

Approved for public release and sale; its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Submitted for publication in Inorganica Chemica Acta

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Phosphazenes Aryl Derivatives Mass Spectrometry NMR Spectroscopy Aryl lithium reagents

STRACT (Continue on reverse side if necessary and identity by block number)

The reactions of aryl lithium reagents containing electron donating substituents in the para position with hexafluorocyclotriphosphazene, P3N3F6, have been examined. These reactions yield the appropriate monoaryl pentafluorocyclotriphosphazenes, PN JC H X (XeF, Cl. OCH3, CH3) in moderate yields. The monoaryl phosphazenes are converted to the geminally substituted mixed aryl/phenyl derivatives, 2,2-23N3F4 (C.H.)C.H.X (X=F, C1, OCH3, CH3), by the Friedel-Crafts reaction. The infrared and nmr spectroscopic data

DD 1 JAN 73 1473

EDITION OF I NOV 65 IS OBSOLETE S/N 0102-014-6601

408 892

20. /(cont.)

along with the mass spectrometry data are discussed in terms of perturbations of the aryl system by both the phosphazene and electron donor substituents.

ica al 1200 (2000) and 1800 A. P. 1840 A. P. 1840 Anderson engeon (170 anderson engeon) fra anderson enge and al anderson enge and al anderson engel and al anderson engel and and anderson engel and and anderson engel and a

OFFICE OF NAVAL RESEARCH Contract N0001477C-0605 Project NR 356-663 Technical Report No. 6

Organophosphazenes. XIV. Para Substituted Aryl and Mixed Para Substituted Aryl/ Phenyl Fluorocyclotriphosphazene Derivatives,

Christopher W. Allen, George E. Brunst and
Michael E. Perlman

Prepared for Publication in Inorganica Chimica Acta

NOODIH-77-C-0605

University of Vermont Department of Chemistry Burlington, Vermont 05405

12/24)

Accession For	
NTIS GRA&I DDC TAB Unannounced Justification_	
Ву	
Distribution/	
Availability	Codes
Dist. Specia	d/or

Reproduction in whole or in part is permitted for any purposes of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

408 892

B

Christopher W. Allen*, George E. Brunst and Michael E. Perlman

> Department of Chemistry University of Vermont Burlington, Vermont 05405, USA

The reactions of aryl lithium reagents containing electron donating substitutents in the para position with hexafluorocyclotriphosphazene, $P_3N_3F_6$, have been examined. These reactions yield the appropriate monoaryl pentafluorocyclotriphosphazenes, $P_3N_3F_5C_6H_4X$ (X = F, Cl, OCH₃, CH₃) in moderate yields. The monoaryl phosphazenes are converted to the geminally substituted mixed aryl/phenyl derivatives, $2,2-P_3N_3F_4(C_6H_5)C_6H_4X$ (X = F, Cl, OCH₃, CH₃), by the Friedel-Crafts reaction. The infrared and nmr spectroscopic data along with the mass spectrometry data are discussed in terms of perturbations of the aryl system by both the phosphazene and electron donor substituents.

Introduction

The reactions of aryl lithium reagents with cyclic 1-4 and polymeric phosphazenes have proved to be of value for the preparation of arylphosphazenes. To date phenyl, tolyl, p-dimethylaminophenyl, fluorophenyl and perfluorophenyl4 derivatives have been synthesized. In addition to aryl species, a wide variety of other organolithium reagents have been shown to undergo reactions with cyclophosphazenes. 6-11 This investigation involves the extension of this synthetic technique to the preparation of aryl phosphazenes with a variety of electron donating functional groups in the para position of the aryl ring. Interest in this type of compound is related to two topics of continuing interest in our studies of organophosphazenes. We have previously shown that the p-dimethylaminophenyl group functions as an effective electron donor to the strongly electron accepting fluorophosphazene moeity. 12 Consequently. it was of interest to prepare aryl phosphazenes with a range of electron donating groups on the aryl ring in order to probe the manifestations of these electronic effects on basic spectroscopic properties. We also have been developing organofunctional phosphazenes in order to provide starting materials for the preparation of new organophosphazenes via synthetic transformations of the exocyclic group. 10,11,13 Organofunctional arylphosphazenes would provide another possible source to new organophosphazenes.

