# Representación de la información (Repaso)

Sistemas Informáticos

#### Sistema de numeración decimal

- El sistema que solemos utilizar nosotros para contar es el sistema decimal o base 10, formado por 10 dígitos, del 0 al 9.
- Combinamos estos dígitos para formar cantidades: 0, 1,
  2, 3, ... 10, ... 102, ... 438 ...
  - Observa que cuando se acaban los dígitos de 1 cifra, se vuelve al principio y se añade un dígito más, y lo mismo pasa cuando se acaban las 2 cifras, etc: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12... 98, 99, 100, 10, 10, 102, ... 998, 999, 1000, etc.

#### Teorema fundamental de la numeración

Si tenemos un número en un sistema determinado, y lo descomponemos multiplicando cada uno de sus dígitos por la potencia de su base en la posición que está, y sumamos estos resultados, obtendremos el equivalente de ese número en decimal

En el sistema decimal...

$$8888 = 8x10^3 + 8x10^2 + 8x10^1 + 8x10^0 = 8000 + 800 + 80 + 800$$

## Sistema de numeración binario

| <ul> <li>En el mundo informático, como hemos visto, todo se<br/>representa utilizando dos estados, llamados bits.</li> </ul>             | 0000                 |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <ul> <li>El sistema de numeración formado por estos dos<br/>elementos se llama sistema binario o base 2, y utiliza</li> </ul>            | 0001<br>0010<br>0011 |
| sólo dos dígitos: 0 y 1                                                                                                                  | 0100<br>0101         |
| <ul> <li>La secuencia de números para contar en este sistema quedaría: 0,</li> <li>1, 10, 11, 100, 101, 110, 111, 1000, 1001,</li> </ul> | 0110<br>0111         |
| Cada número binario tiene su correspondiente número decimal: el 0 binario es el 0 decimal, el 1 es el 1, el 10 es                        | 1000<br>1001<br>1010 |
| el 2, el 11 es el 3, etc.  Para almacenar la información, lo que se hace es                                                              | 1011<br>1100<br>1101 |
| convertir los datos de sistema decimal a binario, y luego para mostrarla otra vez. se convierte de binario a decimal                     | 1110<br>1111         |

#### De binario a natural

- Consiste en separar los bits del número binario, y colocar cada una de las cifras debajo de una de las potencias de 2
- Sumando las potencias de 2 que coincidan con un 1 del número, tenemos el resultado en decimal
- Ejemplo: para el número binario 1101011<sub>2</sub>



#### De decimal a binario

- Para convertir un número de decimal a binario, tenemos que ir dividiéndolo entre 2 sucesivamente, y quedándonos con todos los restos, y el último cociente (cuando ya no se pueda dividir más)
  - Los restos y cociente serán 0 o 1
- Después, se pone primero el último cociente, y los restos desde el último al primero (en orden inverso a como hemos ido dividiendo)
- Ejemplo: para el número 245<sub>10</sub>



#### De decimal a binario

La parte decimal de un número la podemos convertir a binario con el método de las multiplicaciones sucesivas

Por ejemplo, para convertir a binario el número decimal fraccionario 0,3125, empezamos multiplicando por 2, y después se multiplica cada parte fraccional resultante del producto por 2, hasta que el producto fraccionario sea cero o hasta que se alcance el número deseado de posiciones decimales.

$$245 = 11110101$$
  
 $0,3125 = 0101$ 



245,3125 = 11110101,0101

# Código ASCII

- Es una tabla que codifica un total de 256 símbolos diferentes, asociándoles a cada uno un número (del 0 al 255)
  - Si el fichero de texto está guardado en formato ASCII (uno de los más utilizados), cada símbolo que se escribe se almacena directamente con su código
  - Ejemplo: si escribimos "Hola":
    - H = 01001000
    - o = 01101111
    - I = 01101100
    - a = 01100001
  - Se almacenaría 01001000 01101111 01101100 01100001.

