Topology, symplectic topology, . . . What's next?

Ronen Brilleslijper & Oliver Fabert

O-dimensional objects

Morse theory on smooth manifolds

End

0-dimensional objects

Morse theory on smooth
manifolds

1-dimensional objects

Floer theory on symplectic manifolds

1-dimensional objects

Floer theory on symplectic manifolds

2-dimensional objects

777

Introduction

1-dimensional objects

Floer theory on symplectic manifolds

2-dimensional objects
Holomorphic symplectic? Polysymplectic?

Physics motivation

Introduction

0

Symplectic geometry
Mechanics

Physics motivation

Introduction

0

Symplectic geometry
Mechanics

Polysymplectic geometry Field theory End

Physics motivation

Symplectic geometry Mechanics **ODEs**

Polysymplectic geometry Field theory

Physics motivation

Symplectic geometry Mechanics **ODEs**

Polysymplectic geometry Field theory **PDEs**

Physics motivation

0

Two types of field theory

Minkowski Euclidean

Polysymplectic geometry Introduction

0

Physics motivation

Two types of field theory

Minkowski

Electromagnetism

Wave equation

Hyperbolic PDEs

Euclidean

Physics motivation

Two types of field theory

Minkowski

Electromagnetism

Wave equation

Hyperbolic PDEs

Euclidean

Electrostatics

Laplace equation

Elliptic PDEs

Physics motivation

Two types of field theory

Minkowski

Introduction

0

Electromagnetism

Wave equation

Hyperbolic PDEs

Euclidean

Electrostatics

Laplace equation

Elliptic PDEs

Physics motivation

Two types of field theory

Minkowski

Introduction

0

Electromagnetism

Wave equation

Hyperbolic PDEs

Euclidean

Electrostatics

Laplace equation

Elliptic PDEs

Definition

•000

Polysymplectic geometry

Introduction

An \mathbb{R}^d -valued 2-form $\Omega = \sum_{i=1}^d \eta_i \otimes \partial_i$ on a manifold M is called a polysymplectic form if it is closed and non-degenerate

Definition

•000

Polysymplectic geometry

An \mathbb{R}^d -valued 2-form $\Omega = \sum_{i=1}^d \eta_i \otimes \partial_i$ on a manifold M is called a polysymplectic form if it is closed and non-degenerate in the sense that

$$\Omega^{\flat}: TM \to \operatorname{Hom}(TM, \mathbb{R}^d)$$

$$X \mapsto \Omega(X, \cdot)$$

is injective.

Definition

•000

Polysymplectic geometry

An \mathbb{R}^d -valued 2-form $\Omega = \sum_{i=1}^d \eta_i \otimes \partial_i$ on a manifold M is called a polysymplectic form if it is closed and non-degenerate in the sense that

$$\Omega^{\flat}: TM \to \operatorname{\mathsf{Hom}}(TM, \mathbb{R}^d) \ X \mapsto \Omega(X, \cdot)$$

is injective. Equivalently $\bigcap_i \ker \eta_i^{\flat} = 0$.

Definition

•000

Introduction

An \mathbb{R}^d -valued 2-form $\Omega = \sum_{i=1}^d \eta_i \otimes \partial_i$ on a manifold M is called a polysymplectic form if it is closed and non-degenerate in the sense that

$$\Omega^{\flat}: TM \to \operatorname{Hom}(TM, \mathbb{R}^d)$$

$$X \mapsto \Omega(X, \cdot)$$

is injective. Equivalently $\bigcap_i \ker \eta_i^{\flat} = 0$. Given a function $H: M \to \mathbb{R}$ a map $Z: \mathbb{R}^d \to M$ is called a solution if

$$\sum_{i=1}^d \eta_i(\cdot,\partial_i Z) = dH.$$

Example

Let
$$d=2$$
 and $M=\mathbb{R}^3\ni (q,p_1,p_2)$ with

$$\eta_1 = dp_1 \wedge dq$$

$$\eta_2 = dp_2 \wedge dq$$

Introduction

Let d=2 and $M=\mathbb{R}^3\ni (q,p_1,p_2)$ with

$$\eta_1 = dp_1 \wedge dq$$

$$\eta_2 = dp_2 \wedge dq$$

Then
$$Z = (q, p_1, p_2) : \mathbb{R}^2 \to \mathbb{R}^3$$
 is a solution of $H(q, p_1, p_2) = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + V(q)$ if

$$\begin{cases} -\partial_1 p_1 - \partial_2 p_2 &= V'(q) \\ \partial_1 q &= p_1 \\ \partial_2 q &= p_2 \end{cases}$$

