(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53475 A2

(51) International Patent Classification⁷: C12N 15/00

(21) International Application Number: PCT/IT01/00008

(22) International Filing Date: 12 January 2001 (12.01.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: RM2000A000021 17 January 2000 (17.01.2000) IT

(71) Applicant (for all designated States except US): UNIVER-SITA' DEGLI STUDI DI ROMA "LA SAPIENZA" [IT/IT]; Piazzale Aldo Moro, 5, I-00185 Roma (IT).

(72) Inventors: and

(75) Inventors/Applicants (for US only): COGONI, Carlo [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161 Roma (IT). MACINO, Giuseppe [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161 Roma (IT). CATALANOTTO, Caterina [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161

Roma (IT). **AZZALIN, Gianluca** [IT/IT]; Policlinico Umberto I, Università Degli Studi Di Roma "La Sapienza", Dipartimento Biotecnologie Cellulari ed Ematologia, Viale Regina Elena, 324, I-00161 Roma (IT).

- (74) Agents: CAPASSO, Olga et al.; Ing. Barzanò & Zanardo Roma S.p.A., Via Piemonte, 26, I-00187 Roma (IT).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5 -

10

15

20

25

30

Isolation and characterization of a $\it N$. $\it CRASSA$ silencing geneand uses thereof

The present invention relates to the isolation and characterization of a Neurospora crassa gene encoding for an essential activity in the co-suppression process and to uses and applications thereof in vegetal, animal and fungine fields.

The production of transgenic organisms is of large utility both in basic and applied biological research. The transgenic DNA is usually integrated in the genome and transferred as a Mendelian character. However, in various instances, the transgene introduction induces gene silencing phenomena (Flavell, R.B. 1994), i.e. the repression of the expression of the transgene itself and/or of one or more endogenous homologous genes.

The gene silencing (suppression of gene expression) can act at two levels: transcriptional (transinactivation) where transgenes contain sequences homologous to the silenced gene promoter (Vaucheret, 1993); and post-transcriptional (co-suppression) which requires homologies between coding regions (Flavell, 1994; Stam et al., 1997; Baulcombe, 1996).

Generally the silencing induced by a transgene requires an almost complete sequence homology (from 70% to 100%) between transgene and silenced gene sequences (Elkind, 1990).

In the Neurospora crassa filamentous fungus, during the vegetative phase, the presence of transgenes induces a post-transcriptional gene silencing phenomenon, named "quelling" (Cogoni et al., 1996).

5

10

15

20

25

30

2

By using the al-1 gene (albino 1) (Schmidhauser et al., 1990) as silencing visual marker, many features of the phenomenon have been discovered (Cogoni et al., al-1 "quelling" Particularly the gene Neurospora is characterized in that: 1) the gene silencing is reversible further to the loss of transgene copies; 2) the reduction of mRNA basal level results from a post-transcriptional effect; 3) transgenes containing at least a region of 132 base pairs which is identical to the region encoding for the target gene are sufficient to induce the "quelling"; 4) the duplication of promoter sequences is ineffective to induce the silencing; 5) the "quelling" exhibits a dominant behavior in eterocarions containing both transgenic and untransformed nuclei, indicating the involvement of a trans-acting diffusible molecule among the nuclei; 6) the expression of aberrant RNA transcribed by the transgenic locus strictly correlated to silencing, suggesting that the "quelling" can be induced and/or mediated by a transgenic RNA molecule.

Therefore homologies between Neurospora silencing and plant co-suppression can be pointed out. The gene silencing in Neurospora is reversible, as result of transgenic copies instability during mitotic phase; in plants also the co-suppression reversion is associated with the reduction of transgene copy number, resulting from intra-chromosomal recombination during mitosis or meiosis (Mittelstein Scheid et al., 1994; Stam et al., 1997). Thus both in plants and in Neurospora the transgene presence is required to maintain the silencing. As in Neurospora, a decrease of the mRNA basal level of the silenced gene results from a post-transcriptional

3

mechanism (Dehio and Schell 1994; van Blokand et al., 1994; de Carvalho et al., 1995). Furthermore to induce the "quelling", transgenes must contain a portion of the silencing target gene coding sequence, being the promoter region ineffective. In plants coding regions with no promoter sequences can induce silencing (van Blokand et al., 1994) and, as in the "quelling", promoters or functionally active gene products are not required for the co-suppression.

5

10

15

20

25

30

One of the similarities between "quelling" and cosuppression in plants is that both mechanisms In Neurospora mediated by diffusion factors. eterokaryotic strains, nuclei wherein the albino-1 gene is silenced are able to induce the al-1 gene silencing of the other not transformed nuclei, all sharing the same cytoplasmic environment (Cogoni et al., 1996). In plants the presence of a diffusion factor results from the fact that the co-suppression is effective in inhibiting the replication of Tobacco Etch Virus (TEV), a RNA virus with an exclusively cytoplasmic cycle. The occurrence of highly diffusible factors, which are effective to mediate the co-suppression, has been demonstrated using the grafting technique in tobacco (Palaqui et al., 1997), showing that silenced tobacco plants are able to transfer the silencing to non-silenced plants through grafting.

The fact that "quelling" and co-suppression share all these features suggests that mechanisms involved in post-transcriptional gene silencing in plants and in fungi can be evolved by an ancestral common mechanism.

Recently gene inactivation phenomena resulting from transgene introduction have been disclosed in animals. In Drosophila melanogaster the location of a transgene close

4

to heterochromatic centers results in a variegate expression (Wallrath and Elgin, 1995; Pirrotta, V., 1997). Similar expression profiles have been observed when the reference transgene is within tandem arrayed transposons, indicating that tandem repeats are effective to induce the chromatin condensation. (Dorer and Henikoff, 1994). Again in *Drosophila* Pal-Bhadra et al. (1997) have observed that the transgene introduction can lead to gene inactivation phenomena, similar to the cosuppression.

5

10

15

20

25

30

Gene silencing phenomena resulting from transegene sequence repeats have been disclosed recently in mammalians.

Garrick et al. (1998) produced mouse transgenic lines wherein 100 transgenic copies are present in a unique locus and are repeats-arrayed in direct tandem. The transgene expression has been disclosed to be inversely proportional to the number of occurring copies, indicating that silencing phenomena dependent on repeat copies are present also in mammalians.

It has been recently found that double stranded RNA molecules can induce a sequence-specific silencing in several organisms (Fire A., 1999). The mechanism known as dsRNAi (double stranded RNA interference) acts at a post-transcriptional level by inducing sequence-specific degradation of homologous mRNAs (Montgomery, Xu and Fire, 1998). Under this aspect, dsRNAi and quelling in Neurospora are similar mechanisms, both of them acting at a post-transcriptional level. In addition, both RNA-induced silencing and DNA-induced silencing can be transmitted from cell to cell.

5

10

15

20

25

30

5

Therefore the identification of *Neurospora* genes which are involved in the silencing is the first step to modulate the same process in plants, animals and fungi. The silencing modulation is of great relevance when transgenic organisms able to express the desired phenotype are produced.

The authors of the present invention have already isolated Neurospora crassa strains mutated at essential functions for gene silencing (Cogoni and Macino, 1997); 15 independent isolated mutants define three complementation groups, thus identifying the qde-1, qde-2 and qde-3 genes (qde stands for "quelling"-deficient), whose products are essential to the silencing machinery. qde genes are essential to the Neurospora silencing, as suggested by the fact that silencing of three independent genes (al-1, al-2 and qa-2) is impaired by qde mutations (Cogoni and Macino, 1997).

The authors of the present invention have already identified qde-3 gene (PCT WO 00/327885) and qde-1 gene (PCT WO 00/50581).

The authors of the invention have identified and cloned now one out of Neurospora qde genes, the qde-2 gene, thus identifying one of required factors for silencing. By considering the similarity between "quelling" and co-suppression, genes orthologous to the isolated gene are involved in co-suppression and more generally in gene silencing in other organisms, like plants, fungi and animals.

The present invention can be applied with reference to two general scopes: 1) silencing potentiation as a tool for inactivating more effectively and durably a

5

10

15

20

25

30

desired gene, and 2) silencing suppression to obtain a better expression of the introduced transgenes.

