

remative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V420H2 SUFFIX: LE4

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your confirmand comments.	mation with your signature

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Peggi Chiu

Version 2.1 Date : 2 Aug. 2010

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	6
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	7
2.3 ELECTRICAL ABSOLUTE RATINGS	
3. ELECTRICAL CHARACTERISTICS	8
3.1 TFT LCD MODULE	
3.2 BACKLIGHT CONVERTER UNIT	
4. BLOCK DIAGRAM OF INTERFACE	14
4.1 TFT LCD MODULE	
5. INTERFACE PIN CONNECTION	15
5.1 TFT LCD MODULE	15
5.2 BACKLIGHT UNIT	
5.3 CONVERTER UNIT	20
5.4 BLOCK DIAGRAM OF INTERFACE	21
5.5 LVDS INTERFACE	23
5.6 COLOR DATA INPUT ASSIGNMENT	23
6. INTERFACE TIMING	26
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	26
6.2 POWER ON/OFF SEQUENCE	267
7. OPTICAL CHARACTERISTICS	29
7.1 TEST CONDITIONS	29
7.2 OPTICAL SPECIFICATIONS	30
8. DEFINITION OF LABELS	33
8.1 CMO MODULE LABEL	33
9. PACKAGING	35
9.1 PACKING SPECIFICATIONS	35
9.2 PACKING METHOD	35
10. PRECAUTIONS	37
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	37
10.2 SAFETY PRECAUTIONS	37
11. MECHANICAL CHARACTERISTICS	38

Appendix – TWO Wire BUS INTRODUCTION	40
A.1 PIN ASSIGNMENT	40
A.2 I2C BUS APPLICATION NOTE	40
A.3 TWO WIRE BUS DEVICE ADDRESS	41
A.4 TWO WAY TO CONTROL THE TWO WIRE BUS	41
A.5 TWO WIRE BUS COMMAND TABLE	43
A.6 TWO WIRE BUS REQUIREMENT	43
A.7 THE TWO WIRE BUS SEQUENCE	43

Version 2.1 3 Date : 2 Aug. 2010

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver. 2.0	May 27, 2010	All	All	The specification was first issued.
Ver. 2.1	Aug. 2 , 2010	30	7.2	Modify color chromaticity.
V e1. 2.1	Aug. 2, 2010	30	7.2	Wodify Color Chromaticity.
		39	11	Mechanical Characteristics

Version 2.1 4 Date : 2 Aug. 2010

1. GENERAL DESCRIPTION

PRODUCT SPECIFICATION

1.1 OVERVIEW

V420H2- LE4 is a 42" TFT Liquid Crystal Display module with LED Backlight and 2 ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 1.07G colors (8-bit+ FRC). The converter module for backlight is built-in.

1.2 FEATURES

- -High brightness (450 nits)
- Ultra-high contrast ratio (6000:1)
- Faster response time (gray to gray average 5.5 ms)
- High color saturation NTSC 72% (72%)
- Ultra wide viewing angle : 176(H)/176(V) (CR≥20) with Super MVA technology
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- TFT LCD TVs
- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

ltem	Specification	Unit	Note
Active Area	930.24 (H) x 523.26 (V) (42" diagonal)	mm	(1)
Bezel Opening Area	937.24 (H) x 530.26 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.1615 (H) x 0.4845 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Display Colors	1.07G	color	
Display Operation Mode	Transmissive mode / Normally Black	-	
Surface Treatment	Anti-Glare Coating (Haze 11%)	_	
Canaco Treatment	Hard Coating (3H)		

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	ı	973.24	ı	mm	(1)
	Vertical(V)	ı	566.26	ı	mm	(1)
Module Size	Depth(D)	-	10.8	=	mm	
	Depth(D)	24.6	25.6	26.6	mm	To converter
						cover
We	eight		8150			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	35	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 2.1 6 **Date : 2 Aug. 2010**

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	13.5	V	
Input Signal Voltage	Vin	-0.3	3.6	V	

2.3.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Type	Max.	Unit	Note
Light Bar Voltage	V _W	Ta = 25 ℃	-	-	60	V_{RMS}	
Converter Input Voltage	V_{BL}	-	0	-	30	V	
Control Signal Level	-	-	-0.3) -	7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and Internal PWM Control.

