CSC105M Final Project

Fernandez, Ryan Austin

Poblete, Clarisse Felicia M.

Dataset Description

- Student alcohol consumption dataset
- UCI machine learning repository
- 650 instances

Attr #	Attribute	Attr #	Attribute	Attr #	Attribute
1	school	12	guardian	23	romantic
2	sex	13	traveltime	24	famrel
3	age	14	studytime	25	freetime
4	address	15	failures	26	gout
5	famsize	16	schoolsup	27	Dalc
6	Pstatus	17	famsup	28	Walc
7	Medu	18	paid	29	health
8	Fedu	19	activities	30	absences
9	Mjob	20	nursery	31	G1
10	Fjob	21	higher	31	G2
11	reason	22	internet	32	G3

Data Preprocessing

- No missing values
- Discrete
- Normalization for Regression and Neural Networks

Data Preprocessing

- **Binary**: 1 or 0
- Nominal: n values −> n − 1 attributes
- Ordinal: 1 to n
- Final Grade:
 - If ≥ 12 , Pass
 - Else, Fail
- Min/Max Standardization

Feature Selection

- Regression
 - Multicollinearity checks
 - Low correlation coefficients across the board
- Decision Trees
 - C4.5 Algorithm prunes the features
- Neural Networks
 - Neural Networks are robust to noise

Passes and Failures

Desire to Take Higher Education

Desire to Take Higher Education

Internet Access

Internet Access

Weekend Alcohol Consumption

Analytics

- Predict Pass or Fail
- Three techniques
 - Regression
 - Decision Trees
 - Neural Networks
- Bootstrap Aggregating
 - 80% of dataset with replacement

Regression

Low correlations deem this unsuitable for the dataset

Decision Trees

- C4.5 Algorithm
- Using J48 Implementation in Weka
- Parse Decision Trees using Java
- Bagging via voting scheme

Neural Network

- Custom Implementation of Backpropagation Algorithm
- Sigmoid Hidden Layer and Output Layer neurons
- One Output neuron for Pass, one for fail
- If Pass, Pass Neuron's target is 0.9, Fail Neuron's is 0.1
- If Fail, Pass Neuron's target is 0.1, Fail Neuron's is 0.9

Decision Tree

Actual/Prediction	Pass	Fail
Pass	333	15
Fail	50	251

Decision Tree

Classification Accuracy: 89.9846%

• Classification Error: 10.0154%

• Sensitivity: 95.6897%

• Specificity: 83.3887%

Decision Tree

Correct Predictions	Wrong Predictions	Rule
158	31	failures = 0 ^ higher = yes ^ Mjob != home ^ Walc <= 3 ^ schoolsup = no ^ school = GP ^ internet = yes ^ age <= 18 -> Pass
139	24	higher = yes ^ failures = 0 ^ school = GP ^ nursery = yes ^ internet = yes ^ schoolsup = no ^ Dalc <= 1 -> Pass
110	24	failures = 0 ^ higher = yes ^ Mjob != home ^ Dalc <= 2 ^ Fjob != teach ^ absences <= 3 ^ health <= 4 -> Pass
88	5	failures > 0 ^ age <= 19 -> Fail
88	3	failures > 0 ^ Medu <= 3 ^ Fedu > 0 -> Fail

Neural Networks

Actual/Prediction	Pass	Fail
Pass	329	19
Fail	27	274

Neural Networks

Classification Accuracy: 92.9122%

• Classification Error: 7.0878%

• Sensitivity: 94.5402%

• Specificity: 91.0299%

Neural Networks

- Possible overfitting in NN
- Neural Networks performed better
- Success in building an analytic model
- Possible use of SVM in future studies

References

- Amran, H. & Pagnotta, F. (2016). Using Data Mining to Predict Secondary School Alcohol Consumption. *University of Camerino*. doi: 10.13140/RG.2.1.1465.8328
- Baesens, B. (2014). Analytics in a Big Data World: The Essential Guide to Data Science and its Applications. NJ: John Wiley & Sons.
- Cortez, P. & Silva, A. (2008) Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th Future Business Technology Conference pp. 5–12, Porto, Portugal, EUROSIS, ISBN 978-9077381-39-7.
- Mitchell, T. (1997). Machine learning. McGraw-Hill.
- Stockburger, D.W. (n.d.) Multiple Regression With Categorical Variables.

 Retrieved July 27, 2016, from Psychological Statistics at Missouri State University:
 - http://www.psychstat.missouristate.edu/multibook/mlt08m.html

Thank you!