EXISTENTIAL CLOSURE OF SOME TOPOLOGICAL EXPONENTIAL DIFFERENTIAL FIELDS

Nathalie Regnault

Mathematics Department, University of Mons and Mathematics Department, Free University of Brussels, Belgium

Abstract:

Summer school in Tame Geometry, $18^{th} - 23^{rd}$ July 2016, Konstanz, Germany

Question: Does $Th(\mathbb{R}, <, exp, D)$, the theory of the real ordered field with exponentiation and derivation, have a model-completion? We answer in a more general setting, by axiomatising the model-completion of some topological exponential differential fields of characteristic 0, as it encompasses the p-adics case too.

SETTING and AIMS

Setting

Let (K, V) be a topological field, where K is a field of characteristic 0 with eventually extra structure and V is a base of neighborhoods of 0, and let (K, D, V) be a generic differential expansion.

(see [T] for the field language case, and [GP], [So] for the case where relations are added in the language) We consider the case where K is also endowed with a partial exponential map:

Let R be a commutative unitary characteristic 0 ring. Let $\mathcal{U}(R)$ denote the group of units of $(R^*, \dots, 1)$. Let E be a group morphism from (R, +, 0) to $(\mathcal{U}(R), ., 1)$. Then (R, E) is called an **exponential ring**. Examples: [W] (\mathbb{R}, exp) , [NM] (\mathbb{Z}_p, E_p) , where $exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $E_p := exp(px), p \neq 2$.

We first define TFES to be topological field K of characteristic 0 with a base of neighborhoods of 0 \mathcal{V} and an exponential subring (R,E) on which E is continuous.

We then define TDFES to be TFES (K, R, E, \mathcal{V}) equipped with an exponential derivation D, i.e. a derivation on K s.t. $\forall x \in R, D(E(x)) = E(x).D(x)$

Let $\mathcal{L} \supseteq \{+, -, ., ^{-1}, 0, 1, E, D\}$. We assume that the topology is \mathcal{L} -definable.

[M] introduces a notion of **exponential algebraicity**:

Let $R[\bar{X}]^E$ be the ring of E-polynomials on R, that is to say, polynomials composed with iterations of E, e.g.

$$P(X_1, X_2) = E(3rX_2 + E(X_1X_2^3)) + kX_2$$
, where $r, k \in R$

If (A, E) is an exponential subring of (B, E), an element $b \in B$ is E-algebraic over A if it is a coordinate of a tuple solution of a Hovanskii system defined over A:

there is an integer n, a uple $(b_1, ..., b_n) \subseteq B$ with $b = b_1$, and $P_1, ..., P_n \in A[\bar{X}]^E$ such that:

 $P_i(b_1,...,b_n)=0, i=1,\cdots,n$, and the Jacobian of the system $\{P_i(X_1,...,X_n)=0|i=1,\cdots,n\}$ is different from 0 at $(b_1,...,b_n)$.

Generalising results of [W], [K] shows that the E-algebraic closure operator $ecl^B(.)$ induces a good notion of dimension—an exponential transcendence degree—.

Motivation

In [GP], the authors consider theories of fields T (without an exponential) that are model-complete and axiomatise the model-completion T_D^c of their differential expansions T_D —which also proves model completeness of T_D^c —.

 $Th(\mathbb{R}, <, exp)$, $Th(\mathbb{C}_p, |.|, exp, |)$ and $Th(\mathbb{Q}_p, |.|, exp, P_n, n \in \mathbb{N}, f, f \in F)$, the theories of the valued fields \mathbb{C}_p and \mathbb{Q}_p with a partially defined exponentiation, (where $P_n(x) \equiv \exists y, y^n = x$ and F is a family of restricted analytic functions) are model-complete, ([W] and [NM]), thus candidates for an adaptation of the transfer results of [GP] and their strategy to the exponential case:

Strategy

- 1. Formalise an hypothesis $(I)_E$ -kind of existential closedness in the field of Laurent series K((t))- and show that a given TFES (K, R, E, V) is embeddable in a TFES containing K((t)) and thus satisfies $(I)_E$.
- 2. Axiomatise geometrically a "Differential Lifting" axiom scheme $(DL)_E$ using E-algebraic varieties; which expresses that every differential E-polynomial has a zero close to a zero of the associated E-algebraic polynomial (if it has one). Show that a structure satisfying $(I)_E$ can be embedded in a structure satisfying $(DL)_E$.
- 3. Show that $T_{E,D}^c := T_E^c \cup T_{E,D} \cup (DL)_E$ is the model-completion of $T_{E,D}$ the theory of those TDFES for which the restricted TFES has a theory T_E that admits a model-completion T_E^c .

