Aufbau dieses Blocks

Vorlesung/Übung

- Einführung in R und Wiederholung grundlegender Programmiertechniken
- 2. Fehlerrechnung/Kurvenanpassung
- Monte-Carlo Simulation
- 4. Multivariate Statistik
- 5. Zeitreihenanalyse

Umsetzung des Vorlesungsstoffes in R:

 Erstellen kleinerer Programme während der Vorlesung sowie in der Übung am Nachmittag

Motivation

Fehlerrechnung in den Geowissenschaften

Wo ist Fehlerrechnung in den Geowissenschaften wichtig?

- Messungen mit Messinstrumenten (Kompass, Thermometer, Massenspektrometer, etc.)
- Datierung/Altersbestimmung
- (Klima-) Rekonstruktion
- Modellierung (Modellierung der Prozesse; Parameter, die in das Modell eingehen)
- · etc.

Statistische Fehler

Bedingungen für statistische Verteilung von Fehlern:

- Die Messung wurde mehrmals unter den gleichen Bedingungen (gleiches Objekt/Probe, gleiche Methode/Instrument, gleiche Umgebungsbedingungen) durchgeführt.
- Die Messwerte sind voneinander unabhängig (d.h., sie beeinflussen sich nicht gegenseitig).
- Die auftretenden Abweichungen/Schwankungen sind ausschließlich zufällig (d.h. keine groben oder systematischen Fehler).

Auswertung einer Messreihe

Berechnung von Mittelwert und Standardabweichung

Selbst wenn eine Messgröße normalverteilt ist, sind der tatsächliche Mittelwert und die tatsächliche Standardabweichung unbekannt!

Aufgabe der Fehlerrechnung:

Schätzung der beiden Parameter.

Mittelwert:

Der beste Schätzwert des "wahren" Mittelwerts, μ , ist der arithmetische Mittelwert:

$$\overline{x} = \frac{1}{n} (x_1 + x_2 + ... + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Auswertung einer Messreihe

Standardabweichung der Einzelmessung:

Der beste Schätzwert der "wahren" Standardabweichung der Grundgesamtheit, σ , ist die Standardabweichung, s:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Diese ist ein Maß für die Genauigkeit der Einzelmessung

-> von 100 weiteren Einzelmessungen würden ca. 68 in das 1σ -Intervall um den Mittelwert fallen.

Auswertung einer Messreihe

Standardabweichung des Mittelwertes:

Der Mittelwert ist naturgemäß eine bessere Schätzung des Messwerts als jede Einzelmessung. Standardabweichung des Mittelwerts verschiedener, gleicher Messreihen (jeweils n Einzelmessungen):

$$s_{\overline{x}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{s}{\sqrt{n}}$$

Diese ist ein Maß für die Genauigkeit der Mittelwerts und ist kleiner als die Standardabweichung der Einzelmessung.

 $S_{\overline{x}}$ wird häufig auch als Standardfehler bezeichnet.

Indirekte Messung von Messgrößen:

Häufig kann man die Größe, die eigentlich von Interesse ist, nicht direkt messen, sondern nur Größen, von denen diese abhängt bzw. mit denen diese zusammenhängt.

<u>Beispiele:</u>

- Messung von Aktivitäts- bzw. Isotopenverhältnissen in der Geochronologie
- Messung der Ringweite von Baumringen zur Bestimmung der Temperatur in der Vergangenheit

Mittelwert einer indirekten Messgröße:

Wenn der funktionale Zusammenhang zwischen der indirekten Messgröße und den Eingangsgrößen bekannt ist, d.h.,

$$z = f(x; y)$$

gilt:

$$\overline{z} = f(\overline{x}; \overline{y})$$

<u>D.h.:</u> Der Wert der indirekten Messgröße kann durch einsetzen der Mittelwerte in die Funktionsgleichung berechnet werden.

