Clase IV: Espacios Vectoriales Métodos Computacionales

Métodos Computacionales

Clase IV: Espacios Vectoriales

Factorización

Factorización de matrices

- Expresar una matriz A como un producto de dos o más matrices:
 - Multiplicar matrices constituye una síntesis de datos.
 - Factorizar matrices es un análisis de datos.

Factorización de matrices

- Expresar una matriz A como un producto de dos o más matrices:
 - Multiplicar matrices constituye una síntesis de datos.
 - Factorizar matrices es un **análisis** de datos.
- Existen múltiples factorizaciones de matrices:
 - LU

- Cholesky

- ...

- QR

- Schur

- ...

- SVD

- Valores/vectores propios

Motivación: problemas industriales y de negocios que frecuentemente necesitan resolver ecuaciones con la misma matriz de coeficientes:

$$A\mathbf{x} = \mathbf{b_1}, \quad A\mathbf{x} = \mathbf{b_2}, \quad \dots, A\mathbf{x} = \mathbf{b_p}$$

Motivación: problemas industriales y de negocios que frecuentemente necesitan resolver ecuaciones con la misma matriz de coeficientes:

$$A\mathbf{x} = \mathbf{b_1}, \quad A\mathbf{x} = \mathbf{b_2}, \quad \dots, A\mathbf{x} = \mathbf{b_p}$$

- Si A es invertible, calculamos: $A^{-1}\mathbf{b}_1$, $A^{-1}\mathbf{b}_2$, ..., $A^{-1}\mathbf{b}_n$
- Encontrar A^{-1} es caro computacionalmente!

Motivación: problemas industriales y de negocios que frecuentemente necesitan resolver ecuaciones con la misma matriz de coeficientes:

$$A\mathbf{x} = \mathbf{b_1}, \quad A\mathbf{x} = \mathbf{b_2}, \quad \dots, A\mathbf{x} = \mathbf{b_p}$$

- Si A es invertible, calculamos: $A^{-1}\mathbf{b}_1$, $A^{-1}\mathbf{b}_2$, ..., $A^{-1}\mathbf{b}_n$
- Resulta más eficiente calcular la factorización LU de A.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & \bullet & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L \quad U \quad U \quad M \times M$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & \bullet & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L \\ m \times m$$

$$U \\ m \times n$$

$$A\mathbf{x} = \mathbf{b}$$
$$L(U\mathbf{x}) = \mathbf{b}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & \bullet & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L \\ m \times m$$

$$U \\ m \times n$$

$$A\mathbf{x} = \mathbf{b}$$

$$L(U\mathbf{x}) = \mathbf{b}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & \bullet & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L \quad U \quad U \quad M \times M$$

$$A\mathbf{x} = \mathbf{b}$$

$$L(U\mathbf{x}) = \mathbf{b}$$

$$\mathbf{y}$$

$$L\mathbf{y} = \mathbf{b}$$

$$U\mathbf{x} = \mathbf{v}$$

$$A\mathbf{x} = \mathbf{b}$$
 $L(U\mathbf{x}) = \mathbf{b}$
 \mathbf{y}

$$L\mathbf{y} = \mathbf{b}$$
 $U\mathbf{x} = \mathbf{y}$

Resolver:
$$A\mathbf{x} = \mathbf{b}$$
, $\mathbf{b} = \begin{bmatrix} -9 \\ 5 \\ 7 \\ 11 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix}$$

Resolver:
$$A\mathbf{x} = \mathbf{b}$$
, $\mathbf{b} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -5 & 1 & 0 \\ -3 & 8 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = LU$$

Llevar A a una forma escalonada U

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

Llevar A a una forma escalonada U

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & -9 & -3 & -4 & 10 \\ 0 & 12 & 4 & 12 & -5 \end{bmatrix}$$

- Llevar A a una forma escalonada U

Llevar
$$A$$
 a una forma escalonada U

Elegir L tal que la misma secuencia reduzca L a I

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{3}$$

$$\stackrel{\downarrow}{}_{3}$$

$$\stackrel{\downarrow}{}_{4}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{2}$$

$$\stackrel{\downarrow}{}_{3}$$

$$\stackrel{\downarrow}{}_{4}$$

$$\stackrel{\downarrow}{$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ -3 \end{bmatrix}$$

- Llevar A a una forma escalonada U
- lacksquare Elegir L tal que la misma secuencia reduzca L a I

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & -9 & -3 & -4 & 10 \\ 0 & 12 & 4 & 12 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 4 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ -3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$

Clase IV: Espacios Vectoriales Métodos Computacionales

- Llevar A a una forma escalonada U
- Elegir L tal que la misma secuencia reduzca L a I

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 4 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ -3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Clase IV: Espacios Vectoriales

