Histologie

Evžen Wybitul Kat

Kateřina Krausová

21. května 2019

Obsah

1	Úvod Metody zkoumání						
2							
	2.1	Příprava vzorku	3				
		2.1.1 Odběr tkáně	3				
		2.1.2 Fixace	3				
		2.1.3 Odvodnění a projasnění	5				
		2.1.4 Zalévání do vosku	5				
		2.1.5 Krájení	5				
		2.1.6 Barvení	6				
	2.2	Histochemie	8				
	2.3	Mikroskopie	10				
3	Epitely 1						
	3.1	Stavba epitelů	12				
	3.2						
	3.3	Žlázové epitely	15				
		3.3.1 Exokrinní žlázy	16				
	3.4	Jednotlivé tkáně	17				
		3.4.1 Kmenové buňky	17				
		3.4.2 Endoteliání buňky a cévy	18				
		3.4.3 Kůže	21				
		3.4.4 Neuroepitely	23				
	3.5	Patologie	23				
4	Pojivová tkáň 24						
	4.1	Vazivo	25				
	4.2	Tuková tkáň	26				

	4.3	Chrup	avka	28		
	4.4	Kost		30		
		4.4.1	Kostní buňky	32		
		4.4.2	Osifikace	33		
		4.4.3	Patologie	35		
	4.5	Krev		36		
5	Sva	ly	•	41		
6	Ner	rvové buňky 4				
	6.1	Stavba	a CNS a PNS	42		
		6.1.1	Neurony	45		
		6.1.2	Pomocné nervové buňky	49		
		6.1.3	Hematoencefalická bariéra	51		
6.2 Senzorické epitely		Senzo	rické epitely	51		
		6.2.1	Čichový epitel	52		
		6.2.2	Sluchový epitel	53		
		6.2.3	Zrakový epitel	54		
	6.3	Patolo	ogie nervové soustavy	55		

1 Úvod

Histologie je nauka o tkáních. Díky novým typům značení, pokroku v molekulární genetice a novým vizualizačním technikám se histologie, ač by to tak na první pohled nevypadalo, stále řadí k dynamicky se rozvíjejícím oborům.

Jeden příklad za všechny, mechanismus šedivění vlasů. Melanocyty, které jsou nahrazovány z kmenových buněk, vyrábí melanin, který předávají keranocytům. To způsobí obarvení vlasu. Pokud však kmenové buňky vymřou, nedojde k vytvoření pigmentových buněk, tudíž vlas ztrácí pigmentaci. To nastane, je-li protein Bcl-2 na vnější mitochondriální membráně inaktivovaný.

Typy tkání

- epitelové
- pojivové
- svalové
- nervové

2 Metody zkoumání

- histochemické techniky
 - specifické barvení
 - nespecifické barvení
 - * získání kyselé a zásadité struktury buněk
- enzymatická histochemie
 - některé enzymy jsou odolné vůči fixaci a řezání
 - * přidání bezbarvého substrátu => po reakci s enzymem se obarví
- imunohistochemie
 - použití sekundárních protilátek, protilátek proti protilátkám
 - označení fluorem => vznik nerozpustného produktu => klasická mikroskopie
- imunocytochemie
 - pomocí protilátek detekujeme jednotlivé buněčné struktury

2.1 Příprava vzorku

2.1.1 Odběr tkáně

biopsie

Odběr vzorku z živého organismu.

nekropsie

Odběr vzorku z mrtvého organismu.

2.1.2 Fixace

- nutná, jinak se vzorek sám rozloží (autolýza)
- zastaví metabolické děje v buňce
 - zpomalením
 - denaturací enzymů

Princip funkce

- fyzikální metody
 - teplo
 - * denaturace proteinů způsobujících autolýzu
 - zmražení
 - * rychlá příprava vzorku
 - $\ast\,$ není třeba odvodňovat ani prosycovat pryskyřicí
 - * je však nutnost zabránit vzniku krystalků vody, např. pomocí kryoprezervans (sacharóza + ethylenglykol/dimethylsulfoxid)
- · chemické metody
 - imerzní
 - * ponoření do fixační tekutiny
 - perfúzní
 - * nástřik cév

Fixační činidla

- precipitace proteinů
 - chemická denaturace proteinů
 - např. chlorid rtuťnatý, kyselina pikrová
- denaturace a sítování kovalentních modifikací
 - formaldehyd, glutaraldehyd
 - vazba na NH₂ skupiny

- denaturující a odvodňující preparát
 - alkoholy
 - vysoce koncentrující metanol, etanol
- fixační směsi
 - rychlé, dokonalé fixování
 - Bouinův roztok: kys. pikrová, formaldehyd, kys. octová, voda
 - Zenkerův roztok = formaldehyd, dvojchroman draselný, chlorid rtuťnatý, voda
 - roztok glutaraldehydu, formaldehydu
- elektronová mikroskopie
 - glutaraldehyd + oxid osmičelý

Alkohol skvěle fixuje, čím více ethanolu, tím lépe, protože alkohol ve tkáních váže vodu a tkáně tím pádem odvodní.

2.1.3 Odvodnění a projasnění

- lázeň se vzestupnou řadou etanolu
- odvodnění
 - parafíny nejsou mísitelné s vodou => nutnost vodu odstranit
- prosycení
 - rozpouštědlem zalévacího média
 - xylen, toluen, aceton

2.1.4 Zalévání do vosku

- zpevnění preparátu
- rozpouštědlo mísící se s parafínem (xylol)
- parafíny, pryskyřice, zmražení

2.1.5 Krájení

- krájí se na tloušťku jedné vrstvy buněk, tedy 4–10 μ m
- mikrotomy ("kráječe")

- mikrotom
- ultramikrotom
- vibratom
- kryomikrotom
 - * bez fixace, bez zalévání, bez denaturace
- řez se dá na podložní sklo, přilepení bílek/glycerin
- řezání parafínových bločků
 - ocelový nůž
 - plátek na kapku vody na podložním sklíčku => napnutí + rozprostření
- bločky v pryskyřici
 - skleněný/diamantový nůž
 - řezy mají mezi 0,1 a 0,01 $\mu \mathrm{m}$
- řezy pro elektronovou mikroskopii
 - řez na kovovou sítku z leptané mědi

2.1.6 Barvení

- účel: zviditelnění struktur a tkání
- většina barviv rozpustných ve vodě => je třeba z řezů odstranit vodu
- většina pozorovaných molekul je nabitých
 - bazofilní struktury
 - * kyselé povahy, obsahují záporný náboj
 - * DNA, RNA, glykosaminoglykany (ECM, lysozomy)
 - * barvení bazickými barvivy
 - · toluidinová modř, methylenová modř, hematoxylin
 - acidofilní (eosinofilní) struktury
 - * jsou zásadité povahy, obsahují kladný náboj
 - * cytoplazma, některé typy granul
 - * kyselá barviva
 - · oranž G, eosin, kyselý fuchsin
- nejčastěji barvení hematoxylinem a eosinem
 - acidofilní struktury: růžová, červená
 - bazofilní struktury: modrá, černá, purpurová
 - * hematoxylin se oxidací mění na haematein

- fluorescenční techniky
 - paralelně vedle sebe několik různě obarvených struktur => vícebarevný preparát
 - velké množství barviv, všechna se specificky akumulují v jednotlivých organelách

META Není třeba si pamatovat všechny barvy, stačí jen základní rozdělení uvedené výše + hematoxylin, eosin, giemsa a oranž.

Běžné barvy

- giemsa
 - krevní roztěry
- PAS barvivo
 - důkaz záporně nabitých makromolekul
 - muciny, GAG, sacharidy, polysacharidy, glykolipidy
- Nisslova substance
 - nervové buňky
 - neuronové a gliové sítě modřed
- AZAN
 - kombinace několika barviv
 - azokarmín: červená jádra
 - anilínová modř: modrá kolagenní vlákna a mucin
 - oranž G: oranžová cytoplasma a svaly, červené erytrocyty
- Weigert-van Gieson
 - Weigertův hematoxylin: šedá jádra
 - saturnová červeň: červená kolagenní vlákna
 - kyselina pikrová: žlutá cytoplasma a svalovina
- žlutý Massonův trichrom
 - hematoxylin: modrá až černá jádra
 - erythrosin: červená svalovina
 - šafrán: žlutá kolagenní vlákna, červené erytrocyty
- zelený Massonův trichrom
 - hematoxylin, kyselý fuchsin

- světlá zeleň: zelená kolagenní vlákna, červené erytrocyty
- Weigert resorcin-fuchsin
 - resorcin fuchsin: fialová elastická vlákna
- Heidenhainův železitý hematoxylin
 - modrá až černá jádra a cytoplasma
 - barvení svalů
 - průkaz parazitů v tkáních
- impregnace stříbrem
 - hnědá až černá kolagenní a retikulární vlákna
 - barvení neuronů a glií
 - barví s vysokým prostorovým rozlišením
- kresylvioleť
 - fialová DNA, RNA
 - jádro, jadérko, granulární ER

Barva na vitální barvení

- neutrální červeň
 - neprotonovaná bezbarvá, permeabilní do buněk
 - protonovaná se obarví červeně => nemůže projít membránou
 - protonace např. v lysozomech
- Janusova zeleň
 - neoxidovaná bezbarvá, permeabilní do buněk
 - obarvování mitochondrií

2.2 Histochemie

- využití chemických reakcí k vizualizaci struktur
- vznikající produkty
 - nesmí difundovat z místa vzniku
 - musí být nerozpustné, barevné nebo elektrodenzní
- metoda musí být specifická
- fixace nesmí blokovat funkční skupiny nebo zničit funkci prokazovaných enzymů

Histochemické detekce

- železo
 - Perlsova reakce: tvorba tmavomodré sraženiny ferokyanidu železitého
 - odhalení hemochromatózy, hemosiderózy
- fosfáty
 - dusičnan stříbrný, fosforečnan stříbrný redukován na černý precipát stříbra (hydrochinonem)
 - studium osifikace
- DNA
 - Feulgenova reakce: hydrolýza DNA pomocí HCl
 - Schiffovo činidlo: volné aldehydové skupiny reagují s fuchsinem
- proteiny
 - imunocytochemické metody
 - polysacharidy, oligosacharidy
 - * PAS reakce: oxidace kyselinou jodistou
 - * aldehydové skupiny reagují s fuchsinem => purpurová sraženina
 - glykolipidy, glykoproteiny
 - * značené lektiny
- enzymy
 - kyselé fosfatázy
 - * Gomoriho metoda: fixace formalinem, inkubace s glycerolfosfátem sodným + dusičnanem olovnatým -> fosfátové ionty -> nerozpustný elektrodenzní fosforečnan olovnatý (lysozymy)
 - dehydrogenázy
 - * Tetrazolium: reakce na barevnou sraženinu formazanu
 - detekce mitochondrií
 - peroxidáza
 - DAB 3'-diaminbenzen: vznik z peroxidu vodíku pomocí peroxidázy
 - hnědé zbarvení

Průkazové reakce

- imunocytochemie
- lektinová histochemie, hybridizace in situ

• metabolické radioaktivní značení, neboli elektromikroskopická autoradiografie

Propojení elektronové mikroskopie a autoradiografie

- k buňkám se přidá radioaktivně značený leucin
- leuxcin se zabuduje do proteinů
- sledování putování nově syntetizovaných proteinů

2.3 Mikroskopie

Oko rozpozná $100\mu\mathrm{m}$, světelný mikroskop $100\mathrm{nm}$, elektronový i rozměry pod 1nm.

