

TWELITE 無線マイコン データシート

Ver. 3.0.1

モノワイヤレス株式会社

1. 製品概要

TWELITE BLUE(認証型式:TWE-001 Lite)/TWELITE RED(認証型式:TWELITE RED) は小型パッケージされたモジュールで、超低消費電力かつ高性能なマイコン、フラッシュメモリ、IEEE802.15.4 準拠の高性能無線を備えます。

電源とセンサーなどを接続し、フラッシュメモリ、EEPROM にプログラムを格納することで動作させられます。 SPI、I2C、UART をサポートしており、様々なセンサーやマイコンなどと接続可能です。

日本国内での認証を取得しておりますので、すぐに製品化が可能です。

2. 主な特徴

- 世界標準規格である IEEE802.15.4 に準拠
- 弊社独自のプロトコルスタック"TWELITE NET"が利用可能
- 超小型モジュール(13.97×13.97×2.5mm)
- チップ性能を最大限に引き出す基板設計により長距離でも安定した通信が可能
- 32KB の RAM、160KB/512KB のフラッシュメモリを備え高性能な通信用アプリケーションソフトウェアの動作が可能
- 待機時の電流が 0.1 μA (RAMOFF スリープ時)と非常に少ないため電池寿命を延ばすことが可能
- 4個または6個の AD コンバータ、1 個のコンパレータ、20 個の汎用入出力ポートといった豊富な I/O を内蔵 しセンサー等を直接接続可能
- フラッシュメモリを内蔵しておりファームウェアの変更が可能
- 無償で入手可能な GNU および eclipse ベースの開発環境によりファームウェア開発が可能
- 強力な 128-bit AES 暗号化技術によりセキュリティを保つことが可能
- 日本国内の ARIB STD-T66 工事設計認証(技適)を取得済みであるため免許や新たな申請の必要なく使用が可能
- RoHS 対応により新環境基準に準拠

3. 仕様

3.1 製品型番

TWELITE BLUE および、TWELITE RED は表 1 で示すようなバリエーションがあります。用途に合わせて最 適なものを選択してください。

販売コードは都度変わる可能性があるため、最新の販売コードは弊社ホームページを参照してください。

TWELITE 通称 販売コード アンテナ端子 備考 アンテナ別(リール販売のみ) $\mathsf{TWE}\text{-}\mathsf{L}\text{-}\mathsf{WX}$ TWE-L-W0 ワイヤアンテナ端子タイプ マッチ棒アンテナ付き TWELITE BLUE TWE-L-W7 ハテナ型アンテナ付き TWE-L-U アンテナ別 同軸アンテナタイプ MW-R-WX アンテナ別 ワイヤアンテナ端子タイプ TWELITE RED アンテナ別

表 1 製品型番

3.2 無線部

表 2 無線仕様

同軸アンテナタイプ

MW-R-U

	TWELITE BULE	TWELITE RED	備考
通信方式	2.4GHz IEEE	802.15.4 準拠	
対応プロトコルスタック	TWELITE NET およて	FIEEE 802.15.4 MAC	
通信速度	最大 2	50kbps	
変調方式	O-QPSI	K, DSSS	
チャネル数	1	国によっては、使用でき	
テヤイル奴	'	O	るチャネルが異なります
送信出力	2.5dBm	9.19dBm	25°C,3V
受信感度	−95dBm	−96dBm	25°C,3V,typ
送信電流	15.3mA	23.3mA	25℃,3V,typ 最大出力時
还语电测	- 14.0mA		3dBm 出力時
受信電流	17.0mA	14.7mA	25°C,3V,typ

3.3 マイコン部

- 32 ビット RISC プロセッサ
- 可変クロックにより消費電力の最適化が可能
- RAM:32kBytes
- EEPROM: 4kBytes
- フラッシュメモリ:TWELITE BLUE 160kBytes/TWELITE RED 512kBytes
- ウォッチドッグタイマー、ブラウンアウト検出
- ブロック(デジタル/アナログ/RAM/無線)ごと、きめ細かい電源制御が可能
- AES 128bit 暗号回路、16bit 乱数生成機 内蔵

3.4 インターフェイス

表 3 インターフェイス仕様

機能	数	備考
ADC	4/6	10bit TWELITE BULE は 4 ポート
		TWELITE RED は 6 ポート
PWM	4	
タイマ/PWM	1	PWM,⊿∑など5モード
		16MHz, 16bit 精度
パルスカウンタ	2	スリープ状態で稼働可
		最大 100kHz, 16bit
UART	2	16550A 互換
SPI マスター/スレーブ	1	3 チップセレクト
		最大 16MHz
コンパレータ	1	
二線シリアル マスター/スレーブ	1	最大 100kHz または 400kHz
(I ² C、SMBUS 互換)		7/10bit アドレスモード
汎用デジタル	20	他の I/F と共用

