

Probabilidades e Estatística

TODOS OS CURSOS

1º semestre – 2014/2015 27/01/2015 – 15:00

(1.5)

Duração: 90 minutos 2º teste C

Justifique convenientemente todas as respostas!

Grupo I 10 valores

1. Seja $(X_1, X_2, ..., X_n)$ uma amostra aleatória da variável aleatória X com função densidade de probabilidade:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda(x-4)}, & x > 4 \\ 0, & \text{caso contrário} \end{cases}$$

onde $\lambda > 0$.

(a) Determine a estimativa de máxima verosimilhança de λ baseada na concretização de uma amostra aleatória de dimensão 40 de X tal que $\sum_{i=1}^{40} x_i = 177.86$.

Solução: 2.2396

(b) Obtenha o valor da constante a tal que o estimador $T = a + \bar{X}$ seja centrado para $\theta = \frac{1}{\lambda}$, podendo usar para o (1.5 efeito o que conhece sobre a distribuição exponencial.

Solução: a = -4

- 2. Um relatório de uma companhia de águas afirma que 40% dos poços artesianos da região litoral de Portugal têm água salobra (i.e., resulta da mistura de água doce com água salgada) e imprópria para consumo. Para testar a afirmação da empresa, foi avaliada a qualidade da água de 400 poços dessa região, escolhidos ao acaso, tendo-se registado que em 120 a água é efetivamente salobra.
 - (a) Teste a afirmação da empresa, para um nível de significância de aproximadamente 3%. (3.5) **Solução:** Rejeitar $H_0: p = 0.4$ contra $H_1: p \neq 0.4$ uma vez que que o valor observado da estatística de teste, -4.0825, pertence à região de rejeição] $-\infty$, $-2.1701[\cup]2.1701$, $+\infty[$.
 - (b) Calcule o valor-p do teste da alínea (a) e comente o valor obtido.

Solução: Rejeitar H_0 para níveis de significância superiores ou iguais ao valor- $p \approx 5 \times 10^{-5}$ e não rejeitar no caso contrário.

Grupo II 10 valores

1. Um produtor de vinhos pretende plantar uma vinha com a casta Touriga Nacional. Antes de tomar a sua decisão, analisou 190 pés de videira dessa casta de uma vinha existente nas redondezas, e para cada pé contou o número de cachos existentes, tendo registado as seguintes observações:

Cachos	{0,1}	2	3	4	≥ 5
Nº de pés	22	29	47	54	38

Teste a hipótese de o número de cachos por pé possuir distribuição de Poisson de valor esperado 4, ao nível de significância de 1%.

Solução: Rejeitar $H_0: X \sim Poi(4)$ uma vez que que o valor observado da estatística de teste, 26.568, pertence à região de rejeição]13.28, $+\infty$ [.

2. Um fabricante de processores de computador está interessado em estudar a relação entre a temperatura do processador *Y*, em °C, e a sua velocidade de processamento *x*, em MHz, para o que recolheu a seguinte amostra:

x_i	350	360	370	380	390	400	410
y_i	31.4	35.6	41.8	51.0	56.8	62.8	67.4

$$\sum_{i=1}^{7} x_i = 2660, \ \sum_{i=1}^{7} x_i^2 = 1013600, \ \sum_{i=1}^{7} y_i = 346.8, \ \sum_{i=1}^{7} y_i^2 = 18314.4, \ \sum_{i=1}^{7} x_i y_i = 133558.0.$$

Considerando o modelo de regressão linear simples com as hipóteses de trabalho usuais, com x como variável explicativa e Y como variável resposta:

(a) Estime a reta de regressão de mínimos quadrados e a variância da variável resposta.

Solução: $\hat{E}[Y \mid x] = -191.2143 + 0.6336x$ para $x \in [350, 410]$ e $\hat{\sigma} = 1.7963$.

(b) Construa um intervalo de confiança a 90% para o valor esperado da temperatura de um processador com (3.5) frequência 355 MHz. É correto utilizar o mesmo procedimento para obter um intervalo de confiança para o valor esperado da temperatura de um processador com frequência 420 MHz? Justifique.

(2.5)

Solução: $IC_{90\%}(\beta_0 + 355\beta_1) = [32.07, 35.34]$. Não é aconselhável utilizar o mesmo procedimento para a frequência de 420 MHz uma vez que este valor está fora da gama de valores de x para os quais o modelo foi ajustado.

Página 🤈 de 🤈