Comparison of Asymptotic Variance: MIPW vs IPW

Jaehyuk Jang

October 2024

1 Introduction

Proposition 1 (The Equivalent Estimating Equation for MIPW). Let $(Y_i, Y_i^*, \mathbf{X}_i, \mathbf{X}_i^*, Z_i) \overset{i.i.d}{\sim} F, i = 1, \dots, N$. Define the true parameter $\theta_0 = (\beta_0, \pi_0, \mu_0(1), \mu_0(0)) \in \Theta \subset \mathbb{R}^{d+3}$ as $E_F(\psi^*(\theta_0)) = 0$. Then, ψ^{**} is an equivalent estimating equation of ψ^* where ψ^{**} is

$$\psi^{**}(\theta) = \begin{pmatrix} \left\{ \frac{1-\delta}{e^*(\mathbf{X};\beta)} Z + \left(\frac{\delta \pi}{(1-\pi)e^*(\mathbf{X};\beta)} - \frac{1}{1-e^*(\mathbf{X};\beta)} \right) (1-Z) \right\} \nabla_{\beta} e^*(\mathbf{X};\beta) \\ Z - \pi \\ ZY - Z\mu(1) \\ \frac{e(\mathbf{X};\beta)}{1-e(\mathbf{X};\beta)} (1-Z)Y - \frac{e(\mathbf{X};\beta)}{1-e(\mathbf{X};\beta)} (1-Z)\mu(0) \end{pmatrix}$$

This is the proposition that let us to calculate the MIPW estimator through only observed variance. By the M-estimation theory, $\sqrt{n}^{-1}(\hat{\tau}-\tau) \stackrel{d}{\to} N(0,V_{MIPW})$ where

$$V_{MIPW} = V(\psi^{**}) = a^T A(\psi^{**}) B(\psi^{**}) A(\psi^{**})^T a$$
 (1)

$$A(\psi^{**}) = \left(E\left[-\frac{\partial}{\partial \theta}\psi^{**}\right]\right)^{-1} \tag{2}$$

$$B(\psi^{**}) = E\left[\psi^{**}(\psi^{**})^{T}\right] \tag{3}$$

$$a = \left(\mathbf{0}_d^T, 0, 1, -1\right)^T \tag{4}$$

We want to prove that $V_{MIPW} < V_{IPW}$ when δ is "bounded" away from 1. However, as we can observe from the simulation table 1 below, it is more likely that there is some range of δ such inequality holds. The conducted simulation proceeded as so.

- 1. Set $\delta=0.1$. Generate 200 datasets with size n=500 from the "strong overlap" condition.
- 2. Calculate the sandwich variance estimator of IPW and MIPW for each datasets i.e. $\hat{V}^1_{IPW},\dots,\hat{V}^{200}_{IPW}$ and $\hat{V}^1_{MIPW},\dots,\hat{V}^{200}_{MIPW}$.

- 3. Average the results and compare: $\hat{V}_{IPW} = \sum_r \hat{V}_{IPW}^r$ vs $\hat{V}_{MIPW} = \sum_r \hat{V}_{MIPW}^r$.
- 4. Repeat 1, 2, 3 for $\delta = 0.6$ and 0.9.
- 5. Repeat the whole process for n = 1000, 5000, 10000, 100000.

δ	N	500	10^{3}	5×10^3	10^{4}	10^{5}
$\delta = 0.1$	\hat{V}_{IPW}	0.0487	0.0266	0.0051	0.0025	0.0003
	\hat{V}_{MIPW}	0.0385	0.0217	0.0042	0.0021	0.0002
$\delta = 0.6$	\hat{V}_{IPW}	0.0485	0.0237	0.0050	0.0025	0.0003
	\hat{V}_{MIPW}	0.0218	0.0106	0.0023	0.0011	0.0001
$\delta = 0.9$	\hat{V}_{IPW}	0.0509	0.0261	0.0050	0.0025	0.0003
	\hat{V}_{MIPW}	8.7025	1.9699	0.0108	0.0051	0.0005

Table 1: Simulation Result

This simulation result implies that $V_{MIPW} < V_{IPW}$ does not hold for all $\delta \in (0,1)$ but hopefully on certain $(0,\tilde{\delta})$ for some constant $\tilde{\delta} < 1$.

