베이지안 딥러닝을 활용한 항만물동량 예측에 관한 연구

비즈니스 인포매틱스학과 2021155151 이준희

- 1. 연구 배경
- 2. 연구 목적 및 차별성
- 3. 선행 연구 검토
- 4. 데이터 수집 & 전처리
- 5. 연구 방법론
- 6. 연구 결과
- 7. 결론 및 한계점

연구 배경

- 우리나라의 수출입 화물의 대부분이 해상운송으로 이루어지며 이는 곧 항만 경쟁력이 국가 경쟁력이라는 것을 의미함
- 해운산업은 세계 경제의 흐름과 밀접하며 그만큼 변동에 민감한 특성을 가짐
 2022년 상반기 기준 부산항 물동량 목표 달성치 실패
- 항만 경쟁력의 필수 요소인 항만 물동량 흐름의 복잡성과 변동성의 증가로 의하여 정확한 예측 뿐만 아니라 불확실성 기반의 예측 또한 필요한 것으로 보임

연구 목적 & 차별성

- 1. 딥러닝을 활용한 다 시점(Multi-Step) 예측
 - 1년 예측(단기): 단기 물동량 유치, 항만 운영 효율성 향상 및 인력 투입 계획 중심
 - 3~5년 예측(중장기): 단기 물동량 유치, 항만 운영 효율성 향상 및 인력 투입 계획 중심 항만 시설 확장에 소요되는 시간(3~5년) {민경창,하헌구(2014),김두환(2019)}
 - Encoder-Decoder 기반 예측

- 2. 예측의 불확실성 추론 & 분포 기준의 모델 평가
- Monte Carlo Dropout
- 추정치들에 대한 확률분포 추론 및 예측의 불확실성 정량화 단계에 있어서 분포적 특징 기반 모델 적합도 측정
- 3. 불확실성 기반 추정치들 중 우선순위 예측값들의 집합에 대한 선정
- 계절변동을 활용한 유사도 측정

선행 연구 검토

제목	방법론	입력변수	종속변수	요약
ARIMA와 VAR · VEC 모형에 의한 부산항 물동량 예측과 관련성연구 이성윤,안기명(2020)	ARIMA, VAR, VEC	리보금리,GDP, 경기변동	부산항 컨테이너 물동량	안정적인 추세의 수출입화물 추정에서는 ARIMA 모형이 우수하지만, 경제규모와 밀접한 환적화물의 경우 VECM의 예측력이 더 우수.
딥러닝을 활용한 부산항 컨테이너 물동량 예측에 관한 연구. 김두환(2019)	ARIMA, LSTM, GRU	환율, 경기종합지수, 부산항 수출 &수입금액	부산항 컨테이너 물동량	다변량 LSTM & GRU가 ARIMA의 성능보다 높음. 특히 변동성이 상대적으로 큰 구간일수록 딥러닝 시계열의 예측값의 정확도가 통계 시계열 대비 매우 정확한 결과를 보여줌.
시계열 분해를 활용한 딥러닝 예측 모델 성능 향상에 관한 연구. 이은주(2021)	ARIMA, VAR, LSTM, GRU	광공업생산지수, 전산업생산지수, 수출입 중량, 물가지수, 수출입금액	부산항 컨테이너 물동량	시계열의 분해요소에 대한 예측을 각각 실행한 이후 재결합 시, 원 시계열을 활용한 다변량 시계열 예측보다 낮은 RMSE를 가짐
Prophet을 모형을 활용한 국내 중소형 컨테이너항만 물동량 예측에 관한 연구: 인천,평택·당진, 울산항을 중심으로. 김준기(2022)	ARIMA, LSTM, Prophet	환율, 지역별 산업생산지수	인천,평택,당진항 컨테이너 물동량	물동량에 계절성이 존재할 경우, ARIMA보다 Prophet의 예측 성능이 좋으며, 변동이 심한 구간에서는 LSTM을 함께 사용하는 것이 좋음.

•

.