Gauß'sches Fehlerfortpflanzungsgesetz:

Das Gauß'sche Fehlerfortpflanzungsgesetz lässt sich auch auf Funktionen von beliebig vielen Veränderlichen anwenden:

$$y = f(x_1, x_2, ..., x_n)$$

$$S_{\overline{y}} = \sqrt{\left(\frac{\partial f(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)}{\partial x_1} S_{\overline{x}_1}\right)^2 + \dots + \left(\frac{\partial f(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)}{\partial x_n} S_{\overline{x}_n}\right)^2}$$

Gauß'sches Fehlerfortpflanzungsgesetz:

Einige Näherungsformeln:

Tabelle 2: Meßunsicherheit (Standardabweichung) des Mittelwertes für einige besonders häufig auftretende Funktionen $(C \in \mathbb{R})$

Funktion	Meßunsicherheit des Mittelwertes
Z = X + Y	$\Delta z = \sqrt{(\Delta x)^2 + (\Delta y)^2}$
Z = X - Y	$\Delta z = \sqrt{(\Delta x)^2 + (\Delta y)^2}$
Z = CXY	$ \Lambda_z \sqrt{ \Lambda_x ^2 \Lambda_y ^2}$
$Z = C\frac{X}{Y}$	$\left \frac{\Delta z}{\bar{z}} \right = \sqrt{\left \frac{\Delta x}{\bar{x}} \right ^2 + \left \frac{\Delta y}{\bar{y}} \right ^2}$
$Z = CX^{\alpha}Y^{\beta}$	$\left \frac{\Delta z}{\bar{z}} \right = \sqrt{\left \alpha \frac{\Delta x}{\bar{x}} \right ^2 + \left \beta \frac{\Delta y}{\bar{y}} \right ^2}$

Probleme bei "herkömmlicher" Fehlerrechnung:

- Was macht man bei komplizierteren, analytisch nicht lösbaren Funktionen?
- Was macht man bei nicht-linearen funktionalen Zusammenhängen,
 d.h. asymmetrischen Wahrscheinlichkeitsverteilungen?
- Was macht man bei nicht unabhängigen (d.h. korrelierten)
 Messgrößen bzw. Zufallsvariablen?
- Wie geht man bei komplexen Modellierungen vor?
- -> Monte-Carlo-Simulation

Die Monte-Carlo-Simulation (auch MC-Simulation) ist ein Verfahren aus der Stochastik, deren Basis sehr häufig durchgeführte (simulierte) Zufallsexperimente darstellen.

Ziel: Lösung von analytisch nicht oder nur aufwändig lösbaren Problemen.

Statistische Grundlage: Gesetz der großen Zahlen

Die Zufallsexperimente können entweder real (z.B. durch Würfeln) oder durch Erzeugung von geeigneten Zufallszahlen am Computer durchgeführt werden.

Historie:

Die Idee zur Monte-Carlo-Simulation wurde in den 1930er Jahren von dem italienische Physiker Enrico Fermi entwickelt.

Die praktische Umsetzung war zu dieser Zeit aufgrund mangelnder Rechenzeit nur begrenzt möglich.

Historie:

Erste Simulationen wurden 1946 am Los Alamos Scientific Laboratory von dem polnischen Mathematiker Stanislaw Ulam und John von Neumann (Mathematiker österreichisch-ungarischer Herkunft) durchgeführt.

Da es sich um ein Geheim-Projekt handelte, musste ein Codename vergeben werden. In Anlehnung an die Spielbank in Monte Carlo wählte von Neumann den Namen "Monte Carlo".

Einige Anwendungsbeispiele:

Bestimmung der Fläche eines Kreises

- Erzeuge (viele) Zufallszahlen im Quadrat
- Zähle, wie viele davon innerhalb des Kreises liegen

$$A_{\mathrm{Kreis}} = \frac{\mathrm{Treffer\ im\ Kreis}}{\mathrm{Gesamtzahl\ der\ Punkte}} A_{\mathrm{Quadra}}$$

Einige Anwendungsbeispiele:

Bestimmung der Zahl π

- Erzeuge (viele) Zufallszahlen im Quadrat
- Zähle, wie viele davon innerhalb des Kreises liegen

$$\frac{A_{\text{Kreis}}}{A_{\text{Quadrat}}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4} = \frac{\text{Treffer im Kreis}}{\text{Gesamtzahl der Punkte}}$$

Simulation von Zufallszahlen:

Zufallszahlen verschiedener Verteilungen können in $\mathbb R$ mit folgenden Befehlen erzeugt werden:

```
    runif() - gleichverteilte Zufallszahlen
```

- rnorm() normalverteilte Zufallszahlen
- rt()
 Student's-t-verteilte Zufallszahlen
- rexp() exponentialverteilte Zufallszahlen

Weitere Verteilungen s. z.B. An Introduction to R.

Simulation von Zufallszahlen:

Übung:

- Informiere dich in der Hilfe über die entsprechenden Funktionen und die benötigten Variablen
- Erzeuge von allen Verteilungen jeweils 10 Zufallszahlen und stelle diese in einem Histogramm dar.