Experimental

Materials and Measurements Hexachlorocyclotriphosphazene (Ethyl Corp.) was converted to hexafluorocyclophosphazene $(P_3N_3F_6)^{14}$ which in turn was converted to paratolylpentafluorocyclotriphosphazene by previously reported procedures. Benzene sand diethylether were distilled over sodium. Triethylamine was distilled from potassium hydroxide. The following reagents were used without

further purification: n-butyl lithium (Alfa), 1-bromo-4-chlorobenzene (Adrich), 1-bromo-4-fluorobenzene and 4-bromo-anisole (Eastman Kodak). Nmr Spectra were obtained on a JEOL C-60HL spectrophotometer as fifteen percent cyclohexane solutions. Further dilutions did not produce any change in chemical shifts. Second order spectra simulated with the LACOON III Program. Infrared spectra were obtained on thin films or nujol mulls using a Beckman IR-20A spectrophotometer with sodium chloride disks and were calibrated with polystyrene bands. Mass spectra were obtained on a Perkin-Elmer RMU-6D spectrophotometer at 80eV. In certain cases ionizing volt ages were varied from 80 to 15 eV with the lower limit taken as approaching the appearance potential. Calibration was accomplished using perfluorokerosene. Elemental analyses were performed by the Robertson Laboratories.

Preparation of Mono (p-fluorophenyl) pentafluorocyclotriphosphazene. The procedure discussed here is a modification of those reported for the preparation of phenyl and p-fluorophenyl fluorocyclotriphosphazenes. A three-necked round-bottomed flask changed with 200 ml of diethyl ether, a stirring bar and 6.88 ml (0.06 mole) of p-FC₆H₄Br was fitted with a nitrogen inlet, a pressure-equalizing dropping funnel and a reflux condenser attached to a mercury bubbler. The flask was cooled to -78° and flushed with nitrogen for 10 min. A solution of n-butyl lithium in hexane (25 ml, 0.06 mole) was admitted to the dropping funnel through a septum cup with a syringe. The butyl lithium solution was added to the p-FC₆H₄Br solution dropwise over a period of 30 min with constant stirring. The solution was allowed to come to room temperature and stirring was continued for 45 minutes. A second three-necked flask was charged with a solution of 15.0 g (0.06 mole) of P₃N₃F₆ in 70 ml of diethyl ether and fitted with a nitrogen inlet and a reflux condenser attached to a mercury bubbler. An angled tube with 24/40 outer joints at each end was fitted to a pressure-equalizing

dropping funnel at one end while the other end replaced the reflux condenser on the flask containing the p-FC₆H₄Li solution, thus allowing transfer of the organometallic reagent. The dropping funnel was fitted to the flask containing the phosphazene solution. The assembled system was flushed with nitrogen at -78° and then the p-FC₆H₄Li solution was added at 0° over a period of 90 min. The mixture was allowed to stir for an additional 2 hours at room temperature. After the solvent was removed, 100 ml of medium boiling petroleum ether was added and the solution was stored overnight at 10°. Repeated filtrations through filter aid were required to remove all of the lithium halides. The clear solution was treated with activated carbon. After removal of the carbon and solvent, the oily residue was distilled through a vigreaux column at 0.6 mm, and the fractions boiling at 66-68° were collected; yield 6.2g (32% of theory 17) of a water white liquid. Anal. Calcd for P₃N₃F₅C₆H₄F: C, 22.17; H, 1.24; mol wt, 325. Found: C, 22.26; H, 1.32; mol wt, 325 (mass spectrum).

Using procedures identicle to those described above, para substituted monoaryl pentafluorocyclophosphazenes with the formulae $P_3N_3F_5C_6H_4X$ (X = Cl, OCH₃) were prepared. These compounds were identified by ir and nmr spectroscopy and mass spectrometry.

