Aum Amriteshwaryai Namah

15CSE363 - Principles of Digital Image Processing

Assignment 2

- Q1. Estimate the transformation function required for transforming the image 'inputq1.jpeg' to match the image 'transformed.jpeg'.
 - a) Plot/Draw the transformation function
 - b) Apply the transformation function and store the resulting image as 'outputq1.jpeg'
- Q2. Consider the input image: 'logndlinear.jpg'
 - a) The general form of the log transformation is $s = c \log(1 + r)$. Apply this transformation to the input image such that
 - C = 255/(log (1 + m)), where m is the maximum pixel value in the image Store the result as 'logq2.jpg'
 - b) Apply the following transformation function to the input image

Set the values of r1, s1, r2 and s2 as:

r1 = 70

s1 = 0

r2 = 140

s2 = 255

- Q3. Perform shading correction on the image 'ChessBoardGrad.png'. Store the estimate of shading error as 'shading.png' and corrected image as 'corrected.png'
- Q4. Consider the input image: 1200px-Monarch_In_May.jpg. Convert this image to grayscale and apply the following transformations:
 - a) Laplacian
 - b) Laplacian of Gaussian (gaussian filter of size 3x3)

Save and compare the resulting images. Comment on the differences

Q5. Consider the input images: 'ChessBoardGrad.png' and 'Lenna.png' Apply the following to both the images:

- a) Laplacian kernel
- b) Sobel kernel in x direction
- c) Sobel kernel in y direction
- d) Canny edge detection

Save and compare the resulting images. Comment on the differences

- Q6. Consider the input image: 'lowContrast.png'
 - a) Plot its histogram and save the plot
 - b) Perform histogram equalisation and save the equalised image
 - c) Plot the equalised histogram and save the plot
- Q7. Compute Gx and Gy, gradients of the image by performing the convolution of Sobel kernels with the following images:

0	0	0	0	10
0	0	0	10	10
0	0	10	10	10
0	10	10	10	10
10	10	10	10	10
Х				
	0 0 0	0 0 0 0 0 10 10 10	0 0 0 0 0 10 0 10 10 10 10 10	0 0 0 10 0 0 10 10 0 10 10 10 10 10 10 10

Note: Use border values to extend the image

Q8. Compute the convolution of image I with the Laplacian kernel. Use border values to extend the image

- 10					
	0	0	0	0	10
	0	0	0	10	10
	0	0	10	10	10
	0	10	10	10	10
У	10	10	10	10	10
	Х		I		

Apply both these kernels:

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1