МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1
по дисциплине «Качество и метрология программного обеспечения»
ТЕМА: «Расчет метрических характеристик качества разработки
программ по метрикам Холстеда»

Студент гр. 6304	Зубов К.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

№	Оператор	Количество
1	:=	15
2	() или begin	15
	end	
3	;	11
4	*	8
5	+	4
6	-	4
7	/	4
8	fx	3
11	abs	2
10	div	1
11	for to do	1
12	<=	1
13	repeat until	1
14	trapez	1
15	sqrt	1
Всего		72

	Операнд	Количество
1	pieces	6
2	lower	5
3	sum	6
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	2
9	sum1	2
10	tol	2
11	fx	1
12	X	3
13	1.0	2
14	2.0	3
15	1	2
16	2	2
17	0.0	1
18	0.5	1
19	1.0E-6	1
Всего	1	55

Программный расчёт измеримых характеристик представлен в таблице 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

		•
№	Оператор	Количество
1	=	15
2	()	13
3	÷	36
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	const	1
10	abs	2
11	function	1
12	for	1
13	<=	1
14	repeat	1
15	trapez	2
16	real	6
17	program	1
18	procedure	1
19	integer	1
20	sqrt	1
Bcei	ΓΟ	110

No	Операнд	Количество
1	0.0	1
2	0.5	1
3	1	2
4	1.0	3
5	1.0E-6	1
6	2	2
7	2.0	3
8	9.0	1
9	delta_x	6
10	end_sum	4
11	fx	1
12	i	2
13	lower	8
14	mid_sum	5
15	pieces	7
16	sum	8
17	sum1	3
18	tol	4
19	trap2	1
20	upper	7
21	X	5
Всег	0	75

Расчетные характеристики представлены в таблице 3.

Таблица 3 – Расчётные характеристики (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	15	20
Число простых операндов n ₂	19	21
Общее число всех операторов N ₁	72	110
Общее число всех операндов N ₂	55	75
Словарь п	34	41
Длина N _{опыт}	147	184
Теоретическая длина N _{теор}	139.314	178.677
Объём V	747.86	985.79
Потенциальный объём V*	19.6515	19.6515
Уровень программы L	0.0262770	0.0199348
Интеллектуальное содержание I	25.2609	27.6021
Работа программиста Е	28460.5	49450.8
Время программирования Т	2846.05	2747.27
Уровень языка λ	0.516383	0.391748
Ожидаемое число ошибок в	1	0.449084
программе В		

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	14
2	() или {}	20
3	;	16
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	3
9	fabs	2
10	<=	1
11	for	1
12	>	1
13	do while	1
14	trap2	1
15	++	1
16	return	1
17	sqrt	1
Bcer	0	84

№	Операнд	Количество
1	pieces	5
2	lower	5
3	sum	5
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	4
9	sum1	2
10	tol	1
11	x	3
12	1.0	2
13	2.0	3
14	1	1
15	2	2
16	0.0	2
17	0.5	1
Всего	0	52

Программный расчёт измеримых характеристик представлен в таблице 5. Файл с результатами программных расчётов представлен в приложении Γ . Таблица 5 — Программный расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	16
2	()	9
3	;	24
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	,	9
10	fabs	2
11	<=	1
12	for	1
13	>	1
14	do while	1
15	trap2	2
16	++	1
17	return	1
18	void	1
19	int	3
20	main	1
21	double	9
22	const	1
23	sqrt	1
Bcer	0	109

Операнд	Количество
pieces	6
lower	8
sum	6
delta_x	6
upper	7
mid_sum	5
end_sum	4
i	4
sum1	3
tol	4
X	5
1.0	3
2.0	3
1	2
2	2
0.0	2
0.5	1
9.0	1
1.0E-6	1
0	73
	pieces lower sum delta_x upper mid_sum end_sum i sum1 tol x 1.0 2.0 1 2 0.0 0.5

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчетные характеристики (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов	17	23
n_1		
Число простых операндов	17	19
n_2		
Общее число всех	84	109
операторов N ₁		
Общее число всех	52	73
операндов N ₂		
Словарь п	34	42
Длина N _{опыт}	136	182
Теоретическая длина N _{теор}	138.974	184.753
Объём V	691.895	981.402
Потенциальный объём V*	19.6515	19.6515
Уровень программы L	0.0284024	0.0200239
Интеллектуальное	26.6113	22.2116
содержание I		
Работа программиста Е	24360.43	49011.5
Время программирования Т	2436.04	2722.86
Уровень языка λ	0.5582	0.393499
Ожидаемое число ошибок в	1	0.446421
программе В		

