Számítógépes Hálózatok

1. Előadás: Internet Architektúra

Egy kis logisztika

- □ Előadás
 - Nappali: Hétfő 12:15-13:45

Déli tömb, Bolyai terem

- □ Előadó
 - Dr. Laki Sándor
 - Adjunktus, Információs Rendszerek Tanszék
 - □ lakis@inf.elte.hu
 - □ Iroda: Déli tömb, 2.506
 - □ Fogadóóra: Hétfő 10-11

Mi értelme ennek a tárgynak?

- □ Hányan nézték meg az e-mailjeiket, FB-ot, Twittert...
 - □ ma?
 - az elmúlt órában?
 - amióta elkezdtem beszélni?

A számítógépes hálózatok mindenhol jelen vannak

- A hálózatok az élet minden részét érintik
 - Web keresés
 - Közösségi hálók
 - □ Film nézés
 - □ Termékek rendelése
 - Időpocsékolás

A számítógépes hálózatok mindenhol jelen vannak

- A hálózatok az egyik legkritikusabb terület napjainkban
 - Hálózatok nélkül nem lenne...
 - Big Data
 - Cloud
 - Apps or Mobile Computing

Tantárgy célja 1/2

- "Hálózati" lehetséges témakörök:
 - elosztott rendszerek,
 - 2. hálózati átvitel, csomagok, adat

Alkalmazások, app-ok

- Hálózatokkal kapcsolatos kulcsproblémák:
 - megbízhatóság,
 - 2. méretváltozás,
 - 3. erőforrások kihasználása,
 - biztonság.

- Adathálózatok elveinek és gyakorlatának megismertetése.
 - utvonal választás algoritmusai, átviteli protokollok elvi kérdései,
 - hálózati alkalmazások tervezésének és implementációjának alapelvei,
 - **-** ...
- Széles körben ismert hálózatok szolgáltatások hátterében történő folyamatok megismertetése
 - egy web alkalmazás megnyitásának folyamata a begépeléstől a kliens képernyőn történő megjelenítésig,
 - adatátvitel folyamata két eszköz között,
 - **-** ...
- Komplexitás, hibakezelés és felhasználói igények kezelésének megismertetése

g

- A diák elérhetők:
 - http://lakis.web.elte.hu

 \square Könyv ightarrow ightarrow ightarrow ightarrow ightarrow ightarrow ightarrow

Számonkérés - Gyakorlat

- 1) Gyakorlaton folyamatos számonkérés
 - A gyakorlati jegy 50%-át adják, és a vizsgához is alapul szolgálnak.
 - Két komponensből áll:
 - Teszt az óra elején (25%) Előző heti előadás anyagából
 - Definíciókból, összefüggésekből, képletekből.
 - Órai munka (25%)
 - Programozási feladatok, házi feladatok, stb.
- 2) Géptermi ZH a félév végén
 - A gyakorlati jegy másik 50%-át adja.

Számonkérés - Vizsgajegy

10

- A vizsga előfeltétele a legalább elégséges gyakorlati jegy.
- A vizsga írásbeli, azaz az egész féléves anyagra épülő elméleti és gyakorlati feladatokból összeállított kérdéssor kitöltését jelenti. A vizsga időtartama 50-60 perc.
- Teszt részből és kifejtős részből áll.
- A teszt rész esetén 50% minimum követelménnyel!
- A féléves anyag a fóliákon is szereplő fogalmakat, összefüggéseket és a belőlük levonható következtetéseket jelenti.

Értékelés

```
[85%, 100%] – jeles(5)

[75%, 85%) – jó(4)

[60%, 75%) – közepes(3)

[50%, 60%) – elégséges(2)

[ 0%, 50%) – elégtelen(1)
```

*0/0..

- 11
 - Előadásra járni kötelező a tavalyi kari határozat alapján
- Az oktatónak kötelező a jelenlét ellenőrzése

- Katalógus minden előadáson.
 - 4 igazolatlan hiányzás esetén a hallgató nem vizsgázhat
 - Ennek kivitelezése ???
 - http://patalog.inf.elte.hu
 - Papír alapú

Bevezetés...

13

K+F

Vegyél részt Te is az 5G mobil hálózatok fejlesztésében!

Ipari partnerekkel közös kutatási projektek a Tudáskezelő rendszerek labor keretén belül ösztöndíj lehetőséggel!

Témák és részletek: http://networks.elte.hu

Jelentkezni Laki Sándornál a lakis@elte.hu címen lehet!

