Persistent Homology and TDA

Kejsi Jonuzaj

November 30, 2020

Contents

1	Chain Complexes And Simplicial Homology		
	1.1	Δ -complexes	2
	1.2	Chain Complexes	3
	1.3	Homology Calculations: Examples	3

Chapter 1

Chain Complexes And Simplicial Homology

1.1 Δ -complexes

Definition 1.1.1 (Standard Simplex - n-simplex). The standard n-simplex is a subset of \mathbb{R}^{n+1} given by

$$\Delta^{n} = \{(t_0, t_1, ..., t_n) \in \mathbb{R}^{n+1} | \sum_{i} t_i = 1 \text{ and } t_i \ge 0 \ \forall i \}$$

[Hat02, 103] whose vertices are unit vectors along the coordinate axis.

... Simplices in \mathbb{R}^n , ordering of the vertices and orientation ...

An *n-simpex* is an *n-dimensional* analog of a triangle. A *n-simpex* is denoted by $[v_0, ..., v_n]$, where v_i 's are the vertices of the simplex. To compute homology is important to define the order of the vertices in a simplex. Ordering the vertices of a simplex $[v_0, ..., v_n]$ determines orientations of the edges $[v_i, v_j]$ according to increasing subscripts. Specifying the ordering of the vertices also determines a canonical linear homeomorphism from the standard *n-simpex* Δ^n onto any n-simpex $[v_0, ..., v_n]$ preserving the order of vertices $(t_0, t_1, ..., t_n) \mapsto \sum_i t_i v_i$ in $[v_0, ..., v_n]$ [Hat02, 103].

In \mathbb{R}^n a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, 3-simplex is a tetrahedron, as shown below.

The boundary $\partial \Delta^n$ is defined as the union of all the faces of Δ^n , and $\mathring{\Delta^n} = \Delta^n - \partial \Delta^n$ denotes interior of Δ^n .

Definition 1.1.2 (Δ -complex). A Δ -complex structure on a space X is a collection of maps $\sigma_{\alpha}: \Delta^n \to X$, with n depending on the index α , such that:

- 1. The restriction $\sigma_{\alpha}|\mathring{\Delta}^n$ is injective, and each point of X is in the image of exactly one such restriction $\sigma_{\alpha}|\mathring{\Delta}^n$.
- 2. Each restriction of σ_{α} to a face of Δ^n is one of the maps $\sigma_{\beta}: \Delta^{n-1} \to X$. Here we are identifying the face of Δ^n with Δ^{n-1} by the canonical linear homeomorphism between them that preserves the ordering of the vertices.

3. A set $A \subset X$ is open iff $\sigma_{\alpha}^{-1}(A)$ is open in Δ^n for each σ_{α}

...... Some explicit examples of Δ -complex structures on spaces. E.g., a closed interval [0;1] $X=S^1$ with some explicit maps from Δ^1 (preferably several different ones) S^2 with some explicit maps. More examples on some quotient spaces, $S^1 \times S^1$, \mathbb{RP}^2 , Klein bottle.

.....

Example 1.1.1. Consider $\sigma_{\alpha}: \Delta^n \to X$ where $X = S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

For n = 0, $\alpha = 0$: $\sigma_0 : \Delta^0 \to S^1$ where $\sigma_0(1) = (1,0)$ For n = 1, $\alpha = 1$: In the figure below $t_0 + t_1 = 1$, $t_0, t_1 \ge 0$

 $\Delta^1 = \{(t_0, 1 - t_0), t_0 \in [0, 1]\} = [e_0, e_1]$

 $\sigma_1: \Delta^1 \to S^1 \text{ where } t_0 \in [0,1] \text{ where } \sigma_1(t_0) = (\cos(2\pi t_0), \sin(2\pi t_0))$

 $\sigma|_{[e_0]} = \sigma_1(0) = (\cos(0), \sin(0)) = (1, 0)$

 $\sigma|_{[e_1]} = \sigma_1(1) = (\cos(2\pi), \sin(2\pi)) = (1, 0)$

Example 1.1.2. Consider $\sigma_{\alpha} : \Delta^{n} \to X$ where $X = S^{2} = \{(x, y, z) \in \mathbb{R}^{2} \mid x^{2} + y^{2} + z^{2} = 1\}$

