Module: Informatique Industrielle

Le Bus USB

Carole Lavault

carole.lavault@aii-biomedical.com

Plan

- ➤ Origine, Caractéristiques principales
- Couche physique
- > Trames, paquets
- > Pipes, transferts
- Composants logiciels, Séquencement
- ➤ Interfaçage au bus USB
- > USB OTG USB3

Origine

"Universal Serial Bus"

- Créé par un Consortium: Compaq, DEC, IBM, Intel, Microsoft, NEC, Northern Telecom
- But: raccorder à un PC :
 - facilement et à moindre coût
 - des périphériques à faible, moyenne et hautes performances

Caractéristiques Principales

➤ Adjonction d'un périphérique :

- Pas d'ouverture du PC, pas de cavaliers de configuration
- 1 seul type de câble qui assure également l'alimentation
- Jusqu'à 127 périphériques sur un ordinateur
- Possibilité de travailler avec des périphériques temps réel (caméra, microphone)
- HotPlug/Unplug, détection et configuration au moment de la connexion
- Robustesse
- Sollicitation modérée des ressources système

Bande passante

	USB 1.0	USB 1.1	USB 2.0	USB3	USB 3.1 Gen2	USB 3.2 USB 4
Speed	Low	Full	High	Super	Super +	
Année	1996	1998	2000	2008	2013	2017
Mb/s	1,5	12	480	4 800	10 000	20 000 40 000
Mo/s	0,19	1,5	60	600	1200	2500/5000
			HI-SPEED	SUPER SPEED	SUPER SPEED +	CISB 40 char

Débits théoriques : /2 optimal /4 normal /15 nombreux périphériques

Débits théoriques, en réalité bande passante partagée entre les périphériques

Topologie:

Un Arbre à la racine duquel : le contrôleur USB « USB HOST »

127 devices Max

Topologie: Hubs et Fonctions

Figure 4-4. Hubs in a Desktop Computer Environment

Topologie: Architecture générale

La bande passante est partagée entre les périphériques connectés

Figure 2-1: USB System Implemented in a PCI-Based Platform

L'USB dans l'architecture PC

PCIe <> USB 3.0

Couche Physique : Câbles et Connecteurs

Les câbles comportent une extrémité contrôleur, une extrémité périphérique

Fonction	Couleur	Numéro de broche pour les types A et B	
Alimentation +5 V (VBUS)	Rouge	1	
Données (D-)	Blanc	2	
Données (D+)	Vert	3	
Masse (GND)	Noir	4	

Couche Physique : Câbles et Connecteurs

Figure 3-2: Cross Section of a Low-Speed Cable Segment

Figure 3-3: Cross Section of a High-Speed Cable Segment

Structure du câble différente entre Low-Speed et Full-High speed.

Longueur max. 3m (non blindé), 5m (blindé)

Figure 4-2. USB Cable

Couche Physique : Câbles et Connecteurs

Prise micro-B USB 3

Evolution des prises USB 1 et 2

54321	54321	
Mini-A	Mini-B	

Fonction	N° de broche pour le type mini B
Alimentation +5 V (VBUS)	1
Données (D-)	2
Données (D+)	3
Masse (GND)	5

Description prise Micro-B USB 3

1 : alimentation (VBUS)

• 2 : USB 2.0 paire différentielle (D-)

• 3 : USB 2.0 paire différentielle (D+)

• 4 : USB OTG ID pour identifier les lignes

• 5 : masse

• 6 : USB 3.0 ligne de transmission du signal (-)

• 7 : USB 3.0 ligne de transmission du signal (+)

•8: masse

• 9 : USB 3.0 ligne de réception du signal (-)

• 10 : USB 3.0 ligne de réception du signal (+) Souvent utilisé pour les disques durs externes nécessitant des hauts débits

Prise USB Type C

Connecteur réversible, destiné à remplacer tous les connecteurs

Couche Physique : Transmission et codage des données

Figure 5-17: Transfert Across USB Cables Employ NRZI Encoding and Differential Signaling

NRZI: Non Return to Zero Inverted

Les transitions dans le flux de données permettent au décodeur de maintenir la synchro sans besoin d'avoir une clock séparée.