Světelná mikroskopie

- sledování in vivo
- digitalizace dat
- mnohobarevná detekce
- konfokální mikroskop
 - detekce světelného signálu z jedné roviny zaostření bez kontaminace signálem nad a pod rovinou zaostření

Sledovat in vivo se dá i na tomografii, případně NMR.

Elektronová mikroskopie

- detekce elektronů
- optika je elektromagnetické povahy
- černobílé obrázky, ale exsituje možnost obarvení
- typy
 - skenovací EM: svítíme na pokovený objekt, detekujeme, co se odrazí
 - transmisní EM: objekt prosvěcován elektrony, detekujeme jejich rozptyl
 - * bez nutnosti barvení, schopni rotovat, prozařovat pod různými úhly

Průtoková cytometrie

- stroj schopný navázat suspenzi buněk (mohou být fluorescenčně značené)
 - 1. svítíme laserem
 - 2. zjištujeme, která buňka je pozitivní pro konkrétní fluorescenci a svítí
- slouží k rozlišení buněk v krvi, tím, že se rozpadnou na jednotlivé populace

Laserová mikrodisekce

- 1. v preparátu najdeme útvar, který nás zajímá
- 2. laserem tento útvar vyřízneme
- 3. laserem se poté vystřelí do detekční nádoby

Gene arrays

- studium celkové expresní aktivity
- určení buněčných typů, pomocí izolace RNA přepsané do fluorescenčně značené DNA
 - 1. hybridizace na sklíčkách
 - 2. imobilizace sekvencí specifických pro konkrétní geny
 - 3. soubory barevných teček
 - 4. vyplý/zaplý gen

3 Epitely

Epitely jsou tkáně tvořené buňkami s různým tvarem a funkcí, které jsou mezi sebou pevně spojeny pomocí mezibuněčných spojů. Vystýlají povrch sliznic a vnitřek dutin. Sedí na bazální lamině, jsou polarizovány.

Funkce epitelu

- krytí a vystýlání povrchů, kůže, sliznice
- absorpce, střevo
- sekrece, žlázy
- recepce, neuroepitel
- stažlivost, myoepiteliální buňky
- resorpce, v rohovce (jediný takový epitel)
 - aby v ní nebyla voda a my dobře viděli
- dokáží fungovat jak svalové buňky, produkují myozin a aktin
 - např. myoepitelové buňky mléčných žláz

3.1 Stavba epitelů

Druhy epitelů

- podle vývodu
 - endokrinní žlázy, bez vývodu
 - exokrinní žlázy, s vývodem do lumen
 - sekreční epitely, s vývodem do lumen
- podle funkce
 - ochranný -> mnohovrstevný, odolný
 - transportní velké množství kanálů, průchod molekul přes membránu
 - řasinkový -> zajiŠtuje směrovaný pohyb (vajíčko ve vejcovodu)

Blažkovy linie

Jev, popisující diferenciaci kůže v jednotlivých pásech, které jdou za sebou.

Stavba epitelu

- je polarizovaný
 - bazální
 - apikální
 - bazolaterální
- pod ním je často pojivová tkáň

- tvar a velikost záleží na funkci (např. ochrana v jícnu => tlusté, vysoké buňky)
- odvozen od všech tří zárodečných listů
 - ektoderm: epitelový povrch kůže, ústní a nosní dutina, řiť
 - entoderm: výstelka dýchacího traktu, trávicí trakt, všechny orgány TS
 - mezoderm: endotel (výstelka cév), mezotel (výstelka břišní dutiny, peritoneum)
- vždy sedí na bazální lamině, což je podpůrná pojivová tkáň
 - ztráta kontaktu s bazální laminou vede k diferenciaci (keratinocyty)
 - schpnost samouspořádání
 - buňky samy epitel vyrábí, nebo vzniká pomocí fibroblastů
 - v bazální lamině jsou přítomny speciální kolageny a fibriny

3.2 Krycí epitely

Krycí kepitely kryjí zevní povrch a vystýlají tělní dutiny.

Klasifikace dle tvaru buněk

- dlaždicový (plochý)
 - výstelka cév (endotel)
 - výstelka serózních dutin (perikard, pleura, peritoneum)
 - rohovka
- kubický
 - povrch ovária
 - štítná žláza
- cylindrický
 - výstelka střev, žlučníku

Klasifikace dle počtu vrstev

- jednovrstevný
- vrstevnatý
 - dlaždicový rohovějící
 - * kůže: na povrchu tenké šupinky odumřelých buněk

- dlaždicový nerohovějící
 - * vlhké dutiny ústa, jícen, pochva
 - * živé buňky
- kubický
 - * vzácný
 - * potní žlázy
 - * vyvíjející se ovariální folikuly
- cylindrický
 - * vzácný
 - * spojivka
 - * vývody velkých žláz
- přechodný
 - * močový měchýř
 - * močovod, kde se tvar buněk mění podle rozpětí měchýře
 - * využití v tkáňovém inženýrství: pytlíček z bazální laminy porůst buňkami měchýře s vysokým obsahem kmenových buněk
- víceřadý
 - * některé buňky jsou zakotveny v bazální lamině, nedosahují povrchu
 - * s řasinkami v dýchacích cestách
- neuroepitel
 - * senzorické funkce
 - * buňky chuťových pohárků
 - * čichový epitel
- myoepitel
 - * větvené buňky specializované na kontrakci
 - * mléčné, potní, slinné žlázy

Nádory

- u všech buněk kromě červených krvinek (nemají jádro, nemnoží se) a neutrofilních granulocytů (skoro před smrtí)
- do 10 let nejčastěji nádory krvetvorné tkáně
- po 45. roce je 90% nádorů odvozených od epitelů

karcinomy

Nádory odvozené od epitelu.

adenokarcinomy

Nádory odvozené od epiteliálních žláz.

metaplázie

Změna buněčného typu během života. Například u silných kuřáků se řasinkový pseudostratifikovaný epitel mění v stratifikovaný deskovitý, který poté správně neodvádí hlen. Reparace takového procesu je velice složitá.

Další příklad: při nedostatku vitaminu A nastane ztráta diferenciační informace pro řasinkové epitely v průdušnici a močovém měchýři, které poté přestanou fungovat jako pružné jednotky.

Kromě metaplázovaných epitelů mají ale jinak epitely velice dobrou schopnost reparace.

3.3 Žlázové epitely

- buňky specializované na tvorbu sekretů
- jednobuněčné žlázy
 - pohárkové buňky (výstelka tenkého střeva)
 - dýchací trakt
- mnohobuněčné žlázy
 - vývoj z krycích epitelů proliferací a invazí do okolního vaziva

Typy žláz

- exokrinní
 - zachováno spojení s povrchovým epitelem
 - tubulární vývod je vystlaný epitelem
 - např. žlučové vývody, slinivka
- endokrinní
 - postrádají vývod, sekret je roznášen krevním řečištěm

slouží např. pro přenos hormonů

Některé orgány jsou jak exokrinní, tak endokrinní

- játra: žluč (exokrinní), transferin + albumin (endokrinní)
- pankreas: trávicí enzymy (exokrinní) + inzulin + glukagon (endokrinní)

3.3.1 Exokrinní žlázy

Dělení podle stavby

- podle větvení vývodů
 - jednoduché žlázy, mají jeden nerozvětvený tubulózní vývod
 - * stočené tubulózní, větvené tubulózní, acinózní (alveolární)
 - složené žlázy, mají větvené vývody tubulózní, acinózní, tubuloacinózní (tuboalveolární)
- podle tvaru
 - acinózní, kulatý tvar a úzké lumen
 - tubulózní, tvar trubice a úzké lumen
 - alveolární, tvar měchýřku a široké lumen
 - tuboacinózní, tvar trubice s kulatým koncem (ve žlázách smíšeného typu)
 - tuboalveolární, tvar trubice s měchýřkovitým rozšířením (ve žlázách smíšeného typu)

Dělení podle typu vylučování

- merokrinní žlázy
 - jsou exocytována sekreční granula
 - např. pankreas
- holokrinní žlázy
 - sekreční produkt je uvolněn s celou buňkou, buňka naplěná sekretem zanikne
 - např. mazové žlázy
- apokrinní žlázy
 - přechodný typ
 - sekreční produkt je odloučen zároveň s apikální částí cytoplasmy

- látky neobalené membránou: tukové kapénky v tukových buňkách a mléčných žlázách
- uzavřou se do váčků a oddělí se buňky
- odvrhování apikální části buněk probíhá v sítnici

Poznámka Sekrece mléka v mléčnách žlázách je regulována oxytocinem, který aktivuje myoepitální buňky, ty se stáhnou a mléko je vylučováno ze žlázy. Pro mléčnou žlázu existují kmenové buňky, takže ji můžeme de novo vytvořit.

Dělení podle charakteru sekretu

- serózní žlázy, které mají sekret řídký a bohatý na proteiny
 - obsahuje buňky bohaté na granulární endoplazmatické retikulum, což způsobuje jejich bazofílii
- mucinózní žlázy, které mají sekret hustý a plný mucinu
 - tvar sekrečního oddílu je tubulózní

3.4 Jednotlivé tkáně

3.4.1 Kmenové buňky

- udržování kmenovosti souvisí s vazbou na jiné buňky
 - po opuštění niky dochází k diferenciaci
- po ztrátě kontaktu s bazální laminou se odlupují a apoptizují

niky

Receptory udržující buňky v nediferencovaném kmenovém stavu.

