6-Field Models (V3.4.4)

Tianyang Xia $^{1,2,*},$ Jianguo Chen $^{2,\#},$ Xueqiao Xu 3 February 9, 2018

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

²School of Physics, Peking University, Beijing, 100871, China

³Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Email: *xiaty@ipp.ac.cn, #cjgls@pku.edu.cn

Contents

1	MHD equations	1	
2	Full set of equations	3	
	2.1 Curvature vector	3	
	2.2 Radial Force Balance		
	2.3 Vorticity		
	2.4 Density equation	7	
	2.5 Parallel velocity equations	9	
	2.6 Ohm's Law	11	
	2.7 Ion temperature equation	12	
	2.8 Electron temperature equation	15	
	2.9 Magnetic Flutter in Parallel Thermal Conduction	17	
3	Normalization	19	
4 Normalization by \bar{B} (Recommended)			
5	Results	29	

6	Con	aclusion	29
7	\mathbf{Red}	luced to 3Field model	34
	7.1	Pressure Equation	34
	7.2	Ohm's Law	34
	7.3	Vorticity Equation	34

1 MHD equations

The original equations we want to use in the simulations are[1]:

$$\frac{\partial}{\partial t} n_i + \nabla \cdot (n_i \boldsymbol{V}_i) = 0,$$

$$\frac{\partial}{\partial t} (m_j n_j \boldsymbol{V}_j) + \boldsymbol{\nabla} P_j + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\overleftarrow{\pi}}_j + m_j n_j \boldsymbol{V}_j \boldsymbol{V}_j \right) = Z_j e n_j \left(\boldsymbol{E} + \boldsymbol{V}_j \times \boldsymbol{B} \right) + \boldsymbol{R}_j,$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} P_j + \frac{1}{2} m_j n_j V_j^2 \right) + \nabla \cdot \boldsymbol{Q}_j = Z_j e n_j \boldsymbol{V}_j \cdot \boldsymbol{E} + \boldsymbol{V}_i \cdot \boldsymbol{R}_i + W_j.$$

Here, the energy flux is given by Branginskii

$$oldsymbol{Q}_j = \left(rac{5}{2}k_Bn_jT_j + rac{1}{2}m_jn_jV_j^2
ight)oldsymbol{V}_j + \overleftrightarrow{\pi}\cdotoldsymbol{V}_j + oldsymbol{q}_j$$

with

$$\boldsymbol{q}_{i} = -\kappa_{\parallel i} \nabla_{\parallel} T_{i} + \frac{5P_{i}}{2m_{i}\Omega_{i}} \hat{\boldsymbol{b}} \times \boldsymbol{\nabla} T_{i} - \kappa_{\perp i} \nabla_{\perp} T_{i}$$

$$\tag{1.1}$$

$$\boldsymbol{q}_{e} = -\kappa_{\parallel e} \nabla_{\parallel} T_{e} + \frac{5P_{e}}{2m_{e}\Omega_{e}} \hat{\boldsymbol{b}} \times \boldsymbol{\nabla} T_{e} - \kappa_{\perp e} \nabla_{\perp} T_{e} - 0.71 \frac{T_{e}}{e} J_{\parallel} + \frac{3\nu_{e}}{2\Omega_{e}} \frac{T_{e} \hat{\boldsymbol{b}} \times \boldsymbol{J}}{e}$$

$$\tag{1.2}$$

and the friction force

$$\boldsymbol{R}_e = -\boldsymbol{R}_i = en_e \left(\frac{\boldsymbol{J}_{\parallel}}{\sigma_{\parallel}} + \frac{\boldsymbol{J}_{\perp}}{\sigma_{\perp}} \right) - 0.71 k_B n_e \boldsymbol{\nabla}_{\parallel} T_e + \frac{3\nu_e}{2\Omega_e} k_B n_e \boldsymbol{b} \times \boldsymbol{\nabla} T_e.$$

The energy exchange term

$$W_{i} = \frac{3m_{e}}{m_{i}} \frac{k_{B}n_{e}}{\tau_{e}} (T_{e} - T_{i}),$$

$$W_{e} = -W_{i} - \mathbf{R}_{e} \cdot (\mathbf{V}_{e} - \mathbf{V}_{i}).$$

$$\tau_{e} = \frac{3\sqrt{m_{e}} (k_{B}T_{e})^{\frac{3}{2}}}{4\sqrt{2\pi}n_{e}e^{4} \ln \Lambda}$$

The viscous stress tensor $\overrightarrow{\pi_j}$ is composed by three parts, sp-caleed "parallel" part $\overrightarrow{\pi}_{cj}$, "perpendicular" part $\overrightarrow{\pi}_{\perp j}$ and "gyroviscous" part $\overrightarrow{\pi}_{gj}$. The "parallel" viscous stress tensor yields magnetic pumping term which can damps the plasma flow shear [2]. The expression of $\overrightarrow{\pi}_{cj}$ is given by Ref. [1] [3] as

$$\overleftrightarrow{\boldsymbol{\pi}}_{cj} = \left(\boldsymbol{bb} - \frac{1}{3} \overleftrightarrow{\boldsymbol{I}}\right) \pi_{cj}, \tag{1.3}$$

and

$$\pi_{cj} = \eta_{j}^{0} \left[(\boldsymbol{V}_{E} + \boldsymbol{V}_{Pj}) \cdot \boldsymbol{\kappa} - \frac{2}{\sqrt{B}} \nabla_{\parallel} \left(\sqrt{B} V_{\parallel j} \right) \right]$$

$$+ \eta_{j}^{0} \left[\left(1.61 k_{B} \frac{\boldsymbol{b} \times \nabla T_{j}}{Z_{j} eB} \right) \cdot \boldsymbol{\kappa} + \left(\frac{7.09}{5 P_{ij} \sqrt{B}} \right) \nabla_{\parallel} \left(\sqrt{B} \kappa_{\parallel i} \nabla_{\parallel} T_{i} \right) \right]$$

$$- \eta_{j}^{0} \left[\frac{2.44 \kappa_{\parallel i} \nabla_{\parallel} T_{i}}{5 P_{j}} \left(2.27 \nabla_{\parallel} \ln T_{j} - \nabla_{\parallel} \ln P_{j} \right) \right]$$

$$- \eta_{j}^{0} \left[\left(\frac{\mu_{0}}{B^{3}} \right) \boldsymbol{b} \times \nabla \left(P_{i} + P_{e} \right) \cdot \left(\nabla \Phi + \frac{\nabla P_{j}}{Z_{j} en} + 1.61 \frac{\nabla T_{j}}{Z_{i} e} \right) \right].$$

$$(1.4)$$

The "perpendicular" part is a factor of ν_j/Ω_j smaller than the "gyroviscous" part [1]. For those equations, we can get the momentum and energy of Braginskii equations as

$$m_j n_j \frac{d}{dt} \mathbf{V}_j + \nabla P_j + \nabla \cdot \overleftrightarrow{\boldsymbol{\pi}}_j = Z_j e n_j (\mathbf{E} + \mathbf{V}_j \times \mathbf{B}) + \mathbf{R}_j,$$
 (1.5)

$$\frac{d}{dt}\left(\frac{3}{2}P_j\right) + \frac{5}{2}P_j\boldsymbol{\nabla}\cdot\boldsymbol{V}_i = -\overleftarrow{\boldsymbol{\pi}}_j:\boldsymbol{\nabla}\boldsymbol{V}_j - \boldsymbol{\nabla}\cdot\boldsymbol{q}_j + W_j, \tag{1.6}$$

Here $d/dt = \partial/\partial t + \mathbf{V}_j \cdot \nabla$. The electron velocity V_e is written as

$$V_{\parallel e} = V_{\parallel i} - \frac{J_{\parallel}}{en_e}. \tag{1.7}$$

With the quasineutral condition,

$$Z_i n_i = n_e. (1.8)$$

if the ion and electron have same temperature $T_i = T_e$:

$$P_0 = P_i + P_e = n_i * T_i + n_e * T_e = P_i * (1 + Z_i)$$
(1.9)

The linearizing expressions use the definations of variables as

$$egin{array}{lcl} n_{j} &=& n_{j0} + n_{j1}, \ P_{j} &=& P_{j0} + p_{j1}, \ P &=& P_{i} + P_{e} &=& P_{0} + p_{1} = \left(P_{i0} + P_{e0}\right) + \left(p_{i1} + p_{e1}\right), \ \Phi &=& \Phi_{0} + \phi, \ J_{\parallel} &=& J_{\parallel 0} + J_{\parallel 1}, \ oldsymbol{b} &=& oldsymbol{b}_{0} - oldsymbol{b}_{0} imes oldsymbol{
abla} \psi. \end{array}$$

Notice that the flute reduction $k_{\parallel} \sim \epsilon k_{\perp}$ is adopted in this work.

2 Full set of equations

2.1 Curvature vector

The field-line curvature vector κ is defined as

$$\kappa \equiv \mathbf{b} \cdot \nabla \mathbf{b} = (\nabla \times \mathbf{b}) \times \mathbf{b} \tag{2.1.1}$$

due to

$$\nabla(\mathbf{b} \cdot \mathbf{b}) = 2\left[\mathbf{b} \times (\nabla \times \mathbf{b}) + (\mathbf{b} \cdot \nabla)\mathbf{b}\right] = 0$$

This can be re-written as

$$\kappa = \left[\frac{1}{B} \nabla \times \mathbf{B} - \mathbf{B} \times \nabla \left(\frac{1}{B} \right) \right] \times \mathbf{b}$$

Using $\nabla \left(\frac{1}{B}\right) = -\frac{\nabla B}{B^2}$, this becomes

$$\kappa = \frac{\mu_0}{B^2} \mathbf{J} \times \mathbf{B} + \frac{1}{B} (\mathbf{b} \times \nabla B) \times \mathbf{b}$$

$$= \frac{\mu_0}{B^2} \mathbf{J} \times \mathbf{B} + \frac{1}{B} \nabla_{\perp} B$$
(2.1.2)

$$\mathbf{b} \cdot \nabla \times \mathbf{b} = \mathbf{b} \cdot \nabla \times \frac{\mathbf{B}}{B} = \mathbf{b} \cdot \left[\frac{1}{B} \nabla \times \mathbf{B} + \frac{1}{B^2} \mathbf{B} \times \nabla B \right]$$

$$= \mathbf{b} \cdot \frac{\nabla \times \mathbf{B}}{B} \qquad (2.1.3)$$

$$\frac{\nabla \times \mathbf{b}}{B} = \frac{1}{B^2} \nabla \times \mathbf{B} + \frac{1}{B^2} \mathbf{b} \times \nabla B \qquad (2.1.4)$$

$$\frac{2}{B} \mathbf{b} \times \kappa = \frac{2}{B} \mathbf{b} \times [(\nabla \times \mathbf{b}) \times \mathbf{b}]$$

$$= \frac{2}{B} \nabla \times \mathbf{b} - \frac{2}{B^2} \mathbf{b} \cdot (\nabla \times \mathbf{B}) \mathbf{b} \qquad (2.1.5)$$

$$\nabla \times \frac{\mathbf{b}}{B} = \frac{1}{B} \nabla \times \mathbf{b} + \frac{1}{B^2} \mathbf{b} \times \nabla B$$

$$= \frac{2}{B} \nabla \times \mathbf{b} - \frac{1}{B^2} \nabla \times \mathbf{B}$$

$$= \frac{2}{B} \nabla \times \mathbf{b} - \frac{1}{B^2} \nabla \times \mathbf{B}$$

$$= \frac{2}{B} \mathbf{b} \times \kappa - \frac{1}{B^2} \nabla \times \mathbf{B} + \frac{2}{B^2} \mathbf{b} \cdot (\nabla \times \mathbf{B}) \mathbf{b}$$

$$= \frac{2}{B} \mathbf{b} \times \kappa + \frac{\mu_0 (\mathbf{J}_{\parallel} - \mathbf{J}_{\perp})}{B^2} \qquad (2.1.6)$$

$$\approx \frac{2}{B} \mathbf{b} \times \kappa + O(\beta) \qquad (2.1.7)$$

For the last step (2.1.7), looking into [1] APPENDIX A for details.

