

第6章 数字视频传输系统

本章学习目标

- 掌握DVB-S系统的信道编码与调制方法,熟悉同步反转、数据扰码(随机化)、基带成形的方法。
- 了解DVB-S2的系统结构以及采用的信道编码与调制方法。
- 掌握DVB-C系统的信道编码与调制方法,熟悉字节到符号的映射和差分 编码的方法。
- 了解DVB-C2的系统构成以及与DVB-C系统的技术比较。
- 了解DVB-T系统的信道编码与调制方法。
- 了解DVB-T2的系统构成以及与DVB-T系统的技术比较。
- 掌握中国数字电视地面广播传输系统DTMB/DTMB-A的系统组成、关键 技术及特点。
- 了解IPTV系统的组成及关键技术。

第6章 数字视频传输系统

- 6.1 DVB传输系统概述
- 6.2卫星数字电视传输系统
- 6.3 有线数字电视传输系统
- 6.4 DVB-T和DVB-T2传输系统
- 6.5 DTMB传输系统
- 6.6 DTMB-A传输系统

卫星、微波、光纤、 同轴电缆

数字电视国际标准

■ 欧洲DVB (Digital Video Broadcasting)

有线: DVB-C, DVB-C2 (cable)

卫星: DVB-S, DVB-S2 (satellite)

地面: DVB-T, DVB-T2 (terrestrial)

手持: DVB-H (handheld)

 美国ATSC (Advanced Television Systems Committee)

主要适用于有线和地面电视

■ 日本ISDB (Integrated Services Digital Broadcasting)

中国数字电视标准

- ◆ 有线数字电视 采用成熟的欧洲标准的DVB-C模式
- ◆ 卫星数字电视

中国直播卫星标准: ABS-S 性能与DVB-S2相当,复杂度、成本比DVB-S2低 主要用于"村村通"

◆ 地面数字电视

2006年颁布国家标准《GB20600-2006》→DTMB

手持电视标准: CMMB

- 数字传输信道的比较
- 卫星信道:可利用频带宽,功率受限,干扰大,信噪比低,对带宽要求不高,对纠错能力、调制可靠性要求较高,采用前向纠错编码,移相键控(QPSK,8PSK),幅度移相键控(16APSK,32APSK)
- 有线信道:信噪比高,频带资源窄,存在回波干扰和非线性失真,对信噪比纠错能力要求不高,对频谱利用率要求较高,采用RS码与卷积码,交织技术,正交幅度调制(QAM)
 - 卫星和有线电视网络环境与理想的白噪声模型极为接近,相对比较简单, 传统信道编码调制可以在卫星和有线电缆广播中得到很好的应用,系统 性能可以接近理论值。
- 地面信道: 地形复杂,存在时变衰落和多径干扰,信噪比低,信道环境最为复杂。采用前向纠错编码,以及能够有效消除多径干扰的正交频分复用技术(OFDM)。

- 数据加扰 (扰码)
 - 数字通信理论中的假设
 - 传输比特流中的 "0"和 "1"出现概率相同
 - TS经过编码处理后,会出现连续的"0"或"1"
 - 破坏了系统设计的前提
 - 为比特时钟的提取带来了困难
 - 为了保证任何情况下进入DVB传输系统的数据码流中 "0"和"1"的概率基本相等
 - 利用伪随机序列对输入的TS码流进行加扰处理
 - 能量扩散

- 纠错编码的方法
 - 内层纠错编码
 - 卷积码
 - 数据交织
 - 外层纠错编码
 - R-S码

- 数据交织
 - 发送端
 - 交织器将信道编码器输出的符号按一定的规律重新排序后输出
 - 接收端
 - 去交织器将接收到的符号序列还原为对应发送端编码器输出序列的排序

■ 系统采用级联的纠错编码时

■ 数字调制

- 载波: 连续的正(余) 弦信号
- 调制信号: 数字基带信号
- 将基带信号搬移到信道损耗较小的指定的高频处进行传输
- 提高信道的传输效率
- 数字调制的过程
 - 映射:将多个二进制比特转化为一个多进制符号
 - 这种多进制信号可以是实数信号,也可以是二维的复数信号
 - 调制

- 模拟调制和数字调制方式对照
 - 模拟调制的过程,载波参数连续变化
 - 数字调制的过程,载波参数离散变化

模拟调制

幅度调制(AM)

频率调制(FM)

相位调制(PM)

数字调制

幅度键控(ASK)

频移键控(FSK)

相移键控(PSK)

均衡

- 采用升余弦滚降信号波形
- 符号间串扰来来自传输信号本身,某个采样点处得符号间串扰来自相邻信号的采样点。
- 对符号间串扰进行校正的过程称为均衡
 - 频域均衡—模拟通信系统
 - 时域均衡—数字通信系统
 - 在时间域内进行
 - 采用有限冲击响应滤波器实现

■ 同步与时钟提取

- 同步:指接收机在某个系统工作频率上与发射机保持一致,其间的偏差不超出设计的规定。
- 分类
- 同步解调
- 比特和符号同步
- 传输帧同步
 - 传输数据时将数据分割成具有一定格式的组来传输。

基带接口

负责DVB传输系统与MPEG-2复用/解复用系统之间的适配。因为他们系统接口的信号码型和电平可能有所不同。

信号波形

- 奈奎斯特第一准则
 - 理想低通信道下的最高码元传输速率 = 2W Baud

■ 中频滤波

■ 滤除信号频带之外的噪声,并实现与射频部分的接口

- DVB传输标准
 - 有线传输
 - DVB-C, DVB-C2
 - 卫星传输
 - DVB-S, DVB-S2
 - 地面传输
 - DVB-T, DVB-T2

第6章 数字视频传输系统

- 6.1 DVB传输系统概述
- 6.2卫星数字电视传输系统
- 6.3 有线数字电视传输系统
- 6.4 DVB-T和DVB-T2传输系统
- 6.5 DTMB传输系统
- 6.6 DTMB-A传输系统

