example

- Consider space \mathbb{R}^2
- Consider vectors $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Any vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$ can be expressed as a linear combination of these two vectors:

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

example

- Consider space \mathbb{R}^2
- Consider vectors $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Any vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$ can be expressed as a linear combination of these two vectors:

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• We also note that \vec{x} and \vec{y} are linearly independent since the only solution to

$$c_1\vec{x} + c_2\vec{y} = 0$$
 is $c_1 = c_2 = 0$