III. BÀI TOÁN TÍCH PHÂN CÓ TÍNH CHẤT CHỐNG MÁY TÍNH CẦM TAV

MứC ĐÔ 3

VẬN DUNG

Ví dụ 1: Cho hàm số $F(x) = ax + b\sin 4x + C, (a, b \in \mathbb{Q})$ là một nguyên hàm của

hàm số $f(x) = \sin^6 x + \cos^6 x$ và thỏa mãn $F\left(\frac{\pi}{4}\right) = \frac{37\pi}{32}$. Tính giá trị của

$$P = a + 4b + C$$

A.
$$P = 4\pi - 1$$

B.
$$P = \pi + 1$$

C.
$$P = 4 - \pi$$

A.
$$P = 4\pi - 1$$
. B. $P = \pi + 1$. C. $P = 4 - \pi$. D. $P = 3\pi + 1$.

Ta thấy
$$F(0) = C$$
 và có $\int_{0}^{\frac{\pi}{4}} f(x) dx = F(\frac{\pi}{4}) - F(0) \to C = F(0) = F(\frac{\pi}{4}) - \int_{0}^{\frac{\pi}{4}} f(x) dx$

Nhập vào màn hình
$$\frac{37\pi}{32} - \int_{0}^{\frac{\pi}{4}} \left(\sin^6 x + \cos^6 x\right) dx$$

37π-|4 ((sin(X))

3 7 SHFT X10" = 3 2 > - [((sin ALPHA))) x* 6 > + ($(\cos(ALPHA))))x^{*}(6)) (0) (ALPHA))))x^{*}(6)$

Suy ra
$$F(0) = \pi = C$$
. Lại có $F(\frac{\pi}{4}) = \frac{\pi}{4}a + C \rightarrow \frac{\pi}{4}a = \frac{37\pi}{32} - \pi = \frac{5\pi}{32} \rightarrow a = \frac{5}{8}$.

Ta có
$$P = a + 4b + C \rightarrow b = \frac{P - a - C}{4} = \frac{P - \frac{5}{8} - \pi}{4}$$
. Dùng lệnh CALC thử từng

phương án, ta chọn phương án làm cho $b \in \mathbb{Q}$

Vậy $b = \frac{3}{32}$ và chọn đáp án B.

Đáp án B.

Ví dụ 2: Biết
$$\int_{0}^{1} \frac{2x+1}{x^2-4} dx = a \ln 3 + b \ln 2$$
, $(a; b \in \mathbb{Q})$. Tính $S = 2a + b$.

A.
$$S = \frac{5}{2}$$

B.
$$S = \frac{3}{2}$$

C.
$$S = -\frac{1}{2}$$

A.
$$S = \frac{5}{2}$$
. **B.** $S = \frac{3}{2}$. **C.** $S = -\frac{1}{2}$. **D.** $S = -\frac{5}{4}$.

-0.5623351446

Nhập vào màn hình $\int_{0}^{1} \frac{2X+1}{X^2-4} dx$:

Ấn 😑 máy hiện kết quả là –0,5623351446, gán vào biến nhớ A: 🜆 💵 🕞 Giả thiết trở thành $a \ln 3 + b \ln 2 = A$.

<u>Cách 1:</u> Ta kiểm tra đáp án bằng giải hệ $\begin{cases} a \ln 3 + b \ln 2 = A \\ 2a + b = S \end{cases}$ với S là một trong các

đáp án A, B, C, D. Kết quả đúng cho ta các giá trị $a,b \in \mathbb{Q}$.

Sử dụng MOE 5 (EQN) 1, nhập các hệ số của hệ phương trình

STUDY TIPS

Qua việc tính $\int_{1}^{2} \frac{2x+1}{x^2-4} dx$

rồi gán kết quả vào biến nhớ A và kết hợp với đáp án. Ta được hệ aln + bln = Aaln + bln = Aaln + bln = A

hệ phương trình bậc nhất hai ẩn có thể giải bằng tính năng EQN: MODE [5] [1], nếu hai nghiệm a,b tim được là số hữu tỉ $(a,b\in\mathbb{Q})$ thì chọn đáp án tương ứng.

A:
$$\begin{cases} a \ln 3 + b \ln 2 = A \\ 2a + b = \frac{5}{2} \end{cases} \rightarrow \begin{cases} a = 7,978262519 \\ b = -13,45652504 \end{cases} \rightarrow a, b \notin \mathbb{Q} . \text{ Loại A.}$$

B:
$$\begin{cases} a \ln 3 + b \ln 2 = A \\ 2a + b = \frac{3}{2} \end{cases} \rightarrow \begin{cases} a = 5,568841679 \\ b = -9,637683359 \end{cases} \rightarrow a, b \notin \mathbb{Q} \text{ . Loại B.}$$

C:
$$\begin{cases} a \ln 3 + b \ln 2 = A \\ 2a + b = -\frac{1}{2} \end{cases} \rightarrow \begin{cases} a = \frac{3}{4} \\ b = -2 \end{cases}$$
 a, $b \in \mathbb{Q}$. Chọn C.