主要规范

- 发送端的系统结构
- 信号处理方式
- 对接收端是开放的

DVB-S系统框图

■ DVB-S 信道编码原理框图

- 基带物理接口与同步
 - 基带物理接口
 - 负责DVB-S传输系统与外部系统间的信号码型、数据格式和通信协议等方面的转换
 - 同步
 - DVB-S传输系统的时钟与外部系统时间的同步

- 数据加扰也称数据随机化(或能量扩散)
 - 数据加扰目的
 - 破连 "0" 连 "1", 有利于时钟恢复; 破周期性, 降 低对其它信道的干扰。
 - 数据加扰实现
 - 将二进制数据较集中的 "0"或 "1"按一定的规律使之分散开来
 - 规律由伪随机发生器的生成多项式决定
 - **PRBS**: 周期为 2^N-1; 1 和 0 大致等概率出现。
 - 8个TS包的数据为周期进行,每8个TS包数据加扰后伪随机序 列发生器重新进行一次初始化
 - 初始化序列为100101010000000
 - 在每8个TS包中的第一个TS包链接头加入特殊的指示信息 以指示解扰器何时对其中的伪随机序列发生器进行初始化

■ 同步反转

- 在每8个TS包中的第一个TS包链接头加入特殊的指示信息以指示解扰器何时对其中的伪随机序列发生器进行初始化。
 - 第一个TS包的同步字节 (47H)逐比特取反 (B8H)
 - 其他TS包链接头中的同步字节(47H)保持不变

	← PRBS周期=1503字节 →							
Sync1	R 187字节	Sync 2	R 187字节	•••	Sync 8	R 187字节	Sync1	R 187字节

00000011

数据输入 伪随机序列

- 纠错编码与交织
 - 内、外两层级联编码
 - 中间加一次卷积交织
- 外层纠错编码
 - RS(204,188,T=8)码
- 内层纠错编码
 - 卷积码
- 卷积交织器
 - 交织深度I=12

■ 外码编码采用R-S (Reed-Solomon)

- R-S码的基本参数
 - 输入信息可分为k×m bit一组,
 - 码长n=2^m-1符号或m(2^m-1)bit
 - 信息字段
 - k个符号或 k×m bit
 - 纠错能力
 - t个符号或mt bit
 - 监督字段
 - n-k=2t符号或m(n-k)=2mt bit
 - ■最小码距
 - d=2t+1符号或md=m(2t+1) bit

- R-S码的纠错能力
 - R-S码同时具有纠正随机与突发差错的能力
 - R-S码可纠正的错误图样有
 - 总长度为 $b_1=(t-1)m+1$ bit的单个突发差错
 - 总长度为 b_2 =(t-3)m+3 bit的两个突发差错
 - 总长度为 b_i =(t-2i+1)m+2i-1 bit的i个突发差错

- 举例[RS(204,188,t=8)]
 - 有一组信息,码长n=204字节,其中,信息码元k=188字节,校验码元n-k=16字节
 - R-S码的码长n、信息码元k和纠错能力t之间应符合如下关系

$$n = 2^m - 1$$
$$n - k = 2t$$

◆ 又因为校验码元n-k=16字节,可得

$$t = 8$$

纠错编码在实际应用中往往要结合数据交织技术

■ 突发差错

- 码元差错成串成群地出现,即在短时间内出现大量误码。一串差错称为一个突发差错。
- 突发错误总是以差错码元开头,以差错码元结束,并且中间码元差错概率超过某个标准值。

■ 随机差错

码元出现差错与前、后码元是否出现差错无关, 每个码元独立地按一定的规律产生差错。

■ 交织器

- 是数据顺序随机化
- 使信道的突发差错分散开来
- 分类
 - ■周期交织
 - 伪随机交织

■ 数据交织

- 通过交织和解交织将一个有记忆的突发差错信道 改造为基本上是无记忆的随机独立差错的信道, 然后再用纠随机独立差错的码来纠错
- 分类
 - 块交织
 - ■卷积交织

■ 块交织原理

- 发送端将已编码的数据构成一个M行N列的矩阵,按列写入随机存储器RAM,再按行读出送至接收端
- 接收端将接收到的信号按行顺序写入RAM, 再按列读出。

块交织

设发送端待发送的一组信息为

$$\begin{split} X &= (A_{01}, A_{02}, A_{03}, A_{04}, A_{05}, A_{06}, A_{07}, A_{08}, A_{09}, A_{10}, \\ &A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}, A_{19}, A_{20}, \\ &A_{21}, A_{22}, A_{23}, A_{24}, A_{25}) \end{split}$$

■ 交织存储器为一个行列交织矩阵,按列写入按行读出

$$X_1 = \begin{bmatrix} A_{01} & A_{06} & A_{11} & A_{16} & A_{21} \\ A_{02} & A_{07} & A_{12} & A_{17} & A_{22} \\ A_{03} & A_{08} & A_{13} & A_{18} & A_{23} \\ A_{04} & A_{09} & A_{14} & A_{19} & A_{24} \\ A_{05} & A_{10} & A_{15} & A_{20} & A_{25} \end{bmatrix}$$

決交织
$$X_1 = \begin{bmatrix} A_{01} & A_{06} & A_{11} & A_{16} & A_{21} \\ A_{02} & A_{07} & A_{12} & A_{17} & A_{22} \\ A_{03} & A_{08} & A_{13} & A_{18} & A_{23} \\ A_{04} & A_{09} & A_{14} & A_{19} & A_{24} \\ A_{05} & A_{10} & A_{15} & A_{20} & A_{25} \end{bmatrix}$$

交织器输出并送入信道的信息为

$$\begin{split} X' &= (A_{01}, A_{06}, A_{11}, A_{16}, A_{21}, A_{02}, A_{07}, A_{12}, A_{17}, A_{22}, \\ A_{03}, A_{08}, A_{13}, A_{18}, A_{23}, A_{04}, A_{09}, A_{14}, A_{19}, A_{24}, \\ A_{05}, A_{10}, A_{15}, A_{20}, A_{25}) \end{split}$$

