دورة سنة 2005 العادية

امتحانات الشبهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي ا لمديرية العامة للتربية

الاسم: الرقم:

مسابقة في الرياضيات

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I– (2,5points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on donne :

- les points A (1; -2; 1), B (2; -1; 3), C(1; 1; 4) et H(0; 0; 2).
- la droite (d) définie par : $\begin{cases} x = t \\ y = t \\ z = -t + 2 \end{cases}$ (t est un paramètre réel).
- 1) Ecrire une équation du plan (P) déterminé par les points A, B et C.
- 2) a- Démontrer que la droite (d) est perpendiculaire au plan (P) en H.
 - b- Démontrer que H est équidistant de A, B et C.
 - c- Ecrire un système d'équations paramétriques d'une bissectrice de l'angle AHB.
- 3) Soit M un point variable de (d) et E(2;2;0) un point fixe de (d). Pour quelles valeurs de t le volume du tétraèdre MABC est-il égal au double de celui du tétraèdre EABC?

II- (2points)

Soit (U_n) la suite définie sur IN par :

$$U_0 = \int_0^1 \frac{1}{x+1} dx$$
 et pour $n \ge 1$, $U_n = \int_0^1 \frac{x^n}{x+1} dx$.

- 1) Calculer U_0 et U_1 .
- 2) Démontrer que pour tout $n \ge 1$, $U_{n+1} + U_n = \frac{1}{n+1}$ et en déduire la valeur de U_2 .
- 3) a- Montrer que, pour $0 \le x \le 1$, on a $0 \le \frac{x^n}{x+1} \le x^n$

et en déduire que $0 \le U_n \le \frac{1}{n+1}$.

b- Calculer $\lim_{n\to+\infty} U_n$.

III- (2points)

Durant le mois des soldes, la direction d'un supermarché organise, pour ses clients, chaque lundi une loterie.

Pour cela cette direction utilise deux urnes U et V.

L'urne U contient 4 boules rouges et 3 boules blanches.

L'urne V contient 10 bons d'achat de quatre catégories et dont les valeurs sont indiquées dans le tableau suivant:

	Première	Deuxième	Troisième	Quatrième
	catégorie	catégorie	catégorie	catégorie
Nombre de bons d'achat.	2	3	4	1
Valeur du bon d'achat en LL	100 000	50 000	10 000	0

Un client tire au hasard une boule de l'urne U:

si la boule tirée est blanche, il ne gagne rien;

si la boule tirée est rouge, il tire au hasard un bon d'achat de l'urne V.

1) Soit les événements suivants :

E: « le client qui participe à cette loterie réalise un gain de 10 000 LL ».

N : « le client qui participe à cette loterie ne gagne rien ».

G: « le client qui participe à cette loterie réalise un gain non nul ».

a- Vérifier que la probabilité de E est égale à $\frac{8}{35}$.

b- Calculer la probabilité de chacun des événements N et G.

- 2) On désigne par X la variable aléatoire égale au gain (positif ou nul) d'un client qui participe à cette loterie .
 - a- Déterminer la loi de probabilité de X.
 - b- Calculer l'espérance mathématique E(X).

IV – (3points)

Dans le plan rapporté à un repère orthonormé (O ; \overrightarrow{i} , \overrightarrow{j}) on donne les points F(3 ; 0) ,

F'(-3;0) et L (3; $\frac{16}{5}$). On désigne par (E) l'ellipse de foyers F et F' et passant par L.

1) a- Calculer LF + LF'.

b- Déterminer les coordonnées des sommets de (E).

c- Déduire que $\frac{x^2}{25} + \frac{y^2}{16} = 1$ est une équation de (E) et tracer (E).

2) Soit (d) la droite d'équation $x = \frac{25}{3}$.

a- Que représente la droite (d) pour l'ellipse (E)?

b- Ecrire une équation de la tangente (T) à (E) au point L.

c- Démontrer que les droites (d) et (T) se coupent en un point I sur l'axe des abscisses.

3) Calculer l'aire du domaine limité par l'ellipse (E), la tangente (T), l'axe des abscisses et l'axe des ordonnées.

V-(3,5 points)

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v). Soit A le point d'affixe 2 et B le point d'affixe 2i.

On désigne par E l'image de A par la rotation R de centre O et d'angle $\frac{\pi}{3}$ et par F

l'image de B par la transformation T définie par sa forme complexe $z' = (\frac{-1}{2} - i\frac{\sqrt{3}}{2})z$.

- 1) a-Déterminer la nature et les éléments caractéristiques de T.
 - b- Démontrer que les points A, B, E et F sont sur un même cercle de centre O dont on déterminera le rayon.
- 2) a Prouver que $\frac{z_E z_A}{z_F z_B}$ est un réel .

b- vérifier que
$$\frac{z_F - z_A}{z_E - z_B} = -i$$
.

- c- Déduire que AEBF est un trapèze isocèle et que $(\overrightarrow{BE}, \overrightarrow{AF}) = -\frac{\pi}{2} (2\pi)$.
- 3) Soit h l'homothétie qui transforme A en F et E en B et soit r la rotation d'angle $\frac{\pi}{2}$ qui transforme B en F.
 - a- Déterminer le centre W de h.
 - b-Démontrer que hor = roh.
 - c- Soit S = hor.

Déterminer la nature et les éléments caractéristiques de S .

VI-(7 points)

Soit f la fonction définie, sur] 0; + ∞ [, par : $f(x) = (\ln x)^2 + 2\ln x - 3$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}).

1) a- Calculer $\lim_{x \to +\infty} f(x)$.

b-Calculer $\lim_{x\to 0} f(x)$ et en déduire une asymptote à (C).

- 2) Déterminer les abscisses des points d'intersection de (C) avec l'axe des abscisses .
- 3) a- Calculer f'(x) et dresser le tableau de variations de f.

b- Vérifier que $f''(x) = \frac{-2\ln x}{x^2}$; montrer que (C) admet un point d'inflexion I et écrire une équation de la tangente (d) à (C) en I.

- 4) Tracer la droite (d) et la courbe (C).
- 5) a-Démontrer que la fonction f admet sur $[1; +\infty[$ une fonction réciproque g et déterminer le domaine de définition de g.
 - b-Vérifier que A(5; e^2) est un point de la courbe représentative (G) de g et écrire une équation de la tangente à (G) en A.
- 6) Déterminer graphiquement, suivant les valeurs du réel m, le nombre des racines de l'équation $(\ln x)^2 + 2\ln x = m$.
- 7) La courbe (T) ci-dessous est la courbe représentative, sur $[1; +\infty[$, d'une primitive F de la fonction f.

Calculer l'aire du domaine limité par la courbe (C), l'axe des abscisses et les droites d'équations x=1 et x=e.