Product Version IC23.1 January 2025

© 2025 Cadence Design Systems, Inc. All rights reserved. Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522.

All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Patents: The Cadence Products covered in this manual are protected by U.S. Patents 5,790,436; 5,812,431; 5,859,785; 5,949,992; 6,493,849; 6,278,964; 6,300,765; 6,304,097; 6,414,498; 6,560,755; 6,618,837; 6,693,439; 6,826,736; 6,851,097; 6,711,725; 6,832,358; 6,874,133; 6,918,102; 6,954,908; 6,957,400; 7,003,745; 7,003,749.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Cadence is committed to using respectful language in our code and communications. We are also active in the removal and replacement of inappropriate language from existing content. This product documentation may however contain material that is no longer considered appropriate but still reflects long-standing industry terminology. Such content will be addressed at a time when the related software can be updated without end-user impact.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Contents

1 Introduction to Analog Library	11
Licensing Requirements	
Creating Analog Library Instances	
Viewing Component Parameters Supported by Specific Simulators	
Viewing and Editing Parameters for a Component	21
<u>2</u>	
Active Components in Analog Library	25
diode Symbol	
ibis_buffer Symbol	
nbsim Symbol	
nbsim4 Symbol	
njfet Symbol	
nmes Symbol	
nmos Symbol	
nmos4 Symbol	
<u>npn Symbol</u>	
nsoip Symbol	57
ntft Symbol	61
pbsim Symbol	64
pbsim4 Symbol	68
pjfet Symbol	70
pmos Symbol	73
pmos4 Symbol	76
pnp Symbol	77
psoi Symbol	80
psoip Symbol	81
ptft Symbol	85
schottky Symbol	88
usernnn Symbol	91

<u>v</u>	userpnp Symbol vnpn Symbol vpnp Symbol tener Symbol	. 96 100
<u>3</u> An	alysis Specific Components in Analog Library	107
Perfe	ving the cmdmprobe Subcircuit orming Stability Analysis in Spectre cmdmprobe Symbol deepprobe Symbol diffstbprobe Symbol ourier Symbol ourier2ch Symbol probe Symbol indeQuantity Symbol simulinkCoupler Symbol sprobe Symbol	109 112 114 120 122 123 126 128 130 132
5 5 5	rasitic Components in Analog Library Decapacitor Symbol Definition of Symbol Description of Symbol	136 138 140 143
<u>C</u>	ssive Components in Analog Library Sap Symbol Store Symbol Store Symbol Store Symbol	151 154 157

	delay Symbol	162
	delayline Symbol	164
	fracpole Symbol	166
	ideal balun Symbol	170
	ind Symbol	172
	indq Symbol	174
	mind Symbol	177
	msline Symbol	179
	mtline Symbol	181
	nport Symbol	196
	phyres Symbol	215
	rcwireload Symbol	218
	res Symbol	219
	spxtswitch Symbol	224
	switch Symbol	226
	tline Symbol	229
	winding Symbol	232
	xfmr Symbol	234
<u>6</u>		
S	ources - Dependent Components in Analog Library	237
_	<u>cccs Symbol</u>	
	ccvs Symbol	
	pcccs Symbol	
	pccvs Symbol	
	pvccs, pvccs2, pvccs3 Symbol	
	pvccsp Symbol	
	pvcvs, pvcvs2, pvcvs3 Symbol	
	pvcvsp Symbol	
	vccs Symbol	
	Voltage-Controlled Current Sources (G-Elements)	
	vccsp Symbol	
	vcvs Symbol	
	vcvsp Symbol	

7 Sources Clobal Components in Analog Library	
Sources - Global Components in Analog Library	285
gnd Symbol	286
gnda Symbol	287
gndd Symbol	288
vcc Symbol	289
vcca Symbol	290
vccd Symbol	291
vdd Symbol	292
vdda Symbol	293
vddd Symbol	294
vee Symbol	295
veea Symbol	296
veed Symbol	297
vrefgnd Symbol	298
vss Symbol	299
vssa Symbol	300
vssd Symbol	301
8	
Sources - Independent Components in Analog Librar	\ ' \
·	•
idc Symbol	
iexp Symbol	
ipulse Symbol	
ipwl Symbol	
ipwlf Symbol	
<u>isin Symbol</u>	
isource Symbol	
i <u>prbs Symbol</u>	330
multibit Symbol	
pdc Symbol	334
pexp Symbol	338
port Symbol	341
ppulse Symbol	347

	pprbs Symbol	. 349
	ppwl Symbol	
	ppwlf Symbol	
	psin Symbol	
	vdc Symbol	
	vexp Symbol	
	vpulse Symbol	
	vpwl Svmbol	
	vpwlf Symbol	
	vpwlfm Symbol	
	vsin Symbol	
	vsource Symbol	. 385
	vbit Symbol	
	vprbs Symbol	
	- 	
9		
	auta in Analag Libuau.	
<u> </u>	orts in Analog Library	
	pdc Symbol	. 400
	pexp Symbol	. 401
	port Symbol	. 402
	port3t Symbol	. 403
	ppulse Symbol	. 407
	ppwl Symbol	. 408
	ppwlf Symbol	. 409
	psin Symbol	. 410
1(
S	ources - Z S Domain Components in Analog Library	411
<u> </u>		
	scccs Symbol	
	sccvs Symbol	
	svccs Symbol	
	svcvs Symbol	
	zcccs Symbol	
	zccvs Symbol	. 423
	zvccs Symbol	426

zvcvs Symbol	429
<u>11</u>	
Interface Elements in Analog Library	433
MOS a2d Symbol	
MOS_a2d Symbol	
TTL a2d Symbol	
TTL_d2a Symbol	
TTL_uza Symbol	409
<u>12</u>	
	444
Behavioral Model in Analog Library	
bsource Symbol	442
<u>A</u>	
CDF Parameters Supported by Analog Library Compor	<u>nents</u> .
445	
440	
В	
-	
Analog Library Support for hspiceD Components	
Active Components	490
nmes4 Symbol	490
Passive Components	492
uxwire Symbol	492
vccap Symbol	494
vcres Symbol	496
Sources - Dependent Components	498
iopamp Symbol	498
ixfmr Symbol	500
Sources - Independent Components	502
bcs Symbol	503
bvs Symbol	504
iam Symbol	506
isffm Symbol	508

	vam Symbol vsffm Symbol	
<u>C</u> aı	uCdl and auLvs Components in Analog Library	513
	bjt504tnpn Symbol	
	bjt504tpnp Symbol	516
	bsim4 Symbol	518
	nsoi Symbol	
	scr Symbol	521
	vbic Symbol	523

Introduction to Analog Library

This topic contains information about all the components in the Analog Library (analogLib). The analogLib library is within the Virtuoso Analog Design Environment. You can access the library from the following path:

```
<your_install_dir>/tools/dfII/etc/cdslib/artist/analogLib
```

Make sure you specify this path in the search path of the Set Library Search Path form.

The analogLib library contains basic analog components, such as resistors, capacitors and transistors that are used in building complex analog blocks, such as amplifiers.

This topic contains information about all the components in the Analog Library. The information presented is intended for integrated circuit designers and assumes that you are familiar with analog design and the following:

- The applications used to design and develop integrated circuits in the Virtuoso Studio Design Environment, notably Virtuoso Schematic Editor and Virtuoso Analog Design Environment
- Component Description Format (CDF), which lets you create and describe your own components for use with Virtuoso Schematic Editor and Virtuoso Analog Design Environment

The analogLib library contains basic components, such as resistor, capacitance, and transistor. These basic analog parts are used in building complex analog blocks, such as amplifiers.

The components in <code>analogLib</code> are divided into 10 categories, such as <code>Actives</code>, <code>Analysis</code>, <code>Parasitics</code> and so on. For each component in <code>analogLib</code> multiple views, such as the symbol view and simulator specific views are available. For some components, the schematic view might also be available.

Each component may be supported by different simulators, such as spectre or auCdl. The simulators supported in the Cadence Analog Design Environment are:

spectre

Introduction to Analog Library

- ams
- auCdl
- auLvs
- hspiceD
- UltraSim

Although, multiple simulators may be supporting each component in analogLib, the descriptions, syntax, and examples used in this book are specific to Spectre. Components supported primarily by hspiceD are listed in Appendix B.

Licensing Requirements

For information on licensing in the Virtuoso Studio Design Environment, see <u>Virtuoso Software Licensing and Configuration Guide</u>.

Related Topics

Creating Analog Library Instances

Viewing Component Parameters Supported by Specific Simulators

Viewing and Editing Parameters for a Component

Creating Analog Library Instances

This topic lists all the basic parameters that you specify at the time of adding a component to a design. The Add Instance form may not show all the parameters at once. Depending on what values you specify for some parameters, more fields may appear in the Add Instance form. To display the parameters for a component using the Add Instance form, for these series of steps, create a library and cell.

1. Type icms& in the xterm window.

The Cadence Information Window (CIW) appears.

- 2. Select File Close to close all the What's New windows.
- **3.** Select *File New Library* from CIW.
- **4.** Type testLibrary in the Name field and select the *Do not need process information* radio button.

- **5.** Click *OK*.
- 6. Select File New Cellview from CIW.

7. Select testLibrary in the *Library* field.

- **8.** Type testCell in the *Cell* field and schematic in the *View* field.
- **9.** Select Schematic from the Type list box.
- **10.** Select the application from the *Open with* tool list box and click *OK*.

The new cell is opened in Virtuoso Schematic Editor.

11. Select *Create – Instance* or click the *Create Instance* icon from the toolbar.

12. Click *Browse* from the Add Instance form.

- 13. Make sure that the Show Categories check box is selected in Library Browser.
- **14.** Select analogLib, Actives, and diode from the Library, Category, and Cell list boxes respectively.

Introduction to Analog Library

The View list box displays a list of the simulators that support the selected component. The symbol view applies to all components.

15. Select *symbol* from the View list box and click *Close*.

Notice the outline of the diode component when you move your cursor in the Virtuoso Schematic Editing window.

16. Click to place the component in the Virtuoso Schematic Editing window.

In the Add Instance form, notice that the library, cell, and view names appear in the *Library*, *Cell*, and *View* fields. The parameters for the selected component are also displayed.

These parameters are supported by the default simulators.

Introduction to Analog Library

Related Topics

Viewing Component Parameters Supported by Specific Simulators

Viewing and Editing Parameters for a Component

Viewing Component Parameters Supported by Specific Simulators

To determine which simulators support which parameters, perform the following steps.

1. Select *Options – Tool Filter* from the Virtuoso Schematic Editing window. The Tool Filter form appears.

By default, the spectre, auCdl, and auLvs simulators are selected.

- Select the required simulator to view the supported parameters.For example, select only the spectre simulator in the Tool Filter form.
- 3. Click Apply.

Introduction to Analog Library

Notice that the list of parameters in the Add Instance form changes to display only those parameters that are applicable for Spectre for the diode component.

In this way, you can identify those parameters of an analogLib component that are supported by specific simulators.

Related Topics

Creating Analog Library Instances

Viewing and Editing Parameters for a Component

Viewing and Editing Parameters for a Component

The properties of components are retrieved from their corresponding CDF parameters.

To view and edit the complete list of parameters for a component:

1. Select Tools - CDF - Edit from CIW.

The Edit CDF form appears.

2. Click *Browse* and select the library and cell names.

The Edit CDF form displays the complete list of parameters for the selected component as shown below:

Introduction to Analog Library

Click Simulation Information and select a simulator to view the list of parameters that the simulator supports. The fields appear blank for those simulators that do not support the selected component.

For more information on viewing and editing the CDF descriptions of a component, refer to the <u>Component Description Format User Guide</u>.

For modifying the simulation information refer to <u>Modifying Simulation Information</u>.

As far as possible, use the standard analogLib components shipped with an IC release. Do not mix or merge analogLib components with internal simInfo or CDF parameters from an older release with those from a newer release. For example, if you modify a local copy of the pcccs/spectre cell

Introduction to Analog Library

from the IC5032 release, create a sub-circuit, and later try to netlist the design using a newer release, such as IC5033, then the sub-circuit might not work correctly. This is because the base-level cell CDF information in the IC5032 release and the IC5033 release might not be the same.

Related Topics

Creating Analog Library Instances

Viewing Component Parameters Supported by Specific Simulators

Analog Library Reference Introduction to Analog Library

Active Components in Analog Library

All components listed in the Actives category require a defined model card. Each element maps to a specific Spectre primitive with respect to its instance parameters.

The components in the Actives category are as follows:

- diode Symbol
- <u>ibis_buffer Symbol</u>
- nbsim Symbol
- nbsim4 Symbol
- njfet Symbol
- nmes Symbol
- nmos Symbol
- nmos4 Symbol
- npn Symbol
- nsoip Symbol
- ntft Symbol
- pbsim Symbol
- pbsim4 Symbol
- pjfet Symbol
- pmos Symbol
- pmos4 Symbol
- pnp Symbol
- psoi Symbol

Active Components in Analog Library

- psoip Symbol
- ptft Symbol
- schottky Symbol
- usernpn Symbol
- userpnp Symbol
- vnpn Symbol
- vpnp Symbol
- zener Symbol

Active Components in Analog Library

diode Symbol

Description

The junction diode model includes nonlinear junction capacitance and reverse breakdown. This device is supported within the altergroups.

Command-Line Help

spectre -h diode

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	-	-	х	-
Device area	area	х	-	-	х	_
Device initially off	off	-	-	-	х	-
Initial diode voltage	Vd	-	-	-	х	-
Junction perimeter factor	perim	х	-	-	_	-
Length	1	х	_	-	х	_
Width	W	х	_	-	х	_
Multiplier	m	х	-	-	х	-
Scale factor	scale	х	-	_	_	-
Temp rise from ambient	trise	х	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Periphery of junction	pj	-	-	-	х	-
Width of polysilicon	wp	х	-	-	х	-
Length of polysilicon	lp	х	-	-	х	-
Width of metal capcitor	wm	х	-	-	х	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Length of metal capcitor	lm	х	-	-	x	-
Temperatur e difference	dtemp	-	-	-	Х	-

Syntax/Synopsis

Name (a c) ModelName <parameter=value> ...

In the forward operation the voltage on the anode ('a') is more positive than the voltage on the cathode ('c').

Following is the model synopsis:

model ModelName diode <parameter=value> ...

Examples

d0 (dp dn) pdiode l=3e-4 w=2.5e-4 area=1

Following is a sample model statement:

model pdiode diode is=1.8e-5 rs=1.43 n=1.22 nz=2.31 gleak=6.2e-5 rsw=10 isw=6.1e-10 ibv=0.95e-3 tgs=2 ik=1.2e7 fc=0.5 cj=1.43e-3 pb=0.967 mj=0.337 cjsw=2.76e-9 vjsw=0.94 jmax=1e20

ibis_buffer Symbol

Description

The IBIS buffer model is based on the I/O Buffer Information Specification standard, version 3.2. The package and board models are not included in the buffer, they have to be added as separate subcircuits.

The ibis_buffer component is a p-cell that can have different pin combinations based on the selected buffer type. The supported buffer types are:

- input
- output
- io
- tristate
- opendrain and opensink
- ioopendrain and ioopensink
- opensource
- ioopensource

Active Components in Analog Library

- terminator
- inputecl
- outputecl
- ioecl
- tristateecl

The following table lists the different pin combinations based on the buffer type. The presence of a pin is denoted by Y, absence of a pin is denoted by N, and optional pin is denoted by N.

die/ pad pin	input	output	enable	ground	power	ground clamp	power clamp	inverted die/pad pin
Y	Y	N	N	N	N	0	0	0
Y	N	Y	N	0	0	0	0	N
Y	Y	Y	Y	0	0	0	0	0
Y	N	Y	Y	0	0	0	0	N
Y	N	Y	N	0	N	0	N	N
Y	Y	Y	Y	0	N	0	N	0
Y	N	Y	N	N	0	N	0	N
Y	Y	Y	Y	N	0	N	0	0
Y	N	N	N	N	N	0	0	N
Y	Y	N	N	N	N	Ο	0	0
Y	N	Y	N	О	0	Ο	0	N
Y	Υ	Y	Y	О	0	Ο	0	0
Y	N	Y	Y	0	0	0	0	N
	pad pin Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	pad input pin Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y	pad input output pin Y Y N N Y N Y Y Y Y Y N Y Y N Y Y N Y Y N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y Y N Y Y Y	pad pin input output enable Y Y N N Y N Y N Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	pad input output enable ground Y Y N N N N Y N O Y Y Y Y O Y N Y Y O Y N Y Y O Y N Y N O Y N Y N O Y N N Y N O Y N N N N N Y N N N N N Y N N N N N Y N N N N	pad pin input output enable ground power pin Y Y N N N N N N N N N N N N N N N N	pad pin input output enable ground power clamp Y Y N N N N O	pad pin input output enable ground power clamp ground clamp power clamp Y Y N N N N O

Active Components in Analog Library

For each buffer type there can be four variants, internal_power, external_power, differential _input, and diff_inp_and_ext_pwr. Therefore, ibis_buffer can have 44 variants as shown in the following table.

	Buffer Type	Varia nt	die/ pad	in	out	en	gnd	pwr	gnd_ c	pwr_	inv die
1	input	1	Y	Y	N	N	N	N	N	N	N
2	input	2	Y	Y	N	N	N	N	Y	Y	N
3	input	3	Y	Y	N	N	N	N	N	N	Y
4	input	4	Y	Y	N	N	N	N	Y	Y	Y
5	output	1	Y	N	Y	N	N	N	N	N	N
6	output	2	Y	N	Y	N	Y	Y	Y	Y	N
7	io	1	Y	Y	Y	Y	N	N	N	N	N
8	io	2	Y	Y	Y	Y	Y	Y	Y	Y	N
9	io	3	Y	Y	Y	Y	N	N	N	N	Y
10	io	4	Y	Y	Y	Y	Y	Y	Y	Y	Y
11	tristate	1	Y	N	Y	Y	N	N	N	N	N
12	tristate	2	Y	N	Y	Y	Y	Y	Y	Y	N
13	opendrain	1	Y	N	Y	N	N	N	N	N	N
14	opendrain	2	Y	N	Y	N	Y	N	Y	N	N
15	ioopendrain	1	Y	Y	Y	Y	N	N	N	N	N
16	ioopendrain	2	Y	Y	Y	Y	Y	N	Y	N	N
17	ioopendrain	3	Y	Y	Y	Y	N	N	N	N	Y
18	ioopendrain	4	Y	Y	Y	Y	Y	N	Y	N	Y
19	opensource	1	Y	N	Y	N	N	N	N	N	N
20	opensource	2	Y	N	Y	N	N	Y	N	Y	N
21	ioopensourc e	1	Y	Y	Y	Y	N	N	N	N	N
22	ioopensourc e	2	Y	Y	Y	Y	N	Y	N	Y	N

Active Components in Analog Library

	Buffer Type	Varia nt	die/ pad	in	out	en	gnd	pwr	gnd_ c	pwr_	inv_ die
23	ioopensourc e	3	Y	Y	Y	Y	N	N	N	N	Y
24	ioopensourc e	4	Y	Y	Y	Y	N	Y	N	Y	Y
25	terminator	1	Y	N	N	N	N	N	N	N	N
26	terminator	2	Y	N	N	N	N	N	Y	Y	N
27	inputecl	1	Y	Y	N	N	N	N	N	N	N
28	inputecl	2	Y	Y	N	N	N	N	Y	Y	N
29	inputecl	3	Y	Y	N	N	N	N	N	N	Y
30	inputecl	4	Y	Y	N	N	N	N	Y	Y	Y
31	outputecl	1	Y	N	Y	N	N	N	N	N	N
32	outputecl	2	Y	N	Y	N	Y	Y	Y	Y	N
33	ioecl	1	Y	Y	Y	Y	N	N	N	N	N
34	ioecl	2	Y	Y	Y	Y	Y	Y	Y	Y	N
35	ioecl	3	Y	Y	Y	Y	N	N	N	N	Y
36	ioecl	4	Y	Y	Y	Y	Y	Y	Y	Y	Y
37	tristateecl	1	Y	N	Y	Y	N	N	N	N	N
38	tristateecl	2	Y	N	Y	Y	Y	Y	Y	Y	N
39	opensink	1	Y	N	Y	N	N	N	N	N	N
40	opensink	2	Y	N	Y	N	Y	N	Y	N	N
41	ioopensink	1	Y	Y	Y	Y	N	N	N	N	N
42	ioopensink	2	Y	Y	Y	Y	Y	N	Y	N	N
43	ioopensink	3	Y	Y	Y	Y	N	N	N	N	Y
44	ioopensink	4	Y	Y	Y	Y	Y	N	Y	N	Y

Based on the model you have selected, you can create two types of ${\tt ibis_buffer}$:

■ with an external model card

This is the default option. If you specify the model name the netlist is as follows:

Active Components in Analog Library

```
b1 (1 2 3) "Model name" <other instance parameters>
```

For example, the netlist of an ibis_buffer with buffer type = tristate, buffer variant = internal_power, model name = $SN74_OUT_33_Typ_27degC$, polarity = inv, differential threshold = 1.2V, delay time = 1ms, delay schedule = yes, different element delays = 1p, 2p, 5p, and 2p, is as follows:

```
I65 (net013 net011 net012) SN74_OUT_33_Typ_27degC polarity=inv \ vdiff=1.2 delay=1m delay schedule=[\overline{1}p \overline{2}p \overline{5}p \overline{2}p]
```

with an IBIS file

If you specify an IBIS buffer file, then three additional parameters are displayed. In this case the netlist is as follows:

```
b1 (1 2 3) ibis_buffer file="IBIS file name" model="IBIS model name" corner="IBIS model corner" <other instance parameters>
```

For example, the netlist with the additional parameters IBIS filename = ~/main.scs, IBIS modelname = IBIS Model, corner = typical is as follows:

```
I65 (net013  net011 net012) ibis_buffer file="~/main.scs" \
model="IBIS_Model" corner=typical polarity=inv vdiff=1.2 delay=1m \
delay_schedule=[1p 2p 5p 2p]
```

Command-Line Help

```
spectre -h ibis_buffer
```

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Select IBIS Buffer Type	bufferTyp e	х	-	-	х	-
param0	param0	х	-	_	Х	-
Select IBIS Buffer Variant	bufferVar iant2	х	-	-	х	-
Select IBIS Buffer Variant	bufferVar iant4	х	-	-	х	-
IBIS Entry Method	ibisEntry Method	х	-	-	х	-
Model name	model	х	-	-	х	-
IBIS file name	ibisFile	х	-	-	х	_
IBIS model name	ibisModel Name	х	-	-	х	-
IBIS corner	ibisCorne r	х	-	-	х	-
Polarity of the buffer	polarity	х	_	-	x	-
<u>Differential</u> threshold	vdiff	х	-	-	х	-
Delay Time	delay	х	-	-	х	-
<u>Delay</u> <u>Schedule</u>	ibisDelay Schedule	х	-	-	х	-
Rise on delay	rise_on_d ly	х	-	-	х	-
Rise off delay	rise_off_ dly	х	-	-	х	-
Delay Schedule Rise on delay Rise off	ibisDelay Schedule rise_on_d ly rise_off_	x	-	-	х	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Fall on delay	fall_on_d ly	х	_	-	х	-
Fall off delay	fall_off_ dly	х	-	-	х	-

Syntax/Synopsis

Examples

```
I65 (net013 net011 net012) SN74_OUT_33_Typ_27degC polarity=inv \
vdiff=1.2 delay=1m delay_schedule=[lp 2p 5p 2p]
b1 (1 2 3) ibis_buffer file="IBIS file name" model="IBIS model name"
corner="IBIS model corner" <other instance parameters>
```

nbsim Symbol

Description

The component nbsim is an n-channel BSIM model. This device is supported within the altergroups. This device is supported within the altergroups.

Command-Line Help

For related information on MOS, use any of the following help commands:

spectre -h bsim1

spectre -h bsim2

spectre -h bsim3

spectre -h bsim3v3

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	Х	-
Bulk node connection	bn	-	-	-	-	-
Multiplier	m	Х	Х	Х	Х	-
Width	W	Х	Х	Х	Х	-
Length	1	Х	Х	Х	Х	-
Drain diffusion area	ad	x	-	-	Х	-
Source diffusion area	as	х	-	-	-	-
Drain diffusion periphery	pd	х	-	-	Х	-
Source diffusion periphery	ps	х	-	-	Х	-
Drain diffusion res squares	nrd	х	-	-	Х	-
Source diffusion res squares	nrs	х	-	-	X	-
Drain diffusion length	ld	х	-	-	-	-
Source diffusion length	ls	х	-	-	-	-
NQS flag	nqsmod	X	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temp rise from ambient	trise	х	-	-	-	-
Estimated operating region	region	X	-	-	-	-
Device initially off	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Bulk source initial voltage	Vbs	-	-	-	Х	-
Additional drain resistance	rdc	Х	-	-	Х	-
Additional source resistance	rsc	х	-	-	Х	-
Dist. OD & poly(one side)	sa	X	-	-	-	-
Dist. OD & poly(other side)	sb	X	-	-	-	-
Dist. betn neighbour fingers	sd	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperatur e difference	dtemp	-	-	-	Х	-
Source/ drain selector	geo	X	-	-	х	-

Syntax/Synopsis

Name (d g s b) ModelName <parameter=value> ...

Following is the model synopsis:

model ModelName bsim1 parameter=value> ...

Examples

Following is a sample instance statement:

m1 (1 2 0 0) nchmod l=5u w=10u as=40u ad=40u pd=28u ps=28u m=1

Following is a sample model statement:

nbsim4 Symbol

Description

BSIM4 transistors require you to use a model statement. N-type BSIM Mos transistor has 4 terminals. BSIM4 is the version-4.21 of the bsim model. This device is supported within the altergroups.

Command-Line Help

For related information on MOS, use any of the following help commands:

```
spectre -h bsim4
spectre -h bsim1
spectre -h bsim2
spectre -h bsim3
spectre -h bsim3v3
```

Component Parameters

The CDF parameters for nbsim4 are the same as the CDF parameters for nbsim Symbol.

Syntax/Synopsis

```
Name ( d g s b ) ModelName <parameter=value> ...
```

Active Components in Analog Library

Following is the model synopsis:

Examples

m4 (0 2 1 1) pchmod w=2u 1=0.8u as=250p ad=250p pd=168p ps=168p m=1

Following is a sample model statement

model pchmod bsim4 type=p mobmod=0 capmod=2 version=4.21 toxe=3e-9 cdsc=2.58e-4 cdscb=0 cdscd=6.1e-8 cit=0 nfactor=1.1 xj=9e-8 vfb=0.76vsat=9.2e4 at=3.3e4 a0=1.1 ags=1.0e-20 a1=0 ngate=9e19 vth0=-0.42a1=0 a2=1 delta=0.014 pvag=1e-20 pclm=6.28e-4 pdits=0.2 pditsl=2.3e6pditsd=0.23 fprout=0.2 pdiblcb=3.4e-8 pdiblc1=0.81 drout=0.56pdiblc2=9.84e-6 pscbe1=8.14e8 pscbe2=9.58e-07 lint=5e-9 wint=5e-9dmcg=5e-6 dmci=5e-6 dmdg=5e-6 dmcgt=6e-7 dwj=4.5e-8 rsh=6cgso=7.43e-10 cgdo=7.43e-10 cgbo=2.56e-11 cgsl=1e-14 cgdl=1e-14ckappas=0.5 ckappad=0.5 noff=0.9 voffcv=0.02 acde=1 moin=15 xpart=0kt11=0 kt2=2.2e-2 lpe0=5.75e-8 lpeb=2.3e-10 dvt0=2.89 dvt1=0.53dvt2=-3.2e-2 dvt0w=0 dvt1w=0 dvt2w=0 dvtp0=7.32e-7 dvtp1=0.12dsub=0.058 eta0=0.001 u0=4.19e-2 ua=8.7e-16 ub=3.06e-18 k1=0.33uc=4.6e-13 ute=-1.5 ua1=4.31e-9 ub1=7.61e-18 uc1=-5.6e-11 k2=-1.87e-2rdsw=369.4 rdw=184.7 rsw=184.7 prwg=3.22e-8 prwb=6.8e-11 wr=1rdswmin=0 rdwmin=0 rswmin=0 prt=0 b0=-1e-20 k3=80 k3b=0 w0=2.5e-6b1=0 keta=-0.047 alpha0=7.4e-2 alpha1=0.005 beta0=30

njfet Symbol

Description

The JFET model is derived from the FET model of Shichman and Hodges. JFETs require you to use a model statement. This device is supported within the altergroups. N-type Junction Field Effect Transistor is a n-channel JFET.

Command-Line Help

spectre -h jfet

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	-	-	-	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	Х	-	-	Х	-
Device initially off	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Gate to bulk and src voltage	Vgbs	-	-	-	X	-
Multiplier	m	Х	-	-	Х	-
Estimated operating region	region	X	-	-	-	-
Width	W	-	-	-	х	-
<u>Length</u>	1	-	-	-	x	-
Temperatur e difference	dtemp	-	-	-	X	-

Syntax/Synopsis

Name (d g s [b]) ModelName <parameter=value> ...

You do not have to specify the back gate terminal when you use the four-terminal model. If left unspecified, the substrate is connected to ground.

Active Components in Analog Library

Following is the model Synopsis:

Examples

jf1 (net1 net2 0) jmod area=1

Following is a sample model statement:

model jmod jfet beta=9e-5 lambda=0 type=n vt0=-18.7 rd=10 rs=10 cgs=1.3e-13 pb=0.65

nmes Symbol

Description

The GaAs MESFET model is derived from the model by H. Statz and others at Raytheon. This model is completely symmetric and is modified slightly to make it charge conserving. GaAs MESFET instances require that you use a model statement. This device is supported within the altergroups.

Command-Line Help

spectre -h gaas

spectre -h tom2

spectre -h tom3

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Bulk node connection	bn		-	-	-	-
Device area	area	Х	-	-	Х	-
Device initially off	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	X	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Bulk source initial voltage	Vbs	-	-	-	X	-
Multiplier	m	Х	-	-	х	-
Estimated operating region	region	х	-	-	-	-
Width	W	-	-	-	х	-
<u>Length</u>	1	-	-	-	х	-
Temperatur e difference	dtemp	-	-	-	X	-

Syntax/Synopsis

Name (d g s) ModelName <parameter=value> ...

Following is the model synopsis:

model ModelName gaas parameter=value> ...

Active Components in Analog Library

Examples

m1 (1 2 0) nmes area=1 m=2

Following is a sample model statement:

model nmes gaas type=n vto=-2 beta=0.06 lambda=0 b=0.25 rs=3.65 alpha=1.9 rd=1.98 is=1.1e-9 n=1.28 fc=0.5 cgs=0.365e-12

nmos Symbol

Description

N-type Generic MOS Transistor is an Actives component with 3 terminals.

Command-Line Help

For related information on MOS, use any of the following help commands:

spectre -h mos0

spectre -h mos1

spectre -h ekv

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	Х	-
Bulk node connection	bn	-	-	-	-	-
Multiplier	m	Х	Х	Х	Х	-
Width	W	Х	Х	Х	Х	-
Length	1	Х	Х	Х	Х	-
Drain diffusion area	ad	X	-	-	X	-
Source diffusion area	as	X	-	-	Х	-
Drain diffusion periphery	pd	X	-	-	Х	-
Source diffusion periphery	ps	X	-	-	Х	-
Drain diffusion res squares	nrd	X	-	-	X	-
Source diffusion res squares	nrs	X	-	-	Х	-
Drain diffusion length	ld	х	-	-	-	-
Source diffusion length	ls	x	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Device</u> <u>initially off</u>	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Bulk source initial voltage	Vbs	-	-	-	Х	-
Temp rise from ambient	trise	х	-	-	-	-
Estimated operating region	region	Х	-	-	-	-
	degradati on	Х	-	-	-	-
Additional drain resistance	rdc	х	-	-	Х	-
Additional source resistance	rsc	х	-	-	Х	-
Dist. OD & poly(one side)	sa	Х	-	-	-	-
Dist. OD & poly(other side)	sb	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Dist. betn neighbour fingers	sd	х	-	-	-	-
Temperatur e difference	dtemp	-	-	-	X	-
Source/ drain selector	geo	X	-	-	Х	-

Examples

M0 (net3 net1 net2) nmos

nmos4 Symbol

Description

N-type Generic MOS Transistor is an Actives component with 4 terminals.

Command-Line Help

For related information on MOS, use any of the following help commands:

```
spectre -h mos0
spectre -h mos1
spectre -h ekv
```

Component Parameters

The CDF parameters for nmos4 are the same as the CDF parameters for nmos Symbol.

Examples

```
M0 (net1 net3 net4 net2) nmos4
```

npn Symbol

Description

Generic Bipolar Transistor (npn) is an ntype bjt. This device is supported within the altergroups.

Command-Line Help

```
spectre -h bjt
```

spectre -h bjt2

spectre -h bjt3

spectre -h bjt301

spectre -h vbic

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	x	-	-	х	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	x	-	-	х	-
Base- emitter voltage	Vbe	-	-	-	Х	-
Collector- emitter voltage	Vce	-	-	-	Х	-
Device initially off	off	-	-	-	Х	-
Multiplier	m	х	-	-	Х	-
Temp rise from ambient	trise	Х	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Temperatur e difference	dtemp	-	-	-	Х	-
Base area	areab	-	-	-	х	-
Collector area	areac	-	-	-	Х	-
Temp Rise Specifier	triseSpec	Х	-	-	-	-
dtmp -Temp rise from ambient	dtmp	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
dtemp - Temp rise from ambient	dtempn	-	-	-	-	-

Syntax/Synopsis

Name (c b e [s]) ModelName <parameter=value> ...

You do not have to specify the substrate terminal. If you do not specify it, the substrate is connected to ground.

Following is the model synopsis:

model ModelName bjt <parameter=value> ...

Examples

q1 (vcc net3 minus) npn_mod region=fwd area=1 m=1

Following is a sample model statement:

nsoip Symbol

Description

N-type BSIM SOI model (nsoip) is an n-type BSIM SOI model. In nsoip, there are four optional parameters in the CDF properties of the n-cell:

- Temperature Node present (Tnode Out)
- Thermal Node (T)
- External Body contact (P)
- Body Node (B)

There can be a number of permutations and combinations for these pins, however, only following seven permutations are supported:

- if Tnodeout = 0 or not given. The default is 0.
 - 4 nodes: D G S E

Active Components in Analog Library

5 nodes: D G S E P

6 nodes: D G S E P B

7 nodes: DGSEPBT

 \blacksquare if Tnodeout = 1

5 nodes: D G S E T

6 nodes: D G S E P T

7 nodes: D G S E P B T

Command-Line Help

spectre -h bsimsoi

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	-	-	-	-
Temperatur e Node Present	TnodeOut (earlier this was bn, therefore check)	Х	-	-	-	-
Thermal Node(T)	Tnode	х	-	-	-	-
Ext. Body Contact (PinP)	PinP	х	-	-	-	-
Body Node	BodyNodeP in	X	-	-	-	-
Width	W	х	-	-	-	-
<u>Length</u>	1	х	-	-	-	-
Source diffusion area	as	х	-	-	-	-
Drain diffusion area	ad	х	-	-	-	-
Source diffusion periphery	ps	х	-	-	-	-
Drain diffusion periphery	pd	х	-	-	-	-
Drain diffusion res squares	nrd	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Source diffusion res squares	nrs	X	-	-	-	-
Multiplier	m	х	-	-	-	-

Syntax/Synopsis

Name (d g s e [p] [b] [t]) ModelName $\langle parameter=value \rangle \dots$

Following is the model synopsis:

model ModelName bsimsoi <parameter=value> ...

Examples

I6 (vdd! net9 0 0) bsimsoi w=1u 1=1u

Following is a sample model statement:

model nsoip model bsimsoi type = n beta0 = 0 dvt = -0.032 delta = 0.01 k1 = 0.6 xbjt = 1 kt $\overline{1}$ = -0.11 ndif = -1 noif = 1 vsdfb = 0 vevb = 0.075 dvt1 = 0.53

Active Components in Analog Library

ntft Symbol

Description

N-Type Poly-Si TFT (ntft) is an n-type polysilicon tft. It can have a maximum of five terminals with drain, gate and source being mandatory terminals and substrate and thermal being optional. This device is supported within the altergroups.

The figures show the terminal with none, one or two optional nodes selected.

Command-Line Help

spectre -h psitft

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectr e	spectr eS	cdsSpi ce	auC dl	auLv s	hspice S	hspic eD	UltraSi m
Model name	model	Х	-	-	-	-	-	-	-
Optional Nodes	Opins	Х	-	-	-	-	-	-	-
Optional Bulk Node B	bulknode	X	-	-	-	-	-	-	-
Optional Thermal Node T	pinT	Х	-	-	-	-	-	-	-
Width	W	Х	-	-	-	-	-	-	-
Length	1	Х	-	-	-	-	-	-	-
Drain diffusion res squares	nrd	X	-	-	-	-	-	-	-
Source diffusion res squares	nrs	Х	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	-
Estimated operating region	region	Х	-	-	-	-	-	-	-
Thermal resistance	rth0	Х	-	-	-	-	-	-	-
Thermal capacitance	cth0	Х	-	-	-	-	-	-	-
Num of segments	nseg	X	-	-	-	-	-	-	-

Syntax/Synopsis

Name (d g s [b] [t]) ModelName <parameter=value> ...

Active Components in Analog Library

Following is the model synopsis:

Examples

Following is a sample instance statement:

m4 (0 2 1 1 3) nch w=2u 1=0.8u

Following is a sample model statement:

model nch psitft type=n

pbsim Symbol

Description

P-type BSIM MOS Transistor (pbsim) is a p-channel BSIM model with 3 terminals. This device is supported within the altergroups.

