有趣性质用于证明ALC表达力和可决定性 bisimulation finite model property tree model property 每个解释都可以化成有向图

Lemma引理
Theorem重要定理
Proposition
Corollary直接推论,无需复杂证明

Bisimulation

最开始出现于状态机, 平移到语言学 判断计算行为相同, 互相模拟

方法很自然:在某个结点上,接受相同的所有刺激,反应都相同

只能说两个解释之间存在,不能说有

Bisimulation 在 DL 上的定义是: 给定两个 DL interpretations I1 and I2, 如果 I1 中的一个元素 (比如 d1) 和 I2 中的一个元素 (比如 d2) 满足如下关系,则说 I1 中的 d1 与 I2 中的 d2 存在 bisimilar 关系,写作(I1,d1)~(I2,d2):

- (1) 如果 d1 是某个 concept name A 在 I1 解释下的集合里面的元素,则 d2 也是 A 在 I2 解释下的集合里面的元素,反之亦然;
- (2) 如果 I1 中存在一个 node f1 与 d1 存在 r 关系: $(d1,f1) \in r^{I1}$, 则 I2 中必须也存在一个 node f2 与 d2 存在 r 关系: $(d2,f2) \in r^{I2}$, 并且(I1,f1) ~ (I2,f2);
- (3) 如果 I2 中存在一个 node f2 与 d2 存在 r 关系: $(d2,f2) \in r^{12}$, 则 I1 中必须也存在一个 node f1 与 d1 存在 r 关系: $(d1,f1) \in r^{11}$, 并且 $(I2,f2) \sim (I1,f1)$ 。

Theorem 3.2. If $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, then the following holds for all ALC concepts C:

$$d_1 \in C^{\mathcal{I}_1}$$
 if and only if $d_2 \in C^{\mathcal{I}_2}$.

• 即所有ALC concept都不能区分两个interpretations上的一对bisimilar元素

C 作用就是分辨两个解释中两个元素的区别,强制要求d2也要满足C里面限制的式子可用于证明表达力强弱,利用限制推矛盾

归纳证明

induction hypothesis

首先假设 D 和 E 已经不能区分 d1 和 d2, 再证明则 D □ E 也不能区分 d1 和 d2。

证明才是一个通用的证明。则我们要证明的是:

 $d1 \in (D \sqcap E)$ if $d2 \in (D \sqcap E)$ is

因为是iff, 我们要证明两个方向:

 $d2 \in (D \sqcap E)$ ¹² if $d1 \in (D \sqcap E)$ ¹³ $d1 \in (D \sqcap E)$ ¹⁴ if $d2 \in (D \sqcap E)$ ¹²

Proposition 3.3. *ALCN* is more expressive than *ALC*; that is, there is an *ALCN* concept C such that $C \not\equiv D$ holds for all *ALC* concepts D. 举ALCN的例子不能被表达

• 对数目无要求,这个算Bisi

本题的证明关键,正是因为同构忽视了数目,所以可以利用同构在数目上找出矛盾 利用同构说明了数目的描述确实难以ALC表达

Proof. We show that no \mathcal{ALC} concept is equivalent to the \mathcal{ALCN} concept ($\leqslant 1 \, r. \top$). Assume to the contrary that D is an \mathcal{ALC} concept with ($\leqslant 1 \, r. \top$) $\equiv D$. In order to lead this assumption to a contradiction, we consider the interpretations \mathcal{I}_1 and \mathcal{I}_2 depicted in Figure 3.2. Since

$$\rho = \{(d_1, e_1), (d_2, e_2), (d_2, e_3)\}$$

is a bisimulation, we have $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, e_1)$, and thus $d_1 \in D^{\mathcal{I}_1}$ if and only if $e_1 \in D^{\mathcal{I}_2}$. This contradicts our assumption $(\leqslant 1 \, r. \top) \equiv D$ since $d_1 \in (\leqslant 1 \, r. \top)^{\mathcal{I}_1}$, but $e_1 \notin (\leqslant 1 \, r. \top)^{\mathcal{I}_2}$.