Alapfogalmak 1/6

hálózati hoszt

Olyan eszköz, amely egy számítógépes hálózattal áll összeköttetésben. Egy hoszt információkat oszthat meg, szolgáltatást és alkalmazásokat biztosíthat a hálózat további csomópontjainak. (Továbbiakban csak hosztként hivatkozunk rá.)

átviteli csatorna, médium, fizikai közeg

Az a közeg, amelyen a kommunikáció folyik a résztvevő hosztok között. Ez a közeg lehet egy koaxális kábel, a levegő, optikai kábel, stb.

propagációs késés

Az az időtartam, amely a jelnek szükséges ahhoz, hogy a küldőtől megérkezzen a címzetthez. Jelölése: d_{prop} vagy d.

átviteli késleltetés

Az az időtartam, amely egy csomag összes bitjének az átviteli csatornára tételéhez szükséges. Jelölése: d_T .

Alapfogalmak 2/6

Jel sávszélesség

Jel feldolgozás esetén az egymást követő frekvenciák legnagyobb és legkisebb eleme közötti különbséget nevezik jel sávszélességnek. Tipikusan *Hertz*-ben mérik.

Hálózati sávszélesség

Az adat átviteléhez elérhető vagy felhasznált kommunikációs erőforrás mérésére szolgáló mennyiség, amelyet bit per másodpercben szoktak kifejezni.

SI szabvány

$8*10^3$ bit/sec	1 KB/s	egy kiló-bájt
8*10 ⁶ bit/sec	1 MB/s	egy mega-bájt
8*10° bit/sec	1 GB/s	egy giga-bájt
8*10 ¹² bit/sec	1 TB/s	egy terra-bájt
8*10 ¹⁵ bit/sec	1 PB/s	egy peta-bájt
8*10 ¹⁸ bit/sec	1 EB/s	egy exa-bájt

IEC szabvány

8*2 ¹⁰ bit/sec	1 KiB/s	egy kibi-bájt
$8*2^{20}$ bit/sec	1 MiB/s	egy mebi-bájt
8*2 ³⁰ bit/sec	1 GiB/s	egy gibi-bájt
8*2 ⁴⁰ bit/sec	1 TiB/s	egy tebi-bájt
$8*2^{50}$ bit/sec	1 PiB/s	egy pebi-bájt
8*2 ⁶⁰ bit/sec	1 EiB/s	egy exbi-bájt

Alapfogalmak 3/6

Csomagkapcsolt hálózat Pl. Internet

Áramkör kapcsolt hálózat Pl. vezetékes telefon

Alapfogalmak 4/6

A hálózatokat lehet osztályozni a területi kiterjedésük alapján. (Forrás: Tanenbaum)

Processzor közi távolság	Processzorok által foglalt terület		
1 m	négyzetméter	Magánhálózat (angolul Personal Area Network)	
10 m	szoba		
100 m	épület	Lokális hálózat (angolul Local Area Network)	
1 km	kampusz		
10 km	város	Városi hálózat (angolul Metropolitan Area Network)	
100 km	ország		
1.000 km	kontinens	├ Nagy kiterjedésű hálózat (angolul Wide Area Network	
10.000 km	bolygó	Internet	

Alapfogalmak 5/6 – példa topológiák

Alapfogalmak 6/6 – példa topológiák

LAN-ok összekötése alhálózattal (WAN)

Adatfolyam szemléltetése egy WAN-on

Mi az internet?

- Hálózatok hálózata
- A világra kiterjedő nyitott WAN
- Jellemzői
 - rendszerfüggetlenség;
 - nincs központi felügyelet;
 - építőelemei a LAN-ok;
 - globális;
 - olyan szolgáltatásokat nyújt, mint a World Wide Web, e-mail vagy fájlátvitel.

1957

- Sikeresen létesítettek kapcsolatot egy távoli számítógéphez.
- Szputnyik–1 műhold fellövése.

1958

DARPA megalapítása.

1966

ARPANET tervezésének kezdete.

További történetileg fontos hálózatok:

- RAND USA-ban katonai célokkal.
- NPL Angliában kereskedelmi célokkal.
- CYCLADES Franciaországban tudományos célokkal.

