Chapter Test

- Q 1. What is not component of digital A/D converter?
 - ① Sample-Maintenance circuit
- Comparator
- 3) 2' complement counter
- (4) Notch Filter

Q 2. What is A/D converter?

- ① Convert sampling frequency.
- ② It is included in PCM decoder.
- ② Pulse having amplitude of message signal during sampling.
- It has code word depending on amplitude of message signal including quantization and coding.
- Q 3. What is output of D/A converter?
 - ① Shape of step form wave similar to original message signal.
 - 2 Shape with changed frequency of original message signal.
 - (3) Same shape of original message signal.
 - ① Digital expression of original signal.
- Q 4, What is low-pass filter?
 - ① Increase conversion time of A/D converter.
 - ② Filtering amplitude out of input range of A/D converter.
 - ③ Convert received serial code of D/A converter to parallel code.
 - Make restored step form wave by D/A converter to be close to original signal.
 - Q 5. What is resolution when analog input voltage $\pm 2.0[V]$ would be 4-bit coded?

① 0.25 [V]

② 0.5 [V]

③ 0.75 [V]

(4) 1.0 [V]

- Q 6. When clipping distortion would be occurred?
 - ① Clock frequency is too high.
 - ② The length of code word is too short.
 - 3 The amplitude of analog signal is changed rapidly.
 - The amplitude of analog signal exceeds input range of A/D converter.
- Q 7. What is signal-to-quantization noise ratio on PCM system?
 - ① It is ratio between input and output voltage.
 - ② It is ratio between signal voltage and total noise voltage.
 - ③ It is ratio between signal voltage and residual noise voltage.
 - ① It is ratio between signal voltage and quantization noise voltage.
- Q 8. When aliasing would be occurred?
 - ① When flat-top sampling is used.
 - 2 When sampling rate is less than Nyquist rate
 - 3 When anti-aliasing filter is used.
 - When message signal has a few frequency elements.
- Q 9. How much SN_QR would be increased if resolution of PCM system is increased 1-bit?

 $\bigcirc 1 \text{ dB}$

(2) 3 dB

3 6 dB

40 9 dB

Q 10. How much the quantization interval would be needed for quantizer having 4-bit resolution and $\pm 1V$ input range?

- ① 0.125 [V]
- ② 0.25 [V]
- ③ 0.5 [V]
- ⊕ 0.75 [V]

- 4. self-check
- 1. Explain the principle of A/D and D/A conversion.
- 2. What is minimum size of clock frequency needed for converting analog input signal having frequency characteristics of 1[kHz]?
- 3. What is code word from output of A/D conversion?
- 4. How the length of code word and resolution within given voltage rage?
- 5. What is the interval of quantization of 8-bit D/A conversion having input range of ± 4.0 V?

the first and the beautiful and half in the first field that

Figure 2-18. Noise in pulse signal

5. Self-Check

- I. What is white noise?
- 2. What about power of band limited white noise if bandwidth would be increased?
- 3. Define the decibel.

- 4. What's the value of valid noise power in output of system? In this system noise power spectrum density S_n is 3×10^{-8} [W/Hz] and bandwidth is 1[MHz].
- 5. How about signal-to-noise ratio[dB] if signal power is 5[mW] and noise power is 0.1[mW]?

Chapter Test

- Q 1. What's the value of old duty cycle of pulse having $10[\mu \, s]$ pulse width and 10[ms] cycle?
 - ① 0.001[%]

② 0.01[%]

3 0.1[%]

- **①** 10[%]
- Q 2. What's rising time of pulse?
 - ① Time needed for reaching from 10% to 25% of average amplitude.

	② Time needed for reaching from 10% to 50% of average amplitude. ③ Time needed for reaching from 10% to 90% of average amplitude. ④ Time needed for reaching from 25% to 50% of average amplitude.
Q 3.	Why over shoot would be occurred in output pulse of system?
	(1) When system extremely emphasize high harmonic frequency.
	② When system extremely emphasize low harmonic frequency.
	When system has global bandwidth.
	When the lowest limit cutoff frequency is zero.
Q 4.	 What is wrong definition of cutoff frequency of system? ① Frequency would be 1/√2 of original signal amplitude. ② Frequency would be 1/2 of transmission signal power. ③ Frequency that transmission power would be decreased as much as 3[dB] ④ Frequency that transmission power start to decease.
Q 5.	What's the pulse repetition frequency when cycle of pulse is $10[\mu s]$?
	① 0.1[kHz] ② 1[kHz]
	③ 0.1[MHz] ④ 1[MHz]
Q 6,	What's the relationship between rising time and bandwidth of pulse if pulse signal is limited? ① Rising time and bandwidth are equal,
	S TRUGST AND

- - ② Rising time is perorational to bandwidth.
 - 3 Rising time is adversely perorational to bandwidth.
 - ① There is no relationship.
- Q 7. What's the value of noise power in case of band limited white noise?

- ① It is proportional to bandwidth. ② It is adversely proportional to bandwidth.
- 3 There is no relationship with noise power spectrum density.
- ① It is adversely proportional to noise power spectrum density.
- Q 8. What is duty cycle that direct current element pulse signal not to effect on rms signal power?
 - ① In case of extremely low.
 - ② In case of extremely high.
 - (3) In case of 50[%].
 - 1 In case of over 75[%].
- Q 9. What is SNR?
 - (1) Signal power[W] and noise power[W] ratio.
 - ② Signal power[dB] and noise power[dB] ratio.
 - The difference between signal voltage and noise voltage.
 - The difference between signal voltage and noise voltage.
- Q 10. What about S/N [dB] if signal power is -10[dB] and noise power is -30[dB]?
 - ① 5[dB]

② 10[dB]

③ 20[dB]

@ 40[dB]