Command-Line Help

For related information on MOS, use any of the following help commands:

```
spectre -help bsim1
spectre -help bsim2
spectre -help bsim3
spectre -help bsim3v3
```

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	-	-	Х	-
Bulk node connection	bn	-	-	-	-	-
Multiplier	m	Х	Х	Х	Х	-
Width	W	Х	Х	Х	Х	-
Length	1	Х	Х	Х	Х	-
Drain diffusion area	ad	X	-	-	Х	-
Source diffusion area	as	х	-	-	Х	-
Drain diffusion periphery	pd	х	-	-	Х	-
Source diffusion periphery	ps	х	-	-	Х	-
Drain diffusion res squares	nrd	х	-	-	Х	-
Source diffusion res squares	nrs	х	-	-	Х	-
Drain diffusion length	ld	х	-	-	-	-
Source diffusion length	ls	х	-	-	-	-
NQS flag	nqsmod	х	-	-	-	-

Active Components in Analog Library

-						
CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Device</u> <u>initially off</u>	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Bulk source initial voltage	Vbs	-	-	-	Х	-
Additional drain resistance	rdc	X	-	-	х	-
Additional source resistance	rsc	Х	-	-	Х	-
Temp rise from ambient	trise	Х	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Dist. OD & poly(one side)	sa	X	-	-	-	-
Dist. OD & poly(other side)	sb	Х	-	-	_	-
Dist. betn neighbour fingers	sd	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperatur e difference	dtemp	-	-	-	Х	-
Source/ drain selector	geo	X	-	-	х	-

Syntax/Synopsis

Name (d g s b) ModelName <parameter=value> ...

Following is the model synopsis:

model ModelName bsim1 parameter=value> ...

Examples

m1 (1 2 0 0) nchmod l=5u w=10u as=40u ad=40u pd=28u ps=28u m=1

Following is a sample model statement:

model nchmod bsim1 vfb0=-0.5 lvfb=0.5 wvfb=0.3 phi0=0.8 eta0=0.056 k1=0.5 muz=454 eg=0.99 gap1=5.5e-04 trs=1e-3 trd=1e-3 xpart=0.5 rs=10 rd=10

pbsim4 Symbol

Description

P-type BSIM MOS transistor (pbsim) is a p-channel BSIM model with 4 terminals. This device is supported within the altergroups.

Command-Line Help

For related information on MOS, use any of the following help commands:

```
spectre -help bsim1
spectre -help bsim2
spectre -help bsim3
spectre -help bsim3v3
```

Component Parameters

The CDF parameters for pbsim4 are the same as the CDF parameters for pbsim Symbol.

Syntax/Synopsis

```
Name ( d g s b ) ModelName <parameter=value> ...
```

Following is the model synopsis:

Active Components in Analog Library

model ModelName bsim1 parameter=value> ...

Examples

m1 (1 2 0 0) nchmod 1=5u w=10u as=40u ad=40u pd=28u ps=28u m=1

Following is a sample model statement:

model nchmod bsim1 vfb0=-0.5 lvfb=0.5 wvfb=0.3 phi0=0.8 eta0=0.056 k1=0.5 muz=454 eg=0.99 gap1=5.5e-04 trs=1e-3 trd=1e-3 xpart=0.5 rs=10 rd=10

pjfet Symbol

Description

The JFET model is derived from the FET model of Shichman and Hodges. JFETs require you to use a model statement. This device is supported within the altergroups. P-type Junction Field Effect Transistor is a p-channel JFET.

Command-Line Help

spectre -h jfet

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	Х	-	-	Х	-
<u>Device</u> initially off	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	X	-
Gate to bulk and src voltage	Vgbs	-	-	-	Х	-
Multiplier	m	Х	-	-	Х	-
Width	W	-	-	-	Х	-
Length	1	-	-	-	Х	-
Temperatur e difference	dtemp	-	-	-	Х	-
Estimated operating region	region	х	-	-	-	-

Syntax/Synopsis

Name (d g s [b]) ModelName <parameter=value> ...

You do not have to specify the back gate terminal when you use the four-terminal model. If left unspecified, the substrate is connected to ground.

Active Components in Analog Library

Following is the model synopsis:

Examples

jf1 (net1 net2 0) jmod area=1

Following is a sample sodel statement:

model jmod jfet beta=9e-5 lambda=0 type=n vt0=-18.7 rd=10 rs=10 cgs=1.3e-13 pb=0.65

Analog Library Reference Active Components in Analog Library

pmos Symbol

Description

P-Type Generic MOS Transistor (pmos) is a p-channel MOS transistor with 3 terminals.

Command-Line Help

For related information on MOS, use any of the following help commands:

spectre -h mos0

spectre -h mos1

spectre -h ekv

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Bulk node connection	bn	-	-	-	-	-
Multiplier	m	Х	Х	Х	Х	-
Width	W	Х	Х	Х	Х	-
<u>Length</u>	1	Х	Х	Х	х	-

Active Components in Analog Library

CDF Parameter	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Drain diffusion area	ad	X	-	-	Х	-
Source diffusion area	as	х	-	-	х	-
Drain diffusion periphery	pd	Х	-	-	X	-
Source diffusion periphery	ps	X	-	-	X	-
Drain diffusion res squares	nrd	х	-	-	Х	-
Source diffusion res squares	nrs	х	-	-	Х	-
Drain diffusion length	ld	х	-	-	-	-
Source diffusion length	ls	х	-	-	-	-
<u>Device</u> <u>initially off</u>	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	X	-
Gate source initial voltage	Vgs	-	-	-	х	-

Analog Library Reference Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Bulk source initial voltage	Vbs	-	-	-	Х	-
Temp rise from ambient	trise	х	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Hot-electron degradation	degradati on	Х	-	-	-	-
Additional drain resistance	rdc	x	-	-	Х	-
Additional source resistance	rsc	х	-	-	Х	-
Dist. OD & poly(one side)	sa	х	-	-	-	-
Dist. OD & poly(other side)	sb	х	-	-	-	-
Dist. betn neighbour fingers	sd	х	-	-	-	-
Temperatur e difference	dtemp	-	-	-	Х	-
Source/ drain selector	geo	X	-	-	Х	-

Active Components in Analog Library

pmos4 Symbol

Description

P-Type Generic MOS Transistor (pmos4) is a p-channel MOS transistor with 4 terminals.

Command-Line Help

For related information on MOS, use any of the following help commands:

spectre -h mos0 spectre -h mos1 spectre -h ekv

Component Parameters

The CDF parameters for pmos4 are the same as the CDF parameters for pmos Symbol.

Analog Library Reference Active Components in Analog Library

pnp Symbol

Description

Generic Bipolar Transistor (pnp) is a p-type bit. This device is supported within the altergroups.

Command-Line Help

spectre -h bjt

spectre -h bjt2

spectre -h bjt3

spectre -h bjt301

spectre -h vbic

Analog Library Reference Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	Х	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	х	-	-	Х	-
Multiplier	m	х	-	-	Х	-
Temp rise from ambient	trise	х	-	-	-	-
Temp Rise Specifier	triseSpec	х	-	-	-	-
dtmp -Temp rise from ambient	dtmp	Х	-	-	-	-
dtemp - Temp rise from ambient	dtempn	-	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Base- emitter voltage	Vbe	-	-	-	Х	-
Collector- emitter voltage	Vce	-	-	-	Х	-
Device initially off	off	-	-	-	х	-
Temperatur e difference	dtemp	х	-	-	х	-
Base area	areab	-	-	-	х	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Collector area	areac	-	-	-	Х	-

Syntax/Synopsis

```
Name ( c b e [s] ) ModelName <parameter=value> ...
```

You do not have to specify the substrate terminal. If you do not specify it, the substrate is connected to ground.

Following is the model synopsis:

```
model ModelName bjt <parameter=value> ...
```

Examples

```
q1 (vcc net3 minus) npn mod region=fwd area=1 m=1
```

Following is a sample model statement:

```
model npn_mod bjt type=npn is=10e-13 bf=200 va=58.8 ikf=5.63e-3 rb=700 rbm=86 re=3.2 cje=0.352e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55
```

psoi Symbol

Description

This component is an independent resistive source present in Actives category.

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Bulk node connection	bn	-	-	х	-	-
Multiplier	m	-	Х	Х	-	-
Width	W	-	х	Х	-	-
Length	1	-	Х	Х	-	-

Active Components in Analog Library

psoip Symbol

Description

This is a p-type BSIM SOI model. In psoip, there are four optional parameters in the CDF properties of the p-cell:

- Temperature Node present (Tnode Out)
- Thermal Node (T)
- External Body contact (P)
- Body Node (B)

There can be a number of permutations and combinations for these pins, however, only following seven permutations are supported:

if Tnodeout is not selected:

4 nodes: D G S E

5 nodes: D G S E P

6 nodes: D G S E P B

7 nodes: DGSEPBT

if Tnodeout is selected:

5 nodes: D G S E T

6 nodes: DGSEPT

7 nodes: DGSEPBT

Active Components in Analog Library

Command-Line Help

spectre -h bsimsoi

Analog Library Reference Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	-	-	-	-
Temperatur e Node Present	TnodeOut(earlier this was bn,theref ore check)	Х	-	-	-	-
Thermal Node(T)	Tnode	Х	-	-	-	-
Ext. Body Contact (PinP)	PinP	х	-	-	-	-
Body Node	BodyNodeP in	х	-	-	-	-
Width	W	Х	-	-	-	-
Length	1	Х	-	-	-	-
Source diffusion area	as	х	-	-	-	-
Drain diffusion area	ad	х	-	-	-	-
Source diffusion periphery	ps	х	-	-	-	-
Drain diffusion periphery	pd	х	-	-	-	-
Drain diffusion res squares	nrd	Х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Source diffusion res squares	nrs	X	-	-	-	-
Multiplier	m	х	-	-	-	-

Syntax/Synopsis

Name (d g s e [p] [b] [t]) ModelName $\langle parameter=value \rangle \dots$

Following is the model synopsis:

model ModelName bsimsoi <parameter=value> ...

Examples

I7 (0 net9 vdd! vdd!) bsimsoi w=1u 1=1u

Following is a sample model statement:

model psoip model bsimsoi type = p beta0 = 0 dvt = -0.032 delta = 0.01 k1 = 0.6 xbjt = 1 kt $\overline{1}$ = -0.11 ndif = -1 noif = 1 vsdfb = 0 vevb = 0.075 dvt1 = 0.53

Active Components in Analog Library

ptft Symbol

Description

P-Type Poly-Si TFT (ptft) is a p-type polysilicon tft. It can have a maximum of five terminals with drain, gate and source being mandatory terminals and substrate and thermal being optional.

The diagrams show the terminal with none, one or two optional nodes selected. This device is supported within the altergroups.

Command-Line Help

spectre -h psitft

Active Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectr e	spectr eS	cdsSpi ce	auC dl	auLv s	hspice S	hspic eD	UltraSi m
Model name	model	Х	-	-	-	-	-	-	-
Optional Nodes	Opins	Х	-	-	-	-	-	-	-
Optional Bulk Node B	pinB	Х	-	-	-	-	-	-	-
Optional Thermal Node T	pinT	X	-	-	-	-	-	-	-
Width	W	Х	-	-	-	-	-	-	-
<u>Length</u>	1	Х	-	-	-	-	-	-	-
Drain diffusion res squares	nrd	Х	-	-	-	-	-	-	-
Source diffusion res squares	nrs	X	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	_
Estimated operating region	region	X	-	-	-	-	-	-	-
Thermal resistance	rth0	Х	-	-	-	-	-	-	-
Thermal capacitance	cth0	Х	-	-	-	-	-	-	-
Num of segments	nseg	Х	-	-	-	-	-	-	-

Syntax/Synopsis

Name (d g s [b] [t]) ModelName <parameter=value> \dots

Active Components in Analog Library

Following is the model synopsis:

model ModelName psitft <parameter=value> ...

Examples

Following is a sample instance statement:

m4 (0 2 1 1 3) nch w=2u 1=0.8u

Following is a sample model statement:

model nch psitft type=p

Analog Library Reference Active Components in Analog Library

schottky Symbol

Description

Schottky is a special type of diode that has a low forward-voltage drop leading to greater system efficiency.

Command-Line Help

spectre -h diode

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Device area	area	Х	-	-	Х	Х
<u>Device</u> <u>initially off</u>	off	-	-	-	Х	х
Initial diode voltage	Vd	-	-	-	Х	х
Junction perimeter factor	perim	X	-	-	-	-
Length	1	Х	-	-	Х	Х
Width	W	Х	-	-	Х	Х
Multiplier	m	Х	-	-	Х	Х
Scale factor	scale	Х	-	-	-	-
Temp rise from ambient	trise	X	-	-	-	-
Estimated operating region	region	X	-	-	-	-
Periphery of junction	pj	-	-	-	X	X
Width of polysilicon	wp	-	-	-	Х	Х
Length of polysilicon	lp	-	-	-	Х	Х
Width of metal capacitator	wm	-	-	-	Х	Х

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Length of metal capacitator	1m	-	-	-	Х	Х
Temperatur e difference	dtemp	-	-	-	Х	Х

Examples

D0 (net1 net2) schottky

Active Components in Analog Library

usernpn Symbol

Description

User Specific NPN Bipolar Transistor (usernpn) is an n-type transistor which has 3 terminals. This device is supported within the altergroups.

Command-Line Help

spectre -h bjt

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	Х	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	х	-	-	Х	-
Base- emitter voltage	Vbe	-	-	-	Х	-
Collector- emitter voltage	Vce	-	-	-	X	-
<u>Device</u> initially off	off	-	-	-	Х	-
Emitter length	le	X	-	-	-	-
Emitter width	we	X	-	-	-	-
Collector length	lc	X	-	-	-	-
Temp Rise Specifier	triseSpec	X	-	-	-	-
Temp rise from ambient	trise	x	-	-	-	-
dtmp -Temp rise from ambient	dtmp	X	-	-	-	-
dtemp - Temp rise from ambient	dtemp	х	-	-	-	-

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Estimated operating region	region	X	-	-	-	-

Syntax/Synopsis

Name (c b e [s]) ModelName <parameter=value> ...

You do not have to specify the substrate terminal. If you do not specify it, the substrate is connected to ground.

Following is the model synopsis:

Examples

Following is a sample instance atatement:

q1 (vcc net3 minus) npn_mod region=fwd area=1 m=1

Following is a sample model statement:

model npn_mod bjt type=npn is=10e-13 bf=200 va=58.8 ikf=5.63e-3 rb=700 rbm=86 re=3.2 cje=0.352e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55

userpnp Symbol

Description

User Specific PNP Bipolar Transistor (userpnp) is a p-type transistor which has 3 terminals.

Command-Line Help

spectre -h bjt

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Bulk node connection	bn	-	-	-	-	-
Device area	area	Х	-	-	Х	Х
Base- emitter voltage	Vbe	-	-	-	х	Х

Analog Library Reference Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Collector- emitter voltage	Vce	-	-	-	х	Х
<u>Device</u> <u>initially off</u>	off	-	-	-	Х	Х
Emitter length	le	Х	-	-	-	Х
Emitter width	we	X	-	-	-	Х
Collector length	lc	X	-	-	-	Х
Temp Rise Specifier	triseSpec	Х	-	-	-	-
Temp rise from ambient	trise	х	-	-	-	-
dtmp -Temp rise from ambient	dtmp	х	-	-	-	-
dtemp - Temp rise from ambient	dtemp	Х	-	-	-	-
Estimated operating region	region	Х	-	-	-	-

Active Components in Analog Library

vnpn Symbol

Description

Variable Bipolar Transistor (vnpn) is a variable terminal n-type bjt. It can have a maximum of five terminals with collector, emitter and base being mandatory terminals and substrate and thermal being optional.

The diagrams show the terminal with none, one or two optional nodes selected. This device is supported within the altergroups.

Command-Line Help

spectre -h bjt

spectre -h bjt2

spectre -h bjt3

spectre -h bjt301

spectre -h vbic

Active Components in Analog Library

CDF	CDE	o mo o du		adaCrai	C	aul v	haniaa	hania	I III tura C:
Parameter Label	CDF Parameter	e e	spectr eS	cdsSpi ce	auC dl	auLv S	hspice S	eD	m
Model name	model	Х	-	-	-	-	-	-	-
Optional Nodes	Opins	Х							
Optional Substrate Node S	pinS	Х	-	-	-	-	-	-	-
Optional Thermal Node T	pint	Х	-	-	-	-	-	-	-
Optional Thermal Node _dT	pindt	Х	-	-	-	-	-	-	-
Temp Rise Specifier	triseSpec	X	-	-	-	-	-	-	-
Device area	area	Х	-	-	-	-	-	-	-
Multiplier	m	X	-	-	-	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-	-	-	-
dtmp -Temp rise from ambient	dtmp	Х	-	-	-	-	-	-	-
dtemp - Temp rise from ambient	dtempn	Х	-	-	-	-	-	-	-
Estimated operating region	region	X	-	-	-	-	-	-	-
Self Heating Switch	self_heat ing	Х	-	-	-	-	-	-	-

Active Components in Analog Library

CDF Parameter Label CDF Parameter e e eS ce auC auLv hspice ce S Length of Emitter Window	hspic eD	UltraSi m
<u>Emitter</u>	-	-

Width of be0 x Emitter Window	-	-
Number of ne x emitter contacts	-	-
Number of nb x base contacts	-	-
Location of location x collector contact	-	-
Number of ncbjt x collector contacts	-	-
Contact order x configuration	-	-
Number of npas x structures in parallel	-	-

Syntax/Synopsis

Name (c b e [s]) ModelName <parameter=value> ...

You do not have to specify the substrate terminal. If you do not specify it, the substrate is connected to ground.

Following is the model synopsis:

Active Components in Analog Library

Examples

q1 (vcc net3 minus) npn_mod region=fwd area=1 m=1 $\,$

Following is a sample model statement:

model npn_mod bjt type=npn is=10e-13 bf=200 va=58.8 ikf=5.63e-3 rb=700 rbm=86 re=3.2 cje=0.352e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55

Active Components in Analog Library

vpnp Symbol

Description

Variable Bipolar Transistor (vpnp) is a variable terminal p-type bjt. It can have a maximum of five terminals with collector, emitter and base being mandatory terminals and substrate and thermal being optional. This device is supported within the altergroups.

The diagrams show the terminal with none, one or two optional nodes selected.

Command-Line Help

spectre -h bjt
spectre -h bjt2
spectre -h bjt3
spectre -h bjt301

spectre -h vbic

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectr e	spectr eS	cdsSpi ce	auC dl	auLv s	hspice S	hspic eD	UltraSi m
Model name	model	Х	-	-	-	-	-	-	-
Optional Nodes	Opins	X							
Optional Substrate Node S	pinS	X	-	-	-	-	-	-	-
Optional Thermal Node T	pint	Х	-	-	-	-	-	-	-
Optional Thermal Node _dT	pindt	Х	-	-	-	-	-	-	-
Temp Rise Specifier	triseSpec	X	-	-	-	-	-	-	-
Device area	area	Х	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-	-	-	-
dtmp -Temp rise from ambient	dtmp	Х	-	-	-	-	-	-	-
dtemp - Temp rise from ambient	dtempn	Х	-	-	-	-	-	-	-
Estimated operating region	region	X	-	-	-	-	-	-	-
Self Heating Switch	self_heat ing	X	-	-	-	-	-	-	-

Active Components in Analog Library

CDF Parameter Label CDF Parameter e e eS ce auC auLv hspice ce S Length of Emitter Window	hspic eD	UltraSi m
<u>Emitter</u>	-	-

Width of be0 x Emitter Window	-	-
Number of ne x emitter contacts	-	-
Number of nb x base contacts	-	-
Location of location x collector contact	-	-
Number of ncbjt x collector contacts	-	-
Contact order x configuration	-	-
Number of npas x structures in parallel	-	-

Syntax/Synopsis

Name (c b e [s]) ModelName <parameter=value> ...

You do not have to specify the substrate terminal. If you do not specify it, the substrate is connected to ground.

Following is the model synopsis:

Active Components in Analog Library

Examples

q1 (vcc net3 minus) npn mod region=fwd area=1 m=1 $\,$

Following is a sample model statement:

model npn_mod bjt type=npn is=10e-13 bf=200 va=58.8 ikf=5.63e-3 rb=700 rbm=86 re=3.2 cje=0.352e-12 pe=0.76 me=0.34 tf=249e-12 cjc=0.34e-12 pc=0.55

zener Symbol

Description

Zener Diode has p-n junction in reverse bias to use the zener effect to maintain a constant voltage.

Command-Line Help

spectre -h diode

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	Х	Х
Device area	area	Х	-	-	Х	Х
Device initially off	off	-	-	-	Х	х
Initial diode voltage	Vd	-	-	-	Х	Х
Junction perimeter factor	perim	Х	-	-	-	-
Length	1	Х	-	-	Х	х
Width	W	Х	-	-	Х	х
Multiplier	m	Х	-	-	х	х
Scale factor	scale	Х	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-
Estimated operating region	region	X	-	-	-	-
Periphery of junction	pj	-	-	-	X	х
Width of polysilicon	wp	-	-	-	Х	Х
Length of polysilicon	lp	_	-	-	Х	Х
Width of metal capacitator	wm	-	-	-	х	Х

Active Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Length of metal capacitator	lm	-	-	-	Х	Х
Temperature difference	dtemp	-	-	-	Х	Х

Related Topics

CDF Parameters Supported by Analog Library Components
auCdl and auLvs Components in Analog Library

Active Components

Analysis Specific Components in Analog Library

The components in the Analysis Specific category are as follows:

- cmdmprobe Symbol
- deepprobe Symbol
- diffsprobe Symbol
- diffstbprobe Symbol
- fourier Symbol
- fourier2ch Symbol
- iprobe Symbol
- nodeQuantity Symbol
- simulinkCoupler Symbol
- sprobe Symbol

Analysis Specific Components in Analog Library

Viewing the cmdmprobe Subcircuit

The subcircuit consists of two iprobes and two controlled sources that can be viewed by:

 Selecting Design – Hierarchy – Descend Read or Descend Edit from the Virtuoso Schematic Reading window.

Related Topics

Performing Stability Analysis in Spectre
cmdmprobe Symbol

Analysis Specific Components in Analog Library

Performing Stability Analysis in Spectre

The subcircuit has two probes, Vinj and Iinj, designated for stability analysis. Their values are set to zero in a normal circuit simulation. To perform a stability analysis, specify the vinj probe in the Probe Instance field of the Choosing Analysis form. The process and the calculation is automated in Spectre's stability (stb) analysis. Iinj is internally placed to simplify the use model.

The steps to perform stability analysis in Spectre are as follows:

- **1.** Add the cmdmprobe instance to the design.
- **2.** Select the *Tools Analog Environment* menu option.
- **3.** Select *Analyses Choose* to display the Choosing Analyses form.
- **4.** Select the *stb* radio button.
- **5.** Specify the *Start* Sweep Range and the *Stop* Sweep Range.
- **6.** Click *Select* and then select the cmdmprobe instance from the design.

Analysis Specific Components in Analog Library

The <Inst_id>/vinj automatically appears in the Probe Instance field.

7. Click *OK*.

Analysis Specific Components in Analog Library

8. Select the *Simulation – Netlist and Run* menu option to generate the netlist in Spectre Direct.

Related Topics

Viewing the cmdmprobe Subcircuit

Analysis Specific Components in Analog Library

cmdmprobe Symbol

Description

Common Model Differential Model Probe is a Spectre subcircuit component used in Spectre stability analysis for measuring differential stability. It measures the common-mode stability when CMDM is set to 1 and differential-mode stability when CMDM is set to -1.

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>CMDM</u>	CMDM	Х	-	-	-	-

Examples

For the instance I107 and Sweep Range between 1 and 10, the netlist is as follows:

stb stb start=1 stop=10 probe=I107.vinj annotate=status // Library name: analogLib

Analysis Specific Components in Analog Library

```
// Cell name: cmdmprobe
// View name: schematic
subckt cmdmprobe in1 in2 out1 out2
parameters CMDM=1
        evinj (in2 out2 in1 out1) vcvs gain=CMDM
        vprb (inout out1) iprobe
        vinj (inout in1) iprobe
        fiinj (0 out2) pcccs gain=CMDM probes=[ vprb vinj ] coeffs=[ 0 1 1 ]
ends cmdmprobe
// End of subcircuit definition.
// Library name: testLib
// Cell name: testCell
// View name: schematic
I107 (net048 net047 net046 net045) cmdmprobe CMDM=1
I111 (net080 net079 net078 net077) cmdmprobe CMDM=-1
```

Analysis Specific Components in Analog Library

deepprobe Symbol

Description

It is a single pin device connected to an internal hierarchy net that lets you probe down through the design hierarchy. You can make a connection from the top-level testbench to an internal net within a sub-block inside the hierarchy by connecting a named wire to a deepprobe terminal. With this component, you can also short internal nets, connect two internal nets, or inject pulses on any internal net in the design.

If you select the *Hierarchical Node as Design Var?* check box in the Edit Object Properties form, the value in the *Hierarchical Node* field is considered a variable and netlisted accordingly. Otherwise, the value for *Hierarchical Node* is considered a string value and netlisted directly.

Consider that you have the following deepprobe instance, named IPRBO, in your schematic:

If you specify the value for the *Hierarchical Node* in schematic syntax, it is automatically translated into Spectre syntax during netlisting.

Analysis Specific Components in Analog Library

In this example, the *Hierarchical Node* /I0/net40 is netlisted as IPRB0 (I0.net40 net1) iprobe.

To automatically derive the value of the hierarchical node, right-click the required net in the Navigator assistant in Virtuoso Schematic Editor, and select *Copy Path* from the shortcut menu. You can then paste this path in the Hierarchical Node field of the Edit Object Properties form.

Additionally, if you want to use the bus format to specify the instance name and its hierarchical node, ensure that the number of buses specified in the *Instance Name* and the *Hierarchical*

Analysis Specific Components in Analog Library

Node fields is the same. In such cases, the netlist prints separate statements for each bus in the deepprobe instance.

Command-Line Help

spectre -h iprobe

Component Parameters

CDF Parameter Label	CDF Parameter		spectr eS	cdsSpi ce	auC dl	auLv s	hspic eS	hspice D	UltraS im
Hierarchical Node	probeNode	X	-	-	X	-	-	-	-

Syntax/Synopsis

Name (in out) iprobe

Examples

The following example shows the netlist syntax of a deepprobe element.

IPRB0 (I1.b c) iprobe

Here I1.b is the name of the hierarchical net and ${\tt c}$ is the name of the net connected to the deepprobe element.

The net name must be the same as it appears in the netlist. For example a member of a bussed net (bus<5>) may appear in the netlist as bus \<5\>. So if that is within the I1 instance at the top level, you should enter I1.bus\<5\>.

The following example shows two deepprobe elements being used to short two internal nets.

```
IPRB5 (I1.I0.b net7) iprobe
IPRB4 (I1.I0.a net6) iprobe
v0 (net6 net7) vsource dc=0 type=dc
```


The following example shows a deepprobe element being used to inject pulses on an internal net.

Analysis Specific Components in Analog Library

IPRB0 (I1.I0.b net8) iprobe
PORT0 (net8 0) port r=50 type=pwl wave=[0 0 5n 0]

diffsprobe Symbol

Description

A special testbench that enables in-situ probing of bi-directional impedances, without breaking the circuit. This is a Spectre subcircuit component used for measuring differential impedance using sprobe devices in the S-parameter (sp) and Periodic S-Parameter (psp) analyses. To measure the differntial impedance, you must manually specify the sprobe names in the Choosing Analyses form for the sp and psp analyses.

For example, consider the following sprobe names specified in the given figure:

- I15.SPRB_DM
- I15.SPRB_CM

The following statements will be printed in the netlist:

```
I15 (net2 net3 net4 net5) diffsprobe
psp psp start=1G stop=1.2G lin=500 harmsvec=[0]
    sprobes=[I15.SPRB DM I15.SPRB CM]
annotate=status
```

Analysis Specific Components in Analog Library

sp sp sprobes=[I15.SPRB_DM I15.SPRB_CM] start=1G stop=1.2G lin=500 $\$ annotate=status

You can also specify output expressions containing sprobe names in the *Outputs Setup* tab of Virtuoso ADE Assembler and plot these expressions.

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-

Syntax/Synopsis

Name (in out) diffsprobe

diffstbprobe Symbol

Description

Differential Stability Probe is a Spectre subcircuit component used in Spectre stability analysis for measuring differential stability for multi-loop circuits, such as differential feedback circuit.

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
CMDM	CMDM	х	-	-	-	-
IxRemoveD evice	lxRemoveD evice	-	Х	-	-	-

Analysis Specific Components in Analog Library

fourier Symbol

Description

Ratiometric Fourier Analyzer measures the Fourier coefficients of two different signals at a specified fundamental frequency without loading the circuit. This device is not supported within the altergroups.

Command-Line Help

spectre -h fourier

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Fundament al frequency	fund	Х	-	-	-	-
Minimum no. of time points	points	Х	-	-	-	-
Active	active	Х	-	-	-	-
Order of interpolation	order	Х	-	-	-	-
Number of harmonics	harms	Х	-	-	-	-
No. of reference Harmonics	refharms	Х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
No. of desired harmonics	harmsvec	Х	-	-	-	-
No. of reference harmonics	refharmsv ec	Х	-	-	-	-
First harmonics computed	firstharm	Х	-	-	-	-
First of reference harmonics	reffirsth arm	Х	-	-	-	-
Nomalizing harmonic	normharm	Х	-	-	-	-

Analysis Specific Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Norm of reference harmonics	refnormha rm	Х	-	-	-	-
To print fourier results on	where	Х	-	-	-	-

Syntax/Synopsis

```
Name ( [p] [n] [pr] [nr] ) ModelName <parameter=value> ...
Name ( [p] [n] [pr] [nr] ) fourier <parameter=value> ...
```

The signal between terminals 'p' and 'n' is the test or numerator signal. The signal between terminals 'pr' and 'nr' is the reference or denominator signal. Fourier analysis is performed on terminal currents by specifying the 'term' or 'refterm' parameters. If both 'term' and 'p' or 'n' are specified, then the terminal current becomes the numerator and the node voltages become the denominator. By mixing voltages and currents, it is possible to compute large signal immittances.

Following is the model synopsis:

```
model ModelName fourier <parameter=value> ...
```

Examples

four1 (1 0) fourmod harms=50

Following is a sample model statement:

model fourmod fourier fund=900M points=2500 order=2

fourier2ch Symbol

Description

Ratiometric Fourier Analyzer With Reference Terminals is a component in analysis specific category of Analog Library.

Command-Line Help

spectre -h fourier

CDF Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Fundament al frequency		Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Minimum no. of time points	points	Х	-	-	-	-
<u>Active</u>	active	Х	-	-	-	-
Order of interpolation	order	Х	-	-	-	-
Number of harmonics	harms	х	-	-	-	-
No. of reference Harmonics	refharms	Х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
No. of desired harmonics	harmsvec	Х	-	-	-	-
No. of reference harmonics	refharmsv ec	Х	-	-	-	-
First harmonics computed	firstharm	Х	-	-	-	-
First of reference harmonics	reffirsth arm	Х	-	-	-	-
Nomalizing harmonic	normharm	Х	-	-	-	-
Norm of reference harmonics	refnormha rm	Х	-	-	-	-
To print fourier results on	where	Х	-	-	-	-

iprobe Symbol

Description

Current through the probe is computed and is defined as positive if it flows from the input node, through the probe, to the output node. Since the current variable gets the name of the 'iprobe' instance, you cannot create an 'iprobe' with the same name as a circuit node. This device is not supported within the altergroups.

Command-Line Help

spectre -h iprobe

Analysis Specific Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	х	х	-	-	-
Fundament al frequency		Х	х	-	-	-
Minimum no. of time points	points	Х	X	-	-	-
Active	active	х	х	-	-	-
Order of interpolation	order	Х	х	-	-	-
Number of harmonics	harms	Х	х	-	-	-
No. of reference Harmonics	refharms	Х	X	-	-	-
Scale factor	scale	х	Х	-	-	-
Dummy DC voltage	vdummy	-	х	-	-	Х
IxRemoveD evice	lxRemoveD evice	-	Х	-	-	-

Syntax/Synopsis

Name (in out) iprobe

Examples

ip (1 0) iprobe

nodeQuantity Symbol

Description

Set Node Quantities contain information about specific types of signals, such as their units, absolute tolerances, and maximum allowed change per Newton iteration. Use the 'quantity' statement to create new quantities or to redefine properties of an existing quantity. Use this statement to set the quantities for a particular node. This device is not supported within the altergroups.

Command-Line Help

spectre -h node

Analysis Specific Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Flow	flow	Х	-	-	-	Х
Value	value	Х	-	-	-	Х
Strength	strength	Х	-	-	-	Х

Syntax/Synopsis

Name (1 [2] ...) node <parameter=value> ...

Examples

For example, to indicate that the node net1 is used for thermal signals, you could use the following node statement.

i17 (net1) node value=Temp flow=Pwr

Temp and Pwr are predefined quantities.

nodel (1 2 3) node value="T" flow="W" strength=override //Must define T and W with quantity statement.

simulinkCoupler Symbol

Description

The component simulinkCoupler is a Pcell. In order to cosimulate between AMS and simulink, two types of couplers are required. The Pcell is the coupler which is used on AMS side. On simulink side, simulinkCoupler is used. The couplers communicate to each other through a TCP/IP network socket connection.

Component Parameters

CDF Parameter Label	CDF Parameter
Coupler domain	a_or_d
Number of input pins	n_inp
Number of output pins	n_outp
Show advanced options	advUser
Initial coupler output voltage	init_val
Simulink(R) hostname	hostname
Socket port	sockPort
Sim response timeout	sockTimeout

sprobe Symbol

Description

This is a special testbench that enables in-situ probing of bi-directional impedances, without breaking the circuit.

Command-Line Help

spectre -h sprobe

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Reference Resistance	r0	Х	Х	-	-	-
Series Resistance	rs	Х	Х	-	-	-
Probe feed Resistance	rfeed	Х	Х	-	-	-

Syntax/Synopsis

Name (in out) sprobe

Analysis Specific Components in Analog Library

Examples

Following is a sprobe instance:

```
I1 (net7 net4) sprobe rs=0.01 rfeed=1e8 r0=50
```

Following is a sprobe analysis in one sp analysis:

```
sp sp sprobes=[I1 I0] ...
```

Following are sprobe and normal sp analysis in one sp analysis:

```
sp sp ports=[PORT0] sprobes=[I1 I0]
```

Related Topics

CDF Parameters Supported by Analog Library Components

Parasitic Components in Analog Library

You can use the parasitic components of anlogLib to account for the effect of parasitics on analog circuits. By accounting for the effect of parasitics, you can improve the accuracy of your circuit simulations. These components are usually used during Diva extraction and are placed in an extracted view. Although these components are similar to the normal components, they appear only in extracted views.

The components in the Parasitics category are as follows:

- pcapacitor Symbol
- pdiode Symbol
- pinductor Symbol
- pmind Symbol
- presistor Symbol

pcapacitor Symbol

Description

Parasitic Capacitor is a component in parasitics category in Analog Library.

Command-Line Help

spectre -h capacitor

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Capacitance	С	Х	Х	Х	Х	Х
Initial condition	ic	Х	-	-	Х	Х
Model name	model	Х	-	-	-	-
Width	W	Х	-	-	Х	Х

Analog Library Reference Parasitic Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Length</u>	1	Х	-	-	Х	Х
Multiplier	m	Х	-	-	Х	Х
Scale factor	scale	Х	-	-	Х	Х
Temp rise from ambient	trise	х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	Х	Х
Temperature coefficient 2	tc2	Х	-	-	Х	Х
Number of Polynomial Coeffs	polyCoef	-	-	-	Х	Х
Temperature difference	dtemp	-	-	-	Х	Х

Parasitic Components in Analog Library

pdiode Symbol

Description

Parasitic Diode is a component in parasitics category in Analog Library.

Command-Line Help

spectre -h diode

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Device area	area	Х	-	-	Х	Х
Device initially off	off	-	-	-	Х	Х

Analog Library Reference Parasitic Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Initial diode voltage	Vd	-	-	-	Х	X
Junction perimeter factor	perim	Х	-	-	-	-
<u>Length</u>	1	Х	-	-	Х	Х
<u>Width</u>	W	Х	-	-	Х	Х
Multiplier	m	Х	-	-	Х	Х
Scale factor	scale	Х	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-
Estimated operating region	region	Х	-	-	-	-
Periphery of junction	pj	-	-	-	Х	Х
Width of polysilicon	wp	-	-	-	X	Х
Length of polysilicon	lp	-	-	-	Х	Х
Width of metal capcitor	wm	-	-	-	Х	Х
Length of metal capcitor	lm	-	-	-	Х	Х
Temperature difference	dtemp	-	-	-	Х	X

Analog Library Reference Parasitic Components in Analog Library

pinductor Symbol

Description

Parasitic Inductor is a component in parasitics category in Analog Library. This device is supported within the altergroups.

Command-Line Help

spectre -h inductor

Parasitic Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Inductance	1	Х	Х	Х	Х	Х
Initial condition	ic	Х	-	-	Х	-
Model name	model	Х	-	-	-	-
Resistance	r	Х	-	-	Х	Х
Multiplier	m	Х	-	-	Х	Х
Temp rise from ambient	trise	Х	-	-	-	-
Scale factor	scale	-	-	-	Х	Х
Number of Polynomial Coeffs	polyCoef	-	-	-	X	-
Temperature coefficient 1	tc1	-	-	-	Х	X
Temperature coefficient 2	tc2	-	-	-	Х	X
Temperature difference	dtemp	-	-	-	X	X
-						

Syntax/Synopsis

```
Name ( 1 2 ) ModelName <parameter=value> ...
Name ( 1 2 ) inductor <parameter=value> ...
```

Following is the model synopsis:

model ModelName inductor <parameter=value> ...

Examples

Following is a sample instance statement without model:

```
133 (0 net29) inductor l=10e-9 r=1 m=1
```

Following is a sample instance statement with model:

```
133 (0 net29) ind l=10e-9 r=1 m=1
```

Parasitic Components in Analog Library

Following is a sample model statement:

model ind inductor 1=6e-9 r=1 tc1=1e-12 tc2=1e-12 tnom=25

pmind Symbol

Description

Parasitic Mutual Inductor is a component in parasitics category in Analog Library. This device is not supported within the altergroups.

Command-Line Help

spectre -h mutual_inductor

Parasitic Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
First coupled inductor	ind1	Х	-	-	-	-
Second coupled inductor	ind2	Х	-	-	-	-
Coupling coefficient	k	Х	-	-	X	Х

Syntax/Synopsis

Name mutual inductor <parameter=value> ...

