实分析笔记

 ${\bf Fulcrum 4 Math}$

目录

1	Lebesgue 测度	2
	1.1 σ-代数与测度空间	2
	1.2 R 上的 Lebesgue 测度	4
2	Lebesgue 可测函数	5
	2.1 Lebesgue 可测函数	6
	2.2 简单逼近定理	7
	2.3 Littlewood 原理	8
3	Lebesgue 积分	8
	3.1 有限测度集上有界可测函数的 Lebesgue 积分	8

1 LEBESGUE 测度 2

1 Lebesgue 测度

1.1 σ -代数与测度空间

定义 1.1.1 σ -代数 (σ -Algebra)

 $\Sigma_S \subseteq \mathcal{P}(S)$, 定义在集合 S 上的结构 (S, Σ_S) 称为是 S 上的一个 σ -代数当且仅当:

(1) S 在 Σ_S 内;

$$S \in \Sigma_S$$

(2) Σ_S 对可数并封闭:

$$\forall \{X_i | i \in \mathbb{N}\} \subseteq \Sigma_S, \bigcup_{i \in \mathbb{N}} X_i \in \Sigma_S$$

(3) Σ_S 对补集封闭:

$$\forall X \in \Sigma_S, S - X \in \Sigma_S$$

性质 1.1.1.1 σ -代数的等价定义 ()

(1) 可替换为 \emptyset 在 Σ_S 内;

$$\varnothing \in \Sigma_S$$

(2) 可替换为 Σ_S 对可数交封闭:

$$\forall \{X_i | i \in \mathbb{N}\} \subseteq \Sigma_S, \bigcap_{i \in \mathbb{N}} X_i \in \Sigma_S$$

证明:

- (1) 由 σ -代数对取补运算封闭性即证.
- (2) 由 De Morgan 公式即证.

定义 1.1.2 测度与测度空间 (Measure and Measure Space)

设 (S, Σ_S) 是 σ -代数, 集函数 $\mu : \Sigma_S \to \mathbb{R}$ 称为是定义在 Σ_S 上的**测度**, 若:

(1) 测度非负:

$$\forall X \in \Sigma_S, \mu(X) \geq 0$$

(2) 可数可加性:

$$\forall \{X_i | i \in \mathbb{N}\} \subseteq \Sigma_S (i \neq j \Longrightarrow X_i \cap X_j = \varnothing),$$

$$\mu\left(\bigcup_{i\in\mathbb{N}}X_i\right) = \sum_{i\in\mathbb{N}}\mu(X_i)$$

此时结构 (S, Σ_S, μ) 称为**测度空间**.

性质 1.1.2.1 空集零测 ()

$$\mu(\varnothing) = 0$$

1 LEBESGUE 测度 3

证明:

$$\mu(\varnothing) + \mu(\varnothing) = \mu(\varnothing \cup \varnothing) = \mu(\varnothing) \Longrightarrow \mu(\varnothing) = 0$$

性质 1.1.2.2 子集测度小于等于全集测度 ()

$$A \subseteq B \Longrightarrow \mu(A) \le \mu(B)$$

证明:

用子集及其补表示全集即证:

$$B = A \cup (B - A) \Longrightarrow \mu(B) = \mu(A) + \mu(B - A) \ge \mu(A) + 0 = \mu(A) \square$$

定义 1.1.3 Borel 集族 (Borel Sets)

Borel 集族 (Borel Sets)

设拓扑空间 (S, \mathcal{T}_S) , S 上的 **Borel 集族** $\mathcal{B}(S)$ 是由拓扑 \mathcal{T}_S 生成的最小 σ -代数:

$$\mathcal{B}(S) = \bigcap_{\mathcal{T}_S \subseteq \Sigma_S} \Sigma_S$$

定义 1.1.4 ℝ 上在通常拓扑意义下的 Borel 测度 ()

