Bilgisayar Programcılığı Uzaktan Eğitim Programı

e-BİLG 121 AĞ TEKNOLOJİLERİNİN TEMELLERİ

Öğr. Gör. Bekir Güler

E-mail: bguler@fatih.edu.tr

<u>Hafta 7: Bağlantı (link) katmanı ve</u> <u>Yerel Alan ağı (Local Area Network-LAN)</u>

- □ 5.1 Giriş ve hizmetler
- 5.2 Hata algılama ve düzeltme
- 5.3 Çoklu erişim protokolleri
- □ 5.4 Bağlantı katmanı adresleme

5.1 Bağlantı (Link) katmanı: Giriş

<u>Bazı terimler:</u>

- Bilgisayar ve yönlendiricilere ağda düğüm (node) adı verilir
- Ağda komşu düğümleri bağlayan iletişim yollarına bağlantı (link) adı verilir
 - Kablolu bağlantılar
 - Kablosuz bağlantılar
 - Yerel ağlar (LANs)
- 2. Bağlantı katmanında paketlere frame adı verilir ve frame, datagram içerir

Bağlantı katmanın görevi: datagram'ları bir düğümden komşu bir düğüme bir bağlantı üzerinden iletmektir

<u>Bağlantı katmanının kapsamı</u>

- Datagram iletilirken, farklı bağlantılarda farklı bağlantı protokolleri kullanılabilir:
 - Örneğin, ilk bağlantıda Ethernet, orta bağlantılarda frame relay, son bağlantıda 802.11

<u>Bağlantı katmanı hizmetleri</u>

□ Frame oluşturmak:

- Datagram'lara başlık ekleyerek frame içine koyar
- Paylaşılan bir ortam ise bir kanaldan üzerinden erişim sağlanır
- Kaynak ve hedefi belirlemek için frame başlığında MAC (donanım) adresi kullanılır
 - MAC adresi, IP adresinden farklı!

□ Komşu düğümler arasında güvenli aktarım

- Komşu düğümler ile düşük bit hata oranıyla bağlantı kurulur (fiber, bazı twisted pair)
- Kablosuz bağlantılarda hata oranları yüksektir

<u>Bağlantı (Link) katmanı hizmetleri (devamı)</u>

- Akış denetimi:
 - O Komşu gönderen ve alan düğümler arasında hız kontrolü
- ☐ Hata algılama:
 - Sinyali zayıf olması veya elektro manyetik girişim sonucu hatalar olabilir
 - Alıcı hataların varlığını algılar:
 - · Kayıp frame'lerin tekrar gönderilmesi için gönderen uyarılır
- ☐ Hata düzeltme:
 - O Alıcı, bit hatalarını gönderenden istemeden algılar ve düzeltir
- □ Yarı çift yönlü (half-duplex) ve tam çift yönlü(full-duplex) iletim
 - Yarı çift yönlüde bağlantının ucundaki düğümler aynı zamanda olmasa da iletimde bulunabilirler. Tam çift yönlüde aynı zamanda çift yönlü iletim yapılır

Bağlantı katmanı nerede uygulanır?

- □ Her bir bilgisayarda
- Bağlantı katmanı, ağ kartında (network interface card-NIC) uygulanır
 - Ethernet kartı, PCMCI kartı, 802.11 kartı
 - Ethernet kartı, bağlantı ve fiziksel katmanı uygular
- □ Ethernet kartı bilgisayarın sistem yoluna bağlanır
- Donanım ve yazılımın birleşimdir

Ağ kartları arası iletişim

Gönderen taraf:

- Datagram'ı, frame içine koyar
- Hata denetleme bitleri, rdt ve akış denetimi gibi bilgiyi ekler

Alan taraf

- Hataları arar ve akış denetim yapar
- Frame açar, içindeki datagram'ları üst katmana iletir

5.2 Hata algılama

Error Detection and Correction (EDC) = hata algılama ve düzeltme Data (D) = veri

- Hata algılama % 100 güvenli değildir!
 - Protokol bazı hataları kaçırabilir
 - EDC alanı büyük olursa daha iyi hata algılama ve düzeltme yapılır