D:
$$\begin{cases} a \ln 3 + b \ln 2 = A \\ 2a + b = -\frac{5}{4} \end{cases} \rightarrow \begin{cases} a = -1,05706563 \\ b = 0,8641312595 \end{cases} \rightarrow a, b \notin \mathbb{Q} \text{ . Loại D.}$$

<u>Cách 2:</u> Ta cũng có thể dùng <u>SOLVE</u> để xác định đáp án. Chẳng hạn, đối với đáp án C, ta có $S = -\frac{1}{2} \rightarrow 2a + b = -\frac{1}{2} \rightarrow b = -\frac{1}{2} - 2a$.

Từ $a \ln 3 + b \ln 2 = A \Leftrightarrow a \ln 3 + \left(-\frac{1}{2} - 2a\right) \ln 2 = A$. Coi a = X.

Nhập vào màn hình $Xln(3)+\left(-\frac{1}{2}-2X\right)ln(2)-A$: APA) In 3) + (-

1 \blacksquare 2 \blacktriangleright 2 \blacksquare 1 \blacksquare 2 \blacktriangleright 1 \blacksquare 2 \blacksquare 2 \blacksquare 2 \blacksquare 2 \blacksquare 1 \blacksquare 2 \blacksquare 2 \blacksquare 2 \blacksquare 2 \blacksquare 3 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 5 \blacksquare 5 \blacksquare 6 \blacksquare 8 \blacksquare 9 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 2 \blacksquare 2 \blacksquare 3 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 5 \blacksquare 6 \blacksquare 6 \blacksquare 6 \blacksquare 6 \blacksquare 8 \blacksquare 9 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 1 \blacksquare 2 \blacksquare 3 \blacksquare 4 \blacksquare 4 \blacksquare 4 \blacksquare 5 \blacksquare 6 \blacksquare 8 \blacksquare 9 \blacksquare 9 \blacksquare 1 \blacksquare 9 \blacksquare 1 \blacksquare 2 \blacksquare 2 \blacksquare 2 \blacksquare 3 \blacksquare 1 \blacksquare

<u>Cách 3:</u> Từ $a \ln 3 + b \ln 2 = A \rightarrow a = \frac{A - b \cdot \ln 2}{\ln 3} \rightarrow f(x) = \frac{A - x \cdot \ln 2}{\ln 3}$.

Nhập hàm số
$$f(X) = \frac{A - X \ln(2)}{\ln(3)}$$
:

STUDY TIPS

Khi giả thiết cho các hệ số a, b, c, ... hữu tỉ thì giá trị Step khi lập bảng thường là $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$,... Tuy nhiên, từ đáp án ta cũng có thể xác

định được giá trị Step này.

MODE 7 SHIFT MODE © 5 1 = ALPHA (-) - ALPHA (-) In 2 (-) (In 3 (-)

Chọn giá trị Start = -14.0,25; End = 14.0,25; Step = 0,25 . Từ bảng giá trị, dò cặp $(X;F(X))\equiv(b,a)$ thỏa mãn $a,b\in\mathbb{Q}$.

STUDY TIPS

Ở bài toán này các đáp án có dạng 10.0,25; 6.0,25; -2.0,25; -5.0,25. Đây là tích của các số nguyên với 0,25. Vậy ta sẽ chọn giá trị Step = 0,25.

Sau khi xác định bước nhảy Step = k, ta thường Start = -14kEnd = 14k (bởi tại chế độ MODE 7 SHIFT MODE 5 1 bảng chỉ hiển thị được tối đa 30 giá trị, mặt khác ở dạng toán này, đáp án các giá trị a,b,c thường không quá

STUDY TIPS

 $\frac{4lnx+1}{x}dx \quad r \circ i \quad g \acute{a} n \quad k \acute{e} \acute{t}$ quả vào biến nhớ A và kết hợp với đáp án. Ta được $\begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = S \end{cases}$ là

tính

một hệ phương trình bậc nhất hai ẩn có thể giải bằng tính năng EQN: **MODE 5 1 (,)** nếu hai nghiệm *a,b* tìm được đều nguyên $(a,b \in \mathbb{Z})$ thì chọn đáp án tương ứng.

Quan sát bảng giá trị, ta tìm được cặp $(X;F(X))=(-2;\frac{3}{4})$ thỏa mãn.

Suy ra
$$b = -2$$
, $a = \frac{3}{4} \rightarrow S = 2a + b = -\frac{1}{2}$.

