MAT344 Intro to Combinatorics

Lecture 10: Prüfer Code and Counting Trees, Poset

Lecturer: Keegan Dasilva Barbosa Scribe: Kevin Gao

10.1 Counting Trees

Recall that a tree is a connected graph with the property that any two vertices are connected by a unique path. Equivalently, a tree is a connected graph with n-1 edges and n vertices. A tree with at least $n \geq 2$ vertices has at least two vertices of degree one (the leaves).

```
Definition 10.1 (Labeled Tree). A labeled tree is a tree T whose vertex set is \{1, \ldots, n\}.
```

We would like to know how many possible E exist such that ([n], E) forms a **labeled tree**. We are not counting isomorphisms here so the labels matter. To answer this question, we introduce **Prüfer's code**, which transforms trees into strings that are easy to count.

10.1.1 Prüfer Code

Fix $n \ge 2$. Let $s: [n-2] \to \{1, \ldots, n\}$ be a sequence (string over $\{1, \ldots, n\}$ of length n-1). Consider the following algorithm that generates a set E of size n-2.

```
\begin{array}{ll} \text{Prufer-Decode}(s) \\ 1 & L = \{1, \dots, n\} \\ 2 & \textbf{while} \ |s| > 0 \\ 3 & \text{find the smallest } j \text{ that is not in } s, \text{ add } \{j, s[1]\} \text{ to } E \\ 4 & \text{set } L = L \setminus \{j\} \\ 5 & \text{delete } s[1] \\ 6 & \text{set } E = E \cup \{L\} \\ 7 & \textbf{return } E \end{array}
```

The algorithm above assigns to each sequence s, a set E of size n-1 such that ([n], E) is connected.

Figure 10.1: Example of a tree and its corresponding Prufer code

We can reverse the algorithm above to encode a tree into its Prüfer code.

```
\begin{array}{ll} \text{Prufer-Encode}(E) \\ 1 & \text{for } i=1 \text{ to } n-2 \\ 2 & s[i] = \text{the unique vertex adjacent to the leaf with the smallest value} \\ 3 & \text{remove the leaf with the smallest value} \\ 4 & \text{return } s \end{array}
```

10.1.2 Back to Counting Trees

Each labeled tree with n vertices has a unique Prüfer's code of length n-2. Then, counting the number of labeled trees is equivalent to counting the number of Prüfer codes for all the trees.

```
Theorem 10.1 (Cayley's Formula). For each n \geq 2, there are exactly n^{n-2} labeled trees on \{1, \ldots, n\}.
```

Proof. To each tree, find the unique associated Prüfer code $s:[n-2]\to [n]$. This creates a bijective correspondence between labeled trees and sequences $s:[n-2]\to [n]$.

There are exactly n^{n-2} such sequences and hence that many labeled trees on $\{1,\ldots,n\}$.

10.2 Poset

Definition 10.2 (Poset (partially ordered set)). A **poset** \mathbb{P} is a pair $\mathbb{P} = (X, P)$ where X is a set and $P \subseteq X \times X$ is a relation that is

- reflexive: $\forall a \in X. (a, a) \in P$
- anti-symmetric: $a \neq b \land (a,b) \in P \implies (b,a) \notin P$
- transitive: $(a,b) \in P \land (b,c) \in P \implies (a,c) \in P$

Instead of writing $(a, b) \in P$, we use the notation $a \leq_{\mathbb{P}} b$.

Definition 10.3 (Embedding, Isomorphism, Automorphism). Given a poset $\mathbb{P}=(X,P)$ and $\mathbb{Q}=(Y,Q)$, an **embedding** from \mathbb{P} into \mathbb{Q} is an injective map $f: X \to Y$ with the property that $a \leq_{\mathbb{P}} b$ if and only if $f(a) \leq_{\mathbb{Q}} f(b)$. If the embedding is surjective, we call it an **isomorphism**. If $\mathbb{Q} = \mathbb{P}$, we call it an **automorphism**.

For example, consider $X = \{\star, \circ, \diamond\}$ with $P = \{(\star, \star), (\circ, \circ), (\diamond, \diamond), (\diamond, \star)\}$, and $Y = \{\star, \circ, \diamond, \Box\}$ with $Q = \{(\star, \star), (\circ, \circ), (\diamond, \diamond), (\Box, \Box), (\Box, \star)\}$. Let $\mathbb{P} = (X, P)$ and $\mathbb{Q} = (Y, Q)$. Consider the function $f : X \to Y$ such that $f(\star) = \star$, $f(\circ) = \circ$, and $f(\diamond) = \Box$. f is an embedding because $\diamond \leq_{\mathbb{P}} \star$ if and only if $f(\diamond) = \Box \leq_{\mathbb{Q}} \star = f(\star)$. However, f is not an isomorphism because \diamond is not in the range of f so f is not surjective.

Definition 10.4 (Dual). Given a poset $\mathbb{P} = (X, P)$, we call the poset $\mathbb{P}^d = (X, P^d)$ where $a \leq_{\mathbb{P}^d} b \iff b \leq_{\mathbb{P}_d} a$ the **dual** of \mathbb{P} . We say a poset is self-dual if it is isomorphic to its dual.

