Übungsserie - Elektrisches Feld

- Seien A und B zwei Punkte in einem elektrischen Feld. Die Feldlinien liegen im Punkt A doppelt so dicht wie in B. Das elektrische Feld beträgt in A 40 N/C. Welche Kraft würde in A auf ein Proton wirken? Wie gross ist die Feldstärke in B? (6.4 · 10⁻¹⁸ N, -)
- 2. a) Wie gross ist die Ladung einer Punktladung, die in 50 cm Abstand ein E-Feld mit Intensität 2.0 N/C erzeugt? (56 pC)
 - b) Zwei gleiche Ladungen von 20 μ C jedoch mit entgegengesetztem Vorzeichen, stehen in 15 cm Abstand voneinander. Wie gross ist die Feldstärke genau in der Mitte der beiden Ladungen? In welche Richtung zeigt das Feld? $(6.4 \cdot 10^7 \text{ N/C})$
- 3. Ein Elektron wird in einem externen E-Feld mit 20.0 kN/C freigelassen. Berechne seine Beschleunigung (F_g kann vernachl. werden, $(-)3.52 \cdot 10^{15} \text{m/s}^2$)
- 4. Bestimme Intensität und Richtung eines externen E-Feldes, welches das Gewicht eines α -Teilchens (Heliumkern) kompensieren soll. (20.5 μ N/C, -)
- 5. Ein Elektron fliegt parallel zur Erdoberfläche. Finde den Betrag und die Richtung des elektrischen Felds in der Nähe der Erdoberfläche (56 pN/C)
- 6. Ein Haufen geladener Wolken generiert in der Luft in Bodennähe ein E-Feld. Ein Teilchen mit Ladung -2.0 nC erleidet in diesem Feld eine Kraft von 3.0 mN nach unten.
 - a) Wie gross ist die Feldstärke? (1.5 MN/C)
 - b) Bestimme Intensität und Richtung der Coulombkraft im Fall eines Protons. (2.4 · 10⁻¹³ N)
 - c) Wie gross ist die Erdanziehungskraft auf das Proton? $(1.64 \cdot 10^{-26} \text{ N})$
 - d) Wie gross ist das Verhähltnis F_C/F_G in diesem Fall? $(1.5 \cdot 10^{13})$
- 7. $q_1(-5e)$ befindet sich im Ursprung eines (x ; y)-Koordinatensystems, $q_2=2e$ bei (d;0). In welchem Punkt ist das E-Feld null? Zeichne die Feldlinien qualitativ. (2.72 d)
- 8. Zwei Ladungen Q werden in 2 gegenüberliegende Ecken eines Quaders platziert, zwei andere Ladungen q in die verbleibenden zwei Ecken. Falls die Gesamtkraft auf eine Ladung Q null ist, wie ist dann das Verhältnis Q/q? (Hinweis: Skizze mit massstäblich korrekten Kraftpfeilen) (-2.8·q)
- 9. Wie gross ist das elektrische Feld in Abstand 52 pm von einem Wasserstoffkern? (3.6 kN/C)
- 10. Zwei Ladungen (q und -3q) liegen im Abstand d. Existiert ein Punkt im Raum in dem das elektrische Feld null ist? Wo? Zeichne qualitativ die Feldlinien in der Nähe der zwei Ladungen $(1.37 \cdot d)$
- 11. Vier Ladungen mit dem gleichen Betrag sind in den Ecken eines Quadraten mit der Seitenlange l angebracht. Q_1, Q_2 und Q_3 sind positiv, Q_4 ist negativ. Im Betrag sind alle Ladungen gleich gross. Berechne den Betrag der resultierenden Kraft auf Q_2 . $((\sqrt{2}-1/2)\cdot\frac{Q^2}{4\pi\epsilon_0\cdot l^2})$

Übungsserie - Elektrisches Feld

- Seien A und B zwei Punkte in einem elektrischen Feld. Die Feldlinien liegen im Punkt A doppelt so dicht wie in B. Das elektrische Feld beträgt in A 40 N/C. Welche Kraft würde in A auf ein Proton wirken? Wie gross ist die Feldstärke in B? (6.4 · 10⁻¹⁸ N, -)
- 2. a) Wie gross ist die Ladung einer Punktladung, die in 50 cm Abstand ein E-Feld mit Intensität 2.0 N/C erzeugt? (56 pC)
 - b) Zwei gleiche Ladungen von 20 μ C jedoch mit entgegengesetztem Vorzeichen, stehen in 15 cm Abstand voneinander. Wie gross ist die Feldstärke genau in der Mitte der beiden Ladungen? In welche Richtung zeigt das Feld? $(6.4 \cdot 10^7 \text{ N/C})$
- 3. Ein Elektron wird in einem externen E-Feld mit 20.0 kN/C freigelassen. Berechne seine Beschleunigung (F_g kann vernachl. werden, $(-)3.52 \cdot 10^{15} \text{m/s}^2$)
- 4. Bestimme Intensität und Richtung eines externen E-Feldes, welches das Gewicht eines α -Teilchens (Heliumkern) kompensieren soll. (20.5 μ N/C, -)
- 5. Ein Elektron fliegt parallel zur Erdoberfläche. Finde den Betrag und die Richtung des elektrischen Felds in der Nähe der Erdoberfläche (56 pN/C)
- 6. Ein Haufen geladener Wolken generiert in der Luft in Bodennähe ein E-Feld. Ein Teilchen mit Ladung -2.0 nC erleidet in diesem Feld eine Kraft von 3.0 mN nach unten.
 - a) Wie gross ist die Feldstärke? (1.5 MN/C)
 - b) Bestimme Intensität und Richtung der Coulombkraft im Fall eines Protons. $(2.4 \cdot 10^{-13} \text{ N})$
 - c) Wie gross ist die Erdanziehungskraft auf das Proton? $(1.64 \cdot 10^{-26} \text{ N})$
 - d) Wie gross ist das Verhähltnis F_C/F_G in diesem Fall? $(1.5 \cdot 10^{13})$
- 7. $q_1(-5e)$ befindet sich im Ursprung eines (x ; y)-Koordinatensystems, $q_2 = 2e$ bei (d; 0). In welchem Punkt ist das E-Feld null? Zeichnen Sie die Feldlinien qualitativ. (2.72 d)
- 8. Zwei Ladungen Q werden in 2 gegenüberliegende Ecken eines Quaders platziert, zwei andere Ladungen q in die verbleibenden zwei Ecken. Falls die Gesamtkraft auf eine Ladung Q null ist, wie ist dann das Verhältnis Q/q? (Hinweis: Skizze mit massstäblich korrekten Kraftpfeilen) (-2.8·q)
- 9. Wie gross ist das elektrische Feld in Abstand 52 pm von einem Wasserstoffkern? (3.6 kN/C)
- 10. Zwei Ladungen (q und -3q) liegen im Abstand d. Existiert ein Punkt im Raum in dem das elektrische Feld null ist? Wo? Zeichnen Sie qualitativ die Feldlinien in der Nähe der zwei Ladungen $(1.37 \cdot d)$
- 11. Vier Ladungen mit dem gleichen Betrag sind in den Ecken eines Quadraten mit der Seitenlange l angebracht. Q_1, Q_2 und Q_3 sind positiv, Q_4 ist negativ. Im Betrag sind alle Ladungen gleich gross. Berechne den Betrag der resultierenden Kraft auf Q_2 . $((\sqrt{2}-1/2)\cdot\frac{Q^2}{4\pi\epsilon_0\cdot l^2})$