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

$N_{\underline{0}}$	Оператор	Количество
1	push	3
2	pop	1
3	mov	13
4	movq	9
5	movsd	33
6	movapd	3
7	addsd	6
8	nop	2
9	subsd	4
10	sub	2
11	andpd	2
12	divsd	4
13	ret	3
14	cvtsi2sd	3
15	call fx	3
16	call trap2	1
17	mulsd	5
18	pxor	1
19	sal	1
20	jmp .L4	1
21	call sqrt	1
22	ja .L6	1
23	nop	2
24	leave	2
25	sar	1
26	jle .L5	1
27	tol	1

№	Операнд	Количество
1	rbp	47
2	rsp	5
3	xmm0	56
4	xmm1	28
5	xmm2	4
6	rip	18
7	96	1
8	1	3
9	rax	12
10	eax	6
11	edx	3
12	31	1
13	16	1
14	0	1

28	lower	3
29	upper	3
30	QWORD PTR	49
31	DWORD PTR	9
Всего		173

Всего		186

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 – Расчёт расчетных характеристик (Ассемблер)

Характеристика	Ручной расчёт
Число простых операторов n ₁	31
Число простых операндов n ₂	14
Общее число всех операторов N ₁	173
Общее число всех операндов N ₂	186
Словарь п	45
Длина Nonbit	359
Теоретическая длина N _{теор}	206.883
Объём V	1971.575
Потенциальный объём V*	19.6515
Уровень программы L	0.009967
Интеллектуальное содержание I	9.5740
Работа программиста Е	197802.31
Время программирования Т	19780.23
Уровень языка λ	0.195874
Ожидаемое число ошибок в программе В	2

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный	расчёт Си	мный	расчёт
	Pascal	расчёт		расчёт Си	Ассемблер
		Pascal			
Число простых операторов	15	20	17	23	31
n_1					
Число простых операндов n ₂	19	21	17	19	14
Общее число всех	72	110	84	109	173
операторов N_1					
Общее число всех	55	75	52	73	186
операндов N ₂					
Словарь п	34	41	34	42	45
Длина N _{опыт}	147	184	136	182	359
Теоретическая длина N _{теор}	139.314	178.677	138.974	184.753	206.883
Объём V	747.86	985.79	691.895	981.402	1971.575
Потенциальный объём V*	19.6515	19.6515	19.6515	19.6515	19.6515
Уровень программы	0.0262770	0.0199348	0.0284024	0.0200239	0.0099674
Интеллектуальное	25.2609	27.6021	26.6113	22.2116	9.5740
содержание I					
Работа программиста Е	28460.5	49450.8	24360.43	49011.5	197802.3
Время программирования Т	2846.05	2747.27	2436.04	2722.86	19780.23
Уровень языка λ	0.516383	0.391748	0.5582	0.393499	0.195874
Ожидаемое число ошибок в	1	0.449084	1	0.446421	2
программе В					

Опытная длина и объем программ на Pascal и Си близки по значению и меньше длины и объема программы на ассемблере более чем в 2 раза. Разница между теоретической и опытной длиной программ на Си и Pascal не существенна. Ассемблер является низкоуровневым языком программирования, это можно увидеть по метрике уровня языка. Pascal и Си находятся практически на одном уровне. Ожидаемое количество ошибок

больше всего у Ассемблера и одинаковое у Pascal и СИ. Время программирования (и другие метрики), рассчитанное вручную, отличается от программного расчета: это связано с тем, что в программном расчете учитывались операторы и операнды, задействованные в части описания или отладки программы.

