

Problems of Diffusion in a Low Pressure Gas Stream
as Related to the Polanyi Diffusion Flame (Cloud) Method

D. G./Keil, J. F./Burkhalter and B. S./Rabinovitch

Prepared for publication in J. Phys. Chem.

Technical Report No. NR092-549-TR06

Contract/ N00014-75-C-0690/ NR092-549

Sept. 1977

Department of Chemistry, BG-10 University of Washington Seattle, WA 98195

> OFFICE OF NAVAL RESEARCH Department of the Navy Code 473 800 N. Quincy Arlington, VA 22217

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release; its distribution is unlimited.

AD NO.

DDC

SEP 22 1977

NEGET E

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTAT	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NR092-549-TR06	ade e de sucre librar que state	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Problems of Diffusion in a Lo		Technical
Stream as Related to the Pol- Flame (Cloud) Method	any i utitusion	
Traine (Croad) Nection	SELF TO TOTAL TENTON	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(e)
D. G. Keil, J. F. Burkhalter	and B. S. Rabinovit	N00014-75-C-0690 NR 092-549
Professor B. S. Rabinovitch Department of Chemistry BG-1 University of Washington Seattle, WA 98195	DRESS O	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Office of Naval Research, Co	4- 472	12. REPORT DATE
Department of the Navy	de 4/3	1 September 77
800 N. Quincy Arlington, VA 22217		13. NUMBER OF PAGES
Arlington, VA 2221/	illerent Irom Controlling Office)	59 15. SECURITY CLASS. (of this report)
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
This document has been appro its distribution is unlimite	ved for public relea	se;
17. DISTRIBUTION STATEMENT (of the abstract .	ntered in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES		
Submitted to Chemical Review	vs	
19. KEY WORDS (Continue on reverse side if neces	eary and identify by block number)	
Diffusion Energy Transfer	Steady-state	PROXIMATELY EQUAL TO
Equation of Continuity	Thermal Systems	atis XIMATELY
Flames	Transients	
High Temperature		

20. Adstract (Continue on reverse aide it necessary and identify by block number)
In anticipation of the application of the Polanyi diffusion flame (cloud) technique to the study of unimolecular reactions and energy transfer at higher temperatures, we have investigated some experimental and theoretical aspects of the time-dependent and steady-state behavior of diffusion of a reactant into a low pressure (~ 1 torr) gas stream. A study of the diffusion of Hg vapor in No atmospheric gas was made. The effects of the Hg inlet nozzle configuration and the inlet gas flow rate on the diffusion process and on the atmospheric gas

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

stream have been investigated. Monte Carlo calculations have been made to reveal the time-dependent and steady-state behavior of a species diffusing from a point source into gas streams having various velocity profiles. Some aspects of a reactive diffusing species are also treated mathematically. The present results are integrated with previous results of other investigators in order to provide an overall view of the relationship between real and model flow systems.

DISTRIBUTION LIST

Contractor University of Washington	NR 092-549
Contract Number N00014-75-C-0690	Date <u>August 15, 1977</u>
	No. Copies
Office of Naval Research Code 473 Arlington, VA 22217 Attn: Dr. Miller	10
Office of Naval Research Branch Office 1030 East Green Street Pasadena, CA 91106 Attn: Dr. R. Marcus	1
Office of Naval Research Branch Office 535 S. Clark Street Chicago, IL 60605 Attn: Dr. J. Smith	1
Defense Documentation Center Bldg. 5 Cameron Station Alexandria, VA 22314	12
Office of Naval Research Branch Office 495 Summer Street Boston, MA 02210 Attn: Dr. L. H. Peebles	1
Office of Naval Research Resident Representative University of Washington 3710 Brooklyn Avenue NE, Unit 2 Seattle, WA 98195	1
U. S. Naval Research Laboratory Gode 2627 Washington, D.C. 20375	6
U. S. Maval Research Laboratory Code 2629 Washington, D.C. 20375	6
Naval Research Laboratory Code 6100 Washington, D.C. 20375	1
Naval Air Systems Command Code 440 Mashington, D.C. 20360	1
Atta: Dr. H. Rosenwasser	

	No. Copies
Naval Sea Systems Commanú SEA-0331 Washington, D.C. 20362	1
Attn: Mr. J. Murrin	1
Naval Sea Systems Command SEA-0332 Washington, D.C. 20362 Attn: Dr. A. Amster	•
Naval Surface Weapons Center Research and Technology DeptWR Silver Spring, MD 20910	1
Naval Weapons Center Research Department Code 60	1
China Lake, CA 93555	2
Naval Weapons Center Code 608 China Lake, CA 93555 Attn: Ronald L. Derr	3
Air Force Office of Scientific Research Directorate of Aerospace Sciences Bolling Air Force Base Washington, D.C. 20332	1
Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base Washington, D.C. 20332	1
Air Force Office of Scientific Research Directorate of Physics Bolling Air Force Base Washington, D.C. 20332	1
U.S. Army Research Office Chemistry Division P.C. Box 12211 Research Triangle Park, N.C. 27709	1
U.S. Army Research Office Physics Division P.O. Box 12211 Research Triangle Park, N.C. 27709	1
Professor S.N.B. Murthy Technical Director, Project SQID Purdue University Lafayette, IN 47907	5

Problems of Diffusion in a Low Pressure Gas Stream as Related to the Polanyi Diffusion Flame Method

by D. G. Keil, J. F. Burkhalter and B. S. Rabinovitch Department of Chemistry, University of Washington Seattle, Washington 98195

Abstract

In anticipation of the application of the Polanyi diffusion flame (cloud) technique to the study of unimolecular reactions and energy transfer at higher temperatures, we have investigated some experimental and theoretical aspects of the time-dependent and steady-state behavior of diffusion of a reactant into a low prescure (\sim 1 torr) gas stream. A study of the diffusion of Hg vapor in $\rm M_2$ atmospheric gas was made. The effects of the Hg inlet nozzle configuration and the inlet gas flow rate on the diffusion process and on the atmospheric gas stream have been investigated. Monte Carlo calculations have been made to reveal the time-dependent and steady-state behavior of a species diffusing from a point source into gas streams having various velocity profiles. Some aspects of a reactive diffusing species are also treated mathematically. The present results are integrated with previous results of other investigators in order to provide an overall view of the relationship between real and model flow systems.

5, 1

Introduction

The original diffusion flame technique pioneered by Hartel and Polanyi^{1,2} provided a method for the study of fast bimolecular reactions under pseudo-first order conditions. The flow velocity of the atmospheric reactant was usually much less than the diffusional velocity of the nozzle reactant. The diffusion of the nozzle gas provided a time reference by which reaction rates could be determined. The diffusion "cloud" technique, as it has been termed by later workers³ is, in general, characterized by the use of a "point" source of substrate in a flowing atmospheric reactant under conditions such that heterogeneous reactant collisions are negligible.

In early use of the technique, systematic deviations between experimental results and predictions from a simple model of spherical diffusion were noted. Heller proposed restrictions on the allowed ratio of the reactant nozzle velocity to the diffusion coefficient in the atmospheric gas, for obedience to the simple model. Garvin, Guinn and Kistiakowsky found that this ratio can increase with decrease in nozzle radius. Reed and Rabinovitch generalized Heller's criteria for various nozzle radii. They also solved the equation for diffusion and first order reaction from a point reactant source in a flowing medium having constant velocity. Recently, Mintz and LeRoy clarified Heller's criteria. The last ten years has seen several experimental applications of the method $^{8-10}$ to the determination of bimolecular reaction rates.

No application of the diffusion cloud technique to the study of unimolecular reactions appears to have been made. It is an attractive technique for such studies, particularly at high temperatures. Such an application introduces new experimental features. Moreover, some hydrodynamic and experimental aspects of the existing technique remain unclear. Before undertaking to apply a diffusion

cloud technique to the study of unimolecular reactions, we considered it desirable to examine the existing theoretical treatments of the diffusion-flow equations and to reconcile some apparent discrepancies, as well as to investigate, experimentally, some important and uncertain aspects of experimental design. Thus, the introduction of a large atmospheric flow effectively expands the reaction time scale in the flow direction. This flow must be included in the continuity equation and be defined in terms of an appropriate velocity field; the mathematical treatment of the experimental data is crucial to its interpretation. It appears useful, in the remainder of this section, to provide a brief qualitative summary of recent experimental work and approaches to the treatment of diffusion and bimolecular reaction from a point source in a flowing gas.

Mathematical aspects will be summarized in the following section.

Walker and Westenberg¹¹ used a "point" source to measure diffusion coefficients in a cylindrical flow tube in which a radially-independent atmospheric velocity field ("flat" profile) was artificially produced. They investigated the perturbations of the atmospheric velocity field at high pressure
(% 1 atm) caused by flow from an axial nozzle. The nozzle flow rate which
caused the least perturbation corresponds approximately (as inferred from their
paper) to the values predicted by Heller's criteria as modified by the later
work, 6,7 Since these experiments involved the problem of matching of nozzle
and atmospheric flows in the presence of a stagnant boundary layer on the nozzle,
the seemingly equivalent requirements for static and flowing atmospheric gases
may be accidental.

The suggestion by Snow and Westenberg¹² that the technique of a point source in a "flat" atmospheric velocity field could be used in the study of fast pseudo-first order reactions was followed by Frazier and Kooyman. ¹³ Their results showed the need to correct for a deficit of the dilute atmospheric reactant in the region near the nozzle, under their conditions. They neglected the effect of the nozzle reactant flow which also must be examined if the region

near the nozzle is of experimental interest. Moreover, the nozzle configuration also affects the adjacent velocity field and must be considered.

In their diffusion flame investigation of the reactions of phosphorous vapor in oxygen, Nevrovskii and Soroka¹⁰ observed a marked change in the flame shape when the nozzle reactant carrier gas was switched from He to £r at the same volume flow rates. They suggested that the observed behavior is a consequence of momentum as well as diffusion effects. They did not elaborate on the relative magnitudes of these effects nor did they consider the importance of atmospheric gas flow.

