Tyler Burleson CSCI-4047-901 Exercise 2

1.)

salary Min. : 7.00 1st Qu.: 21.00 Median : 42.00 Mean : 44.87 3rd Qu.: 64.00 Max. :197.00	Min. : 7.00 1st Qu.: 26.00 Median : 45.00 Mean : 55.56	prestige Min. : 3.00 1st Qu.: 16.00 Median : 41.00 Mean : 50.69 3rd Qu.: 81.00 Max. :217.00
Max. :197.00	Max. :221.00	Max. :217.00

2.)

Histogram of data[, c("prestige")]

Histogram of data[, c("education")]

4.)

6.)

- 7.) Variance measures the spread of the data
- 8.) It indicates the measured data is very spread out from each other point
- **9.)** If the variance is 0, this means the measured data is equal to each other. This can be a good and a bad thing. It's good if all the measured employees have the same job, but it's bad if they are on different levels making the same salary.

PT 2)

a.) d(Witcher 2, MK 11) = $(3-1)/3 -> \frac{2}{3}$ or .6666667 **b.)**d(Super Mario Bros., Super Sonic) = $(3-2)/3 -> \frac{1}{3}$ or .33333333