

Lecture 11 – Gaussian and transformation

Wengang Mao (Marine Technology)
Department of Mechanics and Maritime Sciences,
Chalmers University of Technology,
Goteborg, Sweden

Outline

- Background of Gaussian
 - √What is Gaussian; how to check Gaussian
 - √Why Gaussian
- Techniques for the transformation
 - ✓ Log Transformation
 - ✓ Reciprocal Transformation
 - ✓ Exponential Transformation
 - ✓ Box-Cox Transformation
 - ✓ Normal Inverse Gaussian

2023-05-15

What is Gaussian

How to check Gaussian

- Five Number Summary
- Histogram
- Q-Q plot
- KDE plot
- Skewness and Kurtosis

How to check Gaussian

Why Gaussian

Importance of Normality in Machine Learning!

- 1. Gaussian distribution is found everywhere because a dataset with finite variance turns into Gaussian as long as the dataset with independent feature-probabilities is allowed to grow in size.
- 2.Datasets with Gaussian distributions make applicable to a variety of methods that fall under parametric statistics.
 - The methods such as <u>propagation of uncertainty</u> and <u>least squares</u> parameter fitting that make a data-scientist life easy apply only to datasets with normal or normal-like distributions.
- 3. Since Gaussian (Normal) Distribution is easy to explain, the intuition behind the conclusion and summary of the test can be easily conveyed to people with little statistical knowledge.
- 4. The entire distribution is described by two numbers, the mean and variance.
- 5.Unlike much other distribution that changes their nature on transformation, a Gaussian tends to remain a Gaussian.
 - * The product of two Gaussian is a Gaussian
 - * The Sum of two independent Gaussian random variables is a Gaussian
 - * Convolution of Gaussian with another Gaussian is a Gaussian
 - * Fourier transform of Gaussian is a Gaussian

Need for Data Transformation!!

- To more closely approximate a theoretical distribution that has nice statistical properties
- To spread data out more evenly -to make data distributions more symmetrical
- To make relationships between variables more linear
- To make data have more constant variance (homoscedastic)

Transformation (1) -- Log Transformation

• Y = log(X)

Transformation (2) -- Exponential Transformation

 $Y = \exp(X)$; or $Y = X^n$

2023-05-15

Transformation (3) -- Reciprocal Transformation

Y = 1/X

Transformation (4) -- Reciprocal Transformation

2023-05-15

Normal Inverse Gaussian

Normal inverse Gaussian distribution

- A relatively flexible probability distribution that can be used to approximate unknown probability distributions by fitting it to data.
- Can fit mean, variance, skewness, and kurtosis to data.
- We can also extend it to a log-NIG distribution to make it even more flexible.
- After fitting, data can be mapped to (marginal) Gaussianity.

Normal-inverse Gaussian (NIG)

mai-miverse Gaussian (MG)
μ location (real)
lpha tail heaviness (real)
eta asymmetry parameter (real)
δ scale parameter (real)
$\gamma = \sqrt{lpha^2 - eta^2}$
$x\in (-\infty;+\infty)$
$\frac{\alpha \delta K_1 \left(\alpha \sqrt{\delta^2 + (x - \mu)^2}\right)}{e^{\delta \gamma + \beta (x - \mu)}}$
$\pi\sqrt{\delta^2+(x-\mu)^2}$
K_j denotes a modified Bessel function of
the second kind ^[1]
$\mu + \delta \beta / \gamma$
$\delta \alpha^2 / \gamma^3$
$3\beta/(\alpha\sqrt{\delta\gamma})$
$3(1+4\beta^2/\alpha^2)/(\delta\gamma)$
$e^{\mu z + \delta(\gamma - \sqrt{\alpha^2 - (\beta + z)^2})}$
$e^{i\mu z + \delta(\gamma - \sqrt{\alpha^2 - (\beta + iz)^2})}$

CHALMERS UNIVERSITY OF TECHNOLOGY