设信道产生两个突发错误:第一个产生于A01, A06, A11,A16,A21,连错5位;第二个产生于A03,A08,A13,A18

信道输出端的信息为

$$\begin{split} X" &= (\underline{A_{01}}, \underline{A_{06}}, \underline{A_{11}}, \underline{A_{16}}, \underline{A_{21}}, A_{02}, A_{07}, A_{12}, A_{17}, A_{22}, \\ &\underline{A_{03}}, \underline{A_{08}}, \underline{A_{13}}, \underline{A_{18}}, A_{23}, A_{04}, A_{09}, A_{14}, A_{19}, A_{24}, \\ &\underline{A_{05}}, A_{10}, A_{15}, A_{20}, A_{25}) \end{split}$$

■ 接收端进入解交织后,送入另一个存储器,也是一个行列交织矩阵,按行写入,按列读出

$$X_1 = \begin{bmatrix} \underline{A}_{01} & \underline{A}_{06} & \underline{A}_{11} & \underline{A}_{16} & \underline{A}_{21} \\ A_{02} & A_{07} & A_{12} & A_{17} & A_{22} \\ \underline{A}_{03} & \underline{A}_{08} & \underline{A}_{13} & \underline{A}_{18} & A_{23} \\ A_{04} & A_{09} & A_{14} & A_{19} & A_{24} \\ A_{05} & A_{10} & A_{15} & A_{20} & A_{25} \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} \underline{A}_{01} & \underline{A}_{06} & \underline{A}_{11} & \underline{A}_{16} & \underline{A}_{21} \\ A_{02} & A_{07} & A_{12} & A_{17} & A_{22} \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} \underline{A}_{03} & \underline{A}_{08} & \underline{A}_{13} & \underline{A}_{18} & A_{23} \\ A_{04} & A_{09} & A_{14} & A_{19} & A_{24} \\ \underline{A}_{05} & A_{10} & A_{15} & A_{20} & A_{25} \end{bmatrix}$$

■ 解交织器的存储器的输出为

$$\begin{split} X &= (\underline{A}_{01}, A_{02}, \underline{A}_{03}, A_{04}, A_{05}, \underline{A}_{06}, A_{07}, \underline{A}_{08}, A_{09}, A_{10}, \\ &\underline{A}_{11}, A_{12}, \underline{A}_{13}, A_{14}, A_{15}, \underline{A}_{16}, A_{17}, \underline{A}_{18}, A_{19}, A_{20}, \\ &\underline{A}_{21}, A_{22}, A_{23}, A_{24}, A_{25}) \end{split}$$

经过交织矩阵和解交织矩阵后,原来信道中的突发差错,即两个突发5位连错和4位连错变成了随机性的独立差错。

- 卷积交织
 - 性质与块交织相似
 - 箭头表示的4个开关自上而下往返同步工作
 - ■表示能存储M比特的移位寄存器
 - 接收端的寄存器与发送端互补

发送端交织

接收端去交织

■ 卷积交织

■ 设发送端待发送的一组信息为

$$\begin{split} X &= (A_{01}, A_{02}, A_{03}, A_{04}, A_{05}, A_{06}, A_{07}, A_{08}, A_{09}, A_{10}, \\ &A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}, A_{19}, A_{20}, \\ &A_{21}, A_{22}, A_{23}, A_{24}, A_{25}) \end{split}$$

- 发送端交织器为码元分组交织矩阵,25个码元分成5行5列,按行输入
 - 当A₀₁输入交织器时,将直通输出至第一行第一列的位置
 - 当A₀₂输入交织器经M=5位延迟后,输出至第二行第二列的位置
 - 当 A_{03} 输入交织器经2 $M=2\times5=10$ 位延迟后,输出至第三行第三列的位置

- 当 A_{04} 输入交织器经 $3M=3\times 5=15$ 位延迟后,输出至第四行第四列的位置
- 当 A_{05} 输入交织器经 $4M=4\times5=20$ 位延迟后,输出至第五行第五列的位置
- 若用矩阵表示交织器的输入,因它是按行写入每行5个码元,即

$$X_1 = \begin{bmatrix} A_{01} & A_{02} & A_{03} & A_{04} & A_{05} \\ A_{06} & A_{07} & A_{08} & A_{09} & A_{10} \\ A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\ A_{16} & A_{17} & A_{18} & A_{19} & A_{20} \\ A_{21} & A_{22} & A_{23} & A_{24} & A_{25} \end{bmatrix}$$

■ 经过并行N个存储器后

A_{01}	A_{02} A_{07} A_{12} A_{17} A_{22}	A ₀₃	A ₀₄	A ₀₅
A ₀₆	A ₀₇	A ₀₈	A ₀₉	A ₁₀
A ₁₁	A ₁₂	A_{13}	A ₁₄	A ₁₅
A ₁₆	A ₁₇	A_{18}	A ₁₉	A ₂₀
A_{21}	A ₂₂	A_{23}	A ₂₄	A_{25}

╈行读出送入信道的码元序列为

$$\begin{split} X^{\,\prime} &= (A_{01}, A_{22}, A_{18}, A_{14}, A_{10}, A_{06}, A_{02}, A_{23}, A_{19}, A_{15}, \\ &A_{11}, A_{07}, A_{03}, A_{24}, A_{20}, A_{16}, A_{12}, A_{08}, A_{04}, A_{25}, \\ &A_{21}, A_{17}, A_{13}, A_{09}, A_{05}) \end{split}$$