MAIN RESULTS

Ordered field of E-series: known results

- Let R be a ring and let G be an ordered abelian group. Let R(G) be the set of formal power series with monomials in G and reverse well-ordered support: R(G) is the set of elements of the form $s = \sum_{g \in G} c_g g$, where $c_g \in R$, $g \in G$, and Supp $s := \{g \in G : c_g \neq 0\}$ is reverse well-ordered in G.
- Beginning with an ordered E-field (K, exp, <), [DMM], [KKS] construct an ordered field of E-series: Let $(x^K, .)$ be a multiplicative copy of (K, +). Let $K_0 := K((x^K))$, $A_n := \{s \in K_n : Supp s > 1\}$, $K_{n+1} := K_n((M(A_n)))$, where $M(A_n)$ is a multiplicative copy of the group A_n . $K((t))^E := \bigcup K_n$

Let $s = k + a + \epsilon \in K_n = K_{n-1} \oplus A_n \oplus \{s \in K_n : Supp s < 1\}.$ Then $E(s) = exp(k)M(a) \sum_{i=0}^{\infty} \frac{\epsilon^i}{i!} \in K_{n+1}.$

 $(I)_E$

We say that a TFES (K, R, E, V) satisfies hypothesis $(I)_E$ if:

Considering $K(t) := K(t^{\mathbb{Z}})$ as a topological field extension of K and given G a Hovanskii system with coefficients in K[t] (where E applies only on elements of R[t]);

if we have $G(\bar{a}) \sim_K \bar{0}$ and $Jac_G(\bar{a}) \nsim_K 0$ for an $\bar{a} \subseteq K[[t]]$, then there is a TFES(K', R', E, W) containing K((t)) such that:

- 1. There is a subset $\widetilde{\mathcal{W}}$ of \mathcal{W} which satisfies $t \sim_{\widetilde{\mathcal{W}}} 0$.
- 2. There is some $\bar{b} \in K'$ such that $G(\bar{b}) = \bar{0}$, $Jac_G(\bar{b}) \nsim_{\widetilde{W}} 0$ and $\bar{a} \sim_{\widetilde{W}} \bar{b}$.

$(DL)_E$

Let $A \subseteq^n$ be an irreducible variety defined over K. The *torseur* of A is the set $\tau(A) := \{(\bar{a}, \bar{b}) : \bar{a} \in A \text{ and } \sum_{i=1}^n \frac{\partial P}{\partial X_i}(\bar{a}).b_i + P^D(\bar{a}) = 0 \text{ for all } P(\bar{X}) \in I(A(K))\}$

In [PP] (DCF_0), [MR] (CODF), [GP] the authors axiomatise geometrically a differential lifting scheme that adapts to our setting:

Let (K, R, E, D, V) be a TDFES. We say that it satisfies the scheme $(DL)_E$ if:

For any $V \in \mathcal{V}$, for any irreducible E-algebraic varieties A, B defined over K such that A is regular, B is finitely generated, with $A \subseteq \tau(B)$ and if A projects generically on B and if there is a tuple $(\bar{a}, \bar{c}) \in K^{2n} \cap A$, then there is $\bar{b} \in K^n$ such that $(\bar{b}, D(\bar{b})) \in A$ and

 $(\bar{a},\bar{c}) - (\bar{b},D(\bar{b})) \in V^{2n}$

Our results

Let F be a topological E-field of characteristic 0.

- We notice that the additive group of F is torsion free hence orderable.
- We thus adapt the construction of [DMM], [KKS] to construct a topological (unordered) E-field $F((t))^E$ (we extend the topology step by step following [GP]).

Let $(K, R, E, D, \mathcal{V})$ be a TDFES.

- We construct a TDFES $(K((t))^E, R((t))^E, E, D, W)$ extending (K, R, E, D, V) and containing K((t)).
- (K, R, E, V) satisfies $(I)_E$.

Using results of [M], we adapt a result of [S] to our setting:

• Let $P \subseteq R[\bar{X}]^E$. Let $\bar{a} \in V(P) \subseteq R^{|\bar{X}|}$. There exists $Q = (Q_1, \dots, Q_m) \subseteq R[[t]][\bar{X}]^E$ and a clopen definable subset S of $V^{reg}(Q) \subseteq R[[t]]^{|\bar{X}|}$ such that $\bar{a} \in S \subseteq V(P) \subseteq R[[t]]^{|\bar{X}|}$.

