A Refined Macroscopic Traffic Model of Herty-Illner Type

Ash Richardson, Reinhard Illner

University of Victoria

July 22, 2011

What it's all about

Overview

Context, Objectives

The Herty-Illner Models

The Herty-Illner Vlasov Model
The Herty-Illner Macroscopic Model

Refinements To The Herty-Illner Macroscopic Model Refinements To The Acceleration Force

Simulations Of The Refined Macroscopic Model Speed Limit Scenario

Discussion

Traffic flow studied at three scales

- Microscopic models: follow individual cars (ODE, DDE, Cellular Automata).
- Mescoscopic (Kinetic) models: probability f(x, v, t) of finding car in a given state (Integro-differential evolution equations).
- Macroscopic models: follow (averaged) quantities of interest (Partial Differential Equations).

In principle all three represent the same information.

Derivations allow us to move between the three scales of observation...

We'll derive a macroscopic model from a kinetic model...

Why Macroscopic Models?

- ▶ Simpler: two equations, two variables: (x, t).
- Averaged quantities: artefacts less of a concern...
- ▶ Continuum description → qualitative predictions!!!
- Qualitative, quantitative features e.g. stop & go waves.
- Derive wave speeds (not so clear from microscopic models).
- Use predictions to address traffic control.
- ► Control density & speed → limit destructive phenomena, optimize flux.

Note: Direct derivation from microscopic models possible (e.g. the accepted **Aw-Rascle** macroscopic model¹).

For derivation of **Aw-Rascle** model from Kinetic (Vlasov) model see Illner-Kirschner-Pinnau (QAM 2009).

¹A. Aw, A. Klar, T. Materne, and M. Rascle, "Derivation of continuum traffic flow models from microscopic follow-the-leader models," *SIAM Journal on Applied Mathematics*, vol. 63, no. 1, pp. 259–278, 2002 (2014) (2014) (2014) (2014)

Objectives (this talk)

- Summarize the Herty-Illner Kinetic (Vlasov) traffic model².
- ▶ Derive from the above, the Herty-Illner Macroscopic model (which generalizes the model of Aw & Rascle).
- Refine the Herty-Illner Macroscopic model.
- Exhibit simulations for the refined model presented.

The central assumption of the Herty-Illner models is that drivers should change speed based on what they see ahead. So nonlocal behaviour should be considered for a realistic understanding of the structure of jams and how they arise.

Q: Can we identify parameter regimes for which jams do not amplify?

²M. Herty and R. Illner, "Analytical and numerical investigations of refined macroscopic traffic flow models," *Kinetic and Related Models*, 2009

Why further refine the Herty-Illner models?

Herty-Illner (KRM 2008,2009) macroscopic models focused on the role of nonlocal braking force in braking wave (moving jam) formation.

Travelling wave $\rm sol^ns$ found for $\rm 2^{nd\text{-}order}$ approx. model; existence for unabridged (nonlocal) models: difficult & interesting problem! Presented by R. Illner: *ICIAM 2011 (MS477) Fri. Jul. 22, 3pm (Rm. 121)*.

- (*) Would also like to see stop-and-go waves (concatenation of acceleration, braking waves).
- (**) Max. principles show: traffic not already moving won't already move!

Prescription for (*),(**): more detailed modelling of nonlocal acceleration force.

The Kinetic (Vlasov) Model

Traffic on a single lane (or lane-homogenized) highway:

$$\partial_t f + v \partial_x f + \partial_v (B(\rho, v - u^X) f) = 0$$

$$\rho = \int_0^\infty f(x, v, t) \, dv; \qquad \rho u = \int_0^\infty v \, f(x, v, t) \, dv;$$

$$u^X = u(x + H + Tv, t - \tau)$$
(1)

H - minimal safety distance,

T - look-ahead time multiplying the driver's speed,

au - individual reaction time,

 $B(\rho, v - u^X)$ - braking/acceleration force dependent on the local density ρ , and the relative speed v of observer w.r.t the "nonlocal delay-observed average speed" u^X .

The Braking/Acceleration Force

- Model origin: charged particle motion w. long-range interaction.
- Assumptions used: the same as for micro. models (next slide).
- Should see the same qualitative & quantitative features!
- Model characteristics.. the microscopic rules for cars:

$$x'(t) = v$$
$$v' = B(\rho, v - u^X)$$

The Braking/Acceleration Force

Assumptions..

- Adjust our speed to match those ahead
- Brake harder in higher densities
- Accelerate to reach higher densities

$$B(\rho, v - u^{X}) = \begin{cases} -c_{1}\rho(v - u^{X}) & \text{if } v - u^{X} > 0 \\ -c_{2}(\rho_{max} - \rho)(v - u^{X}) & \text{if } v - u^{X} < 0 \end{cases}$$

Macroscopic dependence realistic and needed for consistency.

