Sequential Logic II

Sequential Circuit Analysis

Sequential Logic

- Sequential logic contains both combinational logic circuits and memory storage elements (flip-flops).
- The value of the outputs of those systems is determined by external inputs and the present state of the storage elements.

- The behavior of a clocked sequential circuit is determined from the **inputs**, the **outputs** and the **state** of its flip-flops.
- The outputs and the next state are both a function of the inputs and the present state.
- The analysis of a sequential circuit consists of obtaining a function, a table or a diagram for the time sequence of inputs, outputs and internal states.
- There are three algebraic means for describing the behavior of sequential circuits: State Equations, State Table and State Diagram.

State Equations

Specify the next
 state as a function of
 the present state and
 inputs

$$A(t+1) = Ax + Bx$$

 $B(t+1) = A'x$
 $y = (A+B)x'$

State Table

 The time sequence of inputs, outputs and flip-flop states can be enumerated in a state table (sometimes called a transition table).

Present State				ext ate	Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State Diagram

 The information available in a state table can be represented graphically in the form of a state diagram.

6

Second Form of the State Table

Present		N	lext	Stat	Output		
	ate	x =	O	x =	: 1	x = 0	x = 1
Α	В	Α	В	Α	В	у	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

- A state is represented by a circle, and the (clocktriggered) transitions between states are indicated by directed lines;
- The binary number inside each circle indentifies the state of the flop-flops;
- The directed lines are labelled with two binary numbers separated by a slash (input/output).

An example sequential circuit

- Here is a sequential circuit with two JK flip-flops. There is one input, X, and one output, Z.
- The values of the flip-flops (Q₁Q₀) form the state, or the memory, of the circuit.
- The flip-flop outputs also go back into the primitive gates on the left.

Analyzing the example circuit

- A basic state table for our example circuit is shown below.
- Remember that there is one input X, one output Z, and two flip-flops Q₁Q₀.
- The present state Q₁Q₀ and the input will determine the next state and the output.

Presen	Present State		Next State		Outputs
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

The outputs are easy

- The output depends on the current state Q0 and Q1 as well as the inputs.
- From the diagram, you can see that

$$Z = Q_1Q_0X$$
 Output at the current time

Presen	Present State		Next State	Outputs
Q_1	Q_0	X	Q_1 Q_0	Z
0	0	0		0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1

Flip-flop input equations

 Finding the next states is harder. To do this, we have to figure out how the flip-flops are changing.

Step 1:

Find Boolean expressions for the flip-flop inputs. i.e. How do the inputs (say, J & K) to the flipflops depend on the current state and input

Step 2:

Use these expressions to find the actual flip-flop input values for each possible combination of present states and inputs.

i.e. Fill in the state table (with new intermediate columns)

Step 3:

Use flip-flop characteristic tables or equations to find the next states, based on the flip-flop input values and the present states.

Step 1: Flip-flop input equations

 For our example, the flip-flop input equations are:

$$J_1 = X' Q_0$$
 $K_1 = X + Q_0$
 $J_0 = X + Q_1$
 $K_0 = X'$

 JK flip-flops each have two inputs, J and K. (D and T flipflops have one input each.)

Step 2: Flip-flop input values

• With these equations, we can make a table showing J_1 , K_1 , J_0 and K_0 for the different combinations of present state Q_1Q_0 and input X.

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$

$$J_0 = X + Q_1$$
$$K_0 = X'$$

Presen	Present State		F	Flip-flop	Inputs	
Q_1	Q_0	X	J_1	K ₁	Jo	Ko
0	0	0	0	0	0	1
0	0	1	0	1	1	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
1	0	0	0	0	1	1
1	0	1	0	1	1	0
1	1	0	1	1	1	1
1	1	1	0	1	1	0

Step 3: Find the next states

- Finally, use the JK flip-flop characteristic tables or equations to find the next state of *each* flip-flop, based on its present state and inputs.
- The general JK flip-flop characteristic equation is:

$$Q(t+1) = K'Q(t) + JQ'(t)$$

 In our example circuit, we have two JK flip-flops, so we have to apply this equation to each of them:

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

 $Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$

 We can also determine the next state for each input/current state combination directly from the characteristic table.

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

• Finally, here are the next states for Q_1 and Q_0 , using these equations:

$$Q_{1}(t+1) = K_{1}'Q_{1}(t) + J_{1}Q_{1}'(t)$$

$$Q_{0}(t+1) = K_{0}'Q_{0}(t) + J_{0}Q_{0}'(t)$$

Presen	t State	Inputs	FF Inputs			Next State		
Q_1	Q_0	X	J_1	K ₁	J_0	Ko	Q_1	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

The complete state table

- The table starts with Present State and Inputs.
 - Present State and Inputs yield FF Inputs.
 - Present State and FF Inputs yield Next State, based on the flipflop characteristic tables.
 - Present State and Inputs yield Output.

Presen	t State	Inputs		FF I	nputs		Next State		Outputs
Q_1	Q_0	X	J_1	K ₁	J_0	Ko	Q_1	Q_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

State Diagram

- We can also represent the state table graphically with a state diagram.
- A diagram corresponding to our example state table is shown below.

Presen	t State	Inputs	Next	State	Outputs
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

- Always check the size of your state diagrams.
 - If there are n flip-flops, there should be 2^n nodes in the diagram.
 - If there are m inputs, then each node will have 2^m outgoing arrows.
 - From each state
- · In our example,
 - We have two flip-flops, and thus four states or nodes.
 - There is one input, so each node has two outgoing arrows.

Presen	Present State		ıts Next State		Outputs
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Sequential Circuit Analysis Summary

- To analyze sequential circuits, you have to:
 - Find Boolean expressions for the outputs of the circuit and the flipflop inputs.
 - Use these expressions to fill in the output and flip-flop input columns in the state table.
 - Finally, use the characteristic equation or characteristic table of the flip-flop to fill in the next state columns.
- The result of sequential circuit analysis is a state table or a state diagram describing the circuit.