Example

Introduction

Let d=2 and $M=\mathbb{R}^3\ni (q,p_1,p_2)$ with

Polysymplectic geometry

0000

$$\eta_1 = dp_1 \wedge dq \qquad \qquad \eta_2 = dp_2 \wedge dq$$

Then $Z = (q, p_1, p_2) : \mathbb{R}^2 \to \mathbb{R}^3$ is a solution of $H(q, p_1, p_2) = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + V(q)$ if

$$\begin{cases}
-\partial_1 p_1 - \partial_2 p_2 &= V'(q) \\
\partial_1 q &= p_1 \\
\partial_2 q &= p_2
\end{cases}$$

$$\iff -(\partial_1^2 + \partial_2^2)q = V'(q)$$

Example (De Donder-Weyl equations)

Let d=2 and $M=\mathbb{R}^3\ni (q,p_1,p_2)$ with

$$\eta_1 = dp_1 \wedge dq \qquad \qquad \eta_2 = dp_2 \wedge dq$$

Then $Z = (q, p_1, p_2) : \mathbb{R}^2 \to \mathbb{R}^3$ is a solution of $H(q, p_1, p_2) = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + V(q)$ if

$$\begin{cases}
-\partial_1 p_1 - \partial_2 p_2 &= V'(q) \\
\partial_1 q &= p_1 \\
\partial_2 q &= p_2
\end{cases}$$

$$\iff -(\partial_1^2 + \partial_2^2)q = V'(q)$$

Introduction

0000

Hamiltonians?

• $H: M \to \mathbb{R}$

Hamiltonians?

•
$$H: M \to \mathbb{R}$$
 \Longrightarrow $\eta_1(\cdot, \partial_1 Z) + \eta_2(\cdot, \partial_2 Z) = dH$

Hamiltonians?

•
$$H: M \to \mathbb{R}$$
 \Longrightarrow $\eta_1(\cdot, \partial_1 Z) + \eta_2(\cdot, \partial_2 Z) = dH$

ullet ???? \Longrightarrow vector field

Hamiltonians?

•
$$H: M \to \mathbb{R}$$
 \Longrightarrow $\eta_1(\cdot, \partial_1 Z) + \eta_2(\cdot, \partial_2 Z) = dH$
• $F: M \to \mathbb{R}^2$? \Longrightarrow vector field

Hamiltonians?

•
$$H: M \to \mathbb{R}$$
 \Longrightarrow $\eta_1(\cdot, \partial_1 Z) + \eta_2(\cdot, \partial_2 Z) = dH$

• $F: M \to \mathbb{R}^2$ vector field

Definition

A function $F: M \to \mathbb{R}^2$ is called a *current* if there exists a vector field X_F on M such that

$$\Omega(X_F,\cdot)=dF$$

Hamiltonians?

0000

•
$$H: M \to \mathbb{R}$$
 \Longrightarrow $\eta_1(\cdot, \partial_1 Z) + \eta_2(\cdot, \partial_2 Z) = dH$

• $F \cdot M \rightarrow \mathbb{R}^2$ vector field

Definition

A function $F: M \to \mathbb{R}^2$ is called a *current* if there exists a vector field X_F on M such that

$$\Omega(X_F,\cdot)=dF$$

The flow of these vector fields preserve Ω .

√ Geometric framework for PDEs

- √ Geometric framework for PDEs
- √ Hamiltonian and Lagrangian formalism

- √ Geometric framework for PDEs
- √ Hamiltonian and Lagrangian formalism
- Action functional

- √ Geometric framework for PDEs
- √ Hamiltonian and Lagrangian formalism
- Action functional

x No Darboux theorem

0000

- √ Geometric framework for PDEs
- √ Hamiltonian and Lagrangian formalism
- Action functional

- x No Darboux theorem
- X No holomorphic curve techniques

- √ Geometric framework for PDEs
- √ Hamiltonian and Lagrangian formalism
- √ Action functional

- x No Darboux theorem
- No holomorphic curve techniques
- x Not elliptic

Laplace equation

$$-(\partial_1^2 + \partial_2^2)q = \nabla V(q)$$
 $q = (q_1, q_2) : \mathbb{R}^2 \to \mathbb{R}^{2n}$

Laplace equation

$$egin{align} -(\partial_1^2+\partial_2^2)q &=
abla V(q) & q &= (q_1,q_2): \mathbb{R}^2
ightarrow \mathbb{R}^{2n} \ -4\partial_{\overline{t}}\partial_t q &=
abla V(q) & \partial_t &= rac{1}{2}(\partial_1-i\partial_2) \ \end{pmatrix}$$

End

Laplace equation

Introduction

$$-(\partial_1^2+\partial_2^2)q=
abla V(q) \qquad \qquad q=(q_1,q_2):\mathbb{R}^2 o\mathbb{R}^{2n}$$
 $-4\partial_{\overline{t}}\partial_t q=
abla V(q) \qquad \qquad \partial_t=rac{1}{2}(\partial_1-i\partial_2)$

