IIT CS536: Science of Programming

Homework 4: Proofs, WP and SP

My Dinh

March 8, 2022

1 Substitution

Task 1.1 (Written, 8 points).

a)
$$[y + x/x](2x + y \ge z) = 2(y + x) + y \ge z$$

b)
$$[z/x](x \ge 0 \to (\forall x.x * z > y) \land x > -1) = [z/x](x \ge 0 \to (\forall i.i * z > y) \land x > -1)$$

= $z > 0 \to (\forall i.i * z > y) \land z > -1$

c)
$$[x/y] \forall x.(y > 0 \rightarrow \exists y.y = x) = [x/y] \forall i.(y > 0 \rightarrow \exists y.y = i)$$

= $[x/y] \forall i.(y > 0 \rightarrow \exists j.j = i)$
= $\forall i.(x > 0 \rightarrow \exists j.j = i)$

d)
$$[x + 2/y] \exists x. \forall y. x > y = [x + 2/y] \exists i. \forall y. i > y$$

= $[x + 2/y] \exists i. \forall j. i > j$
= $\exists i. \forall j. i > j$

2 Proofs and Proof Outlines

Task 2.1 (Written, 10 points).

Proof outline for $\{x \neq y\}$ if y > x then $\{t := x; x := y; y := t\}$ else $\{\text{skip}\}$ $\{x > y\}$

$$\begin{cases} x \neq y \\ \text{if}(y > x) \end{cases} \left\{ \begin{array}{l} \{x \neq y \land y > x \} \Rightarrow \{y > x \} \\ t := x; & \{y > x \land t = x \} \Rightarrow \{y > t \} \\ x := y; & \{y > t \land x = y \} \Rightarrow \{x > t \} \\ y := t & \{x > t \land y = t \} \Rightarrow \{x > y \} \\ \} \text{ else } \left\{ \begin{array}{l} \{x \neq y \land y \leq x \} \Rightarrow \{x > y \} \\ \text{skip} & \{x > y \} \\ \\ \} \end{array} \right.$$

Task 2.2 (Written, 7 points).

1.
$$\{x = 0 \land 0 = 0\}$$
 $s := \overline{0}$ $\{x = 0 \land s = 0\}$ Assign

2.
$$\{T \land x = 0\} \ s := \overline{0} \ \{x = 0 \land s = 0\}$$
 Weaken 1

3.
$$\{x < 0 \land -1 = -1\}$$
 $s := \overline{-1}$ $\{x < 0 \land s = -1\}$ Assign

4.
$$\{x < 0 \land -1 = -1\}$$
 $s := \overline{-1}$ $\{s = \frac{x}{|x|}\}$ Weaken 3

5.
$$\{x \neq 0 \land x < 0\}$$
 $s := \overline{-1} \{s = \frac{x}{|x|}\}$ Weaken 4

6.
$$\{x > 0 \land 1 = 1\}$$
 $s := \overline{1}$ $\{x > 0 \land s = 1\}$ Assign

7.
$$\{x \neq 0 \land x \geq 0\}\ s := \overline{1} \{x > 0 \land s = 1\}$$
 Weaken 6

8.
$$\{x \neq 0 \land x \geq 0\}$$
 $s := \overline{1}$ $\{s = \frac{x}{|x|}\}$ Weaken 7

- 9. $\{x \neq 0\}$ if x < 0 then $\{s := \overline{-1}\}$ else $\{s := \overline{1}\}$ $\{s = \frac{x}{|x|}\}$ If 5, 8
- $10. \ \left\{ \left. T \wedge x \neq 0 \right. \right\} \text{ if } x < 0 \text{ then } \left\{ s := \overline{-1} \right\} \text{ else } \left\{ s := \overline{1} \right\} \left\{ \left. s := \frac{x}{|x|} \right. \right\} \quad \text{ Weaken } 9$
- 11. $\{T\}$ if $x=\overline{0}$ then $\{s:=\overline{0}\}$ else $\{\text{if }x<0\text{ then }\{s:=\overline{-1}\}\text{ else }\{s:=\overline{1}\}\}$ $\{(x=0\land s=0)\lor s=\frac{x}{|x|}\}$ If $2,\,10$ if $2,\,1$