A "point" source on the axis of a tube with fully developed laminar flow (parabolic velocity profile) has been used by Taltoze et al 8 in the measurement of pseudo-first order and consecutive pseudo-first order bimolecular reaction rates. However, in the treatment of the results 3 they approximated the effective velocity field as a flat field with a velocity equal to the laminar maximum (tube axis) velocity; they derived criteria for conditions of high flow velocities so as to limit excursion of the reactants into regions of low velocities. Later time-dependent calculations on an initial plane sheet of ions in a parabolic flow profile 1 suggest that the effective axial velocity may lie between the maximum and average flow velocities when significant radial diffusion has taken place. However, this proposition has not yet been actually tested for a point source.

The solution of the equation for diffusion from a point source in laminar flow was approximated by Brown¹⁵ with use of a relaxation technique. To avoid steep gradients near the source, an artifically large source region was incorporated into the calculation. More recently, Nevrovskii¹⁵ has approximated the steady-state solution for diffusion and first order reaction for a point source in a cylindrical tube with laminar flow. He used an expansion in hypergeometric functions. Due to the truncated expansion of the source delta function, the source region is large in the radial plane. The technique can be extended to the case

of no reaction and additional terms can be included to reduce the source size. Nevrovskii has considered a limited number of reactive cases which cannot be directly compared to Brown's calculation derived for pure diffusion. However, the calculations do indicate that the criteria of Tal'roze and co-workers are useful under many experimental conditions. Unfortunately, there is no known information on the region near the source and no experimental evidence for the region of validity of the above calculations. Nozzle drag has not been considered.

We have constructed a Hg diffusion test apparatus in order to study the flow conditions near a real point source. We have investigated the nature of the actual velocity profile to confirm the presence of laminar flow. Perturbations of the flow (i.e., by the nozzle) have also been investigated. Nozzles of several sizes, shapes and flow orientation have been used. Both transient and steady state measurements have been made for Hg vapor diffusing into a N₂ stream. Comparisons have been made with theory and with the computer simulated time development of diffusion from a point source in various flow profiles. Evidence for perturbation of the flow field by the reactant gas source is examined. We also show how a transient region (non-equilibrium reaction rate) can be considred in the solution of the diffusion equation.

Mathematical Treatment

9

The mathematical description of the concentration distribution for a reactant which diffuses from a point source into a medium moving with constant velocity, and in which the diffusing material undergoes first-order reaction, has been derived in basically two ways. Both methods find origins in Wilson's treatments of heat conduction.¹⁷

One approach is to find a solution for the steady state continuity equation,

$$Dv^2C - kC - u \frac{\partial C}{\partial z} = 0$$

where D represents a concentration independent diffusion coefficient of the reactant (concentration C) in the medium which flows in the z direction at velocity U; k is the first order reaction rate constant. Equation I was solved by Wilson 17 for the case k = 0. Reed and Rabinovitch 6 extended the solution to finite k and obtained the form

$$C(z,R) = \frac{A}{R} \exp\left(\frac{Uz}{zD} - R\sqrt{\frac{U^2}{4D^2} + \frac{R}{D}}\right)$$
 11

where R is the radial distance from the source and A is a constant which is found by the application of an appropriate boundary condition. In the limit of small R (and z), eq. II reduces to C=A/R to which a point source boundary condition may be applied:

$$I = 11m \left(-0 \frac{\partial C}{\partial R} 4\pi R^2 \right)$$
 III

where I is the intensity of the source (particles/time). This leads to the well-known result (which simplifies for the case k=0),

$$C(z,R) = \frac{1}{4\pi DR} \exp \left(\frac{Uz}{2D} - R \sqrt{\frac{U^2}{40^2} + k/D} \right)$$
 IV

Boundary conditions other than eq. III may be applied to eq. II, e.g., see

The second approach used by Tal'roze et al 3 is based on an instantaneous pulse point source (a description attributed by Wilson to Lord Kelvin). The time dependent continuity equation in the case U = 0

which, for an instantaneous point source of intensity I at R = t = 0, has the solution

$$C(R,t) = \frac{1dt}{(4\pi Dt)^{3/2}} \exp \left[-R^2/4Dt - kt\right]$$
 VI

A continuous point source is simply treated as a collection of instantaneous pulses of different ages. The concentration distribution for each pulse is spherically symmetric. In order to introduce an atmospheric velocity, one requires that the center of mass of a particular instantaneous pulse be located at z = Ut, where t is the "age" of the pulse. A continuous source in a flow is then described by eq. VII.

$$C(z,0,s) = \int_{0}^{s} \frac{1}{(4\pi 0t)^{3}/2} \exp \left[\frac{-(z-Ut)^{2}-\rho^{2}}{4Dt} - kt \right] dt$$
 VII

where C(z,p,s) represents the concentration at time s at a point with cylindrical coordinate z and ρ . On rearranging terms in the exponential and substituting $\mathbf{t} = \frac{R}{2\sqrt{Dt}} \left(R^2 = z^2 + \rho^2 \right)$,

$$C(z,R,s) = \frac{1 \exp(\frac{Uz}{2D})}{2\pi^{3}/^{2}DR} \int_{R}^{\infty} \exp\left[-\frac{\epsilon^{2}}{\epsilon^{2}} - \frac{R^{2}(u^{2} + 4DK)}{16 \ 0^{2}} \right] d\xi \qquad VIII$$

This can be integrated 18 to give

$$C(z,R,s) = \frac{1 \exp(\frac{10z}{20})}{8 \pi D R} \left\{ \exp\left(\frac{R}{2D} \sqrt{U^2 + 40k}\right) \left[1 - erf\left(\frac{R + s \sqrt{U^2 + 40k}}{2 \sqrt{Ds}}\right) \right] + exp\left(- \frac{R}{2D} \sqrt{U^2 + 40k} \right) \left[1 - erf\left(\frac{R - s \sqrt{U^2 + 40k}}{2 \sqrt{Ds}}\right) \right] \right\}$$
1X

which in steady state (s + ∞) yields eq. II. The instantaneous point source method readily leads to the time-dependent solution.

We now wish to show that eq. IX can also be found in a sonewhat different way in order to allow the treatment of more complex rate behavior (i.e., time-dependent variation of k for a non-steady state system). We start with the non-reactive diffusion case, i.e., $\mathrm{DV}^2 = \frac{\partial C}{\partial t}$ and proceed as above. The result is the same as eq. IX with k = 0. The reaction process is introduced by integrating over s with weighting appropriate to a first order reaction rate. Hence,

$$C^{\Gamma}(z,R,s) = \int_{0}^{\infty} C^{0}(z,R,s)\eta_{s}ds$$

where the superscripts r,o signify concentrations calculated for the reactive and the non-reactive case, respectively. The weighting factor η_S represents the fraction of reactant molecules from an instantaneous source that react in the time interval s to s+ds according to a first order rate law,

$$\eta_{S} = \frac{d(c_{s}/c_{0})}{ds} \Big|_{S} ds = ke^{-kS}; \int_{0}^{\infty} ke^{-kS} ds = 1$$
 XI

Thus

$$C^{r}(z,R,s) = \int_{0}^{\infty} \frac{ke^{-ks}}{8\pi DR} \frac{1}{1\exp\left(\frac{2D}{2D}\right)} \left[\exp\left(\frac{RU}{2D}\right) \left[1 - \exp\left(\frac{R+Us}{2\sqrt{D}s}\right) \right] + \text{XII} \right]$$

$$= \int_{0}^{\infty} ke^{-ks} C^{0} ds$$

Evaluation of the integral gives eq IX.

In a similar way, a transient region for reaction can be introduced into the description of a system. In the simple case, k=0 for $0 \le s \le s_o$, and k = k for 5250,

$$n_{S} = 0, 0 \le S \le S_{O}$$
 XIII
$$n_{S} = ke^{-K(S-S_{O})}, s \ge S_{O}.$$

Comparison with eq. XIIIshows that

$$C^{r}(z,R,s) = \int_{s_0}^{\infty} -k(s-s_0)^{O}(s)ds$$
. XIV

$$C^{r}(z,R,s) = \int_{0}^{\infty} ke^{-k(s-s_0)} C^{0}(s) ds - \int_{0}^{s_0} ke^{-k(s-s_0)} C^{0}(s) ds$$

or

term can be integrated by parts but need not be presented here. More compliks. The first term is simply eq. IX times an additional factor e^o; the second cated reaction models require numerical integration techniques.

molecules for a reactive event (rate constant k) and C'(z,R) is given by eq. IV. following method to find the distribution of a product which itself undergoes Another application of the instantaneous point source method of calculafirst-order reaction. Each point in space is considered a source of product The steady state contribution of a source at $(z_{\rm j},\overline{R}_{\rm j})$ to the concentration of with intensity $I^{'}=knC^{'}(z,R)$, where n is the ratio of product to reactant tion is to the derivation of product distributions. Tal'roze³ used the product P at any other point (z_i, \overline{R}_j) is

$$c^{P}(z_{j},\overline{R}_{j}) = \frac{1}{410'(\overline{R}_{j}-\overline{R}_{j})} exp \left[\frac{U(z_{j}-z_{j})}{20'} - (\overline{R}_{j}-\overline{R}_{i}) \sqrt{\frac{U^{2}}{40'}} + \frac{k'}{0'} \right] xv$$

where \overline{R}_{μ} is the position vector of the appropriate point, and the primes refer to the product species. In the case p is a stable species (k'= o) and has the

10

same diffusion coefficient as the reactant, conservation of material leads directly to,

$$C^{p}(z,R,s) = C^{0}(z,R,s) - C(z,R)$$
 xvI

This case would apply for a unimolecular isomerization reaction

behavior can also be extended to the spatial distribution of reaction products In principle, the method described above for non-steady state transient

concentration measurements are made and the atmospheric velocity to diffusion atmospheric velocity departs significantly from the axial velocity. Thus, if the nozzle reactant is much less than the distance from the axis at which the equation of the form of eq. II, where U was taken as twice the average atmos-Consider next the case of variable atmospheric flow velocity. Existing the maximum excursion from the axis with return to the measurement point for coefficient ratio is sufficiently high so that for the average path length, a 10% velocity deviation were tolerable, for laminar flow the criterion is pheric flow velocity. They proposed that this is adequate as longas axial reaction rate data for a point source in a laminar parabolic flow with an treatments are less certain. In fact, Tal'roze et al³ approximated their

case as can the closed analytical solution described previously. The relaxation His findings relative to the above criterion will be considered in the results $U=U_{\rm o}[1-(R/R_{\rm o})^2])$. Nevrovskii¹⁶ has investigated particular series solutions for this more complicated case for several sets of conditions (k,D,U and $R_{\rm o})$. section. However, his results cannot readily be extended to the non-reactive where $R_{
m o}$ is the radius of the tube. If valid, this would reduce the need for a solution to the continuity equation in laminar flow (eq. I, with

profiles have not been treated, but qualitative and semiquantitative extensions of the above results are possible if the velocity fields can be defined. source and are not exploited further. More complicated velocity calculations of Brown 15 are generally useful only far from the

and will be discussed later when nozzle drag is considered. Further consideration of other nozzle effects (e.g., Heller's criterion) will be delayed until Velocity fields around a sphere 19 and a cylinder 20 have been calculated the discussion of results.

