Getting Import Concentration and the Least-Traded Products Margin Right¹

Oliver Loertscher McMaster University

Pau S. Pujolas McMaster University

Walter Steingress
Bank of Canada

Santiago de Chile, SAET 2024

¹The views expressed in this paper are those of the authors and do not necessarily reflect those of the Bank of Canada.

- ➤ Traditional quantitative trade models can get export concentration right
 - ▶ Richer countries more diversified (Imbs and Wacziarg 2003; Hummels and Klenow 2005; Cadot, Carrière and Strauss-Kahn 2011)
 - Rich theory with quantitative applications (Eaton and Kortum 2002; Melitz 2003; Chaney 2008; Alvarez and Lucas 2007; Waugh 2010; Levchenko and Zhang 2014)

- ➤ Traditional quantitative trade models can get export concentration right
 - Richer countries more diversified (Imbs and Wacziarg 2003; Hummels and Klenow 2005; Cadot, Carrière and Strauss-Kahn 2011)
 - Rich theory with quantitative applications (Eaton and Kortum 2002; Melitz 2003; Chaney 2008; Alvarez and Lucas 2007; Waugh 2010; Levchenko and Zhang 2014)
- ➤ Traditional quantitative trade models cannot get import concentration right
 - ▶ Richer countries are more diversified (shown in this paper)
 - ► Theoretical work (Matsuyama 1991, 2000; Echevarria 2000; Markusen 2011; Simonovska 2011) but limited quantitative theory

- ➤ Traditional quantitative trade models can get export concentration right
 - ▶ Richer countries more diversified (Imbs and Wacziarg 2003; Hummels and Klenow 2005; Cadot, Carrière and Strauss-Kahn 2011)
 - Rich theory with quantitative applications (Eaton and Kortum 2002; Melitz 2003; Chaney 2008; Alvarez and Lucas 2007; Waugh 2010; Levchenko and Zhang 2014)
- ➤ Traditional quantitative trade models cannot get import concentration right
 - ▶ Richer countries are more diversified (shown in this paper)
 - ► Theoretical work (Matsuyama 1991, 2000; Echevarria 2000; Markusen 2011; Simonovska 2011) but limited quantitative theory
- ▶ Build a quantitative trade model to get import and export concentration right

- ➤ Traditional quantitative trade models can get export concentration right
 - ▶ Richer countries more diversified (Imbs and Wacziarg 2003; Hummels and Klenow 2005; Cadot, Carrière and Strauss-Kahn 2011)
 - Rich theory with quantitative applications (Eaton and Kortum 2002; Melitz 2003; Chaney 2008; Alvarez and Lucas 2007; Waugh 2010; Levchenko and Zhang 2014)
- ➤ Traditional quantitative trade models cannot get import concentration right
 - ▶ Richer countries are more diversified (shown in this paper)
 - ► Theoretical work (Matsuyama 1991, 2000; Echevarria 2000; Markusen 2011; Simonovska 2011) but limited quantitative theory
- ▶ Build a quantitative trade model to get import and export concentration right
 - ► Enrich EK model with simple, stylized non-homothetic preferences

- ▶ Products traded in small quantities expand the most after liberalization
 - ▶ Kehoe and Ruhl (2013) call it "Least-Traded Products margin" (LTP) of trade

- ▶ Products traded in small quantities expand the most after liberalization
 - ▶ Kehoe and Ruhl (2013) call it "Least-Traded Products margin" (LTP) of trade
- LTPs important to predict effect of trade liberalization
 - Kehoe, Rossbach, Ruhl (2015), Kehoe, Pujolas, Rossbach (2017), Kehoe, Pujolas, Rossbach, Ruhl (2024)

- ▶ Products traded in small quantities expand the most after liberalization
 - ▶ Kehoe and Ruhl (2013) call it "Least-Traded Products margin" (LTP) of trade
- LTPs important to predict effect of trade liberalization
 - Kehoe, Rossbach, Ruhl (2015), Kehoe, Pujolas, Rossbach (2017), Kehoe, Pujolas, Rossbach, Ruhl (2024)
- ➤ So far, LTP margin captured in
 - irm heterogeneity environments by Arkolakis (2008)
 - Armington environments by Kehoe, Pujolas, Rossbach, Ruhl (2024)
 - but never in Ricardian trade models