※多くは共用ピンであるため、組み合わせによっては利用できない場合があります

3.5 アンテナ

TWE-*-W0 はマッチ棒アンテナ, W7 はハテナ型アンテナが付属。

また、基板に実装できる基板アンテナもございます。使用される場合は図面を差し上げますので、弊社 Web ページの問い合わせフォームよりご連絡お願いいたします。

TWE-*-U 外部アンテナ版につきましては、弊社 HP を参照願います。

対象外のアンテナを TWELITE に使用したい場合は、別途電波認証が必要なため、弊社にご連絡お願いいたします。

3.6 認証など

表 4 電波認証番号表

	TWELITE BLUE	TWELITE RED
認証型式	TWE-001 Lite	TWELITE RED
工事設計認証番号	007-AB0031	007-AF0062
FCC ID	2AINN-L1	_
IC ID	21544-L1	_
備考	RoHS 対応	RoHS 対応

※1 海外で TWELITE を使用する場合、使用できるアンテナなどの各種制限がございますので、開発初期段階で弊社までご確認お願いいたします。

※2 使用国によっては TWELITE や製品上などに FCC ID や IC ID などの表示が必要である場合がございます。該当すると思われる場合は、弊社までお問い合わせください。

3.7 輸出時の注意点

- TWELITE に内蔵されている AES 128bit の暗号化回路が該非判定の該当品となります。輸出される際は該非判定書を発行いたしますので弊社までお問い合わせ下さい。
- 輸出国によっては TWELITE が輸出国で電波認証が取得できていないと通関できない場合があります。
 輸出国ごとの規制に関してはお問い合わせください。

3.8 製品上の表示

製品には製品ロゴ、認証番号などの表示がありますが、予告なく変更される場合があります。

4. ブロック図

	水晶振動子	(32MHz)	UART
			I2C
			SPI
	32ビッ	⊦CPU	
2.4GHz無線	(4,8,16,32	2MHz可変)	10ビットADC
			パルスカウンタ
			コンパレータ
	RAM	EEPROM	
	フラッシ	′ュROM	PWM
	, , , ,		PWM/タイマ
O-QPSK	内部クロック	7 (32kHz)	
128ビットAES暗号	ウォッチドック タイマ	ウエイクアップ タイマ	汎用IO
IEEE802.15.4MAC	電源管理	乱数発生器	

図 1 TWELITE シリーズのブロック図

5. 外形寸法

外形: 13.97x13.97x2.5mm 重量: 0.93g

TWELITE BLUE/TWELITE RED 外形 DXF データ、弊社ホームページにてダウンロード可。

6. 推奨パッド寸法

図 3 推奨パッド図

- モジュール裏面に接する受け側基板は、シルク印刷及びスルーホールが無きこと。
- マッチ棒アンテナなどのワイヤアンテナを半田接続する場合は、受け側基板に角穴を設け、モジュール裏面より半田付けをお願いします。(詳しくは7章参照)
- メタルマスク厚は、t=0.12~0.15mm の範囲でご使用ください。 マスク及びリフロー条件により、モジュールの片側の半スルーホール箇所に半田フィレットが立 たない場合があります。