Métodos Computacionales

- Llevar A a una forma escalonada U
- Elegir L tal que la misma secuencia reduzca L a I

$$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ -3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Llevar A a una forma escalonada U

Elegir
$$L$$
 tal que la misma secuencia reduzca L a I
$$U = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2 & 4 & 1 & 3 & 2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix}$$

- Reducir A a una forma escalonada U con operaciones de reemplazo de filas.
- Colocar entradas en L de tal manera que la misma secuencia de operaciones por fila reduzca L a I.

$$E_p \cdots E_1 A = U$$

- Reducir A a una forma escalonada U con operaciones de reemplazo de filas.
- Colocar entradas en L de tal manera que la misma secuencia de operaciones por fila reduzca L a I.

$$E_p \cdots E_1 A = U$$
$$A = (E_p \cdots E_1)^{-1} U$$

- Reducir A a una forma escalonada U con operaciones de reemplazo de filas.
- Colocar entradas en L de tal manera que la misma secuencia de operaciones por fila reduzca L a I.

$$E_p \cdots E_1 A = U$$

$$A = \underbrace{(E_p \cdots E_1)}^{-1} U = LU$$

$$L = \underbrace{(E_p \cdots E_1)}^{-1}$$

- Reducir A a una forma escalonada U con operaciones de reemplazo de filas.
- Colocar entradas en L de tal manera que la misma secuencia de operaciones por fila reduzca L a I.

$$E_p \cdots E_1 A = U$$

$$A = \underbrace{(E_p \cdots E_1)}^{-1} U = LU$$

$$L = \underbrace{(E_p \cdots E_1)}^{-1}$$

$$E_p \cdots E_1 L = (E_p \cdots E_1) (E_p \cdots E_1)^{-1} = I$$

Ejercicio

Encontrar la factorización LU de:

$$A = \begin{bmatrix} 2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 2 & -7 & -3 & 9 \\ 4 & -2 & -2 & -1 \\ -6 & 3 & 3 & 4 \end{bmatrix}$$

Espacio Vectorial - Definición

- Un espacio vectorial es un conjunto no vacío V de vectores donde están definidas dos operaciones: la suma y la multiplicación por escalares.
- Debe cumplir con 10 axiomas:
 - I. La suma $\mathbf{u} + \mathbf{v}$ está en V
 - 2. u + v = v + u
 - 3. (u + v) + w = u + (v + w)
 - 4. Hay un vector cero $\mathbf{0}$ en V tal que $\mathbf{u} + \mathbf{0} = \mathbf{u}$
 - 5. Para cada \mathbf{u} en V, existe $-\mathbf{u}$ en V tal que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Espacio Vectorial - Definición

- Un espacio vectorial es un conjunto no vacío V de vectores donde están definidas dos operaciones: la suma y la multiplicación por escalares.
- Debe cumplir con 10 axiomas:
 - 6. El múltiplo escalar de \mathbf{u} por c, ($c\mathbf{u}$) está en V
 - 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
 - 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
 - 9. $c(d \mathbf{u}) = (c d) \mathbf{u}$
 - $10. \quad 1 \mathbf{u} = \mathbf{u}$

Subespacio - Definición

- Un **subespacio** de un espacio vectorial V es cualquier conjunto H en V que cumpla con las siguientes 3 propiedades:
 - El vector cero pertenece a H
 - Para cada \mathbf{u} y \mathbf{v} en H, la suma $\mathbf{u} + \mathbf{v}$ está en H
 - Para cada \mathbf{u} en H y cada escalar c, el vector c \mathbf{u} está en H

$$H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2\}$$

Ejemplo:

$$H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2\}$$

- El vector ${\bf 0}$ está en H porque $0{\bf v}_1+0{\bf v}_2$ es una combinación lineal de ${\bf v}_1$ y ${\bf v}_2$

$$H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2\}$$

- El vector ${\bf 0}$ está en H porque $0{\bf v}_1+0{\bf v}_2$ es una combinación lineal de ${\bf v}_1$ y ${\bf v}_2$
- Para cada \mathbf{u} y \mathbf{v} en H, la suma $\mathbf{u} + \mathbf{v}$ está en H porque:

$$\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2$$
 $\mathbf{v} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$
 $\mathbf{u} + \mathbf{v} = (s_1 + t_1) \mathbf{v}_1 + (s_2 + t_2) \mathbf{v}_2$

$$H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2\}$$

- El vector ${\bf 0}$ está en H porque $0{\bf v}_1+0{\bf v}_2$ es una combinación lineal de ${\bf v}_1$ y ${\bf v}_2$
- Para cada \mathbf{u} y \mathbf{v} en H, la suma $\mathbf{u} + \mathbf{v}$ está en H
- Para cualquier escalar c, el vector c \mathbf{u} está en H porque:

$$c\mathbf{u} = c(s_1\mathbf{v}_1 + s_2\mathbf{v}_2)$$
$$c\mathbf{u} = (cs_1)\mathbf{v}_1 + (cs_2)\mathbf{v}_2$$

$$H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2\}$$

La suma no está sobre L

La suma no está sobre L

La suma no está sobre L

2w no está sobre L

- Los $Gen\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ son subespacios generados por $\mathbf{v}_1, ..., \mathbf{v}_p$.
- \mathbb{R}^n es un subespacio (cumple con las tres condiciones requeridas por la definición).
- El vector $\mathbf{0}$ en \mathbb{R}^n es un subespacio y se conoce como subespacio cero.