Kmenové buňky v kostní dřeni

- stromální buňky vytváří jeskyňky
 - nediferencované mezenchymální a hematopoetické kmenové buňky

Kmenové buňky ve střevě

- z jedné kmenové buňky lze diferencovat všechny epiteliální buňky
- v tenkém střevě jsou ve vychlípeninách
 - směrem dolů diferencují do Pannetových buněk
 - směrem nahoru diferencují ve žlázy a v resorpční epiteliální buňky

Kmenové buňky v kůži

- kmenové buňky nejblíže jsou povrchu pokožky
- během diferenciace sestupují do údolíček
- během keratinizace jsou vytlačovány vzhůru

Kmenové buňky v mléčné žláze

• jsou lokalizovány na povrchu ve směru růstu žlázy

3.4.2 Endoteliání buňky a cévy

Velikost jednotlivých buněk v endotelu závisí na jejich ploidii.

endotel

Epiteliální tkáň tvořící vnitřní stěnu cév.

angiogeneze

Vznik nových kapilár větvením.

Dynamika endoteliálního systému

- moc kyslíku => některé kapiláry se uzavřou
- málo kyslíku (hypoxie) => vyšle se signál pro vznik nových cév
 - vznikne slepá větvička, ta roste, až si tepna najde žílu
 - zvýšení koncentrace HIF (hypoxia inducible factor)
 - * je to protein, který se při nízké koncentraci kyslíku přestává odbourávat
 - stabilizace HIFu regulována ubiquitinilací

 zvýšená koncentrace HIF vede k produkci VEGF (vascular endothelial growth factor)

Cévy

- složeny z endoteliálních buněk, z extracelulární matrix a ze svaloviny
- složení: tunica intima (endotel), tunica media (svaloviny) a z tunica adventitia (pojivo)
- poměry těchto vrstev závisí na druhu cévy
 - kapilárky z endotelu
 - propustnost kapilár
 - * nepropustná: kontinuální buňka a kontinuální bazální lamina
 - * "děravá" (fenestrovaná): bazální lamina je jemnější sítko, větší částice neprojdou
 - * zcela nepropustná: mozek, uspořádání buněk je zodpovědné za intaktnost hematoencefalické bariéry

Vznik

- běžně růstem už vzniklých trubiček
- in vitro
 - 1. uvnitř endoteliální buňky začne vznikat systém vakuol
 - 2. vakuoly se pospojují
 - 3. vznikne dutá struktura, která je schopná se spojit s jinými trubičkami
 - 4. vznik cévní sítě

Chlopně

- nalézají se v některých žilách
- deriváty endotelu vybíhajícího do lumen
- zabraňují zpětnému toku krve
- jsou pouze v malých a středně velkých žilách

Spojení žíly a tepny

- nutnost zabránit homotypické adhezi
- ke spojení nutné ephriny, což jsou molekuly tvořící se při diferenciaci nervové soustavy
 - arterie obsahují ephrin-B2
 - žíly obsahují ephrin-B4

Patologie

Hippel-Landauův syndrom

- vznik nádorů tvořených hyperproliferovanými endoteliálními buňkami (hemangioblastomy)
- pro vazbu ubiquitinu je v HIF běžně ubiquitinylační sekvence
 - tato sekvence zmutuje, v důsledku čehož se nemůže navázat na ubiquitin
 - HIF se nedegraduje, neustále se produkuje VEGF
 - stále se aktivuje proliferace a probíhá tvorba nových výběžků

Atheroskleróza

- nedochází k ukládání cholesterolu do stěn cév
- průběh
 - 1. zánět v těle nebo volné radikály způsobí oxidaci LDL, časem už normálně oxidovaná forma LDL v těle není
 - LDL (low-density lipoprotein) jsou částice zodpovědné za přenos cholesterolu
 - 2. buňky nedokážou oxidovaný LDL metabolizovat, LDL se v nich hromadí
 - 3. nastoupí monocyty, které endocytují oxidovaný LDL, ale neodbourají ho
 - 4. LDL se hromadí v monocytech, vznikají pěnovité buňky plné vakuol naplněné oxidovaným LDL
 - 5. monocyty spustí expresi genů, aktivují makrofágy (přilákají buňky "opraváře")
 - 6. to vede k produkci mezibuněčné hmoty pomocí mezenchymálních buněk a fibrocytů (fibroblasty)

- fibroblasty jsou schopny diferencovat v osteocyty, osteoblasty a chondroblasty
- 7. vznikají hrbolky kosti v cévě, která tím ztrácí svou mechanickou odolnost

3.4.3 Kůže

- největší orgán těla, tvoří 16% hmotnosti
- musí být mechanicky odolná
 - extracelulární matrix (ECM) je syntetizovaná fibroblasty
- musí být krevně zásobená
 - systém krevních kapilár ohraničených endoteliálními buňkami
 - obsahuje buňky imunitního systému
 - * při zánětu makrofágy, granulocyty a lymfocyty

Vrstvy kůže

- epidermis
- dermis
 - silně vaskularizovaná a inervovaná
- hypodermis
 - tuková tkáň

Kromě zmíněných vrstev se v kůži nalézají též senzory a nervová zakončení.

Fibrocyt

- diferenciační prekurzor fibroblastu
- fibrocyt může diferencovat ve fibroblast, chondrocyt, hladkou svalovinu, tukovou buňku
- změna fibroblastu na tukovou buňku provázena změnou exprese genů
- fibroblasty vytváří desmozomy s jinými fobroblasty => síťovitá struktura
- fibroblasty spolu s epiteliálními buňkami produkují složky bazální laminy

Mezenchymální kmenové buňky

- mají obrovský diferenciační potenciál
- dají se kultivovat in vitro v koktejlu růstových faktorů a cíleně diferencovat v různé typy buněk
- pluripotence: embryonální kmenové buňky
 - dají se izolovat z časného embrya
 - dají se in vitro kultivovat a geneticky manipulovat a poté vrátit do embrya

Epidermis

- jediná z vrstev kůže, která je epiteliálního původu
- sedí na bazální lamině, nejspodnější vrstvu tvoří keratinocyty
 - v záhybech na bazální lamině jsou kmenové buňky neschopné diferencovat v melanocyty, ale vznikají z nich kerantinocyty
- je stále proliferována
 - 1. buňky jsou posouvány vzhůru
 - 2. časem jsou buňky dehydratovány a keratinizují
 - 3. takové mrtvé buňky se odloupnou
- obsahuje melanocyty a Langerhansovy buňky
- rozdíl mezi bělošskou a černošskou kůží je v pH endozomálního systému (běloši jsou kyselejší)

Melanocyty

- produkují melanin, kterým poté zbarvují okolní buňky
- ochrana před UV
- nevznikají v kůži, ale vlezou do ní z neurální lišty
- obsahují melanozomy
 - deriváty lysozomů
 - naplněné melaninem jsou předávány epidermálním buňkám (keratinocytům)
- mutace
 - málo melanozomových prekurzorů => málo melazosomů => skvrny
 - mutace genu pro kit

3.5. PATOLOGIE 3. EPITELY

- * receptor pro SCF faktor => je na epiteliální buňce v nice => udržuje buňky v kmenovém stavu
- * málo kmenových buněk => málo melanocytů
- mutace v genu Pax3
 - * homozygot => ztráta sluchu, depigmentace vlasů, očí, kůže

Porucha tvorby melaninu vede k albinismu. Tato porucha může být způsobena poruchou v enzymu tyrozinkináze nebo poruchou regulace pH v melanozomu.

Langerhansovy buňky

- derivované z kostní dřeně
- dendritická buňka nesoucí MHC třídy II
- tvoří jednu vrstvičku rovnoměrně rozloženou pod kůží
- po pohlcení cizorodých substancí čekají v uzlině na rozpoznání T-lymfocytem, který poté obstará imunitní reakci

3.4.4 Neuroepitely

Pro více informací viz oddíl o nervových tkáních a oddíl o senzorických epitelech.

- mají rozdílnou schopnost regenerace a rychlost obměny buněk
 - senzorický neuroepitel ve středním uchu ani ten na sítnici není schopen regenerace (máme ho jednou pro vždy)
 - čichový epitel prochází neustálou obměnou
 - * je epidermálního původu
 - * pro detailnější popis tkáně viz oddíl o čichovém epitelu

3.5 Patologie

Kartagenův syndrom (situs inversus)

- první popsaný případ v roce 1688 převrácená pravolevá symetrie vnitřních orgánů
- 50% jedinců trpí chronickou bronchitidou a sterilitou

 způsobena mutací v molekulárním motoru zajišťujícím pohyb řasinek v řasinkovém epitelu

Průjem

- porucha funkce resorpčních epitelů trávicí soustavě
- u dospělého člověka je za jeden den sekrece sedmi litrů tekutin
 - 1l slin
 - 1,5l trávicí tekutiny v žaludku
 - 11 žluči
 - 1,5l trávicí tekutiny ze slinivky
 - 2l sukusu (všemožné tekutiny vylučované živými tkáněmi)
- resorpce tekuni ve střevě
 - 7,8l v tenkém střevě + dvanáctníku
 - 11 v tlustém střevě
- 0,2l ztrácíme stolicí

Cystická fibróza

- druhá nejčastější genetická porucha (po poruše konexinu vedoucí k poruše sluchu)
- způsobená mutací proteinu CFTR, který přenáší chloridové ionty ven z buněk
 - ve zdravé buňce dochází vylučování chloridových iontů
 - * spolu s ionty opouští buňky voda
 - * dochází ke zvlhčení epitelů a sliznice
 - v nezdravé buňce k tomu nedochází, sliznice jsou suché, hleny jsou husté
- trpí jí jeden člověk z 2500

Existují i určité poruchy mechanických vlastnosí kůže, které jsou způsobeny hlavně mutacemi v genech pro keratiny.