# Código ASCII

| Oct | Hex | Dec | Carácter                       | Oct | Hex | Dec | Carácter | Oct | Hex | Dec | Carácter | Oct | Hex | Dec | Carácte |
|-----|-----|-----|--------------------------------|-----|-----|-----|----------|-----|-----|-----|----------|-----|-----|-----|---------|
| 0   | 00  | 0   | NUL NULI                       | 40  | 20  | 32  |          | 100 | 40  | 64  | @        | 140 | 60  | 96  |         |
| 1   | 01  | 1   | SOH Start Of Heading           | 41  | 21  | 33  |          | 101 | 41  | 65  | Α        | 141 | 61  | 97  | а       |
| 2   | 02  | 2   | STX Start of TeXt              | 42  | 22  | 34  |          | 102 | 42  | 66  | В        | 142 | 62  | 98  | b       |
| 3   | 03  | 3   | ETX End of TeXt                | 43  | 23  | 35  | #        | 103 | 43  | 67  | С        | 143 | 63  | 99  | С       |
| 4   | 04  | 4   | EOT End of Transmission        | 44  | 24  | 36  | \$       | 104 | 44  | 68  | D        | 144 | 64  | 100 | d       |
| 5   | 05  | 5   | ENQ ENQuiry                    | 45  | 25  | 37  | %        | 105 | 45  | 69  | E        | 145 | 65  | 101 | е       |
| 6   | 06  | 6   | ACK ACKnowledge                | 46  | 26  | 38  | &        | 106 | 46  | 70  | F        | 146 | 66  | 102 | f       |
| 7   | 07  | 7   | BEL BELI                       | 47  | 27  | 39  | 10.00    | 107 | 47  | 71  | G        | 147 | 67  | 103 | g       |
| 10  | 08  | 8   | BS BackSpace                   | 50  | 28  | 40  | (        | 110 | 48  | 72  | Н        | 150 | 68  | 104 | h       |
| 11  | 09  | 9   | TAB horizontal TAB             | 51  | 29  | 41  | )        | 111 | 49  | 73  |          | 151 | 69  | 105 | i       |
| 12  | 0A  | 10  | LF new Line Feed               | 52  | 2A  | 42  |          | 112 | 4A  | 74  | J        | 152 | 6A  | 106 | j       |
| 13  | 08  | 11  | VT Vertical Tab                | 53  | 2B  | 43  | •        | 113 | 48  | 75  | K        | 153 | 6B  | 107 | k       |
| 14  | 0C  | 12  | FF new page From Feed          | 54  | 2C  | 44  |          | 114 | 4C  | 76  | L        | 154 | 6C  | 108 | - 1     |
| 15  | 0D  | 13  | CR Carriage Return             | 55  | 2D  | 45  |          | 115 | 4D  | 77  | M        | 155 | 6D  | 109 | m       |
| 16  | 0E  | 14  | SO Shift Out                   | 56  | 2E  | 46  | - 14     | 116 | 4E  | 78  | N        | 156 | 6E  | 110 | n       |
| 17  | 0F  | 15  | SI Shift In                    | 57  | 2F  | 47  | 1        | 117 | 4F  | 79  | 0        | 157 | 6F  | 111 | 0       |
| 20  | 10  | 16  | DLE Data Link Escape           | 60  | 30  | 48  | 0        | 120 | 50  | 80  | Р        | 160 | 70  | 112 | р       |
| 21  | 11  | 17  | DC1 Device Control 1           | 61  | 31  | 49  | 1        | 121 | 51  | 81  | Q        | 161 | 71  | 113 | q       |
| 22  | 12  | 18  | DC2 Device Control 2           | 62  | 32  | 50  | 2        | 122 | 52  | 82  | R        | 162 | 72  | 114 | r       |
| 23  | 13  | 19  | DC3 Device Control 3           | 63  | 33  | 51  | 3        | 123 | 53  | 83  | S        | 163 | 73  | 115 | S       |
| 24  | 14  | 20  | DC4 Device Control 4           | 64  | 34  | 52  | 4        | 124 | 54  | 84  | T        | 164 | 74  | 116 | t       |
| 25  | 15  | 21  | NAK negative acknowledge       | 65  | 35  | 53  | 5        | 125 | 55  | 85  | U        | 165 | 75  | 117 | u       |
| 26  | 16  | 22  | SYN SYNchronous idle           | 66  | 36  | 54  | 6        | 126 | 56  | 86  | V        | 166 | 76  | 118 | ٧       |
| 27  | 17  | 23  | ETB End of Transmission, Block | 67  | 37  | 55  | 7        | 127 | 57  | 87  | W        | 167 | 77  | 119 | w       |
| 30  | 18  | 24  | CAN CANcel                     | 70  | 38  | 56  | 8        | 130 | 58  | 88  | X        | 170 | 78  | 120 | ×       |
| 31  | 19  | 25  | EM End of Medium               | 71  | 39  | 57  | 9        | 131 | 59  | 89  | Y        | 171 | 79  | 121 | У       |
| 32  | 1A  | 26  | SUB SUBstitute                 | 72  | 3A  | 58  |          | 132 | 5A  | 90  | Z        | 172 | 7A  | 122 | Z       |
| 33  | 18  | 27  | ESC ESCape                     | 73  | 3B  | 59  | :        | 133 | 5B  | 91  |          | 173 | 78  | 123 | {       |
| 34  | 10  | 28  | FS File Separator              | 74  | 3C  | 60  | <        | 134 | 5C  | 92  | i        | 174 | 7C  | 124 | ì       |
| 35  | 1D  | 29  | GS Group Separator             | 75  | 3D  | 61  | -        | 135 | 5D  | 93  | 1        | 175 | 7D  | 125 | }       |
| 36  | 1E  | 30  | RS Record Separator            | 76  | 3E  | 62  | >        | 136 | 5E  | 94  | ٨        | 176 | 7E  | 126 | ~       |
| 37  | 1F  | 31  | US Unit Separator              | 77  | 3F  | 63  | ?        | 137 | 5F  | 95  |          | 177 | 7F  | 127 | DELET   |

