Прикладной статистический анализ данных Анализ последовательностей

Олег Бахтеев psad-2020@phystech.edu

2020

Марковская цепь

Последовательность дискретных случайных величин X_1,\dots,X_T , принимающих некоторый набор значений $\{O_1,\dots,O_m\}$, называется простой однородной цепью Маркова, если

$$P(X_{t+1}=O_{t+1}|X_t=O_t,\dots,X_1=O_1)=P(X_{t+1}=O_{t+1}|X_t=O_t),$$
 $P(X_{t+1}=O_{t+1}|X_t=O_t)$ не зависит от номера шага t .

Марковская цепь задается:

- множеством наблюдаемых состояний $\{O_1, \dots, O_m\}$;
- начальными значениями вероятности состояний $P(X_1 = O_i) = P_i$;
- ullet вероятностью перехода между состояниями $P(X_t = O_i | X_{t-1} = O_j) = P_{ij}.$

Пример: погода

Задан набор из трех состояний:

- ① $O_1 =$ дождливая погода;
- **2** O_2 = пасмурная погода;
- **3** $O_3 =$ солнечная погода.
- Какова вероятность, что в следующие четыре дня погода будет меняться как "солнце-солнце-дождь-дождь"?

$$P(O_3, O_3, O_1, O_1) = P_3 P_{33} P_{31} P_{11}$$

ullet Какова вероятность, что ровно N дней будет пасмурная погода?

$$P(X_2 = O_2, \dots, X_t = O_2, X_N \neq O_2 | X_1 = O_2) = P_{22}^{N-1} (1 - P_{22}).$$

• Ожидаемая продолжительность постоянной пасмурной погоды:

$$\mathsf{E} = \sum_{t=1}^{\infty} t \cdot P(X_2 = O_2, \dots, X_t = O_2, X_{t+1} \neq O_2 | X_1 = O_2) = \frac{1}{1 - P_{22}}.$$

Языковая модель

Примером марковской цепи выступает языковая n-грамм модель.

Под n-граммой понимается последовательность из n подряд идущих слов.

Пример:

Шла Саша по шоссе содержит три 2-граммы:

- 🗓 Шла Саша;
- 2 Саша по;
- По шоссе.

Языковая модель

Языковая модель позволяет оценить вероятность появления предложения на основе марковской модели языка.

Для удобства при построении языковой модели вводятся два специальных символа: BOS (Begin Of Sentence) и EOS (End Of Sentence).

Пример для 3-граммной языковой модели:

$$p(w_1, \dots, w_n) = p(SOS) \times$$

$$\times p(w_1|SOS)p(w_2|w_1, SOS)p(w_3|w_2, w_1) \dots p(w_n|w_{n-1}, w_{n-2})$$

$$\times p(EOS|w_n, w_{n-1}).$$

Языковая модель: измерение качества

Как оценить качество модели?

Кросс-Энтропия.

Оценка на основе заданной выборки w_1, \dots, w_n :

$$H = -\frac{1}{n}\log p(w_1, \dots, w_n).$$

Перплексия:

$$PP = 2^H = p(w_1, \dots, w_n)^{-\frac{1}{n}}.$$

- $PP = \infty \rightarrow$ марковская цепь не описывает выборку;
- ullet PP=1
 ightarrow марковская цепь идеально описывает выборку.

2020

Языковая модель: незнакомые слова

В случае, если языковой модели встретится неизвестное слово, $p(w_1,\dots,w_n)=0.$ Варианты работы с незнакомыми словами:

• Сглаживание Лапласа:

$$p(w_i) = \frac{c_i + 1}{\sum_{j=1}^{v} c_j + v},$$

где c_i — встречаемость слова w_i в тексте, v — мощность словаря.

• Интерполяция моделей разных порядков:

$$\hat{p}(w_n|w_{n-1}, w_{n-2}) = \lambda_1 p(w_n|w_{n-1}, w_{n-2}) + \lambda_2 p(w_n|w_{n-1}) + \lambda_3 p(w_n),$$
$$\sum_i \lambda_i = 1.$$

Марковские модели, проверки гипотез

Проверка гипотезы о соответствии вектора вероятностей p_{i1},\dots,p_{im} перехода из состояния i заданному:

выборка: $X_1, ..., X_T$

нулевая гипотеза: $H_0: p_{i1}, \dots, p_{im} = \mathbf{p}^0$

альтернатива: $H_1 \colon p_{i1}, \dots, p_{im} \neq \mathbf{p}^0$ статистика: $n_i \sum_j \frac{(p_{ij} - p_{ij}^0)^2}{p_{ij}^0},$

где n_i — встречаемость наблюдения O_i в последовательности X_1, \ldots, X_{T-1}

нулевое распределение: χ^2_{m-1}

Марковские модели, проверки гипотез

Проверка гипотезы о том, что марковскую цепь второго порядка можно "свернуть" в цепь первого порядка:

выборка: X_1, \dots, X_T , задана марковская модель порядка 2:

 $P(X_t = O_k | X_{t-1} = O_j, X_{t-2} = O_i, \dots) = p_{ijk}$

нулевая гипотеза: $H_0: p_{1jk} = p_{2jk} = \cdots = p_{mjk}.$

альтернатива: $H_1: H_0$ неверна.

