Jak se neuronové sítě učí

- n vstupů, 1 výstup
- n+1 parametrů

Jak určit počet parametrů MLP?

- n vstupů, 1 výstup
- n+1 parametrů

• Jak určit počet parametrů MLP? $\sum_{i=0}^{n} N_i \cdot (N_{i-1}+1)$

$$\sum_{i=2}^k N_i \cdot (N_{i-1}+1)$$

- n vstupů, 1 výstup
- n+1 parametrů

• Jak určit počet parametrů MLP? $\sum_{i=0}^{k} N_i \cdot (N_{i-1} + 1)$

$$\sum_{i=2}^k N_i \cdot (N_{i-1}+1)$$

- n vstupů, 1 výstup
- n+1 parametrů

• Jak určit počet parametrů MLP? $\sum_{i=0}^{k} N_i \cdot (N_{i-1} + 1)$

$$\sum_{i=2}^k N_i \cdot (N_{i-1}+1)$$

Rozpoznávání ručně psaných číslic

- MNIST dataset 60 000 obrázků ručně psaných číslic od 250 lidí pro trénink, 10 000 obrázků pro test psaných jinými 250 lidmi => chceme robustní systém, co rozpozná ručně psané číslice!
- vstup budeme značit jako x, výstup y

Rozpoznávání ručně psaných číslic

- Vstupní obrázek má 28x28 = 784 pixelů => vstupní vrstva 784 neuronů
- Kolik výstupní vrstva?

Rozpoznávání ručně psaných číslic

- Vstupní obrázek má 28x28 = 784 pixelů => vstupní vrstva 784 neuronů
- Kolik výstupní vrstva?
 - a. 10 neuronů 1 za každou číslici
 - b. 4 neurony v binárním vyjádření
 - c. 1 neuron přímá hodnota

 Divoká fabulace: Představte si, že první neuron v předposlední vrstvě detekuje (pomocí váženého součtu předchozích neuronů) podobný tvar

- Divoká fabulace: Představte si, že první neuron v předposlední vrstvě detekuje (pomocí váženého součtu předchozích neuronů) podobný tvar
- Další neurony tyto tvary

- Divoká fabulace: Představte si, že první neuron v předposlední vrstvě detekuje (pomocí váženého součtu předchozích neuronů) podobný tvar
- Další neurony tyto tvary
- Váženým součtem přes
 ně bychom zjistili, že tento tvar je 0

Jak udělat tenhle intuitivní přechod pro binární reprezentaci?

 Existuje způsob, jak zakódovat output sítě s deseti výstupními neurony do binární soustavy přidáním další vrstvy obsahující čtyři neurony. Určete jejich váhy a biasy. Předpokládejte, že správná číslice má aktivaci alespoň 0.99.

old output layer

• Reprezentace čísel 0-9 v binární soustavě:

0 - 0000,	5 - 0101,
1 - 0001,	6 - 0110,
2 - 0010,	7 - 0111,
3 - 0011,	8 - 1000,

4 - 0100, 9 - 1001.


```
0 - 0000, 5 - 0101,
1 - 0001, 6 - 0110,
2 - 0010, 7 - 0111,
3 - 0011, 8 - 1000,
4 - 0100, 9 - 1001.
```

 4 výstupní neurony - chceme zvolit váhy tak, aby např. první neuron aktivovala číslice 1, 3, 5, 7, 9 =>

```
0 - 0000, 5 - 0101,
1 - 0001, 6 - 0110,
2 - 0010, 7 - 0111,
3 - 0011, 8 - 1000,
4 - 0100, 9 - 1001.
```

 4 výstupní neurony - chceme zvolit váhy tak, aby např. první neuron aktivovala číslice 1, 3, 5, 7, 9 =>

spojení mezi nimi přiřadíme váhu 1, ostatním 0, bias zvolíme např. 0.99

```
0 - 0000, 5 - 0101,
1 - 0001, 6 - 0110,
2 - 0010, 7 - 0111,
3 - 0011, 8 - 1000,
4 - 0100, 9 - 1001.
```