| Oct | Hex      | Dec        | Carácter | Oct | Hex      | Dec        | Carácter | Oct | Hex | Dec | Carácter | Oct | Hex      | Dec | Carácter |
|-----|----------|------------|----------|-----|----------|------------|----------|-----|-----|-----|----------|-----|----------|-----|----------|
| 200 | 80       | 128        | C        | 240 | AO       | 160        | á        | 300 | CO  | 192 | L        | 340 | EO       | 224 | Ó        |
| 201 | 81       | 129        | ü        | 241 | A1       | 161        | í        | 301 | C1  | 193 | 1        | 341 | E1       | 225 | В        |
| 202 | 82       | 130        | é        | 242 | A2       | 162        | ó        | 302 | C2  | 194 | т        | 342 | E2       | 226 | Ó        |
| 203 | 83       | 131        | â        | 243 | A3       | 163        | ú        | 303 | C3  | 195 |          | 343 | E3       | 227 | Ò        |
| 204 | 84       | 132        | ä        | 244 | A4       | 164        | ñ        | 304 | C4  | 196 | -        | 344 | E4       | 228 | õ        |
| 205 | 85       | 133        | à        | 245 | A5       | 165        | Ň        | 305 | C5  | 197 | +        | 345 | E5       | 229 | Õ        |
| 206 | 86       | 134        | å        | 246 | A6       | 166        | •        | 306 | C6  | 198 | ã        | 346 | E6       | 230 | Ц        |
| 207 | 87       | 135        | ç        | 247 | A7       | 167        | ۰        | 307 | C7  | 199 | Ã        | 347 | E7       | 231 | þ        |
| 210 | 88       | 136        | é        | 250 | A8       | 168        | è        | 310 | C8  | 200 | L        | 350 | E8       | 232 | Þ        |
| 211 | 89       | 137        | ė        | 251 | A9       | 169        | ®        | 311 | C9  | 201 |          | 351 | E9       | 233 | Ú        |
| 212 | 8A       | 138        | è        | 252 | AA       | 170        | •        | 312 | CA  | 202 | 1        | 352 | EA       | 234 | Û        |
| 213 | 8B       | 139        | 1        | 253 | AB       | 171        | 1/2      | 313 | CB  | 203 | T        | 353 | EB       | 235 | Ů        |
| 214 | 8C       | 140        | Î        | 254 | AC       | 172        | 1/4      | 314 | CC  | 204 | -        | 354 | EC       | 236 | ý        |
| 215 | 8D       | 141        | 1        | 255 | AD       | 173        | _ i      | 315 | CD  | 205 | -        | 355 | ED       | 237 | Ý        |
| 216 | 8E       | 142        | A        | 256 | AE       | 174        | **       | 316 | CE  | 206 | +        | 356 | EE       | 238 |          |
| 217 | 8F       | 143        | Å        | 257 | AF       | 175        | >>       | 317 | CF  | 207 | п        | 357 | EF       | 239 |          |
| 220 | 90       | 144        | É        | 260 | 80       | 176        |          | 320 | DO  | 208 | ð        | 360 | FO       | 240 |          |
| 221 | 91       | 145        | æ        | 261 | B1       | 177        | - 5      | 321 | D1  | 209 | Ð        | 361 | F1       | 241 | ±        |
| 222 | 92       | 146        | Æ        | 262 | B2       | 178        |          | 322 | D2  | 210 | Ê        | 362 | F2       | 242 | -        |
| 223 | 93       | 147        | Ó        | 263 | B3       | 179        |          | 323 | D3  | 211 | Ē        | 363 | F3       | 243 | %        |
| 224 | 94       | 148        | 0        | 264 | B4       | 180        |          | 324 | D4  | 212 | È        | 364 | F4       | 244 |          |
| 225 | 95       | 149        | ò        | 265 | B5       | 181        | A        | 325 | D5  | 213 |          | 365 | F5       | 245 | - 5      |
| 226 | 96<br>97 | 150        | û        | 266 | B6<br>B7 | 182<br>183 | A        | 326 | D6  | 214 | -        | 366 | F6<br>F7 | 246 | +        |
| 227 | 98       | 151<br>152 | u<br>V   | 270 | B8       | 184        | A<br>©   | 330 | D8  |     |          | 367 | F8       | 247 | -        |
| 230 | 98       | 153        | y<br>Ö   | 270 | B9       | 185        | J        | 331 | D9  | 216 |          | 370 | F9       | 248 | -        |
| 231 | 99<br>9A | 153        | Ü        | 272 | BA       | 186        | - 6      | 331 | DA  | 218 |          | 371 | FA       | 250 |          |
| 233 | 9B       | 155        | ø        | 273 | BB       | 187        |          | 333 | DB  | 219 |          | 373 | FB       | 251 | -        |
| 234 | 90       | 156        | £        | 274 | BC       | 188        | _]_      | 334 | DC  | 220 |          | 374 | FC       | 252 | 0        |
| 235 | 9D       | 157        | Ø        | 275 | BD       | 189        | é        | 335 | DD  | 221 |          | 375 | FD       | 253 | 2        |
| 236 | 9E       | 158        | ×        | 276 | BE       | 190        | ¥        | 336 | DE  | 222 |          | 376 | FE       | 254 |          |
| 237 | 9F       | 159        | -        | 277 | BF       | 191        |          | 337 | DF  | 223 |          | 377 | FF       | 255 |          |
| 201 | 31       | 133        |          | 211 | OF       | 191        |          | 007 | DF. | 223 |          | 0// |          | 200 |          |

