1. Vektorový podprostorWje podprostorem \mathbb{R}^5 a platí $\left\{\begin{array}{l} w_1+w_2+w_3=3w_4+6w_5\\ w_1+w_3+w_5=-2w_4 \end{array}\right.$. Napište ortogonální bázi.

 3. ρ prochází [5,0,2], [6,-2,4], [3,8,1], p prochází D=[1,1,1] a je kolmá na ρ . E leží na p, vzdálenost od ρ je $12\sqrt{2}$. C,E prochází přímka q, určete odchylku p a q.

$$4.\ M = \begin{pmatrix} 1 & 1 & 0 & 0 & 2 & 2 \\ 1 & a & 0 & 0 & a & 1 \\ 1 & 0 & 1 & 0 & 1 & 2 \\ 0 & 2 & 0 & 2 & 0 & 2 \\ 1 & 1 & 2 & 1 & 1 & 2 \\ a & 0 & 1 & 2 & 1 & 0 \end{pmatrix}. \text{ Pro jak\'e hodnoty a je matice M regul\'arn\'e?}$$

5. Najděte matice homomorfismu $\mathbb{C} \to \mathbb{C}$, $\mathcal{B} = ((1,1,1),(i,i,0),(i,0,0))$, $\overline{\mathcal{B}} = ((1,1,i),(1,i,0),(1,0,0),\,\varphi(z_1,z_2,z_3) = (z_1 - z_2,0,iz_2 - z_3))$.

6. Vlastní vektory matice $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 2 \end{pmatrix}$ generují podprostor $V\subseteq \mathbb{R}^3$. Najděte bázi $W:W\oplus V=\mathbb{R}^3.^1$

 $^{^1\}oplus$ značí nulový průnik.

1. V \mathbb{R}^6 máme vektorové pole V,W, kde $V=\{(a,b,a,2a,3a,4a)|a,b\in\mathbb{R}\}.$ W generuje $\overrightarrow{w_1}=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{3}{4},1),$ $\overrightarrow{w_2}=(0,1,0,0,0,1),$ a $\overrightarrow{w_3}=(\frac{1}{4},0,\frac{1}{4},\frac{1}{2},\frac{3}{4},\frac{3}{4}).$ Najděte ortogonální bází V+W.

2. Pro jaké α je reálná matice M regulární? $\begin{pmatrix} 1 & 1 & 1 & -8\alpha \\ 1 & \alpha^2 & 1 & \alpha^2 \\ 1 & \alpha & 1 & -\alpha \\ \alpha^4 & 1 & 0 & 1 \end{pmatrix}$

4. Najděte matici přechodu v \mathbb{F}_7^3 z báze $\beta = ((1,0,5),(1,0,4),(0,1,0))$ do báze $\gamma = ((1,0,2),(1,0,3),(0,4,4))$.

5. Přímka p prochází body [1,1,0],[2,3,3]. Přímka q prochází body [4,0,-1],[8,2,2]. Ověřte, že nejsou mimoběžky.

6. Najděte vlastní vektor matice M, který neleží v žádné z souřadnicových (?) rovin. $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$.

1. V, W jsou vektorové podprostory \mathbb{R}^6 . V generuje (1,2,3,-1,8,6), (1,8,5,-7,23,27), (2,-2,4,4,1,-9). W generuje (-3,6,-5,-9,6,24), (1,-10,-1,11,-22,-36), (7,2,17,5,26,0). Najděte ortogonální bázi $V\cap W$.

4ab+c+d-67a2b2cd= 5 2. V $\mathbb R$ řešte soustavu 8a2b +14c +13d =7 28a +7db+ c+= -12

3. Mějme matici
$$M = \begin{pmatrix} 1 & 1 & 1 & a\sqrt{3} \\ 1 & 1 & \sqrt{3}(1+a) & a\sqrt{3} \\ 1 & \sqrt{3}(2+a) & \sqrt{3}(1+a) & a\sqrt{3} \\ \sqrt{3}(3+a) & \sqrt{3}(2+a) & \sqrt{3}(1+a) & a\sqrt{3} \end{pmatrix}$$
. Vypočítejte $|A|$ pro $a = \frac{\sqrt{3}}{3}$ a $a = \frac{\sqrt{3}}{3} - 1$.

4. V
$$\mathbb{F}_1$$
1 řešte $X * \begin{pmatrix} 1 & 2 \\ 3 & 6 \\ 4 & 8 \\ 5 & 10 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 9 & 7 \\ 4 & 8 \end{pmatrix}$.

