Chương 2: CÁC PHƯƠNG PHÁP TRUYỀN

2.1 GIỚI THIỆU

2.1.1 Các phương pháp truyền bit

- Truyền nối tiếp
- Truyền song song

2.1.2 Các phương pháp trao đổi

- Đơn công
- Bán song công
- Song công
- Song công toàn phần

2.2 TRUYỀN ĐỒNG BỘ VÀ KHÔNG ĐỒNG BỘ

- Nơi nhận phải phát hiện được bắt đầu và kết thúc mỗi nhóm bit
- Khoảng thời gian của mỗi bit để lấy mẫu chính xác

2.2 TRUYỀN ĐỒNG BỘ VÀ KHÔNG ĐỒNG BỘ

2.2.1 Truyền không đồng bộ

• Đơn vị truyền là 1 ký tự (5 - 8bit)

2.2.1 TRUYỀN KHÔNG ĐỒNG BỘ

Đồng bộ bit

- Tín hiệu đồng hồ độc lập
- Lấy mẫu càng gần tâm bit càng tốt
- RxC=N.TxC (N=16)
- Truyền qua PISO sau 1 xung
- Lấy mẫu bit đầu sau N/2 xung, các bit tiếp theo sau N xung

2.2.1 TRUYỀN KHÔNG ĐỒNG BỘ

Đồng bộ ký tự

- Trong trạng thái rỗi, truyền liên tục các bit 0
- Ký tự

```
Start bit Bit dữ liệu Parity bit Stop bit (1, 1.5, 2bit)
```


2.2.1 TRUYỀN KHÔNG ĐỒNG BỘ

Đồng bộ khung

- Dữ liệu văn bản: STX + Dữ liệu văn bản + ETX
- Dữ liệu nhị phân

Đồng bộ bit

Đồng bộ bit

Mã hóa xung đồng hồ RZ

- 3 mức điện áp
- Bit 1: mức cao
- Bit 0: mức thấp
- Nửa sau bit: mức 0

Mã hóa xung đồng hồ Manchester

- 2 mức điện áp
- Thay đổi ở tâm bit
- Bit 1: thấp → cao
- Bit 0: cao → thấp

Mã hóa xung đồng hồ Manchester vi sai

- 2 mức điện áp
- Luôn thay đổi ở tâm bit
- Bit 1: không thay đổi ở đầu bit
- Bit 0: có thay đổi ở đầu bit

Đồng bộ theo ký tự

Hình 2.9 Đồng bộ khung văn bản

Hình 2.10 Đồng bộ khung nhị phân

Đồng bộ theo bit

Đồng bộ theo bit

2.3 CÁC MẠCH ĐIỀU KHIỂN TRUYỀN

- Các IC chuyên dụng trong các hệ thống truyền tin
- Hoạt động theo nguyên tắc kỹ thuật số
- Đồng bộ bằng việc sử dụng đồng hồ chung hay riêng
- Là các vi mạch có thể lập trình được
 - Mode register: ghi byte xác định chế độ hoạt động
 - Command register: ghi byte điều khiển

2.3 CÁC MẠCH ĐIỀU KHIỂN TRUYỀN

Các IC bao gồm:

- UART (Universal Asynchronous Receiver Transmitter): sử dụng phương pháp truyền không đồng bộ.
- USRT (Universal Synchronous Receiver Transmitter): đồng bộ thiên hướng ký tự.
- USART: hoạt động theo UART hay USRT.
- BOPs (Bit-Oriented Protocol circuits): đồng bộ thiên hướng bit.
- UCCs (Universal Communication Control circuits): có thể lập trình cho cả 3 loại trên (UART, USRT hay BOPs).

2.3 CÁC MẠCH ĐIỀU KHIỂN TRUYỀN

Các IC bao gồm:

- Cả UART và USART đều có khả năng
 - Chuyển đổi dòng bit từ song song sang nối tiếp và ngược lại.
 - Đóng khung ký tự với START bit, PARITY bit, và các STOP bit.
 - Kiểm tra lỗi parity, lỗi định dạng frame (framing error) và lỗi chồng chập ký tự nhận (overrun error).