Метод Фурье II Уравнение Лапласа в 2D и 3D

"Уравнения математической физики"

Скопинцев Артур Маркович

Задача Дирихле в кольце

Пусть требуется решить задачу Дирихле для уравнения Лапласа $\Delta u = 0$ в области, заключенной между двумя концентрическими окружностями, L_1 и L_2 , радиусов R_1 и R_2 с центром в начале координат:

$$\begin{cases} u_{xx} + u_{yy} = 0, & R_1^2 < x^2 + y^2 < R_2^2, \\ u|_{L_1} = f_1, & u|_{L_2} = f_2. \end{cases}$$

Вводя полярные координаты (ρ , φ), можно задачу Дирихле записать так:

$$\begin{cases} \rho^{2}u_{\rho\rho} + \rho u_{\rho} + u_{\varphi\varphi} = 0, & R_{1} < \rho < R_{2}, \quad 0 \leqslant \varphi < 2\pi, \\ u(R_{1}, \varphi) = f_{1}(\varphi), & 0 \leqslant \varphi \leqslant 2\pi. \\ u(R_{2}, \varphi) = f_{2}(\varphi), & 0 \leqslant \varphi \leqslant 2\pi. \end{cases}$$

$$(1.1)$$

При этом граничные функции $f_1(\varphi)$ и $f_2(\varphi)$ считаем периодическими функциями периода 2π .

Для решения задачи применим метод Фурье. Будем искать решения в виде $u(\rho, \varphi) = R(\rho)\Phi(\varphi)$. Подставив выражение $u(\rho, \varphi) = R(\rho)\Phi(\varphi)$ в уравнение (1.1), получим

$$\Phi \rho^2 R'' + \Phi \rho R' + R \Phi'' = 0.$$

Разделим теперь обе части этого уравнения на $R\Phi$, в результате чего получим

$$\frac{\rho^2 R'' + \rho R'}{R} = -\frac{\Phi''}{\Phi}.\tag{1.2}$$

Про это уравнение говорят, что в нем переменные *разделены*, так как левая часть уравнения зависит только от ρ , а правая — только от φ . Поскольку переменные ρ и φ не зависят друг от друга, то каждая часть уравнения (1.2) должна быть константой. Обозначим эту константу через λ . Тогда будем иметь

$$\frac{\rho^2 R'' + \rho R'}{R} = -\frac{\Phi''}{\Phi} = \lambda. \tag{1.3}$$

Ясно, что при изменении угла φ на величину 2π однозначная функция $u(\rho,\,\varphi)$ должна вернуться к исходному значению, т. е. $u(\rho,\,\varphi)=u(\rho,\,\varphi+2\pi)$. Отсюда $R(\rho)\Phi(\varphi)=R(\rho)\Phi(\varphi+2\pi)$. Значит, $\Phi(\varphi)=\Phi(\varphi+2\pi)$, т. е. функция $\Phi(\varphi)$ является периодической функцией с периодом 2π . Из уравнения $\Phi''+\lambda\Phi=0$ следует, что $\Phi(\varphi)=A\cos(\sqrt{\lambda}\,\varphi)+B\sin(\sqrt{\lambda}\,\varphi)$ (A и B — произвольные постоянные), и в силу периодичности $\Phi(\varphi)$ должно быть выполнено равенство $\lambda=n^2$, где $n\geqslant 0$ — целое число.

В самом деле, из равенства

$$A\cos(\sqrt{\lambda}\,\varphi) + B\sin(\sqrt{\lambda}\,\varphi) = A\cos[\sqrt{\lambda}\,(\varphi + 2\pi)] + B\sin[\sqrt{\lambda}\,(\varphi + 2\pi)]$$

 $\left(\text{обозначение: } \sin \alpha = \frac{A}{\sqrt{A^2 + B^2}}, \ \cos \alpha = \frac{B}{\sqrt{A^2 + B^2}} \right) \ \text{следует, что } \sin(\alpha + \sqrt{\lambda}\varphi) = \sin(\alpha + \sqrt{\lambda}\varphi + 2\pi\sqrt{\lambda}) \ \text{и, значит, } \sin(\pi\sqrt{\lambda})\cos(\alpha + \sqrt{\lambda}\varphi + \pi\sqrt{\lambda}) = 0, \text{ т. е. } \pi\sqrt{\lambda} = \pi n, \text{ или } \lambda = n^2, \text{ где } n \geqslant 0$ — целое число. Теперь из уравнения (1.3) получаем

$$\rho^2 R'' + \rho R' - n^2 R = 0. \tag{1.4}$$

Если $n \not\equiv 0$, то решение этого уравнения ищем в виде $R(\rho) = \rho^{\mu}$. Подставляя это выражение в уравнение (1.4) и сокращая на ρ^{μ} , находим

$$\mu^2 = n^2$$
, или $\mu = \pm n$ $(n > 0)$.

При n=0 уравнение (1.4) имеет два решения: 1 и $\ln \rho$. Итак, у нас есть теперь бесконечный набор функций («атомы» решения)

1,
$$\ln \rho$$
, $\rho^n \cos(n\varphi)$, $\rho^n \sin(n\varphi)$, $\rho^{-n} \cos(n\varphi)$, $\rho^{-n} \sin(n\varphi)$

(n = 1, 2, ...), удовлетворяющих исходному уравнению с частными производными. Поскольку сумма этих решений также является решением, то «общее» решение уравнения Лапласа в нашем случае имеет вид

$$u(\rho, \varphi) = a_0 + b_0 \ln \rho + \sum_{n=1}^{\infty} \left[(a_n \rho^n + b_n \rho^{-n}) \cos(n\varphi) + (c_n \rho^n + d_n \rho^{-n}) \sin(n\varphi) \right].$$
 (1.5)

Осталось найти только все коэффициенты в сумме (1.5) так, чтобы удовлетворить граничным условиям $u(R_1, \varphi) = f_1(\varphi)$, $u(R_2, \varphi) = f_2(\varphi)$. Полагая в формуле (1.5) $\rho = R_1$ и $\rho = R_2$, получим

$$u(R_1, \varphi) = \sum_{n=1}^{\infty} [(a_n R_1^n + b_n R_1^{-n}) \cos(n\varphi) + + (c_n R_1^n + d_n R_1^{-n}) \sin(n\varphi)] + a_0 + b_0 \ln R_1,$$

$$u(R_2, \varphi) = \sum_{n=1}^{\infty} [(a_n R_2^n + b_n R_2^{-n}) \cos(n\varphi) + + (c_n R_2^n + d_n R_2^{-n}) \sin(n\varphi)] + a_0 + b_0 \ln R_2.$$

Вспоминая выражения для коэффициентов Фурье тригонометрического ряда, приходим к следующим системам уравнений:

$$\begin{cases} a_0 + b_0 \ln R_1 = \frac{1}{2\pi} \int_0^{2\pi} f_1(s) \, ds, \\ a_0 + b_0 \ln R_2 = \frac{1}{2\pi} \int_0^{2\pi} f_2(s) \, ds \end{cases}$$
 (1.6₁)

(решается относительно a_0 и b_0);

$$\begin{cases} a_n R_1^n + b_n R_1^{-n} = \frac{1}{\pi} \int_0^{2\pi} f_1(s) \cos(ns) \, ds, \\ a_n R_2^n + b_n R_2^{-n} = \frac{1}{\pi} \int_0^{2\pi} f_2(s) \cos(ns) \, ds \end{cases}$$
 (1.6₂)

(решается относительно a_n и b_n);

$$\begin{cases} c_n R_1^n + d_n R_1^{-n} = \frac{1}{\pi} \int_0^{2\pi} f_1(s) \sin(ns) \, ds, \\ c_n R_2^n + d_n R_2^{-n} = \frac{1}{\pi} \int_0^{2\pi} f_2(s) \sin(ns) \, ds \end{cases}$$
(1.6₃)

(решается относительно c_n и d_n).

Тем самым из этих систем уравнений находятся все неизвестные коэффициенты a_0 , b_0 , a_n , b_n , c_n , d_n . Теперь задача (1.1) полностью решена. Решение дается выражением (1.5), коэффициенты в котором определяются по формулам (1.6).