El espacio de columnas de una matriz A es el conjunto Col A de todas las combinaciones lineales de sus columnas.

$$A = [\mathbf{a}_1, ..., \mathbf{a}_n]$$
Col $A = \text{Gen}\{\mathbf{a}_1, ..., \mathbf{a}_n\}$

El espacio de columnas de una matriz A es el conjunto Col A de todas las combinaciones lineales de sus columnas.

$$A = [\mathbf{a}_1, ..., \mathbf{a}_n]$$
Col $A = \text{Gen}\{\mathbf{a}_1, ..., \mathbf{a}_n\}$

El espacio columna de una matriz de $m \times n$ es un subespacio de \mathbb{R}^m

lacktriangle Determinar si **b** está en el espacio columna de A

$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$$

lacktriangle Determinar si **b** está en el espacio columna de A

$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$$

Cuando un sistema de ecuaciones lineales está escrito en la forma Ax = b, el espacio columna Col A es el conjunto de todas las b para las que el sistema tiene una solución

Col A es igual a \mathbb{R}^m sólo cuando las columnas de A generan \mathbb{R}^m , sino es solo una parte de \mathbb{R}^m

Espacio Nulo

El **espacio nulo** de una matriz A es el conjunto Nul A de todas las soluciones posibles para la ecuación homogénea $A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

Espacio Nulo

El **espacio nulo** de una matriz A es el conjunto Nul A de todas las soluciones posibles para la ecuación homogénea $A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

El espacio nulo de una matriz A de $m \times n$ es un subespacio de \mathbb{R}^n

Espacio Nulo

El **espacio nulo** de una matriz A es el conjunto Nul A de todas las soluciones posibles para la ecuación homogénea $A\mathbf{x} = \mathbf{0}$

- Por lo general, un subespacio contiene un número infinito de vectores.
- Para muchos problemas, es deseable trabajar con un conjunto finito y pequeño de vectores.
- Se puede demostrar que, el conjunto generador más chico posible tiene que ser linealmente independiente.

- Por lo general, un subespacio contiene un número infinito de vectores.
- Para muchos problemas, es deseable trabajar con un conjunto finito y pequeño de vectores.
- Se puede demostrar que, el conjunto generador más chico posible tiene que ser linealmente independiente.

Una **base** de un subespacio H de \mathbb{R}^n es un conjunto linealmente independiente en H que genera H

Base estándar para \mathbb{R}^n :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Base estándar para \mathbb{R}^n :

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots, \quad \mathbf{e}_{n} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Encontrar una base para el espacio nulo de la matriz:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Encontrar una base para el espacio columna de la matriz:

$$A = \begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Encontrar una base para el espacio columna de la matriz:

$$A = \begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Las columnas pivote de una matriz A forman una base para el espacio columna de A.

Razón principal para seleccionar una base para un subespacio H: cada vector en H se puede escribir de tan solo una manera como combinación lineal de los vectores de la base.

Razón principal para seleccionar una base para un subespacio H: cada vector en H se puede escribir de tan solo una manera como combinación lineal de los vectores de la base.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p \quad \mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_p \mathbf{b}_p$$

Razón principal para seleccionar una base para un subespacio H: cada vector en H se puede escribir de tan solo una manera como combinación lineal de los vectores de la base.

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p \quad \mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_p \mathbf{b}_p$$

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1) \mathbf{b}_1 + \dots + (c_p - d_p) \mathbf{b}_p$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix} \quad \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$$

$$c_1 \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

$$c_1 \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$$

"B-coordenadas"
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix} \ [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix} \ [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Especificar una base \mathcal{B} para un espacio vectorial V es imponer un sistema de coordenadas en V

Si \mathcal{B} es una base con p vectores para H, entonces el mapeo $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ es una correspondencia uno a uno que permite a H verse y actuar como \mathbb{R}^p

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \text{ para } \mathbb{R}^2 \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \text{ para } \mathbb{R}^2 \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \text{ para } \mathbb{R}^2 \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} \quad \mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$$

$$\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$$

■ Ejercicio: encontrar las \mathcal{B} -coordenadas de una \mathbf{x} dada para una base \mathcal{B} en \mathbb{R}^n

