FONCTIONS USUELLES Sommaire

# Table des matières

| I   | Fonctions logarithmes et exponentielles | 2  |
|-----|-----------------------------------------|----|
| II  | Fonctions hyperboliques                 | 6  |
| III | Trigonométrie hyperbolique              | 7  |
| IV  | Fonctions circulaires réciproques       | 9  |
| V   | Fonctions hyperboliques réciproques     | 12 |

# I Fonctions logarithmes et exponentielles

#### **Définition** (logarithme népérien)

On appelle fonction logarithme népérien, et on note  $x \mapsto \ln x$ , la primitive sur  $\mathbb{R}^{+*}$  et qui s'annule en x = 1 de l'application  $x \mapsto \frac{1}{x}$ . Autrement dit :  $\forall x > 0$ ,  $\ln x = \int_{-1}^{x} \frac{\mathrm{d}t}{t}$ .

#### Propriétés

- L'application ln est définie sur  $\mathbb{R}^{+*}$  par  $\forall x > 0$ ,  $\ln' x = \frac{1}{x}$  et  $\ln 1 = 0$ .
- Cette application est strictement croissante et indéfiniment dérivable sur  $\mathbb{R}^{+*}$ .
- Pour x>0 et y>0, on a :  $\ln(xy)=\ln x+\ln y$ ,  $\ln\frac{1}{x}=-\ln x$ ,  $\ln\frac{x}{y}=\ln x-\ln y$ . Plus généralement, pour  $\alpha\in\mathbb{R}$  et x>0, on a :  $\ln x^\alpha=\alpha\ln x$ .

$$- \text{ Limites usuelles}: \begin{cases} \lim_{0^+} \ln x = -\infty & \lim_{+\infty} \ln x = +\infty & \lim_{0^+} x \ln x = 0^- \\ \lim_{+\infty} \frac{\ln x}{x} = 0^+ & \lim_{0^+} \frac{\ln(1+x)}{x} = 1 & \lim_{1^-} \frac{\ln x}{x-1} = 1 \\ \forall \, \alpha > 0, \forall \, \beta > 0 & \lim_{0^+} x^\alpha \left| \ln x \right|^\beta = 0 & \lim_{+\infty} \frac{\ln^\beta x}{x^\alpha} = 0 \end{cases}$$

- L'application  $x \mapsto \ln x$  réalise une bijection de  $\mathbb{R}^{+*}$  sur  $\mathbb{R}$ . On note e l'unique réel strictement positif tel que  $\ln e = 1$ . On a :  $e \approx 2.718281828$ .
- L'application  $x \mapsto \ln x$  est concave (sa dérivée seconde est  $-\frac{1}{x^2} < 0$ .) Pour tout x > 0, on a l'inégalité  $\ln x \leqslant x - 1$  (avec égalité x = 1.)
- Courbe représentative :



#### Remarques

- Si x, y sont deux réels non nuls et de même signe, alors  $\ln(xy) = \ln|x| + \ln|y|$ . En particulier, pour tout  $x \neq 0$ , on a :  $\ln x^2 = 2 \ln|x|$ .
- L'application  $x \mapsto \ln |x|$  est définie sur  $\mathbb{R}^*$  et sa dérivée est  $x \mapsto \frac{1}{x}$ .
- Soit f une application dérivable sur un intervalle I, à valeurs dans  $\mathbb{R}^*$ .

  On appelle dérivée logarithmique de f la dérivée  $\frac{f'}{f}$  de l'application  $\ln |f|$ .

- Soient  $f_1, f_2, \ldots, f_n$  des applications dérivables et strictement positives sur l'intervalle I.

Soient 
$$\alpha_1, \alpha_2, \dots, \alpha_n$$
 des réels, et  $g = f_1^{\alpha_1} f_2^{\alpha_2} \dots f_n^{\alpha_n}$ .

Alors la dérivée logarithmique de 
$$g$$
 est  $\frac{g'}{g} = \alpha_1 \frac{f'_1}{f_1} + \alpha_2 \frac{f'_2}{f_2} + \dots + \alpha_n \frac{f'_n}{f_n}$ .

 La dérivée logarithmique peut donc être un moyen commode de calculer la dérivée d'une application qui s'exprime essentiellement à l'aide de quotients, de produits, de puissances.

Soit par exemple 
$$f: x \mapsto \sqrt{|x(x+2)|} \exp \frac{1}{x}$$
, qui est dérivable sur  $\mathbb{R} - \{-2, 0\}$ .

