PLATAFORMAS ABIERTAS HARDWARE/SOFTWARE PARA APLICACIONES EN ROBOTICA

Carlos Iván Camargo Bareño1

¹Departamento de Ingeniería Eléctrica y Electrónica

August 11, 2011

- Introducción
- Metodología Propuesta
- Robótica en la Educación
- Plataformas Robóticas
- 5 Herramientas de Desarrollo

Transferencia Tecnológica

 Odedra [1]: La transferencia tecnológica se considera exitosa cuando los receptores de la tecnología asimilan estos conceptos para suplir sus necesidades locales generando productos novedosos.

Transferencia Tecnológica

- Odedra [1]: La transferencia tecnológica se considera exitosa cuando los receptores de la tecnología asimilan estos conceptos para suplir sus necesidades locales generando productos novedosos.
- Jolly [2]: El conocimiento es lo que queda al final de un proceso documentado y difundido de forma apropiada. Para que la transferencia tecnológica sea exitosa es necesario transferir los componentes de la tecnología.

Canales para la TT

Robótica en la Educación

La utilización de la robótica en la educación básica y media ha venido en aumento, y su uso adecuado permite el desarrollo de habilidades asociadas al constructivismo y al aprendizaje significativo.

Utilización de la robótica en la educación

- Como objeto de aprendizaje: Enfocado a aspectos relacionados con el robot como construcción, programación e inteligencia artificial y la robótica.
- Como herramienta de aprendizaje: Visto como proyecto interdisciplinario que involucra ciencias, matemáticas, tecnologías de la información y comunicaciones.

Aprender diseñando

Constructivismo/Aprendizaje significativo

4 □ > 4 □ > 4 □ > 4 □ >

Plataformas Abiertas

Arquitectura de ECBOT

Prototipo de ECBOT

UNIVERSIDAD NACIONAL DE COLOMBIA

Arquitectura de SIEBOT

Prototipo de ECBOT

SIEBlocks

SIEBlocks Flujo de Diseño

SIECG

SIECG Flujo de Diseño

Gracias

[Oedra 1994] M. odedra-straub The Myths and Illusions of Technology Transfer IFIP World Congress Proceedings, 1994.

[Jolly 1977] Jolly, James A. The Technology Transfer Process: Concepts, Framework and Methodology. The Journal of Technology Transfer. Springer, 1977

[Vaccarezza 1998] L. Vaccarezza Ciencia, Tecnología y Sociedad: el estado de la cuestión en América Latina. Revista Iberoamericana de Educación. No 18. 1998

[Odedra 1990] M. Odedra Information Technology Transfer to Developing Countries: Case studies from Kenya, Zambia and Zimbabwe PhD thesis London School of Economics, 1990

