Incomplete Data Analysis

Vanda Inácio

University of Edinburgh

Semester 1, 2018/2019

- We will study methods for inference in the presence of missing data based on the principles of maximum likelihood when it is reasonable to assume that the missing data mechanism is MAR.
- → Before moving to maximum likelihood for missing/incomplete data, we review maximum likelihood inference for full data.

- \hookrightarrow Let Y_1, \ldots, Y_n be n independent random variables with probability density/mass function $f_i(y_i; \theta)$ depending on a vector-valued parameter $\theta = (\theta_1, \ldots, \theta_p)^T$.
- \hookrightarrow The joint density of *n* independent observations $\mathbf{y} = (y_1, \dots, y_n)$ is

$$f(\mathbf{y}; \boldsymbol{\theta}) = \prod_{i=1}^n f_i(y_i; \boldsymbol{\theta}) = L(\boldsymbol{\theta}; \mathbf{y}).$$

- \hookrightarrow This expression, viewed as a function of the unknown parameter θ given the data \mathbf{y} , is called the likelihood function.
- \hookrightarrow Under the assumption of identically distributed random variables, the likelihood function simplifies to

$$L(\boldsymbol{\theta}; \mathbf{y}) = \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}).$$

- \hookrightarrow The goal of statistical inference is to use the observed data ${f y}$ to learn about ${m heta}$.
- A sensible way to estimate the parameter θ given the data y is to maximise the likelihood function, choosing the parameter value that makes the data actually observed as likely as possible.
- \hookrightarrow Formally, we define the maximum likelihood estimator (mle) as that value $\widehat{\theta}_{MLE}$ such that

$$L(\widehat{\theta}_{\mathsf{MLE}}; \mathbf{y}) \geq L(\boldsymbol{\theta}; \mathbf{y})$$
 for all $\boldsymbol{\theta}$.

→ In other words.

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} = \arg\max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}; \mathbf{y}).$$

 \hookrightarrow The following (invariance) property of mles can be important in several problems: let $g(\theta)$ be a function of the parameter θ . If $\widehat{\theta}$ is the mle of θ , then $g(\widehat{\theta})$ is the mle of $g(\theta)$.

- \hookrightarrow It is often numerically convenient to use the log likelihood function, $\log L(\theta; \mathbf{y})$ for computation of the mle.

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} = \arg\max_{\boldsymbol{\theta} \in \Theta} \log L(\boldsymbol{\theta}; \mathbf{y}).$$

- → The log likelihood function has much larger importance besides simplifying the computation of the mle.

→ The first derivative of the log likelihood function is called score function.

$$S(\theta) = \frac{\partial}{\partial \theta} \log L(\theta).$$

 \hookrightarrow Note that the score is a vector of first partial derivatives, one for each element of θ , i.e.,

$$S(\theta) = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \log L(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_p} \log L(\theta) \end{bmatrix}$$

 \hookrightarrow Computation of the mle is typically done by solving the system of equations

$$S(\theta) = \mathbf{0}$$
.

$$I(\theta) = E\left[S(\theta)S(\theta)^T\right]$$

$$I(\boldsymbol{\theta}) = -E\left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \log L(\boldsymbol{\theta}; \mathbf{Y})\right],$$

with $Y = (Y_1, ..., Y_n)$.

 \hookrightarrow Note that under the assumption that Y_1, \ldots, Y_n are iid, we have

$$I(\theta) = -nE\left[\frac{\partial^2}{\partial\theta\partial\theta^T}\log L(\theta; Y_1)\right]$$

→ The matrix of negative observed second derivatives is sometimes called the observed Fisher information matrix

$$I(\boldsymbol{\theta}; \mathbf{Y}) = -\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \log L(\boldsymbol{\theta}; \mathbf{Y})$$

→ Under certain regularity conditions, the mle converges to the true parameter, i.e., the mle is a consistent estimator

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} \stackrel{p}{\longrightarrow} \boldsymbol{\theta}.$$

 \hookrightarrow Additionally, and again under certain regularity conditions, $\widehat{\theta}_{MLE}$ has approximately in large samples a multivariate normal distribution with mean equal to the true parameter and covariance matrix given by the inverse of the information matrix, so that

$$\widehat{\theta}_{\mathsf{MLE}} \sim \mathsf{N}_{p}(\boldsymbol{\theta}, I(\boldsymbol{\theta})^{-1}).$$

 \hookrightarrow If θ is unknown, then so is $I(\theta)$ and $I(\theta; \mathbf{Y})$. It also holds and is of more convenience

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}} \sim \mathsf{N}_{\mathcal{P}}(\boldsymbol{\theta}, \mathit{I}(\widehat{\boldsymbol{\theta}}_{\mathsf{MLE}}; \mathbf{Y})^{-1}).$$

 \hookrightarrow The result above is used to derive approximate standard errors for $\widehat{\theta}_{\mathsf{MLE}}$ and confidence intervals for θ .

