STAT448 - Advanced Data Analysis Homework 5

Name: Xinyan Yang

Exercise 1 Solution:

(a).

	Eigenvalues of the Correlation Matrix										
	Eigenvalue	Difference	Proportion	Cumulative							
1	5.68286683	1.48810625	0.4059	0.4059							
2	4.19476058	2.09269357	0.2996	0.7055							
3	2.10206700	1.36652186	0.1501	0.8557							
4	0.73554515	0.29785430	0.0525	0.9082							
5	0.43769085	0.04886854	0.0313	0.9395							
6	0.38882230	0.21758944	0.0278	0.9673							
7	0.17123286	0.05740175	0.0122	0.9795							
8	0.11383110	0.04044157	0.0081	0.9876							
9	0.07338953	0.02805442	0.0052	0.9929							
10	0.04533511	0.02073165	0.0032	0.9961							
11	0.02460346	0.00710262	0.0018	0.9979							
12	0.01750084	0.00538929	0.0013	0.9991							
13	0.01211155	0.01186871	0.0009	1.0000							
14	0.00024283		0.0000	1.0000							

From the above results, I would keep 3 components to retain at least 85% of the total variation from the original variables. If based on the average eigenvalue, I would keep 3 components too. If based on the scree plot, I would also choose to keep 3 components.

Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8		
Eccentricity	093812	192439	0.538282	0.129275	172358	0.617888	0.009354	0.003232		
AspectRatio	190165	025256	0.519236	168502	0.463153	470015	0.177409	0.371746		
Elongation	226596	0.179998	0.488936	023459	304155	0.084670	0.072061	075301		
Solidity	0.185012	408405	0.135090	0.012671	0.112225	0.034265	0.245483	0.058684		
StochasticConvexity	0.159994	382523	0.169293	026241	0.479106	0.060754	575300	394742		
IsoperimetricFactor	0.206267	348799	251244	0.116345	0.173495	0.333501	0.313804	0.411369		
MaximalIndentationDepth	194033	0.403688	076036	0.062834	0.322389	0.216907	084478	162308		
Lobedness	214965	0.356621	089326	0.028774	0.486409	0.416836	0.038788	0.214039		
AverageIntensity	0.372282	0.200126	0.119865	095298	0.014949	0.036719	009030	0.081528		
AverageContrast	0.365666	0.197444	0.130476	0.178703	023820	023470	054061	0.009304		
Smoothness	0.360162	0.203690	0.139989	0.228768	0.070729	040470	0.124641	055633		
ThirdMoment	0.317546	0.188619	0.138098	0.538522	0.114144	120489	0.163919	141813		
Uniformity	0.305584	0.124336	0.037886	679273	0.098205	0.162233	0.410430	382284		
Entropy	0.348165	0.182884	0.079373	300691	148457	0.094169	501037	0.528581		

We can get the following conclusions from the above table. The first component has large positive coefficient on the last six features and these are texture features measuring the intensity, therefore **the first PC picks up on texture features like intensity.**

The second component has large negative coefficients on solidity, stochasticconvexity and isoperimetric factor which measure the convexity of leaves, and it also has large positive coefficients on maximal Indentation Depth and Lobedness which measure the indentation. Therefore the second PC picks up on shape features like convexity and indentation, and large positive value means more indentation and less convexity.

The third component has large positive coefficients on eccentricity, aspectratio and elongation which measure some characteristics of ellipse, therefore the third PC picks up on shape features like slenderness.

From the scree plots we can get the following conclusions.

Species 10 has extreme large value and species 31 has extreme small value on component 1, therefore species 10 has large intensity and species 31 has small intensity.

Species 36 and 11 have extreme large value on component 2, they have many indentations and less convexity with their shape;

Species 34, 31 and 8 have extreme large value on component 3, they tend to have slender shape.

Exercise 2 Solution:

(a).