Eşlik denetimi (Parity Checking)

Hata algılamada kullanılan 2 yöntem aşağıdadır

Tek bit parity:

Tek bitlik hataları algılar. Hatalar düzeltilmez

<u>İki boyutlu bit parity:</u>

Tek bitlik hataları algılar ve düzeltir

Internet checksum (tekrar)

Amaç: Aktarılan paketteki hataları algılamak (bu işlem taşıma katmanında gerçekleştirilir)

Gönderen:

- Segment içeriklerini, 16bitlik tamsayı dizisi olarak işler
- Segment içeriklerinden
 Checksum değeri
 hesaplanır
- Gönderen, checksum değerini UDP checksum alanına koyar

Alıcı:

- Alınan segment'in checksum değerini hesaplar
- Hesaplanan checksum ve checksum alanındaki değerlerin aynı olmasına bakılır:
 - Hayır- hata algılandı
 - Evet- hata algılanmadı. Ama yine de hata olabilir

5.3 Çoklu erişim bağlantıları ve protokolleri

Bağlantıların 2 türü

- □ Noktadan noktaya (point-to-point)
 - Dial-up erişim
 - Ethernet switch ve bilgisayar arasında noktadan noktaya bağlantı
- Yayın (broadcast) (paylaşılan kablo veya ortam)
 - Eski Ethernet
 - 802.11 kablosuz LAN

Paylaşılan kablo (örneğin, kablolu Ethernet)

Paylaşılan radyo sinyali (örneğin, 802.11 WiFi)

Çoklu erişim protokolü

- Tek, paylaşılan yayın kanalı
- Düğümler tarafından kanala aynı anda kanala 2 veya daha fazla yayımlama olursa
 - Eğer bir düğüm aynı anda birden fazla sinyal alırsa çakışma (collision) olur

Çoklu erişim protokolü

 Düğümlerin kanalı nasıl paylaşılacağı algoritmalar belirler

Örneğin, düğümün ne zaman ileteceği belirlenir

İdeal, çoklu erişim protokolü

Hızı R bps olan broadcast kanalı

- 1. Bir düğüm iletmek istediğinde R hızında gönderebilir
- 2. M tane düğüm iletmek istediğinde her bir düğüm ortalama R/M hızında gönderir
- 3. Merkezi olmayan bir yapı:
 - o İletimleri koordine etmek için özel bir düğüm yoktur
 - O Zamanın senkronizasyonu ve zaman dilimi yoktur
- 4. basit

Çoklu ortam erişim (MAC) protokolleri

3 gruba ayrılır:

- Kanalın bölünmesi
 - Kanal küçük parçalar (zaman dilimleri, frekans) halinde bölünür
 - Bir parça özel bir kullanıcıya tahsis edilir
- □ Rasgele erişim
 - Kanal bölünmez, çakışmalara izin verilir
 - Çakışmalar kurtarılır
- Sırayla erişim
 - Düğüm sırasını bekler, daha çok gönderen düğüme daha çok sıra verilir

MAC protokolleri: Kanalın bölünmesi-TDMA

TDMA: Zamanın bölünerek çoklu erişim

- □ Kanala erişim sırayla olur
- Her bir düğüm sabit uzunlukta bir zaman diliminde kanala erişim sağlar
- □ Kullanılmayan zaman dilimleri boşta kalır
- □ Örnek: 6-bölünmüş LAN, 1,3,4 zaman dilimlerinde paket var, 2,5,6 zaman dilimleri boştadır

MAC protokolleri: Kanalın bölünmesi-FDMA

FDMA: Frekans bölünerek çoklu erişim

- □ Kanal spektrumu, frekans bantlarına bölünmüştür
- □ Her bir istasyon sabit bir frekans bandına atanmıştır
- □ Kullanılmayan frekans bantları boşta kalır
- □ Örnek: 6-istasyon LAN, 1,3,4 bantlarında paket iletilir, 2,5,6 frekans bantları boştur