7. アンテナ取り付け用開口

図 4 アンテナ取り付け用開口図

TWELITE をお客様が設計した基板に実装する場合、ワイヤアンテナ(マッチ棒アンテナ)を接続するには基板上に開口を設け裏側から半田付けを行うと効率的です。

この図面は開口の一例です。

ここでは開口を大きく取るために 29,30,31,32 ピン(NC,GND,GND,GND) を未接続としています。

※ 28,30-32 ピンの GND は接続を推奨しますが、未接続での運用も可能です。未接続であっても、無線性能の顕著な変化は観察されていません。

8. ピン割り当て

7.1 ピン番号

図 5 ピン番号図

7.2 ピン割り当て

表 5 ピン割り当て表

#	IO 名	栈	態能割り当て		f	代替割り当て		超簡単!TWELITE アプリの機能名
1	DO0	SPICLK			PWM2※1			PWM2
2	DO1	SPIMISO			PWM3※1			PWM3
3	DIO18	SPIMOSI						DO1
4	DIO19	SPISEL0						DO2
5	vcc	VCC						vcc
6	DIO4	CTS0				TIM00UT	PC0	DO3
7	DIO5	RTS0			PWM1		PC1	PWM1
8	DIO6	TXD0			PWM2			TX
9	DIO7	RXD0			PWM3			RX
10	DIO8	TIM0CK_GT		PC1	PWM4			PWM4
11	DIO9	TIM0CAP	32KTALIN		RXD1			DO1
12	DIO10	TIM00UT	32KTALOUT					M1
13	DIO12		PWM2		CTS0			DI1
14	DIO14	SIF_CLK		TXD1	TXD0	SPISEL1		SCL
15	DIO13		PWM3		RTS0			DI2
16	DIO11		PWM1		TXD1			DI3
17	DIO15	SIF_D		RXD1	RXD0	SPISEL2		SDA
18	DIO16	COMP1P			SIF_CLK			DI4
19	DIO17	COMP1M	PWM4		SIF_D			BPS
20	GND							GND
21	RESETN	RESETN						RST
22	ADC2	VREF						AI3
23	ADC1							AI1
24	DIO0	SPISEL1	ADC3					AI2
25	DIO1	SPISEL2	ADC4	PC0				AI4
26	DIO2	ADC5※2				TIM0CK_GT		M2
27	DIO3	ADC6※2				TIM0CAP		М3
28	GND	GND						GND
29	NC	RF						N/A
30	GND	GND						GND
31	GND	GND						GND
32	GND	GND						GND

^{※1} PWM2,3 は DIO6,7 または DIO12,13 の割り当てを解放し DO0,1 に割り当て可能。

^{※2} ADC5,6 は TWELITE RED のみ使用可能です。

7.3 機能紹介

表 6 信号名毎の機能表

信号名 機能 PC パルスカウンタ SPICLK SPI マスタークロック SPISEL SPI セレクト出力 SPIMISO SPI マスター入力 SPIMOSI SPI マスター出力 TIMOCK_GT タイマクロック、ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル出力	AY O IN 13 IN MACON WILLIAM				
SPICLK SPI マスタークロック SPISEL SPI セレクト出力 SPIMISO SPI マスター入力 SPIMOSI SPI マスター出力 TIMOCK_GT タイマクロック、ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	号名	機能			
SPISEL SPI セレクト出力 SPIMISO SPI マスター入力 SPIMOSI SPI マスター出力 TIMOCK_GT タイマクロック,ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	0	パルスカウンタ			
SPIMISO SPI マスター入力 SPIMOSI SPI マスター出力 TIMOCK_GT タイマクロック,ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	PICLK	SPI マスタークロック			
SPIMOSI SPI マスター出力 TIMOCK_GT タイマクロック,ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	PISEL	SPI セレクト出力			
TIMOCK_GT タイマクロック,ゲート入力 TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	PIMISO	SPI マスター入力			
TIMOCAP タイマキャプチャ入力 TIMOOUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	PIMOSI	SPI マスター出力			
TIM0OUT タイマ PWM 出力 32KTALIN クリスタル入力 32KTALOUT クリスタル出力	M0CK_GT	タイマクロック,ゲート入力			
32KTALIN クリスタル入力 32KTALOUT クリスタル出力	M0CAP	タイマキャプチャ入力			
32KTALOUT クリスタル出力	M0OUT	タイマ PWM 出力			
	2KTALIN	クリスタル入力			
VDEE ##AC	KTALOUT	クリスタル出力			
VREF	REF	基準電圧			
COMP1M コンパレータ+入力	OMP1M	コンパレータ+入力			
COMP1P コンパレータ-入力	OMP1P	コンパレータ-入力			
SIF_D 2 線シリアルデータ	F_D	2 線シリアルデータ			
SIF_CLK 2 線シリアルクロック	F_CLK	2 線シリアルクロック			
RXD UART RX	XD	UART RX			
TXD UART TX	KD	UART TX			
RTS UART RTS	гѕ	UART RTS			
CTS UART CTS	rs	UART CTS			
PWM パルス幅変調出力	WM	パルス幅変調出力			

7.4 特殊ピンの取り扱い

• DO0(機能名:SPICLK)

本ピンは出力として利用されるピンです。外部からの電圧印加を行うと(ある程度の出力インピーダンスがあったとしても)、TWE モジュールがプログラムモードに遷移しないといった現象が報告されています。

LED やトランジスタなどの接続では、始動時やスリープ回復時に中間的な状態となり、正常動作しない場合があります。常に Vcc 側にプルアップされるような外部回路構成を推奨します。

• DO1(機能名:SPIMISO)

本ピンは出力ピンとして利用されることが多いピンですが、モジュール電源投入やリセット時に入力ピンとして振る舞い、その時 Lo 側の電圧判定をされた場合、モジュールがプログラムモードとして起動します。

