NORMA TÉCNICA COLOMBIANA

NTC 2031

2014-07-16

INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS. REQUISITOS METROLOGICOS Y TÉCNICOS. PRUEBAS

E: NON-AUTOMATIC WEIGHING INSTRUMENTS PART 1: METROLOGICAL AND TECHNICAL REQUIREMENTS. TESTS.

CORRESPONDENCIA:	esta norma es adopción idéntica p traducción (IDT) a la OIML R 76- 2006.				
DESCRIPTORES:	instrumentos de pesaje; requisitos metrológicos; pruebas; procedimientos de ensayo.				

I.C.S.: 17.100

Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) Apartado 14237 Bogotá, D.C. - Tel. (571) 6078888 - Fax (571) 2221435

PRÓLOGO

El Instituto Colombiano de Normas Técnicas y Certificación, **ICONTEC**, es el organismo nacional de normalización, según el Decreto 2269 de 1993.

ICONTEC es una entidad de carácter privado, sin ánimo de lucro, cuya Misión es fundamental para brindar soporte y desarrollo al productor y protección al consumidor. Colabora con el sector gubernamental y apoya al sector privado del país, para lograr ventajas competitivas en los mercados interno y externo.

La representación de todos los sectores involucrados en el proceso de Normalización Técnica está garantizada por los Comités Técnicos y el período de Consulta Pública, este último caracterizado por la participación del público en general.

La NTC 2031 (Segunda actualización) fue ratificada por el Consejo Directivo de 2014-07-16.

Esta norma está sujeta a ser actualizada permanentemente con el objeto de que responda en todo momento a las necesidades y exigencias actuales.

A continuación se relacionan las empresas que colaboraron en el estudio de esta norma a través de su participación en el Comité Técnico 02 Metrología.

DF

BELCORP S.A.
COLOMBIEN EMER
COLSEIN LTDA.
EGUIÓN ENERGÍA LTDA.
EMPRESA DE LICORES
CUNDINAMARCA
ICCLAB

INDUSTRIAS SCHMETTERLING

IMPROTEC LTDA.

-ASOPESAJE-

INSTITUTO DISTRITAL DE TURISMO INSTITUTO NACIONAL DE METROLOGÍA LORENA AGUILAR ABRIL MOTTS S.A.S. PROASEM S.A. SOANSES LTDA. TEAM FOODS

Además de las anteriores, en Consulta Pública el Proyecto se puso a consideración de las siguientes empresas:

A'SELLASEG INGENIERÍA LTDA.
ACEITES Y GRASAS VEGETALES S.A. ACEGRASAS, TEAM FOODADMECOL LTDA.
ALCANOS DE COLOMBIA S.A. E.S.P.
ALPINA PRODUCTOS ALIMENTICIOS S.A.
AMG E.U.
AQUIPET LTDA.
ASMECON Y/O JOSÉ MÁRLON VEGA
TORRES
ASOCIACIÓN COLOMBIANA DE
PRODUCTORES DE CONCRETO

ASOCIACIÓN COLOMBIANA DEL PESAJE

ASOCIACIÓN GREMIAL COLOMBIANA DE COMERCIALIZADIORES DE GAS ASOCIACIÓN NACIONAL DE CENTROS DE DIAGNÓSTICO AUTOMOTOR -ASOCDA-AUDIFARMA S.A. AVE COLOMBIANA LTDA. BÁSCULAS PROMETÁLICOS S.A. BTP MEDIDORES Y ACCESORIOS S.A. C.I. AZÚCARES Y MIELES S. A. CAJA DE COMPENSACIÓN FAMILIAR COMPENSAR CAJA DE COMPENSACIÓN FAMILIAR DE RISARALDA

CÁLCULO Y CONSTRUCCIONES E.U. INDUSTRIA PARA LABORATORIOS S.A. INDUSTRIAL DE TINTAS LTDA. CENTRAGAS S.C.A CENTROAGUAS S.A. E.S.P. **INDUSTINTAS-**CENTRORIENTE S.A. INSTITUTO **COLOMBIANO** DE PRODUCTORES DE CEMENTO CHALLENGER S.A. CIBA ESPECIALIDADES QUÍMICAS S.A. INTERTEK CALEB BRETT COLOMBIA S.A. LABORATORIO DE METROLOGÍA -ICOB COATS CADENA S.A. COLGATE PALMOLIVE CÍA. LTDA.-COMPAÑÍA COLOMBIANA **LABORATORIOS** DE **METROLOGÍA** DE CERÁMICAS S.A. SIGMA EU COMPAÑÍA COLOMBIANA DE CLINKER S.A. MATRICES TROQUELES Y MOLDES CÍA. **CORONA** LTDA. METROLOGÍA Υ CALIBRACIÓN **CORPOICA** DISTRIBUCIONES, IMPORTACIONES Y METROCAL LTDA. REPRESENTACIONES LTDA. MULTIDIMENSIONALES S.A. ECOPETROL S.A. OCCIDENTAL DE COLOMBIA, -OXY-EMPRESA COLOMBIANA DE CABLES S.A. **ORGANISMO** NACIONAL DE EMPRESA COLOMBIANA DE GAS ACREDITACIÓN -ONAC-**PHILIPS COLOMBIANA ECOGAS-**DE EMPRESA COLOMBIANA DE SOPLADO E COMERCIALIZACIÓN S.A. PICCOLINNI AROMAS Y SABORES LTDA. INYECCIÓN -ECS S.A.-**EMPRESA** DE ACUEDUCTO **PINTUCO** ALCANTARILLADO DE BOGOTÁ E.S.P. PINZUAR LTDA. ENGICAST LTDA. PRODUCTOS ALIMENTICIOS DORIA S.A. EPM BOGOTÁ S.A. E.S.P. PROFESIONALES CONTABLES **EQUIPOS Y CONTROLES INDUSTRIALES** ASESORÍA **EMPRESARIAL** DE INGENIERÍA LTDA. -PROASEM LTDA.-ESCOBAR & MARTÍNEZ S.A. PROFESIONALES DE LA SALUD S.A. ESCUELA COLOMBIANA DE INGENIERÍA PROGEN PRODUCCIONES GENERALES ETERNA S.A. S.A. EXTRUSIONES SCHULER LTDA. PROMIGAS S.A. E.S.P. FÁBRICA COLOMBIANA DE EXTINTORES PROQUINAL S.A. MORENO Y ASOCIADOS LTDA. PURIFICACIÓN Y ANÁLISIS DE FLUÍDOS FEDERACIÓN NACIONAL DE LTDA. RECTICAR & CÍA. S. EN C. COMERCIANTES - FENALCO BOGOTÁ FERTIABONOS S.A. **SAYBOLT** FF SOLUCIONES SERVICIO NACIONAL DE APRENDIZAJE -FRIGORÍFICO GUADALUPE S.A. SENA - (REGIONAL BOGOTÁ) FUNDACIÓN VALLE DEL LILI SHELL COLOMBIA S.A. GASEOSAS POSADA TOBÓN S.A. SOCIEDAD ANDINA DE SERVICIOS GASES DE BOYACÁ Y SANTANDER S.A. ESPECIALIZADOS LTDA. -SOANSES-GRUPO ZAMBRANO S.A. STARTECH LTDA. GUILLERMO POMBO & CÍA. E.U. SUPERINTENDENCIA DE INDUSTRIA Y VICENTE ESE HOSPITAL SAN COMERCIO -SIC-DE MONTENEGRO SUPERPOLO S.A. HUNTSMAN COLOMBIA LTDA. SYNTOFARMA S.A. IGNACIO GÓMEZ IHM S.A. TECNICONTROL S.A. **IMPLEMENTOS** TERMOMETRÍA COLOMBIANA S.A. Υ **PRODUCTOS** TÉCNICOS LTDA. TERPEL S.A **INCOLBESTOS S.A. TEXTILES SWANTEX S.A.** INDUSTRIA COLOMBIANA DE LLANTAS S.A. TOP SUELOS INGENIERÍA LTDA. INDUSTRIA LICORERA DEL CAUCA

TRANSPORTADORA DE GAS DEL INTERIOR S.A. E.S.P. UNILEVER ANDINA COLOMBIA LTDA. UNIVERSIDAD DEL VALLE UNIVERSIDAD ESCUELA DE ADMINISTRACIÓN Y FINANZAS

UNIVERSIDAD MANUELA BELTRÁN -LABORATORIO DE IDENTIFICACIÓN HUMANA UNIVERSIDAD NACIONAL DE COLOMBIA

ICONTEC cuenta con un Centro de Información que pone a disposición de los interesados normas internacionales, regionales y nacionales y otros documentos relacionados.

DIRECCIÓN DE NORMALIZACIÓN

CONTENIDO

	Página
TERM	INOLOGÍA1
T.1	DEFINICIONES GENERALES1
T.2	CONSTRUCCIÓN DE UN INSTRUMENTO3
T.3	CARACTERÍSTICA METROLÓGICAS DE UN INSTRUMENTO9
T.4	PROPIEDADES METROLÓGICAS DE UN INSTRUMENTO10
T.5	INDICACIONES Y ERRORES11
T.6	INFLUENCIAS Y CONDICIONES DE REFERENCIA15
T.7	ENSAYO DE DESEMPEÑO15
T.8	ÍNDICE DE TÉRMINOS DEFINIDOS15
T.9	SÍMBOLOS Y ABREVIATURAS18
1.	OBJETO20
2.	PRINCIPIOS TÉCNICOS20
2.1	UNIDADES DE MEDIDA20
2.2	PRINCIPIOS DE LOS REQUISITOS METROLÓGICOS20
2.3	PRINCIPIOS DE LOS REQUISITOS TÉCNICOS21
2.4	APLICACIÓN DE LOS REQUISITOS21
2.5	TERMINOLOGÍA21
3.	REQUISITOS METROLÓGICOS21
3.1	PRINCIPIOS DE CLASIFICACIÓN21
2.0	CLASIEICACIÓN DE INSTRUMENTOS

Página 3.3 REQUISITOS ADICIONALES PARA INSTRUMENTOS DE INTERVALO MULTIPLE23 DISPOSITIVOS INDICADORES AUXILIARES......24 3.4 ERRORES MÁXIMOS PERMITIDOS......26 3.5 DIFERENCIAS PERMITIDAS ENTRE RESULTADOS.......27 3.6 3.7 PATRONES DE ENSAYO......28 DISCRIMINACIÓN......29 3.8 VARIACIONES DEBIDAS A LAS MAGNITUDES DE INFLUENCIA 3.9 Y EL TIEMPO29 ENSAYOS Y EXÁMENES DE UNA EVALUACIÓN DE MODELO......33 3.10 REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS 4. CON INDICACIÓN AUTOMÁTICA O INDICACIÓN SEMI-AUTOMÁTICA40 REQUISITOS GENERALES DE CONSTRUCCIÓN40 4.1 4.2 INDICACIÓN DE RESULTADOS DE PESAJE......42 DISPOSITIVOS INDICADORES ANALÓGICOS44 4.3 4.4 DISPOSITIVOS INDICADORES DIGITALES47 4.5 DISPOSITIVO DE AJUSTE A CERO Y DISPOSITIVO DE BLOQUEO DE CERO.......48 4.6 DISPOSITIVOS DE TARA.......50 DISPOSITIVOS DE TARA PRE CONFIGURADA55 4.7 POSICIONES DE BLOQUEO......56 4.8 4.9 DISPOSITIVOS AUXILIARES DE VERIFICACIÓN (REMOVIBLES O FIJOS)........56 4.10 SELECCIÓN DE RANGOS DE PESAJE EN UN INSTRUMENTO

DE RANGO MÚLTIPLE......56

Página

4.11	DISPOSITIVOS DE SELECCIÓN (O CONMUTACIÓN) ENTRE DIFERENTES RECEPTORES DE CARGA Y/O DISPOSITIVOS TRANSMISORES DE CARGA Y DIFERENTES DISPOSITIVOS DE MEDICIÓN DE CARGA
4.12	INSTRUMENTOS DE COMPARACIÓN "MÁS Y MENOS"57
4.13	INSTRUMENTOS PARA LA VENTA DIRECTA AL PÚBLICO58
4.14	REQUISITOS ADICIONALES PARA INSTRUMENTOS CALCULADORES DE PRECIO PARA LA VENTA DIRECTA AL PÚBLICO60
4.15	INSTRUMENTOS SIMILARES A LOS NORMALMENTE UTILIZADOS PARA LA VENTA DIRECTA AL PÚBLICO62
4.16	INSTRUMENTOS ETIQUETADORES DE PRECIO62
4.17	INSTRUMENTOS CONTADORES MECÁNICOS CON RECEPTOR DE PESO UNITARIO
4.18	REQUISITOS TÉCNICOS ADICIONALES PARA INSTRUMENTOS MÓVILES63
4.19	INSTRUMENTOS PORTÁTILES PARA PESAJE DE VEHÍCULOS DE CARRETERA64
4.20	MODOS DE OPERACIÓN65
5.	REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS ELECTRÓNICOS66
5.1	REQUISITOS GENERALES66
5.2	REACCIÓN A FALLAS SIGNIFICATIVAS66
5.3	REQUISITOS DE FUNCIONAMIENTO66
5.4	ENSAYOS DE DESEMPEÑO Y DE ESTABILIDAD DE LA PENDIENTE68
5.5	REQUISITOS ADICIONALES PARA DISPOSITIVOS ELECTRÓNICOS CONTROLADOS POR SOFTWARE68
6.	REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS CON INDICACIÓN NO AUTOMÁTICA
6.1	SENSIBILIDAD MÍNIMA75

	Página
6.2	SOLUCIONES ACEPTABLES PARA LOS DISPOSITIVOS INDICADORES75
6.3	CONDICIONES DE CONSTRUCCIÓN77
6.4	ASTIL SIMPLE DE BRAZOS IGUALES78
6.5	ASTIL SIMPLE DE UNA RELACIÓN 1/1078
6.6	INSTRUMENTOS SIMPLES CON PESAS DESLIZABLES (ROMANAS)78
6.7	INSTRUMENTOS ROBERVAL Y BÉRANGER80
6.8	INSTRUMENTOS CON PLATAFORMAS DE RELACIÓN81
6.9	INSTRUMENTOS CON UN DISPOSITIVO DE MEDICIÓN DE CARGA CON PESAS DESLIZABLES ACCESIBLES (DEL TIPO ROMANA)81
7.	MARCADO DE LOS INSTRUMENTOS Y MÓDULOS82
7.1	MARCAS DESCRIPTIVAS82
7.2	MARCAS DE VERIFICACIÓN86
8.	CONTROLES METROLÓGICOS87
8.1	OBLIGACIÓN A CONTROLES METROLÓGICOS87
8.2	APROBACIÓN DE MODELO87
8.3	VERIFICACIÓN INICIAL90
8.4	CONTROLES METROLÓGICOS POSTERIORES92
DOCU	MENTO DE REFERENCIA168
ANEX	os
PROC	O A (Normativo) EDIMIENTOS DE ENSAYO PARA INSTRUMENTOS ESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS93
	O B (Normativo) YOS ADICIONALES PARA INSTRUMENTOS ELECTRÓNICOS110

Página

ANEXO C (Normativo para módulos ensayados por separado) ENSAYO Y CERTIFICACIÓN DE INDICADORES Y DISPOSITIVOS DE PROCESAMIENTO DE DATOS ANALÓGICOS COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS121
ANEXO D (Normativo para módulos ensayados por separado) ENSAYO Y CERTIFICACIÓN DE DISPOSITIVOS DE PROCESAMIENTO DE DATOS DIGITALES, TERMINALES Y PANTALLAS DIGITALES COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS
ANEXO E (Normativo para módulos ensayados por separado) ENSAYO Y CERTIFICACIÓN DE MÓDULOS DE PESAJE COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICO139
ANEXO F (Normativo para módulos ensayados por separado) VERIFICACIÓN DE COMPATIBILIDAD DE MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS144
ANEXO G (Normativo para dispositivos digitales e instrumentos controlados por software) EXÁMENES Y ENSAYOS ADICIONALES PARA DISPOSITIVOS DIGITALES E INSTRUMENTOS CONTROLADOS POR SOFTWARE
ANEXO H (Informativo) BIBLIOGRAFÍA163
FIGURAS
Figura 1 Definición de módulos típicos de acuerdo con T.2.2 y 3.10.2 (son posibles otras combinaciones)4
Figura 212
Figura 313
Figura 4. Ejemplo de un dispositivo indicador complementario25
Figura 5. Ejemplos de dispositivos indicadores con una división de escala diferenciada última cifra diferenciada25
Figura 6. Ejemplos de aplicación a escalas rectilíneas45
Figura 6. Ejemplos de aplicación a escalas rectilíneas

Pág	gina
TABLAS	
Tabla 122	2
Tabla 222	2
Tabla 322	2
Tabla 423	3
Tabla 5a. Ejemplo de valores de e, calculados siguiendo esta regla20	6
Tabla 5b Ejemplo de valores de e donde d < 1 mg20	6
Tabla 627	7
Tabla 735	5
Tabla 8. Selección de los EUT para un modelo de un instrumento de pesaje de funcionamiento no automático con dos familias38	8
Tabla 9. Resumen de las características metrológicas presentadas en el Certificado OIML39	9
Tabla 1068	8
Tabla 11. Ensayos y documentación requerida para PC utilizadas	0

INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS. REQUISITOS METROLOGICOS Y TÉCNICOS. PRUEBAS

TERMINOLOGÍA

(Términos, definiciones y referencias)

La terminología utilizada en esta norma cumple con el "Vocabulario Internacional de Términos Básicos y Generales de Metrología" (VIM) [1], el "Vocabulario Internacional de Términos de Metrología Legal" (VIML) [2], el "Sistema de Certificados OIML para Instrumentos de Medición" [3] y otras publicaciones de OIML relevantes. Además, para los fines de esta NTC, se aplican las siguientes definiciones. En T.8, puede encontrarse un índice de todos los términos, definiciones y referencias definidos más abajo.

T.1 DEFINICIONES GENERALES

T.1.1 Instrumento de pesaje. Instrumento de medición que sirve para determinar la masa de un cuerpo utilizando la acción de la gravedad sobre este cuerpo.

NOTA En esta NTC, se utiliza preferentemente el término "masa" (o "valor de peso") en el sentido de "masa convencional" o "valor convencional del resultado de pesaje en el aire" de acuerdo con R 111 y D 28, mientras que se utiliza preferentemente el término "peso" para una materialización física (es decir, medida materializada) de la masa que se regula con respecto a sus características físicas y metrológicas.

Este instrumento también puede utilizarse para determinar otras magnitudes, cantidades, parámetros o características relacionadas con la masa determinada.

De acuerdo con su método de operación, un instrumento de pesaje está clasificado como instrumento de pesaje de funcionamiento automático o instrumento de pesaje de funcionamiento no automático.

T.1.2 Instrumento de pesaje de funcionamiento no automático. Instrumento que requiere la intervención de un operador durante el proceso de pesaje para decidir si el resultado de pesaje es aceptable.

NOTA 1 Decidir si el resultado de pesaje es aceptable incluye cualquier acción inteligente por parte del operador que afecte el resultado, tales como tomar una acción cuando una indicación es estable o ajustar la masa de la carga pesada y tomar una decisión con respecto a la aceptación de cada resultado de pesaje al observar la indicación o liberar una salida impresa. Un proceso de pesaje no automático permite al operador tomar una acción (es decir, ajustar la carga, ajustar el precio unitario, determinar que la carga sea aceptable, etc.) que influye en el resultado de pesaje en el caso que éste no sea aceptable.

NOTA 2 En caso de duda con respecto a si un equipo de pesaje es un instrumento de pesaje de funcionamiento no automático o automático, las definiciones de instrumentos de pesaje automáticos dadas en las Recomendaciones OIML R 50, R 51, R 61, R 107 y R 134 tienen mayor prioridad que los criterios de la Nota 1.

Un instrumento de pesaje de funcionamiento no automático puede:

- estar graduado o no graduado, o
- ser de indicación automática, con indicador semiautomático o sin indicación automática.
- NOTA En esta NTC, a un instrumento de pesaje de funcionamiento no automático se le llama "instrumento".
- **T.1.2.1 Instrumento graduado.** Instrumento que permite la lectura directa del resultado de pesaje completo o parcial.
- **T.1.2.2 Instrumento no graduado.** Instrumento no equipado con una escala numerada en unidades de masa.
- **T.1.2.3 Instrumento con indicación automática.** Instrumento en el cual la posición de equilibrio se obtiene sin la intervención de un operador.
- **T.1.2.4 Instrumento con indicador semiautomático.** Instrumento con un rango de pesaje con indicación automática en el cual el operador interviene para modificar los límites de este rango.
- **T.1.2.5 Instrumento sin indicación automática.** Instrumento en el cual la posición de equilibrio es obtenida completamente por el operador.
- **T.1.2.6 Instrumento electrónico.** Instrumento equipado con dispositivos electrónicos.
- **T.1.2.7 Instrumento con escalas de precio.** Instrumento que indica el precio a pagar mediante diagramas o escalas de precio relacionadas con un rango de precios unitarios.
- **T.1.2.8 Instrumento calculador de precio.** Instrumento que calcula el precio a pagar en base al valor de peso indicado y el precio unitario.
- **T.1.2.9 Instrumento etiquetador de precio.** Instrumento calculador de precio que imprime el valor de peso, el precio unitario y el precio a pagar por los pre-envases.
- **T.1.2.10 Instrumento de autoservicio.** Instrumento que está destinado a ser utilizado por el cliente.
- **T.1.2.11 Instrumento móvil.** Instrumento de pesaje de funcionamiento no automático montado o incorporado en un vehículo.
- NOTA 1 Un instrumento montado en un vehículo es un instrumento de pesaje completo que se monta firmemente en un vehículo y que está diseñado para ese fin especial.
- NOTA 2 Un instrumento incorporado en un vehículo utiliza partes del mismo para el instrumento de pesaje.
- EJEMPLOS Pesadoras de basura, elevadores de pacientes, elevadores de paletas, horquillas elevadoras, básculas para sillas de ruedas.
- T.1.2.12 Instrumento portátil para pesaje de vehículos de carretera. Instrumento de pesaje de funcionamiento no automático con receptor de carga, en una o varias partes, que determina la masa total de vehículos de carretera y que está diseñado para ser desplazado a otros lugares.

- EJEMPLOS Puente-báscula portátil, grupo de básculas no automáticas asociadas de carga por eje (o rueda).
- NOTA Está NTC cubre solamente puentes-báscula y grupos de básculas no automáticas asociadas de carga por eje (o rueda) que determinan simultáneamente la masa total de un vehículo de carretera con todos los ejes (o ruedas) apoyados simultáneamente en partes apropiadas de un receptor de carga.
- **T.1.2.13 Instrumento de clasificación.** Instrumento que asigna un resultado de pesaje a un rango predeterminado de masa para determinar una tarifa o tasa.
- EJEMPLOS Balanzas postales, pesadoras de basura.
- **T.1.3 Indicaciones proporcionadas por un instrumento.** Valor de una magnitud proporcionada por un instrumento de medición.
- NOTA Los términos "indicación", "indicar" o "indicador" incluyen visualización y/o impresión.
- **T.1.3.1 Indicaciones primarias.** Indicaciones, señales o símbolos que están sujetos a los requisitos de esta NTC.
- **T.1.3.2 Indicaciones secundarias.** Indicaciones, señales o símbolos que no son indicaciones primarias.

T.2 CONSTRUCCIÓN DE UN INSTRUMENTO

En esta NTC, el término "dispositivo" se utiliza para designar cualquier medio por el cual se realiza una función específica, independientemente de la realización física, por ejemplo, mediante un mecanismo o tecla que inicie una operación. El dispositivo puede ser una parte pequeña o una parte importante de un instrumento.

T.2.1 Dispositivos principales

- **T.2.1.1 Receptor de carga.** Parte del instrumento destinado a recibir la carga.
- **T.2.1.2 Dispositivo transmisor de carga.** Parte del instrumento que sirve para transmitir al dispositivo de medición de carga la fuerza producida por la carga que actúa sobre el receptor de carga.
- **T.2.1.3 Dispositivo de medición de carga.** Parte del instrumento que sirve para medir la masa de la carga mediante un dispositivo equilibrador de la fuerza que proviene del dispositivo transmisor de carga, y un dispositivo indicador o impresor.
- **T.2.2 Módulo.** Parte identificable de un instrumento que realiza una función o funciones específicas, y que se puede evaluar por separado de acuerdo con los requisitos metrológicos y técnicos específicos para el desempeño de la Norma relevante. Los módulos de un instrumento de pesaje están sujetos a límites de errores parciales especificados.
- NOTA Los módulos típicos de un instrumento de pesaje son: celda de carga, indicador, dispositivo de procesamiento de datos analógico o digital, módulo de pesaje, terminal, pantalla primaria.

Se pueden emitir Certificados OIML independientes de acuerdo con R 76 para los módulos mencionados en T.2.2.2-T.2.2.7.

Figura 1 Definición de módulos típicos de acuerdo con T.2.2 y 3.10.2 (son posibles otras combinaciones)

Celda de carga analógica	(T.2.2.1)			2										
Celda de carga digital	(T.2.2.1)			2	+	3	+	(4)*						
Indicador	(T.2.2.2)					(3)	+	4	+	(5)	+	(6)	+	7
Dispositivo de procesamiento de datos analógico	(T.2.2.3)					3	+	4	+	(5)	+	(6)		
Dispositivo de procesamiento de datos digital	(T.2.2.4)							(4)	+	5	+	(6)		
Terminal	(T.2.2.5)									(5)	+	6	+	7
Pantalla primaria	(T.2.2.6)													7
Módulo de pesaje	(T.2.2.7)	1	+	2	+	3	+	4	+	(5)	+	(6)		
Los números entre paréntesis indican opci	ones.													

T.2.2.1 Celda de carga [OIML R 60: 2000, 2.1.2]. Transductor de fuerza que, después de tomar en cuenta los efectos de la aceleración de la gravedad y él empuje del aire en el lugar de su uso, mide la masa convirtiendo la magnitud medida (masa) en otra magnitud medida (salida).

NOTA A las celdas de carga equipadas con electrónica que incluye amplificador, convertidor analógico a digital (ADC), y dispositivo de procesamiento de datos (opcionalmente), se les llama celdas de carga digitales (véase la Figura 1).

- **T.2.2.2 Indicador.** Dispositivo electrónico de un instrumento que puede realizar la conversión analógica a digital de la señal de salida de la celda de carga, y que procesa aún más los datos y visualiza el resultado de pesaje en unidades de masa.
- **T.2.2.3 Dispositivo de procesamiento de datos analógico.** Dispositivo electrónico de un instrumento que realiza la conversión analógica a digital de la señal de salida de la celda de carga, procesa aún más los datos y proporciona el resultado de pesaje en un formato digital mediante una interfase digital sin visualizarlo. Opcionalmente, puede tener una o más teclas (o ratón, pantalla táctil, etc.) para operar el instrumento.
- **T.2.2.4 Dispositivo de procesamiento de datos digital.** Dispositivo electrónico de un instrumento que procesa aún más los datos y proporciona el resultado de pesaje en un formato digital mediante una interfase digital sin visualizarlo. Opcionalmente, puede tener una o más teclas (o ratón, pantalla táctil, etc.) para operar el instrumento.

- **T.2.2.5 Terminal.** Dispositivo digital que tiene una o más teclas (o ratón, pantalla táctil, etc.) para operar el instrumento, y una pantalla para proporcionar los resultados de pesaje transmitidos mediante la interfase digital de un módulo de pesaje o un dispositivo de procesamiento de datos analógico.
- **T.2.2.6 Pantalla digital.** Una pantalla digital puede materializarse como pantalla primaria o pantalla secundaria.
- a) Pantalla primaria: Incorporada en la cubierta del indicador o en la cubierta del terminal o materializada como pantalla en una cubierta separada (es decir, terminal sin teclas), por ejemplo, para ser utilizada en combinación con un módulo de pesaje.
- Pantalla secundaria: Dispositivo periférico adicional (opcional) que repite el resultado de pesaje y cualquier otra indicación primaria, o proporciona más información no metrológica.

NOTA Los términos "pantalla primaria" y "pantalla secundaria" no deben confundirse con los términos "indicación primaria" e "indicación secundaria" (T.1.3.1 y T.1.3.2).

T.2.2.7 Módulo de pesaje. Parte del instrumento de pesaje que comprende todos los dispositivos mecánicos y electrónicos (es decir, receptor de carga, dispositivo transmisor de carga y dispositivo de procesamiento de datos analógico o dispositivo de procesamiento de datos digital) pero que no tiene los medios para visualizar el resultado de pesaje. Opcionalmente, puede tener dispositivos para procesar más los datos (digitales) y operar el instrumento.

T.2.3 Partes electrónicas

T.2.3.1 Dispositivo electrónico [OIML D11: 2004, 3.2]. Dispositivo que emplea subconjuntos electrónicos y realiza una función específica.

Por lo general, los dispositivos electrónicos son fabricados como unidades separadas y pueden ser ensayados independientemente.

- NOTA Un dispositivo electrónico, según esta definición, puede ser un instrumento completo (por ejemplo, un instrumento para la venta directa al público), un módulo (por ejemplo, un indicador, un dispositivo de procesamiento de datos analógico, un módulo de pesaje) o un dispositivo periférico (por ejemplo, una impresora, una pantalla secundaria).
- **T.2.3.2 Subconjunto electrónico** [OIML D11: 2004, 3,3]. Parte de un dispositivo electrónico que utiliza componentes electrónicos y tiene por sí misma una función reconocible.
- EJEMPLOS Convertidor analógico a digital, pantalla
- **T.2.3.3 Componente electrónico** [OIML D11: 2004, 3,4]. Pequeña unidad física que utiliza electrones o huecos semiconductores, en presencia de gases o en vacío.
- EJEMPLOS Tubo electrónico, transistor, circuito integrado.
- **T.2.3.4 Dispositivo digital.** Dispositivo electrónico que sólo realiza funciones digitales y proporciona una salida o indicación digitalizada.
- EJEMPLOS Impresora, pantalla primaria o secundaria, teclado, terminal dispositivo de almacenamiento de datos, computadora personal.

T.2.3.5 Dispositivo periférico. Dispositivo adicional que repite o procesa aún más el resultado de pesaje y otras indicaciones primarias.

EJEMPLOS Impresora, pantalla secundaria, teclado, terminal, dispositivo de almacenamiento de datos, computadora personal.

- **T.2.3.6 Interfase de protección.** Interfase (hardware y/o software) que sólo permite la introducción de datos en el instrumento de pesaje, módulo o componente electrónico, que no puede:
- Visualizar datos que no están claramente definidos y que podrían tomarse para un resultado de pesaje;
- Falsear resultados de pesaje visualizados, procesados o almacenados o indicaciones primarias; o
- Ajustar el instrumento o cambiar cualquier factor de ajuste, salvo liberar un procedimiento de ajuste con dispositivos incorporados o también en el caso de instrumentos de clase I con pesas de ajuste externas.
- **T.2.4 Dispositivo indicador (de un instrumento de pesaje).** Dispositivo que proporciona el resultado de pesaje en forma visual.
- **T.2.4.1 Componente del indicador.** Componente que visualiza la estabilidad y/o el resultado.
- En un instrumento con una sola posición que, visualiza solamente la estabilidad.
- En un instrumento con varias posiciones, visualiza tanto la estabilidad como el resultado.
- **T.2.4.2 Marca de escala.** Línea u otra marca en un componente del indicador correspondiente a un valor especificado de masa.

T.2.5 Dispositivos indicadores auxiliares

- **T.2.5.1 Jinete.** Pesa móvil de pequeña masa que puede colocarse o moverse en una barra graduada que forma un conjunto con el brazo o en el mismo brazo.
- **T.2.5.2 Dispositivo de interpolación de lectura (vernier o nonio).** Dispositivo conectado al componente del indicador y que subdivide la escala de un instrumento sin un ajuste especial.
- **T.2.5.3 Dispositivo indicador complementario.** Dispositivo ajustable que permite evaluar el valor, en unidades de masa, correspondiente a la distancia entre una marca de escala y el componente del indicador.
- **T.2.5.4 Dispositivo indicador con una división de escala diferenciada.** Dispositivo indicador digital, cuya última cifra después del signo decimal se diferencia claramente de otras cifras.
- **T.2.6 Dispositivo indicador ampliado.** Dispositivo que cambia provisionalmente el valor de una división de escala real, *d*, a un valor inferior a la división de escala de verificación, *e*, después de un comando manual.

T.2.7 Dispositivos adicionales

- **T.2.7.1 Dispositivo de nivelación.** Dispositivo que permite llevar un instrumento a su posición de referencia (horizontal).
- **T.2.7.2 Dispositivo de ajuste a cero.** Dispositivo que permite poner la indicación a cero cuando no hay carga en el receptor de carga
- **T.2.7.2.1 Dispositivo no automático de ajuste a cero.** Dispositivo que permite el ajuste a cero de la indicación por un operador.
- **T.2.7.2.2 Dispositivo semiautomático de ajuste a cero.** Dispositivo que pone automáticamente la indicación a cero después de un comando manual.
- **T.2.7.2.3 Dispositivo automático de ajuste a cero.** Dispositivo que pone automáticamente la indicación a cero sin la intervención de un operador.
- **T.2.7.2.4 Dispositivo de ajuste a cero inicial.** Dispositivo que pone automáticamente la indicación a cero en el momento en que se enciende el instrumento y antes de que esté listo para su uso.
- **T.2.7.3 Dispositivo de bloqueo de cero.** Dispositivo que mantiene automáticamente la indicación cero dentro de ciertos límites.
- **T.2.7.4 Dispositivo de tara.** Dispositivo que permite poner la indicación a cero cuando se coloca una carga en el receptor de carga:
- sin alterar el rango de pesaje de las cargas netas (dispositivo aditivo de tara);

Ο,

reduciendo el rango de pesaje de las cargas netas (dispositivo sustractivo de tara).

Puede funcionar como:

- dispositivo no automático (carga equilibrada por el operador);
- dispositivo semiautomático (carga equilibrada automáticamente después de un solo comando manual); o
- dispositivo automático (carga equilibrada automáticamente sin la intervención de un operador).
- **T.2.7.4.1 Dispositivo de equilibrio de tara.** Dispositivo de tara sin indicación del valor de tara cuando se carga el instrumento.
- **T.2.7.4.2 Dispositivo de pesaje de la tara.** Dispositivo de tara que almacena el valor de tara y que puede visualizarlo o imprimirlo ya sea que el instrumento esté cargado o no.
- **T.2.7.5 Dispositivo de tara predeterminada.** Dispositivo que permite restar un valor de tara predeterminado a un valor de peso bruto o neto e indicar el resultado del cálculo. Se reduce el rango de pesaje de las cargas netas según corresponda.

- **T.2.7.6 Dispositivo de bloqueo.** Dispositivo que permite inmovilizar todo o parte del mecanismo de un instrumento.
- **T.2.7.7 Dispositivo auxiliar de verificación.** Dispositivo que permite verificar por separado uno o más dispositivos principales de un instrumento.
- T.2.7.8 Dispositivo de selección de receptores de carga y dispositivos de medición de carga. Dispositivo que permite acoplar uno o más receptores de carga a uno o más dispositivos de medición de carga, cualesquiera que sean los dispositivos transmisores de carga intermedios utilizados.

T.2.8 Software

- **T.2.8.1 Software establecido legalmente.** Programas, datos, parámetros específicos para un modelo y parámetros específicos para un dispositivo que pertenecen al instrumento de medición o módulo, y definen o cumplen las funciones que están sujetas a control legal.
- EJEMPLOS Resultados finales de la medición, es decir, valor bruto, neto y de tara/tara predeterminada (incluyendo el signo decimal y la unidad), identificación del rango de pesaje y el receptor de carga (si se han utilizado varios receptores de carga), identificación del software.
- **T.2.8.2 Parámetro establecido legalmente relevante.** Parámetro de un instrumento de medición o un módulo sujeto a control legal. Se pueden distinguir los siguientes tipos de parámetros legalmente establecidos: Parámetros específicos para un tipo y parámetros específicos para un dispositivo.
- **T.2.8.3 Parámetro específico para un modelo.** Parámetro establecido legalmente con un valor que depende solamente del modelo de instrumento. Los parámetros específicos para un modelo son parte del software establecido legalmente. Se fijan en la aprobación de modelo del instrumento.
- EJEMPLOS Parámetros utilizados para el cálculo de masa, análisis de estabilidad o cálculo de precio o redondeo, identificación del software.
- **T.2.8.4 Parámetro específico para un dispositivo.** Parámetro relevante establecido legalmente con un valor que depende solamente del instrumento individual. Los parámetros específicos para un dispositivo comprenden parámetros de calibración (por ejemplo, ajuste de la pendiente u otros ajustes o correcciones) y parámetros de configuración (por ejemplo, capacidad máxima, capacidad mínima, unidades de medición, etc.).

Son ajustables o seleccionables sólo en un modo operativo especial del instrumento. Los parámetros específicos para un dispositivo pueden clasificarse como aquellos que deberían ser protegidos (inalterables) y aquellos a los que una persona autorizada puede tener acceso (parámetros ajustables).

- **T.2.8.5 Almacenamiento prolongado de datos de medición.** Almacenamiento de los datos, de las mediciones realizadas en una transferencia, para posteriormente comprobarlas legalmente (por ejemplo, conclusión de una transacción comercial en una fecha posterior, cuando el cliente no está presente para la determinación de la cantidad, o para aplicaciones especiales identificadas y legisladas por el estado).
- **T.2.8.6 Identificación del software.** Secuencia de caracteres de software legibles que están relacionados intrínsecamente con el software (por ejemplo, número de versión, suma de comprobación).

- **T.2.8.7 Separación del software.** Separación inequívoca del software en software establecido legalmente y software no establecido legalmente. Si no existe separación del software, todo el software debe ser considerado como establecido legalmente.
- **T.2.9 Metrológicamente relevante.** Cualquier dispositivo, modulo, parte, componente o función de un instrumento de pesaje que puede influir en el resultado de pesaje o cualquier otra indicación primaria, es considerado como metrológicamente relevante.

T.3 CARACTERÍSTICA METROLÓGICAS DE UN INSTRUMENTO

T.3.1 Capacidad de pesaje

- **T.3.1.1 Capacidad máxima (Max).** Capacidad máxima de pesaje, que no toma en cuenta la capacidad aditiva de tara.
- **T.3.1.2 Capacidad mínima (Min).** Valor de la carga por debajo del cual los resultados de pesaje pueden estar sujetos a un error relativo muy importante.
- **T.3.1.3 Capacidad de indicar automáticamente.** Capacidad de pesaje dentro de la cual se obtiene el equilibrio sin la intervención de un operador.
- **T.3.1.4 Rango de pesaje.** Rango comprendido entre la capacidad mínima y la capacidad máxima.
- **T.3.1.5 Intervalo de ampliación de la indicación automática.** Valor por el cual es posible ampliar el rango de indicación automática dentro del rango de pesaje.
- T.3.1.6 Efecto máximo de tara (T = + ..., T = ...). Capacidad máxima del dispositivo aditivo de tara o el dispositivo sustractivo de tara.
- **T.3.1.7 Carga límite máxima (Lim).** Carga estática máxima que puede ser soportada por el instrumento sin alterar de forma permanente sus cualidades metrológicas.

T.3.2 Divisiones de escala

- **T.3.2.1 Longitud de división (instrumento con indicación analógica).** Distancia entre dos marcas de escala consecutivos.
- **T.3.2.2 División de escala real,** *d.* Valor, expresado en unidades de masa de la diferencia entre los valores correspondientes a dos marcas de escala consecutivos, para una indicación analógica; o la diferencia entre dos valores indicados consecutivas, para una indicación digital.
- **T.3.2.3 División de escala de verificación, e.** Valor, expresado en unidades de masa, utilizado para la clasificación y verificación de un instrumento.
- **T.3.2.4 División de escala utilizada para numeración.** Valor de la diferencia entre dos marcas numerados consecutivos de la escala.
- **T.3.2.5 Número de divisiones de escala de verificación,** *n.* Cociente de la capacidad máxima y la división de escala de verificación:

n = Max / e

- **T.3.2.6 Instrumento de intervalo múltiple.** Instrumento que tiene un solo rango de pesaje que se divide en rangos de pesaje parciales, cada uno con una división de escala diferente, con el rango de pesaje parcial determinado automáticamente según la carga aplicada, para cargas tanto crecientes como decrecientes.
- **T.3.2.7 Instrumento de rango múltiple.** Instrumento que tiene dos o más rangos de pesaje con capacidades máximas diferentes y divisiones de escala diferentes, para el mismo receptor de carga, extendiéndose cada rango desde cero hasta su capacidad máxima.
- **T.3.3 Coeficiente de Reducción**, *R.* El coeficiente de reducción de un dispositivo transmisor de carga es igual a:

 $R = F_{M} / F_{L}$

en donde

FM = fuerza que actúa sobre el dispositivo de medición de carga,

 F_{L} = fuerza que actúa sobre el receptor de carga.

- **T.3.4 Modelo.** Modelo definitivo de un instrumento de pesaje o módulo (incluyendo una familia de instrumentos o módulos); del cual todos los elementos que afectan sus propiedades metrológicas son definidos adecuadamente.
- **T.3.5 Familia** [adaptado de OIML B 3: 2003, 2.3]. Grupo identificable de instrumentos de pesaje o módulos que pertenecen al mismo modelo fabricado y que tienen las mismas características de diseño y principios metrológicos de medición (por ejemplo, el mismo modelo de indicador, el mismo modelo de diseño de celda de carga y dispositivo transmisor de carga) pero que pueden diferir en algunas características metrológicas y técnicas del desempeño (por ejemplo, Max, Min, e, d, clase exactitud, etc.).

El concepto de "familia" pretende principalmente reducir los ensayos requeridos en el examen de modelo. No descarta la posibilidad de mencionar más de una familia en un solo Certificado.

T.4 PROPIEDADES METROLÓGICAS DE UN INSTRUMENTO

- **T.4.1 Sensibilidad.** Para un determinado valor de la masa medida, el cociente del cambio, Δl , de la variable observada, l, y el correspondiente cambio, Δm , de la masa medida, m.
- **T.4.2 Discriminación.** Capacidad de un instrumento para reaccionar a pequeñas variaciones de carga.

El umbral de discriminación para una determinada carga es el valor de la carga adicional más pequeña que, al ser colocada suavemente en el receptor de carga o retirada de éste, produce un cambio perceptible de la indicación.

- **T.4.3 Repetibilidad.** Capacidad de un instrumento para proporcionar resultados que coincidan entre sí cuando se coloca la misma carga varias veces y de manera prácticamente idéntica en el receptor de carga en condiciones de ensayo razonablemente constantes.
- **T.4.4 Durabilidad.** Capacidad de un instrumento para mantener sus características de desempeño durante un período de uso.
- **T.4.5 Tiempo de calentamiento.** Tiempo transcurrido entre el momento de encendido del instrumento y el momento en que éste puede cumplir con los requisitos de esta NTC.

T.4.6 Valor de peso final. Valor de peso que se obtiene cuando el instrumento se encuentra completamente en reposo y equilibrado, sin perturbaciones que afecten la indicación.

T.5 INDICACIONES Y ERRORES

T.5.1 Métodos de indicación

- **T.5.1.1 Equilibrio por pesas.** Valor de pesas controladas metrológicamente que equilibra la carga (tomando en cuenta el coeficiente de reducción de la carga).
- **T.5.1.2 Indicación analógica.** Indicación que permite la evaluación de la posición de equilibrio en fracciones de la división de escala.
- **T.5.1.3 Indicación digital.** Indicación en la cual los marcas de la escala están compuestos de una secuencia de cifras alineadas que no permiten la interpolación en fracciones de la división de escala.

T.5.2 Resultados de pesaje

- NOTA Las definiciones de T.5.2 sólo se aplican cuando la indicación era cero antes de colocar la carga en el instrumento.
- **T.5.2.1 Valor bruto, G o B.** Indicación del valor de peso de una carga sobre un instrumento, cuando ningún dispositivo de tara o dispositivo de tara predeterminada ha estado en funcionamiento.
- **T.5.2.2 Valor neto, N.** Indicación del valor de peso de una carga colocada sobre un instrumento después de la operación de un dispositivo de tara.
- **T.5.2.3 Valor de tara, T.** Valor de peso de una carga, determinado por un dispositivo de pesaje de la tara.

T.5.3 Otros valores de peso

T.5.3.1 Valor de tara predeterminada, PT. Valor numérico, que representa un peso que se introduce en el instrumento y es para aplicarse a otros pesajes sin determinar taras individuales.

La palabra "introducir" incluye procedimientos tales como: introducción desde teclado, recuperación desde un dispositivo de almacenamiento de datos o introducción por una interfase.

- **T.5.3.2 Valor neto calculado.** Valor de la diferencia entre un valor de peso medido (bruto o neto) y un valor de tara predeterminada.
- **T.5.3.3 Valor de peso calculado.** Suma o diferencia calculada de más de un valor de peso medido y/o valor neto calculado.

T.5.4 Lectura

T.5.4.1 Lectura por simple yuxtaposición. Lectura del resultado de pesaje por simple yuxtaposición de cifras consecutivas que da el resultado de pesaje, sin necesidad de cálculo.

T.5.4.2 Inexactitud de la lectura. En un instrumento con indicación análoga, esto es igual a la desviación estándar de la misma indicación, cuya lectura es realizada en condiciones normales de uso por varios observadores.

Es habitual realizar por lo menos 10 lecturas del resultado.

- **T.5.4.3 Error de redondeo de una indicación digital.** Diferencia entre la indicación y el resultado que el instrumento daría con una indicación analógica.
- **T.5.4.4 Distancia mínima de lectura.** Distancia más corta a la cual un observador puede aproximar libremente el dispositivo indicador para realizar una lectura en condiciones normales de uso.

Se considera que esta aproximación es libre para el observador si existe un espacio despejado de por lo menos 0,8 m delante del dispositivo indicador (véase la Figura 2).

Figura 2

 $m = \max a \text{ medir}$

E = error de medición (T.5.5.1)

emp₁ = error máximo permitido en la verificación inicial

emp₂ = error máximo permitido en el servicio

C = característica en las condiciones de referencia

C1 = característica debida a un factor de influencia o una perturbación (Para los fines de esta ilustración, se supone que el factor de influencia o la perturbación tienen una influencia en la característica que no es irregular).

no es inegular).

 E_{SP} = error de medición evaluado durante el ensayo de estabilidad de la pendiente

I = error intrínseco (T.5.5.2)

V = variación de los errores de medición durante el ensayo de estabilidad de la pendiente (span)

SITUACIÓN 1: Muestra el error E_1 de un instrumento debido a un factor de influencia o una perturbación. I_1 es el error intrínseco. La falla (T.5.5.5) debida al factor de influencia o la perturbación aplicada es igual a E_1 - I_1 .

SITUACIÓN 2 Muestra el valor promedio, E_{SP} 1a v, de los errores en la primera medición del ensayo de estabilidad de la pendiente, algunos otros errores ($E_{SP}i$ y $E_{SP}k$) y los valores extremos de los errores E_{SPm} y E_{SPn} , evaluando todos estos errores en diferentes momentos durante el ensayo de estabilidad de la pendiente. La variación, V_i , en los errores de medición durante el ensayo de estabilidad de la pendiente es igual a $E_{SPm} - E_{SPn}$.

Figura 3.

T.5.5.1 Error de medición [adaptado de VIM 2008 ,2.16]. Indicación de un instrumento menos el valor convencionalmente verdadero de la correspondiente masa.

T.5.5.2 Error intrínseco. Error de un instrumento determinado en las condiciones de referencia.

T.5.5.3 Error intrínseco inicial. Error intrínseco de un instrumento tal como es determinado antes de los ensayos de desempeño y de estabilidad de la pendiente (*span*).

T.5.5.4 Error máximo permitido, emp. Diferencia máxima, positiva o negativa, permitida por las regulaciones, entre la indicación de un instrumento y el valor verdadero correspondiente, determinada por referencia a masas o pesas patrón, estando el instrumento en cero sin carga y en la posición de referencia.

T.5.5.5 Falla. Diferencia entre el error de medición y el error intrínseco de un instrumento.

NOTA Una falla es principalmente el resultado de un cambio no deseado de los datos contenidos en un instrumento electrónico o que pasan por éste.

T.5.5.6 Falla significativa. Falla superior a e.

NOTA En el caso de instrumentos de intervalo múltiple, el valor de e es el que corresponde al rango de pesaje parcial.

Las siguientes fallas no son consideradas como significativas, aunque sean superiores a e:

- fallas que surgen de causas simultáneas y mutuamente independientes en el instrumento;
- fallas que implican la imposibilidad de realizar cualquier medición;
- fallas tan graves que no pueden dejar de ser notadas por todos los interesados en el resultado de medición; o
- fallas transitorias que son variaciones momentáneas de la indicación que no se pueden interpretar, memorizar o transmitir como resultados de medición.

T.5.5.7 Error de durabilidad. Diferencia entre el error intrínseco durante un período de uso y el error intrínseco inicial de un instrumento.

T.5.5.8 Error de durabilidad significativo. Error de durabilidad superior a e.

NOTA 1 Un error de durabilidad puede deberse al desgaste mecánico o a la deriva y envejecimiento de partes electrónicas. El concepto de error de durabilidad significativo sólo se aplica a partes electrónicas.

NOTA 2 En el caso de instrumentos de intervalo múltiple, el valor de e es el que corresponde al rango de pesaje parcial.

Los errores que se producen después de un período de uso del instrumento, no son considerados errores de durabilidad significativos, aunque sean superiores a e, si son claramente el resultado de la falla de un dispositivo/componente o de una perturbación y para los cuales:

- no se puede interpretar, memorizar o transmitir la indicación como resultado de medición;
- la indicación es tal que es imposible realizar una medición; o
- la indicación es evidentemente errónea que no puede dejar de ser notada por todos los interesados en el resultado de medición.

T.5.5.9 Estabilidad de la pendiente (span stability). Capacidad de un instrumento para mantener la diferencia entre la indicación de la capacidad máxima y el cero dentro de los límites especificados.

T.6 INFLUENCIAS Y CONDICIONES DE REFERENCIA

- **T.6.1 Magnitud de influencia.** Magnitud que no es objeto de medición pero que influye en los valores del mensurando o en las indicaciones del instrumento.
- **T.6.1.1 Factor de influencia.** Magnitud de influencia, cuyo un valor se encuentra dentro de las condiciones de funcionamiento de referencia especificadas para el instrumento.
- **T.6.1.2 Perturbación.** Magnitud de influencia, cuyo valor se encuentra dentro de los límites especificados por esta NTC, pero fuera de las condiciones de funcionamiento de referencia especificadas para el instrumento.
- **T.6.2 Condiciones de funcionamiento de referencia** [VIM: 2008, 4.11]. Condiciones de uso que dan el rango de valores de magnitudes de influencia para los cuales se supone que las características metrológicas se encuentran dentro de los errores máximos permitidos especificados.
- **T.6.3 Condiciones de referencia.** Conjunto de valores específicos de factores de influencia, fijados para asegurar las inter- comparaciones entre los resultados de las mediciones.
- T.6.4 Posición de referencia. Posición del instrumento en la cual se ajusta su operación.
- **T.7 Ensayo de desempeño.** Ensayo que permite verificar si el equipo sometido a ensayo (EUT por sus siglas en inglés) es capaz de realizar las funciones para las cuales está diseñado.