De Donder-Weyl: 4 momentum vectors $p_i^{\alpha} = \partial_{\alpha} q_i$

End

Laplace equation

$$egin{align} -(\partial_1^2+\partial_2^2)q &=
abla V(q) & q &= (q_1,q_2): \mathbb{R}^2
ightarrow \mathbb{R}^{2n} \ -4\partial_{ar{t}}\partial_t q &=
abla V(q) & \partial_t &= rac{1}{2}(\partial_1-i\partial_2) \ \end{pmatrix}$$

De Donder-Weyl: 4 momentum vectors $p_i^{\alpha} = \partial_{\alpha} q_i$ Only need: $p = 2\partial_t q$

Laplace equation

Introduction

$$egin{align} -(\partial_1^2+\partial_2^2)q &=
abla V(q) & q &= (q_1,q_2): \mathbb{R}^2
ightarrow \mathbb{R}^{2n} \ -4\partial_{ar{t}}\partial_t q &=
abla V(q) & \partial_t &= rac{1}{2}(\partial_1-i\partial_2) \ \end{pmatrix}$$

De Donder-Weyl: 4 momentum vectors $p_i^{\alpha} = \partial_{\alpha} q_i$

Only need: $p = 2\partial_t q$

$$p_1 = \partial_1 q_1 + \partial_2 q_2$$
$$p_2 = \partial_1 q_2 - \partial_2 q_1$$

Rigidity

Application

Laplace equation

Polysymplectic geometry

Introduction

$$-(\partial_1^2 + \partial_2^2)q = \nabla V(q)$$
 $q = (q_1, q_2) : \mathbb{R}^2 \to \mathbb{R}^{2n}$ $-4\partial_{\bar{t}}\partial_t q = \nabla V(q)$ $\partial_t = \frac{1}{2}(\partial_1 - i\partial_2)$

De Donder-Weyl: 4 momentum vectors $oldsymbol{p}_i^{lpha}=\partial_{lpha}oldsymbol{q}_i$

Only need: $p = 2\partial_t q$, $-2\partial_{\bar{t}} p = \nabla V(q)$

$$p_1 = \partial_1 q_1 + \partial_2 q_2$$

$$p_2 = \partial_1 q_2 - \partial_2 q_1$$

$$\partial_{q_1} V = -\partial_1 p_1 + \partial_2 p_2$$

$$\partial_{q_2} V = -\partial_1 p_2 - \partial_2 p_1$$

Laplace equation

Introduction

$$-(\partial_1^2 + \partial_2^2)q = \nabla V(q)$$
 $q = (q_1, q_2) : \mathbb{R}^2 \to \mathbb{R}^{2n}$ $-4\partial_{\overline{t}}\partial_t q = \nabla V(q)$ $\partial_t = \frac{1}{2}(\partial_1 - i\partial_2)$

De Donder-Weyl: 4 momentum vectors $p_i^{\alpha} = \partial_{\alpha} q_i$ Only need: $p = 2\partial_t q_i$, $-2\partial_{\overline{t}} p = \nabla V(q)$

$$\partial Z := \begin{pmatrix} 0 & -2\partial_{\overline{t}} \\ 2\partial_t & 0 \end{pmatrix} Z = \nabla H(Z),$$

where

$$Z=(q,p):\mathbb{R}^2 o\mathbb{R}^{4n}$$
 $H(q,p)=rac{1}{2}|p|^2+V(q)$

Polysymplectic formulation

$$\mathscr{J}Z:=egin{pmatrix} 0 & -2\partial_{\overline{t}} \ 2\partial_t & 0 \end{pmatrix}Z=
abla \mathcal{H}(Z) \qquad Z=(q_1,q_2,p_1,p_2)$$

$$\mathscr{D}Z := \begin{pmatrix} 0 & -2\partial_{\overline{t}} \\ 2\partial_t & 0 \end{pmatrix} Z = \nabla H(Z) \qquad Z = (q_1, q_2, p_1, p_2)$$

Define $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ for

$$\omega_1 = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$$
 $\omega_2 = dp_1 \wedge dq_2 - dp_2 \wedge dq_1$

Polysymplectic formulation

Introduction

$$\partial Z := \begin{pmatrix} 0 & -2\partial_{\overline{t}} \\ 2\partial_t & 0 \end{pmatrix} Z = \nabla H(Z) \qquad Z = (q_1, q_2, p_1, p_2)$$

Define $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ for

$$\omega_1 = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$$
 $\omega_2 = dp_1 \wedge dq_2 - dp_2 \wedge dq_1$

The Dirac equation is equivalent to

$$\omega_1(\cdot,\partial_1 Z) + \omega_2(\cdot,\partial_2 Z) = dH$$

Define $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ for

$$\omega_1 = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$$
 $\omega_2 = dp_1 \wedge dq_2 - dp_2 \wedge dq_1$

Note

Introduction

• Both ω_1 and ω_2 are symplectic forms related by $\omega_2 = -\omega_1(\cdot, I \cdot)$, where

$$I = \begin{pmatrix} i & 0 \\ 0 & i^* \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

on
$$\mathbb{R}^{4n} = \mathbb{R}^{2n} \times (\mathbb{R}^{2n})^*$$
.

