Examen de Science des données 2022

MINES Paris - Tronc Commun 1A

Durée : 2h. Tous documents autorisés.

Problème (10 points) : méthode des k plus proches voisins

Étant donné un jeu de données $\mathcal{D} = \{(\vec{x}^i, y^i)\}_{i=1,\dots,n}$ de n observations étiquetées, $\vec{x}^i \in \mathbb{R}^p$, $y^i \in \{0,1\}$ (problème de classification binaire), et une distance d sur \mathbb{R}^p , on appelle algorithme des k plus proches voisins l'algorithme qui consiste à prédire comme étiquette pour un certain $\vec{x} \in \mathbb{R}^p$ l'étiquette majoritaire des k points du jeu de données les plus proches de \vec{x} : si on note $N_k(\vec{x})$ l'ensemble des k observations de \mathcal{D} les plus proches de \vec{x} , on a

$$f(\vec{x}) \in \underset{c \in \{0,1\}}{\arg \max} \sum_{i: \vec{x}^i \in N_k(\vec{x})} \mathbb{1}_{y^i = c}.$$

Algorithme du 1 plus proche voisin

Dans un premier temps on se restreint au cas où k=1: l'algorithme prédit l'étiquette du plus proche voisin. On utilise la distance euclidienne. Clémence a le jeu de données de classification binaire suivant, où p=2 et n=6:

On représente ces données sur le graphique ci-dessous, où les croix correspondent à la classe 1, et les ronds à la classe 0.

Figure 1

1. (1 point) L'algorithme des 1 plus proches voisins est-il paramétrique ou non-paramètrique ? Justi-fier.

Solution: C'est un algorithme non paramétrique : la fonction de décision s'exprime en fonction des données d'entraînement et non pas comme une fonction analytique fonction des variables.

2. (1 point) On donne une nouvelle observation $\vec{x} = (4, 0.5)$. Quelle est la prédiction de l'algorithme du 1 plus proche voisin entraîné sur les données de Clémence ?

Solution: Le point le plus proche de (4,0.5) est (3,1) qui est de la classe 0, on a donc $f(\vec{x}) = 0$.

3. (1 point) On utilise la perte 0/1: pour un couple $(\vec{x}, y) \in \mathbb{R}^p \times \{0, 1\}$, $L(y, f(\vec{x})) = \mathbb{1}_{f(\vec{x}) \neq y}$. Quelle est la valeur du risque empirique sur les données d'entraînement de l'algorithme du 1 plus proche voisin?

Solution: Sur les données d'entraı̂nement, chaque observation est son propre plus proche voisin : l'algorithme classifie donc parfaitement les données d'entraı̂nement, le risque empirique vaut 0. \square

4. (2 points) Représenter sur la figure 1 la frontière de décision de l'algorithme du 1 plus proche voisin. (On rappelle que la frontière de décision est une courbe dans \mathbb{R}^p qui sépare les prédictions de chacune des classes : d'un côté de la courbe, l'algorithme prédit la classe 1, de l'autre côté la classe 0).

Solution:

Figure 2

Algorithme des k plus proches voisins

On considère maintenant l'algorithme général des k plus proches voisins.

5. (1 point) On prend k=3 et on considère l'algorithme entraı̂né sur les données de Clémence. Quelle est la prédiction de l'algorithme pour la nouvelle observation $\vec{x}=(4,0.5)$?

Solution: Les deux points plus proches de \vec{x} en plus de (3,1) sont (3,2) et (2,1) qui sont tous les deux de la classe 1. On a donc dans ce cas $f(\vec{x}) = 1$. Cette prédiction est différente du cas k = 1!

6. (2 points) Quelle est la valeur du risque empirique sur les données d'entraînement de l'algorithme des 3 plus proches voisins? Que peut-on en déduire sur la performance de l'algorithme des 3 plus proches voisins par rapport à l'algorithme du 1 plus proche voisin?

x_1	1	2	2	2	3	3
$\overline{x_2}$	2	1	2	3	1	2
\overline{y}	1	1	0	1	0	1
$f(\vec{x})$	1	0	1	1	1	0

Solution: On calcule les prédictions pour chacun des points du jeu d'entraînement, reportées dans le tableau ci-dessous.