Pour tout 
$$x \text{ de } \mathbb{R} - \{-2, 0\}$$
, on  $a : \ln f(x) = \frac{1}{2} \ln |x(x+2)| + \frac{1}{x}$ .

En dérivant, on obtient : 
$$\frac{f'(x)}{f(x)} = \frac{x+1}{x(x+2)} - \frac{1}{x^2} = \frac{x^2-2}{x^2(x+2)}$$
. Ainsi  $f' = \frac{x^2-2}{x(x+2)}f$ .

En redérivant sur  $\mathbb{R} - \{-2, 0\}$ , on trouve l'expression de f'':

$$f''(x) = \frac{x^2 - 2}{x^2(x+2)}f'(x) + \frac{-x^4 + 6x^2 + 8x}{x^4(x+2)^2}f(x)$$
$$= \frac{(x^2 - 2)^2 + (-x^4 + 6x^2 + 8x)}{x^4(x+2)^2}f(x) = \frac{2(x^2 + 4x + 2)}{x^4(x+2)^2}f(x)$$

On pourra comparer ce calcul de f'' avec celui obtenu par les méthodes habituelles de dérivation (où la présence d'une valeur absolue n'arrange rien).

### **Définition** (fonction exponentielle)

On sait que l'application  $x \mapsto \ln x$  est une bijection de  $\mathbb{R}^{+*}$  sur  $\mathbb{R}$ .

 $\parallel$  La bijection réciproque est appelée fonction exponentielle et est notée  $x\mapsto \exp x$ .

# Propriétés

– L'application  $x \mapsto \exp x$  est une bijection de  $\mathbb{R}$  sur  $\mathbb{R}^{+*}$ , continue et strictement croissante.

On a l'équivalence : 
$$\begin{cases} y = \exp x \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \ln y \\ y > 0 \end{cases}$$

- L'application  $x \mapsto \exp x$  est dérivable sur  $\mathbb{R}$  et :  $\forall x \in \mathbb{R}$ ,  $\exp' x = \exp x$ .
  - Plus généralement,  $x \mapsto \exp x$  est indéfiniment dérivable sur  $\mathbb{R}$  et :  $\forall n \in \mathbb{N}$ ,  $\exp^{(n)} = \exp$ .
- Propriétés fonctionnelles :

Pour tous 
$$x, y$$
 on a :  $\exp(x + y) = \exp x \exp y$   $\exp(-x) = \frac{1}{\exp x}$ ,  $\exp(x - y) = \frac{\exp x}{\exp y}$ .

– L'application  $x\mapsto \exp x$  est convexe sur  $\mathbb R$  (sa dérivé seconde est  $\exp x>0$ .)

Pour tout x de  $\mathbb{R}$ , on a l'inégalité  $\exp(x) \geqslant 1 + x$  (égalité  $\Leftrightarrow x = 0$ ).

$$- \text{ Limites usuelles}: \begin{cases} \lim_{-\infty} \exp x = 0^+ & \lim_{+\infty} \exp x = +\infty & \lim_{+\infty} \frac{\exp x}{x} = +\infty \\ \lim_{-\infty} x \exp x = 0 & \lim_{0} \frac{\exp x - 1}{x} = 1 \\ \forall \alpha, \beta > 0 & \lim_{-\infty} |x|^\alpha \exp^\beta x = 0 & \lim_{+\infty} \frac{\exp^\beta x}{x^\alpha} = +\infty \end{cases}$$

- Notation  $x \mapsto e^x$ :

Pour tout n de  $\mathbb{N}$ , on a  $\exp(n) = \exp(1)^n = e^n$ .

Cette propriété se généralise aux exposants rationnels.

On décide d'étendre encore cette définition en posant :  $\forall x \in \mathbb{R}, e^x = \exp x$ .

On définit ainsi les puissances de e avec exposant réel quelconque. Toutes les propriétés de la fonction exponentielle peuvent alors se réécrire en utilisant cette notation.

- Courbe représentative :



**Définition** (fonctions exponentielles de base quelconque)

Pour tout réel a > 0, et pour tout réel x, on pose  $a^x = \exp(x \ln a)$ .

 $\parallel$  L'application  $x \mapsto a^x$  est appelée fonction exponentielle de base a.

#### **Définition** (fonctions puissances)

Soit  $\alpha$  un nombre réel quelconque. On appelle fonction puissance d'exposant  $\alpha$  l'application définie sur  $\mathbb{R}^{+*}$  par  $x \mapsto x^{\alpha} = \exp(\alpha \ln x)$ .