Version 2.1 7 Date : 2 Aug. 2010

3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE

Ta = 25 + 2 °C

D	aram atar	Cymphol		Value		Unit	Note
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Power Sup	ply Voltage	V _{CC}	10.8	12	13.2	V	(1)
Rush Curre	ent	I _{RUSH}	-	-	4.2	Α	(2)
D	White Pattern	-	-	1.81		А	
Power Supply Current	Horizontal Stripe	-	-	1.54	C	А	(3)
Current	Black Pattern	-	-	0.58	- 💉	А	
LVDS	Differential Input High Threshold Voltage	V_{LVTH}	+100		-	mV	
	Differential Input Low Threshold Voltage	$V_{ ext{LVTL}}$	-		-100	mV	
interface	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage	V _{ID}	200	-	600	mV	
	Terminating Resistor	R _T	-	100	-	ohm	
CMOS interface	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	
	Input Low Threshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Version 2.1 Date: 2 Aug. 2010

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 ± 2 °C, $f_v = 120$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics are as follows:

Version 2.1 10 Date: 2 Aug. 2010

3.2 BACKLIGHT CONVERTER UNIT

3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol	Value			Unit	Note
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
Forward Voltage	V _W	3.0		3.5	V _{RMS}	I _L =120.0mA
LED Current	IL	-	120		mA _{RMS}	
Life time	-	30,000	-	-	Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C, I_L =120mA

3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Cymhal		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Consumption	P _{BL}	-	95	100	W	(1),(2) IL = 120 mA
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC	
Converter Input Current	IBL	-	3.96	4.17	Α	Non Dimming
Rush current	I _R	-	-	6.2	Α	(3)
Dimming Frequency	FB	150	160	170	Hz	
Minimum Duty Ratio	DMIN	5	10	-	%	(4)

Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 42" backlight unit under input voltage 24V, average LED current 120 mA and lighting 1 hour later.

Note (3) The duration of rush current is about 30ms. Even though Inrush current is over the specified value, there is no problem if I2T of fuse Spec is satisfied.

Note (4) 5% minimum duty ratio is only valid for electrical operation.

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

External dimming: 150Hz~170Hz, duty ratio: 10%~100%

Parameter		Symbol	Test		Value		Unit	Note
Farameter	i arameter		Condition	Min.	Тур.	Max.	Offic	Note
On/Off Control Voltage	ON	VBLON	_	2.0	_	5.0	V	
On Control Voltage	OFF	VBLOIN		0	-	0.8	V	
Internal PWM Control	MAX	VIPWM		3.15	1	3.45	V	maximum duty ratio
Voltage	MIN	VIEVVIVI		-	0	1	٧	minimum duty ratio
External PWM Control	НІ		_	2.0	_	5.0	V	Duty on
Voltage	LO	VEPWM		0		0.8	٧	Duty off
Status Signal	НІ	Status	_	3.0	3.3	3.6	V	Normal
Status Signal	LO	Status		0	-	0.8	٧	Abnormal
VBL Rising Time		Tr1	_	30		_	ms	10%-90%V _{BL}
VBL Falling Time		Tf1	-	30	_	_	ms	10 /0-90 /0 V _{BL}
Control Signal Rising Tin	ne	Tr	-	1		100	ms	
Control Signal Falling Tir	ne	Tf		-	1	100	ms	
PWM Signal Rising Time	•	TPWMR			1	50	us	
PWM Signal Falling Time	Э	TPWMF	-		1	50	us	
Input Impedance		Rin		1	_	_	ΜΩ	
PWM Delay Time		TPWM	_	100	_	_	ms	
DI ON DUI. Tur		T _{on}		300			ms	
BLON Delay Time		T _{on1}	_	300	_		ms	
BLON Off Time		Toff	_	300	_		ms	

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON Turn OFF sequence: BLOFF → PWM signal → VBL

Version 2.1 12 Date: 2 Aug. 2010

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment: (FI-RE51S-HF(JAE) or equivalent)

