Tutorial 7

1. A circuit, having 159.23 μ F capacitor in parallel with a resistance R, draws current of 25 A from a 300 V, 50 Hz mains. Using phasor relations, find the frequency (f) at which circuit draws the same current from a 360 Volts mains.

Solution-

From the CKI, we have
$$T_{c} = \frac{V}{Z_{c}}.$$

$$|T_{c}| = WCV = 300 \times 2 \times 50 \times 159.23 \times 10^{-6}$$

$$= 15 \text{ M}$$

$$T_{R} = \int T^{2} - T_{c}^{2} = \int (25)^{2} - (15)^{2} = 26 \text{ A}.$$

$$R = \frac{V_{R}}{T_{R}} = \frac{300}{20} = \frac{15 \Omega}{20}.$$
With 360 V mams, the chrowit is
$$25 \text{ A}$$

$$T_{R} = \frac{360}{15} = 24 \text{ A}$$

$$|T_{c}| = \int 25^{2} - 24^{2} = 7 \text{ A}$$

$$|T_{c}| = VWC$$

$$7 = 360 \times 2 \times x f_{1} \times 159.23 \times 10^{-6}$$

$$|f_{1} = 19.4 \text{ Hz}$$

2. A balanced delta connected load of $(8 + j6)\Omega$ per phase is connected to a 400 V, 50 Hz, 3-phase supply lines. If the input power factor is to be improved to 0.9 by connecting a bank of star connected capacitors, Find required kVAR of the capacitor bank.

Power factor angle of load

Active power consumed by the deta connected

balanced load is:

P = 3 Vpin IIn Cos \$\phi\$

= 3 × 400 × \frac{400}{52+62} × cos 36.86 = 38400 W

Reading power consumed by A-connected balanced

load is:

2 × Vph × Iph × vin \$\phi\$

= 2 × Vph × Iph × vin \$\phi\$

= 2 × 400 × \frac{400}{582+62} × vin 36.86

= 2 × 400 × AR

Active power scenarios Square even after capecitor

Active power semains I ame even after capceitor bank is connected. Reactive power consumed by A-connected load at a pif of 019 wice ser: $Q_2 = \frac{P}{0.9} \sin\left(\cos^{-1} 0.9\right)$ $= \frac{38400}{0.9} \times \sin\left(25.84\right)$ = 18597.96 VARReactive power supplied by Y-connected
Reactive power supplied by Y-connected
Capacitor bank = 01-02= 28793.26 = 18597.96

=10195 = 10.2 KNAR

3. For the circuit shown, find the Norton's Equivalent between points a & b.

Solution -

$$Z_n = (4+4i) || (8+1-j3) = (4+4i) (9-j3)$$

$$Z_n = 48+j24$$

In can be calculated by taking one source at a time.

Imaginary a That I a

$$\frac{J_{n_1}}{1000} = \frac{4j}{8\sqrt{1-j3}}$$

$$\frac{J_{n_1}}{J_{n_1}} = \frac{1000}{1000}$$

$$= (2.25 - 0.916j) A.$$

Showted

The
$$\frac{2 (-90 \times 8)}{8+1-33}$$
 clim

 $\frac{1}{8+1-33}$ clim

 $\frac{1}{8+1-33}$ clim

 $\frac{1}{8+1-3}$ A

$$J_n = J_n, + I_n = 3.701 / -42.11$$

= 2.783- j 2.516 A = 3.701 / -42.11

Q) A three-phase balanced M-connected Source Supplies a balanced delta connected load. The impedance per phase of the delta book is z=12+j9 s. If the line impedance is zero and the line current in 'a' phase is $I_a=24/16.27$ A, load voltage V_{AB} is

Converting delta connected load into eq. Y. Configuration, $Z_{\gamma} = \frac{Z_{A}}{3} = \frac{12+jq}{3} = \frac{4+j3}{3} = 5 \left[\frac{36.86}{3} \right]$

Per phase Y-Y eq. concuit,

For phase load voltage, VAN = \$\frac{7}{2}. \$\Z_{2} = 24 \left(\frac{16.27}{2} \times 5 \left(\frac{36.86}{36.86} \right) = 120 \left(\frac{53.13}{3} \right)

Line vollage, $V_{AB} = \sqrt{3} V_{AN} | 30$ = $\sqrt{3} \times 120 | 83.13$ = 208 | 83.13 | V (a) what impedance of should be connected between 'a and b'
so what a maximum average young will be absorbed by it?

Obtain Therenin injectance from Kervinal a, b

Reducing the course in a simpley way

$$z_{th} = (-j||j_2) + (2||2)$$

181 Maximum Jones Gransfer, Z = Zth

6. Three star-connected impedances Z1 = 20+j37.7 Ω per phase are connected in parallel with three delta-connected impedances Z2 = 30-j159.3 Ω per phase. The line voltage is 398 V. Find the active power taken by the combination.

$$Z_{\gamma} = Z_{1} = 20 + j37.7\Omega$$

$$Z_{d} = Z_{2} = 30 - j159.3\Omega$$
We have to convert the whole arrangement into its equivalent star config.
$$Z_{equv} = \left(\frac{2}{1} + \left(\frac{2}{2} \right) \right) + \left(\frac{2}{3} \right) + \left(\frac{2}{3}$$