Groups and Rings

Carter Aitken

2025-05-05

Abstract

We're studying abstract algebra, specifically groups and rings.

Contents

1	Оре	erations on Sets	3
	1.1	K-Ary Operations	3
		Definition: Binary Operations	3
	1.2	Associative Operations	4
		Definition: (Informal) Bracketing	4
		Definition: Bracketing	4
		Notation: Associativity makes Brackets Pointless	5
		Definition: Commutative	5
		Definition: Identity	6
		Lemma: Uniqueness of Identity	6
		Definition: Inverse	6
		Lemma: Associtivity implies Uniqueness of Inverses	6
		Notation: Inverse	7
		Lemma: Properties of the Inverse	8
		Lemma: Cancellation Property	8
2	Gro	pups	9
	2.1	Definitions	9
		Definition: Group	9
		Notation: Multiplicative Notation	9
		Definition: Abelian Group	9
		Definition: Permutation Group	10
		Definition: Order	10
		Notation: General Linear Group	10

2.2	Dihedral Groups	11
	Definition: N-Gon	11
	Definition: An N-Gon Symmetry	11
	Definition: Dihedral Group	11
	Lemma: Dihedral GROUP	11
	Definition: Group Power	11
	Definition: Order of an Element	12
	Lemma: Properties of Order	12
	Proposition: Dihedral Group Explicit Classification	12
2.3	Subgroups	13
	Definition: Subgroup	13
	Notation: Subgroup	13
	Proposition: A Subgroup is a Group	13
	Example: The Dihedral Group is a Subgroup of the General Linear Group	14
	Definition: Proper Subgroup	14
	$\it Example$: Subspaces are Subgroups of the Additive Vector Space Group .	15
	Notation: (Not in Class) anonymous intersection	16
	Definition: Generator	16
	Example: Trivial Subgroup generated by the Emptyset	16
	Example: Group generated by itself	16
	Notation: Redundant Curls	16
	Example: Rotations generated by s	16
	Notation: Inverse Map of a Set	16
	Proposition: Generators make Sets of Powers	17
	Definition: Cyclic Groups	17
	Definition: Cyclic Subgroups	17
	Lemma: Cyclic Group Chacterization into Powers	17
	Example: Integers generated by 1	18
	Example: Rationals aren't Cyclic	18
	Example: Sets generated by s and r from D2n	18
	Proposition: Order of $a = Order of gen(a) \dots \dots$	18
	Example: Integers	19
	Example: Modulo Integers	19
	Lemma: Set Equality for Generators	19
	Example: What generates the modulo integers?	20

1 Operations on Sets

1.1 K-Ary Operations

- \mathbb{N} +, ·
- \mathbb{Z} +, ·, -
- $\bullet \mathbb{Q} +, \cdot, -$
- \mathbb{R} +, ·, -
- \mathbb{C} +, ·, -, $x \mapsto \overline{x}, x \mapsto \sqrt{x}$
- (Vectors) +, (scalarmul)
- (Matricies) +, (scalarmul), (matrixmul)
- (polynomials) $+, \cdot$

In abstract algebra, we're iinterested in what notions of "numbers" exists.

The different "types" of numbers really are distinguished by the operations on them. In this class we'll stick with operating on sets.

Definition 1.1: Binary Operations. A binary operation on a set X is a function $b: X \times X \to X$.

Note: we often write binary operators inline (like in Haskell).

We could use $+,\cdot,\times,\div,\otimes,\boxtimes,\oplus,\boxplus,\diamond$

FIND \gop in the .tex file to change the operator used. /\newcommand{\\gop}

Definition 1.2. a k-ary operator on X is a func $f: \underbrace{X \times \cdots \times X}_{k} \to X$.

 $x \mapsto \frac{1}{x}$ on \mathbb{Q} isn't a unary operation b/c $\frac{1}{0}$ isn't defined. $\mathbb{Q}^{\times} = \{x \in \mathbb{Q} : x \neq 0\}$ does have the reciprocal as a binary operator, but not minus.

