Digital Signature

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2018

Outline

- 1 Definitions of Digital Signatures
- 2 RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- 4 One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

Content

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- 4 One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

Digital Signatures – An Overview

- Digital signature scheme is a mathematical scheme for demonstrating the authenticity/integrity of a digital message
- allow a **signer** S to "**sign**" a message with its own sk, anyone who knows S's pk can **verify** the authenticity/integrity
- (Comparing to MAC) digital signature is:
 - publicly verifiable
 - transferable
 - non-repudiation
 - but slow
- Q: What are the differences between digital signatures and handwritten signatures?
- Digital signature is NOT the "inverse" of public-key encryption

The Syntax of Digital Signature Scheme

- lacksquare signature σ , a bit b means valid if b=1; invalid if b=0.
- **Key-generation** algorithm $(pk, sk) \leftarrow \text{Gen}(1^n), |pk|, |sk| \ge n.$
- **Signing** algorithm $\sigma \leftarrow \mathsf{Sign}_{sk}(m)$.
- **Verification** algorithm $b := \mathsf{Vrfy}_{pk}(m, \sigma)$.
- Basic correctness requirement: $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$.

Defining of Signature Security

The signature experiment Sigforge_{A,Π}(n):

- 2 \mathcal{A} is given input 1^n and oracle access to $\mathrm{Sign}_{sk}(\cdot)$, and outputs (m,σ) . \mathcal{Q} is the set of queries to its oracle.
- $\mbox{\bf 3 Sigforge}_{\mathcal{A},\Pi}(n) = 1 \iff \mbox{Vrfy}_{pk}(m,\sigma) = 1 \, \wedge \, m \notin \mathcal{Q}.$

Definition 1

A signature scheme Π is existentially unforgeable under an adaptive CMA if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

Q: What's the difference on the ability of adversary between MAC and digital signature? What if an adversary is not limited to PPT?

Content

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- 4 One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

Insecurity of "Textbook RSA"

Construction 2

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, d. $pk = \langle N, e \rangle$ and $sk = \langle N, d \rangle$.
- Sign: on input sk and $m \in \mathbb{Z}_N^*$, $\sigma := [m^d \mod N]$.
- Vrfy: on input pk and $m \in \mathbb{Z}_N^*$, $m \stackrel{?}{=} [\sigma^e \mod N]$.
- A no-message attack: choose an arbitrary $\sigma \in \mathbb{Z}_N^*$ and compute $m := [\sigma^e \bmod N]$. Output the forgery (m, σ) .

$$pk = \langle 15, 3 \rangle, \ \sigma = 2, \ m = ? \ m^d = ?$$

Forging a signature on an arbitrary message: To forge a signature on m, choose a random m_1 , set $m_2 := [m/m_1 \mod N]$, obtain signatures σ_1, σ_2 on m_1, m_2 . Q: $\sigma := [\mod N]$ is a valid signature on m.

Hashed RSA

- Gen: a hash function $H: \{0,1\}^* \to \mathbb{Z}_N^*$ is part of public key.
- Sign: $\sigma := [H(m)^d \mod N]$.
- Vrfy: $\sigma^e \stackrel{?}{=} H(m) \mod N$.

If H is not efficiently invertible, then the no-message attack and forging a signature on an arbitrary message is difficult.

Insecurity

There is NO known function ${\cal H}$ for which hashed RSA signatures are secure.

RSA-FDH Signature Scheme: Random Oracle as a **Full Domain Hash (FDH)** whose image size = the RSA modulus N-1.

The "Hash-and-Sign" Paradigm

Construction 3

 $\Pi = (\mathsf{Gen}_S, \mathsf{Sign}, \mathsf{Vrfy})$, $\Pi_H = (\mathsf{Gen}_H, H)$. A signature scheme Π' :

- Gen': on input 1^n run $\operatorname{Gen}_S(1^n)$ to obtain (pk,sk), and run $\operatorname{Gen}_H(1^n)$ to obtain s. The public key is $pk' = \langle pk,s \rangle$ and the private key is $sk' = \langle sk,s \rangle$.
- $\blacksquare \ \mathrm{Sign'} \colon \ \textit{on input} \ sk' \ \ \textit{and} \ \ m \in \{0,1\}^*, \ \sigma \leftarrow \mathrm{Sign}_{sk}(H^s(m)).$
- Vrfy': on input pk', $m \in \{0,1\}^*$ and σ , output $1 \iff$ Vrfy $_{pk}(H^s(m),\sigma)=1$.