Preparation of Geminal (p-methoxyphenyl) (phenyl) tetrafluorocyclotriphosphazene. In a typical reaction, 20 ml of benzene see distilled into a 50 ml, three-necked, round-bottomed flask containing 1.04 ml (0.007 mole) of triethylamine and a stirring bar. The flask was charged with 6.0 g (0.023 mole) of aluminum chloride and fitted with a reflux condenser attached to a mercury bubbler and a pressure-equalizing funnel containing 1.9 g (0.005 mole) of P₃N₃F₅C₆H₄OCH₃ in 5 ml of freshly distilled benzene. The flask was heated to reflux with constant stirring. After 30 minutes, the P₃N₃F₅C₆H₄OCH₃ solution was added dropwise. The reaction was allowed to continue for 24 hours. After allowing the reaction mixture to cool, it was poured into a 150 ml beaker

which was one-third filled with cracked ice and contained 0.5 ml of concentrated hydrochloric acid. The layers were separated and the water layer was extracted with benzene. The benzene layers were combined, extracted with water, aquous sodium bicarbonate and water. The benzene layer was then dried over magnesium sulfate and treated with activated carbon. The solids and solvent were successively removed and the resulting oil was heated in a sublimation apparatus at 150° and 0.5 mm. A white crystalline solid, 1.1 g (53% of theory), mp 102-103° was obtained. Anal. Calcd for P₃N₃F₄(C₆H₅)C₆H₄OCH₃: C, 39.49; H, 3.03; mol wt 395. Found: C, 37.53; H, 2.95; mol wt 395 (mass spectrum).

Using procedures identicle to those described above, mixed phenyl, parasubstituted aryl tetrafluorophosphazenes with the formulae $2,2-P_3N_3F_4(C_6H_5)-C_6H_4X$ (X = CH₃, F, Cl) were prepared. These compounds were identified by ir and nmr spectroscopy, and mass spectrometry.

Results and Discussion

This investigation, when combined with previous investigations, demonstrates the broad scope of the organolithium reaction for the preparation of monoaryl-

$$P_3N_3F_6 + L1 \bigcirc -X \rightarrow P_3N_3F_5 \bigcirc -X + L1F$$

$$x = H^3$$
, CH_3^2 , $C1^{18}$, $F^{18,4}$, OCH_3^{18} , $N(CH_3)_2^1$

pentafluorocyclotriphosphazenes. Furthermore, all of these species may effectively converted to the mixed phenyl/aryl tetrafluorocyclotriphosphazenes via the Friedel-Crafts reaction.

$$P_3N_3F_5$$
 \bigcirc $X + C_6H_6$ $\xrightarrow{A1C1_3}$ \bigcirc $2,2-P_3N_3F_4(C_6H_5)$ \bigcirc \bigcirc $X + (C_2H_5)_3NH^+F^-$
 $X = H^{19}, CH_3^{18}, C1^{18}, F^{18}, OCH_3^{18}, N(CH_3)_2^{1}$

Thus, the organolithium reaction represents a good route to the synthesis of

arylphosphazenes with electron donating substituents on the aryl ring.

Since aryl lithium reagents with electron withdrawing substituents are only stable at significantly reduced temperatures, aryl phosphazenes with electron withdrawing substituents are expected to be difficult to prepare.

The infrared spectra of the aryl fluorocyclotriphosphazenes are reported in Table I. The VNPN ring vibration of the monosubstituted phosphazenes occurs between 1260-1263 cm⁻¹. The replacement of a fluorine atom by a phenyl group leads to decrease of 8-10 cm⁻¹ in VNPN. It is of interest to observe that a variation of para substituents on the aryl ring produces small variations in the phosphazene ring vibrational frequency. A further discussion of the origin of this effect is not warrented due to broad band width (even after successive dilution) and the complex nature of the transmission of aryl electronic effects to the phosphazene¹². The magnitude of the decrease in VPNP on going to the disubstituted derivative is consistent with geminal rather than non-geminal substitution¹⁹. The geminal nature of the disubstituted derivative may also be demonstrated by the absence of a strong band which occurs in the region of 760 cm⁻¹ in non-geminal phenylfluorocyclotriphosphazenes.