Simulation von Zufallszahlen:

Übung:

- Erzeuge 10 normalverteile Zufallszahlen mit dem Mittelwert μ = 100, und der Standardabweichung σ = 10!
- Berechne Mittelwert und Standardabweichung der erzeugten Werte!
- Vergleiche mit dem vorgegebenen Wert!
- Wie viele Zufallszahlen muss man erzeugen, damit man mit hoher Sicherheit eine "gute" Verteilung hat?

Berechnung der Fläche des Einheitskreises (Radius = 1):

<u>Übung:</u>

- Erzeuge 100 gleichverteilte Punkte im Einheitsquadrat und plotte diese (mit plot())
- Bestimme diejenigen, die im Einheitskreis liegen und plotte diese (mit points())
- Schätze aus dem Verhältnis der Punkte innerhalb und außerhalb des Kreises seine Fläche ab
- Vergleiche mit dem echten Ergebnis
- Wie viele Punkte muss man erzeugen, um ein "gutes" Ergebnis zu erhalten?

Einige Anwendungsbeispiele:

Monte-Carlo-Integration

- Erzeuge (möglichst viele) "Stützstellen"
- Bestimme das Integral über die Fläche der einzelnen Trapeze

Monte-Carlo-Integration:

Übung:

- Integriere mittels Monte-Carlo-Simulation die Funktion f(x) = 2x + 2im Wertebereich von 2 bis 6
- Ansatz: Nutze das Rechteck von x = 2 bis 6 und von y = 0 bis 14
- Vergleiche mit dem wahren Ergebnis

Vorteil der Monte-Carlo-Simulation:

Auch wenn man nicht weiß, wie man die Fläche eines Kreises berechnet oder integriert, kann man das Ergebnis durch einfaches "Ausprobieren" (d.h. Simulation) bestimmen

-> insbesondere von Vorteil bei sehr komplexen Zusammenhängen, die von vielen Parametern abhängen

<u>Beispiel:</u> Klimamodelle enthalten unzählige Parameter, die nicht exakt bekannt sind bzw. für die nur eine Abschätzung angegeben werden kann.

Die Monte-Carlo-Simulation erlaubt eine Bestimmung der Abhängigkeiten bzw. Unsicherheiten der Ergebnisse der Simulationen von diesen Modell-Parametern.

<u>Einige wichtige Aspekte der Monte-Carlo-Simulation, die in dieser</u> <u>Vorlesung nicht besprochen werden:</u>

- Erzeugung von Zufallszahlen (möglichst "gute" Simulation der Daten)
- Kontrolle und Beschleunigung der Konvergenz (Wie viele Iterationen müssen durchgeführt werden? Was ist die effizienteste/schnellste Methode zur Programmierung?)
- Monte-Carlo-Optimierung (z.B. Lösen von Maximierungs- bzw.
 Minimierungsproblemen in der Wahrscheinlichkeitstheorie)
- etc.

Schleifen und Kontrollstrukturen in R

Berechnung der Fläche des Einheitskreises (Radius = 1) unter Verwendung von Schleifen:

Übung:

• Setze die vorherige Übung unter Verwendung von for()-Schleifen und if()-Bedingungen um!

Schleifen vs. Vektoren in R

Schleifen sind deutlich langsamer als vektoriell orientiertes Programmieren in R:

<u>Übung:</u>

- Vergleiche die Laufzeit der beiden Programme für n = 10.000
- Verwende hierfür den Befehl Sys.time()
- Vergleiche die Laufzeit der beiden Programme für n = 100.000
- Entferne alle Grafik-Befehle und vergleiche die Laufzeiten erneut.

Probleme bei "herkömmlicher" Fehlerrechnung:

- Was macht man bei komplizierteren, analytisch nicht lösbaren Funktionen?
- Was macht man bei nicht-linearen funktionalen Zusammenhängen, d.h. asymmetrischen Wahrscheinlichkeitsverteilungen?
- Was macht man bei nicht unabhängigen (d.h. korrelierten)
 Messgrößen bzw. Zufallsvariablen?
- -> Monte-Carlo-Simulation

Monte-Carlo-Simulation und Fehlerrechnung

- Fehlerrechnung bei analytisch nicht-lösbaren Funktionen
- Fehlerrechnung bei korrelierten Fehlern
- Fehlerrechnung bei asymmetrischen Funktionen
- Berechnung von Konfidenzintervallen mit der MC-Methode
- Berechnung von Fehlern unter Beachtung zusätzlicher Bedingungen
- -> alles am Beispiel der U-Th-Datierung
- Simulation mit bedingten Wahrscheinlichkeiten (Markov-Chain-Monte-Carlo Methoden)
- -> Altersmodelle

