

Design and development practice of power electronic products

-Week 4

Instructor: Prof. Chien-Chun Huang
National Taiwan University of Science and Technology ,Taiwan
Department of Electrical Engineering
Email: u8910659@gmail.com

Course content

•	Principle of switching converter	1 week
•	Understanding of components, materials and loss	2 weeks
•	Operation principle and application scope of common circuit architecture	2 weeks
•	Small signal model and stability analysis	3 weeks
•	Basic control methods	1 week
•	The stability of the cascade system	1 week
•	Introduction and design of EMI conducted noise sources, coupling paths,	
	and non-ideal filters	1 week

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Voltage-second balance

Examine the voltage across an inductor that is operating in periodic steady state. The governing equation is

$$v(t) = L \frac{di(t)}{dt}$$
 which leads to $i(t) = i(t_o) + \frac{1}{L} \int_{t_o}^{t_o + t} v(t) dt$

Since the inductor is in periodic steady state, then the current at time t_o is the same as the current one period T later, so

$$i(t_o+T)=i(t_o),$$
 or
$$i(t_o+T)-i(t_o)=0=\frac{1}{L}\int\limits_{t_o}^{t_o+T}v(t)dt$$

 $I_{avg} = I_o$ $DT \quad (1 - D)T$ T

The conclusion is that $\int_{t_0}^{t_0+T} v(t)dt = 0$

which means that

the average voltage across an inductor operating in periodic steady state is zero.

Amp-second balance

Examine the current passing through a capacitor that is operating in periodic steady state. The governing equation is

$$i(t) = C \frac{dv(t)}{dt}$$
 which leads to $v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^{t_0+t} i(t)dt$

Since the capacitor is in periodic steady state, then the voltage at time $t_{\rm o}$ is the same as the voltage one period T later, so

The conclusion is that $\int_{t_0}^{t_0+T} i(t)dt = 0$ which means that

the average current through a capacitor operating in periodic steady state is zero.

Inductor and Capacitor

In capacitors: $i(t) = C \frac{dv(t)}{dt}$ The voltage cannot change instantaneously

Capacitors tend to keep the voltage constant (voltage "inertia"). An ideal capacitor with infinite capacitance acts as a constant voltage source. Thus, a capacitor cannot be connected in parallel with a instantly changeable voltage source or a switch (otherwise KVL would be violated, i.e. there will be a short-circuit)

In inductors: $v(t) = L \frac{di(t)}{dt}$ The current cannot change instantaneously

Inductors tend to keep the current constant (current "inertia"). An ideal inductor with infinite inductance acts as a constant current source. Thus, an inductor cannot be connected in series with a instantly changeable current source or a switch (otherwise KCL would be violated)

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SFPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Principle of Buck converter

According to the current state can be divided into:

Continuous Conduction Mode (C.C.M.)

Boundary Conduction Mode (B.C.M.)

Discontinuous Conduction Mode (D.C.M.)

Buck converter operation modes - C.C.M.

Inductor's current waveform in buck converter

Switch closed,
$$v_L = V_{in} - V_{out}$$
, $\frac{di_L}{dt} = \frac{V_{in} - V_{out}}{L}$

Switch open,
$$v_L = -V_{out}, \frac{di_L}{dt} = \frac{-V_{out}}{L}$$

Derive the voltage conversion ratio from the volt-second balance-C.C.M.

Since the average voltage across L is zero

$$\begin{split} V_{Lavg} &= D \cdot \left(V_{in} - V_{out} \right) + \left(1 - D \right) \cdot \left(-V_{out} \right) = 0 \\ DV_{in} &= D \cdot V_{out} + V_{out} - D \cdot V_{out} \end{split}$$

The input/output equation becomes

$$V_{out} = DV_{in}$$

From power balance, $V_{in}I_{in}=V_{out}I_{out}$, so

$$I_{out} = \frac{I_{in}}{D}$$

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

The process of inductor current from C.C.M to D.C.M

Effect of raising and lowering I_{out} while holding V_{in}, V_{out}, f, and L constant

- V_{in} and V_{o} are constant, ΔI is unchanged.
- Lowering I_{out} (and, therefore, P_{out}) moves the circuit toward discontinuous operation.

Buck converter operation modes - B.C.M.

