

Complexidade de Algoritmos

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Estudo da Tratabilidade de Problemas Computacionais

Problemas tratáveis e intratáveis

Problemas tratáveis: resolvidos por algoritmos que executam em tempo polinomial.

Problemas intratáveis: não se conhece algoritmos que os resolvam em tempo polinomial.

$$1 \prec \log \log n \prec \log n \prec n^{\varepsilon} \prec n^{\varepsilon} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{\varepsilon^{n}}$$

Problemas tratáveis e intratáveis

Problemas tratáveis: resolvidos por algoritmos que executam em tempo polinomial.

Problemas intratáveis: não se conhece algoritmos que os resolvam em tempo polinomial.

$$1 \prec \log\log n \prec \log n \prec n^{\varepsilon} \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{c^{n}}$$

Categorias de Problemas

Problemas de Otimização: Cada solução possível tem um valor associado e desejamos encontrar a solução com melhor valor.

Problemas de Decisão: Problemas que tem resposta sim ou não.

Problemas de Decisão são possivelmente "mais fáceis" do que problemas de Otimização, mas com certeza "não mais difíceis"!

Exemplo:

- Qual é o menor caminho entre os vértices *a* e *b* de um grafo?
- Existe um caminho de no máximo k arestas entre *a* e *b*?

Algoritmos Não Deterministas

Capaz de escolher uma entre várias alternativas possíveis a cada passo. A alternativa escolhida será sempre a alternativa que leva a conclusão esperada, caso essa alternativa exista.

```
int pesq(Estr *v, int n, int ch) {
   int i;
   for (i = 0; i < n; i++)
        if (v[i].chave == ch)
        return i;
   return -1;
}

int pesq(Estr *v, int n, int ch) {
        int i;
        i = magicaND(0, n - 1);
        if (v[i].chave == ch)
            return i;
        return -1;
   }
}</pre>
```


Classes de Problemas P e NP

Classe de Problemas P: Problemas que podem ser resolvido (por algoritmos deterministas) em tempo polinomial.

Classe de Problemas NP: Problemas que podem ser resolvidos por algoritmos não deterministas em tempo polinomial (polinomialmente verificável ou certificado). Ou problemas que a solução pode ser verificada em tempo polinomial.

Pergunta do milhão: P=NP ou $P \neq NP$?

Possíveis relações entre as classes:

Classes de Problemas P e NP

O status de muitos problemas NP é desconhecido:

- existe um algoritmo determinista polinomial para o problema?

Investigar a complexidade relativa dos problemas da classe NP:

- Problema A é mais fácil ou mais difícil do que B?

Recorremos à ideia de redução polinomial:

- Mostra que A <u>não é mais difícil que</u> B ou que A é <u>polinomialmente redutível</u> ao problema B.

Redução de Problemas

Se o "Algoritmo de Redução", o "Algoritmo que Resolve B" e a "Transformação de solução" forem polinomiais, então podemos concluir algo sobre a solução do Problema A?

Redução de Problemas

Conclusões provenientes da redução:

Se Y é polinomialmente redutível a X então Y não é mais difícil do que X.

Cenário 1: sabe-se que X está na classe P. Logo, Y também deve estar na classe P.

Cenário 2: não se sabe se X está ou não em P,mas sabe-se que Y não está em P.Como Y não é mais difícil que X, então X deve estar fora de P.

Classes de Problemas NP-Hard

Se podemos determinar que um problema não é mais difícil do que outro, podemos separar os problemas mais difíceis dos mais fáceis em NP!

Assim surge a classe dos problemas mais difíceis A classe de problemas **NP-Hard** ou **NP-Difícil**!

"Um problema A é NP-Difícil se todos os problemas em NP não são mais difíceis do que A"

"Um problema NP-Difícil é tão difícil quanto qualquer problema em NP"

NP-Difícil

Classes de Problemas NP-Hard

Na classe NP-Difícil podemos encontrar problemas intratáveis e:

- <u>Indecidíveis</u>: ex. problema da parada e equações diofantinas;
- <u>Decidíveis</u>: podem ser resolvidos por um algoritmo não determinista um problema NP-Difícil que está em NP é dito **NP-Completo**.

