Отчёт по лабораторной работе №7

дисциплина: Математическое моделирование

Рыбалко Элина Павловна

Содержание

Цель работы	5	
Объект исследования	5	
Предмет исследования	5	
Теоретическое введение	6	
Задание	8	
Выполнение лабораторной работы	9	
1. Постановка задачи	9	
2. Построение графиков	9	
2.1. Листинги программ в OpenModelica	9	
2.2. Полученный график	10	
2.4. Анализ результатов:	14	
3. Выпросы к работе	15	
Вывод	16	
Список литературы		

Список иллюстраций

1	График распространения информации о товаре в случае 1	11
2	График распространения информации о товаре в случае 1 с учётом	
	только платной рекламы	11
3	График распространения информации о товаре в случае 1 с учётом	
	только сарафанного радио	12
4	График распространения информации о товаре в случае 2	12
5	График распространения информации о товаре в случае 2 с учётом	
	только платной рекламы	13
6	График распространения информации о товаре в случае 2 с учётом	
	только сарафанного радио	13
7	График распространения информации о товаре в случае 3	14

Список таблиц

Цель работы

Рассмотреть модель распространения рекламы.

Объект исследования

Модель распространения рекламы.

Предмет исследования

Алгоритм построения графика распространения рекламы.

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{\partial n}{\partial t}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, \mathbf{t} - время, прошедшее с начала рекламной кампании, $\mathbf{n}(\mathbf{t})$ - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от

затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением: $\frac{\partial n}{\partial t} = (a_1(t) + a_2(t)*n(t))(N-n(t))$ [1]

Задание

29 января в городе открылся новый салон красоты. Полагаем, что на момент открытия о салоне знали N_0 потенциальных клиентов. По маркетинговым исследованиям известно, что в районе проживают N потенциальных клиентов салона. Поэтому после открытия салона руководитель запускает активную рекламную компанию. После этого скорость изменения числа знающих о салоне пропорциональна как числу знающих о нем, так и числу не знаю о нём.

- 1. Построить график распространения рекламы о салоне красоты (N_0 и N задайте самостоятельно).
- 2. Сравнить эффективность рекламной кампании при $a_1(t)>a_2(t)$ и $a_1(t)< a_2(t)$
- 3. Определить в какой момент времени эффективность рекламы будет иметь максимально быстрый рост (на вашем примере).
- 4. Построить решение, если учитывать вклад только платной рекламы.
- 5. Построить решение, если предположить, что информация о товаре распространятся только путем «сарафанного радио», сравнить оба решения.

Выполнение лабораторной работы

1. Постановка задачи

[Вариант 22]

Задача: постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{\partial n}{\partial t} = (0.68 + 0.00018n(t))(N - n(t))$$

2.
$$\frac{\partial n}{\partial t} = (0.00001 + 0.35 n(t))(N-n(t))$$

3.
$$\frac{\partial n}{\partial t}=(0.51sin(5t)+0.31cos(3t)n(t))(N-n(t))$$

При этом объем аудитории N = 963, в начальный момент о товаре знает 12 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

2. Построение графиков

2.1. Листинги программ в OpenModelica

1. Написала программу на Modelica (с интервалом времени от 0 до 30 и шагом 0.1):

Программа:

model lab07

parameter Real N=963; // максимальное количество людей, которых может заинтерес

```
parameter Real n0=12; // количество людей, знающих о товаре в начальный момент
  Real n(start=n0);
  function k
    input Real t;
    output Real res;
  algorithm
    res := 0.68; //1 случай
    //res := 0.00001; //2 случай
    //res := 0.51*sin(5*t); //3 случай
    //res := 0; //только платная реклама
  end k;
  function p
    input Real t;
    output Real res;
  algorithm
    res := 0.00018; //1 случай
    //res := 0.35; //2 случай
    //res := 0.31*cos(3*t); //3 случай
    //res := 0; //только сарафанное радио
  end p;
equation
  der(n)=(k(time) + p(time)*n)*(N-n);
end lab07;
```

2.2. Полученный график

После запуска кода программы получили следующие графики для первого, второго случая и третьего случаев соответственно (см. рис. -@fig:001, -@fig:002, -@fig:003, -@fig:004 -@fig:005, -@fig:006, -@fig:007).

Рис. 1: График распространения информации о товаре в случае 1

Рис. 2: График распространения информации о товаре в случае 1 с учётом только платной рекламы

Рис. 3: График распространения информации о товаре в случае 1 с учётом только сарафанного радио

Рис. 4: График распространения информации о товаре в случае 2

Рис. 5: График распространения информации о товаре в случае 2 с учётом только платной рекламы

Рис. 6: График распространения информации о товаре в случае 2 с учётом только сарафанного радио

Рис. 7: График распространения информации о товаре в случае 3

2.4. Анализ результатов:

Как правило наибольшая эффективность рекламы на начальном моменте времени (t=0), что можно заметить, например, из рис. -@fig:002. Сравнивая первый и второй случаи $(a_1(t)>a_2(t)$ и $a_1(t)< a_2(t))$ из рис. -@fig:001 и рис. -@fig:004 можно заметить, что прирост распространения информации происходит за меньшее время, чем в первом случае, что говорит о большей эффективности сарафанного радио в нашей задаче. В зависимости от наших параметров по-разному будет эффективно использование только платной еркламы или только сарафанного радио. Если изначально $a_1(t)>a_2(t)$, то использование только платной рекламы будет значительно эффективнее (рис. -@fig:002), чем использование только сарафанного радио (рис. -@fig:003), и наоборот (рис. -@fig:005 и рис. -@fig:006) при $a_1(t)< a_2(t)$ соответственно.

3. Выпросы к работе

1. Записать модель Мальтуса (дать пояснение, где используется данная модель)

 $N_{i+1}=N_i+(r-m)*N_i$, где разность (r-m) - это коэффициент прироста. Если он больше нуля (рождаемость выше смертности), то население растёт, если меньше - убывает. Соответственно, используется для расчёта численности населения и демографического показателя. Или же в нашем случае $\frac{\partial n}{\partial t}=(a_1(t)+a_2(t)*n(t))(N-n(t))$, где $a_1(t)>>a_2(t)$.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

 $rac{\partial n}{\partial t}=(a_1(t)+a_2(t)*n(t))(N-n(t))$, где $a_1(t)<< a_2(t)$, a_1 -это интенсивность рекламной кампании, $a_2(t)*n(t))(N-n(t))$ - это вклад в рекламу (сарафанное радио).

 $\frac{\partial n}{\partial t}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов.

3. На что влияет коэффициент $a_1(t)$ и $a_2(t)$ в модели распространения рекламы

 a_1 -это интенсивность рекламной кампании, $a_2(t)*n(t))(N-n(t))$ - это вклад в рекламу (сарафанное радио).

4. Как ведёт себя рассматриваемая модель при $a_1(t) >> a_2(t)$

Получается модель типа модели Мальтуса (некая парабола).

5. Как ведёт себя рассматриваемая модель при $a_1(t) << a_2(t)$

Получаем уравнение логистической кривой (некая гипербола).

Вывод

Рассмотрели модель распространения рекламы.

Список литературы

- 1. Эффективность рекламы
- 2. Руководство по формуле Cmd Markdown
- 3. Математическое моделирование при решении задач
- 4. С.В. Каштаева, Математическое моделирование / Учебное пособие
- 5. Руководство по оформлению Markdown файлов