Derive the voltage conversion ratio from the volt-second balance-B.C.M.

$$\begin{split} I_{L} &= \frac{V_{o}}{R_{L}} \qquad I_{L(\text{max})} = I_{L} + \frac{\Delta i_{L}}{2} & I_{L(\text{min})} = I_{L} - \frac{\Delta i_{L}}{2} \\ &= \frac{V_{o}}{R_{L}} + \frac{1}{2} \left[\frac{\left(V_{in} - V_{O}\right)}{L} \left(DT\right) \right] & = \frac{V_{o}}{R_{L}} - \frac{1}{2} \left[\frac{\left(V_{in} - V_{O}\right)}{L} \left(DT\right) \right] \\ &= \frac{V_{o}}{R_{L}} + \frac{1}{2} \left[\frac{V_{O}}{L} \left(1 - D\right)T \right] & = \frac{V_{o}}{R_{L}} - \frac{1}{2} \left[\frac{V_{O}}{L} \left(1 - D\right)T \right] \end{split}$$

B.C.M.
$$I_{L(min)}=0$$

$$L_B = \frac{R_L (1-D)}{2 \cdot f} = \frac{V_O}{I_O} \frac{(1-D)}{2 \cdot f}$$

$$V_{out} = DV_{in}$$

Buck converter operation modes - D.C.M.

Derive the voltage conversion ratio from the volt-second balance-D.C.M.

$$S_1$$
 turn on, D_1 turn off (T_{ON}) :

$$\Delta I_L = \frac{V_{in} - V_o}{L_1} \times T_{on} = I_{PK}$$

$$S_{1} \text{ turn off, } D_{1} \text{ turn on } (T_{OFF1}) : \frac{V_{in} - V_{o}}{2L_{1}} D^{2} = I_{o} = \frac{R_{L}}{R_{L}}$$

$$\Delta I_{L} = -\frac{V_{o}}{L_{1}} \times T_{off1} = I_{PK}$$

$$V_{o} = V_{in} \times \frac{T_{on}}{T_{on} + T_{off1}} = V_{in} \times \frac{D}{D + D_{2}}$$

$$\frac{V_{in} - V_{o}}{2L_{1}} D^{2} T + \frac{V_{o}}{2L_{1}} D_{2}^{2} T$$

$$\frac{V_{in} - V_{o}}{2L_{1}} D^{2} T + \frac{V_{o}}{2L_{1}} D^{2} T$$

$$\frac{V_{o}}{V_{in}} = \frac{2}{1 + \sqrt{1 + \frac{8L_{1}f_{s}}{R_{L}D^{2}}}}$$

$$\frac{V_{in} - V_o}{L_1} DT - \frac{V_o}{L_1} D_2 T = 0$$

$$\frac{I_{PK}}{2} D + \frac{I_{PK}}{2} D_2 = I_o = \frac{V_o}{R_L} \leftarrow I_{PK} = \frac{V_{in} - V_o}{L_1} DT = \frac{V_o}{L_1} D_2 T$$

$$\frac{V_{in} - V_o}{2L_1} D^2 T + \frac{V_o}{2L_1} D_2^2 T = \frac{V_o}{R_L} \leftarrow D_2 = \left(\frac{V_{in}}{V_o} - 1\right) D$$

$$\rightarrow \frac{V_o}{V_{in}} = \frac{2}{V_{in} + V_o} D_2 T = \frac{2}{R_D} C_0 T$$

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Component Design (I) - Diode

 S_1 turn on, D_1 turn off (T_{ON}) :

Diode

$$V_D = V_{in}$$

$$I_{D} = \max = I_{L} + \frac{\Delta i_{L}}{2} = \frac{V_{o}}{R_{L}} + \frac{1}{2} \left[\frac{(V_{in} - V_{O})}{L} (DT) \right]$$

Component Design (II) - Switch

Switch

$$V_{S} = V_{in} + V_{Diode}$$

$$I_{S} = \max = I_{L} + \frac{\Delta i_{L}}{2} = \frac{V_{o}}{R_{L}} + \frac{1}{2} \left[\frac{\left(V_{in} - V_{O}\right)}{L} \left(DT\right) \right]$$

 S_1 turn off, D_1 turn on (T_{OFF}) :

Component Design (III) - Inductor

$$V_{L} = L \frac{di}{dt} = V_{in} - V_{O}$$

$$\Rightarrow L \frac{\Delta I}{DT} = V_{in} (1 - D)$$

$$\Rightarrow L = \frac{V_{in} (1 - D)D}{|\Delta I| f_{S}}$$

$$I_{L_{-rms}} = \sqrt{D\left[I_{\text{max}}I_{\text{min}} + \frac{1}{3}(I_{\text{max}} - I_{\text{min}})^2\right]}$$

