

Actividad | #02 |

Funciones Lineales y Cuadráticas en los Negocios

Introducción a los Negocios

Ingeniería en Desarrollo de Software

TUTOR: Elizabeth Guevara Roa

ALUMNO: Oscar Esteban Sánchez Leyva

FECHA: 22/Octubre/2024

ÍNDICE

ÍNDICE	2
INTRODUCCIÓN	3
DESCRIPCIÓN	4
JUSTIFICACIÓN	5
DESARROLLO	
FUNCIÓN GANANCIA	
FUNCIÓN CUADRÁTICA	10
CONCLUSIÓN	14
REFERENCIAS	15

INTRODUCCIÓN

En el presente documento se hablará acerca de los objetivos de aprender a aplicar funciones lineales y cuadráticas que nos permitirán analizar ideas y tener acciones complejas en un entorno empresarial. Ambas funciones son herramientas matemáticas útiles en economía: La función lineal tiene una relación directamente proporcional entre las variables, mientras que la función cuadrática tiene una relación de curva parabólica.

Las empresas por lo regular deben informar sobre los resultados que obtienen; por ello, se deben evaluar los procesos que se emplean en las actividades que se realizan en el mercado, correspondientes a los productos y servicios que ofrecen.

Para poder resolver estos tipos de problemas lineales, lo primero que se debe es analizar los datos de entrada y salida, para identificar las variables dependientes e independientes, y formular la ecuación correctamente. En cambio, la función cuadrática se usa para modelar situaciones o relaciones en los negocios, para predecir ganancias, pérdidas y valores óptimos, donde puede ayudar a determinar ingresos máximos, costos mínimos y demandas de producto.

DESCRIPCIÓN

Hoy en día, la información que respalda los negocios representa una oportunidad para tener éxito en la solución de problemas mediante las tomas de decisiones. Existen herramientas que ayudan a medir los problemas, como: la función lineal se usa para comparar los costos de producción y las ventas, y la función cuadrática ayuda a predecir ganancias y pérdidas en los negocios, que gráfica el curso de objetos en movimientos y asiste en la determinación de valores mínimos y máximos.

Lo que es algo indispensable dentro de la toma de decisiones es identificar las relaciones que tienen las variables, donde las funciones explican las tareas y los objetivos específicos que se deben completar.

Esta relación suele tener la forma de una ecuación que es una igualdad matemática en dos expresiones, denominadas y separadas por el signo igual, en las que aparecen elementos conocidos o incógnitas, relacionados mediante operaciones matemáticas, con sus valores conocidos.

JUSTIFICACIÓN

El principal objetivo de este trabajo es saber utilizar y entender el uso de las funciones ante cualquier situación que presente la empresa; es por ello que es importante establecer estrategias que permiten identificar la ecuación ante el problema y poder resolverla.

Se deben establecer diferencias entre ecuaciones lineales y cuadráticas donde aplique adecuadamente las propiedades de las ecuaciones y de esta forma poder tener la capacidad de identificar, plantear y resolver problemas.

El cual interpreta una desigualdad y aplica las propiedades en su solución y de esta manera identifica las características de una recta.

La función lineal es donde la gráfica es una línea recta que pasa por el origen de coordenadas y la función cuadrática es la función polinomial de grado 2 o función de segundo grado, en donde su gráfica es una parábola vertical que es orientada hacia arriba o hacia abajo.

Debemos tomar en cuenta que las funciones lineales y cuadráticas son aplicaciones de las matemáticas en las que se pueden utilizar diferentes conceptos como medir distancias, resolver problemas, comparaciones y determinar volúmenes. Para cualquier tipo de trabajo nos pueden ser útiles.

DESARROLLO

FUNCIÓN GANANCIA

1.- Se redacta la función de ganancia para realizar el ejercicio.

