Linear Algebra MATH 325: Assignment 8

(It is for practice, not for marking)

Problem 1: Let $i = \sqrt{-1} \in \mathbb{C}$. Recall that every complex number can be written

$$z = r \cdot e^{i \cdot \alpha} = r \cdot (\cos(\alpha) + i \cdot \sin(\alpha))$$

for some real number $r \geq 0$ and some $\alpha \in \mathbb{R}$. For which r, α is the \mathbb{C} -linear map

$$\ell_z: \mathbb{C} \longrightarrow \mathbb{C}, \ w \longmapsto z \cdot w$$

hermitian, for which unitary?

Problem 2: Find an unitary 3×3 -matrix U with first column $\begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$.

Problem 3: Let

$$\langle -, - \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

be an inner product on \mathbb{R}^n . Show that there exists an invertible $n \times n$ -matrix A, such that

- (a) $A^T = A$, and
- (b) $\langle v, w \rangle = v^t \cdot A \cdot w$ for all $v, w \in \mathbb{R}^n$.

Problem 4: Let $\langle -, - \rangle$ be the usual inner product on \mathbb{R}^2 . Does there exists a real 2×2 -matrix $A \neq I_2$, such that

$$\langle A \cdot v, A \cdot w \rangle = \langle v, w \rangle$$

for all $v, w \in \mathbb{R}^2$? If such a matrix A exists, what is detA?