4 Pojivová tkáň

- je tvořena různými buněčnými typy
- má rozmanitou strukturu, funkci i tvar
- produkuje velké množství ECM sekretorickou drahou (často více ECM než buněk)
- · vazivo, chrupavky, kosti, tuková tkáň, krev

4.1 Vazivo

- řídké, areorální
 - spojuje tkáně mezi sebou
 - vyplňuje prostory, zpevňuje epitely, obaluje lymfatické a krevní cévy
 - ve žlázách, sliznicích, dermis
 - kolagenní, elastická i retikulární vlákna
- husté
 - převládají kolagenní vlákna
 - neuspořádané
 - * svazky kolagenu bez určité orientace
 - * např. dermis (podkoží)
 - uspořádané
 - * orientované podle stejnosměrných mechanických podnětů
 - * např. šlachy

Extracelulární matrix (ECM)

- hlavní složkou kolagen různých typů
- epitel není vaskularizovaný, pod epitelem je pojivová tkáň
 - velké množství buněk imunitního systému, především bazofilů

Retikulární pojivová tkáň

- houbovité uspořádání s volnými prostory uvnitř
 - v místech, kde jsou třeba malé dutiny
- fibroblasty produkují ECM pomocí extracelulárních vláken
 - tvoří architektonickou kostru krvetvorných orgánů (kostní dřeň, uzliny, slezina) z retikulárních buněk

Vaziva se speciálními vlastnostmi

- elastická vaziva
 - žluté vazy páteře, závěsný vaz penisu (ligamentum suspensorium penis)
- rosolovité vazivo
 - amorfní hmota, tvořená kyselinou hyaluronovou
 - rosolovitá konzistence jako výplň
 - základní složka pupeční šňůry, v pulpách vyvíjejících se zubů
- tukové vazivo
- hemopoetická tkáň
 - lymfatická a myeloidní tkáň

4.2 Tuková tkáň

- jeden z největších orgánů v těle
 - -muži: 15–20% hmotnosti
 - ženy: 20–25% hmotnosti
- hormonálně aktivní orgán
- vysoce inervovaná a vaskularizovaná
- po extrémním zhubnutí zůstane na ploskách nohou
- dělí se na žlutou a hnědou

Funkce tukové tkáně

- tvaruje povrch těla
- tlumí nárazy

- tepelná izolace
- vyplňuje prostory
- zásobárna energie
- produkce tepla

Žlutá tuková tkáň

- unilokulární v každé buňce jen jedna centrálně uložená tuková kapénka (pokud nehladovíme)
 - nemá membránu
 - je formována hydrofobními interakcemi
- barva od bílé po tmavožlutou
- rozsah: všude mimo očních víček, penisu, skrota (šourku) a ušního boltce
- je rozdělena vazivovými přepážkami do neúplných lalůčků
- vzniká diferenciací z mezenchymálních buněk
- existují oblasti s aktivní inhibicí tvorby tukové tkáně

Hnědá tuková tkáň

- multilokulární mnoho drobných tukových kapének
- má mnoho mitochondrií, a tedy hodně cytochromu b, z čehož plyne její hnědé zbarvení
- připomíná endokrinní žlázu
- buňky jsou inervovány sympatikem
- slouží k produkci tepla (netřesová termogeneze)
 - 1. pokud je chladno, uvolní se norepinefrin
 - 2. aktivuje se senzitivní lipáza
 - 3. tuky jsou hydrolyzovány na triacylglyceridy
 - 4. protonový gradient v mitochondriích je díky UCP (uncoupling proteinu) transformován v teplo
- novorozenec ale využije protonový gradient k výrobě ATP a teplo vyrábí třesovou termogenezí
- u novorozence 2-5% hmotnosti

Regulace množství tukové tkáně

- čím více tukové tkáně, tím více proteinu leptinu tělo produkuje
- leptinový receptor je v hypokampu (centrální centrum hladu a sytosti)
- lidé jedí více, když je málo leptinu
 - leptin je tedy negativní regulátor velikosti tukové tkáně

Nádory tukových tkání

- unilokulární adipocyty
 - benigní tumory lipomy
 - * kuličky hypertrofované tukové tkáně
 - * díky vazivovému obalu snadné odstranění
 - maligní tumory liposarkomy
- multilakulární adipocyty
 - hibernomy
 - * hypertrofovaná multilokulární tuková tkáň
 - * poruchy produkce tepla

4.3 Chrupavka

- mezibuněčná hmota nabývá pevné konzistence
- není inervovaná ani vaskularizovaná
 - nemůže bolet
 - je živena difúzí z přilehlé vazivové tkáně (perichondria)
- · růst chrupavky
 - buňky jsou zalité v ECM, to jim umožňuje růst a dělení (v omezené míře)
 - * čtyři buněčná dělení maximálně osmi buněk v lakunách (malých kanálcích)

TODO Jakým způsobem je omezeno dělení?

Funkce

- podpora měkkých tkání
- tlumí nárazy
- umožňuje hladký klouzavý pohyb kostí
- zásadní pro vývoj kostí

Složení

- ECM
- glykosaminoglykany
- proteoglykany orientované na kolagenních a elastických vláknech
- chondrocyty

Chondrocyty

- buněčná složka chrupavky
- vznikají diferenciací z buněk na povrchu chrupavky
- tvoří a obalují EK, tím se dostávají dovnitř do chrupavky
 - nalézají se v lakunách v tzv. isogenetických skupinkách
- odolávají nízkému parciálnímu tlaku kyslíku
 - jsou často vystaveny nedostatku kyslíku

TODO Zjistit, co je EK.

Chondroblasty

- jedny z mála buněk schopné přežít v jedinci i po smrti
- fungují díky anaerobní glykolýzy
- jejich proliferace je ovlivňována růstovými faktory
 - somatotropin spouští produkci somatomedinu v játrech
 - nedostatek způsobuje metaplázii chrupavek

Typy chrupavek

- hyalinní
 - nejběžnější
 - kolagen (40% suché váhy, hlavně typu II), chondroitin-6-sulfát, keratan sulfát, chondronektin
 - modravě bílá a průsvitná
 - v zárodku vytváří dočasný skeleton, který je nahrazen kostní tkání
 - naoř. artikulační plochy pohyblivých kloubů, nos, hrtan, trachea, bronchy, přední konce žeber
- elastická
 - ohebná, roztažitelná
 - nažloutlá barva
 - velké množství elastinových vláken, kolagen
 - např. ušní boltec, stěny zevního zvukovodu, Eustachova trubice, drobné chrupavky hrtanu
- vazivová
 - kolagen typu I
 - je především v místech s velkými nároky na mechanickou odolnost a zátěž
 - např. přechod mezi hustým vazivem a hyalinní chrupavkou: meziobratlové ploténky, spona pánevní, úpony některých vazů
 - * výhřez meziobratlové ploténky (ruptura anulus fibrosu)
 - 1. vypuzení tekutého pulpózního jádra
 - 2. oploštění celého fibrózního prstence
 - 3. dislokace

Patologie

- benigní nádory (chondromy)
- maligní nádory (chondrosarkomy)
- kalcifikace (zvápenatění)
- záněty perichondria
- špatná regenerace v dospělém věku
- achondroplázie

- z 99% je příčina v mutaci genu pro FGF-receptor-3
- ovlivňuje vývoj chrupavek v dlouhých kostech

4.4 Kost

- nejodolnější vůči mechanickým stresům
- hlavní část skeletu dospělce
- specializovaná pojivová tkáň tvořená zvápenatělou mezibuněčnou hmotou
 - kostní matrix + osteocyty + osteoblasty + osteoklasty
- odvápněná kost má tvar a ohebnost srovnatelnou se šlachou

Funkce

- opora měkkým tkáním
- chrání krvetvorné orgány, mozek, míchu
- zásobárna vápníku, fosfátu

TODO Přidat obrázek kosti.

Stavba a složení

- látkové složení
 - 70% anorganické složky
 - * krystaly solí, hydroxyapatit
 - 20% organické složky
 - * 90% kolagen, z něj 90% kolagen I
 - 10% voda
- klíčové kostní proteiny: sialoprotein, osteokalcin, osteonektin
- topologické složení
 - kost je síťovina osteocytů pospojovaných výběžky, které jsou propojeny přes gap junctions
 - tato síťovina je koncentricky uspořádána do lamel kolem centrálního Haversova kanálku s cévami a nervy

- Haversovy kanálky jsou propojeny příčnými Volkmanovými kanálky, které přivádí cévy
- osteon roste dovnitř
- Haversovy kanálky jsou rovnoběžné s hlavní osou diafýzy
- periost je vrstva na povrchu kosti
 - složen z kolagenních vláken a fibroblastů
 - tvoří vnitřní vrstvu osteoprogenitorové buňky
 - účel: výživa kostní tkáně, kontinuální přísun nových osteoblastů
- endost vystýlá vnitřní povrch kostních dutin
 - je v něm uložena vrstva osteoprogenitorových buněk
 - účel: výživa kostní tkáně, kontinuální přísun nových osteoblastů

Typy kostní tkáně

- primární nezralá vláknitá kost, sekundární zralá lamelózní kost
- kompaktní kost (diafýza), spongiózní kost (epifýza)
- krátké kosti jsu tvořeny spongiózním jádrem obklopeným kompaktní diafýzou
 - dutiny spongiózní kosti tvoří kostní dřeň
 - * červená je krvetvorná
 - * žlutá obsahuje tukové buňky
- ploché kosti lebeční klenby jsou tvořeny dvěma lamelárními kompakty oddělenými vrstvou spongiózní kosti (diploe)

Remodelace kostí

- kost se neustále přestavuje
- u dětí je remodelace 200× rychlejší než u dospělých
- za týden se odbourá 5–7% kostní hmoty
- houbovitá část je obnovována jednou za 3–4 roky
- kompaktní část je obnovována jednou za 10 let
- resorpce je regulována osteoklasty

4.4.1 Kostní buňky

Osteoblasty

- vznik z mezenchymálních buněk
- po uhnízdění se mění v osteocyty
- tvoří organickou ECM
- provádí syntézu kolagenu I, proteoglykanů, glykoproteinů
- lokalizovány výhradně na povrchu kosti, těsně vedle sebe jako jednovrstevný epitel
- kontakt s ostatními buňkami skrz výběžky
 - poté jsou zality v ECM a změní se v osteocyt
- do nově založené mineralizované kostní matrix se váže tetracyklin
 - měření výstavbové aktivity kosti
 - testovanému jedinci se podává 5 dní, vznikají výbrusové preparáty

TODO Zjistit, co se podává testovánemu jedinci.

Osteocyty

- vznik z osteoblastů
 - uzavřeny v kosterní hmotě
- zaniknou, když převáží resorpce matrix
- jednotlivě uloženy v lakunách mezi lamelami matrix
- výběžky jsou propojeny gap junctions
- mají tvar broušeného diamantu
- zality v ECM, následně mineralizují
 - jsou odpovědné za mineralizaci kostí

Osteoklasty

- vznik fúzí monocytů nebo makrofágů
- obrovské mnohojaderné buňky (i přes $100\mu m$) s 5–50 jádry
- jsou bohatě větvené, pohyblivé
- resorbují kostní hmotu

- podílejí se na přestavbě kosti
- extracelulárně snižují pH a naleptávají kostní osteon (Haversův systém)
 - v místě resorpce vznikají enzymaticky vyleptané prolákliny v matrix, tzv.
 Howshipovy lakuny

4.4.2 Osifikace

Osifikace

- vývoj kostních buněk: mezenchymální buňka -> chondroblast -> chondrocyt
- dělení
 - intramembranózní
 - * ve vazivu, kost vzniká přeměnou chrupavky
 - · probíhá přímá mineralizace matrix produkované osteoblasty
 - * ploché, krátké a dlouhé kosti do šířky
 - endochondrální osifikace
 - * vznik dlouhých a krátkých kosti
 - * kost vzniká náhradou chupavky
 - probíhá ukládání kostní matrix a anorganických složek na předem vytvořenou matrix chrupavky vhodné prostředí zajišťují mezenchymální buňky a fibroblasty
- kost může po splnění určitých podmínek vzniknout kdekoli v těle
- chrupavka může také osifikovat (speciální případ metaplazie)
 - 1. v chrupavce je zánět
 - 2. je vyslán signál nebezpečí k cévám
 - 3. cévy vysílají výběžky do chrupavky, směrem k zánětu, aby jej odstranily
 - 4. chrupavka je transformována v kost

Počet osteoklastů zvyšuje parathormon. Při velkém množství parathormonu tedy dochází k odbourávání kosti, k osteoporóze a k následnému uvolnění Ca^{2+} do krve. Naopak kalcitonin resorpci matrix inhibuje.

