简单模拟赛

zzq

题目名称	简单模拟	简单构造	简单计数
代码文件名	sim	CS	count
输入文件名	sim.in	cs.in	count.in
输出文件名	sim.out	cs.out	count.out
时间限制	1s	1s	6s
空间限制	512MB	512MB	512MB
题目类型	传统	传统	传统
比较方式	全文比较(忽略行末	Special Judge	全文比较(忽略行末
	空格和文末换行)		空格和文末换行)

友情提示:

- 1. 评测环境为 Win7+CCRPlus,评测可能不是很稳定,测出来有问题的请叫出题人重测。
- 2. 开启 O2 优化, 栈空间开大至 256MB。
- 3. 这套题采用 subtask。
- 4. 用 ysy 的电脑评测(i7-7700HQ 2.8GHz),评测机速度快的一批,所有题时限至少为标程最大点四倍。

简单模拟(sim)

题目描述

很久很久以前,有一个 1^n 的排列 a,还有一个长度为 q 的,每个元素在 1 到 n 之间的序列 b[0] …b[q-1]。

作为一道简单模拟题,你需要模拟 m 次操作,第 i(1 到 m)次操作你会在 a 中找到值为 b[(i-1)%q]的元素,并把它与第一个元素交换。

你只需要输出 m 次操作之后的序列即可。

输入格式

- 第一行三个整数 n、q、m。
- 第二行 n 个整数表示排列 a。
- 第二行 q 个整数表示序列 b。

输出格式

一行 n 个整数,表示 m 次操作后的排列。

样例输入

10 20 6666

19283745610

1109287845615645893510

样例输出

71296854310

数据范围

Subtask 1, 10pts, 1<=n,q,m<=100.

Subtask 2, 10pts, 1<=n,q,m<=5000.

Subtask 3, 20pts, 1<=n=q<=5000, 1<=m<=10^18, b[i]=i+1.

Subtask 4, 20pts, 1<=n=q<=200000, 1<=m<=10^18, b[i]=i+1.

Subtask 5, 40pts, 1<=n,q<=200000, 1<=m<=10^18.

简单构造(cs)

题目描述

一次歌唱比赛中,一位歌手刚刚结束表演,评委正在打分。一共有 n 位评委,他们每人可以打 1 分或 0 分,第 i 位评委希望歌手的得分为 v[i]。

评委们有特殊的控分技巧,他们会按一个顺序依次评分,第一个评分的评委会不管三七二十一打 0 分。对于接下来的评委,假设前面 a 位评委评分总和为b, 评委会认为这位歌手期望得分为 b/a*n, 如果这个得分低于他所希望的得分,他会打 1 分,否则他会打 0 分。

作为最大的黑幕——裁判,你对这一切心知肚明。你希望选手的得分为 p (0<=p<=n),为此你可以调换评委们的评分顺序。你需要输出一个 1~n 的排列,第 i 个位置表示第 i 个评分的裁判的编号,让选手的得分最接近 p。如果有多种,你只需要输出任意一种。

输入格式

第一行两个整数 n、p,表示评委个数和你对歌手的期望得分。

第二行 n 个整数 v[1],v[2]...v[n],表示每个评委对歌手的期望得分。

保证 0<=p,v[1],v[2]...v[n]<=n。

输出格式

一行一个 1~n 的排列,用空格分开。

样例输入

3 3

012

样例输出

123

数据范围

Subtask 1, 10pts, 1<=n<=10.

Subtask 2, 20pts, 1<=n<=100.

Subtask 3, 30pts, 1<=n<=1000.

Subtask 4, 10pts, 1<=n<=10^5, p=0.

Subtask 5, 30pts, 1<=n<=10^5.

简单计数 (count)

题目描述

有一个 n 个点 m 条边的有向图,每条边有一个 1 到 m 的颜色。

对于每条欧拉回路,定义和谐值为相邻的同色边(一条欧拉回路共有 m 对相邻边)对数,问每条欧拉回路的和谐值之和,模 998244353 输出。

两条欧拉回路不同当且仅当存在边对(e1,e2),在一条欧拉回路中 e2 紧随 e1,在另一条中 e2 不紧随 e1。

保证给定的图每个点出度至少为 1,没有自环,对于两个点 a 和 b,不存在两条 a 到 b 的边,且存在欧拉回路。

输入格式

第一行两个整数 n、m。

接下来 m 行,每行三个整数 xab,表示从 a 到 b 有一条颜色为 x 的有向边。

输出格式

一行一个数,每条欧拉回路的和谐值之和,模998244353输出。

样例输入1

47

112

223

131

224

234

143

142

样例输出1

7

```
样例输入2
  10 16
  124
  368
  226
  1 10 1
  315
  257
  356
  495
  241
  123
  312
  479
  262
  182
  1810
  338
样例输出 2
  52
```

样例输入3

3 4

112

121

223

232

样例输出3

2

数据范围

```
Subtask 1, 10pts, 2<=n<=4.
```

Subtask 2, 10pts, 2<=n<=10 且 m<=16。

Subtask 3, 10pts, 2<=n<=10.

Subtask 4, 20pts, 2<=n<=23.

Subtask 5, 20pts, 2<=n<=40.

Subtask 6, 10pts, 2<=n<=100。

Subtask 7, 20pts, 2<=n<=300。