Università degli Studi di Roma "Tor Vergata" Laurea in Informatica

Sistemi Operativi e Reti (modulo Reti) a.a. 2024/2025

Livello di collegamento (parte3)

dr. Manuel Fiorelli

manuel.fiorelli@uniroma2.it
https://art.uniroma2.it/fiorelli

Livello di collegamento e LAN: tabella di marcia

- introduzione
- rilevazione e correzione degli errori
- protocolli di acceso multiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- canali virtuali: MPLS
- Reti dei data center

 un giorno nella vita di una richiesta web

LAN

Local Area Network (LAN)

Copre un'area limitata come un'abitazione, una scuola, un ufficio o un edificio (o gruppo di edifici vicini).

Due tecnologie principali:

- Ethernet (questa tecnologia è usata anche in altri ambiti): IEEE 802.3 (nome del working group dell'IEEE e della famiglia di standard)
- Wi-Fi: IEEE 802.11

Indirizzi MAC

- indirizzi IP a 32 bit (128 bit in IPv6):
 - indirizzi *a livello di rete* per le interfacce
 - usati per l'inoltro a livello 3 (livello di rete)
 - es.: 128.119.40.136 2001:0df0:00f2:0000:0000:0000:0000:0f10 \rightarrow 2001:df0:f2::f10
- Indirizzi MAC (o LAN o fisici o Ethernet):
 - funzione: utilizzati "localmente" per portare i frame da un'interfaccia a un'altra interfaccia fisicamente connessa (stessa sottorete, nel senso dell'indirizzamento IP)
 - indirizzo MAC a 48 bit (per la maggior parte delle LAN) memorizzato nella ROM della NIC, a volte impostabile via software.
 - es.: 1A-2F-BB-76-09-AD

 notazione esadecimale (base 16)
 (ciascuna "cifra" rappresenta 4 bit)

Indirizzi MAC

ciascuna interfaccia in una LAN

- ha un indirizzo MAC univoco
- ha un indirizzo IP univoco (come abbiamo visto)

Indirizzi MAC

- allocazione degli indirizzi MAC gestita dall'IEEE
- i produttori (di schede di rete) comprano porzioni dello spazio di indirizzi MAC (per assicurare l'unicità)
- analogia:
 - indirizzi MAC: come il codice fiscale
 - indirizzo IP: come l'indirizzo postale
- indirizzo MAC (piatto): portabilità
 - è possibile spostare un'interfaccia da una LAN a un'altra
 - indirizzo IP (gerarchico) *non* portabile: dipende dalla sottorete IP alla quale il nodo è connesso

Protocollo per la risoluzione degli indirizzi (address resolution protocol, ARP)

Domanda: come determinare l'indirizzo MAC di un'interfaccia, conoscendo il suo indirizzo IP?

Tabella ARP: ogni nodo IP (host, router) sulla LAN ha una tabella (una per ciascuna interfaccia)

- corrispondenza tra indirizzi IP e MAC per alcuni nodi sulla LAN:
 - < indirizzo IP; indirizzo MAC address; TTL>
- TTL (Time To Live): tempo dopo il quale la mappatura degli indirizzi sarà dimenticata (in genere 20 min da quando la voce è stata inserita nella tabella)

Protocollo ARP in azione

esempio: A vuole inviare un datagramma a B

• l'indirizzo MAC di B non è nella tabella ARP di A, pertanto A usa ARP per trovare l'indirizzo MAC di B

A invia in broadcast una richiesta ARP,

contenente l'indirizzo IP di B

• indirizzo MAC di destinazione = FF-FF-FF-FF-FF-FF

• tutti i nodi sulla LAN ricevono la query ARP

· tutti i	iloui sulla LAIN I	icevollo la quel y Altr	Seliu
Ta	abella ARP in A		Targe
IP addr	MAC addr	TTL	Targe
			В
		71-65-F7-2B-08-53 137.196.7.23	58 13
		137.190.7.23	10