Průběh intramembranózní osifikace

1. nahromadění mezenchymálních buněk

- 2. vznik primárního osifikačního centra
- 3. diferenciace v osteoblasty
- 4. tvorba kostní matrix
- 5. uzavírání části vaziva
- 6. radiální růst center, a jejich finální splynutí

Průběh endochondrální osifikace

- 1. destrukce chondrocytu
- 2. osteoprogenitorové buňky se přesouvají do lakun
- 3. tyto buňky poté vrůstají do periostu
- 4. tvorba kostní matrix

4.4.3 Patologie

Zlomeniny

- kost praskne
- mutace ovlivňující poměr odbourávání a budování kostní hmoty
 - důsledkem např. osteopetróza, osteoporóza
- průběh zloměniny
 - 1. po zlomení se aktivují osteoblasty, namnoží se
 - 2. osteblasty oudělají houbovitou kost
 - 3. houbovitá kost je postupně přestavena v kompaktní kost
- krátké kosti se hojí špatně, zatímco dlouhé jsou na mechanické změny zvyklé

Poruchy kostní tkáně

- rachitis
 - nedostatek vápníku u dětí, je narušen osifikační proces
- osteomalacie
 - nedostatek vápníku u dospělých (těhotenství), měknutí kostí
- osteoporóza
 - rozpad kostní hmoty (přílišná aktivita osteoklastů)
 - opakem je osteopetróza

- hypofyzární nanismus
 - nedostatek růstového hormonu
 - opakem je gigantismus
- akromegalie
 - nadbytek růstového hormonu v dospělosti, tloustnutí kostí
- Pagetova choroba
 - ovlivnění metabolismu a diferenciace osteoklastů
 - hrubé kosti, neodbourávají se
 - léčitelné transplantací kostní dřeně

4.5 Krev

META Tato kapitola bývá probírána až v rámci posledních přednášek, po nervové soustavě.

HISTOLOGIE KREV -Pojivo

-Všechny krevní buňky se mohou rozdělit do hlavních tří linií -erytroidní linie (erytrocyty, retikulocyty) -zprostředkování transportu kyslíku do tkání -lymfoidní linie (T-buňky, B-buňky a jejich blízcí příbuzní) - zásadní pro tvorbu adaptivní imunitní odpovědi -myeloidní linie (granulocyty a makrofágy) -umožňuje vrozenou imunitní odpověď a podílí se na odpovědi adaptivní

složení -Hodně mezibuněčné hmoty = plazma -nestlačitelná -5-6 litrů -krevní buňky : erytrocyty, leukocyty, trombocyty -relativně mobilní, schopny opustit krevní řečiště -červené krvinky = erytrocyty -45% objemu $(5 \cdot 10^12 \text{ na litr})$ -bílé krvinky = leukocyty -1% objemu -granulocyty $(5 \cdot 10^9 \text{ na litr})$ = polymorfonukleární leukocyty (velmi proměnlivé - polymorfní jádro) -obsahujé granula = obarvitelné částice -12 - 15 mikrometrů -schopné pohybu -terminálně diferencionavé nedělící se buňky -neutrofily -fagocytují, zabíjejí a tráví bakterie -barví se neutrálními barvivy (do růžova) -bazofily -při alergické reakci sekretují histamin a serotonin -barví se zásaditými barvivy (do tmavě modra) -eozinofily -likvidují mnohobuněčné parazity -barví se kyselými barvivy (hematoxylin-eosin - do červena) -agranulocyty -nejsou obarvitelné -monocyty $(4 \cdot 10^8 \text{ na litr})$ -diferencují se v makrofágy a dendritické

buňky -magrofágy -fagocytují parazity a vlastní poškozené a apoptoticé buňky -produkují oxidační produkty -některé se mění na dendritické buňky -dendritické buňky -fagocytují na periferii ->migrují do uzlin ->prezentují antigeny prostřednictvím MHC II. třídy -lymfocyty $(3\cdot 10^8 \text{ na litr})$ -krevní destičky = trombocyty

sedimentace -její rychlost určována diagnostickou hematologickou metodou -krev se nasaje do trubice -nejrychleji klesají erytrocyty a pak leukocyty -nad nimi zůstane plazma -hematokrit = celkový objem pevné složky krve -buffy coat = koncentrovaná suspenze získaná sedimentací -vysoká sedimentace -když je v těle zánět, v plazmě je hodně imunoglobulinů -krev je hustější a krvinky klesají pomaleji -sloupec erytrocytů je vyšší, i když jich je stejně jako u zdravého jedince

centrifugace -rychlejší alternativa sedimentace

složení a funkce krve -objem krve - 6/8% telesne hmotnosti -hematokrit - ženy: 41%, muži 46% -erytrocyty - $5\cdot 10^6$ / mikrolitr -leukocyty - 4 až $6\cdot 10^3$ / mikrolitr -trombocyty - 150 až $300\cdot 10^3$ / mikrolitr

erytrocyty -terminálně diferencované bezjaderné buňky -přenos plynů (u savců) -bikonkávní tvar (maximální povrch vůči objemu - vázání plynů) -ptáci, obojživelníci - oválný -průměr 5 mikrometrů -kapiláry mají jen tak velký průměr, jak velké je jádro erytrocytů, které limituje jejich velikost

-krvetvorba -jako všechna pojiva pochází z mezenchymu -odvozeny od kmenových buněk krevní řady (erytroidní linie) -ty mají extraembryonální původ = v prenatálním vývoji vznik ve žloutkovém váčku (= trofoblastu) -vznik v kostní dřeni $(5 \cdot 10^{11})$ den vzniká a zaniká) -erytroblast = nezralý erytroblast v kostní dřeni -retikulocyt = nezralý erytrocyt v krevním řečišti (1% všech erytrocytů) -neopouštějí krevní řečiště -změna erytroblastu v erytrocyt -ztrácí RNA, jádro kondenzuje, je vyloučeno a odklizeno makrofágy (ztrácí všechny organely) -žijí cca 120 dní -poté ve slezině či kostní dřeni odstaněny makrofágy -Anémie = chudokrevnost -hypochromní anémie = erytrocytů je v krvi dost, je v nich ale nedostatek hemoglobinu -špatně nesou kyslík a barvu -srpkovitá anémie -způsobeno bodovou mutací hydrofilní kyseliny glutamové (např. GAA) na hydrofobní valin (např. GUA) -v neoxidovaném (=neokysličeném) stavu se hemoglobin shlukuje (polymerizuje, vytváří vláknité útvary a agregáty) a mění tak tvar krvinek -krvinky mají kratší životnost, jsou méně flexibilní - blokují

vlásečnice, což vede k ucpání cév -fetální hemoglobin má vyšší afinitu ke kysíku než dospělý = váže kyslík za nižšího tlaku (který je v placentě)

Neutrofily -polymorfonukleární leukocyty -dříve zvané mikrofágy -60-70% bílých krvinek -jádro -nezralé má tvar podkovy -složeno z 2-5 laloků spojených můstky -čím starší, tím více segmentů (až 7 = hypersegmentované buňky) -ženy mají na jednom segmentu paličkovitý přívěšek, který obsahuje inaktivovaný chromozom X -krátce žijící buňky (v krvi 6-7 dní, ve vazivu 1-4 dny) -přichází v první vlně buněk do místa zánětu -jejich receptory jsou schopny rozeznat např. bakterie, které fagocytují a ve fagozomech zlikvidují -stimulace fagocytické aktivity -nízkoafinní Fc receptory na neutrofilech -označení bakterie protilátkami = opsonizace -látky pro rozklad bakterií -superoxidové anionty -peroxid vodíku -chlornanové kationty -mrtvé neutrofily + bakterie + natrávený materiál -> hnis -mohou být rychle nahrazeny z kostní dřeně -neutrofilie = zvýšené množství neutrofilů v krvi -může značit akutní, nebo chronickou infekci

Eozinofily -2-4% leukocytů -dvojlaločná jádra s granulami (cca 200 na buňku) - eozinofilie =zvýšený počet eozinů v krvi -alergické reakce a parazitární infekce (např helmintózy) -při napadení organismu patologem se jejich počet drasticky zvedne -jejich počet se dá snížit kortikoidy -granula -hlavní složka MBP (=major basic protein) -antiparazitická funkce -enzymy histamináza a arylsulfatáza -rozkládají histamin a leukotrieny -mohou tlumit účinek basofilů a žírných buněk

Bazofily -1% krevních leukocytů -na povrchu jsou receptory pro protilátky (imuno-globuliny IgE) -při zvýšené hladině bazofilů v krvi může pravděpodobněji dojít k alergické reakci -schopny degranulace -granula splynou s membránou a vylijí se do okolního prostředí -ničí cizí struktury -regulace exocytozy -regulovaná vazba anti-genu na IgE navázaný na IgE receptory -IgE receptor je vysokoafinní = váže IgE i pokud není navázané na antigen -multivalentní antigen = struktura obsahující větší množství vazebných míst pro protilátku -pokud se v těle vyskytne multivalentní antigen, dojde k agregaci receptorů -> aktivace signalizační kaskády -> degranulace granulí -> vylití biologicky aktivních aminů (histamin, serotonin)

Monocyty -největší krvinky -součástí myeloidní linie -oválné podkovovité, nebo ledvinovité jádro -prekurzory mononukleárního fagocytárního systému (= soubor všech makrofágů v různých tkáních) -před vstupem do tkáně osm hodin kolují v krvi

