Inversos y congruencias lineales

Clase 29

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Inversos

Congruencias

Epílogo

¿Cómo están?

Tercer Acto: Aplicaciones Algoritmos, grafos y números

Playlist Tercer Acto

DiscretiWawos #3

Además sigan en instagram:

@orquesta_tamen

Máximo común divisor

Teorema

Si $a, b \in \mathbb{Z} \setminus \{0\}$, entonces $MCD(a, b) = MCD(b, a \mod b)$.

Ejercicio

Demuestre el teorema.

Algoritmo de Euclides extendido

Algoritmo extendido del MCD

Sea a > b.

1. Definimos una sucesión $\{r_i\}$ como:

$$r_0 = a$$
, $r_1 = b$, $r_{i+1} = r_{i-1} \mod r_i$

2. Definimos sucesiones $\{s_i\}$, $\{t_i\}$ tales que:

$$\begin{split} s_0 &= 1, \quad t_0 = 0 \\ s_1 &= 0, \quad t_1 = 1 \\ s_{i+1} &= s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i, \quad t_{i+1} = t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i \end{split}$$

- 3. Calculamos estas sucesiones hasta un k tal que $r_k = 0$.
- 4. Entonces, $MCD(a, b) = r_{k-1} = s_{k-1} \cdot a + t_{k-1} \cdot b$.

Tenemos todo para calcular el MCD y los pesos que lo expresan como combinación lineal de *a* y *b*

Algoritmo de Euclides extendido

Ejercicio

Dados a=8 y b=5, use el algoritmo para calcular MCD(a,b) y $s,t\in\mathbb{Z}$ tales que $MCD(a,b)=s\cdot a+t\cdot b$.

Algoritmo de Euclides extendido

Usamos el algoritmo extendido sobre a = 8 y b = 5

i	r _i	Si	ti	combinación
0	8	1	0	$8 = 1 \cdot 8 + 0 \cdot 5$
1	5	0	1	$5 = 0 \cdot 8 + 1 \cdot 5$
2	8 mod 5	1 – [8/5] · 0	0 - [8/5] · 1	
	3	1	-1	$3 = 1 \cdot 8 - (-1) \cdot 5$
3	5 mod 3	0 – [5/3] · 1	$1 - \lfloor 5/3 \rfloor \cdot (-1)$	
	2	-1	2	$2 = (-1) \cdot 8 + 2 \cdot 5$
4	3 mod 2	$1 - \lfloor 3/2 \rfloor \cdot (-1)$	-1 - [3/2] · 2	
	1	2	-3	$1 = 2 \cdot 8 + (-3) \cdot 5$
5	2 mod 1	_	_	
	0	_	_	

Concluimos que $MCD(8,5) = 1 = 2 \cdot 8 + (-3) \cdot 5$, con s = 2 y t = -3.

Identidad de Bézout

El desarrollo algorítmico anterior muestra el siguiente resultado en acción

Identidad de Bézout

Para todo $a,b\in\mathbb{N}\setminus\{0\}$, existen $s,t\in\mathbb{Z}$ tales que

$$MCD(a, b) = sa + tb$$

Este es un resultado elemental en teoría de números

Objetivos de la clase

- \square Conocer el concepto de inverso en \mathbb{Z}_n
- □ Conocer la estructura de una congruencia lineal
- □ Resolver congruencias lineales

Outline

Obertura

Inversos

Congruencias

Epílogo

Definición

b es inverso de a en módulo n si $a \cdot b \equiv_n 1$.

Podemos denotarlo como a^{-1} . Ojo: no es lo mismo que $\frac{1}{a}$.

Ejemplo

¿Cuál es el inverso de 5 en módulo 3?

¿Existe siempre inverso para todo a y módulo n?

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

Ejercicio

Demuestre el teorema.

Si MCD(a, n) = 1, decimos que a y n son primos relativos o coprimos

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

(⇒) Supongamos que a tiene inverso en módulo n, digamos b. Por demostrar: MCD(a, n) = 1.

