Uvod u aritmetiku eliptičkih krivulja

1. Eliptičke krivulje nad \mathbf{C} (skica) - 3. lekcija

Već smo vidjeli da se eliptička krivulja (točnije skup svih njenih kompleksnih točaka, uključujući i beskonačno daleku točku) može parametrizirati (uniformizirati) dvostrukoperiodnim kompleksnim funkcijama h, h', koje se dobiju integriranjem po torusu $E(\mathbf{C})$ (od sad ćemo eliptičku krivulju zadanu jednadžbom $y^2 = x^3 + ax + b$ označavati kao E, skup njenih kompleksnih točaka, uključujući i beskonačno daleku točku, kao $E(\mathbf{C})$, skup realnih točaka kao $E(\mathbf{R})$ i sl.). Do baze za rešetku perioda Abel je izvorno došao integriranjem po pripadnom torusu. Einsensteinova je ideja da se krene od \mathbf{C} i od po volji odabrane dvodimenzionalne rešetke

$$L = \{m\omega_1 + n\omega_2\}, \ m, n \in \mathbf{Z}$$

gdje su ω_1, ω_2 **R**-linearno nezavisni kompleksni brojevi koji čine bazu rešetke, pa da se konstruiraju meromorfne funkcije kojima je L skup perioda. On je dao i prijedlog kako se tako funkcije mogu konstruirati. Eisenstein je umro mlad, a njegovu ideju razradio je Weierstrass.

Weierstarssove \mathcal{P} i \mathcal{P}' funkcija

Neka je $L = \mathbf{Z}\omega_1 \oplus \mathbf{Z}\omega_2$ fiksirana rešetka u C (gdje su ω_1, ω_2 linearno nezavisni nad R). Weierstrassova \mathcal{P} funkcija (pridužena rešetki L) je funkcija zadana redom:

$$\mathcal{P}(z) := \frac{1}{z^2} + \sum_{\omega \in L \setminus \{0\}} \left[\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right]$$
 (1)

Da bi se naglasilo o kojoj je rešetki riječ često se piše $\mathcal{P}_L(z)$ ili slično. Vrijedi sljedeće (a dokaže se standardnim postupkom):

- (I) Red (1) konvergira apsolutno na $\mathbb{C} \setminus L$.
- (II) Red (1) konvergira uniformno na kompaktima od $\mathbb{C} \setminus L$.

Svojstvo (I) potvrdjuje da je (1) dobro definirano tj. da ne ovisi o redoslijedu zbrajanja, a skupa s (II) da je \mathcal{P} analitička funkcija na $\mathbf{C} \setminus L$, koja se može derivirati član po član. Dalje, vrijedi (što ćemo i dokazati):

(i)
$$\mathcal{P}$$
 je parna funkcija. Naime, $\mathcal{P}(-z) := \frac{1}{z^2} + \sum_{\omega \in L \setminus \{0\}} \left[\frac{1}{(z - (-\omega))^2} - \frac{1}{(-\omega)^2} \right] = \mathcal{P}(z)$, jer je $-L = L$.

(ii) $\mathcal{P}'(z) := -2\sum_{\omega \in L} \frac{1}{(z-\omega)^3}$ je L-periodna (tj. za periode ima sve elemente iz L, odnodno ima dva nezavisna perioda pa je dvostruko periodna) neparna analitička na $\mathbb{C} \setminus L$ funkcija. Zato kažemo da je \mathcal{P}' eliptička funkcija (ili, preciznije, L-eliptička funkcija). Periodnost ide izravnim uvrštavanjem i korištenjem -L = L, a neparnost kao i u (i).

(iii) \mathcal{P} takodjer je periodna, pa je eliptička. Naime, iz

 $\mathcal{P}'(z+\omega)=\mathcal{P}'(z)$, za svaki fiksirani $\omega\in L$ i svaki $z\in\mathbf{C}$ (uz interpretaciju da je vrijednost u točkama rešetke beskonačna), integriranjem se dobije $\mathcal{P}(z +$ $\omega = \mathcal{P}(z) + C$, za svaki fiksirani $\omega \in L$ i svaki $z \in \mathbb{C}$, gdje je C kompleksna konstanta ovisna samo o izabranom ω . Uvrštavanjem $z=-\frac{\omega}{2}$ iz parnosti od \mathcal{P} proizlazi da je C=0. Kako sve vrijedi za bilo koji ω , \mathcal{P} je eliptička.

