

What Should You Pay A Head Coach?

"College football head coaches themselves are likely not worth these hefty salaries, but when looked upon in the larger landscape of the success of an athletics program, they can be seen as the centerpiece."

- Leigh Steinberg, Forbes Sports Money, 2017

2020-0701 IST - 718 Big Data Analytics

Executive Summary

Head football coaches' annual salaries for Division I FBS colleges can range anywhere from just shy of \$1 million to north of \$9 million. What should be determined when considering a head coaches salary? Is it just what they can deliver on the field, or are there other important deciding factors?

Background

As the number one contributor of revenue for all athletic programs, football coaches have always been the top dog when it comes to compensation. Tasked with recommending the salary of Syracuse's next head football coach myself, I had to find out why that was.

Using various data from the 130 NCAA DI FBS colleges, I will help determine and solidify what the salary should be for the next head football coach at Syracuse University.

Exploratory Data Analysis

Right off the bat, I found there was missing coaching salary data for Private Schools, Independent Schools and those that do not release that information (Naval and Military Academies) so I had to remove them from the dataset.

My updated data frame now consists of 123 rows of data with 28 columns, all with valid salary data.

The P5 Conferences (ACC, Big Ten, Big 12, Pac 12, SEC) pay their coaches much more than the G5 conferences.

- The highest salary is \$9.26 million
- The lowest salary is \$360 thousand
- The average salary is \$2.7 million

Distribution of Coaches Salary

Total Salary per Conference

Distribution of Coaches Salary

School Pay vs. Wins Per Conference

2020-0701 IST - 718 Big Data Analytics

Correlation

There are 8 strongly correlated values:

• Capacity 0.775571

• Buyout 0.767884

Ticket Sales 0.738704

Assistant Pay 0.724128

• Rights/Licensing 0.707415

• Total Revenue 0.706850

Contributions 0.681954

Other Income 0.639930

It was too difficult to interpret feature-to-feature relationships of the other attributes using distributions, so I used a heatmap to showcase any other relationships, which helped me reconfigure the dataset by removing columns that mean the same thing, which allows me to work with a smaller set of variations, leading to a theoretically higher accuracy.

- Point Differential has a positive correlation with Points For (88%)
- Point Differential has a negative correlation with Points Against (-70%)

After removing similar columns, as well as schools who didn't report revenue, I'm left with 109 rows of data with 16 columns and a cleaner correlation heatmap. After tidying up some incorrect data types as well, I'm left with my remaining variables that I want to build a regression model from

- Record (W/(W+L))
- Differential (PF-PA)
- Capacity
- AvgTemp
- TotalRevenue
- TicketSales
- Contributions
- Rights/Licensing
- GSR
- FGR

Feature to Feature Relationships

Updated Feature to Feature Relationships

2020-0701 IST - 718 Big Data Analytics

Regression Model

After splitting my data into training and testing data, I built my model and got the following results

- p-value
 - Capacity and Contributions appear to be the most statistically significant
- R squared 0.776
- Adjusted R squared 0.746

I dropped the insignificant variables and built a new model. My R squared is still great and I don't have a single variable with a p-value higher than 0.05 so I will plot my findings below:

Looking at the plot, it appears that these 3 variables can really predict a coach's salary in schools in DI FBS.

Coaches Salary = -0.00002184 + 35.3756 x (Capacity) + 0.0575 x (Contributions)

First regression model

Second regression model

		_				_
Dep. Variable	: S	choolPay	R	-squared	0.748	
Model	:	OLS	Adj. R	-squared	0.742	
Method	: Least	Squares	F	-statistic	123.0	
Date	: Wed, 22	Jul 2020	Prob (F	-statistic)	1.52e-25	
Time	:	20:49:27	Log-L	ikelihood	-1307.7	
No. Observations	:	86		AIC	2621.	
Df Residuals	:	83		BIC	2629.	
Df Model	:	2				
Covariance Type	: n	onrobust				
	coef	std err	t	P> t	[0.025	0.975
const -2	2.184e+05	2.76e+05	-0.790	0.432	-7.68e+05	3.31e+0
Capacity	35.3756	7.138	4.956	0.000	21.178	49.57
Contributions	0.0575	0.011	5.186	0.000	0.035	0.08
Omnibus:	16.865	Durbin-Wa	atson:	2.423		
Prob(Omnibus):	0.000 J a	arque-Bera	a (JB):	20.573		
Skew:	0.971	Pro	b(JB):	3.41e-05		

I decided to redo the model for G5 schools only, After splitting my data into training and testing data, I built my model and got the following results

- p-value
 - Capacity and TotalRevenue appear to be the most statistically significant
- R squared 0.474
- Adjusted R squared 0.309

I dropped the insignificant variables and built a new model. My R squared is still a little low but I don't have a single variable with a p-value higher than 0.05 so I will plot my findings below:

Looking at the plot, it appears that these 2 variables can somewhat predict a coach's salary in schools in DI FBS.