선행 연구 검토

- 1. 물동량 영향 요인에 관한 연구 (20)
- 2. 물동량 예측에 관한 연구 (16)
- 3. Encoder-Decoder & Attention 시계열 예측에 관한 연구 (8)
- 4. 베이지안 딥러닝에 관한 연구 (8)
- 전통적인 시계열 방법론의 경우 예측과 더불어 다양한 거시경제변수와의 인과적 추론을 진행
 (가장 많이 등장한 변수는 환율)
- 딥러닝 시계열의 경우 One-Step Ahead Prediction을 활용한 구조에 한정

• 수집한 선행연구에 의하면 불확실성 추론을 전제로 한 연구는 아직까지 진행되지 않음

데이터 수집 & 전처리

	2000.01	~ 2022.06
종속변수	전국 항만물동량(TEU) *	국가물류통합정보센터 해운/항만통계
	BDI(발틱운임지수)	Investing.com
	SCFI(상해컨테이너운임지수) *	En.macromicro.me
	HRCI(Howe Robinson 컨테이너지수) *	코리아 쉬핑 가제트
	다우존스지수	Investing.com
입력변수	전산업생산지수	통계청
	경상수지	
	원/달러 환율	한국은행 경제통계시스템
	수출물가지수	
	화물수송총괄	국가물류통합정보센터 해운/항만통계

데이터 수집 & 전처리

1. 데이터 보충

- 2000년 전국물동량 TEU: [2001.01 ~ 2001.12 전국/부산항 TEU 평균(1.23)] × [2000.01 ~ 2000.12 부산항 TEU]
- HRCI: 2002.01 ~ 2022.06 수집 가능 자료 --> 2000.01 ~ 2001.12의 값은 ARIMA로 역추정
- SCFI : [SCFI 일별 데이터(2009.10.16 ~ 2022.06.24) + CCFI 일별 데이터(2002.01.11 ~ 2009.10.09)] 월별 데이터 변환 --> 2000.01 ~ 2001.12 값은 ARIMA로 역추정

2. 데이터 변환

- 특정 시점에서 급격한 변동을 나타낸 변수에 대한 로그 변환

데이터 수집 & 전처리

3. 예측 기간 설정(총 8개 기간)

- 1 년 단위 [[17.07~ 18.06], [18.07~ 19.06], [19.07~ 20.06], [20.07~ 21.06], [21.07~ 22.06]] --> 5
- 3 년 단위 [[2017.07 ~ 2020.06], [2019.07 ~ 2022.06]] --> 2
- 5 년 단위 [2017.07 ~ 2020.06] --> 1

4. Sliding Window & Min-Max Scaling

Sequence Length [←]				
1년 단위 예측←	Input Sequence = 18, Prediction Length = 12←			
3년 단위 예측←	Input Sequence = 18, Prediction Length = 36←			
5년 예측←	Input Sequence = 20, Prediction Length = 60←			

- Train[2000.01 ~ 2017.06] & Test[2017.07 ~ 2022.06] --> Min-Max Scaler
- Input Sequence 길이에 따라 데이터 분할 조정 실시를 통해서 예측 준비 완료

- 1. Encoder-Decoder Layer
 - LSTM, CNN-LSTM, TCN(Temporal Convolutional Network), LSTM-Attention

2. Prediction Uncertainty

- Monte Carlo Dropout
- 3. Probability Distribution Similarity
 - KL-Divergence, Negative Log-Likelihood

4. Probabilistic Forecast Measure

- CRPS(Continuous Ranked Probability Score), Coverage, Sharpness
- 5. Priority Prediction Value Set
 - TEU Seasonality, Euclidean Distance, JS-Distance, DTW(Dynamic Time Warping)

Monte Carlo Dropout

- Epistemic Uncertainty [모델이 데이터를 충분히 학습하지 못할 때 발생하는 불확실성]
- 기존의 BNN, Gaussian Process, Variational Inference 대비 계산의 복잡도와 편리성에서 우위
- Dropout 계층을 예측 단계에서도 활성화시켜 지정한 출력 개수만큼 Uncertainty Quantification을 수행
- MC-Dropout을 통해 출력된 복수의 추정치들의 평균을 보통 점추정치, 분산을 예측의 불확실성으로 여김

✓ 본 연구에서는 MC-Dropout 비율 =0.8, 각 예측 기간당 출력 개수 =30으로 설정

CRPS(Continuous Ranked Probability Score)

- 각 시점의 추정치들의 분포와 실제 관측치의 누적분포함수의 차이
- 확률적 예측에서 추정치들의 **분포적 특징**을 기준으로 실제 관측치와 비교
- MAE의 확률적 예측에서의 일반화된 성능지표

