Trp	Ala	Lys	Asp	Gly	Ser	Ser
					260				265				270	

Val Thr Gly Tyr Asn Lys Thr Arg Phe Leu Leu Ser Asn Leu Leu
 275 280 285
 Ile Asp Thr Thr Ser Glu Glu Asp Ser Gly Thr Tyr Arg Cys Met
 290 295 300
 Ala Asp Asn Gly Val Gly Gln Pro Gly Ala Ala Val Ile Leu Tyr
 305 310 315
 Asn Val Gln Val Phe Glu Pro Pro Glu Val Thr Met Glu Leu Ser
 320 325 330
 Gln Leu Val Ile Pro Trp Gly Gln Ser Ala Lys Leu Thr Cys Glu
 335 340 345
 Val Arg Gly Asn Pro Pro Pro Ser Val Leu Trp Leu Arg Asn Ala
 350 355 360
 Val Pro Leu Ile Ser Ser Gln Arg Leu Arg Leu Ser Arg Arg Ala
 365 370 375
 Leu Arg Val Leu Ser Met Gly Pro Glu Asp Glu Gly Val Tyr Gln
 380 385 390
 Cys Met Ala Glu Asn Glu Val Gly Ser Ala His Ala Val Val Gln
 395 400 405
 Leu Arg Thr Ser Arg Pro Ser Ile Thr Pro Arg Leu Trp Gln Asp
 410 415 420
 Ala Glu Leu Ala Thr Gly Thr Pro Pro Val Ser Pro Ser Lys Leu
 425 430 435
 Gly Asn Pro Glu Gln Met Leu Arg Gly Gln Pro Ala Leu Pro Arg
 440 445 450
 Pro Pro Thr Ser Val Gly Pro Ala Ser Pro Lys Cys Pro Gly Glu
 455 460 465
 Lys Gly Gln Gly Ala Pro Ala Glu Ala Pro Ile Ile Leu Ser Ser
 470 475 480
 Pro Arg Thr Ser Lys Thr Asp Ser Tyr Glu Leu Val Trp Arg Pro
 485 490 495
 Arg His Glu Gly Ser Gly Arg Ala Pro Ile Leu Tyr Tyr Val Val
 500 505 510
 Lys His Arg Lys Gln Val Thr Asn Ser Ser Asp Asp Trp Thr Ile
 515 520 525
 Ser Gly Ile Pro Ala Asn Gln His Arg Leu Thr Leu Thr Arg Leu
 530 535 540
 Asp Pro Gly Ser Leu Tyr Glu Val Glu Met Ala Ala Tyr Asn Cys
 545 550 555
 Ala Gly Glu Gly Gln Thr Ala Met Val Thr Phe Arg Thr Gly Arg

560	565	570
Arg Pro Lys Pro Glu Ile Met Ala Ser Lys	Glu Gln Gln Ile Gln	
575	580	585
Arg Asp Asp Pro Gly Ala Ser Pro Gln Ser Ser Ser Gln Pro Asp		
590	595	600
His Gly Arg Leu Ser Pro Pro Glu Ala Pro Asp Arg Pro Thr Ile		
605	610	615
Ser Thr Ala Ser Glu Thr Ser Val Tyr Val Thr Trp Ile Pro Arg		
620	625	630
Gly Asn Gly Gly Phe Pro Ile Gln Ser Phe Arg Val Glu Tyr Lys		
635	640	645
Lys Leu Lys Lys Val Gly Asp Trp Ile Leu Ala Thr Ser Ala Ile		
650	655	660
Pro Pro Ser Arg Leu Ser Val Glu Ile Thr Gly Leu Glu Lys Gly		
665	670	675
Thr Ser Tyr Lys Phe Arg Val Arg Ala Leu Asn Met Leu Gly Glu		
680	685	690
Ser Glu Pro Ser Ala Pro Ser Arg Pro Tyr Val Val Ser Gly Tyr		
695	700	705
Ser Gly Arg Val Tyr Glu Arg Pro Val Ala Gly Pro Tyr Ile Thr		
710	715	720
Phe Thr Asp Ala Val Asn Glu Thr Thr Ile Met Leu Lys Trp Met		
725	730	735
Tyr Ile Pro Ala Ser Asn Asn Asn Thr Pro Ile His Gly Phe Tyr		
740	745	750
Ile Tyr Tyr Arg Pro Thr Asp Ser Asp Asn Asp Ser Asp Tyr Lys		
755	760	765
Lys Asp Met Val Glu Gly Asp Lys Tyr Trp His Ser Ile Ser His		
770	775	780
Leu Gln Pro Glu Thr Ser Tyr Asp Ile Lys Met Gln Cys Phe Asn		
785	790	795
Glu Gly Gly Glu Ser Glu Phe Ser Asn Val Met Ile Cys Glu Thr		
800	805	810
Lys Ala Arg Lys Ser Ser Gly Gln Pro Gly Arg Leu Pro Pro Pro		
815	820	825
Thr Leu Ala Pro Pro Gln Pro Pro Leu Pro Glu Thr Ile Glu Arg		
830	835	840
Pro Val Gly Thr Gly Ala Met Val Ala Arg Ser Ser Asp Leu Pro		
845	850	855

Tyr Leu Ile Val Gly Val Val Leu Gly Ser Ile Val Leu Ile Ile
 860 865 870
 Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gln
 875 880 885
 Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro
 890 895 900
 Ser Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His
 905 910 915
 Gln Ala Ser Gly Gln Pro Tyr Leu Ser Gly Ile Ser Gly Arg Ala
 920 925 930
 Cys Ala Asn Gly Ile His Met Asn Arg Gly Cys Pro Ser Ala Ala
 935 940 945
 Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu
 950 955 960
 Leu Gln Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His
 965 970 975
 Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly
 980 985 990
 Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro
 995 1000 1005
 Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys
 1010 1015 1020
 Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg
 1025 1030 1035
 Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro
 1040 1045 1050
 Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu
 1055 1060 1065
 Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp
 1070 1075 1080
 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly
 1085 1090 1095
 Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr
 1100 1105 1110
 Pro Pro Leu Thr Ile
 1115

<210> 59
 <211> 25
 <212> DNA
 <213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 59
gggaaacaca gcagtcattg cctgc 25

<210> 60
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.

<400> 60
gcacacgtag cctgtcgctg gagc 24

<210> 61
<211> 42
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-42
<223> Synthetic construct.

<400> 61
caccccaaag cccaggtccg gtacagcgta aaacaagagt gg 42

<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 678
<223> unknown base

<400> 62
cgggaggctg ggtcgcatg atccggaccc cattgtcgcc ctctgccc 50
cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100
cacgggccgc gagggttccc ggcgcgtc ag ccggcggtat ctgcggcg 150
tgctgctcct gctactgctg ctgctgctgc ggcagccgt aaccgcgcg 200
gagaccacgc cgggcgc 250
cctcttacc accgcgggtg tccccagcgc cctca 300
ctacgccagg cacccccaaa accctggacc ttccgggtcg cgccgaggcc 350

生物信息学实验

ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400
cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450
tcagccatgg tcagaccaggc ctggacaggc ttagagacgg cctcgtgggt 500
gcccgaggctt ggtcagccctc cgtctcatgc cagtcccagg accagactgc 550
cgtgcgcctc gccctggagc agattgaccc tattcacccgc atgtgtgcct 600
cctactctga actcgagctt gtgacacctag ctgaaggctt gaacagctct 650
caaaaagctgg cctgcctcat tggcgtgnag ggtggtaact cactggacag 700
cagcctctct gtgctgcgca gtttctatgt gctgggggtg cgctacactga 750
caattacattt cacctgcagt acaccatggg cagagagttc caccaagttc 800
agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850
agtagtagag gagttgaacc gcctgggcat gatgatacat ttgtcctatg 900
catcgacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950
atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttaatgt 1000
tcccgtatgt atcctgcagc ttctgaagaa cgggtggcatc gtgatggta 1050
caattgtccat ggggtgtctg cagtgcacc tgcttgctaa cgtgtccact 1100
gtggcagatc actttgacca catcaggca gtcattggat ctgagttcat 1150
cgggatttgtt ggaaattatg acgggactgg ccggttccct cagggctgg 1200
aggatgtgtc cacataccca gtcctgatag aggagttgtc gagtcgtasc 1250
tggagcgagg aagagcttca aggtgtcatt cgtggaaacc tgctgcgggt 1300
cttcagacaa gtggaaaagg tgagagagga gagcaggcg cagagccccg 1350
tggaggctga gtttccatat gggcaactga gcacatcctg ccactccac 1400
ctcgtgcctc agaatggaca ccaggtact catctggagg tgaccaagca 1450
gccaaccaat cgggtccct ggaggtcctc aaatgcctcc ccatacctt 1500
ttccaggcct tgtggctgtc gccaccatcc caaccttac ccagtggctc 1550
tgctgacaca gtcggtcccc gcagaggtca ctgtggaaaa gcctcacaaa 1600
gccccctctc ctatgttca cacaaggata tgctgagaat aaacatgtta 1650
cacatggaaa a 1661

<210> 63
<211> 487
<212> PRT
<213> Homo sapiens

<220>
 <221> unsure
 <222> 196, 386
 <223> unknown amino acid

<400> 63
 Met Gln Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg
 1 5 10 15

Tyr Leu Arg Arg Leu Leu Leu Leu Leu Leu Leu Leu Leu Arg
 20 25 30

Gln Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala
 35 40 45

Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val
 50 55 60

Pro Ser Ala Leu Thr Thr Pro Gly Leu Thr Thr Pro Gly Thr Pro
 65 70 75

Lys Thr Leu Asp Leu Arg Gly Arg Ala Gln Ala Leu Met Arg Ser
 80 85 90

Phe Pro Leu Val Asp Gly His Asn Asp Leu Pro Gln Val Leu Arg
 95 100 105

Gln Arg Tyr Lys Asn Val Leu Gln Asp Val Asn Leu Arg Asn Phe
 110 115 120

Ser His Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val
 125 130 135

Gly Ala Gln Phe Trp Ser Ala Ser Val Ser Cys Gln Ser Gln Asp
 140 145 150

Gln Thr Ala Val Arg Leu Ala Leu Glu Gln Ile Asp Leu Ile His
 155 160 165

Arg Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala
 170 175 180

Glu Gly Leu Asn Ser Ser Gln Lys Leu Ala Cys Leu Ile Gly Val
 185 190 195

Xaa Gly Gly His Ser Leu Asp Ser Ser Leu Ser Val Leu Arg Ser
 200 205 210

Phe Tyr Val Leu Gly Val Arg Tyr Leu Thr Leu Thr Phe Thr Cys
 215 220 225

Ser Thr Pro Trp Ala Glu Ser Ser Thr Lys Phe Arg His His Met
 230 235 240

Tyr Thr Asn Val Ser Gly Leu Thr Ser Phe Gly Glu Lys Val Val
 245 250 255

Glu Glu Leu Asn Arg Leu Gly Met Met Ile Asp Leu Ser Tyr Ala

	260	265	270
Ser Asp Thr Leu Ile Arg Arg Val Leu Glu Val Ser Gln Ala Pro			
275	280	285	
Val Ile Phe Ser His Ser Ala Ala Arg Ala Val Cys Asp Asn Leu			
290	295	300	
Leu Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Asn Gly Gly			
305	310	315	
Ile Val Met Val Thr Leu Ser Met Gly Val Leu Gln Cys Asn Leu			
320	325	330	
Leu Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Arg			
335	340	345	
Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp			
350	355	360	
Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr			
365	370	375	
Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu			
380	385	390	
Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg			
395	400	405	
Gln Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val			
410	415	420	
Glu Ala Glu Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser			
425	430	435	
His Leu Val Pro Gln Asn Gly His Gln Ala Thr His Leu Glu Val			
440	445	450	
Thr Lys Gln Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala			
455	460	465	
Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro			
470	475	480	
Thr Phe Thr Gln Trp Leu Cys			
485			

<210> 64
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 64

ccttcacctg cagtacacca tggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 65
gtcacacaca gctctggcag ctgag 25

<210> 66
<211> 47
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.

<400> 66
ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47

<210> 67
<211> 1564
<212> DNA
<213> Homo sapiens

<400> 67
tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaaggctct 50
aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggcttgct 100
ggcccgacaa gcctgataag catgaagctc ttatcttgg tggctgttgt 150
cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200
tccggtgcaa atgcatctgt ccacccctata gaaacatcag tggcacatt 250
tacaaccaga atgtatccca gaaggactgc aactgcctgc acgtggtgga 300
gcccatgccca gtgcctggcc atgacgtgga ggcctactgc ctgctgtgcg 350
agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400
atctacctgt ccgtggtggttgc tgccctgttg ctctacatgg ctttcctgat 450
gctggtgac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500
acaatgagga ggagaatgag gatgctcgct ctatggcagc agctgctgca 550
tccctcgcccc gaccccgagc aaacacagtc ctggagcgtg tggaaagggtgc 600

ccagcagcgg tggaaagctgc aggtgcagga gcagcggaaag acagtcttcg 650
atcggcacaa gatgctcagc tagatgggct ggtgtggttg ggtcaaggcc 700
ccaacaccat ggctgccagc ttccaggctg gacaaagcag gggctactt 750
ctcccttccc tcggttccag tcttccctt aaaaggctgt ggcattttc 800
ctccttctcc ctaactttag aaatgttgta cttggctatt ttgatttaggg 850
aagagggatg tggtctctga tctctgttgt cttcttgggt ctgggggtt 900
gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950
ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccgccttc 1000
cagctctgag tcttggaaat gttgttaccc ttggaagata aagctgggtc 1050
ttcaggaact cagtgtctgg gagaaagca tggccagca ttcatgt 1100
tttcctttct gcagtggttc ttatcaccac ctccctccca gccccggcgc 1150
ctcagccccca gccccagctc cagccctgag gacagctctg atggagagc 1200
tgggccccct gagcccactg ggtcttcagg gtgcactgga agctgggtt 1250
cgctgtcccc tgtgcacttc tcgcactggg gcatggagtgc cccatgcata 1300
ctctgctgcc ggtcccctca cctgcacttg aggggtctgg gcagtcctc 1350
ctctccccag tgtccacagt cactgagcca gacggtcggt tggAACATGA 1400
gactcgaggc tgagcgtgga tctgaacacc acagccccctg tactgggtt 1450
gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500
tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cataaattt 1550
ttttattttct ctca 1564

<210> 68
<211> 183
<212> PRT
<213> Homo sapiens

<400> 68
Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val
1 5 10 15
Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys
20 25 30
Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn
35 40 45
Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu
50 55 60

Pro	Met	Pro	Val	Pro	Gly	His	Asp	Val	Glu	Ala	Tyr	Cys	Leu	Leu
				65					70					75
Cys	Glu	Cys	Arg	Tyr	Glu	Glu	Arg	Ser	Thr	Thr	Thr	Ile	Lys	Val
				80					85					90
Ile	Ile	Val	Ile	Tyr	Leu	Ser	Val	Val	Gly	Ala	Leu	Leu	Leu	Tyr
				95					100					105
Met	Ala	Phe	Leu	Met	Leu	Val	Asp	Pro	Leu	Ile	Arg	Lys	Pro	Asp
				110					115					120
Ala	Tyr	Thr	Glu	Gln	Leu	His	Asn	Glu	Glu	Glu	Asn	Glu	Asp	Ala
				125					130					135
Arg	Ser	Met	Ala	Ala	Ala	Ala	Ser	Leu	Gly	Gly	Pro	Arg	Ala	
				140					145					150
Asn	Thr	Val	Leu	Glu	Arg	Val	Glu	Gly	Ala	Gln	Gln	Arg	Trp	Lys
				155					160					165
Leu	Gln	Val	Gln	Glu	Gln	Arg	Lys	Thr	Val	Phe	Asp	Arg	His	Lys
				170					175					180
Met	Leu	Ser												

<210> 69
<211> 3170
<212> DNA
<213> Homo sapiens

<400> 69
agcgggtctc gcttggggttc cgctaatttc tgtcctgagg cgtgagactg 50
agttcatagg gtcctgggtc cccgaaccag gaagggttga ggaaacacaa 100
tctgcaagcc cccgcgaccc aagtgagggg ccccgtgttg gggtcctccc 150
tcccctttgc a tccccacccc tccgggcttt gcgtcttcct ggggacccccc 200
tcgcggggag atggccgcgt tgatgcggag caaggattcg tcctgctgcc 250
tgctcctact ggcgcgggtg ctgatgggtgg agagctcaca gatcggcagt 300
tcgcggggcca aactcaactc catcaagtcc tctctggcgc gggagacgcc 350
tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400
gcggcagtaa gaaggggcaaa aacctggggc aggctaccc ttgttagcagt 450
gataaggagt gtgaagttgg gaggtattgc cacagtcccc accaaggatc 500
atcggcctgc atggtgtgtc ggagaaaaaa gaagcgcgtgc caccgagatg 550
gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600
actgaaagca tcttaacccc tcacatcccg gctctggatg gtactcggca 650

cagagatcg aaccacggc attactcaa ccatgactt ggtatggcaga 700
atcttaggaag accacacact aagatgtcac atataaaagg gcatgaagga 750
gaccctgcc tacgatcatc agactgcatt gaagggttt gctgtgctcg 800
tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850
gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccagcgt 900
tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950
ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000
ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcatatag 1050
catggtgaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100
gtgataagaa tatagatgtat cacaaggagg gagaaagaaa acatgaactg 1150
aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200
caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250
agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300
aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350
ttatacaaataa aacctacatg ccagatttctt attcaacgtt agagtttaac 1400
aaaatactcc tagaataact ttttatacaa taggttctaa aaataaaatt 1450
gctaaacaag aaatgaaaac atggaggcatt gttaaatttac aacagaaaat 1500
tacctttga tttgtacac tacttctgct gttcaatcaa gagtcttgg 1550
agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600
cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650
ccacaaatac tttttttca aaatttttagt tttacctgta attaataaga 1700
actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750
atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800
aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850
ttcacagatg gcaaaaaat ttaaagatgt ccaatatatg tggaaaaga 1900
gctaacagag agatcattat ttcttaaaga ttggccataa cctatatttt 1950
gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000
agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050
aaaactttt cgtttggca gggtttggca acacatagat catatgtctg 2100

aggcacaagt tggctgttca tcttgaaac cagggatgc acagtctaaa 2150
tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200
tcagtgtgag gtcctgtgtc cgtaatcc tcaaattatt tattttatag 2250
tgctgagatc ctcaaataat ctcaatttca ggaggttca caaatgtac 2300
tcctgaagta gacagagtag tgaggttca ttgccctcta taagcttctg 2350
actagccaat ggcatcatcc aattttcttc ccaaaccctt gcagcatctg 2400
ctttattgcc aaaggcttag tttcggtttt ctgcagccat tgcggtaaa 2450
aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500
accacagttt ctaaatttctt tgaaaccact ttactacttt ttttaactt 2550
aactcagttc taaatacttt gtctggagca caaaacaata aaaggttac 2600
ttatagtcgt gactttaaac tttttagac cacaattcac ttttagttt 2650
tctttactt aaatcccac tgcagtctca aatttaagtt ctccagtag 2700
agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750
tatttactaa gatgattaag acttacattt tctgcacagg tctgcaaaaa 2800
caaaaattat aaactagtcc atccaagaac caagtttgt ataaacaggt 2850
tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900
atataacaat tattatattt acaatttggt ttctgcaata ttttcttat 2950
gtccaccctt taaaaattta ttatttgaag taatttattt acaggaaatg 3000
ttaatgagat gtattttctt atagagatatt ttcttacaga aagcttgc 3050
gcagaatata ttgcagcta ttgactttgt aatttaggaa aaatgtataa 3100
taagataaaa tctattaaat ttttcctc taaaaactga aaaaaaaaaa 3150
aaaaaaaaaa aaaaaaaaaa 3170

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met	Ala	Ala	Leu	Met	Arg	Ser	Lys	Asp	Ser	Ser	Cys	Cys	Leu	Leu
1				5					10				15	
Leu	Leu	Ala	Ala	Val	Leu	Met	Val	Glu	Ser	Ser	Gln	Ile	Gly	Ser
				20				25				30		
Ser	Arg	Ala	Lys	Leu	Asn	Ser	Ile	Lys	Ser	Ser	Leu	Gly	Gly	Glu
				35				40				45		

Thr	Pro	Gly	Gln	Ala	Ala	Asn	Arg	Ser	Ala	Gly	Met	Tyr	Gln	Gly
				50					55				60	
Leu	Ala	Phe	Gly	Gly	Ser	Lys	Lys	Gly	Lys	Asn	Leu	Gly	Gln	Ala
				65					70				75	
Tyr	Pro	Cys	Ser	Ser	Asp	Lys	Glu	Cys	Glu	Val	Gly	Arg	Tyr	Cys
				80					85				90	
His	Ser	Pro	His	Gln	Gly	Ser	Ser	Ala	Cys	Met	Val	Cys	Arg	Arg
				95					100				105	
Lys	Lys	Lys	Arg	Cys	His	Arg	Asp	Gly	Met	Cys	Cys	Pro	Ser	Thr
				110					115				120	
Arg	Cys	Asn	Asn	Gly	Ile	Cys	Ile	Pro	Val	Thr	Glu	Ser	Ile	Leu
				125					130				135	
Thr	Pro	His	Ile	Pro	Ala	Leu	Asp	Gly	Thr	Arg	His	Arg	Asp	Arg
				140					145				150	
Asn	His	Gly	His	Tyr	Ser	Asn	His	Asp	Leu	Gly	Trp	Gln	Asn	Leu
				155					160				165	
Gly	Arg	Pro	His	Thr	Lys	Met	Ser	His	Ile	Lys	Gly	His	Glu	Gly
				170					175				180	
Asp	Pro	Cys	Leu	Arg	Ser	Ser	Asp	Cys	Ile	Glu	Gly	Phe	Cys	Cys
				185					190				195	
Ala	Arg	His	Phe	Trp	Thr	Lys	Ile	Cys	Lys	Pro	Val	Leu	His	Gln
				200					205				210	
Gly	Glu	Val	Cys	Thr	Lys	Gln	Arg	Lys	Lys	Gly	Ser	His	Gly	Leu
				215					220				225	
Glu	Ile	Phe	Gln	Arg	Cys	Asp	Cys	Ala	Lys	Gly	Leu	Ser	Cys	Lys
				230					235				240	
Val	Trp	Lys	Asp	Ala	Thr	Tyr	Ser	Ser	Lys	Ala	Arg	Leu	His	Val
				245					250				255	
Cys	Gln	Lys	Ile											

<210> 71
<211> 1809
<212> DNA
<213> Homo sapiens

<400> 71
tctcaatctg ctgacacctcgatccgcctg accttgtaat ccacacct 50
tggcctccca aagtgttggg attacaggcg tgagccaccg cgccccggcca 100
acatcacgtt tttaaaaatt gatttcttca aattcatggc aaatatttcc 150
cttccttta acttcttatg tcagaatgag gaaggatagc tgcattttatt 200

tagtcagttt tcattgcata gtaatatttt catgttagtat tttctaagtt 250
atattttagt aattcatatg ttttagatta taggaaaaaa cataacttgt 300
aaaatacttg atgtgtttta aagccttggg cagaaattct gtattgtga 350
ggatttggc ttttatcccc cttaaaagt catccgtcct tggctcagga 400
tttggagagc ttgcaccacc aaaaatggca aacatcacca gctccagat 450
tttggaccag ttgaaagctc cgagttggg ccagttacc accacccaa 500
gtacacagca gaatagtaca agtcacccta caactactac ttcttggac 550
ctcaagcccc caacatccca gtcctcagtc ctcagtcata ttgacttcaa 600
atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650
agcaccagag ccaggcagtc actgttcctc ctcctggttt ggagtcctt 700
ccttcccagg caaaacttcg agaatcaaca cctggagaca gtccctccac 750
tgtgaacaag ctttgcagc ttcccagcac gaccattgaa aatatctctg 800
tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850
atacccccaag cttaaagat cccagcttct gcagtggaaa tgcctggc 900
agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950
cagaacccctc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000
aatcagattc ccatcagctt gtattcgaag tcttaagtg agccttgaa 1050
tacatcttta tcaatgacca gtgcagtaca gaactccaca tatacaactt 1100
ccgtcattac ctccctgcagt ctgacaagct catcactgaa ttctgctagt 1150
ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200
cccataccaa agccctgtga gttcatcaga gtcagctcca ggaaccatca 1250
tgaatggaca tgggggtggc cgaagtcagc agacactaga cagtaagtat 1300
agcagcaagc tactcttgc tggctggc ccaaccaaac agaggaagag 1350
gatagctcac gtgatgtgaa aaacaccagt tggtaatgg ctcattcggt 1400
aaaaagcagc ccttttgctt ttttgggggg ggaccaggtg ttggctgtgg 1450
tgttatttgc aatgtcttcc acacagcaag aaggaggtgg tggctcata 1500
ttcttcgtcc ctaatcagac tgcaccacaa gtgcagcata cagtagcat 1550
tttaaaatgt ctggggccag gcgggggtggc tgatgccat aatccagtg 1600
cttqqqqqq ccaaqgcaqq cagattgccc aagctcagga gtttgagacc 1650

accctggca acatggtaa actctgttc tactaaaata cgaaaaacta 1700
gccgggtgtg gtggcggcgc gtgcctgtaa tcccagctac ttgggaggct 1750
gaggcacaag aatcgcttga gccagcttgg gctacaaagt gagactccgt 1800
ctgaaaaga 1809

<210> 72
<211> 363
<212> PRT
<213> Homo sapiens

<400> 72
Met Cys Phe Lys Ala Leu Gly Arg Asn Ser Val Leu Leu Arg Ile
1 5 10 15
Cys Ser Phe Ile Pro Leu Leu Lys Ser Ser Val Leu Gly Ser Gly
20 25 30
Phe Gly Glu Leu Ala Pro Pro Lys Met Ala Asn Ile Thr Ser Ser
35 40 45
Gln Ile Leu Asp Gln Leu Lys Ala Pro Ser Leu Gly Gln Phe Thr
50 55 60
Thr Thr Pro Ser Thr Gln Gln Asn Ser Thr Ser His Pro Thr Thr
65 70 75
Thr Thr Ser Trp Asp Leu Lys Pro Pro Thr Ser Gln Ser Ser Val
80 85 90
Leu Ser His Leu Asp Phe Lys Ser Gln Pro Glu Pro Ser Pro Val
95 100 105
Leu Ser Gln Leu Ser Gln Arg Gln Gln His Gln Ser Gln Ala Val
110 115 120
Thr Val Pro Pro Pro Gly Leu Glu Ser Phe Pro Ser Gln Ala Lys
125 130 135
Leu Arg Glu Ser Thr Pro Gly Asp Ser Pro Ser Thr Val Asn Lys
140 145 150
Leu Leu Gln Leu Pro Ser Thr Thr Ile Glu Asn Ile Ser Val Ser
155 160 165
Val His Gln Pro Gln Pro Lys His Ile Lys Leu Ala Lys Arg Arg
170 175 180
Ile Pro Pro Ala Ser Lys Ile Pro Ala Ser Ala Val Glu Met Pro
185 190 195
Gly Ser Ala Asp Val Thr Gly Leu Asn Val Gln Phe Gly Ala Leu
200 205 210
Glu Phe Gly Ser Glu Pro Ser Leu Ser Glu Phe Gly Ser Ala Pro
215 220 225

Ser Ser Glu Asn Ser Asn Gln Ile Pro Ile Ser Leu Tyr Ser Lys
230 235 240

Ser Leu Ser Glu Pro Leu Asn Thr Ser Leu Ser Met Thr Ser Ala
245 250 255

Val Gln Asn Ser Thr Tyr Thr Ser Val Ile Thr Ser Cys Ser
260 265 270

Leu Thr Ser Ser Ser Leu Asn Ser Ala Ser Pro Val Ala Met Ser
275 280 285

Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln
290 295 300

Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn
305 310 315

Gly His Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr
320 325 330

Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg
335 340 345

Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp
350 355 360

Leu Ile Arg

<210> 73
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.

<400> 73
aattcatggc aaatatttcc cttccc 26

<210> 74
<211> 22
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.

<400> 74
tggtaaactg gccccaaactc gg 22

<210> 75
<211> 50

<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-50
<223> Synthetic construct

<400> 75
ttaaagtcat ccgtccttgg ctcaggattt ggagagctt gaccaccaaa 50

<210> 76
<211> 1989
<212> DNA
<213> Homo sapiens

<400> 76
gccgagtggg acaaaggctg gggctggcg gggccatgg cgctgccatc 50
ccgaatcctg ctttgaaac ttgtgcttct gcagagctct gctgttctcc 100
tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150
caccatcact actgccacct ctacgagagc ctggccgtcc gcctggaggt 200
caccgacggc cccccggcca ccccccgccta ctgggacggc gagaaggagg 250
tgctggcggt ggccgcggc gcacccgcgc ttctgacctg cgtgaaccgc 300
gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350
ctgggaccgg cagccgcccc gggtcccgca cgaccgcgcg gaccgcctgc 400
tggacctcta cgcgtcgggc gagcgcgcg cctacgggcc ccttttctg 450
cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500
actgcgtatc gagccgtgg aggtcgccga cgagggcacc tactcctgcc 550
acctgcacca ccattactgt ggcctgcacg aacgcccgcgt cttccacctg 600
acggctcgccg aaccccacgc ggagccgccc ccccgggct ctccggcaa 650
cggctccagc cacagcggcg ccccaggccc agaccccaca ctggcgcgcg 700
gccacaacgt catcaatgtc atcgccccg agagccgagc ccacttctc 750
cagcagctgg gctacgtgt ggccacgcgt ctgctttca tcctgctact 800
ggtaactgtc ctctggccg cccgcaggcg ccgcggaggc tacgaatact 850
cggaccagaa gtcggaaag tcaaaggaa aggatgttaa cttggcggag 900
ttcgctgtgg ctgcaggaa ccagatgtt tacaggagtg aggacatcca 950
gcttagattac aaaaacaaca tcctgaagga gagggcggag ctggcccaca 1000
gccccctgcc tgccaagtagc atcgacctag acaaagggtt ccggaaggag 1050

aactgcaa at agggaggccc tgggctcctg gctggccag cagctgcacc 1100
tctccgtct gtgctcctcg gggcatctcc tcatgctccg gggctcaccc 1150
cccttccagc ggctggtccc gcttcctgg aatttggcct gggcgtatgc 1200
agaggccgccc tccacacccc tccccaggg gcttggtggc agcatagccc 1250
ccacccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300
ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350
ccgctggggg cctgaagaca ttccctggagg acactcccat cagaacctgg 1400
cagccccaaa actggggtca gcctcagggc aggagtccca ctccctccagg 1450
gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 1500
cagaacttgg cagccttgaa gttgggtca gcctcggcag gagtcccact 1550
cctcctgggg tgctgcctgc caccaagagc tcccccacct gtaccaccat 1600
gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650
gccagccctt gtcctctgt gttgctttgg gccacctgg gctgcacccc 1700
ctgcccttc tctgccccat ccctacccta gccttgctc cagccacctt 1750
gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800
actctgcctg ggctggagtc tagggctggg gctacatttgc ttctgtac 1850
tggctgagga caggggaggg agtgaagttg gtttgggtg gcctgtgttg 1900
ccactctcag caccccacat ttgcatctgc tggtgaccc gccaaccatca 1950
caataaaagtc cccatctgat ttttaaaaaa aaaaaaaaaa 1989

<210> 77
<211> 341
<212> PRT
<213> Homo sapiens

<400> 77
Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu
1 5 10 15
Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp
20 25 30
Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu
35 40 45
Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro
50 55 60
Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val
65 70 75

Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His
 80 90
 Val Trp Thr Asp Arg His Val Glu Glu Ala Gln Gln Val Val His
 95 100 105
 Trp Asp Arg Gln Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg
 110 115 120
 Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro
 125 130 135
 Leu Phe Leu Arg Asp Arg Val Ala Val Gly Ala Asp Ala Phe Glu
 140 145 150
 Arg Gly Asp Phe Ser Leu Arg Ile Glu Pro Leu Glu Val Ala Asp
 155 160 165
 Glu Gly Thr Tyr Ser Cys His Leu His His Tyr Cys Gly Leu
 170 175 180
 His Glu Arg Arg Val Phe His Leu Thr Val Ala Glu Pro His Ala
 185 190 195
 Glu Pro Pro Pro Arg Gly Ser Pro Gly Asn Gly Ser Ser His Ser
 200 205 210
 Gly Ala Pro Gly Pro Asp Pro Thr Leu Ala Arg Gly His Asn Val
 215 220 225
 Ile Asn Val Ile Val Pro Glu Ser Arg Ala His Phe Phe Gln Gln
 230 235 240
 Leu Gly Tyr Val Leu Ala Thr Leu Leu Leu Phe Ile Leu Leu Leu
 245 250 255
 Val Thr Val Leu Leu Ala Ala Arg Arg Arg Gly Gly Tyr Glu
 260 265 270
 Tyr Ser Asp Gln Lys Ser Gly Lys Ser Lys Gly Lys Asp Val Asn
 275 280 285
 Leu Ala Glu Phe Ala Val Ala Ala Gly Asp Gln Met Leu Tyr Arg
 290 295 300
 Ser Glu Asp Ile Gln Leu Asp Tyr Lys Asn Asn Ile Leu Lys Glu
 305 310 315
 Arg Ala Glu Leu Ala His Ser Pro Leu Pro Ala Lys Tyr Ile Asp
 320 325 330
 Leu Asp Lys Gly Phe Arg Lys Glu Asn Cys Lys
 335 340

<210> 78
 <211> 2243
 <212> DNA
 <213> Homo sapiens

<400> 78

cgccggaggc agcggcggcg tggcgacgq ggcacatggc cggtgtctca 50
gaggacgact ttcatcgacag ttcaaactcc acctacggaa ccacaaggcag 100
cagtctccga gctgaccagg aggactgct tgagaagctg ctggaccgcc 150
cgccccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200
atcttcttca gcctgggcat tggcagtcta ctgcccattga acttttttat 250
caactgccaag gagtaactgga tgttcaaact cccgcaactcc tccagcccg 300
ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctggagagc 350
taccttgccg ttgcctccac cgtgcctcc atgctgtgcc tggggccaa 400
cttcctgtttt gtcaacaggg ttgcagtcca catccgtgtc ctggcctcac 450
tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaagggtg 500
gacacttcct cctggaccgg tggttttttt gcggtcacca ttgtctgcat 550
ggtgatcctc agcgggtgcct ccactgtctt cagcagcagc atctacggca 600
tgaccggctc cttectatg aggaactccc aagcactgat atcaggagga 650
gccatggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700
atccagtatgt gtgaggaaca ggcgcctggc cttttcttg acggccacca 750
tcttcctcggt gctctgcattt ggactctacc tgctgtgtc caggctggag 800
tatgccaggt actacatgag gcctgttctt gcgccccatg tgtttctgg 850
tgaagaggag ctcccccagg actccctcag tgccccctcg gtggcctcca 900
gattcattga ttccccacaca cccctctcc gccccatcct gaagaagacg 950
gccagcctgg gcttctgtgt cacctacgtc ttcttcattca ccagcctcat 1000
ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050
caactgtggac caccaagttt ttcatcccccc tcactacctt cctcctgtac 1100
aactttgtgtg acctatgtgg ccggcagctc accgccttgg tccaggtgcc 1150
agggcccaac agcaaggcgc tcccagggtt cgtgtccctc cggacctgcc 1200
tcatccccctt ctgcgtgtc tgtaactacc agccccgcgt ccacctgaag 1250
actgtggtct tccagtcgca tgtgtacccc gcactcctca gctccctgtct 1300
ggggctcagc aacggctacc tcagcaccct ggccctcctc tacgggccta 1350
agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400
tatgtgtgtct tgggcttaac actgggctca gcctgctcta ccctcctgg 1450

gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500
tgaagatgag aagagagtgc aggagggctg gggccatgg agaaaggcc 1550
taaagttca cttggggaca gagagcagag cacactcggt cctcatccct 1600
ccaaagatgc cagttagcca cgtccatgcc cattccgtgc aaggcagata 1650
ttccagtcataa acacagaacttcctgag acagttgaag aagaaatagc 1700
acaaatcagg ggtactccct tcacagctga tggtaacat tccacccct 1750
ttcttagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800
gccagtgcca aaacccagcc atggcttgc tgcaacccctc cagctgcgc 1850
cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900
gaaggggtct ccctggaaatg gaagtcccct ggcattggta gtcctcaggc 1950
ccaagactca agtgtgcaca gaccctgtg ttctgcgggt gaacaactgc 2000
ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050
cattccagag ggaccagagg gcctccctgt gcaaggatc aagcatgtct 2100
ggcctgggtt ttcaaaaaaaaaa gaggatcct catgacctgg tggtctatgg 2150
cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200
gccattggtt caagggcgta ataaataactt gcgtattcaa aaa 2243

<210> 79
<211> 475
<212> PRT
<213> Homo sapiens

<400> 79
Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser
1 5 10 15
Thr Tyr Gly Thr Thr Ser Ser Leu Arg Ala Asp Gln Glu Ala
20 25 30
Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg
35 40 45
Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu
50 55 60
Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys
65 70 75
Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr
80 85 90
Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser
95 100 105

Tyr Leu Ala Val Ala Ser Thr Val Pro Ser Met Leu Cys Leu Val
 110 115 120
 Ala Asn Phe Leu Leu Val Asn Arg Val Ala Val His Ile Arg Val
 125 130 135
 Leu Ala Ser Leu Thr Val Ile Leu Ala Ile Phe Met Val Ile Thr
 140 145 150
 Ala Leu Val Lys Val Asp Thr Ser Ser Trp Thr Arg Gly Phe Phe
 155 160 165
 Ala Val Thr Ile Val Cys Met Val Ile Leu Ser Gly Ala Ser Thr
 170 175 180
 Val Phe Ser Ser Ser Ile Tyr Gly Met Thr Gly Ser Phe Pro Met
 185 190 195
 Arg Asn Ser Gln Ala Leu Ile Ser Gly Gly Ala Met Gly Gly Thr
 200 205 210
 Val Ser Ala Val Ala Ser Leu Val Asp Leu Ala Ala Ser Ser Asp
 215 220 225
 Val Arg Asn Ser Ala Leu Ala Phe Phe Leu Thr Ala Thr Ile Phe
 230 235 240
 Leu Val Leu Cys Met Gly Leu Tyr Leu Leu Leu Ser Arg Leu Glu
 245 250 255
 Tyr Ala Arg Tyr Tyr Met Arg Pro Val Leu Ala Ala His Val Phe
 260 265 270
 Ser Gly Glu Glu Glu Leu Pro Gln Asp Ser Leu Ser Ala Pro Ser
 275 280 285
 Val Ala Ser Arg Phe Ile Asp Ser His Thr Pro Pro Leu Arg Pro
 290 295 300
 Ile Leu Lys Lys Thr Ala Ser Leu Gly Phe Cys Val Thr Tyr Val
 305 310 315
 Phe Phe Ile Thr Ser Leu Ile Tyr Pro Ala Val Cys Thr Asn Ile
 320 325 330
 Glu Ser Leu Asn Lys Gly Ser Gly Ser Leu Trp Thr Thr Lys Phe
 335 340 345
 Phe Ile Pro Leu Thr Thr Phe Leu Leu Tyr Asn Phe Ala Asp Leu
 350 355 360
 Cys Gly Arg Gln Leu Thr Ala Trp Ile Gln Val Pro Gly Pro Asn
 365 370 375
 Ser Lys Ala Leu Pro Gly Phe Val Leu Leu Arg Thr Cys Leu Ile
 380 385 390
 Pro Leu Phe Val Leu Cys Asn Tyr Gln Pro Arg Val His Leu Lys

395	400	405
Thr Val Val Phe Gln Ser Asp Val Tyr Pro Ala Leu Leu Ser Ser		
410	415	420
Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu		
425	430	435
Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly		
440	445	450
Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser		
455	460	465
Ala Cys Ser Thr Leu Leu Val His Leu Ile		
470	475	

<210> 80

<211> 22

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-22

<223> Synthetic construct.

<400> 80

ttttgcggtc accattgtct gc 22

<210> 81

<211> 23

<212> DNA

<213> Homo sapiens

<220>

<221> Artificial sequence

<222> 1-23

<223> Synthetic construct.

<400> 81

cgttaggtgac acagaagccc agg 23

<210> 82

<211> 49

<212> DNA

<213> Artificial

<220>

<221> Artificial sequence

<222> 1-49

<223> Synthetic construct.

<400> 82

tacggcatga ccggctcctt tcctatgagg aactccagg cactgatat 49

<210> 83

<211> 1844

<212> DNA
<213> Homo sapiens

<400> 83
gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50
ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100
tcctcgctct cgtccccatc ctcctcagcc tggtggcctc ccaggactgg 150
aaggctgaac gcagccaaga ccccttcgag aaatgcatgc aggatcctga 200
ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cgaccctga 250
agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctgggtggcc 300
gccaagggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350
taacaggatc gggggccgca tcttaccta ccgggaccag aacacgggct 400
ggattgggga gctgggagcc atgcgcatgc ccagctctca caggatcctc 450
cacaagctct gccagggcct ggggctcaac ctgaccaagt tcacccagta 500
cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550
tggtggagaa ggtgcccggag aagctggct acgccttgcg tccccagaa 600
aagggccact cgccccgaaga catctaccag atggctctca accaggccct 650
caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttggaaa 700
ggcacacgct cttggaatat cttctcgaaaa aggggaacct gagccggccg 750
gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800
cagttcgcc gaggccctcc gggcccacag ctgcctcagc gacagactcc 850
agtacagccg catcggtgggt ggctgggacc tgctgccgcg cgccgtgctg 900
agctcgctgt ccgggcttgt gctgttgaac ggcggcgtgg tggcgatgac 950
ccagggaccg cacgatgtgc acgtgcagat cgagacctct ccccccggcgc 1000
ggaatctgaa ggtgctgaag gccgacgtgg tgctgctgac ggcgagcggaa 1050
ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100
ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150
gcttccgcag gcccttctgg cgcgaggagc acattgaagg cggccactca 1200
aacaccgatc gcccgtcgcg catgattttc tacccgcccc cgccgcgaggg 1250
cgccgtgctg ctggcctcgat acacgtggtc ggacgcggcg gcagcgttcg 1300
ccggcttgag ccgggaagag gcgttgcgt tggcgctcga cgacgtggcg 1350

gcattgcacg ggcctgtcgt gcgccagctc tgggacggca cggcgctcg 1400
caagcggtgg gcggaggacc agcacagcca gggtggcttt gtgg tacagc 1450
cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500
cgcatctact ttgccggcga gcacaccgccc taccgcacg gctgggtgga 1550
gacggcggtc aagtccggcgc tgccgcgc catcaagatc aacagccgga 1600
aggggcctgc atcggacacg gccagccccg aggggcacgc atctgacatg 1650
gaggggcagg ggcatgtgca tgggtggcc agcagccct cgcatgacct 1700
ggcaaaggaa gaaggcagcc accctccagt ccaaggccag ttatctctcc 1750
aaaacacgac ccacacgagg acctcgcatt aaagtatttt cgaaaaaaa 1800
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1844

<210> 84
<211> 567
<212> PRT
<213> Homo sapiens

<400> 84
Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu
1 5 10 15
Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln
20 25 30
Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu
35 40 45
Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln
50 55 60
Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala
65 70 75
Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala
80 85 90
Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn
95 100 105
Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser
110 115 120
His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu
125 130 135
Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His
140 145 150
Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys
155 160 165

Leu Gly Tyr Ala Leu Arg Pro Gln Glu Lys Gly His Ser Pro Glu
 170 175 180
 Asp Ile Tyr Gln Met Ala Leu Asn Gln Ala Leu Lys Asp Leu Lys
 185 190 195
 Ala Leu Gly Cys Arg Lys Ala Met Lys Lys Phe Glu Arg His Thr
 200 205 210
 Leu Leu Glu Tyr Leu Leu Gly Glu Gly Asn Leu Ser Arg Pro Ala
 215 220 225
 Val Gln Leu Leu Gly Asp Val Met Ser Glu Asp Gly Phe Phe Tyr
 230 235 240
 Leu Ser Phe Ala Glu Ala Leu Arg Ala His Ser Cys Leu Ser Asp
 245 250 255
 Arg Leu Gln Tyr Ser Arg Ile Val Gly Gly Trp Asp Leu Leu Pro
 260 265 270
 Arg Ala Leu Leu Ser Ser Leu Ser Gly Leu Val Leu Leu Asn Ala
 275 280 285
 Pro Val Val Ala Met Thr Gln Gly Pro His Asp Val His Val Gln
 290 295 300
 Ile Glu Thr Ser Pro Pro Ala Arg Asn Leu Lys Val Leu Lys Ala
 305 310 315
 Asp Val Val Leu Leu Thr Ala Ser Gly Pro Ala Val Lys Arg Ile
 320 325 330
 Thr Phe Ser Pro Pro Leu Pro Arg His Met Gln Glu Ala Leu Arg
 335 340 345
 Arg Leu His Tyr Val Pro Ala Thr Lys Val Phe Leu Ser Phe Arg
 350 355 360
 Arg Pro Phe Trp Arg Glu Glu His Ile Glu Gly Gly His Ser Asn
 365 370 375
 Thr Asp Arg Pro Ser Arg Met Ile Phe Tyr Pro Pro Pro Arg Glu
 380 385 390
 Gly Ala Leu Leu Leu Ala Ser Tyr Thr Trp Ser Asp Ala Ala Ala
 395 400 405
 Ala Phe Ala Gly Leu Ser Arg Glu Glu Ala Leu Arg Leu Ala Leu
 410 415 420
 Asp Asp Val Ala Ala Leu His Gly Pro Val Val Arg Gln Leu Trp
 425 430 435
 Asp Gly Thr Gly Val Val Lys Arg Trp Ala Glu Asp Gln His Ser
 440 445 450
 Gln Gly Gly Phe Val Val Gln Pro Pro Ala Leu Trp Gln Thr Glu

455	460	465
Lys Asp Asp Trp Thr Val Pro Tyr Gly Arg Ile Tyr Phe Ala Gly		
470	475	480
Glu His Thr Ala Tyr Pro His Gly Trp Val Glu Thr Ala Val Lys		
485	490	495
Ser Ala Leu Arg Ala Ala Ile Lys Ile Asn Ser Arg Lys Gly Pro		
500	505	510
Ala Ser Asp Thr Ala Ser Pro Glu Gly His Ala Ser Asp Met Glu		
515	520	525
Gly Gln Gly His Val His Gly Val Ala Ser Ser Pro Ser His Asp		
530	535	540
Leu Ala Lys Glu Glu Gly Ser His Pro Pro Val Gln Gly Gln Leu		
545	550	555
Ser Leu Gln Asn Thr Thr His Thr Arg Thr Ser His		
560	565	

<210> 85
<211> 3316
<212> DNA
<213> Homo sapiens

<400> 85
ctgacatggc ctgactcgaa acagactcaga gcagggcaga actggggaca 50
ctctggcccg gccttctgcc tgcattggacg ctctgaagcc accctgtctc 100
tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150
gaactcagag ccgggaagcc cccattcact agaagcactg agagatgcgg 200
ccccctcgca gggctgaat ttccctgtgc tgttcacaaa gatgctttt 250
atcttaact ttttgttttc cccacttccg acccccggcgt tgatctgcat 300
cctgacattt ggagctgcca tcttcttgc gctgatcacc agacctaacc 350
ccgtcttacc tcttcttgac ctgaacaatc agtctgtggg aattgaggaa 400
ggagcacgga agggggtttc ccagaagaac aatgaccaa caagttgctg 450
cttctcagat gccaagacta tgtatgaggt tttccaaaga ggactcgctg 500
tgtctgacaa tggccctgc ttggatata gaaaacccaaa ccagccctac 550
agatggctat cttacaaaca ggtgtctgat agagcagagt acctgggttc 600
ctgtctcttg cataaagggtt ataaatcatc accagaccag tttgtcggca 650
tcttgctca gaataggcca gagtgatca tctccgaatt ggcttggtac 700
acgtactcta tggtagctgt acctctgtat gacaccttgg gaccagaagc 750

catcgacat attgtcaaca aggctgatat cgccatggg atctgtgaca 800
caccccaaaa ggcattggg ctgatagggaa atgttagagaa aggcttcacc 850
ccgagcctga aggtgatcat ccttatggac cccttgatg atgacctgaa 900
gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgtgctg 950
agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000
gacctgagcg tcatactgctt caccagtggg accacaggtg accccaaagg 1050
agccatgata acccatcaaa atattgttc aaatgctgct gccttctca 1100
aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatacc 1150
taccccttc tggctcatat gttttagagg attgtacagg ctgttgtta 1200
cagctgtgga gccagagttg gattttcca agggatatt cggttgctgg 1250
ctgacgacat gaagactttg aagccacat tgttcccgcc ggtgcctcga 1300
ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350
gaagaagttc ttgttgaagc tggctgttc cagtaaattc aaagagcttc 1400
aaaagggtat catcaggcat gatagtttct gggacaagct catcttgca 1450
aagatccagg acagcctggg cggaagggtt cgtgttaattt tcactggagc 1500
tgccccatg tccacttcag tcatacattt cttccggca gcaatggat 1550
gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600
tttacattac ctggggactg gacatcaggt cacgttgggg tgccctggc 1650
ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700
tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750
tacctgaagg accctgagaa gacacaggaa gccctggaca gtgtatggctg 1800
gcttcacaca ggagacattt gtcgctggct cccgaatgga actctgaaga 1850
tcatacgaccg taaaaagaac atttcaagc tggcccaagg agaatacatt 1900
gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950
aattttgtt cacggggaga gcttacggtc atccttagta ggagtgggtgg 2000
ttcctgacac agatgtactt ccctcattt cagccaaatgt tgggtgtgg 2050
ggctcccttg aggaactgtg ccaaaaccaa gttgttaaggg aagccatttt 2100
agaagacttg cagaaaattt ggaaagaaag tggccttaaa actttgaac 2150
aggtaaaacgc catttttctt catccagagc cattttccat tgaaaatggg 2200

ctcttgacac caacattgaa agcaaagcga ggagagctt ccaaatactt 2250
tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300
tacttaagta cctgccggcc cactgtcac tgcttgtgag aaaatggatt 2350
aaaaactatt cttacatttgc tttgcctt cctcctattt ttttttaacc 2400
tgttaaactc taaagccata gctttgttt tatattgaga catataatgt 2450
gtaaaacttag ttcccaaata aatcaatcct gtcttccca tcttcgatgt 2500
tgctaataatt aaggcttcag ggctactttt atcaacatgc ctgtctcaa 2550
gatcczagtt tatgttctgt gtccttcctc atgatttcca accttaatac 2600
tattagtaac cacaagttca agggtcaaag ggaccctctg tgcccttc 2650
tttgggggt gataaacata acttgccaac agtctctatg cttatttaca 2700
tcttcactg ttcaaaactaa gagattttta aattctgaaa aactgcttac 2750
aattcatgtt ttctagccac tccacaaacc actaaaattt tagtttagc 2800
ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgcttt 2850
ctgcgtaaat taaattgtgt actgaaggga aaagtttgcataccaaac 2900
atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattt 2950
ggtctatgac atactgtcca aaaggaatgc tggtcttaaa gcattattta 3000
cagtaggaac tggggagtaa atctgtccc tacagtttgc tgctgagctg 3050
gaagctgtgg gggaggagt tgacaggtgg gcccagtgaa cttttccagt 3100
aaatgaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150
acaggcaagc aagatgccca cacaacaggc ttatTTCTG tgaaggaacc 3200
aactgatctc ccccaccctt ggatttagagt tcctgctcta cttaccac 3250
agataacaca tggtgtttct acttgtaat gtaaagtctt taaaataaac 3300
tattacagat aaaaaa 3316

<210> 86
<211> 739
<212> PRT
<213> Homo sapiens

<400> 86
Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
1 5 10 15
Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro
20 25 30

Gly Ser Pro His Ser Leu Glu Ala Leu Arg Asp Ala Ala Pro Ser
35 40 45

Gln Gly Leu Asn Phe Leu Leu Leu Phe Thr Lys Met Leu Phe Ile
50 55 60

Phe Asn Phe Leu Phe Ser Pro Leu Pro Thr Pro Ala Leu Ile Cys
65 70 75

Ile Leu Thr Phe Gly Ala Ala Ile Phe Leu Trp Leu Ile Thr Arg
80 85 90

Pro Gln Pro Val Leu Pro Leu Leu Asp Leu Asn Asn Gln Ser Val
95 100 105

Gly Ile Glu Gly Gly Ala Arg Lys Gly Val Ser Gln Lys Asn Asn
110 115 120

Asp Leu Thr Ser Cys Cys Phe Ser Asp Ala Lys Thr Met Tyr Glu
125 130 135

Val Phe Gln Arg Gly Leu Ala Val Ser Asp Asn Gly Pro Cys Leu
140 145 150

Gly Tyr Arg Lys Pro Asn Gln Pro Tyr Arg Trp Leu Ser Tyr Lys
155 160 165

Gln Val Ser Asp Arg Ala Glu Tyr Leu Gly Ser Cys Leu Leu His
170 175 180

Lys Gly Tyr Lys Ser Ser Pro Asp Gln Phe Val Gly Ile Phe Ala
185 190 195

Gln Asn Arg Pro Glu Trp Ile Ile Ser Glu Leu Ala Cys Tyr Thr
200 205 210

Tyr Ser Met Val Ala Val Pro Leu Tyr Asp Thr Leu Gly Pro Glu
215 220 225

Ala Ile Val His Ile Val Asn Lys Ala Asp Ile Ala Met Val Ile
230 235 240

Cys Asp Thr Pro Gln Lys Ala Leu Val Leu Ile Gly Asn Val Glu
245 250 255

Lys Gly Phe Thr Pro Ser Leu Lys Val Ile Ile Leu Met Asp Pro
260 265 270

Phe Asp Asp Asp Leu Lys Gln Arg Gly Glu Lys Ser Gly Ile Glu
275 280 285

Ile Leu Ser Leu Tyr Asp Ala Glu Asn Leu Gly Lys Glu His Phe
290 295 300

Arg Lys Pro Val Pro Pro Ser Pro Glu Asp Leu Ser Val Ile Cys
305 310 315

Phe Thr Ser Gly Thr Thr Gly Asp Pro Lys Gly Ala Met Ile Thr

320	325	330
His Gln Asn Ile Val Ser Asn Ala Ala Ala Phe Leu Lys Cys Val		
335	340	345
Glu His Ala Tyr Glu Pro Thr Pro Asp Asp Val Ala Ile Ser Tyr		
350	355	360
Leu Pro Leu Ala His Met Phe Glu Arg Ile Val Gln Ala Val Val		
365	370	375
Tyr Ser Cys Gly Ala Arg Val Gly Phe Phe Gln Gly Asp Ile Arg		
380	385	390
Leu Leu Ala Asp Asp Met Lys Thr Leu Lys Pro Thr Leu Phe Pro		
395	400	405
Ala Val Pro Arg Leu Leu Asn Arg Ile Tyr Asp Lys Val Gln Asn		
410	415	420
Glu Ala Lys Thr Pro Leu Lys Lys Phe Leu Leu Lys Leu Ala Val		
425	430	435
Ser Ser Lys Phe Lys Glu Leu Gln Lys Gly Ile Ile Arg His Asp		
440	445	450
Ser Phe Trp Asp Lys Leu Ile Phe Ala Lys Ile Gln Asp Ser Leu		
455	460	465
Gly Gly Arg Val Arg Val Ile Val Thr Gly Ala Ala Pro Met Ser		
470	475	480
Thr Ser Val Met Thr Phe Phe Arg Ala Ala Met Gly Cys Gln Val		
485	490	495
Tyr Glu Ala Tyr Gly Gln Thr Glu Cys Thr Gly Gly Cys Thr Phe		
500	505	510
Thr Leu Pro Gly Asp Trp Thr Ser Gly His Val Gly Val Pro Leu		
515	520	525
Ala Cys Asn Tyr Val Lys Leu Glu Asp Val Ala Asp Met Asn Tyr		
530	535	540
Phe Thr Val Asn Asn Glu Gly Glu Val Cys Ile Lys Gly Thr Asn		
545	550	555
Val Phe Lys Gly Tyr Leu Lys Asp Pro Glu Lys Thr Gln Glu Ala		
560	565	570
Leu Asp Ser Asp Gly Trp Leu His Thr Gly Asp Ile Gly Arg Trp		
575	580	585
Leu Pro Asn Gly Thr Leu Lys Ile Ile Asp Arg Lys Lys Asn Ile		
590	595	600
Phe Lys Leu Ala Gln Gly Glu Tyr Ile Ala Pro Glu Lys Ile Glu		
605	610	615

Asn Ile Tyr Asn Arg Ser Gln Pro Val Leu Gln Ile Phe Val His
 620 625 630
 Gly Glu Ser Leu Arg Ser Ser Leu Val Gly Val Val Val Pro Asp
 635 640 645
 Thr Asp Val Leu Pro Ser Phe Ala Ala Lys Leu Gly Val Lys Gly
 650 655 660
 Ser Phe Glu Glu Leu Cys Gln Asn Gln Val Val Arg Glu Ala Ile
 665 670 675
 Leu Glu Asp Leu Gln Lys Ile Gly Lys Glu Ser Gly Leu Lys Thr
 680 685 690
 Phe Glu Gln Val Lys Ala Ile Phe Leu His Pro Glu Pro Phe Ser
 695 700 705
 Ile Glu Asn Gly Leu Leu Thr Pro Thr Leu Lys Ala Lys Arg Gly
 710 715 720
 Glu Leu Ser Lys Tyr Phe Arg Thr Gln Ile Asp Ser Leu Tyr Glu
 725 730 735
 His Ile Gln Asp

<210> 87
 <211> 2725
 <212> DNA
 <213> Homo sapiens

<400> 87
 ggaggcggag gccgcggcga gccggggccga gcagtgaggg ccctagcggg 50
 gcccggcg ggcccgcccc ccctaagcca ttccctgaagt catgggctgg 100
 ccagggacatt ggtgaccgc caatccggta tggacgactg gaagcccagc 150
 cccctcatca agccctttgg ggctcggaa aagcggagct ggtaccttac 200
 ctggaaagtat aaactgacaa accagcgggc cctgcggaga ttctgtcaga 250
 cagggggccgt gcttttcctg ctggtgactg tcattgtcaa tatcaagttg 300
 atcctggaca ctcggcgagc catcagtgaa gccaatgaag acccagagcc 350
 agagcaagac tatgatgagg ccctaggccg cctggagccc ccacggcgca 400
 gagggcgtgg tccccggcgg gtcctggacg tagaggtgta ttcaagtcgc 450
 agcaaagtat atgtggcagt ggatggcacc acggtgctgg aggatgaggc 500
 ccggggagcag ggccggggca tccatgtcat tgtcctcaac caggccacgg 550
 gcccacgtat ggcaaaaacgt gtgtttgaca cgtactcacc tcatgaggat 600
 gagggccatgg tgctattcct caacatggta gcgcccgccc gagtgctcat 650

ctgcactgtc aaggatgagg gtccttcca cctcaaggac acagccaagg 700
ctctgctgag gagcctgggc agccaggctg gccctgcctt gggctggagg 750
gacacatggg cttcggtgg acgaaaagga ggtcctgtct tcggggagaa 800
acattctaag tcacctgccc tctttcctg gggggaccca gtcctgctga 850
agacagatgt gccattgagc tcagcagaag aggtagtg ccactggca 900
gacacagagc tgaaccgtcg ccgcggcgc ttctgcagca aagttgaggg 950
ctatgaaat gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000
ctgacccact cccagacaac aaggcctca atgtgcctgt ggctgtcatt 1050
gcagggAACc gaccaatta cctgtacagg atgctgcgt ctctgcttc 1100
agcccaagggtt gtgtctcctc agatgataac agtttcatt gacggctact 1150
atgaggaacc catggatgtg gtggcactgt ttggctgag gggcatccag 1200
catactccca tcagcatcaa gaatgcgcgc gtgtctcagc actacaaggc 1250
cagcctcaact gccactttca acctgtttcc ggaggccaaat tttgctgtgg 1300
ttctggaaga ggacctggac attgctgtgg atttttcag tttcctgagc 1350
caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400
ctgaaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450
accgtgtgga gaccatgcct gggctggct ggggtctcag gaggtccttg 1500
tacaaggagg agctttagcc caagtggcct acaccggaaa agctctggga 1550
ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600
tcatccctga cgtttcccgta tcctaccact ttggcatcgt cggcctcaac 1650
atgaatggct actttcacga ggcctacttc aagaagcaca agttcaacac 1700
ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750
atgaagtggaa agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800
agcaagaacc cttgtgaaga ctcttcctg ccagacacag agggccacac 1850
ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900
cccagcttgc caagtgcctc catabctggg acctggatgt gcgtggcaac 1950
catcgcccccc tgtggagatt gttcggaaag aagaaccact tcctgggtgt 2000
gggggtccccg gttccccct actcagtgaa gaagccaccc tcagtcaccc 2050
caattttcct ggagccaccc ccaaaggagg agggagcccc aggagcccc 2100

gaacagacat gagacccctt ccaggaccct gcggggctgg gtactgtgta 2150
cccccaggct ggcttagccct tccctccatc ctgttaggatt ttgttagatgc 2200
tggtagggc tggggctacc ttgttttaa catgagactt aattactaac 2250
tccaagggga gggttcccct gctccaacac cccgttcctg agttaaaagt 2300
ctatttattt acttccttgt tggagaaggg caggagagta cctggaaatc 2350
attacgatcc ctagcagctc atcctgccct ttgaatacc tcactttcca 2400
ggcctggctc agaatctaac ctatttattt actgtcctga gggccttgaa 2450
aacaggccga acctggaggg cctggatttc ttttggct ggaatgctgc 2500
cctgagggtg gggctggctc ttactcagga aactgctgtg cccaacccat 2550
ggacaggccc agctggggcc cacatgctga cacagactca ctcagagacc 2600
cttagacact ggaccaggcc tcctctcagc cttctcttg tccagatttc 2650
caaagctgga taagttggtc attgattaaa aaaggagaag ccctctggga 2700
aaaaaaaaaa aaaaaaaaaa aaaaa 2725

<210> 88

<211> 660

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala
1 5 10 15

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr
20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu
35 40 45

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp
50 55 60

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu
65 70 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg
80 85 90

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser
95 100 105

Ser Arg Ser Lys Val Tyr Val Ala Val Asp Gly Thr Thr Val Leu
110 115 120

Glu Asp Glu Ala Arg Glu Gln Gly Arg Gly Ile His Val Ile Val
125 130 135

Leu Asn Gln Ala Thr Gly His Val Met Ala Lys Arg Val Phe Asp
 140 145 150
 Thr Tyr Ser Pro His Glu Asp Glu Ala Met Val Leu Phe Leu Asn
 155 160 165
 Met Val Ala Pro Gly Arg Val Leu Ile Cys Thr Val Lys Asp Glu
 170 175 180
 Gly Ser Phe His Leu Lys Asp Thr Ala Lys Ala Leu Leu Arg Ser
 185 190 195
 Leu Gly Ser Gln Ala Gly Pro Ala Leu Gly Trp Arg Asp Thr Trp
 200 205 210
 Ala Phe Val Gly Arg Lys Gly Gly Pro Val Phe Gly Glu Lys His
 215 220 225
 Ser Lys Ser Pro Ala Leu Ser Ser Trp Gly Asp Pro Val Leu Leu
 230 235 240
 Lys Thr Asp Val Pro Leu Ser Ser Ala Glu Glu Ala Glu Cys His
 245 250 255
 Trp Ala Asp Thr Glu Leu Asn Arg Arg Arg Arg Phe Cys Ser
 260 265 270
 Lys Val Glu Gly Tyr Gly Ser Val Cys Ser Cys Lys Asp Pro Thr
 275 280 285
 Pro Ile Glu Phe Ser Pro Asp Pro Leu Pro Asp Asn Lys Val Leu
 290 295 300
 Asn Val Pro Val Ala Val Ile Ala Gly Asn Arg Pro Asn Tyr Leu
 305 310 315
 Tyr Arg Met Leu Arg Ser Leu Leu Ser Ala Gln Gly Val Ser Pro
 320 325 330
 Gln Met Ile Thr Val Phe Ile Asp Gly Tyr Tyr Glu Glu Pro Met
 335 340 345
 Asp Val Val Ala Leu Phe Gly Leu Arg Gly Ile Gln His Thr Pro
 350 355 360
 Ile Ser Ile Lys Asn Ala Arg Val Ser Gln His Tyr Lys Ala Ser
 365 370 375
 Leu Thr Ala Thr Phe Asn Leu Phe Pro Glu Ala Lys Phe Ala Val
 380 385 390
 Val Leu Glu Glu Asp Leu Asp Ile Ala Val Asp Phe Phe Ser Phe
 395 400 405
 Leu Ser Gln Ser Ile His Leu Leu Glu Glu Asp Asp Ser Leu Tyr
 410 415 420
 Cys Ile Ser Ala Trp Asn Asp Gln Gly Tyr Glu His Thr Ala Glu

425	430	435
Asp Pro Ala Leu Leu Tyr Arg Val Glu Thr Met Pro Gly Leu Gly 440	445	450
Trp Val Leu Arg Arg Ser Leu Tyr Lys Glu Glu Leu Glu Pro Lys 455	460	465
Trp Pro Thr Pro Glu Lys Leu Trp Asp Trp Asp Met Trp Met Arg 470	475	480
Met Pro Glu Gln Arg Arg Gly Arg Glu Cys Ile Ile Pro Asp Val 485	490	495
Ser Arg Ser Tyr His Phe Gly Ile Val Gly Leu Asn Met Asn Gly 500	505	510
Tyr Phe His Glu Ala Tyr Phe Lys Lys His Lys Phe Asn Thr Val 515	520	525
Pro Gly Val Gln Leu Arg Asn Val Asp Ser Leu Lys Lys Glu Ala 530	535	540
Tyr Glu Val Glu Val His Arg Leu Leu Ser Glu Ala Glu Val Leu 545	550	555
Asp His Ser Lys Asn Pro Cys Glu Asp Ser Phe Leu Pro Asp Thr 560	565	570
Glu Gly His Thr Tyr Val Ala Phe Ile Arg Met Glu Lys Asp Asp 575	580	585
Asp Phe Thr Thr Trp Thr Gln Leu Ala Lys Cys Leu His Ile Trp 590	595	600
Asp Leu Asp Val Arg Gly Asn His Arg Gly Leu Trp Arg Leu Phe 605	610	615
Arg Lys Lys Asn His Phe Leu Val Val Gly Val Pro Ala Ser Pro 620	625	630
Tyr Ser Val Lys Lys Pro Pro Ser Val Thr Pro Ile Phe Leu Glu 635	640	645
Pro Pro Pro Lys Glu Glu Gly Ala Pro Gly Ala Pro Glu Gln Thr 650	655	660

<210> 89
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 89

gatggcaaaa cgtgtgttg acacg 25

<210> 90
<211> 22
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-22
<223> Synthetic construct.

<400> 90
cctcaaccag gccacgggcc ac 22

<210> 91
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-24
<223> Synthetic construct.

<400> 91
cccaggcaga gatgcagtac aggc 24

<210> 92
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-26
<223> Synthetic construct.

<400> 92
cctccagtag gtggatggat tggctc 26

<210> 93
<211> 47
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-47
<223> Synthetic construct.

