Министерство науки и высшего образования Российской Федерации ФГАОУ ВО «Севастопольский государственный университет»

Институт информационных технологий и управления в технических системах

Геоинформационные системы

Лабораторная работа №2

для студентов всех форм обучения направления подготовки 09.03.03 «Прикладная информатика» профиль: «Геоинформационные технологии»

Севастополь **2020**

Лабораторная работа №2

Исследование технологических процессов получения и подготовки картографического материала к вводу в ГИС

Цель:

- формирование практических навыков по получению и подготовке картографического материала к загрузке в геоинформационную систему;
- изучение технологического процесса выгрузки данных с картографических сервисов средствами программной системы SASPlanet.

Время: 2 часа

Лабораторное оборудование: персональные компьютеры, выход в сеть Internet, программный пакет SASPlanet.

Краткие теоретические сведения

Ввод картографических данных, несмотря на внедрение автоматизированных технологий, по-прежнему остается наиболее сложной и трудоемкой операцией при создании и функционировании ГИС. Конечный результат напрямую зависит от качества исходных данных, поэтому большое внимание стоит уделять их получению и подготовке к вводу в ГИС.

Наиболее достоверным и качественными источниками картографической информации являются:

- -для территории бывшего СССР топографические карты (или, как их ещё называют, планшеты) ГУГК или Генштабовские, поэтому вполне оправдано их использование в качестве источника,
- -космоснимки высокого разрешения (high-resolution satellite imagery, порядка 1 метра на пиксель).

В связи с этим для создания растрового формата цифровых карт, наиболее часто используются:

- технологии сканирования бумажных картографических материалов;
- получение космоснимков земной поверхности с картографических сервисов.

Технология сканирования бумажных материалов

Создание растрового формата цифровых карт осуществляется с помощью сканера — устройства для считывания (переведения в цифровую форму) графической информации.

Каждый сканер имеет различные инструкции по применению, то есть, как правило, в комплект поставки входит программа для управления им. Однако, процесс сканирования в общем одинаковый.

Перед сканированием необходимо по возможности устранить физические дефекты карты: разгладить складки, аккуратно подклеить (если на карте имеются разрывы). Необходимо помнить, что, чем меньше дефектов на карте, тем точнее можно произвести дальнейшую геопривязку и векторизацию.

Для удовлетворительного качества изображения следует установить разрешение не менее 300 точек на дюйм.

Для получения качественного изображения и для получения растровых изображений аэро- и космических снимков, сканировать следует с разрешением 600-800 dpi.

Для хранения растра рекомендуется использовать форматы .gif и .jpeg (с минимальной компрессией), для векторизации их следует перевести в форматы .tiff или .bmp т.к. они гораздо быстрее обрабатываются компьютером.

Если сканирование проводилось в 24 - или 32-битном режиме (цветном) и сохранение произошло как формат *.tiff*, то можно в 3 раза уменьшить объем растра (превратив его в 8-битное), сохранив в формате *.gif*, а потом перевести обратно в *.tiff*.

Получение космоснимков с картографических сервисов

В настоящее время получили бурное развитие различные картографические сервисы в сети Интернет, наиболее популярными из которых являются Google Марѕ и сервис Яндекс.Карты. С их помощью можно просматривать космоснимки различных участков земной поверхности. Раньше эти просмотры носили, познавательный характер, в силу качества изображений, предоставляемых этими сервисами. Ситуация изменилась после того, как сервисы стали публиковать космоснимки высокого разрешения (high-resolution satellite imagery, порядка 1 метра на пиксель). Снимки такого качества стали пригодны к использованию в качестве контекста, растровой подложки, при оформлении карт различной тематики.

В результате появляется программное обеспечение, направленное на «выгрузку» и сохранение для дальнейшего использования. Особенность таких изображений еще и в том, что они сохраняют пространственную привязку, то есть являются носителями координатных данных об изображенном участке местности, что позволяет напрямую использовать их в геоинформационных системах.

Программная среда для просмотра и загрузки спутниковых снимков SASPlanet

SAS.Планета/SAS.Planet/SASPlanet — свободная программа (страница загрузки SASPlanet http://www.sasgis.org/download/), предназначенная для просмотра и загрузки спутниковых снимков высокого разрешения и обычных карт, представляемых такими сервисами, как Google Earth, Google Maps, Bing Maps, DigitalGlobe, "Космоснимки", Яндекс.карты, Yahoo! Maps, VirtualEarth, Gurtam, OpenStreetMap, eAtlas, iPhone maps, карты Генштаба и др., но, в отличие от этих сервисов, все скачанные карты остаются на компьютере, и их можно просматривать без подключения к интернету. Помимо спутниковых карт

возможна работа с политической, ландшафтной, совмещенной картами, а также картой Луны и Марса. Интерфейс программы представлен на рис.2.1.

