■ Παράγωγος σε σημείο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Κανόνες παραγώγισης

Συνάρτηση	Παράγωγος		
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$		
$c \cdot f(x)$	$c \cdot f'(x)$		
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$		
$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$		
f(g(x))	$f'(g(x)) \cdot g'(x)$		

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΦΙΛΟΜΑΘΕΙΑ

Παράγωγοι συναρτήσεων

💡 Ιακώβου Πολυλά 24 - Πεζόδρομος

 ${\color{red} \,\,\boxtimes\,} frontistirio.filomatheia@gmail.com$

😝 Φροντιστήριο Φιλομάθεια

ΑП	ΛΕΣ	ΣΥΝΘΕΤΕΣ		ΓΕΣ
Συνάρτηση	Παράγωγος	Συνάρτηση	Παράγωγος	Λεκτική περιγραφή
с	0			
х	1			
x^{ν}	vx^{v-1}	$f^{\nu}(x)$	$\nu f^{\nu-1}(x) \cdot f'(x)$	ν (βάση) $^{\nu-1}$ (βαση) $'$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{1}{f(x)}$	$-\frac{f'(x)}{f^2(x)}$	$-rac{(\Pi$ αρονομαστής) $'}{\Pi$ αρονομαστής 2
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\sqrt{f(x)}$	$\frac{f'(x)}{2\sqrt{f(x)}}$	$\frac{(Υπόριζο)'}{2 \cdot Pίζα}$
ημχ	συνχ	ημf(x)	$\operatorname{ouv} f(x) \cdot f'(x)$	συν(Γωνία) \cdot (Γωνία) $'$
συνχ	– ημ <i>x</i>	$\operatorname{ouv} f(x)$	$-\eta \mu f(x) \cdot f'(x)$	$-ημ(Γωνία) \cdot (Γωνία)'$
εφχ	$\frac{1}{\sigma v^2 x}$	$\varepsilon \varphi f(x)$	$\frac{f'(x)}{\operatorname{\sigma uv}^2 f(x)}$	$\dfrac{(\Gamma\omega extsf{v}ilpha)'}{\sigma extsf{v} u^2(\Gamma\omega extsf{v}ilpha)}$
σφχ	$-\frac{1}{\eta \mu^2 x}$	$\sigma \varphi f(x)$	$-\frac{f'(x)}{\eta\mu^2 f(x)}$	$-\frac{(\Gamma\omegavi\alpha)'}{\eta\mu^2(\Gamma\omegavi\alpha)}$
a^x	$a^x \ln a$	$a^{f(x)}$	$a^{f(x)} \ln a \cdot f'(x)$	$a^{\text{Εκθέτης}} \cdot \ln a \cdot (\text{Εκθέτης})'$
e^x	e^x	$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$	$e^{\mathrm{E} \kappa \theta \acute{\epsilon} au \eta \varsigma} \cdot (\mathrm{E} \kappa \theta \acute{\epsilon} au \eta \varsigma)'$
$\ln x $	$\frac{1}{x}$	$\ln f(x) $	$\frac{f'(x)}{f(x)}$	(Παράσταση)' Παράσταση

- Παράγωγος συνάρτηση $f':A_1\to\mathbb{R}$ όπου A_1 το σύνολο των $x\in D_f$ ώστε f παραγωγίσιμη.
- Δεύτερη παράγωγος f'' = (f')'
- Νιοστή παράγωγος $f^{(\nu)} = (f^{(\nu-1)})', \ \nu \ge 3$
- $\left(\sqrt[\nu]{f(x)^{\kappa}}\right)' = \left(f(x)^{\frac{\kappa}{\nu}}\right)'$ $\alpha \nu \ f(x) \ge 0$
- $\left(\sqrt[\nu]{f(x)^{\kappa}}\right)' = \left(-f(x)^{\frac{\kappa}{\nu}}\right)'$ $\alpha v \ f(x) < 0$
- $\left(f(x)^{g(x)}\right)' = \left(e^{g(x)\ln f(x)}\right)'$
- f παραγωγίσιμη στο $x_0 \Rightarrow$ f συνεχής στο x_0
- f συνεχής στο $x_0 \Rightarrow$ f παραγωγίσιμη στο x_0
- An f: 1-1 kai paran. To x_0 tote f^{-1} paran. To $f(x_0)$ me $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$