

DATA WRANGLING REVIEW

Do Phu Thinh

Creating DataFrames

	а	b	С
1	4	7	10
2	5	8	11
3	6	9	12

```
df = pd.DataFrame(
    [[4, 7, 10],
    [5, 8, 11],
    [6, 9, 12]],
    index=[1, 2, 3],
    columns=['a', 'b', 'c'])
Specify values for each row.
```

Reshaping Data


```
df.sort values('mpg')
 Order rows by values of a column (low to high).
df.sort values('mpg', ascending=False)
 Order rows by values of a column (high to low).
df.rename(columns = {'y':'year'})
 Rename the columns of a DataFrame
df.sort index()
 Sort the index of a DataFrame
df.reset index()
 Reset index of DataFrame to row numbers, moving
 index to columns.
df.drop(columns=['Length', 'Height'])
  Drop columns from DataFrame
```

Subset Observations - rows

df[df.Length > 7]

Extract rows that meet logical criteria.

df.drop duplicates()

Remove duplicate rows (only considers columns).

df.sample(frac=0.5)

Randomly select fraction of rows.

df.sample(n=10) Randomly select n rows.

df.nlargest(n, 'value')
Select and order top n entries.

df.nsmallest(n, 'value')
Select and order bottom n entries.

df.head(n)

Select first n rows.

df.tail(n)

Select last n rows.

Subset Variables - columns

df[['width', 'length', 'species']]
Select multiple columns with specific names.

df['width'] or df.width
 Select single column with specific name.

df.filter(regex='regex')
 Select columns whose name matches
 regular expression regex.

Using query

query() allows Boolean expressions for filtering rows.

df.query('Length > 7')
df.query('Length > 7 and Width < 8')</pre>

Subsets - rows and columns

Use **df.loc**[] and **df.iloc**[] to select only rows, only columns or both.

Use **df.at**[] and **df.iat**[] to access a single value by row and column.

First index selects rows, second index columns.

df.<u>iloc</u>[10:20] Select rows 10-20.

df.iloc[:, [1, 2, 5]]
 Select columns in positions 1, 2 and 5 (first column is 0).

df.loc[:, 'x2':'x4']
 Select all columns between x2 and x4 (inclusive).

df.loc[df['a'] > 10, ['a', 'c']]
 Select rows meeting logical condition, and only
 the specific columns.

df.iat[1, 2] Access single value by index
df.at[4, 'A'] Access single value by label

Summarize Data

df['w'].value counts()
 Count number of rows with each unique value of variable
len(df)
 # of rows in DataFrame.
df.shape
 Tuple of # of rows, # of columns in DataFrame.
df['w'].nunique()
 # of distinct values in a column.
df.describe()
 Basic descriptive and statistics for each column (or GroupBy).

Basic descriptive and statistics for each column (or GroupBy).

pandas provides a large set of <u>summary functions</u> that operate on different kinds of pandas objects (DataFrame columns, Series, GroupBy, Expanding and Rolling (see below)) and produce single values for each of the groups. When applied to a DataFrame, the result is returned as a pandas Series for each column. Examples:

sum()

Sum values of each object.

count()

Count non-NA/null values of each object.

median()

Median value of each object.

quantile([0.25,0.75])

Quantiles of each object.

apply(function)

Apply function to each object.

min()

Minimum value in each object.

max()

Maximum value in each object.

mean()

Mean value of each object.

var()

Variance of each object.

std()

Standard deviation of each object.

Combine Data Sets


```
pd.merge(adf, bdf,
                    how='left', on='x1')
            Join matching rows from bdf to adf.
    NaN
          pd.merge(adf, bdf,
1.0 T
                    how='right', on='x1')
 2.0 F
            Join matching rows from adf to bdf.
NaN T
          pd.merge(adf, bdf,
                    how='inner', on='x1')
            Join data. Retain only rows in both sets.
          pd.merge(adf, bdf,
                    how='outer', on='x1')
            Join data. Retain all values, all rows.
  3 NaN
 NaN T
```