1.2 Associative Operations

Definition 1.3. a binary operator \boxtimes on X is **associative** if

$$x \boxtimes (y \boxtimes z) = (x \boxtimes y) \boxtimes z, \quad \forall x, y, z \in X$$

 $+,\cdot$ on \mathbb{N},\mathbb{Z} are associative. $-:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ isn't associative. Neither is $\div:\mathbb{Q}^\times\times\mathbb{Q}^\times\to\mathbb{Q}^\times$. Function composition is associative.

Definition 1.4: (Informal) Bracketing. Let \boxtimes be a bin operator on a set X. A bracketing of a seq $a_1, \ldots, a_n \in X$ is a way of inserting brackets into

 $a_1 \boxtimes \cdots \boxtimes a_n$ s/t the expression can be evaluated

Definition 1.5: Bracketing. A bracket of a_1, \ldots, a_n is

```
n = 1 : \text{(word) } a_1

n > 1 : (w_1 \boxtimes w_2) \text{ where}

w_1 \leftarrow \text{(bracket) of } a_1, \dots a_k

w_2 \leftarrow \text{(bracket) of } a_{k+1}, \dots, a_n
```

Proposition 1.1. a binary operation \boxtimes on X is associative **iff** for every seq $a_1, \ldots, a_n, n \ge 1$, every bracketing of $a_1, \ldots a_n$ evaluates to the same elem of X.

Proof. (\iff) Take n=3. Then

$$(a \boxtimes b) \boxtimes c = a \boxtimes (b \boxtimes c), \ \forall a, b, c \in X$$

 (\Longrightarrow) Proof by induction.

Base Case: n = 1. Every bracketing of a word evaluates to that same word.

Assume proposition is true for n < k, where k > 1. Let $a_1, \dots, a_k \in X$. If w is a bracketing of a_1, \dots, a_k then $w = (w_1 \boxtimes w_2)$, where w_1 is a bracketing of a_1, \dots, a_k and w_2 is a bracketing of a_{l+1}, \dots, a_k .

$$w_{1} = (\cdots (a_{1} \boxtimes a_{2}) \boxtimes \cdots) \boxtimes a_{l}$$

$$w_{2} = (a_{l+1} \boxtimes (\cdots (a_{k-1} \boxtimes a_{k}) \cdots))$$

$$w \stackrel{\text{in } X}{=} w_{1} \boxtimes w_{2}$$

$$= (A \boxtimes a_{l}) \boxtimes w_{2}$$

$$= A \boxtimes (a_{l} \boxtimes w_{2}) \text{ by assoc.}$$

$$\cdots = a_{1} \boxtimes (\cdots (a_{k-1} \boxtimes a_{k}) \cdots)$$

Hence any 2 bracketings of a_1, \ldots, a_k evaluate to $a_1 \boxtimes (\cdots (a_{k-1} \boxtimes x_k) \cdots)$. By induction, the prop holds.

Notation 1.1: Associativity makes Brackets Pointless. Since \boxtimes is associative, brackets become redundant. $a \boxtimes b \boxtimes c := a \boxtimes (b \boxtimes c)$

Definition 1.6: Commutative. $(\boxtimes): X \times X \to X$ is commutative (or "abelian") if

$$a \boxtimes b = b \boxtimes a, \forall a, b \in X$$

 $+, \cdot$ on $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ are commutative.

+ on $M_{n \times m} \leftarrow \text{(comm)}$. (matrix mul) on $M_n \not\leftarrow \text{(comm)}$.

We're much more focused on associative operators as opposed to commutative. We cover 2 Topics:

- 1. Group Theory: a single associative op w/ some additional properties
- 2. Ring Theory: 2 associative op that behave "like" + & \cdot .

Definition 1.7: Identity. An identity for a given bin op \boxtimes is a element $e \in X$ s/t $e \boxtimes x = x \boxtimes e = x$, $\forall x \in X$.

0 is an identity for + on $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \cdots$. 1 is an identity for \cdot on \mathbb{Q}

Lemma 1.1: Uniqueness of Identity. If e and e' are identities for \boxtimes on X, then e = e'.

