

Pathway analysis in metabolomics

Tim Ebbels

Associating metabolites with pathways

Associating metabolites with pathways

KEGG – Kyoto Encyclopedia of Genes and Genomes

- http://www.genome.jp/kegg/
- KEGG compound
 - Currently lists 17685 compounds

Can download all compound information using the R package KEGGREST 'KEGG_Compounds_May_2015.txt'

Copyright 1995-2016 Kanehisa Laboratories

KEGG PATHWAY

Problems with pathway definitions?

Do metabolic pathways exist?

Problems with pathway definitions?

Do metabolic pathways exist?

- Yes, with some complications
 - May be condition-dependent
 - KEGG pathways (or other textbook/database pathways) may represent an arbitrary way of dividing up a metabolic network

Types of Pathway Analysis

Khatri, P., M. Sirota and A. J. Butte (2012). "Ten years of pathway analysis: current approaches and outstanding challenges." <u>PLoS Comput Biol</u> **8**(2): e1002375.

Over-representation analyses

- INPUT
 - List of significant metabolites
- CALCULATION
 - For each pathway, calculate the probability that the list has more metabolites from the pathway than would be expected by chance
- OUTPUT
 - List of significantly associated pathways, with P values adjusted for multiple correction testing

Over-representation analysis (ORA)

•	N represents compounds forming the background					
	set, which covers part of the full metabolome.					

- M represents compounds in the pathway of interest.
- n represents compounds of interest (i.e. differentially abundant metabolites)
- k represents the overlap between the list of compounds of interest and compounds in the pathway.

	Iq#sdwkzd	Qrw#bq#sdwkzd
G liihuhqwidod# dexqgdqw	6	78
Qrw#gliihuhqwbloo # dexqgdqw#	;	435

Over-representation analysis to identify pathways

HOW SIGNIFICANT IS THE INTERSECTION?

Over-representation analysis to identify pathways

What is the likelihood of seeing this exact arrangement of the data?

Calculating P values

- One-sided Fisher's exact test
 - 40 out of 4042 measured metabolites are significant
 - 18 out of 40 of the significant metabolites belong to pathway A
 - 37 out of 4042 metabolites are known to be associated with pathway A

	In pathway	Not in pathway	
Significant metabolites	18	22	40
Non-significant metabolites	19	3983	4002
	37	4005	4042

P value = 1.45537e-28

• Hypergeometric function can also be used to calculate *P* values

Background lists

- Curated list of metabolites known to be found in tissue/cells/fluid of interest with the analytical method you're using
- P values will be higher and more realistic
- Ideally
 - Assign every metabolite in your sample

- The Human Metabolome Database http://www.hmdb.ca
 - » Filter by saliva, blood, urine, CSF, other fluids
 - » Can also get KEGG, CHeBI, BioCyc, ... identifiers from HMDB

Problems with mappings – lactate example

Molecule	KEGG ID	KEGG pathway(s)
S-Lactate	C00186	Glycolysis/Gluconeogensis; Pyruvate metabolism; Propanoate metabolism; Styrene metabolism; Metabolic pathways; Biosynthesis of secondary metabolites; Microbial metabolism in diverse environments; HIF-1 signalling pathway
R-Lactate	C00256	Pyruvate metabolism
Lactate	C01432	None

OPTIONS

Map to R-lacate and S-lactate

Pyruvate metabolism will be biased towards being significant – as it will have 2 significant metabolites

Map to S-lactate

In this case this is the best option, but if R-lactate was in pathways without S-lactate, then this would cause problems

Non-specific background sets result in erroneously high levels of enriched pathways

Non-specific background set: e.g. all compounds in KEGG, often default option

Assay-specific background set: all compounds annotatable in the dataset

- Lower p-values observed when using nonspecific background set
- Many likely to be false-positives as highly unlikely to detect all compounds with the assay used!
- Larger background sets provide higher power for detection of significant pathways
- Ratio of differentially abundant (DA): non-DA compounds impacts the power of ORA

Increasing the number of differential metabolites can result in higher or lower numbers of significant pathways

Should we always use a threshold of $P \le 0.05$ to select differentially abundant metabolites?

- Used t-tests to determine DA level of each metabolite
- Ranked metabolites by unadjusted P-value and added one by one to list of DA metabolites
- Addition of just one metabolite can result in large fluctuations in number of significant pathways
- Each dataset has a number of DA metabolites which yields the highest number of significant pathways (global maximum)

Pathway database choice is key

Inherent differences between pathway databases (KEGG, Reactome, BioCyc):

- Pathway size
- Compounds in pathway
- Pathway boundaries
- Areas of metabolism covered

ORA results rarely agree!

