

Teacher-student knowledge distillation from BERT for sentence classifiers

Sam Sučík

MInf Project (Part 2) Report

Master of Informatics School of Informatics University of Edinburgh

2020

Abstract

Acknowledgements

I thank Steve Renals of University of Edinburgh and Vova Vlasov of Rasa for supervising me throughout the academic year; patiently listening to my neverending reports and providing helpful and optimistic comments.

Many thanks also to Ralph Tang whose work inspired this project, and to Slávka Heželyová who constantly supported me and motivated me to explain all of my work in non-technical stories and metaphors.

Table of Contents

1	Intr	roduction 7
	1.1	Motivation
	1.2	Aims
	1.3	Contributions
2	Bac	kground 9
	2.1	NLP before Transformers
	2.2	Transformer-based NLP
		2.2.1 Transformers
		2.2.2 BERT
		2.2.3 Newer and larger Transformer models
	2.3	Teacher-student knowledge distillation
	2.0	2.3.1 A brief introduction to knowledge distillation
		2.3.2 Knowledge distillation in NLP
	2.4	Understanding NLP models
	2.4	Onderstanding NLI models
3	Dat	asets 23
	3.1	Downstream tasks
	3.2	Data augmentation for generating large transfer sets
	3.3	Probing tasks
4	Imp	plementation 27
	4.1	Existing implementations used
	4.2	System overview
5	Stu	dent tuning 29
Ū	5.1	Choosing η
	5.2	Choosing learning rate annealing
	5.3	Choosing batch size
	5.4	Choosing embedding type and mode
	5.5	Choosing task-specific parameters
	0.0	5.5.1 CoLA
		5.5.2 SST-2
		5.5.3 Sara
6	Ans	dysing the models 33
U	6.1	Analysing the models' predictions
	0.1	manyanig die inodela predictiona

	6.2 Probing the models for linguistic knowledge	33
7	Overall discussion and conclusions	35
8	Future work	37
9	Plan for the rest of the semester	39
\mathbf{B}^{i}	ibliography	41

Introduction

1.1 Motivation

- After the deep learning hype started, NLP went through an era of LSTMs. Since 2017, the area has been becoming dominated by Transformer models pre-trained on large unlabelled corpora.
- As newer and bigger Transformer-based models were proposed in 2018 and 2019, improving on the SOTA, it was becoming clearer that their big size and low speed was rendering them difficult to use (both train and deploy) in practice outside of research labs.
- Recently, we've seen various early attempts at making Transformers in particular BERT (Devlin et al., 2018) smaller by removing attentional heads (Michel et al., 2019), quantisation and pruning (Cheong and Daniel, 2019; Sucik, 2019). In terms of actually down-sizing and accelerating the models, knowledge transfer using teacher-student knowledge distillation has led to the most attractive results (Mukherjee and Awadallah, 2019; Tang et al., 2019; Jiao et al., 2019; Sanh et al., 2019).
- However, these studies focus only on using knowledge distillation as a tool.
 Important questions about the nature of this technique and how it interacts with properties of the teacher and student models remain generally unexplored.
- In line with the increasing demand for explainable AI, it is desirable that, for the beginning, at least the researchers better understand the tools they use, in this case distillation of NLP knowledge from Transformer models. Indeed, such understanding is also useful for overcoming the limitations and designing new variants of this method for smaller and better classifiers.

1.2 Aims

I aim to better understand knowledge distillation by exploring its use for knowledge transfer from BERT into different student architectures on various NLP tasks.

This can be further broken down into three aims:

- Explore the effectiveness of knowledge distillation in very different NLP tasks. To cover a broad variety of tasks, I use sentence classification datasets ranging from binary sentiment classification to 57-way intent classification to linguistic acceptability.
- Explore how distilling knowledge from a Transformer varies with different student architectures. I limit myself to using the extremely popular BERT model (Devlin et al., 2018) as the teacher architecture. As students, I use two different architectures: a BiLSTM, building on the successful work of Ralph Tang (Tang et al., 2019; Tang and Lin, 2019), and a down-scaled BERT architecture.
- Explore how successfully can different types of NLP knowledge and capabilities be distilled. Since NLP tasks are often possible for humans to reason about, I analyse the models' behaviour (e.g. the mistakes they make) to learn more about knowledge distillation. I also probe the models for different linguistical capabilities, inspired by previous successful probing studies (Conneau et al., 2018; Tenney et al., 2019a).

1.3 Contributions

My actual findings. To be added later.

Background

In this chapter, the Transformer models are introduced and set into the historical context; knowledge distillation is introduced, in particular its recent applications in NLP; and an overview of some relevant work in model understanding is given.

2.1 NLP before Transformers

By the very nature of the natural language, its processing has always meant processing sequences of variable length: be it written phrases or sentences, words (sequences of characters), spoken utterances, sentence pairs, or entire documents. Very often, NLP tasks boil down to making simple decisions about such sequences: classifying sentences based on their intent or language, assigning a score to a document based on its formality, deciding whether two given sentences form a meaningful question-answer pair, or predicting the next word of an unfinished sentence.

As early as 2008, artificial neural networks started playing a key role in NLP: Collobert and Weston (2008)¹ successfully trained a deep neural model to perform a variety of tasks from part-of-speech tagging to semantic role labelling. However, neural machine learning models are typically suited for tasks where the dimensionality of inputs is known and fixed. Thus, it comes as no surprise that NLP research has focused on developing better models that encode variable-length sequences into fixed-length representations. If any sequence (e.g. a sentence) can be embedded as a vector in a fixed-dimensionality space, a simple classification model can be learned on top of these vectors.

One key step in the development of neural sequence encoder models has been the idea of word embeddings: rich, dense, fixed-length numerical representations of words. When viewed as a lookup table – one vector per each supported word – such embeddings can be used to "translate" input words into vectors which are then processed further. Mikolov et al. (2013) introduced an efficient and improved

¹See also Collobert et al. (2011).

way of learning high-quality word embeddings: word2vec. The embeddings are learnt as part of a larger neural network, which is trained to predict the next word given several previous words, and the previous words given the current word². Such training can easily leverage large amounts of unlabelled text data and the embeddings learn to capture various properties from a word's morphology to its semantics. Released word2vec embeddings became very popular due to their easy use and performance improvements in many NLP tasks. **TO-DO:** Add a simple illustration of learning word2vec.

While word embeddings were a breakthrough, they themselves do not address the issue of encoding a sequence of words into a fixed-size representation. This is where Recurrent neural networks (RNNs) (Rumelhart et al., 1986) and later their improved variant – Long Short-Term Memory neural networks (LSTMs) (Hochreiter and Schmidhuber, 1997) – come into play. Although originally proposed long ago, they became popular in NLP, and in text processing in particular, only later (see e.g. Mikolov et al. (2010) and Graves (2013)). These recurrent encoders process one word at a time (see Fig. 2.1) while updating an internal ("hidden") fixed-size representation of the text seen so far. Once the entire sequence is processed, the hidden representation (also called "hidden state") is outputted and used make a simple prediction.

