CONNECTIONS ON TENSOR BUNDLES

These are notes I have taken from Lee RM. In what follows, Let M be a smooth manifold, and let ∇ be a connection on TM. There is a canonical way we extend ∇ to every tensor bundle:

Definition. On each tensor bundle $T^{(k,l)}TM$, we define

$$\nabla^{(k,l)}: \mathfrak{X}(M) \times \Gamma(T^{(k,l)}TM) \to \Gamma(T^{(k,l)}TM)$$

by the following. On T^*M , we set

$$\left(\nabla_X^{(0,1)}\omega\right)(Y):=X(\omega(Y))-\omega(\nabla_XY),$$

and on $T^{(k,l)}TM$, we set

$$\left(\nabla_X^{(k,l)} F\right) (\omega^1, \dots, \omega^k, Y_1, \dots, Y_l) = X(F(\omega^1, \dots, \omega^k, Y_1 \dots, Y_l))$$

$$-\sum_{i=1}^k F(\omega^1, \dots, \nabla_X \omega^i, \dots, \omega^k, Y_1, \dots, Y_l)$$

$$-\sum_{i=1}^l F(\omega^1, \dots, \dots, \omega^k, Y_1, \dots, \nabla_X Y_j, \dots, Y_l).$$

It is straightforward to verify that each $\nabla_X^{(k,l)}F$ is indeed a (k,l)-tensor field, and that each $\nabla^{(k,l)}$ is a connection.

The following proposition shows how to compute $\nabla^{(k,l)}$ in coordinates.

Proposition. Let $(U,(x^i))$ be a chart. Then

$$\nabla_X^{(0,1)}\omega = X\omega_k dx^k - X^j\omega_i\Gamma_{jk}^i dx^k,$$

and

$$\nabla_X^{(k,l)} F = \left(X F_{j_1 \cdots j_l}^{i_1 \cdots i_k} + \sum_{s=1}^k X^m F_{j_1 \cdots j_l}^{i_1 \cdots p \cdots i_k} \Gamma_{mp}^{i_s} - \sum_{s=1}^l X^m F_{j_1 \cdots p \cdots j_l}^{i_1 \cdots i_k} \Gamma_{mj_s}^p \right) \times \partial_{i_1} \otimes \cdots \otimes \partial_{i_k} \otimes dx^{j_1} \otimes \cdots \otimes dx^{j_l}.$$

Proof. For the first formula, evaluating both sides at Y gives $Y^i X \omega_i - \omega_i X^j Y^l \Gamma^i_{jl}$. I didn't have time to prove the second formula, but I think the approach is the same.

The following proposition shows why the connections defined above are "natural".

Proposition. The connections $\nabla^{(k,l)}$ satisfy the following properties:

- (i) $\nabla^{(1,0)}$ is equal to the original connection ∇ .
- (ii) $\nabla^{(0,0)}$ is just differentiation of functions: $\nabla^{(0,0)}_X f = Xf$.
- (iii) We have a product rule for tensor products:

$$\nabla_X(F\otimes G) = \nabla_X F\otimes G + F\otimes \nabla_X G.$$

- (iv) ∇ commutes with contraction: $\nabla_X(\operatorname{tr} F) = \operatorname{tr}(\nabla_X F)$.
- (v) We have a product rule for the natural pairing:

$$\nabla_X \langle \omega, Y \rangle = \langle \nabla_X \omega, Y \rangle + \langle \omega, \nabla_X Y \rangle.$$

Proof. The only property that I found difficult to prove is (iv). I worked it out by writing $\nabla_X(\operatorname{tr} F)$ and $\operatorname{tr}(\nabla_X F)$ in coordinates using the formula given in the previous proposition.

Given a (k, l)-tensor field $F \in \Gamma(T^{(k, l)}TM)$, we define the total covariant derivative of F as the (k, l+1)-tensor field given by

$$\nabla F: \underbrace{\mathfrak{X}^*(M) \times \cdots \times \mathfrak{X}^*(M)}_{k\text{-copies}} \times \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{l + 1\text{-copies}} \to C^{\infty}(M),$$

$$(\nabla F)(\omega^1,\ldots,\omega^k,Y_1,\ldots,Y_l,X):=(\nabla_X F)(\omega^1,\ldots,\omega^k,Y_1,\ldots,Y_l).$$

The map ∇F is a (k, l+1)-tensor field because it is $C^{\infty}(M)$ -multilinear.