#### Propriétés des fonctions exponentielles

- Pour a = e, on retrouve l'application  $x \mapsto \exp x$ , déjà notée  $x \mapsto e^x$ . L'application  $x \mapsto \exp x = e^x$  est donc l'application exponentielle de base e.
- La notation  $a^x$  étend la définition de  $a^r$  pour tout rationnel r.
- Pour tout réel a > 0, l'application  $x \mapsto a^x$  est définie et continue sur  $\mathbb{R}$ . Elle est même indéfiniment dérivable :  $\forall x \in \mathbb{R}, (a^x)' = (\ln a)a^x$ .
- L'application  $x\mapsto a^x$  est  $\begin{cases} \text{strictement croissante si }a>1\\ \text{strictement décroissante si }0< a<1\\ \text{constante égale à 1 si }a=1 \end{cases}$
- Si  $a \neq 1$ , l'application  $x \mapsto a^x$  réalise une bijection de  $\mathbb{R}$  sur  $\mathbb{R}^{+*}$ . La bijection réciproque est  $x \mapsto \log_a x = \frac{\ln x}{\ln a}$  appelée fonction logarithme de base a.

Ainsi la fonction logarithme de base 10 est définie sur  $\mathbb{R}^{+*}$  par  $\log_{10} x = \log x = \frac{\ln x}{\ln 10}$  et elle est la bijection réciproque de l'application  $x \mapsto 10^x$ .

– Pour tout x de  $\mathbb{R}$  et tout a > 0, on a  $\left(\frac{1}{a}\right)^x = a^{-x}$ . Les courbes représentatives de  $x \mapsto a^x$  et  $x \mapsto \left(\frac{1}{a}\right)^x$  sont donc symétriques l'une de l'autre par rapport à l'axe des ordonnées.

- Courbes représentatives :



#### Propriétés des fonctions puissances

- Quant l'exposant  $\alpha$  est entier ou rationnel, cette définition de l'application  $x \mapsto x^{\alpha}$  est compatible avec celle qu'on connaissait déjà (sur un domaine parfois plus large que  $\mathbb{R}^{+*}$ ).
- La dérivée de  $x \mapsto x^{\alpha}$  est  $x \mapsto \alpha x^{\alpha-1}$ . Sur son domaine  $\mathbb{R}^{+*}$ , l'application  $x \mapsto x^{\alpha}$  est  $\begin{cases} \text{strictement croissante si } \alpha > 0 \\ \text{strictement décroissante si } \alpha < 0 \\ \text{constante en 1 si } \alpha = 0 \end{cases}$
- Si  $\alpha \neq 0$ , l'application  $x \mapsto x^{\alpha}$  est une bijection de  $\mathbb{R}^{+*}$  sur lui-même, dont la bijection réciproque est l'application  $x \mapsto x^{1/\alpha}$
- Si  $\alpha > 0$ ,  $x \mapsto x^{\alpha}$  est prolongeable par continuité à l'origine en lui donnant la valeur 0. En (0,0), la courbe présente alors une tangente horizontale si  $\alpha > 1$  et verticale si  $0 < \alpha < 1$ . Toutes les courbes représentatives des applications  $x \mapsto x^{\alpha}$  passent par le point (1,1).
- Le placement des différentes courbes est le suivant :

$$\forall x > 0, \ \forall (\alpha, \beta) \in \mathbb{R}^2, \text{ avec } \alpha < \beta : \begin{cases} \text{ Si } 0 < x < 1 \text{ alors } x^{\alpha} > x^{\beta} \\ \text{ Si } x > 1 \text{ alors } x^{\alpha} < x^{\beta} \end{cases}$$

- Courbes représentatives :



#### Propriétés fonctionnelles et limites usuelles

- Pour tous x, y de  $\mathbb{R}$ , pour tout a, b de  $\mathbb{R}^{+*}$ , on a :  $\begin{cases} a^{x+y} = a^x a^y & a^{-x} = \frac{1}{a^x} & a^{x-y} = \frac{a^x}{a^y} \\ (a^x)^y = a^{xy} & a^x b^x = (ab)^x & \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x \end{cases}$
- Limites usuelles :

$$\begin{cases} \lim_{x \to -\infty} a^x = \begin{cases} 0 \text{ si } a > 1 \\ +\infty \text{ si } 0 < a < 1 \end{cases} & \lim_{x \to +\infty} a^x = \begin{cases} +\infty \text{ si } a > 1 \\ 0 \text{ si } 0 < a < 1 \end{cases} \\ \forall \alpha > 0, \forall a > 1 & \lim_{x \to -\infty} |x|^{\alpha} a^x = 0 & \lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty \\ \forall \alpha > 0, \forall a \in ]0, 1[ & \lim_{x \to -\infty} \frac{a^x}{|x|^{\alpha}} = +\infty & \lim_{x \to +\infty} x^{\alpha} a^x = 0 \end{cases}$$