6

The isolated qde-2 gene can be introduced alone or with qde-1 and/or qde-3 genes in plants, animals or fungi, in order to inactivate the expression of selected genes. The aim is to activate a sequence-specific silencing mechanism both in deficient organisms and in organisms wherein the same is not very efficient. The gene silencing can be induced also by introducing specific double stranded DNA or RNA sequences, homologous to the gene to be inactivated.

to the silencing potentiation, the As overexpression of one or more genes controlling phenomenon can lead to higher efficiency and/or stability thereof. Therefore the introduction of qde-2 gene or of homologous genes thereof in organisms can constitute a effectively gene to repress more functions. Particularly this approach is specially useful in plants wherein the co-suppression is usually used for the "knock-out" of gene functions. In plants again the gene silencing potentiation can be used to obtain lines resistant to pathogen virus, by introducing transgenes encoding for viral sequences, in order to achieve the expression inhibition of the virus itself (Flavell et al., 1994).

Analogous applications are suitable for animals, wherein some indications suggest that silencing can inhibit the suitable expression of introduced transgenes (Garrick et al., 1998).

On the contrary, there are instances wherein it is desirable not to have or to reduce the gene silencing, i.e. where a transgene is to be over-expressed. It is

10

15

20

25

30

known that the co-suppression is strictly correlated both with the presence of an high copy number of transgene, and with a transgene high expression. This correlation can hamper the production of transgenic. organisms which express a transgene at high levels, because more high is the expression and/or the copy number, more probable is to evoke silencing responses. As mentioned, above analogous mechanisms of inactivation, dependent on a high copy number, have been disclosed in animals. In these circumstances plant or animal lines, totally or partially ineffective silencing, constitute an ideal recipient wherein the desired gene can be over-expressed. The invention can be applied within this scope using different approaches:

A) Identification and production of mutant lines in genes homologous to qde-2 gene, in plants, animals and fungi.

identification of Neurospora qde-2 gene, The for silencing mechanism, essential can allow isolation of mutant lines in other organisms, mutated in genes homologous to qde-2. For example by means of amplifications using degenerated primers, designed from the most conserved regions of qde-2 gene, mutant lines in homologous genes can be identified, by analysis of insertion mutant gene banks, already available for many plant species. Both in fungi and animals such mutants can obtained, following the identification of homologous gene, by means of "gene disruption" techniques using homologous recombination.

B) Reduction of qde-2 gene expression

Other strategies for the production of silencing-deficient lines comprise the use of Neurospora qde-2 gene

5

10

15

20

25

30

8

or homologous genes thereof. qde-2 or homologous genes can be introduced into suitable expression vectors to express them in an anti-sense orientation in order to inhibit the expression of resident endogenous genes. Alternatively portions of qde-2 or of homologous genes can be over-expressed, in order to obtain a negative dominant effect and thus blocking the function of qde-2 endogenous genes.

The authors of the present invention have cloned and characterised the *Neurospora crassa qde-2 gene*. The sequence analysis of the *qde-2* gene detected a region having a significant homology with the sequence of a *C*. elegans gene, *rde-1*, involved in the dsRNA mediated interference (Tabara et al., 1999).

The authors of the invention for the first time have demonstrated that the transgene induced posttranscriptional gene silencing and the dsRNA interference share common genetic mechanisms. This supports hypothesis that the sequence specific gene silencing phenomena evolved from an ancestral mechanism aimed to protect the genome against transposons. Furthermore, the results of the authors suggest that dsRNA molecules are involved in the post-transcriptional gene silencing in fungi. dsRNA molecules could be produced directly from integrated trangenes as a result of the presence of inverted repeats or as an out come of transcription from convergent inverted promoters. Alternatively, single stranded aberrant RNA may be used as a template by an RNA-dependent RNA polymerase (such as QDE-1 protein) able to produce dsRNAs.

Within the scope of the invention the term homology is intended as similarity, i.e. number of identical

5

10

15

20

25

30

9

residues + number of conserved residues with respect to the total residues of the considered sequence.

Therefore it is an object of the present invention an isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference, wherein the domain is at least 25% homologous with the amino acid sequence from aa. 373 to aa. 910 of sequence in fig. 1 (SEQ ID No. 2). Preferably the domain is at least 30% homologous with the amino acid sequence from aa. 373 to aa. 910 of sequence in fig. 1 (SEQ ID No. 2). More preferably the domain is at least 38% homologous with the amino acid sequence from aa. 373 to aa. 910 of sequence in fig. 1 (SEQ ID No. 2). Most preferably the domain comprises the amino acid sequence from aa. 373 to aa. 910 of sequence in fig. 1 (SEQ ID No. 2). According to a particular embodiment the isolated nucleic acid molecule encodes for a protein having the amino acid sequence of fig. 1 (SEQ ID No. 2) or functional portions thereof. Even more preferably the isolated nucleic acid molecule has the sequence of fig. 1 (SEQ ID No. 1) or its complementary sequence.

A further object of the invention is an expression vector comprising, under the control of a promoter which directs the expression in bacteria, the isolated nucleic acid molecule of the invention. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the expression in bacteria can be used and it is within the scope of the invention.

A further object of the invention is an expression vector comprising, under the control of a promoter which

10

directs the expression in plants or in specific plant organs, the isolated nucleic acid molecule of invention, both in a sense and anti-sense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in plants or in specific plant organs can be used and it is within the scope of the invention.

A further object of the invention is an expression 10 vector comprising, under the control of a promoter which directs the expression in fungi, the isolated nucleic acid molecule of the invention, both in a sense and antisense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the inventive protein in fungi can be used and it is within the scope of the invention.

15

20

25

30

A further object of the invention is an expression vector comprising, under the control of a promoter which directs the expression in animals, the isolated nucleic acid molecule of the invention, both in a sense and antisense orientation. Those skilled in the art will appreciate that any plasmid suitable for a correct and effective expression of the protein of the invention in animals can be used and it is within the scope of the invention.

A further object of the invention is a prokaryotic organism transformed by using the expression vector active in bacteria of the invention.

A further object of the invention is a plant or a specific plant organ transformed by using the expression vector active in plants of the invention.

5

10

15

20

25

30

11

A further object of the invention is a plant mutated at the isolated nucleic acid molecule of the invention having a reduced or inhibited silencing activity.

A further object of the invention is a fungus transformed with the expression vector of the invention active in fungi.

A further object of the invention is a fungus mutated at the isolated nucleic acid molecule of the invention and having reduced or inhibited silencing activity.

A further object of the invention is a non-human animal transformed with the expression vector of the invention active in animals.

A further object of the invention is a non-human animal mutated at the isolated nucleic acid molecule of the invention and having a reduced or inhibited silencing activity.

A further object of the invention refers to a protein characterized in having a silencing activity and in comprising a domain responsible for dsRNA interference, wherein the domain is at least 25% homologous with the amino acid sequence from aa. 373 to aa. 910 in fig. 1 (SEQ ID No. 2). Preferably the domain is at least 30% homologous with the amino acid sequence from aa. 373 to aa. 910 in fig. 1 (SEQ ID No. 2). More preferably the domain is at least 38% homologous with the amino acid sequence from aa. 373 to aa. 910 in fig. 1 (SEQ ID No. 2). Most preferably the domain comprises the amino acid sequence from aa. 373 to aa. 910 in fig. 1 (SEQ ID No. 2). According to a particular embodiment the isolated nucleic acid molecule encodes for a protein

5

10

15

20

having the amino acid sequence of fig. 1 (SEQ ID No. 2) or functional portions thereof.

It is within the scope of the present invention the use of the isolated nucleic acid molecule of the invention to modulate gene silencing in plants, animals and fungi.

The present invention now will be described by way of non limiting examples with reference to the following figures:

Figure 1: The isolated nucleic acid molecule of the 5.7 Kb fragment containing the qde-2 gene and flanking sequences (SEQ ID No.1). The amino acid sequence (SEQ ID No. 2) is shown above the nucleotide sequence.

Figure 2: It is schematically represented the pMXY2 plasmid insertion site, in the 80 mutant, used for insertional mutagenesis and consequent polimorphism of the restriction fragments by mean of DNA southern blot of a WT strain and of 80 and 820 mutant strains by using the entire restored flanking region as probe. The 820 mutant has a complete deletion of the qde-2 gene.