T.8 ÍNDICE DE TÉRMINOS DEFINIDOS

Los números entre paréntesis hacen referencia a capítulos importantes de esta Norma

División de escala real	(3.4.3, 3.5.3.2, 3.8.2.2, A.4.8.2)	T.3.2.2
Division de escala real	(3.4.3, 3.3.3.2, 3.0.2.2, A.4.0.2)	
Dispositivo de procesamiento de datos analógico	(3.10.2.2, 3.10.2.4, F.3)	T.2.2.3
Indicación analógica	(3.8.2.1, 4.6.3, A.4.8.1)	T.5.1.2
Dispositivo automático de ajuste a cero	(4.5.6, A.4.1.5, A.4.2.1.3)	T.2.7.2.3
Dispositivos indicadores auxiliares	(3.1.2, 3.4, 4.13.7)	T.2.5
Dispositivo auxiliar de verificación	(3.7.2, 4.9)	T.2.7.7
Valor neto calculado	(4.7.1)	T.5.3.2
Valor de peso calculado	(4.6.11)	T.5.3.3
Dispositivo indicador complementario	(3.4.1, 4.3.2)	T.2.5.3
Dispositivo de interpolación de lectura	(3.4.1)	T.2.5.2
Parámetro específico para un dispositivo	(4.1.2.4, 7.1.4, G.2.2.3)	T.2.8.4
Indicación digital	(3.5.3.2, 3.8.2.2, 4.2.2.2, 4.5.5, 4.13.6, A.4.1.6, A.4.4.3, A.4.8.2)	T.5.1.3
Dispositivo digital	(3.10.2.1, 3.10.4.6, 4.13.6, F.5, G)	T.2.3.4
Pantalla digital	(3.10.2.4, C.1)	T.2.2.6
Discriminación	(3.8, 6.1, A.4.8)	T.4.2
Componente del indicador	(4.3, 6.2, 6.3, 6.6)	T.2.4.1
Dispositivo indicador	(2.4, 3.6.3, 4.2.1, 4.2.4, 4.3, 4.4, 4.17.1, 6.2, A.4.5, E.2.2)	T.2.4
Perturbación	(3.10.2.2, 3.10.3, 5.1.1, 5.3, 5.4.3, B.3)	T.6.1.2

Durabilidad	.(3.9.4.3, A.6)	T.4.4
Error de durabilidad	(3.9.4.3, A.6)	T.5.5.7
Componente electrónico	(4.1.2.4)	T.2.3.3
Dispositivo electrónico	(5.5)	T.2.3.1
Instrumento electrónico	(2.3, 5, B)	T.1.2.6
Subconjunto electrónico	(4.1.2.4)	T.2.3.2
Error de medición	(2.2, 3.1.1, 3.5, 3.6, 5.1.1, 8.3.3)	T.5.5.1
Dispositivo indicador ampliado	(3.4.1, 4.4.3, 4.13.7)	T.2.6
Intervalo de ampliación de la indicación automática	(4.2.5)	T.3.1.5
Familia	(3.10.4, 8.2.1)	T.3.5
Falla	(5.1, 5.2)	T.5.5.5
Valor de peso final	(4.4.2)	T.4.6
Instrumento de clasificación	(3.2)	T.1.2.13
Instrumento graduado	(3.1.2)	T.1.2.1
Valor bruto	(4.6.5, 4.13.3)	T.5.2.1
Indicaciones de un instrumento	(3.8.2, 4.2, 4.3.3, 4.4, 4.6.12)	T.1.3
Dispositivo indicador con una división de escala diferenciada	(3.4. 1)	T.2.5.4
Indicador	(3.10.2, 5.3.1, 5.5.2, 7.1.5.3, C, F)	T.2.2.2
Factor de influencia	(3.5.3.1, 5.4.3, A.5)	T.6.1.1
Error intrínseco inicial	(A.4.4.1).	T.5.5.3
Dispositivo de ajuste a cero inicial	(4.5.1, 4.5.4, A.4.4.2)	T.2.7.2.4
Instrumento con escalas de precio	(4.14.2).	T.1.2.7
Error intrínseco	(5.3.4, A.4.4.1, A.6)	T.5.5.2
Parámetro relevante establecido legalmente	(5.5.2.2, 5.5.3)	T.2.8.2
Software relevante establecido legalmente	(5.5.2, 5.5.3, G.1, G.2)	T.2.8.1
Dispositivo de nivelación	(3.9.1, 4.18.2)	T.2.7.1
Celda de carga	(3.10.2.1, 3.10.2.4, 7.1.5.3, C, F)	T.2.2.1
Dispositivo de medición de carga	(2.4, 6.9, 4.11, 7.1.5.1)	T.2.1.3
Receptor de carga	(3.6, 4.11, 7.1.5.1, A.4.7)	T.2.1.1
Receptor de carga Dispositivo transmisor de carga	(3.6, 4.11, 7.1.5.1, A.4.7) (3.10.2.1, 4.11)	T.2.1.1 T.2.1.2
·		
Dispositivo transmisor de carga	(3.10.2.1, 4.11)	T.2.1.2
Dispositivo transmisor de carga Dispositivo de traba	(3.10.2.1, 4.11)	T.2.1.2 T.2.7.6
Dispositivo transmisor de carga Dispositivo de traba Almacenamiento prolongado de datos de medición	(3.10.2.1, 4.11) (4.8.1) (5.5.3)	T.2.1.2 T.2.7.6 T.2.8.5
Dispositivo transmisor de carga Dispositivo de traba Almacenamiento prolongado de datos de medición Capacidad máxima	(3.10.2.1, 4.11) (4.8.1) (5.5.3) (3.3, 4.13, 6.6, 6.8)	T.2.1.2 T.2.7.6 T.2.8.5 T.3.1.1
Dispositivo transmisor de carga Dispositivo de traba Almacenamiento prolongado de datos de medición Capacidad máxima Error máximo permitido, emp	(3.10.2.1, 4.11) (4.8.1) (5.5.3) (3.3, 4.13, 6.6, 6.8) (2.2, 3.1, 3.5, A.4.4.1)	T.2.1.2 T.2.7.6 T.2.8.5 T.3.1.1 T.5.5.4
Dispositivo transmisor de carga Dispositivo de traba Almacenamiento prolongado de datos de medición Capacidad máxima Error máximo permitido, emp Carga límite máxima	(3.10.2.1, 4.11) (4.8.1) (5.5.3) (3.3, 4.13, 6.6, 6.8) (2.2, 3.1, 3.5, A.4.4.1) (7.1.2)	T.2.1.2 T.2.7.6 T.2.8.5 T.3.1.1 T.5.5.4 T.3.1.7
Dispositivo transmisor de carga Dispositivo de traba Almacenamiento prolongado de datos de medición Capacidad máxima Error máximo permitido, emp Carga límite máxima Efecto máximo de tara	(3.10.2.1, 4.11) (4.8.1) (5.5.3) (3.3, 4.13, 6.6, 6.8) (2.2, 3.1, 3.5, A.4.4.1) (7.1.2) (A.4.6.1)	T.2.1.2 T.2.7.6 T.2.8.5 T.3.1.1 T.5.5.4 T.3.1.7 T.3.1.6

Instrumento móvil	(3.9.1.1, 4.18, A.4.7.5, A.4.12, A.5.1.3)	T.1.2.11
Módulo	(3.10.2, 5.5.2, 7.1.5.3, C, E, F)	T.2.2
Instrumento de intervalo múltiple	(3.3, 3.4.1).	T.3.2.6
Instrumento de rango múltiple	(3.2, 4.5.3, 4.6.7, 4.10)	T.3.2.7
Valor neto	(3.5.3.3, 4.6.5, 4.6.11)	T.5.2.2
Instrumento de pesaje de funcionamiento no automático	(1 etc.)	T.1.2
Dispositivo no automático de ajuste a cero	(4.13.2)	T.2.7.2.1
Instrumento no graduado	(3.1.2).	T.1.2.2
Instrumento sin indicación automática	(3.8.1, 6)	T.1.2.5
Número de divisiones de escala de verificación	(2.2, 3.2, 3.3.1, 3.4.4, C.1.2, E.1.2.3, F)	T.3.2.5
Inexactitud global de lectura	(4.2.1)	T.5.4.2
Ensayo de desempeño	(5.4, A.4, B.3, B.4, C.2.2.1, C.2.4, C.3.1)	T.7
Dispositivo periférico	(3.10.3, 5.3.6, 5.5.2, 7.1.5.4, B.3)	T.2.3.5
Instrumento portátil	(4.3.4, 4.19, A.4.13)	T.1.2.12
Dispositivo de tara predeterminada	(2.4, 4.7, 4.13.4)	T.2.7.5
Valor de tara predeterminada	(3.5.3.3, 4.7, 4.13.4, 4.16)	T.5.3.1
Instrumento calculador de precio	(4.13.11, 4.14).	T.1.2.8
Instrumento etiquetador de precio	(4.16)	T.1.2.9
Indicaciones primarias	(4.4.4, 4.4.6, 4.13, 4.14.1, 4.14.4, 5.3.6.1, 5.3.6.3, 5.5.2.1).	T.1.3.1
Interfase de protección	(3.10.3, 5.5.2.2)	T.2.3.6
Lectura por simple yuxtaposición	(4.2.1)	T.5.4.1
Coeficiente de reducción	(6.2.3, F.1, F.2.7)	T.3.3
Posición de referencia	(3.9.1.1, 6.2.1.3, 6.3.1, A.4.1.4,A.4.3, A.5.1)	T.6.4
Repetibilidad	(3.6.1, 3.7.3, 8.3.3, A.4.1.7, A.4.4.5, A.4. 10, C.2.7, C.3.1.1).	T.4.3
Jinete	(3.4.1).	T.2.5.1
Error de redondeo de una indicación digital	(3.5.3.2, B.3)	T.5.4.3
División de escala utilizado para numeración	(4.3.1)	T.3.2.4
Marca de escala	(4.3.1, 4.17.2, 6.2, 6.3, 6.6.1.1)	T.2.4.2
Longitud de división	(4.3, 6.2.2.2, 6.6.1.1, 6.9.3)	T.3.2.1
Indicaciones secundarias	(4.2.4)	T.1.3.2
Dispositivo de selección de receptores de carga y dispositivos de medición de carga	(4.11)	T.2.7.8
Instrumento con indicación automática	(3.8.2, 4, 5, 6)	T.1.2.3
Capacidad de indicar automáticamente.	(3.6.4, 3.9.1.1, 4.2.5)	T.3.1.3
Instrumento de autoservicio	(4.13.11).	T.1.2.10
Dispositivo semiautomático de ajuste a cero	(4.5.4, 4.6.5, 4.6.9)	T.2.7.2.2
Instrumento con indicación semiautomática	(3.8.2, 4.2.5, 4.12, 4.17, 5)	T.1.2.4
Sensibilidad	(4.1.2.4, 6. 1, A.4.9)	T.4.1

		1
Falla significativa	(4.13.9, 5.1, 5.2, 5.3.4, B.1, B.3)	T.5.5.6
Software	(4.1.2.4, 5.5.1, 5.5.2.2, 5.5.3, 7.1.4, 8.2.1.2, C.1, E.1, G)	T.2.8
Identificación del software	(5.5.1, 5.5.2.2, 7.1.2, 8.3.2, G.1, G.2.4)	T.2.8.6
Separación del software	(5.5.2.2, G.2.3)	T.2.8.7
Estabilidad de la pendiente	(3.10, 5.3.3, 5.4, B.4)	T.5.5.9
Dispositivo de equilibrio de tara	(4.6)	T.2.7.4.1
Dispositivo de tara	(3.3.4, 4.2.3, 4.6, 4.13.3, 6.3.5, A.4.6.2)	T.2.7.4
Valor de tara	(3.5.3.4, 4.6.5, 4.6.11, 4.13.3.2, 5.5.3.2, A.4.6. 1, C.3.2, G.3.3)	T.5.2.3
Dispositivo de pesaje de la tara	(3.5.3.4, 3.6.3, 4.2.2.1, 4.5.4, 4.6.2, A.4.6.3).	T.2.7.4.2
Terminal	(3.10.2.4, 5.5.2, C.1, E.2.2).	T.2.2.5
Modelo	(2.3 etc.).	T.3.4
Parámetro específico para un modelo	(5.5.2.2, G.2.2, G.2.4)	T.2.8.3
División de escala de verificación	(2.2, 3.1.2, 3.2, 3.3.1, 3.4, 3.5. 1).	T.3.2.3
Tiempo de calentamiento	(5.3.5, A.5.2, B.1, B.3).	T.4.5
Instrumento de pesaje.	(1).	T.1.1
Módulo de pesaje	(3.10.2, 7.1.5.3, E.1, E.2, E.3, E.4)	T.2.2.7
Rango de pesaje	(3.2, 3.3, 3.9.5, 4.2.3, 4.10).	T.3.1.4
Resultados de pesaje	(3.6, 4.2, 4.3.1, 4.4.4, 4.6.11, 4.6.12, 4.13.1).	T.5.2
Dispositivo de ajuste a cero	(4.5, 4.6.5, 4.13.2, 6.4.2, 6.6, 6.7, 6.8, A.4.2.1.3, A.4.2.3.1	T.2.7.2
Dispositivo de bloqueo de cero	(4.5, A.4.1.5)	T.2.7.3

T.9 SÍMBOLOS Y ABREVIATURAS

Esta norma hace referencia a términos metrológicos así como términos técnicos y físicos. Por lo tanto, no se excluye la ambigüedad de abreviaciones y símbolos. Sin embargo, con las siguientes explicaciones, debería evitarse cualquier confusión.

α	coeficiente de temperatura de material de cable	C.3.3.2.4				
ρ	resistencia específica de material de cable	C.3.3.2.4				
A	clasificación de celda de carga	F.2 Tabla 13, F.4				
Α	sección transversal de un hilo individual	C.3.3.2.4, F.1, F.4				
AC	corriente alterna	3.9.3 etc.				
A/D	analógico a digital	T.2.2				
ADC	componentes analógicos relevantes, incluyendo Convertidor Analógico a Digital	T.2.2 Figura 1, 5.5.2.1, Tabla 11				
В	clasificación de celda de carga	F.2 Tabla 13, F.4				
В	valor de peso bruto	T.5.2.1, 4.6.11				
С	clasificación de celda de carga	F.2 Tabla 13, F.4				
С	marca del valor de peso calculado, cuando se imprime	4.6.11				
С	salida nominal de una celda de carga	F.2, F.4				
СН	clasificación de celda de carga adicional: se ensaya humedad- temperatura cíclica	3.10.4.1, F.2, R 60, 4.6.5.2				

d división de escala (real) T.3.2.2, T.2.6, 6.9.3 D clasificación de celda de carga F.2 Tabla 13, F.4 DC corriente continua 3.9.3 etc. DL carga muerta del receptor de carga F.1, F.2.5, F.4 DR retorno de carga muerta F.2, F.4 DSD dispositivo de almacenamiento de datos 6.5.3 e división de escala de verificación T.2.6, 3.1.2, 3.2, 4.2.2.1 et, e, et división de escala de verificación, reglas para indices 3.2, F.1, F.4 E error de medición T.5.5.1, Figura 3,A.4.4.3 Ein error intrinseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética 8.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i, ix longitud de división mínima 3.2, 6.9.3	CRC	verificación de redundancia cíclica	5.5.3.3	
D clasificación de celda de carga DC corriente continua 3.9.3 etc. DL carga muerta del receptor de carga R.1, F.2.5, F.4 DR retorno de carga muerta DSD dispositivo de almacenamiento de datos e división de escala de verificación T.26, 3.1.2, 3.2, 4.2.2.1 et, et error de medición T.5.5.1, Figura 3,A.4.4.3 En error intrínseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga Emin carga muerta mínima de la celda de carga EMC compatibilidad electromagnética EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto I.5.2.1, 4.6.11 Indices de variable Indices de varia			T.3.2.2, T.2.6, 6.9.3	
DC corriente continua 3.9.3 etc. DL carga muerta del receptor de carga F.1, F.2.5, F.4 DR retorno de carga muerta F.2, F.4 DSD dispositivo de almacenamiento de datos 5.5.3 e división de escala de verificación T.2.6, 3.1.2, 3.2, 4.2.2.1 e1, ei, e7 división de escala de verificación, reglas para indices 3.2, F.1, F.4 E error de medición T.5.5.1, Figura 3,A.4.4.3 Ein error intrinseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i. ix longitud de división mínima 4.3.2, 6.3.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T† tara aditiva T.1.2 etc. Tmi n. Tmax dimite inferior del rango de temperatura, limite superior del rango C.3.3.2.4 turn unidad de medición Lengia de mergia 3.9.3, A.5.4 Um precio unitario Lensión de enrora de temperatura rango de temperatura				
DL carga muerta del receptor de carga F.1, F.2.5, F.4 DR retorno de carga muerta F.2, F.4 DSD dispositivo de almacenamiento de datos 5.5.3 e división de escala de verificación 7.2.6, 3.1.2, 3.2, 4.2.2.1 et, ej, er división de escala de verificación, reglas para índices 3.2, F.1, F.4 El error de medición 7.5.5, Figura 3,A.4.4.3 En error intrinseco 7.5.5, Figura 3,A.4.4.3 En error intrinseco 7.5.5, Figura 3,A.4.4.3 Emax capacidad máxima de la celda de carga 7.2, F.4 Emin carga muerta mínima de la celda de carga 8.2, F.4 Emin carga muerta mínima de la celda de carga 8.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) 7.7, 3.10.4, Anexo B G valor de peso bruto 7.5.2.1, 4.6.11 i índices de variable 3.3 etc. i/ ix longitud de división mínima 9.3.2, 4.3.2, 6.2.2.2 ivo longitud de división mínima 9.3.2, 4.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida 8.3.2 T valor de tara 7.5.2.3, 4.6.5, 4.6.11 T** tara aditiva 7.1.2 etc. T** tara aditiva 7.1.2 etc. T** tara a ustractiva 1.5.5.6, 6.2.2 Um unidad de medición 2.1, 4.12.1 Lumin tensión de entrada mínima por división de escala de verificación 2.3, 3.3, 4.5.4 Um precio unitario 4.14.2 Um tensión de entrada mínima por división de escala de verificación 5.3, 7.4 Umin tensión de excitación de celda de carga 7.3, 7.4 Umin tensión de entrada mínima del indicador 7.3, 7.4 Umin tensión de entrada mínima del indicador 7.3 Finin intervalo de verificación minimo de la celda de carga 7.1, F.4 Umin intervalo de verificación minimo de la celda de carga 7.1, F.4 Umin intervalo de verificación minimo de la celda de carga 7.1, F.2, F.4			,	
DR retorno de carga muerta F.2, F.4 DSD dispositivo de almacenamiento de datos 5.5.3 e división de escala de verificación 7.2.6, 3.1.2, 3.2, 4.2.2.1 et, ei, er división de escala de verificación, reglas para indices 3.2, F.1, F.4 E error de medición 7.5.51, Figura 3, A.4.4.3 Ein error intrinseco 7.5.5, Figura 3 Eina capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) 7.7, 3.10.4, Anexo B G valor de peso bruto 7.5.2.1, 4.6.11 i indices de variable 3.3 etc. i. ix longitud de división finima 4.3.2, 6.9.3 I valor de peso indicado 7.3.2.1, 4.3.2, 6.2.2.2 i/O longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado 8.3.2 T valor de tara 7.5.2.3, 4.6.5, 4.6.11 T* tara aditiva 7.1.2 etc. T**— tara austractiva 7.1.2 etc. T**— tara sustractiva 7.1.2 etc. T**— tara unidad de medición 2.1.4, 12.1 Aumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión de entrada mínima por división de escala de verificación F.3, F.4 Umi n, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Umin tensión de excitación de celda de carga F.1, F.4 Umin tensión de excitación de celda de carga F.1, F.4 Umin tensión de excitación de celda de carga F.1, F.4 Umin tensión máxima del rango de medición del indicador F.3 Vmini intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 Vinin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4				
DSD dispositivo de almacenamiento de datos 5.5.3 e división de escala de verificación T.2.6, 3.1.2, 3.2, 4.2.2.1 e1, ei, er división de escala de verificación, reglas para índices 3.2, F.1, F.4 E error de medición T.5.5.1, Figura 3,A.4.4.3 Ein error intrinseco T.5.5., Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética 8.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i, ix longitud de división T.3.2.1, 4.3.2, 6.2.2.2 i0 longitud de división mínima 4.3.2, 6.9.3 l valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 l/O entrada/salida B.3.2 T T valor de tara T.5.2.3, 4.6.5, 4.6.11 T.1.2 etc. T tara sustractiva 7.1.2 etc. T tara sustractiva				
e división de escala de verificación T.2.6, 3.1.2, 3.2, 4.2.2.1 e1, e₁, e₁ e₁ división de escala de verificación, reglas para índices 3.2, F.1, F.4 E error de medición T.5.5.1, Figura 3,A.4.4.3 Ein error intrinseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 I indices de variable 3.3 etc. I indices de variable 3.3 etc. Io Indices de variable 3.3 etc. Io undidud de división T.3.2.1, 4.3.2, 6.2.2.2 Io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T T tara aditiva T.5.2.3, 4.6.5, 4.6.11	DSD			
et, et, et división de escala de verificación, reglas para indices E error de medición T.5.5.1, Figura 3,A.4.4.3 En error intrínseco T.5.5, Figura 3 Emax Capacidad máxima de la celda de carga Emin Carga muerta mínima de la celda de carga EMC Compatibilidad electromagnética EMC EMC Compatibilidad electromagnética EMC EMC EMC Compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B T.5.2.1, 4.6.11 Indices de variable 3.3 etc. Indices de variable 3.3 etc. Indices de variable 3.3 etc. Indices de variable				
E error de medición T.5.5.1, Figura 3,A.4.4.3 Ein error intrínseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 46.11 i indices de variable 3.3 etc. i, i _X longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T T valor de tara T.5.2.3, 4.6.5, 4.6.11 T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva 7.1.2 etc. T.1.2 etc. Tmin. Tmax limite inferior del rango de temperatura, limite superior del rango C.3.3.2.4 vm unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada m	e1, e <i>i</i> , e _r	división de escala de verificación, reglas para índices		
Ein error intrínseco T.5.5, Figura 3 Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i. i₂ longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 IVO entrada/salida B.3.2 3.2.4 IVO entrada/salida B.3.2 7.1.2 etc. T- tara aditiva 7.1.2 etc. 7.1.2 etc. T- tara sustractiva 7.1.2 etc. 7.1.2 etc. Tmin. Tmax limite inferior del rango de temperatura, limite superior del rango C.3.3.2.4 um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por			T.5.5.1, Figura 3,A.4.4.3	
Emax capacidad máxima de la celda de carga F.2, F.4 Emin carga muerta mínima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i, i _X longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva T.1.2 etc. T- tara sustractiva T.1.2 etc. Tmi n. Tmax limite inferior del rango de temperatura, límite superior del rango de temperatura um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n. Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Umi tensión de entrada mínima del indicador F.3 Umi tensión de entrada mínima del indicador F.3 V variación del error Figura 3		error intrínseco	-	
Emin carga muerta minima de la celda de carga F.2, F.4 EMC compatibilidad electromagnética B.3.7 EUT equipo sometido a ensayo (por sus siglas en ingles) T.7, 3.10.4, Anexo B G valor de peso bruto T.5.2.1, 4.6.11 i indices de variable 3.3 etc. i, ix longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva 7.1.2 etc. T- tara sustractiva 7.1.2 etc. Tmi n. Tmax limite inferior del rango de temperatura, límite superior del rango de temperatura C.3.3.2.4 um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umin tensión de excitación de celda de carga F.1, F.4			-	
EMC compatibilidad electromagnética EUT equipo sometido a ensayo (por sus siglas en ingles) G valor de peso bruto indices de variable i. i/x longitud de división I 3.3 etc. i. i/x longitud de división mínima I 3.3 etc. i. i/x longitud de división mínima I 3.2.1, 4.3.2, 6.2.2.2 i///				
EUT equipo sometido a ensayo (por sus siglas en ingles) G valor de peso bruto i indices de variable i, i _k longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima Jazen, 6.9.3 I valor de peso indicado errores), A.4.8.2 I/O entrada/salida T valor de tara T valor de tara aditiva T valor de tara T valor de tara aditiva T valor de tara				
G valor de peso bruto T.5.2.1, 4.6.11 i índices de variable 3.3 etc. i, i _X longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errorres), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva T.1.2 etc. Tmi n, Tmax límite inferior del rango de temperatura, límite superior del rango de temperatura um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n, Umax rango de tensión de celda de carga F.1, F.4 Umin tensión de entrada mínima del indicador F.3 VMRmi n tensión máxima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3			_	
indices de variable i, ix longitud de división ingitud de división ingitud de división ingitud de división mínima ingitud de división mínima intervalo de lerror ingitud de división mínima intervalo de lerror ingitud de división mínima indicado de lerror ingitud de división mínima ingitud de levisión de energía ingitud de medición ingitud de levisión de escala de verificación ingitud de medición ingitud de medición ingitud de medición ingitud de división de escala de verificación ingitud de medición ingitud de medición ingitud de división de escala de verificación ingitud de medición ingitud de medición ingitud de división de secala de verificación ingitud de medición ingitud de división de secala de verificación ingitud de medición de escala de verificación ingitud de medición de lindicador ingitud de medición de lindicador ingitud de división mínima del rango de medición del indicador ingitud de medición del indicador ingitud de medición del indicador ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación mínimo de la celda de carga ingitud de verificación de verifica				
i, ix longitud de división T.3.2.1, 4.3.2, 6.2.2.2 io longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 Evaluación T.5.2.3, 4.6.5, 4.6.11 T.5.2.3, 4.6.5, 4.6.11 T.5.2.3, 4.6.5, 4.6.11 T.5.2.3, 4.6.5, 4.6.11 T.5.2.4 Evaluación T.1.2 etc. T.1.3 Evaluación de temperatura de temperatura de temperatura de temperatura Evaluación De tensión de entrada mínima por división de escala de verificación De tensión de entrada mínima de energía S.9.3, A.5.4 Umin Umax Procio unitario De tensión de energía S.9.3, A.5.4 Umin Umin De tensión de evaluación de celda de carga E.1, F.4 Umin Umin De tensión de entrada mínima del indicador E.3, F.4 UMRmi n Umaxima del rango de medición del indicador E.3 Evaluación E	i	'	·	
iO longitud de división mínima 4.3.2, 6.9.3 I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva 7.1.2 etc. T- tara sustractiva 7.1.2 etc. Tmi n. Tmax límite inferior del rango de temperatura, límite superior del rango de temperatura C.3.3.2.4 μm unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Uexc tensión de excitación de celda de carga F.1, F.4 Umin tensión de entrada mínima del indicador F.3, F.4 UMRmi n tensión mínima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	i, i _X			
I valor de peso indicado A.4.4.3 (Evaluación de errores), A.4.8.2 de errores), A.4.8.2 I/O entrada/salida B.3.2 T valor de tara T.5.2.3, 4.6.5, 4.6.11 T+ tara aditiva 7.1.2 etc. T- tara sustractiva 7.1.2 etc. Tmi n. Tmax límite inferior del rango de temperatura, límite superior del rango de temperatura C.3.3.2.4 um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umin, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Uexc tensión de excitación de celda de carga F.1, F.4 UMRmin tensión mínima del rango de medición del indicador F.3 UMRmax tensión máxima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3				
T valor de tara T 1.5.2.3, 4.6.5, 4.6.11 T tara aditiva T 1.2 etc. T 1.3 etc. T 1.4 tara sustractiva T 1.2 etc. T 1.3 etc. T 1.4 etc. T 1.2 etc. T 1.3 etc. C 1.3 1.4 1.2 1 C 1.3 1.4 1.2 1 C 2.1 1.4 1.2 1 C 2.1 1.4 1.2 1 U 1.4 1.4 1.2 U 1.4 1.4 1.2 U 1.4 1.4 1.2 U 1.4 1.4 1.2 U 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	I	-	A.4.4.3 (Evaluación de	
T ⁺ tara aditiva 7.1.2 etc. T ⁻ tara sustractiva 7.1.2 etc. Tmi n. Tmax límite inferior del rango de temperatura, límite superior del rango de temperatura um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Uexc tensión de excitación de celda de carga F.1, F.4 Umin tensión de entrada mínima del indicador F.3, F.4 UMRmi n tensión mínima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	I/O	entrada/salida	B.3.2	
T tara sustractiva 7.1.2 etc. Tmi n, Tmax Ifmite inferior del rango de temperatura, Ifmite superior del rango de temperatura um unidad de medición 2.1, 4.12.1 Δumi n tensión de entrada mínima por división de escala de verificación C.2.1.1, F.3, F.4 U precio unitario 4.14.2 U tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Uexc tensión de excitación de celda de carga F.1, F.4 Umin tensión de entrada mínima del indicador F.3, F.4 UMRmi n tensión mínima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	Т	valor de tara	T.5.2.3, 4.6.5, 4.6.11	
Tmi n, Tmaxlímite inferior del rango de temperatura, límite superior del rango de temperaturaC.3.3.2.4umunidad de medición2.1, 4.12.1Δumi ntensión de entrada mínima por división de escala de verificaciónC.2.1.1, F.3, F.4Uprecio unitario4.14.2Utensión nominal de suministro de energía3.9.3, A.5.4Umi n, Umaxrango de tensión de suministro de energía3.9.3, A.5.4Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3VMRmaxtensión máxima del rango de medición del indicadorF.3vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	т ⁺	tara aditiva	7.1.2 etc.	
umunidad de medición2.1, 4.12.1Δumi ntensión de entrada mínima por división de escala de verificaciónC.2.1.1, F.3, F.4Uprecio unitario4.14.2Utensión nominal de suministro de energía3.9.3, A.5.4Umi n, Umaxrango de tensión de suministro de energía3.9.3, A.5.4Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3VMRmaxtensión máxima del rango de medición del indicadorF.3Vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	т_	tara sustractiva	7.1.2 etc.	
Δumi ntensión de entrada mínima por división de escala de verificaciónC.2.1.1, F.3, F.4Uprecio unitario4.14.2Utensión nominal de suministro de energía3.9.3, A.5.4Umi n, Umaxrango de tensión de suministro de energía3.9.3, A.5.4Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3UMRmaxtensión máxima del rango de medición del indicadorF.3Vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	T _{mi n} , T _{max}		C.3.3.2.4	
Uprecio unitario4.14.2Utensión nominal de suministro de energía3.9.3, A.5.4Umi n, Umaxrango de tensión de suministro de energía3.9.3, A.5.4Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3UMRmaxtensión máxima del rango de medición del indicadorF.3Vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	<i>u</i> m	unidad de medición	2.1, 4.12.1	
tensión nominal de suministro de energía 3.9.3, A.5.4 Umi n, Umax rango de tensión de suministro de energía 3.9.3, A.5.4 Uexc tensión de excitación de celda de carga F.1, F.4 Umin tensión de entrada mínima del indicador F.3, F.4 UMRmi n tensión mínima del rango de medición del indicador F.3 UMRmax tensión máxima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	Δumi n	tensión de entrada mínima por división de escala de verificación	C.2.1.1, F.3, F.4	
Umi n, Umaxrango de tensión de suministro de energía3.9.3, A.5.4Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3UMRmaxtensión máxima del rango de medición del indicadorF.3vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	U	precio unitario	4.14.2	
Uexctensión de excitación de celda de cargaF.1, F.4Umintensión de entrada mínima del indicadorF.3, F.4UMRmi ntensión mínima del rango de medición del indicadorF.3UMRmaxtensión máxima del rango de medición del indicadorF.3vminintervalo de verificación mínimo de la celda de cargaF.1, F.2, F.4Vvariación del errorFigura 3	U	tensión nominal de suministro de energía	3.9.3, A.5.4	
Umin tensión de entrada mínima del indicador F.3, F.4 UMRmi n tensión mínima del rango de medición del indicador F.3 UMRmax tensión máxima del rango de medición del indicador F.3 Vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	<i>U</i> mi n, <i>U</i> max	rango de tensión de suministro de energía	3.9.3, A.5.4	
UMRmi n tensión mínima del rango de medición del indicador F.3 UMRmax tensión máxima del rango de medición del indicador F.3 vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	U _{exc}			
UMRmax tensión máxima del rango de medición del indicador F.3 vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	<i>U</i> min	tensión de entrada mínima del indicador	F.3, F.4	
vmin intervalo de verificación mínimo de la celda de carga F.1, F.2, F.4 V variación del error Figura 3	<i>U</i> MRmi n	tensión mínima del rango de medición del indicador	F.3	
V variación del error Figura 3	<i>U</i> MRmax	tensión máxima del rango de medición del indicador	F.3	
	<i>∨</i> min	intervalo de verificación mínimo de la celda de carga	F.1, F.2, F.4	
W peso 4.14.2	V	variación del error	Figura 3	
	W	peso	4.14.2	

W1, W2	instrumento de pesaje 1, instrumento de pesaje 2	7.1.4
WI	instrumento de pesaje	F.1
WR	rango de pesaje	F
Y	relación con el intervalo de verificación mínimo de la celda de carga: $Y = E_{\text{max}} / v_{\text{min}}$	F.2, F.4
Z	relación con el retorno de la señal de salida de la carga muerta mínima de la celda de carga: $Z = E_{\text{max}} / (2 \text{ x DR})$	F.2, F.4

OBJETO

El presente documento normativo específica los requisitos metrológicos y técnicos para Instrumentos de pesaje de funcionamiento no automáticos que son sometidos a controles metrológicos oficiales.

Tiene por objeto proporcionar los requisitos y procedimientos de ensayo normalizados para evaluar las características metrológicas y técnicas de manera uniforme y trazable.

2. PRINCIPIOS TÉCNICOS

2.1 UNIDADES DE MEDIDA

Las unidades de masa a utilizar en un instrumento son:

- kilogramo, kg;
- miligramo, mg;
- gramo, g; y
- tonelada, t.

Para aplicaciones especiales, por ejemplo, el comercio de piedras preciosas, se puede utilizar el quilate métrico (1 quilate = 0,2 g) como unidad de medición. El símbolo del quilate es ct.

2.2 PRINCIPIOS DE LOS REQUISITOS METROLÓGICOS

Los requisitos se aplican a todos los instrumentos, independientemente de sus principios de medición. Los instrumentos se clasifican según:

- la división de escala de verificación, que representa la exactitud absoluta; y
- el número de divisiones de escala de verificación, que representa la exactitud relativa.

Los errores máximos permitidos son del orden de magnitud de la división de escala de verificación. Estos Se aplican a las cargas brutas y, cuando un dispositivo de tara está en funcionamiento, se aplican a las cargas netas. Los errores máximos permitidos no se aplican a los valores netos calculados cuando un dispositivo de tara predeterminada está en funcionamiento.

Se especifica una capacidad mínima (Min) para indicar que es probable que el uso del instrumento por debajo de este valor dé origen a errores relativos importantes.

2.3 PRINCIPIOS DE LOS REQUISITOS TÉCNICOS

Los requisitos técnicos generales se aplican a todos los modelos de instrumentos, ya sean mecánicos o electrónicos, y son modificados o complementados con requisitos adicionales para instrumentos usados para una aplicación específica o diseñados para una tecnología especial. Tienen por objeto especificar el funcionamiento de los instrumentos, no su diseño, a fin de no impedir los avances técnicos.

En particular, se deberían permitir las funciones de instrumentos electrónicos no cubiertas por el presente documento normativo siempre que no interfieran con los requisitos metrológicos y si se asegura la aptitud para el uso y un control metrológico apropiado.

Se proporcionan procedimientos de ensayo para establecer a conformidad de los instrumentos con los requisitos de esta NTC. Es conveniente de aplicarlos y utilizar el Formato de Informe de Ensayo (R 76-2), para facilitar el intercambio y la aceptación de resultados de ensayo por las autoridades metrológicas.

2.4 APLICACIÓN DE LOS REQUISITOS

Los requisitos de esta NTC se aplican a todos los dispositivos que realizan las funciones relevantes, ya sea que estén incorporados en un instrumento o fabricados como unidades separadas. Ejemplos:

- dispositivo de medición de carga;
- dispositivo indicador;
- dispositivo impresor;
- dispositivo de tara predeterminada; y
- dispositivo calculador de precio.

Sin embargo, los dispositivos que no están incorporados en el instrumento, pueden, según la legislación nacional y para aplicaciones especiales, ser eximidos del cumplimiento de los requisitos.

2.5 TERMINOLOGÍA

La terminología proporcionada en el capítulo T Terminología debe ser considerada como una parte obligatoria de esta NTC.

3. REQUISITOS METROLÓGICOS

3.1 PRINCIPIOS DE CLASIFICACIÓN

3.1.1 Clases de exactitud

En la Tabla 1, se dan las clases de exactitud de los instrumentos y sus símbolos*. Nótese que las denominaciones de clase utilizadas en La presente NTC no incluyen el óvalo alrededor del número para mayor claridad del texto de la misma.

Tabla 1

Nombre	Símbolo marcado en el instrumento	Denominación utilizada en esta NTC
Exactitud especial		I
Exactitud alta		II
Exactitud media		Ш
Exactitud ordinaria		IIII

^{*} Se permite utilizar óvalos de cualquier forma o dos líneas horizontales unidas por dos semicírculos. No se debe utilizar un círculo porque, de conformidad con OIML R 34 *Clases de exactitud de instrumentos de medición*, éste se reserva para la designación de clases de exactitud de instrumentos de medición, cuyos errores máximos permitidos se expresan mediante un error relativo constante en %.

3.1.2 División de escala de verificación

En la Tabla 2, se da la división de escala de verificación para los diferentes modelos de instrumentos.

Tabla 2

Modelo de instrumento	División de escala de verificación		
Graduado, sin dispositivo indicador auxiliar	e = d		
Graduado, con dispositivo indicador auxiliar	e es seleccionado por el fabricante de acuerdo con los requisitos de 3.2 y 3.4.2		
No graduado	e es seleccionado por el fabricante de acuerdo con los requisitos de 3.2		

3.2 CLASIFICACIÓN DE INSTRUMENTOS

En la Tabla 3, se proporcionan la división de escala de verificación, el número de divisiones de escala de verificación y la capacidad mínima en función de la clase de exactitud de los instrumentos.

Tabla 3

Clase de exactitud	División de escala de verificación, e	Número de divisiones de n = M	Capacidad mínima, Min	
exactitud	verificación, e	mínimo	máximo	(Límite inferior)
Especial (I)	0,001 g ≤ <i>e</i> *	50 000**	_	100 e
Alta (II)	$0,001 \text{ g} \le e \le 0,05 \text{ g}$ $0,1 \text{ g} \le e$	100 5 000	100 000 100 000	20 e 50 e
Media III	0 ,l g ≤ e≤ 2 g 5 g ≤ e	100 500	10 000 10 000	20 e 20 e
Ordinaria (IIII)	5 g ≤ e	100	1 000	10 e

^{*} Normalmente, no es posible ensayar y verificar un instrumento con *e* < 1 mg, debido a la incertidumbre de las cargas de ensayo.

^{**} Véase la excepción del numeral 3.4.4.

La capacidad mínima se reduce a 5 e para instrumentos de clasificación, es decir, instrumentos que determinan una tasa o tarifa de transporte (por ejemplos, balanzas postales e instrumentos que pesan desechos).

En instrumentos de rango múltiple, las divisiones de escala de verificación son e_1 , e_2 , ..., e_r con $e_1 < e_2 < ... < e_r$. También se utilizan subíndices similares con los términos Min, n y Max.

En instrumentos de rango múltiple, cada rango es tratado como si fuera un instrumento con un solo rango.

Para aplicaciones especiales que están claramente indicadas en el instrumento, éste puede tener rangos de pesaje de clases I y II o de clases II y III. En ese caso, el instrumento en su conjunto debe cumplir con los requisitos más estrictos de 3.9 aplicables a cualquiera de las dos clases.

3.3 REQUISITOS ADICIONALES PARA INSTRUMENTOS DE INTERVALO MÚLTIPLE

3.3.1 Rango de pesaje parcial

Cada rango parcial (índice i = 1, 2, ...) está definido por:

- su división de escala de verificación, ej;, ej +1 > ej;
- su capacidad máxima, Max;; y
- su capacidad mínima, $Min_{ij} = Max_{i-1}$ (para i = 1, la capacidad máxima es $Min_{1} = Min_{1}$).

El número de divisiones de escala de verificación, n_i , para cada rango parcial es igual a Max_i/e_i .

3.3.2 Clase de exactitud

ei y *ni* en cada rango de pesaje parcial, y Min₁ deben cumplir con los requisitos dados en la Tabla 3 según la clase de exactitud del instrumento.

3.3.3 Capacidad máxima de los rangos de pesaje parciales

Con excepción del último rango de pesaje parcial, se deben cumplir los requisitos de la Tabla 4, según la clase de exactitud del instrumento.

Tabla 4

Clase	I	II	III	IIII
Max _i / e _{i+1}	≥ 50 000	≥ 5 000	≥ 500	≥ 50

Ejemplos de un instrumento de intervalo múltiple: Capacidad máxima, Max = 2 / 5 / 15 kg, clase III División de escala de verificación, e = 1 / 2 / 10 g

Este instrumento tiene un solo Max, y un solo rango de pesaje de Min = 20 g a Max = 15 kg. Los rangos de pesaje parciales son los siguientes:

$$Min = 20 g, Max_1 = 2 kg, e_1 = l g, n_1 = 2 000$$

$$Min_2 = 2 \text{ kg}, Max_2 = 5 \text{ kg}, e_2 = 2 \text{ g}, n_2 = 2 500$$

 $Min_3 = 5 \text{ kg}, Max_3 = Max = 15 \text{ kg}, e_3 = 10 \text{ g}, n_3 = 1 500$

Los errores máximos permitidos en la verificación inicial (emp) (véase el numeral 3.5. 1) son:

Cuando el límite de la variación de la indicación debida a ciertos factores de influencia es una fracción o un múltiplo de e, esto significa, en un instrumento de intervalo múltiple, que se debe tomar e en función de la carga aplicada; especialmente con o cerca a cero, carga $e = e_1$.

3.3.4 Instrumento con dispositivo de tara

Los requisitos referentes a los rangos de un instrumento de intervalo múltiple se aplican a la carga neta, para cada valor posible de la tara.

3.4 DISPOSITIVOS INDICADORES AUXILIARES

3.4.1 Modelo y aplicaciones

Sólo los instrumentos de las clases I y II pueden estar equipados con un dispositivo indicador auxiliar, el cual debe ser:

- un dispositivo con jinete;
- un dispositivo de interpolación de lectura;
- un dispositivo indicador complementario (véase la Figura 4); o
- un dispositivo indicador con una división de escala diferenciada (véase la Figura 5).

Estos dispositivos sólo están permitidos a la derecha del signo decimal.

Un instrumento de intervalo múltiple no debe estar equipado con un dispositivo indicador auxiliar.

NOTA Los dispositivos del indicador ampliados (véase T.2.6 y 4.4.3) no son considerados como dispositivos indicadores auxiliares.

Leyenda

indicación: 174,273 g última cifra: 3 d = 1 mge = 10 mg

Figura 4. Ejemplo de un dispositivo indicador complementario

Leyenda

última cifra diferenciada: 5 d = 0.01 g ó 0.05 g e = 0.1 g última cifra diferenciada: 8 d = 0.01 g ó 0.02 g e = 0.1 g

Figura 5. Ejemplos de dispositivos indicadores con una división de escala diferenciada última cifra diferenciada

3.4.2 División de escala de verificación

El división de escala de verificación, e, está determinado por la expresión:

 $d < e \le 10 d$ (véase las Tablas 5a y 5b)

$$e = 10^{k} \text{ kg}$$

siendo k un número entero positivo o negativo, o cero.

Para un instrumento con indicación automática o con indicación semiautomática, véase el numeral 4.2.2.1.

Tabla 5a. Ejemplo de valores de e, calculados siguiendo esta regla

d =	0,1 g	0,2 g	0,5 g
e =	1 g	1 g	1 g
e =	10 <i>d</i>	5 d	2 d

Este requisito no se aplica a un instrumento de la clase I con d < 1 mg, donde e = 1 mg, tal como se muestra en la siguiente Tabla.

Tabla 5b Ejemplo de valores de e donde d < 1 mg

d =	0,01 mg	0,02 mg	0,05 mg	< 0,01 mg
e =	1 mg	1 mg	1 mg	1 mg
e =	100 <i>d</i>	50 d	20 d	> 100 d

3.4.3 Capacidad mínima

La capacidad mínima del instrumento es determinada de conformidad con los requisitos de la Tabla 3. Sin embargo, en la última columna de esta Tabla, la división de escala de verificación, e, es remplazada por la división de escala real, d.

3.4.4 Número mínimo de divisiones de escala de verificación

Para un instrumento de la clase I con d < 0.1 mg, n puede ser inferior a 50 000.

3.5 ERRORES MÁXIMOS PERMITIDOS

3.5.1 Valores de los errores máximos permitidos en la verificación inicial

En la Tabla 6, se proporcionan los errores máximos permitidos para cargas crecientes y decrecientes.

Tabla 6

Errores	J., , , , , , , , , , , , , , , , , , ,			
máximos permitidos en la verificación inicial	Clase I	Clase II	Clase III	Clase IIII
± 0,5 e	$0 \le m \le 50~000$	$0 \le m \le 5000$	0 ≤ <i>m</i> ≤ 500	$0 \le m \le 50$
± 1,0 e	$50\ 000 < m \le 200\ 000$	5 000 < <i>m</i> ≤ 20 000	$500 < m \le 2000$	$50 < m \le 200$
± 1,5 e	200 000 < m	20 000 < <i>m</i> ≤ 100 000	2 000 < <i>m</i> ≤ 10 000	200 < <i>m</i> ≤ 1 000

NOTA El valor absoluto del error máximo permitido es 0,5 e, 1,0 e ó 1,5 e, es decir, es el valor del error máximo permitido sin el signo positivo o negativo.

NOTA Para instrumentos de intervalo múltiple, consulte 3.3 (incluido el ejemplo).

3.5.2 Valores de los errores máximos permitidos en servicio

Los errores máximos permitidos en servicio deben ser iguales al doble de los errores máximos permitidos en la verificación inicial (véase 8.4.2).

3.5.3 Reglas básicas referentes a la determinación de errores

3.5.3.1 Factores de influencia

Los errores deben ser determinados en condiciones de ensayo normales. Cuando se evalúa el efecto de un factor, todos los demás factores deben mantenerse relativamente constantes, con valores próximos a la normal.

3.5.3.2 Eliminación del error de redondeo

Se debe eliminar el error de redondeo incluido en una indicación digital si la división de escala real es superior a 0,2 e.

3.5.3.3 Errores máximos permitidos para los valores netos

Los errores máximos permitidos se aplican al valor neto para cada carga de tara posible, salvo los valores de tara predeterminados.

3.5.3.4 Dispositivo de pesaje de la tara

Los errores máximos permitidos en un dispositivo de pesaje de la tara son, para cualquier valor de tara, los mismos que los del instrumento para el mismo valor de carga.

3.6 DIFERENCIAS PERMITIDAS ENTRE RESULTADOS

Independientemente de la variación de resultados que se permita, el error de cualquier resultado de pesaje individual por sí mismo no debe sobrepasar el error máximo permitido para la carga en cuestión.

3.6.1 Repetibilidad

La diferencia entre los resultados de varios pesajes de la misma carga no debe ser superior al valor absoluto del error máximo permitido del instrumento para esa carga.

3.6.2 Excentricidad de carga

Las indicaciones obtenidas para diferentes posiciones de una carga deben cumplir con los errores máximos permitidos, cuando se ensaya el instrumento de acuerdo con 3.6.2.1-3.6.2.4.

- NOTA Si un instrumento está diseñado para que las cargas puedan aplicarse de diferentes maneras, puede ser apropiado aplicar más de uno de los siguientes ensayos.
- **3.6.2.1** A menos que se especifique otra cosa en lo sucesivo, se debe aplicar una carga correspondiente a 1/3 de la suma de la capacidad máxima y el efecto máximo aditivo de tara correspondiente.
- **3.6.2.2** En un instrumento con un receptor de carga que tiene n puntos de apoyo, con n > 4, se debe aplicar la fracción 1/(n 1) de la suma de la capacidad máxima y el efecto máximo aditivo de tara a cada punto de apoyo.
- **3.6.2.3** En un instrumento con un receptor de carga sometido a una carga excéntrica mínima (por ejemplo, un tanque, una tolva, etc.), se debe aplicar una carga de ensayo correspondiente a 1/10 de la suma de la capacidad máxima y el efecto máximo aditivo de tara a cada punto de apoyo.
- **3.6.2.4** En un instrumento utilizado para pesar cargas móviles (por ejemplo, instrumentos de pesaje de vehículos, instrumentos con carril de suspensión), se debe aplicar una carga de ensayo correspondiente a la carga móvil usual, la más pesada y la más concentrada que se pueda pesar pero no superior a 0,8 veces la suma de la capacidad máxima y el efecto máximo aditivo de tara, en los diferentes puntos del receptor de carga.

3.6.3 Dispositivos indicadores múltiples

Para una determinada carga, la diferencia entre las indicaciones proporcionadas por múltiples dispositivos indicadores, incluyendo dispositivos de pesaje de la tara, no debe ser superior al valor absoluto del error máximo permitido, pero debe ser igual a cero entre los dispositivos de indicación digital y los dispositivos de impresión.

3.6.4 Diferentes posiciones de equilibrio

La diferencia entre dos resultados obtenidos para la misma carga cuando se cambia el método para equilibrar la carga (en el caso de instrumentos equipados con un dispositivo para ampliar la capacidad de la indicación automática) en dos ensayos consecutivos, no debe ser superior al valor absoluto del error máximo permitido para la carga aplicada.

3.7 PATRONES DE ENSAYO

3.7.1 Pesas

En principio, las masas patrón utilizadas para la verificación de un instrumento deben cumplir con los requisitos metrológicos de la NTC 1848 (OIML R 111). No deben tener un error superior a 1/3 del error máximo permitido del instrumento para la carga aplicada. Si pertenecen a la clase E₂ o superior, no se permite que su incertidumbre (en vez de su error) sea superior a 1/3 del error máximo permitido del instrumento para la carga aplicada, siempre que se tome en cuenta la masa convencionalmente verdadera y la estabilidad a largo plazo estimada.

3.7.2 Dispositivo auxiliar de verificación

Cuando un instrumento está equipado con un dispositivo auxiliar de verificación o cuando se verifica con un dispositivo auxiliar separado, los errores máximos permitidos de este dispositivo deben ser iguales a 1/3 de los errores máximos permitidos para la carga aplicada. Si se utilizan pesas, el efecto de sus errores no debe ser superior a 1/3 de los errores máximos permitidos del instrumento sometido a la verificación para la misma carga.

3.7.3 Sustitución de pesas patrón en la verificación

Al ensayar instrumentos en el lugar de uso (aplicación), en vez de pesas patrón, se puede utilizar cualquier otra carga constante, siempre que las pesas patrón utilizadas proporcionen al menos el 50 % de la capacidad máxima del equipo.