5. Vzájemná poloha roviny ρ a přímky p jsou $\rho: A=[3,0,2], B=[4,-1,5], C=[5,-3,-1], p: K=[2,-6,-64], \overrightarrow{u}=(0,15,101)$. Pokud jsou rovnoběžné, určete průnik, jinak určete vzdálenost.

6. Najděte průměr vlastních hodnot matice $M=\begin{pmatrix} 0 & 0 & 5 \\ 2 & 1 & 0 \\ 2 & 0 & -4 \end{pmatrix}$.

1. V \mathbb{R}^4 jsou vektorové podprostory V,W, kde V generuje vektory (1,1,-2,3),(4,-1,2,-2), a W generuje vektory (3,2,-5,0),(1,-4,8,-11). Najděte ortogonální bázi V+W.

2. V $\mathbb R$ jsou dány následující rovnice. Spočtěte b-c.

3.
$$U = M^4, V = M^3, U = \begin{pmatrix} 1 & 1 + 2\sqrt{7} & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 \\ 3 - 2\sqrt{7} & 3 & 3 & 1 & 1 \\ 2 & 1 & 3 & 1 & 0 \\ 0 & 0 & 2 & 3 + 10\sqrt{7} & 1 \end{pmatrix}$$

4. Přímka p prochází body A=[7,2,2], B=[4,-1,1]. Přímka q prochází body C=[8,0,-1], D=[2,12,-3]. Ověřte, že jde o různoběžky a spočtěte jejich ?.

5. V \mathbb{F}_7 je matice $S = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$. Spočtěte S^{12} .

6. $U = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$. Napište dva lineárně nezávislé vlastní vektory matice U s třetí souřadnicí rovnou 6.

1. Napište obecnou rovnici přímky $p: x=2-t, y=1+3t, \, t \in \mathbb{R}.$

2. Napište parametrické vyjádření přímky určené v \mathbb{R}^3 rovnicemi

- 3. Nechť $V=\mathbb{R}^{\mathbb{R}},\,(f+g)(x)=f(x)+g(x),\,(r\cdot f)(x)=r\cdot f(x),$ pro každé $f,g\in\mathbb{R}^{\mathbb{R}},r,x\in\mathbb{R}.$
 - (a) Ukažte, že $(V,+,\cdot)$ je vektorový prostor.
 - (b) Rozhodněte, zda množina $U=\{f\in V|f(0)=f(1)\}$ je podprostorem $(V,+,\cdot).$

- 4. Zjistěte, zda ve vektorovém prostoru $\mathbb{P}_3, +, \cdot$ vektory $\mathbf{u} = x^3 + x, \mathbf{v}x^2 + 1, \mathbf{w} = x^3 x^2 + x + 1$
 - (a) jsou lineárně nezávislé;
 - (b) tvoří bázi.

5. Nechť A je diagonální matice řádu n. Formulujte pravidlo pro výpočet součinů $X \cdot A, \ A \cdot Y, \ \text{kde } X, Y$ jsou libovolné matice typu $m \times n, \ n \times m$.

6. Vypočtěte determinant $\begin{vmatrix} 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 2 \\ 1 & 3 & 2 & 0 \\ 3 & 2 & 0 & 1 \end{vmatrix}$

1. Pomocí inverzní matice určete matici X, pro kterou platí $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix}$

2. Cramerovým pravidlem řešte následující systém lineárních rovnic:

3. Řešte systém lineárních rovnic, víte-li, že má řešení [1, 8, 13, 0, -34]:

4. Určete matici $\mathcal{P}_{\mathcal{D}\leftarrow\mathcal{B}}$, kde \mathcal{B} a \mathcal{D} jsou dané uspořádané báze vektorového prostoru V:

$$V = \mathbb{P}_2, \, \mathcal{B} = \{x, 1 + x, x^2\}, \, \mathcal{D} = \{2, x + 3, x^2 - 1\}$$

- 5. Najděte charakteristický polynom, vlastní čísla a vlastní vektory matice $\begin{pmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{pmatrix}$

1. Zjistěte, zda ve vektorovém prostoru $\mathbb{V}=(\mathbb{R}^3,+)$ lze definovat skalární součin vztahem $\langle \underline{u},\underline{v}\rangle=3u_1v_1-u_2v_1+2u_2v_2+u_1v_3+u_3v_1+u_3v_3$, kde $\underline{u}=(u_1,u_2,u_3),\,\underline{v}=(v_1,v_2,v_3)$.

