High-Speed Atomic Force Microscopy to Reveal the Structural Dynamics of the Amyloid- β Aggregation Pathways

The morphological characteristics and aggregation of Amyloid- β in this brain has a considerable influence on the risk of Alzheimer's disease. In recent years, many studies have been conducted to characterize the morphology of Amyloid- β using AFM (Atomic Force Microscopy). This assignment aims to characterize Amyloid- β fibers from AFM images, in particular by calculating the *mean diameter* and *tortuosity* of these fibers.

In order to calculate the mean diameter d_m of the fibers, a method based on the combination of skeletonization and distance map calculation is proposed and the tortuosity τ is defined as follow:

$$\tau = l_m/l \in [0; 1] \tag{1}$$

with l the total length of the fiber and l_m the length of a straight line connecting the two ends of the fiber. The tortuosity of a straight line is thus equals to 1. A good approximation of tortuosity can be obtained by calculating the length of the skeleton l_s for l and the maximum Feret diameter F_{max} for l_m . Equation (1) is then written:

$$\tau = F_{\text{max}}/l_s \tag{2}$$

Figure 1: AFM image of Amyloid- β fibers and corresponding segmented binary image.

Instructions

- The student has at his disposal a AFM image named amyloid_b_afm.png and a corresponding binarized image named amyloid_b_bw.png.
- If the student is having difficulty with the image processing and segmentation portion of the assignment, he or she can use the proposed binary image to answer the following questions.

Question 1 (5 points)

Propose a method and code a function that turns the AFM image into a binary image in order to isolate every Amyloid- β fiber visible on the image.

Question 2 (2 points)

Propose a method and code a function that returns the number of fibers. The functions skimage.measure.label (Python) or bwlabel (MATLAB) could be found useful.

Question 3 (2 points)

For each fiber, compute the corresponding skeleton. The functions skimage.morphology.skeletonize (Python) or bwskel (MATLAB) could be found useful.

Question 4 (2 points)

For each fiber, compute the corresponding distance map. The functions scipy.ndimage.distance_transform_edt (Python) or bwdist (MATLAB) could be found useful.

Question 5 (5 points)

Propose a method to calculate the *mean diameter* of each fiber. You can use the skeletons and the distance maps previously computed. You should find a value of about 30 pixels.

Question 6 (4 points)

Propose a method to calculate the *tortuosity* of each fiber.

Appendix

Figure shows an example of the application of the skimage.measure.label and bwlabel functions to a binary image.

1	1	1	0	0	0	0	0	1	1	1	0	0	0	0	0
1	1	1	0	1	1	0	0	1	1	1	0	2	2	0	0
1	1	1	0	1	0	0	0	1	1	1	0	2	0	0	0
1	1	1	0	0	0	1	0	1	1	1	0	0	0	3	0
1	1	1	0	0	0	1	0	1	1	1	0	0	0	3	0
1	1	1	0	0	0	1	0	1	1	1	0	0	0	3	0
1	1	1	0	0	1	1	0	1	1	1	0	0	3	3	0
1	1	1	0	0	0	0	0	1	1	1	0	0	0	0	0

Figure 2: Left: Digital representation of a binary image. Right: Output provided by the bwlabel or skimage.measure.label functions applied to the same binary image.

Figure shows an example of the application of the skimage.measure.label and bwlabel functions to a binary image.

Figure shows an example of the application of the scipy.ndimage.distance_transform_edt and bwdist functions to a binary image.

Figure 3: Left: Digital representation of a binary image. Right: Output provided by the bwskel or skimage.morphology.skeletonize functions applied to the same binary image.

Figure 4: Left: Digital representation of a binary image. Right: Output provided by the bwdist or scipy.ndimage.distance_transform_edt functions applied to the same binary image.