Mathematics for Machine Learning

— Parameter Estimation

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Maximum Likelihood Estimation

Maximum A Posteriori Estimation

Goal

- Use probabilistic distributions to model our uncertainty due to:
 - the observation process.
 - the uncertainty in the parameters of the predictor.

Outline

Maximum Likelihood Estimation

2 Maximum A Posteriori Estimation

Maximum Likelihood Estimation (MLE)

For data represented by a random variable \mathbf{x} and for a family of probability densities $p(\mathbf{x} \mid \boldsymbol{\theta})$ parameterized by $\boldsymbol{\theta}$, we aim at the negative log-likelihood:

$$\mathcal{L}_{\mathbf{x}}(\boldsymbol{\theta}) = -\log p(\mathbf{x} \mid \boldsymbol{\theta}).$$

- **Note:** The parameter θ is varying and the data \mathbf{x} is fixed.
- $\mathcal{L}_{\mathsf{x}}(\theta)$: a function of θ .

Maximum Likelihood Estimation (MLE)

For data represented by a random variable \mathbf{x} and for a family of probability densities $p(\mathbf{x} \mid \boldsymbol{\theta})$ parameterized by $\boldsymbol{\theta}$, we aim at the negative log-likelihood:

$$\mathcal{L}_{\mathbf{x}}(\boldsymbol{\theta}) = -\log p(\mathbf{x} \mid \boldsymbol{\theta}).$$

- **Note:** The parameter θ is varying and the data \mathbf{x} is fixed.
- $\mathcal{L}_{\mathsf{x}}(\theta)$: a function of θ .

For a given dataset \mathbf{x} , the likelihood allows us choose the settings of $\boldsymbol{\theta}$ that more "likely" has generated the data or how "likely" $\boldsymbol{\theta}$ is for the observations \mathbf{x} .

Example

- Specify that the conditional probability of the labels given the examples is a Gaussian distribution.
- Assume that we can explain our observation uncertainty by independent Gaussian noise $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.
- We assume the linear model $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\theta}$ is used for prediction.

For each example-label pair (\mathbf{x}_i, y_i) ,

$$p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}) = \mathcal{N}(y_n \mid \mathbf{x}_i^{\top} \boldsymbol{\theta}, \sigma^2).$$

MLE for i.i.d. examples

- Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are i.i.d.
- The likelihood factorizes into a product of likelihoods of each individual example

$$p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}).$$

MLE for i.i.d. examples

- Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are i.i.d.
- The likelihood factorizes into a product of likelihoods of each individual example

$$p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}).$$

Then,

$$\mathcal{L}(\boldsymbol{\theta}) = -\log p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\theta}) = -\sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}).$$

MLE for i.i.d. examples

- Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ are i.i.d.
- The likelihood factorizes into a product of likelihoods of each individual example

$$p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}).$$

Then,

$$\mathcal{L}(\boldsymbol{\theta}) = -\log p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\theta}) = -\sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}).$$

Note: Do not forget that $\mathcal{L}(\theta)$ is a function of θ .

Example (contd.)

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \theta) = -\sum_{i=1}^{N} \log \mathcal{N}(y_i \mid \mathbf{x}_i^{\top} \theta, \sigma^2)$$

$$= -\sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \mathbf{x}_i^{\top} \theta)^2}{2\sigma^2}\right)$$

$$= -\sum_{i=1}^{N} \log \exp\left(-\frac{(y_i - \mathbf{x}_i^{\top} \theta)^2}{2\sigma^2}\right) - \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}}$$

$$= \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \theta)^2 - \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}}.$$

 \implies minimizing $\mathcal{L}(\theta)$

Example (contd.)

$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \log p(y_i \mid \mathbf{x}_i, \boldsymbol{\theta}) = -\sum_{i=1}^{N} \log \mathcal{N}(y_i \mid \mathbf{x}_i^{\top} \boldsymbol{\theta}, \sigma^2)$$

$$= -\sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \mathbf{x}_i^{\top} \boldsymbol{\theta})^2}{2\sigma^2}\right)$$

$$= -\sum_{i=1}^{N} \log \exp\left(-\frac{(y_i - \mathbf{x}_i^{\top} \boldsymbol{\theta})^2}{2\sigma^2}\right) - \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}}$$

$$= \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \boldsymbol{\theta})^2 - \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}}.$$

The second term is constant.

 \implies minimizing $\mathcal{L}(\theta) \Rightarrow$ solving the least-squares problem.

- (ロ) (個) (重) (重) (重) のQで

Issues

• This example has a closed-form solution.

Issues

- This example has a closed-form solution.
 - \bullet No closed-form \Rightarrow resort to numerical optimization.
- MLE may suffer from overfitting

Issues

- This example has a closed-form solution.
 - No closed-form ⇒ resort to numerical optimization.
- MLE may suffer from overfitting (analogous to unregularized empirical risk minimization).

Outline

Maximum Likelihood Estimation

Maximum A Posteriori Estimation

Motivation (1/2)

What if we have prior knowledge about the distribution of the parameters θ ?

Motivation (1/2)

What if we have prior knowledge about the distribution of the parameters θ ?

We can multiply an additional term (i.e., $p(\theta)$) to the likelihood.

Motivation (2/2)

- For a given prior, after observing some data x, how should we update $p(\theta)$?
 - ⇒ Bayes's theorem.
 - * Compute a posterior distribution $p(\theta \mid \mathbf{x})$.

$$p(\theta \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \theta)p(\theta)}{p(\mathbf{x})}.$$

Motivation (2/2)

- For a given prior, after observing some data x, how should we update $p(\theta)$?
 - ⇒ Bayes's theorem.
 - * Compute a posterior distribution $p(\theta \mid \mathbf{x})$.

$$p(\theta \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \theta)p(\theta)}{p(\mathbf{x})}.$$

So,

$$p(\theta \mid \mathbf{x}) \propto p(\mathbf{x} \mid \theta)p(\theta).$$

MLE vs. MAP

(a) Overfitting

(b) Underfitting.

(c) Fitting well.

Discussions