Richiesta ARP inviata dentro frame destinato a FF-FF-FF-FF

Sender Hardware Address: 71-65-F7-2B-08-53

Sender Protocol Address 137.196.7.23

et Hardware Address: 00-00-00-00-00

et Protocol Address: 137.196.7.14

8-23-D7-FA-20-B0 37.196.7.14

Protocollo ARP in azione

esempio: A vuole inviare un datagramma a B

• l'indirizzo MAC di B non è nella tabella ARP di A, pertanto A usa ARP per trovare l'indirizzo MAC di B

Protocollo ARP in azione

esempio: A vuole inviare un datagramma a B

• l'indirizzo MAC di B non è nella tabella ARP di A, pertanto A usa ARP per trovare l'indirizzo MAC di B

ARP Spoofing o ARP Poisoning

- Un attaccante invia in una LAN risposte ARP contraffatte, inducendo l'associazione di un indirizzo IP a un certo indirizzo MAC
- Il protocollo ARP è senza stato e un nodo (host o router) aggiorna la propria ARP appena viene ricevuta una risposta ARP (a prescindere che questa faccia seguito a una effettiva richiesta)
- Alcuni "usi":
 - denial-of-service (DoS): associare diversi indirizzi IP allo stesso indirizzo MAC per sovraccaricarlo di traffico
 - man-in-the-middle (MITM): l'attaccante associa il proprio indirizzo MAC all'indirizzo IP di un altro nodo, in modo da intercettare (e magari modificare) il traffico destinato a quest'ultimo, per poi re-inoltrarglielo

scenario dettagliato: invio di un datagramma da A a B passando per R

- attenzione sugli indirizzi a livello IP (datagramma) e MAC (frame)
- assunzioni:
 - A conosce l'indirizzo IP di B
 - A conosce l'indirizzo IP dell'interfaccia di R nella propria sottorete (come? DHCP)
 - A conosce l'indirizzo MAC dell'interfaccia di R nella propria sottorete (come? ARP)

- A crea un datagramma IP con sorgente A e destinazione B
- A crea un frame a livello di collegamento contenente il datagramma IP da A a B
 - la destinazione del frame è l'indirizzo MAC di R

- frame inviato da A a R
- frame ricevuto da R, datagramma, passato in alto a IP

- R determina l'interfaccia di uscita, passa il datagramma con sorgente IP A e destinazione IP B al livello di collegamento
- R crea il frame a livello di collegamento contenente il datagramma IP da A a B. Indirizzo di destinazione del frame: indirizzo MAC di B

- R determina l'interfaccia di uscita, passa il datagramma con sorgente IP A e destinazione IP B al livello di collegamento
- R crea il frame a livello di collegamento contenente il datagramma IP da A a B. Indirizzo di destinazione del frame: indirizzo MAC di B

- B riceve il frame, il datagramma IP destinato a sé
- B passa il datagramma in alto nella pila protocollare a IP

Livello di collegamento e LAN: tabella di marcia

- introduzione
- rilevazione e correzione degli errori
- protocolli di acceso multiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- canali virtuali: MPLS
- Reti dei data center

 un giorno nella vita di una richiesta web

Ethernet

Tecnologia "dominante" per le LAN cablate:

- prima tecnologia LAN ampiamente utilizzata
- semplice, economica
- ha tenuto il passo sulla velocità: 10 Mbps 400 Gbps
- singolo chip, più velocità (es., Broadcom BCM5761)

Schizzo Ethernet di Metcalfe

Bob Metcalfe: co-inventore di Ethernet, destinatario del Premio ACM Turing 2022

Ethernet: topologia fisica

- bus: popolare fino alla metà degli anni '90
 - tutti i nodi sono nello stesso dominio di collisione (possono collidere tra loro)
- topologia a stella con hub: popolare fino agli anni 2000
 - i nodi sono interconnessi da un hub (dispositivo a livello fisico che rigenera i segnali ricevuti su una interfaccia e li ritrasmette su tutte le altre interfacce), pertanto tutti i nodi sono nello stesso dominio di collisione
- commutata (switched): oggi prevalente
 - switch di livello 2 attivo al centro

 ogni "spoke" esegue un protocollo Ethernet (separato) (i nodi non si scontrano tra loro)

bus: cavo coassiale

Struttura del frame Ethernet

l'interfaccia trasmittente incapsula il datagramma IP (o altro pacchetto di protocolli di livello di rete) in frame Ethernet

preambolo:

- usato per "risvegliare" le schede di rete dei riceventi e sincronizzare i loro clock con quello del trasmittente
- 7 byte di 10101010 seguiti da un byte di 10101011

questi due 1 consecutivi, che rompono il pattern di 1 e 0 alternati, informano il ricevente dell'inizio del frame vero e proprio

Struttura del frame Ethernet (continuazione)

- indirizzi: indirizzi sorgente e destinazione a 6 byte
 - se l'adattatore riceve un frame con un indirizzo di destinazione corrispondente o con un indirizzo di broadcast (ad esempio, un pacchetto ARP), passa i dati nel frame al protocollo di livello di livello superiore
 - altrimenti, l'adattatore scarta il frame
- tipo: indica un protocollo di livello superiore (2 byte)
 - principalmente IP, ma sono possibili anche altri protocolli a livello di rete, ad es. Novell IPX, AppleTalk, ma anche ARP
 - utilizzato per demultiplexare sul ricevitore
- CRC: controllo di ridondanza ciclica presso il ricevitore (4 byte)
 - errore rilevato: il frame viene scartato

Struttura del frame Ethernet (continuazione)

- payload: dati passati al protocollo di livello superiore
 - minimo 46 byte: se più piccolo deve essere aggiunto del padding; perciò è importante che il protocollo di livello superiore preveda un meccanismo per stabilire la reale dimensione dei dati
 - massimo 1500 byte (salvo estensioni) → MTU
- La fine del frame è determinata a livello fisico dall'assenza di transizioni sulla linea
- escludendo il preambolo, la dimensione di un frame è compresa tra 64 byte (512 bit) e 1518 byte → slot time 512 bit. In Gigabit Ethernet lo slot time è in realtà di 4096 bit (512 byte): frame più piccoli richiedono l'aggiunta di padding (fatto in maniera trasparente dall'hardware)

Ethernet: non affidabile, senza connessione

- senza connessione: nessun handshake tra le NIC mittente e ricevente
- non affidabile: la NIC ricevente non invia ACK o NAK alla NIC mittente
 - i dati nei frame scartati vengono recuperati solo se il mittente iniziale utilizza un trasferimento dati affidabile di livello superiore (ad esempio, TCP), altrimenti i dati scartati vanno persi
- Protocollo MAC di Ethernet: "unslotted" CSMA/CD con binary backoff

802.3 Ethernet standard: livelli di collegamento e fisico

- molti standard Ethernet differenti
 - protocollo MAC e formato dei frame comuni
 - velocità differenti: 2 Mbps, ... 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps, 100 Gbps
 - mezzi trasmissioni differenti: cavo coassiale, doppino, fibra
 - limiti di lunghezza:
 - segmento: 100 m su doppino intrecciato (Cat. 5) per Fast Ethernet (100 Mbps) e Gigabit Ethernet (1
 Gbps); da qualche centinaio di metri fino a decine chilometri in base alla classe di fibra ottica
 - dominio di collisione: il ritardo round-trip deve essere inferiore allo slot time: occorre deve considerare il ritardo dovuto alla propagazione nel mezzo, così come quello introdotto da hub o repeater, dagli adattatore, etc.: ~2500 m 10BASE-T; ~ 205 m 100BASE-TX; Gigabit Ethernet solitamente usato in modalità full-duplex, no CSMA/CD