Die U-Th-Datierungsmethode:

<u>Die U-Th-Datierungsmethode:</u>

Die ²³⁸U-Zerfallsreihe

Daraus resultierende DGL's:

(1)
$$\frac{dN_{238}}{dt} = -N_{238} \cdot \lambda_{238}$$

(2)
$$\frac{dN_{234}}{dt} = -N_{234} \cdot \lambda_{234} + N_{238} \cdot \lambda_{238}$$

(3)
$$\frac{dN_{230}}{dt} = -N_{230} \cdot \lambda_{230} + N_{234} \cdot \lambda_{234}$$

 N_i : Anzahl der Atome λ_i = In 2 / $T_{1/2}$; Zerfallskonstante [1/y]

(1)
$$\left(\frac{^{234}U}{^{238}U}\right)_t = \left[\left(\frac{^{234}U}{^{238}U}\right)_0 - 1\right]e^{-\lambda_{_{234}}t} + 1$$

<u>Die U-Th-Datierungsmethode</u>:

Für t->∞ stellt sich ein Gleichgewicht der Aktivität in der Zerfallsreihe ein:

$$N_{238} \lambda_{238} = N_{234} \lambda_{234} = N_{230} \lambda_{230} \dots$$

- Uran: unter natürlichen Bedingungen wasserlöslich.
- Thorium: sehr partikelreaktiv und daher wasserunlöslich.

Bei Bildung von sekundären Karbonaten (Speläotheme, Korallen) wird Uran eingelagert, aber kein Th!

Anfangsbedingung: 230 Th(t=0) = 0.

Störung des radioaktiven Gleichgewichts -> Uranreihen-Ungleichgewichtsmethode

Die U-Th-Datierungsmethode:

$$(2) \quad \left(\frac{^{230}Th}{^{238}U}\right)_{t} = (1 - e^{-\lambda_{230}t}) + \left(\left(\frac{^{234}U}{^{238}U}\right)_{t} - 1\right) \frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}} (1 - e^{-(\lambda_{230} - \lambda_{234})t})$$

mit 230 Th(t=0) = 0 und λ_{234} bzw. $\lambda_{230} >> \lambda_{238}$

Die U-Th-Datierungsmethode:

<u>Datierungszeitraum:</u>

Minimalalter: ~ einige Jahre (je nach Messmethode)

Maximalalter: 350,000 - 650,000 Jahre (je nach Messmethode)

Der Isochronenplot

Fehlerrechnung bei der U-Th-Datierungsmethode:

$$\left(\frac{^{230}Th}{^{238}U}\right)_{t} = \left(1 - e^{-\lambda_{230}t}\right) + \left(\left(\frac{^{234}U}{^{238}U}\right)_{t} - 1\right) \frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}} \left(1 - e^{-(\lambda_{230} - \lambda_{234})t}\right)$$

Die Altersgleichung ist nicht analytisch lösbar, d.h., man kann die Gleichung nicht nach dem Alter, t, auflösen.

-> Numerische Lösung der Altersgleichung (z.B. finden der Nullstelle mit uniroot() in R)

$$\left(\frac{^{230}Th}{^{238}U}\right)_{t} - \left(1 - e^{-\lambda_{230}t}\right) - \left(\left(\frac{^{234}U}{^{238}U}\right)_{t} - 1\right) \frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}} \left(1 - e^{-(\lambda_{230} - \lambda_{234})t}\right) = 0$$

Fehlerrechnung bei der U-Th-Datierungsmethode:

<u>Beispiel</u>: $(^{230}\text{Th}/^{238}\text{U}) = 0.75 \pm 0.0021$; $(^{234}\text{U}/^{238}\text{U}) = 1.12 \pm 0.0011$

-> Alter, t: 117463 a

$$\left(\frac{^{230}Th}{^{238}U}\right)_{t} = (1 - e^{-\lambda_{230}t}) + \left(\left(\frac{^{234}U}{^{238}U}\right)_{t} - 1\right) \frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}} (1 - e^{-(\lambda_{230} - \lambda_{234})t})$$

Fehlerrechnung bei der U-Th-Datierungsmethode:

Bestimmung des Fehlers des Alters:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden Fehlern.

$$(^{230}\text{Th}/^{238}\text{U}) = 0.75 \pm 0.0021; (^{234}\text{U}/^{238}\text{U}) = 1.12 \pm 0.0011$$

Bestimmung des Fehlers des Alters:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und

den entsprechenden Fehlern.