Figure 5-18 : NRZI Encoded Data

Intégrité des données

Couche Physique : Transmission et codage des données

Problème: risque de perte de synchronisme si une suite de 1 se présente

Solution : le « Bit Stuffing »: on rajoute un zéro dans les données après une suite de 6 « 1 » consécutifs.

Couche Physique : Transmission et codage des données

D+ et D- sont, en général, complémentaires ...

lci une séquence de début de paquet (SOP). Chaque packet démarre par une séquence de synchro de 8 bits permettant d'établir la synchro avec le packet entrant.

YTECH

Couche Physique : Transmission et codage des données

... mais peuvent être dans le même état dans certains cas particuliers :

Ici une séquence de fin de paquet (EOP)

Couche Physique : Détection et identification d'un périphérique

Lors du raccordement d'un périphérique :

- ➤ Le contrôleur principal (USB HOST) le détecte (niveaux sur D+ et D-)
- Il envoie une interruption au système d'exploitation (OS)
- L'OS interroge le périphérique (identité, bande passante, besoin en alimentation)
- > Si tout est OK:
 - Installation du pilote logiciel adéquat,
 - Attribution d'une adresse [1-127] unique
 - > Envoi de l'adresse et des infos de configuration au périphérique

USB 2 : Etape supplémentaire envoi d'un signal « Chirp » si reconnu en tant que périphérique USB2

Couche Physique : Gestion des alimentations

- ➤ Le HOST (ou le HUB) peut alimenter le périphérique (bus powered device)
- Certains périphériques (ou HUBs) ont leur propre alimentation (self-powered)
- Normalement 100 mA
- Sur requête, jusqu'à 500 mA (USB1 et 2) plus en USB3
- Attention aux courts-circuits!
- > Attention VBUS peut être compris entre 4,2V et 5,25V
- La chute maximum tolérée sur VBUS est de 330mV

Attention, la mise en cascade de plusieurs Hubs s'accompagne de contraintes d'alimentation et de consommation.

Couche Liaison: Les TRAMES (Frames)

- ➤ Le contrôleur principal envoie toutes les 1+/-0.05ms une TRAME:
 - Soit une trame de synchronisation
 - Soit une trame d'information (échange de 1 ou plusieurs paquets)
- Lors d'une action de communication:
 - La 1ere trame provient toujours du contrôleur
 - > Les suivantes proviennent soit du contrôleur, soit d'un périphérique

Couche liaison : Les TRAMES (Frames)

Trame 0	SYNCHRO	pas d'info	maintien du synchronisme
Trame 1	INTERROGATION		demande au scanner de transmettre une image
Trame 2	SYNCHRO	pas d'info	maintien du synchronisme
Trame 3	TRANSMISSION		transmission de données à l'imprimante

Chaque trame est constituée de paquets

Couche réseau : Les Paquets

Source Cypress - USB 101: An Introduction to Universal Serial Bus 2.0

Couche réseau : Les Paquets

TOKEN	TOKEN IN, OUT Contrôleur		"JETON" : débute un dialogue avec un périphérique		

Couche réseau : Les Paquets

Types de transferts : Les PIPES

- Le 1er paquet de chaque transaction (*Token Packet*) indique :
- l'adresse USB du Device (ou du Hub)
- la sous-adresse concernée (End-Point)
- le sens de la transaction
- Un End-Point permet d'établir un canal de communication ('Pipe') entre une fonction interne du Device et l'application Host
- Un Device USB peut supporter jusqu'à 16 End-Points, et doit supporter au moins le End-Point n° 0 (utilisé pendant l'initialisation et pour le controle)
- Chaque End-Point possède, pour l'échange des données, une FIFO de taille variable (précisée lors de l'énumération : de 8 à 1024 octets)

Types de transferts : Les PIPES et les Endpoints

Figure 6-1: Communications Pipes Between Client Software's Memory Buffer and Device Endpoints

Types de transferts : Les PIPES

Types de *PIPES* (1 seul type transfert par *PIPE*) :

	Information	Garanti	Priorité	Exemple
CONTROL	Config, ordres	sans perte de données		
BULK	Echange MASSIF de données	sans perte de données	mini BP selon dispo.	Imprimante
INTERRUPT	petites quantités de données transmises rapidement	Temps de réponse < tspéc		Souris
ISOCHRONE	Temps réel	Délai et BP pas de retry	MAXI	Voix, flux video

Pas d'échange direct entre 2 périphériques : tout passe par le contrôleur principal

Allocation de la Bande Passante

En fonction des PIPES

Bloquante (on ne peut pas la modifier).

