Survey HW 5

nxr8dq Sankalpa Banjade

October 2023

1 Introduction

1.1 Problem List

11.3.1, 11.3.2, 12.4.1, 12.4.2, 12.4.3, 12.4.5, 12.4.7, 12.4.8.

11.3.1 Exercise

Definition 11.1.3 introduced the three subnotions of a reflexive, symmetric, and transitive relation. If a relation satisfies all of these, then it is an equivalence relation; but one can also ask for relations that only satisfy a subset of these. For each of the following, find a set X and relation R on X which satisfies the given conditions.

- 1. R is not reflexive, symmetric, or transitive.
- 2. R is reflexive and symmetric, but not transitive.
- 3. R is reflexive and transitive, but not symmetric.
- 4. R is transitive and symmetric, but not reflexive.
- 5. R is reflexive, but not symmetric or transitive.
- 6. R is symmetric, but not reflexive or transitive.
- 7. R is transitive, but not symmetric or reflexive.

A relation that satisfies the condition of being neither reflexive, symmetric, nor transitive is the *friendship* relation, represented as R. Let's consider a set of individuals, denoted as $\{a, b, c\}$.

1. Not Reflexive: The friendship relation is not necessarily reflexive, as an individual may not consider themselves their own friend. For instance, it is not always true that aRa.

- 2. Not Symmetric: The relation is not inherently symmetric. For instance, if a considers b a friend (i.e., aRb), it does not necessarily imply that b considers a a friend (i.e., bRa). There might be scenarios where one individual dislikes another while still being regarded as a friend by the latter
- 3. **Not Transitive:** Friendship is not transitive. Given that a is a friend of b (i.e., aRb) and b is a friend of c (i.e., bRc), it does not necessarily follow that a is a friend of c (i.e., aRc). Individuals a and c may not even know each other or might not have a friendly relationship.

A relation satisfying the conditions of being reflexive and symmetric, but not transitive, is the *is related to* relation within a set of people. Consider a set A consisting of individuals a, b, c, and d.

- 1. **Reflexive:** The relation is reflexive as every individual is related to themselves. For all $x \in A$, the pair (x, x) belongs to the relation.
- 2. **Symmetric:** The relation is symmetric. If a is related to b, then b is related to a. Formally, for all $a, b \in A$, if (a, b) belongs to the relation, then (b, a) belongs to the relation as well.
- 3. Not Transitive: The relation is not transitive. For instance, if a is related to b (perhaps as siblings), and b is related to c (maybe as cousins), it does not necessarily mean that a is related to c in the same way (as siblings or cousins). Thus, it does not guarantee that for all $a, b, c \in A$, if (a, b) and (b, c) belong to the relation, then (a, c) must belong to the relation.

A relation that is reflexive and transitive but not symmetric is the \leq (less than or equal to) relation on the set of real numbers, \mathbb{R} .

- 1. **Reflexive:** The relation is reflexive as for any $x \in \mathbb{R}$, it is always true that $x \leq x$.
- 2. Not Symmetric: The \leq relation is not symmetric. For example, if $x \leq y$, it does not necessarily follow that $y \leq x$. Take 2 and 3 as an instance; while $2 \leq 3$ is true, $3 \leq 2$ is not.
- 3. **Transitive:** The relation is transitive. If $x \leq y$ and $y \leq z$, then it must be that $x \leq z$. This property holds for all $x, y, z \in \mathbb{R}$ such that $x \leq y$ and $y \leq z$.

Consider a set A of lines in a plane with the "is parallel to" relation. This relation is transitive and symmetric but not reflexive.

1. Not Reflexive: The "is parallel to" relation is not reflexive as a line cannot be parallel to itself. For every line $L \in A$, it is not the case that L is parallel to L.

