Na wale dwupodporowym są osadzone dwa koła zębate o zębach śrubowych i promieniach tocznych $r_1\!\coloneqq\!155~mm$, $r_2\!\coloneqq\!62.5~mm$ (Rys. 1). Na koło 1 działają siły: obwodowa $P_{o1}\!\coloneqq\!1805~N$, promieniowa $P_{r1}\!\coloneqq\!679~N$ i wzdłużna $P_{w1}\!\coloneqq\!484~N$, natomiast na koło 2 odpowiednio: $P_{o2}\!\coloneqq\!4480~N$, $P_{r2}\!\coloneqq\!1610~N$ i $P_{w2}\!\coloneqq\!790~N$. Wyznaczyć teoretyczny (z warunku wytrzymałościowego) i rzeczywistegy zarys wału wykonanego ze stali 15Cr2, dla której $k_{go}\!\coloneqq\!80~MPa$, $k_{sj}\!\coloneqq\!85~MPa$. Wymiary geometryczne wynoszą: $a\!\coloneqq\!80~mm$, $b\!\coloneqq\!120~mm$, $c\!\coloneqq\!80~mm$.

Rys. 1 Schemat projektowanej belki

Korzystając ze schematu (Rys. 2) zapisano równania równowagi w płaszczyźnie XY

Rys. 2 Schemat obliczeniowy belki w płaszczyźnie XY

$$R_{Au} - P_{r1} - P_{r2} + R_{Du} = 0$$

$$r_1 \cdot P_{w1} + a \cdot P_{r1} + (a+b) \cdot P_{r2} - r_2 \cdot P_{w2} - (a+b+c) \cdot R_{Dy} = 0$$

Równania mozna zapisać w postaci macierzowej

$$\begin{bmatrix} 1 & 1 \\ 0 & -(a+b+c) \end{bmatrix} \cdot \begin{bmatrix} R_{Ay} \\ R_{Dy} \end{bmatrix} = \begin{bmatrix} P_{r1} + P_{r2} \\ -r_1 \cdot P_{w1} - a \cdot P_{r1} - (a+b) \cdot P_{r2} + r_2 \cdot P_{w2} \end{bmatrix}$$

stąd (po doprowadzeniu by macierze miały te same jednostki):

$$\begin{bmatrix} R_{Ay} \\ R_{Dy} \end{bmatrix} \coloneqq \begin{bmatrix} 1 & 1 \\ 0 & \frac{-(a+b+c)}{mm} \end{bmatrix}^{-1} \cdot \begin{bmatrix} P_{r1} + P_{r2} \\ -r_1 \cdot P_{w1} - a \cdot P_{r1} - (a+b) \cdot P_{r2} + r_2 \cdot P_{w2} \\ \hline mm \end{bmatrix} = \begin{bmatrix} 853.411 \\ 1435.589 \end{bmatrix} N$$

Reakcje wynoszą odpowiednio R_{Ay} =853.41 N, R_{Dy} =1435.59 N. Dane do sporżadzenia wykresu momentu gnącego zebrano w tabeli (Tab. 1)

Tab. 1 Zestawienie danych momentu gnącego w płaszczyźnie XY

Przedział	Wzór	Wartość
x = 0		0 Nm
$x \in (0,a)$	$R_{Ay} \cdot x$	
$x_L = a$		$68,\!27\mathrm{Nm}$
$x_P = a$		143,29 Nm
$x \in (a,a+b)$	$R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a)$	
$x_L = a + b$		$164,\!22\mathrm{Nm}$
$x_P = a + b$		114,85 Nm
$x \in (a+b,a+b+c)$	$R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a) - P_{w2} \cdot r_2 - P_{r2} \cdot (x - a - b)$	
x = a + b + c		0 Nm

$$\begin{split} &M_{gy1}(x) \coloneqq \left(R_{Ay} \cdot x \right) \cdot \left(0 \le x \le a \right) \\ &M_{gy2}(x) \coloneqq \left(R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a) \right) \cdot \left(a \le x \le a + b \right) \\ &M_{gy3}(x) \coloneqq \left(R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a) - P_{w2} \cdot r_2 - P_{r2} \cdot (x - a - b) \right) \cdot \left(a + b \le x \le a + b + c \right) \\ &M_{gy}(x) \coloneqq M_{gy1}(x) + M_{gy2}(x) + M_{gy3}(x) \end{split}$$

Wykres momentu gnącego (Rys. 3) przygotowano dla $x = 0,0.001 \cdot (a+b+c)..(a+b+c)$.

