程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Topic Over好序代写代做 CS编程辅导

- Revisiting Collective Collective Collective Sather
- Introduction to MPI Virtual Topologies

WeChat: cstutorcs

A portion of the content in the following slides were adopted from:

Assignment Project Exam Help

a) Introduction to the Message Passing Interface (MPI) Irish Centre for High End Computing (ICHEC) (www.ichec.ie)

Learning outcome(s) related to this topic

https://tutorcs.com

• Design and develop parallel algorithms for various parallel computing architectures (LO3)

程序代写代做 CS编程辅导

Revisiting Collective Communications with MP Statter & Gather

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Collective Communication 程序代写代做 CS编程辅导

- Communica volving a group of processes.
- Must be called by all processes in a communicator.

Assignment Project Exam Help

Examples:

Email: tutorcs@163.com

- Barrier synchronization.
- Broadcast, scatter, gather.
- Global sum, global maximum, etc.

Characteristics of collective communication

- Optimised (国家協力) inication routines involving a divition of processes
- Collective action to communicator, i.e. all processes must call the collective routine.
 Assignment Project Exam Help
 Synchronization may or may not occur.
- All collective operations are blocking.
- No tags. QQ: 749389476
- Receive buffers must have exactly the same size as send buffers.com

Barrier Synchronization 程序代写代做 CS编程辅导

MPI_Comm comm)

- MPI_Barrier is normalizationer needed:
 - all synchronization is done automatically by the data communication!gnment Project Exam Help
 - a process cannot continue before it has the data that it needs.

 - if used for debugging;
 please guarantee, that it is removed in production.

Broadcast 程序代写代做 CS编程辅导

- https://ptrtores.com
 - rank of the sending process (i.e., root process)
 - must be given identically by all processes

Scatter 程序代写代做 CS编程辅导

- C: int MPI_Scatterv(const void *sendbuf, const int *sendcounts, const int *displs, MPI_Datatype sendtype, Void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Gather 程序代写代做 CS编程辅导

C: int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, const int *recvcounts, const int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)

Click <u>here</u> for sample C code implementation of MPI Scatter & Gather

程序代写代做 CS编程辅导

ntroduction to MD

Introduction to MPI Virtual Topologies

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Topologies - Matigations

- Need to creates
 - For prograff流流 convenience
 - Make use Wecollectives coutines
- Need to mapsthe abstract topology onto the natural topology of the problem domain
 QQ: 749389476
 - For programming convenience https://tutorcs.com
 - For performance

Groups & communicators 程序代写代做 CS编程辅导

 A group is an appeared set of process identifiers

WeChat: cstutorcs

• Each process in a group is associated Assignment Project Exam Help with an rank

Usually one associates to groups communicators

Working with grayps

- Select processes remove the treate grades.com
- Associate to these groups new communicators
- Use these new communicators as usual
- MPI_Comm_group (ttoppm/tgroup).ceturns in group the group associated to the communicator comm

For the previous example

- Odd_ranks= $\{1$ ven_ranks= $\{0, 2, 4\}$
 - MPI_comm_gr COMM_WORLD, Old_group)
 - MPI_Group_incl(Qld_group, 3, Qdd_ranks, &Odd_group)
 - MPI_Group_incl(Old_group, 3, Even_ranks, &Even_group) 3.
 - int MPI_Comm_cheate(MPI_COMM_C)\(\text{MPI_COMM_C}\)\(\text{MPI_C}\)\(\text{MPI_COMM_C}\)\(\text{MPI_COMM_C}\)\(\t
 - int MPI_Comm_create(MPI_COMM_WORLD, Even_group, Even_Comm) Email: tutorcs@163.com
 - Alternatively... Alternatively... QQ: 749389476 color = modulo(myrank, 2)

 - MPI_Comm_split(MPI_CQMM_tWORLPmcolor, key, &newcomm)

Group Management

- Group Accessors
 - MPI_Group_size(...)
 - MPI_Group_rank(...)

- ...