2.2 Radial Force Balance

According to the radial force balance, the radial electric field can be expressed as:

$$E_r = \left(\frac{\nabla P_i}{Z_i e n_i}\right)_r - V_{\theta i} B_{\phi} + V_{\phi i} B_{\theta} \tag{2.2.1}$$

We define part of equilibrium E_{r0} :

$$E_{r,dia0} = -\left(\nabla \phi_{dia0}\right)_r = \left(\frac{\nabla P_i}{Z_i e n_i}\right)_r \tag{2.2.2}$$

which makes the $E_{r,dia0} \times B$ flow balance ion diamagnetic flow:

$$\frac{\boldsymbol{E}_{r,dia0} \times \boldsymbol{B}}{B^2} = -\frac{\boldsymbol{b} \times \nabla P_i}{Z_i e n_i B}$$
 (2.2.3)

The remained part of E_{r0} is called net $E_{r0,net}$ introducing the net flow:

$$V_{e0,net} = \frac{E_{r0,net} \times B}{B^2} = \frac{B \times \nabla \Phi_{0,net}}{B^2}$$
(2.2.4)

2.3 Vorticity

First, we can add the ion and electron momentum equations together and obtain

$$m_i n_i \frac{d}{dt} \boldsymbol{V}_i + \boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}} + \boldsymbol{\nabla} P = \boldsymbol{J} \times \boldsymbol{B}.$$
 (2.3.1)

Here the electron momentum is negalected for $m_e \ll m_i$ and the viscosity is kept. Multiply the term $\mathbf{b} \cdot \nabla \times$ on Eq. (2.3.1), we derive

$$\begin{split} \boldsymbol{b} \cdot \boldsymbol{\nabla} \times \left[m_i n_i \frac{d}{dt} \boldsymbol{V}_i + \boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}} \right] &= \boldsymbol{b} \cdot \boldsymbol{\nabla} \times (\boldsymbol{J} \times \boldsymbol{B}) \\ &= B^2 \boldsymbol{b} \cdot \nabla \left(\frac{J_{\parallel}}{B} \right) - \frac{1}{B^2} \boldsymbol{b} \times (\boldsymbol{J} \times \boldsymbol{B}) \cdot \boldsymbol{\nabla}_{\perp} B^2 \\ &= B^2 \boldsymbol{b} \cdot \nabla \left(\frac{J_{\parallel}}{B} \right) - \frac{1}{\mu_0} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} B^2. \end{split}$$

Because $\kappa \equiv \boldsymbol{b} \cdot \nabla \boldsymbol{b} = \frac{\mu_0}{B^2} \boldsymbol{J} \times \boldsymbol{B} + \frac{1}{B} \nabla_{\perp} \boldsymbol{B}$, so the last equation becomes

$$m{b}\cdot(m{\nabla}-2m{\kappa}) imesegin{bmatrix} m_in_irac{d}{dt}m{V}_i+m{\nabla}\cdot\overleftrightarrow{m{\pi}} \end{bmatrix} = B^2m{b}\cdotm{\nabla}\left(rac{J_\parallel}{B}
ight)+2m{b} imesm{\kappa}\cdotm{\nabla}P.$$

Negalect the "parallel" voscous term and the curvature on momentum, then take the time derivative operator out of the spatial differencial, the vorticity equation is obtained

$$\begin{split} \frac{d}{dt}\varpi &= \frac{\partial}{\partial t}\varpi + (\boldsymbol{V}_{E} + \boldsymbol{V}_{\parallel i} + \boldsymbol{V}_{Pi}) \cdot \nabla \varpi \\ &= B^{2}\boldsymbol{b} \cdot \boldsymbol{\nabla} \left(\frac{J_{\parallel}}{B}\right) + 2\boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} P_{1} \\ &- \frac{1}{2\Omega_{i}} \left[n_{i}Z_{i}e\boldsymbol{V}_{Di} \cdot \boldsymbol{\nabla} \left(\nabla_{\perp}^{2}\Phi\right) - m_{i}\Omega_{i}\boldsymbol{b} \times \boldsymbol{\nabla} n_{i} \cdot \boldsymbol{\nabla} V_{E}^{2} \right] \\ &+ \frac{1}{2\Omega_{i}} \left[\boldsymbol{V}_{E} \cdot \boldsymbol{\nabla} \left(\nabla_{\perp}^{2}P_{i}\right) - \nabla_{\perp}^{2} \left(\boldsymbol{V}_{E} \cdot \boldsymbol{\nabla} P_{i}\right) \right]. \end{split}$$

Here the vorticity is defined as

$$\overline{\omega} = \boldsymbol{b} \cdot \boldsymbol{\nabla} \times m_i n_i V_i
\simeq n_{i0} \frac{m_i}{B_0} \left(\nabla_{\perp}^2 \phi + \frac{1}{n_{i0}} \nabla_{\perp} \phi \cdot \nabla_{\perp} n_{i0} + \frac{1}{n_{i0} Z_i e} \nabla_{\perp}^2 p_{i1} \right).$$
(2.3.2)

The ion velocity is composed by $E \times B$ drift V_E , diamagnetic drift V_D , polarization drift V_{Pi} (Eq.(2.4.1)) and perturbed parallel volocity $V_{\parallel i}b$

$$V_{i} = V_{\perp i} + V_{\parallel i}b = V_{E} + V_{D} + V_{\parallel i}b + V_{Pi} =$$

$$= \frac{1}{B_{0}}b_{0} \times \nabla_{\perp}\Phi + \frac{1}{Z_{i}en_{i}B_{0}}b_{0} \times \nabla_{\perp}P_{i} + V_{\parallel i}b + V_{Pi}$$

$$= \frac{1}{B_{0}}b_{0} \times \nabla_{\perp}\phi + \frac{1}{B_{0}}b_{0} \times \nabla_{\perp}\Phi_{0,net} + \frac{1}{Z_{i}en_{i}B_{0}}b_{0} \times \nabla_{\perp}p_{i1} + V_{\parallel i}b_{0} + V_{Pi} \qquad (2.3.3)$$

$$V_{E\times B}^{2} = \left(\frac{b \times \nabla\Phi}{B}\right)^{2} = \left(\frac{\nabla_{\perp}\Phi}{B}\right)^{2} = \frac{(\nabla\Phi)^{2} - (\nabla_{\parallel}\Phi)^{2}}{B^{2}}$$

$$= \frac{1}{B^{2}}\left[(\nabla\Phi_{0})^{2} + 2\nabla\Phi_{0} \cdot \nabla\phi + (\nabla\phi)^{2} - (\nabla_{\parallel}\Phi_{0})^{2} - 2\nabla_{\parallel}\Phi_{0} \cdot \nabla_{\parallel}\phi - (\nabla_{\parallel}\phi)^{2}\right]$$

$$= \frac{1}{B^{2}}\left[(\nabla_{\perp}\Phi_{0})^{2} + 2\nabla_{\perp}\Phi_{0} \cdot \nabla_{\perp}\phi + (\nabla_{\perp}\phi)^{2}\right] \qquad (2.3.4)$$

$$V_{0,net} = \frac{1}{B_{0}}b_{0} \times \nabla_{\perp}\Phi_{0,net} \qquad (2.3.5)$$

$$\varpi_{0} \simeq n_{i0}\frac{m_{i}}{B_{0}}\left(\nabla_{\perp}^{2}\Phi_{0} + \frac{1}{n_{i0}}\nabla_{\perp}\Phi_{0} \cdot \nabla_{\perp}n_{i0} + \frac{1}{n_{i0}Z_{ie}}\nabla_{\perp}^{2}P_{i0}\right)$$

$$= n_{i0}\frac{m_{i}}{B_{0}}\left(\nabla_{\perp}^{2}\Phi_{0,net} + \frac{1}{n_{i0}}\nabla_{\perp}\Phi_{0} \cdot \nabla_{\perp}n_{i0}\right) \qquad (2.3.6)$$

$$\nabla_{\perp}\Phi = \frac{b \times \nabla_{\perp}\Phi}{B} \times B = V_{E\times B} \times B \qquad (2.3.7)$$

Notice that the cancellation of zero-order of $E \times B$ and diamagnetic drift is applied here for equilibrium. For the last step ,we use the linearized expression

$$\frac{\partial}{\partial t} \varpi = B_0^2 \nabla_{\parallel 0} \left(\frac{J_{\parallel 1}}{B} \right) - B_0^2 b_0 \times \nabla \psi \cdot \nabla \left(\frac{J_{\parallel 0}}{B_0} \right) + 2b_0 \times \kappa \cdot \nabla p_1
- \frac{1}{B_0} b_0 \times \nabla_{\perp} \Phi_0 \cdot \nabla \varpi - \frac{1}{B_0} b_0 \times \nabla_{\perp} \phi \cdot \nabla \varpi_0 - V_{\parallel i} \nabla_{\parallel 0} \varpi_0
- \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla p_{i1} \cdot \nabla \left(\nabla_{\perp}^2 \Phi_0 \right) - \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla P_{i0} \cdot \nabla \left(\nabla_{\perp}^2 \phi \right)
+ \frac{1}{2\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i1} \cdot \nabla \left(\frac{\nabla \Phi_0}{B_0} \right)^2 + \frac{1}{\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i0} \cdot \nabla \left(\frac{\nabla \Phi_0 \cdot \nabla \phi}{B_0^2} \right)
- \frac{1}{2\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i1} \cdot \nabla \left(\frac{\nabla \Phi_0}{B_0} \right)^2 - \frac{1}{\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i0} \cdot \nabla \left(\frac{\nabla \Phi_0 \cdot \nabla \phi}{B_0^2} \right)
+ \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla \phi \cdot \nabla \left(\nabla_{\perp}^2 P_{i0} \right) + \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla \Phi_0 \cdot \nabla \left(\nabla_{\perp}^2 p_{i1} \right)
- \frac{1}{2\Omega_i} \nabla_{\perp}^2 \left(\frac{1}{B_0} b_0 \times \nabla \Phi_0 \cdot \nabla p_{i1} \right) - \frac{1}{2\Omega_i} \nabla_{\perp}^2 \left(\frac{1}{B_0} b_0 \times \nabla \phi \cdot \nabla P_{i0} \right)
- B_0^2 b_0 \times \nabla \psi \cdot \nabla \left(\frac{J_{\parallel 1}}{B} \right)
- \frac{1}{B_0} b_0 \times \nabla_{\perp} \phi \cdot \nabla \omega - V_{\parallel i} \nabla_{\parallel 0} \omega + V_{\parallel i} b_0 \times \nabla \psi \cdot \nabla \omega_0
- \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla n_{i0} \cdot \nabla \left(\nabla_{\perp}^2 \phi \right)
+ \frac{1}{2\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i0} \cdot \nabla \left(\frac{\nabla \phi}{B_0} \right)^2 + \frac{1}{\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i1} \cdot \nabla \left(\frac{\nabla \Phi_0 \cdot \nabla \phi}{B_0^2} \right)
- \frac{1}{2\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i0} \cdot \nabla \left(\frac{\nabla \phi}{B_0} \right)^2 - \frac{1}{\Omega_i} Z_i e B_0 b_0 \times \nabla n_{i1} \cdot \nabla \left(\frac{\nabla \Phi_0 \cdot \nabla \phi}{B_0^2} \right)
+ \frac{1}{2\Omega_i} \frac{1}{B_0} b_0 \times \nabla \phi \cdot \nabla (\nabla_{\perp}^2 p_{i1})
- \frac{1}{2\Omega_i} \nabla_{\perp}^2 \left(\frac{1}{B_0} b_0 \times \nabla \phi \cdot \nabla \rho \cdot \nabla p_{i1} \right).$$
(2.3.8)

2.4 Density equation

The density equation can be written

$$\frac{\partial}{\partial t} n_i + \boldsymbol{V}_i \cdot \nabla n_i = -n_i \boldsymbol{\nabla} \cdot \boldsymbol{V}_i.$$

It is convient to use the exact identities

$$egin{array}{lcl} oldsymbol{
abla} \cdot oldsymbol{V}_E &=& \left(oldsymbol{
abla} imes rac{oldsymbol{b}}{B} \cdot oldsymbol{
abla} \Phi
ight. \ &\simeq& rac{2}{B} oldsymbol{b} imes oldsymbol{\kappa} \cdot oldsymbol{
abla} \Phi, \ &oldsymbol{
abla} \cdot (n_i oldsymbol{V}_D) &=& rac{1}{Z_i e} \left(oldsymbol{
abla} imes rac{oldsymbol{b}}{B} \cdot oldsymbol{
abla} P_i \ &\simeq& rac{2}{Z_i e B} oldsymbol{b} imes oldsymbol{\kappa} \cdot oldsymbol{
abla} P_i, \ &oldsymbol{
abla} \nabla \cdot \left(V_{\parallel i} oldsymbol{b}\right) &=& B
abla_{\parallel} \left(rac{V_{\parallel i}}{B}\right). \end{array}$$

Here, $\nabla \times \frac{b}{B} \simeq \frac{2}{B} \mathbf{b} \times \mathbf{\kappa}$ (2.1.7). The polarization drift is defined as

$$\mathbf{V}_P = \frac{m_j}{Z_j e B^2} \frac{d\mathbf{E}}{dt} \tag{2.4.1}$$

and it is the small correction to the $E \times B$ and diamagnetic velocities. For ion it is of the order δ^2 and for electron $\sqrt{m_e/m_i}$ samller than the other two. ?????

We can rewrite the density equation as

$$\frac{\partial}{\partial t} n_{i} = -\frac{1}{B_{0}} \boldsymbol{b} \times \boldsymbol{\nabla}_{\perp} \boldsymbol{\Phi} \cdot \nabla n_{i} - \frac{2n_{i}}{B} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} \boldsymbol{\Phi}
- \frac{2}{Z_{i} e B} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} P_{i}
- V_{\parallel i} \boldsymbol{b} \cdot \nabla n_{i} - n_{i} B \nabla_{\parallel} \left(\frac{V_{\parallel i}}{B} \right)
- \boldsymbol{\nabla} \cdot (n_{i} \boldsymbol{V}_{P_{i}})$$
(2.4.2)

After Linearizing

$$\frac{\partial}{\partial t} n_{i} = -\frac{1}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\nabla}_{\perp} \phi \cdot \nabla n_{i0} - \frac{1}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\nabla}_{\perp} \Phi_{0} \cdot \nabla n_{i}
- \frac{2n_{i0}}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} \phi - \frac{2n_{i}}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} \Phi_{0,net}
- \frac{2}{Z_{i} e B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} p_{i1}
- V_{\parallel i} \nabla_{\parallel 0} n_{i0} - n_{i0} B_{0} \nabla_{\parallel 0} \left(\frac{V_{\parallel i}}{B_{0}} \right)
- \frac{1}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\nabla}_{\perp} \phi \cdot \nabla n_{i} - \frac{2n_{i}}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla}_{\perp} \phi
- V_{\parallel i} \nabla_{\parallel 0} n_{i} + V_{\parallel i} \boldsymbol{b}_{0} \times \boldsymbol{\nabla} \psi \cdot \boldsymbol{\nabla} n_{i0}
- n_{i} B_{0} \nabla_{\parallel 0} \left(\frac{V_{\parallel i}}{B_{0}} \right) + n_{i0} B_{0} \boldsymbol{b}_{0} \times \boldsymbol{\nabla} \psi \cdot \boldsymbol{\nabla} \left(\frac{V_{\parallel i}}{B_{0}} \right)
- \boldsymbol{\nabla} \cdot (n_{i} \boldsymbol{V}_{P_{i}}) .$$
(2.4.4)