Component Design (IV) - Capacitor

Output voltage ripple:

$$\Delta Q = C \cdot \Delta V = \Delta I \cdot T$$

$$\Delta Q = \frac{1}{2} \int_{\frac{DT}{2}}^{DT + \frac{DT}{2}} i dt = \frac{1}{2} \cdot \frac{T}{2} \cdot \frac{\Delta I}{2} = \frac{T\Delta I}{8} \qquad \Delta I \int_{iL(t0)-lout}^{iL(t1)-lout} dt = \frac{1}{2} \cdot \frac{T}{2} \cdot \frac{\Delta I}{2} = \frac{T\Delta I}{8}$$

$$\Rightarrow C = \frac{\Delta I}{8 \cdot f_s \cdot \Delta V}$$

And because $\Delta I = \frac{V_O}{L} (1 - D)T$

$$\Rightarrow C = \frac{V_O(1-D)}{8 \cdot f_S^2 \cdot \Delta V \downarrow L}$$

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Basic relationship between switching frequency and inductance value to ripple current – Variable F_{sw}

Effect of changing f_{sw} while holding V_{in}, V_{out}, I_{out}, and the inductor L is constant

- Slopes of i_L are unchanged.
- Lowering f_{sw} increases ΔI and moves the circuit toward discontinuous operation.
- Ripple current will be smaller with higher switching frequency

Basic relationship between switching frequency and inductance value to ripple current – Variable L

Effect of raising and lowering L while holding Vin, Vout, lout and f_s constant

• Lowering L increases ΔI and moves the circuit toward discontinuous operation

The relationship between switching frequency and power composition

- Discuss switching frequency and inductance design under fixed current ripple specification:
- Switching frequency inductor value
- Conduction loss of inductor? (ignore skin effect)
- Iron loss of inductor?
- ESR loss of output capacitor?

Steinmetz's equation, sometimes called the power equation

$$P_v = k \cdot f^a \cdot B^b$$

- 2) Large C (Capacitance) Low impedance in low-frequency ranges
- 3) Small ESL Low impedance in high-frequency ranges

Lower f_{sw}

The relationship between switching frequency and power composition

Discuss switching frequency and inductance design under fixed current ripple specification:

- Switching loss of MOSFET?
- Switching loss of Diode?
- Switching loss of Driver?
- Conduction loss of MOSFET?
- Conduction loss of Diode?

Figure 2-6 Generic-switch switching characteristics (linearized): (a) simplified clampedinductive-switching circuit, (b) switch waveforms, (c) instantaneous switch power loss.

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Three operation modes caused by changing the inductance under fixed-switching frequency and fixed load

- · C.C.M.
- B.C.M.
- D.C.M.
- Deep C.C.M.

- Deep C.C.M. v.s. C.C.M.
- Switching loss of MOSFET?
- Switching loss of Diode?
- Switching loss of Driver?
- Conduction loss of MOSFET?
- Conduction loss of Diode?
- Conduction loss of capacitor?
- Conduction loss of inductor?
- Iron loss of inductor?

- C.C.M. v.s. B.C.M.
- Switching loss of MOSFET?
- Switching loss of Diode?
- Switching loss of Driver?
- Conduction loss of MOSFET?
- Conduction loss of Diode?
- Conduction loss of capacitor?
- Conduction loss of inductor?
- Iron loss of inductor?

- B.C.M. v.s. D.C.M.
- Switching loss of MOSFET?
- Switching loss of Diode?
- Switching loss of Driver?
- Conduction loss of MOSFET?
- Conduction loss of Diode?
- Conduction loss of capacitor?
- Conduction loss of inductor?
- Iron loss of inductor?

- B.C.M. v.s. D.C.M.
- Switching loss of MOSFET?
- Switching loss of Diode?
- Switching loss of Driver?
- Conduction loss of MOSFET?
- Conduction loss of Diode?
- Conduction loss of capacitor?
- Conduction loss of inductor?
- Iron loss of inductor?

 Why the control method usually uses DCM operation instead of BCM operation under light load? (Tips: lower switching frequency cause...?)

Take Buck as an example to illustrate the design and characteristics of the converter.

- Principles of converter derivation
 - Voltage/Ampere-second balance
- Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
- Buck converter under B.C.M and D.C.M operation
- Component design process
- The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation

Basic non-isolated topology introduction

- Boost
- Buck-Boost
- SEPIC

Basic isolated topology introduction

- Reasons for electrical isolation requirement
- Forward
- Flyback
- Half/Full bridge

Characteristic of Boost converter

- Pos:
 - The output voltage is greater than the input voltage
 - Input current is equal to the inductor current (lower input current ripple)
 - The main application is in regulation dc power supplies, the regenerative braking of dc motors and PFC.
- Dis:
 - Discontinuous diode current cause high output noise and ripple

