For same reason:
$$\psi(x^2) = c'$$

The form the properties of ϕ and ϕ is a basis of ϕ as a vector ϕ as a linear combination of ϕ , ϕ , ϕ , ϕ ?

For same reason: $\psi(x^2) = c'$

For

(more §9.2 later) § 9.3 The dual of a linear transformation: U-5-V 8(4) OF A Given $\sigma \in L(U, V)$ and $\phi \in V \in L(V, \mathbb{F})$ we can define $\phi \circ \sigma \in L(U, \mathbb{F}) = \hat{U}$ This is a composition of linear functions is linear. This works for every $\phi \in \widehat{V}$ — so we have a function $\widehat{\sigma} : \widehat{V} \to \widehat{U}$ given by $\widehat{\sigma}(\phi) = \phi \circ \sigma$ i.e. $\widehat{\sigma}$ is "precomposition by σ' . Def 9.3.2. & is the dual of o.

$$E_{x}(0): \sigma: P_{x3}(R) \rightarrow P_{x2}(R) \text{ given by differentiation } \sigma(f) = f'$$

$$E_{z}: P_{x3}(R) \rightarrow R \text{ given by } P_{x3}(R) \rightarrow R$$

$$E_{z}: P_{x3}(R) \rightarrow R \text{ given by } P_{x3}(R) \rightarrow R$$

$$E_{z}(g) = g(z).$$
Then $\sigma(E_{z}): P_{x3}(R) \rightarrow R$

$$\sigma(E_{z}): P_{x3}(R) \rightarrow R$$

$$\sigma(E_{z}): P_{x3}(R) \rightarrow$$

i.e. $\sigma\begin{pmatrix} 7\\ y\\ z \end{pmatrix} = \begin{pmatrix} x+2y+3z\\ 4x+5z \end{pmatrix}$ φεR² i.e. φ:R²→R \$ (v) = auth 8(4) eR3, i.e. 8(4):R3-R $\left[\widehat{\sigma}(\phi)\right] \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \phi \left(\sigma \begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \phi \begin{pmatrix} x+2y+3z \\ 4x+5z \end{pmatrix}$

= a (x+2y+3z)+b(4x+5z)

Th 9.3.1 for
$$\sigma \in L(U,V)$$
, the dual $\delta: \widehat{V} \to \widehat{U}$ is linear (i.e. $\delta \in L(\widehat{V},\widehat{O})$)

Proof: We need to show, for all $\phi, \psi \in \widehat{V}$, and $a \in \widehat{F}$
 $\delta(a + \psi) = a \delta(\phi) + \delta(\psi)$.

 $\delta(a + \psi) = (a + \psi) \cdot \sigma$ [definition of δ]

So $[\delta(a + \psi)](\alpha) = (a + \psi)(\sigma(\alpha))$
 $= a + (\sigma(\alpha)) + \psi(\sigma(\alpha))$ [definition of $a + \phi(\alpha)$]

 $= a + (\sigma(\alpha)) + \psi(\sigma(\alpha))$ [definition of $a + \phi(\alpha)$]

 $= (a + (\sigma(\alpha)) + \delta(\psi))(\alpha)$

This holds $\forall \alpha \in V$, so $\delta(a + \psi) = a \delta(\phi) + \delta(\psi)$