- \hookrightarrow The use of $I(\widehat{\theta}_{MLE}; \mathbf{Y})$ over $I(\widehat{\theta}_{MLE})$ to compute the variance of $\widehat{\theta}_{MLE}$ was advocated by Efron and Hinkley (1978) in their article "Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information".
- \hookrightarrow Also, $I(\widehat{\theta}_{MLE}; \mathbf{Y}) = I(\widehat{\theta}_{MLE})$ for distributions that belong to the exponential family.

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from a Bernoulli distribution with unknown parameter $0 < \theta < 1$. We need to find the mle for θ .
- \hookrightarrow The probability mass function is

$$f(y;\theta) = \theta^{y}(1-\theta)^{1-y}.$$

$$L(\theta; \mathbf{y}) = \prod_{i=1}^{n} \left\{ \theta^{y_i} (1 - \theta)^{1 - y_i} \right\}$$
$$= \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{n - \sum_{i=1}^{n} y_i}.$$

 \hookrightarrow Taking the log, we get

$$\log L(\theta; \mathbf{y}) = \log \theta \sum_{i=1}^{n} y_i + \log(1-\theta) \left(n - \sum_{i=1}^{n} y_i\right).$$

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log L(\theta;\mathbf{y})=0\Rightarrow\frac{1}{\theta}\sum_{i=1}^ny_i-\frac{1}{1-\theta}\left(n-\sum_{i=1}^ny_i\right)=0,$$

lead us to finally obtain

$$\widehat{\theta}_{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y}.$$

We will now obtain the expected and observed Fisher information. For that, we need the second derivative:

$$\frac{d^2}{d\theta^2} \log L(\theta; \mathbf{y}) = -\frac{1}{\theta^2} \sum_{i=1}^n y_i - \frac{1}{(1-\theta)^2} \left(n - \sum_{i=1}^n y_i \right)$$

→ The observed Fisher information is then

$$I(\theta; \mathbf{Y}) = \frac{1}{\theta^2} \sum_{i=1}^{n} Y_i + \frac{1}{(1-\theta)^2} \left(n - \sum_{i=1}^{n} Y_i \right),$$

which evaluated at $\widehat{\theta}_{\mathsf{MLE}} = \overline{Y}$, becomes

$$I(\widehat{\theta}_{\mathsf{MLE}}; \mathbf{Y}) = \frac{n}{\overline{Y}(1 - \overline{Y})}.$$

$$I(\theta) = -E\left[\frac{d^2}{d\theta^2}\log L(\theta; \mathbf{Y})\right] = \frac{1}{\theta^2}nE[Y] + \frac{1}{(1-\theta)^2}(n-nE[y])$$
$$= \frac{n}{\theta(1-\theta)}.$$

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from an Exponential distribution with unknown parameter $\theta > 0$. We need to find the mle for θ .
- \hookrightarrow The probability density function is

$$f(y;\theta)=\theta e^{-\theta y},$$

implying that the likelihood is

$$L(\theta; \mathbf{y}) = \prod_{i=1}^{n} \{\theta e^{-\theta y_i}\} = \theta^n e^{-\theta \sum_{i=1}^{n} y_i}.$$

→ The log likelihood is then

$$\log L(\theta; \mathbf{y}) = n \log(\theta) - \theta \sum_{i=1}^{n} y_i.$$

$$\frac{\mathsf{d}}{\mathsf{d}\theta}\log L(\theta;\mathbf{y})=0\Rightarrow\frac{n}{\theta}-\sum_{i=1}^ny_i=0,$$

lead us to finally obtain

$$\widehat{\theta}_{\mathsf{MLE}} = \frac{n}{\sum_{i=1}^{n} Y_i} = \frac{1}{\bar{Y}}.$$

→ We will now obtain the expected and observed Fisher information. For that, we need the second derivative

$$\frac{\mathsf{d}^2}{\mathsf{d}\theta^2}L(\theta;\mathbf{y})=-\frac{n}{\theta^2}.$$

→ In this case

$$I(\theta) = I(\theta; \mathbf{Y}) = \frac{n}{\theta^2}.$$

 \hookrightarrow Suppose further that we are interested in finding the mle for θ^3 . Instead of re-doing all the calculations, we can simply make use of the invariance property of the mle, and so $\widehat{\theta}_{MF}^3 = \frac{1}{\sqrt{3}}$.