For n = 2,
$$\alpha$$
 = 2: $\sigma_2 : \Delta^2 \to S^2$
 $\Delta^1 = \{(t_0, t_1, t_2) | t_0 + t_1 + t_2 = 1, t_i \ge 0 \text{ for } i = 1, 2, 3]\} = [e_0, e_1, e_2]$

The faces are $[e_1, e_2]$ or $(0, t_1, t_2)$, where $t_1 + t_2 = 1$,

 $[e_0, e_2]$ or $(t_0, 0, t_2)$, where $t_0 + t_2 = 1$,

 $[e_0, e_1]$ or $(t_0, t_1, 0)$, where $t_0 + t_1 = 1$.

$$\begin{split} \sigma_2((t_0,t_1,t_2)) &= \frac{(t_0,t_1,t_2)}{\sqrt{(t_0^2+t_1^2+t_2^2)}} \\ \sigma|_{[e_1,e_2]}(t_1,t_2) &= \frac{(t_1,t_2)}{\sqrt{(t_1^2+t_2^2)}}, \quad \sigma|_{[e_0,e_2]]}(t_0,t_2) = \frac{(t_0,t_2)}{\sqrt{(t_0^2+t_2^2)}} \ , \quad \sigma|_{[e_0,e_1]}(t_1,t_2) = \frac{(t_0,t_1)}{\sqrt{(t_0^2+t_1^2)}} \ , \end{split}$$

1.2 Chain Complexes

Definition 1.2.1 (Chain complex). Complex of abelian groups. Homology of a complex. A chain complex is a sequencee of homomorphisms of abelian groups:

$$\dots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \dots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} . The equation $\partial_n \partial_{n+1} = 0$ is equivalent to the inclusion $\operatorname{Im} \partial_{n+1} \subset \ker \partial_n$.

...... As a remark: complex of R-modules, for a commutative ring R.

The map ∂_n for a Δ -complex \mathcal{X} is a boundary homomorphism $\partial_n : \Delta_n(\mathcal{X}) \to \Delta_{n-1}(\mathcal{X})$ where the action on a basis element of $\Delta_n(\mathcal{X})$ is:

$$\partial_n(\sigma_\alpha) = \sum_i (-1)^i \sigma_\alpha | [v_0, ..., \hat{v_i}, ..., v_n]$$

where the '^' symbol denotes the absence of that vertex.

Lemma 1.2.1. The composition $\partial^2 = 0$ below is zero

$$\Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X)$$

Proof: For n = 3:

$$\Delta_3(X) \xrightarrow{\partial_3} \Delta_2(X) \xrightarrow{\partial_2} \Delta_1(X)$$

Let us proof that $\partial_2 \partial_3 = 0$:

$$\partial_3 \sigma = \sum_i (-1)^i \sigma|[v_0, ..., \hat{v_i}, v_3] = \sigma|[v_1, v_2, v_3] - \sigma|[v_0, v_2, v_3] + \sigma|[v_0, v_1, v_3] - \sigma|[v_0, v_1, v_2]$$

$$\partial_{2}\partial_{3}(\sigma) = \sigma|[v_{2}, v_{3}] - \sigma|[v_{1}, v_{3}] + \sigma|[v_{1}, v_{2}]
= -\sigma|[v_{2}, v_{3}] + \sigma|[v_{0}, v_{3}] - \sigma|[v_{0}, v_{2}]
= \sigma|[v_{1}, v_{3}] - \sigma|[v_{0}, v_{3}] + \sigma|[v_{0}, v_{1}]
= -\sigma|[v_{1}, v_{2}] + \sigma|[v_{0}, v_{2}] - \sigma|[v_{0}, v_{1}] = 0$$
(1.1)

In case of n:

$$\partial_{n-1}\partial_{n}(\sigma) = \partial_{n-1}\left(\sum_{i}(-1)^{i}\sigma|[v_{0},...,\hat{v_{i}},...,v_{n}]\right)$$

$$= \sum_{j}(-1)^{j}\left(\sum_{i}(-1)^{i}\sigma|[v_{0},...,\hat{v_{i}},...,v_{n}]\right)|[v_{0},...,\hat{v_{j}},...,v_{n}]$$

$$= \sum_{ji}(-1)^{i}(-1)^{j}\sigma_{|[v_{0},...,\hat{v_{i}},...,\hat{v_{j}}...,v_{n}]} = 0$$

$$(1.2)$$

1.3 Homology Calculations: Examples

 S^1 with several different Δ -complex structures. An interval [0; 1].

