

# PRECISION BAROMETER AND ALTIMETER SENSOR

#### **Features**

- Supply voltage: 1.8V to 3.6V
- Pressure range: 300mbar~1200mbar
- Programmable events and interrupt controls
- Fully data compensated
- Direct Reading, compensated:
  - Pressure: 20-bit measurement (Pascal)
  - Altitude: 20-bit measurement (Meters)
  - Temperature: 20-bit measurement (Degrees Celsius)
- Altitude Resolution down to 0.1 meter
- Standby current<0.1μA</li>
- Operation temperature: -40 to +85°C
- High-speed I<sup>2</sup>C digital output interface
- Size: 6.8 x 6.2 x 3.1mm

# **Applications**

- High Precision Mobile Altimeter / Barometer
- Industrial Pressure and Temperature Sensor System
- Automotive Systems
- Personal Electronics Altimetry
- Adventure and Sports watches
- Medical Gas Control System
- Weather Station Equipment
- Indoor Navigation and Map Assist
- Heating, Ventilation, Air Conditioning



6.8×6.2×3.10mm



# **Descriptions**

The HP206N employs a MEMS pressure sensor with an I<sup>2</sup>C interface to provide accurate temperature, pressure or altitude data. The sensor pressure and temperature outputs are digitized by a high resolution 24-bit ADC. The altitude value is calculated by a specific patented algorithm according to the pressure and temperature data. Data compensation is integrated internally to save the effort of the external host MCU system. Easy command-based data acquisition interface and programmable interrupt control is available. Typical active supply current is 5.3µA per measurement-second while the ADC output is filtered and decimated by 256. Pressure output can be resolved with output in fractions of a Pascal, and altitude can be resolved in 0.1 meter. Package is surface mount with a stainless steel cap and is RoHS compliant.

#### 1. Block Diagram



Figure 1: Functional block diagram



# 2. Mechanical and Electrical Specifications

# **2.1 Pressure and Temperature Characteristics**

Table1: Pressure Output Characteristics @ VDD = 3.0V, T =  $25^{\circ}C$  unless otherwise noted

| Parameter                     | Symbol          | Conditions                        |      | Тур. | Max  | Unit |  |
|-------------------------------|-----------------|-----------------------------------|------|------|------|------|--|
| Pressure Measurement<br>Range | P <sub>FS</sub> |                                   | 300  |      | 1200 | mbar |  |
| Pressure Absolute<br>Accuracy |                 | 300 to 1100 mbar from 0°C to 50°C | -2.5 |      | +2.5 | mbar |  |
| Pressure Relative             |                 | 300 to 1100 mbar at 25°C          |      | ±1.0 |      | 1    |  |
| Accuracy                      |                 | 300 to 1100 mbar From 0°C to 50°C |      | ±1.5 |      | mbar |  |
| Max Error with Power Supply   |                 | Power supply from 1.8V to 3.6V    | -2.5 |      | +2.5 | mbar |  |
| Pressure/Altitude             |                 | Pressure Mode                     |      | 0.02 |      | mbar |  |
| Resolution                    |                 | Altimeter Mode                    |      | 0.20 |      | m    |  |
| Board Mount Drift             |                 | After solder reflow               |      | ±0.5 |      | mbar |  |
| Long Term Drift               |                 | After a period of 1 year          |      | ±2.0 |      | mbar |  |
| Reflow soldering impact       |                 | IPC/JEDEC J-STD-020C              |      | 0.5  |      | mbar |  |

# Table2: Temperature Output Characteristics @ VDD = 3.0V, $T = 25^{\circ}C$ unless otherwise noted

| Parameter                             | Symbol | Conditions                     | Min | Тур  | Max  | Unit |
|---------------------------------------|--------|--------------------------------|-----|------|------|------|
| Operation Temperature<br>Range        | Тор    |                                | -40 |      | 85   | °C   |
| Temperature Absolute                  |        | 25°C                           |     | ±2.0 |      | °C   |
| Max Error with Power                  |        | Power supply from 1.8V to 3.6V |     |      | ±0.5 | °C   |
| Temperature Resolution of Output Data |        |                                |     | 0.01 |      | °C   |

#### **2.2 Electrical Characteristics**

# Table3: DC Characteristics @VDD=3.0 V, T=25°C unless otherwise note

| Parameter                                      | Symbol   | Conditions |      | Min | Тур. | Max | Unit |
|------------------------------------------------|----------|------------|------|-----|------|-----|------|
| Operation Supply Voltage                       | $V_{DD}$ |            |      | 1.8 | 3.0  | 3.6 | V    |
| Operation Temperature                          | $T_{OP}$ |            |      | -40 |      | 85  | °C   |
|                                                |          |            | 4096 |     | 85.2 |     |      |
| Average Operation Current                      | T        |            | 2048 |     | 42.6 |     |      |
| (Pressure Measurement under One Conversion per | IDDAVP   | OSR*       | 1024 |     | 21.3 |     | μΑ   |
| Second)                                        |          |            | 512  |     | 10.7 |     |      |
| Secondy                                        |          |            | 256  |     | 5.3  |     |      |