Proof.
$$e = e \boxtimes e' = e'$$

Definition 1.8: Inverse. let \boxtimes be a bin op on X with iden e. Let $x \in X$. $y \in X$ is a

- 1. **left inverse** for X if $y \boxtimes x = e$,
- 2. **right inverse** for X if $x \boxtimes y = e$,
- 3. and an **inverse** for X if $x \boxtimes y = e = y \boxtimes x$.

Lemma 1.2: Associtivity implies Uniqueness of Inverses. Suppose we have $(\boxtimes) \leftarrow (\operatorname{assoc})$. If y_L and y_R are left and right inverses of x, then $y_L = y_R$.

Proof.

$$(y_L \boxtimes x) \boxtimes y_R = e \boxtimes y_R$$

$$= y_R$$

$$(y_L \boxtimes x) \boxtimes y_R = y_L \boxtimes (x \boxtimes y_R) \quad \text{(by assoc)}$$

$$= y_L \boxtimes e$$

$$= y_L$$

Consequences: x is invertable iff it has a left and right inverse.

Note: is is possible to be left invertable but not right invertable, and vice verse.

 $\mathbb{N} = \{1, 2, \dots\}, +$ has no invertable elements.

 $(\mathbb{Z},+)$ has every element invertable.

 (\mathbb{Z},\cdot) has only $\{\pm 1\}$ as invertable.

 (\mathbb{Q},\cdot) has \mathbb{Q}^{\times} as invertable.

Notation 1.2: Inverse. if x is inivertable, and has a uni inv, then we denote it x^{-1} .

Lemma 1.3: Properties of the Inverse. Let $(\boxtimes) \leftarrow (\operatorname{assoc}) \ w/\ id\ e.$

1. e is invertable, $e^{-1} = e$.

Proof. $e \boxtimes e = e$

- 2. if a is invertable, then so is a^{-1} and $(a^{-1})^{-1} = a$.
- 3. if a and $b \leftarrow (\text{invertable}) \implies (a \boxtimes b)^{-1} = b^{-1} \boxtimes a^{-1}$

Proof. $a \boxtimes b \boxtimes b^{-1} \boxtimes a^{-1} = a \boxtimes e \boxtimes a^{-1} = e$ Similiar in reverse.

4. a is invertable iff

 $a \boxtimes x = b$

 $y \boxtimes a = b$

both have uniq sols $\forall b \in X$.

Proof. (\Longrightarrow) Assume a is invertable. Then

 $x = a^{-1} \boxtimes b$

 $y = b \boxtimes a^{-1}$

 (\Leftarrow) Assume the system has a uni X and Y, $\forall B \in X$. Let b = e, where e is the identity of (X, \boxtimes) .

 $a \boxtimes x = e$

 $y \boxtimes a = e$

 $\implies x = a_R^{-1}$

 $\implies y = a_L^{-1}$

 $(\boxtimes) \leftarrow (\mathrm{assoc}) \implies a_R^{-1} = a_L^{-1} = a^{-1}$

 $\implies a$ is invertable

Lemma 1.4: Cancellation Property. Let \boxtimes be an assoc bin op on X w/ id e. If it has a left inverse and $a \boxtimes u = a \boxtimes v \implies u = v$. Vice Versa.

Proof. It should be taken as an axiom.

2 Groups

2.1 Definitions

Definition 2.1: Group. a group is a pair (G, \boxtimes) where G is a set and \boxtimes is an assoc bin op on G, w/ and id e, s/t every elem of G is invertable.

Notation 2.1: Multiplicative Notation. *if the op is clear, we'll usually just write* G *instead of* (G, \boxtimes) .

We often use (\cdot) as the default symbol for the operation on a group, or even just writing $g \cdot h = gh$. The identity can be denoted by $e, e_G, 1, 1_G$. We use a^{-1} for the inverse of a. This is called **multiplicative notation**.

Definition 2.2: Abelian Group. A group (G, \boxtimes) is **abelian** if \boxtimes is abelian (commutative).

