PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-051122

(43) Date of publication of application: 23.02.2001

(51)Int.CI.

G02B 5/30

G11B 7/135

(21)Application number: 2000-164954

00 104054

(71)Applicant:

AUTOCLONING TECHNOLOGY:KK

(22)Date of filing:

01.06.2000

(72)Inventor:

KAWAKAMI SHOJIRO

SATO TAKASHI ODERA YASUO

KAWASHIMA TAKAYUKI

MIURA KENTA

(30)Priority

Priority number: 11192181

Priority date: 01.06.1999

Priority country: JP

(54) DOUBLE REFRACTION PERIODIC STRUCTURE, PHASE PLATE, DIFFRACTION GRATING TYPE POLARIZING BEAM SPLITTER AND THEIR MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a double refraction element having large double refractivity having an optical axis in a face, capable of having a large opening area with a small optical path length, and capable of being manufactured at a low cost, by laminating a high refractive index medium, and low refractive index medium by repeating the shape in every period, on a substrate having periodic grooves or the like.

SOLUTION: This structure is a multilayer structure in the z-axis direction comprising two or more kinds of transparent bodies having different refractive indices, and the shape of a layer which is a unit of lamination in each transparent body has a cyclic uneven structure in the x-axis direction. This structure is a double refraction periodic structure having a periodic or non-periodic uneven structure, uniform in the y-axis direction or having a larger length than that in the z-axis direction, and formed by being laminated in a layered shape in the z-axis direction by repeating the shape in every cycle shorter than a first Bragg condition in the z-axis direction. This double refraction periodic structure has a high refractive index medium layer 1 mainly composed of Si or TiO2 or Ta2O5 or Nb2O5 or Si3N4 and a low refractive index medium layer 2 mainly composed of SiO2, alternately.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-51122 (P2001-51122A)

(43)公開日 平成13年2月23日(2001.2.23)

(51) Int.Cl. ⁷		酸別記号	F I		テーマコート*(参考)
G 0 2 B	5/30		G 0 2 B	5/30	
G11B	7/135		G11B	7/135	A

審査請求 未請求 請求項の数14 OL (全 7 頁)

(21)出願番号	特顧2000-164954(P2000-164954)	(71)出顧人	599042599		
			有限会社オートクローニング・テクノロジ		
(22)出願日	平成12年6月1日(2000.6.1)				
			宫城県仙台市若林区土樋236番地C9		
(31)優先権主張番号	特顧平11-192181	(72)発明者	川上 彰二郎		
(32)優先日	平成11年6月1日(1999.6.1)		宮城県仙台市若林区土樋236番地愛宕橋マ		
(33)優先権主張国	日本 (JP)		ンションファラオC-09		
		(72)発明者	佐藤 尚		
		(1.0)	宮城県仙台市青葉区荒巻神明町25番6号コ		
			ーポラス神明202号		
		(74)代理人	, , , , , , , , , , , , , , , , , , ,		
		(12) (W-E) (弁理士 福森 <u>久夫</u>		
			基数百 坪结2		

最終貝に続く

(54) 【発明の名称】 複屈折性周期構造体、位相板、回折格子型の偏光ビームスプリッタ及びそれらの作製方法

(57) 【要約】

【目的】 周期が1μm程度ないしそれ以下の2次元周 期構造からなる位相板および位相回折格子と、その作製 方法を提供する。

【構成】 周期的な溝の形成された基板上に、2種類以 上の膜状物質がほぼ周期的に交互に積層された構造を持 つ。2次元的にほぼ周期的な構造体からなる。一例とし て、屈折率の異なる材料1と材料2から構成される。

【効果】 簡便な作製方法により、周期が1 µ m程度な いしそれ以下の複屈折性2次元周期構造体を得ることが できる。この構造体を、特定の偏波面をもつ入射光とそ れに直交する偏波面を持つ入射光の間に位相差を与える ことのできる位相板として、あるいはそれらの偏波を分 離することのできる位相回折格子として動作させること ができる。

【特許請求の範囲】

【請求項1】 3次元の直交座標×、y、zにおいて、屈折率の異なる2種類以上の透明体よりなるz軸方向の多層構造体であって、各透明体ごとに積層の単位となる層の形状が×軸方向に周期凹凸構造を有し、y軸方向には一様であるか、または×軸方向より大きい長さの周期的または非周期的な凹凸構造を有し、その形状をz方向の第一ブラッグ条件より短い周期ごとに繰り返しつつz軸方向に層状に積層されることを特徴とする複屈折性周期構造体。

