Практическое занятие №4

Рассмотрим еще задачи на исследование аналитичности функции.

<u>Пример</u>. Исследовать функцию $f(z) = 3iz^2 + 6$ на аналитичность.

Решение. Выделим действительную и мнимую части функции, подставив вместо z = x + iy:

$$f(z) = 3i(x + iy)^2 + 6 = 3i(x^2 - y^2) - 6xy + 6,$$

т. е.

$$Ref(z) = u(x, y) = -6xy + 6$$
, $Imf(z) = v(x, y) = 3x^2 - 3y^2$.

Функции u(x,y), v(x,y) дифференцируемы во всех точках (x,y). Проверим выполнение теоремы 2.2.

$$\frac{\partial u}{\partial x} = -6y, \frac{\partial v}{\partial y} = -6y, \frac{\partial u}{\partial y} = -6x, \frac{\partial v}{\partial x} = 6x.$$

Условия Коши-Римана выполнены во всех точках (x, y), т.е. выполнены условия теоремы 2.2, следовательно, $f(z) = 3iz^2 + 6$ аналитическая функция на всей комплексной плоскости.

<u>Пример.</u> Исследовать функцию $f(z) = 9\overline{z} + 20z + i$ на аналитичность.

Peшение. Выделим действительную и мнимую части функции, подставим вместо $\overline{z} = x - iy$

$$f(z) = 9(x - iy) + 20(x - y) + i = (29x - 20y) + i(-9y + 1)$$

т.е.

$$Ref(z) = u(x, y) = 29x - 20y, Imf(z) = v(x, y) = -9y + 1.$$

Функции u(x,y), v(x,y) дифференцируемы во всех точках (x,y), проверим выполнение условий теоремы 2.2

$$\frac{\partial u}{\partial x} = 29, \frac{\partial v}{\partial y} = -9, \frac{\partial u}{\partial y} = 0, \frac{\partial v}{\partial x} = 0.$$

 $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ - первое условие Коши-Римана не выполнено ни в одной точке

комплексной плоскости. Значит, функция $\omega(z) = 9\overline{z} + 20z + i$ нигде не дифференцируема, а следовательно, не является аналитической.

<u>Пример.</u> Исследовать функцию $f(z) = ie^{3z}$ на аналитичность.

Решение. Выделим действительную и мнимую части функции

$$f(z) = ie^{3z} = ie^{3x}cos3y - e^{3x}sin3y$$
, т.е.

$$\operatorname{Re} f(z) = u(x,y) = -e^{3x} \sin 3y$$
 – действительная часть функции,

$$\operatorname{Im} f(z) = v(x,y) = e^{3x} \cos 3y$$
 - мнимая часть функции.

Функции u(x,y), v(x,y) дифференцируемы во всех точках (x,y), проверим выполнение условий теоремы 2.2

$$\frac{\partial u}{\partial x} = -3e^{3x}sin3y$$
, $\frac{\partial v}{\partial y} = -3e^{3x}sin3y$, получаем $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ во всех точках (x,y)

$$\frac{\partial u}{\partial y} = -3e^{3x}cos3y$$
, $\frac{\partial v}{\partial x} = 3e^{3x}cos3y$, получаем $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ во всех точках (x,y)

Таким образом, $f(z) = ie^{3z}$ дифференцируема во всех точках z и аналитическая на всей комплексной плоскости.

2.5 Геометрический смысл модуля и аргумента производной. Примеры конформных отображений

Рассмотрим функцию $\omega = f(z)$, аналитическую в точке z_0 , $f'(z_0) \neq 0$. Тогда $|f'(z_0)|$ равен коэффициенту растяжения в точке z_0 при отображении $\omega = f(z)$ плоскости z на плоскость ω :

при $|f'(z_0)| > 1$ имеет место растяжение,

при $|f'(z_0)| < 1$ имеет место сжатие.

ТФКП, 4 семестр, ИРТС

Аргумент производной $f'(z_0)$ геометрически равен углу, на который нужно повернуть касательную в точке z_0 к любой гладкой кривой на плоскости z, проходящей через точку z_0 , чтобы получить направление касательной в точке $\omega_0 = f(z_0)$ к образу этой кривой на плоскости ω при отображении $\omega = f(z)$.

Определение. Отображение окрестности точки z_0 на окрестность точки ω_0 , осуществляемое функцией $\omega=f(z),\ f'(z_0)\neq 0$ и обладающее в точке z_0 свойством сохранения углов между линиями и постоянством растяжений, называется конформным в точке z_0 .