|                                |                   |                       | 1                             |     |      |     |            |  |
|--------------------------------|-------------------|-----------------------|-------------------------------|-----|------|-----|------------|--|
|                                |                   |                       | 128                           |     | 2.7  |     |            |  |
|                                |                   |                       | 4096                          |     | 68.8 |     |            |  |
| Average Operation Current      |                   |                       | 2048                          |     | 34.4 |     |            |  |
| (Temperature Measurement       | T                 | OGD*                  | 1024                          |     | 17.2 |     | ] <b>^</b> |  |
| under One Conversion per       | $I_{DDAVT}$       | OSR*                  | 512                           |     | 8.6  |     | μΑ         |  |
| Second)                        |                   |                       | 256                           |     | 4.3  |     |            |  |
|                                |                   |                       | 128                           |     | 2.2  |     |            |  |
|                                |                   |                       | 4096                          |     | 65.6 |     |            |  |
|                                |                   |                       | 2048                          |     | 32.8 |     |            |  |
| Conversion Time of             | _                 | OSR*                  | 1024                          |     | 16.4 |     | ms         |  |
| Pressure or Temperature        | t <sub>CONV</sub> | OSR*                  | 512                           |     | 8.2  |     |            |  |
|                                |                   |                       | 256                           |     | 4.1  |     |            |  |
|                                |                   |                       | 128                           |     | 2.1  |     |            |  |
| Peak Current                   | $I_{PEAK}$        | During of             | conversion                    |     | 1.3  |     | mA         |  |
| Standby Supply Current         | $I_{DDSTB}$       | At 25°C               |                               |     |      | 0.1 | μΑ         |  |
| Serial Data Clock<br>Frequency | $f_{SCLK}$        | I <sup>2</sup> C prot | ocol, pull-up resistor of 10k |     | 100  | 400 | kHz        |  |
| Digital Input High Voltage     | $V_{IH}$          |                       |                               | 0.8 |      |     | V          |  |
| Digital Input Low Voltage      | $V_{IL}$          |                       |                               |     |      | 0.2 | V          |  |
| Digital Output High<br>Voltage | V <sub>OH</sub>   | IO = 0.5              | 5 mA                          | 0.9 |      |     | V          |  |
| Digital Output Low<br>Voltage  | V <sub>OL</sub>   | IO = 0.5 mA           |                               |     |      | 0.1 | V          |  |
| Input Capacitance              | C <sub>IN</sub>   |                       |                               |     | 4.7  |     | pF         |  |

<sup>\*</sup>OSR stands for over sampling rate

# 2.3 Absolute Maximum Rating

Table 4

| Parameter                     | Symbol           | Conditions        | Min  | Max     | Unit |
|-------------------------------|------------------|-------------------|------|---------|------|
| Overpressure                  | P <sub>MAX</sub> |                   |      | 3       | bar  |
| Supply Voltage                | $V_{DD}$         |                   | -0.3 | 3.6     | V    |
| Interface Voltage             | $V_{ m IF}$      |                   | -0.3 | VDD+0.3 | V    |
| Storage Temperature<br>Range  | $T_{ m STG}$     |                   | -50  | 150     | °C   |
| Maximum Soldering Temperature | $T_{MS}$         | 40 second maximum |      | 250     | °C   |
| ESD Rating                    |                  | Human body model  | -2   | +2      | kV   |
| Latch-up Current              |                  | At 85°C           | -100 | 100     | mA   |

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.



## 3. Function Descriptions

## 3.1 General Description

The HP206N is a high precision barometer and altimeter that measures the pressure and the temperature by an internal 24-bit ADC and compensates them by a patented algorithm. The fully-compensated values can be read out via the I<sup>2</sup>C interface by external MCU. The uncompensated values can also be read out in case the user wants to perform their own data compensation. The devices can also compute the value of altitude according to the measured pressure and temperature.

Furthermore, the device allows the user to setup the temperature, pressure and altitude threshold values for various events. Once the device detects that a certain event has happened, a corresponding interrupt will be generated and sent to the external MCU. Also, multiple useful interrupt options are available to be used by the user.

# **3.2 Factory Calibration**

Every device is individually factory calibrated for sensitivity and offset for both of the temperature and pressure measurements. The trim values are stored in the on-chip 128-Byte Non-Volatile Memory (NVM). In normal situation, further calibrations are not necessary to be done by the user.

# 3.3 Automatic power on initialization

Once the device detects a valid VDD is externally supplied, an internal Power-On-Reset (POR) is generated and the device will automatically enter the power-up initialization sequence. After that the device will enter the sleep state. Normally the entire power-up sequence consumes about 400 us.

The user can scan a DEV\_RDY bit in the INT\_SRC register in order to know whether the device has finished its power-up sequence. This bit appears to 1 when the sequence is done. The device stays in the sleep state unless it receives a proper command from the external MCU. This will help to achieve minimum power consumptions.

# 3.4 Sensor Output Conversion

For each pressure measurement, the temperature is always being measured prior to pressure measurement automatically, while the temperature measurement can be done individually. The conversion results are stored into the embedded memories that retain their contents when the device is in the sleep state.