The ¹H nmr data for the aryl protons of the monoaryl pentafluorocyclotriphosphazenes is reported in Table II. The spectra are of the AA'BB'X type (with the exception of the para fluoro derivative which is AA'BB'MX). Although it was tempting to treat the ortho protons as a first order case, it was found that simulation of the spectra using the LACOON III program was necessary in order to obtain a consistent set of parameters. A combination of unresolved resonances and quadrupole broading due to nitrogen gave relatively broad lines so that values for the long range hydrogen-hydrogen coupling constants (J_{HOHO}1 and J_{HMHm}1) could not be obtained.

The chemical shifts of the protons ortho to the phosphazene ring are essentially constant for the para substituent being CH3, Cl or OCH3. Since the geometry of the system stays constant through the series, the ortho shifts are controlled by a combination of the anisotropic and electronic effects of the phosphazene ring. The ortho shift for the para fluoro derivative is significantly removed from the others in the series suggesting a stronger involvement of the para substituent in perturbation of the aryl ring electronic structure in this case. In para disubstituted benzene derivatives, one generally observes that the combination of a strong electron donor and strong electron acceptor produces a large difference in the ortho and meta chemical shifts (Δ om) while is cases where the descrimination between the groups is less dramatic, the value of Aom is smaller. In the molecules under consideration in this investigation, the strongly electron withdrawing effect of the pentafluorocyclotriphosphazene moiety 12,16,22 combined with good π donors (e.g. F, OCH_2) results in significantly larger values of Δom than when the phosphazene is combined with weak electron donors (e.g. CH2, Cl). The phosphorusortho hydrogen coupling constant (JPHO) is of the same order of magnitude as previously reported for aryl phosphorus (v) compounds. 16,23 The better π donors (F, OCH,) exhibit lower coupling constants while the poorer electron donors (Cl, CH3) exhibit higher values of JPHo. The more electron density in the aryl ring, the lower the effective charge on the ortho hydrogen atom and hence one observes a reduction in the value of $J_{\rm PHO}$. In keeping with previous observations²⁴, the small variation is the hydrogen-hydrogen coupling constant, JHOHM, is related the substituent group electronegativity values.

The mass spectra for the monoaryl pentafluorocyclotriphosphazenes are reported on Table III. The basic fragmentation process observed is the same as previously established for the monophenyl derivative. This consistency throughout a series of compounds is important in the application of mass

spectrometry to the identification of new compounds. Features which are unique to individual molecules can usually be related to the known fragmentation tendencies of the organic moiety e.g. loss of the methyl group in the para methoxy derivative and tropyllium ion formation in the para tolyl derivative.

The mass spectra of the mixed aryl/phenyl tetrafluorocyclotriphosphazenes (Table IV) are also understandable in terms of the basic process established for phenyl fluorocyclotriphosphazenes 25 with perturbations reflecting para substituent fragmentation. Organic group substituent decomposition makes significant contributions to the mass spectra of the diorgano derivatives. particularily in the para methoxyl and tolyl derivatives. The basic phosphazene fragmentation route observed is the successive cleavage of the aryl groups which is characteristic of geminally substituted derivatives. Thus, the mass spectrometry data confirm the infrared results in the assignment of the geminal configuration to the disubstituted derivatives (the expected product in a Friedel-Crafts reaction 19). It is of particular interest to compare the intensity of the ion resulting from the loss of the phenyl group (P3N3F4C6H4X+) compared to the ion resulting from the loss of the para substituted aryl group (P3N3F4C6H5+). Previously, we have shown that a phenyl group is lost in preference to a para dimethylaminophenyl group in geminal phenyl/paradimethylaminophenyl fluorocyclotriphazenes and this observation was attributed to higher bond strength in the phosphorus-paradimethylaminophenyl unit than in the phosphorus-phenyl bond. The tendency to lose a phenyl group in preference to the aryl group with an electron donating substitutent is observed in most of the mixed aryl/phenyl derivatives in this investigation. The apparent reversal of this trend in the para chloro derivative relates to the fact that there are two possible precursors to the PaNaFaC6H5+ ion i.e. P3N3F4(C6H5)C6H4C1+ and P3N3(C6H5)C6H4+. The mass spectrum of P3N3F4(C6H5)-C6H4CH3 is rather complex with no P3N3F4C6H5+ ion and a very intense ion