Duas possíveis relações considerando P vs. P

Redução de Problemas

Relação entre Redução e Problemas NP-Completos:

Uma vez conhecido um problema NP-Completo, podemos usar *reduções polinomiais* para provar que algum problema X também é NP-Completo.

"se Y é um problema NP-completo e Y não é mais difícil que um problema X (redução) então X também é NP-completo"

Classes de Problemas NP-Completo

Se um problema NP-Completo pode ser resolvido em tempo polinomial, então todo problema NP-Completo pode ser resolvido em tempo polinomial e, portanto, P = NP

Acredita-se que a relação correta seja $P \neq NP$

Por quê?

NP-Completo

Um problema X é *NP-Completo* se:

1. O problema deve ser NP:

- $X \in NP$
- a) Conseguir um algoritmo não determinista que resolva o problema em tempo polinomial
- b) Conseguir um algoritmo determinista que verifica se uma resposta é verdadeira ou não (**certificado**)
- 2. Fazer a redução de um problema NP-Completo (X') conhecido para o problema X: $X' \leq_p X$ para todo $X' \in NP$

(SAT) Satisfazibilidade de Fórmulas Booleanas

O problema da *Satisfazibilidade de fórmulas booleanas* consiste em determinar se existe uma atribuição de valores booleanos, para as varáveis que ocorrem na fórmula, de tal forma que o resultado seja *verdadeiro*.

Um *literal* é uma variável proposicional ou sua negação.

Exemplo:

$$x_1 \wedge (x_2 \vee \neg x_1) \wedge (\neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$$

Problema de Decisão: existe uma combinação de valores para x_1 e x_2 que satisfazem esta equação?

NP-Completo

Teorema de Cook: SAT é um problema NP-Completo e está em P se e somente se P = NP

É possível reduzir qualquer máquina de Turing não determinista (MTND) no problema SAT em tempo polinomial.

 $MTND \leq_p SAT$

Não vamos fazer essa redução pois ela é mais longa (acreditem no teorema! É possível!)

(SAT) Satisfazibilidade de Fórmulas Booleanas

Classificando SAT como NP-Completo:

Passo 1: Algoritmo de certificado (determinista e polinomial)

Passo 2: MTND ≤p SAT

Complexidade?

$$x_1 \wedge (x_2 \vee \neg x_1) \wedge (\neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$$

!! Um algoritmo de certificado genérico usaria uma repetição para iterar sobre cada literal ou operador da expressão !!

Neste caso qual seria a complexidade do algoritmo?

(SAT) Satisfazibilidade de Fórmulas Booleanas

Classificando SAT como NP-Completo:

Passo 1: Algoritmo de certificado (passed)

Passo 2: MTND \leq_p SAT (passed)

Logo, provamos que SAT pertence ao conjunto de problemas NP-Completo!

Forma Normal Conjuntiva

Uma formula booleana está na *Forma Normal Conjuntiva* (*CNF*) se é expressa por um grupo cláusulas AND, cada uma das quais formada por OR entre literais.

Uma fórmula booleana esta na k-CNF se cada cláusula possui exatamente k literais:

Exemplo 2-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2)$$

3-CNF-SAT

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é *NP-Completo*?

- **Passo 1**: 3-CNF-SAT ∈ NP.

– **Passo 2**: SAT \leq_p 3-CNF-SAT.

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

Dada uma fórmula booleana:

$$\phi = x_1 \land \neg (x_1 \lor \neg x_2)$$

SAT

REDUÇÃO

- 1. Construir uma árvore que represente à fórmula.
- 2. Introduzir uma variável y_i para a raiz e a saída de cada no interno.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

3. Reescrevemos a fórmula original como conjunções entre a variável raiz e as cláusulas que descrevem as operações de cada nó.

Introduz **uma** variável e **uma** cláusula para cada operador.

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

4. Para cada ϕ'_i construir uma tabela verdade, usando as entradas que tornam $\neg \phi'_i$ verdade, construir uma forma normal disjuntiva para cada ϕ'_i .