Đáp án B.

Ví dụ 3: Cho $\int_{-\infty}^{2} \frac{4 \ln x + 1}{x} dx = a \ln^2 2 + b \ln 2$ và $a, b \in \mathbb{Z}$. Tính tổng S = 4a + b, kết quả **đúng** là

A.
$$S = 3$$
.

B.
$$S = 9$$
.

C.
$$S = 7$$
.

D.
$$S = 5$$
.

Lời giải

$$Nhập \int_{1}^{2} \frac{4\ln(X)+1}{X} dx : \square = 4 \text{ in APHA }) + 1 \text{ APHA })$$

Ấn 🔳, máy hiện kết quả bằng 1,654053208. Gán kết quả này vào biến nhớ A, ấn Ans SHFT RCL (Ans \rightarrow A). Khi đó ta có $a \ln^2 2 + b \ln 2 = A$.

<u>Cách 1:</u> Dùng MODE **5** (EQN) **1**

Xét hệ phương trình $\begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = S \end{cases}$ với S tương ứng với 4 đáp án.

A:
$$S = 3 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 3 \end{cases} \rightarrow \begin{cases} a = 0,1855860156 \\ b = 2,257655938 \end{cases} \rightarrow a, b \notin \mathbb{Z}. \text{ Loại A.}$$

A:
$$S = 3 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 3 \end{cases} \rightarrow \begin{cases} a = 0,1855860156 \\ b = 2,257655938 \end{cases} \rightarrow a, b \notin \mathbb{Z}$$
. Loại A.

$$\begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 2,257655938 \end{cases} \times \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 9 \end{bmatrix} \times \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{bmatrix} \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 1 \end{bmatrix} \rightarrow$$

B:
$$S = 9 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 9 \end{cases} \rightarrow \begin{cases} a = 2 \\ b = 1 \end{cases} \rightarrow a, b \in \mathbb{Z}$$
. Chọn B.

C:
$$S = 7 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 7 \end{cases} \rightarrow \begin{cases} a = 1,395195339 \\ b = 1,419218646 \end{cases} \rightarrow a, b \notin \mathbb{Z}$$
. Loại C.

C:
$$S = 7 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 7 \end{cases} \rightarrow \begin{cases} a = 1,395195339 \\ b = 1,419218646 \end{cases} \rightarrow a, b \notin \mathbb{Z}$$
. Loại C.

$$\begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 1,419218646 \end{cases} \rightarrow \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 = A \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix} a \ln^2 2 + b \ln 2 \\ b = 0,7903906771 \end{bmatrix} = \begin{bmatrix}$$

D:
$$S = 5 \rightarrow \begin{cases} a \ln^2 2 + b \ln 2 = A \\ 4a + b = 5 \end{cases} \rightarrow \begin{cases} a = 0,7903906771 \\ a = 1,838437292 \end{cases} \rightarrow a, b \notin \mathbb{Z}$$
. Loại D.

Cách 2: Dùng SOLVE: SHIFT CALC

B: Ta có $S = 9 \rightarrow 4a + b = 9 \rightarrow b = 9 - 4a$. Khi đó $a \ln^2 2 + b \ln 2 = A$

STUDY TIPS

chon

End = -15,

30 (dòng) giá trị.

Nếu giả thiết bài toán cho

 $a,b \in \mathbb{Z}$ thì ta **thường**

Start = -14, End = 14 và Step=1. Nếu vẫn chưa tìm được các giá trị thỏa mãn thì ta xét các giá trị Start, End khác. Chẳng

End = 44, Step = 1 (do bảng hiển thị được tối đa

các giá trị

Start = -44,

Step = 1Start = 15,

$$\Leftrightarrow a \ln^2 2 + (9 - 4a) \ln 2 - A = 0. \text{ Nhập vào màn hình } X \times \ln^2 2 + (9 - 4X) \times \ln 2 - A:$$

 $\begin{array}{c} \text{ALPHA} \end{array}) \hspace{.1cm} \hspace{$ SHFT CALC \blacksquare \blacksquare , máy hiện kết quả bằng 2. Vậy $a=2 \rightarrow b=9-4.2=1$ thỏa mãn $a,b \in \mathbb{Z}$. Chọn B.

Cách 3: Dùng TABLE: MODE 7

Từ
$$a \ln^2 2 + b \ln 2 = A \rightarrow b = \frac{A - a \ln^2 2}{\ln 2} \rightarrow f(x) = \frac{A - x \cdot \ln^2 2}{\ln 2}$$
.