<400> 93
ctcacctcat gaggtgagg ccatggtgct attcctcaac atggtag 47

<210> 94
<211> 3037
<212> DNA
<213> Homo sapiens

<400> 94
cggacgcgtg ggctgcttgtt gggaaaggcct aaagaactgg aaagcccact 50
ctcttggAAC caccacacctt gtttaaAGAA cctaAGCACC atttaaAGCC 100
actggAAATT tggTTgtCTAG tggTTgtGGG tgaATAAAGG agggcAGAA 150
ggatgatttc atctccATTA gcctgctgtc tctggctatg ttggTggat 200
gttacgtggc cggaATCATT cccttggctg ttaATTTCTC agagGAACGA 250
ctgaagCTGG tgactgtttt gggTgctggc cttctCTgtg gaactgctct 300
ggcagtcatc gtgcctGAAG gagTAATGTC cctttatgaa gatattCTTg 350
agggAAAACA ccACCAAGCA agtGAACAC ataATGTGAT tgcatcAGAC 400
aaAGCAGCAG AAAAATCAgT tgcTcatgaa catgAGCACA gCcACGACCA 450
cacacAGCTG catgcCTATA ttggTgtttc cctcgTTCTG ggcttcgttt 500
tcatgttgct ggtggaccAG attggtaACT cccatgtgca ttctactgac 550
gatccAGAAG cagcaAGGTC tagcaATTCC AAAATCACCA ccacgctggg 600
tctggTTgtc catgctgcAG ctgatggTgt tgctttggga gcagcAGCAT 650
ctacttcaca gaccAGTgtc cAGTTAATTG tggTTgtggc aatcatgcta 700
cataAGGCAC cagCTgCTTT tggactggTT tccttCTTGA tgcatgctgg 750
cttagAGCGG aatcGAATCA gaaAGCactt gctggTcttt gcattggcAG 800
caccAGTTAT gtccatggTG acataCTTAG gactgAGTAA gagcAGTAAA 850
gaAGCCCTTT cAGAGGTgAA cgCCACGGGA gtggCCATgC ttttCTCTgC 900
cgGGACATTt ctTTATgtTG ccACAGTACA tgcTCTCCT gaggtggcG 950
gaatAGGGCA cAGCCACAAG cccgatGCCA cgggAGGGAG aggCCTCAGC 1000
cgCCTggAAAG tggcAGCCtT ggttCTggGT tgcCTCATCC ctCTCATCCT 1050
gtcAGTAGGA caccAGCATT AAATgttCAA ggtCCAGCCT tggTCCAGGG 1100
ccgtttGCCA tccAGTgAGA acAGCCGGCA cgtgACAGCT actCACTTCC 1150
tcAGTCTCTT gtctCACCTT gcgcATCTCT acATGTATTc ctagAGTCCA 1200
gaggggAGGT gaggtAAAAA CCTGAGTAAT ggAAAAGCTT ttagAGTAGA 1250
aacACATTtA cgttgcAGTT agCTATAGAC atCCCAATTGT gttATCTTT 1300
aaaAGGCCCCt tgacATTTG cgtttAAATA tttCTCTTAA ccCTATTCTC 1350
aggGAAGATG gaATTTAGTT ttaAGGAAAAA gaggAGAAct tcataCTCAC 1400
aatgAAATAG tgattATgAA aatacAGTGT tctgtAATTA agCTATGTCT 1450

ctttcttctt agtttagagg ctctgctact ttatccattt attttaaca 1500
tggtccccac catgtaagac tggtgctta gcatctatgc cacatgcgtt 1550
gatggaaagg catagcaccc actcacttag atgctaaagg tgattctagt 1600
taatctggta ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650
tctttatact caaaagagat atccattgaa aaggatgtc tagaggatt 1700
taaacagctc ctttggcacg tgcctctcg aatccagcct gccattccat 1750
caaatggagc aggagaggtg ggaggagctt ctaaagaggt gactggatt 1800
ttgttagcatt ctttgtcaag ttctccttg cagaataacct gtctccacat 1850
tccttagagag gagccaagtt ctagtagttt cagttctagg ctcccttca 1900
agaacagtca gatcacaaag tgtcttgaa aattaaggaa tattaaattt 1950
taagtgattt ttggatggtt attgatatct ttgttagtagc tttttttaaa 2000
agactaccaa aatgtatggt tgtcctttt tttgtttt tttttttta 2050
attatttctc ttagcagatc agcaatccct ctagggaccc aaatactagg 2100
tcagcttgg cgacactgtg tcttcacaca taaccacctg tagcaagatg 2150
gatcataaat gagaagtgtt tgcctattga tttaaagctt attgaaatca 2200
tgtctctgt ctctcgtct ttctttgct ttcttctaa ctccctc 2250
tagcctctcc tcgccacaat ttgctgctta ctgctgggtgtaatattgt 2300
gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350
gataataata tcttattct ttatcccctt caaagaaatt acctttgtgt 2400
caaatgccgc ttgttgagc cctaaaata ccacccctc atgttaaat 2450
tgacacaatc actaatctgg taatttaaac aattgagata gaaaaagtgt 2500
ttaacagact aggataattt tttttcata ttgccaaaaa tttttgtaaa 2550
ccctgtcttg tcaaataagt gtataatatt gtattattaa ttatattttta 2600
ctttctatac cattcaaaaa cacattacac taagggggaa ccaagactag 2650
tttcttcagg gcagtggacg tagtagttt taaaaacgtt ttctatgacg 2700
cataagctag catgcctatg atttatttcc ttcatgaatt tgcactgga 2750
tcagcagctg tgaaataaaa gcttgtgagc cctctgctgg ccacagtgg 2800
gaaagtagca caaataggat acagttgtat gtatcattt gcaacaattt 2850
catacaattt tactaccaaq aqaqqtata qtatqaaag tccaaatqac 2900

ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggttcat 2950
ctagtcccttc aaaactataat ggtgcctag attctctctg gaaactgact 3000
ttgtcaaata aatagcagat tgttagtgtca aaaaaaa 3037

<210> 95
<211> 307
<212> PRT
<213> Homo sapiens

<400> 95
Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu
1 5 10 15
Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe
20 25 30
Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu
35 40 45
Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His
50 55 60
Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gln Ala Ser
65 70 75
Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser
80 85 90
Val Val His Glu His Ser His Asp His Thr Gln Leu His
95 100 105
Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu
110 115 120
Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp
125 130 135
Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Thr Leu
140 145 150
Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala
155 160 165
Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val
170 175 180
Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser
185 190 195
Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His
200 205 210
Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr
215 220 225
Tyr Leu Gly Leu Ser Lys Ser Lys Glu Ala Leu Ser Glu Val

230	235	240
Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu		
245	250	255
Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly		
260	265	270
His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg		
275	280	285
Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile		
290	295	300
Leu Ser Val Gly His Gln His		
305		

<210> 96
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 96
gttgtgggtg aataaaggag ggcag 25

<210> 97
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-25
<223> Synthetic construct.

<400> 97
ctgtgctcat gttcatggac aactg 25

<210> 98
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial sequence
<222> 1-50
<223> Synthetic construct.

<400> 98
ggatgatttc atctccatta gcctgctgtc tctggctatg ttgggtggat 50

<210> 99
<211> 1429

<212> DNA
<213> Homo sapiens

<400> 99
gctcgaggcc ggccggcggcg ggagagcgac ccgggcggcc tcgttagcggg 50
gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100
ctgattttga gatgatgggc ttggaaaacg ggcgtcgcag catgaagtcg 150
ccgcccctcg tgctggcgc cctggtgcc tcgatcatcg tcttggcct 200
caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250
tggagctgga aggcagggtc cgccaggcgg ctgcagagag aggcgccgtg 300
gagctgaaga agaacgagtt ccagggagag ctggagaagc agcgggagca 350
gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400
agctgtacca ggacgaaaag gcgggtttgg tgaataacat caccacaggt 450
gagaggctca tccgagtgtc gcaagaccag ttaaagaccc tgcagaggaa 500
ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550
acctggagag gaagttctcc tacgaccta gccagtgcattt caatcagatg 600
aaggaggtga aggaacagtg tgaggagcga atagaagagg tcacccaaaa 650
gggaaatgaa gctgttagctt ccagagaccc gagtgaaaac aacgaccaga 700
gacagcagct ccaagccctc agtgagcctc agcccaggct gcaggcagca 750
ggcctgcccac acacagaggt gccacaaggg aaggaaacg tgcttggtaa 800
cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850
agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900
gagcctcaga gggacaggtc gccgcaggag ccaggccggg agcaggtgg 950
ggaagacaga cctgttaggtg gaagaggctt cgggggagcc ggagaactgg 1000
gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050
gagatggagg gccctgagcg agaccagctt gtcattcccg acggacagga 1100
ggaggagcag gaagctgccc gggaaaggag aaaccagcag aaactgagag 1150
gagaagatga ctacaacatg gataaaaatg aagcagaatc tgagacagac 1200
aagcaagcag ccctggcagg gaatgacaga aacatagatg ttttaatgt 1250
tgaagatcag aaaagagaca ccataaattt acttgatcag cgtaaaagc 1300
ggaatcatac actctgaatt gaactggaat cacatatttc acaacaggc 1350

cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400
gaaatgtact aaataaaatg tacatctga 1429

<210> 100
<211> 401
<212> PRT
<213> Homo sapiens

<400> 100
Met Met Gly Leu Gly Asn Gly Arg Arg Ser Met Lys Ser Pro Pro
1 5 10 15
Leu Val Leu Ala Ala Leu Val Ala Cys Ile Ile Val Leu Gly Phe
20 25 30
Asn Tyr Trp Ile Ala Ser Ser Arg Ser Val Asp Leu Gln Thr Arg
35 40 45
Ile Met Glu Leu Glu Gly Arg Val Arg Arg Ala Ala Ala Glu Arg
50 55 60
Gly Ala Val Glu Leu Lys Lys Asn Glu Phe Gln Gly Glu Leu Glu
65 70 75
Lys Gln Arg Glu Gln Leu Asp Lys Ile Gln Ser Ser His Asn Phe
80 85 90
Gln Leu Glu Ser Val Asn Lys Leu Tyr Gln Asp Glu Lys Ala Val
95 100 105
Leu Val Asn Asn Ile Thr Thr Gly Glu Arg Leu Ile Arg Val Leu
110 115 120
Gln Asp Gln Leu Lys Thr Leu Gln Arg Asn Tyr Gly Arg Leu Gln
125 130 135
Gln Asp Val Leu Gln Phe Gln Lys Asn Gln Thr Asn Leu Glu Arg
140 145 150
Lys Phe Ser Tyr Asp Leu Ser Gln Cys Ile Asn Gln Met Lys Glu
155 160 165
Val Lys Glu Gln Cys Glu Glu Arg Ile Glu Glu Val Thr Lys Lys
170 175 180
Gly Asn Glu Ala Val Ala Ser Arg Asp Leu Ser Glu Asn Asn Asp
185 190 195
Gln Arg Gln Gln Leu Gln Ala Leu Ser Glu Pro Gln Pro Arg Leu
200 205 210
Gln Ala Ala Gly Leu Pro His Thr Glu Val Pro Gln Gly Lys Gly
215 220 225
Asn Val Leu Gly Asn Ser Lys Ser Gln Thr Pro Ala Pro Ser Ser
230 235 240

Glu Val Val Leu Asp Ser Lys Arg Gln Val Glu Lys Glu Glu Thr
245 250 255

Asn Glu Ile Gln Val Val Asn Glu Glu Pro Gln Arg Asp Arg Arg Leu
260 265 270

Pro Gln Glu Pro Gly Arg Glu Gln Val Val Glu Asp Arg Pro Val
275 280 285

Gly Gly Arg Gly Phe Gly Gly Ala Gly Glu Leu Gly Gln Thr Pro
290 295 300

Gln Val Gln Ala Ala Leu Ser Val Ser Gln Glu Asn Pro Glu Met
305 310 315

Glu Gly Pro Glu Arg Asp Gln Leu Val Ile Pro Asp Gly Gln Glu
320 325 330

Glu Glu Gln Glu Ala Ala Gly Glu Gly Arg Asn Gln Gln Lys Leu
335 340 345

Arg Gly Glu Asp Asp Tyr Asn Met Asp Glu Asn Glu Ala Glu Ser
350 355 360

Glu Thr Asp Lys Gln Ala Ala Leu Ala Gly Asn Asp Arg Asn Ile
365 370 375

Asp Val Phe Asn Val Glu Asp Gln Lys Arg Asp Thr Ile Asn Leu
380 385 390

Leu Asp Gln Arg Glu Lys Arg Asn His Thr Leu
395 400

<210> 101

<211> 3671

<212> DNA

<213> Homo sapiens

<400> 101

ggatgcagaa agcctcagtg ttgctttcc tggcctgggt ctgcttcctc 50
ttctacgctg gcattgcct cttcaccagt ggcttctgc tcacccgttt 100
ggagctcacc aaccatagca gctgccaaga gcccccaggc cctgggtccc 150
tgccatgggg gagccaaggg aaacctgggg cctgctggat ggcttcccga 200
tttgcggg ttgtgttgtt gctgatagat gctctgcgtt ttgacttcgc 250
ccagccccag cattcacacg tgccttagaga gcctcctgtc tccctaccct 300
tcctggcaa actaagctcc ttgcagagga tcctggagat tcagccccac 350
catgcccgac tctaccgatc tcaggttgac cctcctacca ccaccatgca 400
gcccctcaag gcccctcacca ctggctcaact gcctaccttt attgatgctg 450
gtagtaactt cgccagccac gccatagtgg aagacaatct cattaaggcag 500

ctcaccagtgcaggaaggcg tgttagtcttc atgggagatg atacctggaa 550
agacctttc cctggtgctt tctccaaagc tttcttcttc ccatccttca 600
atgtcagaga cctagacaca gtggacaatg gcattcctgga acacctctac 650
cccaccatgg acagtggta atgggacgtg ctgattgctc acttcctggg 700
tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750
agaaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800
gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850
tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctttc 900
tgtatagccc cacagcagtc ttccccagca ccccaccaga ggagccagag 950
gtgattcctc aagttacct tgtgccacg ctggccctgc tgctggcct 1000
gccccatccca tttgggaata tcggggaaatg gatggctgag ctattctcag 1050
ggggtgagga ctcccagccc cactcctctg ctttagccca agcctcagct 1100
ctccatctca atgctcagca ggtgtcccga tttcttcata cctactcagc 1150
tgctactcag gaccttcaag ctaaggagct tcatcagctg cagaacctct 1200
tctccaaggc ctctgctgac taccagtggc ttctccagag ccccaagggg 1250
gctgaggcga cactgccgac tgtgattgct gagctgcagc agttcctgcg 1300
gggagctcgg gccatgtgca tcgagtcgg tggctcggttcc tctctggtcc 1350
gcatggcggg gggtaactgct ctctggctg cttcctgctt tatctgcctg 1400
ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450
cctgacacct gtggcctggg gcctgggtgg ggccatagcg tatgctggac 1500
tcctggAAC tattgagctg aagctagatc tagtgcttct aggggctgtg 1550
gctgcagtga gctcattcct ccctttctg tggaaaggct gggctggctg 1600
ggggtccaag aggcccctgg caaccctgtt tcccatccct gggcccggtcc 1650
tgttactcct gctgttcgc ttggctgtgt tcttctctga tagttttgtt 1700
gtagctgagg ccagggccac ccccttcctt ttgggctcat tcatcctgct 1750
cctggttgtc cagttcact gggagggcca gctgcttcca cctaagctac 1800
tcacaatgcc ccgccttggc acttcagcca caacaaaccc cccacggcac 1850
aatggtgcat atgcctgag gcttggatt gggttgctt tatgtacaag 1900
gctagctggg cttttcatc gttgccctga agagacacct gtttgccact 1950

cctctccctg gctgagtcct ctggcatcca tgggggtgg tcgagccaag 2000
aatttatggt atggagcttg tgtggcgcg ctgggtggcc tggtagctgc 2050
cgtgcgctt tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100
ccatgcttt tggcgctgg ggactgcccc taatggcatt gggtactgct 2150
gcctactggg cattggcgctc gggggcagat gaggctcccc cccgtctccg 2200
ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcaggc 2250
tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300
gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350
ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400
tctaccgaca catgcaggag gagttccggg gccggtaga gaggacaaa 2450
tctcagggtc ccctgactgt ggctgcttat cagttggga gtgtctactc 2500
agctgctatg gtcacagccc tcaccctgtt ggccttccca cttctgctgt 2550
tgcatgcgga ggcgcatacgtc cttgtgttcc tgcttctgtt tctgcagagc 2600
ttccttctcc tacatctgt tgctgctggg ataccgtca ccaccctgg 2650
tcctttact gtgccatggc aggcagtctc ggcttggcc ctcatggcca 2700
cacagacctt ctactccaca ggccaccaggc ctgtcttcc agccatccat 2750
tggcatgcag cttcgtggg attcccagag ggtcatggct cctgtacttg 2800
gctgcctgct ttgcttagtgg gagccaacac cttgcctcc cacccctct 2850
ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900
caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950
agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000
atgcgcctca gcacttctat gcagcaactgc tgcaagctgg cctcaagtac 3050
ctctttatcc ttgttattca gattctggcc tggccttgg cagcctccat 3100
ccttcgcagg catctcatgg tctggaaagt gtttgcctt aagttcatat 3150
ttgaggctgt gggcttcatt gtgagcagcg tggacttct cctggcata 3200
gcttggta tgagagtgg tggcgctgt agctcctggt tcagggagct 3250
atttctggcc cagcagaggt agccttagtct gtgattactg gcacttggct 3300
acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350
atctgcaaga caggctcagc catactctta ctatcatgca gccagggcc 3400

gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450
tgatccctaa ctccgtattt ggatgcattt gagggacaag gggggcggtc 3500
tccgaagtgg aataaaaatag gccgggcgtg gtgacttgca cctataatcc 3550
cagcactttgggaggcagag gtgggaggat tgcttggtcc caggagttca 3600
agaccagcct gtgaaacata acaagacccc gtctctacta tttaaaaaaa 3650
agtgtataaa aatgataata t 3671

<210> 102

<211> 1089

<212> PRT

<213> Homo sapiens

<400> 102

Met	Gln	Lys	Ala	Ser	Val	Leu	Leu	Phe	Leu	Ala	Trp	Val	Cys	Phe	
1															15
Leu	Phe	Tyr	Ala	Gly	Ile	Ala	Leu	Phe	Thr	Ser	Gly	Phe	Leu	Leu	
					20				25						30
Thr	Arg	Leu	Glu	Leu	Thr	Asn	His	Ser	Ser	Cys	Gln	Glu	Pro	Pro	
					35				40						45
Gly	Pro	Gly	Ser	Leu	Pro	Trp	Gly	Ser	Gln	Gly	Lys	Pro	Gly	Ala	
				50				55							60
Cys	Trp	Met	Ala	Ser	Arg	Phe	Ser	Arg	Val	Val	Leu	Val	Leu	Ile	
				65				70							75
Asp	Ala	Leu	Arg	Phe	Asp	Phe	Ala	Gln	Pro	Gln	His	Ser	His	Val	
				80				85							90
Pro	Arg	Glu	Pro	Pro	Val	Ser	Leu	Pro	Phe	Leu	Gly	Lys	Leu	Ser	
					95				100						105
Ser	Leu	Gln	Arg	Ile	Leu	Glu	Ile	Gln	Pro	His	His	Ala	Arg	Leu	
				110				115							120
Tyr	Arg	Ser	Gln	Val	Asp	Pro	Pro	Thr	Thr	Thr	Met	Gln	Arg	Leu	
				125				130							135
Lys	Ala	Leu	Thr	Thr	Gly	Ser	Leu	Pro	Thr	Phe	Ile	Asp	Ala	Gly	
				140				145							150
Ser	Asn	Phe	Ala	Ser	His	Ala	Ile	Val	Glu	Asp	Asn	Leu	Ile	Lys	
				155				160							165
Gln	Leu	Thr	Ser	Ala	Gly	Arg	Arg	Val	Val	Phe	Met	Gly	Asp	Asp	
				170				175							180
Thr	Trp	Lys	Asp	Leu	Phe	Pro	Gly	Ala	Phe	Ser	Lys	Ala	Phe	Phe	
				185				190							195
Phe	Pro	Ser	Phe	Asn	Val	Arg	Asp	Leu	Asp	Thr	Val	Asp	Asn	Gly	

	200	205	210
Ile Leu Glu His Leu Tyr Pro Thr Met Asp Ser Gly Glu Trp Asp			
215	220	225	
Val Leu Ile Ala His Phe Leu Gly Val Asp His Cys Gly His Lys			
230	235	240	
His Gly Pro His His Pro Glu Met Ala Lys Lys Leu Ser Gln Met			
245	250	255	
Asp Gln Val Ile Gln Gly Leu Val Glu Arg Leu Glu Asn Asp Thr			
260	265	270	
Leu Leu Val Val Ala Gly Asp His Gly Met Thr Thr Asn Gly Asp			
275	280	285	
His Gly Gly Asp Ser Glu Leu Glu Val Ser Ala Ala Leu Phe Leu			
290	295	300	
Tyr Ser Pro Thr Ala Val Phe Pro Ser Thr Pro Pro Glu Glu Pro			
305	310	315	
Glu Val Ile Pro Gln Val Ser Leu Val Pro Thr Leu Ala Leu Leu			
320	325	330	
Leu Gly Leu Pro Ile Pro Phe Gly Asn Ile Gly Glu Val Met Ala			
335	340	345	
Glu Leu Phe Ser Gly Gly Glu Asp Ser Gln Pro His Ser Ser Ala			
350	355	360	
Leu Ala Gln Ala Ser Ala Leu His Leu Asn Ala Gln Gln Val Ser			
365	370	375	
Arg Phe Leu His Thr Tyr Ser Ala Ala Thr Gln Asp Leu Gln Ala			
380	385	390	
Lys Glu Leu His Gln Leu Gln Asn Leu Phe Ser Lys Ala Ser Ala			
395	400	405	
Asp Tyr Gln Trp Leu Leu Gln Ser Pro Lys Gly Ala Glu Ala Thr			
410	415	420	
Leu Pro Thr Val Ile Ala Glu Leu Gln Gln Phe Leu Arg Gly Ala			
425	430	435	
Arg Ala Met Cys Ile Glu Ser Trp Ala Arg Phe Ser Leu Val Arg			
440	445	450	
Met Ala Gly Gly Thr Ala Leu Leu Ala Ala Ser Cys Phe Ile Cys			
455	460	465	
Leu Leu Ala Ser Gln Trp Ala Ile Ser Pro Gly Phe Pro Phe Cys			
470	475	480	
Pro Leu Leu Leu Thr Pro Val Ala Trp Gly Leu Val Gly Ala Ile			
485	490	495	

Ala Tyr Ala Gly Leu Leu Gly Thr Ile Glu Leu Lys Leu Asp Leu
 500 505 510
 Val Leu Leu Gly Ala Val Ala Ala Val Ser Ser Phe Leu Pro Phe
 515 520 525
 Leu Trp Lys Ala Trp Ala Gly Trp Gly Ser Lys Arg Pro Leu Ala
 530 535 540
 Thr Leu Phe Pro Ile Pro Gly Pro Val Leu Leu Leu Leu Phe
 545 550 555
 Arg Leu Ala Val Phe Phe Ser Asp Ser Phe Val Val Ala Glu Ala
 560 565 570
 Arg Ala Thr Pro Phe Leu Leu Gly Ser Phe Ile Leu Leu Leu Val
 575 580 585
 Val Gln Leu His Trp Glu Gly Gln Leu Leu Pro Pro Lys Leu Leu
 590 595 600
 Thr Met Pro Arg Leu Gly Thr Ser Ala Thr Thr Asn Pro Pro Arg
 605 610 615
 His Asn Gly Ala Tyr Ala Leu Arg Leu Gly Ile Gly Leu Leu Leu
 620 625 630
 Cys Thr Arg Leu Ala Gly Leu Phe His Arg Cys Pro Glu Glu Thr
 635 640 645
 Pro Val Cys His Ser Ser Pro Trp Leu Ser Pro Leu Ala Ser Met
 650 655 660
 Val Gly Gly Arg Ala Lys Asn Leu Trp Tyr Gly Ala Cys Val Ala
 665 670 675
 Ala Leu Val Ala Leu Leu Ala Ala Val Arg Leu Trp Leu Arg Arg
 680 685 690
 Tyr Gly Asn Leu Lys Ser Pro Glu Pro Pro Met Leu Phe Val Arg
 695 700 705
 Trp Gly Leu Pro Leu Met Ala Leu Gly Thr Ala Ala Tyr Trp Ala
 710 715 720
 Leu Ala Ser Gly Ala Asp Glu Ala Pro Pro Arg Leu Arg Val Leu
 725 730 735
 Val Ser Gly Ala Ser Met Val Leu Pro Arg Ala Val Ala Gly Leu
 740 745 750
 Ala Ala Ser Gly Leu Ala Leu Leu Trp Lys Pro Val Thr Val
 755 760 765
 Leu Val Lys Ala Gly Ala Gly Ala Pro Arg Thr Arg Thr Val Leu
 770 775 780
 Thr Pro Phe Ser Gly Pro Pro Thr Ser Gln Ala Asp Leu Asp Tyr

785	790	795
Val Val Pro Gln Ile Tyr Arg His Met	Gln Glu Glu Phe Arg Gly	
800	805	810
Arg Leu Glu Arg Thr Lys Ser Gln Gly	Pro Leu Thr Val Ala Ala	
815	820	825
Tyr Gln Leu Gly Ser Val Tyr Ser Ala Ala	Met Val Thr Ala Leu	
830	835	840
Thr Leu Leu Ala Phe Pro Leu Leu Leu	Leu His Ala Glu Arg Ile	
845	850	855
Ser Leu Val Phe Leu Leu Leu Phe Leu	Gln Ser Phe Leu Leu Leu	
860	865	870
His Leu Leu Ala Ala Gly Ile Pro Val Thr	Thr Pro Gly Pro Phe	
875	880	885
Thr Val Pro Trp Gln Ala Val Ser Ala	Trp Ala Leu Met Ala Thr	
890	895	900
Gln Thr Phe Tyr Ser Thr Gly His Gln	Pro Val Phe Pro Ala Ile	
905	910	915
His Trp His Ala Ala Phe Val Gly Phe	Pro Glu Gly His Gly Ser	
920	925	930
Cys Thr Trp Leu Pro Ala Leu Leu Val	Gly Ala Asn Thr Phe Ala	
935	940	945
Ser His Leu Leu Phe Ala Val Gly Cys	Pro Leu Leu Leu Leu Trp	
950	955	960
Pro Phe Leu Cys Glu Ser Gln Gly Leu	Arg Lys Arg Gln Gln Pro	
965	970	975
Pro Gly Asn Glu Ala Asp Ala Arg Val	Arg Pro Glu Glu Glu	
980	985	990
Glu Pro Leu Met Glu Met Arg Leu Arg Asp	Ala Pro Gln His Phe	
995	1000	1005
Tyr Ala Ala Leu Leu Gln Leu Gly Leu	Lys Tyr Leu Phe Ile Leu	
1010	1015	1020
Gly Ile Gln Ile Leu Ala Cys Ala Leu	Ala Ala Ser Ile Leu Arg	
1025	1030	1035
Arg His Leu Met Val Trp Lys Val Phe	Ala Pro Lys Phe Ile Phe	
1040	1045	1050
Glu Ala Val Gly Phe Ile Val Ser Ser	Val Gly Leu Leu Leu Gly	
1055	1060	1065
Ile Ala Leu Val Met Arg Val Asp Gly	Ala Val Ser Ser Trp Phe	
1070	1075	1080

Arg Gln Leu Phe Leu Ala Gln Gln Arg
1085

<210> 103

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50
gcagttccct gtgtctctgg tggttgcct aaacctgcaa acatcacctt 100
cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150
ttcaaggagt taaagttact tacactgtgc agtatttcat cacaattgg 200
cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250
tgacagctcc agagaagtgg aagagaaaatc cagaagacct tcctgttcc 300
atgcaacaaa tatactccaa tctgaagtt aacgtgtctg tggtaatac 350
taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctgggtc 400
tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450
gtccccaggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500
gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctgg 550
atgtttgcc catatctatt accgtgttcc tttttctgt gatggctat 600
tccatctacc gatataatcca cgttggcaaa gagaaacacc cagcaaattt 650
gattttgatt tatggaaatg aatttgacaa aagattctt gtgcctgctg 700
aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750
atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800
ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850
aggaggtgaa acattnaggg tatgcttcgc atttcatgga aatttttctgt 900
gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950
cagcagaaca ataccccccgg ataaaacagt cattgaatat gaatatgatg 1000
tcagaaccac tgacatttg gcggggcctg aagagcagga gctcagttt 1050
caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcggtt 1100
ggcagtcttgc ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150
aagacttaga cccccctggcg caggagcaca cagactcgga ggagggccg 1200
gaggaagagc catcgacgac cctggatcgcac tggatcccc aaactggcag 1250

gctgtgtatt ctttcgtgtt ccagcttcga ccaggattca gagggtcg 1300
agccttctga gggggatggg ctccggagagg agggtcttct atcttagactc 1350
tatgaggagc cggtccaga caggccacca ggagaaaatg aaacctatct 1400
catcaattc atggaggaat ggggttata tgtgcagatg gaaaactgat 1450
gccaaacactt cctttgcct tttttcct gtgcaaaca gtgagtcacc 1500
ccttgcgtcc cagccataaa gtacctggta tgaaagaagt ttttccagt 1550
ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600
cgtgtgtat tggttcatgc atgttaggtct cttaacaatg atggggcc 1650
tctggagtcc aggggctggc cggttgtct atgcagagaa agcagtcaat 1700
aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

<210> 104

<211> 442

<212> PRT

<213> Homo sapiens

<400> 104

Met	Ser	Tyr	Asn	Gly	Leu	His	Gln	Arg	Val	Phe	Lys	Glu	Leu	Lys
1				5					10				15	
Leu	Leu	Thr	Leu	Cys	Ser	Ile	Ser	Ser	Gln	Ile	Gly	Pro	Pro	Glu
				20					25				30	
Val	Ala	Leu	Thr	Thr	Asp	Glu	Lys	Ser	Ile	Ser	Val	Val	Leu	Thr
				35					40				45	
Ala	Pro	Glu	Lys	Trp	Lys	Arg	Asn	Pro	Glu	Asp	Leu	Pro	Val	Ser
				50					55				60	
Met	Gln	Gln	Ile	Tyr	Ser	Asn	Leu	Lys	Tyr	Asn	Val	Ser	Val	Leu
				65					70				75	
Asn	Thr	Lys	Ser	Asn	Arg	Thr	Trp	Ser	Gln	Cys	Val	Thr	Asn	His
				80					85				90	
Thr	Leu	Val	Leu	Thr	Trp	Leu	Glu	Pro	Asn	Thr	Leu	Tyr	Cys	Val
				95					100				105	
His	Val	Glu	Ser	Phe	Val	Pro	Gly	Pro	Pro	Arg	Arg	Ala	Gln	Pro
				110					115				120	
Ser	Glu	Lys	Gln	Cys	Ala	Arg	Thr	Leu	Lys	Asp	Gln	Ser	Ser	Glu
				125					130				135	
Phe	Lys	Ala	Lys	Ile	Ile	Phe	Trp	Tyr	Val	Leu	Pro	Ile	Ser	Ile
				140					145				150	
Thr	Val	Phe	Leu	Phe	Ser	Val	Met	Gly	Tyr	Ser	Ile	Tyr	Arg	Tyr
				155					160				165	

Ile His Val Gly Lys Glu Lys His Pro Ala Asn Leu Ile Leu Ile
170 175 180

Tyr Gly Asn Glu Phe Asp Lys Arg Phe Phe Val Pro Ala Glu Lys
185 190 195

Ile Val Ile Asn Phe Ile Thr Leu Asn Ile Ser Asp Asp Ser Lys
200 205 210

Ile Ser His Gln Asp Met Ser Leu Leu Gly Lys Ser Ser Asp Val
215 220 225

Ser Ser Leu Asn Asp Pro Gln Pro Ser Gly Asn Leu Arg Pro Pro
230 235 240

Gln Glu Glu Glu Glu Val Lys His Leu Gly Tyr Ala Ser His Leu
245 250 255

Met Glu Ile Phe Cys Asp Ser Glu Glu Asn Thr Glu Gly Thr Ser
260 265 270

Leu Thr Gln Gln Glu Ser Leu Ser Arg Thr Ile Pro Pro Asp Lys
275 280 285

Thr Val Ile Glu Tyr Glu Tyr Asp Val Arg Thr Thr Asp Ile Cys
290 295 300

Ala Gly Pro Glu Glu Gln Glu Leu Ser Leu Gln Glu Glu Val Ser
305 310 315

Thr Gln Gly Thr Leu Leu Glu Ser Gln Ala Ala Leu Ala Val Leu
320 325 330

Gly Pro Gln Thr Leu Gln Tyr Ser Tyr Thr Pro Gln Leu Gln Asp
335 340 345

Leu Asp Pro Leu Ala Gln Glu His Thr Asp Ser Glu Glu Gly Pro
350 355 360

Glu Glu Glu Pro Ser Thr Thr Leu Val Asp Trp Asp Pro Gln Thr
365 370 375

Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gln Asp Ser
380 385 390

Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Glu Gly
395 400 405

Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro
410 415 420

Gly Glu Asn Glu Thr Tyr Leu Met Gln Phe Met Glu Glu Trp Gly
425 430 435

Leu Tyr Val Gln Met Glu Asn
440

<210> 105

<211> 21
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct

<400> 105
cgctgctgct gttgctcctg g 21

<210> 106
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 106
cagtgccca ggactttg 18

<210> 107
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 107
agtgcaggc agcggtgg 18

<210> 108
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 108
ctcctccgag tctgtgtct cctgc 25

<210> 109
<211> 51
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence

<222> 1-51
<223> Synthetic construct.

<400> 109
ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50
c 51

<210> 110
<211> 1114
<212> DNA
<213> Homo sapiens

<400> 110
cggaacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgccccggaga 50
cgccaggcctg cgtctgcacat ggggtcgaaa ttgaggggct gggacgtcc 100
tctgtactgt gtggccaccg ccctgtatgcg gcccgtgaag ccccccgcag 150
gttcctgggg ggcccagatc atcgggggccc acgaggtgac ccccaactcc 200
aggccctaca tggcatccgt gcgcttcggg ggccaacatc actgcggagg 250
cttcctgctg cgagcccgct ggggtggctc ggccgcccac tgcttcagcc 300
acagagacct ccgcactggc ctgggtggc tgggcgcaca cgtcctgagt 350
actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400
ccccgactac caccccatga cccacgc当地 cgacatctgc ctgctgcggc 450
tgaacggctc tgctgtctg ggccctgcag tggggctgct gaggtgc当地 500
gggagaaggg ccaggcccc cacagcgggg acacgggtgcc gggggctgg 550
ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600
ccaagggtccg agtgctggac ccggacgtct gcaacagctc ctgaaaggc 650
cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700
gggcttctgc tcggccgact ccggaggggcc cctgggtgtc aggaaccggg 750
ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800
cccgacgtgt acacgcaggt gtccgcctt gtggcctgga tctggacgt 850
ggttcggcgg agcagtc当地 agcccgccc cctgcctggg accaccaggc 900
ccccaggaga agccgcctga gccacaaacct tgccggcatgc aaatgagatg 950
gccgctccag gcctggaatg ttccgtggct gggccccacg ggaaggcctga 1000
tgttcagggt tggggtgaaa cgggcagcgg tggggcacac ccattccaca 1050
tgcaaaggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaaa 1100

aaaaaaaaaa gaaa 1114

<210> 111

<211> 283

<212> PRT

<213> Homo sapiens

<400> 111

Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val
1 5 10 15

Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp
20 25 30

Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg
35 40 45

Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly
50 55 60

Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys
65 70 75

Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala
80 85 90

His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile
95 100 105

Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala
110 115 120

Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly
125 130 135

Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro
140 145 150

Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val
155 160 165

Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val
170 175 180

Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His
185 190 195

Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg
200 205 210

Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg
215 220 225

Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly
230 235 240

Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val
245 250 255

Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly
260 265 270

Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala
275 280

<210> 112

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 112

gacgtctgca acagctcctg gaag 24

<210> 113

<211> 23

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-23

<223> Synthetic construct.

<400> 113

cgagaaggaa acgaggccgt gag 23

<210> 114

<211> 44

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-44

<223> Synthetic construct.

<400> 114

tgacacttac catgctctgc acccgccagt gggacagcca caga 44

<210> 115

<211> 1808

<212> DNA

<213> Homo sapiens

<400> 115

gagctaccca ggcggctgg gtgcagcaag ctccgcgccg actccggacg 50

cctgacgcct gacgcctgtc cccggccccgg catgagccgc tacctgctgc 100

cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150

tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctggaaagac 200

ggtcatcgta acgggcgcca acacaggcat cgggaagcag accgccttgg 250
aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300
aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350
tgtcaacgcc cgccacactgg acttggcttc cctcaagtct atccgagagt 400
ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaataaac 450
aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500
gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550
tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600
tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650
gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700
tcgtcctctt caccaaggag ctgagccggc ggctgcaagg ctctggtgtg 750
actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tggcagaca 800
cacgggcattc catggctcca ctttctccag caccacactc gggcccatct 850
tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900
ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950
actcaaacag aaggccccgg ccccccggagc tgaggatgag gaggtggccc 1000
ggaggctttg ggctgaaagt gcccgcctgg tgggcttaga ggctccctct 1050
gtgagggagc agccctccc cagataacct ctggagcaga tttgaaagcc 1100
aggatggcgc cttccagaccc aggacagctg tccgcctatgc ccgcagcttc 1150
ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200
agtaggttct agggggcggt gctggccgca gtggactggc ctgcaggtga 1250
gcactgcccc gggctctggc tgggtccgtc tgctctgctg ccagcagggg 1300
agaggggccca tctgatgctt cccctggaa tctaaactgg gaatggccga 1350
ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400
gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450
tctgacactt ggtggattct tgggtccctg tgggaccttg tgcattgcatt 1500
gtcctctctg agccttgggt tcttcagcag tgagatgctc agaataactg 1550
ctgtctccca tcatgggtgtg gtacagcgag ctgttgcctg gctatggcat 1600
ggctgtgccg ggggtgtttg ctgagggtttt cctgtgccag agcccagcca 1650

gagagcagg t cagggtgtca tcccgagttc aggctctgca cggcatggag 1700
tggaaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750
cacccctcta tcaattctca tggttagtcca aactgcagac tctcaaactt 1800
gctcattt 1808

<210> 116
<211> 331
<212> PRT
<213> Homo sapiens

<400> 116
Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala
1 5 10 15
Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys
20 25 30
Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly
35 40 45
Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg
50 55 60
Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys
65 70 75
Glu Ala Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His
80 85 90
Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg
95 100 105
Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile
110 115 120
Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr
125 130 135
Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His
140 145 150
Phe Leu Leu Thr Asn Leu Leu Asp Lys Leu Lys Ala Ser Ala
155 160 165
Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly
170 175 180
His Ile Asp Phe Asp Asp Leu Asn Trp Gln Thr Arg Lys Tyr Asn
185 190 195
Thr Lys Ala Ala Tyr Cys Gln Ser Lys Leu Ala Ile Val Leu Phe
200 205 210
Thr Lys Glu Leu Ser Arg Arg Leu Gln Gly Ser Gly Val Thr Val
215 220 225

Asn Ala Leu His Pro Gly Val Ala Arg Thr Glu Leu Gly Arg His
230 235 240

Thr Gly Ile His Gly Ser Thr Phe Ser Ser Thr Thr Leu Gly Pro
245 250 255

Ile Phe Trp Leu Leu Val Lys Ser Pro Glu Leu Ala Ala Gln Pro
260 265 270

Ser Thr Tyr Leu Ala Val Ala Glu Glu Leu Ala Asp Val Ser Gly
275 280 285

Lys Tyr Phe Asp Gly Leu Lys Gln Lys Ala Pro Ala Pro Glu Ala
290 295 300

Glu Asp Glu Glu Val Ala Arg Arg Leu Trp Ala Glu Ser Ala Arg
305 310 315

Leu Val Gly Leu Glu Ala Pro Ser Val Arg Glu Gln Pro Leu Pro
320 325 330

Arg

<210> 117
<211> 2249
<212> DNA
<213> Homo sapiens

<400> 117
gaagttcgcg agcgctggca tgtggtcctg gggcgccgct ggccggcgtg 50
ctggcggtgc tggcgctcgg gacaggagac ccagaaaggg ctgcggctcg 100
gggcgacacg ttctcggcgc tgaccagcgt ggccgcgcgc ctggcgcccc 150
agcgcggcgt gctggggctg ctgaggcggt acctgcgcgg ggaggaggcg 200
cggctgcggg acctgactag attctacgac aaggtaactt ctttgcattga 250
ggattcaaca acccctgtgg ctaaccctct gcttgcattt actctcatca 300
aacgcctgca gtctgactgg aggaatgtgg tacatagtct ggaggccagt 350
gagaacatcc gagctctgaa ggatggctat gagaagggtgg agcaagacct 400
tccagccttt gaggaccttg agggagcagc aaggccctg atgcggctgc 450
aggacgtgtta catgctcaat gtgaaaggcc tggcccgagg tgtcttcag 500
agagtcactg gctctgccat cactgacctg tacagcccc aacggctctt 550
ttctctcaca ggggatgact gcttccaagt tggcaagggtg gcctatgaca 600
tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650
ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700

T007402-21374

agatgcctt gatcaacttgg ccttgctta tttccggca ggaaatgtt 750
cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800
aagaggatgg ccaggaatgt cttaaaaat gaaaggctct tggcagagag 850
cccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900
acctgcagac cagagacacc tacgagggc tatgtcagac cctgggttcc 950
cagcccactc tctaccagat ccctagcctc tactgttccat atgagaccaa 1000
ttccaacgcc tacctgctgc tccagccat ccggaaggag gtcattccacc 1050
tggagcccta cattgcttc taccatgact tcgtcagtga ctcagaggct 1100
cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150
atcaggggag aagcagttac aagtggagta ccgcattcagc aaaagtgcct 1200
ggctgaagga cactgttgc ccaaaactgg tgaccctcaa ccaccgcatt 1250
gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300
ggtgtgaac tatggcatcg gaggacacta tgacgcctcac tttgaccatg 1350
ctacgtcacc aagcagcccc ctctacagaa tgaagtcagg aaaccgagtt 1400
gcaacattta tgcattatct gagctcggtg gaagctggag gagccacagc 1450
cttcatttat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500
tttgtggaa cctgcacagg agtgtgaag gggacagtga cacacttcat 1550
gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600
acatgagttt ggacaggaat tccgcagacc ctgcagctcc agccctgaag 1650
actgaactgt tggcagagag aagctgggtgg agtcctgtgg ctttccagag 1700
aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750
ctggaagaag gccttgcag ctgtgtctgt gcctcgcaaa tcagaggcaa 1800
gggagagggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850
agccacggaa gtcagagtag gatgcacagt acaaaggagg ggggagtgga 1900
ggcctgagag ggaagttct ggagttcaga tactctctgt tgggaacagg 1950
acatctcaac agtctcaggt tcgatcagtg ggtctttgg cactttgaac 2000
cttgaccaca gggaccaaga agtggcaatg aggacacctg caggagggc 2050
tagcctgact cccagaactt taagactttc tccccactgc cttctgctgc 2100
agcccaagca gggagtgtcc ccctcccaga agcatatccc agatgagtgg 2150

tacattatat aaggatttt tttaagttga aaacaacttt ctttcttt 2200
tgtatgatgg tttttaaca cagtcattaa aaatgttat aaatcaaaa 2249

<210> 118
<211> 544
<212> PRT
<213> Homo sapiens

<400> 118
Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala
1 5 10 15
Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr
20 25 30
Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg
35 40 45
Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala
50 55 60
Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu
65 70 75
His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe
80 85 90
Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His
95 100 105
Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr
110 115 120
Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly
125 130 135
Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn
140 145 150
Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser
155 160 165
Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr
170 175 180
Gly Asp Asp Cys Phe Gln Val Gly Lys Val Ala Tyr Asp Met Gly
185 190 195
Asp Tyr Tyr His Ala Ile Pro Trp Leu Glu Glu Ala Val Ser Leu
200 205 210
Phe Arg Gly Ser Tyr Gly Glu Trp Lys Thr Glu Asp Glu Ala Ser
215 220 225
Leu Glu Asp Ala Leu Asp His Leu Ala Phe Ala Tyr Phe Arg Ala
230 235 240

Gly Asn Val Ser Cys Ala Leu Ser Leu Ser Arg Glu Phe Leu Leu
 245 250 255
 Tyr Ser Pro Asp Asn Lys Arg Met Ala Arg Asn Val Leu Lys Tyr
 260 265 270
 Glu Arg Leu Leu Ala Glu Ser Pro Asn His Val Val Ala Glu Ala
 275 280 285
 Val Ile Gln Arg Pro Asn Ile Pro His Leu Gln Thr Arg Asp Thr
 290 295 300
 Tyr Glu Gly Leu Cys Gln Thr Leu Gly Ser Gln Pro Thr Leu Tyr
 305 310 315
 Gln Ile Pro Ser Leu Tyr Cys Ser Tyr Glu Thr Asn Ser Asn Ala
 320 325 330
 Tyr Leu Leu Leu Gln Pro Ile Arg Lys Glu Val Ile His Leu Glu
 335 340 345
 Pro Tyr Ile Ala Leu Tyr His Asp Phe Val Ser Asp Ser Glu Ala
 350 355 360
 Gln Lys Ile Arg Glu Leu Ala Glu Pro Trp Leu Gln Arg Ser Val
 365 370 375
 Val Ala Ser Gly Glu Lys Gln Leu Gln Val Glu Tyr Arg Ile Ser
 380 385 390
 Lys Ser Ala Trp Leu Lys Asp Thr Val Asp Pro Lys Leu Val Thr
 395 400 405
 Leu Asn His Arg Ile Ala Ala Leu Thr Gly Leu Asp Val Arg Pro
 410 415 420
 Pro Tyr Ala Glu Tyr Leu Gln Val Val Asn Tyr Gly Ile Gly Gly
 425 430 435
 His Tyr Glu Pro His Phe Asp His Ala Thr Ser Pro Ser Ser Pro
 440 445 450
 Leu Tyr Arg Met Lys Ser Gly Asn Arg Val Ala Thr Phe Met Ile
 455 460 465
 Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr
 470 475 480
 Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp
 485 490 495
 Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His
 500 505 510
 Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys
 515 520 525
 Trp Ile His Glu Tyr Gly Gln Glu Phe Arg Arg Pro Cys Ser Ser

530

535

540

Ser Pro Glu Asp

<210> 119
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 119
cgggacagga gacccagaaa ggg 23

<210> 120
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 120
ggccaagtga tccaaggcat cttc 24

<210> 121
<211> 49
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-49
<223> Synthetic construct.

<400> 121
ctgcgggacc tgacttagatt ctacgacaag gtactttctt tgcattgggg 49

<210> 122
<211> 1778
<212> DNA
<213> Homo sapiens

<400> 122
gagataggga gtctgggtt aagttcctgc tccatctcag gagcccctgc 50
tccccacccct aggaagccac cagactccac ggtgtggggc caatcaggtg 100
gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150
ggagagcccc ggagcccccg taacccgcgc ggggagcgcc caggatgccg 200

cgcggggact cggagcagg tgcgtactgc gcgcgcttct cctacctctg 250
gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300
ccctggtcct gtctgtggc atctatgcag aggttgagcg gcagaaatat 350
aaaacccttga aagtgcctt cctggctcca gccatcatcc tcatacctcct 400
gggcgtcgta atgttcatgg tctccttcattt tggtgtgctg gcgtccctcc 450
gtgacaacctt gtaccttctc caagcattca tgtacatcct tggatctgc 500
ctcatcatgg agtcattttgg tggcgtggtg gccttgacct tccggAACCA 550
gaccatttgc ttccctgaacg acaacattcg aagaggaatt gagaactact 600
atgatgatct ggacttcaaa aacatcatgg actttgttca gaaaaagttc 650
aagtgtgtg gcggggagga ctaccgagat tggagcaaga atcagtagcca 700
cgactgcagt gcccctggac ccctggcctg tgggggtcccc tacacctgct 750
gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800
atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850
caccaacgccc gtgatcatct gtttcatggaa caactacacc atcatggcgt 900
gcatcctcctt gggcatcctg cttcccccagt tcctgggggt gctgctgacg 950
ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000
tgatgggctc ctggggccccg gtgccaagcc cagcgtggag gcggcaggca 1050
cgggatgctg cttgtgctac cccaaatttgg gcccagcctg ccatggcagc 1100
tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150
ggacaggcgt gcggccccc tggccacact cagtagtgcac caaagccagg 1200
gctgtgtgtg cctgtgtgtt ggtccccacgg cctctgcctc cccagggagc 1250
agagcctggg cctccctaa gaggtttcc ccgaggcagc tctggaatct 1300
gtgcccaccc tggggctggg gaacaaggcc ctcctttctc caggcctggg 1350
ctacagggga gggagagccct gaggtctgc tcagggccca tttcatctct 1400
ggcagtgcct tggcgggtgg attcaaggca gttttgttagc acctgttaatt 1450
ggggagaggg agtgtgccttcc tcggggcagg agggaaaggc atctggggaa 1500
gggcaggagg gaagagctgt ccatgcagcc acgcccattgg ccaggttggc 1550
ctcttctcag cctccctagg gccttgagcc ctcttgcaag ggccgtgct 1600
tccttgagcc tagttttttt ttacgtgatt tttgttaacat tcattttttt 1650

gtacagataa caggagttc tgactaatca aagctggat ttcccccgc 1700
gtcttattct tgcccttccc ccaaccagg ttgttaatcaa acaataaaaa 1750
catgtttgt tttgtttta aaaaaaaaa 1778

<210> 123
<211> 294
<212> PRT
<213> Homo sapiens

<400> 123
Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe
1 5 10 15
Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val
20 25 30
Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala
35 40 45
Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu
50 55 60
Ala Pro Ala Ile Ile Leu Ile Leu Gly Val Val Met Phe Met
65 70 75
Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr
80 85 90
Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met
95 100 105
Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr
110 115 120
Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr
125 130 135
Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys
140 145 150
Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys
155 160 165
Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly
170 175 180
Val Pro Tyr Thr Cys Cys Ile Arg Asn Thr Thr Glu Val Val Asn
185 190 195
Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val
200 205 210
Gln Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile
215 220 225
Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly

230 235 240

Ile Leu Leu Pro Gln Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr
245 250 255

Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp
260 265 270

Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly
275 280 285

Thr Gly Cys Cys Leu Cys Tyr Pro Asn
290

<210> 124
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 124
atcatctatt ccaccgtgtt ctggc 25

<210> 125
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 125
gacagagtgc tccatgatga tgtcc 25

<210> 126
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 126
cctgtctgtg ggcatctatg cagaggttga gcggcagaaa tataaaaccc 50

<210> 127
<211> 1636
<212> DNA
<213> Homo sapiens

<400> 127

gaggagcggg ccgaggactc cagcgtgcc aggtctggca tcctgcactt 50
gctgccctct gacacctggg aagatggccg gcccgtggac ctaccctt 100
ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150
tgcagttctc atcctcgcc caaaagtcat caaagaaaag ctgacacagg 200
agctgaagga ccacaacgcc accagcatcc tgcagcagct gcccgtgctc 250
agtgccatgc gggaaaagcc agccggaggc atccctgtgc tggcagcct 300
ggtaaacacc gtcctgaagc acatcatctg gctgaaggc atcacagcta 350
acatcctcca gctgcaggtg aagccctcg ccaatgacca ggagctgcta 400
gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtaa 450
gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500
tggacaccag tgcaagtggc cccacccgccc tggcctcag tgactgtgcc 550
accagccatg ggagcctgctg catccaactg ctgtataaagc tctccttcct 600
ggtaacgc tttagctaagc aggtcatgaa ctccttagtgc ccatccctgc 650
ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccattcaat 700
ggcatgtatg cagacccct gcagctggc aaggtgcccc ttccctcag 750
cattgaccgt ctggagtttgc accttctgtt tcctgccatc aagggtgaca 800
ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaagggtg 850
accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900
caacatcccg ttcagcctca tcgtgagtca ggacgtggc aaagctgcag 950
tggctgctgt gctctctcca gaagaattca tggcctgtt ggactctgtg 1000
cttcctgaga gtgcccattcg gctgaagtca agcatcgggc tgatcaatga 1050
aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100
aggacactcc cgagttttt atagaccaag gccatgccaa ggtggcccaa 1150
ctgatcgtgc tggaaagtgtt tccctccagt gaagccctcc gcccattgtt 1200
caccctggc atcgaagcca gctcggaaagc tcagtttac accaaagggtg 1250
accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300
atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350
cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400
gatctgggggt cccagtgtca ttggtgaagg cttgggatt cgaggcagct 1450

gagtcctcac tgaccaagga tgcccttgc cttactccag ctccttgc 1500
gaaaccaggc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550
ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600
cctctctgca atcaataaac acttgcctgt gaaaaaa 1636

<210> 128

<211> 484

<212> PRT

<213> Homo sapiens

<400> 128

Met	Ala	Gly	Pro	Trp	Thr	Phe	Thr	Leu	Leu	Cys	Gly	Leu	Leu	Ala
1				5				10				15		
Ala	Thr	Leu	Ile	Gln	Ala	Thr	Leu	Ser	Pro	Thr	Ala	Val	Leu	Ile
				20				25				30		
Leu	Gly	Pro	Lys	Val	Ile	Lys	Glu	Lys	Leu	Thr	Gln	Glu	Leu	Lys
				35				40				45		
Asp	His	Asn	Ala	Thr	Ser	Ile	Leu	Gln	Gln	Leu	Pro	Leu	Leu	Ser
				50				55				60		
Ala	Met	Arg	Glu	Lys	Pro	Ala	Gly	Gly	Ile	Pro	Val	Leu	Gly	Ser
				65				70				75		
Leu	Val	Asn	Thr	Val	Leu	Lys	His	Ile	Ile	Trp	Leu	Lys	Val	Ile
				80				85				90		
Thr	Ala	Asn	Ile	Leu	Gln	Leu	Gln	Val	Lys	Pro	Ser	Ala	Asn	Asp
				95				100				105		
Gln	Glu	Leu	Leu	Val	Lys	Ile	Pro	Leu	Asp	Met	Val	Ala	Gly	Phe
				110				115				120		
Asn	Thr	Pro	Leu	Val	Lys	Thr	Ile	Val	Glu	Phe	His	Met	Thr	Thr
				125				130				135		
Glu	Ala	Gln	Ala	Thr	Ile	Arg	Met	Asp	Thr	Ser	Ala	Ser	Gly	Pro
				140				145				150		
Thr	Arg	Leu	Val	Leu	Ser	Asp	Cys	Ala	Thr	Ser	His	Gly	Ser	Leu
				155				160				165		
Arg	Ile	Gln	Leu	Leu	Tyr	Lys	Leu	Ser	Phe	Leu	Val	Asn	Ala	Leu
				170				175				180		
Ala	Lys	Gln	Val	Met	Asn	Leu	Leu	Val	Pro	Ser	Leu	Pro	Asn	Leu
				185				190				195		
Val	Lys	Asn	Gln	Leu	Cys	Pro	Val	Ile	Glu	Ala	Ser	Phe	Asn	Gly
				200				205				210		
Met	Tyr	Ala	Asp	Leu	Leu	Gln	Leu	Val	Lys	Val	Pro	Ile	Ser	Leu
				215				220				225		

Ser Ile Asp Arg Leu Glu Phe Asp Leu Leu Tyr Pro Ala Ile Lys
 230 235 240
 Gly Asp Thr Ile Gln Leu Tyr Leu Gly Ala Lys Leu Leu Asp Ser
 245 250 255
 Gln Gly Lys Val Thr Lys Trp Phe Asn Asn Ser Ala Ala Ser Leu
 260 265 270
 Thr Met Pro Thr Leu Asp Asn Ile Pro Phe Ser Leu Ile Val Ser
 275 280 285
 Gln Asp Val Val Lys Ala Ala Val Ala Ala Val Leu Ser Pro Glu
 290 295 300
 Glu Phe Met Val Leu Leu Asp Ser Val Leu Pro Glu Ser Ala His
 305 310 315
 Arg Leu Lys Ser Ser Ile Gly Leu Ile Asn Glu Lys Ala Ala Asp
 320 325 330
 Lys Leu Gly Ser Thr Gln Ile Val Lys Ile Leu Thr Gln Asp Thr
 335 340 345
 Pro Glu Phe Phe Ile Asp Gln Gly His Ala Lys Val Ala Gln Leu
 350 355 360
 Ile Val Leu Glu Val Phe Pro Ser Ser Glu Ala Leu Arg Pro Leu
 365 370 375
 Phe Thr Leu Gly Ile Glu Ala Ser Ser Glu Ala Gln Phe Tyr Thr
 380 385 390
 Lys Gly Asp Gln Leu Ile Leu Asn Leu Asn Asn Ile Ser Ser Asp
 395 400 405
 Arg Ile Gln Leu Met Asn Ser Gly Ile Gly Trp Phe Gln Pro Asp
 410 415 420
 Val Leu Lys Asn Ile Ile Thr Glu Ile Ile His Ser Ile Leu Leu
 425 430 435
 Pro Asn Gln Asn Gly Lys Leu Arg Ser Gly Val Pro Val Ser Leu
 440 445 450
 Val Lys Ala Leu Gly Phe Glu Ala Ala Glu Ser Ser Leu Thr Lys
 455 460 465
 Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser
 470 475 480
 Pro Val Ser Gln

<210> 129
<211> 2213
<212> DNA
<213> *Homo sapiens*

<400> 129
gagcgaacat ggcagcgcgt tggcggttt ggtgtgtctc tgtgaccatg 50
gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100
aaagaaggag atggtgttat ctgaaaaggt tagtcagctg atgaatgga 150
ctaacaaaag acctgtataa agaatgaatg gagacaagtt ccgtcgccct 200
tgaaaaagccc caccgagaaaa ttactccgtt atcgtcatgt tcactgctct 250
ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300
agatcctggc aaactcctgg cgatactcca gtgcattcac caacaggata 350
tttttgcca tggtgattt tgatgaaggc tctgatgtat ttcatgatgct 400
aaacatgaat tcagctccaa ctttcatcaa ctttcctgca aaaggaaac 450
ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcatgatgag 500
cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550
tagacccca aattatgctg gtcccttat gttgggattt ctttggctg 600
ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650
aataaaaactg gatgggctt tgcagcttg tgttttgtgc ttgctatgac 700
atctggtcaa atgtggAACC atataagagg accaccatat gcccataaga 750
atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800
ttttagctg aaacacacat tgttttctg ttaatggtg gagttacatt 850
aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900
agcggaaagat aatgtgtgtg gctggattt gacttggatg attattcttc 950
agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000
ctttctgatg agttaaaaag gtcccgaga tatatagaca ctggagact 1050
ggaaattgaa aaacgaaaat cgtgtgttt tgaaaagaag aatgcaactt 1100
gtatattttt tattacctt tttttcaag tgatttaat agttaatcat 1150
ttaaccaaag aagatgtgt agtcccttaac aagcaatcct ctgtcaaaat 1200
ctgaggtatt tgaaaataat tatccttta accttcttt cccagtgaac 1250
tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300
aactactact ttgttttagt tagaacaaag ctcaaaaacta ctttagttaa 1350
cttggcatac tgattttata ttgccttata caaagatggg gaaagtaagt 1400
cctgaccagg tgccccaca tatgcctgtt acagataact acattaggaa 1450

ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcac 1500
tttcctttg agtagagaaa ttatgtgtgt catgtggctc tctgaaaatg 1550
gaacaccatt ctccagagca cacgtctagc cctcagcaag acagttgtt 1600
ctcctcctcc ttgcataattt cctactgcgc tccagcctga gtgatagagt 1650
gagactctgt ctcaaaaaaa agtatctcta aatacaggat tataattct 1700
gcttgagttat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750
tccatctcct tagtttctt ttaaggtgac ccatctgtga taaaaatata 1800
gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850
aaatttagagt ttgtcactta ttccatttgtt acctaagaga aaaataggct 1900
cagttagaaa aggactccct ggccaggcgca agtgacttac gcctgtaatc 1950
tcagcacttt gggaggccaa ggcaggcaga tcacgaggc aggagttcga 2000
gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050
attagctggg tgtggtggca ggacgcgtta atcccagcta cacaggaggc 2100
tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150
agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200
aaaaaaaaaa aaa 2213

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met	Ala	Ala	Arg	Trp	Arg	Phe	Trp	Cys	Val	Ser	Val	Thr	Met	Val
1				5					10				15	

Val	Ala	Leu	Leu	Ile	Val	Cys	Asp	Val	Pro	Ser	Ala	Ser	Ala	Gln
				20				25					30	

Arg	Lys	Lys	Glu	Met	Val	Leu	Ser	Glu	Lys	Val	Ser	Gln	Leu	Met
				35				40					45	

Glu	Trp	Thr	Asn	Lys	Arg	Pro	Val	Ile	Arg	Met	Asn	Gly	Asp	Lys
				50				55					60	

Phe	Arg	Arg	Leu	Val	Lys	Ala	Pro	Pro	Arg	Asn	Tyr	Ser	Val	Ile
				65				70					75	

Val	Met	Phe	Thr	Ala	Leu	Gln	Leu	His	Arg	Gln	Cys	Val	Val	Cys
					80			85					90	

Lys	Gln	Ala	Asp	Glu	Glu	Phe	Gln	Ile	Leu	Ala	Asn	Ser	Trp	Arg
				95				100					105	

Tyr Ser Ser Ala Phe Thr Asn Arg Ile Phe Phe Ala Met Val Asp
 110 115 120
 Phe Asp Glu Gly Ser Asp Val Phe Gln Met Leu Asn Met Asn Ser
 125 130 135
 Ala Pro Thr Phe Ile Asn Phe Pro Ala Lys Gly Lys Pro Lys Arg
 140 145 150
 Gly Asp Thr Tyr Glu Leu Gln Val Arg Gly Phe Ser Ala Glu Gln
 155 160 165
 Ile Ala Arg Trp Ile Ala Asp Arg Thr Asp Val Asn Ile Arg Val
 170 175 180
 Ile Arg Pro Pro Asn Tyr Ala Gly Pro Leu Met Leu Gly Leu Leu
 185 190 195
 Leu Ala Val Ile Gly Gly Leu Val Tyr Leu Arg Arg Ser Asn Met
 200 205 210
 Glu Phe Leu Phe Asn Lys Thr Gly Trp Ala Phe Ala Ala Leu Cys
 215 220 225
 Phe Val Leu Ala Met Thr Ser Gly Gln Met Trp Asn His Ile Arg
 230 235 240
 Gly Pro Pro Tyr Ala His Lys Asn Pro His Thr Gly His Val Asn
 245 250 255
 Tyr Ile His Gly Ser Ser Gln Ala Gln Phe Val Ala Glu Thr His
 260 265 270
 Ile Val Leu Leu Phe Asn Gly Gly Val Thr Leu Gly Met Val Leu
 275 280 285
 Leu Cys Glu Ala Ala Thr Ser Asp Met Asp Ile Gly Lys Arg Lys
 290 295 300
 Ile Met Cys Val Ala Gly Ile Gly Leu Val Val Leu Phe Phe Ser
 305 310 315
 Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr
 320 325 330
 Ser Phe Leu Met Ser
 335

<210> 131
 <211> 2476
 <212> DNA
 <213> Homo sapiens

<400> 131
 aagcaaccaa actgcaagct ttgggagttt ttcgctgtcc ctgccctgct 50
 ctgcttaggga gagaacgcaca gagggaggcg gctggcccg 100

tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150
cttggcgctg gcggtaactgg ccccccggagc agggggagcag aggccggagag 200
cagccaaagc gcccaatgtg gtgctggtcg tgagcgactc ctgcgatgga 250
aggtaacat ttcatccagg aagtcaaggta gtgaaacttc cttttatcaa 300
ctttatgaag acacgtggga ctcccttct gaatgcctac acaaactctc 350
caatttggc cccatcacgc gcagcaatgt ggagtggcct ctgcactcac 400
ttaacagaat ctggaaataa ttttaagggt ctagatccaa attatacaac 450
atggatggat gtcatggaga ggcataggcta ccgaacacag aaatttggga 500
aactggacta tacttcagga catcaactcca ttagtaatcg tgtggaaagcg 550
tggacaagag atgttgctt cttactcaga caagaaggca ggcccatgg 600
taatcttac cgtaacagga ctaaagttagt agtgatggaa agggattggc 650
agaatacaga caaagcagta aactggtaa gaaaggaagc aattaattac 700
actgaaccat ttgttattta ctgggatta aatttaccac acccttaccc 750
ttcaccatct tctggagaaa atttggatc ttcaacattt cacacatctc 800
tttattggct tgaaaaagtgc tctcatgatg ccatcaaaat cccaaagtgg 850
tcaccttgt cagaaatgca ccctgttagat tattactctt ctatataaaa 900
aaactgcact ggaagattta caaaaaaaga aattaagaat attagagcat 950
tttattatgc tatgtgtgct gagacagatg ccatgctgg tggaaattatt 1000
ttggcccttc atcaattaga tcttcttcag aaaactattt tcataactc 1050
ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatga 1100
gcatgtacga ggctagtgc a catgttccgc ttttgcgtat gggaccagga 1150
attaaagccg gcctacaagt atcaaatgtg gtttctctt tggatattta 1200
ccctaccatg ctgtatattt ctggaaattcc tctgcctcag aacctgagtg 1250
gatactctt gttgccgtt tcatcagaaa catttaagaa tgaacataaa 1300
gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350
tgtgaatgcc tccacactaca tgcttcgaac taaccactgg aaatatata 1400
cctattcgga tggtgcatca atattgcctc aactcttga tcttcctcg 1450
gatccagatg aattaacaaa tggatgttgc aaatttccag aaattactta 1500
ttctttggat cagaagcttc attccattat aaactaccct aaagttctg 1550

cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600
 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650
 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700
 aaaccatat gaatccaaga gcagttgaa caaaaagttt aaaaatagtg 1750
 ttctagagat acatataaat atattacaag atcataatta tgtatTTAA 1800
 atgaaacagt tttataattt accaagttt ggccgggcac agtggctcac 1850
 acctgtatc ccaggactt gggaggctga ggaaagcaga tcacaaggc 1900
 aagagattga gaccatcctg gccaaacatgg tgaaaccctg tctctactaa 1950
 aaatacaaaa attagctggg cgcgggtggc cacacctata gtctcagcta 2000
 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050
 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100
 tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aattttcat 2150
 tattttgtaa gaatgttagt tattttaaga taaaatgccat atgattataa 2200
 aatcacatat tttcaaaaat ggtttattt taggccttgc tacaatttct 2250
 aacaatttag tggaagtatc aaaaggattt aagcaaatac tgtaacagtt 2300
 atgttccttt aaataataga gaatataaaa tattgtataa atatgtatca 2350
 taaaatagtt gtatgtgagc atttgtatgtt gaaaaaaaaaaaaaaa 2400
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2450
 aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2476

<210> 132
 <211> 536
 <212> PRT
 <213> Homo sapiens

<400> 132
 Met Leu Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala
 1 5 10 15
 Val Leu Ala Pro Gly Ala Gly Glu Gln Arg Arg Arg Ala Ala Lys
 20 25 30
 Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg
 35 40 45
 Leu Thr Phe His Pro Gly Ser Gln Val Val Lys Leu Pro Phe Ile
 50 55 60
 Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr
 65 70 75

Asn Ser Pro Ile Cys Cys Pro Ser Arg Ala Ala Met Trp Ser Gly
 80 85 90
 Leu Phe Thr His Leu Thr Glu Ser Trp Asn Asn Phe Lys Gly Leu
 95 100 105
 Asp Pro Asn Tyr Thr Thr Trp Met Asp Val Met Glu Arg His Gly
 110 115 120
 Tyr Arg Thr Gln Lys Phe Gly Lys Leu Asp Tyr Thr Ser Gly His
 125 130 135
 His Ser Ile Ser Asn Arg Val Glu Ala Trp Thr Arg Asp Val Ala
 140 145 150
 Phe Leu Leu Arg Gln Glu Gly Arg Pro Met Val Asn Leu Ile Arg
 155 160 165
 Asn Arg Thr Lys Val Arg Val Met Glu Arg Asp Trp Gln Asn Thr
 170 175 180
 Asp Lys Ala Val Asn Trp Leu Arg Lys Glu Ala Ile Asn Tyr Thr
 185 190 195
 Glu Pro Phe Val Ile Tyr Leu Gly Leu Asn Leu Pro His Pro Tyr
 200 205 210
 Pro Ser Pro Ser Ser Gly Glu Asn Phe Gly Ser Ser Thr Phe His
 215 220 225
 Thr Ser Leu Tyr Trp Leu Glu Lys Val Ser His Asp Ala Ile Lys
 230 235 240
 Ile Pro Lys Trp Ser Pro Leu Ser Glu Met His Pro Val Asp Tyr
 245 250 255
 Tyr Ser Ser Tyr Thr Lys Asn Cys Thr Gly Arg Phe Thr Lys Lys
 260 265 270
 Glu Ile Lys Asn Ile Arg Ala Phe Tyr Tyr Ala Met Cys Ala Glu
 275 280 285
 Thr Asp Ala Met Leu Gly Glu Ile Ile Leu Ala Leu His Gln Leu
 290 295 300
 Asp Leu Leu Gln Lys Thr Ile Val Ile Tyr Ser Ser Asp His Gly
 305 310 315
 Glu Leu Ala Met Glu His Arg Gln Phe Tyr Lys Met Ser Met Tyr
 320 325 330
 Glu Ala Ser Ala His Val Pro Leu Leu Met Met Gly Pro Gly Ile
 335 340 345
 Lys Ala Gly Leu Gln Val Ser Asn Val Val Ser Leu Val Asp Ile
 350 355 360
 Tyr Pro Thr Met Leu Asp Ile Ala Gly Ile Pro Leu Pro Gln Asn

365	370	375
Leu Ser Gly Tyr Ser	Leu Leu Pro Leu Ser Ser	Glu Thr Phe Lys
380	385	390
Asn Glu His Lys Val Lys Asn	Leu His Pro Pro Trp Ile	Leu Ser
395	400	405
Glu Phe His Gly Cys Asn Val Asn Ala Ser	Thr Tyr Met Leu Arg	
410	415	420
Thr Asn His Trp Lys Tyr Ile Ala Tyr	Ser Asp Gly Ala Ser	Ile
425	430	435
Leu Pro Gln Leu Phe Asp Leu Ser Ser	Asp Pro Asp Glu Leu	Thr
440	445	450
Asn Val Ala Val Lys Phe Pro Glu Ile	Thr Tyr Ser Leu Asp	Gln
455	460	465
Lys Leu His Ser Ile Ile Asn Tyr Pro	Lys Val Ser Ala Ser	Val
470	475	480
His Gln Tyr Asn Lys Glu Gln Phe Ile	Lys Trp Lys Gln Ser	Ile
485	490	495
Gly Gln Asn Tyr Ser Asn Val Ile Ala	Asn Leu Arg Trp His	Gln
500	505	510
Asp Trp Gln Lys Glu Pro Arg Lys Tyr	Glu Asn Ala Ile Asp	Gln
515	520	525
Trp Leu Lys Thr His Met Asn Pro Arg	Ala Val	
530	535	

<210> 133

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 133

```

gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50
tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100
gcttctactg agaggtctgc catggcctct ctggcctcc aacttgtgg 150
ctacatccta ggccttctgg ggctttggg cacactggtt gccatgctgc 200
tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250
gttggcttct ccaaggccct ctggatggaa tgtgccacac acagcacagg 300
catcacccag tgtgacatct atagcaccct tctggcctg cccgctgaca 350
tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcccccctg 400
gcctgcatta tctctgtgggt gggcatgaga tgcacagtt tctgccagga 450

```

atcccgagcc aaagacagag tggcggtgc aggtggagtc ttttcatcc 500
ttggaggcct cctgggattc attcctgttg cctggaatct tcataggatc 550
ctacgggact tctactcacc actgggtgcct gacagcatga aattttagat 600
tggagaggct cttaacttgg gcattatttc ttccctgttc tccctgatag 650
ctggaaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700
tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750
gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800
cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850
gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900
actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950
ggattgagca aaggcagaaa tggggctag tgtaacagca tgcaggttga 1000
attgccaagg atgctcgcca tgccagcctt tctgtttcc tcaccttgc 1050
gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100
agccaggact cagaggatcc ct当地ccctc tggtttacct gggactccat 1150
ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200
ccctctctct ggctgagggt ggctcttagc tcattgctgg ggatggaaag 1250
gagaagcagt ggctttgtg ggcattgctc taacctactt ctcaagcttc 1300
cctccaaaga aactgattgg ccctggaacc tccatccac tcttggat 1350
actccacagt gtccagacta atttgtcat gaactgaaat aaaaccatcc 1400
tacggtatcc aggaaacaga aagcaggatg caggatggga ggacaggaag 1450
gcagcctggg acatttaaaa aaata 1475