The conversion time depends on the value of the OSR parameter sent to the device within the ADC\_CVT command. Six options of the OSR can be chosen, range from 128, 256 ... to 4096. The below table shows the conversion time according to the different values of OSR:



**Table 5: Conversion Time VS OSR** 

| OSR  | Conversion Time (ms) |                                           |  |  |  |  |  |  |
|------|----------------------|-------------------------------------------|--|--|--|--|--|--|
|      | Temperature          | Temperature and<br>Pressure (or Altitude) |  |  |  |  |  |  |
| 128  | 2.1                  | 4.1                                       |  |  |  |  |  |  |
| 256  | 4.1                  | 8.2                                       |  |  |  |  |  |  |
| 512  | 8.2                  | 16.4                                      |  |  |  |  |  |  |
| 1024 | 16.4                 | 32.8                                      |  |  |  |  |  |  |
| 2048 | 32.8                 | 65.6                                      |  |  |  |  |  |  |
| 4096 | 65.6                 | 131.1                                     |  |  |  |  |  |  |

The higher OSR will normally achieve higher measuring precision, but consume more time and power.

The conversion results can be compensated or uncompensated. The user can enable/disable the compensation by setting the PARA register before performing the conversions.

# 3.5 Altitude Computation

The device can compute the altitude according to the measured pressure and temperature. The altitude value is updated and available to read as soon as the temperature and pressure measurement is done.

#### 4. Access Modes & Commands

#### **4.1 Operation Flow**

During each power-up/reset cycle, the device will only perform one calibration. After that it will enter the SLEEP state waiting for any incoming commands. It will take actions after receiving different proper commands, and re-enters the SLEEP state when it finishes the jobs.





#### 4.2 Command

The Command Set (Table 6) allows the user to control the device to perform the measuring, results reading and the miscellaneous normal operations.

#### **4.2.1 Soft Reset the Device**

# SOFT\_RST (0x06)

Once the user issues this command, the device will immediately be reset no matter what it is working on. Once the command is received and executed, all the memories (except the NVM) will be reset to their default values following by a complete power-up sequence to be automatically performed.

# 4. 2.2 OSR and Channel Setting

# ADC\_CVT (010, 3-bit OSR, 2-bit CHNL)

This command let the device to convert the sensor output to the digital values with or without compensation depends on the PARA register setting. The 2-bit channel (CHNL) parameter tells the device the data from which channel(s) shall be converted by the internal ADC. The options are shown below:

00: sensor pressure and temperature channel

10: temperature channel

The 3-bit OSR defines the decimation rate of the internal digital filter as shown below:

000: OSR = 4096 011: OSR = 512 001: OSR = 2048 100: OSR = 256 010: OSR = 1024 101: OSR = 128

Setting the CHNL bits to the value of 01 or 11, or the OSR bits to the values of 110 or 111 will lead to failure of conversion.



## 4. 2.3 Read the Temperature and Pressure Values

#### **READ\_PT** (0x10)

The temperature data is arranged as 20-bit 2's complement format and the unit is in degrees C. Temperature value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the temperature value. The user shall convert this 20-bit 2's complement binary value into an integer, and then divide the integer by 100 to obtain the final result.

The pressure data is arranged as 20-bit 2's complement format and the unit is in Pascal. Pressure value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the pressure value. The user shall convert this 20-bit unsigned binary value into an integer, and then divide the integer by 100 to obtain the final result.

#### For Example: (Temperature)

| Hex value | OUT_T_MSB | OUT_T_CSB | OUT_T_LSB | Dec value |
|-----------|-----------|-----------|-----------|-----------|
| 0x000A5C  | 0x00      | 0x0A      | 0x5C      | 26.52     |
| 0xFFFC02  | 0xFF      | 0xFC      | 0x02      | -10.22    |

# **ForExample :** (Unsigned data pressure)

| Hex value | OUT_ P _MSB   | OUT_ P_CSB | OUT_ P_LSB | Dec value |
|-----------|---------------|------------|------------|-----------|
| 0x018A9E  | 0x018A9E 0x01 |            | 0x9E       | 1010.22   |
|           |               |            |            |           |

# 4. 2.4 Read the Temperature and Altitude Values

#### $READ_AT (0x11)$

The temperature data is arranged as 20-bit 2's complement format and the unit is in degrees C. Temperature value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the temperature value. The user shall convert this 20-bit 2's complement binary value into an integer, and then divide the integer by 100 to obtain the final result.

The altitude data is arranged as 20-bit 2's complement format and the unit is in meters. Altitude value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the altitude value. The user shall convert this 20-bit unsigned binary value into an integer, and then divide the integer by 100 to obtain the final result.



# For Example: (Altitude)

| Hex value | OUT_A_MSB | OUT_A_CSB | OUT_A_LSB | Dec value |
|-----------|-----------|-----------|-----------|-----------|
| 0x001388  | 0x00      | 0x13      | 0x88      | 50.00     |
| 0xFFEC78  | 0xFF      | 0xEC      | 0x78      | -50.00    |

#### 4. 2.5 Read the Pressure Value

#### $READ_P(0x30)$

The pressure data is arranged as 20-bit 2's complement format and the unit is in Pascal. Pressure value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the pressure value. The user shall convert this 20-bit unsigned binary value into an integer, and then divide the integer by 100 to obtain the final result.