Figure 2.1. A recurrent neural network (RNN) consumes at each timestep one input word.

Then, it produces a single vector representation of the inputs.

As various recurrent models started dominating NLP, one particularly influential architecture emerged, addressing tasks such as machine translation, where the output is a new sequence rather than a simple decision. This was the *encoder-decoder* architecture (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014), see Fig. 2.2. It uses a recurrent encoder to turn an input sentence into a single vector, and a recurrent decoder to generate an output sequence based on the vector.

Bahdanau et al. (2014) improved encoder-decoder models by introducing the concept of *attention*. The attention module helps the decoder produce better output by selectively focusing on the most relevant parts of the input at each decoder timestep. This is depicted in Fig. 2.3, showing the decoder just about to output the second word ("estás"). The steps (as numbered in the diagram) are:

²These are the so-called Continuous bag-of-words (CBOW) and Skip-gram (SG) tasks, respectively.

Figure 2.2. An encoder-decoder model for machine translation. Notice how the decoder initially takes as input the special <start> token and at later time consumes the previous output word.

- 1. the decoder's hidden state passed to the attention module,
- 2. the intermediate hidden states of the encoder also passed to the attention module,
- 3. the attention module, based on information from the decoder's state, selecting relevant information from the encoder's hidden states and combining it into the attentional *context vector*,
- 4. the decoder combining the last outputted word ("cómo") with the context vector and consuming this information to better decide which word to output next.

Figure 2.3. An encoder-decoder model for machine translation with added attention mechanism.

The attention can be described more formally³: First, the decoder state h_D is processed into a query q using

$$q = h_D W_Q \tag{2.1}$$

and each encoder state $\boldsymbol{h}_E^{(i)}$ is used to produce the key and value vectors, $\boldsymbol{k}^{(i)}$ and $\boldsymbol{v}^{(i)}$:

$$\mathbf{k}^{(i)} = \mathbf{h}_E^{(i)} \mathbf{W}_K, \quad \mathbf{v}^{(i)} = \mathbf{h}_E^{(i)} \mathbf{W}_V.$$
 (2.2)

³My description does not exactly follow the original works of Bahdanau et al. (2014) and Luong et al. (2015). Instead, I introduce concepts that will be useful in later sections of this work.

Then, the selective focus of the attention is computed as an attention weight $w^{(i)}$ for each encoder state i, by combining the query with the i-th key:

$$w^{(i)} = \boldsymbol{q}^{\mathsf{T}} \boldsymbol{k}^{(i)} \ . \tag{2.3}$$

The weights are normalised using softmax and used to create the context vector c as a weighted average of the values:

$$c = \sum_{i} a^{(i)} v^{(i)}$$
 where $a^{(i)} = \text{softmax}(w^{(i)}) = \frac{\exp(w^{(i)})}{\sum_{j} \exp(w^{(j)})}$. (2.4)

Note that W_Q , W_K , W_V are matrices of learnable parameters, optimised in training the model. This way, the attention's "informed selectivity" improves over time.

For years, recurrent models with attention were the state of the art in many NLP tasks. However, as we will see, the potential of attention reached far beyond recurrent models.

2.2 Transformer-based NLP

2.2.1 Transformers

We saw how the attention mechanism can selectively focus on parts of a sequence to extract relevant information from it. This raises the question of whether processing the inputs in a sequential fashion with the recurrent encoder is still needed. In particular, RNN models are slow as a results of this sequentiality, with no room for parallelisation. In their influential work, Vaswani et al. (2017) proposed an encoder-decoder model based solely on attention and fully parallelised: the *Transformer*. The core element of the model is the *self-attention* mechanism, used to process all input words in parallel.

In particular, a Transformer model typically has multiple self-attention layers, each layer processing separate representations of all input words. Continuing with the three-word input example from Fig. 2.3, a high-level diagram of the workings of a self-attention layer is shown in Fig. 2.4. Importantly, the input word representations evolve from lower to higher layers such that they consider not just the one input word, but also all other words – the representation becomes contextual (also referred to as a contextual embedding of the word within the input sentence).

As for the internals of self-attention, the basic principle is very similar to standard attention. Self-attention too is used to focus on and gather relevant information from a sequence of elements, given a query. However, to produce a richer contextual embedding $\boldsymbol{h}_{l+1}^{(i)}$ in layer l+1 of the i-th input word, self-attention uses the incoming representation $\boldsymbol{h}_{l}^{(i)}$ for the query, and considers focusing on all representations in layer l, including $\boldsymbol{h}_{l}^{(i)}$ itself. Fig. 2.5 shows this in detail for input

Figure 2.4. A high-level diagram of the application of self-attention in Transformer models. Three hidden states are shown for consistency with the length of the input shown in Fig. 2.3; in general, the input length can vary.

position i=0. Query $\boldsymbol{q}^{(0)}$ is produced and matched with every key in layer l (i.e. $\boldsymbol{k}^{(0)},\ldots,\,\boldsymbol{k}^{(2)}$) to produce the attention weights. These weights quantify how relevant each representation $\boldsymbol{h}_{l}^{(i)}$ is with respect to position i=0. Then, the new contextual embedding $\boldsymbol{h}_{l+1}^{(i)}$ is constructed as a weighted sum of the values $\boldsymbol{v}^{(0)},\ldots,\,\boldsymbol{v}^{(2)}$ (same as constructing the context vector in standard attention).

Figure 2.5. The internals of self-attention, illustrated on creating the next-layer hidden representation of the input position i=0, given all representations in the current layer. Note that \otimes stands for multiplication (where the multiplication involves a learnable matrix like W_K , this is written next to the \otimes), and \oplus denotes summation.

Notice that, even though each contextual embedding considers all input positions, the next-layer contextual embeddings $h_{l+1}^{(0)}, \ldots, h_{l+1}^{(2)}$ can be computed all at the

same time, in parallel: First, the keys, queries and values for all input positions are computed; then, the attention weights with respect to each position are produced; finally, all the new representations are produced. It is this parallelism that allows Transformer models to run faster. As a result, they can be much bigger (and hence create richer input representations) than recurrent models while taking the same time to train.

Due to their parallel nature, self-attentional layers have no notion of an element's position within the input sequence. This means no sensitivity to word order. (Recurrent models sense this order quite naturally because they process input text word by word.) To alleviate this downside of self-attention, Transformers use *positional embeddings*. These are artificially created numerical vectors added to each input word, different across input positions, thus enabling the model's layers to learn to be position- and order-sensitive.

