Review Problems A

Zong-Hong, Cheng

October, 2021

A1

- 1. If $(x_1, t_1) \succ (x_2, t_2)$, then there exists $\epsilon > 0$ such that $d(x_1, y_1), d(x_2, y_2) < \epsilon \Rightarrow (y_1, t_1) \succ (y_2, t_2)$.
- 2. We define u((x,t)) = a if $(x,t) \sim (a,0)$. We now prove that the definition is well-defined.

If x = 0, then $(0, t) \sim (0, 0)$. If $x \neq 0$, then $(x, 0) \succ (x, t) \succ (0, t) \sim (0, 0)$. By continuity, there exists a such that $(x, t) \sim (a, 0)$. Moreover, a is unique. Hence, the utility function is well-defined.

- 3. Trivial. Omit.
- 4. We gives two ways.
- (1) We say \succ_1 is more impatient than \succ_2 if $\succ_1 \neq \succ_2$ and for $t_1 < t_2$

$$(x_1, t_1) \succ_2 (x_2, t_2) \Rightarrow (x_1, t_1) \succ_1 (x_2, t_2)$$

(2) We say \succ_1 is more impatient than \succ_2 if $\succ_1 \neq \succ_2$ and for t > 0

$$(x,t) \sim_1 (a_1,0), (x,t) \sim_2 (a_2,0) \Rightarrow a_1 \leq a_2$$

Easy to see the two definition are equivalent.

5. Notice that the discussion is invalid no matter how we define "impatient". Consider $u_1(x) = x$, $u_2(x) = x^2$, $\delta_1 = \frac{1}{2}$, $\delta_2 = \frac{1}{4}$.

Let \succeq_1 represented by $u_1(x)\delta_1^t$ and \succeq_2 represented by $u_2(x)\delta_2^t$. Notice that $u_2(x)\delta_2^t = (u_1(x)\delta_1^t)^2$ and $u_1 \geq 0$. Notice that $z \to z^2$ is a strictly increasing function on $[0, \infty)$. Thus, $\succeq_1 = \succeq_2$.

The claim is valid when $u_1 = u_2$. However, that is trivial so we omit the proof.

Comment I want to reclaim that it is not my definition to "impatient" causes the result of 5. But the claim in 5. itself is invalid under any definition.

$\mathbf{A2}$

1. (A1,A2) Y iff number of "S"s> number of "F"s and number of "F"s<2.

(A2,A3) Y no matter what.

(A1,A3) Y iff the first is S.

- 2. Y iff number of "S"s> number of "F"s.
- 3. There are three types:
- (1) Y only when all S, (2) N only when all F,
- (3) There exists number r > 0 such that number of "S"s>(or \geq) $r \times$ number of "F"s.

Suppose D is not of the first two types.

For convenience, we define S(h) =number of "S"s and F(h) =number of "F"s.

We first prove that there exists k > 0 such that Y if S(h) > rF(h) and N if S(h) < rF(h).

Suppose not, consider $r = \inf\{\frac{S(h)}{F(h)}|F(h) \neq 0, D(h) = Y\}.$

First let r = 0. Since D is not of second type, there exists h_N with $D(h_N) = N$ with $\frac{S(h_N)}{F(h_N)} > 0$.

Moreover, by r = 0, there exists h_Y with $\frac{S(h_Y)}{F(h_Y)} < \frac{S(h_N)}{F(h_N)}$ and $D(h_Y) = Y$. Next, let r > 0. By the definition of r, we know that D(h) = N if S(h) < rF(h). Hence, there exists

Next, let r > 0. By the definition of r, we know that D(h) = N if S(h) < rF(h). Hence, there exists h_N such that $\frac{S(h_N)}{F(h_N)} > r$ and $D(h_N) = N$. By definition of r, there exists h_N with $\frac{S(h_N)}{F(h_N)} < \frac{S(h_N)}{F(h_N)}$ and $D(h_N) = N$.

Therefore, no matter what, we can find h_Y , h_N with $D(h_Y) = Y$, $D(h_N) = N$ and $\frac{S(h_Y)}{F(h_Y)} < \frac{S(h_N)}{F(h_N)}$. By A2, we can see D(h) as D(S(h), F(h)). And by A3, $D(S(h_Y)S(h_N), F(h_Y)S(h_N)) = Y$ and $D(S(h_Y)S(h_N), S(h_Y)N(h_N)) = N$. However, $F(h_Y)S(h_N) > S(h_Y)F(h_N)$, hence we can see $D(S(h_Y)S(h_N), F(h_Y)S(h_N))$ as $D(S(h_Y)S(h_N) + 0, S(h_Y)F(h_N) + (F(h_Y)S(h_N) - S(h_Y)F(h_N))$ Notice that $D(S(h_Y)S(h_N), S(h_Y)N(h_N)) = D(0, F(h_Y)S(h_N) - S(h_Y)F(h_N)) = N$ by A1 and so $D(S(h_Y)S(h_N), F(h_Y)S(h_N)) = N$ by A3, which contradicts to our assumption.