S^1 1.3.1

Method I: Triangulation

To compute the homology group of the circle S^1 we can triangulate the circle in the following way:

We can construct the following chain complex which is a sequence of homomorphisms of abelian groups:

$$0 \xrightarrow{\partial_2 = 0} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} and

$$\begin{vmatrix} C_0 = \langle v_0, v_1, v_2 \rangle \\ C_1 = \langle a, b, c \rangle \\ C_n = \{0\} \quad \forall n \geqslant 2 \end{vmatrix},$$

$$0 \xrightarrow{\partial_2 = 0} \mathbb{Z}^{\oplus^3} \xrightarrow{\partial_1} \mathbb{Z}^{\oplus^3} \xrightarrow{\partial_0 = 0} 0$$

The n-th homology group is defined as $H_n = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$.

First, let's compute H_0 :

$$\ker \partial_0 = C_0 = \langle v_0, v_1, v_2 \rangle$$
 since $\partial_0 = 0$

To calculate Im
$$\partial_1$$
, let's compute $\partial_1(\alpha a + \beta b + \gamma c) = \alpha(v_1 - v_0) + \beta(v_2 - v_1) - \gamma(v_2 - v_0)$

$$= (-\alpha + \gamma)v_0 + (\alpha - \beta)v_1 + (\beta - \gamma)v_2 = (\gamma - \alpha)v_0 + (\alpha - \beta)v_1 + (-(\gamma - \alpha) - (\alpha - \beta))v_2$$

To calculate Im
$$\partial_1$$
, let's compute $\partial_1(\alpha a + \beta b + \gamma c) = \alpha(v_1 - v_0) + \beta(v_2 - v_1) - \gamma(v_2 - v_0)$

$$= (-\alpha + \gamma)v_0 + (\alpha - \beta)v_1 + (\beta - \gamma)v_2 = (\gamma - \alpha)v_0 + (\alpha - \beta)v_1 + (-(\gamma - \alpha) - (\alpha - \beta))v_2$$
Im $\partial_1 = \left\{ \begin{pmatrix} (\gamma - \alpha) \\ (\alpha - \beta) \\ -(\gamma - \alpha) - (\alpha - \beta) \end{pmatrix}, \quad \alpha, \beta, \gamma \subseteq \mathbb{Z} \right\} \subseteq \mathbb{Z}^{\oplus 3}$

Claim: There exist an isomorphism $\psi: \operatorname{Im} \partial_1 \simeq \mathbb{Z}^2$

$$\psi: \left(\begin{array}{c} (\gamma - \alpha) \\ (\alpha - \beta) \\ (\beta - \gamma) \end{array}\right) \mapsto \left(\begin{array}{c} (\gamma - \alpha) \\ (\alpha - \beta) \end{array}\right)$$

 ψ is one-to-one since if $(\gamma - \alpha = 0 \& \alpha - \beta = 0) \Rightarrow \beta - \gamma = 0 \& \alpha = \beta = \gamma$

 ψ is onto since given $\binom{m}{n} \in \mathbb{Z}^2$ there exist an element $\binom{m}{n} \in \operatorname{Im} \partial_1$ such that

$$\psi\begin{pmatrix} m\\ n\\ -m-n \end{pmatrix} = \begin{pmatrix} m\\ n \end{pmatrix}$$
, since ψ is one-to-one and onto, $\operatorname{Im} \partial_1 \simeq \mathbb{Z}^2$

$$H_0 = \frac{\ker \partial_0}{\operatorname{Im} \partial_1} = \mathbb{Z}^3 / \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \mathbb{Z} \oplus \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \mathbb{Z}$$