-prakticky nefunkční - v krvi mají jen funkci "zásobárny makrofágů"-diferenciace - makrofágy -diferenciace po vstupu do tkáně kapilární stěnou -endocytóza tkáňového debrisu včetně apoptotických tělísek -na povrchu nesou MHC II. třídy = krátké úseky glykoproteinů (exogenní peptidy sic), které jsou charakteristické pro makrofágem pohlcenou látku -kontrolují je Th-lymfocyty - spouštějí imunologický poplach (upozorní B-lymfocyty) -při zánětu nastupují po neutrofilech -dendritické buňky - dosáhneme toho izolací z krve a použitím interleukinu-4a GM-CSF (=granulocytární makrofágový colony stimulating factor) - funkcí je endocytóza -endocytují cizorodou látku ->přesunou se do mízní uzliny a naštěpí endocytovanou látku ->prezentují ji na povrchu ->T-lymfocyt ji rozpozná a aktivuje a poté vyvolá imunitní reakci

-osteoklasty =kostní buňky odbourávající kostní tkáň -vznik splýváním monocytů -> mnohojaderné -funkce: např. prořezávání zubů -proti špičce zubu se nachází speciální populace osteoklastů -je třeba odbourat kost čelisti, aby se mohl zub prořezat ven -poruchy v myeloidní linii (především ve funkci monocytů a jejich diferenciačních produktů) mohou mít velký vliv na remodelaci kostní hmoty -Pagetova choroba -nadměrné odbourávání kosti a následné tovoření kosti neplohodnotné

Lymfocyty -30% leukocytů -různorodá velikost (5 mikrometrů - 15 mikrometrů) rozdíl v množství cytoplazmy (většina je zcela vyplněna jádrem) -schopny aktivního pohybu (z krve do tkání - místa zánětu / mízní uzliny) -schopny vytvářet mnohočetná komplikovaná mezibuněčná spojení =interakce vícera párů membránových receptorů a jejich ligandů -regulace diferenciace (případně následné proliferace) a efektorové funkce (např. zabití cílové buňky cytotoxickým T-lymfocytem) -T-lymfocyty -90% -dělení podle povrchových koreceptorů pro MHC glykoproteiny -CD4 -pomocné a supresorové -reakce s MHC II -CD8 -cytotoxické -interakce s MHC I -dělení podle genů, které byly přestavěny ve funkční T-receptor -vznikají v nich rekombinací nové geny, a syntetizují nové proteiny -přeskupování genových segmentů pomocí rekombináz -může dojít k chybám - popletení substrátu -> spojení ramen dvou chromozomů, které spolu fyzicky vůbec nesouvisí -> např. filadelfský chomozom -na něm je fúzní chimérní gen (propojení částí genů Cbl a Abl) -vznik aktivované kinázy schopné transformovat postiženou buňku v buňku nádorovou -alfabeta -výběr genů probíhá náhodně - jsou poté připraveny na cokoli -gamadelta -výběr genů probíhá na základě evoluce -konkrétní poskládání genových segmentů, které jsou nejčastěji používaná a mají smysl -organismy se liší v poměru alfabet a gamadelt -přežvýkavci 70:30 -člověk 95:5 -efektorové buňky -frakce T- a B-lymfocytů -T-lymfocyty: pomocné

a cytotoxické buňky -B-lymfocyty: plazmatické buňky = buňky produkující velké množství protilátek -diferencovány a aktivovány pro výkon své funkce -B-lymfocyty -5% -produkce protilátek -afnitní maturace -když se organismus setká s nějakým antigenem, vylepší svoje protilátky -sekundární odpověď zahrnuje protilátky s vyšší afinitou k antigenu -imunoglobulinové geny náhodně mutují, B-lymfocyty s mutovanými geny poté soupeří o navázání antigenu -ty s nízkou afinitou jsou odstraněny a tak zůstanou pouze ty s vysokou -NK buňky -5% -ničí buňky bez MHC I

Krevnní destičky -nejsou to buňky, ale bezjaderné diskovité útvary -3 mikrometry - vznik fragmentací polyploidních megakaryocytů sídlících v kostní dřeni -megakaryocyt vysílá výběžky přes stěny do kapilár a odštěpuje destičky přímo do krve -za den až 100 000 z jednoho karyocytu -rozpad megakaryocytu je programovanou buněčnou smrtí -zbytky odklizeny makrofágy -v krvi přežijí 10 dní -neopouští krevní řečiště -obsahují -regulátory srážení krve -PDGF = platelet derived growth factor -jako diferenciační faktor epiteliálních buněk se podílí na efektivní reparaci poškozené tkáně -serotonin -vasokonstriktor -jeho uvolnění je stimulováno vazbou na poškozené cévní stěny -schopen uzavřít i malé arterie -poškození tkáně -destička se dostane do kontaktu s kolagenními vlákny ->exocytóza faktorů aktivujících ostatní destičky ->uvolnění aktivačních látek ze stěn poškozených cév -změna protrombinu na trombin ->trombin katalyzuje přeměnu fibrinogenu na fibrin ->fibrin polymeruje a vytváří vláknitou síťovinu vznikající krevní sraženiny ->trombus = sraženina

Osteoklasty -diferencované z monocytů -odbourávají kost -mnohojaderné -vznik splýváním monocytů -funkce: např. prořezávání zubů -proti špičce zubu se nachází speciální populace osteoklastů -je třeba odbourat kost čelisti, aby se mohl zub prořezat ven

Metody zkoumání krve krevní roztěr a průtoková cytometrie

Patologie krve (onemocnění) -leukémie =rakovina krve -dochází k nádorové přeměně některého z diferenciačních stádií buněk odvozených od kmenových buněk kostní dřeně -zvýšený počet leukocytů jednoho typu v krvi -myeloblastické zvýšení -zvýšené množství granulocytů a monocytů -lymfoblastické -zvýšené množství lymfocytů -obě mohou být akutní nebo chronické -leukocyty nedozrávají a jsou tak nefunkční -rizikové faktory -kouření -chemikálie (benzen) -radioaktivní záření -léčba jiného nádorového onemocnění -filadelfský chromozom -efektivní řešení: chemoterapie a transplantace kostní dřeně -mononukleoza -EBV virus napadá B-lymfocyty,

nebo jejich prekurzory -B-lymfocyty se pomnoží a tváří se jako cizí organismus a tělo se brání -dochází k narušení rovnováhy mezi jednotlivými složkami imunitního systému -po vyléčení máme EBV na celý život

LYMFATICKÝ SYSTÉM

-lymfatické (= lymfoidní) tkáně -jsou všude po těle, zejména v místech, kde do těla vstupují, nebo kudy během infekce putují patogeny -pod epitely -> s epitely asociovaná lymfoidní tkáň -místa proliferace a diferenciace lymfocytů -MALT = lymfoidní tkáň asociovaná s mukózou (sliznicí) -bronchy BALT = lymfoidní tkáň asociovaná s dýchacími cestami -GALT = lymfoidní tkáň asociovaná se střevem (gut) -lymfatické orgány -anatomicky diferenciovaná množina lymfoidní tkáně -složeny pouze z lymfoidní tkáně -dělení -primární -zajišťují hematopoezu = krvetvorbu -selekce s vlastním tělěm nereagujících lymfocytů -kostní dřeň -thymus = brzlík -sekundární -napojeny na lymfatický i oběhový systém -zajišťují efektivní setkávání buněk imunitního systému -kompartmentace efektivního imunitního dozoru -slezina -uzliny Kostní dřeň -veliký orgán -sídlo hematopoezy -dochází tu k proliferaci buněk všech linií -dělení -červená kostní dřeň -hematopoetická -u fétu probíhá krvetvorba jen v játrech a slezině -po narození je v těle pouze červená k.d. a hematopoéza probíhá výhradně tam -v dopělosti pouze v plochých kostech a obratlích -žlutá kostní dřeň -tuková -šedá kostní dřeň -0,1% buněk kostní dřeně má na povrchu membránový protein CD34 -každý buněčný typ je nezávisle regulován -EPO = erytropoetin -CSF = kolonie stimulující faktory -stromální buňky lymfatických uzlin -velmi důležité - "lešení" pro hematopoetické buňky -vytváří vhodné prostředí pro setkání lymfocytů s antigeny -kmenové buňky v kostní dřeni -stačí transplantovat 5 KB pro zajištění kompletní krvetvorby (myší model) -faktory zvyšující přežívání a nediferencovaný stav -typickou markerovou molekulou je C-kit = CD117 -na povrchu buňky -obsahuje informace o buněčném typu, stádiu diferenciace a buněčné aktivitě -totipotentní buňka = buňka schopná vytvořit jakýkoli druh buňky, ergo celý organismus (zygoty, dělivé meristémy) -multipotentní buňka = buňka schopná diferenciace do mnoha typů buněk, pouze však v rámci jedné tkáně (kmenové buňky) -sledování hematopoezy -výplach z kostní dřeně in vitro (jako na praktikách) -růst na agaru - vznik nepohyblivých kolonií, které se dají dobře pozorovat

embryonální krvetvorba -vzniká cca 3.týden -ze žloutkového vaku se vytvoří krevní ostrůvky obashující primitivní erytroblasty -větší než ty dospělé, jiný hemoglobin

(Hb), mají jádro -od 5.týdne vzniká intraembryonální krvetvorba -v játrech, slezině, kostní dřeni

5 Svaly

6 Nervové buňky

- ontogeneticky i fylogeneticky odvozeny od epitelu
 - některé z nich mají polarizovanou strukturu (ependymální gliové buňky mají řasinky)
- neurony, neuroepiteliální smyslové buňky, gliové buňky
- mnoho rozdílů mezi buňkami, patří zde nejmenší i největší buněčné typy

centrální nervový systém (CNS)

Je tvořen mozkem a míchou (šedá a bílá hmota).

periferní nervový systém (PNS)

Je tvořen nervoveými buňkami a ganglii, dále buňkami vzniklými z neurální lišty.

neurální lišta

Neurální lišta je zbytek neuroepitelu, který zůstane v místě, kde se vchlípila neurální trubice.

Vznikají zde buňky s obrovským diferenciačním a migračním potenciálem: chromafilní buňky, melanocyty, odontoblasty, Schwannovy buňky, neurony senzorické, gangliové, atd. Tyto buňky nezvznikají in situ, ale na liště, a na místo určení se dostanou už naprogramovány.

6.1 Stavba CNS a PNS

V celém nervovém systému je asi 10¹¹ nervových buňek, 3–10 krát více podpůrných gliových buněk a tím pádem 1000-5000 krát více možných propojení neuronů. Nervy jsou zpěvněny třemi obaly, epineuriem, perineuriem a endoneuriem.