# II Fonctions hyperboliques

**Définition** (applications  $x \mapsto \operatorname{sh} x \text{ et } x \mapsto \operatorname{ch} x$ )

Pour tout x de  $\mathbb{R}$ , on pose  $\operatorname{ch} x = \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2}$  (fonction "cosinus hyperbolique") Pour tout x de  $\mathbb{R}$ , on pose  $\operatorname{sh} x = \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2}$  (fonction "sinus hyperbolique")

#### Propriétés

- Les applications  $x \mapsto \operatorname{ch} x$  et  $x \mapsto \operatorname{sh} x$  sont indéfiniment dérivables sur  $\mathbb{R}$ . Pour tout x de  $\mathbb{R}$ , on a  $\operatorname{sh}' x = \operatorname{ch} x$  et  $\operatorname{ch}' x = \operatorname{sh} x$ . Les deux applications  $x \mapsto y = \operatorname{ch} x$  et  $x \mapsto y = \operatorname{sh} x$  sont donc solutions de y'' = y. L'application  $x \mapsto \operatorname{ch} x$  est paire, et l'application  $x \mapsto \operatorname{sh} x$  est impaire.
- Courbes représentatives :



$$- \forall x \in \mathbb{R}, \begin{cases} \operatorname{ch} x + \operatorname{sh} x = e^{x} \\ \operatorname{ch} x - \operatorname{sh} x = e^{-x} \end{cases}, \begin{cases} \operatorname{ch} x \geqslant 1 \\ \operatorname{ch}^{2} x - \operatorname{sh}^{2} x = 1 \end{cases}$$

$$- \forall x \ge 0, \ \forall y \in \mathbb{R}, \ x^2 - y^2 = 1 \Leftrightarrow \begin{cases} \exists t \in \mathbb{R} \\ \operatorname{ch} t = x, \ \operatorname{sh} t = y \end{cases}$$

L'application  $t\mapsto (\operatorname{ch} t,\operatorname{sh} t)$  est un paramétrage de l'arc d'hyperbole  $\begin{cases} x^2-y^2=1\\ x\geqslant 0 \end{cases}$ 

- Au voisinage de l'origine, on a : sh $x \sim x$  (la droite y = x est tangente d'inflexion). Toujours au voisinage de 0, on a : ch $x 1 \sim \frac{x^2}{2}$ .
- Au voisinage de +∞, on a : ch  $x \sim \frac{e^x}{2}$  et sh  $x \sim \frac{e^x}{2}$ . Les deux courbes y = ch x et y = sh x sont asymptotes à  $y = \frac{e^x}{2}$  (avec sh  $x < \frac{e^x}{2} < \text{ch } x$ .)
- Au voisinage de  $-\infty$ , on a :  $\operatorname{ch} x \sim \frac{\mathrm{e}^{-x}}{2}$  et  $\operatorname{sh} x \sim -\frac{\mathrm{e}^{-x}}{2}$ .

**Définition** (application  $x \mapsto \operatorname{th} x$ )

Pour tout  $x ext{ de } \mathbb{R}$ , on pose th  $x = \frac{\operatorname{sh} x}{\operatorname{ch} x}$  (fonction "tangente hyperbolique")

#### Propriétés

- L'application  $x \mapsto \operatorname{th} x$  est impaire.  $\lim_{x \to +\infty} \operatorname{th} x = 1$ . Au voisinage de 0, on a :  $\operatorname{th} x \sim x$  (la droite y = x est tangente d'inflexion.)
- L'application  $x \mapsto \operatorname{th} x$  est indéfiniment dérivable :  $\forall x \in \mathbb{R}, \ \operatorname{th}' x = 1 \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$ .
- Pour tout  $x ext{ de } \mathbb{R}$ , on  $a : ext{th } x = \frac{e^x e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} 1}{e^{2x} + 1} = \frac{1 e^{-2x}}{1 + e^{-2x}}$ . Pour tout  $x ext{ de } \mathbb{R}$ , on  $a | ext{th } x | \leq 1$ .
- Courbe représentative :



