Stochastic Processes - Homework Brownian Motion (More)

Yuri F. Saporito

In what follows, $(B_t)_{t>0}$ is a Brownian motion.

1. (Brownian Bridge). In our representation for Brownian motion

$$B_t = \sum_{n=0}^{\infty} \lambda_n Z_n \Delta_n(t)$$

we have $\Delta_0(1) = 1$ and $\Delta_n(1) = 0$ for all $n \ge 1$; so, if we leave off the first term in our representation for Brownian motion to define

$$U_t = \sum_{n=1}^{\infty} \lambda_n Z_n \Delta_n(t)$$

we see that U_t is a continuous process on [0,1] such that $U_0 = 0$ and $U_1 = 0$. This process is called a Brownian bridge, and it is often useful when we need to model a quantity that starts at some level and that must return to a specified level at a specified future time.

- (a) Show that we can write $U_t = B_t tB_1$ for $0 \le t \le 1$
- (b) Show that we have $Cov(U_s, U_t) = s(1-t)$ for $0 \le s \le t \le 1$
- (c) Let $X_t = g(t)B_{h(t)}$, and find functions g and h such that X_t has the same covariance as a Brownian bridge.
- (d) Show that the process defined by $Y_t = (1+t)U_{t/(1+t)}$ is a Brownian motion on $[0,\infty)$. Note: since we have a direct construction of the Brownian bridge U_t , this observation gives us a third way to build Brownian motion on $[0,\infty)$.
- 2. (Time Inversion of Brownian Motion). We will prove that the process $\{Y_t\}$ defined by the time inversion of Brownian motion,

$$Y_t = \begin{cases} 0 & \text{if } t = 0 \\ tB_{1/t} & \text{if } t > 0 \end{cases}$$

is again a standard Brownian motion. One can easily check that $\{Y_t\}$ is a Gaussian process with covariance function $\min(s,t)$, so the only sticky point to showing that $\{Y_t\}$ is Brownian motion is to prove that it is continuous at zero. Give a verification of this fact by completing the following program:

- (a) Show that for all $\epsilon > 0$ the process defined by $\{X_t = Y_t Y_\epsilon : t \ge \epsilon\}$ is a martingale.
- (b) Check that for all $0 < s \le t$ we have $E\left[\left(Y_t Y_s \right)^2 \right] = t s$.
- (c) Use Doob's maximal inequality (in continuous time) to give a careful proof of the fact that

$$P\left(\lim_{t\to 0} Y_t = 0\right) = 1$$

3. Use the martingale

$$X_t = \exp\left(\alpha B_t - \alpha^2 t/2\right)$$

(prove it is indeed a martingale) to calculate $\phi(\lambda) = E[\exp(-\lambda \tau)]$, where $\tau = \inf\{t : B_t = A \text{ or } B_t = -A\}$. Use this result to calculate $E\left[\tau^2\right]$. What difficulty do we face if we try to calculate $E\left[\tau^2\right]$ when the the boundary is not symmetric?

4. $(L^1$ - Bounded Martingales Need Not Be Uniformly Integrable). Consider $X_t = \exp(B_t - t/2)$ and show that X_t is a continuous martingale with $E(|X_t|) = 1$ for all $t \ge 0$. Next, show that X_t converges with probability one to X = 0. Explain why this implies that X_t does not converge in L^1 to X and explain why X_t is not uniformly integrable, despite being L^1 -bounded.