2.5 Parallel velocity equations

Start from the momentum equation, $b \cdot \text{Eq.}(2.3.1)$ can get

$$m_i n_i \frac{d}{dt} V_{\parallel i} + \boldsymbol{b} \cdot \boldsymbol{\nabla} P + \boldsymbol{b} \cdot (\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_i) = 0.$$

Here we negalect $m_i n_i \mathbf{V}_i \cdot \partial \mathbf{b}/\partial t$ and $m_i n_i \mathbf{\nabla} \mathbf{b} \cdot \mathbf{V}_i$ for they are smaller than the other terms. Because the "perpendicular" part of viscous stress tensor is much smaller than the other two parts, it is negalected in our discussion. According to Ref. [1], from the expression of parallel viscocity (1.3),

$$\nabla \cdot \overleftrightarrow{\boldsymbol{\pi}}_{ci} = [\boldsymbol{b} (\nabla \cdot \boldsymbol{b}) + \boldsymbol{\kappa}] \pi_{ci} + \boldsymbol{b} \nabla_{\parallel} \pi_{ci} - \frac{1}{3} \nabla \pi_{ci},$$

so that

$$\boldsymbol{b} \cdot \left(\boldsymbol{\nabla} \cdot \stackrel{\longleftrightarrow}{\boldsymbol{\pi}}_{ci} \right) = \frac{2}{3} B^{\frac{3}{2}} \nabla_{\parallel} \left(\frac{\pi_{ci}}{B^{\frac{3}{2}}} \right).$$

For the "gyroviscous" contributions, we only consider the case of a straight, homogeneous, time-independent magnetic field and neglect parallel derivatives $(\boldsymbol{b} \cdot \nabla \to 0)$ to obtain

$$\nabla \cdot \overleftrightarrow{\boldsymbol{\pi}}_{gi} \simeq -m_{i}n_{i}\boldsymbol{V}_{Di} \cdot \nabla \boldsymbol{V}_{i} + \boldsymbol{b} \times \nabla \left(\frac{P_{i}}{2\Omega_{i}} \nabla \cdot \boldsymbol{V}_{\perp} + \frac{1}{5\Omega_{i}} \nabla \cdot \boldsymbol{q}_{\perp i} \right) + \nabla_{\perp} \left[\frac{P_{i}}{2\Omega_{i}} \nabla \cdot (\boldsymbol{b} \times \boldsymbol{V}_{i}) + \frac{1}{5\Omega_{i}} \nabla \cdot (\boldsymbol{b} \times \boldsymbol{q}_{i}) \right].$$

$$(2.5.1)$$

It is easy to see that

$$\frac{P_i}{2\Omega_i} \nabla \cdot \boldsymbol{V}_{\perp} + \frac{1}{5\Omega_i} \nabla \cdot \boldsymbol{q}_{\perp i} \simeq -\frac{P_i}{2\Omega_i} \boldsymbol{V}_{Di} \cdot \nabla \ln n_i - \frac{n_i k_B}{2\Omega_i} \boldsymbol{V}_{Di} \cdot \nabla T_i \\
\simeq 0,$$

and

$$\frac{P_i}{2\Omega_i}\boldsymbol{\nabla}\cdot\left(\boldsymbol{b}\times\boldsymbol{V}_i\right) + \frac{1}{5\Omega_i}\boldsymbol{\nabla}\cdot\left(\boldsymbol{b}\times\boldsymbol{q}_i\right) \ \simeq \ -\frac{1}{2m_i\Omega_i}\left[P_i\boldsymbol{\nabla}_{\perp}\cdot\left(e\boldsymbol{\nabla}_{\perp}\boldsymbol{\Phi} + \frac{\boldsymbol{\nabla}_{\perp}P_i}{n_i}\right) + \boldsymbol{\nabla}_{\perp}\cdot\left(P_i\boldsymbol{\nabla}_{\perp}T_i\right)\right]$$

So the parallel part of the divergence of the ion "gyroviscous" is

$$\boldsymbol{\nabla}\cdot \stackrel{\boldsymbol{\longleftrightarrow}}{\boldsymbol{\pi}}_{gi} \;\; \simeq \;\; -m_i n_i \boldsymbol{V}_{Di} \cdot \boldsymbol{\nabla} \boldsymbol{V}_i - \boldsymbol{\nabla}_{\perp} \left\{ \frac{1}{2m_i \Omega_i^2} \left[P_i \boldsymbol{\nabla}_{\perp} \cdot \left(e \boldsymbol{\nabla}_{\perp} \Phi + \frac{\boldsymbol{\nabla}_{\perp} P_i}{n_i} \right) + \boldsymbol{\nabla}_{\perp} \cdot \left(P_i \boldsymbol{\nabla}_{\perp} T_i \right) \right] \right\}$$

$$m{b} \cdot \left(m{\nabla} \cdot \overleftrightarrow{m{\pi}}_{gi} \right) \simeq -m_i n_i m{V}_{Di} \cdot m{\nabla} V_{\parallel i}$$

The parallel divergence of viscous term can be written as

$$\begin{array}{lcl} \boldsymbol{b} \cdot \left(\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_{i} \right) & \simeq & \boldsymbol{b} \cdot \left(\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_{ci} \right) + \boldsymbol{b} \cdot \left(\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_{gi} \right) \\ & \simeq & \frac{2}{3} B^{\frac{3}{2}} \nabla_{\parallel} \left(\frac{\pi_{ci}}{B^{\frac{3}{2}}} \right) - m_{i} n_{i} \boldsymbol{V}_{Di} \cdot \boldsymbol{\nabla} V_{\parallel i}. \end{array}$$

Therefore, we can get the parallel velocity as

$$\frac{\partial}{\partial t} V_{\parallel i} + \boldsymbol{V}_{i} \cdot \boldsymbol{\nabla} V_{\parallel i} = -\frac{1}{m_{i} n_{i}} \boldsymbol{b} \cdot \boldsymbol{\nabla} P - \boldsymbol{b} \cdot \left(\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_{i} \right).$$

$$\frac{\partial}{\partial t} V_{\parallel i} = -\left(\frac{1}{B_{0}} \boldsymbol{b} \times \boldsymbol{\nabla}_{\perp} \Phi + V_{\parallel i} \boldsymbol{b} \right) \cdot \boldsymbol{\nabla} V_{\parallel i} - \frac{1}{m_{i} n_{i}} \boldsymbol{b} \cdot \boldsymbol{\nabla} P$$

$$-\frac{2}{3m_{i} n_{i}} B^{\frac{3}{2}} \nabla_{\parallel} \left(\frac{\pi_{ci}}{B^{\frac{3}{2}}} \right) - \boldsymbol{V}_{Pi} \cdot \boldsymbol{\nabla} V_{\parallel i}.$$
(2.5.2)

Linearizing derives

$$\frac{\partial}{\partial t} V_{\parallel i} = -\frac{1}{B_0} \boldsymbol{b}_0 \times \boldsymbol{\nabla}_{\perp} \Phi_0 \cdot \nabla V_{\parallel i}
-\frac{1}{m_i n_{i0}} \boldsymbol{\nabla}_{\parallel 0} p_1 + \frac{1}{m_i n_i} \boldsymbol{b}_0 \times \boldsymbol{\nabla} \psi \cdot \boldsymbol{\nabla} P_0
-\frac{1}{B_0} \boldsymbol{b}_0 \times \boldsymbol{\nabla}_{\perp} \phi \cdot \nabla V_{\parallel i} - V_{\parallel i} \nabla_{\parallel} V_{\parallel i}
+\frac{1}{m_i n_{i0}} \boldsymbol{b}_0 \times \boldsymbol{\nabla} \psi \cdot \boldsymbol{\nabla} p_1
-\boldsymbol{V}_{Pi} \cdot \boldsymbol{\nabla} V_{\parallel i} - \frac{2}{3m_i n_i} B^{\frac{3}{2}} \nabla_{\parallel} \left(\frac{\pi_{ci}}{R^{\frac{3}{2}}}\right).$$
(2.5.3)

2.6 Ohm's Law

For the parallel part of Eq. (1.5) for electron,

$$m_e n_e \frac{d}{dt} V_{\parallel e} + \boldsymbol{b} \cdot \boldsymbol{\nabla} P_e = -e n_e E_{\parallel} + R_{\parallel e} - \boldsymbol{b} \cdot (\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_e).$$

Here the electron-ion friction is written as

$$\boldsymbol{R}_{e} = en_{e}\left(\frac{\boldsymbol{J}_{\parallel}}{\sigma_{\parallel}} + \frac{\boldsymbol{J}_{\perp}}{\sigma_{\perp}}\right) - 0.71k_{B}n_{e}\boldsymbol{\nabla}_{\parallel}T_{e} + \frac{3\nu_{e}}{2\Omega_{e}}k_{B}n_{e}\boldsymbol{b} \times \boldsymbol{\nabla}T_{e}.$$

So negalect the inertial terms and viscous stress tensor, we have

$$\nabla_{\parallel} P_e = -en_e \left(-\nabla_{\parallel} \Phi - \frac{\partial}{\partial t} A_{\parallel} \right) + en_e \frac{J_{\parallel 1}}{\sigma_{\parallel}} - 0.71 k_B n_e \nabla_{\parallel} T_e.$$

Then we can obtain the Ohm's law with the substitution $A_{\parallel} = B\psi$ and $J_{\parallel 1} = -\frac{1}{\mu_0}B_0\nabla_{\perp}^2\psi$,

$$\frac{\partial}{\partial t}\psi = -\frac{1}{B}\nabla_{\parallel}\Phi + \frac{\eta_{\parallel}}{\mu_0}\nabla_{\perp}^2\psi + \frac{1}{en_eB}\nabla_{\parallel}P_e + \frac{0.71k_B}{eB}\nabla_{\parallel}T_e. \tag{2.6.1}$$

After linearized,

$$\frac{\partial}{\partial t}\psi = -\frac{1}{B_0}\nabla_{\parallel 0}\phi + \frac{1}{B_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}\Phi_0
+ \frac{\eta_{\parallel}}{\mu_0}\nabla_{\perp}^2\psi
+ \frac{1}{en_{e0}B_0}\nabla_{\parallel 0}p_{e1} - \frac{1}{en_{e}B_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}P_{e0}
+ \frac{0.71k_B}{eB_0}\nabla_{\parallel 0}T_{e1} - \frac{0.71k_B}{eB_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}T_{e0}
+ \frac{1}{B_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}\phi - \frac{1}{en_{e}B_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}p_{e1}
- \frac{0.71k_B}{eB_0}\boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \boldsymbol{\nabla}T_{e1}.$$
(2.6.2)

2.7 Ion temperature equation

For simplicity, we treat the time partial differential on kinetic term simply on velocity since it is 2nd order quantity at least. Then we have

$$\begin{split} \frac{d}{dt} \left(\frac{3}{2} P_j \right) + \frac{5}{2} P_j \boldsymbol{\nabla} \cdot \boldsymbol{V}_i &= - \quad \overleftrightarrow{\boldsymbol{\pi}}_i : \boldsymbol{\nabla} \boldsymbol{V}_i - \boldsymbol{\nabla} \cdot \boldsymbol{q}_j + W_j, \\ \frac{d}{dt} \left(\frac{3}{2} p_i \right) &= -\frac{5}{2} P_i \boldsymbol{\nabla} \cdot \boldsymbol{V}_i - \overleftrightarrow{\boldsymbol{\pi}}_i : \boldsymbol{\nabla} \boldsymbol{V}_i - \boldsymbol{\nabla} \cdot \left(\frac{5P_i}{2m_i \Omega_i} \boldsymbol{b} \times \boldsymbol{\nabla} T_i \right) \\ &+ \nabla_{\parallel} \left(\kappa_{\parallel i} \nabla_{\parallel} T_i \right) + \nabla_{\perp} \left(\kappa_{\perp i} \nabla_{\perp} T_i \right) \\ &+ \frac{3m_e}{m_i} \frac{k_B n_e}{\tau_e} \left(T_e - T_i \right). \end{split}$$

The ion temperature can be written as

$$\begin{split} \frac{\partial}{\partial t} T_i + \boldsymbol{V}_i \cdot \boldsymbol{\nabla} T_i &= -\frac{2}{3} T_i \boldsymbol{\nabla} \cdot \boldsymbol{V} + \frac{2}{3n_i k_B} \boldsymbol{\nabla}_{\parallel} \left(\kappa_{\parallel i} \boldsymbol{\nabla}_{\parallel} T_i \right) + \frac{2}{3n_i k_B} \boldsymbol{\nabla}_{\perp} \left(\kappa_{\perp i} \boldsymbol{\nabla}_{\perp} T_i \right) \\ &+ \frac{2m_e}{m_i} \frac{Z_i}{\tau_e} \left(T_e - T_i \right) - \frac{2}{3k_B n_i} \overleftarrow{\boldsymbol{\pi}}_i : \boldsymbol{\nabla} \boldsymbol{V}_i - \frac{5}{3k_B n_i} \boldsymbol{\nabla} \cdot \left(\frac{P_i}{m_i \Omega_i} \widehat{\boldsymbol{b}} \times \boldsymbol{\nabla} T_i \right). \end{split}$$

For the gyrofrequency term in the energy flux,

$$\nabla \cdot \left(\frac{5P_i}{2m_i\Omega_i} \boldsymbol{b} \times \nabla T_i \right) = \frac{5}{2Z_i e} \left[P_i \nabla \cdot \left(\frac{\boldsymbol{b} \times \nabla T_i}{B} \right) + \frac{\boldsymbol{b} \times \nabla T_i}{B} \cdot \nabla P_i \right]$$
$$= \frac{5}{2Z_i e} P_i \frac{2}{B} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \nabla T_i - \frac{5}{2} \frac{\boldsymbol{b} \times \nabla P_i}{Z_i e B} \cdot \nabla T_i$$

The last term of RHS is canceled by both the convectional term and the $\nabla \cdot V_{Di}$.