<210> 134

<211> 230

<212> PRT

<213> Homo sapiens

<400> 134

Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10 15

Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp
20 25 30

Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly
35 40 45

Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly

50	55	60
Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu	Leu Gly Leu Pro Ala	
65	70	75
Asp Ile Gln Ala Ala Gln Ala Met Met Val	Thr Ser Ser Ala Ile	
80	85	90
Ser Ser Leu Ala Cys Ile Ile Ser Val Val	Gly Met Arg Cys Thr	
95	100	105
Val Phe Cys Gln Glu Ser Arg Ala Lys	Asp Arg Val Ala Val Ala	
110	115	120
Gly Gly Val Phe Phe Ile Leu Gly Gly	Leu Leu Gly Phe Ile Pro	
125	130	135
Val Ala Trp Asn Leu His Gly Ile Leu Arg	Asp Phe Tyr Ser Pro	
140	145	150
Leu Val Pro Asp Ser Met Lys Phe Glu	Ile Gly Glu Ala Leu Tyr	
155	160	165
Leu Gly Ile Ile Ser Ser Leu Phe Ser	Leu Ile Ala Gly Ile Ile	
170	175	180
Leu Cys Phe Ser Cys Ser Ser Gln Arg	Asn Arg Ser Asn Tyr Tyr	
185	190	195
Asp Ala Tyr Gln Ala Gln Pro Leu Ala	Thr Arg Ser Ser Pro Arg	
200	205	210
Pro Gly Gln Pro Pro Lys Val Lys Ser	Glu Phe Asn Ser Tyr Ser	
215	220	225
Leu Thr Gly Tyr Val		
230		

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

```

gcactgctgc tgtcccatca gctgctctga agctccatgg tgcccagaat 50
cttcgctcct gcttatgtgt cagtctgtct cctccttttg tgtccaaggg 100
aagtcatcgcc tcccgtggc tcagaaccat ggctgtgccaa gcccgcaccc 150
aggtgtggag acaagatcta caaccccttg gagcagtgtct gttacaatga 200
cgccatcggt tccctgagcg agacccgccaa atgtggtccc ccctgcacct 250
tctggccctg ctttgagctc tgctgtcttg attcctttgg cctcacaaac 300
gattttgttg tgaagctgaa ggttcagggt gtgaattccc agtgccactc 350

```

atctcccatc tccagtaaat gtgaaaggcag aagacgtttt ccctgagaag 400
acatagaaag aaaatcaact ttcactaagg catctcagaa acataggcta 450
aggtaatatg tgtaccagta gagaagcctg aggaatttac aaaatgatgc 500
agctccaagc cattgtatgg cccatgtggg agactgatgg gacatggaga 550
atgacagtag attatcagga aataaataaa gtggttttc caatgtacac 600
acctgtaaaa 610

<210> 136
<211> 119
<212> PRT
<213> Homo sapiens

<400> 136
Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu
1 5 10 15
Leu Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu
20 25 30
Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr
35 40 45
Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu
50 55 60
Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys
65 70 75
Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe
80 85 90
Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser
95 100 105
Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Arg Phe Pro
110 115

<210> 137
<211> 771
<212> DNA
<213> Homo sapiens

<400> 137
ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50
gtcttgcca ttttctgcat ctccaggctc ctctgctcac acggagcccc 100
agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150
gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 200
gtcgtgccct tggccaggac ccagacgtgt ggaaactgca cttcagagt 250

ctgcttgag cagtgcgtcc cctggacatt catggtaag ctgataaacc 300
agaactgcga ctcagcccg acctcgatg acaggcttg tcgcagtgtc 350
agctaatttga acatcaggaa aacgatgact cctggattct ctttcctggg 400
tggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450
gctgtttggg ggccagagaa acacacactc aactgccac ttcatctgt 500
gacctgtctg agggccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550
ccttcataaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600
ggactctgaa ccctcctgat gaccctatg gccaacatca acccggcacc 650
accccaaggc tggctgggaa acccttcacc cttctgtgag atttccatc 700
atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750
tatgtacttt ataaatgaaa a 771

<210> 138

<211> 110

<212> PRT

<213> Homo sapiens

<400> 138

Met	Ala	Pro	Arg	Gly	Cys	Ile	Val	Ala	Val	Phe	Ala	Ile	Phe	Cys
1				5				10				15		

Ile	Ser	Arg	Leu	Leu	Cys	Ser	His	Gly	Ala	Pro	Val	Ala	Pro	Met
				20				25				30		

Thr	Pro	Tyr	Leu	Met	Leu	Cys	Gln	Pro	His	Lys	Arg	Cys	Gly	Asp
				35				40			45			

Lys	Phe	Tyr	Asp	Pro	Leu	Gln	His	Cys	Cys	Tyr	Asp	Asp	Ala	Val
				50				55			60			

Val	Pro	Leu	Ala	Arg	Thr	Gln	Thr	Cys	Gly	Asn	Cys	Thr	Phe	Arg
				65				70			75			

Val	Cys	Phe	Glu	Gln	Cys	Cys	Pro	Trp	Thr	Phe	Met	Val	Lys	Leu
				80				85			90			

Ile	Asn	Gln	Asn	Cys	Asp	Ser	Ala	Arg	Thr	Ser	Asp	Asp	Arg	Leu
				95				100			105			

Cys	Arg	Ser	Val	Ser										
				110										

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

gggggcgggt gcctggagca cggcgctggg gccgcccga ggcgtcactc 50
gctcgcaactc agtcgcggga ggcttccccg cgccggccgc gtcccggccg 100
ctccccggca ccagaagttc ctctgcgcgt ccgacggcga catggcgtc 150
cccacggccc tggaggccgg cagctggcgc tggggatccc tgctttcgc 200
tctttcctg gctgcgtccc taggtccggt ggcagccttc aaggtcgcca 250
cgccgtattc cctgtatgtc tgtcccgagg ggcagaacgt caccctcacc 300
tgcaaggctct tggccctgt ggacaaaggg cacgatgtga ctttctacaa 350
gacgtggtac cgcaagctcga gggcgaggt gcagacctgc tcagagcgcc 400
ggcccatccg caacctcacg ttccaggacc ttcacctgca ccatggaggc 450
caccaggctg ccaacaccag ccacgacctg gtcagcgcc acgggctgga 500
gtcggcctcc gaccaccatg gcaacttctc catcaccatg cgcaacctga 550
ccctgctgga tagcggcctc tactgctgcc tggtggtgga gatcaggcac 600
caccactcgg agcacagggt ccatggtgcc atggagctgc aggtgcagac 650
aggcaaagat gcaccatcca actgtgtggt gtacccatcc tcctccagg 700
atagtaaaaa catcacggct gcagccctgg ctacgggtgc ctgcacatcgta 750
ggaatcctct gcctccccct catcctgctc ctggtctaca agcaaaggca 800
ggcagcctcc aaccgcccgtg cccaggagct ggtgcggatg gacagcaaca 850
ttcaaggat tgaaaacccc ggcttgaag cctcaccacc tgcccagggg 900
atacccgagg ccaaagtca gacccctg tcctatgtgg cccagcggca 950
gccttctgag tctggcgcc atctgcttc ggagcccagc accccctgt 1000
ctcctccagg ccccgagac gtcttctcc catccctgga ccctgtccct 1050
gactctccaa actttgaggt catctagccc agctggggga cagtggctg 1100
tttgtggctgg gtctggggca ggtgcatttg agccaggagct ggctctgtga 1150
gtggcctccct tggcctcggc cctgggtccc tccctcctgc tctggctca 1200
gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250
atggggatgc tggacggctc agccctgtt ccaaggattt tgggtgctg 1300
agattctccc ctagagaccc gaaattcacc agctacagat gccaaatgac 1350
ttacatctta agaagtctca gaacgtccag ccctcagca gctctcggtc 1400
tgagacatga gccttggat gtggcagcat cagtggaca agatggacac 1450

tgggccaccc tcccaggcac cagacacagg gcacggtgga gagacttctc 1500
ccccgtggcc gccttggctc ccccgtttg cccgaggctg ctcttctgtc 1550
agacttcctc tttgtaccac agtggctctg gggccaggcc tgccctgcca 1600
ctggccatcg ccacccccc cagctgcctc ctaccagcag ttctctgaa 1650
gatctgtcaa caggttaagt caatctgggg cttccactgc ctgcattcca 1700
gtccccagag cttgggtggc ccgaaaacggg aagtacatat tggggcatgg 1750
tggcctccgt gagcaaatgg tgtcttggc aatctgaggc caggacagat 1800
gttgccccac ccactggaga tggtgctgag ggaggtgggt gggccttct 1850
gggaaggtga gtggagaggg gcacctgccc cccgcctcc ccatccccta 1900
ctcccaactgc tcagcgcggg ccattgcaag ggtgccacac aatgtcttgt 1950
ccaccctggg acacttctga gtatgaagcg ggatgctatt aaaaactaca 2000
tgggaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaga 2044

<210> 140

<211> 311

<212> PRT

<213> Homo sapiens

<400> 140

Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly
1 5 10 15

Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val
20 25 30

Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro
35 40 45

Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val
50 55 60

Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser
65 70 75

Ser Arg Gly Glu Val Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg
80 85 90

Asn Leu Thr Phe Gln Asp Leu His His Gly Gly His Gln
95 100 105

Ala Ala Asn Thr Ser His Asp Leu Ala Gln Arg His Gly Leu Glu
110 115 120

Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn
125 130 135

Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu

	140	145	150
Ile Arg His His His Ser Glu His Arg Val His Gly Ala Met Glu			
155	160	165	
Leu Gln Val Gln Thr Gly Lys Asp Ala Pro Ser Asn Cys Val Val			
170	175	180	
Tyr Pro Ser Ser Ser Gln Asp Ser Glu Asn Ile Thr Ala Ala Ala			
185	190	195	
Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu			
200	205	210	
Ile Leu Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg			
215	220	225	
Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile			
230	235	240	
Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro			
245	250	255	
Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln			
260	265	270	
Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro			
275	280	285	
Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp			
290	295	300	
Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile			
305	310		

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141

```

cccacgcgtc cgcgcccttc ctttctgctg gacccctt cgtctctcca 50
tctctccctc ctttccccgc gttcttttc cacctttctc ttcttcccac 100
cttagacctc ctttcctgcc ctcccttc gcccaccgct gttccctggc 150
ccttctccga ccccgctcta gcagcagacc tcctgggttc tgtgggttga 200
tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cttcccgact 250
ccgctcccg accagcggcc tgaccctgg gaaaggatgg ttcccgaggt 300
gagggtcctc tcctccttgc tggactcgc gctgctctgg ttccccctgg 350
actcccacgc tcgagccgc ccagacatgt tctgcctttt ccatggaaag 400
agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450

```

1017472101

gatgtactgc ctgcgctgta cctgctcaga gggcgccat gtgagttgtt 500
accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550
cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600
ggccccacca aagtccctgcc agcacaacgg gaccatgtac caacacggag 650
agatcttcag tgcccatgag ctgttcccct cccgcctgcc caaccagtgt 700
gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750
ccccgaacca ggctgcccag caccctccc actgccagac tcctgctgcc 800
aagcctgcaa agatgaggca agtgagcaat cgatgaaga ggacagtgtg 850
cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgtgc 900
tgggagaaag agaggccccgg gcaccccccagc ccccactggc ctcagcgccc 950
ctctgagctt catccctcgc cacttcagac ccaagggagc aggtagcaca 1000
actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050
cgaaaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100
tcggccctt gccctgcata ctagcacct gtgaggatgg ccggcaggac 1150
tgccagcgtg tgacctgtcc caccgagttc ccctgcccgc accccgagaa 1200
agtggctggg aagtgctgca agatttgcac agaggacaaa gcagaccctg 1250
gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300
ctcgccaca catcggtatc cccaaagccca gacaacctgc gtcgctttgc 1350
cctggaacac gaggcctcgg acttggtgga gatctacctc tggaaagctgg 1400
taaaagatga gaaaaactgag gtcagagag gtgaagtacc tggcccaagg 1450
ccacacagcc agaatcttcc acttgactca gatcaagaaa gtcaggaagc 1500
aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550
gaaggtcaact ggaacgtctt cctagcccag accctggagc tgaaggtcac 1600
ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650
gatatgagct gtataattgt ttttattata tattaataaa taagaagttg 1700
cattaccctc aaaaaaaaaa aaaaaaaaaa aa 1732

<210> 142
<211> 451
<212> PRT
<213> Homo sapiens

<400> 142

Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala
 1 5 10 15

Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp
 20 25 30

Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser
 35 40 45

Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
 50 55 60

Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
 65 70 75

Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln
 80 85 90

Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg
 95 100 105

Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His
 110 115 120

Gly Glu Ile Phe Ser Ala His Glu Leu Phe Pro Ser Arg Leu Pro
 125 130 135

Asn Gln Cys Val Leu Cys Ser Cys Thr Glu Gly Gln Ile Tyr Cys
 140 145 150

Gly Leu Thr Thr Cys Pro Glu Pro Gly Cys Pro Ala Pro Leu Pro
 155 160 165

Leu Pro Asp Ser Cys Cys Gln Ala Cys Lys Asp Glu Ala Ser Glu
 170 175 180

Gln Ser Asp Glu Glu Asp Ser Val Gln Ser Leu His Gly Val Arg
 185 190 195

His Pro Gln Asp Pro Cys Ser Ser Asp Ala Gly Arg Lys Arg Gly
 200 205 210

Pro Gly Thr Pro Ala Pro Thr Gly Leu Ser Ala Pro Leu Ser Phe
 215 220 225

Ile Pro Arg His Phe Arg Pro Lys Gly Ala Gly Ser Thr Thr Val
 230 235 240

Lys Ile Val Leu Lys Glu Lys His Lys Lys Ala Cys Val His Gly
 245 250 255

Gly Lys Thr Tyr Ser His Gly Glu Val Trp His Pro Ala Phe Arg
 260 265 270

Ala Phe Gly Pro Leu Pro Cys Ile Leu Cys Thr Cys Glu Asp Gly
 275 280 285

Arg Gln Asp Cys Gln Arg Val Thr Cys Pro Thr Glu Tyr Pro Cys

290	295	300
Arg His Pro Glu Lys Val Ala Gly Lys Cys Cys Lys Ile Cys Pro		
305	310	315
Glu Asp Lys Ala Asp Pro Gly His Ser Glu Ile Ser Ser Thr Arg		
320	325	330
Cys Pro Lys Ala Pro Gly Arg Val Leu Val His Thr Ser Val Ser		
335	340	345
Pro Ser Pro Asp Asn Leu Arg Arg Phe Ala Leu Glu His Glu Ala		
350	355	360
Ser Asp Leu Val Glu Ile Tyr Leu Trp Lys Leu Val Lys Asp Glu		
365	370	375
Glu Thr Glu Ala Gln Arg Gly Glu Val Pro Gly Pro Arg Pro His		
380	385	390
Ser Gln Asn Leu Pro Leu Asp Ser Asp Gln Glu Ser Gln Glu Ala		
395	400	405
Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro		
410	415	420
Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala		
425	430	435
Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys		
440	445	450

Thr

<210> 143
<211> 693
<212> DNA
<213> Homo sapiens

<400> 143
ctaggcctgcg ccaagggtta gtgagaccgc gcggcaacag cttgcggctg 50
cggggagctc ccgtgggcgc tccgctggct gtgcaggcgg ccatggattc 100
cttgcggaaa atgctgatct cagtcgcaat gctggcgca gggctggcg 150
tgggctacgc gtcctcggt atcgtgaccc cgggagagcg gcggaaacg 200
gaaatgctaa aggagatgcc actgcaggac ccaaggagca gggaggaggc 250
ggccaggacc cagcagctat tgctggccac tctgcaggag gcagcgacca 300
cgcaggagaa cgtggcctgg aggaagaact ggatggttgg cggcgaaggc 350
ggcgccagcg ggaggtcacc gtgagaccgg acttgccctcc gtggcgccg 400
gaccttggct tgggcgcagg aatccgaggc agcctttctc cttcgtggc 450

ccagcggaga gtccggaccg agataccatg ccaggactct ccggggtcct 500
gtgagctgcc gtcgggtgag cacgttccc ccaaaccctg gactgactgc 550
tttaagggccca gcaaggcggg ccagggccga gacgcgagtc ggatgtggtg 600
aactgaaaaga accaataaaa tcatgttcct ccaaaaaaaaaaaaaaaa 650
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaa 693

<210> 144
<211> 93
<212> PRT
<213> Homo sapiens

<400> 144
Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly
1 5 10 15
Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro
20 25 30
Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln
35 40 45
Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu
50 55 60
Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala
65 70 75
Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Ala Ser Gly
80 85 90
Arg Ser Pro

<210> 145
<211> 1883
<212> DNA
<213> Homo sapiens

<400> 145
caggagagaa ggcaccgccc ccaccccgcc tccaaagcta accctcgccc 50
ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100
caggctgccca tggggccca gaccctctc ctcatcttgt tcctttgtc 150
atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200
aacgccgact agctgctta gaggaacggc tggcccagtg ccaggaccag 250
agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300
actgctggag gtggcagaga aggagcgggaa ggcactcaga actgaggccg 350
acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400

gagacccaga acccagctct gccctgtgta gagtttgatg agaagggtgac 450
tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500
tggtgacaga ctgtggctac acaatctctc aagttagatc aatgaagatt 550
ctgaagcgat ttgggtggccc agctggtcta tggaccaagg atccactggg 600
gcaaacagag aagatctacg tgtagatgg gacacagaat gacacagcct 650
ttgtcttccc aaggctgcgt gacttcaccc ttgccatggc tgcccgaaa 700
gcttcccgag tccgggtgcc cttccctgg gtaggcacag ggcagctgg 750
atatggtggc tttctttatt ttgctcgag gcctcctgga agacctgg 800
gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850
aaccgaacag tggggacag ctcagtattc ccagcagagg ggctgatccc 900
cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950
aaggctttg ggctgtctat gccacccggg aggatgacag gcacttgt 1000
ctggccaagt tagatccaca gacactggac acagagcagc agtggacac 1050
accatgtccc agagagaatg ctgaggctgc ctttgcatac tgtggaccc 1100
tctatgtcgt ctataacacc cgtcctgcca gtcggcccg catccagtgc 1150
tcctttgatg ccagcggcac cctgaccct gaacggcag cactccctta 1200
ttttccccgc agatatggtg cccatgccag cctccgtat aaccccgag 1250
aacgccagct ctatgcctgg gatgatggct accagattgt ctataagctg 1300
gagatgagga agaaagagga ggaggttga ggagctagcc ttgtttttg 1350
catcttctc actcccatac atttatatta tatccccact aaatttctt 1400
ttcctcattc ttcaaatgtg ggcagttgt ggctcaaatac ctctatattt 1450
ttagccaatg gcaatcaaat tcttcagct ctttgcattc atacggact 1500
ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550
ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600
cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650
agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700
acgtccagct ctgtcctctc ttcctcactc ctcccttcag tgtcctgagg 1750
aacaggactt tctccacatt gtttgcattt gcaacatttt gcattaaaag 1800
aaaaatccac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1850

aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaa 1883

<210> 146

<211> 406

<212> PRT

<213> Homo sapiens

<400> 146

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp
1 5 10 15

Ser Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met
20 25 30

Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln
35 40 45

Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn
50 55 60

Lys Met Leu Pro Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala
65 70 75

Leu Arg Thr Glu Ala Asp Thr Ile Ser Gly Arg Val Asp Arg Leu
80 85 90

Glu Arg Glu Val Asp Tyr Leu Glu Thr Gln Asn Pro Ala Leu Pro
95 100 105

Cys Val Glu Phe Asp Glu Lys Val Thr Gly Gly Pro Gly Thr Lys
110 115 120

Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr Asp Cys
125 130 135

Gly Tyr Thr Ile Ser Gln Val Arg Ser Met Lys Ile Leu Lys Arg
140 145 150

Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys Asp Pro Leu Gly Gln
155 160 165

Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln Asn Asp Thr Ala
170 175 180

Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala
185 190 195

Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val Gly Thr
200 205 210

Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg Pro
215 220 225

Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln
230 235 240

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser
245 250 255

Val Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala
260 265 270

Asp Thr Tyr Ile Asp Leu Val Ala Asp Glu Glu Gly Leu Trp Ala
275 280 285

Val Tyr Ala Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys
290 295 300

Leu Asp Pro Gln Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro
305 310 315

Cys Pro Arg Glu Asn Ala Glu Ala Ala Phe Val Ile Cys Gly Thr
320 325 330

Leu Tyr Val Val Tyr Asn Thr Arg Pro Ala Ser Arg Ala Arg Ile
335 340 345

Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro Glu Arg Ala
350 355 360

Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala Ser Leu
365 370 375

Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp Gly
380 385 390

Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu
395 400 405

Val

<210> 147
<211> 2052
<212> DNA
<213> Homo sapiens

<400> 147
gacagctgtg tctcgatgga gtagactctc agaacagcgc agttgccct 50
ccgctcacgc agaggctctc cgtggcttcc gcaccttgag cattaggcca 100
gttctcctct tctctcta at ccatccgtca cctctcctgt catccgttcc 150
catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200
ttggttctga gtctcctcaa gctggatca gggcagtggc aggtgtttgg 250
gccagacaag cctgtccagg ccttgggggg ggaggacgca gcattctcct 300
gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350
aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400
gccatattatg cagatgccac agtatcaagg caggacaaaa ctggtaagg 450
attctattgc ggagggggcgc atctctctga ggctggaaaa cattactgtg 500

ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttaactacca 550
gaaggccatc tggagctac aggtgtcagc actgggctca gttcctctca 600
tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650
tcgggctggt tccccggcc cacagcgaag tggaaaggcacaaggaca 700
ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgttg 750
atgtggagat ctctctgacc gtccaagaga acgccggag catatcctgt 800
tccatgcggc atgctcatct gagccgagag gtggaatcca ggttacagat 850
aggagatacc ttttcgagc ctatatcggt gcacctggct accaaagtac 900
tggaaatact ctgctgtggc ctatttttg gcattgttgg actgaagatt 950
ttcttctcca aattccagtg gaaaatccag gcggaaactgg actggagaag 1000
aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050
tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100
aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150
gagatttaca aggaagagtg tggggcttc tcagagtttca caagcaggga 1200
aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250
gtgtgccggg atgatgtgga caggaggaag gagtacgtga cttgtctcc 1300
cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350
cattaaatcc ccgttttatac agcgtttcc ccaggacccc acctacaaaa 1400
atagggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450
aaatgaccag tcccttattt ataccctgac atgtcggtt gaaggcttat 1500
tgaggcccta cattgagttt ccgtcctata atgagaaaa tggaaactccc 1550
atagtcatct gcccagtcac ccaggaatca gagaaagagg cctttggca 1600
aaggccctct gcaatcccag agacaagcaa cagttagtcc tcctcacagg 1650
caaccacgccc cttccctcccc aggggtgaaa tgttaggatga atcacatccc 1700
acattcttct ttagggatataaggatctct ctcccaagatc caaagtcccc 1750
cagcagccgg ccaagggtggc ttccagatga agggggactg gcctgtccac 1800
atgggagtca ggtgtcatgg ctgcctgag ctgggaggaga agaaggctga 1850
cattacattt agtttgctct cactccatct ggctaagtga tcttgaata 1900
ccacccatctca ggtgaagaac cgtaggaat tcccatctca caggctgtgg 1950

tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000
acagagtgtt tcctaatggc ttgttcatta tattacactt tcagtaaaaa 2050
aa 2052

<210> 148
<211> 500
<212> PRT
<213> Homo sapiens

<400> 148
Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly
1 5 10 15
Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala
20 25 30
Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys
35 40 45
Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe
50 55 60
Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gln Pro Phe
65 70 75
Met Gln Met Pro Gln Tyr Gln Gly Arg Thr Lys Leu Val Lys Asp
80 85 90
Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr
95 100 105
Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gln Ser
110 115 120
Tyr Tyr Gln Lys Ala Ile Trp Glu Leu Gln Val Ser Ala Leu Gly
125 130 135
Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile
140 145 150
Gln Leu Leu Cys Gln Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala
155 160 165
Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Thr Asp Ser Arg
170 175 180
Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu
185 190 195
Thr Val Gln Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His
200 205 210
Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gln Ile Gly Asp
215 220 225
Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu

230 235 240

Gly Ile Leu Cys Cys Gly Leu Phe Phe Gly Ile Val Gly Leu Lys
 245 250 255

Ile Phe Phe Ser Lys Phe Gln Trp Lys Ile Gln Ala Glu Leu Asp
 260 265 270

Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys
 275 280 285

His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys
 290 295 300

Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro
 305 310 315

Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val
 320 325 330

Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val
 335 340 345

Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp
 350 355 360

Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His
 365 370 375

Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr
 380 385 390

Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr
 395 400 405

Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe
 410 415 420

Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg
 425 430 435

Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn
 440 445 450

Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu
 455 460 465

Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu
 470 475 480

Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu
 485 490 495

Pro Arg Gly Glu Met
 500

<210> 149
<211> 24

<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 149
gcgtggtcca cctctacagg gacg 24

<210> 150
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 150
ggaactgacc cagtgctgac acc 23

<210> 151
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 151
gcagatgcca cagtatcaag gcaggacaaa actggtaag gattc 45

<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens

<400> 152
gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggttcatt 50
ggtcggattt caacgaggag aagatgactg accaaccgac tggctaatg 100
aatgaatggc ggagccgagc gcccattttagt gagcctggcg agcctggcg 150
gcctcgccct gtttgtctgc gccggcgccg ccggccgcgt cgccctcagcc 200
gcctcgccgg ggaatgtcac cgggtggcgcc gggggccgcgg ggcagggttga 250
cgcgatcgccgg ggccccgggt tgccggggcga gcccagccac cccttcccta 300
gggcgacggc tccccacggcc caggccccga ggaccgggcc cccgcgcgcc 350
accgtccacc gacccttggc tgccacttct ccagcccagt ccccgagac 400

caccctctt tggcgactg ctggaccctc ttccaccacc tttcaggcgc 450
cgctcgcccc ctcgcccacc acccctccgg cgccggaacg cacttcgacc 500
acctctcagg cgccgaccag acccgcccg accacccttt cgacgaccac 550
tggccggcg ccgaccaccc ctgtagcgac caccgtaccc ggcacccacga 600
ctcccccggac cccgacccccc gatctccccca gcagcagcaa cagcagcgac 650
ctccccaccc cacctgccac cgaggcccccc tcttcgcctc ctccagagta 700
tgtatgtaac tgctctgtgg ttgaaagcct gaatgtaat cgctgcaacc 750
agaccacagg gcagtgtgag tgtcgccag gttatcaggg gcttcactgt 800
gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850
gccatgtgac tgttagtccac atggagctct cagcataccg tgcaacaggt 900
aagcaacaga gggtggaact gaagtttatt ttatTTTtagc aaggaaaaaa 950
aaaaggctgc tactctcaag gaccatactg gtttaaacaaggaggatga 1000
gggtcataga ttacaaaat attttatata cttttattct cttactttat 1050
atgttatatt taatgtcagg attaaaaac atctaattta ctgatTTtagt 1100
tcttcaaaag cactagagtc gccaattttt ctctggata atttctgtaa 1150
atttcatggg aaaaaattat tgaagaataa atctgcttc tggaaaggct 1200
ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250
atataccatt ggagtttgag gaaatttggttt gtttgggtta ttttctctc 1300
taatcaaaat tctacatttgc tttctttggaa catctaaagc ttaacctggg 1350
ggtaccctaa ttatTTTaaac tagtggtaa tagactggttt ttactctatt 1400
taccagtaca ttTTTgagac caaaagttaga ttaagcagga attatcttta 1450
aactattatg ttatTTggag gtaatttaat ctatggaaat aatgtactgt 1500
tatctaagca ttgccttgt actgcactga aagtaattat tctttgacct 1550
tatgtgaggc acttggctt ttgtggaccc caagtcaaaa aactgaagag 1600
acagtattaa ataatgaaaaaa aaataatgac aggttataact cagtgtAAC 1650
tgggtataac ccaagatctg ctgccactta cgagctgtgt tccttggca 1700
agtaatttcc ttcaactgag cttgtttctt ctcaagggttgg tttgtgaagat 1750
taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaaattt 1800
ctggtttggttt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850

tgttttaaga acttttagct ccttgacaaa gaagtgcctt atactttagc 1900
actaaatatt ttaaatgctt tataaatgat attatactgt tatggaatat 1950
tgtatcatat tgtatgttat taaaaatgta gaagaggctg ggcgcgggtgg 2000
ctcacgcctg taatcctagc actttgggag gccaaaggcggtggatcact 2050
tgaggccagg agttctagat gagcctggcc agcacagtga aaccccgctt 2100
ctactaaaaa tacaaacaaa ttagctgggc gtggtggcac acacctgttag 2150
tcccagctac tcgggaggct gaggcaggag aatcggttga acccgggagg 2200
tggaggttgc agtgagctga gatcgccca ctgcactcca gcctggtag 2250
agagggagac tctgtcttaa aaaaaaaaaa aaaaaaaaaa aaaa 2294

<210> 153

<211> 258

<212> PRT

<213> Homo sapiens

<400> 153

Met	Arg	Ser	Leu	Pro	Ser	Leu	Gly	Gly	Leu	Ala	Leu	Leu	Cys	Cys
1														15
Ala	Ala	Ala	Ala	Ala	Ala	Val	Ala	Ser	Ala	Ala	Ser	Ala	Gly	Asn
						20			25					30
Val	Thr	Gly	Gly	Gly	Gly	Ala	Ala	Gly	Gln	Val	Asp	Ala	Ser	Pro
						35			40					45
Gly	Pro	Gly	Leu	Arg	Gly	Glu	Pro	Ser	His	Pro	Phe	Pro	Arg	Ala
			50						55					60
Thr	Ala	Pro	Thr	Ala	Gln	Ala	Pro	Arg	Thr	Gly	Pro	Pro	Arg	Ala
					65				70					75
Thr	Val	His	Arg	Pro	Leu	Ala	Ala	Thr	Ser	Pro	Ala	Gln	Ser	Pro
					80				85					90
Glu	Thr	Thr	Pro	Leu	Trp	Ala	Thr	Ala	Gly	Pro	Ser	Ser	Thr	Thr
					95				100					105
Phe	Gln	Ala	Pro	Leu	Gly	Pro	Ser	Pro	Thr	Thr	Pro	Pro	Ala	Ala
				110					115					120
Glu	Arg	Thr	Ser	Thr	Thr	Ser	Gln	Ala	Pro	Thr	Arg	Pro	Ala	Pro
					125				130					135
Thr	Thr	Leu	Ser	Thr	Thr	Thr	Gly	Pro	Ala	Pro	Thr	Thr	Pro	Val
					140				145					150
Ala	Thr	Thr	Val	Pro	Ala	Pro	Thr	Thr	Pro	Arg	Thr	Pro	Thr	Pro
					155				160					165
Asp	Leu	Pro	Ser	Ser	Ser	Asn	Ser	Ser	Val	Leu	Pro	Thr	Pro	Pro

170	175	180
Ala Thr Glu Ala Pro Ser Ser Pro Pro Pro	Glu Tyr Val Cys Asn	
185	190	195
Cys Ser Val Val Gly Ser Leu Asn Val Asn Arg	Cys Asn Gln Thr	
200	205	210
Thr Gly Gln Cys Glu Cys Arg Pro Gly Tyr Gln Gly	Leu His Cys	
215	220	225
Glu Thr Cys Lys Glu Gly Phe Tyr Leu Asn Tyr Thr Ser	Gly Leu	
230	235	240
Cys Gln Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile	Pro	
245	250	255

Cys Asn Arg

```

<210> 154
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 154
 aactgctctg tggttggaag cctg 24

<210> 155
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 155
 cagtcacatg gctgacagac ccac 24

<210> 156
<211> 38
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-38
<223> Synthetic construct.

<400> 156
 aggttatcag gggcttcaact gtgaaacctg caaagagg 38

```

<210> 157
 <211> 689
 <212> DNA
 <213> Homo sapiens

<400> 157
 tgcggcgcag tgttagacctg ggaggatggg cggcctgctg ctggctgctt 50
 ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttggaaaga 100
 ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
 ccggaaaag ggcttgcca tggagaagga catgaagaac gtcgtggggg 200
 tggtgtgac cctcactcca gaaaacaacc tgccgacgct gtcctctcag 250
 cacggcctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
 ctccggatgg gtgttgaga atccctcaat aggctgtcg gagctctggg 350
 tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
 ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450
 agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
 gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550
 cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcccaca 600
 gggtcctgtg acctcggcca gtgtccaccc acctcgctca gcggctcccc 650
 gggcccagca ccagctcaga ataaagcgat tccacagca 689

<210> 158
 <211> 163
 <212> PRT
 <213> Homo sapiens

<400> 158
 Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val
 1 5 10 15
 Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln
 20 25 30
 Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys
 35 40 45
 Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val
 50 55 60
 Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln
 65 70 75
 His Gly Leu Gly Gly Cys Asp Gln Ser Val Met Asp Leu Ile Lys
 80 85 90

Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu
95 100 105

Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile
110 115 120

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu
125 130 135

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu
140 145 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln
155 160

<210> 159
<211> 1665
<212> DNA
<213> Homo sapiens

<400> 159
aacagacgtt ccctcgccgc cctggcacct ctaacccag acatgctgct 50
gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100
gtaaaactgct gacgatgcag agttccgtga cggtgcagga aggccctgtgt 150
gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200
tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250
aggatgctcc agtggccaca aacaacccag ctcgggcagt gtgggaggag 300
actcgggacc gattccaccc ccttggggac ccacatacca agaattgcac 350
cctgagcatc agagatgccca gaagaagtga tgcggggaga tacttcttc 400
gtatggagaa aggaagtata aaatggaatt ataaaacatca ccggctctct 450
gtgaatgtga cagccttgac ccacaggccc aacatcctca tcccaggcac 500
cctggagtcc ggctgcccccc agaatctgac ctgctctgtg ccctgggcct 550
gtgagcaggg gacacccct atgatctcct ggatagggac ctccgtgtcc 600
ccccctggacc cctccaccac ccgctcctcg gtgctcaccc tcataccaca 650
gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700
ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750
cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800
cttggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850
tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900
ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaaccggg 950

1000X7000 12362

ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000
gcagagctca gaaccctctc ggctctcagc aggtctacct gaacgtctcc 1050
ctgcagagca aagccacatc aggagtgact cagggggtgg tcgggggagc 1100
tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcggttag 1150
tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtggagat 1200
acgggcatag agatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250
cctgactgaa ccttgggcag aagacagtcc cccagaccag cctccccag 1300
cttctgcccg ctcctcagtg ggggaaggag agctccagta tgcatccctc 1350
agcttccaga tggtaagcc ttggactcg cggggacagg aggccactga 1400
caccgagttac tcggagatca agatccacag atgagaaact gcagagactc 1450
accctgattg agggatcaca gcccctccag gcaagggaga agtcagaggc 1500
tgattcttgt agaattaaca gccctaacf tcatgagcta tgataacact 1550
atgaattatg tgcagagtga aaagcacaca ggcttagag tcaaagtatc 1600
tcaaacctga atccacactg tgccctccct tttatTTT taactaaaag 1650
acagacaaat tccta 1665

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

<400> 160

Met	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Leu	Trp	Gly	Arg	Glu	Arg	Ala
1					5				10				15	

Glu	Gly	Gln	Thr	Ser	Lys	Leu	Leu	Thr	Met	Gln	Ser	Ser	Val	Thr
					20				25				30	

Val	Gln	Glu	Gly	Leu	Cys	Val	His	Val	Pro	Cys	Ser	Phe	Ser	Tyr
				35				40					45	

Pro	Ser	His	Gly	Trp	Ile	Tyr	Pro	Gly	Pro	Val	Val	His	Gly	Tyr
				50				55				60		

Trp	Phe	Arg	Glu	Gly	Ala	Asn	Thr	Asp	Gln	Asp	Ala	Pro	Val	Ala
				65				70				75		

Thr	Asn	Asn	Pro	Ala	Arg	Ala	Val	Trp	Glu	Glu	Thr	Arg	Asp	Arg
				80				85				90		

Phe	His	Leu	Leu	Gly	Asp	Pro	His	Thr	Lys	Asn	Cys	Thr	Leu	Ser
				95				100				105		

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Arg

110	115	120
Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu		
125	130	135
Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile		
140	145	150
Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser		
155	160	165
Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp		
170	175	180
Ile Gly Thr Ser Val Ser Pro Leu Asp Pro Ser Thr Thr Arg Ser		
185	190	195
Ser Val Leu Thr Leu Ile Pro Gln Pro Gln Asp His Gly Thr Ser		
200	205	210
Leu Thr Cys Gln Val Thr Phe Pro Gly Ala Ser Val Thr Thr Asn		
215	220	225
Lys Thr Val His Leu Asn Val Ser Tyr Pro Pro Gln Asn Leu Thr		
230	235	240
Met Thr Val Phe Gln Gly Asp Gly Thr Val Ser Thr Val Leu Gly		
245	250	255
Asn Gly Ser Ser Leu Ser Leu Pro Glu Gly Gln Ser Leu Arg Leu		
260	265	270
Val Cys Ala Val Asp Ala Val Asp Ser Asn Pro Pro Ala Arg Leu		
275	280	285
Ser Leu Ser Trp Arg Gly Leu Thr Leu Cys Pro Ser Gln Pro Ser		
290	295	300
Asn Pro Gly Val Leu Glu Leu Pro Trp Val His Leu Arg Asp Ala		
305	310	315
Ala Glu Phe Thr Cys Arg Ala Gln Asn Pro Leu Gly Ser Gln Gln		
320	325	330
Val Tyr Leu Asn Val Ser Leu Gln Ser Lys Ala Thr Ser Gly Val		
335	340	345
Thr Gln Gly Val Val Gly Gly Ala Gly Ala Thr Ala Leu Val Phe		
350	355	360
Leu Ser Phe Cys Val Ile Phe Val Val Arg Ser Cys Arg Lys		
365	370	375
Lys Ser Ala Arg Pro Ala Ala Gly Val Gly Asp Thr Gly Ile Glu		
380	385	390
Asp Ala Asn Ala Val Arg Gly Ser Ala Ser Gln Gly Pro Leu Thr		
395	400	405

Glu Pro Trp Ala Glu Asp Ser Pro Pro Asp Gln Pro Pro Pro Ala
410 415 420
Ser Ala Arg Ser Ser Val Gly Glu Gly Glu Leu Gln Tyr Ala Ser
425 430 435
Leu Ser Phe Gln Met Val Lys Pro Trp Asp Ser Arg Gly Gln Glu
440 445 450
Ala Thr Asp Thr Glu Tyr Ser Glu Ile Lys Ile His Arg
455 460

<210> 161
<211> 739
<212> DNA
<213> Homo sapiens

<400> 161
gacgcccagt gacctgccga ggtcgccagc acagagctct ggagatgaag 50
accctgttcc tgggtgtcac gctcgccctg gccgctgccc tgtccttcac 100
cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150
tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 200
aaggtgacag ccctgggcgg tggaaagttg gaagccacgt tcaccttcac 250
gagggaggat cggtgcacatcc agaagaaaaat cctgatgcgg aagacggagg 300
agcctggcaa atacagcgcc tatggggca ggaagctcat gtacctgcag 350
gagctgcccga ggagggacca ctacatctt tactgcaaag accagcacca 400
tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450
accggggaggc cctggaagaa tttaagaaaat tggtgacgcg caagggactc 500
tcggaggagg acatttcac gcccctgcag acgggaagct gcgttcccga 550
acactaggca gccccgggt ctgcacctcc agagcccacc ctaccaccag 600
acacagagcc cggaccaccc ggacctaccc tccagccatg accctccct 650
gctcccaccc acctgactcc aaataaagtc cttttccccca aaaaaaaaaa 700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 739

<210> 162
<211> 170
<212> PRT
<213> Homo sapiens

<400> 162
Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala
1 5 10 15
Leu Ser Phe Thr Leu Glu Glu Asp Ile Thr Gly Thr Trp Tyr

20	25	30
Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg		
35	40	45
Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly Gly		
50	55	60
Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile		
65	70	75
Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr		
80	85	90
Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro		
95	100	105
Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly		
110	115	120
Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr		
125	130	135
Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys		
140	145	150
Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser		
155	160	165
Cys Val Pro Glu His		
170		

<210> 163
 <211> 22
 <212> DNA
 <213> Artificial

<220>
 <221> Artificial Sequence
 <222> 1-22
 <223> Synthetic construct.

<400> 163
 ggagatgaag accctgttcc tg 22

<210> 164
 <211> 26
 <212> DNA
 <213> Artificial

<220>
 <221> Artificial Sequence
 <222> 1-26
 <223> Synthetic construct.

<400> 164
 ggagatgaag accctgttcc tgggtg 26

正德甲子年秋月

<210> 165
<211> 21
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-21
<223> Synthetic construct.

<400> 165
gtcctccgga aagtccatat c 21

<210> 166
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 166
gcctagtggtt cgggaacgca gtttc 25

<210> 167
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 167
caggcacctg gtacgtaaag gccatgggtgg tcgataaggaa ctttccggag 50

<210> 168
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 168
ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45

<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens

<400> 169

gttccgcaga tgcagagggt gagggtggctg cgggactgga agtcatcg 50
cagaggtctc acagcagcca aggaacctgg ggcccgcctcc tccccctcc 100
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggtt 150
gtagggggag agaccaggat catcaagggg ttcgagtgc agcctcactc 200
ccagccctgg caggcagccc tggtcgagaa gacgcggcta ctctgtggg 250
cgacgctcat cgcccccaga tggctcctga cagcagccca ctgcctcaag 300
ccccgctaca tagttcacct gggcagcac aacctccaga aggaggagg 350
ctgtgagcag acccggacag ccactgagtc cttcccccac cccggcttca 400
acaacacgcct ccccaacaaa gaccacccgca atgacatcat gctggtgaag 450
atggcatcgc cagtctccat cacctggct gtgcgacccc tcaccctctc 500
ctcacgctgt gtcactgctg gcaccagctg cctcattcc ggctgggca 550
gcacgtccag cccccagttt cgcctgcctc acaccttgcg atgcgccaac 600
atcaccatca ttgagcacca gaagtgttag aacgcctacc ccggcaacat 650
cacagacacc atggtgtgtg ccagcgtgca ggaagggggc aaggactcct 700
gccagggtga ctccgggggc cctctggct gtaaccagtc tcttcaaggc 750
attatctcct ggggccagga tccgtgtcg atcacccgaa agcctggtgt 800
ctacacgaaa gtctgcaa atgtggactg gatccaggag acgatgaaga 850
acaatttagac tggacccacc caccacagcc catcaccctc cattccact 900
tggtgtttgg ttcctgttca ctctgttaat aagaaaccct aagccaagac 950
cctctacgaa cattctttgg gcctcctgga ctacaggaga tgctgtcact 1000
taataatcaa cctggggttc gaaatcagtg agacctggat tcaaattctg 1050
ccttgaataa ttgtgactct ggaaatgaca acacctggtt tgttctctgt 1100
tgtatccccca gccccaaaga cagctcctgg ccatatatca aggtttcaat 1150
aaatatttgc taaatgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1200
aaaa 1204

<210> 170
<211> 250
<212> PRT
<213> Homo sapiens

<400> 170
Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu
1 5 10 15

Val Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro
 20 25 30

 His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
 35 40 45

 Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala
 50 55 60

 Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
 65 70 75

 Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr
 80 85 90

 Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys
 95 100 105

 Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
 110 115 120

 Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
 125 130 135

 Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
 140 145 150

 Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
 155 160 165

 Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
 170 175 180

 Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
 185 190 195

 Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
 200 205 210

 Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
 215 220 225

 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
 230 235 240

 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
 245 250

<210> 171
 <211> 25
 <212> DNA
 <213> Artificial

<220>
 <221> Artificial Sequence
 <222> 1-25
 <223> Synthetic construct.

<400> 171
ggctgcggga ctgaaagtca tcggg 25

<210> 172
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 172
ctccaggcca tgaggattct gcag 24

<210> 173
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 173
cctctggtct gtaaccag 18

<210> 174
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 174
tctgtatgt tgccgggta ggcg 24

<210> 175
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 175
cgttagaca ccaggtttc gggtg 25

<210> 176
<211> 18
<212> DNA

J. G. KELLY

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-18

<223> Synthetic construct.

<400> 176
cccttgatga tcctggtc 18

<210> 177

<211> 50

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-50

<223> Synthetic construct.

<400> 177
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacaggcgtt 50

<210> 178

<211> 43

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-43

<223> Synthetic construct.

<400> 178
gagagaccag' gatcatcaag gggttcgagt gcaaggctca ctc 43

<210> 179

<211> 907

<212> DNA

<213> Homo sapiens

<400> 179
gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
aagaaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
agaaaaactgc tctaagacaa gcaagaaggg agacctacta aatgccatt 200
atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250
caaaatgaag gccaccccaa atgggttgtt cttgggtttg ggcaagtcata 300
aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcga 350
aagtagttat acccccattca tttqcatacq qaaagqaagg ctatgcagaa 400

ggcaagattc caccggatgc tacattgatt tttgagattt aactttatgc 450
tgtgacaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500
acaatgacag gcagctctc aaagccgaga taaacctcta cttgcaaagg 550
gaatttggaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600
tttagaagat attttaaga agaatgacca tgatggtgat ggcttcattt 650
ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgc 700
atttctactt ttttttttta gctatttact gtactttatg tataaaacaa 750
agtcactttt ctccaagttt tatttgcstat ttttccccta tgagaagata 800
ttttgatctc cccaatacat tgatttttgtt ataataaatg tgaggctgtt 850
ttgcaaactt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 900
aaaaaaaa 907

<210> 180
<211> 222
<212> PRT
<213> Homo sapiens

<400> 180
Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe
1 5 10 15
Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu
20 25 30
Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn
35 40 45
Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr
50 55 60
Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg
65 70 75
Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly
80 85 90
Gln Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro
95 100 105
Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly
110 115 120
Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu
125 130 135
Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser
140 145 150

Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
155 160 165

Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
170 175 180

Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
185 190 195

Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
200 205 210

Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
215 220

<210> 181
<211> 22
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-22
<223> Synthetic construct.

<400> 181
gtgttctgct ggagccgatg cc 22

<210> 182
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 182
gacatggaca atgacagg 18

<210> 183
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 183
cctttcagga tgttaggag 18

<210> 184
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 184
gatgtctgcc accccaag 18

<210> 185
<211> 27
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-27
<223> Synthetic construct.

<400> 185
gcatcctgat atgacttgtc acgtggc 27

<210> 186
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 186
tacaagaggg aagaggagtt gcac 24

<210> 187
<211> 52
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-52
<223> Synthetic construct.

<400> 187
gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
cc 52

<210> 188
<211> 573
<212> DNA
<213> Homo sapiens

<400> 188
cagaaatgca gggaccattg cttttccag gcctctgctt tctgctgagc 50
ctctttggag ctgtgactca gaaaacccaaa acttcctgtg ctaagtgcc 100

cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150
atacttctgg atctggcag aaactattca cattcccctt ggagacatgt 200
aacgccaggc atggcggcgc ggcctgtaa tcccagtct ttgggaagcc 250
aaggcagggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300
atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cggcggttgt 350
ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400
cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450
ctccagcatg gatgacagag caagactccg tctaaaaag aaaagatagt 500
ttcttgcgttc atttcgcgac tgccctctca gtgttcctg ggatccccctc 550
ccaaataaag tacttatatt ctc 573

<210> 189

<211> 74

<212> PRT

<213> Homo sapiens

<400> 189

Met	Gln	Gly	Pro	Leu	Leu	Leu	Pro	Gly	Leu	Cys	Phe	Leu	Leu	Ser
1				5					10				15	

Leu	Phe	Gly	Ala	Val	Thr	Gln	Lys	Thr	Lys	Thr	Ser	Cys	Ala	Lys
				20				25					30	

Cys	Pro	Pro	Asn	Ala	Ser	Cys	Val	Asn	Asn	Thr	His	Cys	Thr	Cys
				35				40				45		

Asn	His	Gly	Tyr	Thr	Ser	Gly	Gln	Lys	Leu	Phe	Thr	Phe		
			50					55			60			

Pro	Leu	Glu	Thr	Cys	Asn	Ala	Arg	His	Gly	Gly	Ser	Arg	Leu	
				65				70						

<210> 190

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 190

agggaccatt gcttcttcca ggcc 24

<210> 191

<211> 24

<212> DNA

<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 191
cgttacatgt ctccaagggg aatg 24

<210> 192
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 192
ccttgctaa gtgcggccca aatgcttcct gtgtcaataa cactcactgc 50

<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens

<400> 193
caagcaggc atccccttgg tgaccttcaa agagaagcag agagggcaga 50
ggtgtggggc acagggaaag ggtgacctct gagattcccc ttttcccca 100
gactttggaa gtgacccacc atggggctca gcattttt gctcctgtgt 150
gttcttgggc tcagccaggc agccacacccg aagatttca atggcactga 200
gtgtggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
gctcactgca gcggcagcag gtactgggtg cgcctgggg aacacagcct 350
cagccagctc gactggaccg agcagatccg gcacagcggc ttctctgtga 400
cccatcccggtt ctacctggaa gcctcgacga gccacgagca cgacctccgg 450
ctgtctgcggc tgccctgcc cgtcccgta accagcagcg ttcaacccct 500
gcccctgccc aatgactgtg caaccgctgg caccgagtgc cacgtctcag 550
gctggggcat caccaaccac ccacggaaacc cattcccgga tctgctccag 600
tgcctcaacc tctccatcgt ctcccatgcc acctgccatg gtgtgtatcc 650
cgggagaatc acgagcaaca tggtgtgtgc aggccggcgtc ccggggcagg 700
atgcctgccca gggtgattct gggggccccc tggtgtgtgg gggagtcctt 750
caaggtctgg tgcctgggg gtctgtgggg ccctgtggac aagatggcat 800

ccctggagtc tacacctata tttgcaagta tgtggactgg atccggatga 850
tcatgaggaa caactgacct gtttcctcca cctccacccc cacccctaa 900
cttgggtacc cctctggccc tcagagcacc aatatctcct ccatcacttc 950
cccttagctcc actcttggtg gcctggaaac ttcttggAAC tttaactcct 1000
gccagccctt ctaagaccca cgagcgggt gagagaagtg tgcaatagtc 1050
tggaataaat ataaatgaag gaggggcaaa aaaaaaaaaa a 1091

<210> 194

<211> 248

<212> PRT

<213> Homo sapiens

<400> 194

Met	Gly	Leu	Ser	Ile	Phe	Leu	Leu	Leu	Cys	Val	Leu	Gly	Leu	Ser	1	5	10	15
Gln	Ala	Ala	Thr	Pro	Lys	Ile	Phe	Asn	Gly	Thr	Glu	Cys	Gly	Arg	20	25	30	
Asn	Ser	Gln	Pro	Trp	Gln	Val	Gly	Leu	Phe	Glu	Gly	Thr	Ser	Leu	35	40	45	
Arg	Cys	Gly	Gly	Val	Leu	Ile	Asp	His	Arg	Trp	Val	Leu	Thr	Ala	50	55	60	
Ala	His	Cys	Ser	Gly	Ser	Arg	Tyr	Trp	Val	Arg	Leu	Gly	Glu	His	65	70	75	
Ser	Leu	Ser	Gln	Leu	Asp	Trp	Thr	Glu	Gln	Ile	Arg	His	Ser	Gly	80	85	90	
Phe	Ser	Val	Thr	His	Pro	Gly	Tyr	Leu	Gly	Ala	Ser	Thr	Ser	His	95	100	105	
Glu	His	Asp	Leu	Arg	Leu	Leu	Arg	Leu	Arg	Leu	Pro	Val	Arg	Val	110	115	120	
Thr	Ser	Ser	Val	Gln	Pro	Leu	Pro	Leu	Pro	Asn	Asp	Cys	Ala	Thr	125	130	135	
Ala	Gly	Thr	Glu	Cys	His	Val	Ser	Gly	Trp	Gly	Ile	Thr	Asn	His	140	145	150	
Pro	Arg	Asn	Pro	Phe	Pro	Asp	Leu	Leu	Gln	Cys	Leu	Asn	Leu	Ser	155	160	165	
Ile	Val	Ser	His	Ala	Thr	Cys	His	Gly	Val	Tyr	Pro	Gly	Arg	Ile	170	175	180	
Thr	Ser	Asn	Met	Val	Cys	Ala	Gly	Gly	Val	Pro	Gly	Gln	Asp	Ala	185	190	195	
Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys	Gly	Gly	Val	Leu				

EQUITY INVESTMENT FUND

200	205	210
Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp		
215	220	225
Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp		
230	235	240
Ile Arg Met Ile Met Arg Asn Asn		
245		

<210> 195
<211> 1485
<212> DNA
<213> Homo sapiens

<400> 195
gcggccacac gcagctagcc ggagccccgga ccaggcgccct gtgcctcctc 50
ctcgccctc gcccgtccg cgaaggctgg agccggcggg agcccccgcgc 100
tcgccatgtc gggcgagctc agcaacaggt tccaaggagg gaaggcgttc 150
ggcttgctca aagcccgga ggagaggagg ctggccgaga tcaaccggga 200
gtttctgtgt gaccagaagt acagtgtatga agagaacctt ccagaaaagc 250
tcacagcctt caaagagaag tacatggagt ttgacctgaa caatgaaggc 300
gagattgacc tgatgtctt aaagaggatg atggagaagc ttgtgtccc 350
caagaccac ctggagatga agaagatgat ctcagaggtg acaggagggg 400
tcagtgacac tatatacctac cgagactttg tgaacatgat gctggggaaa 450
cggtcggctg tcctcaagtt agtcatgatg tttgaaggaa aagccaacga 500
gagcagcccc aagccagttg gccccctcc agagagagac attgcttagcc 550
tgccctgagg accccgcctg gactccccag cttcccacc ccatacctcc 600
ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctctca 650
tttgggggtt cattgaggggt ttgtttgtgt tttcatcaat gtctttgtaa 700
agcacaaatt atctgcctta aaggggctct gggtcgggaa atcctgagcc 750
ttgggtcccc tccctctctt cttccctcct tccccgcctcc ctgtgcagaa 800
gggctgatat caaacaaaaa actagagggg gcagggccag ggcagggagg 850
cttccagcct gtgttccccct cacttggagg aaccagcact ctccatcctt 900
tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950
gaccggc cactctgaga agaccttgaa gtagggacaa ggctgcaggg 1000
cctcttcgg gtttccttgg acagtgcct ggttccagtg ctctgggttc 1050

acccaggaca cagccactcg gggccccgt gccccagctg atccccactc 1100
attccacacc tcttctcatc ctcagtatg tgaagggtggg aaggaaagga 1150
gcttggcatt gggagccctt caagaaggta ccagaaggaa ccctccagtc 1200
ctgctctctg gccacacactg tgcaggcagc tgagaggcag cgtgcagccc 1250
tactgtccct tactggggca gcagaggcgt tcggaggcag aagtgaggcc 1300
tggggttgg ggggaaaggt cagctcagtg ctgttccacc ttttagggag 1350
gatactgagg ggaccaggat gggagaatga ggagtaaaat gctcacggca 1400
aagttagcag cactggtaag ccaagactga gaaataacaag gttgcttgc 1450
tgaccccaat ctgcttggaaa aaaaaaaaaaaaaaa 1485

<210> 196

<211> 150

<212> PRT

<213> Homo sapiens

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe
1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn
20 25 30

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu
35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp
50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met
65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys
80 85 90

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr
95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu
110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro
125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro
140 145 150

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

<400> 197

cgcgctcccc gcgcgcctcc tcgggctcca cgcttgc cccgcagg 50
cagcctcctc caggagcggg gcctgcaca ccatggcccc cgggtggca 100
gggtcgcccg ccgcgtcg cgccgcctg gcgtggct tggcgctggc 150
gagcgtcctg agtgggcctc cagccgtcgc ctgcccacc aagtgtacct 200
gctccgctgc cagcgtggac tgccacggc tggcctccg cgccgttcct 250
cgggcattcc cccgcaacgc tgagcgcctt gacctggaca gaaataat 300
caccaggatc accaagatgg acttcgctgg gctcaagaac ctccgagtct 350
tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400
gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450
ccttccagaa ttgctttcc agagcacgccc gaagctcacc agactagatt 500
tgagtgaaaa ccagatccag gggatcccga ggaaggcggtt ccgcggcattc 550
accgatgtga agaacctgca actggacaac aaccacatca gtcatttgc 600
agatggagcc ttccgagcgc tgccgcattt ggagatcctt accctcaaca 650
acaacaacat cagtcgcattc ctggtcacca gctcaacca catgccgaag 700
atccgaactc tgccgcctcca ctccaaaccac ctctactgcg actgccacct 750
ggcctggctc tcggattggc tgccgcacgac acggacagtt ggccagttca 800
caactctgcat ggctcctgtg catttgaggg gcttcaacgt ggccggatgtg 850
cagaagaagg agtacgtgtg cccagcccc cactcgagc ccccatcctg 900
caatgccaac tccatctctt gcccttcgccc ctgcacgtgc agcaataaca 950
tcgtggactg tcgagggaaag ggcttgatgg agattcctgc caacttgcgg 1000
gagggcatcg tcgaaaatacg cctagaacag aactccatca aagccatccc 1050
tgccggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100
agaatcagat atcggatatt gctccagatg cttccaggg cctgaaatca 1150
ctcacatcgc tggcctgtta tggaaacaag atcaccgaga ttgccaagg 1200
actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250
agatcaactg cctgcgggtg aacacgttcc aggacctgca gaacctcaac 1300
ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350
cgccctctg cagtccatcc agacactcca ctttagccaa aaccatttg 1400
tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450

atcgagacaa gcggggcccg ctgcagcagc cgcgcggac tcgccaacaa 1500
gcgcattcagc cagatcaaga gcaagaagtt cgcgtctca ggctccgagg 1550
attaccgcag caggttcagc agcgagtgt tcataggacct cgtgtcccc 1600
gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650
ggtccgcata ccaagccacc tccctgaata tgtcaccgac ctgcgactga 1700
atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagtt 1750
cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800
agagggagct ttgcgtggag cagccagcgt gcaggagctg atgctgacag 1850
ggaaccagct ggagaccgtg cacgggcgcg tggccgtgg ctcagtggc 1900
ctcaaaacct tgcgtctgag gagtaacttg atcagctgtg tgtagtaatga 1950
caccttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000
ggatcaccac catcaccctt gggccctca ccacgcttgt ctccctgtcc 2050
accataaacc tcctgtccaa ccccttcaac tgcaactgcc acctggcctg 2100
gctcgcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150
gccagaagcc attttccctc aaggagattc ccattccagga tgtggccatc 2200
caggacttca cctgtgtatgg caacgaggag agtagctgcc agctgagccc 2250
gctgcgtcccg gagcagtgca cctgtatgg gacagtggtg cgatgcagca 2300
acaaggggct ccgcgcctc cccagaggca tgcccaagga tgtgaccgag 2350
ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400
cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450
tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500
agctacaacc ggctgaggtg catccccgtc cacgccttca acgggctgcg 2550
gtccctgcga gtgctaacc tccatggcaa tgacattcc agcggtccctg 2600
aaggctccctt caacgaccc acatctctt cccatctggc gctggaaacc 2650
aaccctactcc actgtgactg cagtttcgg tggctgtcgg agtgggtgaa 2700
ggcggggta aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750
tggctgacag gctccctgctc accaccccaa cccaccgctt ccagtgcaaa 2800
ggcccaagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850
cccggtcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900

gctgtgcctg cccctacagc tacaaggca aggactgcac tgtgccatc 2950
aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000
tgacagccac aaggatgggt tcagctgctc ctgcctctg ggcttgagg 3050
ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100
aacaatgcca cctgcgtgga cggatcaac aactacgtt gtatctgtcc 3150
gcctaactac acaggtgagc tatgcacga ggtgattgac cactgtgtc 3200
ctgagctgaa cctctgtcag catgaggcca agtgcattccc cctggacaaa 3250
ggattcagct gcgagtgtgt ccctggctac agcggaaagc tctgtgagac 3300
agacaatgat gactgtgtgg cccacaagtg ccgcccacggg gcccagtgcg 3350
tggacacaat caatggctac acatgcacct gcccccaaggg cttcagtgg 3400
cccttctgtg aacacccccc acccatggtc ctactgcaga ccagccatg 3450
cgaccagtac gagtgccaga acggggccca gtgcacgtg gtgcagcagg 3500
agcccacctg ccgctgccc ccaggcttcg ccggcccccag atgcgagaag 3550
ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600
cgccaaggta cgaccccaagg ccaacatctc cctgcaggtg gccactgaca 3650
aggacaacgg catccttctc tacaaaggag acaatgaccc cctggactg 3700
gagctgtacc agggccacgt gcggctggc tatgacagcc tgagttcccc 3750
tccaaccaca gtgtacagt tggagacagt gaatgatggg cagttcaca 3800
gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850
ggaactccaa agagcctggg gaagctccag aagcagccag cagtggcat 3900
caacagccccc ctctaccttgc gaggcatccc cacctccacc ggctctccg 3950
ccttgcgcca gggcacggac cggcctctag gcggcttcca cggatgcata 4000
catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050
acagtccctg ggggtgtcac caggctgcaa gtcctgcacc gtgtcaagc 4100
acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150
ccaggtgga ccggcccaact ctgcgaccag gaggcccggg acccctgcct 4200
cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250
tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300
gactctgcca atgcctgctc agcctcaag tgcaccatg ggcagtgcct 4350

catctcagac caaggggagc cctactgcct gtgccagccc ggcttagcg 4400
gcgagcactg ccaacaagag aatccgtgcc tgggacaagt agtccgagag 4450
gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500
gccccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550
cccgccgcaa gcggcggaaa tacgtttcc agtgcacgga cggctcctcg 4600
ttttagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650
ctaagccct gccccctgc ctgccaccc tcggactcca gcttgatgga 4700
gttggacag ccatgtggaa cccccctggtg attcagcatg aaggaaatga 4750
agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800
aaacaaaaaa tagaacttaa aaaaaaaaaa aaaaaaaaaa aa 4842

<210> 198

<211> 1523

<212> PRT

<213> Homo sapiens

<400> 198

Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg
1 5 10 15

Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro
20 25 30

Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val
35 40 45

Asp Cys His Gly Leu Gly Leu Arg Ala Val Pro Arg Gly Ile Pro
50 55 60

Arg Asn Ala Glu Arg Leu Asp Leu Asp Arg Asn Asn Ile Thr Arg
65 70 75

Ile Thr Lys Met Asp Phe Ala Gly Leu Lys Asn Leu Arg Val Leu
80 85 90

His Leu Glu Asp Asn Gln Val Ser Val Ile Glu Arg Gly Ala Phe
95 100 105

Gln Asp Leu Lys Gln Leu Glu Arg Leu Arg Leu Asn Lys Asn Lys
110 115 120

Leu Gln Val Leu Pro Glu Leu Leu Phe Gln Ser Thr Pro Lys Leu
125 130 135

Thr Arg Leu Asp Leu Ser Glu Asn Gln Ile Gln Gly Ile Pro Arg
140 145 150

Lys Ala Phe Arg Gly Ile Thr Asp Val Lys Asn Leu Gln Leu Asp
155 160 165

Asn Asn His Ile Ser Cys Ile Glu Asp Gly Ala Phe Arg Ala Leu
 170 175 180
 Arg Asp Leu Glu Ile Leu Thr Leu Asn Asn Asn Asn Ile Ser Arg
 185 190 195
 Ile Leu Val Thr Ser Phe Asn His Met Pro Lys Ile Arg Thr Leu
 200 205 210
 Arg Leu His Ser Asn His Leu Tyr Cys Asp Cys His Leu Ala Trp
 215 220 225
 Leu Ser Asp Trp Leu Arg Gln Arg Arg Thr Val Gly Gln Phe Thr
 230 235 240
 Leu Cys Met Ala Pro Val His Leu Arg Gly Phe Asn Val Ala Asp
 245 250 255
 Val Gln Lys Lys Glu Tyr Val Cys Pro Ala Pro His Ser Glu Pro
 260 265 270
 Pro Ser Cys Asn Ala Asn Ser Ile Ser Cys Pro Ser Pro Cys Thr
 275 280 285
 Cys Ser Asn Asn Ile Val Asp Cys Arg Gly Lys Gly Leu Met Glu
 290 295 300
 Ile Pro Ala Asn Leu Pro Glu Gly Ile Val Glu Ile Arg Leu Glu
 305 310 315
 Gln Asn Ser Ile Lys Ala Ile Pro Ala Gly Ala Phe Thr Gln Tyr
 320 325 330
 Lys Lys Leu Lys Arg Ile Asp Ile Ser Lys Asn Gln Ile Ser Asp
 335 340 345
 Ile Ala Pro Asp Ala Phe Gln Gly Leu Lys Ser Leu Thr Ser Leu
 350 355 360
 Val Leu Tyr Gly Asn Lys Ile Thr Glu Ile Ala Lys Gly Leu Phe
 365 370 375
 Asp Gly Leu Val Ser Leu Gln Leu Leu Leu Leu Asn Ala Asn Lys
 380 385 390
 Ile Asn Cys Leu Arg Val Asn Thr Phe Gln Asp Leu Gln Asn Leu
 395 400 405
 Asn Leu Leu Ser Leu Tyr Asp Asn Lys Leu Gln Thr Ile Ser Lys
 410 415 420
 Gly Leu Phe Ala Pro Leu Gln Ser Ile Gln Thr Leu His Leu Ala
 425 430 435
 Gln Asn Pro Phe Val Cys Asp Cys His Leu Lys Trp Leu Ala Asp
 440 445 450
 Tyr Leu Gln Asp Asn Pro Ile Glu Thr Ser Gly Ala Arg Cys Ser

455	460	465
Ser Pro Arg Arg Leu Ala Asn Lys Arg Ile Ser Gln Ile Lys Ser		
470	475	480
Lys Lys Phe Arg Cys Ser Gly Ser Glu Asp Tyr Arg Ser Arg Phe		
485	490	495
Ser Ser Glu Cys Phe Met Asp Leu Val Cys Pro Glu Lys Cys Arg		
500	505	510
Cys Glu Gly Thr Ile Val Asp Cys Ser Asn Gln Lys Leu Val Arg		
515	520	525
Ile Pro Ser His Leu Pro Glu Tyr Val Thr Asp Leu Arg Leu Asn		
530	535	540
Asp Asn Glu Val Ser Val Leu Glu Ala Thr Gly Ile Phe Lys Lys		
545	550	555
Leu Pro Asn Leu Arg Lys Ile Asn Leu Ser Asn Asn Lys Ile Lys		
560	565	570
Glu Val Arg Glu Gly Ala Phe Asp Gly Ala Ala Ser Val Gln Glu		
575	580	585
Leu Met Leu Thr Gly Asn Gln Leu Glu Thr Val His Gly Arg Val		
590	595	600
Phe Arg Gly Leu Ser Gly Leu Lys Thr Leu Met Leu Arg Ser Asn		
605	610	615
Leu Ile Ser Cys Val Ser Asn Asp Thr Phe Ala Gly Leu Ser Ser		
620	625	630
Val Arg Leu Leu Ser Leu Tyr Asp Asn Arg Ile Thr Thr Ile Thr		
635	640	645
Pro Gly Ala Phe Thr Thr Leu Val Ser Leu Ser Thr Ile Asn Leu		
650	655	660
Leu Ser Asn Pro Phe Asn Cys Asn Cys His Leu Ala Trp Leu Gly		
665	670	675
Lys Trp Leu Arg Lys Arg Arg Ile Val Ser Gly Asn Pro Arg Cys		
680	685	690
Gln Lys Pro Phe Phe Leu Lys Glu Ile Pro Ile Gln Asp Val Ala		
695	700	705
Ile Gln Asp Phe Thr Cys Asp Gly Asn Glu Glu Ser Ser Cys Gln		
710	715	720
Leu Ser Pro Arg Cys Pro Glu Gln Cys Thr Cys Met Glu Thr Val		
725	730	735
Val Arg Cys Ser Asn Lys Gly Leu Arg Ala Leu Pro Arg Gly Met		
740	745	750

Pro Lys Asp Val Thr Glu Leu Tyr Leu Glu Gly Asn His Leu Thr
 755 760 765
 Ala Val Pro Arg Glu Leu Ser Ala Leu Arg His Leu Thr Leu Ile
 770 775 780
 Asp Leu Ser Asn Asn Ser Ile Ser Met Leu Thr Asn Tyr Thr Phe
 785 790 795
 Ser Asn Met Ser His Leu Ser Thr Leu Ile Leu Ser Tyr Asn Arg
 800 805 810
 Leu Arg Cys Ile Pro Val His Ala Phe Asn Gly Leu Arg Ser Leu
 815 820 825
 Arg Val Leu Thr Leu His Gly Asn Asp Ile Ser Ser Val Pro Glu
 830 835 840
 Gly Ser Phe Asn Asp Leu Thr Ser Leu Ser His Leu Ala Leu Gly
 845 850 855
 Thr Asn Pro Leu His Cys Asp Cys Ser Leu Arg Trp Leu Ser Glu
 860 865 870
 Trp Val Lys Ala Gly Tyr Lys Glu Pro Gly Ile Ala Arg Cys Ser
 875 880 885
 Ser Pro Glu Pro Met Ala Asp Arg Leu Leu Leu Thr Thr Pro Thr
 890 895 900
 His Arg Phe Gln Cys Lys Gly Pro Val Asp Ile Asn Ile Val Ala
 905 910 915
 Lys Cys Asn Ala Cys Leu Ser Ser Pro Cys Lys Asn Asn Gly Thr
 920 925 930
 Cys Thr Gln Asp Pro Val Glu Leu Tyr Arg Cys Ala Cys Pro Tyr
 935 940 945
 Ser Tyr Lys Gly Lys Asp Cys Thr Val Pro Ile Asn Thr Cys Ile
 950 955 960
 Gln Asn Pro Cys Gln His Gly Gly Thr Cys His Leu Ser Asp Ser
 965 970 975
 His Lys Asp Gly Phe Ser Cys Ser Cys Pro Leu Gly Phe Glu Gly
 980 985 990
 Gln Arg Cys Glu Ile Asn Pro Asp Asp Cys Glu Asp Asn Asp Cys
 995 1000 1005
 Glu Asn Asn Ala Thr Cys Val Asp Gly Ile Asn Asn Tyr Val Cys
 1010 1015 1020
 Ile Cys Pro Pro Asn Tyr Thr Gly Glu Leu Cys Asp Glu Val Ile
 1025 1030 1035
 Asp His Cys Val Pro Glu Leu Asn Leu Cys Gln His Glu Ala Lys

1040	1045	1050
Cys Ile Pro Leu Asp Lys Gly Phe Ser Cys Glu Cys Val Pro Gly		
1055	1060	1065
Tyr Ser Gly Lys Leu Cys Glu Thr Asp Asn Asp Asp Cys Val Ala		
1070	1075	1080
His Lys Cys Arg His Gly Ala Gln Cys Val Asp Thr Ile Asn Gly		
1085	1090	1095
Tyr Thr Cys Thr Cys Pro Gln Gly Phe Ser Gly Pro Phe Cys Glu		
1100	1105	1110
His Pro Pro Pro Met Val Leu Leu Gln Thr Ser Pro Cys Asp Gln		
1115	1120	1125
Tyr Glu Cys Gln Asn Gly Ala Gln Cys Ile Val Val Gln Gln Glu		
1130	1135	1140
Pro Thr Cys Arg Cys Pro Pro Gly Phe Ala Gly Pro Arg Cys Glu		
1145	1150	1155
Lys Leu Ile Thr Val Asn Phe Val Gly Lys Asp Ser Tyr Val Glu		
1160	1165	1170
Leu Ala Ser Ala Lys Val Arg Pro Gln Ala Asn Ile Ser Leu Gln		
1175	1180	1185
Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp		
1190	1195	1200
Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gln Gly His Val Arg Leu		
1205	1210	1215
Val Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val		
1220	1225	1230
Glu Thr Val Asn Asp Gly Gln Phe His Ser Val Glu Leu Val Thr		
1235	1240	1245
Leu Asn Gln Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys		
1250	1255	1260
Ser Leu Gly Lys Leu Gln Lys Gln Pro Ala Val Gly Ile Asn Ser		
1265	1270	1275
Pro Leu Tyr Leu Gly Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala		
1280	1285	1290
Leu Arg Gln Gly Thr Asp Arg Pro Leu Gly Gly Phe His Gly Cys		
1295	1300	1305
Ile His Glu Val Arg Ile Asn Asn Glu Leu Gln Asp Phe Lys Ala		
1310	1315	1320
Leu Pro Pro Gln Ser Leu Gly Val Ser Pro Gly Cys Lys Ser Cys		
1325	1330	1335

PROTEIN SEQUENCES

Thr	Val	Cys	Lys	His	Gly	Leu	Cys	Arg	Ser	Val	Glu	Lys	Asp	Ser
														1340
														1345
														1350
Val	Val	Cys	Glu	Cys	Arg	Pro	Gly	Trp	Thr	Gly	Pro	Leu	Cys	Asp
														1355
														1360
														1365
Gln	Glu	Ala	Arg	Asp	Pro	Cys	Leu	Gly	His	Arg	Cys	His	His	Gly
														1370
														1375
														1380
Lys	Cys	Val	Ala	Thr	Gly	Thr	Ser	Tyr	Met	Cys	Lys	Cys	Ala	Glu
														1385
														1390
														1395
Gly	Tyr	Gly	Gly	Asp	Leu	Cys	Asp	Asn	Lys	Asn	Asp	Ser	Ala	Asn
														1400
														1405
														1410
Ala	Cys	Ser	Ala	Phe	Lys	Cys	His	His	Gly	Gln	Cys	His	Ile	Ser
														1415
														1420
														1425
Asp	Gln	Gly	Glu	Pro	Tyr	Cys	Leu	Cys	Gln	Pro	Gly	Phe	Ser	Gly
														1430
														1435
														1440
Glu	His	Cys	Gln	Gln	Glu	Asn	Pro	Cys	Leu	Gly	Gln	Val	Val	Arg
														1445
														1450
														1455
Glu	Val	Ile	Arg	Arg	Gln	Lys	Gly	Tyr	Ala	Ser	Cys	Ala	Thr	Ala
														1460
														1465
														1470
Ser	Lys	Val	Pro	Ile	Met	Glu	Cys	Arg	Gly	Gly	Cys	Gly	Pro	Gln
														1475
														1480
														1485
Cys	Cys	Gln	Pro	Thr	Arg	Ser	Lys	Arg	Arg	Lys	Tyr	Val	Phe	Gln
														1490
														1495
														1500
Cys	Thr	Asp	Gly	Ser	Ser	Phe	Val	Glu	Glu	Val	Glu	Arg	His	Leu
														1505
														1510
														1515
Glu	Cys	Gly	Cys	Leu	Ala	Cys	Ser							
														1520

<210> 199

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 199

atggagattc ctgccaaactt gccg 24

<210> 200

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 200
ttgttggcat tgaggaggag cago 24

<210> 201
<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 201
gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50

<210> 202
<211> 753
<212> DNA
<213> Homo sapiens

<400> 202
ggatgcagga cgctccccgt agctgcctgt caccgactag gtggagcagt 50
gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100
gaatctgcct tttcagttct gtctccggca ggctttgagg atgaaggctg 150
cgggcattct gaccctcatt ggctgcctgg tcacaggcgc cgagtccaaa 200
atctacactc gttgcaaact ggcaaaaata ttctcgaggg ctggcctgga 250
caattactgg ggcttcagcc ttggaaaactg gatctgcatg gcatattatg 300
agagcggcta caacaccaca gcccccacgg tcctggatga cggcagcatc 350
gactatggca tcttccagat caacagcttc gcgtggtgca gacgcggaaa 400
gctgaaggag aacaaccact gccatgtcgc ctgctcagcc ttgatcactg 450
atgacctcac agatgcaatt atctgtgcc aaaaaattgt taaagagaca 500
caaggaatga actattggca aggctggaag aaacattgtg agggcagaga 550
cctgtccgag tggaaaaaaag gctgtgaggt ttcctaaact ggaactggac 600
ccagtagtgc ttgcagcaac gccctaggat ttgcagtgaa tgtccaaatg 650
cctgtgtcat cttgtcccggt ttcctcccaa tattccttct caaacttgga 700
gaggaaaaat taagctatac ttttaagaaa ataaatattt ccatttaaat 750
gtc 753

<210> 203
<211> 148
<212> PRT
<213> Homo sapiens

<400> 203
Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr
1 5 10 15
Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile
20 25 30
Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly
35 40 45
Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr
50 55 60
Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe
65 70 75
Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu
80 85 90
Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp
95 100 105
Leu Thr Asp Ala Ile Ile Cys Ala Arg Lys Ile Val Lys Glu Thr
110 115 120
Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
125 130 135
Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
140 145

<210> 204
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 204
gcaggcttg aggatgaagg ctgc 24

<210> 205
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 205
ctcattggct gcctggtcac aggc 24

<210> 206
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 206
ccagtcggac aggtctctcc cctc 24

<210> 207
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 207
tcagtgacca aggctgagca ggcg 24

<210> 208
<211> 47
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.