Pin	Name	Description	Note
1	RPF	Reverse picture function (default low)	8
2	MEN	MEMC function selection	5
3	MCFG0	MEMC function selection	5
4	MCFG1	MEMC function selection	5
5	LVDS8b	8bit/10bit LVDS input selection	6
6	GV_mode	Graphic / Video mode selection	7
7	SELLVDS	LVDS data format Selection	3
8	SCL	I2C CLK Signal	
9	SDA.	I2C Data Signal	
10	ODSEL	Overdrive Lookup Table Selection	4
11	GND	Ground	
12	ERX0-	2nd pixel Negative LVDS differential data input. Channel 0	
13	ERX0+	2nd pixel Positive LVDS differential data input. Channel 0	
14	ERX1-	2nd pixel Negative LVDS differential data input. Channel 1	
15	ERX1+	2nd pixel Positive LVDS differential data input. Channel 1	
16	ERX2-	2nd pixel Negative LVDS differential data input. Channel 2	
17	ERX2+	2nd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	ECLK-	2nd pixel Negative LVDS differential clock input.	
20	ECLK+	2nd pixel Positive LVDS differential clock input.	
21	GND	Ground	
22	ERX3-	2nd pixel Negative LVDS differential data input. Channel 3	
23	ERX3+	2nd pixel Positive LVDS differential data input. Channel 3	
24	ERX4-	2nd pixel Negative LVDS differential data input. Channel 4	
25	ERX4+	2nd pixel Positive LVDS differential data input. Channel 4	
26	N.C.	No Connection	2
27	N.C.	No Connection	2
28	ORX0-	1st pixel Negative LVDS differential data input. Channel 0	
29	ORX0+	1st pixel Positive LVDS differential data input. Channel 0	
30	ORX1-	1st pixel Negative LVDS differential data input. Channel 1	
31	ORX1+	1st pixel Positive LVDS differential data input. Channel 1	
32	ORX2-	1st pixel Negative LVDS differential data input. Channel 2	
33	ORX2+	1st pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	OCLK-	1st pixel Negative LVDS differential clock input.	
36	OCLK+	1st pixel Positive LVDS differential clock input.	
37	GND	Ground	
38	ORX3-	1st pixel Negative LVDS differential data input. Channel 3	
39	ORX3+	1st pixel Positive LVDS differential data input. Channel 3	
40	ORX4-	1st pixel Negative LVDS differential data input. Channel 4	

Date: 2 Aug. 2010 Version 2.1 15

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

41	ORX4+	1st pixel Positive LVDS differential data input. Channel 4	
42	N.C.	No Connection	2
43	N.C.	No Connection	2
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	2
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	VCC	+12V power supply	

Note (1) LVDS connector pin orderdefined as follows

Note (2) Reserved for internal use. Please leave it open.

Note (3)

SELLVDS	Mode
L(default)	VESA
Н	JEIDA

L: Connect to GND, H: Connect to +3.3V

Note (4) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL	Description
L(default)	Lookup table was optimized for 60 Hz frame rate input.
Н	Lookup table was optimized for 50 Hz frame rate input.

L: Connect to GND, H: Connect to +3.3V

Version 2.1 16 Date: 2 Aug. 2010

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (5) Motion Engine (ME) Level & Demo Function Table

Motion engine level must be adjusted after video mode is selected (or entered).

Adjusting the motion engine level in graphic mode has no effect

		MEN	MCFG1	MCFG0		Notes	
	Blanking disable	0	0	0		(a)	
Blanking	Auto blanking	0	0	1		(b)	
	Blanking enable	0	1	0		(c)	(1)
			Effect	of ME →	De blur	De judder	Halo
Demo mo	ode (d)	0	1	1	Demo Window		w
	Strong	1	0	0	Enable	Strong	Strong
	Medium(Defaul t)	1	0	1	Enable	Normal	Normal
ME Level	Weak	1	1	0	Enable	Weak	×
	OFF	1	1	1	×	×	×
			(e) (f) (g)				