#### 4. 2.6 Read the Altitude Value

# **READ\_A (0x31)**

The altitude data is arranged as 20-bit 2's complement format and the unit is in meters. Altitude value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the altitude value. The user shall convert this 20-bit unsigned binary value into an integer, and then divide the integer by 100 to obtain the final result.

## 4. 2.7 Read the Temperature Value

#### $READ_T (0x32)$

The temperature data is arranged as 20-bit 2's complement format and the unit is in degrees C. Temperature value is stored in all 24 bits of OUT\_T\_MSB, OUT\_T\_CSB and OUT\_T\_LSB. The 4 most significant bits of the 24-bit data is useless, while the 20 least significant bits represent the temperature value. The user shall convert this 20-bit 2's complement binary value into an integer, and then divide the integer by 100 to obtain the final result.

# 4. 2.8 Re-calibrate the Internal analog Blocks

#### ANA CAL (0x28)

This command allows the user to re-calibrate the internal circuitries in a shorter time compare to soft resetting the device. It is designed for the applications where the device needs to work in a rapidly changed environment. In those environments, since the temperature and supply voltage may have changed significantly since the first power-up sequence during which the calibrations have been performed, the circuitries may



not adept to the world as better as they were just calibrated. Therefore, in this case, recalibrating the circuitries before performing any sensor conversions can give a more accurate result. Once the device received this command, it calibrates all the circuitries and enters the sleep state when it finishes. The user can simply send this command to the device before sending the ADC\_CVT command. However, it is not necessary to use this command when the environment is stable.

# 4. 2.9 Read the Control Registers

# **READ\_REG** (0x80+ register address)

This command allows the user to read out the control registers.

# 4. 2.10 Write the Control Registers

# WRITE\_REG (0xc0 + register address)

This command allows the user to write in the control register

**Table6: The Command Set** 

| Name          | Hex Code | Binary Code      | Descriptions                             |  |  |
|---------------|----------|------------------|------------------------------------------|--|--|
| SOFT_RST      | 0x06     | 0000 0110        | Soft reset the device                    |  |  |
| ADC_CVT       | NA       | 010_OSR_chn<br>1 | Perform ADC conversion                   |  |  |
| READ_PT       | 0x10     | 0001 0000        | Read the temperature and pressure values |  |  |
| READ_AT       | 0x11     | 0001 0001        | Read the temperature and altitude values |  |  |
| READ_P        | 0x30     | 0011 0000        | Read the pressure value only             |  |  |
| READ_A        | 0x31     | 0011 0001        | Read the altitude value only             |  |  |
| READ_T        | 0x32     | 0011 0010        | Read the temperature value only          |  |  |
| ANA_CAL       | 0x28     | 0010 1000        | Re-calibrate the internal analog blocks  |  |  |
| READ_REG      | NA       | 10_addr          | Read out the control registers           |  |  |
| WRITE_RE<br>G | NA       | 11_addr          | Write in the control registers           |  |  |



#### 5. I<sup>2</sup>C Interface

The I<sup>2</sup>C interface is fully compatible to the official I<sup>2</sup>C protocol specification. All the data are sent starting from the MSB. Successful communication between the host and the device via the I<sup>2</sup>C bus can be done using the four types of protocol introduced below.

# 5.1 I<sup>2</sup>C Specification

**Table7: I<sup>2</sup>C Slave Timing Values** 

|                                                |                     |                                                               | I <sup>2</sup> C |      |         |      |
|------------------------------------------------|---------------------|---------------------------------------------------------------|------------------|------|---------|------|
| Parameter                                      | Symbol              | Condition                                                     | Min              | Тур. | Ma<br>x | Unit |
| SCL Clock Frequency                            | $S_{CL}$            | $\begin{array}{c} Pull\text{-}up = 10 \\ k\Omega \end{array}$ | 0                |      | 400     | KHz  |
| Bus free time between STOP and START condition | $t_{ m BUF}$        |                                                               | 1.5              |      |         | μs   |
| Repeated START Hold Time                       | t <sub>HD.STA</sub> |                                                               | 0.6              |      |         | μs   |
| Repeated START Setup Time                      | t <sub>SU.STA</sub> |                                                               | 0.6              |      |         | μs   |
| STOP Condition Setup Time                      | t <sub>SU.STO</sub> |                                                               | 0.6              |      |         | μs   |
| SDA Data Hold Time                             | t <sub>HD.DAT</sub> |                                                               | 100              |      |         | ns   |
| SDA Setup Time                                 | $t_{SU.DAT}$        |                                                               | 100              |      |         | ns   |
| SCL Clock Low Time                             | $t_{LOW}$           |                                                               | 1.5              |      |         | μs   |
| SCL Clock High Time                            | t <sub>HIGH</sub>   |                                                               | 0.6              |      |         | μs   |
| SDA and SCL Rise Time                          | $t_{R}$             |                                                               | 30               |      | 500     | ns   |
| SDA and SCL Fall Time                          | t <sub>F</sub>      |                                                               | 30               |      | 500     | ns   |