associated with tropyllium derivative. In order to insure that the observed intensity differences are related to thermodynamic parameters, the spectra of the two derivatives with strong electron donors (fluoro and methoxy) were run at successively lower ionization energies until the region approaching the appearance potential was reached (approximately 15 to 18eV). In the para methoxyl derivative the intensity difference between the PaNaFaC6H50+ and the $P_3N_3F_4C_6H_5^+$ ions increases at lower ionization energies. While in the case of the para fluoro derivative, the ratio of the PaNaFaC6H4F+ to the $P_3N_3F_5C_6H_5^+$ ion intensities approaches unity at lower ionization energies. Thus in the paramethoxy case, phosphorus-carbon bond enthalpy is greater in the bond to the para substituted aryl group. In the para fluoro derivative, there is no preferential phosphorus-carbon stabilization in the appearance potential region consequently the intensity difference at higher ionization energies is related to kinetic effects. Two of most probable kinetic effects which are reasonable for this system are stabilization of the developing positive ion by the electron donating para-fluorophenyl moiety and the superior leaving group ability of the phenyl group.

Acknowledgment. This work was supported, in part, by the Office of Naval Research.

References and Notes

- 1. Part XIII: C. W. Allen and P. L. Toch, submitted to Inorg. Chem.
- 2. T. Moeller and F. Tsang, Chem. Ind. (London), 361 (1962).
- 3. C. W. Allen and T. Moeller, <u>Inorg. Chem.</u>, 7, 2177 (1968).
- 4. T. Chievers and N. L. Paddock, <u>Inorg. Chem.</u>, 11, 848 (1972).
- H. R. Allcock, <u>Acc. Chem. Res.</u>, 12, 351 (1979); H. R. Allcock and C. T-W. Chu, <u>Macromolecules</u>, 12, 551 (1979).
- 6. T. Moeller, A. Failli and F. Y. Tsang, <u>Inorg. Nucl.Chem. Letters</u>, 1, 49 (1969)
- 7. E. Niecke, H. Thamm, O. Glemser, Z. Naturfursch., 26b, 366 (1971).
- 8. T. N. Ranganathan, S. M. Todd, and N. L. Paddock, <u>Inorg. Chem.</u>, 12, 316 (1973).
- 9. T. Chievers, Inorg. Nucl. Chem. Letters, 7, 827 (1971).
- 10. J. G. Dupont and C. W. Allen, <u>Inorg. Chem.</u>, 16, 2694 (1977).
- 11. J. G. Dupont and C. W. Allen, <u>Inorg. Chem.</u>, 17, 3093 (1978).
- 12. C. W. Allen and J. C. Green, Inorg. Chem., in press.
- 13. J. G. Dupont and C. W. Allen, Macromolecules, 12, 169 (1979).
- 14. T. Moeller, K. John and F. Tsang, Chem. Ind. (London), 347 (1961).
- 15. Benzene is a cancer suspect agent and hence all manipulations involving benzene should be done in a fume hood and ultilizing appropriate precautions.
- 16. C. W. Allen and A. J. White, <u>Inorg. Chem.</u>, 13, 1220 (1974).
- 17. literature value for the yield of P3N3F5C6H4F is 14%.
- 18. This investigation
- 19. C. W. Allen, F. Y. Tang and T. Moeller, Inorg. Chem., 7, 2183 (1968).
- 20. G. Köbrich and P. Buck, Chem. Ber. 103, 1412 (1970).
- 21. This band is reported in the solution ir spectra of non-geminal phenyl fluorophosphazenes however it also occurs in mull spectra.
- 22. C. W. Allen, J. Organometal. Chem., 125, 215 (1977).

- 23. C. E. Griffin, <u>Tetrahedron</u>, 20, 2399 (1964); C. E. Griffin, J. J. Burke, F. E. Dickson, M. Gordon, H. H. Hsieh, R. Obrycki and M. P. Williamson, <u>J. Phys. Chem.</u>, 71, 4458 (1967); C. E. Griffin, R. B. Davidson and M. Gordon, <u>Tetrahedron</u>, 22, 561 (1966).
- 24. S. Castellano and W. G. Schneider, J. Chem. Phys., 35, 731 (1961).
- 25. C. W. Allen and P. L. Toch, J. C. S. Dalton, 1685 (1974).