 $crps_{F,y} = \int_{-\infty}^{\infty} [F(t) - I(t \ge y)]^2 dt$

(a) Probability Density Function

- (b) Cumulative Density Function
- 차이가 작을수록 추정치들의 **분포의 적합도**가 높으며 모든 시점에서의 평균으로 정량화 가능

$$CRPS = \frac{1}{T} \sum_{i=1}^{T} crps(F_i, y_i)$$

Coverage(Prediction Interval Coverage Probability)

- 추정치들에 대한 예측구간(ex. 95% Prediction Interval)이 실제 관측치들을 포함하는 확률
- 높을수록 예측의 불확실성 구간의 **타당성**이 높음

Coverage =
$$\frac{1}{T}\sum_{i=1}^{T}\{(Y_i > Lower PI_i) \cap (Y_i < Upper PI_i)\}$$

Sharpness(Mean Prediction Interval Width)

- 추정치들에 대한 예측구간(ex. 95% Prediction Interval)의 변동폭의 크기
- 예측구간의 변동폭이 실제 관측치 기준으로 집중적으로 형성되고 구간의 크기가 작을수록 **효율성**이 높음 $Sharpness = \frac{1}{\tau} \sum_{i=1}^T \left(Upper PI_i Lower PI_i \right)$
- ✓ 예측구간과 변동폭의 크기가 각각 지나치게 크거나 작을 때 단일지표로 사용하기에 무리
- ✓ CRPS를 기준으로 두 지표의 적절한 절충을 찾는 것이 합리적인 불확실성 추론이라고 할 수 있음

1. MC-Dropout 기반 추정치들의 확률분포 추론(MLE)

- 확률분포 추론에 있어서 모수는 실제 물동량의 평균과 분산으로 가정
- MC-Dropout기반 추정치들을 수평선 기준으로 나열하여 확률분포의 형태를 갖춤
- 4개의 Layer의 Encoder-Decoder모델 기반의 추정치들 중 실제 물동량의 분포와 가장 유사한 모델을 탐색
- 확률분포 추론은 각 모델의 MC-Dropout 비율을 0.1~0.8까지 증가했을 때의 실험을 토대로 진행

- 실험 결과, MC-Dropout비율 증가 시 실제 물동량의 분포와 유사해지는 형태를 보임
- 따라서 4개의 모델 간의 객관적인 비교는 MC-Dropout=0.8을 기준으로 시행

MC-Dropout 비율 조정 추정치 분포 변화 예시

• CNN-LSTM Layer의 경우 모든 예측 기간에 있어서 가장 적합한 확률분포 추론 결과를 나타냄

MC-Dropout기반 추정치들의 확률분포 추론 결과 예시(MLE)

- 추정치들의 확률분포 추론 정리
 - MC-Dropout=0.8 기반의 추정치들과 실제 물동량 간의 분포 유사도를 KL-Divergence, Negative Log-Likelihood로 측정한 결과, CNN-LSTM의 Layer일 때 가장 높은 적합도를 보임
 - 물동량 예측에 있어서 CNN-LSTM Encoder-Decoder(MCD=0.8)이 가장 좋은 성과를 보일 것으로 예상 가능

KL-Divergence						
MC-Dropout=0.8 Encoder-Decoder						
예측기간~	LSTM₽	CNN-LSTM⊄	TCN←	Attention₽		
2017.07~2018.06	382774↩	654165⊄	399003↩	536973₽		
2018.07~2019.06	603162↩	326301₽	993505↩	997807₽		
2019.07~2020.06	389196↩	551593₽	618384↩	281291↩		
2020.07~2021.06	977680⊄	551098↩	1469896↩	930074₽		
2021.07~2022.06	680140⊄	383917₽	1083607↩	760118₽		
2017.07~2020.06	1354819↩	1045959↩	2763750↩	4458365₽		
2019.07~2022.06	1142756↩	1387508↩	4641674₽	1578009₽		
2017.07~2022.06	4445308↩	1529650⊄	5457136↩	72654505↩		
평균↩	1246979.375↩	803773.875₽	2178369.375↩	2101005.25↩		

Negative Log-Likelihood⊲							
	MC-Dropout=0.8 Encoder-Decoder						
예측기간~	LSTM₽	CNN-LSTM-	TCN←	Attention⊖			
2017.07~2018.06	4548↩	4640₽	4607↩	4513₽			
2018.07~2019.06	4648₽	4613₽	4726₽	4640↩			
2019.07~2020.06	4616₽	4644₽	4642₽	4513↩			
2020.07~2021.06	4725↩	4682↩	4819₽	4660↩			
2021.07~2022.06	4676₽	4656↩	4757₽	4614₽			
2017.07~2020.06	13721₽	13862₽	14317∉	14379↩			
2019.07~2022.06	13875₽	13995₽	14771∉	13783↩			
2017.07~2022.06	23549₽	23216₽	24417₽	23952↩			
평균↩	9294.75↩	9288.5₽	9632∉	9381.75↩			

