Tableau de bord / Mes cours / EIIN511B - ECUE Informatique theorique 1 / Logique ou pas / Training : preuves en calcul des prédicats

Commencé le	mardi 19 octobre 2021, 14:45	
	Terminé	
	mardi 26 octobre 2021, 14:22	
	6 jours 23 heures Pas encore évalué	
Note	Pas encore evalue	
Question 1		
Correct		
Note de 1,00 sur 1,00		
Z ∃x1∀x2∀x3∃x	4 (P(x1) V { Q(x2,x3) V R(x1, x4) }) 🕶	
■ 3x1∀x23x33x	4 (P(x1) V { Q(x2,x3) V R(x1, x4) })	
aucune des au	tres réponses proposées	
$ \exists x1 \forall x2\exists x3\exists x4 \ (\neg P(x1) \Rightarrow \{\neg Q(x2,x3) \Rightarrow R(x1,x4)\}) $		
Votre réponse est c		
Correct	orrecte.	
Note pour cet envoi : 1,0		

13.30	Training . preuves en calcul des predicats . relecture de tentative
Question 2	
Correct	
Note de 1,00 sur 1,00	
$ \phi_1 = \exists x_1 \ (\ \neg P(x_1) \Rightarrow \{ \ \forall x_1 \}) $	e où x_2 , x_3 et x_4 sont des variables et P (arité 1), Q (arité 2) et R (arité 2) sont des prédicats: $x_2 [(\exists x_3 \neg Q(x_2, x_3)) \Rightarrow \exists x_4 R(x_1, x_4)])$
quelle(s) formule(s) corr (dans les formules suiva	to représentent des constantes, f et f' des fonctions d'arité 1 et g une fonction d'arité 2, respond(ent) à une mise sous forme de Skolem de ϕ_1 : antes, toutes les variables sont quantifiées universellement (quantificateur \forall), et donc comme n'y a pas de quantificateurs)
P(x1) V Q(x2, x3) V P(a) V Q(x2, x3) V F P(a) V Q(x2, x3) V F P(a) V { Q(x2, f(x2))} ¬P(a) ⇒ (¬Q(x2, b) aucune des autres P(a) V Q(x2, f(x2)) V	$R(a, g(x2, x3)) \checkmark$ $R(a, x4)$ $V R(a, g(x2, x3))$ $\Rightarrow R(a, b))$ réponses proposées
Votre réponse est corre Correct Note pour cet envoi : 1,00/1,00/1,00/1,00/1,00/1,00/1,00/1,00	

Question 3			
Correct			
Note de 1,00 sur 1,00			
Dans cette question p est un prédicat d'arité 3, a est une constante, f et g sont des fonctions d'arité 1 et x, y , z et t sont des variables. Selectionner les affirmations exactes et elles seulement.			
Veuillez choisir au moins une réponse : aucune des autres réponses n'est vraie			
■ Les deux atomes $p(x,x,f(x))$ et $p(y,y,f(z))$ sont unifiables \checkmark			
Les deux atomes $p(a,a,f(x))$ et $p(y,y,f(z))$ sont unifiables \checkmark			
Les deux atomes $p(f(g(x)),x,x)$ et $p(y,t,f(z))$ sont unifiables			
\Box Les deux atomes p(x,x,f(x)) et p(y,f(y),z) sont unifiables			
Les deux atomes $p(a,x,f(x))$ et $p(y,y,y)$ sont unifiables			
Votre réponse est correcte. Correct Note pour cet envoi : 1,00/1,00.			

Question 4
Correct
Note de 1,00 sur 1,00
Dans cette question p est un prédicat d'arité 3, a et b sont des constantes, f et g sont des fonctions d'arité 1 et x, y et z sont des variables. Sélectionner les affirmations exactes et elles seulement.
Veuillez choisir au moins une réponse : aucune des autres réponses n'est vraie Les deux atomes p(f(g(x)),b,x) et p(y,a,z) sont unifiables Les deux atomes p(x,x,f(x)) et p(y,f(z),z) sont unifiables Les deux atomes p(x,x,f(x)) et p(z,f(a),f(f(y))) sont unifiables Les deux atomes p(a,b,f(x)) et p(x,y,f(z)) sont unifiables Les deux atomes p(x,x,f(x)) et p(b,y,f(y)) sont unifiables Les deux atomes p(x,x,f(x)) et p(b,y,f(y)) sont unifiables
Votre réponse est correcte. Correct Note pour cet envoi : 1,00/1,00.

_			C

Correct

Note de 1,00 sur 1,00

Soit la formule suivante, où P représente un prédicat d'arité 1;

$$\phi_3 = \exists x \; P(x) \; \wedge \; \exists y \; \neg P(y)$$

Si on met ϕ_3 sous forme de Skolem, avec a et b qui représentent des constantes, et f qui représente une fonction d'arité 1, on obtient :

Veuillez choisir une réponse :

- P(a) ∧ ¬P(a)
- \bigcirc P(a) $\land \neg P(f(x))$
- \bigcirc P(a) $\land \neg P(f(a))$
- o aucune des autres réponses
- P(a) ∧ ¬P(b)

Votre réponse est correcte.

Correct

Note pour cet envoi: 1,00/1,00.

1 13:38	Training : preuves en calcul des prédicats : relecture de tentative	
Question 7		
Terminer		
Noté sur 1,00		
Montrer par résolution que :		
$(\forall x \ P(x) \) \Rightarrow (\ \exists x \ P(x) \)$		
Écrire la réponse ci-dessous, vo ∀ ∃ ⇒ ∨ ¬	us pouvez utiliser des copier/coller pour le symboles :	
Écrire la réponse ci-dessous, volvoire de seus de dessous de de dessous de d	us pouvez utiliser des copier/coller pour le symboles :	
	de $(\forall x P(x)) \Rightarrow (\exists x P(x))$ conduit à une contradiction. In montre que de l'hypothèse $(\forall x P(x))$ on déduit le résultat $(\exists x P(x))$.	
Ouel que soit le choix fait on obtient les 2 clauses :		

P(x)

¬P(y)

Et on unifie x en y (ou y en x), et on déduit la clause vide.

Question 8

Non répondue

Noté sur 1,00

On a les hypothèses :

 $\forall x [P(x) \Rightarrow (S(x) \lor T(x))]$

 $\forall x (P(x) \lor S(x))$

¬S(a)

Peut on en déduire par résolution T(a)?

Écrire la réponse ci-dessous, vous pouvez utiliser des copier/coller pour le symboles ⇒, ∨ et ¬.

On obtient les 4 clauses :

 $\neg P(x) \lor S(x) \lor T(x)$

 $P(x) \vee S(x)$

¬S(a)

¬T(a)

 $\neg P(x) \lor S(x) \lor T(x) \text{ et } \neg S(a) \text{ donne} : \neg P(a) \lor T(a)$

 $P(x) \lor S(x)$ et $\neg S(a)$ donne : P(a) $\neg P(a) \lor T(a)$ et P(a) donne : T(a)

T(a) et ¬T(a) donne : clause vide

■ Training: Preuves en calcul des propositions

Entrainement_SI3_Test3_4_12_2019 ►