Figure 3: Multiple alignment, at the conserved region, among qde-2 and other proteins belonging to ago-elF2C family: A. thaliana ago-1; rabbit elF2C; C. elegans rde-1. Identical amino acids are shown in bold.

25 MATERIALS AND METHODS

E. coli strains

E. coli strain HB101 (F, hsdS20(rb, mb), supE44, recA13, ara14, proA2, rspL20(str r), xyl-5) was used for cloning.

30 Neurospora crassa strains and growing conditions

Neurospora crassa following strains, supplied by Fungal Genetic Stock Center (FGSC, Dpt. Of Microbiology,

WO 01/53475

15

20

University of Kansas Medical Ctr. Kansas City, KA) were used:

- Wild type (FGSC 987);
- qa-2/aro9 (FGSC 3957A), (FGSC 3958a).

The 6XW strain (Cogoni et al., 1996) was obtained upon transformation of the FGCS 3958a strain with pX16 plasmid (Cogoni et al., 1996). This plasmid contains the qa-2 gene used as selective marker and the al-1 coding sequence.

The mutant strains M7, M20 (qde-1); M10, M11 (qde-2); M17, M18 (qde-3) are described in Cogoni and Macino, 1997.

The qde mutants were obtained by UV mutagenesis. As recipient the transforming strain (6xw) silenced at the albino-1 gene was used. qde mutants were selected for their ability to recover a wild type unsilenced phenotype and then classified in three different complementation groups. By analyzing the al-2 gene quelling frequency all of qde used mutants are defective for the general silencing mechanism.

Complementation assays with not forced heterocaryons were carried out according to Davis and DeSerres, 1970.

Plasmids and libraries

25 The plasmid pMXY2, disclosed in Campbell et al. 1994, used for insertional mutagenesis was obtained from Fungal Genetic Stock Center (FGSC, Dpt. Of Microbiology, University of Kansas Medical Ctr. Kansas City, KA). The plasmid contains the *Bm1* gene (allele responsible of the benilate drug resistance), that was used as selective marker after transformation. The genomic DNA containing

5

10

15

20

30

the qde-2 gene was isolated from a N. Crassa gene library in cosmids. (Cabibbo et al., 1991).

N. crassa transformation

Spheroplasts were prepared according to the Akins and Lambowitz (1985) protocol.

Southern Blot Analysis

Chromosomal DNA was prepared as disclosed by Irelan et al., 1993. 5 $\,\mu g$ of genomic DNA were digested and blotted as reported in Maniatis et al.

DNA probes were: a) as to the al-1 gene the probe is represented by a XbaI-ClaI restriction fragment of pX16 (Cogoni et al., 1996); b) as to the BmI gene the probe is represented by the 2.6Kb SalI fragment of pMXY2.

Northern Blot Analysis

N. crassa total RNA was extracted according to the protocol described by Cogoni et al., 1996. The mycelium was grown for two days at 30°C, then powdered in liquid nitrogen before RNA extraction. For Northern analysis 10 μ g of RNA were formaldehyde denatured, electrophoresed on a 1% agarose, 7% formaldehyde gel, and blotted over Hybond N (Amersham) membranes. Hybridization was carried out in 50% formamide in the presence of 32 P labeled DNA probe 1.5×10^6 cpm/ml.

RESULTS

25 Isolation of silencing mutant by insertional mutagenesis

Previously a Neurospora strain (6XW) wherein the albino-1 resident gene was steadily silenced was used for UV mutagenisis that brought to the isolation of qde ("quelling" deficient) mutants in N. crassa induced gene silencing (Cogoni and Mancino 1997).

The 6XW strain shows an albino phenotype due to the lack of carotenoid biosynthesis, as results by the

15

silencing of the albino 1 gene expression (Schmidhauser et al., 1990). A mutation interfering with the silencing machinery is easily detectable by producing a wild type phenotype (bright orange) of the carotenoid biosynthesis. 5 By means of complementation assays it was possible to establish that qde mutants belong to three complementation groups, indicating the presence of three genetic loci involved in the Neurospora silencing mechanism. In order to isolate the qde genes 10 insertional mutagenesis was carried out with the 6XW previously used for UV mutagenesis. The insertional mutagenesis was carried out by transforming the 6XW strain with a plasmid, taking advantage of the fact that, after the transformation, plasmids are 15 randomly inserted in the Neurospora crassa genome. The mutagenesis was carried out transforming the 6XW silenced strain with pMXY2 (see Materials and Methods) which contains the benilate resistance as selective marker. Transformed strains able to grow in the presence of 20 benilate containing medium and showing a wild type phenotype for the carotenoid biosynthesis were selected. Out of 50.000 isolated independent transformed strains, a benilate resistant strain (80) was isolated, which showed the bright orange phenotype expected for a qde gene mutation. In order to verify that the silencing release 25 was effectively due to a qde gene mutation and not to the loss of al-1 transgene copies, the genomic DNA of the strain 80 was extracted and digested with SmaI and HindIII restriction enzymes. After blotting, 30 hybridized with a probe corresponding to the coding sequence of al-1. The SmaI site is present only once in the al-1 transgene containing plasmid and the digestion

by using said enzyme produces a 5.5Kb fragment corresponding to tandem arrayed al-1 transgenes, while a 3.1Kb fragment is expected from the resident al-1 locus. The number of al-1 transgenic copies present in the 80 strain is comparable to that present in the silenced 6XW strain.

The strain 80 is mutated in qde-2 gene

The strain 80 was assayed in a heterokaryon assay with a wild type strain and with M7, M20 (qde-1) M10, M11 (qde-2), M17, M18 (qde-3) mutants and with a wild strain (Cogoni and Macino, 1997). As shown in Table 1 the al-1 gene silencing is restored producing an albino phenotype in all of heterocaryons but M10 and M11. This behavior is consistent with the presence of a qde-2 gene recessive mutation in the strain 80.

Table 1
Reciprocal heterokaryons among the mutant 80 and previously characterized qde mutants.

	80	М7	M20	M10	M11	M17	M18
80	WT	AL	AL	WT	WT	AL	AL
М7		WT	TW	AL	AL	AL	AL
м20			WT	AL	AL	AL	AL
м10				WT	WT	AL	AL
M11					WT	AL	AL
M17						WT	WT
M18							WT

WT = heterokaryon with a wild type phenotype for

20 carotenoid accumulation;

10

15

AL = heterokaryon with an albino phenotype wherein the al-1 gene silencing is restored.

Recovery of sequences flanking the pMXY2 plasmid integration site

WO 01/53475

15

20

25

30

In order to recover sequences flanking the integration site or sites the following methodology was carried out. The genomic DNA of strain 80 was digested with Aat II enzyme. Subsequently the genomic DNA was ligated and the product used to transform *E. coli* cells that was screened in an ampicillin-containing medium. PQc1 plasmid was recovered and a DNA fragment containing sequences flanking the integration site was isolated from it by using Aat II and Cla I enzymes.

10 <u>Isolation of genomic clones, their subcloning and</u> complementation of the *qde-2* mutant

The fragment from pQc1 plasmid was used to probe a Neurospora crassa genomic library in cosmids. Three cosmids 6G10, 20C1 and 23F2 containing about 35 Kb genomic DNA inserts, were isolated. Such cosmids were used in transformation experiments of M11 and 80 mutants. All of cosmids are able to restore the al-1 gene silencing in the two mutants, determining the appearance of an albino phenotype. The 20C1 cosmid was used to subclone a 5.7 Kb BamHI-BamHI fragment. This subclone was used for transformation experiments and resulted to be able to complement the qde-2 phenotype, indicating that a qde-2 functional gene is present in this plasmid.

Isolation and sequence of the qde-2 cDNA

The sequence of BamHI-BamHI region allowed to deduce the amino acid sequence of the QDE-2 protein. The qde-2 gene encodes for a 938 aa. putative protein (104 KDa). The genomic clone does not contain any introns since the reading frame does not contain any interruptions and intron acceptor and donor sequences were not identified (Fig. 1, Seq. ID No 1, 2).