TABLE I. Selected IR Data

P3N3F5C6H4F							
	1263vs	1238s		938vs		8535e,822vs	793ms, 726ms, 723s
P3N3F4 (C6H5) C6H4F	1254vs	12348		922s,900m		8148	728m, 719w
P3N3F5C6H4CH3	1262vs		9778	94 lvs		857s,830vs	8018,7318,6558
P3N3F4(C6H5)C6H4CH3	1252vs		962m	9538,910s		8208,8108	799ms,727s,649ms
P3N3F5C6H40CH3	1260vs			931vs		846s,822w	
P3N3F4(C6H5)C6H4CH3	1252vs	12178		937w,906s		825m,809ms	800ms,723s,709m
P3N3F5C6H4C1	1261vs			935vs	8508	832vs, 813s	738m
P3N3F4 (C6H5) C6H4C1	1250vs		M676	9218,9028		8908	739ms,727ms

a. All frequencies in cm 1; calibrated with polystyrene band at 1601-8cm 1.

TABLE II.

H NMR Data for Aryl pentafluorocyclotriphosphazenes, P3N3F50-X

x	бно	δ _{Hm}	On	J _{HoHm}	JPHo	JPH
осн ₃	7.80	6.94	0.86	9.1	15.5	4.0
F	7.96	7.17	0.79	9.0	15.0	4.0
CH ₃	7.80	7.28	0.52	8.2	16.2	4.5
C1	7.82	7.46	0.36	8.5	15.7	3.5

TABLE III. Mass Spectrometry Data for Aryl pentafluoro-cyclotriphosphazenes, P₃N₃F₅ O-X

	R			
Assignment	F	CH ₃ O	C1 ^b	CH ₃
P3N3F5C6H4X +	100%	100%	100%	100%
[P3N3F5C6H4X-H]+	1.8	3.0	2.3	28.5
P3N3F5C6H40 +		12.6		
P3N3F5C6H4 +	2.6	4.4	4.1	1.1
P3N3F5C5H4 +		19.7		0.5
m/e = 248	1.1	1.1	24.3	
P3N3F5C+	5.2	2.8	6.8	3.5
P3N3F5H ⁺	2.3	2.6	3.6	2.0
P3N3F5 +	10.5	8.2	11.6	9.6
P3N2F5 +	34.1	14.2	50.0	13.2
P3N3F4H ⁺	.1.3	1.6	3.9	2.0
P3N3F4+	0.9	0.8	3.3	1.1
P3N2F4+	4.9	6.8	4.5	9.8
P2NF5H ⁺				4.3
P2NF5	6.8	6.3	8.2	8.6
P3N3F5C6H4X ²⁺	2.7	3.3	2.7	4.1
P3N3F5C8H6 ²⁺				6.7
P2NF4+	3.9	3.8	4.5	5.3
P ₂ NF ₃ ⁺	1.1	1.2	1.8	1.7
P ₂ NF ₂ ⁺	3.9	3.0	5.0	0.6
PN ₂ F ₂ ⁺	1.7	4.9	2.3	2.1
NC ₆ H ₄ x ⁺	4.6	2.8	3.6	5.0
C6H4x ⁺	3.9	4.9	3.0	18.0

a. Obtained at 80ev b. based on 35Cl.

TABLE IV. Selected Mass Spectrometry Data for Aryl phenyl tetrafluorocyclotriphosphazenes, P₃N₃F₄(C₆H₅)C₆H₄X^a

	3-01		الرقوات أأدا	3-205
1.1 1.4		Relati	ve Abundano	e
Assignment	1.01	CH ₃ O	C1 ^b	CH3C
[P3N3F4(C6H5)C6H4X +	н] ⁺ 93	26	893	ar s la
P3N3F4(C6H5)C6H4X+	100	34	97	4
[P3N3F4(C6H5)C6H4X -	H] ⁺	17.2	100	7
P3N3F4(C6H5)C6H50+	5.6	100		
P3N3F4(C6H5)C6H40+		100		
P3N3F4(C6H5)C6H4+			24.7	
P3N3F4C6H4X+	31		39	52
P3N3F4C7H7+				100
P3N3F4C6H50+		56		
P3N3F4C6H5+	10.5	18	48	0
P3N3F4+	13.7	8.9	24.7	11
P ₃ N ₂ F ₄ ⁺	8.7	4.3	32.5	15.2

a. Obtained at 80ev; only ions relevant to the discussion reported. b. based on 35Cl

