Side 1 av 3

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

Kontakt under eksamen: Eivind Hiis Hauge

Telefon: 73 59 36 51 / 90 85 01 31

KONTINUASJONSEKSAMEN TFY4102 FYSIKK for MTGEOP, MTDESIG og MTMART 7.august 2007 kl. 0900 - 1300 Bokmål

Hjelpemiddel C

- K. Rottmann: Matematisk formelsamling
- Godkjent kalkulator, med tomt minne

13

Side 2-3: 5 oppgaver med tilsammen 14 punkt.

Vedlegg: 3 sider formler.

I dette oppgavesettet spørres det etter tall bare i punktene 1b, 2c og 4b. I alle de øvrige spørsmålene har svarene form av bokstavuttrykk og korte kommentarer. Alle enkeltpunktene teller i utgangspunktet likt.

Svar først på de spørsmålene som lettest for $\deg!$ Mange spørsmål kan besvares, helt eller delvis, uten å ha svart på de foregående.

Oppgavesettet er utarbeidet av Eivind Hiis Hauge, og er sett gjennom av Ola Hunderi.

Sensuren kan ventes ca. 20. august.

Side 2 av 3

Oppgave 1

a. Finn et uttrykk for tallverdien til jordrotasjonens sentrifugalakselerasjon $a_s(\varphi)$ (dvs. for $|a_s|$) på breddegraden φ , når jordas radius er R, og døgnets lengde T.

b. Bestem forholdet $|a_s|/g$ i Trondheim, når Trondheims breddegrad er $\varphi = 63.5^{\circ}$, jordas radius er ca. 6400 km og tyngdens akselerasjon er $q = 9.8 \, \text{m/s}^2$. Kommentar?

Oppgave 2

Intensiteten i retning θ , ved diffraksjon av koherent lys med bølgelengde λ gjennom en spalt med bredde a, er gitt som

$$I(\theta) = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \; ; \; \alpha = \frac{\pi a}{\lambda} \sin \theta.$$

a. Skisser intensiteten I som funksjon av θ . Skisser også bildet som avtegner seg på en skjerm bak spalten.

b. Hva er betingelsen for at $I(\theta)$ ikke har noe nullpunkt? (Det vil si at intensiteten er større enn null for hele vinkelen $-\pi/2 < \theta < \pi/2$).

c. Lys og radiobølger er begge eksempler på elektromagnetiske bølger. Hvorfor er det avgjørende at vi må ha fri sikt til et objekt for å se det, mens vi tross alt kan motta FM-signaler med frekvens ca. 100 MHz, selv om vi har en høyblokk eller lignende mellom oss og senderen? (Lyshastigheten: c = $3.0 \cdot 10^8$ m/s.) Svar kort!

Oppgave 3

Et elektrisk nøytralt kuleskall av metall har indre radius R_i og ytre radius R_y . En punktladning Q er plassert i avstanden Δ (< R_i) fra kuleskallets sentrum (se figuren).

a. Tegn en grovskisse av de elektriske feltlinjene inne i kula (dvs. for $r < R_i$), og antyd på figuren hvordan ladningstettheten fordeler seg på kuleskallets indre overflate.

b. Bruk Gauss' lov til å bestemme totalladningen på kuleskallets indre overflate, og på dets ytre overflate. Hvordan fordeler ladningen seg på den ytre overflaten?

c. Bestem det elektriske feltet på utsiden av kula (dvs. for $r > R_y$).

Oppgave 4

En varmepumpe bruker elektrisk/mekanisk energi til å trekke varme fra et utendørs reservoar med lav temperatur og leverer varme innendørs (til et resevoar med høy temperatur).

- a. Hvordan vil du definere effektfaktoren η (som sier hvor effektiv varmepumpa er ved de gitte forhold) for en slik innretning? La oss optimistisk anta at varmepumpa i rimelig tilnærmelse kan idealiseres til en Carnot-prosess, hva blir da uttrykket for effektfaktoren?
- b. En anerkjent leverandør av luft-til-luft varmepumper oppgir (ved innetemperatur 20° C) effektfaktoren ved forskjellige utetemperaturer (målt i grader Celsius) $\{+7,\ 0,\ -7,\ og\ -15\}$ som henholdsvis $\eta=\{4.31,\ 2.99,\ 2.68,\ og\ 2.10\}$. Gi en kort vurdering av den reelle effektfaktoren i forhold til (i) avhengighet av utetemperaturen og (ii) absoluttverdi, sammenholdt med resultatene fra den idealiserte Carnotprosessen. Identifiser en eller flere sentrale forutsetninger for Carnot-resultatet som er urealistiske i forhold til kommersielle varmepumper.

Oppgave 5

I denne oppgaven antar vi at den kinetiske friksjonskoeffisenten er tilnærmet lik den statiske, med andre ord at $\mu_s \approx \mu_k = \mu$. Tyngdens akselerasjon er g.

- a. En kubisk kloss med masse m sklir nedover et skråplan med helning θ i forhold til horisontalplanet (se figuren). Friksjonskoeffisienten mellom kloss og skråplan er μ . Bruk Newtons 2. lov til å finne et uttrykk for klossens akselerasjon a langs skråplanet. Hva er den minimale helning, θ_{\min} , som må til for at klossen skal skli?
- b. Et legeme (sylinder eller kule) med masse M og radius R ruller nedover samme skråplan (se figuren). Friksjonskraften på legemet i kontaktpunktet med skråplanet er rettet tangensielt med skråplanet og har tallverdien f. Skriv ned Newtons 2. lov for tyngdepunktets akselerasjon a for dette tilfellet. Skriv også ned det som tilsvarer Newtons 2. lov for vinkelakselerasjonen $\alpha=\dot{\omega}$ i denne sammenheng.
- c. Skriv treghetsmomentet om rotasjonsaksen som $I_0 = \beta M R^2$, der $\beta = 1$ for et sylinderskall, $\beta = 1/2$ for en homogen sylinder og $\beta = 2/5$ for en homogen kule. Bruk rullebetingelsen og de to ligningene funnet i punkt b. til å finne de to ukjente, a og f, uttrykt ved g, θ og β .