For abelian groups, we often use additive notation.

(+), id $\leftarrow 0$ or 0_G , inv(a) = a.

1. \mathbb{Z}^+ is an abelian group (under +).

$$(+) \leftarrow (assoc), inv(a) = -a, id(+) = 0, + \leftarrow (bin op)$$

Note that this is true for $\mathbb{Q}^+ = (\mathbb{Q}, +), \mathbb{R}^+$.

- 2. \mathbb{Z} isn't a group; every element in \mathbb{Z} isn't invertable under (\cdot)
- 3. We know that $|\mathbb{Z}| = |\mathbb{Q}|$. Let $\phi \leftarrow (\text{bij}) : \mathbb{Z} \to \mathbb{Q}$. Define an operator on \mathbb{Z} by $a \boxtimes b = \phi^{-1}(\phi(a) + \phi(b))$. (\mathbb{Z}, \boxtimes) is an (abelian) group. (**Ex:** $1 \boxtimes 2 = 8$)

Lemma 2.1. Let $\boxtimes \leftarrow$ (assoc, bin op on M, id \leftarrow e), $G := \{g \in M : g \leftarrow$ (invertable wrt \boxtimes) $\}$. Then G is a group $w/g \cdot h := g \boxtimes h$.

Proof. Hmk.
$$\Box$$

The smallest possible group is called the trivial group, and it has one element, $\{e\}$, ee=e.

- 1. invertability
- 2. identity
- 3. closure of (\boxtimes)
- 4. assoc of (\boxtimes) .

$$\mathbb{Q}^{\times} = \{ a \in \mathbb{Q} : a \neq 0 \}$$

$$\mathbb{R}^{\times} = \{ a \in \mathbb{R} : a \neq 0 \}$$

Both are groups under multiplication (bad notation considering \mathbb{R}^+ is a group but \mathbb{Q}^{\times} is a set. I assume \mathbb{Q}^{\cdot} is a group, equal to $(\mathbb{Q}^{\times}, (\cdot))$).

Corollary 2.1. Let X be a set, and let S_X be the set of functions $\{f : X \to X : f \leftarrow (\text{invertable})\} = \{f \in \text{Fun}(X, X) : f \leftarrow (\text{inv})\}.$ Then S_X is a group under function composition.

Definition 2.3: Permutation Group. $X := \{1, ..., n\}$. S_X is called the permutation group of rank n, and is denoted S_n .

$$\Sigma := \{ \sigma \in \operatorname{Fun}(X, X) : \sigma \leftarrow (\operatorname{bij}) \}$$
$$S_X := (\Sigma, \circ)$$

Definition 2.4: Order. The order of a group $G = (E, \boxtimes)$ is |G| = |E|, where E is finite. If E is infinite, we'll say $|G| = +\infty$.

$$|S_n| = |(\Sigma, \circ)| = n!$$

$$(M, \boxtimes) \leftarrow (\text{monoid}) \implies (M|_{(\text{inv})}, \boxtimes) \leftarrow (\text{group})$$

Example of above. $M_n\mathbb{F} := M_{n \times n}(\mathbb{F})$. $(M_n\mathbb{F}, \cdot) \leftarrow \text{(monoid)}, \text{ so } (M_n\mathbb{F}|_{\text{(inv)}}, \cdot) \leftarrow \text{(group)}$

Notation 2.2: General Linear Group. $(M_n\mathbb{F}|_{(int)},\cdot)$ is called the **general** linear group (over \mathbb{F}), denoted

 $GL_n\mathbb{F}$

2.2 Dihedral Groups

Definition 2.5: N-Gon. Let $\mathbb{P}_n : n \geq 3$ denote the regular n-gon, with verticies

$$v_k = \left(\cos\frac{2\pi k}{n}, \sin\frac{2\pi k}{n}\right) : 0 \le j \le n \text{ noting } v_n = v_0$$

Definition 2.6: An N-Gon Symmetry. A symmetry of the n-gon is an elem $T \in GL_2\mathbb{R}$ s/t $T(\mathbb{P}_n) = \mathbb{P}_n$

Definition 2.7: Dihedral Group. The set of symmetries of \mathbb{P}_n is called the dihedral group of rank n, denoted D_{2n} .