Внутренняя и внешняя задачи Дирихле для круга

Рассмотрим два важнейших случая, когда кольцо обращается в круг и внешность круга. Внутренняя задача Дирихле ($R_1 = 0, R_2 = R$)

$$\begin{cases} \rho^2 u_{\rho\rho} + \rho u_{\rho} + u_{\varphi\varphi} = 0, & 0 \le \rho < R, \quad 0 \le \varphi < 2\pi, \\ u(R, \varphi) = f(\varphi), & 0 \le \varphi \le 2\pi, \end{cases}$$

решается точно так же, как решалась задача Дирихле для кольца, с тем отличием, что теперь необходимо отбросить те «атомы» решения, которые не ограничены при стремлении ρ к нулю:

$$\ln \rho$$
, $\rho^{-n} \cos(n\varphi)$, $\rho^{-n} \sin(n\varphi)$, $n = 1, 2, ...$

Следовательно, в качестве решения остается взять функцию

$$u(\rho, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^n [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

где коэффициенты a_n и b_n вычисляются по формулам

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\varphi) \, d\varphi, \quad a_n = \frac{1}{\pi} \int_0^{2\pi} f(\varphi) \cos(n\varphi) \, d\varphi \qquad (n > 0),$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(\varphi) \sin(n\varphi) \, d\varphi.$$
(1.7)

Другими словами, мы просто разлагаем функцию $f(\varphi)$ в ряд Фурье

$$f(\varphi) = \sum_{n=0}^{\infty} [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

а затем каждый член этого ряда умножаем на коэффициенты $\left(\frac{\rho}{R}\right)^n$. Например, внутренняя задача

$$\begin{cases} \Delta u = 0, & 0 \le \rho < 1, & 0 \le \varphi < 2\pi, \\ u(1, \varphi) = \cos^2 \varphi, & 0 \le \varphi \le 2\pi, \end{cases}$$

имеет решение

$$u(\rho, \varphi) = \frac{1}{2} + \frac{1}{2}\rho^2 \cos(2\varphi).$$

Внешняя задача Дирихле ($R_1 = R$, $R_2 = \infty$)

$$\begin{cases} \rho^2 u_{\rho\rho} + \rho u_{\rho} + u_{\varphi\varphi} = 0, & R < \rho < \infty, \quad 0 \le \varphi < 2\pi, \\ u(R, \varphi) = f(\varphi), & 0 \le \varphi \le 2\pi, \end{cases}$$

решается аналогично предыдущей, с тем отличием, что теперь необходимо отбросить те «атомы» решения, которые не ограничены при стремлении ρ к бесконечности:

$$\ln \rho$$
, $\rho^n \cos(n\varphi)$, $\rho^n \sin(n\varphi)$, $n = 1, 2, ...$

Следовательно, в качестве решения нужно взять функцию

$$u(\rho, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^{-n} [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

где коэффициенты a_n и b_n вычисляются по формулам (1.7). Например, внешняя задача

$$\begin{cases} \Delta u = 0, & 1 < \rho < +\infty, & 0 \le \varphi < 2\pi \\ u(1, \varphi) = \sin^3 \varphi, & 0 \le \varphi \le 2\pi, \end{cases}$$

имеет решение

$$u(\rho, \varphi) = \frac{3}{4} \cdot \frac{1}{\rho} \sin \rho - \frac{1}{4} \cdot \frac{1}{\rho^3} \sin(3\varphi).$$

Отметим, что ограниченное решение задачи Дирихле для уравнения Лапласа в двумерной неограниченной области является единственным.

Пример [1]. Найти стационарное распределение температуры в однородном секторе $0 \le \rho \le a$, $0 \le \varphi \le \alpha$, удовлетворяющее краевым условиям $u(\rho, 0) = u(\rho, \alpha) = 0$, $u(a, \varphi) = A\varphi$ (A = const) (см. рис. 1.1).

Решение. Нахождение стационарной температуры сводится к решению задачи Дирихле

Рис. 1.1

$$\begin{cases} \rho^2 u_{\rho\rho} + \rho u_\rho + u_{\varphi\varphi} = 0, & 0 < \rho < a, \quad 0 < \varphi < \alpha < 2\pi, \\ u(\rho, 0) = u(\rho, a) = 0, & 0 \leqslant \rho \leqslant a, \\ u(a, \varphi) = A\varphi, & 0 \leqslant \varphi \leqslant \alpha. \end{cases}$$

Полагая $u(\rho, \varphi) = R(\rho)\Phi(\varphi)$ и проведя разделение переменных, получаем два обыкновенных дифференциальных уравнения:

$$\rho^2 R'' + \rho R' - \lambda R = 0, \quad \Phi'' + \lambda \Phi = 0.$$
 (1.8)

Из условий $0=u(\rho,\,0)=R(\rho)\Phi(0)$ и $0=u(\rho,\,\alpha)=R(\rho)\Phi(\alpha)$ следует $\Phi(0)=\Phi(\alpha)=0.$ Постоянную разделения λ определяем, решая задачу Штурма—Лиувилля

$$\begin{cases} \Phi'' + \lambda \Phi = 0, & 0 < \varphi < \alpha, \\ \Phi(0) = \Phi(\alpha) = 0. \end{cases}$$

Имеем $\lambda_n = \left(\frac{n\pi}{\alpha}\right)^2$ и $\Phi_n(\varphi) = \sin\left(\frac{n\pi}{\alpha}\varphi\right)$, $n = 1, 2, \ldots$ Функцию $R(\rho)$ ищем в виде $R(\rho) = \rho^{\mu}$. Подставляя это выражение в уравнение (1.8), найдем

$$\mu(\mu-1) + \mu - \left(\frac{n\pi}{\alpha}\right)^2 = 0$$
, откуда $\mu = \pm \frac{n\pi}{\alpha}$.

Учитывая ограниченность (по смыслу задачи) функции $R(\rho)$, пишем $R_n(\rho) = \rho^{\frac{n\pi}{\alpha}}$. Атомы, из которых построим решение задачи, образуются функциями

$$u_n(\rho, \varphi) = \rho^{\frac{n\pi}{\alpha}} \sin(\frac{n\pi}{\alpha}\varphi), \qquad n = 1, 2...$$

Отсюда решение задачи есть

$$u(\rho,\,\varphi) = \sum_{n=1}^{\infty} c_n \rho^{\frac{n\pi}{\alpha}} \sin\left(\frac{n\pi}{\alpha}\varphi\right).$$

Постоянные c_n (n=1,2,...) определяем из условия $u(a,\varphi)=A\varphi$. Имеем

$$u(a, \varphi) = \sum_{n=1}^{\infty} c_n a^{\frac{n\pi}{\alpha}} \sin\left(\frac{n\pi}{\alpha}\varphi\right).$$

Таким образом,

$$c_n a^{\frac{n\pi}{\alpha}} = \frac{2}{\alpha} \int_0^\alpha A\varphi \sin\left(\frac{n\pi}{\alpha}\varphi\right) d\varphi,$$

откуда

$$c_n = \frac{2A}{\alpha a^{\frac{n\pi}{\alpha}}} \int_0^\alpha \varphi \sin\left(\frac{n\pi}{\alpha}\varphi\right) d\varphi = (-1)^{n+1} \frac{2\alpha A}{n\pi}.$$

Итак, решение задачи записывается в виде

$$u(\rho, \varphi) = \frac{2\alpha A}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{\rho}{\alpha}\right)^{\frac{n\pi}{\alpha}} \frac{\sin\left(\frac{n\pi}{\alpha}\right)\varphi}{n}.$$

Отметим, что решение имеет особенность в граничной точке $\rho = a$, $\varphi = \alpha$ из-за несогласования граничных значений.

Интеграл Пуассона (внутренняя и внешняя задачи Дирихле)

$$u(\rho, \varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{R^2 - \rho^2}{R^2 - 2\rho R \cos(\varphi - \alpha) + \rho^2} f(\alpha) d\alpha \qquad (\rho < R),$$

$$u(\rho, \varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\rho^2 - R^2}{\rho^2 - 2\rho R \cos(\varphi - \alpha) + R^2} f(\alpha) d\alpha \qquad (\rho > R).$$

Покажем, что эти формулы — следствие общего метода суперпозиции.

Для определенности рассмотрим внутреннюю задачу, а для внешней запишем результат по аналогии.

Подставляя выражения для коэффициентов Фурье в формулу

$$u(\rho, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^n [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

будем иметь

$$u(\rho, \varphi) = \frac{1}{\pi} \int_{0}^{2\pi} f(\alpha) \left[\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{\rho}{R} \right)^{n} (\cos(n\varphi) \cos(n\alpha) + \sin(n\varphi) \sin(n\alpha)) \right] d\alpha =$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} f(\alpha) \left[\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{\rho}{R} \right)^{n} \cos(n(\varphi - \alpha)) \right] d\alpha.$$

Далее, учитывая, что $\cos(n(\varphi-\alpha))=\frac{e^{in(\varphi-\alpha)}+e^{-in(\varphi-\alpha)}}{2},$ $q=\frac{\rho}{R}<1$, и используя формулу суммы всех членов бесконечно убывающей геометрической прогрессии, получим

$$\frac{1}{2} + \sum_{n=1}^{\infty} q^n \cos(n(\varphi - \alpha)) = \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} q^n \left[e^{in(\varphi - \alpha)} + e^{-in(\varphi - \alpha)} \right] =$$

$$= \frac{1}{2} \left[1 + \sum_{n=1}^{\infty} \left[(qe^{i(\varphi - \alpha)})^n + (qe^{-i(\varphi - \alpha)})^n \right] \right] =$$

$$= \frac{1}{2} \left[1 + \frac{qe^{i(\varphi - \alpha)}}{1 - qe^{i(\varphi - \alpha)}} + \frac{qe^{-i(\varphi - \alpha)}}{1 - qe^{-i(\varphi - \alpha)}} \right] =$$

$$= \frac{1}{2} \cdot \frac{1 - q^2}{1 - 2a\cos((\varphi - \alpha)) + a^2} = \frac{1}{2} \cdot \frac{R^2 - \rho^2}{R^2 - 2Ra\cos((\varphi - \alpha)) + a^2}.$$

