"Bees or Wasp" Dataset Classification using CNN's with Transfer Learning via Fine-tuning

Universidad Industrial de Santander

Camilo Andrés Calderón Carrillo 2170090 Jessica Paola Escobar Pérez 2171713 Daniel Felipe Rueda Mariño 2170135

#LaUISqueQueremos

Motivation

Dataset: Bee or Wasp

Figure 1. Dataset classes.

Class	Number of Images	Training Images (80%)	Test Images (10%)	Validation Images (10%)
Bee	3183	2546	318	319
Wasp	4943	3954	494	495
Other Insect	2439	1951	244	244
Other No Insect	856	685	86	85
Total	11421	9136	1142	1143

Table 1. Dataset distribution.

Strategies

Strategy	Description
1	Bee, wasp, and insects classes with data augmentation.
2	Bee, wasp, and insects classes without data augmentation.
3	Bee, wasp, insects, and no insects classes with data augmentation.
4	Bee, wasp, insects, and no insects classes without data augmentation.

Table 2. Strategies.

Data Augmentation

Universidad Industrial de

Zoom

Augmented Images

Figure 2. Data augmentation.

Data Augmentation

Universidad
Industrial de
Santander

Validation

Class	Training images	Augmented images	
Bee	2546	3986	
Wasp	3954	3986	
Other Insect	1951	3998	
Other No Insect	685	3905	

Class **Images Images Images** Bee 3986 319 318 3986 494 495 Wasp Other Insect 3998 244 244 Other No Insect 3905 86 85

Test

Training

Table 3. Training data augmentation.

Table 4. Dataset augmented.

Strategy 1: Total Training images: 11970 Total images: **14084**

Strategy 3: Total Training images: 15875 Total images: **18160**

For the model choice, we tested with the original data, i.e., four classes without data augmentation.

Model	Accuracy	Precision	Recall	F1-Score	SPEC
DenseNet201	0.9186	0.9187	0.9186	0.9183	0.9707
ResNet50	0.9440	0.9451	0.9440	0.9437	0.9805
VGG16	0.9204	0.9209	0.9204	0.9201	0.9673
VGG19	0.9186	0.9185	0.9186	0.9181	0.9646

Table 5. Results.

Model: ResNet50

50 layers cfg=[3,4,6,3] 101 layers cfg=[3,4,23,8] 152 layers cfg=[3,8,36,3]

Figure 3. ResNet50.

Transfer Learning via Fine-Tuning

```
Universidad
Industrial de
Santander
```

```
#LOADING THE RESNETS0 MODEL WITH IMAGENET PRE-TRAINED WEIGHTS
base_model = tf.keras.applications.ResNet50(
    include top=False, weights='imagenet', input tensor=None, input shape=(224,224,3),
     classes=4, pooling='max', classifier activation='softmax')
base model.trainable = True
set trainable = False
#FTNF-TUNTNG
for layer in base model.layers:
  if layer.name == 'conv4 block4 3 conv':
    set trainable = True
  if set trainable:
    layer.trainable = True
  else:
    layer.trainable = False
base model.summary()
```


Figure 4. Transfer learning.

Model Layers and Hyperparameters

Layer (type)	Output	Shape	Param #
resnet50 (Functional)	(None,	2048)	23587712
dropout (Dropout)	(None,	2048)	0
batch_normalization (BatchNo	(None,	2048)	8192
dense (Dense)	(None,	256)	524544
dropout_1 (Dropout)	(None,	256)	0
batch_normalization_1 (Batch	(None,	256)	1024
dense_1 (Dense)	(None,	4)	1028
Total papamer 24 122 E00		=======================================	=======

Hyperparameters				
Optimizer Adam				
Learning rate	0,001			
Epochs	20			
Batch size	32			
Image shape	(224,224,3)			

Table 6. Hyperparameters.

Total params: 24,122,500 Trainable params: 18,008,836 Non-trainable params: 6,113,664

Figure 5. Model - 4 classes.

Model Layers and Hyperparameters

Layer (type)	Output	Shape	Param #
resnet50 (Functional)	(None,	2048)	23587712
dropout (Dropout)	(None,	2048)	0
batch_normalization (BatchNo	(None,	2048)	8192
dense (Dense)	(None,	256)	524544
dropout_1 (Dropout)	(None,	256)	0
batch_normalization_1 (Batch	(None,	256)	1024
dense_1 (Dense)	(None,	3)	771
Total params: 24,122,243			

Hyperparameters				
Optimizer Adam				
Learning rate	0,001			
Epochs 20				
Batch size	32			
Image shape (224,224,3				

Table 6. Hyperparameters.