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

y_1	x_1	y_2	$y_1 \leftrightarrow (x_1 \land y_2)$
V	V	V	V
V	V	F	F
V	F	V	F
V	F	F	F
F	V	V	F
F	V	F	V
F	F	V	V
F	F	F	V

$$\neg \phi_2'' = (y_1 \land x_1 \land \neg y_2)$$

$$\lor (y_1 \land \neg x_1 \land y_2)$$

$$\lor (y_1 \land \neg x_1 \land \neg y_2)$$

$$\lor (\neg y_1 \land x_1 \land y_2)$$

Cada cláusula de ϕ' introduz no máximo 8 cláusulas em ϕ' , pois cada cláusula de ϕ' possui no máximo 3 variáveis.

$$\neg \phi_2'' = (y_1 \land x_1 \land \neg y_2) \lor (y_1 \land \neg x_1 \land y_2) \lor (y_1 \land \neg x_1 \land y_2) \lor (y_1 \land \neg x_1 \land \neg y_2) \lor (\neg y_1 \land x_1 \land y_2)$$

Converter a fórmula para a CNF usando as leis de De Morgan:

$$\phi_2'' = (\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)$$

O último passo faz com que cada cláusula tenha exatamente 3 literais, para isso usamos duas novas variáveis p e q. Para cada cláusula C_i em ϕ'' :

- 1. Se C_i tem 3 literais, simplesmente inclua C_i .
- 2. Se C_i tem 2 literais, $C_i = (l_1 \vee l_2)$, inclua:

$$(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p)$$

3. Se C_i tem 1 literal, l_1 , inclua:

$$(l_1 \lor p \lor q) \land (l_1 \lor \neg p \lor \neg q) \land (l_1 \lor p \lor \neg q) \land (l_1 \lor \neg p \lor q)$$

Introduz no máximo 4 cláusulas por cláusula em ϕ'' .

$$\phi' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow \neg y_3) \land (y_3 \leftrightarrow (x_1 \lor \neg x_2))$$

$$\phi_{\mathbf{l}}''' = (y_{\mathbf{l}} \lor p \lor q) \land (y_{\mathbf{l}} \lor \neg p \lor \neg q) \land (y_{\mathbf{l}} \lor p \lor \neg q) \land (y_{\mathbf{l}} \lor \neg p \lor q)$$

$$\phi' = y_1 \wedge (y_1 \leftrightarrow (x_1 \wedge y_2)) \wedge (y_2 \leftrightarrow \neg y_3) \wedge (y_3 \leftrightarrow (x_1 \vee \neg x_2))$$

$$(y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land$$

$$(\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)$$

3-CNF-SAT

Problema: verificar se uma fórmula booleana na 3-CNF é satisfazível.

3-CNF-SAT é NP-Completo? SIM

- **Passo 1**: 3-CNF-SAT ∈ NP.
- Passo 2: SAT \leq_p 3-CNF-SAT.

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor \neg x_3)$$

$$\begin{vmatrix} (y_1 \lor p \lor q) \land (y_1 \lor \neg p \lor \neg q) \land (y_1 \lor p \lor \neg q) \land (y_1 \lor \neg p \lor q) \land \\ (\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2) \land \dots \end{vmatrix}$$

CLIQUE

Um *Clique* em um grafo não direcionado G = (V, A) é um subconjunto de vértices $V' \subseteq V$, onde cada vértice está conectado por uma aresta. Ou seja, um subgrafo completo.

Versão de otimização: Encontrar o maior *Clique* possível.

Versão de decisão: Existe um *Clique* de tamanho $\geq k$?

CLIQUE

CLIQUE é NP-Completo?

- **Passo 1**: CLIQUE ∈ NP.

- Passo 2: 3-CNF-SAT \leq_p CLIQUE.

CLIQUE

Passo 1: Clique $\in NP$

$$V = \{ a, b, c, d, e, f \}$$

$$A = \{ (a,b), (a,f), (b,c), (b,d), (b,e), (c,d), (c,e), (d,e) \}$$

$$V' = \{ b, c, d, e \}$$

Dado um grafo G = (V, A), a solução (**certificado**) V 'e k, verificar se $|V| \ge k$ em tempo polinomial

Para cada $u \in V'$

Para cada $v \in V'$

Se $u \neq v$ então verificar se $(u, v) \in A$

Complexidade?