Experimental

Pumping speeds of 60 l sec at 1 torr were attainable, corresponding to average The test diffusion chamber was a 4-foot length of 21-1/4 cm i.d. stainless steel pipe which was pumped by a Leybold-Heraeus WA 250 Roots-type pump. carrier gas velocities of \sim 2 meter sec .

fifty 1/32" i.d. holes which delivered mass flows corresponding to the relative nozzel down to less than 10 cm. However, experiments were routinely done with a distance as possible down the diffusion tube, the atmospheric gas inlet line a diffuser-inlet nozzle distance of roughly 50 cm to encourage development of Matheson tri-flat flow meter. In order to establish laminar flow in as short fed through a brass diffusion plate (3/16" thick) which carried a pattern of outlet plate to break up wakes at the holes; flow asymmetry, which was cormesh brass screens were placed with crossed meshing on the surface of the The nitrogen atmospheric gas flow was measured with a pre-calibrated related with turbulent flow out of the diffuser orifices, was completely eliminated in this manner at distances of the diffuser from the Hg inlet fluxes in fully developed parabolic laminar flow. A series of four an atmospheric parabolic velocity profile typical of laminar flow.

12

Pulsing rates from 0.5 cps to 6 cps were used and were designed with 150 degrees cycle, in order to ensure development of steady-state conditions while transition times as short as 10 msec could be provided. Of course, the ratio of the droplets of Hg so as to reduce the Hg mercury vapor pressure to the saturation pressure at the desired temperature. The ${
m M}_{
m 2}$, Hg mixture flowed into a pulser. Therefore, a period was available, which was as long as about 1 sec per "on" The Hg vapor inlet system consisted of a carburetor section and a pulsed drop from a calibrated volume. The pulsing action arose from the reciprocal nozzle (N) and created a virtual seal; various shaped tips could be attached The pulser body and fittings were of brass, and the internal surfaces were coated with Teflon to protect them against Mg attack. Attached to the The pressure in this section and in the diffusion tube was monitored with a Validyne DP7 pressure transducer. The average flow rate of the ${
m N_2}$ carrier was adjusted and maintained with afine metering valve and a pressure head motion of a stainless steel rod, whose nylon tip entered a stainless steel constant to better than ± 1/2%, and was measured by the rate of pressure each of "on" and "off" action separated by 30 degree transition regions. and through a (variable) constant temperature trap containing pyrex wool driver cam was a sector passing through the path of a photodiode-photo inlet section. Nitrogen gas at several torr was passed over hot $\mathrm{Hg}\,(\!\sim$ "on" time to the transition time was constant for the cam. cell unit which provided synchronous trigger signals to N.

The relative Hg concentration in the diffusion tube was measured in situ (normally 25-62KΩ) and was housed in a sealed brass cylinder to minimize the effect of air currents on the lamp temperature and output intensity. tion from the lamp was monitored by a reference photomultiplier cell. by the absorption of the 2537 Å emission line of a low pressure d.c. The lamp was stabilized with a ballast Oriel model C-13-62 Hg lamp.

A short length (< 5 cm) of 3 mm Suprasil rod with polished ends, directed light from the lamp to the reference photomultipler through an Optics Technology, Inc. interference filter to isolate the 2537 Å line. The lamp radiation was transmitted into the diffusion tube through 500 mm long flexible UV light guide (Schott Optical Glass Inc) with a 1 mm diam bundle. The light guide was mounted to a detector assembly moveable in three dimensions inside the diffusion tube which also carried a receiver guide which intercepted the radiation from the first light guide at a distance of 1 cm; this rather large path length was elected in order to minimize local flow perturbations in the sampling region. This receiving guide fed to a second photomultiplier housing with an interference filter (Optics Technology Inc.) with 6% transmission at 2537 Å.

The signals from the monitoring and the reference photomultiplier were each pre-amplified, filtered (T = 1 msec) and fed into a differential amplifier. The difference signal could be amplified by up to 4 additional factors of 10 and could either be routed to a recorder or to the input of a Varian model C-1024 CAT. The scan of the CAT was synchronized to the pulsing action of the cam by the trigger method described above. The rate of address advance was controlled by an external timebase with a 100 kHz internal standard clock. The stored signal in the CAT could be recorded on the chart recorder. In this way both the magnitude and the time development of the pulses were measured.

The Hg detector could be moved relative to the Hg source in three dimensions. The vertical displacement could be estimated to 0.2 mm. The angular displacement of the detector in the horizontal plane was determined to less than 0.2 With a faximum lever arm, this corresponded to an uncertainty of < 1 mm in the distance between the detector center and the Hg inlet.

The accuracy of the detector alignment was calibrated by observations with a cathetometer. It was determined that the axial detector motion deviated

7

from true axial motion in a vertical plane by + 2.0° and in a horizontal plane by 0.3°. The maximum deviations of the direction of detector support motion to the radial direction were estimated to be less than 0.1° in the vertical axial plane and 0.2° in the radial plane. Corrections were routinely made for the axial deviations where appropriate; the other deviations are considered to be negligible.

The percent absorption, A, of the Hg 2537 Å radiation was used to determine relative Hg concentrations over a range corresponding to absorptions of about 0.3% to greater than 5%. The results were fitted by least squares to Beer's law. The law gave fit with absorption coefficient $\epsilon=1.65 \times 10^{-14} \, \rm cm^2$ atomand a coefficient of correlation greater than 0.99. At law absorptions, Beer's law predicts that A is proportional to the concentration. At higher A, Beer's law was used to determine the relative Hg concentration.

RESULTS AND DISCUSSION

Inlet nozzle configuration

Hg vapor inlet nozzles. Comparison of the results provides information regarding inlet flow velocity, atmospheric gas flow velocity, pressure, shadowing and drag Steady state concentration profiles were determined with the use of various the effect on substrate spatial distribution of source type and configuration,

Radial tubular nozzles

vertical radial configuration with the nozzle tip terminating at the axis of the diffusion tube. Thus, the issuing $m M_2$, Hg mixture enters the $m M_2$ atmospheric flow Two different sized nozzles, N-1(1 mm id) and N-2(2 mm id), were used in a in the positive $\rho_{\mathbf{v}}$ direction with these nozzles.

I which are at least 8% below the deduced true axial concentrations. The latter axis downstream of the nozzle (R = z). Equation IV predicts that for the nonreover the detector path length in p_h results in an average "observed" concentrais considerably less than unity at constant ho, for $z^{-1} > 1$ cm $^{-1}$ Thus, averaging measured as described below, lead to average observed concentrations at $z^{-1} >$ substrate concentration data effect which appears as exp[U(z-R)/2D] (eq. IV) is unity on axis (R = z), but greater values of z^{-1} is largely experimental artifact. It is in part a con-< 1.0 cm⁻¹. An apparent curvature at tion less than the true axial concentration. The ostensible values of U/2D, active case, the concentration should be proportional to \mathbf{z}^{-1} along the axis. One set of measurements was made of concentration profiles along the z sequence of the finite detector sample path (1 cm). The atmospheric flow Figure 1 shows that the experimental relative follow the predicted behavior for z-l are shown as solid circles in Fig. 1.

-16-

Another source of error in the measurements at high z⁻¹ is the determination of the precise detector location. An absolute error of 0.05 cm in z (comparable to the radii of the nozzle and the fiber optics) at 1 cm can result in a error in z-1 (error bars in Fig. 1).

It is concluded that the axial concentration profiles are well behaved within the experimental uncertainty.