Theorem 4

If Π is existentially unforgeable under an adaptive CMA and Π_H is collision resistant, then Construction is existentially unforgeable under an adaptive CMA.

Proof of Security of "Hash-and-Sign" Paradigm

Idea: a forgery must involve either finding a collision in H or forging a signature with respect to $\Pi.$

Proof.

 \mathcal{A}' attacks Π' and output (m, σ) , $m \notin \mathcal{Q}$.

SF: Sigforge_{A',Π'}(n) = 1.

coll: $\exists m' \in \mathcal{Q}, H^s(m') = H^s(m).$

$$\Pr[\mathsf{SF}] = \Pr[\mathsf{SF} \wedge \mathsf{coll}] + \Pr[\mathsf{SF} \wedge \overline{\mathsf{coll}}] \leq \Pr[\mathsf{coll}] + \Pr[\mathsf{SF} \wedge \overline{\mathsf{coll}}].$$

Reduce $\mathcal C$ for Π_H to $\mathcal A'$. $\Pr[\mathsf{coll}] = \Pr[\mathsf{Hashcoll}_{\mathcal C,\Pi_H}(n) = 1]$.

 $\mathsf{Reduce}\,\,\mathcal{A}\,\,\mathsf{for}\,\,\Pi\,\,\mathsf{to}\,\,\mathcal{A}'.\,\,\Pr[\mathsf{SF}\wedge\overline{\mathsf{coll}}]=\Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}(n)=1].$

So both $\Pr[\text{coll}]$ and $\Pr[\text{SF} \wedge \overline{\text{coll}}]$ are negligible.

Proof (Cont.)

Reduce C for Π_H to A'. A' queries the signature σ_i of i-th message m_i , $i=1,\ldots,|\mathcal{Q}|$.

$$\Pr[\mathsf{coll}] = \Pr[\mathsf{Hashcoll}_{\mathcal{C},\Pi_H}(n) = 1].$$

Proof (Cont.)

Reduce \mathcal{A} for Π to \mathcal{A}' .

 $\Pr[\mathsf{SF} \wedge \overline{\mathsf{coll}}] = \Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}(n) = 1].$

Content

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- 4 One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

Identification Schemes

An identification scheme $\Pi = (\mathsf{Gen}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ is a 3-round protocol between the prover and the verifier. The attacker can do eavesdropping and has an access to an oracle Trans_{sk} to learn (I, r, s) by executing the protocol as a verifier.

Identification Schemes: Definition

The identification experiment Ident_{A,Π}(n):

- 2 $\mathcal A$ is given input 1^n and oracle access to $\mathrm{Trans}_{sk}(\cdot)$, and outputs a message I.
- 3 A uniform challenge r is chosen and given to \mathcal{A} , and \mathcal{A} outpus s. (\mathcal{A} may continue to query the oracle.)
- 4 Ident_{A,Π} $(n) = 1 \iff \mathcal{V}(pk, r, s) \stackrel{?}{=} I$.

Definition 5

An identification scheme $\Pi=(\mathsf{Gen},\mathcal{P}_1,\mathcal{P}_2,\mathcal{V})$ is **secure** if \forall PPT $\mathcal{A},\ \exists$ negl such that:

$$\Pr[\mathsf{Ident}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n).$$

The Fiat-Shamir Transform

The Fiat-Shamir transform constructs a (non-interactive) signature scheme by letting the signer run the protocol by itself.

Construction 6

Let $\Pi = (\mathsf{Gen}_{\mathsf{id}}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ be an identification scheme.

- Gen: $(pk, sk) \leftarrow$ Gen_{id}. A function $H : \{0, 1\}^* \rightarrow \Omega_{pk}$ (a set of challenges).
- \blacksquare Sign: On input sk and $m \in \{0,1\}^*$, do
 - 1 Compute $(I, st) \leftarrow \mathcal{P}_1(sk)$
 - 2 Compute r:=H(I,m)3 Compute $s:=\mathcal{P}_2(sk,\mathsf{st},r)$

Outpus the signature r, s.