【請求項2】 請求項1記載の複屈折性周期構造体であって、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N 4を主成分とする高屈折率媒質層とSiO2を主成分とする低屈折率媒質層とを交互に有することを特徴とする複屈折性周期構造体。

【請求項3】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、高屈折率媒質と低屈折率媒質とを、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに凹凸形状を繰り返しつつ積層することを特徴とし、凹凸形状の長手方向を光学軸としz方向の第一ブラッグ条件より短い周期で積層される複屈折性周期構造体の作製方法。

【請求項4】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、Si またはTiO2またはTa2O5またはNb2O5またはSi3N4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質とを、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに凹凸形状を繰り返しつつ積層することを特徴とし、凹凸形状の長手方向を光学軸とする複屈折性周期構造体の作製方法。

【請求項5】 請求項1記載の複屈折性周期構造体であって、xy面に垂直あるいは斜めに光を入射したときx方向に電界成分をもつ偏波とy方向に電界成分をもつ偏波の間に位相差を与えることを特徴とする位相板。

【請求項6】 請求項1記載の複屈折性周期構造体であって、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N 4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質からなり、×y面に垂直あるいは斜めに光を入射したとき×方向に電界成分をもつ偏波とy方向に電界成分をもつ偏波の間に位相差を与えることを特徴とする位相板。

【請求項7】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、高屈折率媒質と低屈折率媒質とを、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに形状を繰り返しつつ積層することを特徴とし、凹凸形状の長手方向を光学軸とする複屈折性周期構造体であって、積層方向に成分を持つ光を入射したとき凹凸形状の長手方向の偏波と垂直方向の偏波の間に位相差を与えることを特徴とする位相板の作製方法。

【請求項8】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質からなり、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに形状を繰り返しつつ積層することを特徴とする複屈折性周期構造体であって、積層方向に成分を持つ光を入射したとき凹凸形状の長手方向の偏波と垂直方向の偏波の間に位相差を与えることを特徴とする位相板の作製方法。

【請求項9】 請求項1記載の複屈折性周期構造体であって、x軸方向あるいはz軸方向の周期、または凹凸形状の段差が異なる縞状の2つ以上の領域からなることを特徴とする回折格子型の偏光ビームスプリッタ。

【請求項10】 SiまたはTiO2またはTa2O5またはNb2O5またはSi3N4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質層を有する請求項1記載の複屈折性周期構造体であって、x軸方向あるいはz軸方向の周期、または凹凸形状の段差が異なる縞状の2つ以上の領域からなることを特徴とする回折格子型の偏光ビームスプリッタ。

【請求項11】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、 高屈折率媒質と低屈折率媒質とを、少なくとも一部にド ライエッチングを含む膜形成方法により周期ごとに形状 を繰り返しつつ積層することを特徴とする複屈折性周期 構造体からなる回折格子型の偏光ビームスプリッタの作 製方法。

【請求項12】 周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、SiまたはTiO2またはTa2O5またはNb2O5またはSi3N4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質とを、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに形状を繰り返しつつ積層することを特徴とする複屈折性周期構造体からなる回折格子型の偏光ビームスプリッタの作製方法。

【請求項13】 請求項1記載の複屈折性周期構造領域と、z軸方向に多層構造があって x 軸方向および y 軸方向には一様である周期構造領域とを有することを特徴とする回折格子型の偏光ビームスプリッタ。

【請求項14】 SiまたはTiO2またはTa2O5またはNb2O5またはSi3N4を主成分とする高屈折率媒質とSiO2を主成分とする低屈折率媒質層からなり、請求項1記載の複屈折性周期構造領域と、z軸方向に多層構造があって×軸方向およびy軸方向には一様である周期構造領域とを有することを特徴とする回折格子型の偏光ビームスプリッタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光の複屈折現象を

利用した光学機器に用いられ、特定方向の直線偏波成分とそれと直交する直線偏波成分を持つ入射光に対し、平面内に光学軸を有する複屈折性により、位相差の制御および偏波依存性の回折などの機能を与える複屈折性素子およびその作製方法に関する。

[0002]