Выводы

В ходе выполнения лабораторной работы была изучена система метрик Холстеда. Произведено сравнение программ на языках Pascal, Си и Ассемблер, в которых реализовано численное интегрирование методом трапеций.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program trap2;
      sum,upper,lower
                       : real;
const tol = 1.0E-6;
function fx(x: real): real;
begin
 fx:=1.0/sqrt(x)
end;
procedure trapez(lower,upper,tol: real;
            var sum
                                : real);
var
      pieces,i
                                : integer;
      x,delta_x,end_sum,mid_sum,sum1 : real;
begin
  pieces:=1;
  delta_x:=(upper-lower)/pieces;
  end_sum:=fx(lower)+fx(upper);
  sum:=end_sum*delta_x/2.0;
 mid_sum:=0.0;
  repeat
   pieces:=pieces*2;
   sum1:=sum;
   delta_x:=(upper-lower)/pieces;
   for i:=1 to pieces div 2 do
   begin
     x:=lower+delta x*(2.0*i-1.0);
      mid sum:=mid sum+fx(x)
   end;
  sum:=(end_sum+2.0*mid_sum)*delta_x*0.5;
  until abs(sum-sum1)<=abs(tol*sum)</pre>
end;
begin
  lower:=1.0;
  upper:=9.0;
 trapez(lower,upper,tol,sum);
end.
```

ПРИЛОЖЕНИЕ Б

Результаты parser_pas.exe

```
Statistics for module output.lxm
_____
The number of different operators
                               : 20
The number of different operands
                                : 21
The total number of operators
                                : 109
The total number of operands
                                 : 75
Dictionary
                          ( D)
                                : 41
Length
                            N)
                                 : 184
                           ^N)
Length estimation
                                : 178.677
                            V)
                                  : 985.79
Volume
Potential volume
                          ( *V)
                                  : 19.6515
                                  : 38.2071
Limit volume
                          (**V)
Programming level
                           L)
                                  : 0.0199348
Programming level estimation ( ^L)
                                : 0.028
Intellect
                                : 27.6021
                          ( I)
Time of programming
                          ( T)
                                  : 2747.27
Time estimation
                          ( ^T)
                                  : 1899.35
Programming language level
                          (lambda): 0.391748
                          ( E)
Work on programming
                                  : 49450.8
                                  : 0.449084
Error
                            B)
Error estimation
                          ( ^B)
                                  : 0.328597
Table:
Operators:
  1
       14
             ()
  2
        8
  3
        4
  4
        4
  5
        5
             /
  6
        36
  7
        1
             <=
  8
        15
  9
        2
             abs
  10
        1
            const
  11
        1
             for
           | function
  12
        1
  13
        4
           fx
  14
          integer
  15
           procedure
        1
  16
        1
           program
  17
        6
            real
  18
             repeat
        1
  19
        1
             sqrt
  20
        2
           | trapez
Operands:
  1
        1
            0.0
  2
        1
             0.5
  3
        2
            1
  4
        3
           1.0
          | 1.0E-6
  5
        1
        2
           | 2
  6
```

7

3

2.0

```
9.0
8
    1
9
     6
       delta_x
       end_sum
10
     4
11 | 1 | fx
12 | 2 | i
13 | 8 | lower
14
     5 | mid_sum
       | pieces
| sum
     7
15 |
16
     8
17
     3
       sum1
18 |
     4
       | tol
       | trap2
19 | 1
20
    7
       upper
21 | 5 | x
```

Summary:

The number of different operators : 20
The number of different operands : 21
The total number of operators : 109
The total number of operands : 75

Dictionary	(D)	:	41
Length	(N)	:	184
Length estimation	(^N)	:	178.677
Volume	(V)	:	985.79
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0199348
Programming level estimation	(^L)	:	0.028
Intellect	(I)	:	27.6021
Time of programming	(T)	:	2747.27
Time estimation	(^T)	:	1899.35
Programming language level	(lambda)	:	0.391748
Work on programming	(E)	:	49450.8
Error	(B)	:	0.449084
Error estimation	(^B)	:	0.328597

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <stdio.h>
#include <math.h>
double sum = 0.0;
double upper, lower;
const double tol = 1.0E-6;
double fx(double x) {
      return 1.0 / sqrt(x);
}
void trap2(double lower, double upper, double tol) {
      int pieces = 1;
      double x,delta_x,end_sum,mid_sum,sum1;
      delta_x = ( upper - lower )/pieces;
      end_sum = fx(lower) + fx(upper);
      sum = end_sum * delta_x/2.0;
      mid_sum = 0.0;
      do {
             pieces = pieces * 2;
             sum1 = sum;
             delta_x = (upper - lower) / pieces;
             for (int i = 1; i <= pieces/2; i++)
             {
                   x = lower + delta_x * (2.0 * i - 1.0);
                   mid_sum = mid_sum + fx(x);
             sum = (end_sum + 2.0 * mid_sum) * delta_x * 0.5;
      } while (fabs(sum - sum1) > fabs(tol * sum));
}
int main() {
      lower = 1.0;
      upper = 9.0;
      trap2(lower, upper, tol);
}
```

