Math 1580: Cryptography Lecture Notes

E. Larson

Spring 2022

These are lecture notes for Math 1580: Cryptography taught at Brown University by Eric Larson in the Spring of 2022.

Contents

0	Jan	uary 26, 2022		
	0.1	Course Logistics		
	0.2	Introduction		
	0.3	Simple Substitution Ciphers		
	0.4	Divisibility		
1	January 28, 2022 2			
	1.1	Greatest Common Divisors		
	1.2	Euclidean Algorithm		
	1.3	Linear Combinations		
2	January 31, 2022			
	2.1	Linear Combinations continued		
	2.2	Modular Arithmetic		
3	February 2, 2022			
	3.1	Inverses mod m		
	3.2	Modular Arithmetic continued		
	3.3	Fastish Powering		
4	February 4, 2022			
	4.1	Fast Powering continued		
	4.2	Fun Integers		
5	February 7, 2022			
	5.1	Orders mod p		
	5.2	Discrete Logarithm Problem		
	5.3	Cryptographic Systems		
		5.3.1 Symmetric Cryptography		

§0 January 26, 2022

- §0.1 Course Logistics
- §0.2 Introduction
- §0.3 Simple Substitution Ciphers
- §0.4 Divisibility
- §1 January 28, 2022
- §1.1 Greatest Common Divisors
- §1.2 Euclidean Algorithm
- §1.3 Linear Combinations
- §2 January 31, 2022
- §2.1 Linear Combinations continued

Recall from last time that we proposed that

greatest common divisor \leq least linear combination.

Example 2.1 gcd(2024, 748) = 44 because we have

$$2024 = 748 \cdot 2 + 528$$

$$748 = 528 \cdot 1 + 220$$

$$528 = 220 \cdot 2 + 88$$

$$220 = 88 \cdot 2 + \boxed{44} \leftarrow \gcd(2024, 748)$$

$$88 = 44 \cdot 2 + 0$$

We determine which linear combinations or 2024 znd 748 we can create:

$$2024 = 1 \cdot 2024 + 0 \cdot 748$$

$$748 = 0 \cdot 2024 + 1 \cdot 748$$

$$528 = 1 \cdot 2024 + (-2) \cdot 748$$

$$220 = 748 - 1 \cdot 528$$

$$= 748 - 1 \cdot (1 \cdot 2024 + (-2) \cdot 748)$$

$$= -1 \cdot 2024 + 3 \cdot 748$$

$$88 = 528 - 2 \cdot 220$$

$$= \underbrace{[1 \cdot 2024 + (-2) \cdot 748]}_{528} - 2 \cdot \underbrace{[-1 \cdot 2024 + 3 \cdot 748]}_{220}$$

$$= 3 \cdot 2024 - 8 \cdot 748$$

$$44 = 220 - 2 \cdot 88$$

$$= [-1 \cdot 2024 + 3 \cdot 748] - 2 \cdot [3 \cdot 2024 - 8 \cdot 748]$$

$$= -7 \cdot 2024 + 19 \cdot 748$$

Following this example, we have shown that every common divisor of a and b can be written as a linear combination of a and b, and since the greatest common divisor has to be less than the least linear combination (as shown last time), the greatest common divisor is the least linear combination¹.

We realize that there is a recurrence happening here. If we call every set of coefficients x, y and z, w for a and b respectively, such that

$$a = x \cdot a_0 + y \cdot b_0$$
$$b = z \cdot a_0 + y \cdot b_0$$

where a_0 and b_0 are the original numbers, we can use a sliding window approach² again to determine the next set of x, y, z, w, a, b.