本ピンの始動時の電圧に気をつけてください。

• DIO0 (機能名: ADC3)、DIO1 (機能名: ADC4)

これらのピンはアナログ入力と共用されています。ファームウェア上で注意点としては、AD 読み出し 時に内部プルアップを無効にしておく必要があります。

• ADC2

ADC2 は基準電圧の入力用として利用できます。利用にはソフトウェア上の実装が必要になります。 なお、基準電圧を出力するピンはありません。

• GND

SMD 版 28,30-32 ピンの GND は接続を推奨しますが、未接続での運用も可能です。未接続であっても、無線性能の顕著な変化は観察されていません。

9. 絶対最大定格

表 7 絶対最大定格

項目	Min	Max	
電源(VCC)	-0.3	3.6	٧
アナログ IO(VREF/ADC)	-0.3	VCC+0.3	٧
デジタル IO	-0.3	VCC+0.3	٧

10. 特性

10.1 推奨動作条件

表 8 推奨動作条件

項目	記号	条件		min	typ	max	
電源供給電圧	VCC			2.0	3.0	3.6	٧
始動電圧	Vboot			2.05			٧
動作温度	T _{OPR}	結露なきこと	TWELITE BLUE	-40	25	105(※1)	°C
						90(※2)	
			TWELITE RED	-30	25	90	
動作湿度	H _{OPR}	結露なきこと				85	%RH

[※]数値は半導体データシートに基づく。

^{※1} TWE-L-WX/W0/W7 の最大動作温度

^{※2} TWE-L-U の最大動作温度

10.2 DC 特性

表 9 DC 特性

項目	記号	条任	4	min	typ	max		
消費電流	Icc	スリープ(RAMOFF	TWELITE BLUE		0.1			
		タイマなし)	TWELITE RED		0.1			
		スリープ(タイマ)	TWELITE BLUE		1.5		μΑ	
			TWELITE RED		1.5			
		Tx (CPU doze)	TWELITE BLUE		15.3			
			TWELITE RED		23.3		mA	
			TWELITE RED		14.0			
			(3dBm 出力時)					
		Rx (CPU doze)	TWELITE BLUE		17.0		A	
			TWELITE RED		14.7		- mA	
送信出力	Pout		TWELITE BLUE	+0.5	2.5		-ID	
			TWELITE RED		9.14		dBm	
受信感度			TWELITE BLUE		-95		dBm	
			TWELITE RED		-96		uom	

[※]数値は半導体データシートに基づく。

10.3 I/O 特性

表 10 I/O 特性

項目	記号	条件	min	typ	max	
DIO 内部プルアップ			40	50	60	kΩ
DIO Hi 入力	V _{IH}		VCCx0.7		vcc	٧
DIO Lo 入力	V _{IL}		-0.3		VCCx0.27	٧
DIO 入力ヒステリシス			200	310	400	mV
DIO Hi 出力	V _{OH}	TWELITE BLUE	VCCx0.8		VCC	٧
		TWELITE RED	VCC-0.4			
DIO Lo 出力	V _{OL}		0		0.4	٧
DIO 負荷、吸込電流	I OL	VCC 2.7∼3.6V		4		mA
		VCC 2.2∼2.7V		3		mA
		VCC 2.0∼2.2V		2.5		mA

[※]数値は半導体データシートに基づく。

10.4 ADC 特性

表 11 ADC 特性

項目	記号	条件	min	typ	max	
リファレンス電圧	V_{REF}		1.198	1.235	1.260	٧
ADC 解像度					10	Bits
ADC 積分非直線性				±1.6,±1.8		LSB
ADC 微分非直線性			-0.5		0.5	LSB
ADC オフセット誤差		0∼V _{REF}		-10		mV
		0∼2V _{REF}		-20		
ADC ゲイン誤差		TWELITE BULE 0~V _{REF}		+10		mV
		TWELITE BULE 0~2V _{REF}		+20		
		TWELITE RED 0~VREF		-10		
		TWELITE RED 0~2V _{REF}		-20		
ADC クロック				0.25,0.5,		MHz
				1.0		
ADC 入力レンジ			0.04		V _{REF}	٧
					2xV _{REF}	

[※]数値は半導体データシートに基づく。

11. リール仕様

11.1 テーピング寸法

図 6 テーピング寸法

11.2 リール寸法

11.3 モジュール最大包装数量

表 12 最大包装数量

リール/内箱	個数/リール	外箱		
リール/ 内相 	一一が	内箱	個数	
1	1000	1	1000	

12. リフロー条件

【推奨リフロープロファイル】Recommended Soldering Condition

時間(Sec)