Si el error de repetibilidad no es superior a 0,3 e, la parte de pesas patrón puede reducirse a 1/3 Max.

Si el error de repetibilidad no es superior a 0,2 e, esta parte puede reducirse a 1/5 Max.

Se tiene que determinar el error de repetibilidad con una carga (pesas o cualquier otra carga) de aproximadamente el valor donde se realiza la sustitución, colocándola tres veces en el receptor de carga.

3.8 DISCRIMINACIÓN

3.8.1 Instrumentos de indicación no automática

Una carga adicional equivalente a 0,4 veces el valor absoluto del error máximo permitido para la carga aplicada pero no inferior a 1 mg, al ser colocada suavemente en el instrumento en equilibrio o retirada del mismo, debe producir un desplazamiento visible del elemento indicador.

3.8.2 Instrumentos con indicación automática o semi-automática

3.8.2.1 Indicación analógica

Una carga adicional equivalente al valor absoluto del error máximo permitido para la carga aplicada pero no inferior a 1 mg, al ser colocada suavemente en el instrumento en equilibrio o retirada del mismo, debe producir un desplazamiento permanente del elemento indicador correspondiente a por lo menos 0,7 veces esta carga adicional.

3.8.2.2 Indicación digital

Una carga adicional igual a 1,4 veces la división de escala real, al ser colocada suavemente en el instrumento en equilibrio o retirada del mismo, debe cambiar la indicación inequívocamente. Esto sólo se aplica a instrumentos con $d \ge 5$ mg.

3.9 VARIACIONES DEBIDAS A LAS MAGNITUDES DE INFLUENCIA Y EL TIEMPO

Salvo que se especifique lo contrario y en la medida en que se aplique, un instrumento debe cumplir con los numerales 3.5, 3.6 y 3.8 en las condiciones fijadas en el numeral 3.9. Los ensayos no deben combinarse, salvo que se especifique lo contrario.

3.9.1 Inclinación

3.9.1.1 Instrumentos susceptibles de inclinarse

En el caso de un instrumento de clase II, III o IIII susceptible de inclinarse, se debe determinar la influencia de la inclinación bajo el efecto de una inclinación longitudinal o transversal igual al valor límite de inclinación definido en a) a d).

El valor absoluto de la diferencia entre la indicación del instrumento en su posición de referencia (no inclinado) y la indicación en la posición inclinada (= valor límite de inclinación en cualquier dirección) no debe superar:

- dos divisiones de escala de verificación sin carga (previamente, se debe haber ajustado a cero el instrumento sin carga en su posición de referencia), salvo los instrumentos de clase II; y
- el error máximo permitido con la capacidad de la indicación automática y con la capacidad máxima, (se debe haber ajustado a cero el instrumento sin carga tanto en la posición de referencia como en la posición inclinada).
- a) Si el instrumento está equipado con un dispositivo de nivelación y un indicador de nivel, el valor límite de inclinación debe ser definido por una marca (por ejemplo, un anillo) en el indicador de nivel que muestre que se ha sobrepasado la inclinación máxima permitida cuando la burbuja se desplace en relación con la posición central y el borde toque la marca. El valor límite del indicador de nivel debe ser evidente, de tal manera que la inclinación sea fácilmente perceptible. El indicador de nivel debe estar fijado firmemente en el instrumento en un lugar claramente visible para el usuario y sensible a la inclinación.

NOTA Si, en circunstancias excepcionales, razones técnicas impiden fijar el indicador de nivel en un lugar visible, esto puede ser aceptado sólo si el usuario tiene fácil acceso al indicador de nivel sin el uso de herramientas (por ejemplo, debajo del receptor de carga removible) y si hay un aviso legible en el instrumento en un lugar claramente visible que señale al usuario el indicador de nivel.

- b) Si el instrumento está equipado con un sensor de inclinación automático, el valor límite de inclinación es definido por el fabricante. El sensor de inclinación debe desconectar la pantalla o emitir otra señal de alarma (por ejemplo. Luz, señal de error) y debe bloquear la impresión y la transmisión de datos si se ha sobrepasado el valor límite de inclinación (véase también 4.18). El sensor de inclinación automático también puede compensar el efecto de inclinación.
- c) Si no se aplica ni a) ni b), el valor límite de inclinación es 50/1000 en cualquier dirección.
- d) Los instrumentos móviles destinados a ser usados afuera en lugares abiertos (por ejemplo, en carreteras) deben estar equipados con un sensor de inclinación automático o una suspensión cardánica (modelo cardán) de la parte(s) sensible a la inclinación. En el caso de un sensor de inclinación automático, se aplica b), mientras que en el caso de una suspensión cardánica, se aplica c) pero el fabricante puede definir un valor límite de inclinación superior a 50/1000 (véase también el numeral 4.18).

3.9.1.2 Otros instrumentos

Los siguientes instrumentos son considerados como no susceptibles de inclinarse, de manera que no se aplican los requisitos de inclinación indicados en 3.9.1.1.

- Los instrumentos de Clase I deben estar equipados con un dispositivo de nivelación y un indicador de nivel pero no tienen que ser ensayados porque estos instrumentos requieren condiciones ambientales y de instalación especiales y personal operativo calificado.
- Instrumentos instalados en una posición fija.
- Instrumentos suspendidos libremente, por ejemplo, instrumentos colgantes o de grúa.

3.9.2 Temperatura

3.9.2.1 Límites de temperatura establecidos

Si no se menciona ninguna temperatura de trabajo en particular en las marcas descriptivas de un instrumento, éste debe mantener sus propiedades metrológicas dentro de los siguientes límites de temperatura:

- 10 °C / + 40 °C

3.9.2.2 Límites de temperatura especiales

Un instrumento para el cual se mencionan límites particulares de temperatura de trabajo en las marcas descriptivas, debe cumplir con los requisitos metrológicos dentro de esos límites.

Los límites pueden ser seleccionados en función de la aplicación del instrumento. Los rangos dentro de esos límites deben ser al menos iguales a:

- 5 °C para instrumentos de clase I;
- 15 °C para instrumentos de clase II; y
- 30 °C para instrumentos de clases III y IIII.

3.9.2.3 Efecto de la temperatura en la indicación sin carga

La indicación de cero o casi cero no debe variar en más de una división de escala de verificación para una diferencia en la temperatura ambiente de 1 °C en el caso de los instrumentos de clase I y 5 °C en el caso de otras clases.

En el caso de instrumentos de intervalo múltiple y de instrumentos de rango múltiple, esto se aplica a la división de escala de verificación más pequeña del instrumento.

3.9.3 Suministro de energía

Un instrumento debe cumplir con los requisitos metrológicos, si la tensión del suministro de energía difiere de la tensión nominal U_{nom} , o del rango de tensión, U_{min} , U_{max} , del instrumento en:

Alimentación por la red pública (AC):

límite inferior = 0,85 Unom ó 0,85 Umin

límite superior = 1,10 *U*nom ó 1,10 *U*max

 Dispositivo de alimentación eléctrica externo o enchufable (AC o DC), incluyendo la alimentación eléctrica por batería recargable si es posible la (re)carga de baterías durante la operación del instrumento:

límite inferior = mínima tensión de funcionamiento

límite superior = 1,20 Unom ó 1,20 Umax

 Alimentación eléctrica por batería no recargable (DC), incluyendo alimentación eléctrica por batería recargable si no es posible la (re)carga de baterías durante la operación del instrumento:

límite inferior = mínima tensión de funcionamiento

límite superior = Unom ó Umax

Alimentación eléctrica por batería de vehículos de carretera de 12 V ó 24 V:

límite inferior = mínima tensión de funcionamiento

límite superior = 16 V (batería de 12 V) ó 32 V (batería de 24 V)

NOTA La mínima tensión de funcionamiento es definida como la tensión de funcionamiento más baja posible antes de que el instrumento se apague automáticamente

Los instrumentos electrónicos alimentados por batería e instrumentos con un dispositivo de alimentación eléctrica externo o enchufable (AC o DC) deben seguir funcionando correctamente o no indicar ningún valor de peso si la tensión se encuentra por debajo del valor especificado por el fabricante, siendo este último superior o igual a la mínima tensión de funcionamiento.

3.9.4 Tiempo

En condiciones ambientales razonablemente constantes, un instrumento de clase II, III o IIII debe cumplir con los siguientes requisitos.

3.9.4.1 Fluencia (*creep*)

Cuando se mantiene cualquier carga en un instrumento, la diferencia entre la indicación obtenida inmediatamente después de colocar la carga y la indicación observada durante los siguientes 30 minutos, no debe ser superior a 0,5 e. Sin embargo, la diferencia entre la indicación obtenida al cabo de 15 minutos y la obtenida al cabo de 30 min no debe ser superior a 0,2 e.

Si no se cumplen estas condiciones, la diferencia entre la indicación obtenida inmediatamente después de colocar la carga en el instrumento y la indicación observada durante las siguientes cuatro horas no debe ser superior al valor absoluto del error máximo permitido con la carga aplicada.

3.9.4.2 Retorno a cero

La desviación de retorno a cero, desde la estabilización de la indicación, después del retiro de cualquier carga que haya quedado en el instrumento por media hora, no debe ser superior a 0,5 e.

En el caso de un instrumento de intervalo múltiple, la desviación no debe ser superior a 0,5 e1.

En un instrumento de rango múltiple, la desviación de retorno a cero desde Max no debe ser superior a 0,5 e.

Además, después del retorno a cero a partir de cualquier carga superior a Max₁ y después de la conmutación inmediata al rango de pesaje más bajo, la indicación próxima a cero no deber variar en más de e₁ durante los siguientes 5 minutos.

3.9.4.3 Durabilidad

El error de durabilidad debido al uso y desgaste no debe ser superior al valor absoluto del error máximo permitido.

Se asume el cumplimiento de este requisito si el instrumento ha superado el ensayo de duración especificado en el literal A.6, el cual debe realizarse sólo para los instrumentos con Max ≤ 100 kg.

3.9.5 Otras magnitudes de influencia y restricciones

Cuando otras influencias y restricciones, tales como:

- vibraciones;
- precipitaciones y corrientes de aire; y/o
- limitaciones y restricciones mecánicas,

constituyen una característica normal del entorno de funcionamiento previsto para el instrumento, éste debe cumplir con los requisitos de los capítulos 3 y 4 cuando está sometido a esas influencias y restricciones, ya sea porque ha sido diseñado para operar correctamente a pesar de estas influencias, o porque está protegido contra su acción.

NOTA Instrumentos instalados en exteriores sin protección adecuada contra las condiciones atmosféricas normalmente pueden no cumplir con los requisitos de los capítulos 3 y 4 si el número de divisiones de escala de verificación, n, es relativamente grande. (En general, sólo se puede sobrepasar un valor de n=3 000 con medidas muy especiales. Además, para puente- básculas de carretera o ferroviarias, la división de escala de verificación no debería ser inferior a 10 kg). Estos límites también deberían aplicarse a cada rango de pesaje de combinaciones de instrumentos o de instrumentos de rango múltiple o a cada rango de pesaje parcial de instrumentos de intervalo múltiple.

3.10 ENSAYOS Y EXÁMENES DE UNA EVALUACIÓN DE MODELO

3.10.1 Instrumentos completos

Para la evaluación de modelo, deben realizarse los ensayos indicados en los Anexos A y B para verificar el cumplimiento de los requisitos de 3.5, 3.6, 3.8, 3.9, 4.5, 4.6, 5.3, 5.4 y 6.1. El ensayo de duración (A.6) debe realizarse después de todos los demás ensayos indicados en los Anexos A y B.

En el caso de instrumentos controlados por software, se aplican los requisitos adicionales de 5.5 y el Anexo G.

3.10.2 Módulos

Previo acuerdo con la autoridad de aprobación, el fabricante puede definir y presentar módulos para ser examinados por separado. Esto es especialmente aplicable en los siguientes casos:

- cuando es difícil o imposible el ensayo del instrumento en su totalidad;
- cuando los módulos son fabricados y/o comercializados como unidades separadas para ser incorporados en instrumentos completos; o
- cuando el solicitante desea tener una variedad de módulos incluidos en el modelo aprobado.

Cuando se examina los módulos por separado en el proceso de aprobación de modelo, se aplican los siguientes requisitos.

3.10.2.1 Distribución de errores

Los límites de error aplicables a un módulo, M_i , que se examina por separado, son iguales a una fracción p_i de los errores máximos permitidos o las variaciones de la indicación aceptadas para el instrumento completo según se especifica en 3.5. Las fracciones de cualquier módulo deben aplicarse por lo menos a la misma clase de exactitud y por lo menos al mismo número de divisiones de escala de verificación que para el instrumento completo que incorpora al módulo.

Las fracciones *pj* deben satisfacer la siguiente ecuación:

$$P_1^2 + P_2^2 + P_3^2 + \dots \le 1$$

La fracción *pi* debe ser seleccionada por el fabricante del módulo y debe ser verificada mediante un ensayo apropiado, tomando en cuenta las siguientes condiciones:

- Para dispositivos puramente digitales, *pi* puede ser igual a 0.
- Para módulos de pesaje, pi puede ser igual a 1.
- Para todos los demás módulos incluyendo celdas de carga digitales), la fracción no debe ser superior a 0,8 y no debe ser inferior a 0,3, cuando más de un módulo contribuye al efecto en cuestión.

Solución aceptable (véase la explicación en la nota introductoria del capítulo 4):

Para estructuras mecánicas, tales como puente-básculas, dispositivos transmisores de carga y elementos de conexión mecánicos o eléctricos evidentemente diseñados y fabricados de acuerdo con una buena práctica de ingeniería, se puede aplicar una fracción global $p_i = 0,5$ sin ningún ensayo, por ejemplo, cuando las palancas son del mismo material y cuando la cadena de palancas tiene dos planos de simetría (longitudinal y transversal) o cuando las características de estabilidad de los elementos conectores eléctricos son apropiadas para las señales transmitidas, tales como la señal de salida de celda de carga, la impedancia, etc.

En el caso de instrumentos que incorporan a los módulos típicos (véase T.2.2), las fracciones *pi* pueden tener los valores indicados en la Tabla 7. La Tabla 7 toma en cuenta que los módulos son afectados de manera diferente, dependiendo de los diferentes criterios de desempeño.

Tabla 7.

Criterios de desempeño	Celda de carga	Indicador electrónico	Elementos de conexión, etc.
Efecto combinado*	0,7	0,5	0,5
Efecto de la temperatura en la indicación sin carga	0,7	0,5	0,5
Variación del suministro de energía	_	1	-
Efecto de fluencia (creep)	1	_	_
Calor húmedo	0,7**	0,5	0,5
Estabilidad de la pendiente	_	1	_

^{*} Efectos combinados: no linealidad, histéresis, efecto de temperatura en la pendiente, repetibilidad, etc. Después del tiempo de calentamiento especificado por el fabricante, las fracciones de error del efecto combinado se aplican a los módulos.

3.10.2.2 Ensayos

En la medida en que se aplique, deben realizarse los mismos ensayos que para los instrumentos completos. En el Anexo C, se proporcionan los ensayos aplicables para indicadores y dispositivos de procesamiento de datos analógicos, en el Anexo D, los ensayos aplicables para dispositivos de procesamientos de datos digitales, terminales y pantallas digitales y, en el Anexo E, los ensayos aplicables para módulos de pesaje.

Los módulos puramente digitales no tienen que ser sometidos a ensayos de temperaturas estáticas (B.2.1), humedad (B.2.2) y estabilidad de la pendiente (B.4). No tienen que ser sometidos a ensayos de perturbaciones (B.3) si se establece de otro modo la conformidad con las Normas IEC relevantes en al menos el mismo nivel que el exigido en esta norma.

En el caso de instrumentos controlados por software, se aplican los requisitos adicionales de 5.5 y el Anexo G.

3.10.2.3 Compatibilidad

El fabricante debe establecer y declarar la compatibilidad de módulos. En el caso de indicadores y celdas de carga, esto debe hacerse de acuerdo con el Anexo F.

Para módulos con salida digital, la compatibilidad incluye la comunicación correcta y transferencia de datos mediante la o las interfases digitales, véase el Anexo F.5.

3.10.2.4 Uso de certificados OIML

Si existe el respectivo Certificado OIML y si se cumplen los requisitos de 3.10.2.1, 3.10.2.2 y 3.10.2.3, se puede utilizar lo siguiente sin repetir ensayos:

- celdas de carga ensayadas para SH o CH (pero no celdas de carga marcadas con NH)
 que han sido ensayadas por separado de acuerdo con OIML R 60;
- indicadores y dispositivos de procesamiento de datos analógicos que han sido ensayados por separado de acuerdo con el Anexo C;
- dispositivos de procesamiento de datos digitales, terminales, y pantallas digitales que han sido ensayados por separado de acuerdo con el Anexo D;

^{**} De acuerdo con OIML R 60, válido para celdas de carga ensayadas para SH (pl C = 0,7).

El signo "-" significa "no aplicable".

- módulos de pesaje que han sido ensayados por separado de acuerdo con el Anexo E;
- otros módulos (si existen Recomendaciones OIML relevantes).

Los Certificados OIML deben contener toda la información relevante exigida en el Anexo F. Los Certificados OIML para módulos deben distinguirse claramente de los Certificados OIML para instrumentos completos.

Un instrumento representativo completo debe ser presentado para ensayos de funcionamiento correcto si la autoridad responsable lo considera necesario, por ejemplo, para llevar a cabo ensayos que no se han realizado, como la inclinación.

3.10.3 Dispositivos periféricos

Los dispositivos receptores periféricos tienen que ser examinados y ensayados sólo una vez mientras están conectados a un instrumento de pesaje, y pueden ser declarados adecuados para su conexión a cualquier instrumento de pesaje verificado provisto de una interfase apropiada y protectora.

Los dispositivos periféricos puramente digitales no tienen que ser sometidos a ensayos de temperaturas estáticas (A.5.3), humedad (B.2) y estabilidad de la pendiente (B.4). No tienen que ser ensayados para determinar perturbaciones (B.3) si se establece de otro modo la conformidad con las Normas IEC relevantes con al menos el mismo nivel que el exigido en esta Norma.

3.10.4 Ensayo de una familia de instrumentos o módulos

Cuando una familia de instrumentos o módulos de diferentes capacidades y características es presentado al examen de modelo, se aplican las siguientes disposiciones para seleccionar el Equipo Sometido a Ensayo (EUT). Para indicadores, remitirse también el Anexo C.2.

3.10.4.1 Selección de EUT

La selección de los EUT a ensayar debe ser tal que se minimice su número pero que sea lo suficientemente representativo (véase ejemplo en solución aceptable de 3.10.4.6).

La aprobación de los EUT más sensibles implica la aprobación de las variantes con características inferiores. Por lo tanto, cuando se puede elegir, se deben seleccionar para el ensayo los EUT con las características metrológicas superiores.

3.10.4.2 Variantes dentro de una familia a ensayar

Para cualquier familia, se deben seleccionar como EUT por lo menos la variante con el mayor número de divisiones de escala de verificación (n) y la variante con la división de escala de verificación más pequeño, e. Se pueden requerir EUT adicionales de acuerdo con 3.10.4.6. Si una variante tiene ambas características, un EUT puede ser suficiente.

3.10.4.3 Variantes aceptables sin ensayos

Se pueden aceptar variantes distintas a los EUT sin ensayos si se cumple una de las siguientes disposiciones con viñetas (para características metrológicas comparables):

- Sus capacidades, Max, se encuentran entre dos capacidades ensayadas. La relación entre las capacidades ensayadas no debe ser superior a 10; o

- Se cumplen todas las siguientes condiciones a), b) y c):
- a) *n* ≤ *n*ensayo
- b) e ≥ eensayo
- c) Max \leq 5 x Maxensayo x (n_{ensayo} / n)

NOTA Maxensayo, nensayo y eensayo son las características del EUT.

3.10.4.4 Clase de exactitud

Si se ha ensayado completamente un EUT de una familia para una sola clase de exactitud, es suficiente para un EUT de una clase inferior si sólo se realizan ensayos parciales que todavía no están cubiertos.

3.10.4.5 Otras características a considerar

Se debe ensayar todas las características y funciones metrológicamente relevantes por lo menos una vez en un EUT en la medida en que se apliquen y tantas como sea posible en el mismo EUT.

Por ejemplo, no es aceptable ensayar el efecto de temperatura en la indicación sin carga en un EUT y el efecto combinado (véase la Tabla 7) en uno diferente. Las variaciones en las características y funciones metrológicamente relevantes diferentes a:

- cubiertas;
- receptores de carga;
- rangos de temperatura y humedad;
- funciones del instrumento;
- indicaciones; etc.

Pueden requerir ensayos parciales adicionales de aquellos factores que son influenciados por dicha característica. Estos ensayos adicionales deberían realizarse, de preferencia, en el mismo EUT pero, si esto no es posible, pueden realizarse ensayos en uno o más EUT adicionales bajo la responsabilidad de la autoridad encargada de los ensayos.

3.10.4.6 Resumen de características metrológicas relevantes

Los EUT deben cubrir:

- número máximo de divisiones de escala de verificación, nmax;
- división de escala de verificación más bajo, emi n;
- señal de entrada más baja, μV/e (al utilizar celdas de carga de extensómetro analógicas);
- todas las clases de ex actitud;

- todos los rangos de temperatura;
- instrumento de un solo rango, de rango múltiple o de intervalo múltiple;
- tamaño máximo del receptor de carga, si es significativo;
- características metrológicamente relevantes (véase el numeral 3.10.4.5);
- número máximo de funciones del instrumento;
- número máximo de indicaciones;
- número máximo de dispositivos periféricos conectados;
- número máximo de dispositivos digitales implementados;
- número máximo de interfases análogas y digitales;
- varios receptores de carga, si pueden ser conectados al indicador; y
- diferentes modelos de suministro de energía (red eléctrica y/o baterías) Solución aceptable para la selección de los EUT de una familia:

Tabla 8. Selección de los EUT para un modelo de un instrumento de pesaje de funcionamiento no automático con dos familias

	Variante	Max	е	d	n	EUT
Familia 1	1.1	200 g	0,01 g	0,001 g	20 000	
Clase de exactitud II Rango de temperatura:	1.2	400 g	0,01 g	0,001 g	40 000	Х
10 °C / 30 °C	1.3	2000 g	0,05 g	0,05 g	40 000	
Familia 2	2.1	1,5 kg	0,5 g	0,5 g	3 000	Х
Clase de exactitud III	2.2	3 kg	1 g	1 g	3 000	
Rango de temperatura: – 10 °C / 40 °C	2.3	5 kg	2 g	2 g	2 500	
10 07 10 0	2.4	15 kg	5 g	5 g	3 000	Х
	2.5	60 kg	20 g	20 g	3 000	

NOTA Este ejemplo cubre sólo las diferentes capacidades y características metrológicas de los EUT de acuerdo con 3.10.4.2 a 3.10.4.4. En la práctica, también se deben tomar en cuenta las otras características metrológicamente relevantes de acuerdo con 3.10.4.5 y éstas pueden conducir a uno o más EUT adicionales.

Observaciones sobre la selección:

- Se seleccionan las variantes 1.2, 2.1 y 2.4 como EUT (marcadas en la última columna de la Tabla 8).
- No necesita ser ensayada la variante 1.1 porque tiene el mismo e y d como variante 1.2.

Solamente el valor de Max se reduce a 200 g (véase 3.10.4.3).

- La variante 1.2 tiene las mejores características metrológicas de la familia 1 y debe ser ensayada completamente de acuerdo con 3.10.4.2.
- No necesita ser ensayada la variante 1.3 porque Max no es superior a 5 veces la de la variante 1.2 (véase 3.10.4.3).
- La variante 2.1 tiene las mejores características metrológicas de la familia 2, el e más pequeño y el mayor n. Por lo tanto la variante 2.1 se pondrá a prueba (véase 3.10.4.4). Es suficiente realizar adicionalmente sólo los ensayos aplicables para la clase III. No es necesario repetir aquellos ensayos que son los mismos para las clases II y III y que ya se han realizado en la variante 1.2.
- No necesitan ser ensayadas las variantes 2.2 y 2.3 porque sus valores de Max se encuentran entre las variantes ensayadas 2.1 y 2.4 (véase 3.10.4.3) y sus características metrológicas son inferiores o iguales a las de las variantes 2.1 y 2.4
- Se debe ensayar la variante 2.4 porque la relación entre la variante 2.5 y 2.1 es superior a 10 (véase el numeral 3.10.4.3). Para la variante 2.4, es suficiente realizar adicionalmente algunos ensayos importantes, tales como ensayo de pesaje, temperatura, excentricidad, discriminación, repetibilidad, etc. Normalmente, no es necesario repetir otros ensayos (por ejemplo, ensayos de inclinación, suministro de energía, humedad, estabilidad de la pendiente, duración, perturbaciones), que ya se han realizado en las variantes 1.2 y 2.1).
- No necesita ser ensayada la variante 2.5 porque Max no es superior a 5 veces la de la variante 2.4 (véase el numeral 3.10.4.3).

Tabla 9. Resumen de las características metrológicas presentadas en el Certificado OIML

	Familia 1	Familia 2
Clase de exactitud	II	III
Max	1 g 2000 g	50 g 60 kg
е	0,01 g 0,2 g	0,5 g 100 g
d	0,001 g 0,2 g	0,5 g 100 g
n	≤ 40 000	≤3 000
Rango de equilibrio de tara	100 % de Max	100 % de Max
Rango de tara predeterminada	100 % de Max	100 % de Max
Rango de temperatura	10 °C / 30 °C	-10 °C / 40 °C

NOTA El respectivo Certificado OIML debe incluir la familia completa de acuerdo con la Tabla 8 con ocho instrumentos de dos familias o puede incluir alternativamente las características metrológicas de las familias de acuerdo con la Tabla 9. En el segundo caso, los valores de Max pueden reducirse (en comparación con el EUT más pequeño, Tabla 8) si es un instrumento idéntico con la misma división de escala de verificación, e, y si se siguen cumpliendo las condiciones de la Tabla 3. El Certificado cubre todas las variantes que cumplen las características metrológicas de la Tabla 9.

4. REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS CON INDICACIÓN AUTOMÁTICA O INDICACIÓN SEMI-AUTOMÁTICA

Los siguientes requisitos se refieren al diseño y la construcción de instrumentos y tienen por objeto asegurar que éstos den resultados de pesajes correctos e inequívocos y otras indicaciones primarias, en condiciones normales de uso y la manipulación apropiada por usuarios no calificados. No están destinadas a recomendar soluciones sino a definir el funcionamiento apropiado del instrumento.

Ciertas soluciones que se han utilizado durante un largo período, son ahora comúnmente aceptadas; estas soluciones son indicadas como "solución aceptable"; aunque no es necesario adoptarlas, se considera que cumplen con los requisitos de la disposición aplicable.

4.1 REQUISITOS GENERALES DE CONSTRUCCIÓN

4.1.1 Aptitud

4.1.1.1 Aptitud para la aplicación

Un instrumento debe estar diseñado para adecuarse a su uso previsto.

NOTA El término "uso previsto" incluye aspectos tales como la naturaleza y necesidades de la aplicación y el ambiente. Cuando se debe restringir el uso previsto, se puede requerir una identificación o marca que indique dicha restricción de acuerdo con las regulaciones nacionales.

4.1.1.2 Aptitud para el uso

Un instrumento debe estar construido de manera sólida y cuidadosa con el fin de asegurar el mantenimiento de sus cualidades metrológicas durante un período de uso.

4.1.1.3 Aptitud para la verificación

Un instrumento debe permitir realizar el conjunto de ensayos establecidos en esta norma.

En especial, los receptores de carga deben estar de tal manera que se pueda colocar la pesa patrón sobre éstos fácilmente y con total seguridad. Si no se pueden colocar las pesas, se puede requerir un soporte adicional.

Debe ser posible identificar los dispositivos que han sido objeto de un procedimiento separado de examen de modelo (por ejemplo, celdas de carga, impresoras, etc.).

4.1.2 Seguridad

4.1.2.1 Uso fraudulento

Un instrumento no debe tener características que puedan facilitar su uso fraudulento.

4.1.2.2 Falla y desajuste accidental

Un instrumento debe estar construido de tal manera que no puedan ocurrir fallas accidentales o desajustes de los elementos de control que pudieran perturbar su correcto funcionamiento, sin que su efecto sea evidente.

4.1.2.3 Controles

Los controles deben estar diseñados de tal manera que normalmente no puedan inmovilizarse en posiciones distintas a las previstas por el diseño, a menos que durante la maniobra se vuelva imposible cualquier indicación. Las teclas deben estar identificadas de manera inequívoca.

4.1.2.4 Protección de componentes y controles pre configurados

Se debe prever un medio de protección para los componentes y controles preconfigurados a los cuales está prohibido el acceso o ajuste. La legislación nacional puede especificar que la protección es obligatoria.

En un instrumento de clase I, los dispositivos de ajuste de la sensibilidad (o pendiente) pueden no estar protegidos.

Solución aceptable:

Para la aplicación de las marcas de control, el área de protección debería tener un diámetro de por lo menos 5 mm.

Los componentes y controles preconfigurados pueden ser protegidos mediante software siempre que cualquier acceso a los controles o funciones protegidos se vuelva evidente automáticamente. Además, se aplican los siguientes requisitos a los medios de protección informáticos.

 a) Por analogía con los métodos de protección convencionales, el estado legal del instrumento debe ser reconocible para el usuario o cualquier otra persona responsable en el mismo instrumento.

Las medidas de protección deben proporcionar la evidencia de cualquier intervención hasta la siguiente verificación o inspección oficial comparable.

Solución técnica aceptable:

Un contador de eventos, es decir, un contador no reiniciable que se incrementa cada vez que se entra a un modo operativo protegido del instrumento, registra uno o más cambios de los parámetros específicos para un dispositivo. El número de referencia del contador al momento de la verificación (inicial o posterior) se fija o se protege mediante hardware o software apropiado en el instrumento modificado. El número indicado en el contador, puede ser comparado con el número de referencia, mediante un procedimiento descrito en el manual y en el certificado OIML e Informe de ensayo.

NOTA El término "no reiniciable" implica que, si el contador ha llegado a su número máximo, no continuará con cero sin la intervención de una persona autorizada.

b) El parámetro específico para un dispositivo y el número de referencia debe estar protegidos contra cambios involuntarios y accidentales. Para estos datos, se deben cumplir los requisitos para software del numeral 5.5.2.2 en la medida en que se apliquen.

Solución técnica aceptable:

El parámetro específico para un dispositivo sólo debería ser cambiado por una persona autorizada mediante un código PIN especial. Adicionalmente, se debería guardar el

número de serie (u otra identificación) del instrumento colocado en la placa principal del instrumento (u otras partes adecuadas) si el componente o subconjunto electrónico con el dispositivo de memoria no está protegido contra cambios. Estos datos deberían estar protegidos mediante una firma (suma de comprobación de por lo menos 2 bytes CRC-16 con función polinómica oculta), esto es considerado un método de protección suficiente. Se deberían visualizar el número de referencia y el número de serie (u otra identificación respectiva) después de un comando manual y se deberían comparar con los mismos datos protegidos y colocados en la placa principal (u otras partes adecuadas del instrumento).

c) Un instrumento que utiliza un método de protección informático, debe tener facilidades adecuadas para que una persona u organismo autorizado coloque el número de referencia en o cerca de la placa principal.

NOTA Una diferencia entre el número de referencia indicado (según a)) y el número de referencia protegido y fijado en el instrumento indica una intervención. Las consecuencias son establecidas por la legislación nacional (por ejemplo, que el instrumento ya no debe utilizarse para fines controlados legalmente).

Solución técnica aceptable:

Un contador ajustable (hardware) que se monta firmemente en el instrumento y que se puede proteger después de haber sido ajustado al número de contador indicado al momento de la verificación (inicial o posterior).

4.1.2.5 Ajuste

Un instrumento puede estar equipado con un dispositivo automático o semiautomático de ajuste de la pendiente. Este dispositivo debe estar incorporado dentro del instrumento. La influencia externa en este dispositivo debe ser prácticamente imposible después de la protección.

4.1.2.6 Compensación por gravedad

Un instrumento sensible a la gravedad puede estar equipado con un dispositivo de compensación de los efectos de las variaciones de la gravedad. Después de la protección, cualquier influencia externa sobre este dispositivo o el acceso al mismo debe ser prácticamente imposible.

4.2 INDICACIÓN DE RESULTADOS DE PESAJE

4.2.1 Calidad de lectura

La lectura de las indicaciones primarias (véase T.1.3.1) debe ser confiable, fácil e inequívoca en las condiciones normales de uso:

- la inexactitud global de lectura de un dispositivo indicador analógico no debe ser superior a 0,2 e; y
- los símbolos, unidades y designaciones que conforman las indicaciones primarias deben tener un tamaño, forma y claridad que hagan fácil la lectura.

Las balanzas, la numeración y la impresión deben permitir leer por simple yuxtaposición las cifras que forman los resultados.

4.2.2 Forma de la indicación

4.2.2.1 Los resultados de pesaje y, si es aplicable, el precio unitario a pagar deben contener los nombres o símbolos de las unidades en las cuales son expresados.

Para cualquier indicación de peso, sólo se puede utilizar una sola unidad de masa.

La división de escala para los resultados de pesaje debe ser de la forma 1×10^k , 2×10^k o 5×10^k unidades en las cuales el resultado es expresado, siendo el índice, k, un número entero positivo o negativo o igual a cero.

Todos los dispositivos indicadores, impresión y pesaje de la tara de un instrumento deben tener, dentro de cualquier rango de pesaje, la misma división de escala para una determinada carga.

4.2.2.2 Una indicación digital debe mostrar por lo menos una cifra empezando de la extrema derecha.

Cuando se cambia automáticamente la división de escala, el signo decimal debe mantener su posición en la pantalla.

Una parte decimal debe estar separada de su entero por un signo decimal (coma o punto), la indicación debe mostrar por lo menos una cifra a la izquierda del signo y todas las cifras a la derecha.

El signo decimal debe estar alineado con la parte inferior de las cifras (ejemplo: 0,305 kg, no 0,305 kg). Cero puede ser indicado por un cero a la extrema derecha, sin signo decimal.

La unidad de masa debe ser seleccionada de tal manera que los valores de peso tengan no más de un cero no significativo a la derecha. Para los valores con signo decimal, se permite el cero no significativo sólo en la tercera posición después del signo decimal. En el caso de instrumentos de intervalo múltiple e instrumentos de rango múltiple con cambio automático, estos requisitos se aplican sólo al rango de pesaje (parcial) más pequeño.

Ejemplos de un instrumento de intervalo múltiple o un instrumento de rango múltiple con cambio automático:

EJEMPLO 1

Max;	eį	Indicaciones permitidas			
$Max_1 = 150 \text{ kg}$	e ₁ = 50 g	xxx,050 kg	xxx,050 kg	xxx,05 kg	xxx,05 kg
Max ₂ = 300 kg	e ₂ = 100 g	xxx,100 kg	xxx,1 kg	xxx,10 kg	xxx,1 kg

EJEMPLO 2

Max;	eį	Indicaciones permitidas
Max ₁ = 1 500 kg	e ₁ = 500 g	xxxx,5 kg
Max ₂ = 3 000 kg	e2 = 1 000 g	xxx1,0 kg

4.2.3 Límites de indicación

No debe haber ninguna indicación por encima de Max + 9 e.

Para instrumentos de rango múltiple, esto se aplica a cada rango de pesaje. Sin embargo, para instrumentos de rango múltiple con cambio automático, Max es igual a Max_{Γ} del mayor rango de pesaje, r, y no debe haber ninguna indicación por encima de $Max_i = n \ x \ e_i$ para el menor rango(s) de pesaje, i.

Para instrumentos de intervalo múltiple, no debe haber ninguna indicación que utilice e_i ; por encima de Max_i ; = n_i ; x e_i ; para el rango(s) de pesaje parcial inferior, i.

Es posible una indicación por debajo de cero (con signo menos) cuando un dispositivo de tara está en funcionamiento y se ha retirado la carga de tara del receptor de carga. También es posible visualizar valores negativos hasta - 20 d aunque un dispositivo de tara no se encuentre en funcionamiento, siempre que estos valores no se puedan transmitir, imprimir o utilizar para un cálculo de precio.

4.2.4 Dispositivo indicador aproximador

La división de escala de un dispositivo indicador aproximado debe ser superior a Max/100 pero no inferior a 20 e. Se considera que este dispositivo aproximador da indicaciones secundarias.

4.2.5 Rango Extendido de la indicación automática en un instrumento con indicación semiautomática

El rango extendido de la indicación automática, no debe ser superior al valor de la capacidad de la indicación del instrumento.

Soluciones aceptables:

- La división de escala de ampliación del rango de la indicación automática debería ser igual a la capacidad de la indicación automática (los instrumentos comparadores son excluidos de esta disposición).
- b) Un dispositivo de extensión con pesas deslizables está sujeto a los requisitos del numeral 6.2.2.
- c) En un dispositivo de extensión con pesas deslizables o mecanismos de conmutación de pesas cerrados, cada ampliación debería implicar una modificación adecuada de la numeración. Debería ser posible sellar la cubierta y las cavidades de ajuste de las pesas o masas.

4.3 DISPOSITIVOS INDICADORES ANALÓGICOS

Además de los indicados en los numerales 4.2.1 a 4.2.4, se aplican los siguientes requisitos.

4.3.1 Longitud y ancho de las marcas de escala

Las escalas deben estar diseñadas y numeradas de tal manera que la lectura del resultado de pesaje sea fácil e inequívoca.

Soluciones aceptables:

a) Forma de marcas de escala

Las marcas de escala deberían consistir de líneas del mismo espesor; este espesor debería ser constante y estar entre 1/10 y 1/4 de la longitud de una división, sin que sea inferior a 0,2 mm. La longitud de las marcas de escala más cortos debería ser por lo menos igual a la longitud de una división.

b) Disposición de marcas de escala

Los marcas de escala deberían estar dispuestos de acuerdo con uno de los esquemas de la Figura 6 (la línea que une el extremo de los marcas de escala es opcional)

Figura 6. Ejemplos de aplicación a escalas rectilíneas

c) Numeración

En una escala, la división de escala utilizada para la numeración debería ser:

- constante,
- de la forma 1 x 10^k, 2 x 10^k, 5 x 10^k unidades (siendo *k* un número entero positivo o negativo o igual a cero),
- no mayor que 25 veces la división de escala del instrumento.

Si se proyecta la escala en una pantalla, por lo menos dos marcas de escala numerados deberían aparecer en su totalidad en la zona proyectada.

La altura (real o aparente) de los números, expresada en milímetros, no debería ser inferior a tres veces la distancia mínima de lectura, expresada en metros, sin que sea inferior a 2 mm.

Esta altura debería ser proporcional a la longitud de las marcas de escala con los cuales se relaciona.

El ancho de un número, medido paralelamente a la base de la escala, debería ser inferior a la distancia entre dos marcas numeradas consecutivas.

d) Componente indicador

El ancho de la aguja del componente indicador debería ser aproximadamente igual al de los marcas de escala y de una longitud tal que su punta llegue por lo menos al nivel de la mitad de los marcas más cortos.

La distancia entre la escala y la aguja debería ser como máximo igual a la longitud de una división, sin que sea superior a 2 mm.

4.3.2 Longitud de una división

El valor mínimo, *i*_O, de la longitud de una división es igual a:

- en un instrumento de clases I o II:
 - 1 mm para los dispositivos indicadores;
 - 0,25 mm para dispositivos indicadores complementarios. En este caso, *io* es el desplazamiento relativo entre el componente indicador y la escala proyectada correspondiente a la división de escala de verificación del instrumento;
- en un instrumento de clases III o IIII:
 - 1,25 mm para dispositivos indicadores de cuadrante;
 - 1,75 mm para dispositivos indicadores de proyección óptica.

Solución aceptable:

La longitud de una división (real o aparente), i, en milímetros, debería ser por lo menos igual a:

$$(L + 0.5) i0$$

en donde

- $i\theta$ = la longitud mínima de una división en milímetros,
- $L = la distancia mínima de lectura en metros; <math>L \ge 0.5 m$.

La mayor longitud de una división no debería ser superior a 1,2 veces la longitud más pequeña de una división.

4.3.3 Límites de indicación

El movimiento del componente indicador debe estar limitado por topes, permitiendo su desplazamiento sin llegar a cero y más allá de la capacidad de la indicación automática. Este requisito no se aplica a instrumentos de dial con varias vueltas de aguja.

Solución aceptable:

Los topes que limitan el movimiento del componente indicador, deberían permitirle recorrer zonas de al menos cuatro longitudes de división sin llegar a cero y más allá de de la capacidad de la indicación automática (estas zonas no tienen una escala sobre los diales en abanico y sobre los diales con una sola vuelta de aguja; a éstas se les denomina "zonas en blanco").

4.3.4 Amortiguamiento

El amortiguamiento de las oscilaciones del componente indicador de la escala móvil debe ajustarse a un valor ligeramente inferior al "amortiguamiento crítico", cualesquiera que sean los factores de influencia.

Solución aceptable:

El amortiguamiento debería permitir una indicación estable después de tres, cuatro o cinco semiperíodos de oscilación.

Los amortiguadores hidráulicos sensibles a variaciones de temperatura deberían estar provistos de un dispositivo de regulación automático o un dispositivo de regulación manual fácilmente accesible.

Debería ser imposible que el líquido de los amortiguadores hidráulicos de instrumentos portátiles se derrame cuando se inclina el instrumento en 45°.

4.4 DISPOSITIVOS INDICADORES DIGITALES

Además de los indicados en los numerales 4.2.1 a 4.2.5, se aplican los siguientes requisitos.

4.4.1 Cambio de indicación

Después de un cambio de carga, la indicación previa no debe persistir por más de 1 segundo.

4.4.2 Equilibrio estable

Una indicación es definida como en equilibrio estable si está lo suficientemente próxima al valor de peso final. El equilibrio es considerado estable cuando:

- en el caso de una impresión y/o almacenamiento de datos, los valores de peso impresos o almacenados no se desvían más de 1 e con respecto al valor de peso final (es decir, se permiten dos valores adyacentes);
- en el caso de un ajuste a cero o tara, se logra el funcionamiento correcto del dispositivo de acuerdo con los numerales 4.5.4, 4.5.6, 4.5.7 y 4.6.8, cumpliendo los requisitos de exactitud aplicables.

Durante la perturbación continua o temporal del equilibrio, el instrumento no debe imprimir, almacenar datos, ajustar a cero o tarar.

4.4.3 Dispositivos con indicador ampliado

No debe utilizarse un dispositivo indicador ampliado en un instrumento con una división de escala diferenciada.

Cuando un instrumento está equipado con un dispositivo indicador ampliado, la visualización de la indicación con una división de escala inferior a e debe ser posible solamente:

- mientras se presiona una tecla; o
- por un período que no sobrepase los 5 s después de un comando manual.

En cualquier caso, la impresión no debe ser posible mientras el dispositivo indicador ampliado está en funcionamiento.

4.4.4 Uso múltiple de dispositivos indicadores

Se pueden visualizar o imprimir las indicaciones distintas a las indicaciones primarias en el mismo dispositivo indicador, siempre que:

- cualquier indicación adicional no conduzca a ninguna ambigüedad con respecto a las indicaciones primarias;
- las magnitudes distintas a los valores de peso sean identificadas por la unidad de medida apropiada, o su símbolo, o un signo o designación especial; y
- los valores de peso que no son resultados de pesaje (T.5.2.1-T.5.2.3) sean claramente identificados. De lo contrario, se pueden visualizar sólo temporalmente después de un comando manual y no se deben imprimir.

No se aplica ninguna restricción si el modo de pesaje se pone fuera de servicio y esto es claro e inequívoco (también para clientes en el caso de instrumentos utilizados para la venta directa).

4.4.5 Dispositivos de impresión

La impresión debe ser clara y permanente para el uso previsto. Las cifras impresas deben tener por lo menos 2 mm de altura.

Si se realiza la impresión, el nombre o símbolo de la unidad de medida debe aparecer a la derecha del valor o encima de una columna de valores.

La impresión debe ser imposible cuando el equilibrio no es estable.

4.4.6 Dispositivos de almacenamiento en memoria

El almacenamiento de indicaciones primarias para indicación posterior, transferencia de datos, totalización, etc., no debe ser posible cuando el equilibrio no es estable.

4.5 DISPOSITIVO DE AJUSTE A CERO Y DISPOSITIVO DE BLOQUEO DE CERO

Un instrumento puede tener uno o más dispositivos de ajuste a cero y no debe tener más de un dispositivo de bloqueo de cero.

4.5.1 Efecto máximo

El efecto de cualquier dispositivo de ajuste a cero no debe modificar la capacidad de pesaje máxima del instrumento.

El efecto global de los dispositivos de ajuste y de bloqueo de cero no debe ser más de 4% de la capacidad máxima y del dispositivo de ajuste a cero inicial, no más de 20%. Esta disposición no afecta a un instrumento de clase III, salvo si se utiliza para transacciones comerciales.

Un rango más amplio es posible para el dispositivo de ajuste a cero inicial si el instrumento cumple con los numerales 3.5, 3.6, 3.8 y 3.9 para cualquier carga compensada por este dispositivo dentro del rango especificado.

4.5.2 Exactitud

Después del ajuste a cero, el efecto de la desviación de cero en el resultado de pesaje no debe ser superior a ± 0,25 e.

4.5.3 Instrumentos de rango múltiple

El ajuste a cero en cualquier rango de pesaje debe ser igualmente eficaz en los rangos de pesaje superiores si la conmutación a un rango de pesaje superior es posible mientras el instrumento está con carga.

4.5.4 Control del dispositivo de ajuste a cero

Un instrumento – con excepción de los indicados en los numerales 4.13 y 4.14 – ya sea que esté equipado o no con un dispositivo de ajuste a cero inicial, puede tener un dispositivo de ajuste a cero semiautomático y un dispositivo de equilibrio de tara semiautomático combinados, ambos operados por el mismo mando.

Si un instrumento tiene un dispositivo de ajuste a cero y un dispositivo de pesaje de la tara, el control del dispositivo de ajuste a cero debe ser distinto al del dispositivo de pesaje de la tara.

Un dispositivo de ajuste a cero semiautomático debe funcionar sólo si:

- el instrumento se encuentra en equilibrio estable; y
- anula cualquier operación de tara anterior.

4.5.5 Dispositivos indicadores de cero en un instrumento con indicación digital

Un instrumento con indicación digital debe tener un dispositivo que muestre una señal especial cuando la desviación de cero no es superior a ± 0,25 e. Este dispositivo puede funcionar igualmente cuando se indica el cero después de una operación de tara.

Este dispositivo no es obligatorio en un instrumento que tiene un dispositivo indicador auxiliar o un dispositivo de bloqueo de cero siempre que la velocidad de seguimiento de cero no sea inferior a 0,25 d/segundo.

4.5.6 Dispositivo automático de ajuste a cero

Un dispositivo automático de ajuste a cero debe funcionar sólo cuando:

- el equilibrio es estable; y
- la indicación se ha mantenido estable por debajo de cero durante al menos 5 segundos.

4.5.7 Dispositivos de bloqueo de cero

Un dispositivo de bloqueo de cero debe operar sólo cuando:

- la indicación está en cero o muestra un valor neto negativo equivalente a cero bruto;
- el equilibrio es estable; y
- las correcciones no son superiores a 0,5 d/segundo.

Cuando se indica cero después de una operación de tara, el dispositivo de bloqueo de cero puede funcionar dentro de un rango de 4 % de Max alrededor del valor verdadero de cero.

4.6 DISPOSITIVOS DE TARA

4.6.1 Requisitos generales

Un dispositivo de tara debe cumplir con las disposiciones aplicables de los numerales 4.1 a 4.4.

4.6.2 División de escala

La división de escala de un dispositivo de pesaje de la tara debe ser igual a la división de escala del instrumento para cualquier valor de la carga.

4.6.3 Exactitud

Un dispositivo de tara debe permitir el ajuste a cero de la indicación con una exactitud mejor que:

- ± 0,25 e para los instrumentos electrónicos y cualquier instrumento con indicación analógica; o
- ± 0,5 d para los instrumentos mecánicos con indicación digital. Para instrumentos de intervalo múltiple, e debe ser reemplazado por e1.

4.6.4 Rango de operación

El dispositivo de tara debe ser tal que su efecto no pueda utilizarse por debajo de cero o sin llegar a éste o más allá de su efecto máximo indicado.

4.6.5 Visibilidad de operación

Se debe indicar de manera visible la operación del dispositivo de tara en el instrumento. En el caso de instrumentos con indicación digital, esto debe hacerse marcando el valor de peso neto indicado con el signo "NET".

NOTA 1 Alternativamente, se puede visualizar "NET" como "Net" o "net". Igualmente se acepta "NETO", "Neto", "neto".

NOTA 2 Si un instrumento está equipado con un dispositivo que permite visualizar temporalmente el valor bruto mientras un dispositivo de tara está en operación, el símbolo "NET" debe desaparecer mientras se visualiza el valor bruto.

Esto no se aplica para los instrumentos equipados con un dispositivo semiautomático de ajuste a cero y un dispositivo semiautomático de equilibrio de tara combinados y accionados `por el mismo mando.

Se permite reemplazar "NET" por palabras completas expresadas en los idiomas oficiales del país en el cual se utiliza el instrumento.

Solución aceptable:

Se debería mostrar el uso de un dispositivo aditivo de tara mecánico mediante la indicación del valor de tara o mediante la indicación en el instrumento de un signo, por ejemplo, la letra "T".

4.6.6 Dispositivos de tara sustractiva

Cuando el uso de un dispositivo de tara sustractivo no permite conocer el valor del rango de pesaje residual, un dispositivo debe impedir el uso del instrumento más allá de su máxima capacidad o indicar que se ha alcanzado esta capacidad.

4.6.7 Instrumentos de rango múltiple

En un instrumento de rango múltiple, la operación de tara debe ser igualmente eficaz en los rangos de pesaje superiores si el cambio a un rango de pesaje superior es posible mientras el instrumento está con carga. En ese caso, se deben redondear los valores de peso de tara a la división de escala del rango de pesaje real que está en funcionamiento.

4.6.8 Dispositivos de tara semiautomáticos o automáticos

Estos dispositivos deben funcionar sólo cuando el instrumento está en equilibrio estable.

4.6.9 Dispositivos combinados de ajuste a cero y dispositivo de equilibrio de tara

Si el dispositivo semiautomático de ajuste a cero y el dispositivo semiautomático de equilibrio de tara son operados por el mismo mando, se aplican los numerales 4.5.2, 4.5.5 y, si es apropiado, 4.5.7, a cualquier carga.

4.6.10 Operaciones de tara consecutivas

Se permite la operación repetida de un dispositivo de tara.

Si varios dispositivos de tara están en funcionamiento al mismo tiempo, se debe identificar claramente los valores de tara durante su indicación e impresión.

4.6.11 Impresión de resultados del pesaje

Se pueden imprimir los valores de peso bruto sin ninguna identificación. Para una identificación mediante un símbolo, sólo se permiten "G" o "B".