2.2 2.6 1.1

c. complex spectrum, possibly due to impurity peaks.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research		U. S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Branch Office		Naval Ocean Systems Center	
Attn: Dr. George Sandoz			
536 S. Clark Street		Attn: Mr. Joe McCartney	
		San Diego, California 92152	omat . zi
Chicago, Illinois 60605	1	Naval Weapons Center	
ONR Branch Office		Attn: Dr. A. B. Amster.	
Attn: Scientific Dept.			
715 Broadway		Chemistry Division	
		China Lake, California 93555	1
New York, New York 10003	1		
OVD Barrel Office		Naval Civil Engineering Laboratory	
ONR Branch Office		Attn: Dr. R. W. Drisko	
1030 East Green Street		Port Hueneme, California 93401	1
Pasadena, California 91106	1		
		Department of Physics & Chemistry	
ONR Branch Office		Naval Postgraduate School	
Attn: Dr. L. H. Peebles		Monterey, California 93940	1
Building 114, Section D			
666 Summer Street		Dr. A. L. Slafkosky	
Boston, Massachusetts 02210	1	Scientific Advisor	
		Commandant of the Marine Corps	
Director, Naval Research Laboratory		(Code RD-1)	
Attn: Code 6100		Washington, D.C. 20380	1
Washington, D.C. 20390	1		
		Office of Naval Research	
The Assistant Secretary		Attn: Dr. Richard S. Miller	
of the Navy (R,E&S)		800 N. Quincy Street	
Department of the Navy		Arlington, Virginia 22217	1
Room 4E736, Pentagon			
Washington, D.C. 20350	1	Naval Ship Research and Development Center	
Commander, Naval Air Systems Command		Attn: Dr. G. Bosmajian, Applied	
Attn: Code 310C (H. Rosenwasser)		Chemistry Division	
Department of the Navy		Annapolis, Maryland 21401	1
Washington, D.C. 20360	1	numaporis, maryland 21401	
		Naval Ocean Systems Center	
Defense Documentation Center		Attn: Dr. S. Yamamoto, Marine	
Building 5, Cameron Station		Sciences Division	
Alexandria, Virginia 22314	12	San Diego, California 91232	1
Dr. Fred Saalfeld		Mr. John Boyle	
Chemistry Division		Materials Branch	
Naval Research Laboratory		Naval Ship Engineering Center	
Washington, D.C. 20375	1		
meaningrout, D.C. 203/3		Philadelphia, Pennsylvania 19112	1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

fittee of Naval Kessach arn: Goda \$72

Plangton, Virginia 22217

min: Dr Ceorge Sandos 36 S. Clark Street

dense, lilinois, 80005

den: Scientific Dept. Park, New York 19993

MR Branch Office 1000 Eact Green Street Seadens, California 91105

ith Ur. L. E. Pesblen Silding II4, Section D.

tta: Cede 6100 mariagramy DICL 20190

THE ASSISTED SECTIONS tos (2,55) tos New (2,555)

dom 42536, Tempogon Reningrony D.C. 10350

PERCENCIE OF THE MARY decide .0.0 .norgateen

> Distinct Sealest relarvit vinaldes

efense Documentarion Center Milding 5, Cameron Station ATUNT simistry sithmans

wight Research Laboratory

Daton, Massannastus 01210

Marcar, Naval Research Laboratory

unnated ansteve the Level remning (Teets Code 310C var Rosenwasser)

solide doners Ha

solfilo domara an

ME Branch Office

Control States

Copies

Dr. Rudolph J. Marcus Office of Naval Research Scientific Liaison Group American Embassy Nigal Suega Lystems APO San Francisco 96503

