1 C^{∞} functions on \mathbb{R}^n

Definition 1. Let $U \subset \mathbb{R}^n$ be open, $p \in U$. $f: U \to \mathbb{R}$ is C^k at p if all partials of f of order $\leq k$ exist and are continuous at p. E.g. C^0 is continuous, C^1 is continuous w/ first partials also continuous.

For the sake of simplicity in this course, we care only about functions which are C^{∞} , in other words $f: U \to \mathbb{R}$ is C^{∞} at $p \in U$ if f is C^k for all $k = 0, 1, 2, \ldots$

We also care about another type of function, namely the analytic ones.

Definition 2. A function $f: U \to \mathbb{R}$ is **analytic** at p if f(x) is equal to its Taylor's series at p in a neighborhood of p.

Importantly, an analytic function is infinitely differentiable within its radius of convergence, since the power series can be differentiated term by term. This suggests the following lemma:

Lemma 1. $Analytic \Rightarrow C^{\infty}$.

Notice that, notably, the converse is not true:

Example 1. Take $f(x) = \begin{cases} \frac{1}{e^{\frac{1}{x}}} & x > 0 \\ 0 & x \le 0 \end{cases}$. It is evidently clear that this function is C^{∞} .

Derivative can easily be computed, and verifying that they are continuous is easy. However, notice that $f^{(k)}(0) = 0 \ \forall k = 0, 1, 2, \dots$ Actually demonstrating this is a simple matter of induction. Therefore, the Taylor's series of f at x = 0 is the zero function.

Thus f(x) is not equal to its Taylor's series at 0 in any neighborhood of 0.

Therefore, f is not analytic at zero.

Luckily, for C^{∞} functions there is an analogue that works.

The Taylor's series with Remainder of a function is equal to

$$f(x) = f(p) + \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p)(x^{i} - p^{i}) + \frac{1}{2!} \sum_{i,j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(p)(x^{i} - p^{i})(x^{j} - p^{j}) + \dots + k^{\text{th}} \text{ term } + \underbrace{k+1}_{\text{remainder}} p = (p^{1}, \dots, p^{n}) \in \mathbb{R}^{n}$$

You know what a star-shaped polygon is. It's a polygon with a nonempty visibility kernel.

Theorem 1. Taylor's Theorem with Remainder Let U be a star-shaped open set in \mathbb{R}^n with respect to some point $p \in U$.

If $f: U \to \mathbb{R}$ is C^{∞} , then $\exists C^{\infty}$ functions $g_1(x), \ldots, g_n(x)$ such that

$$f(x) = f(p) + \sum_{i=1}^{n} g_i(x)(^i - p^i)$$
 and $g_i(p) = \frac{\partial f}{\partial x^i}(p)$.

Now we remember calc III... uh oh.

 $\frac{df}{dt} = \sum_{i=1}^n \frac{\partial f}{\partial x^i} * \frac{dx^i}{dt}.$ Yeah, it's the chain rule.

Proof. Let $y \in U$ The parametrization of \overline{py} is x(t) = p + t(y - p). Note that x(0) = p, x(1) = y, $x^i(t) = p^i + t(y^i - p^i) \frac{dx^i}{dt} = y^i - p^i$. And also see

$$f(y) - f(p) = f(x(1)) - f(x(0))$$

$$= \int_0^1 \frac{d}{dt} f(x(t)) dt$$

$$= \int_0^1 \sum_i \frac{\partial f}{\partial x^i} (x(t)) \frac{dx^i}{dt} dt$$

$$= \sum_i \int_0^1 \frac{\partial f}{\partial x^i} (p + t(y - p)) dt * (y^i - p^i)$$

And et cetera.