

Python内置函数

abs()	dict()	help()	min()	setattr()
all()	dir()	hex()	next()	slice()
any()	divmod()	id()	object()	sorted()
ascii()	enumerate()	input()	oct()	staticmethod()
bin()	eval()	int()	open()	str()
bool()	exec()	isinstance()	ord()	sum()
bytearray()	filter()	issubclass()	pow()	super()
bytes()	float()	iter()	print()	tuple()
callable()	format()	len()	property()	type()
chr()	frozenset()	list()	range()	vars()
classmethod()	getattr()	locals()	repr()	zip()
compile()	globals()	map()	reversed()	import()
complex()	hasattr()	max()	round()	reload()
delattr()	hash()	memoryview()	set()	参数可以help查一下

Python math 模块

Python **math** 模块提供了许多对浮点数的数学运算函数。**math** 模块下的函数,返回值均为浮点数,除非另有明确说明。

如果你需要计算复数,请使用 cmath 模块中的同名函数。要使用 math 函数必须先导入, 查看 math 模块中的内容:

import math dir(math)

math 模块常量

常量	描述	
math.e	返回欧拉数 (2.7182)	
math.inf	返回正无穷大浮点数	
math.nan	返回一个浮点值 NaN (not a number)	
math.pi	π 一般指圆周率。 圆周率 PI (3.1415)	

常量 描述

数学常数 τ = 6.283185...,精确到可用精度。Tau 是一个圆周常数,等于 2π ,圆的周长与半径之比。

math 模块方法

	描述	
math.acos(x)	返回 x 的反余弦,结果范围在 0 到 pi 之间。	
math.acosh(x)	返回 x 的反双曲余弦值。	
math.asin(x)	返回 x 的反正弦值,结果范围在 -pi/2 到 pi/2 之间。	
math.asinh(x)	返回 x 的反双曲正弦值。	
math.atan(x)	返回 x 的反正切值,结果范围在 -pi/2 到 pi/2 之间。	
math.atan2(y, x)	返回给定的 X 及 Y 坐标值的反正切值,结果是在 -pi 和 pi 之间。	
math.atanh(x)	返回 x 的反双曲正切值。	
math.ceil(x)	将 x 向上舍入到最接近的整数	
math.comb(n, k)	返回不重复且无顺序地从 n 项中选择 k 项的方式总数。	
math.copysign(x, y)	返回一个基于 x 的绝对值和 y 的符号的浮点数。	
math.cos()	返回×弧度的余弦值。	
math.cosh(x)	返回 x 的双曲余弦值。	
math.degrees(x)	将角度 x 从弧度转换为度数。	
math.dist(p, q)	返回 p 与 q 两点之间的欧几里得距离,以一个坐标序列(或可迭代对象)的形式给出。 两个点必须具有相同的维度。	
math.erf(x)	返回一个数的误差函数	
math.erfc(x)	返回×处的互补误差函数	
math.exp(x)	返回 e 的 x 次幂,Ex, 其中 e = 2.718281 是自然对数的基数。	
math.expm1()	返回 Ex - 1, e 的 x 次幂,Ex,其中 e = 2.718281 是自然对数的基数。这通 常比 math.e ** x 或 pow(math.e, x) 更精确。	
math.fabs(x)	返回 x 的绝对值。	
math.factorial(x)	返回 x 的阶乘。 如果 x 不是整数或为负数时则将引发 ValueError。	
math.floor()	将数字向下舍入到最接近的整数	
math.fmod(x, y)	返回 x/y 的余数	
math.frexp(x)	以 (m, e) 对的形式返回 x 的尾数和指数。 m 是一个浮点数, e 是一个整数,正好是 x == m * 2**e 。 如果 x 为零,则返回 (0.0, 0) ,否则返回 0.5 <= abs(m) < 1 。	

