Tit1	e 1	x/ill	he	here
	C	<i>V</i> V 111	. DC	11616

Rodion Efremov

Master thesis UNIVERSITY OF HELSINKI Department of Computer Science

Helsinki, May 5, 2016

${\tt HELSINGIN\ YLIOPISTO-HELSINGFORS\ UNIVERSITET-UNIVERSITY\ OF\ HELSINKI}$

Tiedekunta — Fakultet — Faculty	Laitos — Institution — Department											
Faculty of Science		Department of C	Computer Science									
Tekijä — Författare — Author Rodion Efremov												
Työn nimi — Arbetets titel — Title												
Title will be here												
Oppiaine — Läroämne — Subject												
Computer Science Työn laji — Arbetets art — Level	Aika — Datum — Mo	nth and year	Sivumäärä — Sidoanta	l — Number of pages								
Master thesis	May 5, 2016		1									
Tiivistelmä — Referat — Abstract												
Abstract goes here												
Avainsanat — Nyckelord — Keywords												
And Agencia Reynolds												
Säilytyspaikka — Förvaringsställe — Where de	eposited											
Muita tietoja — Övriga uppgifter — Additiona	al information											

Contents

0.1	Strongly connected components									1
	0.1.1 Kosaraju's algorithm									1

Dummy section

0.1 Strongly connected components

Since our methods require the input graph to be strongly connected, we review here briefly how to algorithmically validate that the input graph exhibits the requirement. A directed graph is called *strongly connected* if and only if for every pair of nodes u, v of the graph u is reachable from v, and v is reachable from u. Let $u \stackrel{r}{\sim} v$ denote the aforementioned reachability relation. Now, it is easy to see that

```
(Reflexivity) u \stackrel{r}{\sim} u, for all u \in V(G).

(Symmetry) if u \stackrel{r}{\sim} v, then v \stackrel{r}{\sim} u.

(Transitivity) If u \stackrel{r}{\sim} v and v \stackrel{r}{\sim} v', then u \stackrel{r}{\sim} v'.
```

The above three properties imply that $\stackrel{r}{\sim}$ is an equivalence relation, and as such, implies that the graph has a unique partition into strongly connected components.

Algorithms for finding all strongly connected components of a graph in linear time are known. We review three of them below.

0.1.1 Kosaraju's algorithm

```
Algorithm 1: KosarajuVisit(G, S, L, v)
```

```
 \begin{array}{c|c} \mathbf{1} & \mathbf{if} & v \not\in S \ \mathbf{then} \\ \mathbf{2} & S \leftarrow S \cup \{v\} \\ \mathbf{3} & \mathbf{for} \ (v,w) \in G(A) \ \mathbf{do} \\ \mathbf{4} & L \leftarrow \langle v \rangle \circ L \\ \end{array}
```

Algorithm 2: KosarajuAssign (G, μ, u, r)

```
1 if (u \mapsto r) \not\in \mu then

2 \mu(u) \leftarrow r

For all parents of u

3 \mathbf{for} (v, u) \in G(A) \mathbf{do}

4 KOSARAJUASSIGN(G\mu, v, r)
```

Algorithm 3: KosarajuSCC(G)

- $\mathbf{1} \ S \leftarrow \varnothing$
- 2 $L \leftarrow \langle \rangle$
- $\mathbf{3} \ \mu \leftarrow \varnothing$
- 4 for $v \in V(G)$ do

Iterate the list L in its natural order

- 6 for $v \in L$ do
- 7 L KosarajuAssign()