# Resampling

## S. Tonini, F. Chiaromonte (special thanks to J. Di Iorio and L. Insolia)

## February 22th 2024

## Contents

| Introduction                 | 1  |
|------------------------------|----|
| Libraries                    |    |
| Data                         | 1  |
| Bootstrapping                | 1  |
| Non-parametric Bootstrapping | 1  |
| Parametric Bootstrapping     | 5  |
| Permutation Test             | 7  |
| Permutation Test with coin   | 9  |
| Time Series Bootstrap        | 10 |
|                              |    |

## Introduction

#### Libraries

We are going to use:

- boot: Bootstrap Functions
- coin: Conditional Inference Procedures in a Permutation Test Framework
- ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics

```
library(tidyverse) # data manipulation and visualization
library(boot) # bootstrapping
library(coin) # permutation tests
library(ggplot2) # plots
```

#### Data

Today we will simulate our dataset! :)

## Bootstrapping

There are two different ways of obtaining and evaluating bootstrap estimates:

- 1. non-parametric;
- 2. parametric;

- Goal: we have a set of n observations from which we are able to calculate a statistic of interest  $\theta$ , but we have no formula to estimate its standard error. The latter may be useful to construct confidence intervals as well (e.g. ordinary 2-tailed 95%).

### Non-parametric Bootstrapping

- Why non-parametric? We often cannot reasonably assume that our sample is drawn from a known frequency distribution, but we can assume that it adequately reflects the underlying population from which it was drawn.

#### By hand

We generate a sample from a binomial distribution with parameters (15, 0.71).

```
set.seed(123)
x \leftarrow rbinom(n=30,
                        # sample size
            size=15,
                        # num. of trials
            prob=0.71) # prob. of success per trial
х
  [1] 12 9 11 9 8 13 11 8 10 11 8 11 10 10 13 8 12 13 11 8 8 10 10 6 10
## [26] 10 11 10 12 12
n <- length(x)
n
## [1] 30
summary(x)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
      6.00
              9.00
                     10.00
                              10.17
                                      11.00
                                              13.00
```

Let's pretend that we do not know the true underlying distribution.

Our goal is to estimate the 90th percentile, and we rely on non-parametric bootstrapping.

```
## [1]
         30 2000
bootstrapsample[1:3, 1:3]
         [,1] [,2] [,3]
##
## [1,]
          NA
                NA
                      NA
## [2,]
          NA
                NA
                      NA
## [3,]
          NA
                NA
                      NA
```

```
for(i in 1:B){
    # assign (column-wise) B draws with replacement
    bootstrapsample[, i] <- sample(x,n,replace=TRUE)
}
summary(bootstrapsample[, 1:3])</pre>
```

```
VЗ
##
          ۷1
                         V2
##
           : 8.0
                          : 8.00
                                          : 8.0
   Min.
                   Min.
                                   Min.
##
   1st Qu.:10.0
                   1st Qu.: 9.25
                                   1st Qu.: 9.0
##
  Median:10.0
                   Median :10.00
                                   Median:10.0
  Mean
         :10.3
                   Mean
                        :10.20
                                   Mean
                                          :10.4
##
   3rd Qu.:11.0
                   3rd Qu.:11.00
                                   3rd Qu.:12.0
   Max.
           :13.0
                   Max.
                          :13.00
                                   Max.
                                          :13.0
```

Now we can compute our statistic of interest on each of these 2000 samples – producing B bootstrap values.

In our case, the statistic we are interested in is the 90th percentile.

```
## [1] 12.0 12.0 13.0 12.0 13.0 11.1
```

So we have the following point estimate and its standard error:

```
## mean SD
## Manual 12.33695 0.5571399
```

#### Using the boot package

We can automatically perform non-parametric bootstrapping using the **boot** package. The main bootstrapping function is boot() and has the following syntax:

```
help(boot)
```

- 1. **data:** The data as a vector, matrix or data frame. If it is a matrix or data frame then each row is considered as one multivariate observation;
- 2. **statistic:** A function which when applied to data returns a vector containing the statistic(s) of interest. [...] The first argument passed will always be the original data. The second will be a vector of indices, frequencies or weights which define the bootstrap sample;
- 3. R: The number of bootstrap replicates;

Remark: it is mandatory to pass a "user-defined function" in the field statistic.

