Principles of Cyber-Physical Systems

Chapter 9: Hybrid Systems

Instructor: Lanshun Nie

Models of Reactive Computation

- Continuous-time model for dynamical system
 - Synchronous, where time evolves continuously
 - Execution of system: Solution to algebraic / differential equations
- ☐ Timed model
 - Like asynchronous for communication of information
 - Clocks evolve continuously, and constraints on delays allow synchronous/global coordination
- ☐ Hybrid systems
 - Generalization of timed processes
 - During timed transitions, evolution of state/output variables specified using differential equations as in dynamical systems

Self-Regulating Switching Thermostat

State machine with two modes +

State variable T to model temperature: type cont

T can be tested and updated during mode-switches

T changes continuously during timed transitions given by differential equations Invariants (as in timed model) constrain how long can a timed transition be

Executions of Thermostat

Initial state = (off, T_0) with T_0 in the interval [60,70]

During a timed transition, T decreases continuously: $T(t) = T_0 - k_2 t$

Mode-switch to on enabled when T <= 62, and must happen before T reaches 60

As time elapses in mode on, T increases according to $T(t) = 70 - (70 - T^*)$ e $^{-k1(t-t^*)}$, t^* , T^* : time and temperature upon entry to mode on

Mode-switch to off enabled when T >= 68, and must happen before T reaches 70

Simulation Plot of an Execution

Modeling a Bouncing Ball

- $oldsymbol{\square}$ Ball dropped from an initial height h $_0$ with an initial velocity v $_0$
- \Box Velocity changes according to the differential equation dv/dt = -g
- When the ball hits the ground, that is, when height h=0, velocity changes discretely: v := -a v, where 0 < a < 1 is dampening constant
- Modeled as a hybrid system: mix of discrete and continuous behaviors!

Hybrid Process for Bouncing Ball

Execution of the BouncingBall process

Definition of Hybrid Process: Syntax

- ☐ A hybrid process HP consists of
 - 1. An asynchronous process P, where some of the state variables can be type cont (ranging over real numbers)
 - 2. A continuous-time invariant CI which is a Boolean expression over the state variables of P
 - For every output variable y of type cont, a Lipschitz-continuous real-valued expression that gives the value of y as a function of state variables and continuous input variables
 - 4. For every state variable x of type cont, a Lipschitz-continuous real-valued expression that gives the rate of change of x as a function of state variables and continuous input variables

Definition of Hybrid Process: Semantics

- Define inputs, outputs, states, initial states, internal actions, input actions, output actions exactly the same as the asynchronous model
- Timed actions: Given a state s and real-valued time $\delta > 0$ and a continuous input signal $\mathbf{u}(t)$ that gives values for continuous inputs over time interval $[0, \delta]$, the corresponding state/output signal over $[0, \delta]$ is uniquely defined so that
 - 1. Initial state s(0) equals s
 - 2. Discrete (i.e. non-cont) state variables stay unchanged
 - 3. For each continuous output variable y, the value y(t) satisfies the corresponding algebraic equation
 - 4. For each continuous state variable x, the derivative dx(t)/dt of the signal satisfies the corresponding differential equation
 - 5. At all times t in $[0, \delta]$, the signal value $\mathbf{s}(t)$ satisfies the invariant constraint CI

Executions of Hybrid Processes

Starting from an initial state, execute either a discrete step (input, or output or internal action) or a timed step (need to solve system of differential equations)

$$(off, 66) -2.5 \rightarrow (off, 61) \rightarrow (on, 61)$$

 $-3.7 \rightarrow (on, 69.02) \rightarrow (off, 69.02)$
 $-4.4 \rightarrow (off, 60.22) \rightarrow (on, 60.22)$
 $-7.6 \rightarrow (on, 69.9) \rightarrow (off, 69.9)$
 $-4.1 \rightarrow (off, 61.7) \rightarrow (on, 61.7) ...$

Concepts based on transition systems such as reachable states, safety and liveness requirements, all apply to hybrid systems

Block Diagrams

- Component processes can now be hybrid processes
 - Need to define Instantiation, Composition, Output Hiding
- ☐ Channels connecting processes of two types
 - 1. Sender/receiver communication of values during discrete steps as in the asynchronous model
 - 2. Continuously evolving signals during timed steps as in the model of continuous-time dynamical systems

