向量组的张与紹阵张:

$$A = (a_{ij})_{mxn}$$
 $rank(A)$ ~ A的歌
 $= \begin{pmatrix} \vec{a_i} \\ \vdots \\ \vec{a_m} \end{pmatrix}$ $rank(\vec{a_1}, \dots, \vec{a_m})$ ~ A的讨账
 $= (\vec{b_1}, \dots, \vec{b_n})$ $rank(\vec{b_1}, \dots, \vec{b_n})$ ~ A的引账

强: 张二付张二列秩.

证:到等变换不改定三者! 直接验定证对相抵标准形成之.

排论: AEFnxn.

- (1) A 可连 ⇔ rank (A)=n ⇔ 行的量价性无关 ⇔到的量价性无线
- (2) rank(A)=r ⇒ 不为要的下阶3式所在行(副)的 成A的行(副)的皇的极大元美姐。

83.4基与维数

是理: Fn的每个3空间都可以由一组向量量3、

证: 假设结论对料。写同VSF^不成正.见V+0.

⇒ $\exists \vec{a} \in V \setminus \vec{b}$. 记 $V_1 = \langle \vec{a} \rangle$. $\square V_1 \subsetneq V$.

> ∃ \(\alpha \) \(\bar{V} \) \\ \(\alpha \) \(\bar{V} \) \\ \(\alpha \) \(\a

 $\Rightarrow \exists \vec{a_3} \in V \setminus V_2 \quad \exists U \mid_3 = \langle \vec{a_1}, \vec{a_2}, \vec{a_3} \rangle \bowtie V_3 \subseteq V$:

注:定理 $\Rightarrow \exists \vec{a}, ..., \vec{a}, \text{ s.t. i)} V = \langle \vec{a}, ..., \vec{a}, \rangle$ 2) 结准元气 \Rightarrow 基

户义: V⊆Fⁿ子空间,V中的一组向量 \quad \quad

- (1) $V = \langle \vec{a}_1, \dots, \vec{a}_r \rangle$ $\vec{p} + \vec{a} \in V = \lambda_1 \dots \lambda_r \leq t, \vec{a} = \sum \lambda_i \vec{a}_i$
- (2) 前,…,前继形

报(水,…,冰)为云在海,…,高了的生材、

② 秋 V的-祖基中的白星的个数为 V的 维 数

何值然基: 点,…, 南为下的一位基

南 生林
$$\mathbb{R}^3$$
 \longrightarrow V $\stackrel{1}{\longrightarrow}$ \mathbb{R}^7 \longrightarrow V 的维数 $A \longmapsto (\lambda_1, \dots, \lambda_r)$

沒
$$v \in V$$
 在 $\{\vec{a}_1, ..., \vec{a}_r\}$ 7的坐标为 $\{x_1, ..., x_r\}$ 在 $\{\vec{b}_1, ..., \vec{b}_r\}$ 不的坐标为 $\{y_1, ..., y_r\}$,即 $v = (\vec{a}_1, ..., \vec{a}_r) \begin{pmatrix} x_1 \\ x_r \end{pmatrix} = (\vec{b}_1, ..., \vec{b}_r) \begin{pmatrix} y_1 \\ y_r \end{pmatrix}$

(之) 与(生)之面的关系?

V的西级基

$$(\vec{b}_1, \dots, \vec{b}_r) = (\vec{a}_1, \dots, \vec{a}_r) T$$

从智,…,南科到行,…下人的世境知阵

$$v = (\vec{a}_1, \dots, \vec{a}_r) \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = (\vec{b}_1 \dots \vec{b}_r) \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix} = (\vec{a}_1, \dots, \vec{a}_r) T \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix}$$

坐城叫 \Rightarrow 生椒变换放 $\begin{pmatrix} \chi_i \\ \vdots \\ z_r \end{pmatrix} = T \begin{pmatrix} y_i \\ \vdots \\ y_r \end{pmatrix}$

$$\Rightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix} = \tau^{-1} \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_r \end{pmatrix}$$
 3

$$(-\sin\theta_{1}\omega\omega\theta)$$

$$e_{1}' \quad e_{2}(0,1)$$

$$\theta \quad e_{1}' \quad (\omega\omega\theta_{1}, \sin\theta_{2}')$$

$$\theta \quad e_{1}(1,0)$$

$$\Rightarrow (e'_1, e'_1) = (e_1, e_1) \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} \chi' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} \begin{pmatrix} \chi \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \chi \\ y \end{pmatrix}$$

任武线腿无关级可打充为一级基

维数与基的基本性质

产程: U,V⊆F° 子空间, 则

- (1) dim V=r > V中任器 r+1 十向显得胜极关
- (2) dimV=r, q,..., q, eV 绪性无关 > \ a,..., ar b 为 V 的 细茎.
- (3) U⊆V > dim U € dim V
- (4) $U \subseteq V$ & $dim U = dim V \Rightarrow U = V$

個:
$$V := \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\} \subseteq \mathbb{R}^3$$
 子宫向?, 基? 维数?

$$\psi \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \in V \iff \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \pounds_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \pounds_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

個
$$W := \S(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0, 2x_1 - x_2 + x_3 = 3 \} \subseteq \mathbb{R}^3$$
 不見子完的! $0 \notin W$.

$$V = \{ x \in F^n | AX = 0 \} \}$$
 子空间
$$W = \{ x \in F^n | AX = b \}$$
 不是子空间