Recall from last time we had

$$a' = b$$
$$b' = a \mod b$$

We can extend this algorithm for our new coefficients:

$$x' = z$$

$$y' = w$$

$$z' = w - \left\lfloor \frac{a}{b} \right\rfloor \cdot z$$

$$w' = y - \left\lfloor \frac{a}{b} \right\rfloor \cdot w$$

¹Assume for contradiction that the gcd were any less, then that would also be a linear combination. 4

²Updating our iterators on every loop by sliding our window of coefficients down.

where $\left|\frac{a}{b}\right|$ are the quotients from our Euclidean Algorithm. Note that initially, we have

$$a = 1 \cdot a_0 + 0 \cdot b_0$$
$$b = 0 \cdot a_0 + 1 \cdot b_0$$

so we have initial values of x = 1, y = 0, z = 0, w = 0.

so our code for the extended Euclidean's Algorithm is now

```
def ext_gcd(a, b):
    x, y, z, w = 1, 0, 0, 1
    while b!= 0:
    x, y, z, w = z, w, w - (a // b) * z, y - (a // b) * w
    a, b = b, a % b
    return (x, y)
```

§2.2 Modular Arithmetic

Recall: We used a substitution/shift cipher to encrypt text:

$$Y \quad E \quad S$$
 $\downarrow \quad \downarrow \quad \downarrow$
 $D \quad J \quad X$

by incrementing 5 letters for each lecture.

$$a = 0, b = 1, \dots, z = 25.$$

We had this notion of

$$\begin{aligned} \text{ciphertext} &= \text{plaintext} + 5 \\ \mathbf{d} &= \mathbf{y} + 5 \\ 3 &= 24 + 5 = 29 \end{aligned}$$

Definition 2.2

We say $a \equiv b \mod m$ if $m \mid a - b$.

We say "a is congruent a to b modulo m".

^aCongruence is a "behave like" equality.

Example 2.3

$$24 + 5 \equiv 3 \mod 26$$
$$22 + 2 \equiv 1 \mod 12$$

The first example is from our shift sipher, the second example is equivalent to "two hours after 11:00, it is 1:00".

Proposition 2.4

If we have

$$a_1 \equiv a_2 \mod m$$

 $b_1 \equiv b_2 \mod m$

Then we have the following:

$$a_1 + b_1 \equiv a_2 + b_2 \mod m \tag{1}$$

$$a_1 - b_1 \equiv a_2 - b_2 \mod m \tag{2}$$

$$a_1 \cdot b_1 \equiv a_2 \cdot b_2 \mod m \tag{3}$$

Proof. For eq. (1), realize that we have

$$(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2)$$

and the two terms on the right are each divisible by m by our premise. We can also write out

$$a_1 + b_1 = (a_2 + \alpha m) + (b_2 + \beta m)$$

= $(a_2 + b_2) + (\alpha + \beta) \cdot m$.

Similarly, for eq. (2), we have

$$a_1 - b_1 = a_2 + \alpha m - (b_2 + \beta m)$$

= $a_2 - b_2 + (\alpha - \beta) \cdot m$.

and for eq. (3), we have

$$a_1 \cdot b_1 = (a_2 + \alpha m) \cdot (b_2 + \beta m)$$
$$= a_2 \cdot b_2 + \alpha m b_2 + \beta m a_2 + \alpha \beta m^2$$
$$= a_2 \cdot b_2 + (\alpha b_2 + \beta a_2 + \alpha \beta m) \cdot m.$$

which concludes the proofs of the premod rules.

Proposition 2.5

There exists b with

$$a \cdot b \equiv 1 \mod m$$

if and only if gcd(a, m) = 1.

Proof. We can write linear combination equation

$$a \cdot b + m \cdot k = 1$$

and we have that the following are equivalent (we cascade down the list and can easily prove the iff relations):

- i. such a *b* exists,
- ii. there is a solution b, k to this equation,
- iii. 1 is a linear combination of a and m,
- iv. 1 is the *least* linear combination of a and m,
- v. $1 = \gcd(a, m)$.

so we have that $1 = \gcd(a, m)$ if and only if a's inverse b exists.