• 4 výstupní neurony - chceme zvolit váhy tak, aby např. první neuron aktivovala číslice 1, 3, 5, 7, 9 =>

spojení mezi nimi přiřadíme váhu 1, ostatním 0, bias zvolíme např. 0.99

druhý neuron aktivujeme pomocí 2, 3, 6, 7 =>
 váhy těchto spojení zvolíme 1, ostatní 0 a bias 0.99

• vstup x, výstup y = y(x)

- vstup x, výstup y = y(x)
- výstup z naší NN je deset čísel (neuronů), proto i naše y musí být vektor o deseti číslech se samými nulami a jednou jedničkou

- vstup x, výstup y = y(x)
- výstup z naší NN je deset čísel (neuronů), proto i naše y musí být vektor o deseti číslech se samými nulami a jednou jedničkou
- hledáme algoritmus, který nám umožní najít váhy a biasy tak, aby síť aproximovala y(x) pro všechna tréninková data v datasetu

- vstup x, výstup y = y(x)
- výstup z naší NN je deset čísel (neuronů), proto i naše y musí být vektor o deseti číslech se samými nulami a jednou jedničkou
- hledáme algoritmus, který nám umožní najít váhy a biasy tak, aby síť aproximovala y(x) pro všechna tréninková data v datasetu => účelová funkce

účelová funkce (cost, loss or objective function)

$$C(w, b) \equiv \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

účelová funkce (cost, loss or objective function)

$$C(w, b) \equiv \frac{1}{2n} \sum ||y(x) - a||^2$$

- w, b je vektor všech vah, respektive biasů, n počet tréninkových dat, a výstup sítě, a = a(w,b,x)
- quadratic cost function, mean squared error (MSE)

• platí: $C(w,b)\geqslant 0$

• platí: $C(w,b)\geqslant 0$ $C(w,b)pprox 0 \iff y(x)pprox a(w,b,x)$

• platí: $C(w,b)\geqslant 0$ $C(w,b)pprox 0 \iff y(x)pprox a(w,b,x)$

 proč účelová funkce a ne přímo počet správně klasifikovaných číslic?

 proč účelová funkce a ne přímo počet správně klasifikovaných číslic? Potřebujeme spojitost vůči vahám a biasům

- proč účelová funkce a ne přímo počet správně klasifikovaných číslic? Potřebujeme spojitost vůči vahám a biasům
- proč zrovna tahle účelová funkce?

- proč účelová funkce a ne přímo počet správně klasifikovaných číslic? Potřebujeme spojitost vůči vahám a biasům
- proč zrovna tahle účelová funkce? Možností je víc a jiná účelová funkce povede k jinému učení (a následně výkonu). Prozatím neřešíme

 Začneme lehčí úlohou: minimalizovat funkci dvou proměnných f(x,y)

- Začneme lehčí úlohou: minimalizovat funkci dvou proměnných f(x,y)
- Jak tuto úlohu vyřešit?

 analyticky to může být těžké, zvlášť budeme-li chtít postup zobecnit pro libovolný počet proměnných

- analyticky to může být těžké, zvlášť budeme-li chtít postup zobecnit pro libovolný počet proměnných
- heuristika: začneme z libovolného bodu a budeme se vždy posouvat tak, aby se hodnota f(x,y) snižovala (kutálející míč)

- analyticky to může být těžké, zvlášť budeme-li chtít postup zobecnit pro libovolný počet proměnných
- heuristika: začneme z libovolného bodu a budeme se vždy posouvat tak, aby se hodnota f(x,y) snižovala (kutálející míč)
- Takhle nalezneme alespoň lokální minimum

• Chceme zvolit Δx a Δy tak, aby Δf bylo negativní

- Chceme zvolit Δx a Δy tak, aby Δf bylo negativní
- Díky spojitosti:

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

 Využijeme gradient (směr nejprudšího růstu "steepest ascent")

 Využijeme gradient (směr nejprudšího růstu "steepest ascent")

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

 Využijeme gradient (směr nejprudšího růstu "steepest ascent")

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}.$$

• Chceme najít takové $\overrightarrow{\Delta v}$, aby byla $\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}$. negativní bez závislosti na znaménku gradientu