The solid lines represent The concentration profiles in the transverse direction (constant z) should depart from an R^{-1} dependence away from the axis (R>z) due to the exponential factor in eq. IV. Figures 2 and 3 show experimental results at z = 2 and 4 cm, steeply in the negative $\rho_{\mathbf{v}}$ direction. This is a consistent observation, with atmospheric mass flow rate Q (since U/D \propto Q); B⁺ = 1.8 (± .15) \times 10⁻² Q cm⁻¹ The individual values of U and D are positive wings, respectively. The values of B are proportional to the total The figures reveal an asymmetry; the concentration falls off less B^- = 0.5 B^+ , where B^\pm are the values of B required to fit the negative and calculated profiles of the form $[AR^{-1}]$ exp [B(z-R)], where $A=1/4\pi D$ and respectively, for measurements in the $\pm~\rho_{_{\boldsymbol{V}}}$ direction. at 22° C was measured for both nozzles. described below.

terminating in a 1.3 cm length with an o.d. of 3.2 mm. Under typical experimental (Fig. 4) are comparatively symmetrical about the axis. We infer that the nozzle distortion of the atmospheric flow stream by the nozzle which has a 6.4 nm o.d. 2-dimensional flow of a fluid past a circular disc by use of relaxation methods the flow-diffusion process. This phenomenon may be understood in terms of the tube, itself, which lies along the negative $\rho_{\rm V}$ axis, caused a perturbation of Reynolds numbers, Re, less than 1. Allen and Southwell²⁰ have determined the conditions (U \sim 100 cm sec $^{-1}$ at about 1 torr), these dimensions correspond to solve the Navier-Stokes equation for viscous flow. The resulting stream By contrast, transverse concentration profiles in a horizontal plane

appear at Re less than 2.)²¹ Since B is proportional to U, a lower U should lead functions for Re = 1 were applied here to extract velocity information which indicated that in a transverse plane, two or three nozzle-diameters downstream of the inlet, the coaxial velocities vary from $U_{\rm f}/2$, on axis, to $U_{\rm f}$, at 3 or 4 diato less rapid transverse fall-off of the concentration, as observed. This peraxial velocity downstream of the nozzle is less than the free stream velocity. The diffusion coefficient will not be affected as standing eddies should not meters off axis; here, $U_{f r}$ is the free stream velocity. Thus, the effective turbation of the flow stream extends somewhat into regions of $\rho_{\nu} > 0$, but is assumed here to be relatively smaller.

flow parameters was investigated in terms of the ratio of the average nozzle exit as illustrated in Fig. 1. A concomitant change in shape is observed. The shifts than for the larger nozzle, in agreement with the predictions of Reed and Rabinovelocity $_{m{n}}$ and the Hg diffusion coefficient D estimated from Lennard-Jones parathe transverse profiles on this ratio was observable. However, at higher values, of the concentration maxima are plotted as functions of $v_{\rm n}/D$ for the two nozzles the location of the concentration maximum shifted off axis towards positive $\rho_{\mathbf{v}}$, The shift occurs at higher values of $v_{\rm h}/0$ for the smaller nozzle meters for Hg and N_2 . ²² (See below.) At low values of ν_n/D no dependence of 14 and 28 cm $^{-1}$ calculated from the equation of Mintz and LeRoy $(v_{\rm M}/D$ = $\sqrt{2}/r_{\rm O}$, Nozzle velocity. The effect on the concentration profiles of the inlet witch⁶ and of Mintz and LeRoy. ⁷ The values of v_n/D were 17 cm⁻¹ for N-2 and 36 cm⁻¹ for M-1; these are in good agreement with the respective values of where r₀ is the nozzle radius). in Fig. 5.

An additional observation was that the displacement & increased more rapidly with v_n/D for the larger nozzle N-2. In fact, the ratio of the slopes is the ratio of the nozzle radii, roughly two. This behavior may be correlated with momentum effects. The nozzle gas at density ho_n enters the system with excess

-17a-

given in Fig. 5 correspond to $\delta D/v \gg [r_0 D/~(\tilde c U M_a/M_n)^{1/2}]$. This term is typically N-2. The solid triangle in Fig 5, at high $v_{\rm n}/3$, represents the observed vertical momentum $_{
m p}$ in the positive $_{
m v}$ direction and input momentum rate, $_{
m p}$, $_{
m r}$ rr $_{
m 0}$ $_{
m 0}$ v $_{
m r}$. for the smaller nozzle N-1 (lower curve), indicating a momentum effect less than $v_{\rm N}/\delta << r_0^{-1}({
m cUM}_{\rm J}/M_{\rm h})^{1/2}$ where M is the molecular weight of the gas. The slopes in agreement with the inequality. The momentum argument leads to the prediction the intrinsic momentum input rate in the nozzle region is $p_{a}^{\dagger}\sim\pi\delta^{2}\sigma_{a}$ $^{2}\tilde{G}$, where one-half that for N_2 under the same conditions. This is in excellent agreement that the slopes $\delta \mathrm{D/v_h}$ are proportional to $\mathrm{r_0}$ as observed. The slopes are also predicted to be proportional to $({\rm M_{\chi}/M_{g}})^{1/2}$. An experiment was done with He as shift (compared to that for the top curve.) The shift was even less than that sectional area ${\tt m6}^2$. Considering only molecular momenta of the atmospheric gas, δ is proportional to the density $ho_{
m a}$, the atmospheric velocity U, and the crossthe nozzle carrier gas and N_2 as the atmospheric gas using the larger nozzle The mass of atmospheric gas which must absorb this momentum within a distance \bar{c} is the mean molecular speed. The requirement p $_{a}^{-} >> p_{n}^{-}$, gives $v_{n}/\delta << r_{0}^{-}$ 3x 10^{-3} cm 2 for N-2, which is about 1% of the experimental value of 0.32 cm 2 , with the predicted mass effect, (4/28) $^{1/2}\sim$ 0.4. We propose that the $v_{\rm n}/D$ Momentum arguments point up an advantage of a multi-inlet spherical source whereby the nozzle momentum is more symmetrically distributed in direction. criterion of Mintz and LeRoy be modified with a mass factor; $\mathbf{v_n}/D = \sqrt{2}N_{\mathbf{a}}^{-1/2}$ $\left({{{{
m GUD}}_a}/{{
m p}_i}} \right)^{1/2}$. The densities ${
m p_a}$ and ${
m p_n}$ refer to the same pressure, so that Other features of spherical sources are considered below.

Axial tubular nozzle

lpha 6 cm in length. The radial flow disturbance described above was thus transferred The radial inlet described above was modified by an axial tubular extension upstream of the inlet.

between the extremes found with the radial nozzles. This indicates that in a 6 cm Moreover, transverse profiles along the $ho_{
m v}$ axis now showed (Fig. 6) substantially Axial concentration profiles were well behaved, as with the radial nozzles. important here. This involves the drag effect of the nozzle on the atmospheric axis and was manifested as an average effect. However, another process may be distance, the radial nozzle perturbation had spread "evenly" above and below improved symmetry about the axis with $B^{\pm}=1.4~(\pm~.2)~{\rm x}~{\rm i}0^{-2}$ (, intermediate

Drag effects. The velocity profile for flow in an annular cylinder of length z and of outer and inner radii, \mathbf{r}_1 and \mathbf{r}_2 , respectively, is given by^{23}

$$U(r) = \frac{\Delta P}{4\eta^2} \left[r_1^2 - r^2 + \frac{(r^2 - r_2^2) \ln(r/r_1)}{\ln(r_1/r_2)} \right]$$
 XIX

where ΔP is the pressure drop along & and η is the gas viscosity. ΔP can be determined from the mass flow Q, 23

$$Q = \frac{\pi \Delta P}{8 \pi \lambda} \left[r_1^4 - r_2^4 - \frac{(r_1^2 - r_2^2)^2}{\lambda n (r_1/r_2)} \right]$$
 x

full parabolic profile. The region 0 < r ≤ 0.3 r roughly corresponds to the region of measurement illustrated in Fig. 6, where 8 (axial) $= 0.8~\mathrm{B}^+$ (radial), r=0.015 to r=0.3 r₁, weighted by the area element 2mrdr, shows that the average ass transport in this region for the coaxial case is about 0.75 that for the internal reactor radius (10.6 cm). Integration of the velocity profile from Here, r_2 is the external radius of the axial nozzle (0.15 cm) and r_1 is the the proportionality being similar to the calculated transport factor 0.75.

of $\rho_{\rm v}$ were essentially equal with an average value B = 1.3(\pm 0.2)x10 $^{-2}$ Q, in good all at the approximate axial value of z=2 cm. A consequence of the experiagreement with the values for the vertical profiles presented earlier. This mental arrangement of the detector support was that the orientation of the region was not constant, but varied by $\pm~10^\circ$. Due to this correction, all detector relative to the line of centers between the source and detection any case, no asymmetry was observed. Values of B for all three settings tested by several horizontal scans along $\rho_{\rm h}$ at $ho_{\rm v}$ = 0, + 1.8, and - 1.7 the measurements were not as accurate as those made at $o_{\rm h}$ = 0. But, in but does not preclude the possibility of a symmetrical spreading of the radial nozzle perturbation at large distances, as previously mentioned. nozzle drag, the effect should exhibit cylindrical symmetry. This was supports the proposed source of the distortion of the velocity field, nozzle structures would be extremely difficult to make at these low If the lower B value for the axial nozzle is indeed due to the Direct measurements of the velocity gradients in the region of the

Spherical source

0.034-cm holes placed in a symmetrical pattern and supported on a vertical plotted (not shown) as a function of z^{-1} . Straight line behavior at z>1feed tube, 0.64 cm o.d. Axial concentration profiles were measured and artefactual effect of reflection from the walls of the diffusion tube was again observed; a small positive intercept may indicate a minor source (S-1) was a nickel sphere, diameter 1.4 cm, with twenty-four The characteristics of a spherical source were investigated.

Transverse concentration profiles in the $ho_{
m v}$ direction exhibited the same type of asymmetry as was observed for the vertical tubular nozzle, with B = 0.5 B, again, and with B magnitudes two-thirds of the tubular

those for the tubular nozzle; $B^+ = (1.4 \pm 0.1) \times 10^{-2} \text{ Q}$, $B^- = (0.8 \pm 0.1) \times 10^{-2} \text{ M}$ midpoints of the faces of an icosohedron. Transverse profiles with this $10^{-2} \,\mathrm{g}$. The vertical nozzle support was used with the spherical nozzles nozzle were similar to those with S-1, but the B values were closer to A smaller spheroidal nozzle (S-2), ~0.85 cm in diamter, was also and is presumably the major cause of the asymmetry along the $ho_{f v}$ axis. It had twenty holes (0.018 cm diam.) directed towards the

due to perturbation of the velocity field by the spheres. However, even an ideal non-perturbing spherical source is not expected to precisely simulate The significantly lower B values obtained with spherical sources is a point source and we consider this before examining distortions of the velocity field.

contour. This effect results in lower apparent B values when the data are downstream shift is ~0.1 cm. Velocity perturbations aside, relative to a introduce more substrate in the region (z = 0, ρ = $r_{\rm S}$) and less substrate along the downstream axis (z = r_s , ρ = 0), i.e. exhibit a more spherical The concentration contour at some average small distance ($\sim \! 1/2$ cm) point source contour the spherical surface source of radius $\mathbf{r_s}$ tends to from a point source in a flowing atmospheric gas is elongated in the z direction and centered somewhat downstream; for $U=100~\mathrm{cm\ sec}^{-1}$ the treated on a point source basis.