§3 February 2, 2022

§3.1 Inverses mod m

Recall: Last time, we showed in proposition 2.5 that there exists an integer b with with $a \cdot b \equiv 1 \mod m$ iff $\gcd(a, m) = 1$.

Claim 3.1 — We further claim that if such a b exists, then it is unique mod m.

That is, if we have

$$a \cdot b_1 \equiv 1 \pmod{m}$$

$$a \cdot b_2 \equiv 1 \pmod{m}$$

then we have that $b_1 \equiv b_2 \pmod{m}$.

Proof. We consider b_1ab_2 . We have

$$b_2 \equiv (b_1 a)b_2 = b_2(ab_2) \equiv b_2$$

all taking mod m.

How, then, could we compute this inverse b efficiently?

Recall that last class, we used the extended Euclidean algorithm to compute the linear combination of a and m efficiently,

$$1 = a \cdot u + m \cdot v$$
$$\equiv a \cdot \boxed{u} \mod m$$

where u is b.

§3.2 Modular Arithmetic continued

Definition 3.2 (Ring of Integers mod m)

 $\mathbb{Z}/m\mathbb{Z} = \{0, 1, 2, \dots, m-1\}$ with operations $+, -, \times \pmod{m}$.

Example 3.3

 $\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$. We have the following operation tables for $\mathbb{Z}/4\mathbb{Z}$:

Definition 3.4 (Group of Units mod m)

We have the set of units in $\mathbb{Z}/m\mathbb{Z}$ as

$$(\mathbb{Z}/m\mathbb{Z})^{\times} = \{ a \in \mathbb{Z}/m\mathbb{Z} \mid \exists b \text{s.t. } a \cdot b \equiv 1 \}$$
$$= \{ a \in \mathbb{Z}/m\mathbb{Z} \mid \gcd(a, m) = 1 \}$$

Example 3.5

$$(\mathbb{Z}/4\mathbb{Z})^{\times} = \{1, 3\}.$$

Definition 3.6 (Euler Totient Function)

We have

$$\varphi(m) = \#(\mathbb{Z}/m\mathbb{Z})^{\times}$$

which counts the number of units modulo m.

Example 3.7

$$\varphi(4)=2.$$

Let's investigate the properties of units. Let's say a_1, a_2 are units. Which of the following have to be units?

	Does this have to be a unit?
$a_1 \cdot a_2$	Yes!
	Since $\gcd(a_1, m) = 1$ and $\gcd(a_2, m) = 2$ so we have $\gcd(a_1 a_2, m) = 1$. We also have $a_1 b_1 \equiv 1 \mod m$ and $a_2 b_2 \equiv 1 \mod m$, we have $(a_1 a_2)(b_2 b_1) \equiv 1 \mod m$.
$a_1 + a_2$	No. We have counterexample $m = 4$: $1 + 1$ is not a unit.
$a_1 - a_2$	Also no. For any a , $a - a = 0$ which is never a unit.

Definition 3.8 (Prime Number)

An integer $n \geq 2$ is prime if its only (positive) divisors are 1 and n.

Example 3.9

Numbers like $2, 3, 5, 7, 11, 12, \ldots$

What if m is a prime number? Then we have

$$(\mathbb{Z}/m\mathbb{Z})^{\times} = \{1, 2, \dots, m-1\}$$

so we can divide by elements of $\mathbb{Z}/m\mathbb{Z}$, just like in $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. We can divide by any nonzero element of $\mathbb{Z}/m\mathbb{Z}$. We call these fields!

§3.3 Fastish Powering

Problem. How might we compute $g^a \mod m$?

A naïve solution might be

```
def pow_mod(g, a, m):
return g ** a % m
```

What if we tried to compute pow_mod(239418762304, 12349876234, 12394876123482783641) or something of the like? Something like this...

We could do something a bit more clever, like taking a mod every time we multiply:

```
def pow_mod(g, a, m):
    p = 1
    for i in range(a):
        p = (p * q) % m
    return p
```

Yet we still couldn't do pow_mod(239418762304, 12349876234, 12394876123482783641) since that takes the amount of time proportional to a^3 .

