4. Перемикач струму.

Перемикачем струму називають симетричну схему (рис. 5.5), в якій заданий струм I_0 протікає через ту чи іншу її вітку в залежності від потенціалу U_{ex} на одному з входів. На другому вході підтримується деяка незмінна опорна напруга U_{on} .

Опорна напруга U_{on} рівна проміжному значенню між напругами високого (В) і низького (Н) рівнів вихідної напруги.

Так як емітери транзисторів з'єднані між собою, то спад напруги U_e прикладається одночасно до баз T1 і T2.

Рис. 5.5. Перемикач струму: а – електрична схема; б – часова діаграма його роботи.

Якщо на вхід перемикача подано високий рівень (В), тобто $U_{ex} = U_{on} + \delta$, то транзистор Т1 буде відкритим, оскільки на його базі буде пряма напруга $U_{\delta e\ l} = U_{ex} - U_e > 0$, а транзистор Т2 — закритий ($U_{\delta e\ 2} = U_{on} - U_e < 0$). Кожна з віток перемикача являє собою інвертор, тому на виході $U_{eux\ 1}$ буде низький потенціал, на виході $U_{eux\ 2}$ — високий.

Якщо на вхід подано низький рівень (H) $U_{ex} = U_{on}$ - δ , то відкриється транзистор T2, а транзистор T1 закриється. Зазвичай величини $|\delta| = 0,1...0,5$ В достатньо для переведення схеми з одного стану в інший, зберігаючи активний режим відкритого транзистора.

Таким чином особливість перемикачів струму полягає у використанні і ненасиченого режиму роботи транзисторів, що забезпечує їх підвищену швидкодію і з тієї ж причини підвищені енергетичні затрати в статичному режимі.