статистика: $-2\log(\prod_{i,j,k=1}^{m}(\hat{p}_{ij}/p_{ijk})^{n_{ijk}})),$

 \hat{p}_{ij} — оценка МП,

 $n_{ijk} = |\{X_t : X_t = O_i, X_{t+1} = O_j, X_{t+2} = O_k\}|.$

нулевое распределение: $\chi^2_{m(m-1)^2}$

Проверка гипотез, комментарии

- Вероятностное распределение p_{ij} представимо как мультиномиальное распределение события j при условии события i, поэтому для проверки гипотез применимы критерии для мультиномиальных величин (в случае m=2 критерии для распределения Бернулли).
- Предполагается, что все вероятности переходов при проверке гипотез строго больше нуля.
- Критерии можно обобщить на случай моделей более высокого порядка (например, полагать p_{ijk} моделью первого порядка с событием $X_t = O_k$ при условии единого события $< X_{t-1} = O_j, X_{t-2} = O_i >$.
- Возможна проверка критериев по нескольким последовательностям, а не по одной. Статистики и нулевая гипотеза от этого не меняются.
- Подробнее см. Anderson et al. (в списке литературы).

Марковские модели как порождающие модели

Примеры порождающих моделей:

- Генераторы поведения ветра (используются для изучения климата).
- Генераторы текста (см. https://hackernoon.com/automated-text-generator-using-markov-chain-de999a41e047)
- SciGen: генератор псевдонаучных текстов
 - ► В России известен, благодаря сгенерированной статьей "Rooter" ("Корчеватель"). Подробнее см. на вики: https://en.wikipedia.org/wiki/SCIgen

Скрытая марковская модель

Скрытая марковская модель — обобщение марковской цепи, в котором разделяются наблюдаемые и ненаблюдаемые (скрытые) переменные.

Элементы скрытой марковской модели

- $\bullet \ X_1, \dots, X_T$ наблюдаемая последовательность;
- ullet H_1,\ldots,H_T скрытая последовательность;
- S_1, \dots, S_n множество скрытых состояний;
- O_1, \ldots, O_m алфавит наблюдений;
- Вероятности перехода из одного состояния в другое:

$$a_{ij} = P(H_{t+1} = S_j | H_t = S_i);$$

• Вероятность наблюдений:

$$b_j(k) = P(X_t = O_k | H_t = S_j).$$

• Распределение вероятностей начальных состояний:

$$\pi_i = P(H_1 = S_i).$$

НММ: пример

Пример: wikipedia

Доктор опрашивает потенциально больных людей о своем самочувствии и фиксирует ответы. Люди отвечают могут ответить, что они чувствуют себя нормально (normal), что у них кружится голова (dizzy), что у них озноб (cold). Наблюдаемые величины $\{O_1,O_2,O_3\}=\{\text{normal, dizzy, cold}\}$. Скрытые величины — наличие простуды $\{H_1,H_2\}=\{\text{healthy, fever}\}$.

НММ: основные задачи

- f Q Как посчитать вероятность последовательности X_1,\ldots,X_T ?
- ② Как выбрать наиболее подходящую скрытую последовательность H_1, \dots, H_T по последовательности X_1, \dots, X_T ?
- **3** Как настроить параметры HMM-модели по входной последовательности X_1, \ldots, X_T ?

НММ: основные задачи

- f 0 Как посчитать вероятность последовательности X_1,\ldots,X_T ?
- ② Как выбрать наиболее подходящую скрытую последовательность H_1, \dots, H_T по последовательности X_1, \dots, X_T ?
- **3** Как настроить параметры HMM-модели по входной последовательности X_1, \dots, X_T ?

Что интересует нас:

- Как определить адекватность модели?
- ② Как выбрать наилучшую модель?

НММ, основные задачи, наивное решение

Вычисление вероятности последовательности Вычисление полной вероятности с полным перебор скрытых состояний:

$$P(X_1,\ldots,X_N) = \sum_{i_1=1}^n \cdots \sum_{i_T=1}^n \pi_{i_1} b_{i_1}(X_1) a_{i_1 i_2} b_{i_2}(X_2) \ldots a_{i_{T-1} i_T} b_{i_T}(X_T).$$

Проблема: высокая сложность: $2T \cdot n^T$.

Вычисление оптимальной последовательности скрытых состояний

Будем максимизировать вероятность каждого скрытого состояния по отдельности:

$$S_i = \arg \max_{i'} P(H_t = S_{i'}|X_1, \dots, X_T), \forall t.$$

Проблема: не учитываются вероятности перехода между скрытыми состояниями a_{ij} .