Polysymplectic formulation

Define $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ for

$$\omega_1 = dp_1 \wedge dq_1 + dp_2 \wedge dq_2$$
 $\omega_2 = dp_1 \wedge dq_2 - dp_2 \wedge dq_1$

Note

Introduction

• Both ω_1 and ω_2 are symplectic forms related by $\omega_2 = -\omega_1(\cdot, I \cdot)$, where

$$I = \begin{pmatrix} i & 0 \\ 0 & i^* \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

on $\mathbb{R}^{4n} = \mathbb{R}^{2n} \times (\mathbb{R}^{2n})^*$.

• Let $\omega^{\mathbb{C}} = dp \wedge dq = \omega_1 + i\omega_2$, then

$$\Omega = \omega^{\mathbb{C}} \otimes \partial_t + \bar{\omega}^{\mathbb{C}} \otimes \partial_{\bar{t}}.$$

Introduction

Definition (B.-F. '24)

Let (W,I) a complex manifold. An \mathbb{R}^2 -valued polysymplectic form $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ on W is called *complex-regularized* if $\omega_2 = -\omega_1(\cdot,I\cdot)$.

Introduction

Definition (B.-F. '24)

Let (W,I) a complex manifold. An \mathbb{R}^2 -valued polysymplectic form $\Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$ on W is called *complex-regularized* if $\omega_2 = -\omega_1(\cdot,I\cdot)$.

The triple (W, I, Ω) is called a *complex-regularized polysymplectic* (CRPS) manifold.

Application

End

Example

Introduction

Let (Q, i) a complex manifold and $W = T^*Q$ with induced complex structure I.

End

Example

Introduction

Let (Q, i) a complex manifold and $W = T^*Q$ with induced complex structure *I*. Note $\pi: T^*Q \to Q$ is holomorphic.

Example

Let (Q, i) a complex manifold and $W = T^*Q$ with induced complex structure *I*. Note $\pi: T^*Q \to Q$ is holomorphic. For $Z = (q, p) \in W$ and $X \in T_7W$ define

$$(\theta_1)_Z(X) = p \circ d\pi(X)$$

$$(\theta_2)_Z(X) = p \circ d\pi(IX).$$

Rigidity

Application

End

Example

Introduction

Polysymplectic geometry

Let (Q, i) a complex manifold and $W = T^*Q$ with induced complex structure I. Note $\pi: T^*Q \to Q$ is holomorphic. For $Z = (q, p) \in W$ and $X \in T_Z W$ define

$$(\theta_1)_Z(X) = p \circ d\pi(X)$$

$$(\theta_2)_Z(X) = p \circ d\pi(IX).$$

Then $\Omega = d\theta_1 \otimes \partial_1 - d\theta_2 \otimes \partial_2$ is CRPS on (W, I).

First properties

Lemma

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold. Then both ω_1 and ω_2 are symplectic forms.

First properties

Lemma

Introduction

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold. Then both ω_1 and ω_2 are symplectic forms.

Proof idea: Since
$$\omega_2 = -\omega_1(\cdot, I \cdot)$$

$$\ker \omega_1^\flat = \ker \omega_2^\flat.$$

First properties

Lemma

Introduction

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold. Then both ω_1 and ω_2 are symplectic forms.

Proof idea: Since $\omega_2 = -\omega_1(\cdot, I \cdot)$

$$\ker \omega_1^\flat = \ker \omega_2^\flat.$$

So Ω being non-degenerate implies $\ker \omega_1^\flat = \ker \omega_2^\flat = 0$.

End

First properties

Lemma

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold. Then both ω_1 and ω_2 are symplectic forms.

Lemma

Let $\psi: (W, I, \Omega) \to (W', I', \Omega')$ a diffeomorphism between CRPS manifolds, such that

$$\psi^*\Omega'=\Omega.$$

Then ψ is holomorphic with respect to I and I'.

Quick recap

Introduction

Definition

A holomorphic 2-form $\omega^{\mathbb{C}}$ on a complex manifold (W, I) is called a holomorphic symplectic form if it is closed and its restriction to $T^{(1,0)}W$ is non-degenerate.

Quick recap

Introduction

Definition

A holomorphic 2-form $\omega^{\mathbb{C}}$ on a complex manifold (W,I) is called a holomorphic symplectic form if it is closed and its restriction to $T^{(1,0)}W$ is non-degenerate.

A holomorphic Hamiltonian system is a tuple $(W, I, \omega^{\mathbb{C}}, F)$, where $F:W\to\mathbb{C}$ is holomorphic.

Quick recap

Introduction

Definition

A holomorphic 2-form $\omega^{\mathbb{C}}$ on a complex manifold (W, I) is called a holomorphic symplectic form if it is closed and its restriction to $T^{(1,0)}W$ is non-degenerate.