# 5.2 I<sup>2</sup>C Device and Register Address

The I<sup>2</sup>C device address is shown below. The LSB of the device address is corresponding to address 0XEC (write) and 0XED (read).

| A7 | <b>A6</b> | A5 | A4 | A3 | A2 | <b>A1</b> | W/R |
|----|-----------|----|----|----|----|-----------|-----|
| 1  | 1         | 1  | 0  | 1  | 1  | 0         | 0/1 |



#### 5.3 I<sup>2</sup>C Protocol

# The 1st TYPE: the host issuing a single byte command to the device

The host shall issue the Device Address (ID) followed by a Write Bit before sending a Command byte. The device will reply an ACK after it received a correct SOFT\_RST command.



# The 2nd TYPE: the host writing a register inside the device

The host shall issue the Device Address (ID) followed by a Write Bit before sending a command byte and a data byte. This format only applies while the user wants to send the WRITE\_REG command.



# The 3rd TYPE: the host reading a register from the device

In this activity there are two frames that are sent separately. The first frame is to send the READ\_REG command which contains a 2-bit binary number of 10 followed by a 6-bit register address. The format of the first frame is identical to the 1<sup>st</sup> type activity. In the second frame, the device will send back the register data after receiving the correct device address followed by a read bit. This format only applies while the user wants to use the READ\_REG command.

|   | 1 | 1 | 1 | 0    | 1    | 1      | 0        | 0 |   | 0     | 1             | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |
|---|---|---|---|------|------|--------|----------|---|---|-------|---------------|---|---|---|---|---|---|---|---|--|--|
| S |   |   | D | evic | e Ad | ldress | <b>\</b> | V | V | A     | Command       |   | A |   | P |   |   |   |   |  |  |
|   | 1 | 1 | 1 | 0    | 1    | 1      | 0        | 1 | 0 | 1     | 1 0 0 1 0 1 1 |   |   | 1 | 0 | 1 |   |   |   |  |  |
| S |   |   | D | evic | e Ad | dress  |          | R | A | A D ( |               |   |   | N | P |   |   |   |   |  |  |



# The 4th TYPE: the host reading the 3-byte or 6-byte ADC data from the device

In this activity there are two frames that are sent separately. The first frame is identical to sending a single command, which can be one of the conversion result reading commands. In the second frame, the device will send back the ADC data (either 3 bytes or 6 bytes depending on the commands) after receiving the



|   | 1 | 1 | 1  | 0    | 1   | 1   | 0   | 1 | 0 | 0 | 1 | 0 | 0   | 0  | 1  | 1   | 0   | 0 |
|---|---|---|----|------|-----|-----|-----|---|---|---|---|---|-----|----|----|-----|-----|---|
| S |   |   | De | vice | e A | ddr | ess | R | A |   |   | D | ata | Ву | te | 6 o | r 3 | A |



# **Bit Description**

: from Host

: from Slave

S : Start BitP : Stop Bit

W: Write

R : Read A : ACK

N: NACK



# 6. Control Registers

The control registers allow the user to set the threshold values for various event detections, configure the interrupt setting, and enable/disable the data compensation. It is recommended for the user to set these registers to the desired values before performing the conversions or any other command-based operations. The following is a table of all the control registers. He registers from 0x00 to 0x0A are designed for the user to setup the parameters (offset and thresholds) for pressure (or altitude) and temperature event detections. The registers from 0x0B to 0x0D are used for interrupt controls. The register of 0x0E is dedicated for switching on/off the sensor output compensation function inside the device.

