Heuristic and exact approaches to the Quadratic Minimum Spanning Tree Problem

Roberto Cordone Gianluca Passeri

Dipartimento di Tecnologie dell'Informazione Università degli Studi di Milano

Definition of the QMSTP

Let

- ullet G=(V,E) a connected undirected graph (n=|V| and m=|E|)
- $c: E \to \mathbb{Z}$ a linear cost function
- $q: E imes E o \mathbb{Z}$ a quadratic cost function $ig(q_{ee} = 0 ext{ and } q_{ef} = q_{fe}ig)$

Find

• a spanning tree T = (V, X)

Minimize

• the total cost $z_X = \sum\limits_{e \in X} c_e + \sum\limits_{e,f \in X} q_{ef}$

An IQP formulation

Objective function

$$\min z(x) = \sum_{e \in E} c_e \cdot x_e + \sum_{e \in E} \sum_{f \in E} q_{ef} \cdot x_e \cdot x_f$$

Constraints

Acyclicity:
$$\sum_{e \in S(S)} x_e \le |S| - 1 \qquad S \subseteq V, |S| \ge 2$$

Cardinality:
$$\sum x_e = n - 1$$

ntegrality: $x_0 \in \{0,1\}$

 $x_e \in \{0,1\}$ $e \in I$

An IQP formulation

Objective function

$$\min z(x) = \sum_{e \in E} c_e \cdot x_e + \sum_{e \in E} \sum_{f \in E} q_{ef} \cdot x_e \cdot x_f$$

Constraints

Acyclicity:
$$\sum x_e \le |S| - 1$$
 $S \subseteq V, |S| \ge 2$

$$e \in E(S)$$

Cardinality:
$$\sum_{e \in E} x_e = n - 1$$

Integrality:
$$x_e \in \{0,1\}$$
 $e \in E$

Computational complexity

Strongly \mathcal{NP} -complete: reduction from SAT

- **1** A vertex x_i for each variable, a vertex c_i for each clause
- 2 An edge for each occurrence (x_i, c_l) of variable x_i in clause c_l
- 3 An edge for each pair (x_i, x_{i+1}) with $i = 1 \dots n-1$

$$f = (x_1 + x_2 + x_4) \cdot (\overline{x}_1 + \overline{x}_2) \cdot (\overline{x}_4) \cdot (x_1 + x_3 + \overline{x}_4)$$

Computational complexity

Strongly \mathcal{NP} -complete: reduction from SAT

- 4 $c_e = 0$ for all $e \in E$
- **6** $q_{ef} = 1$ when e and f are opposite occurrences of the same variable
- **6** $q_{ef} = 0$ for all other pairs of edges

$$f = (x_1 + x_2 + x_4) \cdot (\overline{x}_1 + \overline{x}_2) \cdot (\overline{x}_4) \cdot (x_1 + x_3 + \overline{x}_4)$$

$$q=1$$
 for (x_1,c_1,x_1,c_2) (x_1,c_2,x_1,c_4) (x_2,c_1,x_2,c_2) (x_4,c_1,x_4,c_3) (x_4,c_1,x_4,c_4)

Computational complexity

Strongly \mathcal{NP} -complete: reduction from SAT

- An edge identifies a satisfying occurrence
- A spanning tree identifies a satisfying assignment
- If $z_X = 0$, tree X employs only zero cost edges
- Zero cost edges identify reciprocally consistent occurrences

$$f = (\mathbf{x_1} + \mathbf{x_2} + \mathbf{x_4}) \cdot (\overline{\mathbf{x}_1} + \overline{\mathbf{x}_2}) \cdot (\overline{\mathbf{x}_4}) \cdot (\mathbf{x_1} + \mathbf{x_3} + \overline{\mathbf{x}_4})$$

$$q=1$$
 for (x_1,c_1,x_1,c_2) (x_1,c_2,x_1,c_4) (x_2,c_1,x_2,c_2) (x_4,c_1,x_4,c_3) (x_4,c_1,x_4,c_4)

Approximability and number of solutions

Approximability

• Since the optimal cost is $z^* = 0$, the QMSTP is non-approximable unless $\mathcal{P} = \mathcal{NP}$

Number of solutions

- It is exactly given by Kirchoff's theorem (1847)
- For complete graphs (Cayley's theorem)

$$|\mathcal{T}| = n^{n-2}$$

Approximability and number of solutions

Approximability

• Since the optimal cost is $z^* = 0$, the QMSTP is non-approximable unless $\mathcal{P} = \mathcal{NP}$

