FYS-MEK1110 - Mandatory assignment 4

William Dugan

March 28, 2022

a

We are going to sketch the function

$$U(x) = \begin{cases} U_0, & |x| \ge x_0 \\ U_0 \frac{|x|}{x_0}, & |x| < x_0 \end{cases}$$
 (1)

Figure 1: U(x) plotted for $x \in [-1.5, 1.5]$ with $U_0 = 0.75, x_0 = 1$.

We have three equilibrium points, at $x=\pm x_0$ and x=0. The point in x=0 is a stable equilibrium point as the potential is at a minimum. The other are unstable as the potential is at maximum. We can use the relation $E_{atom,total}=KE_{atom}+PE_{atom}$. If $E_{atom,total}\geq PE_{atom}$ the atom will escape the trap, else it will stay inside the trap.

b

To find the force on the atom due to the field we use

$$F = -\nabla U \tag{2}$$

In one dimension, we get $F = -\frac{dU}{dx}$. Hence

$$F(x) = \begin{cases} 0, & x = 0, |x| \ge x_0 \\ -\frac{U_0}{x_0} \frac{x}{|x|}, & 0 < |x| < x_0 \end{cases}$$
 (3)

Since the force on the atom due to the field can be written as a gradient of a potential, it is per definition a conservative force.

\mathbf{c}

Since $\sum F_{ext} = 0$ we can use conservation of energy to find the velocity of an atom with mass m and $v_0 = \sqrt{4U_0/m}$ at $x = x_0/2$ and $x = 2x_0$.

$$E_1 = E_0$$

$$\frac{1}{2}mv^2 + U(x) = \frac{1}{2}mv_0^2$$

$$v^2 = \frac{4U_0}{m} - \frac{2}{m}U(x)$$

$$v = \pm \sqrt{\frac{2}{m}(2U_0 - U(x))}$$

for $x = x_0/2$ we get $v = \sqrt{3U_0/m}$ and for $x = 2x_0$ we get $v = \sqrt{2U_0/m}$.

d

If we change the sign of our x-value, we simply change the sign of the velocity. Hence, for $x = -x_0/2$ we get $v = -\sqrt{3U_0/m}$ and for $x = -2x_0$ we get $v = -\sqrt{2U_0/m}$.

\mathbf{e}

If KE = 0 at x = 0 the electrostatic force F_0 must be greater or equal to $F(x_0)$ in order for the atom to escape. This gives $|F_0| > U_0/x_0$.

We introduce the force

$$F = -\alpha v \tag{4}$$

for $|x| < x_0$. The force depends on the velocity of the atom, which means that it depends on the path the atom takes. This makes it non-conservative.

 \mathbf{g}

To find the acceleration:

$$\sum_{i} F = ma$$

$$F_0 + F(x) = ma$$

$$a = \frac{F_0 + F(x)}{m}$$

If we insert our expressions we get

$$a(x) = \begin{cases} 0, & x = 0, |x| \ge x_0 \\ -\frac{U_0}{x_0} \frac{x}{|x|} - \alpha v, & 0 < |x| < x_0 \end{cases}$$
 (5)

To simulate the movement of the atom we need U_0, x_0 , and α .

h

```
import numpy as np
   import matplotlib.pyplot as plt
 4 u0 = 150
alpha = 39.48
9 \mid n = 100001
10 t = np.linspace(0, 6, n)
11 x = np.zeros_like(t)
12 dt = t[1] - t[0]
13
  for v_, x_ in ((8.0, -5), (10.0, -5)):

v = v_  # v0

x[0] = x_  # x0
14
15
16
17
        for i in range(n-1):
18
             a = (-np.sign(x[i])*u0/x0 - alpha*v)/m * (np.abs(x[i])<x0)
v += a*dt</pre>
19
20
             x[i+1] = x[i] + v*dt
21
22
        plt.plot(t, x, label='x(t)')
plt.xlabel('Time')
plt.ylabel('Distance')
23
24
25
        plt.legend()
        plt.savefig(f'plot_integrated_v0_{v_:g}.pdf')
27
        plt.show()
```

The conditions used are $U_0 = 150, m = 23, x_0 = 2, \alpha = 39.48$. We simulate with $v_0 = 8.0$ and x = -5

Figure 2: Plot of x(t) for $t \in [0, 6]$

We observe that the atom moves into the trap and continues past x = 0. It will then experience a force in negative x-direction, which accelerates it towards x = 0 again. Since F_0 is not conservative, the motion observed follows damped harmonic motion. It ends in x = 0 as this is the only stable equilibrium point.

j

Now, we simulate with $v_0 = 10.0$ and x = -5.

Figure 3: Plot of x(t) for $t \in [0, 6]$

In this simulation, the atom has enough energy to escape the trap on the other side. When it reaches $x = x_0 = 2$ the force on the atom will be 0, and it will continue forever with constant velocity.