10 класс

Код работы	
Itog paccibi	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
10-1.	«Лихо закручено»	25				
10-2.	«Годограф ускорения»	31				
10-3.	«Не хуже Карно?»	34				
Σ_{max}		90	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри			
	Задание 10-1. «Лихо закручено» (25 баллов)					
1.1 «Дв	а шарика на нити»					
1.1	Отмечено, что вращение шариков будет происходить вокруг их центра масс, который будет оставаться неподвижным.	2				
	Указано, что траектории шариков будут окружностями, радиусы которых есть расстояния l_1 и l_2 до центра масс. Записана система (1), найдены расстояния (2) $l_1 = \frac{m_2}{m_1 + m_2} l$ $l_2 = \frac{m_1}{m_1 + m_2} l$	3				
	Записан второй закон Ньютона для каждого из шариков, правильно найдены силы натяжения $m_1\omega^2l_1=T_1 \Longrightarrow T_1=m_1\omega^2\frac{m_2}{m_1+m_2}l=\frac{m_1m_2}{m_1+m_2}\omega^2l,$ $m_2\omega^2l_2=T_2 \Longrightarrow T_2=m_2\omega^2\frac{m_1}{m_1+m_2}l=\frac{m_1m_2}{m_1+m_2}\omega^2l.$	4				
	Подмечено, что они одинаковы $T_1 = T_2 = T = \frac{m_1 m_2}{m_1 + m_2} \omega^2 l.$	1				
1.2 «Tp:	и шарика на нити»					
1.2	Отмечено, что вращение шариков по-прежнему будет происходить вокруг их центра масс, который будет оставаться неподвижным.	1				
	Правильно записан второй закон Ньютона для движения каждого из шариков (6), (7), (8) по окружности $m_2\omega^2x=T_2,\\ m_1\omega^2(l-x)=T_1,\\ m_3\omega^2(\frac{l}{2}-x)=T_2-T_1.$	3				
	Из системы найдены расстояние x и угловая скорость ω вращения шариков $x = \frac{m_1 T_2}{m_1 T_2 + m_2 T_1} l,$	2				

	$\omega = \sqrt{\frac{m_1 T_2 + m_2 T_1}{m_1 m_2 l}}.$				
	$\sqrt{m_1 m_2 t}$ Получено правильное выражение для массы третьего шарика $m_3 = \frac{2m_1 m_2 (T_2 - T_1)}{m_2 T_1 - m_1 T_2}.$	2			
1.3 «Koo	терт терт терт терт терт терт терт терт				
	Указано, что центр масс троса находится на середине длины, т.е. можно воспользоваться формулами из предыдущего пункта.	2			
1.3	Использована формула (12) для массы троса с учетом малости $\Delta T \ll T$ $m_{\rm T} = \frac{2m_1m_2(T_2-T_1)}{m_2T_1-m_1T_2} = \frac{2m_1m_2\Delta T}{(m_2-m_1)T+m_2\Delta T} = \{\Delta T \ll T\} \approx \frac{2m_1m_2\Delta T}{(m_2-m_1)T}.$	2			
	Использована формула (11) для угловой скорости космической станции $\omega_{\rm KC} = \sqrt{\frac{m_1 T_2 + m_2 T_1}{m_1 m_2 l}} = \sqrt{\frac{(m_1 + m_2) T + m_1 \Delta T}{m_1 m_2 l}} = \{\Delta T \ll T\} \approx \sqrt{\frac{(m_1 + m_2) T}{m_1 m_2 l}}.$	2			
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1			
	Всего за задачу:	25	Σ :		
**	Задание 10-2. «Годограф ускорения» (31 балл)				
Часть 1.	Вычисление полного ускорения				
1.1	Правильно записан закон сохранения энергии (1) для движения шарика $mgh = mgl\cos\alpha = \frac{m\upsilon^2}{2} \implies \upsilon^2 = 2gl\cos\alpha \ .$	1			
	Верно найдено нормальное (центростремительное) ускорение шарика (2) на нерастяжимой нити в данной точке $a_n = a_{uc} = \frac{\upsilon^2}{R} = \frac{\upsilon^2}{l} = \{(1)\} = 2g\cos\alpha \ .$	2			
	Записаны законы Ньютона (3) для двух осей $ma_n = T - mg\cos\alpha$ $ma_\tau = mg\sin\alpha$	2			
	Получены правильные формулы (4) для тангенциального (касательного) ускорения и силы натяжения нити $a_{\tau} = g \sin \alpha$ $T = 3mg \cos \alpha$	2			
1.2	Найдено (5) для модуля полного ускорения $a(\alpha) = \sqrt{a_n^2 + a_\tau^2} = g\sqrt{1 + 3\cos^2\alpha} \ .$	3			
1.3	Записано условие (7) для горизонтального случая $a_{\tau} \sin \alpha_1 = a_n \cos \alpha_1 \implies tg^2 \alpha_1 = 2 \implies \alpha_1 = 55^{\circ} \ .$	2			
	Найдено ускорение (8) в этот момент времени $a_1 = g \sqrt{1 + \frac{3}{1 + t g^2 \alpha_1}} = g \sqrt{2} = 1,4 \ g \ .$	3			
Часть 2. Построение годографа полного ускорения шарика					