3-CNF-SAT \leq_p CLIQUE

• **Passo 2**: 3-CNF-SAT \leq_p CLIQUE.

Dada uma instancia ϕ do problema 3-CNF-SAT converteremos esta para um grafo G que terá 3k vértices, onde k é o número de cláusulas de ϕ .

- u e v são vértices que correspondem a literais em diferentes cláusulas;
- Todos os vértices são ligados por arestas, com exceção:
 - se *u* e *v* pertencem a mesma cláusula, então não há ligação;
 - se u corresponde a um literal x e v corresponde ao literal $\sim x$, então não há ligação entre esses dois vértices;

3-CNF-SAT \leq_p CLIQUE

• **Passo 2**: 3-CNF-SAT \leq_p CLIQUE.

$$\phi = (x_1 \lor \sim x_2 \lor \sim x_3) \land (\sim x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

 ϕ é satisfazível \leftrightarrow G possui um clique \geq k

Cobertura de Vértices (VERTEX-COVER)

Uma *Cobertura de Vértices* de um grafo não orientado G = (V, A) é um subconjunto $V' \subseteq V$ tal que se $(u, v) \in A$, então $u \in V'$ ou $v \in V'$.

Cobertura de Vértices (VERTEX-COVER)

Versão de otimização: Encontrar menor Cobertura de Vértices.

Versão de decisão: Existe uma cobertura de tamanho *k*?

Cobertura de Vértices (VERTEX-COVER)

Passo 1: Cobertura de Vértices ∈ NP.

$$V = \{ a, b, c, d, e, f \}$$

$$A = \{ (a,c), (a,d), (b,f), (c,f), (f,e) \}$$

$$V' = \{ a, f \}$$

Dado um grafo G = (V, A) e a solução (**certificado**) V' verificar se $|V| \ge k$ em tempo polinomial

Para cada $(u, v) \in A$ **Verificar se** $u \in V'$ ou $v \in V'$

Complexidade?

CLIQUE \leq_p VERTEX-COVER

• Passo 2: CLIQUE \leq_p VERTEX-COVER

CLIQUE Entrada (G, k), onde G = (V, A)

VERTEX-COVER Entrada (\overline{G} , |V| - k)

Um *Ciclo Hamiltoniano* em um grafo não orientado é um caminho que passa por cada vértice do grafo exatamente uma vez e retorna ao vértice inicial.

Versão de decisão: um grafo G possui um ciclo Hamiltoniano?

Passo 1: Ciclo Hamiltoniano $\in NP$

```
V = \{ a, b, c, d, e \}
A = \{ (a,b), (a,c), (a,d), (b,e), (c,e), (d,e) \}
V' = \{ a, b, e, d, c \}
```


Dado um grafo G = (V, A) e a solução (**certificado**) V' verificar se V' é um ciclo Hamiltoniano em tempo polinomial

```
Para cada v ∈ V: viz[v] = não marcado
Para cada v' ∈ V':
    Se viz[v'] == marcado: retorne falso
    Senão: viz[v'] = marcado
```

Complexidade?

Se todo $x \in viz$ está marcado: retorne verdade

Senão: retorne falso

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

Dado um grafo instância do problema de Cobertura de vértices G = (V, E), devemos:

- Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO
- criar uma lista com as adjacências de cada nó (para formar um caminho entre todas as coberturas de um vértices):

```
u: u_1, u_2, ... u_{grau(u)}
```

$$V: V_1, V_2, ... V_{grau(v)}$$

- adicionar arestas para unir pares de dispositivos: {([u,u_i,6],[u,u_{i+1},1]), ... }

criar arestas para unir o primeiro [u, u₁, 1] e o último vértice
 [u, u_{grau(u)}, 6] de cada um desses caminhos a cada vértice seletor.