Summary of the Model

- Generalizes timed model
 - Variables evolving continuously during a timed action can have complex dynamics, clocks being a very special case
- ☐ Generalizes continuous-time dynamical systems
 - Discontinuous changes to system state now can be modeled
- Generalizes asynchronous model
 - Distributed/multi-agent systems can be modeled
- Suitable for modeling of cyber-physical systems (in full generality)
- ☐ Existing commercial tool support: Modelica, Stateflow/Simulink
 - Simulink now supports Hybrid Automata (hybrid processes described by state machines)
- Challenge for analysis
 - Even if dynamics in individual modes is linear, due to discrete changes, not possible to obtain closed-form solutions, or general theorems about stability

Analysis of Bouncing Ball Model

Change in height during first bounce: $\mathbf{h}(t) = h_0 - gt^2/2$

Time at which first bump occurs: $t_1 = Sqrt (2 h_0/g)$

Velocity just before first bump occurs: - Sqrt ($2g h_0$) = - v_1

Velocity just after first bump : $v_2 = a v_1$

Evolution of height during second bounce: $h(t) = v_2 t - gt^2/2$

Time between first and second bump: $t_2 = 2 v_2/g$

Velocity just before second bump occurs: $-v_2$ and after second bump $v_3 = a v_2$

Modeling a Bouncing Ball

- \Box Velocity after k bumps = $a^k v_1$
- \Box Duration between k-th and following bump $a^k V_1 / g$
- \Box Sum of durations between successive bumps converges to v_1 (1+a)/(1-a)
- □ Infinitely many discrete actions in finite time = Zeno behavior!

Zeno' Paradox

- □ Described by Greek philosopher Zeno in context of a race between Achilles and a tortoise
- ☐ Tortoise has a head start over Achilles, but is much slower
- In each discrete round, suppose Achilles is d meters behind at the beginning of the round
- During the round, Achilles runs d meters, but by then, tortoise has moved a little bit further
- At the beginning of the next round, Achilles is still behind, by a distance of a.d meters, where a is a fraction 0<a<1</p>
- By induction, if we repeat this for infinitely many rounds, Achilles will never catch up!
- ☐ If the sum of durations between successive discrete actions converges to a constant K, then an execution with infinitely many discrete actions describes behavior only upto time K (and does not tell us the state of the system at time K and beyond)

Formalization

- An infinite execution of a hybrid process HP is of the form $s_0 t_1 \rightarrow s_1 t_2 \rightarrow s_2 t_3 \rightarrow s_3$..., where t_i is duration of i-th step
 - Input/output/internal actions are instantaneous (duration 0)
- □ An infinite execution is called Zeno if the infinite sum of all the durations is bounded by a constant, and non-Zeno if the sum diverges
- \Box A state s of the process HP is called
 - Zeno if every execution starting in state s is Zeno
 - Non-Zeno if there exists some non-Zeno execution starting in s
- A hybrid process HP is called non-Zeno if every reachable state of HP is non-Zeno
 - At every point during an execution it is possible for time to diverge
- Zeno system: Could end up in a state from which duration between successive steps must get smaller and smaller
- ☐ Thermostat: non-Zeno; BouncingBall: Zeno

Zeno Vs Non-Zeno

clock x:=0; real
$$d := 1$$
 $x <= d$ $x = d \rightarrow a!$; $d := d/2$; $x := 0$

Zeno! Every possible execution is Zeno

clock x:=0
$$x <= 1$$
 $x > 0 \rightarrow a!$; x := 0

Non-Zeno! Some executions are Zeno and some are non-Zeno

Zeno! System may end up in a state from which only Zeno executions are possible

Zeno Processes and Reachability

- How does existence of Zeno processes influence analysis?
- □ Recall: A state s is said to be reachable if there exists a finite execution starting in an initial state and ending in state s
- \Box Safety: A property φ is an invariant if all reachable states satisfy φ

Is mode B reachable?

Zeno Processes and Reachability

Is mode B reachable?

Presence of a Zeno process in the system can stop time from advancing, and make states of other processes unreachable!

Making Bouncing Ball Non-Zeno

If velocity is too small, stop modeling dynamics accurately

In this model, there is a lower bound on duration between successive bumps

Stability of Hybrid Systems

Is the dynamics in mode A stable?

Is the dynamics in mode B stable?

Both modes have stable dynamics, but switching causes instability!

