MAIKo TPC を用いた 12 C(n, n') 12 C($^+$) の 散乱断面積の測定

京都大学大学院 理学研究科 物理学・宇宙物理学専攻 物理学第二教室 原子核・ハドロン物理学研究室 土井 隆暢

概要

ほげほげ

目次

第1章	はじめに	1
1.1	宇宙での元素合成過程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2	高温高密度中でのトリプルアルファ反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.3	測定を行う中性子のエネルギー	4
1.4	大阪大学 14 MeV 中性子工学実験装置 (OKTAVIAN)	5
1.4	測定に用いる実験装置	7
1.0	側足に用いる天蹶衣直・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
第 2 章	MAIKo TPC	9
2.1	MAIKo TPC とは	9
2.2	検出ガスの候補	12
第3章		17
3.1	各種パラメータの測定	17
3.2	シミュレーションによる線源データの再現	20
3.3	トリプルアルファ反応のシミュレーション	21
第4章	解析	23
4.1		23 23
	eye-scan	
4.2	v	
4.3		23
4.4	検出ガスの決定	23
第5章	iso-C ₄ H ₁₀ (10) + H ₂ (9) のガス特性	25
5.1		25
5.2	電子増幅率	25
5.3	ディフュージョン	
0.0		20
第6章	まとめと今後の展望	27
6.1	まとめ	27
6.2	本測定に向けて	27
付録 A	中性子検出器	31
A.1		31

II 目次

A.2	読み出し回路	31
A.3	n - γ 弁別	31
A.4	キャリブレーション	31
A.5	SCINFUL-CG による中性子の検出効率	31
付録 B	中性子コリメータ	33
B.1	ビームサイズを制限する必要性	33
B.2	シミュレーションによるビームサイズの決定	33
B.3	コリメータの材質	33
B.4	中性子の収量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
参考文献		35

第1章

はじめに

1.1 宇宙での元素合成過程

身の回りには多種多様な物質が存在している。これらの物質は原子が組み合わさることで形成される。現在の地球には水素(原子番号 1)からウラン(原子番号 92)までの元素が天然で存在してる。原子は更に小さい原子核と電子で構成されており、原子核は陽子と中性子で構成されている。現在までに天然、人工合わせて 118種類の元素が確認されている。しかし、ビッグバン直後には水素とヘリウムと僅かな軽元素しか存在していなかったと考えられている。これは、質量数 (A) が 5 及び 8 の安定な原子核が存在しないことに由来する。ヘリウム 4 (α) は安定な原子核である。2 つの α が反応し ⁸Be が生成されても、2 つの α に分裂するほうが安定であるためすぐに崩壊してしまう。同様に A=5 の原子核が生成してもすぐに軽い核 2 つに分裂してしまう。そのため、宇宙初期では水素を主成分とする恒星しか存在しなかったと考えられる。このような恒星が重力により収縮し中心温度が 10^7 K を超えると、陽子 (水素) が反応してより α が合成される pp チェインによって水素の燃焼が行われるようになる。pp チェインでは図 1.1 に示した 3 つの系列が重要とされる。どの系列も最終的には 4 つの陽子から 1 つの α 粒子を生成している。pp チェインのような陽子が順番に原子核に吸収される反応では、A=5, 8 の壁を超えることはできない。

pp チェインにより α が十分に生成された恒星では水素よりも重い α がより恒星の中心に集まり He コアを生成する。He コアが重力により圧縮され温度がおよそ 10^8 K に達するとヘリウム燃焼が始まる。He コアには十分な量の α が存在するため、2 つの α が融合し 8 Be が生成し、崩壊するより早くもう 1 つ α が融合して 12 C* になる。このときに作られる 12 C の多くは Fred Hoyle が予言した 3α の共鳴状態 (Hoyle 状態、 $\mathbf{Ex}=7.65\mathrm{MeV}$ 、 0_2^+) [1] となる。Hoyle 状態の 12 C が γ 線を放出し脱励起することで基底状態 (g.s.) になる (図 1.2 左)。この 3 つの α 粒子が融合し 12 C が生成される反応はトリプルアルファ反応と呼ばれる。トリプルアルファ反応が恒星中で起こることで $\mathbf{A}=4$ から $\mathbf{A}=12$ へと直接移るため、 $\mathbf{A}=5$, $\mathbf{8}$ の壁を乗り越えることができる。生成された 12 C が更に α を吸収することで \mathbf{O} や \mathbf{Si} などの更に重い核の合成へ進んでいく。

1.2 高温高密度中でのトリプルアルファ反応

通常、トリプルアルファ反応で生成された 3α 共鳴状態は図 1.2 の左のように γ 線を放出することによって脱励起し、安定な 12 C の基底状態になる。近年、高温高密度領域では γ 線による脱励起以外に、図 1.2 の右のように粒子との散乱による脱励起の崩壊幅が増加することが示唆されている [2]。これにより g.s. や 2_1^+ (Ex = 4.44MeV) への脱励起が増加し、トリプルアルファ反応が加速されると考えられる。粒子の中でも

2 第 1. はじめに

図 1.1: 代表的な pp チェイン。pp チェインでは 4 つの陽子から 1 つの α が生成される。

中性子は電荷を持っておらず、クーロン斥力を受けずに反応することができるため、脱励起の増加への寄与が 大きいと考えられる。

 ^{12}C と中性子の反応レートは

$$r = N_{\rm n} N_{\rm ^{12}C} \langle \sigma v \rangle \,\mathrm{cm}^{-3} \mathrm{s}^{-1} \tag{1.1}$$

