SIGLE DU COURS : NYC	NOM DU CHARGÉ DE COURS :	Philippe Laporte
TITRE DU COURS : Ondes, Opt	iques et Physique Moderne	
□ EXAMEN INTRA ☑ EXAMEN FINAL □ EXAMEN DIFFÉRÉ □ EXAMEN FORMATIF	DATE : 9	décembre 2024 DURÉE : 1h40 SALLE : D-306
DIRECTIVES PÉDAGOGIQUES	: calculatrice programmable docu. permise (1 page recto-verso) examen imprimé recto-verso	⊠ calc. non-prog. ⊠ docu. non-permise ⊠ feuille de formules
Nom :		
Prénom :		
Groupe: 1 2	□ 3	
	s, a 10 questions et compte pour 20% d n total de 15 pages à l'examen.	e la note finale.
Répondez à TOUTES LES QU meilleures réponses dans le cas	ESTIONS et choisissez la meilleure où plusieurs choix sont spécifiés.	réponse ou les
Votre démarche doit être transpar	estion en utilisant les concepts et les for rente et claire. Tout manque de clarté s doivent inclure les unités, le cas échéa	era la responsa-
pouvez vous en servir dans n'imp	t contiennent des informations et form orte quel énoncé, sauf sous mention ex elle formule vous utilisez et dans quel	plicite contraire.
· · · · · · · · · · · · · · · · · · ·	lirectement dans le document, dans les e autre feuille, en indiquant clairement à	-
d'utilisation de matériel non exp	tir durant l'examen. Toute forme de co licitement permis sera considérée comm ques et disciplinaires pertinentes.	

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

1 Questions à Développement (4 Questions)

- 1. (25 points) Considérez un laser de 500 nm incident sur deux fentes, distantes l'une de l'autre de 0.20 mm et chacune ayant une largeur de 0.05 mm. Supposez qu'un écran soit à une distance de 2 m. Le but de cette question sera de vous faire tracez le patron apparaissant sur l'écran.
 - (a) (10 Points) Pour l'instant, ignorez l'interférence. En ne considérant que la diffraction, quel patron devrait être vu? Répondez à cette partie en déterminant les positions des trois premiers minima de diffraction.
 - (b) (10 Points) Pour l'instant, ignorez la diffraction. En ne considérant que l'interférence, quel patron devrait être vu? Répondez à cette partie en déterminant les positions des quelques premiers minima de diffraction. Soyez sûr d'en calculer suffisamment pour vous rendre au moins au deuxième minimum de diffraction.
 - (c) (5 Points) Illustrez le patron complet (diffraction et interférence) observé sur l'écran.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

PAGE 3 DE 15

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

2. (25 points) Considérez une pellicule mince, d'épaisseur e et d'indice de réfraction 1.65, telle qu'illustrée à la figure 1. La pellicule est à la surface de l'eau (n = 1.33), avec un gaz de CO_2 (n = 1.000045) au dessus.

- (a) (11 Points) Quelle est la plus petite épaisseur de pellicule pouvant être utilisée pour que un faisceau de 650 nm soit complètement atténuée, de façon destructrice. *Note*: N'oubliez pas de bien justifiez chaque étape pour vous rendre à votre résultat.
- (b) (11 Points) À cette épaisseur, quelles longueurs d'onde entre 350nm et 800nm sont amplifiées?
- (c) (3 Points) Pour quelle raison pouvons-nous raisonnablement utiliser seulement deux rayons? En d'autres mots, pourquoi ne considérons-nous pas plus de rayons provenant de plus de réflexions?