- (a) Module re-starts processing video signals from Frontend scaler control board.
- (b) During sync unstable period such as format change, 60Hz <-> 50Hz. MCFG0 can be used to insert blanking of 500ms. This signal is toggled.
- (c) Module continues to insert blanking until blanking disable signal is received from frontend scaler board.
- (d) Demo window mode: Demo Window appears to the left half of display area. Left side with frame is 120Hz with MEMC, and right side is 120Hz w/o motion compensation.
- (e) GPIO (General Purpose I/O) sequence of ME Level: (1) MEN; (2) MCFG1; (3) MCFG0. GPIO sequence of Blanking Enable, Blanking Disable and Demo window: (1) MCFG1; (2) MCFG0; (3) MEN.
- (f) Each scaler command must be maintained the same voltage level at least 100ms.
- (g) 0 : Connect to GND, 1: +3.3V

Note (6) 8bit/10bit LVDS input selection

LVDS8b	Bit depth
H(default)	8bit
L	10bit

L: Connect to GND, H: Connect to +3.3V

Note (7) Graphic / Video mode selection

Version 2.1 17 Date: 2 Aug. 2010

There is no prohibited time period for switching between Graphic mode and Video mode.

When this switching signal is input, LCD will be reset and will re-start selected mode.

GV_mode	Mode select	MEMC ON/OFF
H(default)	Graphic mode	MEMC OFF
L	Video mode	MEMC ON

L : Connect to GND, H : Connect to +3.3V

Note (8)

SELLVDS	Mode
L(default)	Normal Display
Н	Rotation Display

L: Connect to GND, H: Connect to +3.3V

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

N2-CN7 (Housing): 51281-0994 (Molex) or equivalent

Pin No.	Symbol	Description
1	VLED	Docitive of LED String
2	VLED	Positive of LED String
3	NC	
4	NC	No Connection
5	NC	
6	VLED1-	
7	VLED2-	
8	VLED3-	Negative of LED String
9	VLED4-	•
10	VLED5-	

Note (1) The backlight interface housing for high voltage side is a model 51281-0994, manufactured by Molex or equivalent. The mating header on converter part number is 51281-09

5.3 CONVERTER UNIT

CN1(Header): CI0114M1HR0-LF (CvilLux) or equivalent

, ,		
Pin No.	Symbol	Description
1		
2		
3	VBL	+24V Power input
4		
5		
6		
7		
8	GND	Ground
9		
10		
11	STATUS	Normal (3.3V)
• •	0171100	Abnormal (0V)
12	E_PWM	External PWM control signal
13	I_PWM	Internal PWM control signal
14	BLON	Backlight on/off control

Notice:

#PIN 12:PWM Dimming Control (Use Pin 12): Pin 13 must open.

#PIN 13:Analog Dimming Control (Use Pin 13): 0V~3.3V and Pin 12 must open.

#Pin 13(I_PWM) and Pin 12(E_PWM) can not open in same period.

CN2 ~ CN5: 51281-1094 (Molex) or E&T 7083K-F10N-00L

Pin №	Symbol	Feature
1	VLED5-	
2	VLED4-	
3	VLED3-	Negative of LED String
4	VLED2-	
5	VLED1-	
6	NC	
7	NC	No Connection
8	NC	
9	VLED+	Positive of LED String
10	VLED+	Positive of LED Stillig

5.4 BLOCK DIAGRAM OF INTERFACE

Version 2.1 21 Date: 2 Aug. 2010

AR0~AR9: First pixel R data AG0~AG9: First pixel G data AB0~AB9: First pixel B data

BR0~BR9: Second pixel R data BG0~BG9: Second pixel G data BB0~BB9: Second pixel B data

DE: Data enable signal DCLK: Data clock signal

The third and fourth pixel are followed the same rules.

CR0~CR9: Third pixel R data CG0~CG9: Third pixel G data CB0~CB9: Third pixel B data DR0~DR9: Fourth pixel R data DG0~DG9: Fourth pixel G data DB0~DB9: Fourth pixel B data

Note (1) A ~ D channel are first, second, third and fourth pixel respectively.

Note (2) The system must have the transmitter to drive the module.