**Table 8: Control Registers List** 

| Addr | Name            | Default | Bit 7          | Bit 6          | Bit 5          | Bit 4         | Bit 3           | Bit 2          | Bit 1          | Bit 0         |
|------|-----------------|---------|----------------|----------------|----------------|---------------|-----------------|----------------|----------------|---------------|
| 0x00 | ALT_OFF_<br>LSB | 0x00    |                | ALT_OFF [7:0]  |                |               |                 |                |                |               |
| 0x01 | ALT_OFF_<br>MSB | 0x00    |                | ALT_OFF [15:8] |                |               |                 |                |                |               |
| 0x02 | PA_H_TH_<br>LSB | 0x00    |                |                |                | PA_           | _H_TH [7:0]     |                |                |               |
| 0x03 | PA_H_TH_<br>MSB | 0x00    |                |                |                | PA_           | Н_ТН [15:8]     |                |                |               |
| 0x04 | PA_M_TH_<br>LSB | 0x00    |                |                |                | PA_           | _M_TH [7:0]     |                |                |               |
| 0x05 | PA_M_TH_<br>MSB | 0x00    |                |                |                | PA_           | M_TH [15:8]     |                |                |               |
| 0x06 | PA_L_TH_<br>LSB | 0x00    |                | PA_L_TH [7:0]  |                |               |                 |                |                |               |
| 0x07 | PA_L_TH_<br>MSB | 0x00    | PA_L_TH [15:8] |                |                |               |                 |                |                |               |
| 0x08 | T_H_TH          | 0x00    |                | T_H_TH [7:0]   |                |               |                 |                |                |               |
| 0x09 | T_M_TH          | 0x00    |                |                |                | T_            | M_TH [7:0]      |                |                |               |
| 0x0A | T_L_TH          | 0x00    |                |                |                | T_            | L_TH [7:0]      |                |                |               |
| 0x0B | INT_EN          | 0x00    | Reserve<br>d   | Reserved       | PA_RDY_<br>EN  | T_RDY_E<br>N  | PA_TRAV_E<br>N  | T_TRAV_E<br>N  | PA_WIN_E<br>N  | T_WIN_E<br>N  |
| 0x0C | INT_CFG         | 0x00    | Reserve<br>d   | PA_MOD<br>E    | PA_RDY_<br>CFG | T_RDY_C<br>FG | PA_TRAV_C<br>FG | T_TRAV_C<br>FG | PA_WIN_C<br>FG | T_WIN_C<br>FG |
| 0x0D | INT_SRC         | 0x00    | TH_ER<br>R     | DEV_RD<br>Y    | PA_RDY         | T_RDY         | PA_TRAV         | T_TRAV         | PA_WIN         | T_WIN         |
| 0x0E | INT_DIR         | 0x00    | CMPS_<br>EN    | Reserved       | Reserved       | Reserved      | P_TRAV_DIF      | T_TRAV_D<br>IR | P_WIN_DI<br>R  | T_WIN_D<br>IR |
| 0X0F | PARA            | 0X80    | CMPS_<br>EN    | Reserved       | Reserved       | Reserved      | Reserved        | Reserved       | Reserved       | Reserved      |



## **6.1 Setup the Altitude Offset Compensation Parameter**

#### 6.1.1 ALT\_OFF\_LSB, ALT\_OFF\_MSB - (RW)

The two registers form the 16-bit value of ALT\_OFF, which saves the altitude offset data used to compensate the altitude calculation. The data is in 2's complement format and the unit is in centimeter. The users need to set these registers if they need to use the altitude computation function of the device.

Normally, the values of the local average standard atmospheric pressure (Plocal) may vary in different places around the world. The varying range is from 1000 mbar to 1026 mbar. The device requires the user to setup the ALT\_OFF to remove the offset. The following table is provided to assist to finding the value of desired altitude offset.

#### Plocal has unit in mbar, Aoffset has unit in meter

| Plocal  | 1000    | 1001    | 1002   | 1003   |
|---------|---------|---------|--------|--------|
| Aoffset | -111.18 | -102.73 | -94.29 | -85.85 |
|         | 1       |         |        |        |
| Plocal  | 1004    | 1005    | 1006   | 1007   |
| Aoffset | -77.43  | -69.02  | -60.62 | -52.23 |
|         | •       | •       | •      | •      |
| Plocal  | 1008    | 1009    | 1010   | 1011   |
| Aoffset | -43.84  | -35.47  | -27.11 | -18.76 |
|         | •       |         |        |        |
| Plocal  | 1012    | 1013    | 1014   | 1015   |
| Aoffset | -10.41  | -2.08   | 6.24   | 14.56  |
|         | •       |         |        |        |
| Plocal  | 1016    | 1017    | 1018   | 1019   |
| Aoffset | 22.86   | 31.15   | 39.44  | 47.71  |
|         |         |         |        |        |
| Plocal  | 1020    | 1021    | 1022   | 1023   |
| Aoffset | 55.98   | 64.23   | 72.48  | 80.71  |
|         | •       | ·       | ·      | ·      |
| Plocal  | 1024    | 1025    | 1026   |        |
| Aoffset | 88.94   | 97.16   | 105.36 |        |

If the users find out that the value of Plocal is an integer, they can directly obtain the corresponding altitude offset value in the above table; if the Plocal has decimal numbers and the value is larger than P1 and smaller than P2 (P1 and P2 are two adjacent pressure values in the table), the user shall first obtain the corresponding altitude offset value A1 and A2 in the table, than use either of the following two formulas to calculate the desired altitude offset value A:

$$A = A_1 + 8.326 \times (Plocal - P_1)$$
, or  $A = A_2 - 8.326 \times (P_2 - Plocal)$ 



For example, the Plocal is 1016.4 mbar, which is between 1016 mbar (P1) and 1017 mbar (P2). Looking up the table, A1 is 22.86 m and A2 is 31.15 m. Thus:

$$A = 22.86 + 8.326 \text{ x} (1016.4 - 1016) = 26.19 \text{ m}, \text{ or } A = 31.15 - 8.326 \text{ x} (1017 - 1016.4) = 26.15 \text{ m}$$

Either of the results is acceptable. After obtaining the value of A, no matter by looking up the table directly or by calculation, the user shall multiply the A by 100 in order to convert the unit from meter to centimeter.

Finally, convert the result to a 2's complement number to obtain ALT\_OFF, and fill it into the two registers. The following table shows 2 examples with the calculated altitude offsets and their corresponding values to fill into the two registers.

