02155 - Computer architecture and Engineering Fall 2022

Assignment 2

 $Group\ 31$

Daniel F. Hauge (s201186)

This report contains 6 pages

November 7, 2022

a)

P1

Instruction	1	2	3	4	5	6	7	8	9
addi a2, x0, 5	X								
lw a1, 0(a0)		x							
addi a1, a1, 5			x						
sw a 1 , $0(a0)$				X					
add a1, x0, a2					x				
beq a 1 , x 0 , branch 1						x			
beq $a1$, $a2$, $branch2$							x		
addi a1, a1, 6								x	
addi $a2$, $a2$, 7									x

 $\mathbf{P2}$

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
addi a2, x0, 5	F	D	E	M	W																
lw a1, 0(a0)		F	D	E	M	W			İ												
addi a1, a1, 5			F	D	D	D	E	M	W												
sw a1 , 0(a0)		İ		F	F	F	D	D	D	E	M	W									
add a1 , x0 , a2				İ			F	F	F	D	E	M	W								
beq a1 , x0 , branch1										F	D	D	D	E	M	W					
beq a1 , a2 , branch2											F	F	F	D	E	M	W				
add a1 , a1 , a1														F	D						
add a2 , a2 , a2															F						
addi a1 , a1 , 6																F	D	E	M	W	
addi a2 , a2 , 7																	F	D	E	M	W

 $\mathbf{P3}$

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
addi a2, x0, 5	F	D	E	M	W											
lw a1, 0(a0)		F	D	E	M	W						İ				
addi a1, a1, 5			F	D	D	E	M	W				İ				
sw a1 , 0(a0)				F	F	D	E	M	W	İ	İ	İ				
add a1 , x0 , a2	l		l			F	D	E	M	W		İ	İ			
beq a1 , x0 , branch1	İ		l			İ	F	D	E	M	W	İ	İ	İ		
beq a1 , a2 , branch2	İ		l			İ	İ	F	D	E	M	W	İ	İ		
add a1 , a1 , a1	İ		l			İ	İ	İ	F	D	İ	İ	İ	İ		
add a2 , a2 , a2	İ		l			İ	İ	İ		F	İ	İ	İ	İ		
addi a1 , a1 , 6			l	ĺ	l						F	D	E	M	W	
addi a2 , a2 , 7			l	ĺ							l	F	D	E	M	w

b)

 $\mathbf{P1}$ requires 9 clock cycles, each taking 10 ns. $T_{P_1} = 9 \cdot 10 ns = 90 ns$

 $\mathbf{P2}$ required 21 clock cycles, each taking 2 ns. $T_{P_2} = 21 \cdot 2ns = 42ns$

 ${\bf P3}$ required 16 clock cycles, each taking 2 ns. $T_{P_3}=16\cdot 2ns=32ns$

 $\mathbf{c})$

Speedup of **P3** over **P1** is: $\frac{T_{P_1}}{T_{P_3}} = 2.8125$

Speedup of **P3** over **P2** is: $\frac{T_{P_2}}{T_{P_3}} = 1.3125$

Total amount of cycles required of the program using double precision is given as: $C_{double} = 10^9$ Total amount of cycles spent on FP operations using double precision is:

$$C_{FP-double} = 10^9 \cdot 0.6 = 6 \cdot 10^8$$

Total amount of cycles spent on non-FP operations is:

$$C_B = 10^9 \cdot 0.4 = 4 \cdot 10^8$$

With single precision (binary32) and all FP operations being independent, 2 operations can always be executed in parallel, thus halving the required FP operations.

$$C_{FP\text{-}single} = \frac{C_{FP\text{-}double}}{2} = 3 \cdot 10^8$$

The total clock cycles required with single precision is:

$$C_{single} = C_{FP\text{-}single} + C_R = 7 \cdot 10^8$$

With half precision (binary16) and all FP operations being independent, 4 operations can be executed in parallel, thus quartering the required FP operations.

$$C_{FP\text{-}half} = \frac{C_{FP\text{-}double}}{4} = 1.5 \cdot 10^8$$

The total clock cycles required with single precision is:

$$C_{half} = C_{FP\text{-}half} + C_R = 5.5 \cdot 10^8$$

Execution time is found with the following equation:

$$\frac{CPU\ Clock\ Cycles}{Clock\ rate} = CPU\ Time$$

The execution times are:

$$\begin{split} T_{double} &= \frac{C_{double}}{f} = \frac{10^9}{4\,GHz} = \frac{10^9}{4\cdot 10^9 Hz} = 0.25s = 250ms \\ T_{single} &= \frac{C_{single}}{f} = \frac{7\cdot 10^8}{4\,GHz} = 175ms \\ T_{half} &= \frac{C_{half}}{f} = \frac{5.5\cdot 10^8}{4\,GHz} = 137.5ms \end{split}$$