L'algorithme des 3 plus proches voisins se trompe pour 4 données parmis les 6, le risque empirique vaut donc

$$R_n(f) = \frac{1}{6} \sum_{i=1}^{6} L(y^i, f(\vec{x}^i)) = \frac{1}{6} \sum_{i=1}^{6} \mathbb{1}_{y^i \neq f(\vec{x}^i)} = \frac{4}{6} = \frac{2}{3}.$$

L'erreur d'entraînement est plus élevée que pour l'algorithme du 1 plus proche voisin. Néanmoins on ne peut pas conclure sur les capacités de généralisation de chacun de ces algorithmes : on est probablement en surapprentissage dans le cas de l'algorithme du 1 plus proche voisin. Pour conclure sur la performance de ces algorithmes, il faudrait calculer l'erreur sur des données de test.

7. (1 point) Quand k augmente, le risque de sur-apprentissage augmente-t-il ou diminue-t-il?

Solution: Quand k augmente, la frontière de décision devient plus lisse : on moyenne les prédiction sur plus d'observations. Le risque de surapprentissage diminue donc quand k augmente. \Box

8. $(1 \ point)$ Ayant à disposition un jeu d'entraı̂nement de n observations et p variables, comment choisireriez-vous la valeur de k?

Solution: k est un hyperparamètre du modèle, on le sélectionnera donc soit en prenant la valeur qui minimise l'erreur sur un jeu de validation, soit en utilisant de la validation croisée.

Problème (25 points): modèles linéaires

Nous considérons un problème de régression en dimension p: nous disposons d'un jeu d'apprentissage $\mathcal{D} = \{(\vec{x}^i, y^i)\}_{i=1,\dots,n}$, tel que $\vec{x}^i \in \mathbb{R}^{p+1}$ et $y^i \in \mathbb{R}$. Nous supposons que chaque vecteur \vec{x}^i contient un 1 comme premier coefficient. On note $X \in \mathbb{R}^{n \times (p+1)}$ la matrice de design qui a pour lignes les \vec{x}^i et $\Sigma \in \mathbb{R}^{(p+1)\times(p+1)}$ la matrice

$$\Sigma = \frac{1}{n} X^T X.$$

Dans tout le problème, on fera l'hypothèse que la matrice Σ est inversible, et on définit la norme $\|\cdot\|_{\Sigma}$ sur \mathbb{R}^{p+1} par, pour tout $\vec{x} \in \mathbb{R}^{p+1}$,

$$\|\vec{x}\|_{\Sigma} = \sqrt{\vec{x}^T \Sigma \vec{x}}.$$

On admettra que cette norme est bien définie. Pour tout $i=1,\ldots,n$, on suppose que y^i est la réalisation d'une variable aléatoire $Y^i\in\mathbb{R}$ décrite par le modèle probabiliste suivant : il existe $\vec{\beta}\in\mathbb{R}^{p+1}$ tel que

$$Y^{i} = \langle \vec{\beta}, \vec{x}^{i} \rangle + \varepsilon^{i} = \vec{\beta}^{T} \vec{x}^{i} + \varepsilon^{i} = \beta_{0} + \beta_{1} x_{1}^{i} \dots \beta_{p} x_{p}^{i} + \varepsilon^{i}, \tag{1}$$

où ε^i est une variable aléatoire **gaussienne** d'espérance nulle et de variance σ^2 . On suppose les ε^i indépendants et identiquement distribués. On notera que le paramètre $\vec{\beta}$ est **inconnu** et **fixé**: nous chercherons dans l'exercice à en construire un estimateur.

chercherons dans l'exercice à en construire un estimateur. On notera $Y = (Y^1, \dots, Y^n)^T \in \mathbb{R}^n$ le vecteur aléatoire constitué des n réponses $Y^i, \vec{y} = (\vec{y}^1, \dots, \vec{y}^n)^T \in \mathbb{R}^n$ sa réalisation et de la même manière $\vec{\varepsilon} = (\varepsilon^1, \dots, \varepsilon^n)^T \in \mathbb{R}^n$ le vecteur aléatoire de bruits.

Attention! Dans tout l'exercice, les \vec{x}_i sont supposés fixés et ne sont pas des vecteurs aléatoires.

