Coreference Resolution

Part 2

CS224n Christopher Manning (borrows slides from Roger Levy, Altaf Rahman, Vincent Ng)

Knowledge-based Pronominal Coreference

- [The city council] refused [the women] a permit because they feared violence.
- [The city council] refused [the women] a permit because they advocated violence.
 - Winograd (1972)

- See: Hector J. Levesque "On our best behaviour" IJCAI 2013.
 http://www.cs.toronto.edu/~hector/Papers/ijcai-13-paper.pdf
 - Winograd Schema Challenge @ CommonSense 2015
 - http://commonsensereasoning.org/winograd.html

Hobbs' algorithm: commentary

"... the naïve approach is quite good. Computationally speaking, it will be a long time before a semantically based algorithm is sophisticated enough to perform as well, and these results set a very high standard for any other approach to aim for.

"Yet there is every reason to pursue a semantically based approach. The naïve algorithm does not work. Any one can think of examples where it fails. In these cases it not only fails; it gives no indication that it has failed and offers no help in finding the real antecedent."

— Hobbs (1978), *Lingua*, p. 345

Plan

- 1. Evaluation of Coreference [5+5 mins]
- 2. Introduction to machine learning approaches to coreference [15 mins]
- Feature-based discriminative classifiers [15 mins]
- 4. Feature-based softmax/maxent linear classifiers [20 mins]
- 5. Different conceptualizations of coreference as a machine learning task [15 mins]

Coreference Evaluation

- B-CUBED algorithm for evaluation
 - Shading = gold standard, circles = system clustering

Figure from Amigo et al 2009

Evaluation

- B³ (B-CUBED) algorithm for evaluation
 - Precision & recall for entities in a reference chain
 - Precision (P): % of elements in a hypothesized reference chain that are in the true reference chain
 - Recall (R): % of elements in a true reference chain that are in the hypothesized reference chain
 - Overall precision & recall are the (perhaps weighted) average of per-chain precision & recall
 - Optimizing chain-chain pairings is a hard problem
 - In the computational NP-hard sense
 - Greedy matching is done in practice for evaluation
 - F1 measure is harmonic mean of P and R

Evaluation metrics

- MUC Score (Vilain et al., 1995)
 - Link based: Counts the number of common links and computes f-measure
- CEAF (Luo 2005); entity based, two variants
- BLANC (Recasens and Hovy 2011): Cluster RAND-index
- ...
- All of them are sort of evaluating getting coreference links/clusters right and wrong, but the differences can be important
 - Look at it in PA₃

Plan

- 1. Evaluation of Coreference [5+5 mins]
- 2. Introduction to machine learning approaches to coreference [15 mins]
- 3. Feature-based discriminative classifiers [15 mins]
- 4. Feature-based softmax/maxent linear classifiers [20 mins]
- 5. Different conceptualizations of coreference as a machine learning task [15 mins]

Machine learning models of coref

- Start with supervised data
 - positive examples that corefer
 - negative examples that don't corefer
 - Note that it's very skewed
 - The vast majority of mention pairs *don't* corefer
- Usually learn some sort of discriminative classifier for phrases/clusters coreferring
 - Predict1for coreference, o for not coreferent
- But there is also work that builds clusters of coreferring expressions
 - E.g., generative models of clusters in (Haghighi & Klein 2007)

Supervised Machine Learning Pronominal Anaphora Resolution

 Given a pronoun and an entity mentioned earlier, classify whether the pronoun refers to that entity or not given the surrounding context (yes/no) [binary classification task]

Mr. Obama visited the city. The president talked about Milwaukee 's economy. He mentioned new jobs.

- Usually first filter out pleonastic pronouns like "It is raining." (perhaps using hand-written rules)
- Use any classifier, get "yes" examples from training data, make "no" examples by pairing pronoun with other (wrong) entities
- Decision rule: take nearest mention classified "yes", if any.

Kinds of Coref Models

- Mention Pair models
 - Treat coreference chains as a collection of pairwise links
 - Make independent pairwise decisions and reconcile them in some way (e.g. clustering or greedy partitioning)
- Mention ranking models
 - Explicitly rank all candidate antecedents for a mention
- Entity-Mention models
 - A cleaner, but less studied, approach
 - Posit single underlying entities
 - Each mention links to a discourse entity [Pasula et al. 03], [Luo et al. 04]

Mention Pair Models

- Most common machine learning approach
- Build a binary classifier over pairs of mentions
 - For each mention, pick a preceding mention or NEW
 - Or, for each antecedent candidate, choose link or no-link
- Clean up non-transitivity with clustering or graph partitioning algorithms
 - E.g.: [Soon et al. o1], [Ng and Cardie o2]
 - Some work has done the classification and clustering jointly [McCallum and Wellner o3]
- Failures are mostly because of insufficient knowledge or features for hard common noun cases

Features: Grammatical Constraints

Are the two mentions in a coreference grammatical relationship?

- Apposition
 - Nefertiti, Amenomfis the IVth's wife, was born in ...
- Predicatives/equatives
 - Sue is the best student in the class
 - It's questionable whether predicative cases should be counted, but they generally are.

Features: Soft Discourse Constraints

- Recency
- Salience
- Focus
- Centering Theory [Grosz et al. 86]
- Coherence Relations

Other coreference features

- Additional features to incorporate aliases, variations in names etc., e.g. Mr. Obama, Barack Obama; Megabucks, Megabucks Inc.
- Semantic Compatibility
 - Smith had bought a used car that morning.
 - The dealership assured him it was in good condition.
 - *The machine* needed a little love, but the engine was in good condition.