Examples

Sample instance statement with two inductors:

```
11 (1 0) inductor
```

12 (2 0) inductor

ml1 mutual inductor coupling=1 ind1=11 ind2=12

Analog Library Reference Parasitic Components in Analog Library

presistor Symbol

Description

Parasitic Resistor is a component in parasitics category in Analog Library. This device is supported within the altergroups.

Command-Line Help

spectre -h resistor

Parasitic Components in Analog Library

CDF Parameters

CDF Parameter	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Resistance	r	х	х	х	Х	Х
Temperature coefficient 1	tc1	Х	-	-	Х	Х
Temperature coefficient 2	tc2	Х	-	-	Х	Х
Model name	model	х	-	-	-	-
Length	1	х	-	-	Х	Х
<u>Width</u>	W	х	-	-	Х	Х
Resistance Form	resform	Х	-	-	-	-
Multiplier	m	Х	-	-	Х	X
Scale factor	scale	Х	-	-	Х	X
Temp rise from ambient	trise	X	-	-	-	-
Generate noise?	isnoisy	Х	-	-	-	-
Capacitance connected	hrc	-	-	-	Х	X
Temperature difference	dtemp	-	-	-	X	X
AC resistance	ac	-	-	-	х	-
Capacitance	С	-	-	Х	-	-
	-					·

Syntax/Synopsis

Name (1 2) ModelName <parameter=value> ...
Name (1 2) resistor <parameter=value> ...

Following is the model synopsis:

model ModelName resistor <parameter=value> ...

Parasitic Components in Analog Library

Examples

Following is a sample statement without model:

```
r1 (1 2) resistor r=1.2K m=2
```

Following is a sample statement with model:

```
r1 (1 2) resmod l=8u w=1u
```

Following is a sample model statement:

```
model resmod resistor rsh=150 l=2u w=2u etch=0.05u tcl=0.1 tnom=27 kf=1
```

Related Topics

CDF Parameters Supported by Analog Library Components

Analog Library Reference
Parasitic Components in Analog Library

The components in the Passive category are:

- cap Symbol
- capq Symbol
- core Symbol
- corefragment Symbol
- delay Symbol
- delayline Symbol
- fracpole Symbol
- ideal_balun Symbol
- ind Symbol
- indq Symbol
- mind Symbol
- msline Symbol
- mtline Symbol
- nport Symbol
- phyres Symbol
- rcwireload Symbol
- <u>res Symbol</u>
- spxtswitch Symbol
- switch Symbol
- tline Symbol

Passive Components in Analog Library

- winding Symbol
- xfmr Symbol

Analog Library Reference Passive Components in Analog Library

cap Symbol

Description

The component cap is a two terminal capacitor. You can assign the capacitance or let Spectre compute it from the physical length and width of the capacitor. In either case, the capacitance can be a function of temperature or applied voltage. This device is supported within the altergroups.

Command-Line Help

spectre -h capacitor

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Capacitanc e	С	X	Х	Х	Х	Х
Initial condition	ic	X	-	-	Х	Х
Model name	model	X	-	-	-	-
Width	W	X	-	-	Х	Х
Length	1	Х	-	-	Х	Х
Multiplier	m	X	-	-	Х	Х
Scale factor	scale	X	-	-	Х	Х
Temp rise from ambient	trise	X	-	-	-	-
Number of Polynomial Coeffs	polyCoef	X	-	-	Х	Х
PolyCoeff 1	c1	X	-	-	Х	Х
Temperatu re coefficient 1	tc1	Х	-	-	X	х
Temperatu re coefficient 2	tc2	х	-	-	х	х
Temperatur e difference	dtemp	-	-	-	Х	Х
Capacitor Area	area1	Х	Х	Х	X	Х

Passive Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Capacitor Perimeter	perim1	-	Х	Х	Х	X

Syntax/Synopsis

```
Name ( 1 2 ) ModelName <parameter=value> ...
Name ( 1 2 ) capacitor <parameter=value> ...
```

Following is the model synopsis:

model ModelName capacitor <parameter=value> ...

Examples

Following is a sample without model:

```
c2 (1 0) capacitor c=2.5u tc1=1e-8
```

Following is a sample with model:

```
c2 (1 0) proc_cap c=2.5u tc1=1e-8
```

Following is a sample model statement:

model proc cap capacitor c=2u tc1=1.2e-8 tnom=25

capq Symbol

Two Terminal Capacitor Resistor

The capg instance is a capacitor with the Q factor g' specified at a particular frequency fg.

The parameter mode specifies the exact form of the frequency dependence of the real part of the admittance Re(Y). The equations are written in terms of admittance Y, where by default.

- w=2*Pi*freq
- wq=2*Pi*fq
- fq=1.0e8 Hz. This is the frequency at which q is measured.
- mode=1. This is the integer parameter that selects the frequency dependence.
- c=1e9F. This is the default capacitance.
- q=50.0. This is the quality factor measured at fq.
- alph=0. This is the scaling factor for Q.

Passive Components in Analog Library

- \Box qf=q*(freq/fq)^alph
- Y=2*pi*freq*c*(1/qf+j)

If the capq symbol does not work in mode 4, the alph property is ignored.

The following table describes the various modes and the corresponding equations:

Mode	Description
1	Constant real part of the admittance Re(Y)=const.
	Equation: Re(Y) = $wq*c/q$ = const; Im(Y) = $w*C$.
2	Re(Y) increases proportional to sqrt(freq).
	Equation: Re(Y) = $c*sqrt(wq*w)/q$; Im(Y) = $w*C$.
3	Re(Y) increases linearly with frequency.
	Equation: Re(Y) = w^*c/q ; Im(Y) = w^*c .
4	Re(Y) decreases proportional to (freq/fq)^alph.
	Equation: Re(Y)= $w*c/Qf$; Im(Y)= $w*c$; Qf= $q*(freq/fq)^alph$.

Command-Line Help

spectre -h capq

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre
Alpha parameter	alph	Х
Capacitance	С	Х
Frequency for C and Q	fq	Х
Generate noise?	isnoisy	Х
<u>Mode</u>	mode	Х
Model name	model	Х
Multiplier	m	Х
Quality factor	q	Х
Temp rise from ambient	trise	Х

Examples

CO (net1 net2) capq c=1n q=50 fq=100M mode=4 alph=0.35

core Symbol

Description

This component models the magnetic hysteresis, with air gap, frequency, and temperature effects. The model is based on the AWB model for magnetic cores and windings. The user has to specify the core's material and geometric parameters to model the hysteresis.

The material parameters to specify are the 'Br', 'Bm', and 'Hc' of the core. The geometric parameters are the area, magnetic path length, and the air gap of the core.

You can specify the magnetic path length in one of the following ways:

- Give the length directly in cm.
- Or give the outer and inner diameter of the core.

Cores without terminals represent complete magnetic loops. Cores with terminals are fragments that you can use as building blocks to build models of complicated core structures.

This device is not supported within the altergroups.

Command-Line Help

spectre -h core

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Device area	area	Х	-	-	-	-
Physical length	len	х	-	-	-	-
Inner diam of toroidal core	idiam	Х	-	-	-	-
Outer diam of toroidal core	od	х	-	-	-	-
Gap length	gap	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Total Num of windings	numOfL	-	-	-	Х	-
Name of winding 1	11 - 120	-	-	-	Х	-
Initial magnetizat ion of core	mag	-	-	-	Х	-

Syntax/Synopsis

Name ... ModelName <parameter=value> ...

Following is the Model Synopsis:

model ModelName core parameter=value> ...

Passive Components in Analog Library

Examples

Following is a sample instance statement:

c1 (1 0) core mod area=1.2 len=8.1 id=0.55 gap=0.25

Following is a sample model statement:

model core_mod core len=7.7 area=0.85 br=1e3 bm=5e3 hc_t1=0.2 p1_f1=2.08 f1=10e3 p2 f2=50 f2=100K bflux=1e3 density=4.75

corefragment Symbol

Description

The component corefragement is a magnetic core with hysteresis. Cores without terminals represent complete magnetic loops. Cores with terminals are fragments that you can use as building blocks to build models of complicated core structures.

Command-Line Help

spectre -h core

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-

Analog Library Reference
Passive Components in Analog Library

CDF						
Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Device area	area	Х	-	-	-	-
Physical length	len	Х	-	-	-	-
Inner diam of toroidal core	idiam	х	-	-	-	-
Outer diam of toroidal core	od	х	-	-	-	-
Gap length	gap	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-

delay Symbol

Description

The delay line model is a four terminal device with zero output impedance and infinite input impedance. The output between nodes 'p' and 'n' is the input voltage between nodes 'ps' and 'ns' delayed by the time delay 'td' and scaled by 'gain'. This device is not supported within the altergroups.

Command-Line Help

spectre -h delay

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Delay time	td	Х	-	-	-	-
<u>Gain</u>	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Passive Components in Analog Library

Syntax/Synopsis

Name (p n ps ns) delay <parameter=value> ...

Examples

dl1(outp outn cntrlp cntrln) delay td=10n gain=1.5

delayline Symbol

Description

The delayline component is a lossless transmission line section with a specified delay time \mathtt{T}_d and characteristic impedance $\mathtt{Z}_0.$ The \mathtt{ABCD} matrix of a lossless transmission line section is given by:

$$ABCD = \begin{bmatrix} \cos(\omega T_d) & jZ_d \sin(\omega T_d) \\ \frac{j\sin(\omega T_d)}{Z_0} & \cos(\omega T_d) \end{bmatrix}$$

Command-Line Help

spectre -h mtline

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Characteri stic impedance		Х	-	-	Х	X
Delay time	td	х	-	-	x	Х

Syntax/Synopsis

Name (in out) mtline <parameter=value> ...

Examples

DLO (net1 net2) mtline z0=50 td=1n

fracpole Symbol

Description

The component fracpole is a fractional impedance/admittance pole. The circuit is a one-port that exhibits poles and zeros that are real and spaced evenly in a logarithmic sense over the frequency range. The impedance exhibited by one port approximates a fractional pole slope between -1 and 0 in the frequency range.

In other words, if the impedance is plotted on a log-log scale, it has a negative slope equal to the fraction specified. If the user requested half a pole, the slope will be -1/2, and so on. Since it is a lumped approximation, the slope is not exact but slowly oscillates about the specified value.

This device is supported within the altergroups.

Passive Components in Analog Library

Command-Line Help

spectre -h fracpole

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Low freq. limit for approx.	f0	х	-	-	-	-
Freq 1 to Freq 50High freq. limit for approx.		Х	-	-	-	-
Unity intercept point	coef	х	-	-	-	-
Slope of imp on log/log scale	slope	х	-	-	-	-
Num of lumps in approx.	lumps	х	-	-	-	-
Num of lumps/dec in approx.	dec	х	-	-	-	-
<u>Profile</u>	profile	Х	-	-	-	-
Multiplicity factor	m	Х	-	-	-	-
Initial condition	ic	х	-	-	-	-
Res. for initial conds.	rforce	х	-	-	-	-

Syntax/Synopsis

Name (1 2) ModelName <parameter=value> ... Name (1 2) fracpole <parameter=value> ...

Passive Components in Analog Library

Following is the model synopsis

model ModelName fracpole parameter=value> ...

ideal_balun Symbol

Description

The balun is a bidirectional balanced-unbalanced convertor that can be used in circuits that require single or differential signal transformation. Although a passive network (including the transformer) is used to achieve balun, this implementation employs a three-port network. It requires three ports (or nodes) because the reference nodes are always at the global ground, single, blip, and bal_n.

The balun is used for converting ground-referred differential-mode (d) and common-mode (c) signals to balanced positive (p) and negative (n) signals. The balun is accurate at all frequencies including DC, because it uses ideal transformers.

```
subckt balun (d c p n)
     T1 (d 0 p c) transformer n1=2
T2 (d 0 c n) transformer n1=2
ends balun
```

Notice that the balun is bidirectional, you can use, as inputs or outputs, either the unbalanced signals (d for differential mode and c for common-mode) or the balanced signals (p for positive and n for negative).

Passive Components in Analog Library

Component Parameters

 $\verb|ideal_balun| has no component parameters.$

ind Symbol

Description

The component ind is a two terminal inductor. The inductance of this component can be a function of temperature or branch current. If you do not specify the inductance in the instance statement, it is taken from the model.

Command-Line Help

spectre -h inductor

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Use S- parameters	useSParamsCh eckBox	Х	-	-	-	-

Analog Library Reference
Passive Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Browse s- parameter file	nportFileB	х	-	-	-	-
S-parameter data file	dataFile	Х	-	-	-	-
Model name	model	Х	-	-	-	-
<u>Inductance</u>	1	Х	Х	Х	Х	Х
Resistance	r	Х	-	-	Х	Х
Multiplier	m	х	-	-	Х	Х
Temp rise from ambient	trise	Х	-	-	-	-
Initial condition	ic	Х	-	-	Х	-
Temperature coefficient 1	tc1	-	-	-	Х	Х
Temperature coefficient 2	tc2	-	-	-	Х	Х
Generate noise?	isnoisy	Х	-	-	-	-
Scale factor	scale	-	-	-	Х	Х
Number of Polynomial Coeffs	polyCoef	-	-	-	Х	-
Poly Coeff 1	c1 - c20	-	-	-	Х	-
Temperature difference	dtemp	-	-	-	X	Х

indq Symbol

Two Terminal Series Inductor Resistor

The inductance of this component can be a function of temperature or branch current. If you do not specify the inductance in the instance statement, it is taken from the model statement.

The indq component also has the frequency-dependent Q-factor with four modes of frequency dependence. This component has the following optional parameters:

- wq=2*Pi*fq
- q=50.0. This is the quality factor measured at fq.
- fg=1e8 Hz. This is the frequency at which 1 and q are measured.
- mode=0. This is the integer parameter that selects the frequency dependence.
- alph=0. This is the scaling factor for Q.

Passive Components in Analog Library

If the indq symbol does not work in mode 4, the alph property is ignored.

- rdc=0.0. This is the DC resistance used in mode=2 and mode=3.
 - \Box qf=q*(freq/fq)^alph, Z=2*pi*freq*L*(1/qf+j).

The following table describes the various modes and the corresponding equations:

Mode	Description
1	RL series branch with R=wq*L/Q=const, L=const.
2	RL series branch with $R=Rdc+R2*sqrt(freq)$ and $LsLext+L2/sqrt(freq)$.
3	RL series branch with R=sqrt(Rdc^+Rac^), L=const.
4	RL series branch with $R=2*PI*f*L/Qf$, $Qf=q*(f/fq)''alph$ and L=const.
	This mode is ignored in transient.

This device is supported within the altergroups. During auCdl netlisting, the Multiplier, Quality Factor, and Frequency for L and Q CDF parameters are not netlisted. The indq component is netlisted similar to the ind component.

For more information, see indq.

Command-Line Help

spectre -h inductor

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	
Use S-parameters	useSParamsCheck Box	Х	Х	
Browse s-parameter file	nportFileB	Х	Х	
S-parameter data file	dataFile	Х	X	
Alpha parameter	alph	Х	X	
<u>Mode</u>	mode	Х	X	
Model name	model	Х	Х	
Inductance	1	Х	X	
Multiplier	m	Х	-	
Temp rise from ambient	trise	Х	Х	
Generate noise?	isnoisy	Х	Х	
Quality factor	q	Х	-	
Rdc in mode 2 and 3	rdc	Х	х	
Frequency for L and Q	fq	Х	-	

Examples

L1 (net1 net2) inductor l=1n q=50 fq=100M mode=4 alph=0.55 LL0 vout net7 1n $\{LP\}$

mind Symbol

Description

The mind component is a mutual inductor. It couples two previously specified inductors. There is no limit to the number of inductors that you can couple or to the number of couplings to a particular inductor, but you must specify separate mutual inductor statements for each coupling. Using the 'dot' convention, place a 'dot' on the first terminal of each inductor.

The mutual inductor modifies the constitutive equations of two isolated inductors to:

```
v1 = L11*di1/dt + M*di2/dt
v2 = M*di1/dt + L22*di2/dt
```

where the mutual inductance, M, is computed from the coupling coefficient, k, using,

```
k = |M|/sqrt(L11*L22).
```

This device is not supported within the altergroups.

Command-Line Help

```
spectre -h mutual_inductor
```

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
First coupled inductor	ind1	Х	-	-	-	-
Second coupled inductor	ind2	X	-	-	-	-
Coupling coefficient	k	X	-	-	X	X

Syntax/Synopsis

Name mutual_inductor parameter=value> ...

Examples

Following is a sample instance statement with two inductors:

```
11 (1 0) inductor
```

12 (2 0) inductor

ml1 mutual inductor coupling=1 ind1=11 ind2=12

msline Symbol

Description

This component is a microstrip line based on the equations of Hammerstad and Jensen. The model contains a thickness correction to the width and frequency dependent permittivity and characteristic impedance. The dispersion equations are those of Kirschning and Jansen.

This device is supported within the altergroups.

Command-Line Help

spectre -h msline

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Length</u>	1	Х	-	-	-	-
Width	W	Х	-	-	-	-
Substrate height	h	Х	-	-	-	-
Conductor thickness	t	Х	-	-	-	-
Relative permittivity	eps	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Max signal frequency	fmax	Х	-	-	-	-

Syntax/Synopsis

Name (t1 b1 t2 b2) msline <parameter=value> ...

Examples

tl1 (in 0 out 0) msline l=0.15 w=0.01 h=0.01

mtline Symbol

Description

The component mtline is a multi-conductor transmission line. It is characterized by constant RLCG matrices or frequency dependent RLCG data. An mtline can have as many conductors as defined in the Num of lines (excluding ref.) field. However, there must be at least two conductors, with one conductor used as a reference, to define terminal voltages. The reference conductor can be ground. The order of the conductors is the same as the order of data in the input.

All of the conductors are assumed to have the same length. The input to mtline are conductor length, per-unit-length resistance (\mathbb{R}), inductance (\mathbb{L}), capacitance (\mathbb{C}), and conductance (G) matrices. As these matrices are symmetric, either a full matrix description or a lower half matrix description can be used.

You can use mtline in four different modes:

- RLGC Lets you specify the per-unit-length constant RLGC matrices and frequency dependent RLGC data file
- FieldSolver Lets you specify the 2-D field solver geometry and material property information

Passive Components in Analog Library

- S-parameter Lets you specify the S-Parameter data
- *Tline* Lets you specify the old single-conductor tline parameters (to ease migration)

This device is not supported within the altergroups. The *Edit Object Properties* or *CDF Parameters* of the component mtline in analogLib are dynamic and subject to change based on the usage of IC Spectre or MMSIM Spectre installation.

Parameters for the mtline Component

This section describes the following Component Parameters for the mtline component:

Num of lines (excluding ref.), lets you specify the number of lines excluding the reference lines. The reference conductor is used as a return path. There is no upper limit on number of conductors that mtline can have in Spectre. However, there must be at least two conductors with one conductor used as reference to define terminal voltages. The reference conductor can be ground. The order of the conductors is the same as the order of the data in the input.

Model name lets you specify the name of the model to be associated with the mtline component.

Physical length lets you specify the physical length of the line, required in order to perform the transmission line simulation. All the conductors in an mtline instance are assumed to have the same length, and to be uniform along the length. Default = 0.01m.

When using S-pParameter data, the physical length of the line must be specified.

In the Tline use model, physical length is used with Propagation velocity normalized to specify the electrical length of the line.

Multiplicity factor lets you specify the multiplicity factor of the mtline component. The valuemust be a nonzero real number. This number lets you specify a number of mtline components in parallel. Default=1.

Max signal frequency lets you specify the maximum signal frequency used to determine the relevant range of rational fitting used in the 2D field solver. Default = 25e09 Hz.

Spectre uses the rational fitting algorithm to build a stable model that approximates the desired transmission line characteristics. The *Max signal frequency* is used to determine the relevant range of rational fitting. The accuracy of the mtline model depends on how well the rational approximation is over frequency range from fmax to fmin. When constant RLGC matrices are provided, fmin is set to 1Hz and fmax defaults to 25GHz. A good estimate of the Max signal frequency is three times the inverse of rise time in the input signal. When a RLGC

Passive Components in Analog Library

data file is provided, the lowest frequency point in the data file is used as fmin' and the largest frequency point in the data file is used as fmax. You must provide sufficient data points to cover both low frequencies and high-frequencies to obtain an accurate, stable model.

Type of Input lets you select a type of input, and displays additional fields required for the specified type of input in the form. Possible values are: *RLGC*, *FieldSolver*, *Tline*, and *S-Parameter*.

If you select RLGC or S-Parameter as the type of input, you can select the *RLGC data file* as *Design Var?* check box or the *S-Parameter file* as *Design Var?* check box. These check boxes let you use a design variable to specify the RLGC data file or the S-Parameter file.

RLGC data file as Design var?, when selected, lets you use a design variable to specify the RLGC data file. This check box is shown only when you select the *RLGC* option for *Type of Input*.

RLGC data file lets you specify the RLGC data file that contains the frequency dependent RLGC data. This field is shown only when the *RLGC* option for *Type of Input* is selected and the *use Img subckt* check box is not selected on the Edit Properties form.

The RLGC data file parameter can be used to store the 2-D field solver output for use in subsequent simulations. If the file parameter is given, mtline checks the existence of the file. If the file does not exist, the RLGC model is generated by the field solver and the output is stored in a file. If the file exists, mtline checks if the RLGC data stored in the file matches the mtline 2-D field solver input. If it does not match, a new set of RLGC data is generated and the file is overwritten. Otherwise, the data is reused. If the RLCG data file parameter is not given, the RLGC data is stored in the input.rlgc file in the simulation/circuitName/spectre/schematic/netlist directory.

use Img subckt, when selected, shows the *LMG subcircuit file* field and hides all RLCG-specific fields. This field is shown only when you select the *RLGC* option for *Type of Input*.

LMG subcircuit file lets you specify the name of the LMG subcircuit file. This field is shown only when you select the *use Img subckt* check box.

Enter RLCG etc. matrices, when selected, displays the following additional fields. This check box is shown only when you select the RLGC option for Type of Input. The following fields are vectors. For example, if you want to multiply your R matrix per unit length by a design variable myScale, you need to surround the expression with parentheses. For example, enter it as (myScale*50). If you do not add the parentheses, Spectre fails during simulation. The following fields are displayed only when you select the $Enter\ RLCG\ etc.$ matrices check box.

Passive Components in Analog Library

- R matrix per unit length lets you specify the resistance matrix per unit length. Units: Ohm/m.
- L matrix per unit length lets you specify the inductance matrix per unit length. Units: H/m.
- *G matrix per unit length* lets you specify the conductor matrix per unit length. Units: S/m.
- *C matrix per unit length* lets you specify the capacitance matrix per unit length. Units: F/m.
- Skin effect res matrix per unit length lets you specify the skin effect resistance matrix per unit length. Units: Ohm/m*sqrt (Hz)
- **Dielectric loss cond matrix per unit length** lets you specify the dielectric loss conductance matrix per unit length. Units: S/m*Hz
 - mtline supports LC, RC, RGC, RLG, RLC, and RLGC transmission line systems. For example,
 - □ When only L and C matrices are provided, a lossless transmission line system is modeled.
 - □ When only R and C matrices are provided, an RC transmission line system is modeled.

Since the per-unit-length RLGC matrices are generally symmetric, either a full matrix description or a lower half matrix description is accepted. You enter the matrix as a series of numbers, e. g. $50\ 10\ 1\ 10\ 50\ 10\ 1\ 10\ 50$ (full matrix) or $50\ 10\ 50\ 1\ 10\ 50$ (half matrix). Spectre determines whether the matrix is full or half matrix depending on the number of entries. For example, for a 3×3 matrix, if you enter six entries, Spectre knows that it is a half matrix. If you enter nine entries, Spectre knows that it is a full matrix. Spectre complains if the number of entries does not make either a full or a half matrix.

- **Dielectric loss cutoff frequency** lets you specify the cutoff frequency for dielectric loss. Units: Hz
- **Dielectric loss onset frequency** lets you specify the onset frequency for dielectric loss. Units: Hz

S-parameter file as Design Var?, when selected, lets you use a design variable to specify the S-Parameter file. This check box is shown only when you select the *S-parameter* option for *Type of Input*.

S-parameter File lets you specify the data file that contains the frequency dependent RLGC data or S-Parameter data file. This field is shown only when you select the *S-parameter* option for *Type of Input*.

Passive Components in Analog Library

You can also specify Y- or Z-parameters. Spectre parses the data file and determines whether the data is in S-, Y-, or Z-parameter format.

The supported S-Parameter data file formats include Touchstone, Spectre and CITIfile.

Spectre reads the comment line in the S-Parameter data file to determine whether the frequency data is in Hz, MHz, GHz, etc. It also determines the characteristic impedance and format of the data (real, imag), (mag, deg), (mag, rad), (db, deg), or (db, rad).

Spectre imports the S-Parameter data describing a transmission line system. mtline converts the frequency dependent S-Parameter to frequency dependent RLGC data and stores the results in the input.rlgc file,located in simulation/CircuitName/spectre/schematic/netlist directory, for reuse in subsequent simulations.

When the file parameter corresponds to S-Parameter data, mtline first checks the existence of the input.rlgc file to determine if the S-to-RLGC extraction has been performed in a previous simulation.

The ordering of the S-Parameter input file should be in the format of input ports followed by the output ports of the transmission line system, or Pin1, Pin2, Pin3, ..., Pout1, Pout2, Pout3,...

The S-Parameter data file for use with mtline should have the S-Parameter data interpreted in the following order.

Frequency scale factor lets you specify the frequency scale factor for frequency-dependent RLGC data and S-Parameter data. This field is shown only when you select the *RLGC* or *S-parameter* option for *Type of Input*. The default value is 1.

Generate noise? lets you control whether the mtline component must generate noise. Possible values are *yes* and *no*.

Passive Components in Analog Library

Transmission line type, lets you choose the transmission line type. Possible values are microstrip line (*microstrip*), stripline (*stripline*), coplanar waveguide (*coplanar*), and substrate lossy line(*sublossline*). Default = *sublossline*. If you need to include dielectric loss in your microstrip or stripline model, use the sublossline transmission line type.

Model type, lets you specify the model type. For each line configuration, you can choose one of three model types: *lossless*, *narrowband*, or *wideband*. Default = *wideband*.

In the lossless model, the internal inductance of the conductor is disregarded by setting the frequency value high; 30GHz for cases without substrate loss and 15 GHz for cases with substrate loss, and ignoring the value of Max signal frequency (fmax).

For the narrowband model, the RLGC data is calculated at the Max signal frequency (fmax, default is 25GHz) and assumed to be constant over the frequency of interest. The narrowband model is valid near fmax.

With the wideband model, true frequency dependent RLGC data is calculated over the frequency of interest (DC to fmax). For most applications, choose the wideband model as it provides the best model accuracy.

Number of dielectric layers lets you specify the number of dielectric layers. Dielectric layers are stacked above the ground plane (when numgnd=1), or between the ground planes (when numgnd=2). There can be up to 12 dielectric layers. This field is shown only when you select the *FieldSolver* option for *Type of Input* and *coplanar* or *sublossline* for *Transmission line type*.

Number of Ground Planes lets you specify the number of ground planes, This field is shown only when you select the *FieldSolver* option for *Type of Input* and *coplanar* or *sublossline* for *Transmission line type*.

Rel dielectric const of layers(er) lets you specify the relative dielectric constant of the dielectric layer. It is a vector type that handles different layer geometries and layer properties. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. This field is shown only when you select the *FieldSolver* option for *Type of Input*.

Dielectric layer thickness (d) lets you specify the dielectric layer thickness. It is a vector type to handle different layer geometries and layer properties. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. Units = meters. This field is shown only when you select the *FieldSolver* option for *Type of Input*.

Dielectric loss type lets you specify the dielectric loss type. The loss value is specified using the *Dielectric layer loss* parameter. Possible values are *sigma* and *tangent*. A particular dielectric layer can be lossy, and either the loss tangent parameter (tan = sigma/

Passive Components in Analog Library

(w*ep0)) or the loss sigma parameter (sigma = tan*w*ep0) can be used. Default value: tangent. This field is shown only when you select the *FieldSolver* option for *Type of Input* and *coplanar* or *sublossline* for *Transmission line type*.

Dielectric layer loss lets you specify the dielectric layer loss. The loss can be in terms of dielectric conductivity or tangent loss, determined by the *Dielectric loss type* parameter. This field is shown only when you select the *FieldSolver* option for *Type of Input* and *coplanar* or *sublossline* for *Transmission line type*.

Signal line width lets you specify the signal line width, This field is shown only when you select the *FieldSolver* option for *Type of Input*. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. Units: meters.

Signal line thickness lets you specify the signal line thickess. This field is shown only when you select the *FieldSolver* option for *Type of Input*. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. Units: meters.

Signal line height (h) lets you specify the signal line height. This field is shown only when you select the *FieldSolver* option for *Type of Input*. The distance between the signal line and ground plane at the bottom of the 2-D interconnect cross section. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. Units: meters.

Signal line spacing lets you specify the signal line spacing(the distance between the signal lines). This field is shown only when you select the *FieldSolver* option for *Type of Input*. It can be negative in order to describe overlapping signal lines. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all the remaining layers. Units: meters.

Gnd Plane thickness lets you specify the ground plane thickness. This field is shown only when you select the *FieldSolver* option for *Type of Input*. When the number of elements in the vector is less than the number of layers, the value of the last element in the vector is applied to all of the remaining layers. Units: meters.

Ground plane conductivity lets you specify the ground plane conductivity. This field is shown only when you select the *FieldSolver* option for *Type of Input*. Units: S/m.

Signal line conductivity lets you specify the signal line conductivity. This field is shown only when you select the *FieldSolver* option for *Type of Input*. Units: S/m.

Charecteristic impedance lets you specify the characteristic impedance of lossless line. This field is shown only when you select the *Tline* option for *Type of Input*. Default: 50. Units: Ohms.

Passive Components in Analog Library

Delay Time lets you specify the time delay of a lossless line in seconds; a measure of the electrical length. This field is shown only when you select the *Tline* option for *Type of Input*. Units: seconds.

Frequency lets you specify the reference frequency, which is used in conjunction to the normalized length to specify electrical length of line. This field is shown only when you select the Tline option for Type of Input. Units: Hz.

Normalized length, lets you specify the normalized electrical length in wavelengths at the specified reference frequency of a lossless line. This field is shown only when you select the *Tline* option for *Type of Input*. Default: 0.25.

Propagation velocity normalized lets you specify the propagation velocity of the line given as a multiple of c, the speed of light in free space (vel <= 1). This field is shown only when you select the *Tline* option for *Type of Input*. vel=c/sqrt(ar).

Corner frequency, lets you specify the corner frequency for skin effect. This is the frequency where skin depth equals the wall thickness of the conductor. This field is shown only when you select the *Tline* option for *Type of Input*. Default: 0. Units: Hz.

DC series res/Length lets you specify the DC series resistance per unit length. This field is shown only when you select the *Tline* option for *Type of Input*. Default: 0. Units: Ohm/m.

Loss resistance per unit length lets you specify the conductor (series) resistance per unit length at conductor loss frequency. This field is shown only when you select the *Tline* option for *Type of Input*. Default: 0. Units: Ohm/m.

- \square seriesr = 2*z0*alphac (when alphac is given)
- \square seriesr = 2*z0*fc/(2*gc*c*vel) { when gc is given }

where seriesr is the Loss resistance per unit length, c is the speed of light. z0 is Characteristic Impedance, fc is Conductor loss frequency, alphac is Conductor loss at fc, and gc is Conductor loss quality factor.

Conductor loss at fc lets you specify the conductor loss at the conductor loss frequency (low loss approximation). This field is shown only when you select the *Tline* option for *Type of Input*. Default: 0. Units: dB/m.

Conductor loss quality factor lets you control the conductor loss quality factor at conductor loss frequency (low loss approximation). This field is shown only when you select the *Tline* option for *Type of Input*. Default: infinity.

Dielectric loss frequency lets you specify the dielectric loss measurement frequency. It is used in conjunction with *Dielectric loss quality factor*. This field is shown only when you select the *Tline* option for *Type of Input*. Units: Hz.

Passive Components in Analog Library

Loss conductance per unit length, lets you specify the dielectric (shunt) conductance per unit length at conductor loss measurement frequency. This field is shown only when you select the *Tline* option for *Type of Input*.

Dielectric loss lets you specify the dielectric loss (low loss approximation). This field is shown only when you select the *Tline* option for *Type of Input*.

Dielectric loss quality factor lets you specify the dielectric loss quality factor at dielectric loss measurement frequency (low loss approximation). This field is shown only when you select the *Tline* option for *Type of Input*.

Conductor loss frequency lets you specify the conductor loss frequency. It is used in conjunction with Loss resistance per unit length, Conductor loss at fc, and Conductor loss quality factor. This field is shown only when you select the Tline option for Type of Input.

The number of elements that you need to specify for the R/L/G is determined by the number of lines that you specify. For example, if the number of lines (n) is 3, then you need to specify (n*2) 6 elements each for R, L, and G. This information is displayed in CIW as follows.

Command-Line help

spectre -h mtline

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Num of lines (excluding ref.)	n	X	-	-	-	-
Model name	model	х	-	-	-	-
Physical length	len	X	-	-	-	-
Multiplicity factor	mf	Х	-	-	-	-
Max signal frequency	fmax	Х	-	-	-	-
Type of Input	modelType	X	-	-	-	-
RLCG data file as Design var?	rlgc_file _as_var	х	-	-	-	-
RLCG data file	file	х	-	-	-	-
use Img subckt	uselmg	Х	-	-	-	-
LMG subcircuit file	subcktfil e	Х	-	-	-	-
Enter RLCG etc. matrices	entermatr ices	Х	-	-	-	-
R matrix per unit length	R	Х	-	-	-	-
L matrix per unit length	L	Х	-	-	-	-
G matrix per unit length	G	Х	-	-	-	-
C matrix per unit length	С	х	-	-	-	-
Skin effect res matrix per unit length	rskin	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Dielectric loss cond matrix per unit length	gdloss	Х	-	-	-	-
S-parameter file as Design var?	sparam_fi le_as_var	X	-	-	-	-
S-parameter File	file1	Х	-	-	-	-
Frequency scale factor	freqscale	Х	-	-	-	-
Generate noise?	isnoisy	Х	-	-	-	-
Transmission line type	linetype	Х	-	-	-	-
Model type	modeltype	Х	-	-	-	-
Number of dielectric layers	numlayer	х	-	-	-	-
Number of Ground Planes	numgnd	х	-	-	-	-
Rel dielectric const of layers(er)	er	X	-	-	-	-
Dielectric layer thickness (d)	layerthic kness	Х	-	-	-	-
Dielectric loss type	dlosstype	Х	-	-	-	-
Dielectric layer loss	dloss	Х	-	-	-	-
Signal line width	linewidth	Х	-	-	-	-
Signal line thickness	linethick ness	Х	-	-	-	-
Signal line height (h)	lineheigh t	Х	-	-	-	-
Signal line spacing	linespace	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Gnd Plane thickness	gndthickn ess	Х	-	-	-	-
Ground plane conductivity	gndsigma	Х	-	-	-	-
Signal line conductivity	linesigma	Х	-	-	-	-
Charecteristic impedance	z0	Х	-	-	-	-
<u>Delay Time</u>	tdmt	X	-	-	-	-
<u>Frequency</u>	fmt	X	-	-	-	-
Normalized length	nlmt	X	-	-	-	-
Propagation velocity normalized	velmt	Х	-	-	-	-
Corner frequency	corner	Х	-	-	-	-
DC series res/ Length	dcr	X	-	-	-	-
Loss resistance per unit length	seriesr	Х	-	-	-	-
Conductor loss at fc	alphac	Х	-	-	-	-
Conductor loss quality factor	qc	Х	-	-	-	-
Dielectric loss frequency	fd	х	-	-	-	-
Loss conductance per unit length	shuntg	Х	-	-	-	-
Dielectric loss	alphad	х	-	-	-	-
Dielectric loss quality factor	qd	X	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Conductor loss frequency	fcmt	Х	-	-	-	-
Dielectric loss cutoff frequency	fgdloss	Х	-	-	-	-
Dielectric loss onset frequency	fgdloss1	Х	-	-	-	-

Examples

For adding a mtline with a sub-circuit, specify the following parameters:

Passive Components in Analog Library

The netlist for an example of mtline with a sub-circuit:

```
IO (net15 net16 net039 net040 net14) tline2
include "./w subckt/tline2.scs"
```

The netlist for an example of mtline without a sub-circuit, with n=10, and entermatrices=nil:

```
I1 (net11 net12 net031 net032 net033 net034 net9 net10) mtline len=1.000m \mbox{m=1 file="./wo subckt/w line.dat" freqscale=2 fmax=100}
```

The netlist for the example of mtline without a sub-circuit, n=3, and entermatrices=t.

```
I2 (net7 net8 net023 net024 net025 net026 net5 net6) mtline len=5.000m m=1 \ r=[1K 1K 0 1K 0 1K] l=[418e-9 125e-9 418e-9 125e-9 125e-9 418e-9] \ g=[23e-6 34e-6 4e-6 3e-6 6e-6 1e-6] c=[94e-12 -22e-12 94e-12 \ -22e-12 -22e-12 94e-12] rskin=[3 4 1 1 1 1] gdloss=[1 2 3 1 1 1] \ file="./w subckt/w line.dat" freqscale=4 fmax=200
```

nport Symbol

Description

The component nport is a linear N port. An N-port takes its characteristics from an S-Parameter data file. An N-port can have as many ports as there are in the N-port described in the S-Parameter data file. Each pair of terminals in the nport instance statement represents one port. Because there is no limit to the number of ports, there is no limit to the number of terminals. However, the terminals must be given in pairs and there must be at least one pair. The order of the pairs is the same as the order of the ports in the data file. This device is not supported within the altergroups.

Passive Components in Analog Library

Important

When using Spectre, we strongly recommended that you use <code>nport</code> instead of the deprecated <code>n1port</code>, <code>n2port</code>, <code>n3port</code>, and <code>n4port</code>, as these devices are retained strictly for legacy purposes and for supporting third-party simulators, such as Hspice.

Parameters for the nport component

This topic describes the following CDF parameters for the nport component:

■ Common reference: Specifies the plus and minus pins for all the individual ports when the check box is deselected. If you select the check box, the symbol redraws with a single common ground reference pin at the bottom of the symbol. This eliminates the need to add ground connections to each port of the symbol.

