

LICENCIATURA: NUTRICIÓN APLICADA ASIGNATURA: BIOQUÍMICA METABÓLICA

NÚMERO Y TÍTULO DE LA UNIDAD:

Unidad 3. Integración, importancia y control del metabolismo

ACTIVIDAD:

Autorreflexiones U3

ASESOR:

JULIO CÉSAR BRITO ROBLES

ESTUDIANTE:

GUILLERMO DE JESÚS VÁZQUEZ OLIVA

MATRICULA: ES231107260

FECHA DE ENTREGA:

12 de marzo de 2024

INTRODUCCIÓN

El equilibrio entre la alimentación y el ayuno es fundamental para mantener la salud y el bienestar. En este ciclo, las hormonas juegan un papel crucial al regular diversos procesos metabólicos que aseguran un adecuado suministro de energía y nutrientes al organismo. Para el nutriólogo, comprender en profundidad el funcionamiento de estas hormonas es esencial, ya que les permite diseñar estrategias nutricionales personalizadas y efectivas para sus pacientes. En este contexto, este mapa mental explorará las hormonas clave involucradas en el ciclo alimentación-ayuno desde la perspectiva del nutriólogo, destacando sus funciones, así como las implicaciones de su deficiencia en el metabolismo y la salud en general.

INSULINA

- REGULA LA GLUCOSA EN SANGRE.
- DEFICIENCIA:
 HIPERGLUCEMIA,
 DIFICULTAD PARA UTILIZAR LA GLUCOSA
 COMO FUENTE DE ENERGÍA, AUMENTO
 DEL RIESGO DE DIABETES TIPO 2.

TIROXINA (T4) Y TRIYODOTIRONINA (T3)

- REGULAN EL METABOLISMO BASAL.
- DEFICIENCIA: DISMINUCIÓN DEL METABOLISMO BASAL, AUMENTO DEL RIESGO DE GANANCIA DE PESO Y DIFICULTAD PARA PERDER PESO.

AMILINA

- REGULA LA VELOCIDAD A LA QUE LOS ALIMENTOS ABANDONAN EL ESTÓMAGO.
- INHIBE LA LIBERACIÓN DE GLUCAGÓN, LO QUE AYUDA A PREVENIR LA LIBERACIÓN EXCESIVA DE GLUCOSA.
- DEFICIENCIA: PUEDE CONTRIBUIR A UNA DIGESTIÓN MÁS RÁPIDA DE LOS ALIMENTOS Y A PICOS DE GLUCOSA EN SANGRE DESPUÉS DE LAS COMIDAS, AUMENTANDO EL RIESGO DE HIPERGLUCEMIA Y COMPLICACIONES RELACIONADAS CON LA DIABETES.

GLUCAGÓN

- ESTIMULA LA LIBERACIÓN DE GLUCOSA EN SANGRE.
- DEFICIENCIA: HIPOGLUCEMIA, DISMINUCIÓN DE LA ENERGÍA DISPONIBLE, RIESGO DE DESMAYOS Y FATIGA.

CICLO
ALIMENTACIÓNAYUNO:
IMPORTANCIA DE LAS
HORMONAS

CORTISOL

- REGULA EL METABOLISMO DE CARBOHIDRATOS, GRASAS Y PROTEÍNAS.
- DEFICIENCIA: DESREGULACIÓN METABÓLICA, AUMENTO DEL RIESGO DE ENFERMEDADES METABÓLICAS, COMO LA OBESIDAD Y LA DIABETES.

LEPTINA

- CONTROLA EL APETITO Y LA SACIEDAD
- DEFICIENCIA: MAYOR APETITO, AUMENTO DEL RIESGO DE OBESIDAD, DIFICULTAD PARA REGULAR LA INGESTA ALIMENTARIA.

GRELINA

- ESTIMULA EL APETITO.
- DEFICIENCIA: PÉRDIDA DE APETITO, POSIBLE DESNUTRICIÓN, PROBLEMAS DE REGULACIÓN DEL PESO CORPORAL.

SOMATOSTATINA

- INHIBE LA LIBERACIÓN DE VARIAS HORMONAS, INCLUYENDO LA INSULINA Y EL GLUCAGÓN.
- REGULA LA VELOCIDAD DE VACIAMIENTO GÁSTRICO Y LA ABSORCIÓN DE NUTRIENTES.
- DEFICIENCIA: PUEDE RESULTAR EN UNA MAYOR LIBERACIÓN DE HORMONAS RELACIONADAS CON LA ALIMENTACIÓN Y EL METABOLISMO, LO QUE PODRÍA CONTRIBUIR A DESEQUILIBRIOS METABÓLICOS Y PROBLEMAS DE SALUD.

CONCLUSIONES

El análisis detallado de las hormonas que regulan el ciclo alimentación-ayuno proporciona una comprensión profunda de los mecanismos metabólicos clave que influyen en la salud y el bienestar de los individuos. Como se ha visto a lo largo de este mapa mental, estas hormonas desempeñan roles fundamentales en la regulación del metabolismo de la glucosa, la saciedad, el apetito, la movilización de energía y el mantenimiento del peso corporal. Para el nutriólogo, esta comprensión es crucial para diseñar estrategias nutricionales efectivas que aborden desequilibrios hormonales y promuevan un estado óptimo de salud. Además, la identificación temprana de deficiencias hormonales puede ser clave para prevenir y tratar condiciones metabólicas y relacionadas con la alimentación. La integración del conocimiento sobre las hormonas en la práctica nutricional permite ofrecer un enfoque holístico y personalizado para mejorar la salud metabólica y el bienestar general de los pacientes.

FUENTES DE CONSULTA

Saz Peiró, P., & Ortiz Lucas, M. (s/f). Fisiología y bioquímica en el ayuno. Unirioja.es. Recuperado el 12 de marzo de 2024, de https://dialnet.unirioja.es/descarga/articulo/2223818.pdf

Cabrera, S. L. (s/f). Regulación hormonal del metabolismo en estado posprandial y en el ayuno. Unam.mx. Recuperado el 12 de marzo de 2024, de https://enlinea.iztacala.unam.mx/resources/modules/UAPAS/Regulacion%20hormonal/

UNADM. (s/f). Integración, importancia y control del metabolismo. Unadmexico.mx. Recuperado el 12 de marzo de 2024, de https://dmd.unadmexico.mx/contenidos/DCSBA/BLOQUE1/NA/03/NBME/unidad_03/descargables/NBME U3 Contenido.pdf

¿Podemos tomar el control de las 7 hormonas que regulan nuestra hambre? (2023, abril 19). National Geographic. https://www.nationalgeographic.es/ciencia/2023/04/7-hormonas-que-regulan-hambre-engordar

Albero, R., Sanz, A., & Playán, J. (2004). Metabolismo en el ayuno. Endocrinologia y nutricion: organo de la Sociedad Espanola de Endocrinologia y Nutricion, 51(4), 139–148. https://doi.org/10.1016/s1575-0922(04)74599-4