2 Idea

2.1 Notations

Recall the estimating equation for the IPW estimator.

$$\psi(\theta) = \psi(\theta; Y, \mathbf{X}, Z) = \begin{pmatrix} \frac{Z - e(\mathbf{X}; \beta)}{e(\mathbf{X}; \beta)(1 - e(\mathbf{X}; \beta))} \nabla_{\beta} e(\mathbf{X}; \beta) \\ ZY - Z\mu(1) \\ \frac{e(\mathbf{X}; \beta)}{1 - e(\mathbf{X}; \beta)} (1 - Z)Y - \frac{e(\mathbf{X}; \beta)}{1 - e(\mathbf{X}; \beta)} (1 - Z)\mu(0) \end{pmatrix}$$
(5)

Denote

$$\begin{split} e &:= e(\mathbf{X}; \beta), \quad e^* := e^*(\mathbf{X}; \beta) \\ \dot{e} &:= \frac{\partial}{\partial \beta} e(\mathbf{X}; \beta) = \nabla_{\beta} e(\mathbf{X}; \beta) \\ \dot{e}^* &:= \frac{\partial}{\partial \beta} e^*(\mathbf{X}; \beta) = \nabla_{\beta} e^*(\mathbf{X}; \beta) \end{split}$$

Note from Lemma 1 in the main paper,

$$e^* = \frac{\pi\delta + (1 - \pi - \delta)e}{1 - \pi + \pi\delta - \delta e} \tag{6}$$

$$\dot{e}^* = (1 - \delta) \left(\frac{1 - e^*}{1 - e} \right)^2 \dot{e} \tag{7}$$

Let

$$\mathbf{C}^* = \begin{bmatrix} c^* I_d & \mathbf{0}_{d \times 3} \\ \mathbf{0}_{3 \times d} & I_3 \end{bmatrix} \cdots c^* = \frac{e^* (1 - e)^2}{(1 - \delta)^2 (1 - e^*)^2 e}$$
(8)

2.2 Discoveries

Some list of discoveries:

- (1) $\psi = \mathbf{C}^* \psi^{**} \text{ for } 0 < \delta < 1$
- (2) $B(\psi) \succeq B(\psi^{**})$ equality iff $\delta = 0$

<u>Proof of (1)</u> Observe that ψ and ψ^{**} have the same form except for the first element. Let us examine the first elements of ψ and ψ^{**} , ψ_1 and ψ_1^{**} .

$$\psi_1 = \left(\frac{Z}{e} - \frac{1 - Z}{1 - e}\right) \dot{e}$$

$$\psi_1^{**} = \left(Z\frac{1 - \delta}{e^*} + (1 - Z)\frac{\delta\pi - (1 - \pi + \delta\pi)e^*}{(1 - \pi)e^*(1 - e^*)}\right) \dot{e}^*$$

Consider Z = 1. Then

$$\psi_1^{Z=1} = \frac{\dot{e}}{e} \tag{9}$$

$$\stackrel{e}{=} \frac{e^*(1-e)^2}{(1-\delta)^2(1-e^*)^2 e} (1-\delta) \frac{\dot{e}^*}{e^*}$$
 (10)

$$= \frac{e^*(1-e)^2}{(1-\delta)^2(1-e^*)^2e} (\psi_1^{**})^{Z=1}$$
(11)

Denote $c^* = \frac{e^*(1-e)^2}{(1-\delta)^2(1-e^*)^2e}$ and note that $c^* > 1$ a.s. We will use this later.

$$c^* \stackrel{(6)}{=} \frac{1 - \pi + \pi \delta - \delta e}{(1 - \pi)(1 - \delta)} \left(1 + \frac{\delta}{1 - \delta} \frac{\pi}{1 - \pi} \frac{1 - e}{e} \right) > 1 \quad a.s$$
 (12)

$$(\because e < 1 \quad a.s) \tag{13}$$

Now consider Z = 0.

$$\psi_1^{Z=0} = -\frac{\dot{e}}{1 - e} \tag{14}$$

$$\stackrel{(7)}{=} -\frac{1-e}{(1-\delta)(1-e^*)^2} \dot{e}^* \tag{15}$$

$$\stackrel{(6)}{=} -\frac{1-\pi}{(1-\pi-\delta+\delta e^*)(1-e^*)}\dot{e}^*$$
 (16)

$$\stackrel{(6)}{=} \frac{(1-\pi)e^*(1-e)}{(1-\delta)(1-\pi-\delta+\delta e^*)(1-e^*)e} \frac{\delta \pi - (1-\pi+\delta \pi)e^*}{(1-\pi)e^*(1-e^*)} \dot{e}^*$$
(17)

$$= \frac{(1-\pi)e^*(1-e)}{(1-\delta)(1-\pi-\delta+\delta e^*)(1-e^*)e} (\psi_1^{**})^{Z=0}$$
(18)

However, note that $\frac{(1-\pi)e^*(1-e)}{(1-\delta)(1-\pi-\delta+\delta e^*)(1-e^*)e}=c^*$. Hence, $\psi_1^{Z=0}=c^*(\psi_1^{**})^{Z=0}$. Since Z is a binary variable, Z(1-Z)=0. Therefore,

$$\psi_1 = c^* Z \psi_1^{**} + c^* (1 - Z) \psi_1^{**} = c^* \psi_1^{**}$$
(19)

Then,

$$\psi = \mathbf{C}^* \psi^{**} \tag{20}$$

where

$$\mathbf{C}^* = \begin{bmatrix} c^* I_d & \mathbf{0}_{d \times 3} \\ \mathbf{0}_{3 \times d} & I_3 \end{bmatrix}$$
 (21)

Proof of (2)

$$B(\psi) \succeq B(\psi^{**}) \Leftarrow \psi \psi^T \succeq \psi^{**} (\psi^{**})^T \quad a.s \stackrel{(*)}{\Leftarrow} (1)$$
 (22)

Proof of (*)

Lemma 1. Let $x \in \mathbb{R}^d$ and diagonal $D \in \mathbb{R}^{d \times d}$ s.t. $D \succeq I$. If y = Dx then $yy^T \succeq xx^T$ where equality holds iff D = I.