Fehler des Alters:

Mittelwert: 117469.8 a

Standard-Abw.: 620.6 a

Korrelierte Fehler:

Unter gewissen Bedingungen sind die Fehler der Aktivitätsverhältnisse nicht unabhängig, sondern miteinander korreliert.

Herkömmliche Fehlerfortpflanzung funktioniert hier nicht, da diese von

unabhängigen Fehlern ausgeht.

Bestimmung des Fehlers des Alters:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden korrelierten Fehlern.

 $(^{230}\text{Th}/^{238}\text{U}) = 0.75 \pm 0.0021; (^{234}\text{U}/^{238}\text{U}) = 1.12 \pm 0.0011;$

Korrelation: r = 0.5

Bestimmung des Fehlers des Alters:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden korrelierten Fehlern.

Fehler des Alters:

Mittelwert: 117458.5 a

Standard-Abw.: 505.7 a

Warum ist der Fehler kleiner?

Bestimmung des Fehlers bei hohen Altern:

Für relativ alte Proben (> 300.000 Jahre) nähern sich die Aktivitätsverhältnisse dem radioaktiven Gleichgewicht -> die Änderung der Aktivitätsverhältnisse mit der Zeit wird geringer.

Bestimmung des Fehlers bei hohen Altern:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden Fehlern.

$$(^{230}\text{Th}/^{238}\text{U}) = 1.02 \pm 0.0051; (^{234}\text{U}/^{238}\text{U}) = 1.03 \pm 0.0021$$

Bestimmung des Fehlers bei hohen Altern:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und

den entsprechenden Fehlern.

Fehler des Alters:

Mittelwert: 428449 a

Standard-Abw.: 30477 a

Bestimmung des Fehlers bei hohen Altern:

Obwohl die eingehenden Fehler/Unsicherheiten normalverteilt sind, ist die resultierende Verteilung der Alter asymmetrisch.

Berechnung des Fehlers:

Median: 424007 a

95%-Konfidenz-Intervall:

[381484 a; 498798 a]

-> Fehler: +74791 -42523 a

Bestimmung des Fehlers mit zusätzlichen Bedingungen:

Für sehr alte Proben kann das Aktivitätsverhältnis im Rahmen des Messfehlers radioaktiven Gleichgewicht sein -> es kann kein Alter mehr berechnet werden.

Bestimmung des Fehlers bei hohen Altern:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden Fehlern.

$$(^{230}\text{Th}/^{238}\text{U}) = 0.995 \pm 0.0051; (^{234}\text{U}/^{238}\text{U}) = 1.002 \pm 0.0021$$

Bestimmung des Fehlers mit zusätzlichen Bedingungen:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und

den entsprechenden Fehlern.

<u>ABER</u>: Verwerfe alle Simulationen, für die kein Alter berechnet werden kann.

Fehler des Alters:

Mittelwert: 540054 a

Standard-Abw.: 85912 a

Bestimmung des Fehlers mit zusätzlichen Bedingungen:

Monte-Carlo-Simulation mit den gemessenen Aktivitätsverhältnissen und den entsprechenden Fehlern.

<u>ABER</u>: Verwerfe alle Simulationen, für die kein Alter berechnet werden kann.

Berechnung des Fehlers:

Median: 520372 a

95%-Konfidenz-Intervall:

[431801 a; 777100 a]

-> Fehler: +256728 -88571 a

<u>Bestimmung des Fehlers bei nicht-normalverteilten Fehlern:</u>
<u>Annahme:</u> Messfehler sind exponential-verteilt

 $(^{230}\text{Th}/^{238}\text{U}) = 0.7534 \pm 0.0034; (^{234}\text{U}/^{238}\text{U}) = 1.122 \pm 0.002$

Bestimmung des Fehlers bei nicht-normalverteilten Fehlern:

Annahme: Messfehler sind exponential-verteilt

 $(^{230}\text{Th}/^{238}\text{U}) = 0.7534 \pm 0.0034; (^{234}\text{U}/^{238}\text{U}) = 1.122 \pm 0.002$

Berechnung des Fehlers:

Mittelwert: 117976 a

Standard-Abw.: 1026 a

Median: 117745 a

95%-Konfidenz-Intervall:

[116436 a; 120489 a]

-> Fehler: +2744 -1309 a

Komplexere Anwendungen:

<u>Simulationen mit Zusatzbedingungen (Markov-Chain-Monte-Carlo Methoden:</u>

Manchmal gelten zusätzlich zu den aus den Wahrscheinlichkeitsverteilungen resultierenden Bedingungen noch weitere Einschränkungen für die simulierten Zufallsvariablen (wie beim Bsp. mit sehr hohen U-Th-Altern).