System considerations for multisegment

100BASE-T networks

Table 29–3—Network component delays, Transmission System Model 2

Component	Round trip delay in bit times per meter	Maximum round trip delay in bit times
Two TX/FX DTEs		100
Two T4 DTEs		138
Two T2 DTEs		96
One T2 or T4 and one TX/FX DTE ^a		127
Cat 3 cabling segment	1.14	114 (100 m)
Cat 4 cabling segment	1.14	114 (100 m)
Cat 5 cabling segment	1.112	111.2 (100 m)
STP cabling segment	1.112	111.2 (100 m)
Fiber optic cabling segment	1.0	412 (412 m)
Class I repeater		140
Class II repeater with all ports TX/FX		92
Class II repeater with any port T4		67
Class II repeater with any port T2		90

margine di sicurezza

$$127 + 2 \cdot 111.2 + 140 + 4 = 493.4 < 512$$

Considero una rete Fast Ethernet con topologia a stella (con hub)

I ritardi sono espresso in *bit time*, ovvero il tempo impiegato per immettere un bit nel collegamento = 1/R dove R è la velocità di trasmissione.

Se R = 100 Mbps, 1 bit time =
$$\frac{1}{100 \cdot 10^6} = 10^{-8} s$$

² cavi da 100 m, uno per ciascun host

^a Worst-case values are used (TX/FX values for MAC transmit start and MDI input to collision detect; T4 value for MDI input to MDI output).

System considerations for multisegment 100BASE-T networks

Che vuol dire che 100 m di cavo UTP di categoria 5 hanno un round trip delay di 111.2 bit time (rispetto a 100BASE-T)?

111.2 bit time corrispondono a 111.2×10^{-8} s. Parlando di round trip delay, si intende che in questo intervallo di tempo il segnale può attraversare il cavo avanti e indietro, percorrendo cioè 200 m.

Pertanto, la velocità di propagazione del cavo è
$$v=\frac{200}{111.2\times10^{-8}}m/s=1.799\cdot10^8~m/s$$
 Considerando la velocità della luce $c=299792458~m/s\approx3\cdot10^8~m/s$
$$\frac{v}{c}=0.6$$

Cioè la velocità di propagazione del segnale in questo mezzo è il 60% della velocità della luce.

Livello di collegamento e LAN: tabella di marcia

- introduzione
- rilevazione e correzione degli errori
- protocolli di acceso multiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- canali virtuali: MPLS
- Reti dei data center

 un giorno nella vita di una richiesta web

Switch Ethernet

- Lo switch (commutatore di pacchetti a livello di collegamento) è un dispositivo a livello di collegamento: ha un ruolo attivo
 - memorizza e inoltra (store-and-forward) frame Ethernet (o di altro tipo)
 - esamina l'indirizzo MAC di destinazione del frame in arrivo, inoltra selettivamente il frame in uno o più collegamenti di uscita quando il frame deve essere inoltrato in un segmento, usa CSMA/CD per accedere al segmento
- trasparente: gli host sono inconsapevoli della presenza degli switch (le cui interfacce di interconnessione agli host e router non hanno indirizzi MAC associati, o comunque non sono usati per la funzione di commutazione)
- collegamenti eterogenei: i collegamenti possono operare a velocità diverse e usare mezzi trasmissivi diversi; utile per evolvere la rete in maniera incrementale
- plug-and-play, autoapprendimento
 - non è necessario configurare gli switch

Switch: molteplici trasmissioni simultanee

- gli host hanno connessioni dedicate, dirette con lo switch
- lo switch "bufferizza" i pacchetti
- il protocollo Ethernet è utilizzato su ciascun collegamento, così:
 - full-duplex: una singola coppia di nodi alle estremità del collegamento che possono trasmettere simultaneamente senza collisioni (es. perché i segnali viaggiano su fili dedicati nel cavo Ethernet), no CSMA/CD
 - half-duplex: il singolo collegamento half duplex è un dominio di collisione a sé
- switching: A-to-A' e B-to-B' possono trasmettere simultaneamente senza collisioni

switch con sei interfacce (1,2,3,4,5,6)

