Weighted Histogram Analysis Method (WHAM) algorithm notes

18 March 2021

https://bougui505.github.io/science/2014/10/23/wham-the-weighted-histogram-analysis-method.html

WHAM equations

Optimal estimate of unbiased probability distribution:

$$\mathcal{P}_0(\dot{w}) = \frac{\sum_{\alpha'} n_{\alpha'}(\dot{w})}{\sum_{\alpha''} N_{\alpha''} f_{\alpha''} c_{\alpha''}(\dot{w})} \tag{1}$$

- $n_{\alpha'}(\dot{w})$: histogram count for \dot{w} values at α'
- $N_{\alpha''}$: total number of snapshots (clones???) at α''
- $f_{\alpha''}$: normalization constant (solve for it iteratively)
- $c_{lpha''}(\dot{w}) = \expigl[-etalpha''\int_0^{ au}\dot{w}\,dtigr]$: biasing factor

$$f_{\alpha''}^{-1} = \sum_{\dot{w}} c_{\alpha''} \mathcal{P}_0(\dot{w}) \tag{2}$$

 $\beta=1$ in our simulations

"We discretize the samples into M bins" https://bougui505.github.io/assets/wham_derivation.pdf

- ullet The samples are the \dot{w} values from each clone
- Number of samples then is $n_{\mathrm{frames}} \cdot n_{\mathrm{clones}}$???

Solve iteratively:

- Arbitrary set of starting values for $f_{\alpha''}$ (e.g. set all equal to 1)
- Calculate $\mathcal{P}_0(\dot{w})$
- Use calculated $\mathcal{P}_0(\dot{w})$ to update $f_{lpha''}$
- Repeat until convergence is achieved

Algorithm

Set $f_{\alpha''}$

Initial guess: 1 for all α''

Calculate $\mathcal{P}_0(\dot{w})$

Numerator

- For each α , histogram \dot{w} values (for all clones???)
 - \circ Input: bin size, value of α
 - File: wDots.txt
- · Combine histograms

Denominator

- $c_{lpha''}(\dot{w}) = \expigl[-etalpha''\int_0^{ au}\dot{w}\,dtigr]$: calculate for each clone and sum
 - \circ Input: value of α
 - File: wDotIntegral.txt
 - Scalar value independent of \dot{w} ??
- ullet Multiply by $f_{lpha''}$ and $N_{lpha''}$
 - \circ Input: $N_{lpha''}$ (number of clones * number of frames)
 - Number of clones: number of clone* directories
 - Number of frames: number of lines in wDots.txt 1 ?
- Take sum over all values of α''

Calculate $\mathcal{P}_0(\dot{w})$

Calculate $f_{lpha''}$

- Sum over all \dot{w} bins: $c_{\alpha''}(\dot{w})\mathcal{P}_0(\dot{w})$
 - o Input:
- Take inverse

Monitor convergence ?