WO 01/53475

5

10

20

25

The qde-2 gene comprises an homologous domain with encoding genes for proteins that are responsible for dsRNA interference

The 938 aa sequence (SEQ ID No. 2) was used to search in database of amino acid sequences, by using the BLASTP algorithm. As showed in fig. 3, the search identified significant homologies with argonaute-1 gene [with expected values (E value) of 2e-57] of A. Thaliana (mutants of this gene show developmental anomalies); rde-1 gene [with expected values (E value) of 1e-23] of C. elegans, involved in gene silencing phenomena induced by double stranded RNA; elF2C gene [with expected values (E value) of 5e-60] of rabbit isolated as an element belonging to transcription beginning complex.

15 Plant expression vector

qde-2 The gene was inserted, in а sense orientation, into a vector containing a plant expression "cassette", including the 35S promoter and the PI-II "terminator" sequences. The vector also includes the Streptomyces hygroscopicus bar gene, which confers the herbicide resistance phosphinotricine to transformed plants. In an analogous vector to the above mentioned one, qde-2 was inserted in an anti-sense orientation with respect to the 35S promoter.

The obtained vectors can be utilized to over-express the qde-2 gene in plants, or to repress the gene expression of resident genes, which are homologous to qde-2.

Fungus expression vector

The qde-2 gene was inserted in a vector containing a fungal specific expression "cassette", comprising the A. $nidulans\ trpC$ gene promoter and terminator, both in a

5.

10

15

20

sense and an anti-sense orientation. In addition the vector contains the bacterial hph gene, which confers the hygromicine drug resistance. The sense plasmid can be used to over express the qde-2 gene, whereas the antisense plasmid is used to repress the expression of qde-2 homologous genes in various fungine species.

Mammalian expression vector

The qde-2 gene was inserted in a vector containing a mammalian specific expression "cassette", including the cytomegalovirus (CMV) promoter and SV40 termination and polyadenylation sequences both in a sense and anti-sense orientation. The vector includes also the neomicine phototransferase gene, as marker for mammalian cell selection. The sense plasmid can be used to over express the qde-2 gene, whereas the anti-sense plasmid can be used to repress the expression of qde-2 homologous genes in various mammalian species.

Bibliography

- Akins, R.A. and Lambowitz A.M. (1985) Mol. Cell. Biol. 5:2272-2278
- Baulcombe, D.C. (1996) Plant Mol. Biol. 32, 79-88.
- Cabibbo, A. et al. (1991) Fungal Genetic Newsl., 38: 68-70.
- Campbell J.W. et al. (1994) Fungal Genetic Newsl., 41: 20.
 - Cogoni, C. et al. (1996) EMBO J. 15, 3153-3163
 - Cogoni, C. and Macino, G. (1997) Proc. Natl. Acad. Sci. U.S.A. 94: 10223-10238.
- Davis, R.H. and De Serres, F.J. (1970) methods
 30 Enzymol. 17: 79-143.

- de Carvalho Niebel, F. et al. (1995), Plant Cell: 347-358.
- Dehio, C., and Schell, J. (1994). Proc. Natl. Acad. Sci. U.S.A. 91: 5538-5542.
- 5 Dorer, D.R. and Henikoff, S. (1994). Cell, 993-1002.
 - Elkind, Y. Et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87: 9057-9061.
 - Fire, A. (1999) Trends Genet. 15:358-363.
- Flavell, R.B. (1994) Proc. Natl. Acad. Sci. U.S.A. 91: 3490-3496.
 - Garrick D., et al. (1998) Nature Genetics 18, 56-59.
 - Irelan, J. et al. (1993) Fungal Genetics Newsl. 40: 24.
- Maniatis, S.T. et al. (1982) Molecular Cloning A

 Laboratory Manual, Cold Spring Harbor, New York: Cold

 Spring Harbor Laboratory Press.
 - Mittelstein Scheid, O. Et al. (1994) Mol. Gen. Genet. 244: 325-330.
 - Montgomery, M.K., Xu, S. and Fire, A. (1998) Proc.
- 20 Natl. Acad. Sci. USA 95, 15502-7.
 - Pal-Bhadra, M., et al., (1997). Cell 90, 479-490.
 - Palaugui, J.C. et al., (1997) EMBO J. 16: 4738-4745.
 - Pirrotta, V. (1997). TIG 13, 314-318.
 - Schmidhauser, T.J. et al., Mol. Cell. Biol. 10: 5064-
- 25 5070
 - Stam, M. et al. (1997) Annals of Botany 79:3-12
 - Stam, M. et al. (1997) Plant Journal 1:63-82 79:3-12
 - Tabara et al. (1999), Cell 99:123-132
 - van Blokland, R. et al. (1994), Plant, 6, 861-887.
- Vaucheret, H. (1993), C.R. Acad. Sci. Paris, Sciences de la vie/Life sciences 316, 1471-1483.

21

- Wallrath, L.L. and Elgin, S.C.R. (1995). Genes & Development 9, 1263-1277.

WO 01/53475

5

20

25

30

Claims

- 1. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and in comprising a domain responsible for dsRNA interference, wherein the domain is at least 25% homologous with the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
- 2. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 1, wherein the domain is at least 30% homologous with the amino acid sequence from aa. 373 to aa. 910 of SEO ID No. 2.
 - 3. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 2, wherein the domain is at least 38% homologous with the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
 - 4. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 3, wherein the domain is the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
 - 5. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 4, wherein said isolated nucleic acid molecule encodes for a protein having the amino acid sequence of SEQ ID No. 2, or functional portions thereof.

WO 01/53475

5

10

15

20

25

30

PCT/IT01/00008

- 6. An isolated nucleic acid molecule encoding for a protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 5, wherein said isolated nucleic acid molecule has the sequence of SEQ ID No. 1 or its complementary sequence.
- 7. Expression vector comprising, under the control of a promoter that directs the expression in bacteria, the isolated nucleic acid molecule according to any one of claims 1-6.
- 8. Expression vector comprising, under the control of a promoter that directs the expression in plants or in specific plant organs, the isolated nucleic acid molecule according to any one of claims 1-6, both in a sense and anti-sense orientation.
- 9. Expression vector comprising, under the control of a promoter that directs the expression in fungi, the isolated nucleic acid molecule according to any one of claims 1-6 both in a sense and anti-sense orientation.
- 10. Expression vector comprising, under the control of a promoter that directs the expression in animals, the isolated nucleic acid molecule according to any one of claims 1-6 both in a sense and anti-sense orientation.
- 11. Prokaryotic organism transformed by using the expression vector active in bacteria according to claim 7.
 - 12. Plants or a specific plant organ transformed by using the expression vector active in plants according to claim 8.
- 13. Plant mutated at the isolated nucleic acid molecule according to any one of claims 1-6 having a reduced or inhibited silencing activity.

5

10

15

20

25

30

- 14. Fungus transformed by using the expression vector active in fungi according to claim 9.
- 15. Fungus mutated at the isolated nucleic acid molecule according to any one of claims 1-6 having a reduced or inhibited silencing activity.
- 16. Non-human animal transformed by using the expression vector active in animals according to claim 10.
- 17. Non-human animal mutated at the isolated nucleic acid molecule according to any one of claims 1-6 having a reduced or inhibited silencing activity.
 - 18. Protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference wherein the domain is at least 25% homologous to the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
 - 19. Protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 18 wherein the domain is at least 30% homologous to the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
 - 20. Protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 19 wherein the domain is at least 38% homologous to the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.
 - 21. Protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 20 wherein the domain is the amino acid sequence from aa. 373 to aa. 910 of SEQ ID No. 2.

WO 01/53475

- 22. Protein characterized in having a silencing activity and comprising a domain responsible for dsRNA interference according to claim 21 comprising the amino acid sequence of SEQ ID No. 2 or functional portions thereof.
- 23. Use of the isolated nucleic acid molecule according to any one of claims 1-6 to modulate the gene silencing in plants, animals and fungi.