在对 \mathbb{R} 赋予通常拓扑得到的拓扑空间 (\mathbb{R} , \mathcal{T}) 上, 定义在 Borel 集上的满足区间的长度为端点之差得到的测度称为 Borel 测度:

$$\forall a, b(a < b) \in \bar{\mathbb{R}}, \mu(a, b) = b - a$$

性质 1.1.4.1 单点集零测 ()

$$\forall x \in \mathbb{R}, \mu\{x\} = 0$$

证明:

考虑以点为中心的开球,并令半径任意小即可:

$$\forall x \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}^+, \{x\} \subseteq \left(x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2}\right)$$

$$\Longrightarrow \forall \varepsilon \in \mathbb{R}^+, \mu\{x\} \le \varepsilon \Longrightarrow \mu\{x\} = 0 \square$$

性质 1.1.4.2 区间上的 Borel 测度等于区间长度 ()

$$\forall a, b \in \mathbb{R}, \mu(a, b) = \mu(a, b) = \mu[a, b) = \mu[a, b] = b - a$$

1 LEBESGUE 测度 4

性质 1.1.4.3 可数集零测 ()

$$\forall S \subseteq \mathbb{R}(\operatorname{card} S = \aleph_0), \mu(S) = 0$$

证明:

由单点集零测性质, 用单点集的可数并表示可数集即证. □

反例 1.1.5 Cantor 集 (Cantor Set)

Cantor 集是零测的, 但不可数.

定理 1.1.6 Borel 测度唯一 ()

$$\forall X \in \Sigma_S, \mu_1(X) = \mu_2(X)$$

1.2 ℝ 上的 Lebesgue 测度

定义 1.2.1 完备测度空间 (Complete Measure Space)

测度空间 (S, Σ_S, μ) 称为是一个**完备测度空间**, 若每个零测集的全体子集都可测:

$$\forall N(\mu(N) = 0) \in \Sigma_S, \mathcal{P}(N) \subseteq \Sigma_S$$

定义 1.2.2 Lebesgue 内/外测度 (Lebesgue Inner/Outer Measure)

首先定义开集与紧集上的 Lebesgue 测度值:

???

对于拓扑空间 (S, \mathcal{T}) , 用开集外逼近得到的集函数 $\mu^* : \mathcal{P}(S) \to \mathbb{R}$ 称为是 $\mathcal{P}(S)$ 上的外测度:

$$\mu^*(X) = \inf_{O \in \mathcal{T}} \sum_{X \subseteq O} \mu(O)$$

用紧集内逼近得到的集函数 $\mu_*: \mathcal{P}(S) \to \mathbb{R}$ 称为是 $\mathcal{P}(S)$ 上的内测度:

$$\mu_*(X) = \sup_{C \neq \S x} \sum_{C \subset X} \mu(C)$$

定义 1.2.3 Lebesgue 可测集 (Lebesgue Measurable Set)

集合 X 被称为是 Lebesgue 可测的, 若其内测度与外测度相等:

$$\mu^*(X) = \mu_*(X)$$

性质 1.2.3.1 Constantin-Caratheodory 条件 ()

X 是 Lebesgue 可测的当且仅当 X 满足:

$$\forall A \subseteq S, \mu^*(A) = \mu^*((S - X) \cap A) + \mu^*(X \cap A)$$

2 LEBESGUE 可测函数

反例 1.2.4 Vitali 集 (Vitali Set)

构造:

性质 1.2.4.1 外测度为零的集合 Lebesgue 可测 ()

 $\mu^*(S) = 0 \Longrightarrow S$ 是 Lebesgue 可测的

5

定义 1.2.5 可测包/核 (Measurable Hull/Kernel)

对集合 $S \subseteq \mathbb{R}$, 定义其**可测包**集族为包含 S 的最小可测集族, 其**可测核**

定理 1.2.6 Lebesgue 可测集族构成 σ -代数 ()

Lebesgue 可测集族构成 \mathbb{R} 上的一个 σ -代数.

推论 1.2.6.1 Lebesgue 可测集族由 Borel 集与零测集生成 ()

Lebesgue 可测集族是由 $\mathcal{B}(S)$ 与全体零测集生成的 σ -代数.

