Project handling - guidelines

Good practices in bioinformatics

Sarah Bonnin

CRG – May 7th, 2018

Learning objectives

- How to organize a bioinformatics project.
- Suggestions on how to properly structure the project / data.

Learning outcomes

- Create the base structure of a project
- Know what is a README file and how to write it.
- Which data to store, which data to trash.

Challenges

- Data organization and management.
- Space management.
- Analysis/pipeline efficiency.
- Reproducibility of the analysis:
 - by someone else
 - by yourself in months/years!

Raw data

- "data that comes out of a machine".
- Often large / heavy.

- → Necessary to reproduce the analysis, if ever needed!
- → Required for <u>publishing!</u>

Raw data files examples

- High Throughput Sequencing
 - fastq (Illumina, PacBio)
- Mass spectrometry:
 - mzML, mzXML, netCDF, mzData
- Microarrays:
 - text (Agilent) or CEL (Affymetrix) files

Metadata

Samples

- origin (tissue, cell line)
- experimental specificities (treatments, times, age)

Experimental design

number of samples and conditions

Experimental protocol

- Starting material: concentration, volume.
- Reagents, kits.
- Machine types/models.

Metadata

Analysis

- README file (text file): your lab book!
 - Tells the story of your project.
 - Explains HOW and WHY each step is done.

→ Following it should enable one to reproduce the analysis and the results.

README files

Mostly used in software deployment:

- Program name and version
- Date of distribution
- Introduction / short description
- Installation requirements / dependencies
- Configuration
- Example code
- Contact / author / license information
- etc.

README adapted to a project: suggestions

- Project title + short description
- Author
- Date
- Analysis steps:
 - linear
 - name and version of software
 - comments!

Analysis

Keep track of:

- Programs and methods:
 - references / versions
 - arguments / options
- Genome and annotation versions
- Intermediate files / temporary data

Analysis

Naming of files: good / explicit:

– 201805_WT_rep1_counts_mm10_htseq.txt

Cleaning up!

- Risk of drowning in data
 - remove what can be removed!

- Risk of bankruptcy
 - more data = more storage = €€€€
 - 7€ / Tb / month

Cleaning up Temporary files

- Created by a program
 - hold information temporarily
- Usually deleted by the program
- Kept if:
 - program abnormally stopped / failed run
 - program defaults to keeping temporary files

Cleaning up Intermediate / log files

- Various attempts (options) to run a program:
 - remove the non final versions (report which is kept and why in the README)
- "Log" files
 - records of software runs
 - depending on the information they hold, could be removed

Results What to keep from a project?

- Raw data
 - keep original files (with <u>original file names</u>)
- Relevant documentation
 - README
 - metadata
- Annotation and genome version
 - mm10 or mm9? ENSEMBL or RefSeq?
- Final processed data / results

Example project as done in the Bioinformatics core facility

RNA-seq project

Assessment of gene expression levels using Next-Generation Sequencing technologies

Goal:

Identify differentially expressed genes between KO (Knock out of the Mstn gene) and WT (Wild Type).

Project organization

|-- data Raw data

| -- docs | README + relevant documentation

|-- src Scripts that are used for the analysis

|-- results Final results

Raw data: fastq files

KO1_54320_ACTGTT.fastq.gz KO2_54321_TCTAGT.fastq.gz KO3_54322_CCAGTA.fastq.gz WT1_54323_AGTGCA.fastq.gz WT2_54324_ACTGTT.fastq.gz WT3_54325_GTTGAG.fastq.gz

Docs: README

Title: RNA-seq project: Knock out of the Myostatin (Mstn) gene.

Summary / short description: study of the gene expression changes provoked by a KO of Mstn in Mus musculus muscle cells

Date: April 2018

Author: Sarah Bonnin – sarah.bonnin@crg.eu

Experimental design: 6 samples in triplicates (3 Knock Out and 3 Wild Type)

Docs: README

```
# 1. Quality control of the raw data:
# FastQC v0.11.5
cd [path to project]/analysis/fastqc
fastqc [path to project]/data/*.fastq.gz
# 2. Mapping samples to reference genome
# STAR v2.5.3a
cd [path to project]/analysis/star
for fq in [path_to_project]/data/*.fastq.gz
do
    qsub –N star –v $fq [path_to_project]/src/star.sh
done
# 3. Differential expression analysis
# DESeq2 v1.14.1
cd [path_to_project]/analysis/deseq2
```

Analysis folder

One folder per step in the analysis:

- |-- deseq2
- |-- fastqc
- |-- star

You can name the folders by their respective order in the analysis pipeline:

- |-- 1_fastqc
- |-- 2_star
- |-- 3_deseq2

Scripts / src folder

- Scripts run reported in the README
 - launched locally
 - launched on the CRG cluster

→ The scripts can also be kept in a **common** repository for the lab/group folder or in your personal folder.

Results folder

Only **final results** and reports:

- → FastQC reports.
- → differential expression analysis table.
- →analysis report.

What is needed to send to users/collaborators.

Project organization

KO1 54320 ACTGTT.fastq.gz (O2 54321 TCTAGT.fastq.gz KO3_54322_CCAGTA.fastq.gz I-- data WT1 54323_AGTGCA.fastq.gz WT2 54324_ACTGTT.fastq.gz WT3 54325 GTTGAG.fastq.gz -- docs README 1 fastqc |-- analysis 2 star 3 deseq2 run_fastqc.sh -- src run star.sh run deseg2.sh KO1_54320_ACTGTT_fastqc.html, ... |-- results 2018-05-07_KOvsWT_DESeq2.txt 2018-05-07_Sbonnin report.pdf

Submission of raw data to public repository

→ Required for publishing.

Examples of repositories:

- GEO (Gene Expression Omnibus)
- ArrayExpress
- SRA (Short Read Archive)

Submission of raw data to public repository

Requirements:

- Raw data (fastq files)
- Processed data (counts per gene)
- Metadata file:
 - experimental protocol
 - sequencing protocol
 - analysis protocol

EVOLUTION OF LANGUAGE THROUGH THE AGES.

THIS TOON IS A REPEAT

<u>6000 B.C.</u>

2000 A.D.

COPYRIGHT (C) 1999 ILLIAD

HTTP://WWW.USERFRIENDLY.ORG/