- 在信道仍受到两个突发干扰,第一个为5位,即 A₀₁A₂₂A₁₈A₁₄A₁₀; 第二个为4位,即A₁₁A₀₇A₀₃A₂₄。
- 接收端收到的码元序列为

$$X'' = (\underline{A_{01}}, \underline{A_{22}}, \underline{A_{18}}, \underline{A_{14}}, \underline{A_{10}}, A_{06}, A_{02}, A_{23}, A_{19}, A_{15},$$

$$\underline{A_{11}}, \underline{A_{07}}, \underline{A_{03}}, \underline{A_{24}}, A_{20}, A_{16}, A_{12}, A_{08}, A_{04}, A_{25},$$

$$\underline{A_{21}}, A_{17}, A_{13}, A_{09}, A_{05})$$

在接收端送入解交织器,解交织器结构与发送端交织器结构互补,且同步运行

输入

$$X_{3} = \begin{bmatrix} \frac{A_{01}}{A_{06}} & \frac{A_{22}}{A_{02}} & \frac{A_{18}}{A_{23}} & \frac{A_{14}}{A_{19}} & \frac{A_{10}}{A_{15}} \\ \frac{A_{11}}{A_{16}} & \frac{A_{07}}{A_{12}} & \frac{A_{03}}{A_{08}} & \frac{A_{24}}{A_{19}} & A_{25} \\ A_{21} & A_{17} & A_{13} & A_{09} & A_{05} \end{bmatrix}$$

$$X_{4} = \begin{bmatrix} \underline{A_{01}} & A_{02} & \underline{A_{03}} & A_{04} & A_{05} \\ A_{06} & \underline{A_{07}} & A_{08} & A_{09} & \underline{A_{10}} \\ \underline{A_{11}} & A_{12} & A_{13} & \underline{A_{14}} & A_{15} \\ \underline{A_{16}} & A_{17} & \underline{A_{18}} & A_{19} & A_{20} \\ \underline{A_{21}} & \underline{A_{22}} & A_{23} & \underline{A_{24}} & A_{25} \end{bmatrix}$$

按行读出并送入信道译码器的码序列为

$$\begin{split} X &= (\underline{A_{01}}, A_{02}, \underline{A_{03}}, A_{04}, A_{05}, A_{06}, \underline{A_{07}}, A_{08}, A_{09}, \underline{A_{10}}, \\ &\underline{A_{11}}, A_{12}, A_{13}, \underline{A_{14}}, A_{15}, A_{16}, A_{17}, \underline{A_{18}}, A_{19}, A_{20}, \\ &\underline{A_{21}}, \underline{A_{22}}, A_{23}, \underline{A_{24}}, A_{25}) \end{split}$$

- 采用深度I=12的卷积交织
- 同步字节和倒相始终被送入交织器的分支"0"中

因为R-S(204B,188B)能纠正8B错误 所以,与交织器相结合可纠正长度为12×8=96B的 突发错误长度。

■ 内编码

- 卷积编码
- 经过卷积编码后,原来无 关的数字符号序列前后一 定间隔内有了相关性
- 应用这种相关性,根据前 后关系码符来解码

■ 编码码率为1/2基本卷积编码器

■ QPSK数字调制技术

- 适用传输线路
 - ■微波、卫星、有线电视
- QPSK等效于二电平正交调幅
 - 传输的信号包含于相位当中
 - 载波相位取4个等间隔值之一
- ■过程
 - 映射
 - ■基带成形
 - ■调制载波

式中, $d_k(t) = d_{0}, d_{1}, d_{2}, ..., d_k(t)$ 为双极性脉冲数据源,值分别为+1和-1

 $d_{\tau}(t) = d_{0}, d_{2}, d_{4}, \dots$ (偶数比特)同相数据流

 $d_0(t)=d_{1},d_{3},d_{5},\dots$ (奇数比特)正交数据流

4

6.2卫星数字电视传输系统

QPSK数字调制技术(续2)

- 数据流d_I(t)
 - 为振幅调制余弦函数
 - 振幅值为+1,-1
 - 相当于将余弦函数的相位偏移0或π。
 - 因此产生一个BPSK波形
- 数据流d_O(t)
 - 产生了与余弦函数正交的BPSK波形
- 这两个正交波形之和就生成了QPSK波形

■ QPSK信号向量图

- DVB-S2
 - 改良的编码方式:外码BCH+内码LDPC
 - 更好的误码性能,逼近香农极限
 - 高阶的调制方式: Q/8PSK, 16/32APSK (DVB-S只支持 QPSK)
 - 更高的信道利用率,可达5bit/s/Hz
 - 混合的输入格式: 输入信源可为 (MPEG2, H.264等)
 - 不仅适用于数字电视的直播,更适合于数据广播业务
 - 自适应编码调制ACM
 - 接收机测试C/N信道参数,通过回传通道给中心站,调整相关发射参数
 - 提高卫星吞吐量,减少服务成本(例如天气晴朗时可降低卫星发射功率)

第6章 数字视频传输系统

- 6.1 DVB传输系统概述
- 6.2卫星数字电视传输系统
- 6.3 有线数字电视传输系统
- 6.4 DVB-T和DVB-T2传输系统
- 6.5 DTMB传输系统
- 6.6 DTMB-A传输系统

■ DVB-C传输标准

(a)发送端原理框图

■ DVB-C传输标准

(b)接收端原理框图

基帯物理接口与同步

- 基带物理接口
 - 负责DVB-C传输系统与外部系统间的信号码型、数据格式和通信协议等方面的转换
- ■同步
 - DVB-C传输系统的时钟与外部系统时间的同步。

■ 纠错编码

- 由于有线电视传输信道的途距较短
- 受到的外界干扰也较少
- 采用
 - ■一级纠错编码
 - 一次交织
 - 方案与DVB-S系统中的完全相同

■ 字节到符号的映射

- 字节
 - 指传输流中的每个字节的数据,通常每个字节的数据量永远不变,为 **8bit**
- 符号
 - 指送到数字调制器的去的一组数据,一般是并行送出的,每组数据称 作一个符号。
 - 采用的数字调制的方法不同,一个符号所包含的比特数目就不相等。
 - 16QAM为4bit
 - 32QAM为5bit
- 针对不同的数字调制方法,要把字节数据映射成一个一个符号,再进行数字调制。