■ Vrfy: $I := \mathcal{V}(pk, r, s)$. Output $1 \iff H(I, m) \stackrel{?}{=} r$.

Theorem 7

If Π is a secure identification scheme and H is a random oracle, then the Fiat-Shamir transform results a secure signature scheme.

The Schnorr Identification Scheme

Theorem 8

If the discrete-log problem is hard, then the Schnorr identification scheme is secure.

Proof of the Schnorr Identification Scheme

Idea: If the attacker can let $g^s \cdot y^{-r} = I$, then the attacker can compute x.

Proof.

Reduce A' inverting y to A attacking the Schnorr scheme:

- $oxed{1}$ \mathcal{A}' as a verifier, answering all queries, runs \mathcal{A} as a prover.
- 2 When $\mathcal A$ outputs I, $\mathcal A'$ choose $r_1\in\mathbb Z_q$ and give it to $\mathcal A$, who responds with s_1 .
- **3** Run $\mathcal A$ a second time, send $r_2\in\mathbb Z_q$ to $\mathcal A$ who responds with $s_2.$
- 4 If $g^{s_1} \cdot h^{-r_1} = I$ and $g^{s_2} \cdot h^{-r_2} = I$ and $r_1 \neq r_2$ then output $x = [(s_1 s_2) \cdot (r_1 r_2)^{-1} \mod q]$. Else, output nothing.

The Schnorr Signature Scheme

Construction 9

- Gen: $(\mathcal{G}, q, g) \leftarrow \mathcal{G}(1^n)$. Choose $x \in \mathbb{Z}_q$ and set $y := g^x$. The private key is x and the public key is (\mathcal{G}, q, g, y) . A function $H: \{0,1\}^* \rightarrow \mathbb{Z}_q$.
- Sign: On input x and $m \in \{0,1\}^*$, do
 - **1** Compute $I := g^k$, where a uniform $k \in \mathbb{Z}_q$
 - **2** Compute r := H(I, m)
 - **3** Compute $s := [rx + k \mod q]$

Outpus the signature (r, s).

■ Vrfy: Compute $I := g^s \cdot y^{-r}$ and output $1 \iff H(I, m) \stackrel{?}{=} r$.

DSS/DSA

DSS (Digital Signature Standard) uses Digital Signature Algorithm (DSA, a variant of ElGamal signature scheme). [FIPS 186]

Construction 10

- \mathcal{G} outputs (p,q,g): (1) p and q are primes with ||q|| = n; (2) q|(p-1) but $q^2 \nmid (p-1)$:
- (3) g is a generator of the subgroup of \mathbb{Z}_p^* of order q.
- Gen: $(p,q,g) \leftarrow \mathcal{G}$. hash function $H: \{0,1\}^* \rightarrow \mathbb{Z}_q$. $x \leftarrow \mathbb{Z}_q$ and $y := [g^x \bmod p]$. $pk = \langle H, p, q, g, y \rangle$. $sk = \langle H, p, q, g, x \rangle$.
 - Sign: $k \leftarrow \mathbb{Z}_q^*$ and $r := [[g^k \mod p] \mod q]$, $s := [(H(m) + xr) \cdot k^{-1} \mod q]$. Output (r, s).
 - Vrfy: $u_1 := [H(m) \cdot s^{-1} \mod q], u_2 := [r \cdot s^{-1} \mod q].$ Output $1 \iff r \stackrel{?}{=} [[g^{u_1}y^{u_2} \mod p] \mod q].$

Correctness and Security of DSS/DSA

$$r = [[g^k \bmod p] \bmod q] \bmod s = [(\hat{m} + xr) \cdot k^{-1} \bmod q], \ \hat{m} = H(m).$$

$$g^{\hat{m}s^{-1}}y^{rs^{-1}} = g^{\hat{m}\cdot(\hat{m}+xr)^{-1}k}g^{xr\cdot(\hat{m}+xr)^{-1}k} \pmod{p}$$

$$= g^{(\hat{m}+xr)\cdot(\hat{m}+xr)^{-1}k} \pmod{p}$$

$$= g^k \pmod{p}.$$

$$[[g^k \bmod p] \bmod q] = r.$$

Security of DSS relies on the hardness of discrete log problem. The entropy, secrecy and uniqueness of k is critical.

