Государственное образовательное учреждение высшего профессионального образования «Московский Государственный Технический Университет имени Н.Э. Баумана»

Отчет

По лабораторной работе №6 По курсу «Анализ Алгоритмов» На тему «Анализ муравьиного алгоритма»

Оглавление

[остановка задачи	2
Эписание алгоритма	2
[истинг	9
ременные эксперименты	7
ыводы	Ć
аключение	10

Постановка задачи

Проанализировать влияние на время выполнения муравьинного алгоритма различных вариаций его параметров

Описание алгоритма

Задача формулируется как задача поиска минимального по стоимости замкнутого маршрута по всем вершинам без повторений на полном взвешенном графе с п вершинами. Содержательно вершины графа являются городами, которые должен посетить коммивояжер, а веса ребер отражают расстояния (длины) или стоимости проезда. Эта задача является NP -трудной, и точный переборный алгоритм ее решения имеет факториальную сложность. Моделирование поведения муравьев связано с распределением феромона на тропе — ребре графа в задаче коммивояжера. При этом вероятность включения ребра в маршрут отдельного муравья пропорциональна количеству феромона на этом ребре, а количество откладываемого феромона пропорционально длине маршрута. Чем короче маршрут, тем больше феромона будет отложено на его ребрах, следовательно, большее количество муравьев будет включать его в синтез собственных маршрутов. Моделирование такого подхода, использующего только положительную обратную связь, приводит к преждевременной сходимости большинство муравьев двигается по локально оптимальному маршруту. Избежать этого можно, моделируя отрицательную обратную связь в виде испарения феро- мона. При этом если феромон испаряется быстро, то это приводит к потере памяти колонии и забыванию хороших решений, с дугой стороны, большое время испарения может привести к получению устойчивого локально оптимального решения.

Листинг

ACO.PY:

```
1
   import numpy as np
   import random as rnd
2
3
   MAX DIS = 10 # maximum distance
4
   MIN DIS = 1 # minimum distance
5
6
7
8
   def fill dis matr(n):
       m = np.zeros((n, n))
9
       for i in range(n):
10
           for j in range (i+1, n):
11
12
               t = rnd.randint(MIN DIS, MAX DIS)
13
               m[i][j], m[j][i] = t, t
14
       return m
15
16
17
   m = 5 # amount of ants and cities
   e = 2 # amount of elite ants
18
19
20
   a = 2
            # coefficient of strengthen the sense of smell
   b = 1 # coefficient of strengthen of desire
21
   Q = MIN DIS * m # coefficient of the alleged best way
22
   t_max = 200 # the amount of "generations"
23
   p = 0.5 # coefficient of evaporation
24
25
26
   def aco(m, e, d, t max, alpha, beta, p, q):
27
28
       nue = 1 / d # matrix of desire
       teta = np.random.sample((m, m)) # init ferromon paths, here may
29
           be np. zeros ((m,m))
30
       T min = None # min path
31
       L min = None # min len of path
32
33
       t = 0 # the first "generation"
34
35
       while t < t max:
           teta_k = np.zeros((m, m))
36
37
38
           for k in range (m): # for each ant, who are in its own town
39
               Tk = [k]
               Lk = 0
40
41
                i = k # current town
42
43
                while len(Tk) != m:
                    J = [r \text{ for } r \text{ in } range(m)] \# generate possible to
44
                       visit towns
45
                    for c in Tk: # remove visited towns
```

```
J. remove (c)
46
47
                    P = [0 \text{ for a in } J] \# \text{ probability that ant select a-}
48
                       town
49
50
                    for j in J:
                         if d[i][j] != 0: # if the path exist
51
52
                             buf = sum((teta[i][l] ** alpha) * (nue[i][l]
                                 ** beta) for l in J)
                            P[J.index(j)] = (teta[i][j] ** alpha) * (nue
53
                                [i][j] ** beta) / buf
54
                         else:
55
                            P[J.index(j)] = 0
56
                    Pmax = max(P)
57
58
                    if Pmax == 0: # if all paths are zero, it's signal
                       that ant is isolated
59
                        break
60
                    index = P.index(Pmax) # index of selected town
61
                    Tk.append(J[index]) # add town to way
62
63
                    Lk += d[i][J[index]] # add distance
64
                    i = J.pop(index) # go to selected town
65
                if L_min is None or (Lk + d[Tk[0]][Tk[-1]]) < L_min: #
66
                   check that it's not minimum,
                    L_{\min} = Lk + d[Tk[0]][Tk[-1]]
67
                       do not forget about the way back
                    T \min = Tk
68
69
70
                for g in range (len (Tk) -1): # update ferromons path
                    a = Tk[g]
71
72
                    b = Tk[g + 1]
                    teta k[a][b] += q / Lk
73
74
            teta e = (e * Q / L_min) if L_min else 0 # elite ants
75
            teta = (1 - p) * teta + teta_k + teta_e # update
76
               ferromons after generation
77
            t += 1
78
79
       return T min, L min
80
81
    i f \_\_name\_\_ == "\_\_main\_\_": 
82
      D = fill dis matr(m) # matrix of distance
83
84
85
       print(aco(m, e, D, t_{max}, a, b, p, Q))
```

