Bayesian Multi-level Regression

Bayesian Modeling in brms

Michael D. Nunez 29-August-2022

Amsterdam Mathematical Psychology Laboratory University of Amsterdam, The Netherlands

Sections

The data

Regression in brms

ANOVA in brms

Reading brms output

Structured individual differences

Multi-level regression in brms

The data

Obtaining the real data set

```
# install.packages('curl')
library(curl)

# See https://github.com/mdnunez/encodingN200
pdmdat <- curl("https://tinyurl.com/dataBayesCogMod")
pdm <- read.csv(pdmdat)
head(pdm)</pre>
```

Regression in brms

Simple linear regression equations

- y_i are the observations of our dependent variable y for each observation i
- x_i are the observations of our independent variable
- $y_i \sim \text{Normal}(\mu_i, \sigma^2)$
- $\mu_i = \beta_0 + \beta_1 x_i$
- · You may have previously learned this, which is equivalent:
- $y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
- $\epsilon_i \sim \text{Normal}(0, \sigma^2)$

Simple linear regression using base R

```
# install.packages('brms')
library(brms)
```

- brms nicely follows the same standard R formula syntax that base R and many packages follow
- Here is an example of the base R code:

```
simple_lm <- lm(RT ~ N200_latencies, data=pdm)
summary(simple_lm)</pre>
```

Simple linear regression using brms

```
# install.packages('brms')
library(brms)
```

- brms nicely follows the same standard R formula syntax that base R and many packages follow
- · Here is an example of brms code:
- Note that we used the default Stan prior

```
bayes_lm <- brm(RT ~ N200_latencies, data=pdm)
summary(bayes_lm)</pre>
```

What is the brms code to estimate a linear

regression with RT as the dependent variable,

N200 latencies and N200 amplitudes as the

independent variables, and an interaction term?

Hint: Read the help file in RStudio using ?brm

Extended linear regression using brms

- Note there are at least three different methods that yield the same solution.
- · Here is one **short** example solution:

Extended linear regression equations

- y_i are the observations of our dependent variable y for each observation i
- x_{ki} are the observations of our independent variables for each independent variable k
- $y_i \sim \text{Normal}(\mu_i, \sigma^2)$
- $\mu_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots$
- · You may have previously learned this, which is equivalent:
- $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \ldots + \epsilon_i$
- $\epsilon_i \sim \text{Normal}(0, \sigma^2)$

ANOVA in brms

A simple 3-level, 1-way Bayesian "ANOVA"

 Let's think about the signal-to-noise (SNR) condition effect on response time RT

```
bayes_anova <- brm(RT ~ factor(condition), data=pdm)
summary(bayes_anova)</pre>
```

A simple 2-way Bayesian "ANOVA"

 Let's think about both the signal-to-noise (SNR) condition, the effect of accuracy, and the interaction effect on response time (RT)

```
bayes_anova <-
brm(RT ~ factor(condition)*factor(accuracy), data=pdm)
summary(bayes_anova)</pre>
```

Reading brms output

model?

What effects are "significant"?

- Use Bayesian probability as evidence for an effect
- \cdot For what range are you 95% certain of an effect
- What if this overlaps 0?

sigma

0.24

0.00

0.23

```
Population-Level Effects:
                                 Estimate Est.Error 1-95% CI u-95% CI Rhat
Intercept
                                    0.84
                                              0.01
                                                       0.82
                                                                0.86 1.00
factorcondition1
                                    -0.05
                                              0.01
                                                      -0.07
                                                               -0.02 1.00
factorcondition2
                                    -0.02
                                              0.01
                                                      -0.04
                                                               0.01 1.00
factoraccuracv1
                                   -0.03
                                              0.01
                                                      -0.06 -0.01 1.00
factorcondition1:factoraccuracv1
                                    -0.03
                                              0.02
                                                      -0.06 0.00 1.00
factorcondition2:factoraccuracv1
                                    -0.06
                                              0.02
                                                       -0.09
                                                               -0.02 1.00
                                 Bulk ESS Tail ESS
Intercept
                                              2570
                                     2108
factorcondition1
                                    2060
                                             2427
factorcondition2
                                    1973
                                             2421
factoraccuracv1
                                     1967
                                             2563
factorcondition1:factoraccuracv1
                                     1943
                                             2339
factorcondition2:factoraccuracy1
                                    1957
Family Specific Parameters:
      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
```

