

Fakultät für Elektrotechnik, Prof. Dr. Götzmann

Klausur SYT, SS18

- Die Bearbeitungszeit beträgt zwei Stunden. Es ist der vollständige Lösungsweg einzutragen, damit auch Teillösungen bewertet werden können.
- Mobiltelefone sind auszuschalten und auf den Tisch zu legen
- Zulässige Hilfsmittel:
 - Taschenrechner ohne Text- und Formelspeicherfunktion
 - Mathematische Formelsammlung (Bronstein oder Ähnliches)
 - Selbstgeschriebene Formelsammlung, 1 DIN A4-Seite, ohne Aufgaben und Lösungen
 - Offizielle Formelsammlung (wird mit der Klausur verteilt)

Name:	Studiengang:	Matr.Nr.:
PUNKTE:		Note:
Rechnen Sie bei allen Aufgaben stets gerundet auf $0.00344 => 0.00341$	zwei signifikante Nachkomm	astellen (Beispiel: 12,5456 => 12,55 bzw.

1. Aufg.:	Verständnisfragen/Multiple Choice Es können maximal 2 Antworten richtig sein. Kreuzen Sie die richtigen Antworten an!	
a)	Bei einem instabilen LZI-System O kann kein Frequenzgang angegeben werden O kann $g(t)$ gegen einen konstanten Wert gehen O wird der Ausgang immer unendlich O verursacht eine Totzeit die Instabilität	2
b)	Ein reelles periodisches Zeitsignal O kann mit einer Fourierreihe dargestellt werden O ist immer bandbegrenzt O hat ein Spektrum mit diskreten Spektrallinien O hat eine reelle Fouriertransformierte	2
c)	 Ein von -∞ → +∞ mit einem δ-Abtaster abgetastetes Signal O hat keine Fouriertransformierte O hat ein periodisches Spektrum O hat ein diskretes Spektrum O liefert unter gewissen Umständen genug Information, um das originale kontinuierliche Signal rekonstruieren zu können 	2
d)	 Welche Aussagen zum Thema "Aliasing" treffen zu? O Aliasing verhindert, dass ein digitaler Tiefpass hohe Frequenzen aus dem abgetasteten Signal zuverlässig herausfiltern kann O Aliasing heißt, das zwei unterschiedliche Zeitfunktionen die gleiche Fouriertransformierte haben O Aliasing-Effekte treten bei jeder Abtastung auf O Aliasing wird dadurch bewirkt, dass Sinusschwingungen unterschiedlicher Frequenzen die gleichen Abtastwerte haben können 	2

Matrikelnummer: Seite: 2 / 11

2. Aufg.:	Gegeben ist die nebenstehende Zeitfunktion $f(t)$	18
a)	Bestimmen Sie $f(t)$!	3
b)	Handelt es sich bei $f(t)$ um ein kausales Signal? (Begründung erforderlich)!	2
c)	Berechnen Sie die Laplace-Transformierte von $f(t)$!	2
d)	Bestimmen Sie die Laplace-Transformierte von $f(t-3)$ aus dem Ergebnis von c) mit Hilfe der Verschiebungsregel!	3
e)	Geben Sie die verallgemeinerte Ableitung von $f(t)$ an!	3
f)	Bestimmen Sie die Fourier-Transformierte von $f(t)$!	5

Matrikelnummer: Seite: 3 / 11

Matrikelnummer: Seite: 4 / 11

3. Aufg.:	Gegeben ist die nebenstehende Schaltung: $u_1(t) \downarrow 0$ $u_1(t) \downarrow 0$ $u_2(t)$	12
a)	Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{U_2(s)}{U_1(s)}!$	4
	Im Weiteren sei die Übertragungsfunktion $G(s) = \frac{s}{2s+1}$!	
b)	Skizzieren Sie $h(t)$! (Anfangs- und Endwert, Einschwingzeit, Übergangsverhalten)!	3
c)	$u_1(t)$ ist eine Sinusschwingung mit der Amplitude 220V und einer Frequenz von 50Hz. Berechnen Sie $u_2(t)$ für $t \to \infty$	5

Matrikelnummer: Seite: 5 / 11

Matrikelnummer: Seite: 6 / 11

4. Aufg.:	Gegeben ist die nebenstehende Signal $f(t)$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	13
a)	Berechnen Sie die Fourier-Transformierte des Signals!	
b)	Das Signal wiederholt sich nun periodisch mit der Grundperiode $0 \le t \le 3$. Berechnen Sie die Fourierkoeffizienten $\underline{C}_k!$ (Hinweis: geht ohne viel Rechnen, wenn man die richtige Idee hat)	4
c)	Das periodische Signal $f_p(t)$ wird mit $T_A = 1$ abgetastet. Wo liegt die Nyquist–Shannon Grenzfrequenz in Hz!	
d)	Das periodische Signal $f_p(t)$ wird mit einem idealen Tiefpass auf $\omega_G = 2$ bandbegrenzt. Geben Sie die Zeitgleichung für das gefilterte Signal $f_F(t)$ an! [Hinweis: es kann mit allgemeinem \underline{C}_k gerechnet werden, so dass das Ergebnis aus c) nicht benötigt wird]	

Matrikelnummer: Seite: 7 / 11

Matrikelnummer: Seite: 8 / 11

5. Aufg.: Diskrete Systeme		9
a)	Ein System hat die Differenzengleichung $v_k - 0.3v_{k-2} = 10u_{k-1} + 5u_{k-2} + u_{k-4}$	2
	Bestimmen Sie die Diskrete Totzeit und die Ordnung des Systems!	
b)	Zeigen Sie, dass das System aus a) stabil ist!	3
c)	Skizzieren Sie $h[k]$ für ein diskretes System mit der Z-Übertragungsfunktion $G(z) = \frac{z-1}{z^2+0.3z-0.1}$	4

Matrikelnummer: Seite: 9 / 11

Matrikelnummer: Seite: 10 / 11

Zusatzblatt

Matrikelnummer: Seite: 11 / 11

Zusatzblatt