- Chceme najít takové $\overrightarrow{\Delta v}$, aby byla $\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}$. negativní bez závislosti na znaménku gradientu
- volba $\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$, tzv. learning rate

- Chceme najít takové $\overrightarrow{\Delta v}$, aby byla $\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}$. negativní bez závislosti na znaménku gradientu
- volba $\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$, tzv. learning rate

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v} = -\overrightarrow{\nabla f}^T \cdot \xi \overrightarrow{\nabla f} = -\xi \left\| \overrightarrow{\nabla f} \right\|^2$$

- Chceme najít takové $\overrightarrow{\Delta v}$, aby byla $\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}$. negativní bez závislosti na znaménku gradientu
- volba $\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$, tzv. $\emph{learning rate}$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v} = -\overrightarrow{\nabla f}^T \cdot \xi \overrightarrow{\nabla f} = -\xi \left\| \overrightarrow{\nabla f} \right\|^2$$

• Pravidlo pro změnu **x** a **y** $\vec{v} \rightarrow \vec{\tilde{v}} = \vec{v} - \xi \overrightarrow{\nabla f}$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}.$$

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}.$$

$$\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$$

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}$$
.

$$\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v} = -\overrightarrow{\nabla f}^T \cdot \xi \overrightarrow{\nabla f} = -\xi \left\| \overrightarrow{\nabla f} \right\|^2$$

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$\Delta f pprox rac{\partial f}{\partial x} \Delta x + rac{\partial f}{\partial y} \Delta y$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v}.$$

$$\overrightarrow{\Delta v} := -\xi \overrightarrow{\nabla f}$$

$$\Delta f \approx \overrightarrow{\nabla f}^T \cdot \overrightarrow{\Delta v} = -\overrightarrow{\nabla f}^T \cdot \xi \overrightarrow{\nabla f} = -\xi \left\| \overrightarrow{\nabla f} \right\|^2$$

$$\vec{v} \to \vec{\tilde{v}} = \vec{v} - \xi \overrightarrow{\nabla f}$$

$$\overrightarrow{\nabla f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\overrightarrow{\Delta v} := \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

• Zobecníme algoritmus pro funkci **n** parametrů $\overrightarrow{\nabla f} = (\frac{\partial \widetilde{f}}{\partial v_1}, ..., \frac{\partial f}{\partial v_n})^T$

• Zobecníme algoritmus pro funkci **n** parametrů $\overrightarrow{\nabla f} = (\frac{\partial \widetilde{f}}{\partial v_1}, ..., \frac{\partial f}{\partial v_n})^T$

• Algoritmus můžeme použít na naší účelovou funkci $C(w, b) \equiv \frac{1}{2n} \sum ||y(x) - a||^2$

- Zobecníme algoritmus pro funkci **n** parametrů $\overrightarrow{\nabla f} = (\frac{\partial \widetilde{f}}{\partial v_1}, ..., \frac{\partial f}{\partial v_n})^T$
- Algoritmus můžeme použít na naší účelovou funkci $C(w, b) \equiv \frac{1}{2n} \sum_{n} ||y(x) a||^2$
 - Všimněme si, že má tvar $C = \frac{1}{n} \sum_{i=1}^{n} C_i$
 - Musíme spočítat gradient přes všechna tréninková data $\overrightarrow{\nabla C} = \frac{1}{n} \sum_{i=1}^{n} \overrightarrow{\nabla C_i}$

Učení NN - stochastic gradient descent

- Vylepšení: stochastic gradient descent
- Použijeme aproximaci pomocí mini-batch, náhodný výběr m tréninkových dat

Učení NN - stochastic gradient descent

- Vylepšení: stochastic gradient descent
- Použijeme aproximaci pomocí mini-batch, náhodný výběr m tréninkových dat

$$\overrightarrow{\nabla C} = \frac{1}{n} \sum_{i=1}^n \overrightarrow{\nabla C_i} \approx \frac{1}{m} \sum_{j=1}^m \overrightarrow{\nabla C_{i_j}}, \ i_j \ \ \text{je náhodný index dat}$$