A quantitative measure of these effects was obtained by approximate (App. 1) source within 2-3 cm downstream, and that transverse profiles two centimeters predictions were that axial concentrations converge to those for a point computer simulations of a spherical surface source. Semi-quantitative

downstream may result in a 5-10% decrease in the apparent B values.

-12-

z=0 to the free stream velocity (U $_{
m f}$) increases from zero at ho = $r_{
m g}$ to about function around a sphere in a cylinder with a diameter six times that of the We now return to a consideration of the distortion of the atmospheric Results for Re = 10 and corresponded to Re ${\scriptstyle \sim}4$. For a sphere, standing eddies are not observed for Re $\le 20.^{21}\,$ By a relaxation technique, Jensen 19 has calculated the stream velocity field. Under typical experimental conditions, the flow past S-1 in even lower apparent B values, in agreement with the observed behavior. 20 indicate that in this range, these relations remain roughly constant. The consequences of this is an increase in the departure from ideal point source behavior mentioned in connection with the computer simulations of a spherical source. The departure results sphere. For Re=5, the ratio of the axial velocity (U_2) in the plane regions of low velocity; hence, a spherical surface source under these On this basis, Uz $\sim 0.5~\text{U}_f$ at ρ = 1 cm for S-1, and at ρ = 0.6 cm for flow conditions may couple with the velocity field to behave like a elongation downstream. Diffusional transport is more important in S-2. The flow lines follow the surface of the sphere with some 0.5 at $\rho \sim (1.3-1.4)r_{\rm S}$, and roughly 0.9 at $\rho = 2r_{\rm S}$. somewhat larger source.

values significantly greater than the value found with 5-1. For the upstream configurations. In both cases, the above axis concentration wings had B configurations, the outlet alternatively faced the -z and +z directions. In an effort to examine experimentally the effect of the physical presence of the source and the resultant distortion of the atmospheric flow, a 1.4 cm diameter sphere with one axial orifice was used in two displacements from the source of 5.7 cm and 4.3 cm for the respective Transverse measurements were made at $z = 5 \, \text{cm}$ corresponding to axial

the conceptual employment above of a nonperturbing spherical source is of that no unconsidered gross flow perturbations are present and, therefore, axial substrate concentration is reduced. For the downstream nozzle, the The difference in these two values is attributed to the requirement that substrate from the upstream nozzle must flow around the sphere and hence is spread out in the $ho_{
m v}$ direction, while the downstream accordingly higher. The reasonable magnitudes of the B values indicate configuration, B \approx 1.4 x 10^{-2} Q, and for the downstream configuration, sphere acts only as a barrier to back-diffusion and the B value is useful descriptive value. B = 2 × 10-2 Q.

Some Conclusions

general, the higher the B value, the more closely an ideal point source in local effects of various source configurations. The trends are clear; in an unperturbed flow field is approximated. In order to better appreciate The transverse Hg concentration profiles provide information on the the significance of experimental values of B, we have expressed them terms of specific values of U and D.

velocity of a laminar stream in a cylinder is simply twice the experimentally define a relationship for $B_{
m D}$, the theoretical value of B on axis in the case , the diffusion coefficient may be cal-(and roughly proportional to the square of T). The mean value was adopted: nitrogen, adjusted to atmospheric pressure, are 0.13 ${\rm cm}^2~{\rm sec}^{-1}$ $^24~$ at $20^{\circ}{\rm C}$ determined average flow velocity. In terms of these value of U and D, we and 0.16 cm² sec⁻¹ ²⁵ at 25°C. From tabulated²² Lennard-Jones parameters culated from the Chapman-Enskog theory to be 0.13 to 0.14 ${\rm cm}^2/{\rm Sec}$ at $25^{\circ}{\rm C}$ Literature values of the binary diffusion coefficient of Hg vapor in sec-1 at 25°C. The value of U corresponding to the axial and the collision integrals $\Omega_{1,2}^{(1,1)}$ D = 0.14 cm2

of parabolic flow, which is found to be $B_{\rm p}$ = 2.06 x 10^{-2} Q at $22^{\circ}{\rm C}$. We define the reduced value, B_r = $B/B_{\rm D}$, which measures the adherence to the idealized parabolic behavior. Values of $\mathbf{B}_{\mathbf{r}}$ for various nozzles are given in Table I for comparison.

-23-

axial one, especially for measurements in the +p, direction and very close to the the minimum atmospheric flow nozzle where uncertainties in the flow perturbation could strongly affect data perturbation, and hence the radial nozzle appears to be more useful than the the largest value of ${\tt B}_{{\tt F}}$ (close to unity) was measured above the axis for the radial nozzle or nozzle support introduces a significant perturbation down-A number of conclusions can be drawn from Table I. The presence of a stream which leads to asymmetric profiles; an axial nozzle does not. radial tubular nozzle. This result indicates

atmospheric stream, and the inlet nozzle portion, at least, will be significantly The radial arrangement tends to minimize any In the study of unimolecular reactions, a radial inlet may be preferable for another reason. The reactant gas must be kept cool until it enters temperature perturbations in the region of chemical interest. cooler than the atmospheric gas.

Spherical nozzles have the advantage of multi-jet input, but this advantage This utility would increase as the source size is decreased, as evidenced by the flow by the sphere is introduced. The greatest utility of the spheres is for conditions) and at low velocities where the diffusional process predominates. measurements substantially removed from the spheres (2>2-3 cm under typical decrease in $B_{\mathbf{r}}$. In addition, a considerable perturbation of the atmospheric is countered by the resulting "artifactual" (arising from its finite size) higher Br values for S-2.

. Time Profiles

In order to obtain rate information from concentration profiles in a reacting system, each position must be correlated with a reaction time. For a flat velocity profile, the reaction process may be directly included in the overall solution (eq. IV) of the continuity equation. In a real, non-idealized system, this is not generally feasible a priori. Therefore, we have made direct measurements of the time development of concentration at various locations relative to the source. We show that use of the measured value of U yields the observed time profiles and may, in principle, be used with eq. IV to obtain rate constants for reactive data.

Experimental Time Profiles

The time-dependent behavior for diffusion from a point source with no reaction has been presented in eq. IX (k=0). Comparison with the steady-state expression (eq. IV) leads to the result,

$$C(z,R,s) = C(z,R) \left[\frac{1}{2} \exp(\frac{UR}{D}) \text{ erfc} \left(\frac{R+Us}{2\sqrt{Ds}} \right) + \frac{1}{2} \text{erfc} \left(\frac{R-Us}{2\sqrt{Ds}} \right) \right] \tag{XXI}$$

The bracketed terms describe the evolution to steady-state. When R=Us, the right hand term equals 0.5 and the left hand term (expressed as $\frac{1}{2} \text{exp} (\frac{UR}{D}) \text{ ergor}$ becomes relatively small at large UR/D. At large R, a plot of $s_{1/2}$, the time to reach 50% of the steady-state concentration, $\underline{v_S}$ R should be a straight line of slope U. In fact, for R > 2 cm, this linear relationship holds well (within a few percent) down to U/D \sim 1 and has the advantage of yielding U directly as shown below. First, however, the full profiles (eq. XXI) were utilized.

Full time profiles: The experimental time profiles were analyzed to determine values of U and D. Linear least squares fits of the data to

-25-

eq. XXI were computed for two sets of variables. In one case, D was fixed and best values of U and s_0 (the time delay from the CAI trigger to the start of the Hg pulse) were computed. In the other case, s_0 was fixed and U and D were fitted to the data. In this way it was possible to test various aspects of the treatment of the data. A summary of the findings follows.

D fixed. Equation XXI is based on a step function source. The actual time profile was measured at z=0 and a number of profiles were also measured at different z under constant experimental conditions. They were fitted to three different input models: a single-step function, and four- and eight-step functions which simulated the experimental profile at z=0. Some results are illustrated in Table II. Except for profiles at low z, the shape of the input function has negligible effect on the best-fit values of U. The differences in s₀ for the different models are roughly the same for all profiles and correlate with the shift in the "half-on" time for the particular model. Since the increased computational time for the multistep input functions was small, they were routinely used in subsequent fits.

 $s_{\rm o}$ fixed. The sensitivities of U and D to fixed input values of $s_{\rm o}$ differed considerably. For example, for a profile at z=5 cm, when $s_{\rm o}$ was changed by 1 lD msec, the computed values of U varied by 1 lD* while D varied by 1 40%. Thus, U can be fairly well established by selecting an $s_{\rm o}$ which results in a reasonable value of D.

The final fitting of the profiles at various z was made by fixing s_0 . Least-squares values for U and D were computed; some experimental fits are given in Table III; s_0 was set at 25 msec, the average of the values for the eight-step ramp in Table I. The profiles far from the nozzle (R > 3 cm) yield consistent values of U(125 ± 7 cm sec⁻¹) and D(90 ± 10 cm² sec⁻¹), except for the profile below axis ($\rho_v = -4$ cm) which fits a lower value of U and a higher value of D;

this may be an artifactual consequence of the perturbed velocity field. Correction of D to atmospheric pressure gives the value D = 0.11 \pm 0.01 cm² sec⁻¹, in fair agreement with the value 0.14 cm² sec⁻¹ adopted earlier. From the ratio U/D derived from the least squares fitting, B_r is determined to be 0.9 \pm 0.1 for the radial tubular nozzle, in good agreement with the above-axis value 3_r^+ = 0.87 \pm 0.07 in Table I. The time profile measured below axis is fitted with a lower B value, a trend noted also for the concentration profiles in the table.