When Common reference is not selected

When Common reference is selected

- Number of ports: Specifies the number of ports in the S-Parameter data file. This field controls the number of ports shown on the nport symbol.
- File Type: Lets you select the type of the file. Possible options are S-parameter and MDIF.
 - □ *S-parameter*: Contains information about how a device or a circuit responds to signals at different frequencies.
 - □ *MDIF*: Contains the collection of multiple S-Parameter files.

The following options are displayed when you select *S-parameter* in *File Type*.

■ Data Source: Lets you select the source of the S-Parameter data file for the nport symbol. Possible options are *file* and *cellView*.

file: Selecting this option displays the S-parameter file as Design Var? check box, S-parameter data file, and Browse s-parameter file fields.

cellView: Selecting this option displays the S-parameter Library, S-parameter Cell, and S-parameter View fields and the Browse button. You can enter details in the fields or click Browse to select the S-Parameter cellview using the Choose sparameter cellView form.

The nport instance is printed in the netlist with the S-Parameter text cellview path. For example:

```
NPORTO ( net1 net1) nport
file="/scratch/ade data/<user>/EAV RAK/libs/Two Stage Opamp/
OpAmp AC top/text/\overline{t}ext.txt"
```

S-parameter file as Design Var?: Checks if the S-Parameter file can be used as a design variable.

You must add this S-Parameter file as a design variable in an ADE Explorer cellview, which uses the same schematic as the nport. After running a simulation with the new design variable, you can view the netlist file, and further change the S-parameter data file for different corners. For more information, see Edit Object Properties - Instance and Block.

- Browse s-parameter file: Lets you select the S-Parameter data file. This button is shown only when you select the *file* option for *Data Source* and when you do not select the S-parameter file as Design Var? check box.
- S-parameter data file: Displays the path of the S-Parameter data file that you select using the *Browse s-parameter file* button or name of the S-parameter file that you select using the S-parameter file as Design Var? check box. This file contains

Passive Components in Analog Library

parameters, frequencies, or model information that can be analyzed by the Spectre simulator. This field is shown only when you select the *file* option for *Data Source*.

- S-parameter Library: Specifies the name of the library that contains the S-Parameter cellview. This field is shown only when you select the cellview option for Data Source.
- S-parameter Cell: Specifies the name of cell that contains the S-Parameter view. This field is shown only when you select the cellView option for Data Source.
- S-parameter View: Specifies the name of the S-Parameter view. This field is shown only when you select the cellview option for Data Source.
- Browse displays the Choose S-Parameter cellView form. This form lets you browse to a location and specify the S-Parameter cellview. The Browse button is shown only when you select the cellview option for Data Source.

The following options are displayed when you select MDIF in File Type.

- MDIF data file: Displays the path of the MDIF data file that you select using the Browse MDIF file button. This file contains parameters, or model information that can be analyzed by Spectre.
- Browse MDIF file: Lets you select the MDIF data file.
- Edit the Variables Values: Lets you open the Edit MDIF Variable Values form where vou can edit the values of the variables defined in the selected MDIF data file.

- MDIF Variables: Displays the variables defined in the selected MDIF data file. For example, order and type are the variables defined in the selected MDIF data file.
- MDIF Values: Displays the values of the variables defined in the selected MDIF data file. You can edit them by clicking the Edit the Variables Values button.

- Interpolation method: Controls the interpolation method for the S-Parameter and MDIF data files. It is valid only for datafmt = spectre/touchstone/citi/bnp. The supported methods are auto_switch, linear, spline, and bbspice. In general, the recommended method is default.
 - linear and spline control the sampling of the S-Parameter data for the convolutionbased method. In both the methods, the S-Parameter data is sampled using a linear frequency spacing from zero to three times the highest frequency in the S-Parameter data file in order to calculate the impulse response of the transfer function.
 - auto_switch: Spectre uses the default for interp according to the global option nport default interp=auto switch.

Passive Components in Analog Library

If nport_default_interp is set to auto_switch, nport automatically switches the interpolation method based on the analysis. It chooses *bbspice* for pss shooting Newton analysis, and *linear* for analyses, such as ac, dc, and sp. See spectre -h nport for information on how nport_default_interp works for your particular version of Spectre.

All nport elements in the netlist that do not have interp set will have interp set to the value specified in the global option nport_default_interp. If an nport instance has the interp option explicitly specified, the instance option takes priority over the global option. Possible values for nport_default_interp are spline, linear, bbspice, and auto_switch. For more information, see Interpolation Method.

- linear: Specifies a data point needed in the sample that is not directly in the S-Parameter file.
- spline: It uses a cubic spline algorithm. Cubic spline can occasionally introduce errors when there are rapid changes in the transfer functions defined in the S-Parameter file near the sample point.
- bbspice: It is used to do the rational fit. Bbspice uses a rational model to represent the S-Parameter data.
- Passivity: Specifies and enforces the passivity of S-Parameters. Spectre always checks to determine if the S-Parameter data is passive. Due to poor measurement accuracy, the S-Parameter data may be non-passive. Non-passive S-Parameter data may lead to non-converging or even unstable time domain simulations. The Passivity option controls detection and enforcement of S-Parameter simulation model passivity.

For the *Interpolation method* options of linear and spline, *Passivity* may be set to *no*, *check* or *enforce*.

- □ check: Specifies that the simulation only checks the S-Parameter data at each frequency point and report non-passive data. This is default.
- enforce: Specifies that the simulator corrects the data to ensure passivity if the original data is non-passive.
- □ no: Does not add a passivity check.

Passivity options of *no*, *check*, and *enforce* are interpreted as passivity=fit_enforce for interp=bbspice.

For interp=bbspice, *Passivity* may be set to fit weak enforce or fit_enforce. The default value is fit_enforce.

- fit_enforce: Specifies that the simulator always attempts to create a passive simulation model and favors passivity over accuracy.
- fit weak enforce: Specifies that the simulator does not create a passive model if the passivity enforcement phase results in significant accuracy loss.
- Tran convolution parameters: Controls the accuracy parameter for transient convolution. When you select this check box, the *Accuracy* option is displayed.
 - Accuracy: Sets the accuracy to default or conservative.
 - conservative: Specifies the exceptional accuracy. This causes more frequency-domain sample points, and produces a more accurate impulse response at the cost of runtime.
 - default: Accuracy is set tight enough that conservative should only be needed in rare instances.
- Advanced transient parameters: Controls the maximum sampling points, frequency and the impulse response truncation. Selecting the check box displays the corresponding options:
 - Max sampling points: Specifies the maximum number of frequency points to be sampled in the adaptive algorithm. The default is 131072. In every case, encountered so far, the actual number of samples taken by the adaptive algorithm is much smaller than the default. In extremely unusual cases, it can be raised to 262144.
 - Max frequency of interest: Specifies the highest frequency for the frequency domain sampling of the S-Parameter file. The default is three times the highest frequency in the S-Parameter file. This property should not be changed.
 - Impulse response truncation: Specifies to deliberately cut off the tail of the impulse response which might theoretically continue to infinite time. Leave this property at the default of 1e-4, which corresponds to a gain of -80 dB.

Causality correction: Specifies the reasonable results from an nport in either the DC or transient-based analyses. It is performed by setting the transfer function between the highest frequency in the S-Parameter file and three times this frequency so that the data becomes causal. The data within the frequencies specified in the S-Parameter file is unchanged. Setting Causality correction to fmax or auto overrides the setting of *High freg extrapolation* contains four choices: no, fmax, auto, or fmax_active. fmax is the default and is highly recommended.

- no: Does not add a causality check. 0
 - Setting the Causality correction check to no is incredibly risky unless you are absolutely sure that the S-Parameter file is causal as described.
- fmax: Retains the data in the frequency range of the S-Parameter file, and then adds a transfer function above the frequency range in the S-Parameter file to force the system to be causal. This transfer function extends to the setting of Max frequency of interest, which defaults to three times the highest frequency in the S-Parameter file. If you suspect that the maximum frequency of interest needs to be changed, use causality Auto instead, if you are not an expert.
- auto: Applies the causality correction in a similar manner to choosing fmax. auto can also vary the maximum frequency of interest if it needs to get a causal time-domain model.
- fmax_active: Enhances causality correction for active devices to improve the simulation accuracy. This option is only available for linear interpolation . bbspice should never be used when the S-Parameter file represents an active device because *bbspice* enforces *passivity*.

These properties are provided for S-Parameter simulation experts only and apply to linear or spline interpolation. It is strongly recommended that you do not change the default values of these properties.

□ *DC extrapolation* can be set to constant or unwrap. The default is *constant*.

- O constant: Projects the first point down to zero frequency at exactly the same level.
- O unwrap: Specifies an estimation based on the first few frequency points in the S-Parameter file.
- Noise parameters: Controls the nport noise parameters. Selecting the check box displays the corresponding options.
 - Thermal noise: Specifies if nport should generate noise. Possible values are no and yes. Thermal noise defaults to yes. Set the value to no if you want to disable noise production.

Thermal noise model: Specifies the noise parameters in the S-Parameter file if it is available, and if not, it uses an internal noise model. Internal forces the *internal* noise model. Thermal noise model defaults to external.

Noise correlation: When set to real forces the nport noise correlation matrix to be real-valued. The parameter is used for backward compatibility only. Its value is determined automatically and its use is not recommended because it can lead to an incorrect answer. The simulator will generate a warning if the noise correlation matrix is complex while the value of noisecorr is set to real. Possible values are real and complex.

■ Rarely used parameters: Controls if you want to use the related parameters for nport. Selecting the check box displays the corresponding options.

Only two parameters are commonly used: Causal s-param output file and Additional parameter list.

S-parameter data format: Specifies the format of the S-Parameter data file. If this parameter is not specified, Spectre detects the format by itself. Possible values are spectre, touchstone, citi, rfm and bnp.

- Causal s-param output file: Specifies a filename in this field causes the S-Parameter data after causality correction to be placed in the specified file. It contains a filename beginning with a slash (/). This file will be created the first time the causal impulse response is calculated. This file can then be plotted directly in the waveform display tool. Most of the time, the causal impulse response calculated matches the original data provided in the S-Parameter file up to the maximum frequency provided in the S-Parameter file. To make the time-domain model causal, data is added based on the *fmax* option to make the model causal.
- Passivity tolerance is only used when the Passivity property is set to check or enforce. Passivity tolerance does not need to be set. The default is 1e-6. This defines how close to unity gain should be modified by the passivity check and enforcement. Passivity will be enforced and/or reported when the gain is (1 -Passivity tolerance) or greater.
- Data truncation threshold defaults to 1e-3, which corresponds to -60dB gain. When the cross coupling terms become smaller than the *Data truncation* threshold, they are ignored. Cross coupling is the coupling from one port to another port.
- Frequency sampling interval sets the delta frequency for the sampling from zero to the maximum frequency of interest. Leave this property at the default value. With adaptive sampling, this should never be necessary. If used, this delta should be a power of two divisor of the maximum frequency of interest.
- Multiplier specifies how many nport devices to put in parallel. This is rarely used.
- Scale factor scales the frequency of the S-Parameter file. For example, many S-Parameter files have the frequency in GHz. In this case, set the *Scale factor* to 1e9.
- High freq extrapolation is ignored when causality correction is applied. The High freq extrapolation field can be set to constant or linear.

This property should not be used.

- O constant maintains the same amplitude and phase as the last point in the S-Parameter file to infinite frequency, if the causality check is not run.
- O *linear* keeps the amplitude constant at the last frequency point, but the phase increases linearly with frequency.
- □ Flag for matrix form input should not be set. In the past, each time the simulation ran, the impulse response was calculated for every port of every instance of the nport every time the simulation was started. In some cases, especially with a large number of ports, this could take considerable time. This flag was provided so the step of calculating the impulse response could be skipped. Since the impulse response is cached and available for re-use at any time, this property should never be needed. This is a deprecated parameter that should not be set.

Prioritize Accuracy Range Specifies a frequency band of interest to prioritize the accuracy of bbspice fitting at this band. The parameter takes a vector where the first element is the start frequency point and the second element is the end frequency point.

The frequency band is printed in the netlist as bbsfreqband=[...]. For example:

NPORT1 (net3 net4) nport bbsfreqband=[2G 3G]

Here, the start frequency is 2G and the end frequency is 3G.

- O Start Frequency: Specifies the start frequency point for the frequency band.
- End Frequency: Specifies the stop frequency point for the frequency band.
- Additional parameter list: Used to unlock new features. When this feature is used, a warning message is issued. This warning can be ignored.

It is strongly recommended that you only set the following properties on the Edit Object Properties or Add instance form for nport:

Passive Components in Analog Library

	The Number of ports in the S-Parameter file
	The S-Parameter data file name.
	The Common reference terminal.
	Interpolation methods - <i>default</i> , <i>linear</i> , <i>spline</i> or <i>bbspice</i> . The <i>default</i> interpolation method is typically recommended.
Cau	ution
	is strongly recommended that you leave the following parameters set to eir default values for nearly all applications:
	Tran convolution parameters
	Advanced transient parameters
	Noise parameters
	Rarely used parameters

Command-Line help

spectre -h nport

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Common Reference	nmode	х	-	-	Х	-
Number of Ports	р	x	-	-	х	-
File Type	fileType	x	-	-	-	-
Data Source	dataSource					
S-parameter file as Design Var?	sparam_file_as_var	Х	-	-	-	-
S-parameter data file	sparam_data	Х	-	-	Х	-
Browse S- parameter file	nportFileB	Х	-	-	-	-
Browse MDIF file	browse_mdif	x	-	-	-	-
MDIF data file	mdif_dataFile	х	-	-	-	-
MDIF Variables	var_mdif	х	-	-	-	-
MDIF Values	val_mdif	х	-	-	-	-
Edit the Variable Values	edit_mdif	Х	-	-	-	-
Interpolation Method	interp	Х	-	-	-	-
<u>Passivity</u>	passivity	x	-	-	-	-
Tran convolution parameters	tranParaLabel	Х	-	-	-	-
Accuracy	accuracyMode	х	-	-	-	-
Causality correction	causality	Х	-	-	-	-
Flag for matrix form input	matrixform	Х	-	-	-	-
Matrix entry data file	matrixfile	Х	-	-	-	-
Type of Port 1 to Type of Port20	porttype1 to porttype20	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
_	portquantity1 to	Х	-	-	-	-
Quantity of Port20	portquantity20					
Multiplier	m	х	-	-	x	-
Scale Factor	scale	Х	-	-	-	-
Max frequency of interest	fmax	х	-	-	Х	-
Frequency sampling interval	_fdelta	Х	-	-	-	-
Max order impulse response	maxn	х	-	-	-	-
Impulse response truncation	imptrunc	х	-	-	-	-
Noise parameters	noiseParaLabel	Х	-	-	Х	-
Rarely used parameters	otherParaLabel	х	-	-	х	-
Data truncation threshold	datatrunc	Х	-	-	-	-
Thermal Noise	thermalnoise	х	-	-	-	-
Use Smooth Data Windowing	usewindow	х	-	-	-	-
S-parameter data format	datafmt	Х	-	-	-	-
Thermal noise model	noisemodel	Х	-	-	-	-
S-parameter Data File	dataFile	Х	-	-	Х	-
Noise correlation matrix	noisecorr	Х	-	-	-	-
DC extrapolation	dcextrap	Х	-	-	_	-
High Frequency Extrapolation	hfextrap	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Passivity</u>	passivity_bbspipce	X	-	-	-	-
Passivity Tolerance	pabstol	x	-	-	-	-
Advanced transient parameters	tranAdvanParaLabel	Х	-	-	Х	-
Causal s-param output file	outFile	Х	-	-	-	-
Additional Parameter List	additionalParam	Х	-	-	-	-
Prioritize Accuracy Range	prioritizeAccuracy Range	X	-	-	-	-
Start Frequencyt	startFrequency	Х	-	-	-	-
End Frequencyt	endFrequency	x	-	-	-	-
Model name	hmname	-	-	-	х	-
Enable mixed mode	mixedmode	-	-	-	х	-
The order of indices	datatype	-	-	-	х	-
Characteristic impedance	ZO	-	-	-	Х	-
Hspice S-parameter data format	datafmtHspice	-	-	-	Х	-
Hspice Interpolation method	interpolation	-	-	-	Х	-
Enable passive checker	passive	-	-	-	Х	-
Delay frequency	delayfreq	-	-	-	х	-
Extracts a system delay	delayhandle	-	-	-	X	-
Temperature difference	dtemp	-	-	-	X	-
High freq extrapolate method	highpass	-	-	-	Х	-

Passive Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Linear interpolation data type	intdattyp	-	-	-	Х	-
Low freq extrapolate method	lowpass	-	-	-	Х	-
Enable noise passive checker	noipassivechk	-	-	-	Х	-
Precondition factor keyword	precfac	-	-	-	Х	-
Enable rational function	rational_func	-	-	-	Х	-
Reuse rational function data	rational_func_reus e	5 -	-	-	Х	-
Method of smooth	smooth	-	-	-	Х	-
Width of the smoothing window	smoothpts	-	-	-	Х	-
Stamping method	stamp	-	-	-	X	-

Syntax/Synopsis

model ndata nport file="sparam.data" scale=1

Examples

x1 (a1 0 b1 0 b3 0) ndata file="sparam 2.data"

phyres Symbol

Description

The component phyres is a physical resistor. It consists of a two terminal resistor (tied between 't1' and 't2') and two diodes (tied between 't1'-'t0' and 't2'-'t0'). The diodes are junction diodes. Under normal operation, the two diodes are reverse biased, but the parameter 'subtype' can reverse the direction of the diodes. If you do not specify 't0', ground is assumed. The instance parameters always override model parameters. If you do not specify the instance resistance value, it is calculated from the model parameters. This device is supported within the altergroups.

Command-Line Help

spectre -h phy_res

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	Х	-	-	-	-
Resistance	r	Х	-	-	-	-
Capacitanc e	С	Х	-	-	-	-
<u>Length</u>	1	Х	-	-	-	-
Width	W	Х	-	-	-	-
Temperatur e coefficient 1		Х	-	-	-	-
Temperatur e coefficient 2		Х	-	-	-	-
Lin temp co of lin cap	tc1c	Х	-	-	-	-
Quad temp co of lin cap		Х	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Syntax/Synopsis

Name (1 2 [0]) ModelName <parameter=value> ...

Following is the model synopsis:

model ModelName phy res <parameter=value> ...

Examples

Following is the sample instance statement:

Passive Components in Analog Library

res1 (net9 vcc) resphy l=1e-3 w=2e-6

Following is the sample model statement:

model resphy phy_res rsh=85 tc1=1.53e-3 tc2=4.67e-7 etch=0 cj=1.33e-3
cjsw=3.15e-10 tc1c=9.26e-4

Analog Library Reference Passive Components in Analog Library

rcwireload Symbol

Description

The component rewireload is a wire model of a two terminal resistor with an optional third terminal at the instance level. If the third terminal is not specified then the two-terminal resistance model is used with the third terminal as ground.

In RC wire load model, R represents the interconnect metal or poly resistance and C represents substrate capacitance from node to ground.

You can specify the capacitance explicitly or allow it to be computed from the physical length and width of the resistor. The model parameter cratio can be used to allocate the parasitic capacitance of the wire element between the model's input capacitor and the output capacitor. The value of each capacitor, as a function of temperature, is represented as linear temperature coefficient of capacitor (tc1c) and quadratic temperature coefficient of capacitor (tc2c).

For details refer to spectre help.

Command-Line Help

spectre -h resistor

Passive Components in Analog Library

Component Parameters

CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
model	x	Х	Х	Х	-
r	Х	Х	Х	Х	-
1	Х	-	-	-	-
W	Х	-	-	-	-
resform	Х	-	-	-	-
m	Х	-	-	-	-
scale	Х	-	-	-	-
trise	X	-	-	-	-
tc1	Х	-	-	-	-
tc2	Х	-	-	-	-
isnoisy	Х	-	-	-	-
С	Х	-	-	-	-
tc1c	Х	-	-	-	-
tc2c	х	-	-	-	-
	Parameter model r l w resform m scale trise tc1 tc2 isnoisy c tc1c	Parameter model X r X l X w X resform X m X scale X trise X tc1 X isnoisy X c X	ParameterspectreauCdlmodelXXxX-wX-resformX-scaleX-triseX-tc1X-isnoisyX-tc1cX-	Parameter spectre auCdl auLvs model x x x r X X X l x - - w X - - m X - - scale X - - trise X - - tc1 X - - tc2 X - - c X - - tc1c X - -	Parameter spectre auCdl auLvs hspiceD model X X X X r X X X X w X - - - resform X - - - scale X - - - trise X - - - tc1 X - - - isnoisy X - - - tc1c X - - -

res Symbol

Analog Library Reference Passive Components in Analog Library

Description

The component res is a two terminal resistor. You can give the resistance explicitly or allow it to be computed from the physical length and width of the resistor. In either case, the resistance can be a function of temperature or applied voltage.

- If R(inst) is not given,
 - R(inst) = R(model)
- If R (model) is given,

```
R(inst) = Rsh * (L - 2 * etchl) / (W - 2 * etch).
```

If the polynomial coefficients vector ('coeffs=[c1 c2 ...]') is specified, the resistor is nonlinear. When 'nonlinform' is set to 'g', the resistance is:

```
R(V) = dV / dI
     = R(inst) / (1 + c1 * V + c2 * V^2 + ...).
```

This device is supported within the altergroups.

Passive Components in Analog Library

Command-Line Help

spectre -h resistor

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Resistance	r	Х	х	X	Х	Х
Temperatur e coefficient 1		Х	-	-	Х	Х
Temperatur e coefficient 2		Х	-	-	X	Х
Model name	model	Х	-	-	-	-
Length	1	Х	-	-	Х	Х
Width	W	Х	-	-	Х	Х
Resistance Form	resform	Х	-	-	-	-
Multiplier	m	Х	-	-	Х	Х
Scale factor	scale	Х	-	-	Х	Х
Temp rise from ambient	trise	Х	-	-	-	-
Generate noise?	isnoisy	Х	-	-	-	-
Capacitanc e connected	hrc	-	-	-	Х	Х
Temperatur e difference	dtemp	-	-	-	Х	х
AC resistance	ac	-	-	-	X	-

Syntax/Synopsis

Name (1 2) ModelName <parameter=value> ... Name (1 2) resistor <parameter=value> ...

Passive Components in Analog Library

Following is the model synopsis:

model ModelName resistor <parameter=value> ...

Examples

Following is a sample instance statement without model:

r1 (1 2) resistor r=1.2K m=2

Following is a sample instance statement with model:

r1 (1 2) resmod l=8u w=1u

Following is a sample model statement:

model resmod resistor rsh=150 l=2u w=2u etch=0.05u tc1=0.1 tnom=27 kf=1

Passive Components in Analog Library

spxtswitch Symbol

Description

- sp1tswitch Ideal Switch With 1 Position
- sp2tswitch Ideal Switch With 2 Positions
- sp3tswitch Ideal Switch With 3 Positions
- sp4tswitch Ideal Switch With 4 Positions

Ideal switch is a single-pole multiple-throw switch with infinite 'off' resistance and zero 'on' resistance. The switch is provided to allow you to reconfigure your circuit between analyses. You can only change the switch state between analyses (using the alter statement), not during an analysis.

This device is not supported within the altergroups.

Command-Line Help

spectre -h switch

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Switch position	position	Х	-	-	-	-
DC position	dcPositio n	Х	-	-	-	-
AC position	acPositio n	Х	-	-	-	-
Tran position	tranPosit ion	Х	-	-	-	-
IC position	icPositio n	Х	-	-	-	-
Offset voltage	offset	х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Parameter Type	paramTyp	Х	-	-	-	-

Syntax/Synopsis

Name (t0 t1 ...) switch <parameter=value> ...

Examples

sw1 (t1 t2 t3) switch dc position=0 ac position=1 tran position=2

switch Symbol

Description

The four-terminal relay is a voltage controlled relay tied between terminals 't1' and 't2'. The voltage between terminals 'ps' and 'ns' controls the relay resistance. The relay resistance varies nonlinearly between 'ropen' and 'rclosed', the open relay resistance and closed relay resistance, respectively. These resistance values correspond to control voltages of 'vt1' and 'vt2' respectively. The four parameters, 'vt1', 'vt2', 'ropen', and 'rclosed', can be instance or model parameters.

This device is not supported within the altergroups.

Command-Line Help

spectre -h relay

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Open/ close voltage	VSW	-	-	-	-	-
Delay time	td	-	-	-	-	-
Time interval for switching	ts -	-	-	-	-	-
Open switch resistance	ro	X	-	-	-	-
Close switch resistance	rc	х	-	-	-	-
Open voltage	vt1	X	-	-	-	-
Closed voltage	vt2	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Estimated operating region	region	х	-	-	-	-
Resistance	r r	-	-	-	-	-

Syntax/Synopsis

Following is the model synopsis:

 $\verb|model| ModelName| relay < \verb|parameter=value>| \dots|$

Passive Components in Analog Library

Examples

Following is a sample instance statement:

rel1 (1 2 ps ns) my_relay ropen=1G rclosed=2

Following is a sample model statement:

model my_relay relay vt1=2.5 vt2=5 ropen=100M rclosed=0.1

tline Symbol

Description

The component tline is transmission line model which is either lossy or lossless includes dielectric and conductor loss effects. The conductor loss includes skin effect assuming finite or infinite conductor thickness.

Only the odd mode is modeled, so only the voltage difference across each port is important. The absolute voltage of each terminal is not significant. Also, the current into one node of a port equals the current leaving the other node of the port.

This device is supported within the altergroups.

Command-Line Help

spectre -h tline

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Characterist ic impedance	ZO	Х	-	-	Х	Х
Delay time	td	Х	-	-	Х	Х
Frequency	freq	Х	-	-	Х	Х
Normalized length	nl	Х	-	-	Х	Х
Voltage 1	v1	-	-	-	Х	Х
Current 1	i1	-	-	-	Х	Х
Voltage 2	v2	-	-	-	Х	Х
Current 2	i2	-	-	-	Х	Х
Model name	model	Х	-	-	-	-
Propogation velocity normalized	vel	Х	-	-	-	Х
Physical length	len	Х	-	-	Х	Х
Multiplier	m	Х	-	-	-	-
Loss resistance per unit length	rs	X	-	-	-	-
Loss conductanc e per unit length	g	X	-	-	-	-

Syntax/Synopsis

Name (t1 b1 t2 b2) ModelName <parameter=value> ... Name (t1 b1 t2 b2) tline <parameter=value> ...

Passive Components in Analog Library

Following is the model synopsis:

model ModelName tline <parameter=value> ...

Examples

Following is a sample instance statement:

t1 (1 0 2 0) lmodel z0=100

Following is a sample model statement:

model lmodel tline f=10M z0=50 alphac=8501 fc=10M dcr=88

Analog Library Reference Passive Components in Analog Library

winding Symbol

Description

The winding component for winding for magnetic core is used in conjunction with magnetic cores to model coils and transformers with hysteresis. Each winding must be associated with a single core, though a core may have any number of windings.

Command-Line Help

spectre -h winding

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Name of core	core	Х	-	-	-	-
Num of turns on winding	turn	х	-	-	Х	-
Res of the winding	resis	Х	-	-	Х	-
Multiplier	m	Х	-	-	-	-
Initial condition	ic	Х	-	-	Х	-
Resistance	r	-	-	-	-	-

Analog Library Reference Passive Components in Analog Library

xfmr Symbol

Description

The component xmfr is a linear two winding ideal transformer. Winding 1 connects terminals 't1' and 'b1', and winding 2 connects 't2' and 'b2'. The number of turns on windings 1 and 2 are given by 'n1' and 'n2' respectively, where 'n2' must not be zero. The absolute number of turns of each winding is not important, only the ratio of 'n1' to 'n2'. Current through winding 1 is computed.

An ideal transformer is modeled, so it acts as a transformer at DC. In particular, it implements

$$v1/v2 = n1/n2$$

 $i1/i2 = -n2/n1$

This device is not supported within the altergroups.

Command-Line Help

spectre -h transformer

Passive Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Coupling coefficient	k	-	-	-	х	Х
Primary inductor	pi	-	-	-	Х	Х
Secondary inductor	si	-	-	-	х	Х
Number of turns on primary	n1	х	-	-	-	-
Number of turns on secondary	n2	х	-	-	-	-
Multiplier	m	х	-	-	-	-

Syntax/Synopsis

Name (t1 b1 t2 b2) transformer <parameter=value> ...

Examples

tr1 (1 0 2 0) transformer n1=3 n2=3 m=2

Related Topics

CDF Parameters Supported by Analog Library Components

Passive Components

Analog Library Reference
Passive Components in Analog Library

Sources - Dependent Components in Analog Library

The components in the Source-Dependent category are as follows:

- cccs Symbol
- ccvs Symbol
- pcccs Symbol
- pccvs Symbol
- pvccs, pvccs2, pvccs3 Symbol
- pvccsp Symbol
- pvcvs, pvcvs2, pvcvs3 Symbol
- pvcvsp Symbol
- vccs Symbol
- Voltage-Controlled Current Sources (G-Elements)
- vccsp Symbol
- vcvs Symbol
- vcvsp Symbol

cccs Symbol

Description

Linear Current Controlled Current Source is a current-controlled source detects the current with a probe device. A valid probe is a component instance in the circuit that naturally computes current. For example, probes can be voltage sources (independent or controlled), inductors, transmission lines, microstrip lines, N-ports, and transformers. If the probe device computes more than one current (such as transmission lines, microstrip lines, and N-ports), the index of the probe port through which the controlling current flows needs to be specified. Positive current exits the source node and enters the sink node of the controlled source.

The component cccs uses the same values of parameters fgain, maxm, minm, m for both Spectre and hspiceD simulators. This device is supported within the altergroups. This device can also model ideal digital gates.

Command-Line Help

spectre -h cccs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Name of voltage source	vref	X	-	-	Х	Х
Current gain	fgain	Х	-	-	Х	Х
Initial condition	ic	-	-	-	-	Х
Port	port	Х	-	-	-	-
Type of transfer char	trfType	X	-	-	-	-
Multiplier	m	Х	-	-	Х	Х
Type of Source	typesrc	Х	-	-	-	-
Maximum Output Current	maxm	Х	-	-	Х	-
Minimum Output Current	minm	Х	-	-	Х	-
Absolute Output Current	absol	Х	-	-	-	-
Smoothing Factor	smoothing	Х	-	-	-	-
Type	сѕТуре	-	-	-	Х	Х
Current gain (Obsolete)	hfgain	-	-	-	Х	-

Analog Library Reference Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Maximum output current (Obsolete)	maxi	-	-	-	х	Х
Minimum output current (Obsolete)	mini	-	-	-	Х	X
Scale factor	scale	-	-	-	х	Х
Multiplier (Obsolete)	hm	-	-	-	Х	
Temperatu re coefficient 1	tc1	-	-	-	Х	Х
Temperatu re coefficient 2	tc2	-	-	-	Х	X
Absolute value	habs	-	-	-	X	-
Initial condition	hic	-	-	-	X	-
<u>Delta</u>	delta	Х	-	-	Х	Х
Number of controlling pairs		-	-	-	Х	X
Delay Time	htd	-	-	-	Х	-
Absolute value	abs	Х	-	-	-	Х
Delay Time	td	-	-	-	-	Х

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Controlling Volt 1	x1 - x20	-	-	-	Х	X

Syntax/Synopsis

Name (sink src) cccs <parameter=value> ...

Examples

vcs (pos gnd) cccs gain=2.5 probe=v1 m=1

where, v1 is an instance of a voltage source.

ccvs Symbol

Description

Linear Current-Controlled Voltage Source senses the current with a probe device. A valid probe is a component instance in the circuit that naturally computes current. For example, probes can be voltage sources (independent or controlled), inductors, transmission lines, microstrip lines, N-ports, and transformers.

If the probe device computes more than one current (such as transmission lines, microstrip lines, and N-ports), the index of the probe port through which the controlling current flows needs to be specified. Current through the controlled voltage source is calculated and is defined to be positive if it flows from the positive terminal, through the source, to the negative terminal.

Component ccvs uses the same values of parameters hgain, maxm, and minm for both Spectre and hspiceD simulators. This device is supported within the altergroups. This device can also model ideal digital gates.

Sources - Dependent Components in Analog Library

Command-Line Help

spectre -h ccvs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Name of voltage source	vref	X	-	-	Х	X
Transresist ance	hgain	Х	-	-	Х	Х
Initial condition	ic	-	-	-	-	Х
Port	port	Х	-	-	-	-
Type of transfer char	trfType	X	-	-	-	-
Multiplier	m	X	-	-	-	-
Type of Source	typesrc	X	-	-	-	-
Minimum Output Voltage	minm	Х	-	-	Х	-
Maximum Output Voltage	maxm	X	-	-	Х	-
Absolute Output Voltage	absol	X	-	-	-	-
Smoothing Factor	smoothing	Х	-	-	-	-
<u>Type</u>	csType	-	-	-	Х	Х
Transresist ance (Obsolete)	hhgain	-	-	-	X	-

Analog Library Reference Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Maximum output voltage (Obsolete)	maxv	-	-	-	x	х
Minimum output voltage (Obsolete)	minv	-	-	-	Х	Х
Scale factor	scale	-	-	-	Х	Х
Temperatu re coefficient 1	tc1	X	-	-	Х	х
Temperatu re coefficient 2	tc2	Х	-	-	Х	х
Absolute value	habs	-	-	-	Х	-
Initial condition	hic	-	-	-	X	-
<u>Delta</u>	delta	Х	-	-	Х	Х
Number of controlling pairs		-	-	-	Х	X
Delay Time	htd	-	-	-	Х	-
Absolute value	abs	X	-	-	-	Х
Delay Time	td	-	-	-	-	Х
Controlling Volt 1	x1 - x20	-	-	-	X	Х

Sources - Dependent Components in Analog Library

Syntax/Synopsis

Name (p n) ccvs <parameter=value> ...

Examples

vvs (pos gnd) ccvs rm=1 probe=v1 m=1

v1 is an instance of a voltage source.

Sources - Dependent Components in Analog Library

pcccs Symbol

Description

The component pccs stands for Polynomial Current Controlled Current Source. A vector of coefficients specifies the polynomial function that defines the relationship between the output current and the controlling currents. You must specify at least one coefficient. The component pcccs stands for Polynomial Controlled Current Source.

For a polynomial in N variables a1, a2, ... an, the polynomial function F(a0,a1,...,an)is given by:

```
F = c0 + c1 * a1 + c2 * a2 + ...
+ c(m+1) * a1^2 + c(m+2) * a1 * a2 + ...
+ c(2m+1) * a2^2 + c(2m+2) * a2 * a3 + ...
```

where the c0, c1 and c2 are coefficients of the polynomial terms, and m is the multiplier.

This device is supported within the altergroups.

Command-Line Help

```
spectre -h pcccs
```

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Max Coefficient Number	polyCoef	х	-	-	-	-
Poly Coeff 0	c0	х	-	-	-	-
Poly Coeff 1	c1	х	-	-	-	-
Poly Coeff 2	c2	х	-	-	-	-
Poly Coeff 3	с3	Х	-	-	-	-
Poly Coeff 4	с4	Х	-	-	-	-
Number of Probes	probeCnt	X	-	-	-	-
Probe 1	p1	х	-	-	-	-
Port 1	port1	х	-	-	-	-
Probe 2	p2	х	-	-	-	-
Port 2	port2	Х	-	-	-	-
Probe 3	р3	х	-	-	-	-
Port 3	port3	х	-	-	-	-
Probe 4	p4	Х	-	-	-	-
Port 4	port4	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Maximum Output Current	maxm	х	-	-	-	-
Minimum Output Current	minm	х	-	-	-	-

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Absolute Output Current	absol	X	-	-	-	-
Smoothing Factor	smoothing	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

Syntax/Synopsis

Name (sink src) pcccs <parameter=value> ...

Examples

vpc (net1 0) pcccs probes=[vb vc ve vlp vpn] coeffs=[0 8.8e6 -8.8e6 9e6 8e6 -9e6]

pccvs Symbol

Description

The component pccvs stands for Polynomial Current Controlled Voltage Source. The polynomial function defining the relationship between the output voltage and the controlling currents is specified by a vector of coefficients. At least one coefficient must always be specified. Current through the voltage source is calculated and is defined as positive if it flows from the positive terminal, through the source, to the negative terminal.

For a polynomial in N variables a1, a2, ... an, the polynomial function F(a0,a1,...,an) is given by:

```
F = c0 + c1 * a1 + c2 * a2 + ...
+ c(m+1) * a1^2 + c(m+2) * a1 * a2 + ...
+ c(2m+1) * a2^2 + c(2m+2) * a2 * a3 + ...
```

where the c0, c1 and c2 are coefficients of the polynomial terms, and m is the multiplier.

This device is supported within the altergroups.

Sources - Dependent Components in Analog Library

Command-Line help

spectre -h pccvs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Max Coefficient Number	polyCoef	х	-	-	-	-
Poly Coeff 0	с0	Х	-	-	-	-
Poly Coeff 1	c1	Х	-	-	-	-
Poly Coeff 2	c2	Х	-	-	-	-
Poly Coeff 3	с3	Х	-	-	-	-
Poly Coeff 4	с4	Х	-	-	-	-
Number of Probes	probeCnt	Х	-	-	-	-
Probe 1	p1	Х	-	-	-	-
Port 1	port1	Х	-	-	-	-
Probe 2	p2	Х	-	-	-	-
Port 2	port2	Х	-	-	-	-
Probe 3	р3	Х	-	-	-	-
Port 3	port3	х	-	-	-	-
Probe 4	p4	Х	-	-	-	-
Port 4	port4	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Maximum Output Voltage	maxm	х	-	-	-	-
Minimum Output Voltage	minm	х	-	-	-	-

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Absolute Output Voltage	absol	X	-	-	-	-
Smoothing Factor	smoothing	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

Syntax/Synopsis

Name (p n) pccvs <parameter=value> ...

Examples

ixy (net1 0) pccvs coeffs=[0 1 0 1] probes=[vin1 vin2] gain=2

Analog Library Reference Sources - Dependent Components in Analog Library

pvccs, pvccs2, pvccs3 Symbol

Description

A polynomial voltage controlled current source in which the symbol varies with the number of controlling voltages. A vector of coefficients specifies the polynomial function that defines the relationship between the output current and the controlling voltages. You must specify at least one coefficient. Current exits the source node and enters the sink node.

