Subject	Section	سومتوع الدرس	J		
QAbsolute	crvor = exact		Proximate Va	lue (Et)	
2) Redative	ervor = Exa)		
EX.				, ,	
The derive	ntive FCX) of P	-unction fcx)	can be aj	proximated	byThe
equation	(+H) - FCX)				
<i>b</i> (x) =					
	x² and h=0.1		£(2+ o.	1) - ((1) 3(2.1)2 - 12
	approximate "			= \ 2	
b) exact	volue of	F(5) -> +, C	X) = EX ->> E(5) = 15	
C) Absolut	re error for	r part (a) ->	exact-ap	$P. \rightarrow 12-12.3$	=-0.3
_	ate error = Pr	esent app.	-previous	app.	
ex. E	2)				
F(X)=3x2 Find The	at x=2 app. error	forThevolue	at \$'(2)	For Pay	t b
a) f'(2)	using Noo.	. \			
p) 6, (5)	using hea	5.2			
5 not a sec					

a) C'(2) = 12.3

$$\frac{10) f'(2) = 0.2 \qquad 0.2 \qquad 0.2}{f(2+0.2) - f(2) \qquad 3(0.2)^2 - 12} \frac{(12.6)}{(12.6)}$$

APP. error = 12.6-12.3= (0.3)

PRElative error = approximate (Ea)

- Colemate of e' with an relative app. error of less Than IV.

 $\frac{2^{x}}{2^{x}} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$

Sol.	\ n	e	Ea	Ea%	FB
Previous	1	1	-		
Present		1+x=21	2-1=(1)	50%	2 X 100 =
-	3	+ X + X1	2.5-2=0.5/	20%	20.5 x160
	4	1+ X+ 22+ X	2.16667	6.25%	>0.16667
	5 /	$1+X+\frac{x^2}{31}+\frac{x^3}{31}+x^3$	47/24	1.53 %	
	16/	1 + XS	120	0.31.	

* The max. error for function of multi variable

F(X, X2, X3, X4)

 $\Delta F = \frac{\partial F}{\partial x_1} \Delta x_1 + \frac{\partial F}{\partial x_2} \Delta x_2 + \cdots + \Delta F \neq \frac{\partial F}{\partial x_1} \Delta x_1$

Find The max. error for the function $F(x,y,z) = \frac{xy}{z}$ $X = |\pm 0.0| \quad y = 2 + 0.03, \quad Z = 3 \pm 0.04$ $AF_{max} = |\frac{\partial F}{\partial x} \triangle x| + |\frac{\partial F}{\partial y} \triangle y| + |\frac{\partial F}{\partial z} \triangle z|$ $\Rightarrow |\frac{\partial F}{\partial x}|_{(1,2,3)} = |\frac{2}{3}$ $\Rightarrow |\frac{\partial F}{\partial z}|_{(1,2,3)} = |\frac{2}{3}$ $\Rightarrow |\frac{\partial F}{\partial z}|_{(2,3)} = |\frac{\partial F}{\partial z}|_{(2,3)} = |\frac{2}{3}$ $\Rightarrow |\frac{\partial F}{\partial z}|_{(2,3)} = |\frac{2}{3}$ $\Rightarrow |\frac{\partial F}{\partial z}|_{(2,3)} = |\frac{2}{3}$ $\Rightarrow |\frac{\partial F}{\partial z}|_{(2,3)} = |\frac{\partial F}{\partial z}$