

X-Class HiPerFET™ **Power MOSFET**

IXFA30N60X IXFP30N60X

600V **30A** $155 m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	600	V	
$V_{\scriptscriptstyle DGR}$	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	600	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	30	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	60	А	
I _A	T _C = 25°C	10	A	
E _{AS}	$T_{c} = 25^{\circ}C$	1	J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P_{D}	T _C = 25°C	500	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	10.65 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-263 TO-220	2.5 3.0	g 9	

G = Gate= Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits

155 $m\Omega$

- AC and DC Motor Drives
- · Robotics and Servo Controls

 $\boldsymbol{R}_{DS\underline{(on)}}$

 $V_{_{\mathrm{GS}}}$ = 10V, $I_{_{\mathrm{D}}}$ = 0.5 • $I_{_{\mathrm{D25}}}$, Note 1

Symbol Test Conditions C		Char	aracteristic Values		
$(T_J = 25^{\circ}C, U)$	nless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	10	17	S	
R _{Gi}	Gate Input Resistance		2.6	Ω	
C _{iss}			2270	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1610	pF	
C _{rss}			14	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\bigvee_{GS} = 0V$		120	pF	
$\mathbf{C}_{o(tr)}$	Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		375	pF	
t _{d(on)}	Resistive Switching Times		21	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		43	ns	
t _{d(off)}	$R_{G} = 5\Omega$ (External)		58	ns	
t _f	$n_{\rm G} = 352$ (External)		33	ns	
$Q_{g(on)}$			56	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		12	nC	
Q _{gd}			28	nC	
R _{thJC}				0.25 °C/W	
R _{thCS}	TO-220		0.50	°C/W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Value			
$(1_J = 25^{\circ}C)$	C, Unless Otherwise Specified)	Min.	Тур.	Max	
l _s	$V_{GS} = 0V$			30	Α
SM	Repetitive, pulse Width Limited by ${\rm T}_{_{\rm JM}}$			120	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr} Q _{RM} I _{RM}	$I_F = 15A$, -di/dt = 100A/ μ s $V_R = 100V$		145 860 12		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

SYM	INCHES		MILLIMETER		
SIM	MIN	MAX	MIN	MAX	
Α	.170	.185	4.30	4.70	
A1	.000	.008	0.00	0.20	
A2	.091	.098	2.30	2.50	
Ь	.028	.035	0.70	0.90	
b2	.046	.060	1.18	1.52	
С	.018	.024	0.45	0.60	
C2	.049	.060	1.25	1.52	
D	.340	.370	8.63	9.40	
D1	.300	.327	7.62	8.30	
Ε	.380	.410	9.65	10.41	
E1	.270	.330	6.86	8.38	
е	.100	BSC	C 2.54 BS		
Н	.580	.620	14.73	15.75	
L	.075	.105	1.91	2.67	
L1	.039	.060	1.00	1.52	
L2	_	.070	_	1.77	
L3	.010	BSC	0.254	BSC	

MYZ	INCHES		MILLIMETERS		
21M	MIN	MAX	MIN	MAX	
Α	.169	.185	4.30	4.70	
A1	.047	.055	1.20	1.40	
A2	.079	.106	2.00	2.70	
Ь	.024	.039	0.60	1.00	
ь2	.045	.057	1.15 1.45		
С	.014	.026	0.35	0.65	
D	.587	.626	14.90	15.90	
D1	.335	.370	8.50	9.40	
(D2)	.500	.531	12.70	13.50	
Ε	.382	.406	9.70	10.30	
(E1)	.283	.323	7.20	8.20	
е	.100) BSC	2.54 BSC		
e1	.200) BSC	5.08 BSC		
H1	.244	.268	6.20	6.80	
L	.492	.547	12.50	13.90	
L1	.110	.154	2.80	3.90	
ØΡ	.134	.150	3.40	3.80	
Q	.106	.126	2.70	3.20	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 15A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 15A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area 100 R_{DS(on)} Limit 25µs 10 100µs I_D - Amperes 10ms 0.1 T_J = 150°C T_C = 25°C Single Pulse 0.01 10 100 1,000

V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