Si sólo se imprimen los valores de peso neto sin los correspondientes valores de peso bruto o de tara, se pueden imprimir sin ninguna identificación. El símbolo de identificación debe ser la letra "N". Esto también se aplica cuando se inician el ajuste a cero semiautomático y el equilibrio de tara semiautomático con el mismo mando.

Los valores brutos, netos o de tara determinados por un instrumento de rango múltiple o de intervalo múltiple no tienen que ser marcados con una designación especial que haga referencia al rango de pesaje (parcial).

Si se imprimen los valores de peso neto junto con los correspondientes valores de peso bruto y/o de tara, se debe identificar al menos los valores de peso neto y de tara mediante los símbolos correspondientes "N" y "T".

Sin embargo, se permite reemplazar los símbolos "G", "B", "N" y "T" por palabras completas en el idioma oficial del país donde el instrumento es utilizado.

Si se imprimen por separado los valores de peso neto y los valores de tara determinados por diferentes dispositivos de tara, se debe identificarlos adecuadamente.

Si se imprimen juntos los valores brutos, netos y de tara, uno de estos valores puede calcularse a partir de dos determinaciones reales de masa. En el caso de un instrumento de intervalo múltiple, se puede imprimir el valor neto calculado con una división de escala más pequeño.

Se debe identificar claramente la salida impresa de un valor de peso calculado. Esto debería hacerse, de preferencia, mediante el símbolo "C" además del símbolo antes mencionado si es aplicable o mediante palabras completas en el idioma oficial del país donde el instrumento es utilizado.

4.6.12 Ejemplos de indicaciones de resultados de pesaje

4.6.12.1 Instrumento con un dispositivo de equilibrio de tara

Especificaciones del instrumento: Clase III, Max = 15 kg, e = 5 g

Instrumento sin carga valor visualizado = 0,000 kg

Cargado con carga de tara, valor = 2,728 kg valor redondeado y visualizado interno = 2,730 kg¹⁾

Después de liberar el equilibrio de tara Valor neto visualizado= 0,000 kg

Cargado con carga neta, = 11,833 kg valor_interno valor neto redondeado y visualizado = 11,835 kg

Neto¹⁾

Carga total, valor interno = 14,561 kg valor bruto redondeado y visualizado (si es posible) = 14,560 kg¹⁾

Posibles salidas impresas de acuerdo con el numeral 4.6.11:

a) 14,560 kg B (o G) 11,835 kg N

b) 14,5 6 0 k g 11,835 kg N

c) 11,8 3 5 k g N

d) 11,835 kg

4.6.12.2 Instrumento con un dispositivo de pesaje de la tara

Especificaciones del instrumento: Clase III, Max = 15 kg, e = 5 g

Instrumento sin carga valor visualizado = 0,000 kg

Después de liberar el pesaje de la tara, valor neto visualizado = 0,000 kg Neto

Cargado con carga neta = 11,833 kg valor interno valor neto redondeado y visualizado = 11,835

kg Neto¹⁾

Carga total, valor interno = 14,561 kg valor bruto redondeado y visualizado (si es posible) =

14,560 kg¹⁾

Posibles salidas impresas de acuerdo con el numeral 4.6.11:

a) 14,560 kg B (o G) 11,835 kg N 2,730 kg T⁴⁾

b) 14,560 kg 11,835 kg N 2,730 kg T⁴⁾

c) 11,835 kg N 2,730 kg T

d) 11,835 kg N

e) 11,835 kg

4.6.12.3 Instrumento de rango múltiple con un dispositivo de pesaje de la tara

Especificaciones del instrumento:	Clase III, $Max_1 = 60 \text{ kg}$, $e_1 = 10 \text{ g}$, $Max_2 = 300 \text{ kg}$, $e_2 = 100 \text{ g}$
Instrumento sin carga,	valor visualizado en rango de pesaje (WR) 1 = WR 1 0,000 kg
valor redondeado y visualizado interno = 53,466 kg	Cargado con carga de tara, valor = WR1 53,470 kg ¹⁾
Después de liberar el pesaje de la tara,	valor neto visualizado = WR1 0,000 kg
valor neto redondeado y visualizado interno = 212,753 kg	Cargado con carga de tara, valor = WR2 212,800 kg Neto ¹⁾²⁾
Con cambio automático a rango de pesaje 2, el valor de pesaje de la tara debe ser redondeado al e real de rango de pesaje	tara redondeado de pesaje 2, = WR2 53,500 kg ^{2) 3)}
Carga total, valor interno = 266,219 kg	valor bruto redondeado y visualizado (si es posible) = WR2 266,200 kg ¹⁾²⁾

Posibles salidas impresas de acuerdo con el numeral 4.6.11:

a) 266,200 kg B (o G) 212,800 kg N 53,500 kg T $^{2)4)}$

b) 266,200 kg 212,800 kg N 53,500 kg T $^{2)4)}$

c) 212,800 kg N 53,500 kg $T^{2)}$

d) $212,800 \text{ kg N}^{2)}$

e) 212,800 kg²⁾

4.6.12.4 Instrumento de intervalo múltiple con un dispositivo de pesaje de tara

Especificaciones del instrumento:	Clase III, Max = 3/6/15 t, e = 0,5/2/10 kg
Instrumento sin carga	valor visualizado = 0,0 kg
Cargado con carga de tara, = 6674 kg	valor interno valor redondeado y visualizado = 6670,0 kg ¹⁾
Después de liberar el pesaje de la tara,	valor neto visualizado = 0,0 kg Neto
Cargado con carga neta, valor interno = 2673,7 kg	valor neto redondeado y visualizado 2673,5 kg Neto ¹⁾
Carga total, valor interno = 9347,7 kg,	valor bruto redondeado y visualizado (si es posible) = 9350,0 kg ¹⁾²⁾

Posibles salidas impresas de acuerdo con 4.6.11:

a) 9350,0 kg B (o G) 2673,5 kg N 6670,0 kg $T^{2)4)}$

b) 9 3 5 0 ,0 k g 2673,5 kg N 6670,0 kg $T^{2)4)}$

c) 2 673,5 kg N $6670,0 \text{ kg T}^{2)}$

d) $2673,5 \text{ kg N}^{2)}$

e) 2673,5 kg²⁾

4.6.12.5 Instrumento de intervalo múltiple con un dispositivo de tara predeterminada (4.7)

Especificaciones del instrumento: Clase III, Max = 4/10/20 kg, e = 2/5/10 g

Instrumento sin carga valor visualizado = 0,000 kg

valor interno valor bruto redondeado y visualizado Cargado con carga bruta = 13,380 kg¹⁾

= 13,376 kg,

valor visualizado durante entrada = 3,813 kg, Entrada del valor de tara predeterminada = 3,813 kg

valor de tara predeterminada redondeado y

temporalmente visualizado = 3,814 kg PT

el valor de tara puede ser redondeado por exceso o por defecto porque e = 2 g (o 3.812 kg PT)

cálculo interno: 13,380 kg – 3,814 kg = 9,566 kg, valor neto redondeado y visualizado = 9,565 kg Neto⁵⁾

o:

13,380 kg - 3,812 kg = 9,568 kg, valor neto redondeado y visualizado = 9,570 kg Neto)⁵⁾

Posibles salidas impresas de acuerdo con los numerales 4.6.11 y 4.7.3:

a)	13,380 kg B (o G)	9,565 kg N	3,814 kg PT ⁴⁾
b)	13,380 kg	9,565 kg N	3,814 kg PT ⁴⁾
c)	9,565 kg N	3,814 kg PT	
o:			
a)	13,380 kg B (o G)	9,570 kg N	3,812 kg PT ⁴⁾
b)	13,380 kg	9,570 kg N	3,812 kg PT ⁴⁾
c)	9,570 kg N	3,812 kg PT	

4.6.12.6 Instrumento de intervalo múltiple con un valor de peso calculado

Especificaciones del instrumento: Clase III, Max = 20/50/150 kg, e = 10/20/100 g

Instrumento sin carga valor visualizado = 0,000 kg
Primer pesaje (recipiente vacío, valor de tara) = 17,726 kg
Instrumento sin carga valor visualizado = 17,730 kg
valor visualizado = 0,000 kg

Segundo pesaje (carga neta, valor neto) = 126,15 kg valor redondeado y visualizado = 126,200 kg

Posibles salidas impresas de acuerdo con el numeral 4.6.11:

Bruto 143,930 kg C Tara 17,730 kg Neto 126,200 kg

NOTAS AL PIE DE PÁGINA

NOTA 1 Los errores máximos permitidos son aplicables a los resultados de pesaje bruto (3.5.1), de tara (3.5.3.4) y neto (3.5.3.3) con excepción de los pesos netos calculados debido a una tara predeterminada (3.5.3.3).

NOTA 2 En instrumentos de intervalo múltiple y de rango múltiple con cambio automático en los rangos de pesaje (parciales) superiores, puede aparecer más de un cero no significativo, dependiendo del rango de pesaje (parcial) más pequeño (numeral 4.2.2.2).

NOTA 3 En instrumentos de rango múltiple, se deben redondear los valores de tara a la división de escala del rango de pesaje real que está en funcionamiento (4.6.7, 4.7.1).

NOTA 4 Se deben redondear los resultados de pesaje visualizados e impresos (bruto, pesaje de la tara, neto) al e real. El e puede ser diferente dependiendo del rango de pesaje real o el rango de pesaje parcial real, de manera que puede ser posible una desviación de 1 x e entre el resultado de pesaje bruto y el cálculo de los valores neto y de tara

Sólo son posibles resultados coherentes de acuerdo con el párrafo 7 y 8 de 4.6.11 (véase 4.6.12.6).

NOTA 5 El valor neto calculado se calcula a partir del valor de peso bruto visualizado y del valor de tara predeterminada visualizado y ya redondeado (T.5.3.2), no a partir de los valores internos.

4.7 DISPOSITIVOS DE TARA PRE CONFIGURADA

4.7.1 División de escala

Independientemente de la manera en que se introduzca un valor de tara predeterminado en el dispositivo, su división de escala debe ser igual o redondeada automáticamente a la división de escala del instrumento. En un instrumento de intervalo múltiple, sólo se puede transferir el valor de tara predeterminado de un rango de pesaje a otro con una división de escala de verificación más grande pero luego debe ser redondeado a este último. Para un instrumento de intervalo múltiple, el valor de tara predeterminado debe ser redondeado a la división de escala de verificación más pequeño, e1, del instrumento y el máximo valor de tara predeterminado no debe ser superior a Max1. El valor neto calculado visualizado o impreso debe ser redondeado a la división de escala del instrumento para el mismo valor de peso neto.

4.7.2 Modos de operación

Se puede operar un dispositivo de tara predeterminada junto con uno o más dispositivos de tara siempre que:

- se cumpla el numeral 4.6.10; y
- no se pueda modificar o anular una operación de predeterminación de tara mientras cualquier dispositivo de tara puesto en funcionamiento después de la operación de predeterminación de tara esté todavía en uso.

Los dispositivos de tara predeterminada pueden funcionar automáticamente sólo si el valor de tara predeterminado está claramente identificado con la carga a medir (por ejemplo, mediante una identificación por código de barras en el envase de la carga a pesar).

4.7.3 Indicación de la operación

Se debe indicar de manera visible la operación del dispositivo de tara predeterminada en el instrumento. En el caso de instrumentos con indicación digital, esto debe hacerse marcando el valor neto indicado con "NET", "Net" o "net" o con palabras completas en los idiomas oficiales del país en el cual se utiliza el instrumento. Si un instrumento está equipado con un dispositivo que permite visualizar temporalmente el valor bruto mientras un dispositivo de tara está en funcionamiento, el símbolo "NET" debe desaparecer mientras se visualiza el valor bruto.

Debe ser posible indicar por lo menos temporalmente el valor de tara predeterminado. Se aplica el numeral 4.6.11 según corresponda, con las siguientes condiciones:

- si se imprime el valor neto calculado, también se imprime por lo menos el valor de tara predeterminado, con excepción de los instrumentos cubiertos por los numerales 4.13, 4.14 o 4.16; y
- los valores de tara predeterminados son identificados con el símbolo "PT".

Sin embargo, se permite reemplazar el símbolo "PT" por palabras completas en los idiomas oficiales del país en el cual se utiliza el instrumento.

NOTA El numeral 4.7.3 también se aplica a instrumentos con un dispositivo semiautomático de ajuste a cero y un dispositivo semiautomático de equilibrio de tara combinados y accionados por el mismo mando.

4.8 POSICIONES DE BLOQUEO

4.8.1 Impedimento de pesaje fuera de la posición "pesaje"

Si un instrumento tiene uno o más dispositivos de bloqueo, estos dispositivos sólo deben tener dos posiciones estables correspondientes a "bloqueo" y "pesaje" y el pesaje sólo debe ser posible en la posición "pesaje".

Puede existir una posición "pre-pesaje" en un instrumento de las clases I o II, con excepción de los cubiertos en los numerales 4.13, 4.14 y 4.16.

4.8.2 Indicación de posición

Se deben indicar claramente las posiciones "bloqueo" y "pesaje".

4.9 DISPOSITIVOS AUXILIARES DE VERIFICACIÓN (REMOVIBLES O FIJOS)

4.9.1 Dispositivos con una o más plataformas

El valor nominal de la relación entre las pesas a colocar en la plataforma para equilibrar una cierta carga y esta carga no debe ser inferior a 1/5 000 (se debe indicar de manera visible justo encima de la plataforma).

El valor de las pesas necesarias para equilibrar una carga igual a la división de escala de verificación debe ser un entero múltiplo de 0,1 g.

4.9.2 Dispositivos de escala numerada

La división de escala del dispositivo auxiliar de verificación debe ser igual o inferior a 1/5 de la división de escala de verificación para el cual está destinado.

4.10 SELECCIÓN DE RANGOS DE PESAJE EN UN INSTRUMENTO DE RANGO MÚLTIPLE

Se debe indicar claramente el rango que realmente está en funcionamiento. Se permite la selección manual del rango de pesaje:

- de un rango de pesaje inferior a un rango de pesaje superior, con cualquier carga; y
- de un rango de pesaje superior a un rango de pesaje inferior, cuando no hay ninguna carga en el receptor de carga y la indicación es cero o un valor neto negativo equivalente a cero bruto; se debe anular la operación de tara y realizar el ajuste a cero a ± 0,25 e1, estas dos operaciones se realizan automáticamente.

Se permite un cambio automático:

- de un rango de pesaje inferior al siguiente rango de pesaje superior cuando la carga sobrepasa el peso bruto máximo Maxi del rango, i, en funcionamiento; y
- solamente de un rango de pesaje superior al rango de pesaje más pequeño cuando no hay ninguna carga en el receptor de carga y la indicación es cero o un valor neto negativo equivalente a cero bruto. Se debe anular la operación de tara y realizar el ajuste a cero a ± 0,25 e1, estas dos operaciones se realizan automáticamente

4.11 DISPOSITIVOS DE SELECCIÓN (O CONMUTACIÓN) ENTRE DIFERENTES RECEPTORES DE CARGA Y/O DISPOSITIVOS TRANSMISORES DE CARGA Y DIFERENTES DISPOSITIVOS DE MEDICIÓN DE CARGA

4.11.1 Compensación del efecto sin carga

El dispositivo de selección debe asegurar la compensación de la desigualdad del efecto sin carga de los diferentes receptores de carga y/o dispositivos transmisores de carga en uso.

4.11.2 Ajuste a cero

El ajuste a cero de un instrumento con cualquier combinación múltiple de diferentes dispositivos de medición de carga y diferentes receptores de carga debe poder realizarse sin ambigüedad y de acuerdo con las disposiciones de 4.5.

4.11.3 Imposibilidad de pesaje

El pesaje no debe ser posible mientras se están utilizando dispositivos de selección.

4.11.4 Identificación de las combinaciones utilizadas

Las combinaciones de receptores de carga y dispositivos de medición de carga utilizados deben ser fácilmente identificables. Debe ser claramente visible qué indicación(es) corresponde a qué receptor(es) de carga.

4.12 INSTRUMENTOS DE COMPARACIÓN "MÁS Y MENOS"

Para los fines de la verificación, los instrumentos de comparación "más y menos" son considerados como instrumentos con indicadores semiautomáticos.

4.12.1 Distinción entre zonas "más" y "menos"

En un dispositivo indicador analógico, las zonas situadas en cualquiera de los dos lados del cero deben diferenciarse con los signos "+" y "-".

En un dispositivo indicador digital, se debe colocar una inscripción cerca del dispositivo indicador en la forma:

- rango ± ... u m; o
- rango ... *u*m / + ... *u*m

en donde $u_{\rm IM}$ representa la unidad de medida de acuerdo con el numeral 2.1.

4.12.2 Forma de la escala

La escala de un instrumento de comparación debe tener por lo menos una división de escala d = e, en cualquiera de los dos lados del cero. El valor correspondiente debe aparecer en cualquiera de los dos extremos de la escala.

4.13 INSTRUMENTOS PARA LA VENTA DIRECTA AL PÚBLICO

NOTA La interpretación de lo que se incluye en "venta directa al público" se deja a criterio de la legislación nacional.

Los siguientes requisitos se aplican a los instrumentos de las clases II, III o IIII con una capacidad máxima inferior o igual a 100 kg, diseñados para ser utilizados para la venta directa al público, además de los requisitos de 4.1 a 4.11 y 4.20.

4.13.1 Indicaciones primarias

En los instrumentos para la venta directa al público, las indicaciones primarias son los resultados de pesaje y la información sobre la posición correcta del cero, las operaciones de tara y predeterminación de tara.

4.13.2 Dispositivos de ajuste a cero

Los instrumentos para la venta directa al público no deben estar equipados con un dispositivo no automático de ajuste a cero a menos que pueda ser accionado sólo con una herramienta.

4.13.3 Dispositivos de tara

Un instrumento mecánico con un receptor de carga no debe estar equipado con un dispositivo de tara.

Un instrumento con una sola plataforma puede estar equipado con dispositivos de tara si éstos permiten al público ver:

- si están en uso; y
- si se modifica su ajuste.

Un solo dispositivo de tara debe estar en funcionamiento en un determinado momento.

NOTA Las restricciones en cuanto al uso aparecen en el numeral 4.13.3.2

Un instrumento no debe estar equipado con un dispositivo que permita recuperar el valor bruto mientras un dispositivo de tara o tara predeterminada está en funcionamiento.

4.13.3.1 Dispositivos de tara no automáticos

Un desplazamiento de 5 mm de un punto del control debe ser como máximo igual a una división de escala de verificación.

4.13.3.2 Dispositivos semiautomáticos de tara

Un instrumento puede estar equipado con dispositivos semiautomáticos de tara si:

la acción no permite la reducción del valor de tara; y

 se puede realizar la cancelación de su efecto sólo cuando el receptor de carga está vacío.

Además, el instrumento debe cumplir con por lo menos uno de los siguientes requisitos:

- se indica el valor de tara permanentemente en una pantalla separada;
- se indica el valor de tara con un signo " –" cuando no hay carga en el receptor de carga;
- se anula automáticamente el efecto del dispositivo y la indicación retorna a cero cuando se descarga el receptor de carga después de que se ha indicado un resultado estable de pesaje neto superior a cero.

4.13.3.3 Dispositivos con tara programable

Un instrumento no debe estar equipado con un dispositivo automático de tara.

4.13.4 Dispositivos de tara predeterminada

Se puede prever un dispositivo de tara predeterminada si se indica el valor de tara predeterminado como una indicación primaria en una pantalla separada que se diferencia claramente de la pantalla de peso. Se aplica el primer párrafo de 4.13.3.2.

No debe ser posible operar un dispositivo de tara predeterminada cuando un dispositivo de tara está en uso.

Cuando un dispositivo de tara predeterminada está relacionado con un dispositivo de consulta de precio (PLU), se debería anular el valor de tara predeterminado al mismo tiempo que el PLU.

4.13.5 Imposibilidad de pesaje

No debe ser posible pesar o manipular el elemento indicador durante la operación normal de bloqueo o durante la operación normal de adición o sustracción de peso.

4.13.6 Visibilidad

Se deben indicar todas las indicaciones primarias (numerales 4.13.1 y 4.1.4.1 si es aplicable) en forma clara y simultánea para el vendedor y para el comprador. Si esto no es posible con un solo dispositivo indicador, son necesarios dos, uno para el vendedor y otro para el comprador.

En dispositivos digitales que visualizan indicaciones primarias, las cifras numéricas que se muestran al comprador, deben tener por lo menos 9,5 mm de altura.

En un instrumento que requiere el uso de pesas, debe ser posible distinguir el valor de las mismas.

4.13.7 Dispositivos indicadores auxiliares y de indicación extendida

Un instrumento no debe estar equipado con un dispositivo indicador auxiliar ni con un dispositivo de indicación extendido.

4.13.8 Instrumentos de clase II

Un instrumento de clase II debe cumplir con los requisitos del numeral 3.9 para un instrumento de clase III.

4.13.9 Falla significativa

Cuando se ha detectado una falla significativa, se debe dar una alarma visible o audible al cliente, y se debe impedir la transmisión de datos a cualquier equipo periférico. Esta alarma debe continuar hasta que el usuario tome una acción o la causa desaparezca.

4.13.10 Relación de conteo

La relación de conteo en los instrumentos contadores mecánicos debe ser 1/10 o 1/100).

4.13.11 Instrumentos de autoservicio

Un instrumento de autoservicio no requiere tener dos series de escalas o pantallas.

Si se imprime un comprobante o una etiqueta, las indicaciones primarias deben incluir una designación del producto cuando se utiliza el instrumento para vender diferentes productos.

Si se utiliza un instrumento calculador de precio como instrumento de autoservicio, entonces se deben cumplir los requisitos de 4.14.

4.14 REQUISITOS ADICIONALES PARA INSTRUMENTOS CALCULADORES DE PRECIO PARA LA VENTA DIRECTA AL PÚBLICO

Se deben aplicar los siguientes requisitos, además de los indicados en el numeral 4.13.

4.14.1 Indicaciones primarias

En un instrumento indicador de precio, las indicaciones primarias suplementarias son el precio unitario y el precio a pagar y, si es aplicable, el número, el precio unitario y los precios a pagar de artículos no pesados, los precios de artículos no pesados y el precio total. Los diagramas de precio (a diferencia de las escalas de precio, que son cubiertas en el numeral 4.14.2), como los diagramas en abanico, no están sujetos a los requisitos de esta NTC.

4.14.2 Instrumento con escalas de precio

Para las escalas de precio unitario y de precio a pagar, se aplican los numerales 4.2 y 4.3.1 al 4.3.3 según corresponda; sin embargo, las fracciones decimales, deben ser indicadas de acuerdo con las regulaciones nacionales.

La lectura de las escalas de precio debe ser posible, de tal forma, que el valor absoluto de la diferencia entre el producto del peso indicado, *W*, por el precio unitario, *U*, y el precio a pagar indicado, *P*, no sea mayor que el producto de *e* por el precio unitario de esa escala:

$$|W \times U - P| \le e \times U$$

4.14.3 Instrumentos calculadores de precio

Se debe calcular el precio a pagar mediante la multiplicación del peso por el precio unitario, tal como estos valores son indicados por el instrumento, y redondearlo al intervalo del precio a

pagar más próximo. El dispositivo o dispositivos que realizan el cálculo e indicación del precio a pagar son considerados, en cualquier caso, como parte del instrumento.

El intervalo del precio a pagar debe cumplir con las regulaciones nacionales aplicables al comercio. El precio unitario sólo puede ser expresado en precio/100 g o precio/kg. Sin perjuicio de la disposición del numeral 4.4.1:

- las indicaciones de peso, precio unitario y precio a pagar deben permanecer visibles después de que la indicación de peso haya logrado la estabilidad y después de cualquier introducción de un precio unitario, durante al menos un segundo y mientras la carga se encuentra sobre el receptor de carga; y
- estas indicaciones pueden permanecer visibles durante no más de 3 segundos después de retirar la carga, siempre que la indicación de peso se haya estabilizado antes y la indicación sea por otro lado cero. Mientras haya una indicación de peso después de retirar la carga, no debe ser posible introducir o modificar ningún precio unitario.

Si se imprimen las transacciones efectuadas por el instrumento, se deben imprimir el peso, el precio unitario y el precio a pagar.

Los datos pueden ser almacenados en una memoria del instrumento antes de su impresión. No se deben imprimir los mismos datos dos veces en el comprobante destinado al cliente.

Los instrumentos que se pueden utilizar para operaciones de etiquetado de precios, también deben cumplir con el numeral 4.16.

4.14.4 Aplicaciones especiales de instrumentos calculadores de precio

Sólo si se imprimen todas las transacciones realizadas por el instrumento o por los dispositivos periféricos conectados en un comprobante o etiqueta destinado al cliente, un instrumento calculador de precio puede efectuar otras operaciones que faciliten el comercio y la gestión. Estas funciones no deben llevar a confusión en lo que respecta a los resultados del pesaje y el cálculo de precios.

Pueden realizarse otras operaciones o indicaciones no cubiertas por las siguientes disposiciones, siempre que el cliente no reciba ninguna indicación que se podría tomar por error como indicación primaria.

4.14.4.1 Artículos no pesados

Un instrumento puede aceptar y registrar precios a pagar positivos o negativos de uno o varios artículos no pesados, siempre que la indicación de peso sea cero o que el modo de pesaje se ponga fuera de servicio. El precio a pagar de uno o más de dichos artículos debe aparecer en la pantalla de precios a pagar.

Si se calcula el precio a pagar para varios artículos idénticos, el número de artículos debe aparecer en la pantalla de pesos, sin que se pueda confundirlo con un peso, y el precio de un artículo en la pantalla de precios unitarios, a menos que se utilicen pantallas suplementarias para mostrar el número de artículos y el precio del artículo.

Solución aceptable:

El número de artículos mostrado en la pantalla de pesos se diferencia de un valor de peso incluyendo una designación apropiada, por ejemplo "X" u otra designación clara de acuerdo con las regulaciones nacionales (si hubiera alguna).

4.14.4.2 Totalización

Un instrumento puede totalizar las transacciones en uno o varios comprobantes; se debe indicar el precio total en la pantalla de precios a pagar, e imprimirlo con una palabra o símbolo especial, al final de la columna de precios a pagar o en una etiqueta o comprobante separado con las referencias apropiadas a los productos, cuyos precios a pagar han sido totalizados; se deben imprimir todos los precios a pagar que son totalizados, y el precio total debe ser la suma algebraica de todos estos precios impresos.

Un instrumento puede totalizar las transacciones realizadas por otros instrumentos conectados a éste, directamente o en dispositivos periféricos metrológicamente controlados, según las disposiciones del numeral 4.14.4 y si las divisiones de escala de precio a pagar de todos los instrumentos conectados son idénticos.

4.14.4.3 Operación multivendedor

Un instrumento puede estar diseñado para ser utilizado por más de un vendedor o para atender a más de un cliente simultáneamente, siempre que se identifique apropiadamente la relación entre la transacción y el respectivo vendedor o cliente (remitirse al numeral 4.14.4).

4.14.4.4 Cancelación

Un instrumento puede anular transacciones anteriores. Cuando ya se ha impreso la transacción, se debe imprimir el correspondiente precio a pagar anulado con un comentario apropiado. Si se muestra al cliente la transacción a anular, debe diferenciarse claramente de las transacciones normales.

4.14.4.5 Información adicional

Un instrumento puede imprimir información adicional si ésta claramente correlacionada con la transacción y no interfiere con la asignación del valor de peso al símbolo de la unidad.

4.15 INSTRUMENTOS SIMILARES A LOS NORMALMENTE UTILIZADOS PARA LA VENTA DIRECTA AL PÚBLICO

Los instrumentos similares a los normalmente utilizados para la venta directa al público que no cumplan con las disposiciones de los numerales 4.13 y 4.14, deben llevar, cerca de la pantalla, de manera indeleble la inscripción "No usar para la venta directa al público".

4.16 INSTRUMENTOS ETIQUETADORES DE PRECIO

Se aplican los requisitos de los numerales 4.13.8, 4.14.3 (párrafos 1 y 5), 4.14.4.1 (párrafo 1) y 4.14.4.5.

Los instrumentos etiquetadores de precio deben tener por lo menos una pantalla para el peso. Se pueden utilizar temporalmente para el establecimiento de valores como límites de peso, precios unitarios, valores de tara predeterminados, nombres de productos.

Debe ser posible verificar, durante el uso del instrumento, los valores reales del precio unitario y valores de tara predeterminados.

No debe ser posible la impresión por debajo de la capacidad mínima.

Se permite la impresión de etiquetas con valores fijos de peso, precio unitario y precio a pagar siempre que el modo de pesaje se ponga fuera de servicio de manera evidente.

4.17 INSTRUMENTOS CONTADORES MECÁNICOS CON RECEPTOR DE PESO UNITARIO

Para fines de verificación, los instrumentos contadores son considerados como instrumentos con indicadores semiautomáticos.

4.17.1 Dispositivos indicadores

Para permitir su verificación, los instrumentos contadores deben tener una escala con al menos una división, d = e, en cualquiera de los dos lados del cero; el valor correspondiente debe aparecer en la escala.

4.17.2 Relación de conteo

Se debe indicar claramente la relación de conteo justo encima de cada plataforma de conteo o cada marca de escala de conteo.

4.18 REQUISITOS TÉCNICOS ADICIONALES PARA INSTRUMENTOS MÓVILES (véase también numeral 3.9.1.1).

Dependiendo del modelo de instrumento móvil, las siguientes características deben ser definidas por el solicitante:

- procedimiento/período de calentamiento (además del numeral 5.3.5) del sistema de alzamiento hidráulico cuando un sistema hidráulico está involucrado en el proceso de pesaje;
- el valor límite de inclinación (límite superior de inclinación) (véase numeral 3.9.1.1);
- condiciones especiales si el instrumento está diseñado para ser utilizado para el pesaje de productos líquidos;
- descripción de posiciones especiales (por ejemplo, ventana de pesaje) para el receptor de carga con el fin de asegurar condiciones aceptables durante la operación de pesaje;
 y
- descripción de detectores o sensores que se pueden utilizar para asegurar el cumplimiento de las condiciones de pesaje (aplicables, por ejemplo, para instrumentos móviles utilizados afuera en lugares abiertos).

4.18.1 Instrumentos móviles utilizados afuera en lugares abiertos (véase también numeral 3.9.1.1 d))

NOTA Esta sección también se utiliza en aplicaciones especiales en interiores con terrenos o pisos disparejos (por ejemplo vehículos de horquilla elevadora en salas con pisos disparejos).

El instrumento debe tener un medio apropiado para indicar que se ha sobrepasado el valor límite de inclinación (por ejemplo, desconexión de pantalla, lámpara, señal de error) y para impedir la impresión y transmisión de datos en ese caso.

Después de cada movimiento del vehículo, debe producirse automáticamente una operación de ajuste a cero o de equilibrio de tara al menos luego del encendido del instrumento de pesaje.

En instrumentos con una ventana de pesaje (posiciones o condiciones especiales del receptor de carga), se debe indicar en qué momento el instrumento no se encuentra dentro de la ventana de pesaje (por ejemplo, desconexión de pantalla, lámpara, señal de error) y se debe impedir la impresión y transmisión de datos. Se pueden utilizar sensores, interruptores u otros medios para reconocer la ventana de pesaje.

Si el dispositivo de medición de carga del instrumento es sensible a influencias que dependen del movimiento o accionamiento, debe estar equipado con un sistema de protección apropiado.

5.3.5 se aplica durante un período o procedimiento de calentamiento, por ejemplo, si un sistema hidráulico está involucrado en el proceso de pesaje.

Cuando se utiliza un sensor de inclinación automático para compensar el efecto de inclinación sumando una corrección al resultado de pesaje, este sensor es considerado como parte esencial del instrumento de pesaje que debe ser sometido a factores de influencia y ensayos de perturbaciones durante el procedimiento de aprobación de modelo.

Cuando se utiliza una suspensión cardánica (tipo cardán), se deben tomar las medidas apropiadas para evitar la indicación, impresión o transmisión de datos de resultados de pesaje erróneos si el sistema suspendido o el receptor de carga entra en contacto con la estructura circundante, especialmente cuando se inclina a más del valor límite.

El Informe de Ensayo OIML debe incluir una descripción de los ensayos de inclinación que deben realizarse en la verificación.

4.18.2 Otros instrumentos móviles

Los instrumentos móviles no destinados a ser usados en lugares abiertos (por ejemplo, básculas para sillas de ruedas, elevadores de pacientes) deben tener un dispositivo para evitar la influencia de la inclinación de acuerdo con el numeral 3.9.1.1 a), b) o d). Si están equipados con un dispositivo de nivelación y un indicador de nivel de acuerdo con el numeral 3.9.1.1 a), se debe operar el dispositivo de nivelación fácilmente sin herramientas. Deben llevar una inscripción apropiada que señale al usuario la necesidad de nivelación después de cada movimiento.

4.19 INSTRUMENTOS PORTÁTILES PARA PESAJE DE VEHÍCULOS DE CARRETERA

Los puente-báscula portátiles deben ser identificadas como tales en la solicitud de aprobación de modelo y en el correspondiente Certificado OIML emitido.

El solicitante debe proporcionar la documentación que describe la superficie de montaje apropiada.

NOTA 1 Se pueden utilizar grupos de básculas de carga por eje o rueda asociados para determinar la masa total del vehículo sólo si todas las ruedas son apoyadas simultáneamente. Dependiendo de las regulaciones nacionales, se podría permitir la determinación secuencial de las cargas por eje o rueda con una báscula de carga por eje/rueda para determinar la masa total de un vehículo de carretera pero esto no se encuentra dentro del alcance de esta NTC. La masa total puede calcularse a partir de cargas por eje pero se considera que esto no está sujeto a control legal, por las razones dadas en la Nota 2.

NOTA 2 Al utilizar básculas de carga por eje o rueda simples, el mismo vehículo es la carga y, por lo tanto, forma una conexión entre el instrumento portátil y el entorno fijo. Esto puede conducir a considerables errores si no se toman en cuenta apropiadamente los efectos adicionales en el resultado de pesaje. Estos efectos pueden ser causados por:

- las fuerzas laterales debidas a las interacciones de la puente-báscula con el vehículo;
- las fuerzas ejercidas sobre parte del vehículo por el comportamiento transitorio diferente y la fricción dentro de las suspensiones del eje; o
- las fuerzas ejercidas sobre parte de las rampas si hay diferentes niveles entre la puente-báscula y la rampa que podrían conducir a la distribución variable de la carga del eje.

4.20 MODOS DE OPERACIÓN

Un instrumento puede tener diferentes modos de operación que se pueden seleccionar después de un comando manual. Ejemplos de modo de pesaje son:

- rangos de pesaje;
- combinaciones de plataformas;
- instrumento de intervalo múltiple o de un solo intervalo;
- modo con operador y autoservicio;
- ajuste de tara predeterminada; y
- desconexión de pantalla o instrumento, etc.

Ejemplos de modos de no pesaje (modos en los cuales el pesaje está inoperativo) son:

- valores calculados;
- sumas;
- conteo;
- porcentaje;
- estadísticas;
- calibración; y
- configuración; etc.

Se debe identificar claramente el modo que realmente está en funcionamiento, con un signo especial, símbolo o palabras en los idiomas oficiales del país. En cualquier caso, también se aplican los requisitos del numeral 4.4.4.

En cualquier modo y en cualquier momento, debe ser posible cambiar al modo de pesaje.

Sólo se permite la selección automática del modo dentro de una secuencia de pesaje (por ejemplo, secuencia fija de pesajes para obtener una mezcla). Al término de la secuencia de pesaje, el instrumento debe cambiar automáticamente al modo de pesaje.

Al volver de un modo de no pesaje al modo de pesaje, se puede visualizar el valor de peso real.

Al volver del estado de desconexión (desconexión de pantalla o instrumento) al modo de pesaje, se debe visualizar cero (ajuste automático a cero o de tara). Alternativamente, se puede visualizar el valor de peso real pero sólo si se ha verificado automáticamente la posición correcta de cero antes.

5. REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS ELECTRÓNICOS

Además de los capítulos 3 "Requisitos metrológicos" y 4 "Requisitos metrológicos para los instrumentos con indicación automática o con indicadores semiautomáticos", los instrumentos electrónicos deben cumplir con los siguientes requisitos:

5.1 REQUISITOS GENERALES

- **5.1.1** Los instrumentos electrónicos deben estar diseñados y fabricados de tal manera que, cuando estén expuestos a perturbaciones:
- a) no se produzcan fallas significativas; o
- se detecten y pongan en evidencia las fallas significativas. La indicación de fallas significativas en la pantalla no debería prestarse a confusión con otros mensajes que aparecen en la pantalla.
 - NOTA Se permite una falla igual o inferior a e independientemente del valor del error de medición.
- **5.1.2** Se deben cumplir de manera duradera los requisitos de los numerales 3.5, 3.6, 3.8, 3.9 y 5.1.1, según el uso previsto del instrumento.
- **5.1.3** Se asume que un modelo de instrumento electrónico cumple con los requisitos de los numerales 5.1.1, 5.1.2 y 5.3.2 si supera los exámenes y ensayos especificados en el numeral 5.4.
- **5.1.4** Los requisitos del numeral 5. 1.1 pueden aplicarse por separado a:
- a) cada causa individual de falla significativa; y/o
- b) cada parte del instrumento electrónico.

Se deja a criterio del fabricante la elección de aplicar los numerales 5. 1.1 a) o 5.1.1 b).

5.2 REACCIÓN A FALLAS SIGNIFICATIVAS

Cuando se ha detectado una falla significativa, el instrumento debe ponerse fuera de servicio automáticamente o se debe dar automáticamente una indicación visible o audible, la cual debe continuar hasta que el usuario tome una acción o la falla desaparezca.

5.3 REQUISITOS DE FUNCIONAMIENTO

5.3.1 Una vez encendido el instrumento (indicación de encendido), debe realizarse un procedimiento especial que muestre todos los signos relevantes del indicador en estado activo y no activo, durante un tiempo suficiente para que el operador pueda verificarlos. Esto no es aplicable para pantallas en las cuales una falla se vuelve evidente, por ejemplo, pantallas no segmentadas, pantallas de indicación, pantallas matriciales, etc.

- **5.3.2** Además del numeral 3.9, los instrumentos electrónicos deben cumplir con los requisitos a una humedad relativa de 85 % en el límite superior del rango de temperatura. Esto no es aplicable a los instrumentos electrónicos de clase I ni de clase II si e es inferior a 1 g.
- **5.3.3** Los instrumentos electrónicos, a excepción de los de clase I, deben ser sometidos al ensayo de estabilidad de la pendiente especificado en 5.4.4. El error próximo a la capacidad máxima no debe sobrepasar el error máximo permitido y el valor absoluto de la diferencia entre los errores obtenidos para dos mediciones cualesquiera no debe sobrepasar la mitad de la división de escala de verificación o la mitad del valor absoluto del error máximo permitido, cualquiera que sea mayor.
- **5.3.4** Cuando un instrumento electrónico es sometido a las perturbaciones especificadas en el numeral 5.4.3, la diferencia entre la indicación de peso debida a la perturbación y la indicación sin perturbación (error intrínseco) no debe sobrepasar e o el instrumento debe detectar y poner en evidencia una falla significativa.
- **5.3.5** Durante el tiempo de calentamiento de un instrumento electrónico, no debe haber ni indicación ni transmisión de un resultado de pesaje.
- **5.3.6** Un instrumento electrónico puede estar equipado con interfases que permitan conectar el instrumento a dispositivos periféricos o a otros instrumentos.

Una interfase no debe permitir que las funciones metrológicas del instrumento y sus datos de medición sean influenciados de manera inadmisible por los dispositivos periféricos (por ejemplo, computadoras), por otros instrumentos interconectados ni por las perturbaciones que actúan sobre la interfase.

Las funciones realizadas o iniciadas mediante una interfase deben cumplir con los requisitos y condiciones aplicables del capítulo 4.

- NOTA Una "interfase" comprende todas las propiedades mecánicas, eléctricas y lógicas en el punto de intercambio de datos entre un instrumento y los dispositivos periféricos u otros instrumentos.
- **5.3.6.1** No debe ser posible introducir en un instrumento; a través de la interfase; instrucciones o datos, destinados o adecuados, para:
- visualizar datos que no están claramente definidos y que se podrían tomar por error para un resultado de pesaje;
- falsificar los resultados de pesaje visualizados, procesados o almacenados;
- ajustar los instrumentos o cambiar un factor de ajuste; sin embargo, se puede dar mediante una interfase instrucciones para realizar un procedimiento de ajuste utilizando un dispositivo de ajuste de la pendiente incorporado en el instrumento o, en el caso de instrumentos de clase I, una pesa o masa patrón externa.
- falsificar las indicaciones primarias visualizadas en el caso de venta directa al público.
- **5.3.6.2** No es necesario proteger una interfase mediante la cual no se pueden realizar o iniciar las funciones mencionadas en el numeral 5.3.6.1. Las otras interfases deben ser protegidas de acuerdo con el numeral 4.1.2.4.
- **5.3.6.3** Una interfase destinada a ser conectada a un dispositivo periférico al cual se aplican los requisitos de esta NTC, debe transmitir los datos referentes a las indicaciones primarias de tal manera que el dispositivo periférico pueda cumplir con los requisitos.

5.4 ENSAYOS DE DESEMPEÑO Y DE ESTABILIDAD DE LA PENDIENTE

5.4.1 Consideraciones sobre el ensayo

Todos los instrumentos electrónicos de la misma categoría deben ser sometidos al mismo programa de ensayos de desempeño, ya sea que estén equipados o no con sistemas de control.

5.4.2 Estado del instrumento sometido a ensayo

Los ensayos de desempeño deben realizarse en el equipo completamente operativo, en su configuración normal de funcionamiento o en un estado lo más similar posible. Cuando las conexiones son diferentes a las de la configuración normal, el procedimiento debe ser definido de común acuerdo entre la autoridad de aprobación y el solicitante y debe ser descrito en el documento sobre los ensayos.

Si un instrumento electrónico está equipado con una interfase que permite conectarlo a un equipo externo, el instrumento debe estar conectado, durante los ensayos especificados en los numerales B.3.2, B.3.3 y B.3.4, al equipo externo, según lo especificado en el procedimiento de ensayo.

5.4.3 Ensayos de desempeño

Los ensayos de desempeño deben realizarse de acuerdo con B.2 y B.3.

Tabla 10

Ensayo	Característica de ensayo
Temperaturas estáticas	Factor de influencia
Calor húmedo, ensayo continuo	Factor de influencia
Variaciones de tensión	Factor de influencia
Caídas de tensión de red de CA e interrupciones breves	Perturbación
Incrementos repentinos de tensión (transientes)	Perturbación
Descargas electrostáticas	Perturbación
Ondas de choque (si es aplicable)	Perturbación
Inmunidad a campos electromagnéticos radiados	Perturbación
Inmunidad a campos de radiofrecuencia transmitidos por conducción	Perturbación
Requisitos especiales de compatibilidad electromagnética para instrumentos alimentados por el suministro eléctrico de un vehículo de carretera	Perturbación

5.4.4 Ensayo de estabilidad de la pendiente

El ensayo de estabilidad de la pendiente debe realizarse de acuerdo con el numeral B.4.

5.5 REQUISITOS ADICIONALES PARA DISPOSITIVOS ELECTRÓNICOS CONTROLADOS POR SOFTWARE

NOTA Pueden existir más requisitos generales para instrumentos de medición y dispositivos controlados por software y asesoría sobre éstos en otras publicaciones de OIML.

5.5.1 Dispositivos con software integrado

Para instrumentos y módulos con software integrado, el fabricante debe describir o declarar que el software del instrumento o módulo está integrado, es decir, se utiliza en un entorno de hardware y software fijo y no se puede modificar o cargar a través de cualquier interfase u otros medios después de la protección y/o verificación. Además de la documentación exigida en el numeral 8.2.1.2, el fabricante debe presentar la siguiente documentación:

- Descripción de las funciones relevante establecidas legalmente;
- Identificación del software que está claramente asignada a las funciones relevantes establecido legalmente;
- Medidas de protección previstas para proporcionar evidencia de una intervención.

La identificación del software debe ser proporcionada por el instrumento y mencionada en el Certificado OIML.

Solución aceptable:

La identificación del software se proporciona en el modo de operación normal mediante:

- una operación claramente identificada de una tecla física o de función variable, botón o interruptor; o
- un número de versión continuamente visualizado o suma de comprobación, etc.

Acompañado, en ambos casos, de instrucciones claras sobre cómo comparar la verdadera identificación del software con el número de referencia (mencionado en el Certificado OIML) marcado en el instrumento o visualizado por éste.

5.5.2 Computadoras personales, instrumentos con componentes de PC, y otros instrumentos, dispositivos, módulos y elementos con software establecido legalmente programable o cargable

Se pueden utilizar computadoras personales y otros instrumentos/dispositivos con software programable o cargable como indicadores, terminales, dispositivos de almacenamiento de datos, dispositivos periféricos, etc. si se cumplen los siguientes requisitos adicionales.

NOTA Aunque estos dispositivos pueden ser instrumentos de pesaje completos con software cargable o módulos y componentes basados en PC, etc., en lo sucesivo se les denominará simplemente "PC". Siempre se asume que es una "PC" si no se cumplen las condiciones de software integrado según el numeral 5.5.1.

5.5.2.1 Requisitos para hardware

Las PC como módulos que incorporan el o los componentes analógicos metrológicamente relevantes, deben ser tratadas de acuerdo con el Anexo C (Indicador), véase la Tabla 11, categorías 1 y 2.

Las PC que actúan como un módulo puramente digital sin incorporar componentes analógicos metrológicamente relevantes (por ejemplo, utilizadas como terminales o dispositivos calculadores de precio en el punto de venta) deben ser tratadas de acuerdo con la Tabla 11, categorías 3 y 4.

Las PCs utilizadas como dispositivos periféricos puramente digitales deben ser tratadas de acuerdo con la Tabla 11, categoría 5.

La Tabla 11 también especifica cuán detallada debe ser la documentación que debe presentarse para los componentes tanto analógicos como digitales de la PC, dependiendo de la categoría respectiva (descripción de suministro de energía, tipo de interfases, tarjeta principal, cubierta, etc.)

Tabla 11. Ensayos y documentación requerida para PC utilizadas como módulos o dispositivos periféricos

	Categoría	Ensayos necesarios	Documentación	Observaciones
No.	Descripción	,	Componentes de hardware	
1	PC como módulo, indicaciones primarias en el monitor, PC incorpora los componentes analógicos metrológicamente relevantes (ADC) en una tarjeta de circuito impreso montada en una ranura y que no está blindada ("dispositivo abierto"), dispositivo de suministro de energía para el ADC desde la PC o el	ADC y PC ensayados como unidad: - ensayos como para indicadores de acuerdo con el Anexo C; - el patrón debe estar equipado con la máxima configuración posible (máximo consumo de energía)	ADC: Igual que en 8.2.1.2 (diagramas de circuito, disposiciones, descripciones, etc.) PC: Igual que en 8.2.1.2 (fabricante, tipo de PC, tipo de cubierta, tipos de todos los módulos, dispositivos y componentes electrónicos, incluyendo dispositivo de suministro de energía, hojas de datos, manuales, etc.)	Las influencias de la PC en el ADC (temperatura, interferencia electromagnética (EMC)) son posibles
2	sistema bus de la PC. PC como módulo, indicaciones primarias en el monitor, La PC incorpora al ADC, pero el ADC incorporado tiene una cubierta blindada ("dispositivo cerrado"), dispositivo de suministro de energía para el ADC desde la PC pero no a través del sistema bus de la PC.	ADC y PC ensayados como unidad: - ensayos como para indicadores de acuerdo con el Anexo C; - el patrón debe estar equipado con la máxima configuración posible (máximo consumo de energía)	ADC: Igual que en 8.2.1.2 (diagramas de circuito, disposiciones, descripciones, etc.) PC: Dispositivo de suministro de energía: Igual que en 8.2.1.2 (fabricante, tipo, hoja de datos) Otras partes: Sólo descripción general o información necesaria con respecto a la forma de la cubierta, placa madre, tipo de procesador, RAM, unidades de disco flexible y de disco duro, tarjetas controladoras, controlador de video, interfases, monitor, teclado, etc.	Las influencias del dispositivo de suministro de energía de la PC en el ADC (temperatura, EMC) son posibles. Otras influencias de la PC no son críticas Nuevos ensayos de compatibilidad electromagnética (PC) son necesarios si se cambia el dispositivo de suministro de energía.
3	PC como módulo puramente digital, indicaciones primarias en el monitor, ADC fuera de la PC en una cubierta separada, dispositivo de suministro de energía para el ADC desde la PC.	ADC: ensayos como para indicadores de acuerdo con el Anexo C utilizando el monitor de la PC para las indicaciones primarias. PC: De acuerdo con 3.10.2	ADC: Igual que para la categoría 2 PC: Dispositivo de suministro de energía – igual que para categoría 2, otras partes – igual que para categoría 4	La influencia del dispositivo de suministro de energía de la PC (sólo EMC) en el ADC es posible. Otras influencias de la PC no son posibles o no son críticas. Nuevos ensayos de compatibilidad electromagnética (PC) son necesarios si se cambia el dispositivo de suministro de energía.

Continúa...

Tabla 11. (Final)

	Categoría Ensayos necesarios Documentación		Observaciones	
No.	Descripción Componentes de hardy		Componentes de hardware	
4	PC como módulo puramente digital, indicación primaria en el monitor, ADC fuera de la PC en una cubierta separada que tiene su propio dispositivo de suministro de energía.	ADC: Igual que para la categoría 3 PC: Igual que para la categoría 3	ADC: Igual que para la categoría 2 PC: Sólo descripción general o información necesaria, por ejemplo. con respecto al tipo de placa madre, tipo de procesador, RAM, unidades de disco flexible y de disco duro, tarjetas controladoras, controlador de video, interfases, monitor, teclado.	Las influencias de la PC (temperatura, EMC) en el ADC no son posibles.
5	PC como dispositivo periférico puramente digital	PC: De acuerdo con 3.10.3	PC:Igual que para la categoría 4	

NOTA PC = Computadora Personal

Componente(s) analógico relevante, incluyendo Convertidor Analógico a Digital (véase la Figura 1)

Compatibilidad Electromagnética

5.5.2.2 Requisitos para software

El software establecido legalmente de una PC, es decir, él software que es crítico para las características de medición, datos de medición y parámetros metrológicamente importantes almacenados o transmitidos es considerado como parte esencial de un instrumento de pesaje y debe ser examinado de acuerdo con el Anexo G.2. El software legalmente relevante debe cumplir con los siguientes requisitos.

a) El software legalmente relevante debe ser protegido adecuadamente de cambios accidentales o intencionales. Evidencias de una intervención, por ejemplo, cambiar, cargar o eludir el software legalmente relevante, deben estar disponibles hasta la siguiente verificación o inspección oficial comparable.