Number of solutions

- It is exactly given by Kirchoff's theorem (1847)
- For complete graphs (Cayley's theorem)

$$|\mathcal{T}| = n^{n-2}$$

Definition of the QMSTP
An IQP formulation
Computational complexity
Approximability and number of solutions
Survey
Algorithmic approaches developed

Survey on the literature

Survey on the literature

- simple greedy heuristics (Xu, 1995)
- genetic algorithm (Zhou and Gen, 1998)
- two genetic algorithms for the fuzzy QMSTP (Gao and Lu, 2005)

Definition of the QMSTP
An IQP formulation
Computational complexity
Approximability and number of solutions
Survey
Algorithmic approaches developed

Algorithmic approaches developed

- ILP formulation (standard linearization)
- Heuristic approaches
 - a) Average contribution method (constructive)
 - b) Minimum contribution method (constructive)
 - c) Sequential fixing method (constructive and adaptive)
 - d) Tabu Search
- Exact approach
 - Branch and Bound (combinatorial bound)

Definition of the QMSTP
An IQP formulation
Computational complexity
Approximability and number of solutions
Survey
Alzorithmic approaches developed

Algorithmic approaches developed

- ILP formulation (standard linearization)
- 4 Heuristic approaches
 - a) Average contribution method (constructive)
 - b) Minimum contribution method (constructive)
 - c) Sequential fixing method (constructive and adaptive)
 - d) Tabu Search
- Exact approach
 - Branch and Bound (combinatorial bound)

Definition of the QMSTP
An IQP formulation
Computational complexity
Approximability and number of solutions
Survey
Algorithmic approaches developed

Algorithmic approaches developed

- ILP formulation (standard linearization)
- 4 Heuristic approaches
 - a) Average contribution method (constructive)
 - b) Minimum contribution method (constructive)
 - c) Sequential fixing method (constructive and adaptive)
 - d) Tabu Search
- Exact approach
 - Branch and Bound (combinatorial bound)

The general constructive approach Average Contribution Method Minimum Contribution Method Sequential Fixing Method General features of the local search algorithm

Common elements for the constructive heuristics

Starting from the quadratic objective function...

$$\min z(x) = \sum_{e \in E} c_e \cdot x_e + \sum_{e \in E} \sum_{f \in E} q_{ef} \cdot x_e \cdot x_f$$

...approximate it with a linear one...

$$z(x) = \sum_{e \in E} x_e \cdot \left(c_e + \sum_{f \in E} q_{ef} \cdot x_f\right) \approx \sum_{e \in E} \tilde{c}_e \cdot x_e$$

where
$$ilde{c}_e pprox c_e + \sum_{f \in F} q_{ef} \cdot x_f$$
 $e \in E$

... and solve the resulting MSTP

$$z(x) = \min_{x \in \mathcal{T}} \sum_{e \in F} \tilde{c}_e \cdot x_e$$

Average Contribution Method

Objective function

$$z(x) = \sum_{e \in E} x_e \cdot \left(c_e + \sum_{f \in E} q_{ef} \cdot x_f\right)$$

Approximated objective function

$$\tilde{c}_e = c_e + (n-2) \cdot \frac{\sum\limits_{f \in E} q_{ef}}{m-1}$$
 $e \in E$

Complexity

$$\Theta(m^2 + m \log n)$$

Minimum Contribution Method

Objective function

$$z(x) = \sum_{e \in E} x_e \cdot \left(c_e + \sum_{f \in E} q_{ef} \cdot x_f\right)$$

Approximated objective function

$$ilde{c}_e = c_e + \sum_{f \in E_*^*} q_{ef} \qquad e \in E$$

 E_e^* includes the n-2 edges with minimum q_{ef}

Complexity

$$\Theta(m^2 \log n + m \log n)$$

Sequential Fixing Method

Objective function

$$z(x) = \sum_{e \in E} x_e \cdot \left(c_e + \sum_{f \in E} q_{ef} \cdot x_f \right)$$

Approximated (adaptive) objective function

Set $X := \emptyset$ and F := F

Move from F to X the edge with minimum

$$\tilde{c}_e = c_e + \sum_{f \in X} q_{ef} + (n-2-|X|) \cdot \frac{\sum\limits_{f \in F \setminus \{e\}} q_{ef}}{|F| - 1} \quad e \in F$$

