디지털미디어랩 머신러닝 여름캠프 3주차

(4) Multivariable Linear Regression과 실습

지난 시간

- 머신러닝(ML)이란 무엇인가?
- 지도 학습 (Supervised Learning)
 - 회귀 (Regression)
 - 분류 (Classification)
- 비지도 학습 (Unsupervised Learning)
- Linear Regression 모델 생성방법
 - Hypothesis
 - Cost Function

지난 시간

Hypothesis

$$H(x) = Wx + b$$

Cost Function

$$Cost(W,b) = \sum {(H(x^{(i)})-y^{(i)})^2}$$

• Linear Regression의 목표는 비용이 최소인 W, b 값을 찾는 것

$$\underset{W,b}{\operatorname{Minimize}}\ \operatorname{Cost}(W,b)$$

목차

- Multivariable Linear Regression
- Hypothesis
- Cost Function
- Biking Sharing Demand 실습

Multivariable Linear Regression

3가지 변수(feature)

x1 (quiz 1)	x2 (quiz 2)	x ₃ (midterm 1)	y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

Hypothesis

$$H(x) = Wx + b$$

 $H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3+b$

Cost Function

$$Cost(W,b) = \sum (H(x^{(i)}) - y^{(i)})^2$$

$$igceptom{1}{Cost}(w_1,w_2,w_3,b) = \sum (H(x_1^{(i)},x_2^{(i)},x_3^{(i)}) - y^{(i)})^2$$

Example

x1 (quiz 1)	x2 (quiz 2)	x ₃ (midterm 1)	y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$H_1(x_1, x_2, x_3) = 0.7x_1 + 0.2x_2 + 1.1x_3$$

$$Cost(0.7, 0.2, 1.1, 0)$$

= $(152 - 149.6)^2 + (185 - 185)^2 + (180 - 179.5)^2 + (196 - 196.8)^2 + (142 - 141.3)^2$
= 7.14

Example

x1 (quiz 1)	x2 (quiz 2)	x ₃ (midterm 1)	y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$H_1(x_1, x_2, x_3) = 0.7x_1 + 0.2x_2 + 1.1x_3$$

- w1, w2, w3은 각 feature 들이 y에 미치는 영향의 정도. (Weight)
- Ex) Midterm 에서 높은 점수를 받은 사람은 Final에도 높은 점수를 받을 것이다.

week3_train.xlsx

x1 (quiz 1)	x2 (quiz 2)	x ₃ (midterm 1)	y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

week3_test.xlsx

x1 (quiz 1)	x2 (quiz 2)	x ₃ (midterm 1)	y (final)
100	100	100	
50	50	50	
69	96	77	
0	0	0	
25	50	50	

Orange 실습 1 – Bike Sharing Demand

Bike Sharing Demand

- · datetime hourly date + timestamp
- season 1 = spring, 2 = summer, 3 = fall, 4 = winter
- · holiday whether the day is considered a holiday
- · workingday whether the day is neither a weekend nor holiday
- weather -
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
 - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- · temp temperature in Celsius
- · atemp "feels like" temperature in Celsius
- humidity relative humidity
- · windspeed wind speed
- · count number of total rentals

Orange 실습 1 – Bike Sharing Demand

Orange 실습 1 – Bike Sharing Demand

참고 자료 모두를 위한 머신러닝/딥러닝 http://hunkim.github.io/ml/

$$H(x) = Wx + b$$