Quadratic programming problems - a review on algorithms and applications (Active-set and interior point methods)

Dr. Abebe Geletu

Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

Topics

- Introduction
- Quadratic programming problems with equality constraints
- Quadratic programming problems with inequality constraints
- Primal Interior Point methods for Quadratic programming problems
- Primal-Dual-Interior Point methods Quadratic programming problems
- Linear model-predictive control (LMPC) and current issues
- References and Resources

Introduction - Quadratic optimization (is not programming)

• A general quadratic optimization (programming) problem

(QP)
$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
s.t.
$$Ax = a;$$

$$Bx \le b;$$

$$x \ge 0,$$

where $Q \in \mathbb{R}^{n \times n}$ symmetric (not necessarily positive definite), $A \in \mathbb{R}^{m_1 \times n}$, $B \in \mathbb{R}^{m_2 \times n}$ and $m_1 < n$.

Sometimes

instead of Ax = a we write $\mathbf{a}_i^{\top} x = a_i, i = 1, \dots, m_1$ instead of Bx = b we write $\mathbf{b}_i^{\top} x \leq b_i, j = 1, \dots, m_2$;

where \mathbf{a}_i^{\top} is the i-th row of A and \mathbf{b}_i^{\top} is the j-th row of B.

Introduction...

Some applications of QP's:

- Least Square approximations and estimation
- Portfolio optimization
- Signal and image processing, computer vision, etc.
- Optimal contro, linear model predictive control, etc
- PDE-constrained optimization problems in CFD, CT, topology/shape optimization, etc
- Sequential quadratic programming (SQP) methods for NLP
- etc.

What has been achieved to date for the solution of nonlinear optimization problems has been really attained through methods of quadratic optimization and techniques of numerical linear algebra. As a result nowadays it is not surprising to see a profound interest in QP's and their real-time computing. QP's are now the driving force behind modern control technology.

QP introduction...**SQP** in brief

Given a constrained optimization problem

(NLP)
$$\min_{\substack{x \ s.t.}} f(x)$$
 $s.t.$
 $h_i(x) = 0, i = 1, 2, ..., p;$
 $g_j(x) \le 0, j = 1, 2, ..., m;$

with Lagrange function: $\mathcal{L}(x, \lambda, \mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$.

A rough scheme for the SQP algorithm:

Step 0: start from x^0

Step k: $x^{k+1} = x^k + \alpha_k d_k$, where

▶ the search-direction d^k is computed using a quadratic programming problem:

$$(QP)_{k} \qquad \min_{d} \left\{ \frac{1}{2} d^{\top} H_{k} d + \nabla f(x_{k})^{\top} d \right\}$$

$$s.t. \qquad \nabla h_{i}(x_{k})^{\top} d + h_{i}(x_{k}) = 0, i = 1, 2, \dots, p;$$

$$\nabla g_{j}(x)^{\top} d + g_{j}(x_{k}) \leq 0, j \in \mathcal{A}(x^{k}) \subset \{1, 2, \dots, m\};$$

where H_k is the Hessian of the Lagrangian $\nabla^2_{\mathbf{x}} \mathcal{L}(\mathbf{x}^k, \lambda^k, \mu^k)$ or a Quasi-Newton approximation of it.

▶ the step-length α_k is determine by a 1D minimization of a merit function $\mathcal{M}\left(x^k + \alpha d^k\right)$ - a function that guarantees a sufficient decrease in the objective f(x) and satisfaction of constraints along d^k with an appropriate step length α_{ν} .

QP introduction - trajectory tracking for

autonomous vehicles $x_{\max}(t) = x_{\min}(t)$ $x_{\min}(t) = x_{\min}(t)$

Figure: Trajectory tracking in a safe corridor

$$\begin{aligned} & (OptCtrI) & & & \min_{u} \frac{1}{2} \int_{t_{0}}^{t_{f}} \left\{ \left[x(t) - s(t) \right]^{\top} M \left[x(t) - u(t) \right] + u(t)^{\top} R u(t) \right\} \\ & & s.t. \\ & & & \dot{x}(t) = A x(t) + B u(t), x(t_{0}) = x_{0}, x(t_{f}) = x_{f}; \\ & & & x_{min}(t) \leq x(t) \leq x_{max}(t); \\ & & u_{min} \leq u(t) \leq u_{max}; \\ & & t_{0} \leq t \leq t_{f}. \end{aligned}$$

Introduction to QP - Special classes

- Tracking problems for fast systems are better treated using model-predictive control (MPC).
- Practical engineering applications frequently lead to large-scale QP's.
- Seldom are these problems solved analytically.
- Numerical methods strongly depended on
 - ightharpoonup the properties of the matrix Q Q positive definite or not
 - ▶ if there are only equality constraints Ax = b
 - ▶ if the are only bound constraints $x_{min} \le x \le x_{max}$
 - ▶ if matrices exhibit sparsity properties and/or block structures
 - ▶ etc.

Some classification of QP's

$$(QP) \quad \min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}.$$

(QP)
$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
$$a \le x \le b.$$

$$(QP)_E$$
 $\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$ $Ax = a.$

Inequality constrained QP

$$(QP)_I$$
 $\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$ $Ax = a$

Bx > b.