<400> 208
ctacactcgt tgcaaactgg caaaaatatt ctgcagggtt ggctgg 47

<210> 209
<211> 1648
<212> DNA
<213> Homo sapiens

<400> 209
caggccattt gcatcccact gtccttgtt tcggagccag gccacaccgt 50
cctcagcagt gtcatgtttt aaaaacgcca agctgaatat atcatgcccc 100
tataaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150
cttttacctt tgggtctgc ctgtatccca gtgttcaggc tggctagacg 200
gcgaaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250

agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300
gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350
cacagctgct gttttaagg aaacattcaa gtccctgtct cacatagacc 400
ctgatgtcct ctatccatct ctaaatgtca ccagcttga ctcaagtgtt 450
cctgaaaagc tggatgacct agtccccaa gggaaaaaat tcctgctgct 500
ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550
ccctagttaca gctgcgtgga agattgacat cccaagattt ggagagggtt 600
catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650
acattatcag gaattgaaga aaatggtcca acagtccgac ctggccagt 700
atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750
cacagctgca cgtgtgtgct ttacacacca agcaatgagc acttggcat 800
tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850
cgggtggacc cttggagttcc attgaccaca gtgtcacagg gtttctgtgt 900
gagcctgacc cggcgcactt ctcagaagca atagaaaagt tcatccgtga 950
accttcctta aaagccacca tggcctggc tggaaagagcc agagtgaagg 1000
aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050
aaactgctgg tataatcaga ttgttttaa gatctccatt aatgtcattt 1100
ttatggattt tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150
atgcagaaga gatctttaa aaaataaact tgagtcttga atgtgagcca 1200
ctttcctata taccacaccc ccctgtccac ttttcagaaa aaccatgtct 1250
tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300
tgtcattcca tggtcagcag agtattttaa ttatattttc tcgggattat 1350
tgctttctg tctataaatt ttgaatgata ctgtgcctta attggtttc 1400
atagtttaag tgtgtatcat tatcaaagtt gattaatttgc gttcatagt 1450
ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500
tcactgtcat ctgttaggaa atttttgttt gtcctgtctt tgccctggatc 1550
catagcgaga gtgctctgta ttttttttaa gataatttgt atttttgcac 1600
actgagatataataaaaggt gtttatcata aaaaaaaaaa aaaaaaaaa 1648

<210> 210
<211> 323

<212> PRT

<213> Homo sapiens

<400> 210

Met	Pro	Leu	Leu	Lys	Leu	Val	His	Gly	Ser	Pro	Leu	Val	Phe	Gly
1				5			10						15	
Glu	Lys	Phe	Lys	Leu	Phe	Thr	Leu	Val	Ser	Ala	Cys	Ile	Pro	Val
				20				25					30	
Phe	Arg	Leu	Ala	Arg	Arg	Arg	Lys	Lys	Ile	Leu	Phe	Tyr	Cys	His
				35				40					45	
Phe	Pro	Asp	Leu	Leu	Leu	Thr	Lys	Arg	Asp	Ser	Phe	Leu	Lys	Arg
				50				55					60	
Leu	Tyr	Arg	Ala	Pro	Ile	Asp	Trp	Ile	Glu	Glu	Tyr	Thr	Thr	Gly
				65				70					75	
Met	Ala	Asp	Cys	Ile	Leu	Val	Asn	Ser	Gln	Phe	Thr	Ala	Ala	Val
				80				85					90	
Phe	Lys	Glu	Thr	Phe	Lys	Ser	Leu	Ser	His	Ile	Asp	Pro	Asp	Val
				95				100					105	
Leu	Tyr	Pro	Ser	Leu	Asn	Val	Thr	Ser	Phe	Asp	Ser	Val	Val	Pro
				110				115					120	
Glu	Lys	Leu	Asp	Asp	Leu	Val	Pro	Lys	Gly	Lys	Lys	Phe	Leu	Leu
				125				130					135	
Leu	Ser	Ile	Asn	Arg	Tyr	Glu	Arg	Lys	Lys	Asn	Leu	Thr	Leu	Ala
				140				145					150	
Leu	Glu	Ala	Leu	Val	Gln	Leu	Arg	Gly	Arg	Leu	Thr	Ser	Gln	Asp
				155				160					165	
Trp	Glu	Arg	Val	His	Leu	Ile	Val	Ala	Gly	Gly	Tyr	Asp	Glu	Arg
				170				175					180	
Val	Leu	Glu	Asn	Val	Glu	His	Tyr	Gln	Glu	Leu	Lys	Lys	Met	Val
				185				190					195	
Gln	Gln	Ser	Asp	Leu	Gly	Gln	Tyr	Val	Thr	Phe	Leu	Arg	Ser	Phe
				200				205					210	
Ser	Asp	Lys	Gln	Lys	Ile	Ser	Leu	Leu	His	Ser	Cys	Thr	Cys	Val
				215				220					225	
Leu	Tyr	Thr	Pro	Ser	Asn	Glu	His	Phe	Gly	Ile	Val	Pro	Leu	Glu
				230				235					240	
Ala	Met	Tyr	Met	Gln	Cys	Pro	Val	Ile	Ala	Val	Asn	Ser	Gly	Gly
				245				250					255	
Pro	Leu	Glu	Ser	Ile	Asp	His	Ser	Val	Thr	Gly	Phe	Leu	Cys	Glu
				260				265					270	

Pro Asp Pro Val His Phe Ser Glu Ala Ile Glu Lys Phe Ile Arg
275 280 285
Glu Pro Ser Leu Lys Ala Thr Met Gly Leu Ala Gly Arg Ala Arg
290 295 300
Val Lys Glu Lys Phe Ser Pro Glu Ala Phe Thr Glu Gln Leu Tyr
305 310 315
Arg Tyr Val Thr Lys Leu Leu Val
320

<210> 211
<211> 1554
<212> DNA
<213> Homo sapiens

<400> 211
gactacgccc atccgagacg tggctccctg ggcggcagaa ccatgttgg 50
cttcgcgatc ttccgcgtta ctttcttgct ggcgttggtg ggagccgtgc 100
tctacacctcta tccggcttcc agacaagctg caggaattcc agggattact 150
ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaaag 200
tttgcattgag ttccctggta atttgcattga gagatatggg cctgtggct 250
ccttctgggtt tggcaggcgcc ctccgtggta gtttggcac tggatgtgt 300
ctgaaggcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350
gctgaagtca ttatataaggat atcaatctgg tggtggcagt gtgagtgaaa 400
accacatgag gaaaaaaattt tatgaaaatg gtgtgactga ttctctgaag 450
agtaactttt ccctcctcct aaagctttca gaagaatttat tagataaatg 500
gctctcctac ccagagaccc agcacgtgcc cctcagccag catatgctt 550
gttttgctat gaagtctgtt acacagatgg taatggtag tacatggaa 600
gatgatcagg aagtcatcg ctccagaag aatcatggca cagtttggtc 650
tgagattgga aaaggcttc tagatggc acttgataaa aacatgactc 700
ggaaaaaaaca atatgaagat gccctcatgc aactggagtc tgtttaagg 750
aacatcataa aagaacgaaa aggaaggaac ttcaatcaac atatccat 800
tgactcctta gtacaaggaa accttaatga ccaacagatc ctagaagaca 850
gtatgatatt ttctctggcc agttgcataa taactgcaaa attgtgtacc 900
tggcaatct gtttttaac cacctctgaa gaagttcaaa aaaaattata 950
tgaagagata aaccaagttt ttggaaatgg tcctgttact ccagagaaaa 1000

ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050
gccaaactga ctccagttc tgcccagctt caagatattg aaggaaaaat 1100
tgaccgattt attattccta gagagaccct cgtccttat gcccttggtg 1150
tggacttca ggatccta atctggccat ctccacacaa gtttgatcca 1200
gatcggtttg atgatgaatt agtaatgaaa acttttcct cacttggatt 1250
ctcaggcaca caggagtgtc cagagtttag gtttgcata atggtgacca 1300
cagtacttct tagtgtattt gtgaagagac tgcacctact ttctgtggag 1350
ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caaggaaaga 1400
agcttggatc actgtctcaa agagatatta aaattttata catttaaat 1450
cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgtt 1500
aatcctttta taaaccagta tcactttgta atataaacac ctatttgcac 1550
ttaa 1554

<210> 212
<211> 462
<212> PRT
<213> Homo sapiens

<400> 212
Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu
1 5 10 15
Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala Ala
20 25 30
Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu
35 40 45
Pro Asp Ile Val Asn Ser Gly Ser Leu His Glu Phe Leu Val Asn
50 55 60
Leu His Glu Arg Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg
65 70 75
Arg Leu Val Val Ser Leu Gly Thr Val Asp Val Leu Lys Gln His
80 85 90
Ile Asn Pro Asn Lys Thr Ser Asp Pro Phe Glu Thr Met Leu Lys
95 100 105
Ser Leu Leu Arg Tyr Gln Ser Gly Gly Ser Val Ser Glu Asn
110 115 120
His Met Arg Lys Lys Leu Tyr Glu Asn Gly Val Thr Asp Ser Leu
125 130 135
Lys Ser Asn Phe Ala Leu Leu Lys Leu Ser Glu Glu Leu Leu

	140	145	150
Asp Lys Trp Leu Ser Tyr Pro Glu Thr Gln His Val Pro Leu Ser			
155	160	165	
Gln His Met Leu Gly Phe Ala Met Lys Ser Val Thr Gln Met Val			
170	175	180	
Met Gly Ser Thr Phe Glu Asp Asp Gln Glu Val Ile Arg Phe Gln			
185	190	195	
Lys Asn His Gly Thr Val Trp Ser Glu Ile Gly Lys Gly Phe Leu			
200	205	210	
Asp Gly Ser Leu Asp Lys Asn Met Thr Arg Lys Lys Gln Tyr Glu			
215	220	225	
Asp Ala Leu Met Gln Leu Glu Ser Val Leu Arg Asn Ile Ile Lys			
230	235	240	
Glu Arg Lys Gly Arg Asn Phe Ser Gln His Ile Phe Ile Asp Ser			
245	250	255	
Leu Val Gln Gly Asn Leu Asn Asp Gln Gln Ile Leu Glu Asp Ser			
260	265	270	
Met Ile Phe Ser Leu Ala Ser Cys Ile Ile Thr Ala Lys Leu Cys			
275	280	285	
Thr Trp Ala Ile Cys Phe Leu Thr Thr Ser Glu Glu Val Gln Lys			
290	295	300	
Lys Leu Tyr Glu Glu Ile Asn Gln Val Phe Gly Asn Gly Pro Val			
305	310	315	
Thr Pro Glu Lys Ile Glu Gln Leu Arg Tyr Cys Gln His Val Leu			
320	325	330	
Cys Glu Thr Val Arg Thr Ala Lys Leu Thr Pro Val Ser Ala Gln			
335	340	345	
Leu Gln Asp Ile Glu Gly Lys Ile Asp Arg Phe Ile Ile Pro Arg			
350	355	360	
Glu Thr Leu Val Leu Tyr Ala Leu Gly Val Val Leu Gln Asp Pro			
365	370	375	
Asn Thr Trp Pro Ser Pro His Lys Phe Asp Pro Asp Arg Phe Asp			
380	385	390	
Asp Glu Leu Val Met Lys Thr Phe Ser Ser Leu Gly Phe Ser Gly			
395	400	405	
Thr Gln Glu Cys Pro Glu Leu Arg Phe Ala Tyr Met Val Thr Thr			
410	415	420	
Val Leu Leu Ser Val Leu Val Lys Arg Leu His Leu Leu Ser Val			
425	430	435	

Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr Ser Ser
440 445 450

Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr
455 460

<210> 213

<211> 759

<212> DNA

<213> Homo sapiens

<400> 213

ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50
tccagcctca gagaccgccc cccttgcgtccc cgagggccat gggccgggtc 100
tcagggcttg tgccctctcg cttcctgacg ctccctggcgc atctgggtgt 150
cgtcatcacc ttattctgggt cccgggacag caacatacag gcctgcctgc 200
ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250
gccgcgctct ctgtcacccct gggcctcttt gcagtggagc tggccgggttt 300
cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350
gggctcactg tagtgcattcc gtggccctgt ctttcttcat attcgagcgt 400
tgggagtgca ctacgtattt gtacattttt gtcttctgca gtgcccttcc 450
agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500
aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550
ggcaaggggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcgggtt 600
ttcccccctcgaa actacgttca tgctggagga tatgtgttgg aataattacg 650
tctttagtct gggattatcc gcattgtatt tagtgctttg taataaaaata 700
tgttttgttag taacatataag acttatatac agtttttaggg gacaattaaa 750
aaaaaaaaaa 759

<210> 214

<211> 140

<212> PRT

<213> Homo sapiens

<400> 214

Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu
1 5 10 15

Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp
20 25 30

Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu
35 40 45

Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
 50 55 60
 Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val
 65 70 75
 Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His
 80 85 90
 Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp
 95 100 105
 Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu
 110 115 120
 Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu
 125 130 135
 Lys Lys Lys Pro Phe
 140

<210> 215
 <211> 697
 <212> DNA
 <213> Homo sapiens

<400> 215
 tccggaccc tgccgcctg ccactatgtc ccggcgctct atgctgcttg 50
 cctgggctct ccccagcctc cttcgactcg gagcggctca ggagacagaa 100
 gaccggcct gctgcagccc catagtgc(cc) cggaacgagt ggaaggccct 150
 ggcatcagag tgcgcccagc acctgagcct gcccttacgc tatgtggtgg 200
 tatcgacac ggcgggcagc agctgcaaca ccccccgcctc gtgccagcag 250
 cagggccgga atgtgcagca ctaccacatg aagacactgg gctggtgcga 300
 cgtggctac aacttcctga ttggagaaga cgggctcgta tacgagggcc 350
 gtggctggaa cttcacgggt gcccaactcg gtcacttatg gaaccccatg 400
 tccattggca tcagttcat gggcaactac atggatcggt tgcccacacc 450
 ccagggccatc cgggcagccc agggtctact ggcctgcgggt gtggctcagg 500
 gagccctgag gtccaaactat gtgctcaaag gacaccggga tgtgcagcgt 550
 acactctctc caggcaacca gcttaccac ctcatccaga attggccaca 600
 ctaccgctcc ccctgaggcc ctgctgatcc gcaccccatc cctccctcc 650
 catggccaaa aaccccactg tctccttctc caataaaagat gtagctc 697

<210> 216
 <211> 196
 <212> PRT

<213> Homo sapiens

<400> 216

Met	Ser	Arg	Arg	Ser	Met	Leu	Leu	Ala	Trp	Ala	Leu	Pro	Ser	Leu
1					5				10					15
Leu	Arg	Leu	Gly	Ala	Ala	Gln	Glu	Thr	Glu	Asp	Pro	Ala	Cys	Cys
					20				25					30
Ser	Pro	Ile	Val	Pro	Arg	Asn	Glu	Trp	Lys	Ala	Leu	Ala	Ser	Glu
					35				40					45
Cys	Ala	Gln	His	Leu	Ser	Leu	Pro	Leu	Arg	Tyr	Val	Val	Val	Ser
					50				55					60
His	Thr	Ala	Gly	Ser	Ser	Cys	Asn	Thr	Pro	Ala	Ser	Cys	Gln	Gln
					65				70					75
Gln	Ala	Arg	Asn	Val	Gln	His	Tyr	His	Met	Lys	Thr	Leu	Gly	Trp
					80				85					90
Cys	Asp	Val	Gly	Tyr	Asn	Phe	Leu	Ile	Gly	Glu	Asp	Gly	Leu	Val
					95				100					105
Tyr	Glu	Gly	Arg	Gly	Trp	Asn	Phe	Thr	Gly	Ala	His	Ser	Gly	His
					110				115					120
Leu	Trp	Asn	Pro	Met	Ser	Ile	Gly	Ile	Ser	Phe	Met	Gly	Asn	Tyr
					125				130					135
Met	Asp	Arg	Val	Pro	Thr	Pro	Gln	Ala	Ile	Arg	Ala	Ala	Gln	Gly
					140				145					150
Leu	Leu	Ala	Cys	Gly	Val	Ala	Gln	Gly	Ala	Leu	Arg	Ser	Asn	Tyr
					155				160					165
Val	Leu	Lys	Gly	His	Arg	Asp	Val	Gln	Arg	Thr	Leu	Ser	Pro	Gly
					170				175					180
Asn	Gln	Leu	Tyr	His	Leu	Ile	Gln	Asn	Trp	Pro	His	Tyr	Arg	Ser
					185				190					195

Pro

<210> 217

<211> 1871

<212> DNA

<213> Homo sapiens

<400> 217

ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50
gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg caggtagcc 100
tctatcttgtt catctgtggc caggatgatg gtcctcccg 150
cctgagcgtg atgaccacga gggccagccc cggccccggg tgctcggaa 200

卷之三

gcggggccac attcaccta agtccccccc catggccaaat tccactctcc 250
tagggctgct ggccccgcct ggggaggcgtt gggcattct tggcagccc 300
cccaaccgccc cgaaccacag ccccccaccc tcagccaagg tgaagaaaat 350
ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400
tgctcgtaac aggaaagatt gtggaccatg gcaatggac ctgcagcgac 450
cacttccaac acaatgccac aggccaggga aacatctcca tcagccttgt 500
gccccccagt aaagctgttag agttccacca ggaacagcag atcttcatcg 550
aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600
gaacggggcc gccggaccc tcgttgcacc cacgacccag ccaagatctg 650
ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700
tcaaagtcgt ctgtgtctac atcgcccttct acagcacgga ctatcgctg 750
gtccagaagg tgtgcccaga ttacaactac catagtgata cccctacta 800
cccatctggg tgaccgggg caggccacag aggccaggcc agggctggaa 850
ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaagg 900
gttgggcctc aggcaaggag gggggtggag acgaggagat gccaagtggg 950
gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000
aacctgaagc tgtggagtga cttagatcaca ggagcactgg aggaggagtg 1050
ggctctctgt gcagcctcac agggcttgc cacggagcca cagagagatg 1100
ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150
gtcatggag gaagctaagg cttgggttct tgccatcctg aggaaagata 1200
gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250
atggatggct gagaggcgtt cctaggagcc agtcagcagg gtggggtggg 1300
gccagaggag ctctccagcc ctgccttagtg ggcccccgtga gcccctgtc 1350
gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400
gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450
ttccctttc tgccagttact cccccgtac cacccattgc tgcgttccaca 1500
cccatcctta agctaagaca ggacgattgt ggtccctcca cactaaggcc 1550
acagcccatc cgccgtgctgt gtgtccctct tccaccccaa cccctgtgg 1600
ctcctctggg agcatccatg tccccggagag gggccctca acagtcagcc 1650

tcacctgtca gaccggggtt ctcccgatc tggatggcgc cgccctctca 1700
gcagcggca cgggtgggac ggggccgggc cgcagagcat gtgctggatc 1750
tgttctgtgt gtctgtctgt ggggtggggg aggggaggga agtcttgta 1800
aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850
aataaaagctt gccccggggc a 1871

<210> 218

<211> 252

<212> PRT

<213> Homo sapiens

<400> 218

Met	Gln	Leu	Thr	Arg	Cys	Cys	Phe	Val	Phe	Leu	Val	Gln	Gly	Ser	
1					5				10						15
Leu	Tyr	Leu	Val	Ile	Cys	Gly	Gln	Asp	Asp	Gly	Pro	Pro	Gly	Ser	
							20		25						30
Glu	Asp	Pro	Glu	Arg	Asp	Asp	His	Glu	Gly	Gln	Pro	Arg	Pro	Arg	
					35				40						45
Val	Pro	Arg	Lys	Arg	Gly	His	Ile	Ser	Pro	Lys	Ser	Arg	Pro	Met	
							50			55					60
Ala	Asn	Ser	Thr	Leu	Leu	Gly	Leu	Leu	Ala	Pro	Pro	Gly	Glu	Ala	
							65			70					75
Trp	Gly	Ile	Leu	Gly	Gln	Pro	Pro	Asn	Arg	Pro	Asn	His	Ser	Pro	
						80			85						90
Pro	Pro	Ser	Ala	Lys	Val	Lys	Lys	Ile	Phe	Gly	Trp	Gly	Asp	Phe	
							95			100					105
Tyr	Ser	Asn	Ile	Lys	Thr	Val	Ala	Leu	Asn	Leu	Leu	Val	Thr	Gly	
							110			115					120
Lys	Ile	Val	Asp	His	Gly	Asn	Gly	Thr	Phe	Ser	Val	His	Phe	Gln	
						125				130					135
His	Asn	Ala	Thr	Gly	Gln	Gly	Asn	Ile	Ser	Ile	Ser	Leu	Val	Pro	
							140			145					150
Pro	Ser	Lys	Ala	Val	Glu	Phe	His	Gln	Glu	Gln	Gln	Ile	Phe	Ile	
							155			160					165
Glu	Ala	Lys	Ala	Ser	Lys	Ile	Phe	Asn	Cys	Arg	Met	Glu	Trp	Glu	
							170			175					180
Lys	Val	Glu	Arg	Gly	Arg	Arg	Thr	Ser	Leu	Cys	Thr	His	Asp	Pro	
							185			190					195
Ala	Lys	Ile	Cys	Ser	Arg	Asp	His	Ala	Gln	Ser	Ser	Ala	Thr	Trp	
							200			205					210

Ser Cys Ser Gln Pro Phe Lys Val Val Cys Val Tyr Ile Ala Phe
215 220 225
Tyr Ser Thr Asp Tyr Arg Leu Val Gln Lys Val Cys Pro Asp Tyr
230 235 240
Asn Tyr His Ser Asp Thr Pro Tyr Tyr Pro Ser Gly
245 250

<210> 219
<211> 2065
<212> DNA
<213> Homo sapiens

<400> 219
gtgaatgtga gggttttagat actttcagat gtcttaggaac cagagtgggt 50
gcaggggccc caggcaggc tgattcttgg gcggaggaga gtagggtaaa 100
gggttctgca tgagtcctt aaaggacaaa ggtaacagag ccagcgagag 150
agctcgaggg gagactttga cttaaagcca cagaatttgtt ggaagtgtgc 200
gccccccgc cgccgtcgct cctgcagcgc tgtcgaccta gccgctagca 250
tcttcccgag caccgggatc ccggggtagg aggcgacgcg ggcgagcacc 300
agcggccagcc ggctgcggct gcccacacgg ctcaccatgg gctccggcgc 350
ccggcgctg tccgcggtgc cggccgtgct gctggtcctc acgctgccgg 400
ggctgcccgt ctgggcacag aacgacacgg agcccatcggt gctggagggc 450
aagtgtctgg tggtgtgcga ctcaaacccg gccacggact ccaagggctc 500
ctcttcctcc ccgctggga tatcggtccg ggcggccaaac tccaagggtcg 550
ccttctcgcc ggtgcggagc accaaccacg agccatccga gatgagcaac 600
aagacgcgca tcatttactt cgatcagatc ctggtaatg tggtaattt 650
tttcacattt gagtctgtct ttgttagcacc aagaaaagga atttacagtt 700
tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750
ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800
tgttactcgt gaagctgcca cgaatggtgt cctgctctac ctagataaag 850
aggataaggt ttacctaaaa ctggagaaag gtaatttgtt tggaggctgg 900
cagtattcca cgtttctgg ct当地ctggtg ttccccctat aggattcaat 950
ttctccatga tggatcatcca ggtgagggat gacccactcc tgagttattt 1000
gaagatcatt tttcatcat tggattgatg tcttttattt gtttctcatg 1050
ggtgatgtatg gattctaaagg attcttagcct gtctgaacca atacaaaatt 1100

tcacagatta tttgtgttg tctgttcag tatatttgg 1150
aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200
acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250
gaattttatt tgtagttt taaaagactg gcaaccagg 1300
gaaaactcta aagttctgac ttcaatcaac ggtagtgg atactgccaa 1350
agaactgtat actgtgttaa tatattgatt atatttgg 1400
ggaattagtt tggtggg 1450
aactggattt atgtttctc taaaataag gtaatgaatg gctgccac 1500
aaatttacct tgactacgat atcatcgaca tgacttctc caaaaaaaaaa 1550
aatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcataattt 1600
ccaagttata ttttctaaga agaagaatag atcataaatac tgacaaggaa 1650
aaagttgctt acccaaatac taagtgc 1700
cagctccct ccgagggaaa tcttatactt tattgctcaa cttaattaa 1750
aatgattgat aataaccact ttattaaaaa cctaagg 1800
cgtagacatg accacttat taactgg 1850
ttataccat tttcaaggc ttctgtt 1900
tgcccttaact cttaattt 1950
ttcaaatac ccatactaa atttagtgca atatctgtc 2000
gtcatatgaa ttcataaaat tattatgtc tgtagaa taaagattaa 2050
tatatgttaa aaaaa 2065

<210> 220

<211> 201

<212> PRT

<213> Homo sapiens

<400> 220

Met	Gly	Ser	Gly	Arg	Arg	Ala	Leu	Ser	Ala	Val	Pro	Ala	Val	Leu
1				5					10			15		

Leu	Val	Leu	Thr	Leu	Pro	Gly	Leu	Pro	Val	Trp	Ala	Gln	Asn	Asp
				20				25				30		

Thr	Glu	Pro	Ile	Val	Leu	Glu	Gly	Lys	Cys	Leu	Val	Val	Cys	Asp
				35				40				45		

Ser	Asn	Pro	Ala	Thr	Asp	Ser	Lys	Gly	Ser	Ser	Ser	Pro	Leu
				50				55				60	

Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala
65 70 75

Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr
80 85 90

Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe
95 100 105

Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr
110 115 120

Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile
125 130 135

Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe
140 145 150

Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val
155 160 165

Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu
170 175 180

Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly
185 190 195

Phe Leu Val Phe Pro Leu
200

<210> 221
<211> 20
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.

<400> 221
acggctcacc atgggctccg 20

<210> 222
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 222
aggaagagga gcccttggag tccg 24

<210> 223
<211> 40

<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.

<400> 223
cgtgctggag ggcaagtgtc tgggggtgtg cgactcgaac 40

<210> 224
<211> 902
<212> DNA
<213> Homo sapiens

<400> 224
cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50
gggcctgcgc tcgccttta tgtcttcacc atcgccatcg agccgttgcg 100
tatcatcttc ctcatcgccg gagctttctt ctgggttgtg tctctactga 150
tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200
ggaccaacac agaaatatct gctgatctt ggagcgtttgc tctctgtcta 250
tatccaagaa atgttccgat ttgcataatta taaaactctta aaaaaagcca 300
gtgaagggtt gaagagtata aaccagggtg agacagcacc ctctatgcga 350
ctgctggcct atgtttctgg cttgggcttt ggaatcatga gtggagtatt 400
ttccttggta aataccctat ctgactcctt ggggccaggc acagtgggca 450
ttcatggaga ttctcctcaa ttcttcctt attcagctt catgacgctg 500
gtcattatct tgctgcatgt attctgggc attgtatccc ttgatggctg 550
tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600
tgggtgcagc ccagaccttc ataagttctt attatggaaat aaacctggcg 650
tcagcattta taatcctggt gctcatggc acctggcat tcttagctgc 700
gggaggcagc tgccgaagcc tgaaactctg cctgctctgc caagacaaga 750
actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800
tccccaaaccg cagactacat ctttagagga agcacaactg tgccttttc 850
tgaaaatccc ttttctggt ggaattgaga aagaaataaa actatgcaga 900
ta 902

<210> 225
<211> 257
<212> PRT

<213> Homo sapiens

<400> 225

Met	Thr	Ala	Ala	Val	Phe	Phe	Gly	Cys	Ala	Phe	Ile	Ala	Phe	Gly	
1				5				10							15
Pro	Ala	Leu	Ala	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Ile	Glu	Pro	Leu	
				20				25							30
Arg	Ile	Ile	Phe	Leu	Ile	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser	
				35				40							45
Leu	Leu	Ile	Ser	Ser	Leu	Val	Trp	Phe	Met	Ala	Arg	Val	Ile	Ile	
				50				55							60
Asp	Asn	Lys	Asp	Gly	Pro	Thr	Gln	Lys	Tyr	Leu	Leu	Ile	Phe	Gly	
				65				70							75
Ala	Phe	Val	Ser	Val	Tyr	Ile	Gln	Glu	Met	Phe	Arg	Phe	Ala	Tyr	
				80				85							90
Tyr	Lys	Leu	Leu	Lys	Lys	Ala	Ser	Glu	Gly	Leu	Lys	Ser	Ile	Asn	
				95				100							105
Pro	Gly	Glu	Thr	Ala	Pro	Ser	Met	Arg	Leu	Leu	Ala	Tyr	Val	Ser	
				110				115							120
Gly	Leu	Gly	Phe	Gly	Ile	Met	Ser	Gly	Val	Phe	Ser	Phe	Val	Asn	
				125				130							135
Thr	Leu	Ser	Asp	Ser	Leu	Gly	Pro	Gly	Thr	Val	Gly	Ile	His	Gly	
				140				145							150
Asp	Ser	Pro	Gln	Phe	Phe	Leu	Tyr	Ser	Ala	Phe	Met	Thr	Leu	Val	
				155				160							165
Ile	Ile	Leu	Leu	His	Val	Phe	Trp	Gly	Ile	Val	Phe	Phe	Asp	Gly	
				170				175							180
Cys	Glu	Lys	Lys	Lys	Trp	Gly	Ile	Leu	Leu	Ile	Val	Leu	Leu	Thr	
				185				190							195
His	Leu	Leu	Val	Ser	Ala	Gln	Thr	Phe	Ile	Ser	Ser	Tyr	Tyr	Gly	
				200				205							210
Ile	Asn	Leu	Ala	Ser	Ala	Phe	Ile	Ile	Leu	Val	Leu	Met	Gly	Thr	
				215				220							225
Trp	Ala	Phe	Leu	Ala	Ala	Gly	Gly	Ser	Cys	Arg	Ser	Leu	Lys	Leu	
				230				235							240
Cys	Leu	Leu	Cys	Gln	Asp	Lys	Asn	Phe	Leu	Leu	Tyr	Asn	Gln	Arg	
				245				250							255
Ser	Arg														

<210> 226

<211> 3939
<212> DNA
<213> Homo sapiens

<400> 226
cggcaaccag ccgcccac caccgctgcc actgccggcc tgccggggcc 50
atgttcgctc tgggcttgcc cttcttggtg ctcttggtgg cctcggtcga 100
gagccatctg ggggttctgg ggcccaagaa cgtctcgacaa aaagacgccc 150
agttttagcg cacctacgtg gacgaggta acagcgagct ggtcaacatc 200
tacaccttca accatactgt gacccgcaac aggacagagg gcgtgcgtgt 250
gtctgtgaac gtcctgaaca agcagaagg ggcgcgttg ctgtttgtgg 300
tccgccagaa ggaggctgtg gtgtccttcc aggtgcctt aatcctgcga 350
gggatgtttc agcgcaagta cctctaccaa aaagtggAAC gaaccctgtg 400
tcagcccccc accaagaatg agtcggagat tcagttcttc tacgtggatg 450
tgtccaccct gtcaccagtc aacaccat accagctccg ggtcagccgc 500
atggacgatt ttgtgctcag gactggggag cagttcagct tcaataaccac 550
agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600
cggttaattgt caaggtgacc tccaacaagg cttccctg ctcagtcatc 650
tccattcagg atgtgctgtg tcctgtctat gacctggaca acaacgtac 700
cttcatcgac atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750
agcgcaaaga cttccccagc aacagctttt atgtgggtggt ggtggtaag 800
accgaagacc aagcctgcgg gggctccctg ctttctacc cttcgcaga 850
agatgaaccg gtcgatcaag ggcacccca gaaaaccctg tcagtgcgtgg 900
tgtctcaagc agtcacgtct gaggcatacg tcagtggttgc 950
ctgggtatat ttctctcctt ttacctgctg accgtcctcc tggcctgctg 1000
ggagaactgg aggcaagaaga agaagaccct gctgggtggcc attgaccgag 1050
cctgcccaga aagcggtcac cctcgagtcc tggctgattc tttcctggc 1100
atttccctt atgagggta caactatggc tcctttgaga atgtttctgg 1150
atctaccgat ggtctgggttgc acagcgctgg cactggggac ctctcttacg 1200
gttaccaggg ccgctcctt gaaacctgttag gtactcggcc ccgagtgac 1250
tccatgagct ctgtggagga ggatgactac gacacattga ccgacatcga 1300
ttccgacaag aatgtcattc gcaccaagca ataccttat gtggctgacc 1350

tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400
tggaacattg ccaccattgc tgtcttctat gcccttcctg tggcagct 1450
ggtgatcacc taccagacgg tggtaatgt cacaggaaat caggacatct 1500
gctactacaa cttccctctgc gcccacccac tggcaatct cagcgcttc 1550
aacaacatcc tcagcaacct ggggtacatc ctgctgggc tgctttcct 1600
gctcatcatc ctgcaacggg agatcaacca caaccgggcc ctgctgcgca 1650
atgacctctg tgccctggaa tgtggatcc ccaaacactt tggctttc 1700
tacccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750
tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800
acatgatcgc cgactctgc atgctgaagc tctaccagaa gcggcacccg 1850
gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900
cttcttctct gtgctggcg tggctttgg caaaggaaac acggcgttct 1950
ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000
cagctctatt acatggcccg gtggaaactg gactcgggaa tcttccgccc 2050
catcctccac gtgctctaca cagactgcat ccggcagtgc agcggccgc 2100
tctacgtgga ccgcattggc ctgctggta tggcaacgt catcaactgg 2150
tcgctggctg cctatggct tatcatgcgc cccaatgatt tcgcttccta 2200
cttggggcc attggcatct gcaacctgct ccttacttc gccttctaca 2250
tcatcatgaa gctccggagt gggagagga tcaagctcat cccctgctc 2300
tgcatcgaaa gcacccgt ggtctgggc ttgcgcctt tcttcttctt 2350
ccagggactc agcacctggc agaaaacccc tgcagagtgc agggagcaca 2400
accgggactg catcctccctc gacttcttg acgaccacga catctggcac 2450
ttcctctcct ccatcgccat gttcgggtcc ttccctgggt tgctgacact 2500
ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550
aggagctggg cccttcgctt cacctaagg ggcctgagc tcctttgtgt 2600
catagaccgg tcactctgtc gtgctgtgg gatgagtcggc agcaccgctg 2650
cccagcactg gatggcagca ggacagccag gtctagctt ggcttggcct 2700
gggacagcca tggggtgcca tggaacctt cagctgcctt ctgcccggaga 2750
gcaggcctgc tccccctggaa cccccagatg ttggccaaat tgctgcttc 2800

BIOLOGY DECODE

ttctcagtgt tggggcccttc catgggcccc tgtccttgg ctctccattt 2850
gtccccttgc aagaggaagg atgaaaggga caccctcccc atttcatgcc 2900
ttgcattttg cccgtccctcc tccccacaat gccccagcct gggacctaag 2950
gcctctttt cctcccaatac tcccaactcca gggcctagtc tggggcctga 3000
atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050
ccatcaactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100
gggggttggc cagctggtgc cagacttttgc gtgctaaggc ctgcaagggg 3150
cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200
cttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250
gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 3300
agcaccagga ctggagggag aagcgcctca ccccttccct tccttcttc 3350
caggccctta gtcttgccaa accccagctg gtggccttgc agtgcatttgc 3400
acactgccc aagaatgtcca gggcaaagg agggatgata cagagttcag 3450
cccgttctgc ctccacagct gtgggcaccc cagtcctac cttagaaagg 3500
ggcttcagga agggatgtgc tgtttccctc tacgtgccc gtcctagcct 3550
cgctcttagga cccagggctg gcttctaagt ttccgtccag tcttcaggca 3600
agttctgtgt tagtcatgca cacacatacc tatgaaacct tggagtttac 3650
aaagaattgc cccagctctg ggcaccctgg ccacccttgt ccttggatcc 3700
ccttcgtccc acctggtcca cccagatgc tgaggatggg ggagctcagg 3750
cgggccctct gctttgggaa tggaaatgtg ttttctccc aaacttgttt 3800
ttatagtctct gcttgaaggg ctggagatg aggtgggtct ggatctttc 3850
tcagagcgtc tccatgctat ggtgcattt ccgtttctta tgaatgaatt 3900
tgcattcaat aaacaaccag actcaaaaaa aaaaaaaaaa 3939

<210> 227

<211> 832

<212> PRT

<213> Homo sapiens

<400> 227

Met	Phe	Ala	Leu	Gly	Leu	Pro	Phe	Leu	Val	Leu	Leu	Val	Ala	Ser
1				5					10					15

Val	Glu	Ser	His	Leu	Gly	Val	Leu	Gly	Pro	Lys	Asn	Val	Ser	Gln
				20				25						30

Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser
 35 40 45
 Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn
 50 55 60
 Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gln
 65 70 75
 Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gln Lys Glu Ala Val
 80 85 90
 Val Ser Phe Gln Val Pro Leu Ile Leu Arg Gly Met Phe Gln Arg
 95 100 105
 Lys Tyr Leu Tyr Gln Lys Val Glu Arg Thr Leu Cys Gln Pro Pro
 110 115 120
 Thr Lys Asn Glu Ser Glu Ile Gln Phe Phe Tyr Val Asp Val Ser
 125 130 135
 Thr Leu Ser Pro Val Asn Thr Thr Tyr Gln Leu Arg Val Ser Arg
 140 145 150
 Met Asp Asp Phe Val Leu Arg Thr Gly Glu Gln Phe Ser Phe Asn
 155 160 165
 Thr Thr Ala Ala Gln Pro Gln Tyr Phe Lys Tyr Glu Phe Pro Glu
 170 175 180
 Gly Val Asp Ser Val Ile Val Lys Val Thr Ser Asn Lys Ala Phe
 185 190 195
 Pro Cys Ser Val Ile Ser Ile Gln Asp Val Leu Cys Pro Val Tyr
 200 205 210
 Asp Leu Asp Asn Asn Val Ala Phe Ile Gly Met Tyr Gln Thr Met
 215 220 225
 Thr Lys Lys Ala Ala Ile Thr Val Gln Arg Lys Asp Phe Pro Ser
 230 235 240
 Asn Ser Phe Tyr Val Val Val Val Lys Thr Glu Asp Gln Ala
 245 250 255
 Cys Gly Gly Ser Leu Pro Phe Tyr Pro Phe Ala Glu Asp Glu Pro
 260 265 270
 Val Asp Gln Gly His Arg Gln Lys Thr Leu Ser Val Leu Val Ser
 275 280 285
 Gln Ala Val Thr Ser Glu Ala Tyr Val Ser Gly Met Leu Phe Cys
 290 295 300
 Leu Gly Ile Phe Leu Ser Phe Tyr Leu Leu Thr Val Leu Leu Ala
 305 310 315
 Cys Trp Glu Asn Trp Arg Gln Lys Lys Thr Leu Leu Val Ala

	320	325	330
Ile Asp Arg Ala Cys Pro Glu Ser Gly His Pro Arg Val Leu Ala			
335	340	345	
Asp Ser Phe Pro Gly Ser Ser Pro Tyr Glu Gly Tyr Asn Tyr Gly			
350	355	360	
Ser Phe Glu Asn Val Ser Gly Ser Thr Asp Gly Leu Val Asp Ser			
365	370	375	
Ala Gly Thr Gly Asp Leu Ser Tyr Gly Tyr Gln Gly Arg Ser Phe			
380	385	390	
Glu Pro Val Gly Thr Arg Pro Arg Val Asp Ser Met Ser Ser Val			
395	400	405	
Glu Glu Asp Asp Tyr Asp Thr Leu Thr Asp Ile Asp Ser Asp Lys			
410	415	420	
Asn Val Ile Arg Thr Lys Gln Tyr Leu Tyr Val Ala Asp Leu Ala			
425	430	435	
Arg Lys Asp Lys Arg Val Leu Arg Lys Lys Tyr Gln Ile Tyr Phe			
440	445	450	
Trp Asn Ile Ala Thr Ile Ala Val Phe Tyr Ala Leu Pro Val Val			
455	460	465	
Gln Leu Val Ile Thr Tyr Gln Thr Val Val Asn Val Thr Gly Asn			
470	475	480	
Gln Asp Ile Cys Tyr Tyr Asn Phe Leu Cys Ala His Pro Leu Gly			
485	490	495	
Asn Leu Ser Ala Phe Asn Asn Ile Leu Ser Asn Leu Gly Tyr Ile			
500	505	510	
Leu Leu Gly Leu Leu Phe Leu Leu Ile Ile Leu Gln Arg Glu Ile			
515	520	525	
Asn His Asn Arg Ala Leu Leu Arg Asn Asp Leu Cys Ala Leu Glu			
530	535	540	
Cys Gly Ile Pro Lys His Phe Gly Leu Phe Tyr Ala Met Gly Thr			
545	550	555	
Ala Leu Met Met Glu Gly Leu Leu Ser Ala Cys Tyr His Val Cys			
560	565	570	
Pro Asn Tyr Thr Asn Phe Gln Phe Asp Thr Ser Phe Met Tyr Met			
575	580	585	
Ile Ala Gly Leu Cys Met Leu Lys Leu Tyr Gln Lys Arg His Pro			
590	595	600	
Asp Ile Asn Ala Ser Ala Tyr Ser Ala Tyr Ala Cys Leu Ala Ile			
605	610	615	

Val Ile Phe Phe Ser Val Leu Gly Val Val Phe Gly Lys Gly Asn
 620 625 630
 Thr Ala Phe Trp Ile Val Phe Ser Ile Ile His Ile Ile Ala Thr
 635 640 645
 Leu Leu Leu Ser Thr Gln Leu Tyr Tyr Met Gly Arg Trp Lys Leu
 650 655 660
 Asp Ser Gly Ile Phe Arg Arg Ile Leu His Val Leu Tyr Thr Asp
 665 670 675
 Cys Ile Arg Gln Cys Ser Gly Pro Leu Tyr Val Asp Arg Met Val
 680 685 690
 Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr
 695 700 705
 Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala
 710 715 720
 Ile Gly Ile Cys Asn Leu Leu Leu Tyr Phe Ala Phe Tyr Ile Ile
 725 730 735
 Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu
 740 745 750
 Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe
 755 760 765
 Phe Phe Gln Gly Leu Ser Thr Trp Gln Lys Thr Pro Ala Glu Ser
 770 775 780
 Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp
 785 790 795
 His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser
 800 805 810
 Phe Leu Val Leu Leu Thr Leu Asp Asp Asp Leu Asp Thr Val Gln
 815 820 825
 Arg Asp Lys Ile Tyr Val Phe
 830

<210> 228
 <211> 2848
 <212> DNA
 <213> Homo sapiens

<400> 228
 gctcaagtgc cctgccttgc cccaccccagc ccagcctggc cagagcccc 50
 tggagaagga gctctttct tgcttggcag ctggaccaag ggagccagtc 100
 ttggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150
 gctttgtgtc tccgtccccc aggctctccc caaggcccag cctgcagagc 200

tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250
accaagttgc cgctccccg tgagggggct gaaggccaga tcgtgctgtc 300
aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350
ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400
taccagctac aggtcacccct ggagatgcag gatggacatg tcttgtgggg 450
tccacagcct gtgcttgc acgtgaagga tgagaatgac caggtgcccc 500
atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550
ggcatccct tcctttcct tgaggcttca gaccggatg agccaggcac 600
agccaactcg gatcttcgtat tccacatcct gagccaggtt ccagcccagc 650
cttccccaga catgttccag ctggagcctc ggctggggc tctggccctc 700
agcccaagg ggagcaccag ctttgaccac gccctggaga ggacctacca 750
gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800
ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850
gagcctatcc acctggcaga gaatctaaa gtcctatacc cgccaccat 900
ggcccaaggta cactggagtg ggggtatgt gcactatcac ctggagagcc 950
atccccccggg acccttgaa gtgaatgcag agggaaacct ctacgtgacc 1000
agagagctgg acagagaagc ccaggctgag tacctgctcc aggtgcgggc 1050
tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100
tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150
acagtcagca tccctgagct cagtccacca ggtactgaag tgactagact 1200
gtcagcagag gatgcagatg ccccccggctc ccccaattcc cacgttgtgt 1250
atcagctcct gagccctgag cctgaggatg gggtagaggg gagagccttc 1300
caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350
agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400
cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450
atcaatgatc acgccccctga gttcatcaact tcccagattt ggcctataag 1500
cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550
ttgatgctga cctcgagccc gccttccgccc tcatggattt tgccattgag 1600
aggggagaca cagaaggac ttttggcctg gattggagc cagactctgg 1650

gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700
gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750
ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800
gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccc 1850
tcagtgc(cc) agccggctct ttccctgctga ccatccagcc ctccgacccc 1900
atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950
ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000
gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050
gccctgactc ttgcccctgt gccctccaa tacctctgca caccggcc 2100
agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150
gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200
cgggattggc gcctccagac tctcaatggc tcccatgcct actcaccc 2250
ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtgggtgtca 2300
gccacaatgc ccagatgtgg cagctcctgg ttcgagtgtat cgtgtgtcgc 2350
tgcaacgtgg aggggcagtg catgcgaag gtggggccca tgaaggcat 2400
gcccacgaag ctgtcggcag tgggcattct tgtaggcacc ctggtagcaa 2450
taggaatctt cctcatcctc atttcaccc actggaccat gtcaaggaag 2500
aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550
aatggcccaag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600
tcccctggga gagagcccaag caccaagat ccagcagggg acaggacaga 2650
gtagaagccc ctccatctgc cctgggggtgg aggcaccatc accatcacca 2700
ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatggaggt 2750
gctccaaatg tcagggtgtt tgcccaataa taaagcccc gagaactggg 2800
ctggcccta tggaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaag 2848

<210> 229
<211> 807
<212> PRT
<213> Homo sapiens

<400> 229
Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10 15
Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro

20	25	30
Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr	Leu Thr Lys Leu Pro	
35	40	45
Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val	Leu Ser Gly Asp	
50	55	60
Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met	Asp Pro Asp Ser	
65	70	75
Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg	Glu Glu Gln Ala	
80	85	90
Glu Tyr Gln Leu Gln Val Thr Leu Glu Met Gln	Asp Gly His Val	
95	100	105
Leu Trp Gly Pro Gln Pro Val Leu Val His Val	Lys Asp Glu Asn	
110	115	120
Asp Gln Val Pro His Phe Ser Gln Ala Ile	Tyr Arg Ala Arg Leu	
125	130	135
Ser Arg Gly Thr Arg Pro Gly Ile Pro Phe Leu	Phe Leu Glu Ala	
140	145	150
Ser Asp Arg Asp Glu Pro Gly Thr Ala Asn Ser	Asp Leu Arg Phe	
155	160	165
His Ile Leu Ser Gln Ala Pro Ala Gln Pro	Ser Pro Asp Met Phe	
170	175	180
Gln Leu Glu Pro Arg Leu Gly Ala Leu Ala	Leu Ser Pro Lys Gly	
185	190	195
Ser Thr Ser Leu Asp His Ala Leu Glu Arg	Thr Tyr Gln Leu Leu	
200	205	210
Val Gln Val Lys Asp Met Gly Asp Gln Ala	Ser Gly His Gln Ala	
215	220	225
Thr Ala Thr Val Glu Val Ser Ile Ile Glu	Ser Thr Trp Val Ser	
230	235	240
Leu Glu Pro Ile His Leu Ala Glu Asn Leu	Lys Val Leu Tyr Pro	
245	250	255
His His Met Ala Gln Val His Trp Ser Gly	Gly Asp Val His Tyr	
260	265	270
His Leu Glu Ser His Pro Pro Gly Pro Phe	Glu Val Asn Ala Glu	
275	280	285
Gly Asn Leu Tyr Val Thr Arg Glu Leu Asp Arg	Glu Ala Gln Ala	
290	295	300
Glu Tyr Leu Leu Gln Val Arg Ala Gln Asn	Ser His Gly Glu Asp	
305	310	315

Tyr Ala Ala Pro Leu Glu Leu His Val Leu Val Met Asp Glu Asn
 320 325 330
 Asp Asn Val Pro Ile Cys Pro Pro Arg Asp Pro Thr Val Ser Ile
 335 340 345
 Pro Glu Leu Ser Pro Pro Gly Thr Glu Val Thr Arg Leu Ser Ala
 350 355 360
 Glu Asp Ala Asp Ala Pro Gly Ser Pro Asn Ser His Val Val Tyr
 365 370 375
 Gln Leu Leu Ser Pro Glu Pro Glu Asp Gly Val Glu Gly Arg Ala
 380 385 390
 Phe Gln Val Asp Pro Thr Ser Gly Ser Val Thr Leu Gly Val Leu
 395 400 405
 Pro Leu Arg Ala Gly Gln Asn Ile Leu Leu Leu Val Leu Ala Met
 410 415 420
 Asp Leu Ala Gly Ala Glu Gly Gly Phe Ser Ser Thr Cys Glu Val
 425 430 435
 Glu Val Ala Val Thr Asp Ile Asn Asp His Ala Pro Glu Phe Ile
 440 445 450
 Thr Ser Gln Ile Gly Pro Ile Ser Leu Pro Glu Asp Val Glu Pro
 455 460 465
 Gly Thr Leu Val Ala Met Leu Thr Ala Ile Asp Ala Asp Leu Glu
 470 475 480
 Pro Ala Phe Arg Leu Met Asp Phe Ala Ile Glu Arg Gly Asp Thr
 485 490 495
 Glu Gly Thr Phe Gly Leu Asp Trp Glu Pro Asp Ser Gly His Val
 500 505 510
 Arg Leu Arg Leu Cys Lys Asn Leu Ser Tyr Glu Ala Ala Pro Ser
 515 520 525
 His Glu Val Val Val Val Val Gln Ser Val Ala Lys Leu Val Gly
 530 535 540
 Pro Gly Pro Gly Pro Gly Ala Thr Ala Thr Val Thr Val Leu Val
 545 550 555
 Glu Arg Val Met Pro Pro Pro Lys Leu Asp Gln Glu Ser Tyr Glu
 560 565 570
 Ala Ser Val Pro Ile Ser Ala Pro Ala Gly Ser Phe Leu Leu Thr
 575 580 585
 Ile Gln Pro Ser Asp Pro Ile Ser Arg Thr Leu Arg Phe Ser Leu
 590 595 600
 Val Asn Asp Ser Glu Gly Trp Leu Cys Ile Glu Lys Phe Ser Gly

605	610	615
Glu Val His Thr Ala Gln Ser Leu Gln Gly Ala Gln Pro Gly Asp		
620	625	630
Thr Tyr Thr Val Leu Val Glu Ala Gln Asp Thr Ala Leu Thr Leu		
635	640	645
Ala Pro Val Pro Ser Gln Tyr Leu Cys Thr Pro Arg Gln Asp His		
650	655	660
Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser		
665	670	675
Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val		
680	685	690
Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr		
695	700	705
Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile		
710	715	720
Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val		
725	730	735
Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg		
740	745	750
Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val		
755	760	765
Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile		
770	775	780
Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp		
785	790	795
Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val		
800	805	

<210> 230

<211> 50

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-50

<223> Synthetic construct.

<400> 230

cgccttaccg cgcaagccga agattcacta tggtgaaaat cgccttcaat 50

<210> 231

<211> 24

<212> DNA

<213> Artificial Segeunce

<220>
<221> Artificial Sequence
<222> full
<223> Synthetic oligonucleotide probe

<400> 231
`cctgagctgt aaccccaactc cagg 24

<210> 232
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 232
agagtctgtc ccagctatct tgt 23

<210> 233
<211> 2786
<212> DNA
<213> Homo sapiens

<400> 233
ccggggacat gaggtggata ctgttcattt gggcccttat tgggtccagc 50
atctgtggcc aagaaaaatt ttttggggac caagtttga ggattaatgt 100
cagaaatgga gacgagatca gcaaatttagt tcaactatgt aattcaaaca 150
acttgaagct caatttctgg aaatctccct cctccttcaa tcggcctgtg 200
gatgtcctgg tcccattctgt cagttctgcag gcatttaat ctttcctgag 250
atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300
tagacaatga agatgatgaa atgcaacaca atgaaggcga agaacggagc 350
agtaataact tcaactacgg ggcttaccat tccctggaag ctatccatca 400
cgagatggac aacattgccc cagactttcc tgacctggcg aggagggtga 450
agattggaca ttctgttggaa aaccggccga tgtatgtact gaagttcagc 500
actggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550
ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600
ttgttatctga ttaccagagg gatccagcta tcacccat cttggagaaa 650
atggatattt tcttgttgcc tgtggccat cctgatggat atgtgtatac 700
tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750
gctcctgcat tggtgctgac ccaaatacgaa actggAACgc tagtttgca 800
ggaaaggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850

cgccaattcg gaagtggagg tgaaatcagt ggttagattc atccaaaaac 900
atgggaattt caagggcttc atcgacacctc acagctactc gcagctgctg 950
atgtatccat atgggtactc agtcaaaaag gcccccagatg ccgaggaact 1000
cgacaaggtg gcgaggcttg cgcccaaagc tctggcttct gtgtcgggca 1050
ctgagttacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100
agcagcatcg actgggcgta tgacaacggc atcaaatttgc cattcacatt 1150
tgagttgaga gataccggga cctatggctt cctcctgccat gctaaccaga 1200
tcatccccac tgcagaggag acgtggctgg ggctgaagac catcatggag 1250
catgtgcggg acaacctcta ctaggcgatg gctctgctct gtctacattt 1300
atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350
cctacctgtg tgagtcagag ccctctgggt ttgtggagca cacaggcctg 1400
cccctctcca gccagctccc tggagtcgtg tgtcctggcg gtgtccctgc 1450
aagaactggt tctgccagcc tgctcaattt tggtcctgct gttttgatg 1500
agcctttgt ctgtttctcc ttccaccctg ctggctgggc ggctgcactc 1550
agcatcaccc cttcctgggt ggcattgtctc tctctacccctt attttttagaa 1600
ccaaagaaca tctgagatga ttctctaccc tcattccacat ctagccaagc 1650
cagtgacctt gctctgggtt cactgtggga gacaccactt gtcttaggt 1700
gggtctcaaa gatgatgttag aatttccttt aatttctcgc agtcttcctg 1750
gaaaatattt tcctttgagc agcaaatctt gtagggatata cagtgaaggt 1800
ctctccctcc ctccctctccctt gttttttttt tttttgagac agagtttgc 1850
tcttggcc caggctggag tgtgatggct cgatcttggc tcaccacaac 1900
ctctgcctcc tgggttcaag caattctcctt gcctcagcctt cttgagtagc 1950
ttgggttata ggcgcattgcc accatgcctg gctaattttt gtttttagt 2000
agagacaggg tttctccatg ttgggtcaggc tgggtctcaaa ctcccaacct 2050
caggtgatct gccccttcctt gcctcccaga gtgctggat tacaggtgtg 2100
agccactgtg cggggcccggt cccctccctt ttttaggcctg aatacaaaagt 2150
agaagatcac ttcccttcac tgtgctgaga atttcttagat actacagttc 2200
ttactcctctt cttccctttt gttattcagtg tgaccaggat ggcggggaggg 2250
gatctgtgtc actgttaggta ctgtgcccag gaaggctggg tgaagtgacc 2300

atctaaattg cagcatggtg aaattatccc catctgtcct aatgggctta 2350
 cctcctcttt gcctttgaa ctcacttcaa agatcttaggc ctcatcttac 2400
 aggtcctaaa tcactcatct ggcctggata atctcactgc cctggcacat 2450
 tcccatttgt gctgtggtgt atcctgtgtt tccttgcct gggttgtgtg 2500
 tgtgtgtgtg tgtgtgtgtg tgtgtgtgtt tgtgtgtgtg tgtctgtcta 2550
 ttttgtatcc tggaccacaa gttcctaagt agagcaagaa ttcatcaacc 2600
 agctgcctct tgtttcattt cacctcagca cgtaccatct gtcctttgt 2650
 tgttgtgtt ttgttttgt tttttgctt ttaccaaaca tgtctgtaaa 2700
 tcttaacctc ctgccttagga tttgtacagc atctggtgtg tgcttataag 2750
 ccaataaata ttcaatgtga aaaaaaaaaa aaaaaaa 2786

<210> 234

<211> 421

<212> PRT

<213> Homo sapiens

<400> 234

Met	Arg	Trp	Ile	Leu	Phe	Ile	Gly	Ala	Leu	Ile	Gly	Ser	Ser	Ile
1														15
Cys	Gly	Gln	Glu	Lys	Phe	Phe	Gly	Asp	Gln	Val	Leu	Arg	Ile	Asn
				20					25					30
Val	Arg	Asn	Gly	Asp	Glu	Ile	Ser	Lys	Leu	Ser	Gln	Leu	Val	Asn
								35		40				45
Ser	Asn	Asn	Leu	Lys	Leu	Asn	Phe	Trp	Lys	Ser	Pro	Ser	Ser	Phe
								50		55				60
Asn	Arg	Pro	Val	Asp	Val	Leu	Val	Pro	Ser	Val	Ser	Leu	Gln	Ala
								65		70				75
Phe	Lys	Ser	Phe	Leu	Arg	Ser	Gln	Gly	Leu	Glu	Tyr	Ala	Val	Thr
								80		85				90
Ile	Glu	Asp	Leu	Gln	Ala	Leu	Asp	Asn	Glu	Asp	Asp	Glu	Met	
								95		100				105
Gln	His	Asn	Glu	Gly	Gln	Glu	Arg	Ser	Ser	Asn	Asn	Phe	Asn	Tyr
								110		115				120
Gly	Ala	Tyr	His	Ser	Leu	Glu	Ala	Ile	Tyr	His	Glu	Met	Asp	Asn
								125		130				135
Ile	Ala	Ala	Asp	Phe	Pro	Asp	Leu	Ala	Arg	Arg	Val	Lys	Ile	Gly
								140		145				150
His	Ser	Phe	Glu	Asn	Arg	Pro	Met	Tyr	Val	Leu	Lys	Phe	Ser	Thr
								155		160				165

Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile
 170 175 180
 His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala
 185 190 195
 Arg Lys Ile Val Ser Asp Tyr Gln Arg Asp Pro Ala Ile Thr Ser
 200 205 210
 Ile Leu Glu Lys Met Asp Ile Phe Leu Leu Pro Val Ala Asn Pro
 215 220 225
 Asp Gly Tyr Val Tyr Thr Gln Thr Gln Asn Arg Leu Trp Arg Lys
 230 235 240
 Thr Arg Ser Arg Asn Pro Gly Ser Ser Cys Ile Gly Ala Asp Pro
 245 250 255
 Asn Arg Asn Trp Asn Ala Ser Phe Ala Gly Lys Gly Ala Ser Asp
 260 265 270
 Asn Pro Cys Ser Glu Val Tyr His Gly Pro His Ala Asn Ser Glu
 275 280 285
 Val Glu Val Lys Ser Val Val Asp Phe Ile Gln Lys His Gly Asn
 290 295 300
 Phe Lys Gly Phe Ile Asp Leu His Ser Tyr Ser Gln Leu Leu Met
 305 310 315
 Tyr Pro Tyr Gly Tyr Ser Val Lys Lys Ala Pro Asp Ala Glu Glu
 320 325 330
 Leu Asp Lys Val Ala Arg Leu Ala Ala Lys Ala Leu Ala Ser Val
 335 340 345
 Ser Gly Thr Glu Tyr Gln Val Gly Pro Thr Cys Thr Thr Val Tyr
 350 355 360
 Pro Ala Ser Gly Ser Ser Ile Asp Trp Ala Tyr Asp Asn Gly Ile
 365 370 375
 Lys Phe Ala Phe Thr Phe Glu Leu Arg Asp Thr Gly Thr Tyr Gly
 380 385 390
 Phe Leu Leu Pro Ala Asn Gln Ile Ile Pro Thr Ala Glu Glu Thr
 395 400 405
 Trp Leu Gly Leu Lys Thr Ile Met Glu His Val Arg Asp Asn Leu
 410 415 420
 Tyr

<210> 235
 <211> 1743
 <212> DNA
 <213> Homo sapiens

<400> 235
caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50
tgttccaaaa tggcatctta ccttatgga gtactcttg ctgttggcct 100
ctgtgctcca atctactgtg tgtccccgc caatcccccc agtcataacc 150
cccggcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200
aacaccgact ttgcctccg cctataccgc aggctggttt tggagacccc 250
gagtcagaac atcttcttct cccctgttag tgcctccact tccctggcca 300
tgctctccct tggggccac tcagtcacca agacccagat tctccaggc 350
ctgggcttca acctcacaca cacaccagag tctgccatcc accaggcctt 400
ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgacccctga 450
agatgggaag tgcccttttc gtcaagaagg agctgcagct gcaggcaaat 500
ttcttggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550
tttctccaac ccctccattt cccaggcgag gatcaacacgc catgtaaaaa 600
agaagaccca agggaaagggtt gtagacataa tccaaaggcct tgaccccttg 650
acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700
gccctttcac cttgaatata caagaaagaa cttcccatcc ctggggcg 750
agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800
tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850
gggagatgcc gtggccttct ttgtcctccc tagcaaggc aagatgaggc 900
aacttggaaaca ggccttgcac gccagaacac tgataaagtg gagccactca 950
ctccagaaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000
ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaatgcct 1050
ttgacaaaaaa tgctgatttt tctggatttg caaagagaga ctccctgcag 1100
gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150
tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200
gtccctctta cttcaactgac tccttcaata ggacccctt gatgtatgatt 1250
acaataaaag ccacagacgg tattctctt ctagggaaag tggaaaatcc 1300
cactaaatcc taggtggaa atggcctgtt aactgatggc acattgctaa 1350
tgcacaagaa ataacaaacc acatccctct ttctgttctg agggcatt 1400
tgaccccaagt ggagctggat tcgctggcag ggatgccact tccaaaggctc 1450

aatcaccaaa ccatcaacag ggacccaggcacaaggccaa caccattaa 1500
ccccagtcag tgccctttc cacaattct cccaggtaac tagttcatg 1550
ggatgttgct gggttaccat atttccattc cttggggtc ccaggaatgg 1600
aaatacgcca acccaggtta ggcacctcta ttgcagaatt acaataacac 1650
attcaataaa actaaaatat gaattcaaaa aaaaaaaaaa 1700
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 1743

<210> 236

<211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met	Ala	Ser	Tyr	Leu	Tyr	Gly	Val	Leu	Phe	Ala	Val	Gly	Leu	Cys
1				5				10					15	
Ala	Pro	Ile	Tyr	Cys	Val	Ser	Pro	Ala	Asn	Ala	Pro	Ser	Ala	Tyr
				20				25					30	
Pro	Arg	Pro	Ser	Ser	Thr	Lys	Ser	Thr	Pro	Ala	Ser	Gln	Val	Tyr
				35				40					45	
Ser	Leu	Asn	Thr	Asp	Phe	Ala	Phe	Arg	Leu	Tyr	Arg	Arg	Leu	Val
				50				55					60	
Leu	Glu	Thr	Pro	Ser	Gln	Asn	Ile	Phe	Phe	Ser	Pro	Val	Ser	Val
				65				70					75	
Ser	Thr	Ser	Leu	Ala	Met	Leu	Ser	Leu	Gly	Ala	His	Ser	Val	Thr
				80				85					90	
Lys	Thr	Gln	Ile	Leu	Gln	Gly	Leu	Gly	Phe	Asn	Leu	Thr	His	Thr
				95				100					105	
Pro	Glu	Ser	Ala	Ile	His	Gln	Gly	Phe	Gln	His	Leu	Val	His	Ser
				110				115					120	
Leu	Thr	Val	Pro	Ser	Lys	Asp	Leu	Thr	Leu	Lys	Met	Gly	Ser	Ala
				125				130					135	
Leu	Phe	Val	Lys	Lys	Glu	Leu	Gln	Leu	Gln	Ala	Asn	Phe	Leu	Gly
				140				145					150	
Asn	Val	Lys	Arg	Leu	Tyr	Glu	Ala	Glu	Val	Phe	Ser	Thr	Asp	Phe
				155				160					165	
Ser	Asn	Pro	Ser	Ile	Ala	Gln	Ala	Arg	Ile	Asn	Ser	His	Val	Lys
				170				175					180	
Lys	Lys	Thr	Gln	Gly	Lys	Val	Val	Asp	Ile	Ile	Gln	Gly	Leu	Asp
				185				190					195	
Leu	Leu	Thr	Ala	Met	Val	Leu	Val	Asn	His	Ile	Phe	Phe	Lys	Ala

200	205	210
Lys Trp Glu Lys Pro Phe His Leu Glu Tyr Thr Arg Lys Asn Phe		
215	220	225
Pro Phe Leu Val Gly Glu Gln Val Thr Val Gln Val Pro Met Met		
230	235	240
His Gln Lys Glu Gln Phe Ala Phe Gly Val Asp Thr Glu Leu Asn		
245	250	255
Cys Phe Val Leu Gln Met Asp Tyr Lys Gly Asp Ala Val Ala Phe		
260	265	270
Phe Val Leu Pro Ser Lys Gly Lys Met Arg Gln Leu Glu Gln Ala		
275	280	285
Leu Ser Ala Arg Thr Leu Ile Lys Trp Ser His Ser Leu Gln Lys		
290	295	300
Arg Trp Ile Glu Val Phe Ile Pro Arg Phe Ser Ile Ser Ala Ser		
305	310	315
Tyr Asn Leu Glu Thr Ile Leu Pro Lys Met Gly Ile Gln Asn Ala		
320	325	330
Phe Asp Lys Asn Ala Asp Phe Ser Gly Ile Ala Lys Arg Asp Ser		
335	340	345
Leu Gln Val Ser Lys Ala Thr His Lys Ala Val Leu Asp Val Ser		
350	355	360
Glu Glu Gly Thr Glu Ala Thr Ala Ala Thr Thr Thr Lys Phe Ile		
365	370	375
Val Arg Ser Lys Asp Gly Pro Ser Tyr Phe Thr Val Ser Phe Asn		
380	385	390
Arg Thr Phe Leu Met Met Ile Thr Asn Lys Ala Thr Asp Gly Ile		
395	400	405
Leu Phe Leu Gly Lys Val Glu Asn Pro Thr Lys Ser		
410	415	

<210> 237

<211> 23

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-23

<223> Synthetic construct.