- 在卷积交织后, 字节到符号的映射要精确地执行
- 在每种情况下,符号Z的MSB由字节V的MSB所取代。
- 相应的下一个符号的有效位将被下一个字节的有效位代替
- 在2^m-QAM调制中,处理器将从k字节映射到n个符号,如:
 - 8k=n×m
 - 例如64QAM(m=6,k=3,n=4)

-

6.3 有线数字电视传输系统

■ 字节到符号的映射

■ π/2旋转不变QAM星座的获得

■ 相位混淆

- 接收端的相干载波是从发送信号中取得的。
- 由于信号集的布局不同,它可以在不同程度上产生相位不定度。
- 相位混淆程度与星座有关。

■ 解决的途径

- 将差分的概念应用到QAM调制中去,使星座信号点的角度取决于相对差值,而与角度的绝对值不直接挂钩。
- 这种不受相干载波相位混淆的QAM星座称为n/2旋转不变QAM星座

- π/2旋转不变QAM星座的获得
 - 为获得π/2旋转不变QAM星座图,每个符号的两个最高 有效位进行差分编码

$$I_{k} = \overline{\left(A_{k} \oplus B_{k}\right)} \cdot \left(A_{k} \oplus I_{k-1}\right) + \left(A_{k} \oplus B_{k}\right) \cdot \left(A_{k} \oplus I_{k-1}\right)$$

$$Q_k = \overline{(A_k \oplus B_k)} \cdot (A_k \oplus Q_{k-1}) + (A_k \oplus B_k) \cdot (A_k \oplus Q_{k-1})$$

π/2旋转不变QAM星座的获得

- 消除相位模糊度
 - 用差分编码得到的两个最高位来规定信号矢量所处的象限
 - 而其余比特用来规定每个象限中信号矢量的配置
 - 并使这种配置呈现出 π/2 的旋转对称性

基带成形

- 采用平方根升余弦滤波器
- 滚将系数为0.15

- M-QAM调制
 - 正交幅度调制
 - 是用两个独立的基带信号对两个相互正交的同频载波进行抑制载 波的双边带调制,利用这种已调信号在同一带宽内频谱正交的性 质来实现两路并行的数字信息传输
 - 是一种节省频带的数字调制方法
 - 广泛应用于有线电视的下行传输及HDTV的地面广播传输
 - 优点
 - 有较高的频带利用率
 - 有较高的信噪比

■ M-QAM调制器原理框图

■ 16QAM

- 用两路正交的四电平振幅键控信号叠加而成
- 用两路独立的四相移相键控信号叠加而成
- 电平转换真值表

输入		<i>t</i> 会 山	输入		松山
a ₁	a_2	输出	b_1	b_2	输出
0	0	-1	0	0	-1
0	1	-3	0	1	-3
1	0	+1	1	0	+1
1	1	+3	1	1	+3

■ 16QAM

- 经2→4电平转换后,可得到-1、-3、+1、+3四个电平
- 则调制器I输出的四个信号 $+ 3 \sin \omega_c t$ 、 $+ 1 \sin \omega_c t$ 、 $1 \sin \omega_c t$ 、 $3 \sin \omega_c t$
- 则调制器II输出的四个信号

$$+3\cos\omega_c t_1 + 1\cos\omega_c t_2 - 1\cos\omega_c t_3 - 3\cos\omega_c t_4$$

■ 16QAM星座图

■ 星座图中的第1象限星座点到其它象限星座点的变换

象限	MSB	LSB旋转
1	00	
2	10	+π/2
3	11	+π
4	01	+3π/2

■ 通过改变2个MSB位(即I_kQ_k)并根据表中规则旋转q个LSB,可将第1象限中的星座点变换至第2、3、4象限。

第6章 数字视频传输系统

- 6.1 DVB传输系统概述
- 6.2卫星数字电视传输系统
- 6.3 有线数字电视传输系统
- 6.4 DVB-T和DVB-T2传输系统
- 6.5 DTMB传输系统
- 6.6 DTMB-A传输系统

地面数字电视系统组成

■ DVB-T发送端原理框图

■ DVB-T系统

- 两种操作模式: 2k 或 8k FFT
- 信号星座图: QPSK, 16QAM, 64QAM
- 保护间隔:
 - 对于 8k 模式: 224 us、112 us、56 us 和 28 us
 - 对于 2k 模式: 56 us、28 us、14us 和 7us
- 带内导频: 54 连续导频和 1/12 分散导频
- 信道编码:
 - 外码: RS(204,188)
 - 内码: 卷积码,码率为 1/2、2/3、3/4、5/6、7/8
- 数据吞吐量:
 - 8MHz 信道内: 5 32 Mbps
 - 6MHz 信道内: 3.7 23.8 Mbps

■ DVB-T 帧结构

■ 1 个 OFDM 符号

2k 模式: 1705 个载波,其间距为 4.46KHz

8k 模式: 6817 个载波, 其间距为 1.11KHz

Ts = Tu (有效期) $+ \triangle$ (保护期)

除载波外,还发送导频(分散的和连续的)和 TPS 等附加信息。

导频(分散和连续的)在OFDM符号帧中都有固定位置。它被随机码序列 PRBS 调制。

分散导频用作信道特性的估值

连续导频用作定时和载波频率的同步

TPS 载波用于给出传输方案的参数,即信道编码和调制参数

TPS 载波采用 DBPSK 调制

■ 分级调制

- 传送具有高优先级和低优先级的 TS 码流
- 高优先级通路利用 QPSK 调制。
- 低优先级通路利用 16QAM 或 64QAM 调制
- 分级调制将 QPSK 插入 QAM中
- 优先级是利用不同卷积码率值实现