で与えられる。ここで、 $N_{\rm n}$ は中性子の個数密度、 $N_{^{12}\rm C}$ は $^{12}\rm C$ の個数密度を表す。 σ は中性子との散乱により始状態 (g.s. または 2_1^+) から Hoyle 状態へ励起する全断面積であり、v は中性子と $^{12}\rm C$ の相対速度である。相対速度が Maxwell 分布に従うとすると、 $^{12}\rm C(n,n')^{12}\rm C^{Hoyle}$ では

$$\langle \sigma v \rangle_{\rm nn'} = \left(\frac{8}{\pi \mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int_0^\infty E' \sigma_{\rm n,n'}(E') \exp(-E'/kT) dE'$$
 (1.2)

となる。T は温度、 μ は換算質量、 $\sigma_{n,n'}$ は ^{12}C の中性子非弾性散乱断面積である。我々が考える反応は上記の逆過程 $^{12}C^{Hoyle}(n',n)^{12}C$ なので、

$$\langle \sigma v \rangle_{\text{n'n}} = \left(\frac{2I+1}{2I'+1}\right) \exp(-Q/kT) \langle \sigma v \rangle_{\text{nn'}}$$
 (1.3)

となる。ここで、I および I' は始状態 (g.s. または 2_1^+) および終状態 (Hoyle 状態) のスピンである。Q は $-7.65 {\rm MeV}$ (g.s. の場合) または $-3.21 {\rm MeV}$ (2_1^+ の場合) となる。 $^{12} {\rm C}$ (Hoyle 状態) の中性子非弾性散乱によ

γ deexcitation

n deexcitation

図 1.2: トリプルアルファ反応。左は γ 線を放出して脱励起するルート、右は中性子 との散乱により脱励起するルートを表す。

る脱励起の寿命は

$$\tau_{\mathbf{n'n}}(^{12}\mathbf{C}^{\text{Hoyle}}) = (N_{\mathbf{n}} \langle \sigma v \rangle_{\mathbf{n'n}})^{-1}\mathbf{s}$$
(1.4)

となる。

中性子比弾性散乱による脱励起の寿命と γ 線による脱励起の寿命 $(\tau_{\gamma}=1.710\times 10^{-13}~{\rm s})$ との比を R とすると、

$$R = 6.557 \times 10 - 6 \times \rho_{\rm n} T_9^{-1.5} C_{\rm spin} \int_0^\infty \sigma_{\rm nn'}(E)(E - Q) \exp(-11.605 E/T_9) dE$$
 (1.5)

と表される。E は c.m. 系のエネルギー、 ρ_n は中性子の質量密度 (g/cm³)、 $\sigma_{nn'}(E')$ は断面積 (mb)、 T_9 は温度 (×10 9 K) である。 $C_{\rm spin}$ は g.s. からの場合 1、 2_1^+ からの場合 5 となる。式 (1.5) からわかるように、中性子によって脱励起する過程は特に温度に大きく依存する。Beard らによる R と温度の依存性の計算結果 [2] を図 1.3 に示す。図 1.3 は $\rho=10^6$ g/cm³ の場合の結果を示している。 $\rho=10^6$ g/cm³ という高密度下では γ 線による脱励起に対して、粒子による脱励起の寄与が大きくなることが分かる。特に、中性子による寄与は γ 線による寄与の 40–100 倍ととても大きい。

 $ho\sim 10^6~{
m g/cm^3}, T\sim 10^9~{
m K}$ のような高温高密度の環境は宇宙の何処にあるだろうか。一つの候補として超新星爆発が考えられる。10– $30{
m M}_\odot$ 程度の大質量星は、重力崩壊を起こして星の一生を終える。重力崩壊の際

図 1.3: γ 線による脱励起の寿命と粒子散乱による脱励起の寿命の比 [2]。Rnn、Rpp、R $\alpha\alpha$ はそれぞれ中性子、陽子、 α 粒子と散乱した際の寿命の比を表す。

に恒星の中心にある鉄コアの温度が急激に上昇する。極めて高い温度では高エネルギーの光子によって鉄コアの原子核が陽子や中性子に分解される (光分解反応)。また、密度が非常に高いため式 (1.6) のように陽子が中性子へ変わる電子捕獲が起きる。

$$p + e^- \to p + \nu_e \tag{1.6}$$

すると、恒星の中心に原始中性子星が形成される。重力によって中心に降ってくる物質は原始中性子星で跳ね返りが起こる。この物質の跳ね返りが超新星爆発である。崩壊前の恒星が持っていた重力エネルギーが熱エネルギーに変換されるので、原始中性子星の表面温度は $10^10~\rm K$ に達する。跳ね返った物質が膨張することで温度が下がっていき、 $7\times 10^9~\rm K$ ほどになると 2 つの陽子と 2 つの中性子が融合し α 粒子が生成される。このとき、 α 粒子と中性子が高密度かつ高温で存在する環境ができるのである。

1.3 測定を行う中性子のエネルギー

Rを計算するためには、実験によって断面積 $(\sigma_{\rm nn'})$ のエネルギー分布が必要となる。特に、天体中で 12 C と散乱した後に中性子が持つエネルギー領域を狙う必要がある。天体中の中性子の持つエネルギーはおよそ k_BT で表すことができる。Beard ら [2] が考えているような $T\sim 10^9$ K では、中性子は $E_{\rm n'}\sim 100$ keV で運動している。このような中性子が Hoyle 状態の 12 C と散乱すると、散乱後の中性子は $E_{\rm n}\sim 8$ MeV となる。つまり、式 (1.4) に示した脱励起の寿命の計算には数~十数 MeV のエネルギーを持つ中性子と 12 C との断面積のエネルギー分布が必要となる。しかし、図 1.4 からも分かるように、数~十数 MeV の領域のデータがない。そのため、このエネルギー領域での 12 C(n,n') 12 C Hoyle の断面積の測定が必要である。

