The Application of Game Theory in Analyzing Public Health Issues

Banafsheh Behzad

California State University, Long Beach College of Business Administration

Co-author: Sheldon H. Jacobson

Sharif University of Technology Dec. 29, 2016

Research Summary

Winter Seminar Series

What is Game Theory?

- The branch of mathematics concerned with
 - the analysis of strategies for dealing with competitive situations
 - where the outcome of a participant's choice of action depends critically on the actions of other participants.
- What economists call game theory psychologists call the theory of social situations.

Immunization

- Immunization against infectious diseases: single factor that has had the greatest impact on world health (Plotkin and Orenstein, 2004)
- Much work remains to be done.
 - In 1998, over 20% of worldwide deaths were attributable to infectious diseases.
 - Measles accounted for 8% of these deaths.
 - Emergence of new infectious diseases creates new challenges.

Centers for Disease Control and Prevention (CDC)

- Primary public health organization in the United States
- Responsible for management of the Recommended Childhood Immunization Schedule (RCIS) (Source: CDC)

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos	15 mos
Hepatitis B ¹ .(HepB)	1 st dose		-2 nd se→		←3 rd dose→			
Rotavirus ² (RV) RV1 (2-dose series): RV5 (3-dose series)			1 st dose	2 nd dose	See footnote 2			
Diphtheria, tetanus, & acellular pertussis ³ (DTaP: <7 yrs)			1 st dose	2 nd dose	3 rd dose ←4 th dose→		←4 th dose→	
Haemophilus influenzae type b ⁴ (Hib)			1 st dose	2 nd dose	See footnote 4			
Pneumococcal conjugate ⁵ (PCV13)			1 st dose	2 nd dose	3 rd dose	3 rd dose ←4 th dose→		th dose→
Inactivated poliovirus ⁶ (IPV:<18 yrs)			1 st dose	2 nd dose	←3 rd dose→			

The Problem

Public Sector

Series of negotiations between the CDC and the vaccine manufacturers:

- State and local public health departments
- Public sector: 57% of the total pediatric purchases by volume in the United States (Vaccines for Children (VFC) Program)
- Limited profits and high research and development costs for manufacturers
- Six vaccine manufacturers in 2010 vs. 35 in 1970

Public Sector

Series of negotiations between the CDC and the vaccine manufacturers:

- State and local public health departments
- Public sector: 57% of the total pediatric purchases by volume in the United States (Vaccines for Children (VFC) Program)
- Limited profits and high research and development costs for manufacturers
- Six vaccine manufacturers in 2010 vs. 35 in 1970

The Role of CDC

- Negotiate the vaccine prices with vaccine manufacturers
- Provide financial incentives for vaccine manufacturers to stay in the market

Motivation

A small number of pharmaceutical companies:

- Manufacturing vaccines which are competing with each other
- Seeking higher profits

CDC:

 Seeks awareness on vaccine prices when preparing for series of negotiations

Question

Can game theory be used to better understand pediatric vaccine pricing in the United States?

Objectives

- Determine the equilibrium price of each vaccine in the public sector.
- Gain awareness about vaccine equilibrium prices in future years.

Nash Equilibrium

A stable state of a system involving the interaction of different players, in which no player can gain by a unilateral change of strategy if the strategies of the others remain unchanged.

Pure and Mixed Strategy Nash Equilibrium

 Pure strategy Nash equilibrium: provides a complete definition of how a player will play a game.

Pure and Mixed Strategy Nash Equilibrium

- Pure strategy Nash equilibrium: provides a complete definition of how a player will play a game.
- Mixed strategy Nash equilibrium: is an assignment of a probability to each pure strategy.

- A pricing game
- Nash equilibrium occurs when each firm selects a price level which maximizes their profits, given the price level chosen by the other firms.

- A pricing game
- Nash equilibrium occurs when each firm selects a price level which maximizes their profits, given the price level chosen by the other firms.

Main Assumptions:

Each firm can entirely meet the market demand.

- A pricing game
- Nash equilibrium occurs when each firm selects a price level which maximizes their profits, given the price level chosen by the other firms.

Main Assumptions:

- Each firm can entirely meet the market demand.
 - · Firms are not capacity-constrained.

