金属性质的研究

日期:	时间:	姓名:
Date:	Time:	Name:

	初露锋芒
_,	默写稀酸的通性(通式,举例方程式)
	1
	2.
	3
	4
	5
	默写碱的通性(通式,举例方程式) 1
	2
	3
	4
	请根据提示填空或写出物质的化学式。 1. 我们通常用来中和酸性土壤。
	2. 由于我们头发中含有油脂能够在性情况下溶解在水中被冲洗,所以洗发水一般都是
	,而为了保护头发,护发素一般是性的。
	3. 胃酸过多,我们可以尝试服用含
	4. 波尔多液是良好的杀菌剂,它是由和混合制得的,其制取的方程式为:
	5. 浓硫酸具有性,因此其放置在空气中会导致溶剂质量,溶液的浓度。
	6. 浓盐酸具有性,所以其瓶口通常会有现象。具体是由于
【答	案】一、二略,三: 1. $Ca(OH)_2$; 2. 碱性、碱性、酸性; 3. $Al(OH)_3$ 、 $Mg(OH)_2$;4. $Ca(OH)_2$ 和 $CuSO(I)_3$ 3、 $Mg(OH)_2$;4. $Ca(OH)_2$ 和 $CuSO(I)_3$ 3、 $Mg(OH)_2$;4. $Mg(OH)_2$

	1、知道金属的分类、性质以及含	合金的定义及性质	
学习目标	2、理解金属与酸、盐的反应		
&	3、理解置换反应		
重难点	1、理解金属与酸、盐的反应		
	2、理解置换反应		
根深蒂	:固		
一、应用广泛的金	[属材料		
1. 金属材料			
金属材料包括纯	至金属和它们的合金。		
日常生活中,家	用热水瓶内胆壁的银色金属是	,温度计中填充的金属是	,灯泡里做
灯丝的金属是	o		
【答案】Ag Hg	g W		
2. 合金			
(1) 概念: 在金	6属中加热熔合某些金属或非金属,	制得具有金属特征的物质。合金的	比组成它们的
纯金属更高,	性能也更好。		
(2) 铁的合金:	生铁:含碳量为2%~4.3%; 钢	羽: 含碳量为 0. 03%~2%	
注意: 合金	:属于物,合金的强度和硬度一	般比组成它们的纯金属更高,熔点低。	
【答案】硬度; 抗腐	蚀,混合		
二、金属的分类和	1共性		
1、金属的分类:	1		
(1)冶金上分·			
	有色金属(黑色金属以外的金属		
(2)根据密度分	分为 $\left\{ \begin{array}{l} $	如铜、银等	
	 轻金属:密度 < 4.5g/cm³,	如镁、铝等	
2. 金属的性质和			
(1) 金属的共物	生		
具有	光泽,密度和硬度较大,		性和
	 性能。在室温下除汞外,		_
性质的差异	:决定了金属的用途不同,	的熔点高,所以被用来制造灯泡中的	灯丝,银的导电
	泛用于电子制造业。		
【答案】金属 熔	· 蔣浩 延展 导电 导热	钨	

3. 金属的特性——金属之最

- (1) 熔点最高的金属
- (3) 硬度最大的金属
- (5) 密度最小的金属
- (7) 人体内最多的金属元素 ______
- (9) 地壳中含量最多的金属

【答案】钨; 汞; 铬; 锇; 锂; 铁; 钙; 银, 铝。

(2) 熔点最低的金属

- (4) 密度最大的金属
- (6)人类冶炼最多的金属
- (8) 导电、导热性最好的金属

三、金属的冶炼

1、铁矿石(主要成分是氧化铁)炼铁

- (1) 炼铁设备: 高炉
- (2) 炼铁原料: 铁矿石(Fe₂O₃)、焦炭(C)、石灰石(CaCO₃)、空气
- (3) 化学原理:

【答案】 $3CO+Fe_2O_3 \xrightarrow{\text{Sia}} 2Fe+3CO_3$ (CO 来源老师自行讲解)