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from a Normal distribution with unknown parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. We need to find the mle for $\theta = (\mu, \sigma^2)$.

$$f(y; \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}.$$

$$\begin{split} L(\theta; \mathbf{y}) &= \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{1}{2\sigma^2} (y_i - \mu)^2 \right\} \right] \\ &= (2\pi\sigma^2)^{-n/2} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 \right\}, \end{split}$$

and then log likelihood is

$$\log L(\theta; \mathbf{y}) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2.$$

 \hookrightarrow The score function is given by

$$S(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \mu} \log L(\boldsymbol{\theta}; \mathbf{y}) \\ \frac{\partial}{\partial \sigma^2} \log L(\boldsymbol{\theta}; \mathbf{y}) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \\ -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 \end{bmatrix}.$$

$$S(\theta) = \mathbf{0} \Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) = 0 \quad \wedge \quad -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 = 0,$$

leading to

$$\widehat{\mu} = \overline{Y}$$
, and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$.

→ We will now obtain the expected and observed Fisher information matrices. For that, we need matrix of second derivatives:

$$\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \log L(\boldsymbol{\theta}; \mathbf{y}) = \begin{bmatrix} \frac{\partial^{2}}{\partial \mu^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) & \frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) \\ \frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) & \frac{\partial^{2}}{\partial (\sigma^{2})^{2}} \log L(\boldsymbol{\theta}; \mathbf{y}) \end{bmatrix} \\
= \begin{bmatrix} -\frac{n}{\sigma^{2}} & -\frac{1}{\sigma^{4}} \sum_{i=1}^{n} (y_{i} - \mu) \\ -\frac{1}{\sigma^{4}} \sum_{i=1}^{n} (y_{i} - \mu) & \frac{n}{2\sigma^{4}} - \frac{1}{\sigma^{6}} \sum_{i=1}^{n} (y_{i} - \mu)^{2} \end{bmatrix}.$$

 \hookrightarrow Evaluating at $(\widehat{\mu}, \widehat{\sigma}^2)$, the observed Fisher information becomes

$$\begin{bmatrix} \frac{n}{\widehat{\sigma}^2} & 0 \\ 0 & \frac{n}{2\widehat{\sigma}^4} \end{bmatrix}.$$

$$\begin{bmatrix} \frac{n}{\sigma^2} & 0\\ 0 & \frac{n}{2\sigma^4} \end{bmatrix}.$$

- \hookrightarrow Let Y_1, \ldots, Y_n form a random sample from a Uniform $(0, \theta)$ distribution, for some $\theta > 0$. We need to find the mle for θ .
- \hookrightarrow Note that the density function is $1/\theta$ only for y values in the interval $[0,\theta]$ and is zero otherwise, i.e.,

$$f(y; \theta) = \begin{cases} \frac{1}{\theta}, & 0 \le y \le \theta \\ 0, & \text{otherwise.} \end{cases}$$

 \hookrightarrow Thus, the likelihood function for the *n* observations is

$$L(\theta; \mathbf{y}) = \begin{cases} \frac{1}{\theta^n}, & 0 \le y_i \le \theta & \text{for all } i = 1, \dots, n, \\ 0, & \text{otherwise.} \end{cases}$$

 \hookrightarrow For parameter θ to be greater or equal to all y_i , it is equivalent to θ being greater or equal to the maximum of (y_1, \ldots, y_n) , y_{max} .

→ That is

$$L(\theta; \mathbf{y}) = \begin{cases} \frac{1}{\theta^n}, & \theta \geq y_{\text{max}} \\ 0, & \text{otherwise.} \end{cases}$$

 \hookrightarrow The likelihood function is zero for $\theta < y_{\text{max}}$, and is monotone decreasing for $\theta \ge y_{\text{max}}$, and hence it must be that $\widehat{\theta}_{\text{MLE}} = \max(Y_1, \dots, Y_n)$.

 \hookrightarrow Let T_1, \ldots, T_n be a random sample from an Exponential distribution with parameter $\theta > 0$. Suppose that some of the times are right censored and let

$$Y_i = \begin{cases} T_i & \text{if } T_i \leq c, \\ c & \text{if } T_i > c, \end{cases}$$

be the observed times, where c is a known censoring time.

