Radoslav Neychev

Recap

- 1. ML and AI overview
- 2. Thesaurus and notation
 - Dataset, observation, feature, target, design matrix
 - b. i.i.d. property
 - c. Model, prediction, loss/quality function
 - d. Parameter, Hyperparameter
- 3. Maximum Likelihood Estimation
- 4. Some Machine Learning problems
 - a. Classification
 - o. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier

Outline

- 1. Linear models overview
- 2. Linear regression solution
- 3. Gauss-Markov theorem
- 4. Regularizations
- 5. Model validation and evaluation

Linear models overview

girafe ai

$$Y = X_1 + X_2 + X_3$$

Dependent Variable

Independent Variable

Outcome Variable

Predictor Variable

Response Variable

Explanatory Variable

Regression models

- Regression models
- Classification models

- Regression models
- Classification models
- Unsupervised models (e.g. PCA)

- Regression models
- Classification models
- Unsupervised models (e.g. PCA)
- Building block of other models (ensembles, NNs, etc.)

girafe

Linear regression problem statement:

ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}$.

Linear regression problem statement:

- ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^{p} x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$

Linear regression problem statement:

- ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^{p} x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$

where $\mathbf{w} = (w_0, w_1, \dots, w_n)$, w_0 is bias term.

Linear regression problem statement:

- ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y}=w_0+\sum_{k=1}^r x_k\cdot w_k=//\mathbf{x}=[1,x_1,x_2,\ldots,x_p]//=\mathbf{x}^T\mathbf{w}$$
 where $\mathbf{w}=\left(w_0,w_1,\ldots,w_n\right)/w_0$ is bias term.

we added an additional column of 1's to the design matrix to simplify the formulas

Linear regression problem statement:

- ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, \quad y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^{p} x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$

where $\mathbf{w} = (w_0, w_1, \dots, w_n)$, w_0 is bias term.

• Least squares method (MSE minimization) provides a solution:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|Y - \hat{Y}\|_{2}^{2} = \arg\min_{\mathbf{w}} \|Y - X\mathbf{w}\|_{2}^{2}$$

Analytical solution

Denote quadratic loss function:

$$Q(\mathbf{w})=(Y-X\mathbf{w})^T(Y-X\mathbf{w})=\|Y-X\mathbf{w}\|_2^2$$
 , where $X=[\mathbf{x}_1,\ldots,\mathbf{x}_n], \quad \mathbf{x}_i\in\mathbb{R}^p\,Y=[y_1,\ldots,y_n], \quad y_i\in\mathbb{R}$.

To find optimal solution let's equal to zero the derivative of the equation above:

$$\nabla_{\mathbf{w}} Q(\mathbf{w}) = \nabla_{\mathbf{w}} [Y^T Y - Y^T X \mathbf{w} - \mathbf{w}^T X^T Y + \mathbf{w}^T X^T X \mathbf{w}] =$$

$$= 0 - X^T Y - X^T Y + (X^T X + X^T X) \mathbf{w} = 0$$

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$$

what if this matrix is singular?

Analytical solution

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$$

what if this matrix is singular?

Gauss-Markov theorem

girafe ai

Gauss-Markov theorem

Suppose target values are expressed in following form:

$$Y=X\mathbf{w}+oldsymbol{arepsilon}$$
 , where $oldsymbol{arepsilon}=[arepsilon_1,\ldots,arepsilon_N]$ are random variables

Gauss-Markov assumptions:

- $\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$
- $Var(\varepsilon_i) = \sigma^2 < \inf \forall i$
- $Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$

Gauss-Markov theorem

- $\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$
- $Var(\varepsilon_i) = \sigma^2 < \inf \forall i$
- $Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$

$$\mathbf{\hat{w}} = (X^T X)^{-1} X^T Y$$

delivers Best Linear Unbiased Estimator

Regularizations

girafe

Unstable solution

In case of multicollinear features the matrix X^TX is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

Unstable solution

In case of multicollinear features the matrix X^TX is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

corresponding features are almost collinear

Unstable solution

In case of multicollinear features the matrix X^TX is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

the coefficients are huge and sum up to almost 0

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\hat{\mathbf{w}} = (X^T X + \lambda I)^{-1} X^T Y,$$

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\hat{\mathbf{w}} = (X^T X + \lambda I)^{-1} X^T Y,$$

where
$$I=\mathrm{diag}[1_1,\ldots,1_p]$$
 .

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\hat{\mathbf{w}} = (X^T X + \lambda I)^{-1} X^T Y,$$

where
$$I=\mathrm{diag}[1_1,\ldots,1_p]$$
 .

Actually, it's a solution for the following loss function:

$$Q(\mathbf{w}) = ||Y - X\mathbf{w}||_2^2 + \lambda^2 ||\mathbf{w}||_2^2$$

exercise: derive it by yourself

Loss functions in regression

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

Different norms

Once more: loss functions:

$$MSE = \frac{1}{n} \|\mathbf{x}^T \mathbf{w} - \mathbf{y}\|_2^2$$

$$ullet$$
 L2 $\|\mathbf{w}\|_2^2$

only works for Gauss-Markov theorem

$$MAE = \frac{1}{n} \|\mathbf{x}^T \mathbf{w} - \mathbf{y}\|_1$$

$$ullet$$
 Li $\|\mathbf{w}\|_1$

Loss function properties

- MSE (L₂)
 - delivers BLUE according to Gauss-Markov theorem
 - o differentiable
 - o sensitive to noise
- MAE (L1)
 - o non-differentiable
 - not a problem
 - o much more prone to noise

Regularization properties

- L2 regularization
 - constraints weights
 - o delivers more stable solution
 - o differentiable
- L₁ regularization
 - o non-differentiable
 - o not a problem
 - o selects features

L1 vs L2 regularization

 ℓ^1 induces sparse solutions for least squares

Loss functions in regression

Other functions to measure the quality in regression:

- R2 score
- MAPE
- SMAPE
- .

Conclusion

- Linear models are simple yet quite effective models
- Regularization incorporates some prior assumptions/additional constraints

Model validation and evaluation

girafe ai

Supervised learning problem statement

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ ($\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}$) for regression
 - $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification

Model $f(\mathbf{x})$ predicts some value for every object

Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Under-fitting

(too simple to explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

Overfitting vs. underfitting

Evaluating the quality

Is it good enough?

Parameters and hyperparameters

Comparison

	Defined by	Depend on the training data	Order of optimization methods	Required for	Affect the complexity of the model
Parameters	during the training	yes	first (gradient)	predictions	no
Hyperparameters	before the start of training	no	zero (manual, Bayesian)	training	yes

Dataset splits

Data Permitting:

Training Validation Testing Training, Validation, Testing

Stages of model training

Split	training	validation	test
Used for	parameters optimization	hyperparameters selection	quality measurement
Overfitting level	high	average	low

Cross-validation

In real life is used only on **small datasets** (<10^4 samples)

Cross-validation

Special case: Leave One Out (LOO) - good for tiny datasets

Preserve class ratio for each split. Default for sklearn methods

Set whole group either to train or validation

Stages of model training

Revise

- 2. Linear Regression under the hood
- 3. Gauss-Markov theorem
- 4. Regularization in Linear regression
- 5. Model validation and evaluation

Thanks for attention!

Questions?

