Shahjalal University of Science and Technology

Department of Physics

B.Sc. Honours Fourth Year, Second Semester Final Examination-2022

Course Code: PHY 455 Session: 2020-2021

Course Title: Optoelectronics

Total Marks: 60 Credits: 3.0 Total Time: 3 Hours

[Answer all the questions. The figure in the right margin indicate full marks.]

1. (a) If you want to put two or more figures side by side then you can use the latex minipage environment. What is super Node? What is the difference between Super Mesh & Mesh?

(b) Using nodal analysis, determine the potential across the 4 Ω resistor in Fig. 1

4

4

5

Fig. 1

 2Ω

(c) Use mess analysis to find currents and voltage v_o in the circuit of Fig. 2

- (a) If you want the marks to be displayed as 1 + 2 + 1, use the command \bdpart[1+2+1] 1+2+1 instead of the regular \part[] command.
 - (b) Two resistors of values 1 k Ω and 4 k Ω are connected in series across a constant voltage supply of 100 V. A voltmeter having an internal resistance of 12 k Ω is connected across the 4 k Ω resistor. Draw the circuit and calculate:
 - (i) True voltage across $4 \text{ k}\Omega$ resistor before the voltmeter was connected.
 - (ii) Actual voltage across 4 k Ω resistor after the voltmeter is connected and voltage recorded by the voltmeter.
 - (iii) change in supply current when voltmeter is connected.
 - (iv) Percentage error in voltage across 4 k Ω resistor.
 - (c) If you want to insert a Figure(pdf, png, etc) then you can use the **includegraphics** command as shown below. : Find the rms value of the current waveform of Fig.3. If the current flows through a 9 Ω resistor, calculate the average power absorbed by the resistor.

3. (a) If you want to place two figures side by side then use minipage environment. As for example: For the circuit shown in Fig. 4, calculate the current in the 10 Ω resistance. Use Thevenin's theorem only.

Fig. 4: Circuit for Thevenin's Theorem

Fig. 5: Circuit for Superposition Theorem

PHY, SUST October 09, 2025 - 14:30 Page 1 of 4

2

4

4

(c) If a table is needed to insert, then you can use either tabular or tabular. In the table as shown in Table 1, the data are given for a general purpose Silicon diode, draw the I-V characteristic curve.

Table 1: Your Table Title Here

SL.no	Forward bias voltage	Forward bias
	(V)	$\operatorname{current}(\operatorname{mA})$
1	0	0
2	0.2	0.0
3	0.4	0.1
4	0.5	0.5
5	0.53	1.0
6	0.6	8.2
7	0.66	19.5
8	0.7	53.5
9	0.71	83.1
10	0.73	112.7

 \mathbf{OR}

(a) Find the Thevenin's equivalent circuit of Fig. 6 to the left of the terminal.

Fig. 6

(b) Find the magnitude R_L for the maximum power transfer in the circuit shown in Fig. 7. Also find out the maximum power.

Fig. 7

(c) Write short notes on Real power and Reactive power.

2

PHY, SUST October 09, 2025 - 14:30 Page 2 of 4

2

4

- (b) Determine the saturation level for the network of Fig. 8.
- (c) For the emitter bias network of Fig. 9 determine $I_B,\ I_C,\ V_{CE},\ V_C,\ V_E$ and V_B for the fixed-bias configuration shown in

5. (a) For the circuit in Fig. 10, $i(t) = 4(2 - e^{-10t})$ mA. If $i_2(t) = -1$ mA, find: (i) $i_1(t)$, (ii) v(t), $v_1(t)$ and $v_2(t)$, and (iii) $i_1(t)$ and $i_2(t)$.

(b) Find i_x in the circuit of Fig. 11 using nodal analysis.

Fig. 11

(c) Determine the currents I_1 , I_2 and I_{D2} for the network of Fig. 12.

3

3

Fig. 12

- 6. (a) Simplify the Boolean function $F(w,x,y,z) = \sum (1,3,7,11,15)$. Which has don't-care condition: $d(w,x,y,z) = \sum (0,2,5)$.
 - (b) Simplify $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$ in product of sums.
 - (c) Define Minterms and Maxterms and briefly explain De Morgan's law.

4

4

OR

- (a) Simplify the Boolean function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$.
- (b) Suppose you have 3 friends. Design an alarm which will ring when more than one friend 4
- (c) Draw the symbol and truth table of EX-OR gate & EX-NOR gate. 2½

List of the relevant equations:

$$\begin{bmatrix} A_r \\ A_\theta \\ A_\phi \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \begin{vmatrix} \hat{r} & r\hat{\theta} & r \sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & rA_{\theta} & r \sin \theta A_{\phi} \end{vmatrix}$$

$$= \frac{1}{r \sin \theta} \left[\hat{r} \left(\frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial A_{\theta}}{\partial \phi} \right) + \hat{\theta} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (rA_{\phi}) \right) + \hat{\phi} \left(\frac{\partial}{\partial r} (rA_{\theta}) - \frac{\partial A_r}{\partial \theta} \right) \right]$$

$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} a_r \\ a_\theta \\ a_\phi \end{bmatrix}.$$

PHY, SUST October 09, 2025 - 14:30 Page 4 of 4