Example 3.10

Let's try to compute 3^{37} by hand.

$$3^{1}$$
 $\equiv 3 \mod 100$
 3^{2} $\equiv 9 \mod 100$
 $3^{4} = (3^{2})^{2} = \equiv 81 \mod 100$
 $3^{8} = (3^{4})^{2} = 81^{2} = 6561$ $\equiv 61 \mod 100$
 $3^{16} = (3^{8})^{2} \equiv 61^{2} = 3721$ $\equiv 21 \mod 100$
 $3^{32} = (3^{16})^{2} \equiv 21^{2} = 441$ $\equiv 41 \mod 100$

Since 37 = 32 + 4 + 1, we can simply do

$$3^{37} = 3^{32} \cdot 3^4 \cdot 3^1 = 41 \cdot 81 \cdot 3 = 1863 \equiv 63 \mod 100$$

§4 February 4, 2022

§4.1 Fast Powering continued

³Which can become big...

```
Example 4.1 

Recall: we wanted to compute 3^{37} \mod 100 3^1 \equiv 3 \pmod{100}
3^2 \equiv 9
3^4 \equiv 81
3^8 \equiv 61
3^{16} \equiv 21
3^{32} \equiv 41
so we have 37 = 1 + 4 + 32
3^{37} = 3^1 \cdot 3^4 \cdot 3^{32} \equiv 3 \cdot 81 \cdot 41 \equiv 63
```

How might we do this as an algorithm? We want to keep track of a few things, such as g (the current power), p (the multiple we are building), a (the remaining powers). This is akin to deconstructing the power in binary and composing our product.

```
def pow_mod(g, a, m):
    p = 1

while a != 0:
    if a % 2 == 1:
        p = (p * g) % m
    a = a // 2
    g = g**2 % m

return p
```

```
Example 4.2
37 = 100101_2, so we peel off last digits and multiply g into p.
Thinking about iterations, we have
                                                   a_2
                                              37 \quad 10010\underline{1}
                                    9
                                        3
                                              18 100100
                                    81 3
                                              9
                                                   1001
                                    61 43
                                              4
                                                  100
                                    21
                                       43
                                              2
                                                   10
                                        43
                                    41
                                              1
                                                   1
                                         63
                                              0
                                                   0
```

This algorithm takes approximately $\log_2(a)$ time to run, since it does as many steps for each digit in the binary representation of a.

§4.2 Fun Integers

Recall: An integer p is prime if $p \geq 2$ and

$$a \mid p \Rightarrow a = \pm 1, \pm p$$

Proposition 4.3

Let p be prime. Then $p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$.

Example 4.4

p is not prime, this doesn't work. p = 6. $p \mid 4 \cdot 9 = 36$ but $6 \nmid 4$ and $6 \nmid 9$.

Proof. Let $g = \gcd(p, a)$. g is either 1 or p.

If g = p, then we have that $p = g \mid a$.

If p = 1, we can write this as

$$1 = g = p \cdot u + a \cdot v$$
$$b = p \cdot ub + ab \cdot v$$

since p is a multiple of p and ab is a multiple of p, we have that $p \mid b$.

Theorem 4.5 (Fundamental Theorem of Arithmetic)

Any integer $a \ge 1$ can be factored into product of primes

$$a = p_1^{e_1} \cdots p_n^{e_n}$$

and this product of primes is unique up to rearrangement.^a

^aThis is to say, \mathbb{Z} is a UFD!

Example 4.6

Instead of thinking about integers, we think about $\mathbb{Z}[\sqrt{-5}]$, like

$$\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$$

Consider

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$$

and each of $(1+\sqrt{-5})$, $(1-\sqrt{-5})$, 2, 3 have no divisors besides themselves and ± 1 (units).