FIGURE 1 – Pellicule mince pour la question 2

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

PAGE 5 DE 15

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

- 3. (10 points) Lorsque des photons de 5 eV sont incidents sur une plaque de tungstène, les photo-électrons, produits par effet photo-électrique, ont une vitesse de 300 m/s.
 - (a) (5 Points) Déterminez la longueur d'onde et la fréquence des photons incidents.
 - (b) (2 Points) Déterminez l'énergie cinétique des photo-électrons.
 - (c) (3 Points) Déterminez l'énergie de liaison des électrons dans la plaque de tungstène en électronvolts.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

4. (15 points) L'écureuil croit avoir découvert de la vie sur une nouvelle planète située à 10²⁵ m. Selon son hypothèse, il s'agirait d'une forme de vie microbienne de 3 cm de taille (gros microbe), pouvant être modélisée par un corps noir. Il veut savoir la taille d'instrument dont il aurait besoin pour confirmer ou infirmer son hypothèse. Pour l'aider dans ses démarches, répondez aux questions suivantes.

- (a) (5 Points) L'écureuil estime que cette forme de vie émettra de la radiation à 500 W/m^2 . Quelle est la température de cette forme de vie?
- (b) (5 Points) À cette température, quelle est la longueur d'onde majoritaire?
- (c) (5 Points) En supposant que l'écureuil ne doive voir que cette longueur d'onde, quelle doit être la taille minimale de l'ouverture de son appareil de mesure?

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

2 Choix de Réponse (10 Questions)

5.

Choix de réponse (10 points). Choisissez la réponse qui est la plus exacte. Vous n'avez **pas** besoin de justifier votre réponse.

	, , , , , , , , , , , , , , , , , , ,
` •	points) Choix de réponse. Choisissez la (les) réponse(s) juste(s).
Vous	s n'avez pas besoin de justifier votre réponse.
(a) ((1 Point) La lumière est une onde électromagnétique :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.
, ,	(1 Point) Lorsqu'un rayon de lumière est réfléchi sur un interface, il est possible d'avoir un déphasage de 0 ou de π :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.
` '	(1 Point) Pour la lumière, il est équivalent de parler de longueur d'onde λ , de fréquence f ou d'énergie E :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.
·	(1 Point) La différence de marche correspond à la différence de distance entre une source A et un point P et la distance entre une source B et le même point P :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.
	(1 Point) La loi de Brewster indique que n'importe quel rayon de lumière réfléchi est polarisé :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.
` '	(1 Point) La nature quantique des électrons impliquent que les électrons liés (non-ionisés) peuvent avoir n'importe quelle énergie :
	□ Vrai;
	□ Faux;
	□ Il manque d'informations.

SIGLE DU COURS: NYC

NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne (g) (1 Point) Avec un montage de filtres polariseurs, il est possible d'augmenter l'intensité finale (par rapport à l'intensité initiale) : □ Vrai; □ Faux; $\ \square$ Il manque d'informations. (h) (1 Point) Dans un montage d'interférence et de diffraction, plus la taille des fentes est petite et plus les minima de diffraction sont éloignées : □ Vrai; □ Faux; □ Il manque d'informations. (i) (1 Point) Dans un montage d'interférence et de diffraction, plus la distance entre les fentes est petite et plus les minima d'interférence sont éloignées : □ Vrai; □ Faux; □ Il manque d'informations. (j) (1 Point) La lumière est : □ Une onde; ☐ Une particule; ☐ Un écureuil surexcité; ☐ Un raton laveur suspicieux.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

- 7. (5 Points) Décrivez brièvement un phénomène physique démontrant que la lumière peut être considérée comme une particule.
 - Décrivez brièvement un phénomène physique démontrant que la lumière peut être considérée comme une onde.