Следовательно,

$$u(\rho, \varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\varphi - \alpha) + \rho^2} f(\alpha) d\alpha \qquad (\rho < R).$$

Преобразуем формулу Пуассона к другому виду (комплексная запись). Заметим, что

$$\frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\varphi - \alpha) + \rho^2} = \frac{R^2 - |z|^2}{|Re^{i\alpha} - z|^2} = \operatorname{Re}\frac{Re^{i\alpha} + z}{Re^{i\alpha} - z},$$

так как

$$\operatorname{Re} \frac{Re^{i\alpha} + z}{Re^{i\alpha} - z} = \operatorname{Re} \frac{(Re^{i\alpha} + \rho e^{i\varphi})(\overline{Re^{i\alpha}} - \overline{\rho e^{i\varphi}})}{(Re^{i\alpha} - \rho e^{i\varphi})(\overline{Re^{i\alpha}} - \overline{\rho e^{i\varphi}})} =$$

$$= \operatorname{Re} \frac{R^2 - |z|^2 + \rho R[e^{i(\varphi - \alpha)} - e^{i(\alpha - \varphi)}]}{|Re^{i\alpha} - z|^2} = \frac{R^2 - |z|^2}{|Re^{i\alpha} - z|^2}.$$

Поэтому интеграл Пуассона запишется в виде

$$u(z) = \operatorname{Re} \frac{1}{2\pi} \int_{0}^{2\pi} f(\alpha) \frac{Re^{i\alpha} + z}{Re^{i\alpha} - z} d\alpha.$$

Полагая в этом интеграле $\zeta=Re^{i\alpha}$, откуда $d\alpha=d\zeta/i\zeta$, получим окончательно

$$u(z) = \operatorname{Re} \frac{1}{2\pi i} \int_{|\zeta| = R} f(\zeta) \frac{\zeta + z d\zeta}{\zeta - z \zeta}, \qquad |z| < R.$$
 (1.9)

Если граничная функция $f(\zeta)$ является рациональной функцией от $\sin \varphi$ и $\cos \varphi$, то интеграл в формуле (1.9) вычисляется с помощью вычетов.

Пример. Решить задачу Дирихле

$$\begin{cases} \Delta u = 0, & |z| < 2, \\ u|_{|z|=2} = \frac{2\sin\varphi}{5 + 3\cos\varphi}. \end{cases}$$

Решение. Воспользуемся формулой (1.9). Пусть $\zeta = 2e^{i\alpha}$, тогда $\sin \alpha = \frac{1}{2i} \left(\frac{\zeta}{2} - \frac{2}{\zeta}\right)$, $\cos \alpha = \frac{1}{2} \left(\frac{\zeta}{2} + \frac{2}{\zeta}\right)$ и граничная функция примет вид

$$u(\zeta) = \frac{2\sin\alpha}{5 + 3\cos\alpha} = \frac{2 \cdot \frac{1}{2i} \cdot \frac{\zeta^2 - 4}{2\zeta}}{5 + \frac{3}{2} \left(\frac{\zeta}{2} + \frac{2}{\zeta}\right)} = \frac{2}{i} \cdot \frac{\zeta^2 - 4}{3\zeta^2 + 20\zeta + 12} = \frac{2}{i} \cdot \frac{\zeta^2 - 4}{3(\zeta + 6)\left(\zeta + \frac{2}{3}\right)}.$$

Вычислим интеграл

$$J = \frac{1}{2\pi i} \int_{|\zeta|=2} \frac{2(\zeta^2 - 4)(\zeta + z)}{i \cdot 3(\zeta + 6)\left(\zeta + \frac{2}{3}\right)(\zeta - z)\zeta} d\zeta,$$

причем окружность |z|=2 ориентирована против часовой стрелки. Подынтегральная функция $F(\zeta)$ в нашем случае в области $|\zeta|>2$ имеет одну конечную особую точку $\zeta=-6$ — полюс первого порядка и устранимую особую точку $\zeta=\infty$. По теореме Коши о вычетах для расширенной комплексной плоскости

$$J = -\mathop{\rm res}_{\zeta = -6} F(\zeta) - \mathop{\rm res}_{\zeta = \infty} F(\zeta).$$

Находим вначале вычет в точке $\zeta = -6$:

$$\operatorname{res}_{\zeta = -6} F(\zeta) = \frac{2}{3i} \cdot \frac{32}{\left(-\frac{16}{3}\right)} \cdot \frac{z - 6}{(z + 6) \cdot 6} = -\frac{4}{i} \cdot \frac{z - 6}{(z + 6) \cdot 6} = \frac{2}{3i} \cdot \frac{6 - z}{6 + z}.$$

Далее, разложим $F(\zeta)$ в окрестности точки $\zeta = \infty$:

$$F(\zeta) = \frac{2}{3i} \cdot \frac{\left(1 - \frac{4}{\zeta^2}\right)\left(1 + \frac{z}{\zeta}\right)}{\left(1 + \frac{6}{\zeta}\right)\left(1 + \frac{2}{3\zeta}\right)} \cdot \frac{1}{1 - \frac{z}{\zeta}} \cdot \frac{1}{\zeta} = \frac{2}{3i} \cdot \frac{1}{\zeta} + \dots$$

Отсюда

$$\operatorname{res}_{\zeta=\infty} F(\zeta) = -\frac{2}{3i}.$$

Значит,

$$J = \frac{2}{3i} \cdot \frac{z - 6}{z + 6} + \frac{2}{3i} = \frac{2}{3i} \cdot \frac{2z}{z + 6} = \frac{4z}{3i(z + 6)} =$$

$$= \frac{4}{3i} \cdot \frac{x + iy}{6 + x + iy} = \frac{4}{3i} \cdot \frac{(x + iy)(6 + x - iy)}{(6 + x)^2 + y^2},$$

откуда

$$\text{Re}J = \frac{8y}{36 + 12x + x^2 + y^2}$$
, или $\text{Re}J = \frac{8\rho \sin \varphi}{36 + 12\rho \cos \varphi + \rho^2}$.

Таким образом, решение задачи Дирихле дается формулой

$$u(\rho, \varphi) = \frac{8\rho \sin \varphi}{36 + 12\rho \cos \varphi + \rho^2}.$$

Внутренняя и внешняя задачи Неймана для круга

Очевидно, что в случае круга радиуса R с центром в начале координат внешняя нормальная производная есть $\frac{\partial u}{\partial n}\Big|_{\rho=R} = \frac{\partial u}{\partial \rho}\Big|_{\rho=R}$. Поэтому решение внутренней задачи Неймана ищется в виде ряда

$$u(\rho, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^n [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

где коэффициенты a_n и b_n определяются из краевого условия $\frac{\partial u}{\partial \rho}\Big|_{\rho=R}==f(\varphi)$, т. е. имеем

$$a_n = \frac{R}{n\pi} \int_0^{2\pi} f(\varphi) \cos(n\varphi) d\varphi,$$

$$b_n = \frac{R}{n\pi} \int_0^{2\pi} f(\varphi) \sin(n\varphi) d\varphi, \quad n = 1, 2, ...$$
(1.10)

Решение внешней задачи Неймана ищется в виде ряда

$$u(\rho, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^{-n} [a_n \cos(n\varphi) + b_n \sin(n\varphi)],$$

где коэффициенты a_n и b_n , определяемые из краевого условия $\frac{\partial u}{\partial n}\Big|_{\rho=R}=$ $=f(\varphi)$, вычисляются по тем же формулам (1.10) (учтем, что $\frac{\partial u}{\partial n}\Big|_{\rho=R}=$ $=-\frac{\partial u}{\partial \rho}\Big|_{\rho=R}$).

Пример. Найти установившуюся температуру внутри неограниченного цилиндра радиуса R, если на его боковой поверхности S задан тепловой поток $\frac{\partial u}{\partial n}\Big|_{S} = \cos^3 \varphi$.

Решение. Надо решить внутреннюю задачу Неймана

$$\begin{cases} \Delta u = 0, & 0 < \rho < R, & 0 \leqslant \varphi < 2\pi, \\ \frac{\partial u}{\partial \rho} \Big|_{\rho = R} = \cos^3 \varphi, & 0 \leqslant \varphi \leqslant 2\pi. \end{cases}$$

Прежде всего необходимо проверить выполнение условия разрешимости данной задачи Неймана, т. е. убедиться, что $\int\limits_C \frac{\partial u}{\partial n} ds = 0$ (здесь C — окружность нашего круга).

