

Tab2Onto: Unsupervised Semantification with Knowledge Graph Embeddings

Hamada M. Zahera, Stefan Heindorf, Stefan Balke, Jonas Haupt, Martin Voigt, Carolin Walter, Fabian Witter, Axel-Cyrille Ngonga Ngomo

Highlights

- Tabular data lacks semantic information
- Learning Ontology by embedding-based clustering and human-in-the-loop
- Ontology organizes data into hierarchical classes; simplifies data integration and automatic reasoning

Introduction

- Data is collected from various sources to improve business analytics
- In most cases, this data comes in tabular format e.g. CSV,
 Spreadsheet
- In tabular data, the lack of semantic information makes it difficult for machines to understand their meaning
- Semantification is the process of converting data into a representation with unique semantics, e.g., an RDF knowledge graph

* Tab2Onto Approach

- a) Construct a KG from tabular data
- b) Represent entities & relations using knowledge graph embeddings
- c) Clustering similar entities together
- d) Labeling clusters by annotating sampled entities using LabENT¹
- e) Ontology generation

Fig.1 Tab2Onto Pipeline for Semantifiation

1https://github.com/dice-group/LabENT

Experiments

- Which KG embeddings yield the best clusters of entities in the embedding space? (→ Table 1)
- Which clustering approach yields the best clusters of entities?
- How well does our pipeline work for the semantification of tabular data? (→ Table 2)

Table 1: Clustering for type prediction on FB15k-237. Best results in bold.

Algorithm	TRANSE		DISTMULT		ROTATE		$\mathbf{Q}\mathbf{M}\mathbf{U}\mathbf{L}\mathbf{T}$	
	Acc.	$\overline{\mathbf{F_1}}$	Acc.	$\overline{\mathbf{F_1}}$	Acc.	$\overline{\mathbf{F_1}}$	Acc.	$\mathbf{F_1}$
K-Means	0.784	0.751	0.771	0.741	0.282	0.200	0.785	0.803
Agglomerative	0.779	0.746	0.781	0.749	0.284	0.201	0.744	0.775
HDBSCAN	0.678	0.624	0.475	0.362	0.276	0.119	0.276	0.119

Use Case: Lymphography Semantification

- Input: CSV file of lymphography data
- Output: OWL ontology → a taxonomy of OWL classes: Normal, Fibrosis, Metastases, Malign-Lymph

Table 2: Tab2Onto semantification of *Lymphography* with QMULT embeddings and K-Means clustering.

Approach	Acc.	$\mathbf{F_1}$
Tab2Onto (unsupervised) Random (unsupervised)	0.666 0.533	0.728 0.485
Logistic regression (supervised)	0.833	0.818

Fig.2 OWL Ontology of Lymphograpy

Acknowledgement

29th of May - 2nd of June, in Hersonissos, Greece