ПРИЛОЖЕНИЕ Г

Результаты parser_c.exe

```
Statistics for module output2.lxm
_____
The number of different operators : 23
The number of different operands : 19
The total number of operators : 109
The total number of operators
The total number of operands
                                : 73
Dictionary
                         ( D)
                               : 42
                         ( N)
Length
                               : 182
Length estimation
                         ( ^N)
                               : 184.753
                               : 981.402
Volume
                           V)
                         ( *V)
                               : 19.6515
Potential volume
                               : 38.2071
Limit volume
                         (**V)
                               : 0.0200239
Programming level
                         ( L)
Programming level estimation ( ^L) : 0.0226325
                        ( I) : 22.2116
Intellect
Time of programming
                         ( T) : 2722.86
Time estimation
                         ( ^T) : 2445.46
Programming language level
                         (lambda): 0.393499
Work on programming
                         ( E) : 49011.5
Error
                           B)
                               : 0.446421
Error estimation
                         ( ^B) : 0.327134
Table:
_____
Operators:
  1 | 9
            ()
  2
        8
  3
        4
  4
       1 ++
  5
        9
  6 | 4 | -
  7
        5
           | /
        24 | ;
  8
  9
        1
             <=
  10 |
        16
  11
        1
  12
        1
          const
  13 |
        9
          | double
        1 | dowhile
  14
       2 | fabs
  15
  16
        1 | for
  17 |
        4
          | fx
  18 |
        3 | int
  19 |
        1
          | main
  20
        1
          return
  21
        1
            sqrt
  22
        2
           | trap2
  23 l
        1
          | void
Operands:
          0.0
  1 | 2
  2
       1
           0.5
  3
     | 2 | 1
  4
    | 3 | 1.0
           | 1.0E-6
  5
        1
```

6

2

| 2

```
3
           2.0
7
      1
           9.0
8
9
      6
           delta_x
10 |
      4
          end sum
11 |
12 |
          lower
      8
13
          | mid_sum
      5
          | pieces
14
      6
15
      6
           sum
16
      3
           sum1
17
      4
           tol
18
      7
           upper
19 |
      5
          | x
```

Summary:

The number of different operators : 23
The number of different operands : 19
The total number of operators : 109
The total number of operands : 73

Dictionary D) : 42 : 182 Length N) Length estimation ^N) : 184.753 Volume : 981.402 V) Potential volume *V) : 19.6515 Limit volume (**V) : 38.2071 Programming level L) : 0.0200239 Programming level estimation (^L) : 0.0226325 Intellect I) : 22.2116 : 2722.86 Time of programming T) (^T) Time estimation : 2445.46 Programming language level (lambda): 0.393499 (E) : 49011.5 Work on programming Error (B) : 0.446421 Error estimation (^B) : 0.327134