But it's complicated ... so weight features

- Common nouns can differ in number but be coreferent:
 - a patrol ... the soldiers
- Common nouns can refer to proper nouns
 - George Bush ... the leader of the free world
- Gendered pronouns can refer to inanimate things
 - India withdrew her ambassador from the Commonwealth
- Split antecedence
 - John waited for Sasha. And then they went out.

Pairwise Features

- strict gender [true or false]. True if there is a strict match in gender (e.g. male pronoun Pro_i with male antecedent NP_j).
- 2. **compatible gender [true** or **false]**. True if Pro_i and NP_j are merely compatible (e.g. male pronoun Pro_i with antecedent NP_j of unknown gender).
- strict number [true or false] True if there is a strict match in number (e.g. singular pronoun with singular antecedent)
- 4. **compatible number [true** or **false]**. True if Pro_i and NP_j are merely compatible (e.g. singular pronoun Pro_i with antecedent NP_j of unknown number).
- sentence distance [0, 1, 2, 3,...]. The number of sentences between pronoun and potential antecedent.
- 6. Hobbs distance [0, 1, 2, 3,...]. The number of noun groups that the Hobbs algorithm has to skip, starting backwards from the pronoun Pro_i , before the potential antecedent NP_j is found.
- grammatical role [subject, object, PP]. Whether the potential antecedent is a syntactic subject, direct object, or is embedded in a PP.
- linguistic form [proper, definite, indefinite, pronoun]. Whether the potential
 antecedent NP_j is a proper name, definite description, indefinite NP, or a pronoun.

Pairwise Features

Category	Features	Remark		
Lexical	exact_strm	1 if two mentions have the same spelling; 0 otherwise		
	left_subsm	1 if one mention is a left substring of the other; 0 otherwise		
	right_subsm	1 if one mention is a right substring of the other; 0 otherwise		
	acronym	1 if one mention is an acronym of the other; 0 otherwise		
	edit_dist	quantized editing distance between two mention strings		
	spell	pair of actual mention strings		
	ned	number of different capitalized words in two mentions		
Distance	token_dist	how many tokens two mentions are apart (quantized)		
	sent_dist	how many sentences two mentions are apart (quantized)		
	gap_dist	how many mentions in between the two mentions in question (quantized)		
Syntax	POS_pair	POS-pair of two mention heads		
	apposition	1 if two mentions are appositive; 0 otherwise		
Count	count	pair of (quantized) numbers, each counting how many times a mention string is seen		
Pronoun	gender	pair of attributes of {female, male, neutral, unknown }		
	number	pair of attributes of {singular, plural, unknown}		
	possessive	1 if a pronoun is possessive; 0 otherwise		
	reflexive	1 if a pronoun is reflexive; 0 otherwise		

Plan

- Evaluation of Coreference [5+5 mins]
- 2. Introduction to machine learning approaches to coreference [15 mins]
- Feature-based discriminative classifiers [15 mins]
- 4. Feature-based softmax/maxent linear classifiers [20 mins]
- 5. Different conceptualizations of coreference as a machine learning task [15 mins]

- Soon et al. 2001; Ng and Cardie 2002
- Classifies whether two mentions are coreferent or not.
- Weaknesses
 - Insufficient information to make an informed coreference decision.

- Soon et al. 2001; Ng and Cardie 2002
- Classifies whether two mentions are coreferent or not.
- Weaknesses
 - Insufficient information to make an informed coreferenced decision.

Barack Obama	.Hillary Rodham Clintonhis
secretary of state	her

- Soon et al. 2001; Ng and Cardie 2002
- Classifies whether two mentions are coreferent or not.
- Weaknesses
 - Insufficient information to make an informed coreference decision.
 - Each candidate antecedent is considered independently of the others.

- Soon et al. 2001; Ng and Cardie 2002
- Classifies whether two mentions are coreferent or not.
- Weaknesses
 - Insufficient information to make an informed coreferenced decision.
 - Each candidate antecedent is considered independently of the others.

Barack Obama	Hillary Rodham Clint	t <mark>on</mark> hi	S
secretary of state	the President	He	her

An Entity Mention Model

- Example: [Luo et al. 04]
- Bell Tree (link vs. start decision list)
- Entity centroids, or not?
 - Not for [Luo et al. 04], see[Pasula et al. 03]
 - Some features work on nearest mention (e.g. recency and distance)
 - Others work on "canonical" mention (e.g. spelling match)
 - Lots of pruning, model highly approximate
 - (Actually ends up being like a greedy-link system in the end)

Entity-Mention (EM) Model

- Pasula et al. 2003; Luo et al. 2004; Yang et al. 2004
- Classifies whether a mention and a preceding, possibly partially formed cluster are coreferent or not.
- Strength
 - Improved expressiveness.
 - Allows the computation of cluster level features
- Weakness
 - Each candidate cluster is considered independently of the others.

Barack Obama	.Hillary Rodham Clintonhis	
secretary of state	her	

Mention-Ranking (MR) Model

- Denis & Baldridge 2007, 2008
- Imposes a ranking on a set of candidate antecedents
- Strength
 - Considers all the candidate antecedents simultaneously
- Weakness
 - Insufficient information to make an informed coreference decision.

Barack ObamaHillary Rodham Clintonhis	
Heher	

First Ranking Mention Model

- Actually, we don't need a ranking on all candidate antecedents
- We can just find the **highest** ranking antecedent
- This is equivalent to multiclass classification:
 - Choose the antecedent
 - But without a fixed set of classes
 - structured prediction
- Used in recent (high-performing) paper of Durrett and Klein (EMNLP 2013)
 - They use a maxent/softmax model just as we have been discussing