Minimisation du risque empirique

1. (1 point) Montrer que le modèle (1) revient à supposer que pour tout $i=1,\ldots,n,\,Y^i$ a pour densité

$$g_{Y^i}(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(y - \langle \vec{\beta}, \vec{x}^i \rangle\right)^2}{2\sigma^2}\right), \quad y \in \mathbb{R}.$$

Solution: Pour tout $i=1,\ldots,n$, comme ε^i a pour loi $\mathcal{N}(0,\sigma^2)$, l'équation (1) est équivalente a dire que

$$Y^i \sim \mathcal{N}(\langle \vec{\beta}, \vec{x}^i \rangle, \sigma^2).$$

On déduit le résultat en utilisant la formule de la densité d'une loi gaussienne.

2. (2 points) Quel est l'espace des hypothèses \mathcal{F} associé à ce modèle? Ce modèle est-il paramétrique? On choisit d'utiliser la fonction de coût quadratique $L(y, f(\vec{x})) = (y - f(\vec{x}))^2$. Écrire le problème de minimisation de risque empirique associé à cet espace d'hypothèses et cette fonction de coût.

Solution: On suppose en (1) que la relation entre \vec{x}^i et Y^i est linéaire, ce qui corrrespond à un modèle de régression linéaire paramétrique:

$$\mathcal{F} = \{ f : \vec{x} \to \langle \vec{b}, \vec{x} \rangle, \ \vec{b} \in \mathbb{R}^{p+1} \}.$$

Le problème de minimisation du risque empirique s'écrit alors

$$\vec{\beta}^* \in \underset{\vec{b} \in \mathbb{R}^{p+1}}{\min} \frac{1}{n} \sum_{i=1}^n \left(y^i - \left(b_0 + \sum_{j=1}^p b_j x_j \right) \right)^2.$$

3. (2 points) Pour tout vecteur $\vec{b} \in \mathbb{R}^{p+1}$, le risque associé à \vec{b} peut s'écrire comme

$$\mathcal{R}(\vec{b}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n (Y^i - \langle \vec{b}, \vec{x}^{\,i} \rangle)^2\right] = \mathbb{E}\left[\frac{1}{n}\|Y - X\vec{b}\|_2^2\right].$$

Montrer qu'on a

$$\mathcal{R}(\vec{b}) = \|\vec{b} - \vec{\beta}\|_{\Sigma}^2 + \sigma^2,\tag{2}$$

où $\vec{\beta}$ est le "vrai" vecteur de coefficients défini dans le modèle (1).

Solution: On vérifie que

$$\begin{split} \mathcal{R}(\vec{b}) &= & \mathbb{E}\left[\frac{1}{n}\|X\vec{\beta} - X\vec{b} + \vec{\varepsilon}\|_2^2\right] \\ &= & \frac{1}{n}\mathbb{E}\left[\|X\vec{\beta} - X\vec{b}\|_2^2 + \|\vec{\varepsilon}\|_2^2 + 2(X\vec{\beta} - X\vec{b})^T\vec{\varepsilon}\right] \\ &= & (\vec{b} - \vec{\beta})^T\frac{1}{n}X^TX(\vec{\beta} - \vec{b}) + \sigma^2 + \frac{2}{n}(X\vec{\beta} - X\vec{b})\mathbb{E}[\vec{\varepsilon}] \\ &= & \|\vec{b} - \vec{\beta}\|_{\Sigma}^2 + \sigma^2. \end{split}$$

Estimation par maximum de vraisemblance

4. (2 points) On suppose maintenant qu'on a un estimateur \widehat{B} du paramètre $\overrightarrow{\beta}$: \widehat{B} est un vecteur aléatoire qui dépend de (Y^1, \ldots, Y^n) . Montrer que l'espérance du risque $\mathbb{E}[\mathcal{R}(\widehat{B})]$ peut s'écrire sous la forme:

$$\mathbb{E}[\mathcal{R}(\widehat{B})] - \sigma^2 = \mathbb{E}\Big[\|\widehat{B} - \mathbb{E}[\widehat{B}]\|_{\Sigma}^2\Big] + \|\mathbb{E}[\widehat{B}] - \vec{\beta}\|_{\Sigma}^2. \tag{3}$$

Dans cette expression, comment peut-on interpréter chacun des termes du membre de droite?