Deriving A Macroscopic Model From The Kinetic Model

Assuming limited speed variations about (x, t), make the ansatz:

$$f(x, v, t) = \rho(x, t)\delta(v - u(x, t)).$$

This f is a weak sol^n of the Kinetic model cf. (2) iff (3).

$$T_f(\phi) := \int \int \int \phi_t f + \phi_x v f + \phi_v (B(\rho, v - u^X)f) dx dv dt = 0$$
 (2)

$$\rho_t + (\rho u)_x = 0$$

$$\rho(u_t + u_x u - B(\rho, u - u^X)) = 0$$
(3)

Here the test function $\phi(x, v, t)$ is bounded in v and compactly supported in x and t.

Note: for (3) u^X has a slightly different meaning:

$$u^{X} = u(x + H + Tu(x, t), t - \tau).$$

Proof: Macroscopic Model as Weak Solⁿ of Kinetic Model

Idea: use the independence of v with respect to the other variables.

We'll show only the derivation of the system of equations assuming the weak sol^n (" \Rightarrow ").

Proof: Macroscopic Model as Weak Solⁿ of Kinetic Model

(" \Rightarrow "): The assumption is, for arbitrary $\phi(x, v, t)$, the f given is a weak solution (2) of the Kinetic model (1). Consider ϕ of form

$$\phi(x,v,t)=\varphi(x,t)h(v).$$

Setting $\psi(x,t) := \phi(x,u(x,t),t) = \varphi(x,t)h(u(x,t))$ yields:

$$\psi_t = \phi_t + \phi_v u_t = \varphi_t h + \varphi h' u_t$$

$$\psi_x = \phi_x + \phi_v u_x = \varphi_x h + \varphi h' u_x$$

$$\implies \phi_t = \psi_t - \partial_v \phi u_t$$
$$\phi_x = \psi_x - \partial_v \phi u_x.$$

We substitute these into the weak solution expression (2)...

Proof: Macroscopic Model as Weak Solⁿ of Kinetic Model

$$\int \int \int [\psi_t f + \psi_x v f - \varphi h'|_v u_t f - \varphi h'|_v u_x v f + \varphi h'|_v B(...) f] dv \ dx \ dt = 0$$

$$f = \rho \delta(v - u) \Longrightarrow \text{ (for h bounded away from 0)}$$

$$\int \int [\psi_t \rho + \psi_x \rho u] - \int \int \psi \frac{h'|_u}{h|_u} \rho[u_t + u u_x - B(\rho, u - u^X)] = 0.$$

Since the first integral is independent of $\frac{h'(u)}{h(u)}$, both expressions inside the integrals are 0.

The conclusion is the macroscopic traffic model (3), a system of partial differential equations. \Box

Macroscopic Model as Weak Solⁿ of Kinetic Model

Note: for the Kinetic model:

$$B(\rho, v - u^{X}) = \begin{cases} -c_{1}\rho(v - u^{X}) & \text{if } v - u^{X} > 0 \\ -c_{2}(\rho_{max} - \rho)(v - u^{X}) & \text{if } v - u^{X} < 0 \end{cases}$$

where $u^X = u(x + H + Tv, t - \tau)$.

For the Macroscopic model:

$$B(\rho, u - u^{X}) = \begin{cases} -c_{1}\rho(u - u^{X}) & \text{if } u - u^{X} > 0\\ -c_{2}(\rho_{max} - \rho)(u - u^{X}) & \text{if } u - u^{X} < 0 \end{cases}$$

where $u^X = u(x + H + Tu(x, t), t - \tau)$.

Illner-Herty Macroscopic Model: Maximum Principle

For the macroscopic system (3) with $B(\rho, u - u^X)$ as indicated, the relative speed terms disallow acceleration above the highest speed present and disallow braking below the lowest speed present:

Proposition Suppose that for all x and all $s \in [0, \tau]$:

$$0 \le a \le u(x,s) \le b$$

then for any smooth solution of the macroscopic equations (3),

$$0 \le a \le u(x, t) \le b$$

for all x and for all $t \ge 0$.

Question: how do jams form?

Triggers!!!!

Not arising spontaneously, jams have a causal relationship with some perturbing stimulus (from initial conditions or otherwise).

Example Braking Wave

Loading movie...

Aside: Relationship with Aw-Rascle Model

The Aw-Rascle system³ is the mass law with a momentum law:

$$u_t + u_x (u - \rho \frac{\partial p}{\partial \rho}) = 0.$$
(4)

The Illner-Herty Macroscopic model in the braking case $u-u^X>0$ has momentum law:

$$u_t + uu_x - g_1(\rho)(u - u^X) = 0.$$

Using a 1st-order truncation $u - u^X \simeq -(H + Tu)u_x$:

$$u_t + (u - g_1(\rho)(H + Tu))u_x = 0$$

which is (4) with $\frac{\partial p}{\partial a} = \frac{g_1(\rho)}{a}(H + Tu)$.

³A. Aw and M. Rascle, "Resurrection of "second order" models of traffic flow," *SIAM Journal on Applied Mathematics*, vol. 60, no. 3, pp. 916–938, 2000

Refinements To The Herty-Illner Macro. Models

- Problem: modelling should allow spontaneous acceleration at various densities.
- Specifically, acceleration behaviour should vary with both speed & density.