4/7

Length of cBAMqde2.txt: 5746 bp; Listed from: 1 to: 5746; Translated from: 1039 to: 3852 (ORFs); Genetic Code used: Universal; Lun, 27 ago 1956 18:50

GGA TCC GCG TAG CAC ATC CTT TTC TTT TCC TTT TGG TTA TCC ATA ACC TTG GCA ACA CCT TTC TTT GCT TTC TCT CTC TTT TTC GCT TTA GAG ACC TAC GCA ACT ACC CAT CAT CAT TTT CTG ATA 96 105 114 144 153 162 171 180 TTT CGC TCG ATT ACT CTT TTT TTT GCG TCC GGA GTG CGA CAA AGT AGC GGC TTA TAA CAA GTC CAA 228 237 GTT GGA AAA AAA CCA TCA ATC AGT GGT ATT TCT CTC TTG GCA AAT CCA CAA CAA TCC CCT TCC ACG 285 294 303 ACA AAC AAA CAA ACA ACC TAC CTT AAC TAT CCT CTT GCT TAC CTA CGT ACC TGC CTA CCT ACC TAC 333 342 351 360 369 378 CTA CCT ACC TAC CTC TGC TCA ACC AAC CAT CTC GTC AAT CAA ACC GAA CCG AAC CAA ACC GAA CGA 408 417 426 435 444 TAG CCG AAT AAG CTC TCG TGC CTT GTT GCT CTA CTC GAC AAT CTG TTA CCA CCA ACA CTA CAA GTT 492 501 TAA CAG TCA TGT CTG ACA ATC GTG GCG GTC GTG GAG GTC GTG GCG GCG GCG GCG GCG GCG GCG 540 549 558 567 GCG GCG GCG GAG GCC GTG GAG GTG GTC AGC AAG GCG GCG GTG GAG GCC GTG GAG GTG GTT ACC AAG 606 615 624 633 GCA GCG GCG GCG GTG GAG GCC GTG GCG GCT ATC AAG GCG GTG GCG GTG ACC GTG GAG GCC GTG GCG GCG GTT ATC AAG GCG GTG GTG GCG GTG GTT TCC AAG GCG GCG GTG GAA GGG GTG GCC GTG 756 765 804 822 831 813 GAT ACG AAC CCC CTC CAC CGG ATG TCT ACA AGT AGG TGC CTC TCC ATT TTT TAC CAT TCA ACA 888 870 879 897 TGA TGC TGA CAC GAC TTT AGG GGA ATT GAC GGT CGT GGT GCC CCC GAG CCT GAC GCC CAG ATC ACC 927 936 945 954 963 972 AAA CTC GAG GAT GAT TGG ATC AAG AAG CAC GTC AGC GAC AAT CTG GTC ACT TCC ATG AGC AAG CTT 993 1002 1011 1020 1029 S L S E K E K A N N L P V R P G H G T M G E TCG CTC AGC GAG AAA GCC AAC AAC TTG CCG GTT CGC CCT GGC CAT GGT ACC ATG GGC GAG 1068 1077 1086 1095 1134 1143 1152 1161 1170 I K V A A T E E K L G K E A E V A S K K V E ATC AAA GTT GCC GCC ACC GAG GAA AAG CTC GGA AAG GAA GCT GAG GTC GCA TCC AAG AAA GTG GAG 1209 1218 1227 V V G K L L K Q I E A N V K S V A I A GTG GTG GTT GGG AAA CTG CTC AAG CAG ATC GAA GCC AAC GTG AAA TCC GTG GCG ATT GCC AGC GAT

FIG. 1-1

1284 1293 1302

1266

2/7

1332 1341 1350 PSSNQNLPSKPQTWVVKV TGG ACC GAG CCG AGT TCC AAC CAA AAC CTG CCC AGC AAG CCC CAG ACT TGG GTG GTC AAG GTG GAG 1473 1482 YNVELDALNTIVTHH GAC GGA GAC TTT CCC AAG TAC AAT GTG GAG CTC GAT GCC CTC AAC ACC ATT GTG ACT CAT GCC V R P H D S P L V I L R G Y F A S V GAA CAA GTG CGG CCC CAT GAC TCC CCT TTG GTC ATC TTG CGA GGA TAT TTT GCC AGC GTC CGA A T G R L L L N T N I T H G V F R P G V K L GCT ACC GGA AGA CTT TTA CTC AAT ACC AAC ATC ACG CAT GGT GTC TTC CGT CCT GGG GTC AAA CTT A Q L F Q E L G L D V M D K C N A W N E V T GCA CAG CTG TTT CAG GAA CTT GGA CTT GAC GTA ATG GAC AAA TGC AAT GCC TGG AAC GAA GTA ACC F L I D G K I V Y K K C Y R T L N G AAT GCC CCA TTC CTT ATT GAT GGA AAG ATT GTT TAT AAA AAA TGT TAC CGC ACG CTC AAT GGC ATT 1935 1944 1953 DERGKQKDGKEVRY GCT AAC CGT GGC GAC GAA AGG GGG AAG CAA AAG GAT GGT AAA GAA GTC CGA TAT CCG CCC TTG TTC G I P G V Q V G G P T S C Q F Y L R A R E T GGG ATT CCG GGT GTC CAG GTT GGC GGC CCG ACC TCT TGT CAG TTC TAC TTG CGT GCG CGA GAG ACA L T A N E A D N M I K F A C R A P S CTG ACA GCC AAC GAG GCG GAC AAC ATG ATT AAG TTT GCT TGC AGA GCT CCT TCG CTG AAC GCT CAG S I V T K G R Q T L G L D K S L T L G K TCT ATC GTG ACG AAA GGC AGA CAG ACA CTT GGT CTT GAT AAA AGC CTG ACG CTT GGC AAG TTC AAG D K E L I T V V G R E L K P P M L T GTT TCG ATC GAC AAG GAG CTG ATC ACC GTT GTC GGG CGT GAG CTC AAG CCT CCG ATG CTT ACG TAC

3/7

S G N K T V E P Q D G G W L M K F V K V A R AGG GG GG AAC AAG AAG AAG GTC GCC AGA $^{\circ}$ 2511 2520 2529 2538 2547 2556 P C R K I E K W T Y L E L K G S K A N E G V CCT TGC CGC AAG ATT GAG AAG TGG ACA TAC TTG GAA CTG AAG GGT TCC AAG GCA AAC GAA GGG GTG A M T A F A E F L N R T G I P I N P R F CCG CAA GCT ATG ACC GCT TTT GCC GAA TTC TTG AAC AGA ACG GGC ATC CCG ATT AAC CCC AGG TTC S P G M S M S V P G S E K E F F A K V K E L TCG CCG GGC ATG AGG TC CCA GGG AGC GAA AAA GAG TTC TTT GCC AAA GTG AAG GAA CTC S H Q F V V V L L P R K D V A I Y N M ATG AGC TCG CAC CAA TTT GTG GTG GTT CTT TTA CCC AGA AAG GAT GTT GCG ATC TAC AAT ATG GTG K R A A D I T F G V H T V C C V A E K F L S AAG CGG GCT GCC GAT ATC ACA TTT GGC GTT CAC ACA GTC TGT TGT GTA GCC GAA AAG TTC CTT AGC K G Q L G Y F A N V G L K V N L ACT AAG GGG CAG CTG GGG TAT TTT GCC AAC GTC GGC CTC AAG GTC AAC CTC AAG TTT GGC GGC ACC N H N I K T P I P L L A K G K T M V V G Y D AAT CAC AAT ATC AAG ACG CCC ATT CCT TTG CTC GCC AAG GGG AAG ACG ATG GTG GGC TAT GAT 2982 2991 H P T N L A A G Q S P A S A P S I V G GTC ACC CAT CCG ACC AAT CTA GCG GCT GGA CAA TCG CCT GCA TCG GCT CCC AGT ATT GTC GGC CTG V S T I D Q H L G Q W P A M V W N N P H G Q GTC TCA ACC ATC GAC CAA CAC CTT GGA CAA TGG CCT GCA ATG GTT TGG AAC AAC CCG CAC GGC CAG R S L P E N I L I F R D G V S GCA AAC AGC CGC AGT CTC CCC GAG AAT ATC CTG ATT TTC CGC GAT GGC GTC TCC GAG GGA CAG TTC Q M V I K D E L P L V R A A C K L V Y P A G CAG ATG GTC ATC AAG GAC GAG CTA CCC CTG GTT CGC GCC GCC TGC AAG CTG GTG TAT CCA GCT GGC 3321 3330 3339 RITLIVSVKRH AAG CTA CCG CGT ATT ACG CTG ATT GTC TCT GTC AAG CGC CAC CAG ACT CGC TTC TTC CCA ACG GAC AAC GTC CGC TAT TGG GAC TTC TTT TTG CAG GCG CAC GCG TCG CTC CAG GGC ACG GCC CGC TCG GCT V L V D E I F R A D Y G N K A A D T L CAC TAC ACA GTT CTG GTG GAT GAG ATT TTC AGG GCC GAC TAT GGA AAC AAG GCG GCC GAC ACG CTG

