



# Höhere Algebra II

gelesen von Prof. Dr. Lutz Hille

Mitschrift von Phil Steinhorst

Wintersemester 2014/2015

#### Vorwort

Der vorliegende Text ist eine Mitschrift zur Vorlesung Höhere Algebra II, gelesen von Prof. Dr. Lutz Hille an der WWU Münster im Wintersemester 2014/2015. Der Inhalt entspricht weitestgehend dem Tafelanschrieb während der Vorlesung. Für die Korrektheit des Inhalts wird keinerlei Garantie übernommen. Bemerkungen, Korrekturen und Ergänzungen kann man folgenderweise loswerden:

- persönlich durch Überreichen von Notizen oder per E-Mail
- durch Abändern der entsprechenden TeX-Dateien und Versand per E-Mail an mich
- direktes Mitarbeiten via GitHub. Dieses Skript befindet sich im latex-wwu-Repository von Jannes Bantje:

https://github.com/JaMeZ-B/latex-wwu

#### Themenübersicht

Hier kommt eine Themenübersicht hin - oder vielleicht auch nicht.

## Literatur

- T. A. Springer: Linear Algebraic Groups
- H. Kraft: Geometrische Methoden in der Invariantentheorie (Aspekte der Mathematik)
- W. Crawley-Boevey: Lectures on representations of quivers

# Vorlesungswebsite

Folgt noch.

6

# Inhaltsverzeichnis

Index

| 0 Einführung | 4 |
|--------------|---|
|              |   |

13.10

# 0 Einführung

1. Wir betrachten die algebraische Gruppe  $\mathrm{GL}_n=\mathrm{GL}_n(k)$ ; meist ist  $k=\mathbb{C}$  oder allgemeiner  $k=\overline{k}$  algebraisch abgeschlossen und  $\mathrm{char}(k)=0$ .  $\mathrm{GL}_n=\mathrm{GL}_n(\mathbb{C})\subseteq M_n(\mathbb{C})$  ist (bzgl. der üblichen Topologie) eine offene Teilmenge. Später betrachten wir die viel gröbere **Zariski-Topologie**.

Sei  $m=n^2$  und  $\mathbb{A}^m\subseteq\mathbb{C}^m$  ein m-dimensionaler affiner Vektorraum. Wir können  $\mathrm{GL}_n(\mathbb{C})$  auch folgendermaßen charakterisieren:

$$GL_n(\mathbb{C}) = M_n(\mathbb{C}) \setminus V(\det = 0),$$

wobei  $V(f=0)=\{x\in\mathbb{A}^m:f(x)=0\}$  die Nullstellenmenge oder **Verschwindungsmenge** der polynomialen Funktion  $f\colon\mathbb{A}^m\to\mathbb{C},\,f\in k[x_1,\ldots,x_m]$  bezeichnet.

2. **Beispiel:** Sei  $\mathbb{A}^m = M_n(\mathbb{C})$ .  $G := \mathrm{GL}_n(\mathbb{C})$  ist eine Gruppe. Können wir die Gruppenverknüpfung, die Inversenbildung und das neutrale Element als polynomiale Funktion auffassen?

$$\begin{array}{ccc} \mu\colon G\times G\longrightarrow G & i\colon G\longrightarrow G & e\colon \{x\}\longrightarrow G \\ (g,h)\longmapsto gh & g\longmapsto g^{-1} & x\longmapsto e=\mathbbm{1}_n \end{array}$$

e ist offensichtlich polynomial und  $\mu$  auch (vgl. Matrixmultiplikation). Jedoch ist i nicht polynomial, da nach Cramerscher Regel gilt:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

Daher müssen wir auch Quotienten polynomialer Abbildungen mit Nenner ungleich 0 zulassen.