Switch: molteplici trasmissioni simultanee

- gli host hanno connessioni dedicate, dirette con lo switch
- lo switch "bufferizza" i pacchetti
- il protocollo Ethernet è utilizzato su ciascun collegamento, così:
 - full-duplex: una singola coppia di nodi alle estremità del collegamento che possono trasmettere simultaneamente senza collisioni (es. perché i segnali viaggiano su fili dedicati nel cavo Ethernet), no CSMA/CD
 - half-duplex: il singolo collegamento half duplex è un dominio di collisione a sé
- switching: A-to-A' e B-to-B' possono trasmettere simultaneamente senza collisioni
 - ma A-to-A' e C-to-A' non possono accadere simultaneamente

switch con sei interfacce (1,2,3,4,5,6)

Tabella commutazione degli switch

<u>D:</u> come sa lo switch che A' è raggiungibile tramite l'interfaccia 4, e che B' è raggiungibile dall'interfaccia 5?

<u>R:</u> ciascuno switch ha una tabella di commutazione (switch table), ciascuna voce:

- (indirizzo MAC del nodo, interfaccia che conduce al nodo, timestamp)
- Assomiglia alle tabelle di inoltro dei router!
- <u>D:</u> Come vengono create e mantenute le voci nella tabella di commutazione?
 - qualcosa tipo un protocollo di instradamento?

Switch: autoapprendimento

- uno switch *impara* quali nodo possono essere raggiungi attraverso quale interfaccia
 - quando un frame viene ricevuto, lo switch "impara" la posizione del mittente: segmento LAN in ingresso
 - registra la coppia mittente/posizione nella tabella di commutazione

Tabella di commutazione ☐(inizialmente vuota)

MAC addr	interface	TTL
Α	1	60

Switch: filtraggio e inoltro dei frame

Quando uno switch riceve un frame:

- 1. registra il collegamento in ingresso e l'indirizzo MAC dell'host mittente
- 2. indicizza la tabella degli switch utilizzando l'indirizzo MAC di destinazione
- 3. se viene trovata una voce per la destinazione allora {
 se la destinzione è sul segmento dal quale è arrivato il frame allora scarta il frame altrimenti inoltra il frame sull'interfaccia indicata dalla voce }

altrimenti flood /* inoltra su tutte le interfacce eccetto quella di arrivo; in altre parole, manda il frame in broadcast (ma non cambia l'indirizzo MAC di destinazione) */

Autoapprendimento e inoltro: esempio

- destinazione del frame,A', posizione sconosciuta: flood
- posizione della destinazione
 A conosciuta: invia selettivamente soltanto su un collegamento

MAC addr	interface	TTL
Α	1	60
A'	4	60

tabella di commutazione /
switch table
(inizialmente vuota)

Interconnettere gli switch

gli switch con autoapprendimento possono essere interconnessi tra di loro

- <u>D</u>: invio da A a G come sa S_1 di inoltrare il frame destinato a G attraverso S_4 e S_3 ?
 - <u>R:</u> autoapprendimento! (funziona esattamente alla stessa maniera del caso a singolo switch!)

Self-learning multi-switch example

Si supponga che C invii un frame a I e che I risponda a C

<u>D</u>: mostare le tabelle di commutazione e l'inoltro dei pacchetti in S_1 , S_2 , S_3 , S_4

Switch e router a confronto

Entrambi lavorano in store-and-forward: datagram

 router: dispositivi a livello di rete (esaminano l'intestazione a livello di rete)

 switch: dispositivi a livello di collegamento (esaminano l'intestazione a livello di collegamento)

Entrambi hanno tabelle di inoltro:

- router: calcolano le tabelle usando algoritmi di instradamento, indirizzi IP
- switch: autoapprendimento della tabella di inoltro usando il flooding, indirizzi MAC

Switch e router a confronto

Topologia della rete:

- router: gli algoritmi di instradamento possono trovare percorsi ottimali (senza cicli) nonostante cicli nella topologia delle rete; inoltre, il decremento del TTL farebbe scartare i pacchetti incastrati in potenziali instradamenti ciclici (es. dovuti a errori di configurazione)
- switch: gli switch devono essere interconnessi a albero (anche solo logicamente, grazie al protocollo Spanning Tree Protocol), per evitare che il traffico broadcast (in assenza di un campo TTL nei frame) resti in circolazione potenzialmente per sempre

Numero di nodi

- router: instradamento gerarchico, aggregazione degli indirizzi, etc...
- *switch:* tabelle ARP molto grandi nei nodi, ingente traffico ARP, frame broadcast, etc...