Claim:
$$\phi: \left(\mathbb{Z}^3 \middle/ \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right) \mathbb{Z} \oplus \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right) \mathbb{Z} \right) \simeq \mathbb{Z}$$

First, let us take the map $\varphi: \mathbb{Z}^3 \to \mathbb{Z}^3 \middle/ \left\langle \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right) \right\rangle$

$$\mathbb{Z}^3 \ni \left(\begin{array}{c} p \\ q \\ r \end{array}\right) = p \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right) + q \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right) + (p+q+r) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)$$

where $p \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right) + q \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right) \in \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right) \mathbb{Z} + \left(\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right) \mathbb{Z}$

So, $\varphi: \left(\begin{array}{c} p \\ q \\ r \end{array}\right) \mapsto \left(\begin{array}{c} p \\ q \\ r \end{array}\right) \mapsto (p+q+r) \in \mathbb{Z}$, Clearly, ϕ is injective and surjective. So, $H_0 \simeq \mathbb{Z}$

Second, let's compute H_1 :

ker
$$\partial_1 = \left\{ \begin{pmatrix} m \\ m \\ m \end{pmatrix}, m \in \mathbb{Z} = \right\} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mathbb{Z} \simeq \mathbb{Z}$$

$$\operatorname{Im} \partial_2 = \{0\} \text{ since } C_2 = \{0\}$$

$$H_1 = \frac{\ker \partial_1}{\operatorname{Im} \partial_2} = \frac{\ker \partial_1}{\{0\}} = \ker \partial_1 \simeq \mathbb{Z}$$

Finally, the homology groups of the circle are:

$$H_n^{\Delta}(S^1) \simeq \left\{ \begin{array}{ll} \mathbb{Z}, & \text{for } n = 0, 1\\ 0 & \text{for } n \geqslant 2 \end{array} \right.$$

Method II

To compute the homolgy group of the circle S^1 we can construct the circle, by two verteces and two edges, in the following way:

my second node

We can construct the following chain complex which is a sequence of homomorphisms of abelian groups:

$$0 \xrightarrow{\partial_2 = 0} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} and

$$\begin{vmatrix} C_0 = \langle v_0, v_1 \rangle \\ C_1 = \langle a, b \rangle \\ C_n = \{0\} \quad \forall n \geqslant 2 \end{vmatrix},$$

$$0 \xrightarrow{\partial_2 = 0} \mathbb{Z}^{\oplus^2} \xrightarrow{\partial_1} \mathbb{Z}^{\oplus^2} \xrightarrow{\partial_0 = 0} 0$$

The n-th homology group is defined as $H_n = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$.

First, let's compute H_0 :

$$\ker \partial_0 = C_0 = \langle v_0, v_1 \rangle$$
 since $\partial_0 = 0$

To calculate Im ∂_1 , let's compute $\partial_1(\alpha a + \beta b) = \alpha(v_1 - v_0) + \beta(v_1 - v_0) = (\alpha + \beta)(v_1 - v_0)$

$$\operatorname{Im} \partial_1 = \langle v_1 - v_0 \rangle$$

Im
$$\partial_1 = \langle v_1 - v_0 \rangle$$

 $H_0 = \frac{\ker \partial_0}{\operatorname{Im} \partial_1} = \frac{\langle v_0, v_1 \rangle}{\langle v_1 - v_0 \rangle} = \frac{\langle v_1 - v_0, v_1 \rangle}{\langle v_1 - v_0 \rangle} = \langle v_1 \rangle \simeq \mathbb{Z}$

Second, let's compute H_1 :

$$\ker \partial_{1} = \left\{ \begin{pmatrix} m \\ m \\ m \end{pmatrix}, m \in \mathbb{Z} = \right\} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mathbb{Z} \simeq \mathbb{Z}$$

$$\operatorname{Im} \partial_{2} = \{0\} \text{ since } C_{2} = \{0\}$$

$$H_{1} = \frac{\ker \partial_{1}}{\operatorname{Im} \partial_{2}} = \frac{\ker \partial_{1}}{\{0\}} = \ker \partial_{1} \simeq \mathbb{Z}$$

Finally, the homology groups of the circle are:

$$H_n^{\Delta}(S^1) \simeq \left\{ egin{array}{ll} \mathbb{Z}, & \mbox{for } n=0,1 \\ 0 & \mbox{for } n \geqslant 2 \end{array} \right.$$