二、Disjoint union

多个互不相交的取并集,把多个图组合看成一个图

J: 再加一个第二级索引, 表示出现在原来的第几个解释中

1、引理

Lemma 3.7. Let $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ be the disjoint union of the family $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ of interpretations. Then we have

$$d \in C^{\mathcal{I}_{\nu}}$$
 if and only if $(d, \nu) \in C^{\mathcal{J}}$

for all $\nu \in \mathfrak{N}$, $d \in \Delta^{\mathcal{I}_{\nu}}$ and ALC concept descriptions C.

最基础性质,建立I中单概念和J中role关系的桥梁

证明: 同构

Proof. It is easy to see that, for all $\nu \in \mathfrak{N}$, the relation

$$\rho = \{ (d, (d, \nu)) \mid d \in \Delta^{\mathcal{I}_{\nu}} \}$$

is a bisimulation between \mathcal{I}_{ν} and \mathcal{J} . Thus, the bi-implication in the statement of the lemma follows immediately from Theorem 3.2.

2、定理

Theorem 3.8. Let \mathcal{T} be an \mathcal{ALC} TBox and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of models of \mathcal{T} . Then its disjoint union $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ is also a model of \mathcal{T} .

原来所有T的model组合后还是model,紧凑性 (disjoint union作用)

证明

Proof. Assume that \mathcal{J} is not a model of \mathcal{T} . Then there is a GCI $C \sqsubseteq D$ in \mathcal{T} and an element $(d, \nu) \in \Delta^{\mathcal{J}}$ such that $(d, \nu) \in C^{\mathcal{J}}$, but $(d, \nu) \notin D^{\mathcal{J}}$. By Lemma 3.7, this implies $d \in C^{\mathcal{I}_{\nu}}$ and $d \notin D^{\mathcal{I}_{\nu}}$, which contradicts our assumption that \mathcal{I}_{ν} is a model of \mathcal{T} .

3、推论

C对于T是可满足的,说明存在解释使C非空且为T的model

• 于是任意可满足的 ALC concept 都存在无限大的模型

Corollary 3.9. Let \mathcal{T} be an \mathcal{ALC} TBox and C an \mathcal{ALC} concept that is satisfiable with respect to \mathcal{T} . Then there is a model \mathcal{I} of \mathcal{T} in which the extension $C^{\mathcal{I}}$ of C is infinite.

Proof. Since C is satisfiable with respect to \mathcal{T} , there is a model \mathcal{I} of \mathcal{T} and an element $d \in \Delta^{\mathcal{I}}$ such that $d \in C^{\mathcal{I}}$. Let $\mathcal{J} = \biguplus_{n \in \mathbb{N}} \mathcal{I}_n$ be the countably infinite disjoint union of \mathcal{I} with itself. By Theorem 3.8, \mathcal{J} is a model of \mathcal{T} , and by Lemma 3.7, $(d,n) \in C^{\mathcal{J}}$ for all $n \in \mathbb{N}$.

三、Finite model property

1, finite

model有限,一定域有限

Definition 3.10. The interpretation \mathcal{I} is a model of a concept C with respect to a $TBox \mathcal{T}$ if \mathcal{I} is a model of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$. We call this model finite if $\Delta^{\mathcal{I}}$ is finite.

 若某个ALC对Tbox可满足,则一定会存在finite model,又可以用finite和disjoint union创建 infinite

2、size&sub

- If $C = A \in N_C \cup \{\top, \bot\}$, then $\operatorname{size}(C) = 1$ and $\operatorname{sub}(C) = \{A\}$.
- If $C = C_1 \sqcap C_2$ or $C = C_1 \sqcup C_2$, then $\operatorname{size}(C) = 1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$ and $\operatorname{sub}(C) = \{C\} \cup \operatorname{sub}(C_1) \cup \operatorname{sub}(C_2)$.
- If $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$, then $\mathsf{size}(C) = 1 + \mathsf{size}(D)$ and $\mathsf{sub}(C) = \{C\} \cup \mathsf{sub}(D)$.