приложение д

Код программы на Ассемблер

```
sum:
        .zero
                8
upper:
        .zero
                8
lower:
                8
        .zero
tol:
                -1598689907
        .long
        .long
                1051772663
fx:
                rbp
        push
        mov
                rbp, rsp
        sub
                rsp, 16
                QWORD PTR [rbp-8], xmm0
        movsd
        mov
                rax, QWORD PTR [rbp-8]
        movq
                xmm0, rax
                sqrt
        call
        movsd
                xmm1, QWORD PTR .LC0[rip]
        divsd
                xmm1, xmm0
        movq
                rax, xmm1
                xmm0, rax
        movq
        leave
        ret
trap2:
                rbp
        push
        mov
                rbp, rsp
        sub
                rsp, 96
        movsd
                QWORD PTR [rbp-72], xmm0
                QWORD PTR [rbp-80], xmm1
        movsd
                QWORD PTR [rbp-88], xmm2
        movsd
                DWORD PTR [rbp-4], 1
        mov
        movsd
                xmm0, QWORD PTR [rbp-80]
                xmm0, QWORD PTR [rbp-72]
        subsd
                         xmm1, DWORD PTR [rbp-4]
        cvtsi2sd
        divsd
                xmm0, xmm1
        movsd
                QWORD PTR [rbp-32], xmm0
                rax, QWORD PTR [rbp-72]
        mov
        movq
                xmm0, rax
        call
                fx
        movsd
                QWORD PTR [rbp-96], xmm0
                rax, QWORD PTR [rbp-80]
        mov
        movq
                xmm0, rax
        call
                fx
        addsd
                xmm0, QWORD PTR [rbp-96]
                QWORD PTR [rbp-40], xmm0
        movsd
        movsd
                xmm0, QWORD PTR [rbp-40]
                xmm0, QWORD PTR [rbp-32]
        mulsd
                xmm1, QWORD PTR .LC1[rip]
        movsd
        divsd
                xmm0, xmm1
        movsd
                QWORD PTR sum[rip], xmm0
        pxor
                xmm0, xmm0
        movsd
                QWORD PTR [rbp-16], xmm0
.L6:
                DWORD PTR [rbp-4]
        sal
        movsd
                xmm0, QWORD PTR sum[rip]
                QWORD PTR [rbp-48], xmm0
        movsd
        movsd
                xmm0, QWORD PTR [rbp-80]
                xmm0, QWORD PTR [rbp-72]
        subsd
```

```
cvtsi2sd
                        xmm1, DWORD PTR [rbp-4]
        divsd
                xmm0, xmm1
                QWORD PTR [rbp-32], xmm0
        movsd
        mov
                DWORD PTR [rbp-20], 1
        jmp
                .L4
.L5:
                        xmm0, DWORD PTR [rbp-20]
        cvtsi2sd
        addsd
                xmm0, xmm0
        movsd
                xmm1, QWORD PTR .LC0[rip]
        subsd
                xmm0, xmm1
        mulsd
                xmm0, QWORD PTR [rbp-32]
        movsd
                xmm1, QWORD PTR [rbp-72]
                xmm0, xmm1
        addsd
                QWORD PTR [rbp-56], xmm0
        movsd
        mov
                rax, QWORD PTR [rbp-56]
        movq
                xmm0, rax
        call
                fx
        movsd
                xmm1, QWORD PTR [rbp-16]
                xmm0, xmm1
        addsd
                QWORD PTR [rbp-16], xmm0
        movsd
        add
                DWORD PTR [rbp-20], 1
.L4:
        mov
                eax, DWORD PTR [rbp-4]
                edx, eax
        mov
        shr
                edx, 31
        add
                eax, edx
        sar
                eax
                DWORD PTR [rbp-20], eax
        cmp
        jle
                .L5
                xmm0, QWORD PTR [rbp-16]
        movsd
        addsd
                xmm0, xmm0
                xmm0, QWORD PTR [rbp-40]
        addsd
                xmm1, xmm0
        movapd
        mulsd
                xmm1, QWORD PTR [rbp-32]
        movsd
                xmm0, QWORD PTR .LC3[rip]
        mulsd
                xmm0, xmm1
                QWORD PTR sum[rip], xmm0
        movsd
        movsd
                xmm0, QWORD PTR sum[rip]
        subsd
                xmm0, QWORD PTR [rbp-48]
                xmm1, QWORD PTR .LC4[rip]
        movq
        andpd
                xmm0, xmm1
                xmm1, QWORD PTR sum[rip]
        movsd
        mulsd
                xmm1, QWORD PTR [rbp-88]
                xmm2, QWORD PTR .LC4[rip]
        movq
        andpd
                xmm1, xmm2
        comisd
                xmm0, xmm1
                 .L6
        jа
        nop
        nop
        leave
        ret
main:
        push
                rbp
                rbp, rsp
        mov
                xmm0, QWORD PTR .LC0[rip]
        movsd
        movsd
                QWORD PTR lower[rip], xmm0
                xmm0, QWORD PTR .LC5[rip]
        movsd
        movsd
                QWORD PTR upper[rip], xmm0
                xmm1, QWORD PTR .LC6[rip]
        movsd
                xmm0, QWORD PTR upper[rip]
        movsd
        mov
                rax, QWORD PTR lower[rip]
        movapd
                xmm2, xmm1
```

movapd xmm1, xmm0
movq xmm0, rax
call trap2
mov eax, 0
pop rbp
ret