Time delays: Experimental values of the time delay from the CAI trigger to the development of 50% steady-state concentration at various axial distances from the radial tubular nozzle were plotted as a function of R (Fig. 7). Good straight-line behavior is exhibited. The slope yields U = 138 cm sec⁻¹ which is about 80% of the axial value predicted for parabolic flow from the measured average value \bar{U} = 87.5 cm sec⁻¹. This agrees well with the value 125 ± 7 cm sec⁻¹ determined from the full profiles and is more accurate. (From trends previously described, a higher U would result in a higher s₀ and a higher D in the fitting. The calculated value of B_r would tend to decrease. These effects would all improve the agreement of D with the adopted value, and of B_r with the value determined from concentration profiles). The open and closed circles in Fig. 7 represent off-axis results at z=3 cm, and p_v = ±4 cm, respectively (R = 5). The time delay above axis is the same as on axis but is greater below axis. This can be related to a lower effective velocity in the region of negative p_v, a description which agrees with the observation of low B⁻ values with radial nozzles.

Time delay measurements were also made at z=0 where nozzle perturbations would be minimal (Fig. 8). Definite curvatures are observed. At low $\rho_{\rm v}$, this is a result both of the non-linearity of R with U (eq. XXI) and of the finite detector path length. The results for p between 2 to 5 cm, yielded a constant

value U = 62 cm sec⁻¹ which is ~ 70% of the predicted axial parabolic velocity as determined by the average flow rate. The curvature at $\rho_{\rm v}$ > 5 cm is expected, since the parabolic velocity profile decreases to 0.64 $U_{\rm o}$ at ρ = 6 cm. The (transverse) steady-state concentrations were used to determine a value of B. All data inclusive of the concentration at $\rho_{\rm v}$ = 6 cm were consistent with B_r = 0.80, in agreement with the value 0.87 \pm 0.07 (Table I).

-27-

The implication of this experiment is that the atmospheric velocity field above axis remains constant downstream of the radial nozzle. The effective velocity is lower than that for parabolic flow — either because the expected parabolic profile is never actually established or else is significantly disturbed by the presence of the nozzle.

In addition, the presence of radial velocity gradients could result in averaging of the velocity over regions of excursion of the diffusing substrate. This would also affect transverse concentration profiles, yielding lower B values. In order to evaluate the influence of velocity gradients, a Monte Carlo method was used to simulate diffusion in several flow fields. The calculation provides a measure of the effect of the flow field on both time-dependent and steady-state concentrations. We briefly describe the calculational model and then discuss the results. Calculational details can be found in App. 2.

Monte Carlo Simulation of Velocity Gradients

The simultaneous diffusional and convective transports of each particle was treated as a succession of two-step processes: diffusion (a randomly directed step of distance λ), followed by flow (a step in the +z direction of magnitude u'(ρ), where the ρ -dependence of u^i is determined by the velocity profile). Each two-step process, termed a diffusion event, corresponds to a particular time interval, t, which relates the magnitudes of λ^i and $u^i(\rho)$ for particular D and U to be simulated. λ^i was small relative to the velocity gradient so that one step did not carry a particle into a region of significantly different velocity.

for those out of range of the matrix) and represents the particle distribution but their positions were retained for the next diffusion event. After some $\mathbf{E}_{\mathbf{D}}$ τE_D seconds after the start of the source (intensity I = P/ τ). Eventually, at matrix in p and z. Particles outside the range of the matrix were not counted P particles were started at the origin. The locations of the particles after large $\epsilon_{\mathrm{D}},$ the matrix became invariant with ϵ_{D} when the steady-state had been each diffusion event were recorded as tallies in a two-dimensional position of diffusion events, the position matrix contains about PE $_{
m D}$ tallies (except

parameters used are summarized in Table IV. Four velocity models were employed. to D and U(ho) in terms of the tube radius ho_0 (10 cm) and the characteristic time has shown that, for pure diffusion, this model of constant λ^* behaves, for a large number of events, like real diffusion with a diffusion coefficient $D = (\lambda^1)^2/6\tau$. In terms of the reduced variable, $\bar{\rho}$ = ρ/ρ_0 , then $u(\bar{\rho})$ = $(\tau/\rho_0)U(\rho)$ and $\sqrt{60\tau}/\rho_0$. Appropriate values, λ ' and u'(p), were selected to relate the simulation The value of τ was chosen so that steady-state was reached for $E_D \sim 500$. The Chandrasekhar²⁶ It is easily seen that $u'(\rho) = \tau U(\rho)$. τ(~ 1 msec).

 $u(\bar{\rho}) = 0$. This represents pure diffusion and was used to test the technique. The simulation was performed for two different values of au (Table IV). P and au_0 $\epsilon_{\rm D}{}^{\lambda}{}^2{}_{\rm o}^2/60$ = $2{\rm p}_{\rm o}^2/30$) and same source intensity (I = 6PD/ ${}^{\lambda}{}^2{}_{\rm o}^2$ = 4.5 x 10^7 D/ ${}^{0}{}_{\rm o}^{2}$). were adjusted so that both cases corresponded to the same diffusion time (t = The time dependent solution for pure diffusion is

$$C(R,t) = \frac{1}{4\pi DR} erfc(R/\sqrt{40t})$$
 (XXII)

This equation can be used(App. 2) with the given values of t and I to calculate the populations predicted for the various matrix grains. Figure 9 shows a comparison of the absolute populations calculated by eq. XXII with the computer

-53-

may be the result of poor statistics for the fewer particles since each particle simulated values for matrix elements ${\sf V_{5,2}}$ (App. 2). Excellent agreement is evident, especially for λ = 0.02. The apparent larger scatter for λ = 0.01 is followed through its entire trajectory.

 λ = 0.01 as for λ = 0.02, even though the populations were the same. This indilations for the subsets. The relative fluctuations were about twice as high for cates that the fluctuations are proportional to $\mathsf{P}^{rac{1}{2}}$ and independent of $\mathsf{r}(^{lpha}\,\lambda^2)$ These particular simulations were made on ten subsets of P/10 particles. It was therefore possible to obtain a measure of the variation of grain popu-

region at the source is approximated better. Since our interest was in regions λ = 0.02 gives 4400, and λ = 0.01 gives 5000. With the smaller step size, the somewhat removed from the source, we elected to use λ = 0.02 and P = 3000 for At the origin $(v_{1,1})$, the theoretical population is about 5303, subsequent calculations.

value of U was chosen to ensure rapid attainment of the steady-state and to greate This model provided a check of the method of simulating flow conditions. A large $u(\bar{\rho}) = 2.7 \times 10^{-3}$. This corresponds to a flat velocity profile with U/2D = 2. a large effect on transverse concentration profiles.

relative concentration profiles were plotted as ln(R·C)_{rel} <u>vs</u> R, for which straight state were also compared to theory and are illustrated in Fig. 11 for two locations line behavior with slope -U/2D is predicted. Figure 10 shows one such profile for populations drop below one hundred. The time profiles for the approach to steady-A steady state was reached over most of the matrix for $\rm E_{D}$ = 400. Transverse of equivalent R(z = 1.9 cm, p = 0.1 cm and z = 0.1 cm, p = 1.9 cm). The profiles are predicted to be the same and both do agree with the theoretical profile. The z=3.9 cm, with a least squares slope of -2.07 (open circles). The agreement (R \sim 6.3 cm), the deviations are the result of bad statistics since the grain with the theoretical slope of -2.03 is excellent. At high values of p > 5 cm

-31-

calculation thus correctly simulates the combined diffusion and convection processes

gradient would have. A plot of $\ln(R \cdot C) \frac{\sqrt{s}}{r^{2}} R$ for z = 3.9 cm is given in Fig. 10. corresponds to 0.85 U(0)/20). Interestingly, U varies by 30% in this region. Marked curvature is observed, with a decreasingly negative slope at large R ("triangular") velocity gradient, designed to show what effect a velocity The slope in the region $0 < \rho < 3$ cm is -1.72 which This model represents an extreme staight-line $u(\bar{o}) = 2.7 \times 10^{-3} (1 - \bar{o})$. where u(5) is small.

For p >> 3, there is a significant upward curvature (Fig. 10) due to the increased penetration of the particles into regions of large o (and low U). This represents With a flat profile these particles would have been swept out; nevertheless, their profiles and on time profiles was explored. The transverse steady-state behavior profile for z = 3.9 cm is illustrated, along with the flat velocity case. Excelcase. The effect of the velocity gradient on axial and transverse concentration presence at low concentration in the parabolic case could have negligible effect the major qualitative difference observed between the flat and parabolic cases. of that found for the flat profile. The velocity varies by 10% in this region with a maximum axial velocity equal to the velocity used for the flat profile is illustrated for z ≈ 3.9 cm in Fig. 10. The values of $\ln(R\cdot C)_{\rm rel}$ have been curve based on a flat profile. The discontinuity at 120 msec is apparently a computational artifact. As noted in App. 2, the diffusional behavior in both shifted due to the nearly perfect overlap with the data for the flat profile. and thus the effective U/2D corresponds to the median velocity. In any case, lent agreement exists between the two time behaviors and with the theoretical $u(\hat{\rho}) = 2.7 \times 10^{-3} (1 - \hat{\rho}^2)$. This case represents a parabolic velocity field The least squares slope in the region 0 ≤ p ≤ 3.3 cm is - 1.95, which is 95% the concentrations on axis are essentially equal for both velocity profiles. on the populations near the axis. This is borne out by the simulation.

cases is identical and therefore the observed agreement shows that the velocity profile gives good fit for both concentration and time profiles for $ho \sim 3\text{-4}$ cm. to appear in the time profiles, but is small (maximum deviation $\sim 5\%$) compared to that for the linear profile. This behavior is in good agreement with that of the simulated transverse concentration profile. Evidently, use of a flat profile differences have negligible effect on the behavior on axis. Far off axis (Fig. 13, for $z=\rho=2.9$ cm), the effect of a parabolic profile begins

trations to $\rm z^{-1}$, for z > 0.4 cm, yielded slopes in units of particles of 3.35x10 4 cm $^{-2}$ Axial concentration profiles for the flat and parabolic profiles from $z\,=\,0$ to z=5 cm were essentially identical. Least squares fits of the axial concenfor the flat profile and 3.33x10 4 cm $^{-2}$ for the parabolic profile (correlation coefficients > 0.99), in good agreement with the theoretical value 3.58 imes 10^4

to U(0). We conclude that the observation of an effective velocity somewhat less is due to the presence of the nozzle. It follows that if a value of U = 0.8 U(0)These observations all support the proposition that in the types of experiments described previously, a parabolic velocity profile yields data describable within experimental uncertainty in terms of a flat profile with a velocity equal unequivocally identify the source of this behavior, all indications are that it than that calculated for laminar flow is not artifactual, but results from a physically real, low velocity profile in our apparatus. Although we cannot is adopted, the maximum possible error introduced would be 20%

Comparison with Previous Work.