符号也占size

size=concept数+符号数

• 推广到Tbox

$$\mathsf{size}(\mathcal{T}) = \sum_{C \sqsubseteq D \in \mathcal{T}} \mathsf{size}(C) + \mathsf{size}(D) \text{ and } \mathsf{sub}(\mathcal{T}) = \bigcup_{C \sqsubseteq D \in \mathcal{T}} \mathsf{sub}(C) \cup \mathsf{sub}(D).$$

3、引理

size&sub&closed

Lemma 3.11. Let C be an \mathcal{ALC} concept and \mathcal{T} be an \mathcal{ALC} TBox. Then

$$|\operatorname{sub}(C)| \leq \operatorname{size}(C) \ and \ |\operatorname{sub}(\mathcal{T})| \leq \operatorname{size}(\mathcal{T}).$$

We call a set S of \mathcal{ALC} concepts closed if $\bigcup \{ sub(C) \mid C \in S \} \subseteq S$. Obviously, if S is the set of subdescriptions of an \mathcal{ALC} concept or TBox, then S is closed.

sub比较小因为重复的没算

4、S-type

Definition 3.12 (S-type). Let S be a set of \mathcal{ALC} concepts and \mathcal{I} an interpretation. The S-type of $d \in \Delta^{\mathcal{I}}$ is defined as

$$t_S(d) = \{ C \in S \mid d \in C^{\mathcal{I}} \}.$$

收集S中所有出现d的内容

- S中所有包含d的概念的集合, 共有2¹SI种
- 只要证明S-type有一个元素,即可证明 非空

5. S-filtration

S上等价关系(非常广义的概念)

作用:消除对于成为model无用的项,合并所有S-type相同的项

• S上与d等价集合

$$[d]_S = \{ e \in \Delta^{\mathcal{I}} \mid d \simeq_S e \}.$$

• 等价类(相当于合并同类项)(并不维持同构性质)

$$\Delta^{\mathcal{J}} = \{[d]_S \mid d \in \Delta^{\mathcal{I}}\};$$

$$A^{\mathcal{J}} = \{[d]_S \mid \text{there is } d' \in [d]_S \text{ with } d' \in A^{\mathcal{I}}\} \text{ for all } A \in \mathbf{C};$$

$$r^{\mathcal{J}} = \{([d]_S, [e]_S) \mid \text{there are } d' \in [d]_S, e' \in [e]_S \text{ with } (d', e') \in r^{\mathcal{I}}\}$$

$$\blacktriangleright_{\square} \text{ for all } r \in \mathbf{R}.$$

域是集合的域

举例

- (1) 先确定 S-type 中的 S = {A, B, C, ∃r.C}
- (2) 再确定初始的解释 I: $\Delta^{I} = \{a, b, c, d, e, f\}$

$$A^{I} = \{a, b, e\} B^{I} = \{b, c, d\} C^{I} = \{c, d, f\}$$

 $r^{I} = \{(a, c), (b, d), (e, f)\}$

则(
$$\exists r.C$$
)^I = {a, b, e}

(3) 找出各个元素的 S-type:

$$t_{S}(a) = \{A, \exists r.C\}$$

$$t_{S}(b) = \{A, B, \exists r.C\}$$

$$t_{S}(c) = \{B, C\}$$

$$t_{S}(d) = \{B, C\}$$

$$t_{S}(e) = \{A, \exists r.C\}$$

$$t_S(f) = \{C\}$$

(4) 对各个元素进行归类:

$$[a]_S = \{a, e\}$$

 $[b]_S = \{b\}$
 $[c]_S = \{c, d\}$
 $[d]_S = \{c, d\}$
 $[e]_S = \{a, e\}$
 $[f]_S = \{f\}$