SIGLE DU COURS: NYC NOM DU CHARGÉ DE COURS : Philippe Laporte TITRE DU COURS : Ondes, Optiques et Physique Moderne 8. (5 Points) Décrivez brièvement ce qu'est la polarisation de la lumière et une méthode d'obtenir de la lumière polarisée à partir de lumière non-polarisée. 9. (2 Points Boni) Donnez l'étymologie des mots suivants : (a) Quantique (b) Photon (c) Himalaya Pour l'étymologie, vous devez donner la langue d'origine et la signification du mot dans sa langue d'origine. Note: 1 pt pour l'étymologie complète (langue et sens) du premier mot, 2 pts pour l'étymologie complète des trois mots. 10. (1 Point Bonus) Si quelqu'un vous dit que la physique est facile, qu'avez-vous le droit de lui dire de ma part? *Indice*: Oui, oui, vous avez le droit d'écrire cela dans un examen.

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

TITRE DU COURS : Ondes, Optiques et Physique Moderne

4 Équations Pertinentes

1.a	Mouvement Harmonique Simple	Position	$x(t) = A\sin(\omega t + \phi)$
1.b	Mouvement Harmonique Simple	Vitesse	$v(t) = A\omega\cos(\omega t + \phi)$
1.c	Mouvement Harmonique Simple	Accélération	$a(t) = -A\omega^2 \sin(\omega t + \phi)$
1.d	Mouvement Harmonique Simple	Équation Différentielle	$\frac{d^2x}{dt^2} = -\omega^2 x$
2.	Période		$T = \frac{2\pi}{4}$
3.	Fréquence		$f = \frac{1}{T}$
4.a	Fréquence Angulaire	Masse-Ressort	$\omega = \sqrt{\frac{k}{m}}$
4.b	Fréquence Angulaire	Pendule	$\omega = \sqrt[V]{\frac{g}{L}}$
5	Onde progressive sinusoïdale		$y(x,t) = A\sin(kx \mp \omega t + \phi)$
6	Vitess de Propagation		$V = \sqrt{\frac{F}{\mu}}$
7.a	Densité	Linéique	$\mu = \frac{m}{L}$
7.b	Densité	Surfacique	$\sigma = \frac{m}{A}$
7.c	Densité	Volumique	$ ho = rac{m}{V}$
8	Vitess de Propagation		$v = \frac{\lambda}{T} = \frac{\omega}{k} = \lambda f$
9	Fréquence Angulaire		$\omega = \frac{2\pi}{T}$
10	Nombre d'Onde		$k = \frac{2\pi}{\lambda}$
11	Onde Stationnaire		$y(x, t) = A\sin(kx)\cos(\omega t)$
12.a	Onde Résonante	Longueur d'onde	$\lambda_n = \frac{2L}{n}, n \in \{1, 2, 3, \ldots\}$
12.b	Onde Résonante	Fréquence	$f_n = \frac{nv}{2L}, n \in \{1, 2, 3, \ldots\}$
13	Température		$T_K = T_C + 273.15$
14.a	Vitesse du Son	Air K	$v_{son} pprox 20 \sqrt{T_K}$
14.b	Vitesse du Son	Air C	$v_{\rm son} \approx 331\sqrt{1+\frac{T_c}{273.15}}$
14.c	Vitesse du Son	Fluide	$v_{\rm son} = \sqrt{\frac{K}{\rho}}$
15.a	Intensité		$I = \frac{P}{A}$
15.b	Intensité		$I = \frac{P}{4\pi r^2}$
16	Décibels		$\beta = 10 \log \left(\frac{I}{I_0} \right)$
17.a	Onde Résonante	Tuyau Ouvert	$\lambda_n = \frac{2L}{n}, n \in \{1, 2, 3, \ldots\}$

