

Organização e Arquitetura de Computadores

Representações Numéricas REPRESENTAÇÃO EM PONTO FIXO

Prof. Msc. Luiz Carlos Reis

- Quando há uma operação aritmética entre dois números de n algarismos e o resultado é um valor de n+1 algarismos
- Este fato ocorre pois em computadores com circuitos digitais seus elementos e/ou recursos são finitos
 - Diferente de um papel e lápis, onde o papel possui espaço suficiente para colocar mais um algarismo
- Memórias, registradores possuem tamanho fixo e finito
- Não há espaço para um bit extra
 - Ex.: vai 1

- Não é possível criar, na máquina, um número que contenha uma quantidade de algarismos acima de seu limite
- O que deve ocorrer quando uma operação aritmética produzir um resultado cujo o valor é superior ao limites da máquina
 - Deve acusar erro
- O overflow ocorre quando há uma soma entre dois números com o mesmo sinal e o resutado é um valor com sinal diferente.

• Exemplo para números de 4 bits:

- Realize as seguintes operações com os números representados em complemento de 2 indicando se há overflow ou não em uma estrutura de 6 bits.
 - a) 110100 001101
 - b) 111011 010010
 - c) 001011 + 011100
 - d) 010001 100101
 - e) 111011 + 010010
 - f) 010010 111011

Só aplicamos o complemento de 2 devido a operação ser subtração e o computador só realiza soma.

a)
$$110100 - 001101 = (-12 - (+13))$$
 Lembrando que temos 5 bits disponíveis e $2^5 = 32$ números $110100 + 110011$ (Complemento de 2, pois o computador só soma) 1100111 (-25)

O *overflow* ocorre quando há uma soma entre dois números com o **mesmo** sinal e o resutado é um valor com sinal diferente.

(Não mudou o sinal, portanto NÃO houve overflow)

Obs.: Zeros a esquerda não tem valor para números positivos e 1 (Uns) a esquerda também não tem valor para números negativos

Lembrando que temos 5 bits disponíveis e 2⁵ = 32 números

O *overflow* ocorre quando há uma soma entre dois números com o **mesmo** sinal e o resutado é um valor com sinal diferente.

(Não mudou o sinal, portanto NÃO houve overflow)

Não foi necessário realizar complemento de 2 pois a operação já é soma.

C)
$$001011 + 011100$$
 (11 + 28) Lembrando que temos 5 bits disponíveis e $2^5 = 32$ números + 011100 (Complemento de 2, pois o computador só soma) 100111 (-25)

O overflow ocorre quando há uma soma entre dois números com o mesmo sinal e o resutado é um valor com sinal diferente.

(Mudou o sinal, portanto houve overflow)

Só aplicamos o complemento de 2 devido a operação ser subtração e o computador só realiza soma.

O *overflow* ocorre quando há uma soma entre dois números com o **mesmo** sinal e o resutado é um valor com sinal diferente.

(Mudou o sinal, portanto houve overflow)

OBS.: Mesmo o número já ser negavito, temos que aplicar a regra de complemento de 2 devido a operação ser subtração e o computador só realiza soma, onde menos com menos irá dar soma.

Não foi necessário realizar complemento de 2 pois a operação já é soma.

Lembrando que temos 5 bits disponíveis e 2⁵ = 32 números

Neste caso temos uma exceção.

Como há uma soma entre dois números com sinais diferentes, devemos comparar o resultado com o valor de maior número.

Portanto temos que comparar o número 18 (010010) com o resultado 13 (001101) como não houve mudança de sinal NÃO houve overflow.

Só aplicamos o complemento de 2 devido a operação ser subtração e o computador só realiza soma.

f)
$$010010 - 000101$$
 ($18 - (+5)$)
Lembrando que temos 5 bits disponíveis e $2^5 = 32$ números + 110011 (Complemento de 2, pois o computador só soma)

Neste caso temos uma exceção.

Como há uma soma entre dois números com sinais diferentes, devemos comparar o resultado com o valor de maior número.

Portanto temos que comparar o número 18 (010010) com o resultado 13 (001101) como não houve mudança de sinal NÃO houve overflow.

Resumo

- Números inteiros, positivos e negativos, são representados na forma de ponto fixo;
- A grande vantagem dos números de ponto fixo é a possibilidade de realizar somas e subtrações diretamente;
- Para que as somas de números positivos e negativos tenham resultados corretos em sua faixa de validade, os números negativos devem ser representados em complemento de dois.

Prof. Msc. Luiz Carlos Reis

luiz.reis@cruzeirodosul.edu.br