Metody zkoumání CNS

- skenovací metody často pracují s izotopy prvků, které mají liché počty neutronů
 - možnost vizualizovat pomocí funkční magnetické rezonance (FMR)
 - dá se zjistit, které oblasti mozku jsou aktivní a neaktivní
 - mozek je možno pozorovat in vivo, např. i to, jak reaguje na konkrétní vzruchy
 - PET (pozitronová emisní tomografie): vychytávání cukru označeného radioaktivní látkou aktivním rostoucím nádorem
- mozek je rozdělen na malé specializované části

Bylo zjištěno, že máme nějak mnoho druhů neuronů na to, jak málo máme genů, které je kódují.Zdá se, že přírody nejspíše využívá triky s exony a introny (alternativní splicing).

Vývoj CNS

- 1. v ontogenezi se tvoří obrovské množství buněk
 - některé projdou programovanou buněčnou smrtí
- 2. nezralé neurony během ontogeneze putují podél radiálních gliových buněk propojujících vnitřní a vnější povrch nervové trubice (délka až 2cm)

- 3. gliové buňky slouží jako pravítko a určují tloušťku vrstev nervových buněk v mozku
- 4. nervové výběžky jsou poté naváděny pomocí chemoatraktantů (např. netrin) a chemorepelentů (např. některé semaforiny, proteiny Slit)
 - přesná diferenciace v konkrétní populaci je dána poziční informací od hormonů
 - rodiny Hox, Pax, Dbx, Irx
 - faktory sonic hedgehog, BMP
 - někdy se jeden výběžek plazí po druhém, který by pak byl tzv. pioneer neuron
- 5. pro přežívá neuronů jsou nutné neurotropiny, např. NGF (nerve growth factor)

Tvorba vrstev pomocí gliových buněk

- 1. první neuroblasty vytvoří vrstvu, která se stabilizuje tvorbou mezibuněčných spojení
- 2. poté se po gliových buňkách posunou nové buňky, projdou stávající vrstvu a vytvoří novou vrstvu atd.
- 3. poslední vrstva přidaných buněk je neokortex, je nejdál od zdroje kmenových buněk

Obrázek 6.1: Znázornění postupného růstu vrstev podle gliových buněk

Nervové spoje

- různé neurální populace se aktivují při různých úkolech
 - např. při rozlišování hranatých a kulatých věcí
- dynamická struktura, která se "drátuje"v průběhu života
- součástí správného rozvoje CNS je i apoptóza
- neurony, které nejsou za prvních pár týdnů prenatálního života použity, podléhají buněčné smrti
- místům v mozku, která byla původně určena jako nefunkční či prázdná, bývá pomocí FMR přiřazena funkce
- podobně jsou i v rámci postnatálního života posilovány spoje, které jsou často používány
 - naopak nepoužívané spoje slábnou a zanikají
 - je důležité dávat dítěti (alespoň do sedmi let života) co nejvíce různých vjemů
 - příkladem může být absolutní hudební sluch, který silně souvisí s typem vjemů, kterým je dítě vystavováno
 - * v Asii desetkrát vyšší incidence absolutního sluchu než u nás, snad kvůli tonálním jazykům
 - $\ast\,$ je s ním spijený jen jeden gen, který avšak způsobuje i nízkou hodnotu IQ
- tato plasticita mozku během života zaniká
 - netvoří se nové spoje, pouze se posilují a zeslabují ty stávající

Poznámka

mikrochimérismus

Přítomnost dvou a více geneticky odlišných populací buněk, které jsou odvozeny z různých zdrojů, v jednom orgánu nebo jednotlivci.

Např. buňky myšátek během gravidity osidlují tělo matky, což se dá pozorovat na myšátkách GFP-tagovaného samce a netagované samice.

6.1.1 Neurony

- schopné sčítat a odčítat signály z jiných neuronů, integrovat je, a pak vyslat signál
- jsou v podstatě zodpovědné za to, že myslíme
- neurony jdou připravit z kmenových buněk pomocí kyseliny retinové
 - na vytváření jednotlivých neurálních populací jsou potřeba ještědalší růstové faktory

Dendrity

- většina neuronů mnoho dendritů
- větví se, co dendrit, to možnost napojit se na individuální nervovou buňku
 - např. Purkyněho buňky mohou integrovat až 200 000 signálů
- při větvení se tenč
- zesilují se, nebo zeslabují, podle toho, jak jsou používány
 - buňka umí do dendritu transportovat proteiny, snad i lokalizovanou translaci
 - tento proces nejspíše stojí za dlouhodobou pamětí

Axony

- většina neuronů jeden axon, vzácně 0
- větví se, má ale konstantní šířku
- 1mm 1m na délku
- vyrůstají z místa zvaného axonální kónus
 - tam se provádějí všechny výpočt
 - jde o to, jestli je překročen akční potenciál
- plazmatická membrána axo, lemmaobsahuje axoplazmu
- úsek mezi kónem a počátkem myelinové pochvy se nazývá iniciální segment
 - jsou zde unikátní iontové kanály kontrolující generování nervového vzruchu
- mohou být myelinizované i nemyelinizované

Molecular fence

- · v aixonálním výběžku jsou jiné iontové kanály než dendritech
- zajištují diferenciaci na úrovni membrány
- buňka je díky ní polarizovaná
- brání průchodu signalizace zpět do dendritu
- pro správnou funkci NS je nezbytná dostředivá a odstředivá signalizace právě na základě membránových domén

Nervová zakončení

aktivační zakončení

Extracelulárně snižují polaritu nebo koncentraci sodných iontů a zvyšují potenciální vybuzení neuronu k vypálení signálu.

Způsobují malou depolarizaci na postsynaptické membráně, otevírají gated kationtové kanály.

Ve spojení především s neurotransmitery acetylcholinem a glutamátem.

inhibiční zakončení

Způsobují malé hyperpolarizace, otevírají Cl^- a K^+ kanály. Ovlivňují prostorovou a časovou sumaci signálů. Rozhodují o tom, jestli bude či nebude na neuronu postsynaptický potenciál.

Znesnadňují signalizaci buňkám, kde se zrovna vylijí.

Ve spojení především s neurotransmitery GABA a glycinem.

V reálu záleží na tom, jak se posčítají hyperpolarizace a depolarizace.

Funkce svalů

- motorický neuron musí dostat dostatečné množství aktivačních signálů
- sval samotný už nic neřeší a pokud dostane signál, prostě se stáhne
- akční potenciál je pořád stejně velký, jak rychle se má sval stáhnout pozná z
 frekvence, ve které dostává signály

Schopnost regenerace

META Na toto byl v přednášce kladen velký důraz.

Naproti obecné představě jsou nervové buňky schopny určité regenerace.

Průběh poškození axonu

- Ve zdravém neuronu spojeném se svalem je jádro uprostřed a je v něm mnoho Nisslových substancí.
- 2. Když je axon přerušen, jádro se posune na periferii neuronu a počet Nisslových substancí je velice sníží. Část nervového vlákna, která je nyní spojená jen se svalem, degeneruje a je odklizena makrofágy.
- 3. Denervovaná svalová buňka atrofuje. Schwannovy buňky proliferují, tvoří silný kabel roustoucí ze svalové buňky.
- 4. Axon dorůstá a snaží se spojit a prorůst Schannovými buňkami.
 - Když se mu to povede, sval je opět inervovaný, obnoví se jeho síla i funkce a neuron se vrátí do původního stavu.
 - Když se mu to nepovede, růst axonu je neorganizovaný, sval dál atrofuje.
 Po překročení určité doby je sval už nenávratně poškozen.

Poznámka Nisslova substance (Nissl body) je granulární hmota v somě neuronu složená z endoplazmatického retikula obklopeného volnými ribozomy.

Axony málokdy najdou přesně tu správnou myelinovou pochvu a přesně to správné místo, kde původně vedly—jednotlivé svaly mají po regeneraci po zranění nejprve špatnou koordinaci a mozek se musí přeučovat, což trvá měsíce až roky.

U myši jsou schopna se zahojit i poranění páteře; při poraněních páteře u člověka je ale problém s tím, že je informační zmatek přerušených axonů obrovský, navíc axony by musely prorůst mnohem dál než u myši.

Léčba přerušených nervových spojů

- k léčení se snažíme využít i kmenové buňky
- stárnutí je spojeno s neurodegenerací, vymírají konkrétní populace nervových buněk
 - např. u Parkinsonovy choroby to jsou dopaminergní neurony v corpora nigra
- existují snahy diferencovat určité populace nervových buněk in vitro
- regenerace je ale omezenejší než u běžných epitelů
 - nejsilnější je regenerace v bulbus olfactorius (čichovém bulbu) a v hippokampu, který je plastický i v dospělosti

Příklady regenerace

- lze ji pozorovat u pacientů trpícími vážnými, život ohrožujícími epileptickými záchvaty
 - odstraní se velká část mozku s epileptickým ložiskem
 - původní práci této části zastane druhá hemisféra
- Phineas Gage
 - hlavou mu proletěla tyč
 - obnovila se mu skvěle řeč i hybnost
- víme, kde v myším mozku sídlí kmenové buňky

6.1.2 Pomocné nervové buňky

Mají základ z neurální trubice, v PNS z neurální lišty. Někdy označované jako gliové buňky.

oligodendrocyty

Tvoří myelinové pochvy axonů v CNS. Mohou se podílet na myelinizaci více než 1 axonu.

Podobnou úlohu zastávají v PNS Schwannovy buňky. Každ Schwannova buňka však může vytvářet pouze jeden segment myelinové pochvy na jenom axonu.

astrocyty

Dělají strukturní a funkční podporu neuronům, ustanovují extracelulární homeostázi K^+ a H^+ .

Funkce

- odstiňují synapse
- pomáhají vzruch vést, ale i ho zastavit
- dlouhé výběžky astrocytů slouží nervovým buňkám při jejich migraci do cílové struktury jako vodící struktury
- snižují hladinu draslíku a zvyšují hladinu sodíku v synapsi
- čistí extracelulární prostředí v mozku po proběhlých nervových vzruších

Za jejich přítomnosti také dochází k vychytávání neurotransmiterů a k jejich transformaci; např. glutamát -> glutamin, který není neurotransmiterem. Glutamin oté předají presynaptickému neuronu. To se děje proto, aby k nervovým vzruchům mohlo docházet častěji.

Stavba

- diferenciace podléhá růstovým faktorům
 - NGF (nerve growth factor), BDGF (brain derived GF), GDNF (glial cell derived GF)
- propojeny gap junctions
- různé výběžky plní různé úkoly
 - nějaké výběžky obalují kapiláry a účastní se hematoencefalytické bariéry

mikroglie

Imunokompetentní, mají podobnou funkci jako markofágy.

ependymové buňky

Pokrývají vnitřní dutiny CNS (trubice v míše a mozkové komory). Mají epiteloidní uspořádání a řasinky (povrch je velmi podobný epitelu dýchací trubic).