定义 1.2.7 Lebesgue 测度 (Lebesgue Measure)

将 Lebesgue 内/外测度限制在 Lebesgue 可测集上得到的集函数称为 Lebesgue 测度.

$$\mu := \mu^*|_{\mathcal{L}} = \mu_*|_{\mathcal{L}}$$

性质 1.2.7.1 Borel 测度是 Lebesgue 测度在 Borel 集上的限制 ()

$$\mu_{\mathcal{B}} = \mu_{\mathcal{L}}|_{\mathcal{B}(S)}$$

性质 1.2.7.2 Lebesgue 测度完备 ()

性质 1.2.7.3 Lebesgue 测度平移不变 ()

定理 1.2.8 Littlewood 第一原理 ()

有限测度的可测集接近于区间的有限并:

设 E 为有限测度的可测集, 则 $\forall \varepsilon \in \mathbb{R}^+$, \exists 有限空交的开区间族 $\{I_i\}_{i=1}^n$, 记其并为 T, 满足:

$$\mu^*(E-F) + \mu^*(F-E) < \varepsilon$$

2 Lebesgue 可测函数

- *本章的"可测"均指 Lebesgue 可测.
- *本章默认实值函数的值域是扩充实数集 R.

2 LEBESGUE 可测函数 6

*称一个性质"几乎处处"成立指该性质在除了某零测集外处处成立.

2.1 Lebesgue 可测函数

定义 2.1.1 Lebesgue 可测函数 (Lebesgue Measurable Functions)

设 (S, Σ_S, μ) 是测度空间, 函数 $f: S \to \mathbb{R}$ 称为是 Lebesgue 可测函数, 若 $\forall \alpha \in \mathbb{R}$, 集合 $\{x \in S | f(x) > \alpha\}$ 是可测的.

性质 2.1.1.1 Lebesgue 可测函数的等价定义 ()

设 S 是可测集, 则下列叙述互相等价:

- $(1) \forall \alpha \in \mathbb{R}, \{x \in S | f(x) > \alpha\}$ 是可测集.
- $(2) \forall \alpha \in \mathbb{R}, \{x \in S | f(x) \ge \alpha\}$ 是可测集.
- (3) $\forall \alpha \in \mathbb{R}, \{x \in S | f(x) < \alpha\}$ 是可测集.
- $(4) \forall \alpha \in \mathbb{R}, \{x \in S | f(x) \leq \alpha\}$ 是可测集.

例 2.1.2 可测集定义域上的连续实值函数可测()

例 2.1.3 定义在区间上的单调函数可测()

反例 2.1.4 不可测函数 ()

构造

性质 2.1.4.1 可测函数单点值的原像可测 ()

设 $f: S \to \mathbb{R}$ 是可测函数, 则 $\forall \alpha \in \mathbb{R}, \{x \in S | f(x) = \alpha\}$ 是可测集.

性质 2.1.4.2 函数可测当且仅当开集的原像可测()

设 $f: S \to \mathbb{R}$ 是实值函数, 则 f 是可测函数当且仅当开集的原像是可测集.

性质 2.1.4.3 可测函数的拼合 ()

设可测集 S 有可测子集 T, 则实值函数 f 在 S 上可测当且仅当 $f|_T$ 和 f_{S-T} 均可测.

性质 2.1.4.4 可测函数的传递性 ()

设 f 在 S 上可测, f = g 在 S 上几乎处处成立, 则 g 在 S 上可测.

性质 2.1.4.5 可测函数代数 ()

设 $f,g:S\to \mathbb{R}$ 是可测函数, 则:

- (1) ∀k, $l \in \mathbb{R}$, 函数 kf + lg 是可测函数.
- (2) 函数 fg 是可测函数.

性质 2.1.4.6 可测函数的复合稳定性 ()

性质 2.1.4.7 可测函数的逐点收敛稳定性 ()

若定义在 D 上的可测函数序列 f_n 几乎处处逐点收敛于 f, 则 f 可测.