本研究ではその第一歩として $E_{\rm n}=14~{
m MeV}$ の中性子を用いて断面積の測定を行う。14.1 MeV は式 (1.7) に示す DT 反応で単色で生成可能なエネルギーである。

$$d + t \rightarrow \alpha(3.5 \text{ MeV}) + n(14 \text{ MeV}) \tag{1.7}$$

この DT 反応で生成される 14 MeV の中性子と炭素との反応は核融合炉の開発で重要である。ITER などの核融合炉では DT 反応を用いて質量エネルギーを取り出す。核融合炉の中で生成される 14 MeV の中性子は

図 1.4: 12 C と中性子 (上段) および陽子 (下段) との非弾性散乱断面積 [2]。実線は TALYS を用いた理論計算、点は測定値を表す。

構造材の原子核と反応し損傷させるため、構造材の中に多く含まれる炭素との反応が詳しく調べられている。そのため、すでに 14 MeV の中性子と 12 C との断面積のデータがあり、本研究での測定結果との比較が可能となる。単色エネルギーの中性子を生成可能であること、他データと測定結果の比較が可能であることの 2 点より、測定方法の検証として 14 MeV の中性子で断面積の測定を行う。

 $E_{\rm n}=14~{
m MeV}$ での $^{12}{
m C(n,n')}^{12}{
m C}^*$ の散乱断面積は Ref. [3,4] によりすでに測定されている。 $^{12}{
m C(n,n'}+3\alpha)$ 反応の全断面積は $209~{
m mb}$ 、分岐比は表 $1.1~{
m E}$ となっている。 $E_{
m X}=7.65,\,9.64,\,$ および $10.3~{
m MeV}$ へ励起する反応が大部分を占めている。 微分断面積の角度分布は図 $1.5~{
m o}$ ようである。 これらの測定値と比較することによって測定方法の妥当性を確認することが可能となる。

1.4 大阪大学 14 MeV 中性子工学実験装置 (OKTAVIAN)

大阪大学工学研究科の OKTAVIAN では DT 反応により 14 MeV の中性子を発生させることができる。図 1.6 に OKTAVIAN の施設図を示す。 OKTAVIAN は 1981 年から運転を開始し、核融合中性子工学研究に用

6 第 1. はじめに

図 1.5: $^{12}C(n,n')^{12}C^{Hoyle}$ の微分断面積の角度分布 [4]。

図 1.6: OKTAVIAN の施設図。パルスビームラインと DC ビームラインがそれぞれ 大実験室と重照射室に伸びている。

Reaction channel	Branching ratio (%)
$^{12}C(n, n')^{12}C^*(7.65 \text{ MeV})$	4
$^{12}C(n, n')^{12}C^*(9.64 \text{ MeV})$	33
$^{12}C(n, n')^{12}C^*(10.3 \text{ MeV})$	16
$^{12}C(n, n')^{12}C^*(10.84 \text{ MeV})$	6
$^{12}C(n, n')^{12}C^*(11.83 \text{ MeV})$	4

 $^{12}C(n, \alpha)^{9}Be^{*}(1.68-3.05 MeV)$

 $^{12}C(n, \alpha)^{9}Be^{*}(4.7 \text{ MeV})$

24

13

表 1.1: 12 C $(n, n' + 3\alpha)$ 反応のチャンネルとその分岐比。 12 C の励起状態から 3α に、 9 Be の励起状態から 2α に崩壊する。

いられてきた。コッククロフト・ワルトン型加速器を用いて加速したデューテリウムをトリチウムターゲット に照射することで、14 MeV の中性子を生成する。OKTAVIAN にはパルスビームラインと DC ビームライ ンの2つのビームラインがある。パルスビームラインは大実験室に設置されたトリチウムターゲットを用い て、DC ビームラインは重照射室に設置されたトリチウムターゲットを用いて中性子を生成する。

DC ビームラインで生成された中性子はトリチウムターゲットを中心に放射状に放出される。この中性子を 大実験室側へ取り出すための直径約 100 mm の取り出し穴が重照射室と大実験室を隔てる壁に空いている。 この取り出し穴から中性子を取り出すことで直径が約 100 mm にコリメートされた DC 中性子ビームを用い た測定を行うことができる。ただし、DC ビームであるため中性子が入射した時間情報を得ることはできな い。パルスビームラインでは大実験室中にトリチウム標的が設置されているため、中性子をコリメートするこ とができない。その反面、パルス状に中性子が発生するので、中性子の時間情報を得ることができる。本測定 では、実験室内で反射した中性子によるバックグラウンドイベントを低減することや、中性子の入射領域をコ リメートできることから、DC ビームラインを用いる。