 \hookrightarrow We thus have data of the form $\{(y_i, I(t_i \le c))\}_{i=1}^n$. Note further that we can write

$$y_i = t_i I(t_i \le c) + c I(t_i > c),$$
 and $I(t_i \le c) + I(t_i > c) = 1.$

$$L(\theta; \mathbf{y}, l(t_1 \leq c), \dots, l(t_n \leq c)) = \prod_{i=1}^n \left\{ f(t_i; \theta)^{l(t_i \leq c)} S(c; \theta)^{l(t_i > c)} \right\}$$

= $\theta^{\sum_{i=1}^n l(t_i \leq c)} e^{-\theta \left[\sum_{i=1}^n \{t_i l(t_i \leq c) + c l(t_i > c)\}\right]}$

 \hookrightarrow We can easily derive that

$$\widehat{\theta}_{\mathsf{MLE}} = \frac{\sum_{i=1}^{n} I(T_i \leq c)}{\sum_{i=1}^{n} Y_i}.$$

- → In such cases, we need to resort to numerical iterative procedures.
- → There are several numerical procedures that one can employ in order to calculate mle estimates and, luckily, R has very good optimisation tools.
- → Among these, chief are the Newton-Raphson/Fisher-Scoring method, the method of bisection, the method of gradient descent and the EM algorithm.
- → Which one is more appropriate depends on the specific example.
- → What it is common to all of them is that they are iterative: they start at a given input value and iterate some operation until the convergence criterion is attained.

 \hookrightarrow Newtons's method for finding the solution $\widehat{ heta}$ to $S(heta)=\mathbf{0}$ can be described as

$$m{ heta}^{(t+1)} = m{ heta}^{(t)} + \left[I\left(m{ heta}^{(t)}; m{Y}
ight)
ight]^{-1} \mathcal{S}\left(m{ heta}^{(t)}
ight).$$

- \hookrightarrow The behaviour of $I(\theta^{(t)}; \mathbf{Y})$ can be problematic if $\theta^{(t)}$ is far from the mle $\widehat{\theta}$.
- \hookrightarrow Thus, instead of using the observed Fisher information $I(\theta; \mathbf{Y})$, we can use the expected Fisher information to get

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \left[I\left(\boldsymbol{\theta}^{(t)}\right) \right]^{-1} S\left(\boldsymbol{\theta}^{(t)}\right).$$

→ This algorithm is called the Fisher scoring method.

- \hookrightarrow Let us suppose that Y_1, \ldots, Y_n are iid random variables following the Cauchy distribution with unknown location θ and scale equal to one, whose density function is given by

$$f(y;\theta) = \frac{1}{\pi(1+(y-\theta)^2)}, \qquad y \in \mathbb{R}.$$

$$\log L(\theta; \mathbf{y}) = -n \log \pi - \sum_{i=1}^{n} \log \{1 + (y_i - \theta)^2\}.$$

 The root of the score equation has no closed form expression, as one can appreciate below

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log L(\theta;\mathbf{y})=0\Rightarrow 2\sum_{i=1}^n\frac{y_i-\theta}{1+(y_i-\theta)^2}=0.$$

To implement the Newton-Raphson and Fisher-Scoring methods we need to calculate the second derivative of the log likelihood, which is given by

$$\frac{d^2}{d\theta^2} \log L(\theta; \mathbf{y}) = 2 \sum_{i=1}^n \frac{(y_i - \theta)^2 - 1}{\{1 + (y_i - \theta)^2\}^2}.$$

- \hookrightarrow After some calculations, the expected Fisher information is given by $I(\theta) = n/2$.
- \hookrightarrow See the supplementary file on Learn for details on the implementation of the numerical methods.

 \hookrightarrow The Weibull distribution is widely used in survival analysis. Its density function is given by

$$f(y;\theta) = \frac{\alpha}{\beta} \left(\frac{y}{\beta}\right)^{\alpha-1} \exp\left\{-\left(\frac{y}{\beta}\right)^{\alpha}\right\}, \quad y>0, \quad \alpha>0, \quad \beta>0.$$

- \hookrightarrow Here α is a shape parameter and β a scale parameter, and $\theta = (\alpha, \beta)$.

$$\log L(\theta; \mathbf{y}) = n \log(\alpha) - n\alpha \log(\beta) + (\alpha - 1) \sum_{i=1}^{n} \log(y_i) - \frac{1}{\beta^{\alpha}} \sum_{i=1}^{n} y_i^{\alpha}.$$

→ Differentiation leads to the system of equations:

$$\begin{cases} -\frac{n\alpha}{\beta} + \frac{\alpha}{\beta} \sum_{i=1}^n \left(\frac{y_i}{\beta}\right)^{\alpha} = 0 \\ \frac{n}{\alpha} + \sum_{i=1}^n \log\left(\frac{y_i}{\beta}\right) - \sum_{i=1}^n (\frac{y_i}{\beta})^{\alpha} \log\left(\frac{y_i}{\beta}\right) = 0 \end{cases}$$

→ To compute the solutions of this system we resort to iterative numerical methods.