

- I didn't make it through all the tests, sorry. You'll get them back and we'll talk about them on Friday!
- Homework:
 - WebWorK 5 due tonight!
 - Coding requires you to track both balls
 - Will ask for more questions in a moment
 - WebWorK 6 will be due Friday
- Starting Chapter 4 today!
- Polling: rembold-class.ddns.net

3...2...1...CONTACT! September 22, 2021 Jed Rembold 1 / 14

Review Question

A firework initially has a mass of 500 g and is motionless. It then explodes into 3 pieces. One 100 g piece leaves with a velocity of $\langle 0,4,0\rangle$ m/s, while another 250 g piece leaves at $\langle -2,0,3\rangle$ m/s. How fast is the last 150 g piece initially traveling?

- A) $5.2 \, \text{m/s}$
- B) $6.6 \, \text{m/s}$
- C) $13.1 \, \text{m/s}$
- D) None of the above

Solution: 6.6 m/s

2 / 14

Momentum of the System

• If we take a change in the position of the center of mass:

$$\Delta \vec{\mathbf{r}}_{CM} = \frac{m_1 \Delta \vec{\mathbf{r}}_1 + m_2 \Delta \vec{\mathbf{r}}_2 + m_3 \Delta \vec{\mathbf{r}}_3 + \cdots}{M_{total}}$$

assuming that the mass isn't changing.

• Dividing by Δt then gives us:

$$\frac{\Delta \vec{\mathbf{r}}_{CM}}{\Delta t} = \frac{m_1 \frac{\Delta \vec{\mathbf{r}}_1}{\Delta t} + m_2 \frac{\Delta \vec{\mathbf{r}}_2}{\Delta t} + m_3 \frac{\Delta \vec{\mathbf{r}}_3}{\Delta t} + \cdots}{M_{total}}$$

$$\vec{\mathbf{v}}_{CM} = \frac{m_1 \vec{\mathbf{v}}_1 + m_2 \vec{\mathbf{v}}_2 + m_3 \vec{\mathbf{v}}_3}{M_{total}}$$

$$M_{total} \vec{\mathbf{v}}_{CM} = \vec{\mathbf{p}}_1 + \vec{\mathbf{p}}_2 + \vec{\mathbf{p}}_3 + \cdots$$

$$M_{total} \vec{\mathbf{v}}_{CM} = \vec{\mathbf{p}}_{total}$$

3...2...1...CONTACT! September 22, 2021 Jed Rembold 3 / 14

When Incompressable Objects Meet

- Have been approximating things to point masses
 - Useful for many times of long-range forces like gravity or the electrostatic force
- Consider collisions:
 - ullet We originally found Δt from the compression distance and the arithmetic average velocity
 - But point masses don't compress, by definition!

3...2...1...CONTACT! September 22, 2021 Jed Rembold 4 / 14

When Incompressable Objects Meet

- Have been approximating things to point masses
 - Useful for many times of long-range forces like gravity or the electrostatic force
- Consider collisions:
 - ullet We originally found Δt from the compression distance and the arithmetic average velocity
 - But point masses don't compress, by definition!
- We need a new way of looking at solids to understand how they interact when touching

3...2...1...CONTACT! September 22, 2021 Jed Rembold 4 / 14

- To understand large solids, we'll start with their building blocks: atoms.
- Groups of atoms follow general rules:
 - Always moving based on temperature
 - Generally attracted to one another
 - Unless they get too close, then they are repulsed

3...2...1...CONTACT! September 22, 2021 Jed Rembold 5 / 14

Starting Small

- To understand large solids, we'll start with their building blocks: atoms.
- Groups of atoms follow general rules:
 - Always moving based on temperature
 - Generally attracted to one another
 - Unless they get too close, then they are repulsed
- The last two lead to an obvious analog: springs!