Introduction to QP - Special classes

(I) Unconstrained QP

$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$

► **Known method:** Conjugate gradient methods (CG).

Basically CG is used when the matrix Q is symmetric and positive definite.

- ▶ Variants of CG:
 - Hestens-Steifel 1952:
 - Fletcher-Reeves 1964:
 - Polak-Ribiere 1969

As in all iterative methods, CG methods may require preconditioning techniques to guarantee convergence

to the correct solution \Rightarrow leading to preconditioned CG (PCGG). This is necessary for large-scale QP's. Read: - CG without an agonizing pain by J. R. Shewchuk.

- Matrix Computations by Golub & Van Loan.

Introduction to QP - Special classes

(II) Box-constrained QP's

$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
s.t.

$$x_{min} \le x \le x_{max}$$
.

- ► This form of QP commonly arises, eg., :
- in image recovery and deblurring, for instance, with lower and upper bounds on the gray-levels of the image;
- in linear quadratic control or linear model predictive control, with bound constraints on the control, etc. In fact, if

$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + u^{\top} R u \right\}$$
s.t.
$$Ax + Ru = h$$

$$u_{min} \leq u \leq u_{max}$$
.

Theoretically, we can solve for x in terms of u (quasi-sequential) so that $x = A^{-1}(b - Bu)$ so that we have

$$\min_{X} \left\{ \frac{1}{2} \left[A^{-1} \left(b - B u \right) \right]^{\top} Q \left[A^{-1} \left(b - B u \right) \right] + u^{\top} R u \right\}$$

s.t. $u_{min} \le u \le u_{max}$.

Box constrained QP's

- ► Known methods: Iterative projection algorithms.
- ▶ Variants:
- The Brazilai-Borwein method (Brazilai & Borowein 1988)
- The Nesetrov gradient method (Nesterov 1983)
- Trust region methods (Celis, Dennis and Tapia 1985)

Important extensions and application-specific modifications of the above: gradient projection methods. Friedlander, A.; Martinez, J. M.; Raydan, M. A new method for large-scale box constrained convex quadratic minimization problems. Optim. Methods and Software, 7(1995), 149 - 154.

- Raydan, M. On the Brazilai and Borwein choice of steplength for gradient methods. IMA J. Numer. Anal. 13(1993), 321 - 326.
- Celis, M.; Dennis, J. E.; Tapia, R. A. A trust region strategy for nonlinear equality constrained optimization, in Numerical Optimization 1984, in P. Boggs, R. Byrd and R. Schnabel. eds.. SIAM. Philadelphia, 1985, pp. 71 - 82.
- Conn, A. R.; Gould, N. I. M.; Toint, T. Ph. L. Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25(1988), 764 - 767.
- Trust Region Methods by A. R. Conn, N. I. M. Gould, and Ph. L. Toint
- Some recent engineering applications:

- Beck, A.; Tiboulle, M. Fast Gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. on Image Processing, 18(2009), 2419 - 2434.
- Hauska, B.; Ferreau, H. J.; Diehl, M. An auto-generated real-time iteration algorithm for nonlinear mpc in the microseconds range. Automatica, 47(2011), 2279 - 2285.
- Hu, Y.-Q.; Dai Y.-H. Inexact Barzilai-Borwein method for saddle point problems. Numerical Linear Algebra with Applications, 14(2007), Issue 4, pp. 299-317.
- Zometa, P.: Kügel, M.: Faulwasser, T.: Findeisen, R. Implementation aspects of model predictive control for embedded systems. Procedings of the 2012 American Control Conference, Montreal, Canada, pp. 1205-1210.

(III) Equality constrained QP's

(QP)
$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
s.t.
$$Ax = a.$$

(1)

There are two cases:

- (a) Q is symmetric and positive semi-definite \Rightarrow QP is convex.
- (b) Q is symmetric but not positive semi-definite \Rightarrow QP is non-convex.

<u>Note:</u> The issue that wether A is of full-rank or rank-deficient (i.e. $rank(A) = m_1$ or $rank(A) < m_1$) is not serious.

- Lagrange function: $\mathcal{L}(x,\lambda) = \left\{\frac{1}{2}x^{\top}Qx + q^{\top}x\right\} + \lambda^{\top}(Ax b)$
- KKT conditions (KKT-equation):

$$\begin{array}{ccc} Qx + A^{\top}\lambda & = -q, \\ Ax & = b. \end{array} \Rightarrow \underbrace{\begin{bmatrix} Q & A^{\top} \\ A & \mathbb{O} \end{bmatrix}}_{=:K} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- ⇒ the optimization problem is reduced to the
- solution of a (possibly large-scale) system of linear equations.
- K is a symmetric matrix; but it may or may not be positive definite.

Some suggestions:

(A) A numerical analyst approach:

- \blacktriangleright If K is positive definite, then use a pre-conditioned conjugate gradient (PCG) method.
- ▶ If K is not positive definite, then transform Ky = p to $(K^\top K) \ y = K^\top p$ and then apply PCG. Notes that the matrix $(K^\top K)$ is positive definite
- Almost all state-of-the-art linear algebra packages include a PCG solver.