Switch e router a confronto

Isolamento del traffico

- gli switch inviano in broadcast i frame il cui indirizzo MAC di destinazione è sconosciuto, con un effetto a valanga in presenza di molteplici switch interconnessi. I frame broadcast sono inoltrati a tutti i nodi nella rete.
- i *router* inoltrano i pacchetti in accordo a percorsi determinati dalla funzione di instradamento.

Livello di collegamento e LAN: tabella di marcia

- introduzione
- rilevazione e correzione degli errori
- protocolli di acceso multiplo
- LAN
 - indirizzamento, ARP
 - Ethernet
 - switch
 - VLAN
- canali virtuali: MPLS
- Reti dei data center

 un giorno nella vita di una richiesta web

Virtual LAN (VLAN): motivazione

D: Cosa succede quando le dimensioni della LAN aumentano e gli utenti

cambiano il punto di attacco?

singolo dominio di broadcast:

- scalabilità: tutto il traffico broadcast di livello 2 (ARP, DHCP, MAC sconosciuto) deve attraversare l'intera LAN
- problemi di efficienza, sicurezza, privacy

Virtual LAN (VLAN): motivazione

D: Cosa succede quando le dimensioni della LAN aumentano e gli utenti

cambiano il punto di attacco?

singolo dominio di broadcast:

- scalabilità: tutto il traffico broadcast di livello 2 (ARP, DHCP, MAC sconosciuto) deve attraversare l'intera LAN
- problemi di efficienza, sicurezza, privacy

problemi amministrativi:

 un utente CS si sposta nell'ufficio EE connesso fisicamente allo switch EE, ma vuole rimanere connesso logicamente allo switch CS

VLAN basate sulle porte

Virtual Local Area Network (VLAN)

Gli switch che supportano le funzionalità VLAN possono essere configurati per definire più LAN *virtuali* su un'unica infrastruttura LAN fisica.

port-based VLAN: le porte dello switch raggruppate (tramite il software di gestione dello switch) cosicché un *singolo* switch

... operi come molteplici switch virtuali

VLAN basate sulle porte

 isolamento del traffico: i frame verso/da le porte 1-8 possono raggiungere soltanto le porte 1-8

 Si possono define anche VLAN basate sugli indirizzi MAC degli endpoint, piuttosto che sulle porte

- appartenenza dinamica: le porte possono essere assegnate dinamicamente tra le VLAN
- inoltro tra VLAN: fatto tramite un routing (esattamente come con switch separati)
 - in pratica i produttori combinano gli switch con i router

VLAN che si estendono su più switch

Connettere tra di loro due porte appartenenti alla stessa VLAN:

 questa soluzione non è scalabile: per connettere N VLAN definite su due switch fisici, dovremmo sacrificare N porte su ciascuno switch fisico

VLAN che si estendono su più switch

porta trunk: trasporta frame tra VLAN definite su più switch fisici

- i frame inoltrati all'interno della VLAN tra gli switch non possono essere frame vanilla 802.3 (devono contenere informazioni sull'ID VLAN)
- il protocollo 802.1q aggiunge/rimuove campi di intestazione aggiuntivi per i frame inoltrati tra le porte trunk

Formato del frame VLAN 802.1Q

EVPN: Ethernet VPN (altrimenti note come VXLAN)

Switch Ethernet di livello 2 connessi *logicamente* l'un l'altro (es., usando IP come *underlay*)

- frame Ethernet trasportati dentro a datagrammi IP tra siti
- "schema di tunneling per sovrapporre reti Layer 2 a reti Layer 3 ... funziona sull'infrastruttura di rete esistente e fornisce un mezzo per "allungare" una rete Layer 2". [RFC 7348]