Lemma 2.2: Dihedral GROUP. D_{2n} is a group under matrix multiplication.

Proof. Later, in section subgroups.

What are the elems of D_{2n} ? $Id(D_{2n}) = I_2$.

Rotation s by $\frac{2\pi}{n}$ radians are elems, and $s(v_i) = v_{i+1}, \ \forall i = 0, \dots, n-1.$

Reflection along the x axis is an elem, so $r(v_i) = v_{n-i}$.

Definition 2.8: Group Power.

$$g^{n} := \underbrace{g \cdot g \cdot \dots \cdot g}_{n}, \ n \ge 0.$$

$$g^{-n} := \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{n}$$

$$g^{0} := e = \operatorname{Id}(G).$$

Note. $g^{-n} = (g^{-1})^n$ and $g^{-n}g^n = e$ Prove the following:

$$g^n g^m = g^{n+m}$$

$$(g^n)^m = g^{nm}$$

All this also has additive notation. $ng = g + \cdots + g$ and $(-n)g = \underbrace{(-g) + \cdots + (-g)}_{n}$

Note.

$$(gh)^n \neq g^n h^n$$

Definition 2.9: Order of an Element. The order $g \in G$ is denoted

$$|g| := \min(\{k \ge 1 : gk = e\} \cup \{+\infty\})$$

Example: $|e|=1,\ |g|=1\iff g=e.\ \mathbb{Z}^+,\ |1|=+\infty.\ (\mathbb{Z}\backslash n\mathbb{Z},+)\ |[1]|=n\ \mathrm{b/c}\ n\cdot[1]=0$

Lemma 2.3: Properties of Order. 1. $g^n = e \implies g^{n-1} \cdot g = e \implies g^{n-1} = g^{-1}$

2.
$$g^n = e \iff (g^n)^{-1} = e$$

 $\implies |g^{-1}| = |g|$

Example

$$-[1] = (n-1)[1] = [n-1]$$

Back to dihedral groups.

 $D_{2n}, |s| = n \equiv s^n(\mathbb{P}_n) = \mathbb{P}_n. |r| = 2 \equiv r^2(\mathbb{P}_n) = \mathbb{P}_n.$ So $e, s, s^2, \dots, s^{n-1} \in D_{2n}$, and $r, sr, s^2r, \dots, s^{n-1}r \in D_{2n}$.

Proposition 2.1: Dihedral Group Explicit Classification. $D_{2n} = \{s^i : 0 \le i < n\} \cup \{s^i r : 0 \le i < n\}$ and $|D_{2n}| = 2n$

Proof. $S, T \in D_{2n}$. So S, T are linear operations. So if

$$S(v_0) = T(v_0)$$

$$S(v_1) = T(v_1)$$

$$\implies S = T$$

following if we treat v_0, v_1 as basic vectors.

Claim 2: $T \in D_{2n} \implies$

$$(T(v_0), T(v_1)) \in \{(v_i, v_{i+1}) : 0 \le i \le n-1\} \cup \{(v_{i+1}, v_i) : 0 \le i \le n-1\} =: V$$

Proof. v_0, v_1 have to be sent to adj verticies (by picture lol, although we could use a "convexity" argument).

$$(s^{i}(v_{0}), s^{i}(v_{1})) = (v_{i}, v_{i+1}) (r(v_{0}), r(v_{1})) = (v_{0}, v_{n-1})$$

$$(s^{i}r(v_{0}), s^{i}r(v_{1})) = (s^{i}(v_{0}), s^{i}(v_{n-1}) (v_{i}, v_{i-1})$$

Claim 3: $\phi: D_{2n} \to V: \phi(T) = (T(v_0), T(v_1))$ is a bijection. By claim 1, it's a injection, and by the calculation above, it's a surjection. Finally, 2n = |V| and $D_{2n} = |V| \Longrightarrow 2n = |D_{2n}|$.