Rasgele erişimli protokoller

- Düğüm paket göndereceğinde
 - R hızında kanalı tam kullanarak iletir.
 - O Düğümler arasında önceden bir koordine yapılmaz
- □ Birden fazla düğüm gönderirse çarpışma (collision)
- Rasgele erişimli MAC protokolü, çarpışmaların nasıl algılanacağı ve nasıl kurtulacağını belirler
- Rasgele erişimli MAC protokolleri:
 - Zaman dilimli ALOHA
 - ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

Zaman dilimli ALOHA

Varsayımlar:

- □ Tüm frame'ler aynı boyutta
- Zaman, eşit zaman dilimlerine bölünmüştür
- Düğümler, sadece zaman diliminin başlangıcında iletmeye başlar
- Düğümler eşitlenir
- □ Eğer birden fazla düğüm bir zaman diliminde iletirse tüm düğümler çarpışmayı anlar

<u>İşlem:</u>

- Düğüm, yeni frame aldığında sonraki zaman diliminde iletir
 - Çarpışma yoksa düğüm yeni frame'i sonraki zaman diliminde iletir
 - Çarpışma varsa düğüm başarılı olana kadar sonraki zaman diliminde frame'i yeniden gönderir

Zaman dilimli ALOHA

<u>Olumlu yönleri</u>

 Aktif olan düğüm kanalı sürekli olarak tam hızda kullanabilir

<u>Olumsuz yönleri</u>

- Çarpışma olursa zaman dilimi boş yere kullanılmış olur
- □ Boş zaman dilimleri vardır
- Zamanın eşitlenmesi gerekir

Zaman dilimsiz ALOHA

- □ Basittir, zamanın eşitlenmesine gerek yoktur
- □ Frame alındığında
 - Hemen iletilir
- □ Çarpışma olasılığı fazladır:
 - \circ t_0 zamanında gönderilen frame t_0 -1 ve t_0 +1 zamanında gönderilen frame ile çarpışabilir

Taşıyıcı duyarlı çoklu erişim (Carrier Sense Multiple Access- CSMA)

CSMA: İletmeden önce dinler:

- □ Eğer kanalın boş olduğunu algılarsa frame'leri gönderir
- Eğer kanalın dolu olduğunu algılarsa iletimi erteler

CSMA çarpışmaları

Çarpışmalar yine de olabilir:

Düğümler, bazı iletimleri algılamayabilir

Çarpışma durumunda:

Tüm paketin iletim zamanı boşa gider

<u>CSMA/CD</u> (Çarpışma Algılamalı -Collision Detection-CD)

CSMA/CD:

- Çarpışmalar kısa zamanda algılanır
- Çarpışan iletimler kanalı meşgul etmemesi için iptal edilir
- □ Çarpışma algılanması:
 - Kablolu yerel ağlarda (LAN) kolay : Sinyalin gücü ölçülür, iletilen sinyal karşılaştırılır
 - Kablosuz ağlarda (LAN) zordur: Alınan sinyali, yerel ağdaki sinyal bastırır

MAC protokolleri karşılaştırılması

Kanal bölmeli MAC protokolleri:

- Yoğunluğun fazla olduğu durumlarda kanal verimli şekilde paylaşılır
- Yoğunluk az olursa verimsizdir. Kanal tam olarak kullanılamaz

Rasgele erişimli MAC protokolleri

- Yoğunluk az ise verimli: Tek düğüm tüm kanalı kullanabilir
- Yoğunluk çok ise : Çarpışma fazla olur

Sıralı erişim protokolleri

Her düğüm için en iyisi yapılmaya çalışılır

Sıralı erişim MAC protokolleri

Sıralı çağırma:

- Ana düğüm, bağımlı düğümleri sırayla iletmeleri için davet eder
- □ Dezavantajları:
 - Sıralı çağırmanın getirdiği yük
 - Gecikme süresi
 - Ana düğümün arızalanması

Bağımlı düğümler

Sıralı erişim MAC protokolleri

Jeton (Token) geçişli:

- Kontrol jetonu bir düğümden ardışık gelen düğüme geçer
- □ Veri gönderecek düğüm jetonu kullanır, işi bitince serbest bırakır.
- □ Dezavantajları:
 - Jetonu getirdiği yük
 - Gecikme
 - Tek noktanın arızalanması (token)

MAC protokollerinin özeti

- Kanalın zaman, frekans veya kod olarak bölünmesi
- □ Rasgele erişim (dinamik),
 - o ALOHA, S-ALOHA, CSMA, CSMA/CD
 - Taşıyıcı algılamalı: Kablolu teknolojide kolay kablosuzda zordur
 - CSMA/CD, ethernet'de kullanılır
 - CSMA/CA, 802.11'de kullanılır

□ Sırayla erişim

- Jeton (token) geçişli
- Bluetooth, FDDI (Fiber Distributed Data interface),
 IBM Token Ring

5.4 MAC(Media Access Control) adresi ve ARP

- □32-bit IP adresi:
 - Ağ katmanı adresi
 - Datagram'ları, hedef IP subnet'e (alt ağa) taşımak için kullanılır
- MAC (/ LAN /physical / Ethernet) adresi:
 - Amaç: Frame'leri aynı ağda yer alan bir ağ kartından başka bir ağ kartına taşımak
 - 48 bit MAC adresi (çoğu LAN için)
 - Ağ kartı üzerindeki ROM kayıt edilir, bazen yazılım ile de ayarlanabilir

LAN (MAC) adresleri ve ARP

Her bir ağ kartının yerel ağda (LAN) benzersiz bir LAN adresi vardır

MAC adresleri

- MAC adreslerinin tahsisi IEEE tarafından yönetilir
- □ Ağ kartı üreticisi belli bir MAC adres alanını satın alır
- □ MAC adresleri taşınabilir
 - Bir ağ kartı, bir yerel ağdan başka bir yerel ağa taşınabilir
- □ IP adresleri taşınamaz
 - o IP adresleri ait olduğu IP subnet'e bağlıdır

Adres çözümleme protokolü (Address Resolution Protocol- ARP)

Soru: IP adresi bilinen bir B bilgisayarının MAC adresi nasıl bulunur?

- Yerel ağda her bir IP düğümünün ARP tablosu vardır
- ARP tablosu: Bazı düğümler için IP/MAC adres eşleştirmeleri bulundurur
 - < IP adresi; MAC adresi; TTL>
 - TTL (Time To Live): Eşleştirmenin yaşam süresi (genellikle 20 dakika)

Aynı subnet'te, MAC adresi nasıl elde edilir?

- A, B'ye datagram göndermek istiyor. B'nin MAC adresi A'nın ARP tablosunda yok
- A, B'nin IP adresini içeren ARP sorgu paketini yayınlar (broadcast)
 - Hedef MAC adresi =FF-FF-FF-FF-FF
 - Yerel ağda yer alan bütün makineler ARP sorgusuna cevap verir
- B, ARP paketini alır, kendi MAC adresini içeren bir cevap verir

- □ A, IP-MAC eşleştirmesini kendi ARP tablosuna kayıt eder
 - Yaşam süresi (TTL) biten eşleştirmeler silinir
- □ ARP otomatik çalışır:
 - Düğümler kendi ARP tablolarını otomatik oluştururlar

Başka bir yerel ağdaki MAC adresini bulma

İzlenecek yol: A'dan B'ye datagram R yönlendirici üzerinden gönderilecek. A, B'nin IP adresini biliyor

□ R yönlendiricide her bir IP subnet (LAN) için ARP tablosu vardır.

- A, kaynağı A ve hedefi B olan IP datagram'ı oluşturur
- A, 111.111.110 adresinin MAC adresini bulmak için ARP kullanır
- A, yönlendirici MAC adresi hedef ve A-B IP datagram'ı içeren bağlantı katmanı frame'i oluştur
- A'nın ağ kartı frame'i gönderir
- R'nin bacağı frame'i alır
- R, IP datagram Ethernet frame'den siler ve hedefin B olduğnu görür
- R, B'nin MAC adresini almak için ARP kullanır
- R, A-B IP datagram içeren frame oluşturur ve B'ye gönderir