For a polynomial in M variables a1, a2, ... am, the polynomial function F(a0,a1,...,an)is given by:

```
F = c0 + c1 * a1 + c2 * a2 + ...
+ c(m+1) * a1^2 + c(m+2) * a1 * a2 + ...
+ c(2m+1) * a2^2 + c(2m+2) * a2 * a3 + ...
```

where the c0, c1 and c2 are coefficients of the polynomial terms, and m is the multiplier.

The coefficients should be given in the order of the polynomial terms. The order of the polynomial terms is:

- 1. Lower degree term goes before higher degree term. For example, a1 is before a1^2.
- 2. For the same degree terms, the term whose first variable has higher degree goes first. If the first variable has the same degree, then check the second variable, and so on. For example, for terms in 3 variables and of 4 degrees, a 1^4 goes before a1^3 *a2. And a1^3*a2 goes before a1^3*a3.

Sources - Dependent Components in Analog Library

If you have high degree terms, using coeff parameter may not be convenient. You can use a file to specify the nonzero coefficients. You use one line in your file to specify one coefficient. The format is to put the degree of the variables first, then the coefficient. For example, if you have term $1.5 \times a1 \times a2^2 \times a3$, the degrees of a1, a2 and a3 are 1.2, the coefficient is 1.5.

So the line in your file is:

1 2 1 1.5

This device is supported within altergroups.

Command-Line Help

spectre -h pvccs

Sources - Dependent Components in Analog Library

Component Parameters

-						
CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Max Coefficient Number	polyCoef	Х	-	-	Х	-
Poly Coeff 0	c0 - c20	х	-	-	Х	-
Initial condition	ic	-	-	-	X	-
Scale factor	scale	-	-	-	Х	-
Absolute value	abs	х	-	-	X	-
Gain	gain	х	-	-	-	-
Multiplier	m	х	-	-	Х	-
Maximum Output Current	maxm	Х	-	-	Х	-
Minimum Output Current	minm	Х	-	-	Х	-
Absolute Output Current	absol	Х	-	-	-	-
Smoothing Factor	smoothing	х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	Х	-
Temperature coefficient 2	tc2	х	-	-	Х	-
File containing Poly Coeffs	filecoef	х	-	-	-	-

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Coeffs to be specified in	coefSpec	х	-	-	-	-

Syntax/Synopsis

Name (sink src ps1 ns1 ...) pvccs <parameter=value> ...

Examples

v2 (net1 0 net2 0) pvccs coeffs=[0 -2e-3 - 10e-3] gain=2 m=1 $\,$

pvccsp Symbol

Description

Parameterized Cell Based Polynomial Nonlinear Voltage Controlled Current Source is a Pcell-based polynomial voltage controlled current source in which the symbol varies with the number of controlling voltages. pvccsp is similar to pvccs except that it has one additional parameter (nc) that specifies the number of controlling voltage sources.

The maximum number of controlling voltages is 20. Therefore, if you specify a number greater than 20, the value of this parameter will default to 20.

Command-Line Help

spectre -h pvccs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Num of controlling voltage(s)	nc	Х	-	-	-	-
Max Coefficient Number	polyCoef	Х	-	-	-	-
Poly Coeff 0	с0	Х	-	-	-	-
Poly Coeff 1	c1	Х	-	-	-	-
Poly Coeff 2	c2	Х	-	-	-	-
Poly Coeff 3	с3	Х	-	-	-	-
Poly Coeff 4	с4	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Maximum Output Current	maxm	X	-	-	-	-
Minimum Output Current	minm	X	-	-	-	-
Absolute Output Current	absol	х	-	-	-	-
Smoothing Factor	smoothing	X	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	х	-	-	-	-

Sources - Dependent Components in Analog Library

Examples

Following is the netlist when the pvccs coefficient is specified as an instance parameter and not specified in a file:

```
G0 (net21 net23 net22 net24 ) pvccs gain=1.0 m=1 coeffs=[ 1 1 1 1 ] min=1.0 max=3.1 abs=off tc1=0 tc2=0
```

Following is the netlist when the pvccs coefficient is specified in a file:

```
G0 (net21 net23 net22 net24 ) pvccs gain=1.0 m=1 file="abc.coeff" min=1.0 max=3.1 abs=off tc1=0 tc2=0
```

Analog Library Reference Sources - Dependent Components in Analog Library

pvcvs, pvcvs2, pvcvs3 Symbol

Description

It is a polynomial voltage controlled voltage source in which the symbol varies with the number of controlling voltages. A vector of coefficients specifies the polynomial function that defines the relationship between the output voltage and the controlling voltages. You must specify at least one coefficient. Current through the voltage source is calculated and is defined to be positive if it flows from the positive terminal, through the source, to the negative terminal.

For a polynomial in N variables a1, a2, ... an, the polynomial function F(a0,a1,...,an)is given by:

```
F = c0 + c1 * a1 + c2 * a2 + ...
+ c(m+1) * a1^2 + c(m+2) * a1 * a2 + ...
+ c(2m+1) * a2^2 + c(2m+2) * a2 * a3 + ...
```

where the c0, c1 and c2 are coefficients of the polynomial terms, and m is the multiplier.

This device is supported within the altergroups.

Command-Line Help

spectre -h pvcvs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Max Coefficient Number	polyCoef	Х	-	-	-	-
Poly Coeff 0	c0 - c20	х	-	-	-	-
Initial condition	ic	-	-	-	X	-
Scale factor	scale	-	-	-	Х	-
Absolute value	abs	Х	-	-	х	-
Gain	gain	х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Minimum Output Voltage	minm	Х	-	-	Х	-
Maximum Output Voltage	maxm	Х	-	-	х	-
Absolute Output Voltage	absol	Х	-	-	-	-
Smoothing Factor	smoothing	х	-	-	-	-
Temperature coefficient 1	tc1	-	-	-	Х	-
Temperature coefficient 2	tc2	Х	-	-	Х	-

Syntax/Synopsis

Name (p n ps1 ns1 \dots) pvcvs <parameter=value> \dots

Sources - Dependent Components in Analog Library

Examples

v1 (p 0 c1 0) pvcvs coeffs=[0 0 0 0.1 1 1] gain=1

pvcvsp Symbol

Description

Parameterized Cell Based Polynomial Nonlinear Voltage Controlled Voltage Source is a Pcell-based polynomial voltage controlled voltage source in which the symbol varies with the number of controlling voltages. This component is similar to pvcvs except that it has one additional parameter (nc) that specifies the number of the controlling voltage sources.

pvcvsp with 4

controlling voltages

The maximum number of controlling voltages is 20. Therefore, if you specify a number greater than 20, the value of this parameter will default to 20.

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Num of controlling voltage(s)	nc	х	-	-	-	-
Max Coefficient Number	polyCoef	X	-	-	-	-
Poly Coeff 0	с0	Х	-	-	-	-
Poly Coeff 1	c1	Х	-	-	-	-
Poly Coeff 2	c2	Х	-	-	-	-
Poly Coeff 3	с3	Х	-	-	-	-
Poly Coeff 4	с4	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Minimum Output Voltage	min	X	-	-	-	-
Maximum Output Voltage	max	X	-	-	-	-
Absolute Output Voltage	abs	х	-	-	-	-
Smoothing Factor	delta	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

Sources - Dependent Components in Analog Library

Examples

Following is the netlist when the pvcvs coefficient is passed as an instance parameter and not specified in a file:

```
E0 (net21 net23 net22 net24 ) pvcvs gain=1.0 m=1 coeffs=[ 1 1 1 1 ] min=1.0 max=3.1 abs=off tc1=0 tc2=0
```

Following is the netlist when the PVCVS coefficient is specified in a file:

```
E0 (net21 net23 net22 net24 ) pvcvs gain=1.0 m=1 file="abc.coeff" min=1.0 max=3.1 abs=off tc1=0 tc2=0
```

The parameters, polyCoef and coefSpec, are not netlisted.

vccs Symbol

Description

The component vccs stands for Linear Voltage Controlled Current Source. Positive current exits the source node and enters the sink node.

The component vccs uses the same values of parameters ggain, maxm, minm, and m for both Spectre and hspiceD simulators. This device is supported within the altergroups.

Command-Line Help

spectre -h vccs

Analog Library Reference Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Transcond uctance	ggain	Х	-	-	Х	Х
Initial condition	ic	-	-	-	-	Х
Multiplier	m	Х	-	-	Х	Х
Type	сѕТуре	-	-	-	Х	Х
Transcond uctance (Obsolete)	hggain	-	-	-	Х	-
Maximum output current (Obsolete)	maxi	-	-	-	х	х
Minimum output current (Obsolete)	mini	-	-	-	Х	х
Maximum output current	maxm	X	-	-	Х	-
Minimum output current	minm	Х	-	-	Х	-
Scale factor	scale	-	-	-	Х	Х
Multiplier (Obsolete)	hm	-	-	-	Х	-
Temperatu re coefficient 1	tc1	-	-	-	X	х

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperatu re coefficient 2	tc2	-	-	-	х	x
Absolute value	habs	-	-	-	Х	-
Initial condition	hic	-	-	-	Х	-
Pwl type	pwlType	-	-	-	Х	Х
<u>Delta</u>	delta	Х	-	-	Х	Х
Number of controlling pairs	xypairs	-	-	-	Х	X
Delay Time	htd	-	-	-	Х	-
Absolute value	abs	X	-	-	-	Х
Delay Time	td	-	-	-	-	Х
Type of input of source	inputtype	X	-	-	-	-

Syntax/Synopsis

Name (sink src ps ns) vccs <parameter=value> ...

Examples

v1 (1 0 2 3) gm=-1 m=2

Sources - Dependent Components in Analog Library

Voltage-Controlled Current Sources (G-Elements)

The components in Voltage-Controlled Current Sources (G-Elements) are as follows:

- Voltage-Controlled Capacitor
- Voltage-Controlled Current Source
- Voltage-Controlled Resistor

Voltage-Controlled Capacitor

```
Gxx n + n - vccap pwl(1) in + in - [delta = val] [scale = val]
     + [m = val] [tc1 = val] [tc2 = val] x1, y1, x2, y2 ... [ic = val]
```

Voltage-Controlled Current Source

Behavioral

```
Gxx + n - [vccs] cur = 'equation' [max = val] [min = val] [scale = val]
```

Linear

```
Gxx + n - [vccs] in + in - transconductance [max = val] [min = val]
     + [m = val] [scale = val] [tc1 = val] [tc2 = val] [abs = 1] [ic = val]
```

Piece-Wise Linear

```
Gxx n+ n- [vccs] pwl(1) in+ in- [delta = val] [scale = val]
    + [m = va1] [tc1 = va1] [tc2 = va1] x1, y1, x2, y2 ... [ic = va1]
```

Polynomial

```
Gxx n+ n- [vccs] poly(ndim) in+ in- ... inndim+ inndim-
     + [tc1 = val] [tc2 = val] [scale = val] [max = val]
     + [min = val] [abs = 1] p0 [p1 ...] [ic = vals]
```

Delay Element

```
Gxx n+ n- [vccs] delay in+ in- td = val
     + [tc1 = val] [tc2 = val] [scale = val] [npdelay = val]
```

Voltage-Controlled Resistor

Linear

```
Gxx n + n - vcr in + in - transfactor [max = val] [min = val]
     + [m = val] [scale = val] [tc1 = val] [tc2 = val] [ic = val]
```

Sources - Dependent Components in Analog Library

Piece-Wise Linear

Polynomial

```
Gxx n+ n- vcr poly(ndim) in+ in- ... inndim+ inndim-
+ [tc1 = val] [tc2 = val] [scale = val] [max = val]
+ [min = val] [abs = 1] p0 [p1 ...] [ic = vals]
```

Description

Defines voltage-controlled current sources (VCCSs), voltage-controlled resistors (VCRs), and voltage-controlled capacitors (VCCAPs) in behavioral, linear, piece-wise linear, poly, and delay forms. In the behavioral function, the equation can contain terms of node voltages. In linear form, the output value is estimated with '[v(in+)-v(in-)]' multiplied by transfactor or transconductance, followed by the scale and temperature adjustment, before confined with the abs, min, and max parameters. In the piece-wise linear function, at least two pairs of voltage-current (or voltage-resistance, voltage-capacitance) points are required.

Sources - Dependent Components in Analog Library

Arguments

Arguments	Description		
n+, n-	Terminals of controlled element.		
in+, in-	Positive and negative controlling nodes.		
vcr, vccap, vccs	Keywords for the voltage-controlled resistor, capacitor, and current source elements.		
	Note: vcr , $vccap$, and $vccs$ are reserved words that cannot be used as node names.		
<pre>cur = 'equation'</pre>	Current of the controlled element flowing from $n+$ to $n-$. It can be		
	■ An expression with parameters and functions of node voltages		
	■ Branch currents of other elements		
	■ Time, frequency, or temperature		
max = val	Maximum value of the controlled current or resistance.		
min = val	Minimum value of the controlled current or resistance.		
transconductance	Voltage to current conversion factor.		
transfactor	Voltage to resistance conversion factor.		
scale = val	Scaling factor; scales current by its value (default = 1.0).		
m = val	Multiplier (default = 1).		
tc1 = val	First-order temperature coefficient for the element.		
tc2 = va1	Second-order temperature coefficient for the element.		
abs	Output current takes its absolute value if abs = 1.		
ic = val	Initial value of the current source (default = 0.0).		
delta = val	A value used to smooth corners of the piece-wise linear function. The default is 1/4 of the smallest distance between break points, and is not to exceed 1/2 of this value.		
<i>x</i> 1	Voltage drops between the controlling nodes ${\tt in+}$ and ${\tt in-}$. They must be in ascending order.		
<i>y</i> 1	Element output value corresponding to $x1\dots$		
npdelay	The number of data points used in delay simulations.		

Sources - Dependent Components in Analog Library

npwl

The npwl and ppwl functions are used to interchange the n+ and n- nodes, but use the same transfer function.

- For the in- node connected to n+, if v(n+,n-) < 0, then the controlling voltage is v(in+,in-). Otherwise, the controlling voltage is v(in+,n-).
- For the in- node connected to n-, if v(n+,n-) > 0, then the controlling voltage is v(in+,in-). Otherwise, the controlling voltage is v(in+,n+).

ppwl

- For the in- node, connected to n+, if v(n+,n-) > 0, then the controlling voltage is v(in+,in-). Otherwise, the controlling voltage is v(in+,n-).
- For the in- node, connected to n-, if v(n+,n-) < 0, then the controlling voltage is v(in+,in-). Otherwise, the controlling voltage is v(in+,n+).

If the in- node does not connect to either n+ or n-, the Virtuoso UltraSim simulator changes npw1 and ppw1 to pw1.

Examples

The following example defines a VCCS connected to nodes 1 and 2, with its current dependent on the voltage of nodes 6 and 7 in the given form.

```
G1 1 2 cur = '3.0*\sin(v(7)/2)+v(6)^2'
```

The following example defines a VCCS connected to nodes 1 and 2. Its current is initialized as 0, and is half of the voltage at node 5. The current is also confined within 0 and 5 amps. The output current is multiplied by 2.

```
G2\ 1\ 2\ vccs\ 5\ 0\ 0.5\ max\ =\ 5\ min\ =\ 0\ m\ =\ 2\ ic\ =\ 0
```

The following example defines a VCCS connected to nodes 1 and 2, its current controlled by the voltage at node 5. The current is calculated in a piece-wise linear function with a smoothing parameter of 0.2, and is scaled by 1.e-3 upon output.

```
G3 1 2 vccs pwl(1) 5 0 delta = 0.2 0, 0 0.5,1 1.5,1.5 scale = 1.e-3
```

The example defines a VCR connected to nodes 1 and 2, with its resistance dependent on the voltage difference between nodes 5 and 4 in a piece-wise linear form. The initial resistance is 1k. The output resistance is decreased by 2/3.

```
Gres 1 2 vcr pwl(1) 5 4 m = 3 0,0 1,1k 2,1.5k 3,1.8k 4,2.0k 5,2.0k ic = 1k
```

The following example defines a VCCAP connected to nodes 1 and 2, with its capacitance dependent on the voltage difference between nodes 5 and 4 in a piece-wise linear form. The

Sources - Dependent Components in Analog Library

initial capacitance is set to 10 p after being scaled with 1e-12. The output capacitance is increased by a factor of 3.

```
Gcap 1 2 vccap pwl(1) 5 4 m = 3 scale = 1.e-12 0,0 1,10 2,15 3,18 4,20 5,20 ic = 10
```

The following example tells the Virtuoso UltraSim simulator to model the source-drain resistor of the n-channel MOSFET which is used as a switch. Based on the npwl function, the resistor value (Gnmos) does not change when changing the position of the d and s nodes.

Gnmos d s vcr npwl(1) g s m = 30,5g1,5meg2,5k3,1k5,50

vccsp Symbol

Description

Parameterized Cell Based Voltage Controlled Current Source (vccsp) is a Pcell-based voltage controlled current source in which the symbol varies with the number of controlling voltages. vccsp is similar to vccs except that it has one additional parameter (nc) that specifies the number of controlling voltage sources.

The maximum number of controlling voltages is 20. Therefore, if you specify a number greater than 20, the value of this parameter will default to 20.

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Num of controlling voltage(s)	nc	х	-	-	-	-
Transconduct ance	ggain	Х	-	-	-	-
Multiplier	m	х	-	-	-	-
Type of Source	typesrc	Х	-	-	-	-
Minimum Output Voltage	min	х	-	-	-	-
Maximum Output Voltage	max	х	-	-	-	-
Absolute Output Voltage	abs	х	-	-	-	-
Smoothing Factor	delta	Х	-	-	-	-
Temperature coefficient 1	tc1	X	-	-	-	-
Temperature coefficient 2	tc2	X	-	-	-	-

Examples

Following is the netlist for the linear transfer characteristic:

```
G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 gain =1.0 min=1 max=4 abs=off tc1= 0 tc2=0
```

Following is the netlist for the PWL transfer characteristic when the voltage or voltage pair is not specified in a file:

Sources - Dependent Components in Analog Library

G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 pwl=[1 1 2 4] scale=1 delta=0 tc1=0 tc2=0

Following is the netlist for the PWL transfer characteristic when the voltage or voltage pair is specified in a file:

G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 file="abc" scale=1 delta=0 tc1=0 tc2=0

The parameters, trfType and iVectSpec are not netlisted.

vcvs Symbol

Description

The component VCVS stands for Linear Voltage Controlled Voltage Source. Current through the voltage source is calculated and is defined to be positive if it flows from the positive terminal, through the source, to the negative terminal.

Component vcvs uses the same values of parameters <code>egain</code>, <code>maxm</code>, and <code>minm</code> for both <code>Spectre</code> and <code>hspiceD</code> simulators. This device is supported within the altergroups. This device can also model ideal digital gates.

Command-Line help

spectre -h vcvs

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Voltage</u> gain	egain	X	-	-	Х	Х
Initial condition	ic	-	-	-	-	Х
Multiplier	m	Х	-	-	-	-
Type	csType	-	-	-	Х	Х
Voltage gain (obsolete)	hegain	-	-	-	Х	-
Maximum output voltage (obsolete)	maxv	-	-	-	х	Х
Minimum output voltage (obsolete)	minv	-	-	-	Х	х
Maximum output current	maxm	X	-	-	Х	-
Minimum output current	minm	Х	-	-	Х	-
Scale factor	scale	-	-	-	Х	Х
Temperatu re coefficient 1		-	-	-	Х	Х

Sources - Dependent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperatu re coefficient 2	tc2	-	-	-	Х	Х
Absolute value	habs	-	-	-	х	-
Initial condition	hic	-	-	-	х	-
Delta	delta	Х	-	-	Х	Х
Number of controlling pairs	xypairs	-	-	-	Х	х
Delay Time	htd	-	-	-	X	-
Absolute value	abs	Х	-	-	-	X
Delay Time	td	-	-	-	-	Х

Syntax/Synopsis

Name (p n ps ns) vcvs <parameter=value> ...

Examples

el (outl 0 pos neg) vcvs gain=10

vcvsp Symbol

vcvsp with 4 controlling voltages

Description

The component vcvsp stands for Parameterized Cell Based Voltage Controlled Voltage Source. It is a Pcell-based voltage controlled voltage source in which the symbol varies with the number of controlling voltages.

The maximum number of controlling voltages is 20. If it set to a number greater than 20, the default value, 20, is used.

Sources - Dependent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Num of controlling voltage(s)	nc	Х	-	-	-	-
Type of transfer char	trfType	Х	-	-	-	-
Voltage gain	egain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Type of source	typesrc	X	-	-	-	-
Minimum Output Voltage	min	X	-	-	-	-
Maximum Output Voltage	max	Х	-	-	-	-
Absolute Output Voltage	abs	Х	-	-	-	-
Smoothing Factor	delta	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

Examples

Following is the netlist for linear transfer characteristic:

G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 gain =1.0 min=1 max=4 abs=off tc1= 0 tc2=0

Sources - Dependent Components in Analog Library

Following is the netlist for PWL transfer characteristic when the voltage or voltage pair is not specified in a file but passed as an instance parameter:

```
G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 pwl=[1 1 2 4] scale=1 delta=0 tc1=0 tc2=0
```

Following is the netlist for PWL transfer characteristic when the voltage or voltage pair is not specified in a file:

```
G0 (net011 net012 net09 net010) vcvs type=vcvs m=1 file="abc" scale=1 delta=0 tc1=0 tc2=0
```

The parameters, trfType and iVectSpec, are not netlisted.

Related Topics

CDF Parameters Supported by Analog Library Components

Sources - Dependent Components

Analog Library Reference Sources - Dependent Components in Analog Library

Sources - Global Components in Analog Library

This topic contains a list of all those components of the Analog Library that netlist as a global net. The components are as follows:

- gnd Symbol
- gnda Symbol
- gndd Symbol
- vcc Symbol
- vcca Symbol
- vccd Symbol
- vdd Symbol
- vdda Symbol
- vddd Symbol
- vee Symbol
- veea Symbol
- veed Symbol
- vrefgnd Symbol
- vss Symbol
- vssa Symbol
- vssd Symbol

gnd Symbol

Component Parameters

This component has no parameters.

gnda Symbol

Component Parameters

This component has no parameters.

gndd Symbol

Component Parameters

This component has no parameters.

vcc Symbol

Component Parameters

vcca Symbol

Component Parameters

vccd Symbol

Component Parameters

vdd Symbol

Component Parameters

vdda Symbol

Component Parameters

vddd Symbol

Component Parameters

vee Symbol

Component Parameters

veea Symbol

Component Parameters

veed Symbol

Component Parameters

vrefgnd Symbol

Description

This component can be used at either the global level or the subckt level as a local option.

Component Parameters

This component has no parameters.

Examples

If it is in the netlist, option vrefgnd1 is applied at the subckt level and vrefgnd2 is applied on the top node, as follows:

```
vrefgnd1 options node_name=n1 subckt=x1
vrefgnd2 options node name=top n1
```

Here.

- vrefgnd1 is applied to subcktx1 and node x1.n1 is used as reference gnd.
- vrefgnd2 is applied to the top level and node n1 is used as reference gnd.

vss Symbol

Component Parameters

vssa Symbol

Component Parameters

vssd Symbol

Component Parameters

This component has no parameters.

Related Topics

CDF Parameters Supported by Analog Library Components

Analog Library Reference Sources - Global Components in Analog Library

Sources - Independent Components in Analog Library

The components in the Source-Independent category are as follows:

- idc Symbol
- iexp Symbol
- ipulse Symbol
- ipwl Symbol
- ipwlf Symbol
- isin Symbol
- isource Symbol
- iprbs Symbol
- multibit Symbol
- pdc Symbol
- pexp Symbol
- port Symbol
- ppulse Symbol
- pprbs Symbol
- ppwl Symbol
- ppwlf Symbol
- psin Symbol
- vbit Symbol
- vdc Symbol

Sources - Independent Components in Analog Library

- vexp Symbol
- vpulse Symbol
- vpwl Symbol
- vpwlf Symbol
- vpwlfm Symbol
- vsin Symbol
- vprbs Symbol
- vsource Symbol

idc Symbol

Description

The component idc stands for Independent DC Current Source in Source-Independent category. It is a constant isource. This device is supported within the altergroups.

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

Component Parameters

-						
CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	Х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	Х
DC current	idc	х	-	-	Х	Х
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	х	-	-	-	-
Multiplier	m	х	-	-	Х	Х
Temperature coefficient 1	tc1	X	-	-	-	-
Temperature coefficient 2	tc2	X	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-
PAC magnitude	pacm	X	-	-	-	-
PAC phase	pacp	X	-	-	-	-
Source type	srcType	X	-	-	-	-
AC Phase	acPhase	X	-	-	-	-

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

iexp Symbol

Description

The component <code>iexp</code> stands for Independent Exponential Current Source in Source-Independent category. This device is supported within the altergroups.

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	Х	-	-	Х	Х
AC phase	acp	X	-	-	Х	Х
DC current	idc	X	-	-	Х	Х
Current 1	i1	Х	-	-	Х	Х
Current 2	i2	х	-	-	Х	Х
Delay time 1	td1	х	-	-	Х	Х
Damping factor 1	tau1	х	-	-	Х	Х
Delay time 2	td2	X	-	-	Х	Х
Damping factor 2	tau2	X	-	-	Х	Х
Noise file name	noisefile	Х	-	-	-	-
Number of noise/ freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Multiplier	m	Х	-	-	Х	Х
Delay time	td	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
DC source	dc	-	-	-	Х	Х
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	X	-	-	-	-
Delay Time	delay	Х	-	-	-	-

Sources - Independent Components in Analog Library

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

ipulse Symbol

Description

The component ipulse stands for Independent Pulse Current Source in Source-Independent category. It is a square wave varying isource. This device is supported within the altergroups.

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	Х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	х
DC current	idc	Х	-	-		
Current 1	i1	Х	-	-	Х	х
Current 2	i2	Х	-	-	Х	х
Delay time	td	Х	-	-	Х	х
Rise time	tr	Х	-	-	Х	х
Fall time	tf	Х	-	-	Х	х
Pulse width	pw	Х	-	-	Х	х
<u>Period</u>	per	Х	-	-	Х	х
Frequency name for 1/ period	fundname	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Multiplier	m	Х	-	-	Х	Х
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
DC source	dc	-	-	-	Х	X
Freq 1 to Freq 50	F1 - F50	X	-	-	-	-
Noise 1 to Noise 50	N1 - N50	X	-	-	-	-
Source type	srcType	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Type of rising & falling edge	risefalle dge	х	-	-	-	-
Delay Time	delay	х	-	-	-	-

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

ipwl Symbol

Description

The component <code>ipwl</code> stands for Independent Piece-Wise Linear Current Source in Source-Independent category. This device is supported within the altergroups.

Command-Line Help

spectre -h isource

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Number of pairs of points	tvpairs	Х	-	-	Х	Х
AC magnitude	acm	Х	-	-	X	X

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC phase	acp	х	-	-	X	Х
DC current	idc	х	-	-		
Time 1	t1 - t50	х	-	-	х	Х
Current 1	i1 - i50	х	-	-	х	Х
Frequency name for 1/period	fundname	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Multiplier	m	х	-	-	х	Х
Delay time	td	х	-	-	х	Х
Offset current	io	Х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
Period of the PWL	pwlperiod	Х	-	-	-	-
Transition width	twidth	Х	-	-	-	-
Temperature coefficient 1	tc1	х	-	-	-	-
Temperature coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
DC source	dc	-	-	-	х	Х
Repeated function	rpt	-	-	-	х	Х
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	х	-	-	-	-
Source type	srcType	x	-	-	-	-
Type of rising & falling edge	risefalle dge	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Delay Time	delay	Х	-	-	-	-
Transition width	twidth	Х	-	-	-	-

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

ipwlf Symbol

Description

The component ipwlf stands for Independent Piece-Wise Current Source in Source-Independent category. This device is supported within the altergroups.

To select the PWL file:

- 1. Select analogLib from the Library Name field, ipwlf from the Cell Name field, and symbol from the View Name field in the Edit Object Properties form.
- 2. Click the Browse PWL file button to select the PWL file or specify the path to the PWL file in the PWL file name field.
- 3. [Optional] Select the PWL file as Design Var? check box to specify the name of the design variable in the PWL file name field.

Sources - Independent Components in Analog Library

Sources - Independent Components in Analog Library

Command-Line Help

spectre -h isource

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	Х	-	-	х	-
AC phase	acp	Х	-	-	Х	-
DC current	idc	Х	-	-	Х	-
PWL file name	fileName	Х	-	-	Х	-
Frequency name for 1/period	fundname	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Offset current	io	X	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
Period of the PWL	pwlperiod	Х	-	-	-	-
Transition width	twidth	Х	-	-	-	-
Temperature coefficient 1	tc1	х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	x	-	-	-	-
Source type	srcType	X	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Type of rising & falling edge	risefalle dge	х	-	-	-	-
Delay Time	delay	Х	-	-	-	-
PWL File as Design Var?	<pre>pwl_file_ as_var</pre>	х	-	-	-	-
Desired rms value	rmsValue	Х	-	-	-	-

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

isin Symbol

Description

The component isin stands for Independent Sinusoidal Current Source in Source-Independent category. It is a sin wave isource. This device is supported within the altergroups.

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

Component Parameters

AC magnitude ad	cm					UltraSim
		X	-	-	Х	х
AC phase ac	ср	Х	-	-	Х	х
DC current io	dc	х	-	-		
Offset current io	0	Х	-	-	Х	Х
<u>Amplitude</u> ia	a	Х	-	-	Х	Х
Frequency fi	req	Х	-	-	Х	Х
Delay time to	d	Х	-	-	Х	Х
Damping factor the	heta	Х	-	-	Х	Х
First frequency name for	undname	Х	-	-	-	-
Second frequency name for	undname2	Х	-	-	-	-
Noise file name no	oisefile	Х	-	-	-	-
Number of noise/freq pairs FI	Npairs	Х	-	-	-	-
Number of FM files fi	ilenums	Х	-	-	-	-
Name of FM File1 fr	mmodfile1	Х	-	-	-	-
Name of FM File2 fr	mmodfile2	Х	-	-	-	-
XF magnitude x:	fm	Х	-	-	-	-
PAC magnitude pa	acm	Х	-	-	-	-
PAC phase pa	аср	х	-	-	-	-
<u>Multiplier</u> m		х	-	-	Х	x
Initial phase for Sinusoid sa	inephase	х	-	-	-	-
Amplitude 2	a2	х	-	-	-	-
Initial phase for Sinusoid 2 s	inephase2	х	-	-	-	-
Frequency 2 fr	req2	х	-	-	-	-
FM modulation index fr	mmodindex	х	-	-	-	-
FM modulation frequency fr	mmodfreq	х	-	-	-	-
AM modulation index ar	mmodindex	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AM modulation frequency	ammodfreq	х	-	-	-	-
AM modulation phase	ammodphase	x	-	-	-	-
Temperature coefficient 1	tc1	х	-	-	-	-
Temperature coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
DC source	dc	-	-	-	Х	Х
Phase delay	phi	-	-	-	Х	Х
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	х	-	-	-	-
Delay Time	delay	x	-	-	-	-
Sine DC level	sinedc	x	-	-	-	-

Syntax/Synopsis

Name (sink src) isource <parameter=value> ...

Positive current exits the source node and enters the sink node.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

isource Symbol

Description

If Source type = prbs, and Trigger = External rising edge, External falling edge, or External both edges, two extra ports are added to the isource symbol as shown below:

You can specify the wave shape for isource by selecting one of the following options from the *Source type* drop-down list box in the Edit Object Properties form:

- dc Generates a dc level from isource. When the Source type is set to dc, the dc and temperature effect parameters are active. The dc setting sets the DC level for all analyses.
- sine Generates sinusoidal waveforms.

Up to two sinusoids can be generated simultaneously. They are denoted as 1 and 2. You can set the amplitude, frequency, and phase for both individually. The amplitude can be set to either a current or a power level. When you set a power level, the assumption is that the isource is perfectly matched. The source that is internal to isource gets double the amplitude specified by the power in dBm. You can also specify sinusoidal AM or FM modulation of sinusoid 1. Sinusoid 2 cannot be modulated.

■ pulse – Generates a step, a single pulse, or a periodic pulse waveform.

Sources - Independent Components in Analog Library

When you specify the current, you are specifying the current when isource is properly terminated, and not the current on the internal current source. Therefore, the current on the internal source is set to twice the value specified on the component.

- exp Generates an exponential waveform. The exponential waveform can generate one
 exponential pulse, and cannot generate a periodic signal.
 - When you specify the current, you are specifying the current when isource is properly terminated, and not the current on the internal current source. Thus, the current on the internal source is set to twice the value specified on isource.
- *pwl* Generates piecewise linear waveforms that allow an arbitrary input waveform to be generated.
 - The input can either be a file that contains time and current pairs, or you can enter the time-current pairs directly in the PWL source properties form. Remember that the current you enter in the piecewise linear file assumes that the isource is properly terminated. The internal current source gets set to double the value specified in the piecewise linear current specifications.
- bit Generates bit sequence or string from isource. The bit source has four states: 1, 0, m, and z, which represent the high, low, middle current, and high-impedance state respectively. It allows patterns defining a sequence of bits.
- prbs PRBS is an acronym for Pseudo-Random Binary Sequence. This source has three modes. It can be used to generate a maximum-length pseudo-random sequence. You can specify the beginning state and tap gains for a Fibonacci PRBS generator. A third mode allows reading an ASCII file that describes the sequence of one and zero events to generate.

Note: The symbol ibit is the same as isource type=bit.

If you select the *Display noise parameters* check box in the Edit Object Properties form, the *Noise file as Design Var?* check box is displayed. You can select this check box to specify the noise file as a design variable in the *Noise file name* field.

Sources - Independent Components in Analog Library

For more information on the available source types, see the section *Source type* in AnalogLib Components Used in RF Simulation.

This device is supported within the altergroups.

Independent Current Source

The value of the DC current as a function of the temperature is given by:

```
I(T) = I(tnom) * [1 + tc1 * (T - tnom) + tc2 * (T - tnom)^2].
```

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
DC current	idc	X	-	-	х	Х
Source type	srcType	Х	-	-	х	-
Frequency name 1	fundname	Х	-	-	-	-
Frequency 1	freq	Х	-	-	Х	Х
Amplitude 1 (lpk)	ia	Х	-	-	Х	Х
Amplitude 2(lpk)	ia2	Х	-	-	Х	Х
Phase for Sinusoid 1	sinephase	Х	-	-	-	-
Sine DC level	sinedc	Х	-	-	Х	-
Sinusoid Ampl 1 (lpk) to Sinusoid Ampl 9 (lpk)	vav1 - vav9	х	-	-	-	-
File name	fileName	Х	-	-	х	-
Browse and select file	selectFile	Х	-	-	х	-
Number of PWL/Time pair	tvpairs	Х	-	-	х	-
Time 1	t1 - t50	Х	-	-	х	-
Current 1	i1 - i50	Х	-	-	х	-
Delay time	td	Х	-	-	-	Х
Type of rising & falling edge	risefalledge	Х	-	-	х	-
Rise time start	td1	Х	-	-	Х	-
Rise time constant	tau1	Х	-	-	X	-
Fall time start	td2	Х	-	-	х	-
Fall time constant	tau2	Х	-	-	х	-
DC offset	offset	x	-	-	-	-
Amplitude scale factor	scale	x	-	-	-	-
Time scale factor	stretch	x	-	-	-	-
<u>Breakpoints</u>	allbrkpts	х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Period	pwlperiod	х	-	-	X	-
Period start time	pwlperiodstart	х	-	-	х	-
Transition width	twidth	x	-	-	-	-
Period of waveform	per	х	-	-	х	-
Display second sinusoid	numofsines	Х	-	-	-	-
FM modulation index 1	fmmodindex	x	-	-	х	-
FM modulation freq 1	fmmodfreq	х	-	-	х	-
AM modulation index 1	ammodindex	x	-	-	х	-
AM modulation freq 1	ammodfreq	x	-	-	х	-
AM modulation phase 1	ammodphase	X	-	-	-	-
Damping factor 1	theta	х	-	-	х	-
Display small signal params	smallSig	Х	-	-	х	-
PAC Magnitude (Ipk)	pacm	х	-	-	-	-
PAC phase	pacp	х	-	-	-	-
AC Magnitude (lpk)	acm	Х	-	-	Х	-
AC phase	acp	Х	-	-	Х	-
XF Magnitude (Ipk)	xfm	Х	-	-	-	-
Display noise parameters	noiseParam	Х	-	-	-	-
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	X	-	-	-	-
Freq 1 to Freq 50	F1 - F50	x	-	-	-	-
Noise 1 to Noise 50	N1 - N50	x	-	-	-	-
Display modulation params	modulation	Х	-	-	Х	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Display temperature params	tempParam	X	-	-	-	-
Linear temp. coefficient	tc1	Х	-	-	-	-
Quadratic temp. coeff.	tc2	Х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
Transition reference	transitionrefe rence	Х	-	-	-	-
Multiplier	m	Х	-	-	Х	Х
DC source	dc	-	-	-	Х	Х
Phase delay	phi	-	-	-	Х	Х
Number of FM files	<u>es</u> filenums		-	-	-	-
Name of FM File1	fmmodfile1	Х	-	-	-	-
Name of FM File2	fmmodfile2	Х	-	-	-	-
Reference Value	ref	Х	-	-	-	-
Remove Device	lxRemoveDevice	-	Х	-	-	-
RJ(seed)	rjseed	Х	-	-	-	-
RJ(rms)	rjrms	Х	-	-	-	-
PJ(amplitude)	pjamp	Х	-	-	-	-
PJ(frequency)	pjfreq	Х	-	-	-	-
PJ(type)	pjtype	Х	-	-	-	-
PAM modulation	pam4_modulatio n	Х	-	-	-	-
PAM4 mapping	pam4_mapping	Х	-	-	-	-
Threshold	triggerthresho ld	X	-	-	-	-
High-Z impedance	highz	x	-	-	-	-
Min high-Z trans. width	min_z_transiti on_width	X	-	-	-	-
Z state 1 to Z state 50	Z1 - Z50	Х	-	-	-	-

Sources - Independent Components in Analog Library

For HspiceD, parameter pwlperiod is supported under the following conditions:

- In case pwlperiod is specified and pwlperiodstart is not specified, then another current-time pair must be added, where time = pwlperiod and current is the same as the current in the last current-time pair.
- But, if the value specified for pwlperiod is the same as the time specified in the last current-time pair, then no additional current-time pair is required.
- In case both pwlperiod and pwlperiodstart are specified, then another current-time pair must be added, where time = (pwlperiod + pwlperiodstart) and current is the same as the current in the last current-time pair.

