Data Mining

Classification III - Naïve Bayes (Part A)

Dr. Jason T.L. Wang, Professor Department of Computer Science New Jersey Institute of Technology

Bayes Theorem

Conditional probability

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

P(A|B) =
$$P(B|A)P(A)$$
P(B)

Naïve Bayes Classifier

Applying Bayes rule

Assumption: Xi's are conditionally independent given Y

Terminology

P(Y|X): posterior probability for Y

P(Y): prior probability

P(X|Y): class-conditional probability

P(X): evidence

Bayes theorem (Bayes rule) allows us to calculate the posterior probability P(Y|X) using the prior probability P(Y), the class-conditional probability P(X|Y) and the evidence P(X) (which is constant and ignored).

Algorithmic Details (Training Phase)

Naïve Bayes Algorithm

Learning/training phase: given a training data set T,
 For each label Yi

P(Yi) ← calculate P(Y=Yi) using training examples in T; For each attribute value Xj calculate P(Xj|Yi) using training examples in T.

Training Data Set

Student	Assignment	Project	Exam	Label
1	Good	A	High	Pass
2	Good	В	High	Pass
3	Bad	В	Low	Fail
4	Bad	С	High	Fail
5	Good	С	Low	Fail
6	Good	С	High	Pass
7	Bad	В	High	Pass
8	Good	Α	Low	Pass
9	Bad	Α	Low	Fail
10	Good	В	Low	Pass

Training Phase

```
P(Pass) = 6/10; P(Fail) = 4/10
P(Good|Pass) = 5/6; P(Bad|Pass) = 1/6
P(High|Fail) = 1/4; P(Low|Fail) = 3/4
```

• • •

Algorithmic Details (Testing Phase)

- Naïve Bayes Algorithm
 - ➤ Testing phase: given an unlabeled test record X*=<X1...Xn>
 - ➤ Assign label Y to X* based on max{P(Yi)P(X1|Yi)P(X2|Yi)...P(Xn|Yi)}

End of Naïve Bayes Module (Part A)