В самом деле,

$$\int_{C} \frac{\partial u}{\partial n} ds = \int_{0}^{2\pi} \cos^{3} \varphi \cdot R \, d\varphi = \frac{R}{2} \int_{0}^{2\pi} \cos \varphi \, d\varphi + \frac{R}{4} \int_{0}^{2\pi} [\cos(3\varphi) + \cos\varphi] \, d\varphi = 0.$$

Далее, поскольку $\cos^3\varphi=\frac{3}{4}\cos\varphi+\frac{1}{4}\cos(3\varphi)$, то $a_1=\frac{3}{4}R$, $a_3=\frac{1}{12}R$, а все остальные коэффициенты в ряде, дающем решение внутренней задачи Неймана, обращаются в нуль. Поэтому решение имеет вид

$$u(\rho, \varphi) = C + \frac{3\rho}{4}\cos\varphi + \frac{\rho^3}{12R^2}\cos(3\varphi),$$

где C — произвольная постоянная.

Замечание. Задача Неймана может быть решена и для кольца. Граничные условия в этом случае будут состоять в задании внешней нормальной производной:

$$-\frac{\partial u}{\partial \rho}(R_1, \varphi) = f_1(\varphi), \qquad \frac{\partial u}{\partial \rho}(R_2, \varphi) = f_2(\varphi).$$

При этом решение задачи возможно только при выполнении условия

$$R_1 \int_0^{2\pi} f_1(\varphi) d\varphi = R_2 \int_0^{2\pi} f_2(\varphi) d\varphi$$

и определяется с точностью до произвольной постоянной.

Уравнение Пуассона (неоднородное ур-е Лапласа)

При решении задачи Дирихле или Неймана (или смешанного типа) нужно найти какое-либо частное решение u_1 уравнения Пуассона $\Delta u = f(x, y)$ и с помощью замены $u = u_1 + v$ свести дело к решению краевой задачи для уравнения Лапласа $\Delta v = 0$.

Пример 1 [18]. Найти решение уравнения Пуассона

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -xy$$

в круге радиуса R с центром в начале координат при условии $u(R, \varphi) = 0$.

Решение. Переходя к полярной системе координат, получаем задачу

$$\begin{cases} \rho^2 u_{\rho\rho} + \rho u_{\rho} + u_{\varphi\varphi} = -\frac{1}{2} \rho^4 \sin(2\varphi), & 0 \le \rho < R, \quad 0 \le \varphi < 2\pi, \\ u(R, \varphi) = 0, & 0 \le \varphi \le 2\pi. \end{cases}$$
(1.11)

Будем искать частное решение в виде

$$u_1(\rho, \varphi) = w(\rho) \sin(2\varphi).$$

Подставляя функцию $u_1(\rho, \varphi)$ в уравнение (1.11) и сокращая на $\sin(2\varphi)$, придем к уравнению

$$\rho^2 w'' + \rho w' - 4w = -\frac{1}{2} \rho^4. \tag{1.12}$$

С помощью замены $\rho = e^t$ это уравнение приводится к уравнению с постоянными коэффициентами

$$w_{tt}^{"} - 4w = -\frac{1}{2}e^{4t}. \tag{1.13}$$

Видим, что $w(t)=-\frac{1}{24}e^{4t}$ — частное решение уравнения (1.13). Значит, $w(\rho)=-\frac{1}{24}\rho^4$ — частное решение уравнения (1.12). Таким образом, $u_1(\rho,\,\varphi)=-\frac{1}{24}\rho^4\sin(2\varphi)$.

Введем функцию $v(\rho, \varphi) = u(\rho, \varphi) - u_1(\rho, \varphi)$. Очевидно, для определения функции $v(\rho, \varphi)$ имеем задачу Дирихле для уравнения Лапласа

$$\begin{cases} \rho^2 v_{\rho\rho} + \rho v_\rho + v_{\varphi\varphi} = 0, & 0 < \rho < R, \quad 0 \leqslant \varphi < 2\pi, \\ v(R, \varphi) = \frac{1}{24} R^4 \sin(2\varphi), & 0 \leqslant \varphi \leqslant 2\pi. \end{cases}$$

Решение этой задачи мы уже знаем:

$$v(\rho, \varphi) = \left(\frac{\rho}{R}\right)^2 \cdot \frac{1}{24}R^4 \sin(2\varphi) = \frac{1}{24}\rho^2 R^2 \sin(2\varphi).$$

Итак, решение имеет вид

$$u(\rho, \varphi) = \frac{1}{24}\rho^2(R^2 - \rho^2)\sin(2\varphi).$$

Пример 2. Найти распределение потенциала в кольце $a < \rho < b$, если внутри него находятся электрические заряды с плотностью $\gamma(x, y) = A(x^2 - y^2)$, внутренняя окружность поддерживается при потенциале 1 и напряженность электрического поля на внешней окружности равна 0.

Решение. Задача сводится к решению уравнения Пуассона $\Delta u = A(x^2 - y^2)$ в кольце $a < \rho < b$ при краевых условиях $u \mid_{a=a} = 1$,

 $\frac{\partial u}{\partial \rho}\Big|_{\rho=b} = 0$. Переходя к полярным координатам, получаем задачу

$$\begin{cases} \frac{1}{\rho \partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2 \partial \varphi^2} = A \rho^2 \cos(2\varphi), & a < \rho < b, \quad 0 \le \varphi < 2\pi, \\ u(a, \varphi) = 1, \quad \frac{\partial u}{\partial \rho} (b, \varphi) = 0, \quad 0 \le \varphi \le 2\pi. \end{cases}$$

Решение ищем в виде $u(\rho, \varphi) = v(\rho, \varphi) + w(\rho)$, причем функция $w(\rho)$ есть решение вспомогательной задачи

$$\begin{cases} \frac{1}{\rho \partial \rho} \left(\rho \frac{\partial w}{\partial \rho} \right) = 0, & a < \rho < b, \\ w(a) = 1, & w'(b) = 0, \end{cases}$$
(1.14)

а функция $v(\rho, \varphi)$ есть решение задачи

$$\begin{cases} \frac{1}{\rho \partial \rho} \left(\rho \frac{\partial v}{\partial \rho} \right) + \frac{1}{\rho^2 \partial \varphi^2} = A \rho^2 \cos(2\varphi), & a < \rho < b, \quad 0 \le \varphi < 2\pi, \\ u(a, \varphi) = 0, \quad \frac{\partial v}{\partial \rho} (b, \varphi) = 0, \quad 0 \le \varphi \le 2\pi. \end{cases}$$
(1.15)

Очевидно, что решение задачи (1.14) есть $w(\rho)=1$. Решение задачи (1.15) ищем в виде $v(\rho,\,\varphi)=R(\rho)\cos(2\varphi)$. Подставляя $v(\rho,\,\varphi)$ в уравнение (1.15), найдем

$$\cos(2\varphi)\frac{1}{\rho d\rho}(\rho R') - \frac{4}{\rho^2}R\cos(2\varphi) = A\rho^2\cos(2\varphi),$$

или, сокращая на $\cos(2\varphi)$, будем иметь уравнение

$$\rho^2 R^{\prime\prime} + \rho R^{\prime} - 4R = A \rho^4$$

с дополнительными условиями R(a) = 0, R'(b) = 0. Это уравнение подстановкой $\rho = e^t$ преобразуется к уравнению с постоянными коэффициентами

$$R_{tt}^{\prime\prime} - 4R = Ae^{4t}.$$

Его общее решение: $R(t) = C_1 e^{2t} + C_2 e^{-2t} + \frac{1}{12} A e^{4t}$. Значит,

$$R(\rho) = C_1 \rho^2 + \frac{C_2}{\rho^2} + \frac{A}{12} \rho^4.$$

Постоянные C_1 и C_2 находим из условий R(a)=0, R'(b)=0. Имеем

$$C_1 = -\frac{A(a^6 + 2b^6)}{12(a^4 + b^4)}, \qquad C_2 = \frac{Aa^4b^4(2b^2 - a^2)}{6(a^4 + b^4)}.$$

Следовательно, решение есть

$$u(\rho, \varphi) = 1 + \left[-\frac{A(a^6 + 2b^6)}{12(a^4 + b^4)} \rho^2 + \frac{1}{\rho^2} \cdot \frac{Aa^4b^4(2b^2 - a^2)}{6(a^4 + b^4)} + \frac{A}{12}\rho^4 \right] \cos(2\varphi).$$

