Epreuve de turbomachines - Durée 45 mn

- A- Une pompe puise de l'eau à travers le filtre A et le rejette dans un réservoir de grande dimension avec un débit de 4 litres/seconde. La dénivellation est de 10 ml. Les pertes de charges sont réparties de la manière suivante :
- Pertes de charge dans A : $\Delta H_A = 1.5 \frac{V_B^2}{2g}$ où V_B est la vitesse moyenne dans la canalisation B.
- Pertes de charge dans la canalisation B dont le coefficient de perte de charge est donné par $\lambda_B = 0.316 \, \text{Re}^{-\frac{1}{4}}$ (Longueur et diamètre de la canalisation B : $L_B = 3 \, \text{m}$, $D_B = 5 \, \text{cm}$).
- Pertes de charge dans la canalisation C, $\lambda_C = \lambda_B$ (Longueur et diamètre de la canalisation C: $L_C = 30 \text{ m}, D_C = 3 \text{ cm}).$

1°) Quelle est la hauteur nette que doit délivrer la pompe ?

- B- La pompe considérée est centrifuge, à entrée radiale et ayant un rendement de 70%.

 La roue de la pompe tournant à [370-tour/mn], possède une roue de diamètre extérieur D== 0, 25 m et une section de sortie valant 0,007 m², alors que l'angle de sortie $\beta = (\tilde{U}_2, \tilde{W}_2)$ vaut 150°.
- Calculer la vitesse de rotation de la pompe en tours/minutes.
- C- En gardant la même pompe et en doublant la vitesse de rotation, quels seraient le nouveau débit et la nouvelle hauteur nette de la pompe ?

Turbomachines

Exercice 1:

Pour irriguer des jardins on utilise l'eau d'un canal dont le niveau se trouve à 299 m en dessous de l'axe horizontal de la pompe, qui doit débiter, 170 m⁸/h d'eau. Dans ces conditions, le NPSH requis est de 63745 Pa. Entre le canal et la pompe on doit installer une canalisation de 80 m de long en tube bitumé de rugosité 0.05 mm, comprenant un coude de 90° de coefficient de perte de charge K₁= 0.26, une crépine - filtre placé à l'extrémité de la conduite donc immergé dans le canal – et un clapet de pied pour maintenir la conduite et la pompe pleines d'eau (question d'amorçage) – dont le coefficient de perte de charge global est de K_2 = 0.9. Le NPSH disponible impose le chois du diamètre de la conduite, sachant bien que le prix dépend de cette dimension. Déterminer le diamètre minimal donc le moins couteux- à donner à cette conduite, parmi les valeurs commerciales: 100- 125 - 150 - 200 -300....données en mm. On commencera par 125 mm. La température de l'eau ne dépassant pas 20°C dans le canal, on prendra pour pression de vapeur saturante 2338 Pa, pour masse volumique 998 kg/m³ et pour viscosité cinématique 10-6 m²/s.

Exercice 2 : Choix d'une pompe par similitude

Une pompe de diamètre D=0,25 m, tournant à 1450 tours/mn, a les caractéristiques suivantes :

Qv (m3/s)*10 ⁻⁴	614	735	859	983	1107	1228
Hn(m)	21,1	20,2	19,3	18,1	16,6	13,3
η net	0,72	0,77	0,84	0,86	0,78	0,7

On dispose de pompes géométriquement semblables de diamètres 0,3m; 0,25m; 0,22m; et 0,19m pouvant tourner à 1750, 1450, 1150, 850 tours/mn.

a) Quel diamètre et quelle vitesse de rotation doit-on choisir pour obtenir un débit de 0.0523 m³/s et une hauteur nette de 15.4 m.

b) Calculer la puissance absorbée par la pompe choisie, au point de fonctionnement ci-dessus.

Turbomachines (Point de fonctionnement d'une Pompe)

Exercice I: Une pompe centrifuge ayant une hauteur manométrique donnée par l'équation : $H_n(m) = 180 - 6100 \, Q^2$. Le débit volumique Q est en m³/s. Pour $z_2 - z_1 = 50 \, \text{m}$, quel serait le débit délivré si la conduite est de longueur 60 m? On supposera que le diamètre de la conduite est de 0.1 m et que le coefficient de perte de charge linéaire est de 0.02. Calculer le nombre de Reynolds et commenter le résultat obtenu.