Syntax/Synopsis

```
Name ( sink src [ctl] ) isource <parameter=value> ...
```

Positive current exits the source node and enters the sink node. The third node(ctl) is used as a switch only for prbs.

Examples

i1 (in 0) isource dc=0 type=pulse delay=10n val0=0 val1=500u period=500n rise=1n fall=1n width=250n

Sources - Independent Components in Analog Library

iprbs Symbol

Description

If Trigger = External rising edge, External falling edge, or External both edges, two extra ports are added to the iprbs symbol as shown below:

Command-Line Help

spectre -h isource

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsS pice	auC dl	auL vs	hspi ceS	hspi ceD	Ultra Sim
Bit string	data	X	-	-	-	-	-	-	-
Final value for logical 1	val1	Х	-	-	-	-	-	-	-
Final value for logical 0	val0	Х	-	-	-	-	-	-	-
Delay time	delay	X	-	-	-	-	-	-	-
Rise time	rise	Х	-	-	-	-	-	-	-
Fall time	fall	Х	-	-	-	-	-	-	-
Period of waveform	period	Х	-	-	-	-	-	-	-
Reference Value	ref	Х	-	-	-	-	-	-	-
Waveform Random Delay Time	jitter	Х	-	-	-	-	-	-	-
Generates Random Count	seed	Х	-	-	-	-	-	-	-
Bit	taps	Х	-	-	-	-	-	-	-

multibit Symbol

Description

The component, multibit is a Pcell, which allows you to provide a DC stimulus for a bus having multiple bits. The number of bits, the bit pattern, logic high, and logic low voltages can be selected as parameters. The Pcell also supports scalar (single bit) as well as bus outputs. The multibit device does not support more than 32 bits.

Examples

For instance 10, the netlist as follows:

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Input Mode	mode1	Х	-	-	-	Х
Number of Bits	numbits	Х	-	-	-	Х
Expand Bus	expand	Х	-	-	-	Х
Bit Pattern(MSBLSB)	pattern	Х	-	-	-	Х
Decimal Value	dec	Х	-	-	-	Х
Bit 1 voltage level	vbit1	Х	-	-	-	Х
Bit 0 voltage level	vbit0	х	-	-	-	Х

pdc Symbol

Description

The component, pdc is an independent DC Resistive Source. When Source Type = dc, the dc and temperature effect parameters are active and set the DC level for all analyses. The DC voltage sets the DC level of the source for DC analysis. The value must be a real number. If you do not specify the DC value, it is assumed to be the time = 0 value of the waveform.

The DC voltage parameter specifies the DC voltage across the port when it is terminated in its reference resistance. In other words, the DC voltage of the internal voltage source is double the user specified DC value, dc. The same is true for the values for the transient, AC, and PAC signals of the port.

This device is not supported within the altergroups.

For more information on this component refer to The PORT Element.

Sources - Independent Components in Analog Library

Command-Line Help

spectre -h port

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Resistance	r	х	-	-	-	-
Port number	num	х	-	-	-	-
DC voltage	vdc	х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperatur e coefficient 1		Х	-	-	-	-
Temperatur e coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
AC magnitude	acm	Х	-	-	-	-
AC phase	acp	х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Source type	srcType	Х	-	-	-	-

Syntax/Synopsis

Name (p n) port <parameter=value> ...

Examples

p20 (2 0) port num=2 r=50 type=pulse period=1e-9 rise=1e-10 fall=1e-10 val1=1 width=0.5n mag=1

pexp Symbol

Description

The component, pexp is an Independent Exponential Resistive Source. For more information on this component refer to <u>The PORT Element</u>. This device is not supported within the altergroups.

Command-Line help

spectre -h port

CDF Parameter Label	CDF Parameter	spectr e	auCdl	auLvs	hspiceD	UltraSim
Noise file name	noisefile	X	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Resistance	r	X	-	-	-	-
Port number	num	X	-	-	-	-
DC voltage	vdc	X	-	-	-	-
Delay time	td	X	-	-	-	-
Delay time 1	td1	X	-	-	-	-
Damping factor 1	tau1	X	-	-	-	-
Delay time 2	td2	X	-	-	-	-
Damping factor 2	tau2	X	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperatur e coefficient 1	tc1	X	-	-	-	-
Temperatur e coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	X	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectr e	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	X	-	-	-	-
AC phase	acp	X	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	X	-	-	-	-
PAC phase	pacp	X	-	-	-	-
Source type	srcType	X	-	-	-	-

Syntax/Synopsis

Name (p n) port <parameter=value> ...

Examples

p20 (2 0) port num=2 r=50 type=pulse period=1e-9 rise=1e-10 fall=1e-10 val1=1 width=0.5n mag=1

port Symbol

Description

If Source type = prbs, and Trigger = External rising edge, External falling edge, or External both edges, two extra ports are added to the port symbol as shown below:

You can specify the wave shape for the port by selecting one of the following options from the Source type drop-down list box in the Edit Object Properties form:

- dc—Generates a dc level from the port. When the Source type is set to dc, the dc and temperature effect parameters are active. The dc setting sets the DC level for all analyses.
- sine—Generates sinusoidal waveforms.

Up to two sinusoids can be generated simultaneously. They are denoted as 1 and 2. You can set the amplitude, frequency, and phase for both individually. The amplitude can be set to either a voltage or a power level. When you set a power level, the assumption is

Sources - Independent Components in Analog Library

that the port is perfectly matched. The source that is internal to the port gets double the amplitude specified by the power in dBm. You can also specify sinusoidal AM or FM modulation of sinusoid 1. Sinusoid 2 cannot be modulated.

- *pulse*—Generates a step, a single pulse, or a periodic pulse waveform.
 - When you specify the voltage, you are specifying the voltage when the port is properly terminated, and not the voltage on the internal voltage source. Therefore, the voltage on the internal source is set to twice the value specified on the component.
- exp—Generates an exponential waveform. The exponential waveform can generate one exponential pulse, and cannot generate a periodic signal.
 - When you specify the voltage, you are specifying the voltage when the port is properly terminated, and not the voltage on the internal voltage source. Thus, the voltage on the internal source is set to twice the value specified on the port.
- pwl—Generates piecewise linear waveforms that allow an arbitrary input waveform to be generated.
 - The input can either be a file that contains time and voltage pairs, or you can enter the time-voltage pairs directly in the PWL source properties form. Remember that the voltages you enter in the piecewise linear file assumes that the port is properly terminated. The internal voltage source gets set to double the value specified in the piecewise linear voltage specifications.
- pwlz—Generates piecewise linear waveforms that allow an arbitrary input waveform to be generated. This source type resembles the pwl source type, except that some voltage values can be replaced by the high-impedance state. In addition to voltage-time pairs supported by pwl, pwlz also supports z-state in the waveform. When z-state is active, the voltage source is disconnected from the node and it is put in high-impedance state.
- bit—Generates bit sequence or string from the port. The bit source has four states: 1, 0, m, and z, which represent the high, low, middle voltage, and high impedance state respectively. It allows patterns defining a sequence of bits. When the m state is specified, the output voltage is set halfway between 0 state and 1 state voltages.
- prbs—PRBS is an acronym for Pseudo-Random Binary Sequence. This source has three modes. It can be used to generate a maximum-length pseudo-random sequence. You can specify the beginning state and tap gains for a Fibonacci PRBS generator. A third mode allows reading an ASCII file that describes the sequence of one and zero events to generate.

Sources - Independent Components in Analog Library

If you select the *Display noise parameters* check box in the Edit Object Properties form, the *Noise file as Design Var?* check box is displayed. You can select this check box to specify the noise file as a design variable in the *Noise file name* field.

Power of PWL waveform (pwldbm) is an alternative to Amplitude scale factor (scale). Use pwldbm to specify the rms power for the waveform and spectre automatically calculates the correct scale factor.

If pwldbm is specified, it overwrites the scale parameter.

For more information on the available source types, see the section *Source type* in the chapter <u>AnalogLib Components Used in RF Simulation</u>.

For more information on this component refer to <u>The Port Element.</u>

Command-Line Help

spectre -h port

Sources - Independent Components in Analog Library

CDE Devemente i chel	CDF		au Call	aul va	homicoD	Liltus Circ
CDF Parameter Label	Parameter	spectre	auCai	auLvs	nspiceD	UltraSim
Resistance	r	х	-	-	-	-
Reactance	х	х	-	-	-	-
Port number	num	х	-	-	-	-
DC voltage	vdc	х	-	-	-	-
Source type	srcType	х	-	-	-	-
Frequency name 1	fundname	х	-	-	-	-
Frequency 1	freq	х	-	-	-	-
Amplitude 1 (Vpk)	va	х	-	-	-	-
PAC Magnitude (Vpk)	pacm	х	-	-	Х	-
Amplitude 1 (dBm)	vaDBm	х	-	-	-	-
Phase for Sinusoid 1	sinephase	х	-	-	-	-
Sine DC level	sinedc	х	-	-	-	-
PJ(amplitude)	pjamp	х	-	-	-	-
PJ(frequency)	pjfreq	х	-	-	-	-
PJ(type)	pjtype	х	-	-	-	-
RJ(rms)	rjrms	х	-	-	-	-
RJ(seed)	rjseed	х	-	-	-	-
Number of PWL/Time pair	tvpairs	х	-	-	-	-
Time 1	t1 - t50	х	-	-	-	-
Voltage 1	v1 - v50	х	-	-	-	-
FM modulation index	fmmodindex	Х	-	-	-	-
FM modulation frequency	fmmodfreq	Х	-	-	-	-
AC Magnitude (Vpk)	acm	Х	-	-	-	-
AM modulation index	ammodindex	х	-	-	-	-
AM modulation frequency	ammodfreq	х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AM modulation phase	ammodphase	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Amplitude scale factor	scale	Х	-	-	-	-
Power of PWL waveform	pwldbm	Х	-	-	-	-
Display second sinusoid	numofsines	Х	-	-	-	-
Display modulation params	modulation	х	-	-	-	-
Display small signal params	smallSig	х	-	-	-	-
Display temperature params	tempParam	х	-	-	-	-
Display noise parameters	noiseParam	Х	-	-	-	-
Multiplier	m	х	-	-	-	-
Number of noise/freq pairs	FNpairs	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	х	-	-	-	-
Number of FM files	filenums	Х	-	-	-	-
Name of FM File1	fmmodfile1	Х	-	-	-	-
Name of FM File2	fmmodfile2	X	-	-	-	-
High-Z impedance	highz	X	-	-	-	-
Min high-Z trans. width	<pre>min_z_trans ition_width</pre>	X	-	-	-	-
PAM modulation	pam4_modula tion	х	-	-	-	-
PAM4 mapping	pam4_mappin	Х	-	-	-	-
Sinusoid Ampl 1 (Vpk) to Sinusoid Ampl 9 (Vpk)	vav1 - vav9	X	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
XF Magnitude (Vpk)	xfm	Х	-	-	-	-
Z state 1 to Z state 50	Z1 - Z50	Х	-	-	-	-

For more information on the jitter parameters: pjamp, pjfreq, pjtype, rjrms, and rjseed refer to Independent Current Source (isource) section in Spectre® Circuit Simulator Components and Device Models Reference

ppulse Symbol

Description

The component, ppulse is an independent resistive pulse source. For more information on this component refer to Appendix H of the <u>The PORT Element.</u>

Command-Line Help

spectre -h port

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency name for 1/period	fundname	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/ freq pairs	FNpairs	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	х	-	-	-	-
Delay Time	delay	х	-	-	-	-
Resistance	r	Х	-	-	-	-
Port number	num	Х	-	-	-	-
DC voltage	vdc	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Voltage 1	v1	Х	-	-	-	-
Voltage 2	v2	Х	-	-	-	-
Period	per	Х	-	-	-	-
Rise time	tr	Х	-	-	-	-
Fall time	tf	Х	-	-	-	-
Pulse width	pw	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	X	-	-	-	-
Nominal temperature	tnom	X	-	-	-	-
AC magnitude	acm	X	-	-	-	-
AC phase	acp	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	X	-	-	-	-

Sources - Independent Components in Analog Library

pprbs Symbol

Description

If Trigger = External rising edge, External falling edge, Or External both edges, two extra ports are added to the pprbs symbol as shown below:

The component pprbs is an Independent Resistive Pulse Source. For more information on this component refer to Appendix H of the Spectre Circuit Simulator and Accelerated Parallel Simulator RF Analysis User Guide.

Command-Line Help

spectre -h port

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsS pice	auC dl	auL vs	hspi ceS	hspi ceD	Ultra Sim
Bit string	data	Х	-	-	-	-	-	-	-
Final value for logical 1	val1	Х	-	-	-	-	-	-	-
Final value for logical 0	val0	Х	-	-	-	-	-	-	-
Delay time	delay	Х	-	-	-	-	-	-	-
Rise time	rise	Х	-	-	-	-	-	-	-
Fall time	fall	Х	-	-	-	-	-	-	-
Period of waveform	period	Х	-	-	-	-	-	-	-
Resistance	r	Х	-	-	-	-	-	-	-
Reference Value	ref	Х	-	-	-	-	-	-	-
Waveform Random Delay Time	jitter	Х	-	-	-	-	-	-	-
Generates Random Count	seed	Х	-	-	-	-	-	-	-
Bit	taps	Х	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	-
Port number	num	X	-	-	-	-	-	-	-

ppwl Symbol

Description

The component ppwl is an independent piece-wise linear resistive source. For more information on this component refer to Appendix H of the <u>PORT Element</u>

Command-Line Help

spectre -h port

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency name for 1/ period	fundname	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	X	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Number of pairs of points	tvpairs	Х	-	-	-	-
Time 1	t1 - t50	Х	-	-	-	-
Voltage 1	v1 - v50	Х	-	-	-	-
Resistance	r	Х	-	-	-	-
Port number	num	Х	-	-	-	-
DC voltage	vdc	Х	-	-	-	-
Delay time	td	х	-	-	-	-
Offset Voltage	VO	Х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
All are breakpoints	allbrkpts	X	-	-	-	-
Period of the PWL	pwlperiod	Х	-	-	-	-
Transition width	twidth	X	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperature coefficient 1	tc1	X	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Nominal temperature	tnom	Х	-	-	-	-
AC magnitude	acm	Х	-	-	-	-
AC phase	acp	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-

ppwlf Symbol

Description

The component ppwlf is a p-type source independent component which stands for Piece-Wise Linear Resistive source based on File.

For more information on this component refer to Appendix H of the The PORT Element.

Command-Line Help

spectre -h port

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency name for 1/ period	fundname	х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Resistance	r	Х	-	-	-	-
Port number	num	Х	-	-	-	-
DC voltage	vdc	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Offset voltage	VO	х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
All are breakpoints	allbrkpts	Х	-	-	-	-
Period of the PWL	pwlperiod	х	-	-	-	-
Transition width	twidth	х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperature coefficient 1	tc1	х	-	-	-	-
Temperature coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	X	-	-	-	-
·	·	· ·	·	· · · · · · · · · · · · · · · · · · ·	·	

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	X	-	-	-	-
AC phase	acp	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-

psin Symbol

Description

The Independent Sinusoidal Resistive Source (psin) is used in all RF circuits for SpectreRF and Spectre S-parameter simulations. When you netlist psin in the analog design environment using the Spectre simulator, you can see that psin is the port component in the Spectre simulation. A port is a resistive source that is tied between positive and negative terminals. It is equivalent to a voltage source in series with a resistor, and the reference resistance of the port is the value of the resistor.

For more information on this component refer to The PORT Element.

Command-Line help

spectre -h port

Sources - Independent Components in Analog Library

CDF	CDF					_
Parameter Label	Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency name	fundname	Х	-	-	-	-
Second frequency name	fundname2	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Number of FM files	filenums	Х	-	-	-	-
Name of FM File1	fmmodfile 1	X	-	-	-	-
Name of FM File2	fmmodfile 2	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Resistance	r	Х	-	-	-	-
Port number	num	Х	-	-	-	-
DC voltage	vdc	х	-	-	-	-
Source type	srcType	X	-	-	-	-
Delay time	td	х	-	-	-	-
Sine DC level	sinedc	х	-	-	-	-
<u>Amplitude</u>	va	X	-	-	-	-
Amplitude (dBm)	vaDBm	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Initial phase for Sinusoid	sinephase	х	-	-	-	-
Frequency	freq	Х	-	-	-	-
Amplitude 2 (Vpk)	va2	х	-	-	-	-
Amplitude 2 (dBm)	vaDBm2	Х	-	-	-	-
Initial phase for Sinusoid 2		Х	-	-	-	-
Frequency 2	freq2	Х	-	-	-	-
FM modulation index	fmmodinde x	Х	-	-	-	-
FM modulation frequency	fmmodfreq	Х	-	-	-	-
AM_ modulation index	ammodinde x	Х	-	-	-	-
AM modulation frequency	ammodfreq	Х	-	-	-	-
AM_ modulation phase	ammodphas e	Х	-	-	-	-
Damping factor	theta	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Nominal temperature	tnom	Х	-	-	-	-
Noise temperature	noisetemp	Х	-	-	-	-
AC magnitude	acm	Х	-	-	-	-
AC phase	acp	х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC magnitude (dBm)	pacmDBm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-

vdc Symbol

Description

The component Independent Voltage Source (vdc) is a constant vsource. This device is supported within the altergroups.

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	Х
DC voltage	vdc	х	-	-	Х	Х
Noise file name	noiseFile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	X	-	-	-	-
Noise 1 to Noise 50	N1 - N50	X	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	х	-	-	-	-
Temperatur e coefficient 1	tc1	х	-	-	-	-
Temperatur e coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
Source type	srcType	х	-	-	-	-
AC Phase	acPhase	Х	-	-	-	-

Sources - Independent Components in Analog Library

Syntax/Synopsis

Name (p n) vsource <parameter=value> ...

Examples

vpulse1 (1 0) vsource type=pulse val0=0 val1=5 period=100n rise=10n fall=10n width=40n $\,$

vpwl1 (1 0) vsource type=pwl wave=[1n 0 1.1n 2 1.5n 0.5 2n 3 5n 5] pwlperiod=5n

vexp Symbol

Description

The component, Independent Exponential Voltage Source (vexp) is an exponential vsource. This device is supported within the altergroups.

Command-Line help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	Х
DC voltage	vdc	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Voltage 1	v1	X	-	-	X	X
Voltage 2	v2	X	-	-	X	Х
Delay time 1	td1	Х	-	-	Х	Х
Damping factor 1	tau1	Х	-	-	Х	Х
Delay time 2	td2	Х	-	-	Х	Х
Damping factor 2	tau2	Х	-	-	Х	Х
Noise file name	noisefile	X	-	-	-	-
Number of noise/freq pairs	FNpairs	х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-
PAC magnitude	pacm	х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Temperatur e coefficient 1	tc1	х	-	-	-	-
Temperatur e coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
DC source	dc	-	-	-	Х	Х
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Delay Time	delay	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-

Syntax/Synopsis

Name (p n) vsource <parameter=value> ...

Examples

vpulse1 (1 0) vsource type=pulse val0=0 val1=5 period=100n rise=10n fall=10n width=40n $\,$

vpwl1 (1 0) vsource type=pwl wave=[1n 0 1.1n 2 1.5n 0.5 2n 3 5n 5] pwlperiod=5n

vpulse Symbol

Description

The component Independent Pulse Voltage Source (vpulse) is a square wave varying vsource. This device is supported within the altergroups.

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	Х
DC voltage	vdc	Х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Voltage 1	v1	х	-	-	Х	Х
Voltage 2	v2	х	-	-	Х	Х
Delay time	td	Х	-	-	Х	Х
Type of rising & falling edge		X	-	-	-	-
Rise time	tr	Х	-	-	Х	Х
Fall time	tf	Х	-	-	Х	Х
Pulse width	pw	Х	-	-	Х	Х
Period	per	Х	-	-	Х	Х
Frequency name for 1/ period	fundname	X	-	-	-	-
Noise file name	noisefile	X	-	-	-	-
Number of noise/freq pairs	FNpairs	X	-	-	-	-
Freq 1 to Freq 50	F1 - F50	X	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	X	-	-	-	-
PAC phase	pacp	х	-	-	-	-
Temperatur e coefficient 1	tc1	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperatur e coefficient 2		Х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
DC source	dc	-	-	-	Х	Х
Source type	srcType	Х	-	-	-	-
Delay Time	delay	Х	-	-	-	-

Syntax/Synopsis

Name (p n) vsource <parameter=value> ...

Examples

vpulse1 (1 0) vsource type=pulse val0=0 val1=5 period=100n rise=10n fall=10n width=40n $\,$

 $\label{local_vpwl1} \mbox{ (1 0) vsource type=pwl wave=[1n 0 1.1n 2 1.5n 0.5 2n 3 5n 5] pwlperiod=5n}$

vpwl Symbol

Description

The component Independent Piece-Wise Linear Voltage Source (vpwl) is a piece-wise linear vsource.

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Number of pairs of points	tvpairs	х	-	-	Х	Х
AC magnitude	acm	Х	-	-	Х	Х
AC phase	acp	х	-	-	Х	Х

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
DC voltage	vdc	X	-	-	-	-
Time 1	t1 - t50	Х	-	-	Х	Х
Voltage 1	v1 - v50	Х	-	-	Х	Х
Frequency name for 1/ period	fundname	Х	-	-	-	-
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Delay time	td	Х	-	-	Х	Х
Type of rising & falling edge	edgetype	Х	-	-	-	-
Offset voltage	VO	х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
Period of the PWL	pwlperiod	x	-	-	-	-
Transition width	twidth	Х	-	-	-	-
Temperature coefficient 1	tc1	х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
DC source	dc	-	-	-	Х	Х
Repeated function	rpt	-	-	-	Х	Х
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Delay Time	delay	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-
Abstime	abstime	Х	-	-	-	-

vpwlf Symbol

Description

The component (vpwlf) stands for Independent Piece-Wise Linear Voltage Source Based on File.

To select the PWL file:

- 1. Select analogLib from the *Library Name* field, vpwlf from the *Cell Name* field, and symbol from the *View Name* field in the Edit Object Properties form.
- 2. Click the *Browse PWL file* button to select the PWL file or specify the path to the PWL file in the *PWL file name* field.

Sources - Independent Components in Analog Library

3. [Optional] Select the PWL file as Design Var? check box to specify the name of the design variable in the PWL file name field.

Command-Line help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	Х	-	-	х	-
AC phase	acp	х	-	-	Х	-
DC voltage	vdc	Х	-	-	Х	-
PWL file name	fileName	Х	-	-	х	-
Frequency name for 1/period	fundname	Х	-	-	-	-
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
XF magnitude	xfm	Х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	х	-	-	-	-
Delay time	td	х	-	-	-	-
Type of rising & falling edge	edgetype	Х	-	-	-	-
Offset voltage	VO	X	-	-	-	-
Scale factor	scale	X	-	-	-	-
		· · · · · · · · · · · · · · · · · · ·				

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Time scale factor	stretch	х	-	-	-	-
Period of the PWL	pwlperiod	х	-	-	-	-
Transition width	twidth	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	х	-	-	-	-
Nominal temperature	tnom	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Delay Time	delay	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-
PWL File as Design Var?	<pre>pwl_file_ as_var</pre>	Х	-	-	-	-
Desired rms value	rmsValue	Х	-	-	-	-
Cosine Filter	cosineFil ter	Х	-	-	-	-
<u>Abstime</u>	abstime	Х	-	-	-	-
vcsv Signal Name	vcsv	Х	-	-	-	-

vpwlfm Symbol

Description

The component (vpwlfm) stands for Independent Piece-Wise Linear Voltage Source Based on File for multiple signals.

To load the signals:

- Select vpwlfm from the *Cell* field in the Add Instance form.
- Click Browse PWL file to select the PWL file or specify the path to the PWL file in the PWL file name field.
- Click Select Signals From PWL File to load the signals from the PWL file or specify the name of the signals in the Signal names field.

Sources - Independent Components in Analog Library

You can use semicolon (;) to specify multiple signals in the Signal names field. For example: signal1; signal2; signal3.

Note: The vpwlfm symbol supports only the VCSV file extension. The VCSV file contains multiple PWL signals and the numbers of pins are changed dynamically with respect to number of signals.

Sources - Independent Components in Analog Library

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency	freq	Х	-	-	-	-
PWL file name	fileName	Х	-	-	-	-
Signal names	signalNames	Х	-	-	-	-
Noise file name	noisefile	X	-	-	-	-
Number of noise/freq pairs	FNpairs	X	-	-	-	-
DC voltage	vdc	Х	-	-	-	-
AC magnitude	acm	Х	-	-	-	-
AC phase	acp	Х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Delay time	td	х	-	-	-	-
Offset voltage	vo	Х	-	-	-	-
Scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	Х	-	-	-	-
Period of the PWL	pwlperiod	х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Transition width	twidth	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	Х	-	-	-	-
Type of rising & falling edge	edgetype	Х	-	-	-	-
Desired rms value	rmsValue	X	-	-	-	-
Cosine Filter	cosineFilter	Х	-	-	-	-
Abstime	abstime	Х	-	-	-	-
·						

vsin Symbol

Description

The component Independent Sinusoidal Voltage Source (vsin) is a sin wave vsource. This device is supported within the altergroups.

Command-Line Help

spectre -h vsource

Sources - Independent Components in Analog Library

CDF Parameter	CDF	spectre	auCdl	auLvs	hspiceD	UltraSim
Label	Parameter	•		_	•	-
AC magnitude	acm	Х	-	-	Х	Х
AC phase	acp	Х	-	-	Х	Х
DC voltage	vdc	Х	-	-	-	-
Offset voltage	VO	Х	-	-	Х	Х
<u>Amplitude</u>	va	х	-	-	Х	Х
Frequency	freq	х	-	-	Х	Х
Delay time	td	х	-	-	Х	Х
Damping factor	theta	Х	-	-	Х	Х
First frequency name	fundname	Х	-	-	-	-
Second frequency name	fundname2	Х	-	-	-	-
Noise file name	noisefile	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Number of FM files	filenums	Х	-	-	-	-
Name of FM File1	fmmodfile 1	Х	-	-	-	-
Name of FM File2	fmmodfile 2	Х	-	-	-	-
XF magnitude	xfm	х	-	-	-	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
PAC magnitude	pacm	Х	-	-	-	-
PAC phase	pacp	Х	-	-	-	-
Initial phase for Sinusoid	sinephase	Х	-	-	-	-
Amplitude 2 (Vpk)	va2	Х	-	-	-	-
Initial phase for Sinusoid 2	_	Х	-	-	-	-
Frequency 2	freq2	Х	-	-	-	-
FM_ modulation index	fmmodinde x	Х	-	-	-	-
FM modulation frequency	fmmodfreq	Х	-	-	-	-
AM_ modulation index	ammodinde x	Х	-	-	-	-
AM modulation frequency	ammodfreq	Х	-	-	-	-
AM modulation phase	ammodphas e	Х	-	-	-	-
Temperature coefficient 1	tc1	Х	-	-	-	-
Temperature coefficient 2	tc2	Х	-	-	-	-
Nominal temperature	tnom	X	-	-	-	-
DC source	dc	-	-	-	Х	Х

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Phase delay	phi	-	-	-	Х	Х
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Delay Time	delay	Х	-	-	-	-
Source type	srcType	х	-	-	-	-
Sine DC level	sinedc	Х	-	-	-	-

Syntax/Synopsis

Name (p n) vsource <parameter=value> ...

Examples

vpulse1 (1 0) vsource type=pulse val0=0 val1=5 period=100n rise=10n fall=10n width=40n $\,$

vpwl1 (1 0) vsource type=pwl wave=[1n 0 1.1n 2 1.5n 0.5 2n 3 5n 5] pwlperiod=5n

vsource Symbol

Description

If Source type = prbs, and Trigger = External rising edge, External falling edge, or External both edges, two extra ports are added to the vsource symbol as shown below:

You can specify the wave shape for vsource by selecting one of the following options from the *Source type* drop-down list box in the Edit Object Properties form:

- dc—Generates a dc level from vsource. When the Source type is set to dc, the dc and temperature effect parameters are active. The dc setting sets the DC level for all analyses.
- sine—Generates sinusoidal waveforms.

Up to two sinusoids can be generated simultaneously. They are denoted as 1 and 2. You can set the amplitude, frequency, and phase for both individually. The amplitude can be set to either a voltage or a power level. When you set a power level, the assumption is that the vsource is perfectly matched. The source that is internal to vsource gets double the amplitude specified by the power in dBm. You can also specify sinusoidal AM or FM modulation of sinusoid 1. Sinusoid 2 cannot be modulated.

■ *pulse*—Generates a step, a single pulse, or a periodic pulse waveform.

Sources - Independent Components in Analog Library

When you specify the voltage, you are specifying the voltage when vsource is properly terminated, and not the voltage on the internal voltage source. Therefore, the voltage on the internal source is set to twice the value specified on the component.

- exp—Generates an exponential waveform. The exponential waveform can generate one exponential pulse, and cannot generate a periodic signal.
 - When you specify the voltage, you are specifying the voltage when vsource is properly terminated, and not the voltage on the internal voltage source. Thus, the voltage on the internal source is set to twice the value specified on vsource.
- pwl—Generates piecewise linear waveforms that allow an arbitrary input waveform to be generated.
 - The input can either be a file that contains time and voltage pairs, or you can enter the time-voltage pairs directly in the PWL source properties form. Remember that the voltages you enter in the piecewise linear file assumes that the vsource is properly terminated. The internal voltage source gets set to double the value specified in the piecewise linear voltage specifications.
- pwlz—Generates piecewise linear waveforms that allow an arbitrary input waveform to be generated. This source type resembles the pwl source type, except that some voltage values can be replaced by the high-impedance state. In addition to voltage-time pairs supported by pwl, pwlz also supports z-state in the waveform. When z-state is active, the voltage source is disconnected from the node and it is put in high-impedance state.
- bit—Generates bit sequence or string from vsource. The bit source has four states: 1, 0, m, and z, which represent the high, low, middle voltage, and high impedance state respectively. When the m state is specified, the output voltage is set halfway between 0 state and 1 state voltages. This source type lets you create simple or nested patterns defining a sequence of bits.

Note: Nested patterns are supported only for Spectre.

prbs—PRBS is an acronym for Pseudo-Random Binary Sequence. This source has three modes. It can be used to generate a maximum-length pseudo-random sequence. You can specify the beginning state and tap gains for a Fibonacci PRBS generator. A third mode allows reading an ASCII file that describes the sequence of one and zero events to generate.

If you select the *Display noise parameters* check box in the Edit Object Properties form, the *Noise file as Design Var?* check box is displayed. You can select this check box to specify the noise file as a design variable in the *Noise file name* field.

For more information on the available source types, see the section *Source type* in the chapter AnalogLib Components Used in RF Simulation.

Independent Voltage Source

Current through the source is computed and is defined to be positive if it flows from the positive node, through the source, to the negative node.

The value of the DC voltage as a function of the temperature is given by:

$$V(T) = V(tnom) * [1 + tc1 * (T - tnom) + tc2 * (T - tnom)^2].$$

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
DC voltage	vdc	Х	-	-	х	-
Source type	srcType	Х	-	-	Х	-
Frequency name 1	fundname	Х	-	-	-	-
Frequency 1	freq	Х	-	-	Х	Х

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Amplitude 1 (Vpk)	va	х	-	-	х	Х
Phase for Sinusoid 1	sinephase	х	-	-	-	-
Sine DC level	sinedc	х	-	-	х	-
Browse and select file	selectFile	х	-	-	х	-
File name	fileName	х	-	-	х	-
Number of PWL/Time pair	tvpairs	х	-	-	х	-
Sinusoid Ampl 1 (Vpk) to Sinusoid Ampl 9 (Vpk)	vav1 - vav9	х	-	-	-	-
Time 1	t1 - t50	Х	-	-	Х	-
Voltage 1	v1 - v50	Х	-	-	Х	-
Delay time	td	Х	-	-	Х	Х
Type of rising & falling edge	edgetype	х	-	-	х	-
Pattern Parameter Data	data	х	-	-	х	-
Rise time start	td1	х	-	-	Х	-
Rise time constant	tau1	х	-	-	х	-
Fall time start	td2	х	-	-	х	-
Fall time constant	tau2	Х	-	-	Х	-
DC offset	offset	Х	-	-	-	-
Amplitude scale factor	scale	Х	-	-	-	-
Time scale factor	stretch	х	-	-	-	-
<u>Breakpoints</u>	allbrkpts	х	-	-	-	-
Period of waveform	per	х	-	-	х	-
FM modulation index 1	fmmodindex	X	-	-	Х	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
FM modulation frequency 1	fmmodfreq	х	-	-	Х	-
AM modulation index 1	ammodindex	X	-	-	Х	-
AM modulation frequency 1	ammodfreq	X	-	-	Х	-
AM modulation phase 1	ammodphase	X	-	-	-	-
Display second sinusoid	numofsines	X	-	-	-	-
Damping factor 1	theta	х	-	-	Х	-
Display small signal params	smallSig	Х	-	-	х	-
PAC Magnitude (Vpk)	pacm	Х	-	-	-	-
PAC phase	pacp	х	-	-	-	-
AC Magnitude (Vpk)	acm	х	-	-	X	-
AC phase	acp	x	-	-	х	-
XF Magnitude (Vpk)	xfm	х	-	-	-	-
Display noise parameters	noiseParam	Х	-	-	-	-
Noise file name	noisefile	х	-	-	-	-
Number of noise/freq pairs	FNpairs	Х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	Х	-	-	-	-
Noise 1 to Noise 50	N1 - N50	Х	-	-	-	-
Display modulation params	modulation	X	-	-	x	-
Display temperature params	tempParam	Х	-	-	-	-

Sources - Independent Components in Analog Library

CDF Parameter						
Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Linear temp.	tc1	х	-	-	-	-
coefficient						
Quadratic temp. coeff.	tc2	X	-	-	-	-
Nominal temperature	tnom	X	-	-	-	-
DC source	dc	-	-	-	Х	Х
Offset voltage	VO	-	-	-	Х	Х
Phase delay	phi	-	-	-	Х	Х
Repeated function	rpt	-	-	-	-	х
Period	pwlperiod	х	-	-	х	-
PAM modulation	pam4_modulation	х	-	-	-	-
PAM4 mapping	pam4_mapping	х	-	-	-	-
Period start time	pwlperiodstart	х	-	-	x	-
Transition width	twidth	х	-	-	-	-
Multiplier	m	х	-	-	-	-
Delay Time	delay	х	-	-	-	-
Number of FM files	filenums	х	-	-	-	-
Name of FM File1	fmmodfile1	х	-	-	-	-
Name of FM File2	fmmodfile2	Х	-	-	-	-
Reference Value	ref	х	-	-	-	-
Remove Device	lxRemoveDevice	-	Х	-	-	-
RJ(seed)	rjseed	Х	-	-	-	-
RJ(rms)	rjrms	х	-	-	-	-
PJ(amplitude)	pjamp	х	-	-	-	-
PJ(frequency)	pjfreq	x	-	-	-	-
PJ(type)	pjtype	х	-	-	-	-
<u>Taps</u>	lfsrtaps	х	-	-	x	-
Seed	lfsrseed	х	-	-	Х	-

Sources - Independent Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Seed	seed	Х	-	-	х	-
Transition reference	transitionrefer ence	х	-	-	-	-
LFSR Mode	lfsrmode	Х	-	-	Х	-
Threshold	triggerthreshol d	х	-	-	-	-
Rise Delay	td01	Х	-	-	Х	-
Fall Delay	td10	Х	-	-	х	-
High-Z impedance	highz	Х	-	-	-	-
Min high-Z trans. width	min_z_transitio n_width	Х	-	-	-	-
Z state 1 to Z state 50	Z1 - Z50	х	-	-	-	-

For HspiceD, the parameter pwlperiod is supported under the following conditions:

- In case pwlperiod is specified and pwlperiodstart is not specified, then another voltage-time pair must be added, where time = pwlperiod and voltage is the same as the voltage in the last voltage-time pair.
- But, if the value specified for pwlperiod is the same as the time specified in the last voltage-time pair, then no additional voltage-time pair is required.
- In case both pwlperiod and pwlperiodstart are specified, then another voltagetime pair must be added, where time = (pwlperiod + pwlperiodstart) and voltage is the same as the voltage in the last voltage-time pair.

vbit Symbol

Description

The component vbit is an Independent Voltage Source.

Command-Line Help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsS pice	auC dl	auL vs	hspi ceS	hspi ceD	Ultra Sim
Bit string	data	Х	-	-	-	-	-	-	-
Starting bit when repeating	rptstart	Х	-	-	-	-	-	-	-
Repeat times	rpttimes	Х	-	-	-	-	-	-	-

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsS pice	auC dl	auL vs	hspi ceS	hspi ceD	Ultra Sim
Final value for logical 1	val1	Х	-	-	-	-	-	-	-
Final value for logical 0	val0	Х	-	-	-	-	-	-	-
Delay time	delay	X	-	-	-	-	-	-	Х
Rise time	rise	X	-	-	-	-	-	-	-
Fall time	fall	X	-	-	-	-	-	-	-
Period of waveform	period	Х	-	-	-	-	-	-	-
Source type	type	Х	-	-	-	-	-	-	-

vprbs Symbol

Description

The component, vprbs is an independent voltage source. If *Trigger* = External rising edge, External falling edge, or External both edges, two extra ports are added to the vprbs symbol as shown below:

To select the bit file:

- 1. Select analogLib from the *Library* field, vprbs from the *Cell* field, and symbol from the *View* field in the Add Instances form.
- 2. Select the Specify bit file option from the LFSR Mode list.

Sources - Independent Components in Analog Library

3. Click the Browse and specify bit file button to select the bit file or specify the path to the bit file in the Bit data file field.

