

National Institute Of Technology Durgapur

ELECTRICAL MEASUREMENT LABORATORY Group V

Experiment 1

MEASUREMENT OF POWER IN SINGLE-PHASE CIRCUIT BY THREE-VOLTMETER METHOD AND THREE-AMMETER METHOD

2nd June, 2021

Members (63-77)

- ✓ Sayan Mondal (63)
- ✓ Abantika Saha (64)
- ✓ Sayan Das (65)
- ✓ Raj Suyash Ranjan (66)
- √ Vemula Rahul (67)
- ✓ Sohini Bhattacharya (68)
- ✓ Anirban Moi (69)
- ✓ Dheeraj Kalakonda (70)

- ✓ Subham Gupta (71)
- ✓ Tuhin Karak (72)
- ✓ Souradeepta Pal (73)
- ✓ Koustav Sanyal (74)
- ✓ Diksha Senapati (75)
- ✓ Aman Kumar (76)
- √ Yogeswar Sarnakar (77)

Experiment No: 1

Measurement Of Power in Single-Phase Circuit by Three-Voltmeter Method and Three-Ammeter Method

Objective:

- To measure the single-phase power in a single-phase A.C. circuit by using three voltmeters.
- To measure the single-phase power in a single-phase A.C. circuit by using three ammeters.

Apparatus Required:

It consists of following instruments:

SI. No.	Instrument Name	Specification	Quantity
1.	AC Voltage Supply	20V rms, 50 Hz	1
2.	Ammeter	0 - 35 A (AC)	3
3.	Voltmeter	0 - 50 V (AC)	3
4.	Resistors	1.7Ω, 1.8Ω, 1.9Ω, 2.0Ω	4
5.	RL load	$R = 1 \Omega$, $L = 3 mH$	1
6.	Connecting Wires	-	-

Theory:

Power measurement in Single phase A.C. circuit by using three voltmeters:

From the phasor diagram,

But,

$$V_2 = IR$$

Sold Schini Bhattacharya Amirbun Moi K. Dherroj Roll J. Schini Bhattacharya Amirbun Moi K. Dherroj Roll J. Sulhom Cupt Tikin Karak Sawadeepta Pal Houston Sanyal D. Senapak Aman Kumar Japanean Sanyal

Therefore,

$$V_1^2 = V_2^2 + V_3^2 + 2(IR)V_3\cos\varphi$$
 (2)

Now, power consumed by load $\Rightarrow P = V_3 I \cos \varphi$

Therefore, equation (2) gives,

$$V_1^2 = V_2^2 + V_3^2 + 2PR$$

$$\Rightarrow P = \frac{V_1^2 - V_2^2 - V_3^2}{2R}$$
(3)

Now, simplifying equation (1),

$$\cos \varphi = \frac{V_1^2 - V_2^2 - V_3^2}{2V_2 V_3}$$
 (4)

From equations (3) and (4), it can be observed that the power and power factor in an A.C. circuit can be measured by using three single-phase voltmeters, instead of a wattmeter.

Power measurement in Single phase A.C. circuit by using three ammeters:

From the phasor diagram,

$$I_1^2 = I_2^2 + I_3^2 + 2I_2I_3\cos\varphi \qquad (1)$$

But,

$$I_2 = \frac{V}{R}$$

Therefore,

$$I_1^2 = I_2^2 + I_3^2 + 2\left(\frac{V}{R}\right)I_3\cos\varphi$$
 (2)

Sayan Hondal Abantika Saha Sayan Das On San Denula Call Schini Bhattacharya Amirbun Moi

K. Dherig Redd T. Sulham Cupta Tinkin Konak Souradoepta Pal Houston Sanyal DSenapake Aman Kumar Jopanas Sanasa

Now, power across load, $P = VI_3 \cos \varphi$

Therefore, equation (2) gives,

$$I_1^2 = I_2^2 + I_3^2 + 2\left(\frac{P}{R}\right)$$

$$P = \left(\frac{I_1^2 - I_2^2 - I_3^2}{2}\right)R \longrightarrow (3)$$

Now, simplifying equation (1),

$$\cos \varphi = \frac{I_1^2 - I_2^2 - I_3^2}{2I_2I_3}$$
 (4)

From equations (3) and (4), it can be observed that the power and power factor in an A.C. circuit can be measured by using three single-phase ammeters, instead of a wattmeter.

