

- Many networks describing complex systems are directed:
 the interactions between elements are not symmetric.
- Directed networks exhibit *trophic coherence q:* there exists a well-defined hierarchy of vertices.
- We will focus on the study of the following aspects related to q:
 - Looplessness
 - Non normality
 - Strong connectivity

We will use many types of dataset: from genes, metabolites, species, neurons, words, computers, and trading nation

Looplessness in networks is linked to trophic coherence

Feedback is a fundamental process in dynamical systems that occurs when the output of an element is coupled to its input.

Definitions:

Directed configuration ensemble:

set of directed graphs with a given number of nodes and degree sequence.

Basal ensemble:

which is the subset of graphs from the directed configuration ensemble that satisfy the constraint that the proportion of neighbors connected to basal nodes is exactly kin Lb /L.

Coherence Ensemble:

ensemble of directed graphs that not only have given in- and out-degree distributions (as in the directed configuration ensemble) but also given trophic coherence

Consider the directed, unweighted graph given by N x N adjacency matrix. A which has L edges:

$$lpha = rac{\langle k^{in} k^{out}
angle}{\langle k
angle}.$$

Basal node

one with in degree equal to zero

Trophic level
$$s_i = 1 + rac{1}{k_i^{in}} \sum_i a_{ij} \; s_j.$$

$$s_i = 1 \, (orall i \, ext{such that} \, k_i^{in} \, = 0)$$
 .

Looplessness in networks is linked to trophic coherence

Definitions:

Trophic difference () Trophic coherence

$$x_{ij} = s_i - s_j$$

$$q = \sqrt{rac{1}{L} \sum_{ij} a_{ij} x_{ij}^2 - 1}.$$

Maximal coherence q = 0

$$au = \ln\,lpha + rac{1}{2\,lpha^2} - rac{1}{2q^2},$$
 $au < exttt{0 loopless regime} \ au > exttt{0 loopful regime}$

Basal ensemble

Expectations for the trophic coherence:

$$\widetilde{q}' = \sqrt{rac{L}{L_B} - 1}$$

Expectation of branching factor

$$\widetilde{lpha} = rac{L - L_B}{N - B}$$

Coherence ensemble $\overline{\lambda_1} = e^{ au}$.

$$\overline{\lambda_1} = e^{\tau}$$
.

Looplessness in networks is linked to trophic coherence

Directed Acyclic Graphs

Probability that a graph randomly chosen from the coherence ensemble will have exactly m_{ν} cycles. $\Rightarrow p\left(m_{
u}
ight) = \left(egin{array}{c} \widetilde{n}_{
u} \\ m \end{array}
ight) ar{c}_{
u}^{m_{
u}} (1 - ar{c}_{
u})^{\widetilde{n}_{
u} - m_{
u}}$

Probability that a network from the coherence ensemble would have no directed cycles of length greater or equal to n:

 $P_n = \prod p(m_{\nu} = 0).$

Probability that a network drawn randomly from this ensemble would be acyclic:

$$P_{acyclic} = \prod_{
u=2}^{\infty} p\left(m_{
u} = 0
ight) = \prod_{
u=2}^{\infty} \left\{1 - rac{\widetilde{lpha}}{L} rac{\widetilde{q}}{q} \exp\left[rac{
u}{2} \left(rac{1}{\widetilde{q}^2} - rac{1}{q^2}
ight)
ight]
ight\}^{Llpha^{
u}-1}.$$

Taking logarithms and considering graphs with sufficiently negative **T**:

$$\ln \, P_{acyclic} \simeq -rac{\widetilde{lpha}\, \widetilde{q}}{lpha q} \sum_{
u=1}^{\infty} e^{ au
u}$$

Non Normality matrix

An N x N matrix A is said to be normal if its adjacency matrix commutes with its transpose or conversely it is non-normal if $AA^T \neq A^TA$