例: 高优先级码率: 即 QPSK 时, 码率为 1/2, △/Tu = 1/4 时, 传输码率为 4.98Mb/s。

低优先级码率: 即 16QAM 时,码率值 5/6, $\triangle/\text{Tu} = 1/4$ 时,传输码率为 16.59Mb/s。

则采用 64QAM 调制可传送总码率 4.98 + 16.59 = 21.57Mb/s。

分级调制星座图

■ DVB-T 缺陷

有效频带损失严重

导频信号和保护间隔至少占据了有效带宽的14%左右,若采用大的保护间隔,此数值将超过30%。

欧洲方案的综合频带利用率比美国的VSB方案多损失 6% 至 23%。

信道估计采用迭代逼近算法,对信道估计仍然不足

迭代时间(次数)

迭代误差

迭代所需的导频信号与 FFT 运算互为需求,导频是在 FFT 之后插入的,而 FFT 计算又需要首先同步(导频),然后才能计算 FFT。

在交织深度、抗脉冲噪声干扰及信道编码等方面的性能存在明显不足。

■ DVB-T 小结

- DVB-T 设计目标是室内室外固定接收,并且提供便携接收而非移动接收。因此,它的移动接收效果也不理想。
- 支持分级调制
- 支持单频网
- 信道估计: 频域导频

第6章 数字视频传输系统

- 6.1 DVB传输系统概述
- 6.2卫星数字电视传输系统
- 6.3 有线数字电视传输系统
- 6.4 DVB-T和DVB-T2传输系统
- 6.5 DTMB传输系统
- 6.6 DTMB-A传输系统

- 2006年8月18日,《数字电视地面广播传输系统帧结构、信道编码和调制》标准颁布,标准号GB 20600-2006。
- 2007年8月1日,该标准 正式实施。

ICS 33. 160 M 63

中华人民共和国国家标准

GB 20600-2006

数字电视地面广播传输系统帧结构、 信道编码和调制

Framing structure, channel coding and modulation for digital television terrestrial broadcasting system

2006-08-18 发布

2007-08-01 实施

中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会

为保证传输数据的随机性,输入的码流

数据需要扰码。

扰码本原多项式: X15+X14+1

■ 扰码器的移位寄存器每个信号帧 或每个LDPC编码块复位一次到 初始状态,选择信号帧和LDPC 编码块两者长度长的为复位周期

4

6.5 DTMB传输系统

前向纠错编码由BCH (762, 752) 和LDPC码组成.

LDPC码采用了三种不同的码率:

LDPC (7488, 3048);

LDPC (7488, 4572);

LDPC (7488, 6096)

FEC: BCH + LDPC + NR

■ NR编码: x0x1x2x3x4x5x6x7 y0y1y2y3y4y5y6y7

- \Box y0=x7+x6+x0+x1+x3+(x0+x4)(x1+x2+x3+x5)+(x1+x2)(x3+x5)
- y1=x7+x0+x1+x2+x4+(x1+x5)(x2+x3+x4+x6)+(x2+x3)(x4+x6)
- y2=x7+x1+x2+x3+x5+(x2+x6)(x3+x4+x5+x0)+(x3+x4)(x5+x0)
- y3=x7+x2+x3+x4+x6+(x3+x0)(x4+x5+x6+x1)+(x4+x5)(x6+x1)
- y4=x7+x3+x4+x5+x0+(x4+x1)(x5+x6+x0+x2)+(x5+x6)(x0+x2)
- \Box y6=x7+x5+x6+x0+x2+(x6+x3)(x0+x1+x2+x4)+(x0+x1)(x2+x4)
- □ *y7=x0+x1+x2+x3+x4+x5+x6+x7+y0+y1+y2+y3+y4+y5+y6*

纠错编码

级联

外码: BCH(762,752)

BCH码构成流程:

在输入的每752比特信息位前 添加261比特"0"构成1013比特数据

经BCH编码生成1023比特数据, 其中信息位在前,校验位在后

将BCH编码后数据的前261 比特"0"丢掉,形成762比特数据包 内码: LDPC编码 支持四种码率

LDPC 0.4码率构成流程:

由4个BCH(762, 752)码级联构成LDPC(7493, 3048)码

LDPC(7493, 3048)码生成矩阵G 的参数k=24, c=35, b=127

将LDPC码前面的5个校验位删除 得到LDPC(7488, 3048)码

LDPC(7488, 3048)码中的有效 信息位是3008比特, 即FEC(7488, 3008)码

FEC: BCH + LDPC

Code Index	块长/比特	信息比特	对应的编码效率
Rate1	7488	3008	0.4
Rate2	7488	4512	0.6
Rate3	7488	6016	0.8

本标准包含以下几种符号映射关系: 64QAM、32QAM、16QAM、4QAM、4QAM-NR。

- (1) 4QAM与4QAM-NR的符号映射对应于高速移动服务业务的需求,可以支持标准清晰度 电视广播,能够兼顾覆盖范围和接收质量的服务需求。
- (2) 4QAM与16QAM符号映射可对应于中码率服务业务的需求,可以支持多路标准清晰度电视广播,能够兼顾覆盖范围和频率资源利用的服务需求。
- (3) 32QAM 与64QAM符号映射对应于高码率服务业务的需求,可以同时支持高清晰度电视和多路标准清晰度电视的广播。

64QAM星座图

32QAM星座图

星座映射点

4QAM-NR映射

4QAM-NR处理流程


```
y_0 = x_7 + x_6 + x0 + x1 + x3 + (x0 + x4)(x1 + x2 + x3 + x5) + (x1 + x2)(x3 + x5) \qquad (1)
y_1 = x7 + x0 + x1 + x2 + x4 + (x1 + x5)(x2 + x3 + x4 + x6) + (x2 + x3)(x4 + x6) \qquad (2)
y_2 = x7 + x1 + x2 + x3 + x5 + (x2 + x6)(x3 + x4 + x5 + x0) + (x3 + x4)(x5 + x0) \qquad (3)
y_3 = x7 + x2 + x3 + x4 + x6 + (x3 + x0)(x4 + x5 + x6 + x1) + (x4 + x5)(x6 + x1) \qquad (4)
y_4 = x7 + x3 + x4 + x5 + x0 + (x4 + x1)(x5 + x6 + x0 + x2) + (x5 + x6)(x0 + x2) \qquad (5)
y_5 = x7 + x4 + x5 + x6 + x1 + (x5 + x2)(x6 + x0 + x1 + x3) + (x6 + x0)(x1 + x3) \qquad (6)
y_6 = x7 + x5 + x6 + x0 + x2 + (x6 + x3)(x0 + x1 + x2 + x4) + (x0 + x1)(x2 + x4) \qquad (7)
y_7 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + y0 + y1 + y2 + y3 + y4 + y5 + y6 \qquad (8)
```