Δ	Α	В	С	D	E	F			
2	Ejercicio 1. F	unción gananc	ia:						
3	La empresa de teclados tiene un costo fijo de 700 dólares. Además, los costos de								
1	producción de un teclado son de 3.50 dólares. Si se vende cada uno en \$8.50 dólares :								
5	production de	dir toolado oon	40 0.00 dolai 00	. 01 00 101100 00	100 UTO UT \$0.00	o dolaroo .			
5	l a) E	Escribir la funció	n de ganancia						
7		Cuántos teclad	•	der para obtene	r una ganancia	positiva?			
3	-' '	,		т. ран с солоно	and gamana	_			
9									
0	Dagard	anda ana arr	anasién basa						
1	Record	ando que exp	presion base	es.					
2			y = a + b	x					
3	Consid	erando las va	riables de n	egocios, que	da represent	ado			
4	de la si	guiente mane	era:		-				
5			C(q) =b	+ m a					
6			(4)						
7	Donde								
8	C= Cos	sto total que	depende de l	as unidades j	producidas				
9	_	dades produc							
0		stos de fabrio	ación por ca	da unidad					
1	b= Cos	to fijo							
2									
3	Para el ejero	icio:							
4	c= Costo tot	tal de teclados	s, se represen	ta en c(q)					
5	q= Teclados	producidos							
6	m= Costos d	de producción	por cada tec	lado					
7	b= Costos fi	jos							
8	p= Precio de	e venta por te	clado						
9									

2.- Se realizan las formulas y sustitución.

G	Н		J	
Formulas	Sustitución			
c(q)=mq+b	c(q)=3.5(q)+700	m=	3.5	
r(q)=pq	r(q)=8.5(q)	b=	700	
Ganancia: π	r(q)=r(q)-c(q)	p=	8.5	

G	Н	I	J	K
Formulas	Sustitución			
c(q)=mq+b	c(q)=3.5(q)+700	m=	3.5	
r(q)=pq	r(q)=8.5(q)	b=	700	
Ganancia: π	(q)=r(q)-c(q)	p=	8.5	
	() II			
q	c(q)=mq+b	r(q)=pq	$\pi(q)=r(q)-c(q)$	
130	=(\$J\$2*G7)+\$J\$3	1105	-50	
131	1158.5	1113.5	-45	
132	1162	1122	-40	
133	1165.5	1130.5	-35	
134	1169	1139	-30	
135	1172.5	1147.5	-25	
136	1176	1156	-20	
137	1179.5	1164.5	-15	
138	1183	1173	-10	
139	1186.5	1181.5	-5	
140	1190	1190	0	
141	1193.5	1198.5	5	
142	1197	1207	10	

Н	1	J	K
Sustitución			
c(q)=3.5(q)+700	m=	3.5	
r(q)=8.5(q)	b=	700	
(q)=r(q)-c(q)	p=	8.5	
c(q)=mq+b	r(q)=pq	π(q)=r(q)-c(q)	
1155	=J4*G7	-50	
1158.5	1113.5	-45	
1162	1122	-40	
1165.5	1130.5	-35	
1169	1139	-30	
1172.5	1147.5	-25	
1176	1156	-20	
1179.5	1164.5	-15	
1183	1173	-10	
1186.5	1181.5	-5	
1190	1190	0	
1193.5	1198.5	5	
1197	1207	10	
	Sustitución c(q)=3.5(q)+700 r(q)=8.5(q) q)=r(q)-c(q) c(q)=mq+b 1155 1162 1165.5 1169 1172.5 1176 1179.5 1183 1186.5 1190 1193.5	Sustitución $c(q)=3.5(q)+700$ m= $r(q)=8.5(q)$ b= q = $r(q)-c(q)$ p= $r(q)=pq$ $r(q)=$	Sustitución $c(q)=3.5(q)+700$ $m=$ 3.5 $r(q)=8.5(q)$ $p=$ 8.5 $r(q)=8.5(q)$ $p=$ 8.5 $r(q)=r(q)-c(q)$ $p=$ 8.5 $r(q)=mq+b$ $r(q)=pq$ $r(q)=r(q)-c(q)$ 1155 $r=1158.5$ 1113.5 -45 1162 1122 -40 1165.5 1130.5 -35 1169 1139 -30 1172.5 1147.5 -25 1147.5 -25 1147.5 1156 -20 1179.5 1164.5 -15 1183 1173 -10 1186.5 1181.5 -5 1190 1190 0 1193.5 5