Mr. James Kelley DTNSRDC Code 2803 Annapolis, Maryland 21402 Actes Oc. A. B. Agales,

De. A. D. Slafkoeky

Rotantitle advisor

TECHNICAL REPORT DISTRIBUTION LIST, 356B

· ·	No. Copies	escool	No. Copies
Dr. T. C. Williams		Douglas Aircraft Company	
Union Carbide Corporation		3855 Lakewood Boulevard	
Chemical and Plastics			
Tarrytown Technical Center		Long Beach, California 90846	
Tarrytown, New York	1	Attn: Technical Library	
tallycown, new lock	- P	C1 290/36-84 AUTO-Sutton	
Dr. R. Soulen		AUTO-Sutton	taginesw.
Contract Research Department	0	NASA-Lewis Research Center	
Pennwalt Corporation		21000 Brookpark Road	
900 First Avenue		Cleveland, Ohio 44135	
King of Prussia, Pennsylvania 19406	1	Attn: Dr. T. T. Serafini, MS 49-1	Naval Po
and of fronts, femily famile 19400		Actu. Dr. 1. 1. Setalini, no 49-1	Hornares
Dr. A. G. MacDiarmid		Dr. J. Griffith	
University of Pennsylvania	4	Naval Research Laboratory	
Department of Chemistry			
Philadelphia, Pennsylvania 19174	1	Washington, D.C. 20375	AF I HEE
Dr. C. Pittman		Pro C. Condens	
		Dr. G. Goodman	
University of Alabama		Globe-Union Incorporated	
Department of Chemistry		5757 North Green Bay Avenue	Liding (e)
University, Alabama 35486	1	Milwaukee, Wisconsin 53201	New York
Dr. H. Allcock		Dr. E. Fischer, Code 2853	
Pennsylvania State University		Naval Ship Research and	
Department of Chemistry		Development Center	
University Park, Pennsylvania 16802	1	Annapolis Division	
		Annapolis, Maryland 21402	1
Dr. M. Kenney			
Case-Western University		Dr. Martin H. Kaufman, Head	
Department of Chemistry		Materials Research Branch (Code 4542)	
Cleveland, Ohio 44106	1	Naval Weapons Center	
		China Lake, California 93555	1
Dr. R. Lenz			
University of Massachusetts		Dr. J. Magill	
Department of Chemistry		University of Pittsburg	
Amherst, Massachusetts 01002	1	Metallurgical and Materials Engineering	
Dr. M. David Curtis		Pittsburg, Pennsylvania 22230	1
University of Michigan		iztebbarg, remmeyrvania zzzov	
Department of Chemistry		Dr. D. Bergbreiter	
Ann Arbor, Michigan 48105	1	Texas A&M University	
in interior, interior		Department of Chemistry	
Dr. M. Good		College Station, Texas 77843	1
Division of Engineering Research		CATTER ACCION TENS 1/043	
Louisiana State University		Professor R. Drago	
Baton Rouge, Louisiana 70803	1	Department of Chemistry	
peron water pourstant /0003	1	University of Illinois	
		Urbana, Illinois 61801	
		ornare, IIIIIIII 01001	1

TECHNICAL REPORT DISTRIBUTION LIST, 356B

Inten Carbida Corporation

Chemical and Plantica Tarrytown Taghalcal Center Tarrytown, day York

Contract Bewearch Department Tennwalt Carporation

Milversicy of Fennsylvania

Renerylevata State University Department of Chemistry

10001 sinsvivennes vires vicesvini

Department of Caestatry Philadelphia, Penasylvania 19176

delbod is . rul

Sonsva Janil Oce

namiola .0 . William

Mr. E. Minoces

University of Alabama Larancest of Chamistry University, Alabama 13480

Vijelment lo Jacojiacily

Department of Chemistry Anderst, Masnachusetta 91802

University of Michigan Repartment of Chemistry Sen Arbor, Michigan 98305

Paton Rouge, Lonisiana 70803

No. Copies

Dr. F. Brinkman Thangaco diagonal and
Chemical Stability & Corrosion Division
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234
Professor H. A. Titus
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940 1
COL B. E. Clark, Code 100M
Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217
Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027