(4) 实验室中一氧化碳与氧化铁反应的装置:

①实验中产生的现象3	E要有哪二点:			
②验开始时应先	,再_	; 结束时应先_	,再_	o

③右边酒精灯的作用为____。

【答案】

- a. 红色粉末变黑,澄清的石灰水变浑浊,末尾处气体燃烧产生淡蓝色火焰,
- b. 通 CO、加热; 停止加热、通 CO、
- c. 尾气处理, 防止有毒的 CO 排放到空气中对空气造成污染
- 2. 胆铜法炼铜(湿法炼铜),以氧化铜为例

用硫酸将铜矿中的铜元素转变成可溶性的硫酸铜,再将铁放入硫酸铜溶液中把铜置换出来,这种方法 叫湿法炼铜。湿法炼铜技术是我国古代人发明的,其原理就是用置换反应制取金属。我国是世界上最早使 用湿法炼铜的国家。

$$CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$$

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$$

四、金属的重要化学性质

1. 活泼金属+稀酸→盐+氢气

如:活泼金属锌遇到稀盐酸会反应生成硫酸锌和氢气: $Zn + 2HCl \longrightarrow ZnCl_2 + H_2 \uparrow$

(1) 练习: 写出下列反应的化学方程式

$$Fe + HCl \longrightarrow$$

$$Zn + H_2SO_4 \longrightarrow$$

$$Mg + H_2SO_4 \longrightarrow$$

$$Fe + H_2SO_4 \longrightarrow$$

$$Al + H_2SO_4 \longrightarrow$$

【答案】

$$Fe + 2HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$$

$$Mg + H_2SO_4 \longrightarrow MgSO_4 + H_2 \uparrow$$

$$Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$$

$$2Al + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2 \uparrow$$

- (2) 条件:
 - ①金属必须为氢前金属
 - ②通常为稀盐酸或稀硫酸;硝酸和浓硫酸不能产生氢气。
- (3) 熟记金属活动性顺序表:

钾钙钠镁铝、锌铁锡铅(氢)、铜汞银铂金。

谐音:嫁给那美女, 锌铁惜千斤, 童工赢铂金

K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au

2. 金属+盐→新金属+新盐

条件: (1) 只有在活动性顺序表中排在前面的金属才能置换后面的金属。

- (2) 盐必须是可溶于水的盐溶液。
- (3) K、Ca、Na 通常不用在这样的置换反应中,因为其太过活泼,会与水反应,我们在高中再详细研究。

例如:
$$Fe+CuSO_4 \rightarrow FeSO_4 + Cu$$

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

$$Cu + Hg(NO_3)_2 \rightarrow Cu(NO_3)_2 + Hg$$

$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

五、置换反应:

1. 定义:由一种单质跟一种化合物起反应,生成另一种单质和另一种化合物的反应

$$A+CD\rightarrow AD+C$$

- 2. 类型:
- (1) 非金属 + 金属氧化物 → 金属 + 非金属氧化物

例:
$$C + 2CuO \xrightarrow{\overline{a}} 2Cu + CO_{2}$$

(2) 金属(H前面) + 酸(稀盐酸、稀硫酸) → 盐 + 氢气

例:
$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$$

- (3) 金属 (一般不选 K、Na、Ca) + 盐溶液 \rightarrow 金属 + 盐 例: $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
- (4) 水与其它单质的反应 例: $2Na + 2H_2O \longrightarrow 2NaOH + H_2$ ↑

六、金属活动性顺序的主要应用

- (1) 用于确定金属单质能否与酸发生置换反应
- (2) 用于分析金属与盐的置换反应

位于金属活动顺序表前面的金属能将后面的金属从其盐溶液中置换出来,但极活泼的金属(Al 以前的)例外。

注意:

- ①反应物中的金属必须是在金属活动顺序表中位于盐中金属的前面。
- ②金属不包括 K、Ca、Na、Mg。
- ③盐应是可溶或微溶于水的。
- ④铁生成二价铁盐。
- ⑤★混合金属与混合盐溶液的置换反应要注意置换的先后顺序,这个顺序可小结为:"活动性强的金属优先反应,活动性弱的金属优先被置换"。
- (3) 用于比较与酸(水)反应的剧烈程度
- (4) 可用于比较金属的活泼性