3...2...1...CONTACT! September 22, 2021 Jed Rembold 5 / 14

Making Solids from Springs

- Many solids form crystalline structures
- Can visualize (and model) as packed grids of atoms, each with little springs connecting it to its neighbors
- This model will let us reason and explain such things as:
 - Tension
 - Friction
 - The normal force

3...2...1...CONTACT! September 22, 2021 Jed Rembold 6 / 14

Properties of Atomic Springs

- Our goal is to understand macroscale behavior originating from an atomic spring model
- Would be useful to understand some properties of atomic springs
- Given that

$$\vec{\mathbf{F}}_{spring} = -k_s s \hat{\mathbf{L}}$$

some useful things to know would be:

- Spring constants of atomic springs
- Relaxed lengths of atomic springs
- Typical stretched distances of atomic springs

3...2...1...CONTACT! September 22, 2021 Jed Rembold 7 / 14

Properties of Atomic Springs

- Our goal is to understand macroscale behavior originating from an atomic spring model
- Would be useful to understand some properties of atomic springs
- Given that

$$\vec{\mathbf{F}}_{spring} = -k_s s \hat{\mathbf{L}}$$

some useful things to know would be:

- Spring constants of atomic springs
- Relaxed lengths of atomic springs
- Typical stretched distances of atomic springs

3...2...1...CONTACT! September 22, 2021 Jed Rembold 7 / 14

Properties of Atomic Springs

- Our goal is to understand macroscale behavior originating from an atomic spring model
- Would be useful to understand some properties of atomic springs
- Given that

$$\vec{\mathbf{F}}_{spring} = -k_s s \hat{\mathbf{L}}$$

some useful things to know would be:

- Spring constants of atomic springs
- Relaxed lengths of atomic springs
- Typical stretched distances of atomic springs

3...2...1...CONTACT! September 22, 2021 Jed Rembold 7 / 14

- Operating on the assumption that atoms are usually spaced at their relaxed length
- The relaxed length is going to depend on a few properties:
 - How the atoms are arrayed in the crystal structure
 - We'll generally assume nice cubic lattices
 - How tightly the atoms are packed
 - Related to the density of a material
- Note that the relaxed spring length is akin to the approximate diameter of the atom!

Important!

Relaxed spring lengths will depend on the material of the object involved! An object made of copper will have a different relaxed length than an object made of lead!

3...2...1...CONTACT! September 22, 2021 Jed Rembold 8 / 14

Looking at a periodic table, lead has a molar mass of about 207 g. Since a mole is 6.02×10^{23} , that is 207 g per 6.02×10^{23} atoms. The density of lead is about $11.34\,\mathrm{g/cm^3}$. Estimate the relaxed spring length of lead.

Solution: $3.11 \times 10^{-8} \, \text{cm}$

3...2...1...CONTACT! September 22, 2021 Jed Rembold 9 / 14

- Now want to know about the molecular spring constants
- Impossible to measure directly, so we base it off macroscopic observations
- Doing so requires us understanding how multiple springs work together

End-to-End

- Each spring stretches the same
- Total string stretches N times
- Reduces effective spring constant by N times

Side-by-Side

- Springs split the load by N
- Reduced load implies reduced displacement
- Increases effective spring constant by N

3...2...1...CONTACT! September 22, 2021 Jed Rembold 10 / 14

Understanding Check

We've determined that the springs in the front of the room are displaced by about 6 cm when a 250 g mass is hung from them individually. If I hang the mass from the spring configuration shown to the right, how far from equilibrium will the springs be displaced?

- A) 3 cm
- B) 6 cm
- C) 12 cm
- D) 24 cm

Solution: 6 cm

Counting the Strings of Springs

- We can consider a solid wire to be made up of many of these strings of springs
- How many depends on the thickness of the wire
- Cross-sectional area is the area shown by slicing through a solid
 - A circle for cylinders
 - A rectangle for blocks, etc
- Knowing the density of atoms and the cross-sectional area will set us calculate the number of strings of springs
- Can then use that to work backwards to get the spring constant

3...2...1...CONTACT! September 22, 2021 Jed Rembold 12 / 14

A thin lead rectangular wire with side length of 2 mm is 3 m long. A 10 kg weight is hung from the end and the new length of the wire is carefully measured to be 4.6 mm longer. What is the intermolecular spring constant between lead atoms?

Solution: 4.98 N/m

3...2...1...CONTACT! September 22, 2021 Jed Rembold 13 / 14

You have a thin gold wire with a radius of 1 mm which is 2 m long. Gold has an atomic weight of $196.966\,\mathrm{g/mol}$, a density of $19.30\,\mathrm{g/cm^3}$, and an intermolecular spring constant of $20.29\,\mathrm{N/m}$. How far will the gold wire stretch when a $10\,\mathrm{kg}$ mass is hung from the end?

3...2...1...CONTACT! September 22, 2021 Jed Rembold 14 / 14