4. [Optional] Select the prbsFile as Design var? check box to specify the name of the design variable in the Bit data file field.

Sources - Independent Components in Analog Library

Command-Line help

spectre -h vsource

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsS pice	auC dl	auL vs	hspi ceS	hspi ceD	Ultra Sim
Delay time	tdPrbs	Х	-	-	-	-	-	-	-
Final value for logical 0	val0	Х	-	-	-	-	-	-	-
Final value for logical 1	val1	Х	-	-	-	-	-	-	-
Bit Period	perPrbs								
Rise time	rise	Х	-	-	-	-	-	-	-
Fall time	fall	Х	-	-	-	-	-	-	-
Transition reference	transiti onrefere nce	Х	-	-	-	-	-	-	-
Edge Type	edgetype								
Trigger	trigger								
LFSR Mode	lfsrmode	Х	-	-	Х				
RJ(rms)	rjrms	Х	-	-	-	-	-	-	
RJ(seed)	rjseed	Х	-	-	-	-	-	-	Х
Period of waveform	period	Х	-	-	-	-	-	-	-
Threshold	triggert hreshold	Х	-	-	-	-	-	-	-
prbsFile as Design Var?	prbsFile _as_var	Х	-	-	-	-	-	-	-
Bit data file	prbsFile	Х	-	-	-	-	-	-	-
<u>Taps</u>	lfsrtaps	Х	-	-	-	-	-	-	-

Sources - Independent Components in Analog Library

Related Topics

CDF Parameters Supported by Analog Library Components

Ports in Analog Library

Sources - Independent Components

Analog Library Reference Sources - Independent Components in Analog Library

Ports in Analog Library

The components in the Ports category are as follows:

- pdc Symbol
- pexp Symbol
- port Symbol
- port3t Symbol
- ppulse Symbol
- ppwl Symbol
- ppwlf Symbol
- psin Symbol

pdc Symbol

Description

The component pdc is and Independent DC Resistive Source and the same as pdc described in the pdc Symbol.

For more information on ports refer to <a>The PORT Element.

pexp Symbol

Description

The component pexp is an Independent Exponential Resistive Source and the same as pexp described in the pexp Symbol.

For more information on ports refer to **The PORT Element**.

port Symbol

Description

The component port is and Independent Resistive Source and the same as port described in the <u>port Symbol</u>.

For more information on ports refer to **The PORT Element**.

port3t Symbol

Description

The component port3t is an independent resistive source. You can define a three-terminal independent resistive source with an ideal choke inductor and an ideal blocking capacitor. They work like switches to terminate or connect appropriate branch depending on the type of analysis. This device is not supported within altergroup.

For more information on ports refer to <u>The PORT Element</u>.

Command-Line Help

spectre -h port

Analog Library Reference Ports in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Frequency name 1	fundname	х	-	-	-	-
Frequency name 2	fundname 2	х	-	-	-	-
Noise file name	noisefil e	х	-	-	-	-
File name	fileName	Х	-	-	-	-
Display second sinusoid	numofsin es	Х	-	-	-	-
Display modulation params	modulati on	х	-	-	-	-
<u>Display</u> small signal params	smallSig	х	-	-	-	-
Display temperature params	tempPara m	Х	-	-	-	-
Display noise parameters	noisePar am	Х	-	-	-	-
Number of noise/freq pairs	FNpairs	х	-	-	-	-
Freq 1 to Freq 50	F1 - F50	х	-	-	-	-
Number of PWL/Time pair	tvpairs	Х	-	-	-	-
Time 1	t1 - t50	x	-	-	-	-
-						

Analog Library Reference Ports in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Voltage 1	v1 - v50	Х	-	-	-	-
Number of FM files	filenums	Х	-	-	-	-
Name of FM File1	fmmodfil e1	Х	-	-	-	-
Name of FM File2	fmmodfil e2	Х	-	-	-	-
Resistance	r	Х	-	-	-	-
Reactance	х	Х	-	-	-	-
Choke ind for net analyser	lchock	Х	-	-	-	-
Blocking cap for net analyser	cblock	X	-	-	-	-
Port number	num	Х	-	-	-	-
DC voltage	vdc	Х	-	-	-	-
Source type	srcType	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Frequency 1	freq	Х	-	-	-	-
Amplitude 1 (Vpk)	va	Х	-	-	-	-
Amplitude 1 (dBm)	vaDBm	х	-	-	-	-
Phase for Sinusoid 1	sinephas e	х	-	-	-	-
Sine DC level	sinedc	х	-	-	-	-
<u>Multiplier</u>	m	х	-	-	-	-
-						

Ports in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
FM_ modulation index	fmmodind ex	х	-	-	-	-
FM_ modulation frequency	fmmodfre q	Х	-	-	-	-
AM modulation index	ammodind ex	Х	-	-	-	-
AM_ modulation frequency	ammodfre q	X	-	-	-	-
AM modulation phase	ammodpha se	х	-	-	-	-
PAC magnitude	pacm	х	-	-	-	-
PAC phase	pacp	X	-	-	-	-
Power of PWL waveform	pwldbm	х	-	-	-	-

Syntax/Synopsis

Name (p n [choke]...) port <parameter=value> ...

Examples

Following is a Sample Instance Statement:

p20 (2 0) port num=2 r=50 type=pulse period=1e-9 rise=1e-10 fall=1e-10 val1=1 width=0.5n mag=1

p30 (2 0 choke) port num=1 r=50 lchoke=0.1 cblock=0.00001 type=pulse period=1e-8 rise=1e-8 fall=1e-10

ppulse Symbol

Description

The component ppulse is an independent resistive pulse source. This component is the same as ppulse described in the <u>ppulse Symbol</u>.

ppwl Symbol

Description

The component ppulse is an independent piece-wise linear resistive source. This component is the same as ppulse described in the <u>ppwl Symbol</u>.

ppwlf Symbol

Description

The component ppwlf is an independent piece-wise linear resistive source based on file. This component is the same as ppwlf described in the <u>ppwlf Symbol</u>.

psin Symbol

Description

The component psin is an independent sinusoidal resistive source. This component is the same as ppwlf described in the psin Symbol.

Related Topics

CDF Parameters Supported by Analog Library Components

Sources - Independent Components in Analog Library

The components in the Z_S Domain category are as follows:

- scccs Symbol
- sccvs Symbol
- svccs Symbol
- svcvs Symbol
- zcccs Symbol
- zccvs Symbol
- zvccs Symbol
- zvcvs Symbol

scccs Symbol

Description

The output of S-Domain Linear Current Controlled Current Source is defined through a transfer function given as a ratio of two polynomials in the complex variable s. Polynomials can be specified in terms of either coefficients or roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h scccs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specificatio n type	spec	Х	-	-	-	-
Order of transfer function	order	х	-	-	-	-
Probe Device Name	probe	Х	-	-	-	-
Coef. of num. const. term	a0	х	-	-	-	-
Coef. of num. 1st term	a1	х	-	-	-	-
Coef. of den. const. term	b0	х	-	-	-	-
Coef. of den. 1st term	b1	х	-	-	-	-
Port	port	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Syntax/Synopsis

Name (sink src) $scccs < parameter = value > \dots$

Examples

11 (2 1) inductor l=15

sc1 (1 0) scccs probe=l1 zeros=[0 6 0 -6 2 -8 2 8] poles=[-1 0 0 64 0 -64 -2 8 -2 -8]

sccvs Symbol

Description

The output of S-Domain Linear Current Controlled Voltage Source is defined through a transfer function given as a ratio of two polynomials in the complex variable s. Polynomials can be specified in terms of either coefficients or roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h sccvs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specificati on type	spec	Х	-	-	-	-
Order of transfer function	order	Х	-	-	-	-
Probe Device Name	probe	Х	-	-	-	-
Coef. of num. const. term	a0	Х	-	-	-	-
Coef. of num. 1st term	a1	Х	-	-	-	-
Coef. of den. const. term	b0	Х	-	-	-	-
Coef. of den. 1st term	b1	Х	-	-	-	-
Port	port	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	х	-	-	-	-

Syntax/Synopsis

Name (p n) sccvs <parameter=value> ...

Examples

myv (1 0) vsource type=sine freq=10K scc1 (2 0) sccvs probe=myv gain=0.5 numer=[2] denom=[5]

svccs Symbol

Description

The output of S-Domain Linear Voltage Controlled Current Source is defined through a transfer function given as a ratio of two polynomials in the complex variable s. Polynomials can be specified in terms of either coefficients or roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h svccs

Sources - Z_S_Domain Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specificati on type	spec	Х	-	-	-	-
Order of transfer function	order	X	-	-	-	-
Coef. of num. const. term	a0	X	-	-	-	-
Coef. of num. 1st term	a1	X	-	-	-	-
Coef. of den. const. term	b0	Х	-	-	-	-
Coef. of den. 1st term	b1	X	-	-	-	-
Gain	gain	Х	-	-	-	-
<u>Multiplier</u>	m	-	-	-	-	-

Syntax/Synopsis

Name (sink src ps ns) svccs <parameter=value> ...

Examples

s2 (1 0 control 0) svccs gain=0.4 numer=[2 3] denom=[4 5 1]

svcvs Symbol

Description

The output of S-Domain Linear Voltage Controlled Volatge Source is defined through a transfer function given as a ratio of two polynomials in the complex variable s. Polynomials can be specified in terms of either coefficients or roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h svcvs

Sources - Z_S_Domain Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specificati on type	spec	Х	-	-	-	-
Order of transfer function	order	Х	-	-	-	-
Coef. of num. const. term	a0	Х	-	-	-	-
Coef. of num. 1st term	a1	Х	-	-	-	-
Coef. of den. const. term	b0	Х	-	-	-	-
Coef. of den. 1st term	b1	X	-	-	-	-
Gain	gain	Х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Syntax/Synopsis

Name (p n ps ns) svcvs <parameter=value> ...

Examples

e1 (1 0 control 0) svccs gain=5 poles=[-1 0 1 0] zero=[0 0 1 0]

zcccs Symbol

Description

The output of Z-Domain Linear Current Controlled Current Source is defined with a transfer function given as the ratio of two polynomials in the complex variable z. Each polynomial can be specified using either its coefficients or its roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h zcccs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specification n type	spec	Х	-	-	-	-
Order of transfer function	order	x	-	-	-	-
Probe Device Name	probe	Х	-	-	-	-
Coef. of num. const. term	a0	X	-	-	-	-
Coef. of num. 1st term	a1	X	-	-	-	-
Coef. of den. const. term	b0	х	-	-	-	-
Coef. of den. 1st term	b1	X	-	-	-	-
Port	port	Х	-	-	-	-
Sampling period	tsamp	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Transaction time	tt	х	-	-	-	-
Gain	gain	Х	-	-	-	-
Polynomial argument	polyarg	X	-	-	-	-

Sources - Z_S_Domain Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
S to Z Transformat ion	SXZ	х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Syntax/Synopsis

Name (sink src) zcccs <parameter=value> ...

Examples

```
va (1 0) vsource type=sine freq=10K z2 (2 0) zcccs probe=va gain=1 ts=4.9e-5 tt=1e-5 polyarg=inservez numer=[1 -1] denom=[1 0]
```

Analog Library Reference Sources - Z_S_Domain Components in Analog Library

zccvs Symbol

Description

The output of Z-Domain Linear Current Controlled Voltage Source is defined with a transfer function given as the ratio of two polynomials in the complex variable z. Each polynomial can be specified using either its coefficients or its roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h zccvs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Specificati on type	spec	х	-	-	-	-
Order of transfer function	order	х	-	-	-	-
Probe Device Name	probe	X	-	-	-	-
Coef. of num. const. term	a0	х	-	-	-	-
Coef. of num. 1st term	a1	х	-	-	-	-
Coef. of den. const. term	b0	х	-	-	-	-
Coef. of den. 1st term	b1	х	-	-	-	-
Port	port	Х	-	-	-	-
Sampling period	tsamp	Х	-	-	-	-
Delay time	td	Х	-	-	-	-
Transaction time	tt	Х	-	-	-	-
Gain	gain	Х	-	-	-	-
Polynomial argument	polyarg	X	-	-	-	-

Sources - Z_S_Domain Components in Analog Library

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
S to Z Transform ation	SXZ	х	-	-	-	-
Multiplier	m	Х	-	-	-	-

Syntax/Synopsis

Name (p n) zccvs <parameter=value> ...

Examples

```
va (1 0) vsource type=sine freq=10K
z2 2 0 zccvs probe=va gain=-2 ts=5e-5 tt=1.1e-5 numer=[1 -1]
```

zvccs Symbol

Description

The output of Z-Domain Linear Voltage Controlled Current Source is defined with a transfer function given as the ratio of two polynomials in the complex variable z. Each polynomial can be specified using either its coefficients or its roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles. This device is not supported within the altergroups.

Command-Line Help

spectre -h zvccs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Polynomial argument	polyarg	X	-	-	-	-
S to Z Transforma tion	SXZ	Х	-	-	-	-
Specificati on type	spec	X	-	-	-	-
Order of transfer function	order	Х	-	-	-	-
Coef. of num. const. term	a0	X	-	-	-	-
Coef. of num. 1st term	a1	Х	-	-	-	-
Coef. of den. const. term	b0	X	-	-	-	-
Coef. of den. 1st term	b1	X	-	-	-	-
Sampling period	tsamp	X	-	-	-	-
Delay time	td	Х	-	-	-	-
Transactio n time	tt	X	-	-	-	-
Gain	gain	X	-	-	_	-
Multiplier	m	X	-	-	-	-

Sources - Z_S_Domain Components in Analog Library

Syntax/Synopsis

```
Name ( sink src ps ns ) zvccs <parameter=value> ...
```

Examples

```
va (1 0) vsource type=sine freq=10K
z1 (2 0 1 0) zvccs gain=2 ts=4.5e-5 tt=1e-5 zeros=[-1 0] poles=[0 0]
```

zvcvs Symbol

Description

The output of Z-Domain Voltage Controlled Voltage Source is defined with a transfer function given as the ratio of two polynomials in the complex variable z. Each polynomial can be specified using either its coefficients or its roots. The roots of the numerator are the zeros of the transfer function and the roots of the denominator are the poles.

To use the 's' to 'z' transformation, set the optional 'sxz' parameter to one of the transformation methods - forward differences, backward differences, or bilinear. When the 'sxz' parameter is specified, the transfer function specification is assumed to be given in the complex variable s and it will be transformed to the complex variable z using the indicated method. This device is not supported within the altergroups.

Command-Line Help

spectre -h zvcvs

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Polynomial argument	polyarg	X	-	-	-	-
S to Z Transform ation	SXZ	X	-	-	-	-
Specificati on type	spec	Х	-	-	-	-
Order of transfer function	order	X	-	-	-	-
Coef. of num. const. term	a0	X	-	-	-	-
Coef. of num. 1st term	a1	х	-	-	-	-
Coef. of den. const. term	b0	Х	-	-	-	-
Coef. of den. 1st term	b1	X	-	-	-	-
Sampling period	tsamp	X	-	-	-	-
Delay time	td	X	-	-	-	-
Transactio n time	tt	х	-	-	-	-
<u>Gain</u>	gain	Х	-	-	-	-
Multiplier	m	X	-	-	-	-

Sources - Z_S_Domain Components in Analog Library

Syntax/Synopsis

```
Name (p n ps ns ) zvcvs <parameter=value> ...
```

Examples

```
va (1 0) vsource type=sine freq=10K
z3 (3 0 1 0) zvcvs gain=-1 ts=4e-5 tt=1e-5 numer=[-1 -1]
```

Related Topics

CDF Parameters Supported by Analog Library Components

Analog Library Reference
Sources - Z_S_Domain Components in Analog Library

11

Interface Elements in Analog Library

The components in the Interface elements category are as follows:

- MOS_a2d Symbol
- MOS_d2a Symbol
- TTL a2d Symbol
- TTL_d2a Symbol

Interface Elements in Analog Library

MOS_a2d Symbol

Description

Interface Element for MOS - Metal Oxide Semiconductor Analog to Digital Convertor is a general Interface Element (IE) for mixed signal. To match your design, you need to change the Base CDF. The default is for 5V logic. Do not manually place this component in your schematic as the IE placement is done automatically by the mixed signal netlister. This device is not supported within the altergroups.

Node	Name
Input	A
Output	D

Command-Line Help

spectre -h a2d

Interface Elements in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Macro Name	macro	-	-	-	-	-
Level 0 threshold	a2d_v0	Х	-	-	-	-
Level 1 threshold	a2d_v1	Х	-	-	-	-
Time to x state	a2d_tx	Х	-	-	-	-

Syntax/Synopsis

Name (p n) a2d <parameter=value>

Examples

I0 a2d timex=1m v1=1.5 vh=3.5

Interface Elements in Analog Library

MOS_d2a Symbol

Description

Interface Element for MOS - Metal Oxide Semiconductor Digital to Analog Convertor is a general Interface Element (IE) for mixed signal. To match your design, you need to change the Base CDF. The default is for 5V logic. Do not manually place this component in your schematic as the IE placement is done automatically by the mixed signal netlister. This device is not supported within the altergroups.

Node	Name
Input	D
Output	A

Command-Line Help

spectre -h d2a

Interface Elements in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Macro name	macro	-	-	-	-	-
<u>Level 0</u> voltage	d2a_v1	Х	-	-	-	-
<u>Level 1</u> <u>voltage</u>	d2a_vh	Х	-	-	-	-
Rise time	d2a_tr	Х	-	-	-	-
Fall time	d2a_tf	Х	-	-	-	-
<u>Level X</u> <u>voltage</u>	d2a_vx	Х	-	-	-	-
Level Z voltage	d2a_vz	Х	-	-	-	-

Syntax/Synopsis

Name (p n) d2a <parameter=value> ...

Examples

I1 d2a fall=2n rise=3n val1=5 val0=0 valx=1.25

Analog Library Reference Interface Elements in Analog Library

TTL_a2d Symbol

Description

Interface Element for TTL - Transistor to Transistor Logic Analog to Digital Convertor is an Interface Element (IE) for TTL that is used as an analog-to-digital interface for mixed-signal simulations. The analog-to-logic converter transfers analog waveforms to a logic simulator.

Command-Line Help

spectre -h a2d

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Macro Name	macro	Х	-	-	-	-
Level 0 threshold	a2d_v0	Х	-	-	-	-
Level 1 threshold	a2d_v1	Х	-	-	-	-
Time to x state	a2d_tx	Х	-	-	-	-

Examples

I3 interfaceElement timex=1m v1=1.5 vh=3.5

Interface Elements in Analog Library

TTL_d2a Symbol

Description

Interface Element for TTL - Transistor to Transistor Digital to Logic Analog Convertor is an Interface Element (IE) for TTL that is used as a digital-to-analog interface for mixed-signal simulations.

Command-Line Help

spectre -h d2a

Interface Elements in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Macro Name	macro	Х	-	-	-	-
<u>Level 0</u> voltage	d2a_v1	Х	-	-	-	-
<u>Level 1</u> <u>voltage</u>	d2a_vh	Х	-	-	-	-
Rise time	d2a_tr	Х	-	-	-	-
Fall time	d2a_tf	Х	-	-	-	-
<u>Level X</u> <u>voltage</u>	d2a_vx	X	-	-	-	-
Level Z voltage	d2a_vz	Х	-	-	-	-

Examples

I3 interfaceElement fall=2n rise=3n val1=5 val0=0

Related Topics

CDF Parameters Supported by Analog Library Components

12

Behavioral Model in Analog Library

Using bsource, you can express the value of a resistance, capacitance, voltage or current as a combination of node voltages, branch currents, time expression, and built-in expressions.

The component in the Behavioral Model category is bsource Symbol.

Behavioral Model in Analog Library

bsource Symbol

Description

Behavioral Source component can be used to model a resistor, inductor, capacitor, voltage or current source as a behavioral component.

Command-Line Help

spectre -h bsource

Analog Library Reference Behavioral Model in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectr e	spectr eS	cdsSpi ce	auC dl	auLv s	hspic eS	hspice D	UltraS im
Model type	behav_par am	Х	-	-	-	-	-	-	-
Expression	expr	X	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	-
Temp rise from ambient	trise	Х	-	-	-	-	-	-	-
Nominal temperatur	tnom	X	-	-	-	-	-	-	-
Temperatu re coefficient 1	tc1	Х	-	-	-	-	-	-	-
Temperatu re coefficient 2	tc2	Х	-	-	-	-	-	-	-
Max value of bsource expr	max_val	X	-	-	-	-	-	-	-
Min value of bsource expr	min_val	Х	-	-	-	-	-	-	-
Flicker noise coefficient	kf	Х	-	-	-	-	-	-	-
Flicker noise exponent	af	Х	-	-	-	-	-	-	-
Generate noise?	isnoisy	X	-	-	-	-	-	-	-

Behavioral Model in Analog Library

ODE									
CDF Parameter Label	CDF Parameter	spectr e	spectr eS	cdsSpi ce	auC dl	auLv s	hspic eS	hspice D	UltraS im
Lin temp co of lin cap	tc1c	Х	-	-	-	-	-	-	-
Quad temp co of lin cap	tc2c	Х	-	-	-	-	-	-	-
DC- Mismatch parameter	mr	Х	-	-	-	-	-	-	-
Initial condition	ic	Х	-	-	-	-	-	-	-
Implementat ion Type	ctype	Х	-	-	-	-	-	-	-
White noise expression	white_noi se	Х	-	-	-	-	-	-	-
Flicker noise expression	flicker_n oise	X	-	-	-	-	-	-	-
Model name	model	X	-	-	-	-	-	-	-

Syntax/Synopsis

name (node1 node2) bsource behav_param param_list

Related Topics

CDF Parameters Supported by Analog Library Components

CDF Parameters Supported by Analog Library Components

The following table describes the CDF Parameters supported by Analog Library components

CDF Parameter Label	CDF Parameter	Description	Default
# of lumps in element	lumps		
Absolute Output Current	absol		0
Abstime	abstime	Specifies whether the time specified by the waveform or the PWL file is considered as an absolute value or a relative value.	
		Valid values are 0 and 1.	
		The default value is 1, which indicates that $t1$, $t2$, $t3$, are absolute values. The value 0 indicates that $t1$, $t2$, $t3$, are relative values. In case of relative values, the mapped absolute time is $t1$, $(t1+t2)$, $(t1+t2+t3)$	
Absolute Value	abs		
Absolute value	habs		
AC magnitude	acm	Specifies the amplitude of small-signal voltage for AC analysis in volt.	

CDF Parameters Supported by Analog Library Components

CDF Parameter Label	CDF Parameter	Description	Default
AC Model	acModel	Alters nport behavior in small signal analyses: sp, ac and xf. Possible values are freqdomain and timedomain.	freqdoma in
AC phase	acp	Specifies the phase of a small AC signal in degrees.	
		Typically, only one source in the circuit has AC magnitude set to a value other than zero, and many times it has an AC magnitude = 1 and AC phase = 0.	
		However, there are situations where more than one source has a non-zero AC magnitude.	
		For example, you can apply a differential small-signal input with two sources with the AC magnitudes set to 0.5 and the AC phases set to 0 and 180.	
AC Phase	acPhase		
AC position	acPosition	Position to which switch is set at the start of AC analysis.	-
AC resistance	ac		-
Active	active	Whether Fourier analysis should be performed or skipped. Possible values are no or yes.	-
Accuracy	accuracyMode	Whether accuracy should be default or conservative.	default
Additional drain resistance	rdc		-
Additional parameter list	additionalPara m		-

CDF Parameter Label	CDF Parameter	Description	Default
Additional source resistance	rsc		-
Advanced transient parameters	tranAdvanParaL abel		-
All are breakpoints	allbrkpts		-
Breakpoints			
Alias of mult	area		-
Alpha parameter	alph	Scaling factor for Q.	-
AM modulation frequency	ammodfreq		-
AM modulation index	ammodindex		-
AM modulation phase	ammodphase		-
Amplitude 1 (lpk)	ia		-
Amplitude 1 (dBm)	vaDBm		-
Amplitude 1 (Vpk)	va		-
Amplitude 2 (lpk)	ia2		-
Amplitude 2 (Vpk)	va2		-
Amplitude 2 (dBm)	vaDBm2		-
Anode gate voltage	Vag		-
Base area	areab		-
Base-emitter voltage	Vbe		-
Bit data file	prbsFile	Specifies the name or path to the bit data file.	
Bit 1 voltage level	vbit1	Specifies the voltage level at Bit 1.	1
Bit 0 voltage level	vbit0	Specifies the voltage level at Bit 0.	0
Bit Pattern(MSBLSB)	pattern	Specifies the pattern of the bit.	0000
Bit Period	perPrbs	Specifies the period of the waveform.	

CDF Parameters Supported by Analog Library Components

CDF Parameter Label	CDF Parameter	Description	Default
Browse and select file	selectFile	Can be used to open the file browser for selecting a waveform file. The path of the selected file is stored in the fileName parameter.	nil
Browse and select s- data file	nportFileB	Opens the file browser for selecting an s-data file. This check box is shown only when you do not select the S-parameter file as Design Var? check box.	nil
Browse MDIF file	browse_mdif	Lets you select the MDIF data file for the nport symbol.	
Blocking cap for net analyser	cblock	Blocking capacitance for network analyser.	0.0001 F
Body contact area	ab		-
Body diffusion resistor square	nrb		-
Body-source initial voltage	Vbys		-
Browse S-parameter file	nportFileB	Lets you browse to a location and specify the S-Parameter data file.	-
Bulk node connection	bn		-
Bulk source initial voltage	Vbs		-
Capacitance	С	Capacitance	1p F
Capacitor Area	area	Area of capacitor	1
Capacitor Perimeter	perim	Perimeter for capacitor	0
Capacitance connected	hrc		-
Carrier frequency	fc		-
Cathode gate voltage	Vcg		

CDF Parameters Supported by Analog Library Components

CDE Devembles Label	CDE Deve	Description	Deferrit
CDF Parameter Label	CDF Parameter	Description	Default
Causality Correction	causality	Possible values are fmax, auto, no, fmax_active.	fmax
Characteristic impedance	ZO	Characteristic impedance of lossless line.	50
checkFlag	checkFlag	Checks the state of the flag.	1
check box status	checkBoxValue	Checks the status of the check box.	1
Check Passivity	passivity	Check and enforce passivity of s parameters.	no
Chock ind for net analyser	lchock	Chock inductor for network analyser.	0.1 H
Close switch resistance	rc	Resistance of a fully closed relay.	-
Closed voltage	vt2	Relay resistance is 'rclosed' at this voltage.	-
CMDM	CMDM		1
Coef. of den. 1st term	b1		-
Coef. of den. const. term	b0		-
Coef. of num. 1st term	a1		-
Coef. of num. const. term	a0		-
Collector area	areac		-
Collector length	lc		-
Collector-emitter voltage	Vce		-
Common Reference	nmode	When selected, redraws the symbol with a single common reference pin at the bottom and eliminates the need to add reference connections to each port of the symbol	-

CDF Parameter Label	CDF Parameter	Description	Default
Conductor thickness	t		-
Contact configuration	order		-
Controlling Volt 1	x1		-
Controlling Volt 2	x2		-
Corresp Element 1	y1		-
Corresp Element 2	y2		-
Cosine Filter	cosineFilter	Specifies digital modulation for the PWL source. Valid values are none and nrc.	none
		nrc specifies a raised cosine filter that is to be used on the output waveform of the PWL source.	
		This can be used to decrease the numerical noise floor of the modulation specified in the I and Q modulating file. When nrc is selected, the PWL file must have evenly spaced points with timepoints at 1/(2*Bandwidth of the filter).	
Coupler domain	a_or_d	Specifies the domain to which the coupler belongs: analog or digital	analog
Coupling coefficient	k	Coupling coefficient	0
	i1 - i50		-
Current 1 - Current 50	11 150		
Current 1 - Current 50 Current 2	i2		-
			-

CDF Parameter Label	CDF Parameter	Description	Default
Current gain (Obsolete)	hfgain	Note: Parameter hfgain is obsolete. Parameter fgain is used for both Spectre and HspiceD instead.	-
Damping factor	theta		-
Damping factor 1	tau1	Rise time constant for	
Rise time constant		exponential wave.	
Damping factor 2	tau2	Fall time constant for	
Fall time constant		exponential wave.	
Data truncation threshold	datatrunc		
DC current	idc	Specifies the DC current.	
DC extrapolation	dcextrap	Long delay DC extrapolation method: constant or unwrap	constant
DC position	dcPosition	Position to which switch is set at the start of DC analysis.	0
DC source	dc		
DC voltage	vdc		
Decimal Value	dec	Value of Bit Pattern in Decimal.	0
Delay Schedule	ibisDelaySched ule		NO
Delay Time	delay		
Delay time	tdPrbs	Specifies the time delay from the beginning of the transient interval to the beginning of the first bit. It is mandatory to specify the <i>Bit period</i> parameter.	0
Delay Time	htd	Time delay	
Delay time 1	td1	Rise start time for exponential	
Rise time start		wave	

CDF Parameter Label	CDF Parameter	Description	Default
Delay time 2	td2	Fall start time for exponential	
Fall time start		wave.	
Delta	delta		
Desired rms value	rmsValue	Specifies the value of RMS voltage for the PWL waveform.	
Device area	area	Transistor area factor.	
Device initially off	off		
Dielectric loss cond matrix per unit length	gdloss	Dielectric loss conductance matrix per unit length.	
Dielectric loss cutoff frequency	fgdloss	Cutoff frequency for Dielectric loss.	
Dielectric loss onset frequency	fgdloss1	Onset frequency for Dielectric loss.	
Differential threshold	vdiff		
Display modulation params	modulation		
Display noise parameters	noiseParam		
Display second sinusoid	numofsines		
Display small signal params	smallSig		
Distance to a single well edge	SC		
Edit the Variable Values	edit_mdif	Lets you edit the values of the variables defined in the selected MDIF data file.	
shift in 0-bias threshold vth0	delvo		
File Type	fileType	Specifies the type of file for the nport symbol.	

CDF Parameter Label	CDF Parameter	Description	Default
Frequency for Q/ Frequency for L and Q	fq	Frequency at which quality factor and inductance are measured.	
Gate contact-channel edge	xgw		
Expand Bus	expand	Expand bus. Possible values are yes and no.	Yes
Input Mode	mode1	Input mode for Bit pattern. Possible values are binary, hexadecimal and octal.	Binary
MDIF data file	mdif_dataFile		
MDIF Variables	var_mdif	Displays the variables defined in the selected MDIF data file.	
MDIF Values	val_mdif	Displays the values of the variables defined in the selected MDIF data file.	
Number of Bits	numbits	Number of Bits.	4
Number of gate contacts	ngcon		
Number of input pins	n_inp	Number of input ports. Min:0 and Max:100	1
Number of output pins	n_outp	Number of output ports. Min:0 and Max:100	1
Mode	mode	Integer parameter that selects the frequency dependence.	
Rdc	rdc	DC resistance	0.0
Show advanced options	advUser	When selected, the parameters under it will be shown. By default the parameetrs are not shown	1

CDF Parameter Label	CDF Parameter	Description	Default
Initial coupler output voltage	init_val	Initial value of for interpolation. Sets the analog output value for simulation time to 0	0
Simulink(R) hostname	hostname	Hostname of the master simulator.	local host
Socket port	sockPort	TCP port number for socket connection. This parameter must be set to the same value for coupler of both simulators. It should be greater than 1024	5023
Sim response timeout	sockTimeout	Seconds to wait for an answer from the master simulator during simulation. Increase this value if the master simulator needs long calculation time per sample/frame. It should be greater than 30.	120
DC-Mismatch parameter	mr	DC-Mismatch parameter. Valid only for r.	-
Delay frequency	delayfreq		-
Display temperature params	tempParam		
Dist. betn & poly(one side)	sa		
Dist. betn OD & poly(otherside)	sb		
Dist. betn neighbour fingers	sd		
Drain diffusion area	ad		
Drain diffusion length	ld		
Drain diffusion periphery	pd		
Drain diffusion res squares	nrd		

CDF Parameter Label	CDF Parameter	Description	Default
Drain source initial voltage	Vds		
Dummy DC voltage	vdummy		0
Edge Type	edgetype	Specifies the type of rising and falling edges. Possible values are linear and halfsine.	Linear
Emitter length	le		
Emitter width	We		
Enable mixed mode	mixedmode		-
Enable noise passive checker	noipassivechk		-
Enable passive checker	passive		-
Enable rational function	rational_func	Enables the rational function when using hspiceD.	t
End Frequency	endFrequency	Specifes the end frequency point in bbsfreqband.	
Enter RLCG etc. matrices	entermatrices		
Estimated operating region	region	Estimated operating region. Possible values are off, on or breakdown.	-

CDF Parameters Supported by Analog Library Components

CDF Parameter Label	CDF Parameter	Description	Default
Expression	expr	Behavioral expression. Depending on the value of behave param, this can be either simple_expr or generic_expr.	0
		simple_expr - Spectre expression which contains the following:	
		Netlist parameters	
		■ Current simulation time, \$time	
		■ Current frequency, \$freq	
		Node voltage, v(a,b), where a and b are nodes in the Spectre netlist, or v(a), which is the voltage between node a and ground	
		■ Branch currents, i ("inst_id:index"), where inst_id is an instance name given in the netlist and index is the port index that starts from 1. Default value of index is 1.	
		■ Note: If the value of the port index is set to 0, simple_expr treats it as the default value 1.	
		<pre>generic_expr - simple_expr or ddt() of simple_expr or idt() of simple_expr.</pre>	

CDF Parameter Label	CDF Parameter	Description	Default
Extracts a system delay	delayhandle		-
Fall Delay	td10	Time delay for 1 to 0 transition.	-
Fall on delay	fall_on_dly		
Fall off delay	fall_off_dly		
Fall time	d2a_tf		2n s
Fall time	fall	Time for transition to fall from Level 1 voltage to Level 0 voltage.	
Fall time	tf	Specifies the time for transition to fall from Level 1 voltage to Level 0 voltage. If the fall time is not specified, the fall time is same as the rise time.	
		If rise time is also not specified, the fall time is $1/100$ of the period of waveform or simulation interval.	
		The simulation interval is the minimum value of width and stop-start-width.	
		If the type is prbs, the fall time is $1/10$ of the bit duration.	
Final Value for logical 0	val0	Specifies the value when voltage = $0 \ V$ in pulse and exponential waveforms.	
Final Value for logical 1	val1	Specifies the value when voltage = 1 V in pulse and exponential waveforms.	
First coupled inductor	ind1	Inductor to be coupled	
First harmonics computed	firstharm	First harmonic computed for the test (numerator) channel.	""

CDF Parameter Label	CDF Parameter	Description	Default
First of reference harmonics	reffirstharm	First harmonic computed for the reference (denominator) channel.	и и
Flag for matrix form input	matrixform	Flag for matrix form input. Possible values are no or yes.	
Flicker noise expression	flicker_noise	Generates pink noise with given power at 1 Hz that varies in proportion to 1/f^exp. Noise contributions with the same tag are combined for a module.	-
Flicker noise coefficient	kf	Flicker noise co-efficient. Valid for r and g elements.	0
Flicker noise exponent	af	Flicker noise exponent. Valid for r and g elements.	2
Flow	flow	Flow quantity	
FM modulation frequency	fmmodfreq		
FM modulation index	fmmodindex		
Freq 1 to Freq 50	F1-F50	Specifies the frequency in frequency/noise pair.	
Frequency	freq	Specifies the reference frequency used in conjunction to the normalized length to specify electrical length of line.	
Frequency 1	freq		
Frequency 2	freq2		
Frequency name 1	fundname		
Frequency name for 1/ period	fundname	Specifies the period of the periodic PWL waveform in frequency domain.	
Frequency sampling interval	fdelta		

CDF Parameter Label	CDF Parameter	Description	Default
Frequency scale factor	freqscale	Specifies the frequency scale factor for frequency-dependent RLGC data and S-Parameter data.	
Front gate-source voltage	Vgfs		
Fundamental frequency	fund		-
Gain	gain	Specifies the gain Parameter.	1.0
Gap length	gap	Specifies the gap length.	
Gate source initial voltage	Vgs		
Gate to bulk and src voltage	Vgbs		
Generate noise?	isnoisy	Specifies whether the resistor should generate noise. Possible values are no or yes.	-
Hierarchical Node	probeNode	Hierarchical net name in Spectre syntax. The net name should be as it appears in the netlist.	-
High Frequency Extrapolation	hfextrap	Long delay high-frequency extrapolation method. Possible values are constant and linear.	constant
High freq extrapolate method	highpass	Possible values are 0,1,2,3,4.	3
High freq. limit for approx.	f1	High frequency limit for the approximation.	f1=1.0e6 Hz
High-Z impedance	highz	Impedance of high z state.	-
Hot-electron degradation	degradation		
Hspice Interpolation method	interpolation	Possible values are: linear, spline, step, hybrid.	linear

CDF Parameter Label	CDF Parameter	Description	Default
Hspice S-parameter data format	datafmtHspice	Possible values are fqmodel, touchstne, citi, rfm, bnp.	touchston e
IBIS Entry Method	ibisEntryMetho d		
IBIS file name	ibisFile		
IBIS model name	ibisModelNameo		
IBIS corner	ibisCorner	Specify the corner of an IBIS buffer. Possible corner parameters are typical, maximal, minimal, fast, and slow.	typical
IC position	icPosition	Position to which switch is set at the start of IC analysis (precedes transient analysis).	0
Implementation Type	ctype	Different implementations of a capacitor.	0
		When the value is 1, bsource current is ddt(cap*V(node1, node2)), where cap is the bsource capacitor value with temp effect, mfactor effect, scale effect and so on. V(node1, node2) is the voltage between the bsource terminals.	
		When the value is 2, the current is ddt (cap).	
		When the value is 0 or any other value, the current value is cap*ddt (V(node1, node2)).	
Impulse response truncation	imptrunc		
Inductance	1		1n

CDF Parameter Label	CDF Parameter	Description	Default
Initial condition	ic	Initial condition	-
Initial condition	hic		
Initial diode voltage	Vd		-
Initial magnetization of core	mag		
Initial phase for Sinusoid	sinephase		
Initial phase for Sinusoid 2	sinephase2		
Inner diam of toroidal core	idiam	Inner diameter of toroidal core	
Integral-1st distribution func	sca		
Integral-2nd distribution func	scb		
Integral-3rd distribution func	SCC		
Internal junction voltage	Vbcc		
Interpolation Method	interp	Method to interpolate S- Parameter data. Possible values are default, spline, linear, bbspice, and auto_switch.	default
Invoke 'LMG' parameter extraction tool	firelmg		
Junction perimeter factor	perim		-
Length	1	Length of the resistor	-
Length of Emitter Window	le0		