TEST.PY:

```
1 import asyncio
```

```
2 from aco import aco, fill dis matr, MAX DIS, MIN DIS
   from concurrent.futures import ThreadPoolExecutor
   import numpy as np
4
   from itertools import product
   import time
6
7
   executor = ThreadPoolExecutor(max_workers=10) # thread pool
8
   loop = asyncio.get event loop() # event loop
9
10
11
12
  m = 5 # amount of ants and cities
   Q = (MIN\_DIS * m, MAX\_DIS * m) \# coefficient of the alleged best
13
      way
14
15
   p = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) \# coefficient of
      evaporation
   a = (1, 2, 3) # coefficient of strengthen the sense of smell
16
17
   b = (1, 2, 3) # coefficient of strengthen of desire
   e = (0, 1, 2, 3) # amount of elite ants
18
19
20
   good\_answers = ([0, 4, 1, 3, 2], 26), ([3, 4, 0, 1, 2], 26), 
21
                       ([2, 0, 4, 1, 3], 26), ([2, 3, 4, 1, 0], 26), 
22
                       ([1, 4, 0, 2, 3], 26), ([0, 4, 3, 2, 1], 26)
23
24
   TIMES = 3
25
26
27
   best time = None
   best\_set = None
28
29
   best q = None
30
31
   def test_on_set(foo, params):
32
       global best_time, best_set, best_q
33
34
       s, d, t, q = params[0], params[1], params[2], params[3]
35
       st = time.time()
36
       res = aco(m, s[0], d, t, s[1], s[2], s[3], q)
37
       en = time.time() - st
38
       if res in good answers:
           if best_time is None or en < best_time:</pre>
39
                best_time = en
40
41
                best set = s
42
                best_q = q
43
44
   async def level T(d, gen):
45
       await asyncio.gather(*[level times(d, t, TIMES) for t in gen])
46
47
48
   async def level times (d, t, times):
49
```

```
50
       await asyncio.gather(*[level Q(d, t, Q) for i in range(times)])
51
52
   async def level Q(d, t, Q):
53
       global best time, best set, best q
54
       await asyncio.gather(*[level set(d, t, q, e, a, b, p) for q in Q
55
56
       try:
57
            print("For_{}_generations_with_{}_approx_best_time_is_{:.5f}
              _witn_set_of_parameters_"
                  e_{=}\{\}; a_{=}\{\}; b_{=}\{\}; p_{=}\{\} . format (
58
                   t, best q, best time, best set[0], best set[1],
59
                      best set [2], best set [3]))
60
61
            best time = None
62
            best set = None
            best q = None
63
64
       except TypeError:
            print("Oooops")
65
66
67
68
   async def level set(d, t, q, e, a, b, p):
69
       await asyncio.gather(*[runner(s, d, t, q) for s in product(e, a,
           b, p)])
70
71
72
   async def runner(s, d, t, q):
73
       param = (s, d, t, q)
74
       await loop.run in executor (executor, test on set, 1, param)
75
76
77
   async def test(d):
       global best_time, best_set, best_q
78
       t max = (100, 200, 300, 400, 500) # the amount of "generations"
79
80
       await level T(d, t max)
81
82
83
   if __name__ == "__main__":
84
       d fix = np.array([[0, ]
                                 6, 3, 7, 1,
85
86
                 [6,
                       0, 8,
                                 10,
                                       6],
                                       7],
87
                 [3,
                       8,
                            0, 6,
88
                 [7, 10,
                            6,
                                  0,
                                       5],
89
                 [1,
                       6,
                            7,
                                  5,
                                       0]])
90
91
       print("Test\_matrix\_of\_distance: \_{}\n\n".format(d_fix))
       loop.run until complete(test(d fix))
92
93
       #test(d fix)
```