【従来の技術】従来、複屈折性を示す材料としては、人造または天然のルチル、方解石、水晶などの一軸異方性結晶が知られている。しかしながら、人造の結晶では均一な成長が難しく、また天然の結晶では光学的に均一で大きな形状のものは入手が困難であり、高価である。

【0003】位相板は直線偏光を楕円偏光に、逆に楕円偏光を直線偏光に変換させたり、直線偏光の方位角を所望の方位角に変換させる目的の素子である。通常、位相板は上記の一軸性異方性結晶を用い、光学軸を平面内に設定して切断・研磨することで形成される。例えば1/2波長板や1/4波長板をこれらの結晶を用いて作製する場合、厚さが数十μm以下となり、研磨による作製が困難であり、さらには取り扱いが不便である。例えば波長の4μmに対する1/2波長板の場合では、厚さが20μmとなる。これを避けるためには、半波長の奇数倍の厚さにする方法、あるいは厚さの差が半波長の位相差を与える2枚の素子を互いに光軸を90°ずらし貼り合せる方法がある。しかし、前者は動作波長範囲が狭いこと、後者は工程が煩雑であることが問題である。

【〇〇〇4】また、複屈折性素子の利用技術としては、 光ディスク用ピックアップなどでは必要不可欠である。 その一つに直交する二つの偏波成分を空間的に分離する ことが挙げられる。一般的な方法としては、一軸異方性 結晶の結晶軸を光の伝搬方向から傾けることで偏光分離 を行なう方法である。しかしながら、十分大きな分離幅 を得るためには素子の厚さを分離幅の10倍とることが必 要となり、素子の大型化、光学系の大型化が避けられな い。その他の方法として、異方性結晶であるLiNb03結晶 にプロトン交換を施すことでストライプ状に屈折率の異 なる領域を設け、位相回折格子を形成する方法が提案さ れている(賣野、西本、太田、1988年春季応用物理学会 関係連合講演会、29a-ZH-9.)。しかしこの方法では、 格子間隔を数十μm以下にすることは難しく、従って回 折条件により偏光分離角は1°以下に制限されている。 その結果、やはり光学系の大型化は不可避である。

[0005]

【発明が解決しようとする課題】本発明は上記の問題点を解決するためのものであり、本発明の目的は、面内に 光学軸を持つ大きな複屈折性を有し、小さな光路長で大きな開口面積も可能な、工業的に低価格で作製できる複 屈折案子を提供することにある。

[0006]

【課題を解決するための手段】上記の目的を達成するためには、簡便かつ信頼性・再現性に優れた方法で、透明

材料からなり面内に構造異方性をもつ媒質を形成することが必要である。このためには、周期的な溝または周期的な線状突起または細長い突起または細長い凹みを有する基板の上に、高屈折率媒質と低屈折率媒質とを、少なくとも一部にドライエッチングを含む膜形成方法により周期ごとに形状を繰り返しつつ積層する方法が有効である(S. Kawakami, T. Kawashima, and T. Sato, "Mechanism of shape-formation of 3D periodic nanostructures by bias sputtering," Applied Physics Letters, vol. 74, no. 3, pp. 463-465, 18 January 1999.)。この方法によって面内に光学軸を有する複屈折案子を作製することができる。

[0007]

(3)

【作用】前項の手段によって人工的に複屈折媒質を形成できれば、その厚さを制御することによって、面型の位相制御素子を簡便に再現性よく実現することができる。 さらに複屈折性の積層構造部分と、複屈折性のない積層構造部分とを周期的に縞状に繰り返すことで、位相回折格子として利用することができる。

[0008]

【実施例】 [実施例1] 図1は、本発明の実施例の構造を示す図である。この図において、符号1はアモルファスSiの層であり、符号2はアモルファスSiO2の層である。x 軸方向の周期 L x は0.45 μ m、z 軸方向の周期 L z は0.36 μ mである。SiO2層およびSi層は周期的に折れ曲がった形状をなしている。