1.3.2**Torus**

One way to calculate the homology groups of a torus T is by triangulating it into two 2-simplices A and B, upper triangle and lower one respectively.

$$\begin{array}{c|c}
v & \xrightarrow{b} v \\
a & & \\
\downarrow A & & \\
\downarrow A$$

We can construct the following chain complex which is a sequence of homomorphisms of abelian groups:

$$0 \xrightarrow{\partial_3=0} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0=0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} and

$$\begin{vmatrix} C_0 = \langle v \rangle \\ C_1 = \langle a, b, c \rangle \\ C_2 = \langle A, B \rangle \\ C_n = \{0\} \quad \forall n \geqslant 3 \end{vmatrix},$$

$$0 \overset{\partial_3=0}{\longrightarrow} \mathbb{Z}^{\oplus^2} \overset{\partial_2}{\longrightarrow} \mathbb{Z}^{\oplus^3} \overset{\partial_1}{\longrightarrow} \mathbb{Z} \overset{\partial_0=0}{\longrightarrow} 0$$

The n-th homology group is defined as $H_n = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$.

First, let's compute H_0 : $\ker \partial_0 = C_0 = \langle v \rangle \text{ since } \partial_0 = 0$

Im
$$\partial_1 = \{0\}$$
 since $\partial_1(\alpha a + \beta b + \gamma c) = \alpha(v - v) + \beta(v - v) + \gamma(v - v) = 0$
 $H_0 = \frac{\ker \partial_0}{\operatorname{Im} \partial_1} = C_0 \simeq \mathbb{Z}$

Second, let's compute H_1 :

 $\ker \partial_1 = C_1 = \langle a, b, c \rangle \text{ since } \partial_1 = 0$

In
$$\partial_2 = \langle a+b-c \rangle$$
 since $\partial_2(\alpha A + \beta B) = \alpha(a+b-c) + \beta(a+b-c) = (\alpha+\beta)(a+b-c)$
 $H_1 = \frac{\ker \partial_1}{\operatorname{Im} \partial_2} = \frac{\langle a,b,c \rangle}{\langle a+b-c \rangle}$
The group $\langle a,b,c \rangle$ can be also generated by the elements $m=a+b-c$, bandc where $a=m-b+c$.

$$H_1 = \frac{\langle a+b-c,b,c\rangle}{\langle a+b-c\rangle} = \langle b,c\rangle \simeq \mathbb{Z} \oplus \mathbb{Z}$$

Last, let's compute H_2 :

 $\ker \partial_2 = \langle A - B \rangle$ since $\partial_2(\alpha A + \beta B) = (\alpha + \beta)(a + b - c) = 0 \implies \alpha = -\beta$ so the kernel is generated by the element A-B

Im
$$\partial_3 = \{0\}$$
 since $C_3 = \{0\}$
 $H_2 = \frac{\ker \partial_2}{\operatorname{Im} \partial_3} = \frac{\langle A - B \rangle}{\{0\}} = \langle A - B \rangle \simeq \mathbb{Z}$

Finally, the homology groups of the torus are:

$$H_n^{\Delta}(T) \simeq \left\{ egin{array}{ll} \mathbb{Z}, & \mbox{for } n=0,2 \ \mathbb{Z} \oplus \mathbb{Z}, & \mbox{for } n=1 \ 0 & \mbox{for } n \geqslant 3 \end{array}
ight.$$

\mathbb{RP}^2 1.3.3

One way to calculate the homology groups of a projective plain \mathbb{RP}^2 is by triangulating it into two 2-simplices A and B, upper triangle and lower one respectively.

$$\begin{array}{c|c}
w & \leftarrow b & v \\
a & A & b & a \\
v & \rightarrow b & w
\end{array}$$

We can construct the following chain complex which is a sequence of homomorphisms of abelian groups:

$$0 \xrightarrow{\partial_3 = 0} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0 = 0} 0$$

where $\partial_n \partial_{n+1} = 0$ for each n in \mathbb{Z} and

$$0 \overset{\partial_3 = 0}{\longrightarrow} \mathbb{Z}^{\oplus^2} \overset{\partial_2}{\longrightarrow} \mathbb{Z}^{\oplus^3} \overset{\partial_1}{\longrightarrow} \mathbb{Z}^{\oplus^2} \overset{\partial_0 = 0}{\longrightarrow} 0$$

