

The National Higher School of Artificial Intelligence

DATABASES

Chapter 2 : The Relational Database Model

Pr. Kamel BOUKHALFA

16/10/2022

Slides From the Textbook: Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management Tenth Edition

Objectives

In this chapter, students will learn:

- That the relational database model offers a logical view of data
- About the relational model's basic component: relations
- That relations are logical constructs composed of rows (tuples) and columns (attributes)
- That relations are implemented as tables in a relational DBMS

Database Systems, 10th Edition

Objectives (cont'd.)

- About relational database operators, the data dictionary, and the system catalog
- How data redundancy is handled in the relational database model
- · Why indexing is important

Database Systems, 10th Edition

Degrees of Data Abstraction

- Database designer starts with abstracted view, then adds details
- ANSI Standards Planning and Requirements Committee (SPARC)
 - Defined a framework for data modeling based on degrees of data abstraction (1970s):
 - External
 - Conceptual
 - Internal

The External Model

- · End users' view of the data environment
- ER diagrams represent external views
- External schema: specific representation of an external view
 - Entities
 - Relationships
 - Processes
 - Constraints

The External Model (cont'd.)

- Easy to identify specific data required to support each business unit's operations
- Facilitates designer's job by providing feedback about the model's adequacy
- Ensures security constraints in database design
- Simplifies application program development

_{16/10/2022} Database Systems, 10th Edition

The Conceptual Model

- · Represents global view of the entire database
- All external views integrated into single global view: conceptual schema
- · ER model most widely used
- ERD graphically represents the conceptual schema

The Conceptual Model (cont'd.)

- Provides a relatively easily understood macro level view of data environment
- Independent of both software and hardware
 - Does not depend on the DBMS software used to implement the model
 - Does not depend on the hardware used in the implementation of the model
 - Changes in hardware or software do not affect database design at the conceptual level

The Internal Model

- · Representation of the database as "seen" by the DBMS
 - Maps the conceptual model to the DBMS
- Internal schema depicts a specific representation of an internal model
- · Depends on specific database software
 - Change in DBMS software requires internal model be changed
- Logical independence: change internal model without affecting conceptual model

16/10/2022 Database Systems, 10th Edition

The Physical Model

- · Operates at lowest level of abstraction
 - Describes the way data are saved on storage media such as disks or tapes
- Requires the definition of physical storage and data access methods
- · Relational model aimed at logical level
 - Does not require physical-level details
- Physical independence: changes in physical model do not affect internal model

16/10/2022 Database Systems, 10th Edition

Levels of Data Abstraction					
MODEL	DEGREE OF ABSTRACTION	FOCUS	INDEPENDENT OF		
External	High	End-user views	Hardware and software		
Conceptual	1	Global view of data (database model independent)	Hardware and software		
Internal	→	Specific database model	Hardware		
Physical	Low	Storage and access methods	Neither hardware nor software		

The Relational Database Model

16/10/2022

15

A Logical View of Data

- Relational model
 - View data logically rather than physically
- Table
 - Structural and data independence
 - Resembles a file conceptually
- Relational database model is easier to understand than hierarchical and network models

Database Systems, 10th Edition

Tables and Their Characteristics

- Logical view of relational database is based on relation
 - Relation thought of as a table
- Table: two-dimensional structure composed of rows and columns
 - Persistent representation of logical relation
- Contains group of related entities (entity set)

Database Systems, 10th Edition

Ι,

Database Systems, 10th Edition

Keys

- · Each row in a table must be uniquely identifiable
- Key: one or more attributes that determine other attributes
 - Key's role is based on determination
 - If you know the value of attribute A, you can determine the value of attribute B
 - Functional dependence
 - Attribute B is functionally dependent on A if all rows in table that agree in value for A also agree in value for B

Database Systems, 10th Edition

Types of Keys

- Composite key
 - Composed of more than one attribute
- · Key attribute
 - Any attribute that is part of a key
- Superkey
 - Any key that uniquely identifies each row
- Candidate key
 - A superkey without unnecessary attributes

Database Systems, 10th Edition

2

Types of Keys (cont'd.)

- Entity integrity
 - Each row (entity instance) in the table has its own unique identity
- Nulls
 - No data entry
 - Not permitted in primary key
 - Should be avoided in other attributes

Database Systems, 10th Edition

Types of Keys (cont'd.)

- Can represent:
 - An unknown attribute value
 - A known, but missing, attribute value
 - · A "not applicable" condition
- Can create problems when functions such as COUNT, AVERAGE, and SUM are used
- Can create logical problems when relational tables are linked

Database Systems, 10th Edition

23

Types of Keys (cont'd.)

- Controlled redundancy
 - Makes the relational database work
 - Tables within the database share common attributes
 - Enables tables to be linked together
 - Multiple occurrences of values not redundant when required to make the relationship work
 - Redundancy exists only when there is unnecessary duplication of attribute values

Database Systems, 10th Edition

Types of Keys (cont'd.)