- 2. **Symmetric:** The relation is symmetric. If line L_1 is parallel to line L_2 , then it necessarily follows that L_2 is parallel to L_1 .
- 3. **Transitive:** The relation is transitive. If L_1 is parallel to L_2 , and L_2 is parallel to L_3 , then it must be that L_1 is parallel to L_3 .

Consider a set A of individuals with the "likes" or "has positive feelings towards" relation. This relation is reflexive but neither symmetric nor transitive.

- 1. **Reflexive:** The "likes" relation is reflexive as individuals generally have positive feelings towards themselves. For all $x \in A$, it can be assumed that x likes x.
- 2. **Not Symmetric:** The relation is not symmetric. If individual *a* likes individual *b*, it does not necessarily imply that *b* likes *a*.
- 3. Not Transitive: The "likes" relation is not transitive. For instance, if a likes b and b likes c, it does not necessarily mean that a likes c.

Consider a set $A = \{a, b, c, d\}$ of people with the "is a sibling of" relation, which includes half-siblings and step-siblings. This relation is symmetric but neither reflexive nor transitive.

- 1. Not Reflexive: The "is a sibling of" relation is not reflexive as a person cannot be a sibling of themselves. For every person $x \in A$, it is not the case that x is a sibling of x.
- 2. **Symmetric:** The relation is symmetric. If person a is a sibling of person b, it necessarily follows that b is a sibling of a.
- 3. **Not Transitive:** The "is a sibling of" relation is not transitive. For instance, if a is a sibling of b and b is a sibling of c, it does not necessarily mean that a is a sibling of c, especially when considering half-siblings and step-siblings.

Consider a set \mathcal{P} which is a power set of some set $A = \{1, 2, 3\}$, with the "is a subset of" relation. This relation is transitive but neither symmetric nor reflexive.

- 1. **Not Reflexive:** In the general set of all sets, the "is a subset of" relation is not reflexive as a set is not necessarily a subset of itself.
- 2. **Not Symmetric:** The relation is not symmetric. If set A is a subset of set B, it does not necessarily follow that B is a subset of A.
- 3. **Transitive:** The relation is transitive. If A is a subset of B and B is a subset of C, then it must be that A is a subset of C.

11.3.2

Define a relation \sim on $\mathbb{Z} \times \mathbb{Z}$ by

$$(a,b) \sim (c,d) \iff ad = cb.$$

Is \sim an equivalence relation? In order for — to be an equivalence relation the relation must be transitive symmetric and reflexive. Let us fix three relations (a,b), (c,d), and (u,v) in X, and suppose that $(a,b) \sim (c,d)$ and $(c,d) \sim (u,v)$. Then, by the definition of the relation, we have that:

$$ad = bc$$
,

$$cv = du$$
.

From the equation ad = bc, we can multiply both sides by v to obtain:

$$adv = bcv.$$

Then, we can substitute cv for du on the right-hand side of the equation, yielding:

$$adv = bdu$$
.

Dividing both sides of the equation by d (assuming $d \neq 0$), we obtain the relation:

$$a = bu \implies (a, b) \sim (u, v).$$

Symmetric: We aim to prove that the relation \sim is symmetric. Suppose that $(a,b)\sim(c,d)$. By the definition of the relation, this means that

$$ad = bc$$
.

Since $\mathbb Z$ is a commutative ring, multiplication in $\mathbb Z$ is commutative. Therefore, we can rewrite the equation as

$$da = cb$$
.

Now, invoking the definition of the relation again with the terms reordered, we have by the reflexive property that

$$cb = da$$
.

This implies that $(c,d) \sim (a,b)$, proving that the relation is symmetric. Reflexive: This is reflexive due to the fact that the set Z is a commutative ring.

12.4.1

Find an integer $n \in \mathbb{Z}^+$ for which the equation $x^2 = 1$ has more than two solutions in $\mathbb{Z}/(n)$.

