Дистилляция табличных нейронных сетей

Аушев Ислам

18 декабря 2023 г

ШКОЛА АНАЛИЗА ДАННЫХ

На данный момент нейронные сети показывают SOTA результаты для многих доменов данных.

Исключением являются табличные данные, для которых чаще всего используют GBDT подходы.

Однако, в последнее время нейронные сети показывают хорошие результаты и для таблиц

Yandex Research: https://arxiv.org/pdf/2106.11959.pdf

	CA↓	AD↑	НЕ↑	ЈА↑	НІ↑	AL↑	EP↑	YE↓	CO↑	YA ↓	MI↓
Default hyperparameters											
XGBoost	0.462	0.874	0.348	0.711	0.717	0.924	0.8799	9.192	0.964	0.761	0.751
CatBoost	0.428	0.873	0.386	0.724	0.728	0.948	0.8893	8.885	0.910	0.749	0.744
FT-Transformer	0.454	0.860	0.395	0.734	0.731	0.966	0.8969	8.727	0.973	0.747	0.742

С ростом качества нейронных сетей на табличных данных увеличился и размер моделей, что сказалось на их производительности.

Скорость инференса моделей:

	CA	HE	JA	HI	AL	YE
MLP	0.009	0.034	0.053	0.046	0.081	0.402
AutoInt	0.071	0.277	1.273	0.217	2.221	9.680
ResNet	0.026	0.295	0.257	0.137	0.667	1.033
Node	1.078	3.353	8.075	5.663	6.433	26.141
FT-transformer	0.123	1.307	2.929	0.898	6.433	3.736
CatBoost	0.016	0.248	0.127	0.064	5.862	0.184

Одним из способов увеличения производительности модели является дистилляция.

Дистилляция - способ обучения нейронных сетей на основе знаний, полученных из уже ранее обученной модели

Размер модели ученика берут меньше, чем у учителя. Distillation Loss:

$$-\sum_i y_i \log(p_i) + \alpha \cdot D_{\mathit{KL}}(q||p)$$

Кросс-энтропия ученика + KL-дивергенция между учителем и учеником.

DistillBERT: https://arxiv.org/pdf/1910.01108.pdf

D 1001111D = 1	15tm 22. () 11ttps://unixiviol.g/pai/1510.01100.pai										
Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI	
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3	
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5	
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3	Q

Bo многих случаях Catboost отрабатывает быстрее, чем табличные нейронные сети.

Можно ли улучшить качество GBDT, имея на руках обученную нейронную сеть?

Цель задачи

Основная цель : исследование возможностей дистилляции нейронных сетей на GBDT

Идея

Пусть X - трейн-датасет, y - таргет, N - нейросеть-учитель. Обучаем N на данных (X,y), получаем новые метки y'

$$y' = N(X)$$

Обучаем GBDT на данных (X, y')

Идея

Мотивация такого метода:

- Данный метод не использует нейросеть-учитель во время инференса
- Наиболее общий подход, который не учитывает специфику конкретной выборки данных
- Интуитивно напоминает метод дистилляции между нейронными сетями

Для проведения экспериментов были взяты 6 датасетов : California Housing(CA), Helena(HE), Jannis(JA), Higgs(HI), Aloi(AL), Year(YE).

B качестве учителя рассматривались 5 моделей : MLP, AutoInt, Node, ResNet, FT-Transformer.

В качестве GBDT модели CatBoost

Выбор моделей объясняется разнообразием архитектур

MLP - Fully Connected Layers

ResNet - Fully Connected Layers + Residual Connections

Node - Differentiable Decision Trees

AutoInt - Attention

FT-Transformer - Attention + Tricks

Для лучшего воспроизведения результатов, были использованы гиперпараметры и методы предобработки данных, описанные в статье Yandex Research: https://arxiv.org/pdf/2106.11959.pdf

Табличные нейросети учатся нестабильно, метрика скачет от эпохи к эпохе, что осложняет дальнейшую дистилляцию.

Метрика на шаге обучения:

Используем early-stopping по валидации.

Как оказалось, дистилляция очень сильно зависит от обучения модели, модели имеющие близкие метрики могут давать разные результаты для бустинга.

Поэтому обучаем много моделей, а затем собираем из них ансамбль, агрегируя результаты каждой модели. Далее учим CatBoost на таргетах ансамбля.

