Binary, Octal, and Hex Numbers and Complements

In **positional notation**, a decimal number $d_n d_{n-1} ... d_1 d_0 .d_{-1} d_{-2} ... d_{-q}$ is equal to

$$d_n \times 10^n + d_{n-1} \times 10^{n-1} + \dots + d_0 \times 10^0 + d_{-1} \times 10^{-1} + \dots + d_{-q} \times 10^{-q}$$

Example: $2349_{10} = 2 \times 1000 + 3 \times 100 + 4 \times 10 + 9 \times 1$

In the binary system, the positional notation also applies, with the only exception that the base is 2 instead of 10. Examples:

$$100110_2 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$110.001_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

Octal is a base-8 number system (digits: 0, 1, 2, ..., 7) and hexadecimal is a base-16 number system (digits: 0, 1, ..., 9, A, B, C, D, E, F). Examples:

$$60.3_8 = 6 \times 8^1 + 0 \times 8^0 + 3 \times 8^{-1}$$

$$= 48.375_{10}$$

$$3C.FD_{16} = 3 \times 16^1 + 12 \times 16^0 + 15 \times 16^{-1} + 13 \times 16^{-2}$$

$$= 60.988_{10} \text{ (correct to 3 decimal places)}$$

Decimal-to-binary Conversion. Examples: (i) Convert 125_{10} into binary. (ii) Convert 125.4375_{10} into binary.

Decimal-to-octal and **decimal-to-hexadecimal** conversions are similar.

Given a binary number, we can readily convert it into its octal (by grouping together 3 bits) and hexadecimal (by grouping together 4 bits) equivalences. Examples: $110110101_2 = 665_8 = 1B5_{16}$, $10101.11_2 = 25.6_8 = 15.C_{16}$.

To represent negative numbers in binary, we have the **sign-and-magnitude**, **1's-complement** and **2's-complement**. Octal and hex have similar methods.

Sign-and-magnitude. The most significant (or leftmost) bit is used as the sign bit. Examples: 11100 = -12, 01100 = 12.

1's complement. To negate a number, invert all the bits, including the sign bit. Thus, it has "double zero", namely +0 and -0. Assume a *m*-bit number. The range of representable numbers is $-(2^{m-1}-1)$ to $2^{m-1}-1$.

2's complement. A number is negated by 1's complement and then add 1. It thus eliminates the problem of "double zero". Range of representable numbers is -2^{m-1} to $2^{m-1} - 1$.

Examples of negating 6 in 1's complement and 2's complement notation. Assume m = 8.

(+6)	00000110
(-6 in 1's complement)	11111001
(−6 in 2's complement)	11111010

Exercise

1. Convert 375 ₁₀ into	its equivalence in			
(a) binary			·	
(b) hexadecimal				
(c) octal				
2. Convert the following	ng numbers into its dec	imal equivalence:		
(a) 1011010 ₂				
(b) $5A_{16}$				
(c) 132 ₈				
•	equivalence of the follomplement? Assume a		n-and-magnitude; (ii) 1's com	ıple-
(a) -24	(i)	(ii)	(iii)	
(b) 24	(i)	(ii)	(iii)	
(c) -128	(i)	(ji)	(iii)	