So $\{s^i : 0 \le i \le n-1\} \cup \{s^i r : 0 \le i \le n-1\} = D_{2n}$.

Also
$$rs(v_0) = r(v_1) = v_{n-1}$$
, $rs(v_1) = v_{n-2}$ so $rs = s^{n-1}r = s^{-1}r$.

2.3 Subgroups

Definition 2.10: Subgroup. Let G be a group. $H \subseteq G$ is a **subgroup** if

- 1. $\forall g, h \in H, g \cdot h \in H$
- 2. $g \in H \implies g^{-1} \in H$
- 3. $e_G \in H$

Notation 2.3: Subgroup. $H \leq G \iff H$ is a subgroup of G.

Proposition 2.2: A Subgroup is a Group. $H \leq G \implies G \leftarrow (\text{group}), \text{ with } \cdot_H : H \times H \rightarrow H.$

Proof. First, \cdot_H is well defined b/c H is clsd under \cdot_G .

Next, e_G is an identity for \cdot_H .

 \cdot_H is assoc b/c \cdot_G is assoc.

Finally, and elem is inv b/c it has an inverge in H wrt \cdot_G .

Example 2.1.

$$\mathbb{Z}^+ \le \mathbb{Q}^+ \le \mathbb{R}^+ \le \mathbb{C}^+$$

$$\mathbb{N}^+ \not\le \mathbb{Z}^+$$

Example 2.2: The Dihedral Group is a Subgroup of the General Linear Group.

$$D_{2n} \leq \mathrm{GL}_2\mathbb{R}$$

Example 2.3. $\mathbb{Q}_{>0} \leq \mathbb{Q}^{\times}$

2:
$$\langle s \rangle = \{ s^i : 0 \le i < n \} \le D_{2n}$$

Proof of 2.

1.
$$s^{i} \cdot s^{j} = s^{i+j} = s^{an+k} = (s^{n})^{a} \cdot s^{k} = e^{a} \cdot s^{k} = s^{k}$$

2.
$$g^{-1} = g^{n-i}, (g^0)^{-1} = g^0$$

3.
$$e = s^0 = e$$

Example 2.4. $m\mathbb{Z} := \{mk : k \in \mathbb{Z}\} \leq \mathbb{Z}^+$.

Proof.
$$mj_1 + mk_2 = m(k_1 + k_2) \in m\mathbb{Z}$$
. $-mk = m(-k) \in m\mathbb{Z}$. $0 = m0 \in m\mathbb{Z}$.

Example 2.5. $G \leq G$ and $\{e_G\} \leq G$.

Definition 2.11: Proper Subgroup. $H \leq G$ is **proper** if $H \neq F$, denoted H < G.

[&]quot;nontrivial proper subgroup..." $\{e\} \neq H \neq G$

Proposition 2.3. Let $H \subseteq G$ be a subset of a group G. Then $H \leq G$ iff

- 1. $H \neq \emptyset$ and
- 2. $g, h \in H \implies g \cdot h^{-1} \in H$.

Proof. (\Longrightarrow) clear.

(\iff) Suppose (a) and (b) hold. By (a), $H \ni g$. By (b), $e = g \cdot g^{-1} \in H$. If $g, h \in H$, then $h^{-1} \in H$, so $g \cdot (h^{-1})^{-1} \in H$, but $g \cdot (h^{-1})^{-1} = g \cdot h \in H$. \square

Example 2.6: Subspaces are Subgroups of the Additive Vector Space Group. If W is a subspace of vector space V, the $W \leq V^+$.

Check. $0 \in W$ so nonempty.

 $v, w \in W \implies v - w \in W$, so W is a subgroup.

Proposition 2.4. Suppose $G \leftarrow (\text{group})$ and $H \subseteq G$ is finite. Then $H \subseteq G$ iff

- 1. $H \neq \emptyset$
- 2. $g \cdot h \in H$

Proof. (\Longrightarrow) Clear.