Exercice II: Point de Fonctionnement d'un circuit

Longueur de la conduite : L = 300 mètres

Diamètre de la conduite : D = 30 cm

1°) Quel est le débit d'eau dans le système ci-dessus avec un coefficient de frottement $\frac{\lambda}{2}$ = 1.875 10⁻³

et la caractéristique de la pompe est donnée par : $H_n = 43,1-128 \, qv - 140 \, qv^2$, H_n est la hauteur nette ou hauteur manométrique et q_v étant le débit en m^3/s .

- 2°) Que peut-on dire du régime d'écoulement ?
- 3°) Calculer la puissance nette.

Exercice III:

ETUDE de l'INSTALLATION d'une POMPE entre RESERVOIRS

Une conduite de diamètre intérieur D=100 mm, de rugosité $\epsilon=1$ mm, de longueur L=400 m, relie deux réservoirs d'eau entre les surfaces libres desquels la dénivellation est de 10 m. La somme de tous les coefficents de pertes de charges singulières vaut $\sum K_i = 8$. La viscosité de l'eau à la température moyenne de l'écoulement vaut 10^{-3} Pa.s.

- 1) Calculer le débit s'écoulant dans la conduite.
- 2) Ce débit étant insuffisant pour l'utilisation prévue, on décide d'installer une pompe afin de le porter à $0.015 \text{ m}^3/\text{s}$ (toujours dans le sens descendant). Il faut prévoir, dans ce cas, l'adjonction d'un filtre (pour protéger la pompe) dont le coefficient de perte de charge singulière vaut $K_f = 8$.
- Calculer la hanteur nette de la pompe, ainsi que la puissance fournie au fluide par la pompe,

TD - Turbomachines- Série III

Exercice I:

Un tourniquet hydraulique est constitué comme l'indique la figure I par un réservoir cylindrique muni à sa base de deux bras horizontaux de même longueur R. Le réservoir reçoit, sous la hauteur H constante, de l'eau qui s'écoule par les deux bras, provoquant ainsi la rotation du système autour de l'axe du cylindre.

- 1°) Calculer la vitesse relative de sortie W de l'eau en fonction de H, de R et de la vitesse angulaire ω supposé constante. Quel est le couple C appliquée au tourniquet?
- 2°) En admettant qu'il n'y a pas de frottement, quelle vitesse maximale ω_m peut atteindre la machine? Cette vitesse peut-elle être infinie?
- 3°) Dans le cas général, calculer le rendement énergétique de la machine.

Discuter les cas où $\theta = 0$ et $\theta = \frac{\pi}{2}$.

Figure I

Figure II

Exercice II: Une pompe (figure II) débite 900 litres d'eau par minute. Sa conduite d'aspiration, horizontale, a un diamètre de $0.3 \, \mathrm{m}$; sur l'axe règne une pression p_1 de $0.20 \, \mathrm{m}$ de mercure au dessous de la pression atmosphérique. Sa conduite de refoulement horizontale a un diamètre de $0.20 \, \mathrm{m}$; sur l'axe, situé $1.22 \, \mathrm{m}$ plus haut que le précédent, règne une pression p_2 de $0.7 \, \mathrm{bar}$ supérieure à la pression atmosphérique. En supposant que le rendement de la pompe soit égal à 80%, quelle puissance mécanique doit-on lui fournir ?. On prendra $g=10 \, \mathrm{m/s^2}$

Turbomachines et Hydraulique

Exercice 1 : Les caractéristiques nominales (caractéristiques au rendement maximum) d'une pompe alimentaire multi-étage fournissant l'eau à la chaudière d'une centrale thermique sont les suivantes :

- Hauteur nette : Hn = 2000 m - Débit volumique : qv = 165 litre/s - Vitesse de rotation : N= 6000 tr/mn - Rendement global : $\eta_a = 0.775$

Un premier calcul a montré que le projet était réalisable avec 5 roues centrifuges de même conception en série (voir schéma ci-dessous). Au régime nominal (au rendement maximum)

- 1°) Calculer la puissance sur l'arbre nécessaire pour entrainer la pompe.
- 2°) Tracer le triangle des vitesses d'entrée des roues (en indiquant le module de chaque vecteur vitesse et les angles du triangle).
- 3) Le rendement manométrique (rapport hauteur nette / Hauteur théorique) étant estimé à 0.8, calculer le triangle des vitesses de sortie des roues (en indiquant le module de chaque vecteur vitesse et les angles du triangle)