【〇〇〇9】作製方法を次に示す。まず、基板上に電子 ビームリソグラフィとドライエッチングにより、図2に 示すような周期的な溝を作製する。符号3は石英ガラス 基板、符号4は溝部分の拡大である。溝の幅は0.35μ m、溝の深さは0.2μmである。境界面での反射を防ぐた めに、必要であれば符号5に示す反射防止膜を付ける。 今回は、溝の断面形状が三角形であるが、矩形や半円な ど他の形でも良い。この基板上に、SiO2およびSiターゲ ットを用い、スパッタ**デポジションとスパッタエッチン** グを組み合わせて交互多層膜を積層する。このとき、各 層の×軸方向に周期的な凹凸形状を保存しながら成膜す ることが肝要である。その条件は次の通りであった。Si 層の成膜では、ガス圧2mTorr、ターゲット印加高周波電 カ400W、SiO2層の成膜では、ガス圧6mTorr、ターゲット 印加高周波電力400W、スパッタエッチングはSiO2層成膜 後行ない、ガス圧2mTorr、基板印加高周波電力180Wであ る。SiO2層とSi層はそれぞれ0.18μmとし、8周期繰り返 した。従って多層膜の厚さは約2.9μmである。

【 O O 1 O 】構造異方性により、溝の長手方向に光学軸をもつ複屈折性が生じる。この構造に面垂直方向から波長1.5 μ mの光を入射して、複屈折性を確かめた。入射光の偏波が、溝に対して45°の直線偏波のとき、出射光の偏波は入射偏波に対して90°回転していた。これは本周期構造体が半波長の位相差を与えたことを示す。同様

に、4周期の多層膜を積層した場合には、位相差は四分の一波長となり、直線偏波を円偏波に変換することができた。

【OO11】図3はこの周期構造体における周波数と波数ペクトルの関係を周期境界条件を用いたFDTD法

(有限差分時間領域法) により計算した結果を示す。横 軸は z 方向に 1 周期進んだときの位相をπで正規化した 値kz Lz/π 、縦軸は正規化した周波数 Lz/λ である。こ こでλは入射光の波長、kzは波数ベクトルのz成分であ る。実線と破線は、それぞれ周期構造体を伝搬するTE 波(電界が溝に平行な偏波)とTM波(電界が溝に垂 直)に対する分散曲線を示す。上記の場合では、Lz=0.4 5μ m、波長1. 5μ mより、周波数Lz/ λ =0.3となる。TE 波およびTM波の分散曲線と、 $Lz/\lambda=0.3$ の直線との交 点をそれぞれAとBとする。TE波とTM波がz方向に 1 周期伝搬するときの位相変化の差は、点Aと点Bを与 える横軸kz Lz/πの値の差0.125から、π/8であること がわかる。従って、多層膜を8周期積層した構造では、 πの位相差を与えることができ、半波長板として動作す る。また4周期積層した構造では、π/2の位相差を与え ることができ、1/4波長板として動作する。

【0012】 [実施例2] 本実施例では、実施例1で示したような周期構造体を利用した偏光依存性の位相回折格子について示す。

【0013】図4は本実施例の構成を示す図である。符号 6 は石英ガラス基板であり、その上に凹凸形状を保存したまま多層膜が積層されている。凹凸断面形状が異なる二つの領域(符号 7 と符号 8)が周期しで周期的に繰り返されている。符号 9 は低屈折率層、符号 10 は高屈折率材料をそれぞれアモルファス10 2とアモルファス110 2とした。また、符号 7 の領域において 11 2 11 2 11 2 11 2 11 3 11 3 11 4 11 4 11 5 11 6 11 6 11 6 11 7 11 8 11 7 11 8 11 8 11 8 11 8 11 8 11 8 11 9 11 8 11 9

【OO14】作製方法を次に示す。まず、基板上に電子ビームリソグラフィとドライエッチングにより、図2に示すような周期的な溝をもつ領域と平らな領域とを周期4μmとなるよう加工する。溝の幅は0.1μm、周期は0.15μm、溝の深さは0.1μmである。ここでは三角形の溝形状を示したが、矩形や半円など他の形でも良い。この溝形板上に、TiO2およびSiO2ターゲットを用い、スパッタデポジションとスパッタエッチングを組み合わせて交互を含むガスでスパッタしてもよい。このとき、各層の×軸方向に周期的な凹凸形状を保存しながら成膜することが重要である。その条件は次の通りであった。TiO2層の成膜では、ガス圧2mTorr、ターゲット印加高周波電力300W、SiO2層の成膜では、ガス圧6mTorr、ターゲット印加高周波電力300W、スパッタエッチングはSiO2層成膜後に

行ない、ガス圧2mTorr、基板印加高周波電力100Wである。但し、実施例 1 とは別のスパッタ装置を用いた。Si02層とTi02層はそれぞれ0.06 μ mとし、8周期繰り返した。従って多層膜の厚さは0.96 μ mである。