測定に用いる実験装置 1.5

本研究では $^{12}\mathrm{C^{Hoyle}}$ から崩壊して生成した 3 つの $^{\alpha}$ 粒子の直接測定を行う。 $^{12}\mathrm{C^{Hoyle}}$ から放出された $^{\alpha}$ 粒 子は図 1.7 のような分布を持つ。図 1.7 から分かるように、多くの lpha 粒子の運動エネルギーは数百 keV と小 さい。このようなエネルギーの α 粒子を効率よく検出するためには、標的中で α 粒子が停止しないようにし なければならない。例えば、 $500~{
m keV}$ の lpha 粒子ではおよそ $350~{
m \mu g/cm^2}$ の炭素箔標的で停止してしまう。標 的中で止まってしまうような低エネルギー粒子の測定には、検出器が標的となるアクティブ標的が有効であ る。図 1.8 は α 粒子の角度分布である。この図からもわかるように広い角度領域に α 粒子は崩壊する。その ため、3つの α 粒子すべてを効率的に検出するためには大立体角を持つ検出器が必要となる。このような要求 を満たす検出器として MAIKo TPC (µ-PIC based active target for inverse kinematics . time projection chamber) [5, 6] がある。MAIKo TPC は TPC の検出ガスを散乱標的として用い、低エネルギーの荷電粒 子を大立体角で検出するために開発された検出器である。MAIKo TPC を用いることで原理的には低エネル ギーの α 粒子をほぼ 4π で検出することができる。本研究ではこれらの要求により MAIKo TPC を用いて $^{12}C(n,n')3\alpha$ 反応を測定する。

8 第 1. はじめに

図 1.7: $^{12}\mathrm{C^{Hoyle}}$ から放出された α 粒子のエネルギー分布。 α 粒子を位相空間で位置分布させた場合に、図のようなエネルギー分布を持って崩壊する。図は $^{12}\mathrm{C}$ から放出される 3 つの α 粒子すべての分布を表している。

図 1.8: $^{12}\mathrm{C^{Hoyle}}$ から放出された α 粒子の角度分布。 α 粒子を位相空間で位置分布させた場合に、図のような角度分布を持って崩壊する。図は $^{12}\mathrm{C}$ から放出される 3 つの α 粒子すべての分布を表している。

第2章

MAIKo TPC

2.1 MAIKo TPC とは

Time Projection Chamber (TPC) は荷電粒子のトラックを検出するために広く用いられている検出器である。荷電粒子が TPC の検出ガス中を通過するとき、飛跡の周囲の粒子をイオン化させる。イオン化で発生した電子をドリフト電場 (図 2.1y 軸方向) により読み出し面にドリフトさせることでトラックを検出する。図 2.1 のように TPC の有感領域中で入射粒子と標的粒子を反応させることで、散乱点の周りを有感領域で覆うことができる。そのため、散乱で放出される低エネルギーの荷電粒子を大立体角で検出することができる。このような検出器として MAIKo TPC が開発された。MAIKo TPC の写真を図 2.2 に示す。

図 2.1: MAIKo TPC の概観図。図では紙面手前から入射した中性子 (青) が TPC の中の 12 C と散乱して 3 つの α 粒子 (赤) に崩壊した事象を表す。anode image (zy 平面) と cathode image (zy 平面) の 2 平面に荷電粒子のトラックが射影される。中性子は電荷を持たないため anode & cathode image にトラックとして検出されない。

第 2. MAIKO TPC

図 2.2: MAIKo TPC の概観。

図 2.3: MAIKo TPC の構造。

2.1.1 MAIKo TPC の構造

図 2.3 に MAIKo TPC の構造を示す。MAIKo TPC は plate、wire、grid、GEM (gas electron multiplier)、 μ -PIC からなる。plate、grid、GEM、 μ -PIC に HV が接続されている。plate、wire、gird の間は 10 M Ω の抵抗で繋がれている。GEM と HV は 1 M Ω と 20 M Ω の抵抗で繋がれている。plate から grid の間の領域をドリフト領域、grid から μ -PIC の間の領域を増幅領域、 μ -PIC の周囲を読み出し領域と呼ぶ。

2.1.2 ドリフト領域

grid から plate の方向 (図 2.3 では上向き) にドリフト電場を作ることでトラックの周りに発生した電子を増幅領域へドリフトさせる。ドリフト電場の一様性が高いほど、電子を均等にドリフトすることができる。ドリフト電場を一様に形成するために wire が $5~\mathrm{mm}$ 間隔で巻かれている。ドリフト領域はドリフト電場の方向に $140~\mathrm{mm}$ である。この領域が MAIKo TPC の有感領域となる。

2.1. MAIKO TPC とは 11

図 2.4: GEM の拡大図。

図 2.5: μ -PIC の概観図。図中の横方向に anode strip、奥行き方向に cathode strip が配置されている。

2.1.3 増幅領域

MAIKo TPC では GEM と μ -PIC を用いて電子の増幅を行う。GEM は、図 2.4 のようにポリマーのフィルムの表面を銅で被覆し、直径 70 μ m の穴を 140 μ m 間隔で 1 mm² あたり 100 個の密度で開けたものである。銅の 2 つの層はポリマーによって絶縁されている。銅の両面に電圧を印加することによって、高電場が形成されドリフトしてきた電子が増幅される。 μ -PIC は図 2.5 のように anode strip と cathode strip が直交するように配置されている。anode strip、cathode strip ともに 400 μ m 間隔でそれぞれ 256 ch 分割されている。直径 50 μ m の円柱状の anode 電極に高電圧をかけることで高電場を形成することができ、 μ -PIC によって信号が読み出される直前に電子が増幅される。

2.1.4 読み出し領域

図 2.1 中で anode strip は z 軸、cathode strip は x 軸と平行になるように μ -PIC が配置されている。ドリフト電場により移動してきた電子を anode strip、cathode strip により読み出し、それぞれ x 軸、z 軸座標を検出することができる。また、anode strip、cathode strip で検出される信号の時間分布により y 軸座標を決定することができる。

MAIKo TPC からは図 2.6 のようにトラックが anode strip に垂直な面 (z-y 平面) に射影された anode image と cathode strip に垂直な面 (z-y 平面) に射影された cathode image の 2 つの画像が出力される。 anode strip と cathode strip はそれぞれ 256 ch で構成され、読み出される信号波高の時間変化は 100 MHz で 1,024 samples 測定されるため、出力される画像の解像度は $256 \times 1,014$ pixels となる。 また、anode strip、

