Ejercicios. Campos. Divergencia y Rotacional

Ejercicio 1. (Gradiente, divergencia y rotacional)

- (a) Un campo vectorial \vec{F} se dice conservativo si tiene un potencial asociado f. Es decir, si $\vec{F} = \nabla f$ para un cierto campo escalar f. Probar que un campo conservativo es irrotacional. Es decir, que $\text{rot}(\nabla f) = \nabla \times (\nabla f) = 0$.
- (b) Probar que el campo gravitatorio es conservativo. Encontrar un potencial para él.
- (c) Probar que para cualquier campo \vec{F} , div $(\text{rot}\vec{F}) = \nabla \cdot (\nabla \times \vec{F}) = 0$. Es decir la divergencia de un rotacional es cero.
- (d) Se define el Laplaciano de un campo escalar f como $\nabla^2 f = \nabla \cdot (\nabla f) = \text{div}(\nabla f)$. Probar que el Laplaciano del potencial gravitatorio es cero.

Ejercicio 2. Sea $\vec{c}(t)$ una línea de flujo de un campo conservativo $\vec{F} = -\nabla V$ para un cierto potencial V. Demostrar que $V(\vec{c}(t))$ es una función decreciente en t. Interpretar el resultado.

Ejercicio 3. Calcular la divergencia de los campos:

(a)
$$\vec{F}(x, y, z) = (e^{xy}, -e^{xy}, e^{yz})$$

(b)
$$\vec{F}(x, y, z) = (x, y + \cos x, z + e^{xy})$$

Ejercicio 4. Dado el campo $\vec{F}(x,y,z)=(\frac{y}{x^2+y^2},\frac{-x}{x^2+y^2},0)$:

- (a) Calcular sus líneas de flujo.
- (b) Calcular su rotacional