WeChat: cstutorcs

- Group Constructors
 - MPI_COMM_GROUP(...Assignment Project Exam Help
 - MPI_GROUP_INCL(...)
 - MPI_GROUP_EXCL(...)Email: tutorcs@163.com
 - **–** ...
- Group Destructors
 QQ: 749389476
 - MPI_GROUP_FREE(group)

Communicator Management 程序代写代做 CS编程辅导

- Communicator Acq

 - MPI_COMM_RANK(...)
 WeChat: cstutorcs
- Communicator Constructors Project Exam Help
 - MPI_COMM_CREATE(...)
 - MPI_COMM_SPLITE mail: tutorcs@163.com
- Communicator Destructors
 - MPI_COMM_FREE(@@m)749389476

Virtual topology 程序代写代做 CS编程辅导

- For more comple Market MPI routines are available
- Global array 1:4000, 1:500) =
- process coordinates Charocastutores 0...3, 0...4
- example: on process
 Assignment Project Exam Help ic₀=2, ic₁=0, ic₂=3

 decomposition, e.g., A(2001:3000, 1:1000, 301:400) = $0.1 \cdot 10^9$ words $0.1 \cdot 10^9$ words $0.1 \cdot 10^9$ words
- process coordinates: handled with virtual Cartesian topologies.com
- Array decomposition: handled by the application program directly

Graphical representation 程序代写代做 CS编程辅导

Virtual Topologies 程序代写代版 CS编程辅导

- Convenient
 Significant
- Simplifies writing of code.
- Can allow MPI to optimize Exam Help communications. Email: tutores@163.com

QQ: 749389476

How to use a Virtual Topology

- Creating a graph gy produces a new communical communication.
- MPI provides thappiling functions:
 - to compute process Prairies, Ebased on the topology maminguschemes.com
 - and vice versa₄₉₃₈₉₄₇₆

- Cartesian Topolia
 - each process is confinenced to its neighbor in a virtual grid,

 - boundaries can be cyclic, or not,
 processes are identified by Cartesian coordinates,
 - of course, Assignment Project Exam Help communication between any two processes is still allowed.

Email: tutorcs@163.com

- Graph Topologies
 general graphs, 749389476

 - not covered heretps://tutorcs.com

Creating a Cartesian Virtual Topology

WeChat: cstutorcs

Example — A 2-dimensional Cylinder 程序代写代做 CS编程辅导

- Ranks and Cartesiar coordinates in comm_cart
- Ranks in comm and cities may differ, if reorder = 1 or .TRUE.
- This reordering can all optimize communications

Cartesian Mapping Functions

Mapping
ranks to the coordinates

WeChat: cstutorcs

• int MPI_Cart_coords(MPI_Comm comm_cart, Assignment Requestions, File Proords)

Email: tutorcs@163.com

QQ: 749389476

Cartesian Mapping Functions 程序代為代数 CS编程辅导

Mapping process d coordinates to ranks

int MPI_Cart_wank(MPI_Comm comm_cart, cstutores
 int *coords, int *rank)
 Assignment Project Exam Help

Email: tutorcs@163.com

Own coordinates 程序代写代做 CS编程辅导

 Each process gets its own coordinates with MPI_Comm_rank(btmm/teart; spymrank, ierror) MPI_Cart_coords(comm_cart, my_rank, maxdims, my_coords, ierror)

Cartesian Mapping Functions?

processes

- Computing ranks of
- int MPI_Cart_shift(MPI_Comm comm_cart, int direction, int disp, WeChat:*catkItores; int *rank_next)
- Returns MPI_PROC_MUSSi grtherenis Promisight Descam Help
- MPI_PROC_NULL care per used as severe of the stimation rank in each communication

QQ: 749389476

MPI_Cart_shift — Example 程序代写代做 CS编程辅导

in cart in the state of the sta

Cartesian Partitioning 程序代写代做 CS编程辅导

- Cut a grid up in
- A new communicator is produced for each slice.
- Each slice can the perform its town collective communications.
- int MPI_Cart_sub(MPI_Comm_comm_cart, int *remain_dims, MPI_Comm *comm_slice)

MPI_Cart_sub — Example 程序代写代做 CS编程辅导

• Ranks and Car Comm_sub

MPI_Cart_sub(comm_cart, remain_dims, comm_sub, ierror)

(true, false)