第 2. MAIKO TPC

図 2.6: MAIKo TPC から得られず画像データの一例。このイベントは 3 章で述べる シミュレーションによって生成したデータである。

cathode strip ともに 32 ch ごとにまとめて信号を FADC で波形を取得している。FADC で取得した信号の一例を図 2.7 に示す。FADC では 25 MHz で信号波形を取得される。

2.2 検出ガスの候補

標的に 12 C を用いるため分子中に炭素を含むガスを検出ガスに用いる。 12 C 以外の原子核が含まれるガスを用いると背景事象となるため、水素と炭素以外の原子が含まれない炭化水素を用いる。陽子、 4 He と 14 MeV の中性子の散乱は複数の荷電粒子に崩壊しないため、トラックの本数から背景事象を取り除くことができる。炭化水素の代表的なガスは、メタン (CH_4) やエタン (C_2H_6) 、イソブタン $(iso-C_4H_{10})$ である。また、水素ガスやヘリウムガスとの混合ガスも用いることができる。検出ガスとして求められる性能には以下のようなものがある。

- 放電しにくい
- 荷電粒子のエネルギー損失 (dE/dx) が適切である
- ¹²C の量が少なくない
- 適切なドリフト速度を達成できる
- 適切なドリフト電場のもとでディフュージョンが小さい

これらの項目を基準に検出ガスの種類と圧力の決定を行う。

 2.2. 検出ガスの候補
 13

図 2.7: FADC で取得された μ -PIC の信号波形の一例。

項目	值
密度	$3.29 \times 10^{-5} \text{ g/cm}^{-3}$
$dE/dx~(E_{\alpha}=0.5~{\rm MeV},~10~{\rm mm})$	$0.107~\mathrm{MeV}$
飛距離 $(E_{o} = 0.5 \text{ MeV})$	65.6 mm

表 2.1: 50 hPa のときの CH₄ のパラメータ。

2.2.1 エネルギー損失

荷電粒子のエネルギー損失 (dE/dx) が大きくなりすぎるとガス中での飛行距離が短くなり、トラックとして認識することが難しくなる。本実験では荷電粒子のエネルギーをトラックの長さから決定する。そのため、dE/dx が小さくなりすぎるとトラックが有感領域で止まらず、トラックの長さ (エネルギー) を決定することができなくなる。検出する対象である α 粒子の dE/dx が適切な大きさとなるガスの種類と圧力の候補を選出する。

まず、代表的な炭化水素である CH4 を考える。ガス中で 15 mm 以上飛行し、MAIKo TPC の有感領域中で停止する α 粒子を検出可能な α 粒子と定義する。図 1.7 に示したエネルギー分布の α 粒子のうち、検出できた割合の圧力依存性を図 2.8 に示す。このとき、散乱点がビーム軸上に一様に分布しているとして計算した。図 2.8 から分かるように、50 hPa で最大となっている。50 hPa のときの CH_4 の各種の値は表 2.1 のとおりである。

 $50~\rm hPa$ のときの $\rm CH_4$ の dE/dx と同程度となる、他のガスを考えていく。表 $2.2~\rm k$ に示した $6~\rm c$ で候補とした。混合ガスでは圧力を $100~\rm hPa$ に固定し混合比をパラメータとして dE/dx を合わせる。括弧内はガスの混合の割合を示す。これらの $6~\rm f$ 種類の候補から検出ガスを選ぶ。

第 2. MAIKO TPC

図 2.8: $\mathrm{CH_4}$ の圧力による検出効率の分布。 α 粒子は図 1.7 に示したエネルギー分布を仮定した。

表 2.2: ガスの混合パターン、	圧力、 dE	/dx。括弧内はガスの混合の割合を示す。
X 2.2. // / / / / / / / / / / / / / / / /	11/J\ w1	/ 000 0 1H JM 1 1 00 / V / Y Y Y IM H Y Z H H H C / J Y / O

gas	pressure (hPa)	density (g/cm^3)	$dE/dx \; ({ m MeV})$ $E_{lpha} = 0.5 \; { m MeV}$ $10 \; { m mm}$	ドリフト電場 (V/mm) @ 0.014 mm/ns
CH_4	50	3.29×10^{-5}	0.107	0.418
$\mathrm{CH}_4(3) + \mathrm{H}_2(7)$	100	$2.55{\times}10^{-5}$	0.107	4.31
$CH_4(4) + He(6)$	100	$3.62{ imes}10^{-5}$	0.109	1.89
$iso-C_4H_{10}$	15	$3.58{ imes}10^{-5}$	0.102	0.644
$iso-C_4H_{10}(1) + H_2(9)$	100	$3.13{ imes}10^{-5}$	0.122	6.80
$\mathrm{iso\text{-}C_4H_{10}(1) + He(9)}$	100	$3.86{ imes}10^{-5}$	0.102	3.26

2.2.2 ドリフトスピード

MAIKo TPC では 100 MHz で 1024 samples データを取得するため、ドリフト方向は 10.24 μ s のタイム ウィンドウが開いている。ドリフトケージの大きさ (140mm) を可能な限りタイムウィンドウに収めるために は、ドリフトスピードを 140mm/10.24 μ s \sim 0.014mm/ns に調整する必要がある。Magboltz [7] によって計算したドリフト電場とドリフトスピードの関係を図 2.9 に、ドリフトスピードが 0.014 mm/ns となるドリフト電場の値を表 2.2 に示す。図 2.9 の横方向の点線は 0.014 mm/ns を表す。以降、これらのドリフト電場で評価を行う。