- ▶ Products traded in small quantities expand the most after liberalization
 - ▶ Kehoe and Ruhl (2013) call it "Least-Traded Products margin" (LTP) of trade
- LTPs important to predict effect of trade liberalization
 - Kehoe, Rossbach, Ruhl (2015), Kehoe, Pujolas, Rossbach (2017), Kehoe, Pujolas, Rossbach, Ruhl (2024)
- ➤ So far, LTP margin captured in
 - irm heterogeneity environments by Arkolakis (2008)
 - Armington environments by Kehoe, Pujolas, Rossbach, Ruhl (2024)
 - but never in Ricardian trade models
- ▶ Build a quantitative trade model to get the Least-Traded-Products margin in a Ricardian environment

Visual representation of export and import concentration

Figure: Extensive product margin (number of goods)

Figure: Intensive product margin (distribution of value)

Concentration facts I

Data: HS 6 digit 2012

		Theil Exports			Theil Imports		
	Total	Extensive Margin	Intensive Margin	Total	Extensive Margin	Intensive Margin	
Mean Share	4.44	$0.77 \\ 14\%$	$3.67 \\ 86\%$	2.54	$0.22 \\ 8\%$	$\frac{2.32}{92\%}$	

The average country in our sample

- > exports 46% of all products
- imports 80% of all products
- receives $\approx 49\%$ of export revenue on top 1% of exported products
- ▶ spends $\approx 41\%$ of import expenditure on top 1% of imported products

Concentration facts II

- ▶ Poorer countries are more concentrated on exports and imports
- Cross-country patterns driven by extensive and intensive margins

Concentration facts III

	Theil Exports			Theil Imports			
	Total	Extensive Margin	Intensive Margin	Total	Extensive Margin	Intensive Margin	
Log(GDPpc.)	-0.807***	-0.474***	-0.333***	-0.227***	-0.147***	-0.080***	
	[0.079]	[0.030]	[0.067]	[0.028]	[0.015]	[0.022]	
Year FE	No	No	No	No	No	No	
R2	0.36	0.55	0.12	0.26	0.44	0.05	
Observations	3025	3025	3025	3025	3025	3025	

- ▶ Negative relationship between concentration and income for **exports and imports** on all margins
- ▶ Robust to inclusion of country size (population) and year fixed effects

Least-Traded Products facts (from Kehoe and Ruhl, 2013 JPE)

- After a trade liberalization, massive increase in Least-Traded Products (left figure)
 - Canada-US, 1985-1995, SITC Rev1 5-digit
 - ▶ Note that "zeroes" play a small part not "New Goods Margin"
- ▶ If no trade liberalization, no change in Least-Traded Products (right figure)
 - ▶ USA-Italy, 1985-1995, SITC Rev1 5-digit

Summary

- Concentration:
 - 1. Export > Import
 - 2. Intensive margin > extensive margin
 - 3. More important in poorer countries
- ► Least-Traded Products:
 - 1. After a trade liberalization, LTPs experience more-than-normal growth
 - 2. The LTP margin is **not** coming from "zeroes"

Model

- ▶ Build a multi-country multi-product Ricardian trade theory
- ➤ Standard Eaton-Kortum production for every product
- S-Branch utility tree (Brown and Heien, 1972) preferences
 - Class of Non-homothetic preferences with linear expenditure system
 - ▶ Endogenously generates zero demand for some products; more so for poorer countries
 - ▶ Number of imported products increases with income

Production (EK for every product)

$$q(u,x) = x^{-\theta}(u)l(u)$$

- \blacktriangleright x(u) .. productivity $(x(u) \sim \exp(\lambda))$ with $E(x) = \lambda$ (absolute advantage)
 - Productivity distribution is independent of product u
 - \triangleright Country can supply variety (x, u) even without domestic demand
- \triangleright θ .. productivity dispersion (degree of comparative advantage)
- \triangleright l(u) .. labor input

Perfect competition and free movement of labor across products; domestic price:

$$p(u,x) = x^{\theta}(u)w$$

Household

S-Branch utility tree

$$\max_{q(u)} Q = \left(\int_0^1 (q(u) + \kappa u)^{\frac{\sigma - 1}{\sigma}} du \right)^{\frac{\sigma}{\sigma - 1}}$$