Schematic Circuit Diagram:

Figure 1 : Circuit Diagram for Three Voltmeter Method when $R = 1.7 \Omega$

Playan Hondal Abartika Saha Sayan Das Joseph Dennila Call Schini Bhattacharya Amirbum Moi K Dherio Redd J. Sulkom Cupts Timin Kanak Sawadeepta Pal Houston Sanyal Denapake Aman Kumar Hypothan Sanyal

Figure 2: Circuit Diagram for Three Ammeter Method when $R = 1.7 \Omega$

Rayan Hondal Abartika Saha Sayan Das Joseph Denula Call Schini Bhattacharya Amirbun Moi K. Dherig Rodd Sulhom Cupta Timbin Konak Sawadaepta Pal Houston Sanyal Denapak Aman Kumar Hyposton Sanzan

Experimental Results:

Table 1: Three-Voltmeter Method

SI. R No. (ohm	D	V1 (Volt)	V2 (Volt)	V3 (Volt)	Power (Watt)	Power factor(pf)	Mean	
	(ohm)						Power	Power Factor(pf)
1.	1.7	20	11.8690	9.6097	48.9133	0.7277	Mean P = 44.5551 W	Mean pf = 0.7278
2.	1.8	20	12.1853	9.3020	45.8309	0.7278		
3.	1.9	20	12.4618	9.0124	43.0211	0.7278		
4.	2.0	20	12.7202	8.7393	40.4553	0.7278		

Table 2: Three-Ammeter Method

SI. No		I ₁ (A)	I ₂ (A)	I ₃ (A)	Power (Watt)	Power factor(pf)	Mean	
							Power	Power Factor(pf)
1.	1.7	24.4845	11.7647	14.5551	211.8468	0.7277	Mean P = 211.8448 W	Mean pf = 0.7277
2.	1.8	23.8891	11.1110	14.5551	211.8454	0.7278		
3.	1.9	23.3591	10.5263	14.5551	211.8493	0.7277		
4.	2.0	20.5925	10.0000	14.5551	211.8448	0.7277		

Royan Hondal Abantika Saha Sayan Das Joseph Denula Pall Solini Bhattacharya Amirban Moli
K Dherroj Rodal Sulham Cupta Tuhin Karak Sawadeepta Pal Koustan Sanyal DSonapak Aman Kumar Jopana Sanyal

Calculations:

Three-Voltmeter Method:

For R =
$$1.7 \Omega$$

Here, $V_1 = 20V \angle 0^\circ$

So, Load = $1 + i [2\pi *50*0.003]$

$$\Rightarrow$$
 Load = 1 + i (0.9424)

$$Z = (1+1.7) + i(0.9424)$$

$$\Rightarrow$$
 Z = 2.7+0.9424i

$$\Rightarrow$$
 Z = 2.8597 \angle 19.24°

According to KVL,

$$V_1 = I_{total} [R + Load]$$

So,
$$I_{\text{total}} = 20/(2.7 + 0.9424i)$$

$$\Rightarrow$$
 I_{total} =(6.6029-2.3046j) A

$$V_2 = I_{total} * R$$

$$= (6.6029 - 2.3046i) * 1.7$$

$$So, V_2 = 11.2249 - 3.9178i V$$

or,
$$V_2 = 11.8890 \angle -19.24^{\circ} V$$

$$V_3 = I_{total} * Load$$

$$= (6.6029 - 2.3046j) * (1+0.9424j)$$

$$V_3 = (8.7747 + 3.9179i) V$$

or,
$$V_3 = 9.6097 \angle 24.06^{\circ} V$$

So, Power P =
$$(V_1^2 - V_2^2 - V_3^2)/2R$$

$$\Rightarrow$$
 P = (166.3053) / (2*1.7) W

$$\Rightarrow$$
 P = 48.9133 W

$$\cos \Phi = (V_1^2 - V_2^2 - V_3^2) / 2(V_2 * V_3)$$

$$\Rightarrow$$
 cos $\Phi = 166.3053 / (2*11.8890*9.6097)$

$$\Rightarrow$$
 $\cos \Phi = 0.7277$

Sayan Hondal Abantika Saha Sayan Das Onis Denula Cal) Sohini Bhatlacharya Amirbun Moi

K. Dherrig Red Y. Sulham Cupter Timbin Karak Sawadeepta Pal Houston Sangel Denapate Aman Kumar Japane Sanasa

For R = 1.8Ω

Here, $V_1 = 20V \angle 0^\circ$

So, Load = $1 + i [2\pi *50*0.003]$

 \Rightarrow Load = 1 + j (0.9424)

Z = (1+1.8) + i(0.9424)