4/7

3633 3642 3651 PNLRNSMYYI CCC AAC CTT AGG AAC TCC ATG TAC TAT ATC TAG GCT TGT CAA TTG TGT GCT GGA ATG TAC TGG AGC ATA TAA GTG ACG CGA TGG AAG CCT AAT CGT CTC TGA ATA TGG ATC AAA GAC AGC GTT TGC TTT TTC 3906 3915 3924 3933 GGG GCT TCT AGT TTC TAC AGC GAT TTG TGT GGA TTG TTT CTT GTT CTT GTT CTT GGT TCT TTC TTT 3972 3981 3990 3999 CTT TTT TTT GTG TCT CTG TCT GCC TTT GTA CTG CAT GCA AAC GTG CAC TCT GAA TGA TGA ACG ACA CCA TTT GAC GAT TGG ATA AGA GAT GAC AGA CTG CAG ATA CTA TCA TGC GCA ATG GAA AAC ACG AAC 4170 4179 4188 4197 AAT AAT GGA AGT ATG ATT AAA CAC ATT GAG CGC GAT GAC TGA CTG GTG TTG TGA ATG GCG TGT TGG TTT TCT TCT TTC TTG AAA ATT TAG AAC CGT AAA TGT TAT ATC ATG TGA TGT AAT GTA ATA ACA TAT 4302 4311 TTA TAT CTC GTT GTA TTC TTG TAC ACA CTT TCC AGG ATA ACA TGG TCT GAC ATG GTA TTT CTG ACG 4368 4377 4386 4395 TAC AAA AAA GAA AAA GAA AAA CAG GAA ACC ATG AAC CCG CGA CAA AGC TGT TCC AGT TGT TAC AAT GAT GAT GAT GAT GAT GAC CTA CTA CCT AAG GTA TTC TAT CTT AGC CAA GGT ATT CTC TCG CAT CCT ATT CCA TCC TAT CCT AAC CCG AGC CTA ACC CGA GCC TAA ATA CCT AAA CTC CTA AAC TCC TTA ACT 4566 4575 4584 4593 CCT TAA CTC CTT TCT AAA TGT CTA AAC CCC CAA ACT ATG AGA CGA CCC GAA CCC GAA ACC CTA ATA 4632 4641 AAA GTA TTT ATA AAC CAT CAT AAA AGA AAA AAA ACC ATC ATA CAT GGA TGA TCA AAA CAA ACA GAA 4698 4707 4716 4725 4734 ACG GAA ACA ACA CAA CCA GCT ACC CGC TCA AGA CTT TCA TTC GTT AAT TCA TCA CTC ACT CAC TCA CTC ACT CAC TCA GCA GCA AAA TAC CGT TTT GTC CTG CTA TTC GTT TGT TGC GCC TTG ATT TCA GGC 4830 4839 GGG ACA ATG GTG TGA TGT ACG ACG TGG GGG CGG TAG ACT GCG TCT ACT GGT GGC ATC CTT TAC AAT 4896 4905 TTT TTA GTG TGT CAG TAT GTG ATG TAT TCA ATG CTA TTG AAC TGA GGG GGG CTG ATG GAT AGT GGG 4962 4971 GAG AGA ACA CCT GAC GGA TAG AGG GAA GGA ACT GGA CGC CTG GGG GGA AGT GAG AGG GGG GGA TGG TGG GGA ATA GAT GAA AAG AGA AGA GGA GTG AGA GCA CAA GAA GAA AGA ATG AAT GTT GGT GAC AAA

FIG. 1-4

GTT	AAA GAA 5151	AAG	GAA GGG 5160	GGG	AAA GAG 5169	AAG	AGG AC 517	A GGT 8	GTG GTG 5187	AGT	GAA TTG 5196	AGT	GAA AGG 5205	AAG
GGA	AAA AAC 5217	GGA	GAA GGA 5226	AAA	AAA AAA 5235	CAT	AAA AA 524	A AAA	AAA AAA 5253	AAC	AGA AAG 5262	AAA	GAA CTA 5271	ACC
TAA	CAT CCA 5283	AAC	TCA GCG 5292	GAA	AGT ACT 5301	CAT	ACA AA 531	A GGT	CGG CTG 5319	ССТ	CAA TCG 5328	GAC	TCC CCA 5337	CAT
TCT	5349	GGT	ACT GAT 5358	TCT	GCT GCC 5367	CCA	GAC TT	CAC	TTT CAA 5385	AGT	GGC TAT 5394	CAC	CCT TAT 5403	TGT
TGT	TAG AGT 5415	GAG	TAG TAG 5424	ACG	TAA GTC 5433	СТС	CCG ATO	CGG	AGC CAA 5451	AAC	CCA TCC 5460	СТТ	TCC CAG 5469	CTG
TAT	5481	TCA	ATC CAC 5490	CAG	TAG CAA 5499	CAC	CCA TC: 5508	TGC	CAT AGA 5517	GCG	GAC TAT 5526	ccc	CTG CCC 5535	CTG
CCC	CTG CCG 5547	AGC	CAG GAG 5556	TAG	CAG TCC 5565	TAT	TCA TAC 5574	GCG	GAC TCC 5583	TCT	GCT CGT 5592	CTT	CCG ACA 5601	GGG
ACA	AAC TAA 5613	TTG	GTA GGG 5622	CAC	CCG CAG 5631	CAG	AGG AGG 5640	AGG	TAT TTC 5649	TGT	GAT GAC 5658	TGG	TTC TGT 5667	TTG
GGG	CAG CTA 5679	AGG	GCG TGG 5688	GTT	TCC TTC 5697	GTG	AGC CGC 5706	TGT	TGT GAT 5715	TGT	TGG CGG 5724	CGG	CGT CCG 5733	AGG
ATA	AGG ATC 5745	С												

FIG. 1-5

FIG. 3

SEQUENCE LISTING

<110> Università degli Studi di Roma La Sapienza Cogoni, Carlo Macino, Giuseppe Catalanotto, Caterina Azzalin, Gianluca

<120> Isolation and characterization of a N. crassa silencing gene and uses thereof

<130> qde-2

<140>

<141>

<150> RM2000A000021

<151> 2000-01-17

<160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 5746

<212> DNA

<213> Neurospora crassa

<220>

<221> CDS

<222> (1039)..(3852)