Рис.2.1. Интерфейс программы SAS.Планета/SAS.Planet/SASPlanet.

Помимо просмотра и загрузки в программе реализованы следующие полезные функции:

- работа с GPS-приемником;
- прокладка маршрутов;
- измерение расстояний;
- отображение файлов .kml;
- -поддержка сервиса Panoramio;
- формирование карты заполнения слоя эта функция позволяет посмотреть области на карте, которые уже загружены в кэш или, наоборот, отсутствуют;
- -сохранение части карты в одно изображение, которое можно просмотреть и обработать в любом графическом редакторе, а также использовать в других ГИС-приложениях, например, MapInfo Professional или OziExplorer (для которых программа создаст файл привязки);
- сохранение интересных места с последующим беспроблемным их поиском, а также сделать так, чтобы они всегда отображались на карте;
- -карта обзора которая поможет узнать о местоположении того места, которое просматривается, а также быстрый переход к любому другому месту на карте;
- -просмотр карты в полноэкранном режиме что особенно удобно при невысоком разрешении экрана;
- -конвертация из одного слоя всех предыдущих позволяет существенно сократить интернет-трафик;

- возможность экспорта карт в формат, поддерживаемый iPhone maps;
- возможность экспорта карт в формат, поддерживаемый мобильными Яндекс. Картами 3-й версии;
 - загрузка и отображение объектов Wikimapia;
 - поиск мест средствами Google и Яндекс;
 - добавление пользовательских карт.

Прежде чем определится, как и какие космоснимки использовать, необходимо понимание о поцедуре масштабирования (зумирования) карт в сети Интернет.

Масштабная шкала условно делиться на 24 диапазона (ступени) — от 1 (самый мелкий масштаб) до 24(самый подробный). Каждому такому диапазону соответствует определённое разрешение космоснимка. Чем выше зум, тем больше разрешение снимка. С зума z14-z15, что соответствует разрешению от 10 м/пиксель, можно увидеть более-менее точно контура сельхозугодий. Зум z18 соответствует разрешению снимка менее 1 метра/пиксель (~ 0,7 м/пиксель).

Программа SAS.Планета работает с картами в трёх режимах — только из Интернета, из Сети и кэша, или только из Кэша, рис.2.2.

Рис.2.2. Выбор источника данных.

Если работа в программе ведется впервые, или требуются данные с картографических сервисов ранее не использовавшихся, то необходимо установить в качестве источника – режим *Интернет*.

Кэш означает, что работа происходит с уже выкаченными картами, программа будет загружать их с жёсткого диска.

Карты часто обновляются – программа позволяет загрузить только самые новые, для этого целесообразно использовать режим *Интернет и Кэш*, который

позволит сократить время выгрузки, подгружая из сети участки изображений, имеющие более позднюю дату создания, участки, которые не изменялись, будут подгружаться из кэша.

Порядок выполнения лабораторной работы №2

1. Осуществить поиск необходимых картографических данных (согласно варианту) на картографических сервисах средствами программной системы SASPlanet.

Для просмотра имеющихся на сервисе данных в меню **Карты** необходимо выбрать владельца источника выгрузки данных — им будет один из картографических сервисов в сети Интернет, рис.2.3.

Рис.2.3. Выбор владельца источника выгрузки данных – одного из картографических сервисов в сети Интернет.

Примечание: наиболее полные и качественные данные можно получить на Google и Яндекс.Картах.

Кроме того, пользователю предоставлена возможность выбора типа выкачиваемого изображения. Это может быть, как спутниковый снимок, так и карта данного участка земной поверхности, рис.2.4.

Рис.2.4. Виды выкачиваемого изображения.

2. Загрузить картографические данные наибольшего качества с картографических сервисов, обладающих необходимыми данными с наибольшим разрешением (максимальным зумом).

Для того чтобы указать на интересующий фрагмент снимка или карты нужно выбрать соответствующий инструмент. Это прямоугольная область, область в виде полигона, выбор по пути, выбор по координатам или в размер экрана, рис.2.5:

Рис.2.5. Выбор инструмента (способа) выделения.

Используя инструменты перемещения, масштабирования (колесико мыши) вывести на экран изображение требуемого охвата.

Выбранным инструментом выделения, необходимо определить границы участка изображения, предполагаемого к выгрузке, рис. 2.6.

Рис.2.6. Выбор фрагмента карты или космоснимка для загрузки.