金属活动顺序表中,从左到右,单质的活泼性(还原性)依次减弱。

比较的方法是先找出被比较的金属在顺序表中的相对位置即可确定其活泼性的相对强弱。

(5) 用于指导物质的提纯

当杂质为金属单质或金属阳离子时,利用金属活动顺序表很容易设计出物质的提纯方案:

- ①当杂质为单质时,可用酸或盐作除杂试剂;
- ②当杂质为金属阳离子时,可用金属单质作除杂试剂。

枝繁	叶茂			
二 知识点 1: 金属的	分类和共性			
例1: 下列金属中,	属于黑色金属的是()		
A. 铝	B. 铜	C. 汞	D. 铁	
【难度】★				
【答案】D				
变式1:金、银、铜	被人们做成货币流通,主要	 是利用它们性质中	()	
A. 硬度适中		B. 不活泼性		
C. 产量高		D. 在自然界中得	寻到它们的单质矿石	
【难度】★				
【答案】B				
例 2: 世界卫生组织	把铝确定为食物污染源之-	一,铝的下列用途必须	近加以控制的是()
A. 用铝合金制	作门窗	B. 用铝合金制作	飞机外壳	
C. 用金属铝制	导线	D. 用金属铝制装	長碳酸饮料的易拉罐	
【难度】★★				
【答案】D				
变式1:某新型"防盗	盗玻璃"为多层结构,每层中	可嵌有极细的金属线	表,当玻璃被击碎时,与 <u>\$</u>	金属线相连的警报
系统就会立刻报警。	"防盗玻璃"能报警,这种	河用了金属的 ()	
A. 延展性	B. 导电性	C. 弹性	D. 导热 ¹	性
【难度】★★				
【答案】B				

变式 2: 把铝的相关性质	与用途用线连接。		
铝的用途		铝的性质	
①电缆线		A. 延展性	
②制成铝锅		B. 导电性	
③铝箔包装食品		C. 导热性	
④铝合金门窗		D. 密度小	
【难度】★★			
【答案】①B②C③A④D			
【方法提炼】(1)金属标	才料包括纯金属和合金	全。(2)金属共有的物理	里性质: 导电性、导热性、延展性、有金
属光泽等,而熔点低、不	易导电一般为非金属	的性质。	
知识点 2: 金属的化学	性质		
例 1: 金属(Ti)是航空、守	产航、军工、电子等方	「面的必须原料。在生产	钛的过程中可用镁在加热条件下与 TiCl4
反应制得金属钛, 反应的	化学方程式为: TiCl	$t_4 + 2Mg \longrightarrow Ti + 2MgC$	${}^{\circ}l_2$ \circ
该反应属于 ()			
	B. 分解反应	C. 置换反应	D. 无法确定
【难度】★	D. 万胜汉应	C. 直探风应	D. 九仏朔足
【答案】C			
变式 1:不可用于盛放硫	酸铜溶液的容器是()	
A. 铜制容器		C. 塑料容器	D. 铁制容器
【难度】★	2. Days 11 Hr	O. <u>E</u> 411 III	2. M. 1 an
【答案】D			
L HJR 2 -			
变式 2: 下列物质不能跟	盐酸反应,却能跟硝	酸银溶液反应的是 ()
A. Cu	B. Al	C. CaCO ₃	D. Fe ₂ O ₃
【难度】★			
【答案】A			
例 2: 下列金属分别放在	相同的稀硫酸中,反	並最剧烈的是 ()
A. Zn	B. Mg	C. Al	D. Fe
【难度】★			
【答案】B			