Let's consider the ring of \mathbb{Z} modulo 8, or when n = 8. In $\mathbb{Z}/(8)$, the equation $x^2 = 1$ has four solutions, namely x = 1, 3, 5, and 7. To verify this, we can check:

$$1^2 \equiv 1 \pmod{8},$$

 $3^2 \equiv 9 \equiv 1 \pmod{8},$
 $5^2 \equiv 25 \equiv 1 \pmod{8},$
 $7^2 \equiv 49 \equiv 1 \pmod{8}.$

Thus, when n = 8, the equation $x^2 = 1$ has more than two solutions in $\mathbb{Z}/(8)$, specifically four solutions: x = 1, 3, 5, and 7.

2 12.4.2

We are given that p is a prime number, and we need to prove that the equation $x^2 = x$ has exactly two solutions in $\mathbb{Z}/(p^2)$. Without loss of generality, consider the ring represented as modulo p^2 .

Given that p is a prime number, we need to prove that the equation $x^2 = x$ has exactly two solutions in $\mathbb{Z}/(p^2)$.

Proof: Firstly, observe the given equation:

$$x^2 - x = 0$$

We can factorize the left-hand side of the equation as follows:

$$x(x-1) = 0$$
 in $\mathbb{Z}/(p^2)$

Now consider the two factors, x and (x-1). In the ring $\mathbb{Z}/(p^2)$, the equation x(x-1)=0 has solutions when either x=0 or x-1=0.

1. If x = 0, we have:

$$0 \cdot (0-1) \equiv 0 \pmod{p^2}$$

which is a valid solution in $\mathbb{Z}/(p^2)$.

2. If x-1=0, then $x\equiv 1\pmod{p^2}$, which is another valid solution in $\mathbb{Z}/(p^2)$.

No other element in $\mathbb{Z}/(p^2)$ will satisfy the equation, as these are the only solutions that will make either of the factors zero. Therefore, the equation $x^2 = x$ has exactly two solutions in $\mathbb{Z}/(p^2)$ when p is prime: x = 0 and x = 1.

3 12.4.3

Proof of Solutions to $x^2 = x$ in $\mathbb{Z}/(pq)$

Proof

Let p and q be distinct prime numbers. We want to show that the equation $x^2 = x$ has exactly four solutions in the ring $\mathbb{Z}/(pq)$, also denoted as \mathbb{Z}_{pq} . The given equation can be rewritten and factored as follows:

$$x^2 - x = 0,$$

$$x(x - 1) = 0.$$

Now, consider the equation in \mathbb{Z}_p and \mathbb{Z}_q respectively. In both of these rings, the equation x(x-1)=0 has the solutions x=0 and x=1. By the Chinese Remainder Theorem (CRT), since p and q are coprime, we can find the solutions in \mathbb{Z}_{pq} by considering all combinations of solutions in \mathbb{Z}_p and \mathbb{Z}_q . Formally, we will consider pairs of solutions (x_p, x_q) where x_p is a solution mod p and p and p is a solution mod p. We have four possible combinations:

- 1. (0,0), which corresponds to the solution $x=0 \pmod{pq}$.
- 2. (1,0), corresponding to the solution with $x \equiv 1 \pmod{p}$ and $x \equiv 0 \pmod{q}$. Applying CRT, we can find a unique solution modulo pq.
- 3. (0,1), corresponding to the solution with $x \equiv 0 \pmod{p}$ and $x \equiv 1 \pmod{q}$. Again, using CRT, we can find a unique solution modulo pq.
- 4. (1,1), corresponding to the solution $x=1 \pmod{pq}$.

Each of the above pairs corresponds to a distinct solution in \mathbb{Z}_{pq} due to the Chinese Remainder Theorem, and these are the only solutions. Thus, there are exactly four solutions to the equation $x^2 = x$ in \mathbb{Z}_{pq} .

