Simultaneous Graph Learning and Matrix Recovery

Seyyid Emre Sofuoglu, Selin Aviyente

March 7, 2022

1 Methods

Our aim is to learn the underlying manifold of a data on a Cartesian Product Graph and recovery missing or grossly corrupted entries. The objective can be written in convex terms as:

minimize_{$$G,S,\Phi_1,\Phi_2$$} tr $(G^{\top}\Phi_1G)$ + tr $(G\Phi_2G^{\top})$ + $||S||_1$,
s.t. $\mathcal{P}_{\Omega}[Y] = \mathcal{P}_{\Omega}[G+S], \ \Phi_1, \Phi_2 \in \mathcal{S},$ (1)

where Φ_1, Φ_2 are Graph Laplacians for the row graph and column graph, respectively, and \mathcal{S} is the space of undirected graph Laplacians. When the graph constraints are explicitly written, (1) becomes:

1.1 Optimization

For (2) to be optimized, the graph variable G can be separated into two variables to avoid large inverses.