Find more, eg., from: Matrix computations, 2nd ed., by Golub and Van Loan.

(B) An optimization specialist approach:

• Use (gradient) projection along with the conjugate gradient method.

Recommended reading:

- Gould, N.I.M. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem. Math. Programming, 32(1985), 90 99.
- Gould, N.I.M., Hiribar, M.E., Nocedal, J. On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput., 23(2001), 1376 1395.

NB:

- If Q is positive definite, the solution of the KKT-equation is a solution for the QP (convex optimization problem);
- otherwise, the solution of the PCG solver needs to be verified.

Special case: when Q is positive definite and A has full rank $(rank(A) = m_1)$, the matrix $\begin{bmatrix} Q & A^\top \\ A & \mathbb{O} \end{bmatrix}$ is invertible.

▶ small-scale quadratic optimization problems can be solved directly to obtain the solution

$$\Rightarrow \qquad x^* = -Q^{-1}q + Q^{-1}A^{\top} \left(AQ^{-1}A^{\top}\right)^{-1} \left(b + AQ^{-1}q\right)$$
$$\lambda^* = -\left(AQ^{-1}A^{\top}\right)^{-1} \left(b + AQ^{-1}q\right).$$

- ► However, in general, avoid inversion of a matrix in computations
- ▶ Small- to medium-scale KKT-equations can be efficiently solved by using a direct-linear algebra algorithm, eg., using Choleski or QR factorizations.

Further recommended reading:

• Practical optimization by Gill, Murray and Wright.

QP with inequality constraints

$$(QP)_{I} \qquad \min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
s.t.
$$Ax = a.$$

$$Bx < b.$$

There are two classes of algorithms:

- the active-set method (ASM)
- the interior point method (IPM).

Quadratic optimization ... Active set Method Active Set Method

Strategy:

- Start from an arbitrary point x^0
- Find the next iterate by setting $x^{k+1} = x^k + \alpha_k d^k$, where α_k is a step-length and d^k is search direction.

Question

- How to determine the search direction d^k ?
- How to determine the step-length α_k ?

(A) Determination of the search direction:

ullet At the current iterate x^k determine the index set of active the inequality constraints

$$A^k = \{j \mid \mathbf{b}_i^\top x^k - b_j = 0, j = 1, \dots, m_2\}.$$

Solve the direction finding problem

$$\min_{d} \left\{ \frac{1}{2} (x^k + d)^\top Q(x^k + d) + q^\top (x^k + d) \right\}$$
s.t.
$$\mathbf{a}_i^\top (x^k + d) = \mathbf{a}_i, i = 1, \dots, m_1;$$

$$\mathbf{b}_j^\top (x^k + d) = \mathbf{b}_j, j \in \mathcal{A}^k.$$

$$\bullet \ \, \frac{1}{2}(x^k+d)^\top Q(x^k+d) + q^\top (x^k+d) = \frac{1}{2}d^\top Qd + \frac{1}{2}d^\top Qx^k + \frac{1}{2}(x^k)^\top Qd + \frac{1}{2}(x^k)^\top Qx^k + q^\top d + q^\top x^k$$

•
$$\mathbf{a}_i \top (\mathbf{x}^k + d) = \mathbf{a}_i \Rightarrow \mathbf{a}_i^\top d = \mathbf{a}_i - \mathbf{a}_i^\top \mathbf{x}^k = 0$$
. Similarly, $\mathbf{b}_j \top d = \mathbf{b}_j - \mathbf{b}_i^\top \mathbf{x}^k = 0$.

• Simplify these expressions and drop constants to obtain:

$$\min_{d} \left\{ \frac{1}{2} d^{\top} Q d + \left[Q x^{k} + q \right]^{\top} d \right\}$$
s.t.
$$Ad = 0,$$

$$\widetilde{B}d = 0;$$

where

$$\widetilde{B} = \begin{bmatrix} \vdots \\ b_j^\top \\ \vdots \end{bmatrix}, j \in \mathcal{A}^k. \text{ Set } g^k = Qx^k + q.$$

• To obtain the search direction d^k , solve the **equality constrained QP**:

$$\min_{d} \left\{ \frac{1}{2} d^{\top} Q d + \left[g^{k} \right]^{\top} d \right\}$$
s.t.
$$Ad = 0,$$

$$\widetilde{R}d = 0$$

The KKT optimality conditions lead to the system:

$$Qd + g^{k} + A^{T}\lambda + \widetilde{B}^{T}\widetilde{\mu} = 0, Ad = 0, \Rightarrow \begin{bmatrix} Q & A^{T} & \widetilde{B}^{T} \\ A & \mathbb{O} \dots & \mathbb{O} \\ \widetilde{B} & \mathbb{O} \dots & \mathbb{O} \end{bmatrix} \begin{bmatrix} d \\ \lambda \\ \widetilde{\mu} \end{bmatrix} = \begin{bmatrix} -g^{k} \\ 0 \\ 0 \end{bmatrix} (*)$$

where λ and $\widetilde{\mu}$ are Lagrange multipliers corresponding to equality and active inequality constraints, resp.