For the viscous term, the "perpendicular" part is neglected for ions, then we can write the "parallel" viscous term as

$$\overrightarrow{\boldsymbol{\pi}}_{ci} : \boldsymbol{\nabla} \boldsymbol{V}_{i} = \pi_{ci} \left(\boldsymbol{b} \boldsymbol{b} - \frac{1}{3} \overrightarrow{\boldsymbol{I}} \right) : \boldsymbol{\nabla} \boldsymbol{V}_{i}$$

$$\simeq \frac{\pi_{ci}}{3} \left[2 \nabla_{\parallel} V_{\parallel i} - 3 \boldsymbol{\kappa} \cdot \boldsymbol{V}_{\perp i} - \boldsymbol{\nabla} \cdot \boldsymbol{V}_{\perp i} - V_{\parallel i} \left(\boldsymbol{\nabla} \cdot \boldsymbol{b} \right) \right]$$

$$\simeq \frac{\pi_{ci}}{3} \left[\frac{2}{\sqrt{B}} \nabla_{\parallel} \left(\sqrt{B} V_{\parallel i} \right) - \boldsymbol{\kappa} \cdot \left(\boldsymbol{V}_{E} + \boldsymbol{V}_{Di} \right) - \frac{k_{B}}{Z_{i} e n_{i} B} \boldsymbol{b} \cdot \boldsymbol{\nabla} n_{i} \times \boldsymbol{\nabla} T_{i} \right]$$

$$+ \frac{\pi_{ci}}{3} \left[\frac{\mu_{0}}{B^{3}} \boldsymbol{b} \times \boldsymbol{\nabla} P \cdot \boldsymbol{\nabla} \phi + \frac{\mu_{0}}{Z_{i} e n_{i} B^{3}} \boldsymbol{b} \times \boldsymbol{\nabla} P_{e} \cdot \boldsymbol{\nabla} P_{i} \right]. \tag{2.7.1}$$

with the leading order expression. For simplicity, the last two terms of RHS can be dropped since they come from the second term of RHS of

$$\left(\nabla \times \frac{\boldsymbol{b}}{B}\right) = \frac{2}{B}\boldsymbol{b} \times \boldsymbol{\kappa} - \frac{\mu_0 \boldsymbol{b} \times \nabla P}{B^3} + O(\beta).$$

For the calculation of viscous term, the approximation of streight and homogeneous magnetic field is adopted, thus Eq. (2.7.1) can be written as

$$\overleftrightarrow{\boldsymbol{\pi}}_{ci}: \boldsymbol{\nabla} \boldsymbol{V}_i = \frac{\pi_{ci}}{3} \left[\frac{2}{\sqrt{B}} \nabla_{\parallel} \left(\sqrt{B} V_{\parallel i} \right) - \frac{k_B}{Z_i e n_i B} \boldsymbol{b} \cdot \boldsymbol{\nabla} n_i \times \boldsymbol{\nabla} T_i \right]$$

The "gyroviscous" term have the relations as

$$\overleftrightarrow{m{\pi}}_{gi}\cdot m{V}_i \;\; \simeq \;\; rac{P_i}{2\Omega_i}m{b} imesm{
abla} V_{\parallel i}^2.$$

Within Eq. (2.5.1), we can get

$$\begin{split} \overleftrightarrow{\boldsymbol{\pi}}_{gi} : \boldsymbol{\nabla} \boldsymbol{V}_{i} & \simeq & \boldsymbol{\nabla} \cdot \left(\overleftrightarrow{\boldsymbol{\pi}}_{gi} \cdot \boldsymbol{V}_{i} \right) - \left(\boldsymbol{\nabla} \cdot \overleftrightarrow{\boldsymbol{\pi}}_{gi} \right) \cdot \boldsymbol{V}_{i} \\ & \simeq & \frac{m_{i}}{Z_{i}e} P_{i} V_{\parallel i} \frac{2}{B} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} V_{\parallel i} - m_{i} n_{i} V_{\parallel i} \boldsymbol{V}_{Di} \cdot \boldsymbol{\nabla} V_{\parallel i} \\ & + m_{i} n_{i} V_{\parallel i} \boldsymbol{V}_{Di} \cdot \boldsymbol{\nabla} V_{\parallel i} + \boldsymbol{V}_{\perp i} \cdot \boldsymbol{\nabla}_{\perp} \left(\frac{1}{2m_{i} \Omega_{i}^{2}} A_{\pi gi} \right), \end{split}$$

where

$$A_{\pi g i} = e P_i \nabla_{\perp}^2 \phi + k_B T_i \nabla_{\perp}^2 P_i - k_B T_i \nabla_{\perp} P_i \cdot \frac{\nabla_{\perp} n_i}{n_i} + k_B \nabla_{\perp} P_i \cdot \nabla_{\perp} T_i + k_B P_i \nabla_{\perp}^2 T_i.$$

According to Ref. [1], we drop the $\overleftrightarrow{\pi}_{gi} : \nabla V_i$ and obtain

$$\overleftrightarrow{\boldsymbol{\pi}}_{gi}: \boldsymbol{\nabla} \boldsymbol{V}_i \simeq \frac{m_i}{Z_i e} P_i V_{\parallel i} \frac{2}{B} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} V_{\parallel i}$$

After all, the temperature equation can be written as

$$\begin{split} \frac{\partial}{\partial t} T_{i} &= -\left(\frac{1}{B_{0}}\boldsymbol{b}\times\boldsymbol{\nabla}_{\perp}\boldsymbol{\Phi} + V_{\parallel i}\boldsymbol{b}\right)\cdot\boldsymbol{\nabla}T_{i} \\ &-\frac{2}{3}T_{i}\left[\left(\frac{2}{B}\boldsymbol{b}\times\boldsymbol{\kappa}\right)\cdot\left(\boldsymbol{\nabla}\boldsymbol{\Phi} + \frac{1}{Z_{i}en_{i}}\boldsymbol{\nabla}P_{i} + \frac{5}{2}\frac{k_{B}}{Z_{i}e}\boldsymbol{\nabla}T_{i}\right) + B\boldsymbol{\nabla}_{\parallel}\left(\frac{V_{\parallel i}}{B}\right)\right] \\ &+\frac{2}{3n_{i}k_{B}}\boldsymbol{\nabla}_{\parallel}\left(\kappa_{\parallel i}\boldsymbol{\nabla}_{\parallel}T_{i}\right) + \frac{2}{3n_{i}k_{B}}\boldsymbol{\nabla}_{\perp}\left(\kappa_{\perp i}\boldsymbol{\nabla}_{\perp}T_{i}\right) \\ &+\frac{2m_{e}}{m_{i}}\frac{Z_{i}}{\tau_{e}}\left(T_{e} - T_{i}\right) \\ &-\frac{2\pi_{ci}}{9k_{B}n_{i}}\left[\frac{2}{\sqrt{B}}\boldsymbol{\nabla}_{\parallel}\left(\sqrt{B}V_{\parallel i}\right) - \frac{k_{B}}{Z_{i}en_{i}B}\boldsymbol{b}\cdot\boldsymbol{\nabla}n_{i}\times\boldsymbol{\nabla}T_{i}\right] \\ &-\frac{4}{3\Omega_{i}}T_{i}V_{\parallel i}\boldsymbol{b}\times\boldsymbol{\kappa}\cdot\boldsymbol{\nabla}V_{\parallel i} \\ &-\frac{2}{3}T_{i}\boldsymbol{\nabla}\cdot\boldsymbol{V}_{Pi} - \boldsymbol{V}_{Pi}\cdot\boldsymbol{\nabla}T_{i}. \end{split}$$

Linearizing

$$\frac{\partial}{\partial t}T_{i} = -\frac{1}{B_{0}}\mathbf{b}_{0} \times \nabla_{\perp}\phi \cdot \nabla T_{i0} - \frac{1}{B_{0}}\mathbf{b}_{0} \times \nabla_{\perp}\Phi_{0} \cdot \nabla T_{i1} - V_{\parallel i}\nabla_{\parallel 0}T_{i0}
- \frac{2}{3}T_{i0}\left[\left(\frac{2}{B_{0}}\mathbf{b}_{0} \times \boldsymbol{\kappa}\right) \cdot \left(\nabla\phi + \frac{1}{Z_{i}en_{i0}}\nabla p_{i1} + \frac{5}{2}\frac{k_{B}}{Z_{i}e}\nabla T_{i1}\right) + B_{0}\nabla_{\parallel 0}\left(\frac{V_{\parallel i}}{B_{0}}\right)\right]
- \frac{2}{3}T_{i1}\left(\frac{2}{B_{0}}\mathbf{b}_{0} \times \boldsymbol{\kappa}\right) \cdot \left(\nabla\Phi_{0} + \frac{1}{Z_{i}en_{i0}}\nabla P_{i0} + \frac{5}{2}\frac{k_{B}}{Z_{i}e}\nabla T_{i0}\right)
+ \frac{2}{3n_{i0}k_{B}}\nabla_{\parallel}\left(\kappa_{\parallel i}\nabla_{\parallel}T_{i1}\right) + \frac{2}{3n_{i0}k_{B}}\nabla_{\perp}\left(\kappa_{\perp i}\nabla_{\perp}T_{i1}\right)
+ \frac{2m_{e}}{m_{i}}\frac{Z_{i}}{\tau_{e}}\left(T_{e1} - T_{i1}\right)
- \frac{1}{B_{0}}\mathbf{b}_{0} \times \nabla_{\perp}\phi \cdot \nabla T_{i1} - V_{\parallel i}\nabla_{\parallel 0}T_{i1} + V_{\parallel i}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla T_{i0}
- \frac{2}{3}T_{i1}\left[\left(\frac{2}{B_{0}}\mathbf{b}_{0} \times \boldsymbol{\kappa}\right) \cdot \left(\nabla\phi + \frac{1}{Z_{i}en_{i0}}\nabla p_{i1} + \frac{5}{2}\frac{k_{B}}{Z_{i}e}\nabla T_{i1}\right) + B_{0}\nabla_{\parallel 0}\left(\frac{V_{\parallel i}}{B_{0}}\right)\right]
+ \frac{2}{3}T_{i0}B_{0}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla\left(\frac{V_{\parallel i}}{B_{0}}\right)
- \frac{2}{3k_{B}n_{i}} \overleftrightarrow{\pi}_{i} : \nabla V_{i}
+ \frac{2}{2}T_{i}\nabla \cdot V_{Pi} - V_{Pi} \cdot \nabla T_{i}$$
(2.7.2)

2.8 Electron temperature equation

For electron temperature, the Braginskii equation is

$$\frac{3}{2}n_{e}\frac{d}{dt}(k_{B}T_{e}) = -P_{e}\nabla\cdot\boldsymbol{V}_{e} - \nabla\cdot\left[-0.71\frac{k_{B}T_{e}\boldsymbol{J}_{\parallel}}{e} + \frac{5P_{e}}{2eB}\boldsymbol{b}\times\boldsymbol{\nabla}T_{e} + \frac{3k_{B}\nu_{e}}{2\Omega_{e}}\frac{T_{e}\boldsymbol{b}\times\boldsymbol{J}}{e}\right] \\
+\nabla_{\parallel}\left(\kappa_{\parallel e}\nabla_{\parallel}T_{e}\right) + \nabla_{\perp}\left(\kappa_{\perp e}\nabla_{\perp}T_{e}\right) \\
-\frac{3m_{e}}{m_{i}}\frac{n_{e}k_{B}}{\tau_{e}}\left(T_{e} - T_{i}\right) - \boldsymbol{R}_{e}\cdot\left(\boldsymbol{V}_{e} - \boldsymbol{V}_{i}\right) \\
-\frac{2}{3k_{B}n_{e}}\overleftrightarrow{\boldsymbol{\pi}}_{e}:\boldsymbol{\nabla}\boldsymbol{V}_{e}.$$

For the terms in energy flux,

$$\nabla \cdot \left[-0.71 \frac{k_B T_e \boldsymbol{J}_{\parallel}}{e} + \frac{3k_B \nu_e}{2\Omega_e} \frac{T_e \boldsymbol{b} \times \boldsymbol{J}}{e} \right] = -0.71 \frac{k_B T_e}{e} B \nabla_{\parallel} \left(\frac{J_{\parallel}}{B} \right) - 0.71 \frac{k_B J_{\parallel}}{e} \nabla_{\parallel} T_e$$

$$+ \frac{3k_B m_e \nu_e T_e}{e^2 B^2} \boldsymbol{b} \times \boldsymbol{\kappa} \cdot \boldsymbol{\nabla} P + \frac{3k_B m_e}{2e^2 B} \boldsymbol{b} \times \boldsymbol{\nabla} P \cdot \boldsymbol{\nabla} \left(\frac{\nu_e T_e}{B} \right)$$

Notice that the last two terms in the RHD of last equation has the order of $\nu_e/\Omega_e \sim \epsilon \sqrt{m_e/m_i} \ll 1$ as the first two, so they can be neglected in the following calculations in flute reduction. The friction force term in the energy exchange term can be written as

$$\begin{split} \boldsymbol{R}_{e}\cdot(\boldsymbol{V}_{e}-\boldsymbol{V}_{i}) &= \left[Z_{i}en_{i}\left(\frac{\boldsymbol{J}_{\parallel}}{\sigma_{\parallel}}+\frac{\boldsymbol{J}_{\perp}}{\sigma_{\perp}}\right)-0.71k_{B}n_{e}\boldsymbol{\nabla}_{\parallel}T_{e}+\frac{3\nu_{e}}{2\Omega_{e}}k_{B}n_{e}\boldsymbol{b}\times\boldsymbol{\nabla}T_{e}\right]\\ &\cdot\left[-\frac{1}{Z_{i}en_{i}B}\boldsymbol{b}\times\boldsymbol{\nabla}P-\frac{1}{Z_{i}en_{i}}J_{\parallel}\boldsymbol{b}_{\parallel}\right]\\ &= -\eta_{\parallel}J_{\parallel}^{2}+0.71\frac{k_{B}}{e}J_{\parallel}\boldsymbol{\nabla}_{\parallel}T_{e}-\frac{\eta_{\perp}}{B}\boldsymbol{b}\times\boldsymbol{\nabla}P\cdot\boldsymbol{J}_{\perp}-\frac{3\nu_{e}k_{B}}{2\Omega_{e}eB}\left(\boldsymbol{b}\times\boldsymbol{\nabla}T_{e}\right)\cdot\left(\boldsymbol{b}\times\boldsymbol{\nabla}P\right)\\ &\simeq -\eta_{\parallel}J_{\parallel}^{2}+0.71\frac{k_{B}}{e}J_{\parallel}\boldsymbol{\nabla}_{\parallel}T_{e}. \end{split}$$