变式1:	在下列各	种情况	下,埋	在地下的	的铸铁输气	管道	é被腐蚀速度 最	慢的是()	
A.	在潮湿、	疏松、	透气的	土壤中		B.	在呈酸性的潮	湿土壤中			
С.	在干燥、	致密、	不透气	的土壤中	1	D.	在含沙粒较多	、潮湿透气	(的土壤	襲中	
【难度】	★										
【答案】	C										
【解析】	】 铁的生锈	秀和水分	〉、氧气	有关,力	k分越充足	三, 拿	瓦气浓度越大,	铁腐蚀越	快。		
变式 2:	将足量的	铁粉投	入一定	量的硫酸	食和硫酸铜	的涯	混合液中,充分	人 反应得到的	的是()	
Α.	硫酸亚铁	溶液		B. 硫酸	溶液		C. 硫酸铁溶	液	D	. 硫酸铜剂	容液
【难度】	★										
【答案】	A										
【方法提	足炼】金属	和盐溶	液发生	置换反应	2, 首先要	按金	全属活动性顺序	,"强置换	弱",	"前置换后	"。同时还应注
意: (1)盐	盐应该是可	溶性盐	2 · (2)K	、Ca、N	Va 因化学	活动	性很强,它们	在常温下京	尤与水	发生剧烈反	[应, 不会置换
出盐溶液	5中的金属	•									
知识点	3: 金属	活动性	生顺序的	り运用							
例 1: 社	土会上一些	不法分)子用黄	铜(铜铂	辛合金)]充	黄金进行诈骗	活动。为了	辨别』	真伪,以下	方法可行的是
()										
Α.	观察颜色		В. 🤊	称质量		C.	放入稀盐酸中	ı	D. 用	磁铁吸引	
【难度】	l ★★										
【答案】	C										
变式1:	把铁棒浸	:入下列	溶液中	,一段时		1, 固	国体质量减少的]是()		
Α.	稀硫酸		В.	消酸银溶	 液	C.	硫酸镁溶液		D. 硫	酸铜溶液	
【难度】	l ★★★										
【答案】	A										
例 2: 某	共不纯锌 6	. 5克,	与足量	量盐酸反	应放出氢4	≒ 0.	18 克,则锌:	块中含有的	J杂质 ^口	可能是 ()
A.	Mg		В. д	4 1		C.	Cu		D. F	e	
【难度】	* *										
【答案】	С										
【解析】	可以教授	受平均值	直法给学	生,这里	里根据平均	匀值》	去算的该金属的	的平均式量	为 72.2	2,因此由 ⁻	于是不纯的锌,

锌式量 65, 因此另一种金属式量一定大于 72.2, 铜在平均值法中由于不产生氢气, 其式量可以当做正无穷。

变式 1: 要验证 Zn, Fe, Cu 三种金属活动性顺序, 欲进行实验, 适用的一组物质是 ()

- A. Fe CuCl₂ ZnSO₄
- B. Fe Cu MgSO₄
- C. Cu FeCl₂ MgCl₂
- D. Mg Fe Cu HCl

【难度】★★

【答案】A

变式 2: 某学生为了验证铁、锌、铜三种金属的活动性顺序,设计了四种方案: ()

- ①将 Zn、Cu 分别加入到 FeSO4 溶液中
- ②将 Zn、Cu 分别加入到 ZnSO4溶液中
- ③将 Zn 分别加入到 FeSO4、CuSO4 溶液中
- ④将 Fe 分别加入到 ZnSO₄、CuSO₄溶液中
- A. ①或④
- B. ①或②
- C. ②或③
- D. ③或④

【难度】★

【答案】A

【方法提炼】

金属活动性判断是比较常考的, 可以有四种方法:

- (1) 金属 A 可以与金属 B 的盐溶液反应,则活动性 A>B
- (2) 金属 A 不能与金属 B 的盐溶液反应,则活动性 A<B
- (3) 金属 A 可以和酸反应, 金属 B 不能和酸反应, 则活动性 A>H>B
- (4) 金属 A 可以和 X 的盐溶液反应,金属 B 不能和 X 的盐溶液反应,则活动性 A>X>B 其中第四点方法,是我们一般用来判断三种金属的活动性顺序的方法