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

17.c Onde Résonante Tuyau Guvert $h_n = \frac{\gamma_L}{m}$, $h \in \{1,2,3,\}$ 17.d Onde Résonante Tuyau Fermé $\lambda_m = \frac{M}{m}$, $m \in \{1,3,5,\}$ 18 Fréquence de Battement Tuyau Fermé $h_m = \frac{m}{nL}$, $m \in \{1,3,5,\}$ 19 Effet Doppler $h_m = \frac{m}{nL}$, $m \in \{1,3,5,\}$ 20 Indice de Réfraction $h_m = \frac{m}{nL}$, $m \in \{1,3,5,\}$ 21 Longueur d'onde dans un milieu $h_m = \frac{m}{nL}$, $h_m \in \{1,3,5,\}$ 22 Loi de la Réflexion $h_m = \frac{m}{nL}$, $h_m \in \{1,3,5,\}$ 23 Loi de la Réflexion $h_m = \frac{m}{nL}$, $h_m \in \{1,3,5,\}$ 24 Angle Critique $h_m = \frac{m}{nL}$, $h_m \in \{1,3,5,\}$ 25 Rayon de Courbure $h_m = \frac{m}{nL}$, $h_m = m$	17.	Ondo Diamento	T O	f ny = [1 2 2]
17.dOnde RésonanteTuyau Fermé $f_m = \frac{mv}{4L}$, $m \in \{1, 3, 5, \ldots\}$ 18Fréquence de Battement $f_{bat} = f_1 - f_2 $ 19Effet Doppler $f' = \left(\frac{v_{sum} \pm v_{subn}}{v_{vom} + v_{vom}}\right) f$ 20Indice de Réfraction $n_\chi = c/v_\chi$ 21Longueur d'onde dans un milieu $\lambda_\chi = \lambda_0 n_\chi$ 22Loi de la Réflexion $\theta_{incident} = \theta_{rélidchi}$ 23Loi de la Réfraction $n_1 \sin(\theta_{incident}) = n_2 \sin(\theta_{réfractic})$ 24Angle Critique $\theta_c = \arcsin(n_2/n_1)$ 25Rayon de Courbure $R = 2f$ 26Loi des Miroirs $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ 27Grossissement Miroirs $G = \frac{-q}{p} = \frac{g_1}{g_2} = \frac{h_2}{h_0}$ 28Vergence $V = \frac{1}{r}$ 29Loi des Lentilles Minces $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ 30Grossissement Transversal $m = \frac{-q}{p} = \frac{g_2}{g_2} = \frac{h_2}{h_0}$ 31Grossissement Angulaire $G = \frac{\beta}{a}$ 32Amplitude d'Accomodation $\Delta V_{acc} = V_{max} - V_{min}$ 33Identités TrigonométriquesDéphasage34 $\Delta V_{acc} = V_{max} - V_{min}$ 35 $1 + \tan^2(A) = \sec^2(A)$ $1 + \cot^2(A) = \csc^2(A)$ 36 $1 + \cot^2(A) = \csc^2(A)$ 37Somme $\sin(A) + \sin(B) = 2\sin(\frac{A+B}{2})\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$ 38 $\cos(A) + \cos(B) = 2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$ 39Symétrie $\cos(A) = \sin(A)$ 40AntiSymétrie $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 41Somme $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$	17.b	Onde Résonante	Tuyau Ouvert	$f_n = \frac{nv}{2L}, n \in \{1, 2, 3, \ldots\}$
18Fréquence de Battement $I_{bat} = I_1 - I_2 $ 19Effet Doppler $I_{bat} = I_1 - I_2 $ 20Indice de Réfraction $n_X = c/v_X$ 21Longueur d'onde dans un milieu $\lambda_X = \lambda_0 / n_X$ 22Loi de la Réflexion $\theta_{incident} = \theta_{reflechi}$ 23Loi de la Réfraction $n_1 \sin(\theta_{incident}) = n_2 \sin(\theta_{refractie})$ 24Angle Critique $\theta_c = \arcsin(n_2/n_1)$ 25Rayon de Courbure $R = 2f$ 26Loi des Miroirs $\frac{1}{I} = \frac{1}{p} + \frac{1}{q}$ 27Grossissement Miroirs $G = \frac{-q}{p} = \frac{g_0}{g_0} = \frac{h_0}{h_0}$ 28Vergence $V = \frac{1}{I}$ 29Loi des Lentilles Minces $\frac{1}{I} = \frac{1}{p} + \frac{1}{q}$ 30Grossissement Transversal $m = \frac{-q}{p} = \frac{g_0}{g_0} = \frac{h_0}{h_0}$ 31Grossissement Angulaire $G = \frac{B}{a}$ 32Amplitude d'Accomodation $\Delta V_{acc} = V_{max} - V_{min}$ 33Identités Trigonométriques $D\acute{e}$ phasage $\cos(A) = \sin(A + \pi/2)$ 34 $3f = \frac{1}{1} + \frac{1}{1}$	17.c	Onde Résonante	Tuyau Fermé	$\lambda_m = \frac{4L}{m}, m \in \{1, 3, 5, \ldots\}$