Remove from F the edges which close loops with X

Complexity

$$\Theta(m^2n+mn\alpha(m,n))$$

Main elements

- Neighbourhood: one edge in / one edge out
- Feasible edges out (for each edge in):
 loop formed by the edge in
- Evaluation in $\Theta(1)$ time of the objective function variation

$$O((m-n) \cdot n)$$

Main elements

- Neighbourhood: one edge in / one edge out
- Feasible edges out (for each edge in): loop formed by the edge in
- Evaluation in $\Theta(1)$ time of the objective function variation

$$O((m-n) \cdot n$$

Main elements

- Neighbourhood: one edge in / one edge out
- Feasible edges out (for each edge in): loop formed by the edge in
- Evaluation in $\Theta(1)$ time of the objective function variation

$$O((m-n) \cdot n$$

Main elements

- Neighbourhood: one edge in / one edge out
- Feasible edges out (for each edge in): loop formed by the edge in
- Evaluation in $\Theta(1)$ time of the objective function variation

$$O((m-n)\cdot n)$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f

$$z_{X_{(\mathrm{new})}} = z_{X_{(\mathrm{old})}} - D_{\mathrm{e}} + D_{\mathrm{f}} - q_{\mathrm{ef}}$$

$$D_i := D_i - q_{ie} + q_{if}$$

$$X E \setminus X$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f
 - $\mathbf{6}$ decreases by q_{ef}

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

$$X \qquad E \setminus X$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \mathbf{Q} increases by D_f

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f

$$z_{X_{(\mathrm{new})}} = z_{X_{(\mathrm{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

$$X \qquad E \setminus X$$

$$e \quad -q_{ef}$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - \bigcirc increases by D_f
 - $\mathbf{6}$ decreases by q_{ef}

$$z_{X_{(\text{new})}} = z_{X_{(\text{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

$$X \qquad E \setminus X$$

Auxiliary data structure

 The contribution of each edge e ∈ E to the total cost is

$$D_e = c_e + \sum_{f \in X} q_{ef}$$

as

$$z_X = \sum_{e \in X} D_e$$

- Replace e by f: the total cost z
 - $\mathbf{0}$ decreases by D_e
 - $oldsymbol{0}$ increases by D_f

$$z_{X_{(\mathrm{new})}} = z_{X_{(\mathrm{old})}} - D_e + D_f - q_{ef}$$

$$D_i := D_i - q_{ie} + q_{if}$$

Tabu Search

- Tabu attribute: last iteration in/out for each edge
- Two independent tabu lists: longer tabu for insertion than for deletion $(E \setminus X \gg X)$
- Adaptive tabu tenure:
 - increasing when solution worsens
 - decreasing when solution improves
- Stop: maximum number of iterations

Tabu Search

- Tabu attribute: last iteration in/out for each edge
- Two independent tabu lists: longer tabu for insertion than for deletion $(E \setminus X \gg X)$
- Adaptive tabu tenure:
 - increasing when solution worsens
 - decreasing when solution improves
- Stop: maximum number of iterations

Tabu Search

- Tabu attribute: last iteration in/out for each edge
- Two independent tabu lists: longer tabu for insertion than for deletion $(E \setminus X \gg X)$
- Adaptive tabu tenure:
 - increasing when solution worsens
 - decreasing when solution improves
- Stop: maximum number of iterations

- Lower bound: linear approximation from below → Kruskal's algorithm
- Upper bound: Kruskal's solution provides one for free
- Branching edge: cheapest unfixed edge in the relaxed solution
- Visit strategy: Best-Lower-Bound first (or hybrid: Best-Upper-Bound first followed by Best-Lower-Bound first)

- Lower bound: linear approximation from below \rightarrow Kruskal's algorithm
- Upper bound: Kruskal's solution provides one for free
- Branching edge: cheapest unfixed edge in the relaxed solution
- Visit strategy: Best-Lower-Bound first (or hybrid: Best-Upper-Bound first followed by Best-Lower-Bound first)

- Lower bound: linear approximation from below \rightarrow Kruskal's algorithm
- Upper bound: Kruskal's solution provides one for free
- Branching edge: cheapest unfixed edge in the relaxed solution
- Visit strategy: Best-Lower-Bound first (or hybrid: Best-Upper-Bound first followed by Best-Lower-Bound first)

Main elements

- Lower bound: linear approximation from below \rightarrow Kruskal's algorithm
- Upper bound: Kruskal's solution provides one for free
- Branching edge: cheapest unfixed edge in the relaxed solution
- Visit strategy: Best-Lower-Bound first (or hybrid: Best-Upper-Bound first followed by Best-Lower-Bound first)