4

6.5 DTMB传输系统

- 符号交织功能: 把原来相邻数据打散到数个不同的地方, 目的是减少连续错误的影响,这种错误很可能会超过FEC 编码的纠错能力
- 交织基本单位: 星座映射后的复数符号

■ 卷积交织 (convolutional interleaver)

□ 模式1: B=52, M=240 符号, 交织/解交织总延迟为170个信号帧;

□ 模式2: B=52, M=720 符号, 交织/解交织总延迟为510个信号帧。

- 频域交织在载波数 C=3780 模式下使用。
- 频域交织的目的是将调制星座点符号映射到帧体包含的3780个有效载波上。

4个帧体模式符号

32个调制和码率等模式符号

3744个数据符号

系统信息(36个符号) + 数据(3744个符号)

■ **系统信息**:为每个信号帧提供必要的解调和解码信息

4

6.5 DTMB传输系统

帧体数据块复接系统信息后,用C个子载波调制。有两种工作模式: C=1或C=3780。 在载波数C=1模式下,作为可选项,对帧头和帧体经过组帧后形成的基带数据在±0.5 符号速率位置插入双导频。在载波数C=3780模式下使用频域交织,将调制星座点符号 映射到帧体包含的3780个有效载波上。

■ 帧体数据处理

3744个数据符号复接系统信息后,经帧体数据处理后形成帧体,用C个子载波调制,占用频带为7.56MHz。

C=1模式

PN595采用10阶最大长度的伪随机二进制序列(m序列)的截短,即长度为1023的m序列的前595个码片,该序列具有平坦的频谱特性,便于高速同步、均衡的充分训练。帧头信号的平均功率与帧体信号的平均功率相同,进一步降低峰均比。

- 帧头作用
 - 充当保护间隔
 - 作为已知序列,供接收端进行同步,信道估计等。
- 帧头类型
 - 帧头模式1,长度为420个复数符号,持续时间为55.6 微秒。

■ 帧头模式2,长度为595个复数符号,持续时间为78.7微秒。

```
PN595(没有前后同步符号)
```

■ 帧头模式3, 长度为945个复数符号, 持续时间为125微秒。

4

6.5 DTMB传输系统

本标准采用了创新的帧信号结构。该结构是周期性的,以信号帧为基本单位,每个信号帧由训练序列、系统信息、帧体数据三部分组成。

■ 帧结构

- 信号帧:数据帧结构中的基本单元。
- 超帧: 定义为一组信号帧, 组员的个数和信号帧结构类型相关
- 分帧: 定义为一组超帧, 长度为60秒
- 日帧:与每天时间同步,长度为24小时。

TDS-OFDM 符

PN序列

DFT 数据

PN序列

DFT 数据

- 时域: 在保护间隔中填充特殊结构的 PN 序列帧头
 - > 支持精确、快速同步
 - > 支持精确、快速信道估计
 - > 提供帧体地址信息
- 频域: OFDM数据信号
 - > 频谱效率高
 - 支持时频二维复用多媒体业务

复制

- ●全频域解决方案:
 - ▶ 固定导频:解决同步
 - >离散导频:解决信道估计
 - ▶循环前缀:解决多径干扰
- 主要存在的问题:
 - > 循环前缀降低频谱效率
 - > 同步与数据关联, 处理速度慢
 - > 同步和时变信道估计不可靠

•00•000•00000···

循环前缀

DFT 数据

循环前缀

DFT 数据

DVB-T

保护间隔

DFT 数据

- ■双导频
- 平方根升余弦滤波器 (SRRC), 滚降系数 a为 0.05。
- 基带 SRRC 滤波器具有如下定义的理论函数:

- 类似于 DVB-S2
- 随机化后的信号进行平方根升余弦滤波器 (SRRC), 滚降 系数 a为 0.35、0.25 和 0.15, 取决于业务需求。
- 基带 SRRC 滤波器具有如下定义的理论函数:

$$H(f) = \begin{cases} \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[\frac{f_N - |f|}{\alpha} \right]^{\frac{1}{2}} & \text{for } |f| < f_N (1 - \alpha) \\ 0 & \text{for } |f| > f_N (1 - \alpha) \end{cases}$$

其中,
$$f_N = \frac{1}{2T_s} = \frac{R_s}{2}$$
 是 Nyquist Freq.

■ 系统净荷数据率

在不同信号帧长度、内码码率和调制方式下,本标准支持的净荷数据率如表所示:

系统净荷数据率(Mbps)

信号帧长度		信号帧长度4200 个符号					
FEC 码率		0.4	0.6	0.8			
映射	4QAM-NR			5.414			
	4QAM	5.414	8.122	10.829			
	16QAM	10.829	16.243	21.658			
	32QAM			27.072			
	64QAM	16.243	24.365	32.486			

信号帧长度		信号帧长度4375个符号					
FEC 码率		0.4	0.6	0.8			
	4QAM-NR			5.198			
映射	4QAM	5.198	7.797	10.396			
	16QAM	10.396	15.593	20.791			
	32QAM			25.989			
	64QAM	15.593	23.390	31.187			