- A pricing game
- Nash equilibrium occurs when each firm selects a price level which maximizes their profits, given the price level chosen by the other firms.

Main Assumptions:

- Each firm can entirely meet the market demand.
 - Firms are not capacity-constrained.
- Firms' products are interchangeable.

- A pricing game
- Nash equilibrium occurs when each firm selects a price level which maximizes their profits, given the price level chosen by the other firms.

Main Assumptions:

- Each firm can entirely meet the market demand.
 - Firms are not capacity-constrained.
- Firms' products are interchangeable.
 - No product differentiation

Bertrand-Edgeworth Competition:

- Capacity-constrained firms compete on price.
 - The first assumption of the Bertrand framework is relaxed

Bertrand-Edgeworth-Chamberlin Competition:

of differentiated products

Bertrand-Edgeworth Competition:

- Capacity-constrained firms compete on price.
 - The first assumption of the Bertrand framework is relaxed.

Bertrand-Edgeworth-Chamberlin Competition:

of differentiated products.

Bertrand-Edgeworth Competition:

- Capacity-constrained firms compete on price.
 - The first assumption of the Bertrand framework is relaxed.

Bertrand-Edgeworth-Chamberlin Competition:

of differentiated products.

Bertrand-Edgeworth Competition:

- · Capacity-constrained firms compete on price.
 - The first assumption of the Bertrand framework is relaxed.

Bertrand-Edgeworth-Chamberlin Competition:

- Capacity-constrained firms compete on price over the sale of differentiated products.
 - The first and second assumptions of the Bertrand framework are relaxed.

Bertrand-Edgeworth Competition:

- Capacity-constrained firms compete on price.
 - The first assumption of the Bertrand framework is relaxed.

Bertrand-Edgeworth-Chamberlin Competition:

- Capacity-constrained firms compete on price over the sale of differentiated products.
 - The first and second assumptions of the Bertrand framework are relaxed.

Main Focus

Bertrand-Edgeworth-Chamberlin competition in which the price competition among asymmetric capacity-constrained sellers is studied.

- Asymmetric capacity-constrained sellers: sellers with unequal production capacity
- Nash equilibrium is the solution concept applied to study the formulated game.

Game Formulation

Inverse and Direct Demands

$$P_i(\mathbf{q}) = \alpha - q_i - \gamma \sum_{j \neq i} q_j, \quad i = 1, 2, \dots, n,$$

$$P_i^{-1}(\mathbf{q}) = a - bp_i + c \sum_j p_j \equiv D_i(\mathbf{p}), \quad i = 1, 2, \dots, n$$

where
$$a = \alpha/(1 + (n-1)\gamma)$$
,
 $b = (1 + (n-2)\gamma)/(1 + (n-1)\gamma)(1 - \gamma)$,
 $c = \gamma/(1 + (n-1)\gamma)(1 - \gamma)$.

Game Formulation

Inverse and Direct Demands

$$P_i(\mathbf{q}) = \alpha - q_i - \gamma \sum_{j \neq i} q_j, \quad i = 1, 2, \dots, n,$$

$$P_i^{-1}(\mathbf{q}) = a - bp_i + c \sum_{j \neq i} p_j \equiv D_i(\mathbf{p}), \quad i = 1, 2, \dots, n$$

where
$$a = \alpha/(1 + (n-1)\gamma)$$
,
 $b = (1 + (n-2)\gamma)/(1 + (n-1)\gamma)(1 - \gamma)$,
 $c = \gamma/(1 + (n-1)\gamma)(1 - \gamma)$.

~

The degree of product differentiation, ranging from zero for independent products to one for perfect substitutes.

Manufacturer i is capacity-constrained with production capacity k_i , $i=1,2,\cdots,n$, where $k_1\geq k_2\geq \cdots \geq k_n$, with the total production capacity of all manufacturers given by $K\equiv k_1+k_2+\cdots+k_n$.

Main Results

Result 1

The pure strategy equilibrium exists if the production capacity of a manufacturer is at their extreme.

Result 2

For the capacity regions where no pure strategy equilibrium exists, there exists a mixed strategy equilibrium (characterized).