Este requisito implica que:

La protección contra cambios intencionales con herramientas de software especiales no es objeto de estos requisitos porque esto es considerado como acto delictivo. Normalmente, se puede asumir que no es posible influir en los parámetros y datos legalmente relevantes, especialmente valores variables procesados, siempre que sean procesados mediante un programa que cumpla estos requisitos. Sin embargo, si se transmitirán parámetros y datos establecidos legalmente, especialmente valores variables finales, fuera de la parte protegida del software para aplicaciones o funciones sujetas a control legal, deben ser protegidos para cumplir con los requisitos del numeral 5.3.6.3. El software establecido legalmente con todos los datos, parámetros, valores variables, etc. serán considerados como lo suficientemente protegidos si no se pueden cambiar con herramientas de software comunes. En este momento, por ejemplo, todos los tipos de editores de texto son considerados como herramientas de software comunes.

Solución aceptable:

Después de iniciar el programa, cálculo automático de una suma de comprobación para el código de máquina de todo el software establecido legalmente (por lo menos una suma de comprobación CRC-16 con función polinómica oculta) y comparación del resultado con un valor fijo almacenado. No hay inicio si el código de máquina está falsificado.

b) Cuando hay software asociado que prevé otras funciones además de la o las funciones de medición, el software establecido legalmente debe ser identificable y no debe ser influenciado de manera inadmisible por el software asociado.

Este requisito implica que:

El software asociado esté separado del software establecido legalmente en el sentido que se comuniquen por medio de una interfase de software. Una interfase de software es considerada como interfase de protección si:

- sólo se puede intercambiar un conjunto definido y permitido de parámetros, funciones y datos a través de esta interfase, de acuerdo con el numeral 5.3.6.1; y
- ninguna parte puede intercambiar información por medio de cualquier otro enlace.

Las interfases de software son parte del software establecido legalmente. El hecho de que el usuario eluda la interfase de protección, es considerado como acto delictivo.

Solución aceptable:

Definición de todas las funciones, comandos, datos, etc., que se intercambian a través de la interfase de protección desde el software establecido legalmente hacia todas las demás partes de software o hardware conectadas. Verificación de si se permiten todas las funciones, comandos y datos.

c) El software establecido legalmente debe ser identificado como tal y estar protegido.

El dispositivo debe proporcionar fácilmente su identificación para controles metrológicos o inspecciones.

Este requisito implica que:

El sistema operativo o software estándar auxiliar similar, tales como controladores de video, controladores de impresora o controladores de disco duro, debe ser incluido en la identificación del software.

Solución aceptable:

Cálculo de una suma de comprobación en el código de máquina del software establecido legalmente en el tiempo de ejecución y la indicación después de un comando manual. Esta suma de comprobación representa el software legalmente relevante y puede compararse con la suma de comprobación definida en la aprobación de modelo.

- d) Además de la documentación descrita en el numeral 8.2.1.2, la documentación especial del software debe incluir:
 - una descripción del hardware del sistema, por ejemplo, diagrama de bloques, tipo de computadora(s), tipo de red, si no se describe en el manual de operación (véase también la Tabla 11);
 - una descripción del entorno del software legalmente relevante, por ejemplo, el sistema operativo, controladores requeridos, etc.;
 - una descripción de todas las funciones del software legalmente relevante, los parámetros legalmente relevantes, interruptores y teclas que determinan la funcionalidad del instrumento incluyendo una declaración de la integridad de esta descripción;
 - una descripción de los algoritmos de medición relevantes (por ejemplo, equilibrio estable, cálculo de precios, redondeo);
 - una descripción de los menús y diálogos relevantes;
 - las medidas de seguridad (por ejemplo, suma de comprobación, firma, pista de auditoría);
 - el conjunto completo de comandos y parámetros (que incluya una breve descripción de cada comando y parámetro) que se puedan intercambiar entre el software establecido legalmente y el software asociado a través de la interfase de software de protección, incluyendo una declaración de la integridad de la lista;
 - la identificación del software establecido legalmente;
 - si el instrumento permite la descarga de software por medio de un módem o internet: una descripción detallada del procedimiento de carga y las medidas de protección contra cambios accidentales o intencionales;
 - si el instrumento no permite la descarga de software por medio de un módem o internet: una descripción de las medidas tomadas para impedir la carga inadmisible de software establecido legalmente; y
 - en el caso de almacenamiento prolongado y transmisión de datos a través de redes, una descripción de los grupos de datos y medidas de protección (véase el numeral 5.5.3).

5.5.3 Dispositivos de almacenamiento de datos (DSD)

Si hay un dispositivo, ya sea que esté incorporado en el instrumento o sea parte del instrumento como solución de software o conectado a éste externamente, que esté destinado al almacenamiento prolongado de datos de pesaje (en el sentido de T.2.8.5), se aplican los siguientes requisitos adicionales.

5.5.3.1 El DSD debe tener una capacidad de almacenamiento que sea suficiente para el propósito previsto.

NOTA La regulación del período mínimo de mantenimiento de información está fuera del alcance de La presente NTC y probablemente queda a criterio de las regulaciones comerciales nacionales. Es responsabilidad del propietario del instrumento tener un instrumento con suficiente capacidad de almacenamiento para cumplir los requisitos de su actividad. En el examen de modelo, sólo se verificará que los datos son almacenados y recuperados correctamente y que se proporcionan los medios adecuados para evitar la pérdida de datos si se agota la capacidad de almacenamiento antes del plazo previsto.

5.5.3.2 Los datos legalmente relevantes almacenados deben incluir toda la información relevante necesaria para recuperar un pesaje anterior.

NOTA Los datos legalmente establecidos relevantes son (véase también numeral T.2.8.1):

- valores brutos o netos y valores de tara (si es aplicable, junto con una distinción de tara y tara predeterminada);
- el signo(s) decimal;
- unidad(es) de medida (puede estar codificada);
- identificación de los datos almacenados;
- el número de identificación del instrumento o el receptor de carga si varios instrumentos o receptores de carga están conectados al dispositivo de almacenamiento de datos; y
- una suma de comprobación u otra firma de los datos almacenados.

5.5.3.3 Los datos establecidos legalmente deben estar protegidos adecuadamente contra cambios accidentales o intencionales.

Ejemplos de soluciones aceptables:

- una simple comprobación de paridad es considerada suficiente para proteger los datos contra cambios accidentales durante la transmisión.
- b) El dispositivo de almacenamiento de datos puede materializarse como un dispositivo controlado por software externo utilizando, por ejemplo, el disco duro de una PC como medio de almacenamiento. En este caso, el respectivo software debe cumplir los requisitos para software indicados en 5.5.2.2. Si los datos almacenados están encriptados o protegidos mediante una firma (por lo menos 2 bytes, por ejemplo, una suma de comprobación CRC-16 con función polinómica oculta), esto será considerado suficiente para proteger los datos contra cambios intencionales.
- **5.5.3.4** Los datos establecidos legalmente almacenados deben ser susceptibles de ser identificados y visualizados, cuando se deben almacenar el o los números de identificación para uso posterior y registrarlos en el medio de transacción oficial. En caso de una salida impresa, se deben imprimir el o los números de identificación.

Ejemplo de una solución aceptable:

La identificación puede materializarse como números consecutivos o como la respectiva fecha y hora (mm:dd:hh:min:s) de la transacción.

- **5.5.3.5** Se deben almacenar automáticamente los datos establecidos legalmente.
- NOTA Este requisito significa que la función de almacenamiento no debe depender de la decisión del operador. Sin embargo, se acepta que no se almacenen pesajes intermedios que no se utilizan para las transacciones.
- **5.5.3.6** Los grupos de datos establecidos legalmente que se deben verificar mediante la identificación, deben ser visualizados o impresos en un dispositivo sujeto a control legal.

5.5.3.7 Los DSD son identificados como una característica, opción o parámetro en los Certificados OIML si están incorporados en el instrumento o forman parte del instrumento como solución de software.

6. REQUISITOS TÉCNICOS PARA LOS INSTRUMENTOS CON INDICACIÓN NO AUTOMÁTICA

Los instrumentos con indicación no automática deben cumplir con los requisitos aplicables de los numerales 3 y 4 siempre que sea posible. Este capítulo da disposiciones complementarias correspondientes a algunos de los requisitos del capítulo 4.

Aunque las disposiciones de 6.1 son obligatorias, las de 6.2 contienen "soluciones aceptables" introducidas en el capítulo 4.

Los numerales 6.3 a 6.9 contienen disposiciones para ciertos instrumentos simples que pueden ser sometidos directamente a la verificación inicial. Estos instrumentos simples son:

- astil simple de brazos iguales y de una relación 1/10;
- romana simple con pesas deslizables;
- Instrumentos Roberval y Béranger;
- instrumentos con plataformas de relación; e
- instrumentos del tipo romana con pesas deslizables accesibles.

6.1 SENSIBILIDAD MÍNIMA

Una carga adicional equivalente al valor absoluto del error máximo permisible para la carga aplicada, pero no inferior a 1 mg, debe producir un desplazamiento permanente del elemento indicador de al menos:

1 mm en un instrumento de clase I o II;

2 mm en un instrumento de clase III o IIII con Max ≤ 30 kg;

5 mm en un instrumento de clase III o IIII con Max > 30 kg;

Los ensayos de sensibilidad deben realizarse colocando cargas adicionales con un ligero impacto a fin de eliminar los efectos de umbral de discriminación.

6.2 SOLUCIONES ACEPTABLES PARA LOS DISPOSITIVOS INDICADORES

6.2.1 Disposiciones generales

6.2.1.1 Componentes indicadores de equilibrio

Para un instrumento con un componente indicador que se desplaza en relación con otro componente indicador, los dos índices tienen el mismo espesor y la distancia entre éstos no debe sobrepasar este espesor.

Sin embargo, esta distancia puede ser igual a 1 mm si el espesor de los índices es inferior a este valor.

6.2.1.2 Protección

Es posible proteger las pesas deslizables, las masas removibles y las cavidades de ajuste o las cubiertas de dichos dispositivos.

6.2.1.3 Impresión

Si el dispositivo permite la impresión, esto es posible sólo si las pesas deslizables o barras corredizas o el mecanismo de conmutación de pesas se encuentran cada uno en una posición correspondiente a un número entero de divisiones de escala. Salvo en el caso de pesas deslizables o barras corredizas accesibles, la impresión es posible sólo si el componente indicador de equilibrio se encuentra en la posición de referencia con una precisión de media división de escala.

6.2.2 Dispositivos con pesas deslizables

6.2.2.1 Forma de las marcas de escala

En las barras en las cuales la división de escala es la división de escala de verificación del instrumento, las marcas de escala están compuestos por líneas de espesor constante. En otras barras mayores (o menores), las marcas de escala están compuestos por muescas.

6.2.2.2 Espaciado de la escala

La distancia entre las marcas de escala no debe ser inferior a 2 mm y debe tener una longitud suficiente para la tolerancia normal de maquinado de las muescas o que las marcas de escala no produzca en el resultado de pesaje un error que sobrepase 0,2 veces la división de escala de verificación.

6.2.2.3 Topes

El desplazamiento de las pesas deslizables y barras menores se limita a la parte graduada de las barras mayores y menores.

6.2.2.4 Componentes del indicador

Cada pesa deslizable lleva un componente indicador.

6.2.2.5 Dispositivos con pesas deslizables accesibles

No hay partes móviles en las pesas deslizables, con excepción de las barras corredizas menores.

Las pesas deslizables están libres de cavidades que podrían recibir accidentalmente cuerpos extraños. Es posible proteger las partes que son desmontables.

El desplazamiento de pesas deslizables y barras menores requiere un cierto esfuerzo.

6.2.3 Indicación mediante el uso de pesas metrológicamente controladas

Las relaciones de reducción son de la forma 10^k , siendo k un número entero o cero. En los instrumentos destinados a la venta directa al público, la altura del reborde de la plataforma receptora de pesas es como máximo igual a un décimo de la mayor dimensión de la plataforma, sin ser superior a 25 mm.

6.3 CONDICIONES DE CONSTRUCCIÓN

6.3.1 Componentes indicadores de equilibrio

Los instrumentos deben estar provistos de dos índices móviles o de un componente indicador móvil y una marca de referencia fija, cuyas respectivas posiciones indiquen la posición de referencia de equilibrio.

En los instrumentos de clases III y IIII diseñados para la venta directa al público, los índices y marcas de escala deben permitir observar el equilibrio desde lados opuestos del instrumento.

6.3.2 Cuchillas, cojinetes y placas de fricción

6.3.2.1 Tipos de conexión

Las palancas sólo deben estar equipadas con cuchillas; éstas deben estar articuladas con cojinetes. La línea de contacto entre cuchillas y cojinetes debe ser una línea recta. Los brazos contrarios deben estar articulados alrededor de los bordes de las cuchillas.

6.3.2.2 Cuchillas

Las cuchillas deben ser montadas en las palancas de tal manera que se asegure la invariabilidad de las relaciones de los brazos de estas palancas. No deben estar soldadas.

Los bordes de las cuchillas de una misma palanca deben estar prácticamente paralelos y situados en un mismo plano.

6.3.2.3 Cojinetes

Los cojinetes no deben estar soldados a su soporte o en su base.

Los cojinetes de un instrumento con plataformas de relación y de romanas deben poder oscilar en todas las direcciones sobre su soporte o en su base. En estos instrumentos, dispositivos anti-desconexión deben impedir el desarme de partes articuladas.

6.3.2.4 Placas de fricción

El juego longitudinal de las cuchillas debe ser limitado por placas de fricción. El contacto entre la cuchilla y las placas de fricción debe ser puntual y estar situado en la prolongación de la línea(s) de contacto entre la cuchilla y el cojinete(s).

Las placas de fricción deben ser planas alrededor del punto de contacto con la cuchilla y su plano debe ser perpendicular a la línea de contacto entre la cuchilla y el cojinete. No deben estar soldadas a los cojinetes o su soporte.

6.3.3 **Dureza**

Las partes en contacto entre las cuchillas, cojinetes, placas de fricción, dispositivos de pesas deslizables, palancas intermedias, soportes y estribos de palancas intermedias deben tener una dureza de al menos 58 Rockwell C.

6.3.4 Revestimiento protector

Puede aplicarse un revestimiento protector a las partes en contacto de los componentes de articulación, siempre que esto no conduzca a cambios de las propiedades metrológicas.

6.3.5 Dispositivos de tara

Los instrumentos no deben estar equipados con un dispositivo de tara.

6.4 ASTIL SIMPLE DE BRAZOS IGUALES

6.4.1 Simetría de los astiles

El astil debe tener dos planos de simetría: longitudinal y transversal. Debe estar en equilibrio con o sin platillos. Las piezas desmontables que pueden utilizarse de manera indiferente en cualquiera de los dos extremos del astil, deben ser intercambiables y tener masas iguales.

6.4.2 Ajuste a cero

Si un instrumento de clase III o IIII está provisto de un dispositivo de puesta a cero, éste debe consistir de una cavidad debajo de uno de los platillos. Esta cavidad puede estar protegida.

6.5 ASTIL SIMPLE DE UNA RELACIÓN 1/10

6.5.1 Indicación de la relación

Se debe indicar la relación de manera legible y permanente en el astil en la forma 1:10 ó 1/10.

6.5.2 Simetría del astil

El astil debe tener un plano de simetría longitudinal.

6.5.3 Ajuste a cero

Se aplican las disposiciones de 6.4.2.

6.6 INSTRUMENTOS SIMPLES CON PESAS DESLIZABLES (Romanas)

6.6.1 Generalidades

6.6.1.1 Marcas de escala

Las marcas de escala deben consistir de líneas o muescas, en el borde o en la parte plana de la regla graduada. La longitud mínima de una división es de 2 mm entre muescas y 4 mm entre líneas.

6.6.1.2 Pivotes

La carga por unidad de longitud sobre las cuchillas no debe ser superior a 10 kg/mm. Los orificios de los cojinetes en forma de anillo deben tener un diámetro al menos igual a 1,5 veces la dimensión más grande de la sección transversal de la cuchilla.

6.6.1.3 Componente indicador de equilibrio

La longitud del componente indicador de equilibrio, tomada desde el borde de la cuchilla de suspensión del instrumento, no debe ser inferior a 1/15 de la longitud de la parte graduada de la barra principal.

6.6.1.4 Marca distintiva

El cabezal y la pesa deslizable de un instrumento con pesa deslizable desmontable deben llevar la misma marca distintiva.

6.6.2 Instrumentos con capacidad simple

6.6.2.1 Distancia mínima entre bordes de cuchillas

La distancia mínima entre bordes de cuchillas es:

- 25 mm para las capacidades máximas ≤ 30 kg, y
- 20 mm para las capacidades máximas > 30 kg

6.6.2.2 Graduación

La graduación debe extenderse desde cero hasta la capacidad máxima.

6.6.2.3 Ajuste a cero

Si un instrumento de clase III o IIII está provisto de un dispositivo de ajuste a cero, éste debe ser un dispositivo de tornillo o tuerca imperdible con un efecto máximo de 4 divisiones de escala de verificación por vuelta.

6.6.3 Instrumentos con doble capacidad

6.6.3.1 Distancia mínima entre los bordes de cuchillas

La distancia mínima entre bordes de cuchillas es:

45 mm para la capacidad más baja;

У

20 mm para la capacidad más alta.

6.6.3.2 Diferenciación de mecanismos de suspensión

El mecanismo de suspensión de un instrumento debe diferenciarse del mecanismo de suspensión de cargas.

6.6.3.3 Escalas numeradas

Las escalas correspondientes a cada una de las capacidades del instrumento deben permitir pesar desde cero hasta la capacidad máxima, sin discontinuidad:

- sin que las dos escalas tengan una parte común; o
- con una parte común de un valor como máximo igual a 1/5 del máximo de la escala inferior.

6.6.3.4 Divisiones de escala

Las divisiones de escala de cada una de las escalas deben tener un valor constante.

6.6.3.5 Dispositivos de ajuste a cero

No están permitidos los dispositivos de ajuste a cero.

6.7 INSTRUMENTOS ROBERVAL Y BÉRANGER

6.7.1 Simetría

Las partes simétricas desmontables que se presentan en pares, deben ser intercambiables y tener masas iguales.

6.7.2 Ajuste a cero

Si un instrumento está provisto de un dispositivo de ajuste a cero, éste debe consistir de una cavidad debajo del soporte de uno de los platillos. Esta cavidad puede estar protegida.

6.7.3 Longitud de las cuchillas

En los instrumentos que tienen un astil simple:

- la distancia entre los extremos externos de las cuchillas de carga debe ser al menos igual al diámetro del fondo del platillo; y
- la distancia entre los extremos externos de la cuchilla central debe ser al menos igual a 0,7 veces la longitud de las cuchillas de carga.

Los instrumentos de doble astil deben tener una estabilidad del mecanismo igual a la obtenida con los instrumentos de astil simple.

Figura 7

6.8 INSTRUMENTOS CON PLATAFORMAS DE RELACIÓN

6.8.1 Capacidad máxima

La capacidad máxima del instrumento debe ser superior a 30 kg.

6.8.2 Indicación de la relación

Se debe indicar la relación entre la carga pesada y la carga de equilibrio de manera legible y permanente en el astil en la forma 1:10 ó 1/10.

6.8.3 Ajuste a cero

El instrumento debe tener un dispositivo de ajuste a cero compuesto de:

- una copa con una tapa muy convexa; o
- un dispositivo de tornillo o tuerca de seguridad, con un efecto máximo de cuatro divisiones de escala de verificación por vuelta.

6.8.4 Dispositivos complementarios de equilibrio

Si el instrumento está provisto de un dispositivo complementario que evita el uso de pesas de bajo valor en relación con la capacidad máxima, este dispositivo debe ser una regla graduada con una pesa deslizable, con un efecto máximo aditivo de 10 kg.

6.8.5 Bloqueo del astil

El instrumento debe tener un dispositivo manual de bloqueo del astil, cuya acción evite la coincidencia de los índices de equilibrio cuando está en reposo.

6.8.6 Disposiciones referentes a partes de madera

Si ciertas partes de un instrumento, tales como el chasis, la plataforma o el tablero son de madera, ésta debe estar seca y libre de defectos. Debe estar cubierta de una pintura o un barniz protector eficaz.

No se deben utilizar clavos para el ensamblaje definitivo de las partes de madera.

6.9 INSTRUMENTOS CON UN DISPOSITIVO DE MEDICIÓN DE CARGA CON PESAS DESLIZABLES ACCESIBLES (DEL TIPO ROMANA)

6.9.1 Generalidades

Se deben cumplir las disposiciones de 6.2 referentes a los dispositivos de medición de carga con pesas deslizables accesibles.

6.9.2 Rango de la escala numerada

La escala numerada del instrumento debe permitir el pesaje continuo desde cero hasta la capacidad máxima.

6.9.3 Longitud mínima de una división

La longitud mínima de una división i_X de las diferentes barras (x = 1, 2, 3...) correspondiente a la división de escala, d_X , de estas barras, debe ser:

 $i_{\chi} \ge (d_{\chi}/e) \times 0.05 \text{ mm pero } i_{\chi} \ge 2 \text{ mm}$

6.9.4 Plataforma de relación

Si el instrumento está provisto de una plataforma de relación que permite la ampliación del rango de indicación de la escala numerada, la relación entre el valor de las pesas colocadas sobre la plataforma para equilibrar una carga y esta carga debe ser de 1/10 ó 1/100.

Se debe indicar esta relación de manera legible y permanente en el astil en un lugar cercano a la plataforma de relación, en la forma: 1:10, 1:100 ó 1/10, 1/100.

6.9.5 Ajuste a cero

Se aplican las disposiciones del numeral 6.8.3.

6.9.6 Bloqueo del astil

Se aplican las disposiciones del numeral 6.8.5.

6.9.7 Partes de madera

Se aplican las disposiciones del numeral 6.8.6.

7. MARCADO DE LOS INSTRUMENTOS Y MÓDULOS

7.1 MARCAS DESCRIPTIVAS

NOTA Las marcas descriptivas indicadas aquí son a modo de ejemplo pero pueden variar según las regulaciones nacionales.

Los instrumentos deben llevar las siguientes marcas:

7.1.1 Obligatorias en todos los casos

- Marca o nombre del fabricante, expresado completo (A);
- Marcas metrológicas (B):
 - Indicación de la clase de exactitud en la forma de un número romano dentro de un óvalo (véase nota al pie de página de 3.1.1):

para exactitud especial	
para exactitud fina:	
para exactitud media:	
para exactitud ordinaria:	
Capacidad máxima en la forma:	Max

- Capacidad mínima en la forma: Min ...
- División de escala de verificación en la forma: e =

7.1.2 Obligatorias si es aplicable

- Nombre o marca del representante del fabricante, para los instrumentos importados (C);
- Número de serie (D);
- Marca de identificación de cada unidad de instrumentos compuestos de unidades separadas pero asociadas (E);
- Marca de aprobación de modelo (F);
- Características metrológicas suplementarias (G):
 - identificación del software (obligatorio para instrumentos controlados por software)
 - división de escala, si *d* < *e*, en la forma: *d* =
 - efecto máximo aditivo de tara, en la forma: T = + ...
 - efecto máximo sustractivo de tara si es diferente de Max, en la forma: T = ...
 - relación de conteo para los instrumentos contadores de acuerdo con el numeral 4.17, en la forma: 1:... ó 1/...
 - rango de indicación más/menos de un instrumento de comparador digital, en la forma: ±... u_m o -... u_m / +... u_m
 - (u_m representa la unidad de masa según 2.1)
 - relación entre la plataforma de pesas y la plataforma de carga según se especifica en 6.5.1, 6.8.2 y 6.9.4;
- Límites especiales (H):
 - Carga límite máxima, en la forma: Lim = ...
 (si el fabricante ha previsto una carga límite máxima superior a Max +T)
 - los límites especiales de temperatura de acuerdo con 3.9.2.2 dentro de los cuales el instrumento cumple con las condiciones reglamentarias de funcionamiento correcto, en la forma: ... °C/... °C

7.1.3 Marcas adicionales (I):

Se pueden exigir, si es necesario, marcas adicionales en los instrumentos según su uso particular o ciertas características especiales, como por ejemplo:

-	no usar para	la venta	directa al	publico/pai	ra transacciones	comerciales:

-	uso exclusivo:	 :

- el sello no garantiza/garantiza sólo:;
- usar solamente como se indica a continuación:

Estas marcas adicionales pueden estar en los idiomas oficiales del país o en forma de pictogramas o signos internacionalmente acordados y publicados

7.1.4 Presentación de marcas descriptivas

Las marcas descriptivas deben ser indelebles y tener un tamaño, forma y claridad que permitan una fácil lectura.

Deben estar agrupadas en uno o dos lugares bien visibles del instrumento, en una placa o etiqueta adhesiva fijada al instrumento o en una parte no removible del mismo instrumento. En caso de una placa o etiqueta adhesiva que no se destruye al ser retirada, se debe prever un medio de protección, por ejemplo, puede aplicarse una marca de control.

Como alternativa, una solución de software puede visualizar simultáneamente todas las marcas aplicables indicadas en 7.1.1 (B) y 7.1.2 (G) en forma permanente o después de un comando manual. En este caso, las marcas son consideradas como parámetros específicos para un dispositivo (véase T.2.8.4, 4.1.2.4 y 5.5).

Las marcas: Max ...,

Min ..., e = ..., y $d = ... \text{ si } d \neq e$

deben aparecer al menos en un lugar y de forma permanente en la pantalla o cerca de la misma en una posición bien visible. Alternativamente, toda la información adicional mencionada en 7.1.1 (B) y 7.1.2 (G) puede aparecer en una placa o una solución de software puede visualizarla simultáneamente en forma permanente o se puede tener acceso a ésta mediante un comando manual simple. En este caso, las marcas son consideradas como parámetros específicos para un dispositivo (véase T.2.8.4, 4.1.2.4 y 5.5).

Debe ser posible sellar la placa que lleva las marcas descriptivas, a menos que su remoción ocasione su destrucción. Si se sella la placa descriptiva, debe ser posible aplicar una marca de control a la misma.

Soluciones aceptables:

a) Marcado de Max, Min, $e \dots y d$ si $d \neq e$:

Estos valores aparecen en forma permanente y simultánea en la pantalla del resultado de pesaje mientras el instrumento esté encendido.

Se pueden desplazar estos valores hacia arriba o hacia abajo automáticamente (visualizar alternando uno después de otro) en una pantalla. El desplazamiento automático (pero no después de un comando manual) es considerado como "permanente".

b) Marcado de instrumentos de intervalo múltiple y de rango múltiple:

En casos especiales, algunas de las marcas deberían aparecer en forma de tabla. Véase ejemplos en la Figura 8.

Para un instrumento de intervalo múltiple

Para un instrumento con más de un rango de pesaje (W₁, W₂)

Para un instrumento con rangos de pesaje de diferentes clases

Max 2/5/15 k Min 20 g e = 1/2/5 g	g

	W ₁	W ₂
Max	20 kg	100 kg
Min	200 g	1 kg
e =	10 g	50 kg

	W ₁	W ₂
Max	1 000 g	5 000 g
Min	1 g	40 g
e =	0,1 g	2 g
d =	0.02 a	2 g

Figura 8

c) Fijación

Si se utiliza una placa, debe ser fijada, por ejemplo, con remaches o tornillos con uno de los remaches de cobre rojo o de un material que tenga calidades reconocidas como similares o utilizando marcas de control no removibles. Debería ser posible proteger la cabeza de uno de los tornillos con medios apropiados (por ejemplo, mediante una tapa de material adecuado insertada en un dispositivo que no se pueda desmontar, u otra solución técnica apropiada).

La placa puede ser pegada o consistir de una calcomanía siempre que su remoción ocasione su destrucción.

d) Dimensiones de las letras

La altura de las letras mayúsculas debería ser como mínimo 2 mm.

7.1.5 Casos específicos

Los numerales 7.1.1 a 7.1.4 se aplican íntegramente a instrumentos simples hechos por un solo fabricante.

Cuando un fabricante construye un instrumento complejo o cuando varios fabricantes intervienen para construir un instrumento simple o complejo, las siguientes disposiciones adicionales deben aplicarse.

7.1.5.1 Instrumentos que tienen varios receptores de carga y dispositivos de medición de carga

Cada dispositivo de medición de carga que está conectado o puede ser conectado a uno o más receptores de carga, debe llevar las marcas descriptivas referentes a estos últimos, a saber:

- marca de identificación;
- capacidad máxima;
- capacidad mínima;

- división de escala de verificación; y
- carga límite máxima y efecto máximo aditivo de tara (si es apropiado).

7.1.5.2 Instrumentos compuestos de partes principales construidas por separado

Si no se pueden intercambiar las partes principales sin alterar las características metrológicas del instrumento, cada unidad debe tener una marca de identificación que debe repetirse en las marcas descriptivas.

7.1.5.3 Módulos ensayados por separado

Para celdas de carga con un Certificado OIML R 60, se aplican las marcas según OIML R 60.

Para otros módulos (indicadores y módulos de pesaje), se aplican las marcas según el Anexo C o D. Sin embargo, cada módulo debe llevar por lo menos las siguientes marcas descriptivas para su identificación:

- designación del modelo;
- número de serie; y
- fabricante (marca o nombre).

Se deben especificar otra información y características relevantes en el respectivo Certificado OIML (tipo de módulo, fracción *pi* del error máximo permitido, número de Certificado OIML, clase de exactitud, Max, *e*, etc.) y se deben incluir en un documento que acompañe al respectivo módulo.

7.1.5.4 Dispositivos periféricos

Los dispositivos periféricos mencionados en un Certificado OIML deben llevar las siguientes marcas descriptivas:

- designación de tipo;
- número de serie;
- fabricante; y
- otra información en la medida en que sea aplicable.

7.2 MARCAS DE VERIFICACIÓN

Los instrumentos deben tener un lugar que permita la aplicación de marcas de verificación. Este lugar debe:

- ser tal que la parte en la cual se encuentra, no se pueda sacar del instrumento sin dañar las marcas;
- permitir una fácil aplicación de las marcas sin cambiar las características metrológicas del instrumento; y
- ser normalmente visible sin tener que desplazar el instrumento cuando está en servicio.

NOTA Si razones técnicas restringen o limitan que las marcas de verificación sean fijadas sólo en un lugar "oculto" (por ejemplo, cuando un instrumento – en combinación con otro dispositivo – está integrado en otro equipo), se puede aceptar esto si estas marcas son de fácil acceso y si hay un aviso legible en el instrumento en un lugar bien visible que señale estas marcas o si su ubicación está definida en el manual de operación, el Certificado OIML y el Informe de Ensayo OIML.

Solución aceptable:

Los instrumentos que requieren llevar marcas de verificación, deben tener en el lugar previsto más arriba un soporte de marca de verificación que asegure la conservación de las marcas:

- a) cuando la marca se hace con un sello, este soporte puede estar compuesto de una tira de metal adecuado o cualquier otro material con características similares al plomo (por ejemplo, plástico, bronce, etc. dependiendo de la legislación nacional), insertada en una placa fijada al instrumento o una cavidad hecha en el instrumento; o
- b) cuando la marca es de tipo autoadhesivo, se debería prever en el instrumento un espacio para la aplicación de esta marca.

Para la aplicación de las marcas de verificación, se requiere un área de estampado de al menos 150 mm².

Si se utilizan etiquetas autoadhesivas como marcas de verificación, el espacio para estas etiquetas debería tener un diámetro de al menos 15 mm. Estas marcas deberían ser adecuadamente durables para el uso previsto del instrumento, por ejemplo, mediante una protección adecuada.

8. CONTROLES METROLÓGICOS

8.1 OBLIGACIÓN A CONTROLES METROLÓGICOS

La legislación nacional puede imponer controles para asegurar que los instrumentos utilizados en aplicaciones específicas cumplen con los requisitos de esta NTC.

Si se imponen controles para determinar la conformidad, éstos pueden consistir de una aprobación de modelo, una verificación inicial, verificaciones posteriores – por ejemplo, periódicas – o inspecciones en servicio u otros procedimientos de control metrológico equivalentes.

Sin embargo, los instrumentos cubiertos por los numerales 6.4 a 6.9 de El presente documento normativo no deben ser sometidos a la aprobación de modelo y la legislación nacional puede prever la verificación inicial sin la aprobación de modelo para aplicaciones de instrumentos particulares.

8.2 APROBACIÓN DE MODELO

8.2.1 Solicitud de aprobación de modelo

La solicitud de aprobación de modelo debe incluir la presentación, normalmente, de un instrumento representativo del modelo presentado. El enfoque modular (especifica do en el numeral 3.10.2) y el ensayo de una familia de instrumentos o módulos (numeral 3.10.4) pueden ser más apropiados y eficientes.

El solicitante debe proporcionar la siguiente información, en la medida en que se aplique y de acuerdo con la legislación nacional.

8.2.1.1 Características metrológicas

- características del instrumento, según numeral 7.1; y
- especificaciones de los módulos o componentes del sistema de medición según el numeral 3.10.2.

8.2.1.2 Documentos descriptivos

NOTA Los números entre paréntesis de la siguiente tabla hacen referencia a los capítulos de esta NTC.

Ítem	Documentación requerida
1	Descripción general del instrumento, descripción de la función, uso previsto, modelo de instrumento (por ejemplo, plataforma, escala más-menos, etiquetador de precio).
2	Características generales (fabricante; Clase, Max, Min, e, n, un solo intervalo/intervalo múltiple, rango múltiple, rango de temperatura, tensión, etc.).
3	Lista de descripciones y datos característicos de todos los dispositivos y módulos del instrumento
4	Planos de disposición general y detalles de interés metrológico, incluyendo detalles de interbloqueos, protecciones, restricciones, límites, etc.
4.1	Protección de componentes, dispositivos de ajuste, controles, etc. (4.1.2), acceso protegido a operaciones de configuración y ajuste (4.1.2.4).
4.2	Lugar para aplicación de marcas de control, elementos de protección, marcas descriptivas, marcas de identificación, conformidad y/o aprobación (7.1, 7.2).
5	Dispositivos del instrumento.
5.1	Dispositivos indicadores auxiliares o ampliados (3.4, 4.4.3, 4.13.7).
5.2	Uso múltiple de dispositivos indicadores (4.4.4).
5.3	Dispositivos impresores (4.4.5, 4.6.11, 4.7.3, 4.14.4, 4.16).
5.4	Dispositivos de almacenamiento en memoria (4.4.6).
5.5	Dispositivos de ajuste a cero y de bloqueo de cero (4.5, 4.6.9, 4.13.2)
5.6	Dispositivos de tara (4.6, 4.10, 4.13.3) y dispositivos de tara predeterminada (4.7, 4.13.4).
5.7	Dispositivo de nivelación e indicador de nivel, sensor de inclinación, límite superior de inclinación (3.9.1)
5.8	Dispositivos de bloqueo (4.8, 4.13.5) y dispositivos auxiliares de verificación (4.9).
5.9	Selección de rangos de pesaje en instrumentos de rango múltiple (4.10).
5.10	Conexión de diferentes receptores de carga (4.11).
5.11	Interfases (modelos, uso previsto, inmunidad a influencias externas, instrucciones (5.3.6)).
5.12	Dispositivos periféricos, por ejemplo, impresoras, pantallas secundarias, para incluir en el certificado de aprobación de modelo y para conexión para los ensayos de perturbaciones (5.4.2).
5.13	Funciones de instrumentos calculadores de precio (por ejemplo, para la venta directa al público) (4.14), autoservicio (4.13.11), etiquetado de precio (4.16).
5.14	Otros dispositivos o funciones, por ejemplo, para fines distintos a la determinación de masa (no sujetos a evaluación de la conformidad).
5.15	Descripción detallada de la función de equilibrio estable (4.4.2, A.4.12) del instrumento.

Ítem	Documentación requerida
6	Información sobre casos especiales.
6.1	Subdivisión del instrumento en módulos – por ejemplo, celdas de carga, sistema mecánico, indicador, pantalla – indicando las funciones de cada módulo y las fracciones p_i . Para módulos que ya han sido aprobados, referencia a certificados de ensayo o certificados de aprobación de modelo (3.10.2), referencia a evaluación de acuerdo con R 60 para celdas de carga (Anexo F).
6.2	Condiciones de funcionamiento especiales (3.9.5).
6.3	Reacción del instrumento a fallas significativas (5.1.1, 5.2, 4.13.9).
6.4	Funcionamiento de la pantalla después del encendido (5.3.1).
7	Descripción técnica, planos y dibujos de dispositivos, subconjuntos, etc. especialmente los cubiertos por 7.1 a 7.4.
7.1	Receptor de carga, sistemas de palanca si no están de acuerdo con (6.3.2-6.3.4), dispositivos transmisores de fuerza.
7.2	Celdas de carga, si no se presentan como módulos.
7.3	Elementos de conexión eléctricos, por ejemplo, para conectar celdas de carga al indicador, incluyendo la longitud de líneas de señal (necesarios para el ensayo de ondas de choque, véase B.3.3).
7.4	Indicador: diagrama de bloques, diagramas esquemáticos, procesamiento interno e intercambio de datos por medio de una interfase, teclado con función asignada a cualquier tecla.
7.5	Declaraciones del fabricante, por ejemplo, para interfases (5.3.6.1), para acceso protegido a operaciones de configuración y ajuste (4.1.2.4), para otras operaciones basadas en software.
7.6	Muestras de todas las salidas impresas previstas.
8	Resultados de ensayos realizados por el fabricante o de otros laboratorios, en protocolos de R 76-2, incluyendo evidencia de competencia.
9	Certificados de otras aprobaciones de modelo o ensayos separados, referentes a módulos u otras partes mencionadas en la documentación, junto con protocolos de ensayo.
10	Para instrumentos o módulos controlados por software, documentos adicionales según 5.5.1 y 5.5.2.2 (Tabla 11).
11	Plano o fotografía del instrumento que muestre el principio y la ubicación de las marcas de verificación y protección que deben aplicarse, lo cual es necesario incluir en el Certificado o Informe de Ensayo OIML.

La autoridad de aprobación debe mantener todos los documentos del instrumento de pesaje, con excepción del plano o fotografía (ítem 11), en absoluta confidencialidad, salvo en la medida en que se acuerde con el fabricante.

8.2.2 Evaluación del modelo

Los documentos presentados deben ser revisados para verificar la conformidad con los requisitos de esta NTC.

Verificaciones adecuadas deben realizarse para asegurarse de que las funciones se realizan correctamente de acuerdo con los documentos presentados. No es necesario provocar reacciones a fallas significativas.

Los instrumentos deben ser presentados, en base a lo especificado en el numeral 3.10 y con patrones de ensayo de acuerdo con el numeral 3.7.1, a los procedimientos de ensayo del Anexo A y del Anexo B si es aplicable. Para dispositivos periféricos, véase el numeral 3.10.3.

Puede ser posible realizar los ensayos en locales distintos a los de la autoridad.

La autoridad de aprobación puede, en casos especiales, exigir al solicitante que proporcione cargas de ensayo, equipo y personal necesarios para los ensayos.

Se recomienda a las autoridades de aprobación considerar la posibilidad de aceptar, con el consentimiento del solicitante, los resultados de ensayo obtenidos por otras autoridades nacionales, sin volver a realizar estos ensayos.

Éstas pueden, a su criterio y bajo su responsabilidad, aceptar los resultados de ensayo proporcionados por el solicitante para el modelo presentado, y reducir sus propios ensayos como corresponde.

8.3 VERIFICACIÓN INICIAL

La verificación inicial puede ser realizada por personal autorizado de acuerdo con las regulaciones nacionales.

La verificación inicial no debe realizarse a menos que se haya establecido la conformidad del instrumento con el modelo aprobado y/o los requisitos de esta NTC. Se debe ensayar el instrumento en el momento en que se instala y está listo para el uso, a menos que se pueda enviar fácilmente e instalar después de la verificación inicial.

La verificación inicial puede realizarse en el local del fabricante o en cualquier otro lugar:

- a) si el transporte al lugar de uso no requiere desmontar el instrumento;
- si la puesta en servicio del instrumento en su lugar de uso no requiere el montaje del instrumento u otro trabajo técnico de instalación que probablemente afecte el desempeño del mismo; y
- si se considera el valor de la gravedad en el lugar en el cual se pondrá en servicio el instrumento o si el desempeño del instrumento no es sensible a las variaciones de gravedad.

En todos los demás casos, los ensayos deben realizarse en el lugar donde se utilizará el instrumento.

Si el desempeño del instrumento es sensible a las variaciones de gravedad, los procedimientos de verificación pueden realizarse en dos etapas, donde la segunda etapa debe incluir todos los exámenes y ensayos, cuyo resultado depende de la gravedad, y la primera etapa, todos los demás exámenes y ensayos. La segunda etapa debe realizarse en el lugar donde se utilizará el instrumento.

En vez del lugar de uso, se puede definir una zona de gravedad o una zona de uso siempre que el instrumento cumpla con los respectivos requisitos nacionales o regionales con respecto a la gravedad.

8.3.1 Conformidad

Una declaración de conformidad con el modelo aprobado y/o los requisitos de esta NTC debe cubrir:

 el funcionamiento correcto de todos los dispositivos, por ejemplo, los de ajuste a cero, de tara y de cálculo;

^{*} Remitirse a OIML B 3 [3], B 10-1 y B 10-2 [23].

- los materiales de construcción y el diseño, en la medida en que tengan una importancia metrológica;
- evidencia de compatibilidad de los módulos si se ha elegido el enfoque modular según el numeral 3.10.2; y
- si es apropiado, una lista de los ensayos realizados.

8.3.2 Inspección visual

Antes de los ensayos, el instrumento debe ser inspeccionados visualmente en lo que respecta a:

- sus características metrológicas, es decir, clase de exactitud, Min, Max, e, d;
- la identificación del software si es aplicable;
- la identificación de los módulos si es aplicable; y
- las indicaciones obligatorias y la ubicación de las marcas de verificación y control.

Si el lugar y las condiciones de uso del instrumento son conocidos, se debería considerar si son apropiados.

8.3.3 Ensayos

Se deben realizar ensayos para verificar el cumplimiento de los siguientes requisitos:

- 3.5.1, 3.5.3.3 y 3.5.3.4: errores de indicación (remitirse a A.4.4 A.4.6, pero cinco valores de carga son normalmente suficientes, las cargas de ensayo seleccionadas deben incluir Min sólo si Min ≥ 100 mg);
- 4.5.2 y 4.6.3: exactitud de dispositivos de ajuste a cero y de tara (remitirse a A.4.2.3 y A.4.6.2);
- 3.6.1: repetibilidad (remitirse a A.4.10, 3er párrafo);
- 3.6.2: carga excéntrica (remitirse a A.4.7);
- 3.8: discriminación (remitirse a A.4.8); no aplicable para instrumentos con indicación digital;
- 4.18: inclinación en caso de instrumentos móviles (remitirse a A.5.1.3); y
- 6.1: sensibilidad de instrumentos con indicación no automática (remitirse a A.4.9).

Se pueden realizar otros ensayos en casos especiales, por ejemplo, construcción inusual, resultados dudosos, o según se indique en el respectivo Certificado OIML.

La autoridad de aprobación puede, en casos especiales, exigir al solicitante que proporcione cargas de ensayo, equipo y personal necesarios para los ensayos (remitirse a 3.7).

Para todos los ensayos, los límites de error que deben respetarse, deben ser los errores máximos permitidos en la verificación inicial. Si se debe enviar el instrumento a otro lugar después de la verificación inicial, la diferencia en la aceleración de la gravedad local entre los

lugares de ensayo y de uso debe ser considerada apropiadamente, por ejemplo, mediante una segunda etapa de verificación inicial después del ajuste o considerando el valor de la gravedad local del lugar de uso durante la verificación inicial.

8.3.4 Marcado y protección

De acuerdo con la legislación nacional, la verificación inicial puede ser indicada mediante marcas de verificación. Estas marcas pueden indicar el mes o año en que se llevó a cabo la verificación inicial, o el momento en que debe efectuarse la re-verificación. Asimismo, la legislación nacional puede exigir la protección de los componentes, cuyo desmontaje o desajuste podría alterar las características metrológicas del instrumento sin que estas alteraciones sean claramente visibles. Se deben cumplir las disposiciones de los numerales 4.1.2.4 y 7.2.

8.4 CONTROLES METROLÓGICOS POSTERIORES

Los controles metrológicos posteriores pueden ser realizados por personal autorizado de acuerdo con las regulaciones nacionales.

8.4.1 Verificación posterior

Durante las verificaciones posteriores, normalmente sólo se deben realizar los exámenes y ensayos descritos en 8.3.2 y 8.3.3, siendo los límites de error los de la verificación inicial. El estampado y la protección pueden efectuarse como se indica en 8.3.4, siendo la fecha la de la verificación posterior.

8.4.2 Inspección en servicio

Durante la inspección en servicio, normalmente sólo se deben realizar los exámenes y ensayos descritos en los numerales 8.3.2 y 8.3.3, siendo los límites de error el doble de los de la verificación inicial. El estampado y la protección pueden permanecer inalterables o ser renovados de acuerdo con el numeral 8.4.1.

ANEXO A

(Normativo)

PROCEDIMIENTOS DE ENSAYO PARA INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS

A.1 EXAMEN ADMINISTRATIVO (véase el numeral 8.2.1)

Revisar la documentación que se ha presentado, incluyendo las fotografías, planos, especificaciones técnicas relevantes de los componentes principales, etc. necesarios, a fin de determinar si es adecuada y correcta. Considerar el manual de operación o documentación equivalente del usuario.

NOTA El "manual de operación" puede ser un borrador.

A.2 COMPARACIÓN ENTRE LA CONSTRUCCIÓN Y LA DOCUMENTACIÓN (8.2.2)

Examinar los diferentes dispositivos del instrumento para asegurarse de su conformidad con la documentación. Considerar también 3.10.

A.3 EXAMEN INICIAL

A.3.1 Características metrológicas

Registrar las características metrológicas de acuerdo con el Formato de Informe de Ensayo (R 76-2).

A.3.2 Marcas descriptivas (véase el numeral 7.1)

Verificar las marcas descriptivas de acuerdo con la lista de verificación dada en el Formato de Informe de Ensayo.

A.3.3 Estampado y protección (véanse los numerales 4.1.2.4 y 7.2)

Verificar la ubicación para estampado y protección de acuerdo con la lista de verificación dada en el Formato de Informe de Ensayo.

A.4 ENSAYOS DE DESEMPEÑO

A.4.1 Condiciones generales

A.4.1.1 Condiciones normales de ensayo (véase el numeral 3.5.3.1)

Los errores deben ser determinados en condiciones normales de ensayo. Cuando se evalúa el efecto de un factor, todos los demás factores deben mantenerse relativamente constantes, con un valor próximo a la normal.

En el caso de instrumentos de clase I, deben aplicarse todas las correcciones necesarias con respecto a factores de influencia debido a la carga de ensayo, por ejemplo, corrección por empuje del aire.

A.4.1.2 Temperatura

Se deben realizar todos los ensayos a una temperatura ambiente estable, generalmente la temperatura ambiente normal salvo que se especifique lo contrario.

La temperatura es considerada estable cuando la diferencia entre las temperaturas extremas registradas durante el ensayo, no sobrepasa 1/5 del rango de temperatura del instrumento considerado, sin que sea superior a 5 °C (2 °C en el caso de un ensayo de fluencia), y la velocidad de variación no sobrepase 5 °C por hora.

A.4.1.3 Suministro de energía

Los instrumentos alimentados eléctricamente deben estar normalmente conectados a la red eléctrica o un dispositivo de suministro de energía y encendidos durante todos los ensayos.

A.4.1.4 Posición de referencia antes de los ensayos

En el caso de un instrumento susceptible de inclinarse, este deberá ser nivelado a su posición de referencia.

A.4.1.5 Ajuste a cero automático y bloqueo de cero

Durante los ensayos, se pueden eliminar o suprimir los efectos del dispositivo automático de ajuste a cero o el dispositivo de bloqueo de cero comenzando el ensayo con una carga igual a, por ejemplo, 10 e.

En ciertos ensayos en los que el ajuste a cero automático o el bloqueo de cero debe estar en funcionamiento (o no debe estar en funcionamiento), se hace una mención específica de este hecho en la descripción del ensayo.

A.4.1.6 Indicación con una división de escala inferior a e

Si un instrumento con indicación digital tiene un dispositivo indicador de la indicación con una división de escala inferior (no superior a 1/5 e), se puede utilizar este dispositivo para determinar el error. Si se utiliza este dispositivo, se debe mencionar en el Informe de Ensayo,

A.4.1.7 Uso de un simulador para ensayar módulos (véanse los numerales 3.10.2 y 3.7.1)

Si se utiliza un simulador para ensayar un módulo, su repetibilidad y estabilidad deben permitirle determinar el desempeño del módulo con al menos la misma exactitud que cuando se ensaya un instrumento completo con pesas, siendo los emp a considerar los aplicables al módulo. Si se utiliza un simulador, se debe mencionar esto en el Formato de Informe de Ensayo y se debe hacer referencia a su trazabilidad.

A.4.1.8 Ajuste (véase el numeral 4.1.2.5)

Se debe iniciar un dispositivo de ajuste semiautomático de la pendiente sólo una vez antes del primer ensayo.

Un instrumento de clase I debe, si es aplicable, ser ajustado antes de cada ensayo según las instrucciones del manual de operación.

NOTA El ensayo de temperatura A.5.3.1 es considerado como un solo ensayo.

A.4.1.9 Recuperación

Después de cada ensayo, se debería dejar que el instrumento se recupere lo suficiente antes del siguiente ensayo.

A.4.1.10 Precarga

Antes de cada ensayo de pesaje, el instrumento debe ser pre-cargado una vez a Max o a Lim, si este valor está definido, excepto para los ensayos A.5.2 y A.5.3.2. Cuando se ensayan por separado celdas de carga, la precarga debe seguir OIML R 60.

A.4.1.11 Instrumentos de rango múltiple

En principio, se debería ensayar cada rango como un instrumento separado. Sin embargo, en el caso de instrumentos con cambio automático, es posible realizar ensayos combinados.

A.4.2 Verificación de cero

A.4.2.1 Rango de ajuste a cero (véase el numeral 4.5.1)

A.4.2.1.1 Ajuste a cero inicial

Con el receptor de carga vacío, ajustar el instrumento a cero. Colocar una carga de ensayo en el receptor de carga y apagar el instrumento y luego volver a encenderlo. Continuar este proceso hasta que, después de colocar una carga en el receptor de carga y apagar y encender el instrumento, no vuelva a cero. La carga máxima para la cual es posible la puesta a cero, es la parte positiva del rango de ajuste a cero inicial.

Retirar la carga del receptor de carga y poner el instrumento a cero. Luego retirar el receptor de carga (plataforma) del instrumento. Si, en este momento, se puede ajustar el instrumento a cero apagando y encendiendo sucesivamente el instrumento, se utiliza la masa del receptor de carga como la parte negativa del rango de ajuste a cero inicial.

Si no se puede poner el instrumento a cero cuando se quita el receptor de carga, añadir pesas en una parte sensible de la balanza (por ejemplo, en las partes sobre las cuales el receptor de carga reposa) hasta que el instrumento indique nuevamente cero.

Luego retirar las pesas y, después de retirar cada pesa, apagar y volver a encender el instrumento. La carga máxima que se puede retirar mientras todavía es posible poner el instrumento a cero apagándolo y encendiéndolo, es la parte negativa del rango de ajuste a cero inicial.

El ajuste a cero inicial es la suma de las partes positiva y negativa. Si no se puede quitar fácilmente el receptor de carga, sólo se debe considerar la parte positiva del rango de ajuste a cero inicial.