2. 예측의 불확실성 구간 설정(Uncertainty Quantification)

- 3-Sigma Based(Gaussian) Prediction Interval [표준편차 중심]
 - 평균 ± 2σ 기준의 95% 예측구간을 물동량 전체 변동 중심으로 선정
 - 평균 ± 1σ 기준의 68% 예측구간을 물동량의 추세 변동 중심으로 선정
- Quantile Based Prediction Interval [분위수 중심]
 - [0.025,0.975] 분위수 기준의 95% 예측구간을 물동량 전체 변동 중심으로 선정
 - [0.15,0.85] 분위수 기준의 70% 예측구간을 물동량의 추세 변동 중심으로 선정

2. 종합 결과

- ✓ CRPS 기준으로 CNN-LSTM 구조에서 종합적으로 가장 높은 적합도를 보임
- 나머지 실험 결과 대비 Coverage와 Sharpness 간 적절한 절충이 이루어짐.
- 추정치들이 형성하는 분포의 적합도가 높을수록 전 기간에서의 평균과 중앙값의 성능이 높음

(a) 전 기간 종합 평균 (실제 물동량 대비)

Monte Carlo Dropout Prediction←					
[←] 평가 지표←	Encoder-Decoder⊴ LSTM∈				
921 21 m			1		
	LSTM⊄	CNN-LSTM←	TCN⊄	Attention [□]	
평균값 MAPE⊲	4.183↩	3.823₽	5.36↩	5.03↩	
평균값 RMSE⊄	120882↩	113658↩	153969₽	1444462↩	
중앙값 MAPE⊄	4.267↩	3.813↩	5.63↩	5.067₽	
중앙값 RMSE⊄	125704↩	113605↩	161813↩	145607↩	
2o 95% PI Coverage⊖	0.651₽	0.842↩	0.8461↩	0.3837₽	
2o 95% PI Sharpness⊖	270785↩	306066.90⊄	4850404.51↩	110372.87↩	
[0.025,0.975] 95% PI Coverage	0.603₽	0.749↩	0.821↩	0.359₽	
[0.025,0.975] 95% PI Sharpness⊄	236327.4↩	266479.06↩	428196.63↩	151226.09↩	
CRPS₽	78728.533↩	66868.954	97022.659↩	104242.804↩	

2. 종합 결과

- ✓ CRPS 기준으로 CNN-LSTM 구조에서 종합적으로 가장 높은 적합도를 보임
- 추정치들이 형성하는 분포의 적합도가 높을수록 평균과 중앙값은 실제 물동량의 추세 변동을 매우 정확하게 따름

(b) 전 기간 종합 평균 (물동량 추세 대비)

Monte Carlo Dropout Prediction⊲					
[←] 평가 지표 [←]	Encoder-Decoder-□ LSTM-□				
	LSTM⊄	CNN-LSTM	T CN⊄	Attention [□]	
평균값 MAPE⊄	2.3487↩	1.3756↩	4.729₽	3.9737⊄	
평균값 RMSE⊄	64725.83↩	40801.33↩	121286.39⊄	101930.74↩	
중앙값 MAPE⊄	2.4612↩	1.467↩	5.126↩	4.069₽	
중앙값 RMSE←	65475.287←	43459.0567↩	131797.97↩	101984.533↩	
1₀ 68% PI Coverage	0.5397⊄	0.9159↩	0.5096↩	0.17123↩	
1o 68% PI Sharpness⊖	135390.587	153033.327←	242520.276↩	89885.6617	
[0.15,0.85] 70% PI Coverage	0.5994↩	0.9151↩	0.4454↩	0.12248₽	
[0.15,0.85] 70% PI Sharpness	130906.848	150622.45↩	211314.88↩	83988.7323↩	
CRPS←	78728.533¢	66868.954	97022.659↩	104242.804⊄	

3. 실험 결과 예시 1

- Coverage와 Sharpness 간 절충이 이루어지지 않을 경우 비효율적인 결과가 나옴.
- CRPS는 이에 대한 절충을 이룬 결과를 가짐
- CRPS가 낮을수록 예측값들의 분포가 실제 관측치를 잘 반영하여 평균과 중앙값의 성능의 안정성을 가져옴