Свойство сохранения углов означает: если при отображении $\omega = f(z)$ кривые γ_1 и γ_2 переходят соответственно в кривые Γ_1 и Γ_2 , то угол φ между касательными k_1 и k_2 к кривым γ_1 и γ_2 в точке z_0 будет равен угла Φ между соответствующими касательными K_1 и K_2 к кривым Γ_1 и Γ_2 в точке ω_0 , т.е. $\Phi = \varphi$.

ТФКП, 4 семестр, ИРТС

Свойство постоянства растяжений: при отображении, осуществляемом аналитической функцией, $f'(z_0) \neq 0$ «малые элементы» в окрестности точки z_0 преобразуются подобным образом с коэффициентом $k = |f'(z_0)|$.

Рассмотрим примеры конформных отображений, осуществляемые линейной функцией $\omega = az + b$ и степенной $\omega = z^n$.

1. <u>Линейная функция</u> $\omega = az + b$, где a и b – постоянные комплексные числа ($a \neq 0$). Пусть $a = re^{ia}$, $z = |z|e^{i\psi}$. Рассмотрим два преобразования, составляющие функцию ω :

$$\omega_1=\alpha z,$$

$$\omega=\omega_1+b,$$

$$\omega_1=re^{i\alpha}\cdot|z|e^{i\psi}=r|z|e^{i(\alpha+\psi)},$$

т.е. $\omega_1 = r|z|$, $arg\omega_1 = \psi + \alpha$. Значит, функция ω_1 осуществляет преобразование подобия с центром в начале координат и коэффициентом,

равным r и поворот вокруг начала координат на угол α .

Преобразование $\omega = \omega_1 + b$ — параллельный перенос на вектор, соответствующего комплексному числу b.

Таким образом, при отображении $\omega = az + b$ нужно вектор z повернуть на угол $\alpha = arga$, изменить его длину в r = |a| раз и параллельно перенести на вектор b.

<u>Пример.</u> Определить область D_2 плоскости ω , на которую отобразится область D_1 плоскости z функцией $\omega = (1-i)z + \omega_1$.

Область
$$D_1$$
: $|z| \le 2$, $0 \le argz \le \frac{\pi}{4}$.

Решение. Представим функцию $\omega=(1-i)z+2i=\omega_1+2i$, где $\omega_1=(1-i)z$. Коэффициент a=1-i, $|a|=\sqrt{2}$, $arga=-\frac{\pi}{4}$, т.е. ω_1 осуществляет поворот области D_1 на угол $-\frac{\pi}{4}$ (поворот по часовой стрелке на $\frac{\pi}{4}$) и растяжение с коэффициентом $|a|=\sqrt{2}$.

В результате получаем, что область D_1 перешла в область D. Заключительный шаг: $\omega_2 = \omega_1 + 2i$ — это параллельный перенос полученной области D на вектор b = 2i (все этапы показаны на рис. 10).

Puc. 10

2. Степенная функция $\omega = \mathbf{z}^n, n \ge 2$ – целое положительное число.

Отображает взаимно-однозначно и конформно внутренность угла с вершиной в начале координат, раствор которого θ не превосходит $\frac{2\pi}{n}$ на внутренность угла с вершиной в начале координат раствора $n\theta$.

<u>Пример.</u> Определить область D_2 плоскости ω , на которую отобразится область D_1 плоскости z функцией $\omega=z^2$. Область D_1 :

$$\begin{cases} -\frac{\pi}{6} \le argz \le \frac{\pi}{3}, \\ |z| \le 3. \end{cases}$$

Pешение. При отображении $ω=z^2$ луч $argz=-\frac{\pi}{6}$ перейдет в луч $arg\omega=-\frac{2\pi}{6}=-\frac{\pi}{3}$, луч $argz=\frac{\pi}{3}$ перейдет в луч $argz=\frac{2\pi}{3}$.

 $|\omega| = |z|^2 = 9$, т. е. получим область D_2 (все этапы показаны на рис. 11):

$$\begin{cases} -\frac{\pi}{3} \le \arg \omega \le \frac{2\pi}{3}, \\ |z| \le 9. \end{cases}$$

ТФКП, 4 семестр, ИРТС

Puc. 11

Домашнее задание.

Учебно-методическое пособие «Теория функций комплексного переменного», часть 1. Задачи №№ 1.9, 1.11.

Пособие размещено на сайте кафедры BM-2 http://vm-2.mozello.ru

раздел «Математический анализ. 4 семестр».