Figure 6. Model – 3 classes.

Trainable params: 18,008,579 Non-trainable params: 6,113,664

Training Parameters

```
B
```

Universidad Industrial de Santander

```
#TRAINING PARAMETERS
filepath = "model.h5"
checkpoint param = {
    "filepath": filepath,
    "monitor": "val categorical accuracy",
    "verbose": 1,
    "save best only": True,
    "mode": "max"
checkpoint = ModelCheckpoint(**checkpoint param)
lr_decay_params = {
    "monitor": "val loss",
    "factor": 0.5.
    "patience": 2,
    "min lr": 1e-5
lr decay = ReduceLROnPlateau(**lr_decay_params)
```

Figure 7. Callbacks.

```
#TRAINING
fit params = {
    "generator": train flow,
    "steps per epoch": train flow.n // batch size,
    "epochs": 20,
    "verbose": 1,
    "validation_data": val_flow,
    "validation_steps": val_flow.n // batch_size,
    "callbacks": [checkpoint, lr decay]
print("Training the model...")
history = model.fit generator(**fit_params)
print("Done!")
```

Figure 8. Training.

www.uis.edu.co

Training Parameters

```
B
```

Universidad Industrial de Santander

```
#TRAINING PARAMETERS
filepath = "model.h5"
checkpoint param = {
    "filepath": filepath,
    "monitor": "val categorical accuracy",
    "verbose": 1,
    "save best only": True,
    "mode": "max"
checkpoint = ModelCheckpoint(**checkpoint param)
lr_decay_params = {
    "monitor": "val loss",
    "factor": 0.5,
    "patience": 2,
    "min lr": 1e-5
lr decay = ReduceLROnPlateau(**lr decay params)
```

Figure 7. Callbacks.

```
#TRAINING
fit params = {
    "generator": train flow,
    "steps per epoch": train flow.n // batch size,
    "epochs": 20,
    "verbose": 1,
    "validation data": val flow,
    "validation_steps": val_flow.n // batch_size,
    "callbacks": [checkpoint, lr_decay]
print("Training the model...")
history = model.fit generator(**fit params)
print("Done!")
```

Figure 8. Training.

www.uis.edu.co

For the strategy choice, we tested with the four strategies, and the results are shown below:

Strategy	Accuracy	Precision	Recall	F1-Score	SPEC
1	0.9508	0.9506	0.9508	0.9505	0.9731
2	0.9461	0.9460	0.9461	0.9457	0.9696
3	0.9458	0.9460	0.9458	0.9456	0.9834
4	0.9440	0.9451	0.9440	0.9437	0.9805

Table 7. Results.

- 1. Bee, wasp, and insects classes with data augmentation.
- 2. Bee, wasp, and insects classes without data augmentation.
- 3. Bee, wasp, insects, and no insects classes with data augmentation.
- 4. Bee, wasp, insects, and no insects classes without data augmentation.

Re

Results (Strategy 1)

Figure 9. Confussion matrix.

Results (Strategy 1)

Universidad Industrial de Santander

Figure 10. Accuracy vs Epochs.

Figure 11. Loss vs Epochs.

Results (Strategy 1)

Universidad Industrial de Santander

Figure 12. ROC curve.

Figure 13. ROC curve - zoom.

Results (Strategy 3)

Figure 14. Confussion matrix.

Results (Strategy 3)

Universidad Industrial de Santander

Loss classification vs Epochs 0.3Vaidation Loss Train Loss 0.250.2 $\overset{\text{SS}}{\circ}$ 0.15 0.1 0.0510 15 20 Epoch

Figure 15. Accuracy vs Epochs.

Figure 16. Loss vs Epochs.

Results (Strategy 3)

ROC 0.98 0.960.94True Positive Rate 0.920.90.880.86ROC curve of class 1 (area = 1.00) ROC curve of class 2 (area = 0.98) ROC curve of class 3 (area = 1.00) 0.84ROC curve of class 4 (area = 0.99) Macro-average ROC curve (area = 0.99) 0.82Micro-average ROC curve (area = 0.99) 0.8 0.050.1 0.150.2False Positive Rate

Figure 17. ROC curve.

Figure 18. ROC curve - zoom.

Conclusions

• We proposed a method using ResNet50 Convolutional Neural Network over "Bees vs Wasps" dataset combining techniques such as transfer learning, fine-tuning, and data augmentation which can increases remarkably the model performance.

Universidad Industrial de Santander

#LaUISqueQueremos

Thanks!