Key Principles of Clinical Trial Simulations to Improve the Probability of Success in Late-Stage Trials

Gautier Paux ¹ Alex Dmitrienko ²

¹Institut de Recherches Internationales Servier ²Quantitative Decision Strategies and Analytics, Quintiles

> PSI Annual Conference May 12, 2015

Context

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Context

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Context

General problematic

 Clinical trials (CT) should be designed to ensure a high probability to detect an effect if the treatment is effective

Sample size calculations in traditional setting

- Traditional CT with two arms, a single endpoint and no interim looks
- Sample size calculations can be done using closed-form expression
- Example for normally distributed endpoints :

$$n=\frac{2(z_{\alpha}+z_{\beta})^2\sigma^2}{\delta^2}$$

Context

Sample size calculations in complex setting

- CT sponsors are often interested in pursuing multiple objectives in Phase II or Phase III clinical trials such as:
 - Multiple doses-control comparisons
 - Multiple endpoints
 - Multiple patients population
 - · Interim looks and adaptations
- General analytical expressions of the power function do not exist in this case

Context

Problematic

How to evaluate power in clinical trials with complex clinical objectives?

FDA Enrichment strategies for CT

▶ Determining the required sample size that will provide reasonable power to test the different hypotheses while controlling type-I error [...] is challenging

Contex

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Clinical Scenario Evaluation framework

Overview

- Developed in Benda et al. (2010)
- Decompose the problem of clinical trial simulations into three components

Objectives

- Systematic simulation-based assessment of study designs and analysis methods
- Selection of a robust approach to clinical trial design and analysis which demonstrates optimal performance
- Sensitivity assessment of key parameters

Clinical Scenario Evaluation framework

Assumption Set

Clinical Scenario Evaluation framework

Assumption Set

Option Set

Clinical Scenario Evaluation framework

Clinical Scenario Evaluation framework

Clinical Scenario Evaluation framework

Clinical Scenario Evaluation framework

Key components

- Assumption set (Data model) is the structure for describing the data generation parameters
- Option set (Analysis model) is the structure for defining the analysis strategies applied to the data
- Metric set (Evaluation model) is the structure for specifying the measures for evaluating the performance of the analysis strategies

Clinical trial optimization

Optimization criterion

- Crucial to choose a relevant criterion
- Must be aligned with clinical objectives

Nearly optimal parameters

 Important to assess the performance of analysis models under nearly optimal configuration of parameters

Sensitivity assessment

 Critical to ensure that optimization is robust to reasonable deviations from original assumptions

Contex

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Case study

MDD clinical trial

- Phase III clinical trial in patients with Major Depressive Disorder (MDD)
- Design: three doses of new treatment (Dose L, Dose M and Dose H) versus placebo
- ► Trial objective : demonstrate that at least one dose is effective
- Primary endpoint : change from baseline to end of treatment in MADRS score
- ▶ Reference : Dmitrienko, Paux and Brechenmacher (2015)

Data Model

Sample size

- Balanced groups
- n per group is set to 200

Outcome distribution

- Primary endpoint is normally distributed
- Expected effect sizes :

Analysis model

Tests

- \triangleright H_1 , Null hypothesis of no effect for Dose H versus Placebo
- ► H₂, Null hypothesis of no effect for Dose M versus Placebo
- ► *H*₃, Null hypothesis of no effect for Dose L versus Placebo
- Null hypotheses are tested with Student t-tests

Multiple testing procedure

- Bonferroni-based chain procedure to control the Type I error rate
 - α allocation rule
 - α propagation rule

α allocation rule

Weight for H_1 is set to w and the remaining weight is split between H_2 and H_3

Case study

α propagation rule

Error rate is split between H_2 and H_3 after H_1 is rejected Error rate is transferred between H_2 and H_3

Evaluation model

Disjunctive power

Probability to reject at least one hypothesis

$$\psi_D(w,g) = P(\text{Reject } H_1 \text{ or } H_2 \text{ or } H_3)$$

Weighted power

Weighted sum of the probability to reject each hypothesis

$$\psi_W(w,g) = \sum_{i=1}^3 v_i P(\text{Reject } H_i)$$

 v_i ($\sum_{i=1}^3 v_i = 1$), relative importance of a significant treatment effect at dose i

Optimal selection of procedure parameters

Exhaustive search

► Explore multiple sets of parameters of chain procedure (hypotheses weight *w* and transition parameter *g*) to maximize an appropriate optimization criterion

Sensitivity assessment

 Evaluate the impact of random deviations from the initial dose-response assumptions on the performance of optimal chain procedure

Optimal selection of procedure parameters

Exhaustive search - Disjunctive power

- When w is close to 1, H₁ serves as a gatekeeper for H₂ and H₃
- ψ_D(w, g) is equivalent to P(Reject H₁)
- $\psi_D(w,g)$ is mostly driven by w and unaffected by g