ORA results are short-lived

- With each pathway database update, new pathways and compounds are added
- · Existing pathways may be modified
- Results should be continuously updated using the latest database version

Imperial College

Metabolite misidentification results in both gain and loss of truly significant pathways

- Some level of metabolite misidentification expected in all experimental datasets
- Simulated misidentifications by mass and compound formula
- All datasets had pathway loss rate (false negative rate) and pathway gain rate (false positive rate) > 0

Therefore, some pathways are significant purely due to misidentification, while others lost

The pathway loss rate and pathway gain rate at f% metabolite misidentification are then defined as:

Pathway loss rate
$$(A, B_f) = 1 - \frac{|A \cap B_f|}{|A|}$$

Pathway gain rate
$$(A, B_f) = \frac{|B_f - A|}{|A|}$$

where |A| indicates the cardinality (number of elements) in the set A, and |B-A| indicates the set formed by those members of B which are not members of A.

Checking for bias

Drawbacks to overrepresentation approaches

- Works from a list of significant metabolites
 - Correlation with phenotype/genotype
 - t tests between classes
 - Fold change (LIMMA)
 - ANOVA
- We then apply a cut-off (e.g FDR < 0.05)
- All significant genes are treated equally once included in the list

Continuous measures

Enrichment analysis

- Enrichment approaches take a value for each element measured
- No need for background list
 - All measured elements are listed with their value
- Different variants exist
 - Set enrichment analysis (similar to GSEA for genes)
 - Wilcoxon enrichment
 - Quantitative Enrichment Analysis (e.g. MSEA available via MetaboAnalyst 3.0)
- Details of the calculation used depend on the variant used

Set Enrichment Analysis

- Uses a priori metabolite sets that have been grouped together
 by their involvement in the same biological pathway
- Analyzes whether the majority of the metabolites you have identified fall in the extremes of this list
 - the top and bottom of the list correspond to the largest differences in metabolite levels between your groups
 - If the metabolite set falls at either the top (over-represented) or bottom (under-represented), it is thought to be related to group differences
- Methods assumes metabolite independence
- P values are calculated through repeated permutations or t
 tests

Wilcoxon Enrichment

- Used by ConsensusPathwayDB http://consensuspathdb.org
- Takes two values per metabolite (e.g. mean control value and mean treated value)
- Tests for pathways where the difference between these are significantly different from 0, indicating pathways which are positively or negatively enriched

Quantitative Enrichment Analysis

- An adaptation of the globaltest algorithm for gene enrichment
 - "global test is meant for data sets in which many covariates (or features) have been measured for the same subjects, together with a response variable, e.g. a class label, a survival time or a continuous measurement. The global test can be used on a group (or subset) of the covariates, testing whether that group of covariates is associated with the response variable."
- For each metabolite a Q value is calculated based on the average of the squared covariance between the metabolite values and the outcome value
- For each pathway the Q-stat is the average Q value of genes in this pathway
- P values are calculated based on the asymptotic distribution expected of the Q-stats

Over-representation vs Enrichment analysis

	Enrichment analysis	Over-representation
Can examine any pathways / processes / sets of genes or metabolites of interest		
Takes a list of metabolites or genes	×	√
Uses a continuous value for each metabolite of gene		X
Can combine metabolite and transcript data	✓	√
P values generated by	Repeated permutations or exact mathematical calculations	Exact mathematical calculations

Web resources for metabolic pathway analysis

- MetaboAnalyst 3.0 (McGill University)
 - http://www.metaboanalyst.ca/faces/home.xhtml
 - Enrichment analyses
- BINChE
 - http://www.ebi.ac.uk/chebi/tools/binche/
 - Enrichment analysis of small molecules (uses ChEBI IDs MetaboAnalyst has a tool to convert IDs)
- Functional annotation of a metabolite list
 - http://cpdb.molgen.mpg.de/CPDB/mfct_annot
- Other resources
 - Booth et al. (2013). Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol 4, e201301003. doi:10.5936/csbj.201301003.

R packages for metabolite mapping/analyses

- KEGGREST
 - https://bioconductor.org/packages/release/bioc/html/KEGGREST.html
- Pathview
 - http://pathview.r-forge.r-project.org
 - Allows you to overlay your data onto KEGG pathways
 - Can also be used for gene expression data
- PAPi
 - https://www.bioconductor.org/packages/release/bioc/manuals/PAPi/man/PAPi.pdf
 - · Predict metabolic pathway activity based on metabolomics data
- Grinn
 - http://kwanjeeraw.github.io/grinn/
 - Network analysis
 - Outputs can be imported into Cytoscape
 - Incorporates data from KEGG, SMPDB,
 HMDB, REACTOME, CheBI, UniProt and ENSEMBL

MetaboNetworks: Matlab resource

Posma et al. (2014). Bioinformatics 30, 893–895; Elliott et al. (2015). Sci Transl Med 7, 285ra62.