Rys. 3 Wykres momentu gnącego w płaszczyźnie XY

Momenty gnące w mocowaniach kół zmieniają się skokowo i wynoszą:

$$\begin{split} M_{gyCL} \coloneqq & M_{gy2} \big(a + b \big) = 164.22 \ \textit{N} \cdot \textit{m} \\ & M_{gyBL} \coloneqq & M_{gy1} \big(a \big) = 68.27 \ \textit{N} \cdot \textit{m} \\ & M_{gyCP} \coloneqq & M_{gy3} \big(a + b \big) = 114.85 \ \textit{N} \cdot \textit{m} \\ \end{split}$$

Analogiczne obliczenia przeprowadzono w płaszczyźnie XZ. Korzystając ze schematu (Rys. 4) zapisano równania równowagi w płaszczyźnie XZ.

Rys. 4 Schemat obliczeniowy belki w płaszczyźnie XZ

Równania równowagi w płaszczyźnie XZ

$$R_{Az} - P_{o1} + P_{o2} - R_{Dz} = 0$$

$$a \cdot P_{o1} - (a+b) \cdot P_{o2} + (a+b+c) \cdot R_{Dz} = 0$$

Równania mozna zapisać w postaci macierzowej

$$\begin{bmatrix} 1 & -1 \\ 0 & (a+b+c) \end{bmatrix} \cdot \begin{bmatrix} R_{Az} \\ R_{Dz} \end{bmatrix} = \begin{bmatrix} P_{o1} - P_{o2} \\ -a \cdot P_{o1} + (a+b) \cdot P_{o2} \end{bmatrix}$$

stąd (po doprowadzeniu by macierze miały te same jednostki):

$$\begin{bmatrix} R_{Az} \\ R_{Dz} \end{bmatrix} := \begin{bmatrix} 1 & -1 \\ 0 & \frac{(a+b+c)}{mm} \end{bmatrix}^{-1} \begin{bmatrix} P_{o1} - P_{o2} \\ -a \cdot P_{o1} + (a+b) \cdot P_{o2} \\ \hline mm \end{bmatrix} = \begin{bmatrix} 9.286 \\ 2684.286 \end{bmatrix} N$$

Reakcje wynoszą odpowiednio $R_{Az}=9.29~N$, $R_{Dz}=2684.29~N$. Dane do sporżadzenia wykresu momentu gnącego zebrano w tabeli (Tab. 2).

Tab. 2 Zestawienie danych momentu gnącego w płaszczyźnie XZ

Przedział	Wzór	Wartość
x = 0		0 <i>Nm</i>
$x \in (0,a)$	$R_{Az} \cdot x$	
x = a		$0,74\mathrm{Nm}$
$x \in (a,a+b)$	$R_{Az} \cdot x - P_{o1} \cdot (x - a)$	
x = a + b		$-214{,}74\mathrm{Nm}$
$x \in (a+b,a+b+c)$	$R_{Az} \cdot x - P_{o1} \cdot (x-a) + P_{o2} \cdot (x-a-b)$	
x = a + b + c		0 <i>Nm</i>

$$\begin{split} &M_{gz1}(x) \coloneqq \big(R_{Az} \cdot x\big) \cdot \big(0 \leq x < a\big) \\ &M_{gz2}(x) \coloneqq \big(R_{Az} \cdot x - P_{o1} \cdot (x - a)\big) \cdot \big(a \leq x < a + b\big) \\ &M_{gz3}(x) \coloneqq \big(R_{Az} \cdot x - P_{o1} \cdot (x - a) + P_{o2} \cdot (x - a - b)\big) \cdot \big(a + b \leq x < a + b + c\big) \\ &M_{gz}(x) \coloneqq M_{gz1}(x) + M_{gz2}(x) + M_{gz3}(x) \end{split}$$

Wykres momentu gnącego przedstawiono na Rys. 5.

