Linear Algebra Done Right Solutions to Exercises 2.B

1 Vector spaces with one basis

Problem statement

Find all vector spaces that have exactly one basis.

Solution

The vector space $\{0\}$ has exactly one basis, namely (), the empty list, because we defined () to be linearly independent (Definition 2.17) and we defined the span of the empty list to be $\{0\}$ (Definition 2.5). Hence, () is linear independent and spans $\{0\}$; thus, since the empty list is unique, it is the only basis of $\{0\}$. Note that the list 0 cannot be a basis of $\{0\}$ since 0 is not linearly independent. In other words, any scalar $\lambda \in \mathbf{F}$ satisfies the equation

$$\lambda \cdot 0 = 0.$$

Also note that the 0 in $\{0\}$ need not be a scalar. The 0 could be a scalar, list of zeros, or the function that maps all inputs to zero. Also note that the 0 in $\{0\}$ need only be the **additive identity** of any vector space.

Suppose that a vector space V has at least one element $v \in V$ that is not the **additive identity** $v \neq 0$. Via Theorem 2.33 ('Linearly independent list extends to a basis'), we can extend v to be a basis of V. However, for any $\lambda \in \mathbf{F}$ such that $\lambda \neq 0$, we could also extend λv to be a basis of V, creating a different basis than before. Hence, vector spaces that have at least one element that is not the **additive identity** can have more than one basis.

2 Explorations on the subspace U of \mathbb{R}^5

Problem statement

(a) Let U be the subspace of \mathbf{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4\}.$$

Find a basis of U.

- (b) Extend the basis in part (a) to a basis of \mathbb{R}^5 .
- (c) Find a subspace W of \mathbf{R}^5 such that $\mathbf{R}^5 = U \oplus W$.

Solution

 \mathbf{a}

For some vector $(x_1, x_2, x_3, x_4, x_5) \in U$, via the construction of U, we can write $(x_1, x_2, x_3, x_4, x_5)$ as

$$(x_1, x_2, x_3, x_4, x_5) = (3x_2, x_2, 7x_4, x_4, x_5).$$

The obvious basis of U is the list (3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1). The list is clearly linearly independent and we can show that it spans U by writing

$$x_2(3,1,0,0,0) + x_4(0,0,7,1,0) + x_5(0,0,0,0,1) = (3x_2, x_2, 7x_4, x_4, x_5)$$

for $x_2, x_4, x_5 \in \mathbf{R}$.

b

To extend our basis of U to a basis of \mathbf{R}^5 , we can follow a similar procedure as outlined in Theorem 2.31 ('Spanning list contains a basis') and Theorem 2.33 ('Linearly independent list extends to a basis'). Let the list e_1, e_2, e_3, e_4, e_5 denote the standard basis of \mathbf{R}^5 . Appending the standard basis to our basis of U, we have

$$(3,1,0,0,0), (0,0,7,1,0), (0,0,0,0,1), e_1, e_2, e_3, e_4, e_5.$$

Now let's see which of the standard basis vectors we can remove to produce a basis of \mathbb{R}^5 .

 e_1 : The basis vector e_1 , also represented as (1, 0, 0, 0, 0), is not in span((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)), so we can leave it.

 e_2 : The basis vector e_2 , also represented as (0, 1, 0, 0, 0), is indeed in $\text{span}((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1), e_1)$, since

$$(3,1,0,0,0) - 3e_1 = (0,1,0,0,0) = e_2.$$

Thus, we can delete e_2 .

 e_3 : The basis vector e_3 , also represented as (0, 0, 1, 0, 0), is not in span $((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 1), e_1)$, so we can leave it.

 e_4 : The basis vector e_4 , also represented as (0,0,0,1,0), is indeed in span $((3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1),e_1,e_3)$, since

$$(0,0,7,1,0) - 7e_3 = (0,0,0,1,0) = e_4.$$

Thus, we can delete e_4 .

 e_5 : The basis vector e_4 , also represented as (0,0,0,0,1), is obviously already in span $((3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1),e_1,e_3)$, so we can delete it.

Now that we've finished our procedure, we can confidently claim that the list

$$(3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1), e_1, e_3$$

is a basis of \mathbb{R}^5 .

 \mathbf{c}

The obvious subspace W of \mathbf{R}^5 such that $\mathbf{R}^5 = U \oplus W$ is the subspace defined by

$$W = \operatorname{span}(e_1, e_3)$$

where e_1 and e_3 are the standard basis vectors we identified in part (b). To prove that $\mathbf{R}^5 = U \oplus W$, we must show $\mathbf{R}^5 = U + W$ and, via Theorem 1.45 ('Direct sum of two subspaces'), $U \cap W = \{0\}$.