После выделения требуемого для загрузки участка изображения появляется форма для выбора вариантов загрузки с выделенным фрагментом, где задается тип выкачиваемой карты (один из картографических серверов) и её масштаб (выбирается исходя из решаемой задачи), рис.2.7:

Рис.2.7. Выбор вариантов загрузки выделенного фрагмента изображения.

Загрузка космоснимка идёт в виде так называемых **тайлов** (от англ. tile – плитка) — фрагментов карты размером 256×256 пикселей. Эти фрагменты карты записываются в соответствующий подкаталог папки **cache**. Для каждого сервиса предусмотрен свой подкаталог — для Яндекса это **yasat**, для Google'а — **sat** и т.д. Время загрузки зависит, в основном, от площади выбранной области.

Замечание: ставить на закачку области более чем на 2 часа для карт Google не имеет смысла. После превышения некоторого объёма данных сервер Google'а прекращает выдачу информации. Если IP-адрес динамический, то необходимо просто разорвать соединение Интернет и снова подключится, после чего Google снова начинает выдавать данные.

После завершения процесса загрузки необходимо склеить тайлы в целое изображение – этот процесс проводят во вкладке **Склеить**, рис.2.8:

Рис.2.8. Склейка тайлов.

Функция Склеить работает с выделенной на карте областью. Замечание:

- для склейки больших фрагментов карты лучше выбирать формат *jpeg2000* и дробить изображение на несколько файлов используя панель **Разбить изображение** (в противном случае при загрузке карты в ГИС или графический редактор загрузка и обработка изображения будет занимать много времени.
- необходимо правильно указать карты какого масштаба будут склеиваться.
 Если загружались снимки с масштабом z17, то именно их и надо склеивать.

- если необходимо наложить на космоснимок подписи, то выбирается соответствующий сервис.
- если в последующем предполагается работа с выкаченными снимками в ГИС, то в окне **Создавать файл привязки** необходимо установить соответствующие требуемым форматам пометки (галочки).

Для запуска процесса загрузки выбирается опция **Начать**, процесс загрузки отображается на **Индикаторе загрузки**, рис.2.9:

Рис.2.9. Индикатор загрузки.

Включив опцию **Вид** • **Карта заполнения** • **Формировать для** можно просмотреть, какие области нужного масштаба уже загружены на жёсткий диск (в кэш), рис.2.10, рис.2.11:

Рис.2.10. Формирование запроса к кэшу о наличии загруженных областей с параметром масштабирования z16.

Рис.2.11. Результат запроса к кешу об областях с параметром z16.

3. Провести изучение дополнительных возможностей программной среды SASPlanet.

Варианты заданий к лабораторной работе №2

Варианты задании к лаоораторнои работе №2								
№	а	б						
1.	Алтайский край	Новосибирская область						
2.	Белгородская область	Кировская область						
3.	Владимирская область	Ростовская область						
4.	Воронежская область	Тульская область						
5.	Иркутская область	Саратовская область						
6.	Костромская область	Магаданская область						
7.	Республика Татарстан	Псковская область						
8.	Красноярский край	Тверская область						
9.	Мурманская область	Республика Бурятия						
10.	Москва и Московская область	Ямало-Ненецкий АО						
11.	Нижегородская область	Смоленская область						
12.	Оренбургская область	Калужская область						
13.	Приморский край	Республика Коми						
14.	Республика Карелия	Тамбовская область						
15.	Рязанская область	Тюменская область						
16.	Курская область	Орловская область						
17.	Сахалинская область	Калужская область						
18.	Ханты-Мансийкий АО	Санкт-Петербург и						
		Ленинградская область						
19.	Челябинская область	Республика Хакасия						
20.	Ульяновская область	Воронежская область						
21.	Орловская область	Республика Марий Эл						
22.	Пензенская область	Ненецкий АО						
23.	Республика Мордовия	Кемеровская область						
24.	Омская область	Новгородская область						
25.	Вологодская область	Краснодарский край и						
		Республика Адыгея						
26.	Липецкая область	Камчатский край						
27.	Мурманская область	Калининградская область						
28.	Белгородская область	Волгоградская область						
29.	Еврейская АО	Брянская область						
30.	Курганская область	Архангельская область						

Содержание отчета по лабораторной работе №2

В отчете представляются результаты всех технологических этапов процессов выгрузки данных с картографических сервисов средствами SASPlanet.

По результатам работы необходимо создать презентацию, содержащую все промежуточные этапы и заданные параметры процесса выгрузки данных.

