University of Wrocław: Algorithms for Big Data (Spring'22)

25/05/2022

Lecture 12: Coresets

Lecturer: Przemysław Uznański

1 Coresets [BHI02]

Setup: given set of $P \subseteq \mathbb{R}^d$, compute $C_P(): \mathbb{R}^d \to \mathbb{R}$. For example:

• MEB, a minimal enclosing ball: $C_P(o)$ is a radius of minimal enclosing ball for set P centered at o.

|P|=n is large, so storing it explicitly is out of the question. Observe that for fixed o, a single $p \in P$ is enough, that is $\forall_o \exists_{p \in P} C_P(o) = C_{\{p\}}(o)$. Can we generalize this observation so it works for all $o \in \mathbb{R}^2$ at once?

Definition 1. We say that $S \subseteq P$ is a c-coreset for P if for any o and any $T \subseteq \mathbb{R}^d$ there is:

$$C_{S \cup T}(o) \le C_{P \cup T}(o) \le c \cdot C_{S \cup T}(o)$$

Note: this is a stronger definition than just requiring that $f_S(o)$ is a c-approximation to $C_P(o)$ (take $T = \emptyset$).

Observe that in case of MEB we have for $A \subseteq B$: $C_A(o) \le C_B(o)$, so the first inequality is "for free".

Lemma 2 (Merge property). If S is a c-coreset for P, and S' is a c-coreset for P', then $S \cup S'$ is a c^2 -coreset for $P \cup P'$.

Lemma 3 (Reduce property). If S is a c-coreset for P and P is a c-coreset for Q, then S is a c^2 -coreset for Q.

We sometimes want a stronger property (which for example MEB satisfies)

Property 4 (Disjoint merge). If S is a c-coreset for P and S' is a c-coreset for P' and $P \cap P' = \emptyset$, then $S \cup S'$ is a c-coreset for $P \cup P'$.

Exercise: proof for MEB.

Theorem 5. Assume that a problem is supported by a $(1 + \alpha)$ -coreset of size $f(\alpha)$, computable in linear space, with disjoint merge property. Then there is a streaming algorithm with $1 + \varepsilon$ guarantee, with space $\mathcal{O}(f(\varepsilon/\log n)\log n)$.

Proof. Sketch of a proof: put stream of n elements into binary tree. Each node stores coreset for the range below it.

For two sibling nodes N_1, N_2 covering sets A_1, A_2 , at level i, and parent node N at level i + 1, there is:

• N_1 is $(1+\alpha)^i$ -coreset for A_1 (and the same for $N_2,\,A_2$)

- $N_1 \cup N_2$ is $(1+\alpha)^i$ -coreset for $A_1 \cup A_2$
- N is constructed as $(1 + \alpha)$ -coreset for $N_1 \cup N_2$
- thus N is $(1+\alpha)^{i+1}$ -coreset for $A_1 \cup A_2$

As a end-result, we have in the root $(1 + \alpha)^{\log n}$ -coreset for whole input. Selecting $\alpha = \mathcal{O}(\varepsilon/\log n)$ is enough.

1.1 Coreset for MEB

Construction goes as follow. Choose dense set of directions $\{v_i\}_{i=1}^m$, such that for any other direction u, there is always some v_i such that $\operatorname{angle}(u, v_i) \leq \alpha$: this is $\sim \alpha$ -net on unit-ball (up to trigonometry). We can choose such set of $m = (1/\alpha)^{\mathcal{O}(d)}$ directions.

Claim 6. For any direction v_i , pick $p_i \in P$ that is extremal in that direction. Set $S = \{p_i\}_{i=1}^m$ is a $(1 + \mathcal{O}(\alpha^2))$ -coreset for P.

Proof. Pick arbitrary T ($T = \emptyset$ w.l.o.g. in this proof), and P and constructed set S. Fix o. Pick furthest point $x \in P$, and close direction v_i , and maximal in this direction point $p_i \in S$. The angle x-o- p_i is small (at most α), so the stretch is upper bounded by $\frac{1}{\cos \alpha} = 1 + \mathcal{O}(\alpha^2)$.

1.2 Coreset for median

Approximate median: given sequence of numbers A of number a_1, \ldots, a_n , return a such that $(1/2 \pm \varepsilon)n$ elements in A are smaller/larger than a.

Alternative formulation: find a that minimizes $C_A(a) = \max(|\{i : a_i \ge a\}|, |\{i : a_i \le a\}|)$. Coreset of size $1/\varepsilon$: pick every εn element from sorted A. Easy to see that

$$C_{A \cup T}(a) \le C_{A \cup S}(a) \le (1 + \varepsilon)C_{A \cup T}(a)$$

Plugging into the theorem, we obtain streaming median computation in space $\mathcal{O}(\log^2 n/\varepsilon)$. In fact this works for any quantile computation (but the error is additive). Improvement: pre-filter and keep only $1/\varepsilon^2$ elements (randomly), so space becomes $\mathcal{O}(\log^2(1/\varepsilon)/\varepsilon)$.

2 Graph algorithms

2.1 Certificates

Graph-theoretic approach, for decision problems.

Definition 7. For property \mathcal{P} , and a graph G, we say that G' is a strong certificate for G if: for any H, $G \cup H$ is in \mathcal{P} iff $G' \cup H$ is in \mathcal{P} .

Examples:

- connectivity: any spanning forest
- non-bipartiteness: any spanning forest + single odd-cycle inducing edge
- edge/vertex connectivity

2.2 Spanners [ADD⁺93]

Subgraph approximately preserving distances:

Definition 8. H, an edge subgraph of G, is a t-spanner of G, if for any u, v there is

$$d_H(u,v) \le t \cdot d_G(u,v)$$

Theorem 9. Any unweighted G contains t-spanner with $O(n^{1+2/(t-1)})$ edges, and it can be computed in one pass.

Proof. Maintain subgraph. Process edges one-by-one. If an edge causes a cycle of length $\leq t+1$, do not insert it.

1. This constructs a t-spanner.

Proof. Observation: for any edge $e = (u, v) \in G$, we have either $e \in H$, or $d_H(u, v) \leq t$. Thus in general by traversing any shortest path x, y in G, we have $d_H(x, y) \leq t d_G(x, y)$.

- 2. The graph is sparse enough:
 - Let d = 2m/n be average degree.
 - There is subgraph H of G with minimum degree d' = d/2: keep removing vertices with degree smaller than d'. We cannot end with no vertices, since then we removed less than m edges.

- H has every vertex of degree at least m/n, and no cycle of length t+1 or less.
- BFS tree of depth t/2 has no cycles in H
- $(m/n-1)^{t/2} \leq |H| \leq n$, which implies bound on m

References

[ADD⁺93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. *Discrete & Computational Geometry*, 9:81–100, 1993.

[BHI02] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In John H. Reif, editor, *Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada*, pages 250–257. ACM, 2002.