Intégration et Probabilités

ENS Paris, 2023/2024

Benoît Laslier laslier@dma.ens.fr

TD2 : Mesures additives et σ -additives.

Exercice 1. Soit (E, \mathcal{A}, μ) un espace mesuré, et (A_n) une suite d'ensembles mesurables, montrer que $\mu(\bigcup A_n) \leq \sum \mu(A_n)$.

Exercice 2. [Retour sur les tribus] Soit E un espace et C une famille de parties de E.

- 1. On pose $\mathcal{G} = \{A \in \sigma(C) : \text{ il existe une partie dénombrable } \mathcal{D} \text{ de } \mathcal{C} \text{ vérifiant } A \in \sigma(\mathcal{D})\}.$ Montrer que \mathcal{G} est une tribu sur E.
- 2. En déduire que pour tout $B \in \sigma(\mathcal{C})$, il existe une famille dénombrable $\mathcal{D} \subset \mathcal{C}$ telle que $B \in \sigma(\mathcal{D})$.

Exercice 3. [Limsup et liminf d'ensembles] On considère un ensemble E et $(A_n)_{n\geq 1}$ une suite de sous-ensembles de E. On pose $\liminf_{n\to\infty} A_n = \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k$ et $\limsup_{n\to\infty} A_n = \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k$.

- 1. Décrire ces ensembles avec des mots.
- 2. Montrer que $(\liminf_{n\to\infty} A_n)^c = \limsup_{n\to\infty} A_n^c$.
- 3. Relier leurs fonctions indicatrices aux fonctions indicatrices des A_n .
- 4. Calculer $\liminf_{n\to\infty} A_n$ et $\limsup_{n\to\infty} A_n$ dans les cas suivants.
 - (i) $A_{2n} = F$ et $A_{2n+1} = G$, où $F, G \subset E$ sont fixés.
 - (ii) $A_{2n} =]0, 3 + 1/(2n)[$ et $A_{2n+1} =] 1 1/(3n), 2].$

On se donne maintenant une tribu \mathcal{E} et une mesure μ sur E, et on suppose que les A_n sont tous mesurables.

- 5. Montrer que $\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)$, et montrer par un exemple que l'inégalité peut-être stricte.
- 6. Montrer que si de plus μ est une mesure finie on a aussi $\mu\left(\limsup_{n\to\infty}A_n\right)\geq \limsup_{n\to\infty}\mu(A_n)$, mais que l'inégalité est fausse en général.
- 7. On suppose que $\sum_{n\geq 1} \mu(A_n) < \infty$. Montrer que $\mu\left(\limsup_{n\to\infty} A_n\right) = 0$. On appelle ce résultat le Lemme de Borel-Cantelli.
- 8. (Une application du lemme de Borel-Cantelli) Soit $\varepsilon > 0$. Montrer que pour presque-tout $x \in [0,1]$ (pour la mesure de Lebesgue), il n'existe qu'un nombre fini de couple (p,q) avec $q \in \mathbb{N}^*$ et $p \in \mathbb{N}$ tels que $\left| x \frac{p}{q} \right| < \frac{1}{q^{2+\varepsilon}}$, c'est-à-dire presque tout x est "mal approchable par des rationnels à l'ordre $2 + \varepsilon$ ".

Pour aller plus loin

Exercice 4. On dit qu'une partie $A \subseteq \mathbb{R}$ est symétrique si A = -A, où on a posé

$$-A = \{x \in \mathbb{R} : \exists y \in A, x = -y\}.$$

Soit $\mathcal{A} = \{A \in \mathcal{P}(\mathbb{R}) : A = -A\}$ l'ensemble des parties symétriques de \mathbb{R} .

- 1. Montrer que $\mathcal{A} = \{A \cup (-A) : A \in \mathcal{P}(\mathbb{R})\}.$
- 2. Montrer que \mathcal{A} est une tribu de \mathbb{R} .
- 3. Caractériser les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{A})$.
- 4. Caractériser les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$.
- 5. Montrer que \mathcal{A} est la tribu image réciproque de la tribu grossière $\mathcal{P}(\mathbb{R})$ de \mathbb{R} par la fonction valeur absolue $V: \mathbb{R} \to \mathbb{R}$.
- 6. Décrire la tribu engendrée par $\{\{a, -a\} : a \in \mathbb{R}\}.$

Définition. On appelle algèbre sur E un sous-ensemble \mathcal{A} de $\mathcal{P}(E)$ tel que $E \in \mathcal{A}$, et \mathcal{A} est stable par intersections finies et passage au complémentaire.

Exercice 5. [Algèbres et tribus] Soit \mathcal{A} une algèbre sur E. Montrer que \mathcal{A} est une tribu si et seulement si pour toute suite $(A_n)_n$ d'éléments deux à deux disjoints de \mathcal{A} on a $\cup_n A_n \in \mathcal{A}$.

Exercice 6. [Algèbre et mesure additive] Soit \mathcal{A} une algèbre d'ensembles sur un ensemble E. Soit μ une mesure σ -additive sur (E, \mathcal{A}) , c'est-à-dire, une mesure additive sur (E, \mathcal{A}) telle que pour toute suite d'éléments deux-à-deux disjoints $A_n \in \mathcal{A}$ telle que $\cup_n A_n \in \mathcal{A}$ on a

$$\mu(\cup_n A_n) = \sum_n \mu(A_n) \ .$$

- 1. Montrer que la condition " μ est une mesure additive" pourrait être relaxée en " $\mu(\emptyset) = 0$ " sans changer la classe des mesures σ -additives sur (E, \mathcal{A}) .
- 2. De même, montrer que la condition $\mu(\cup_n A_n) = \sum_n \mu(A_n)$, pourrait être relaxée en la condition $\mu(\cup_n A_n) \leq \sum_n \mu(A_n)$.
- 3. Montrer que si l'on combine les deux relaxations précédentes alors on obtient des objets qui ne sont pas forcément des mesures σ -additives.

Exercice 7. [Tribu borélienne produit]

- 1. Montrer que $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- 2. On pose $(F_{\infty}, \|\cdot\|_{\infty})$ l'ensemble des fonctions réelles bornées, muni de la norme infinie.
 - (a) Soit U un ensemble mesurable de $\mathcal{B}(F_{\infty}) \otimes \mathcal{B}(F_{\infty})$. Montrer qu'il existe une suite (A_n) de boréliens de F_{∞} telle que $U \in \sigma(A_m \times A_n, m, n \in \mathbb{N})$
 - (b) Pour $\mathbf{x} \in \{0,1\}^{\mathbb{N}}$, on pose $B_{\mathbf{x}} = \bigcap_{n \geq 0} C_n$, où $C_n = A_n$ si $\mathbf{x}_n = 1$, et $C_n = A_n^c$ sinon. Montrer que l'ensemble des éléments pouvant s'écrire comme union des ensembles de la forme $B_{\mathbf{x}} \times B_{\mathbf{x}'}$ est une tribu.
 - (c) En déduire qu'il existe des familles de boréliens $(A_i)_{i\in\mathbb{R}}$ et $(B_i)_{i\in\mathbb{R}}$ telles que

$$U = \bigcup_{i \in \mathbb{R}} A_i \times B_i$$

(d) En déduire que $\Delta = \{(f, f), f \in F_{\infty}\}$ est un élément de $\mathcal{B}(F_{\infty} \times F_{\infty})$ mais pas un élément de $\mathcal{B}(F_{\infty}) \otimes \mathcal{B}(F_{\infty})$.