(5) 构建 I 的 S-filtration J:

$$\Delta^{J} = \{\{a, e\}, \{b\}, \{c, d\}, \{f\}\}\}$$

$$A^{J} = \{\{a, e\}, \{b\}\} B^{I} = \{\{b\}, \{c, d\}\} C^{I} = \{\{c, d\}, \{f\}\}\}$$

$$r^{J} = \{(\{a, e\}, \{c, d\}), (\{b\}, \{c, d\}), (\{a, e\}, \{f\})\}$$

破坏同构的例子

原因:相当于扩充了原来不存在的r关系,产生集合类别(A)的混乱

Fig. 3.4. An interpretation \mathcal{I} and its S-filtration \mathcal{J} for $S = \{\top, A, \exists r. \top\}$.

6、引理

Lemma 3.15. Let S be a finite, closed set of \mathcal{ALC} concepts, \mathcal{I} an interpretation and \mathcal{J} the S-filtration of \mathcal{I} . Then we have

$$d \in C^{\mathcal{I}}$$
 if and only if $[d]_S \in C^{\mathcal{J}}$

for all $d \in \Delta^{\mathcal{I}}$ and $C \in S$.

Proof. By induction on the structure of C, where we again restrict our attention to concept names, negation, conjunction and existential restriction (see Lemma 2.16):

同构证明失败

想证明 S 中的任何 concept C 都无法区分 d 和[d]S,但实际上 d 和[d]S之间有无 bisimilar 举例:

(I, a) ~ (J, [a]S)并不成立

因为J中[a]S有一个 r-successor[d]S,但I中的a却没有这样的r-successor

分符号证明

尽管如此,我们要证明: $d \in C^I$ iff $[d]_s \in C^J$ 。同样的方法,我们使用归纳法进行证明: 我们的 base case 是 C = A,其中 A 是一个 concept name,我们要证明 A 无法区分 d 和 $[d]_s$:

 $d \in A^{I}$ iff $[d]_{S} \in A^{J}$

因为是iff, 我们要证明两个方向:

 $[d]_s \in A^J \text{ if } d \in A^I$ $d \in A^I \text{ if } [d]_s \in A^J$

先证明第一个方向: 如果 $d \in A^I$, 则[d] $s \in A^J$, 这是 J 对 A 的解释直接得到的。再证明第二个方向: 如果[d] $s \in A^J$, 则根据 J 对 A 的解释,[d]s中存在一个元素 d'使得 d' $\in A^I$ 。又因为 d = s d'且 A 为 S 中一个元素,则可以由 d' $\in A^I$ 得出 $d \in A^I$ 。

接下来我们要证明 induction hypothesis, 首先 C 是一个 conjunction 的情况: $C = D \sqcap E$ 。则 我们要证明的是:

 $d \in (D \sqcap E)^{\mathsf{I}} \text{ iff } [d]_{\mathsf{S}} \in (D \sqcap E)^{\mathsf{J}}$

因为是iff, 我们要证明两个方向:

 $[d]_s \in (D \sqcap E)^{-J} \text{ if } d \in (D \sqcap E)^{-1}$ $d \in (D \sqcap E)^{-1} \text{ if } [d]_s \in (D \sqcap E)^{-J}$

先证明第一个方向,假设 $d \in (D \sqcap E)^{I}$,根据 ALC 语义, $d \in D^{I}$ 且 $d \in E^{I}$ 。又因为 $d \in [d]_{s}$,则根据 J 的定义, $[d]_{s} \in D^{J}$ 且 $[d]_{s} \in D^{J}$ 。