Stability of Hybrid Systems

Design and Modeling of Hybrid Systems

- Automated Guided Vehicle
 - Goal: Follow a track as closely as possible
 - Design of mode-switching controller
- Obstacle Avoidance for Robotic System
 - Reach target while avoiding obstacles
 - Augment obstacle estimation via communication
- ☐ Multi-hop control network
 - Maintain stability of multiple plants when information flows among sensors, actuators, and computing elements over shared network
 - Design control algorithm in conjunction with scheduling policy for the network

Model-Based Design and Analysis

Multi-Robot Coordination

- Autonomous mobile robots in a room
- ☐ Goal of each robot:
 - Reach a target at a known location
 - Avoid obstacles (positions of obstacles not known in advance)
 - Minimize distance travelled
- Cameras and vision processing algorithms allow each robot to estimate obstacle positions
 - Estimates are only approximate, and depend on relative position of obstacles with respect to a robot's position
 - How often should robot update these estimates?
- ☐ Each robot can communicate with others using wireless links
 - How often and what information?
 - How does communication help?
- High-level motion control (path planning)
 - Decide on speed and direction

Path Planning with Obstacle Avoidance

Assumptions:

Two dimensional world Point Robots Fixed speed v

Path Planning with Obstacle Avoidance

Performance: Reduce distance travelled!

State variables: (x,y); (x',y')Initialization: $(x,y) := (x_0, y_0)$; $(x',y') := (x'_0, y'_0)$

Dynamics: $dx = v \cos \theta$, $dy = v \sin \theta$; $dx' = v \cos \theta'$, $dy' = v \sin \theta'$

Safety requirement: (x,y) is not in $O_1 \cup O_2 \& (x',y')$ is not in $O_1 \cup O_2$

Liveness requirement: Eventually $(x,y) = (x_f, y_f) \&$ Eventually $(x',y') = (x_f, y_f)$

Modeling Obstacles

- For modeling and analysis, in context of motion planning, need to simplify obstacle shapes and complexity of image processing algorithms
 - Simplicity and abstraction: Key to modeling
- ☐ Assume each obstacle/estimate is a circle
 - Can be described by coordinates of center and radius
 - Assumption: Real obstacle is always contained in estimated circle
 - Alternative: ellipses (more accurate)
- \Box Consider an obstacle with center (x_0, y_0) and radius r
 - Radius of smallest circle that envelopes the actual obstacle
- Estimate of the obstacle as computed by a robot using image processing algorithms of a robot
 - A circle with center (x_0, y_0) and radius e > r
 - Closer is the robot to the obstacle, better is the estimate
 - Decreases with distance of robot from obstacle, and converges to r

Obstacle Estimation

Estimated radius e = r + a(d-r)0 < a < 1 is a constant

Rule for Obstacle Estimation

Computation of robot R' is symmetric

Path Planning

Shortest path: Straight line to target Preferred direction θ_0

If estimate of obstacle 1 intersects straight path, calculate two paths that are tangents to obstacle If estimate of obstacle 2 intersects straight path, or obstacle 1, calculate tangent paths

Plausible paths: P1 and P4

Calculate which one is shorter: Planning algorithm returns either θ_1 or θ_4

Path Planning

- Function plan with inputs
 - Current position of robot
 - Target position
 - Obstacle 1 position (center and radius estimate)
 - Obstacle 2 position (center and radius estimate)
- Output: Direction for motion
 - Best possible path to target while avoiding obstacles assuming estimates are correct
- \Box Function plan written in C code (can be embedded in model)
- □ Does it help to execute planning algorithm again as robot moves?
 - Yes! Estimates may improve suggesting shorter paths
 - Invoke planning algorithm every t_p seconds

Communication

- Each robot has its own estimate of each obstacle
- ☐ Robot 2's estimates may be better than Robot 1's own estimates
- Strategy: Every t_c seconds, send your own estimates to the other robot, and receive estimates from the other
- If your own estimates are e_1 and e_2 , and receive estimates e'_1 and e'_2 , execute

 $e_1 := \min(e_1, e'_1); e_2 := \min(e_2, e'_2)$

Effect of Coordination

System of Robots

Robot Model

 $e_2 := min(e_2, r_2 + a(dist((x,y), (x_{02}, y_{02})) - r_2);$

Analysis

- ☐ Key system parameters
 - How often should a robot communicate?
 - How often should a robot execute planning algorithm
 - How often should a robot execute image processing algorithm to update obstacle estimates?
- \Box Design-space exploration: Choose values of t_c , t_p , t_e
 - Reduce distance travelled, but also account for costs of communication/computation
- ☐ Symbolic analysis beyond the scope of current tools, so need to run multiple simulations

Illustrative Execution: No Communication

Distance travelled by R = 8.81

Illustrative Execution: No Communication

Distance travelled by R = 8.64

Hybrid Systems Wrap-up

- ☐ Integrated modeling of control, communication, and computation
- See section 9.2.3 for modeling of multi-hop control networks
- □ Not covered: Linear Hybrid Automata (section 9.3)
 - Restricted continuous dynamics and discrete tests/updates
 - Symbolic reachability analysis by representing regions as polyhedra