## For Example:

| Offset    | Hex Value | ALT_OFF_MSB | ALT_OFF_LSB |
|-----------|-----------|-------------|-------------|
| 50.02 m   | 0x138A    | 0x13        | 0x8A        |
| -100.05 m | OXD8EB    | 0xD8        | 0xEB        |

#### **6.2 Setup the Events Detection Parameters**

#### **6.2.1** PA\_H\_TH\_LSB, PA\_H\_TH\_MSB - (RW)

The two registers form the 16-bit value of PA\_H\_TH which saves the pressure (or altitude) upper bound threshold for event detection. When the PA\_MODE bit in the INT\_CFG register is set to 0, the contents stored in these registers are the pressure thresholds. Its value should be a 16-bit unsigned number and its unit is in 0.02 mbar. When setting the pressure thresholds, the user must divide the actual thresholds by 0.02, and then convert the result to a 2's complement number. When the PA\_MODE bit is set to 1, the contents stored in these registers are the altitude thresholds. Its value should be a 16-bit 2's complement number and its unit is in meter.

# For Example:

| PA_MODE = 0 (pressure, unit in 0.02 mbar) |                                       |             |             |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------|-------------|-------------|--|--|--|--|--|--|
| Threshold                                 | Hex Value                             | PA_H_TH_MSB | PA_H_TH_LSB |  |  |  |  |  |  |
| 800.06 mbar                               | 0x9C43                                | 0x9C        | 0x43        |  |  |  |  |  |  |
| 900 mbar                                  | 0xAFC8                                | 0xAF        | 0xC8        |  |  |  |  |  |  |
| PA_MODE = 1 (altit                        | PA_MODE = 1 (altitude, unit in meter) |             |             |  |  |  |  |  |  |
| Threshold                                 | Hex Value                             | PA_H_TH_MSB | PA_H_TH_LSB |  |  |  |  |  |  |
| 5000 m                                    | 0x1388                                | 0x13        | 0x88        |  |  |  |  |  |  |

These examples are also applied to setting the pressure (or altitude) middle and lower bound threshold registers as introduced below.



#### **6.2.2** PA\_M\_TH\_LSB, PA\_M\_TH\_MSB - (RW)

The two registers form the 16-bit value of PA\_M\_TH which saves the pressure (or altitude) middle threshold for event detection. Similar to the PA\_H\_TH, the meaning of their values and the data formats are selected by the PA\_MODE bit.

#### 6.2.3 PA\_L\_TH\_LSB, PA\_L\_TH\_MSB - (RW)

The two registers form the 16-bit value of PA\_L\_TH which saves the pressure (or altitude) lower bound threshold for event detection. Similar to the PA\_H\_TH, the meaning of their values and the data formats are selected by the PA\_MODE bit.

#### 6.2.4 T\_H\_TH - (RW)

This register stores the 8-bit temperature threshold for event detection. The data is in 2's complement format and the unit is in °C.

## For Example:

| Threshold | Hex Value | T_H_TH |
|-----------|-----------|--------|
| 45°C      | 0x2D      | 0x2D   |
| -20°C     | 0xEC      | 0xEC   |

These examples are also applied for setting the temperature middle and lower bound threshold registers as introduced below.

#### 6.2.5 T\_M\_TH - (RW)

This register stores the 8-bit temperature middle threshold for event detection. The data is in 2's complement format and the unit is in °C.

#### 6.2.6 T\_L\_TH - (RW)

This register stores the 8-bit temperature lower bound threshold for event detection. The data is in 2's complement format and the unit is in °C.

#### **6.2.7 Improper Setting of Thresholds**

Improperly setting the thresholds, such as setting the lower bound threshold to be larger than the upper bound threshold, will lead to unexpected behavior of the device. It is recommended for the user to check the status of the TH\_ERR bit in the INT\_SRC register after setting the thresholds into the device. Logic 1 of this bit indicates that improper setting of the thresholds occurs.



## **6.3** Configure the Interrupts

There are 6 interrupts that can be generated by the device. They are:

#### **6.3.1 PA\_RDY**

Indicates that the pressure (or altitude) measurement is done and the result is ready to read.

#### 6.3.2 T\_RDY

Indicate that the temperature measurement is done and the result is ready to read.

#### **6.3.3 PA TRAV**

Indicate that the pressure (or altitude) value has traversed the middle threshold during the last measurement.

#### **6.3.4** T\_TRAV

Indicate that the temperature value has traversed the middle threshold during the last measurement.

#### **6.3.5 PA\_WIN**

Indicate that the pressure (or altitude) value locates outside the pre-defined window (the value in between the upper bound and lower bound thresholds) during the last measurement.

#### 6.3.6 T\_WIN

Indicate that the temperature value locates outside the pre-defined window (the value in between the upper bound and lower bound thresholds) during the last measurement.

The interrupt names prefixed by a 'PA' relate to the pressure (or altitude) measurement. The interrupt names prefixed by a 'T' relate to the temperature measurement. These interrupts are all active-high and will remain high until the interrupt-clearing conditions happen. The interrupt-clearing conditions are that the device has received a new ADC result-reading command or a new ADC conversion command. There are three registers available for the interrupt controls as shown below.

