Number, Arithmetic Operations, and Characters

Signed Integer

• 3 major representations:

Sign and magnitude

One's complement

Two's complement

Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude Representation

High order bit is sign: 0 = positive (or zero), 1 = negative Three low order bits is the magnitude: 0 (000) thru 7 (111) Number range for n bits = $+/-2^{n-1}$ -1 Two representations for 0

One's Complement Representation

- Subtraction implemented by addition & 1's complement
- Still two representations of 0! This causes some problems
- Some complexities in addition

Two's Complement Representation

like 1's comp except shifted one position clockwise

- Only one representation for 0
- One more negative number than positive number

Binary, Signed-Integer Representations

Page 28

		'	
$b_3^{}b_2^{}b_1^{}b_0^{}$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+ 7	+ 7	+ 7
0 1 1 0	+ 6	+6	+ 6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0001	+ 1	+ 1	+ 1
0000	+ 0	+ 0	+ 0
1000	- 0	- 7	- 8
1001	- 1	- 6	- 7
1010	- 2	- 5	- 6
1011	- 3	- 4	- 5
1 1 0 0	- 4	- 3	- 4
1 1 0 1	- 5	- 2	- 3
1 1 1 0	- 6	- 1	- 2
1 1 1 1	- 7	- 0	- 1

Values represented

Figure 2.1. Binary, signed-integer representations.

Addition and Subtraction – 2's Complement

	4	0100	-4	1100
	+ 3	0011	+ <u>(-3)</u>	1101
If carry-in to the high order bit = carry-out then ignore carry	7	0111	-7	11001
if carry-in differs from carry-out then overflow	4	0100	-4	1100
carry-out their overnow	3	1101	+ 3	0011
	1	10001	-1	1111

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

2's-Complement Add and Subtract Operations (b) (100 (+2) (b) (100 (+4)

Page 31

Figure 2.4. 2's-complement Add and Subtract operations.