<400> 1

ggatccgcgt agcacatcct tttctttcc ttttggttat ccataacctt ggcaacacct 60

ttctttgctt tctctctt tttcgcttta gagacctacg caactaccca tcatcattt 120

ctgatatcga catatcaccc aacaacatca tcatcatcta ctaccagtaa tcccgcatcg 180

gaggagtagt cgtttcgctc gattactctt tttttgcgt ccggagtgcg acaaagtagc 240

ggcttataac aagtccaagt tggaaaaaaa ccatcaatca gtggtatttc tctcttggca 300

aatccacaac aatccccttc cacgacaaac aaacaaacaa cctaccttaa ctatcctctt 360

gcttacctac gtacctgcct acctacctac ctacctacct acctctgctc aaccaaccat 420

ctcgtcaatc aaaccgaacc gaaccaaacc gaacgatagc cgaataagct ctcgtgcctt 480

gt	tgct	ctac	tcg	acaat	ct (gtta	ccaco	ca a	cacta	acaa	g tt	taac	agtc	atg	tctgac	a 540
at	cgtg	gcgg	tcg	tggaq	ggt d	gtgg	gegge	eg gi	tggto	cgcg	g cg	gcgg	cggc	ggc	ggcgga	g 600
gc	cgtg	gagg	tgg	tcago	caa q	ggcgg	geggt	g ga	aggc	cgtg	g ago	gtggt	tac	caa	ggcagc	g 660
gc	ggcg	gtgg	aggo	ccgto	ggc g	gege	rttat	c aa	aggc	ggtg	g cg	gcggt	gac	cgt	ggaggc	c 720
gt	ggcg	gcgg	ttai	tcaag	lāc ā	gtgg	rtggc	g gt	ggtt	tcca	a ago	gegge	ggt	ggaa	aggggt	g 780
gc	cgtg	gcgg	cggt	ttcc	aa g	gcgg	cggc	g go	eggeg	gcc	g tgg	rtggd	ttc	ggcg	gaggad	≈ 840
ag	ggcgc	ggg	agga	atacg	aa c	cccc	tcca	.c cg	gatg	gtcta	ı caa	gtag	ıgtg	ccto	tecati	900
ttt	tttt	acc	atto	caaca	tg a	tgct	gaca	c ga	cttt	aggç	gaa	ttga	cgg	tcgt	ggtgc	≃ 960
cco	egage	ctg	acgo	eccag	at c	acca	aact	c ga	ıggat	gatt	gga	tcaa	gaa	gcac	gtcago	1020
gad	caato	tgg	tcac	ttcc		Ser				Leu					aaa Lys	1071
				Pro					His					Glu	aag Lys	1119
			Trp	gcc Ala												1167
				acc Thr												1215
				gtc Val												1263
				atc Ile 80												1311
				cac His												1359
aac	cgc	atc	ttt	gag	gtg	acg	tgg	acc	gag	ccg	agt	tcc	aac	caa	aac	1407

Asn	Arg	Ile 110		Glu	Val	Thr	Trp		Glu	Pro	Ser	Ser 120	Asn	Gln	Asn	
		Ser	aag Lys				Trp					Glu		-	gtc Val	1455
			gat Asp													1503
			gac Asp											-	-	1551
			att Ile 175													1599
			agg Arg												-	1647
			ccc Pro													1695
			cgt Arg													1743
			gtc Val												_	1791
			ctt Leu 255											-	_	1839
			cag Gln												_	1887
			cgt Arg										-		_	1935
att	gtt	tat	aaa	aaa	tgt	tac	cgc	acg	ctc	aat	ggc	att	gct	aac	cgt	1983

Ile 300		. Tyr	Lys	Lys	Cys 305		Arg	Thr	Leu	Asn 310		'Ile	Ala	Asn	315	
					Lys					Lys					ccg	2031
				Ile						ggc Gly					tgt Cys	2079
										gat Asp						2127
										atc Ile						2175
										gct Ala 390				_	-	2223
					Glu					gtc Val						2271
										aag Lys						2319
	Asp					Phe		Cys		gct Ala						2367
cag Gln													-		-	2415
ctg Leu 460				Lys												2463
gtt Val			Arg					Pro					Ser			2511
aag a	acg	gta	gag	ccg	cag	gac	ggc ·	ggg	tgg	ttg	atg	aag	ttt	gtc	aag	25 59

Lys	Thr	Val	Glu 495	Pro	Gln	Asp	Gly	Gly 500	Trp	Leu	Met	Lys	Phe 505	Val	Lys	
_	-	aga Arg 510		_	_	_			-				_	-	-	2607
		tcc Ser										_				2655
		ttc Phe													_	2703
		atg Met														2751
		aag Lys														2799
		aag Lys 590														2847
		ttt Phe														2895
		aag Lys												_	_	2943
		aag Lys									_	-				2991
		gcc Ala														3039
-		aat Asn 670			-	Gly		_		-	_	-		-		3087
gtc	ggc	ctg	gtc	tca	acc	atc	gac	caa	cac	ctt	gga	caa	tgg	cct	gca	3135

Val	. Gly 685		ı Val	. Ser	Thr	690		Gln	His	s Leu	695		Trp	Pro	Ala	
	Val					His					Met				ttt Phe 715	3183
					Thr					Trp					gca Ala	3231
				Leu						att Ile					gtc Val	3279
										gac Asp						3327
										ggc Gly						3375
										act Thr 790						3423
										agc Ser						3471
										tat Tyr						3519
										cgc Arg						3567
Val					Ile					tat Tyr						3615
gac Asp 860				Gln										Gly		3663
gcc	acc	aag	gct	gtc	agt	atc	tgc	ccg	cct	gcg	tac	tat	gcc	gac	ttg	3711

Ala Thr Lys Ala Val Ser Ile Cys Pro Pro Ala Tyr Tyr Ala Asp Leu 880 885 885 890

gtg tgc gac cgg gcg cgt atc cat cag aag gag ctc ttt gac gcc ctc Val Cys Asp Arg Ala Arg Ile His Gln Lys Glu Leu Phe Asp Ala Leu

915

895

910

gat gaa aac gat agc gtt aag acc gat gat ttc gca aga tgg ggt aac 3807 Asp Glu Asn Asp Ser Val Lys Thr Asp Asp Phe Ala Arg Trp Gly Asn

tcc ggg gct gtt cat ccc aac ctt agg aac tcc atg tac tat atc

Ser Gly Ala Val His Pro Asn Leu Arg Asn Ser Met Tyr Tyr Ile

925
930
935

taggettgtc aattgtgtgc tggaatgtac tggagcatat aagtgacgcg atggaagcct 3912 aatogtotot gaatatggat caaagacago gtttgotttt toggggotto tagtttotac 3972 agcgatttgt gtggattgtt tcttgttctg tttcttggtt ctttctttct tttttttgtg 4032 tetetgtetg cetttgtaet geatgeaaac gtgeactetg aatgatgaac gacaccattt 4092 gacgattgga taagagatga cagactgcag atactatcat gcgcaatgga aaacacgaac 4152 aaccaaggtt tttgattcct tcaatagcga aatatagaaa aagaaacaaa aaaaaaaaca 4212 acaacaata atggaagtat gattaaacac attgagcgcg atgactgact ggtgttgtga 4272 atggcgtgtt ggttttcttc tttcttgaaa atttagaacc gtaaatgtta tatcatgtga 4332 tgtaatgtaa taacatattt atatctcgtt gtattcttgt acacactttc caggataaca 4392 tggtctgaca tggtatttct gacgtacaaa aaagaaaaag aaaaacagga aaccatgaac 4452 ccgcgacaaa gctgttccag ttgttacaat gatgatgatg atgatgacct actacctaag 4512 gtattctatc ttagccaagg tattctctcg catcctattc catcctatcc taacccgage 4572 ctaacccgag cctaaatacc taaactccta aactccttaa ctccttaact cctttctaaa 4632 tgtctaaacc cccaaactat gagacgaccc gaacccgaaa ccctaataaa agtatttata 4692 aaccatcata aaagaaaaaa aaccatcata catggatgat caaaacaaac agaaacggaa 4752 acaacacaac cagctacccg ctcaagactt tcattcgtta attcatcact cactcactca 4812

ctcactcact cagcagcaaa ataccgtttt gtcctgctat tcgtttgttg cgccttgatt 4872

tcaggcggga caatggtgtg atgtacgacg tgggggcggt agactgcgtc tactggtggc 4932 atcctttaca atttttagt gtgtcagtat gtgatgtatt caatgctatt gaactgaggg 4992 gggctgatgg atagtgggga gagaacacct gacggataga gggaaggaac tggacgcctg 5052 gggggaagtg agagaggggg atggtgggga atagatgaaa agagaagagg agtgagagca 5112 caagaagaaa gaatgaatgt tggtgacaaa gttaaagaaa aggaaggggg gaaagagaag 5172 aggacaggtg tggtgagtga attgagtgaa aggaagggaa aaaacggaga aggaaaaaaa 5232 aaacataaaa aaaaaaaaa aaacagaaag aaagaactaa ccaatcatcc aaactcagcg 5292 gaaagtacte atacaaaagg teggetgeet caateggaet eeccacatte tettetggt 5352 actgattctg ctgccccaga cttccacttt caaagtggct atcaccctta ttgttgttag 5412 agtgagtagt agacgtaagt cctcccgatc cggagccaaa acccatccct ttcccagctg 5472 tatecetett caatecacea gtageaacae ecatettgee atagagegga etateceetg 5532 eccetgeece tgeegageea ggagtageag tectatteat aggeggaete etetgetegt 5592 cttccgacag ggacaaacta attggtaggg cacccgcagc agaggaggag gtatttctgt 5652 gatgactggt tetgtttggg geagetaagg gegtgggttt cettegtgag eegetgttgt 5712 gattgttggc ggcggcgtcc gaggataagg atcc 5746

