### Министерство образования Республики Беларусь

## Учреждение образования

"Белорусский государственный университет информатики и радиоэлектороники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

## Расчетная работа

По дисциплине "Представление и обработка информации в интеллектуальных системах"

на тему

"Задача нахождения эксцентриситета каждой вершины неориентированного взвешенного графа"

Выполнил

Студент группы

Кимстач Д.Б.

121702

Проверил

Загорский А.Г.

Минск 2022

# Содержание

| Пос  | становка задачи                                  | 2   |
|------|--------------------------------------------------|-----|
| Цель |                                                  | 2   |
| 1.   | Список понятий                                   |     |
| 1.1  | Графовая структура                               | 2   |
| 1.2  | Графовая структура с ориентированными связками   | . 2 |
| 1.3  | Графовая структура с неориентированными связками | . 3 |
| 1.4  | Гиперграф                                        | . 3 |
| 1.5  | Псевдограф                                       | . 4 |
| 1.6  | Мультиграф                                       | . 5 |
| 1.7  | Граф                                             | . 5 |
| 1.8  | Неориентированный граф                           | . 5 |
| 1.9  | Маршрут                                          | . 6 |
| 1.10 | Цепь                                             | . 6 |
| 1.11 | Взвешенный граф                                  | . 7 |
| 1.12 | Эксцентриситет                                   | . 7 |
| 2.   | Алгоритм                                         | 8   |
| 3.   | Тестовые примеры                                 | 9   |
| 3.1  | Тест 1                                           | . 9 |
| 3.2  | Тест 2                                           | .12 |
| 3.3  | Тест 3                                           | .12 |
| Вын  | вод                                              | 14  |

**Цель:** Получить навыки формализации и обработки информации с использованием семантических сетей

Постановка задача: Найти эксцентриситет каждой вершины неориентированного графа

#### 1 Список понятий

- 1. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
- (а) Вершина (относительное понятие, ролевое отношение);
- (b) Связка (относительное понятие, ролевое отношение).



Рис.1 Графовая структура

2. Графовая структура с ориентированными связками (абсолютное понятие) (а) Ориентированная связка (относительное понятие, ролевое отношение) —связка,

которая задается ориентированным множеством.



Рис.2 Графовая структура с ориентированными связками

- 3. Графовая структура с неориентированными связками (абсолютное понятие)
- (a) Неориентированная связка (относительное понятие, ролевое отношение) —связка,

которая задается неориентированным множеством.



Рис.3 Графовая структура с неориентированными связками

- 4. Гиперграф (абсолютное понятие) это такая графовая структура, в которой связки могут связывать только вершины:
- (а) Гиперсвязка (относительное понятие, ролевое отношение);
- (b) Гипердуга (относительное понятие, ролевое отношение) ориентированнаягиперсвязка;
- (с) Гиперребро (относительное понятие, ролевое отношение) –

неориентированная гиперсвязка.



Рис.4 Гиперграф

- 5. Псевдограф (абсолютное понятие) это такой гиперграф, в котором все связки должны быть бинарными:
- (а) Бинарная связка (относительное понятие, ролевое отношение) –гиперсвязка арности 2;
- (b) Ребро (относительное понятие, ролевое отношение) –неориентированнаягиперсвязка
- (с) Дуга (относительное понятие, ролевое отношение) ориентированная гиперсвязка;
- (d) Петля (относительное понятие, ролевое отношение) бинарная связка, у которой первый и второй компоненты совпадают.



Рис.5 Псевдограф

6. Мультиграф (абсолютное понятие) – это такой псевдограф, в котором не может быть петель:



Рис.6 Мультиграф

7. Граф (абсолютное понятие) – это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:



Рис.7 Граф

8. Неориентированный граф (абсолютное понятие) –это такой граф, в котором все связки являются ребрами:



Рис. 8 Неориентированный граф

9. Маршрут (относительное понятие, бинарное ориентированное отношение) – это чередующаяся последовательность вершин и гиперсвязок в гиперграфе, которая начинается и кончается вершиной, и каждая гиперсвязка последовательности инцидентна двум вершинам, одна из которых непосредственно предшествует ей, а другая непосредственно следует за ней. В примере ниже показан маршрут A, CON1, C, CON2, D, CON3, B, CON1, Ав гиперграфе.



Рис.9 Маршрут

10. Цепь (относительное понятие, бинарное ориентированное отношение) – это маршрут, все гиперсвязки которого различны. В примере ниже показана цепь A, CON1, C, CON2, D, CON3, B, CON4, Ав гиперграфе.