A holomorphic Hamiltonian system is a tuple $(W, I, \omega^{\mathbb{C}}, F)$, where $F:W\to\mathbb{C}$ is holomorphic. It induces a holomorphic vector field \mathcal{X}_{F} by

$$\omega^{\mathbb{C}}(\mathcal{X}_{F},\cdot)=dF.$$

Relation to CRPS manifolds

Proposition

Introduction

For a complex manifold (W, I) there is a bijection

 $\{CRPS \text{ forms}\} \stackrel{1-1}{\longleftrightarrow} \{\text{holomorphic symplectic forms}\}$

Given by

$$\omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2 \mapsto \omega_1 + i\omega_2$$
$$\omega^{\mathbb{C}} \otimes \partial_t + \bar{\omega}^{\mathbb{C}} \otimes \partial_{\bar{t}} \longleftrightarrow \omega^{\mathbb{C}}$$

Holomorphic symplectic geometry

Holomorphic symplectic geometry

End

Introduction

Holomorphic symplectic geometry
• Holomorphic Hamiltonians

Application

End

Introduction

- Real valued Hamiltonians
- Holomorphic symplectic geometryHolomorphic Hamiltonians
- **Recall:** $F:(W,I,\Omega)\to\mathbb{R}^2$ is a current if there exists X_F such that $\Omega(X_F,\cdot)=dF$.

Real valued Hamiltonians

Holomorphic symplectic geometry

Holomorphic Hamiltonians

Holomorphic symplectic geometry

Recall: $F:(W,I,\Omega)\to\mathbb{R}^2$ is a current if there exists X_F such that $\Omega(X_F,\cdot)=dF$.

Lemma

Introduction

Let $(W, I, \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\omega^{\mathbb{C}} = \omega_1 + i\omega_2$. By identifying $\mathbb{R}^2 \cong \mathbb{C}$ and $TW \cong T^{(1,0)}W$ we get that $F:W\to\mathbb{R}^2\cong\mathbb{C}$ is a current if and only if it is a holomorphic function.

Real valued Hamiltonians

Holomorphic symplectic geometry

• Holomorphic Hamiltonians

Recall: $F:(W,I,\Omega)\to\mathbb{R}^2$ is a current if there exists X_F such that $\Omega(X_F,\cdot)=dF$.

Lemma

Introduction

Let $(W, I, \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\omega^{\mathbb{C}} = \omega_1 + i\omega_2$. By identifying $\mathbb{R}^2 \cong \mathbb{C}$ and $TW \cong T^{(1,0)}W$ we get that $F: W \to \mathbb{R}^2 \cong \mathbb{C}$ is a current if and only if it is a holomorphic function. In this case $X_F = \mathcal{X}_F$.

Darboux theorem

Corollary

Introduction

Let (W, I, Ω) a CRPS manifold. Around every point in W there exist coordinates $\{q_1^{\alpha}, q_2^{\alpha}, p_1^{\alpha}, p_2^{\alpha}\}$ where $\alpha = 1, \dots, n$ such that

000

$$I\frac{\partial}{\partial q_1^{\alpha}} = \frac{\partial}{\partial q_2^{\alpha}} \qquad \qquad I\frac{\partial}{\partial p_1^{\alpha}} = -\frac{\partial}{\partial p_2^{\alpha}}$$

and

$$egin{aligned} \omega_1 &= \sum_lpha \left(dp_1^lpha \wedge dq_1^lpha + dp_2^lpha \wedge dq_2^lpha
ight) \ \omega_2 &= \sum_lpha \left(dp_1^lpha \wedge dq_2^lpha - dp_2^lpha \wedge dq_1^lpha
ight). \end{aligned}$$

Darboux theorem

Corollary

Introduction

$$I\frac{\partial}{\partial q_1^{\alpha}} = \frac{\partial}{\partial q_2^{\alpha}} \qquad I\frac{\partial}{\partial p_1^{\alpha}} = -\frac{\partial}{\partial p_2^{\alpha}}$$

and

$$egin{aligned} \omega_1 &= \sum_lpha \left(extit{d} p_1^lpha \wedge extit{d} q_1^lpha + extit{d} p_2^lpha \wedge extit{d} q_2^lpha
ight) \ \omega_2 &= \sum_lpha \left(extit{d} p_1^lpha \wedge extit{d} q_2^lpha - extit{d} p_2^lpha \wedge extit{d} q_1^lpha
ight). \end{aligned}$$

Proof: Follows from the Darboux theorem for holomorphic symplectic manifolds (see thesis of Wagner for proof).

End

Action functional

Assume $\Omega = d\Theta$ on W is exact.

Action functional

Assume $\Omega = d\Theta$ on W is exact.

Let $d\mathcal{V}=dt_1\wedge dt_2=-\frac{1}{2i}dt\wedge d\bar{t}$ the volume form on \mathbb{T}^2 .

Introduction

Assume $\Omega = d\Theta$ on W is exact.