Definition 10.5 (Cover). Given a poset $\mathbb{P} = (X, P)$ and a point $a \in X$, we say a is **covered by** a point $b \in X$ if $a <_{\mathbb{P}} b$ and there is no c such that $a <_{\mathbb{P}} c <_{\mathbb{P}} b$.

Definition 10.6 (Cover Graph). Given a poset $\mathbb{P} = (X, P)$, we call the graph G = (X, E) given by $\{x, y\} \in E$ if and only if x covers y or y covers x, the **cover graph** associated to \mathbb{P} .

If we draw the cover graph in an oriented fashion where lower vertices correspond to the $\leq_{\mathbb{P}}$ -smaller elements, we have a special kind of cover graph known as **Hasse diagram**.

Let $\mathbb{P} = (X, P)$ be a poset where $X = \{a, b, c, d, e, f\}$ and $P = \{(a, c), (b, c), (b, d), (d, e), (a, e), (e, f)\}$. One possible cover graph and the Hasse diagram is shown below.

Figure 10.2: Cover graph and Hasse diagram for the poset described above.

10.2.1 Linear Orders

Definition 10.7 (Comparability). Given a poset $\mathbb{P} = (X, P)$, we say two points $a, b \in X$ are **comparable** if either $a <_{\mathbb{P}} b$ or $b <_{\mathbb{P}} b$ If two points are not comparable, we call them **incomparable**.

Definition 10.8 (Total/Linear Order). Given a poset $\mathbb{P} = (X, P)$, we say \mathbb{P} is *linearly ordered* or *totally ordered* if no two distinct points are incomparable.

10.2.2 Height and Width

Definition 10.9 (Antichain and Chain). Given a poset $\mathbb{P} = (X, P)$, we call $A \subseteq X$ an **antichain** if every pair of distinct elements in A are **incomparable**. We call a subset $C \subseteq X$ a **chain** is every pair of distinct elements is **comparable**.

Definition 10.10 (Height and Width). Given a poset $\mathbb{P} = (X, P)$, we define the parameters width(\mathbb{P}) and height(\mathbb{P}) to denote the size of the largest antichain and chain of \mathbb{P} , respectively.

10.2.3 Subset Lattice and Sperner's Theorem

Theorem 10.2 (Sperner's Theorem). Consider the poset $\mathbb{P} = (\mathcal{P}([n]), \subseteq)$. Then, width $(\mathbb{P}) = \binom{n}{\lfloor n/2 \rfloor}$.

Proof. One can easily verify that $A = \{S \subseteq [n] \mid |S| = \lfloor \frac{n}{2} \rfloor \}$ is an **antichain**. Two sets of the same size are comparable if and only if they are equal. There are $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ such subsets of [n] of size $\lfloor \frac{n}{2} \rfloor$, so width $(\mathbb{P}) \geq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. This shows that $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ is a lower bound.

Now, we proceed to show that $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ is also an upper bound. Let $A = \{S_1, \ldots, S_w\}$ be a **maximal antichain** of \mathbb{P} . It suffices to show that $w \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. For each $S_i \in A$, let C_i be the set of all **maximal chains** that contains S_i . We note that a maximal chain but be an \subseteq -increasing sequences that differs by at most one element per successive cover. If the next subset in the chain **differs** from the previous subset **by more than one element**, then the chain **would not be maximal**. In other words, starting from S_i , we remove 1 element until we reaches the empty set, and add 1 element until we reaches [n]. There are $|S_i|!$ ways to remove points successively from S_i . Similarly, there are $(k - |S_i|)!$ ways to add points successively to S_i . Therefore, for any i, $|C_i| = |S_i|! \cdot (k - |S_i|)!$.

Figure 10.3: Each subset must differ from the previous and next subset by exactly one element in a maximal chain. Otherwise, we form a chain of longer length by inserting a new subset in between.

We also observe that there are exactly n! many maximal chains, each corresponding to one ordering (permutation) to remove elements from [n].

For any $i \neq j$, $C_i \cap C_j = \emptyset$ because otherwise there would be a chain C with $S_i, S_j \in C$ and hence S_i and S_j are comparable, which is a contradiction to our assumption that S_i and S_j are members of a maximal **antichain**. It follows that

$$\left| \bigcup_{i=1}^{w} C_i \right| = \sum_{i=1}^{w} |C_i| \le n!$$

Since $|C_i| = |S_i|! \cdot (k - |S_i|)!$, it follows that

$$\sum_{i=1}^{w} |\mathcal{C}_i| = \sum_{i=1}^{w} (|S_i|! \cdot (k - |S_i|)!) \le n!$$

and hence

$$\sum_{i=1}^{w} \frac{|S_i|! \cdot (k - |S_i|)!}{n!} = \sum_{i=1}^{w} \frac{1}{\binom{n}{|S_i|}} \le 1$$

by definition of combination. It follows from $\binom{n}{|S_i|} \le \binom{n}{\lfloor n/2 \rfloor}$ that

$$\sum_{i=1}^{w} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \le \sum_{i=1}^{w} \frac{1}{\binom{n}{\lfloor S_i \rfloor}} \le 1$$

and $w \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Therefore, $\mathsf{width}(\mathbb{P}) \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ and because $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ is also a lower bound, $\mathsf{width}(\mathbb{P}) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$.