Свойства функций Бесселя

$$y'' + \frac{1}{x}y' + \left(1 - \frac{\nu^2}{x^2}\right)y = 0$$

$$J_{-n}(x) = (-1)^n J_n(x), \quad n \in \mathbb{Z};$$

$$\frac{d}{dx} \left(\frac{J_{\nu}(x)}{x^{\nu}} \right) = -\frac{J_{\nu+1}(x)}{x^{\nu}};$$

$$\frac{d}{dx} \left(x^{\nu} J_{\nu}(x) \right) = x^{\nu} J_{\nu-1}(x);$$

$$J_{\nu+1}(x) = \frac{\nu}{x} J_{\nu}(x) - J'_{\nu}(x);$$

$$J_{\nu-1}(x) = \frac{\nu}{x} J_{\nu}(x) + J'_{\nu}(x);$$

$$J_{\nu+1}(x) + J_{\nu-1}(x) = \frac{2\nu}{x} J_{\nu}(x);$$

$$J_{\nu+1}(x) - J_{\nu-1}(x) = -2J'_{\nu}(x);$$

$$\int x^{\nu+1} J_{\nu}(x) dx = x^{\nu+1} J_{\nu+1}(x) + C;$$

$$\int x J_{0}(x) dx = x J_{1}(x) + C;$$

$$\int x^{2} J_{1}(x) dx = -x^{2} J_{0}(x) + 2x J_{1}(x) + C;$$

$$\int x^{3} J_{0}(x) dx = 2x^{2} J_{0}(x) + (x^{3} - 4x) J_{1}(x) + C;$$

$$\int x J_{\nu}(\alpha x) J_{\nu}(\beta x) dx =$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C,$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\beta x) - \alpha x J'_{\nu}(\alpha x) J_{\nu}(\beta x)}{\alpha^{2} - \beta^{2}} + C;$$

$$= \frac{\beta x J_{\nu}(\alpha x) J'_{\nu}(\alpha x) J'_{\nu}$$

где μ_k и μ_m — положительные корни уравнения

$$\alpha J_{\nu}(\mu) + \beta \mu J_{\nu}'(\mu) = 0.$$

Функции Бесселя

Краевые задачи для ур-я Лапласа в цилиндре

Рассмотрение этих задач требует применения специальных функций — функций Бесселя.

Сначала рассмотрим краевую задачу для уравнения Лапласа в цилиндре.

Пример 1 [4, гл. IV, № 110]. Найти потенциал электростатического поля внутри цилиндрической коробки кругового сечения $\rho \le a$, $0 \le z \le l$, оба основания которой заземлены, а боковая поверхность заряжена до потенциала V_0 . Определить напряженность поля на оси (рис. 1.3).

Решение. Требуется найти решение уравнения Лапласа внутри цилиндра с заданными граничными значениями:

$$\begin{cases} \frac{1}{\rho \partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial z^2} = 0, & 0 < \rho < a, \quad 0 < z < l, \\ u(\rho, 0) = u(\rho, l) = 0, & 0 \le \rho \le a, \\ u(a, z) = V_0, & 0 \le z \le l \end{cases}$$

(решение $u = u(\rho, z)$ и не зависит от φ , так как граничные значения на зависят от φ). Воспользуемся методом разделения переменных. Подставляя выражение $u(\rho, z) = R(\rho)Z(z)$ в уравнение Лапласа

$$\frac{1}{\rho \partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial z^2} = 0,$$

получим

$$Z \cdot \frac{1}{\rho \partial \rho} (\rho R') + RZ'' = 0,$$

откуда, деля на RZ, будем иметь

Рис. 1.3

$$\frac{\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho R')}{R} + \frac{Z''}{Z} = 0,$$

$$\frac{\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho R')}{R} = -\frac{Z''}{Z} = \lambda,$$
(1.20)

где λ — постоянная разделения. Очевидно, из физических соображений следует, что $\lambda > 0$, иначе функция Z(z), а с ней и потенциал не обращались бы в нуль на верхнем и нижнем основаниях цилиндрической коробки.

Из соотношений (1.20) вытекают два обыкновенных дифференциальных уравнения:

1)
$$Z'' + \lambda Z = 0$$
; 2) $\frac{1}{\rho d\rho} (\rho R') - \lambda R = 0$.

или

Учитывая, что Z(0) = Z(l) = 0, получаем стандартную задачу Штурма— Лиувилля

$$\begin{cases} Z'' + \lambda Z = 0, & 0 < z < l, \\ Z(0) = Z(l) = 0. \end{cases}$$

Отсюда находим собственные функции $Z_n(z)=\sin\left(\frac{n\pi}{l}z\right)$, отвечающие собственным значениям $\lambda_n=\left(\frac{n\pi}{l}\right)^2$, $n=1,\,2\dots$ Функцию $R(\rho)$ определяем из уравнения

$$\frac{1}{\rho d\rho} (\rho R') - \left(\frac{n\pi}{l}\right)^2 R = 0, \tag{1.21}$$

являющегося уравнением Бесселя нулевого индекса мнимого аргумента. В самом деле, из уравнения (1.21) имеем

$$\rho^2 R'' + \rho R' - \rho^2 \left(\frac{n\pi}{I}\right)^2 R = 0.$$

Переходя в этом уравнении к новой независимой переменной $x = \rho \frac{n\pi}{l}$ и учитывая, что

$$R' = \frac{dR\pi n}{dx l}, \qquad R'' = \frac{d^2R}{dx^2} \left(\frac{n\pi}{l}\right)^2,$$

придем к уравнению

$$x^2 \frac{d^2 R}{dx^2} + x \frac{dR}{dx} - x^2 R = 0.$$

Его общее решение записывается в виде

$$R(x) = C_1 I_0(x) + C_2 K_0(x),$$

где $I_0(x)$ и $K_0(x)$ — функции Бесселя индекса нуль мнимого аргумента соответственно первого и второго рода; C_1 и C_2 — произвольные постоянные. Так как (функция Макдональда) $K_0(x) \to \infty$ при $x \to 0$, то полагаем $C_2 = 0$ (в противном случае решение задачи является неограниченным на оси цилиндра). Таким образом,

$$R_n(\rho) = CI_0\left(\frac{n\pi}{l}\rho\right).$$

«Атомами», из которых будет построено решение исходной задачи, являются функции

$$I_0\left(\frac{n\pi}{l}\rho\right)\sin\left(\frac{n\pi}{l}z\right), \qquad n=1, 2, \ldots$$

Решение нашей задачи представляется рядом

$$u(\rho, z) = \sum_{n=1}^{\infty} c_n I_0\left(\frac{n\pi}{l}\rho\right) \sin\left(\frac{n\pi}{l}z\right).$$

Постоянные c_n находим из граничного условия $u(a, z) = V_0$. Имеем

$$V_0 = \sum_{n=1}^{\infty} c_n I_0 \left(\frac{n\pi}{l} a \right) \sin \left(\frac{n\pi}{l} z \right),$$

откуда

$$c_n I_0\left(\frac{n\pi}{l}a\right) = \frac{2}{l} \int_0^l V_0 \sin\left(\frac{n\pi}{l}z\right) dz = \begin{cases} \frac{4V_0}{n\pi}, & n \text{ нечетное,} \\ 0, & n \text{ четное.} \end{cases}$$

Следовательно,

$$u(\rho, z) = \frac{4V_0}{\pi} \sum_{k=0}^{\infty} \frac{I_0 \left[\frac{(2k+1)\pi}{l} \rho \right]}{I_0 \left[\frac{(2k+1)\pi}{l} a \right]} \cdot \frac{\sin \left[\frac{(2k+1)\pi}{l} z \right]}{2k+1}.$$

Поле на оси цилиндра есть

$$E_z(0, z) = -\frac{\partial u}{\partial z}(0, z) = -\frac{4V_0}{l} \sum_{k=0}^{\infty} \frac{\cos\left[\frac{(2k+1)\pi}{l}z\right]}{I_0\left[\frac{(2k+1)\pi}{l}a\right]},$$

ибо $I_0(0) = 1$.

Пример 2 [18]. Цилиндр, радиус основания которого R и высота h, имеет температуру нижнего основания и боковой поверхности, равную нулю, а температура верхнего основания есть определенная функция от ρ . Найти стационарную температуру внутренних точек цилиндра.

Решение. Математическая постановка задачи имеет вид

$$\begin{cases} \frac{1}{\rho \partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{\partial^2 u}{\partial z^2} = 0, & 0 < \rho < R, & 0 < z < h, \\ u(\rho, 0) = 0, & u(\rho, h) = f(\rho), & 0 \le \rho \le R, \\ u(R, z) = 0, & 0 \le z \le h. \end{cases}$$

Вновь полагая $u(\rho, z) = r(\rho)Z(z)$ и подставляя в уравнение Лапласа (как в предыдущем случае), получим два уравнения:

1)
$$\frac{1}{\rho d\rho}(\rho r') + \lambda r = 0;$$
 2) $Z'' - \lambda Z = 0.$ (1.22)

Отметим, что здесь $\lambda > 0$ (это будет ясно из решения). Из граничного условия u(a, z) = 0 следует r(R) = 0. Уравнение (1.22) можно записать в виде

$$\rho^2 r'' + \rho r' + \lambda \rho^2 r = 0. \tag{1.23}$$

Переходя к новой независимой переменной $x=\sqrt{\lambda}\,\rho$, придем к уравнению Бесселя нулевого порядка

$$x^2 \frac{d^2 r}{dx^2} + x \frac{dr}{dx} + x^2 r = 0.$$

Рис. 1.4

Общее решение имеет вид

$$r(x) = C_1 J_0(x) + C_2 B_0(x),$$

где $J_0(x)$ и $B_0(x)$ — функции Бесселя порядка нуль соответственно первого и второго рода; C_1 и C_2 — произвольные постоянные.