- \blacktriangleright Apply algorithms for equality constrained QP's to obtain d^k .
- ullet If d^k is a solution of QP, then there are $\underline{\lambda^k}$ and $\underline{\widetilde{\mu}^k}$ such that

(KKT conditions for the equality constrained QP)

$$Qd^{k} + g^{k} + A^{T}\lambda^{k} + \widetilde{B}^{T}\widetilde{\mu}^{k} = 0,$$

$$Ad^{k} = 0,$$

$$\widetilde{B}d^{k} = 0.$$

▶ There are two cases: either $d^k = 0$ or $d^k \neq 0$. Case 1: $d^k = 0$. Then, the system above reduces to

$$g^k + A^T \lambda^k + \widetilde{B}^T \widetilde{\mu}^k = 0, \quad (**)$$

<u>Case 1-a:</u> If $\tilde{\mu}^k \geq 0$, (i.e. $\tilde{\mu}^k_j \geq 0, j \in \mathcal{A}^k$), then corresponding to the non-active constraints we can set $\mu^k_j = 0$ for $j \in \{1, 2, \dots, m_2\} \setminus \mathcal{A}^k$. Hence, we have for the original problem

$$g^{k} + A^{T} \lambda^{k} + B \mu^{k} = 0,$$

$$Ax^{k} - a = 0,$$

$$Bx^{k} - b \leq 0,$$

$$(Bx^{k} - b_{k})^{T} \mu^{k} = 0$$

 $u_k \geq 0$.

- If $d^k = 0$ and $\widetilde{\mu}_k \ge 0$, $x^{k+1} = x^k$ is a KKT point. Stop!
- <u>Case 1-b:</u> If some components of $\widetilde{\mu}^k$ are negative, then x^k is not an optimal solution. Let $\mu_{j_0} = \min \big\{ \widetilde{\mu}_j \mid \widetilde{\mu}_j < 0, j \in \mathcal{A}^k \big\}$. Remove the index j_0 from \mathcal{A}^k and solve the quadratic programming problem

$$\min_{d} \left\{ \frac{1}{2} d^{\top} Q d + \left[g^{k} \right]^{\top} d \right\}
s.t.
\mathbf{a}_{i}^{\top} d = 0,
\mathbf{b}_{i}^{\top} d = 0, j \in \mathcal{A}^{k} \setminus \{j_{0}\}.$$

Then the direction obtained is descent direction d^k for $(QP)_I$.

Quadratic optimization ... Active set Method Case 2: $d^k \neq 0$.

• Determine a step-length α_k that guarantees $x^k + \alpha_k d^k$ is feasible to $(QP)_{In}$.

We need to choose α_k so that $Ax^{k+1} = A(x^k + \alpha_k d^k) = a$ and $Bx^{k+1} = B(x^k + \alpha_k d^k) \le b$.

• For the equality constraints Ax = b, since x^k is feasible to $(QP)_{IR}$ and $Ad_k = 0$ (in $(QP)_E$), we have

$$Ax^{k+1} = A(x^k + \alpha_k d^k) = Ax^k + \alpha_k Ad_k = a + 0 = a$$

So the equality constraints are satisfied for any α_k .

- For the active inequality constraints $B\mathbf{x} \leq b$, similarly we have $\mathbf{b}_j^{\top} \mathbf{x}^{k+1} = \mathbf{b}_j^{\top} \left(\mathbf{x}^k + \alpha_k d^k \right) = b_j \leq b_j, j \in \mathcal{A}^k$ for any α_k .
- For the inactive inequality constraints at x^k , i.e. $j \notin \mathcal{A}^k$, we have $\mathbf{b}^\top x^k < b_j$. Thus, we need to determine α_k so that $\mathbf{b}_i^\top (x^k + \alpha_k d^k) \leq b_i$ holds true for $j \notin \mathcal{A}^k$. Hence,

$$\mathbf{b}_j^{\top} x^k + \alpha_k \mathbf{b}_j^{\top} d^k) \leq b_j \Rightarrow \alpha_k \mathbf{b}_j^{\top} d^k \leq b_j - \mathbf{b}_j^{\top} x^k.$$

- (i) If $b_j^{\top} d^k \leq 0$, then $\alpha_k \mathbf{b}_j^{\top} d^k \leq b_j \mathbf{b}_j^{\top} x^k$ is satisfied for any $\alpha_k > 0$, since $0 \leq b_j \mathbf{b}_j^{\top} x^k$ (recall that x^k is feasible for QP₁).
- (ii) If $b_i^{\top} d^k > 0$, then choose α_k

$$\alpha_k = \frac{b_j - b_j^\top d^k}{b_i^\top d^k}.$$

ullet A common $lpha_k$ that guarantees the satisfaction of all constraints is

$$\alpha_k = \min \left\{ 1, \frac{b_j - b_j^\top d^k}{b_j^\top d^k} \mid j \notin \mathcal{A}^k \text{ and } b_j^\top d^k > 0 \right\}.$$

• Updating the active index set:

Observe that if $\alpha_k < 1$, then $\alpha_k = \frac{b_{j_0} - b_{j_0}^\top d^k}{b_{j_0}^\top d^k} = \text{for some } j_0 \notin \mathcal{A}^k$. This implies that $\mathbf{b}_{j_0}^\top \left(\mathbf{x}^k + \alpha_k d^k \right) = b_{j_0}$.