Solution: On a:

$$\begin{split} \|\widehat{B} - \vec{\beta}\|_{\Sigma}^2 &= \|\widehat{B} - \mathbb{E}[\widehat{B}] + \mathbb{E}[\widehat{B}] - \vec{\beta}\|_{\Sigma}^2 \\ &= \|\widehat{B} - \mathbb{E}[\widehat{B}]\|_{\Sigma}^2 + \|\mathbb{E}[\widehat{B}] - \vec{\beta}\|_{\Sigma}^2 + \frac{2}{n}(\widehat{B} - \mathbb{E}[\widehat{B}])X^TX(\mathbb{E}[\widehat{B}] - \vec{\beta}). \end{split}$$

En prenant l'espérance, comme $\mathbb{E}\left[\frac{2}{n}(\widehat{B}-\mathbb{E}[\widehat{B}])X^TX(\mathbb{E}[\widehat{B}]-\vec{\beta})\right] = \frac{2}{n}\mathbb{E}\left[(\widehat{B}-\mathbb{E}[\widehat{B}])\right]X^TX(\mathbb{E}[\widehat{B}]-\vec{\beta}) = 0, \text{ on en déduit que}$

$$\mathbb{E}[\|\widehat{B} - \vec{\beta}\|_{\Sigma}^2] = \underbrace{\mathbb{E}\left[\|\widehat{B} - \mathbb{E}[\widehat{B}]\|_{\Sigma}^2\right]}_{\mathrm{Var}(\widehat{B})} + \underbrace{\|\mathbb{E}[\widehat{B}] - \vec{\beta}\|_{\Sigma}^2}_{\mathrm{Bias}^2},$$

d'où le résultat par (2).

5. (2 points) Donner l'expression de la log-vraisemblance de l'échantillon (y_1, y_2, \ldots, y_n) . Qu'en conclure sur l'estimation par maximum de vraisemblance (on comparera à l'expression obtenue à la question 2.) ?

Solution: On a, par indépendance des $(Y^i)_{1 \le i \le n}$:

$$P(Y^1, \dots, Y^n; \vec{b}) = \prod_{i=1}^n P(Y^i; \vec{b}).$$

On en déduit la log-vraisemblance de l'échantillon:

$$\ell(y_1, \dots, y_n; \vec{b}) = \sum_{i=1}^n \left(-\ln(\sigma\sqrt{2\pi}) - \frac{(y^i - \langle \vec{b}, \vec{x}^i \rangle)^2}{2\sigma^2} \right).$$

Le premier terme étant indépendant de \vec{b} , maximiser la log-vraisemblance revient donc à minimiser la quantité

$$\frac{(y^i - \langle \vec{b}, \vec{x}^{\,i} \rangle)^2}{2\sigma^2}.$$

On retrouve exactement la minimisation du risque empirique de la question 2 : pour le modèle gaussien, estimer par maximum de vraisemblance est équivalent à la minimisation du risque empirique avec la fonction de coût quadratique.

6. (2 points) En déduire l'estimation par maximum de vraisemblance $\widehat{\beta}_{MLE}$ de $\vec{\beta}$. L'estimateur par maximum de vraisemblance, qu'on note \widehat{B}_{MLE} , est-il biaisé?

Solution: La log-vraisemblance est maximale pour $\widehat{\beta}_{MLE}$ solution de

$$\widehat{\beta}_{MLE} \in \operatorname*{arg\,min}_{\vec{b} \in \mathbb{R}^{p+1}} \frac{1}{2} \sum_{i=1}^{n} (y^i - \vec{b}^T \vec{x}^i)^2.$$

Sous forme matricielle, on a:

$$\widehat{\beta}_{MLE} \in \mathop{\arg\min}_{\vec{b} \in \mathbb{R}^{p+1}} \frac{1}{2} \|\vec{y} - X\vec{b}\|^2.$$

C'est un problème de minimisation quadratique et convexe, on trouve la solution en annulant le gradient :

$$-2\boldsymbol{X}^{\intercal}\left(\vec{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}}_{MLE}\right)=0 \quad \Leftrightarrow \quad \widehat{\boldsymbol{\beta}}_{MLE}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}\vec{y}$$

L'estimateur par maximum de vraisemblance est donc

$$\widehat{B}_{MLE} = (X^T X)^{-1} X Y.$$

Son biais est

$$\mathbb{E}[\widehat{B}_{MLE}] - \vec{\beta} = \mathbb{E}[(X^TX)^{-1}XY] - \vec{\beta} = (X^TX)^{-1}X^TX\vec{\beta} + (X^TX)^{-1}X\mathbb{E}[\vec{\varepsilon}] - \vec{\beta} = 0.$$

L'estimateur du maximum de vraisemblance de $\vec{\beta}$ est non-biaisé.