0.24 1.00

3513

2710

Convergence diagnostics: Rhat

- · The Gelman-Rubin convergence diagnostic statistic Rhat
- Rhat give the ratio of the between-chain to within-chain variance.
- · Rhat be close to 1
- Rule of thumb: ≤ 1.01 for regression models
- Rule of thumb: ≤ 1.10 for complex hierarchical models

Convergence diagnostics: ESS

- The effective sample size ESS should be large for appropriate posterior distribution estimates.
- ESS statistics penalize the true number of posterior samples by the Markov Chain autocorrelation
- Bulk_ESS is best ESS diagnostic the mean posterior Estimate
- \cdot Tail_ESS is best ESS diagnostic the 95% credible intervals CI
- Rule of thumb: > 100

Did the model converge?

Population-Level Effects: Estimate Est Error 1-95% CT u-95% CT Rhat Intercept 0.84 0.01 0.82 0.86 1.00 factorcondition1 -0.05 0.01 -0.07 -0.02 1.00 factorcondition2 -0.02 0.01 -0.04 0.01 1.00 factoraccuracy1 -0.03 0.01 -0.06 -0.01 1.00 factorcondition1:factoraccuracv1 -0.03 0.02 -0.06 0.00 1.00 factorcondition2:factoraccuracv1 -0.06 0.02 -0.09 -0.02 1.00 Bulk ESS Tail ESS Intercept 2108 2570 factorcondition1 2427 2060 factorcondition2 1973 2421 2563 factoraccuracv1 1967 factorcondition1:factoraccuracv1 1943 2339 factorcondition2:factoraccuracy1 1957 2221 Family Specific Parameters: Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS sigma 0.24 0.00 0.23 0.24 1.00 3513 2710

Structured individual differences

Simpson's paradox

 Simpson's paradox refers to the fact that the the effects could be reversed on the participant level

Fitting a regression per participant

- One way to avoid Simpson's paradox is to fit regression models to each participant / individual
- · However the sample size per model is greatly reduced.
- · Also this method is less robust to contaminant data

Structured individual differences

- Another method is to assume that the participant-level differences are related
- Knowledge about other participants helps estimate parameters of new participants
- The sample size per participant necessary to estimate the model is much less than the individual model strategy
- · Outlier participants are less influential

Hierarchical linear regression equations

- y_{ip} are the observations of our dependent variable y for each observation i and participant p
- $\cdot x_{ip}$ are the observations of our independent variable
- β_{0p} are participant level intercepts
- β_{1p} be the observations of our independent variables
- · Both eta_{0p} and eta_{1p} come from hierarchical distributions
- $y_i \sim \text{Normal}(\mu_i, \sigma^2)$
- $\cdot \ \mu_i = \beta_{0p} + \beta_{1p} x_{ip}$
- $\beta_{0p} \sim \text{Normal}(\mu_0, \sigma_0^2)$
- $\beta_{1p} \sim \text{Normal}(\mu_1, \sigma_1^2)$

Multi-level regression in brms

Linear regression with random intercepts

```
# install.packages('brms')
library(brms)
```

- · Here is an example of brms code for random intercepts:
- · This may take a couple of minutes to run

```
bayes_randint <-
brm(RT ~ N200_latencies + (1|subject), data=pdm)
summary(bayes_randint)</pre>
```

 Press STOP in the top right of your RStudio console to end the model fitting

Linear regression with random slopes

```
# install.packages('brms')
library(brms)
```

- Here is an example of brms code for random slopes:
- · DO NOT RUN THIS NOW
- This will take some time to run

```
bayes_randeffect <-
brm(RT ~ N200_latencies + (N200_latencies|subject),
data=pdm)
summary(bayes_randeffect)</pre>
```

What is the brms code to estimate a linear

and a random intercept for each subject?

regression with RT as the dependent variable, N200_latencies and N200_amplitudes as the

independent variables, an interaction term,

Final hierarchical regression model in brms

- Note there are a few different methods that yield the same solution.
- · Here is one **short** example solution:

```
bayes_final <-
brm(RT ~ (1|subject) + N200_latencies*N200_amplitudes,
data=pdm)
summary(bayes_final)</pre>
```

 Press STOP in the top right of your RStudio console to end the model fitting

Now let's talk about cognitive modeling!