Notice that the polarization drift is neglected here for it is much smaller than the other velocities. The term of perpendicular current is zero because $J_{\perp} \simeq \nabla P/B$. The last term with gyrofrequency is also dropped for the order $\nu_e/\Omega_e \sim \epsilon \sqrt{m_e/m_i}$. Then Neglect the electron viscocity, we have

$$\begin{split} \frac{\partial}{\partial t} T_e + \boldsymbol{V}_e \cdot \boldsymbol{\nabla} T_e &= -\frac{2}{3} T_e \boldsymbol{\nabla} \cdot \boldsymbol{V}_e + 0.71 \frac{2 T_e}{3e n_e} B \nabla_{\parallel} \left(\frac{J_{\parallel}}{B} \right) \\ &+ \frac{2}{3n_e k_B} \nabla_{\parallel} \left(\kappa_{\parallel e} \nabla_{\parallel} T_e \right) + \frac{2}{3n_e k_B} \nabla_{\perp} \left(\kappa_{\perp e} \nabla_{\perp} T_e \right) \\ &- \frac{2 m_e}{m_i} \frac{1}{\tau_e} \left(T_e - T_i \right) + \frac{2}{3n_e k_B} \eta_{\parallel} J_{\parallel}^2, \end{split}$$

and

$$\begin{split} \frac{\partial}{\partial t} T_{e} &= -\left(\frac{1}{B_{0}} \boldsymbol{b} \times \boldsymbol{\nabla}_{\perp} \boldsymbol{\Phi} + V_{\parallel e} \boldsymbol{b}\right) \cdot \boldsymbol{\nabla} T_{e} \\ &- \frac{2}{3} T_{e} \left[\left(\frac{2}{B} \boldsymbol{b} \times \boldsymbol{\kappa}\right) \cdot \left(\boldsymbol{\nabla} \boldsymbol{\Phi} - \frac{1}{e n_{e}} \boldsymbol{\nabla} P_{e} - \frac{5}{2} \frac{k_{B}}{e} \boldsymbol{\nabla} T_{e}\right) + B \boldsymbol{\nabla}_{\parallel} \left(\frac{V_{\parallel e}}{B}\right)\right] \\ &+ 0.71 \frac{2 T_{e}}{3 e n_{e}} B \boldsymbol{\nabla}_{\parallel} \left(\frac{J_{\parallel}}{B}\right) \\ &+ \frac{2}{3 n_{e} k_{B}} \boldsymbol{\nabla}_{\parallel} \left(\kappa_{\parallel e} \boldsymbol{\nabla}_{\parallel} T_{e}\right) + \frac{2}{3 n_{e} k_{B}} \boldsymbol{\nabla}_{\parallel} \left(\kappa_{\perp e} \boldsymbol{\nabla}_{\perp} T_{e}\right) \\ &- \frac{2 m_{e}}{m_{i}} \frac{1}{\tau_{e}} \left(T_{e} - T_{i}\right) + \frac{2}{3 n_{e} k_{B}} \eta_{\parallel} J_{\parallel}^{2} \\ &- \frac{2}{3} T_{e} \boldsymbol{\nabla} \cdot \boldsymbol{V}_{Pe} - \boldsymbol{V}_{Pe} \cdot \boldsymbol{\nabla} T_{e}. \end{split}$$

After linearizing

$$\frac{\partial}{\partial t} T_{e} = -\frac{1}{B_{0}} \boldsymbol{b}_{0} \times \nabla_{\perp} \phi \cdot \nabla T_{e0} - \frac{1}{B_{0}} \boldsymbol{b}_{0} \times \nabla_{\perp} \Phi_{0} \cdot \nabla T_{e1} - V_{\parallel e} \nabla_{\parallel 0} T_{e0}
- \frac{2}{3} T_{e0} \left[\left(\frac{2}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \right) \cdot \left(\nabla \phi - \frac{1}{e n_{e0}} \nabla p_{e1} - \frac{5}{2} \frac{k_{B}}{e} \nabla T_{e1} \right) + B_{0} \nabla_{\parallel 0} \left(\frac{V_{\parallel e}}{B_{0}} \right) \right]
- \frac{2}{3} T_{e1} \left(\frac{2}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \right) \cdot \left(\nabla \Phi_{0} - \frac{1}{e n_{e0}} \nabla P_{e0} - \frac{5}{2} \frac{k_{B}}{e} \nabla T_{e0} \right)
+ 0.71 \frac{2}{3e} \frac{T_{e0}}{n_{e0}} B_{0} \nabla_{\parallel 0} \left(\frac{J_{\parallel 1}}{B_{0}} \right) + 0.71 \frac{2}{3e} \frac{T_{e1}}{n_{e0}} B_{0} \nabla_{\parallel 0} \left(\frac{J_{\parallel 0}}{B_{0}} \right)
- 0.71 \frac{2}{3e} \frac{T_{e0}}{n_{e0}} B_{0} \boldsymbol{b}_{0} \times \nabla \psi \cdot \nabla \left(\frac{J_{\parallel 0}}{B_{0}} \right)
+ \frac{2}{3n_{e0}k_{B}} \nabla_{\parallel} \left(\kappa_{\parallel e} \nabla_{\parallel} T_{e1} \right) + \frac{2}{3n_{e0}k_{B}} \nabla_{\perp} \left(\kappa_{\perp e} \nabla_{\perp} T_{e1} \right)
- \frac{2m_{e}}{m_{i}} \frac{1}{\tau_{e}} \left(T_{e1} - T_{i1} \right) + \frac{4}{3n_{e0}k_{B}} \eta_{\parallel} J_{\parallel 0} J_{\parallel 1}
- \frac{1}{B_{0}} \boldsymbol{b}_{0} \times \nabla_{\perp} \phi \cdot \nabla T_{e1} - V_{\parallel e} \nabla_{\parallel 0} T_{e1} + V_{\parallel e} \boldsymbol{b}_{0} \times \nabla \psi \cdot \nabla T_{e0} \right)
- \frac{2}{3} T_{e1} \left[\left(\frac{2}{B_{0}} \boldsymbol{b}_{0} \times \boldsymbol{\kappa} \right) \cdot \left(\nabla \phi - \frac{1}{e n_{e0}} \nabla p_{e1} - \frac{5}{2} \frac{k_{B}}{e} \nabla T_{e1} \right) + B_{0} \nabla_{\parallel 0} \left(\frac{V_{\parallel e}}{B_{0}} \right) \right]
+ \frac{2}{3} T_{e0} B_{0} \boldsymbol{b}_{0} \times \nabla \psi \cdot \nabla \left(\frac{V_{\parallel e}}{B_{0}} \right)
+ 0.71 \frac{2}{3e} \frac{T_{e1}}{n_{e0}} B_{0} \nabla_{\parallel 0} \left(\frac{J_{\parallel 1}}{B_{0}} \right) - 0.71 \frac{2}{3e} \frac{T_{e0}}{n_{e0}} B_{0} \boldsymbol{b}_{0} \times \nabla \psi \cdot \nabla \left(\frac{J_{\parallel 1}}{B_{0}} \right)
- 0.71 \frac{2}{3e} \frac{T_{e1}}{n_{e0}} B_{0} \boldsymbol{b}_{0} \times \nabla \psi \cdot \nabla \left(\frac{J_{\parallel 0}}{B_{0}} \right) + \frac{2}{3n_{e0}k_{B}} \eta_{\parallel} J_{\parallel 1}^{2}
- \frac{2}{3} T_{e} \nabla \cdot V_{Pe} - V_{Pe} \cdot \nabla T_{e}$$
(2.8.1)

2.9 Magnetic Flutter in Parallel Thermal Conduction

The magnetic flutter has strong impact on the distribution of heat fluxes towards divertor targets[4]. Considering the magnetic field unit vector:

$$\mathbf{b} = \mathbf{b}_0 + \mathbf{b}_1 = \mathbf{b}_0 + \nabla A_{\parallel} \times \mathbf{b}_0 / B \simeq \mathbf{b}_0 - \mathbf{b}_0 \times \nabla \psi \tag{2.9.1}$$

$$\nabla_{\parallel} = \mathbf{b} \cdot \nabla = \mathbf{b}_0 \cdot \nabla - \mathbf{b}_0 \times \nabla \psi \cdot \nabla = \nabla_{\parallel 0} - B_0[\psi, \cdot]$$
 (2.9.2)

the higher order (>1) of the thermal conduction in temperature equations (2.7.2) and (2.8.1) can be expressed as:

$$\nabla_{\parallel}(\kappa_{\parallel j}\nabla_{\parallel}T_{j}) = \nabla_{\parallel 0}(\kappa_{\parallel j}\nabla_{\parallel 0}T_{j1})$$

$$-\mathbf{b}_{0} \times \nabla\psi \cdot \nabla[\kappa_{\parallel j}\nabla_{\parallel 0}T_{j1}] - \nabla_{\parallel 0}[\kappa_{\parallel j}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})]$$

$$+ \mathbf{b}_{0} \times \nabla\psi \cdot \nabla[\kappa_{\parallel j}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})]$$

$$= \nabla_{\parallel 0}\kappa_{\parallel j}\nabla_{\parallel 0}T_{j1} + \kappa_{\parallel j}\nabla_{\parallel 0}^{2}T_{j1}$$

$$-\mathbf{b}_{0} \times \nabla\psi \cdot \nabla\kappa_{\parallel j}(\nabla_{\parallel 0}T_{j1}) - \kappa_{\parallel j}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(\nabla_{\parallel 0}T_{j1})$$

$$-\nabla_{\parallel 0}\kappa_{\parallel j}[\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})] - \kappa_{\parallel j}\nabla_{\parallel 0}[\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})]$$

$$+ \mathbf{b}_{0} \times \nabla\psi \cdot \nabla\kappa_{\parallel j}[\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})]$$

$$+ \kappa_{\parallel j}\mathbf{b}_{0} \times \nabla\psi \cdot \nabla[\mathbf{b}_{0} \times \nabla\psi \cdot \nabla(T_{j0} + T_{j1})]$$

$$(2.9.3)$$

NOTE: The equilibrium temperature profiles are flux functions $T_{j0}(\psi)$, so $\nabla_{\parallel 0}T_{j0}=0$.

3 Normalization

For numerical simulation, the normalization are necessary

$$\hat{T}_{j} = \frac{T_{j}}{\bar{T}_{j}}, \qquad \hat{n} = \frac{n_{i}}{\bar{n}}, \qquad \hat{L} = \frac{L}{\bar{L}},
\hat{t} = \frac{t}{\bar{t}}, \qquad \hat{B} = \frac{B}{\bar{B}}, \qquad \hat{J} = \frac{\mu_{0}\bar{L}}{B_{0}}J,
\hat{\psi} = \frac{\psi}{\bar{L}}, \quad \hat{\phi} = \frac{\bar{t}}{\bar{L}^{2}B_{0}}\phi, \quad \hat{\varpi} = \frac{\bar{t}}{m_{i}\bar{n}}\varpi,
\tau = \frac{\bar{T}_{i}}{\bar{T}_{e}}, \qquad \hat{V} = \frac{V}{V_{A}}, \qquad V_{A} = \frac{\bar{L}}{\bar{t}} = \frac{\bar{B}}{\sqrt{\mu_{0}m_{i}n_{i}}},
\hat{P}_{j} = \frac{P_{j}}{k_{B}\bar{n}\bar{T}_{i}} \qquad \hat{\kappa} = \bar{L}\kappa, \qquad \hat{\nabla} = \bar{L}\nabla$$
(3.1)

so we have

$$\hat{P} = (\tau \hat{P}_i + \hat{P}_e) = \frac{P}{(k_B \bar{n} \bar{T}_e)},
= \tau \hat{P}_i * (1 + Z_i), \text{ if } T_i = T_e$$
(3.3)

$$\hat{E} = \frac{E}{V_A \bar{B}} = -\hat{\nabla}(\hat{B}_0 \hat{\phi})$$
(3.4)

$$\hat{\mathbf{V}}_{E \times B} = \frac{\mathbf{V}_{E \times B}}{V_A} = \frac{\hat{\mathbf{E}}_r \times \hat{\mathbf{B}}_0}{\hat{B}_0^2} \simeq \boxed{\mathbf{b}_0 \times \hat{\nabla}\hat{\phi}}$$
(3.5)

The last step in Eq.(3.8), the B0 is assumed constant.

$$\hat{E} = \frac{E}{V_A \bar{B} \hat{B}_0} = \boxed{-\frac{\hat{\nabla}(\hat{B}_0 \hat{\phi})}{\hat{B}_0} \simeq -\hat{\nabla}\hat{\phi}}$$
(3.6)

$$\hat{\mathbf{V}}_{E\times B} = \frac{\mathbf{V}_{E\times B}}{V_A} = \frac{\hat{\mathbf{E}}_r \times \hat{\mathbf{B}}_0}{\hat{B}_0} \simeq \boxed{\mathbf{b}_0 \times \hat{\nabla}\hat{\phi}}$$
(3.7)

$$\hat{\nabla}_{\perp}(\hat{B}_0\hat{\Phi}_0) = \left[\mathbf{b}_0 \times \hat{\nabla}(\hat{B}_0\hat{\Phi}_0)\right] \times \mathbf{b}_0 = \hat{\mathbf{V}}_{E \times B} \times \mathbf{B}_0 \tag{3.8}$$