- Foreign key (FK)
 - An attribute whose values match primary key values in the related table
- Referential integrity
 - FK contains a value that refers to an existing valid tuple (row) in another relation
- Secondary key
 - Key used strictly for data retrieval purposes

Database Systems, 10th Edition

TABLE Relational Database Keys			
KEY TYPE	DEFINITION		
Superkey	An attribute or combination of attributes that uniquely identifies each row in a table		
Candidate key	A minimal (irreducible) superkey; a superkey that does not contain a subset of attributes that is itself a superkey		
Primary key	A candidate key selected to uniquely identify all other attribute values in any given row; cannot contain null entries		
Foreign key	An attribute or combination of attributes in one table whose values must either match the primary key in another table or be null		
Secondary key	An attribute or combination of attributes used strictly for data retrieval purposes		

Database Systems, 10th Edition

2

Integrity Rules

- Many RDBMs enforce integrity rules automatically
- Safer to ensure that application design conforms to entity and referential integrity rules
- · Designers use flags to avoid nulls
 - Flags indicate absence of some value

Database Systems, 10th Edition

3.4 Integrity R	Rules
ENTITY INTEGRITY	DESCRIPTION
Requirement	All primary key entries are unique, and no part of a primary key may be null.
Purpose	Each row will have a unique identity, and foreign key values can properly reference primary key values.
Example	No invoice can have a duplicate number, nor can it be null. In short, all invoices are uniquely identified by their invoice number.
REFERENTIAL INTEGRIT	TY DESCRIPTION
Requirement	A foreign key may have either a null entry, as long as it is not a part of its table's primary key, or an entry that matches the primary key value in a table to which it is related. (Every non-null foreign key value <i>must</i> reference an existing primary key value.)
Purpose	It is possible for an attribute <i>not</i> to have a corresponding value, but it will be impossible to have an invalid entry. The enforcement of the referential integrity rule makes it impossible to delete a row in one table whose primary key has mandatory matching foreign key values in another table.
Example	A customer might not yet have an assigned sales representative (number), but it will be impossible to have an invalid sales representative (number).

Database Systems, 10th Edition

Relational Set Operators

- Relational algebra
 - Defines theoretical way of manipulating table contents using relational operators
 - Use of relational algebra operators on existing relations produces new relations:

• SELECT	• UNION
• PROJECT	• DIFFERENCE
• JOIN	• PRODUCT
• INTERSECT	• DIVIDE

Database Systems, 10th Edition

3

Relational Set Operators (cont'd.)

- Natural join
 - Links tables by selecting rows with common values in common attributes (join columns)
- Equijoin
 - Links tables on the basis of an equality condition that compares specified columns
- Theta join
 - Any other comparison operator is used

Database Systems, 10th Edition

Relational Set Operators (cont'd.)

- · Inner join
 - Only returns matched records from the tables that are being joined
- Outer join
 - Matched pairs are retained, and any unmatched values in other table are left null

Database Systems, 10th Edition

Relational Set Operators (cont'd.)

- · Left outer join
 - Yields all of the rows in the CUSTOMER table
 - Including those that do not have a matching value in the AGENT table
- · Right outer join
 - Yields all of the rows in the AGENT table
 - Including those that do not have matching values in the CUSTOMER table

Database Systems, 10th Edition

Exercise

Actor(idA, name, Firstname, Nationality)

Film(idF, Title, Year, Country, NBSpec, idMaker*,idKind*)

Acting(idActor*, idFilm*, Salary)

Maker(idM, Name, Firstname, Nationality)

Kind(idK, Description)

41

The Data Dictionary and System Catalog

- Data dictionary
 - Provides detailed accounting of all tables found within the user/designer-created database
 - Contains (at least) all the attribute names and characteristics for each table in the system
 - Contains metadata: data about data
- System catalog
 - Contains metadata
 - Detailed system data dictionary that describes all objects within the database

Database Systems, 10th Edition

Data Redundancy Revisited

- Data redundancy leads to data anomalies
 - Can destroy the effectiveness of the database
- Foreign keys
 - Control data redundancies by using common attributes shared by tables
 - Crucial to exercising data redundancy control
- Sometimes, data redundancy is necessary

Database Systems, 10th Edition

Indexes

- Orderly arrangement to logically access rows in a table
- Index key
 - Index's reference point
 - Points to data location identified by the key
- Unique index
 - Index in which the index key can have only one pointer value (row) associated with it
- Each index is associated with only one table

Database Systems, 10th Edition

45

Summary

- Tables are basic building blocks of a relational database
- Keys are central to the use of relational tables
- Keys define functional dependencies
 - Superkey
 - Candidate key
 - Primary key
 - Secondary key
 - Foreign key

Database Systems, 10th Edition

47

Summary (cont'd.)

- Each table row must have a primary key that uniquely identifies all attributes
- · Tables are linked by common attributes
- The relational model supports relational algebra functions
 - SELECT, PROJECT, JOIN, INTERSECT UNION, DIFFERENCE, PRODUCT, DIVIDE

Database Systems, 10th Edition