2.2. 検出ガスの候補 15

図 2.9: ドリフト電場とドリフトスピードの関係。 $\mathrm{CH_4}$ は 50 hPa、 $\mathrm{C_4H_{10}}$ は 15 hPa、その他は 100 hPa である。横方向の点線は 0.014 mm/ns を示す。

2.2.3 ディフュージョン

ドリフト電場によって電子が移動する間にガスとの相互作用によりディフュージョンが起きる。ディフュージョンの効果が大きくなると、図 2.10 のように荷電粒子によって同じ場所に生成された電子が μ -PIC に到達するまでに広がるため、トラックが太く検出される。トラックが太くなると、複数のトラックを分離するのが難しくなる。そのため、ディフュージョンの効果が小さいことが望まれる。Magboltz によって計算したディフュージョン係数を表 2.3 に示す。電子が生成した点から L 離れた位置では、電子が $\sigma = D \times \sqrt{L}$ のガウス分布で広がる。表 2.3 中の D_t は電子の運動方向に対して垂直な方向への拡散、 D_t は電子の運動方向への拡散の係数を表す。 CH_4 および iso- C_4H_{10} の単体ではディフージョン係数が大きく、同じドリフトスピードのとき、ドリフト電場が大きいほどディフュージョン係数が小さいことが分かる。

iso- $C_4H_{10}(1)+H_2(9)$ が最もディフュージョン係数が小さく、検出ガスの最有力候補である。シミュレーションにより生成した $^{12}C(n,n')^{12}C^{Hoyle}$ イベントを解析し、その解析効率により検出ガスを決定する。

第 2. MAIKO TPC

図 2.10: ディフュージョンによって電子が拡散するイメージ。同じ位置で生成された電子でもドリフトする間に位置が拡散する。

表 2.3: Magboltz で計算したディフュージョンの係数。ディフージョンの大きさはドリフト電場に依存するため、ここではドリフトスピードが $0.014~\mathrm{mm/ns}$ になるドリフト電場での値を示す。 D_t 、 D_l はそれぞれ運動方向に垂直、平行方向のディフュージョン。

gas	$D_t \ (\sqrt{\mathrm{mm}})$	D_l ($\sqrt{\mathrm{mm}}$)	ドリフト電場 (V/mm)
CH_4	0.433	0.547	0.418
$\mathrm{CH}_4(3) + \mathrm{H}_2(7)$	0.214	0.171	4.31
$\mathrm{CH}_4(4) + \mathrm{He}(6)$	0.270	0.248	1.89
$iso-C_4H_{10}$	0.357	0.414	0.644
$iso-C_4H_{10}(1) + H_2(9)$	0.196	0.145	6.80
$iso-C_4H_{10}(1) + He(9)$	0.246	0.197	3.26

第3章

シミュレーション

3.1 各種パラメータの測定

2.2節で考えた各ガスについて、ドリフトスピード、ガス増幅率、トラックの幅を測定した。測定には 241 Am の α 線源を用いた。図 3.1 に α 線源のトラックの一例を示す。図 3.1 では iso- $C_4H_{10}(1)+H_2(9)$ を用いた。 2.2節では 6 種類の候補を考えたが、ここからは単体の iso- C_4H_{10} を除いた 5 種類で考えていく。これはディフュージョン係数が大きいことと圧力が低く安定した TPC の動作が難しいと予測されるためである。

図 3.1: α 線源のトラック。検出ガスは iso- $C_4H_{10}(1) + H_2(9)$ を用いた。

図 3.2: 線源コリメータ。中央に 0° 、上下左右に 30° の穴が開いている。

図 3.3: 30° に方向を限定した α 線 (左) と取得される画像データ (右) のイメージ。

3.1.1 ドリフトスピード

電子のドリフトスピードを線源によって得られるトラックから求める。測定には図 3.2 のような線源コリメータを用いる。このコリメータはアクリルで作られており、1 つの 0° 、4 つの 30° の穴が開いている。このコリメータを用いることで α 線を 0° と 30° の方向に限定することができる。図 3.3 の右のようにドリフト方向に Δy 、それと垂直な方向に Δz 移動するとき、

$$\Delta y = \tan(30^\circ) \Delta z \tag{3.1}$$

となる。MAIKo TPC で取得したトラックの横方向の変分を $\Delta strip$ 、縦方向の変分を Δt 、ドリフトスピードを $drift_v$ とすると、

$$\frac{\Delta z}{0.4\text{mm}} = \Delta strip \tag{3.2}$$

$$\frac{\Delta y}{drift_{-}v} = \Delta t \tag{3.3}$$

gas	ドリフト電場 (V/mm)	実測 (mm/ns)	Magboltz (mm/ns)
CH_4	0.429	0.0126	0.0145
$\mathrm{CH}_4(3) + \mathrm{H}_2(7)$	4.32	0.0140	0.0140
$\mathrm{CH}_4(4) + \mathrm{He}(6)$	1.89	0.0135	0.0140
$iso-C_4H_{10}(1) + H_2(9)$	6.82	0.0137	0.0140
iso- $C_4H_{10}(1) + He(9)$	3.29	0.0139	0.0141

