Southern University of Science & Technology

Department of Electrical and Electronic Engineering

Communication Principles

Assignment No. 3

- 1. A DSBSC-AM signal $x(t) = sinc(1000t) cos(2\pi f_c t)$ is demodulated using the system shown below. The box marked (.)² is a square-law device that produces an output equal to the square of its input. The DC blocking capacitor removes all DC components at its input.
 - (a) Show that the demodulated output contains distortion.
 - (b) How should the lowpass filter (LPF) be designed to minimize this distortion?
 - (c) What is the minimum carrier frequency f_c permitted for this demodulator?

- 2. A QAM signal with a carrier frequency of 4KHz is formed by modulating a message signal $s_1(t) = 1$ volt onto the in-phase carrier and another message signal $s_2(t) = -1$ volt onto the quadrature-phase carrier.
 - (a) Determine the time-domain expression of the QAM signal. Write your answer as a single cosine term.
 - (b) Demodulate the QAM signal obtained in Part (a) using a coherent detector.
- 3. Given two message signals $m_1(t) = \text{sinc}(200t)$ and $m_2(t) = 2 \cos(2\pi f_0 t)$ where f_0 can range from 0Hz to 120Hz. Compare the minimum amount of bandwidth required to transmit them using
 - (a) DSBSC-AM and frequency division multiplexing (FDM)
 - (b) QAM