

Meno:	Marek Čederle	Hodnotenie projektu:
Cvičenie:	Pondelok 09:00 - Bobák	
Dátum:	24.04.2023	

Projekt TZIV LS2022/23 - TS

Zadanie:	Na vstupe je výraz v infixovom zápise skladajúci sa z jednociferných čísel,	
	operácií sčítania a odčítania (odčítanie je operácia "mínus v krúžku": x-y =	
	max(x-y, 0)) a symbolu rovnosti. Navrhnite Turingov stroj, ktorý vypočíta	
	hodnotu ľavej aj pravej strany rovnice v unárnej sústave a vypíše stav	
	rovnosti/nerovnosti medzi stranami rovnice.	
	Zadanie riešte deterministicky a nedeštruktívne (vstup spracovávajte po	
	jednotlivých znakoch; vstup nepremazávajte, môžete použiť označenie - napr.	
	prepísať malé na veľké písmená; výstup umiestnite vedľa na pásku; ak je to	
	potrebné, použite textové oddeľovače). Na páske máte vstup, napravo za	
	oddelovač riešite výstup zadania, všetky pomocné výpočty, či konštanty si	
	môžete uviesť vľavo od vstupu, tiež za oddelovač. Zjednodušenie: množinu	
	vstupných znakov si môžete zvoliť, ale v minimálnej mohutnosti 7 znakov.	
	Diskutujte zložitosť Vášho riešenia – počet krokov v závislosti od vstupu.	
Vstup:	Akceptované vstupy: 1+2=3\$; 1+2-4+3=2-0\$; 0=0\$	
	Neakceptované vstupy: -4+2=10\$; 6+3; 3-3>6	
Neformálne	Ako prvé si nastavím oddelovač % pred celú rovnicu. Posuniem sa doprava a	
riešenie:	čítam číslo, podľa toho aké číslo dostanem tak prejdem na stav daný pre toto číslo, podčiarknem ho a idem na koniec za oddelovač kde zapíšem počet	
	jednotiek, ktoré reprezentujú toto číslo kým nenarazím na \$ a vraciam sa späť,	
	kým nenarazím na podčiarknuté číslo. Potom zistím či ide o sčitovanie alebo	
	odčitovanie. Ak o sčitovanie tak podčiarknem a zase idem zapísať daný počet	
	jednotiek. Ak ide o odčitovanie tak podčiarknem a idem zmeniť daný počet	
	jednotiek na Blank (tz. odčítam ich). Tieto stavy sa opakujú kým nenarazím na	
	=. Ak nájdem = tak podčiarknem a idem na koniec zapísať \$ a vrátim sa späť	
	a pokračujem zase so spomenutými stavmi až kým nenarazím na prvý \$.	
	Následne idem zapísať další \$ nakoniec. Potom idem porovnávať koľko	
	jednotiek je medzi \$\$\$ a následne nakoniec zapíšem dané znamienko	
	nerovnosti/rovnosti a keď je hotovo tak idem všetko odznačiť a vrátim sa na	
	začiatok.	
Zložitosť	Moje riešenie v časovej aj priestorovej zložitosti závisí od troch faktorov. Počet	
riešenia:	čísel na oboch stranách rovnice (čím viacej tým zložitejšie), veľkosť čísel (čím	
	väčšie tým zložitejšie) a znamienkami (+ je zložitejšie).	
	Riešenie je celkom zložité lebo musí vždy prejsť veľa inštrukcií. Mám síce	
	efektívne vyriešené zapisovanie/vymazávanie jednotiek pomocou tzv.	
	rebríkového systému že stavy ukazujú na seba ako keby idem dole po rebríku	
	ale celé zadanie je dosť náročné ako aj na stavy tak aj na inštrukcie. Najmenej	

zložitý je prípad 0=0\$ Pretože v podstate nič nezapisujem a zároveň v podstate nič neoverujem. Najviac zložitý je prípad ak by som mal do nekonečna (čo najviac) čísel 9 ktoré sčitujem s ďalšími číslami 9 a to na oboch stranách rovnice.