That is, the inequality constraint corresponding to the index j_0 be comes active.

• If $\alpha_k < 1$, then update the active index set as

$$\mathcal{A}^{k+1} = \mathcal{A}^k \cup \{j_0\}.$$

Algorithm 1: An active-set algorithm for QP

```
1: Give a start vector x^0;

2: Identify the active index set \mathcal{A}^0;

3: Set k=0;

4: while (no convergence) do

5: Compute g^k=Qx^k+q;

6: Obtain d^k, \lambda^k and \widetilde{\mu}^k by solving the KKT-equations for
```

```
\begin{aligned} & \min_{d} \left\{ \frac{1}{2} d^{\top} Q d + \left[ g^{k} \right]^{\top} d \right\} \\ & s.t. \\ & \mathbf{a}_{i}^{\top} d = 0, \\ & \mathbf{b}_{j}^{\top} d = 0, j \in \mathcal{A}^{k}. \end{aligned}
```

```
 \begin{array}{lll} \textbf{7:} & \text{ if } (a^k=0) \text{ then} \\ \textbf{8:} & \text{ if } \widetilde{\mu}^k \geq 0 \text{ then} \\ \textbf{9:} & \text{STOP! } x^k \text{ is a KKT point.} \\ \textbf{10:} & \text{else} \\ \textbf{11:} & \widetilde{\mu}_j = \min\{\widetilde{\mu}_j \mid \widetilde{\mu}_j < 0, j \in \mathcal{A}^k\} \\ \textbf{12:} & \text{Update the index set } \mathcal{A}^k \leftarrow \mathcal{A}^k \setminus \{j_0\} \text{ and GOTO Step 6.} \\ \textbf{13:} & \text{end if} \\ \textbf{14:} & \text{end if} \\ \textbf{15:} & \text{end while((continue..))} \\ \end{array}
```

16. if $(d^k \neq 0)$ 17. Compute the step-length

$$\alpha_k = \min \left\{ 1, \, \frac{b_j - b_j^\top d^k}{b_j^\top d^k} \mid j \not\in \mathcal{A}^k \text{ and } b_j^\top d^k > 0 \right\}.$$

- Undate $x^{k+1} = x^k + \alpha u d^k$.
- $\text{Update active index-set: if } \alpha_k = 1, \text{ then } \mathcal{A}^{k+1} = \mathcal{A}^k, \text{ else } \mathcal{A}^{k+1} = \mathcal{A}^k \cup \{j_0\}, \text{ where } \alpha_k = \frac{b_{j_0} b_{j_0}^\top d^k}{b_{b_0}^\top d^k} \text{ for } b_{j_0}^\top d^k > 0.$
- Update $k \leftarrow k + 1$.

Important issues:

- How to determine a starting iterate x^0 for the active-set algorithm.
- ASM requires an efficient strategy for the determination of active sets A^k at each x^k .

Advantages of ASM:

- Since only active constraints are consider at each iteration x^k , $(QP)_E$ usually has only a few constraints and can be solved fast.
- \Rightarrow Large-scale (QP)_I's are easy to solve.
- In many cases the active set varies slightly from step-to-step, making active set method efficient.
- \Rightarrow Data obtained from the current QP_E can be used to solve the next QP_E known as **warm starting**.
- All iterates x^k are feasible to $(QP)_I$. This is an important property, eg, in SQP.

Disadvantages of ASM:

- ullet Since the active-set \mathcal{A}^k may vary from step to step, the structure and properties, eg. sparsity, of constraint matrices may change.
- ASM may become slower near to the optimal solution;.
- For some problems ASM can be computationally expensive.

Consider

(QP)
$$\min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x \right\}$$
s.t.
$$Ax = a.$$

$$x \ge 0,$$

where $A \in \mathbb{R}^{m_1 \times n}$.

Any other constraints can be transformed to the above form.

ullet If there is $Bx \leq b$, then add slack variables s to obtain Bx + s = b, $s \geq 0$ so that the constraints become

$$\begin{bmatrix} A & O \\ B & I_n \end{bmatrix} \begin{bmatrix} x \\ s \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} x \\ s \end{bmatrix} \ge 0.$$

 \bullet If there is a box constraint $x_{min} \leq x \leq x_{max}$, then split it in two constraints

$$x_{max} - x \ge 0$$

 $x - x_{min} \ge 0$.