1	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.9	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.8	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.7	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
Transition parameter	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
on par	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
ansitic 6.0	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
Ë _{0.3}	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.2	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0.1	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90
0	71.50	75.60	78.10	80.10	81.30	82.40	83.10	83.90	84.60	84.90

n a

Optimal selection of procedure parameters

Exhaustive search - Weighted power

- $\psi_W(w,g)$ is maximized for several combinations of the w and gparameters
- Example : w = 1 and g = 0.5

1	48.30	51.20	52.70	53.80	54.40	55.00	55.30	55.60	55.80	55.50
0.9	48.30	51.20	52.70	53.90	54.60	55.10	55.40	55.80	56.10	56.20
0.8	48.40	51.10	52.70	53.90	54.60	55.20	55.60	55.90	56.30	56.40
0.7 To	48.40	51.20	52.70	53.80	54.60	55.20	55.50	56.00	56.30	56.60
amet.	48.40	51.20	52.70	53.90	54.60	55.20	55.60	56.00	56.30	56.50
_{0.0}	48.40	51.20	52.70	53.90	54.60	55.20	55.60	56.00	56.40	56.60
Transition parameter	48.40	51.30	52.80	54.00	54.70	55.30	55.70	56.10	56.40	56.60
€ 0.3	48.40	51.30	52.80	53.90	54.60	55.20	55.60	55.90	56.30	56.50
0.2	48.40	51.20	52.70	53.90	54.50	55.10	55.50	55.80	56.20	56.30
0.1	48.40	51.20	52.70	53.80	54.50	55.00	55.30	55.70	56.00	56.10
0	48.40	51.20	52.60	53.80	54.40	54.90	55.20	55.50	55.70	55.30

<u>೧ ឧ</u>

Optimal selection of procedure parameters

Test H_1 at full α and split the error rate equally between H_2 and H_3 after H_1 is rejected

Sensitivity assessment

Algorithm

- $\theta = (\theta_1, \theta_2, \theta_3)$, Assumed dose-response function
- ▶ Step 1 : Generate k "true" dose-response functions, i.e., $\theta_i^* = (\theta_{i1}^*, \theta_{i2}^*, \theta_{i3}^*), i = 1, ..., k$, where $\theta_{ij}^* \sim N(\theta_{ij}, \sigma)$ and σ quantifies the amount of random perturbation
- Step 2 : Compute weighted power for optimal chain procedure using each true dose-response function (10,000 simulation runs)
- Step 3 : Summarize weighted power over k dose-response functions
 - Distribution of weighted power
 - Performance loss

Sensitivity assessment

Simulated dose-response functions

Sensitivity assessment

Weighted power distribution

Sensitivity assessment

Probability of performance loss

Case study

Key messages

- A range of sample size should be evaluated
- Several expected dose-response function should be considered
- Irrelevant optimization criterion could lead to incorrect choice of optimal multiple testing procedure
- Important to assess the robustness of optimal procedure's performance by randomly perturbing the assumed dose-response functions

Contex

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Mediana R package

Objective

- To provide a standard framework for clinical trial simulations typically performed in Phase II or Phase III trials
- To create best practices for clinical trial simulations
- ► To create reproducible simulation-based calculations

Overview

- Based on the Clinical Scenario Evaluation approach
- Supports a broad class of data, analysis and evaluation models
- Flexible framework easily extensible to define custom options in data, analysis and evaluation models
- High-performance computing

Perspectives

Release

- First version is expected to be released in Q3 2015
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2015). Power calculations in clinical trials with complex clinical objectives. In press

New features for next version

- Support to Bayesian methods and adaptive designs
- Interim analysis decision rules for futility or overwhelming efficacy

Contex

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

Key messages

Take home messages

- New drug development is a time-consuming and expensive process
- Need for more efficient drug development programs with innovative designs and advanced analysis strategies
- Crucial role of quantitative assessments of the performance of these designs and analysis strategies
- Mediana R package provides a turnkey solution to facilitate systematic quantitative assessment of performance for Phase II and III trial designs and analysis methods.

Thank you

Contact information

- Gautier Paux : gautier.paux@servier.com
- Alex Dmitrienko : alex.dmitrienko@quintiles.com

Website

Biopharmaceutical network

http://biopharmnet.com

Mediana package

http://biopharmnet.com/wiki/Mediana_package

Contex

Clinical Scenario Evaluation

Case study

Mediana R package

Key messages

References

References

- Benda, N., Branson, M., Maurer, W., Friede, T. (2010). Aspects of modernizing drug development using clinical scenario planning and evaluation. *Drug Information Journal*. 44, 299–315.
- Bretz, F., Maurer, W., Brannath, W., Posch, M. (2009). A graphical approach to sequentially rejective multiple test procedures. *Statistics in Medicine*. 28, 586–604.
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2015). Power calculations in clinical trials with complex clinical objectives. *In press*.
- Millen, B., Dmitrienko, A. (2011). Chain procedures: A class of flexible closed testing procedures with clinical trial applications. *Statistics in Biopharmaceutical Research*. 3, 14–30.