Simulátor:

SimStudio

Formálna špecifikácia

Turingov stroj $T = (K, \Sigma, \Gamma, \delta, q0, F)$

 $\mathbf{K} = \{q1, q0, q2, q3, q13, q23, q33, q43, q53, q63, q73, q83, q93, q3_1, prevod0, q13_1, prevod1, q23_1, prevod2, q33_1, prevod3, q43_1, prevod4, q53_1, prevod5, q63_1, prevod6, q73_1, prevod7, q83_1, prevod8, q93_1, prevod9, qback, qsign, qsign_sub, qsign_equal, end, qsign_sub_0, qsign_sub_1, qsign_sub_2, qsign_sub_3, qsign_sub_4, qsign_sub_5, qsign_sub_6, qsign_sub_7, qsign_sub_8, qsign_sub_9, prevod_odcitaj_1, prevod_odcitaj_2, prevod_odcitaj_3, prevod_odcitaj_4, prevod_odcitaj_5, prevod_odcitaj_6, prevod_odcitaj_7, prevod_odcitaj_8, prevod_odcitaj_9, prevod_odcitaj_0, end_back, end_check, qseg1, qseg10, qtestrovnost, qseg2, qseg20, >, qseg21, <, =, odznac_all, qf}
<math display="block">\mathbf{\Sigma} = \{9, +, =, 0, \$, \text{set}, \%, 0_, 1, 1_, 2, 2_, 3, 3_, 4, 4_, 5, 5_, 6, 6_, 7, 7_, 8, 8_, 9_, miniset, set_, +_, -, -_, =_, num, end_set, <, >, ineq_symbol, \$_\}$ $\mathbf{\Gamma} = \{9, +, =, 0, \$, \text{set}, \%, 0_, 1, 1_, 2, 2_, 3, 3_, 4, 4_, 5, 5_, 6, 6_, 7, 7_, 8, 8_, 9_, miniset, set_, +_, -, -_, =_, num, end_set, <, >, ineq_symbol, \$_, Blank}$ $\mathbf{q0} \text{ počiatočný stav}$ $\mathbf{F} = \{qf, qf\}$

Prechodová funkcia δ

```
\delta(q0, set) = (q1, set, L)
\delta(q1, Blank) = (q2, \%, R)
\delta(q2, 0) = (q3, 0_{-}, R)
\delta(q2, 1) = (q13, 1_, R)
\delta(q2, 2) = (q23, 2_, R)
\delta(q2, 3) = (q33, 3_, R)
\delta(q2, 4) = (q43, 4_, R)
\delta(q2, 5) = (q53, 5_, R)
\delta(q2, 6) = (q63, 6_, R)
\delta(q2, 7) = (q73, 7, R)
\delta(q2, 8) = (q83, 8_{-}, R)
\delta(q2, 9) = (q93, 9_, R)
\delta(q3, set) = (q3, set, R)
\delta(q3, \$) = (q3_1, \$, R)
\delta(q3_1, miniset) = (q3_1, miniset, R)
\delta(q3_1, Blank) = (prevod0, Blank, 0)
\delta(q13, set) = (q13, set, R)
\delta(q13, \$) = (q13_1, \$, R)
\delta(q13_1, miniset) = (q13_1, miniset, R)
\delta(q13_1, Blank) = (prevod1, Blank, 0)
\delta(q23, set) = (q23, set, R)
\delta(q23, \$) = (q23_1, \$, R)
```