Proof. We begin by working out an example:

Example 4.7

Let's factor 60, we can write this as

$$60 = 6 \cdot 10 = (2 \cdot 3) \cdot (2 \cdot 5) = 2^2 \cdot 3 \cdot 5.$$

What if we had different answers

$$p_1 p_2 \cdots p_t = a = q_1 q_2 \cdots q_s$$

We have that

$$p_1 \mid p_1 \cdots p_t = q_1 \cdots q_s$$
$$= q_1(q_2 \cdots q_s)$$

So we have that $p_1 \mid q_1$ or $p_1 \mid q_2 \cdots q_s$, and we go on. So p_1 has to divide *one* of q_i . But both are primes, so they are equal $p_1 = q_i$. We rearrange so q_i is q_1 . We strip off p_1 and q_1 and we have

$$p_2 \cdots p_t = q_2 \cdots q_s$$

we continue until we have no factors left⁴

Definition 4.8 (Order)

We define the order

 $\operatorname{ord}_p(a)$ = the power of p in the factorization of a

such that we have

$$a = \prod_{p} p^{\operatorname{ord}_{p}(a)}$$

(This makes sense since $\operatorname{ord}_p(a)$ is finite for finitely many p.)

Theorem 4.9 (Fermat's Little Theorem)

Let p be prime, $a \in \mathbb{Z}/p\mathbb{Z}$,

$$a^{p-1} \equiv \begin{cases} 0 & \text{if } a \equiv 0\\ 1 & \text{otherwise} \end{cases}$$

In abstract algebra, this directly follows from Lagrange's Theorem for $\mathbb{Z}/p\mathbb{Z}$, we give another argument.

⁴We could also have taken a well-ordering approach to this statement, taking a to be the least such non-uniquely factorizable number and showing that by peeling off p_1 and q_1 , we get a smaller such a, which is a contradiction.

Proof. If $a \equiv 0$, this is sufficiently clear.

Let $a \not\equiv 0$. We look at the numbers

$$a, 2a, 3a, \ldots, (p-1)a$$

We consider 2 questions:

i. Are any of these divisible by p?

No! $p \nmid a$ and $p \nmid i$ so $p \nmid ia$ for $1 \leq i < p$.

ii. Are any of these equal? i.e. $ia \equiv ja \mod p$.

No again! a has an inverse mod p.

So we have that this list is a permutation of $\{1, 2, \dots, p-1\}$, that is,

$$\{1, 2, \dots, p-1\} = \{a, 2a, \dots, (p-1)a\} \mod p$$

we multiply these sets together⁵,

$$1 \cdot 2 \cdot 3 \cdots (p-1) \equiv a \cdot 2a \cdots (p-1)a \mod p$$
$$\equiv (1 \cdot 2 \cdots p - 1)a^{p-1}1 \cdot 2 \cdot 3 \cdot (p-1)(a^{p-1} - 1) \equiv 0 \mod p$$
$$\implies a^{p-1} \equiv 1 \mod p.$$

Which is as desired.

§5 February 7, 2022

§5.1 Orders mod p

Recall: If $a \not\equiv 0 \pmod{p}$, then we have $a^{p-1} \equiv 1 \pmod{p}$, which was theorem 4.9, Fermat's Little Theorem.

Definition 5.1 (Order of $a \mod p$)

The order of $a \pmod{p}$ is the smallest positive k such that

$$a^k \equiv 1 \pmod{p}$$

This is not to be confused with definition 4.8 which is the power of p in the prime factorization of a. This is the order of a in the multiplicative group $\mathbb{Z}/p\mathbb{Z}$.

⁵This is truly a pro-gamer move

Proposition 5.2

let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ be of order k. If $a^n \equiv 1 \pmod{p}$, then $k \mid n$.

In particular, $k \mid p-1$ by theorem 4.9, Fermat's Little Theorem.