$$\{(sj, [u, u_1, 1]) : u \in V \ e \ 1 \le j \le k\}$$

 $\{(sj, [u, u_{grau(u)}, 6]) : u \in V \ e \ 1 \le j \le k\}$

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

O caminho 3 entre dispositivos (*) só ocorre em arestas compartilhadas por vértices que fazem parte da solução da cobertura de vértices

• Passo 2: VERTEX-COVER \leq_p CICLO HAMILTONIANO

Importante: note que o novo grafo G' = (V', E')

$$|V'| = 12 |E| + k$$

 $|V'| \le 12 |E| + |V|$

Instância cresceu apenas em tamanho polinomial

$$|E'| = 14 |E| + (2|E| - |V|) + (2k |V|)$$

 $|E'| = 16 |E| + (2k - 1) |V|$
 $|E'| \le 16 |E| + (2|V| - 1) |V|$

Problema do Caixeiro Viajante

Um vendedor deseja visitar n cidades e retornar a cidade de origem. Dado um grafo não orientado completo com n vértices, onde existe um custo c(i, j) (associado a cada aresta) para viajar da cidade i a cidade j.

Otimização: Qual é o menor caminho para o vendedor?

Decisão: Existe um caminho para o vendedor com custo máximo igual a *k*?

Problema do Caixeiro Viajante

Passo 1: Caixeiro Viajante $\in NP$

Dado um grafo G = (V, A), a solução (**certificado**) V' e o custo máximo k, verificar se V' é um caminho válido do Caixeiro com custo menor ou igual a k em tempo polinomial

Complexidade?

Redução do Problema do Ciclo Hamiltoniano ao Problema do Caixeiro Viajante

• Passo 2: CICLO HAMILTON \leq_p CAIXEIRO

para cada vértice ipara cada vértice jse $(i, j) \in H$ então $c(i, j) \leftarrow 0$ senão $c(i, j) \leftarrow 1$

Dado um conjunto finito de inteiros positivos S e um inteiro t > 0, determinar se existe um subconjunto $S' \subseteq S$ onde o somatório dos elementos de S' é igual a t.

$$\sum_{i=1}^{n} s_i' = t$$

Exemplo:

$$t = 138.457$$

$$S' = \{ 1, 2, 7, 98, 343, 686, 2.409, 17.206, 117.705 \}$$

Passo 1: Subset-Sum $\in NP$

Dado um conjunto de números inteiros S, o valor t objetivo e a solução (**certificado**) S', verificar se S' é uma solução do problema em tempo polinomial.

```
soma = 0
Para cada s' ∈ S':
    Se s' ≠ S: retorne 0
    soma = soma + s'
Se soma == t: retorne 1
Senão: retorne 0
```

Complexidade?

Passo 2: 3-CNF-SAT \leq_p SUBSET-SUM

Dada uma fórmula ϕ instância de 3-CNF-SAT, devemos:

- \triangleright Criar dois números para cada variável x_i em ϕ : v_i e v'_i
- \triangleright Criar dois números para cada cláusula C_j em ϕ : s_j e s_j

Cada número criado terá $\mathbf{n} + \mathbf{k}$ dígitos, onde \mathbf{n} é o número de variáveis e \mathbf{k} é o número de cláusulas.

O valor **t** terá um valor 1 para cada dígito identificado por variável e 4 em cada dígito identificado por uma cláusula

Passo 2: 3-CNF-SAT \leq_p SUBSET-SUM

- Para cada variável v_i e v'_i colocamos o valor 1 no dígito identificado por x_i e 0 nos outros dígitos;
- ➤ Se o literal x_i aparece na cláusula C_j, então o dígito identificado por C_i em v_i contém valor 1;
- Se o literal $\sim x_i$ aparece na cláusula C_j , então o dígito identificado por C_i em v_i contém valor 0;
- ▶ Para cada s_j e s'_j colocamos valor 0 em todos os dígitos, com duas exceções:

em s_j colocamos 1 no dígito C_j em s'_i colocamos 2 no dígito C_i

-CNF-SAT \leq_p SUBSET-SUM

$$(\sim x_1 \lor x_2 \lor \sim x_3) \land (x_1 \lor x_2 \lor \sim x_3)$$

$$t = 11144$$

S' = { 10001, 1011, 111, 20, 1 } {
$$v_1, v_2, v_3', s_1', s_2$$
 }

$$X_1 = V, X_2 = V, X_3 = F$$

	x_1	x_2	x_3	C_1	C_2
v_1	1	0	0	0	1
v_1'	1	0	0	1	0
<i>v</i> ₂	0	1	0	1	1
v_2'	0	1	0	0	0
v_3	0	0	1	0	0
v' ₃	0	0	1	1	1
s_1	0	0	0	1	0
s_1'	0	0	0	2	0
s_2	0	0	0	0	1
s_2 s'_2	0	0	0	0	2
t	1	1	1	4	4