CDF Parameter Label	CDF Parameter	Description	Default
Length of metal capacitor	lm	Length of metal capacitor	-
Length of polysilicon	lp	Length of polysilicon capacitor	-
Level 0 threshold	a2d_v0		1.5 V
Level 0 voltage	d2a_v1	Final value for logical 0.	0 V
Level 1 threshold	a2d_v1		3.5 V
Level 1 voltage	d2a_vh		5 V
Level X voltage	d2a_vx		
Level Z voltage	d2a_vz		
LFSR Mode	lfsrmode	Specifies the custom values of seeds and taps. Alternatively, you can specify a maximum length sequence by setting the length of LFSR.	PN32
Lin temp co of lin cap	tc1c	Linear temperature coefficient of capacitor.	
Linear interpolation data type	intdattyp	Data type of linear interpolation. Values: RI, DBSA, MA.	MA
LMG subcircuit file	subcktfile		
Location of collector contact	location		
Loss conductance per unit length	g	Dielectric (shunt) conductance per unit length	
Loss resistance per unit length	rs		
Low freq extrapolate method	lowpass	Values: 0,1,2,3,	1
Low freq. limit for approx.	fO	Low frequency limit for the approximation.	1.0 Hz

CDF Parameter Label	CDF Parameter	Description	Default
IxRemoveDevice.	lxRemoveDevice	Removes a device during netlisting.	(short(PL US MINUS))
Macro name	macro		
Matrix entry data file	matrixfile	Matrix entry data file name.	
Max	max		-
Max Coefficient Number	polyCoef		0
Max order impulse response	maxn		
Max signal frequency	fmax	Maximum signal frequency	
Maximum output current (Obsolete)	maxi		
Maximum output current	maxm	Sets the Voltage gain for both Spectre and HspiceD.	
Maximum output resistance	maxr		
Maximum output voltage (Obsolete)	maxv	Note: Parameter maxv is obsolete. Parameter maxm is used to set the Voltage gain for both Spectre and HspiceD instead.	
Max value of bsource expr	max_val	Maximum value of bsource expression. Valid for all behavioral elements, but used with i and v elements to clip the current or voltage between the specified values.	-
Method of smooth	smooth	Possible values are 0,1,2,3,4.	0
Min	min		-
Min high-Z trans. width	min_z_transiti on_width	Minimum width of transition from z-state to a non z-state. The width of transition is set as 1e-3*(z-state duration).	-

CDF Parameter Label	CDF Parameter	Description	Default
Minimum no. of time points	points		-
Minimum output current (Obsolete)	mini		
Minimum output current	minm		
Minimum output resistance	minr		
Minimum output voltage (Obsolete)	minv		
Min value of bsource expr	min_val	Minimum value of bsource expression. Valid for all behavioral elements, but used with i and v elements to clip the current or voltage between the specified values.	-
Model name	model	Specifies the name of the model to be associated with the component.	-
Model name	hmname	Specifies the name of the model to be associated with the component.	MDN

CDF Parameter Label	CDF Parameter	Description	Default
Model type	behav_param	Type of behavioral source. It can be one of the following:	V
		c=simple_expr - Capacitance between the nodes	
		g=simple_expr - Conductance between the nodes	
		i=generic_expr - Current through bsource	
		<pre>l=simple_expr - Inductance between the nodes</pre>	
		phi=simple_expr - Flux in the bsource device	
		q=simple_expr - Charge in bsource device	
		r=simple_expr-Resistance between the nodes	
		v=generic_expr - Voltage across the nodes	
Model type	modeltype	Model type. Possible values are lossless, narrowband, and wideband.	
Modulation frequency	fm		
Modulation index	mdi		
Multiplicity factor	mf	Multiplicity factor.	1
Multiplier (Obsolete)	hm	Note: Parameter hm is obsolete. Parameter m is used for both Spectre and HspiceD instead.	
Name of core	core	Name of core around which winding is wrapped.	-

CDF Parameter Label	CDF Parameter	Description	Default
Name of FM File1	fmmodfile1	Name of files that contain data	-
Name of FM File2	fmmodfile2	for Frequency Modulated waveform for a sinesoid source.	
Name of the model	modelName		
Name of voltage source	vref		
Name of winding 1	11		
No. of reference Harmonics	refharms	Number of harmonics for reference (denominator) channel, if an array is not given. The harmonics start from 'reffirstharm' and go up to 'reffirstharm' + 'harms' - 1.	-
No. of Harmonics for PSS	pssharms		
Noise correlation matrix	noisecorr	Type of noise correlation matrix: real or complex	
Noise 1 to Noise 50	N1 - N50	Specifies the noise in frequency/noise pair.	
Noise file name	noisefile	Specifies the name of file containing excess spot noise data in the form of frequencynoise pairs.	
Noise parameters	noiseParaLabel		
Noise temperature	noisetemp		
Nominal temperature	tnom	Specifies the value of the temperature used in nominal run.	
Normalized length	nl	Normalized electrical length in wavelengths at 'f' of a lossless line.	
Nomalizing harmonic	normharm	Normalizing harmonic for the test (numerator) channel.	и и

CDF Parameter Label	CDF Parameter	Description	Default
Nomalizing reference harmonic	refnormharm	Normalizing harmonic for the reference (denominator) channel.	шш
NQS flag	nqsmod		
Num of controlling voltage(s)	nc		
Num of lines (excluding ref.)	n	Number of lines.	1
Number of turns on secondary	n2	Number of turns on winding 2.	
Num of turns on winding	turn	Number of turns on winding.	-
Number of base contacts	nb		
Number of collector contacts	ncbjt		
Number of emitter contacts	ne		
Number of controlling pairs	xypairs		
Number of desired harmonics	harmsvec	Array of desired harmonics for test (numerator) channel.	0
Number of devices in parallel	mult		
Number of FM files	filenums	Number of files that contain data for Frequency Modulated waveform for a sinesoid source. You can specify a max of 2 files.	none
Number of harmonics	harms	Number of harmonics for test (numerator) channel, if an array is not given. The harmonics start from 'firstharm' and go up to 'firstharm' + 'harms' - 1.	-

CDF Parameter Label	CDF Parameter	Description	Default
Num of lumps in approx.	lumps	Number of lumps used in the approximation.	
Num of lumps/dec in approx.	dec	Number of lumps per decade used in the approximation.	1.0
Number of noise/freq pairs	FNpairs	Specifies the number of noise/ frequency pairs.	
Number of PWL/Time pairs	tvpairs		
Number of pairs of points	tvpairs		
Number of Polynomial Coeffs	polyCoef		0
Max Coefficient Number			
Number of ports	padNum		1
Number of Ports	р		1
Number of reference harmonics	refharmsvec	Array of desired harmonics for reference (denominator) channel.	0
Number of Probes	probeCnt		
Num of segments	nseg		
Number of structures in parallel	npas		
Number of turns on primary	n1	Number of turns on winding 1.	
Offset constant	oc		
Offset current	io	Specifies the offset current in series with common terminal.	
Offset voltage DC offset	offset	Specifies the offset voltage in series with common terminal.	-
Offset voltage	VO	Specifies the offset voltage in series with common terminal.	-

CDF Parameter Label	CDF Parameter	Description	Default
Open switch resistance	ro	Resistance of a fully open relay.	
Open voltage	vt1	Relay resistance is 'ropen' at this voltage	
Open/close voltage	VSW		
Optional Nodes	Opins		
Optional Node Configuration	soipOpNodes	The options PinP, pinP_pinB, and pinP_pinB_Tnode correspond to each pin in the component. To know about the pins that these options correspond to, type spectre -h.	
Optional Node Configuration	vbicOpNodes	Substrate Node and Substrate & Temp. Node configurations.	
Optional Bulk Node_B	pinB		
Optional Substrate Node_S	pinS		
Optional Thermal Node_T	pinT		
Optional Thermal Node_dT	pindT		
Order of interpolation	order	Order of interpolation	-
Outer diam of toroidal core	od	Outer diameter of toroidal core	
Causal s-param output file	outFile	File used for storing the equivalent S-Parameter data based on corresponding timedomain model. The file format is touchstone. The instance name is added as a suffix and the file extension is added automatically.	-
PAC magnitude	pacm	Specifies the magnitude of the periodic AC analysis.	
PAC magnitude (dBm)	pacmDBm		

CDF Parameter Label	CDF Parameter	Description	Default
PAC phase	pacp	Specifies the phase of the periodic AC analysis.	
PAM4 mapping	pam4_mapping	Specifies a mapping from a pair of bit to 4-level voltages.	0132
		Possible values are 0123, 0132, 0213, 0231, 0312, 0321, 1023, 1032, 1203, 1230, 1302, 1320, 2013, 2031, 2103, 2130, 2301, 2310, 3012, 3021, 3102, 3120, 3201, and 3210.	
		PAM-4 signals have four distinct levels represented by 00, 01, 11 and 10 respectively. The transition between these levels depends on the value specified for this parameter. For example, 1203 represents the transition as 01 10 00 11.	
		PAM4 mapping is only visible when you select bit Source type with pam4 modulation.	
PAM modulation	pam4_modulatio n	Specifies the type of amplitude modulation; effective for <i>bit</i> and <i>prbs</i> sources.	none
		Possible values are:	
		none- Default behavior of the source.	
		■ pam3 – Enables PAM3 modulation in the source.	
		■ pam4 – Enables PAM4 modulation in the source.	
param0	param0		

CDF Parameter Label	CDF Parameter	Description	Default
Parameter Type	paramTyp	Input type for other paramters. Possible values are cyclic and string.	cyclic
Passivity	passivity	Possible values are check, enforce, and no.	check
Passivity	passivity_bbsp ice	Possible values are fit_enforce and fit_weak_enforce.	check
Passivity Tolerance	pabstol	Absolute tolerance of passivity criteria.	1e-6

CDF Parameter Label	CDF Parameter	Description	Default
Pattern Parameter Data	data	Specifies the sequence in which the bits are to be arranged. It can be used to create both simple and nested bit patterns.	-
		Note: Nested patterns are supported only for Spectre.	
		In case of nested patterns, ensure that the specified value conforms to the following rules:	
		An opening bracket for a pattern to be multiplied is preceded only by a pattern multiplier.	
		 A pattern multiplier is preceded only by a space character or an opening bracket. 	
		 Every opening/closing bracket has a corresponding closing/ opening bracket. 	
		A closing bracket for a pattern to be multiplied is followed only by a space character or a closing bracket.	
		For example, if data = 4 (01) 2 (11001) 10, then the final bit sequence is: 01 01 01 01 11001 11001 10.	
Period	per	Specifies the bit duration.	
Period of waveform			

CDF Parameter Label	CDF Parameter	Description	Default
Period of the PWL	pwlperiod	Specifies the period of the	
Period		periodic PWL waveform in time domain.	
Period start time	pwlperiodstart	Period start time of the periodic PWL waveform	
Periphery of junction	pj		-
Phase delay	phi		
Phase for Sinusoid 1	sinephase		
Physical length	len	Effective physical length of magnetic path (used with 'vel' to specify electrical length of line).	
PJ(amplitude)	pjamp	When set for PRBS source or Bit source, the source has a periodic jitter for which the amplitude is pjamp and the frequency is pjfreq.	
PJ(frequency)	pjfreq	When set for PRBS source or Bit source, the source has a periodic jitter whose amplitude is pjamp and whose frequency is pjfreq.	
PJ(type)	pjtype	For PRBS source or Bit source, pjtype defines the type of periodic jitter. Possible valudes are sine, sawtooth, and square.	
Polarity of the buffer	polarity	Possible values: inv, noninv, or blank	inv
Poly Coeff 0	c0	Polynomial coefficients. At least one must be given.	
Poly Coeff 1	c1	Polynomial coefficients. At least one must be given.	
Poly Coeff 2	c2		
Poly Coeff 3	c3		

CDF Parameter Label	CDF Parameter	Description	Default
Poly Coeff 4	c4		
Polynomial argument	polyarg		
Port	port		
Port 1	port1		
Port 2	port2		
Port 3	port3		
Port 4	port4		
Port number	num		
Power of PWL waveform	pwldbm	Power of PWL waveform in dBm.	
Primary inductor	pi		
prbsFile as Design Var?	prbsFile_as_va r	Checks if the bit data file can be used as a design variable.	
Precondition factor keyword	precfac		0.75
Prioritize Accuracy Range	prioritizeAccu racyRange	Specifes a frequency band of interest to prioritize the accuracy of <i>bbspice</i> fitting at this band.	t
Probe 1	p1	Devices through which the controlling currents flow.	
Probe 2	p2	Index of the probe ports through which the controlling currents flow.	
Probe 3	р3		
Probe 4	р4		
Probe Device Name	probe		

CDF Parameter Label	CDF Parameter	Description	Default
Profile	profile	Specifies what happens outside the range of approximation. Possible values are ff, df, fd, or dd.	-
		It is dd if abs(slope) >= 0.5 and ff otherwise.	
Propogation velocity normalized	vel	Propagation velocity of the line given as a multiple of 'c', the speed of light in free space. (vel <= 1).	
Pulse width	pw		
PWL file name	fileName	Specifies the name of the PWL file.	
PWL File as Design Var?		Checks if the PWL file can be used as a design variable.	
Pwl type	pwlType		
Quad temp co of lin cap	tc2c	Quadratic temperature coefficient of capacitor.	
Quantity of Port1 to Quantity of Port20	portquantity1 to portquantity20	Quantities of ports. Use 0 for voltage and 1 for current.	
Rarely used parameters	otherParaLabel	Rarely used parameters.	-
Reactance	х	Reactance, that can have real number values. It can either be positive or negative.	-

CDF Parameter Label	CDF Parameter	Description	Default
Reference Value	ref	Specifies the crossing reference for the control node. This parameter applies only when the Prbs source operates as a 3 or 4 terminal device. When the voltage across terminals 3 and 4 drops below ref, the output of the source is set to 0. If terminal 4 is not specified, it is assumed to be connected to ground.	-
Relative permittivity	eps	Substrate permittivity relative to a vacuum.	
Remove Device	lxRemoveDevice	Added to the auCDL view of a device to indicate that the device is shorted.	
Repeated function	rpt		
Res. for initial conds.	rforce	Resistance used when forcing initial conditions.	1.0 Ohm
Res of the winding	resis	Resistance of the winding.	-
Resistance	r	Resistance	1K Ohms
Resistance Form	resform	Default is 'yes' if 'r < thresh'. Possible values are no or yes.	-
Reuse rational function data	rational_func_ reuse	Possible values are 0,1, 2.	1
Rise Delay	td01	Time delay for 0 to 1 transition.	-
Rise on delay	rise_on_dly		
Rise off delay	rise_off_dly		
Rise time	d2a_tr		3n s
Rise time	rise	Time for transition to rise from Level 0 voltage to Level 1 voltage.	3n s

CDF Parameter Label	CDF Parameter	Description	Default
Rise time	tr	Specifies the time for transition to rise from Level 0 voltage to Level 1 voltage.	3n s
RJ(seed)	rjseed	Specifies a random number generator that is used in generating random jitter for the prbs sources.	1
RJ(rms)	rjrms	Specifies the source for prbs that has a normally distributed random jitter, for which the mean is zero and whose standard deviation is rjrms.	
RLCG data file	file	Specifies the name of the RLGC data file.	
RLCG data file as Design var?	rlgc_file_as_v ar	Checks if the RLGC data file is used as a design variable.	
S to Z Transformation	SXZ		
S-parameter Data File	dataFile	S-Parameter data file name. This file contains parameters, frequencies, or model information that can be analyzed by the Spectre simulator.	
S-parameter File	file1	S-parameter file name.	
S-parameter file as Design Var?	sparam_file_as _var	Checks if the S-parameter file is used as a design variable.	-
S-parameter data format	datafmt	Possible values are spectre, touchstone,citi, rfm, bnp.	
Sampling period	tsamp		
Scale factor	scale	Specifies the scale factor for amplitude.	-
		'	

CDF Parameter Label	CDF Parameter	Description	Default
Second frequency name	fundname2		
Secondary inductor	si		
Seed	seed	Set registerlength=[2 32] to choose a Maximum Length Sequence or define a custom PRBS by use of the parameters, Ifsrtaps and Ifsrseed.	-
Seed	lfsrseed	For PRBS source, Ifsrseed is an integer array which sets the initial state of the LFSR. Array elements sets the locations of non-zero bits. Locations are 1-based and ordered from MSB to LSB of the LFSR. For example, assume Ifsrtaps=[6] and Ifsrseed=[1 3 5]. The width of the register is then 6 bits and the initial state is 101010.	-
Signal amplitude	sa		
Signal frequency	fs		
Signal names	signalNames	Specifies the name of the PWL signals.	
Select IBIS Buffer Type	bufferType		
Select IBIS Buffer Variant	bufferVariant2		
Select IBIS Buffer Variant	bufferVariant4		
Self Heating Switch	sel_heating		
Sine DC level	sinedc		
Sinusoid Ampl 1 to Sinusoid Ampl 9	vav1 - vav9		

CDF Parameter Label	CDF Parameter	Description	Default
Skin effect res matrix per unit length	rskin		
Slope of imp on log/log scale	slope	Slope of the impedance when plotted on a log-log scale.	0.5
Smoothing Factor	smoothing		
Source diffusion area	as		
Source diffusion length	ls		
Source diffusion periphery	ps		
Source diffusion res squares	nrs		
Source type	srcType	Specifies the type of source.	
Source/drain selector	geo		
Specification type	spec		
Stamping method	stamp	Possible values are Y, S, YSTS, SSTS, DEFMBED.	Υ
Start Frequency	startFrequency	Specifes the start frequency point in bbsfreqband.	t
Strength	strength	Quantity strength. Possible values are indifferent, suggest, insist, or override.	override
Subckt file	modelFile		
Substrate height	h		
Switch position	position	Switch position (0, 1, 2,).	0
Taps	lfsrtaps	For PRBS source, Ifsrtaps is an integer array which sets the location of LFSR taps. Locations are 1-based and ordered form MSB to LSB of the LFSR. The largest element of the taps array is equal to the width of the LFSR.	-

CDF Parameter Label	CDF Parameter	Description	Default
Temp Rise Specifier	triseSpec		
dtmp -Temp rise from ambient	dtmp		
dtemp -Temp rise from ambient	dtempn		
Temp rise from ambient	trise	Temperature rise from ambient	-
Temperature coefficient 1	tc1	Specifies the linear temperature or first order	-
Linear temp. coefficient		temperature coefficient.	
Temperature coefficient 2	tc2	Specifies the quadratic temperature or second order	-
Quadratic temp. coeff.		temperature coefficient.	
Temperature difference	dtemp		-
The order of indices	datatype		-
Thermal Node(T)	Tnode		-
Thermal Noise	thermalnoise	Thermal noise. Possible values are no or yes.	yes
Thermal noise model	noisemodel	Possible values are internal and external.	
Thermal resistance	rth0		
Thermal capacitance	cth0		

CDF Parameter Label	CDF Parameter	Description	Default	
Threshold	triggerthresho ld	For PRBS, when triggerthreshold is set and the source is instantiated with optional control terminals (terminals 3 and optionally 4; if terminal 4 is unspecified it is assumed to be connected to ground), triggerthreshold defines the crossing threshold for the trigger event. The event causes the emission of the next PRBS pulse.		
Time 1	t1			
Time 2	t2			
Time interval for switching	ts			
Time scale factor	stretch	Specifies a multiplier for the times given for PWL waveform. Setting the time scale factor greater than 1 increases the times in the file, and reduces the frequency.	1	
Time to x state	a2d_tx		1m s	
Total Num of windings	numOfL			
Tran position	tranPosition	Position to which switch is set at the start of transient analysis.	0	
Tran convolution parameters	tranParaLabel	Accuracy parameters for transient convolution.	0	
Transaction time	tt			
Transconductance	ggain			
Transconductance (Obsolete)	hggain	Note: Parameter hggain is obsolete. Parameter ggain is used for both Spectre and HspiceD instead.		

CDF Parameter Label	CDF Parameter	Description	Default
Transition reference	transitionrefe rence	Defines the voltage swing for the duration of rise and fall time, as a percentage of val1 - val0.	100
		For example, <i>Transition</i> reference= 100 means that the output voltage transitions from val0 to val1 in rise seconds. 90 means that it transitions from 0.1* (val1-val0) to 0.9* (val1-val0) in rise seconds, 80 means from 0.2* (val1-val0) to 0.8* (val1-val0)	
		Possible values are 100, 90, 80, 70, and 60.	
Transition width	twidth	Transition width is used when making PWL waveforms periodic and the ending value of the PWL file does not equal the beginning value.	PWL period/ 1000.
		Before repeating, the waveform changes linearly in an interval of transition width from its value at period – transition width to its value at the beginning of the waveform.	
		Thus, the transition width must always be much less than the period.	
Transmission line type	linetype	Transmission line type. Possible values are microstrip, stripline, coplanar, and sublossline.	
Transresistance	hgain		

CDF Parameter Label	CDF Parameter	Description	Default
Transresistance (Obsolete)	hhgain	Note: Parameter hhgain is obsolete. Parameter hgain is used for both Spectre and HspiceD instead.	
Trigger	trigger	Specifies the triggering mode. For prbs, it specifies the direction of control signal at the crossing event. Possible values are rise, fall, and both.	
Туре	сѕТуре		
Type of input of source	inputtype	Type of input of the source. Possible values are single, and, nand, or, nor, npwl, or ppwl.	nil
Type of input	modelType	Type of input selected for the component. Possible values are RLGC, FieldSolver, Tline, and S-parameter.	nil
Type of Port 1 to Type of Port20	porttype1 - porttype20	Types of ports. Use 0 for input port, 1 for output port, and 2 if the port is both input and output.	
Use S-parameters	useSParamsChec kBox	Controls whether S-parameters are specified or not.	
White noise expression	white_noise	Generates white noise with given power. Noise contributions with the same tag are combined for a module.	-
Width	W		
Width of Polysilicon	qw		
Width of metal capacitor	wm		
Width of the smoothing window	smoothpts		

CDF Parameter Label	CDF Parameter	Description	Default
Ext. Body Contact(PinP)	PinP		
Body Node	BodyNodePin		
Width of Emitter Window	wemw		
Value	value		
vcsv Signal Name	VCSV	Specifies the name of the VCSV signal.	
Volt/res conversion factor	transfactor		
Voltage eqn	vol		
Voltage gain	egain	Sets the Voltage gain for both Spectre and HspiceD.	
Voltage gain (obsolete)	hegain	Note: Parameter hegain is obsolete. Parameter egain is used to set the Voltage gain for both Spectre and HspiceD instead.	
Type of transfer char	trfType		
Type of Source	typesrc		
XF magnitude	xfm	Specifies the magnitude of the transfer function analysis.	
Type of rising & falling edge	risefalledge	Specifies the type of edge. Possible values are rising or falling.	
Voltage 1	v1		
Voltage 2	v2		
Unity intercept point	coef		
use Img subckt	uselmg		
Use smooth data windowing	usewindow	Possible values are yes and no.	

CDF Parameter Label	CDF Parameter	Description	Default
To print fourier results on	where	Where Fourier results should be printed. Possible values are screen, logfile, and both.	logfile
Z state 1 to Z state 50	Z1 - Z50	Disable voltage N and netlist z as the value.	No
Dielectric loss cond matrix per unit length	gdloss	Dielectric loss conductance matrix per unit length.	
Frequency scale factor	freqscale	The frequency scale factor for frequency-dependent RLGC data and S-parameter data.	
Multiplicity factor	mf	Specifies the number of ports in parallel. The value must be a non-zero real number.	1
Model name	model	Specifies the name of the model to be associated with the component.	-
Number of dielectric layers	numlayer	Number of dielectric layers.	1
Number of Ground Planes	numgnd	Number of ground planes,	1
Num of lines (excluding ref.)	n	Number of lines.	1
Conductor loss frequency	fcmt	Conductor loss frequency. Used in conjunction with seriesr, qc, or alphac.	
Frequency	fmt	Reference frequency, used in conjunction with $n1$ to specify electrical length of line.	
Normalized length	nlmt	Normalized electrical length in wavelengths at the specified reference frequency of a lossless line.	

CDF Parameter Label	CDF Parameter	Description	Default	
Propagation velocity normalized	velmt	Propagation velocity of the line given as a multiple of c, the speed of light in free space (vel <= 1).		
Corner frequency	corner	Corner frequency for skin effect.		
DC series res/Length	dcr	DC series resistance per unit length.		
Loss resistance per unit length	seriesr	Conductor (series) resistance per unit length at fc.		
Conductor loss at fc	alphac	Conductor loss measurement frequency(low loss approximation).		
Conductor loss quality factor	dс	Conductor loss quality factor at conductor loss measurement frequency (low loss approximation).		
Dielectric loss frequency	fd	Dielectric loss measurement frequency.		
Loss conductance per unit length	shuntg	Dielectric (shunt) conductance per unit length at conductor loss measurement frequency.		
Dielectric loss	alphad	Dielectric loss (low loss approximation).		
Dielectric loss quality factor	qd	Dielectric loss quality factor at dielectric loss measurement frequency (low loss approximation).		
Rel dielectric const of layers(er)	er	Relative dielectric constant.		
Dielectric layer thickness (d)	layerthickness	Dielectric layer thickness.		

CDF Parameter Label	CDF Parameter	Description	Default
Dielectric loss type	dlosstype	Dielectric loss type. The loss value is specified using the dloss parameter. Possible values are <i>sigma</i> and <i>tangent</i> .	
Dielectric layer loss	dloss	Dielectric layer loss. The loss can be in terms of dielectric conductivity or tangent loss, determined by the dlosstype parameter.	
Quality Factor/Q	ď	Quality factor specified for capq and indq.	
Signal line width	linewidth	Signal line width,	
Signal line thickness	linethickness	Signal line thickess.	
Signal line height (h)	lineheight	Signal line height.	
Signal line spacing	linespace	Signal line spacing.	
Gnd Plane thickness	gndthickness	Ground plane thickness.	
Ground plane conductivity	gndsigma	Ground plane conductivity.	
Signal line conductivity	linesigma	Signal line conductivity.	
Charecteristic impedance	z0	Characteristic impedance of lossless line.	50 Ohms
Delay Time	tdmt	Specifies the time delay of a lossless line in second.	
Physical length	len	Effective physical length of magnetic path (used with 'vel' to specify electrical length of line).	
RLCG data file	file	Specifies the name of the RLGC data file.	
RLCG data file as Design var?	rlgc_file_as_v ar	Checks if the RLGC data file is used as a design variable.	

Analog Library Reference

CDF Parameters Supported by Analog Library Components

CDF Parameter Label	CDF Parameter	Description	Default
S-parameter File	file1	S-parameter file path. Uses the S-parameter file name only when <i>S-parameter file as Design Var?</i> is enabled.	
S-parameter file as Design Var?	sparam_file_as _var	Checks if the S-parameter file is used as a design variable.	-
Transmission line type	linetype	Transmission line type. Possible values are microstrip, stripline, coplanar, and sublossline.	
Type of input	modelType	Type of input selected for the component. Possible values are RLGC, FieldSolver, Tline, and S-parameter.	nil

Related Topics

Active Components in Analog Library

Analysis Specific Components in Analog Library

Parasitic Components in Analog Library

Passive Components in Analog Library

Sources - Dependent Components in Analog Library

Sources - Global Components in Analog Library

Sources - Independent Components in Analog Library

Sources - Z S Domain Components in Analog Library

В

Analog Library Support for hspiceD Components

This topic lists all the Analog Library components that are primarily supported by hspiceD.

- Active Components
- Passive Components
- Sources Dependent Components
- Sources Independent Components

Active Components

The component in the Active category in hspiceD is N-type MES FET Transistor (nmes4).

nmes4 Symbol

Description

N-type MES FET Transistor is a component in hspiceD category with 4 Terminals.

Analog Library Reference

Analog Library Support for hspiceD Components

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Device area	area	-	-	-	Х	-
Device initially off	off	-	-	-	Х	-
Drain source initial voltage	Vds	-	-	-	Х	-
Gate source initial voltage	Vgs	-	-	-	Х	-
Bulk source initial voltage	Vbs	-	-	-	Х	-
Width	W	-	-	-	Х	-
Length	1	-	-	-	Х	-
Model name	model	-	-	-	Х	-
Multiplier	m	-	-	-	Х	-
Temperature difference	dtemp	-	-	-	X	-

Related Topics

Passive Components

Sources - Dependent Components

Sources - Independent Components

Active Components in Analog Library

auCdl and auLvs Components in Analog Library

CDF Parameters Supported by Analog Library Components

Passive Components

The component in the Passive category in hspiceD are as follows:

- uxwire Symbol
- vccap Symbol
- vcres Symbol

uxwire Symbol

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Model name	model	-	-	-	Х	-
Length	1	-	-	-	Х	-
# of lumps in element	lumps	-	-	-	Х	-

vccap Symbol

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Scale factor	scale	Х	-	-	Х	-
<u>Multiplier</u>	hm	Х	-	-	Х	-
Temperature coefficient 1	tc1	Х	-	-	Х	-
Temperature coefficient 2	tc2	Х	-	-	Х	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Initial condition	hic	Х	-	-	Х	-
<u>Delta</u>	delta	Х	-	-	Х	-
<u>Type</u>	csType	Х	-	-	Х	-
Number of controlling pairs	xypairs	Х	-	-	Х	-
Controlling Volt 1	x1 - x20	Х	-	-	X	-
Corresp Element 1	y1 -y20	Х	-	-	Х	-

Analog Library Support for hspiceD Components

vcres Symbol

Analog Library Reference

Analog Library Support for hspiceD Components

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
<u>Type</u>	сѕТуре	х	-	-	Х	Х
Volt/res conversion factor	transfact or	х	-	-	Х	х
Maximum output resistance	maxr	X	-	-	Х	-
Minimum output resistance	minr	X	-	-	Х	-
Scale factor	scale	х	-	-	Х	Х
Multiplier	hm	х	-	-	Х	-
Temperature coefficient 1	tc1	Х	-	-	х	x
Temperature coefficient 2	tc2	X	-	-	X	Х
Initial condition	hic	X	-	-	Х	-

Related Topics

Active Components

Sources - Dependent Components

Sources - Independent Components

Passive Components in Analog Library

CDF Parameters Supported by Analog Library Components

Analog Library Reference

Sources - Dependent Components

The component in the Sources-Dependent category in hspiceD are as follows:

- iopamp Symbol
- ixfmr Symbol

iopamp Symbol

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Scale factor	scale	-	-	-	Х	-
<u>Multiplier</u>	hm	-	-	-	Х	-
Temperature coefficient 1	tc1	-	-	-	Х	-
Temperature coefficient 2	tc2	-	-	-	Х	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Initial condition	hic	-	-	-	Х	-
<u>Delta</u>	delta	-	-	-	Х	-
<u>Type</u>	csType	-	-	-	Х	-
Number of controlling pairs	xypairs	-	-	-	Х	-
Controlling Volt 1	x1 - x20	-	-	-	Х	-
Corresp Element 1	y1 -y20	-	-	-	Х	-

ixfmr Symbol

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Coupling coefficient	k	-	-	-	Х	-

Related Topics

Active Components

Passive Components

Sources - Independent Components

Sources - Dependent Components

Analog Library Reference

Analog Library Support for hspiceD Components

CDF Parameters Supported by Analog Library Components

Analog Library Reference

Analog Library Support for hspiceD Components

Sources - Independent Components

The component in the Sources-Independent category in hspiceD are as follows:

- bcs Symbol
- bvs Symbol
- iam Symbol
- isffm Symbol
- vam Symbol
- vsffm Symbol

Analog Library Support for hspiceD Components

bcs Symbol

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Current eqn	cur	-	-	-	X	-
<u>Min</u>	min	-	-	-	Х	-
Max	max	-	-	-	Х	-
Scale factor	scale	-	-	-	Х	-
Multiplier	hm	-	-	-	Х	-

bvs Symbol

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Voltage eqn	vol	-	-	-	Х	-
Min	min	-	-	-	Х	-
Max	max	-	-	-	Х	-

iam Symbol

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Signal amplitude	sa	-	-	-	Х	-
Carrier frequency	fc	-	-	-	Х	-
Modulation frequency	fm	-	-	-	Х	-
Offset constant	oc	-	-	-	Х	-
Delay time	td	-	-	-	Х	-
DC source	dc	-	-	-	Х	-
Multiplier	m	-	-	-	Х	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	-	-	-	Х	-
AC phase	acp	-	-	-	Х	-

isffm Symbol

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	-	-	-	Х	-
AC phase	acp	-	-	-	Х	-
DC current	idc	-	-	-	-	-
Offset current	io	-	-	-	Х	-
Amplitude	ia	-	-	-	Х	-
Frequency	freq	-	-	-	Х	-
Modulation index	mdi	-	-	-	Х	-
Signal frequency	fs	-	-	-	Х	-
Multiplier	m	-	-	-	Х	-

vam Symbol

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Signal amplitude	sa	-	-	-	Х	-
Carrier frequency	fc	-	-	-	Х	-
Modulation frequency	fm	-	-	-	Х	-
Offset constant	oc	-	-	-	Х	-
Delay time	td	-	-	-	Х	-
DC source	dc	-	-	-	Х	-

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
AC magnitude	acm	-	-	-	Х	-
AC phase	acp	-	-	-	Х	-

vsffm Symbol

Related Topics

Active Components

Passive Components

Sources - Dependent Components

Sources - Independent Components in Analog Library

CDF Parameters Supported by Analog Library Components

C

auCdl and auLvs Components in Analog Library

The following components are supported only by auCdl or auLvs:

- bjt504tnpn Symbol
- bjt504tpnp Symbol
- bsim4 Symbol
- nsoi Symbol
- scr Symbol
- vbic Symbol

bjt504tnpn Symbol

Description

The Compact Bipolar-Transistor Model provides a detailed description of a vertical integrated NPN transistor.

Command-Line Help

spectre -h bjt502

auCdl and auLvs Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsSp ice	auC dl	auL vs	hspic eS	hspi ceD	Ultra Sim
Model name	model	Х	-	-	-	-	-	-	-
Number of devices in parallel	mult	Х	-	-	-	-	-	-	-
Estimated operating region	region	Х	-	-	-	-	-	-	-
Multiplicit y factor	m	Х	-	-	-	-	-	-	-
Alias of mult	area	Х	-	-	-	-	-	-	-

Syntax/Synopsis

Name (c b e s) ModelName <parameter=value> ...

Related Topics

Active Components in Analog Library

CDF Parameters Supported by Analog Library Components

bjt504tpnp Symbol

Description

The Compact Bipolar-Transistor Model provides a detailed description of a vertical integrated PNP transistor.

Command-Line Help

spectre -h bjt502

auCdl and auLvs Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spec tre	spect reS	cdsSp ice	auC dl	auL vs	hspic eS	hspi ceD	Ultra Sim
Model name	model	Х	-	-	-	-	-	-	-
Number of devices in parallel	mult	Х	-	-	-	-	-	-	-
Estimated operating region	region	Х	-	-	-	-	-	-	-
Multiplicit y factor	m	Х	-	-	-	-	-	-	-
Alias of mult	area	Х	-	-	-	-	-	-	-

Syntax/Synopsis

Name (c b e s) ModelName <parameter=value> ...

auCdl and auLvs Components in Analog Library

bsim4 Symbol

Description

This component is a simple BSIM MOS transistor.

Command-Line Help

spectre -h bsim4

auCdl and auLvs Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spect re	spect reS	cdsS pice	au Cdl	auL vs	hspic eS	hspic eD	Ultra Sim
Model name	model	Х	-	-	-	-	-	-	-
Integral- 1st distributio n func	sca	Х	-	-	-	-	-	-	-
Integral- 2nd distributio n func	scb	X	-	-	-	-	-	-	-
Integral- 3rd distributio n func	SCC	X	-	-	-	-	-	-	-
Distance to a single well edge	SC	Х	-	-	-	-	-	-	-
shift in 0- bias threshold vth0	delvo	Х	-	-	-	-	-	-	-
Gate contact- channel edge	xgw	Х	-	-	-	-	-	-	-
Number of gate contacts	ngcon	Х	-	-	-	-	-	-	-

Syntax/Synopsis

Name (d g s b) ModelName <parameter=value> ...

nsoi Symbol

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Bulk node connection	bn	-	-	х	-	-
Multiplier	m	-	x	X	-	-
Width	W	-	х	Х	-	-
Length	1	-	X	Х	-	-

auCdl and auLvs Components in Analog Library

scr Symbol

Description

Silicon Controlled Rectifier is a conventional rectifier controlled by a gate signal. Although the main circuit is a rectifier, the application of a forward voltage is not enough for conduction. Therefore, a gate signal controls the rectifier conduction.

auCdl and auLvs Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spectre	auCdl	auLvs	hspiceD	UltraSim
Bulk node connection	bn	-	-	х	-	-

Examples

P231 32 5 21 8 7 PSCR
PN01 25 14 18 2 PMOD IC=-.8 .8 -15

auCdl and auLvs Components in Analog Library

vbic Symbol

Description

This component is a bipolar transistor.

Command-Line Help

spectre -h vbic

auCdl and auLvs Components in Analog Library

Component Parameters

CDF Parameter Label	CDF Parameter	spect re	spect reS	cdsS pice	au Cdl	auL vs	hspic eS	hspic eD	Ultra Sim
Model name	model	Х	-	-	-	-	-	-	-
Optional Node configurat ion	vbicOpNo des	Х	-	-	-	-	-	-	-
<u>Device</u> <u>area</u>	area	Х	-	-	-	-	-	-	-
Multiplier	m	Х	-	-	-	-	-	-	-
Estimated operating region	region	X	-	-	-	-	-	-	-
Temp rise from ambient	trise	X	-	-	-	-	-	-	-
Temperat ure difference	dtemp	Х	-	-	-	-	-	-	-

Syntax/Synopsis

Name (c b e [s] [dt] [t1]) ModelName can can

Related Topics

Active Components in Analog Library