Az Internet története 2/2 – főbb állomások

- 1961 július "Packet Switching Theory"
 (J.C.R. Licklider)
- 1962 A "Galactic Network" koncepciója (J.C.R. Licklider)
 - október DARPA ("Advanced Research Projects Agency")
- 1965 Az Internet első őse (Thomas Merrill, Laurence G. Roberts)
- 1967 ARPANET tervezete
- 1969 Az "ARPANET" első csomópontja
- □ 1990 Az ARPANET megszűnése

Az "ős-internet" eredeti diagrammja

ARPANET történeti ábra 1/3

1969 december

1970 július

1971 március

ARPANET történeti ábra 2/3

1972 április

ARPANET történeti ábra 3/3

1972 szeptember

Robert Kahn koncepciója –

DARPA 1972

- Minden (lokális) hálózat autonóm
 - önállóan dolgozik
 - nem kell elkülönítve konfigurálni a WAN-hoz
- Kommunikáció a "legjobb szándék" (angolul best effort) elv szerint
 - ha egy csomag nem éri el a célt, akkor törlődik
 - az alkalmazás újraküldi ilyen esetekben
- "Black box" megközelítés a kapcsolatokhoz
 - a Black Box-okat később Gateway-eknek és Router-eknek keresztelték át
 - csomaginformációk nem kerülnek megőrzésre
 - nincs folyam-felügyelet
- Nincs globális felügyelet

Ezek az internet alapelvei

Hálózati funkciók

- A hálózatok komponensei
 - Hálózati technológiák
 - Ethernet, Wifi, Bluetooth, Fiber Optic, Cable Modem, DSL
 - Hálózat típusok
 - Áramkör kapcsolt (Circuit switch), Csomag kapcsolt (packet switch)
 - Vezetékes (Wired), Vezeték nélküli (Wireless), Optikai, Műholdas
 - Alkalmazások
 - Email, Web (HTTP), FTP, BitTorrent, VolP
- Hogyan érhető el, hogy ezek képesek legyenek együttműködni?

- Ha ez lenne a valóság, akkor ez egy rémálom lenne
- Új alkalmazások és médiumok bevezetése költséges lenne
- Korlátozott növekedés és elterjedés

802.11

Cellular

További problémák

Megoldás: használjunk kerülőútat

Rétegelt Hálózati Architektúra (Layered Network Stack)

32

Alkalmazások

N. réteg

- •
- 2. réteg
- 1. réteg

Fizikai Médium

- Modularitás
 - A hálózati funkciókat szervezi egységekbe
- Beburkolás (Encapsulation)
 - Interfészek definiálják a réteg közi interakciókat
 - A rétegek csak az alattuk levőkre épülnek
- Rugalmasság
 - Kód újrafelhasználás a hálózatban
 - Egyes modulok implementációja változhat
- Sajnos vannak hátrányai is
 - Az interfészek információt rejtenek el
 - Teljesítmény csökkenés

Fő kérdések

- 33
 - Hogyan osszuk a funkciókat rétegekbe?
 - Útvonal meghatározás Biztonság
 - Torlódás vezérlés
 Fairség
 - Hiba ellenőrzés
 - Hogyan osszuk el ezen funkciókat a hálózati eszközök között?
 - Például ki felel az útvonal meghatározásért, ki a torlódás vezérlésért?

 Switch

 Switch

 Switch

- Internet rétegmodelljei
 - TCP/IP modell: 4 réteget különböztet meg. 1982 márciusában az amerikai hadászati célú számítógépes hálózatok standardja lett. 1985-től népszerűsítették kereskedelmi felhasználásra. (*Interop*)
 - Hibrid TCP/IP modell: 5 réteget különböztet meg (Tanenbaum, Stallings, Kurose, Forouzan)
- Nyílt rendszerek hálózatának standard modellje
 - Open System Interconnection Reference Model: Röviden OSI referencia modell, amely egy 7-rétegű standard, koncepcionális modellt definiál kommunikációs hálózatok belső funkcionalitásaihoz. (ISO/IEC 7498-1)

TCP/IP modell (RFC 1122)

ALKALMAZÁSI RÉTEG

(angolul Application layer)

SZÁLLÍTÓI RÉTEG

(angolul Transport layer)

HÁLÓZATI RÉTEG

(angolul Internet layer)

KAPCSOLATI RÉTEG

(angolul Link layer)

TCP/IP modell rétegei ("bottom-up")

- Kapcsolati réteg / Host-to-network or Link layer
 - nem specifikált
 - a LAN-tól függ
- Internet réteg / Internet or Network layer
 - speciális csomagformátum
 - útvonal meghatározás (routing)
 - csomag továbbítás (angolul packet forwarding)
- Szállítói réteg / Transport layer
 - Transport Control Protocol
 - megbízható, kétirányú bájt-folyam átviteli szolgáltatás
 - szegmentálás, folyamfelügyelet, multiplexálás
 - User Datagram Protocol
 - nem megbízható átviteli szolgáltatás
 - nincs folyamfelügyelet
- Alkalmazási réteg / Application layer
 - Szolgáltatások nyújtása: Telnet, FTP, SMTP, HTTP, NNTP, DNS, SSH, etc.