# III Trigonométrie hyperbolique

- ch, sh et th d'une somme ou d'une différence :

$$\begin{cases} \operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y \\ \operatorname{ch}(x-y) = \operatorname{ch} x \operatorname{ch} y - \operatorname{sh} x \operatorname{sh} y \\ \operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y \\ \operatorname{sh}(x-y) = \operatorname{sh} x \operatorname{ch} y - \operatorname{ch} x \operatorname{sh} y \end{cases} \begin{cases} \operatorname{ch} 2x = 2 \operatorname{ch}^2 x - 1 = 1 + 2 \operatorname{sh}^2 x \\ \operatorname{sh} 2x = 2 \operatorname{sh} x \operatorname{ch} x \end{cases}$$

$$\operatorname{th}(x+y) = \frac{\operatorname{th} x + \operatorname{th} y}{1 + \operatorname{th} x \operatorname{th} y}, \quad \operatorname{th}(x-y) = \frac{\operatorname{th} x - \operatorname{th} y}{1 - \operatorname{th} x \operatorname{th} y}, \quad \operatorname{th} 2x = \frac{2\operatorname{th} x}{1 + \operatorname{th}^2 x}$$

- Transformations de produits en sommes et de sommes en produits.

$$\begin{cases} \operatorname{ch} x \operatorname{ch} y = \frac{1}{2} (\operatorname{ch} (x+y) + \operatorname{ch} (x-y)) \\ \operatorname{sh} x \operatorname{sh} y = \frac{1}{2} (\operatorname{ch} (x+y) - \operatorname{ch} (x-y)) \\ \operatorname{sh} x \operatorname{ch} y = \frac{1}{2} (\operatorname{sh} (x+y) + \operatorname{sh} (x-y)) \\ \operatorname{ch}^2 x = \frac{1}{2} (\operatorname{1} + \operatorname{ch} 2x) \\ \operatorname{sh}^2 x = \frac{1}{2} (\operatorname{ch} 2x - 1) \end{cases}$$

$$\begin{cases} \operatorname{ch} p + \operatorname{ch} q = 2 \operatorname{ch} \frac{p+q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{ch} p - \operatorname{ch} q = 2 \operatorname{sh} \frac{p+q}{2} \operatorname{sh} \frac{p-q}{2} \\ \operatorname{sh} p + \operatorname{sh} q = 2 \operatorname{sh} \frac{p+q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p+q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{ch} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{sh} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{sh} \frac{p-q}{2} \\ \operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \operatorname{sh} \frac{p-q}{2}$$

- Changement de variable  $t = \operatorname{th} \frac{x}{2}$ :  $\operatorname{ch} x = \frac{1+t^2}{1-t^2}$ ,  $\operatorname{sh} x = \frac{2t}{1-t^2}$ ,  $\operatorname{th} x = \frac{2t}{1+t^2}$
- Changement de variable  $u = e^x$ :  $\operatorname{ch} x = \frac{u^2 + 1}{2u}$ ,  $\operatorname{sh} x = \frac{u^2 1}{2u}$ ,  $\operatorname{th} x = \frac{u^2 1}{u^2 + 1}$
- Linéarisation.

On écrit ch<sup>n</sup>
$$x = \left(\frac{e^x + e^{-x}}{2}\right)^n$$
 et sh<sup>n</sup> $x = \left(\frac{e^x - e^{-x}}{2}\right)^n$ .

On développe (formule du binôme), on groupe les termes équidistants des extrémités, et on réutilise les définitions pour retrouver des ch(px) et/ou des sh(px). Par exemple :

$$sh^{4}x = \left(\frac{e^{x} - e^{-x}}{2}\right)^{4} = \frac{1}{16} \left(e^{4x} - 4e^{2x} + 6 - 4e^{-2x} + e^{-4x}\right) = \frac{1}{8} \left(\operatorname{ch} 4x - 4\operatorname{ch} 2x + 3\right)$$

$$sh^{5}x = \left(\frac{e^{x} - e^{-x}}{2}\right)^{5} = \frac{1}{16} \frac{1}{2} \left(e^{5x} - 5e^{3x} + 10e^{x} - 10e^{-x} + 5e^{-3x} - e^{-5x}\right)$$

$$= \frac{1}{16} \left(\operatorname{sh} 5x - 5\operatorname{sh} 3x + 10\operatorname{sh} x\right)$$

- Opération inverse de la linéarisation.

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ (\operatorname{ch} x + \operatorname{sh} x)^n = (\operatorname{e}^x)^n = \operatorname{e}^{nx} = \operatorname{ch} nx + \operatorname{sh} nx$$

On peut ainsi exprimer  $\operatorname{ch}(nx)$ ,  $\operatorname{sh}(nx)$  en fonction de puissances de  $\operatorname{ch} x$  et/ou de  $\operatorname{sh} x$ .