2.2 简单逼近定理

定义 2.2.1 指示/示性/特征函数 (Indicator/Characteristic Function)

集合 $A \subseteq S$ 的指示函数 $\chi_A : S \to \{0,1\}$ 定义为:

$$\chi_A = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

性质 2.2.1.1 集合可测当且仅当其指示函数可测 ()

定义 2.2.2 简单函数/单纯函数 (Simple Function)

定义在可测集上的实值函数 $f: E \to \mathbb{R}$ 称为是简单函数, 若其值域是有限集.

性质 2.2.2.1 简单函数代数 (Simple Function Algebra)

性质 2.2.2.2 简单函数的典范表示 ()

简单函数能表示为有限个集合的指示函数的线性组合:

$$f = \sum_{i=1}^{n} C_i \cdot \chi_{A_i}(A_i = \{x \in A_i | f(x) = C_i\})$$

引理 2.2.3 简单逼近引理 (Simple Function Approximation Lemma)

可测函数可以被简单函数良好控制:

设 $f: E \to \mathbb{R}$ 是可测函数, f 在 E 上有界, 则 $\forall \varepsilon > 0$, $\exists E$ 上的简单函数 $\varphi_{\varepsilon}, \psi_{\varepsilon}$ 满足:

$$\forall x \in E, \varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon} \land 0 \leq \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$$

定理 2.2.4 简单逼近定理 (Simple Function Approximation Theorem)

可测函数可以被简单函数逼近:

定义在可测集 E 上的扩充实值函数 E 是可测的 \iff $\exists E$ 上的简单函数序列 $\{\varphi_n\}$ 满足:

- (1) { φ_n } 逐点收敛到 f;
- (2)

$$\forall n \in \mathbb{N}, \forall x \in E, |\varphi_n| \le |f|$$

3 LEBESGUE 积分 8

其中若 f 非负,则可选取满足上述条件且递增的 $\{\varphi_n\}$.

2.3 Littlewood 原理

引理 2.3.1 ()

设 E 是有限测度可测集, $\{f_n\}$ 是 E 上逐点收敛于 f 的可测函数序列, 则:

 $\forall \varepsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \exists E_\varepsilon \subseteq E(\mu(E - E_\varepsilon) < \delta), \exists N \in \mathbb{N}, \forall n \ge N, \forall x \in E_\varepsilon, |f_n - f| < \varepsilon$

定理 2.3.2 Egoroff 定理 (Littlewood 第三原理) (Egoroff's Theorem)

逐点收敛于某一的可测函数序列近似是一致收敛的:

设 E 是有限测度可测集, $\{f_n\}$ 是 E 上逐点收敛于 f 的可测函数序列, 则:

引理 2.3.3 Littlewood 第二原理 (Littlewood's Second Principle)

简单函数接近于连续函数:

设 f 为可测集 E 上的简单函数, 则:

$$\forall \varepsilon \in \mathbb{R}^+, \exists g \in \mathcal{C}(\mathbb{R}), \exists E_\varepsilon \subseteq E(\mu(E - E_\varepsilon) < \varepsilon), \forall x \in E_\varepsilon, f = g$$

定理 2.3.4 Lusin 定理 (Lusin's Theorem)

可测函数接近于连续函数:

设 f 为可测集 E 上的可测函数, 则:

$$\forall \varepsilon \in \mathbb{R}^+, \exists g \in \mathcal{C}(\mathbb{R}), \exists E_{\varepsilon} \subseteq E(\mu(E - E_{\varepsilon}) < \varepsilon), \forall x \in E_{\varepsilon}, f = g$$

3 Lebesgue 积分

3.1 有限测度集上有界可测函数的 Lebesgue 积分

定义 3.1.1 简单函数的 Lebesgue 积分 (Lebesgue Integral of Simple Functions)

设 f 是有限测度可测集 E 上的简单函数, 其典范表示为 $f = \sum_{i=1}^{n} C_i \cdot \chi_{E_i}(E_i = \{x \in E_i | f(x) = C_i\})$, 则可如下定义 f 在 E 上的 Lebesgue 积分:

$$\int_{E} f := \sum_{i=1}^{n} C_{i} \cdot \mu(E_{i})$$