7. (2 points) Quelle est la variance de cet estimateur \widehat{B}_{MLE} ? On rappelle que dans le cas de l'estimation d'un vecteur de paramètres, la variance est définie comme

$$\mathbb{V}(\widehat{B}_{MLE}) = \mathbb{E}\Big[\Big\| \widehat{B}_{MLE} - \mathbb{E}[\widehat{B}_{MLE}] \Big\|_2^2 \Big].$$

On remarquera de plus que pour tout vecteur $\vec{x} \in \mathbb{R}^{p+1}$, on a:

$$\|\vec{x}\|_2^2 = \vec{x}^T \vec{x} = \text{Tr}(\vec{x}\vec{x}^T),$$

où pour tout $A \in \mathbb{R}^{(p+1)\times (p+1)}$, Tr(A) désigne la trace de la matrice A.

Solution: On vérifie que

$$\widehat{B}_{MLE} - \vec{\beta} = (X^T X)^{-1} X^T \vec{\varepsilon},\tag{4}$$

de sorte que

$$\|\widehat{B}_{MLE} - \vec{\beta}\|_2^2 = \text{Tr}[(X^T X)^{-1} X^T \vec{\varepsilon} \vec{\varepsilon}^T X (X^T X)^{-1}].$$

Or, on sait que $\mathbb{E}[\vec{\varepsilon}\vec{\varepsilon}^T] = \sigma^2 I$. Par conséquent, comme \hat{B}_{MLE} est non-biaisé,

$$V(\widehat{B}_{MLE}) = \mathbb{E}[\|\widehat{B}_{MLE} - \beta\|_{2}^{2}]$$

$$= \mathbb{E}[\text{Tr}((X^{T}X)^{-1}X^{T}\vec{\varepsilon}\vec{\varepsilon}^{T}X(X^{T}X)^{-1})]$$

$$= \text{Tr}[(X^{T}X)^{-1}X^{T}\mathbb{E}[\vec{\varepsilon}\vec{\varepsilon}^{T}]X(X^{T}X)^{-1}]$$

$$= \frac{\sigma^{2}\Sigma^{-1}}{n}.$$

8. (2 points) En déduire que l'espérance du risque associé à l'estimateur du maximum de vraisemblance est

$$\mathbb{E}[\mathcal{R}(\widehat{B}_{MLE})] - \sigma^2 = \frac{\sigma^2(p+1)}{n}.$$
 (5)

Solution: D'après le résultat de la question 2, comme l'estimateur \widehat{B}_{MLE} est non-biaisé, on a:

$$\begin{split} \mathbb{E}[\mathcal{R}(\widehat{B}_{MLE})] &= \mathbb{E}\big[\|\widehat{B}_{MLE} - \vec{\beta}\|_{\Sigma}^2\big] \\ &= \frac{1}{n} \mathbb{E}[\|X(\widehat{B}_{MLE} - \vec{\beta})\|_2^2\big] \\ &= \frac{1}{n} \mathbb{E}[\mathrm{Tr}(X(\widehat{B}_{MLE} - \vec{\beta})(\widehat{B}_{MLE} - \vec{\beta})^T X^T)] \\ &= \frac{1}{n} \mathrm{Tr}(X \mathrm{Var}(\widehat{B}_{MLE}) X^T) \\ &= \mathrm{Tr}\left(\mathrm{Var}(\widehat{B}_{MLE}) \Sigma\right) \\ &= \mathrm{Tr}\left(\frac{\sigma^2 I}{n}\right) \\ &= \frac{\sigma^2 (p+1)}{n}. \end{split}$$

9. (1 point) La quantité $\mathbb{E}[\mathcal{R}(\widehat{B}_{MLE})]$ correspond à l'erreur de généralisation du modèle linéaire. Quelle est sa limite quand $n \to \infty$? Commenter cette limite.

Solution: Quand n devient grand, l'erreur de généralisation diminue et tend vers σ^2 : on a de plus en plus de données pour apprendre donc l'algorithme s'améliore. Néanmoins l'erreur ne devient pas nulle: σ^2 est un terme d'erreur irréductible qui provient du bruit ε .

10. (2 points) Rappeler l'expression de l'erreur d'entraînement après minimisation du risque empirique. Commenter sur la valeur d'une part de cette erreur d'entraînement et d'autre part de l'erreur de généralisation lorsque $p \gg n$. Comment appelle-t-on ce phénomène en pratique ?

