Ecuaciones en Diferencias de segundo orden

Prof. J. Rivera Noriega

ITAM

Otoño de 2020

Definiciones básicas

Consideramos ahora ecuaciones de la forma $y_{t+2} + ay_{t+1} + by_t = c_t$.

De nuevo la solución general se escribe como $y_t = y_t^H + y_t^P$, donde

 y_t^H es la solución general de $y_{t+2} + ay_{t+1} + by_t = 0$

 y_t^P es una solución propuesta para $y_{t+2} + ay_{t+1} + by_t = c_t$

Para determinar y_t^H proponemos inicialmente una solución de la forma $(\lambda)^t$.

Entonces

$$(\lambda)^{t+2} + a(\lambda)^{t+1} + b(\lambda)^t = 0 \iff (\lambda)^2 + a(\lambda) + b = 0$$

De donde λ debe elegirse como raíz de este polinomio, llamado *polinomio* característico de la ecuación.

Como antes, habrá tres situaciones para las raíces de este polinomio de grado 2.

Raíces reales distintas

En este caso se obtienen dos soluciones de la forma $(\lambda_1)^t$ y $(\lambda_2)^t$ por lo que planteamos la solución general como

$$y_t = C_1(\lambda_1)^t + C_2(\lambda_2)^t$$

Por ejemplo para obtener la sol. gral. de $4y_{t+2}-4y_{t+1}-3y_t=0$, planteamos el polinomio $4\lambda^2-4\lambda-3$, cuyas raíces son $\lambda_1=3/2$, $\lambda_2=-1/2$. La sol. gral es

$$y_t = C_1 \left(\frac{3}{2}\right)^t + C_2 \left(-\frac{1}{2}\right)^t$$

Los datos iniciales válidos para ecuaciones de segundo orden deben contener dos tiempos iniciales

Si suponemos $y_0 = 1$, $y_1 = 2$ tenemos el sistema

$$1 = C_1 + C_2$$
, $2 = \frac{3}{2}C_1 - \frac{1}{2}C_2 \implies C_1 = \frac{5}{4}$, $C_2 = -\frac{1}{4}$

La solución queda $y_t = \frac{5}{4} \left(\frac{3}{2}\right)^t - \frac{1}{4} \left(-\frac{1}{2}\right)^t$

Una raíz de multiplicidad 2

En este caso tenemos una solución de la forma $(\lambda)^t$ y proponemos como segunda solución $t(\lambda)^t$. Se tendría como sol.gral $y_t = C_1(\lambda)^t + C_2 t(\lambda)^t$

Veamos que si $ay_{t+2} + by_{t+1} + cy_t = 0$ tiene una única raíz, debe ser $\lambda = -b/(2a)$. Entonces podemos verificar que $t(\lambda)^t$ sea solución:

$$a(t+2)(\lambda)^{t+2}+b(t+1)(\lambda)^{t+1}+ct(\lambda)^t=(\lambda)^t\big[a(t+2)\lambda^2+b(t+1)\lambda+ct\big]$$

$$= (\lambda)^t \left[t(a\lambda^2 + b\lambda + c) + \lambda(2a\lambda + b) \right] = 0$$

Por ejemplo, para obtener la solución general de $25y_{t+2}-20y_{t+1}+4y_t=0$, notamos que el polinomio característico $25\lambda^2-20\lambda+4$ tiene como única raíz $\lambda=2/5$, y la sol. gral. es $y_t=C_1\Big(\frac{2}{5}\Big)^t+C_2t\Big(\frac{2}{5}\Big)^t$

En el caso en que se tengan $\lambda_{1,2} = \alpha \pm i\beta$ como raíces del polinomio caracerístico, tendríamos que interpretar por ejemplo $(\lambda_1)^t = (\alpha + i\beta)^t$

El mejor modo de hacer esta interpretación es usando la forma polar de un número complejo.

Para ésto, definimos el *módulo* del número complejo como $\rho = \sqrt{\alpha^2 + \beta^2}$

Entonces por identidades trigonométricas podemos obtener

$$\alpha = \rho \cos(\theta), \qquad \beta = \rho \sin(\theta)$$

donde θ es el ángulo que se forma respecto al eje horizontal.