図 8 リフロープロファイル

表 13 加熱温度と加熱時間

予備加熱	本加熱	ピーク温度	リフロ一回数
150~180°C/60~90Sec	220°C/30~45Sec	245°C	1 🛽

- 温度条件は上図の推奨リフロー温度プロファイルの範囲内で、1 回とします。
- はんだ付けは、リフロー半田を原則とします。
- 上記プロファイルにて、実装評価で問題ない事を確認しておりますが、貴社実装条件で実装性を確認して頂けますようお願い致します。

13. ボード実装注意点

- 1) 弊社推奨リフロー条件で本製品のリフロー回数は 1 回とします。リフロー時には製品内部の半田が再溶融致しますので、ご注意下さい。原則、はんだ付けはリフロー半田とさせて戴きます。
- 2) 本製品は自然の環境に放置することにより吸湿します。開封後 72 時間以内にリフロー実装を行って下さい。
- 3) 上記の湿度以下で保管する場合は、十分に静電気対策を取って下さい。
- 4) 開封後72 時間以上経過した場合は下記条件にてベーク処理を行った上でご使用下さい。
 - リールでのベーキングは不可、トレイ等に移し替えてベーキングを行って下さい。
 - ベーク条件は90°C、48 時間、1回までとします。
- 5) 同一梱包内でLOT No.が混成する場合がありますので、予めご了承下さい。
- 6) 本製品に実装されている部品の半田付け部について、半田フィレットの有無は問わないものとします。
- 7) 本製品はガラスエポキシ基板に実装されることを想定しております。ガラスエポキシ以外の材料(例えばセラミック等)の基板に本製品を実装する場合は、十分に評価した上でご使用下さい。
- 8) 本製品内部に実装されている部品仕様上、大変静電気に弱い部品となっております。静電気対策を十分行った上でご使用下さい。
- 9) シールドケースに応力が加わった場合、外れる可能性がありますので、十分に注意して下さい。
- 10) 手半田付けにつきましては、以下条件でお願い致します。350°C以下 3 秒以内(パッケージ表面温度は 150°C以内)

14. 使用上の注意

保管

高温・高湿を避けて保管のこと、製品は納入後6ヶ月以内で、ご使用下さい。

• 一般事項

当社製品のご使用にあたりましては、実際に貴社使用環境にて、評価、確認を必ず行って下さい。 高信頼性を必要とされる用途、人命に関わる用途などに、ご使用になる場合は事前に、購入先にお問い合わせください。

15. 改訂履歴

表 14 改訂履歴

バージョン	改定日時	改定内容	
3.0.1	2017/9/1	TWELITE RED のスリープ時の電流値の修正	
3.0.0	2017/8/1	初期バージョン	

目次

T۷	VELIT	¯E 無線マイコン データシート	1
1.	製	品概要	1
2.	主	な特徴	1
3.	仕	様	2
	3.1	製品型番	2
	3.2	無線部	2
	3.3	マイコン部	3
	3.4	インターフェイス	3
	3.5	アンテナ	3
	3.6	認証など	Z
	3.7	輸出時の注意点	2
	3.8	製品上の表示	2
4.	ブロ	ロック図	5
5.	外	形寸法	(
6.	推	奨パッド寸法	(
7.		ンテナ取り付け用開口	
8.	Ľ:	ン割り当て	8
		ピン番号	
	7.2	ピン割り当て	<u>c</u>
	7.3	機能紹介	10
	7.4	特殊ピンの取り扱い	11
9.	絶	対最大定格	12
10	. 特	性	12
	10.1	推奨動作条件	12
	10.2	DC 特性	13
	10.3	I/O 特性	13
		ADC 特性	
11	. リ-	ール仕様	15
		テーピング寸法	
	11.2	リール寸法	15
		モジュール最大包装数量	
		フロー条件	
		ード実装注意点	
		ー ス会ニンMin	
		…————————————————————————————————————	
		次	
_			_

図表目次

表	1 製品型番	2
	2 無線仕様	
	3 インターフェイス仕様	
	4 電波認証番号表	
	1 TWELITE シリーズのブロック図	
図	2 外形図	6
义	3 推奨パッド図	6
図	4 アンテナ取り付け用開口図	7
义	5 ピン番号図	8
表	5 ピン割り当て表	9
表	6 信号名毎の機能表	10
表	7 絶対最大定格	12
表	8 推奨動作条件	12
表	9 DC 特性	13
表	10 I/O 特性	13
表	11 ADC 特性	14
义	6 テーピング寸法	15
义	7 リール寸法	15
表	12 最大包装数量	15
図	8 リフロープロファイル	16
表	13 加熱温度と加熱時間	16
表	14 改訂履歴	18