Coaches Salary = -0.000001089 + 23.6407 x (Capacity) + 0.0351 x (TotalRevenue)

First G5 only regression model

							_
Dep. Variable:	School	Pay		R-squ	ared:	0.474	7
Model:	(OLS	Adj.	R-squ	ared:	0.309	1
Method:	Least Squ	ares		F-stat	istic:	2.878	_
Date:	Sat, 25 Jul 2	020	Prob (F-stati	stic): 0	.0112	
Time:	11:4	5:12	Log-	-Likelih	ood: -6	37.19	
No. Observations:		43			AIC:	1296.	
Df Residuals:		32			BIC:	1316.	
Df Model:		10					
Covariance Type:	nonrol	oust					
	coef	std	orr	t	P> t	[0.025	0.975]
const	-1.441e+06	2.28e-		-0.633	0.532	6.08e+06	3.2e+06
Record	-7.415e+05	1.3e-		-0.568	0.574	-3.4e+06	1.92e+06
Differential	911.5291	2284.8		0.399	0.693	3742.480	5565.539
Capacity	21.4749	11.3	761	1.826	0.077	-2.481	45.431
AvgTemp	9526.1740	1.68e-	+04	0.568	0.574	2.46e+04	4.37e+04
TotalRevenue	0.0248	0.0	016	1.562	0.128	-0.008	0.057
TicketSales	-0.0378	0.0	099 -	-0.380	0.706	-0.241	0.165
Contributions	0.0575	0.0	066	0.876	0.388	-0.076	0.191
Rights/Licensing	0.0247	0.0	048	0.515	0.610	-0.073	0.122
GSR	5311.4272	1.96e-	+04	0.271	0.788	3.46e+04	4.52e+04
FGR	-3882.2602	8716.0	036 -	-0.445	0.659	2.16e+04	1.39e+04
Omnibus: 3	34.982 Dur	bin-W	atson	:	1.827	•	
Prob(Omnibus):	0.000 Jarq u	ıe-Ber	a (JB):	: 12	2.025		
Skew:	1.915	Pro	b(JB):	: 3.18	Be-27		
Kurtosis: 1	0.310	Con	d. No.	. 8.22	e+08		

Second G5 only regression model

Dep. Variable:	So	hoolPay	R-	squared:	0.413	
Model		OLS	Adj. R-	squared:	0.383	
Method	Least	Squares	F-	statistic:	14.05	
Date	Sat, 25	Jul 2020	Prob (F-s	statistic):	2.39e-05	
Time		11:51:54	Log-Lik	elihood:	-639.54	
No. Observations:		43		AIC:	1285.	
Df Residuals:		40		BIC:	1290.	
Df Model:		2				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const -1	coef .089e+06	std err 4.33e+05		P> t 0.016	[0.025 1.96e+06	
const -1 Capacity			-2.516		•	0.975] -2.14e+05 43.056
	.089e+06	4.33e+05	-2.516 2.461	0.016	1.96e+06	-2.14e+05 43.056
Capacity TotalRevenue	.089e+06 23.6407	4.33e+05 9.606	-2.516 2.461 2.951	0.016 0.018	1.96e+06 4.225	-2.14e+05
Capacity TotalRevenue	.089e+06 23.6407 0.0351 32.203	4.33e+05 9.606 0.012	-2.516 2.461 2.951 /atson:	0.016 0.018 0.005	1.96e+06 4.225	-2.14e+05
Capacity TotalRevenue Omnibus:	.089e+06 23.6407 0.0351 32.203	4.33e+05 9.606 0.012 Durbin-W arque-Ber	-2.516 2.461 2.951 /atson: ra (JB):	0.016 0.018 0.005	1.96e+06 4.225	-2.14e+05

I decided to redo the model for Big Ten schools only to see if Conference specific data would affect the model. Before starting this specific one, I removed TicketSales, Contributions and Rights/Licensing from the variables as I could not find that data for Syracuse and therefore would not be able to use them when calculating head coach salary at the end. After splitting my data into training and testing data, I built my model and got the following results

- p-value
 - Capacity and Total Revenue appear to be slightly significant
- R squared 0.918
- Adjusted R squared 0.6333

I dropped the insignificant variables and built a new model. My R squared dropped but I don't have a single variable with a p-value higher than 0.05 so I will plot my findings below:

Looking at the plot, it appears that these 2 variables can somewhat predict a coach's salary in schools in DI FBS.