As an additional improvement of the self-attentional mechanism, Vaswani et al. introduce the concept of multiple self-attention heads. This is very similar to having multiple instances of the self-attention module in Fig. 2.5 (each instance being one head). The motivation behind multiple self-attention heads is to enable each head h to learn different "focusing skills" by learning its own $W_{Q,h}$, $W_{K,h}$, $W_{V,h}$. Each head produces its own output:

$$O_{att,h} = \operatorname{softmax}(\frac{\boldsymbol{q}\boldsymbol{k}^{\top}}{\sqrt{d_k}})\boldsymbol{v} = \operatorname{softmax}(\frac{(\boldsymbol{h}_l^{\top}W_{Q,h})^{\top}(\boldsymbol{h}_l^{\top}W_{K,h})}{\sqrt{d_k}})(\boldsymbol{h}_l^{\top}W_{V,h}) \quad (2.5)$$

which matches Fig. 2.5 (but notice the detail of the additional scaling by $\frac{1}{\sqrt{d_k}}$, introduced by Vaswani et al., where d_k is the dimensionality of the key). The outputs of the H individual heads are then concatenated and dimensionality reduced with a trainable linear transformation W_{AO} , to produce the final output, which replaces h_{l+1} in Fig. 2.5:

$$O_{att} = [O_{att,1}, \dots, O_{att,H}]W_{AO}$$
 (2.6)

Besides the self-attention-based architecture, there is one more important property that makes today's Transformer models perform so well on a wide variety of NLP tasks: the way these models are trained. First used for Transformers by Radford et al. (2018)⁴, the general procedure is:

- 1. Unsupervised pre-training: The model is trained on one or more tasks, typically language modelling, using huge training corpora. For example, Radford et al. pre-train their model to do next word prediction (the standard language modelling task) on a huge corpus of over 7,000 books.
- 2. Supervised fine-tuning: The pre-trained model is trained on a concrete dataset to perform a desired downstream task, such as predicting the sentiment of a sentence, translating between languages, etc.

⁴The idea was previously used with recurrent models by Dai and Le (2015).

This two-step procedure is conceptually similar to using pre-trained word embeddings. In both cases, the aim is to learn general language knowledge and then use this as a starting point for focusing on a particular task. However, in this newer case, the word representations learned in pre-training are be better tailored to the specific architecture, and they are inherently contextual – compared to pre-trained word embeddings like word2vec which are typically context-insensitive.

Importantly, pre-trained knowledge makes models more suitable for downstream tasks with limited amounts of labelled data. The model no longer needs to acquire all the desired knowledge just from the small dataset; it contains pre-trained high-quality general language knowledge which can be reused in various downstream tasks. This means that large, powerful Transformer models become more accessible: They are successfully applicable to a wider array of smaller tasks than large models that have to be trained from scratch.

2.2.2 BERT

Perhaps the most popular Transformer model today is BERT (Bidirectional Encoder Representations from Transformers), proposed by Devlin et al. (2018). Architecturally, it is a sequence encoder, hence suited for sequence classification tasks. While being heavily based on the original Transformer (Vaswani et al., 2017), BERT adds a few further tricks:

- 1. The model learns bidirectional representations: It can be trained on language modelling that is not next-word prediction (prediction given left context), but word prediction given both the left and the right context.
- 2. It uses two very different pre-training classification tasks:
 - (a) The masked language modelling (MLM) task encourages BERT to learn good contextual word embeddings. The task itself is to correctly predict the token at a given position in a sentence, given that the model can see the entire sentence with the target token(s) masked out⁵, with a different token, or left unchanged.
 - (b) The next-sentence prediction (NSP) task encourages BERT to learn good sentence-level representations. Given two sentences, the task is to predict whether they formed a consecutive sentence pair in the text they came from, or not.

The pre-training was carried out on text from books and from the English Wikipedia, totalling to 3,400 million words (for details see Devlin et al. (2018)). The MLM and NSP tasks were both used throughout the pre-training, forcing the model to learn both at the same time.

3. The inputs are processed not word by word, but are broken down using a fixed vocabulary of sub-word units (*wordpieces*, introduced by Wu et al.

⁵I.e. replaced with the special [MASK] token.

- (2016)). This way, BERT can better deal with rare words. (In word-level models, words that are not found in the model's vocabulary are replaced with a special UNKNOWN token, which means disregarding any information carried by the words.) The tokeniser module of BERT uses the wordpiece vocabulary to tokenise (segment) the input text before it is further processed. Fig. 2.6 shows an example; notice how my surname ("Sucik") gets split into three wordpieces whereas the other, much more common words are found in the wordpiece vocabulary.
- 4. To enable the different pre-training tasks as well as two-sentence inputs, BERT uses a special input sequence representation, illustrated in Fig. 2.6. Given the two input sentences S_A , S_B , they are concatenated and separated by the special [SEP] token. The overall sequence is prepended with the [CLS] (classification) token. Then, for tasks like NSP, only the output representation of the [CLS] token (i.e. o_0) is used, whereas for token-level tasks like MLM the output vector from the desired position is used (in Fig. 2.6, the MLM task would use o_3 to predict the correct token at this position).

Figure 2.6. BERT's handling of input for sentence-level and token-leven tasks. The input sentences ($S_A = How \ are \ you, \ Sam \ Sucik$? and $S_B = Good, \ you$?) are shown as split by BERT's tokeniser, with the first instance of "you" masked out for MLM.

The overall architecture of BERT is shown in Fig. 2.7. The tokeniser also adds the special tokens like [CLS] and [SEP] to the input, while the trainable token embedding layer also adds positional embeddings to the tokens. The pooler takes the appropriate model output (for sequence level classification the first output o_0 as discussed above) and applies a fully-connected layer with the tanh activation function. The external classifier is often another fully-connected layer with the tanh activation, producing the logits⁶. These get normalised using softmax to produce a probability distribution over all classes. The most probable class is outputted as the model's prediction.

To complete the picture of BERT, Fig. 2.8 shows the internals of an encoder layer. Besides the multi-headed self-attention submodule, it also contains the

⁶For a classifier, the logits are the (unnormalised) predicted class probabilities.

Figure 2.7. High-level overview of the modules that make up the architecture of BERT as used for sequence-level classification.

fully-connected submodule, consisting of the intermediate fully-connected transformation with parameters W_I , and the layer output fully-connected transformation with parameters W_O . Each submodule is also by-passed by a residual connection (shown with dashed lines). The residual information is summed with the submodule's output, and layer normalisation is applied to the sum. Note that this structure is not new in BERT; it was used already by the original Transformer of Vaswani et al. (2017).

Originally, pre-trained BERT was released in two sizes: BERT_{Base} with 110 million parameters, 12 encoder layers and 12-head self-attention, and BERT_{Large} with 340 million parameters, 24 encoder layers and 16-head self-attention. The models quickly became popular, successfully applied to various tasks from document classification (Adhikari et al., 2019) to video captioning (Sun et al., 2019). Further pre-trained versions were released too, covering, for example, the specific domain of biomedical text (Lee et al., 2019) or multilingual text (Pires et al., 2019).

2.2.3 Newer and larger Transformer models

Following the success of the early Transformers and BERT (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2018), many further model variants started emerging, including:

Figure 2.8. The modules making up one encored layer in BERT; residual connections highlighted by using dashed lines.

- The OpenAI team releasing GPT-2 (Radford et al., 2019), a larger and improved version of their original, simple Transformer model GPT (Radford et al., 2018).
- (Lample and Conneau, 2019) introducing XLM, which uses cross-lingual pre-training and is thus better suited for downstream tasks in different languages.
- Transformer-XL (Dai et al., 2019), which features an improved self-attention that can handle very long contexts (across multiple sentences/documents).