方法	描述		
math.fsum(iterable)	返回可迭代对象 (元组, 数组, 列表, 等)中的元素总和, 是浮点值。		
math.gamma(x)	返回×处的伽马函数值。		
math.gcd()	返回给定的整数参数的最大公约数。		
math.hypot()	返回欧几里得范数,sqrt(sum(x**2 for x in coordinates))。 这是从原点到坐标给定点的向量长度。		
math.isclose(a,b)	检查两个值是否彼此接近,若 a 和 b 的值比较接近则返回 True,否则返回 False。。		
math.isfinite(x)	判断 x 是否有限,如果 x 既不是无穷大也不是 NaN,则返回 True ,否则返回 False 。		
math.isinf(x)	判断 x 是否是无穷大,如果 x 是正或负无穷大,则返回 True ,否则返回 False 。		
math.isnan()	判断数字是否为 NaN,如果 x 是 NaN(不是数字),则返回 True ,否则返回 False 。		
math.isqrt()	将平方根数向下舍入到最接近的整数		
math.ldexp(x, i)	返回 x * (2**i) 。 这基本上是函数 math.frexp() 的反函数。		
math.lgamma()	返回伽玛函数在 x 绝对值的自然对数。		
math.log(x[, base])	使用一个参数,返回 x 的自然对数(底为 e)。		
math.log10(x)	返回 x 底为 10 的对数。		
math.log1p(x)	返回 1+x 的自然对数(以 e 为底)。		
math.log2(x)	返回 x 以 2 为底的对数		
math.perm(n, k=None)	返回不重复且有顺序地从 n 项中选择 k 项的方式总数。		
math.pow(x, y)	将返回 x 的 y 次幂。		
math.prod(iterable)	计算可迭代对象中所有元素的积。		
math.radians(x)	将角度 x 从度数转换为弧度。		
math.remainder(x, y)	返回 IEEE 754 风格的 x 除于 y 的余数。		
math.sin(x)	返回×弧度的正弦值。		
math.sinh(x)	返回×的双曲正弦值。		
math.sqrt(x)	返回×的平方根。		
math.tan(x)	返回×弧度的正切值。		
math.tanh(x)	返回 x 的双曲正切值。		
math.trunc(x)	返回 x 截断整数的部分,即返回整数部分,删除小数部分		

日历 (Calendar) 模块

此模块的函数都是日历相关的,例如打印某月的字符月历。

星期一是默认的每周第一天,星期天是默认的最后一天。更改设置需调用calendar.setfirstweekday()函数。 模块包含了以下内置函数:

序号

函数及描述

calendar.calendar(year,w=2,l=1,c=6)

1 返回一个多行字符串格式的 year 年年历, 3 个月一行, 间隔距离为 c。 每日宽度间隔为w字符。 每行长度为 21* W+18+2* C。 **l** 是每星期行数。

calendar.firstweekday()

2 返回当前每周起始日期的设置。默认情况下,首次载入 calendar 模块时返回 0,即星期一。

calendar.isleap(year)

是闰年返回 True, 否则为 False。

>>> import calendar

>>> print(calendar.isleap(2000))

True

>>> print(calendar.isleap(1900))

False

calendar.leapdays(y1,y2)

返回在Y1, Y2两年之间的闰年总数。

calendar.month(year,month,w=2,l=1)

5 返回一个多行字符串格式的year年month月日历,两行标题,一周一行。每日宽度间隔为w字符。每行的长度为7* w+6。l是每星期的行数。

calendar.monthcalendar(year,month)

6 返回一个整数的单层嵌套列表。每个子列表装载代表一个星期的整数。Year年month月外的日期都设为0;范围内的日子都由该月第几日表示,从1开始。

calendar.monthrange(year,month)

返回两个整数。第一个是该月的星期几,第二个是该月有几天。星期几是从0(星期一)到 6(星期日)。

7 >>> import calendar

>>> calendar.monthrange(2014, 11)

(5, 30)

8

9

解释: 5 表示 2014年 11 月份的第一天是周六,30 表示 2014年 11 月份总共有 30 天。

calendar.prcal(year, w=0, l=0, c=6, m=3)