	17.d	Onde Résonante	Tuyau Fermé	$f_m = \frac{mv}{4L}, m \in \{1, 3, 5, \ldots\}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	Fréquence de Battement		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	Effet Doppler		$f' = \left(rac{v_{son} \pm v_{obs}}{v_{son} \mp v_{source}} ight) f$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	Indice de Réfraction		$n_{\chi} = c/v_{\chi}$
23 Loi de la Réfraction 24 Angle Critique 25 Rayon de Courbure 26 Loi des Miroirs 27 Grossissement Miroirs 28 Vergence 29 Loi des Lentilles Minces 30 Grossissement Transversal 31 Grossissement Angulaire 32 Amplitude d'Accomodation 33 Identités Trigonométriques 34 Somme 36 Somme 37 Somme 38 Somme Supmétrie 40 AntiSymétrie 41 Somme $n_1 \sin(\theta_{incident}) = n_2 \sin(\theta_{réfracté})$ $\theta_c = \arcsin(n_2/n_1)$ $\theta_c = \arcsin(n$	21	Longueur d'onde dans un milieu		$\lambda_{\chi} = \lambda_0/n_{\chi}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	Loi de la Réflexion		$ heta_{ ext{incident}} = heta_{ ext{r\'efl\'echi}}$
25 Rayon de Courbure 26 Loi des Miroirs 27 Grossissement Miroirs 28 Vergence 29 Loi des Lentilles Minces 30 Grossissement Transversal 31 Grossissement Angulaire 32 Amplitude d'Accomodation 33 Identités Trigonométriques 34 Somme 35 Somme 36 Somme 37 Somme 38 Somme 39 Symétrie 40 AntiSymétrie 29 Loi des Lentilles Minces	23	Loi de la Réfraction		$n_1 \sin(\theta_{\text{incident}}) = n_2 \sin(\theta_{\text{réfracté}})$
Loi des Miroirs $\frac{1}{f} = \frac{1}{\rho} + \frac{1}{q}$ Crossissement Miroirs $G = \frac{-q}{p} = \frac{y_1}{y_0} = \frac{h_1}{h_0}$ 28 Vergence $V = \frac{1}{f}$ 29 Loi des Lentilles Minces $m = \frac{-q}{p} = \frac{y_1}{y_0} = \frac{h_1}{h_0}$ 31 Grossissement Transversal $m = \frac{-q}{p} = \frac{y_1}{y_0} = \frac{h_1}{h_0}$ 32 Amplitude d'Accomodation $\Delta V_{\text{acc}} = V_{\text{max}} - V_{\text{min}}$ 33 Identités Trigonométriques $\Delta V_{\text{acc}} = V_{\text{max}} - V_{\text{min}}$ 34 $\sin^2(A) + \cos^2(A) = 1$ 35 $\sin^2(A) + \cos^2(A) = 1$ 36 $1 + \tan^2(A) = \sec^2(A)$ 37 Somme $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 38 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 39 $\sin(A) + \sin(B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 40 $AntiSymétrie$ $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 41 $\sin(A+B) = \sin(A)\cos(B) - \cos(A)\sin(B)$ $\sin(A+B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	24	Angle Critique		$\theta_c = \arcsin(n_2/n_1)$