Let (K, R, E, D) be a DFES and (K', R', E) be a FES such that $(K, R, E) \subseteq (K', R', E)$. We prove, using results of [K]:

- It is possible to extend D on E-algebraic transcendant elements of (K', R', E) (relatively to (K, R, E))
- It is possible to extend D uniquely on E-algebraic elements of (K', R', E) (relatively to (K, R, E))
- \bullet $ecl^{K'}$ is closed under D

Let $\mathcal{K} := (K, R, E, D, \mathcal{V})$ be a TDFES satisfying $(I)_E$. We prove, using adapted results from [PP] to the E-algebraic setting:

• \mathcal{K} has a \mathcal{L} -extension $\hat{\mathcal{K}} := (\hat{K}, \hat{R}, \hat{E}, \hat{D}, \hat{\mathcal{V}})$ satisfying $(DL)_E$.

Let $T_{E,D}$ the theory of those TDFES for which the restricted TFES has a theory T_E that admits a model-completion T_E^c . We prove, using adapted results from [S]:

- $T_{E,D}^c := T_E^c \cup T_{E,D} \cup (DL)_E$ is the model-completion of $T_{E,D}$.
- Corollary 1: If $T_E^c = Th(\mathbb{R}, <, exp)$, then $T_{E,D}^c$ is the model-completion of the theory of ordered exponential differential fields of characteristic 0.
- Corollary 2: $(\mathbb{R}, <, exp, D)$ and $(\mathbb{R}((t))^{LE}, <, exp, D)$ (where $(\mathbb{R}((t))^{LE}, <, exp)$ is the field of logarithmic-exponential series constructed in [DMM]) satisfy $T_{E,D}^c := Th(\mathbb{R}, <, exp) \cup T_{E,D} \cup (DL)_E$.
- Corollary 3: If $T_E^c = Th(\mathbb{C}_p, |.|, exp, |)$, then $T_{E,D}^c$ is the model-completion of the theory of algebraically closed valued differential fields of characteristic 0 and residual characteristic p with an exponential differential valuation ring.
- Corollary 4: If $T_E^c = Th(\mathbb{Q}_p, |.|, exp, ...)$, then $T_{E,D}^c$ is the model-completion of the theory of p-valued differential fields of characteristic 0 with an exponential differential valuation ring.

References:

[DMM] L. van den Dries, A. Macintyre, D. Marker, Logarithmic-exponential Power Series, J. London Math. Soc. (1997) 56 (3): 417-434.

[GP] N. Guzy, F. Point, Topological differential fields, Annals of Pure and Applied Logic 161, 2010, 570-598.

[GP] N. Guzy, F. Point, Topological differential fields, Annals of Pure and Applied Logic 161, 2010, 570-5 [K] J. Kirby, Exponential algebraicity in exponential fields, Bull. London Math. Soc. 42, 2010, 879-890.

[KKS] S. Kuhlmann, F.-V. Kuhlmann, S. Shelah, Exponentiation in power series fields, *Proc. of the American Math. Soc.*, Volume 125, Number 11, November 1997, 3177-3183.

[M] A. Macintyre, Exponential algebras, Logic and Algebra, lecture notes in pure and applied mathematics, vol. 180,1996.

[NM] N. Mariaule, On the decidability of the p-adic exponential ring [Thesis]. Manchester, UK: The University of Manchester; 2013.
[MR] C.Michaux, C.Rivière, Quelques remarques concernant la théorie des corps ordonnés différentiellement clos. Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 3, 341-348.

[PP] D. Pierce, A. Pillay, A Note on the Axioms for Differentially Closed Fields of Characteristic Zero, Journal of Algebra, Volume 204, Issue 1, 1 June 1998, Pages 108-115.

[R] N.Regnault, Existential closure of some topological exponential differential fields, in preparation.

[S] T. Servi, On the first order theory of real exponentiation, [Thesis]. Scuola Normale Superiore de Pisa, 2006 [So] N. Solanki, Uniform companions for relational expansions of large differential fields of characteristic 0, preprint 2015.

[T] M. Tressl, A uniform companion for large differential fields of characteristic 0, Trans. Amer. Math. Soc. 357(10), 2005, 39333951.

[W] A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094.