<210> 2

<211> 938

<212> PRT

<213> Neurospora crassa

<400> 2

Met Ser Lys Leu Ser Leu Ser Glu Lys Glu Lys Ala Asn Asn Leu Pro

1 5 10 15

Val Arg Pro Gly His Gly Thr Met Gly Glu Lys Val Lys Leu Trp Ala 20 25 30

Asn Tyr Phe Lys Ile Asn Ile Lys Ser Pro Ala Ile Tyr Arg Tyr Thr 35 40 45

Ile Lys Val Ala Ala Thr Glu Glu Lys Leu Gly Lys Glu Ala Glu Val

50	55	60

Ala Ser Lys Lys Val Glu Val Val Gly Lys Leu Leu Lys Gln Ile
65 70 75 80

- Glu Ala Asn Val Lys Ser Val Ala Ile Ala Ser Asp Phe Lys Val His
- Leu Val Thr Thr Lys Leu Lys Val Pro Glu Asn Arg Ile Phe Glu
 100 105 110
- Val Thr Trp Thr Glu Pro Ser Ser Asn Gln Asn Leu Pro Ser Lys Pro 115 120 125
- Gln Thr Trp Val Val Lys Val Glu Glu Ser Val Glu Thr Cys Asp Phe 130 135 140
- Gly Lys Val Leu Asn Glu Leu Thr Thr Leu Asp Pro Lys Leu Asp Gly
 145 150 155 160
- Asp Phe Pro Lys Tyr Asn Val Glu Leu Asp Ala Leu Asn Thr Ile Val
- Thr His His Ala Arg Ala Asp Asp Asp Val Ala Val Val Gly Arg Gly 180 185 190
- Arg Phe Phe Ala Ile Gly Asp Asp Leu Ile Glu Gln Val Arg Pro His
 195 200 205
- Asp Ser Pro Leu Val Ile Leu Arg Gly Tyr Phe Ala Ser Val Arg Pro 210 215 220
- Ala Thr Gly Arg Leu Leu Asn Thr Asn Ile Thr His Gly Val Phe 225 230 230 240
- Arg Pro Gly Val Lys Leu Ala Gln Leu Phe Gln Glu Leu Gly Leu Asp
 245
 250
 255
- Val Met Asp Lys Cys Asn Ala Trp Asn Glu Val Thr Lys Asn Gln Leu 260 · 270
- Asn Asp Lys Met Arg Arg Val His Lys Val Leu Ala Lys Gly Arg Val 275 280 285
- Glu Leu Asn Ala Pro Phe Leu Ile Asp Gly Lys Ile Val Tyr Lys Lys 290 295 300
- Cys Tyr Arg Thr Leu Asn Gly Ile Ala Asn Arg Gly Asp Glu Arg Gly

305					310					315					320
Lys	Gln	Lys	Asp	Gly 325	Lys	Glu	Val	Arg	Tyr 330	Pro	Pro	Leu	Phe	Gly 335	Ile
Pro	Gly	Val	Gln 340	_Val	Gly	Gly	Pro	Thr 345	Ser	Cys	Gln	Phe	Tyr 350	Leu	Arg
Ala	Arg	Glu 355	Thr	Lys	Asp	Gly	Ala 360	Ala	Pro	Pro	Pro	Thr 365	Pro	Gly	Leu
Pro	Ser 370	Asn	Ala	Tyr	Ile	Thr 375	Val	Ala	Asn	Tyr	Tyr 380	Lys	Gln	Arg	Tyr
Gly 385	Ile	Thr	Ala	Asn	Ala 390	Ser	Leu	Pro	Leu	Val 395	Asn	Val	Gly	Thr	Lys 400
Glu	Lys	Ala	Ile	Tyr 405	Val	Leu	Ala	Glu	Phe 410	Суѕ	Thr	Leu	Val	Lys 415	Gly
Arg	Ser	Val	Lys 420	Ala	Lys	Leu	Thr	Ala 425	Asn	Glu	Ala	Asp	Asn 430	Met	Ile
Lys	Phe	Ala 435	Cys	Arg	Ala	Pro	Ser 440	Leu	Asn	Ala	Gln	Ser 445	Ile	Val	Thr
Lys	Gly 450	Arg	Gln	Thr	Leu	Gly 455	Leu	Asp	Lys	Ser	Leu 460	Thr	Leu	Gly	Lys
Phe 465	Lys	Val	Ser	Ile	A sp 4 70	Lys	Glu	Leu	Ile	Thr 475	Val	Val	Gly	Arg	Glu 480

Leu Lys Pro Pro Met Leu Thr Tyr Ser Gly Asn Lys Thr Val Glu Pro 485 490 495

Gln Asp Gly Gly Trp Leu Met Lys Phe Val Lys Val Ala Arg Pro Cys 500 505 510

Arg Lys Ile Glu Lys Trp Thr Tyr Leu Glu Leu Lys Gly Ser Lys Ala 515 520 525

Asn Glu Gly Val Pro Gln Ala Met Thr Ala Phe Ala Glu Phe Leu Asn 530 535 540

Arg Thr Gly Ile Pro Ile Asn Pro Arg Phe Ser Pro Gly Met Ser Met 545 550 555 560

Ser Val Pro Gly Ser Glu Lys Glu Phe Phe Ala Lys Val Lys Glu Leu

			·	565					570					575	
Met	Ser	Ser	His	Gln	Phe	Val	Val	Val	Leu	Leu	Pro	Arg	Lys	Asp	Va.

Met Ser Ser His Gln Phe Val Val Leu Leu Pro Arg Lys Asp Val 580 585 590

Ala Ile Tyr Asn Met Val Lys Arg Ala Ala Asp Ile Thr Phe Gly Val 595 600 605

His Thr Val Cys Cys Val Ala Glu Lys Phe Leu Ser Thr Lys Gly Gln 610 620

Leu Gly Tyr Phe Ala Asn Val Gly Leu Lys Val Asn Leu Lys Phe Gly 625 630 635 640

Gly Thr Asn His Asn Ile Lys Thr Pro Ile Pro Leu Leu Ala Lys Gly
645 650 655

Lys Thr Met Val Val Gly Tyr Asp Val Thr His Pro Thr Asn Leu Ala 660 665 670

Ala Gly Gln Ser Pro Ala Ser Ala Pro Ser Ile Val Gly Leu Val Ser 675 680 685

Thr Ile Asp Gln His Leu Gly Gln Trp Pro Ala Met Val Trp Asn Asn 690 695 700

Pro His Gly Gln Glu Ser Met Thr Glu Gln Phe Thr Asp Lys Phe Lys 705 710 715 720

Thr Arg Leu Glu Leu Trp Arg Ser Asn Pro Ala Asn Asn Arg Ser Leu 725 730 735

Pro Glu Asn Ile Leu Ile Phe Arg Asp Gly Val Ser Glu Gly Gln Phe
740 745 750

Gln Met Val Ile Lys Asp Glu Leu Pro Leu Val Arg Ala Ala Cys Lys 755 760 765

Leu Val Tyr Pro Ala Gly Lys Leu Pro Arg Ile Thr Leu Ile Val Ser 770 780

Val Lys Arg His Gln Thr Arg Phe Phe Pro Thr Asp Pro Lys His Ile 785 790 795 800

His Phe Lys Ser Lys Ser Pro Lys Glu Gly Thr Val Val Asp Arg Gly 805 810 815

Val Thr Asn Val Arg Tyr Trp Asp Phe Phe Leu Gln Ala His Ala Ser

WO 01/53475	PCT/IT01/00008

| Red | Ser | Ser

Arg Ile His Gln Lys Glu Leu Phe Asp Ala Leu Asp Glu Asn Asp Ser 900 . 905 910

Val Lys Thr Asp Asp Phe Ala Arg Trp Gly Asn Ser Gly Ala Val His 915 920 925

Pro Asn Leu Arg Asn Ser Met Tyr Tyr Ile 930 935