Now, we shall deal with h with S(h) = kF(h). If k is irrational, then we have nothing to deal with, free to choose > or \ge . If k is rational, say $k = \frac{p}{q}$ with gcd(p,q) = 1. Then (S(h), F(h)) = n(q, p) for some n. By A3, D(S(h), F(h)) = D(q, p). Hence, choose \ge when D(q, p) = Y, and > when D(q, p) = N.

$\mathbf{A3}$

1. Let $a \succeq b$ if $a \in C(\{a, b\})$. Completeness and Reflexivity of \succeq is trivial. We shall prove the transitivity.

Let $x \succeq y$ and $y \succeq z$. If $y \in C(\{x, y, z\})$, then $C(\{x, y, z\}) \cap \{x, y\} \neq \emptyset$ and so $x \in C(\{x, y\}) = C(\{x, y, z\}) \cap \{x, y\} \Rightarrow x \in C(\{x, y, z\})$ If $z \in C(\{x, y, z\})$, then $C(\{x, y, z\}) \cap \{y, z\} \neq \emptyset$ and so $y \in C(\{y, z\}) = C(\{x, y, z\}) \cap \{y, z\} \Rightarrow y \in C(\{x, y, z\}) \Rightarrow x \in C(\{x, y, z\})$.

Hence, $x \in C(\{x, y, z\})$ and so $x \in C(\{x, z\})$.

Now, we shall prove that $C(A) = \{x \in A | x \succeq a \text{ for all } a \in A\}$. First suppose $x \succeq a$ for all $a \in A$. Let $y \in C(A)$. If $y \neq x$, by $\{x,y\} \cap C(A) \neq \emptyset$, we have $x \in C(\{x,y\}) = C(A) \cap \{x,y\} \Rightarrow x \in C(A)$. Next, say $a \succ x$ for some $a \in A$. Then, pick $b \in \{x \in A | x \succeq a \text{ for all } a \in A\} \subseteq C(A)$ (Notice that the set is not empty.). We have $b \succ x$ by transitivity. $\{b\} = C(\{b,x\}) = C(A) \cap \{b,x\}$ since

 $b \in C(A)$. Therefore, $x \notin C(A)$, done!

2. No, pick the best two.

A4

- 1. PI: The best elements in $A \cup B$ is the best among the best in A and the best in B.
- E: If x is better than y for all $y \in A$, then x is the best in A.
- 2. Define $x \succeq y$ iff $x \in C(\{x,y\})$. Complete and reflexive are trivial. Let $x \succ y$ and $y \succ z$.

$$C(\{x,y\}) = C(C(\{x\}) \cup C(\{y,z\})) = C(\{x,y,z\}) = C(C(\{x,y\}) \cup C(\{z\})) = C(\{x,z\})$$

Hence, we have $C(\{x,z\})=C(\{x,y,z\})=C(\{x,y\})=\{x\}\Rightarrow x\succ z.$

We next deal with $C(A) = \{x \in A | \text{for no } y \in A \text{ is } y \succ x\}.$

- \subseteq : If $y \succ x$ for some $y \in A$, then $C(A) = C(C(\{x,y\}) \cup C(A \setminus \{x,y\}))$. Notice that $x \notin C(\{x,y\})$ and $x \notin A \setminus \{x,y\}$. Hence $x \notin C(A)$.
- \supseteq : If for no y is $y \succ x$, then $x \succsim y \Rightarrow x \in C(\{x,y\})$ for all $y \in A$. By E, done!
- 3. PI but no E: the second best, E but no PI: the best two

A5

- 1. Choose the best two.
- 2. Choose the best and the worst.
- 3. Consider X be a set of shoes, which sees left ones and right ones differently. Assign each pair of shoes a number. The set will be looks like {left 1, right 1, left 2, right $2, \dots$ }. Choose the complete pair with the largest assigned number. If there is no complete pair, then choose shoe with the largest assigned number.