## Octal y hexadecimal

- Sistema octal o base 8: utiliza los dígitos del 0 al 7: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, ... 17, 20, ... etc
- Sistema hexadecimal o base 16: utiliza 16 símbolos, que son los 10 dígitos (del 0 al 9) más 6 letras (de la A a la F): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, etc.

Se usan porque permiten convertir fácilmente un número binario en uno octal o hexadecimal, y así poder tratar más fácilmente una cifra binaria que sería demasiado grande

```
1437_{10} = 1x10^3 + 4x10^2 + 3x10^1 + 7x10^0 = 1000 + 400 + 30 + 7 = 1437_{10} (vemos que nos da el mismo número)

734_8 (octal) = 7x8^2 + 3x8^1 + 4x8^0 = 7x64 + 3x8 + 4 = 476_{10}

1B3_{16} = 1x16^2 + 11(B)x16^1 + 3x16^0 = 256 + 176 + 3 = 435_{10}

11010_2 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 26_{10}
```

# Octal a binario y viceversa



#### hexadecimal a binario y viceversa



4 bits

$$245_{10} = 11110101_{2} = F5_{16}$$

# Equivalencias

| Decimal | Binario | Octal | Hexadecimal |
|---------|---------|-------|-------------|
| 0       | 000     | 0     | 0           |
| 1       | 001     | 1     | 1           |
| 2       | 010     | 2     | 2           |
| 3       | 011     | 3     | 3           |
| 4       | 100     | 4     | 4           |
| 5       | 101     | 5     | 5           |
| 6       | 110     | 6     | 6           |
| 7       | 111     | 7     | 7           |
| 8       | 1000    | 10    | 8           |
| 9       | 1001    | 11    | 9           |
| 10      | 1010    | 12    | А           |
| 11      | 1011    | 13    | В           |
| 12      | 1100    | 14    | С           |
| 13      | 1101    | 15    | D           |
| 14      | 1110    | 16    | E           |
| 15      | 1111    | 17    | F           |
| 16      | 10000   | 20    | 10          |
| 17      | 10001   | 21    | 11          |
| 18      | 10010   | 22    | 12          |
| 19      | 10011   | 23    | 13          |
| 20      | 10100   | 24    | 14          |

# Signo Magnitud

Según este método, si se utilizan n bits para representar un número, se reserva un bit (normalmente el de mayor peso) para indicar el signo, y el resto de bits se utilizan para representar la magnitud. El convenio, un acuerdo arbitrario, dice que se utiliza la siguiente codificación para un número entero:

- Si el número es positivo su bit de mayor peso será 0:
  - 0 Magnitud (n-1 bits)
- Si el número es **negativo** su bit de mayor peso será 1:
  - 1 Magnitud (n-1 bits)

El bit de mayor peso que indica el signo del número recibe el nombre de **bit de signo**.

Ejemplo: utilizando 8 bits (n = 8), representa los números +25 y -25, siguiendo el convenio de signo y magnitud.

