Figures Mathematical Techniques For Engineers Complex Analysis

Felix Claeys, Brecht Verbeken, Simon Verbruggen ${\it October~12,~2025}$

2.1.1 Continuity Definition

Figure 1: The function f is continuous in z_0 if $(\forall \varepsilon > 0)(\exists \delta_{\varepsilon} > 0)(\forall z \in S)(|z - z_0| < \delta_{\varepsilon} \Longrightarrow |f(z) - f(z_0)| < \varepsilon)$.

2.4 Geometrical Interpretation Of The Complex Derivative

Figure 2: In every point $g(x_0, y_0)$ of a surface g(x, y), a tangent plane can be drawn (red). The tangent lines t_x , t_y are oriented according to the x- and y-axis, respectively. They have a slope which corresponds to the partial derivatives $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$, respectively.

3.2.12 Symmetry of points

Figure 3: The points z_1 and z_2 are symmetrical with respect to the circle $\mathcal{K} = S(C, R)$.

3.5.1 Exponential function periodicity

Figure 4: The exponential function $f(z) = e^z$ is periodic with period $2\pi i$.

3.5.2 Exponential function image vertical lines

Figure 5: The exponential function $f(z)=e^z$ maps vertical lines onto circles centered at the origin.

3.5.3 Exponential function image horizontal lines

Figure 6: The exponential function $f(z)=e^z$ maps horizontal lines onto halflines originating from the origin.

3.8.4 Exercise

Figure 7: Image of domain $\mathcal{D}=\{z\in\mathbb{C}|\mathrm{Re}(z)+\mathrm{Im}(z)\geq 1, |z-2|\leq 1, \mathrm{Re}(z)\leq 2\}$ through the function $f(z)=\frac{z+i}{z-i}.$

5.1.1

Figure 8: The complex line integral $\int_C f(z) dz$ for $z=\gamma(t), t\in [a,b]$, with $\gamma(t)$ a smooth curve, can also be seen as an integral over t with the equation $\int_C f(z) dz = \int_a^b f(\gamma(t)) \gamma'(t) dt$.

Figure 9: The integral over a contour C in Ω with an interior with a finite amount of singular poles is the sum of the integrals over the circles around these interior poles.

5.3 Cauchy integral formulas and consequences

Figure 10: \mathcal{C} is a bounded contour in Ω which encloses a compact set K lying completely within Ω . For a point $a \in \mathcal{C} \setminus K$, we parametrize the circle $\partial B(a, \epsilon)$, which lies entirely in the interior of \mathcal{C} .

Figure 11: To define the residue of a isolated singular pole at $z=\infty$, we can evaluate the integral of a contour in which all other poles lie. By taking the reciprolal equation $w=\frac{1}{z}$ we get an integral around the origin that only contains the pole w=0. Which proves $\mathrm{Res}(f(z),\infty):=-\frac{1}{2\pi i}\oint_{\gamma}f(z)\,dz$.

5.5.2 Uniqueness of holomorphic functions

Figure 12: Let f be holomorphic in the space $\Omega \subseteq \mathbb{C}$. If $z_0 \in \Omega$ is an accumulation point of zeros of f, then $f \equiv 0$ over the entire space Ω .

Figure 13: The argument principle gives for a closed, smooth Jordan curve γ , entirely within the domain $\Omega \subseteq \mathbb{C}$, and f a meromorphic function in Ω whose poles all lie inside γ , and such that $f(z) \neq 0$ for $z \in \gamma$. $\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} dz = N_{\gamma}(f) - P_{\gamma}(f)$, where $N_{\gamma}(f)$ and $P_{\gamma}(f)$ denote, respectively, the number of zeros and poles of f inside γ , each counted with multiplicity.

5.6.3 Argument Principle

Figure 14: Illustration of the argument principle for $f(z) = z^2 + z$. The images of the circles $\gamma_1, \gamma_2, \gamma_3$ under f show how many times each curve winds around the origin, corresponding to the number of zeros of f inside each circle.

5.6.3 Rouches theorem

Figure 15: To prove the theorem of Rouché: For f and g, holomorphic functions on and inside a closed, smooth Jordan curve γ in \mathbb{C} . If |g(z)|<|f(z)| for every $z\in\gamma$, then $N_{\gamma}(f)=N_{\gamma}(f+g)$. We use that $F(z)=\frac{f(z)+g(z)}{f(z)}=1+\frac{g(z)}{f(z)}$ and $|\frac{g(z)}{f(z)}|<1$. We get a contour inside the unit circle around 1.