	Правильно выведены формулы (9) для декартовых проекций полного ускорения			
2.1	$a_x = -3g\sin\alpha\cos\alpha = -\frac{3}{2}g\sin2\alpha$	2		
	$a_y = g(2\cos^2\alpha - \sin^2\alpha)$			
	Верно записаны безразмерные проекции (10)			
	$a_x^*(\alpha) = -3\sin\alpha\cos\alpha$	2		
	$a_y^*(\alpha) = 2\cos^2\alpha - \sin^2\alpha$			
2.2	Выполнение этого пункта удобно выполнить после заполнения Таблицы 1. Как следует из таблицы, максимальное (по модулю)	_		
	горизонтальное ускорение шарика равно $ a_x^* = -1.5 = 1.5$.	2		
	Максимальное же вертикальное ускорение $a_y^* = 2,0$			
2.3	Верно заполнена Таблица 1. Получены правильные расчеты.	3		
2.4	На бланке правильно построен годограф полного ускорения шарика. Тодограф дета дета дета дета дета дета дета дета	2		
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1		
	Всего за задачу:	31	Σ :	
	Задание 10-3. Не хуже Карно? (34 балла)			
Часть 1. Адиабатный процесс				
	Записана формула (1) для внутренней энергии идеального газа $U = \frac{3}{2} \frac{m}{M} RT = \frac{3}{2} \nu RT \; ,$ получено (4) для молярной теплоемкости идеального	2		
1.1	одноатомного газа $c_V^M = rac{3}{2} R \; .$			
	Правильно выведено (5) для внутренней энергии идеального газа $U = c_V^M v T = v c_V^M T.$	1		

1.2	Записано первое начало (закон) (1) термодинамики $\Delta Q = \Delta U + p \Delta V.$	1
	Использованы два близких состояния системы, для которых записаны уравнения Клапейрона–Менделеева (7) $pV = \nu R \Delta T$ $p(V + \Delta V) = \nu R (T + \Delta T)$	2
	Получено (10) для теплоёмкости $c_p^M = \frac{\Delta Q}{\nu \Delta T} = \frac{c_V^M \nu \Delta T + \nu R \Delta T}{\nu \Delta T}.$	2
	Выведено уравнение Майера (11) $c_p^M = c_V^M + R.$	1
	Указано, что теплоёмкость системы не зависит от параметров состояния идеального газа, следовательно, является постоянной величиной в этом процессе.	1
	Записано уравнение адиабатного процесса ($Q=0=\Delta U+A$), указано (14), что работа совершается за счет внутренней энергии газа $p\Delta V=-\Delta U=-\nu c_V^M\Delta T$	1
1.3	Записано уравнение Клапейрона–Менделеева (15) и получено (16) $-\frac{R}{c_V^M} \cdot \frac{\Delta V}{V} = \frac{\Delta T}{T}.$	2
	С учетом математической подсказки выведено (17) для идеального газа $TV^{\frac{R}{c_V^M}} = TV^{\gamma-1} = \text{const.}$	2
1.4	$TV^{r_V} = TV^{r-1} = \text{const.}$ Использовано уравнение Клапейрона–Менделеева для перехода к координатам $T = \frac{pV}{\nu R} \implies \frac{pV}{\nu R}V^{\gamma-1} = \text{const.} \implies pV^{\gamma} = \text{const}^*.$	1
1.5.	Построено схематическое изображение изотермы и адиабаты. Рис. 5	1
Часть 2	. Цикл с адиабатой	
2.1	На участке AB цикла работает нагреватель $(Q_{AB}>0)$. На участке BC цикла работает холодильник $(Q_{BC}<0)$. Участок CA цикла соответствует адиабате $(Q_{CA}=0)$. Найдено количество теплоты (23) , полученное от нагревателя $Q_1=\frac{5}{2}p_AV_A(n-1)$.	4
2.2	Использовано уравнение адиабаты, получены выражения (25) и (26) $p_C = \frac{p_A}{n^\gamma}, \ \ p_C = \frac{p_A}{n^\gamma}.$	2

2.3	Холодильник работает на участке BC цикла $(Q_{BC} < 0)$. Записано первое начало термодинамики (27) $Q_2 = Q_{BC} = \frac{3}{2} \nu R \Delta T = \frac{3}{2} (p_A - p_C) n V_A.$ Получено окончательное выражение (28) через p_A и V_A $Q_2 = \frac{3}{2} p_A \left(1 - \frac{1}{n^{5/3}}\right) n V_A = \frac{3}{2} p_A V_A \left(n - \frac{1}{n^{2/3}}\right).$	3	
2.4	Найден термодинамический КПД (29) данного цикла $\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{3}{5} \cdot \frac{\left(n - \frac{1}{n^{2/3}}\right)}{n-1}.$	2	
2.5	Для оценки η_{max} получена система неравенств (30) (или эквивалентная) $1<\frac{\left(n-\frac{1}{n^{2/3}}\right)}{n-1}<\frac{n}{n-1},$ Найдено значение (31) для η_{max} $\eta_{max}=\eta(n\to\infty)=1-\frac{3}{5}\cdot 1=\frac{2}{5}=0,40=40\%.$	3	
2.6	Из Рис. 4 найдено отношение объемов, получено (32) для КПД построенного цикла $\eta=1-\frac{3}{5}\cdot\frac{\left(7-\frac{1}{7^{2/3}}\right)}{7-1}=0,33=33\%.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	34	Σ :