TD 1: Introduction

Objectif: Application de la Loi de Hooke

1 Exercise 1: Contrainte en traction

Soit une force F de 1440 kN à une tige de longeur initiale de 4m. Cette tige a une section carré de $20cm \times 20cm$ et s'allonge de 2mm. Le matériaux est à determiner.

- 1. Calculez la déformation normale ϵ , la contrainte en traction σ et son module d'e Young'elasticité E.
- 2. A quel matériau pur ce module de Young peut-il correspondre $\ ^{?}$

2 Exercise 2: Contrainte de Cisallement

Calculez la déformation tangentielle (demi distorsion angulaire) d'une tige d'alluminium de 3 m de long et de 1 cm^2 de section qui est soumise à un effort transversal de $100\ kN$

3 Exercise 3: Compression poteau

Un poteau de chêne (module de Young $E=12\ GPa$) de 3 m est utilisé pour supporter une charge compressive dans le sens des fibres.

La section du poteau est carrée et vaut 235 $mm \times 235$ mm. Une masse de 20 kg est appliquée sur la partie supérieure du poteau.

- 1. Calculer la valeur de la contrainte normale imposée par la masse ?
- 2. En déduire la valeur de la déformation normale ?
- 3. Quelle est la valeur de la longueur lorsque le poteau est déformé ?

4 Exercise 4: Analysé de l'essaie de traction

Un test de traction est réalisé sur une éprouvette parallélépipède de longueur $L_0 = 10 \ cm$ et de section $4 \ cm^2$.

Le matériau considéré est fragile et l'essai est effectué jusqu'à la rupture sur une éprouvette parallélépipédique. La courbe de l'essai de traction représenté par la force F en fonction de l'allongement ΔL est présentée ci-dessous :

- 1. Déterminer la rigidité de la structure de l'éprouvette.
- 2. D'après la courbe $F = f(\Delta L)$, déterminer la courbe de contrainte σ en fonction de la déformation ϵ , puis déterminer la valeur du module de Young ainsi que le matériau associé ?
- 3. Soit une éprouvette composée du même matériau, de même longueur mais de section deux fois supérieure.
- Tracer la contrainte en fonction de la déformation ainsi que la force en fonction de l'allongement.
- Tracer sur les mêmes graphiques avec cette fois-ci une éprouvette de même section mais de longueur double $L_0 = 20 \ cm$.
- 4. Exprimer la relation reliant rigidité de la structure avec la section, la longueur de l'éprouvette et le module de Young peut être déduite.