#### Idee

Eine lineare algebraische Gruppe ist abgeschlossen in  $\mathrm{GL}_n$  und die Gruppenabbildungen sind Quotienten polynomialer Abbildungen, sodass folgende Eigenschaften erfüllt sind (d.h. die folgenden Diagramme sind kommutativ):

Assoziativität:  $\mu \circ (\mu, id) = \mu \circ (id, \mu)$ 

$$\begin{array}{cccc} G \times G \times G \xrightarrow{(\mu, \mathrm{id})} G \times G & & (g, h, l) & \longmapsto & (gh, l) \\ & & \downarrow_{(\mathrm{id}, \mu)} & & \downarrow^{\mu} & & \downarrow & & \downarrow \\ G \times G & \xrightarrow{\mu} G & & (g, hl) & \longmapsto & g(hl) \stackrel{!}{=} (gh) \end{array}$$

Inverse:  $e \circ p = \mu \circ (\mathrm{id}, i) \circ \Delta$  bzw.  $e \circ p = \mu \circ (i, \mathrm{id}) \circ \Delta$ 

$$G \times G \qquad (g,g)$$

$$G \longrightarrow G \times G \qquad g \longmapsto (g,g^{-1})$$

$$\downarrow^{p} \qquad \downarrow^{\mu} \qquad \downarrow \qquad \downarrow$$

$$\{x\} \stackrel{e}{\longrightarrow} G \qquad e \longmapsto e \stackrel{!}{=} g \cdot g^{-1}$$

Neutrales Element:  $\mu \circ (e, id) = id = \mu \circ (id, e)$ 

$$G \xrightarrow{(e, \mathrm{id})} G \times G \xrightarrow{\mu} G \qquad g \longmapsto (e, g) \longmapsto eg \stackrel{!}{=} g$$

#### Definition 0.1 (polynomiale und rationale Funktion)

•  $f \colon \mathbb{A}^n \to \mathbb{A}^m$  heißt polynomial bzw. Morphismus affiner Varietäten, falls

$$(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))=f(x_1,\ldots,x_n)$$

mit  $f_j \in k[x_1, \ldots, x_n]$  für alle  $j \in \{1, \ldots, n\}$ .

- Sei  $U\subseteq \mathbb{A}^n$  offen (im klassischen Sinne oder bzgl. Zariski-Topologie).  $f\colon U\to \mathbb{A}^m$  heißt **polynomial**, falls  $f=\frac{h}{g}$  mit  $h,g\in k[x_1,\ldots,x_n]$  und  $g(x)\neq 0$  für alle  $x\in U$ .  $\lceil f_j=\frac{h_j}{g_j}$  komponentenweise $\rfloor$
- f wie oben heißt **rational**, fall  $f=\frac{h}{g}$  wie oben mit  $g\not\equiv 0$  auf U. f ist im Allgemeinen keine Abbildung, sondern nur auf  $U\setminus V(g=0)$  definiert.

## Beispiel 0.2 (Beispiele für polynomiale und rationale Funktionen)

- $GL_n \to GL_n$  mit  $g \mapsto g^{-1}$  ist polynomial,  $M_n \to M_n$  mit " $g \mapsto g^{-1}$ " ist rational.
- $\det\colon \operatorname{GL}_n \to \mathbb{C}$  und  $\det\colon M_n \to \mathbb{C}$  ist polynomial.
- $\det^{-1}: M_n \to \mathbb{C}$  ist rational und  $\det^{-1}: \operatorname{GL}_n \to \mathbb{C}$ ?
- $\mathbb{A}^1 = \mathbb{C} \to \mathbb{C}^{\times}$  mit  $z \mapsto e^{2\pi i z}$  ist nicht polynomial.

# Index

Morphismus affiner Varietäten, 5

polynomiale Funktion, 5

rationale Funktion, 5

Verschwindungsmenge, 4

Zariski-Topologie, 4

| Liste der Sätze u | nd Definitionen                    |   |
|-------------------|------------------------------------|---|
| Definition 0.1    | polynomiale und rationale Funktion | 5 |