NOTE: In the code of version that using normalization factor B_0 , in some place the B_0 is considered as constant value. In the gyroviscous terms in vorticity equation, for example:

$$\left[\frac{\hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\Phi}_0 \right)}{\hat{B}_0} \right]^2 \simeq \left[\hat{\nabla}_{\perp} \hat{\Phi}_0 \right]^2$$
(3.9)

The linearized equations are

$$\hat{\boldsymbol{\varpi}} = \boldsymbol{b} \cdot \hat{\boldsymbol{\nabla}} \times \hat{n}_i \hat{V}_i \simeq \frac{\hat{n}_{i0}}{\hat{B}_0} \left[\hat{\nabla}_{\perp}^2 (\hat{B}_0 \hat{\phi}) + \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\perp} (\hat{B}_0 \hat{\phi}) \cdot \hat{\nabla}_{\perp} \hat{n}_{i0} + \frac{k_B T_i}{Z_i e \bar{L} \bar{B} V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\perp}^2 \hat{p}_{i1} \right]$$
(3.10)

$$U_{\text{para0}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \ U_{\text{para1}} = \frac{k_B \bar{T}_e}{m_i V_A^2}, \ U_{\text{para2}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \ U_{\text{para3}} = 1.0$$
 (3.11)

$$\begin{split} \frac{\partial}{\partial \hat{t}} \hat{\varpi} &= \hat{B}_{0}^{2} \hat{\nabla}_{\parallel 0} \hat{J}_{\parallel 1} - \hat{B}_{0}^{2} b_{0} \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{J}_{\parallel 0} \\ &+ 2 \frac{k_{B} \bar{T}_{i}}{m_{i} V_{A}^{2}} b_{0} \times \hat{\kappa} \cdot \hat{\nabla} \hat{p}_{1} - \frac{1}{\hat{B}_{0}} b_{0} \times \hat{\nabla}_{\perp} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \hat{\varpi} \\ &- \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \hat{p}_{i1} \cdot \hat{\nabla} \left[\hat{\nabla}_{\perp}^{2} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \right] \\ &- \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \hat{P}_{i0} \cdot \hat{\nabla} \left[\hat{\nabla}_{\perp}^{2} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \right] \\ &+ \frac{1}{2} b_{0} \times \hat{\nabla} \hat{n}_{i1} \cdot \hat{\nabla} \left[\hat{\nabla}_{\perp} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) - \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{P}_{i0} \right) + \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{P}_{i0} \right) + \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{P}_{i0} \right) \right. \\ &- \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} \hat{\nabla}_{\perp}^{2} \left[\frac{1}{\hat{B}_{0}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \hat{P}_{i1} \right] \\ &- \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} \hat{\nabla}_{\perp}^{2} \left[\frac{1}{\hat{B}_{0}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \hat{P}_{i0} \right] \\ &- \hat{B}_{0} b_{0} \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{J}_{\parallel 1} \\ &- \frac{1}{\hat{B}_{0}} b_{0} \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{J}_{\parallel 1} \\ &- \frac{1}{\hat{B}_{0}} b_{0} \times \hat{\nabla} \hat{D}_{i1} \cdot \hat{\nabla} \left[\hat{\nabla}_{\perp}^{2} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \right] \\ &+ b_{0} \times \hat{\nabla} \hat{n}_{i1} \cdot \hat{\nabla} \left[\hat{\nabla}_{\perp}^{2} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \right] \\ &+ \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{B}_{i} \right) \\ &- \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{B}_{i} \right) \right] \\ &+ \frac{k_{B} \bar{T}_{i}}{2 Z_{i} e \bar{B} \bar{L} V_{A}} \frac{1}{\hat{B}_{0}^{2}} b_{0} \times \hat{\nabla} \left(\hat{B}_{0} \hat{\Phi}_{0} \right) \cdot \hat{\nabla} \left(\hat{\nabla}_{\perp}^{2} \hat{B}_{i} \right) \right] \\ &- \frac{k_{B} \bar{T}_{i}}$$

$$Ni_{\text{paral}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \quad Vi_{\text{para}} = \frac{\mu_0 k_B \bar{T}_e \bar{n}}{\bar{B}^2} = \frac{k_B \bar{T}_e}{m_i V_A^2},$$

$$\frac{\partial}{\partial t} \hat{n}_i = -\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right) \cdot \hat{\nabla} \hat{n}_{i0}$$

$$-\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\Phi}_0 \right) \cdot \hat{\nabla} n_i - \hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{n}_{i0}$$

$$-\frac{2\hat{n}_{i0}}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \cdot \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right) - \frac{2\hat{n}_i}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \cdot \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\Phi}_{0,net} \right)$$

$$-\frac{2k_B \bar{T}_e}{Z_i e \bar{B} \bar{L} V_A} \frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \cdot \hat{\nabla}_{\perp} \hat{p}_{i1} - \hat{n}_{i0} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{V_{\parallel i}}{B_0} \right)$$

$$-\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right) \cdot \hat{\nabla} \hat{n}_i - \hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{n}_i + \hat{V}_{\parallel i} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{n}_{i0}$$

$$-\frac{2\hat{n}_i}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \cdot \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right)$$

$$-\hat{n}_i \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel i}}{\hat{B}_0} \right) + \hat{n}_{i0} \hat{B}_0 \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \left(\frac{\hat{V}_{\parallel i}}{\hat{B}_0} \right) ,$$

$$\frac{\partial}{\partial t} \hat{V}_{\parallel i} = -\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\Phi}_0 \right) \cdot \hat{\nabla} \hat{V}_{\parallel i}$$

$$-\frac{k_B \bar{T}_e}{m_i V_A^2} \hat{n}_{i0} \hat{\nabla}_{\parallel 0} \hat{p}_1 + \frac{k_B \bar{T}_e}{m_i V_A^2} \frac{1}{\hat{n}_{i0}} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{p}_0$$

$$-\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right) \cdot \hat{\nabla} \hat{V}_{\parallel i}$$

$$+\frac{k_B \bar{T}_e}{m_i V_A^2} \hat{n}_{i0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{p}_1,$$

$$\begin{split} \psi_{\text{paral}} &= \frac{k_B T_c}{e B L V_A}, \\ Ti_{\text{paral}} &= \frac{2}{3} \frac{1}{L V_A}, Ti_{\text{para2}} = \frac{k_B T_i}{Z_i e B L V_A}, \\ + \frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\Phi}_0 \right) \\ &+ \frac{k_B T_e}{e B L V_A} \frac{1}{\hat{n}_{e0} \hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{\rho}_{e1} - \frac{k_B T_e}{e B L V_A} \frac{1}{\hat{n}_{e0} \hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e0} \\ &+ \frac{k_B T_e}{e B L V_A} \frac{1}{\hat{n}_{e0} \hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{\rho}_{e1} - \frac{k_B T_e}{e B L V_A} \frac{1}{\hat{n}_{e0} \hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e0} \\ &+ \frac{k_B T_e}{e B L V_A} \frac{0.71}{\hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{Q}_{e1} - \frac{k_B T_e}{e B L V_A} \frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e0} \\ &+ \frac{k_B T_e}{e B L V_A} \frac{0.71}{\hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{Q}_{e1} - \frac{k_B T_e}{e B L V_A} \frac{0.71}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e1} \\ &- \frac{k_B T_e}{e B L V_A} \frac{0.71}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{e1}, \\ &- \frac{k_B T_e}{e B L V_A} \frac{0.71}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{e1}, \\ &- \frac{2}{3} \hat{T}_{i0} \left(\hat{Z}_{0} \mathbf{b}_0 \times \hat{\mathbf{x}} \right) \cdot \left[\hat{\nabla} \left(\hat{B}_0 \hat{\phi} \right) + \frac{k_B T_i}{Z_i e B L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{p}_{i1} + \frac{5k_B T_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i1} \right] \\ &- \frac{2}{3} \hat{T}_{i0} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel i}}{\hat{B}_0} \right) \cdot \hat{\nabla} \hat{T}_{i1} + \frac{2}{3n_i L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{V}_{i0} + \frac{5k_B T_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i0} \right] \\ &+ \frac{2}{3n_i L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\parallel} \left(\kappa_{\parallel i} \hat{\nabla} \| \hat{T}_{i1} \right) + \frac{2}{3n_i L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{V}_{i1} + \frac{5k_B T_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i0} \right] \\ &+ \frac{22i_m t_e}{B_0} \left(\hat{T}_{e1} - \hat{T}_{i1} \right) \\ &- \frac{1}{B_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \left(\hat{B}_0 \hat{\phi} \right) \cdot \hat{\nabla} \hat{T}_{i1} - \hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{T}_{i1} + \hat{V}_{\parallel i} \mathbf{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{i0} \right] \\ &- \frac{2}{3} \hat{T}_{i1} \left(\frac{2}{B_0} \mathbf{b}_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \left(\hat{B}_0 \hat{\phi} \right) + \frac{k_B T_i}{2i e B L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{p}_{i1} + \frac{5k_B T_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i1} \right] \\ &- \frac{2}{3} \hat{T}_{i1} \left(\frac{2}{B_0} \mathbf{b}_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \left(\hat{B}_0 \hat{\phi} \right) + \hat{\nabla} \hat{T}_{i1} \hat{\nabla} \hat{D}_{i0} \hat{\nabla} \hat{\nabla} \hat{V}_{i1} \hat{\nabla} \hat{V}_{i1} + \frac{5k_B T_i}{2Z_i$$

$$Te_{\text{para1}} = \frac{2}{3} \frac{1}{Z_{1}LV_{A}}, Te_{\text{para2}} = \frac{k_{B}T_{e}}{eBLV_{A}}, Te_{\text{para3}} = \frac{B}{e\mu_{0}\bar{n}_{e}LV_{A}}, Te_{\text{para4}} = \frac{B^{2}}{\mu_{0}k_{B}\bar{n}_{e}T_{e}},$$

$$\frac{\partial}{\partial \hat{t}}\hat{T}_{e} = -\frac{1}{\hat{B}_{0}}b_{0} \times \hat{\nabla}_{\perp} \left(\hat{B}_{0}\hat{\phi}\right) \cdot \hat{\nabla}\hat{T}_{e0} - \frac{1}{\hat{B}_{0}}b_{0} \times \hat{\nabla}_{\perp} \left(\hat{B}_{0}\hat{\Phi}_{0}\right) \cdot \hat{\nabla}\hat{T}_{e1} - \hat{V}_{\parallel e}\hat{\nabla}_{\parallel 0}\hat{T}_{e0}$$

$$-\frac{2}{3}\hat{T}_{e0}\left(\frac{2}{\hat{B}_{0}}b_{0} \times \hat{\kappa}\right) \cdot \left[\hat{\nabla}\left(\hat{B}_{0}\hat{\phi}\right) - \frac{k_{B}T_{e}}{eBLV_{A}}\frac{1}{\hat{n}_{e0}}\hat{\nabla}\hat{p}_{e1} - \frac{5k_{B}T_{e}}{2eBLV_{A}}\hat{\nabla}T_{e1}\right]$$

$$-\frac{2}{3}\hat{T}_{e0}\hat{B}_{0}\hat{\nabla}\hat{V}_{\parallel 0}\left(\frac{\hat{V}_{\parallel e}}{\hat{B}_{0}}\right)$$

$$-\frac{2}{3}\hat{T}_{e1}\left(\frac{2}{\hat{B}_{0}}b_{0} \times \hat{\kappa}\right) \cdot \left[\hat{\nabla}\left(\hat{B}_{0}\hat{\Phi}_{0}\right) - \frac{k_{B}T_{e}}{eBLV_{A}}\frac{1}{\hat{n}_{e0}}\hat{\nabla}\hat{p}_{e0}\right] - \frac{5k_{B}T_{e}}{2eBLV_{A}}\hat{\nabla}\hat{T}_{e0}\right]$$

$$+0.71\frac{2\hat{B}}{3e\mu_{0}\bar{n}_{e}LV_{A}}\frac{\hat{T}_{e0}}{\hat{n}_{e0}}\hat{B}_{0}\hat{\nabla}\hat{V}_{\parallel 0}\hat{J}_{\parallel 1} + 0.71\frac{2\hat{B}}{3e\mu_{0}\bar{n}_{e}LV_{A}}\frac{\hat{T}_{e1}}{\hat{n}_{e0}}\hat{B}_{0}\hat{\nabla}\hat{V}_{\parallel 0}\hat{J}_{\parallel 0}$$

$$-0.71\frac{2\hat{B}}{3e\mu_{0}\bar{n}_{e}LV_{A}}\frac{\hat{T}_{e0}}{\hat{n}_{e0}}\hat{B}_{0}\hat{b}_{0} \times \hat{\nabla}\hat{\nabla}\hat{V} \cdot \hat{\nabla}\hat{V}_{\parallel 0}\hat{J}_{\parallel 0}$$

$$+\frac{2}{3n_{e}LV_{A}}\frac{1}{\hat{n}_{e0}}\hat{\nabla}\hat{V}_{\parallel}\left(\kappa_{\parallel e}\hat{\nabla}^{\dagger}\hat{T}_{e1}\right) + \frac{2}{3\mu_{0}\bar{n}k_{B}T_{e}}\frac{1}{\hat{n}_{e0}}\hat{\nabla}_{\perp}\left(\kappa_{\perp e}\hat{\nabla}^{\dagger}\hat{L}_{e1}\right)$$

$$-\frac{2m_{e}\bar{t}}{m_{t\tau_{e}}}\left(\hat{T}_{e1} - \hat{T}_{i1}\right) + \frac{4B^{2}}{3\mu_{0}\bar{n}k_{B}T_{e}}\frac{\hat{B}_{0}}{\hat{n}_{e0}}\hat{\eta}_{\parallel}\hat{J}_{\parallel 0}\hat{J}_{\parallel 1}$$

$$-\frac{1}{\hat{B}_{0}}\hat{\nabla}\hat{\nabla}\hat{\nabla}_{\perp}\left(\hat{B}_{0}\hat{\phi}\right) \cdot \hat{\nabla}\hat{T}_{e1} - \hat{V}_{\parallel e}\hat{\nabla}_{\parallel}\hat{\nabla}_{\parallel}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{\nabla}_{e1}\hat{\nabla}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{\nabla}_{\perp}\hat{T}_{e1}\hat{T}_{e$$

