Suppose f is a continuous function on R^1 , $f(x+2\pi)=f(x)$, and α/π is irrational.

Prove that

$$\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^N f(x+n\alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$

for every x. Hint: do it first for $f(x) = e^{ikx}$.

pf.

f is continuous on $\mathbb{R} \implies f \in \mathcal{R}$, furthermore $f(x+2\pi)=f(x)$ so the period of f is 2π .

Since α/π is irrational $\nexists k \in \mathbb{Z} : n\alpha = k\pi \quad (n = 1, 2, ..., N)$. So $f(x + n\alpha) \neq f(x + k\pi)$.

Furthermore $\{f(x+n\alpha)\}_{n=1}^N\subset f([-\pi,\pi])$, because $f(-\pi)=f(\pi)$ and f is continuous with period 2π .

Furthermore, $f(x + n\alpha)$ are distinct points in $f([-\pi, \pi])$.

Since, $f \in \mathcal{R}$ it follows that a fine enough partition by sample points is equal to the integral.

Let P be the evenly distributed partition of $[-\pi,\pi]$. Then $\Delta x_n = \frac{\pi - (-\pi)}{N} = \frac{2\pi}{N}$.

$$\int_{-\pi}^{\pi} f(x) dx = \lim_{n \to \infty} \sum_{n=1}^{N} f(x+n\alpha) \frac{2\pi}{N} \implies \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x+n\alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt \quad \blacksquare$$