Proof. We write $n = k \cdot q + r$ such that $0 \le r < k$ (\mathbb{Z} is a Euclidean domain)

$$1 \equiv a^n \equiv a^{kq+r} \equiv (a^k)^q \cdot a^r \equiv a^r$$

Since k is the minimal positive number such that $a^k \equiv 1$, then this forces r = 0. Then $k \mid n$.

Theorem 5.3 (Primitive Root Theorem)

Let p be prime. Then there is a g such that

$$(\mathbb{Z}/p\mathbb{Z})^{\times} = \{1, g, g^2, \dots, g^{p-2}\}.$$

We call g a primitive root or generator.

Example 5.4

 $p = 5, (\mathbb{Z}/5\mathbb{Z})^{\times} = \{1, 2, 3, 4\}.$

1? No: $\{1, 1^2, 1^3\} = \{1\}$

2? Yes: $\{1, 2, 2^2, 2^3\} = \{1, 2, 4, 3\}$

3? Yes: $\{1, 3, 3^2, 3^3\} = \{1, 3, 4, 2\}$

4? No: $\{1, 4, 4^2, 4^3\} = \{1, 4\}$

Remark 5.5. In general, the number of primitive roots is $\varphi(p-1)$. (Take the group of exponents and solve for power).

§5.2 Discrete Logarithm Problem

We go on to discuss a fundamental property about exponentiation mod p. Let's fix some p and primitive root g.

Given some a, we can compute g^a efficiently

 $a \longrightarrow g^a$ This is easy

 $a \stackrel{?}{\longleftarrow} g^a$ This is hard

Note that

$$g^a \equiv g^b \Leftrightarrow g^{a-b} \equiv 1 \Leftrightarrow p-1 \mid a-b$$

so a is determined mod p-1.

Definition 5.6 (Discrete Logarithm)

The discrete logarithm of g^a is a.

This is known as the "Discrete Logarithm Problem" (DLP), which is concerned with how we can compute discrete logarithms.

This idea is fundamental to computer security! The real-world analogue is if you go to the bank after hours and deposit a check or cash into the deposit slot. It is relatively easy for one to deposit an item but hard for someone who doesn't work at the bank⁶ to access that item.

§5.3 Cryptographic Systems

§5.3.1 Symmetric Cryptography

We have 3 people, Alice, Bob, and Eve.

Bob has a message m which he wants to send to Alice. However, everything he sends to Alice can (and is) intercepted by Eve. He wants to encrypt this message m he sends to Alice.

We say that a message $m \in \mathcal{M}$ in the space of possible messages. We have secret key $k \in \mathcal{K}$ that can encrypt m into ciphertext $c \in \mathcal{C}$ in the space of ciphertexts.

$$\left\{\begin{array}{l} \text{Message } m \in \mathcal{M} \\ \text{Secret key } k \in \mathcal{K} \end{array}\right\} \leadsto \text{Ciphertext } c \in \mathcal{C} \longrightarrow \text{Alice} \leadsto m$$

If we fix k, we have

$$e_k(m) = e(k, m)$$
$$d_k(c) = d(k, c)$$

be our encryption and decryption functions. We usually take m to be a number, and we can encode letters to numbers (0-255) using ASCII.

In Python, this is implemented using functions like ord (character to encoding) and chr (encoding to character).

We'll just talk about transmitting numbers since we can convert freely between them and text.

⁶Say, possessing a key or password.

Q: What do we want out of our cryptosystem?

- 0. The system is secure even if Eve knows the design. (Assume Eve knows the encryption and decryption functions, but so long as she doesn't know the key).
- 1. e, the encryption function, is easy to compute.
- 2. d, the decryption function, is similarly easy to compute.
- 3. Given c_1, c_2, \ldots a collection of ciphertexts, encrypted with the *same* key k, it's hard to compute any message m_i .
- 4. Given $(m_1, c_1), \ldots (m_n, c_n)$ some collection of messages and their encryptions, it remains difficult to compute $d_k(c)$ for $c \notin \{c_1, \ldots, c_n\}$. This is called a "<u>chosen plaintext attack</u>".