- A large deviation from normality to indicate a network with a well-defined directionality. This is also what occurs in trophically coherent networks.
- We can quantify a network being highly non-normal by using the Hermici's departure from normality:

$$D_{\mathrm{F}} = \sqrt{\|A\|_F^2 - \sum_i |\lambda_i|^2},$$

In order to compare matrices of different sizes, they use the normalised version:

$$d_{\mathrm{F}} = \frac{D_{\mathrm{F}}}{\|A\|_{\mathrm{F}}}.$$

A normal matrix will have $d_F =$ 0. and d_F is closer to 1 the more A departs from normality

Theorem. The expected deviation from normality, $\overline{d_F}$, for digraphs drawn from the coherence ensemble tends to 1 with increasing trophic coherence. That is,

$$\lim_{q\to 0} \overline{d_{\rm F}} = 1.$$

Furthermore.

$$\overline{d_{\mathrm{F}}} > \sqrt{1 - \frac{1}{\langle k \rangle}}$$

Coherent networks are highly non normal.

for digraphs in the τ < 0 regime, where $\langle k \rangle$ is the mean degree.

Generalised Preferential-Prey model

Alternative to PPM (networks generated always acyclic).

Possibility to tune trophic coherence.

Algorithm:

- Input: N total nodes; B basal nodes; <k> mean degree/L total number of edges; T temp. (related to incoherence q)
- Begin with B basal nodes in directed graph. Add (N-B) non-basal nodes one by one. When each node is added connect it with directed edge with direction from B to Non basal node at first addition while remaining nodes added have in-connections from both basal and non-basal nodes.. Meaning added node preys on nodes already present.

Generalised Preferential-Prey model

Algorithm:

) (N-B) edges are added \rightarrow (L-N+B) edges are to be added. Put all possible combinations of edges in a list.

- Choose an edge randomly from list of all possible edges.
- If probability of connection from j to i, $\mathcal{U}(0,1) < P_{ji} = e^{\frac{-(x_{ij}-1)^2}{2T^2}}$ then add edge from j to i and remove that particular edge from list of all possible edges.
- The trophic level values 's' will be updated in the next iteration.

"Gaussian distribution of distances x, is found to be a good fit to empirical data on several kinds of networks."

After all L edges have been added, compute trophic incoherence parameter q of the obtained Di-graph.

Monotonic relation btw. q and T: Results

- "Temperature" parameter
 T tunes the degree of
 trophic coherence.
- $T = 0 \rightarrow \text{maximally}$ coherent networks(q = 0).
- Incoherence q, increasing monotonically with T.
- Low T $\rightarrow q \approx T$
- High T → coherence saturates.

Simulation: Results

Color representation of node:
 VIBGYOR; node with higher S values
 → orange/red

Increase in $T \rightarrow$ Increase in number of cycles; highly cyclic

Visualizing Trophic Levels of Real networks

- If word 1 appears immediately before word 2 in at least one sentence in the text, a directed edge (arrow) is placed from word 1 to word 2.
- The height of each word is proportional to its trophic level.

Looplessness: Results

The coherence ensemble expected value provides a good estimate of almost all of the empirical values.

$$\lambda(T < 0) = 0.22 \pm 0.54$$

 $\lambda(T > 0) = 6.13 \pm 4.86$

- Self-loops(cannibalism in food webs) are removed.
- Total 61 networks:
- $T < O \rightarrow 36$;
- $T > 0 \rightarrow 25$

Looplessness: Results

	q/q'	s/s'	α/α'	τ	λ_1	τ < 0	Acyclic
Food	0.44 <u>+</u> 0.17	0.77 ± 0.32	1.01 ± 0.23	-6.23 ± 7.96	1.54 ± 4.04		31/42
Genetic	0.99 <u>+</u> 0.05	1.0 ± 0.01	1.19 ± 0.32	-0.34 ± 1.11	1.36 ± 0.71	5/8	1/8
Language	1.01 ± 0.0	1.16 ± 0.0	1.55 ± 0.0	1.31 ± 0.0	3.17 ± 0.0	0/1	0/1
Metabolic	1.81 ± 0.1	1.93 ± 0.12	3.98 <u>+</u> 0.96	2.22 ± 0.32	7.36 ± 1.11	0/7	0/7
Neural	0.42 + 0.0	0.39 ± 0.0	1.42 ± 0.0	2.17 ± 0.0	9.15 ± 0.0	0/1	0/1
Trade	1/1 ± 0.04	1.05 ± 0.08	1.19 ± 0.09	2.37 ± 0.32	10.78 ± 3.53	0/2	0/2
Significantly		gnificantly acoherent	↓ Positive correlation btw. in and out-degrees		Accuracy of τ in prediction: 87.5%		

