Configuration and Controller Verification for SMORES modular robot

January 12, 2015

Abstract

Key points:

- Build complex configurations and controllers from a library of basic configurations and controllers by arranging them in (nested) parallel and series structures
- Both script and graphical user interface methods are implemented to build configurations and controllers
- Verify that there is no self collision in composed configurations and during the execution of controllers without simulation in Gazebo
- Define "unexpected behaviors" due to instability of the configuration under a controller, and verify that there is no "unexpected behaviors" during the execution of controllers without simulation in Gazebo
- Human asistant configuration and controller design (synthesis).
- Show experiment in simulator. (Maybe with realy robot)

1 Action Items

- Check literatures about quasi stability Tarik
- Define unexpected behaviors Jim
- Get final draft at the beginning of January All

- Think about how meta-module is related with this paper Tarik
- Motion planner for modular robot Jim
- Come up with set of configurations and controllers Shangyi

2 Introduction

- Introduce existing designs on modular robots.
- Introduce existing works on modular robot controller design
- Introduce SMORES modular robot and advantages
- Introduce the contribution of this paper
- Why fully automomous approach does not work well so far

3 Preliminary

SMORES robot module Define the ability of motion and connectivity of a SMORES robot module. Position and velocity of each Dof. Can be connected to four other modules at the same time. Representation of properties of a SMORES module, e.g. joint angels, global positions, connection information

Configuration Define the representation of a configuration as a set of SMORES robot modules connected in a certain way. Define topology graph.

Controller Define controller as a basic feedback controller for each Dof of each SMORES module. The reference input of the controller is a gait table. Define how the gait table is executed. Mention that controller in this paper refers to the input gait table.

Collision Define a collision between SMORES modules.

Controller conflict Define a conflict between controllers, i.e. giving opposite commands to the same Dof of a module at the same time.

Unexpected behavior Define the unexpected behavior of a configuration due to instability during a controller execution.

4 Approach and Algorithm

Configuration composition Define the composition of a set of configurations to a single configuration.

4.1 Configuration Composition

Input A set of configurations. A topology graph representing the connectivity among those configurations. A base module (for position transformation).

Output A composed configuration if it is safe.

Procedure

- Start from the configurations that connects to the configuration with base module, transform their positions based on the position of the base configuration and topology graph.
- Check if there is any collisions among the modules and report such collision.
- Check if the final configuration is stable. If not, find the plane that will make the configuration stable and transform the configuration.
- Show the expected behavior in simulator.

Controller composition Define the composition of a set of controllers to a single controller. Define the difference between a parallel composition and a series composition. Define the control composition graph.

4.2 Controller Composition

Input A configurations. A set of controllers. A control composition graph.

Output A composed controller if it is safe.

Procedure

- Compose the set of controllers based on the given control composition graph. Explain how the parallel composition and series composition are handled.
- Check there is no controller conflict in the composition.
- Execute the composed controller in user defined incremental time interval. At each time step, update each module position and check collision.
- At each time step, check if the configuration will not have any unexpected behavior.

4.3 Complexity

Discuss the complexity of the algorithm with respect to the number of modules and size of gait tables.

5 Example and Experiment

With simulation in Gazebo:

- Show a configuration composed from a set of basic configurations.
- Show a composed controller that results in a collision in the configuration.
- Show an updated controller that resolves the collision
- Show a composed controller that results in an unexpected behavior.
- Show an updated controller that eliminates the unexpected behavior.

6 Conclusions

We worked hard, and had fun.

7 Future

 \bullet How to represent different attribute/ability of the configurations