The n-th homology group is defined as $H_n = \ker \partial_n / \operatorname{Im} \partial_n$

First, let's compute H_0 : $\ker \partial_0 = C_0 = \langle v, w \rangle \text{ since } \partial_0 = 0$ Im $\partial_1 = \langle w - v \rangle$ since $\partial_1(\alpha a + \beta b + \gamma c) = \alpha(w - v) + \beta(w - v) + \gamma(v - v)$ $= (\alpha + \beta)(w - v)$

$$H_0 = \frac{\ker \partial_0}{\operatorname{Im} \partial_1} = \frac{\langle v, w \rangle}{\langle w - v \rangle} = \frac{\langle w - v, w \rangle}{\langle w - v \rangle} = \langle w \rangle \simeq \mathbb{Z}$$

Second, let's compute H_1 :

$$\ker \partial_1 = \langle a - b, c \rangle$$
 since $\partial_1(\alpha a + \beta b + \gamma c) = (\alpha + \beta)(w - v) = 0 \implies \alpha = -\beta$

The general element in C_1 : $(\alpha a + \beta b + \gamma c) = \alpha(a - b) + \gamma c$, so the ker ∂_1 can be generated by the elements a-b and c

Im
$$\partial_2 = \langle -a+b+c, a-b+c \rangle$$
 since $\partial_2(\alpha A + \beta B) = \alpha(-a+b+c) + \beta(a-b+c)$

$$H_1 = \frac{\ker \partial_1}{\operatorname{Im} \partial_2} = \frac{\langle a-b,c \rangle}{\langle -a+b+c, a-b+c \rangle}$$

$$H_1 = \frac{\ker \partial_1}{\operatorname{Im} \partial_2} = \frac{\langle a-b,c \rangle}{\langle -a+b+c,a-b+c \rangle}$$

The group $\langle a-b,c\rangle$ can be also generated by the elements m=a-b+c, and c where a-b=m-c.

$$H_1 = \frac{\langle a-b,c\rangle}{\langle -a+b+c,a-b+c\rangle} = \frac{\langle a-b+c,c\rangle}{\langle a-b+c,-a+b+c\rangle}$$

H₁ = $\frac{\langle a-b,c\rangle}{\langle -a+b+c,a-b+c\rangle} = \frac{\langle a-b+c,c\rangle}{\langle a-b+c,-a+b+c\rangle}$ If we let t=a-b+c then -a+b+c=-t+2c then the group $\langle t,-t+2c\rangle$ can be also generated by the elements t and 2c.

In terms of t and c,
$$H_1 = \frac{\langle t, c \rangle}{\langle t, 2c \rangle} = \frac{\langle c \rangle}{\langle 2c \rangle} \simeq \frac{\mathbb{Z}}{2\mathbb{Z}}$$

Last, let's compute H_2 :

$$\ker \partial_2 = \{0\} \text{ since } \partial_2(\alpha A + \beta B) = (-\alpha + \beta)a + (\alpha - \beta)b + (\alpha + \beta)c = 0 \text{ only when } \alpha = \beta = 0$$

 $\lim \partial_2 = \{0\} \text{ since } C_2 = \{0\}$

Im
$$\partial_3 = \{0\}$$
 since $C_3 = \{0\}$
 $H_2 = \frac{\ker \partial_2}{\operatorname{Im} \partial_3} = \frac{\{0\}}{\{0\}} = 0$

Finally, the homology groups of the projective plane are:

$$H_n^{\Delta}(\mathbb{RP}^2) \simeq \left\{ egin{array}{ll} \mathbb{Z}, & ext{for } n=0 \\ rac{\mathbb{Z}}{2\mathbb{Z}}, & ext{for } n=1 \\ 0 & ext{for } n \geqslant 2 \end{array} \right.$$

Maps of Complexes 1.4

1.4.1 Maps on Homology

Bibliography

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.