Note (3) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

5.5 LVDS INTERFACE

VESA Format : SELLVDS = L or Open

JEIDA Format : SELLVDS = H

AG0~AG9: First Pixel G Data (9; MSB, 0; LSB)

AB0~AB9: First Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal DCLK: Data clock signal

RSVD: Reserved

Version 2.1 23 Date: 2 Aug. 2010

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color

versus	data input.																														
												l			I	Data	Sig	nal													
	Color		1		1	R	ed	ı					1			Gre	en		1				1	1	1	В	lue	1	1	1	
	•	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grav	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:			:	:	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:			:	:	:	:	:	:		:		÷	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rteu	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0 <	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	÷		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	i.	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Communication	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1

Version 2.1 24 Date: 2 Aug. 2010

	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Į	 																														

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	78	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	_	F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	30		50	KHz	(4)	
LVDS	Setup Time	Tlvsu	600	-	-	ps		
Receiver Data	Hold Time	Tlvhd	600) -	ps	(5)	
	Frame Rate	F_{r5}	47	50	53	Hz	(6)	
Vertical	Traine reace	F _{r6}	57	60	62	Hz	(0)	
Active Display	Total	Tv	1110	1125	1135	Th	Tv=Tvd+T	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	30	45	55	Th	_	
Horizontal Active	Total	Th	1050	1100	1150	Tc	Th=Thd+1	
Display	Display	Thd	960	960	960	Tc	_	
Term	Blank	Thb	90	140	190	Тс	_	

Note (1) Please make sure the range of frame rate has follow the below equation:

 $Fr(max) \ge Fclkin / Tv \times Th \le Fr(min)$

Note (2) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Version 2.1 26 Date: 2 Aug. 2010

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE (Ta = 25 ± 2 °C)

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Version 2.1 27 Date: 2 Aug. 2010

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	оС				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	VCC	12	V				
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"				
LED Current	IL	120	mA				
Vertical Frame Rate	Fr	120	Hz				

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

It	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		4200	6000	-	-	Note (2)
Response Tim	e	Gray to gray		-	5.5	10	ms	Note (3)
Center Lumina	ince of White	LC		350	450	1	cd/m ²	Note (4)
White Variation	ı	δW		-	-	1.3	-	Note (6)
Cross Talk		СТ		-	-	4	%	Note (5)
	D. J	Rx			0.641		-	
	Red	Ry	θx=0°, θy =0° Viewing angle		0.324		-	
		Gx	at normal direction		0.303		-	
	Green	Gy		Тур. –	0.618	Тур+	-	
Color Chromaticity	D.	Вх		0.03	0.147	0.03	- ms cd/m² - %	-
Cilionialicity	Blue	Ву			0.060		-	
	1A/I :/	Wx			0.280		-	
	White	Wy			0.290		-	
	Color Gamut	C.G			72	-	%	NTSC
		θ x +		80	88	-		
N/2 - 1 - A - 1	Horizontal	θх-	OD: 33	80	88	-	D .	N1. (- 74)
Viewing Angle		θΥ+	CR≥20	80	88	-	Deg.	Note (1)
	Vertical	θΥ-		80	88	-	<u> </u>	

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = $\frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 252, 508, 764, and 1023.

Gray to gray average time means the average switching time of gray level 0, 252, 508, 764, and 1023. to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023. at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Version 2.1 31 Date: 2 Aug. 2010

Note (5) Definition of Cross Talk (CT):

$$\mathsf{CT} = |\mathsf{YB} - \mathsf{YA}| / \mathsf{YA} \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. DEFINITION OF LABELS

8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V420H2-LE4
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

- (a) Manufactured Date: Year: 2001=1, 2002=2, 2003=3, 2004=4....2010=0, 2011=1, 2012=2....
 - Month: 1~9, A~C, for Jan. ~ Dec.
 - Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product

Version 2.1 33 Date: 2 Aug. 2010

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Date: 2 Aug. 2010 Version 2.1 34

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD TV modules / 1 Box
- (2) Box dimensions : 1085(L)x296(W)x653(H)mm
- (3) Weight: Approx. 44 Kg(5 modules per carton)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Air Transportation

Figure.9-2 packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED light bar will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTICS

Version 2.1 38 Date: 2 Aug. 2010

Version 2.1 39 Date: 2 Aug. 2010

Appendix – TWO Wire BUS INTRODUCTION

A.1 PIN ASSIGNMENT

51pins LVDS connector

Pin8: SCL Pin9: SDA

A.2 I2C BUS APPLICATION NOTE

I2C bus: (The I2C bus must for MEMC only or prevent the I2C bus voltage drop down in initial state)

A.3 TWO WIRE BUS DEVICE ADDRESS

Two wire device address: default is 0x40, 1 byte

Two wire command: the range is 0x00 to 0xFF, 1 byte, see the two wire command table.