• Pravidlo pro update vah a biasu: $\vec{w} = (w_1, ..., w_p)^T$

$$ec{b} = (b_1,...,b_q)^T, \quad C = C(ec{w},ec{b}), \
abla C_{i_j} = \left(rac{\partial C_{i_j}}{\partial w_1},...,rac{\partial C_{i_j}}{\partial p}
ight)$$
a $abla C_{i_j}^{(k)}$ je k -tá složka gradientu

• Pravidlo pro update vah a biasu: $\vec{w} = (w_1, ..., w_p)^T$

$$ec{b} = (b_1,...,b_q)^T, \quad C = C(ec{w},ec{b}), \
abla C_{i_j} = \left(rac{\partial C_{i_j}}{\partial w_1},...,rac{\partial C_{i_j}}{\partial p}
ight)$$
a $abla C_{i_j}^{(k)}$ je k -tá složka gradientu

$$w_k \to \tilde{w}_k = w_k - \frac{\xi}{m} \nabla C_{i_j}^{(k)} = w_k - \frac{\xi}{m} \sum_{i=1}^m \frac{\partial C_{i_j}}{\partial w_k}$$

$$b_l \to \tilde{b_l} = w_k - \frac{\xi}{m} \nabla C_{i_j}^{(l)} = b_l - \frac{\xi}{m} \sum_{i=1}^m \frac{\partial C_{i_j}}{\partial b_l},$$

• Chceme udělat krok Δv , přičemž $||\Delta v|| = \epsilon$, $\epsilon > 0$, tak, abychom minimalizovali $\Delta C \approx \nabla C \cdot \Delta v$. Dokažte, že $\Delta v := -\xi \nabla C$, $\xi = \frac{\epsilon}{||\nabla C||}$

- Chceme udělat krok Δv , přičemž $\|\Delta v\| = \epsilon$, $\epsilon > 0$, tak, abychom minimalizovali $\Delta C \approx \nabla C \cdot \Delta v$. Dokažte, že $\Delta v := -\xi \nabla C$, $\xi = \frac{\epsilon}{\|\nabla C\|}$
- Jinými slovy dokažte, že "pohyb" ve směru gradientu je optimální krok (tj. vede k největšímu poklesu účelové funkce). Pozor, jen v lokální lineární aproximaci

 $\|\Delta v\| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$

Nápověda: Cauchy-Schwarzova nerovnost

$$\|\Delta v\| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$-\|u\|\|v\|\leqslant |\langle u,v
angle|\leqslant \|u\|\|v\|, \ |\langle u,v
angle|=\|u\|\|v\|\iff u=lpha\cdot v,\,lpha\in\mathbb{R}$$

$$\|\Delta v\| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$egin{aligned} -\|u\|\|v\|&\leqslant|\langle u,v
angle|\leqslant\|u\|\|v\|,\ |\langle u,v
angle|&=\|u\|\|v\|\iff u=lpha\cdot v,\ lpha\in\mathbb{R} \end{aligned}$$

Dosadíme aproximaci účelové funkce do CS nerovnosti:

$$||\Delta v|| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$egin{aligned} -\|u\|\|v\|&\leqslant|\langle u,v
angle|\leqslant\|u\|\|v\|,\ |\langle u,v
angle|&=\|u\|\|v\|\iff u=lpha\cdot v,\ lpha\in\mathbb{R} \end{aligned}$$

Dosadíme aproximaci účelové funkce do CS nerovnosti:

$$-\|
abla C\|\cdot\|\Delta v\|=-\|
abla C\|\cdot\epsilon\leq |\langle
abla C,\Delta v
angle|=|
abla C\cdot\Delta v|\leq \|
abla C\|\cdot\|\Delta v\|=\|
abla C\|\cdot\epsilon$$

$$||\Delta v|| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$egin{aligned} -\|u\|\|v\|&\leqslant|\langle u,v
angle|\leqslant\|u\|\|v\|,\ |\langle u,v
angle|&=\|u\|\|v\|\iff u=lpha\cdot v,\ lpha\in\mathbb{R} \end{aligned}$$