瓜熟蒂落

- 1. 请将金属的性质和用途恰当联系起来,用连线表示。
 - A 有金属光泽
- a 轴承刀具
- B比较硬
- b 拉丝压片
- C有延展性
- c 导线
- D有导电性
- d 饭锅茶壶
- E 导热性
- e 装饰品

【难度】★

【答案】AE, Ba, Cb, Dc, Ed

2. 下列金属能在空气中	燃烧的是()			
A. 铜	B. 铝	C. 铁	D. 镁	
【难度】★				
【答案】D				
A. ①②④⑤ B	低 ③延展性	④有光泽 (⑤不易导电 ⑥导热性 D. ②④⑤	
【难度】★				
【答案】B				
4. 铁能被轧成薄片是利				
A. 导电性	B. 延展性		C. 导热性	D. 磁性
【难度】★				
【答案】B				
	东最多的金属是			,地壳中含量最多的金
【难度】★	③石灰石 ④空 ⁴		6一氧化碳 D. ①③④⑤	
【答案】D				
7. 在高温炼铁的主要反	应"3CO+Fe ₂ O ₃ -		CO ₂ "中,CO 是()
A. 氧化剂 B	3. 还原剂 C	. 催化剂	D. 指示剂	
【难度】★				
【答案】B				

8.	能与	硝酸汞溶液反	应,	但不	能与盐酸反应	立的是()				
	A.	Zn	В.	Ag	C	C. Al		D Cu			
【 X	推度】	★【答案】D)								
9.	将 X	,Y 两种金属片	十分另	引放在	三硫酸铜溶液	中,X表	長面析出金	属 Cu,Y 没	有明显现象,	据此判断,	三种金属活
动性	生顺月	ទ 是()									
	A.	Y>铜>X		В.	X>铜>Y	(C. 铜>X>	Y	D. X>Y>铜		
X	進度】	丨★【答案】B	3								
10.	将一	下列物质分别的	汝入	足量的	的稀盐酸中,	反应结束	束后有固体	河 余的是()		
	A.	镁		В.	铁	(C. 锌		D. 铜锌合金	È	
₹	進度】	★【答案】D)								
		<i></i>					E AX				
11.		司质量的 Mg,A			是全量盐酸反应						
_		Mg		Al		C. Z	n	D.	Fe		
₹ J	匪度】	│★★【答案】	В								
12	往 4	5.6g 混有少量	書相	公石左	北松叶和) 豆	是吞硷	立	<i>气</i> 的物质的	均是 旦(`	
12.		大于 0. 1mol							1mol D.		
₹		★ ★	•		D. 41 0.	THIOT		. 1, 1 0.	imoi D.	701Z 1911 NC	
	答案】										
13.	某-	一金属放入稀土	盐酸	中,没	设能产生气体	,该金属	属是()			
	A.	银		В.	铁	(C. 镁		D. 锌		
X	能度】	I ★									
【名	答案】	l A									
14.	铁路	限稀硫酸的反应	並 <i>Fe</i>	$+H_2$	$SO_4 \longrightarrow Fe$	eSO ₄ + 1	H ₂ ↑属于¯	下列哪一类	化学反应类型	! ()
	3 <i>H</i>	$V_2SO_4 + 2Fe(C_4)$	$(DH)_3$	$\rightarrow F$	$e_2(SO_4)_3 + 6I$	H ₂ O属于	二下列哪一	类化学反应	立类型 ()	
	A.	化合反应		В.	分解反应	(C. 复分解	反应	D置换	反应	
X	進度】	I ★									