- \Rightarrow Use the logarithmic barrier function for the non-negative variables
- ⇒ The barrier problem associated to (QP) will be

$$(BQP)_{\mu} \qquad \min_{x} \left\{ \frac{1}{2} x^{\top} Q x + q^{\top} x - \mu \sum_{j=1}^{n} \log x_{j} \right\}$$
s.t.
$$Ax = a.$$

ullet The Lagrange function of $(\mathsf{BQP})_\mu$

$$\mathcal{L}_{\mu}(x,\lambda) = \frac{1}{2}x^{\top}Qx + q^{\top}x - \lambda^{\top}(Ax - a) - \mu\sum_{i=1}^{n}\log x_{i},$$

where x > 0.

TECHNISCHE UNIV

Χ.

The KKT condition for (BQP)_μ will be

$$\frac{\partial \mathcal{L}_{\mu}}{\partial x} = 0 \Rightarrow Qx + q - A^{\top}\lambda - \mu X^{-1}\mathbf{e} = 0, x > 0.$$

$$\frac{\partial \mathcal{L}_{\mu}}{\partial \lambda} = 0 \Rightarrow Ax = b,$$

where e = (1, ..., 1).

$$\Rightarrow Qx - A^{\top}\lambda - \mu X^{-1}\mathbf{e} = -q$$
$$Ax = b.$$

- Define $s = \mu X^{-1}\mathbf{e}$. Then $s \in \mathbb{R}^n$, s > 0 and $x_i s_i = \mu, i = 1, \dots, n$.
- The KKT condition for $(BQP)_{\mu}$ takes the form

$$\Rightarrow Qx - A^{\top}\lambda - s = -q$$

$$Ax = b$$

$$x_i s_i = \mu, i = 1, \dots n.$$

- For each fixed parameter μ , the KKT condition for $(BQP)_{\mu}$ is a system of non-linear equations (nonlinearity due to the product $x_i s_i = \mu$).
- There are $2n + m_1$ variables (x, λ, s) . Set

$$F_{\mu}(x,\lambda,s) = \begin{bmatrix} Qx - A^{T}\lambda - s - q \\ Ax - b \\ XS - \mu \mathbf{e} \end{bmatrix},$$

where $X = diag(x) \in \mathbb{R}^{n \times n}$ and $S = diag(s) \in \mathbb{R}^{n \times n}$.

 \bullet For each fixed $\mu > 0$, the equation

$$F_{\mu}(x,\lambda,s)=0.$$

should be solved.

• The system can be solved using a Newton-like algorithm.

A general Newton algorithm:

Step 0: Give an initial iterate (x^0, λ^0, s^0) where $(x^0, s^0) > 0$.

Step k: Given (x^k, λ^k, s^k) :

o solve the system of equations

$$J_{F_{\mu}}\left(x^{k},\lambda^{k},s^{k}\right)d=-F_{\mu}\left(x^{k},\lambda^{k},s^{k}\right)$$

to determine the search direction $d^k = (\Delta x_k, \Delta \lambda_k, \Delta s_k)$.

 \circ Determine a step-length α_k .

o Set
$$x^{k+1} = x^k + \alpha_k \Delta x_k$$
$$\lambda^{k+1} = \lambda^k + \alpha_k \Delta \lambda_k$$
$$s^{k+1} = s^k + \alpha_k \Delta s_k.$$

• At each iteration the system of linear equations

$$J_{F_{\mu}}\left(x^{k},\lambda^{k},s^{k}\right)d=-F\left(x^{k},\lambda^{k},s^{k}\right)$$

should be solved.

• The Jacobian matrix $J_{F_{\mu}}\left(x^{k},\lambda^{k},s^{k}\right)$ has the special form

$$J_{F_{\mu}}\left(x^{k},\lambda^{k},s^{k}\right)=egin{bmatrix} Q & -A^{\top} & -I \ A & \mathbb{O} & \mathbb{O} \ S^{k} & \mathbb{O} & X^{k} \end{bmatrix},$$

where $X^k = diag(x^k)$ and $S^k = diag(s^k)$.

In interior-point method, most computation effort is spent for solving the system of linear equations to determine d^k . This should be accomplished by an efficient linear algebra solver.

• There are various prima-dual interior-point algorithms with modifications on the above general algorithm. * Path-following Algorithm * Affine-scaling Algorithm, * Mehrotra predicator-corrector Algorithm etc.

Algorithm 2: Path-following Algorithm for QP

- 1: Choose σ_{min} ;
- **2:** Choose initial iterates (x^0, λ^0, s^0) with $(x^0, s^0) > 0$.
- 3: Set k = 0;
- **4:** while $((x^k)^\top s^k/n) > \varepsilon$) do
- 5: Choose $\sigma_k \in [\sigma_{min}, \sigma_{max}]$;
- 6: Solve the system

$$J_{F_{\mu}}\left(\boldsymbol{x}^{k}, \boldsymbol{\lambda}^{k}, \boldsymbol{s}^{k}\right) d = - \begin{bmatrix} Q\boldsymbol{x} - \boldsymbol{A}^{\top}\boldsymbol{\lambda} - \boldsymbol{s} - \boldsymbol{q} \\ A\boldsymbol{x} - \boldsymbol{b} \\ X\boldsymbol{S} - \sigma_{k}\mu_{k}\mathbf{e} \end{bmatrix},$$

to determine $d^k = (\Delta x_k, \Delta \lambda_k, \Delta s_k)$.