Литература и информационные ресурсы к лабораторной работе №2

- 1. SASGIS. Веб-картография и навигаци [Электронный ресурс]. Режим доступа: http://sasgis.ru/sasplaneta/.
- 2. SASGIS. Страница загрузки SASPlanet [Электронный ресурс]. Режим доступа: http://www.sasgis.org/download/.

Требования к содержанию и оформлению отчетов

Отчеты по лабораторным работам оформляются согласно правилам оформления принятыми на кафедре, ГОСТам и ЕСКД.

Основные правила по оформлению отчетной документации:

Параметры страницы: A4 (21×29,7), ориентация – книжная (допускается использовать альбомную ориентацию страницы для выполнения схем и таблиц).

Поля: левое -2.5, верхнее -1.5, нижнее -1.5, правое -1.

Нумерация страницы — внизу, справа. Нумерация ведется с титульного листа, номер на титульном листе не ставиться.

Шрифт Times New Roman, кегль 14, интервал – одинарный.

Заголовки разделов: абзацный отступ -0, выравнивание по центру, шрифт - жирный, нумерация - арабскими цифрами, точка в конце названия раздела не ставиться.

Заголовки подразделов (допускается три уровня, например 1.1., 1.1.1.): абзацный отступ $-1.25 \div 1.5$, выравнивание по ширине, шрифт - жирный, точка в конце названия подраздела не ставиться.

Основной текст: абзацный отступ $-1.25 \div 1.5$, выравнивание по ширине, шрифт - обычный.

Нумерация рисунков и таблиц — сквозная внутри раздела (например, в разделе 1 — рис. 1.1., рис. 11.2 и т.д., или табл. 1.1., табл. 1.2. и т.д.).

Рисунки помещаются после упоминания их в тексте и имеют подпись, размещаемую под рисунком без абзацного отступа и имеющую выравнивание по центру и точку на конце названия (например, Рис.1.1. Название.).

Таблицы размещаются после ссылки на них в тексте. Название приводится над таблицей, без абзацного отступа с выравниванием по центру, без точки на конце названия (например (Таблица 2.2. Название).

Допускается выносить рисунки и таблицы в Приложения. В этом случае ссылка должна содержать номер приложения (например: рис.1.1. Приложения 1 или табл.А1 Приложения A).

Основная часть должна содержать ссылки на используемую литературу или информационные источники, список которых приводится после раздела Выводы и перед Приложениями. Ссылка заключается в квадратные скобки (например – [1], [5,7], [3–6].

Приложения нумеруются арабскими цифрами (Приложение 1, Приложение 2) или обозначаются русскими заглавными буквами в порядке их следования (Приложение А, Приложение Б). Слово Приложение....выравнивается по правому краю и имеет жирный шрифт. Название приложение располагается на следующей строке, без абзацного отступа, выравнивание по центру, шрифт – жирный.

По завершению изучения курса у студента должен быть сформировать набор отчетов (Приложение №1), сведенных в единый документ и имеющий единый титульный лист (Приложение №2), на котором отражаются результаты прохождения этапов изучения дисциплины.

Каждый раздел этого документа является отчетом по выполнению соответствующей лабораторной работы (обязательные разделы и правила выполнения отчетов представлены в Приложении 1).

Сформированный документ, с отметками о выполнении всех лабораторных работ обязателен для представления на итоговом контроле и является подтверждением о допуске к итоговому контролю.

К отчету прилагается папка с файлами — результатами выполнения лабораторной работы (данная папка должна так же находится на сетевом диске в папке проектов изучаемой дисциплины), название папки ГИСиТ фамилия.

Организация защиты и критерии оценивания выполнения лабораторных работ

К защите представляется отчет, включающий в себя результаты выполнения лабораторной работы, выполненный согласно правилам и единый титульный лист, на котором отмечаются результаты выполнения заданий.

К отчетам прилагается электронный носитель, содержащий папки с файлами – результатами выполнения работы, файлами отчетов и презентациями (если требуется в задании) созданных в ходе выполнения лабораторных работ.

На проверку теоретической подготовки, проводимой по контрольным вопросам, отводиться 5–6 минут.

Степень усвоения теоретического материала оценивается по следующим критериям:

• оценка «отлично» выставляется, если:

- последовательно, четко, связно, обоснованно и безошибочно с использованием принятой терминологии изложен учебный материал, выделены главные положения, ответ подтвержден конкретными примерами, фактами;
- самостоятельно и аргументировано сделан анализ, обобщение, выводы, установлены межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применены полученные знания в незнакомой ситуации;
- самостоятельно и рационально используются справочные материалы, учебники, дополнительная литература, первоисточники; применяется систему условных обозначений при ведении записей, сопровождающих ответ; используются для доказательства выводы из наблюдений и опытов, ответ подтверждается конкретными примерами;
- допускает не более одного недочета, который легко исправляется по требованию преподавателя.

