ALICE 13TeV

$$\frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \bigg|_{p_{T,trig}, p_{T,assoc}}$$
 (3.1)

$$\frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta\phi} = \int_{1.6 < |\Delta \eta| < 1.8} \left(\frac{1}{N_{trig}} \frac{d^2N_{pair}}{d\Delta\eta d\Delta\phi} \right) \frac{1}{\delta_{\Delta\eta}} d\Delta\eta - C_{ZYAM}$$
 (3.2)

- $\delta_{\Delta\eta} = 2 \times (1.8 1.6) = 0.4 \rightarrow \text{normalization factor}$
- $Y^{ridge} = \int_{|\Delta \phi| < |\Delta \phi_{min}|} \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta \phi} d\Delta \phi \quad (3.3)$
 - ▶ The minimum yield(C_{ZYAM}) at $\Delta \phi = \Delta \phi_{min}$
- ► Near-side : $|\Delta \phi| < 1.28 \rightarrow (3.4)$ 위
- \rightarrow near-side jet-like peak yield

CMS, ALICE

- ▶ Long-range : ALICE $\rightarrow 1.6 < |\Delta \eta| < 1.8$
 - CMS \rightarrow 2 < $|\Delta \eta|$ < 4
- ► High multiplicity : ALICE $\rightarrow 0 \sim 0.1\%$

CMS
$$\rightarrow N_{trk}^{offline} \ge 105 \rightarrow 0 \sim 0.03\%$$

- ▶ 지금까지 CMS의 $\Delta \phi$ Correlation을 그릴 때에, 그냥 적분을 하였음.
 - ▶ ALICE의 (3.2)의 식을 이용하여 적분하여 다시 그려봐야 함.($\delta_{\Delta\eta}$)
- ightharpoonup CMS의 C_{ZYAM} 은 있지만, ALICE는 C_{ZYAM} 이 없어 $1 < p_t < 4$ 을 그릴 수 없음.

현재 계산식

$$Y^{ridge} = \int_{-1.28 < |\Delta \phi| < 1.28} \left[\int_{1.6 < |\Delta \eta| < 1.8} \left(\int \frac{d^2 F}{p_T dp_T d\Delta \eta d\Delta \phi} \ p_T dp_T \right) \frac{1}{\delta_{\Delta \eta}} d\Delta \eta \right] d\Delta \phi$$

CMS

$$f_R < N_k > = 0.62e^{1.07p_T}$$

ALICE

$$f_R < N_k > = 0.62e^{1.07p_T}$$

γ Ridge

$$a = 8$$
 $T = 0.55 \, GeV$
 $q = 0.7 \, GeV$
 $m_d = 0.9 \, GeV$
 $\sqrt{S_{nn}} = 13000 \, GeV$
 $A_{\text{ridge}} = 0.0507517$
 $f_R < N_k > = 0.62e^{1.07p_T}$

$$a = 8$$
 $T = 0.55 \, GeV$
 $q = 0.7 \, GeV$
 $m_d = 0.9 \, GeV$
 $\sqrt{S_{nn}} = 13000 \, GeV$
 $A_{\text{ridge}} = 0.0507517$
 $f_R \langle N_k \rangle = 0.62 e^{1.07 p_T}$

 $21.08.26 \ Fitting$ a = 4 $T = 0.63 \ GeV$ $q = 0.9 \ GeV$ $m_d = 1 \ GeV$ $\sqrt{S_{nn}} = 13000 \ GeV$ $A_{\text{ridge}} = 0.040276$ $f_R \langle N_k \rangle = 0.585 e^{0.81 p_T}$

γ Ridge

21.08.26 Fitting

$$a = 4$$

$$T = 0.63 GeV$$

$$q = 0.9 GeV$$

$$m_d = 1 \, GeV$$

$$\sqrt{S_{nn}} = 13000 \; GeV$$

$$A_{ridge} = 0.040276$$

$$f_R \langle N_k \rangle = 0.585 e^{0.81 p_T}$$

$Y^{Ridge} \rightarrow ALICE$

$$\frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta\phi} = \int_{1.6 < |\Delta \eta| < 1.8} \left(\frac{1}{N_{trig}} \frac{d^2N_{pair}}{d\Delta\eta d\Delta\phi} \right) \frac{1}{\delta_{\Delta\eta}} d\Delta\eta - C_{ZYAM} \quad (3.2)$$

$$Y^{ridge} = \int_{|\Delta \phi| < |\Delta \phi_{min}|} \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta \phi} d\Delta \phi \quad (3.3)$$

$$= \int_{|\Delta \phi| < |\Delta \phi_{min}|} \left[\int_{1.6 < |\Delta \eta| < 1.8} \left(\frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta d\Delta \phi} \right) \frac{1}{\delta_{\Delta \eta}} d\Delta \eta - C_{ZYAM} \right] d\Delta \phi$$