【答案】D、C

15. 把一定质量的锌和镁分别投入足量的稀盐酸中,充分反应后,生成氢气的质量关系如图所示(图中 m 表示 氢气的质量, t 表示反应时间), 则投入的锌和镁的质量比是(A. 1: 1 B. 24: 65 C. 65: 24 D. 无法确定 【难度】★★ 【答案】C 【解析】由于产生的气体相等,可以理解为都是酸反应完了,与等量酸反应所需的 Zn 和 Mg 的质量比为 65:24. 因此选 C。 16. 铁钉在 色的硫酸铜溶液中,铁钉表面会覆盖上一层 色 ,化学反应方程式为 ,铁跟硫酸铜发生了 反应(填基本反应类型),说明了铁的 金属活泼性比铜。 【难度】★ 【答案】蓝,红,固体, $Fe+CuSO_A \rightarrow FeSO_A+Cu$;置换反应,强。 ______,在该顺序中: 17. 常见的金属活动性顺序由强到弱的顺序是 (1) 金属的位置越靠前,它的活动性越。 (2) 位于 的金属能置换出盐酸、稀硫酸中的氢。 (3)位于前面的金属能把位于后面的金属从它们的 里置换出来。在盛有硝酸银溶液的试管中浸入一段 铜丝,会发现 ,说明铜的金属活动性比银的 ,化学反应方程式是 。把铜丝浸入硫酸锌溶液中,没有任何反应现象,说明铜的金属活动 性比锌的。 【难度】★ 【答案】 K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au 强; H; 盐溶液; 铜表面有银白色物质产生; 强; $Cu+2AgNO_3 \rightarrow Cu(NO_3)_2+2Ag$; 弱。

18. 某学生在 A、B、C、D 四只小烧瓶中分别放入干燥的细铁丝、浸过食盐水的细铁丝、浸过清水的细铁丝、完全浸没在食盐水中的细铁丝,然后装配成如下图所示的四套装置,每隔一段时间测量导管中水面上升的高度,结果如下表 1 (表中所列数据为导管中水面上升的高度/cm)所示。

表 1 不同时间水面上升的高度

77 - 114.41434. = 2184.422							
时间/小时	0	0.5	1.0	1.5	2.0	2.5	3.0
A 瓶(盛干燥铁丝)	0	0	0	0	0	0	0
B 瓶(盛沾了食盐水的铁丝)	0	0.4	1.2	3.4	5.6	7.6	9.8
C瓶(盛沾了清水的铁丝)	0	0	0	0.3	0.8	2.0	3.5
D瓶(盛完全浸没在食盐水中的铁丝)	0	0	0	0	0	0	0

(2)	上述实验中,	铁生锈的速率由大到小的排列顺序为(填小烧杯号):	
\4/	X	V/\ 1.V/10/2017-10/2017-10/2016-20/2017-20/201	

(a) D/ w/s /ul. 11. 147. 1.1. 177. 177. 177.			
(3) 影响铁生锈的因素有:			_
			O

【难度】★★★【答案】(1)铁生锈时消耗氧气,使瓶内压强降低;

(2) B>C>A=D; (3) 水、氧气、铁共同作用的结果; 三者同时具备时, 有盐溶液速度最快。

19. 同学们一起探究铝、铁、铜三种金属的活动性,小刚同学设计了用铜丝、铁丝、铝丝和稀盐酸,只用一只试管,取一次盐酸的探究方案。请你和他们一起完善下表的探究方案并回答有关问题。

(1) 填表

实验步骤	观察到的现象
①在试管中取少量盐酸,插入铁丝,充分作用	
②在①所得的溶液中,插入,充分作用	无明显现象
③在②所得的溶液中插入, 充分作用	

结论: 金属活动性 Al>Fe>Cu

(2) 将铝丝插入前应进行的操作是

- (3) 小华同学认为在小刚设计的方案中,只要补充一个实验,就可得出 Al>Fe>H>Cu 的结论。小华要补充的实验是:
- (4) 小强同学认为要得到 Al>Fe>H>Cu 的结论,不必做补充实验,只需将小明同 学方案中插入金属的顺序调整即可,你认为调整后插入金属的顺序是 。

【难度】★★【答案】(1)产生气泡,溶液由无色变为浅绿色;铜丝;铝丝;

溶液由浅绿色变为 无色,有黑色固体析出

(2) 用砂纸打磨其表面的氧化铝 (3)把铜丝插入稀盐酸中 (4)Cu Fe Al