Kalman Filter for Uncertainty - Noise Representation

Setup

Observable equation is described by

$$y_t = x_{t+1} + \eta_t \tag{1}$$

where y_t can be observed at time t and $\eta_t \sim N(0, \sigma_\eta^2)$ is a noise shock which prevent to correctly observe future state x_{t+1} .

State transition equation is described by

$$x_t = x_{t-1} + \varepsilon_t \tag{2}$$

where $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ is a structural shock which affects the transition from x_{t-1} to x_t .

Procedure

Goal is to optimize the forecast of x_{t+1} using available information at time t, i.e. y_t and x_t . Given the initial value for $x_{0,0}$ and $Var(x_{1,0} - x_{0,0}) = P_{1,0}$. Procedure can be summarized as follows,

- 1. Forecast x_{t+1} using information at time t and evaluate the error variance of this prediction.
- 2. Find the steady state variance $P_{t,t}$.

As a generalization,

- 1. $y_t = x_{t+1,t}$ and the forecast error variance is $\Omega_t^y = Var(x_{t+1,t}) + \sigma_\eta^2 = P_{t,t-1} + \sigma_\eta^2$.
- 2. We want to forecast $x_{t+1,t}$ using all the available information up to time t. As a simplification we try to forecast $x_{t+1} x_t$ using $y_t x_t$. Coefficient β^{KG} is derived as follows

$$\beta^{KG} = \frac{Cov(x_{t+1} - x_t, y_t - x_t)}{Var(y_t - x_t)}$$

$$= \frac{Cov(x_{t+1} - x_t, x_t + \eta_t - x_t)}{Var(x_{t+1} + \eta_t - x_t)}$$

$$= \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}$$
(3)

This implies that

$$x_{t+1} - x_t = \beta^{KG}(y_t - x_t) \tag{4}$$

which is

$$x_{t+1} = x_t + \beta^{KG}(y_t - x_t)$$

$$= (1 - \beta^{KG})x_t + \beta^{KG}y_t$$

$$= \left(1 - \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}\right)x_t + \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}y_t$$

$$= \frac{\sigma_{\eta}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}x_t + \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2}y_t$$

$$= \frac{\frac{1}{\sigma_{\varepsilon}^2}}{\frac{1}{\sigma_{\eta}^2} + \frac{1}{\sigma_{\varepsilon}^2}}x_t + \frac{\frac{1}{\sigma_{\eta}^2}}{\frac{1}{\sigma_{\eta}^2} + \frac{1}{\sigma_{\varepsilon}^2}}y_t$$

$$(5)$$

and this is the reason why β^{KG} is called Kalman gain, i.e. it defines how much to weight signal y_t to infer x_{t+1} .

Now we need to figure out the forecast error variance of $x_{t+1} - x_{t+1,t}$, i.e. $P_{t+1,t} = x_{t+1,t}$

$$Var(x_{t+1} - x_{t+1,t})$$

$$\begin{split} P_{t+1,t} &= Var \left[x_{t+1} - x_t - \beta^{KG}(y_t - x_t) \right] \\ &= Var \left[x_{t+1} - x_t - \beta^{KG}(x_{t+1} + \eta_t - x_t) \right] \\ &= Var \left[x_{t+1} - x_t - \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} (x_{t+1} + \eta_t - x_t) \right] \\ &= E \left\{ \left[x_{t+1} - x_t - \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} (x_{t+1} + \eta_t - x_t) \right]^2 \right\} \\ &= E \left\{ \left[x_{t+1} - x_t - \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} (x_{t+1} + \eta_t - x_t) \right]^2 \right\} \\ &= E \left\{ \left[x_{t+1} - x_t \right]^2 \right\} - 2E \left\{ \left(x_{t+1} - x_t \right) \left(\frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} (x_{t+1} + \eta_t - x_t) \right) \right\} \\ &+ E \left\{ \left[\frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} (x_{t+1} + \eta_t - x_t) \right]^2 \right\} \\ &= \sigma_{\varepsilon}^2 - 2\sigma_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} + \left(\frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} \right)^2 (\sigma_{\varepsilon}^2 + \sigma_{\eta}^2) \\ &= \sigma_{\varepsilon}^2 - 2\sigma_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} + \sigma_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} \\ &= \sigma_{\varepsilon}^2 - \sigma_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} \\ &= \sigma_{\varepsilon}^2 \left(1 - \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} \right) \\ &= \frac{\sigma_{\varepsilon}^2 \sigma_{\eta}^2}{\sigma_{\varepsilon}^2 + \sigma_{\eta}^2} \\ &= \frac{1}{\frac{1}{\varepsilon^2} + \frac{1}{\varepsilon^2}} \end{split}$$