 (\Leftarrow) Assume (1.) and (2.) hold. So $g \in H$. By induction, $g^n \in H \ \forall n \geq 1$.

B/c H is finite, g^1, g^2, g^3, \ldots , repeats. So $g^i = g^j$ for some $1 \le i < j$.

But now we know $g^{j-i} = e \in H$ noting that $j - i \ge 1$.

We now know $g^n \in H$ for $n \ge 0$. Since $g^{j-i} = e \implies g^{j-i-1} \cdot g = e \implies g^{-1} = g^{j-i-1}$. Since $j-i-1 \ge 0$, $g^{-1} \in H$.

So if $g, h \in H$, then $h^{-1} \in H$, then $gh^{-1} \in H$, so H is a subgroup.

Aside. the Set of subgroups of G form a lattice.

Proposition 2.5. Suppose \mathcal{F} is a nonempty set of subgroups of G. Then

$$K = \bigcap_{H \in \mathcal{F}} H$$

is a subgroup.

Notation 2.4: (Not in Class) anonymous intersection. $K := \cap^{"} \mathcal{F}$

$$\mathcal{F} := \{ f \le G : f \ne \emptyset \}$$

Can we shorten the above?

Proof. $e \in H$, $\forall H \in \mathcal{F} \implies e \in K$.

If $g, h \in K \implies g, h \in H, \forall H \in \mathcal{F}$.

$$gh^{-1} \in H, \ \forall H \in \mathcal{F}$$

$$\implies gh^{-1} \in K$$
, so $K \le G$

Definition 2.12: Generator. Let $S \subseteq G$. Then $\langle S \rangle := \bigcap_{S \subseteq H < G} H$.

The intersection of all subgroups that contain S. The Subgroup of G Generated by S.

If $S \subseteq K \leq G$ then $\langle S \rangle \leq K$.

Note 2.1. $\langle S \rangle$ is the smallest possible subgroup of G containing S. By prop, $\langle S \rangle$ is a subgroup.

Example 2.7: Trivial Subgroup generated by the Emptyset. $\langle \emptyset \rangle = \bigcap_{H \leq G} H = \{e\}$. All subgroups of G must have the identity e.

Example 2.8: Group generated by itself. $\langle G \rangle = G$. The smallest subgroup containing G is G itself.

Notation 2.5: Redundant Curls. $\langle \{s_1, s_2, \dots \} \rangle =: \langle s_1, s_2, \dots \rangle$

Example 2.9: Rotations generated by s. $\langle s \rangle \supseteq \{s\} \implies s^i \in \langle s \rangle$, $\forall i$. We previously saw that $\{s^i : 0 \le i < n\} \le D_{2n}$, so $\langle s \rangle = \{s^i : 0 \le i < n\}$.

Notation 2.6: Inverse Map of a Set. $S^{-1} := \{s^{-1} : s \in S\}$

Proposition 2.6: Generators make Sets of Powers. Suppose $S \subseteq G$, $G \leftarrow (group)$.

$$K = \{e\} \cup \{s_1 \cdot s_2 \cdots s_k : k \ge 1, \ s_1, s_2, \dots, s_k \in S \cup S^{-1}\}\$$

Then $\langle S \rangle = K$.

Proof. Claim 1: $S \subseteq K \subseteq \langle S \rangle$

 $S \subseteq K$ is clear.

Use induction to show $K \subseteq \langle S \rangle$.

Claim 2: $K \subseteq G$.

 $e \in K$. Suppose $g = s_1 \cdots s_k$, $h = t_1 \cdots t_l$, $\in K$, for $s_1, \dots, s_k, t_1, \dots, t_l \in S \cup S^{-1}$.

 $(k = 0 \text{ means } g = e, \ l = 0 \implies h = e).$

Then

$$gh^{-1} = s_1 \cdots s_k t_l^{-1} \cdots t_1^{-1} \in K$$

So $K \leq G$.

By claims 1 and 2, $K \subseteq \langle S \rangle \subseteq K \implies K = \langle S \rangle$.