 \Rightarrow Z = 2.8+0.9424i

According to KVL,

 $V_1 = I_{total} [R + Load]$

So, $I_{\text{total}} = 20/(2.8 + 0.9424i)$

 \Rightarrow $I_{total} = (6.4160-2.1594j) A$

= (6.4160-2.1594j) * 1.8

 $So, V_2 = 11.5488 - 3.8869j V$

or, $V_2 = 12.1853 \angle -18.60^{\circ} V$

$$V_3 = I_{total} * Load$$

= (6.4160 - 2.1594j) * (1 + 0.9424j)

 $V_3 = (8.4510 + 3.8870j) V$

or, $V_3 = 9.3020 \angle 24.69^{\circ} V$

So, Power P =
$$(V_1^2 - V_2^2 - V_3^2)/2R$$

 \Rightarrow P = (164.9912) / (2*1.8) W

 \Rightarrow P = 45.8309 W

$$\cos \Phi = (V_1^2 - V_2^2 - V_3^2) / 2(V_2 * V_3)$$

 \Rightarrow cos $\Phi = 164.9912 / (2*12.1853*9.3020)$

 \Rightarrow $\cos \Phi = 0.7278$

For R = 1.9Ω

Here, $V_1 = 20V \angle 0^\circ$

So, Load = $1 + i [2\pi *50*0.003]$

 \Rightarrow Load = 1 + j (0.9424)

Z = (1+1.9) + i(0.9424)

 \Rightarrow Z = 2.9+0.9424i

According to KVL,

 $V_1 = I_{total} [R + Load]$

So, $I_{\text{total}} = 20 \angle 0^{\circ} / (2.9 + 0.9424i)$

 \Rightarrow I_{total} =(6.2378-2.0270j) A

= (6.2378 - 2.0270i) * 1.9

 $So, V_2 = 11.8518 - 3.8513j V$

or, $V_2 = 12.4618 \angle -18.00^{\circ} V$

$$V_3 = I_{total} * Load$$

= (6.2378-2.0270j) * (1+0.9424j)

 $V_3 = (8.1480 + 3.8515j) V$

or, $V_3 = 9.0124 \angle 24.29^{\circ} V$

So, Power P =
$$(V_1^2 - V_2^2 - V_3^2) / 2R$$

$$\Rightarrow$$
 P = (163.4801) / (2*1.9) W

 \Rightarrow P = 43.0211W

$$\cos \Phi = (V_1^2 - V_2^2 - V_3^2) / 2(V_2^*V_3)$$

 \Rightarrow cos Φ = 163.4801 / (2*12.4618*9.0124)

 \Rightarrow $\cos \Phi = 0.7278$

Sayan Hondal Abantika Saha Sayan Das Onis Denula Cal) Sohini Bhatlacharya Amirbun Moi

K. Dherry Redd T. Sulham Cupte Tuhin Karak Sawadaepta Pal Houston Sangal Denapate Aman Kumar Japanan Sanasa

For R = 2.0Ω

Here, $V_1 = 20V \angle 0^\circ$

So, Load = $1 + i [2\pi *50*0.003]$

 \Rightarrow Load = 1 + j (0.9424)

Z = (1+2.0) + i(0.9424)

 \Rightarrow Z = 3.0+0.9424i

According to KVL,

 $V_1 = I_{total} [R + Load]$

So, $I_{\text{total}} = 20 \angle 0^{\circ} / (3.0 + 0.9424i)$

 \Rightarrow $I_{total} = (6.0678-1.9061j) A$

= (6.0678 - 1.9061j) * 2.0

So, $V_2 = 12.1356 - 3.8122j V$

or, $V_2 = 12.7202 \angle -17.4392^{\circ} V$

$$V_3 = I_{total} * Load$$

= (6.0678-1.9061j) * (1+0.9424j)

 $V_3 = (7.8641 + 3.8121j) V$

or, $V_3 = 8.7393 \angle 25.86^{\circ} V$

So, Power P =
$$(V_1^2 - V_2^2 - V_3^2)/2R$$

 \Rightarrow P = (161.8211) / (2*2.0) W

 \Rightarrow P = 40.4553 W

$$\cos \Phi = (V_1^2 - V_2^2 - V_3^2) / 2(V_2 * V_3)$$

 \Rightarrow cos Φ = 161.8211 / (2*12.7202*8.7393)

 \Rightarrow $\cos \Phi = 0.7278$

Sayan Hondal Abantika Saha Sayan Das Onis Denula Cal) Sohini Bhatlacharya Amirbun Moi

K. Dherrig Red Y. Sulham Cupter Timbin Karak Sawadeepta Pal Houston Sangel Denapate Aman Kumar Japane Sanasa

Three-Ammeter Method:

For R =
$$1.7 \Omega$$

$$I_2 = 20/1.7 A$$

 $l_2 = 11.7647 \angle 0^\circ$

$$I_3 = 20/(1+jwL)$$

$$= 20 / (1+j(2\pi*50*0.003))$$

$$I_3 = (10.5925 - 9.8924j) A$$

 $|I_3| = 14.5551 \angle -43.30^{\circ}$

According to KCL,

$$|_1 = |_2 + |_3$$

$$\Rightarrow$$
 I₁ = (22.3572 - 9.9824j) A

So,
$$I_1 = 24.4845 \angle -24.06^{\circ} A$$

Therefore, Power, $P = (I_1^2 - I_2^2 - I_3^2) R/2$

$$\Rightarrow$$
 P = 211.8468W

$$\cos \Phi = (|1_1|^2 - |1_2|^2 - |1_3|^2)/2(|1_2*|_3)$$

$$\Rightarrow$$
 $\cos \Phi = 0.7277$

Sayan Hondal Abantika Saha Sayan Das Jan Danula Call Schini Bhattacharya Amirbem Moi

K Dherrof Roll Sulham Cupt Tikin Karak Sawadeepta Pal Howeton Sanyal DSonapale Aman Kumar Hypothan Sanasan

For R = 1.8Ω

 $I_2 = 20/1.8 A$

 $I_2 = 11.1111 \angle 0^{\circ} A$

 $I_3 = 20/(1+jwL)$

 $= 20 / (1+j (2\pi*50*0.003))$

 $I_3 = (10.5925 - 9.8924j) A$

 $|I_3| = 14.5551 \angle -43.30^{\circ}$

According to KCL,

 $|_1 = |_2 + |_3$

$$\Rightarrow$$
 I₁ = (21.7035 - 9.9824j) A

So, $I_1 = 23.8891 \angle -24.6997^{\circ} A$

Therefore, Power, $P = (I_1^2 - I_2^2 - I_3^2) R/2$

 \Rightarrow P = 211.8454W

$$\cos \Phi = (|1_1|^2 - |1_2|^2 - |1_3|^2)/2(|1_2*|3)$$

 \Rightarrow $\cos \Phi = 0.7278$

Sayan Hondal Abantika Saha Sayan Das Joseph Denula Cald Schini Bhattacharya Amirbun Moi

K. Dheriog Rold T. Sulham Cupta Tuhin Korak Sawadaepta Pal Houston Sangal Denapate Aman Kumar Japanan Sanasa

For R = 1.9Ω

 $I_2 = 20/1.9 A$

 $I_2 = 10.5263 \angle 0^{\circ} A$

 $I_3 = 20/(1+jwL)$

 $= 20 / (1+j (2\pi*50*0.003))$

 $I_3 = (10.5925 - 9.8924j) A$

 $|I_3| = 14.5551 \angle -43.30^{\circ} A$

According to KCL,

$$|_1 = |_2 + |_3$$

$$\Rightarrow I_1 = (21.1188 - 9.9824j) A$$

So,
$$I_1 = 23.3591 \angle -25.30^{\circ} A$$

Therefore, Power, $P = (I_1^2 - I_2^2 - I_3^2) R/2$

 \Rightarrow P = 211.8439W

$$\cos \Phi = (|1_1|^2 - |1_2|^2 - |1_3|^2)/2(|1_2*|3)$$

 \Rightarrow $\cos \Phi = 0.7277$

Sayan Hondal Abantika Saha Sayan Das Jos Demula Calif Sohini Bhattachanya Amirbun Moi

K. Dheriog Rold T. Sulham Cupta Tuhin Korak Sawadaepta Pal Houston Sangal Denapate Aman Kumar Japanan Sanasa

For R = 2.0Ω

 $I_2 = 20/2.0 A$

 $I_2 = 10 \angle 0^{\circ} A$

 $I_3 = 20/(1+jwL)$

 $= 20 / (1+j (2\pi*50*0.003))$

 $I_3 = (10.5925 - 9.8924j) A$

 $|I_3| = 14.5551 \angle -43.30^{\circ}$

According to KCL,

$$|_1 = |_2 + |_3$$

$$\Rightarrow I_1 = (20.5925 - 9.9824j) A$$

So, $I_1 = 22.8844 \angle -25.86^{\circ} A$

Therefore, Power, $P = (I_1^2 - I_2^2 - I_3^2) R/2$

 \Rightarrow P = 211.8448W

$$\cos \Phi = (|1_1|^2 - |1_2|^2 - |1_3|^2)/2(|1_2*|3)$$

 $\Rightarrow \cos \Phi = 0.7277$

Sayan Hondal Abantika Saha Sayan Das Jos Denula Cald Schini Bhattacharya Amirbun Moi