Speedup of Single precision over Double precision is: $\frac{T_{double}}{T_{single}} \approx 1.428$

Speedup of Half precision over Double precision is: $\frac{T_{double}}{T_{half}} \approx 1,818$

 \mathbf{a}

C1

There are 2 bytes in a word, one bit is needed to adress both first and second byte of a word. Therefor 1 byte offset bit. With 8 word per blocks, we need $log_2(8) = 3$ bits to address each word. Therefor 3 block offset bits

With a cache of 4000 bytes, and each blocks containing 16 bytes, total amount of blocks are: $\frac{4000}{16} = 250$. To address all 250 blocks, we need $log_2(250) \approx 7.96$ bits. Therefor atleast 8 index bits.

Tag bits consists of the remanining available bits.

tag	index	Block offset	byte offset
19	8	3	1

C2

In the same manner, one byte offset bit is required, as we need byte addressing, both first or second byte need to be addressed. Therefor 1 byte offset bit. With 4 word per blocks, we need $log_2(4) = 2$ bits to address each word. Therefor 2 block offset bits

With a cache of 4000 bytes, and each blocks containing 8 bytes, total amount of blocks are: $\frac{4000}{8} = 500$. Each cache set contain $\frac{500}{4} = 125$. To address each block we need $log_2(125) \approx 6.96$. Therefor requiring at least 7 index bits.

Tag bits consists of the remanining available bits.

$_{\mathrm{tag}}$	index	Block offset	byte offset
21	7	2	1

b

C1

The bits required is according to the book (where n is amount of index bits):

$$2^n \cdot (\text{block size} + \text{tag size} + \text{valid field size})$$

 $\text{block size} = 16 \text{ bytes} = 128 \text{ bits}$
 $2^8 \cdot (128 + 19 + 1) = 37888$

The total number of bits required for the cache is 37888.

C2

The bits required is according to the book (where n is amount of index bits):

$$2^n \cdot (ext{block size} + ext{tag size} + ext{valid field size})$$

$$ext{block size} = 8 \text{ bytes} = 64 \text{ bits}$$

$$2^7 \cdot (64 + 21 + 1) = 11008$$

The total number of bits required for the cache is 11008.

 ${\bf c}$ Assuming that each memory access is sequential by descending order.

			C1		C2						
Address	Tag	Index	Offset	Hit/Miss	Tag	Index	Offset	Hit/Miss			
0x0022	0	10	10	Miss	0	100	10	Miss			
0x0023	0	10	11	Hit	0	100	11	Hit			
0x0034	0	11	100	Miss	0	110	100	Miss			
0x0420	0	1000010	0	Miss	1	100	0	Miss			
0x1420	1	1000010	0	Miss	101	100	0	Miss			
0x0422	0	1000010	10	Miss	1	100	10	Hit			
0x1430	1	1000011	0	Miss	101	110	0	Hit			

 \mathbf{d}

Assuming hit ratio of accesses from part $\,c\,$

C1: $\frac{1}{7} \approx 0.14$

C2: $\frac{3}{7} \approx 0.42$

Given instruction miss rate of the i'th cache: $IM_i = [0.04, 0.02, 0.02]$

Given data miss rate of the i'th cache: $DM_i = [0.09, 0.05, 0.03]$

Given miss penalty of the i'th cache: $MP_i = [7, 10, 10]$

Given the percentage of load & store instructions: LSP = 0.40

Miss cycles per instructions is calculated with the following equations:

$$I_i = IM_i \cdot MP_i = [0.28, 0.2, 0.2]$$

$$D_i = LSP \cdot DM_i \cdot MP_i = [0.252, 0.2, 0.12]$$

Memory stall cycles can then be calculated with:

$$MS_i = I_i + D_i = [0.532, 0.4, 0.32]$$

The cache that stalls the most, and thus contributes most cycles from cache misses is cache 1. Using cache 1 costs 0.532 clock cycles per instruction as a result of cache misses.