Rys. 5 Wykres momentu gnącego w płaszczyźnie XZ

Wypadkowy moment gnący wynosi (Rys. 6):

$$M_g(x) \coloneqq \sqrt{\left(M_{gy}(x)\right)^2 + \left(M_{gz}(x)\right)^2}$$

Rys. 6 Wykres wypadkowego momentu gnącego

Momenty gnące wypadkowe w mocowaniach kół zmieniają się skokowo i wynoszą:

$$M_{gBL} \coloneqq \sqrt{\left(M_{gyBL}\right)^2 + \left(M_{gz}\left(a\right)\right)^2} = 68.28 \ \boldsymbol{N \cdot m}$$

$$\begin{split} M_{gBP} &\coloneqq \sqrt{\left(M_{gyBP}\right)^2 + \left(M_{gz}(a)\right)^2} = 143.29 \; \textbf{N} \cdot \textbf{m} \\ M_{gCL} &\coloneqq \sqrt{\left(M_{gyCL}\right)^2 + \left(M_{gz}(a+b)\right)^2} = 270.34 \; \textbf{N} \cdot \textbf{m} \\ M_{gCP} &\coloneqq \sqrt{\left(M_{gyCP}\right)^2 + \left(M_{gz}(a+b)\right)^2} = 243.52 \; \textbf{N} \cdot \textbf{m} \end{split}$$

Wał jest skręcany stałym momentem skręcającym na odcinku BC (Rys. 7)

$$M_s(x) := (P_{o1} \cdot r_1) \cdot (a \le x \le a + b)$$

Rys. 7 Wykres momentu skręcającego

Zastępczy moment (Rys. 8) może być wyznaczony z następującego warunku, gdyż $M_a{<}2\ M_s$ (odcinek BC):

$$\begin{split} M_{z1}(x) &\coloneqq M_g(x) \cdot (0 \leq x < a) \\ M_{z2}(x) &\coloneqq \sqrt{\left(\frac{2 \cdot k_{sj}}{k_{go}} \cdot M_g(x)\right)^2 + \left(M_s(x)\right)^2} \cdot (a \leq x \leq a + b) \\ M_{z3}(x) &\coloneqq M_g(x) \cdot (a + b < x \leq a + b + c) \\ M_z(x) &\coloneqq M_{z1}(x) + M_{z2}(x) + M_{z3}(x) \end{split}$$

Rys. 8 Wykres momentu zastępczego

Zastępczy moment w punktach mocowania kół wynosi:

$$M_{zBP} \coloneqq \sqrt{\left(rac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gBP}
ight)^2 + \left(M_s(a)
ight)^2} = 413.52 \ extbf{ extit{N}} \cdot extbf{ extit{m}}$$

$$M_{zCL} \coloneqq \sqrt{\left(\frac{2 \cdot k_{sj}}{k_{ao}} \cdot M_{gCL}\right)^2 + \left(M_s(a+b)\right)^2} = 638.98 \ \textbf{\textit{N}} \cdot \textbf{\textit{m}}$$

W punktach 1, 2, 3, 4L, 10P, 11, 12, 13 wał jest zginany, a w punktach 4P, 5, 6, 7, 8, 9, 10L wał jest zginany i skręcany zatem:

$$d_1(x) \coloneqq \sqrt[3]{\frac{32 \cdot M_g(x)}{\pi \cdot k_{go}}} \cdot (0 \le x < a)$$

$$d_2(x) \coloneqq \sqrt[3]{\frac{16 \cdot M_z(x)}{\pi \cdot k_{sj}}} \cdot (a \le x \le a + b)$$

$$d_3(x) \coloneqq \sqrt[3]{\frac{32 \cdot M_g(x)}{\pi \cdot k_{go}}} \cdot (a + b < x \le a + b + c)$$

$$d(x) \coloneqq d_1(x) + d_2(x) + d_3(x)$$

Wyniki przedstawiono w formie wykresu (Rys. 9).

Rys. 9 Wykres zmiany średnicy teoretycznej

Podsumowanie wyników zaprezentowano w tabeli (Tab. 3).

Tab. 3 Zestawienie wyników końcowych

$Nr_przekroju$	\boldsymbol{x}	$M_z(x)$	d	D
	(mm)	$(N \cdot m)$	(mm)	(mm)
0	0	0	0	0
1	20	17.07	12.95	20
2	40	34.14	16.32	20
3	60	51.21	18.68	20
"4L"	80	68.28	20.56	32
"4P"	80	413.52	29.15	32
5	100	425.62	29.43	32
6	120	450.62	30	35
7	140	486.55	30.78	35
8	160	531.19	31.69	40
9	180	582.53	32.68	35
"10L"	200	638.98	33.7	35
"10P"	200	243.52	31.42	35
11	220	182.64	28.54	35
12	240	121.76	24.94	30
13	260	60.88	19.79	25
14	280	0	0	25