Jsou všude tam, kde je v CNS tekutina, kterou uvádějí v cirkulaci svými řasinkami.

By Neuron-with-oligodendrocyte-and-myelin-sheath.svg: *Complete-neuron-cell-diagram-en.svg: LadyofHatsderivative work: Andrew c (talk) - Neuron-with-oligodendrocyte-and-myelin-sheath.svg, Public Domain, link

Pro gliové buňky je základním zdrojem energie glukóza, kterou anaerobně štěpí na laktát. Kyslík je štřen pro neurony, kde je potřeba pro přenos nervových vzruchů.

Myelinizace

- panožka Schwannovy buňky nebo oligodendrocytu se několikrát obtočí kolem výběžku
- výsledná vtsva má výborné elektrické vlastnosti
- nabohaceny komplexní glykolipidy, sfingolipidy, gangliosidy
- mnoho axonů není myelinizovaných, musí ale být odstíněné
 - invaginace na periferii, vchlípení do těla oligodendrocytu; vzniká mezaxon
 - v jednom kanálku může být i více axonů

6.1.3 Hematoencefalická bariéra

- odděluje mozek od zbytku těla a je běžně pro buňky neprůchodná
- propouští kmenové buňky, pokud je v mozku indukováno poškození
 - minimálně u myší, na kterých byl tento experiment proveden
 - pronikají přes ni kmenové buňky neznámého původu
 - zajištění regenerace poměrně velké části nervové tkáně
 - diferenciace v nervové buňky i různé typy gliových buněk

Na obrázku lze pozorovat výběžky astrocytů, které k sobě těsně doléhají. Samotná kapilára je pak z endoteliálních buněk, které jsou spojeny přes tight junctions.

By Ben Brahim Mohammed - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid

Stavba

- endoteliání kapilární buňka je obklopena výběžky astrocytů
- všechny mezery mezi endoteliáními buňkami uzavřeny přes tight junctions
- kromě imunitních buněk by nemělo nic projít

• téměř vše, co se dostane k neuronům, prochází přes astrocyty

6.2 Senzorické epitely

- buňky na pomezí epitelu a nervové buňky
 - historicky je od ektodermu odvozena celá nervová soustava i senzorické tkáně čichové, zrakové i sluchové
- mají apikální (detekční) a bazální (synaptický) konec

6.2.1 Čichový epitel

- jako jedna z mála neurosenzorických struktur se během života mění
- zde se skupina buněk se diferencuje v čichové (viz obrázek výše)
 - cilie jsou nepohyblivé, obsahují čichové receptory
 - na bazální straně jeden axon směřující do mozku
 - obklopeny podpůrnými buňkami s podobným významem jako gliové buňky
- senzorické neurony přeživájí 1–2 měsíce
 - poté jsou nahrazeny diferenciací bazálních buněk
- každý senzorický neuron exprimuje jen jeden z několika set čichových receptorů
- když jsou buňky obnovovány, nově vznikající buňka si náhodně vybere jeden receptor
- axony senzorických neuronů se stejným receptorem jsou rozptýleny v čichové sliznici
- axony směřují do stejného glomerulu
 - u myší je v bulbus olfactorius na každé straně 1800 různých glomerolů
 - čím více glomerulů, tím více vůní umíme rozeznat, ale i tím více senzorických neuronů musíme mít
- jak axony nově vznikajících buněk najdou správnou cestu ke glomerulu
 - zdá se, že v tom hrají roli receptory pro čich spřažené s G-proteiny
 - tyto receptory jsou schopny homeotické adheze, tj. dva stejné receptory se "zazipují", ale jiné ne
 - axon putuje po glomerulech, zůstane tam, kde se váže nejsilněji

 existuje mnoho poruch této axonové navigace, lidé ztrácí schopnost kontinuity pachů

Studium navigace axonů se opět provádělo na zelených myškách; zeleně se obarvily jen neurony reagující na jednu konkrétní vůni. Po histologii mozku se ukázalo, že všechny zelené axony míří pouze do dvou míst (glomerulů), jednom na každé hemisféře.

6.2.2 Sluchový epitel

- morfologicky nejpropracovanější tkáň v těle
- hlemýžďová rezonanční struktura vzniká prenatálně
- záleží na tom, v kterém místě hlemýždě dochází k rezonanci s membránami, které obalují prostory vyplněné tekutinou
 - voda je nestlačitelná => přenáší vibrace
- senzorickými buňkami jsou sluchové vláskové buňky

Vláskové buňky

- leží ve struktuře Cortiho orgánu v hlemýždi, mezi podpůrnými buňkami, překryty extracelulární matrix
- převádějí mechanickou deformaci v elektrický signál
- všechny mají stejnou morfologii varhanovitých výběžků, stereocilií
 - stabilizovány aktinovým cytoskeletem
 - podobně jako výběžky na buňkách ve střevě
 - rozměry každé stereocilie pevně dány vzhledem k poloze ve středním uchu, odpovídají frekvencii zvukového podnětu, na který mají reagovat
- neregenerují se
- jsou propojené přes gap junctions konexinem 26

By Madhero88 - Own work, CC BY-SA 3.0, link

Princip funkce

- 1. zvukové vibrace deformují stereocilia na vláskových buňkách
- 2. otevírají se iontové kanály s mechanickými "vrátky" (mechanically gated ion channels)
 - reálně dochází ke změně konformace iontového kanálu
- 3. vzniká membránový vzruch, který se šíří vláskovou buňkou
- 4. na bazálním konci dojde v synapsi s neuronem k vylití neurotransmiteru

Choroby

- sluch se mění, hlavně ve stáří a hlavně mužům (špatný sluch zvláště ve vyšších frekvencích)
- celá řada poruch je genetického původu
 - mutace v konexinu 26 způsobují hluchotu (jedna z nejčastějších genetických chorob v Evropě)

6.2.3 Zrakový epitel

- fotoreceptory se dělí na tyčinky a čípky
- $\bullet\,$ senzorickou složkou jsou proteiny opsiny (ópsis = zrak) s prostetickou skupinou retinalem
 - retinal je schopný cis-trans izomerizace, když pohltí foton
 - změna konformace retinalu změní tvar opsinu
- není schopný regenerace

[By OpenStax College - Anatomy Physiology, Connexions Web site. author link, Jun 19, 2013., CC BY 3.0, wiki link]

Nejblíže u pigmentovaných epiteliálních buněk je senzorický epitel, poté jsou různé interneurony a gangliové neurony, které vysílají signál do mozku. Apikální vrstvu senzorické složy tvoří brva (či přetvořený bičík).

Princip funkce v rámci buňky

- 1. retinal změní konformaci
- 2. opsin změní tvar
- 3. aktivují se cGMP fosfodiesterázy, které štěpí cGMP
 - v očních buňkách je jinak vysoká koncentrace cGMP
- 4. otevřou se Ca²⁺ kanály, dojde k hyperpolarizaci membrány
- 5. uzavřou se Na⁺ kanály
- 6. zastaví se bazální signalizace

To, jakým způsobem vidíme, je vlastně negativ: při zachycení fotonu se zastaví/sníží bazální signalizace. To umožňuje rozlišovat jemnější nuance v signálech.

Rodopsiny

- součástí rodiny opsinů, v tyčinkách
- superpozicí tří různý rodopsinů vzniká konkrétní barva
- mutace v jednom rodopsinu zapříčiní to, že člověk nebude schopen rozeznat nějaké barvy od sebe
 - jeden z rodopsinů je vázaný na chromozom X, takže se daltonismus vyskytuje častěji u mužů

Pigmentované epiteliální buňky

- odrážejí a pohlcují světlo, brání osdleskům
- fungují jako makrofágy
 - senzorické buňky se nemohou během života měnit, proto jen vyměňují svůj obsah
 - odštěpují váčky s denaturovanými proteiny a kovalentně modifikovanými lipidy
 - tyto váčky uklízejí právě epiteliální buňky

Choroby

- výše zmíněná barvoslepost
- mutace mitochondriální DNA => ztráta zraku, atrofie očního nervu

- např. syndrom LHON
- zrakový nerv a funkce senzorického zrakového epitelu je zřejmě jedna z Achillových pat energetického metabolismu

6.3 Patologie nervové soustavy

Roztroušená skleróza

- autoimunitní onemocnění proti MBP (myelin basic protein)
- destrukce myelinových obalů T-lymfocyty
- nemoc můžeme experimentálně vyvolat u myši
 - např. tím, že přeneseme aktivované T-lymfocyty do těla
- léčba je nákladná

Epilepsie

- způsobená různými úrazy, infekcemi, někdy je dědičná
- jednou z příčin je odumření neuronů a nahrazení gliovými buňkami (tzv. gliová jizva)
- nervová soustava dočasně upadá do stavu pozitivních zpětných vazeb

Parkinsonova choroba

- příčinou je nedostatek dopaminu
- dochází ke svalovým třesům
- v mozku jsou oblastni, kde jsou dopaminergní neurony lokalizovány (substania nigra), často odumírají
- po Alzheimrovi druhá nejčastější choroba

Alzheimrova choroba

- některé proteiny mají narušené odbourávání
 - např. amyloidní protein, tau protein

 v mozku se hromadí plaky neodbouratelné substance, která tlačí, je cytotoxická a způsobuje neurologické patologie

Creutzfeld-Jacobova choroba

- prionové onemocnění
- chyby paměti, změny chování, špatná koordinace, časem slepota, slabost
- dost vzácná
- často se objeví zdánlivě bez příčiny, někdy je ale dědičná, dá se chytit i v rámci kontaktu s nakaženým nervovým systémem (např. při operacích)
- mozek po nakažení začne vypadat jako houba (s děrami)

Nádory CNS

- primární nádory mozku tvoří přibližně 1–2% všech zhoubných nádorů
- nejčastěji děti do pěti let, nebo dospělí od 60 let
- malé množství nádor je dědičně podmíněno
- více než 50% nádorů jsou nádory z buněk podpůrné tkáně, gliomy
 - dělí se na low-grade a high-grade gliomy, podle toho, jak vysoký mají stupeň malignity
- neuroblastom, ganglioneurom, feochromocyton, chemodektom, retinoblastom, oligodendrogliom (druh gliových buněk), astrocytom (druh gliových buněk), meduloblastom, ependymom, meningiom, angioretikulom

Nádory PNS

- neurinom, neurilemon, Schwannom = nádor ze Schwannových buněk
- neurofibrom
- neurogenní sarkom vzácná varianta neurinomu, maligní

Obrázek 6.3: Schematický obrázek hematoencefalické bariéry

Obrázek 6.4: Schéma čichového epitelu

Obrázek 6.5: Schematický obrázek popisující části vnitřního ucha

62