Diese zusätzlichen Informationen können sehr nützlich sein, um die Ergebnisse und deren Unsicherheiten zu verbessern.

Beispiel: Erstellung von Alters-Tiefen-Modellen

Man hat in der Regel mehrere Datierungen entlang der Tiefenachse eines Klimaarchivs

Was ist die beste Methode, um ein Alters-Tiefenmodell zu erstellen?

Beispiel: Erstellung von Alters-Tiefen-Modellen

Aufgrund von Ungenauigkeiten bei der Datierung überlappen die Fehler einzelner Alter häufig. Manchmal findet man sogar Altersinversionen.

Beispiel: Erstellung von Alters-Tiefen-Modellen

Wir wissen aber, dass unser Archiv (Stalagmiten, Eisbohrkerne,

Sedimente) mit zunehmender Tiefe immer älter werden muss

-> Zusatzbedingung für die Simulation der Alter

Beispiel: Erstellung von Alters-Tiefen-Modellen

Diese zusätzliche Information kann in Monte-Carlo-Simulationen eingebaut werden (MCMC-Methoden).

Markov-Chain-Monte-Carlo-Prozesse beruhen auf dem Prinzip, dass alle (in der Kette) simulierten Zufallsvariablen die Bedingungen erfüllen müssen.

Beispiel: Erstellung von Alters-Tiefen-Modellen

Der Gibbs-Sampler

Voraussetzungen:

- Eine bestimmte Anzahl (n) Alter wurden bestimmt
- · Die analytischen Fehler und ihre Verteilungen sind bekannt
- Es liegen keine systematischen oder groben Fehler vor
- Das Altersmodell muss mit zunehmender Tiefe immer älter werden, d.h. streng monoton steigend sein

Beispiel: Erstellung von Alters-Tiefen-Modellen

<u>Der Gibbs-Sampler</u>

 Simuliere einmalig alle Alter entsprechend ihrer Wahrscheinlichkeitsverteilung

- 2. Simuliere das jüngste Alter entsprechend seiner Verteilung und unter der Bedingung, dass es jünger als alle anderen Alter sein muss
- Simuliere das zweitjüngste Alter entsprechend seiner Verteilung und unter der Bedingung, dass es älter als das erste Alter sein muss aber jünger als alle anderen Alter
- 4. Iteriere diesen Prozess bis die resultierenden Verteilungen aller Alter sich nicht mehr ändern
- 5. Berechne aus den resultierenden Verteilungen aller Alter die neuen, korrigierten Alter und Fehler

Vergleich der Ergebnisse

Wichtige Voraussetzungen:

- Die verwendeten Alter und Fehler müssen korrekt bestimmt sein
- Das System muss die Voraussetzungen erfüllen (streng monoton steigend; bei Sedimenten könnte diese Bedingung z.B. aufgrund von Bioturbation verletzt sein)
- Es müssen ausreichend viele Iterationen durchgeführt werden
- •

Eigene Funktionen können in R mit dem Befehl function () erstellt werden

Rufe die Hilfe zu function() auf

Verwendung:

```
function( arglist ) {
    expr
    return(value)
}
```

Übung:

- Definiere eine Funktion, f, in \mathbb{R} , welche die Gleichung f(x) = 2*x 4 löst!
- Plotte die Funktion f
 ür den Wertebereich 1 bis 100
- Definiere folgende weiteren Funktionen und plotte diese für den Wertebereich 1 bis 100:

$$f(x) = x^2 - 1$$

$$f(x) = e^x - 1$$

Eigene Funktionen können in R mit dem Befehl function () erstellt werden

Verwendung:

```
function( arglist ) {
    expr
    return(value)
}
```

- Falls die Funktion nur eine expr hat, wird dieser Wert zurückgegeben.
- Teste den Effekt von vordefinierten Argumenten (arglist =)

Eigene Funktionen können in R mit dem Befehl function () erstellt werden

<u>Übung:</u>

Erstelle eine Funktion zur Berechnung der Kreisfläche mit einer Monte-Carlo-Simulation!