Возвращаясь к старой переменной ρ , будем иметь

$$r(\rho) = C_1 J_0(\sqrt{\lambda} \, \rho) + C_2 B_0(\sqrt{\lambda} \, \rho).$$

Итак, в нашем случае задача Штурма—Лиувилля

$$\begin{cases} \rho^2 r'' + \rho r' + \lambda \rho^2 r = 0, & 0 < \rho < R \\ |r(0)| < +\infty, & r(R) = 0, \end{cases}$$

приводится к решению уравнения Бесселя с указанными граничными условиями. Поскольку $B_0(\sqrt{\lambda}\,\rho)\to\infty$ при $\rho\to0$, то $r(\rho)=CJ_0(\sqrt{\lambda}\,\rho)$ (полагаем $C_2=0$). Из условия r(R)=0 следует $J_0(\sqrt{\lambda}\,R)=0$. Обозначая через $\mu_1,\,\mu_2,\,\ldots,\,\mu_n,\,\ldots$ положительные корни функции Бесселя $J_0(x)$ (рис. 1.4), определяем собственные значения $\lambda_n=\left(\frac{\mu_n}{R}\right)^2$, которым соответствуют собственные функции $J_0\left(\frac{\mu_n}{R}\rho\right),\,\,n=1,\,2,\,\ldots$ Далее, из уравнения $Z''-\lambda Z=0$ при $\lambda=\left(\frac{\mu_n}{R}\right)^2$ находим

$$Z_n(z) = A_n \operatorname{ch}\left(\frac{\mu_n}{R}z\right) + B_n \operatorname{sh}\left(\frac{\mu_n}{R}z\right),$$

где A_n и B_n — произвольные постоянные. Из граничного условия $u(\rho, 0) = 0$ следует, что Z(0) = 0, т. е. $A_n = 0$. Таким образом, «атомы» решения суть функции

$$J_0\left(\frac{\mu_n}{R}\rho\right) \operatorname{sh}\left(\frac{\mu_n}{R}z\right), \qquad n=1, 2, \ldots$$

Решение задачи представляется рядом

$$u(\rho, z) = \sum_{n=1}^{\infty} B_n J_0\left(\frac{\mu_n}{R}\rho\right) \operatorname{sh}\left(\frac{\mu_n}{R}z\right).$$

Постоянные B_n находим из граничного условия $u(\rho, h) = f(\rho)$. Имеем

$$u(\rho,h) = \sum_{n=1}^{\infty} B_n J_0\left(\frac{\mu_n}{R}h\right) \operatorname{sh}\left(\frac{\mu_n}{R}h\right),$$
 или $f(\rho) = \sum_{n=1}^{\infty} B_n J_0\left(\frac{\mu_n}{R}h\right) \operatorname{sh}\left(\frac{\mu_n}{R}h\right).$

Умножая обе части полученного равенства на $\rho J_0\left(\frac{\mu_m}{R}\rho\right)$ и интегрируя результат по отрезку [0, R], получим

$$\int_{0}^{R} \rho f(\rho) J_{0}\left(\frac{\mu_{m}}{R}\rho\right) d\rho = B_{m} \operatorname{sh}\left(\frac{\mu_{m}}{R}h\right) \int_{0}^{R} \rho J_{0}^{2}\left(\frac{\mu_{m}}{R}\rho\right) d\rho.$$

Ho

$$\int_{0}^{R} \rho J_{0}^{2} \left(\frac{\mu_{m}}{R} \rho \right) d\rho = \frac{R^{2}}{2} J_{1}^{2} (\mu_{m}),$$

где $J_1(x)$ — функция Бесселя первого рода первого порядка. Следовательно, решение задачи имеет вид

$$u(\rho, z) = \frac{2}{R^2} \sum_{n=1}^{\infty} \frac{\operatorname{sh}\left(\frac{\mu_n}{R}z\right) J_0\left(\frac{\mu_n}{R}\rho\right)}{\operatorname{sh}\left(\frac{\mu_n}{R}h\right) J_1^2(\mu_n)} \int_0^R \rho f(\rho) J_0\left(\frac{\mu_n}{R}\rho\right) d\rho.$$

Пример 3. Найти потенциал во внутренних точках заземленного цилиндра с радиусом основания R и высотой h, если в цилиндре распределены электрические заряды с плотностью $\gamma = AzJ_0\left(\frac{\mu_3}{R}\rho\right)$ (A = const).

Решение. Нужно найти решение уравнения Пуассона с нулевыми граничными условиями

$$\begin{cases} \frac{1}{\rho\partial\rho}\left(\rho\frac{\partial u}{\partial\rho}\right) + \frac{\partial^2 u}{\partial z^2} = -4\pi AzJ_0\left(\frac{\mu_3}{R}\rho\right), & 0 < \rho < R, \quad 0 < z < h, \\ u(\rho, 0) = u(\rho, h) = 0, \quad 0 \le \rho \le R, \\ u(R, z) = 0, \quad 0 \le z \le h. \end{cases}$$

$$(1.24)$$

Ищем решение в виде $u(\rho, z) = J_0\left(\frac{\mu_3}{R}\rho\right)f(z)$, где функция f(z) подлежит определению. Подставляя функцию $u(\rho, z)$ в уравнение (1.24), получим

$$f(z) \cdot \frac{1}{\rho d\rho} \left[\rho \frac{d}{d\rho} \left(J_0 \left(\frac{\mu_3}{R} \rho \right) \right) \right] + J_0 \left(\frac{\mu_3}{R} \rho \right) f''(z) = -4\pi A z J_0 \left(\frac{\mu_3}{R} \rho \right). \tag{1.25}$$

Заметим теперь, что функция $J_0\left(\frac{\mu_3}{R}\rho\right)$ есть собственная функция уравнения Бесселя, т. е.

$$\frac{1}{\rho d} \frac{d}{\rho} \left[\rho \frac{d}{d\rho} J_0 \left(\frac{\mu_3}{R} \rho \right) \right] + \frac{\mu_3^2}{R^2} J_0 \left(\frac{\mu_3}{R} \rho \right) = 0.$$

Поэтому (1.25) дает

$$(-1)f\left(\frac{\mu_3}{R}\right)^3 J_0\left(\frac{\mu_3}{R}\rho\right) + J_0\left(\frac{\mu_3}{R}\rho\right)f''(z) = -4\pi AzJ_0\left(\frac{\mu_3}{R}\rho\right),$$

откуда получаем обыкновенное дифференциальное уравнение для определения f(z)

$$f'' - \left(\frac{\mu_3}{R}\right)^2 f = -4\pi A z, \qquad 0 < z < h,$$

причем f(0) = f(h) = 0. Решая эту краевую задачу, находим

$$f(z) = -\frac{4\pi A R^2 h}{\mu_3^2} \cdot \frac{\sinh\left(\frac{\mu_3}{R}z\right)}{\sinh\left(\frac{\mu_3}{R}h\right)} + \frac{4\pi A R^2}{\mu_3^2} z.$$

Следовательно, решение имеет вид

$$u(\rho, z) = J_0\left(\frac{\mu_3}{R}\rho\right) \cdot \frac{4\pi A R^2}{\mu_3^2} \left[h \frac{\sinh\left(\frac{\mu_3}{R}z\right)}{\sinh\left(\frac{\mu_3}{R}h\right)} - z \right].$$

[приложение к задаче на сфер. с.к.]

https://github.com/ioshchepkov/physical-geodesycourses/tree/master/spherical_harmonics

Первые многочлены Лежандра в явном виде:

$$P_{0}(x) = 1,$$

$$P_{1}(x) = x,$$

$$P_{2}(x) = \frac{1}{2}(3x^{2} - 1),$$

$$P_{3}(x) = \frac{1}{2}(5x^{3} - 3x),$$

$$P_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3),$$

$$P_{5}(x) = \frac{1}{8}(63x^{5} - 70x^{3} + 15x),$$

$$P_{6}(x) = \frac{1}{16}(231x^{6} - 315x^{4} + 105x^{2} - 5),$$

$$P_{7}(x) = \frac{1}{16}(429x^{7} - 693x^{5} + 315x^{3} - 35x),$$

$$P_{8}(x) = \frac{1}{128}(6435x^{8} - 12012x^{6} + 6930x^{4} - 1260x^{2} + 35),$$

$$P_{9}(x) = \frac{1}{128}(12155x^{9} - 25740x^{7} + 18018x^{5} - 4620x^{3} + 315x),$$

$$P_{10}(x) = \frac{1}{256}(46189x^{10} - 109395x^{8} + 90090x^{6} - 30030x^{4} + 3465x^{2} - 63)$$

Краевые задачи для ур-я Лапласа в шаре

Рассмотрение этих задач требует применения сферических и шаровых функций.

