Exame anterior

Verdadeiro ou Falso	V	F	_
Há algoritmos discriminadores que não são completos.		X	*1
Quanto maior o fator de ramificação pior a performance do algoritmo de aprofundamento progressivo por comparação com pesquisa em largura.		X	*2
Os agentes reativos com memória podem adaptar-se a ambientes dinâmicos desde que estes sejam não deterministas.		Х	*3
Uma das principais limitações do algoritmo ID3 é não permitir a representação de disjunções.		X	*4
O algoritmo de retropropagação pode ser aplicado mesmo quando não sabemos o valor desejado.		X	*5

^{*1:} se garante uma solução ótima, tem de garantir uma solução (?)

^{*4:} basta pensar no seguinte caso:

	cor	forma	veredito	
Ex1	azul	rect	sim	
Ex2	azul	circ	não	a regra de aceitação é
Ex3	verde	circ	sim	
Ex4	verde	tri	não	rect ∨ (circ ∧ verde)
Ex4	verde	rect	sim	

^{*5:} diria que não, o valor desejado é fundamental para calcular o erro...

mas será plausível estarem as 5 erradas?

^{*2:} BFS é mega mau para branching factor alto! AP é melhor nessa situação

^{*3:} esta frase é muito tola, ser não determinista prejudica os agentes reativos! de qualquer uma das formas, a resposta seria que é muito difícil para ARs adaptarem-se a ambientes dinâmicos

2. Considere o espaço de procura da figura, onde A é o estado inicial e G o final. O valor associado a cada aresta indica o custo real da transição entre os dois estados. O valor no interior dos nós indica a estimativa do custo de transitar de esse nó ate ao estado final. Assuma que os desempates são feitos por ordem alfabética e que os nós são adicionados à fila ou pilha um a um. Por exemplo o primeiro descendente de A é B, o segundo C, o terceiro E.

Faça corresponder a cada algoritmo da tabela a lista indicativa da ordem pela qual os nós são visitados. Note que podem existir dois algoritmos a visitar os nós pela mesma ordem.

Algoritmo	Resposta	
Pesquisa em largura	d	ABCEG
Apro. Progressivo	b? g?	ABCE; ABG (?)
Pesquisa Sôfrega	b	ABG
Custo Uniforme	g	ACEDC'BG
A*	g	ACEDG

Nós Visitados por ordem	
a) A,C,E,F,D,G	
b) A,B,G	
c) A,C,E,F,D,C,D,B,G	
d) A,B,C,E,G	
f) A,A,E,C,B,A,E,D,C,F,B,G	
g) Nenhuma das anteriores	

reparem que 3 das opções continham F, e, por isso, eram inviáveis

3. Sabemos que é difícil escolher os jogadores da seleção nacional. Ajude o Roberto Martinez a escolher que deve ser titular

Exemplo	Empresário	Campeonato	Barba	Titular
1	Mendes	Portugal	Não	V
2	Mendes	A. Saudita	Sim	V
3	Mendes	A. Saudita	Não	V
4	Outro	A. Saudita	Sim	F
5	Outro	A. Saudita	Não	F
6	Mendes	Inglês	Sim	V
7	Outro	Inglês	Sim	V

The Later of the				n			-
$log_2(n/d)$	1	2	3	4	5	6	7
11/10	-		717				
2	-1.00	-	6 S				
3	-1.58	-0.58	-				-
d 4	-2.00	-1.00	-0.42	-			+
5	-2.32	-1.32	-0.74	-0.32	-		1
6	-2.58	-1.58	-1.00	-0.58	-0.26	-	1
7	-2.81	-1.81	-1.22	-0.81	-0.49	-0.22	1

- a) Aplique o algoritmo ID3 e apresente a árvore de decisão obtida.b) Indique a regra que determina quando um jogador é titular

4. Considere a distribuição de dados (pontos) da figura, um épsilon equivalente ao raio da circunferência, um número mínimo de pontos = 4. Considere que um ponto conta para a sua própria vizinhança. Aplique o algoritmo DBSCAN a partir do ponto inicial A de forma a identificar o(s) cluster(s) existente(s) e os aos pontos alcançáveis (reachable) e centrais (core) do(s) cluster(s) bem como os "outliers".

Ponto	Cluster	Tipo	Ponto	Cluster	Tipo
Α	1	Reachable	В	1	Core
С	1	Core	D	1	Core
E	2	Reachable	F	1	Reachable
G		Outlier	Н	2	Core
1	1	Core	J	2	Core
K		Outlier	L	2	Core
М	2	Core	N	2	Reachable

5. Considerando a árvore dada pela figura que se segue, onde os valores associados às folhas correspondem ao resultado da função de avaliação, e admitindo que o primeiro a jogar é o Max.

- a) Aplique o algoritmo Min-Max para determinar o valor dos nós intermédios.
- b) Indique quais os ramos que seriam cortados, caso adoptasse o mecanismo de corte Alfa-Beta. DJ e GQ (nesse caso, G teria o valor 4)

6. Considere a Rede Neuronal Artificial apresentada na figura que se segue:

Considere ainda o seguinte exemplo de treino onde i1 e i2 representam os valores de entrada e o1, o2 representam os valores de saída desejados.

i1		i2		01		o2	
	1		1		7		-8

Admitindo que os valores dos pesos de cada ligação são w1, w2, ..., w11, que a função de ativação é linear (i.e. f(x) = x), e que a taxa de aprendizagem é 0.1.

- a) Qual o valor de h1, h2, h3, o1 e o2 associados ao exemplo de treino apresentado? ^
- b) Aplicando o algoritmo de retropropagação, indique para cada um dos pesos se este aumenta, diminui ou se mantém.

w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11	w12
-	+	=	-	+	=	-	=	+	=	=	KKKKKK

$$erro_h1 = -3$$

 $erro_h2 = 6$