【0015】本構造体に波長0.4μmの光を基板面垂直方向あるいは斜めから入射すると、図5に示すように溝に平行な偏波成分と、溝に垂直な偏波成分とに空間的に分離することができる。ここでは簡単のため垂直入射における動作原理を説明する。

【0016】図6は、符号7の周期構造体におけるy偏 波(TE波)と×偏波(TM波)の分散関係(実線と破 線)と、符号8の一次元(1D)周期構造体における分 散関係(点線)を示した。上記の場合Lz=0.12μm、波長 $0.4\mu \text{m}$ であるから、周波数はLz/ λ =0.3となる。 Lz/ λ = 0.3の直線と分散曲線との交点を与えるkzが、それぞれ の光波のz方向の伝搬定数となる。この図より、符号フ の2次元周期構造体を一周期伝搬するときの位相変化量 は、y偏波とx偏波とで $\pi/8$ 異なる。一方、符号8の一 次元周期構造体の位相定数は符号7の領域を伝搬するx 偏波と等しい。即ち、図5に示す構造体に光を入射した 場合、x偏波では出射後の位相分布は平坦であるが、y 偏波では位相分布が周期L、振幅πの変調を受ける。従 って、 x偏波はz軸方向に出射されるが、y偏波は回 折により角度 θ (= $\sin^{-1}(\lambda/L)$) 方向に出射されるた め、両者を分離することができる。本発明の構造ではL が $4 \mu m$ であるため分離角度 $\theta = 5$ ° が得られる。

【0017】上記の実施例の変形例を示す。上記の実施例では、面内に光学軸をもつ複屈折領域と、面内には光学軸を持たない一様領域とを、周期的に配置した例を示した。もちろん、面内周期や積層周期、凹凸の段差が異なる2種以上の領域を組み合わせてもよい。その他、溝や突起の方向を一方向だけではなく、異なる方向の領域を組み合わせることも可能である。

【0018】その一例としてブレーズ回折格子を示す。 図7のように、凹凸の周期をL×1からL×2まで連続的に変化させた領域を、さらに周期Lで繰り返す。この構造では、×偏波の位相分布については上述の例と同様で平坦であるが、y偏波の位相分布は周期Lの鋸歯状になる。位相分布の振幅がπになるように積層数を調整する。これによって、×偏波は直進、y偏波は位相分布が傾く方向に100%分離する回折格子が得られる。

【0019】[実施例3]本実施例では、実施例1で示した位相板を、平坦面を有する光学部品に直接作製した例を示す。

【0020】図8は本実施例の構成を示す図である。符号 1 1は光学ガラスからなるプリズムであり、表面に周期的な溝列を加工してある。その構造は、面内の周期が $0.15\,\mu$ m、溝の深さが $0.1\,\mu$ mである。符号 12 はアモルファス1i02とアモルファスSi02からなる多層膜であり、表面は周期的に折れ曲がった形状をなしている。面内の

周期は $0.15 \mu m$ 、面垂直方向の周期は $0.12 \mu m$ である。 【0021】この構造に矢印の方向から光を入射すると、位相板により偏波回転を受けた後、プリズムに入射し、屈折する。このように位相板とプリズムを一体化して作製することができるため、部品点数を減らすことができる、空気との境界面が減るため反射防止膜が不要になる、集積化には有効などの利点がある。

【 O O 2 2 】 ここでは光学部品としてプリズムを例に示したが、その他ミラー、偏光分離素子、偏光子、レンズにも応用できる。また、フィルム状の基板あるいは薄いガラス基板に、初期の凹凸パターンを加工し多層膜を積層してから、光学部品の表面に貼り付けてもよい。

【0023】[実施例4]実施例1ないし3においては、層の形状を繰り返しつつ積層する手段として、スパッタ 成膜とスパッタエッチングを時間的にずらして独立に行なったが、同時に行なうバイアス・スパッタリング法で積層しても良い。例えばTi02層を通常のスパッタで、Si02層をバイアススパッタで成膜する。詳細の実験条件は以下に示す。Ti02膜はTi9ーゲットをガス圧(酸素とAroの混合比10%)2mTorrでスパッタ成膜する。<math>-方Si02膜は、Aroみでガス圧6mTorrとし、9ーゲット印加高周波電力300W、バイアス電力80Wで成膜する。Si02層とTi02層はそれぞれ0.06 μ mとし、8周期繰り返した。従って多層膜の厚さは0.96 μ mである。