$G = \frac{-q}{p} = \frac{y_i}{y_0} = \frac{h_i}{h_0}$ 28 Vergence $V = \frac{1}{l}$ 29 Loi des Lentilles Minces $I = \frac{1}{l} = \frac{1}{l} + \frac{1}{l} = \frac{1}{l}$ 30 Grossissement Transversal $M = \frac{-q}{p} = \frac{y_i}{y_0} = \frac{h_i}{h_0}$ 31 Grossissement Angulaire $G = \frac{\beta}{\alpha}$ 32 Amplitude d'Accomodation $\Delta V_{acc} = V_{max} - V_{min}$ 33 Identités Trigonométriques $Sin^2(A) + cos^2(A) = 1$ 35 $1 + tan^2(A) = sec^2(A)$ 36 $1 + cot^2(A) = sec^2(A)$ 37 $Somme$ $sin(A) + sin(B) = 2 sin (\frac{A+B}{2}) cos (\frac{A-B}{2})$ 38 $cos(A) + cos(B) = 2 cos (\frac{A+B}{2}) cos (\frac{A-B}{2})$ 39 $Symétrie$ $AntiSymétrie$ $Somme$ $sin(A + B) = sin(A) cos(B) + cos(A) sin(B)$ 40 $Somme$ $sin(A - B) = sin(A) cos(B) - cos(A) sin(B)$ $sin(A - B) = sin(A) cos(B) - cos(A) sin(B)$	25	Rayon de Courbure		R=2f
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	Loi des Miroirs		$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$
Loi des Lentilles Minces Grossissement Transversal Grossissement Angulaire Amplitude d'Accomodation Déphasage	27	Grossissement Miroirs		$G = \frac{-q}{p} = \frac{y_i}{y_0} = \frac{h_i}{h_0}$
Grossissement Transversal Grossissement Angulaire Amplitude d'Accomodation $G = \frac{\beta}{\alpha}$ Amplitude d'Accomodation $G = \frac{\beta}{\alpha}$ $G = \frac$	28	Vergence		$V = \frac{1}{f}$
31 Grossissement Angulaire 32 Amplitude d'Accomodation 33 Identités Trigonométriques 34 $Somme$ 35 $Somme$ 36 $Somme$ 37 $Somme$ 38 $Somme$ 39 $Somme$ 39 $Somme$ 30 $Somme$ 30 $Somme$ 30 $Somme$ 31 $Somme$ 32 $Somme$ 33 $Somme$ 34 $Somme$ 35 $Somme$ 36 $Somme$ 37 $Somme$ 38 $Somme$ 39 $Somme$ 39 $Somme$ 30 $Somme$ 30 $Somme$ 31 $Somme$ 32 $Somme$ 33 $Somme$ 34 $Somme$ 35 $Somme$ 36 $Somme$ 37 $Somme$ 38 $Somme$ 39 $Somme$ 30 $Somme$ 30 $Somme$ 30 $Somme$ 31 $Somme$ 32 $Somme$ 33 $Somme$ 34 $Somme$ 35 $Somme$ 36 $Somme$ 37 $Somme$ 38 $Somme$ 39 $Somme$ 30 $Somme$ 30 $Somme$ 30 $Somme$ 30 $Somme$ 31 $Somme$ 32 $Somme$ 33 $Somme$ 34 $Somme$ 35 $Somme$ 36 $Somme$ 37 $Somme$ 38 $Somme$ 39 $Somme$ 30	29	Loi des Lentilles Minces		$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$
32Amplitude d'Accomodation $\Delta V_{\rm acc} = V_{\rm max} - V_{\rm min}$ 33Identités TrigonométriquesDéphasage $\cos(A) = \sin(A + \pi/2)$ 34 $\sin^2(A) + \cos^2(A) = 1$ 35 $1 + \tan^2(A) = \sec^2(A)$ 36 $1 + \cot^2(A) = \csc^2(A)$ 37Somme $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 38 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 39Symétrie $\cos(A) + \cos(B) = 2\cos(A)$ 40AntiSymétrie $\sin(-A) = -\sin(A)$ 41Somme $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 42 $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	30	Grossissement Transversal		$m = \frac{-q}{p} = \frac{y_i}{y_0} = \frac{h_i}{h_0}$
33 Identités Trigonométriques Déphasage $\cos(A) = \sin(A + \pi/2)$ 34 $\sin^2(A) + \cos^2(A) = 1$ 35 $1 + \tan^2(A) = \sec^2(A)$ 36 $1 + \cot^2(A) = \csc^2(A)$ 37 Somme $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 38 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 39 Symétrie $\cos(-A) = \cos(A)$ 40 AntiSymétrie $\sin(-A) = -\sin(A)$ 41 Somme $\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 42 $\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	31	Grossissement Angulaire		$G = \frac{\beta}{\alpha}$