Let $d\mathcal{V} = dt_1 \wedge dt_2 = -\frac{1}{2i}dt \wedge d\bar{t}$ the volume form on \mathbb{T}^2 .

Contract $\Theta = \theta_1 \otimes \partial_1 + \theta_2 \otimes \partial_2$ with $d\mathcal{V}$ to give

$$ilde{\Theta} = heta_1 \wedge dt_2 - heta_2 \wedge dt_1 \in \Lambda^2\left(W imes \mathbb{T}^2
ight).$$

Introduction

Polysymplectic geometry

Let $d\mathcal{V} = dt_1 \wedge dt_2 = -\frac{1}{2i}dt \wedge d\bar{t}$ the volume form on \mathbb{T}^2 . Contract $\Theta = \theta_1 \otimes \partial_1 + \theta_2 \otimes \partial_2$ with $d\mathcal{V}$ to give

$$\tilde{\Theta} = \theta_1 \wedge \textit{dt}_2 - \theta_2 \wedge \textit{dt}_1 \in \Lambda^2 \left(\textit{W} \times \mathbb{T}^2 \right).$$

For $Z: \mathbb{T}^2 \to W$ define $\tilde{Z} = Z \times \text{id} : \mathbb{T}^2 \to W \times \mathbb{T}^2$ and

$$egin{aligned} \mathcal{A}(Z) &= \int_{\mathbb{T}^2} ilde{\mathcal{Z}}^* ilde{\Theta} \ &= \int_{\mathbb{T}^2} \left(heta_1(\partial_1 Z) + heta_2(\partial_2 Z)
ight) \ d\mathcal{V} \end{aligned}$$

End

Action functional

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} ig(heta_1(\partial_1 Z) + heta_2(\partial_2 Z)ig) \; d\mathcal{V}$$

End

Introduction

Action functional

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} \left(heta_1(\partial_1 Z) + heta_2(\partial_2 Z) \right) \ d\mathcal{V}$$

• The action is real-valued so we may study its gradient lines.

Introduction

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} ig(heta_1(\partial_1 Z) + heta_2(\partial_2 Z)ig) \; d\mathcal{V}$$

Holomorphic symplectic geometry

- The action is real-valued so we may study its gradient lines.
- Critical points of

$$A_H(Z) = A(Z) - \int_{\mathbb{T}^2} H(Z) \, dV$$

are multiperiodic solutions to the corresponding PDE.

Introduction

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} \left(heta_1(\partial_1 Z) + heta_2(\partial_2 Z) \right) \ d\mathcal{V}$$

- The action is real-valued so we may study its gradient lines.
- Critical points of

$$A_H(Z) = A(Z) - \int_{\mathbb{T}^2} H(Z) \, d\mathcal{V}$$

Holomorphic symplectic geometry

are multiperiodic solutions to the corresponding PDE.

• Pick a metric g such that $\omega_1 = g(\cdot, J \cdot)$ and $\omega_2 = g(\cdot, K \cdot)$ for almost complex structures J, K, then K = IJ.

Introduction

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} \left(heta_1(\partial_1 Z) + heta_2(\partial_2 Z) \right) \ d\mathcal{V}$$

- The action is real-valued so we may study its gradient lines.
- Critical points of

$$A_H(Z) = A(Z) - \int_{\mathbb{T}^2} H(Z) \, d\mathcal{V}$$

are multiperiodic solutions to the corresponding PDE.

• Pick a metric g such that $\omega_1 = g(\cdot, J \cdot)$ and $\omega_2 = g(\cdot, K \cdot)$ for almost complex structures J, K, then K = IJ.

$$\operatorname{grad}_{L^2} \mathcal{A}(Z) = J \partial_1 Z + K \partial_2 Z$$

Introduction

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} ig(heta_1(\partial_1 Z) + heta_2(\partial_2 Z)ig) \; d\mathcal{V}$$

- The action is real-valued so we may study its gradient lines.
- Critical points of

$$A_H(Z) = A(Z) - \int_{\mathbb{T}^2} H(Z) \, d\mathcal{V}$$

are multiperiodic solutions to the corresponding PDE.

• Pick a metric g such that $\omega_1 = g(\cdot, J \cdot)$ and $\omega_2 = g(\cdot, K \cdot)$ for almost complex structures J, K, then K = IJ.

$$\operatorname{grad}_{L^2} \mathcal{A}(Z) = J \partial_1 Z + K \partial_2 Z$$

Gradient lines are given by the Fueter equation

$$\partial_s Z + J \partial_1 Z + K \partial_2 Z = 0$$

$$\mathcal{A}(Z) = \int_{\mathbb{T}^2} ig(heta_1(\partial_1 Z) + heta_2(\partial_2 Z) ig) \,\,d\mathcal{V}$$

- The action is real-valued so we may study its gradient lines.
- Critical points of

$$A_H(Z) = A(Z) - \int_{\mathbb{T}^2} H(Z) \, d\mathcal{V}$$

are multiperiodic solutions to the corresponding PDE.

