Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*

Test 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați primul termen al unei progresii geometrice $(b_n)_{n\geq 1}$ în care $b_3=12$ și rația q=2.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Determinați mulțimea valorilor reale ale lui x pentru care $f(x) \ge f(1)$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_5(x+1) = \log_5(11-x)$.
- **5p 4.** Calculați $C_{11}^9 C_{11}^2$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-3,4), B(1,0) și C(5,4). Arătați că triunghiul ABC este dreptunghic isoscel.
- **5p 6**. Arătați că $\frac{\sin 135^{\circ}}{\cos 45^{\circ}} = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 3 & 2 \\ -4 & -3 \end{pmatrix}$.
- **5p** a) Arătați că det A = -1.
- **5p** | **b**) Demonstrați că $A \cdot A \cdot A = A$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, astfel încât $A \cdot X = I_2 + 3A$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy 2x 2y + 6.
- **5p a)** Arătați că 2*2020=2.
- **5p b)** Demonstrați că x * y = (x-2)(y-2)+2, pentru orice numere reale x si y.
- **5p** c) Determinați numerele naturale m și n pentru care m*n=13.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2(x-1)e^x$.
- **5p** a) Arătați că $f'(x) = 2xe^x$, $x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x\to 0} \frac{f'(x)}{x}$.
- **5p** c) Demonstrați că $xe^x \ge e^x 1$, pentru orice număr real x.
 - **2.** Se consideră funcția $f:(-4,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x+4}$.
- **5p** a) Arătați că $\int_{0}^{2} (x+4) f(x) dx = 6.$
- **5p b)** Calculați $\int_{-2}^{0} f(x) dx$.
- **5p** c) Demonstrați că $\int_{-3}^{a} f'(x) f''(x) dx = 2\left(\frac{1}{(a+4)^4} 1\right)$, pentru orice $a \in (-3, +\infty)$.