Lemma 2.4. $G \supseteq S$ generates G if $\langle S \rangle = G$.

Definition 2.13: Cyclic Groups. A group is cyclic **iff** it's generated by a single element.

$$G = \langle a \rangle \implies G \leftarrow (\text{cyclic})$$

Definition 2.14: Cyclic Subgroups. A cyclic subgroup of a group G is a subgroup of the form $\langle a \rangle$ for some $a \in G$.

Lemma 2.5: Cyclic Group Chacterization into Powers. if G is a group, then

1. if $a \in G$, then $\langle a \rangle = \{a^i : i \in \mathbb{Z}\}$

2. $a \in G \& |a| = n < \infty \implies \langle a \rangle = \{a^i : 0 \le i < n\}$

Proof.

1. is a coro to characterization of $\langle a \rangle$ into powers prop

$$2. i = kn + r \implies a^i = a^r$$

Example 2.10: Integers generated by 1.

$$\mathbb{Z}^+ = \langle 1 \rangle = \{ n \cdot 1 : n \in Z \}$$

$$n \in \mathbb{Z}, \ \langle n \rangle = \{kn : k \in \mathbb{Z}\} = n\mathbb{Z}$$

$$\mathbb{Z} \backslash n\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$$

Note 2.2. $\langle a \rangle = \langle a^{-1} \rangle$

Example 2.11: Rationals aren't Cyclic.

$$\mathbb{Q}^+ \not\leftarrow (\text{cyclic})$$

Assume for contradiction it is. Then

$$\forall q \in \mathbb{Q}, \ q = np \ for \ some \ p \in \mathbb{Q}, \ n \in \mathbb{Z}$$

Take $p \in \mathbb{Q}$. Then $\frac{1}{2}p \notin \langle p \rangle$. So \mathbb{Q}^+ isn't cyclic.

Example 2.12: Sets generated by s and r from D2n.

$$\langle s \rangle = \{e, s^1, s^2, \dots\}$$

$$\langle r \rangle = \{e,r\}$$

Proposition 2.7: Order of a = Order of gen(a).

$$|\langle a \rangle| = |a|$$

Proof. By the lemma, we know $|\langle a \rangle| \leq |a|$.

$$|\langle a \rangle| = \infty = |a|$$
. If $|\langle a \rangle| = n < \infty$, then

$$\langle a \rangle = \{a^i : i \in \mathbb{Z}\},$$
 so we must have repitians

$$a_0, a_1, \ldots, a_n$$

So for some $0 \le i < j \le n$

$$a^i = a^j \implies |a| \le j - i \le n$$

$$\implies |a| \le n = |\langle a \rangle|$$

Example 2.13: Integers.

$$|a| = |\langle a \rangle| = |a\mathbb{Z}| = \begin{cases} \infty & a \neq 0 \\ 1 & a = 0 \end{cases}$$

Example 2.14: Modulo Integers.

$$|\pm 1| = |\langle \pm 1 \rangle| = |\mathbb{Z} \backslash n\mathbb{Z}| = n$$

Lemma 2.6: Set Equality for Generators. Suppose $T \subseteq \langle S \rangle$. Then

$$\langle S \rangle = \langle T \rangle \iff S \subseteq \langle T \rangle$$

Proof. (\Longrightarrow) obvious.

 (\longleftarrow)

$$S \subseteq \langle T \rangle \& T \subseteq \langle S \rangle \implies \langle S \rangle = \langle T \rangle$$

Example 2.15: What generates the modulo integers?. When does $[a] \in \mathbb{Z} \setminus n\mathbb{Z}$ generate $\mathbb{Z} \setminus n\mathbb{Z}$?

$$\mathbb{Z} \backslash n\mathbb{Z} = \langle [a] \rangle \iff [1] \in \langle [a] \rangle$$

$$\iff [1] = x[a]$$

$$\iff 1 \equiv xa \mod n$$

$$\iff xa - 1 = yn, \ x, y \in \mathbb{Z}$$

$$\iff xa + yn = 1$$

$$\iff \gcd(a, n) = 1$$