De hecho $\theta = \arctan(\beta/\alpha)$

Escribimos entonces $\alpha + i\beta = \rho \left(\cos(\theta) + i \sin(\theta)\right) = \rho e^{i\theta}$, y en conclusión escribiremos $(\lambda_1)^t = (\alpha + i\beta)^t = \rho^t e^{i\theta t} = \rho^t \left(\cos(\theta t) + i \sin(\theta t)\right)$

Figura: Forma polar del número complejo $\alpha + i\beta$

A partir de la fórmula $(\lambda_1)^t = \rho^t \big(\cos(\theta t) + i \sin(\theta t)\big)$ se propone como solución general

$$y_t = C_1 \rho^t \cos(\theta t) + C_2 \rho^t \sin(\theta t)$$

Dos observaciones importantes:

- La medición de los ángulos debe ser en radianes
- Para calcular el ángulo θ siempre funciona usar la fórmula $\theta = \arccos(\alpha/\rho)$, pues podemos siempre suponer $\beta > 0$

Por ejemplo, la solución general de la ecuación $2y_{t+2} + 2y_{t+1} + y_t = 0$ puede obtenerse luego de calcular las raíces de $2\lambda^2 + 2\lambda + 1$:

$$\lambda_{1,2} = \frac{-2 \pm \sqrt{4-8}}{4} = -\frac{1}{2} \pm i\frac{1}{2} =: \alpha \pm i\beta$$

Entonces

$$\begin{split} \rho &= \sqrt{(1/2)^2 + (1/2)^2} = \sqrt{2}/2 = 1/\sqrt{2}, \\ \theta &= \arccos((1/\sqrt{2})/(-1/2)) \end{split}$$

La solución general es

$$y_t = C_1(1/\sqrt{2})^t \cos(\theta t) + C_2(1/\sqrt{2})^t \sin(\theta t)$$

Ecuaciones no homogéneas

Al ser $ay_{t+2} + by_{t+1} + cy_t = d_t$ una ecuación lineal, podemos aplicar uno de los principios generales y escribir la sol. gral. como $y_t = y_t^H + y_t^P$ donde y_t^H es la solución general de la ecuación homogénea $ay_{t+2} + by_{t+1} + cy_t = 0$ y_t^P es una solución propuesta de la ecuación original

Y como antes, la y_t^P se propone de acuerdo a la d_t , que en este caso la podremos tomar de dos tipos:

Para $d_t = d$ constante se propone $y_t^P = A$ constante

Para $d_t = M(r)^t$ se propone $y_p^P = A(r)^t$ (el mismo tipo de exponencial)

Comportamiento a largo plazo

Los tres tipos de soluciones son sugerentes del comportamiento a largo plazo.

Por ejemplo, al resolver una ecuación no homogénea con *"término no homogéneo"* constante se tendría alguna de las siguientes opciones:

$$y_{t} = C_{1}(\lambda_{1})^{t} + C_{2}(\lambda_{2})^{t} + A$$

$$y_{t} = C_{1}(\lambda)^{t} + C_{2}t(\lambda)^{t} + A = (\lambda)^{t}[C_{1} + C_{2}t] + A$$

$$y_{t} = C_{1}(\rho)^{t}\cos(\theta t) + C_{2}(\rho^{t})\sin(\theta t) + A = (\rho)^{t}[C_{1}\cos(\theta t) + C_{2}\sin(\theta t)] + A$$

Para la convergencia se requiere que $|\lambda|<1$, o bien $|\rho|<1$ cuando se tienen raíces complejas.

Para ecuaciones con "término no homogéneo" de forma $M(r)^t$ se tendría que considerar también |r|<1.

Ejemplo (Modelo de Samuelson)

Consideremos las variables dependientes del tiempo t (medido anualmente)

 Y_t ingreso nacional, C_t consumo, I_t inversión, G_t gasto público.

