Korelasi Point Biserial, Point Serial dan Product Moment

B.Wisnu Widagdo, S.T, M.Sc.IT

KORELASI POINT BI SERIAL

Untuk menghitung Korelasi variabel skala ordinal yang hanya memilki 2 katagori dengan variabel skala interval/rasio, digunakan rumusan Korelasi Biserial berikut:

$$r_p = \frac{[\overline{X}_1 - \overline{X}_2]}{S_{tot}} \sqrt{pq}$$

X1: Nilai rata-rata sampel 1 (variabel yang dipengaruhi)

p : Proporsi sampel 1

 \overline{X}_2 : Nilai rata-rata sampel 2 (variabel yang mempengaruhi)

q : Proporsi sampel 2

S₁₀₁: Standard Deviasi dari seluruh data

Jika ingin diketahui hubungan antara sebuah variabel yang datanya berbentuk interval/rasio dengan sebuah variabel lain yang datanya terdiri dari dua kategori/dikotomi (misalnya: laki-laki dan perempuan, sudah menikah dan belum menikah, desa dan kota).

AKTIF Ke Perpustakaan		TIDAK AKTIF ke Perpustakaan	
Mahasiswa	Nilai Statistika	Mahasiswa	Nilai Statistika
Α	78	F	64
В	80	G	68
С	77	Н	60
D	68	1	62
E	72	J	70
		К	66
		L	62
		М	62
		N	60
		0	60
		Р	70
		Q	54
		R	58
		S	60
		Т	60

Dari 20 mahasiswa yang diteliti terdapat : \square Proporsi mahasiswa yang AKTIF ke Perpustkaan (p) adalah 0.25 \square Nilai rata-rata UTS mahasiswa yang aktif ke Perpustakaan (\overline{X}_1) 75, \square Proporsi mahasiswa yang TIDAK AKTIF ke Perpustakaan (q) adalah 0.75 \square Nilai rata-rata UTS mahasiswa yang tidak aktif ke Perpustakaan (\overline{X}_2) 62.4 \square Nilai rata-rata seluruh mahasiswa adalah 65.55 \square Standard Deviasi dari nilai seluruh mahasiswa (\overline{S}_{tot}) 6.97 Dengan demikian, korelasi antara keaktifan di perpustakaan dengan perolehan nilai ujian statistika adalah,

$$r_p = \frac{(75 - 62.4)}{6.97} \sqrt{(\frac{5}{20})(\frac{15}{20})}$$

$$r_p = \frac{12.6}{6.97} \sqrt{0.1875} = (1.8077)(0.4330) = 0.78$$

(Hubungan positif cukup tinggi)

Persamaan yang digunakan adalah:

$$r_{pb} = \frac{\overline{Y}_1 - \overline{Y}_0}{s_Y} \sqrt{p \, q}$$

p = proporsi kategori 1

proporsi kategori o

= rataan Y untuk kategori 1

 S_{Y} = standar deviasi (simpangan baku) $Y = \sqrt{\frac{\sum Y^{2} - \frac{(\sum Y)^{2}}{n}}{\frac{n}{n}}}$

Contoh

Seorang guru ingin mengetahui hubungan antara nilai ulangan matematika dengan jenis kelamin. Dalam kasus ini, jenis kelamin mempunyai dua kategori yaitu L (1) dan P (0).

Contoh

$$p = 4/10 = 0.4$$

 $q = 6/10 = 0.6$
 $\overline{Y}_1 = 60/4 = 15$
 $\overline{Y}_0 = 150/6 = 25$
 $S_y = 6.58$

r	$\overline{Y}_1 - \overline{Y}_0$	/na
1 pb	s_{Y}	√Pq

$$=\frac{15-25}{6.58}\sqrt{(0.4)(0.6)}$$

Responden	JK (X)	Nilai matematika (Y)
1.	1	10
2.	1	15
3.	0	30
4.	0	20
5.	0	25
6.	1	15
7.	0	20
8.	0	25
9.	0	30
10.	1	20

Tanda (-) menunjukkan bahwa bila nilai ulangan matematika siswa perempuan tinggi maka siswa laki-laki mendapatkan nilai ulangan yang rendah.

Uji Signifikansi:

$$t = \frac{r_{\rm pb}\sqrt{n-2}}{\sqrt{1-r_{\rm pb}^2}},$$

 $t_{tabel} = t_{(n-2);\alpha}$

Hipotesis yang digunakan adalah:

 $H_0 : \rho = 0$

: tidak ada hubungan antara variabel Y dan variabel X

H₁ : ρ ≠ 0

: ada hubungan antara variabel Y dan variabel X

Pengertian Pearson Product-Moment (PPM)

Uji Pearson Product Moment adalah salah satu dari beberapa jenis uji korelasi yang digunakan untuk mengetahui derajat keeratan hubungan 2 variabel yang berskala interval atau rasio dan disimbolkan dengan huruf r kecil. Nilai koefisien korelasi uji pearson product moment dan makna keeratannya dalam sebuah analisis statistik atau analisis data sebagai berikut:

- Jika nilai koefisien 0-0,5 maka hubungannya lemah atau rendah
- Jika nilai koefisien 0,5-0,7 maka hubungannya sedang
- Jika nilai koefisien 0,7-1 maka hubungannya sangat kuat

Agar kita bisa menghitung uji pearson product moment secara manual, maka kenali rumus uji pearson product moment terlebih dahulu. Berikut adalah rumus uji pearson product moment:

$$= \frac{\sum XY - \frac{\sum X\sum Y}{n}}{\sqrt{\left(\sum X^{2}\right) - \frac{\left(\sum X\right)^{2}}{n}\left(\left(\sum Y^{2}\right) - \frac{\left(\sum Y\right)^{2}}{n}\right)}}$$

Terima Kasih Selamat Belajar