Lower bounds implemented

Relaxation

$$z(x) = \sum_{e \in E} c_e \; x_e + \sum_{e \in E} \sum_{f \in E} q_{ef} \; x_e \; x_f \geq z_1(x), z_2(x), z_3(x), \; \forall x \in \mathcal{T}$$

Three lower bounds

$$z_1(x) = \sum_{e \in F} c_e \cdot x_e$$

$$z_2(x) = \sum_{e \in X} c_e + \sum_{e \in X} \sum_{f \in X} q_{ef} + \sum_{e \in F} x_e \cdot \left(c_e + \sum_{e \in X} q_{ef}\right)$$

$$z_3(x) = \sum_{e \in X} c_e + \sum_{e \in X} \sum_{f \in X} q_{ef} + \sum_{e \in F} x_e \cdot \left(c_e + \sum_{e \in X} q_{ef}\right)$$

$$+ \sum_{e \in F} x_e \cdot \left(\sum_{f \in X_e^*} q_{ef}\right)$$

Lower bounds implemented

Relaxation

$$z(x) = \sum_{e \in E} c_e \ x_e + \sum_{e \in E} \sum_{f \in E} q_{ef} \ x_e \ x_f \ge z_1(x), z_2(x), z_3(x), \ \forall x \in \mathcal{T}$$

Three lower bounds

$$z_{1}(x) = \sum_{e \in F} c_{e} \cdot x_{e}$$

$$z_{2}(x) = \sum_{e \in X} c_{e} + \sum_{e \in X} \sum_{f \in X} q_{ef} + \sum_{e \in F} x_{e} \cdot \left(c_{e} + \sum_{e \in X} q_{ef}\right)$$

$$z_{3}(x) = \sum_{e \in X} c_{e} + \sum_{e \in X} \sum_{f \in X} q_{ef} + \sum_{e \in F} x_{e} \cdot \left(c_{e} + \sum_{e \in X} q_{ef}\right) + \sum_{e \in F} x_{e} \cdot \left(\sum_{f \in X_{e}^{*}} q_{ef}\right)$$

Comparison between three lower bounds

Comparison between the three lower bounds.

The graph considered has n = 10, 67% density and $c, q \in [1; 100]$

Machine features

Machine features					
Processor	2 Dual Core AMD Opteron				
	Processor 275 2.2GHz				
RAM	3 Gb				
HD	250 Gb				
Operating system	Linux				
Language	ANSI-C				
Compiler	gcc				

Instance features

Graph properties

- Number of vertices n
- Density $\rho = 2m/n(n-1)$
- Linear costs c uniformly random
- Quadratic q uniformly random

Values

- 5 classes: 10, 15, 20, 25, 30
- 3 classes: 33%, 67%, 100%
- 2 classes: 1-10, 1-100
- 2 classes: 1-10, 1-100

Total number of instances

$$5 \cdot 3 \cdot 2 \cdot 2 = 60$$

Average gap of the heuristic algorithms

Average gap wrt the best known result

Vertici	ACM	MCM	SFM	TS(SFM)
10	24,70%	27,50%	3,68%	0,00%
15	21,20%	28,74%	4,66%	0,00%
20	22,14%	28,74%	5,47%	0,05%
25	23,31%	30,40%	4,42%	0,15%
30	26,16%	31,21%	4,09%	0,21%

Computational time: < 1 sec for the constructive algorithms, < 1 min for Tabu Search (100000 iterations)

ILP solver and Branch and Bound compared

Average gap between upper and lower bound after 2 hours (branch-and-bound initialized by Tabu Search, and this by SFM)

Density									
	33%		67%		100%				
n	Solver	B&B	Solver	B&B	Solver	B&B			
10	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			
15	0.00%	0.00%	56.60%	10.39%	95.93%	20.40%			
20	59.12%	16.98%	92.58%	37.98%	98.40%	41.54%			
25	-	34.30%	-	54.07%	-	57.15%			
_30	_	46.37%	-	60.67%	-	69.11%			

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances ($n \le 15$)

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances ($n \le 15$)

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances ($n \le 15$)

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances ($n \le 15$)

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances $(n \le 15)$

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)

Conclusions

- ILP formulation impractical
- Constructive algorithms fast, but quite ineffective
- Local search fast and effective (not always optimal)
- Branch and bound algorithm: viable for small instances $(n \le 15)$

- Tighter lower bounds (combinatorial, Lagrangean, semidefinite)
- Quadratic Minimum Spanning Arborescence (QMSAP)