2. Jsou-li A,B regulární zaměnitelné (?) matice, ukažte, že jsou zaměnitelné také matice $A^{-1},B,A,B^{-1},A^{-1},B^{-1}$.

3. Řešte systém lineárních rovnic $\begin{pmatrix} x & - & by & = & 1 \\ x & + & ay & = & 3 \end{pmatrix}$ v závislosti na parametrech $a,b \in \mathbb{R}.$

4. Zjistěte, zda přímky $p_1: \left\{ \begin{array}{ll} 2x+y-z=0 \\ x-3y+2z-14=0 \end{array} \right.$ a $p_2: \left\{ \begin{array}{ll} x+5y-6z+34=0 \\ 6x-2y-z-9=0 \end{array} \right.$ jsou rovnoběžné nebo různoběžné².

²Na fotce se rovněž objevila i další nečitelná "-běžnost".

5. Ke kulové ploše $\mathcal{S}: x^2+y^2+z^2-8x-4z-205=0$ veď te tečné roviny rovnoběžné s rovinou $\rho: 10x-11y-2z+3=0$.

1. Rozhodněte, zda $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ f dané vztahem f(x) = [x+1, x-1] je injektivní, subjektivní nebo bijektivní.

2. Nechť A je čtvercová matice, $k \in \mathbb{R}, k \neq 0$ a nechť $A^2 = kA = kA$. Ukažte, že matice A je regulární, právě když A = k*I.

3. Řešte rovnice v závislosti na parametru λ :

4. Najděte roviny symetrie různoběžných rovin $\rho_1:2x+5y-5z+16=0$ a $\rho_2:2x-7y-z+8=0.$

5. Určete rovnici kuželové plochy $\mathcal S$ s vrcholem V=[-1,1,8] a řídící křivkou $L:x^2+y^2-4=0,z-4=0.$

1. Určete vlastní čísla a vlastní prostory matice $A=\begin{pmatrix}3&5&3\\-4&-9&-6\\6&15&10\end{pmatrix}$

2. Nechť A,B jsou diagonální matice téhož řádu. Ukažte, že AB je též diagonální a že matice A,B jsou zaměnitelné.

3. Řešte systém lineárních rovnic:

4. Určete rovnice dvou navzájem kolmých rovin δ_1, δ_2 procházejících přímkou $p: \left\{ \begin{array}{ll} 3x+y-z-4=0 \\ x-2y+4z-2=0 \end{array} \right.$ z nichž první prochází bodem A=[2,-3,4].

1. Je dáno zobrazení $f: Z \times N \to Q, f([m,n]) = \frac{m}{n}$. Určete, zda je dané zobrazení injekce, surjekce nebo bijekce.

2. Určete všechny matice X pro něž platí AX=O=XA, kde $A=\begin{pmatrix}3&4&2\\-2&-1&-1\\1&3&1\end{pmatrix}$.

3. Řešte systém rovnic s parametrem a:

4. Ukažte, že přímky $p: \left\{ \begin{array}{ll} 3x+2y-z+1=0 \\ x+y-3z+3=0 \end{array} \right.$ a $q: \left\{ \begin{array}{ll} 5x+y+4z-3=0 \\ 2x+y+2z-2=0 \end{array} \right.$ leží v téže rovině a napište její rovnici.

5. Najděte rovnici kulové plochy, která prochází body A=[2,-4,2], B=[-4,8,2], C=[5,-1,14], D=[-7,-4,5].

1. Grupoid (R, \cdot) , kde $x \cdot y = (x + y)(1 + xy)$, $x, y \in \mathbb{R}$. Ověřte jestli je asociativní, komutativní, jestli existuje jednička grupoidu. Jestliže ano, určete inverzní prvky.

2. Je dána matice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Vypočtěte matice $B = (I+A)(I-A)^{-1}, \ C = (I-A)^{-1}(I+A)$, pokud existují.

3. Čemu se musí rovnat λ , aby systém rovnic měl řešení? Určete všechna jeho řešení pro tuto hodnotu λ .

4. Najděte přímku
$$q$$
, která je kolmým průmětem přímky p :
$$\begin{cases} x=2+7t \\ y=-1-4t \\ z=1-6t \end{cases}$$
, $t\in\mathbb{R}$ na rovinu $\rho:x-2y-z+8=0$.

5.	5. Najděte rovnice rotačních kuželových ploch, jejichž osa je osa z , jež procháze svírají s osou úhel $\frac{\pi}{4}$.	ejí bodem $M = [6, 8, -3]$ a tvořící přímky