Real Analysis Qualifying Exam Fall 1997

Unless otherwise stated, (X, \mathcal{A}, μ) is an arbitrary measure space.

1. Let $E \subset \mathbb{R}$ be a Borel set. Prove that

$$E' = \{(x, y) \in \mathbb{R}^2 : x + y \in E\}$$

is a Borel set.

2. Let f be a measurable function on X and p > 0. Prove

$$\int |f|^p d\mu = p \int_0^\infty t^{p-1} \mu(\{|f| > t\}) dt.$$

3. Suppose that $f_n, f \in L^1(\mu)$ and $||f - f_n||_{1} \to 0$. Prove

$$\limsup \int \log |f_n| d\mu \le \int \limsup \log |f_n| d\mu,$$

where $\log x = -\infty$ for x = 0.

4. Suppose that μ is a positive finite Borel measure on a Hausdorff space X, and for each open set $V \subset X$,

$$\mu(V) = \sup \{ \mu(K) : K \text{ is compact }, K \subset V \}.$$

Prove: Given a Borel set $E \subset X$ and $\varepsilon > 0$, there exist a compact set K and an open set V such that

$$K \subset E \subset V$$
 and $\mu(V \setminus K) < \varepsilon$.

5. If f is complex function on [a,b], its total variation $F:[a,b]\to [0,\infty]$ is defined by

$$F(x) = \sup \left\{ \sum_{j=1}^{N} |f(t_j) - f(t_{j-1})| : a = t_0 < t_1 < \dots < t_N = x \right\}.$$

Given an example of a continuous function f on [a,b] for which $F(x) = \infty$ for any $x \in (a,b]$.

6. Let $f_n(t) = e^{i(n+\frac{1}{2})t}$, $t \in [0, 2\pi]$. Is it true that $\{f_n\}_{n \in \mathbb{Z}}$ is a complete orthonormal system in $L^2[0, 2\pi]$?

(You may use the fact that the functions e_n , $e_n(t) = e^{int}$, $n \in \mathbb{Z}$, form a complete orthonormal system in $L^2[0, 2\pi]$.)

- 7. Construct a nonzero positive Borel measure μ on [0,1] which is singular with respect to Lebesgue measure and such that $\mu(\{t\}) = 0$ for any $t \in [0,1]$.
- **8.** Let $\{f_n\}$ be a sequence of functions in $L^1[0,1]$ such that $f_n(t) \to 0$ for any $t \in [0,1]$. Is it true that $\int_0^1 f_n(t)dt \to 0$?

1