4 Normalization by \bar{B} (Recommended)

Using \bar{B} in the normalization factors in ϕ and J.

$$\hat{T}_{j} = \frac{T_{j}}{\bar{T}_{j}}, \qquad \hat{n} = \frac{n_{i}}{\bar{n}}, \qquad \hat{L} = \frac{L}{\bar{L}},$$

$$\hat{t} = \frac{t}{\bar{t}}, \qquad \hat{\beta} = \frac{B}{\bar{B}}, \qquad \hat{J} = \frac{\mu_{0}\bar{L}}{\bar{B}}J,$$

$$\hat{\psi} = \frac{\psi}{\bar{L}}, \qquad \hat{\phi} = \frac{\bar{t}}{\bar{L}^{2}\bar{B}}\phi, \qquad \hat{\omega} = \frac{\bar{t}}{m_{i}\bar{n}}\omega,$$

$$\tau = \frac{\bar{T}_{i}}{\bar{T}_{e}}, \qquad \hat{V} = \frac{V}{V_{A}}, \qquad V_{A} = \frac{\bar{L}}{\bar{t}} = \frac{\bar{B}}{\sqrt{\mu_{0}m_{i}n_{i}}},$$

$$\hat{P}_{j} = \frac{P_{j}}{k_{B}\bar{n}\bar{T}_{j}}, \qquad \hat{\kappa} = \bar{L}\kappa, \qquad \hat{\nabla} = \bar{L}\nabla$$

$$\hat{\eta}_{\parallel} = \frac{\eta_{\parallel}}{\mu_{0}V_{A}\bar{L}}, \qquad \hat{\kappa}_{\parallel,\perp} = \frac{2\kappa_{\parallel,\perp}}{3V_{A}\bar{L}\bar{n}},$$

so we have

$$\hat{P} = (\tau \hat{P}_i + \hat{P}_e) = \frac{P}{(k_B \bar{n} T_e)},$$

$$= \tau \hat{P}_i * (1 + Z_i), \text{ if } T_i = T_e$$

$$\hat{F} = \frac{E}{r} - \hat{\nabla} \hat{\rho}$$
(4.1)

$$\hat{E} = \frac{E}{V_A \bar{B}} = -\hat{\nabla}\hat{\phi} \tag{4.2}$$

$$\hat{\mathbf{V}}_{E \times B} = \frac{\mathbf{V}_{E \times B}}{V_A} = \frac{\hat{\mathbf{E}}_r \times \hat{\mathbf{B}}_0}{\hat{B}_0^2} = \left(\frac{\mathbf{b}_0 \times \hat{\nabla} \hat{\phi}}{\hat{B}_0}\right)$$
(4.3)

$$\hat{\nabla}_{\perp}\hat{\Phi}_{0} = \left[\mathbf{b}_{0} \times \hat{\nabla}\hat{\Phi}_{0}\right] \times \mathbf{b}_{0} = \hat{\mathbf{V}}_{E \times B} \times \mathbf{B}_{0} \tag{4.4}$$

After ignoring polarization drift (2.4.1) V_P and taking $\boldsymbol{b} \cdot \nabla = \boldsymbol{b}_0 \cdot \nabla - \boldsymbol{b}_0 \times \nabla \psi \cdot \nabla$, The linearized equations are

$$\hat{\boldsymbol{\varpi}} = \boldsymbol{b} \cdot \hat{\boldsymbol{\nabla}} \times \hat{n}_i \hat{V}_i \simeq \frac{\hat{n}_{i0}}{\hat{B}_0} \left(\hat{\nabla}_{\perp}^2 \hat{\phi} + \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla}_{\perp} \hat{n}_{i0} + \frac{k_B \bar{T}_i}{Z_i e \bar{L} \bar{B} V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\perp}^2 \hat{p}_{i1} \right)$$
(4.5)

$$U_{\text{para0}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \ U_{\text{para1}} = \frac{k_B \bar{T}_e}{m_i V_A^2}, \ U_{\text{para2}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \ U_{\text{para3}} = 1.0$$
 (4.6)

$$Ni_{\text{paral}} = \frac{k_B \bar{T}_i}{Z_i e \bar{B} \bar{L} V_A}, \quad Vi_{\text{para}} = \frac{\mu_0 k_B \bar{T}_e \bar{n}}{\bar{B}^2} = \frac{k_B \bar{T}_e}{m_i V_A^2},$$

$$\frac{\partial}{\partial \hat{t}} \hat{n}_i = -\frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}}_{\perp} \hat{\phi} \cdot \hat{\boldsymbol{\nabla}} \hat{n}_{i0} - \frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}}_{\perp} \hat{\Phi}_0 \cdot \hat{\boldsymbol{\nabla}} n_i$$

$$-\frac{2\hat{n}_{i0}}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\nabla}}_{\perp} \hat{\phi} - \frac{2\hat{n}_i}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\nabla}}_{\perp} \hat{\Phi}_{0,net}$$

$$-\frac{2k_B \bar{T}_e}{Z_i e \bar{B} \bar{L} V_A} \frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\nabla}}_{\perp} \hat{p}_{i1}$$

$$-\hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{n}_{i0} - \hat{n}_{i0} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{V_{\parallel i}}{B_0} \right)$$

$$-\frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}}_{\perp} \hat{\phi} \cdot \hat{\boldsymbol{\nabla}} \hat{n}_i - \frac{2\hat{n}_i}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\nabla}}_{\perp} \hat{\phi}$$

$$-\hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{n}_i + \hat{V}_{\parallel i} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}} \hat{\psi} \cdot \hat{\boldsymbol{\nabla}} \hat{n}_{i0}$$

$$-\hat{n}_i \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel i}}{\hat{B}_0} \right) + \hat{n}_{i0} \hat{B}_0 \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}} \hat{\psi} \cdot \hat{\boldsymbol{\nabla}} \left(\frac{\hat{V}_{\parallel i}}{\hat{B}_0} \right) ,$$

$$\frac{\partial}{\partial t} \hat{V}_{\parallel i} = -\frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}}_{\perp} \hat{\Phi}_0 \cdot \hat{\boldsymbol{\nabla}} \hat{V}_{\parallel i}$$

$$-\frac{k_B \bar{T}_e}{m_i V_A^2} \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\parallel 0} \hat{p}_1 + \frac{k_B \bar{T}_e}{m_i V_A^2} \frac{1}{\hat{n}_{i0}} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}} \hat{\psi} \cdot \hat{\boldsymbol{\nabla}} \hat{\boldsymbol{V}}_0$$

$$-\frac{1}{\hat{B}_0} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}}_{\perp} \hat{\phi} \cdot \hat{\boldsymbol{\nabla}} \hat{V}_{\parallel i}$$

$$+\frac{k_B \bar{T}_e}{m_i V_A^2} \frac{1}{\hat{n}_{i0}} \boldsymbol{b}_0 \times \hat{\boldsymbol{\nabla}} \hat{\psi} \cdot \hat{\boldsymbol{\nabla}} \hat{\boldsymbol{V}}_1 ,$$

$$\begin{split} \psi_{\text{paral}} &= \frac{k_B T_e}{e \overline{B} L V_A}, \\ Ti_{\text{paral}} &= \frac{2}{3} \frac{1}{L V_A}, Ti_{\text{para2}} = \frac{k_B \overline{T}_i}{Z_i e B L V_A}, \end{split} \tag{4.8} \\ \frac{\partial}{\partial t} \hat{\psi} &= -\frac{1}{\hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{\phi} + \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla}_{\perp} \hat{\Phi}_0 + \frac{\eta_{\parallel}}{\mu_0 V_A L} \left(\frac{\hat{J}_{\parallel 1}}{\hat{B}_0} \right) \\ &+ \frac{k_B \overline{T}_e}{e B L V_A} \frac{1}{\hat{n}_{e0}} \hat{B}_0 \hat{\nabla}_{\parallel 0} \hat{\rho}_{e1} - \frac{k_B \overline{T}_e}{e B L V_A} \frac{1}{\hat{n}_{e0} \hat{B}_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e0} \\ &+ \frac{k_B \overline{T}_e}{e B L V_A} \frac{1}{\hat{B}_0} \hat{\nabla}_{\parallel 0} \hat{Q}_{e1} - \frac{k_B \overline{T}_e}{e B L V_A} \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e0} \\ &+ \frac{1}{B_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla}_{\parallel 0} \hat{Q}_{e1} - \frac{k_B \overline{T}_e}{e B L V_A} \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{P}_{e1} \\ &- \frac{k_B \overline{T}_e}{e B L V_A} \frac{0.71}{\hat{B}_0} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{e1} \\ &- \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla} \hat{V}_{i0} - \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla}_{\perp} \hat{\Phi}_0 \cdot \hat{\nabla} \hat{T}_{i1} - \hat{V}_{\parallel i} \hat{\nabla}_{\parallel 0} \hat{T}_{i0} \\ &- \frac{2}{3} \hat{T}_{i0} \left(\frac{2}{B_0} b_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\phi} + \frac{k_B \overline{T}_i}{Z_i e B L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{P}_{i0} \right] + \frac{5k_B \overline{T}_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i1} \\ &- \frac{2}{3} \hat{T}_{i0} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\hat{V}_{\parallel i} \hat{D}_0 \right) \right] \\ &+ \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\parallel} \left(\hat{\kappa}_{\parallel i} \hat{\nabla}_{\parallel} \hat{T}_{i1} \right) + \frac{1}{\hat{n}_{i0}} \hat{\nabla}_{\perp} \left(\hat{\kappa}_{\perp i} \hat{\nabla}_{\perp} \hat{T}_{i1} \right) \\ &+ \frac{2Z_i m_e \bar{t}}{m_i \tau_e} \left(\hat{T}_{e1} - \hat{T}_{i1} \right) \\ &- \frac{1}{\hat{B}_0} b_0 \times \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla} \hat{T}_{i1} - \hat{V}_{\parallel i} \hat{\nabla}_{\parallel} \hat{T}_{i1} + \hat{V}_{\parallel i} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{i0} \\ &- \frac{2}{3} \hat{T}_{i1} \left(\frac{2}{B_0} b_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\phi} + \frac{k_B \overline{T}_i}{Z_i e B L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{p}_{i1} + \frac{5k_B \overline{T}_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i0} \right] \\ &- \frac{2}{3} \hat{T}_{i1} \left(\frac{2}{B_0} b_0 \times \hat{\kappa} \right) \cdot \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{i1} + \hat{V}_{\parallel i} b_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{V} \hat{T}_{i0} \right) \\ &- \frac{2}{3} \hat{T}_{i1} \left(\frac{2}{B_0} b_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\phi} + \frac{k_B \overline{T}_i}{Z_i e B L V_A} \frac{1}{\hat{n}_{i0}} \hat{\nabla} \hat{p}_{i1} + \frac{5k_B \overline{T}_i}{2Z_i e B L V_A} \hat{\nabla} \hat{T}_{i1} \right] \\ &- \frac{2}{3} \hat{T}_{i1} \hat{D}_0 \hat{\nabla}_{\parallel 0} \hat{U}_{\parallel 0} \hat{U}_$$

$$Te_{\text{para1}} = \frac{2}{3} \frac{1}{Z_i L V_A}, \quad Te_{\text{para2}} = \frac{k_B T_c}{e B L V_A}, \quad Te_{\text{para3}} = \frac{B}{e \mu_0 \bar{n}_c L V_A}, \quad Te_{\text{para4}} = \frac{B^2}{\mu_0 k_B \bar{n}_c L^2}, \quad (4.9)$$

$$\frac{\partial}{\partial \bar{t}} \hat{T}_e = -\frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla} \hat{T}_{e0} - \frac{1}{\hat{B}_0} \mathbf{b}_0 \times \hat{\nabla}_{\perp} \hat{\Phi}_0 \cdot \hat{\nabla} \hat{T}_{e1} - \hat{V}_{\parallel c} \hat{\nabla}_{\parallel 0} \hat{T}_{e0}$$

$$-\frac{2}{3} \hat{T}_{e0} \left(\frac{2}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\phi} - \frac{k_B T_c}{e B L V_A} \frac{1}{\hat{n}_{e0}} \hat{\nabla} \hat{V}_{e0} - \frac{5k_B T_c}{2e B L V_A} \hat{\nabla} \hat{T}_{e1} \right]$$

$$-\frac{2}{3} \hat{T}_{e0} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel c}}{\hat{B}_0} \right)$$

$$-\frac{2}{3} \hat{T}_{e1} \left(\frac{2}{\hat{B}_0} \mathbf{b}_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\Phi}_0 - \frac{k_B T_c}{e B L V_A} \frac{1}{\hat{n}_{e0}} \hat{\nabla} \hat{V}_{e0} - \frac{5k_B T_c}{2e B L V_A} \hat{\nabla} \hat{T}_{e0} \right]$$

$$+0.71 \frac{2B}{3e \mu_0 \bar{n}_c L V_A} \frac{\hat{T}_{e0}}{\hat{n}_{e0}} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{J}_{\parallel 1}}{\hat{B}_0} \right) + 0.71 \frac{2B}{3e \mu_0 \bar{n}_c L V_A} \frac{\hat{T}_{e0}}{\hat{n}_{e0}} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{J}_{\parallel 0}}{\hat{B}_0} \right)$$

$$-0.71 \frac{2B}{3e \mu_0 \bar{n}_c L V_A} \frac{\hat{T}_{e0}}{\hat{n}_{e0}} \hat{B}_0 \hat{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla}_{\parallel 0} \left(\frac{\hat{J}_{\parallel 0}}{\hat{B}_0} \right)$$

