Contrôle Continu. NOM, Prénom:

Consignes. Durée 30'. L'utilisation de tout document ou dispositif électronique est interdite. Vos réponses doivent être justifiées.

Exercice 1 Soit $\Sigma = \{z^0, s^1\}$ une signature. Soient : (i) \underline{T}_{Σ} la Σ -algèbre initiale, (ii) \underline{A} la Σ -algèbre composée de l'ensemble des nombres naturels avec constante $f_z = 0$ et fonction unaire $f_s(x) = x + 2$, (iii) \underline{B} la Σ -algèbre composée de l'ensemble des nombres réels avec constante $g_z = 1$ et fonction unaire $g_s(x) = 3 \cdot x$. Combien de morphismes y-a-t-il : (1) entre \underline{T}_{Σ} et \underline{A} , (2) entre \underline{A} et \underline{B} ?

SOLUTION DE L'EXERCICE 1

- 1. On a démontré dans le cours 1 qu'il existe un morphisme unique de l'algèbre initiale à une autre Σ -algèbre.
- 2. Pour tout $c \in \mathbf{R}$, la fonction h suivante est un morphisme :

$$h(n) = \begin{cases} 3^k & \text{si } n = 2 \cdot k \\ 3^k \cdot c & \text{si } n = 2 \cdot k + 1. \end{cases}$$

Il y a donc une infinité (non-dénombrable) de morphismes.

Exercice 2 Soient **N** l'ensemble des nombres naturels, \mathbf{N}^k le produit cartésien $\mathbf{N} \times \cdots \times \mathbf{N}$ k fois et $A = \bigcup \{\mathbf{N}^k \mid k \geq 1\}$. Soit > une relation binaire sur A telle que : $(x_1, \dots, x_n) > (y_1, \dots, y_m)$ ssi il existe $k \leq \min(n, m)$ ($x_1 = y_1, \dots, x_{k-1} = y_{k-1}, x_k > y_k$). (1) La relation est-elle transitive? (2) La relation est-elle bien fondée?

SOLUTION DE L'EXERCICE 2

1. La relation > est transitive. Supposons:

$$(x_1,\ldots,x_n) > (y_1,\ldots,y_m) > (z_1,\ldots,z_l)$$

ce qui veut dire qu'ils existent $k \leq min(n, m)$ et $h \leq min(m, l)$ tels que :

$$x_1 = y_1, \dots, x_{k-1} = y_{k-1}, x_k > y_k, \quad y_1 = z_1, \dots, y_{h-1} = z_{h-1}, y_h > z_h.$$

Il suffit maintenant de distinguer 3 cas, à savoir k = h, k > h et k < h, et de vérifier pour chaque cas que $(x_1, \ldots, x_n) > (z_1, \ldots, z_l)$. Si, par exemple, on est dans le deuxième cas on a $h \leq \min(n, l)$ et :

$$x_1 = y_1 = z_1, \dots, x_{h-1} = y_{h-1} = z_{h-1}, x_h = y_h > z_h$$
.

2. L'ordre > n'est pas bien fondé car, par exemple : $(1) > (0,1) > (0,0,1) > (0,0,0,1) > \cdots$

Exercice 3 Soit R une relation binaire et soit R^+ la plus petite relation transitive qui contient R. On définit :

$$\begin{array}{ll} T_0 & = R, \\ T_{n+1} & = T_n \circ T_n = \{(x,z) \mid \exists \ y \ ((x,y) \in T_n \ et \ (y,z) \in T_n)\}, \\ T & = \bigcup_{n>0} T_n \ . \end{array}$$

Voici 2 assertions: (1) $T \subseteq R^+$, (2) pour tout n, $T_n \subseteq T_{n+1}$. Si l'assertion est vraie prouvez-la et sinon donnez un contre-exemple.

Solution de l'exercice 3

1. Par définition:

$$R^+ = \bigcap \{X \mid \mathcal{F}(X) \subseteq X\}$$

où $\mathcal{F}(X) = R \cup (X \circ X)$ est monotone. On a donc : $\mathcal{F}(R^+) \subseteq R^+$. On prouve par récurrence sur n que $T_n \subseteq R^+$; et donc $T \subseteq R^+$. Pour n = 0, $R \subseteq R \cup (R^+ \circ R^+) = \mathcal{F}(R^+) \subseteq R^+$. Supposons $T_n \subseteq R^+$. Alors $T_{n+1} = T_n \circ T_n \subseteq R^+ \circ R^+ \subseteq \mathcal{F}(R^+) \subseteq R^+$.

2. Si T_n n'est par réflexive on ne peut pas déduire que $T_n \subseteq T_{n+1}$. Par exemple, soit $R = \{(1,2),(2,3),(3,4)\}$. Alors $T_0 = R$, $T_1 = \{(1,3),(2,4)\}$ et $T_n = \emptyset$ pour $n \ge 2$.

Exercice 4 Soit $A = \{a, b\}$ un alphabet et A^* l'ensemble des mots finis sur A. Soit $\rightarrow \subseteq A^* \times A^*$ définie par :

$$\rightarrow = \{(wabw', wbbaw') \mid w, w' \in A^*\}$$
.

En d'autres termes, $w_1 \to w_2$ si w_2 est obtenu de w en remplaçant un sous-mot ab par le mot bba. (1) Proposez une interprétation des mots dans les nombres naturels positifs qui montre que (A^*, \to) termine. (2) Définissons maintenant :

$$\rightarrow_1 = \rightarrow \cup \{(wbaw', waabw') \mid w, w' \in A^*\}$$
.

Le système (A^*, \rightarrow_1) termine-t-il?

SOLUTION DE L'EXERCICE 4

1. Soit ϵ le mot vide. On définit par récurrence sur la longueur d'un mot :

$$\mu(\epsilon) = 1, \quad \mu(aw) = 3 \cdot \mu(w), \quad \mu(bw) = 1 + \mu(w).$$

On remarque qu'on interprète a par la fonction affine $x\mapsto 3\cdot x$, b par la fonction $x\mapsto (1+x)$ et que ces fonctions sont strictes sur les nombres positifs. Ensuite on vérifie que : $w\to w'$ implique $\mu(w)>\mu(w')$. En effet on a :

$$\mu(wabw') = f_w(3 \cdot (1 + \mu(w'))) > f_w(2 + 3 \cdot \mu(w')) = \mu(wbbaw')$$
.

où f_w est une fonction stricte obtenue par composition des fonctions affines ci-dessus. Donc le système termine car $\mathbb{N}\setminus\{0\}$ est bien fondé.

2. Le système ne termine pas. Par exemple on a :

$$ab \rightarrow_1 bba \rightarrow_1 baab \rightarrow_1 babba \rightarrow_1 babaab \rightarrow_1 \cdots$$