Supóngase que las siguientes relaciones se cumplen:

$$Y_t = C_t + I_t + G_t,$$
 $C_t = \gamma Y_{t-1},$ $I_t = \alpha (C_t - C_{t-1})$

La primera ecuación es la descomposición del ingreso en tres rubros.

La segunda ecuación usa la constante $0<\gamma<1$, que representa la propensión marginal al consumo.

La tercera ecuación indica que si el consumo aumenta entonces se incrementa la inversión con un factor $\alpha>0$.

Ejemplo (Modelo de Samuelson)

Supondremos que el gasto público crece a una tasa fija anual, con G_0 un gasto inicial bien determinado.

Nos planteamos como objetivo describir en el largo plazo qué fracción del ingreso representa el gasto público. Es decir queremos analizar el comportamiento de la fracción G_t/Y_t .

Sustituyendo la segunda y la tercera ecuación en la primera, obtenemos

$$Y_t = \gamma Y_{t-1} + \alpha (C_t - C_{t-1}) + G_t.$$

Usando de nuevo la segunda ecuación y simplificando términos obtenemos

$$Y_t - \gamma(1+\alpha)Y_{t-1} + \alpha\gamma Y_{t-2} = G_t,$$

que escribimos según lo que se hizo en clase como

$$Y_{t+2} - \gamma(1+\alpha)Y_{t+1} + \alpha\gamma Y_t = G_{t+2}$$

Para fijar ideas, supondremos que $\gamma=0.9$, $\alpha=0.5$, y que el gasto público crece a una tasa fija de 3 % anual, por lo que teniendo en cuenta el gasto público inicial tendremos $G_t=G_0(1.03)^t$.

De este modo, podemos escribir

$$Y_{t+2} - 1.35Y_{t+1} + 0.45Y_t = G_0(1.03)^{t+2} = G_0(1.0609)(1.03)^t$$

Su polinomio característico $\lambda^2-1{,}35\lambda+0{,}45$ tiene raíces $\lambda_1=0{,}75$ y $\lambda_2=0{,}6$.

Una solución particular que se puede proponer para la ecuación no homogénea es $Y_t^p = A(1,03)^t$. Sustituyendo:

$$A(1,03)^{t+2} - 1,35A(1,03)^{t+1} + 0,45A(1,03)^{t} = G_0(1,0609)(1,03)^{t}$$

que podemos simplificar dividiendo entre $(1,03)^t$, y obtener $A=8,81G_0$.

La solución general queda entonces como

$$Y_t = C_1(0.75)^t + C_2(0.6)^t + 8.81G_0(1.03)^t$$

Nótese que los términos de esta solución que corresponden a la ecuación homogénea tienden ambos a cero, por lo que **intuitivamente**

$$Y_t \approx 8.81 G_0(1.03)^t = 8.81 G_t$$

Esto, en otras palabras, dice que

$$\frac{G_t}{Y_t} \approx \frac{1}{8,81} = 0.1135$$

En conclusión, el gasto público representaría, en el largo plazo, el $11,35\,\%$ del ingreso nacional.

Con más rigor matemático, lo que está sucediendo es que estamos considerando límites de la forma

$$\lim_{t\to\infty}\frac{K(c)^t}{L(a)^t+M(b)^t+N(c)^t}, \qquad a\leq b< c.$$

Para calcular este límite factorizamos del denominador y del numerador $(c)^t$, obteniendo

$$\lim_{t\to\infty}\frac{K(c)^t}{L(a)^t+M(b)^t+N(c)^t}=\lim_{t\to\infty}\frac{K}{L\left(\frac{a}{c}\right)^t+M\left(\frac{b}{c}\right)^t+N}=\frac{K}{N}.$$

Obsérvese que en este razonamiento no hace falta suponer que a < 1 y b < 1, como en el ejemplo anterior, donde se tiene

$$\lim_{t \to \infty} \frac{G_t}{Y_t} = \lim_{t \to \infty} \frac{G_0(1,03)^t}{C_1(0,75)^t + C_2(0,6)^t + 8,81G_0(1,03)^t} = \frac{1}{8,81} \approx 0,1135$$