Лабораторная работа 2

Задача о погоне

Греков Максим Сергеевич

Содержание

1	Цель работы		
2	Выг	олнение лабораторной работы	5
	2.1	Постановка задачи	
		2.1.1 Задача о погоне	5
	2.2	Решение задачи	5
3	Выв	зод	10

List of Figures

2.1	Положение катера и лодки в начальный момент времени
2.2	Разложение скорости катера на тангенциальную и радиальную со-
	ставляющие
2.3	График: 1 случай
2.4	График: 2 случай

1 Цель работы

Рассмотреть задачу о погоне.

Освоить базовые навыки работы с высокоуровневым языком программирования, созданным для математических вычислений - Julia.

Научиться с помощью него решать ДУ, строить графики, что позволит проектировать математичесие модели.

2 Выполнение лабораторной работы

2.1 Постановка задачи

2.1.1 Задача о погоне

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19,1 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,2 раза больше скорости браконьерской лодки.

Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

2.2 Решение задачи

- 1. Принимем за t_0 = 0, x_0 = 0 место нахождения лодки браконьеров в момент обнаружения, $x_0 = k$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров x_0 ($\theta=x_0=0$), а полярная ось r проходит через точку нахождения катера береговой охраны (рис. 2.1) нахождения катера

береговой охраны.

Figure 2.1: Положение катера и лодки в начальный момент времени

- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/2v (во втором случае x+k/2v). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k - x}{nv}$$

$$\frac{x}{v} = \frac{k+x}{nv}$$
.

Отсюда мы найдем два значения $x_1=\frac{19.1}{6.2}$ и $x2=\frac{19.1}{4.2}$, задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v . Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_{τ} - тангенциальная скорость.

Радиальная скорость - это скорость, с которой катер удаляется от полюса

$$v_r = \frac{dr}{dt},$$

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса

$$v_{\tau} = r * \frac{d\theta}{dt}$$

Так как v_r = v_l , то $\frac{dr}{dt} = v_l$.

Из рисунка (учитывая, что радиальная скорость равна v) видно (рис. 2.2), что $v_{ au}=\sqrt{4v^2-v^2}=\sqrt{3}v.$

Figure 2.2: Разложение скорости катера на тангенциальную и радиальную составляющие

6. Решение задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ \frac{d\theta}{dt} * r = \sqrt{3}v \end{cases}$$

С начальными условиями $egin{cases} heta_0 = 0 & \text{и} \ r_0 = 6.2 \end{cases} egin{cases} heta_1 = -\pi \ r_1 = 4.2 \end{cases}.$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{3}}.$$

При написании программы на языке программирования Julia, получили следующие результаты:

Figure 2.3: График: 1 случай

Figure 2.4: График: 2 случай

3 Вывод

Рассмотрели задачу о погоне.

Освоили базовые навыки работы с высокоуровневым языком программирования, созданным для математических вычислений - Julia.

Научились с помощью него решать ДУ, строить графики.