Two ingredients...

- ► (I) Mediate between spontaneous vs. synchronized acceleration behaviours at different densities
- (II) Mediate between braking and the new (potentially spontaneous) acceleration
- For (I) allow cars to inch ahead at high density & low speed.. For (II) we add a limited degree of driver nonreactivity (mild degree of urgency \longrightarrow brake!)

Refinements To The Herty-Illner Macro. Models

Original (2008) model (braking, acceleration):

$$B(\rho, u - u^{X}) = \begin{cases} -c_{1}\rho(u - u^{X}) & \text{if } u - u^{X} > 0 \\ -c_{2}(\rho_{max} - \rho)(u - u^{X}) & \text{if } u - u^{X} < 0 \end{cases}$$

New model (density dependent switching by density quantity ρ_{rule}):

$$B = \left\{ \begin{array}{ccc} -c_1 \cdot \rho \cdot u & \text{if } u_{rule} > c_4, \; \rho_{rule} \geq c_3 \\ -c_1 \cdot \rho \cdot \left(u - u^X\right) & \text{if } u_{rule} > c_4, \; \rho_{rule} < c_3 \\ c_2 \cdot \mathcal{S}[u, u_{\text{max}}, \overline{\rho}^X, \rho_{\text{max}}] \cdot [u_{\text{max}} - u]_+ & \text{if } u_{rule} \leq c_4, \; \overline{\rho}_{rule} < c_3 \\ c_2 \cdot \mathcal{S}[u, u_{\text{max}}, \overline{\rho}^X, \rho_{\text{max}}] \cdot [\overline{u}^X - u]_+ & \text{if } u_{rule} \leq c_4, \; \overline{\rho}_{rule} \geq c_3 \\ 0 & \text{otherwise} \end{array} \right.$$

Rules for (braking, acceleration) x (high density, low density). We'll focus on the low and high density acceleration forces...

Refinements To The Herty-Illner Macro. Models

$$B = \left\{ \begin{array}{ll} c_2 \cdot \mathcal{S}[u, u_{\text{max}}, \overline{\rho}^X, \rho_{\text{max}}] \cdot [u_{\text{max}} - u]_+ & \text{if } u_{\text{rule}} \leq c_4, \ \overline{\rho}_{\text{rule}} < c_3 \\ c_2 \cdot \mathcal{S}[u, u_{\text{max}}, \overline{\rho}^X, \rho_{\text{max}}] \cdot [\overline{u}^X - u]_+ & \text{if } u_{\text{rule}} \leq c_4, \ \overline{\rho}_{\text{rule}} \geq c_3 \end{array} \right.$$

- For maximal density $(\rho_{\text{max}} \rho) = 0$ (orig. model: stopped cars can't move).
- ▶ Allow slight accel. above max. density at low speed (crude example): $|\rho_{\max} \rho|^2$.
- ▶ Don't accel. at high speed & max. density: $[\rho_{\text{max}} \rho]_+^2$.
- ▶ Choose γ so the "inching ahead" term: $|\rho_{\max} \rho|^2$ falls quickly with u.

$$\mathcal{S} = \left(\frac{u}{u_{\text{max}}}\right)^{\frac{1}{\gamma}} \cdot \left[\frac{\rho_{\text{max}} - \rho}{\rho_{\text{max}}}\right]_{+}^{2} + \left[1 - \left(\frac{u}{u_{\text{max}}}\right)^{\frac{1}{\gamma}}\right] \cdot \left|\frac{\rho_{\text{max}} - \rho}{\rho_{\text{max}}}\right|^{2}$$

Simulations

- Periodic boundary conditions (ring road).
- ▶ Update (ρ, u) by a Godunov scheme (neglecting the source term, treat the rest as a system of conservation laws).
- ▶ Add in the source term by updating *u* with a Euler step.

Simulations: parameters

Simulation Parameters			
General	N _×	2000	Number of grid points
	X_{max}	2000	Length of road (m)
	T_{max}	25	Time horizon (s)
	$ au_{reaction}$	1	Reaction time (s)
	g _{max}	10	Maximum acceleration (<i>m/s</i>
Non-local	Н	6	Safety distance
	T	2	Reaction time multiplying dr
	$ ho_{max}$	2 H	Maximum density
	u _{max}	30	Maximum speed
Braking	<i>c</i> ₁	$\frac{30}{u_{\text{max}}\rho_{\text{max}}}$	Braking coefficient
Acceleration	c_2	$c_1/6$	Acceleration coefficient

Speed Limit Scenario ($t = t_0$)

Speed Limit Scenario $(t = t_0 + 12\frac{1}{2}s)$

Speed Limit Scenario ($t = t_0 + 25s$)

Discussion

- Summarized the derivation of a Macroscopic model from a Kinetic model
- ▶ Noted the Macroscopic model generalizes that of Aw & Rascle
- Added model refinements treating spontaneous acceleration and the dependence of acceleration on speed and density.
- Simulated the refined model yielding numerical solutions featuring low-intensity oscillations consistent with stop-and-go waves

This page intentionally left blank