 $\delta(q23_1, miniset) = (q23_1, miniset, R)$

```
\delta(q23_1, Blank) = (prevod2, Blank, 0)
\delta(q33, set) = (q33, set, R)
\delta(q33, \$) = (q33\_1, \$, R)
\delta(q33_1, miniset) = (q33_1, miniset, R)
\delta(q33_1, Blank) = (prevod3, Blank, 0)
\delta(q43, set) = (q43, set, R)
\delta(q43, \$) = (q43_1, \$, R)
\delta(q43_1, miniset) = (q43_1, miniset, R)
\delta(q43_1, Blank) = (prevod4, Blank, 0)
\delta(a53, set) = (a53, set, R)
\delta(q53, \$) = (q53\_1, \$, R)
\delta(q53_1, miniset) = (q53_1, miniset, R)
\delta(q53_1, Blank) = (prevod5, Blank, 0)
\delta(q63, set) = (q63, set, R)
\delta(q63, \$) = (q63_1, \$, R)
\delta(q63_1, miniset) = (q63_1, miniset, R)
\delta(q63_1, Blank) = (prevod6, Blank, 0)
\delta(q73, set) = (q73, set, R)
\delta(q73, \$) = (q73\_1, \$, R)
\delta(q73_1, miniset) = (q73_1, miniset, R)
\delta(q73_1, Blank) = (prevod7, Blank, 0)
\delta(q83, set) = (q83, set, R)
\delta(q83, \$) = (q83_1, \$, R)
\delta(q83_1, miniset) = (q83_1, miniset, R)
\delta(q83_1, Blank) = (prevod8, Blank, 0)
\delta(q93, set) = (q93, set, R)
\delta(q93, \$) = (q93_1, \$, R)
\delta(q93 \ 1, miniset) = (q93 \ 1, miniset, R)
\delta(q93_1, Blank) = (prevod9, Blank, 0)
\delta(prevod9, Blank) = (prevod8, 1, R)
\delta(prevod8, Blank) = (prevod7, 1, R)
\delta(prevod7, Blank) = (prevod6, 1, R)
\delta(prevod6, Blank) = (prevod5, 1, R)
\delta(prevod5, Blank) = (prevod4, 1, R)
\delta(prevod4, Blank) = (prevod3, 1, R)
\delta(prevod3, Blank) = (prevod2, 1, R)
\delta(prevod2, Blank) = (prevod1, 1, R)
\delta(prevod1, Blank) = (prevod0, 1, R)
δ(prevod0, Blank) = (qback, Blank, L)
\delta(qback, set) = (qback, set, L)
\delta(gback, $) = (gback, $, L)
\delta(qback, set_) = (qsign, set_, R)
\delta(qsign, +) = (q2, +_, R)
\delta(qsign, -) = (qsign_sub, -_, R)
\delta(qsign, =) = (qsign_equal, =_, R)
\delta(qsign, num) = (q2, num, 0)
\delta(qsign, $) = (end, $, R)
\delta(qsign_sub, 0) = (qsign_sub_0, 0_, R)
\delta(qsign_sub, 1) = (qsign_sub_1, 1_, R)
\delta(qsign_sub, 2) = (qsign_sub_2, 2_, R)
\delta(qsign_sub, 3) = (qsign_sub_3, 3_, R)
\delta(qsign_sub, 4) = (qsign_sub_4, 4_, R)
\delta(qsign_sub, 5) = (qsign_sub_5, 5_, R)
\delta(qsign_sub, 6) = (qsign_sub_6, 6_, R)
```

```
\delta(qsign_sub, 7) = (qsign_sub_7, 7_, R)
\delta(qsign_sub, 8) = (qsign_sub_8, 8_, R)
\delta(qsign_sub, 9) = (qsign_sub_9, 9_, R)
\delta(qsign_sub_0, set) = (qsign_sub_0, set, R)
\delta(qsign_sub_0, $) = (qsign_sub_0, $, R)
\delta(qsign_sub_0, Blank) = (qback, Blank, L)
\delta(qsign_sub_1, set) = (qsign_sub_1, set, R)
\delta(qsign_sub_1, $) = (qsign_sub_1, $, R)
δ(qsign_sub_1, Blank) = (prevod_odcitaj_1, Blank, L)
\delta(gsign sub 2, set) = (gsign sub 2, set, R)
\delta(qsign_sub_2, $) = (qsign_sub_2, $, R)
δ(qsign_sub_2, Blank) = (prevod_odcitaj_2, Blank, L)
\delta(qsign_sub_3, set) = (qsign_sub_3, set, R)
\delta(qsign_sub_3, $) = (qsign_sub_3, $, R)
δ(qsign_sub_3, Blank) = (prevod_odcitaj_3, Blank, L)
\delta(qsign_sub_4, set) = (qsign_sub_4, set, R)
\delta(qsign_sub_4, $) = (qsign_sub_4, $, R)
δ(qsign_sub_4, Blank) = (prevod_odcitaj_4, Blank, L)
\delta(qsign_sub_5, set) = (qsign_sub_5, set, R)
\delta(qsign_sub_5, $) = (qsign_sub_5, $, R)