- \triangleright u .. designates the product (standard EK: $\kappa = 0$)
- ightharpoonup q(u) .. tradable variety within product u
- \triangleright σ .. elasticity of substitution

Budget constraint:

$$\int_0^1 q(u)p(u)du = wL$$

Demand for product q(u):

$$q(u) = \max \left(q(0) \times \left(\frac{p(u)}{p(0)}\right)^{-\sigma} - u > 0, 0\right)$$

Number of products increases with income

Cut-off price for products with positive demand:

$$\bar{p}(u) = p(0) \left(\frac{q(0)}{u}\right)^{1/\sigma}$$

Range of products consumed with price below cut-off:

$$Prob(0 < p(u, x) < \bar{p}(u)) = Prob\left(0 < x < (\bar{p}(u)/w)^{1/\sigma}\right)$$

 \triangleright Richer countries (higher w) demand more products

Trade pattern determined by relative unit cost of production

ightharpoonup Country *i* buys variety *u* from country *j* with lowest price

$$p_i(u, x) = \min_{j} \left[\left(w_j / \kappa_{ij} \right) x_j^{\theta}(u) \right]$$

- $\triangleright \kappa_{ij}$... inverse of trade costs
- \triangleright Probability that country *i* imports variety *x* from country *j*

$$D_{ij}(u) = \frac{\left(w_j/\kappa_{ij}\right)^{-1/\theta} \lambda_j}{\sum_{k=1}^{I} \left(w_k/\kappa_{ik}\right)^{-1/\theta} \lambda_k}$$

▶ If demanded, import decision does not depend on product characteristic.

Equilibrium conditions

▶ Balance of payments condition

$$\underbrace{L_{i} \sum_{j=1}^{I} D_{ij} \int_{0}^{1} E(q_{ij}(u)p_{ij}(u)du}_{\text{Expenditure (domestic + imports)}} = \underbrace{\sum_{k=1}^{I} L_{k} D_{ki} \int_{0}^{1} E(q_{ki}(u)p_{ki}(u)du}_{\text{Sales (domestic + exports)}} + \underbrace{D_{i}}_{\text{deficit}}$$

- \triangleright D_i .. exogenous current account deficit (taken as given)
- ▶ Labor market clearing

$$L_i = \int_0^1 l(u)du$$

 \Rightarrow Find equilibrium vector w_i that clears all markets

Concentration on the extensive margin

 \triangleright Probability that j exports good u to i

$$D_{ij}(u) = \frac{\left(w_j/\kappa_{ij}\right)^{-1/\theta} \lambda_j}{\mu_i} \quad \text{where} \quad \mu_i = \sum_{k=1}^{I} \left(w_k/\kappa_{ik}\right)^{-1/\theta} \lambda_k$$

- Absolute advantage $(\lambda_j \uparrow)$: j has less export concentration
- Trade costs decrease $(\kappa_{ij} \uparrow)$: j has less export concentration, i has less import concentration
- \triangleright Comparative advantage $(\theta \uparrow)$: cross-country differences matter more for concentration
- ➤ Share of goods that *i* imports

$$N_i^I = \int_0^1 \sum_{j \neq i}^I D_{ij}(u) du_i = \int_0^1 \int_0^{(\bar{p_i}(u_i)/w_i)^{1/\sigma}} (1 - D_{ii}) \mu_i e^{-\mu_i x_i} dx_i du_i$$

 \blacktriangleright i has less concentration if more productive $(\lambda_i \uparrow)$ and lower trade costs $(\kappa_{ij} \downarrow)$

Concentration on the intensive margin

- \triangleright Heterogeneity in production (θ) and demand (σ) are the same across countries
 - With Fréchet distribution (case for product u=0), concentration of sales and expenditures depends only on θ and σ

$$T_i^{IN} = \log \left(\Gamma(1 + \theta(1 - \sigma)) \right) - \int_0^\infty \log \left(y^{\theta(\sigma - 1)} \right) y^{\theta(\sigma - 1)} e^{-y} dy$$

- \blacktriangleright i will concentrate with higher $\theta \uparrow$ and elasticity of substitution $\sigma \uparrow$
- For truncated Frechet (case for products u > 0), truncation at lower end of productivity draws increases concentration
- Across products, concentration of sales/expenditures depends on:
 - $\theta \uparrow$, $\sigma \uparrow$ and range of products exported \downarrow and imported \downarrow

