Information Security CS3002

Lecture 20 6th November 2024

Dr. Rana Asif Rehman

Email: r.asif@lhr.nu.edu.pk

Secure Socket Layer (SSL)

SSL what is it?

- Security at layer 4 (Transport layer)
- Secure Sockets Layer (SSL)
- Secure transport channel (session level):
 - peer authentication (server, server + client)
 - message confidentiality
 - message authentication and integrity
 - protection against replay attacks
- Easily applicable to all protocols based on TCP:
 - HTTP, SMTP, FTP, TELNET, …
 - e.g. the famous secure HTTP (https://....) = 443/TCP

SSL/TLS

HTTP vs HTTPS

SSL/TLS

- Philosophy of SSL: Easier to deploy something if no changes in OS required
- Application's API (Socket) is interface to SSL: Hence secure socket layer
- API to SSL is the superset of API to TCP

SSL/TLS operate above TCP. OS doesn't change applications do!

	7	Application Layer	 	Encryption
\rightarrow	Secure Sockets Layer			
	4	Transport Layer]	
	3	Network Layer]	
	2	Data Link Layer]	
	1	Physical Layer]	

SSL Certificate

An SSL certificate is a data file hosted in a website's origin server.

SSL certificates include:

- The domain name that the certificate was issued for
- Which person, organization, or device it was issued to
- Which certificate authority issued it
- The certificate authority's digital signature
- Associated subdomains
- Issue date of the certificate
- Expiration date of the certificate
- The public key (the private key is kept secret)

SSL/TLS

SSL V3 Architecture

- Handshake: enables the SSL or TLS client and server to establish the secret keys with which they communicate
- Change cipher spec: indicates the usage of secret key for data communication
- Alert: signal problems with SSL connection, give current status
- Record protocol: permits the encapsulation of higher level protocols
- Heartbeat protocol: it assures the sender that the recipient is alive

SSL Handshake

- Agree on a set of algorithms for confidentiality, integrity and authentication
- Exchange random numbers between the client and the server to be used for the subsequent generation of the keys
- Establish a symmetric key by means of public key operations, e.g. RSA
- Negotiate the session-id
 - Exchange the necessary certificates

SSL Handshake Simplified

- Secrets are: Pre-master key S, Master Key K
- Server authentication
- Client authentication by password (optional)

SSL Handshake in Detail

Key Terms

- HELLO Extensions: request extended functionality by sending data in the extensions field. Enhance the handshake process by requesting additional functionality.
 - E.g: max_fragment_length, status request
 - The server may not oblige
 - Client may abort the handshake A secret value generated by the client or obtained from key exchange methods e.g diffie
- Pre-shared Secret (key): generated by client OR directly obtained from the key exchange. E.g. (DH: gab mod p)
- Master keys: generated from the pre-shared secret + random.client + random.server by applying a PRF
 - Master key = PRF (pre-shared secret, random.client, random.server)
 - PRF = Pseudo Random Function

Combine the following: Pre-shared secret.

Random values exchanged between the client and server. Use PRF to make master key

SSL V3 Architecture

- Handshake: enables the SSL or TLS client and server to establish the secret keys with which they communicate
- Change cipher spec: indicates the usage of secret key for data communication
- Alert. signal problems with SSL connection, give current status
- Becord protocol: permits the encapsulation of higher level protocols

SSL3/TLS Record Protocol

SSL MAC Computation

- MAC = message_digest (key, seq_number | type | version | length | fragment)
- message_digest
 - depends on the chosen algorithm
- key
 - sender-write-key or receiver-read-key
- seq_number
 - 32-bit integer
- Type
 - Type of record
 - change cipher spec (20)
 - alert (21)
 - Handshake (22)
 - Application data (23)
- length
 - length of the fragment/plaintext

Data Protection in SSL

SSL-3 New Features with Respect to SSL-2

- data compression:
 - optional
 - Done before encryption
- data encryption is optional: in order to have only authentication and integrity
- possibility to re-negotiate the SSL connection:
 - periodical change of keys
 - change of the algorithms