(iv) (Laurentov razvoj od \mathcal{P} oko ishodišta). Za $z \neq 0$ sa svojstvom |z| < $\min\{|\omega|, \ \omega \in L \setminus \{0\}\}\ \text{vrijedi}$

$$\mathcal{P}(z) = \frac{1}{z^2} + 3G_4z^2 + 5G_6z^4 + 7G_8z^6 + \dots$$

gdje je

$$G_k := \sum' \frac{1}{\omega^k}$$

za $k \geq 3$ Eisensteinov red (znak sume s crticom znači da se sumira po svim ne-nul elementima rešetke - uočite da za neparne indekse k je $G_k = 0$, a za parne ≥ 4 red apsolutno konvergira). Za dokaz je dovoljno razmotriti:

$$\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} = \frac{1}{\omega^2} \left[\frac{1}{(1-\frac{z}{\omega})^2} - 1 \right] \frac{1}{\omega^2} \sum_{n=1}^{\infty} (n+1) \frac{z^n}{\omega^n}$$

Sumirajući po svim $\omega \neq 0$ dobijemo traženi razvoj.

(v) \mathcal{P} je meromorfna na \mathbf{C} s polovima 2. reda u L, a \mathcal{P}' je meromorfna na \mathbf{C} s polovima 3. reda u L. Naime, iz razvoja (iv) se vidi da je u 0 pol 2. reda, a zbog eliptičnosti (tj. L-periodnosti) tako je u svakoj točki rešetke.

(vi) Vrijedi

$$\mathcal{P}'(z)^2 = 4\mathcal{P}(z)^3 - g_2\mathcal{P}(z) - g_3$$

gdje je $g_2:=60G_4,\ g_3:=140G_6.$ Naime, iz razvoja (iv) dobije se: $\mathcal{P}'(z)^2=\tfrac{4}{z^6}-\tfrac{24G_4}{z^2}-80G_6+\dots$

 $\mathcal{P}(z)^3 = \frac{1}{z^6} + \frac{9G_4}{z^2} + 15G_6 + ...,$ pa je $H(z) := \mathcal{P}'(z)^2 - 4\mathcal{P}(z)^3 + g_2\mathcal{P}(z) + g_3$ analitička *L*-periodna funkcija na \mathbb{C} sa svojstvom H(0) = 0. Ona je omedjena na fundamentalnom periodu, pa i na cijelom C, pa je konstanta. Kako joj je jedna vrijednost 0 ona je nula-funkcija, što smo i trebali.

(vii) preslikavanje $\mathbf{C} \mapsto E(\mathbf{C}), z \mapsto (\mathcal{P}(z), \mathcal{P}'(z)), L \mapsto O$,

gdje je $E: y^2 = 4x^3 - g_2x - g_3$ pripadna eliptička krivulja s beskonačno dalekom točkom O, je dobro definirana surjekcija (da je preslikavanje dobro definirano slijedi iz (vi)). Ona inducira bijekciju

$$\mathbf{C}/L \cong E(\mathbf{C})$$

Time smo dobili uniformizaciju eleptičke krivulje E eliptičkim funkcijama $\mathcal{P}, \mathcal{P}'$ (sl.1). Za preciznu formulaciju ove tvrdnje i dokaz trebalo bi uvesti nekoliko novih pojmova i dokazati nekoliko (standardnih) činjenica, što izostavljamo. Posebno gornja bijekcija je analitički izomorfizam grupa, što će imati smisla tek kad definiramo grupnu operaciju na \mathbf{C} .

Umjesto toga podrobno ćemo sve ilustrirati na jednom primjeru. Najprije bez dokaza navodimo još jednu dobro poznatu formulu.