G	н	1	J	K
Formulas	Sustitución			
c(q)=mq+b	c(q)=3.5(q)+700	m=	3.5	
r(q)=pq	r(q)=8.5(q)	b=	700	
Ganancia: π	(q)=r(q)-c(q)	p=	8.5	
q	c(q)=mq+b	r(q)=pq	π(q)=r(q)-c(q)	
130	1155	1105	=17-H7	
131	1158.5	1113.5	-45	
132	1162	1122	-40	
133	1165.5	1130.5	-35	
134	1169	1139	-30	
135	1172.5	1147.5	-25	
136	1176	1156	-20	
137	1179.5	1164.5	-15	
138	1183	1173	-10	
139	1186.5	1181.5	-5	
140	1190	1190	0	
141	1193.5	1198.5	5	
142	1197	1207	10	

3.- Insertas la gráfica correspondiente.

4.- Una vez finalizada, podrás responder a la pregunta del ejercicio.

A	А	В	С	D	E	F	G	Н	I	J	K	L
1	Fiercicio 1 F	unción gananc	ia:				Formulas	Sustitución				
2	Ljercicio I. I	uncion ganano	ia.				c(q)=mq+b	c(q)=3.5(q)+700	m=	3.5		
3	La empresa d	le teclados tiene	un costo fiio de	700 dólares. Ad	temás, los cost	os de	r(q)=pq	r(q)=8.5(q)	b=	700		
4	La empresa de teclados tiene un costo fijo de 700 dólares. Además, los costos de producción de un teclado son de 3.50 dólares. Si se vende cada uno en \$8.50 dólares :						(q)=r(q)-c(q)	p=	8.5			
5					,							
6	a)	Escribir la funció	ón de ganancia				q	c(q)=mq+b	r(q)=pq	π(q)=r(q)-c(q)		
7			dos necesita ven	der para obtene	er una ganancia	positiva?	130		1105			
8]						131	1158.5	1113.5	-45		
9							132	1162	1122	-40		
10	Record	lando que ex	presión base	es.			133	1165.5	1130.5	-35		
11		ando que ex					134	1169	1139	-30		
12			y = a + 1	X			135	1172.5	1147.5	-25		
13	+		ariables de r	egocios, qu	eda represen	tado	136	1176	1156	-20		
14	de la si	iguiente man	era:				137	1179.5	1164.5	-15		
15	-		C(q) = b	+ m q			138		1173			
16	Donde						139		1181.5			
17							140		1190			
18		sto total que idades produ	depende de l	as unidades	producidas		141					
19	_	_	cación por ca	da unidad			142	1197	1207	10		
20	b= Cos											
21 22								Fu	nción Gana	ancia		
	D1 -!						1220					
	Para el ejero			t(-)			1200					_
			s, se represen	ta en c(q)			1180					
	q= Teclados	-	1	1_1_			1160					
		-	n por cada tec	ODBI			1140					
	b= Costos f	•					1120					
	p= Precio d	e venta por te	clado				1100					
29	.0 /	1.1 %		1.		''' 0	1080					
30	-		ta vender para	i obtener una	ganancia pos	sitiva!	1060					
31	\$141	<mark>-</mark>					1040					
32 33							1	2 3 4 5	6 7	8 9 10	11 12	13
34							_	_	Series1 —	Series2		
35												
33												

¿Cuántos teclados necesita vender para obtener una ganancia positiva?

\$141 teclados

FUNCIÓN CUADRÁTICA

1-. Se realiza la simplificación de la ecuación.