【0024】また、堆積方法として、化学気相法(CVD)や蒸着法などを利用しても良い。さらに、低屈折率材料に、アモルファスSiO2以外にも、バイレックスなどの光学ガラスを用いてもよい。

【0025】また、高屈折率材料にアモルファスSiやTi 02以外にも、Ta205、Nb205、Si3N4などを用いてもよい。作製条件の一例を挙げる。Ta205膜はTa205ターゲットをガス圧(酸素とArの混合比5%)1mTorrでスパッタ成膜する。一方Si02膜は、ガス圧5mTorr、ターゲット印加高周波電力300W、スパッタエッチングはSi02層成膜後行ない、ガス圧2mTorr、基板印加高周波電力100Wである。Si02層とTa205層の厚さはそれぞれ0.08μm、面内の凹凸周期は0.18μm、10周期繰り返した。Ta205は材料自身がもつバンド端波長が約300mmとTi02に比べて短い。したがって、波長400m付近で屈折率が2.2と高いだけでなく、屈折率分散や吸収損失が小さいという光学的優位性をもつことが特徴である。この波長域は青紫色レーザの開発により、高密度記録光ディスクなどで用いることのできる有用な波長域である。

【0026】積層した膜の断面形状は実施例1ないし3においてはV型であるが、矩形や三角柱などの多様な断面形状も可能である。

【0027】また溝や線状の突起は直線だけでなく、曲線にすることで、より複雑な位相差分布を与えることもできる。

【0028】このように作製した積層膜を、表面・界面と基板裏面に無反射コーティングを施した後、切断すると良い。多数の素子を一括して作製できるだけでなく、研磨が不要、切断工程が簡易である。また、積層膜の厚さには再現性があり、素子の特性の変動は少ない。一方、基板に初期加工する溝の形状には高い精度を要求しないため、電子ビームリソグラフィに限らず、凹凸形状を加工した金型を利用したナノプリント技術などのより簡易な方法で作製することも可能である。その結果、低価格な素子を提供することができ、光ディスク用ピックアップなど広範囲な利用が可能である。

[0029]

【発明の効果】本発明のスパッタエッチング作用を含む 成膜方法によって作製した複屈折素子は、光透過方向の厚さが微小で、1回の成膜プロセスで大面積の積層膜が 得られ、個々の素子を作製するときに研磨が不要であり、切断が容易であるという特徴を備えている。他方、使用する波長帯に応じて、任意の複屈折率、および任意の位相差制御を与えることが設計が可能である。さらに、基板上に任意のパターンに複屈折構造を描くことが可能である。このような複屈折媒質を使った位相制御素子や位相回折格子などの複屈折素子は、光ディスク用ピックアップなど工業的用途は広く、従来の複屈折素子を置き換えることが可能である。

【図面の簡単な説明】

- 【図1】第1の実施例の構造を示す図
- 【図2】表面に溝を有する基板を示す図
- 【図3】第1の実施例における周波数と波数ベクトルの 関係を示す図
- 【図4】第2の実施例の構造を示す図
- 【図5】第2の実施例における偏光分離動作を示す図
- 【図6】第2の実施例における周波数と波数ベクトルの 関係を示す図
- 【図7】第2の実施例の構造を示す図
- 【図8】第3の実施例における周波数と波数ベクトルの 関係を示す図

【符号の説明】

- 1 SiO2層
- 2 Si層
- 3 基板
- 4 溝部分の拡大
- 5 反射防止膜
- 6 基板
- 7 面内周期の小さい凹凸形状を有する領域
- 8 面内周期の大きい凹凸形状を有する領域
- 9 Si02層
- 10 Ti02層
- 11 プリズム
- 12 凹凸形状を有する薄膜

フロントページの続き

(72)発明者 大寺 康夫 宮城県仙台市青葉区土樋1丁目6番15号コ 一ポ金子201号 (72)発明者 川嶋 貴之 宮城県仙台市青葉区川内三十人町45番5号 ル・ヴィラージュ203号

(72) 発明者 三浦 健太 宮城県仙台市太白区八木山南3丁目8番12 号アパートメントハウス八木山101号

THIS PAGE BLANK (USPTO)