Лабораторная работа №19-20

ТАБУЛЯЦИЯ ФУНКЦИИ.

Цель и содержание работы:

Создание, отладка и выполнение GUI-программ, содержащих таблицу с результатами табуляции.

Во время табуляции функции на экран выводить таблицу в виде «таблицы Пифагора» со значениями аргументов.

Задания по вариантам

Варіант 1.

Протабулювати функцію $f(x,y) = -2y^2 + 2\cos(15x)$, якщо $x \in (-1;4)$ з кроком 0,65, а $y \in (-4;1)$ з кроком 0,45. Знайти кількість нульових значень та максимальне значення протабульованої функції.

Варіант 2.

Протабулювати функцію $f(x, y) = \sin(x - y)$, якщо $x \in (0; 0, 2)$, а $y \in (1; 1, 2)$ з кроком обох змінних 0,02. Обчислити добуток значень аргументу, для яких досягається максимальне та мінімальне значення протабульованої функції.

Варіант 3.

Протабулювати функцію $f(x, y) = \sin x + \cos 2y$, якщо $x \in (1; 2,5)$, а $y \in (0; 1,8)$ з кроком обох змінних 0,25. Обчислити добуток усіх додатних та кількість від'ємних значень протабульованої функції.

Варіант 4.

Протабулювати функцію $f(x, y) = e^{(-(x-y)^2)}$, якщо $x \in (1; 1, 3)$, а $y \in (0; 0, 3)$ з кроком обох змінних 0,05. Обчислити добуток усіх значень протабульованої функції, які належать проміжку (-1; 1), а також максимальне та мінімальне значення функції на цьому проміжку.

Варіант 5.

Протабулювати функцію $f(x,y) = \ln(y + \sqrt{|x-y|})$, якщо $x \in (2;3)$, а $y \in (0;1,3)$ з кроком обох змінних 0,1. Обчислити окремо кількість від'ємних та додатних значень протабульованої функції.

Варіант 6.

Протабулювати функцію $f(x, y) = 1/(x + \sqrt{|y|})$, якщо $x \in (1; 2)$, а $y \in (0; 3)$ з кроком обох змінних 0,4. Обчислити кількість значень протабульованої функції, які належать проміжкам $(-\infty; -3)$ і $(0; +\infty)$.

Варіант 7.

Протабулювати функцію $f(x,y) = \ln(1+\sqrt{x+y})$, якщо $x \in (0;2)$, а $y \in (1;2)$ з кроком обох змінних 0,2. Обчислити кількість мінімальних та максимальних значень протабульованої функції.

Варіант 8.

Протабулювати функцію $f(x,y) = tg(1/(x^2 + y^2))$, якщо $x \in (0;0,35)$, а $y \in (0;0,5)$ з кроком обох змінних 0,05. Обчислити кількість та добуток тих значень протабульованої функції, для яких виконується нерівність 1.3 < f < 5.

Варіант 9.

Протабулювати функцію $f(x,y) = e^{-x+\sqrt{|y|}}$, якщо $x \in (1;2)$, а $y \in (3;3,5)$ з кроком обох змінних 0,1. Обчислити кількість та добуток усіх від'ємних значень протабульованої функції.

Варіант 10.

Протабулювати функцію $f(x, y) = 3x^2 + 2\sin 3y$, якщо $x \in (-2; 3)$, а $y \in (0; 3)$ з кроком обох змінних 0,2. Обчислити кількість та суму тих значень протабульованої функції, для яких виконується нерівність 0 < f < 1.

Варіант 11.

Протабулювати функцію $f(x, y) = \cos x + \sin 2y$, якщо $x \in (0; 0,4)$, а $y \in (0; 0,6)$ з кроком обох змінних 0,05. Обчислити максимальне значення протабульованої функції, а також визначити значення аргументу, для якого воно досягається.

Варіант 12.

Протабулювати функцію $f(x, y) = \sqrt{x^2 + y^2 + 1}$, якщо $x \in (1; 5)$, а $y \in (0; 4)$ з кроком обох змінних 0,5. Обчислити мінімальне значення протабульованої функції, а також визначити значення аргументу, для якого воно досягається.

Варіант 13.

Протабулювати функцію $f(x,y) = e^{-x^2 - \hat{y}^2}$, якщо $x \in (0;2)$, а $y \in (1;2)$ з кроком обох змінних 0,2. Обчислити модуль суми максимального та мінімального значень протабульованої функції.

Варіант 14.

Протабулювати функцію $f(x, y) = \cos(x + y)$, якщо $x \in (1; 1, 2)$, а $y \in (2; 2, 25)$ з кроком обох змінних 0,02. Обчислити суму кубів додатних значень протабульованої функції та їхню кількість.

Варіант 15.

Протабулювати функцію $f(x,y) = e^{1+x-y}$, якщо $x \in (1;1,4)$, а $y \in (0;0,5)$ з кроком обох змінних 0,05. Обчислити суму усіх від'ємних та кількість додатних значень протабульованої функції.

Варіант 16.

Протабулювати функцію $f(x, y) = \sin x \cdot \cos 2y$, якщо $x \in (0; 0,4)$, а $y \in (0; 0,6)$ з кроком обох змінних 0,04. Обчислити суму усіх значень протабульованої функції, для яких виконуються нерівності f < -0.2 або f > 0.5 та їх кількість.

Варіант 17.

Протабулювати функцію $f(x, y) = \ln(x + \sqrt{x^2 + y^2})$, якщо $x \in (1; 4)$, а $y \in (1; 3,5)$ з кроком обох змінних 0,4. Яких значень протабульованої функції більше: додатних чи від'ємних.

Варіант 18.

Протабулювати функцію $f(x,y) = x^3 + \sqrt{y}$, якщо $x \in (-2;2)$, а $y \in (0;3,5)$ з кроком обох змінних 0,35. Обчислити добуток та кількість усіх значень протабульованої функції, для яких виконується нерівність -4 < f < 3 або та їх кількість.

Варіант 19.

Протабулювати функцію $f(x,y) = \ln |y^2 - x^3|$, якщо $x \in (-1;3)$, а $y \in (-3;1,3)$ з кроком обох змінних 0,3. Обчислити добуток тих значень протабульованої функції, для яких виконуються нерівності f < -4 або f > 0,5.

Варіант 20.

Протабулювати функцію $f(x,y) = \sqrt{|\ln x^2 + e^y|}$, якщо $x \in (-1;3,5)$, а $y \in (1;4,5)$ з кроком обох змінних 0,25. Обчислити середнє арифметичне всіх значень протабульованої функції.

Варіант 21.

Протабулювати функцію $f(x, y) = 3^{x+y} - y^2$, якщо $x \in (1; 4)$, а $y \in (-2; 0)$ з кроком обох змінних 0,2. Обчислити максимальне значення серед від'ємних значень протабульованої функції, а також визначити значення аргументу, для якого воно досягається.