Computational exercise

Sample and sources:

- Use 24 largest countries in the world (new results with 77 largest countries soon)
- Variance of productivity draws: $\theta = 0.15$ (Waugh, 2012)
- Elasticity of substitution: $\sigma = 5$ (Head and Mayer, 2013)
- ▶ Labor endowments and GDP per capita are from Penn World Table

Strategy:

- Discretize u in 100,000 cells; map cells to HS 6-digit products using trade volume (many cells-to-products)
- ▶ Calibrate trade costs, productivity to match bilateral trade flows and cross-country income differences
- ▶ Validate exercise by simulating concentrations and comparing to data

Calibrated bilateral trade and trade costs

- ▶ Bilateral trade match perfectly by construction
- ▶ Model implied trade costs match trade costs from gravity
 - ▶ Gravity variables: border, distance, origin/destination fixed effects

Estimated technology versus income per capita

▶ Model implied productivity correlates well with income per capita

Simulated concentration levels

	Theil Exports			Theil Imports		
	Total	Extensive Margin	Intensive Margin	Total	Extensive Margin	Intensive Margin
Mean (Data) Share (Data)	4.44	$0.77 \\ 14\%$	$3.67 \\ 86\%$	2.54	0.22 8%	$\frac{2.32}{92\%}$
Mean (Benchmark) Share (Benchmark)	3.83	$\frac{2.1}{53\%}$	$1.73 \\ 47\%$	2.48	$1.05 \\ 41\%$	$\frac{1.43}{59\%}$
Mean (Homothetic) Share (Homothetic)	3.4	$1.59 \\ 47\%$	$\frac{1.81}{53\%}$	2.14	$0.59 \\ 28\%$	$1.55 \\ 72\%$

- ▶ Simulation results are broadly consistent with overall concentration
 - Not for split between extensive and intensive

Simulated concentration levels: cross-country differences

	'	Theil Exports	s	Theil Imports			
	Total	Extensive Margin	Intensive Margin	Total	Extensive Margin	Intensive Margin	
	<u>Data</u>						
Log(GDPpc.)	-0.807*** [0.079]	-0.474*** [0.030]	-0.333*** [0.067]	-0.227*** [0.028]	-0.147*** $[0.015]$	-0.080*** [0.022]	
R2	0.36	0.55	0.12	0.26	0.44	0.05	
Log(GDPpc.)	-0.385*** [0.076]	-0.426*** [0.097]	0.041 $[0.055]$	-0.176*** [0.026]	-0.274*** [0.045]	0.098*** [0.022]	
R2	0.54	0.47	0.02	0.68	0.63	$0.47^{'}$	
	<u>Homothetic</u>						
Log(GDPpc.)	-0.333*** [0.064] 0.55	-0.353*** [0.095] 0.39	0.020 [0.063] 0.00	-0.007 [0.016] 0.01	-0.019 [0.037] 0.01	0.013 [0.022] 0.01	

Simulated results for concentration

- ▶ Benchmark model matches:
 - Export > Import concentration
 - Concentration intensive margin > extensive margin
 - Concentration declines with per capita income
- Model doesn't match concentration at extensive and intensive margin
 - ▶ First: Analyze results with 77 countries; action in intensive margins comes from smaller countries, absent in our exercise
 - Second: Fine-tune the calibration (σ and θ) may be necessary; maybe play with functional form on u

Simulated results for LTP, benchmark

- After a trade liberalization, massive increase in Least-Traded Products (left figure)
 - Consistent with LTP facts
 - ▶ Note that "zeroes" play a small part not "New Goods Margin"
- ➤ If no trade liberalization, no change in Least-Traded Products (right figure)

Simulated results for LTP, homothetic

- ▶ After a trade liberalization, no increase in Least-Traded Products (left figure)
 - Not consistent with LTP facts
 - All the action in the "zeroes"
- ➤ If no trade liberalization, no change in Least-Traded Products (right figure)

Conclusion

- ▶ A small tweak to the preferences in the Eaton-Kortum trade model delivers:
 - ▶ a quantitative a model that matches import and export concentration
 - ▶ a quantitative model that account for the Least-Traded Products margin