Временные эксперименты

Рис. 1: Графовое и матричное представление

Задача приближена к реальной и имеет несколько решений:

- 1. 0, 4, 1, 3, 2
- 2. 3, 4, 0, 1, 2
- 3. 2, 0, 4, 1, 3
- 4. 2, 3, 4, 1, 0
- 5. 1, 4, 0, 2, 3
- 6. 0, 4, 3, 2, 1

Длина кратчайший гамильтонов путь – 26. Очевидно, что количество поколений прямопропорционально времени вполнения алгоритма. Поэтому рассматривать получившиеся результаты будем в контексте каждого числа поколений.

Число поколений	Время	Q	e	α	β	p
100	0.05924	5	3	1	1	0.3
100	0.06120	5	0	2	2	0.6
100	0.05999	50	1	1	3	0.6
100	0.06030	25	2	2	2	0.6
100	0.06169	5	1	3	3	0.2
200	0.13157	5	3	3	3	0.4
200	0.13318	5	1	1	3	0.6
200	0.14144	50	2	3	3	0.3
200	0.13866	5	2	3	3	0.5
200	0.13210	5	1	3	3	0.1
300	0.22170	5	0	1	2	0.6
300	0.22347	25	1	2	1	0.4
300	0.21567	25	2	3	2	0.1
300	0.21659	50	1	1	3	0.6
300	0.21404	50	2	3	3	0.1
400	0.29997	50	3	3	1	0.5
400	0.29534	50	1	1	1	0.1
400	0.29586	25	0	2	1	0.1
400	0.28744	25	1	2	3	0.5
400	0.29609	25	2	3	2	0.2
500	0.38180	50	2	3	3	0.5
500	0.38951	50	1	2	2	0.4
500	0.39321	25	3	3	2	0.1
500	0.37518	25	0	1	1	0.5
500	0.37586	50	2	2	2	0.5

Выводы

В результате проведенных испытаний алгоритма было установлено, что:

1. Судя по проведенным выше данным, самое точное приближение не всегда является самым выгодным. Проверим это утверждение на тестовом случае с фиксацией всех параметров, кроме Q. Проведем несколько тестовых запусков с $Q \in [1, 50]; t = 200; m = 5; e = 1; p = 0.3; \alpha = 1; \beta = 1.$

Как видим, результат варьируется от случая к случаю.

2. Наличие элитных муравьев улучшает сходимость. Однако в оптимальных наборах их количество сильно связано с коэффициентами α и β , отвечающими за мощность ферромонного запаха и за желание муравья передвигаться по этому пути соответсвенно. Объяснить это можно так: так и тот, и другой аспект алгоритма усиливает ферромоновую дорожку, то их подбор должен быть сбалансирован, так как возможно "зависание" на локальных экстремумах.

3. На графиках явно видны "нежелательные" значения параметров: $e=2; p=0.3; \alpha=1; \beta=1.$ Это может быть обусловлено математическими особенностями алгоритма.

Заключение

В ходе лабораторной работы был проанализирован муравьиной алгоритм с точки зрения оптимального набора параметров.