4 12.4.5

The Ring $\mathbb{Z}/12\mathbb{Z}$

The set $\mathbb{Z}/12\mathbb{Z}$, or \mathbb{Z}_{12} , is a ring with the following elements:

$$\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$$

Multiplicative Inverses (Units)

Table of Z mod 12

Multiplication Table

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

In the ring \mathbb{Z}_{12} , not all elements have a multiplicative inverse. However, the elements that do have inverses (units) and their inverses are listed below:

Element	Inverse
1	1
5	5
7	7
11	11

For example, $5 \cdot 5 = 25 \equiv 1 \pmod{12}$, showing that 5 is indeed its own inverse in this ring.

Part 2: Solving the Congruence Equation $5x \equiv 4 \pmod{12}$

We consider the congruence equation:

$$5x \equiv 4 \pmod{12}$$
.

Let's verify some potential solutions for x.

Case 1: x = 8

For x = 8, we compute:

$$5 \cdot 8 = 40.$$

Since $40 \equiv 4 \pmod{12}$, x = 8 is indeed a solution to the given congruence equation.

Case 2: x = 20

For x = 20, we compute:

$$5 \cdot 20 = 100$$
.

Since $100 \equiv 4 \pmod{12}$, x = 20 is also a solution to the given congruence equation.

5 12.4.7

Proof: An Element in a Ring Cannot Be Both Invertible and a Zero Divisor

Let R be a ring and let $r \in R$. We aim to show that an element r cannot be both invertible and a zero divisor in R.

Proof. Assume, for the sake of contradiction, that r is both invertible and a zero divisor in R.

Firstly, if r is invertible, there exists some non-zero element $k \in R$ such that

$$r \cdot k = 1$$
.

Secondly, if r is a zero divisor, there exists some non-zero element $s \in R$ such that

$$r \cdot s = 0$$
.

Assuming both statements are true, consider the congruences modulo n where n represents an ideal in the ring R. Then, we have

$$r \cdot k \equiv 1 \pmod{n}$$
 and $r \cdot s \equiv 0 \pmod{n}$.

From the assumption, it follows that n divides $r \cdot s$, which implies n also divides $1 - r \cdot s$. However, this is impossible: for any ring with characteristic greater than 2, there does not exist an element n that divides both $r \cdot s$ and $1 - r \cdot s$. This leads to a contradiction, hence our original assumption that r is both invertible and a zero divisor must be false.

6 12.4.8

Show that for n 2, the ring Z/(n) has zero divisors if and only if n is not a prime number. Hint. If you are not sure how to proceed, work out some examples: write out the multiplication table for Z/(n) and see if you learn anything about zero divisors. we proveed by contadiction we assume that n is prime and Z/n has zero divisors so there exists a 0 divisor when ns = 0 mod n

Zero Divisors in $\mathbb{Z}/(n)$

We aim to show that for $n \geq 2$, the ring $\mathbb{Z}/(n)$ has zero divisors if and only if n is not a prime number.

 ${\it Proof.}$ We will prove the statement by considering both directions of the implication.

Forward Direction: Assume n is not a prime number. Then, n can be expressed as a product of two smaller positive integers a and b where 1 < a, b < n. Consider the product of the equivalence classes [a] and [b] in $\mathbb{Z}/(n)$. We have:

$$[a] \cdot [b] = [a \cdot b] = [n] = [0],$$

since $a \cdot b = n$. Here, [a] and [b] are non-zero elements in $\mathbb{Z}/(n)$, but their product is zero, showing that [a] and [b] are zero divisors.

Reverse Direction: Assume $\mathbb{Z}/(n)$ has zero divisors. This means there exist non-zero elements [c] and [d] in $\mathbb{Z}/(n)$ such that

$$[c] \cdot [d] = [0].$$

Without loss of generality, suppose 0 < c, d < n. Then cd is a multiple of n, but neither c nor d are multiples of n (since c, d < n). This implies that n cant be prime, as it can be factored into two smaller positive integers, namely c and d.

Therefore, we have shown that $\mathbb{Z}/(n)$ has zero divisors if and only if n is not a prime number. \Box