Two wire bus format:

A.4 TWO WAY TO CONTROL THE TWO WIRE BUS

There are two options to control the two wires bus command.

Two wire bus 6 bytes format

Two wire bus 3 bytes format

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note:

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the wired-ANDing of the SCL line can be used to implement handshaking between the master and the slave. The slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the slave, or the slave needs extra time for processing between the data transmissions. The slave extending the SCL low period will not affect the SCL high period, which is determined by the master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

A.5 TWO WIRE BUS COMMAND TABLE

There is two wire bus command table.

		Access	
Command Name		Mode	Description
All OSD Protection	0x00	R/W	OSDx Enable Flag Contorl
OSD1_Start_Protection	0x01	R/W	OSD1 Protection Start Position
OSD2_Start_Protection	0x02	R/W	OSD2 Protection Start Position
OSD3_Start_Protection	0x03	R/W	OSD3 Protection Start Position
OSD4_Start_Protection	0x04	R/W	OSD4 Protection Start Position
OSD1_End_Protection	0x05	R/W	OSD1 Protection End Position
OSD2_End_Protection	0x06	R/W	OSD2 Protection End Position
OSD3_End_Protection	0x07	R/W	OSD3 Protection End Position
OSD4_End_Protection	80x0	R/W	OSD4 Protection End Position
Demo Window	0x09	R/W	ME Performance Demo
MEMC Level	0x0A	R/W	ME Performance
GV Mode	0x0B	R/W	ME Operation
Blanking	0x0C	R/W	Blinking the screen
RPF	0x0D	R/W	Rotation picture function

Enable All OSD Protection

						Allo	SD F	rote	C	tion : 0x00	
4 Bytes Data Leng	th										
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24		D31~D28	Unused
		Unu	ised			OS	Dx			D27	OSD4 flag 1 : On ; 0 : Off
2nd BYTE DATA	D23	D22	D21	D20	D19	D18	D17	D16		D26	OSD3 flag 1 : On ; 0 : Off
				Unu	ised					D25	OSD2 flag 1 : On ; 0 : Off
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8		D24	OSD1 flag 1 : On ; 0 : Off
	Unused									D23~D0	Unused
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO			
				Unu	ised						
						Allo	SD F	rote	C	tion : 0x80	
1 Byte Data Lengtl	h										
1st BYTE DATA	D7	D6	D5	D4	D3	D2	D1	D0		D7~D4	Unused
		Unu	ised			OS	SDx			D3	OSD4 flag 1 : On ; 0 : Off
										D2	OSD3 flag 1 : On ; 0 : Off
										D1	OSD2 flag 1 : On ; 0 : Off
										D0	OSD1 flag 1 : On ; 0 : Off

OSD # 1~4 Start Protection

					05	SD1_	Star	t_Pro	ot	ection : 0x0	1				
					09	SD2_	Star	t_Pro	ot	ection : 0x0	2				
	OSD3_Start_Protection: 0x03														
					05	SD4_	ot	ection : 0x0	4						
4 Bytes Data Leng	th														
1st BYTE DATA	D31	D30	D29	D28	D27	D26	D25	D24		D31	OSDx flag 1 : On ; 0 : Off				
			Unu	ised						D30~D27	Unused				
2nd BYTE DATA	D23	D22	D21	D20	D19	D18	D17	D16		D26~D16	OSDx Left position				
				OSD	Left					D15~D11	Unused				
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8		D10~D0	OSDx Top position				
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	D0							
			(DSD:	κ Τομ)			Left position Max : 1919						
									Top position Max : 1079						