$Y^{Ridge} \rightarrow CMS$

$$\frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta\phi} = \int_{1.6 < |\Delta \eta| < 1.8} \left(\frac{1}{N_{trig}} \frac{d^2N_{pair}}{d\Delta\eta d\Delta\phi} \right) \frac{1}{\delta_{\Delta\eta}} d\Delta\eta - C_{ZYAM} \quad (3.2)$$

$$Y^{ridge} = \int_{|\Delta \phi| < |\Delta \phi_{min}|} \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta \phi} d\Delta \phi \quad (3.3)$$

$$= \int_{|\Delta \phi| < |\Delta \phi_{min}|} \left[\int_{1.6 < |\Delta \eta| < 1.8} \left(\frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \eta d\Delta \phi} \right) \frac{1}{\delta_{\Delta \eta}} d\Delta \eta \right] d\Delta \phi$$

γ Ridge

21.08.26 Fitting

$$a = 4$$
 $T = 0.63 \, GeV$
 $q = 0.9 \, GeV$
 $m_d = 1 \, GeV$
 $\sqrt{S_{nn}} = 13000 \, GeV$
 $A_{\text{ridge}} = 0.040276$

 $f_R \langle N_k \rangle = 0.585 e^{0.81 p_T}$

Application of the Momentum Kick Model to PbPb Collisions at $\sqrt{s_{NN}}=2.76$ TeV at the LHC

Taewook Youn* and Jin-Hee Yoon[†]

Department of Physics, Inha University, Incheon 22212, Korea

Physical parameter	CMS (PbPb)
N_{jet}	$0.873 + 0.15 \langle p_T^{\mathrm{trig}} \rangle$
T_{jet}	$0.228 + 0.072 \langle p_T^{\text{trig}} \rangle \text{ GeV}$
σ_{ϕ_0}	0.5
m_a	$1.1 \mathrm{GeV}$
q	$0.7~{ m GeV}$
$f_R\langle N_k angle$	f_R : $e^{-1.395/\langle p_T^{\text{trig}}\rangle}$ $\langle N_k \rangle$: $20.2e^{-0.207\langle p_T^{\text{trig}}\rangle}$
	$\langle N_k \rangle$: $20.2e^{-0.207\langle p_T^{N_0} \rangle}$
f_J	0.632
a	0.5
T	$0.6~{ m GeV}$
m_d	$1.0 \mathrm{GeV}$

```
21.08.31 Fitting
a = 3
T = 0.55 \ GeV
q = 0.8 \ GeV
m_d = 1 \ GeV
\sqrt{S_{nn}} = 13000 \ GeV
A_{\text{ridge}} = 0.048223
f_R \langle N_k \rangle = 630e^{-6.084/p_T - 0.9p_T}
```


21.08.31 Fitting -2 a = 3 $T = 0.61 \ GeV$ $q = 0.96 \ GeV$ $m_d = 1 \ GeV$ $\sqrt{S_{nn}} = 13000 \ GeV$ $A_{\text{ridge}} = 0.0410025$ $f_R \langle N_k \rangle = 0.6e^{0.7p_T}$

21.08.31 Fitting -2
$$a = 3$$
 $T = 0.61 \ GeV$
 $q = 0.96 \ GeV$
 $m_d = 1 \ GeV$
 $\sqrt{S_{nn}} = 13000 \ GeV$
 $A_{\text{ridge}} = 0.0410025$
 $f_R \langle N_k \rangle = 0.6e^{0.7p_T}$

Good Fit at ALICE data

ALICE와 CMS의 데이터가 차이가 나므로 따로 Fitting 진행.

ALICE Fitting Parameters

$$a = 2.2$$

$$T = 0.51 \, GeV$$

$$q = 0.8 \, GeV$$

$$m_d = 1 \ GeV$$

$$A_{\text{ridge}} = 0.052779$$

$$f_R\langle N_k\rangle = 0.5e^{p_T}$$

CMS Fitting Parameters

$$a = 3$$

$$T = 0.51 \, GeV$$

$$q = 0.85 \, GeV$$

$$m_d = 1 \, GeV$$

$$\sqrt{S_{nn}} = 13000 \, GeV$$

$$A_{\text{ridge}} = 0.056137$$

$$f_R \langle N_k \rangle = 0.36e^{1.15p_T}$$

ALICE 13TeV $\Delta \phi$ Correlation, Y^{Ridge}

CMS 13TeV $\Delta \phi$ Correlation, Y^{Ridge}

PHENIX (AuAu)

CMS (PbPb, pp)

$$N_{jet}$$
 0.15 + 0.10 $\langle p_T^{trig} \rangle$

$$\alpha + \beta \left\langle p_T^{trig} \right\rangle$$

$$f_R$$

 $\langle N_k \rangle$

$$f_R\langle N_k \rangle = 3.0$$

$$\frac{e^{-\epsilon \langle p_T^{trig} \rangle}}{\text{divide 2 parts}} \delta e^{-\epsilon \langle p_T^{trig} \rangle}$$

$$\boldsymbol{q}$$

0.8 GeV

 $\zeta e^{-\eta/\langle p_T^{trig}\rangle}$ GeV

RHIC energy

LHC energy

21.09.02 Fitting

$$a = 6$$
$$T = 0.6$$

$$T = 0.6 \, GeV$$

$$q = 1.5e^{-0.76p_T} GeV$$

$$m_d = 1 \, GeV$$

$$\sqrt{S_{nn}} = 13000 \ GeV$$

$$A_{\text{ridge}} = 0.045591$$

$$f_R = e^{-2/p_T}$$

$$f_R = e^{-2/p_T}$$

 $\langle N_k \rangle = 11.5e^{-0.3p_T}$

Fitting 결과