$$+ \frac{1}{\hat{n}_{e0}} \hat{\nabla}_{\parallel} \left(\hat{k}_{\parallel e} \hat{\nabla}_{\parallel} \hat{T}_{e1} \right) + \frac{1}{\hat{n}_{e0}} \hat{\nabla}_{\perp} \left(\hat{k}_{\perp e} \hat{\nabla}_{\perp} \hat{T}_{e1} \right) + \frac{4B^2}{3\mu_0 \bar{n}_b B T_c} \frac{\hat{\eta}_{\parallel}}{\hat{n}_{e0}} \hat{J}_{\parallel 0} \hat{J}_{\parallel 1}$$

$$- \frac{1}{B_0} \hat{b}_0 \times \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla} \hat{T}_{e1} - \hat{T}_{\parallel 1} \right) + \frac{4B^2}{3\mu_0 \bar{n}_b B T_c} \frac{\hat{\eta}_{\parallel}}{\hat{n}_{e0}} \hat{J}_{\parallel 0} \hat{J}_{\parallel 1}$$

$$- \frac{1}{\hat{B}_0} \hat{b}_0 \times \hat{\nabla}_{\perp} \hat{\phi} \cdot \hat{\nabla} \hat{\nabla} \hat{T}_{e1} - \hat{V}_{\parallel e} \hat{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{V}_{e0}$$

$$- \frac{2}{3} \hat{T}_{e1} \left(\frac{2}{B_0} \hat{b}_0 \times \hat{\kappa} \right) \cdot \left[\hat{\nabla} \hat{\phi} - \frac{k_B T_c}{e B L L V_A} \frac{\hat{\eta}_{\parallel}}{\hat{n}_{e0}} \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{T}_{e1} \right]$$

$$- \frac{2}{3} \hat{T}_{e1} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel e}}{\bar{B}_0} \right) + \frac{2}{3} \hat{T}_{e0} \hat{B}_0 \hat{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{\nabla} \hat{U}_{e1} \right]$$

$$- \frac{2}{3} \hat{T}_{e1} \hat{B}_0 \hat{\nabla}_{\parallel 0} \left(\frac{\hat{V}_{\parallel e}}{\bar{B}_0} \right) + \frac{2}{3} \hat{T}_{e0} \hat{B}_0 \hat{b}_0 \times \hat{\nabla} \hat{\psi} \cdot \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{\nabla} \hat{U}_{e1} \right)$$

$$- 0.71 \frac{2B}{3e \mu_0 \bar{n}_c L V_A} \frac$$

5 Results

6 Conclusion

The equations of 6-field are listed below when we drop the polarization velocity and viscous terms

$$\frac{\partial}{\partial t} \varpi = -\left(\frac{1}{B_0} \mathbf{b} \times \nabla_{\perp} \Phi + V_{\parallel i} \mathbf{b}\right) \cdot \nabla \varpi
+ B^2 \nabla_{\parallel} \left(\frac{J_{\parallel}}{B}\right) + 2 \mathbf{b} \times \kappa \cdot \nabla p_1
- \frac{1}{2\Omega_i} \left[\frac{1}{B} \mathbf{b} \times \nabla P_i \cdot \nabla \left(\nabla_{\perp}^2 \Phi\right) - Z_i e B \mathbf{b} \times \nabla n_i \cdot \nabla \left(\frac{\nabla_{\perp} \Phi}{B}\right)^2\right]
+ \frac{1}{2\Omega_i} \left[\frac{1}{B} \mathbf{b} \times \nabla \Phi \cdot \nabla \left(\nabla_{\perp}^2 P_i\right) - \nabla_{\perp}^2 \left(\frac{1}{B} \mathbf{b} \times \nabla \Phi \cdot \nabla P_i\right)\right], \qquad (6.1)
\frac{\partial}{\partial t} n_i = -\left(\frac{1}{B_0} \mathbf{b} \times \nabla_{\perp} \Phi + V_{\parallel i} \mathbf{b}\right) \cdot \nabla n_i
- \frac{2n_i}{B} \mathbf{b} \times \kappa \cdot \nabla \Phi - \frac{2}{Z_i e B} \mathbf{b} \times \kappa \cdot \nabla P_i - n_i B \nabla_{\parallel} \left(\frac{V_{\parallel i}}{B}\right), \qquad (6.2)
\frac{\partial}{\partial t} V_{\parallel i} = -\left(\frac{1}{B} \mathbf{b} \times \nabla_{\perp} \Phi + V_{\parallel i} \mathbf{b}\right) \cdot \nabla V_{\parallel i} - \frac{1}{m_i n_i} \mathbf{b} \cdot \nabla P, \qquad (6.3)
\frac{\partial}{\partial t} \psi = -\frac{1}{B} \nabla_{\parallel} \phi + \frac{\eta}{\mu_0} \nabla_{\perp}^2 \psi + \frac{1}{e n_e B} \nabla_{\parallel} P_e + \frac{0.71}{e B} \nabla_{\parallel} T_e, \qquad (6.4)
\frac{\partial}{\partial t} T_i = -\left(\frac{1}{B} \mathbf{b} \times \nabla_{\perp} \Phi + V_{\parallel i} \mathbf{b}\right) \cdot \nabla T_i
-\frac{2}{3} T_i \left[\left(\frac{2}{B} \mathbf{b} \times \kappa\right) \cdot \left(\nabla \Phi + \frac{1}{Z_i e n_i} \nabla P_i + \frac{5}{2} \frac{1}{Z_i e} \nabla T_i\right) + B \nabla_{\parallel} \left(\frac{V_{\parallel i}}{B}\right)\right]
+\frac{2}{3n_i} \nabla_{\parallel} \left(\kappa_{\parallel i} \nabla_{\parallel} T_i\right) + \frac{2}{3n_i} \nabla_{\perp} \left(\kappa_{\perp i} \nabla_{\perp} T_i\right)
+\frac{2m_e}{m_i} \frac{Z_i}{\tau_e} \left(T_e - T_i\right), \qquad (6.5)
\frac{\partial}{\partial t} T_e = -\left(\frac{1}{B} \mathbf{b} \times \nabla_{\perp} \Phi + V_{\parallel e} \mathbf{b}\right) \cdot \nabla T_e
-\frac{2}{3} T_e \left[\left(\frac{2}{B} \mathbf{b} \times \kappa\right) \cdot \left(\nabla \Phi - \frac{1}{e n_e} \nabla P_e - \frac{5}{2} \frac{1}{e} \nabla T_e\right) + B \nabla_{\parallel} \left(\frac{V_{\parallel e}}{B}\right)\right]
+0.71 \frac{2T_e}{3e n_e} B \nabla_{\parallel} \left(\frac{J_{\parallel}}{B}\right)
+\frac{2}{3n_e} \nabla_{\parallel} \left(\kappa_{\parallel e} \nabla_{\parallel} T_e\right) + \frac{2}{3n_e} \nabla_{\perp} \left(\kappa_{\perp e} \nabla_{\perp} T_e\right)
-\frac{2m_e}{m_i} \frac{1}{\tau} \left(T_e - T_i\right) + \frac{2}{3n_i} \eta_1 I_{\parallel}^2 \qquad (6.6)$$

The definations make the closure of the equations

$$\begin{split} Z_{i}n_{i0} + Z_{im}n_{im} &= n_{e0} \\ n_{j} &= n_{j0} + n_{j1}, \\ P_{j} &= P_{j0} + p_{j1}, \\ P = P_{i} + P_{e} &= P_{0} + p_{1} = (P_{i0} + P_{e0}) + (p_{i1} + p_{e1}), \\ P_{t} &= P_{i} + P_{e} + P_{im}, \\ \Phi &= \Phi_{0} + \phi, \\ J_{\parallel} &= J_{\parallel 0} + J_{\parallel 1}, \\ V_{\parallel e} &= \frac{Z_{i}n_{i} + Z_{im}n_{im}}{n_{e}} V_{\parallel i} - \frac{J_{\parallel 1}}{en_{e}} = V_{\parallel i} - \frac{J_{\parallel 1}}{en_{e}}, \\ \boldsymbol{b} &= \boldsymbol{b}_{0} - \boldsymbol{b}_{0} \times \boldsymbol{\nabla}\psi, \\ \varpi &= n_{i0}\frac{m_{i}}{B_{0}} \left(\nabla_{\perp}^{2}\phi + \frac{1}{n_{i0}} \nabla_{\perp}\phi \cdot \nabla_{\perp}n_{i0} + \frac{1}{n_{i0}Z_{i}e} \nabla_{\perp}^{2}p_{i1} \right) \\ J_{\parallel 1} &= -\frac{1}{\mu_{0}} B_{0} \nabla_{\perp}^{2}\psi. \end{split}$$

$$\frac{\partial}{\partial t} \varpi = -\frac{1}{B_0} \mathbf{b} \times \nabla_{\perp} \Phi \cdot \nabla \varpi + B^2 \nabla_{\parallel} \left(\frac{J_{\parallel}}{B} \right) + 2 \mathbf{b} \times \kappa \cdot \nabla p_1
- \frac{1}{2\Omega_i} \left[\frac{1}{B} \mathbf{b} \times \nabla P_i \cdot \nabla \left(\nabla_{\perp}^2 \Phi \right) - Z_i e B \mathbf{b} \times \nabla n_i \cdot \nabla \left(\frac{\nabla_{\perp} \Phi}{B} \right)^2 \right]
+ \frac{1}{2\Omega_i} \left[\frac{1}{B} \mathbf{b} \times \nabla \Phi \cdot \nabla \left(\nabla_{\perp}^2 P_i \right) - \nabla_{\perp}^2 \left(\frac{1}{B} \mathbf{b} \times \nabla \Phi \cdot \nabla P_i \right) \right] + \mu_{\parallel i} \nabla_{\parallel 0}^2 \varpi, \qquad (6.7)
\frac{\partial}{\partial t} n_i = -\frac{1}{B_0} \mathbf{b} \times \nabla_{\perp} \Phi \cdot \nabla n_i - \frac{2n_i}{B} \mathbf{b} \times \kappa \cdot \nabla \Phi - \frac{2}{Z_i e B} \mathbf{b} \times \kappa \cdot \nabla P_i - n_i B \nabla_{\parallel} \left(\frac{V_{\parallel i}}{B} \right), \qquad (6.8)
\frac{\partial}{\partial t} V_{\parallel i} = -\frac{1}{B} \mathbf{b} \times \nabla_{\perp} \Phi \cdot \nabla V_{\parallel i} - \frac{1}{m_i n_i} \mathbf{b} \cdot \nabla P, \qquad (6.9)
\frac{\partial}{\partial t} \psi = -\frac{1}{B} \nabla_{\parallel} \phi + \frac{\eta}{\mu_0} \nabla_{\perp}^2 \psi + \frac{1}{e n_e B} \nabla_{\parallel} P_e + \frac{0.71}{e B} \nabla_{\parallel} T_e, \qquad (6.10)
\frac{\partial}{\partial t} T_i = -\frac{1}{B} \mathbf{b} \times \nabla_{\perp} \Phi \cdot \nabla T_i
- \frac{2}{3} T_i \left[\left(\frac{2}{B} \mathbf{b} \times \kappa \right) \cdot \left(\nabla \Phi + \frac{1}{Z_i e n_i} \nabla P_i + \frac{5}{2} \frac{1}{Z_i e} \nabla T_i \right) + B \nabla_{\parallel} \left(\frac{V_{\parallel i}}{B} \right) \right]
- \frac{2}{3n_i} \nabla_{\parallel 0} q_{\parallel i} + \frac{2m_e}{m_i} \frac{Z_i}{\tau_e} \left(T_e - T_i \right), \qquad (6.11)$$

BOUT++ two fluid 6 field $\text{model}(\varpi, n_i, V_{\parallel i}, Ti, Te, \psi)$: based on Braginskii Equations, the density, momentum and energy of ion and electron are described in drift ordering.

 $-\frac{2}{3}T_{e}\left[\left(\frac{2}{B}\boldsymbol{b}\times\boldsymbol{\kappa}\right)\cdot\left(\nabla\Phi-\frac{1}{e^{n}}\nabla P_{e}-\frac{5}{2}\frac{1}{e}\nabla T_{e}\right)+B\nabla_{\parallel}\left(\frac{V_{\parallel e}}{B}\right)\right]$

 $+0.71\frac{\frac{2T_{e}}{3en}}{3en}B\nabla_{\parallel}\left(\frac{J_{\parallel}}{B}\right)-\frac{2}{3n_{e}}\nabla_{\parallel0}q_{\parallel e}-\frac{2m_{e}}{m_{i}}\frac{1}{\tau_{e}}\left(T_{e}-T_{i}\right)+\frac{2}{3n_{e}}\eta_{\parallel}J_{\parallel}^{2}$

Continuity Terms
Compressional Terms
Electron Hall
Gyroviscous Terms
Thermal Force
Energy Exchange
Energy Flux
Thermal Conduction

$$\nabla_{\parallel}q_{\parallel i,e} = \nabla_{\parallel 0}q_{\parallel i,e} - \boldsymbol{b}_0 \times \boldsymbol{\nabla}\psi \cdot \nabla q_{\parallel i,e} \tag{6.13}$$

(6.12)

References

- [1] A. N. Simakov and P. J. Catto, Phys. Plasmas 10, 4744 (2003). http://dx.doi.org/10. 1063/1.1703527
- [2] X. Q. Xu, W. M. Nevins, R. H. Cohen, J. R. Myra, P. B. Snyder, New J. Phys. 4, 53.1 (2002).
- [3] X. Q. Xu et al., Commun. Comput. Phys. 4, 949 (2008).
- [4] T. Y. Xia, X. Q. Xu, Nucl. Fusion **55**, 113030 (2015). http://iopscience.iop.org/0029-5515/55/11/113030