For example, $C(\{\text{left 1, right 1}, \text{left 2}\}) = \{\text{left 1, right 1}\}\ \text{and}\ C(\{\text{left 1, right 2}, \text{left 3}\}) = \{\text{right 2, left 3}\}.$

4. We first find a way to order them. Let $C(X) = \{a_1, a_2\}$. (It is fine to assign arbitrary one in the set to be a_1) We can inductively define a_i to be the only element in $C(X \setminus \{a_1, \dots, a_{i-2}\}) \setminus \{a_{i-1}\}$. It is well defined since $a_{i-1} \in C(X \setminus \{a_1, \dots, a_{i-2}\})$ by $a_{i-1} \in C(X \setminus \{a_1, \dots, a_{i-3}\})$ and A1, so there is only one element in $C(X \setminus \{a_1, \dots, a_{i-2}\}) \setminus \{a_{i-1}\}$.

Define $a_i \succ a_j$ if i < j.

We will show that $C(A) = \{a_i, a_j\}$ (i < j) where a_i, a_j being the largest two in \succ . We apply induction on i - j

- 1. Let i j = 1, straightforward by definition.
- 2. Let the proposition holds for $i j \le k$, $k \ge 1$. Let i j = k + 1.

 $C(A \cup \{a_{j-1}\}) = \{a_i, a_{j-1}\}$ by induction hypothesis. Also, by induction hypothesis $C((A \cup \{a_{j-1}\}) \setminus \{a_i\}) = \{a_{j-1}, a_j\}$. Then $a_j \in C(A)$ by A2 and $a_i \in C(A)$ by A1, done!

A6

1. Let the properties in the list is listed in the following way P_1, \dots, P_N .

Let $a_1 = C(X)$ and $a_i = C(X \setminus \{a_1, \dots, a_{i-1}\})$ inductively. Define $p(a_i)$ be the maximum of k such that a_i satisfies P_k .

We have $p(a_1) > p(a_i)$ for all i > 1 because of the procedure to choose a_1 in X, and $p(a_2) > p(a_i)$ for all i > 2 because of the procedure to choose a_2 in X and so on. Hence p is an utility function representing C, done!

2. Suppose that $C = C_{\succeq}$. We know that \succeq is representable, say by u. W.L.O.G, let $a_1 \succ a_2 \succ \cdots \succ a_N$ be the elements in X. Then the properties in the list can be like "if the utility $\geq u(a_N)$, if the utility $\geq u(a_{N-1})$, if the utility $\geq u(a_{N-2})$, \cdots ".

A7

1. Consider (x, y) be the money one will get today and tomorrow. Knowing that money is desirable, and the sooner the better, xDy means that one will prefer x more than y no matter how the preference is explicitly.

D is not a preference relation since it may not be complete.

Let \succeq_1 be lexicographical order and \succeq_2 be the preference represented by u(x,y) = x + y. By checking the definitions, both preferences are in P. However, $(1,0) \succ_1 (0,2)$ but $(0,2) \succ_2 (1,0)$. 2.

3.

$\mathbf{A8}$

1.

Type 1: There exists $G, B \subseteq X$ be a partition of X. If $A \cap G \neq \emptyset$, then $C(A) = A \cap G$. Otherwise, C(A) = A.

Type 2: There exists a set of orderings $\{\succ_k\}_{k=1}^N$. $C(A) = \{x \in A | x \text{ is } \succ_k -\text{maximal in } A \text{ for some } k\}$.

2. Let $G = \{g_1, g_2, \dots, g_n\}$ and $B = \{b_1, \dots, b_m\}$.

Let $\succ_{i,j}$ be

$$g_i \succ_{i,j} g_{i+1} \succ_{i,j} \cdots \succ_{i,j} g_n \succ_{i,j} g_1 \succ_{i,j} \cdots \succ_{i,j} g_{i-1} \succ_{i,j} b_j \succ_{i,j} b_{j+1} \succ_{i,j} \cdots \succ_{i,j} b_m \succ_{i,j} b_1 \succ_{i,j} \cdots \succ_{i,j} b_{j-1}$$

Let i, j runs over $1 \sim n, 1 \sim m$, done!

3. Consider $a \succ_1 b \succ_1 c$ and $c \succ_2 a \succ_2 b$.

If it can be described as a decision maker of type 1, then by $C(\{a,b,c\}) = \{a,c\}$, we know that $G = \{a,c\}, B = \{b\}$. However, $C(\{b,c\}) = \{b,c\}$ which should be $\{c\}$ if one is of type 1.