Integration of transcriptomic/proteomic and metabolite data

- IMPaLA: Integrated Molecular Pathway Level Analysis
 - Pathway over-representation and enrichment analysis with expression and/or metabolite data
 - http://impala.molgen.mpg.de
- 30mics: a web based systems biology visualization tool for integrating human transcriptomic, proteomic and metabolomic data
 - http://3omics.cmdm.tw
- Ingenuity Pathway Analysis
 - Commercial software
- Visualization tools
 - https://omictools.com/transcriptomic-and-metabolomic-data-integration-category

IMPaLA Pathway Analysis Tool

IMPaLA: Integrated Molecular Pathway Level Analysis

pathway over-representation and enrichment analysis with expression and / or metabolite data

IMPaLA version 12 (build January 2019)

5055 pathway definitions from:

IMPALA - Results

Mapping results

19 out of 19 input metabolite identifiers were mapped to 19 distinct physical entities found in pathways. The metabolite background size is 4427.

2940 pathways found.

Results per page: 50 V
Go to page (previous) 1 of 59 (next)

download results

pathway name	pathway source	overlapping metabolites	all metabolites	P _{metabolites}	Q _{metabolites}
TCA cycle	HumanCyc	18	22 (23)	2.16e-45	9.22e-42
superpathway of conversion of glucose to acetyl CoA and entry into the TCA cycle	HumanCyc	18	34 (36)	6.48e-40	1.38e-36
Citric acid cycle (TCA cycle)	Reactome	17	30 (30)	7.75e-38	1.1e-34
TCA Cycle (aka Krebs or citric acid cycle)	Wikipathways	16	23 (24)	2.34e-37	1.42e-34
Pyruvate dehydrogenase deficiency (E3)	SMPDB	17	32 (33)	3.66e-37	1.42e-34
Pyruvate dehydrogenase deficiency (E2)	SMPDB	17	32 (33)	3.66e-37	1.42e-34
2-ketoglutarate dehydrogenase complex deficiency	SMPDB	17	32 (33)	3.66e-37	1.42e-34
Mitochondrial complex II deficiency	SMPDB	17	32 (33)	3.66e-37	1.42e-34
Fumarase deficiency	SMPDB	17	32 (33)	3.66e-37	1.42e-34
Congenital lactic acidosis	SMPDB	17	32 (33)	3.66e-37	1.42e-34
Citric Acid Cycle	SMPDB	17	32 (33)	3.66e-37	1.42e-34
TCA avala	CHAMI	17	26 (26)	E EE ~ 26	1 000 22

No. background list metabolites in pathway

Limitations of pathway analysis approaches

1. Do they work?

Limitations of pathway analysis approaches

1. Do they work?

Published online: January 16, 2017

Article

molecu|ar systems biology

Genomewide landscape of gene-metabolome associations in *Escherichia coli*

Tobias Fuhrer[†], Mattia Zampieri[†], Daniel C Sévin^{†,‡}, Uwe Sauer^{*}, & Nicola Zamboni

"Beyond expected metabolic changes in the proximity to abolished enzyme activities, the association map reveals a largely unknown landscape of gene–metabolite interactions that are not represented in metabolic models."

Limitations of pathway analysis approaches

- 1. Do they work?
- 2. Not always straightforward to interpret
 - Can go from a list of metabolites to a list of pathways
 - Can feel like just promoting ignorance to a new level

Imperial College

Limitations of pathway analysis approaches

- 1. Do they work?
- 2. Not always straightforward to interpret
 - Can go from a list of metabolites to a list of pathways
 - Can feel like just promoting ignorance to a new level
- 3. Still a lot of incompleteness in our understanding of factors that can lead to inaccurate or misleading results using pathway approaches
 - Effects of metabolite misassignment
 - Correct metabolic network may not be available
 - Effects of different pathway definitions

Imperial College

Limitations of pathway analysis approaches

- 1. Do they work?
- 2. Not always straightforward to interpret
 - Can go from a list of metabolites to a list of pathways
 - Can feel like just promoting ignorance to a new level
- 3. Still a lot of incompleteness in our understanding of factors that can lead to inaccurate or misleading results using pathway approaches
 - Effects of metabolite misassignment
 - Correct metabolic network may not be available
 - Effects of different pathway definitions
- 4. In general, **should not be used** as a tool for saying "these are the pathways that are up / down regulated"!
 - Guide to further analysis and/or experimentation

Conclusions and best practice for ORA

Suggested best practice guidelines

- Specify a realistic background set i.e., all the compounds which were detectable using the analytical platform used in the experiment.
- Use an organism-specific pathway set if the organism is supported by the pathway database.
- Perform ORA using multiple pathway databases and derive a consensus pathway signature using the results
- Use multiple-testing correction to select both DA metabolites and, where feasible, significant pathways.

Suggested minimum reporting criteria

- The statistical test/approach used for pathway analysis (e.g. Fisher's exact test)
- The tool (and version) used to perform ORA.
- The pathway database, the corresponding compound identifier type (e.g. KEGG, ChEBI, BioCyc, etc.), its release number and which organism-specific pathway set was used (if any).
- Which compounds form the background set.

Acknowledgements

Rachel Cavill
Lesley Hoyles
Jake Bundy
Cecilia Wieder