Coaches Salary = -0.000004248 + 93.3897 x (Capacity) - 0.0495 x (Total Revenue)

First Big Ten only regression model

Dep. Variab	ole: Sci	noolPay	R-	-squared:	0.918	1
Mod	del:	OLS	Adj. R	-squared:	0.633	
Metho	od: Least S	Squares	F	-statistic:	3.214	
Da	ate: Sat, 25 J	lul 2020 I	Prob (F-	statistic):	0.258	
Tin	ne: 1	5:00:03	Log-Li	kelihood:	-143.28	
No. Observation	ns:	10		AIC:	302.6	
Df Residua	als:	2		BIC:	305.0	
Df Moo	del:	7				
Covariance Ty	pe: no	nrobust				
	222	atal avu		D. M	FO 00E	0.0751
	coef	std err	'	P> t	[0.025	0.975]
const	5.249e+07	1.5e+07	3.507	0.073	-1.19e+07	1.17e+08
Record	6.731e+06	'.35e+06	0.915	0.457	-2.49e+07	3.84e+07
Differential	-1958.7736	8075.929	-0.243	0.831	-3.67e+04	3.28e+04
Capacity	133.8281	40.228	3.327	0.080	-39.257	306.913
AvgTemp	-1.635e+05	.69e+05	-0.967	0.436	-8.91e+05	5.64e+05
TotalRevenue	-0.1366	0.045	-3.054	0.093	-0.329	0.056
GSR	-8.983e+05	3.93e+05	-2.287	0.149	-2.59e+06	7.92e+05
FGR	6.183e+05	3.04e+05	2.031	0.179	-6.91e+05	1.93e+06
Omnibus	: 0.154 D	urbin-Wa	.	1.515		
Prob(Omnibus)	: 0.926 Ja r	que-Bera	(JB):	0.101		
Skew	: 0.108	Prob	(JB):	0.951		
Kurtosis	2.558	Cond	. No. 7	7.19e+09		

Second Big Ten only regression model

Dep. Variable	e: S	choolPay	R-	-squared:	0.403	
Mode	l:	OLS	Adj. R	-squared:	0.232	
Method	d: Leas	t Squares	F	-statistic:	2.360	
Date	: Sat, 25	Jul 2020	Prob (F-	statistic):	0.165	
Time	: :	16:12:06	Log-Li	kelihood:	-152.88	
No. Observations	s:	10		AIC:	311.8	
Df Residuals	s:	7		BIC:	312.7	
Df Mode	l:	2				
Covariance Type						
Covariance Type	e: n	onrobust				
Covariance Type	coef	std err	t	P> t	[0.025	0.975]
			t 1.434		[0.025 -2.76e+06	0.975] 1.13e+07
	coef	std err	1.434		•	
const 4	coef .248e+06	std err 2.96e+06	1.434	0.195	-2.76e+06	1.13e+07
const 4	coef .248e+06 93.3897	std err 2.96e+06 48.554	1.434 1.923 -1.201	0.195 0.096	-2.76e+06 -21.422	1.13e+07 208.201
const 4 Capacity TotalRevenue	coef .248e+06 93.3897 -0.0495	std err 2.96e+06 48.554 0.041	1.434 1.923 -1.201	0.195 0.096 0.269	-2.76e+06 -21.422	1.13e+07 208.201
const 4 Capacity TotalRevenue Omnibus:	coef .248e+06 93.3897 -0.0495	std err 2.96e+06 48.554 0.041 Durbin-Wa	1.434 1.923 -1.201	0.195 0.096 0.269 2.387	-2.76e+06 -21.422	1.13e+07 208.201

2020-0701 IST - 718 Big Data Analytics

Conclusions

Based on my analysis and regression models, the new head football coach at Syracuse should be compensated \$7.48M.

After further analysis and making a new G5 only model to see if the compensation would change if Syracuse was still in the Big East Conference, I found that if that was the case, I would be recommending a compensation of \$1.49M.

After further analysis and making a new Big Ten only model to see if the compensation would change if Syracuse was in the Big Ten Conference, I found that if that was the case, I would be recommending a compensation of \$4.14M.

I'm most confident in the first model that involves the majority of schools. I do not think conference specific models tell us as much as those involving all the schools.

The single biggest impact on salary size appears to be stadium capacity. Total Revenue and Contributions are also important, but capacity shows to be significant in every model.