A	Α	В	С	D	E	F				
1	Ejercicio 2. Fu	nción cuadrát	ica:							
2	La compañía de	e focos present	a la siguiente e	cuación cuadrá	tica en las gana	ncias de este				
	La compañía de focos presenta la siguiente ecuación cuadrática en las ganancias de este año:									
4	$qx = -x^2 + 12x + 15$									
5										
_	Donde x es el precio puesto a cada unidad y $g(x)$ es la ganancia expresada en miles de pesos:									
7										
8	a) Resol valores o		on la tabla de v	alores sustituye	endo x para obte	ener los				
9 10	b) Diseñ	ar la gráfica en	el plano cartesi							
11			precio de cada , ¿cuál es la gar		ner ia maxima ç	ganancia?				
12										
13	Divide amb	oos lados por	x							
14	$g = -x^2 + 12$	2x + 15								
15	X									
16	Simplifica	-x ² +12x+15	a –x + <u>12x+1</u> :	5						
17		X	X							
18	g = -x + 12	x + 15								
19		x								
20	Extrae el fa	actor común 3	3							
21	g = -x + 3(a	4x + 5								
22		x								
23	Reagrupa l	os términos								
25	g = 3(4x +	<u>5)</u> – x								
26	x									
27										

2.- Resolver la función con la tabla de valores, sustituyendo x para obtener valores de y.

	G	Н	1
	X	$g(x)=-x^2+12x+15$	
,	10	=-(G2^2)+12*(G2)-	+15
	9	42	
	8	47	
	7	50	

G	Н	- 1
Х	$g(x)=-x^2+12x+15$	
10	35	
9	42	
8	47	
7	50	
6	51	
5	50	
4	47	
3	42	
2	35	
1	26	
0	15	
-1	2	
-2	-13	
-3	-30	
-4	-49	
-5	-70	
-6	-93	
-7	-118	
-8	-145	
-9	-174	
-10	-205	

3.- Diseñar la gráfica en el plano cartesiano de los resultados de la tabla de valores.

4.- Una vez finalizada, podrás responder a la pregunta del ejercicio

¿Cuál debería ser el precio de cada artículo para tener la máxima ganancia?

\$51

Si el precio es de \$8, ¿cuál es la ganancia?

\$47

CONCLUSIÓN

Lo aprendido, es que las funciones lineales y cuadráticas se utilizan en los negocios para representar situaciones y objetos reales, como calcular las ganancias y pérdidas de un producto, que son esenciales para todo tipo de actividades dentro de una empresa.

La función lineal se caracteriza al ser utilizada para representar situaciones con una tasa de cambios constantes, como el cálculo entre costos e ingresos, donde el gráfico de una ecuación lineal es una línea recta.

La función cuadrática se caracteriza por ser utilizada en situaciones u objetos reales, es decir se utiliza cuando se multiplican dos cosas y ambas dependen de la misma variable.

Cuando digo que se puede presentar en situaciones de la vida real, en ecuaciones cuadráticas, me refiero a:

- Calcular el área de figuras geométricas.
- Calcular la velocidad de un objeto.
- Calcular las ganancias y pérdidas de un producto.
- Curvar una pieza de equipo para diseñar.

REFERENCIAS

CK-12 Foundation. (s. f.). *CK-12 Foundation*. https://flexbooks.ck12.org/cbook/c%C3%A1lculo-2.0/section/1.11/primary/lesson/modelos-de-funciones-lineales-cuadr%C3%A1ticas-y-c%C3%BAbicas-calc-spn/

Libretexts. (2022, 2 noviembre). 1.2: Funciones en el ámbito empresarial. LibreTexts español.

<a href="https://espanol.libretexts.org/Matematicas/Matematicas-Aplicadas/Calculo_de_negocios_con_Excel_(mayo_y_Bart)/01%3A_Funciones_Gr%C3%A1ficas_y_Excel/1.02%3A_F_unciones_en_el_%C3%A1mbito_empresarial

Matemáticas con Grajeda. (2018, 14 enero). FUNCIÓN DE COSTOS, DE INGRESOS y DE GANANCIA. PUNTO DE EQUILIBRIO. ECONOMÍA / Video 98 [Vídeo]. YouTube. https://www.youtube.com/watch?v=-Iy0JyzJ4OQ