НММ, основные задачи

Общепринятые решения основных задач:

- Вычисление вероятности последовательности: Forward-Backward алгоритм
 - ▶ Основан на динамическом программировании
 - ► Сложность: $O(n^2T)$
- Вычисление оптимальной последовательности скрытых состояний: алгоритм Витерби
 - ► Основан на динамическом программировании, схож с Forward-Backward алгоритмом
- Оптимизация параметров НММ-модели
 - ▶ ЕМ-алгоритм Баума Велша

Подробнее см. Rabiner (в списке литературы).

НММ, проверка гипотезы

выборка: $X_1, ..., X_T$

нулевая гипотеза: H_0 : $\mathbf{a} = \mathbf{a}^0, \mathbf{b} = \mathbf{b}^0, \boldsymbol{\pi} = \boldsymbol{\pi}^0.$

альтернатива: $H_1 \colon H_0$ неверна.

статистика: $2\log(\hat{p}(X_1,\ldots,X_T)-p^0(X_1,\ldots,X_T))$.

нулевое распределение: χ^{z}_{n+mn+m}

НММ: сравнение моделей

Как определить понятие эквивалентности на моделях?

Дивергенция Кульбака-Лейблера:

$$D_{KL}(p_1, p_2) = \mathsf{E}_{X \sim p_2} (\mathsf{log} p_1(X) - \mathsf{log} p_2(X)).$$

- $D_{KL}(p_1, p_2) > 0.$
- $O_{KL}(p_1, p_2) \neq D_{KL}(p_2, p_1).$
- $D_{KL}(p_1, p_2) = 0 \ll p_1 = p_2$.

Модификация для НММ:

$$D_{KL}'(p_1,p_2) = \frac{1}{N} \mathsf{E}_{X_1,...,X_T \sim p_2} \big(\mathsf{log} p_1(X_1,\ldots,X_T) - \mathsf{log} p_2(X_1,\ldots,X_T) \big).$$

Симметричная версия:

$$D_{KL}''(p_1, p_2) = \frac{D_{KL}'(p_1, p_2) + D_{KL}'(p_2, p_1)}{2}.$$

НММ: разновидности

- left-right-модели
 - ▶ Вводится порядок на множестве скрытых наблюдений
 - ▶ Переход между наблюдениями "от большего к меньшему" запрещен
 - ▶ Используется в распознавании речи
- С непрерывным распределением на наблюдениях
- Авторегрессионные НММ-модели.

HMM: эксперимент Cave and Neuwirth

 HMM обучена на большом наборе английских текстов. Размерность множества скрытых состояний — 2.

Наблюдаемые величины — символы в тексте. На выходе получается распределение переходов, при котором скрытую переменную можно интерпретировать как гласную или согласную букву.

	Initial		Final	
a	0.03735	0.03909	0.13845	0.00075
b	0.03408	0.03537	0.00000	0.02311
c	0.03455	0.03537	0.00062	0.05614
d	0.03828	0.03909	0.00000	0.06937
e	0.03782	0.03583	0.21404	0.00000
f	0.03922	0.03630	0.00000	0.03559
g	0.03688	0.04048	0.00081	0.02724
h	0.03408	0.03537	0.00066	0.07278
i	0.03400	0.03816	0.12275	0.00000
j	0.03070	0.03909	0.00000	0.00365
k	0.03735	0.03490	0.00082	0.00703
1	0.03968	0.03723	0.00049	0.07231
m	0.03548	0.03537	0.000010	0.03889
n	0.03735	0.03909	0.00000	0.11461
0	0.04062	0.03397	0.13156	0.00000
р	0.03595	0.03397	0.00040	0.03674
q	0.03641	0.03816	0.00000	0.00153
r	0.03408	0.03676	0.00000	0.10225
s	0.04062	0.04048	0.00000	0.11042
t	0.03548	0.03443	0.01102	0.14392
u	0.03922	0.03537	0.04508	0.00000
v	0.04062	0.03955	0.00000	0.01621
w	0.03455	0.03816	0.00000	0.02303
x	0.03595	0.03723	0.00000	0.00447
v	0.03408	0.03769	0.00019	0.02587
z	0.03408	0.03955	0.00000	0.00110
space	0.03688	0.03397	0.33211	0.01298

НММ: примеры применения

- Назначение соответствий между словами в исходном и переведенном предложении (наблюдения — множество слов в переведенном предложении, скрытые состояния — исходные слова).
- Анализ частей речи (наблюдения слова, скрытые состояния части речи).
- Распознавание речи (наблюдения представления звуковых сегментов, скрытые состояния — слова или буквы).
- Выравнивание биологических последовательностей (наблюдения элементы последовательности, скрытые состояния — экзоны).

Литература

- Tutorial: L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
- Tutorial: M. Stamp, A Revealing Introduction to Hidden Markov Models
- Проверка гипотез: T. W. Anderson, Leo A. Goodman, Statistical Inference about Markov Chains
- Языковые модели: D. Jurafsky, J. H. Martin, Speech and Language Processing
- Машинный перевод: P. Koehn, Statistical Machine Translation
- IBM M1 & HMM: http://www.cs-114.org/wpcontent/uploads/2016/04/CS114 L25PMachineTranslation-IBM.pdf