Solution: L'erreur d'entraînement est

$$\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \sum_{i=1}^{n} (y^i - \langle \vec{\beta}, \vec{x}^i \rangle)^2.$$

Quand p augmente, l'erreur d'entraı̂nement diminue : on a plus de paramètres sur lequels minimiser la fonction. À l'inverse, on voit d'après la question précédente que l'erreur de généralisation augmente linéairement avec p. On appelle ce phénomène le sur-apprentissage : on a une erreur d'entraı̂nement faible mais une mauvaise généralisation.

11. (1 point) Ce modèle est-il adapté au cas $p \gg n$? Si non, proposer un modèle qui conviendrait mieux.

Solution: Non ce modèle n'est pas adapté : l'erreur de généralisation (le risque de la question 8) est grand dans ce cas. On peut régulariser le modèle en ajoutant une pénalisation ℓ_1 ou ℓ_2 (modèle Ridge ou Lasso).

Prédiction de la concentration d'ozone

Pour des raisons de santé publique, on s'intéresse à la concentration d'ozone dans l'atmosphère. On cherche à prédire la concentration maximale d'ozone dans la journée (O3) à partir de la température à midi (T12), la force du vent (Vx) et la nébulosité à midi (fraction de ciel couverte par des nuages, Ne12). On dispose de n=1014 données journalières. On représente ci-dessous la matrice des nuages de points de ces différentes variables.

Figure 3

12. (1 point) Quelles variables semblent les plus corrélées ? Proposer un premier modèle de régression linéaire tel que p=1.

Solution: L'ozone O3 semble le plus corrélé à la température à midi T12.

13. (1 point) On s'intéresse maintenant au modèle

$$O3_i = \beta_0 + \beta_1 T_i + \beta_2 V_i + \beta_3 N_i + \varepsilon_i, \tag{6}$$

où $O3_i$ est la concentration d'ozone au jour i, T_i la température à midi, V_i la force du vent et N_i la nébulosité. Par quoi peut-être causé le terme de bruit ε_i ?

Solution: Le bruit ε_i peut avoir différentes sources : une erreur de mesure de la concentration d'ozone ou le fait que les 3 variables considérées ne suffisent pas a priori à prédire la concentration maximale d'ozone journalière. Par exemple, la température à une autre heure que midi peut influer, ou d'autres paramètres telle que la pression ou les précipitations.

- 14. (2 points) Formuler sous la forme d'un test d'hypothèse (hypothèse nulle et hypothèse alternative) sur les paramètres du modèle (6) les question suivantes :
 - (Q1) Est-ce que la concentration d'ozone maximale est influencée par la variable vent V?
 - (Q2) Est-ce que la valeur de O3 est influencée par le vent V ou la température T?

Solution: La première question correspond au test $\mathcal{H}_0: \beta_2 = 0$ contre $\mathcal{H}_1: \beta_2 \neq 0$. La deuxième question correspond au test $\mathcal{H}_0: \beta_2 = \beta_3 = 0$ contre $\mathcal{H}_1: \beta_2 \neq 0$ ou $\beta_3 \neq 0$.

15. (2 points) Sachant que l'estimateur par maximum de vraisemblance du paramètre β_2 a pour loi $B_2 \sim \mathcal{N}(\beta_2, \sigma_2^2)$, où $\sigma_2^2 = \frac{\sigma^2}{n} (\Sigma^{-1})_{22}$, et supposant que σ est connu, proposer une statistique de test pour répondre à la question (Q1). Donner sa loi sous \mathcal{H}_0 ainsi que la zone de rejet pour un niveau de signification $\alpha = 5\%$.

Solution: On prend comme statistique de test

$$Z = \frac{B_2 - \beta_2}{\sigma_2}.$$

Sous \mathcal{H}_0 , on a $Z \sim \mathcal{N}(0,1)$. Comme on fait un test bilatéral, on prend comme zone de rejet l'intervalle $]-\infty, z_0[\cup]z_0, +\infty[$, où z_0 est la valeur critique telle que

$$\mathbb{P}_0(|Z| > z_0) = \alpha.$$

Par symmétrie, on prend z_0 tel que $\mathbb{P}_0(Z < -z_0) = \alpha/2$. Pour une gaussienne centrée réduite et $\alpha = 5\%$, on a $z_0 = 1.96$.