34 $\sin^{2}(A) + \cos^{2}(A) = 1$ 35 $1 + \tan^{2}(A) = \sec^{2}(A)$ 36 $1 + \cot^{2}(A) = \csc^{2}(A)$ 37 $\sin(A) + \sin(B) = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$ 38 $\cos(A) + \cos(B) = 2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$ 39 $\cos(A) + \cos(B) = \cos(A)$ 40 AntiSymétrie $\sin(-A) = -\sin(A)$ 41 $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 42 $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	32	Amplitude d'Accomodation		$\Delta V_{ m acc} = V_{ m max} - V_{ m min}$
35 $1 + \tan^{2}(A) = \sec^{2}(A)$ 36 $1 + \cot^{2}(A) = \csc^{2}(A)$ 37 $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 38 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 39 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 40 $\sin(A-B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 41 $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$ 42 $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	33	Identités Trigonométriques	Déphasage	$\cos(A) = \sin(A + \pi/2)$
36 37 Somme $ 1 + \cot^{2}(A) = \csc^{2}(A) $ 38 $ \sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) $ 39 $ \cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) $ 39 $ \cos(-A) = \cos(A) $ 40 $ AntiSymétrie $ $ \sin(-A) = -\sin(A) $ 41 $ Somme $ $ \sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B) $ 42 $ \sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B) $	34			$\sin^2(A) + \cos^2(A) = 1$
Somme $\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ $\cos(-A) = \cos(A)$ $\sin(-A) = -\sin(A)$ $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	35			$1 + \tan^2(A) = \sec^2(A)$
38 $\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ 39 $\operatorname{Sym\acute{e}trie} \qquad \cos(-A) = \cos(A)$ 40 $\operatorname{AntiSym\acute{e}trie} \qquad \sin(-A) = -\sin(A)$ 41 $\operatorname{Somme} \qquad \sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 42 $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	36			$1 + \cot^2(A) = \csc^2(A)$
Symétrie $\cos(-A) = \cos(A)$ 40 AntiSymétrie $\sin(-A) = -\sin(A)$ 41 Somme $\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ 42 $\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	37		Somme	$\sin(A) + \sin(B) = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
AntiSymétrie $sin(-A) = -sin(A)$ 41 $Somme$ $sin(A + B) = sin(A) cos(B) + cos(A) sin(B)$ 42 $sin(A - B) = sin(A) cos(B) - cos(A) sin(B)$	38			$\cos(A) + \cos(B) = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
Somme $\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ $42 \qquad \sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	39		Symétrie	$\cos(-A) = \cos(A)$
$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$	40		AntiSymétrie	$\sin(-A) = -\sin(A)$
	41		Somme	$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$
Inverse $ \cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1 - x^2}$	42			$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$
	43		Inverse	$\cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1 - x^2}$