我们刚才又假设 D 和 E 已经不能区分 d1 和 d2, 所以 $d2 \in D^{12}$ and $d2 \in E^{12}$ 。根据 ALC 语义,我们知道 $d2 \in (D \sqcap E)^{12}$ 。第一个方向证明完毕。第二个方向的证明是镜像第一个的版本,我们不再赘述。或者像参考书里面的证明一样,直接使用 iff 关系得到证明。

7. Bounded

比finite更强,得到边界

用算法之前先要证明这个问题的可解决性,需要证明存在有限domain

Theorem 3.16 (Bounded model property). Let \mathcal{T} be an \mathcal{ALC} TBox, C an \mathcal{ALC} concept and $n = \operatorname{size}(\mathcal{T}) + \operatorname{size}(C)$. If C has a model with respect to \mathcal{T} , then it has one of cardinality at most 2^n .

至少存在一个解释的域有界

的 S, 比如 S = {A, B, $\exists r.B$ }, 对于一个 interpretation I 来说, Δ^{I} 中的某个元素 d 最多有 2^{3} 个 S-type, 那么[d]s 最多有 2^{3} 个, 则 Δ^{I} 里面的也元素最多有 2^{3} 个。则现在只需要证明 I 和 I 一

8. Decidability

Corollary 3.18 (Decidability). Satisfiability of ALC concepts with respect to ALC TBoxes is decidable.

9, no finite

Theorem 3.19 (No finite model property). ALCIN does not have the finite model property.

Proof. Let $C = \neg A \sqcap \exists r.A$ and $\mathcal{T} = \{A \sqsubseteq \exists r.A, \top \sqsubseteq (\leqslant 1 r^{-})\}$. We claim that C does not have a finite model with respect to \mathcal{T} .

关键在于A在existr.A种, 嵌套开始

IN碰到一起会不可决定, 所以不做算法研究

四、Tree model property

条件:

- 有唯一根节点
- 唯一父亲

Definition 3.20 (Tree model). Let \mathcal{T} be an \mathcal{ALC} TBox and C an \mathcal{ALC} concept description. The interpretation \mathcal{I} is a tree model of C with respect to \mathcal{T} if \mathcal{I} is a model of C with respect to \mathcal{T} , and the graph

$$\mathcal{G}_{\mathcal{I}} = \left(\Delta^{\mathcal{I}}, \bigcup_{r \in \mathbf{R}} r^{\mathcal{I}}\right)$$

is a tree whose root belongs to $C^{\mathcal{I}}$.

1、Unravelling算法

转化成树状的新解释

- 用每条路径的终止结点代表这条路径 (domain中的结点变成path)
- r是两条路径的关系, 代表终止结点之间有r关系

Definition 3.21 (Unravelling). Let \mathcal{I} be an interpretation and $d \in \Delta^{\mathcal{I}}$. The unravelling of \mathcal{I} at d is the following interpretation \mathcal{I} :

$$\begin{split} \Delta^{\mathcal{I}} &= \{ p \mid \ p \text{ is a d-path in \mathcal{I}} \}, \\ A^{\mathcal{I}} &= \{ p \in \Delta^{\mathcal{I}} \mid \underline{\mathsf{end}}(p) \in A^{\mathcal{I}} \} \text{ for all } A \in \mathbf{C}, \\ r^{\mathcal{I}} &= \{ (p, p') \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid \underline{p'} = (p, \underline{\mathsf{end}}(p')) \text{ and } (\underline{\mathsf{end}}(p), \underline{\mathsf{end}}(p')) \in \underline{r}^{\mathcal{I}} \} \\ & \text{ for all } r \in \mathbf{R}. \end{split}$$

In our example, $d_1 = d, e, d \in A^{\mathcal{I}}$ because $end(d_1) = d \in A^{\mathcal{I}}$, and $((d, e, d), (d, e, d, e)) \in r^{\mathcal{I}}$ because $(d, e) \in r^{\mathcal{I}}$.