Nhập hàm số
$$f(X) = \frac{A - X \times (\ln(2))^2}{\ln(2)}$$
:

MODE 7 SHIFT MODE \bigcirc 5 1 \blacksquare ALPHA \bigcirc \blacksquare ALPHA \bigcirc X (In 2)) x^2 \bigcirc In 2

Chọn Start = -14, End = 14, Step = 1. Trên bảng giá trị, ta dò cặp (X;F(X)) = (a;b)nguyên. Ta tìm được (X;F(X))=(2;1).

Suy ra $a = 2, b = 1 \rightarrow S = 4a + b = 9$.

Đáp án B.

Ví dụ 4: Cho $I = \int_{0}^{\frac{\pi}{2}} \sin^4 x dx = \pi a + b$ với $a, b \in \mathbb{Q}$. Tính giá trị của biểu thức

$$\Delta M - \frac{11}{1}$$

B.
$$M = -\frac{5}{32}$$

C.
$$M = \frac{5}{32}$$

A.
$$M = \frac{11}{32}$$
. B. $M = -\frac{5}{32}$. C. $M = \frac{5}{32}$. D. $M = -\frac{11}{32}$.

 $\int_{0}^{4} (\sin(X))^{4} dx$ Ans⇒A 0.04452431127 Đưa máy về chế độ Rad, ấn MODE 4. Nhập vào màn hình $\int (\sin(X))^4 dx$:

 $(\square \)$ $(\square \)$ (bằng 0,04452431127. Gán kết quả này vào biến nhớ A, ấn Ans SHIT RCL [-] $(Ans \rightarrow A)$. Giả thiết trở thành $\pi a + b = A$.

Cách 1: Dùng MODE 5 (EQN) 1

B:
$$M = -\frac{5}{32} \rightarrow \begin{cases} \pi a + b = A \\ a + b = -\frac{5}{32} \end{cases} \rightarrow \begin{cases} a = \frac{3}{32} \\ b = -\frac{1}{4} \end{cases} \rightarrow a, b \in \mathbb{Q}$$
. Chọn B.

C:
$$M = 4 \rightarrow \begin{cases} \pi a + b = A \\ a + b = 4 \end{cases} \rightarrow \begin{cases} a = -1,846978548 \\ b = 5,846978548 \end{cases} \rightarrow a, b \notin \mathbb{Q}$$
. Loại C.

D:
$$M = 7 \rightarrow \begin{cases} \pi a + b = A \\ a + b = 7 \end{cases} \rightarrow \begin{cases} a = -3,247805168 \\ b = 10,24780517 \end{cases} \rightarrow a, b \notin \mathbb{Q}$$
.

<u>[</u> [3. 1415	ь !	Math C 0-0445	χ=	(3 M	fath♥	Υ=	B	Math ▲
		7		-3.247805	168		10.2478	30517

Cách 2: Dùng SOLVE: SHIFT CALC

B: Ta có $a+b=-\frac{5}{32} \Leftrightarrow b=-\frac{5}{32}-a$. Khi đó, từ giả thiết $\pi a+b=A$ ta có

$$\pi a - \frac{5}{32} - a - A = 0$$
. Nhập vào màn hình $\pi X - \frac{5}{32} - X - A$:

SHIFT
$$\times 10^{\times}$$
 ALPHA) — 5 \equiv 3 2 \triangleright — ALPHA) — ALPHA \bigcirc SHIFT CALC \equiv ,

máy hiện kết quả bằng 0,09375. Suy ra $a = 0,09375 = \frac{3}{32} \rightarrow b = -\frac{1}{4} \rightarrow a, b \in \mathbb{Z}$.

Cách 3: Dùng TABLE: MODE 7

Từ $\pi a + b = A \rightarrow b = A - \pi a \rightarrow f(x) = A - \pi x$. Ấn MODE **7** và SHIFT MODE **5 1**.

Nhập vào màn hình hàm số $f(X) = A - \pi X$: APHA (-) SHFT $\times 10^{x}$ APHA ()

Chọn Start = $-\frac{14}{32}$, End = $\frac{14}{32}$, Step = $\frac{1}{32}$. Trên bảng giá trị, ta dò cặp $(X;F(X)) \equiv (a;b)$ thỏa mãn $X,F(X) \in \mathbb{Q}$.

Ta tìm được $(X;F(X)) = (\frac{3}{32}; -\frac{1}{4})$ thỏa mãn. Khi đó $a = \frac{3}{32}, b = -\frac{1}{4} \to a + b = -\frac{5}{32}$

Ans

STUDY TIPS

Ta thấy các đáp án lần $11.\frac{1}{32}$; $-5.\frac{1}{32}$; $5.\frac{1}{32}$ và $-11.\frac{1}{32}$, là tích của $\frac{1}{32}$ với một số nguyên. Theo nhận xét ở ví dụ 1, ta sẽ

Start =
$$-\frac{14}{32}$$
, End = $\frac{14}{32}$ và
Step = $\frac{1}{32}$.