Analysis II Cheatsheet

Luna Lorea Zehnder

8. Oktober 2024

$\begin{array}{cc} 1 & Differenzielle\ Analysis\ in \\ & R^n \end{array}$

1.1 Parzielle Ableitungen

Def. 3.3.11 Gradient und Divergent:

Gradient: Wenn für die Funktion $f: U \to \mathbb{R}$ alle partiellen Ableitungen existieren für $x_0 \in U$, dann ist der Vektor

$$\begin{pmatrix} \partial_{x_1} f(x_0) \\ \vdots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$

Divergent Wenn für eine Funktion $f = \{f_1, ..., f_m\} : U \to \mathbb{R}^m$ alle partiellen ableitungen für alle f_i bei $x_0 \in U$ existieren, ist der Divergent die Trace der Jakobimatrix

$$div(f)(x_0) = Tr(J_f(x_0))$$

1.2 Das Differential

Def. 3.4.2 Differenzierbarkeit:

Wenn $U \in \mathbb{R}^n$ eine offene Menge, $f: U \to R^m$ eine Funktion und $A: \mathbb{R}^n \to \mathbb{R}^m$ eine affine Abbildung ist, dann ist f bei $x_0 \in U$ differenzierbar mit Differenzial A, falls:

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - A(x - x_0)}{||x - x_0||} = 0$$

Prop. 3.4.4 Eigenschaften von differenzierbaren Funktionen:

Wenn $U \in \mathbb{R}^n$ eine offene Menge, $f: U \to R^m$ eine differenzierbare Funktion dann gilt:

1. Die Funktion f ist stetig auf U

2. Für die Funktion $f = [f_1, ..., f_m]$ existieren alle $\partial_{x_j} f_i$ mit $1 \le j \le n, 1 \le i \le m$

Prop. 3.4.6 Differenzierbarkeit bei Funktionsoperationen:

 $U \in \mathbb{R}^n$ offen, $f, g: U \to \mathbb{R}^m$ differenzierbar:

- 1. f + g ist differenzierbar und $d(f + g)(x_0) = df(x_0) + dg(x_0)$
- 2. Falls $m = 1 : f \cdot g$ differenzierbar.
- 3. Falls $m = 1, g \neq 0 : \frac{f}{g}$ differenzierbar.

Prop. 3.4.7 Differenzial von elementaren Funktionen:

Prop. 3.4.9 Kettenregel:

 $U \in \mathbb{R}^n$ und $V \in \mathbb{R}^m$ offen, $f: U \to V, g: V \to \mathbb{R}^p$ differenzierbar.

Funktionen: Dann ist $g \circ f$ differenzierbar und $d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$.

Jakobi Matrizen: $J_{g \circ f}(x_0) = J_g(f(x_0) \cdot J_f(x_0))$.

Gradienten: $\Delta_{g \circ f} = Jg \circ f^T, \Delta_g = J_g^T$ also $\Delta_{g \circ f}(x_0) = J_f(x_0)^T \cdot \Delta_g(f(x_0)).$