All these open-sourced, powerful pre-trained models were a significant step towards more accessible high-quality NLP (in the context of downstream tasks with limited data). However, the model size – often in 100s of million trainable parameters – meant these models could not be applied easily in practice (outside of research): They were memory-hungry and slow.

Naturally, this inspired another stream of research: Compressing large, well-performing Transformer models (very often BERT) to make them faster and resource-efficient. I turn my focus to one compression method that worked particularly well so far: the teacher-student knowledge distillation.

2.3 Teacher-student knowledge distillation

2.3.1 A brief introduction to knowledge distillation

Knowledge distillation was introduced by (Bucila et al., 2006) as a way of knowledge transfer from large models into small ones. The aim is to end up with a smaller – and hence faster – yet well-performing model. The steps are 1) to train a big neural classifier model (also called the *teacher*), 2) to let a smaller

neural classifier model (the student) learn from it – by learning to mimic the teacher's behaviour. Hence also the name teacher-student knowledge distillation, often simply knowledge distillation.

There are different ways of defining the teacher's "behaviour" which the student learns to mimic. Originally, this was realised as learning to mimic the teacher's predictions: A dataset would be labelled by the teacher, and the student would be trained on these labels (which are in this context referred to as the *hard labels*). The dataset used for training the student (together with the teacher-generated labels) is referred to as the *transfer dataset*.

Later, Ba and Caruana (2014) introduced the idea of learning from the teachergenerated *soft labels*, which are the teacher's logits. The idea is to provide the student with richer information about the teacher's decisions: While hard labels only express which class had the highest predicted probability, soft labels also describe how confident the prediction was and which other classes (and to what extent) the teacher was considering for a given example.

When soft labels were first used, the student's training loss function was the mean squared distance between the student's and the teacher's logits:

$$E_{MSE} = \sum_{c=1}^{C} (z_t^{(c)} - z_s^{(c)})^2$$
(2.7)

where C is the number of classes and z_t , z_s are the teacher's and student's logits. Hinton et al. (2015) proposed a more general approach, addressing the issue of overconfident teachers with very sharp logit distributions. The issue with such distributions is that they carry little additional information beyond the hard label (since the winning class has a huge probability and all others have negligibly small probabilities). To "soften" such sharp distributions, Hinton et al. proposed using the cross-entropy loss (2.8) in combination with softmax with temperature (2.9) (instead of the standard softmax) in training both the teacher and the student.

$$E_{CE} = \sum_{c=1}^{C} z_t^{(c)} \log z_s^{(c)}$$
 (2.8)

$$p_c = \frac{\exp(z^{(c)}/T)}{\sum_{c'=1}^{C} \exp(z^{(c')}/T)}$$
(2.9)

The temperature parameter T determines the extent to which the distribution will be "unsharpened" – two extremes being the completely flat, uniform distribution (for $T \to \infty$) and the maximally sharp distribution (for $T \to 0$). When T > 1, the distribution gets softened and the student can extract richer information from it. Today, using soft labels with the cross-entropy loss with temperature is what many refer to simply as knowledge distillation.

Since 2015, further knowledge distillation variants have been proposed, enhancing the vanilla technique in various ways, for example:

⁷I.e. having the preferred class's probability 1 and the other classes' probabilities 0.

- Papamakarios (2015, p. 13) points out that mimicking teacher outputs can be extended to mimicking mimicking the *derivatives* of the teacher's loss with respect to the inputs. This is realised by including in the student's loss function also the term: $\frac{\partial o_s}{\partial x} \frac{\partial o_t}{\partial x}$ (x being an input, e.g. a sentence, and o being the output, e.g. the predicted class).
- Romero et al. (2015) proposed to additionally match the teacher's internal, intermediate representations of the input. Huang and Wang (2017) achieved this by learning to align the distributions of neuron selectivity patterns between the teacher's and the student's hidden layers. Unlike standard knowledge distillation, this approach is no longer limited only to classifier models with softmax outputs (see the approach of Hinton et al. (2015) discussed above).
- Sau and Balasubramanian (2016) showed that learning can be more effective when noise is added to the teacher logits.
- Mirzadeh et al. (2019) showed that when the teacher is much larger than the student, knowledge distillation performs poorly, and improved on this by "multi-stage" distillation: First, knowledge is distilled from the teacher into an intermediate-size "teacher assistant" model, then from the assistant into the final student.

2.3.2 Knowledge distillation in NLP

The knowledge distillation research discussed so far was tied to the image processing domain. This is not surprising: Image processing was the first area to start taking advantage of deep learning, and bigger and bigger models had been researched ever since the revolutional AlexNet (Krizhevsky et al., 2012).

In NLP, the (recurrent) models were moderately sized for a long time, not attracting much research in model compression. Still, one early notable work was on adapting knowledge distillation for sequence-to-sequence models (Kim and Rush, 2016), while another pioneering study (Yu et al., 2018) distilled a recurrent model into en even smaller one – to make it suitable for running on mobile devices.

Understandably, the real need for model compression started very recently, when the large pre-trained Transformer models became popular. Large size and low speed seemed to be the only downside of these – otherwise very successful and accessible – models.

Perhaps the first decision to make when distilling large pre-trained models is at which point to distill. In particular, one can distill the general knowledge from a pre-trained teacher and use such general student by fine-tuning it on downstream tasks, or one can fine-tune the pre-trained teacher on a task and then distill this specialised knowledge into a student model meant for the one task only. Each of these approaches has its advantages and disadvantages.

In the first scenario (distilling pre-trained knowledge), a major advantage is that the distillation happens once and the small student can be fine-tuned fast for various downstream tasks. Since the distillation can be done on the same data that the teacher was pre-trained on – large unlabelled text corpora –, lack of transfer data is not a concern. A possible risk is that the large amount of general pre-trained language knowledge will not "fit" into the small student, requiring the student itself to be considerably large. Sanh et al. (2019) took this approach and, while their student is successfully fine-tuned for a wide range of tasks, it is only 40% smaller than the BERT_{Base} teacher.

In the second scenario, only the task-specific knowledge needs to be transferred to the student – potentially allowing very small students. However, teacher finetuning and distillation have to be done anew for each task and this is resourcehungry. Additionally, there may be a lack of transfer data if the downstream task dataset is small. Various ways of addressing this issue by augmenting small datasets have been proposed, with mixed success. Mukherjee and Awadallah (2019) use additional unlabelled in-domain sentences with labels generated by the teacher – this is limited to cases where such in-domain data are available. Tang et al. (2019) create additional sentences using simple, rule-based perturbation of existing sentences from the downstream dataset. Finally, Jiao et al. (2019) and Tang and Lin (2019) use large Transformer models generatively to create new sentences. In the first case, BERT is applied repeatedly to an existing sentence, changing words into different ones one by one and thus generating a new sentence. In the second case, new sentences are sampled token-by-token from a GPT-2 model fine-tuned on the downstream dataset with the next-tokenprediction objective.