<400> 237

caaccatgca aggacagggc agg 23

<210> 238

<211> 47
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.

<400> 238
ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47

<210> 239
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 239
tgactcgggg tctccaaaac cagc 24

<210> 240
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 240
ggtataggcg gaaggcaaag tcgg 24

<210> 241
<211> 48
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.

<400> 241
ggcatttac ctttatggag tactctttgc tgttggcctc tgtgctcc 48

<210> 242
<211> 2436
<212> DNA
<213> Homo sapiens

<400> 242
ggctgaccgt gctacattgc ctggaggaag cctaaggAAC ccaggcatcc 50

agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgttagga 100
gaccacgct cctggaagca ccagcctta tctcttacc ttcaagtccc 150
ctttctcaag aatcctctgt tcttgccct ctaaagtctt ggtacatcta 200
ggacccaggc atcttgctt ccagccacaa agagacagat gaagatgcag 250
aaaggaaatg ttctccttat gtttgtcta ctattgcatt tagaagctgc 300
aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350
tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400
agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450
ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500
gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550
gccaccaact ctgagtcag cacaacctcc agtggggcca gcacagccac 600
caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650
ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700
tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750
cacactctcc agtggggcca gcacagccac caactctgac tccagcacaa 800
cctccagtgg ggctagcaca gccaccaact ctgagtcag cacaacctcc 850
agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900
ggccagcact gccaccaact ctgagtcag cacaacctcc agtggggcca 950
gcacagccac caactctgag tccagaacga cctccaatgg ggctggcaca 1000
gccaccaact ctgagtcag cacgacctcc agtggggcca gcacagccac 1050
caactctgac tccagcacag tgtccagtgg ggccagcact gccaccaact 1100
ctgagtcag cacgacctcc agtggggcca gcacagccac caactctgag 1150
tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200
cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250
tgtccagtgg gatcagcaca gtcaccaatt ctgagtcag cacaccctcc 1300
agtggggcca acacagccac caactctgag tccagtagca cctccagtgg 1350
ggccaacaca gccaccaact ctgagtcag cacagtgtcc agtggggcca 1400
gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450
gccaccaact ctgagtcag cacaacctcc agtggggcta gcacagccac 1500

ESTABLISHED 1970

caactctgac tccagcacaa cctccagtga ggccagcaca gccacccaact 1550
ctgagtctag cacagtgtcc agtggatca gcacagtcac caattctgag 1600
tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650
tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700
cttccccatag tgcatctact gcagttagtg aggcaaagcc tgggtggtcc 1750
ctgggccgt gggaaatctt cctcatcacc ctggtctcg ttgtggcggc 1800
cgtggggctc tttgctggc ttttctctg tgtgagaaac agcctgtccc 1850
tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900
ggccttggc caggccctgg aggaatcat ggagcccccc acaggcccag 1950
gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000
agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2050
gcattttca ggaaggaaga gacctggca cccaagacct ggtttccttt 2100
cattcatccc aggagacccc tccagcttt gttttagatc ctgaaaatct 2150
tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200
aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250
acacgacaaa gagaagctgt gctgccccg gggtgggtat ctagctctga 2300
gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350
tcaaaatctc cacagtaaaa tccaaagacc taaaaaaaaaaaaaaa 2400
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2436

<210> 243

<211> 596

<212> PRT

<213> Homo sapiens

<400> 243

Met	Lys	Met	Gln	Lys	Gly	Asn	Val	Leu	Leu	Met	Phe	Gly	Leu	Leu
1				5				10					15	
Leu	His	Leu	Glu	Ala	Ala	Thr	Asn	Ser	Asn	Glu	Thr	Ser	Thr	Ser
			20					25					30	
Ala	Asn	Thr	Gly	Ser	Ser	Val	Ile	Ser	Ser	Gly	Ala	Ser	Thr	Ala
				35				40					45	
Thr	Asn	Ser	Gly	Ser	Ser	Val	Thr	Ser	Ser	Gly	Val	Ser	Thr	Ala
				50				55					60	
Thr	Ile	Ser	Gly	Ser	Ser	Val	Thr	Ser	Asn	Gly	Val	Ser	Ile	Val
				65				70					75	

Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala
80 85 90

Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala
95 100 105

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
110 115 120

Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Ser Thr Val
125 130 135

Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Ala Ser Thr Ala
140 145 150

Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
155 160 165

Thr Asn Ser Glu Ser Ser Thr Leu Ser Ser Gly Ala Ser Thr Ala
170 175 180

Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
185 190 195

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
200 205 210

Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
215 220 225

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
230 235 240

Thr Asn Ser Glu Ser Arg Thr Thr Ser Asn Gly Ala Gly Thr Ala
245 250 255

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
260 265 270

Thr Asn Ser Asp Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala
275 280 285

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
290 295 300

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
305 310 315

Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Gly Thr Ala
320 325 330

Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val
335 340 345

Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Asn Thr Ala
350 355 360

Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala

	365	370	375
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala			
380	385	390	
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Val Ser Thr Ala			
395	400	405	
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala			
410	415	420	
Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala			
425	430	435	
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val			
440	445	450	
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala			
455	460	465	
Thr Asn Ser Gly Ser Ser Val Thr Ser Ala Gly Ser Gly Thr Ala			
470	475	480	
Ala Leu Thr Gly Met His Thr Thr Ser His Ser Ala Ser Thr Ala			
485	490	495	
Val Ser Glu Ala Lys Pro Gly Gly Ser Leu Val Pro Trp Glu Ile			
500	505	510	
Phe Leu Ile Thr Leu Val Ser Val Val Ala Ala Val Gly Leu Phe			
515	520	525	
Ala Gly Leu Phe Phe Cys Val Arg Asn Ser Leu Ser Leu Arg Asn			
530	535	540	
Thr Phe Asn Thr Ala Val Tyr His Pro His Gly Leu Asn His Gly			
545	550	555	
Leu Gly Pro Gly Pro Gly Gly Asn His Gly Ala Pro His Arg Pro			
560	565	570	
Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile			
575	580	585	
Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro			
590	595		

<210> 244
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.

<400> 244

gaagcaccag cctttatctc ttcacc 26
<210> 245
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic sequence.

<400> 245
gtcaagttg gtggctgtgc tagc 24

<210> 246
<211> 48
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-48
<223> Synthetic construct.

<400> 246
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48

<210> 247
<211> 957
<212> DNA
<213> Homo sapiens

<400> 247
gggagagagg ataaatagca gcgtggcttc cctggctcct ctctgcattcc 50
ttcccgacct tcccagcaat atgcatttg cacgtctggt cggctcctgc 100
tccctccttc tgctactggg ggcctgtct ggatggcg 150
ccccatttag aaggtcattt aaggatcaa ccgagggtc agcaatgcag 200
agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcatt 250
gccggaaggaa aagtggagaa ggtttcaac ggacttagca acatggggag 300
ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
tggacaaggat tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
gaagcagaga agcttggcca tgggtcaac aacgctgctg gacaggccgg 450
gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500
ctgggaagga agcagagaaa cttggccaag gggtaacca tgctgctgac 550
caggctggaa aggaagtggaa gaagcttggc caaggtgccc accatgctgc 600

tggccaggcc gggaggagc tgcagaatgc tcataatggg gtcaacccaag 650
ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aaggcgatct 700
tccagccatc aaggaggggc cacaaccacg ccgttagcct ctggggcctc 750
agtcaacacg cctttcatca accttcccgc cctgtggagg agcgtcgcca 800
acatcatgcc ctaaactggc atccggcctt gctggagaa taatgtcgcc 850
gttgcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900
tttctgaaat ccctgaaggg ggttgtactg ggatttgta ataacttga 950
tacacca 957

<210> 248

<211> 247

<212> PRT

<213> Homo sapiens

<400> 248

Met	His	Leu	Ala	Arg	Leu	Val	Gly	Ser	Cys	Ser	Leu	Leu	Leu	Leu
1					5				10					15
Leu	Gly	Ala	Leu	Ser	Gly	Trp	Ala	Ala	Ser	Asp	Asp	Pro	Ile	Glu
				20					25					30
Lys	Val	Ile	Glu	Gly	Ile	Asn	Arg	Gly	Leu	Ser	Asn	Ala	Glu	Arg
					35				40					45
Glu	Val	Gly	Lys	Ala	Leu	Asp	Gly	Ile	Asn	Ser	Gly	Ile	Thr	His
					50				55					60
Ala	Gly	Arg	Glu	Val	Glu	Lys	Val	Phe	Asn	Gly	Leu	Ser	Asn	Met
					65				70					75
Gly	Ser	His	Thr	Gly	Lys	Glu	Leu	Asp	Lys	Gly	Val	Gln	Gly	Leu
					80				85					90
Asn	His	Gly	Met	Asp	Lys	Val	Ala	His	Glu	Ile	Asn	His	Gly	Ile
					95				100					105
Gly	Gln	Ala	Gly	Lys	Glu	Ala	Glu	Lys	Leu	Gly	His	Gly	Val	Asn
					110				115					120
Asn	Ala	Ala	Gly	Gln	Ala	Gly	Lys	Glu	Ala	Asp	Lys	Ala	Val	Gln
					125				130					135
Gly	Phe	His	Thr	Gly	Val	His	Gln	Ala	Gly	Lys	Glu	Ala	Glu	Lys
					140				145					150
Leu	Gly	Gln	Gly	Val	Asn	His	Ala	Ala	Asp	Gln	Ala	Gly	Lys	Glu
					155				160					165
Val	Glu	Lys	Leu	Gly	Gln	Gly	Ala	His	His	Ala	Ala	Gly	Gln	Ala
					170				175					180

Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser
185 190 195
Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser
200 205 210
Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly
215 220 225
Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg
230 235 240
Ser Val Ala Asn Ile Met Pro
245

<210> 249
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 249
caatatgcat cttgcacgtc tgg 23

<210> 250
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 250
aagcttctct gcttccttcc ctgc 24

<210> 251
<211> 43
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.

<400> 251
tgacccccatt gagaaggta ttgaaggat caaccgaggg ctg 43

<210> 252
<211> 3781
<212> DNA
<213> Homo sapiens

<400> 252
ctccgggtcc ccaggggctg cgccgggccc gcctggcaag ggggacgagt 50
cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100
tgaccctgac tcactccagg tccggaggcg gggggccccc gggcgactcg 150
ggggcggacc gcggggcgga gctgccgccc gtgagtccgg ccgagccacc 200
tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250
ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccc 300
cctcgccac cgctgctgct gctctgctg ctgctgctcc tgctgcagcc 350
gccgcctccg acctgggcgc tcagcccccg gatcagcctg cctctgggct 400
ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450
acagcccttc tgctgagcag gnatggcagg accctgtacg tgggtgctcg 500
agaggccctc tttgcactca gtagcaacct cagcttcctg ccaggcgggg 550
agtaccagga gctgcttgg ggtgcagacg cagagaagaa acagcagtgc 600
agcttcaagg gcaaggaccc acagcgcac tgtcaaact acatcaagat 650
cctcctgccc ctcagcggca gtcacctgtt cacctgtggc acagcagcct 700
tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750
gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800
cgacccgaat ttcaagtcca ctgcccgtt ggttgatggc gagctctaca 850
ctggaacagt cagcagctc caagggaatg acccggccat ctcgcggagc 900
caaagccttc gccccaccaa gaccgagacg tccctcaact ggctgcaaga 950
cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000
aaggcgatga tgacaagatc tactttttct tcagcagac tggccaggaa 1050
ttttagttct ttgagaacac cattgtgtcc cgcatggccc gcatctgcaa 1100
gggcgatgag ggtggagagc gggtgctaca gcagcgtgg acctccttcc 1150
tcaaggccca gctgctgtgc tcacggcccg acgatggctt cccctcaac 1200
gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250
cacccttttc tatggggctt tcacttccca gtggcacagg ggaactacag 1300
aaggctctgc cgtctgtgtc ttcacaatga aggatgtgca gagagtcttc 1350
agcggcctct acaaggaggt gaaccgtgag acacagcagt ggtacaccgt 1400
gaccaccccg gtgcccacac cccggcctgg agcgtgcac accaacagtg 1450

cccgaaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500
aacttcctca aggaccactt cctgatggac gggcagggtcc gaagccgcat 1550
gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgct 1600
tccctggcct gcaccacacc tacgatgtcc tcttcctggg cactggtgac 1650
ggccggctcc acaaggcagt gagcgtggc ccccggtgc acatcattga 1700
ggagctgcag atcttctcat cgggacagcc cgtcagaat ctgctcctgg 1750
acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtcag 1800
gtgcccattgg ccaactgcag cctgtaccgg agctgtggg actgcctcct 1850
cgcccgac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900
gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950
ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000
ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050
acacagtcaa cactttggcc tgcccgctcc tctccaacct ggcacccga 2100
ctctggctac gcaacggggc ccccgtaat gcctcgccct cctgccacgt 2150
gctacccact ggggacctgc tgctggggg cacccaaacag ctgggggagt 2200
tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250
tgcccagagg tggtgagga cggggtggca gaccaaacag atgagggtgg 2300
cagtgtaccc gtcatttatca gcacatcgcg tgtgagtgca ccagctggtg 2350
gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400
atgtgcacgc tctttgtct ggccgtgctg ctcccagttt tattcttgct 2450
ctaccggcac cggaacacga taaaagtctt cctgaagcag gggaaatgtg 2500
ccagcgtgca ccccaagacc tgccctgtgg tgctgcccc tgagacccgc 2550
ccactcaacg gccttagggcc ccctagcacc ccgctcgatc accgagggtta 2600
ccagtcctg tcagacagcc ccccgaaaaa ccgagtcttc actgagtcag 2650
agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700
tgccccccgc cccgggtccg cttggctcg gagatccgtg actctgtgg 2750
gtgagagctg acttccagag gacgctgccc tggcttcagg ggctgtgaat 2800
gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtgaaac 2850
acgaccgtgg tgcccgcccc ttgggagcct tggagccagc tggcctgctg 2900

TOP SECRET//SI

ctctccagtc aagtagcgaa gtcctacca cccagacacc caaacagccg 2950
tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggatggaa 3000
cagtgcct tatgtaaact gagcccttg tttaaaaaac aattccaaat 3050
gtgaaactag aatgagaggg aagagatgc atggcatgca gcacacacgg 3100
ctgctccagt tcatggcctc ccaggggtgc tgggatgca tccaaagtgg 3150
ttgtctgaga cagagttgga aaccctcacc aactggcctc ttcaccttcc 3200
acattatccc gctgccaccg gctgccctgt ctcaactgcag attcaggacc 3250
agcttggct gcgtgcgttc tgccctgcca gtcagccgag gatgtagttg 3300
ttgctgccgt cgccccacca cctcagggac cagaggccta gggtggcact 3350
gcggccctca ccaggtcctg ggctcgacc caactcctgg acctttccag 3400
cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagaga 3450
tttcgtgaca atgtacgcct ttccctcaga attcaggaa gagactgtcg 3500
cctgccttcc tccgttggc cgtgagaacc cgtgtgcccc ttcccaccat 3550
atccaccctc gctccatctt tgaactcaa cacgaggaac taactgcacc 3600
ctggccctct ccccagtccc cagttcaccc tccatccctc accttcctcc 3650
actctaaggg atatcaacac tgcccagcac aggggcccctg aatttatgtg 3700
gtttttatac attttttaat aagatgcact ttatgtcatt ttttaataaaa 3750
gtctgaagaa ttactgttta aaaaaaaaaa a 3781

<210> 253

<211> 837

<212> PRT

<213> Homo sapiens

<400> 253

Met	Leu	Arg	Thr	Ala	Met	Gly	Leu	Arg	Ser	Trp	Leu	Ala	Ala	Pro
1					5				10					15

Trp	Gly	Ala	Leu	Pro	Pro	Arg	Pro	Pro	Ley	Leu	Leu	Leu	Leu	Leu
				20					25					30

Leu	Leu	Leu	Leu	Leu	Gln	Pro	Pro	Pro	Pro	Thr	Trp	Ala	Leu	Ser
					35					40				45

Pro	Arg	Ile	Ser	Leu	Pro	Leu	Gly	Ser	Glu	Glu	Arg	Pro	Phe	Leu
				50					55					60

Arg	Phe	Glu	Ala	Glu	His	Ile	Ser	Asn	Tyr	Thr	Ala	Leu	Leu	Leu
					.65				70					75

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu

80	85	90
Phe Ala Leu Ser Ser Asn Leu Ser Phe	Leu Pro Gly Gly Glu	Tyr
95	100	105
Gln Glu Leu Leu Trp Gly Ala Asp Ala	Glu Lys Lys Gln Gln Cys	
110	115	120
Ser Phe Lys Gly Lys Asp Pro Gln Arg	Asp Cys Gln Asn Tyr Ile	
125	130	135
Lys Ile Leu Leu Pro Leu Ser Gly Ser His	Leu Phe Thr Cys Gly	
140	145	150
Thr Ala Ala Phe Ser Pro Met Cys Thr	Tyr Ile Asn Met Glu Asn	
155	160	165
Phe Thr Leu Ala Arg Asp Glu Lys Gly	Asn Val Leu Leu Glu Asp	
170	175	180
Gly Lys Gly Arg Cys Pro Phe Asp Pro	Asn Phe Lys Ser Thr Ala	
185	190	195
Leu Val Val Asp Gly Glu Leu Tyr Thr	Gly Thr Val Ser Ser Phe	
200	205	210
Gln Gly Asn Asp Pro Ala Ile Ser Arg	Ser Gln Ser Leu Arg Pro	
215	220	225
Thr Lys Thr Glu Ser Ser Leu Asn Trp	Leu Gln Asp Pro Ala Phe	
230	235	240
Val Ala Ser Ala Tyr Ile Pro Glu Ser	Leu Gly Ser Leu Gln Gly	
245	250	255
Asp Asp Asp Lys Ile Tyr Phe Phe	Ser Glu Thr Gly Gln Glu	
260	265	270
Phe Glu Phe Phe Glu Asn Thr Ile Val	Ser Arg Ile Ala Arg Ile	
275	280	285
Cys Lys Gly Asp Glu Gly Glu Arg Val	Leu Gln Gln Arg Trp	
290	295	300
Thr Ser Phe Leu Lys Ala Gln Leu Leu	Cys Ser Arg Pro Asp Asp	
305	310	315
Gly Phe Pro Phe Asn Val Leu Gln Asp	Val Phe Thr Leu Ser Pro	
320	325	330
Ser Pro Gln Asp Trp Arg Asp Thr Leu	Phe Tyr Gly Val Phe Thr	
335	340	345
Ser Gln Trp His Arg Gly Thr Thr Glu	Gly Ser Ala Val Cys Val	
350	355	360
Phe Thr Met Lys Asp Val Gln Arg Val	Phe Ser Gly Leu Tyr Lys	
365	370	375

Glu Val Asn Arg Glu Thr Gln Gln Trp Tyr Thr Val Thr His Pro
380 385 390

Val Pro Thr Pro Arg Pro Gly Ala Cys Ile Thr Asn Ser Ala Arg
395 400 405

Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro Asp Arg Val Leu
410 415 420

Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln Val Arg Ser
425 430 435

Arg Met Leu Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg Val Ala
440 445 450

Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu Phe
455 460 465

Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly
470 475 480

Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly
485 490 495

Gln Pro Val Gln Asn Leu Leu Leu Asp Thr His Arg Gly Leu Leu
500 505 510

Tyr Ala Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn
515 520 525

Cys Ser Leu Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp
530 535 540

Pro Tyr Cys Ala Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu
545 550 555

Tyr Gln Pro Gln Leu Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu
560 565 570

Gly Ala Ser Ala Lys Asp Leu Cys Ser Ala Ser Ser Val Val Ser
575 580 585

Pro Ser Phe Val Pro Thr Gly Glu Lys Pro Cys Glu Gln Val Gln
590 595 600

Phe Gln Pro Asn Thr Val Asn Thr Leu Ala Cys Pro Leu Leu Ser
605 610 615

Asn Leu Ala Thr Arg Leu Trp Leu Arg Asn Gly Ala Pro Val Asn
620 625 630

Ala Ser Ala Ser Cys His Val Leu Pro Thr Gly Asp Leu Leu Leu
635 640 645

Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys Trp Ser Leu Glu
650 655 660

Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro Glu Val Val

665	670	675
Glu Asp Gly Val Ala Asp Gln Thr Asp	Glu Gly Gly Ser Val Pro	
680	685	690
Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys		
695	700	705
Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val		
710	715	720
Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe		
725	730	735
Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln		
740	745	750
Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu		
755	760	765
Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr		
770	775	780
Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro		
785	790	795
Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile		
800	805	810
Gln Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg		
815	820	825
Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val		
830	835	

<210> 254

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 254

agcccggtgca gaatctgctc ctgg 24

<210> 255

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 255
tgaagccagg gcagcgtcct ctgg 24

<210> 256
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 256
gtacaggctg cagttggc 18

<210> 257
<211> 41
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-41
<223> Synthetic construct.

<400> 257
agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41

<210> 258
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 258
gagctgcaga tcttctcatc gggacagccc gtgcagaatc tgctc 45

<210> 259
<211> 4563
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 3635
<223> unknown base

<400> 259
ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50
cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
agggcgggac gggagcccg actcgtctgc cgccgcccgtc gtgcggcgtcg 150

tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200
cgcccgagcc gccgctagcg cgccgcgggc atggtcccct cttaaaggcg 250
caggccgcgg cggcgggggc gggtgtgcgg aacaaagcgc cggcgcgaaa 300
cctgcgggcg gtcgggggc cgcgatggc gcggcgggcc cgccgcggcg 350
gcggcgctgc ccgggcggg cctcgccggc cttagggcgaa ctggcctccg 400
tgggcggggg cagcgggctg agggcgcgcg gagcctgcgg cggcgccggc 450
ggcggcgccgc gcggcccgcc gggcgagcg gcgcggcat ggccgcgcgc 500
ggccggcgcg cctggctcaag cgtgctgctc gggctcgat tggcttcgt 550
gctggcctcg cggctcgatc tgccccggc ttccgagactg aagcgagcgg 600
gcccacggcg ccgcgccagc cccgagggt gccggtcgg gcaggcgccg 650
gcttcccagg cggcgccggc gcgcggcgat gcgcgcggg cgcaactctg 700
gcgcggccgc tcggaccagg atggcgccc gcgcgacagg aactttctct 750
tcgtggaggt catgaccggc cagaaatacc tgcagactcg ggccgtggcc 800
gcctacagaa catggtccaa gacaattcct gggaaagttc agttttctc 850
aagtgggggt tctgacacat ctgtaccaat tccagtagtg ccactacggg 900
gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950
tacatgcacg accactactt ggacaagtat gaatggttt tgagagcaga 1000
tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050
tgaacacgag cgagccccctc tttttggc agacaggctt gggaccacg 1100
gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcattgg 1150
ggggcctggc gtgatcatga gcccggaggt gcttcggaga atggcgccgc 1200
acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250
gtggaaaggt gtgtccggag gtttgcagggt gtgcagtgtg tctggctta 1300
tgagatgcgg cagttttt atgagaatta cgagcagaac aaaaagggtt 1350
acatttagaga tctccataac agtaaaattt accaagctat cacattacac 1400
cccaacaaaa acccacccta ccagtacagg ctccacagct acatgctgag 1450
ccgcaagata tccgagctcc gccatcgac aatacagctg caccgcgaaa 1500
ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550
cagctggaa tccctccctc cttcatgagg tttcagcccc gccagcgaga 1600

ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650
ttgacggcca gccccctcga agaggaatgg actccgccc gagggaaagcc 1700
ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750
gaccagaggg cgcatcattg acttcaaaga gatccagtag ggctaccgcc 1800
gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850
tacaaaaagc acaaaggaa gaaaatgacg gtccctgtga ggaggcacgc 1900
gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950
tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000
tccttctct caaactccct gaagaagctc gtccccttgc agctccctgg 2050
gtcgaagagt gaggcacaag aacccaaaga taaaaagata aacatactga 2100
ttccttgtc tggcggttc gacatgttg tgagattat gggaaacttt 2150
gagaagacgt gtcttatccc caatcagaac gtcaagctcg tgggtctgct 2200
tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250
gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300
tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccaagtt 2350
taacaatgaa tctttgctct tcttctgcga cgtcgaccc tcgtttacta 2400
cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450
tattttccaa tcatttttcag ccagtagtgc ccaaagattt tttatagtgg 2500
gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550
ggagaaacta tgggtttggc atcacgtgt tttataaggg agatcttgc 2600
cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650
ggaccttttc aacaagggttgc tccaggcagg tttgaagacg ttttaggagcc 2700
aggaagttagg agtagtccac gtccaccatc ctgtcttttgc tgatccaaat 2750
cttgacccca aacagtacaa aatgtgcttgc gggtccaaag catcgaccta 2800
tgggtccacc cagcagctgg ctgagatgtg gctggaaaaaa aatgatccaa 2850
gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaattgt 2900
ccagcttgc tggaaaagac gtttttaattt atctaattta ttttcaaaa 2950
atttttgttta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000
aagtggttt cttacatagg actcccttaa gattgagctt tctgaacaag 3050

aaggatgatca gtgttgccct ttaaacacat cttcttgctg aacattatgt 3100
agcagacccctg cttaactttg acttggaaatg tacctgatga acaaaaacttt 3150
tttaaaaaaaa tgccccctt tgagaccctt tgctccagtc ctatggcaga 3200
aacatgtgaac attcctgcaa agtattatttga taacaaaaca ctgttaactct 3250
ggtaaatgtt ctgttgtat tgttaacatt ccacagatttac tacctttgt 3300
gttttgtttt ttttttttac aattgtttta aagccatttc atgttccagt 3350
tgtaagataa ggaaatgtga taatagctgt ttcatcatttgc tcttcaggag 3400
agctttccag agttgatcat ttcctctcat ggtactctgc tcagcatggc 3450
cacgttagtt ttttgtttgt ttttgtttgt tcttttttg agacggagtc 3500
tcactctgtt acccaggctg gaatgcagtg gcgcacatctt ggctcacttt 3550
aacctccact tccctggttc aagcaattcc cctgcctttg cctcccgagt 3600
agctgggatt acaggcacac accaccacgc ccagntagtt ttttgttatt 3650
tttagtagag acggggtttc accatgcaag cccagctggc cacgttagtt 3700
ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750
tggttagttca ttccgcctaa atagacctgg cattaaattt caagaaggat 3800
ttggcatttt ctcttcttga cccttcttta taaaggtaa aatattaatg 3850
tttagaatga caaagatgaa ttattacaat aaatctgtat tacacagact 3900
gaaacataca cacatacacc ctaatcaaaa cgttgggaa aaatgttattt 3950
ggttttgttc ctttcatcct gtctgtgtt tttttttttt gatggttttc 4000
attcttcat tactgttttgc ttatcctt tttttttttt tttttttttt 4050
tttatttaat atctgttgc tttttttttt tttttttttt tttttttttt 4100
agtttagtatt atttatgtgt atcgggagtg tttttttttt tttttttttt 4150
cagtaaaccg atctccaaag atttccctttt ggaaacgcctt tttccctcc 4200
ttaattttta tattccttac tttttttttt tttttttttt tttttttttt 4250
aattttgggtt ctcattgtttt tttttttttt tttttttttt tttttttttt 4300
tataccagaa agttaaatttcc tcaatcaaaa tttttttttt tttttttttt 4350
ttcattttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4400
tggaggcgtt cgtatgtttt tttttttttt tttttttttt tttttttttt 4450
ccagtgaaca atatttttttttt tttttttttt tttttttttt tttttttttt 4500

atccctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550
aaacacgaaa aaa 4563

<210> 260

<211> 802

<212> PRT

<213> Homo sapiens

<400> 260

Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly
1 5 10 15

Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg
20 25 30

Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro
35 40 45

Glu Gly Cys Arg Ser Gly Gln Ala Ala Ser Gln Ala Gly Gly
50 55 60

Ala Arg Gly Asp Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser
65 70 75

Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly
80 85 90

Val Met Thr Ala Gln Lys Tyr Leu Gln Thr Arg Ala Val Ala Ala
95 100 105

Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gln Phe Phe
110 115 120

Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro
125 130 135

Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gln Lys Lys Ser Phe
140 145 150

Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu
155 160 165

Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile Lys Gly Asp Arg
170 175 180

Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu Pro Leu Phe
185 190 195

Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu
200 205 210

Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val
215 220 225

Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly
230 235 240

Lys Cys Leu Arg Glu Met Tyr Thr Thr His Glu Asp Val Glu Val
 245 250 255
 Gly Arg Cys Val Arg Arg Phe Ala Gly Val Gln Cys Val Trp Ser
 260 265 270
 Tyr Glu Met Arg Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys
 275 280 285
 Lys Gly Tyr Ile Arg Asp Leu His Asn Ser Lys Ile His Gln Ala
 290 295 300
 Ile Thr Leu His Pro Asn Lys Asn Pro Pro Tyr Gln Tyr Arg Leu
 305 310 315
 His Ser Tyr Met Leu Ser Arg Lys Ile Ser Glu Leu Arg His Arg
 320 325 330
 Thr Ile Gln Leu His Arg Glu Ile Val Leu Met Ser Lys Tyr Ser
 335 340 345
 Asn Thr Glu Ile His Lys Glu Asp Leu Gln Leu Gly Ile Pro Pro
 350 355 360
 Ser Phe Met Arg Phe Gln Pro Arg Gln Arg Glu Glu Ile Leu Glu
 365 370 375
 Trp Glu Phe Leu Thr Gly Lys Tyr Leu Tyr Ser Ala Val Asp Gly
 380 385 390
 Gln Pro Pro Arg Arg Gly Met Asp Ser Ala Gln Arg Glu Ala Leu
 395 400 405
 Asp Asp Ile Val Met Gln Val Met Glu Met Ile Asn Ala Asn Ala
 410 415 420
 Lys Thr Arg Gly Arg Ile Ile Asp Phe Lys Glu Ile Gln Tyr Gly
 425 430 435
 Tyr Arg Arg Val Asn Pro Met Tyr Gly Ala Glu Tyr Ile Leu Asp
 440 445 450
 Leu Leu Leu Tyr Lys Lys His Lys Gly Lys Lys Met Thr Val
 455 460 465
 Pro Val Arg Arg His Ala Tyr Leu Gln Gln Thr Phe Ser Lys Ile
 470 475 480
 Gln Phe Val Glu His Glu Glu Leu Asp Ala Gln Glu Leu Ala Lys
 485 490 495
 Arg Ile Asn Gln Glu Ser Gly Ser Leu Ser Phe Leu Ser Asn Ser
 500 505 510
 Leu Lys Lys Leu Val Pro Phe Gln Leu Pro Gly Ser Lys Ser Glu
 515 520 525
 His Lys Glu Pro Lys Asp Lys Lys Ile Asn Ile Leu Ile Pro Leu

530	535	540
Ser Gly Arg Phe Asp Met Phe Val Arg	Phe Met Gly Asn Phe	Glu
545	550	555
Lys Thr Cys Leu Ile Pro Asn Gln Asn	Val Lys Leu Val Val	Leu
560	565	570
Leu Phe Asn Ser Asp Ser Asn Pro Asp	Lys Ala Lys Gln Val	Glu
575	580	585
Leu Met Arg Asp Tyr Arg Ile Lys Tyr	Pro Lys Ala Asp Met	Gln
590	595	600
Ile Leu Pro Val Ser Gly Glu Phe Ser	Arg Ala Leu Ala Leu	Glu
605	610	615
Val Gly Ser Ser Gln Phe Asn Asn Glu	Ser Leu Leu Phe Phe	Cys
620	625	630
Asp Val Asp Leu Val Phe Thr Thr Glu	Phe Leu Gln Arg Cys	Arg
635	640	645
Ala Asn Thr Val Leu Gly Gln Gln	Ile Tyr Phe Pro Ile Ile	Phe
650	655	660
Ser Gln Tyr Asp Pro Lys Ile Val Tyr	Ser Gly Lys Val Pro	Ser
665	670	675
Asp Asn His Phe Ala Phe Thr Gln Lys	Thr Gly Phe Trp Arg	Asn
680	685	690
Tyr Gly Phe Gly Ile Thr Cys Ile Tyr	Lys Gly Asp Leu Val	Arg
695	700	705
Val Gly Gly Phe Asp Val Ser Ile Gln	Gly Trp Gly Leu Glu	Asp
710	715	720
Val Asp Leu Phe Asn Lys Val Val Gln	Ala Gly Leu Lys Thr	Phe
725	730	735
Arg Ser Gln Glu Val Gly Val Val His	Val His His Pro Val	Phe
740	745	750
Cys Asp Pro Asn Leu Asp Pro Lys Gln	Tyr Lys Met Cys Leu	Gly
755	760	765
Ser Lys Ala Ser Thr Tyr Gly Ser Thr	Gln Gln Leu Ala Glu	Met
770	775	780
Trp Leu Glu Lys Asn Asp Pro Ser Tyr	Ser Lys Ser Ser Asn	Asn
785	790	795
Asn Gly Ser Val Arg Thr Ala		
800		

<210> 261

<211> 24

<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 261
gtgccactac ggggtgtgga cgac 24

<210> 262
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 262
tcccatttct tccgtgggc ccag 24

<210> 263
<211> 46
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.

<400> 263
ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46

<210> 264
<211> 1419
<212> DNA
<213> Homo sapiens

<400> 264
ggacaaccgt tgctgggtgt cccaggcct gaggcaggac ggtactccgc 50
tgacacccttc ccttcggcc ttgagggtcc cagcctggtg gcccccaggac 100
gttccggctcg catggcagag tgctacggac gacgcctatg aagcccttag 150
tccttctagt tgcgcttttgc ctatggcctt cgtctgtgcc ggcttatccg 200
agcataactg tgacacccgtaa tgaagagcaa aacttgaatc attatataca 250
agtttttagag aaccttagtac gaagtgttcc ctctggggag ccaggtcgtg 300
agaaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggaa 350
tcaaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400

1000111111111111

tgtttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450
gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccatc 500
tggtcgatca aaccaaacaa tgttccatt gtttgcatg cagaggaacc 550
ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
aaactgaggc accaagaatg ttgcagttg ttactgaatc atctacaagt 650
ccatatgtta cctcatacaa gtcacctgtc accacttag ataagagcac 700
tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750
aaactgcgat agaaaaaccc gaagagttt gaaagcaccc agagagttgg 800
aataatgatg acattttgaa aaaaattttt gatattaatt cacaagtgc 850
acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900
aagcctctaa agatcaccta aaacgaagcc ttgctctagc agcagcagca 950
gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000
aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgt 1050
attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100
gagatgagag aaaaagctgc tacagtattc aatacatcaa aaaatatgt 1150
tagatcaagg agagtcacag ccttattaaa agtttattaa acaataat 1200
aaaaattttt aacctacttg atattccata acaaagctga ttaagcaaa 1250
ctgcatttt tcacaggaga aataatcata ttgcataattt caaaagttgt 1300
ataaaaatat tttctattgt agttcaaatg tgccaaatc tttatgtgtc 1350
atgtgttatg aacaattttc atatgcacta aaaacctaatt taaaataaa 1400
atttggttc aggaaaaaaaa 1419

<210> 265
<211> 350
<212> PRT
<213> Homo sapiens

<400> 265
Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser
1 5 10 15
Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu
20 25 30
Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg
35 40 45
Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser

50	55	60
Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys		
65	70	75
Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu		
80	85	90
Thr Asn Pro Ile Ser Glu Glu Thr Thr Phe Pro Thr Gly Gly		
95	100	105
Phe Thr Pro Glu Ile Gly Lys Lys Lys His Thr Glu Ser Thr Pro		
110	115	120
Phe Trp Ser Ile Lys Pro Asn Asn Val Ser Ile Val Leu His Ala		
125	130	135
Glu Glu Pro Tyr Ile Glu Asn Glu Glu Pro Glu Pro Glu Pro Glu		
140	145	150
Pro Ala Ala Lys Gln Thr Glu Ala Pro Arg Met Leu Pro Val Val		
155	160	165
Thr Glu Ser Ser Thr Ser Pro Tyr Val Thr Ser Tyr Lys Ser Pro		
170	175	180
Val Thr Thr Leu Asp Lys Ser Thr Gly Ile Glu Ile Ser Thr Glu		
185	190	195
Ser Glu Asp Val Pro Gln Leu Ser Gly Glu Thr Ala Ile Glu Lys		
200	205	210
Pro Glu Glu Phe Gly Lys His Pro Glu Ser Trp Asn Asn Asp Asp		
215	220	225
Ile Leu Lys Lys Ile Leu Asp Ile Asn Ser Gln Val Gln Gln Ala		
230	235	240
Leu Leu Ser Asp Thr Ser Asn Pro Ala Tyr Arg Glu Asp Ile Glu		
245	250	255
Ala Ser Lys Asp His Leu Lys Arg Ser Leu Ala Leu Ala Ala Ala		
260	265	270
Ala Glu His Lys Leu Lys Thr Met Tyr Lys Ser Gln Leu Leu Pro		
275	280	285
Val Gly Arg Thr Ser Asn Lys Ile Asp Asp Ile Glu Thr Val Ile		
290	295	300
Asn Met Leu Cys Asn Ser Arg Ser Lys Leu Tyr Glu Tyr Leu Asp		
305	310	315
Ile Lys Cys Val Pro Pro Glu Met Arg Glu Lys Ala Ala Thr Val		
320	325	330
Phe Asn Thr Leu Lys Asn Met Cys Arg Ser Arg Arg Val Thr Ala		
335	340	345

Leu Leu Lys Val Tyr
350

<210> 266

<211> 2403

<212> DNA

<213> Homo sapiens

<400> 266

cggttcgagc ggctcgagt g aagagcctct ccacggctcc tgccgcgt 50
acagctggcc tgacctccaa atcatccatc cacccctgct gtcatctgtt 100
ttcatagtgt gagatcaacc cacaggaata tccatggct ttgtgctcat 150
tttggttctc agtttctacg agctgggtgc aggacagtgg caagtcactg 200
gaccggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250
tgctccctct ttcctgagac cagtgcagag gctatgaaag tgccgttctt 300
caggaatcag ttccatgctg tggtccaccc ctacagagat gggaaagact 350
ggaaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtaaag 400
gactccattt caggggggcg tgtctctcta aggctaaaaa acatcactcc 450
ctcggacatc ggcctgtatg ggtgtggtt cagttcccag atttacgtt 500
aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550
atttccatcg tggatatgt tgacggaggt atccagttac tctgcgttgc 600
ctcaggctgg ttccccccagc ccacagccaa gtggaaaggt ccacaaggac 650
aggatttgc ttcagactcc agagcaaatg cagatggta cagcctgtat 700
gatgtggaga tctccattat agtccaggaa aatgctggta gcattttgtt 750
ttccatccac cttgctgagc agagtcatga ggtggaaatcc aaggtattga 800
taggagagac gttttccag ccctcacctt ggccgttggc ttctatTTA 850
ctcgggttac tctgtgggtgc cctgtgtggt gttgtcatgg ggatgataat 900
tgttttcttc aaatccaaag ggaaaatcca ggcggaaactg gactggagaa 950
gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcaatggag 1000
gtgactctgg atccagagac ggctcacccg aagctctgct tttctgtatct 1050
gaaaactgtt acccatagaa aagctccccg ggaggtgcct cactctgaga 1100
agagatttac aaggaagagt gtgggtggctt ctcagggttt ccaaggcagg 1150
agacattact gggaggtgga cgtgggacaa aatgttaggtt ggtatgtggg 1200
agtgtgtcgg gatgacgtt acagggggaa gaacaatgtt actttgtctc 1250

ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300
acattcaatc cccatTTTat cagcctcccc cccAGCACCC ctcctACACG 1350
agttaggggtc ttccCTGGact atgaggGTgg gaccatCTCC ttcttCAATA 1400
caaATgacca gTCCTTATT tataCCCTGC tgACATgtca gTTTGAAGGC 1450
ttgttgagac CCTATATCCA gcatgcgatg tatgacgagg aaaAGGGGAC 1500
tcccataTTc atatgtccag tgtCCTGGGG atgagacaga gaagACCCTG 1550
cttaaAGGGC CCCACACAC agACCCAGAC acAGCCAAGG gagAGTGCTC 1600
ccgacAGGTG gCCCCAGCTT CCTCTCCGGA gcCTGCGCAC AGAGAGTCAC 1650
gCCCCCAct CTCCCTTAGG gagCTGAGGT tCTTCTGCC TGAGCCCTGC 1700
agcAGCGGCA gTCACAGCTT ccAGATGAGG gGGGATTGGC ctGACCCTGT 1750
gggAGTCAGA agCCATGGCT gCCCTGAAGT gGGGACGGAA tagACTCACA 1800
ttAGGTTAG tttgtaaaaa CTCCATCCAG ctaAGCGATC ttGAACAAGT 1850
cacaACCTCC caggCTCCTC attTGCTAGT cacGGACAGT gattCCTGCC 1900
tcacAGGTGA agATTAAGA gacaACGAAT gtGAATCATG ctTGAGGTT 1950
tgAGGGCACA gtGTTTGCTA atGATGTGTT ttTATATTAT acATTTCCC 2000
accataAAACT ctGTTTGCTT attCCACATT aATTACTTT tCTCTATAcc 2050
aaATCACCCA tGGAATAGTT attGAACACC tgCTTGTGA ggCTCAAAGA 2100
ataAAAGAGGA ggtAGGATTt tTCACTGATT ctATAAGCCC agCATTACCT 2150
gataCCAAAA ccAGGCAAAG AAAACAGAAg aAGAGGAAGG AAAACTACAG 2200
gtCCATATCC CTCATTAACA cAGACACAAA aATTCTAAAT AAAATTAA 2250
caaATTAAC TAAACAATAT attTAAAGAT gATATATAAC tactCAGTGT 2300
ggTTTGTCCC acAAATGCAg agTTGGTTA atATTTAAAT atCAACCAGT 2350
gtaATTcAGC acATTAATAA agTAAAAAAG AAAACCATAA AAAAAAAA 2400
aaa 2403

<210> 267
<211> 466
<212> PRT
<213> Homo sapiens

<400> 267
Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val
1 5 10 15
Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala

20	25	30
Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu		
35	40	45
Thr Ser Ala Glu Ala Met Glu Val Arg Phe Phe Arg Asn Gln Phe		
50	55	60
His Ala Val Val His Leu Tyr Arg Asp Gly Glu Asp Trp Glu Ser		
65	70	75
Lys Gln Met Pro Gln Tyr Arg Gly Arg Thr Glu Phe Val Lys Asp		
80	85	90
Ser Ile Ala Gly Gly Arg Val Ser Leu Arg Leu Lys Asn Ile Thr		
95	100	105
Pro Ser Asp Ile Gly Leu Tyr Gly Cys Trp Phe Ser Ser Gln Ile		
110	115	120
Tyr Asp Glu Glu Ala Thr Trp Glu Leu Arg Val Ala Ala Leu Gly		
125	130	135
Ser Leu Pro Leu Ile Ser Ile Val Gly Tyr Val Asp Gly Gly Ile		
140	145	150
Gln Leu Leu Cys Leu Ser Ser Gly Trp Phe Pro Gln Pro Thr Ala		
155	160	165
Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Ser Asp Ser Arg		
170	175	180
Ala Asn Ala Asp Gly Tyr Ser Leu Tyr Asp Val Glu Ile Ser Ile		
185	190	195
Ile Val Gln Glu Asn Ala Gly Ser Ile Leu Cys Ser Ile His Leu		
200	205	210
Ala Glu Gln Ser His Glu Val Glu Ser Lys Val Leu Ile Gly Glu		
215	220	225
Thr Phe Phe Gln Pro Ser Pro Trp Arg Leu Ala Ser Ile Leu Leu		
230	235	240
Gly Leu Leu Cys Gly Ala Leu Cys Gly Val Val Met Gly Met Ile		
245	250	255
Ile Val Phe Phe Lys Ser Lys Gly Lys Ile Gln Ala Glu Leu Asp		
260	265	270
Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys		
275	280	285
His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys		
290	295	300
Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro		
305	310	315

Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val
320 325 330

Val Ala Ser Gln Gly Phe Gln Ala Gly Arg His Tyr Trp Glu Val
335 340 345

Asp Val Gly Gln Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp
350 355 360

Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn
365 370 375

Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr
380 385 390

Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro Pro Thr
395 400 405

Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe
410 415 420

Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys
425 430 435

Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr
440 445 450

Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp
455 460 465

Gly

<210> 268
<211> 2103
<212> DNA
<213> Homo sapiens

<400> 268
ccttcacagg actcttcatt gctgggtggc aatgatgtat cggccagatg 50
tggtgagggc tagaaaaaga gtttgtggg aaccctgggt tatcggcctc 100
gtcatcttca tatccctgtat tgtcctggca gtgtgcattg gactcactgt 150
tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200
tgtcattttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250
aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300
attttataaa tctccattaa ggaaagaatt tgtcaagtct caggttatca 350
agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400
agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450
tgttttacat gaaaagctgc aagatgctgt aggaccccct aaagtagatc 500

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550
ctaaaccatt gctgcggAAC acgaagaagt aaaactctag gtcagagtct 600
caggatcgTT ggtgggacAG aagtagaAGA gggtaatGG ccctggcagg 650
ctagcTGca gtggatGGG agtcatcgCT gtggagcaAC cttaattaAT 700
gccacatggC ttgtgagtGC tgctcactGT tttacaACat ataagaACCC 750
tgccagatgg actgcttcCT ttggagtaAC aataAAACCT tcgAAAatGA 800
aacggggTct ccggagaATA attgtccATg AAAAataCAA acacCCatCA 850
catgactatG atatttctCT tgcagagCT tctagccCTg ttccCTacAC 900
aaatgcAGTA catagAGTT gtctccCTgA tgcatcCTat gagttcaAC 950
caggtgatgt gatgttGtG acaggattG gagcactgAA aaatgatGGt 1000
tacagtcaAA atcatctTCg acaagcacAG gtgactctCA tagacgctAC 1050
aacttgcaat gaacctcaAG cttacaatGA cgccataACT cctagaatGT 1100
tatgtgctgg ctccttagAA ggaaaaACAG atgcatGCC gggtgactCT 1150
ggaggaccAC tggtagttC agatgctAGA gatatctGG accttgctGG 1200
aatagtgAGC tggggagatG aatgtgcGAA acccaACAAG cctggtgTT 1250
atactagAGT tacggcCTG cggactGGA ttacttcaAA aactggtATC 1300
taagagacAA aagcctcatG gaacagataA cattttttt tgTTTTTgg 1350
gtgtggaggC catttttagA gatacagaAT tggagaAGAC ttgcaAAACa 1400
gctagattG actgatctCA ataaactGtt tgcttgatGC atgtatTTc 1450
ttcccagCTC tgTTCCGcac gtaagcatCC tgcttctGCC agatcaACTC 1500
tgtcatctGT gagcaatAGT tgAAactTTA tgtacatAGA gaaatAGATA 1550
atacaatATT acattacAGC ctgtattCAT ttgttctcta gaagtttGT 1600
cagaattttG acttggtagAC ataaatttGT aatgcataTA tacaatttGA 1650
agcactcCTT ttcttcAGtT cctcagCTC tctcatttCA gcaaataTCC 1700
atTTcaagg tgcagaACAA ggagtGAAAG aaaatataAG aagaaaaAAA 1750
tccccctacAT ttTattGGCA cagaaaAGTA tttagtGTTT ttcttagtGG 1800
aatattAGAA atgatcatAT tcattatGAA aggtcaAGCA aagacAGCAG 1850
aataccaATC acttcATcat TTAGGAAGTA tggGAactAA gttaAGGAAG 1900
tccagaaaAGA agccaAGATA tatccttatt ttcatttCCA aacaactACT 1950

atgataaaatg tgaagaagat tctgttttt tgtgacctat aataattata 2000
caaacttcat gcaatgtact tgttctaaggc aaattaaaggc aaatatttat 2050
ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaattcac 2100
cca 2103

<210> 269
<211> 423
<212> PRT
<213> Homo sapiens

<400> 269
Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys
1 5 10 15
Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile
20 25 30
Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr
35 40 45
Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr
50 55 60
Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn
65 70 75
Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala
80 85 90
Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val
95 100 105
Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu
110 115 120
Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp
125 130 135
Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val
140 145 150
Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile
155 160 165
Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr
170 175 180
Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly
185 190 195
Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln
200 205 210
Trp Asp Gly Ser His Arg Cys Gly Ala Thr Leu Ile Asn Ala Thr
215 220 225

Trp Leu Val Ser Ala Ala His Cys Phe Thr Thr Tyr Lys Asn Pro
 230 235 240
 Ala Arg Trp Thr Ala Ser Phe Gly Val Thr Ile Lys Pro Ser Lys
 245 250 255
 Met Lys Arg Gly Leu Arg Arg Ile Ile Val His Glu Lys Tyr Lys
 260 265 270
 His Pro Ser His Asp Tyr Asp Ile Ser Leu Ala Glu Leu Ser Ser
 275 280 285
 Pro Val Pro Tyr Thr Asn Ala Val His Arg Val Cys Leu Pro Asp
 290 295 300
 Ala Ser Tyr Glu Phe Gln Pro Gly Asp Val Met Phe Val Thr Gly
 305 310 315
 Phe Gly Ala Leu Lys Asn Asp Gly Tyr Ser Gln Asn His Leu Arg
 320 325 330
 Gln Ala Gln Val Thr Leu Ile Asp Ala Thr Thr Cys Asn Glu Pro
 335 340 345
 Gln Ala Tyr Asn Asp Ala Ile Thr Pro Arg Met Leu Cys Ala Gly
 350 355 360
 Ser Leu Glu Gly Lys Thr Asp Ala Cys Gln Gly Asp Ser Gly Gly
 365 370 375
 Pro Leu Val Ser Ser Asp Ala Arg Asp Ile Trp Tyr Leu Ala Gly
 380 385 390
 Ile Val Ser Trp Gly Asp Glu Cys Ala Lys Pro Asn Lys Pro Gly
 395 400 405
 Val Tyr Thr Arg Val Thr Ala Leu Arg Asp Trp Ile Thr Ser Lys
 410 415 420

Thr Gly Ile

<210> 270
 <211> 1170
 <212> DNA
 <213> Homo sapiens

<400> 270
 gtcgaagggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50
 aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100
 cagacgtcag ctggtgatt cccgctgcat caaggcctac ccactgtctc 150
 catgctgggc tctccctgcc ttctgtggct cctggccgtg accttcttgg 200
 ttcccagagc tcagcccttg gccctcaag actttgaaga agaggaggca 250

10012407-1

gatgagactg agacggcgtg gccgccttg cggcgtgtcc cctgcgacta 300
cgaccactgc cgacacctgc aggtgcctg caaggagcta cagagggtcg 350
ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400
gaccgcgcgc gcatggaga agtgcgcatt gcggccgaag agggccgcgc 450
agtggtccac tggtgtgccc cttctcccc gtcctccac tactggctgc 500
tgcttggga cggcagcag gctgcgcaga aggggccccctc gctgaacgct 550
acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600
cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtgcggcagg 650
ctggaggaga gggcctcgag gggccgaca tccctgcctt cggcccttgc 700
agccgccttg cggtgccccc caaccccccgc actctggtcc acgcggccgt 750
cggggtgggc acggccctgg ccctgctaag ctgtgcgcgc ctggtgtggc 800
acttctgcct gcgcgatcgc tggggctgcc cgccgcgagc cgccgcccga 850
gccgcaggaa cgctctgaaa gggcctggg ggcatactcgg gcacagacag 900
ccccacactgg ggcgctcagc ctggcccccgg ggaaagagga aaacccgctg 950
cctccaggaa gggctggacg gcgagctggg agccagcccc aggctccagg 1000
gccacggcgg agtcatggtt ctcaggactg agcgcttggtaggtccgg 1050
acttggcgct ttgtttcctg gctgaggtct gggaaaggaat agaaaggggc 1100
ccccaaatttt ttttaagcg gccagataat aaataatgta acctttgcgg 1150
ttaaaaaaaaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met	Leu	Gly	Ser	Pro	Cys	Leu	Leu	Trp	Leu	Leu	Ala	Val	Thr	Phe
1					5				10					15
Leu	Val	Pro	Arg	Ala	Gln	Pro	Leu	Ala	Pro	Gln	Asp	Phe	Glu	Glu
							20			25				30
Glu	Glu	Ala	Asp	Glu	Thr	Glu	Thr	Ala	Trp	Pro	Pro	Leu	Pro	Ala
								35			40			45
Val	Pro	Cys	Asp	Tyr	Asp	His	Cys	Arg	His	Leu	Gln	Val	Pro	Cys
								50			55			60
Lys	Glu	Leu	Gln	Arg	Val	Gly	Pro	Ala	Ala	Cys	Leu	Cys	Pro	Gly
								65			70			75

Leu Ser Ser Pro Ala Gln Pro Pro Asp Pro Pro Arg Met Gly Glu
 80 85 90
 Val Arg Ile Ala Ala Glu Glu Gly Arg Ala Val Val His Trp Cys
 95 100 105
 Ala Pro Phe Ser Pro Val Leu His Tyr Trp Leu Leu Leu Trp Asp
 110 115 120
 Gly Ser Glu Ala Ala Gln Lys Gly Pro Pro Leu Asn Ala Thr Val
 125 130 135
 Arg Arg Ala Glu Leu Lys Gly Leu Lys Pro Gly Gly Ile Tyr Val
 140 145 150
 Val Cys Val Val Ala Ala Asn Glu Ala Gly Ala Ser Arg Val Pro
 155 160 165
 Gln Ala Gly Gly Glu Gly Leu Glu Gly Ala Asp Ile Pro Ala Phe
 170 175 180
 Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro Arg Thr Leu
 185 190 195
 Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu Leu Ser
 200 205 210
 Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp Gly
 215 220 225
 Cys Pro Arg Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu
 230 235

<210> 272
 <211> 2397
 <212> DNA
 <213> Homo sapiens

<400> 272
 agagaaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50
 cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100
 cccaggcggg cgtggggcac cggcccaagc gccgacgatc gctgccgtt 150
 tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200
 gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250
 acgcctcaa tctgctttt tggtaatgt ccatcagtgt gttggcagtt 300
 tctgcttgga tgagggacta cctaaataat gttctcaatt taactgcaga 350
 aacgagggtt gaggaagcag tcattttgac ttactttcct gtggttcatc 400
 cggtcatgtat tgctgtttgc tgttcctta tcattgtgg gatgttagga 450
 tattgtggaa cggtgaaaag aaatctgttg cttcttgcatt ggtactttgg 500

aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550
atgaacagga acttatggtt ccagtacaat ggtcagatata ggtcactttg 600
aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650
tgcttggaat tttttcaga gagagttaa gtgcttgttga gtagtatatt 700
tcactgactg gttggaaatg acagagatgg actggcccc agattcctgc 750
tgtgttagag aattccccagg atgttccaaa caggcccacc aggaagatct 800
cagtgacctt tatcaagagg gttgtggaa gaaaatgtat tccttttga 850
gaggaaccaa acaactgcag gtgctgaggt ttctggaaat ctccattggg 900
gtgacacaaa tcctggccat gatttcacc attactctgc tctggctct 950
gtattatgat agaaggggagc ctggacaga ccaaattgtat tccttgaaga 1000
atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050
agcctgtcaa gaatctttaa acacacatcc atggcaaaca gcttaataac 1100
acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150
caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtttt 1200
cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250
tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcatagtc 1300
accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350
acccactgtg tagcctgtgt atgactttta ctgaacacag ttatgtttt 1400
aggcagcatg gtttgattag cattccgca tccatgcaaa cgagtcacat 1450
atggtggac tggagccata gtaaagggtt atttacttct accaactagt 1500
atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550
acttttatta ctcagcgatc tattttctg atgctaaata aattatataat 1600
cagaaaactt tcaatatgg tgactaccta aatgtgattt ttgctggta 1650
ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700
tgatcaggga tttttgtat ataagtctgt gttaaatctg tataattcag 1750
tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800
ttgtcctgtta tagcatcatt attttagcc tttcctgtta ataaagcttt 1850
actattctgt cctggccctt tattacacat ataactgtta tttaaataact 1900
taaccactaa ttttggaaaat taccagtgtg atacatagga atcattattc 1950

agaatgtagt ctggcttta ggaagtatta ataagaaaat ttgcacataa 2000
cttagttat tcagaaagga ctttatgct gttttctcc caaatgaaga 2050
ctcttttga cactaaacac ttttaaaaaa gcttatctt gccttctcca 2100
aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150
ttcttttct ccagaaaaat gcttgatgata taatatactg tggcaaatta 2200
tttagagatt ctttgttta tttcactgat taatatactg tggcaaatta 2250
cacagattat taaattttt tacaagagta tagtatattt atttggaaatg 2300
ggaaaagtgc attttactgt attttgtta ttttgttat ttctcagaat 2350
atggaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

<400> 273

Met	Ala	Arg	Glu	Asp	Ser	Val	Lys	Cys	Leu	Arg	Cys	Leu	Leu	Tyr
1														15

Ala	Leu	Asn	Leu	Leu	Phe	Trp	Leu	Met	Ser	Ile	Ser	Val	Leu	Ala
														30

Val	Ser	Ala	Trp	Met	Arg	Asp	Tyr	Leu	Asn	Asn	Val	Leu	Thr	Leu
														45

Thr	Ala	Glu	Thr	Arg	Val	Glu	Glu	Ala	Val	Ile	Leu	Thr	Tyr	Phe
														60

Pro	Val	Val	His	Pro	Val	Met	Ile	Ala	Val	Cys	Cys	Phe	Leu	Ile
														75

Ile	Val	Gly	Met	Leu	Gly	Tyr	Cys	Gly	Thr	Val	Lys	Arg	Asn	Leu
														90

Leu	Leu	Leu	Ala	Trp	Tyr	Phe	Gly	Ser	Leu	Leu	Val	Ile	Phe	Cys
														105

Val	Glu	Leu	Ala	Cys	Gly	Val	Trp	Thr	Tyr	Glu	Gln	Glu	Leu	Met
														120

Val	Pro	Val	Gln	Trp	Ser	Asp	Met	Val	Thr	Leu	Lys	Ala	Arg	Met
														135

Thr	Asn	Tyr	Gly	Leu	Pro	Arg	Tyr	Arg	Trp	Leu	Thr	His	Ala	Trp
														150

Asn	Phe	Phe	Gln	Arg	Glu	Phe	Lys	Cys	Cys	Gly	Val	Val	Tyr	Phe
														165

Thr Asp Trp Leu Glu Met Thr Glu Met Asp Trp Pro Pro Asp Ser

170	175	180
Cys Cys Val Arg Glu Phe Pro Gly Cys Ser Lys Gln Ala His Gln		
185	190	195
Glu Asp Leu Ser Asp Leu Tyr Gln Glu Gly Cys Gly Lys Lys Met		
200	205	210
Tyr Ser Phe Leu Arg Gly Thr Lys Gln Leu Gln Val Leu Arg Phe		
215	220	225
Leu Gly Ile Ser Ile Gly Val Thr Gln Ile Leu Ala Met Ile Leu		
230	235	240
Thr Ile Thr Leu Leu Trp Ala Leu Tyr Tyr Asp Arg Arg Glu Pro		
245	250	255
Gly Thr Asp Gln Met Met Ser Leu Lys Asn Asp Asn Ser Gln His		
260	265	270
Leu Ser Cys Pro Ser Val Glu Leu Leu Lys Pro Ser Leu Ser Arg		
275	280	285
Ile Phe Glu His Thr Ser Met Ala Asn Ser Phe Asn Thr His Phe		
290	295	300
Glu Met Glu Glu Leu		
305		

<210> 274
<211> 2063
<212> DNA
<213> Homo sapiens

<400> 274
gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgaggcac 50
caaggcctgc cctgcactcg ggcctcctcc agccagtgc gaccaggcac 100
ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctccctgctgc 150
cttgggtga caatctcagc tccaggctac agggagaccc ggaggatcac 200
agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250
cgatgtcaaa cccctgcgca aaccccgat ccccatggag actttcagaa 300
aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350
atttggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400
cgggcagcct ctccacttca tcccggagaa gcagctgtgt gacggagagc 450
tggactgtcc cttggggag gacgaggagc actgtgtcaa gagttcccc 500
gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550
ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttgcacaact 600

2001-2012

tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650
gctgtggaga ttggcccaaga ccaggatctg gatgttggta aaatcacaga 700
aaacagccag gagcttcgca tgccgaactc aagtggggcc tgtctctcag 750
gctccctggc ctccctgcac tgtcttgccct gtggaaagag cctgaagacc 800
ccccgtgtgg tgggtgggaa ggaggcctct gtggattttt gccttggca 850
ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900
accccccactg ggtcctcactg gcagcccaact gcttcaggaa acataccgat 950
gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000
atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050
ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcacttcc 1100
tcaggcacag tcagggccat ctgtctgccc ttctttatg aggagctcac 1150
tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200
gagggaaagat gtctgacata ctgctgcagg cgtcagtcga ggtcattgac 1250
agcacacggc gcaatgcaga cgatgcgtac cagggggaaag tcaccgagaa 1300
gatgatgtgt gcaggcatcc cgaaaggggg tgtggacacc tgccagggtg 1350
acagtggtgg gcccctgatg taccaatctg accagtggca tgtgggtggc 1400
atcgtagct ggggctatgg ctgcggggc ccgagcaccc caggagtata 1450
caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaggctg 1500
agctgtaatg ctgctgcccc tttcagtgc tggagccgc ttccttcctg 1550
ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600
ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650
ggcctaatt cctgtaagag accctcgac cccagaggcg cccagaggaa 1700
gtcagcagcc ctagctcgcc cacacttggt gctcccagca tcccaggag 1750
agacacagcc cactgaacaa ggtctcagggt gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaaaggcagg ctgtcttgta aaagcccaga 1850
tcactgtgg ctggagagga gaaggaaagg gtctgcgccca gccctgtccg 1900
tcttcaccca tccccaaagcc tactagagca agaaaccagt tgtaatataa 1950
aatgcactgc cctactgttgc gtatgactac cgttacccac tgggttcatt 2000
gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050

aaaaaaaaaa aaa 2063

<210> 275

<211> 432

<212> PRT

<213> Homo sapiens

<400> 275

Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp
1 5 10 15

Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg
20 25 30

Lys Val Gly Ile Pro Ile Ile Ala Leu Leu Ser Leu Ala Ser
35 40 45

Ile Ile Ile Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60

Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
65 70 75

Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu
80 85 90

His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg
95 100 105

Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr
110 115 120

Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu
125 130 135

Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu
140 145 150

Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn
155 160 165

Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser
170 175 180

Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu
185 190 195

Lys Thr Pro Arg Val Val Gly Gly Glu Glu Ala Ser Val Asp Ser
200 205 210

Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys Gln His Val Cys
215 220 225

Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His
230 235 240

Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val Arg Ala
245 250 255

Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala Lys
 260 265 270
 Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp
 275 280 285
 Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr
 290 295 300
 Val Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro
 305 310 315
 Ala Thr Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn
 320 325 330
 Gly Gly Lys Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val
 335 340 345
 Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu
 350 355 360
 Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu Gly Gly Val
 365 370 375
 Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Tyr Gln Ser
 380 385 390
 Asp Gln Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly Cys
 395 400 405
 Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr
 410 415 420
 Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu
 425 430

<210> 276
 <211> 3143
 <212> DNA
 <213> Homo sapiens

<400> 276
 gggctgaggc actgagagac cgaaaaggct ggcattccag agggagggaa 50
 acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100
 gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150
 ttttccttta ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200
 ggaggcgggc aggggcccatt gcccagggtc agatactatg cagggatga 250
 acgttagggca cttagcttct tccaccagaa gggcctccag gatttgaca 300
 ctctgctcct gagtggtgat ggaaatactc tctacgtggg ggctcgagaa 350
 gccattctgg ccttggatat ccaggatcca ggggtccccca ggctaaagaa 400

catgataccg tggccagcca gtgacagaaa aaagagtcaa tgtgcctta 450
agaagaagag caatgagaca cagtgttca acttcatccg tgtcctggtt 500
tcttacaatg tcaccatct ctacacctgc ggcaccccg ccttcagccc 550
tgcttgttacc ttcatgttac ttcaagattc ctacctgttgc cccatctcg 600
aggacaaggt catggaggga aaaggccaaa gccccttga ccccgctcac 650
aagcatacgg ctgtcttggatg gatgggatg ctctattctg gtactatgaa 700
caacttcctg ggcagtgagc ccattctgtat gcgcacactg gatcccagc 750
ctgtcctcaa gaccgacaac ttccctccgt ggctgcatca tgacgcctcc 800
tttgtggcag ccattcccttc gaccaggcgtc gtctacttct tcttcgagga 850
gacagccagc gagtttgcact tctttgagag gctccacaca tcgcgggtgg 900
ctagagtctg caagaatgac gtggcggcg aaaagctgct gcagaagaag 950
tggaccacct tcctgaaggc ccagctgctc tgcacccagc cggggcagct 1000
gcccttcaac gtcattccgccc acgcggcttgc gctccccggc gattctccca 1050
cagctccccca catctacgca gtcttcacccct cccagtggca ggttggcggg 1100
accaggagct ctgcggtttg tgccttctct ctcttggaca ttgaacgtgt 1150
ctttaagggg aaatacaaaag agttgaacaa agaaacttca cgctggacta 1200
cttatagggg ccctgagacc aaccccccggc caggcagttt ctcaatggc 1250
ccctcctctg ataaggccct gacccatgt aaggaccatt tcctgatgga 1300
tgagcaagtg gtggggacgc ccctgctggt gaaatctggc gtggagtata 1350
cacggcttgc agtggagaca gcccaggggcc ttgatggca cagccatctt 1400
gtcatgttacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450
tggggacagc agtgcacatc tgggtggaaa gattcagctg ttccctgacc 1500
ctgaacctgt tcgcaacctg cagctggccc ccacccaggc tgcaatgttt 1550
gtaggcttct caggaggtgt ctggagggtg ccccgagcca actgttagt 1600
ctatgagagc tgggtggact gtgtccttgc cggggacccc cactgtgcct 1650
gggaccctga gtcccgaaacc tgggtggaaa tgtctggccc caacctgaac 1700
tcctggaagc aggacatgga gcggggaaac ccagagtggg catgtgccag 1750
tggccccatg agcaggagcc ttccggctca gagccggcccg caaatcatta 1800
aagaagtccct ggctgtcccc aactccatcc tggagctccc ctggcccccac 1850

ctgtcagcct tggccttta ttattggagt catggccag cagcagtccc 1900
agaaggctct tccactgtct acaatggctc cctcttgctg atagtgcagg 1950
atggagttgg gggtctctac cagtgctggg caactgagaa tggctttca 2000
taccctgtga tctcctactg ggtggacagc caggaccaga ccctggccct 2050
ggatcctgaa ctggcaggca tccccggga gcatgtgaag gtcccgttga 2100
ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150
cacttgtca ctgtcactgt cctcttgcc ttagtgctt caggagccct 2200
catcatcctc gtggcctccc cattgagagc actccggct cggggcaagg 2250
ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300
gagcaacacc tccagtctcc caaggaatgc aggacctctg ccagtatgt 2350
ggacgctgac aacaactgcc taggcactga ggtagctaa actctaggca 2400
caggccgggg ctgcggtgca ggcacctggc catgctggct gggcgcccc 2450
agcacagccc tgacttaggat gacagcagca caaaagacca cctttctccc 2500
ctgagaggag cttctgctac tctgcatcac ttagtgcact cagcagggtg 2550
atgcacagca gtctgcctcc cctatggac tcccttctac caagcacatg 2600
agctctctaa cagggtgggg gctaccccca gacctgctcc tacactgata 2650
ttgaagaacc tggagaggat cttcagttc tggccattcc agggaccctc 2700
cagaaacaca gtgttcaag agaccctaaa aaacctgcct gtcccaggac 2750
cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800
ctcctggaaa ctccactctg aagctgccgc ttggacacc aacactccct 2850
tctcccaggg tcatgcaggg atctgctccc tcctgctcc cttaccagtc 2900
gtgcaccgct gactcccagg aagtcttcc tgaagtctga ccaccttct 2950
tcttgcttca gttggggcag actctgatcc cttctgcctt ggcagaatgg 3000
caggggtaat ctgagcattc ttcaactcatt tacccctagct gacccttca 3050
cctctcccccc tccctttcc tttgtttgg gattcagaaa actgcttgcc 3100
agagactgtt tatttttat taaaaatata aggctaaaaa aaa 3143

