Решения на задачите по теория на числата

Този материал е изготвен със съдействието на школа Sicademy

NT1. Нека $\gcd(x_1,\ldots,x_n)$ означава най-големия общ делител на естествените числа x_1,\ldots,x_n . Да се докаже, че

$$\gcd\left(\binom{n-1}{k-1}, \binom{n}{k+1}, \binom{n+1}{k}\right) = \gcd\left(\binom{n-1}{k}, \binom{n+1}{k+1}, \binom{n}{k-1}\right).$$

Тук
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Решение. Ясно е, че

$$\gcd\left(\binom{n-1}{k-1}, \binom{n}{k+1}, \binom{n+1}{k}\right) = \gcd\left(\binom{n}{k} \frac{k}{n}, \binom{n}{k} \frac{n-k}{k+1}, \binom{n}{k} \frac{n+1}{n+1-k}\right),$$

$$\gcd\left(\binom{n-1}{k}, \binom{n+1}{k+1}, \binom{n}{k-1}\right) = \gcd\left(\binom{n}{k} \frac{n-k}{n}, \binom{n}{k} \frac{n+1}{k+1}, \binom{n}{k} \frac{k}{n+1-k}\right).$$

Нека p е произволно просто число, а a – естествено число. С $\lambda_p(a)$ означаваме максималната степен на p, която дели a. Трябва да докажем, че най-високата степен на p, която дели лявата страна на исканото равенство е равна на най-високата степен на p, която дели дясната страна. Това е еквивалентно на равенството

$$\min(\lambda_p(k) - \lambda_p(n), \lambda_p(n-k) - \lambda_p(k+1), \lambda_p(n+1) - \lambda_p(n+1-k))$$

$$= \min(\lambda_p(n-k) - \lambda_p(n), \lambda_p(n+1) - \lambda_p(k+1), \lambda_p(k) - \lambda_p(n+1-k)).$$
(1)

Ако положим

$$x_1 = \lambda_p(k) - \lambda_p(n), y_1 = \lambda_p(n-k) - \lambda_p(k+1), z_1 = \lambda_p(n+1) - \lambda_p(n+1-k),$$

$$x_2 = \lambda_p(n-k) - \lambda_p(n), y_2 = \lambda_p(n+1) - \lambda_p(k+1), z_2 = \lambda_p(k) - \lambda_p(n+1-k),$$

равенство (1) е еквивалентно на

$$\min(x_1, y_1, z_1) = \min(x_2, y_2, z_2), \tag{2}$$

като при това

$$x_1 + y_1 + z_1 = x_2 + y_2 + z_2. (3)$$

Очевидно е, че ако $\lambda_p(a) \leq \lambda_p(b)$, то $\lambda_p(a) = \lambda_p(|a \pm b|)$. Оттук, ако $\lambda_p(k) \leq \lambda_p(n)$, то $\lambda_p(k) = \lambda_p(n-k)$ и $x_1 = x_2$. Ако $\lambda_p(k) > \lambda_p(n)$, то $\lambda_p(n-k) = \lambda_p(n)$ и $x_1 > 0$, $x_2 = 0$, т.е. $\min(x_1, x_2) = 0$. Така доказахме, че имаме $x_1 = x_2$ или $\min(x_1, x_2) = 0$. Аналогично се доказва, че $y_1 = y_2$ или $\min(y_1, y_2) = 0$, както и че $z_1 = z_2$ или $\min(z_1, z_2) = 0$.

Нека $x_1=x_2$ и $y_1=y_2$. Тогава от (3) следва $z_1=z_2$ и (2) е очевидно. Ако $x_1=x_2$, $y_1\neq y_2$, $z_1\neq z_2$, то без ограничение на общността $y_1>y_2=0$, $z_1>z_2=0$. Сега минимумът е 0 или $x_1=x_2$ и (2) е очевидно.

Накрая при $x_1 \neq x_2, y_1 \neq y_2, z_1 \neq z_2$ от (3) отново получаваме

$$\min(x_1, y_1, z_1) = \min(x_2, y_2, z_2) = 0.$$

NT2. Дадени са естествени числа m и n, за които $m \leq \frac{n^2}{4}$. Всеки прост делител на m е не по-голям от n. Да се докаже, че m дели n!.

Решение. Достатъчно е да докажем, че ако $p^k|m$, то $p^k|n!$. Ако k=1, то p|m и от условието следва, че $p \le n$, което означава, че p|n!. При k>1 от $p^k \le m \le \frac{n^2}{4}$ получаваме $n \ge 2\sqrt{p^k}$. Ако $n \ge kp$, то поне k от числата $1,2,\ldots,n$ се делят на p и следователно $p^k|n!$. Следователно е достатъчно да докажем, че $2\sqrt{p^k} > kp$ или еквивалентно

$$p^{\frac{k-2}{2}} \ge \frac{k}{2}.\tag{1}$$

При k=2 горното неравенство е изпълнено, а при $k\geq 4$ имаме

$$p^{\frac{k-2}{2}} \ge 2^{\frac{k-2}{2}} \ge \frac{k}{2},$$

като последното неравенство се доказва лесно по индукция.

При k=3 неравенство (1) е вярно при p>2, а при p=2 получаваме $m\geq 8$, откъдето n>5 и n! се дели на 8.

NT3. Да се намерят всички естествени числа m, за които $2^m + 1$ дели $5^m - 1$.

Решение. Да предположим, че съществува m с исканото свойство. Ако m е нечетно, то $3|2^m+1|5^m-1$, което е невъзможно. Ако m=2k и k е нечетно, то $5|2^m+1|5^m-1$, което е невъзможно.

Нека $m=2^nt$, където $n\geq 2$ и t са естествени числа и t е нечетно, и нека $F_n=2^{2^n}+1$ е n-тото число на Ферма. Тогава $F_n\equiv 2\pmod 5$, което означава, че съществува просто число p, което дели F_n и за което $p\equiv \pm 2\pmod 5$. Ясно е, че $p|F_n|2^{2^nt}+1=2^m+1|5^m-1$.

Известно е (и се доказва лесно с разглеждане на показателя на 2 по модул p), че $p \equiv 1 \pmod{2^{n+1}}$; нека $p = 2^{n+1}q + 1$, където q е естествено число.

От $p\equiv \pm 2\pmod 5$ следва, че p е квадратичен неостатък по модул p. Тогава по критерия на Ойлер имаме $5^{(p-1)/2}\equiv -1\pmod p$, т.е. $5^{2^nq}\equiv -1\pmod p$. Следователно $5^{mq}\equiv 5^{2^nqt}\equiv (-1)^t\equiv -1\pmod p$. Последното обаче е невъзможно при $5^m\equiv 1\pmod p$ — противоречие, което приключва решението.