Clearly, each approach is preferred in a different situation: If the requirement is to compress the model as much as possible, and there is enough transfer data, distilling the fine-tuned teacher is more promising. If, on the other hand, one wants to make available a re-usable, small model, then distilling the broader, pre-trained knowledge is preferred.

2.4 Understanding NLP models

Neural models are by their very nature opaque or even black boxes, and (not) really understanding the models is a serious concern. Despite the typical preferrence of performance over transparence, recently, the demand for explainable artificial intelligence (XAI) has been increasing, as neural models become widely used.

The area of image processing has seen the most attempts at interpreting neural models, partly because reasoning about images is easy for humans. Various techniques shed light into the workings of image classifiers, e.g. creating images that maximally excite certain neurons (Simonyan et al., 2013) or highlighting those parts of an image that a particular neuron "focuses" on (Zeiler and Fergus, 2013).

In NLP, interpreting is more difficult and historically came with a delay similar to the delay with which large neural models became popular for NLP tasks. In their review, Belinkov and Glass (2018) observe that many methods for analysing and interpreting models are simply adapted from image processing, in particular the approach of visualising a single neuron's focus, given an input. In attentional sequence-to-sequence models, the attention maps can be visualised to explore the soft alignments between input and output words (see, e.g., Strobelt et al. (2018)). However, these methods are mostly qualitative, not well suited for model comparison.

More quantitative and NLP-specific are the approaches that explore the linguistic knowledge present in a model's internal representations. Most often, this is realised by trying to automatically recover specific properties of the input from such representations – when such recovery works well, the representations must have contained the linguistic knowledge tied to the input properties in question. First used by Shi et al. (2016) for exploring syntactic properties captured by machine translation models, this general approach was later applied to various representations. Adi et al. (2017) explored sentence encodings from recurrent models by trying to recover simple properties like sentence length, word content and word order. More recently, Conneau et al. (2018) curated a set of 10 probing tasks ranging from surface properties through syntactic to semantic ones. This enabled comparing various sentence encoder architectures in terms of the low- and high-level linguistic knowledge they capture. Focusing on Transformers, Tenney et al. (2019b) proposed a set of edge probing tasks, examining how much contextual knowledge about an entire input sentence is captured within the contextual representation of one of its words. These tasks correspond to the typical steps of a text processing pipeline – from part-of-speech tagging to identifying dependencies and entities to semantic role labelling. Tenney et al. (2019a) managed to localise the layers of BERT most important for each of these tasks, showing that the ordering of these "centres of expertise" within BERT's enoder matches the usual low- to high-level order: from simple POS tagging in the earlier layers to the most complex semantic tasks in the last layers.

While the discussed approaches provide valuable insights, they merely help us intuitively describe or quantify the kinds of internal knowledge/expertise present in the models. Gilpin et al. (2018) call this level of model understanding *interpretability* – comprehending what a model does. However, they argue thas what we should strive to achieve is *explainability*: the ability to "summarize the reasons for neural network behavior, gain the trust of users, or produce insights about the causes of their decisions". In this sense, today's methods achieve only interpretability because they enable researchers to describe but not explain – especially in terms of causality – the internals and decisions of the models.

Datasets

3.1 Downstream tasks

Since the BERT model I use as teacher is already pre-trained on large unlabelled corpora (for details see the original work by Devlin et al. (2018)), it can be fine-tuned well even on small downstream datasets.

Today, perhaps the most popular collection of challenging NLP tasks (challenging by the nature of the tasks and by the relatively small dataset size) is the GLUE benchmark (Wang et al., 2018). This collection comprises 11 tasks from semantic analysis to detecting textual similarity to natural language inference, framed as single sentence or sentence pair classification. Each task features a specific scoring metric (such as accuracy or F1), publicly available labelled training and development datasets, and a testing dataset whose labels have not been released. The test-set score accumulated over all tasks forms the basis for the popular GLUE leaderboard¹.

For simplicity, I use only the single-sentence classification tasks of the collection – the Corpus of Linguistic Acceptability (CoLA) and the Stanford Sentiment Treebank in its two-way classification format (SST-2).

- The CoLA task features 8.5k training sentences, 1k evaluation and 1k testing sentences. The (hand-crafted) sentences are collected from various linguistic literature and represent examples of acceptable and unacceptable English, making the task a binary classification. The scoring metric is Matthew's Correlation Coefficient (MCC, introduced by Matthews (1975)). This task is rather challenging since a given sentence can be perfectly grammatical and still not be acceptable English. As a non-native speaker, I myself struggle with some of the examples.
- The SST-2 task has considerably more data as it is easier to collect: 67k training, 9k evaluation and 18k testing sentences, extracted from movie reviews and labelled as positive or negative sentiment. The scoring metric

https://gluebenchmark.com/leaderboard

is accuracy. The task is easier than CoLA and best models in the GLUE leaderboard achieve over 97% test-set score.

As the third task, I use an intent classification dataset collected by Rasa, a company building open-source tools for conversational AI². The dataset is named Sara, after the company's own chatbot³ which provides various information about Rasa and its products to the visitors of the company's website⁴. The dataset comprises 4.8k examples overall, split between 1k testing portion and 3.8k training portion. Each example is a human-generated utterance and has been manually labelled with one of 57 intents, helping the Sara chatbot learn to detect what a human is talking to it about. Originally, the dataset was initialised by Rasa employees talking to Sara. Later, many more examples were collected by deploying the chatbot and letting site visitors talk to it. The 57 intent types were designed by Rasa, starting with a smaller number of broader intents and refining the set after observing real questions humans were asking the chatbot. **TO-DO: verify this is true; my knowledge of the history of Sara is limited.** The main scoring metric is the multi-class micro-averaged F1 score.

I modified the Sara dataset by splitting the training portion into 2.8k training and 1k evaluation sentences (while keeping both sets class-balanced). I also anonymised the dataset by replacing all sensitive information with generic tokens. Namely, I replaced people's names and surnames with a single token __PERSON_NAME__ and e-mail addresses with __EMAIL_ADDRESS__.

To stay consistent with the GLUE datasets for which test-set labels are not publicly available, I do not use the test portion of any of them when analysing the mistakes made by different models. Instead, I analyse the predictions on the evaluation set. This can be viewed as sheding light on the kind of model qualities that are actually optimised when choosing model parameters on this set.

3.2 Data augmentation for generating large transfer sets

As Tang et al. (2019) demonstrate, taking just the training sentences of a down-stream task as the transfer set for knowledge distillation is not enough; especially for challenging tasks like CoLA where the training set comprises only several thousands of sentences (for results, see Table 1 in Tang and Lin (2019)). I adopt the approach that they found to work the best: Augmenting the training portion with additional sentences generated by a GPT-2 model (Radford et al., 2019). The concrete steps for this augmentation are:

1. Fine-tune the pre-trained GPT-2 model (the 345M-parameter version) on

²For transparency: I did a 3-month internship as Machine Learning researcher with Rasa in the summer of 2019.

³Demonstrated at https://github.com/RasaHQ/rasa-demo

⁴https://rasa.com/

25

the training sentences for 1 epoch with the language-modelling objective, i.e. learning to predict the next subword token of a sentence given the true sequence of tokens so far.