OSD # 1~4 End Protection

		0	SD1	Fnd	Prof	te	ection : 0x05			
							ection : 0x06			
		0	SD3_	End	Pro	te	ection : 0x07	•		
		0	SD4_	End_	te	ection : 0x08	1			
4 Bytes Data Leng	th									
1st BYTE DATA	D31 D30 D29	D28 D27	D26 I	D25 C)24		D31~D27	Unused		
	Unus	ed					D26~D16	OSDx Right position		
2nd BYTE DATA	D23 D22 D21	D20 D19	D18	D17 0)16		D15~D11	Unused		
	(OSD Right	t				D10~D0	OSDx Bottom position		
3rd BYTE DATA	D15 D14 D13	D12 D11	D10	D9	D8	Γ				
	Unuse	d								
4th BYTE DATA	D7 D6 D5	D4 D3	D2	D1	D0	Right position Max : 1919				
	С	SD Botto	m			1	Bootom po	sition Max : 1079		
	·	•								

Date: 2 Aug. 2010 Version 2.1 44

Demo Window

					De	mo	Wind	do	w : 0x09	
4 Bytes Data Leng	th									
1st BYTE DATA	D31 D3	30 D29	D28 D)27 I	D26	D25	D24		D31~D25	Unused
		U	nused	k					D24	DemoWindow 1 : On ; 0 : Off
2nd BYTE DATA	D23 D2	22 D21	D20 D	219	D18	D17	D16		D23~D0	Unused
			Unus	ed						
3rd BYTE DATA	D15 D1	14 D13	D12	211	D10	D9	D8			
			Unus	sed						
4th BYTE DATA	D7 D	6 D5	D4 [D3	D2	D1	DO			
			Unus	sed						
					De	mo	Wind	do	w : 0x89	
1 Byte Data Length	n									
1st BYTE DATA	D7 D	6 D5	D4 I	D3	D2	D1	D0		D7~D1	Unused
		U	nused	k					D0	Demo Window 1 : On ; 0 : Off

MEMC Level

		ME Level : 0x0A			
4 Bytes Data Length.					
1st BYTE DATA	D31. D30. D29. D28.	D27 D26 D25 D24	D31~D29. ₁	Unused.,	
.1	Unused. ₁	ME Level.	D28~24. ₁	ME Level 0~F.,	
2nd BYTE DATA .a	D23. D22. D21. D20.	D19. D18. D17. D16.			
.1	Uni	used. ₁			
3rd BYTE DATA	D15. D14. D13. D12.	D11. D10. D9. D8.		Q; Off ↓	
a	Uni	used. ₁		3°: VVeak ∔ 8 : Normal ∔	
4th BYTE DATA .a	D7.a D6.a D5.a D4.a	D3.a D2.a D1.a D0.a	.1	D: Strong.	
a	Uni	used. ₁	D23~D0.a	Unused.,	
		ME Level ; 0x8A.			
1 Byte Data Length.					
1st BYTE DATA	D7.a D6.a D5.a D4.a	D3.a D2.a D1.a D0.a	D7~D4.₁	Unused.,	
.1	Unused. ₁	ME Level.	D3~D0. ₃	ME Level 0~F.,	
	a		.1	0 : Off + 3 : Weak + 8 : Normal + D : Strong	

GV Mode

						G۷	Mode	е	: 0x0B	
4 Bytes Data Leng	th									
1st BYTE DATA	D31 D	30 D29	D28	D27	D26	D25	D24	I	D31~D25	Unused
		U	nuse	d					D24	1 : Graphic ; 0 : Video
2nd BYTE DATA	D23 D	22 D21	D20	D19	D18	D17	D16		D23~D0	Unused
			Unu	sed				ſ		
3rd BYTE DATA	D15 D	14 D13	D12	D11	D10	D9	D8	١		
			Unu	sed				١		
4th BYTE DATA	D7 [06 D5	D4	D3	D2	D1	DO	١		
			Unu	sed						
						G۷	Mode	е	: 0x8B	
1 Byte Data Lengti	h									
1st BYTE DATA	D7 [06 D5	D4	D3	D2	D1	D0		D7~D1	Unused
	Unused								D0	1 : Graphic ; 0 : Video
								ſ		

Blanking (Enable/Disable)