(IV) Kako je $G_k := \sum' \frac{1}{(m\omega_1 + n\omega_2)^k} = \frac{1}{(\omega_1)^k} \sum' \frac{1}{(m+n\tau)^k}$, gdje je $\tau := \frac{\omega_2}{\omega_1}$ i možemo smatrati da je iz gornje poluravnine \mathcal{H} , vidimo da je gotovo dovoljno razmatrati Eisensteinove redove za rešetke razapete bazom $\{1, \tau\}$ za $\tau \in \mathcal{H}$, definirane kao:

$$G_k(\tau) := \sum' \frac{1}{(m+n\tau)^k}.$$

Vrijedi:

$$G_{2k}(\tau) = 2\zeta(2k) + 2\frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{k=1}^{\infty} \sigma_{2k-1}(n)e^{2\pi i n\tau},$$
 (2)

gdje je ζ Riemannova zeta funkcija, a $\sigma_r(n) := \sum_{d|n} d^r$, funkcija koja zbraja r-te potencije djelitelja broja n.

Primjer. Neka je $L := \mathbf{Z} \oplus \mathbf{Z}i$ rešetka razepeta s $\{1, i\}$ (vidi sl.2. gdje je predočen fundamentalni paralelogram). Tada je:

$$\mathcal{P}(z) = \frac{1}{z^2} + \sum ' \left[\frac{1}{(z-m-ni)^2} - \frac{1}{(m+ni)^2} \right],$$

$$\mathcal{P}'(z) = \frac{-2}{z^3} - 2\sum ' \frac{1}{(z-m-ni)^3},$$

$$g_2 := 60G_4 = 60\sum ' \frac{1}{(m+ni)^4},$$

$$g_3 := \frac{1}{40}G_4 - \sum ' \frac{1}{m-ni} - \frac{1}{6}\sum ' \frac{1}{(n-mi)^6} = -g_3, \text{ pa je } g_3 = 0.$$

Nadalje, izravnim uvrštavanjem u (2) dobije se $g_2>0$, pa je eliptička krivulja

$$E: y^2 = 4x^3 - g_2 x$$

definirana jednadžbom s realnim koeficijentima i $E(\mathbf{R})$ ima dvije komponente povezanosti, kao na sl.3. Želimo razjasniti koje se točke fundamentalnog paralelograma preko uniformizacije $z \mapsto (\mathcal{P}(z), \mathcal{P}'(z))$ preslikavaju u ove realne točke od E.

a) Točke presjeka s x-osi: one karakterizirane uvjetom y=0, tj. $\mathcal{P}'(z)=0$, pa treba naći nultočke te funkcije. Kako je općenito $\mathcal{P}'(\frac{\omega}{2})=\mathcal{P}'(\frac{\omega}{2}-\omega)=0$

 $\mathcal{P}'(-\frac{\omega}{2}) = -\mathcal{P}'(\frac{\omega}{2})$ vidimo da je u našem fundamentalnom paralelogramu

$$\mathcal{P}'(\frac{1}{2}) = \mathcal{P}'(\frac{i}{2}) = \mathcal{P}'(\frac{1+i}{2}) = 0$$

To su, očito, jedina rješenja jednadžbe $\mathcal{P}'(z) = 0$ u fundamentalnom periodu (a poslije se sve ponavlja).

b) Tražimo z za koje je $\mathcal{P}(z)$ realno. Kako definicijske redove možemo zbrajati po volji i kako je rešetka invarijantna na konjugiranje (pri konjugiranju prelazi u sebe), vrijedi

$$\overline{\mathcal{P}(z)} = \mathcal{P}(\bar{z})$$

(tj. konjugiranje je "homomorfizam" za beskonačnu sumu). Zato je za sve t za koje je 0 < t < 1:

$$\overline{\mathcal{P}(t)} = \mathcal{P}(t)$$

 $\overline{\mathcal{P}(ti)} = \mathcal{P}(-ti) = \mathcal{P}(ti)$, zbog parnosti

 $\mathcal{P}(\frac{1}{2}+ti) = \mathcal{P}(\frac{1}{2}-ti) = \mathcal{P}(-\frac{1}{2}+ti) = \mathcal{P}(\frac{1}{2}+ti)$, zbog parnosti i periodnosti