Our results indicate that the criterion of Tal'roze and ${ t co-workers}^3$ (eq XVII) siderably off axis were calculated to obey (within $\sim 5\%$) the simple flat profile these borderline conditions, steady-state and time-dependent concentrations consimulation at z=3.9, U(0)/0 = 4 and $40z/\pi\rho_0^2=0.5$, a ratio of 8. Even under is appropriate for both time-dependent and steady-state measurements. In our

equation with a velocity equal to twice the average.

flow. Application of the criterion in eq. XVII to the conditions corresponding In the Introduction, reference was made to a time-dependent calculation of Jarvis¹⁴ relating to the long arrival time of a sheet of ions in laminar to Jarvis' calculation shows that the simple inequality does not even hold. Thus, the low effective axial velocity is likely a consequence of extended diffusion from regions of lower velocity.

case. For a cylinder of 10 cm radius, his calculation correspond to U(0)/20 = 0.7 isomerization reaction, the relative depletion by reaction can be determined at case of no reaction (our case) would require an axial concentration in the parawould be equal to or greater than that for the flat case. Extrapolation to the contradiction to our Monte Carlo results which show essentially identical axial tially the same for both velocity cases out to about 15 cm. For a unimolecular shown to be experimentally determinable) one is able to derive absolute kinetic bolic case at least 40% higher than that for the flat case. This is in direct concentrations for the two cases, with a higher concentration in the parabolic Nevrovskii¹⁶ calculated steady-state concentration contours for diffusion the time to develop steady-state downstream should be no shorter than that for concentration and time profiles for the two cases. This is not a crucial disany point, and with knowledge of the time history at that point (which we have parabolic case. Since a parabolic profile involves lower velocities off axis, crepancy, however, since the relative profiles from Nevrovskii are also essenand k/O = 0.1. At z = 6 cm, he found roughly 40% higher concentration in the a flat profile (as illustrated by the calculation of Jarvis). Therefore, one profile flow stream. His calculations showed a large difference in the axial must conclude that the consumption by reaction at 6 cm in the parabolic case of a reactant from a point source into a laminar flow stream and into a flat information.

-33-

We wish to thank Dr. E. Kamaratos for many helpful suggestions and discussions. Acknowledgement. This work was supported by the Office of Naval Research.

Appendix 1. Simulation of spherical surface source

Two models were simulated with the use of eq. IV in tabulated integration formulae. 18 They were chosen to approximate sources which were transparent or opaque to atmospheric gas flow.

small number (6) of subsources). The 18-point sphere was used in most calculations. 18-point spheres gave identical axial results for z > 2 cm. The concentrations were below those for a single equivalent point source except for the 6-point sphere at z ≤ 1.2 cm (this latter finding being an artifactual result of the Transparent: Integration formulas for a 6-point (i.e., 6-orifice) and

sphere). The ring formula provided an approximation to the sweeping of material Opaque: The integration formula for an 8-point ring of radius equal to or greater than that of the sphere was combined with equally-weighted downstream hemispherical integration formula (adapted from the formula for an 18-point around the sphere by the flow stream.

strongly dependent on the model and the relevant trends are summarized in the text. Exact models included a sphere 0.7 cm in radius ("transparent" case) and several ("opaque") combinations: ring (1 cm radius), hemisphere (0.7 and 1 cm radii); and ring and hemisphere both 0.7 cm in radius. The results were not

Appendix 2. Monte Carlo Calculations

from IMSL Library 3. a This routine generated two independent uniform deviates U_1 and U_2 on the interval (-1,1). The coordinates $X = 2U_1\sqrt{1-S}$, $Y = 2U_2\sqrt{1-S}$, choice of random directions was accomplished by use of GGSPR, a subroutine This calculation is a simulation of a free molecule in space. The Z = 1-25, are then formed, where $S = U_1^2 + U_2^2$.

1 \le 8 \le 50. For $_{\rm D_0}$ = 10 cm (corresponding to the present apparatus), $_{\rm D}$ \le 2 \le 5 cm by the volume, $\bar{v}_k = \pi(\bar{z}_k - \bar{z}_{k-1})(\bar{\rho}_k^2 - \bar{\rho}_{k-1}^2) = \pi(0.02)^3(2\epsilon_{-1})$. Likewise, theoretical $V_{\rm kg}$ defined by 0.02(k-1) \le ${
m Z}_{\rm k}$ < 0.02 k; 0.02(2-1) \le ${
m p}_{\rm g}$ \le 0.02 2, where 1 \le k \le 25, concentrations equal to the concentration predicted at the center of the element. concentration in a volume element $V_{\mathbf{k}\mathfrak{L}}$ is the ratio of the population $P_{\mathbf{k}\mathfrak{L}}$ divided In the region of large gradients $((k+\hat{x})<4)$, the two averages could be correlacalculated using the midpoint of the volume element and multiplied by the approby the atmospheric flow (see text) and is a function of \vec{p}_i , where $\vec{p}_i \equiv \sqrt{\vec{x}_i^2 y_i^2}$. populations could be calculated from the average concentrations calculated from eq. IV. Numerical integration over the entire volume generally yielded average and 0 \leq ρ \leq 10 cm, with grainings of 0.2 cm in either coordinate. The average Then \bar{z} was incremented by $\Delta \bar{z} = u(\bar{\rho}_{_1})$, where $u(\bar{\rho}_{_1})$ represents the mass transfer ted with small correction factors (1 ± 0.1). Time-dependent populations were the ith location of the molecules was recorded in a grid with volume elements The coordinates \vec{x}_i , \vec{y}_i and \vec{z}_i were stored for the next diffusion event while In terms of reduced coordinates \bar{x} , \bar{y} , \bar{z} (e.g., \bar{x} = x/ρ_0 etc.), the ith location of a particular molecule is simply $\vec{x}(\vec{y},\vec{z})_j = \vec{x}(\vec{y},\vec{z})_{j-1} + \lambda X(Y,Z)$. priate steady state correction factor where necessary.

-32-

300 molecules each underwent 10 diffusion events in turn. The random number Therefore, the diffusion histories of the 3000 molecules were identical for All the simulations with velocity fields were such that 10 groups of each case; the difference in behavior could therefore be attributable to generation was initiated for each velocity profile with the same seed. differences in velocity profiles.

a. IMSL Library 3 is a product of International Mathematical and Statistical Libraries, Inc.

TABLE I. Comparison of experimental B and reduced $B_r^{}$ values.

8 ⁻	0.87±0.07	0.44±0.04	0.69±0.10	0.59±0.06	0.28±0.11	0.70±0.06	0.37±0.05	
B×100/q	1.8±0.15	0.9±	1.4±0.2	1.2±0.1	0.6±0.2	1.4±0.1	0.8±0.1	
Nozzle	N-2 (+)*	(-) (-N	Axial (±)	(+) 1-5	S-1 (-)	S-2 (+)	S-2 (-)	

^{*} based on D = 0.14 cm²sec⁻¹ at 760 mm Hg

TABLE II. Least squares values* for various n-step input functions.

	so .	(msec)	29.0	25.8	25.6	21.7	25.3	23.7	26.4	. 24.3
N=8	·	(cm sec)	365.4	93.4	113.2	111.8	110.7	118.7	125.9	129.1
	°°	(msec)	29.1	27.1	26.8	22.9	26.5	24.9	27.6	25.5
n=4	U .	(cm sec)	249.1	93.5	113.1	111.8	110.7	118.7	125.9	129.1
-	°°	(msec)	34.5	32.8	32.8	28.8	32.6	31.0	33.6	31.5
[=u	U -1,	(cm sec)	153.6	86.9	105.2	1.701	1.701	117.4	124.5	128.0
	2	(cm)	-	2	2	က	က	9	7	80

 * fixed at 90 cm $^2 sec^{-1}$. The experimental profiles were obtained at 24°C and 0.92 forr total pressure; average flow velocity = 37.5 cm sec $^{-1}$.

t see text for nozzle designations

 $^{^{\}frac{4}{3}}$ (+) and (-) indicate results for $\rho_{\nu}>0$ and $\rho_{\nu}<0$, respectively

TABLE III. U and D from least squares fits * with $\rm s_0$ fixed. †

D(cm ² sec ⁻¹)	25	80	7.1	143	88	92	116	87	98	100	82	93	86	72
U(cm sec ⁻¹)	149	110	92	124	109	131	107	114	121	122	123	131	136	127
o _v (cm)	0	0	0	0	0	4	4-	0	0	0	0	0	0	0
z(cm)	+_	5#	2*	3#÷	8	e	3	4	2	* 9	7#	**8	9.6	11

* Profiles from experiment presented in fig. 6; T = 24°C, total pressure = 0.92 torr; average flow velocity = 87.5 cm sec $^{-1}$.

TABLE IV. Relationships of Monte Carlo parameters to physical constants.

1	Given		٩	Physical Corollaries	aries	
~	n(0)	۵.	(msec)	U(0) [†] c) (cm sec ⁻¹)	U(o)/2D 1/4#D (cm ⁻¹) (cm ⁻²)	1/4±D (cm ⁻²)
0.01	0	750	0.0333	0	0	3.58×10 ⁴
0.02	0	3000	0.133	0	0	3.58×104
0.05	0.02 2.7×10 ⁻³ 3000	3 3000	0.133	202.5	2.025	3.58×104

^{*} based on assumed value, ρ_0 = 10 cm $^{+}$ based on assumed value, D = 50 cm 2 sec $^{-1}$

t s₀ = 25 msec, average value for n≈8 in Table II.

[†] These profiles are also represented in Table II.