表 3.1: 実測したドリフトスピードと Magboltz で求めたドリフトスピードの比較。

表 3.2: 検出ガスの W 値とエネルギー損失と $N_{\rm e}$ 。エネルギー損失は荷電粒子がガス中を 12.8 mm 進んだ時のものである。

gas	W (eV)	energy loss (MeV)	$N_{ m e}$
CH_4	29.1	0.0565	1.94×10^{3}
$\mathrm{CH}_4(3) + \mathrm{H}_2(7)$	34.2	0.0534	$1.56{\times}10^3$
$\mathrm{CH_4}(4) + \mathrm{He}(7)$	39.2	0.0593	$1.51{\times}10^3$
$iso-C_4H_{10}(1) + H_2(9)$	35.4	0.0620	$1.75{\times}10^3$
$iso-C_4H_{10}(1) + He(9)$	44.0	0.0580	$1.32{\times}10^3$

式 (3.1, 3.2, 3.3) より

$$drift_{-}v = \frac{\tan(30^{\circ}) \ \Delta strip \times 0.4 \ \text{mm}}{\Delta t}$$
 (3.4)

とドリフトスピードが求まる。

 α 線源を用いて測定したドリフトスピードと Magboltz で求めた値を表 3.1 に示す。 α 線源を用いて測定したドリフトスピードと Magboltz を用いて計算したドリフトスピードがおおよそ一致していることが分かる。 CH_4 は実測と Magboltz とがずれているが、ガスに含まれる水分の影響が考えられる。 CH_4 のみ 50 hPa とその他のガスと比較して圧力が半分であるため、不純物の影響が大きく出ていると考えられる。

3.1.2 電子増幅率

電圧パラメータを変更させたときの増幅率の変化を測定した。増幅率を計算するためには荷電粒子が検出ガス中を通過した際に発生する電子数 $(N_{\rm e})$ と増幅後に μ -PIC によって収集された電子数 $(N_{\rm e}')$ の比を取る。 $N_{\rm e}$ はガス中での荷電粒子のエネルギー損失とガスの W 値から求める。 $N_{\rm e}'$ は μ -PIC で収集した電荷から求める。 詳しい計算方法について以下で述べる。

ガス中で荷電粒子がエネルギーを落とすと、W 値あたり平均 1 個の電子を電離する。そのため、荷電粒子のエネルギー損失を W 値で割ることで $N_{\rm e}$ が求まる。各ガスのエネルギー損失と W 値 [8,9] を表 3.2 に示す。測定に用いた α 線源からは平均 4.2 MeV の α 粒子が出ていることが他の測定によりわかっている。エネルギー損失は 4.2 MeV の α 粒子が μ -PIC 32 strip 分の距離 (12.8 mm) で落とすエネルギーを示している。

 μ -PIC からの信号波形は 32 strips まとめて図 2.7 のような FADC 情報として取得している。この信号波形を時間で積分することによって 32 strips で収集した電荷量を計算することができる。 μ -PIC で取得した電

gas	増幅率 (倍)
CH_4	700
$\mathrm{CH}_4(3) + \mathrm{H}_2(7)$	354
$\mathrm{CH}_4(4) + \mathrm{He}(7)$	322
$iso-C_4H_{10}(1) + H_2(9)$	272
iso- $C_4H_{10}(1) + He(9)$	392

表 3.3: 各ガスの電子増幅率。

表 3.4: 各ガスのトラックの幅。

gas	トラックの幅 (×10 ns)
$\mathrm{CH_4}$	91.1
$CH_4(3) + H_2(7)$	42.3
$\mathrm{CH}_4(4) + \mathrm{He}(7)$	62.5
$iso-C_4H_{10}(1) + H_2(9)$	35.4
$iso\text{-}\mathrm{C_4H_{10}(1)} + \mathrm{He(9)}$	54.9

気信号は読み出し回路内部で 800 倍に増幅され、入力インピーダンス 50 Ω で電流値を電圧値に変換して取得している。よって、式 (3.5) で求めることができる。e は電荷素量である。

$$N_{\rm e}' = \frac{\int V(t)dt}{50 \times 800 \times e} \tag{3.5}$$

各ガスの増幅率を表 3.3 に示す。ここでは、GEM と μ -PIC の両方による増幅率となっている。

3.1.3 幅

本実験の目的である 3α に崩壊するイベントではトラックが太いと複数のトラックを区別できなくなり、背景事象と識別できなくなる。 0° の α 粒子によるトラックで幅を測定した。図 3.4 に示すように、トラックの幅には anode strip 128 ch の clock 方向の幅を用いる。このようにして決定したトラックの幅を表 3.4、図 3.5 に示す。図 3.5 から分かるようにトラックの幅とディフュージョンには相関がある。ディフュージョン係数、トラックの幅ともに iso- $C_4H_{10}(1)+H_2(9)$ が最も小さいことが分かる。

3.2 シミュレーションによる線源データの再現

MAIKo TPC から得られるトラックを Garfield++ [10]、Magboltz [7] を用いたシミュレーションにより 再現した。シミュレーションでは、ドリフト電場、W 値、電子増幅率、密度を fixed parameters、TOT の閾値を free parameter とした。シミュレーションは以下のような手順 (図??) で行った。

- 1. トラックを生成する荷電粒子のエネルギー、運動量を決定し、Garfield++の SrimTrack に登録する。
- 2. SrimTrack によりトラックの周囲に電子を生成する。

図 3.4: トラックの幅。トラックの幅は有感領域の中央である anode strip 128 ch の clock 方向の幅を用いる。

- 3. 電子を Magboltz で求めたドリフトスピードで読み出し領域へドリフトさせる。
- 4. 読み出し領域に到達した電子1つにつき図??にあるような電気信号を各 strip の信号波形に追加する。
- 5. 設定した閾値により、信号波形を TOT に変換する。