Voltage transfer function

$$\frac{V_o}{V_d} = \frac{1}{1 - D}$$
 Duty \propto Vo

Characteristic of Buck-boost converter

- Pos:
 - The output voltage can be greater or lower than the input voltage
- Dis:
 - Discontinuous switch & diode current cause high input & output noise and ripple
 - Negative output voltage w/i reverse type

Voltage transfer function

$$\frac{V_o}{V_d} = \frac{-D}{1 - D}$$

Reverse type

Voltage transfer function

$$\frac{V_o}{V_d} = \frac{1}{1 - D} \qquad \text{OR} \qquad \frac{V_o}{V_d} = D$$

4 switches type

Characteristic of SEPIC converter

- Pos:
 - The output voltage can be greater or lower than the input voltage
 - Positive output voltage
 - Input current continues, current stress and noise are lower
- Dis:
 - More components. Cost, volume problem
 - Hard to closed-loop compensation (nature high order transfer function w/i RHP)

Voltage transfer function

$$\frac{V_o}{V_d} = \frac{D}{1 - D}$$

- Take Buck as an example to illustrate the design and characteristics of the converter.
 - Principles of converter derivation
 - Voltage/Ampere-second balance
 - Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
 - Buck converter under B.C.M and D.C.M operation
 - Component design process
 - The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation
- Basic non-isolated topology introduction
 - Boost
 - Buck-Boost
 - SEPIC
- Basic isolated topology introduction
 - Reasons for electrical isolation requirement
 - Forward
 - Flyback
 - Half/Full bridge

Reasons for electrical isolation requirement

- Safety: to protect the operator from dangerous voltages
- Voltage level shifting
- To provide galvanic isolation in which the two isolated circuits communicate without a direct conduction path
- Prevent ground loops
- The isolation protects the equipment from the line-level events such as surges, lightning strikes, etc.

Figure 22. Cascaded inverter with two cells and five levels: (a) Circuit diagram; and (b) individual module output and the entire phase output waveforms.

Take Buck as an example to illustrate the design and characteristics of the converter.

- Principles of converter derivation
 - Voltage/Ampere-second balance
- Steps to derive converter conversion ratio based on the volt-second balance in C.C.M.
- Buck converter under B.C.M and D.C.M operation
- Component design process
- The basic relationship between design parameters and efficiency performance
 - Effect of switching frequency
 - Effect of CCM/BCM/DCM operation

Basic non-isolated topology introduction

- Boost
- Buck-Boost
- SFPIC

Basic isolated topology introduction

- Reasons for electrical isolation requirement
- Forward
- Flyback
- Half/Full bridge

Characteristic of Forward converter

- Pos:
 - The output voltage is much lower than the input voltage w/i transformer turns ratio
 - Continues output current, low output noise and ripple
 - Suitable for medium power 150~300W application
- Dis:
 - Reset winding, increase winding cost and switch's voltage stress
 - The switch will have a voltage spike caused by transformer leakage inductance.

Voltage transfer function

$$\frac{V_o}{V_{in}} = \frac{N_s}{N_p} D$$

[Ref]: Fundamentals of Power Electronics | Robert W. Erickson

Characteristic of Flyback converter

- Pos:
 - An isolated buck-boost converter with positive output voltage
 - Lowest number of components (cost) of isolated converter
- Dis:
 - Discontinues current of input and output
 - Energy is stored in the magnetizing inductance, which increases the volume of magnetic components
 - Only suitable for low power application
 - The switch will have a voltage spike caused by transformer leakage inductance.

Fig. 1. Derivation of the flyback converter: (a) buck-boost converter, (b) inductor *L* is wound with two parallel wires, (c) inductor windings are isolated, leading to the flyback converter, (d) with a 1:*n* turns ratio and positive output.

Voltage transfer function

$$\frac{V}{V_g} = \frac{n}{1} \frac{D}{1 - D}$$

[Ref]: Fundamentals of Power Electronics | Robert W. Erickson 42

Characteristic of Half/Full bridge converter

- Half / Full bridge:
 - 2 switches / 4 switches
 - Need DC blocking capacitor / No need DC blocking capacitor (ideal)
 - Transformer input voltage is +/- 0.5Vin / +/- 1Vin
- Full wave rectifier (Full bridge / Center Tapped):
 - 4 diodes / 2 diodes
 - Diode's voltage stress is 0.5Vo / 2Vo
 - 2 voltage drops pre half-cycle / 1 voltage drop pre half-cycle
 - No need center-tapped transformer / Need center-tapped transformer

[Ref]: Tsague, Nescelin. (2016). Analysis and development of a Modular Multi-level Converter for Traction Drives applications. https://slidetodoc.com/chapter-4-half-wave-rectifiers-ac-dc-conversion/

THANK YOU