Congruence

Let $n \in \mathbb{N} \setminus \{1\}$ and $a \in \mathbb{Z}$. Then a modulo n, denoted by a mod n, is r such that

$$n = aq + r$$

where $0 \le r < n$ and $q \in \mathbb{Z}$.

Example 4.26. 49 mod 7 = 0 since 49 = 7(7) + 0.

Problem 4.27. Determine 63 mod 6.

The integers a and b are congruent modulo n, denoted by $a \equiv b \mod n$, if and only if $ak_1 + r = bk_2 + r = n$ where $r, k_1, k_2 \in \mathbb{Z}$ and r < n. In other words, $a \equiv b \mod n$ if and only if $n \mid a - b$. To see that the definitions are equivalent let us the Division Algorithm to write $a = nq_a + r_a$ and $b = nq_b + r_b$ where $0 \le r_a, r_b < n$. Since $n \mid (a - b)$ implies there exists $q \in \mathbb{Z}$ such that a - b = nq we have

$$n|(a-b) \iff a-b=nq$$

 $\iff a=nq+b$
 $\iff a=nq+nq_b+r_b \text{ where } 0 \le r_b < n$
 $\iff a=n(q+q_b)+r_b \text{ where } 0 \le r_b < n.$

Therefore $r_b = r_a$ as desired.

Example 4.28. Determine if 6 is congruent to 2 modulo 4. First note that 6 = 1(4) + 2 and 4 = 1(2) + 2. Hence $6 \equiv 2 \mod 4$.

Theorem 4.29. If $a \equiv b \mod n$ and $c \equiv d \mod n$ then $a + c \equiv b + d \mod n$.

Proof. Suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then $n \mid a - b$ and $n \mid c - d$. Hence there exists k and ℓ such that a - b = nk and $c - d = n\ell$. Thus $(a + c) - (b + d) = n(k + \ell)$ which implies $a + c \equiv b + d \mod n$.