Réallouée sur fermeture d'un PIPE

Types de transferts : Les PIPES Echange en mode BULK

Composants logiciels

Représentation du flux basique de communication et les ressources systèmes utilisées par les systèmes USB

Un "Transfer descriptor" est une structure qui contient :

- Adresse du device USB cible
- Vitesse du device cible
- Type de transfert à réaliser (control, interrupt, isochrone, ...)
- Taille des paquets de données
- Adresse de l'espace mémoire du client

Séquencement

How the H.C. Fetches the

Séquencement USB2

Conceptual View of HS

Séquencement USB2

Figure 12-1: Bandwidth Difference Between Full-Speed Frame and High-Speed Microframe

Séquencement

How USB Transactions are Performed

Séquencement

How USB Transactions are Performed

Séquencement

How USB Transactions are Performed

Séquencement

Host System

Source: Les Principes de base de l'USB. Cypress, Philippe Larcher

GRENOBLE

The Layers Involved in USB Transfers

Séquencement

Example of
Devices
Sharing USB
during a
Single Frame

Interfaçage au Bus USB Universal Serial Bus Microcontroller

CY7C63000A/CY7C63001A CY7C63100A/CY7C63101A

Solution faible coût pour périphériques "low-speed" : souris, joystick, manette de jeu. Conforme à la spécification **USB 1.1 1,5 Mbps** 1 Device address et 2 EndPoints (1 contrôle et 1 data) Microcontrôleur RISC 12Mhz interne 128 octets RAM 4K ROM, Timer, Chien de garde Jusqu'à 16 E/S sur trigger de schmitt sur pull-up interne Jusqu'à 8 E/S permettant un pilotage de LED Alimentation de 4 V à 5,25V

Interfaçage au Bus USB CYPRESS AN 2131S (EZ-USB)

Microprocesseur dérivé du 8051 en version rapide et étendue

La RAM interne peut être utilisée pour stocker le programme et les données

Noyau USB capable de charger directement la RAM depuis l'USB et incorporant l'essentiel du protocole USB

Mode transfert rapide pour charger directement les FIFOs internes par une logique externe 24 IO + bus d'extension données et adresses

Alimentation 3,3V

La spécification USB OTG

Permet la connexion directe entre DEVICES USB, sans passer par l'intermédiaire d'un PC (HOST).

Exemple : envoyer directement les photos d'un appareil photo à une imprimante ou un disque dur.

Connexion point à point.

Supplément à la spécification USB 2.0

Ajout de fonctionnalités aux périphériques USB mobiles :

Capacités de Contrôleur HOST limitées pour permettre la liaison point à point,

Possibilité d'être HOST ou DEVICE et de passer de l'un à l'autre (*dual role*) à la suite d'une négociation (Host Negociation Protocol NHP),

Réduction de consommation au niveau alimentation.

Définition d'un nouveau standard de connecteurs miniatures et de câbles :

Embase mini A-B pouvant recevoir des connecteurs mini-A ou mini-B

Détection faite par la 5eme broche (ID pin) connectée ou non à la masse.

USB 3.0

Compatible avec USB2

- 4,8 gigabits/s contre 480 mégabits/s (*10)
- Technologie proche du PCI-Express
- ◆ Les câbles USB 3.0 sont composés de huit fils : quatre pour les données en mode USB 3.0, deux pour les données en mode USB 2.0 deux pour l'alimentation

• Alimentation fournie :

USB 2.0 minium 100 mA et au maximum 500 mA (avec une tension de 5 V)

USB 3.0 on passe à 150 mA minimum et 900 mA au maximum (4,5 W).

la tension d'utilisation minimale de l'appareil passe de 4,4 à 4 V.