References

- H. W. Hartel and M. Polanyi, Z. Phys. Chem. 811, 97 (1930).
- 2. H. V. Hartel, N. Meer and M. Polanyi, Z. Phys. Chem. 819, 139 (1932).
- A. F. Dodonov, G. K. Lavrovskaya, V. P. Strunin, and V. L. Tal'roze, Kinet. Katal. Z, 385 (1965).
- W. Heller, Trans. Faraday Soc. 33, 1556 (1937)
- 5. D. Garvin, V. P. Guinn, and G. B. Kistiakowsky, Disc. Faraday Soc. 17, 32 (1954).
- 6. J. F. Reed and B. S. Rabinovitch, J. Phys. Chem. 59, 261 (1955).
- 7. K. J. Mintz and D. J. LeRoy, Can. J. Chem. 53, 1729 (1975).
- V. P. Strunin, A. F. Dodonov, G. K. Lavrovskaya, and V. L. Tal'roze, Kinet. Katal. Z, 693 (1965). See also: A. F. Dodonov, G. F. Lavrovskaya, and V. L. Tal'roze, ibid, 10, 22 (1969); 10, 477 (1969), 0p. Cit. 10, 573 (1969); 11, 677 (1970).
- 9. Y. M. Gershenzon, F. B. Moin and Y. P. Yurkevich, Kinet. Katal. 16, 1373 (1975).
- V. A. Nevrovskii and L. B. Soroka, Kinet. Katal. 17, 551 (1976).
- 11. R. E. Walker and A. A. Westenberg, J. Chem. Phys. 29, 1139 (1958).
- M. L. Snow and A. A. Westenberg, Quart. Progr. Rept., Applied Physics Laboratory, The Johns Hopkins University, TG331-3 October-December 1959.
- 13. G. C. Frazier, Jr. and W. J. Kooyman, Chem. Eng. Sci. 23, 353 (1968).
- L. M. Hart, C. Grunfelder, and R. M. Fustrom, Combust. Flame 23, 109 (1974).
- A. F. Dodonov, G. K. Lavrovskaya, V. P. Strunin, and V. L. Tal'roze, Kinet. Katal. 2, 385 (1966).
- 14. S. Jarvis, Jr., J. Res. Nat. Bur. Stand. Sec. B 728, 135 (1968).
- R. L. Brown, Int. J. Chem. Kinet. 2, 475 (1970).
- V. A. Nevrovskii, Kinet. Katal. 16, 823 (1975).
- 17. H. A. Wilson, Proc. Camb. Phil. Soc. 12, 406 (1904).
- 18. Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun, U.S. Department of Commerce and National Bureau of Standards, Applied Mathematics Series 55 (1964).

- 19. V. G. Jensen, Proc. Roy. Soc. A 249, 346 (1959).
- 20. D. N. G. Allen and R. V. Southwell, Quart. J. Mech. 8, 129 (1955).
- M. VanDyke, "Perturbation Methods in Fluid Mechanics," Academic Press, New York, N.Y., 1964.
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, "Molecular Theory of Gases and Liquids," John Wiley and Sons, Inc., New York, N.Y., 1964.
- 23. J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,"
 - Prentice-Hall, Englewood Cliffs, N.J., 1965.

J. M. Mullaly and H. Jacques, Phil. Mag. 48, 1105 (1924).

24.

- 25. J. L. Spier, Physica 7, 381 (1940).
- 26. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

Figure Captions

- Fig. 1 Open circles show plot of relative axial (i.e., R = z) Hg concentration as a function of R⁻¹ for radial nozzle N-1, T = 28°, total pressure = 1.52 torr, <u>U</u> = 106 cm sec⁻¹. Filled circles represent values corrected for finite detector path length. Error bars indicate uncertainty in z⁻¹ corresponding to an uncertainty in z of ± 0.05 cm.
- Fig. 2 Experimental vertical Hg profiles (arbitrary units) at z=2 cm for radial nozzle N-2, $T=22^\circ$; \mathbf{O} , Q=37.5 atm cc sec⁻¹, total pressure = 1.43 torr, $\overline{U}=113$ cm sec⁻¹, $\mathbf{v}_1/D=4.7$ cm⁻¹; \mathbf{O} , Q=37.1 atm cc sec⁻¹, total pressure = 1.60 torr, $\overline{U}=100$ cm sec⁻¹, $\mathbf{v}_1/D=38$ cm⁻¹. Solid curve represents fits to the open circles based on $\mathbf{g}^+=1.8\times10^{-2}$ Q for $\mathbf{p}_{\mathbf{v}}>0$, and $\mathbf{B}^-=1\times10^{-2}$ Q for $\mathbf{p}_{\mathbf{v}}<0$. Calculated curves include corrections for finite detector path length.
- Fig. 3 Vertical Hg profile (arbitrary units) at z = 4 cm for radial nozzle N-2, T = 22°, Q = 37.5 atm cc sec⁻¹, total pressure = 1.43 torr, \overline{U} = 113 cm sec⁻¹, $v_{\rm s}/D$ = 4.7 cm⁻¹. Solid curves represent calculated profiles (corrected for finite detector path length) based on B⁺ = 1.8x10⁻² Q for $\rho_{\rm v}$ > 0, and B⁻ = 1x10⁻² Q for $\rho_{\rm v}$ < 0.
- Fig. 4 Horizontal Hg profile (arbitrary units) at z = 4 cm. Same experiment as in Fig. 3. Solid curves represent calculated profiles (with corrections for finite detector path length) based on B = 1.3×10^{-2} Q.

- Fig. 5 Plot of apparent vertical shift in maximum of vertical concentration profile at z = 2 cm as a function of v_n/D (see text). Conditions were nearly constant with total pressures around 1.5 torr N₂ and Ū ∿ 100 cm sec⁻¹.
 ○, radial nozzle N-1; slope at large v_n/D equals 0.17 cm². △, radial nozzle N-2 with He as nozzle gas.
- Fig. 6 Vertical Hg profile (arbitrary units) at z=2 cm for the axial nozzle, $T=23^{\circ}, \; Q=34.8 \; \text{atm cc sec}^{-1}, \; \text{total pressure}=1.53 \; \text{torr}, \; \overline{U}=98 \; \text{cm}$ $\text{sec}^{-1}, \; \text{v}_n/D=14.6 \; \text{cm}^{-1}. \; \text{Solid curves represent calculated profiles}$ (with corrections for finite detector path length) based on $B=1.4\times10^{-2} \; \Omega.$
- sa a function of distance R from source for radial nozzle N-1, T = 24°, total pressure = 0.92 torr, Ū = 175 cm sec⁻¹, y₁/D = 40 cm⁻¹; △ , axial data (z = R, p_v = 0); , above axis data (z = 3 cm, p_v = 4 cm); ② , below axis data (z = 3 cm, p_v = 4 cm); least squares fit with inverse slope 138 cm sec⁻¹ (r² > 0.99).
- Fig. 8 Experimental delay times from CAI trigger to half height of Hg pulses as a function of the radial distance above the nozzle (z \approx 0) for radial nozzle N-1, T = 27°, total pressure = 1.70 torr, \overline{U} = 89 cm sec⁻¹, $v_n/D \approx 46$ cm⁻¹. Straight line represents least squares fit (r² > .99) of data in the range p_v = 2-5 cm. Inverse slope is 62 cm sec⁻¹.

- Fig. 9 Monte Carlo calculated populations of grains $V_{\mathbf{5},\mathbf{6}}$ (App. 2) for case of diffusion only $(u(\delta)=0)$ from two simulations. In each case the time, t, corresponds to $2\rho_0^2/30$ sec and the source intensity corresponds to $4.5 \times 10^7 \ D/\rho_0^2 \ \text{sec}^{-1}$. Specific input values were: \mathbf{O} , $\lambda=0.02$, P=3000, $E_D=100$; $\mathbf{\Delta}$, $\lambda=0.01$, P=750, $E_D=400$. Solid line is smoothed curve through populations calculated from eq XXII. The peaking of the populations is a result of the increasing volumes $\overline{V}_{\mathbf{5},\mathbf{6}}$ as 2 increases.
- Fig. 10 Calculated transverse concentration profiles in linearized form based on steady-state concentrations determined from Monte Carlo simulations with an assumed value $\rho_0=10$ cm, z=3.9 cm, $\lambda=0.02$, $u(o)=2.7x10^{-3}$, P=3000, $E_0=500$, U/2D=2.03 cm⁻¹; O, flat profile $\{u(\bar{b})=u(0)\}$. Solid line represents least squares fit (slope = -2.07 cm⁻¹, $r^2>0.99$); O, parabolic profile $\{u(\bar{b})=u(0)(1-\bar{p}^2)\}$. Solid line represents least squares fit (slope = -1.96 cm⁻¹, $r^2>0.99$); O, triangular profile $\{u(\bar{b})=u(0)(1-\bar{b})\}$. Solid line represents least squares fit (slope = -1.72 cm⁻¹, $r^2>0.99$). All fits were for data in the range $O \le D \le O_0/3$ (R = 5.1 cm).
- Fig. 11 Comparison of Monte Carlo time development profiles in a flat velocity field with that calculated from eq XXI. Monte Carlo parameters and the physical equivalents (o_o = 10 cm) are given in the bottom row of Table IV.
 O, z = 1.9 cm, p = 0.1 cm; △, z = 0.1 cm, p = 1.9 cm. Solid line calculated for R = 1.903 cm.

- Fig. 12 Comparison of axial Monte Carlo time development profiles with that calculated for flat velocity field by eq XXI (solid curve); the parameters are given in bottom row of Table IV; here z = 3.9 cm, $\rho=0.1\ \text{cm;}\ O\ , \text{flat profile }(u(\rho)-u(0);\ \Delta\ , \text{ parabolic profile }(u(\bar{\rho})=u(0)(1-\bar{\rho}^2)).$
- Fig. 13 Comparison of off-axis Monte Carlo time development profile with that calculated for flat velocity field by eq XX (solid curve). z = p = 2.9 cm. Other parameters are given in bottom row of Table IV. , flat profile (u(p) = u(0)); △ , parabolic profile (u(p) = u(0)(1-p²));
 , triangular profile (u(p) = u(0)(1-p)).

//