A.4.2.1.2 Ajuste a cero no automático y semiautomático

Este ensayo se realiza de la misma manera que la descrita en A.4.2.1.1, excepto que se utiliza el botón de ajuste a cero en vez de apagar y encender el instrumento.

A.4.2.1.3 Ajuste a cero automático

Retirar el receptor de carga como se describe en A.4.2.1.1 y colocar pesas en el instrumento hasta que indique cero.

Retirar las pesas poco a poco y después de retirar cada pesa, dejar que el dispositivo de ajuste a cero automático funcione a fin de ver si el instrumento se pone a cero automáticamente. Repetir este procedimiento hasta que el instrumento no se ponga a cero automáticamente.

La carga máxima que se puede retirar de tal manera que el instrumento todavía se pueda poner a cero, constituye el rango de ajuste a cero.

Si no se puede retirar fácilmente el receptor de carga, un enfoque práctico puede ser añadir pesas al instrumento y utilizar otro dispositivo de ajuste a cero, si está disponible, para poner el instrumento a cero. Luego retirar las pesas y verificar si el ajuste a cero automático continúa poniendo el instrumento a cero. La carga máxima que se puede retirar de tal manera que el instrumento todavía se pueda poner a cero, constituye el rango de ajuste a cero.

A.4.2.2 Dispositivo indicador de cero (véase el numeral 4.5.5)

Para los instrumentos equipados con un dispositivo indicador de cero e indicación digital, ajustar el instrumento a aproximadamente una división de escala por debajo de cero; luego, añadiendo pesas equivalentes a, por ejemplo, 1/10 de la división de escala, determinar el rango en el cual el dispositivo indicador de cero indica la desviación con respecto a cero.

A.4.2.3 Exactitud de ajuste a cero (véase el numeral 4.5.2)

El ensayo puede ser combinado con A.4.4.1.

A.4.2.3.1 Ajuste a cero no automático y semiautomático

Se ensaya la exactitud del dispositivo de ajuste a cero cargando primero el instrumento hasta una indicación lo más cercana posible al punto de cambio, y luego accionando el dispositivo de ajuste a cero y determinando la carga adicional para la cual la indicación cambia de cero a un división de escala por encima de cero. El error en cero se calcula de acuerdo con la descripción dada en A.4.4.3.

A.4.2.3.2 Ajuste a cero automático o bloqueo de cero

Se saca la indicación del rango automático (por ejemplo, mediante un carga igual a 10 e). Luego, se determina la carga adicional a la cual la indicación cambia de una división de escala a la división de escala inmediatamente superior y se calcula el error de acuerdo con la descripción dada en A.4.4.3. Se asume que el error sin carga sería igual al error con la carga considerada.

A.4.3 Ajuste a cero antes de la carga

Para instrumentos con indicación digital, el ajuste a cero o la determinación del punto cero se realiza de la siguiente manera:

a) Para los instrumentos con ajuste a cero no automático, se colocan pesas equivalentes a una semi-división de escala en el receptor de carga y se ajusta el instrumento hasta que la indicación oscile entre cero y una división de escala. Luego se retiran pesas equivalentes a una semi-división de escala del receptor de carga para obtener la posición de referencia de cero.

b) Para los instrumentos con ajuste a cero semiautomático o automático o bloqueo de cero, se determina la desviación de cero como se describe en A.4.2.3.

A.4.4 Determinación del desempeño de pesaje

A.4.4.1 Ensayo de pesaje

Aplicar cargas de ensayo a partir de cero hasta Max inclusive e igualmente retirar las cargas de ensayo hasta cero. Para determinar el error intrínseco inicial, se debe seleccionar por lo menos 10 cargas de ensayo diferentes y, para los otros ensayos de pesaje, se debe seleccionar por lo menos 5. Las cargas de ensayo seleccionadas deben incluir Max y Min (Min sólo si Min 100 mg) y valores correspondientes a los puntos o cercanos a los puntos para los cuales el error máximo permitido (emp) cambia.

Durante el examen de modelo, se debería observar que, al cargar o descargar pesas, se debe incrementar o disminuir progresivamente la carga. Se recomienda aplicar el mismo procedimiento en la medida de lo posible durante la verificación inicial (véase el numeral 8.3) y los controles metrológicos posteriores (véase el numeral 8.4).

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo puede estar en funcionamiento durante los ensayos, excepto el ensayo de temperatura. Luego, se determina el error en el punto cero de acuerdo con A.4.2.3.2.

A.4.4.2 Ensayo de pesaje suplementario (véase el numeral 4.5.1)

Para los instrumentos con un dispositivo de ajuste a cero inicial con un rango superior a 20% de Max, se debe realizar un ensayo de pesaje suplementario utilizando el límite superior del rango como punto cero.

A.4.4.3 Evaluación de errores (A.4.1.6)

Para los instrumentos con indicación digital y sin un dispositivo indicador de la indicación con una división de escala inferior (no mayor que 1/5 e), se pueden utilizar los puntos de cambio para determinar la indicación del instrumento, antes del redondeo, de la siguiente manera.

Con cierta carga, L, se observa el valor indicado, I. Se añade sucesivamente pesas adicionales de, por ejemplo, 1/10 e hasta que la indicación del instrumento se incremente de manera inequívoca en una división de escala (I + e).

La carga adicional ΔL añadida en el receptor de carga da la indicación P, antes del redondeo utilizando la siguiente fórmula.

$$P = I + 1/2 e - \Delta L$$

El error antes del redondeo es:

$$E = P - L = I + \frac{1}{2}e - \Delta L - L$$

El error corregido antes del redondeo es:

$$E_c = E - E_0 \le mpe$$

en donde

E₀ es el error calculado con cero o con una carga cercana a cero (por ejemplo, 10 e).

EJEMPLO Un instrumento con una división de escala de verificación, e, de 5 g es cargado con 1 kg y en ese momento indica 1 000 g. Después de añadir sucesivamente pesas de 0,5 g, la indicación cambia de 1 000 g a 1 005 g para una carga adicional de 1,5 g. Introduciendo estos datos en la fórmula antes mencionada, se obtiene:

$$P = (1\ 000 + 2.5 - 1.5) g = 1\ 001 g$$

De este modo, la indicación verdadera antes del redondeo es 1 001 g y el error es

$$E = (1\ 001 - 1\ 000)\ g = + 1\ g$$

Si el punto de cambio en cero calculado arriba es $E_0 = +0.5$ g, el error corregido es:

$$E_C = +1 - (+0.5) = +0.5 g$$

En los ensayos A.4.2.3 y A.4.11.1, la determinación de los errores debe realizarse con una exactitud suficiente en consideración de la tolerancia en cuestión.

NOTA La descripción y las fórmulas antes mencionadas también son válidas para los instrumentos de intervalo múltiple. Si la carga, *L*, y la indicación, *I*, se encuentran en rangos parciales de pesaje diferentes:

- las pesas adicionales ΔL deben estar en progresión de 1/10 de ej;,
- en la ecuación "E = P L = ..." arriba indicada, el término "½ e" debe ser ½ e; o ½ e; + 1 según el rango parcial de pesaje en el cual la indicación (I + e) aparece.

A.4.4.4 Ensayo de módulos

Al ensayar módulos por separado, debe ser posible determinar los errores con una incertidumbre lo suficientemente pequeña considerando las fracciones seleccionadas del emp, ya sea utilizando un dispositivo indicador de la indicación con una división de escala inferior a (1/5) $p_i \times e$ o evaluando el punto de cambio de la indicación con una incertidumbre mejor que (1/5) $p_i \times e$.

A.4.4.5 Ensayo de pesaje usando material de sustitución (véase el numeral 3.7.3)

El ensayo debe realizarse sólo durante la verificación y en el lugar de uso teniendo en cuenta A.4.4.1.

Determinar el número permitido de sustituciones de acuerdo con el numeral 3.7.3.

Verificar el error de repetibilidad con una carga de aproximadamente el valor con el cual se realiza la sustitución, colocándola tres veces en el receptor de carga. Los resultados del ensayo de repetibilidad (A.4.10) pueden utilizarse si las cargas de ensayo tienen una masa comparable.

Aplicar las cargas de ensayo desde cero hasta la cantidad máxima de pesas patrón inclusive.

Determinar el error (A.4.4.3) y luego retirar las pesas hasta obtener la indicación sin carga o, en el caso de un instrumento con un dispositivo de bloqueo de cero, de una carga correspondiente a, por ejemplo, 10 e.

Sustituir las masas anteriores por el material de sustitución hasta obtener el mismo punto de cambio que el utilizado para la determinación del error. Repetir el procedimiento antes mencionado hasta obtener Max del instrumento.

Descargar hasta cero en sentido inverso, es decir, retirar las pesas y determinar el punto de cambio de indicación. Volver a colocar las pesas y retirar el material de sustitución hasta obtener el mismo punto de cambio de indicación. Repetir este procedimiento hasta obtener la indicación sin carga.

Pueden aplicarse otros procedimientos equivalentes.

A.4.5 Instrumentos con más de un dispositivos de indicación (véase el numeral 3.6.3)

Si el instrumento tiene más de un dispositivos de indicación, las indicaciones de los diferentes dispositivos deben ser comparadas durante los ensayos descritos en A.4.4.

A.4.6 Tara

A.4.6.1 Ensayo de pesaje (véase el numeral 3.5.3.3)

Se deben realizar ensayos de pesaje (carga y descarga de acuerdo con A.4.4.1) con diferentes valores de tara. Se debe seleccionar al menos 5 valores de carga. Estos valores deben incluir valores cercanos a Min (Min sólo si Min \geq 100 mg), valores con los cuales o cerca de los cuales el error máximo permitido (emp) cambia, y un valor cercano a la máxima carga neta posible.

Los ensayos de pesaje deberían realizarse en instrumentos con:

- tara sustractiva: con un valor de tara entre 1/3 y 2/3 de la tara máxima;
- tara aditiva: con dos valores de tara de aproximadamente 1/3 y 3/3 del efecto máximo de tara.

Para 8.3 y 8.4, el ensayo práctico puede ser reemplazado por otros procedimientos apropiados, por ejemplo, por consideraciones numéricas y gráficas; simulación de una operación de equilibrio de tara por desplazamiento (cambio) de los límites de error (emp) a cualquier punto de la curva de error (curva de resultados de ensayo de pesaje; o verificación de si la curva de error y la histéresis se encuentran dentro del emp en cualquier punto.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo puede estar en funcionamiento durante el ensayo; en este caso, se debe determinar el error en el punto cero de acuerdo con A.4.2.3.2.

A.4.6.2 Exactitud del ajuste de tara (véase el numeral 4.6.3)

El ensayo puede ser combinado con A.4.6.1.

Se debe establecer la exactitud del dispositivo de tara de manera similar al ensayo descrito en A.4.2.3, poniendo la indicación a cero con el dispositivo de tara.

A.4.6.3 Dispositivo de pesaje de tara (véanse los numerales 3.5.3.4 y 3.6.3)

Si el instrumento tiene un dispositivo de pesaje de la tara, se debe comparar los resultados obtenidos para la misma carga (tara), por el dispositivo de pesaje de la tara y por el dispositivo indicador.

A.4.7 Ensayo de excentricidad (véase el numeral 3.6.2)

Se deberían utilizar de preferencia pesas grandes antes que varias pesas pequeñas. Se deberían colocar las pesas más pequeñas encima de las pesas más grandes pero se debería evitar un apilamiento innecesario sobre el segmento a ensayar. La carga debe aplicarse de manera centrada en relación con el segmento considerado si se utiliza una sola pesa, pero debe aplicarse uniformemente sobre todo el segmento considerado si se utilizan varias pesas pequeñas. Es suficiente aplicar la carga sólo en los segmentos excéntricos, no en el centro del receptor de carga.

NOTA Si un instrumento está diseñado de tal manera que las cargas puedan aplicarse de diferentes maneras, puede ser apropiado aplicar más de uno de los ensayos descritos en A.4.7.1-A.4.7.5.

Se debe marcar la ubicación de la carga en un croquis en el Informe de Ensayo.

Se determina el error en cada medición de acuerdo con A.4.4.3. El error de cero *E*₀ utilizado para la corrección es el valor determinado antes de cada medición. Normalmente, es suficiente determinar el error de cero sólo al inicio de la medición, pero en instrumentos especiales (clase de exactitud I, alta capacidad, etc.), se recomienda determinar el error de cero antes de cada carga excéntrica. Sin embargo, si se sobrepasa el emp, es necesario el ensayo con error de cero antes de cada carga.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo no debe estar en funcionamiento durante los ensayos siguientes.

NOTA Si las condiciones de funcionamiento son tales que no puede producirse la excentricidad, no es necesario realizar los ensayos de excentricidad.

A.4.7.1 Instrumentos con un receptor de carga que no tiene más de cuatro puntos de apoyo

Los cuatro segmentos, aproximadamente iguales a un cuarto de la superficie del receptor de carga (según los dibujos de la Figura 9 o dibujos similares) deben ser cargados por turnos.

Figura 9

EJEMPLOS Un receptor de carga que transmite la fuerza de la carga:

- directamente a una celda de carga de un solo punto, tiene un punto de apoyo;
- directamente a tres celdas de carga, tiene tres puntos de apoyo; y
- con cuatro elementos de conexión mecánicos a un mecanismo de palanca, tiene cuatro puntos de apoyo

A.4.7.2 Instrumentos con un receptor de carga que tiene más de cuatro puntos de apoyo

La carga debe aplicarse encima de cada punto de apoyo en una superficie del mismo orden de magnitud que la fracción 1/n de la superficie del receptor de carga, donde n es el número de puntos de apoyo.

Cuando dos puntos de apoyo se encuentran demasiado cercanos el uno del otro para que la carga de ensayo antes mencionada pueda ser distribuida como se indica arriba, se debe duplicar la carga o distribuirla en el doble de la superficie en ambos lados del eje que une los dos puntos de apoyo.

A.4.7.3 Instrumentos con receptores de carga especiales (tanque, tolva, etc.)

La carga debe aplicarse a cada punto de apoyo.

A.4.7.4 Instrumentos utilizados para pesar cargas rodantes (véase el numeral 3.6.2.4)

Una carga debe aplicarse en diferentes puntos del receptor de carga. Estas posiciones deben ser el comienzo, el centro y el final del receptor de carga en el sentido normal de conducción. Luego, las posiciones se deben repetir en el sentido inverso si la aplicación en ambos sentidos es posible. Antes de cambiar el sentido, se tiene que volver a determinar cero. Si el receptor de carga está compuesto de varias secciones, el ensayo debe aplicarse a cada sección.

A.4.7.5 Ensayos de excentricidad para instrumentos móviles

Los numerales A.4.7 y A.4.7.1 - A.4.7.4 deberían aplicarse en la medida en que estos puntos se apliquen. Si no, las posiciones de las cargas de ensayo deben ser definidas de acuerdo con las condiciones operativas de uso.

A.4.8 Ensayo de discriminación (véase el numeral 3.8)

Los siguientes ensayos deben realizarse con tres cargas diferentes, por ejemplo, Min, ½ Max y Max.

A.4.8.1 Indicación no automática e indicación analógica

Se debe colocar suavemente una carga adicional, pero no inferior a 1 mg, en el receptor de carga o retirarla del mismo mientras el instrumento está en equilibrio. Para una cierta carga adicional, el mecanismo de equilibrio debe tomar una posición de equilibrio diferente, como se especifica.

A.4.8.2 Indicación digital

Este ensayo sólo se aplica al examen de modelo y a instrumentos con $d \ge 5$ mg.

Se debe colocar una carga más pesas adicionales (por ejemplo, 10 veces $1/10 \ d$) en el receptor de carga. Luego, se debe retirar sucesivamente las pesas adicionales hasta que la indicación, I, disminuya de manera inequívoca en una división de escala real, I-d. Se debe volver a colocar una de las pesas adicionales y luego se debe colocar suavemente una carga igual a 1,4 d en el receptor de carga y debe dar un resultado incrementado en una división de escala real por encima de la indicación inicial, I+d. Véase ejemplo en la Figura 10.

La indicación al principio es I = 200 g.

Retirar las pesas adicionales hasta que la indicación cambie a I - d = 190 g. Añadir 1/10 d = 1 g y después 1,4 d = 14 g.

Entonces, la indicación debe ser I + d = 210 g.

Figura 10. Instrumento con d = 10 g

A.4.9 Sensibilidad de instrumentos con indicación no automática (véase el numeral 6.1)

Durante este ensayo, el instrumento debe oscilar normalmente y se debe colocar una carga adicional igual al valor del emp para la carga aplicada, pero no inferior a 1 mg, en el instrumento mientras el receptor de carga sigue oscilando. Para los instrumentos amortiguados, la carga adicional debe aplicarse con un ligero impacto. La distancia lineal entre los puntos intermedios de la lectura y la lectura sin la carga adicional debe ser considerada como el desplazamiento permanente de la indicación. El ensayo debe realizarse con un mínimo de dos cargas diferentes (por ejemplo, cero y Max).

A.4.10 Ensayo de repetibilidad (véase el numeral 3.6.1)

Para la aprobación de modelo, deben realizarse dos series de pesajes: una con una carga de aproximadamente 50 % y otra con una carga cercana a 100 % de Max. Para los instrumentos con Max inferior a 1 000 kg, cada serie debe consistir de 10 pesajes. En otros casos, cada serie debe consistir de al menos tres pesajes. Las lecturas deben realizarse cuando el instrumento está cargado y cuando el instrumento descargado se ha detenido entre los pesajes. En caso de una desviación de cero entre los pesajes, se debe poner el instrumento a cero sin determinar el error en cero. No se tiene que determinar la posición verdadera de cero entre los pesajes.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo debe estar en funcionamiento durante el ensayo.

Para la verificación, una serie de pesajes con aproximadamente 0,8 Max es suficiente. Tres pesajes en las clases III y IIII o seis pesajes en las clases I y II son necesarios.

A.4.11 Variación de la indicación con el tiempo (solamente para los instrumentos de las clases II, III o IIII)

A.4.11.1 Ensayo de fluencia (creep) (véase el numeral 3.9.4.1)

Cargar el instrumento con una carga cercana a Max. Realizar una lectura tan pronto como la indicación se haya estabilizado y luego registrar la indicación mientras la carga permanece en el instrumento durante un período de cuatro horas. Durante este ensayo, la temperatura no debería variar en más de 2 °C.

El ensayo puede concluirse después de 30 minutos si la indicación difiere en menos de 0,5 e durante los 30 primeros minutos y si la diferencia de las indicaciones entre 15 y 30 minutos es inferior a 0.2 e.

A.4.11.2 Ensayo de retorno a cero (véase el numeral 3.9.4.2)

Se debe determinar la desviación de la indicación cero antes y después de un período de carga de media hora de duración con una carga cercana a Max. La lectura debe realizarse tan pronto como la indicación se haya estabilizado.

Para los instrumentos de rango múltiple, se debe continuar leyendo la indicación cero durante los cinco minutos posteriores a la estabilización de la indicación.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo no debe estar en funcionamiento.

A.4.12 Ensayo de estabilidad del equilibrio (véase el numeral 4.4.2)

Revisar la documentación del fabricante para determinar si se describen las siguientes funciones de equilibrio estable de manera detallada y suficiente:

- el principio básico, la función y los criterios de equilibrio estable:
- todos los parámetros ajustables y no ajustables de la función de equilibrio estable (intervalo de tiempo, número de ciclos de medición, etc.);
- protección de estos parámetros; y
- la definición del ajuste más crítico del equilibrio estable (caso más desfavorable). Esto debe cubrir todas las variantes de un modelo.

Ensayar el equilibrio estable con el ajuste más crítico (caso más desfavorable) y verificar que la impresión (o almacenamiento de datos) no sea posible cuando todavía no se ha alcanzado el equilibro estable.

Verificar que, bajo una perturbación continua del equilibrio, no puedan realizarse funciones que requieren el equilibrio estable, por ejemplo, impresión, almacenamiento de datos, cero u operaciones de tara.

Cargar el instrumento a 50 % de Max o hasta una carga incluida en el rango de funcionamiento de la función en cuestión. Perturbar manualmente el equilibrio mediante una sola acción y accionar el comando de impresión de datos, almacenamiento de datos u otra función, tan pronto como sea posible. En el caso de impresión o almacenamiento de datos, leer el valor indicado cinco segundos después de la impresión. Se considera que se ha alcanzado el

equilibrio estable cuando no se indican más de dos valores adyacentes, uno de los cuales es el valor impreso. Para instrumentos con divisiones de escala diferenciadas, este párrafo se aplica a e en vez de d.

En el caso de ajuste a cero o de equilibrio de tara, verificar la exactitud de acuerdo con A.4.2.3/A.4.6.2. Realizar el ensayo cinco veces.

En caso de instrumentos montados en un vehículo, incorporados en un vehículo o móviles, los ensayos tienen que realizarse con una carga de ensayo operativa conocida, estando el instrumento en movimiento para asegurarse de que los criterios de estabilidad impidan cualquier operación de pesaje o que se cumplan los criterios de equilibrio estable de 4.4.2. En caso que el instrumento pueda utilizarse para pesar productos líquidos en un vehículo, los ensayos deberían realizarse en condiciones en las que se detenga el vehículo justo antes de los ensayos de manera que los criterios de estabilidad impidan cualquier operación de pesaje o que se cumplan los criterios de equilibrio estable de 4.4.2.

A.4.13 Ensayos adicionales para puente-básculas portátiles (véase el numeral 4.19)

NOTA Los instrumentos portátiles tienen construcciones muy diferentes para un gran número de aplicaciones muy diferentes, de manera que principalmente no es posible definir procedimientos de ensayo uniformes. Requisitos, condiciones y especificaciones diferentes podrían ser necesarios dependiendo de la construcción y aplicación y, por supuesto, de los requisitos metrológicos (por ejemplo, clase de exactitud). Éstos deberían ser mencionados y descritos en el respectivo Informe de Ensayo. Por lo tanto, A.4.13 sólo proporciona algunos medios generales para ensayar apropiadamente un instrumento portátil.

Se debe realizar lo siguiente durante la aprobación de modelo:

- En un lugar acordado con el fabricante:
 - inspeccionar la uniformidad del área de referencia (todos los puntos de apoyo del puente deben estar al mismo nivel) y luego realizar un ensayo de exactitud y un ensayo de excentricidad; y
 - obtener varias áreas de referencia con algunas fallas diferentes en la uniformidad (los valores de estas fallas deben ser iguales a los límites establecidos por el fabricante) y luego realizar un ensayo de excentricidad para cada configuración.
- En el lugar donde se utiliza el instrumento:
 - inspeccionar la conformidad con los requisitos para la superficie de montaje; e
 - inspeccionar la instalación y realizar los ensayos para establecer la conformidad con los requisitos metrológicos.

A.5 FACTORES DE INFLUENCIA

A.5.1 Inclinación (sólo instrumentos de las clases II, III y IIII) (véase el numeral 3.9.1.1)

Se debe inclinar el instrumento longitudinalmente hacia adelante y hacia atrás y de un lado al otro, transversalmente.

En la práctica, los ensayos (sin carga y con carga) descritos en A.5.1.1.1 y A.5.1.1.2 pueden ser combinados como se indica a continuación.

Después del ajuste a cero en la posición de referencia, se debe determinar la indicación (antes del redondeo) sin carga y con dos cargas de ensayo. Luego, se descarga e inclina el instrumento (sin un nuevo ajuste a cero), después de lo cual se deben determinar las indicaciones sin carga y con las dos cargas de ensayo. Este procedimiento debe repetirse para cada dirección de inclinación.

Para determinar la influencia de la inclinación en el instrumento cargado, las indicaciones obtenidas en cada inclinación deben ser corregidas por la desviación de cero que presentó el instrumento antes de su carga.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo no debe estar en funcionamiento.

A.5.1.1 Inclinación de los instrumentos con un indicador de nivel o sensor de inclinación automático

A.5.1.1.1 Inclinación sin carga

Se debe poner el instrumento a cero en su posición de referencia (no inclinado). Luego, se debe inclinar el instrumento longitudinalmente hasta el valor límite de inclinación. Se debe observar la indicación cero. El ensayo debe repetirse con una inclinación transversal.

A.5.1.1.2 Inclinación con carga

Se debe poner el instrumento a cero en su posición de referencia y se deben realizar dos pesajes con una carga cercana a la carga más baja donde cambie el error máximo permitido, y con una carga cercana a Max. Luego, se descarga el instrumento y se inclina longitudinalmente y se ajusta a cero. La inclinación debe ser igual al valor límite de inclinación. Se deben realizar los ensayos de pesaje como se describió anteriormente. El ensayo debe repetirse con una inclinación transversal.

A.5.1.2 Otros instrumentos (véase el numeral 3.9.1.1 c)

Para los instrumentos susceptibles de inclinarse y que no están provistos de un indicador de nivel ni de un sensor de inclinación automático, se deben realizar los ensayos de A.5.1.1 con una inclinación de 50/1000 o, en caso de un instrumento con sensor de inclinación automático, con una inclinación igual al valor límite de inclinación definido por el fabricante.

A.5.1.3 Ensayo de inclinación para los instrumentos móviles utilizados afuera en lugares abiertos (véanse los numerales 3.9.1.1d y 4.18.1)

El solicitante debe proporcionar receptores de carga apropiados para aplicar las cargas de ensayo. El ensayo de inclinación debe realizarse con el valor límite de inclinación.

Se debe inclinar el instrumento longitudinalmente hacia adelante y hacia atrás y de un lado al otro, transversalmente.

Los ensayos de funcionamiento deben realizarse para asegurarse de que, si es aplicable, los sensores de inclinación o interruptores de inclinación funcionan de manera apropiada, especialmente al generar la señal de que se ha alcanzado o sobrepasado la inclinación máxima permitida (por ejemplo, desconexión de la pantalla, señal de error, lámpara) e impedir la transmisión e impresión de los resultados de pesaje.

El ensayo debe realizarse cerca del punto de desconexión (en el caso de un sensor de inclinación automático) o cerca de la inclinación donde el receptor de carga entra en contacto con la estructura circundante (en el caso de una suspensión tipo cardan). Esto constituye el valor límite de inclinación.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo no debe estar en funcionamiento. Se debe ensayar el instrumento de acuerdo con A.5.1 y A.5.1.1 o A.5.1.2.

A.5.2 Ensayo de tiempo de calentamiento (véase el numeral 5.3.5)

Los instrumentos que utilizan alimentación eléctrica, deben ser desconectados de la alimentación durante un período de al menos 8 h antes del ensayo. Luego, se debe conectar y encender el instrumento y tan pronto como la indicación se haya estabilizado, se debe poner el instrumento a cero y determinar el error en cero. El cálculo del error debe realizarse de acuerdo con A.4.4.3. Se debe cargar el instrumento con una carga cercana a Max. Estas observaciones deben repetirse después de 5, 15 y 30 min. Cada medición individual realizada después de 5, 15 y 30 min debe ser corregida por el error de cero en ese momento.

Para los instrumentos de clase I, deben cumplirse las disposiciones del manual de operación en lo que respecta al tiempo de calentamiento después de la conexión a la red eléctrica.

A.5.3 Ensayos de temperatura

NOTA Véase en la Figura 11 un enfoque práctico de la realización de los ensayos de temperatura.

A.5.3.1 Temperaturas estáticas (véanse los numerales 3.9.2.1 y 3.9.2.2)

El ensayo consiste en exponer el equipo sometido a ensayo (EUT) a temperaturas constantes (véase A.4.1.2) dentro del rango mencionado en el numeral 3.9.2, en condiciones de aire libre, durante un período de 2 horas después de que el EUT ha alcanzado la estabilidad de temperatura.

Los ensayos de pesaje (en carga y en descarga) deben realizarse de acuerdo con A.4.4.1:

- a una temperatura de referencia (normalmente 20 °C pero, para los instrumentos de clase I, el valor medio de los límites de temperatura especificados);
- a la temperatura elevada especificada;
- a la temperatura baja especificada;
- a una temperatura de 5 °C si la temperatura baja especificada es ≤ 0 °C; y
- a la temperatura de referencia.

Las variaciones de temperatura no deben sobrepasar 1 °C/min durante el calentamiento y el enfriamiento. Para los instrumentos de clase I, se deben tomar en cuenta las variaciones de la presión atmosférica.

Para ensayos de pesaje a la temperatura elevada especificada, la humedad relativa no debe sobrepasar 20 g/m³.

NOTA Una humedad absoluta de 20 g/m³ corresponde a una humedad relativa de 39 % a 40 °C, de 50 % a 35 °C y de 66 % a 30 °C. Estos valores son válidos para una presión del aire de 1 013.25 hPa [4].

A.5.3.2 Efecto de la temperatura en la indicación sin carga (véase el numeral 3.9.2.3)

Se debe poner el instrumento a cero y luego se lo debe llevar a la más alta y la más baja temperatura prescrita así como a 5°C si es aplicable. Después de la estabilización, se debe determinar el error de la indicación cero. Se debe calcular la variación de indicación en cero para 1 °C (instrumentos de clase I) o para 5 °C (otros instrumentos). Se deben calcular las variaciones de estos errores para 1 °C (instrumentos de clase I) o para 5 °C (otros instrumentos) para cualquier conjunto de dos temperaturas consecutivas de este ensayo.

Este ensayo puede realizarse junto con el ensayo de temperatura (A.5.3.1). Luego, se debe determinar además los errores en cero inmediatamente antes de pasar a la temperatura siguiente y al cabo de un período de 2 horas después de que el instrumento ha alcanzado la estabilidad a esta temperatura.

NOTA No se permite una precarga antes de estas mediciones.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo no debe estar en funcionamiento.

A.5.4 Variaciones de tensión (véase el numeral 3.9.3)

Estabilizar el EUT en condiciones ambientales estables.

El ensayo consiste en someter el EUT a variaciones de tensión de acuerdo con A.5.4.1, A.5.4.2, A.5.4.3 o A.5.4.4.

El ensayo debe realizarse con cargas de ensayo de 10 e y una carga comprendida entre ½ Max y Max.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo puede estar en funcionamiento durante el ensayo; en este caso, se debe determinar el error en el punto cero de acuerdo con A.4.2.3.2.

En lo sucesivo, U_{nom} designa el valor nominal marcado en el instrumento. En caso que se especifique un rango, U_{min} se relaciona con el valor más bajo y U_{max} con el valor más alto del rango.

Referencia: [4], [17]

A.5.4.1 Variaciones de tensión de la red de AC

Severidad del ensayo: Variaciones de tensión: límite inferior 0,85 *U*nom o 0,85 *U*min

límite superior 1,10 *U*nom o 1,10 *U*max

Variaciones máximas permitidas: Todas las funciones deben operar según lo

previsto.

Todas las indicaciones deben encontrarse dentro de los errores máximos permitidos.

NOTA En el caso de alimentación trifásica, las variaciones de tensión deben aplicarse a cada fase sucesivamente.

A.5.4.2 Variaciones de un dispositivo de alimentación eléctrica externo o enchufable (AC o DC), incluyendo alimentación eléctrica por batería recargable si es posible la (re)carga de baterías durante la operación del instrumento

Severidad del ensayo: Variaciones de tensión: límite inferior de la mínima tensión de

funcionamiento (véase el numeral 3.9.3)

límite superior: 1,20 *U*nom o 1,20 *U*max

Variaciones máximas permitidas: Todas las funciones deben operar según lo previsto o

la indicación debe apagarse.

Todas las indicaciones deben encontrarse dentro de

los errores máximos permitidos.

A.5.4.3 Variaciones de la alimentación eléctrica por batería no recargable, incluyendo alimentación eléctrica por batería recargable si no es posible la (re)carga de baterías durante la operación del instrumento

Severidad del ensayo: Variaciones de tensión: límite inferior de la mínima tensión de

funcionamiento (véase 3.9.3)

límite superior: Unom o Umax

Variaciones máximas permitidas: Todas las funciones deben operar según lo previsto o

la indicación debe apagarse.

Todas las indicaciones deben encontrarse dentro de

los errores máximos permitidos.

A.5.4.4 Variaciones de tensión de una batería de vehículo de carretera de 12 V o 24 V

Para especificaciones de la alimentación eléctrica utilizada durante el ensayo para simular la batería, remitirse a [21].

Severidad del ensayo: Variaciones de tensión: límite inferior tensión de funcionamiento

mínima (véase el numeral 3.9.3)

límite superior batería de 12 V: 16 V

límite superior batería de 24 V: 32 V

Variaciones máximas permitidas: Todas las funciones deben operar según lo previsto o

la indicación debe apagarse.

Todas las indicaciones deben encontrarse dentro de

los errores máximos permitidos.

A.6 ENSAYO DE DURACIÓN (véase el numeral 3.9.4.3)

NOTA Aplicable solamente a los instrumentos de las clases II, III y IIII con Max ≤ 100 kg.

El ensayo de duración debe realizarse después de todos los demás ensayos.

En las condiciones normales de uso, el instrumento debe ser sometido a cargas y descargas repetitivas de una carga aproximadamente igual a 50 % de Max. La carga debe aplicarse 100 000 veces. La frecuencia y la velocidad de aplicación deben ser tales que el instrumento alcance su equilibrio cuando se carga y cuando se descarga. La fuerza de aplicación de la carga no debe sobrepasar la fuerza obtenida en las operaciones normales de carga.

Se debe realizar un ensayo de pesaje de acuerdo con el procedimiento descrito en A.4.4.1 antes de comenzar el ensayo de duración para obtener el error intrínseco. Se debe realizar un ensayo de pesaje después de la terminación de las cargas para determinar el error de durabilidad debido al uso y desgaste.

Si el instrumento está provisto de un dispositivo de ajuste a cero automático o de bloqueo de cero, este dispositivo puede estar en funcionamiento durante el ensayo; en este caso, se debe determinar el error en el punto cero de acuerdo con A.4.2.3.2.

Figura 11. Secuencia de ensayo propuesta para el ensayo A.5.3.1 combinado con A.5.3.2 (ensayo de temperatura cuando los límites de temperatura son + 40 °C / - 10 °C

ANEXO B

(Normativo)

ENSAYOS ADICIONALES PARA INSTRUMENTOS ELECTRÓNICOS

NOTA PRELIMINAR 1 Los ensayos específicos para los instrumentos electrónicos, descritos en el presente Anexo, han sido tomados, en la medida de lo posible, de trabajos de la Comisión Electrotécnica Internacional (IEC), considerando también la última edición del Documento Internacional de OIML D 11 [4].

NOTA PRELIMINAR 2 Aunque se han hecho referencias a las versiones vigentes de las publicaciones IEC, todos los ensayos de EMC y otros ensayos adicionales para instrumentos electrónicos deberían realizarse en base a las últimas versiones válidas al momento de los ensayos. Se debería mencionar esto en el Informe de Ensayo. El objetivo es seguir el ritmo de los futuros avances técnicos.

B.1 REQUISITOS GENERALES PARA LOS INSTRUMENTOS ELECTRÓNICOS SOMETIDOS A ENSAYO (EUT)

Alimentar el equipo sometido a ensayo (EUT) durante un período igual o superior al tiempo de calentamiento especificado por el fabricante y mantenerlo alimentado durante el ensayo.

Ajustar el EUT lo más cerca posible a cero antes de cada ensayo y nunca reajustarlo durante el ensayo, excepto para reinicializarlo si se ha indicado una falla significativa. Se debe registrar la desviación de la indicación sin carga que resulte de cualquier condición de ensayo y, en consecuencia, se debe corregir la indicación bajo cualquier carga para obtener el resultado de pesaje.

La manipulación del instrumento debe ser tal que no se produzca condensación del agua en el instrumento.

B.2 CALOR HÚMEDO, ENSAYO CONTINUO

NOTA No se aplica a instrumentos de clase I ni a instrumentos de clase II para los cuales e es inferior a 1 g.

Procedimiento de ensayo en resumen:

El ensayo consiste en una exposición del EUT a una temperatura constante (véase A.4.1.2) y a una humedad relativa constante. Se debe ensayar el EUT con al menos cinco cargas de ensayo diferentes (o cargas simuladas):

- a la temperatura de referencia (20 °C o el valor medio del rango de temperatura cuando 20 °C está fuera de este rango) y una humedad relativa de 50 % después del acondicionamiento;
- a la temperatura elevada del rango especificado en 3.9.2 y una humedad relativa de 85 %, durante dos días después de la estabilización de la temperatura y la humedad; y
- a la temperatura de referencia y una humedad relativa de 50 %.

Variaciones máximas permitidas: Todas las funciones deben operar según lo previsto.

Todas las indicaciones deben encontrarse dentro de los

errores máximos permitidos.

Referencia: [8], [10].

B.3 ENSAYOS DE DESEMPEÑO PARA PERTURBACIONES

Antes de cualquier ensayo, se debe ajustar el error de redondeo lo más cercano posible a cero.

Si el instrumento tiene interfases, un dispositivo periférico apropiado debe ser conectado a cada modelo diferente de interfase durante los ensayos.

Para todos los ensayos, registrar las condiciones ambientales en las cuales se realizaron.

Alimentar el EUT durante un período igual o superior al tiempo de calentamiento especificado por el fabricante y mantenerlo alimentado durante el ensayo.

Ajustar el EUT lo más cerca posible a cero antes de cada ensayo y nunca reajustarlo durante el ensayo, excepto para reinicializarlo si se ha indicado una falla significativa. Se debe registrar la desviación de la indicación sin carga que resulte de cualquier condición de ensayo y, en consecuencia, se debe corregir la indicación bajo cualquier carga para obtener el resultado de pesaje.

La manipulación del instrumento debe ser tal que no se produzca condensación del agua en el instrumento.

Los ensayos de perturbaciones adicionales o alternativos necesarios para los Instrumentos de pesaje de funcionamiento no automáticos alimentados por la batería de un vehículo deben realizarse de acuerdo con [20], [21], [22] (véase también B.3.7).

B.3.1 Caídas de tensión de red de CA e interrupciones breves

Procedimiento de ensayo en resumen: Estabilizar el EUT en condiciones ambientales constantes.

Se debe utilizar un generador de ensayo que permita reducir por un período definido la amplitud de uno o más semi-ciclos (en el paso por cero) de la tensión de la red de CA. Se debe ajustar el generador de ensayo antes de conectar el EUT. Las reducciones de la tensión de la red deben repetirse 10 veces con un intervalo de al menos 10 s.

El ensayo debe realizarse con una única pequeña carga de ensayo.

Severidad del ensayo:

Ensayo	Reducción de amplitud a	Duración/ número de ciclos	
Caídas de tensión: Ensayo a	0 %	0,5	
Caídas de tensión: Ensayo b	0 %	1	
Caídas de tensión: Ensayo c	40 %	10	
Caídas de tensión: Ensayo d	70 %	25	
Caídas de tensión: Ensayo e	80 %	250	
Interrupción breve	0 %	250	

Variaciones máximas permitidas:

La diferencia entre la indicación de peso debido a la perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner en evidencia una falla significativa.

Referencia: [4]

B.3.2 Incrementos repentinos de tensión

El ensayo consiste en exponer el EUT a incrementos repentinos especificados de tensiones transitorias para los cuales la frecuencia de repetición de los impulsos y valores máximos de la tensión de salida en una carga de 50 Ω y de 1 000 Ω son definidos en la norma de referencia. Se debe ajustar las características del generador antes de conectar el EUT.

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

El ensayo debe aplicarse por separado a:

- líneas de alimentación; y
- circuitos I/O y líneas de comunicación, si existen.

El ensayo debe realizarse con una única pequeña carga de ensayo.

Debe aplicarse polaridad tanto positiva como negativa de los incrementos repentinos de tensión La duración del ensayo no debe ser menos de un minuto para cada amplitud y polaridad. La red de inyección, en la línea de alimentación, debe contener filtros de bloqueo para evitar que los incrementos repentinos de tensión energética se disipen en la línea de alimentación. Para el acoplamiento de los incrementos repentinos de tensión en la entrada/salida y las líneas de comunicación, debe utilizarse una abrazadera de acoplamiento capacitivo definida en la norma.

Severidad del ensayo: Nivel 2

Amplitud (valor máximo) para líneas de alimentación: 1 kV,

para la señal I/O, líneas de datos y de control:0,5 kV.

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner

en evidencia una falla significativa.

Referencia: [14]

B.3.3 Ondas de choque

Este ensayo sólo se aplica en aquellos casos en los que, en base a situaciones típicas de instalación, se puede esperar el riesgo de una influencia significativa de las ondas de choque. Esto es especialmente relevante en casos de instalaciones exteriores y/o interiores conectadas a líneas de señal largas (líneas de más de 30 m o aquellas líneas parcial o completamente instaladas fuera de los edificios independientemente de su longitud).

El ensayo se aplica a líneas de alimentación, líneas de comunicación (internet, conexión por módem, etc.) y otras líneas de control, datos o señal antes mencionadas (líneas para detectores de temperatura, sensores de flujo gaseoso o líquido, etc.)

También se aplica a instrumentos alimentados por DC si el suministro de energía proviene de la red de DC.

El ensayo consiste en exponer el EUT a ondas de choque para las cuales el tiempo de subida, la duración de impulso, los valores máximos de la tensión/corriente de salida en la carga de alta/baja impedancia y el intervalo mínimo de tiempo entre dos impulsos sucesivos son definidos en la norma de referencia. Se debe ajustar las características del generador antes de conectar el EUT.

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes. El ensayo debe aplicarse a las líneas de alimentación.

En las líneas de alimentación de AC, deben aplicarse al menos tres ondas de choque positivas y tres ondas de choque negativas sincrónicamente con una tensión de alimentación de AC en ángulos de 0°, 90°, 180° y 270°. En cualquier tipo de suministro de energía, deben aplicarse al menos tres ondas de choque positivas y tres ondas de choque negativas.

El ensayo debe realizarse con una única pequeña carga de ensayo.

Debe aplicarse polaridad tanto positiva como negativa de las ondas de choque. La duración del ensayo no debe ser menos de un minuto para cada amplitud y polaridad. La red de inyección, en la línea de alimentación, debe contener filtros de bloqueo para evitar que la energía de las ondas de choque se disipe en la línea de alimentación.

Severidad del ensayo: Nivel 2

Amplitud (valor máximo) Líneas de alimentación: 0,5 kV (línea a línea) y

1 kV (línea a tierra)

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner

en evidencia una falla significativa.

Referencia: [15]

B.3.4 Descargas electrostáticas

El ensayo consiste en exponer el EUT a descargas electrostáticas especificadas, directas e indirectas.

Se debe utilizar un generador de descarga electrostática que tenga el desempeño definido en la norma de referencia. Antes de comenzar los ensayos, se debe ajustar el desempeño del generador.

Este ensayo incluye el método de penetración de pintura si es apropiado.

Para las descargas electrostáticas directas, se debe utilizar el método de descarga en el aire cuando no se puede aplicar el método de descarga por contacto.

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

Deben aplicarse al menos 10 descargas. El intervalo de tiempo entre descargas sucesivas debe ser de al menos 10 s. El ensayo debe realizarse con una única pequeña carga de ensayo.

En el caso de un EUT no equipado con un terminal de tierra, éste debe ser completamente descargado entre descargas.

Las descargas por contacto deben aplicarse en superficies conductivas; las descargas en el aire deben aplicarse en superficies no conductivas.

Aplicación directa: En el modo de descargas por contacto, el electrodo debe estar en contacto con el EUT. En el modo de descargas en el aire, se acerca el electrodo al EUT y la descarga se produce por chispa.

Aplicación indirecta: Las descargas se aplican, en el modo de contacto, a

planos de acoplamiento montados en los alrededores

del EUT.

Severidad del ensayo: Nivel 3 (véase IEC 61000-4-2 [12])

Tensión continua hasta 6 kV inclusive para las descargas por contacto y 8 kV para las descargas en

el aire.

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar *e* o el instrumento debe detectar y poner

en evidencia una falla significativa.

Referencia: [12]

B.3.5 Inmunidad a campos electromagnéticos radiados

El ensayo consiste en exponer el EUT a los campos electromagnéticos especificados.

Equipo de ensayo: Véase IEC 61000-4-3 [13]

Instalación de ensayo: Véase IEC 61000-4-3 [13]

Procedimiento de ensayo: Véase IEC 61000-4-3 [13]

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

El EUT debe ser expuesto a campos electromagnéticos de una naturaleza e intensidad especificadas por el nivel de severidad.

El ensayo debe realizarse con solamente una pequeña carga de ensayo.

Severidad del ensayo: Rango de frecuencia: 80 MHz-2 000 MHz

NOTA Para instrumentos que no tengan red de alimentación u otros puertos I/O de manera que el ensayo según B.3.6 no pueda aplicarse, el

límite inferior del ensayo de radiación es 26 MHz.

Intensidad de campo: 10 V/m

Modulación: 80 % AM, 1 kHz, onda sinusoidal

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner en

evidencia una falla significativa.

Referencia: [13]

B.3.6 Inmunidad a campos de radiofrecuencia transmitidos por conducción

El ensayo consiste en exponer el EUT a perturbaciones inducidas por campos de radiofrecuencia transmitidos por conducción.

Equipo de ensayo: Véase IEC 61000-4-6 [16]

Instalación de ensayo: Véase IEC 61000-4-6 [16]

Procedimiento de ensayo: Véase IEC 61000-4-6 [16]

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

El EUT debe ser expuesto a perturbaciones conducidas de una naturaleza e intensidad especificadas por el nivel de severidad.

El ensayo debe realizarse con solamente una pequeña carga de ensayo.

Severidad del ensayo: Rango de frecuencia: 0,15 MHz-80 MHz

Amplitud de RF (50 Ω): 10 V (emf)

Modulación: 80 % AM, 1 kHz, onda sinusoidal

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner en

evidencia una falla significativa.

Referencia: [16]

B.3.7 Requisitos especiales de EMC para instrumentos alimentados por el suministro eléctrico de un vehículo de carretera

B.3.7.1 Conducción de transitorios eléctricos a lo largo de la línea de alimentación de baterías externas de 12 V y 24 V

El ensayo consiste en exponer el EUT a perturbaciones de transitorios conducidos a lo largo de las líneas de alimentación.

Equipo de ensayo: Véase ISO 7637-2 (2004) [21]

Instalación de ensayo: Véase ISO 7637-2 (2004) [21]

Procedimiento de ensayo: Véase ISO 7637-2 (2004) [21]

Norma aplicable: ISO 7637-2 (2004) [21]

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

El EUT debe ser expuesto a perturbaciones conducidas de una naturaleza e intensidad especificadas por el nivel de severidad.

El ensayo debe realizarse con solamente una pequeña carga de ensayo.

Impulsos de ensayo: Impulsos de ensayo 2a+2b, 3a+3b, 4

Objetivo del ensayo: Verificar el cumplimiento de las disposiciones mencionadas

en "variaciones máximas permitidas" en las siguientes

condiciones:

- transitorios debido a una interrupción repentina de corriente en un dispositivo conectado en paralelo al dispositivo sometido a ensayo debido a la inductancia del cableado preformado (impulso 2a);

- transitorios de motores de DC que actúan como generadores después de desconectar el encendido (impulso 2b);

 transitorios en las líneas de alimentación que se producen como resultado de los procesos de conmutación (impulsos 3a y 3b);

- reducciones de tensión causadas por la energización de los circuitos del arrancador de los motores de combustión interna (impulso 4).

Severidad del ensayo: Nivel IV de ISO 7637-2 (2004) [21]:

Tensión de la batería	Impulso de ensayo	Tensión de conducción
	2a	+ 50 V
	2b	+ 10 V
12 V	3a	– 150 V
	3b	+ 100 V
	4	– 7 V
	2a	+ 50 V
	2b	+ 20 V
24 V	3a	– 200 V
	3b	+ 200 V
	4	– 16 V

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la

perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner en

evidencia una falla significativa.

Referencia: [21]

B.3.7.2 Transmisión de transitorios eléctricos por acoplamiento capacitivo e inductivo a lo largo de líneas distintas a las líneas de alimentación.

El ensayo consiste en exponer el EUT a perturbaciones conducidas a lo largo de líneas distintas a las líneas de alimentación.

Equipo de ensayo: Véase ISO 7637-3 [22]

Instalación de ensayo: Véase ISO 7637-3 [22]

Procedimiento de ensayo: Véase ISO 7637-3 [22]

Norma aplicable: ISO 7637-3 [22]

Antes de cualquier ensayo, estabilizar el EUT en condiciones ambientales constantes.

El EUT debe ser expuesto a perturbaciones conducidas de una naturaleza e intensidad especificadas por el nivel de severidad.

El ensayo debe realizarse con solamente una pequeña carga de ensayo.

Severidad del ensayo: De acuerdo con ISO 7637-3 [22]

Impulsos de ensayo: Impulsos de ensayo a y b

Objetivo del ensayo: Verificar el cumplimiento de las disposiciones mencionadas

en "variaciones máximas permitidas" en condiciones de transitorios que se producen en otras líneas como resultado

del proceso de conmutación (impulsos a y b)

Severidad del ensayo: Nivel IV de ISO 7637-3 [22]

Voltaje de la batería	Impulso de ensayo	Tensión de conducción
12 V	а	– 60 V
	b	+ 40 V
24 V	а	– 80 V
∠ 4 V	b	+ 80 V

Variaciones máximas permitidas: La diferencia entre la indicación de peso debido a la perturbación y la indicación sin la perturbación no debe sobrepasar e o el instrumento debe detectar y poner en evidencia una falla significativa.

Referencia: [22]

B.4 ENSAYO DE ESTABILIDAD DE LA PENDIENTE

NOTA No se aplica a los instrumentos de clase I.

Procedimiento de ensayo en resumen: El ensayo consiste en observar las variaciones del error del EUT en condiciones ambientales lo suficientemente constantes (condiciones razonablemente constantes en un ambiente de laboratorio normal) en diferentes momentos antes, durante y después de que el EUT haya sido sometido a ensayos de desempeño. Para instrumentos con un dispositivo automático incorporado de ajuste de la pendiente, se debe activar el dispositivo durante este ensayo antes de cada medición para probar su estabilidad y su uso previsto.

> Los ensayos de desempeño deben incluir el ensayo de temperatura y, si es aplicable, el ensayo de calor húmedo; no deben incluir ensayos de duración; pueden realizarse otros ensayos de desempeño indicados en los Anexos A y B

> Se debe desconectar el EUT de la alimentación de la red eléctrica (también alimentación por batería) o del dispositivo de suministro de energía, dos veces por al menos ocho horas durante el ensayo. El número de desconexiones puede incrementarse si el fabricante lo especifica o a criterio de la autoridad de aprobación en ausencia de dicha especificación. Para la realización de este ensavo, se deben considerar las instrucciones de operación del fabricante.

> Se debe estabilizar el EUT en condiciones ambientales lo suficientemente constantes después de encenderlo durante al menos cinco horas, pero al menos 16 horas después de que se hayan realizado los ensayos de temperatura y de calor húmedo.

Duración del ensayo: 28 días o el período necesario para realizar los ensayos

de desempeño, el más corto de estos dos valores.

Tiempo entre mediciones: Entre ½ día y 10 días, con una distribución bastante

equitativa de las mediciones durante todo el ensayo.

Carga de ensayo: Cercana a Max. Se deben utilizar las mismas pesas de

ensayo a lo largo de todo el ensayo.

Número de mediciones: Al menos 8.