- 2. Sample a large number of prefixes (subword tokens) from the observed distribution of sentence-initial subword tokens in the training sentences.
- 3. For each sampled prefix, generate a sentence starting with it: by sampling from the predicted next-token distribution of the GPT-2 model, starting with just the prefix and stopping when the special end-of-sentence token is generated or the desired maximum sequence length is reached (in this case 128 tokens).
- 4. Add the generated sentences to the original training sentences and use as the transfer set, i.e. append with teacher-generated logits and use to train the students.

For consistency, I used the same number of augmentation sentences as Tang et al. (2019): 800k for each downstream task. Hence, the transfer set comprises 808.5k sentences for CoLA, 867k sentences for SST-2, and 802.8k sentences for Sara.

3.3 Probing tasks

For exploring the linguistic knowledge in the different teacher and student models, I use the probing task collection curated by Conneau et al. (2018). The datasets, along with tools for applying probing to neural models, are publicly available as part of the SentEval toolkit Conneau and Kiela (2018) for evaluating sentence representations. The collection contains 10 tasks, each having 100k training, 10k evaluation and 10k testing sentences. These are used for training the probing classifier, choosing its hyperparameters, and computing the task-specific score, respectively.

Each of the 10 probing tasks – grouped into three broad categories – focuses on a different linguistic capability (for more details, see the original paper of Conneau et al. (2018)):

Surface information:

- Length is about recovering the length of the sentence. The actual sentence lengths are grouped into 6 equal-width bins, making this task a 6-way classification.
- WordContent is about identifying which words are present in the sentence. A collection of 1000 mid-frequency words was created, and sentences were sampled such that each contains exactly one of these words. The task is therefore 1000-way classification.

Syntactic information:

- **Depth** is about classifying sentences by their syntactic parse tree depth, with depths ranging from 5 to 12 (hence 8-way classification).
- **BigramShift** is about recognising sentences in which the order of two randomly chosen adjacent words has been swapped (binary classification).
- **TopConstituents** is about recognising the top syntactic constituents the nodes found in the syntactic parse tree just below the S (sentence) node. This is framed as 20-way classification, choosing from 19 most common top-constituent sequences and the "other" option.

Semantic information:

- **Tense** is binary classification, identifying the tense (present/past) of the main verb of the sentence (the verb in the main clause).
- SubjNumber is about determining the number (singular/plural) of the sentence's subject, framed as binary classification.
- **ObjNumber** is the same as SubjNumber, applied to the direct object of a sentence.
- OddManOut is binary classification, detecting whether a random word (verb or noun) in a sentence was replaced with a different one (verb or noun) or not. To make this task more difficult, the replacement word is chosen such that the frequency of the bigrams in the sentence stays roughly the same.
- CoordinationInversion works with sentences that contain two coordinate clauses whose order may have been artificially swapped. The binary classification is then about detecting which sentences are intact.

Considering the findings of Tenney et al. (2019a) about the NLP pipeline steps being implicitly captured inside BERT, choosing their approach to probing (together with the collection of tasks they curated) was an attractive option. However, the approach explores single-word representations, focuses primarily on more complex probing tasks (e.g. entity recognition, natural language inference, semantic roles) and the tasks are not open-sourced. In this sense, the SentEval toolkit is preferred as it was built for analysing sentence representations, the simpler surface and syntactic tasks have a better coverage, and the datasets are publicly available. In the future, however, the two collections of probing tasks could be used in combination.

Implementation

4.1 Existing implementations used

For finetuning BERT, I used transformers (Wolf et al., 2019)¹ – a popular opensource PyTorch library curating and presenting many successful Transformerbased models in a unified way. My implementation of the distillation process is heavily based on the implementation accompanying DistilBERT (Sanh et al., 2019), which is today part of transformers².

The implementation of the BiLSTM student is based on the codebase accompanying the work of Tang and Lin (2019)³ (which was originally built using an early version of the transformers library). The same codebase was used without many changes for fine-tuning the GPT-model and creating the augmentation sentences.

Finally, for probing, I adapted the SentEval toolkit (Conneau and Kiela, 2018) to suit my needs.

In terms of implementation, the most of my own work is in having integrated the different tools. In particular, I have combined the codebases of Sanh et al. (2019) and Tang and Lin (2019) and adapted the combination to offer richer options (e.g. initialising the student's embedding layers with trained word or wordpiece embeddings), to work with both BERT and BiLSTM students and to be more easily extendable to other architectures.

¹https://github.com/huggingface/transformers, accessed January 30, 2019

²https://github.com/huggingface/transformers/tree/master/examples/distillation, accessed January 30, 2019

³https://github.com/castorini/d-bert, accessed January 30, 2019

4.2 System overview

Following Tang and Lin (2019), I used the large, case-insensitive (uncased) pretrained BERT (340M params) as the teacher and finetuned it for 3 epochs using Adam optimizer with $\eta = 5e - 5$ with linear warm-up over the first 10% of training steps, followed by linear decay, and with batch size B = 36. I will refer to this model as $BERT_T$. Somewhat surprisingly, while the teacher converged within 3 epochs for CoLA and SST-2 (in terms of the dev-set score), for Sara, it converged much more slowly. I empirically chose 10 epochs as the smallest number after which $BERT_T$ would sufficiently converge on the Sara dataset.

As students, I used:

- a bi-directional LSTM same as the one used by Tang and Lin (2019): with one LSTM layer with 300 units, followed by a linear layer with 400 units and ReLU activation function, with a softmax classifier on top, with 2.41M non-embedding trainable parameters. I will refer to this model as $LSTM_S$.
- a smaller version of the teacher BERT model, with all dimensions down-scaled 5x to roughly match the number of trainable non-embedding parameters: with 5 transformer layers, hidden dimension of 204, intermediate layers of size 750, and 3 attentional heads (amounting to 2.42M parameters). I will refer to this model as $BERT_S$.

 $LSTM_S$ was trained to minimise the mean squared loss (MSE) between the teacher-generated logits and student's logits. While the cross-entropy loss with configurable temperature is more popular and in essence a generalisation of the MSE loss (see Hinton et al. (2015)), Tang and Lin (2019) report that the MSE loss led to slightly better performance in their experiments. For $BERT_S$, I use the traditional cross-entropy loss with temperature set to T=3 following the findings of Tsai et al. (2019) who experimented with different temperatures (note that T=3 was used as the default also in the experiments of Tang and Lin (2019)).

Following preliminary experiments, I limited the number of training epochs to 30 for $LSTM_S$ (same budget was used by Tang and Lin (2019)) and to 60 for $BERT_S$ as it was converging much slower than the recurrent student. I stick to this training budget throughout my experiments.

some overall visualisation of all the components and how they interact

Student tuning

Importantly, extensive tuning of the students' hyperparameters is certainly not the main objective of this work. However, my aim is to carry out an analysis of the teacher and student models and the distillation process. For such analysis to be of some value, it should be done using well-performing models which themselves are of practical value.