相当于 print (calendar.calendar(year, w=0, I=0, c=6, m=3))。

calendar.prmonth(theyear, themonth, w=0, l=0)

相当于 print(calendar.month(theyear, themonth, w=0, l=0))。

序 函数及描述

calendar.setfirstweekday(weekday)

设置每周的起始日期码。0 (星期一) 到6 (星期日)。

calendar.timegm(tupletime)

- 11 和time.gmtime相反:接受一个时间元组形式,返回该时刻的时间戳 (1970纪元后经过的浮点秒数)。
- calendar.weekday(year,month,day) 返回给定日期的日期码。0(星期一)到6(星期日)。月份为 1(一月) 到 12(12月)。

常用数据结构

```
1. 列表 (List)
列表是Python中最常用的数据结构之一,支持动态大小,能够以简单的方式存储多个项目。以下
是一些基本操作:
fruits = ['apple', 'banana', 'cherry']
# 添加元素
fruits.append('orange')
# 删除元素
fruits.remove('banana')
# 查找元素
if 'apple' in fruits:
   print("Apple is in the list!")
新手易踩坑:在使用列表时,注意索引从0开始。如果你试图访问一个超出范围的索引,Python会
抛出IndexError。
2. 字典 (Dictionary)
字典是一种无序的键值对集合,适合用于快速查找。它的查找速度非常快,通常是0(1)。
student = {'name': 'Alice', 'age': 20}
#添加元素
student['grade'] = 'A'
# 删除元素
del student['age']
# 查找元素
print(student.get('name'))
新手易踩坑:字典的键必须是不可变类型(如字符串、数字、元组),而值可以是任意类型。
3. 集合(Set)
集合是一种无序且不重复的元素集合,适合用于去重和集合运算。
numbers = \{1, 2, 3, 4, 5\}
#添加元素
numbers.add(6)
# 删除元素
numbers.discard(3)
#集合运算
even_numbers = \{2, 4, 6\}
print(numbers.intersection(even_numbers))
新手易踩坑:集合中的元素是无序的,因此不能通过索引访问。
```

```
4. 栈 (Stack)
栈是一种后进先出(LIFO)的数据结构。我们可以使用列表来实现栈的功能。
stack = []
# 入栈
stack.append(1)
# 出栈
top = stack.pop()
新手易踩坑: 在使用栈时,确保在出栈之前栈中有元素,否则会抛出IndexError。
5. 队列(Queue)
队列是一种先进先出(FIFO)的数据结构。我们可以使用collections模块中的deque来实现队
from collections import deque
queue = deque()
# 入队
queue.append(1)
# 出队
first = queue.popleft()
新手易踩坑:使用列表实现队列时,出队操作会导致O(n)的时间复杂度,因此推荐使用deque。
常用算法
1. 排序算法
排序是数据处理中的基本操作之一。Python内置的sorted()函数和列表的sort()方法都可以轻松
实现排序
sorted_list = sorted([3, 1, 4, 1, 5, 9])# 使用sorted()函数
numbers = [3, 1, 4, 1, 5, 9]# 使用sort()方法
numbers.sort()
新手易踩坑:注意sorted()返回一个新列表,而sort()是在原地排序。
2. 查找算法
查找算法用于在数据结构中查找特定元素。最常用的查找算法是线性查找和二分查找。
# 线性查找
def linear search(arr, target):
   for index, value in enumerate(arr):
      if value == target:
         return index
   return -1
# 二分查找
def binary_search(arr, target):
   left, right = 0, len(arr) - 1
   while left <= right:
      mid = (left + right) // 2
      if arr[mid] == target:
          return mid
      elif arr[mid] < target:</pre>
          left = mid + 1
      else:
          right = mid - 1
   return -1
新手易踩坑: 在使用二分查找时, 确保数据是有序的, 否则结果将不可靠。
```