In the case of the 90th percentile, our estimation function is:

```
# x: vector
# d: set of indexes
# prob: quantile
sampleperc <- function(x, d, prob=0.9) {
   return(quantile(x[d], probs=prob))
}</pre>
```

The estimation function (that we wrote on top, and has to be so) comprises data x and a vector of indexes d. This function will be called many times, one for each bootstrap replication. Every time, the data x will be the same, and only the bootstrap sample indexed by d will change.

Once we have written a function like this, here is how we obtain bootstrap estimates of the standard error for the 90th percentile of the distribution:

```
set.seed(123)
b = boot(x, sampleperc, R=2000)
print(b)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = x, statistic = sampleperc, R = 2000)
##
## Bootstrap Statistics :
##
       original bias
                         std. error
           12.1 0.23385
                         0.5454704
# notice how close this is to our previous computation
results <- rbind.data.frame(results,
                             data.frame("mean" = b$t0,
                                                          # mean(b$t)
                                        "SD" = sd(b$t))) # for some reason you must compute it again
rownames(results)[2] <- "boot"</pre>
results
##
                          SD
              mean
## Manual 12.33695 0.5571399
## boot
         12.10000 0.5454704
# bias calculation
mean(b$t)-b$t0
##
       90%
## 0.23385
```

It is also easy to get a confidence interval (but be careful) using the function **boot.ci** that requires an object of class "boot" (i.e. computed using **boot**).

This function generates (by default) 5 different types of equi-tailed two-sided nonparametric confidence intervals. These are:

• first order normal approximation: uses the standard deviation for calculation of CI. Use when statistic is unbiased. Is normally distributed.

- basic bootstrap interval: uses percentile to calculate upper and lower limit of test statistic. Use when statistic is unbiased and homoscedastic. The bootstrap statistic can be transformed to a standard normal distribution
- studentized bootstrap interval (bootstrap variance needed): resamples the bootstrap sample to find a second-stage bootstrap statistic and use it to calculate the CI. Use when statistic is homoscedastic. The standard error of bootstrap statistic can be estimated by second-stage resampling.
- bootstrap percentile interval: uses quantiles eg 2.5%, 5% etc. to calculate the CI. Use when statistic is unbiased and homoscedastic. The standard error of your bootstrap statistic and sample statistics are the same.
- adjusted bootstrap percentile (BCa) interval: uses percentile limits with bias correction and estimate acceleration coefficient corrects the limit and find the CI. The bootstrap statistic can be transformed to a normal distribution. The normal-transformed statistic has a constant bias.

```
help(boot.ci)
boot.ci(b, conf=0.95)
```

```
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b, conf = 0.95)
##
## Intervals :
## Level
              Normal
                                  Basic
                           (11.20, 13.10)
## 95%
         (10.80, 12.94)
##
## Level
             Percentile
## 95%
         (11.1, 13.0)
                         (11.1, 13.0)
## Calculations and Intervals on Original Scale
```

#### Parametric Bootstrapping

- Why parametric? It is very useful when we can reasonably assume that our sample follows a known distribution.

#### By hand

We have a sample of size n = 30 from a binomial distribution with parameters (N = 15, p = 0.71).

```
set.seed(123)

n = 30
N <- 15
x <- rbinom(n = n, size = N, prob = 0.71)
x</pre>
```

```
## [1] 12 9 11 9 8 13 11 8 10 11 8 11 10 10 13 8 12 13 11 8 8 10 10 6 10 ## [26] 10 11 10 12 12
```

Let's assume that we know the underlying distribution, where the actual parameter p is unknown, and we want to estimate the 90th percentile as before.