Looplesness: Results

Classification also according to **Perceptron**:

Train-Test split: 85% and 15%
Train accuracy: 100%
Test accuracy: 100%

Probability of being acyclic, P(acyclic formula)

Comparison among ensembles

Strong Connectivity: Results

- Strongly connected reach any vertex from any other vertex along directed path.
- SCC necessarily contain long cycles.
- **T < 0 loopless regime** → SCC is vanishingly small
- Gen-PPM displays continuous (i.e. second order) phase transition in strong connectivity with coherence

Fraction of non-basal vertices in the GC against q for the Predator-Prey model

Non-normalized: Results

Upper and lower bounds on dF

$$\overline{d_{\rm F}^{\rm L}} = \sqrt{1 - \frac{N}{L}} {\rm e}^{2\tau},$$

$$\overline{d_{\rm F}^{\rm U}} = \sqrt{1 - \frac{1}{L} {\rm e}^{2\tau}}$$

Lower bound with different k

Real networks with small or negative au are indeed highly non-normal

What was done:

Reproduced the results from the paper exactly.

4

Visualised the real complex systems network dataset in accordance with S.

2

Implemented Generalised Preferential-Prey model; Investigated the relation between T and q.

5

Used Perceptron algorithm to re-classify networks with $\tau < 0$ and $\tau > 0$

3

Visualised the simulated network in accordance with trophic level S.

6

.Compare the results obtained from Directed Configuration Ensemble with the results obtained analytically.

Conclusion

Directed networks can belong to either of two regimes which is **determine by the sign of** 7, which is a function only of trophic coherence and the in- and out-degree sequences:

Loopless

Loopful

Edges are not strongly aligned with a global direction.

Edges are organized according to a global direction

Trophically incoherent

Networks are highly coherent

Small deviations from normality

Non-normal

Large strongly connected components

Strongly connected components are vanishing

Leading eigenvalues of the datasets follow the relation $\overline{\lambda_1} = e^{ au}.$

Metabolic networks are highly incoherent and have positive in-out degree correlation in comparison wrt other networks.

Increase in q, P(acyclic) decreases.

Trophic coherence is parameter that is related with the non-normality and the GC are related.

Gen-PPM displays continuous (i.e. second order) phase transition in strong connectivity with coherence,

In principle, Direct configuration ensemble lead to similar results but not the same

Future Work

No. of trials-1000 - obtain mean and stdev. for each point. - q vs T and Non basal fraction vs q plots.

Only Generalized Pref-prey model implemented; Various other models could also be checked->; cascade (CM), generalized niche (GNM), niche (NM), nested hierarchy(NHM), minimum potential niche (MPNM), and PPM.

Took 1.5 hours for each point; Better parallelizing methods could be implemented since even Dask parallel computing was taking long time.

Investigate more on implementing basal ensemble with its own class of constraints.

References and Github

- 1. Dataset of all the networks can be found at: https://www.samuel-johnson.org/data
- 2. Johnson S, Jones NS. Looplessness in networks is linked to trophic coherence. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5618-5623. doi: 10.1073/pnas.1613786114. Epub 2017 May 16. PMID: 28512222; PMCID: PMC5465891.
 - S I Appendix: <u>https://www.pnas.org/content/pnas/suppl/2017/05/15/1613786114.DCSupplementall/pnas.1613786114.sapp.pdf</u>
- 3. Johnson, Samuel. (2019). **Digraphs are different: Why directionality matters in complex systems.** https://arxiv.org/abs/1908.07025v1
- 4. Klaise J, Johnson S. From neurons to epidemics: How trophic coherence affects spreading processes. Chaos. 2016 Jun;26(6):065310. doi: 10.1063/1.4953160. PMID: 27368799.
- 5. Python code, datasets, csv files and figures of this project can be found at: https://github.com/deliriarte/QLS-Project