7: Choose
$$\alpha_{max}$$
 the largest value such that

$$(x^k, s^k) + \alpha (\Delta x_k, \Delta s_k) > 0;$$

$$\textbf{8:} \qquad \text{Set } \alpha_k = \min \left\{ 1, \, \eta_k \alpha_{\textit{max}} \right\} \text{ for some } \eta_k \in (0, 1) \text{ and } \mu_k = \frac{\left(x^k \right)^\top s^k}{n};$$

- Set $(x^{k+1}, \lambda^{k+1}, s^{k+1}) + \alpha_k (\Delta x_k, \Delta \lambda^k, \Delta s_k)$
- 10: Undate $k \leftarrow k + 1$

Commonly used termination criteria is

$$\frac{\left(x^k\right)^{\top} s^k}{n} \leq \varepsilon.$$

for some termination tolerance $\varepsilon > 0$, eg. $\varepsilon = 0.001$, etc.

Some strategies for choice of centering parameter:

- (a) $\sigma_k = 0, k = 1, 2, \dots$, affine-scaling approach;
- (b) $\sigma_k = 1, k = 1, 2, \ldots$
- (c) $\sigma_k \in [\sigma_{min}, \sigma_{max}] = 1, k = 1, 2, \dots$ Commonly, $\sigma_{min} = 0.01$ and $\sigma_{max} = 0.75$ (path following method)
- (d) $\sigma_k = 1 \frac{1}{\sqrt{n}}, k = 1, 2, \dots$, (with $\alpha_k = 1$ short-step path-following method)

Advantages of PDIPM:

- \bullet Can be used to solve medium- to large-scale QPs \Rightarrow so important in optimal control.
- Fast convergence properties.
- Structure of the Jacobian matrix does not change a lot.
- ullet The Jacobian matrix $J_{F_{\mu_k}}$ takes a special structure, which can be exploited by a linear algebra solver.

Disadvantages of PDIPM:

- Usually requires a strictly feasible initial iterate (x^0, s^0) which is not trivial to obtain.
- All constraints are used in the computation of the search direction d^k , even if some are not active.
- \Rightarrow The computation of d^k may be only attained through iterative linear algebra solvers.

Some current Issues

- **▶** Optimization methods for real-time control.
- Applications for fast real-time systems control:
- Control of autonomous (ground, arial or underwater) vehicles and Robots computation of QP's in microseconds.
- ⇒ Require hardware (embedded systems) implementation of optimization algorithms.
- ► Parallel implementation on graphic processors.
- Computer graphic cards provided an opportunity for parallel linear algebra computation.
- \Rightarrow Large QP's can solved on shared memory PC with graphic processors.

Example:

- Graphic cards with processors: Latest NVIDA Graphic cards, AMD Athlon graphic cards.
- Programming Languages: CUDA, OpenCL (Athlon), etc.
- ▶ Parallel implementation on shared and distributed memory (multiprocess) computers. For instance in the
 - numerical solution of optimization problems with partial differential constrains;
 Applications: CFD optimization, Computer Tomography, Thermodynamics, etc
 - large-scale stochastic simulation and optimization.

Resources

Some use full links:

- A quadratic programming page, N. Gould and P. Toint URL: http://www.numerical.rl.ac.uk/qp/qp.html
- Computational Optimization Laboratory, Y. Ye, Stanford University, URL: http://www.stanford.edu/yyye/Col.html
- Convex Optimization, Stephen P. Boyd, Stanford University, URL: http://www.stanford.edu/boyd/software.html (Book, software, etc)
- The HSL Mathematical Software Library (HSL=Harwell Subroutine Library), Numerical Analysis Group at the STFC Rutherford Appleton Laboratory URL: http://www.hsl.rl.ac.uk/

Software:

 MINQ: General Definite and Bound Constrained Indefinite Quadratic Programming, Arnold Neumaier, University of Vienna

URL: http://www.mat.univie.ac.at/ neum/software/minq/

- qpOASES Online Active Set Strategy, H.J. Ferreau, University of Lauven (Belgium), URL: http://www.kuleuven.be/optec/software/qpOASES/
- QPC Quadratic Programming in C Adrian Wills, University of Newcastle, URL: http://sigpromu.org/quadprog/
- OOQP is an object-oriented C++ package, M. Gertz and S. Wright URL: http://pages.cs.wisc.edu/swright/ooqp/
- Interior point Optimizer (IpOpt), A. Wächter and C. Laird URL: https://projects.coin-or.org/Ipopt/
- NLPy is a Python package for numerical optimization, D. Orban, Ecole Polytechnique de Montreal, URL: http://nlpv.sourceforge.net/
- Python based optimization solvers
 URL: http://wiki.python.org/moin/NumericAndScientific

References

Some references on active set methods:

- R.A. Bartlett and L.T. Biegler: QPSchur: a dual, active-set- Schur-complement method for large-scale and structured convex quadratic programming. Optim. Eng., 7(2006), 5–32.
- D. Goldfarb, A. Idnani: A numerically stable dual method for solving strictly convex quadratic programming. Math. Prog., 27(1983), 1 33.
- C.M. Maes: A Regularized Active-Set Method for Sparse Convex Quadratic Programming. PhD thesis, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, August 2010.
- A. Potschka, C. Kirches, H.G: Bock and J.P. Shlöder: Reliable solution of convex quadratic programs with parametric active set methods.
 Optimization Online 2011.
- URL: http://www.optimization-online.org/DB_HTML/2010/11/2828.html.
- M.J.D. Powell: On the quadratic programming algorithm of Goldfarb and Idnani. Math. Programming Stud., 25(1985), 46-61.
- E. Wong: Active-Set Methods for Quadratic Programming. Phd thesis, University of California, San Diego, 2011.