<210> 277

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly
 1 5 10 15

Leu Phe Leu Phe Gln Leu Leu Gln Leu Leu Leu Pro Thr Thr Thr
 20 25 30

Ala Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr
 35 40 45

Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly
 50 55 60

Leu Gln Asp Phe Asp Thr Leu Leu Leu Ser Gly Asp Gly Asn Thr
 65 70 75

Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln
 80 85 90

Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala
 95 100 105

Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Lys Ser Asn
 110 115 120

Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn
 125 130 135

Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala
 140 145 150

Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser
 155 160 165

Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro
 170 175 180

Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser
 185 190 195

Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu Met Arg
 200 205 210

Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu Arg
 215 220 225

Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr
 230 235 240

Gln Val Val Tyr Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp
 245 250 255

Phe Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys
 260 265 270

Asn Asp Val Gly Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr
 275 280 285

Phe Leu Lys Ala Gln Leu Leu Cys Thr Gln Pro Gly Gln Leu Pro

	290	295	300
Phe Asn Val Ile Arg His Ala Val Leu	Leu Pro Ala Asp Ser	Pro	
305	310	315	
Thr Ala Pro His Ile Tyr Ala Val Phe	Thr Ser Gln Trp Gln	Val	
320	325	330	
Gly Gly Thr Arg Ser Ser Ala Val Cys	Ala Phe Ser Leu Leu Asp		
335	340	345	
Ile Glu Arg Val Phe Lys Gly Lys Tyr	Lys Glu Leu Asn Lys	Glu	
350	355	360	
Thr Ser Arg Trp Thr Thr Tyr Arg Gly	Pro Glu Thr Asn Pro	Arg	
365	370	375	
Pro Gly Ser Cys Ser Val Gly Pro Ser	Ser Asp Lys Ala Leu	Thr	
380	385	390	
Phe Met Lys Asp His Phe Leu Met Asp	Glu Gln Val Val Gly	Thr	
395	400	405	
Pro Leu Leu Val Lys Ser Gly Val Glu	Tyr Thr Arg Leu Ala	Val	
410	415	420	
Glu Thr Ala Gln Gly Leu Asp Gly His	Ser His Leu Val Met	Tyr	
425	430	435	
Leu Gly Thr Thr Thr Gly Ser Leu His	Lys Ala Val Val Ser	Gly	
440	445	450	
Asp Ser Ser Ala His Leu Val Glu Glu	Ile Gln Leu Phe Pro	Asp	
455	460	465	
Pro Glu Pro Val Arg Asn Leu Gln Leu	Ala Pro Thr Gln Gly	Ala	
470	475	480	
Val Phe Val Gly Phe Ser Gly Gly Val	Trp Arg Val Pro Arg	Ala	
485	490	495	
Asn Cys Ser Val Tyr Glu Ser Cys Val	Asp Cys Val Leu Ala	Arg	
500	505	510	
Asp Pro His Cys Ala Trp Asp Pro Glu	Ser Arg Thr Cys Cys	Leu	
515	520	525	
Leu Ser Ala Pro Asn Leu Asn Ser Trp	Lys Gln Asp Met Glu	Arg	
530	535	540	
Gly Asn Pro Glu Trp Ala Cys Ala Ser	Gly Pro Met Ser Arg	Ser	
545	550	555	
Leu Arg Pro Gln Ser Arg Pro Gln Ile	Ile Lys Glu Val Leu	Ala	
560	565	570	
Val Pro Asn Ser Ile Leu Glu Leu Pro	Cys Pro His Leu Ser	Ala	
575	580	585	

Leu Ala Ser Tyr Tyr Trp Ser His Gly Pro Ala Ala Val Pro Glu
590 595 600

Ala Ser Ser Thr Val Tyr Asn Gly Ser Leu Leu Leu Ile Val Gln
605 610 615

Asp Gly Val Gly Gly Leu Tyr Gln Cys Trp Ala Thr Glu Asn Gly
620 625 630

Phe Ser Tyr Pro Val Ile Ser Tyr Trp Val Asp Ser Gln Asp Gln
635 640 645

Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly Ile Pro Arg Glu His
650 655 660

Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly Ala Ala Leu Ala
665 670 675

Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val Thr Val Leu
680 685 690

Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val Ala Ser
695 700 705

Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Glu
710 715 720

Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His
725 730 735

Leu Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp
740 745 750

Ala Asp Asn Asn Cys Leu Gly Thr Glu Val Ala
755 760

<210> 278

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 278

ctgctggta aatctggcgt ggag 24

<210> 279

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 279
gtctggtcct ggctgtccac ccag 24

<210> 280
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 280
catcttgtca tgtacaccttggg aaccaccaca gggtcgtcc acaag 45

<210> 281
<211> 2320
<212> DNA
<213> Homo sapiens

<400> 281
agggtccctt agccgggcgc agggcgcgca gcccaggctg agatccgcgg 50
cttccgtaga agtgagcatg gctggcagc gagtgcttct tctagtggc 100
ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150
atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200
ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250
ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagtttatcag 300
ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350
tctttctgga agaaaacttta ggtggcagag gaaaatttga aaacttatta 400
aatgttctag aatacttggc gttgcagtgc agtcatttt taaatagaaa 450
ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500
aaacttttga ctactgtcct ttccctgattt ctgagaagct tgggaagcca 550
tttggccca ttctttccac ttcatctggc tctttggaat ttgggctacc 600
aatccccttg tcttatgttc cagtattccg ttccctgctg actgatcaca 650
tggacttctg gggccgagtg aagaattttc tgatgttctt tagttctgc 700
aggaggcaac agcacatgca gtctacatTTT gacaacacca tcaaggaaca 750
tttcacagaa ggctcttaggc cagtttgc tcatcttcta ctgaaaggcag 800
agttgtggtt cattaactct gactttgcct ttgatTTTgc tcgacccctg 850
cttcccaaca ctgtttatgt tggaggcttg atggaaaaaac ctattaaacc 900

agtaccacaa gacttggaga acttcattgc caagttggg gactctgggt 950
ttgtccttgt gaccttgggc tccatggta acacctgtca gaatccggaa 1000
atcttcaagg agatgaacaa tgcccttgct cacctacccc aaggggtgat 1050
atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100
atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150
agcatccgtc tggttgtcac ccacggcggg cagaatagca taatggaggc 1200
catccagcat ggtgtgccca tggtggggat ccctctctt ggagaccagc 1250
ctgaaaacat ggtccgagta gaagccaaaa agtttgggtt ttcttattcag 1300
ttaaagaagc tcaaggcaga gacattggct cttaagatga aacaatcat 1350
ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcattcctgc 1400
gctcccaccc gctcagcccc acacagcggc tgggtggctg gattgaccac 1450
gtccitccaga cagggggcgc gacgcaccc tc aagccctatg tcttcagca 1500
gccctggcat gagcagtacc tgttcgacgt ttttgtgtt ctgctgggc 1550
tcactctggg gactctatgg ctgtgtggga agctgctggg catggctgac 1600
tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650
gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700
cccaactagtt ctggcagccc cattctctag tccttcttagt tatctcctgt 1750
tttcttgaag aacagggaaaa atggccaaaa atcatcctt ccacttgcta 1800
attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850
ttccagtcct ctgtcctcc tttgttgcc atcagcaagg gctatgctgt 1900
gattctgtct ctgagtgact tggaccactg accctcagat ttccagcctt 1950
aaaatccacc ttccctctca tgcgcctctc cgaatcacac cctgactctt 2000
ccagcctcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050
atctatcatg gaataacatc caagaaagac accttgacata ttctttcagt 2100
ttctgttttgc ttctcccaca tattctcttc aatgctcagg aagcctgccc 2150
tgtgcttgag agttcaggc cgacacagg ctcacaggc tccacattgg 2200
gtccctgtct ctggtgccca cagtgagctc cttcttgct gagcaggcat 2250
ggagactgta ggttccaga tttcctgaaa aataaaagtt tacagcgtta 2300
tctctccccca acctcactaa 2320

<210> 282
<211> 523
<212> PRT
<213> Homo sapiens

<400> 282

Met Ala Gly Gln Arg Val Leu Leu Leu Val Gly Phe Leu Leu Pro			
1	5	10	15
Gly Val Leu Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr			
20	25		30
Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile			
35	40		45
Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg			
50	55		60
Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln			
65	70		75
Val Ile Ser Trp Leu Ala Pro Glu Asp His Gln Arg Glu Phe Lys			
80	85		90
Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly			
95	100		105
Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln			
110	115		120
Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys			
125	130		135
Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys			
140	145		150
Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile			
155	160		165
Leu Ser Thr Ser Phe Gly Ser Leu Glu Phe Gly Leu Pro Ile Pro			
170	175		180
Leu Ser Tyr Val Pro Val Phe Arg Ser Leu Leu Thr Asp His Met			
185	190		195
Asp Phe Trp Gly Arg Val Lys Asn Phe Leu Met Phe Phe Ser Phe			
200	205		210
Cys Arg Arg Gln Gln His Met Gln Ser Thr Phe Asp Asn Thr Ile			
215	220		225
Lys Glu His Phe Thr Glu Gly Ser Arg Pro Val Leu Ser His Leu			
230	235		240
Leu Leu Lys Ala Glu Leu Trp Phe Ile Asn Ser Asp Phe Ala Phe			
245	250		255
Asp Phe Ala Arg Pro Leu Leu Pro Asn Thr Val Tyr Val Gly Gly			

260	265	270
Leu Met Glu Lys Pro Ile Lys Pro Val Pro Gln Asp Leu Glu Asn		
275	280	285
Phe Ile Ala Lys Phe Gly Asp Ser Gly Phe Val Leu Val Thr Leu		
290	295	300
Gly Ser Met Val Asn Thr Cys Gln Asn Pro Glu Ile Phe Lys Glu		
305	310	315
Met Asn Asn Ala Phe Ala His Leu Pro Gln Gly Val Ile Trp Lys		
320	325	330
Cys Gln Cys Ser His Trp Pro Lys Asp Val His Leu Ala Ala Asn		
335	340	345
Val Lys Ile Val Asp Trp Leu Pro Gln Ser Asp Leu Leu Ala His		
350	355	360
Pro Ser Ile Arg Leu Phe Val Thr His Gly Gly Gln Asn Ser Ile		
365	370	375
Met Glu Ala Ile Gln His Gly Val Pro Met Val Gly Ile Pro Leu		
380	385	390
Phe Gly Asp Gln Pro Glu Asn Met Val Arg Val Glu Ala Lys Lys		
395	400	405
Phe Gly Val Ser Ile Gln Leu Lys Lys Leu Lys Ala Glu Thr Leu		
410	415	420
Ala Leu Lys Met Lys Gln Ile Met Glu Asp Lys Arg Tyr Lys Ser		
425	430	435
Ala Ala Val Ala Ala Ser Val Ile Leu Arg Ser His Pro Leu Ser		
440	445	450
Pro Thr Gln Arg Leu Val Gly Trp Ile Asp His Val Leu Gln Thr		
455	460	465
Gly Gly Ala Thr His Leu Lys Pro Tyr Val Phe Gln Gln Pro Trp		
470	475	480
His Glu Gln Tyr Leu Phe Asp Val Phe Val Phe Leu Leu Gly Leu		
485	490	495
Thr Leu Gly Thr Leu Trp Leu Cys Gly Lys Leu Leu Gly Met Ala		
500	505	510
Val Trp Trp Leu Arg Gly Ala Arg Lys Val Lys Glu Thr		
515	520	

<210> 283

<211> 24

<212> DNA

<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 283
tgccttgct cacctacccc aagg 24

<210> 284
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 284
tcaggctggc ctccaaagag aggg 24

<210> 285
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 285
cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45

<210> 286
<211> 2340
<212> DNA
<213> Homo sapiens

<400> 286
gggctgttga tttgtgggg attttgaaga gaggaggaat aggaggaagg 50
gttgtgggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100
cccgtcacac acacatacca tgttctccat cccccaggt ccagccctca 150
gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200
cgtccagtgg gcaggcgct tcattccctcc tttctctccc aaagcccaac 250
tgctgtcact gcatgctctg ccaaggagga gggactgca gtgacagcag 300
gagtaagagt gggaggcagg acagagctgg gacacaggtt tggagagggg 350
gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400
ccagggagag gagcggaaac agaagagggg cagaagaccg gggacttgt 450

gggtgcaga gcccctcagc catgttggga gccaagccac actggctacc 500
aggcccccta cacagtccccg ggctgccctt ggttctggtg cttctggccc 550
tggggcccg gtggcccaag gaggggtcag agcccgtcct gctggagggg 600
gagtgccctgg tggctgtga gcctggccga gctgctgcag gggggcccg 650
gggagcagcc ctgggagagg cacccctgg gcgagtggca tttgctgcgg 700
tccgaagcca ccaccatgag ccagcagggg aaaccggcaa tggcaccagt 750
ggggccatct acttcgacca ggtccctggta aacgagggcg gtggcttga 800
ccgggcctct ggctccttcg tagccctgt ccggggtgtc tacagttcc 850
ggttccatgt ggtgaagggtg tacaaccgc aaactgtcca ggtgagcctg 900
atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950
gaccgggag gcagccacca gctctgtgct actgccccttgc accctgggg 1000
accgagtgtc tctgcgcctg cgtcggggaa atctactggg tggttggaaa 1050
tactcaagtt tctctggctt cctcatcttc cctctctgag gacccaagtc 1100
tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttgc 1150
ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200
cctcttgca tgggaccctg tgccaaacac ccaagttaa gagaagagta 1250
gagctgtggc atctccagac caggccttgc cacccaccca ccccccagtta 1300
ccctccccagc cacctgctgc atctgttgc gcctgcagcc ctaggatcag 1350
ggcaagggtt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400
ctcccggttcc cccacccag cttcctgctc aatgctgatc agggacaggt 1450
ggcgcaggtg agcctgacag gccccacag gagccagat ggacaagcct 1500
cagcgtaccc tgcaggcttc ttccctgtgag gaaagccagc atcacggatc 1550
tcagccagca coggcagaag ctgagccagc accgtatggg ctaggggtgg 1600
aggctcagcc acaggcagaa gggtggaaag ggcctggagt ctgtggctgg 1650
tgaggaagga aggagggtgt attgtctaga ctgaacatgg tacacattct 1700
gcatgtatacg cagagcagcc agcaggtacg aatcctggct gtcccttat 1750
gctggatccc agatggactc tggcccttac ctccccaccc gagattaggg 1800
tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850
ctggaaagtgg accatggaaa acatcgataa ccatgcatacc tcttgcttgg 1900

ccacccctcg aaactgctcc accttgaag tttgaacttt agtccctcca 1950
cactctgact gctgcctcct tcctcccagc tctctcaactg agttatcttc 2000
actgtacctg ttccagcata tccccactat ctctctttct cctgatctgt 2050
gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100
cattccttca gaccctctcc tgccagtgatg ctaaacccctc cctctctt 2150
tcttatcccg ctgtcccatt ggcccagcct ggatgaatct atcaataaaa 2200
caactagaga atgggtggta gtgagacact atagaattac taaggagaag 2250
atgcctctgg agtttggatc gggtgttaca ggtacaagta ggtatgttgc 2300
agagaaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340

<210> 287

<211> 205

<212> PRT

<213> Homo sapiens

<400> 287

Met	Leu	Gly	Ala	Lys	Pro	His	Trp	Leu	Pro	Gly	Pro	Leu	His	Ser
1				5				10					15	

Pro	Gly	Leu	Pro	Leu	Val	Leu	Val	Leu	Leu	Ala	Leu	Gly	Ala	Gly
				20				25				30		

Trp	Ala	Gln	Glu	Gly	Ser	Glu	Pro	Val	Leu	Leu	Glu	Gly	Glu	Cys
				35				40				45		

Leu	Val	Val	Cys	Glu	Pro	Gly	Arg	Ala	Ala	Ala	Gly	Gly	Pro	Gly
			50				55				60			

Gly	Ala	Ala	Leu	Gly	Glu	Ala	Pro	Pro	Gly	Arg	Val	Ala	Phe	Ala
			65				70				75			

Ala	Val	Arg	Ser	His	His	His	Glu	Pro	Ala	Gly	Glu	Thr	Gly	Asn
				80			85				90			

Gly	Thr	Ser	Gly	Ala	Ile	Tyr	Phe	Asp	Gln	Val	Leu	Val	Asn	Glu
				95				100				105		

Gly	Gly	Gly	Phe	Asp	Arg	Ala	Ser	Gly	Ser	Phe	Val	Ala	Pro	Val
			110				115				120			

Arg	Gly	Val	Tyr	Ser	Phe	Arg	Phe	His	Val	Val	Lys	Val	Tyr	Asn
			125				130				135			

Arg	Gln	Thr	Val	Gln	Val	Ser	Leu	Met	Leu	Asn	Thr	Trp	Pro	Val
			140				145				150			

Ile	Ser	Ala	Phe	Ala	Asn	Asp	Pro	Asp	Val	Thr	Arg	Glu	Ala	Ala
			155				160				165			

Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser

PROTEIN-DNA

170 175 180

Leu Arg Leu Arg Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser
185 190 195

Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu
200 205

<210> 288

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 288

aggcagccac cagctctgtg ctac 24

<210> 289

<211> 27

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-27

<223> Synthetic construct.

<400> 289

cagagaggga agatgaggaa gccagag 27

<210> 290

<211> 42

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-42

<223> Synthetic construct.

<400> 290

ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

<210> 291

<211> 1570

<212> DNA

<213> Homo sapiens

<400> 291

gctgttttc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50

tagccgcccc gcctcgacgc cgtcccgaaa cccctgtgct ctgcgcgaag 100

ccctggcccc gggggccccc gcatggcca ggggcgcggg gtgaagcggc 150

ttcccgcccc gccgtgactg ggcgggcttc agccatgaag accctcatag 200
ccgcctactc cggggtcctg cgccgcgagc gtcaggccga ggctgaccgg 250
agccagcgct ctcacggagg acctgcgctg tcgcgcgagg ggtctggag 300
atggggact gnatccagca tcctctccgc cctccaggac ctcttctctg 350
tcacctggct caataggccc aaggtaaaa agcagctaca ggtcatctca 400
gtgctccagt gggtcctgtc cttccttgta ctggagtggtt cctgcagtgc 450
catcctcatg tacatattct gcactgattt ctggctcatc gctgtgtct 500
acttcacttg gctgggtttt gactgaaaca caccaagaa aggtggcagg 550
aggtcacagt gggtccgaaa ctggctgtg tggcgctact ttgcagacta 600
ctttcccatc cagctggta agacacacaa cctgctgacc accaggaact 650
atatcttgg ataccacccc catggtatca tggccttggg tgccttctgc 700
aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750
gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgggg 800
agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850
tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900
gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950
tgcgaaaccg caaggcctt gtgaaactgg ccctgcgtca tggagctgac 1000
ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050
cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100
acattggttt cgccccatgc atctccatg gtcgaggcct cttctcctcc 1150
gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgggg 1200
agagcccatc accatccccca agctggagca cccaaaccag caagacatcg 1250
acctgtacca caccatgtac atggaggccc tggtaagct cttcgacaag 1300
cacaagacca agttcggcct cccggagact gaggtcctgg aggtgaactg 1350
agccagcctt cggggccaaat tccctggagg aaccagctgc aaatcacttt 1400
tttgctctgt aaatttgaa gtgtcatggg tgtctgtggg ttataaaaaa 1450
gaaattataa caatttgct aaaccaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1550
aaaaaaaaaa aaaaaaaaaa 1570

<210> 292
<211> 388
<212> PRT
<213> Homo sapiens

<400> 292

Met	Lys	Thr	Leu	Ile	Ala	Ala	Tyr	Ser	Gly	Val	Leu	Arg	Gly	Glu
1				5					10					15
Arg	Gln	Ala	Glu	Ala	Asp	Arg	Ser	Gln	Arg	Ser	His	Gly	Gly	Pro
				20					25					30
Ala	Leu	Ser	Arg	Glu	Gly	Ser	Gly	Arg	Trp	Gly	Thr	Gly	Ser	Ser
				35					40					45
Ile	Leu	Ser	Ala	Leu	Gln	Asp	Leu	Phe	Ser	Val	Thr	Trp	Leu	Asn
				50					55					60
Arg	Ser	Lys	Val	Glu	Lys	Gln	Leu	Gln	Val	Ile	Ser	Val	Leu	Gln
				65					70					75
Trp	Val	Leu	Ser	Phe	Leu	Val	Leu	Gly	Val	Ala	Cys	Ser	Ala	Ile
				80					85					90
Leu	Met	Tyr	Ile	Phe	Cys	Thr	Asp	Cys	Trp	Leu	Ile	Ala	Val	Leu
				95					100					105
Tyr	Phe	Thr	Trp	Leu	Val	Phe	Asp	Trp	Asn	Thr	Pro	Lys	Lys	Gly
				110					115					120
Gly	Arg	Arg	Ser	Gln	Trp	Val	Arg	Asn	Trp	Ala	Val	Trp	Arg	Tyr
				125					130					135
Phe	Arg	Asp	Tyr	Phe	Pro	Ile	Gln	Leu	Val	Lys	Thr	His	Asn	Leu
				140					145					150
Leu	Thr	Thr	Arg	Asn	Tyr	Ile	Phe	Gly	Tyr	His	Pro	His	Gly	Ile
				155					160					165
Met	Gly	Leu	Gly	Ala	Phe	Cys	Asn	Phe	Ser	Thr	Glu	Ala	Thr	Glu
				170					175					180
Val	Ser	Lys	Lys	Phe	Pro	Gly	Ile	Arg	Pro	Tyr	Leu	Ala	Thr	Leu
				185					190					195
Ala	Gly	Asn	Phe	Arg	Met	Pro	Val	Leu	Arg	Glu	Tyr	Leu	Met	Ser
				200					205					210
Gly	Gly	Ile	Cys	Pro	Val	Ser	Arg	Asp	Thr	Ile	Asp	Tyr	Leu	Leu
				215					220					225
Ser	Lys	Asn	Gly	Ser	Gly	Asn	Ala	Ile	Ile	Ile	Val	Val	Gly	Gly
				230					235					240
Ala	Ala	Glu	Ser	Leu	Ser	Ser	Met	Pro	Gly	Lys	Asn	Ala	Val	Thr
				245					250					255
Leu	Arg	Asn	Arg	Lys	Gly	Phe	Val	Lys	Leu	Ala	Leu	Arg	His	Gly

260 265 270

Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr
275 280 285

Lys Gln Val Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln
290 295 300

Lys Lys Phe Gln Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His
305 310 315

Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr
320 325 330

Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile Pro
335 340 345

Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu Tyr His Thr
350 355 360

Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr
365 370 375

Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn
380 385

<210> 293
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 293
gctgacctgg ttcccatctta ctcc 24

<210> 294
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 294
cccacagaca cccatgacac ttcc 24

<210> 295
<211> 50
<212> DNA
<213> Artificial

<220>

<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 295
aagaatgaat tgtacaaagc aggtgatctt cgaggaggc tcctgggcc 50

<210> 296
<211> 3060
<212> DNA
<213> Homo sapiens

<400> 296
gggcggcgccg atggggcccg gggcgccgg gcgcgcact cgctgaggcc 50
ccgacgcagg gccggcccg gcccaggccc gaggagcgcg gcggccagag 100
cggggccgcg gaggcgacgc cggggacgcgc cgcgacgca gcaggtggcg 150
gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttccact 200
ggctctgctg accttgtgcc ttggacggct gtcctcagcg agggccgtg 250
cacccgctcc tgagcagcgc catgggcctg ctggcctcc tgaagaccca 300
gttcgtgctg cacctgctgg tcgggtttgt cttcgtggtg agtggtctgg 350
tcatcaactt cgtccagctg tgacacgcgt cgctctggcc ggtcagcaag 400
cagctctacc gccgcctcaa ctgcccgcctc gcctactcac tctggagcca 450
actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500
cgaccaggc cacggtagag cgctttggga aggagcacgc agtcatcatc 550
ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600
gogcttcgga gtgctggga gctccaaggt cctcgctaag aaggagctgc 650
tctacgtgcc cctcatcgcc tggacgtggt actttctgga gattgtgttc 700
tgcaagcgga agtgggagga ggaccggac accgtggtcg aagggtgag 750
gcgcctgtcg gactaccccg agtacatgtg gtttctcctg tactgcgagg 800
ggacgcgtt cacggagacc aagcacccgc ttagcatgga ggtggcggct 850
gctaaggggc ttcctgtcct caagtaccac ctgctgcccgc ggaccaaggg 900
cttaccacc gcaagtcaagt gcctccgggg gacagtgcac gctgtctatg 950
atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctgggatc 1000
ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050
ggaagacatc ccgctggatg aaaaggaagc agctcagtg cttcataaac 1100
tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150

tttccagggg agcagttaa gcctgcccgg aggccgtgga ccctcctgaa 1200
cttcctgtcc tggccacca ttctcctgtc tcccccttgc agtttgc 1250
tggcgcttt tgccagcgga tcaccccttcc tgatcctgac tttcttgggg 1300
tttgcggag cagttccctt tggagttcgc agactgatag gagaatcgct 1350
tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400
ccagcctagg caacagagca agactcagtc tcaaaaaaaaaaaaaacaa 1450
aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500
attcactaga ggctgaacag cagatttgc caggcagaaa aaaatcagca 1550
agcttgaaga tggcacccatgg agattttca ggctaattgaa aaaagaatga 1600
aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaatcaa 1650
catatgcattg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700
aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750
gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800
aatcaaagtg tcaaattgaca aagaatcttg aaagcagcaa gagatgagca 1850
acttatcttg ttcaaaggat ctttgcatttca attaacagct catttctcct 1900
cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950
aaccttcaac tgtaattattt ggactttga gtcttagatg gtcctgaccc 2000
ctttgtcttc agggacagtt ttcaattta atccctaata acaatttagtc 2050
aagcttcattt gacctgttagg aaggcctgtc tttaggccgg gcacagtggc 2100
ttacacctgt aatcccagca ctttggagg cccagacggg tggatcattt 2150
gggtcaggc tgatctcaaa ctcctgatgtt caggtgatct gcccgcctca 2200
gcctcccaa gtgttgtat tgcaggcgtg agccactgctg cctggccgg 2250
atttctttt aaggctgaat gatggggcc aggcacgatg gctcacgcct 2300
gtgatcccaa gtagcttggaa ttgttaaacat gcaccacccat gcctggctaa 2350
tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400
gacctcaagt gaccacctgc ctcaaggctcc caaagtactg ggattacagg 2450
cgtgagccac tgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500
atttgtatat ctctatctt ctggggaa atgtctgttc aagtcctttg 2550
ccttttaaa tttttattat ttatattttt atttattttg agacagggtc 2600

ttgttctgtt gcccaggctg gactacagtgc acagtcgtt ggctcaactgc 2650
agcctcgacc tcctgggctg cagtgtatcc cccacccatg cctcccttgt 2700
agctgtatcc tttgtatcc tgtatccatg agctgtatcc tttgtatcc 2750
ttgtggagac agcatccac catgtatcccc aggctggctg tgaactccctg 2800
agctcaagtgc atctgcctgc ttcaagcctcc caaaatgtctg ggattacaga 2850
catgagccac tgccacccatggc aaactcccaa aattcaacac acacacacaa 2900
aaaaccaccc gattcaaaaat gggcagaggg gcccgggtgtg gcccccaacta 2950
ccagggagac tgaagtggga ggatcgcttgc ggcatacgaa gtcgaggctg 3000
cagttagtgcg aggttgcgc actgcattcc agcctggaca acagagttag 3050
accctgtctc 3060

<210> 297
<211> 368
<212> PRT
<213> Homo sapiens

<400> 297

Met	Gly	Leu	Leu	Ala	Phe	Leu	Lys	Thr	Gln	Phe	Val	Leu	His	Leu
1					5				10				15	
Leu	Val	Gly	Phe	Val	Phe	Val	Val	Ser	Gly	Leu	Val	Ile	Asn	Phe
					20				25				30	
Val	Gln	Leu	Cys	Thr	Leu	Ala	Leu	Trp	Pro	Val	Ser	Lys	Gln	Leu
					35				40				45	
Tyr	Arg	Arg	Leu	Asn	Cys	Arg	Leu	Ala	Tyr	Ser	Leu	Trp	Ser	Gln
					50				55				60	
Leu	Val	Met	Leu	Leu	Glu	Trp	Trp	Ser	Cys	Thr	Glu	Cys	Thr	Leu
					65				70				75	
Phe	Thr	Asp	Gln	Ala	Thr	Val	Glu	Arg	Phe	Gly	Lys	Glu	His	Ala
					80				85				90	
Val	Ile	Ile	Leu	Asn	His	Asn	Phe	Glu	Ile	Asp	Phe	Leu	Cys	Gly
					95				100				105	
Trp	Thr	Met	Cys	Glu	Arg	Phe	Gly	Val	Leu	Gly	Ser	Ser	Lys	Val
					110				115				120	
Leu	Ala	Lys	Lys	Glu	Leu	Leu	Tyr	Val	Pro	Leu	Ile	Gly	Trp	Thr
					125				130				135	
Trp	Tyr	Phe	Leu	Glu	Ile	Val	Phe	Cys	Lys	Arg	Lys	Trp	Glu	Glu
					140				145				150	
Asp	Arg	Asp	Thr	Val	Val	Glu	Gly	Leu	Arg	Arg	Leu	Ser	Asp	Tyr
					155				160				165	

Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe
 170 175 180
 Thr Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys
 185 190 195
 Gly Leu Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys Gly
 200 205 210
 Phe Thr Thr Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val
 215 220 225
 Tyr Asp Val Thr Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser Leu
 230 235 240
 Leu Gly Ile Leu Tyr Gly Lys Lys Tyr Glu Ala Asp Met Cys Val
 245 250 255
 Arg Arg Phe Pro Leu Glu Asp Ile Pro Leu Asp Glu Lys Glu Ala
 260 265 270
 Ala Gln Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Leu Gln
 275 280 285
 Glu Ile Tyr Asn Gln Lys Gly Met Phe Pro Gly Glu Gln Phe Lys
 290 295 300
 Pro Ala Arg Arg Pro Trp Thr Leu Leu Asn Phe Leu Ser Trp Ala
 305 310 315
 Thr Ile Leu Leu Ser Pro Leu Phe Ser Phe Val Leu Gly Val Phe
 320 325 330
 Ala Ser Gly Ser Pro Leu Leu Ile Leu Thr Phe Leu Gly Phe Val
 335 340 345
 Gly Ala Ala Ser Phe Gly Val Arg Arg Leu Ile Gly Glu Ser Leu
 350 355 360
 Glu Pro Gly Arg Trp Arg Leu Gln
 365

<210> 298

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 298

tttcctctgt gggtgacca tgtg 24

<210> 299

<211> 21

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-21

<223> Synthetic construct.

<400> 299
gccaccccca tgctaacgcg g 21

<210> 300

<211> 45

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-45

<223> Synthetic construct.

<400> 300
ccaaggcctt cgctaagaag gagctgctct acgtgccctt catcg 45

<210> 301

<211> 1334

<212> DNA

<213> Homo sapiens

<400> 301
gatattcttt attttaaga atctgaagta ctatgcata ctcctccaa 50
tgtcctgggg cagccaccag gcatattcat ctttgtgt gttttcttt 100
tgcttagca ctggggcaact tcttgcttat ttctttggta ggaaaggggc 150
tcagttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
cggccctggg tttagaaggga agggaaagata aactttata caaatgggga 250
tagctggggtt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
ataccttctt ttctctaacc tggcataaccc tgcttaaagc ctctcagggc 350
ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
gtctggcccc tgccccccctg gccagctca ttgtacatgt ggtgttctct 450
tgtcgccct gtaatgttgtt atgcattggg gtctttcac aagcctttcc 500
tctttggctg gacactgttc cctgcccccc ccatactttt cctacttaat 550
atgttagtcat cctgcagatt tcaattctaa catcattttc tccagggttc 600
ctggcctgac agaatctcat cttgtttat gctctcataa gaccacttgt 650
ttcccttttgc cagcacttgc cactcagttg tatctttatg tgcgttgtg 700
tttgtatggg ttgtgtctgt tccccqaat gcccagctct gagctgcgtg 750

agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800
ggtgctcatg tttagagac taaatggagg aggagatgag gaaaagattg 850
aaatctctca gttcaccaga tggtaggg cccagcattg taaattcaca 900
cggtgactgt gcttgtaat tatctgggg tgcaggcct gattcagtag 950
gcccaggtt ggcatctcta acaaactccc acgtgatgct gatgctggc 1000
ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050
tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100
acctggagtc aggattcaa gactagcctg gccaacatgg tggaaacccca 1150
tctgtactaa aaatacacaa attagctgg catggtgca catgcctgta 1200
gtcccgacta cttgggaggc tgaagcaaga gaatcgctt aacctggag 1250
gcggaggtt cagtgagccg agatcaggcc actgtattcc aaccagggtg 1300
acagagttag actctatgtc caaaaaaaaaaaaa 1334

<210> 302

<211> 143

<212> PRT

<213> Homo sapiens

<400> 302

Met His His Ser Leu Gln Cys Pro Gly Ala Ala Thr Arg His Ile
1 5 10 15

His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe
20 25 30

Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly
35 40 45

Val Gly Gly Arg Gln Ala Gly Leu Arg Leu Ile Arg Pro Trp Val
50 55 60

Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp
65 70 75

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr
80 85 90

Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gln
95 100 105

Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gln Glu
110 115 120

Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gln Leu His Cys Thr
125 130 135

Cys Gly Val Leu Leu Ser Phe Leu

<210> 303
<211> 1768
<212> DNA
<213> Homo sapiens

<400> 303
ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50
aagggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100
tttttcagca actaaaaaaag ccacaggagt tgaactgcta ggattctgac 150
tatgtgtgg tggcttagtgc tcctactcct acctacatta aaatctgttt 200
tttgttctct tgtaacttagc cttaaccttc ctaacacaga ggatctgtca 250
ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300
ttctacccac accgtccccct cgaagccggg gacagcctca ctttgctggc 350
ctctcgctgg agcagtgcgg tcaccaactg tctcacgtct ggaggcactg 400
actcggcag tgcaggttagc tgagccttt ggtagctgctg gctttcaagg 450
tgggccttgc cctggccgta gaagggattt acaagccga agatttcata 500
ggcgatggct cccactgccc aggcatcagc cttgctgttag tcaatcactg 550
ccctggggcc aggacgggccc gtggacacct gctcagaagc agtgggttag 600
acatcacgct gcccggccat ctaaccttt catgtcctgc acatcacctg 650
atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700
gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750
acaggacttg cattctcctg gaacatgagg gaacgcccggaa ggaaggcaaa 800
gtggcagggaa aggaacttgt gccaaattat gggtcagaaa agatggaggt 850
gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900
ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950
atcagacagc cgtttccgcc ccgatccacg taccagctgc tgaagggcaa 1000
ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050
ccagccaggg gcagccgtct gggaggagc aagcaaagtg accatttctc 1100
ctccctcct tccctctgag agggccctcct atgtccctac taaagccacc 1150
agcaagacat agctgacagg ggctaattggc tcagtgttgg cccaggaggt 1200
cagcaaggcc tgagagctga tcagaaggc ctgctgtgctg aacacggaaa 1250

tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300
ctcaatttaa atcatgttct agtaattgga gctgtccccca agaccaaagg 1350
agcttagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400
ctttgatttg aatttgaaaac cccaaatcca aacctaagaa ccaggtgcat 1450
taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500
gaggccgagg cggttagatc acctgaggtc aggagttcaa gaccagcctg 1550
gccaacatgg taaaacccct gtctctacta aaaataaaaaa aaaactagcc 1600
aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650
gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700
ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750
aattatggtt atttgtaa 1768

<210> 304

<211> 109

<212> PRT

<213> Homo sapiens

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Pro Thr Leu Lys Ser
1 5 10 15

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu
20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly
35 40 45

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly
50 55 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro
65 70 75

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala
80 85 90

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly
95 100 105

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

gcgggcccgc gagtccgaga cctgtcccag gagtccagc tcacgtgacc 50
tgtcactgcc tccccccgc tcctgcccgc gccatgaccc agccggtgcc 100
ccggctctcc gtgcccggcg cgctggccct gggctcagcc gcactggcg 150
ccgccttcgc cactggcctc ttccctggga ggcggtgccc cccatggcga 200
ggccggcgag agcagtgcct gcttccccc gaggacagcc gcctgtggca 250
gtatcttctg agccgctcca tgccggagca cccggcgctg cgaaggctga 300
ggctgctgac cctggagcag ccgcaggggg attctatgtat gaccctgcgag 350
caggcccagc tcttggccaa cctggcgccg ctcatccagg ccaagaaggc 400
gctggacctg ggcaccccca cgggctactc cgcctggcc ctggccctgg 450
cgctgcccgc ggacggggcgc gtggtgaccc gcgagggtgga cgccgcagccc 500
ccggagctgg gacggccctt gtggaggcag gccgaggccg agcacaagat 550
cgacccctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcg 600
cggcgaggc cggcacccca gacgtggccg tggatgc ggacaaggag 650
aactgctccg cctactacga gcgcgtgcctg cagctgctgc gaccggagg 700
catcctcgcc gtcctcagag tcctgtggcg cggaaagggtg ctgcaaccc 750
cgaaaggaga cgtggcgcc gagtgtgtgc gaaacctaata cgaacgcattc 800
cggcggacg tcagggctta catcagccctc ctggccctgg gcgatggact 850
caccttggcc ttcaagatct agggctggcc cctagtgtgt gggctcgagg 900
gagggttgcc tggaaacccc aggaattgac cctgagttt aaattcgaaa 950
ataaaagtggg gctggacac aaaaaaaaaa aaaaaaaaaa 989

<210> 306

<211> 262

<212> PRT

<213> Homo sapiens

<400> 306

Met	Thr	Gln	Pro	Val	Pro	Arg	Leu	Ser	Val	Pro	Ala	Ala	Leu	Ala
1				5					10				15	

Leu	Gly	Ser	Ala	Ala	Leu	Gly	Ala	Ala	Phe	Ala	Thr	Gly	Leu	Phe
					20				25				30	

Leu	Gly	Arg	Arg	Cys	Pro	Pro	Trp	Arg	Gly	Arg	Arg	Glu	Gln	Cys
				35				40					45	

Leu	Leu	Pro	Pro	Glu	Asp	Ser	Arg	Leu	Trp	Gln	Tyr	Leu	Leu	Ser
				50				55				60		

Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu
 65 70 75
 Thr Leu Glu Gln Pro Gln Gly Asp Ser Met Met Thr Cys Glu Gln
 80 85 90
 Ala Gln Leu Leu Ala Asn Leu Ala Arg Leu Ile Gln Ala Lys Lys
 95 100 105
 Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu
 110 115 120
 Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val
 125 130 135
 Asp Ala Gln Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gln Ala
 140 145 150
 Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu
 155 160 165
 Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp
 170 175 180
 Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr
 185 190 195
 Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu Ala Val
 200 205 210
 Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys Gly
 215 220 225
 Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg
 230 235 240
 Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly
 245 250 255
 Leu Thr Leu Ala Phe Lys Ile
 260

<210> 307
 <211> 2272
 <212> DNA
 <213> Homo sapiens

<400> 307
 ccgcgcgcgc agccgctacc gcccgtcag cccgtttccg cggcctgggc 50
 ctctcgccgt cagcatgcc aacgcattca agcccgaaaa cttgggttttc 100
 gctaagatga agggctaccc tcactggctt gccaggatcg acgacatcgc 150
 ggatggcgcc gtgaagcccc cacccaacaa gtacccatc ttttctttg 200
 gcacacacga aacagcattc ctggaccca aggacctgtt cccctacgac 250

aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300
aggcgtgtgg gagatccaga acaaccccca cgccagctac agcgcccc 350
cgccagttag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400
ggcagttagcgtc ctgacgagga cgtatgaggac cgggggggtca tggccgtcac 450
agcggttaacc gccacagctg ccagcgacag gatggagagc gactcagact 500
cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550
aagatgtcggt tctcgaaacg agcccgaaag gcctccagcg acctggatca 600
ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatactgagt 650
cgaggaaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700
cggggccac ggaggggccc tctgggggga cgaaaaaaa agaaggcgcc 750
gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800
agccgggtgc catggcgcgg tcggcgtcct ctcctcctc ttcctcctcc 850
tcctccgact ccgatgtgtc tgtgaagaag ctcggaggg gcaggaagcc 900
agcgagaag cctctcccgaa agcccgagg gcggaaaccg aagcctgaac 950
ggcctccgtc cagctccagc agtgacagtgc acagcgacga ggtggaccgc 1000
atcagtgagt ggaagcggcg ggacgaggcg cgaggcgcg agctggaggc 1050
ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100
agaaggagga gaaggagcgg aggcgcgagc gggccgaccg cggggaggct 1150
gagcggggca gcggcggcag cagcggggac gagctcaggg aggacgatga 1200
gccccgtcaag aagcggggac gcaaggcccg gggccgggt ccccggtcct 1250
cctctgactc cgagcccgag gccgagctgg agagagaggc caagaaatca 1300
gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350
gaaggagaag agagtgcggc ccgaggagaa gcaacaagcc aagccgtga 1400
aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450
gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500
cagtgagatc aagtttgcgg taaaggtcga cagcccgac gtgaagaggt 1550
gcctgaatgc cctagaggag ctggaaaccc tgcaggtgac ctctcagatc 1600
ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttgcggcgtta 1650
caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccgcc 1700

tcaagtcgct ggtcctcgcc ccaaagatcg aggcggtgca gaaagtgaac 1750
aaggctggta tggagaagga gaaggccgag gagaagctgg ccggggagga 1800
gctggccggg gaggaggccc cccaggagaa ggcggaggac aagcccagca 1850
ccgatctctc agccccagtg aatggcgagg ccacatcaca gaagggggag 1900
agcgcagagg acaaggagca cgaggagggt cgggactcgg aggaggggcc 1950
aaggtgtggc tcctctgaag acctgcacga cagcgtacgg gagggtcccc 2000
acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2050
gactcggagg ccctggacga ggagagctga gccgcggca gccaggccca 2100
gccccggccc gagctcaggc tgccctctc cttcccccgc tcgcaggaga 2150
gcagagcaga gaactgtggg gaacgctgtg ctgttttat ttgttccctt 2200
gggtttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250
actataaaacg gtttttaat ga 2272

<210> 308
<211> 671
<212> PRT
<213> Homo sapiens

<400> 308
Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met
1 5 10 15
Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp
20 25 30
Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe Phe
35 40 45
Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu Phe Pro
50 55 60
Tyr Asp Lys Cys Lys Asp Lys Tyr Gly Lys Pro Asn Lys Arg Lys
65 70 75
Gly Phe Asn Glu Gly Leu Trp Glu Ile Gln Asn Asn Pro His Ala
80 85 90
Ser Tyr Ser Ala Pro Pro Pro Val Ser Ser Ser Asp Ser Glu Ala
95 100 105
Pro Glu Ala Asn Pro Ala Asp Gly Ser Asp Ala Asp Glu Asp Asp
110 115 120
Glu Asp Arg Gly Val Met Ala Val Thr Ala Val Thr Ala Thr Ala
125 130 135
Ala Ser Asp Arg Met Glu Ser Asp Ser Asp Ser Asp Lys Ser Ser

140	145	150
Asp Asn Ser Gly Leu Lys Arg Lys Thr Pro Ala Leu Lys Met Ser		
155	160	165
Val Ser Lys Arg Ala Arg Lys Ala Ser Ser Asp Leu Asp Gln Ala		
170	175	180
Ser Val Ser Pro Ser Glu Glu Glu Asn Ser Glu Ser Ser Ser Glu		
185	190	195
Ser Glu Lys Thr Ser Asp Gln Asp Phe Thr Pro Glu Lys Lys Ala		
200	205	210
Ala Val Arg Ala Pro Arg Arg Gly Pro Leu Gly Gly Arg Lys Lys		
215	220	225
Lys Lys Ala Pro Ser Ala Ser Asp Ser Asp Ser Lys Ala Asp Ser		
230	235	240
Asp Gly Ala Lys Pro Glu Pro Val Ala Met Ala Arg Ser Ala Ser		
245	250	255
Ser Ser Ser Ser Ser Ser Ser Ser Asp Ser Asp Val Ser Val		
260	265	270
Lys Lys Pro Pro Arg Gly Arg Lys Pro Ala Glu Lys Pro Leu Pro		
275	280	285
Lys Pro Arg Gly Arg Lys Pro Lys Pro Glu Arg Pro Pro Ser Ser		
290	295	300
Ser Ser Ser Asp Ser Asp Ser Asp Glu Val Asp Arg Ile Ser Glu		
305	310	315
Trp Lys Arg Arg Asp Glu Ala Arg Arg Arg Glu Leu Glu Ala Arg		
320	325	330
Arg Arg Arg Glu Gln Glu Glu Glu Leu Arg Arg Leu Arg Glu Gln		
335	340	345
Glu Lys Glu Glu Lys Glu Arg Arg Glu Arg Ala Asp Arg Gly		
350	355	360
Glu Ala Glu Arg Gly Ser Gly Gly Ser Ser Gly Asp Glu Leu Arg		
365	370	375
Glu Asp Asp Glu Pro Val Lys Lys Arg Gly Arg Lys Gly Arg Gly		
380	385	390
Arg Gly Pro Pro Ser Ser Ser Asp Ser Glu Pro Glu Ala Glu Leu		
395	400	405
Glu Arg Glu Ala Lys Lys Ser Ala Lys Lys Pro Gln Ser Ser Ser		
410	415	420
Thr Glu Pro Ala Arg Lys Pro Gly Gln Lys Glu Lys Arg Val Arg		
425	430	435

Pro Glu Glu Lys Gln Gln Ala Lys Pro Val Lys Val Glu Arg Thr
 440 445 450
 Arg Lys Arg Ser Glu Gly Phe Ser Met Asp Arg Lys Val Glu Lys
 455 460 465
 Lys Lys Glu Pro Ser Val Glu Glu Lys Leu Gln Lys Leu His Ser
 470 475 480
 Glu Ile Lys Phe Ala Leu Lys Val Asp Ser Pro Asp Val Lys Arg
 485 490 495
 Cys Leu Asn Ala Leu Glu Glu Leu Gly Thr Leu Gln Val Thr Ser
 500 505 510
 Gln Ile Leu Gln Lys Asn Thr Asp Val Val Ala Thr Leu Lys Lys
 515 520 525
 Ile Arg Arg Tyr Lys Ala Asn Lys Asp Val Met Glu Lys Ala Ala
 530 535 540
 Glu Val Tyr Thr Arg Leu Lys Ser Arg Val Leu Gly Pro Lys Ile
 545 550 555
 Glu Ala Val Gln Lys Val Asn Lys Ala Gly Met Glu Lys Glu Lys
 560 565 570
 Ala Glu Glu Lys Leu Ala Gly Glu Glu Leu Ala Gly Glu Glu Ala
 575 580 585
 Pro Gln Glu Lys Ala Glu Asp Lys Pro Ser Thr Asp Leu Ser Ala
 590 595 600
 Pro Val Asn Gly Glu Ala Thr Ser Gln Lys Gly Glu Ser Ala Glu
 605 610 615
 Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg
 620 625 630
 Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro
 635 640 645
 Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala
 650 655 660
 Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser
 665 670

<210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

<400> 309

gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50

cagcctcaat aattatatta aatthaacacc atttgaaaga gaacattgtt 100

卷之三

ttccatcatga atgctaataa agatgaaaaga cttaaagcca gaagccaaga 150
tttcacacctt tttcctgctt tgatgatgct aagcatgacc atgttgttc 200
ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250
tacaaagact tgctgcttc aaatagctgt attcccttt tggttcatac 300
agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350
tgctcttggg agccaaagac cacatcttc tactcagtct gttgactta 400
aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450
attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500
tcagagtaact tcagccctat aacaaaactc acatatatgt gtgtggaact 550
ggagcatttc atccaatatg tggtatatt gatcttggag tctacaagga 600
ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650
aatgtcctt cgatcctcag cagcctttt cttcagtaat gacagatgag 700
tacctctact ctggAACAGC ttctgatttc cttggcaaag atactgcatt 750
caactcgatcc ctgggccta ctcatgacca ccactacatc agaactgaca 800
tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850
ataccagaca cctacaatcc agatgatgat aaaatataatt tcttcttcg 900
tgaatcatct caagaaggca gtaccccgaa taaaaccatc ctttctcgag 950
ttggaagagt ttgtaagaat gatgttaggag gacaacgcag cctgataaac 1000
aagtggacga ctttcttaa ggccagactg atttgctaa ttccctggaag 1050
tgcgtggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100
ccacaagaga tggaaagaaat cctgttagtat atggagtctt tactacaacc 1150
agctccatct tcaaaggctc tgctgttgt gtgtatagca tggctgacat 1200
cagagcagtt ttatggtc catatgctca taaggaaagt gcagaccatc 1250
gttgggtgca gatgtatggg agaattcctt atccacggcc tggtagatgt 1300
ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350
tgcgtcattc agttcataa agcggcactc tgtgtatgt aagtccgtat 1400
acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450
ctgacacacaga tagtggtgga tcatgtcatt gcagaagatg gccagttacga 1500
tgtaatgttt ctggaaacag acattggAACAC tgcctcaaa gttgtcagca 1550

tttcaaagga aaagtggaaat atggaagagg tagtgctgga ggagttgcag 1600
atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650
gcaacaattg tacattgggtt cccgagatgg attagttcag ctctccttgc 1700
acagatgcga cacttatggg aaagcttgcg cagactgttgc tcttgccaga 1750
gaccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800
ttctaaaagg agagcttagac gccaagatgt aaaatatggc gacccaatca 1850
cccagtgcgt ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900
aaggtgattt ttggcattga atttaactca acctttctgg aatgtataacc 1950
taaatcccaa caagcaacta ttaaatggta tatccagagg tcagggatg 2000
agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050
gggctactga ttcgaagttt gcagaagaag gattctggg tgtattactg 2100
caaagccccag gaggcacactt tcatccacac catagtgaag ctgactttga 2150
atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200
gaggggcagg tcaaggatct attggcttag tcacgggtga gatacaaaga 2250
ctacatccaa atccttagca gcccaaactt cagcctcgac cagtagtcg 2300
aacagatgtg gcacagggag aagcggagac agagaaacaa gggggccca 2350
aagtggaaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400
cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450
aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgtttt 2500
tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550
cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600
caaaaaattc atttgaacca gtttccaag aacaaatctt gcacaagcaa 2650
agtataagaa ttatcctaaa aataggggtt ttacagttgt aaatgtttt 2700
tgttttgagt ttggaaattt attgtcatgt aaatagttga gctaagcaag 2750
ccccgaattt gatagtgtat aagggtctt attccctcgat atgtccattt 2800
agcatggaat ttaccatgca gtttgctat gttcttatga acagatataat 2850
cattcctatt gagaaccagc taccttgtgg taggaaataa gaggtcagac 2900
acaatattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950
tcactcctgg agaatggat aggaatttgg agaggtgcattt tatttcttc 3000

tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050
cactaatgtt tccccaggaa ttcttattgtt ctagtcagga gtaacagggtt 3100
cacagagaga agttggtgct tagttatgtt ttttttagag tatatactaa 3150
gctctacagg gacagaatgc ttaataaata cttaataaag atatggaaa 3200
atatttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250
ggaaggcatg cagatggat ttgttagaag acagaaggaa agacagccat 3300
aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350
cacaataaaa gtgagagtaa tgtaatggag ctctttcac taggtataa 3400
gtagctgcca atttctaatt catctgttaa aaaaaatcta gattataaca 3450
aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500
aagagtagac attttatcta taaccaatga tatttcagta tatattttct 3550
ctctttaaa aaatatttat catactctgt atatttttc ttttactgc 3600
ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650
gagaaaacaa tatataaacac acagagaatt aagaaaatga catttctggg 3700
gagtggggat atatatttgt tgaataacag aacgagtgtt aaatttttaac 3750
aacggaaagg gttaaattaa ctcttgaca tcttcactca acctttctc 3800
attgctgagt taatctgtt taattgttgtt attgttttg taatttaaca 3850
ataaataaagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

Met	Asn	Ala	Asn	Lys	Asp	Glu	Arg	Leu	Lys	Ala	Arg	Ser	Gln	Asp
1				5				10					15	

Phe	His	Leu	Phe	Pro	Ala	Leu	Met	Met	Leu	Ser	Met	Thr	Met	Leu
							20		25				30	

Phe	Leu	Pro	Val	Thr	Gly	Thr	Leu	Lys	Gln	Asn	Ile	Pro	Arg	Leu
								35		40			45	

Lys	Leu	Thr	Tyr	Lys	Asp	Leu	Leu	Ser	Asn	Ser	Cys	Ile	Pro	
						50		55			60			

Phe	Leu	Gly	Ser	Ser	Glu	Gly	Leu	Asp	Phe	Gln	Thr	Leu	Leu	Leu
							65		70			75		

Asp Glu Glu Arg Gly Arg Leu Leu Leu Gly Ala Lys Asp His Ile

80	85	90
Phe Leu Leu Ser		
Leu Val Asp		
Leu Asn Lys		
Asn Phe Lys Lys		
Ile 95	100	105
Tyr Trp Pro Ala Ala	Lys Glu Arg	Val Glu Leu Cys
110	115	120
Gly Lys Asp Ala Asn Thr	Glu Cys Ala	Asn Phe Ile Arg
125	130	135
Gln Pro Tyr Asn Lys	Thr His Ile Tyr	Val Cys Gly Thr Gly
140	145	150
Phe His Pro Ile Cys	Gly Tyr Ile Asp	Leu Gly Val Tyr Lys
155	160	165
Asp Ile Ile Phe	Lys Leu Asp	Thr His Asn Leu Glu Ser
170	175	180
Leu Lys Cys Pro	Phe Asp Pro Gln	Gln Pro Phe Ala Ser Val
185	190	195
Thr Asp Glu Tyr	Leu Tyr Ser Gly	Thr Ala Ser Asp Phe Leu
200	205	210
Lys Asp Thr Ala	Phe Thr Arg Ser	Leu Gly Pro Thr His Asp
215	220	225
His Tyr Ile Arg	Thr Asp Ile Ser	Glu His Tyr Trp Leu Asn
230	235	240
Ala Lys Phe Ile	Gly Thr Phe	Phe Ile Pro Asp Thr Tyr Asn
245	250	255
Asp Asp Asp Lys	Ile Tyr Phe	Phe Arg Glu Ser Ser Gln
260	265	270
Gly Ser Thr Ser	Asp Lys Thr	Ile Leu Ser Arg Val Gly
275	280	285
Cys Lys Asn Asp	Val Gly	Gly Gln Arg Ser Leu Ile Asn
290	295	300
Thr Thr Phe Leu	Lys Ala Arg	Leu Ile Cys Ser Ile Pro
305	310	315
Asp Gly Ala Asp	Thr Tyr Phe	Asp Glu Leu Gln Asp Ile
320	325	330
Leu Pro Thr Arg	Asp Glu Arg	Asn Pro Val Val Tyr Gly
335	340	345
Thr Thr Thr Ser	Ser Ile Phe	Lys Gly Ser Ala Val Cys
350	355	360
Ser Met Ala Asp	Ile Arg Ala	Val Phe Asn Gly Pro Tyr
365	370	375

Lys Glu Ser Ala Asp His Arg Trp Val Gln Tyr Asp Gly Arg Ile
 380 385 390
 Pro Tyr Pro Arg Pro Gly Thr Cys Pro Ser Lys Thr Tyr Asp Pro
 395 400 405
 Leu Ile Lys Ser Thr Arg Asp Phe Pro Asp Asp Val Ile Ser Phe
 410 415 420
 Ile Lys Arg His Ser Val Met Tyr Lys Ser Val Tyr Pro Val Ala
 425 430 435
 Gly Gly Pro Thr Phe Lys Arg Ile Asn Val Asp Tyr Arg Leu Thr
 440 445 450
 Gln Ile Val Val Asp His Val Ile Ala Glu Asp Gly Gln Tyr Asp
 455 460 465
 Val Met Phe Leu Gly Thr Asp Ile Gly Thr Val Leu Lys Val Val
 470 475 480
 Ser Ile Ser Lys Glu Lys Trp Asn Met Glu Glu Val Val Leu Glu
 485 490 495
 Glu Leu Gln Ile Phe Lys His Ser Ser Ile Ile Leu Asn Met Glu
 500 505 510
 Leu Ser Leu Lys Gln Gln Leu Tyr Ile Gly Ser Arg Asp Gly
 515 520 525
 Leu Val Gln Leu Ser Leu His Arg Cys Asp Thr Tyr Gly Lys Ala
 530 535 540
 Cys Ala Asp Cys Cys Leu Ala Arg Asp Pro Tyr Cys Ala Trp Asp
 545 550 555
 Gly Asn Ala Cys Ser Arg Tyr Ala Pro Thr Ser Lys Arg Arg Ala
 560 565 570
 Arg Arg Gln Asp Val Lys Tyr Gly Asp Pro Ile Thr Gln Cys Trp
 575 580 585
 Asp Ile Glu Asp Ser Ile Ser His Glu Thr Ala Asp Glu Lys Val
 590 595 600
 Ile Phe Gly Ile Glu Phe Asn Ser Thr Phe Leu Glu Cys Ile Pro
 605 610 615
 Lys Ser Gln Gln Ala Thr Ile Lys Trp Tyr Ile Gln Arg Ser Gly
 620 625 630
 Asp Glu His Arg Glu Glu Leu Lys Pro Asp Glu Arg Ile Ile Lys
 635 640 645
 Thr Glu Tyr Gly Leu Leu Ile Arg Ser Leu Gln Lys Lys Asp Ser
 650 655 660
 Gly Met Tyr Tyr Cys Lys Ala Gln Glu His Thr Phe Ile His Thr

665 670 675
Ile Val Lys Leu Thr Leu Asn Val Ile Glu Asn Glu Gln Met Glu
680 685 690
Asn Thr Gln Arg Ala Glu His Glu Glu Gly Gln Val Lys Asp Leu
695 700 705
Leu Ala Glu Ser Arg Leu Arg Tyr Lys Asp Tyr Ile Gln Ile Leu
710 715 720
Ser Ser Pro Asn Phe Ser Leu Asp Gln Tyr Cys Glu Gln Met Trp
725 730 735
His Arg Glu Lys Arg Arg Gln Arg Asn Lys Gly Gly Pro Lys Trp
740 745 750
Lys His Met Gln Glu Met Lys Lys Arg Asn Arg Arg His His
755 760 765
Arg Asp Leu Asp Glu Leu Pro Arg Ala Val Ala Thr
770 775

<210> 311
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 311
caacgcagcc gtgataaaca agtgg 25

<210> 312
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 312
gcttggacat gtaccaggcc gtgg 24

<210> 313
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 313
ggccagactg atttgctcaa ttcctggaag tcatggggca gatac 45

<210> 314
<211> 3934
<212> DNA
<213> Homo sapiens

<400> 314
ccctgaccc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50
gagcatgccc accgcgggaa gcagacaacc tcccgaggtaa gctgggagca 100
agacctgaag ctgttttcc aggagcctgg tgtattttcc cccacccac 150
ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200
ggagcagaag gcgtggctgg caagagtggc ctggagaaaag aggttcagcg 250
cttggaccagc cgagctgccc gtgactacaa gatccagaac catgggcattc 300
gggtgaggtg gggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350
gaagagctga gagagggat cttggagcca ttgagggtgt catggagcta 400
cagagggag ggaaaggat ttaaggtaa cagtgtggca caatagttaa 450
gagcacagtt ttggagcta gaccgacata ggttcaaatt ctcttctgtt 500
gttccctagt tctgttagccc caggttaagg agtgacttaa cctctctgg 550
cttcaatttc ctcatcacta aagtagggcc aataatagca cccacccat 600
agggaaagatt aaatgacata atgtatgtga tgcaacttagc aaagtaccag 650
tccccatagta agtcatgccc cacagtattt ccacccaccc ctgttctctg 700
ccttcccaac caggtactgc aacgactggc gcagaggcgg cagcaggctt 750
cagagcggga ggctccaagc atagaacaga gtttacagga agtgcgagag 800
agcatccgcc gggcacaggt gagccaggta aaggggctg cccggctggc 850
cctgctgcag gggctggct tagatgtggc gctggctggc aagccagcc 900
tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950
cggttgtccc agagggaccc ctctccaacc gctgaggatg ctgagcttc 1000
tgacttttagt gaatgtgagg agacgggaga gcttttagt gaggctgccc 1050
cccaagccct gccacgagg gccctccctt gccctgcaca cgtggtattt 1100
cgctatcagg cagggcgtga ggatgagctg acaatcacgg aggtgagtg 1150
gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200
accagcacgg cgaggttaggc tttgtccctg agcgatatct caacttcccg 1250

gacctctccc tcccagagag cagccaagac agtgacaatc cctgcggggc 1300
agagcccaca gcattcctgg cacaggccct gtacagctac accggacaga 1350
gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgcc 1400
cgggcccaag atggagtaga tgacggcttc tggagggag aatttgggg 1450
ccgtgttggg gtctccctt ccctgctggt ggaagagctg cttggccccc 1500
cagggccacc tgaactctt gaccctgaac agatgctgcc gtcccccttct 1550
cctcccaagct tctccccacc tgcacctacc tctgttgtgg atggccccc 1600
tgcacctgtc ctgcctgggg acaaagccct ggacttccctt gggttcctgg 1650
acatgatggc acctcgactc aggccgatgc gtccaccacc tccccgccc 1700
gctaaagccc cgatccctgg ccacccagat cccctcacct gaaggccagg 1750
gaagccttga cccccagtga tgctgctgtc cctatcttca agctgtcaga 1800
ccacaccatc aatgatccag agcaacacag caaaaagctg gaatcccttct 1850
tatttccacc ctcaccccca agggtggaaa cttgcccctt cccatttcta 1900
gagctggaac ccactccctt tttcccttatt gttctatcat ctctaggacc 1950
ggaactacta ctttcttcc tgcacccatc ctttcccttatt gttctatcat 2000
cctgaaatct ctggggctgg aaaccatcca tcaaggcttc tagtagttct 2050
ggcccaccc tttcccccacc ctggctccat gaccacccccc actctggatg 2100
ccagggtcac tggggtttggg ctggggagag gaacaggccct tggaatcag 2150
gagctggagc caggatgcga agcagctgta atggcttgag cggattttatt 2200
gacaatgaat aaagggcacg aaggccagggc cagggcctgg gcctttgtg 2250
ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300
gcaggggcct gctcccaagct gccacgctct atcatatggc gcgaggtgtt 2350
ggggaaaggcg gggcaggcag cctgttgccag gcaggggaag gagaagagac 2400
tgaggggctg tgaccccttcc tgaggccccc agcctgagac tgtgcaactc 2450
caggtggaaag tagagctggtt ccctcagctg gggggcagtg ctgtccagtg 2500
gaggggaggg ctttccacgccc caccacccccc ctggccctgc cagctggtag 2550
tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600
gcttcctgtt caagctgtgtt ccagctttcc ccctggggct ccaggacctt 2650
ccctacccatcc accacccaaac caagggattt atagcaaagg ctaaggctgc 2700

agtttactct gggggttcag ggagccgaaa ggcttaataa gtttaagtag 2750
gtgatggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800
acatactccc tgctccctgt ggttagagaca cctgagagaa aggggagggg 2850
tcaacaatga gagaccagga gtaggtccta tcagtgc(cc) ccagagtaga 2900
gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcc tacctg 2950
gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000
gcagccctgg gcttggggcc ctcctccgg ccctcagtgt tggctctgca 3050
gaagctctgg ggttcccttc aagtgcacga ggggttaggc tgctgtccct 3100
gagtcctcca ttctgtactg gggggctggc taggacctgg ggctgtggcc 3150
tctcaggggg cagcctctcc atggcaggca tccctgcctt gggctgcctt 3200
cccccagacc cctgaccacc ccctgggtcc tgtcccccac cagagcccc 3250
gctcctgtct gtgggggagc catcacggtg ttctgtcgagt ccatagcgct 3300
tctcaatgtg tgtcacccgg aacctggag gggagggAAC actggggTTT 3350
aggaccacaa ctcagaggct gctggccct cccctctgac cagggacatc 3400
ctgagtttgg tggctacttc cctctggctt aaggtagggg aggccttctc 3450
agattgtggg gcacattgtg tagcctgact tctgctggag ctcccagtcc 3500
aggagggaaag agccaaggcc cactttggg atcaggtgcc tgatcactgg 3550
gccccctacc tcagcccccc ttccctgga gcacctgccc cacctgccc 3600
cagagaacac agtggctc cctgtccggg ggcggcttt tccttcctt 3650
gagcgtccct gacggacaag tggaggcctc ttgctgcggc tgcaatggat 3700
gcaagggct gcagagccca ggtgcactgt gtgatgatgg gagggggctc 3750
cgtcctgcag gctggaggtg gcatccacac tggacagcag gaggagggg 3800
gtgagggtaa catttccatt tcccttcattt ttttgttct tacgttcttt 3850
cagcatgctc cttaaaaccc cagaagcccc aatttccccca agccccattt 3900
tttcttgtct ttatctaata aactcaatat taag 3934

<210> 315

<211> 370

<212> PRT

<213> Homo sapiens

<400> 315

Met	Gln	Leu	Ala	Lys	Tyr	Gln	Ser	His	Ser	Lys	Ser	Cys	Pro	Thr
1														
														15

Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gln Val Leu
 20 25 30
 Gln Arg Leu Glu Gln Arg Arg Gln Gln Ala Ser Glu Arg Glu Ala
 35 40 45
 Pro Ser Ile Glu Gln Arg Leu Gln Glu Val Arg Glu Ser Ile Arg
 50 55 60
 Arg Ala Gln Val Ser Gln Val Lys Gly Ala Ala Arg Leu Ala Leu
 65 70 75
 Leu Gln Gly Ala Gly Leu Asp Val Glu Arg Trp Leu Lys Pro Ala
 80 85 90
 Met Thr Gln Ala Gln Asp Glu Val Glu Gln Glu Arg Arg Leu Ser
 95 100 105
 Glu Ala Arg Leu Ser Gln Arg Asp Leu Ser Pro Thr Ala Glu Asp
 110 115 120
 Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu
 125 130 135
 Phe Glu Glu Pro Ala Pro Gln Ala Leu Ala Thr Arg Ala Leu Pro
 140 145 150
 Cys Pro Ala His Val Val Phe Arg Tyr Gln Ala Gly Arg Glu Asp
 155 160 165
 Glu Leu Thr Ile Thr Glu Gly Glu Trp Leu Glu Val Ile Glu Glu
 170 175 180
 Gly Asp Ala Asp Glu Trp Val Lys Ala Arg Asn Gln His Gly Glu
 185 190 195
 Val Gly Phe Val Pro Glu Arg Tyr Leu Asn Phe Pro Asp Leu Ser
 200 205 210
 Leu Pro Glu Ser Ser Gln Asp Ser Asp Asn Pro Cys Gly Ala Glu
 215 220 225
 Pro Thr Ala Phe Leu Ala Gln Ala Leu Tyr Ser Tyr Thr Gly Gln
 230 235 240
 Ser Ala Glu Glu Leu Ser Phe Pro Glu Gly Ala Leu Ile Arg Leu
 245 250 255
 Leu Pro Arg Ala Gln Asp Gly Val Asp Asp Gly Phe Trp Arg Gly
 260 265 270
 Glu Phe Gly Gly Arg Val Gly Val Phe Pro Ser Leu Leu Val Glu
 275 280 285
 Glu Leu Leu Gly Pro Pro Gly Pro Pro Glu Leu Ser Asp Pro Glu
 290 295 300
 Gln Met Leu Pro Ser Pro Ser Pro Ser Phe Ser Pro Pro Ala

305 310 315
Pro Thr Ser Val Leu Asp Gly Pro Pro Ala Pro Val Leu Pro Gly
320 325 330
Asp Lys Ala Leu Asp Phe Pro Gly Phe Leu Asp Met Met Ala Pro
335 340 345
Arg Leu Arg Pro Met Arg Pro Pro Pro Pro Ala Lys Ala
350 355 360
Pro Asp Pro Gly His Pro Asp Pro Leu Thr
365 370

<210> 316

<211> 4407

<212> DNA

<213> Homo sapiens

<400> 316

cacagggaga cccacagaca catatgcacg agagagacag aggaggaaag 50
agacagagac aaaggcacag cggagaagg cagagacagg gcaggcacag 100
aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150
agacacaggc agggagagac aaagatccag gaaaggaggg ctcaggagga 200
gagtttggag aagccagacc cctggcacc tctcccaagc ccaaggacta 250
agtttctcc atttcctta acgtcctca gcccttctga aaactttgcc 300
tctgaccttg gcaggagtcc aagccccag gctacagaga ggagcttcc 350
aaagcttaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400
agctgcagta ccagtgcacat gtcccagaca ggctcgcatc ccgggagggg 450
cttggcaggg cgctggctgt gggagccca accctgcctc ctgctccca 500
tttgtggcgt ctccctggctg gtgtggctgc ttctgctact gctggcctct 550
ctccctggcgt cagcccgct ggccagcccc ctccccccggg aggaggagat 600
cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650
ctgccaggct gttgtgccgc ttgcaggcct ttggggagac gctgctacta 700
gagctggagc aggactccgg tgtgcaggc gaggggctga cagtgcagta 750
cctggggccag gcgcctgagc tgctgggtgg agcagagcct ggcacccatt 800
tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850
gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900
cctccagccc ctggaggag gcacccctaa ctctgctggg ggacctgggg 950

ctcacatcct acgccggaag agtcctgcc a cggtcaagg tcccatgtgc 1000
aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050
gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100
acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150
gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200
tgtcagcttgc tggtgactc ggctagtat cctgggtca ggctgaggagg 1250
ggccccaagt ggggcccagt gctgcccaga ccctgctcag cttctgtgcc 1300
tggcagcggg gcctcaacac ccctgaggac tcggccctg accacttga 1350
cacagccatt ctgttaccc gtcaggaccc gtgtggagtc tccacttgcg 1400
acacgctggg tatggctgat gtggcaccg tctgtgaccc ggctcggagc 1450
tgtgccatttgc tggaggatga tggctccag tcagccttca ctgctgctca 1500
tgaactgggt catgtcttca acatgctcca tgacaactcc aagccatgca 1550
tcagttgaa tggcccttg agcacctctc gccatgtcat ggccctgtg 1600
atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgtt 1650
catcaactgac ttccctggaca atggctatgg gcactgtctc ttagacaaac 1700
cagaggctcc attgcatctg cctgtgactt tccctggcaa ggactatgat 1750
gctgaccgccc agtgcagct gacccctggg cccgactcac gccattgtcc 1800
acagctgccc ccgcccgttg ctggccctctg gtgctctggc cacctcaatg 1850
gccatgccat gtgccagacc aaacactcgc cctggccga tggcacaccc 1900
tgcggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950
gctccaggac ttcaatattc cacaggctgg tggctgggt ccttggggac 2000
catggggtga ctgtctcgg acctgtgggg gtgggtgtcca gttctccctcc 2050
cgagactgca cgaggcctgt ccccccgaat ggtggcaagt actgtgaggg 2100
ccgcccgtacc cgcttcgct cctgcaacac tgaggactgc ccaactggct 2150
cagccctgac ctcccgag gagcagtgtg ctgcctacaa ccacccgacc 2200
gacctttca agagcttccc agggccatg gactgggttc ctcgctacac 2250
aggcgtggcc ccccaggacc agtcaaact cacctgcccag gcccgggcac 2300
tgggctacta ctatgtgctg gagccacggg tggtagatgg gacccctgt 2350
tccccggaca gtcctcggt ctgtgtccag ggccgatgca tccatgctgg 2400

ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcataa 2450
gcggaggggaa cggttcttgt tgcatcaagc agtcaggctc ctccaggaaa 2500
ttcaggtacg gatacaacaa tgtggtaact atcccccgaa gggccaccca 2550
cattttgtc cggcagcagg gaaaccctgg ccaccggagc atctacttgg 2600
ccctgaagct gccagatggc tcctatgccc tcaatggta atacacgctg 2650
atgcctccc ccacagatgt ggtactgcct ggggcagtca gcttgcgcta 2700
cagcggggcc actgcaggct cagagacact gtcaggccat gggccactgg 2750
cccagcctt gacactgcaa gtcctagtgg ctggcaaccc ccaggacaca 2800
cgcctccat acagcttctt cgtgccccgg ccgaccctt caacgccacg 2850
ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900
ttcggcggcg cccctggcg ggcaggaaat aacctacta tccggctgc 2950
cctttctgg caccggggcc tcggacttag ctgggagaaa gagagagtt 3000
ctgttgctgc ctcatgctaa gactcagtgg ggagggctg tggcgtgag 3050
acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100
cctgcccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150
agccctccat ctaaactgcc ccctctgccc tgcgggtcac aggagggagg 3200
gggaaggcag ggagggcctg ggcccccattt gtattttattt agtattttt 3250
cacttttattt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300
cctgaccctt gaccctcat accctcacc ctggggcttag gaaatccagg 3350
gtgggggtga taggtataag tgggtgtgt atgcgtgtgt gtgtgtgt 3400
gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgcttcctc 3450
ttcctgaatt ttattttttgg gaaaaagaaa agtcaagggt agggtggggcc 3500
ttcagggagt gagggattat cttttttttt ttttcttctt ttctttctt 3550
tttttttttgg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600
gcacaatctc ggctcactgc atccctccgcc tcccggttc aagtgattct 3650
catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700
ccagctaatt tttgttttgt tttgtttggaa gacagagtct cgctattgtc 3750
accagggctg gaatgatttc agctcactgc aaccttcgcc acctgggttc 3800
cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850

accaccacgc ccggctaatt tttgtatTTT tagtagagac ggggtttcac 3900
catgttggcc aggctggctc cgaactcctg accttaggtg atccactcgc 3950
cttcatctcc caaagtgcTG ggattacagg cgtgagccac cgtgcctggc 4000
cacGCCcaac taatTTTGT atTTTtagta gagacagggt ttacCCatgt 4050
tggccaggct gctttGAAC tcctgacCTC aggtaatcga CCTGCCTCGG 4100
cctccaaAG tgctgggatt acaggTGTGA GCCACCACGC CCGGTACATA 4150
tttttaat tgaattctac tatttatgtg atcCTTTGG agtcagacag 4200
atgtggTTgc atcctaactc catgtctctg agcattagat ttctcatttg 4250
ccaataataa tacctccCTT agaagTTGT tgtgaggatt aaataatgtA 4300
aataaagaac tagcataaca ctcaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4350
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4400
aaggaaa 4407

<210> 317

<211> 837

<212> PRT

<213> Homo sapiens

<400> 317

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg
1 5 10 15

Trp Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro
20 25 30

Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu
35 40 45

Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu
50 55 60

Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser
65 70 75

Gly Ala Pro Ala Arg Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu
80 85 90

Thr Leu Leu Leu Glu Leu Glu Gln Asp Ser Gly Val Gln Val Glu
95 100 105

Gly Leu Thr Val Gln Tyr Leu Gly Gln Ala Pro Glu Leu Leu Gly
110 115 120

Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp
125 130 135

Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu

140	145	150
Gly Val Leu Gln Tyr Arg Gly Ala Glu	Leu His Leu Gln Pro	Leu
155	160	165
Glu Gly Gly Thr Pro Asn Ser Ala Gly	Gly Pro Gly Ala His	Ile
170	175	180
Leu Arg Arg Lys Ser Pro Ala Ser Gly	Gln Gly Pro Met Cys	Asn
185	190	195
Val Lys Ala Pro Leu Gly Ser Pro Ser	Pro Arg Pro Arg Arg	Ala
200	205	210
Lys Arg Phe Ala Ser Leu Ser Arg Phe	Val Glu Thr Leu Val	Val
215	220	225
Ala Asp Asp Lys Met Ala Ala Phe His	Gly Ala Gly Leu Lys	Arg
230	235	240
Tyr Leu Leu Thr Val Met Ala Ala Ala	Lys Ala Phe Lys	His
245	250	255
Pro Ser Ile Arg Asn Pro Val Ser Leu	Val Val Thr Arg Leu	Val
260	265	270
Ile Leu Gly Ser Gly Glu Glu Gly Pro	Gln Val Gly Pro Ser	Ala
275	280	285
Ala Gln Thr Leu Arg Ser Phe Cys Ala	Trp Gln Arg Gly Leu	Asn
290	295	300
Thr Pro Glu Asp Ser Gly Pro Asp His	Phe Asp Thr Ala Ile	Leu
305	310	315
Phe Thr Arg Gln Asp Leu Cys Gly Val	Ser Thr Cys Asp Thr	Leu
320	325	330
Gly Met Ala Asp Val Gly Thr Val Cys	Asp Pro Ala Arg Ser	Cys
335	340	345
Ala Ile Val Glu Asp Asp Gly Leu Gln	Ser Ala Phe Thr Ala	Ala
350	355	360
His Glu Leu Gly His Val Phe Asn Met	Leu His Asp Asn Ser	Lys
365	370	375
Pro Cys Ile Ser Leu Asn Gly Pro Leu	Ser Thr Ser Arg His	Val
380	385	390
Met Ala Pro Val Met Ala His Val Asp	Pro Glu Glu Pro Trp	Ser
395	400	405
Pro Cys Ser Ala Arg Phe Ile Thr Asp	Phe Leu Asp Asn Gly	Tyr
410	415	420
Gly His Cys Leu Leu Asp Lys Pro Glu	Ala Pro Leu His Leu	Pro
425	430	435

Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln
 440 445 450
 Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro
 455 460 465
 Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
 470 475 480
 Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys
 485 490 495
 Gly Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp
 500 505 510
 Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro
 515 520 525
 Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val
 530 535 540
 Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly
 545 550 555
 Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn
 560 565 570
 Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu
 575 580 585
 Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe
 590 595 600
 Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro
 605 610 615
 Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr
 620 625 630
 Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser
 635 640 645
 Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
 650 655 660
 Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys
 665 670 675
 Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly
 680 685 690
 Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile
 695 700 705
 Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro
 710 715 720
 Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser

725 730 735

Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp
740 745 750

Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr
755 760 765

Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro
770 775 780

Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg
785 790 795

Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro
800 805 810

Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Leu
815 820 825

Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys
830 835

<210> 318
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 318
ccctgaagct gccagatggc tcc 23

<210> 319
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 319
ctgtgctttt cggtgcagcc agtc 24

<210> 320
<211> 43
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-43
<223> Synthetic construct.