Insecurity

No proof of security for DSS based on discrete log assumption.

Content

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- **4** One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

One-Time Signature (OTS)

One-Time Signature (OTS): Under a weaker attack scenario, sign only one message with one secret.

The OTS experiment Sigforge $_{\mathcal{A},\Pi}^{1-\text{time}}(n)$:

- 2 \mathcal{A} is given input 1^n and a single query m' to $\mathrm{Sign}_{sk}(\cdot)$, and outputs (m,σ) , $m\neq m'$.
- $\label{eq:Sigforge} \textbf{3} \ \operatorname{Sigforge}_{\mathcal{A},\Pi}^{\textbf{1-time}}(n) = 1 \iff \operatorname{Vrfy}_{pk}(m,\sigma) = 1.$

Definition 11

A signature scheme Π is existentially unforgeable under a single-message attack if \forall PPT \mathcal{A} , \exists negl such that:

$$\Pr[\mathsf{Sigforge}_{\mathcal{A},\Pi}^{1-\mathsf{time}}(n) = 1] \leq \mathsf{negl}(n).$$

Lamport's OTS

Idea: OTS from OWF; one mapping per bit.

Construction 12

f is a one-way function.

- Gen: on input 1^n , for $i \in \{1, ..., \ell\}$:
 - **1** choose random $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$.
 - 2 compute $y_{i,0} := f(x_{i,0})$ and $y_{i,1} := f(x_{i,1})$.

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \quad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}.$$

- Sign: $m = m_1 \cdots m_\ell$, output $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell})$.
- Vrfy: $\sigma = (x_1, \dots, x_\ell)$, output $1 \iff f(x_i) = y_{i,m_i}$, for all i.

Theorem 13

If f is OWF, Π is OTS for messages of length polynomial ℓ .

Example of Lamport's OTS

Signing m = 011

$$sk = \begin{pmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{pmatrix} \implies \sigma = \underline{\qquad}$$

 $\sigma = (x_1, x_2, x_3)$:

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{pmatrix} \implies \begin{cases} f(x_1) \stackrel{?}{=} \\ f(x_2) \stackrel{?}{=} \\ f(x_3) \stackrel{?}{=} \end{cases}$$

Proof of Lamport's OTS Security

Idea: If $m \neq m'$, then $\exists i^*, m_{i*} = b^* \neq m'_{i*}$. So to forge a signature on m can invert a single y_{i^*,b^*} at least.

Proof.

Reduce \mathcal{I} inverting y to \mathcal{A} attacking Π :

- I Construct pk: Choose $i^* \leftarrow \{1, \dots, \ell\}$ and $b^* \leftarrow \{0, 1\}$, set $y_{i^*, b^*} := y$. For $i \neq i^*$, $y_{i, b} := f(x_{i, b})$.
- 2 $\mathcal A$ queries m': If $m'_{i_*}=b^*$, stop. Otherwise, return $\sigma=(x_{1,m'_1},\dots,x_{\ell,m'_\ell}).$
- 3 When $\mathcal A$ outputs (m,σ) , $\sigma=(x_1,\ldots,x_\ell)$, if $\mathcal A$ output a forgery at (i^*,b^*) : $\operatorname{Vrfy}_{pk}(m,\sigma)=1$ and $m_{i^*}=b^*\neq m'_{i^*}$, then output x_{i^*,b^*} .

$$\Pr[\mathcal{I} \text{ succeeds}] \geq \frac{1}{2\ell} \Pr[\mathcal{A} \text{ succeeds}]$$

Stateful Signature Scheme

Idea: OTS by signing with "new" key derived from "old" state.

