TEMA 1.-NÚMEROS REALES Y COMPLEJOS

1.- Demostrar por inducción:

1.1
$$n! > 2^{n-1} \forall n > 2$$

1.2
$$2 + 4 + 6 + ... + 2n = (n+1) n \forall n$$

1.3
$$1 + 2 + 2^2 + 2^3 + \cdots + 2^{n-1} = 2^n - 1, \forall n \in \mathbb{N}$$

2.- Resolver las siguientes desigualdades:

2.1
$$|x-1| < 3$$

2.3
$$x^2$$
-1<0

2.2
$$|x^2 - x| + x > 1$$

2.4
$$x + \frac{1}{x} > 1$$

3.- Escribir de todas las formas posibles y representar los siguientes números complejos:

a)
$$z = 1-i$$
, b) $z = 1_{-\pi/2}$, c) $z = 2(\cos \pi/4 + i \sin \pi/4)$, d) $z = 2+3i$

4.- Calcular:

a)
$$(-1+i)^2 + \overline{(3+i)} - \frac{1+i}{1-i}$$

b)
$$(1+\sqrt{3}i)^9$$

5.- Calcular las raíces cuadradas de los complejos
$$z_1=2+i\sqrt{12}$$
 , $z_2=8+6i$.

- 6.- Escribir los lugares geométricos en el plano de los afijos de los números complejos z tales que: a) $|z| \ge 1$, b) Im(z^2) = 4, c) $z + \overline{z} = 1$, d) 4 < |z 1|
- 7.- Hallar los números complejos z que verifiquen $(z^3 \bar{z}) = -1$
- 8.- Dado un complejo z, interpretar geométricamente el producto z. $e^{i\theta}$ siendo θ un número real
- **9.-** Un triángulo equilátero tiene dos de sus vértices en (0,0) y (4,1). Halla las coordenadas del tercer vértice sabiendo que está en el primer cuadrante.

1

10.- Resolver la ecuación
$$2e^{\frac{i}{x}} = \sqrt{-2 + i2\sqrt{3}}$$
.

11.- Calcular x , y
$$\in \mathbf{R}$$
 tales que $\frac{x+2i}{3+yi} = \sqrt{2}_{-\pi/4}$

12.- Hallar el complejo a+bi tal que
$$e^{a+bi} = 1-i\sqrt{3}$$

13.-Hallar el valor principal de:

a)
$$z = \ln \left(\frac{1+i}{1-i}\right)^2$$
 b) $z = \left(\frac{1-i}{\sqrt{2}}\right)^i$

b)
$$z = \left(\frac{1-i}{\sqrt{2}}\right)^i$$

- Dado $z = \frac{1-i}{1+i}$, calcular z^{10} , z^i y los valores de x para que $z = e^{i2x}$. 14.-
- Resolver la ecuación $(1+i) z^3 2i = 0$. 15.-
- Sean z_1 y z_2 dos raíces de la ecuación z^2 + (1-i)z + (2-2i) = 0 , siendo z_1 la solución 16.con menor parte real. Hallar:

a)
$$\ln z_1$$

b)
$$z_2^{10}$$

Calcular $\ln \sqrt{w}$ sabiendo que $\frac{w}{1+i\sqrt{3}}$ es un número real y que |w|=1. 17.-

PROBLEMAS PROPUESTOS

1.-Demostrar por inducción:

1.1
$$a + a^2 + a^3 + ... + a^n = \frac{a^{n+1} - a}{a - 1} / a \neq 1 \forall n \in \mathbb{N}$$

1.2
$$3 + 2.3 + 2.3^2 + ... + 2.3^n = 3^{n+1} \forall n \in \mathbb{N}$$

1.3
$$(2n)! < 2^{2n} (n!)^2, \forall n \in \mathbb{N}$$

1.4
$$1^2 + 2^2 + ... + n^2 = \frac{(2n+1)(n+1)n}{6}$$
 $\forall n \in \mathbb{N}$

2.-Resolver las siguientes desigualdades:

2.1
$$|x+1| > 3$$

2.2
$$2 + 3x < 5$$

2.3
$$x > \frac{1}{x}$$

2.4
$$|x^2 - x + 1| > 1$$

2.5
$$0 < |x - 3| < 8$$

- **3.-** Escribir las siguientes expresiones sin el signo del valor absoluto:
 - 3.1 |a+b|-|b|
 - 3.2 ||x|-1|
 - $|x| |x^2|$
- 4.- Escribir de todas las formas posibles y representar los siguientes números complejos: a)z = 1+ i $\sqrt{3}$, b) z = 1 $_{\pi/2}$, c) z = 4(cos 3 $\pi/4$ + i sen 3 $\pi/4$), d) z = 3+4i
- 5.- Calcular: a) $(1-i)^2 + \overline{(4-8i)} \frac{2+i}{1+i}$ b) $(1+i)^7$ c) $z = \left(\frac{1+i}{\sqrt{2}}\right)^i$
- **6.-** Calcular las raíces cuadradas del complejo z = -3+4i
- 7.- Dados los complejos z y w tales que $z = \frac{(3+i)(1-2i)}{2+i}$ y $w = \frac{1+i^3}{(1-i)^3}$. Calcular ln (z+4w) y $\sqrt[3]{z+4w}$.
- 8.- Escribir los lugares geométricos en el plano de los afijos de los números complejos z tales que : a) |z| = 1 b) |z| < 1 c) $z \overline{z} = i$ d) $z + \overline{z} = |z|^2$
- 9.- Hallar $x \in \mathbf{R}$ tal que $\left(\frac{1+ix}{1-ix}\right)^4 = \frac{1+itg\frac{\alpha}{2}}{1-itg\frac{\alpha}{2}}$, siendo α conocido.
- 10.- Hallar los complejos z tales que su cubo sea igual a su conjugado.
- 11.- Hallar los números complejos z que verifiquen la ecuación: z^5 $(1+i)^5 = 0$.
- 12.- El afijo del complejo $\sqrt{2}$ -i $\sqrt{2}$ es un vértice de un cuadrado inscrito en una circunferencia centrado en el origen, ¿Cuáles son los otros tres vértices?
- 13.- Dado el número complejo $z = \frac{\sqrt{3} + i}{-\sqrt{3} + i}$, calcula $\sqrt[3]{z}$ y el valor principal de $\ln z$.
- **14.-** Hallar los valores de x e y que satisfacen las siguientes relaciones:

a)
$$x+iy = x e^{iy}$$
 b) $\frac{1+i}{1-i} = x e^{iy}$

- 15.- Hallar el valor principal de $z = \ln \left(\frac{1-i}{\sqrt{2}} \right)^i$
- 16.- Siendo $z = 12 e^{i\pi/6}$, calcular $\left| e^{iz} \right|$.