Secuencia del ensayo: Estabilizar todos los factores en condiciones

ambientales lo suficientemente constantes.

Ajustar el EUT lo más cerca posible a cero.

Se debe poner fuera de servicio el dispositivo automático de bloqueo de cero y se debe poner en funcionamiento el dispositivo automático incorporado de ajuste de la pendiente.

Aplicar la o las pesas y determinar el error.

Durante la primera medición, repetir inmediatamente la puesta a cero y la carga cuatro veces para determinar el valor medio del error. Para las mediciones siguientes, realizar sólo un ensayo, salvo en los siguientes casos: el resultado está fuera de la tolerancia especificada o el rango de las cinco lecturas de la medición inicial es superior a 0,1 e.

Registrar los siguientes datos:

- a) fecha y h ora,
- b) temperatura,
- c) presión baro métrica,
- d) humedad relativa,
- e) carga de ensayo,
- f) indicaciones,
- g) errores,
- h) modificaciones en el lugar de ensayo.

y aplicar todas las correcciones necesarias que resulten de variaciones de temperatura, presión y otros factores de influencia debido a la carga de ensayo entre las diferentes mediciones.

Dejar que el EUT se recupere completamente antes de realizar cualquier otro ensayo.

Variaciones máximas permitidas:

La variación de los errores de medición no debe sobrepasar, para cualquiera de las *n* mediciones, la mitad de la división de escala de verificación o la mitad del valor absoluto del error máximo permitido en la verificación inicial para la carga de ensayo aplicada, el mayor de estos dos valores.

Cuando las diferencias de los resultados indican una tendencia superior a la mitad de la variación permitida especificada arriba, se debe continuar con el ensayo hasta que la tendencia desparezca o se revierta, o hasta que el error sobrepase la variación máxima permitida.

ANEXO C

(Normativo para módulos ensayados por separado)

ENSAYO Y CERTIFICACIÓN DE INDICADORES Y DISPOSITIVOS DE PROCESAMIENTO DE DATOS ANALÓGICOS COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS

C.1 REQUISITOS APLICABLES

El uso del término "indicador" en lo sucesivo incluye cualquier dispositivo de procesamiento de datos analógico. Son posibles familias de indicadores si se cumplen los requisitos de 3.10.4.

Los siguientes requisitos se aplican a los indicadores:

- 3.1.1 Clases de exactitud
- 3.1.2 División de escala de verificación
- 3.2 Clasificación de instrumentos
- 3.3 Requisitos adicionales para instrumentos de intervalo múltiple
- 3.4 Dispositivos indicadores auxiliares
- 3.5 Errores máximos permitidos
- 3.9.2 Temperatura
- 3.9.3 Suministro de energía
- 3.10 Ensayos de evaluación y exámenes de modelo
- 4.1 Requisitos generales de construcción
- 4.1.1 Aptitud
- 4.1.2 Seguridad
- 4.2 Indicación de resultados de pesaje
- 4.3 Dispositivos indicadores analógicos
- 4.4 Dispositivos indicadores digitales
- 4.5 Dispositivos de ajuste a cero y de bloqueo de cero
- 4.6 Dispositivos de tara
- 4.7 Dispositivos de tara predeterminada
- 4.9 Dispositivos auxiliares de verificación (removibles o fijos)
- 4.10 Selección de rangos de pesaje en un instrumento de rango múltiple

- 4.11 Dispositivos para selección (o conmutación) entre diferentes receptores de carga y/o dispositivos transmisores de carga y diferentes dispositivos de medición de carga
- 4.12 Instrumentos de comparación "más y menos"
- 4.13 Instrumentos para la venta directa al público
- 4.14 Requisitos adicionales para instrumentos calculadores de precio para la venta directa al público
- 4.16 Instrumentos etiquetadores de precio
- 5.1 Requisitos generales
- 5.2 Reacción a fallas significativas
- 5.3 Requisitos de funcionamiento
- 5.4 Ensayos de desempeño y de estabilidad de la pendiente
- 5.5 Requisitos adicionales para dispositivos electrónicos controlados por software

NOTA Especialmente para las PC, se deberían observar la categoría y los ensayos necesarios de acuerdo con la Tabla 11.

C.1.1 Clase de exactitud

El indicador debe tener la misma clase de exactitud que el instrumento de pesaje al cual está destinado. También se puede utilizar un indicador de clase III en un instrumento de pesaje de clase IIII tomando en cuenta los requisitos de la clase IIII.

C.1.2 Número de divisiones de escala de verificación

El indicador debe tener el mismo o un mayor número de divisiones de escala de verificación que el instrumento de pesaje al cual está destinado.

C.1.3 Rango de temperatura

El indicador debe tener el mismo o un mayor rango de temperatura que el instrumento de pesaje al cual está destinado.

C.1.4 Rango de señal de entrada

El rango de la señal de salida analógica de la o las celdas de carga conectadas debe estar dentro del rango de la señal de entrada para la cual el indicador está especificado.

C.1.5 Señal de entrada mínima por división de escala de verificación

La señal de entrada mínima por división de escala de verificación (µV) para la cual el indicador está especificado, debe ser igual o inferior a la señal de salida analógica de la o las celdas de carga conectadas, dividida entre el número de divisiones de escala del instrumento de pesaje.

C.1.6 Rango de impedancia de la celda de carga

La impedancia resultante de la o las celdas de carga conectadas al indicador debe encontrarse dentro del rango especificado para el indicador.

C.1.7 Longitud máxima del cable

Se deben utilizar sólo indicadores que tengan una tecnología de seis hilos con teledetección (de la tensión de excitación de la celda de carga) si se tiene que alargar el cable de la celda de carga o si varias celdas de carga son conectadas mediante una caja de distribución separada de celdas de carga. Sin embargo, la longitud del cable (adicional) entre la celda de carga o la caja de distribución de celdas de carga y el indicador no debe sobrepasar la longitud máxima para la cual el indicador está especificado. La longitud máxima del cable depende del material y la sección transversal de un hilo individual y, de este modo, puede ser expresada como la resistencia máxima del hilo, expresada en unidades de impedancia.

C.2 PRINCIPIOS GENERALES DEL ENSAYO

Se pueden realizar varios ensayos con una celda de carga o un simulador pero ambos deben cumplir con los requisitos de A.4.1.7. Sin embargo, se deberían realizar los ensayos de perturbaciones con una celda de carga o una plataforma de pesaje con celda de carga que es el caso más realista.

NOTA Para el ensayo de una familia de indicadores, en principio, se aplican las disposiciones descritas en el numeral 3.10.4. Se debe prestar especial atención a la EMC y comportamiento de temperatura posiblemente distintos de las diferentes variantes de indicadores.

C.2.1 Condiciones más desfavorables

Para limitar el número de ensayos, en la medida de lo posible, se debe ensayar el indicador en condiciones que cubran el máximo rango de aplicaciones. Esto significa que se debería realizar la mayoría de ensayos en las condiciones más desfavorables.

C.2.1.1 Señal de entrada mínima por división de escala de verificación, e

Se debe ensayar el indicador con la señal de entrada mínima (normalmente la tensión de entrada mínima) por división de escala de verificación, e, especificado por el fabricante. Se asume que éste es el caso más desfavorable para los ensayos de desempeño (ruido intrínseco que cubre la señal de salida de la celda de carga) y para los ensayos de perturbaciones (relación desfavorable de la señal y, por ejemplo, nivel de tensión de alta frecuencia).

C.2.1.2 Carga muerta simulada mínima

La carga muerta simulada debe ser el valor mínimo especificado por el fabricante. Una señal de entrada baja del indicador cubre el rango máximo de problemas con respecto a la linealidad y otras propiedades significativas. La posibilidad de una mayor deriva del cero con una mayor carga muerta es considerada como un problema menos significativo. Sin embargo, se deben considerar posibles problemas con el valor máximo de la carga muerta (por ejemplo, saturación del amplificador de entrada).

C.2.2 Ensayo con alta o baja impedancia de la celda de carga simulada

Los ensayos de perturbaciones (véase el numeral 5.4.3) deben realizarse con una celda de carga en vez de un simulador y con el valor práctico más alto de la impedancia (por lo menos

1/3 de la impedancia más alta especificada) para la o las celdas de carga que se deben conectar según lo especificado por el fabricante. Para el ensayo de "Inmunidad a campos electromagnéticos radiados", se deben colocar la o las celdas de carga dentro del área uniforme (IEC 61000-4-3 [13]) en el interior de la cámara anecoica El cable de la celda de carga no debe desacoplarse porque se supone que la celda de carga es una parte esencial del instrumento de pesaje y no un dispositivo periférico (véase también la Figura 6 en IEC 61000-4-3 [13] que muestra una instalación de ensayo para un EUT modular).

Los ensayos de influencia (véase el numeral 5.4.3) pueden realizarse utilizando una celda de carga o un simulador. Sin embargo, la celda de carga/simulador no debe estar expuesto a la influencia durante los ensayos (es decir, el simulador está fuera de la cámara climática) Los ensayos de influencia deben realizarse con la impedancia más baja de la o las celdas de carga que se deben conectar según lo especificado por el solicitante.

La Tabla 2 indica qué ensayo debe realizarse con la impedancia más baja (baja) y cuál con el valor práctico más alto de la impedancia (alta).

Tabla 12

Cap. de R 76-1	Artículo referente a	Fracción, <i>pi</i>	Impedancia	μV/e
A.4.4	Desempeño de pesaje	0,3 0,8	baja	mín
A.4.5	Dispositivos indicadores múltiples			
	Analógicos	1	baja	mín
	Digitales	0	baja	mín
A.4.6.1	Exactitud de pesaje con tara		baja	mín
A.4.10	Repetibilidad		baja	mín/máx**
A.5.2	Ensayo de tiempo de calentamiento	0,3 0,8	baja	mín/máx**
A.5.3.1	Temperatura (efecto en la amplificación)	0,3 0,8	baja	mín/máx**
A.5.3.2	Temperatura (efecto sin carga)	0,3 0,8	baja	mín
A.5.4	Variaciones de tensión	1	baja	mín
3.9.5	Otras influencias			
B.2.2	Calor húmedo, ensayo continuo	0,3 0,8	baja	mín/máx**
B.3.1	Caídas de tensión de red de CA e interrupciones breves	1	alta*	mín
B.3.2	Incrementos repentinos de tensión	1	alta*	mín
B.3.3	Ondas de choque (si es aplicable)	1	alta*	mín
B.3.4	Descargas electrostáticas	1	alta*	mín
B.3.5	Inmunidad a campos electromagnéticos radiados	1	alta*	mín
B.3.6	Inmunidad a campos de radiofrecuencia transmitidos por conducción	1	alta*	mín
B.3.7	Requisitos especiales de EMC para instrumentos alimentados por el suministro eléctrico de un vehículo de carretera	1	alta*	mín
B.4	Estabilidad de la pendiente	1	baja	mín
	ensayo tiene que realizarse con la celda de carga. éase C.3.1.1.			

La impedancia de la celda de carga mencionada en este Anexo es la impedancia de entrada de la celda de carga que es la impedancia que está conectada entre las líneas de excitación.

C.2.3 Equipos periféricos

Los equipos periféricos deben ser suministrados por el solicitante para demostrar el funcionamiento correcto del sistema o subsistema y la no corrupción de los resultados de pesaje.

Al realizar los ensayos de perturbaciones, los equipos periféricos pueden estar conectados a todas las diferentes interfases. Sin embargo, si no están disponibles todos los equipos periféricos opcionales o no se puede colocarlos en el lugar de ensayo (especialmente cuando se tiene que colocarlos en el área uniforme durante los ensayos de campos radiados), entonces por lo menos los cables deben ser conectados a las interfases. Los tipos y longitudes de cables deben ser los especificados en el manual autorizado del fabricante. Si se especifican longitudes de cables de más de 3 m, el ensayo con longitudes de 3 m es considerado suficiente.

C.2.4 Ensayos de ajuste y desempeño

El ajuste (calibración) debe realizarse según lo descrito por el fabricante. Los ensayos de pesaje deben realizarse con al menos cinco cargas (simuladas) diferentes desde cero hasta el número máximo de divisiones de escala de verificación, e, con la tensión de entrada mínima por e (para indicadores de alta sensibilidad posiblemente también con la tensión de entrada máxima por e, véase C.2.1.1). Es preferible seleccionar puntos cercanos a los puntos de cambio de los límites de error.

C.2.5 Indicación con una división de escala inferior a e

Si un indicador tiene un dispositivo indicador del valor de peso con una división de escala inferior (no superior a 1/5 x pi x e, modo de alta resolución), se puede utilizar este dispositivo para determinar el error. También se puede ensayar en modo de servicio cuando se dan los "valores en bruto" (conteos) del convertidor analógico a digital. Si se utiliza cualquiera de los dos dispositivos, se debería mencionar esto en el Informe de Ensayo.

Antes de los ensayos, se debe verificar que este modo de indicación es adecuado para establecer los errores de medición. Si el modo de alta resolución no cumple con este requisito, se deben utilizar una celda de carga, pesas y pesas adicionales pequeñas para determinar los puntos de cambio con una incertidumbre mejor que $1/5 \times p_j \times e$ (véase A.4.4.4).

C.2.6 Simulador de celda de carga

El simulador debe ser adecuado para el indicador. El simulador debe estar calibrado para la tensión de excitación utilizada del indicador (tensión de excitación de CA también significa calibración de AC).

C.2.7 Fracciones, pi

La fracción estándar es p_i = 0,5 del error máximo permitido del instrumento completo, sin embargo, puede variar entre 0,3 y 0,8.

El fabricante debe establecer la fracción p_i que luego se utiliza como base para los ensayos para los cuales se asigna un rango de p_i (véase la Tabla en C.2.2).

No se da un valor para la fracción p_i con respecto a la repetibilidad. La repetibilidad insuficiente es un problema típico de los instrumentos mecánicos con mecanismo de palanca, cuchillas y platillos y otras estructuras mecánicas que pueden causar, por ejemplo, una cierta fricción. Se

espera que el indicador normalmente no cause una falta de repetibilidad. En los raros casos en los que lo haga, esto no es una falta de repetibilidad según el significado de NTC 2031 (R 76-1), sin embargo, se debe prestar especial atención a las razones y las consecuencias.

C.3 ENSAYOS

Se deben utilizar las partes relevantes del Formato de Informe de Ensayo (véase C.1) y la lista de verificación de R 76-2 para un indicador. Las partes de la lista de verificación de R 76-2 que no son relevantes, son las que se refieren a los siguientes requisitos de R 76-1.

7.1.5.1 3.9.1.1 4.17.1 4.17.2 4.13.10 F.1 F.2.4 F.2.5

F.2.6

C.3.1 Ensayos de temperatura y de desempeño

En principio, se ensaya el efecto de la temperatura en la amplificación de acuerdo con el siguiente procedimiento:

- Realizar el procedimiento de ajuste establecido a 20 °C.
- Cambiar la temperatura y verificar que los puntos de medición se encuentren dentro de los límites de error después de la corrección de una deriva del cero.

Este procedimiento debe realizarse con la amplificación más alta y la impedancia más baja a las cuales se puede ajustar el indicador. Sin embargo, esas condiciones deben garantizar que la medición pueda realizarse con tal exactitud que sea lo suficientemente seguro que las no linealidades encontradas en la curva de error no sean causadas por el equipo de ensayo utilizado.

En caso que no se pueda lograr esta exactitud (por ejemplo, con indicadores de alta sensibilidad), el procedimiento debe realizarse dos veces (C.2.1.1). La primera medición tiene que realizarse con la amplificación más baja, utilizando por lo menos cinco puntos de medición. La segunda medición se realiza con la amplificación más alta, utilizando dos puntos de medición, uno en el extremo inferior y otro en el extremo superior del rango de medición.

El cambio en la amplificación debido a la temperatura es aceptable si una línea de la misma forma encontrada en la primera medición, trazada entre los dos puntos y corregida por una deriva del cero, está dentro de los límites de error relevante (envolvente de error).

El efecto de la temperatura en la indicación sin carga es la influencia de la variación de temperatura en el cero expresada en cambios de la señal de entrada en μV . La deriva del cero se calcula con la ayuda de una línea recta que pasa por las indicaciones con dos temperaturas adyacentes. La deriva del cero debería ser inferior a p_i x e /5 K.

C.3.1.1 Ensayos con alta y baja amplificación

Si la tensión de entrada mínima por división de escala de verificación es muy baja, es decir, inferior o igual a 1 μ V/e, puede ser difícil encontrar un simulador o celda de carga adecuado para determinar la linealidad. Si el valor de la fracción p_i es 0,5 para un indicador con 1 μ V/e, entonces el error máximo permitido para cargas simuladas inferiores a 500 e es \pm 0,25 μ V/e. El error del simulador no debe causar un efecto que sobrepase 0,05 μ V/e o al menos la repetibilidad debería ser igual o mejor que 0,05 μ V/e.

En cualquier caso, se debe tener en cuenta lo siguiente:

- a) Se ensaya la linealidad del indicador en el rango de entrada completo.
 - EJEMPLO Un indicador típico con un suministro de energía de excitación de celda de carga de 12 V tiene un rango de medición de 24 mV. Si el indicador está especificado para 6000 e, se puede ensayar la linealidad con 24 mV/6000 $e = 4 \mu V/e$.
- b) Con la misma instalación, se debe medir el efecto de la temperatura en la amplificación durante el ensayo de temperatura estática y durante del ensayo de calor húmedo, ensayo continuo.
- c) Después de que se instala el indicador con la carga muerta mínima especificada y con la tensión de entrada mínima por división de escala de verificación, e. Supongamos que este valor es 1 μV/e, lo cual significa que sólo se utiliza 25 % del rango de entrada.
- d) Ahora, se debe ensayar el indicador con una tensión de entrada próxima a 0 mV y próxima a 6 mV. Se registra la indicación en ambas tensiones de entrada a 20 °C, 40 °C, 10 °C, 5 °C y 20 °C. Las diferencias entre la indicación con 6 mV (corregida por la indicación con 0 mV) a 20 °C y las indicaciones corregidas a las otras temperaturas son representadas en un gráfico. Los puntos encontrados son relacionados con el punto cero mediante curvas de la misma forma que las encontradas en (a) y (b). Las curvas trazadas deben encontrarse dentro de la envolvente de error de 6 000 e.
- e) Durante este ensayo, también se puede medir el efecto de la temperatura en la indicación sin carga para ver si el efecto es inferior a p_i x e/5 K.
- f) Si el indicador cumple con los requisitos antes mencionados, también cumple con 3.9.2.1, 3.9.2.2, 3.9.2.3 y con los requisitos para el ensayo de temperatura estática y el ensayo de calor húmedo, ensayo continuo.

C.3.2 Tara

La influencia de la tara en el desempeño de pesaje depende exclusivamente de la linealidad de la curva de error. Se determinará la linealidad cuando se realizan los ensayos de desempeño de pesaje normales. Si la curva de error muestra una no linealidad significativa, se debe desplazar la envolvente de error a lo largo de la curva, para ver si el indicador cumple con los requisitos para el valor de tara correspondiente a la parte más pronunciada del la curva de error.

C.3.3 Ensayo de la función sensora (sólo con conexión de celda de carga de seis hilos)

C.3.3.1 Alcance

Los indicadores destinados para la conexión de celdas de carga de extensómetro emplean el principio de cuatro y seis hilos de la conexión de celdas de carga. Cuando se utiliza la

tecnología de cuatro hilos, no se permite en absoluto el alargamiento del cable de la celda de carga o el uso de una caja de distribución separada de celdas de carga con un cable adicional. Los indicadores con tecnología de seis hilos tienen una entrada sensora que permita al indicador compensar las variaciones en la tensión de excitación de la celda de carga debido al alargamiento de cables o cambios de la resistencia del cable debido a la temperatura. Sin embargo, en contraposición al principio teórico de función, la compensación de las variaciones en la tensión de excitación de la celda de carga es limitada debido a una resistencia de entrada limitada de la entrada sensora. Esto puede conducir a una influencia por la variación de la resistencia del cable debido a la variación de temperatura y producir un desplazamiento significativo de la pendiente.

C.3.3.2 Ensayo

Se debe ensayar la función sensora en las condiciones más desfavorables, es decir:

- el valor máximo de la tensión de excitación de la celda de carga;
- el número máximo de celdas de carga que pueden ser conectadas (se puede simular); y
- la longitud máxima del cable (se puede simular).

C.3.3.2.1 Número máximo simulado de celdas de carga

Se puede simular el número máximo de celdas de carga colocando un resistor derivador óhmico adicional en las líneas de excitación, conectado en paralelo al simulador de celda de carga o la celda de carga respectivamente.

C.3.3.2.2 Longitud máxima simulada del cable

Se puede simular la longitud máxima del cable colocando resistores óhmicos variables en todas las seis líneas. Los resistores deben ser ajustados a la resistencia máxima del cable y, por consiguiente, la longitud máxima del cable (dependiendo del material previsto, por ejemplo, cobre u otros, y la sección transversal). Sin embargo, en la mayoría de casos, es suficiente colocar los resistores sólo en las líneas de excitación y las líneas sensoras, puesto que la impedancia de entrada de la entrada de señal es sumamente alta en comparación con la de la entrada sensora. Por lo tanto, la corriente de entrada de la señal es casi cero o al menos sumamente pequeña en comparación con la corriente en las líneas de excitación y sensoras. Como la corriente de entrada está cercana a cero, no se puede esperar ningún efecto significativo, puesto que la caída de tensión es insignificante.

C.3.3.2.3 Reajuste del indicador

Se debe reajustar el indicador después de haber ajustado los resistores de simulación del cable.

C.3.3.2.4 Determinación de la variación de la pendiente

Se debe medir el pendiente entre cero y la carga máxima (simulada). Se asume que, en las condiciones más desfavorables, puede producirse un cambio de resistencia debido a un cambio de temperatura correspondiente a todo el rango de temperatura del instrumento. Por lo tanto, se debe simular una variación de la resistencia, ΔR_{Temp} , correspondiente a la diferencia entre las temperaturas de funcionamiento mínima y máxima. Se debe determinar la variación esperada de resistencia de acuerdo con la siguiente fórmula:

$$\Delta R_{Temp} = R_{cable} x \alpha x (T_{max} - T_{min})$$

en donde

Rcable = resistencia de un hilo individual, calculada de acuerdo con la siguiente fórmula:

$$R_{cable} = (\rho \ x \ l)/A$$

en donde:

 ρ = resistencia específica del material (por ejemplo, cobre: ρ c obre = 0,017 5 Ω mm² / m)

l = longitud del cable (en m)

A = sección transversal de un hilo individual (en mm²)

 α = coeficiente de temperatura del material del cable en 1/K (por ejemplo, para cobre, α_{cobre} = 0,003 9 1/K)

Después de haber ajustado los resistores óhmicos variables al nuevo valor, se debe volver a determinar la pendiente entre cero y la carga máxima. Puesto que la variación puede ser positiva o negativa, se debe ensayar ambas direcciones, por ejemplo, para un instrumento de clase III, la variación de la resistencia simulada del cable debe corresponder a una variación de temperatura en 50 K en ambas direcciones, aumentando o disminuyendo la temperatura (el rango de temperatura es de – 10 °C a + 40 °C).

C.3.3.2.5 Límites de variación de la pendiente

Para determinar los límites de variación de la pendiente debido a la influencia de la temperatura en el cable, se deben considerar los resultados de los ensayos de temperatura en el indicador. La diferencia entre el error máximo de la pendiente del indicador debido a la temperatura y el límite de error puede ser asignada al efecto en la pendiente debido a la compensación limitada por el dispositivo sensor. Sin embargo, este efecto no debe causar un error de más de un tercio del valor absoluto del error máximo permitido multiplicado por *pi*.

$$\Delta pendiente(\Delta T) \le p_i \times mpe - E_{\max}(\Delta T)$$

en donde

$$\Delta pendiente(\Delta T) \le 1/3 p_i x mpe_{abs}$$

Si el indicador no puede cumplir estas condiciones, se tiene que reducir la resistencia máxima del cable y, por consiguiente, la longitud máxima del cable o se tiene que seleccionar una sección transversal más grande.

Se puede dar la longitud específica del cable en la forma m/mm² (dependiendo del material del cable, por ejemplo, cobre, aluminio).

Figura 12

C.3.4 Otras influencias

Se deberían considerar otras influencias y restricciones para el instrumento completo y no para los módulos.

C.4 CERTIFICADOS OIML

C.4.1 Generalidades

El Certificado debe contener información común y datos sobre la autoridad emisora, el fabricante y el indicador. Para la disposición, se deben cumplir las reglas generales de OIML B3, Anexo A [3] en la medida en que se apliquen.

Se debe proporcionar la siguiente información importante sobre el indicador en "Identificación del módulo certificado":

- modelo, clase de exactitud;
- valor del error fraccional, p;
- rango de temperatura;
- número máximo de divisiones de escala de verificación;
- tensión de entrada mínima por división de escala de verificación;
- rango de medición; y
- impedancia mínima de la celda de carga.

C.4.2 Formato del Informe de Ensayo

El Formato del Informe de Ensayo de R 76-2 debe contener información detallada sobre el indicador. Éstos son datos técnicos, descripción de las funciones, características, aspectos principales y la lista de verificación de R 76-2. La información relevante es la siguiente:

Número de informe: zzzzz

Examen de modelo de: Indicador como módulo de un instrumento de pesaje de

funcionamiento electromecánico no automático

Autoridad emisora: Nombre, dirección, persona responsable

Fabricante: Nombre, dirección

Tipo de módulo:

Requisitos de ensayo: R 76-1, edición xxxx

Resumen del examen: Módulo ensayado por separado, pi = 0.5, celda de carga o

simulador de celda de carga conectado, dispositivos periféricos conectados, información especial si algunos ensayos fueron realizados por el fabricante y por qué fueron

aceptados, resultados del ensayo en resumen.

Evaluador: Nombre, fecha, firma

Tabla de contenidos:

Este informe pertenece al Certificado OIML No. R 76/xxxx-yy-zzzz

1. Información general sobre el módulo:

Descripción de la cubierta, pantalla, teclado, tomas (enchufes) y conectores, etc. deben ser descritos brevemente y sustentados con las correspondientes figuras o fotografías del indicador.

2. Funciones, instalaciones y dispositivos del módulo:

Se deben enumerar los dispositivos de ajuste a cero, dispositivos de tara, rangos de pesaje, modos de operación, etc. (véase el capítulo 4) y facilidades de instrumentos electrónicos mencionados en el capítulo 5.

3. Datos técnicos:

Para verificar la compatibilidad de módulos al utilizar el enfoque modular (véase 3.10.2 y el Anexo F), un cierto conjunto de datos es necesario. Esta parte contiene los datos del indicador en la misma presentación y unidades que se requiere para verificar fácilmente los requisitos del Anexo F.

3.1 Datos metrológicos con respecto al instrumento de pesaje

- Clase de exactitud
- Número máximo de divisiones de escala de verificación, n
- Rango de temperatura de funcionamiento (°C)
- Valor del error fraccional, pi

3.2 Datos eléctricos

- Tensión de alimentación (V AC o DC)
- Forma (y frecuencia (Hz)) del suministro de energía
- Tensión de excitación de celda de carga (V AC o DC)
- Tensión mínima de señal para la carga muerta (mV)
- Tensión máxima de señal para la carga muerta (mV)
- Tensión de entrada mínima por división de escala de verificación, e (μV)
- Tensión mínima del rango de medición (mV)
- Tensión máxima del rango de medición (mV)
- Impedancia mínima de la celda de carga ()
- Impedancia máxima de la celda de carga ()

3.3 Sistema sensor

Existente o no existente

3.4 Cable de señal

El cable adicional entre el indicador y la celda de carga o la caja de distribución de celdas de carga respectivamente (sólo se permite con indicadores que utilizan el sistema de seis hilos, es decir, sistema sensor) debe ser especificado como se indica a continuación:

- material (cobre, aluminio, etc.)
- longitud (m)
- sección transversal (mm²); o
- longitud específica (m/mm²) cuando se especifica el material (cobre, aluminio, etc.); o
- resistencia óhmica máxima por hilo individual

4. DOCUMENTOS:

Lista de documentos.

5. INTERFASES

Modelos y números de interfase para dispositivos periféricos y para otros dispositivos. Todas las interfases son interfases de protección en el sentido de 5.3.6.1 de R 76-1.

6. DISPOSITIVOS CONECTABLES

Impresora, pantalla, etc. Para aplicaciones no sujetas a verificación obligatoria, se pueden conectar dispositivos periféricos.

EJEMPLOS Convertidores analógico a digital, PC, etc.

7. MARCAS DESCRIPTIVAS Y MARCAS DE CONTROL

Se debe describir los medios para aplicar las marcas descriptivas considerando 7.1.4 y 7.1.5 en la medida en que se apliquen. Además del instrumento completo, el mismo módulo debe ser claramente identificable. Se debe describir los lugares para la placa descriptiva y las marcas de verificación. Si es aplicable, se debe describir y mostrar en figuras o fotografías los medios para sellar y proteger el indicador.

8. EQUIPO DE ENSAYO

Información sobre el equipo de ensayo utilizado para la evaluación de modelo de este módulo e información sobre la calibración del equipo de ensayo. Ejemplos: simulador de celda de carga, cámaras de temperatura controlada, voltímetros, transformadores, equipo de ensayo de perturbaciones, etc.

9. OBSERVACIONES SOBRE LOS ENSAYOS

Ejemplo: En la lista de verificación de R 76-2, no se llena las partes relacionadas con el instrumento de pesaje completo ("marcas descriptivas", "marcas de verificación y sellado" y parcialmente "dispositivo indicador"). Durante los ensayos de perturbaciones, se conectó una celda de carga del modelo ... y una impresora del tipo

10. Resultados de medición:

Formatos de R 76-2.

11. Requisitos técnicos: Lista de verificación de R 76-2.

ANEXO D

(Normativo para módulos ensayados por separado)

ENSAYO Y CERTIFICACIÓN DE DISPOSITIVOS DE PROCESAMIENTO DE DATOS DIGITALES, TERMINALES Y PANTALLAS DIGITALES COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS

D.1 REQUISITOS APLICABLES

D.1.1 Requisitos para dispositivos de procesamiento de datos digitales, terminales y pantallas digitales

Los siguientes requisitos se aplican a estos módulos en la medida en que sean aplicables:

- 3.3 Requisitos adicionales para instrumentos de intervalo múltiple
- 3.9.3 Suministro de energía
- 3.9.5 Otras magnitudes de influencia y restricciones
- 3.10 Ensayos de evaluación y exámenes de modelo
- 4.1 Requisitos generales de construcción
- 4.2 Indicación de resultados de pesaje (no para dispositivos de procesamiento de datos digitales)
- 4.4 Dispositivos indicadores digitales (no para dispositivos de procesamiento de datos digitales)
- 4.5 Dispositivos de ajuste a cero y de bloqueo de cero
- 4.6 Dispositivos de tara
- 4.7 Dispositivos de tara predeterminada
- 4.10 Selección de rangos de pesaje en un instrumento de rango múltiple
- 4.11 Dispositivos para selección (o conmutación) entre diferentes receptores de carga y/o dispositivos transmisores de carga y diferentes dispositivos de medición de carga
- 4.13 Instrumentos para la venta directa al público
- 4.14 Requisitos adicionales para instrumentos calculadores de precio para la venta directa al público
- 4.16 Instrumentos etiquetadores de precio
- 5.1 Requisitos generales
- 5.2 Reacción a fallas significativas

- 5.3 Requisitos de funcionamiento
- 5.4 Ensayos de desempeño y de estabilidad de la pendiente
- 5.5 Requisitos adicionales para dispositivos electrónicos controlados por software

8.2.1.2 Documentos descriptivos

D.1.2 Requisitos suplementarios

D.1.2.1 Fracción de límites de error

Los dispositivos de procesamiento de datos digitales, terminales y pantallas digitales son módulos puramente digitales. Para estos módulos, la fracción es $p_i = 0,0$ del error máximo permitido del instrumento completo al cual están destinados.

D.1.2.2 Clase de exactitud

Los dispositivos de procesamiento de datos digitales, terminales y pantallas digitales son módulos puramente digitales. Por lo tanto, se puede utilizar en instrumentos de pesaje de todas las clases de exactitud. Se deben tomar en cuenta los requisitos relevantes de la clase del instrumento de pesaje al cual están destinados.

D.2 PRINCIPIOS GENERALES DEL ENSAYO

D.2.1 Generalidades

Los dispositivos de procesamiento de datos digitales, terminales y pantallas digitales son módulos puramente digitales. Por lo tanto, se debe ensayar:

- el diseño y construcción de acuerdo con la documentación (8.2.1.2);
- las funciones e indicaciones de acuerdo con los requisitos mencionados en E.1.1; y
- las perturbaciones de acuerdo con E.3.

Sin embargo, se debe ensayar todos los valores indicados y todas las funciones que se transmiten y/o liberan mediante una interfase para asegurar que sean correctos y cumplan con esta NTC.

D.2.2 Dispositivos de simulación

Para el ensayo de estos módulos, se debe conectar un dispositivo de simulación adecuado (por ejemplo, ADC para ensayar un dispositivo de procesamientos de datos digital; módulo de pesaje o dispositivo de procesamiento de datos digital para ensayar un terminal o pantalla digital) a la interfase de entrada del módulo de manera que se pueda operar y ensayar todas las funciones.

D.2.3 Dispositivo indicador

Para el ensayo de un dispositivo de procesamiento de datos digital, se debe conectar una pantalla digital o terminal adecuado para visualizar los respectivos resultados de pesaje y operar todas las funciones del dispositivo de procesamiento de datos digital.

D.2.4 Interfase

Los requisitos de 5.3.6 son aplicables a todas las interfases.

D.2.5 Dispositivos periféricos

Los dispositivos periféricos deben ser suministrados por el solicitante para demostrar el funcionamiento correcto del módulo y que los resultados de pesaje no pueden ser influenciados de manera inadmisible por los dispositivos periféricos.

Al realizar los ensayos de perturbaciones, los dispositivos periféricos deben estar conectados a cada una de las diferentes interfases.

D.3 ENSAYOS

Para estos módulos, se deben realizar los siguientes ensayos (de acuerdo con los Anexos A y B):

Variaciones de tensión*	A.5.4
Caídas de tensión de red de AC e interrupciones breves**	B.3.1
Incrementos repentinos de tensión**	B.3.2
Ondas de choque (si es aplicable)**	B.3.3
Descargas electrostáticas**	B.3.4
Inmunidad a campos electromagnéticos radiados**	B.3.5
Inmunidad a campos de radiofrecuencia transmitidos por conducción**	B.3.6
Requisitos especiales de EMC para instrumentos alimentados por el suministro eléctrico de un vehículo de carretera**	B.3.7

- * Para el ensayo de las variaciones de tensión, sólo se deben observar las funciones legalmente relevantes y la lectura fácil e inequívoca de las indicaciones primarias.
- ** Los módulos puramente digitales no deben ser sometidos a ensayos de perturbaciones (B.3) si se establece de otro modo la conformidad con las Normas IEC relevantes en al menos el mismo nivel que el exigido en esta Norma.

También se deben utilizar el Informe de Ensayo y la lista de verificación de R 76-2 para estos módulos en la medida en que se apliquen.

Las partes de la lista de verificación de R 76-2 relacionadas con "marcas descriptivas" y "marcas de verificación y sellado" no son relevantes y no se deben llenar.

D.4 CERTIFICADOS OIML

D.4.1 Generalidades

El Certificado debe contener información común y datos sobre la autoridad emisora, el fabricante y el módulo (dispositivo de procesamiento de datos digital, terminal o pantalla digital. Para la disposición, se deben cumplir las reglas generales de OIML B3, Anexo A [3] en la medida en que se apliquen.

D.4.2 Formato del Informe de Ensayo

El Informe de Ensayo de R 76-2 debe contener información detallada sobre el módulo (dispositivo de procesamiento de datos digital, terminal o pantalla digital). Éstos son datos técnicos, descripción de las funciones, características, aspectos principales y la lista de verificación de R 76-2. La información relevante es la siguiente:

Número de informe: zzzzz

Examen de modelo de: Un módulo (dispositivo de procesamiento de datos digital,

terminal o pantalla digital) para un instrumento de pesaje de

funcionamiento electromecánico no automático.

Autoridad emisora: Nombre, dirección, persona responsable

Fabricante: Nombre, dirección

Tipo de módulo:

Requisitos de ensayo: R 76-1, edición xxxx

Resumen del examen: Módulo ensayado por separado, pi = 0.0; dispositivos

conectados para simular la señal de entrada, para visualizar los resultados de pesaje y operar el módulo, dispositivos periféricos conectados, información especial con respecto a si algunos ensayos fueron realizados por el fabricante y por qué fueron aceptados, resultados del ensayo en resumen.

Evaluador: Nombre, fecha, firma

Tabla de contenido:

Este informe pertenece al Certificado OIML No. R 76/xxxx-yy-zzzz.

1. Información general sobre el tipo de módulo:

Breve descripción de las interfases del módulo.

2. Funciones, recursos y dispositivos del módulo:

Dispositivos de ajuste a cero, dispositivos de tara, función de intervalo múltiple, diferentes rangos de pesaje, modos de operación, etc.

3. Datos técnicos:

Rangos de tara, etc.

4. Documentos:

Lista de documentos

5 Interfases:

Modelos y números de interfase para dispositivos periféricos y para otros dispositivos.

Todas las interfases son interfases de protección en el sentido de 5.3.6.1 de R 76-1.

6. Dispositivos conectables:

Terminal, impresora, pantalla digital, etc. Para aplicaciones no sujetas a verificación obligatoria, se pueden conectar dispositivos periféricos

(ejemplos: convertidores analógico a digital, PC, etc.).

7. Marcas de control:

Si se requiere protección (sellado) para el instrumento de pesaje, los elementos de ajuste de este módulo pueden ser protegidos con una marca de control (marcha adhesiva o sello).

8. Equipo de ensayo:

Información referente al equipo de ensayo utilizado para la evaluación de modelo de este módulo. Información sobre calibración del equipo. Ejemplos: Voltímetros, transformadores, equipo de ensayo de perturbaciones, etc.

9. Observaciones sobre los ensayos:

En la lista de verificación de R 76-2, no se llenan las partes relacionadas con el indicador ("marcas descriptivas", "marcas de verificación y sellado". Durante los ensayos de perturbaciones, se conectó una impresora del tipo

. . .

10. Resultados de medición:

Formatos de R 76-2.

11. Requisitos técnicos:

Lista de verificación de R 76-2.

ANEXO E

(Normativo para módulos ensayados por separado)

ENSAYO Y CERTIFICACIÓN DE MÓDULOS DE PESAJE COMO MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICO

E.1 **REQUISITOS APLICABLES**

E.1.1 Requisitos para módulos de pesaje

Los si

guiente	es requisitos se aplican a los módulos de pesaje:
3.1	Principios de clasificación
3.2	Clasificación de instrumentos
3.3	Requisitos adicionales para instrumentos de intervalo múltiple
3.5	Errores máximos permitidos
3.6	Diferencias permitidas entre resultados
3.8	Discriminación
3.9	Variaciones debidas a las magnitudes de influencia y el tiempo
3.10	Tipos de ensayo de evaluación y exámenes
4.1	Requisitos generales de construcción
4.2	Indicación de resultados de pesaje
4.4	Dispositivos indicadores digitales
4.5	Dispositivos de ajuste a cero y de bloqueo de cero
4.6	Dispositivos de tara
4.7	Dispositivos de tara predeterminada
4.10	Selección de rangos de pesaje en un instrumento de rango múltiple
4.11	Dispositivos para selección (o conmutación) entre varios receptores de carga y/o dispositivos transmisores de carga y varios dispositivos de medición de carga
4.13	Instrumentos para la venta directa al público
4.14	Requisitos adicionales para instrumentos calculadores de precio para la venta directa al público

139

4.16 Instrumentos etiquetadores de precio

Requisitos generales

5.1

- 5.2 Actuación a fallas significativas
- 5. 3 Requisitos de funcionamiento
- 5.4 Ensayos de desempeño y de estabilidad de la pendiente
- 5.5 Requisitos adicionales para dispositivos electrónicos controlados por software

E.1.2 Requisitos suplementarios

E.1.2.1 Fracción de límites de error

Para un módulo de pesaje, la fracción es $p_i = 1,0$ del error máximo permitido del instrumento completo.

E.1.2.2 Clase de exactitud

El módulo de pesaje debe tener la misma clase de exactitud que el instrumento de pesaje al cual está destinado. También se puede utilizar un módulo de pesaje de clase III en un instrumento de pesaje de clase IIII tomando en cuenta los requisitos de la clase IIII.

E.1.2.3 Número de divisiones de escala de verificación

El módulo de pesaje debe tener por lo menos el mismo número de divisiones de escala de verificación que el instrumento de pesaje al cual está destinado.

E.1.2.4 Rango de temperatura

El módulo de pesaje debe tener el mismo o un mayor rango de temperatura que el instrumento de pesaje con el cual va a ser usado.

E.2 PRINCIPIOS GENERALES DEL ENSAYO

E.2.1 Generalidades

Se debe ensayar un módulo de pesaje de la misma manera que el instrumento de pesaje completo, con excepción del ensayo del diseño y construcción del dispositivo indicador y elementos de control. Sin embargo, se debe ensayar todos los valores indicados y todas las funciones que se transmiten y/o liberan mediante la interfase para asegurar que sean correctos y cumplan con esta NTC.

E.2.2 Dispositivos indicadores

Para este ensayo, se debe conectar un dispositivo indicador o terminal adecuado para indicar los respectivos resultados de pesaje y operar todas las funciones del módulo de pesaje.

Si los resultados de pesaje del módulo de pesaje tienen una división de escala diferenciada de acuerdo con 3.4.1, el dispositivo indicador debe indicar este dígito.

El dispositivo indicador debería permitir, de preferencia, la indicación a una mayor resolución para determinar el error, por ejemplo, en un modo de servicio especial. Si se utiliza una mayor resolución, se debe registrar esto en el Informe de Ensayo,

E.2.3 Interfase

Los requisitos de 5.3.6 son aplicables a todas las interfases.

E.2.4 Equipo periférico

El equipo periférico debe ser suministrado por el solicitante para demostrar el funcionamiento correcto del sistema o subsistema y la no corrupción de los resultados de pesaje.

Al realizar los ensayos de perturbaciones, el equipo periférico debe estar conectado a cada una de las diferentes interfases.

E.3 ENSAYOS

Se debe realizar el procedimiento de ensayo completo para los Instrumentos de pesaje de funcionamiento no automáticos (de acuerdo con los Anexos A y B).

Se deben utilizar el Informe de Ensayo y la lista de verificación de R 76-2 también para los módulos de pesaje.

Las partes de la lista de verificación de R 76-2 relacionadas con "marcas descriptivas", "marcas de verificación y sellado" y parcialmente para "dispositivo indicador" no son relevantes y no se deben llenar.

E.4 CERTIFICADOS OIML

E.4.1 Generalidades

Número de informe:

El Certificado debe contener información común y datos sobre la autoridad emisora, el fabricante y el módulo de pesaje. Para el diseño, se deben cumplir las reglas generales de OIML B3, Anexo A [3] en la medida en que se apliquen.

E.4.2 Formato del Informe de Ensayo

El Informe de Ensayo de R 76-2 debe contener información detallada sobre el módulo de pesaje. Éstos son datos técnicos, descripción de las funciones, características, aspectos principales y la lista de verificación de R 76-2. La información relevante es la siguiente:

Examen de modelo de:

Un modulo de pesaje para un instrumento de pesaje de funcionamiento electromecánico no automático.

Autoridad emisora:

Nombre, dirección, persona responsable

Nombre, dirección.

Tipo de módulo:

ZZZZZ

Requisitos de ensayo: R 76-1, edición xxxx

Resumen del examen: Módulo ensayado por separado, pi = 1,0, dispositivo

conectado para indicar los resultados de pesaje y operar el módulo, dispositivos periféricos conectados, información especial con respecto a si algunos ensayos fueron realizados por el fabricante y por qué fueron aceptados,

resultados del ensayo en resumen.

Evaluador: Nombre, fecha, firma

Tabla de contenido:

Este informe pertenece al Certificado OIML No. R 76/xxxx-yy-zzzz.

1. INFORMACIÓN GENERAL SOBRE EL TIPO DE MÓDULO

Descripción de estructuras mecánicas, celda de carga, dispositivo de procesamiento de datos analógico, interfases.

2. FUNCIONES, RECURSOS Y DISPOSITIVOS DEL MÓDULO

Dispositivos de ajuste a cero, dispositivos de tara, módulo de pesaje de intervalo múltiple, diferentes rangos de pesaje, modos de operación, etc.

3. DATOS TÉCNICOS

Tabla con clase de exactitud, $p_i = 1,0$, Max, Min, n, n_i , tara y rangos de temperatura, etc.

4. DOCUMENTOS

Lista de documentos

5. INTERFASES

Tipos y números de dispositivos de interfase para el dispositivo indicador y de operación (terminal), para dispositivos periféricos y para otros dispositivos.

Todas las interfases son protegidas en el sentido del numeral 5.3.6.1 de R 76-1.

6 DISPOSITIVOS CONECTABLES

Dispositivo indicador y de operación (terminal) con $p_i = 0.0$, impresora, pantalla, etc. Para aplicaciones no sujetas a verificación obligatoria, se pueden conectar dispositivos periféricos. Ejemplos: convertidores D/A, PC, etc.

7 MARCAS DE CONTROL

Si se requiere protección (sellado) para el instrumento de pesaje, los componentes y elementos de ajuste de este módulo pueden ser protegidos con una marca de control (marcha adhesiva o sello) en el tornillo de la cubierta debajo de la placa del receptor de carga. No es necesaria una protección adicional.

8. EQUIPO DE ENSAYO

Información sobre el equipo de ensayo utilizado para la evaluación de modelo de este módulo. Información sobre calibración. Ejemplos: pesas patrón (clase), simulador de celda de carga, cámaras de temperatura controlada, voltímetros, transformadores, equipo de ensayo de perturbaciones, etc.

9. OBSERVACIONES SOBRE LOS ENSAYOS

En la lista de verificación de R 76-2, no se llenan las partes relacionadas con el indicador ("marcas descriptivas", "marcas de verificación y sellado" y parcialmente "dispositivo indicador"). Durante los ensayos de perturbaciones, se conectó una impresora del tipo ...

10. RESULTADOS DE MEDICIÓN

Formatos de R 76-2.

11. REQUISITOS TÉCNICOS

Lista de verificación de R 76-2.

ANEXO F

(Normativo para módulos ensayados por separado)

VERIFICACIÓN DE COMPATIBILIDAD DE MÓDULOS DE INSTRUMENTOS DE PESAJE DE FUNCIONAMIENTO NO AUTOMÁTICOS

NOTAS: F.1 a F.4:

Sólo para celdas de carga analógicas de conformidad con R 60 en combinación con indicadores de conformidad con R 76-1, Anexo C.

F.5:

Sólo para celdas de carga digitales en combinación con indicadores, unidades de procesamiento de datos analógicas o digitales o terminales.

F.6:

Ejemplos de verificaciones de compatibilidad.

Al utilizar el enfoque modular, la verificación de compatibilidad del instrumento de pesaje y los módulos requiere ciertos conjuntos de datos. Los tres primeros capítulos de este Anexo describen los datos del instrumento de pesaje, la o las celdas de carga y el indicador que son necesarios para verificar los requisitos de compatibilidad.

F.1 **INSTRUMENTOS DE PESAJE**

Los siguientes datos metrológicos y técnicos del instrumento de pesaje son necesarios para la verificación de compatibilidad:

Clase de exactitud del instrumento de pesaje.

Max (g, kg, t)	Capacidad máxima del instrumento de pesaje de acuerdo con T.3.1.1 (Max_1 , Max_2 ,, Max en el caso de un instrumento de pesaje de intervalo múltiple y Max_1 , Max_2 ,, Max_Γ en el caso de un instrumento de pesaje de rango múltiple).
e (g, kg)	División de escala de verificación de acuerdo con T.3.2.3
	(e1, e2, e3) (en el caso de un instrumento de pesaje de intervalo múltiple o de rango múltiple, donde e1 = e_{\min}).
n	Número de divisiones de escala de verificación de acuerdo con T.3.2.5: $n = \text{Max} / e(n_1, n_2, n_3)$ (en el caso de un instrumento de pesaje de intervalo múltiple o de rango múltiple, donde $n_i = \text{Max}_i / e_i$).
R	Coeficiente de reducción, por ejemplo, de un mecanismo de palanca de acuerdo con T.3.3, es la relación (Fuerza sobre la celda de carga) / (Fuerza sobre el receptor de carga)
N	Número de celdas de carga

IZSR (g, kg)

Rango de ajuste a cero inicial, de acuerdo con T.2.7.2.4: se ajusta la indicación a cero automáticamente cuando se enciende el instrumento

de pesaje, antes de cualquier pesaje.

NUD (g, kg) Corrección por carga no distribuida uniformemente**

DL (g, kg) Carga muerta del receptor de carga: masa del mismo receptor de carga

que descansa sobre las celdas de carga y cualquier construcción

adicional montada en el receptor de carga.

T⁺ (g, kg, t) Tara aditiva

 T_{\min} (°C) Límite inferior del rango de temperatura

 T_{max} (°C) Límite superior del rango de temperatura

CH, NH, SH Símbolo del ensayo de humedad realizado

Sistema de conexión, sistema de seis hilos:

L (m) Longitud de cable de conexión

A (mm²) Sección transversal de cable

Q Factor de corrección

El factor de corrección, Q > 1 considera los posibles efectos de la carga excéntrica (distribución no uniforme de la carga), carga muerta del receptor de carga, rango de ajuste a cero inicial y tara aditiva en la siguiente forma:

$$Q = (Max + DL + IZSR + NUD + T^{+}) / Max$$

** Por lo general, se podría asumir los valores de la distribución no uniforme de la carga para construcciones típicas de instrumentos de pesaje cuando no se presentan otras estimaciones.

- Instrumentos de pesaje (WI) con mecanismo de palanca y una celda de carga, o WI con receptores de carga que permiten solamente la aplicación de carga excéntrica mínima, o WI con una celda de carga de un solo punto:

0 % de Max

por ejemplo, tolva o tolva en forma de embudo con una disposición simétrica de las celdas de carga pero sin agitador para el flujo de material en el receptor de carga

- Otros WI convencionales: 20 % de Max

- Básculas para horquillas elevadoras, básculas de carril aéreo y puente-básculas: 50 % de Max

- Pesadora de varias plataformas:

combinación fija: 50 % de Max_{total}

selección variable o combinado: 50 % de Max_{puente simple}

F.2 CELDAS DE CARGA ENSAYADAS POR SEPARADO

Se pueden utilizar celdas de carga que han sido ensayadas de acuerdo con R 60, sin repetir ensayos si existe el respectivo Certificado OIML y se cumplen los requisitos de 3.10.2.1, 3.10.2.2 y 3.10.2.3. Sólo se permite el ensayo de celdas de carga SH y CH en el enfoque modular (no celdas de carga NH).

F.2.1 Clases de exactitud

Las clases de exactitud incluyen rangos de temperatura y la evaluación de la estabilidad en relación con la humedad y fluencia de celda(s) de carga (LC) deben cumplir los requisitos para los instrumentos de pesaje (WI).