<400> 320
ccacagatgt ggtactgcct gggcagtca gcttgcgcta cag 43

<210> 321
<211> 1197
<212> DNA
<213> Homo sapiens

<400> 321
cagcagtgg tcttcagttcc tctcaaagca aggaaagagt actgtgtgct 50
gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100
ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150
ttgtggactg gtgttggtt tcctggccct aactctaatt gtccctgttt 200
gggggagcaa gcacttctgg ccggaggatc ccaaaaaaagc ctatgacatg 250
gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300
tgatcctgtg accagaactg aaatattcag aagcggaaat ggactgtatg 350
aacatttggaa agtgcacgac tttaaaaacg gatacactgg catctacttc 400
gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450
attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500
ctttcttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550
aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600
gaccatgtat tggatcaatc ccactctaatt atcagttct gagttacaag 650
actttgagga ggagggagaa gatcttcaact ttccctgccaa cgaaaaaaaa 700
gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750
gaccgcgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800
atactgaaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850
tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900
acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950
tcatctgtcg tgtcatcatg cttgttaact ggtgggtggc ccgcattgtg 1000
gggagggct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050
atataataaa tgcattgtat tcaatgaatt tctgcctatg aggcattctgg 1100
ccccctggtag ccagctctcc agaattactt gtaggttaatt cctctttca 1150
tgttctataa aacttctaca ttatcaccaa aaaaaaaaaa aaaaaaaaa 1197

<210> 322

<211> 317
<212> PRT
<213> Homo sapiens

<400> 322

Met	Ala	Lys	Asn	Pro	Pro	Glu	Asn	Cys	Glu	Asp	Cys	His	Ile	Leu	
1				5				10							15
Asn	Ala	Glu	Ala	Phe	Lys	Ser	Lys	Lys	Ile	Cys	Lys	Ser	Leu	Lys	
		20					25								30
Ile	Cys	Gly	Leu	Val	Phe	Gly	Ile	Leu	Ala	Leu	Thr	Leu	Ile	Val	
		35					40								45
Leu	Phe	Trp	Gly	Ser	Lys	His	Phe	Trp	Pro	Glu	Val	Pro	Lys	Lys	
		50					55								60
Ala	Tyr	Asp	Met	Glu	His	Thr	Phe	Tyr	Ser	Asn	Gly	Glu	Lys	Lys	
		65					70								75
Lys	Ile	Tyr	Met	Glu	Ile	Asp	Pro	Val	Thr	Arg	Thr	Glu	Ile	Phe	
		80					85								90
Arg	Ser	Gly	Asn	Gly	Thr	Asp	Glu	Thr	Leu	Glu	Val	His	Asp	Phe	
		95					100								105
Lys	Asn	Gly	Tyr	Thr	Gly	Ile	Tyr	Phe	Val	Gly	Leu	Gln	Lys	Cys	
		110					115								120
Phe	Ile	Lys	Thr	Gln	Ile	Lys	Val	Ile	Pro	Glu	Phe	Ser	Glu	Pro	
		125					130								135
Glu	Glu	Glu	Ile	Asp	Glu	Asn	Glu	Glu	Ile	Thr	Thr	Thr	Phe	Phe	
		140					145								150
Glu	Gln	Ser	Val	Ile	Trp	Val	Pro	Ala	Glu	Lys	Pro	Ile	Glu	Asn	
		155					160								165
Arg	Asp	Phe	Leu	Lys	Asn	Ser	Lys	Ile	Leu	Glu	Ile	Cys	Asp	Asn	
		170					175								180
Val	Thr	Met	Tyr	Trp	Ile	Asn	Pro	Thr	Leu	Ile	Ser	Val	Ser	Glu	
		185					190								195
Leu	Gln	Asp	Phe	Glu	Glu	Glu	Gly	Glu	Asp	Leu	His	Phe	Pro	Ala	
		200					205								210
Asn	Glu	Lys	Lys	Gly	Ile	Glu	Gln	Asn	Glu	Gln	Trp	Val	Val	Pro	
		215					220								225
Gln	Val	Lys	Val	Glu	Lys	Thr	Arg	His	Ala	Arg	Gln	Ala	Ser	Glu	
		230					235								240
Glu	Glu	Leu	Pro	Ile	Asn	Asp	Tyr	Thr	Glu	Asn	Gly	Ile	Glu	Phe	
		245					250								255
Asp	Pro	Met	Leu	Asp	Glu	Arg	Gly	Tyr	Cys	Cys	Ile	Tyr	Cys	Arg	
		260					265								270

Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly
275 280 285

Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys
290 295 300

Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly
305 310 315

Arg Val

<210> 323

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 323

gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50
cagggagctg cccggctggc ctaggcaggc agccgcacca tggccagcac 100
ggccgtgcag cttctggct tcctgctcag cttcctggc atggtggca 150
cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtggc 200
accaacatcc tcacggccgt gtcctacctg aaaggctct ggatggagt 250
tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300
tggcgctgcc ccaagacctc caggctgccc gcccctcat ggtcatctcc 350
tgcctgctct cgggcatacg ctgcgcctgc gccgtcatcg ggatgaagt 400
cacgcgtgc gccaaggcga cacccgccaa gaccacctt gccatcctcg 450
gcggcaccct cttcatcctg gccggctcc tgtcatggt ggccgtctcc 500
tggaccacca acgacgtggt gcagaacttc tacaaccgc tgctgcccag 550
cggcatgaag tttgagattt gccaggccct gtacctggc ttcatctcct 600
cgtccctctc gtcattggt ggcaccctgc tttgcctgtc ctgccaggac 650
gaggcaccct acaggcccta ccaggccccg cccagggcca ccacgaccac 700
tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750
gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800
tacgtgtgag tccccacagc ctgcttctcc cctggctgc tgtggctgg 850
gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagttac 900
ttctggcaa ttttgtatc caaggaaata atgtgaatgc gagaaaatgt 950
cttttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000

ataccaaaga ctgaaaaaaaaaa aaatcctgtc tgttttgtat tttatttat 1050
atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100
gtttggtcag tggggtttgtt ttgtgatcca ggaataaacc ttgcggatgt 1150
ggctgtttat gaaaaaaaaaaa aaaa 1174

<210> 324
<211> 239
<212> PRT
<213> Homo sapiens

<400> 324
Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe
1 5 10 15
Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp
20 25 30
Arg Arg Thr Ala His Val Gly Thr Asn Ile Leu Thr Ala Val Ser
35 40 45
Tyr Leu Lys Gly Leu Trp Met Glu Cys Val Trp His Ser Thr Gly
50 55 60
Ile Tyr Gln Cys Gln Ile Tyr Arg Ser Leu Leu Ala Leu Pro Gln
65 70 75
Asp Leu Gln Ala Ala Arg Ala Leu Met Val Ile Ser Cys Leu Leu
80 85 90
Ser Gly Ile Ala Cys Ala Cys Ala Val Ile Gly Met Lys Cys Thr
95 100 105
Arg Cys Ala Lys Gly Thr Pro Ala Lys Thr Thr Phe Ala Ile Leu
110 115 120
Gly Gly Thr Leu Phe Ile Leu Ala Gly Leu Leu Cys Met Val Ala
125 130 135
Val Ser Trp Thr Thr Asn Asp Val Val Gln Asn Phe Tyr Asn Pro
140 145 150
Leu Leu Pro Ser Gly Met Lys Phe Glu Ile Gly Gln Ala Leu Tyr
155 160 165
Leu Gly Phe Ile Ser Ser Ser Leu Ser Leu Ile Gly Gly Thr Leu
170 175 180
Leu Cys Leu Ser Cys Gln Asp Glu Ala Pro Tyr Arg Pro Tyr Gln
185 190 195
Ala Pro Pro Arg Ala Thr Thr Thr Ala Asn Thr Ala Pro Ala
200 205 210
Tyr Gln Pro Pro Ala Ala Tyr Lys Asp Asn Arg Ala Pro Ser Val
215 220 225

Thr Ser Ala Thr His Ser Gly Tyr Arg Leu Asn Asp Tyr Val
230 235

<210> 325

<211> 2121

<212> DNA

<213> Homo sapiens

<400> 325

gagctccct caggagcgcg ttagctcac acttcggca gcaggaggc 50

ggcagcttct cgccaggcggc agggcgggcg gccaggatca tgtccaccac 100

cacatgcca gtggtggcgt tcctcctgtc catcctggg ctggccggct 150

gcatcgcggc caccggatg gacatgtgga gcacccagga cctgtacgac 200

aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250

gaggcagagt tcaggcttca ccgaatgcag gcccatttc accatcctgg 300

gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350

gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400

ccgcattggc agcatggagg actctgcca agccaacatg acaactgacct 450

ccgggatcat gttcattgtc tcaggtctt gtgcaattgc tggagtgtct 500

gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550

gtacaccggc atgggtggga tgggcagac tgttcagacc agtacacat 600

ttggtgccgc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650

gggggtgtga tggatgtgcac cgcctgccc ggcctggcac cagaagaaac 700

caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750

agcctggagg cttcaaggcc agcactggct ttgggtccaa cacaaaaaac 800

aagaagatat acgatggagg tgcccgaca gaggacgagg tacaatctt 850

tccttccaag cacgactatg tgtaatgctc taagacctct cagcacggc 900

ggaagaaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950

attttttctt gcttttgact cacagctgga agtttagaaaa gcctcgattt 1000

catctttggaa gaggccaaat ggtcttagcc tcagtcgtc tctctaaata 1050

ttccaccata aaacagctga gtttattatg aatttagaggc tatagctcac 1100

attttcaatc ctctatttct ttttttaaat ataactttct actctgtatg 1150

gagaatgtgg tttaatctc tctctcacat tttgtatgatt tagacagact 1200

ccccctttc ctcctagtcataaaacccat tgatgatcta ttcccagct 1250

TRIPOD

tatccccaaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300
ttctgctgtt tgaattttgt ctccccaccc ccaactggc tagtaataaa 1350
caacctactga agaagaagca ataagagaaa gatatttgta atctctccag 1400
cccatgatct cggttttctt acactgtgat cttaaaagtt accaaaccaa 1450
agtcattttc agtttgagggc aaccaaacct ttctactgct gttgacatct 1500
tcttattaca gcaacaccat tctaggagtt tcctgagctc tccactggag 1550
tcctcttct gtcgcggggtc agaaattgtc cctagatgaa tgagaaaatt 1600
atttttttta atttaagtcc taaatatagt taaaataaaat aatgttttag 1650
taaaatgata cactatctct gtgaaatagc ctcacccta catgtggata 1700
gaaggaaatg aaaaaataat tgcttgaca ttgtctatat ggtactttgt 1750
aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800
agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850
gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900
aaaaaatcag ccagtcatgg tggcatacac ctgtagtcgg agcattccgg 1950
gaggctgagg tgggaggatc acttgagccc agggaggttggggctgcagt 2000
gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050
gtctaaaaaaaaataaaaaata aataatggaa cacagcaagt cctaggaagt 2100
aggttaaaac taattcttta a 2121

<210> 326
<211> 261
<212> PRT
<213> Homo sapiens

<400> 326

Met	Ser	Thr	Thr	Thr	Cys	Gln	Val	Val	Ala	Phe	Leu	Leu	Ser	Ile
1														15
Leu	Gly	Leu	Ala	Gly	Cys	Ile	Ala	Ala	Thr	Gly	Met	Asp	Met	Trp
						20			25					30
Ser	Thr	Gln	Asp	Leu	Tyr	Asp	Asn	Pro	Val	Thr	Ser	Val	Phe	Gln
									35					45
Tyr	Glu	Gly	Leu	Trp	Arg	Ser	Cys	Val	Arg	Gln	Ser	Ser	Gly	Phe
									50					60
Thr	Glu	Cys	Arg	Pro	Tyr	Phe	Thr	Ile	Leu	Gly	Leu	Pro	Ala	Met
								65						75
Leu	Gln	Ala	Val	Arg	Ala	Leu	Met	Ile	Val	Gly	Ile	Val	Leu	Gly

80	85	90
Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg		
95	100	105
Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr		
110	115	120
Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly		
125	130	135
Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser		
140	145	150
Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val		
155	160	165
Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val		
170	175	180
Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala		
185	190	195
Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser		
200	205	210
Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe		
215	220	225
Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile		
230	235	240
Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro		
245	250	255
Ser Lys His Asp Tyr Val		
260		

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

<400> 327

```

ggaaaaactg ttctcttctg tggcacagag aaccctgctt caaaggcagaa 50
gtacgcgttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100
caacccatgc ctttagaaatc gctggctgt ttcttggtgg tgttggaatg 150
gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 200
cattgaaaac aacatcgtagg ttttgaaaa cttctggaa ggactgtgaa 250
tgaattgcgt gaggcaggct aacatcgagg tgcaagtgc aaatctatgtat 300
tccctgctgg ctctttctcc ggacctacag gcagccagag gactgtatgtg 350

```

tgctgcttcc gtgatgtcct tctggcttt catgatgcc atcctggca 400
tgaaatgcac caggtgcacg gggacaatg agaaggtaa ggctcacatt 450
ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500
ccctgtgagc tgggttgcct atgcccattt cagagatttc tataactcaa 550
tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600
tggaccacgg cactggtgct gattgttggaa ggagctctgt tctgctgcgt 650
tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700
atcgacaaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750
tactccagaa gtcagttatgt gtagttgtgt atgtttttt aactttacta 800
taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850
caaagaaaact ttgatttact gttcttaact gcctaattttt aattacagga 900
actgtgcac agctattttt gattctataa gctatttcag cagaatgaga 950
tattaaaccc aatgctttaa ttgttctaga aagtatactt atttggtttc 1000
taaggtggtt caagcatcta ctcttttat catttacttc aaaatgacat 1050
tgctaaagac tgcattttt tactactgta atttctccac gacatagcat 1100
tatgtacata gatgagtgta acattttat ctcacataga gacatgctta 1150
tatggttta tttaaaatga aatgccagtc cattacactg aataaataga 1200
actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggta 1250
ctattaattt tttaaaaaca gcttagggat taatgtcctc catttataat 1300
gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350
tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400
atcctcttct cccagaggct tttttttct tgtgtattaa attaacattt 1450
ttaaaacgcac gatattttgtt caaggggctt tgcatcaaaa ctgctttcc 1500
agggtataac tcagaagaaa gataaaagtg tgatctaaga aaaagtgtatg 1550
gttttaggaa agtggaaata tttttgtttt tgtatttgaa gaagaatgtat 1600
gagtacagac tttgagggtttt catcaatata aataaaagag cagaaaaata 1700
tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagggtt 1750
ccttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800

atttttgttc tgtaaaaat aaatttcctt cttgtaccat ttctgtttag 1850
ttttactaaa atctgtaaat actgtatTTT tctgtttatt ccaaatttga 1900
tgaaactgac aatccaattt gaaagttgt gtcgacgtct gtctagctta 1950
aatgaatgtg ttctatTTGc tttatacatt tatattaata aattgtacat 2000
ttttctaatt 2010

<210> 328
<211> 225
<212> PRT
<213> Homo sapiens

<400> 328
Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly
1 5 10 15
Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp
20 25 30
Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn
35 40 45
Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile
50 55 60
Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro
65 70 75
Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met
80 85 90
Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr
95 100 105
Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu
110 115 120
Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile
125 130 135
Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn
140 145 150
Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu
155 160 165
Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala
170 175 180
Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr
185 190 195
Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His
200 205 210

Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gln Tyr Val
215 220 225

<210> 329

<211> 1315

<212> DNA

<213> Homo sapiens

<400> 329

tcgccatggc ctctgccgga atgcagatcc tgggagtcgt cctgacactg 50

ctgggctggg tgaatggcct ggtctcctgt gccctgccc 100

gaccgcgttca atcggcaaca gcacgtggt gcccagggtg gtgtgggagg 150

gcctgtggat gtcctgcgtg gtgcagagca cgggccagat gcagtgc 200

gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250

cctctgtgtc atcgccctcc ttgtggccct gttcggcttg ctggtctacc 300

ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350

cgcctggtgc tcacacctgg gattgtcttt gtcatctcag gggcctgac 400

gctaatacccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450

accccccgtt ggctgaggcc caaaagcggg agctggggc ctccctctac 500

ttgggctggg cggcctcagg cctttgttg ctgggtgggg ggttgctgtg 550

ctgcacttgc ccctcgaaaa ggtcccaaggccc cccagccat tacatggccc 600

gctactcaac atctgcccct gccatctctc gggggccctc tgagtaccct 650

accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700

gagccatcca gaagtggcag tgcccaacag ctttggatg ggttcgtacc 750

ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaat 800

tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850

gctgtttctc acccttggat gatggagcca aagagggat gctttgagat 900

tctggatctt gacatgcccc tcttagaagc cagtcaagct atgaaactaa 950

tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccc 1000

agagttcctg ctgctgctgg gggctggct tccctagatg tcactggaca 1050

gctgcccccc atcctactca ggtctctgga gtcctctct tcacccctgg 1100

aaaaacaaat catctgttaa caaaggactg cccacccctcg gaacttctga 1150

cctctgtttc ctccgtcctg ataagacgtc caccccccag ggccagggtcc 1200

cagctatgtta gaccccccggcc cccacccctca acactgcacc cttctgccc 1250

gccccccctcg tctcacccccc tttacactca catttttatac aaataaaagca 1300
tgttttgtta gtgca 1315

<210> 330
<211> 220
<212> PRT
<213> Homo sapiens

<400> 330
Met Ala Ser Ala Gly Met Gln Ile Leu Gly Val Val Leu Thr Leu
1 5 10 15
Leu Gly Trp Val Asn Gly Leu Val Ser Cys Ala Leu Pro Met Trp
20 25 30
Lys Val Thr Ala Phe Ile Gly Asn Ser Ile Val Val Ala Gln Val
35 40 45
Val Trp Glu Gly Leu Trp Met Ser Cys Val Val Gln Ser Thr Gly
50 55 60
Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln
65 70 75
Asp Leu Gln Ala Ala Arg Ala Leu Cys Val Ile Ala Leu Leu Val
80 85 90
Ala Leu Phe Gly Leu Leu Val Tyr Leu Ala Gly Ala Lys Cys Thr
95 100 105
Thr Cys Val Glu Glu Lys Asp Ser Lys Ala Arg Leu Val Leu Thr
110 115 120
Ser Gly Ile Val Phe Val Ile Ser Gly Val Leu Thr Leu Ile Pro
125 130 135
Val Cys Trp Thr Ala His Ala Ile Arg Asp Phe Tyr Asn Pro
140 145 150
Leu Val Ala Glu Ala Gln Lys Arg Glu Leu Gly Ala Ser Leu Tyr
155 160 165
Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Gly Gly Gly Leu
170 175 180
Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gln Gly Pro Ser His
185 190 195
Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg Gly
200 205 210
Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val
215 220

<210> 331
<211> 1160
<212> DNA

<213> Homo sapiens

<400> 331

gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg 50
ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100
gtaaaggcaa tggcattta tcccttgcaa attgctggc tggttcttgg 150
gttccttggc atgggtggga ctcttgccac aacccttctg cctcagtgg 200
ggagtatcag ctttgttgg cagcaacatt attgtcttg agaggctctg 250
ggaagggctc tggatgaatt gcatccgaca agccagggc cggttgcaat 300
gcaagttcta tagtccttg ttggctctcc cgccctgcctt ggaaacagcc 350
cgccccctca tgtgtgtggc tggctcttc tccttgatcg ccctgcttat 400
tggcatctgt ggcataaaggc aggtccagtg cacaggctct aacgagaggg 450
ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500
atcttcgttc tgattccgggt gagctggaca gccaatataa tcatacagaga 550
tttctacaac ccagccatcc acataggtca gaaacgagag ctggagcag 600
cactttcct tggctggca agcgctgctg tcctcttcat tggaggggt 650
ctgctttgtg gatttgttg ctgcaacaga aagaagcaag ggtacagata 700
tccagtgccct ggctaccgtg tgccacacac agataagcga agaaatacga 750
caatgcttag taagacctcc accagttatg tctaatgcct cctttggct 800
ccaagtatgg actatggtca atgtttttta taaagtccctg ctagaaactg 850
taagtatgtg aggcaaggaga acttgctta tgtcttagatt tacattgata 900
cgaaagtttc aatttgttac tggggtagg aatgaaaatg acttacttgg 950
acattctgac ttcagggtgttta taaaatgcat tgactattgt tggacccat 1000
cgctgctcca atttcatat tctaaattca agtataccca taatcattag 1050
caagtgtaca atgatggact acttattact tttgaccat catgtattat 1100
ctgataagaa tctaaaggatg aaattgatat tctataacaa taaaacatat 1150
acctattctta 1160

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe

1	5	10	15
Tyr Ser Ser Leu Leu Ala		Pro Pro Ala Leu Glu Thr Ala Arg	
20		25	30
Ala Leu Met Cys Val Ala Val Ala		Leu Ser Leu Ile Ala Leu Leu	
35		40	45
Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn			
50		55	60
Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe			
65		70	75
Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala			
80		85	90
Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly			
95		100	105
Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser			
110		115	120
Ala Ala Val Leu Phe Ile Gly Gly Leu Leu Cys Gly Phe Cys			
125		130	135
Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly			
140		145	150
Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu			
155		160	165
Ser Lys Thr Ser Thr Ser Tyr Val			
170			

<210> 333
 <211> 535
 <212> DNA
 <213> Homo sapiens

<400> 333
 agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50
 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgttagcag 100
 ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150
 agaagtatcc agtggtgccc atccccgtcc ccatcacata cctaccagg 200
 tgtggttctg actacatcac ctatggaaat gaatgtcact tgtgtaccga 250
 gagcttggaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 300
 aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350
 tcatcatccc aggctctgac tgagttctt tcagtttac tgatgttctg 400
 ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450

ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcatttt 500
 ttttaacac gtcaataaaa aaataatctc ccaga 535

<210> 334
<211> 85
<212> PRT
<213> Homo sapiens

<400> 334

Met	Lys	Ile	Thr	Gly	Gly	Leu	Leu	Leu	Cys	Thr	Val	Val	Tyr
1				5				10					15

Phe	Cys	Ser	Ser	Ser	Glu	Ala	Ala	Ser	Leu	Ser	Pro	Lys	Lys	Val
				20				25					30	

Asp	Cys	Ser	Ile	Tyr	Lys	Lys	Tyr	Pro	Val	Val	Ala	Ile	Pro	Cys
				35				40					45	

Pro	Ile	Thr	Tyr	Leu	Pro	Val	Cys	Gly	Ser	Asp	Tyr	Ile	Thr	Tyr
				50				55					60	

Gly	Asn	Glu	Cys	His	Leu	Cys	Thr	Glu	Ser	Leu	Lys	Ser	Asn	Gly
				65				70					75	

Arg	Val	Gln	Phe	Leu	His	Asp	Gly	Ser	Cys					
				80				85						

<210> 335
<211> 742
<212> DNA
<213> Homo sapiens

<400> 335

cccgccccg gtttccctc gcagcacctc gaagtgcgcc cctcgccctc 50
 ctgctcgccgc cccgcccggca tggctgcctc ccccgccggc cctgctgtcc 100
 tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccgagg 150
 ggcataagtg gaaataaact caagctgtatg cttcaaaaac gagaagcacc 200
 tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250
 tccttggcag cctgaagcgc cagaagcggc agctgtggga ccggactcgg 300
 cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350
 agcgaaattt gaagatgaca tcacctattt gcttaacaga gatcgaaatg 400
 gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450
 gcaattggtc ccoggagccc ctacggcttt aggcatggag ccagcgtcaa 500
 ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550
 agcgattctc ttcatgtatc tcctaattgcc ttacactact tggttctga 600

tttgctctat ttcagcagat ctttctacc tactttgtgt gatcaaaaaaa 650
gaagagttaa aacaacacat gtaaatgcct tttgatattt catggaaatg 700
cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742

<210> 336
<211> 148
<212> PRT
<213> Homo sapiens

<400> 336
Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
1 5 10 15
Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser
20 25 30
Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val
35 40 45
Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu
50 55 60
Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg
65 70 75
Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met
80 85 90
Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu
95 100 105
Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln
110 115 120
Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr
125 130 135
Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr
140 145

<210> 337
<211> 1310
<212> DNA
<213> Homo sapiens

<400> 337
cggtcgagc ccgccccgaa gtgcccggagg ggccgcgatg gagctggggg 50
agccgggcgc tcggtagcgc ggcggcaag gcaggcgcca tgaccctgat 100
tgaagggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150
ttctgggtct ggcccttgcc tgggtctcaa cgcacaccgc tgagggcggg 200
gaccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250

agccatggca gctaccgaca gcatgagagg ggaggccccca gggcagaga 300
cccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350
gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcg 400
gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450
cccacgacac cattggctcc ttgaaaagga cccagttcc cgccgggaa 500
cagcaggtgc gactcatcta ccaagggcag ctgcttagcg acgacaccca 550
gaccctgggc agccttcacc tccctccaa ctgcgttctc cactgccacg 600
tgtccacgag agtcggtccc ccaaataccc cctgcccggcc ggggtccgag 650
cccgccccct ccgggctgga aatcggcagc ctgctgctgc ccctgctgct 700
cctgctgttg ctgctgctct ggtactgcca gatccagtagc cggcccttct 750
ttccctgac cgccactctg ggcctggccg gttcacccct gtcctcagt 800
ctcctggcat ttgccatgta ccgccccgtag tgcctccggc ggcgcttggc 850
agcgtcgccg gcccctccgg accttgctcc ccgcgcggcgc gcgggagctg 900
ctgcctgccc aggccccct ctcggcctg cctttcccg ctgcctgga 950
gcccagccct ggcggcaga ggactccgg gactggcggaa ggccccggccc 1000
tgcgaccgccc ggggctcggg gccacccccc ggggctgctg aacctcagcc 1050
cgcaactggga gtgggctctt cggggctcggg catctgctgt cgctgcctcg 1100
gccccgggca gagccgggccc gccccggggg cccgtcttag tggtctggcc 1150
gaggacccag ccgcctccaa tccctgacag ctccctggc tgagttgggg 1200
acgccaggc ggtgggaggc tggtaaggg gagcggggag gggcagagga 1250
gttccccgga acccgtgcag attaaagtaa ctgtgaagtt taaaaaaaaa 1300
aaaaaaaaaa 1310

<210> 338

<211> 246

<212> PRT

<213> Homo sapiens

<400> 338

Met	Thr	Leu	Ile	Glu	Gly	Val	Gly	Asp	Glu	Val	Thr	Val	Leu	Phe
1				5					10				15	
Ser	Val	Leu	Ala	Cys	Leu	Leu	Val	Leu	Ala	Leu	Ala	Trp	Val	Ser
				20					25				30	
Thr	His	Thr	Ala	Glu	Gly	Gly	Asp	Pro	Leu	Pro	Gln	Pro	Ser	Gly
				35				40				45		

HUMAN

Thr	Pro	Thr	Pro	Ser	Gln	Pro	Ser	Ala	Ala	Met	Ala	Ala	Thr	Asp		
													50	55	60	
Ser	Met	Arg	Gly	Glu	Ala	Pro	Gly	Ala	Glu	Thr	Pro	Ser	Leu	Arg		
														65	70	75
His	Arg	Gly	Gln	Ala	Ala	Gln	Pro	Glu	Pro	Ser	Thr	Gly	Phe	Thr		
														80	85	90
Ala	Thr	Pro	Pro	Ala	Pro	Asp	Ser	Pro	Gln	Glu	Pro	Leu	Val	Leu		
														95	100	105
Arg	Leu	Lys	Phe	Leu	Asn	Asp	Ser	Glu	Gln	Val	Ala	Arg	Ala	Trp		
														110	115	120
Pro	His	Asp	Thr	Ile	Gly	Ser	Leu	Lys	Arg	Thr	Gln	Phe	Pro	Gly		
														125	130	135
Arg	Glu	Gln	Gln	Val	Arg	Leu	Ile	Tyr	Gln	Gly	Gln	Leu	Leu	Gly		
														140	145	150
Asp	Asp	Thr	Gln	Thr	Leu	Gly	Ser	Leu	His	Leu	Pro	Pro	Asn	Cys		
														155	160	165
Val	Leu	His	Cys	His	Val	Ser	Thr	Arg	Val	Gly	Pro	Pro	Asn	Pro		
														170	175	180
Pro	Cys	Pro	Pro	Gly	Ser	Glu	Pro	Gly	Pro	Ser	Gly	Leu	Glu	Ile		
														185	190	195
Gly	Ser	Leu	Leu	Leu	Pro	Leu										
														200	205	210
Trp	Tyr	Cys	Gln	Ile	Gln	Tyr	Arg	Pro	Phe	Phe	Pro	Leu	Thr	Ala		
														215	220	225
Thr	Leu	Gly	Leu	Ala	Gly	Phe	Thr	Leu	Leu	Leu	Ser	Leu	Leu	Ala		
														230	235	240
Phe	Ala	Met	Tyr	Arg	Pro											
														245		

<210> 339

<211> 849

<212> DNA

<213> Homo sapiens

<400> 339

gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50

tgcctctcc agattccccca ggctctcaga gaagatcagc agaaaagtctg 100

caagacccta agaaccatca gccctcagct gcacccctc ccctccaagg 150

atgacaaagg cgctactcat ctatggtc agcagtttc ttgccctaaa 200

tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

aggacttgg a tgggttgag ggttactccc tgagtgactg gctgtgcctg 300
 gctttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350
 tggaagctt gactatggcc tcttccagat caacagccac tactggtgca 400
 acgattataa gagttactcg gaaaacctt gccacgtaga ctgtcaagat 450
 ctgctgaatc ccaaccttct tcgcaggatc cactgcgcaa aaaggattgt 500
 gtccggagca cggggatga acaactgggt agaatggagg ttgcactgtt 550
 caggccggcc acttcctac tggctgacag gatgccgcct gagatgaaac 600
 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cctcactcag 650
 ggattcttca tttcttcctc ctactgcctc cacttcatgt tattttcttc 700
 cttccatt tacaactaaa actgaccaga gccccagaa taaatggttt 750
 tcttggcttc ctccttactc ccacatggac ccagtcctt ggttcctgtc 800
 tgttatgtt aaactgagga ccacaataaa gaaatcttta tatttatcg 849

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

<400> 340

Met	Thr	Lys	Ala	Leu	Leu	Ile	Tyr	Leu	Val	Ser	Ser	Phe	Leu	Ala
1				5					10				15	

Leu	Asn	Gln	Ala	Ser	Leu	Ile	Ser	Arg	Cys	Asp	Leu	Ala	Gln	Val
					20			25					30	

Leu	Gln	Leu	Glu	Asp	Leu	Asp	Gly	Phe	Glu	Gly	Tyr	Ser	Leu	Ser
				35				40				45		

Asp	Trp	Leu	Cys	Leu	Ala	Phe	Val	Glu	Ser	Lys	Phe	Asn	Ile	Ser
				50				55				60		

Lys	Ile	Asn	Glu	Asn	Ala	Asp	Gly	Ser	Phe	Asp	Tyr	Gly	Leu	Phe
				65				70				75		

Gln	Ile	Asn	Ser	His	Tyr	Trp	Cys	Asn	Asp	Tyr	Lys	Ser	Tyr	Ser
				80				85				90		

Glu	Asn	Leu	Cys	His	Val	Asp	Cys	Gln	Asp	Leu	Leu	Asn	Pro	Asn
				95				100				105		

Leu	Leu	Ala	Gly	Ile	His	Cys	Ala	Lys	Arg	Ile	Val	Ser	Gly	Ala
				110				115				120		

Arg	Gly	Met	Asn	Asn	Trp	Val	Glu	Trp	Arg	Leu	His	Cys	Ser	Gly
				125				130				135		

Arg	Pro	Leu	Ser	Tyr	Trp	Leu	Thr	Gly	Cys	Arg	Leu	Arg		
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--	--

<210> 341
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 341
ccctccaagg atgacaaagg cgc 23

<210> 342
<211> 29
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-29
<223> Synthetic construct.

<400> 342
ggtcagcagc tttcttgccc taaatcagg 29

<210> 343
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 343
atctcaggcg gcatcctgtc agcc 24

<210> 344
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 344
gtggatgcct gcaagaaggt tggg 24

<210> 345
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 345
agcttcttg ccctaaatca ggccagcctc atcagtcgct gtgac 45

<210> 346
<211> 2575
<212> DNA
<213> Homo sapiens

<400> 346
tctgacctga ctggaagcgt ccaaagaggg acggctgtca gccctgcttg 50
actgagaacc caccagctca tcccagacac ctcatagcaa cctatttata 100
caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150
aaggagaaaa ccggggtaaa gggagggaaag caattcaatt tgaagtccct 200
gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250
ggggtgaaac ttgggtcctg tggtttctg attgtaagtg gaagcaggc 300
ttgcacacgc ttttggcaaa tgtcaggacc aggttaagtg actggcagaa 350
aaacttccag gtggaaacaag caacccatgt tctgctgcaa gcttgaagga 400
gcctggagcg ggagaaagct aacttgaaca tgacctgttgcattggca 450
gttcttagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500
ctccagttcc tcctgtgtct cctgatgttg ggatgcgtcc tgatgttgtt 550
ggcgatgttg caccctcccc accacaccct gcaccagact gtcacagccc 600
aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650
tcccaggatt gggtaactgga agctgaggat gagggtgaag agtacagccc 700
tctggagggc ctgccacccct ttatctact gcggggaggat cagctgctgg 750
tggccgtggc cttacccag gccagaagga accagagcca gggcaggaga 800
ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850
cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900
aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950
agtccccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000
gtgtctgcag cagcaccctc aggacagcct gcccacagcc agcgtcatcc 1050
tctgtttcca tcatgaggcc tggtccactc tcctgcggac tgtacacagc 1100

atcctcgaca cagtgccca ggccttcctg aaggagatca tcctcggtgg 1150
cgacccctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 1200
ccaggctgga gggggtaaag ttactcagga gcaacaagag gctgggtgcc 1250
atcaggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300
cttcatggat gcccactgcg agtgccaccc aggctggctg gagccccctcc 1350
tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400
gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450
tggggtgttg gactggaagc tggatttcca ctggaaacct ttgccagagc 1500
atgtgaggaa ggccctccag tccccataa gccccatcag gagccctgtg 1550
gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600
agcgtatgac tctcttatgt cgctgcgagg tggtaaaac ctcgaactgt 1650
ctttcaaggc ctggctctgt ggtggctctg ttgaaatcc tccctgtct 1700
cgggttaggac acatctacca aaatcaggat tcccattccc ccctcgacca 1750
ggaggccacc ctgaggaaca gggtcgcat tgctgagacc tggctgggt 1800
cattcaaaga aaccttctac aagcatagcc cagaggcctt ctccttgagc 1850
aaggctgaga agccagactg catggAACgc ttgcagctgc aaaggagact 1900
gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950
acccatctga acccaggccc agtttctctg gaaagctcca caacactgg 2000
cttggctct gtgcagactg ccaggcagaa gggacatcc tggctgtcc 2050
catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100
acaccagcag gaaggagatt cactttggca gcccacagca cctgtgttt 2150
gctgtcagggc aggagcaggt gattttcag aactgcacgg aggaaggcct 2200
ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250
acattcttc tggaaatgc atgaaagctg tggtaaaga aaacaataaa 2300
gatttgtacc tgcgtccgtg tggtaaaa gcccggcagc agtggcgatt 2350
tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400
aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450
atatatttca tgaagctgat cctttgtgt gtgtgctcct tgtgttagga 2500
gagaaaaaaag ctctatgaaa gaatataggaa agtttctcct tttcacacacct 2550

tatttcattg actgctggct gctta 2575

<210> 347

<211> 639

<212> PRT

<213> Homo sapiens

<400> 347

Met Leu Leu Arg Lys Arg Tyr Arg His Arg Pro Cys Arg Leu Gln
1 5 10 15

Phe Leu Leu Leu Leu Met Leu Gly Cys Val Leu Met Met Val
20 25 30

Ala Met Leu His Pro Pro His His Thr Leu His Gln Thr Val Thr
35 40 45

Ala Gln Ala Ser Lys His Ser Pro Glu Ala Arg Tyr Arg Leu Asp
50 55 60

Phe Gly Glu Ser Gln Asp Trp Val Leu Glu Ala Glu Asp Glu Gly
65 70 75

Glu Glu Tyr Ser Pro Leu Glu Gly Leu Pro Pro Phe Ile Ser Leu
80 85 90

Arg Glu Asp Gln Leu Leu Val Ala Val Ala Leu Pro Gln Ala Arg
95 100 105

Arg Asn Gln Ser Gln Gly Arg Arg Gly Gly Ser Tyr Arg Leu Ile
110 115 120

Lys Gln Pro Arg Arg Gln Asp Lys Glu Ala Pro Lys Arg Asp Trp
125 130 135

Gly Ala Asp Glu Asp Gly Glu Val Ser Glu Glu Glu Glu Leu Thr
140 145 150

Pro Phe Ser Leu Asp Pro Arg Gly Leu Gln Glu Ala Leu Ser Ala
155 160 165

Arg Ile Pro Leu Gln Arg Ala Leu Pro Glu Val Arg His Pro Leu
170 175 180

Cys Leu Gln Gln His Pro Gln Asp Ser Leu Pro Thr Ala Ser Val
185 190 195

Ile Leu Cys Phe His Asp Glu Ala Trp Ser Thr Leu Leu Arg Thr
200 205 210

Val His Ser Ile Leu Asp Thr Val Pro Arg Ala Phe Leu Lys Glu
215 220 225

Ile Ile Leu Val Asp Asp Leu Ser Gln Gln Gly Gln Leu Lys Ser
230 235 240

Ala Leu Ser Glu Tyr Val Ala Arg Leu Glu Gly Val Lys Leu Leu
245 250 255

Arg Ser Asn Lys Arg Leu Gly Ala Ile Arg Ala Arg Met Leu Gly
 260 265 270
 Ala Thr Arg Ala Thr Gly Asp Val Leu Val Phe Met Asp Ala His
 275 280 285
 Cys Glu Cys His Pro Gly Trp Leu Glu Pro Leu Leu Ser Arg Ile
 290 295 300
 Ala Gly Asp Arg Ser Arg Val Val Ser Pro Val Ile Asp Val Ile
 305 310 315
 Asp Trp Lys Thr Phe Gln Tyr Tyr Pro Ser Lys Asp Leu Gln Arg
 320 325 330
 Gly Val Leu Asp Trp Lys Leu Asp Phe His Trp Glu Pro Leu Pro
 335 340 345
 Glu His Val Arg Lys Ala Leu Gln Ser Pro Ile Ser Pro Ile Arg
 350 355 360
 Ser Pro Val Val Pro Gly Glu Val Val Ala Met Asp Arg His Tyr
 365 370 375
 Phe Gln Asn Thr Gly Ala Tyr Asp Ser Leu Met Ser Leu Arg Gly
 380 385 390
 Gly Glu Asn Leu Glu Leu Ser Phe Lys Ala Trp Leu Cys Gly Gly
 395 400 405
 Ser Val Glu Ile Leu Pro Cys Ser Arg Val Gly His Ile Tyr Gln
 410 415 420
 Asn Gln Asp Ser His Ser Pro Leu Asp Gln Glu Ala Thr Leu Arg
 425 430 435
 Asn Arg Val Arg Ile Ala Glu Thr Trp Leu Gly Ser Phe Lys Glu
 440 445 450
 Thr Phe Tyr Lys His Ser Pro Glu Ala Phe Ser Leu Ser Lys Ala
 455 460 465
 Glu Lys Pro Asp Cys Met Glu Arg Leu Gln Leu Gln Arg Arg Leu
 470 475 480
 Gly Cys Arg Thr Phe His Trp Phe Leu Ala Asn Val Tyr Pro Glu
 485 490 495
 Leu Tyr Pro Ser Glu Pro Arg Pro Ser Phe Ser Gly Lys Leu His
 500 505 510
 Asn Thr Gly Leu Gly Leu Cys Ala Asp Cys Gln Ala Glu Gly Asp
 515 520 525
 Ile Leu Gly Cys Pro Met Val Leu Ala Pro Cys Ser Asp Ser Arg
 530 535 540
 Gln Gln Gln Tyr Leu Gln His Thr Ser Arg Lys Glu Ile His Phe

545 550 555
Gly Ser Pro Gln His Leu Cys Phe Ala Val Arg Gln Glu Gln Val
560 565 570
Ile Leu Gln Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gln Gln
575 580 585
His Trp Asp Phe Gln Glu Asn Gly Met Ile Val His Ile Leu Ser
590 595 600
Gly Lys Cys Met Glu Ala Val Val Gln Glu Asn Asn Lys Asp Leu
605 610 615
Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gln Gln Trp Arg Phe
620 625 630
Asp Gln Ile Asn Ala Val Asp Glu Arg
635

<210> 348
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 348
ggagaggtgg tggccatgga cag 23

<210> 349
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 349
ctgtcactgc aaggagccaa cacc 24

<210> 350
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 350
tatgtcgctg cgaggtggtg aaaacctcga actgtcttgc aaggc 45

<210> 351
<211> 2524
<212> DNA
<213> Homo sapiens

<400> 351
cgccaagcat gcagtaaagg ctgaaaatct gggcacacgc tgaggaagac 50
ctcagacatg gagtccagga tgtggcctgc gctgctgtg tcccacactcc 100
tccctctctg gccactgctg ttgctgcccc tcccaccgccc tgctcaggc 150
tcttcattcct cccctcgaac cccaccagcc ccagcccgcc cccctgtgc 200
caggggaggc ccctcgcccc cacgtcatgt gtgcgtgtgg gagcgagcac 250
ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtccctg 300
cctggcactg caccggcacc caccggatca ggctttgagg agggccgccc 350
ctcatcccaa tacccttggg ctatcggtg gggtcccacc gtgtctcgag 400
aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatgg 450
tttgcagccc ctcattggct cgcaacccca caccggact cagactccat 500
gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctgc 550
ggccatttct gttcgggggc cgtggggaaag gtgtggaccc ccagctctat 600
gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650
cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcaggc 700
agcaagggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750
tccccggctg gagtcactgt gctggggcc ttctggact cacctacccc 800
cacccctgac catgaggagc cccgaggggg accccggcct gggatggccc 850
accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900
tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950
tgggggtgcc ctctggatgg gtagtgagga ggcaggcggtg gcctcccaca 1000
gccccctggcc ctcccaaggg ggctggacca gtcctctct gggaggcacc 1050
cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccatt 1100
aactccaact ctgcctctt tggtttttc tcatgccacc ttgtctaaga 1150
caactctgcc ctcttaacct tgattcccc tctttgtctt gaactcccc 1200
ttctattctg gcctaccct tggttcctga ctgtgccctt tccctttcc 1250
tctcaggatt cccctggtga atctgtgatg ccccaatgt tggggtgcag 1300

ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350
ggcagctgtg gggagctggg gccacagggg ctcctggctc ctgccccttg 1400
cacaccaccc ggaacactcc ccagccccac gggcaatcct atctgctcg 1450
cctcctgcag gtggggccct cacatatctg tgacttcggg tccctgtccc 1500
cacccttgtg cactcacatg aaagccttgc acactcacct ccacccac 1550
aggccatttg cacacgctcc tgccaccctct ccccgccat accgctccgc 1600
tcagctgact ctcatgttct ctcgtctcac atttgactc tctccttccc 1650
acattctgtg ctcagctcac tcagtggtca gcgtttcctg cacactttac 1700
ctctcatgtg cgtttcccg cctgatgttgg tggtggtgtg cggcgtgctc 1750
actctctccc tcatgaacac ccacccaccc cgtttccgca gcccctgcgt 1800
gctgctccag aggtgggtgg gaggtgagct gggggctccct tggccctca 1850
tcggcatgg tctcgccca ttccacacca tttgtttctc tgtctcccc 1900
tcctactcca aggatgccgg catcaccctg agggctcccc cttggaaatg 1950
gggtagtgag gccccagact tcaccccccag cccactgcta aaatctgttt 2000
tctgacagat gggttttggg gagtcgcctg ctgcactaca tgagaaaggg 2050
actcccattt gcccctccct ttctcctaca gtcccttttg tcttgtctgt 2100
cctggctgtc tgtgtgtgtg ccattctctg gacttcagag cccctgagc 2150
cagtcctccc ttcccagccct ccctttggc ctccctaact ccacctaggc 2200
tgccagggac cggagtcagc tggtaagg ccacggag ctctgcctcc 2250
aagtctaccc ttcccttccc ggactccctc ctgtcccctc cttccctccc 2300
tccttccttc cactctcctt cctttgctt ccctgcccctt tccccctctt 2350
caggttcttc cctccttctc actggttttt ccacccctt cttcccttc 2400
ttccctggct cctaggctgt gatataattttttt ctcttccttc 2450
ttcttggt gatcatctt aattactgtg ggtatgtaaatgtt 2500
tcaaataaaag ccttgcaag ataa 2524

<210> 352

<211> 243

<212> PRT

<213> Homo sapiens

<400> 352

Met	Arg	Pro	Gln	Gly	Pro	Ala	Ala	Ser	Pro	Gln	Arg	Leu	Arg	Gly
1					5				10				15	

Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala
 20 25 30
 Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg
 35 40 45
 Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
 50 55 60
 Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
 65 70 75
 Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys
 80 85 90
 Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn
 95 100 105
 Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu
 110 115 120
 Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser
 125 130 135
 Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
 140 145 150
 Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
 155 160 165
 Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
 170 175 180
 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
 185 190 195
 Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
 200 205 210
 Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
 215 220 225
 Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu
 230 235 240

Leu Pro Lys

<210> 353
 <211> 480
 <212> DNA
 <213> Homo sapiens

<400> 353
 gttaaccagc gcagtccctcc gtgcgtccccg cccggccgctg ccctcaactcc 50
 cggccaggat ggcattcctgt ctggccctgc gcatggcgct gctgctggtc 100

tccggggttc tggccccgtgc ggtgctcaca gacgatgttc cacaggagcc 150
cgtgccacg ctgtggAACG agccggCCGA gctGCCGTCG ggagaaggcc 200
ccgtggagag caccAGCCCC ggCCGGGAGC ccgtggACAC cggtCCCCCA 250
gccccCACCG tcgcGCCAGG ACCCGAGGAC agcaccGCGC aggAGCGGCT 300
ggaccaggGC ggcgggtcgc tggggcccgg cgctatcgCG gccatcgtga 350
tcgcGCCCT gctggccACC tgcgtggTCG tggcgctcGT ggtcgTCGCG 400
ctgagaaagt tttctgcCTC ctgaAGCGAA taaAGGGCC gcGCCCGGCC 450
gcggcgcGAC tcggcaaaaa aaaaaaaaaa 480

<210> 354

<211> 121

<212> PRT

<213> Homo sapiens

<400> 354

Met	Ala	Ser	Cys	Leu	Ala	Leu	Arg	Met	Ala	Leu	Leu	Leu	Val	Ser	
1				5				10					15		
Gly	Val	Leu	Ala	Pro	Ala	Val	Leu	Thr	Asp	Asp	Val	Pro	Gln	Glu	
		20						25					30		
Pro	Val	Pro	Thr	Leu	Trp	Asn	Glu	Pro	Ala	Glu	Leu	Pro	Ser	Gly	
			35					40					45		
Glu	Gly	Pro	Val	Glu	Ser	Thr	Ser	Pro	Gly	Arg	Glu	Pro	Val	Asp	
			50					55					60		
Thr	Gly	Pro	Pro	Ala	Pro	Thr	Val	Ala	Pro	Gly	Pro	Glu	Asp	Ser	
			65					70					75		
Thr	Ala	Gln	Glu	Arg	Leu	Asp	Gln	Gly	Gly	Gly	Ser	Leu	Gly	Pro	
			80					85					90		
Gly	Ala	Ile	Ala	Ala	Ile	Val	Ile	Ala	Ala	Leu	Leu	Ala	Thr	Cys	
			95					100					105		
Val	Val	Leu	Ala	Leu	Val	Val	Val	Ala	Leu	Arg	Lys	Phe	Ser	Ala	
			110					115					120		

Ser

<210> 355

<211> 2134

<212> DNA

<213> Homo sapiens

<400> 355

ggccgttgt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgTTG 50
gttggccggc ggcgggCCGG gacgggcatg gccctgctgc tgtgcctgg 100

gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150
tctccaagaa gtttccttc taccgccacc atgtgaactt caagtctgg 200
tgggtggcgc acatccccgt gtcaggggcg ctgctcacccg actggagcga 250
cgacacgatg aaggagctgc acctggccat ccccgccaag atcaccggg 300
agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350
taccagggga agatgtactt ccccggtat ttccccaacg agctgcgaaa 400
catcttccgg gaggcagggtgc acctcatcca gaacgcccattc atcgaaaggc 450
accttggcacc aggccagctgg ggaggaggc agctctccag ggagggaccc 500
agcctagcac ctgaaggatc aatgccccatca ccccgccggg acctccctta 550
atggacacac atacatgaaa accaggccgc atcgactgtc agcaccgctg 600
tggcatcttc cagtacgaga ccatttcctg caacaactgc acagactcgc 650
acgtcgccctg ctttggttat aactgcgagt agggctcagg catcacaccc 700
acccgtgcca gggccctact gtccctgggg tcccaggctc tccttgagg 850
gggctccccc cttccacact ggctgtcatc gggtagggcg gggccgtggg 900
ttcagggcgc caccacttcc aaggctgtgt cccacaggctc ctggcgcag 950
tggaagtcag ctgtccaggg ctcctgaac tacataaata actggcacaa 1000
gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050
cgtgggtgag tatgtgtgg gcacaggctg gtccttcag ctcccacgtc 1100
ctagagggc tcccggaggag gtggaacctc aacccagctc tgccgaggag 1150
gcggctgcag tcctttctc cctcaaagggt ctccgaccct cagctggagg 1200
cgggcatctt tcctaaagggt tcccatagg gtctggttcc accccatccc 1250
aggctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300
ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350
tgaggttaagg cggccctgac ctggacttca gggggagggg gtaaaggag 1400
agaggagggg ggcttaggggg tcctcttagat cagtgggggc actgcaggtg 1450
gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500
acccatgtgg tggttcatg aacagaccac gtcctctgc ctttcctgg 1550

cctggacac acagagccac cccggccttg tgagtgaccc agagaaggga 1600
ggcctcgaaa gaagggggtgc tcgtaagcca acaccagcgt gccgcggcct 1650
gcacaccctt cggacatccc aggacacgagg gtgtcggtga tgtggccaca 1700
cataggacca cacgtcccaag ctgggaggag aggacctgggg cccccaggaa 1750
gggaggcagg ggggtggggga catggagagc tgaggcagcc tcgtctcccc 1800
gcagcctgggt atcgccagcc ttaagggtgc tggagccccc acacttggcc 1850
aacctgacct tggaaagatgc tgctgagtgt ctcaagcagc actgacagca 1900
gctgggcctg ccccaggca acgtgggggc ggagactcag ctggacagcc 1950
cctgcctgtc actctggagc tggcgtgctg ctgcctcagg accccctctc 2000
cgaccccgga cagagctgag ctggccaggg ccaggaggc gggagggagg 2050
aatgggggt gggctgtgcg cagcatcagc gcctggcag gtccgcagag 2100
ctgcggatg tgattaaagt ccctgatgtt tctc 2134

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

<400> 356

Met Ala Leu Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala
1 5 10 15

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser
20 25 30

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp
35 40 45

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr
50 55 60

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu
65 70 75

Lys Leu Asp Gln Val Ala Thr Ala Val Tyr Gln Met Met Asp Gln
80 85 90

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu
95 100 105

Leu Arg Asn Ile Phe Arg Glu Gln Val His Leu Ile Gln Asn Ala
110 115 120

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln
125 130 135

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro

140

145

150

Ser Pro Arg Gly Asp Leu Pro
155

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357

agcaggagca ggagagggac aatggaagct gccccgtcca gtttcatgtt 50
cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100
ttgagaaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150
acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200
cataggcttc ttccaggatt tagaaatacc agcagtgccc atactccata 250
gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300
gaggttctga cacactacaa catcactggg aacaccatct gcctcttcg 350
cctggtagac aatgaacaac tgaatttga ggacgaagac attgaaagca 400
ttgatgccac caaattgagc cgtttcattt agatcaacag cctccacatg 450
gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500
tcagattcat ctcctcctga taatgaacaa ggcctccccca gagtatgaag 550
agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600
ctctttattt tgggtggacag tggatgaaa gaaaatggga aggtgatatac 650
atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700
ctcttagatga cgagtggat acactgccca cagcagaagt ttccgttagag 750
catgtgcaaa acttttgtga tggattccta agtggaaaat tggatgaaaga 800
aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850
ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900
aactcaaatac tcagagacac taaacaacag gatcactagg cctgccaacc 950
acacacacac gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000
gcacacacac acacacacac agcttcattt cctgtcttaa aatctcggtt 1050
tctcttcttc cttctttaa atttcataatc ctcactccct atccaatttc 1100
cttcttatcg tgcattcata ctctgtaaac ccacacacac 1150
tcaaggcttt aagagactca ctgtgatgcc tctatgaaag agaggcattc 1200

ctagagaaaat attgttccaa tttgtcattt aatatcaagt ttgtatactg 1250
cacatgactt acacacaaca tagttcctgc tcttttaagg ttacctaagg 1300
gttgaaaactc tactttcttt cataaggaca tgtccgtctc tgactcagga 1350
tcaaaaacca aaggatggtt ttaaacacct ttgtgaaatt gtcttttgc 1400
cagaagttaa aggctgtctc caagtccctg aactcagcag aaatagacca 1450
tgtgaaaact ccatgcttgg ttagcatctc caactcccta tgtaaatcaa 1500
caacctgcat aataaataaa aggcaatcat gttata 1536

<210> 358

<211> 273

<212> PRT

<213> Homo sapiens

<400> 358

Met	Glu	Ala	Ala	Pro	Ser	Arg	Phe	Met	Phe	Leu	Leu	Phe	Leu	Leu
1				5				10				15		
Thr	Cys	Glu	Leu	Ala	Ala	Glu	Val	Ala	Ala	Glu	Val	Glu	Lys	Ser
					20				25				30	
Ser	Asp	Gly	Pro	Gly	Ala	Ala	Gln	Glu	Pro	Thr	Trp	Leu	Thr	Asp
					35			40				45		
Val	Pro	Ala	Ala	Met	Glu	Phe	Ile	Ala	Ala	Thr	Glu	Val	Ala	Val
				50				55				60		
Ile	Gly	Phe	Phe	Gln	Asp	Leu	Glu	Ile	Pro	Ala	Val	Pro	Ile	Leu
				65				70				75		
His	Ser	Met	Val	Gln	Lys	Phe	Pro	Gly	Val	Ser	Phe	Gly	Ile	Ser
				80				85				90		
Thr	Asp	Ser	Glu	Val	Leu	Thr	His	Tyr	Asn	Ile	Thr	Gly	Asn	Thr
				95				100				105		
Ile	Cys	Leu	Phe	Arg	Leu	Val	Asp	Asn	Glu	Gln	Leu	Asn	Leu	Glu
				110				115				120		
Asp	Glu	Asp	Ile	Glu	Ser	Ile	Asp	Ala	Thr	Lys	Leu	Ser	Arg	Phe
				125				130				135		
Ile	Glu	Ile	Asn	Ser	Leu	His	Met	Val	Thr	Glu	Tyr	Asn	Pro	Val
				140				145				150		
Thr	Val	Ile	Gly	Leu	Phe	Asn	Ser	Val	Ile	Gln	Ile	His	Leu	Leu
				155				160				165		
Leu	Ile	Met	Asn	Lys	Ala	Ser	Pro	Glu	Tyr	Glu	Glu	Asn	Met	His
				170				175				180		
Arg	Tyr	Gln	Lys	Ala	Ala	Lys	Leu	Phe	Gln	Gly	Lys	Ile	Leu	Phe
				185				190				195		

Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser
200 205 210

Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr
215 220 225

Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val
230 235 240

Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly
245 250 255

Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys
260 265 270

Val Glu Leu

<210> 359
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 359
ccagcagtgc ccatactcca tagc 24

<210> 360
<211> 20
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.

<400> 360
tgacgagtgg gatacactgc 20

<210> 361
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 361
gctctacgga aacttctgct gtgg 24

<210> 362

<211> 50
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-50
<223> Synthetic construct.

<400> 362
attcccaggc gtgtcatttggatcagcac tgattctgag gttctgacac 50

<210> 363
<211> 1777
<212> DNA
<213> Homo sapiens

<400> 363
ggagagccgc ggctgggacc ggagtgggaa gcgcggcgtg gaggtgccac 50
ccggcgccgg tggcggagag atcagaagcc tcttcccaa gccgagccaa 100
cctcagcggg gaccgggct cagggacgcg gcggcggcgg cggcgactgc 150
agtggctgga cgatggcagc gtccgcccga gccggggcgg tgattgcagc 200
cccagacagc cggcgctggc tgtggtcggt gctggcggcgc gcgcggcggc 250
tcttgacagc tggagtatca gccttggaaatatacgc 300
ttcgtggcaa atggcacaca agggaaagctg acctgcaagt tcaagtctac 350
tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400
ggccgcacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450
cttggaaatt atccaccatt taaagacaga atcagctggg ctggagacct 500
tgacaagaaa gatgcataa tcaacataga aaatatgcag ttatatacaca 550
atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600
cctggacaca tttaggctcta tgtcgtagaa aaagagaatt tgccgtgtt 650
tccagttgg gtagtggtgg gcatagttac tgctgtggc ctaggtctca 700
ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750
aaacgggatt acactggctg cagtagatca gagagttgt caccagttaa 800
gcaggctcct cggaagtccc cctccgacac tgagggtctt gtaaagagtc 850
tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900
tccggcggac atcacagtga caagattaac aagtcagagt ctgtggtgta 950
tgcggatatac cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000

gaaacaaaac caaactggac ttcgtgcag aaaatgtgc ccattaccac 1050
atgtgcctt ggagacccag gcaaggacaa gtacacgtgt actcacagag 1100
ggagagaaag atgtgtacaa agatatgtta taaatattct atttagtcat 1150
cctgatatga ggagccagt ttgcgtatgt aaaagatggt atgattctac 1200
atatgtaccc attgtcttgc tgttttgtt ctttctttc aggtcattta 1250
caattgggag atttcagaaa catttcattt accatcattt agaaatggtt 1300
tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350
ccttttaatc taaggccta agactgatta gtcttagcat ttactgttagt 1400
tggaggatgg agatgctatg atgaaagcat acccagggtg gccttagca 1450
cagtatcagt accatttatt tgtctgccgc tttaaaaaaa tacccattgg 1500
ctatgccact tgaaaacaat ttgagaagtt ttttgaagt ttttctcact 1550
aaaatatgg gcaattgtt gccttacatg ttgtgttagac ttactttaag 1600
tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650
attagcaaag gataaatgcc gaaggtcaact tcattctgga cacagttgga 1700
tcaatactga ttaagttagaa aatccaagct ttgcttgaga actttttaa 1750
cgtggagagt aaaaagtatc ggtttta 1777

<210> 364

<211> 269

<212> PRT

<213> Homo sapiens

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp
1 5 10 15

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Ala Ala Leu Gly Leu
20 25 30

Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu
35 40 45

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe
50 55 60

Lys Ser Thr Ser Thr Gly Gly Leu Thr Ser Val Ser Trp Ser
65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr
80 85 90

Ser Gln Gly Gln Val Tyr Leu Gly Asn Tyr Pro Pro Phe Lys Asp
95 100 105

Arg Ile Ser Trp Ala Gly Asp Leu Asp Lys Lys Asp Ala Ser Ile
 110 115 120
 Asn Ile Glu Asn Met Gln Phe Ile His Asn Gly Thr Tyr Ile Cys
 125 130 135
 Asp Val Lys Asn Pro Pro Asp Ile Val Val Gln Pro Gly His Ile
 140 145 150
 Arg Leu Tyr Val Val Glu Lys Glu Asn Leu Pro Val Phe Pro Val
 155 160 165
 Trp Val Val Val Gly Ile Val Thr Ala Val Val Leu Gly Leu Thr
 170 175 180
 Leu Leu Ile Ser Met Ile Leu Ala Val Leu Tyr Arg Arg Lys Asn
 185 190 195
 Ser Lys Arg Asp Tyr Thr Gly Cys Ser Thr Ser Glu Ser Leu Ser
 200 205 210
 Pro Val Lys Gln Ala Pro Arg Lys Ser Pro Ser Asp Thr Glu Gly
 215 220 225
 Leu Val Lys Ser Leu Pro Ser Gly Ser His Gln Gly Pro Val Ile
 230 235 240
 Tyr Ala Gln Leu Asp His Ser Gly Gly His His Ser Asp Lys Ile
 245 250 255
 Asn Lys Ser Glu Ser Val Val Tyr Ala Asp Ile Arg Lys Asn
 260 265

<210> 365

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 365

```

gccggctgtg cagagacgcc atgtaccggc tcctgtcagc agtgaactgcc 50
cgggctgccc cccccggggg ctggcctca agctgcggac gacgcggggt 100
ccatcagcgc gccgggctgc cgccctctcg ccacggctgg gtcgggggcc 150
tcgggctggg gctggggctg gcgcctgggg tgaagctggc aggtgggctg 200
aggggcgcgg cccccggcga gtccccggcg gccccggacc ctgaggcgtc 250
gcctctggcc gagccgccac aggagcagtc cctcgccccg tggctccgc 300
agacccggc gccgcccgc tccaggtgct tcggcagagc catcgagagc 350
agccgcgacc tgctgcacag gatcaaggat gaggtggcg caccgggcat 400
agtggttgga gtttctgttag atggaaaaga agtctggtca gaaggtttag 450
gttatgctga tggtgagaac cgtgtaccat gtaaacccaga gacagttatg 500

```

cgaattgcta gcatcagcaa aagtctcacc atgggtgctc ttgccaaatt 550
gtgggaagca gggaaaactgg atcttgatata tccagtacaa cattatgttc 600
ccgaattccc agaaaaagaa tatgaagggtg aaaaggtttc tgtcacaaca 650
agattactga tttccccattt aagtggatt cgtcattatg aaaaggacat 700
aaaaaaagggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750
agaatgtgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800
gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850
ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900
tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt attaaaaat 950
gatccttgc tcttcaaacc tggtagtcag ttttgtatt caactttgg 1000
ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050
tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100
caggaagaaa acgagccagt gattacaat agagcaaggt aaatgaatac 1150
cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200
aagtcaaatt ttctttgtt ccattccaaa atcaacctgc cacattttgg 1250
gagctttct acatgtctgt tttctcatct gtaaagtcaa ggaagtaaaa 1300
catgtttata aagtaaaaaa a 1321

<210> 366

<211> 373

<212> PRT

<213> Homo sapiens

<400> 366

Met	Tyr	Arg	Leu	Leu	Ser	Ala	Val	Thr	Ala	Arg	Ala	Ala	Ala	Pro
1														15

Gly	Gly	Leu	Ala	Ser	Ser	Cys	Gly	Arg	Arg	Gly	Val	His	Gln	Arg
														30

Ala	Gly	Leu	Pro	Pro	Leu	Gly	His	Gly	Trp	Val	Gly	Gly	Leu	Gly
														45

35									40					
														45

Leu	Gly	Leu	Gly	Leu	Ala	Leu	Gly	Val	Lys	Leu	Ala	Gly	Gly	Leu
														60

50									55					
														60

Arg	Gly	Ala	Ala	Pro	Ala	Gln	Ser	Pro	Ala	Ala	Pro	Asp	Pro	Glu
														75

65									70					
														75

Ala	Ser	Pro	Leu	Ala	Glu	Pro	Pro	Gln	Glu	Gln	Ser	Leu	Ala	Pro
														90

Trp	Ser	Pro	Gln	Thr	Pro	Ala	Pro	Pro	Cys	Ser	Arg	Cys	Phe	Ala
				95					100					105
Arg	Ala	Ile	Glu	Ser	Ser	Arg	Asp	Leu	Leu	His	Arg	Ile	Lys	Asp
				110					115					120
Glu	Val	Gly	Ala	Pro	Gly	Ile	Val	Val	Gly	Val	Ser	Val	Asp	Gly
				125					130					135
Lys	Glu	Val	Trp	Ser	Glu	Gly	Leu	Gly	Tyr	Ala	Asp	Val	Glu	Asn
				140					145					150
Arg	Val	Pro	Cys	Lys	Pro	Glu	Thr	Val	Met	Arg	Ile	Ala	Ser	Ile
				155					160					165
Ser	Lys	Ser	Leu	Thr	Met	Val	Ala	Leu	Ala	Lys	Leu	Trp	Glu	Ala
				170					175					180
Gly	Lys	Leu	Asp	Leu	Asp	Ile	Pro	Val	Gln	His	Tyr	Val	Pro	Glu
				185					190					195
Phe	Pro	Glu	Lys	Glu	Tyr	Glu	Gly	Glu	Lys	Val	Ser	Val	Thr	Thr
				200					205					210
Arg	Leu	Leu	Ile	Ser	His	Leu	Ser	Gly	Ile	Arg	His	Tyr	Glu	Lys
				215					220					225
Asp	Ile	Lys	Lys	Val	Lys	Glu	Glu	Lys	Ala	Tyr	Lys	Ala	Leu	Lys
				230					235					240
Met	Met	Lys	Glu	Asn	Val	Ala	Phe	Glu	Gln	Glu	Lys	Glu	Gly	Lys
				245					250					255
Ser	Asn	Glu	Lys	Asn	Asp	Phe	Thr	Lys	Phe	Lys	Thr	Glu	Gln	Glu
				260					265					270
Asn	Glu	Ala	Lys	Cys	Arg	Asn	Ser	Lys	Pro	Gly	Lys	Lys	Lys	Asn
				275					280					285
Asp	Phe	Glu	Gln	Gly	Glu	Leu	Tyr	Leu	Arg	Glu	Lys	Phe	Glu	Asn
				290					295					300
Ser	Ile	Glu	Ser	Leu	Arg	Leu	Phe	Lys	Asn	Asp	Pro	Leu	Phe	Phe
				305					310					315
Lys	Pro	Gly	Ser	Gln	Phe	Leu	Tyr	Ser	Thr	Phe	Gly	Tyr	Thr	Leu
				320					325					330
Leu	Ala	Ala	Ile	Val	Glu	Arg	Ala	Ser	Gly	Cys	Lys	Tyr	Leu	Asp
				335					340					345
Tyr	Met	Gln	Lys	Ile	Phe	His	Asp	Leu	Asp	Met	Leu	Thr	Thr	Val
				350					355					360
Gln	Glu	Glu	Asn	Glu	Pro	Val	Ile	Tyr	Asn	Arg	Ala	Arg		
				365					370					

<210> 367

<211> 30
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-30
<223> Synthetic construct.