Como b es el inverso de a en módulo n, se cumple que $a \cdot b \equiv_n 1$, y por lo tanto $(a \cdot b)$ mod n=1. Entonces, tenemos que $a \cdot b = k \cdot n + 1$, y despejando 1 obtenemos que $1 = a \cdot b - k \cdot n$. Luego, necesariamente cualquier entero c tal que $c \mid a$ y $c \mid n$ debe cumplir que $c \mid 1$, por lo que la única posibilidad es que c sea c y por lo tanto necesariamente c

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

(\Leftarrow) Supongamos que MCD(a, n) = 1. Por demostrar: a tiene inverso en módulo n.

Si ejecutamos el algoritmo extendido del MCD obtenemos s, t tales que

$$1 = s \cdot a + t \cdot n$$

$$\Leftrightarrow \quad a \cdot s = (-t) \cdot n + 1$$

$$\Leftrightarrow \quad a \cdot s \mod n = 1$$

$$\Leftrightarrow \quad a \cdot s \equiv_n 1$$

Y entonces a tiene inverso en módulo n, específicamente s.

¡Podemos calcular el inverso con el algoritmo extendido! En tal caso, el coeficiente s que acompaña a a es su inverso

Outline

Obertura

Inversos

Congruencias

Epílogo

Notación

Dados $a, b, n \in \mathbb{Z}$, si $a \equiv_n b$ también podemos escribir:

$$a \equiv b \pmod{n}$$

Esta es la notación más usada en la literatura.

Ojo que no es lo mismo que $(b \mod n)$

Definición

Una congruencia lineal es una ecuación de la forma

$$ax \equiv b \pmod{n}$$

donde $n \in \mathbb{N} - \{0\}$, $a, b \in \mathbb{Z}$ y x es una variable.

Ejemplos

$$3x \equiv 2 \pmod{7}$$

$$4x \equiv 3 \pmod{6}$$

¿Cómo resolvemos estas ecuaciones?

Definición (con nueva notación)

b es inverso de a en módulo n si

$$ab\equiv 1\ (\mathrm{mod}\ n)$$

Podemos denotarlo como a^{-1} . Ojo: no es lo mismo que $\frac{1}{a}$.

¿Existe siempre inverso para todo a y módulo n?

Corolario (del teorema de los inversos)

Si a y n son primos relativos, entonces $ax \equiv b \pmod{n}$ tiene solución en \mathbb{Z}_n .

Ejercicio

Demuestre el corolario.

Ejercicio

Resuelva las ecuaciones anteriores.

Corolario (del teorema de los inversos)

Si a y n son primos relativos, entonces $ax \equiv b \pmod{n}$ tiene solución en \mathbb{Z}_n .

Como a y n son primos relativos, a tiene inverso en módulo n. Entonces:

$$ax \equiv b \pmod{n} \quad \Leftrightarrow \quad (a^{-1} \cdot a)x \equiv (a^{-1} \cdot b) \pmod{n}$$
$$\Leftrightarrow \quad x \equiv (a^{-1} \cdot b) \pmod{n}$$

Ejercicio

Resuelva $3x \equiv 2 \pmod{7}$.

El inverso de 3 en módulo 7 es 5: $3 \cdot 5 = 15 \equiv 1 \pmod{7}$.

$$x \equiv 5 \cdot 2 \pmod{7}$$
$$\equiv 10 \pmod{7}$$
$$\equiv 3 \pmod{7}$$

x = 3 es solución en \mathbb{Z}_7 .

Outline

Obertura

Inversos

Congruencias

Epílogo

Objetivos de la clase

- \square Conocer el concepto de inverso en \mathbb{Z}_n
- □ Conocer la estructura de una congruencia lineal
- □ Resolver congruencias lineales

Última vocalización

Entendez-vous dans le feu tous ces bruits mystérieux?

Ce sont les tisons qui chantent: Compagnon, sois joyeux!