Based on MLE: 
$$(\hat{p} = \frac{\sum_{i=1}^{n} x_i}{nN})$$

```
p_hat <- mean(x)/N
p_hat</pre>
```

#### ## [1] 0.6777778

We use parametric bootstrap and compute B samples of size n from the known distribution.

```
## [1] 30 2000
```

bootstrapsample[, 1:5]

```
##
          [,1] [,2] [,3] [,4] [,5]
##
    [1,]
             7
                   9
                        12
                              10
                                     8
    [2,]
##
             8
                  12
                        10
                              11
                                    10
    [3,]
##
             9
                  11
                        11
                              11
                                    11
##
    [4,]
             9
                  11
                         9
                              12
                                    11
##
    [5,]
            13
                   9
                        11
                              11
                                    12
##
    [6,]
            10
                  10
                        12
                               6
                                    11
                                    10
##
    [7,]
             9
                   9
                         9
                              12
##
    [8,]
            12
                   9
                        12
                              13
                                    12
##
   [9,]
                   9
                        10
                              12
            11
                                    10
## [10,]
            12
                  11
                        10
                               9
                                    12
## [11,]
            12
                   9
                        10
                              10
                                    10
## [12,]
                  10
            11
                        11
                               8
                                    11
## [13,]
                   9
                        10
            11
                               9
                                    10
## [14,]
            11
                  15
                         7
                                    11
                               9
## [15,]
            12
                  10
                        10
                              10
                                    11
## [16,]
            12
                  12
                         8
                               9
                                    10
## [17,]
            12
                  11
                         8
                               9
                                     9
## [18,]
                  10
                        10
                               9
                                    12
            10
## [19,]
            11
                  11
                        11
                               6
                                    11
## [20,]
                        12
             8
                  12
                              11
                                    11
## [21,]
            13
                  11
                         7
                              11
                                    10
## [22,]
            10
                   9
                                    12
                        11
                              11
## [23,]
             9
                  11
                        13
                              14
                                     8
## [24,]
            12
                   9
                         7
                              12
                                     9
## [25,]
            10
                  12
                         9
                               8
                                     9
## [26,]
            12
                  11
                        12
                              12
                                    10
## [27,]
            12
                   6
                        10
                              11
                                    11
## [28,]
                   8
                                    10
             9
                         7
                              13
## [29,]
              8
                   8
                        10
                              11
                                     8
                  12
                        11
                               9
                                    10
## [30,]
             11
```

Now we can compute the statistic of interest on each of these 2000 samples – producing B bootstrap values.

In our case, we are interested in the 90th percentile.

```
B_values <- apply(bootstrapsample, 2, quantile, prob=0.9)
head(B_values)</pre>
```

```
## [1] 12.0 12.0 12.0 12.1 12.0 11.1
summary(B_values)
      Min. 1st Qu. Median
                               Mean 3rd Qu.
##
                                                Max.
             12.00
                     12.10
                              12.27
                                       13.00
                                               14.00
##
So we have the following estimate and standard error:
resultsParam <- data.frame("mean" = mean(B_values),</pre>
                       "SD" = sd(B_values))
rownames(resultsParam) <- "Manual_Parametric"</pre>
resultsParam
##
                                      SD
                         mean
## Manual Parametric 12.2717 0.5362862
Let's compare it with the boot function:
set.seed(123)
B = 2000
p.rg <- function(data, mle, N=15) {
    out <- rbinom(length(data),</pre>
                      size = N,
                      prob = mle)
    out
}
bBoot <- boot(x, sampleperc, R = B, sim = "parametric",
                  ran.gen = p.rg, mle = (mean(x)/N))
bBoot
## PARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = x, statistic = sampleperc, R = B, sim = "parametric",
##
       ran.gen = p.rg, mle = (mean(x)/N))
##
##
## Bootstrap Statistics :
                         std. error
##
       original bias
           12.1 0.17165
                          0.5363069
# notice how close this is to our previous computation
resultsParam <- rbind.data.frame(resultsParam,</pre>
                                                               \# mean(b\$t)
                             data.frame("mean" = bBoot$t0,
                                         "SD" = sd(bBoot$t))) # for some reason you must compute it again
rownames(resultsParam)[2] <- "boot_Parametric"</pre>
resultsParam
                         mean
## Manual_Parametric 12.2717 0.5362862
```

## boot\_Parametric 12.1000 0.5363069

## Permutation Test

Permutation tests are particularly relevant in experimental studies, where we are often interested in the sharp null hypothesis of no difference between treatment groups.