3-CNF-SAT \leq_p SUBSET-SUM

Note que a maior soma de cada coluna (dígito) é no máximo 6. Assim, para esta conversão devemos usar uma base ≥ 7. No exemplo usamos números na base 10.

A redução de 3-CNF-SAT para SUBSET-SUM acontece em tempo polinomial.

Algoritmos que Executam em Tempo Pseudo-Polinomial

Usando programação dinâmica podemos implementar um algoritmo pseudo-polinomial com complexidade O(nt), onde n é o número de elementos no conjunto e t o valor do somatório que se deseja alcançar!!

Como assim **pseudo-polinomial**?

Se o valor de *t* é limitado por um polinômio existe uma solução eficiente. Mas o valor de t for muito grande, a solução deixa de ser eficiente.

(Números pequenos [64 bits] vs. BigInt [n bits])

Programação Dinâmica (Subset-Sum)

Dado um conjunto de inteiros positivos, representados como um arranjo S[1..n], e um inteiro t, existe algum subconjunto de S tal que a soma de seus elementos seja t.

$$SubsetS(i,t) = \begin{cases} Verdade & \text{se } t = 0 \\ Falsidade & \text{se } t < 0 \lor i > n \\ SubsetS(i+1,t) \lor SubsetS(i+1,t-x[i]) \end{cases}$$

Exemplo: $x = \{2, 3, 5\}$ e t = 8.

Programação Dinâmica (Subset-Sum)

```
SubsetSum (x[1..n], t)
           S[n+1,0] \leftarrow Verdade
          para j \leftarrow 1 até t
                     S[n+1,j] \leftarrow Falsidade
          para i \leftarrow n até 1
                     S[i, 0] \leftarrow Verdade
                     para i \leftarrow 1 até x[i] - 1
                                 S[i, j] \leftarrow S[i+1, j]
                     para j \leftarrow x[i] até t
                                S[i, j] \leftarrow S[i + 1, j] \vee S[i + 1, j - x[i]]
          retorne S[1,t]
```


Programação Dinâmica (Subset-Sum)

Exemplo: $x = \{1, 3, 5, 7\}$ e t = 9.

	0	1	2	3	4	5	6	7	8	9
1	V	V	F	V	V	V	V	V	V	V
2	V	F	F	V	F	V	F	V	V	F
3	V	F	F	F	F	V	F	V	F	F
4	V	F	F	F	F	F	F	V	F	F
5	V	F	F	F	F	F	F	F	F	F

Algoritmos que Executam em Tempo Pseudo-Polinomial

A restrição de *t* pequeno pode ser bastante razoável na prática:

- Problemas onde é impossível a ocorrência de números muito grandes (e.g. problemas de escalonamento);
- Problemas onde o tamanho do número possa ser restrito ao tamanho da palavra do processador.

Note contudo que esse não é o caso da redução do 3-CNF-SAT ao SUBSET-SUM, onde o valor de **t** cresce exponencialmente em relação ao número de variáveis e cláusulas presentes na fórmula booleana.

Reduções

Resumindo, quais reduções de problemas foram feitas:

Referências

Algoritmos. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein. Campus.

Algorithms. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani. McGraw Hill.

Concrete Mathematics: A Foundation for Computer Science (2nd Edition). Ronald L. Graham, Donald E. Knuth, Oren Patashnik. Addison Wesley.

M. R. Garey and D. S. Johnson. 1978. "Strong" NP-Completeness Results: Motivation, Examples, and Implications. J. ACM 25, 3 (July 1978)