• Pick a metric g such that $\omega_1 = g(\cdot, J \cdot)$ and $\omega_2 = g(\cdot, K \cdot)$ for almost complex structures J, K, then K = IJ.

$$\operatorname{grad}_{L^2} \mathcal{A}(Z) = J \partial_1 Z + K \partial_2 Z$$

Gradient lines are given by the Fueter equation

$$I\partial_5 Z + K\partial_1 Z - J\partial_2 Z = 0.$$

Arnold conjecture

Theorem (B.-F. '24)

Let $Q = \mathbb{T}^{2n}$ and $W = T^*Q$ with the standard CRPS form $\omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$.

Arnold conjecture

Introduction

Theorem (B.-F. '24)

Let $Q=\mathbb{T}^{2n}$ and $W=T^*Q$ with the standard CRPS form

 $\omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$.

If $H: \mathbb{T}^2 \times W \to \mathbb{R}$ is given by $H(t, q, p) = \frac{1}{2}|p|^2 + h(t, q, p)$ for $h: \mathbb{T}^2 \times W \to \mathbb{R}$ smooth with finite C^2 -norm,

Arnold conjecture

Theorem (B.-F. '24)

Let $Q = \mathbb{T}^{2n}$ and $W = T^*Q$ with the standard CRPS form

$$\omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$$
.

If $H: \mathbb{T}^2 \times W \to \mathbb{R}$ is given by $H(t,q,p) = \frac{1}{2}|p|^2 + h(t,q,p)$ for $h: \mathbb{T}^2 \times W \to \mathbb{R}$ smooth with finite C^2 -norm, then

$$dH = \omega_1(\cdot, \partial_1 Z) + \omega_2(\cdot, \partial_2 Z)$$

has at least (2n+1) solutions.

Holomorphic symplectic geometry

Arnold conjecture

Theorem (B.-F. '24)

Polysymplectic geometry

Let $Q = \mathbb{T}^{2n}$ and $W = T^*Q$ with the standard CRPS form

$$\omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2$$
.

If $H: \mathbb{T}^2 \times W \to \mathbb{R}$ is given by $H(t,q,p) = \frac{1}{2}|p|^2 + h(t,q,p)$ for $h: \mathbb{T}^2 \times W \to \mathbb{R}$ smooth with finite C^2 -norm, then

$$dH = \omega_1(\cdot, \partial_1 Z) + \omega_2(\cdot, \partial_2 Z)$$

has at least (2n+1) solutions.

Corollary

When $V: Q \to \mathbb{R}$ has finite C^2 -norm then $-\Delta g = \nabla V(g)$ has at least (2n+1) solutions.

Overview of proof of Arnold conjecture

Follows from studying Floer curves

$$\partial_s Z + J \partial_1 Z + K \partial_2 Z = \nabla H(Z).$$

Introduction

Overview of proof of Arnold conjecture

• Follows from studying Floer curves

$$\partial_s Z + J \partial_1 Z + K \partial_2 Z = \nabla H(Z).$$

• C⁰-bounds for solutions and for Floer curves.

End

Overview of proof of Arnold conjecture

Follows from studying Floer curves

$$\partial_s Z + J \partial_1 Z + K \partial_2 Z = \nabla H(Z).$$

- C⁰-bounds for solutions and for Floer curves.
- Moduli space of Floer curves is a compact 1-dimensional manifold for generic choice of h.

Introduction

Overview of proof of Arnold conjecture

Follows from studying Floer curves

$$\partial_s Z + J \partial_1 Z + K \partial_2 Z = \nabla H(Z).$$

- C⁰-bounds for solutions and for Floer curves.
- Moduli space of Floer curves is a compact 1-dimensional manifold for generic choice of h.
- Rest of the proof follows the line of reasoning of the cuplength results from Albers-Hein.

End

Non-squeezing

Introduction

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\psi:W\to W$ a diffeomorphism.

End

Non-squeezing

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\psi: W \to W$ a diffeomorphism.

$$\psi^*\Omega = \Omega$$

$$\iff$$

$$\iff \qquad \psi^*\omega_1=\omega_1 \text{ and } \psi^*\omega_2=\omega_2$$

Non-squeezing

Introduction

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\psi : W \to W$ a diffeomorphism.

$$\psi^*\Omega = \Omega \qquad \iff \qquad \psi^*\omega_1 = \omega_1 \text{ and } \psi^*\omega_2 = \omega_2$$

Theorem

Let $\psi: \mathbb{R}^{4n} \to \mathbb{R}^{4n}$ a diffeomorphism preserving Ω such that

$$\psi(B_r^{4n}) \subseteq B_R^2 \times \mathbb{R}^{4n-2}$$

where B_R^2 is the R-ball in the $(q_i^{\alpha}, p_j^{\alpha})$ -plane for some $i, j \in \{1, 2\}$ and $\alpha \in \{1, \ldots, n\}$.

Then $r \leq R$.