I tune a number of hyperparameters for the 2.4M-parameter students using the CoLA task. Afterwards, I tune a smaller number of parameters – which are the most likely to be task-dependent – separately for each downstream task, trying to obtain $LSTM_S$ and $BERT_S$ that would achieve 90% of the teacher's performance while being as small as possible. These student are then used for further analysis.

For both students, I first tune the following, in this order (for more details, see the next sections):

- 1. learning rate η
- 2. learning rate scheduling, more concretely the warm-up and decay of η
- 3. batch size B
- 4. embedding type (wordpiece vs word) and mode

Afterwards, I tune on each task separately the embedding type and the student size.

The starting configuration (which I change as I tune the different parameters) is:

- $BERT_S$: Adam with $\eta = 5e 5$, B = 256, learning rate warm-up over the first 10 epochs, followed by linear decay, and wordpiece embedding layer
- $LSTM_S$: Adadelta with $\eta = 1.0$, B = 50, no learning rate annealing, and word embedding layer in the multichannel mode, using word2vec

Initially, $LSTM_S$ had its embedding layer initialised with word2vec embeddings, but $BERT_S$ was initialised entirely from scratch. Naturally, this was posing a disadvantage for $BERT_S$ as it was starting with no knowledge. Hence, I added

the option to initialise the embedding layer with wordpiece embeddings from the corresponding finetuned $BERT_T$. I report results of parameter tuning for both of these variants of $BERT_S$.

5.1 Choosing η

Because Tang and Lin (2019) report not tuning their hyperparameters, I acknowledge their parameter choices but challenge many of them. In particular, they use Adadelta with $\eta=1.0$ and $\rho=0.95$ as the learning algorithm. I attempt to use the Adam algorithm as it is a generalised, improved version of Adadelta. Hence, for both students, I compare values of η from [5e-3, 1.5e-3, 5e-4, 1.5e-4, 5e-5, 1.5e-5, 5e-6] for the Adam optimizer, with betas fixed to 0.9 and 0.98.

TO-DO: add graphs

The best value was found to be $\eta = 5e - 4$ for $LSTM_S$ and bth variants of $BERT_S$. For $BLSTM_S$, I abandoned the Adadelta optimizer as it performed worse than Adam.

5.2 Choosing learning rate annealing

I tried linear warm-up of η (starting from 0) over [0, 5, 10, 15, 20] epochs E_{WP} for $BERT_S$ and over [0, 5, 10, 15] epochs for $LSTM_S$.

TO-DO: add graphs

For $BERT_S$ initialised from scratch, $E_{WP} = 20$ and no decay worked the best. For the other students, decay was improving the performance slightly, with the best E_{WP} being 0 for $LSTM_S$ and 15 for $BERT_S$

5.3 Choosing batch size

Note that for $LSTM_S$ this was done prior to exploring the learnign rate annealing, as my aim was to merely verify that B=50 reported by Tang and Lin (2019) was the best value. For $BERT_S$, I had much less intuition about suitable batch sizes. The explored values were [32, 64, 128, 256, 512] for $BERT_S$ and [32, 50, 128, 256, 512] for $LSTM_S$.

TO-DO: add graphs

Interestingly, while $LSTM_S$ preferred the smalles batch size B=32, $BERT_S$ preferred much bigger batches: 256 when initialised from scratch and 128 with wordpiece embeddings initialised from $BERT_T$.

5.4 Choosing embedding type and mode

After observing that the best $LSTM_S$ consistently outperforms its counterpart $BERT_S$, I turned to exploring the effect of pre-trained knowledge present in the student before distillation. In $LSTM_S$, this lies in the word2vec embeddings. Additionally, the embedding layer is used in the multichannel mode: two parallel embedding layers are initialised from word2vec, with one being frozen during distillation and the other one allowed to be finetuned. In $BERT_S$, there is no pre-trained knowledge or there is the knowledge from the teacher's wordpiece embeddings (dimensionality reduced by a trainable linear layer to match the smaller hidden size of $BERT_S$.

I was interested to see whether the effect of different type of embeddings — word2vec pre-trained on general language modelling vs wordpiece pre-trained on language modelling and finetuned on the particular downstream task — could explain some of the performance gap between $BERT_S$ and $LSTM_S$. Hence, I tried each of the 2 students with each of the 2 embedding types, combined with each of the following 2 modes: the multichannel mode described above, and the simple (non-static) mode where only one embedding instance is created, which is unfrozen and allowed to further train during distillation.

TO-DO: add graphs

Turns out $LSTM_S$ strongly prefers word embeddings in the multichannel mode, while $BERT_S$ is less decisive, with only slight preference for word embeddings and the multichannel mode. This also shows that the different embedding properties don't explain the worse performance of $BERT_S$.

5.5 Choosing task-specific parameters

For each dataset, I first tried different embedding types and modes, and then for the best-performing combination I tried up-scaling the students to get as close to 90% of $BERT_T$'s performance as possible, while keeping the size of each student reasonably smaller than the teacher.

5.5.1 CoLA

Here I had the optimal embedding type/mode already.

I tried expanding $LSTM_S$ by increasing the number of LSTM layers from 1 to [2, 3, 4, 5] and the width of the LSTM and fully-connected layers from the original 300 and 400 by 2x, 3x, 4x and 5x. In case of $BERT_S$, I tried increasing the number of layers from the original 5 to 10 and 15, and the other parameters (# of attentional heads, hidden and intermediate size) by 2x, 3x and 4x.

TO-DO: add graphs

For $LSTM_S$, the results are indecisive, without clear correlation between student size and performance. The best student was 2x deeper and 2x wider than the initial configuration.

For $BERT_S$, I soon observed that bigger models started dying after the first few epochs. TO-DO: add diagnostic graphs. This dying surfaced as the dev-set score flattening out and then decreasing towards 0, at which point the gradients in the model would explode. I identified the cause of this to be too big learning rate (thanks to the warm-up, the model was experiencing η starting from 0 and increasing towards the target value). Hence, by comparing the graphs for the linearly increasing η and the dev-set performance, I tried to manually identify η values as big as possible that were still enabling the model to improve fast (without making it plateau or die). These values were in the range from the originally chosen 5e-4 down to 8e-5 (generally lower η for bigger models). After this modification, all students trained normally, without dying. TO-DO: add graphs and conclusions once all of these have finished training.

5.5.2 SST-2

TO-DO: run experiments and report

5.5.3 Sara

TO-DO: run experiments and report

Analysing the models

6.1 Analysing the models' predictions

This will involve for each downstream task:

- 1. gathering dev-set predictions made by the two best students and the teacher
- 2. looking at the mistakes made by each model (most confident mistakes and least confident mistakes first, maybe taking first 10-20 mistakes from each end), trying to describe then in intuitive terms if possible
- 3. comparing the mistakes made by different models, again trying to describe what I observe
- 4. looking at how confident the predictions were in general for each model (maybe the distribution of confidences?) and if possible, comparing this across models

My aim is to make at least some observations describable in human-understandable terms about how the models compare: how the 2 architecturally different students compare, and how their predicting behaviour compares to that of their teacher. Ideally, I will be also able to form some (even if weak) hypotheses that are further testable using probing tasks.