Proof. WTS: $yy^T = Dxx^TD \succeq xx^T$ which is equivalent to $Dxx^TD - xx^T \succeq \mathbf{0}$ Note

$$(D-I)xx^{T}(D-I) \succeq \mathbf{0}$$

$$\Leftrightarrow Dxx^{T}D \succeq xx^{T}D + Dxx^{T} - xx^{T}$$

Hence,

ETS: $xx^TD + Dxx^T - xx^T \succeq xx^T$ which is sufficed when $Dxx^T \succeq xx^T$ since Dxx^T is symmetric. In other words, we need to show that $(D-I)xx^T$ is a p.s.d. This is directly straightforward since $rank((D-I)xx^T) \leq \min(rank(D-I)xx^T)$

This is directly straightforward since $rank((D-I)xx^T) \leq \min(rank(D-I), rank(xx^T)) = 1$ and the unique pair of eigenvalue and eigenvector of $(D-I)xx^T$ is $x^T(D-I)x$ and (D-I)x, respectively.

If we can prove that $A(\psi)^T = DA(\psi^{**})^T$ for some diagonal $D \succeq I$ on $0 \le \delta \le \tilde{\delta}$, then $V_{MIPW} > V_{IPW}$ on the same range by Lemma 2.

Lemma 2. Let $x \in \mathbb{R}^d$ and diagonal $D \in \mathbb{R}^{d \times d}$ s.t. $D \succeq I$. If y = Dx then $x^T B x \leq y^T B y$ for a symmetric p.s.d B. The equality holds iff D = I.

Proof. To show $x^TBx \leq x^TDBDx = y^TBy$, note that since B is a p.s.d, $\exists B^{1/2}: B = B^{1/2}(B^{1/2})^T$ and $B^{1/2}$ is also symmetric (: spectral decomposition of B). Set $v = (B^{1/2})^Tx$ then $x^TBx = v^Tv \leq v^TD^2v = x^TDBDx$ where $D^2 = DD$. The equality holds iff D = I.

2.3 Simulation Study: Find D such that $A(\psi)^T = DA(\psi^{**})^T$

To see if $A(\psi)^T (A(\psi^{**}))^{-T}$ is a diagonal matrix on a certain range of δ , we conduct a simple simulation study.

- 1. Set $\delta=0.1$. Generate 200 datasets with size n=500 from the "strong overlap" condition.
- 2. Calculate the bread of the sandwich variance estimator of IPW and MIPW for each datasets i.e. $\hat{A}(\psi)^1, \ldots, \hat{A}(\psi)^{200}$ and $\hat{A}(\psi^{**})^1, \ldots, \hat{A}(\psi^{**})^{200}$.
- 3. Compute $\hat{D}^r = (\hat{A}(\psi)^r)^T (\hat{A}(\psi^{**})^r)^{-T}$
- 4. Extract the pair; minimum and the maximum value of the absolute diagonal and the non-diagonal elements from each $\hat{D}^r, r = 1, \dots, 200$ i.e. $\left(\min_i |\hat{D}^r_{ii}|, \max_i |\hat{D}^r_{ii}|\right)$ and $\left(\min_{i \neq j} |\hat{D}^r_{ij}|, \max_{i \neq j} |\hat{D}^r_{ij}|\right)$.
- 5. Average the pairs
- 6. Repeat 1 to 5 for $\delta = 0.6$ and $\delta = 0.9$.
- 7. Repeat the whole process for n = 1000, 5000, 10000, 100000

We omit the result for n = 1000, 5000, 10000 for simplicity.

n		500		10^{5}		
		diag.	non-diag.	diag.	non-diag.	
$\delta = 0.1$	max	1.00064	1.00064	1.00013	0.05981	
	\min	0.74169	0.00000	0.77822	0.00000	
		diag.	non-diag.	diag.	non-diag.	
$\delta = 0.6$	max	1.00063	0.24343	1.00026	0.07236	
	\min	0.16752	0.00000	0.17835	0.00000	
		diag.	non-diag.	diag.	non-diag.	
$\delta = 0.9$	max	1.00029	0.55657	1.00118	0.01334	
	\min	0.01385	0.00000	0.01676	0.00000	

Table 2: Simulation Result

According to the simulation result, D is not a diagonal matrix. Thus, the conjecture made in this subsection is wrong.