• оценка «хорошо» ставится, если:

 дан полный и правильный ответ на основе изученных теорий; допущены незначительные ошибки и недочеты при воспроизведении изученного материала, определения понятий, неточности при использовании научных

- терминов или в выводах и обобщениях из наблюдений и опытов; материал излагает в определенной логической последовательности;
- самостоятельно выделены главные положения в изученном материале; на основании фактов и примеров проведено обобщение, сделаны выводы, установлены внутрипредметные связи.
- допущены одна негрубая ошибку или не более двух недочетов, которые исправлены самостоятельно при требовании или при небольшой помощи преподавателя; в основном усвоил учебный материал.

• оценка «удовлетворительно» ставится, если:

- усвоено основное содержание учебного материала, но имеются пробелы в усвоении материала, не препятствующие дальнейшему изучению; материал излагает несистематизированно, фрагментарно, не всегда последовательно;
- показана недостаточная сформированность отдельных знаний и умений;
 выводы и обобщения аргументируются слабо, в них допускаются ошибки;
- допущены ошибки и неточности в использовании научной терминологии, даются недостаточно четкие определения понятий; в качестве доказательства не используются выводы и обобщения из наблюдений, фактов, опытов или допущены ошибки при их изложении;
- обнаруживается недостаточное понимание отдельных положений при воспроизведении текста учебника (записей, первоисточников) или неполные ответы на вопросы преподавателя, с допущением одной – двух грубых ошибок.

• оценка «неудовлетворительно» ставится, если:

- не усвоено и не раскрыто основное содержание материала; не сделаны выводы и обобщения;
- не показано знание и понимание значительной или основной части изученного материала в пределах поставленных вопросов или показаны слабо сформированные и неполные знания и неумение применять их к решению конкретных вопросов и задач по образцу;
- при ответе (на один вопрос) допускается более двух грубых ошибок, которые не могут быть исправлены даже при помощи преподавателя;
- не даются ответы ни на один их поставленных вопросов.

Оценка выполнения лабораторных работ проводится по следующим критериям

• оценка «отлично» ставится, если студент:

- творчески планирует выполнение работы;
- самостоятельно и полностью использует знания программного материала;
- правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу без ошибок и недочетов или допустил не более одного недочета

• оценка «хорошо» ставится, если студент:

- правильно планирует выполнение работы;
- самостоятельно использует знания программного материала;
- в основном правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу полностью, но допустил в ней: не более одной негрубой ошибки и одного недочета или не более двух недочетов.

• оценка «удовлетворительно» ставится, если студент:

- допускает ошибки при планировании выполнения работы;
- не может самостоятельно использовать значительную часть знаний программного материала;
- допускает ошибки и неаккуратно выполняет задание;
- затрудняется самостоятельно использовать литературу и информационные источники;
- правильно выполнил не менее половины работы или допустил:
 - не более двух грубых ошибок или не более одной грубой и одной негрубой ошибки и одного недочета;
 - не более двух— трех негрубых ошибок или одной негрубой ошибки и трех недочетов;
 - при отсутствии ошибок, но при наличии четырех-пяти недочетов.

• оценка «неудовлетворительно» ставится, если студент:

- не может правильно спланировать выполнение работы;
- не может использовать знания программного материала;
- допускает грубые ошибки и неаккуратно выполняет задание;
- не может самостоятельно использовать литературу и информационные источники;
- допустил число ошибок недочетов, превышающее норму, при которой может быть выставлена оценка «3»;
- если правильно выполнил менее половины работы;
- не приступил к выполнению работы;
- правильно выполнил не более 10% всех заданий.

Приложение 1

Образец оформления и содержания отчета по лабораторной работе

Лабораторная работа №					
Тема:					
Цель:					
1. Краткие теоретические сведения по изучаемой теме					
2. Отчет о выполнении задания (согласно плану, представленному в методических указаниях)					
 Выводы					
 Список литературы и информационных источников					
 Приложения					

Образец единого титульного листа к отчетам по лабораторным работам

Министерство науки и высшего образования Российской Федерации ФГАОУ ВО «Севастопольский государственный университет»

Институт информационных технологий и управления в технических системах

Кафедра «Информационные системы»

Сводный отчет по лабораторному практикуму по дисциплине «Геоинформационные системы»

No	0	Почето			
п/п	Теория	Лз	Итог	Дата	Подпись
1					
2					
3					
4					
зачет					

Выполнил: студент(ка) группы	
ФИО	

Принял: должность ФИО