2、路径与终止结点同构

Lemma 3.22. The relation

$$\rho = \{ (p, \mathsf{end}(p)) \mid p \in \Delta^{\mathcal{J}} \}$$

is a bisimulation between \mathcal{J} and \mathcal{I} .

proof: 还是分三个条件证明

(已收录在专题) 其实就是翻译unravelling的定义

Proposition 3.23. For all \mathcal{ALC} concepts C and all $p \in \Delta^{\mathcal{J}}$, we have $p \in C^{\mathcal{J}}$ if and only if $end(p) \in C^{\mathcal{I}}$.

We are now ready to show the tree model property of \mathcal{ALC} .

• 建立起原解释I和树解释J的联系

同构的证明相当于把集合A层面的联系(同构第一部分)升级到了concept C层面

3. Tree model property

Theorem 3.24 (Tree model property). \mathcal{ALC} has the tree model property, i.e., if \mathcal{T} is an \mathcal{ALC} TBox and C an \mathcal{ALC} concept such that C is satisfiable with respect to \mathcal{T} , then C has a tree model with respect to \mathcal{T} .

proof

Proof. Let \mathcal{I} be a model of \mathcal{T} and $d \in \Delta^{\mathcal{I}}$ be such that $d \in C^{\mathcal{I}}$. We show that the unravelling \mathcal{J} of \mathcal{I} at d is a tree model of C with respect to \mathcal{T} .

- 1.想证tree model , 先证是model (已收录在专题)
- 2.再证一定有父亲:只有根节点路径长度为1,非根节点一定有父亲
- 3.再证唯一父亲

- (i) To prove that \mathcal{J} is a model of \mathcal{T} , consider a GCI $D \subseteq E$ in \mathcal{T} , and assume that $p \in \Delta^{\mathcal{J}}$ satisfies $p \in D^{\mathcal{J}}$. We must show $p \in E^{\mathcal{J}}$. By Proposition 3.23, we have $\operatorname{end}(p) \in D^{\mathcal{I}}$, which yields $\operatorname{end}(p) \in E^{\mathcal{I}}$ since \mathcal{I} is model of \mathcal{T} . But then Proposition 3.23 applied in the other direction yields $p \in E^{\mathcal{J}}$.
- (ii) We show that the graph

$$\mathcal{G}_{\mathcal{J}} = \left(\Delta^{\mathcal{J}}, \bigcup_{r \in N_R} r^{\mathcal{J}}\right)$$

is a tree with root d, where d is viewed as a d-path of length 1. First, note that d is the only d-path of length 1. By definition of

A Little Bit of Model Theory

the extensions of roles in $\mathcal J$ and the definition of d-paths, all and only d-paths of length > 1 have a predecessor with respect to some role. Consequently, d is the unique node without predecessor, i.e., the root. Assume that p is a d-path of length > 1. Then there is a unique d-path p' such that p = p', $\operatorname{end}(p)$. Thus, p' is the unique d-path with $(p',p) \in E$, which completes our proof that $\mathcal G_{\mathcal J}$ is a tree with root d.

(iii) It remains to show that the root d of this tree belongs to the extension of C in \mathcal{J} . However, this follows immediately by Proposition 3.23 since $d = \operatorname{end}(d)$ and $d \in C^{\mathcal{I}}$.

4、反例

infinite

$$\{A \sqsubseteq \exists r.A\}.$$

ALCO没有Tree model property

We remark that many extensions of \mathcal{ALC} , such as \mathcal{ALCIQ} , also enjoy the tree model property. However, in the presence of inverse roles, a more liberal definition of trees is needed that also allows edges to be oriented towards the root. An example of a description logic that does not enjoy the tree model property is \mathcal{ALCO} : the concept $\{o\} \sqcap \exists r. \{o\}$ can clearly only have a non-empty extension in an interpretation that has a reflexive r-edge.

画图应为:唯一norminal o ,有指向自身的r关系