Tabla 13. Clases de exactitud correspondientes

		Exac	Referencia		
WI	I	Ш	III	IIII	OIML R 76
LC	Α	A*, B	B*, C	C, D	OIML R 60

si los rangos de temperatura son suficientes y la evaluación de estabilidad en relación con la humedad y fluencia corresponden a los requisitos de la clase inferior.

F.2.2 Fracción del error máximo permitido

Si no se indica ningún valor para la celda de carga en el Certificado OIML, entonces $p_{LC} = 0.7$. La fracción puede ser $0.3 \le p_{LC} \le 0.8$, de acuerdo con el numeral 3.10.2.1.

F.2.3 Límites de temperatura

Si no se indica ningún valor para la celda de carga en el Certificado OIML, $T_{min} = -10$ °C y $T_{max} = 40$ °C. Se puede limitar el rango de temperatura, de acuerdo con el numeral 3.9.2.2.

F.2.4 Capacidad máxima de la celda de carga

La capacidad máxima de la celda de carga debe cumplir la condición:

$$E_{\text{max}} \ge Q \ x \ Max \ x \ R/N$$

F.2.5 Carga muerta mínima de la celda de carga

La carga mínima producida por el receptor de carga debe ser igual o superior a la carga muerta mínima de una celda de carga (muchas celdas de carga tienen $E_{min} = 0$):

$$E_{\min} \le DL \ x \ R/N$$

F.2.6 Número máximo de divisiones de celda de carga

Para cada celda de carga, el número máximo de intervalos de celda de carga, n_{LC} , (véase OIML R 60) no debe ser inferior al número de intervalos de escala de verificación, n, del instrumento:

En un instrumento de rango múltiple o de intervalo múltiple, esto se aplica a cualquier rango de pesaje individual o parcial:

$$n_{LC} \ge n_i$$

En un instrumento de intervalo múltiple, el retorno de la señal de salida de la carga muerta mínima, *DR* (véase OIML R 60), debe cumplir la condición:

$$DR \times E/E_{\text{max}} \le 0.5 \times e_1 \times R/N$$
, o $DR \times E_{\text{max}} \le 0.5 \times e_1 \times Max$

en donde

 $E = Max \times R/N$: es la carga parcial de la celda de carga al cargar el instrumento de pesaje con Max.

Solución aceptable:

Cuando no se conoce DR, se cumple la condición $n_{LC} \ge \text{Max}_r / e_1$.

Además, en un instrumento de rango múltiple donde la o las mismas celdas de carga se utilizan para más de un rango, el retorno de la señal de salida de la carga muerta mínima, *DR*, de la celda de carga (véase OIML R 60) debe cumplir la condición:

Solución aceptable:

$$DR \times E/E_{\text{max}} \le e_1 \times R/N$$
, $o DR / E_{\text{max}} \le e_1 / Max$

Cuando no se conoce DR, se cumple la condición $nLC \ge 0.4 \text{ x Maxr} / e1$.

F.2.7 Intervalo de verificación mínimo de la celda de carga

El intervalo de verificación mínimo de carga, v_{min} (véase OIML R 60) no debe ser superior a la división de escala de verificación, e, multiplicado por el coeficiente de reducción, R, del dispositivo transmisor de carga y dividido entre la raíz cuadrada del número, N, de celdas de carga, según sea aplicable:

$$v_{\min} \le e_1 \times R / \sqrt{N}$$

NOTA v_{min} es medido en unidades de masa. La fórmula se aplica a celdas de carga tanto analógica como digital.

En un instrumento de rango múltiple donde se utilizan la o las mismas celdas de carga para más de un rango, o en un instrumento de intervalo múltiple, e debe ser reemplazado por e1.

F.2.8 Resistencia de entrada de una celda de carga

La resistencia de entrada de una celda de carga, R_{LC} , está limitada por el indicador: R_{LC} / N debe encontrarse dentro del rango del indicador R_{Lmin} a R_{Lmax} .

F.3 INDICADORES Y DISPOSITIVOS DE PROCESAMIENTO DE DATOS ANALÓGICOS ENSAYADOS POR SEPARADO

Se pueden utilizar indicadores y dispositivos de procesamiento de datos analógicos que han sido ensayadas por separado de acuerdo con el Anexo C, sin repetir ensayos si existe el respectivo Certificado OIML y se cumplen los requisitos de los numerales 3.10.2.1, 3.10.2.2 y 3.10.2.3.

F.3.1 Clase de exactitud

Las clases de exactitud que incluyen rangos de temperatura y la evaluación de la estabilidad en relación con la humedad deben cumplir los requisitos para los instrumentos de pesaje (WI).

Tabla 14. Clases de exactitud correspondientes

		Exactitud			
WI	I	П	III	IIII	OIML R 76
IND	I	I*, II	II*, III	III, IIII	OIML R 76

si los rangos de temperatura son suficientes y la evaluación de la estabilidad en relación con la humedad corresponden a los requisitos de la clase inferior.

F.3.2 Fracción del error máximo permitido

Si no se indica ningún valor para el indicador en el Certificado OIML, entonces $p_{ind} = 0.5$. La fracción puede estar en el rango $0.3 \le p_{ind} \le 0.8$ de acuerdo con el numeral 3.10.2.1.

F.3.3 Límites de temperatura

Si no se indica ningún valor para la celda de carga en el Certificado OIML, $T_{min} = -10$ °C y $T_{max} = 40$ °C. Se puede limitar el rango de temperatura de acuerdo con el numeral 3.9.2.2.

F.3.4 Número máximo de divisiones de intervalos de escala de verificación

Para cada indicador, el número máximo de divisiones de escala de verificación, n_{ind} , no debe ser inferior al número de intervalos de escala de verificación, n, del instrumento de pesaje:

$$n_{ind} \ge n$$

En un instrumento de rango múltiple o de intervalo múltiple, esto se aplica a cualquier rango de pesaje individual o parcial:

$$n_{ind} \geq n_i$$

En caso de aplicaciones de intervalo múltiple y de rango múltiple, se deben incluir estas funciones en el indicador certificado.

F.3.5 Datos eléctricos con respecto al instrumento de pesaje

 $U_{\rm exc}$ (V) Voltaje de excitación de celda de carga

 U_{\min} (mV) Voltaje de entrada mínima general del indicador

 Δu_{min} (µV) Voltaje de entrada mínima por división de escala de verificación del indicador

La señal por intervalo de escala de verificación, Δu , se calcula de la siguiente manera:

$$\Delta u = \frac{C}{E_{\text{max}}} x U_{exc} x \frac{R}{N} x e$$

Para instrumentos de pesaje de rango múltiple o de intervalo múltiple, $e = e_1$

U_{MRmin}	(mV)	Voltaje mínima del rango de medición
U_{MRmax}	(mV)	Tensión máxima del rango de medición
R_{Lmin}	(Ω)	Impedancia mínima de la celda de carga
R_{Lmax}	(Ω)	Impedancia máxima de la celda de carga

NOTA R_{Lmin} y R_{L max} son los límites del rango de impedancia permitido del indicador electrónico para la impedancia(s) de entrada real aplicada de la celda de carga.

F.3.5.1 Cable de conexión

El cable <u>adicional</u> entre el indicador y la celda de carga o la caja de distribución de celdas de carga respectivamente (sólo se permite con indicadores que utilizan el sistema de seis hilos, por ejemplo, sistema sensor) debe haber sido especificado en el Certificado OIML del indicador.

El procedimiento más simple es especificar un valor de la relación entre la longitud del cable y la sección transversal de un hilo (m/mm²) para un material dado (cobre, aluminio, etc.) en el Certificado del indicador.

En otros casos, se debe calcular a partir de la longitud (m), la sección transversal (mm²), los datos sobre el material del conductor y la resistencia óhmica máxima (Ω) por hilo individual.

NOTA En el caso de un cable con diferentes secciones transversales del hilo, la conexión del hilo sensor es de interés. Al utilizar barreras contra rayos o barreras para aplicaciones a prueba de explosiones, se debe verificar la tensión de excitación en las celdas de carga con el fin de probar que se cumplen las condiciones para la tensión de entrada mínima por división de escala de verificación del indicador.

F.4 VERIFICACIONES DE COMPATIBILIDAD DE MÓDULOS CON SALIDA ANALÓGICA

Las magnitudes y características relevantes identificadas que conjuntamente establecen la compatibilidad, se han incluido en el siguiente formato. Si se cumplen todas las condiciones, se cumplen los requisitos de compatibilidad de R 76. Las Tablas en las cuales se pueden introducir datos, permiten tomar fácilmente decisiones con respecto a si se cumplen o no las condiciones.

El fabricante del instrumento de pesaje puede verificar y demostrar esta compatibilidad llenando el formato que aparece en la página siguiente.

El numeral F.6 da ejemplos típicos de formatos llenos de verificaciones de compatibilidad.

Formato: Verificación de compatibilidad

(1) Clase de exactitud de la celda de carga (LC), el indicador (IND) y el instrumento de pesaje (WI)

LC	&	IND	igual o mejor	WI
	&		igual o mejor	

Cumple	No cumple

(2) Límites de temperatura del instrumento de pesaje (WI) en comparación con los límites de temperatura de la celda de carga (LC) y el indicador (IND) en °C

	LC		IND		WI
T_{min}		&		≤	
$T_{\sf max}$		&		≤	

Cumple	No cumple

(3) Suma de los cuadrados de las fracciones p_i de los errores máximos permitidos de los elementos de conexión, el indicador y las celdas de carga

P_{con}^{2}	+	P_{ind}^{2}	+	P_{LC}^2	≤ 1
	+		+		≤ 1

Cumple	No cumple

(4) Número máximo de divisiones de escala de verificación del indicador y número de divisiones de escala del instrumento de pesaje

		n_{ind}	≥	n = Max / e
Instrumento de pesaje de un solo rango			<u> </u>	
De intervalo	i=1		\geq	
múltiple o de rango múltiple	i=2		≥	
WI	i=3		≥	

Cumple	No cumple

(5) La capacidad máxima de las celdas de carga debe ser compatible con Max del instrumento de pesaje

Factor, Q: $Q = (Max + DL + IZSR + NUD + T^+) / Max = ...$

Q x Max x R / N	≤	E _{max}
	≤	

Cumple	No cumple

(6a) Número máximo de divisiones de escala de verificación de la celda de carga y número de divisiones de escala del instrumento de pesaje

		n _{LC}	≥	$n_i = \text{Max}_i / e_i$
Instrumento de p solo rai			≥	
De intervalo	i=1		≥	
múltiple o de rango múltiple	i=2		≥	
WI	i=3		≥	

Cumple	No cumple

n_{LC} o $Z = E_{max} /$	(2 x DR)	<u>></u>	l M	ax _r / e ₁		Cumple	No cum
		≥					
Retorno de la s de escala de v múltiple							
n_{LC} o $Z = E_{max}$ /	(2 x DR)	<u>></u>	0,4 >	Max _r / e ₁		Cumple	No cum
		≥					
Carga muerta receldas de carga		ceptor de d	carga en re	lación con la	carga	muerta míi	nima de
DL x R/	N	<u>></u>		E _{min}		Cumple	No cum
		≥					
e x R / √	N	<u>></u>	V _{min}	= E _{max} / Y		Cumple	No cun
Tensión de en entrada mínima carga Tensión de entr	a por divi	sión de es	cala de ve	rificación y s	salida ı	eal de las	celdas
		•	•		`	•	
	D DI "	- 10		1 11	п г		T
$U = C \times U_{\text{exc}}$	x RxDL/(E	E _{max} x N)	<u>></u>	U _{min}] [Cumple	No cum
$U = C \times U_{\text{exc}}$			≥] [Cumple	No cum
$U = C \times U_{\text{exc}}$ Tensión de entr	ada mínir	ma por divis	≥ sión de esc	ala de verific	ación		
$U = C \times U_{\text{exc}}$	ada mínir	ma por divis	≥ sión de esc ≥		ación	Cumple	
$U = C \times U_{\text{exc}}$ Tensión de entr	ada mínir	ma por divis	≥ sión de esc	ala de verific	ación		
$U = C \times U_{\text{exc}}$ Tensión de entr	ada mínir x <i>R x e l</i> (<i>E</i> n	ma por divis	≥ sión de esc ≥ ≥	ala de verific $\Delta u_{ m min}$		Cumple	No cum
$U = C \times U_{\text{exc}}$ Tensión de entr $u = C \times U_{\text{exc}}$ Rango de impe	ada mínir x <i>R x e l</i> (<i>E</i> n	ma por divis	≥ sión de esc ≥ ≥	ala de verific $\Delta u_{ m min}$		Cumple	N
$U = C \times U_{\text{exc}}$ Tensión de entr $u = C \times U_{\text{exc}}$ Rango de impe de carga en Ω	rada mínir x <i>R x e /</i> (<i>E</i> _m dancia pe	ma por divis	≥ sión de esc ≥ ≥ I indicador	ala de verifica Δu _{min} electrónico e		Cumple ancia real	No cum
$U = C \times U_{\text{exc}}$ Tensión de entr $u = C \times U_{\text{exc}}$ Rango de impe de carga en Ω	rada mínir x R x e / (E _m dancia pe	ma por divisonax × N) ermitido de R _{LC} / N	sión de esc	ala de verifica Δu _{min} electrónico e	imped	Cumple ancia real Cumple	No cum de la ce

≤

F.5 VERIFICACIONES DE COMPATIBILIDAD DE MÓDULOS CON SALIDA DIGITAL

Para módulos de pesaje y otros módulos o dispositivos digitales (véase la Figura 1), no son necesarias verificaciones de compatibilidad especiales; el ensayo del funcionamiento correcto de un instrumento completo es suficiente. Si no hay una transmisión correcta de datos entre los módulos (y probablemente entre otros componentes/dispositivos), el instrumento no funcionará en absoluto o algunas funciones fallarán, por ejemplo, ajuste a cero o tara.

En el caso de celdas de carga digitales, se aplica la misma verificación de compatibilidad que en F.4, con excepción de las condiciones (8), (9) y (10) del formato.

F.6 EJEMPLOS DE VERIFICACIONES DE COMPATIBILIDAD DE MÓDULOS CON SALIDA ANALÓGICA

F.6.1 Báscula de vehículos de carretera con un solo rango de medición (Ejemplo No. 1)

Instrumento de pesaje:

clase de exactitud III

capacidad máxima Max = 60 t

división de escala de verificación e = 20 kg

número de celdas de carga N=4

sin mecanismo de palanca R=1

carga muerta del receptor de carga DL = 12 t

rango de ajuste a cero inicial IZSR = 10 t

corrección por carga no distribuida uniformemente NUD = 30 t

tara aditiva $T^+ = 0$

rango de temperatura - 10 °C a + 40 °C

longitud de cable L = 100 m

sección transversal de hilo $A = 0.75 \text{ mm}^2$

Indicador:

clase de exactitud III

número máximo de divisiones de escala de verificación $n_{ind} = 3000$

tensión de excitación de celda de carga $U_{\rm exc} = 12 \text{ V}$

tensión de entrada mínima $U_{min} = 1 \text{ mV}$

tensión de entrada mínima por división de escala de

verificación $\Delta u_{\min} = 1 \,\mu\text{V}$

impedancia mínima/máxima de la celda de carga 30 Ω a 1 000 Ω

rango de temperatura - 10 °C a + 40 °C

fracción de emp $p_{ind} = 0.5$

conexión de cable 6 hilos

valor máx. de longitud de cable por sección transversal

de hilo $(L/A)_{\text{max}} = 150 \text{ m/mm}^2$

Celda(s) de carga:

clase de exactitud C

capacidad máxima $E_{\text{max}} = 30 \text{ t}$

carga muerta mínima $E_{min} = 2 t$

salida nominal¹ C = 2 mV/V

número máx. de divisiones de escala de verificación nLC = 3000

relación $E_{\text{max}} / v_{\text{min}}$ Y = 6 000

relación E_{max} / (2 x DR) Z = 3 000

relación E_{max} / (2 x DR) Z = 3 000 resistencia de entrada

de una celda de carga R_{LC} = 350 Ω

rango de temperatura — 10 °C a + 40 °C

fracción de emp pLC = 0.7

Elementos de conexión:

fracción de emp $p_{con} = 0.5$

 $Y = E_{\text{max}} / v_{\text{min}}$

 $Z = E_{\text{max}} / (2 \times DR)$

Cambio de señal de salida de la celda de carga relacionado con la tensión de entrada después de la carga con E_{max} , normalmente en mV/V.

NOTA Para un cálculo más moderado, se utilizan los siguientes valores relativos de R 60:

Verificación de compatibilidad (Ejemplo No. 1)

(1) Clase de exactitud de la celda de carga (LC), el indicador (IND) y el instrumento de pesaje (WI)

LC	&	IND	igual o mejor	WI
С	&	III	igual o mejor	III

Cumple	No cumple
\boxtimes	

(2) Límites de temperatura del instrumento de pesaje (WI) en comparación con los límites de temperatura de la celda de carga (LC) y el indicador (IND) en °C

	LC		IND		WI
T_{min}	-10 °C	&	-10 °C	≤	-10 °C
T_{max}	40 °C	&	40 °C	≥	40 °C

Cumple	No cumple
\boxtimes	
\boxtimes	

(3) Suma de los cuadrados de las fracciones *p i* de los errores máximos permitidos de los elementos de conexión, el indicador y las celdas de carga

P _{con} ²	+	P _{ind} ²	+	P _{LC} ²	≤ 1
0.25	+	0,25	+	0,49	≤ 1

Cumple	No cumple
\boxtimes	

(4) Número máximo de divisiones de escala de verificación del indicador y número de divisiones de escala del instrumento de pesaje

		<i>n</i> _{ind}	≥	$n_i = \text{Max } i / e_i$
Instrumento de pesaje de un solo rango		3 000	≥	3 000
Instrumento de pesaje de intervalo múltiple o de rango múltiple	<i>i</i> = 1	-	≥	-
	i = 2	1	ΛΙ	-
	i = 3	-	Δ	-

Cumple	No cumple
\boxtimes	П
	H
Ħ	Ħ
H	H

(5) La capacidad máxima de las celdas de carga debe ser compatible con Max del instrumento de pesaje

Factor Q:Q = (Max + DL + IZSR + NUD + T) / Max = 1.867

Q x Max x R / N	≤	E _{max}
28 000 kg	≤	30 000 kg

Cumple	No cumple
\boxtimes	

(6a) Número máximo de divisiones de escala de verificación de la celda de carga y número de divisiones de escala del instrumento de pesaje

		n _{LC}	Δ	$n_i = \text{Max }_i / e_i$
Instrumento de pesaje de un solo rango		3 0000	≥	3 000
De intervalo múltiple o de rango múltiple	<i>i</i> = 1	-	2	-
	i = 2	-	2	-
	i = 3	-	N	-

Cumple	No cumple
\boxtimes	
⊐	

(6b)	Retorno de la señal de salida de la carga muerta mínima de la celda de carga y división
	de escala de verificación más pequeño, e1, de un instrumento de pesaje de intervalo
	múltiple

$n_{LC} \circ Z = E_{max} / (2 \text{ x})$ DR	2	Max _r / e ₁	Cumple
-	IV	-	

(6c) Retorno de la señal de salida de la carga muerta mínima de la celda de carga y división de escala de verificación más pequeño, e_1 , de un instrumento de pesaje de rango múltiple

n_{LC} o $Z = E_{max} / (2 \times DR)$	2	0,4 x Max _r / e ₁
-	≥	-

Cumple	No cumple

No cumple

(6d) Carga muerta real del receptor de carga en relación con la carga muerta mínima de las celdas de carga en kg

DL x R / N	≥	E _{min}
3 000 kg	≥	2 000 kg

Cumple	No cumple	
\boxtimes		

(7) La división de escala de verificación del instrumento de pesaje y la división de escala mínimo de la celda de carga (en kg) deben ser compatibles.

exR/ √N	2	$V_{\text{min}} = E_{\text{max}} / Y$
10,00 kg	2	5,00 kg

Cumple	No cumple
\boxtimes	

(8) Tensión de entrada mínima en general para el indicador electrónico y tensión de entrada mínima por división de escala de verificación y salida real de las celdas de carga

Tensión de entrada mínima en general para indicador electrónico (WI sin carga)

Tensión de entrada mínima por división de escala de verificación

$U=C \times U_{exc} \times R \times DL / (E_{max} \times N)$	≥	U min
2.40 m V	≥	1 mV
$U=C \times U_{exc} \times R \times e / (E_{max} \times N)$	2	ΔU min
4,00 μV	2	1.0 V

Cumple	No cumple
\boxtimes	
Cumple	No cumple
\boxtimes	

(9) Rango de impedancia permitido del indicador electrónico e impedancia real de la celda de carga en Ω

R_{Lmin}	≤	R _{LC} / N	≤	R_{Lmax}
30	≤	87,5	≤	1 000

Cumple	No cumple
\times	

(10) Longitud de cable de extensión entre la celda(s) de carga e indicador por sección transversal del hilo de este cable en m/mm²

(L / A)	≤	(L / A) _{max}
133,3	≤	150

Cumple	No cumple
\boxtimes	

F.6.2 Balanza industrial con tres rangos de medición (Ejemplo No. 2) Instrumento de

clase de exactitud Ш

capacidad máxima Max = 5 000 kg

 $Max_2 = 2000 \text{ kg } Max_1 = 1000 \text{ kg división de escala de verificación}$ $e_3 = 2 \text{ kg}$

> $e_2 = 1 \text{ kg}$ $e_1 = 0.5 \text{ kg}$

número de celdas de carga N = 4sin mecanismo de palanca R = 1

DL = 250 kg rango de carga muerta del receptor de carga

ajuste a cero inicial IZSR = 500 kg corrección

por carga no distribuida uniformemente NUD = 1000 kg

 $T^+ = 0$ tara aditiva

- 10 °C a + 40 °C rango de temperatura

longitud de cable L = 20 m

sección transversal de cable $A = 0.75 \text{ mm}^2$

Indicador:

clase de exactitud Ш

número máx. de divisiones de escala de verificación $n_{\rm ind} = 3000$ tensión de excitación de celda de carga

 $U_{\rm exc} = 10 \text{ V}$ tensión de entrada mínima $U_{\text{min}} = 0.5 \text{ mV}$

tensión de entrada mínima por división de escala de verificación $\Delta u_{\min} = 1 \,\mu V$

impedancia mínima/máxima de la celda de carga 30 Ω a 1 000 Ω rango de temperatura - 10 °C a + 40 °C

fracción de mpe $p_{ind} = 0.5$ conexión de cable 6 hilos

 $(L/A)_{max} = 150 \text{ m/mm}^2$ valor máx. de longitud de cable por sección transversal de cable

Celda(s) de carga:

C clase de exactitud

capacidad máxima $E_{\text{max}} = 2\,000 \text{ kg}$ carga muerta mínima $E_{min} = 0 t$ salida nominal² C = 2 mV/V

número máx, de divisiones de escala de verificación $n_{LC} = 3000$ intervalo mínimo de escala de verificación $v_{\text{min}} = 0.2 \text{ kg}$

relación $E_{\text{max}} / (2 \text{ x DR}) Z = 5 000$

resistencia de entrada de una celda de carga $R_{LC} = 350 \Omega$ - 10 °C a + 40 °C rango de temperatura

fracción de emp $p_{LC} = 0.7$

Elementos de conexión:

 $p_{con} = 0.5$ fracción de emp

Verificación de compatibilidad (Ejemplo No. 2)

(1) Clase de exactitud de la celda de carga (LC), el indicador (IND) y el instrumento de pesaje (WI)

LC	&	IND	igual o mejor	WI
С	&	III	III igual o mejor	

Cumple	No cumple	
\boxtimes		

(2) Límites de temperatura del instrumento de pesaje (WI) en comparación con los límites de temperatura de la celda de carga (LC) y el indicador (IND) en °C

	LC		IND		WI
T_{min}	-10 °C	&	-10 °C	≤	-10 °C
T _{max}	40 °C	&	40 °C	≥	40 °C

Cumple	No cumple
\boxtimes	
\boxtimes	

(3) Suma de los cuadrados de las fracciones *p i* de los errores máximos permitidos de los elementos de conexión, el indicador y las celdas de carga

P _{con} ²	+	P _{ind} ²	+	P _{LC} ²	≤ 1
0.25	+	0.25	+	0.49	≤ 1

Cumple	No cumple
\boxtimes	

(4) Número máximo de divisiones de escala de verificación del indicador y número de divisiones de escala del instrumento de pesaje

		<i>n</i> _{ind}	≥	$n_i = \text{Max}_i / e_i$
Instrumento de pesaje d	-	2	-	
Instrumento de pesaje		3 000	≥	2 000
de intervalo múltiple o de rango múltiple	i = 2	3 000	≥	2 000
- ,	<i>i</i> = 3	3 000	2	2 500

Cumple	No cumple
\times	
\boxtimes	
\boxtimes	

(5) La capacidad máxima de las celdas de carga debe ser compatible con Max del instrumento de pesaje

Factor Q: Q = (Max + DL + IZSR + NUD + T) / Max = 1.35

Q x Max x R / N	≤	E _{max}
1 687,5 kg	≤	2 000 kg

Cumple	No cumple
\times	

(6a) Número máximo de divisiones de escala de verificación de la celda de carga y número de divisiones de escala del instrumento de pesaje

		n _{LC}	≥	$n_i = \text{Max}_i / e_i$
Instrumento de pesaje de ur	solo rango	-	2	-
Instrumento de pesaje de	i = 1	3 0000	2	2 000
intervalo múltiple o de rango múltiple	i = 2	3 0000	2	2 000
	i = 3	3 0000	≥	2 500

cumple	no cumple
\boxtimes	
\boxtimes	
\boxtimes	

(6b)	Retorno de la señal de salida de la carga muerta mínima de la celda de carga y división
	de escala de verificación más pequeño, e1, de un instrumento de pesaje de intervalo
	múltiple

n_{LC} o $Z = E_{max} / (2 \times DR)$	≥	Max _r / e ₁	Cumple
-	≥	-	

(6c) Retorno de la señal de salida de la carga muerta mínima de la celda de carga y división de escala de verificación más pequeño, e_1 , de un instrumento de pesaje de rango múltiple

n_{LC} o $Z = E_{max} / (2 \times DR)$	≥	0,4 x Max _r / e ₁
5 000	≥	4 000

Cumple	No cumple
\boxtimes	

No cumple

(6d) Carga muerta real del receptor de carga en relación con la carga muerta mínima de las celdas de carga en kg

DL x R/N	2	E_{min}
62,5 kg	≥	0 kg

Cumple	No cumple
\times	

(7) La división de escala de verificación del instrumento de pesaje y la división de escala mínimo de la celda de carga (en kg) deben ser compatibles.

$e \times R / \sqrt{N}$	2	$V_{\min} = E_{\max} / Y$
0,25 kg	≥	0,2 kg

Cumple	No cumple
\times	

(8) Tensión de entrada mínima en general para el indicador electrónico y tensión de entrada mínima por división de escala de verificación y salida real de las celdas de carga

Tensión de entrada mínima en general para indicador electrónico (WI sin carga)

$U = C \times U_{\text{exc}} \times R \times DL / (E_{\text{max}} \times N)$	2	U _{min}
0,625 mV	≥	0,5 mV

cumple	no cumple
\boxtimes	

Tensión de entrada mínima por división de escala de verificación

	u = C x U _{exc}	xRxe/(E _{max}	xN)	ΛΙ	Δu_{min}
1,25 μV			≥	1 μV	

cumple	no cumple
\boxtimes	

(9) Rango de impedancia permitido del indicador electrónico e impedancia real de la celda de carga en Ω

R _{Lmin}	≤	R _{LC} / N	≤	R _{Lmax}
30	≤	87,5	≤	1 000

cumple	no cumple
\boxtimes	

(10) Longitud de cable de extensión entre la celda(s) de carga e indicador por sección transversal del hilo de este cable en m/mm²

(L / A)	≤	(<i>L / A</i>) _{max}
26,67	≤	150,0

cumple	no cumple
\boxtimes	

ANEXO G

(Normativo para dispositivos digitales e instrumentos controlados por software)

EXÁMENES Y ENSAYOS ADICIONALES PARA DISPOSITIVOS DIGITALES E INSTRUMENTOS CONTROLADOS POR SOFTWARE

NOTA OIML TC 5/SC 2 está desarrollando procedimientos de examen y ensayo más generales para dispositivos e instrumentos de medición controlados por software.

G.1 DISPOSITIVOS E INSTRUMENTOS CON SOFTWARE INTEGRADO (5.5.1)

Revisar los documentos descriptivos de acuerdo con 8.2.1.2 y verificar si el fabricante ha descrito o declarado que el software está integrado, es decir, que se utiliza en un entorno fijo de hardware y software y no se puede modificar o cargar a través de cualquier interfase u otros medios después de la protección y/o sellado. Verificar si se describen los medios de protección y éstos proporcionan evidencia de una intervención.

Verificar si hay una identificación del software que está claramente asignada al software relevante establecido legalmente y las funciones relevantes establecidas legalmente que realiza según lo descrito en la documentación presentada por el fabricante.

Verificar si el instrumento proporciona fácilmente la identificación del software.

G.2 COMPUTADORAS PERSONALES Y OTROS DISPOSITIVOS CON SOFTWARE PROGRAMABLE O CARGABLE (5.5.2)

G.2.1 Documentación del software

Verificar que el fabricante haya proporcionado la documentación del software según 5.5.2.2 (d) que contenga toda la información relevante para examinar el software relevante establecido legalmente.

G.2.2 Protección del software

G.2.2.1 Software con cápsula cerrada (el acceso al sistema operativo y/o programas no es posible para el usuario):

- Verificar si se suministra un conjunto completo de comandos (por ejemplo, teclas de función o comandos mediante interfases externas) y está acompañado de breves descripciones
- Verificar si el fabricante ha presentado una declaración escrita de la integridad del conjunto de comandos.

G.2.2.2 Sistema operativo y/o programa(s) accesibles para el usuario:

- Verificar si se genera una suma de comprobación o firma equivalente en el código de máquina del software legalmente relevante módulo(s) de programa sujeto(s) a control legal y parámetros específicos para un tipo específico.
- Verificar si no se puede iniciar el software legalmente relevante si se falsifica el código utilizando un editor de texto.

G.2.2.3 Además de los casos de G.2.2.1 o G.2.2.2:

- Verificar si todos los parámetros específicos para un dispositivo están lo suficientemente protegidos, por ejemplo, mediante una suma de comprobación.
- Verificar si hay una pista de auditoría para la protección de los parámetros específicos para un dispositivo y una descripción de la pista de auditoría.
- Realizar algunas comprobaciones aleatorias prácticas para probar si las protecciones y funciones documentadas operan según lo descrito.

G.2.3 Interfase(s) de software

- Verificar si los módulos del programa del software relevante establecido legalmente están definidos y separados de los módulos del software relacionado mediante una interfase de software protectora definida.
- Verificar si la misma interfase de software protectora es parte del software relevante establecido legalmente.
- Verificar si se definen y describen las funciones del software relevante establecido legalmente que se pueden liberar mediante la interfase de software protectora
- Verificar si se definen y describen los parámetros que se pueden intercambiar mediante la interfase de software protectora.
- Verificar si la descripción de las funciones y los parámetros es concluyente y completa.
- Verificar si cada función y parámetro documentado no contradice los requisitos de esta NTC.
- Verificar si existen instrucciones apropiadas para el programador de aplicaciones (por ejemplo, en la documentación del software) con respecto a la capacidad protectora de la interfase de software.

G.2.4 Identificación del software

- Verificar si se genera una identificación apropiada del software en el módulo(s) de programa del software relevante establecido legalmente y los parámetros específicos para un modelo en el tiempo de ejecución del instrumento.
- Verificar si se indica la identificación del software después de un comando manual y se la puede comparar con la identificación de referencia fijada en la aprobación de modelo.
- Verificar si todos los módulos de programa relevantes y parámetros específicos para un modelo correspondientes al software relevante establecido legalmente se incluyen en la identificación del software.
- Verificar también mediante algunas comprobaciones aleatorias prácticas si se generan las sumas de comprobación (u otras firmas) y funcionan según lo documentando.
- Verificar si existe una pista de auditoría eficaz.

G.3 DISPOSITIVOS DE ALMACENAMIENTO DE DATOS (5.5.3)

Revisar la documentación presentada y verificar si el fabricante ha previsto un dispositivo – ya sea que esté incorporado en el instrumento o conectado externamente – que está destinado para el almacenamiento prolongado de datos relevante establecidos legalmente. Si es así:

- **G.3.1** Verificar si el software utilizado para el almacenamiento de datos se materializa en un dispositivo con software integrado (G.1) o con software programable/cargable (G.2). Aplicar G.1 o G.2 para examinar el software utilizado para el almacenamiento de datos.
- **G.3.2** Verificar si se almacena y recupera correctamente los datos.

Verificar si el fabricante describe la capacidad de almacenamiento y las medidas para prevenir la pérdida inadmisible de datos y si éstas son suficientes.

- **G.3.3** Verificar si los datos almacenados contienen toda la información relevante necesaria para reconstruir un pesaje anterior (la información relevante es: valores brutos o netos y valores de tara (si es aplicable, junto con una distinción de tara y tara predeterminada), los signos decimales, las unidades (por ejemplo, kg puede ser codificado), la identificación del conjunto de datos, el número de identificación del instrumento o receptor de carga si varios instrumentos o receptores de carga están conectados al dispositivo de almacenamiento de datos, y una suma de comprobación u otra firma del conjunto de datos almacenados.
- **G.3.4** Verificar si los datos almacenados están protegidos adecuadamente contra cambios accidentales o intencionales.

Verificar si los datos están protegidos al menos con una comprobación de paridad durante la transmisión al dispositivo de almacenamiento.

Verificar si los datos están protegidos al menos con una comprobación de paridad en el caso de un dispositivo de almacenamiento con software integrado (véase el numeral 5.5.1).

Verificar si los datos están protegidos mediante una suma de comprobación o firma adecuada (por lo menos 2 bytes, por ejemplo, una suma de comprobación CRC-16 con función polinómica oculta) en el caso de un dispositivo de almacenamiento con software programable o cargable (véase el numeral 5.5.2).

- **G.3.5** Verificar si los datos almacenados puede ser identificados y visualizados, si el o los números de identificación son almacenados para su posterior uso y registrados en el medio de transacción oficial, es decir, son impresos, por ejemplo, en una salida impresa.
- **G.3.6** Verificar si los datos utilizados para una transacción son almacenados automáticamente, es decir, no depende de la decisión del operador.
- **G.3.7** Verificar si los conjuntos de datos almacenados que se deben verificar mediante la identificación, son visualizados o impresos en un dispositivo sujeto a control legal.

G.4 FORMATO DEL INFORME DE ENSAYO

El Informe de Ensayo debe contener toda la información relevante sobre la configuración del hardware y software de la PC examinada y los resultados de ensayo.

ANEXO H (Informativo)

BIBLIOGRAFÍA

Ref.	Normas y documentos de referencia	Descripción
[1]	Vocabulario Internacional de Metrología – Conceptos fundamentales y generales, y términos asociados (VIM) (Traducción al español de la 3ª edición del VIM 2008)	Vocabulario, elaborado por un grupo de trabajo conjunto compuesto de expertos designados por BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP y OIML, (JCGM 200:2008).
[2]	Vocabulario Internacional de Términos de Metrología Legal, BIML, París (2000)	Vocabulario que incluye sólo los conceptos utilizados en el campo de la metrología legal. Estos conceptos se relacionan con las actividades del servicio de metrología legal, los documentos relevantes así como otros problemas asociados con esta actividad. En este Vocabulario también se incluyen ciertos conceptos de naturaleza general que han sido tomados del VIM.
[3]	OIML B 3 (2003) / Amendment (2006) Sistema de Certificados OIML para Instrumentos de Medición (antes OIML P 1)	Proporciona reglas para emitir, registrar y utilizar Certificados de Conformidad OIML.
[4]	OIML D 11 (2004) Requisitos generales para los instrumentos de medición electrónicos	Contiene requisitos generales para los instrumentos de medición electrónicos
[5]	IEC 60068-1 (1988-6), Apéndice B (incluyendo Modificación 1, 1992-4) Ensayos ambientales. Parte 1: Generalidades y guía	Enumera una serie de ensayos ambientales así como sus severidades apropiadas, y establece diferentes condiciones atmosféricas para las mediciones y ensayos, concebidos para garantizar la aptitud de las muestras a utilizar en condiciones normales de transporte, almacenamiento y uso operativo.
[6]	IEC 60068-2-1 (1990-05) con Modificaciones 1 (1993-02) y 2 (1994-06) Ensayos ambientales, Parte 2: Ensayos, Ensayo A: En frío	Trata de ensayos en frío en muestras disipadoras de y no disipadoras de calor
[7]	IEC 60068-2-2 (1974-01) con Modificaciones 1 (1993-02) y 2 (1994- 05) Ensayos ambientales, Parte 2: Ensayos, Ensayo B: Calor seco	Contiene ensayo Ba: calor seco para muestras no disipadoras de calor con cambio brusco de temperatura; ensayo Bb: calor seco para muestras no disipadoras de calor con cambio gradual de temperatura; ensayos Bc: calor seco para muestras disipadoras de calor con cambio brusco de temperatura; ensayo Bd: calor seco para muestras disipadoras de calor con cambio gradual de temperatura.
[8]	IEC 60068-2-78 (2001-08) Ensayos ambientales, Parte 2-78: Ensayos - Ensayo Cab: Calor húmedo, ensayo continuo (IEC 60068-2-78 sustituye a las siguientes normas retiradas: IEC 60068-2-3, ensayo Ca y IEC 60068-2-56, ensayo Cb)	Proporciona un método de ensayo para determinar la aptitud de los productos electrotécnicos, componentes o equipos para ser transportados, almacenados y utilizados en condiciones de fuerte humedad. El ensayo está destinado principalmente a permitir la observación de los efectos de una fuerte humedad a temperatura constante sin condensación en la muestra durante un período establecido. Este ensayo proporciona varias severidades preferentes para temperaturas altas, una fuerte humedad y para la duración del ensayo. Este ensayo puede aplicarse a muestras disipadoras y no disipadoras de calor. Este ensayo se aplica a equipos o componentes pequeños así como a equipos grandes que tienen interconexiones complejas con equipo de ensayo situado en el exterior de la cámara, y que requieren un tiempo de puesta en servicio que impide recurrir a un precalentamiento y mantener las condiciones especificadas durante el período de instalación.

Ref.	Normas y documentos de referencia	Descripción
[9]	IEC 60068-3-1 (1974-01) + Suplemento A (1978-01): Ensayos ambientales, Parte 3: Información básica, Sección 1: Ensayos en frío y de calor seco	Proporciona información básica para los Ensayos A: En frío (IEC 68-2-1), y Ensayos B: Calor seco (IEC 68-2-2). Incluye apéndices sobre el efecto de: el tamaño de la cámara en la temperatura de superficie de una muestra cuando no se utiliza ventilación forzada; el flujo de aire en las condiciones de la cámara; en las temperaturas de superficie de muestras de ensayo; las dimensiones y material de la terminación del hilo en la temperatura de superficie de un componente; las mediciones de temperatura, la velocidad del aire y el coeficiente de emisión. El Suplemento A proporciona información adicional para casos en los que no se logra la estabilidad de la temperatura durante el ensayo.
[10]	IEC 60068-3-4 (2001-08) Ensayos ambientales - Parte 3-4: Documentación sustentatoria y guía – Ensayos de calor húmedo	Proporciona la información necesaria para ayudar a elaborar las especificaciones relevantes, tales como normas para componentes o equipos, con el fin de seleccionar los ensayos y severidades de ensayo apropiadas para productos específicos y, en algunos casos, modelos específicos de aplicación. El objetivo de los ensayos de calor húmedo es determinar la capacidad de los productos para soportar los esfuerzos que se producen en un ambiente de fuerte humedad relativa, con o sin condensación, y especialmente en lo que se refiere a variaciones de las características eléctricas y mecánicas. También se pueden utilizar los ensayos de calor húmedo para verificar la resistencia de una muestra a algunas formas de ataque de corrosión.
[11]	IEC 61000-4-1 (2000-04) Publicación básica de CEM Compatibilidad electromagnética (CEM) Parte 4: Técnicas de ensayo y medición Sección 1: Visión de conjunto de la serie IEC 61000-4	Proporciona ayuda a los usuarios y fabricantes de equipos eléctricos y electrónicos con respecto a la aplicación de las normas de EMC de la serie IEC 61000-4 sobre técnicas de ensayo y medición. Da recomendaciones generales con respecto a la selección de los ensayos relevantes.
[12]	IEC 61000-4-2 (1995-01) con Modificación 1 (1998-01) Publicación básica de CEM Compatibilidad electromagnética (CEM) Parte 4: Técnicas de ensayo y medición Sección 2: Ensayo de inmunidad a descargas electrostáticas. Edición Consolidada: IEC 61000-4-2 (2001-04) Ed. 1.2 Esta publicación se basa en IEC 60801-2 (segunda edición: 1991)	Se relaciona con los requisitos y métodos de ensayo referentes a la inmunidad de equipos eléctricos y electrónicos sometidos a descargas de electricidad estática producidas directamente por los operadores y entre objetos adyacentes. Adicionalmente, define la gama de niveles de ensayo que corresponden a las diferentes condiciones ambientales y de instalación, y establece los procedimientos de ensayo. Esta norma tiene por objeto establecer una base común y reproducible para evaluar el desempeño de equipos eléctricos y electrónicos cuando son sometidos a descargas electrostáticas. Además, incluye las descargas electrostáticas que pueden ser producidas por los operadores en objetos situados cerca del equipo principal.
[13]	IEC 61000-4-3, Edición Consolidada 2.1 (2002-09) con Enmienda 1 (2002-08) Compatibilidad electromagnética (CEM) Parte 4: Técnicas de ensayo y medición Sección 3: Ensayo de inmunidad a los campos electromagnéticos, radiados y de radiofrecuencia	Se aplica a la inmunidad de los equipos eléctricos y electrónicos a la energía electromagnética radiada. Establece los niveles de ensayo y los procedimientos de ensayo necesarios. Establece una referencia común para evaluar el desempeño de equipos eléctricos y electrónicos sometidos a campos electromagnéticos de radiofrecuencia.

Ref.	Normas y documentos de referencia	Descripción
[14]	IEC 61000-4-4 (2004-07) Compatibilidad electromagnética (CEM) Parte 4-4: Técnicas de ensayo y medición – Ensayos de inmunidad a los transitorios eléctricos rápidos en ráfagas	Establece una referencia común y reproducible para evaluar la inmunidad de los equipos eléctricos y electrónicos cuando son sometidos a transitorios eléctricos rápidos en ráfagas en los puertos de alimentación, señal, control y tierra. El método de ensayo documentado en esta parte de IEC 61000-4 describe un método coherente para evaluar la inmunidad de un equipo o sistema en relación con un fenómeno definido. La norma define: - a forma de onda de tensión del ensayo; - la gama de niveles de ensayo; - el equipo de ensayo; - los procedimientos de verificación del equipo de ensayo; - la instalación de ensayo; - el procedimiento de ensayo. La norma proporciona especificaciones para los ensayos realizados en laboratorio y los ensayos post-instalación.
[15]	IEC 61000-4-5 (2001-04) Edición consolidada, edición 1.1 (Incluyendo Modificación 1 y Corrección 1) Compatibilidad electromagnética (CEM) Parte 4-5: Técnicas de ensayo y medición - Ensayo de inmunidad a las ondas de choque	Se relaciona con los requisitos de inmunidad, los métodos de ensayo y la gama de niveles de ensayo recomendados para los equipos en relación con ondas de choque unidireccionales producidas por sobretensiones debidas a transitorios de rayo y de conmutación. Define varios niveles de ensayo que se relacionan con diferentes condiciones de entorno e instalación. Estos requisitos son desarrollados para los equipos eléctricos y electrónicos y aplicables a éstos. Establece una referencia común para evaluar la inmunidad de equipos cuando son sometidos a perturbaciones de alta energía en las líneas de alimentación e interconexión.
[16]	IEC 61000-4-6 (2003-05) con Modificación 1 (2004-10) Compatibilidad electromagnética (CEM) Parte 4: Técnicas de ensayo y medición Sección 6: Inmunidad a las perturbaciones conducidas, inducidas por los campos de radiofrecuencia	Se relaciona con los requisitos referentes a la inmunidad en conducción de los equipos eléctricos y electrónicos a las perturbaciones electromagnéticas producidas por transmisores de radiofrecuencia (RF) previstos en el rango de frecuencia de 9 kHz80 MHz. Se excluyen los equipos que no tienen al menos un cable conductor (como por ejemplo, cables de alimentación, líneas de transmisión de señales o conexiones de puesta a tierra) que pueda conectar los equipos con los campos de RF perturbadores. Esta norma no tiene por objeto especificar los ensayos que deben aplicarse a aparatos o sistemas específicos. Su principal objetivo es dar una referencia básica general a todos los comités de productos involucrados de IEC. Los comités de productos (o usuarios y fabricantes de equipos) siguen siendo responsables de la selección apropiada del ensayo y el nivel de severidad que deben aplicarse a sus equipos.
[17]	IEC 61000-4-11 (2004-03) Compatibilidad electromagnética (CEM) Parte 4-11: Técnicas de ensayo y medición – Ensayos de inmunidad a caídas de tensión, interrupciones breves y variaciones de tensión	Define los métodos de ensayo de inmunidad y la gama de niveles de ensayo preferentes para los equipos eléctricos y electrónicos conectados a redes de alimentación de baja tensión para caídas de tensión, interrupciones breves y variaciones de tensión. Esta norma se aplica a equipos eléctricos y electrónicos, cuya corriente de entrada nominal no es superior a 16 A por fase, y destinados a ser conectados a redes de CA de 50 Hz o 60 Hz. No se aplica a equipos eléctricos y electrónicos destinados a ser conectados a redes de CA de 400 Hz. Los ensayos para estas redes serán tratados en futuras normas IEC. El objetivo de esta norma es establecer una referencia común para evaluar la inmunidad de equipos eléctricos y electrónicos cuando son sometidos a caídas de tensión, interrupciones breves y variaciones de tensión. Tiene la categoría de una Publicación Básica de EMC de acuerdo con la Guía IEC 107.

Ref.	Normas y documentos de referencia	Descripción
[18]	IEC 61000-6-1 (1997-07) Compatibilidad electromagnética (CEM) Parte 6: Normas genéricas, Sección 1: Inmunidad en entornos residenciales, comerciales y de industria ligera.	Define los requisitos de ensayos de inmunidad a perturbaciones continuas y transitorias, conducidas y radiadas, incluyendo descargas electrostáticas, para aparatos eléctricos y electrónicos destinados a ser utilizados en entornos residenciales, comerciales y de industria ligera y para los cuales no existe ninguna norma específica para un producto o familia de productos. Cubre y especifica los requisitos de inmunidad en el rango de frecuencia de 0 kHz a 400 GHz para cada puerto considerado. Esta norma se aplica a aparatos destinados a ser conectados directamente a la red pública de alimentación de baja tensión o a una fuente de corriente continua dedicada que está destinada a servir de interfase entre el aparato y la red pública de alimentación de baja tensión.
[19]	IEC 61000-6-2 (1999-01) Compatibilidad electromagnética (CEM) Parte 6: Normas genéricas Sección 2: Inmunidad en entornos industriales	Se aplica a aparatos eléctricos y electrónicos destinados a ser utilizados en entornos industriales, para los cuales no existe ninguna norma específica para un producto o familia de productos. Cubre los requisitos de inmunidad en el rango de frecuencia de 0 Hz a 400 GHz, en relación a perturbaciones continuas y transitorias, conducidas y radiadas, incluyendo descargas electrostáticas. Especifica los requisitos de ensayo para cada puerto considerado. Los aparatos destinados a ser utilizados en locales industriales se caracterizan por la existencia de una o más de las siguientes condiciones: - una red de energía alimentada por un transformador de alta tensión o tensión intermedia reservado a la alimentación de una instalación que alimenta a un local industrial o similar; - aparatos industriales, científicos y médicos (ISM); - conmutaciones frecuentes de cargas inductivas o capacitivas importantes; - valores altos de corrientes y de campos magnéticos asociados.
[20]	ISO 7637-1 (2002) Vehículos de carretera – Perturbaciones eléctricas por conducción y acoplamiento Parte 1: Definiciones y consideraciones generales	Define los términos básicos utilizados en las diferentes partes en lo que respecta a perturbaciones eléctricas por conducción y acoplamiento. Además, proporciona información general referente al conjunto de la Norma Internacional y común a todas las partes.
[21]	ISO 7637-2 (2004) Vehículos de carretera — Perturbaciones eléctricas por conducción y acoplamiento Parte 2: Transmisión de perturbaciones eléctricas transitorias por conducción solamente a lo largo de las líneas de alimentación	Especifica ensayos en banco que permiten verificar la compatibilidad de dispositivos instaladosen automóviles particulares y vehículos comerciales ligeros equipados con un sistema eléctrico de 12 V o en vehículos comerciales equipados con un sistema eléctrico de 24 V, con los transitorios eléctricos transmitidos por conducción. Asimismo, da una clasificación de la gravedad de los modos de falla relacionada con la inmunidad a los transitorios. Es aplicable a estos modelos de vehículos de carretera, independientemente de su sistema de propulsión (por ejemplo, motor de encendido por chispa, motor diesel, motor eléctrico).

Ref.	Normas y documentos de referencia	Descripción
[22]	ISO 7637-3 (1995) con Corrección 1 (1995) Vehículos de carretera - Perturbaciones eléctricas por conducción y acoplamiento Parte 3: Automóviles particulares y vehículos comerciales ligeros con una tensión de alimentación nominal de 12 V y vehículos comerciales con una tensión de alimentación de 24 V - Transmisión de perturbaciones eléctricas por acoplamiento capacitivo o inductivo a lo largo de líneas distintas a las líneas de alimentación	Establece una base común para la evaluación de la compatibilidad electromagnética de instrumentos, dispositivos y equipos electrónicos a bordo de vehículos con los transitorios transmitidos por acoplamiento a lo largo de líneas distintas a las líneas de alimentación. El objetivo del ensayo es demostrar la inmunidad del instrumento, dispositivo o equipo a las perturbaciones transitorias rápidas de acoplamiento, como las producidas por una conmutación (conmutación de cargas inductivas, rebote de contactos de relé, etc.).
[23]	OIML B 10 (2004) + Modificación 1 (2006) Marco para un Acuerdo de Aceptación Mutua sobre las Evaluaciones de Modelo de OIML (MAA)	Establece los reglas para un marco voluntario mediante el cual los Participantes dentro de los Estados Miembros de OIML y los Asociados dentro de los Miembros Correspondientes aceptan y utilizan Informes de Ensayo (cuando son validados con un Certificado OIML) para una aprobación de modelo o reconocimiento en sus programas nacionales/regionales de control metrológico y/o para emitir posteriores Certificados OIML.

DOCUMENTO DE REFERENCIA

INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY, OILM, *Non-automatic Weighing Instruments Part 1: Metrological and Technical Requirements. Tests.* Paris, Francia, 144 p. 2006. (OIML R 76-1).