信号帧长度		信号帧长度4725 个符号					
FEC 码率		0.4	0.6	0.8			
	4QAM-NR			4.813			
映射	4QAM	4.813	7.219	9.626			
	16QAM	9.626	14.438	19.251			
	32QAM			24.064			
	64QAM	14.438	21.658	28.877			

载波	导	PN	帧头	调制	ジ	で织模式	1	ス		2		
数量	频	相	结构	方式		编码:			效率			
		位			0.4	0.6	0.8	0.4	0.6	0.8		
		,		4QAM	5.414	8.122	10.829	5.414	8.122	10.829		
			帧结构1	4QAM-NR						5.414		
				16QAM	10.829	16.243	21.658	10.829	16.243	21.658		
		7.6	(420)	32QAM			27.072			27.072		
		旋		64QAM	16.243	24.365	32.486	16.243	24.365	32.486		
		转	帧结构3 (945)	4QAM	4.813	7.219	9.626	4.813	7.219	9.626		
		1		4QAM-NR			4.813			4.813		
				16QAM	9.626	14.438	19.251	9.626	14.438	19.251		
				32QAM			24.054			24.064		
				64QAM	14.438	21.658	28.877	14.438	21.658	28.877		
			帧结构 1 (420)	4QAM	5.414	8.122	10.829	5.414	8.122	10.829		
C=378				4QAM-NR			50414			5.414		
	一无			16QAM	10.829	16.243	21.658	10.829	16.243	21.658		
0				32QAM			27.072			27.072		
				64QAM	16.243	24.365	32.486	16.243	24.365	32.486		
				4QAM	5.189	7.797	10.396	5.198	7.797	10.396		
		古	帧结构2	4QAM-NR			5.198			5.198		
		' '	(595)	16QAM	10.396	15.593	20.791	10.396	15.593	20.791		
		定		32QAM			25.989			25.989		
				64QAM	15.593	23.390	31.187	15.593	23.390	31.187		
				4QAM	4.183	7.219	9.626	4.813	7.219	9.626		
			帧结构3	4QAM-NR			4.813			4.813		
				16QAM	9.626	14.438	19.251	9.626	14.438	19.251		
			(945)	32QAM			24.064			24.064		
				64QAM	14.438	21.658	28.877	14.438	21.658	28.877		

8.4 DTMB标准

				Appendix to the Control of the Contr								
载波	导	PN	帧头	调制	文	ど织模式	1	3	と织模式	2		
数量	频	相	- 结构	一方式		————编码效率						
		位			0.4	0.6	0.8	0.4	0.6	0.8		
				4QAM	5.414	8.122	10.829	5.414	8.122	10.829		
			帧结构1	4QAM-NR			5.414			5.414		
				16QAM	10.829	16.243	21.658	10.829	16.243	21.658		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(420)	32QAM			27.072			27.072		
		旋		64QAM	16.243	24.365	32.482	16.243	24.365	32.486		
		转		4QAM	4.813	7.219	9.626	4.813	7.219	9.626		
		1 7 4	帧结构3	4QAM-NR			4.813			4.813		
				16QAM	9.626	14.438	19.251	9.626	14.438	19.251		
			(945)	32QAM			24.064			24.064		
				64QAM	14.438	21.658	28.877	14.438	21.658	28.877		
	无			4QAM	5.414	8.122	10.829	5.414	8.122	10.829		
				4QAM-NR						5.414		
			帧结构1									
C=1			(420)	16QAM	10.829	16.243	21.658	10.829	16.243	21.658		
				32QAM			27.072			27.072		
				64QAM	16.243	24.365	32.486	16.243	24.365	32.486		
				4QAM	5.196	7.797	10.396	5.198	7.797	10.396		
		固		4QAM-NR			5.198			5.198		
		1	帧结构2	16QAM	10.396	15.593	20.791	10.396	15.593	20.791		
		定	(595)	32QAM			25.989			25.989		
				64QAM	15.593	23.390	31.187	15.593	23.390	31.187		
				4QAM	4.813	7.219	9.626	4.813	7.219	9.626		
			帧结构3	4QAM-NR			4.813			4.813		
		l		400 414								

载波	导	PN	帧头	调制	交织模式1			交织模式2			
数量	频	相	结构	方式			编码	效率			
		位			0.4	0.6	0.8	0.4	0.6	0.8	
				4QAM	5.414	8.122	10.829	5.414	8.122	10.829	
			帧结构1	4QAM-NR			5.414			5.414	
				16QAM	10.829	16.243	21.658	10.829	16.243	21.658	
		2.6	(420)	32QAM			27.072			27.072	
		旋		64QAM	16.243	24.365	32.486	16.243	24.365	32.486	
		转		4QAM	4.813	7.219	9.626	4.813	7.219	9.626	
		1 4	帧结构3	4QAM-NR			4.813			4.813	
				16QAM	9.626	14.438	19.251	9.626	14.438	19.251	
			(945)	32QAM			24.064			24.064	
				64QAM	14.438	21.658	28.877	14.438	21.658	28.877	
			帧结构 1 (420)	4QAM	5.414	8.122	10.829	5.414	8.122	10.829	
	有			帧结构1	4QAM-NR			5.414			5.414
C=1				16QAM	10.829	16.243	21.658	10.829	16.243	21.658	
				32QAM			27.072			27.072	
				64QAM	16.243	24.365	32.486	16.243	24.365	32.486	
				4QAM	5.198	7.797	10.396	5.198	7.797	20.791	
		古	帧结构2	4QAM-NR			5.198			5.198	
		定		16QAM	10.396	15.593	20.791	10.396	15.593	19.251	
		上	(595)	32QAM			25.989			25.989	
				64QAM	15.593	23.390	31.187	15.593	23.390	31.187	
			 帧结构 3	4QAM	4.813	7.219	9.626	4.813	7.219	9.626	
				4QAM-NR			4.813			4.813	
			(945)	16QAM	9.626	14.438	19.251	9.626	14.438	19.251	
			(340)	32QAM			24.064			24.064	

Question?