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

44	Déphasage		$\Delta \phi = \phi_2 - \phi_1$
45		Total	$\Delta\phi_{\rm tot} = \Delta\phi_{\delta} + \Delta\phi_{r} + \Delta\phi_{0}$
46	Interférence		$\Delta\phi_{\mathrm{tot}}=(2\pi)m, m\in\mathbb{Z}$
47			$\Delta \phi_{\text{tot}} = (2\pi)(m+1/2), m \in \mathbb{Z}$
48	Différence de Marche		$\delta = r_2 - r_1$
49	Expérience de Young		$d\sin\theta=\delta$
50			an heta=y/L
51			$m\lambda = \frac{yd}{L}$
52			$(m+1/2)\lambda = \frac{yd}{L}$
53	Déphasage	Marche	$\Delta \phi_{\delta} = \left(\frac{r_2 - r_1}{\lambda}\right) (2\pi)$
54	Pellicule Mince		$\Delta\phi_{\delta}=rac{4\pi e n_p}{\lambda_0}$
55	Diffraction		$a\sin\theta=M\lambda$, $M\in\mathbb{Z}$
56			an heta = y/L
57			$y_M = \frac{M\lambda L}{a}$
58	Critère de Rayleigh		$\theta_c = \frac{1.22\lambda}{D}$
59	Loi de Brewster		$\tan\theta_p=n_2/n_1$
60	Loi de Malus		$I = I_0/2 I = I_0 \cos^2 \theta$
61	Loi de Planck		$R(\lambda, T) = \frac{2\pi c^2 h \lambda^{-5}}{e^{hc/\lambda K_B T} - 1}$
62	Loi du Déplacement Spectral de Wien		$\lambda_{\max} = \frac{2.898 \cdot 10^{-3} \text{ m K}}{T}$
63	Loi de Stefan-Boltzmann		$I = \sigma T^4$
64	Énergie d'un Photon		$E = hf = \frac{hc}{\lambda}$
65	Relation Masse-Énergie		$E^2 = m^2c^4 + p^2c^2$
66	Énergie Cinétique		$K = \frac{1}{2}mv^2$
67	Effet Photo-Électrique		$E_{\gamma} = K_e + \phi$
68	Diffusion Rayleigh		$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{mc^2}(1 - \cos \theta)}$
69			$\lambda' - \lambda = \left(\frac{h}{m_e c}\right) (1 - \cos \theta)$
70	Approximation des Petits Angles	cos	$\cos x \approx 1 - \frac{x^2}{2} \approx 1$
71		sin	$\sin x \approx x$
72		tan	$\tan x \approx x$
73_	Approximation Binomiale		$(1+x)^{\alpha} \approx 1 + \alpha x$

SIGLE DU COURS : NYC NOM DU CHARGÉ DE COURS : Philippe Laporte

74	Vitesse de la Lumière dans le Vide	$c = 3.00 \cdot 10^8 \text{ m/s}$
75	Charge Élémentaire	$q_e = 1.602 \cdot 10^{-19} \text{ C}$
76	ÉlectronVolt	1 eV = $1.602 \cdot 10^{-19}$ J
77	Constante de Planck	$h = 6.626 \cdot 10^{-34} \text{ J·s}$
78	Constante de Boltzmann	$K_B = 1.38 \cdot 10^{-23} \text{ J/K}$
79	Constante de Stefan-Boltzmann	$\sigma = 5.67 \cdot 10^{-8} \text{ Jm}^{-2} \text{K}^{-4}$
80	Masse de l'Électron	$m_e = 9.11 \cdot 10^{-31} \text{ kg}$
81		$m_e = 511 \text{ keV/c}^2$
81	Kelvin	$T_K = T_C + 273.15$

Question	1	2	3	4	5	6	7	8	9	10	Total
Points	25	25	10	15	10	5	5	5	0	0	100
Points Boni	0	0	0	0	0	0	0	0	2	1	3
Obtenus											