## Arc length

Let g(t) be a parametric function that draws a curve in  $\mathbb{R}^n$ . The arc length from g(a) to g(b) is given by

$$\int_{a}^{b} |g'(t)| dt$$

where |g'(t)| is the length of the tangent vector at g(t). For example, find the length of the curve  $y = x^2$  from x = 0 to x = 1.

```
g = (t,t^2)
defint(abs(d(g,t)),t,0,1)
\frac{1}{2} 5^{1/2} - \frac{1}{4} \log(2) + \frac{1}{4} \log(2 5^{1/2} + 4)
float
```

1.47894

As expected, the result is greater than  $\sqrt{2} \approx 1.414$ , the length of the diagonal from (0,0) to (1,1).

The following script does a discrete computation of the arc length by dividing the curve into 100 pieces.

```
g(t) = (t,t^2)

h(k) = abs(g(k/100.0) - g((k-1)/100.0))

sum(k,1,100,h(k))
```

1.47894

As expected, the discrete result matches the analytic result.

Find the length of the curve  $y = x^{3/2}$  from the origin to  $x = \frac{4}{3}$ .

```
g = (t,t^{(3/2)})

defint(abs(d(g,t)),t,0,4/3)

\frac{56}{27}
```