	Eigenvalues of the Covariance Matrix											
	Eigenvalue	Difference	Proportion	Cumulative								
1	6.85274257	5.74250615	0.8218	0.8218								
2	1.11023642	0.80664635	0.1331	0.9549								
3	0.30359007	0.26713214	0.0364	0.9913								
4	0.03645793	0.00745915	0.0044	0.9957								
5	0.02899878	0.02578640	0.0035	0.9992								
6	0.00321239	0.00151672	0.0004	0.9996								
7	0.00169566	0.00060366	0.0002	0.9998								
8	0.00109200	0.00026536	0.0001	0.9999								
9	0.00082665	0.00076185	0.0001	1.0000								
10	0.00006480	0.00002701	0.0000	1.0000								
11	0.00003779	0.00003379	0.0000	1.0000								
12	0.00000400	0.00000392	0.0000	1.0000								

Eigenvalues of the Covariance Matrix									
	Eigenvalue	Difference	Proportion	Cumulative					
13	0.00000008	0.00000007	0.0000	1.0000					
14	0.00000001		0.0000	1.0000					

Based on the total variation that PC can explain, I would keep 2 components to retain at least 85% variation. Based on the eigenvalues, I would also choose 2 components. Based on scree plot, 3 PCs would be kept.

(b).

Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8		
Eccentricity	0.043578	059491	049223	0.540684	0.712685	0.089212	410460	0.123592		
AspectRatio	0.992322	070973	0.065926	072444	012560	017670	013510	000246		
Elongation	0.051542	0.058718	0.030490	0.638389	025286	293785	0.632365	307770		
Solidity	000792	091540	024576	121592	0.261341	0.057878	0.534778	0.686743		
StochasticConvexity	0.003775	080453	013748	174329	0.296226	0.759101	0.337885	409900		
IsoperimetricFactor	040427	117221	087745	488549	0.546607	567745	0.115311	288148		
MaximalIndentationDepth	0.001738	0.034492	0.007448	0.018635	035985	0.048732	029575	0.062847		
Lobedness	0.059659	0.973906	0.085612	098892	0.168535	0.017384	0.027714	0.020145		
AverageIntensity	004115	005720	0.056866	007066	0.008189	007060	0.062783	0.167464		
AverageContrast	006208	008331	0.073973	0.005471	0.010883	0.009626	0.103785	0.347020		
Smoothness	001462	001894	0.018970	000988	0.003674	002269	0.030082	0.103210		
ThirdMoment	000496	000561	0.005667	0.000179	0.001385	0.000382	0.010510	0.048556		
Uniformity	000040	000070	0.000578	000359	0.000056	000181	0.000726	0.000383		
Entropy	073976	097949	0.983527	028453	0.080961	025994	025133	038816		

The first component has large positive coefficient on aspectratio, which measures the shape of a leaf.

The second component has large positive coefficient on lobedness, which measures how lobed a leaf is.

(c).

Species 34, 31 have large positive value on component 1, which means that these species have a really elongated shape;

Species 11 and 6 have large positive value on component2, which means that these species have more identations.

(d).

The covariance-based PCA result give extremely large coefficient to one predictor in a component because of that particular predictor's large covariance. The correlation-based PCA result has kind of balanced coefficient among many predictors and won't give great weight to a single one predictor, which is more reasonable.

Exercise 3 Solution:

(a).

Based on the ccc statistics, we should choose 8, 11 or 16 clusters. Based on the pseudo F statistic, we should choose 5, 8 or 16 clusters. Based on pseudo t^2 statistic, we should choose 2, 5, 8, 11, 13 or 16 clusters. Based on the dendrogram, we should choose a cut-off value around 0.75 at which clusters have a comparatively large distance.

Therefore I decide to choose 8 clusters.

(b).

Table of CLUSTER by Species										
CLUSTER	Species									
Frequency	1	2	3	4	5	6	7	8	Total	
1	11	9	3	2	0	0	5	0	30	
2	0	0	0	0	7	0	3	0	10	
3	0	0	0	0	0	0	0	11	11	
4	0	0	<mark>6</mark>	0	5	0	2	0	13	
5	0	0	0	0	0	8	0	0	8	
6	1	0	0	5	0	0	0	0	6	
7	0	1	0	1	0	0	0	0	2	
8	0	0	1	0	0	0	0	0	1	
Total	12	10	10	8	12	8	10	11	81	

From the above table we can see that, species 6 and 8 are separated out pretty well. Species 4 is OK. And species 1, 2, 3 and 7 are grouped together in cluster1. Species 3 and 5 are grouped together in cluster4. Species 5 and 7 are grouped together in cluster2.

We can find that species 6 and 8 are very leaves with very special characteristics, species6 is lobed and species 8 is elongated, which make these two easily to stand out.

Species 1, 2, 3 and 7 which in cluster 1 show a ellipse shape, which make them hard to identify.

Species 3 and 5 in cluster4 show a triangle shape both.

Species 5 and 7 in cluster2 show a rough edge both.