Pour cela on développe  $(\operatorname{ch} x + \operatorname{sh} x)^n$  par la formule du binôme.

La partie paire (resp. impaire) du résultat est alors égale à  $\operatorname{ch}(nx)$  (resp.  $\operatorname{sh}(nx)$ ).

$$(\operatorname{ch} x + \operatorname{sh} x)^4 = \operatorname{ch}^4 x + 4\operatorname{ch}^3 x \operatorname{sh} x + 6\operatorname{ch}^2 x \operatorname{sh}^2 x + 4\operatorname{ch} x \operatorname{sh}^3 x + \operatorname{sh}^4 x$$

$$\Rightarrow \begin{cases} \operatorname{ch} 4x = \operatorname{ch}^{4} x + 6 \operatorname{ch}^{2} x \operatorname{sh}^{2} x + \operatorname{sh}^{4} x \\ \operatorname{sh} 4x = 4 \operatorname{ch}^{3} x \operatorname{sh} x + 4 \operatorname{ch} x \operatorname{sh}^{3} x \end{cases}$$

$$\Rightarrow \begin{cases} \cosh 4x = \cosh^4 x + 6\cosh^2 x (\cosh^2 x - 1) + (\cosh^2 x - 1)^2 \\ \sinh 4x = 4\cosh x ((1 + \sinh^2 x) \sinh x + \sinh^3 x) \end{cases} \Rightarrow \begin{cases} \cosh 4x = 8\cosh^4 x - 8\cosh^2 x + 1 \\ \sinh 4x = 4\cosh x (2\sinh^3 x + \sinh x) \end{cases}$$

- Liens entre la trigonométrie hyperbolique et la trigonométrie circulaire.

Les formules de la trigonométrie hyperbolique peuvent être retrouvées à partir de celles de la trigonométrie circulaire, avec :  $\cos(ix) = \cosh x$ ,  $\sin(ix) = i \cosh x$ ,  $\tan(ix) = i \cosh x$ .

Par exemple : 
$$\begin{cases} \sin^3 x &= \frac{1}{4}(-\sin 3x + 3\sin x) \Rightarrow \sin^3(ix) = \frac{1}{4}(-\sin(3ix) + 3\sin(ix)) \\ \Rightarrow -i\sinh^3 x &= \frac{1}{4}(-i\sinh(3x) + 3i\sinh x) \Rightarrow \sinh^3 x &= \frac{1}{4}(\sinh(3x) - 3\sinh x) \end{cases}$$

# IV Fonctions circulaires réciproques

### **Définition** (fonction arcsin)

La restriction à  $I = [-\frac{\pi}{2}, \frac{\pi}{2}]$  de  $x \mapsto \sin x$  est une bijection de I sur J = [-1, 1]. La bijection réciproque est notée  $x \mapsto \arcsin x$  (fonction "arc sinus").

#### Propriétés

- L'application  $x \mapsto \arcsin x$  est une bijection de [-1,1] sur  $[-\frac{\pi}{2},\frac{\pi}{2}]$ . Elle est continue, strictement croissante, et impaire.
- Pour tout x de [-1,1],  $\arcsin x$  est l'angle compris entre  $-\frac{\pi}{2}$  et  $\frac{\pi}{2}$  dont le sinus est égal à x:

$$\begin{cases} y = \arcsin x \\ x \in [-1, 1] \end{cases} \Leftrightarrow \begin{cases} x = \sin y \\ y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases}$$

– Quelques valeurs particulières

| x           | 0 | $\frac{1}{2}$   | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |
|-------------|---|-----------------|----------------------|----------------------|-----------------|
| $\arcsin x$ | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |

- Pour tout x de [-1, 1],  $\sin(\arcsin x) = x$ .
  - Pour tout x de  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ,  $\arcsin(\sin x) = x$  (attention au domaine!)
  - Pour tout x de [-1,1],  $\cos(\arcsin x) = \sqrt{1-x^2}$ .

Pour tout 
$$x$$
 de  $]-1,1[$ ,  $\tan(\arcsin x)=\frac{x}{\sqrt{1-x^2}}.$ 

- Dérivée : pour tout x de ] 1, 1[,  $\arcsin' x = \frac{1}{\sqrt{1-x^2}}$ .
- Courbe représentative :

#### $v = \arcsin x$



## **Définition** (fonction arccos)

La restriction à  $I = [0, \pi]$  de  $x \mapsto \cos x$  est une bijection de I sur J = [-1, 1]. La bijection réciproque est notée  $x \mapsto \arccos x$  (fonction "arc cosinus").