En primer lugar se convierte la magnitud o valor absoluto, 25, a binario natural con n-1=7 bits, completando con ceros los bits de mayor peso si fuera necesario:

$$25_{10} = 0011001_{2}$$

En segundo lugar se añade el bit de signo:

$$+25_{10} = 00011001_2$$

$$-25_{10} = 10011001_2$$

Ejemplo: obtén el valor decimal correspondiente a  $011010_2$  y  $100010_2$  sabiendo que están representados en signo y magnitud utilizando 6 bits (n = 6).

 $011010_2 \longrightarrow$  dado que su bit de mayor peso (bit de signo) es 0, sabemos que se trata de un número positivo con magnitud  $11010_2 = 26_{10}$  por lo que  $011010_2 = +26_{10}$ 

 $100010_2 \longrightarrow$  dado que su bit de mayor peso (bit de signo) es 1, sabemos que se trata de un número negativo con magnitud  $00010_2 = 2_{10}$  por lo que  $100010_2 = -2_{10}$ 

Doble representación del 0. (+0 y -0)

## Complemento a 1

El sistema de numeración binaria de complemento a uno se caracteriza por el complemento bit de cualquier valor entero que es el negativo aritmético del valor. Es decir, invertir todos los bits de un número (el complemento lógico) produce el mismo resultado que restar el valor de 0.

| Complemento a uno | Decimal |
|-------------------|---------|
| 0111              | 7       |
| 0110              | 6       |
| 0101              | 5       |
| 0100              | 4       |
| 0011              | 3       |
| 0010              | 2       |
| 0001              | 1       |
| 0000              | 0       |
| 1111              | -0      |
| 1110              | -1      |
| 1101              | -2      |
| 1100              | -3      |
| 1011              | -4      |
| 1010              | -5      |
| 1001              | -6      |
| 1000              | -7      |

Complemento a uno con enteros de 4 bits

Doble representación del 0. (+0 y -0)

## Complemento a 2

```
1 0 1 1 0 1 \leftarrow NUMERO BINARIO ORIGINAL 

\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
0 1 0 0 1 0 \leftarrow NUMERO BINARIO EN COMPLEMENTO A 1 

+1
0 1 0 0 1 1 \leftarrow NUMERO BINARIO EN COMPLEMENTO A 2
```

| Suma binaria                       |  |  |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|--|--|
| 0 + 0 = 0<br>0 + 1 = 1             |  |  |  |  |  |  |  |
| 1 + 0 = 1<br>1 + 1 = 0 y acarreo 1 |  |  |  |  |  |  |  |

Figura. Suma binaria.

| 1 | 1 | 0 | 0 | $\rightarrow$ | 12,, |
|---|---|---|---|---------------|------|
| + | 1 | 0 | 1 | $\rightarrow$ | 5,00 |
|   | 1 | 1 | 1 | $\rightarrow$ | 7,00 |
| 1 | 1 | 1 |   |               |      |

| Número decimal | Signo y magnitud | Complemento a 1 | Complemento a 2 |  |
|----------------|------------------|-----------------|-----------------|--|
| +7             | 0111             | 0111            | 0111            |  |
| +6             | 0110             | 0110            | 0110            |  |
| +5             | 0101             | 0101            | 0101            |  |
| +4             | 0100             | 0100            | 0100            |  |
| +3             | 0011             | 0011            | 0011            |  |
| +2             | 0010             | 0010            | 0010            |  |
| +1             | 0001             | 0001            | 0001            |  |
| 0              | 0000             | 0000            | 0000            |  |
| -0             | 1000             | 1111            | No existe       |  |
| -1             | 1001             | 1110            | 1111            |  |
| -2             | 1010             | 1101            | 1110            |  |
| -2<br>-3       | 1011             | 1100            | 1101            |  |
| -4             | 1100             | 1011            | 1100            |  |
| -4<br>-5       | 1101             | 1010            | 1011            |  |
| -6             | 1110             | 1001            | 1010            |  |
| -7             | 1111             | 1000            | 1001            |  |
| -8             | no existe        | No existe       | 1000            |  |

# Puertas lógicas







Compuerta AND

NAND





OR

| Α | В | Q |  |
|---|---|---|--|
| 0 | 0 | 0 |  |
| 0 | 1 | 1 |  |
| 1 | 0 | 1 |  |
| 1 | 1 | 1 |  |



Compuerta OR

| N | O | ŀ |
|---|---|---|
|   |   | ľ |



Compuerta NOR



NOT

| Q | Q |
|---|---|
| 0 | 1 |
| 1 | 0 |



Compuerta NOT









Compuerta XOR