Напомним, что общее решение уравнений Лапласа имеет вид $((\rho, \theta, \varphi)$ — сферические координаты):

1)
$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{a}\right)^n Y_n(\theta, \varphi)$$
 внутри сферы радиуса a ;

2)
$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \left(\frac{a}{\rho}\right)^{n+1} Y_n(\theta, \varphi)$$
 вне сферы радиуса a ;

3)
$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \left(A_n \rho^n + \frac{B_n}{\rho^{n+1}} \right) Y_n(\theta, \varphi)$$
 в шаровом слое.

Здесь $Y_n(\theta, \varphi) = \sum_{m=0}^n [A_{nm} \cos(m\varphi) + B_{nm} \sin(m\varphi)] P_n^{(m)}(\cos \theta)$, где $P_n^{(m)}(x)$ — так называемые присоединенные функции Лежандра.

Пример 1. Найти решение $u(\rho, \theta, \varphi)$ внутренней задачи Дирихле для уравнения Лапласа в шаре при граничном условии

$$u(a, \theta, \varphi) = \sin(3\theta)\cos\varphi$$
.

Решение. В сферической системе координат постановка задачи имеет следующий вид:

$$\begin{cases} \frac{1}{\rho^2 \partial \rho} \left(\rho^2 \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2 \sin \theta \partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{\rho^2 \sin^2 \theta \partial \varphi^2} = 0, \\ 0 < \rho < a, \quad 0 < \theta < \pi, \quad 0 \le \varphi < 2\pi, \\ u(a, \theta, \varphi) = \sin(3\theta) \cos \varphi, \quad 0 \le \theta \le \pi, \quad 0 \le \varphi \le 2\pi. \end{cases}$$
(1.26)

Полагая $u(\rho, \theta, \varphi) = R(\rho)Y(\theta, \varphi)$ и подставляя это выражение в уравнение (1.26), получим

$$Y\frac{d}{d\rho}(\rho^2 R') + R\left[\frac{1}{\sin\theta\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta\partial\varphi^2}\right] = 0,$$

откуда в результате деления на RY получаем

$$\frac{\frac{d}{d\rho}(\rho^2 R')}{R} + \frac{\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\theta^2}}{Y} = 0,$$

или

$$\frac{\frac{d}{d\rho}(\rho^2 R')}{R} = -\frac{\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\theta^2}}{Y} = \lambda,$$

где λ — постоянная разделения. Отсюда следуют два уравнения:

1)
$$\rho^2 R'' + 2\rho R' - \lambda R = 0$$
,
2) $\frac{1}{\sin\theta\partial\theta} \left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta\partial\phi^2} + \lambda Y = 0$, (1.27)

причем функция $Y(\theta, \varphi)$ должна быть ограничена на всей сфере.

При этом функция $Y(\theta, \varphi)$ удовлетворяет условиям

$$\begin{cases} Y(\theta, \varphi) = Y(\theta, \varphi + 2\pi), \\ |Y(0, \varphi)| < +\infty, \quad |Y(\pi, \varphi)| < +\infty. \end{cases}$$
 (1.28)

Как известно, ограниченные решения уравнения (1.27), обладающие непрерывными до второго порядка производными, называются *сферическими* функциями.

Решение задачи (1.27), (1.28) для $Y(\theta, \varphi)$ также ищем методом разделения переменных, полагая $Y(\theta, \varphi) = T(\theta)\Phi(\varphi)$. Подставляя $Y(\theta, \varphi)$ в уравнение (1.27), будем иметь

$$\Phi \frac{1}{\sin\theta d\theta} (\sin\theta T') + \frac{1}{\sin^2\theta} T\Phi'' + \lambda T\Phi = 0,$$

откуда

$$\frac{\sin\theta \frac{d}{d\theta}(\sin\theta T')}{T} + \lambda \sin^2\theta = -\frac{\Phi''}{\Phi} = \mu.$$

Функцию $\Phi(\varphi)$ находим, решая задачу

$$\begin{cases} \Phi'' + \mu \Phi = 0, \\ \Phi(\varphi) = \Phi(\varphi + 2\pi) \end{cases}$$

Такую задачу мы решали, рассматривая уравнение Лапласа в круге, и нашли, что $\mu = m^2$ и $\Phi_m(\varphi) = C_1 \cos(m\varphi) + C_2 \sin(m\varphi)$, где C_1 и C_2 — произвольные постоянные; $m = 0, 1, \ldots$

Функция $T(\theta)$ определяется из уравнения

$$\frac{1}{\sin\theta d\theta}(\sin\theta T') + \left(\lambda - \frac{m^2}{\sin^2\theta}\right)T = 0 \tag{1.29}$$

и условий ограниченности при $\theta=0$ и $\theta=\pi$. Вводя новую переменную $x=\cos\theta$ и учитывая, что

$$T' = \frac{dTdx}{dxd\theta} = \frac{dT}{dx}(-\sin\theta), \quad T'' = \frac{d^2T}{dx^2}\sin^2\theta - \frac{dT}{dx}\cos\theta,$$

из уравнения (1.29) получим краевую задачу на собственные функции и собственные значения

$$\begin{cases} (1-x^2)\frac{d^2T}{dx^2} - 2x\frac{dT}{dx} + \left(\lambda - \frac{m^2}{1-x^2}\right)T = 0, & -1 < x < 1, \\ |T(-1)| < +\infty, & |T(+1)| < +\infty. \end{cases}$$

Собственные функции полученной задачи:

$$T_n^{(m)}(x) = P_n^{(m)}(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_n(x),$$

— присоединенные функции Лежандра. Отсюда решение уравнения (1.29) есть функция $T_n^{(m)}(\theta) = P_n^{(m)}(\cos \theta)$.

Комбинируя решения уравнения (1.29) с решением уравнения $\Phi'' + \mu \Phi = 0$, получим 2n + 1 сферических функций:

$$P_n(\cos \theta)$$
, $P_n^{(m)}(\cos \theta) \cos(m\varphi)$, $P_n^{(m)}(\cos \theta) \sin(m\varphi)$, $n = 0, 1, ...;$ $m = 1, 2, ...$

Общее решение уравнения (1.27) при $\lambda = n(n+1)$ запишется в виде

$$Y_n(\theta, \varphi) = \sum_{m=0}^n [A_{nm} \cos(m\varphi) + B_{nm} \sin(m\varphi)] P_n^{(m)}(\cos \theta).$$

Вернемся к отысканию функции $R(\rho)$. Полагая $R(\rho) = \rho^{\sigma}$ и подставляя в уравнение $\rho^2 R'' + 2\rho R' - \lambda R = 0$, получим $\sigma(\sigma+1) - n(n+1) = 0$, откуда $\sigma_1 = n$, $\sigma_2 = -(n+1)$. Следовательно, «атомами» решения являются функции

$$\rho^{n} P_{n}^{(m)}(\cos \theta) \cos(m\varphi), \qquad \rho^{n} P_{n}^{(m)}(\cos \theta) \sin(m\varphi),$$
$$\rho^{-(n+1)} P_{n}^{(m)}(\cos \theta) \cos(m\varphi), \qquad \rho^{-(n+1)} P_{n}^{(m)}(\cos \theta) \sin(m\varphi).$$

Но решения $\rho^{-(n+1)}P_n^{(m)}(\cos\theta)\cos(m\varphi)$, $\rho^{-(n+1)}P_n^{(m)}(\cos\theta)\sin(m\varphi)$ необходимо отбросить, поскольку они не ограничены при $\rho\to 0$. Следовательно, в качестве решения берем ряд

$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \rho^{n} [A_{nm} \cos(m\varphi) + B_{nm} \sin(m\varphi)] P_{n}^{(m)} (\cos \theta).$$

Осталось подобрать постоянные A_{nm} и B_{nm} так, чтобы выполнялось граничное условие

$$u(a, \theta, \varphi) = \sin(3\theta)\cos\varphi$$
.