							Blar	nking	9	: 0x0C		
4 Bytes Data Leng	th											
1st BYTE DATA	D31	D30	D29	D28	D27	D26 [025	D24		D31~D26	Unused	
			U	nuse	ed					D24	Blanking; 1 : On ; 0 : Off	
2nd BYTE DATA	D23	D22	D21	D20	D19	D18	017	D16		D23~D0	Unused	
				Unu	sed							
3rd BYTE DATA	D15	D14	D13	D12	D11	D10	D9	D8				
				Unu	sed							
4th BYTE DATA	D7	D6	D5	D4	D3	D2	D1	DO		When the input signal is unstable,		
				Unu	ised					the screen should be blanked.		
							Blar	nking	g	: 0x8C		
1 Byte Data Lengti	h											
1st BYTE DATA	D7	D6	D5	D4	D3	D2	D1	D0		D7~D1	Unused	
	Unused									D0	Blanking; 1 : On ; 0 : Off	

Rotation Panel Function

totation i anoi i ano										
					RP	<u>F;</u> 0x	0D.1			
4 Bytes Data Length.										
1st BYTE DATA	D31. ₃	D30.	D29. ₁	D28.	D27.5	D26.	D25.4	D24.	D31~D26	Junused.
a			L	Inused	Li				D24. ₁	Rotation; 1,; 180°; 0 : 0°.
2nd BYTE DATA .a	D23.	D22.	D21.a	D20.	D19.	D18.	D17.a	D16.	D23~D0.	Unused.,
a										
3rd BYTE DATA	D15.	D14.	D13. ₁	D12.	D11.a	D10.	D9. ₁	D8. ₁		
а				Unu	sed. ₁				0: Normal	dienlay (
4th BYTE DATA	D7.a	D6. ₁	D5. ₁	D4. ₁	D3. ₁	D2.1	D1 .1	D0. ₁		n display.•
а				Unu	sed.					
					RP	F ; 0x	8D.1			
1 Byte Data Length.										
1st BYTE DATA	D7.a	D6. ₁	D5. ₁	D4. ₁	D3. ₁	D2.1	D1.a	D0.4	D7~D1.a	Unused. ₁
a			L	Inused	1.1				D0. ₁	Rotation; 1 ; 180° ; 0 : 0°.
			٠						٠	

Versi

2 Aug. 2010

The copyright belongs to Critivici inholux. Any unauthorized use is promoted

A.6 TWO WIRE BUS REQUIREMENT

Symbol	Parameter	Condition	Min	Max	Unit
$V_{\rm L}$	Input Low-voltage		0	0.7	V
$V_{\rm H}$	Input High-voltage		2.7	3.3	V
t _r	Rise Time for both SDA and SCL		$20 + 0.1C_{b}$	300	ns
t_{cf}	Output Fall Time from V_{IHmin} to V_{ILmax}	$10 \text{ pF} < C_b < 400 \text{ pF}$	$20 + 0.1C_{b}$	250	ns
I _i	Input Current each I/O Pin	$0.1 V_{CC} < V_i < 0.9 V_{CC}$	-10	10	uA
Ci	Capacitance for each I/O Pin		NA	10	pF
f_{SCL}	SCL Clock Frequency		4	50	KHz
R_P	Value of Pull-up resistor	$f_{SCL} \le 50 KHz$	3000	1000ns/C _b	Ω
t_{HDSTA}	Hold Time (repeated) STAR Condition	$f_{SCL} \le 50 KHz$	4	NA	us
$t_{ m LOW}$	Low Period of the SCL Clock	$f_{SCL} \le 50 KHz$	4.7	NA	us
t _{HIGH}	High Period of the SCL Clock	$f_{SCL} \le 50 KHz$	4	NA	us
t _{SUST A}	Set-up time for a repeated STAR Condition	$f_{SCL} \le 50 KHz$	4.7	NA	us
t_{HDDAT}	Data hold time	$f_{SCL} \le 50 KHz$	0	3.45	us
t_{SUDAT}	Data setup time	$f_{SCL} \le 50 KHz$	250	NA	ns
t_{SUSTO}	Setup time for STOP Condition	$f_{SCL} \leq 50 KHz$	4	NA	us
t_{OLF}	Bus free time between a STOP and START Condition	$f_{SCL} \le 50 \text{KHz}$	4.7	NA	us

Version 2.1 47 Date: 2 Aug. 2010

A.7 THE TWO WIRE BUS SEQUENCE

I. Initial state

II. Stable state

Version 2.1 48 Date: 2 Aug. 2010