United States Pediatric Vaccine Market

- Pharmaceutical companies
 - Merck (MRK)
 - GlaxoSmithKline (GSK)
 - Sanofi Pasteur (SP)
- Focus of the study: Competitive vaccines:
 - DTaP
 - HepB
 - Hib
 - Pediarix and Pentacel

Analysis of Equilibria

Equilibrium Prices

Equilibrium prices are sough for the vaccines in the United States pediatric vaccine market based on the 2012 federal contract.

Four games:

- DTaP monovalent vaccines
- HepB monovalent vaccines
- Hib monovalent vaccines
- Pediarix and Pentacel combination vaccines

Demand of a Vaccine

Demand Provided by the Public Sector

Table: Demand provided by the public sector

Vaccine	Demand (public sector)
DTaP monovalents	2.3M
HepB monovalents	5.1M
Hib monovalents	3.3M
DTaP-IPV-HIB (Pediarix)	4.5M
DTaP-HepB-IPV (Pentacel)	1.5M

Degree of Product Differentiation

Model Parameters

Vaccine	Manufacturer	Total number of	Percentage of total vaccine	γ	Adjusted
		adverse events	doses administered		γ
		Γ_{DTaP}			
DTaP (Infanrix)	GlaxoSmithKline	310			
DTaP (Daptacel)	Sanofi Pasteur	573			
			(Infanrix, Daptacel)		
			(90%,10%)	0.06	
			(80%,20%)	0.13	
			(70%,30%)	0.23	
		Γ_{HepB}			
HepB (Engerix B)	GlaxoSmithKline	488			
HepB (Recombivax HB)	Merck	635			
			(Engerix B, Recombivax HB)		
			(50%,50%)	0.76	-
		Γ_{Hib}			
Hib (ActHIB)	Sanofi Pasteur	419			
Hib (PedvaxHIB)	Merck	298			
			(ActHIB, PedvaxHIB)		
			(70%,30%)	0.60	
					0.50
					0.40
					0.30 0.20
					0.20
					0.10
		$\Gamma_{Ped-Pent}$			
DTaP-HepB-IPV (Pediarix)	GlaxoSmithKline	400			
DTaP-IPV/HIB (Pentacel)	Sanofi Pasteur	744			
			(Pediarix, Pentacel)	0.10	
			(74%, 26%)	0.18	0.08
					0.08

Capacity

 The exact value of the production capacity of vaccine manufacturers is unknown (confidential and proprietary)

Capacity

 The exact value of the production capacity of vaccine manufacturers is unknown (confidential and proprietary)

Assumption

Total production capacity of the vaccines in one instance of Gamma is 10% higher than the total market demand for those vaccines (Jacobson et al., 2006).

 The percentages for the number of vaccine doses administered multiplied by 1.1 of the total market demand then give the production capacity of each vaccine manufacturer.

The Analysis

Game Model Data **Output** Vaccine demand data Vaccine adverse Using the main Vaccine equilibrium events data Production results prices capacity data Manufacturers data

Equilibrium prices

Degree of				Γ_{DTaP}						
	Degree of Infanrix		Daptacel							
product										
differentiation										
γ	Capacity	Equilibrium	Type of	Capacity	Equilibrium	Type of				
		price	equilibrium		price	equilibrium				
0.06	0.90D(p)	\$5.90	Bertrand-Chamberlin	0.10D(p)	\$8.28	Competitive				
			equilibrium	equilibrium		equilibrium				
0.13	0.80D(p)	\$6.04	Bertrand-Chamberlin	0.20D(p) \$5.30 Competitive		Competitive				
			equilibrium			equilibrium				
0.23	0.70D(p)	\$6.15	Bertrand-Chamberlin	0.30D(p)	\$6.15	Bertrand-Chamberlin				
			equilibrium			equilibrium				
Γ_{HepB}										
Degree of Engerix B		ix B	Recombivax HB							
product										
differentiation	on									
γ	Capacity	Equilibrium	Type of	Capacity	Equilibrium	Type of				
		price	equilibrium		price	equilibrium				
0.76	0.50D(p)	\$8.72	Bertrand-Chamberlin	0.50D(p)	\$8.72	Bertrand-Chamberlin				
			equilibrium			equilibrium				