$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$$

Determinar las coordenadas de $[x]_{\alpha}$

■ Ejercicio: encontrar las \mathcal{B} -coordenadas de una \mathbf{x} dada para una base \mathcal{B} en \mathbb{R}^n

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{b}_1 \qquad \mathbf{b}_2 \qquad \mathbf{x}$$

Ejercicio: encontrar las \mathcal{B} -coordenadas de una \mathbf{x} dada para una base \mathcal{B} en \mathbb{R}^n

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Matriz de cambio de

coordenadas $P_{\mathcal{B}}$

■ Ejercicio: encontrar las \mathcal{B} -coordenadas de una \mathbf{x} dada para una base \mathcal{B} en \mathbb{R}^n

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Matriz de cambio de coordenadas:

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$

 $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$

Matriz de cambio de coordenadas:

$$P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$
$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$
$$P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$$

■ En algunas aplicaciones, se describe un problema usando una base \mathcal{B} , pero la solución se facilita si cambiamos a una nueva base \mathcal{C}

- En algunas aplicaciones, se describe un problema usando una base \mathcal{B} , pero la solución se facilita si cambiamos a una nueva base \mathcal{C}
- A cada vector en \mathcal{B} le asignamos un nuevo vector de \mathcal{C} -coordenadas.

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \qquad [\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

■ **Problema:** encontrar la conexión entre los dos sistemas de coordenadas:

■ **Problema:** encontrar la conexión entre los dos sistemas de coordenadas:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$
 $\mathbf{b}_1 = 4\mathbf{c}_1 + \mathbf{c}_2$
 $\mathbf{b}_2 = -6\mathbf{c}_1 + \mathbf{c}_2$
Si $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, encontrar $[\mathbf{x}]_{\mathcal{C}}$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{vmatrix} 3 \\ 1 \end{vmatrix} \longrightarrow \mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow \mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$$
$$[\mathbf{x}]_{\mathcal{C}} = [3\mathbf{b}_1 + \mathbf{b}_2]_{\mathcal{C}}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow \mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$$
$$[\mathbf{x}]_{\mathcal{C}} = 3[\mathbf{b}_1]_{\mathcal{C}} + [\mathbf{b}_2]_{\mathcal{C}}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow \mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$$
$$[\mathbf{x}]_{\mathcal{C}} = 3[\mathbf{b}_1]_{\mathcal{C}} + [\mathbf{b}_2]_{\mathcal{C}}$$
$$[\mathbf{x}]_{\mathcal{C}} = [\ [\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \] \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Dados:

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \longrightarrow \mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$$
$$[\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Métodos Computacionales

Problema: encontrar la conexión entre los dos sistemas de coordenadas:

 \blacksquare En general, si tenemos dos bases de un espacio vectorial V

$$\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$$
 $\mathcal{C} = \{\mathbf{c}_1, \ldots, \mathbf{c}_n\}$

Existe una única matriz P de $n \times n$ tal que:

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$

y las columnas de P son los vectores en C-coordenadas de la

base de
$$\mathcal{B}$$
: $P = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \ \cdots \ [\mathbf{b}_n]_{\mathcal{C}}]$

Problema: encontrar la conexión entre los dos sistemas de coordenadas:

Problema: encontrar la conexión entre los dos sistemas de coordenadas:

lacksquare Encontrar la matriz de cambio de coordenadas de \mathcal{B} a \mathcal{C}

$$\mathbf{b}_1 = \begin{bmatrix} -9\\1 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1\\-4 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} 3\\-5 \end{bmatrix}$$

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$

Encontrar la matriz de cambio de coordenadas de \mathcal{B} a C

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \quad [\mathbf{b}_2]_{\mathcal{C}}] = \begin{bmatrix} 6 & 4\\ -5 & -3 \end{bmatrix}$$

Dimensión y Rango

Definiciones de Dimensión y Rango

La dimensión de un subespacio H (dim H) es el número de vectores en cualquier base para H. La dimensión del subespacio {0} es cero por definición.

Dimensiones de los subespacios en \mathbb{R}^3

Podemos clasificar los subespacios por dimensión:

Definiciones de Dimensión y Rango

La dimensión de un subespacio H (dim H) es el número de vectores en cualquier base para H. La dimensión del subespacio {0} es cero por definición.

El **rango** de una matriz A (rango A), es la dimensión del espacio columna de A.

Ejemplo:

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix}$$

Ejemplo:

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix} \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Ejemplo:

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix} \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rango A = 3 (# pivotes)

Ejemplo:

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix} \sim \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rango A = 3 (# pivotes) dim Nul A = 2 (# var. libres)

Dimensión y Rango

Si una matriz tiene *n* columnas, entonces:

$$rangoA + dim NulA = n$$