δ(qsign_sub_5, Blank) = (prevod_odcitaj_5, Blank, L)
\delta(qsign_sub_6, set) = (qsign_sub_6, set, R)
\delta(qsign_sub_6, $) = (qsign_sub_6, $, R)
δ(qsign_sub_6, Blank) = (prevod_odcitaj_6, Blank, L)
\delta(gsign sub 7, set) = (gsign sub 7, set, R)
\delta(qsign_sub_7, $) = (qsign_sub_7, $, R)
δ(qsign_sub_7, Blank) = (prevod_odcitaj_7, Blank, L)
\delta(gsign sub 8, set) = (gsign sub 8, set, R)
\delta(qsign_sub_8, $) = (qsign_sub_8, $, R)
δ(gsign sub 8, Blank) = (prevod odcitaj 8, Blank, L)
\delta(qsign_sub_9, set) = (qsign_sub_9, set, R)
\delta(qsign_sub_9, $) = (qsign_sub_9, $, R)
δ(qsign_sub_9, Blank) = (prevod_odcitaj_9, Blank, L)
δ(prevod odcitaj 9, 1) = (prevod odcitaj 8, Blank, L)
δ(prevod_odcitaj_9, $) = (prevod_odcitaj_0, $, 0)
δ(prevod_odcitaj_8, 1) = (prevod_odcitaj_7, Blank, L)
δ(prevod_odcitaj_8, $) = (prevod_odcitaj_0, $, 0)
δ(prevod_odcitaj_7, 1) = (prevod_odcitaj_6, Blank, L)
δ(prevod_odcitaj_7, $) = (prevod_odcitaj_0, $, 0)
δ(prevod odcitaj 6, 1) = (prevod odcitaj 5, Blank, L)
\delta(prevod odcitaj 6, $) = (prevod odcitaj 0, $, 0)
δ(prevod_odcitaj_5, 1) = (prevod_odcitaj_4, Blank, L)
δ(prevod_odcitaj_5, $) = (prevod_odcitaj_0, $, 0)
δ(prevod_odcitaj_4, 1) = (prevod_odcitaj_3, Blank, L)
δ(prevod_odcitaj_4, $) = (prevod_odcitaj_0, $, 0)
δ(prevod_odcitaj_3, 1) = (prevod_odcitaj_2, Blank, L)
\delta(prevod odcitaj 3, $) = (prevod odcitaj 0, $, 0)
δ(prevod_odcitaj_2, 1) = (prevod_odcitaj_1, Blank, L)
δ(prevod_odcitaj_2, $) = (prevod_odcitaj_0, $, 0)
δ(prevod_odcitaj_1, 1) = (prevod_odcitaj_0, Blank, L)
δ(prevod_odcitaj_1, $) = (prevod_odcitaj_0, $, 0)
\delta(prevod_odcitaj_0, $) = (qback, $, L)
\delta(prevod_odcitaj_0, 1) = (qback, 1, L)
\delta(qsign_equal, set) = (qsign_equal, set, R)
```

```
\delta(qsign_equal, $) = (qsign_equal, $, R)
\delta(qsign_equal, Blank) = (qback, $, L)
δ(end, end_set) = (end, end_set, R)
δ(end, Blank) = (end_back, $, L)
δ(end_back, end_set) = (end_back, end_set, L)
δ(end_back, set_) = (end_check, set_, R)
\delta(end_check, $) = (qseg1, $, R)
\delta(qseg1, 1) = (qseg10, 1_, R)
\delta(qseg1, $) = (qtestrovnost, $, R)
\delta(qseq10, 1) = (qseq10, 1, R)
\delta(qseg10, $) = (qseg2, $, R)
\delta(qseg2, 1) = (qseg20, 1_, L)
\delta(qseg2, 1_) = (qseg2, 1_, R)
\delta(qseg2, $) = (>, $, R)
\delta(qseg20, 1) = (qseg20, 1, L)
\delta(qseg20, 1_) = (qseg20, 1_, L)
\delta(qseq20, $) = (qseq21, $, L)
\delta(qseg21, 1) = (qseg21, 1, L)
\delta(qseg21, 1_) = (qseg1, 1_, R)
\delta(qtestrovnost, 1_) = (qtestrovnost, 1_, R)
\delta(qtestrovnost, 1) = (<, 1, R)
\delta(qtestrovnost, $) = (=, $, R)
\delta(<, 1) = (<, 1, R)
\delta(<, \$) = (<, \$, R)
\delta(<, Blank) = (odznac_all, <, 0)
\delta(>, 1) = (>, 1, R)
\delta(>, 1_{-}) = (>, 1_{-}, R)
\delta(>, \$) = (>, \$, R)
\delta(>, Blank) = (odznac_all, >, 0)
\delta(=, \$) = (=, \$, R)
\delta(=, Blank) = (odznac_all, =, 0)
δ(odznac_all, set) = (odznac_all, set, L)
δ(odznac_all, set_) = (odznac_all, set, L)
δ(odznac all, ineg symbol) = (odznac all, ineg symbol, L)
\delta(\text{odznac\_all}, \$) = (\text{odznac\_all}, \$, L)
\delta(odznac_all, $_) = (odznac_all, $, L)
\delta(odznac_all, %) = (qf, Blank, R)
```