The proof that $\mathbf{R}^5 = U + W$ follows from the work done in part (b). Explicitly, every vector $v \in U + W$ can be written as

$$v = a_1(3, 1, 0, 0, 0) + a_2(0, 0, 7, 1, 0) + a_3(0, 0, 0, 0, 0, 1) + a_4e_1 + a_5e_3$$

where $a_1, a_2, a_3, a_4, a_5 \in \mathbf{R}$. Since the list

 $(3,1,0,0,0),(0,0,7,1,0),(0,0,0,0,1),e_1,e_3$ also spans \mathbf{R}^5 , every vector $v \in \mathbf{R}^5$ can be written in a similar manner. Thus, it follows that $\mathbf{R}^5 = U + W$.

To show $U \cap W = \{0\}$, for $v \in U \cap W$, we can write

$$v = a_1(3,1,0,0,0) + a_2(0,0,7,1,0) + a_3(0,0,0,0,1) = b_4e_1 + b_5e_3.$$

Rearranging terms, we have

$$0 = b_4 e_1 + b_5 e_3 - a_1(3, 1, 0, 0, 0) - a_2(0, 0, 7, 1, 0) - a_3(0, 0, 0, 0, 1),$$

but via our proof of linear independence from part (b), it necessarily follows that $a_1 = a_2 = a_3 = b_4 = b_5 = 0$ and v = 0.

5 Another basis of $\mathcal{P}_3(\mathbf{F})$

Problem statement

Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $\mathcal{P}_3(\mathbf{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has degree 2.

Solution

Consider the polynomials

$$p_0(z) = 1,$$

 $p_1(z) = z,$
 $p_2(z) = z^2 + z^3,$
 $p_3(z) = z^3.$

None of the polynomials are of degree 2, yet $z^2 \in \text{span}(p_0, p_1, p_2, p_3)$ since

$$p_2 - p_3 = z^2 + z^3 - z^3 = z^2.$$

Hence, span $(p_0, p_1, p_2, p_3) = \mathcal{P}_3(\mathbf{F})$. Clearly, p_0, p_1, p_2, p_3 is linearly independent, thus p_0, p_1, p_2, p_3 is a basis of $\mathcal{P}_3(\mathbf{F})$.

6 $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is also a basis of v

Problem statement

Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.

Solution

We must show that $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$, v_4 is linearly independent and spans V.

To show the list is linearly independent, we can write

$$0 = a_1(v_1 + v_2) + a_2(v_2 + v_3) + a_3(v_3 + v_4) + a_4v_4$$

= $a_1v_1 + (a_2 + a_1)v_2 + (a_3 + a_2)v_3 + (a_4 + a_3)v_4$.

The last equality shows that $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is linearly independent if and only if v_1, v_2, v_3, v_4 is linearly independent. Since v_1, v_2, v_3, v_4 is a basis of V, then $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ is linearly independent.

To show that the list spans V, we must first note that any vector $v \in V$ can be written as

$$v = a_1 v_1 + a_2 v_2 + a_3 v_3,$$

where $a_1, a_2, a_3, a_4 \in \mathbf{F}$, and any vector $u \in \text{span}(v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4)$ can be written as

$$u = b_1(v_1 + v_2) + b_2(v_2 + v_3) + b_3(v_3 + v_4) + b_4v_4$$

= $b_1v_1 + (b_2 + b_1)v_2 + (b_3 + b_2)v_3 + (b_4 + b_3)v_4$,

where $a_1, a_2, a_3, a_4 \in \mathbf{F}$. It clearly follows that $u \in V$. To show that $v \in \text{span}(v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4)$, we can set $b_1 = a_1, b_2 = a_2 - a_1, b_3 = a_3 - a_2 + a_1$, and $b_4 = a_4 - a_3 + a_2 - a_1$ and write

$$u = b_1v_1 + (b_2 + b_1)v_2 + (b_3 + b_2)v_3 + (b_4 + b_3)v_4$$

= $a_1v_1 + (a_2 - a_1 + a_1)v_2 + (a_3 - a_2 + a_1 + a_2 - a_1)v_3$
+ $(a_4 - a_3 + a_2 - a_1 + a_3 - a_2 + a_1)v_4$
= $a_1v_1 + a_2v_2 + a_3v_3 = v$.

Hence, the list $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ spans V.

7 $v_3, v_4 \notin U$ but v_1, v_2 is not a basis of U

Problem statement

Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then v_1, v_2 is a basis of U.

Solution

Let's give a counterexample. Suppose $V=\mathbf{R}^4$ and $U=\{(x,y,z,z)\in\mathbf{R}^4: x,y,z\in\mathbf{R}\}$. Let v_1,v_2,v_3,v_4 be the standard basis vectors of \mathbf{R}^4 . It follows that $v_1,v_2\in U$ and $v_3,v_4\notin U$, but v_1,v_2 is not a basis of U. However, v_1,v_2,v_3+v_4 is a basis of U.