Размер ансамблей варьируется от 3 до 5

Результаты

Качество моделей:

	CA	HE	JA	HI	AL	YE
MLP	$0.506 \pm 2\mathrm{e}{-3}$	$0.384 \pm 2\mathrm{e}{-3}$	$0.717 \pm 5\mathrm{e}{-4}$	$0.721 \pm 1\mathrm{e}{-3}$	$0.949 \pm 1\mathrm{e}{-3}$	$8.861 \pm 6\mathrm{e}{-3}$
AutoInt	$0.482 \pm 3\mathrm{e}{-3}$	$0.370 \pm 2e{-3}$	$0.712 \pm 6\mathrm{e}{-3}$	$0.721 \pm 6\mathrm{e}{-3}$	$0.940 \pm 6\mathrm{e}{-3}$	$8.963 \pm 2e{-2}$
ResNet	$0.496 \pm 3\mathrm{e}{-3}$	$0.395 \pm 1e{-3}$	$0.723 \pm 7\mathrm{e}{-4}$	$0.721 \pm 1e{-3}$	$0.961 \pm 2\mathrm{e}{-4}$	$8.810 \pm 4e{-3}$
Node	$0.474 \pm 7\mathrm{e}{-4}$	$0.357 \pm 1e{-3}$	$0.724 \pm 2\mathrm{e}{-3}$	$0.725 \pm 1e{-3}$	_	$8.792 \pm 4e{-3}$
FT-Transformer	$0.465 \pm 2\mathrm{e}{-3}$	$0.390 \pm 1e{-3}$	$0.732 \pm 1e{-3}$	$0.729 \pm 1e{-3}$	$0.951 \pm 2e{-3}$	$8.852 \pm 4e{-4}$
CatBoost	0.451	0.382	0.724	0.725	0.945	8.886

Качество дистилляции:

	CA	HE	JA	HI	AL	YE
MLP	$0.485 \pm 1e{-2}$	$0.377 \pm 2e{-3}$	$0.716 \pm 2e{-3}$	$0.720 \pm 8\mathrm{e}{-4}$	$0.948 \pm 2\mathrm{e}{-3}$	$8.905 \pm 6\mathrm{e}{-3}$
AutoInt	$0.471 \pm 3\mathrm{e}{-3}$	$0.367 \pm 3e{-4}$	$0.710 \pm 3\mathrm{e}{-3}$	$0.722 \pm 1\mathrm{e}{-3}$	$0.949 \pm 3\mathrm{e}{-4}$	$9.007 \pm 3\mathrm{e}{-3}$
ResNet	$0.484 \pm 2\mathrm{e}{-3}$	$0.383 \pm 9\mathrm{e}{-4}$	$0.717 \pm 1e{-3}$	$0.721 \pm 2\mathrm{e}{-3}$	$0.952 \pm 3\mathrm{e}{-3}$	$8.868 \pm 5\mathrm{e}{-3}$
Node	$0.484 \pm 3\mathrm{e}{-3}$	$0.355 \pm 8\mathrm{e}{-4}$	$0.724 \pm 3\mathrm{e}{-4}$	$0.723 \pm 1\mathrm{e}{-3}$	_	$8.860\pm1\mathrm{e}{-3}$
FT-Transformer	$0.469 \pm 7\mathrm{e}{-3}$	$0.380 \pm 2\mathrm{e}{-3}$	$0.725 \pm 2\mathrm{e}{-3}$	$0.725\pm1\mathrm{e}{-3}$	$0.947 \pm 4\mathrm{e}{-4}$	$8.921 \pm 6\mathrm{e}{-3}$

В каждой строке результат дистилляции модели в бустинг.

Красным цветом указан прирост метрики у CatBoost

Качество дистилляции ансамблей:

	CA	HE	JA	HI	AL	YE
MLP	0.479	0.377	0.716	0.721	0.947	8.900
AutoInt	0.468	0.371	0.713	0.723	0.951	8.978
ResNet	0.484	0.384	0.719	0.722	0.952	8.863
Node	0.484	0.355	0.724	0.725	_	8.857
FT-Transformer	0.466	0.383	0.728	0.726	0.947	8.917
CatBoost	0.451	0.382	0.724	0.725	0.945	8.886

Дистилляция дает прирост качества, дистилляция с ансамблей показывает лучший результат.

Результат дистилляции прямо пропорционален качеству модели.

Результаты

Отметим некоторые наблюдения из результатов :

- Если качество исходной модели хуже, чем качество бустинга, то дистилляция не дает выигрыша
- Если качество исходной модели лучше, чем качество бустинга, то почти всегда дистилляция дает прирост метрики
- Лучше дистиллировать ансамбли, а не отдельные модели

Перспективы

- В данной работе был рассмотрен самый примитивный способ дистилляции, однако, даже при таком подходе качество бустинга можно улучшить. Возможно изучение других способов.
- В датасетах, используемых в данном проекте, отсутствуют категории. В дальнейшем планируется провести эксперименты на данных с категориальными признаками.
- **1** Из результатов работы нельзя точно сказать, какая архитектура наиболее удобна для бустинга в качестве учителя, это можно изучать дальше.