Рис.10 Цепь

11. Взвешенный граф - это граф, каждому ребру которого поставлено в соответствие некое значение (вес ребра).



Рис.11 Взевешенный граф

12. Эксцентриситет - это наибольшее кратчайшее расстояние между заданной вершиной и любой другой вершиной



Рис.12 Эксцентриситет

### 2 Алгоритм (алгоритм Дейкстры):

- 1. Определенным образом выбираем начальную вершину. Переходим к пункту 2.
- 2. Заполняем множество Distance значениями 0 для начальной вершины и бесконечно большими значениями для остальных вершин. Переходим к пункту 3.
- 3. Определяем соседние узлы изначально выбранной веришины, расстояния до них заносим во множество Distance. Если существует несколько маршрутов до одной точки, то выбираем тот путь, вес которого будет наименьшим. Переходим к пункту 4.
- 4. При переходе к следующей вершине, предыдущую вершину заносим во множество Parent и во множество Visited.Переходим к пункту 5.
- 5. Повторяем пункты 3, 4 до тех пор, пока все вершины не будут посещены. Переходим к пункту 6.
- 6. Выбираем максимальное значение из множества Distance. Это и есть значение эксцентриситета для изначально выбранной вершины. Повторяем пункты 1-5 для следующей вершины графа.

### 3 Тестовые примеры

### 3.1 Tect 1

### Вход:

Найти эксцентриситет каждой вершины неориентированного взвешенного графа



#### Шаг 1:

Введём множество Distance и выберем определённым образом узел - V1. Узлы будут перебираться без повторения.Введем множества Visited и Parent. Отметим, что в множество Distance добавляется расстояние 0 для V1 и расстояния, равные бесконечно большому числу для всех остальных вершин(кратчайшее расстояние до них не определено). Рассмотрим соседние вершины V1 - V2 и V3.

Изначальное расстояние между V1 и V2 - 0+1=1, так как во множестве Distance присутствует только нулевое значение. Добавляем во множество Distance значение 1.

Далее рассмотрим расстояние от V1 до V3. Оно равно 0+4=4. Добавляем значение 4 во множество Distance. Вершину V1 добавим в множество Visited,

так как она уже посещена.

#### Шаг 2:



Переходим к вершине V2. Найдем расстояние от V2 до V3, оно равно 2. А расстояние между V1 и V3 равно 1+2=3. Заносим это значение во множество Distance. Вершину V2 заносим во множество Visited, а V1 добавим во множество Parent, так как она предшествует V2.

#### Шаг 3:

Переходим к вершине 3.Нам необходимо найти расстояние от вершины V3 до V1. Вес ребра равен 4, в данном случае необходимо учесть то, что есть несколько путей от вершины V1 до вершины V3. Рассмотрим: V1 -> V2 -> V3 и V1 -> V3. Т.к. ранее мы установили, что расстояние V1 -> V2 = 1 и V2 -> V3 = 2, то итоговое расстояние первого маршрута равно 3. С другой строны V1 -> V3 = 4. Т.к. 1+2<4, то во множество Distance добавляется значение 1+2=3 (меньшее расстояние).Вершину V3 заносим во множество Visited, а вершину V1 заносим во множество Parent.

Аналогичная ситуация с маршрутом V1 -> V2 и V1 -> V2 -> V3. Так как 1 < 2+4, то мы не изменяем значения множества Distance и множества Parent.



### Шаг 4:

Нам необходимо выбрать наибольшее значение из множества Distance. Оно равно 3. Значит, эксцентриситет первой вершины равен 3. Аналогичные операции совершаем с V2, V3 для определения их эксцентриситета.

# Выход:



# 3.2 Tect 2

# Вход:

Найти эксцентриситет каждой вершины неориентированного графа



# Выход:



# 3.3 Тест 3

# Вход:

Найти эксцентриситет каждой вершины неориентированного графа



# Выход:



### Вывод:

В ходе выполнения работы был изучен алгоритм Дейкстры и применение его в конкретной ситуации. Были изучены понятия графа, мультиграфа, взвешенного графа, псевдографа, гиперграфа,графовой структуры, графовой структуры с ориентированными связками, графовой структуры с неориентированными связками, неориентированного графа, цепи, маршрута, эксцентриситета.

### 3 Список литературы

OSTIS GT. База знаний по теории графов OSTIS GT. - 2011. [Электронный ресурс] - Режим доступа: http://ostisgraphstheo.sourceforge.net/index.php. Дата доступа - 28.03.2022

Гладков Л.А., Курейчик В. В., Курейчик В.М. Дискретная математика. Под ред. В.М. Курейчика. — М.: ФИЗМАТЛИТ, 2014. - 325с.