3 Weakest Preconditions and Strongest Postconditions

Task 3.1 (Written, 15 points).

a)
$$wlp(x := x + y; n := x * z, n = 0)$$

$$wlp(x := x + y; n := x * z, n = 0)$$

$$=wlp(x := x + y, wlp(n := x * z, n = 0))$$

$$=wlp(x := x + y, [x * z/n](n = 0))$$

$$=wlp(x := x + y, x * z = 0)$$

$$=[x + y/x](x * z = 0)$$

$$=((x + y) * z = 0)$$

b)
$$wp(\text{if }x=y\text{ then }\{z:=\overline{1}\}\text{ else }\{z:=x/y\},z=1)$$

$$\begin{split} ℘(\text{if }x=y\text{ then }\{z:=\overline{1}\}\text{ else }\{z:=x/y\},z=1)\\ &=(x=y\to wlp(z:=\overline{1},z=1))\land(x\neq y\to wlp(z:=x/y,z=1))\land D(\text{if }x=y\text{ then }\{z:=\overline{1}\}\text{ else }\{z:=\overline{x/y}\})\\ &=(x=y\to[1/z](z=1))\land(x\neq y\to[(x/y)/z](z=1))\land D(x=y)\land(x=y\to D(z:=\overline{1}))\land(x\neq y\to D(z:=x/y))\\ &=(x=y\to 1=1)\land(x\neq y\to x/y=1)\land D(x)\land D(y)\land(x=y\to D(\overline{1}))\land(x\neq y\to D(x/y))\\ &=(x=y\to T)\land(x\neq y\to x/y=1)\land T\land T\land(x=y\to T)\land(x\neq y\to D(x)\land D(y)\land y\neq 0)\\ &=(x=y\to T)\land(x\neq y\to x/y=1)\land(x\neq y\to T\land T\land y\neq 0)\\ &=(x=y\to T)\land(x\neq y\to x/y=1)\land(x\neq y\to y\neq 0) \end{split}$$

c) $sp(x = 1, \text{if } y > 0 \text{ then } \{x := x + 1\} \text{ else } \{\text{skip}\})$

$$\begin{split} sp(x=1, &\text{if } y>0 \text{ then } \{x:=x+1\} \text{ else } \{\text{skip}\}) \\ =&(y>0 \to sp(x=1, x:=x+1)) \lor (y \le 0 \to sp(x=1, \text{skip})) \\ =&(y>0 \to [x_0/x](x=1) \land x = [x_0/x](x+1)) \lor (y \le 0 \to x=1) \\ =&(y>0 \to x_0 = 1 \land x = x_0+1) \lor (y \le 0 \to x=1) \\ =&(y>0 \to x=2) \lor (y \le 0 \to x=1) \end{split}$$

d) $sp(x \ge 0, x := 1; \text{ if } x > 0 \text{ then } \{x := x - 1\} \text{ else } \{x := 0\})$

$$\begin{split} sp(x \geq 0, x := 1; &\text{if } x > 0 \text{ then } \{x := x - 1\} \text{ else } \{x := 0\}) \\ = &sp(sp(x \geq 0, x := 1), &\text{if } x > 0 \text{ then } \{x := x - 1\} \text{ else } \{x := 0\})) \\ = &sp(x_0 \geq 0 \land x = 1, &\text{if } x > 0 \text{ then } \{x := x - 1\} \text{ else } \{x := 0\})) \\ = &sp(x = 1, &\text{if } x > 0 \text{ then } \{x := x - 1\} \text{ else } \{x := 0\})) \\ = &(x \geq 0 \rightarrow sp(x = 1, x := x - 1)) \lor (x \leq 0 \rightarrow sp(x = 1, x := 0)) \\ = &(x \geq 0 \rightarrow x_0 = 1 \land x = x_0 - 1) \lor (x \leq 0 \rightarrow x_0 = 1 \land x = 0) \\ = &(x \geq 0 \rightarrow x = 0) \lor (x \leq 0 \rightarrow x = 0) \end{split}$$

4 One more wrap-up question

Task 4.1 (Written, 0 points).

I spent about 5 hours on this homework, in total 1-2 hours of actual working time.