3. 실험 결과 예시 2

(a) 2017.07 ~ 2020.06

3. 예측의 불확실성 추론 실험 결과 요약

- ✓ CRPS가 가장 낮은 CNN-LSTM구조에서 추정치들의 평균과 중앙값의 정확도가 가장 높으며 예측의 불확실성 정량화에 있어서 가장 안정적인 범위를 형성
- ✓ 실제 물동량의 추세에 대한 추정치들의 평균과 중앙값의 성능 역시 CRPS의 영향을 받으며, 일치성이 높을수록 정교한 불확실성 추론이 이루어짐
- ✓ 분포 특성의 적합도 면에서 추정치들의 확률분포 실험 단계와 일치하는 양상을 보임
 - CRPS, KL-Divergence, Negative Log-Likelihood의 의미적 연결을 확인할 수 있음

4. 추가 검증 수행

- MC-Dropout 개수 100,200,500 조정 실험
- 단변량 CNN-LSTM Encoder-Decoder와의 성능 비교로 다변량 예측과의 성능 비교
- ✓ CRPS 기준으로 각 기간당 출력하는 예측값들을 늘렸을 때 기존의 30개로 수행한 실험과 유의미한 차이를 보이지 않음.
 - MCD=30 [CRPS = **66868.954**, MCD=100 [CRPS=**66104.8**], MCD=200 [CRPS=**67174**], MCD=500 [CRPS = **66878.46**]

- ✓ 단변량 예측의 CRPS = 92113.05라는 점에서 전 기간에 걸친 불확실성 기반 추론에서 다변량 대비 상당히 부적합한 결과를 보임
 - 입력변수로 사용한 10개의 자료가 불확실성 추론에서의 안정성을 유의미하게 높인 결과를 알 수 있음
- ✓ 본 연구에서 설정한 파라미터 기반의 MC-Dropout을 적용한 CNN-LSTM Encoder-Decoder의 불확실성 추론과 분포의 적합도 면에서 종합적인 안정성을 확인할 수 있음

4. 추가 검증 수행

	Continuous Ranked Probability Score					
તીરું ગીગીન	MC-Dropout 출력 개수⊖					
예측 기간	30₽	100₽	200₽	500₽		
1Υ ←	67890.706↩	67089.4₽	69315₽	68405.4₽		
3Y ←	66844.275	649444	65913	65660₽		
5Y ←	65871.88↩	66281⊄	66294⊲	66570₽		
전체 평균↩	66868.954	66104.8⊲	67174₽	66878.46		

Monte Carlo Dropout Prediction⊖				
평가 지표←	CNN LSTM Encoder-Decoder			
	Univariate⊄	Multivariate←		
평균값 MAPE←	4.79←	3.823←		
평균값 RMSE←	137746←	113658←		
중앙값 MAPE←	4.84←	3.813←		
중앙값 RMSE←	138532←	113605←		
2σ 95% PI Coverage←	0.582←	0.842←		
2 σ 95% PI Sharpness⊖	219508.9←	306066.90←		
[0.025,0.975] 95% PI Coverage	0.568↩	0.749←		
[0.025,0.975] 95% PI Sharpness	226618.19←	266479.06←		
CRPS←	92113.05↩	66868.954△		

4. 추가 검증 수행

✓ 5년 예측 기간 기준으로 기존의 선행연구의 방법론들과 비교 결과, MC-Dropout기반 CNN-LSTM Encoder-Decoder의 추정치들의 평균과 중앙값의 성능이 높으며 이들은 동시에 예측의 불확실성 정량화에 있어서 위험 관리 면에서의 높은 효율성을 보여줌

성능 비교-					
방법론↩	MAPE←	RMSE←			
LSTM←	4.31₽	128746⊲			
GRU↩	4.14↩	125469↩			
CNN-LSTM←	3.75↩	118493↩			
TCN←	4.93↩	145384↩			
VECM←	4.28↩	125623↩			
ARIMA←	5.78↩	181322↩			
Prophet↩	4.06↩	181322↩			
MCD-CNN-LSTM Encoder-Decoder (Mean)⊖	3.71⊖	111060⊲			
MCD-CNN-LSTM Encoder-Decoder (Median)⊖	3.66⊲	109749⊲			

