目的:

这个演示表明一个 RC 电路可以近似看成一个积分电路(高频时电容器上的电压)或近似看成一个微分电路(低频时电阻上的电压)

步骤:

- 1.在低频(100 赫兹)时,示波器上显示微分输入波形(方波)和输出波形(电阻上的电压 波形),注意输出看起来象给输入信号求导。
- 2. 增加频率到 (1 kHz, 然后到10 kHz),相应地对示波器加以调节。 注意输出 开始逐渐变得不像输入的求导(微分),而更像衰减的指数响应。
- 3.在高频(10 kHz)时,示波器上显示积分输入波形(方波)和输出波形(电容上的电压波形),注意输出看起来象输入信号的积分。
- 4. 降低频率到 (1 kHz, 然后到100 Hz),相应地对示波器加以调节。 注意输出 开始逐渐变得不像输入的积分,而更像衰减的指数阶跃响应。

说明:用 RC 电路演示积分电路和微分电路 做微分电路实验时,将板上的开关设置为微分器。 做积分电路实验时,将板上的开关设置为积分器。 微分电路使用下列频率

100 HZ, 1000 HZ and 10,000 HZ

积分电路使用下列频率

10,000 HZ, 1000 HZ and 100 HZ

监测并确保输入(方波)

更多细节见下页图表

示波器设置

СН	V/DIV	OFFSET	MODE	FUNC	MATH	VERTICAL	HORIZONTAL
l on	2	-3.5	DC	off			
2 on	2	2.8	DC	off			
3 on	2	1.3	DC	off			
4 off			DC	off			

Horiz	outal: 5 m	15	Acquisition	: AUT	O AUTO	4			Trigger:	CH1
信号	发生器	设置							电源设	置.
UNIT	WAVE	AMP	OFFSET	FREQ		6 off	+25 off	-25 off	OUTPUT	
FGI	Square	1*	0 1	00 & 1000	& 10,000	ΗZ	!		Trigger	: INT
而估	ガッカ エ	. 李什. 七匹								

幅值取决于教授 见上面的积分器频率设置

6.002 示范#17 A 积分电路和微分电路 Lang 教授 99 年春季