#### Propriétés

- L'application  $x \mapsto \arccos x$  est une bijection de [-1,1] sur  $[0,\pi]$ . Elle est continue et strictement décroissante.
- Pour tout x de [-1,1], arccos x est l'angle compris entre 0 et  $\pi$  dont le cosinus est égal à x:

$$\left\{ \begin{aligned} y &= \arccos x \\ x &\in [-1,1] \end{aligned} \Leftrightarrow \left\{ \begin{aligned} x &= \cos y \\ y &\in [0,\pi] \end{aligned} \right.$$

– Quelques valeurs particulières

| x           | 0               | $\frac{1}{2}$   | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 |
|-------------|-----------------|-----------------|----------------------|----------------------|---|
| $\arccos x$ | $\frac{\pi}{2}$ | $\frac{\pi}{3}$ | $\frac{\pi}{4}$      | $\frac{\pi}{6}$      | 0 |

- Pour tout x de [-1, 1],  $\cos(\arccos x) = x$ .
  - Pour tout x de  $[0, \pi]$ ,  $\arccos(\cos x) = x$  (attention au domaine!)

Pour tout x de [-1, 1],  $\sin(\arccos x) = \sqrt{1 - x^2}$ .

Pour tout 
$$x$$
 de  $[-1, 0 [\cup] 0, 1]$ ,  $\tan(\arccos x) = \frac{\sqrt{1 - x^2}}{x}$ .

- Pour tout x de [-1, 1],  $\arccos(-x) + \arccos x = \pi$ .

Pour tout x de [-1,1],  $\arcsin x + \arccos x = \frac{\pi}{2}$ .

– Dérivée : pour tout 
$$x$$
 de ] – 1, 1[,  $\arccos' x = -\frac{1}{\sqrt{1-x^2}}$ .

- Courbe représentative :

#### $y = \arccos x$



#### **Définition** (fonction arctan)

La restriction à  $I = ]-\frac{\pi}{2}, \frac{\pi}{2}[$  de  $x \mapsto \tan x$  est une bijection de I sur  $\mathbb{R}$ . La bijection réciproque est notée  $x \mapsto \arctan x$  (fonction "arc tangente").

#### Propriétés

- L'application  $x \mapsto \arctan x$  est une bijection de  $\mathbb{R}$  sur  $]-\frac{\pi}{2}, \frac{\pi}{2}[$ . Elle est continue, strictement croissante, et impaire.
- Pour tout x réel, arctan x est l'angle de ]  $-\frac{\pi}{2}, \frac{\pi}{2}$ [ dont la tangente est égale à x:

$$\begin{cases} y = \arctan x \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \tan y \\ y \in ] -\frac{\pi}{2}, \frac{\pi}{2}[$$

– Quelques valeurs particulières

| x           | 0 | $\frac{\sqrt{3}}{3}$ | 1               | $\sqrt{3}$      |
|-------------|---|----------------------|-----------------|-----------------|
| $\arctan x$ | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ |

- Pour tout x de  $\mathbb{R}$ ,  $\tan(\arctan x) = x$ .

Pour tout x de  $]-\frac{\pi}{2}, \frac{\pi}{2}[$ ,  $\arctan(\tan x) = x$  (attention au domaine!).

Pour tout x de  $\mathbb{R}$ ,  $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$ .

Pour tout x de  $\mathbb{R}$ ,  $\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}$ .

- Pour tout x de  $\mathbb{R}^*$ ,  $\arctan x + \arctan \frac{1}{x} = \varepsilon \frac{\pi}{2}$ , avec  $\varepsilon = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$
- Dérivée : pour tout x de  $\mathbb{R}$ ,  $\arctan' x = \frac{1}{1+x^2}$ .
- Courbe représentative :



# V Fonctions hyperboliques réciproques

### **Définition** (fonction argsh)

L'application  $x \mapsto \operatorname{sh} x$  est une bijection de  $\mathbb{R}$  sur  $\mathbb{R}$ .

La bijection réciproque est notée  $x \mapsto \operatorname{argsh} x$  (fonction "argument sh").