5. 우선순위 예측 집합 선정

- 불확실성 추론 실험 결과, CNN-LSTM구조의 추정치들의 평균은 물동량의 추세와 상당히 일치(MAPE 약 1.4%)
- 각 기간당 추정치들의 평균과 물동량의 계절변동(승법 모형 분해 기반)을 곱한 값을 우선순위 추정치 선정기준으로 설정
- 각 기간당 30개의 복수의 추정치들과 선정 기준과의 유사도 측정은 JS(Jensen Shannon) Distance, Euclidean Distance, DTW(Dynamic Time Warping)를 활용
- ✔ 3개의 유사도 측정 기준으로 각 기간당 5개의 우선순위 추정치들을 선정
- ✓ 해당 집합들이 각 기간당 MC-Dropout 기반 개별 추정치들 중 최고 성능을 가진 5개의 값들 중 적어도 1개 이상을 포함하는지 확인

5. 우선순위 예측 집합 선정 예시

(a) 추정치 선정 기준(평균 x 계절변동 예측값)

(b) Euclidean Distance 유사도 기반 우선순위 추정치

Euclidean Distance = 540784

MAPE = 2.74

5. 우선순위 예측 집합 선정 예시

2019.07 ~ 2022.06□							
	MC_Dropout Best Predictions⊖						
Pred No.	17↩	6₽	25↩	4←	21₽		
MAPE∈	3.91↩	4.00←	4.02←	4.13↩	4.34		
		JS-Di	stance∈				
Distance	0.012044	0.013709↩	0.014641↩	0.014931	0.015454		
Pred No⇔	21↩	7↩	1↩	17↩	6⊲		
MAPE	4.34	4.94←	4.84←	3.91	4.00⊄		
		Euclidear	ıDistance				
Distance	567127	612222₽	615392↩	649793	679009↩		
Pred No⇔	21↩	1↩	7↩	4←	25ċ		
MAPE₽	4.34	4.84←	4.94←	4.13	4.02₽		
	Dynamic Time Warping⊖						
Distance	401886↩	423161↩	423403	431783	435740↩		
Pred No⇔	18↩	13↩	21↩	25↩	12←		
MAPE←	6.77↩	5.05↩	4.34	4.02₽	4.74←		

- ✓ 평균 x 계절변동과 MC-Dropout 추정치들 간의 유사도 측정 결과, 최고 성능을 가진 5개의 개별 추정치 중 적어도 1개를 포함할 수 있는 것으로 나타남
- ✓ 단기 예측 대비 중장기 예측에서 더 좋은 결과를 보임

✓ MC-Dropout 기반 불확실성 추론과 더불어 발생 가능성이 가장 높은 5개의 값들을 선정함으로써 보다 구체적인예측 계획을 세울 수 있을 것으로 기대

결론 및 한계

1. 결론

- ✓ 딥러닝을 활용한 물동량에 대한 다 시점 예측과 불확실성 추론을 Encoder-Decoder와 Monte-Carlo Dropout을 활용하여 실험 진행
- ✓ CRPS(Continuous Ranked Probability Score)가 낮을수록 불확실성 추론에서의 안정성이 높으며 추정치들의 평균과 중앙값이 실제 물동량과 추세 대비 높은 정확도를 가짐 --> CNN-LSTM 구조
- ✓ 추가적인 검증(MC-Dropout 출력 개수 조정 & 단변량 예측과의 비교)를 통해서 본 연구에서 수집한 데이터를 기반의 실험이 물동량에 대한 예측의 불확실성에 있어서 강건함
- ✓ 불확실성 추론과 더불어 평균과 계절변동을 활용하여 MC-Dropout 기반 추정치들 중 우선순위 예측값들을 선별하여 예측 계획의 구체성을 높일 수 있음

결론 및 한계

2. 한계 및 향후 연구 방향

- ✓ 수집한 자료 중 일부는 2000년 1월까지 전부 수록되지 않아 별도의 추정을 통해서 데이터를 완성했으므로 100%의 객관성을 본다고 하기에 어려움
- ✔ 예측 단계에서 파라미터 조정에 대한 추가적인 실험 & 보다 변동을 잘 나타내는 입력 자료에 대한 탐색 필요
- ✔ 대상 기간에 대한 불확실성 추론에 있어서 변수들의 영향력을 나타내지 않음

- ✓ 우선순위 예측값들의 집합 선정에 있어서 더 명확한 기준이 필요
- ✓ DeepAR, NHITS와 같은 불확실성 추론에서의 최신 연구와의 차이를 알아볼 필요가 있음

감사합니다