Let's generate a dataset divided into treatment (1) and control group (0).

```
# they have a difference in mean equal to 1
set.seed(1)
n <- 100
tr <- rbinom(n, 1, 0.5)
y <- 1 + tr + rnorm(n, 0, 3)</pre>
```

Let us compute the difference in mean between the two groups. The difference in means is, as we would expect (since we made it up), about 1:

```
means <- by(y, tr, mean)
diff0 <- diff(means)
diff0</pre>
```

```
## [1] 1.341389
```

To obtain a single permutation of the data, we simply resample without replacement and calculate the difference again:

```
s <- sample(tr, length(tr), FALSE)  # shuffle the labels
by(y, s, mean)  # compute mean in vector y according to class s

## s: 0
## [1] 0.8112026
## ------
## s: 1
## [1] 2.094659

diff(by(y, s, mean))  # difference between 2 means</pre>
```

```
## [1] 1.283456
```

If we repeat this process a large number of times, we can build our approximate permutation distribution (i.e., the sampling distribution for the mean-difference).

We'll use **replicate** to repeat our permutation process. The result will be a vector of the differences from each permutation (i.e., our distribution):

We can look at our distribution using an histogram indicating with a vertical line the observed difference:

```
hist(dist, xlim = c(-3, 3), col = "grey", breaks = 100)
abline(v = diff(by(y, tr, mean)), col = "blue", lwd = 2)
```





Now, we can use the distribution to obtain a p-value for our mean-difference by counting how many permuted mean-differences are larger than the one we observed in our actual data. We can then divide this by the number of items in our permutation distribution (i.e., nperm=2000 from our call to replicate, above):

```
sum(dist > diff0)/nperm  # one-tailed test

## [1] 0.0155

sum(abs(dist) > abs(diff0))/nperm  # two-tailed test

## [1] 0.029
```

#### Permutation Test with coin

Even if we implemented our own permutation distributions, R provides a package to conduct permutation tests called **coin**. We can compare our result from above with the result from **coin**:

```
# library(coin)
independence_test(y ~ tr, alternative = "greater") # one-tailed

##
## Asymptotic General Independence Test
##
## data: y by tr
## Z = 2.3154, p-value = 0.01029
## alternative hypothesis: greater
independence_test(y ~ tr) # two-tailed (default)
```

```
##
## Asymptotic General Independence Test
##
## data: y by tr
## Z = 2.3154, p-value = 0.02059
## alternative hypothesis: two.sided
```

Almost anything that you can address in a parametric framework can also be done in a permutation framework otherwise you can create your own permutation test!

## Time Series Bootstrap

The function **tsboot** (in the **boot package**) generates R bootstrap replicates of a statistic applied to a time series. The replicate time series can be generated using fixed or random block lengths or can be model based replicates.

```
set.seed(1)
z <- arima.sim(n = 200, list(ar = 0.9))
acf(z)</pre>
```

## Series z



We perform a time series bootstrap in the case of block resampling with block lengths of l=15

```
ar.fun <- function(fun) {
    ar.fit <- ar(fun, order.max = 1)
    c(ar.fit$ar[1])
}
prova <- tsboot(z, ar.fun, R = 1000, l = 15, sim = "fixed")
prova$t0</pre>
```

## [1] 0.9032885

```
ar.fun(z)
## [1] 0.9032885
prova$t[1:5]
## [1] 0.8392951 0.7995264 0.8013963 0.8438590 0.7630456
summary(prova$t)
## V1
## Min. :0.6777
## 1st Qu.:0.8041
## Median :0.8280
## Mean :0.8245
## 3rd Qu.:0.8507
## Max. :0.9147
sd(prova$t)
## [1] 0.03705962
```