Non-squeezing

Introduction

Let $(W, I, \Omega = \omega_1 \otimes \partial_1 + \omega_2 \otimes \partial_2)$ a CRPS manifold and $\psi: W \to W$ a diffeomorphism.

$$\psi^*\Omega = \Omega$$

$$\iff$$

$$\psi^*\omega_1=\omega_1$$
 and $\psi^*\omega_2=\omega_2$

Corollary

Let $\psi_{\nu}:W\to W$ a sequence of diffeomorphisms preserving Ω that converge to a diffeomorphism $\psi:W\to W$ in the C^0 -limit. Then $\psi^*\Omega = \Omega$.

Question: Given a holomorphic symplectic manifold $(W^{4n}, \omega^{\mathbb{C}})$ and a closed complex manifold L^{2n} , is there a holomorphic embedding $\iota: L \hookrightarrow W$ such that $\iota^*\omega^{\mathbb{C}} = 0$.

Introduction

Question: Given a holomorphic symplectic manifold $(W^{4n}, \omega^{\mathbb{C}})$ and a closed complex manifold L^{2n} , is there a holomorphic embedding $\iota: L \hookrightarrow W$ such that $\iota^* \omega^{\mathbb{C}} = 0$.

Real symplectic manifolds

Introduction

Holomorphic Lagrangians \rightarrow harmonic maps

Question: Given a holomorphic symplectic manifold $(W^{4n}, \omega^{\mathbb{C}})$ and a closed complex manifold L^{2n} , is there a holomorphic embedding $\iota: L \hookrightarrow W$ such that $\iota^* \omega^{\mathbb{C}} = 0$.

Real symplectic manifolds

Morse theory of geodesics on L

Holomorphic Lagrangians \rightarrow harmonic maps

Question: Given a holomorphic symplectic manifold $(W^{4n}, \omega^{\mathbb{C}})$ and a closed complex manifold L^{2n} , is there a holomorphic embedding $\iota: L \hookrightarrow W$ such that $\iota^* \omega^{\mathbb{C}} = 0$.

Holomorphic symplectic manifolds

Morse theory of geodesics on L

Introduction

Holomorphic Lagrangians \rightarrow harmonic maps

Question: Given a holomorphic symplectic manifold $(W^{4n}, \omega^{\mathbb{C}})$ and a closed complex manifold L^{2n} , is there a holomorphic embedding $\iota: L \hookrightarrow W$ such that $\iota^* \omega^{\mathbb{C}} = 0$. Holomorphic symplectic manifolds

Morse theory of minimal spheres on L

Harmonic maps \rightarrow holomorphic Lagrangians

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

Introduction

Harmonic maps \rightarrow holomorphic Lagrangians

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

One-dimensional analogue

Introduction

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

One-dimensional analogue

Existence of geodesics with boundary on $\Gamma \subseteq Q$

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

One-dimensional analogue

Existence of geodesics with boundary on $\Gamma \subseteq Q$ $H(q,p) = \frac{1}{2}|p|_{g}^{2} \text{ on } T^{*}Q$

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

One-dimensional analogue

Existence of geodesics with boundary on $\Gamma \subseteq Q$ $H(q,p) = \frac{1}{2}|p|_{g}^{2} \text{ on } T^{*}Q$ Boundary fixed to the conormal bundle $N^*\Gamma \subset T^*Q$

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

Minimal surface case

Existence of geodesics with boundary on $\Gamma \subseteq Q$ $H(q,p) = \frac{1}{2}|p|_{g}^{2} \text{ on } T^{*}Q$ Boundary fixed to the conormal bundle $N^*\Gamma \subset T^*Q$ **Question:** Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

Minimal surface case

Existence of harmonic maps with boundary on $\Gamma \subseteq Q$ $H(q,p) = \frac{1}{2}|p|_{g}^{2} \text{ on } T^{*}Q$ Boundary fixed to the conormal bundle $N^*\Gamma \subset T^*Q$

Introduction

Question: Given a Kähler manifold (Q, i, g), does there exist a minimal surface $\Sigma \to Q$ with boundary $\partial \Sigma$ in some submanifold $\Gamma \subset Q$?

Minimal surface case

Existence of harmonic maps with boundary on $\Gamma \subseteq Q$ $H(q,p) = \frac{1}{2}|p|_{g}^{2} \text{ on } T^{*}Q$ Boundary fixed to the conormal bundle $N^*\Gamma \subset T^*Q \rightarrow$ holomorphic Lagrangian if Γ is a complex submanifold

Introduction

Bibliography

- Ronen Brilleslijper and Oliver Fabert. Generalizing symplectic topology from 1 to 2 dimensions. arXiv preprint arXiv:2412.16223, 2024.
- Oliver Fabert and Ronen Brilleslijper. From Euclidean field theory to hyperkähler Floer theory via regularized polysymplectic geometry. Communications in Contemporary Mathematics, 2025.

Thank you!

