Future Intern Project of Data Analytics Task 1

Task 1: Clean a dataset by removing missing values and outliers

Steps:

- 1. Import Packages and Train dataset and load and display
 - 1. Train Dataset
 - 2. Test Dataset
 - 3. Gender Submission

```
[5]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

[9]: train_data = pd.read_csv('train (1).csv')
   test_data = pd.read_csv('test (1).csv')
   gender_submission = pd.read_csv('gender_submission (1).csv')

•[11]: #Display the first few rows of the train dataset
   train_data.head()
```

•[11]: #Display the first few rows of the train dataset train_data.head()

[11]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

2. Display data type information and non-null counts

```
•[13]: #Display data type information and non-null counts
        train_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
         # Column Non-Null Count Dtype
            PassengerId 891 non-null int64
            Survived 891 non-null int64
Pclass 891 non-null int64
        2 Pclass 891 non-nuii 2...
3 Name 891 non-null object object
         4 Sex
                         891 non-null object
         5 Age
                         714 non-null float64
        6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
        9 Fare
                         891 non-null float64
        10 Cabin
        10 Cabin 204 non-null object
11 Embarked 889 non-null object
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.7+ KB
```

3. Get Summary Statistics for Numerical columns

#Get Summary Statistics for Numerical columns
train_data.describe()

]:	PassengerId		Survived Pclas		Age	SibSp	Parch	Fare	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

4. Check for missing values in the train dataset

#Check for missing values in the train dataset
train_data.isnull()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	True	False
886	False	False	False	False	False	False	False	False	False	False	True	False
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False	True	False
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	True	False

891 rows × 12 columns

5. Summary missing values in each column

#Summary missing values in each column
train_data.isnull().sum()

PassengerId 0
Survived 0

Survived Pclass Name 0 Sex 177 Age SibSp 0 Parch 0 Ticket Fare 0 Cabin 687 Embarked

dtype: int64

6. Create a box plot to visualize potential outliers

```
#Create a box plot to visualize ptential outliers
sns.boxplot(x=train_data['Age'])
plt.show()
```


7. Create a box plot to visualize potential outliers

#Create a box plot to visualize potential outliers
sns.boxplot(x=test_data['Fare'])
plt.show()


```
•[31]: #Replac missing values in a Age with the mean of that column
       train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean())
       test_data['Age'] = test_data['Age'].fillna(test_data['Age'].mean())
•[39]: #Replace missing values in a Fare with the mean of that columns
       train_data['Fare'] = train_data['Fare'].fillna(train_data['Fare'].mean())
       test_data['Fare'] = test_data['Fare'].fillna(test_data['Fare'].mean())
       #Replace has alot of missing values so lets remove the null values from Cabin
       train_data.drop(columns=['Cabin'],inplace=True)
       test_data.drop(columns=['Cabin'], inplace=True)
[47]: train_data["Embarked"].value_counts()
[47]: Embarked
            168
       C
             77
       Name: count, dtype: int64
      #Embarked is a Catergorical variable, we will replace any missing values
      train_data['Embarked'] = train_data['Embarked'].fillna(train_data['Embarked'].mode()[0])
      test_data['Embarked'] = test_data['Embarked'].fillna(test_data['Embarked'].mode()[0])
      outliers=[]
      def detect_outliers(data):
         threshold=3
         mean = np.mean(data)
         std =np.std(data)
         for i in data:
           z_score= (1 - mean)/std
            if np.abs(z_score) > threshold:
              outliers.append()
         return outliers
       from scipy import stats
       #Calculate the Z-score for a column
       z_scores = stats.zscore(train_data['Age'])
       #Identify outliers based on a Z-Score threshold(e.g. 3)
       outliers_indices = (z_scores >3) | (z_scores < -3)
       cleaned_titanic_df = train_data[-outliers_indices]
       plt.figure(figsize=(12,6))
       sns.boxplot(data=train_data['Age'])
       plt.xticks(rotation=45)
      plt.show()
       80
                                              o
8
       70
     g 40
```

By Shaikh Jasmin Kauser