OSI: Open Systems Interconnect Model Router/Switch Hoszt 1 Hoszt 2 Application Alka azási A rétegek peer-to-peer Megje enítési reser tation egymással kommunikálnak Üés Ses ion egy Szć llítói Transport Network. Hálozati Adatka pcsolati A datkapcsolcti Data Link

Rétegek jellemzése

- Szolgáltatás
 - Mit csinál az adott réteg?
- □ Interfész
 - Hogyan férhetünk hozzá a réteghez?
- Protokoll
 - Hogyan implementáljuk a réteget?

Fizikai réteg

- Szolgáltatás
 - Információt visz át két fizikailag összekötött eszköz között
 - definiálja az eszköz és a fizikai átviteli közeg kapcsolatát
- Interfész
 - Specifikálja egy bit átvitelét
- Protokoll
 - Egy bit kódolásának sémája
 - Feszültség szintek
 - Jelek időzítése
- Példák: koaxiális kábel, optikai kábel, rádió frekvenciás adó

Adatkapcsolati réteg

Alkalmazási Megjelenítési Ülés Szállítói

Hálózati

Adatkapcsolati

Fizikai

- Szolgáltatás
 - Adatok keretekre tördelésezés: határok a csomagok között
 - Közeghozzáférés vezérlés (MAC)
 - Per-hop megbízhatóság és folyamvezérlés
- □ Interfész
 - Keret küldése két közös médiumra kötött eszköz között
- Protokoll
 - Fizikai címzés (pl. MAC address, IB address)
- □ Példák: Ethernet, Wifi, InfiniBand

Hálózati réteg

- Szolgáltatás
 - Csomagtovábbítás
 - Útvonalválasztás
 - Csomag fragmentálás kezelése
 - Csomag ütemezés
 - Puffer kezelés
- □ Interfész
 - Csomag küldése egy adott végpontnak
- Protokoll
 - Globálisan egyedi címeket definiálása
 - Routing táblák karbantartása
- □ Példák: Internet Protocol (IPv4), IPv6

Szállítói réteg

- Szolgáltatás
 - Multiplexálás/demultiplexálás
 - Torlódásvezérlés
 - Megbízható, sorrendhelyes továbbítás
- □ Interfész
 - □ Üzenet küldése egy célállomásnak
- Protokoll
 - Port szám
 - Megbízhatóság/Hiba javítás
 - Folyamfelügyelet
- □ Példa: UDP, TCP

Ülés v. Munkamenet réteg

- Szolgáltatás
 - kapcsolat menedzsment: felépítés, fenntarás és bontás
 - munkamenet típusának meghatározása
 - szinkronizációs pont menedzsment (checkpoint)
- □ Interfész
 - Attól függ...
- Protokoll
 - Token menedzsment
 - Szinkronizációs checkpoints beszúrás
- □ Példa: nincs

Megjelenítési réteg

- Szolgáltatás
 - Adatkonverzió különböző reprezentációk között
 - Pl. big endian to little endian
 - Pl. Ascii to Unicode
- □ Interfész
 - Attól függ...
- Protokoll
 - Adatformátumokat definiál
 - Transzformációs szabályokat alkalmaz
- □ Példa: nincs

Alkalmazási réteg

- Szolgáltatás
 - Bármi...
- □ Interfész
 - □ Bármi...
- Protokoll
 - Bármi...
- Példa: kapcsold be a mobilod és nézd meg milyen appok vannak rajta...

Tananyag címszavakban

46

- 1. Hálózatok leírásához használt legfontosabb referencia modellek
- 2. Fizikai réteg áttekintése
- 3. Adatkapcsolati réteg
 - a) "Logical Link Control" alréteg
 - b) "Medium Access Control" alréteg
- 4. Hálózati réteg
- 5. Socket programozási alapok
- Szállítói réteg
- Alkalmazási réteg
- 8. Kis kitekintés Software defined networks, OpenFlow, P4, 5G

Köszönöm a figyelmet!