#### 6.3.7 INT\_EN - (RW)

The INT\_EN register allows the user to disable/enable each of the 6 interrupts (0: disable, 1: enable). When the users need enable the traversal or window interrupt, they must also enable the corresponding PA\_RDY\_EN or T\_RDY\_EN bit.



#### 6.3.8 INT\_CFG - (RW)

The INT\_CFG register allows the user to select whether to output the interrupts from the INT1 pin (0: do not output, 1: output). The register also contains a control bit 'PA\_MODE' that selects whether the event detection parameters and the interrupts registers prefixed by a 'PA\_' corresponds to the pressure or the altitude measurement (0: pressure, 1: altitude).

# 6.3.9 INT\_SRC - (Read-only)

The INT\_SRC register contains the interrupt flags that allow the user to know the interrupts status, as well as a device status bit 'DEV\_RDY' that tells whether the device is ready for access or not. The device is ready when it is in the sleep state and is not performing the power-up sequence, the data conversions, and any other command-based operations. The external MCU shall only access to the device while the device is ready (DEV\_RDY = 1).

If the INT\_CFG bit is set to 0 while the INT\_EN bit is set to 1, the corresponding interrupt flag will appear in the INT\_SRC register but the interrupt will not be output to the INT1 pin.

#### **6.3.10 INT\_DIR - (Read-only)**

The INT\_DIR register allows the user to check the details of the traversal or window interrupt events.

For the T\_WIN\_DIR and the P\_WIN\_DIR status bits, when the window interrupts happen, if the temperature or pressure value is above the window, the corresponding status bit is read as 1; if the value is below the window, the status bit is read as 0.

For the T\_TRAV\_DIR and the P\_TRAV\_DIR status bits, when the traversal interrupts happen, if the temperature, pressure or altitude value has been rising from low to high, the corresponding status bit is read as 1; if the value has been falling from high to low, the status bit is read as 0.

Figure 2 shows how the 6 interrupts sources are controlled and mapped to the 2 interrupt output pins. It can be seen that, the "traversal" and "window" interrupts can only be set high while the corresponding "ready" interrupts are enabled and set high.

On the other hand, the status of the TH\_ERR, DEV\_RDY and the four INT\_DIR bits are only readable via registers without interrupt signals output to the pins.





Figure 2: Interrupts mapping diagram

#### 6.3.11 INTERRUPTS GENERATION

The T related interrupts are generated as soon as the temperature conversion is finished. This means that once the external MCU detect the T interrupts, the temperature conversion result is valid to read.

The PA related interrupts are generated as soon as the pressure conversion is finished. This means that once the external MCU detect the PA interrupts, the pressure conversion result is valid to read.

However, an additional 5 us is required to compute the altitude based on the temperature and pressure conversion results. Therefore, after detecting the PA interrupts, the MCU must wait another 5 us before reading the A computation result.

#### 6.3.12 INTERRUPTS CLEARING

The ADC\_CVT, READ\_PT or READ\_AT command will clear the T\_RDY and PA\_RDY interrupts. Once the 'RDY' interrupt is cleared, the 'WIN' and 'TRAV' interrupts will be cleared at the same time. However, the 'WIN', 'TRAV' and 'DIR' register bits will remain their values until a new conversion is done.

The READ\_P or READ\_A command will only clear the PA\_RDY interrupt. The T related interrupt and register bits will not be changed by these 2 commands.

The READ\_T command will only clear the T\_RDY interrupt. The PA related interrupt and register bits will not be changed by this command.

The SOFT\_RST will clear all the interrupts as well as the related register bits.

The interrupts are cleared once the device has confirmed a valid command is received. However, this does not necessarily mean that an interrupt must go low after a command is fully transmitted. For example, while an interrupt is being cleared by an ADC reading command, it goes low while the data is being sent back from the device to the external MCU.



## **6.4 Enable the Compensation**

# PARA - (RW)

This register has only one valid bit of CMPS\_EN. The user can use this bit to determine whether to enable the data compensation during the conversion process (0: disable, 1: enable). If it is enabled, the 24-bit or 48-bit data read out by the commands are fully compensated. If it is disabled, the data read out are the raw data output.

# 6. Typical Application Circuit



Figure3: Typical application circuit



# 7. Package Information



Figure4: HP206N package outline

Notes:

Mechanical dimension unit: mm General tolerance: ±0.10mm

# 9. PIN Configuration

**Table.9** Pin Descriptions

| Pin | Name | I/O | Function                                        |
|-----|------|-----|-------------------------------------------------|
| 1   | GND  | I   | Ground                                          |
| 2   | VDD  | I   | power supply                                    |
| 3   | INT1 | О   | Interrupt 1 output pin                          |
| `4  | NC   | -   | NO Connect                                      |
| 5   | SDA  | Ю   | I <sup>2</sup> C serial bi-directional data pin |
| 6   | SCL  | I   | I <sup>2</sup> C serial clock input pin         |



**BOTTOM VIEW** 

# Shenzhen Hope Microelectronics Co., Ltd.

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district,

Nanshan, Shenzhen, GD, P.R. China

Tel: +86-755-82973805 Sales: sales@hoperf.com Website: www.hoperf.com