 $\overline{\mathcal{P}(\frac{i}{2}+t)} = \mathcal{P}(-\frac{i}{2}+t) = \mathcal{P}(\frac{i}{2}+t)$, zbog periodnosti Tako smo našli 4 intervala u fundamentalnom periodu koje funkcija \mathcal{P} preslikava u 4 realna intervala na koje $-\frac{\sqrt{g_2}}{2}$, 0 i $\frac{\sqrt{g_2}}{2}$ dijeli realnu os. Funkcija \mathcal{P} na tim intervalima nije injektivna, već svaku vrijednost osim $-\frac{\sqrt{g_2}}{2}$, 0 i $\frac{\sqrt{g_2}}{2}$ postiže dva puta (u točkama simetričnim s obzirom na $\frac{1}{2}, \frac{i}{2}, \frac{1+i}{2}$). To izravno proizlazi iz identiteta

$$\mathcal{P}(\frac{\omega}{2} - z) = \mathcal{P}(\frac{\omega}{2} + z)$$

koji vrijedi za svaki z i svaki period ω (za bilo koju rešetku). Uočite, takodjer da vrijedi

$$\mathcal{P}'(\frac{\omega}{2}-z) = -\mathcal{P}'(\frac{\omega}{2}+z)$$

pa u gornjim točkama \mathcal{P}' prima suprotne vrijednosti.

Zato u prvom dijelu svakog od tih intervala \mathcal{P} primi svaku vrijednost iz odredjenog intervala na x-osi, a u drugom dijelu iste te vrijednosti u suprotnom redoslijedu, pri čemu \mathcal{P}' postiže suprotne vrijednosti (u slučaju realnih vrijednosti jednom ispod osi x, a jednom iznad). Zato smo ta 4 intervala podijelili na 8 poluintervala kao na sl.4. i predočili ponašanje \mathcal{P} i \mathcal{P}' funkcije (tu \mathcal{P} u prva četiri intervala prima redom sve realne vrijednosti od $-\infty$ do $+\infty$, a druga četiri u suprotnom redoslijedu, a \mathcal{P}' prima suprotne vrijednosti). Pri odredjivanju putanje sluv zili smo se programskim paketom Mathematica, pune oznake odnose se na prve 4 poluintervala, a iscrtkane na druga 4. Na onim dijelovima nad kojima su druge koordinate imaginarne (tj. prve negativne) oznaku putanje stavljamo iznad x-osi ako su imaginarni dijelovi pozitivni.

Rekonstrukcija perioda 1,i integriranjem po torusu. Uvedimo sljedeće oznake (vidi sl.5.):

Realni ciklus koji ne sadrži O označimo kao c (dobije se preslikavan-

jem intervala $II \cup VII$), a onaj drugi kao c' (dobije se preslikavanjem intervala $IV \cup V$, c, c' su suprotno orijentirani). Nevidljive imaginarne cikluse označimo kao γ (dobije se preslikavanjem intervala $III \cup VI$), odnosno kao γ' (dobije se preslikavanjem intervala $I \cup VIII$). Tada je (uz zamjenu $x = \mathcal{P}(z), \ y = \mathcal{P}'(z); \ dx = \mathcal{P}'(z)dz$)

$$\int_{c} \frac{dx}{y} = \int_{\frac{i}{2}}^{\frac{1}{2} + \frac{i}{2}} dz + \int_{\frac{1}{2} + \frac{i}{2}}^{1 + \frac{i}{2}} dz = 1.$$

U prijevodu na standardno integriranje po \boldsymbol{x} osi, značenje je:

$$\int_{-\frac{\sqrt{g_2}}{2}}^0 \frac{dx}{\sqrt{4x^3 - g_2x - g_3}} + \int_0^{-\frac{\sqrt{g_2}}{2}} \frac{dx}{-\sqrt{4x^3 - g_2x - g_3}} = 2 \int_{-\frac{\sqrt{g_2}}{2}}^0 \frac{dx}{\sqrt{4x^3 - g_2x - g_3}} = 1.$$
 Lako se vidi da se integriranjem po c' dobije -1 (što je logično jer su c i $-c'$ homologni).

Slično se dobije:

$$\int_{\gamma'} \frac{dx}{y} = \int_{-\infty}^{\frac{i}{2}} dx$$