K. Dherry Rold T. Sulham Cupte Timbin Korak Sawadaepta Pal Houston Sampel Denapate Aman Kumar Jopasan Samuel

Error Analysis:

- Here Percentage (%) $Error = \frac{(Pcalculated-Wattmeter\ Reading)}{Wattmeter\ Reading}$
- $R_{load} = 1\Omega$, $|I_3| = 14.5551$ A (as evident from the calculations above)

1.) Three-Voltmeter Method:

SI. No.	R(Ω)	I (A)	I (Magnitude of Current)	Wattmeter Reading (= I ² R _{load})	PCalculated (W)	Pcalculated - Wattmeter Reading	% Error
1.	1.7	6.6029- 2.3046i	6.993530551	48.90946957	48.9133	0.00383043	7.83E-05
2.	1.8	6.4160- 2.1594i	6.769642853	45.82806436	45.8309	0.00283564	6.19E-05
3.	1.9	6.2378-2.027i	6.558877788	43.01887784	43.0211	0.00222216	5.17E-05
4.	2	6.0678- 1.96061i	6.376691024	40.66218841	40.4553	-0.206888412	-0.00508798

2.) Three-Ammeter Method:

SI. No.	R (Ω)	Pcalculated (W)	Wattmeter Reading (= $(I_3 ^2)R_{load})$ (W)	Pcalculated - Wattmeter Reading	% Error
1.	1.7	211.8468	211.850936	0.00413601	1.95E-05
2.	1.8	211.8454	211.850936	0.00553601	2.61E-05
3.	1.9	211.8493	211.850936	0.00163601	7.72E-06
4.	2	211.8448	211.850936	0.00613601	2.90E-05

Royan Hondal Abartika Saha Sayan Das Joseph Denwle Cald Schini Bhattacharya Amirbun Moli K Dherroj Rodal Sulham Cupta Tuhin Karak Sawadaepta Pal Howstow Sanyal Denapake Aman Kumar Jopenson Sanasan

Result:

1) Three-Voltmeter Method:

Mean Power (Pavg) = 44.5551 W

Mean Power Factor ($\cos \Phi$)avg = 0.7278

2) Three-Ammeter Method:

Mean Power (Pavg) = 211.8448 W

Mean Power Factor ($\cos \Phi$)avg = 0.7277

Conclusion:

- 1) **KCL and KVL are used** to compute the readings of the three voltmeters and three ammeters in the respective methods. Furthermore, power consumed by the load and the power factor of the circuit is calculated by using the computed values of voltages and currents in the working formulae.
- 2) The calculated values are observed to be in the expected range as seen in the simulations **performed in Simulink with the help of simscape electrical toolbox.**
- 3) It is observed that the power and power factor in an A.C. circuit can be measured by using three single-phase voltmeters as well as ammeters successfully, instead of a wattmeter.

Playan Hondal Abantika Saha Sayan Das Jones Dennela Calif Schini Bhattacharya Amirbun Moli K Dherrig Redat Sulham Cupta Timin Karak Sawadasepta Pal Houston Sanyal Denapake Aman Kumar Hyponan Sanasan

Simulation

All the graphs are obtained by running the simulations for 0.05s in Simulink.

Three Voltmeter Method:

For R = 1.7 ohm

Figure: circuit at 1.7 ohms after running the simulation for 0.05s

Voltage waveforms of V₁, V₂ and V₃ for 0.05 seconds:

Figure 3: Simulation curves of voltages V1, V2, V3

Sayan Hondal Abantika Saha Sayan Das Joseph Denula Pal John Sohini Bhattachanya Amirbun Moi K Dherrof Red T. Sulform Cupter Time in Kanak Sawadaepta Pal Houston Sanyal Denapake Aman Kumar Hyperian Sanyal

Three Ammeter Method:

For R = 1.7 ohms

Figure: circuit at 1.7 ohms after running the simulation for 0.05s

Current waveforms of I₁, I₂ and I₃ for 0.05 seconds:

Figure 4: Simulation curve of currents, Here A1,A2, A3 refers to the instantaneous current reading of the ammeter

Rayan Hondal Abartika Saha Sayan Das Jones Denula Calif. Schini Bhattacharya Amirbun Moi K Dherig Rada T. Sulham Cupta Timin Konak Sawadaepta Pal Houston Sanyal Denapate Aman Kumar Japanea Sanyal