Dosadíme aproximaci účelové funkce do CS nerovnosti:

$$-\|
abla C\|\cdot\|\Delta v\|=-\|
abla C\|\cdot\epsilon\leq |\langle
abla C,\Delta v
angle|=|
abla C\cdot\Delta v|\leq \|
abla C\|\cdot\|\Delta v\|=\|
abla C\|\cdot\epsilon$$

Cheeme rovnost, tedu musí platit $\Delta v = \alpha \nabla C, \ \alpha \in \mathbb{R}$

$$||\Delta v|| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$egin{aligned} -\|u\|\|v\|&\leqslant|\langle u,v
angle|\leqslant\|u\|\|v\|,\ |\langle u,v
angle|&=\|u\|\|v\|\iff u=lpha\cdot v,\ lpha\in\mathbb{R} \end{aligned}$$

Dosadíme aproximaci účelové funkce do CS nerovnosti:

$$-\|
abla C\|\cdot\|\Delta v\|=-\|
abla C\|\cdot\epsilon\leq |\langle
abla C,\Delta v
angle|=|
abla C\cdot\Delta v|\leq \|
abla C\|\cdot\|\Delta v\|=\|
abla C\|\cdot\epsilon$$

Chceme rovnost, tedu musí platit $\Delta v = \alpha \nabla C, \ \alpha \in \mathbb{R}$

$$\|
abla C \| \cdot \| \Delta v \| = \|
abla C \| \cdot \| lpha \cdot
abla C \| = |lpha| \cdot \|
abla C \|^2 \implies \|
abla C \| \cdot \epsilon = |lpha| \cdot \|
abla C \|^2$$

$$\|\Delta v\| = \epsilon \quad \epsilon > 0 \quad \Delta C \approx \nabla C \cdot \Delta v.$$

Nápověda: Cauchy-Schwarzova nerovnost

$$egin{aligned} -\|u\|\|v\|&\leqslant|\langle u,v
angle|\leqslant\|u\|\|v\|,\ |\langle u,v
angle|&=\|u\|\|v\|\iff u=lpha\cdot v,\ lpha\in\mathbb{R} \end{aligned}$$

Dosadíme aproximaci účelové funkce do CS nerovnosti:

$$-\|\nabla C\|\cdot\|\Delta v\|=-\|\nabla C\|\cdot\epsilon\leq |\langle\nabla C,\Delta v\rangle|=|\nabla C\cdot\Delta v|\leq \|\nabla C\|\cdot\|\Delta v\|=\|\nabla C\|\cdot\epsilon$$

Cheeme rovnost, tedu musí platit $\Delta v = \alpha \nabla C, \ \alpha \in \mathbb{R}$

$$\|\nabla C\| \cdot \|\Delta v\| = \|\nabla C\| \cdot \|\alpha \cdot \nabla C\| = |\alpha| \cdot \|\nabla C\|^2 \implies \|\nabla C\| \cdot \epsilon = |\alpha| \cdot \|\nabla C\|^2$$
 $\epsilon = |\alpha| \cdot \|\nabla C\| \iff \pm \alpha = \frac{\epsilon}{\|\nabla C\|} \implies \Delta v = \pm \frac{\epsilon}{\|\nabla C\|} \cdot \nabla C$

Jak to bude v případě funkce jedné proměnné?

Jak to bude v případě funkce jedné proměnné?

$$abla C(x) = C'(x)$$
 a zároveň $\Delta v(x) = -\frac{\epsilon}{\|\nabla C(x)\|} \nabla C(x) = -\frac{\epsilon \cdot C'(x)}{\|C'(x)\|}$ pokud $C'(x) = 0$, jsme v lokálním minimu, pokud $C'(x) > 0$, $\Delta v = -\epsilon$ a v opačném případě $\Delta v = \epsilon$

 Jaký výhody a nevýhody má online learning (batch velikosti 1)?

- Jaký výhody a nevýhody má online learning (batch velikosti 1)?
 - a. Výhody: učení je rychlé

- Jaký výhody a nevýhody má online learning (batch velikosti 1)?
 - a. Výhody: učení je rychlé
 - b. Nevýhody: nepřesnost aproximace gradientu, i extrémy v datech mají vliv na úpravu parametrů sítě

Jenže jak spočítáme gradient přes všechny váhy a biasy?