Some references on interior point methods:

- M. D'Apuzzo, V. De Simone, D. di Serafino: On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl., 45(2010), 283 – 310.
 A. Forsgren, P. E. Gill, M.H. Wright. Interior point methods for nonlinear optimization, SIAM Review, 44(2002), 525 – 597.
- . J. Gondzio: Matrix-Free Interior Point Method. Optimization Online, 2009.
- J. Gondzio: Interior point methods 25 years later, European Journal of Operational Research 218 (2012) pp. 587-601. Published online: October 8, 2011. DOI 10.1016/j.ejor.2011.09.017.
- N. Karamarkar: A new polynomial-time algorithm for linear programming, Combinatorica, 4(1984), 373 395.
- M. H. Wright: The interior-point revolution in optimization: history, recent developments and lasting consequences. Bull. of the American Math. Society, 62(2004), 39 56.
- R.D.C. Monterio and I. Adler: Interior path-following primal dual algorithms, Part II: Convex quadratic programming. Math. Prog. 44(1989), 45 66.
- Y. Nesterov and A. Nemirovsky: Interior-point Polynomial Algorithms in Convex Programming. SIAM Philadelphia, PA, 1994.
- . S. J. Wright. Prima-dual interior-point methods. SIAM Philadelphia 1997.
- Y. Ye: Interior point algorithms: Theory and analysis. Wiley, NY, 1997.

References

Some references on real-time control:

- R.A. Bartlett, A. Wächter and L.T. Biegler: Active set vs interior point strategies for model predictive control. Proceedings of the American Control Conference, Chicago, Illinois, June 2000,
- A.K. Abbes, F. Bouani and M. Ksouri: A Microcontroller Implementation of Constrained Model Predictive Control. World Academy of Science, Engineering and Technology, 80, 2011.
- H. J. Ferreau, H. G. Bock, and M. Diehl: An online active set strategy to overcome the limitations of explicit MPC. Inter. J. of Robust and Nonlinear Ctrl., 18(2008), 816 - 830.
- K.V. Ling, B.F. Wu and J.M. Maciejowski: Embedded Model Predictive Control (MPC) using a FPGA. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-11, 2008,
- M.S.K. Lau, S.P. Yue, K.V. Ling and J.M. Maciejowski: A comparison of interior point and active set methods for FPGA implementation of model predictive control. Proc. European Control Conference, Budapest, August 23-26, 2009.
- C. V. Rao, S. J. Wright and J. B. Rawlings: Application of Interior-Point Methods to Model Predictive Control. J. of Optim. Applic., 99(1998), 723 -757.
- Y. Wang and S. Boyd: Fast model predictive control using online optimization. IEEE Trans. on Ctrl. Sys. Tech. 18(2010), 267 - 278.
- A. Wills and A. Mills and B. Ninness: FPGA implementation of an interior-point solution for linear model predictive. control. The 18th IFAC World Congress, Milano (Italy), August 28 - September 2, 2011.

References

Some classical references on conjugate gradient methods:

- R. Fletcher and M.J.D. Powell: Function Minimization by Conjugate Gradients. Comp. J., 7(1964), 149 154.
- R. Fletcher and C. Reeves: Function minimization by conjugate gradients. Comput. J., 7(1964), 149 154.
- R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, 1987.
- G.H. Golub and C.F. Van Loan: Matrix Computations. Johns Hopkins University Press, Baltimore, 3rd ed., 1996.
- M. R. Hestenes and E. L. Stiefel: Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards. 49 (1952), 409 – 436.
- E. Polak, Computational Methods in Optimization: A Unified Approach. Academic Press Inc, London, 1971.
- E. Polak and G. Ribiere: Note sur la convergence de directions conjugées, Rev. Française Informat Recherche Opertionelle, 3e Année 16(1969), 35 43.
- M.J.D. Powell: Some convergence properties of the conjugate gradient method, Math. Prog., 11(1976), 42 49.
- M.J.D. Powell: Restart procedures of the conjugate gradient method. Math. Prog., 2(1977), 241 254.
- B.T. Polyak: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys., 9(1969), 94
 112.
- J.R. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. (URL: http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.pdf)

Some references on box-constrained QP:

- J. Brazilai and J.M. Borwein: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1988), 141 148.
- ullet Y. Nesterov: A method of solving convex programming problems with convergence rate $O\left(1/k^2\right)$. Soviet Mathematics Doklady, 27(1983), 372 376.