3.3 トリプルアルファ反応のシミュレーション

図 3.5: Magboltz で求めたディフージョン係数とトラックの幅。

第4章

解析

- 4.1 解析の概要
- 4.2 eye-scan
- 4.2.1 eye-scan による選別
- 4.2.2 eye-scan による励起エネルギーの再構成
- 4.3 結果
- 4.3.1 検出効率
- 4.3.2 検出効率の角度依存性
- 4.3.3 エネルギー分解能
- 4.3.4 角度分解能
- 4.3.5 励起エネルギー分解能
- 4.4 検出ガスの決定

第5章

iso-C₄H₁₀(10) + H₂(9) のガス特性

- 5.1 ドリフトスピード
- 5.2 電子増幅率
- 5.2.1 GEM による電子増幅

電子の増幅率の GEM の両面に印加する電圧依存性を調べた。

- 5.2.2 μ -PIC による電子増幅
- 5.2.3 GEM と grid 間の電位差による電子の収集効率
- 5.3 ディフュージョン

第6章

まとめと今後の展望

- 6.1 まとめ
- 6.2 本測定に向けて

謝辞

付録A

中性子検出器

A.1 液体シンチレータ

中性子は電荷をもっていないため、中性子と検出器中の粒子とが反応して生成した荷電粒子を検出することで、中性子を検出する。中性の検出には NE213/BC501 液体シンチレータを用いる。液体シンチレータでは主に水素原子の原子核である陽子が散乱されることで検出される。

A.2 読み出し回路

CAEN V1742 を用いて中性子検出器から得られる信号を取得した。CAEN V1742 は入力信号の波形をそのまま取得することができるモジュールである。信号の取得周波数は $5~\mathrm{GHz}$ から $750~\mathrm{MHz}$ である。

A.3 $n-\gamma$ 弁別

液体シンチレータを用いた測定では中性子だけでなく背景 γ 線も検出してしまう。そのため、中性子と γ 線の識別が必須となる。中性子と γ 線では液体シンチレータの発光の波形が異なることが知られている。図 A.1 に中性子と γ 線の波形の違いの模式図を示す。中性子の方がテールが長く引いた波形となる。2 つの積分 区間を用いて波形を積分することで、このような 2 つの波形を識別する。図??に 2 つの積分区間の模式図を示す。1 つは波形のピークを含むような区間、1 つは主にテールの部分を積分するような区間である。

A.4 キャリブレーション

A.5 SCINFUL-CG による中性子の検出効率

検出器中に入射した中性子が他の粒子と反応しない場合は検出されない。そのため、検出器に入射した中性子の絶対数を求めるためには検出効率を知る必要がある。液体シンチレータの検出効率を求める計算コードにSCINFUL-CG [?] がある。

図 A.1: 液体シンチレータから得られる中性子および γ 線の波形。

付録 B

中性子コリメータ

- B.1 ビームサイズを制限する必要性
- B.2 シミュレーションによるビームサイズの決定
- B.3 コリメータの材質
- B.4 中性子の収量

参考文献

- [1] On nuclear reactions occurring in very hot stars. i. the synthesis of elements from carbon to nickel. Astrophysical Journal Supplement, Vol. 1, No. 9, pp. 121–146, 1954.
- [2] Mary Beard, Sam M. Austin, and Richard Cyburt. Enhancement of the triple alpha rate in a hot dense medium. Phys. Rev. Lett., Vol. 119, No. 112701, p. 5, 2017.
- [3] Akito Takahashi, Eiichi Ichimura, Yasuhiro Sasaki, and Hisashi Sugimoto. Measuerment of double differential neutron emission cross sections for incident neutrons of 14 mev. *Journal of Nuclear Science and Technology*, Vol. 25, No. 3, pp. 215–232, 1988.
- [4] Keitaro Kondo, Isao Murata, Kentaro Ochiai, Naoyoshi Kubota, Hiroyuki Miyamura, Chikara Konno, and Takeo Nishitani. Measurement and analysis of neutron-induced alpha particle emission double-differential cross section of carbon at 14.2mev. *Journal of Nuclear Science and Technology*, Vol. 45, No. 2, pp. 103–115, 2008.
- [5] T. Furuno, T. Kawabata, H. Ong, S. Adachi, Y. Ayyad, T. Baba, Y. Fujikawa, T. Hashimoto, K. Inaba, Y. Ishii, S. Kabuki, H. Kubo, Y. Matsuda, Y. Matsuda, T. Mizumoto, T. Morimoto, M. Murata, T. Sawano, T. Suzuki, A. Takada, J. Tanaka, I. Tanihata, T. Tanimori, D.T. Tran, M. Tsumura, and H.D Watanabe. Perfomance test of the MAIKo active target. *Nuclear Instruments and Methods in Physics Research Section A*, Vol. 908, pp. 215–224, 2018.
- [6] Atsuhiko Ochi, Tsutomu Nagayoshi, Toru Tanimori, Tomofumi Nagae, and Mirei Nakamura. A new design of the gaseous imaging detector: Micro Pixel Chamber. Nuclear Instruments and Methods in Physics Research A, Vol. 471, pp. 264–267, 2001.
- [7] Stephen Biagi. Magboltz.
- [8] W. Binks. Energy per ion pair. Acta Radiologica, Vol. 41, No. s117, pp. 85–104, 1954.
- [9] C. Patrignani, et al. Review of particle physics. Chinese Physics C, Vol. 40, No. 100001, 2016.
- [10] Kim Baraka, Asmund Folkestad, Egor Frolov, Kevin Heijhoff, Pere Mato Vila, James Mott, Dorothea Pfeiffer, Joshua Renner, Heinrich Chindler, Ali Sheharyar, Nicholi Shiell, Rob Veenhof, and Klaus Zenker. Garfield++.