#### Propriétés

- L'application  $x \mapsto \operatorname{argsh} x$  est une bijection de  $\mathbb{R}$  sur  $\mathbb{R}$ . Elle est continue, strictement croissante, et impaire.
- Pour tous x, y réels :  $y = \operatorname{sh} x \Leftrightarrow x = \operatorname{argsh} y$ .
- Pour tout  $x \operatorname{de} \mathbb{R}$ ,  $\operatorname{sh}(\operatorname{argsh} x) = x$ ,  $\operatorname{argsh}(\operatorname{sh} x) = x$ ,  $\operatorname{ch}(\operatorname{argsh} x) = \sqrt{1 + x^2}$ .
- Dérivée : pour tout x de  $\mathbb{R}$ ,  $\operatorname{argsh}' x = \frac{1}{\sqrt{1+x^2}}$ .
- Expression en fonction du logarithme : pour tout x de  $\mathbb{R}$ ,  $\operatorname{argsh} x = \ln(x + \sqrt{1 + x^2})$ .

En effet 
$$y = \operatorname{argsh} x \Rightarrow \begin{cases} \operatorname{sh} y = x \\ \operatorname{ch} y = \sqrt{1 + x^2} \Rightarrow \operatorname{e}^y = x + \sqrt{1 + x^2} \Rightarrow y = \ln(x + \sqrt{1 + x^2}). \end{cases}$$

### **Définition** (fonction argch)

L'application  $x \mapsto \operatorname{ch} x$  est une bijection de  $\mathbb{R}^+$  sur  $[1, +\infty[$ .

 $\|$  La bijection réciproque est notée  $x \mapsto \operatorname{argch} x$  (fonction "argument sh").

### Propriétés

- L'application  $x \mapsto \operatorname{argch} x$  est une bijection de  $[1, +\infty[$  sur  $\mathbb{R}^+$ . Elle est continue et strictement croissante.
- On a l'équivalence  $(y = \operatorname{ch} x, x \ge 0) \Leftrightarrow (x = \operatorname{argch} y, y \ge 1)$ .
- Pour tout  $x \ge 0$ ,  $\operatorname{argch}(\operatorname{ch} x) = x$ . Pour tout  $x \operatorname{de} \mathbb{R}$ ,  $\operatorname{argch}(\operatorname{ch} x) = |x|$ . Pour tout  $x \ge 1$ ,  $\operatorname{ch}(\operatorname{argch} x) = x$  et  $\operatorname{sh}(\operatorname{argch} x) = \sqrt{x^2 1}$ .
- Dérivée : pour tout x > 1, argch' $x = \frac{1}{\sqrt{x^2 1}}$ .
- Expression en fonction du logarithme : pour tout  $x \ge 1$ , argch  $x = \ln(x + \sqrt{x^2 1})$ .

En effet 
$$y = \operatorname{argch} x \Rightarrow \begin{cases} \operatorname{ch} y = x \\ \operatorname{sh} y = \sqrt{x^2 - 1} \end{cases} \Rightarrow e^y = x + \sqrt{x^2 - 1} \Rightarrow y = \ln(x + \sqrt{x^2 - 1}).$$

#### **Définition** (fonction argth)

L'application  $x \mapsto \operatorname{th} x$  est une bijection de  $\mathbb{R}$  sur ]-1,1[.

La bijection réciproque est notée  $x \mapsto \operatorname{argth} x$  (fonction "argument th").

#### Propriétés

- L'application  $x \mapsto \operatorname{argth} x$  est une bijection de ]-1,1[ sur  $\mathbb{R}$ . Elle est continue, strictement croissante, et impaire.
- On a l'équivalence  $(y = \operatorname{th} x, x \in \mathbb{R}) \Leftrightarrow (x = \operatorname{argth} y, 1 < y < 1).$

- Pour tout x de  $\mathbb{R}$ , argth  $(\operatorname{th} x) = x$ . Pour tout x de ]-1,1[, th  $(\operatorname{argth} x) = x$ . Pour tout x de ]-1,1[, ch  $(\operatorname{argth} x) = \frac{1}{\sqrt{1-x^2}}$  et sh  $(\operatorname{argth} x) = \frac{x}{\sqrt{1-x^2}}$ .
- Dérivée : pour tout x de ]-1,1[,  $\operatorname{argth}'x = \frac{1}{1-x^2}$ .
- Expression en fonction du logarithme : pour tout x de ]-1,1[,  $\operatorname{argth} x = \frac{1}{2} \ln \frac{1+x}{1-x}$ . En effet  $y = \operatorname{argth} x \Rightarrow x = \operatorname{th} y = \frac{e^{2y}-1}{e^{2y}+1} \Rightarrow e^{2y} = \frac{1+x}{1-x} \Rightarrow y = \frac{1}{2} \ln \frac{1+x}{1-x}$ .
- Courbes représentatives :