Имеем

$$u(a, \theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} a^{n} [A_{nm} \cos(m\varphi) + B_{nm} \sin(m\varphi)] P_{n}^{(m)} (\cos \theta),$$

т. е. имеет место равенство

$$\sin(3\theta)\cos\varphi = \sum_{n=0}^{\infty} \sum_{m=0}^{n} a^{n} [A_{nm}\cos(m\varphi) + B_{nm}\sin(m\varphi)] P_{n}^{(m)}(\cos\theta).$$

Отсюда следует, что в сумме $\sum_{m=0}^{n} [\dots]$ нужно взять лишь одно слагаемое, соответствующее m=1. Таким образом, получаем

$$\sin(3\theta) = \sum_{n=1}^{\infty} a^n A_{n1} P_n^{(1)} \cos \theta.$$

Коэффициенты A_{n1} можно найти, следуя общей формуле: если

$$f(\theta) = \sum_{n=1}^{\infty} b_n P_n^{(1)} \cos(\theta),$$

TO

$$b_n = \frac{2n+1}{2} \cdot \frac{(n-1)!}{(n+1)!} \int_{0}^{\pi} f(\theta) P_n^{(1)}(\cos \theta) \sin \theta \, d\theta.$$

Однако удобнее сделать это так. Имеем

$$\sin(3\theta) = \sin\theta(4\cos^2\theta - 1), \qquad P_n^{(1)}(\cos\theta) = \sin\theta \frac{dP_n(\cos\theta)}{d(\cos\theta)},$$

$$P_1(x) = x, \qquad P_3(x) = \frac{1}{2}(5x^3 - 3x).$$

Поэтому

$$(4\cos^2\theta-1)\sin\theta=\sin\theta\Big[a\cdot A_{11}\cdot 1+a^3\cdot A_{31}\cdot\frac{1}{2}(14\cos^2\theta-3)\Big],$$
 откуда следует $A_{11}=-\frac{1}{5a},\,A_{31}=\frac{8}{15a^3},\,A_{n1}=0,\,n=2,\,4,\,5,\,\ldots$ Таким образом, решение задачи имеет вид

$$u(\rho, \theta, \varphi) = \left(-\frac{1}{5}\right) \frac{\rho}{a} P_1^{(1)}(\cos \theta) \cos \varphi + \frac{8}{15} \left(\frac{\rho}{a}\right)^3 P_3^{(1)}(\cos \theta) \cos \varphi.$$

Пример 2. Найти функцию u, гармоническую внутри сферического слоя $R_1 < \rho < R_2$ и такую, что

$$u|_{\rho=R_1} = P_2^{(1)}(\cos\theta)\sin\varphi,$$

 $u|_{\rho=R_2} = P_5^{(3)}(\cos\theta)\cos(3\varphi).$

Решение. Математическая запись задачи:

$$\begin{cases} \Delta u = 0, \quad R_1 < \rho < R_2, \quad 0 < \theta < \pi, \\ \quad 0 < \varphi < 2\pi, \end{cases}$$

$$u(R_1, \theta, \varphi) = P_2^{(1)}(\cos \theta) \sin \varphi, \\ \quad 0 \leqslant \theta \leqslant \pi,$$

$$u(R_2, \theta, \varphi) = P_5^{(3)}(\cos \theta) \sin(3\varphi), \\ \quad 0 \leqslant \varphi \leqslant 2\pi$$

Рис. 1.5

Решение задачи записывается в виде

$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[\left(A_{nm} \rho^{n} + \frac{B_{nm}}{\rho^{n+1}} \right) \cos(m\varphi) + \left(C_{nm} \rho^{n} + \frac{D_{nm}}{\rho^{n+1}} \right) \sin(m\varphi) \right] P_{n}^{(m)}(\cos \theta),$$

где числа A_{nm} , B_{nm} , C_{nm} , D_{nm} подлежат определению. Из граничных условий получаем следующие системы уравнений для определения ко-

эффициентов разложения:

1)
$$\begin{cases} C_{21}R_{1}^{2} + \frac{D_{21}}{R_{1}^{3}} = 1, \\ A_{21}R_{1}^{2} + \frac{B_{21}}{R_{1}^{3}} = 0, \\ C_{21}R_{2}^{2} + \frac{D_{21}}{R_{2}^{3}} = 0, \\ A_{21}R_{2}^{2} + \frac{B_{21}}{R_{2}^{3}} = 0, \\ A_{21}R_{2}^{2} + \frac{B_{21}}{R_{2}^{3}} = 0, \end{cases}$$
2)
$$\begin{cases} A_{53}R_{1}^{5} + \frac{B_{53}}{R_{1}^{6}} = 0, \\ C_{53}R_{1}^{5} + \frac{D_{53}}{R_{1}^{6}} = 0, \\ A_{53}R_{2}^{5} + \frac{B_{53}}{R_{2}^{6}} = 1, \\ C_{53}R_{2}^{5} + \frac{D_{53}}{R_{2}^{6}} = 0. \end{cases}$$

Все остальные коэффициенты равны нулю. Решая записанные системы уравнений, найдем

$$A_{21} = B_{21} = 0,$$
 $C_{53} = D_{53} = 0,$ $C_{21} = -\frac{R_1^3}{R_2^2 (R_2^5 - R_1^5)},$ $D_{21} = \frac{(R_1 R_2)^3}{R_2^5 - R_1^5},$ $A_{53} = -\frac{R_2^6}{R_1^5 (R_2^{11} - R_1^{11})},$ $B_{53} = \frac{(R_1 R_2)^6}{R_2^{11} - R_1^{11}}.$

Итак, гармоническая функция имеет вид

$$u(\rho,\theta,\varphi) = \left(C_{21}\rho + \frac{D_{21}}{\rho^2}\right)P_2^{(1)}(\cos\theta)\sin\varphi + \left(A_{53}\rho^5 + \frac{B_{53}}{\rho^6}\right)P_5^{(3)}(\cos\theta)\cos(3\varphi).$$

Пример 3 [6, 16.25(1)]. Найти функцию u, гармоническую внутри сферического слоя $1 < \rho < 2$ и такую, что

$$\left(3u + \frac{\partial u}{\partial \rho}\right)\Big|_{\rho=1} = 5\sin^2\theta\sin(2\varphi)$$
 и $u|_{\rho=2} = -\cos\theta$.

Решение. Математическая запись задачи:

$$\begin{cases} \Delta u = 0, & 1 < \rho < 2, \quad 0 < \theta < \pi, \quad 0 \leqslant \varphi < 2\pi, \\ \left(3u + \frac{\partial u}{\partial \rho}\right) \Big|_{\rho = 1} = 5\sin^2\theta\sin(2\varphi), \quad 0 \leqslant \theta \leqslant \pi, \quad 0 \leqslant \varphi \leqslant 2\pi, \\ u|_{\rho = 2} = -\cos\theta, \quad 0 \leqslant \theta \leqslant \pi, \quad 0 \leqslant \varphi < 2\pi. \end{cases}$$

Имеем

$$u(\rho, \theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left[\left(A_{nm} \rho^{n} + \frac{B_{nm}}{\rho^{n+1}} \right) \cos(m\varphi) + \left(C_{nm} \rho^{n} + \frac{D_{nm}}{\rho^{n+1}} \right) \sin(m\varphi) \right] P_{n}^{(m)}(\cos \theta).$$

Из граничных условий следует, что в этой сумме нужно взять только слагаемые, соответствующие индексам $n=2,\ m=2$ и $n=1,\ m=0$. Другими словами, решение удобно искать в виде

$$u(\rho, \theta, \varphi) = \left(a\rho + \frac{b}{\rho^2}\right)\cos\theta + \left(c\rho^2 - \frac{d}{\rho^3}\right)\sin^2\theta\sin(2\varphi).$$

Используя граничные условия, получим следующие уравнения для определения коэффициентов a, b, c, d:

$$4a + b = 0$$
, $5c = 5$, $2a + b/4 = -1$, $4c - d/8 = 0$.

Из них находим a = -1, b = 4, c = 1, d = 32. Тогда решение есть

$$u(\rho, \theta, \varphi) = \left(-\rho + \frac{4}{\rho^2}\right)\cos\theta + \left(\rho^2 - \frac{32}{\rho^3}\right)\sin^2\theta\sin(2\varphi).$$

Замечание 1. В общем случае при решении внутренней задачи Дирихле для уравнения Лапласа с условием $u|_{\partial\Omega}=f(\theta,\varphi)$ (Ω — шар радиуса a с центром в начале координат, $\partial\Omega$ — его граница) имеем соотношение

$$f(\theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} a^{n} [A_{nm} \cos(m\varphi) + B_{nm} \sin(m\varphi)] P_{n}^{(m)} (\cos \theta),$$

где коэффициенты A_{nm} и B_{nm} находятся по формулам

$$A_{nm} = \frac{1}{\|Y_n^{(m)}\|^2 a^n} \int_0^{2\pi} \int_0^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos \theta) \cos(m\varphi) \sin \theta \, d\theta \, d\varphi,$$

$$B_{nm} = \frac{1}{\|Y_n^{(m)}\|^2 a^n} \int_0^{2\pi} \int_0^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos \theta) \sin(m\varphi) \sin \theta \, d\theta \, d\varphi,$$

причем

$$\|Y_n^{(m)}\|^2 = \frac{2\pi\varepsilon_m (n+m)!}{2n+1(n-m)!}, \qquad \varepsilon_m = \begin{cases} 2, & \text{если } m=0, \\ 1, & \text{если } m>0. \end{cases}$$

Замечание 2. Решение упомянутой внутренней задачи Дирихле для уравнения Лапласа в точке (ρ_0 , θ_0 , φ_0) можно представить в интегральной форме (интеграл Пуассона)

$$u(\rho_0, \, \theta_0, \, \varphi_0) = \frac{a}{4\pi} \int_0^{2\pi} \int_0^{\pi} f(\theta, \, \varphi) \frac{a^2 - \rho_0^2}{(a^2 - 2a\rho_0 \cos \gamma + \rho_0^2)^{3/2}} \sin \theta \, d\theta \, d\varphi,$$

где $\cos \gamma = \cos \theta \cos \theta_0 + \sin \theta \sin \theta_0 \cos(\varphi - \varphi_0)$.