Definition 14 (Stateful signature scheme)

- Key-generation algorithm $(pk, sk, s_0) \leftarrow \text{Gen}(1^n)$. s_0 is initial state.
- **Signing** algorithm $(\sigma, s_i) \leftarrow \mathsf{Sign}_{sk, s_{i-1}}(m)$.
- Verification algorithm $b := Vrfy_{pk}(m, \sigma)$.

A simple stateful signature scheme for OTS:

Generate (pk_i, sk_i) independently, set $pk := (pk_1, \dots, pk_\ell)$ and $sk := (sk_1, \dots, sk_\ell)$.

Start from the state 1, sign the s-th message with sk_s , verify with pk_s , and update the state to s+1.

Weakness: the upper bound ℓ must be fixed in advance.

"Chain-Based" Signatures

Idea: generate keys "on-the-fly" and sign the key chain.

Use a single public key pk_1 , sign each m_i and pk_{i+1} with sk_i :

$$\sigma_i \leftarrow \mathsf{Sign}_{sk_i}(m_i || pk_{i+1}),$$

output $\langle pk_{i+1}, \sigma_i \rangle$, and verify σ_i with pk_i .

The signature is $(pk_{i+1}, \sigma_i, \{m_j, pk_{j+1}, \sigma_j\}_{j=1}^{i-1})$.

Weakness: stateful, not efficient, revealing all previous messages.

"Tree-Based" Signatures

Idea: generate a chain of keys for each message and sign the key chain.

- root is ε (empty string), leaf is a message m, and internal nodes (pk_w, sk_w) , where w is the prefix of m.
- \blacksquare each node pk_w "certifies" its children $pk_{w0}||pk_{w1}$ or w.

A Stateless Solution

Idea: use deterministic randomness to emulate the state of tree.

Use PRF F and two keys k, k' (secrets) to generate pk_w, sk_w :

- 1 compute $r_w := F_k(w)$.
- 2 compute $(pk_w, sk_w) := \text{Gen}(1^n; r_w)$, using r_w as random coins.

k' is used to generate r'_w that is used to compute σ_w .

Lemma 15

If OWF exist, then \exists OTS (for messages of arbitrary length).

Theorem 16

If OWF exists, then \exists (stateless) secure signature scheme.

Content

- 1 Definitions of Digital Signatures
- **2** RSA Signatures
- 3 Digital Signature from the Discrete-Log Problem
- 4 One-Time Signature Scheme
- 5 Certificates and Public-Key Infrastructures

Certificates

 $\textbf{Certificates} \ \, \mathsf{cert}_{C \to B} \stackrel{\mathsf{def}}{=} \mathsf{Sign}_{sk_C}(\text{`Bob's key is } pk_B\text{'}).$

Public-Key Infrastructure (PKI)

- A single CA: is trusted by everybody.
 - Strength: simple
 - Weakness: single-point-of-failure
- Multiple CAs: are trusted by everybody.
 - Strength: robust
 - Weakness: cannikin law
- **Delegation and certificate chains**: The trust is transitive.
 - Strength: ease the burden on the root CA.
 - Weakness: difficult for management, cannikin law.
- "Web of trust": No central points of trust, e.g., PGP.
 - Strength: robust, work at "grass-roots" level.
 - Weakness: difficult to manage/give a guarantee on trust.

Invalidating Certificates

Expiration: include an *expiry date* in the certificate.

$$\operatorname{cert}_{C \to B} \stackrel{\operatorname{def}}{=} \operatorname{Sign}_{sk_C}(\text{`bob's key is } pk_B\text{'}, \ \operatorname{date}).$$

Revocation: explicitly revoke the certificate.

$$\operatorname{cert}_{C \to B} \stackrel{\text{def}}{=} \operatorname{Sign}_{sk_C}(\text{'bob's key is } pk_B', \#\#\#).$$

"###" represents the serial number of this certificate. **Cumulated Revocation**: CA generates *certificate revocation list* (CRL) containing the serial numbers of all revoked certificates, signs CRL with the current date.

Summary

- Textbook RSA, Hashed RSA, Hash-and-Sign
- Identification, Fiat-Shamir Transform, Schnorr Signature, DSS/DSA
- Lamport's OTS, Stateful/Chain-based/Tree-based/Stateless Signature
- Certificates, PKI, CA, Web-of-trust, Invalidation