<400> 367
tggaaaagaa gtctggtcag aaggtagg 30

<210> 368
<211> 25
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-25
<223> Synthetic construct.

<400> 368
catttggctt catttcctg ctctg 25

<210> 369
<211> 28
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-28
<223> Synthetic construct.

<400> 369
aaaacctcag aacaactcat tttgcacc 28

<210> 370
<211> 41
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-41
<223> Synthetic construct.

<400> 370
gtctcaccat ggttgcttt gccaaattgt ggaaaggcagg g 41

<210> 371
<211> 1150
<212> DNA
<213> Homo sapiens

<400> 371
tgacactat agaagagcta tgacgtcgca tgcacgcgtt cgtaagctcg 50

gaattcggct cgaggctggt ggaaagaagc cgagatggcg gcagccagcg 100
ctggggcaac ccggctgctc ctgctcttgc ttagtggcggt agcagcgccc 150
agtgcagccc ggggcagcgg ctgcggggcc gggactggtg cgcgaggggc 200
tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250
tggagcactc attttagatc gatgacagtg ccaacttccg gaagcggggc 300
tcactgctct ggaaccagca ggtatggtacc ttgtccctgt cacagcggca 350
gctcagcgag gaggagcggg gccgactccg ggtatgtggca gccctgaatg 400
gcctgttaccg ggtccggatc ccaaggcgac ccggggccct ggtatggcctg 450
gaagctggtg gctatgtctc ctcctttgtc cctgcgtgct ccctggtgga 500
gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550
tgggtggcgt gtcgggtggt acgcaccccg ggggctgccc gggccatgag 600
gtggaggacg tggacctgga gctgttcaac acctcggtgc agtcgcagcc 650
gccaccaca gccccaggcc ctgagacggc ggcatttcatt gagcgcctgg 700
agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750
ttcgccaaat actggatgta catcattccc gtgcgtcctgt tcctcatgat 800
gtcaggagcg ccagacacccg ggggccaggg tgggggtggg ggtgggggtg 850
gtgggtgggg tagtggcatt tgctgtgtgc caccctccct gtaagtctat 900
ttaaaaacat cgacgataca ttgaaatgtg tgaacgttt gaaaagctac 950
agcttccagc agccaaaagc aactgttgtt ttggcaagac ggtcctgatg 1000
tacaagctt attgaaattc actgctact tgatacgtta ttcagaaacc 1050
caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcaagctgtg 1100
ttgtgtggca gtttattttttt ctgtccccca gatcgacacg caaaaaaaaaa 1150

<210> 372

<211> 269

<212> PRT

<213> Homo sapiens

<400> 372

Met	Ala	Ala	Ala	Ser	Ala	Gly	Ala	Thr	Arg	Leu	Leu	Leu	Leu	Leu
1				5				10						15
Leu	Met	Ala	Val	Ala	Ala	Pro	Ser	Arg	Ala	Arg	Gly	Ser	Gly	Cys
	20						25							30
Arg	Ala	Gly	Thr	Gly	Ala	Arg	Gly	Ala	Gly	Ala	Glu	Gly	Arg	Glu
	35						40							45

Gly	Glu	Ala	Cys	Gly	Thr	Val	Gly	Leu	Leu	Leu	Glu	His	Ser	Phe
						50				55				60
Glu	Ile	Asp	Asp	Ser	Ala	Asn	Phe	Arg	Lys	Arg	Gly	Ser	Leu	Leu
						65			70					75
Trp	Asn	Gln	Gln	Asp	Gly	Thr	Leu	Ser	Leu	Ser	Gln	Arg	Gln	Leu
						80			85					90
Ser	Glu	Glu	Glu	Arg	Gly	Arg	Leu	Arg	Asp	Val	Ala	Ala	Leu	Asn
						95			100					105
Gly	Leu	Tyr	Arg	Val	Arg	Ile	Pro	Arg	Arg	Pro	Gly	Ala	Leu	Asp
						110			115					120
Gly	Leu	Glu	Ala	Gly	Gly	Tyr	Val	Ser	Ser	Phe	Val	Pro	Ala	Cys
						125			130					135
Ser	Leu	Val	Glu	Ser	His	Leu	Ser	Asp	Gln	Leu	Thr	Leu	His	Val
						140			145					150
Asp	Val	Ala	Gly	Asn	Val	Val	Gly	Val	Ser	Val	Val	Thr	His	Pro
						155			160					165
Gly	Gly	Cys	Arg	Gly	His	Glu	Val	Glu	Asp	Val	Asp	Leu	Glu	Leu
						170			175					180
Phe	Asn	Thr	Ser	Val	Gln	Leu	Gln	Pro	Pro	Thr	Thr	Ala	Pro	Gly
						185			190					195
Pro	Glu	Thr	Ala	Ala	Phe	Ile	Glu	Arg	Leu	Glu	Met	Glu	Gln	Ala
						200			205					210
Gln	Lys	Ala	Lys	Asn	Pro	Gln	Glu	Gln	Lys	Ser	Phe	Phe	Ala	Lys
						215			220					225
Tyr	Trp	Met	Tyr	Ile	Ile	Pro	Val	Val	Leu	Phe	Leu	Met	Met	Ser
						230			235					240
Gly	Ala	Pro	Asp	Thr	Gly	Gly	Gln	Gly						
						245			250					255
Gly	Gly	Gly	Gly	Ser	Gly	Leu	Cys	Cys	Val	Pro	Pro	Ser	Leu	
						260			265					

<210> 373
<211> 1706
<212> DNA
<213> *Homo sapiens*

```
<400> 373
ggagcgctgc tggAACCCGA GCCGGAGCCG gagccacAGC ggggagggtg 50
gcctggcggc ctggAGCCGG acgtgtccgg ggCGTCCCCG cagaccgggg 100
cagcaggtcg tccggggGCC caccatgctg gtgactgcct accttgctt 150
tqtaqqcctc ctqqccctcct qcctqqqqct qqaactqtca aqatqccqqq 200
```

ctaaaccccc tggaaaggcc tgcagcaatc ctccttcc tcggttcaa 250
ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300
ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350
aaattgccat cctctatgtc tgtggccttg cctctacagt cctcttggc 400
ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450
cctcttctcc ctgacttact cactatgctg cttAACAAA ctctctcaag 500
actactttgt gctgcttagt gggcagcac ttgggtggct gtccacagcc 550
ctgctttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600
gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650
tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700
gccagctgga tagggctggg gcctgttagcg ccctttgtgg ctgccatccc 750
tctcctggct ctggcagggg ccttggccct tcgaaaactgg ggggagaact 800
atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgtgc 850
ctcctgtcgg accgcccgcgt gctgctgctg ggcaccatac aagctctatt 900
tgagagtgtc atcttcatct ttgtttccct ctggacacct gtgctggacc 950
cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000
ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050
tcagcccatg cacctgctgt cccttgctgt gctcatcgtc gtcttctctc 1100
tcttcatgtt gactttctct accagccag gccaggagag tccggtggag 1150
tccttcatalog cctttctact tattgagttg gcttgtggat tatactttcc 1200
cagcatgagc ttcctacgga gaaaggtgat ccctgagaca gagcaggctg 1250
gtgtactcaa ctggttccgg gtacctctgc actcaactggc ttgccttaggg 1300
ctccttgc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350
cagcatttgc tctgctgtca tggtgatggc tctgctggca gtgggtggac 1400
tcttcaccgt ggtaaggcat gatgctgagc tgcgggtacc ttcacctact 1450
gaggagccct atgccccctga gctgtAACCC cactccagga caagatagct 1500
gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550
gactgacttt gtgactgtcc tgtggttct cctgcccattg ctttgtttt 1600
gggaggacat gatgggggtg atggactgga aagaagggtgc caaaagttcc 1650

ctctgtgtta ctcccatat gaaaataaac acttttaaat gatcaaaaaa 1700
aaaaaa 1706

<210> 374
<211> 450
<212> PRT
<213> Homo sapiens

<400> 374
Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser
1 5 10 15

Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly
20 25 30

Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe
35 40 45

Tyr Gln Val Tyr Phe Leu Ala Leu Ala Asp Trp Leu Gln Ala
50 55 60

Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly
65 70 75

Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu
80 85 90

Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys
95 100 105

Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu
110 115 120

Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala
125 130 135

Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala
140 145 150

Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu
155 160 165

Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val
170 175 180

Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp
185 190 195

Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu
200 205 210

Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn
215 220 225

Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu
230 235 240

Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Leu Gly Thr Ile
 245 250 255
 Gln Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp
 260 265 270
 Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe
 275 280 285
 Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg
 290 295 300
 Ile Ala Thr Ser Lys Arg Tyr His Leu Gln Pro Met His Leu Leu
 305 310 315
 Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr
 320 325 330
 Phe Ser Thr Ser Pro Gly Gln Glu Ser Pro Val Glu Ser Phe Ile
 335 340 345
 Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser
 350 355 360
 Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gln Ala
 365 370 375
 Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys
 380 385 390
 Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr
 395 400 405
 Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu
 410 415 420
 Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu
 425 430 435
 Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu
 440 445 450

<210> 375

<211> 1098

<212> DNA

<213> Artificial

<400> 375

gcgacgcgcg gcggggcggc gagagaaac gcggcgccgg gccgggcccc 50

gccctggaga tggtccccgg cgccgcggc tggtgttgtc tcgtgctctg 100

gctccccgcg tgcgtcgccg cccacggctt ccgtatccat gattatttgt 150

actttcaagt gctgagtcct gggacattc gatacatctt cacagccaca 200

cctgccaagg actttggtgg tatcttcac acaaggatg agcagattca 250

ccttgtcccc gctgaacctc cagaggcctg cggggactc agcaacggtt 300
tcttcatcca ggaccagatt gctctggtgg agaggggggg ctgctccttc 350
ctctccaaga ctcgggtggt ccaggagcac ggccggcgccc cggtgatcat 400
ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450
acagtaccca ggcacagct gacatccccg ccctttcct gctggccga 500
gacggctaca tggatccggcc ctctctggaa cagcatgggc tgccatgggc 550
catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600
tgcaaccgcc ctggacccctc tggtagaaga gtttgcctca cattccagcc 650
ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700
aatttggaga tagcatctgg ggacaagtgg agccaggttag agaaaaagg 750
tttggcggt gctaggctga aagggaagcc acaccactgg cttcccttc 800
cccaaggccc ccaagggtgt ctcatgctac aagaagaggg aagagacagg 850
ccccagggtct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900
gcctgagagc catctgtgac ctgtcacact cacctggctc cagcctcccc 950
taccagggt ctctgcacag tgacccctcac agcagttgtt ggagtggttt 1000
aaagagctgg ttgtttgggaa ctcaataaac cctcactgac ttttagcaa 1050
taaagcttct catcagggtt gcaaaaaaaaaaaaaaaaaaaaaaaa 1098

<210> 376

<211> 188

<212> PRT

<213> Homo sapiens

<400> 376

Met	Val	Pro	Gly	Ala	Ala	Gly	Trp	Cys	Cys	Leu	Val	Leu	Trp	Leu
1				5				10					15	

Pro	Ala	Cys	Val	Ala	Ala	His	Gly	Phe	Arg	Ile	His	Asp	Tyr	Leu
				20				25					30	

Tyr	Phe	Gln	Val	Leu	Ser	Pro	Gly	Asp	Ile	Arg	Tyr	Ile	Phe	Thr
				35				40					45	

Ala	Thr	Pro	Ala	Lys	Asp	Phe	Gly	Gly	Ile	Phe	His	Thr	Arg	Tyr
				50				55					60	

Glu	Gln	Ile	His	Leu	Val	Pro	Ala	Glu	Pro	Pro	Glu	Ala	Cys	Gly
				65				70					75	

Glu	Leu	Ser	Asn	Gly	Phe	Phe	Ile	Gln	Asp	Gln	Ile	Ala	Leu	Val
				80				85					90	

Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln
95 100 105

Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp
110 115 120

Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg
125 130 135

Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr
140 145 150

Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu Pro Trp Ala Ile
155 160 165

Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu
170 175 180

Leu Gln Pro Pro Trp Thr Phe Trp
185

<210> 377
<211> 496
<212> DNA
<213> Artificial

<220>
<221> unsure
<222> 396
<223> unknown base

<400> 377
tctgcctcca ctgctctgtg ctggatcat ggaacttgca ctgctgttg 50
ggctgggtt gatggctgggt gtgattccaa tccagggcgg gatcctgaac 100
ctgaacaaga tggtaagca agtgaactggg aaaatgccc tccttccta 150
ctggccctac ggctgtcact gcggactagg tggcagaggc caacccaaag 200
atgccacgga ctggtgctgc cagaccatg actgctgcta tgaccacctg 250
aagacccagg ggtgcggcat ctacaaggac aacaacaaaa gcagcataca 300
ttgtatggat ttatctcaac gctattgtt aatggctgtg ttaatgtga 350
tctatctgga aaatgaggac tccgaataaa aagctattac tawtnaaaa 400
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 450
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 496

<210> 378
<211> 116
<212> PRT
<213> Homo sapiens

<400> 378

Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val
1 5 10 15

Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys
20 25 30

Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly
35 40 45

Cys His Cys Gly Leu Gly Arg Gly Gln Pro Lys Asp Ala Thr
50 55 60

Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys
65 70 75

Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile
80 85 90

His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe
95 100 105

Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu
110 115

<210> 379

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 379

ctgcctccac tgctctgtgc tggg 24

<210> 380

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 380

cagagcagtg gatgttcccc tggg 24

<210> 381

<211> 45

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-45

<223> Synthetic construct.

<400> 381
ctgaacaaga tggtaagca agtgactggg aaaatgccca tcctc 45

<210> 382

<211> 764

<212> DNA

<213> Homo sapiens

<400> 382
ctcgcttctt ccttctggat gggggccca gggggcccagg agagtataaa 50
ggcgatgtgg agggtgcccc gcacaaccag acgcccagtc acaggcgaga 100
gcacctggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150
ctccctgggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200
caagtatttc agcaccactg aagactacga ccatgaaatc acagggtgc 250
gggtgtctgt aggtcttctc ctggtaaaaa gtgtccaggt gaaacttgg 300
gactcctggg acgtgaaact gggagccta ggtggaaata cccaggaagt 350
caccctgcag ccaggcgaat acatcacaaa agtctttgtc gccttccaag 400
ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450
tttggaaagc ttgatggcca gatctcctct gcctacccca gccaaagaggg 500
gcaggtgctg gtggcatct atggccagta tcaactcctt ggcataaga 550
gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600
ccagttaatc tcacataactc agcaaactca cccgtgggtc gctagggtgg 650
ggtatgggc catccgagct gaggccatct gtgtgggtgt ggctgatgg 700
actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750
gccttctgcag aaaa 764

<210> 383

<211> 178

<212> PRT

<213> Homo sapiens

<400> 383
Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu
1 5 10 15
Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly
20 25 30
Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr
35 40 45

Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln
50 55 60

Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly
65 70 75

Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr
80 85 90

Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met
95 100 105

Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly
110 115 120

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val
125 130 135

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
140 145 150

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro
155 160 165

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg
170 175

<210> 384
<211> 2379
<212> DNA
<213> Homo sapiens

<400> 384
gctgagcgtg tgcgcggtag ggggctctcc tgccttctgg gctccaacgc 50
agctctgtgg ctgaactggg tgctcatcac gggaaactgct gggctatgg 100
atacagatgt ggcagctca gtagccccaa attgcctgga agaatacata 150
atgttttcg ataagaagaa attgttaggat ccagttttt ttttaaccgc 200
ccccctccca ccccccaaaa aaactgtaaa gatgcaaaaa cgtaatatcc 250
atgaagatcc tattacctag gaagatttg atgttttgct gcgaatgcgg 300
tgttggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350
atgttccaaa atcggtccat ctcccaagggt gtccaaattt tcttcctggg 400
tgtcagcgag ccctgactca ctacagtgc gctgacaggg gctgtcatgc 450
aactggcccc taagccaaag caaaagaccc aaggacgacc tttgaacaat 500
acaaaggatg ggtttcaatg taattaggct actgagcggg tcagctgttag 550
cactggttat agccccact gtcttactga caatgcttc ttctgccgaa 600
cgaggatgcc ctaaggcgtg taggtgtgaa ggcaaaatgg tatattgtga 650

atctcagaaa ttacaggaga taccctcaag tataatctgct ggttgcttag 700
gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750
aaaggggctca accagctcac ctggctatac cttgaccata accatatcag 800
caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850
ttcttagttc caatagaatc tccttatttc ttaacaatac cttcagacct 900
gtgacaaatt tacggaacctt ggatctgtcc tataatcagc tgcattctct 950
gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000
ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050
aacctggaac ttttggaccc gggatataac cgatccgaa gtttagccag 1100
gaatgtcttt gctggcatga tcagactcaa agaacttcac ctggagcaca 1150
atcaattttc caagctcaac ctggcccttt ttccaagggtt ggtcagcctt 1200
cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250
gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300
tcgaagcttt cagtggaccc agtgtttcc agtgtgtccc gaatctgcag 1350
cgccctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400
ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450
aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500
ggtctaaggg agaataacaat tatctgtgcc agtcccaaag agctgcaagg 1550
agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600
ctacagagag gtttgatctg gccaggcgtc tcccaaagcc gacgttaag 1650
cccaagctcc ccaggccgaa gcatgagagc aaacccctt tgcccccgac 1700
ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750
tctcttcca taaaatcatc gcgggcagcg tggcgcttt cctgtccgtg 1800
ctcgtcatcc tgctggttat ctacgtgtca tggaaaggcggt accctgcgag 1850
catgaagcag ctgcagcagc gctccctcat gcgaaggcac agaaaaaaga 1900
aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950
gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatggac 2000
gggaccctgc acctataaca aatcggcgtc cagggagtgt gaggtatgaa 2050
ccattgtat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100

ttgaactctg gtgactatca aggaacgca atgcggccccc tccccttccc 2150
tctccctctc actttggtgg caagatcattt ccttgtccgt ttttagtgcat 2200
tcataatact ggtcattttc ctctcataaca taatcaaccc attgaaattt 2250
aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300
ttgtataaga ccctttactg attccattaa tgtcgcat tt gtttaagat 2350
aaaacttctt tcataaggtaa aaaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met	Gly	Phe	Asn	Val	Ile	Arg	Leu	Leu	Ser	Gly	Ser	Ala	Val	Ala
1				5				10					15	
Leu	Val	Ile	Ala	Pro	Thr	Val	Leu	Leu	Thr	Met	Leu	Ser	Ser	Ala
				20				25					30	
Glu	Arg	Gly	Cys	Pro	Lys	Gly	Cys	Arg	Cys	Glu	Gly	Lys	Met	Val
				35				40					45	
Tyr	Cys	Glu	Ser	Gln	Lys	Leu	Gln	Glu	Ile	Pro	Ser	Ser	Ile	Ser
				50				55					60	
Ala	Gly	Cys	Leu	Gly	Leu	Ser	Leu	Arg	Tyr	Asn	Ser	Leu	Gln	Lys
				65				70					75	
Leu	Lys	Tyr	Asn	Gln	Phe	Lys	Gly	Leu	Asn	Gln	Leu	Thr	Trp	Leu
				80				85					90	
Tyr	Leu	Asp	His	Asn	His	Ile	Ser	Asn	Ile	Asp	Glu	Asn	Ala	Phe
				95				100					105	
Asn	Gly	Ile	Arg	Arg	Leu	Lys	Glu	Leu	Ile	Leu	Ser	Ser	Asn	Arg
				110				115					120	
Ile	Ser	Tyr	Phe	Leu	Asn	Asn	Thr	Phe	Arg	Pro	Val	Thr	Asn	Leu
				125				130					135	
Arg	Asn	Leu	Asp	Leu	Ser	Tyr	Asn	Gln	Leu	His	Ser	Leu	Gly	Ser
				140				145					150	
Glu	Gln	Phe	Arg	Gly	Leu	Arg	Lys	Leu	Leu	Ser	Leu	His	Leu	Arg
				155				160					165	
Ser	Asn	Ser	Leu	Arg	Thr	Ile	Pro	Val	Arg	Ile	Phe	Gln	Asp	Cys
				170				175					180	
Arg	Asn	Leu	Glu	Leu	Leu	Asp	Leu	Gly	Tyr	Asn	Arg	Ile	Arg	Ser
				185				190					195	
Leu	Ala	Arg	Asn	Val	Phe	Ala	Gly	Met	Ile	Arg	Leu	Lys	Glu	Leu

200	205	210
His Leu Glu His Asn Gln Phe Ser Lys Leu Asn Leu Ala Leu Phe		
215	220	225
Pro Arg Leu Val Ser Leu Gln Asn Leu Tyr Leu Gln Trp Asn Lys		
230	235	240
Ile Ser Val Ile Gly Gln Thr Met Ser Trp Thr Trp Ser Ser Leu		
245	250	255
Gln Arg Leu Asp Leu Ser Gly Asn Glu Ile Glu Ala Phe Ser Gly		
260	265	270
Pro Ser Val Phe Gln Cys Val Pro Asn Leu Gln Arg Leu Asn Leu		
275	280	285
Asp Ser Asn Lys Leu Thr Phe Ile Gly Gln Glu Ile Leu Asp Ser		
290	295	300
Trp Ile Ser Leu Asn Asp Ile Ser Leu Ala Gly Asn Ile Trp Glu		
305	310	315
Cys Ser Arg Asn Ile Cys Ser Leu Val Asn Trp Leu Lys Ser Phe		
320	325	330
Lys Gly Leu Arg Glu Asn Thr Ile Ile Cys Ala Ser Pro Lys Glu		
335	340	345
Leu Gln Gly Val Asn Val Ile Asp Ala Val Lys Asn Tyr Ser Ile		
350	355	360
Cys Gly Lys Ser Thr Thr Glu Arg Phe Asp Leu Ala Arg Ala Leu		
365	370	375
Pro Lys Pro Thr Phe Lys Pro Lys Leu Pro Arg Pro Lys His Glu		
380	385	390
Ser Lys Pro Pro Leu Pro Pro Thr Val Gly Ala Thr Glu Pro Gly		
395	400	405
Pro Glu Thr Asp Ala Asp Ala Glu His Ile Ser Phe His Lys Ile		
410	415	420
Ile Ala Gly Ser Val Ala Leu Phe Leu Ser Val Leu Val Ile Leu		
425	430	435
Leu Val Ile Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys		
440	445	450
Gln Leu Gln Gln Arg Ser Leu Met Arg Arg His Arg Lys Lys Lys		
455	460	465
Arg Gln Ser Leu Lys Gln Met Thr Pro Ser Thr Gln Glu Phe Tyr		
470	475	480
Val Asp Tyr Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu		
485	490	495

Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
500 505 510

Cys Glu Val

<210> 386

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 386

ctggatctg aacagttcg gggc 24

<210> 387

<211> 24

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-24

<223> Synthetic construct.

<400> 387

ggtccccagg acatggtctg tccc 24

<210> 388

<211> 48

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-48

<223> Synthetic construct.

<400> 388

gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48

<210> 389

<211> 1449

<212> DNA

<213> Homo sapiens

<400> 389

agttctgaga aagaaggaaa taaacacagg caccaaacc catatcctaag 50

ttgactgtcc tttaaatatg tcaagatcca gactttcag tgtcacctca 100

gcgatctcaa cgatagggat ctttgtttg ccgctattcc agttggtgct 150

ctcgaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200

aacaccctaa tggctggat atctggatcc tcctgctgct ggtttggtg 250
gcagctttc tctgtggagc tgtggccctc tgccctccagg gctggctgag 300
gagaccccgaa attgatttcc acaggcgcac catggcagg ttgtgtttg 350
gagacttggaa ctctattttt gggacagaag cagctgtgag tccaactgtt 400
ggaattcacc ttcaaactca aaccctgac ctatatcctg ttccctgctcc 450
atgtttggc ccttttagct ccccacctcc atatgaagaa attgtaaaaaa 500
caacctgatt ttagtgttgg attatcaatt taaagtatta acgacatctg 550
taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600
tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650
ggatgttggaa aaaaattttt gtcattggaga tgtttaaata gtaaagtagc 700
aggctttga tgtgtcactg ctgtatcata cttttatgct acacaaccaa 750
attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800
gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850
tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900
taacaatagc ccaagccgag aatccaaacat gtccagaacc agaaccagaa 950
agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000
tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050
gtctcagcaa aaacaagagg ttttatgccca caacctgaag aggaagaaat 1100
tgttagataga aggtgaagga gattgctgaa gatatacagc acatataatg 1150
ccaacacggg gagaaaaagaa aatttccccct tttacagtaa tgaatgtggc 1200
ctccatagtc catagtgttt ctctggagcc tcagggcttgc gcattttattt 1250
cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 1300
gcagaagtag caatgagaca tcttcaagtg gcattttggc agtggccatc 1350
agcagggggaa cagacaaaaaa catccatcac agatgacata tgatcttcag 1400
ctgacaaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449

<210> 390

<211> 146

<212> PRT

<213> Homo sapiens

<400> 390

Met	Ser	Arg	Ser	Arg	Leu	Phe	Ser	Val	Thr	Ser	Ala	Ile	Ser	Thr
1					5				10					15

Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp
20 25 30

Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln
35 40 45

His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Leu Val Leu
50 55 60

Val Ala Ala Leu Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys
65 70 75

Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala
80 85 90

Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala
95 100 105

Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro
110 115 120

Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser
125 130 135

Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr
140 145

<210> 391
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.

<400> 391
ctttcagtg tcacacctcagc gatctc 26

<210> 392
<211> 23
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-23
<223> Synthetic construct.

<400> 392
ccaaaacatg gagcaggaac agg 23

<210> 393
<211> 47
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-47
<223> Synthetic construct.

<400> 393
ccagttggtg ctctcgacc taccatgcga agaagatgaa atgtgtg 47

<210> 394
<211> 2340
<212> DNA
<213> Homo sapiens

<400> 394
gagcggagta aaatctccac aagctggaa caaacctcg 50
acccaccggc gtttctccag ctcgatctgg aggctgcttc gccagtgtgg 100
gacgcagctg acgcccgc tttagctctc gctgcgtcgc cccggctcag 150
aagctccgtg gcggcggcga ccgtgacgag aagcccacgg ccagctcagt 200
tctcttctac tttgggagag agagaaagtc agatgccctt tttaaactcc 250
ctcttcaaaa ctcatctccct gggtgactga gttaatagag tggataacaac 300
cttgctgaag atgaagaata tacaatattt aggatatttt tttctttttt 350
tttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400
gtctgtttgt ttgcttcttc agaaatgttt ttacaatct caagaaaaaaa 450
tatgtcccag aaattgagtt tactgttgct tgtatggc ctcatttggg 500
gattgatgtt actgcactat actttcaac aaccaagaca tcaaaggcgt 550
gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600
tctagcagag gaaaataaga acacagtggc tgtcgagaac ggtgcttcta 650
tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700
atttgcaac gattggtgaa gctggagaac aaagttgact atattgtgt 750
gaatggctca gcagccaaca ccaccaatgg tactagtggc aattggcgt 800
cagtaaccac aaataaaaga acgaatgtct cggcagttt cagatagcag 850
ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900
agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950
aagctctaca catttcaag gagtatgctg gattcatggc actctaattc 1000
tgtacataaa aattttaaag ttatttgttt gcttcaggc aagtctgttc 1050
aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtgg 1100

卷之三

<210> 395

<211> 140

<212> PRT

<213> Homo sapiens

<400> 395

Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser
1 5 10 15

Leu Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu
 20 25 30
 His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu
 35 40 45
 Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu
 50 55 60
 Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser
 65 70 75
 Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu
 80 85 90
 Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp
 95 100 105
 Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr
 110 115 120
 Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val
 125 130 135
 Ser Gly Ser Ile Arg
 140

<210> 396
 <211> 2639
 <212> DNA
 <213> Homo sapiens

<400> 396
 cgcggccggg ccgccgggt gagcgtgccg aggcggctgt ggccgcaggct 50
 tccagcccc accatgccgt ggccctgtct gctgctgtc gccgtgagt 100
 gggcccagac aaccggcca tgctccccg ggtgccaatg cgaggtggag 150
 acttcgccc tttcgacag cttagcctg actcgggtgg attttagcgg 200
 cctggccccc cacatcatgc cggtgcccatt ccctctggac acagcccact 250
 tggacctgtc ctccaaccgg ctggagatgg tgaatgagtc ggtgttggcg 300
 gggccgggtt acacgacgtt ggctggctg gatctcagcc acaacctgct 350
 caccagcatc tcacccactg ctttctcccg cttcgctac ctggagtcgc 400
 ttgaccttag cacaatggc ctgacagccc tgccagccga gagttcacc 450
 agctcacccc tgagcgacgt gaaccttagc cacaaccagc tccggaggt 500
 ctcagtgtct gccttcacga cgcacagtca gggccggca ctacacgtgg 550
 acctctccca caacctcatt caccgcctcg tgccccaccc cacgagggcc 600
 ggctgcctg cgcccaccat tcagagcctg aacctggctt ggaaccggct 650

ccatgccgtg cccaacctcc gagacttgcc cctgcgtac ctgagcctgg 700
atgggaaccc tctagctgtc attggccgg gtgccttcgc ggggctggga 750
ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800
gcccagtggc ttccgtgagc taccgggcct gcaggtcctg gacctgtcgg 850
gcaaccccaa gcttaactgg gcaggagctg aggtgtttc aggccctgagc 900
tccctgcagg agctggacct ttcgggcacc aacctggtgc ccctgcctga 950
ggcgctgctc ctccacctcc cggaactgca gagcgtcagc gtgggcccagg 1000
atgtcggtg cggcgccctg gtgcgggagg gcacctaccc ccggaggcct 1050
ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaaatctgc 1100
tgccagggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150
aacagactgc tgtcctggc tgcctcaggt cccgagtaac ttatgttcaa 1200
tgtgccaaca ccagtgggga gcccgccaggc ctatgtggca gcgtcaccac 1250
aggagttgtg ggcctaggag aggcttggc cctgggagcc acaccttagga 1300
gcaaagtctc acccctttgt ctacgttgct tccccaaacc atgagcagag 1350
ggacttcgat gccaaaccag actcgggtcc ctcctgcctt ccctccccca 1400
cttatccccca aagtgccttc ctcatgcctt gggccggcct gacccgcaat 1450
gggcagaggg tgggtgggac cccctgctgc agggcagagt tcaggtccac 1500
tgggctgagt gtcccttgg gcccatggcc cagtcactca gggcgagtt 1550
tctttctaa catagccctt tcttgccat gaggccatga ggcccgcttc 1600
atccctttct atttccctag aacctaattt gtagaaggaa ttgcaaagaa 1650
tcaagtccac cttctcatg tgacagatgg ggaaactgag gccttgagaa 1700
ggaaaaaggc taatctaagt tcctgcgggc agtggcatga ctggagcaca 1750
gcctcctgccc tcccagcccc gacccaatgc actttcttgt ctctctaat 1800
aagccccacc ctccccggcct gggctccct tgctgccctt gcctgttccc 1850
cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900
gactctggc ctctgaccag ctgtgcggca tgggctaagt cactctgccc 1950
ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000
ctcaccctgg gttgggggtcc cccagcatcc agactggaaa cctaccatt 2050
ttccctgag catcctcttag atgctgcccc aaggagttgc tgcagttctg 2100

gagcctcatc tggctggat ctccaagggg cctcctggat tcagtcccc 2150
ctggccctga gcacgacagc ccttcttacc ctcccagaa tgccgtgaaa 2200
ggagacaagg tctgcccac ccatgtctat gctctacccc cagggcagca 2250
tctcagcttc cgaaccctgg gctgtttcct tagtcttcata ttataaaaag 2300
ttgttgcctt tttaacggag tgtcaacttc aaccggcctc ccctacccct 2350
gctggccggg gatggagaca tgtcatttgt aaaagcagaa aaaggttgca 2400
tttggtaact ttgttaatat tgtcctggc ctgtgttggg gtgttgggg 2450
aagctggca tcagtggcca catgggcattc aggggctggc cccacagaga 2500
ccccacaggg cagttagctc tgtcttcccc cacctgccta gcccattatc 2550
tatctaaccg gtccttgatt taataaacac tataaaaagg taaaaaaaaa 2600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2639

<210> 397

<211> 353

<212> PRT

<213> Homo sapiens

<400> 397

Met	Pro	Trp	Pro	Leu	Leu	Leu	Leu	Leu	Ala	Val	Ser	Gly	Ala	Gln
1				5				10					15	
Thr	Thr	Arg	Pro	Cys	Phe	Pro	Gly	Cys	Gln	Cys	Glu	Val	Glu	Thr
				20				25				30		
Phe	Gly	Leu	Phe	Asp	Ser	Phe	Ser	Leu	Thr	Arg	Val	Asp	Cys	Ser
				35				40				45		
Gly	Leu	Gly	Pro	His	Ile	Met	Pro	Val	Pro	Ile	Pro	Leu	Asp	Thr
				50				55				60		
Ala	His	Leu	Asp	Leu	Ser	Ser	Asn	Arg	Leu	Glu	Met	Val	Asn	Glu
				65				70				75		
Ser	Val	Leu	Ala	Gly	Pro	Gly	Tyr	Thr	Thr	Leu	Ala	Gly	Leu	Asp
				80				85				90		
Leu	Ser	His	Asn	Leu	Leu	Thr	Ser	Ile	Ser	Pro	Thr	Ala	Phe	Ser
				95				100				105		
Arg	Leu	Arg	Tyr	Leu	Glu	Ser	Leu	Asp	Leu	Ser	His	Asn	Gly	Leu
				110				115				120		
Thr	Ala	Leu	Pro	Ala	Glu	Ser	Phe	Thr	Ser	Ser	Pro	Leu	Ser	Asp
				125				130				135		
Val	Asn	Leu	Ser	His	Asn	Gln	Leu	Arg	Glu	Val	Ser	Val	Ser	Ala
				140				145				150		

Phe Thr Thr His Ser Gln Gly Arg Ala Leu His Val Asp Leu Ser
155 160 165

His Asn Leu Ile His Arg Leu Val Pro His Pro Thr Arg Ala Gly
170 175 180

Leu Pro Ala Pro Thr Ile Gln Ser Leu Asn Leu Ala Trp Asn Arg
185 190 195

Leu His Ala Val Pro Asn Leu Arg Asp Leu Pro Leu Arg Tyr Leu
200 205 210

Ser Leu Asp Gly Asn Pro Leu Ala Val Ile Gly Pro Gly Ala Phe
215 220 225

Ala Gly Leu Gly Gly Leu Thr His Leu Ser Leu Ala Ser Leu Gln
230 235 240

Arg Leu Pro Glu Leu Ala Pro Ser Gly Phe Arg Glu Leu Pro Gly
245 250 255

Leu Gln Val Leu Asp Leu Ser Gly Asn Pro Lys Leu Asn Trp Ala
260 265 270

Gly Ala Glu Val Phe Ser Gly Leu Ser Ser Leu Gln Glu Leu Asp
275 280 285

Leu Ser Gly Thr Asn Leu Val Pro Leu Pro Glu Ala Leu Leu Leu
290 295 300

His Leu Pro Ala Leu Gln Ser Val Ser Val Gly Gln Asp Val Arg
305 310 315

Cys Arg Arg Leu Val Arg Glu Gly Thr Tyr Pro Arg Arg Pro Gly
320 325 330

Ser Ser Pro Lys Val Pro Leu His Cys Val Asp Thr Arg Glu Ser
335 340 345

Ala Ala Arg Gly Pro Thr Ile Leu
350

<210> 398

<211> 23

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-23

<223> Synthetic construct.

<400> 398

ccctgccagc cgagagcttc acc 23

<210> 399

<211> 23

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-23

<223> Synthetic construct.

<400> 399
ggtttgtgcc cgaaagggcc agc 23

<210> 400

<211> 44

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-44

<223> Synthetic construct.

<400> 400
caaccccaag ctttaactggg caggagctga ggtgtttca ggcc 44

<210> 401

<211> 1571

<212> DNA

<213> Homo sapiens

<400> 401
gatggcgtag ccacagcttc tgtgagattc gatttctccc cagttcccc 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaagg 100
gaggctatat gcgtcaattc cccaaaacaa gtttgacat ttcccctgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggcattac 200
ctgctgggca ctaacggcg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
ttctcttcac gggaggcttgc agtgcgttgc ttactcctgtt ggtctccaga 350
tttcaggcct aagatgaaag cctcttagtct tgccctcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttggaaagct gtgtgatcgc cacaacaccc cagggaaatac gaaatggatt 500
ttctgagata cggggcagtgc tgcaagccaa agatggaaac attgacatca 550
gaatcttaag gaggactgag tctttgcaag acacaaagcc tgcaaatcga 600
tgctgcctcc tgccgcattt gctaagactc tatctggaca gggattttaa 650
aaactaccag acccctgacc attatactct ccggaaagatc agcagcctcg 700
ccaattcctt tcttaccatc aagaaggacc tccggctctc tcattgcccac 750

atgacatgcc attgtggga ggaagcaatg aagaaataca gccagattct 800
gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggcttgg 850
gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900
agtgtatgtg ctgctaagaa tattcgaggt caagagctcc agtcttaat 950
acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000
cttgcgtgg tcacagtgtt tcttattttt gcattacttg ctcccttgc 1050
tgattgtctt tatgcatccc caatcttaat tgagaccata ctgtataag 1100
attttgtaa tatcttctg ctattggata tatttatttag ttaatatatt 1150
tatttatttt ttgctattta atgtatttt tttttactt ggacatgaaa 1200
ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250
gtatttttat acagtaaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300
ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350
gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400
tgtgaaataa gtttgatgt ggaattgcac atctaccta caattactga 1450
ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500
aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550
ccaaaaaaaaaaaaaaa a 1571

<210> 402
<211> 261
<212> PRT
<213> Homo sapiens

<400> 402
Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met
1 5 10 15
Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu
20 25 30
Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
35 40 45
Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu
50 55 60
Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu
65 70 75
Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser
80 85 90

<210> 403

<211> 28

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-28

<223> Synthetic construct.

<400> 403

ctcctgtgg ctccagattt caggccta 28

<210> 404

<211> 26

<212> DNA

<213> Artificial

<220>
<221>

<221> Artificial Sequence
<222> 1-36

<222> 1-26
<223> Synt

<zzz> synthetic construct.

<400> 404
agtccctcatt aagattctga tgtcaa 26

<210> 405
<211> 998
<212> DNA
<213> Homo sapiens

<400> 405
ccgttatcgt cttgcgctac tgctgaatgt ccgtccccga ggaggaggag 50
aggctttgc cgctgaccca gagatggccc cgagcgagca aattcctact 100
gtccggctgc gcggctaccg tggccgagct agcaacccctt cccctggatc 150
tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200
ggagacggtg caagagaatc tgccccctat agggaaatgg tgcccacagc 250
ccttagggatc attgaagagg aaggctttct aaagcttgg caaggagtga 300
caccggccat ttacagacac gtatgttatt ctggaggtcg aatggtcaca 350
tatgaacatc tccgagaggt tgcgtttggc aaaagtgaag atgagcatta 400
tccccttgg aaatcagtc ttggagggat gatggctgg tttattggcc 450
agtttttagc caatccaact gacctagtga agttcagat gcaaatggaa 500
ggaaaaagga aactggaaagg aaaaccattt cgatttcgtg gtgtacatca 550
tgcatttgc aaaaatcttag ctgaaggagg aatacgaggg ctttggcag 600
gctgggtacc caatatacaa agagcagcac tggtaatat gggagattta 650
accactttag atacagtcaa acactacttg gtattgaata caccacttga 700
ggacaatatc atgactcactg gtttatcaag tttatgttct ggactggtag 750
cttctattct gggAACACCA gcccgtgtca tcaaaAGCAG aataatgaat 800
caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850
ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900
gcttttacc atcttggctg agaatgaccc ctggtaat ggtgttctgg 950
cttactttag aaaaaatcag agagatgagt ggagtcagtc catttaa 998

<210> 406
<211> 323
<212> PRT
<213> Homo sapiens

<400> 406
Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln
1 5 10 15

Arg	Trp	Pro	Arg	Ala	Ser	Lys	Phe	Leu	Leu	Ser	Gly	Cys	Ala	Ala
							20							30
Thr	Val	Ala	Glu	Leu	Ala	Thr	Phe	Pro	Leu	Asp	Leu	Thr	Lys	Thr
							35							45
Arg	Leu	Gln	Met	Gln	Gly	Glu	Ala	Ala	Leu	Ala	Arg	Leu	Gly	Asp
							50							60
Gly	Ala	Arg	Glu	Ser	Ala	Pro	Tyr	Arg	Gly	Met	Val	Arg	Thr	Ala
							65							75
Leu	Gly	Ile	Ile	Glu	Glu	Glu	Gly	Phe	Leu	Lys	Leu	Trp	Gln	Gly
							80							90
Val	Thr	Pro	Ala	Ile	Tyr	Arg	His	Val	Val	Tyr	Ser	Gly	Gly	Arg
							95							105
Met	Val	Thr	Tyr	Glu	His	Leu	Arg	Glu	Val	Val	Phe	Gly	Lys	Ser
							110							120
Glu	Asp	Glu	His	Tyr	Pro	Leu	Trp	Lys	Ser	Val	Ile	Gly	Gly	Met
							125							135
Met	Ala	Gly	Val	Ile	Gly	Gln	Phe	Leu	Ala	Asn	Pro	Thr	Asp	Leu
							140							150
Val	Lys	Val	Gln	Met	Gln	Met	Glu	Gly	Lys	Arg	Lys	Leu	Glu	Gly
							155							165
Lys	Pro	Leu	Arg	Phe	Arg	Gly	Val	His	His	Ala	Phe	Ala	Lys	Ile
							170							180
Leu	Ala	Glu	Gly	Gly	Ile	Arg	Gly	Leu	Trp	Ala	Gly	Trp	Val	Pro
							185							195
Asn	Ile	Gln	Arg	Ala	Ala	Leu	Val	Asn	Met	Gly	Asp	Leu	Thr	Thr
							200							210
Tyr	Asp	Thr	Val	Lys	His	Tyr	Leu	Val	Leu	Asn	Thr	Pro	Leu	Glu
							215							225
Asp	Asn	Ile	Met	Thr	His	Gly	Leu	Ser	Ser	Leu	Cys	Ser	Gly	Leu
							230							240
Val	Ala	Ser	Ile	Leu	Gly	Thr	Pro	Ala	Asp	Val	Ile	Lys	Ser	Arg
							245							255
Ile	Met	Asn	Gln	Pro	Arg	Asp	Lys	Gln	Gly	Arg	Gly	Leu	Leu	Tyr
							260							270
Lys	Ser	Ser	Thr	Asp	Cys	Leu	Ile	Gln	Ala	Val	Gln	Gly	Glu	Gly
							275							285
Phe	Met	Ser	Leu	Tyr	Lys	Gly	Phe	Leu	Pro	Ser	Trp	Leu	Arg	Met
							290							300
Thr	Pro	Trp	Ser	Met	Val	Phe	Trp	Leu	Thr	Tyr	Glu	Lys	Ile	Arg

305

310

315

Glu Met Ser Gly Val Ser Pro Phe
320

<210> 407

<211> 31

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-31

<223> Synthetic construct.

<400> 407

cgcggatccc gttatcgctc tgcgctactg c 31

<210> 408

<211> 34

<212> DNA

<213> Artificial

<220>

<221> Artificial Sequence

<222> 1-34

<223> Synthetic construct.

<400> 408

gcggaaattct taaaatggac tgactccact catc 34

<210> 409

<211> 1487

<212> DNA

<213> Homo sapiens

<400> 409

cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50

tcctgcgcgc ggcctgaag tcggcgtggg cgttttagga agctggata 100

cagcatttaa taaaaatatt atgcttaaga agtaaaaatg gcaggcttcc 150

tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 200

agaaatgctg tggcatctgt tgtcgcaggt atattgttt ttacaggctg 250

gtggataatg attgatgcag ctgtgggtga tcctaagcca gaacagttga 300

accatgcctt tcacacatgt ggttatattt ccacattggc tttcttcatg 350

ataaaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400

ctgttagga agaacaggtg ctgcagtttgcattt ggtttcatgt 450

tgtatgtttgg gtcacttattt gcttccatgt ggattcttt tggtgcatat 500

gttacccaaa atactgtatgt ttatccggga ctagctgtgt ttttcaaaa 550

tgcaacctata ttttttagca ctctgatcta caaatttggaa agaaccgaag 600
agctatggac ctgagatcac ttcttaagtc acatttcct tttgttatat 650
tctgtttgtat gatagggttt ttatctctca gtacacattt ccaaattggag 700
tagattgtac attaaatgtt ttgtttctt acatttttat gttctgagtt 750
ttgaaatagt tttatgaaat ttcttttattt ttcattgcat agactgttaa 800
tatgttatata atacaagact atatgaattt gataatgagt atcagttttt 850
tattcctgag atttagaact tgatctactc cctgagccag gtttacatca 900
tcttgcatt ttagaagtaa ccactcttgc ctctctggct gggcacggtg 950
gctcatgcct gtaatcccag cactttggaa ggccgaggcg ggccgattgc 1000
ttgaggtcaa gtgtttgaga ccagccctggc caacatggcg aaaccccatc 1050
tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100
cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150
aggttgcagt gagctgagtt tgcgccactg cactctagcc tgggggagaa 1200
agtgaaactc cctctcaaaa aaaagaccac tctcagttatc tctgatttct 1250
gaagatgtac aaaaaaatat agtttcatat atctggaatg agcactgagc 1300
cataaaaggt tttcagcaag ttgttaactt ttttggccta aaaatgaggt 1350
tttttggta aagaaaaat atttgttctt atgtattgaa gaagtgtact 1400
tttatataat gattttttaa atgccccaaag gactagttt gaaagtttctt 1450
ttaaaaagaa ttcctctaattt atgactttat gtgagaa 1487

<210> 410

<211> 158

<212> PRT

<213> Homo sapiens

<400> 410

Met	Ala	Gly	Phe	Leu	Asp	Asn	Phe	Arg	Trp	Pro	Glu	Cys	Glu	Cys
1									10					15

Ile	Asp	Trp	Ser	Glu	Arg	Arg	Asn	Ala	Val	Ala	Ser	Val	Val	Ala
									20			25		30

Gly	Ile	Leu	Phe	Phe	Thr	Gly	Trp	Trp	Ile	Met	Ile	Asp	Ala	Ala
									35			40		45

Val	Val	Tyr	Pro	Lys	Pro	Glu	Gln	Leu	Asn	His	Ala	Phe	His	Thr
									50			55		60

Cys	Gly	Val	Phe	Ser	Thr	Leu	Ala	Phe	Phe	Met	Ile	Asn	Ala	Val
										65		70		75

Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
80 85 90

Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
95 100 105

Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
110 115 120

Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
125 130 135

Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
140 145 150

Gly Arg Thr Glu Glu Leu Trp Thr
155

<210> 411
<211> 20
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.

<400> 411
gtttgaggaa gctggatatac 20

<210> 412
<211> 20
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-20
<223> Synthetic construct.

<400> 412
ccaaactcgaa gcacctgttc 20

<210> 413
<211> 40
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-40
<223> Synthetic construct.

<400> 413
atggcaggct tccttagataa ttttcgttgg ccagaatgtg 40

<210> 414

<211> 1337
<212> DNA
<213> Homo sapiens

<400> 414
gttgcggca aacttcctca aaggaggggc agagcctgcg cagggcagga 50
gcagctggcc cactggcgcc ccgcaacact ccgtctcacc ctctgggcc 100
actgcacatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150
gggaggtggg actgtcagaa gctggcccg ggtggtggtc agctgggtca 200
gggacacctacg gcacacctgtg gaccacctcg ccttctccat cgaagcaggg 250
aagtgggagc ctcgagccct cggttggaaag ctgaccccaa gccacccttc 300
acctggacag gatgagagtg tcaggtgtgc ttgcgcctcct ggcgcctc 350
tttgcctatgc tcacgacatg gatgttatt cgaagctaca tgagcttcag 400
cataaaaacc atccgtctgc cacgctggct ggcagccctcg cccaccaagg 450
agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500
aactactttg cgtaaaaat ctgcagtggg gccgccaacg tcgtggcc 550
tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600
tggcagagg cctaaacatc gccctggta atgaaaccac gggagctgtg 650
ctggcacaga aggcatgttga catgtactct ggagatgtt tgacacctagt 700
gaaattcctt aaagaaattc cgggggggtgc actgggtctg gtggcctcct 750
acgacgatcc agggacccaaa atgaacgatg aaagcagggaa actcttctct 800
gacttgggaa gttcctacgc aaaacaactg ggcttccggg acagctgggt 850
cttcatacgtt gccaaagacc tcagggtaa aagccccctt gagcagttct 900
taaagaacag cccagacaca aacaaaatacg agggatggcc agagctgtg 950
gagatggagg gctgcacgtcc cccgaagcca ttttagggtg gctgtggctc 1000
ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050
cccgccagg gctgaggagg aggagcaggg ggtgctgcgt ggaaggtgct 1100
gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150
tcccacagca catcctaccc ggaagaccag cctcagaggg tccttctgg 1200
accagctgtc tgtggagaga atggggtgct ttgcgtcagg actgctgacg 1250
gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300
tatTTTgct ggTTTgaaa aaaaaaaaaa aaaaaaaaa 1337

<210> 415
 <211> 224
 <212> PRT
 <213> Homo sapiens

<400> 415
 Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala
 1 5 10 15

Ile	Val	Thr	Thr	Trp	Met	Phe	Ile	Arg	Ser	Tyr	Met	Ser	Phe	Ser
	20				25					30				

Met	Lys	Thr	Ile	Arg	Leu	Pro	Arg	Trp	Leu	Ala	Ala	Ser	Pro	Thr
	35				40					45				

Lys	Glu	Ile	Gln	Val	Lys	Lys	Tyr	Lys	Cys	Gly	Leu	Ile	Lys	Pro
	50				55					60				

Cys	Pro	Ala	Asn	Tyr	Phe	Ala	Phe	Lys	Ile	Cys	Ser	Gly	Ala	Ala
	65				70					75				

Asn	Val	Val	Gly	Pro	Thr	Met	Cys	Phe	Glu	Asp	Arg	Met	Ile	Met
	80				85					90				

Ser	Pro	Val	Lys	Asn	Asn	Val	Gly	Arg	Gly	Leu	Asn	Ile	Ala	Leu
	95					100				105				

Val	Asn	Gly	Thr	Thr	Gly	Ala	Val	Leu	Gly	Gln	Lys	Ala	Phe	Asp
	110				115					120				

Met	Tyr	Ser	Gly	Asp	Val	Met	His	Leu	Val	Lys	Phe	Leu	Lys	Glu
	125				130					135				

Ile	Pro	Gly	Gly	Ala	Leu	Val	Leu	Val	Ala	Ser	Tyr	Asp	Asp	Pro
	140				145					150				

Gly	Thr	Lys	Met	Asn	Asp	Glu	Ser	Arg	Lys	Leu	Phe	Ser	Asp	Leu
	155				160					165				

Gly	Ser	Ser	Tyr	Ala	Lys	Gln	Leu	Gly	Phe	Arg	Asp	Ser	Trp	Val
	170				175					180				

Phe	Ile	Gly	Ala	Lys	Asp	Leu	Arg	Gly	Lys	Ser	Pro	Phe	Glu	Gln
	185				190					195				

Phe	Leu	Lys	Asn	Ser	Pro	Asp	Thr	Asn	Lys	Tyr	Glu	Gly	Trp	Pro
	200				205					210				

Glu	Leu	Leu	Glu	Met	Glu	Gly	Cys	Met	Pro	Pro	Lys	Pro	Phe	
	215				220									

<210> 416
 <211> 21
 <212> DNA
 <213> Artificial

<220>
 <221> Artificial Sequence

<222> 1-21
<223> Synthetic construct.

<400> 416
gccatagtca cgacatggat g 21

<210> 417
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 417
ggatggccag agctgctg 18

<210> 418
<211> 26
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-26
<223> Synthetic construct.

<400> 418
aaagtacaag tgtggcctca tcaagg 26

<210> 419
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 419
tctgactcct aagtcaggca ggag 24

<210> 420
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 420
attctctcca cagacagctg gttc 24

<210> 421
<211> 46
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-46
<223> Synthetic construct.

<400> 421
gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46

<210> 422
<211> 1701
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1528
<223> unknown base

<400> 422
gagactgcag agggagataa agagagaggg caaagaggca gcaagagatt 50
tgtcctgggg atccagaaac ccatgataacc ctactgaaca ccgaatcccc 100
tggaaagccc a cagagacaga gacagcaaga gaagcagaga taaataact 150
cacgccagga gctcgctcgc tctctctc tctctctcac tcctccctcc 200
ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtccct 250
gcaccccttc ctgggacact atgttgttct ccgcctcct gctggaggtg 300
atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccccc 500
ggacctgcac aacaatggcc acacagtgc actctctctg ccctctaccc 550
tgtatctggg tggacttccc cgaaaatatg tagctgccc gctccacctg 600
cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
atgacagctt gagtgaggct gctgagaggc ctcagggcct ggctgtcctg 750
ggcatcctaa ttgaggtggg tgagactaag aatatacgat atgaacacat 800
tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850

ctcccttcaa cctaagagag ctgctcccc aacagctggg gcagtacttc 900
cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950
gacagtttt tatagaaggt cccagattc aatggaacag ctggaaaagc 1000
ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050
cagaactacc gagcccttca gcctctcaat cagcgcattgg tcttgcttc 1100
tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150
gtgttagaat cttgggttggc tgtctctgcc ttctcctggc tgtttatttc 1200
attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtgg 1250
cttcacacctca gcacaaggcca cgactgaggc ataaattcct tctcagatac 1300
catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350
gggtgttagga tctggccaga aacactgttag gagtagtaag cagatgtcct 1400
ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450
ggaagaactg cagagccttc agcctctcca aacatgttagg aggaaatgag 1500
gaaatcgctg tggtgttaat gcagaganca aactctgttt agttgcaggg 1550
gaagtttggg atatacccca aagtccctcta cccccctact tttatggccc 1600
tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650
gaagttgtat attttgatc aatatatttg gaaattaaag tttctgactt 1700
t 1701

<210> 423
<211> 337
<212> PRT
<213> Homo sapiens

<400> 423
Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala
1 5 10 15
Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln
20 25 30
Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln
35 40 45
Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp
50 55 60
Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75
Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu

80	85	90
Pro Ser Thr Leu Tyr	Leu Gly Gly	Leu Pro Arg Lys
95	100	105
Ala Gln Leu His Leu His Trp	Gly Gln Lys	Gly Ser Pro Gly
110	115	120
Ser Glu His Gln Ile Asn Ser	Glu Ala Thr	Phe Ala Glu Leu His
125	130	135
Ile Val His Tyr Asp Ser Asp	Ser Tyr Asp	Ser Leu Ser Glu Ala
140	145	150
Ala Glu Arg Pro Gln Gly	Leu Ala Val	Leu Gly Ile Leu Ile Glu
155	160	165
Val Gly Glu Thr Lys Asn	Ile Ala Tyr	Glu His Ile Leu Ser His
170	175	180
Leu His Glu Val Arg His Lys	Asp Gln Lys	Thr Ser Val Pro Pro
185	190	195
Phe Asn Leu Arg Glu	Leu Leu Pro Lys	Gln Leu Gly Gln Tyr Phe
200	205	210
Arg Tyr Asn Gly Ser	Leu Thr Thr Pro	Pro Cys Tyr Gln Ser Val
215	220	225
Leu Trp Thr Val Phe	Tyr Arg Arg Ser	Gln Ile Ser Met Glu Gln
230	235	240
Leu Glu Lys Leu Gln Gly	Thr Leu Phe Ser	Thr Glu Glu Glu Pro
245	250	255
Ser Lys Leu Leu Val Gln	Asn Tyr Arg Ala	Leu Gln Pro Leu Asn
260	265	270
Gln Arg Met Val Phe	Ala Ser Phe Ile	Gln Ala Gly Ser Ser Tyr
275	280	285
Thr Thr Gly Glu Met	Leu Ser Leu Gly	Val Gly Ile Leu Val Gly
290	295	300
Cys Leu Cys Leu Leu	Leu Ala Val Tyr	Phe Ile Ala Arg Lys Ile
305	310	315
Arg Lys Lys Arg Leu	Glu Asn Arg Lys	Ser Val Val Phe Thr Ser
320	325	330
Ala Gln Ala Thr Thr	Glu Ala	
335		

<210> 424

<211> 18

<212> DNA

<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 424
gtaaaagtcgc tggccagc 18

<210> 425
<211> 18
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-18
<223> Synthetic construct.

<400> 425
cccgatctgc ctgctgta 18

<210> 426
<211> 24
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic construct.

<400> 426
ctgcactgta tggccattat tgtg 24

<210> 427
<211> 45
<212> DNA
<213> Artificial

<220>
<221> Artificial Sequence
<222> 1-45
<223> Synthetic construct.

<400> 427
cagaaaccca tgataacccta ctgaacacccg aatccccctgg aagcc 45

<210> 428
<211> 1073
<212> DNA
<213> Homo sapiens

<400> 428
aattttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
acattttgcc tcgtggaccc aaaggttagca atctgaaaca tgaggagtagc 100
gattctactg ttttgtcttc taggatcaac tcggtcattt ccacagctca 150

HUMAN GENOME PROJECT

aacctgcttt gggactccct cccacaaaaac tggctccgga tcagggaca 200
ctaccaaacc aacagcagtc aaatcaggc tttccttctt taagtctgat 250
accattaaca cagatgctca cactggggcc agatctgcat ctgttaaatc 300
ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350
gggttgaatg tacaacagca actgcaccca catgtgttac caattttgt 400
cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450
aaatcttcac gagcctcatc atccattcct tgcccccggg aggcatcctg 500
cccaccagtc aggcaaaaaa taatccagat gtccaggatg gaagccttcc 550
agcaggagga gcaggtgtaa atcctgccac ccagggaaacc ccagcaggcc 600
gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650
gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700
agcaaatgga attcagtaag ctgtttcaaa tttttcaac taagctgcct 750
cgaatttggt gatacatgtg aatctttatc attgattata ttatgaaata 800
gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850
gaaaatattc ttgaaatttc agaaaatatg ttctatgttag agaatccccaa 900
ctttaaaaaa caataattca atggataaat ctgtcttga aatataacat 950
tatgctgcct ggatgatatg catattaaaa catattgga aaactggaaa 1000
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1050
aaaaaaaaaa aaaaaaaaaa aaa 1073

<210> 429

<211> 209

<212> PRT

<213> Homo sapiens

<400> 429

Met	Arg	Ser	Thr	Ile	Leu	Leu	Phe	Cys	Leu	Leu	Gly	Ser	Thr	Arg
1				5					10				15	
Ser	Leu	Pro	Gln	Leu	Lys	Pro	Ala	Leu	Gly	Leu	Pro	Pro	Thr	Lys
				20				25				30		
Leu	Ala	Pro	Asp	Gln	Gly	Thr	Leu	Pro	Asn	Gln	Gln	Gln	Ser	Asn
				35				40				45		
Gln	Val	Phe	Pro	Ser	Leu	Ser	Leu	Ile	Pro	Leu	Thr	Gln	Met	Leu
				50				55				60		
Thr	Leu	Gly	Pro	Asp	Leu	His	Leu	Leu	Asn	Pro	Ala	Ala	Gly	Met
				65				70				75		

Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn
80 85 90

Val Gln Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr
95 100 105

Gln Leu Gly Ala Gln Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro
110 115 120

Gln Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly
125 130 135

Ile Leu Pro Thr Ser Gln Ala Gly Ala Asn Pro Asp Val Gln Asp
140 145 150

Gly Ser Leu Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gln
155 160 165

Gly Thr Pro Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp
170 175 180

Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His
185 190 195

Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gln
200 205

<210> 430
<211> 1257
<212> DNA
<213> Homo Sapien

<400> 430
ggagagaggc gcgcgggtga aaggcgcat gatgcagcct gcggcggcct 50
cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100
ccgcctccag ctccgcgtg cccggcagcc gggagccatg cgaccccagg 150
gccccgcccgc ctcccccgcag cggctccgcg gcctcctgct gctcctgctg 200
ctgcagctgc ccgcgcgtc gagcgcctct gagatcccc agggaaagca 250
aaaggcgcag ctccggcaga gggaggttgt ggacctgtat aatggaatgt 300
gcttacaagg gccagcagga gtgcctggtc gagacggag ccctggggcc 350
aatgttattc cgggtacacc tggatcccc ggtcgggatg gattcaaagg 400
agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450
actacaagca gtgttcatgg agttcattga attatggcat agatcttggg 500
aaaattgcgg agtgtacatt tacaaagatg cggtcaaata gtgtcttaag 550
agttttgttc agtggctcac ttccggctaaa atgcagaaat gcatgctgtc 600
agcgttggta tttcacattc aatggagctg aatgttcagg acctttccc 650

attgaagcta taattttattt ggaccaagga agccctgaaa tgaattcaac 700
aattaatatt catcgactt cttctgtgga aggacttgtt gaaggaattg 750
gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800
ccaaaaggag atgcttctac tggatggaat tcagttctc gcattcattat 850
tgaagaacta ccaaaataaa tgcttaatt ttcatttgct acctctttt 900
ttattatgcc ttggaatggt tcacttaat gacattttaa ataagtttat 950
gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000
tgatttcaca ctgttttaa atctagcatt attcatttt cttcaatcaa 1050
aagtggttc aatattttt ttagttgggt agaatacttt cttcatagtc 1100
acattctctc aacctataat ttggaatatt gttgtggct tttgttttt 1150
ctcttagtat agcattttta aaaaaatata aaagctacca atctttgtac 1200
aatttgtaaa tgttaagaat ttttttata tctgttaaat aaaaattatt 1250
tccaaca 1257

<210> 431
<211> 243
<212> PRT
<213> Homo Sapien

<400> 431

Met	Arg	Pro	Gln	Gly	Pro	Ala	Ala	Ser	Pro	Gln	Arg	Leu	Arg	Gly
1				5					10				15	
Leu	Gln	Leu	Pro	Ala	Pro	Ser	Ser	Ala						
								20			25			30
Ser	Glu	Ile	Pro	Lys	Gly	Lys	Gln	Lys	Ala	Gln	Leu	Arg	Gln	Arg
				35				40					45	
Glu	Val	Val	Asp	Leu	Tyr	Asn	Gly	Met	Cys	Leu	Gln	Gly	Pro	Ala
				50				55					60	
Gly	Val	Pro	Gly	Arg	Asp	Gly	Ser	Pro	Gly	Ala	Asn	Val	Ile	Pro
				65				70				75		
Gly	Thr	Pro	Gly	Ile	Pro	Gly	Arg	Asp	Gly	Phe	Lys	Gly	Glu	Lys
				80				85				90		
Gly	Glu	Cys	Leu	Arg	Glu	Ser	Phe	Glu	Glu	Ser	Trp	Thr	Pro	Asn
				95				100				105		
Tyr	Lys	Gln	Cys	Ser	Trp	Ser	Ser	Leu	Asn	Tyr	Gly	Ile	Asp	Leu
				110				115				120		
Gly	Lys	Ile	Ala	Glu	Cys	Thr	Phe	Thr	Lys	Met	Arg	Ser	Asn	Ser
				125				130				135		

Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
140 145 150

Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
155 160 165

Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
170 175 180

Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
185 190 195

Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
200 205 210

Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
215 220 225

Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu
230 235 240

Leu Pro Lys

<210> 432
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence

<400> 432
aggacttgcc ctcaggaa 18

<210> 433
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 433
cgcaggacag ttgtgaaaat a 21

<210> 434
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 434
atgacgctcg tccaaggcca c 21

<210> 435

<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 435
cccacctgta ccaccatgt 19

<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 436
actccaggca ccatctgttc tccc 24

<210> 437
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 437
aagggctggc attcaagtc 19

<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 438
tgacctggca aaggaagaa 19

<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 439
cagccaccct ccagtccaag g 21

<210> 440
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 440
gggtcgtgtt ttggagaga 19

<210> 441
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 441
ctggccctca gagcaccaat 20

<210> 442
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 442
tcctccatca cttcccctag ctcca 25

<210> 443
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 443
ctggcaggag ttaaagtcc aaga 24

<210> 444
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 444
aaaggacacc gggatgtg 18

<210> 445
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 445
agcgtaact ctctccaggc aaccag 26

<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 446
caattctgga tgaggtggta ga 22

<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 447
caggactgag cgcttgttta 20

<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 448
caaagcgcca agtaccggac c 21

<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 449
ccagaccta gccaggaa 18

<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 450
cccttagctga ccccttca 18

<210> 451
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 451
tctgacaaggc agttttctga atc 23

<210> 452
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 452
ctctcccccct cccttttcct ttgttt 26

<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 453
ctctggtgcc cacagtga 18

<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 454
ccatgcctgc tcagccaaga a 21

<210> 455
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 455
caggaaatct ggaaacctac agt 23

<210> 456
<211> 20
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
ccttggaaaag gaccgcgttt 20

<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 457
atgagtcgca cctgctgttc cc 22

<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 458
tagcagctgc ctttggta 18

<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 459
aacagcaggat gcgactcatc ta 22

<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 460
tgcttaggcga cgacacccag acc 23

<210> 461
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 461
tggacacgtg gcagtgg 18

<210> 462
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 462
tcatggtctc gtcccattc 19

<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 463
caccatttgt ttctctgtct ccccatc 27

<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 464
ccggcatcct tggagtag 18

<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 465
tccccattag cacaggagta 20

<210> 466
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 466

aggctttgc ctgtcctgct gct 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 467
gcccaagatgc ccacttgt 18

<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 468
actgtccgc ctactacga 19

<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 469
aggcatcctc gccgtcctca 20

<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 470
aaggccaagg tgagtccat 19

<210> 471
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 471
cgagtgtgtg cgaaacctaa 20

<210> 472

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 472
tcagggtctca catcagccctc ctgc 24

<210> 473
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 473
aaggccaagg tgagtccat 19

<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 474
cctactgagg agccctatgc 20

<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 475
tccagggtgga ccccacttca gg 22

<210> 476
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 476
gggaggctta taggccaaat ctgg 24

<210> 477
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 477

ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50