Equilibrium prices

			Γ_{Hib}			-	
Degree of	ActHIB			PedvaxHIB			
product							
differentiation							
Adjusted γ	Capacity	Equilibrium	Type of	Capacity	Equilibrium	Type of	
		price	equilibrium		price	equilibrium	
0.50	0.70D(p)	\$8.21	Bertrand-Chamberlin	0.30D(p)	[\$4.61,\$9.50]	Mixed strategy	
			equilibrium			equilibrium	
0.40	0.70D(p)	\$8.62	Bertrand-Chamberlin	0.30D(p)	\$8.62	Bertrand-Chamberlin	
			equilibrium	equilibrium		equilibrium	
0.30	0.70D(p)	\$8.79	Bertrand-Chamberlin	0.30D(p)	0.30D(p) \$8.79 Bertrand-Chamb		
			equilibrium	equilibrium		equilibrium	
0.20	0.70D(p)	\$8.76	Bertrand-Chamberlin	0.30D(p)	0.30D(p) \$8.76 Bertrand-Chamb		
			equilibrium			equilibrium	
0.10	0.70D(p)	\$8.56	Bertrand-Chamberlin	0.30D(p)	\$8.56	Bertrand-Chamberlin	
			equilibrium			equilibrium	
$\Gamma_{Ped-Pent}$							
Degree of	egree of Pediarix			Pentacel			
product							
differentiation							
Adjusted γ	Capacity	Equilibrium	Type of	Capacity	Equilibrium	Type of	
		price	equilibrium		price	equilibrium	

Bertrand-Chamberlin

equilibrium

0.74D(p)

\$46.61

\$46.61

0.26D(p)

Bertrand-Chamberlin

equilibrium

2012 Vaccine Prices

Table: Competitive vaccines analyzed using the model (2012)

(I)	(II)	(III)	(IV)
Vaccine	Trademark	Vaccine	2012 public sector price
	name	manufacturer	
DTaP	Infanrix [®]	GlaxoSmithKline	\$15.35
DTaP	Daptacel [®]	Sanofi Pasteur	\$15.00
HepB	Engerix B®	GlaxoSmithKline	\$10.73
HepB	Recombivax HB [®]	Merck	\$10.75
Hib	ActHIB®	Sanofi Pasteur	\$9.20
Hib	PedvaxHIB [®]	Merck	\$11.97
DTaP-IPV-HIB	Pentacel [®]	Sanofi Pasteur	\$54.50
DTaP-Hep B-IPV	Pediarix [®]	GlaxoSmithKline	\$52.10

Comparison

Result

The equilibrium prices are lower than the 2012 federal contract prices.

Why?

- Vaccine prices: affected by several factors
- The two main roles of the CDC: negotiating lower prices for the vaccines and maintaining public health goals
- The prices of the licensed vaccines are required to be negotiated to account for the research and development costs of the vaccines that are not licensed.

- Competition between asymmetric manufacturers with limited production capacities and linear demand, producing differentiated products.
- Pure strategy equilibrium exists if the production capacity of a manufacturers is at their extreme.
- In a duopoly setting, the distribution functions of the mixed strategy equilibrium for both manufacturers are provided.

- Competition between asymmetric manufacturers with limited production capacities and linear demand, producing differentiated products.
- Pure strategy equilibrium exists if the production capacity of a manufacturers is at their extreme.
- In a duopoly setting, the distribution functions of the mixed strategy equilibrium for both manufacturers are provided.

- Competition between asymmetric manufacturers with limited production capacities and linear demand, producing differentiated products.
- Pure strategy equilibrium exists if the production capacity of a manufacturers is at their extreme.
- In a duopoly setting, the distribution functions of the mixed strategy equilibrium for both manufacturers are provided.

- The equilibrium prices for vaccines are lower than the federal contract prices.
- This analysis could provide awareness to CDC about the vaccine equilibrium prices for future years.

- The equilibrium prices for vaccines are lower than the federal contract prices.
- This analysis could provide awareness to CDC about the vaccine equilibrium prices for future years.