6.2 Probing the models for linguistic knowledge

Here, I will for each downstream task:

- probe each of the 3 models in different layers (e.g. the 24-layer $BERT_T$ in layers 1, 6, 12, 18, 24) to see how much linguistic knowledge and where is present in each model
- probe also the pre-trained BERT (not finetund on any downstream task) and look at how knowledge is preserved/thrown away when the teacher gets

finetuned vs when students with little prior knowledge are trained during distillation

• compare how knowledge is present in the two architecturally different students, try to relate this to other differences noticed when analysing the students' predictions

For now, I have one graph summarising the results of probing just the teacher models, see Fig. 6.1.

Figure 6.1. Probing the 3 finetuned teachers and the pre-trained one. The dotted line shows baseline accuracy levels achieved by majority-class guessing, the dashed line shows human performance.

Overall discussion and conclusions

Future work

Plan for the rest of the semester

Work finished:

- implementing everything related to distillation (incl. teacher finetuning and generating augmentation data with GPT-2)
- creating augmented transfer sets and finetuning the BERT teacher for each task
- exploring the model parameters shared across tasks (i.e. doesn't include embedding type and student size)
- implementing everything needed for probing
- $\bullet\,$ implementing everything needed for gathering predictions for mistake/confidence analysis

Work to be done:

- now-Feb 10: finishing size exploration for SST-2 and Sara (ending up with best students for each downstream task)
- Feb 11-23: analysing the predictions of all models (includes Inovative Learning Week Feb 17-21 when I won't get terribly much done)
- Feb 11-16: probing the best students
- Feb 24-Mar 1: putting together overall analysis and conclusions
- Mar 2-Apr 2: buffer time and writing the report (a lot of coursework in this period as well)

- Adhikari, A., Ram, A., Tang, R., and Lin, J. (2019). DocBERT: BERT for document classification.
- Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., and Goldberg, Y. (2017). Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. *ICLR*, abs/1608.04207.
- Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In NIPS.
- Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.
- Belinkov, Y. and Glass, J. R. (2018). Analysis methods in neural language processing: A survey. *Transactions of the Association for Computational Linguistics*, 7:49–72.
- Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In *KDD '06*.
- Cheong, R. and Daniel, R. (2019). transformers.zip: Compressing transformers with pruning and quantization.
- Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. In *Proceedings of the 25th International Conference on Machine Learning*, ICML 2008, page 160âÅS167, New York, NY, USA. Association for Computing Machinery.
- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12(null):2493âĂŞ2537.
- Conneau, A. and Kiela, D. (2018). Senteval: An evaluation toolkit for universal sentence representations. *arXiv*, abs/1803.05449.
- Conneau, A., Kruszewski, G., Lample, G., Barrault, L., and Baroni, M. (2018). What you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties. In *ACL*.
- Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Ad-

vances in Neural Information Processing Systems 28, pages 3079–3087. Curran Associates, Inc.

- Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-XL: Attentive language models beyond a fixed-length context. In *ACL*.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding.
- Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018). Explaining explanations: An overview of interpretability of machine learning.
- Graves, A. (2013). Generating sequences with recurrent neural networks.
- Hinton, G. E., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. *ArXiv*, abs/1503.02531.
- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural Comput.*, 9(8):1735âĂŞ1780.
- Huang, Z. and Wang, N. (2017). Like what you like: Knowledge distill via neuron selectivity transfer. *arXiv*, abs/1707.01219.
- Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., and Liu, Q. (2019). TinyBERT: Distilling BERT for natural language understanding.
- Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pages 1700–1709.
- Kim, Y. and Rush, A. M. (2016). Sequence-level knowledge distillation. arXiv, abs/1606.07947.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In *NIPS*.
- Lample, G. and Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
- Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2019). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. *Bioinformatics*.
- Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 1412–1421, Lisbon, Portugal. Association for Computational Linguistics.
- Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of t4 phage lysozyme. *Biochimica et Biophysica Acta (BBA)-Protein Structure*, 405(2):442–451.

Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one?

- Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. In Bengio, Y. and LeCun, Y., editors, 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.
- Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent neural network based language model. In *INTERSPEECH*.
- Mirzadeh, S., Farajtabar, M., Li, A., and Ghasemzadeh, H. (2019). Improved knowledge distillation via teacher assistant: Bridging the gap between student and teacher. *CoRR*, abs/1902.03393.
- Mukherjee, S. and Awadallah, A. H. (2019). Distilling transformers into simple neural networks with unlabeled transfer data.
- Papamakarios, G. (2015). Distilling model knowledge (MSc thesis). arXiv, abs/1510.02437v1.
- Pires, T., Schlinger, E., and Garrette, D. (2019). How multilingual is multilingual BERT?
- Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understanding by generative pre-training. *URL https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/languageunderstanding paper. pdf.*
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners. *OpenAI Blog*, 1(8):9.
- Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2015). Fitnets: Hints for thin deep nets. In *In Proceedings of ICLR*.
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal Representations by Error Propagation, page 318âĂŞ362. MIT Press, Cambridge, MA, USA.
- Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
- Sau, B. B. and Balasubramanian, V. N. (2016). Deep model compression: Distilling knowledge from noisy teachers. *arXiv*, abs/1610.09650.
- Shi, X., Padhi, I., and Knight, K. (2016). Does string-based neural MT learn source syntax? In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 1526–1534, Austin, Texas. Association for Computational Linguistics.
- Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps.

Strobelt, H., Gehrmann, S., Behrisch, M., Perer, A., Pfister, H., and Rush, A. M. (2018). Seq2seq-vis: A visual debugging tool for sequence-to-sequence models.

- Sucik, S. (2019). Pruning BERT to accelerate inference. https://blog.rasa.com/pruning-bert-to-accelerate-inference/.
- Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019). Videobert: A joint model for video and language representation learning.
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In *Advances in neural information processing systems*, pages 3104–3112.
- Tang, R. and Lin, J. (2019). Natural language generation for effective knowledge distillation.
- Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019). Distilling task-specific knowledge from BERT into simple neural networks. *arXiv*, abs/1903.12136.
- Tenney, I., Das, D., and Pavlick, E. (2019a). BERT rediscovers the classical NLP pipeline. In *ACL*.
- Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Van Durme, B., Bowman, S., Das, D., et al. (2019b). What do you learn from context? probing for sentence structure in contextualized word representations. In 7th International Conference on Learning Representations, ICLR 2019.
- Tsai, H., Riesa, J., Johnson, M., Arivazhagan, N., Li, X., and Archer, A. (2019). Small and practical BERT models for sequence labeling. In *EMNLP/IJCNLP*.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.
- Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. (2018). GLUE: A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP*, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.
- Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. (2019). Huggingface's transformers: State-of-the-art natural language processing. *ArXiv*, abs/1910.03771.
- Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., ÅAukasz Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation.

Yu, S., Kulkarni, N., Lee, H., and Kim, J. (2018). On-device neural language model based word prediction. In *Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations*, pages 128–131, Santa Fe, New Mexico. Association for Computational Linguistics.

Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding convolutional networks.