Prove that: p prime and $p \neq 5$ and $p \neq 2 \implies 10 \mid p^2 + 1$ or $10 \mid p^2 - 1$.

Proof. 3.1.10

We know p is odd, so it must not be able to take the form $2k, k \in \mathbb{Z}$.

By the division algorithm, all p > 5 odd primes can be represented by 10k+rwith $r \in [0, 9]$.

Because $2 \mid 10k$, we know by theorem 2.2 that we must have $2 \nmid r$.

Because $5 \mid 10k$, we know by theorem 2.2 that we must have $5 \nmid r$.

Therefore, $r \notin \{0, 2, 4, 5, 6, 8\} \implies r \in \{1, 3, 7, 9\}.$

We have

$$(10k + r)^{2} \pm 1$$

$$= 100k^{2} + 20rk + r^{2} \pm 1$$

$$= 10(10k^{2} + 2rk) + r^{2} \pm 1.$$

We know $10 \mid 10(10k^2 + 2rk)$.

Therefore, by theorem 2.2,
$$10 \mid r^2 \pm 1 \implies 10 \mid p^2 \pm 1$$
. (1)

We have

$$1^2 \pm 1 = 0 \text{ or } 2$$
 and $3^2 \pm 1 = 8 \text{ or } 10$
and $7^2 \pm 1 = 48 \text{ or } 50$ and $9^2 \pm 1 = 80 \text{ or } 82$.

We have

Therefore, $10 \mid r^2 \pm 1 \ \forall \ r \in \{1, 3, 7, 9\}.$ Therefore, by (1), $10 \mid p^2 \pm 1.$