Tema 1. Introducción

Tema 1. Introducción

Bases de datos y usuarios de bases de datos

Elmasri/Navathe 02

- Definiciones básicas (1.1)
- Ejemplo (1.2)
- Características del enfoque de BD (1.3)
- Actores (1.4, 1.5)
- Ventajas de utilizar un SGBD (1.6)
- Implicaciones del enfoque de BD (1.7)
- Cuándo no utilizar un SGBD (1.8)

Definiciones básicas

- BD (base de datos): Colección de datos relacionados entre sí.
 - Datos: Hechos conocidos que pueden registrarse y con significado implícito (nombres, teléfonos, direcciones ..).
- SGBD (sistema de gestión de BD): Colección de programas que permiten a los usuarios crear y mantener una BD.
 - Software de propósito general.
 - Definir, construir, manipular datos para aplicaciones diversas.
- **SBD** (**sistema de BD**): Conjunto formado por la BD y el software.

$$SBD = BD + Software$$

Sistema de BD

BD, propiedades implícitas

Representa:

Aspectos del mundo real (universo del discurso)

- Cambios en el mundo real se reflejan en la BD.
- Colección **lógicamente coherente** de datos que tienen un **significado** inherente.

• Fin específico:

Para usuarios específicos y con aplicaciones para ellos.

Ejemplo: BD Universidad

ALUMNO

Nombre	Código alumno	Año	Especialidad
Smith	17	1	CS
Brown	8	2	CS

CURSO

Nombre Curso	Código Curso	Créditos	Departamento
Introd. a la computación	CS1310	4	LSI
Estructuras de datos	CS3320	4	LSI
Matemáticas Discretas	MATE2410	3	MATE
Bases de Datos	CS3380	6	LSI

REQUISITO

Código curso	Código requisito	
CS3380	CS3320	
CS3380	MATE2410	
CS3320	CS1310	

SECCIÓN

Identificador sección	Código Curso	Semestre	Año	Profesor
85	MATE2410	Otoño	1998	King
92	CS1310	Otoño	1998	Anderson
102	CS3320	Primavera	1999	Knuth
112	MATE2410	Otoño	1999	Chang
119	CS1310	Otoño	1999	Anderson
135	CS3380	Otoño	1999	Stone

INFORME_CALIFICACIONES

Código alumno	Identificador sección	Calificación
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	A

Ejemplo (2)

- Estructura: archivos, registros, campos.
- Datos.

1. **Definir** la BD:

- Qué elementos de información (campos) hay en los registros del archivo.
- Tipo de datos de cada campo.

2. Construir la BD:

- Cargar datos en los archivos.
- Los registros pueden estar relacionados entre sí: (El alumno "Smith" con su notas de informe_calificaciones) → VÍNCULO

3. Manipular la BD:

- Consultas: "Obtener el expediente de Smith", "Listado de estudiantes de BD en otoño del 99 y nota obtenida"
- Actualizaciones: "Cambiar el año de Smith a segundo", "Crear una nueva sección de BD para este semestre"

Datos e información

Datos

- Parte física de la representación.
- En el ejemplo: MATE2410, Primavera, 17 ...

Información

- Significado que se atribuye a los datos
- En el ejemplo:
 - MATE2410 se refiere a la asignatura de código 2410 del dpto. de Matemáticas.
 - Primavera se refiere al cuatrimestre en el que se desarrolla el curso.
 - 17 es un código asociado a un estudiante.

Ficheros (o archivos) vs BD

Ficheros (o Archivos)

- Para 1 usuario o aplicación.
- Diseñado según sus propias necesidades.
- Una sola visión del mundo real.
- La información puede repetirse.

BD

- Múltiples usuarios.
- Cada usuario su visión del mundo.
- Visión que engloba todos los puntos de vista de los usuarios del mundo.

Ficheros (o archivos) vs BD (2)

Ejemplo:

- La Secretaría de la Universidad tiene las notas de sus estudiantes.
- Contabilidad de Leioa lleva el control de matriculación y pago.
- **Redundancia**: Con el enfoque de ficheros ambos cuentan con la información de los estudiantes matriculados.
 - Espacio de almacenamiento desperdiciado.
 - Duplicación de trabajo de actualización de alumnos.
 - Posible **inconsistencia** (información que no coincide en ambos sitios).

Cuando NO usar un SGBD

- Si la BD y las aplicaciones son simples, bien definidas y no se espera que cambien.
- Si existen ciertos requerimientos en el tiempo que no se pueden cumplir debido a la sobrecarga que provoca el SGBD.
- Si no es necesario el acceso múltiple.

Enfoque de BD

1. Autodescriptivo: CATÁLOGO

La estructura de la BD reside en la propia BD.

2. Separación (independencia)

Independencia física y lógica entre aplicaciones y datos.

3. Múltiples vistas de los datos

Cada usuario puede estar interesado sólo en una porción o perspectiva particular de la BD.

4. Compartición de datos: TRANSACCIONES

Control del acceso simultáneo a la BD.

(Estas ideas se amplían a continuación)

1. Catálogo (metadatos)

- Consta de:
 - Estructura de archivos.
 - Tipo y formato de los campos.
 - Restricciones aplicadas a los datos.
- Forma parte de la BD.
- Permite al SGBD acceder a BD diversas.

(En ficheros el programa debe incluir la definición del fichero)

2. Independencia

De datos respecto a programas:

- Cambios en la estructura de un archivo de BD no requieren cambios en los programas.
- En enfoque con ficheros: Estos cambios obligan a cambiar todos los programas que lo usan.

De operaciones respecto a programas:

- En BDOO las operaciones (métodos) sobre los datos de la BD se almacenan en la misma BD.
- La operación se puede modificar (salvo la interfaz) sin afectar a los programas.

Modelo de datos:

Representación conceptual de los datos.

- No incluye detalles de cómo se almacenan los datos ni las operaciones.
- Intervienen conceptos lógicos: Objetos, propiedades, interrelaciones y operaciones.
- Ejemplos: Modelo E/R, modelo relacional, ...

3-4. Vistas. Transacciones.

Múltiples vistas

- Una vista puede ser un subconjunto de la BD.
- También puede contener datos virtuales que se derivan de los archivos de la BD.
- Ejemplo:

REQUISITOS_ASIGNATURA

Nombre curso	Código curso	Requisitos
Bases de datos	CC2290	CS3320
	CS3380	MATE2410
Estructuras de datos	CS3320	CS1310

Transacciones

Proporcionan control de concurrencia:

- Varios usuarios intentan actualizar **los mismos datos** al mismo tiempo.
- Las transacciones aseguran que el resultado va a ser correcto.

Actores

Diseñador de la BD:

- Identifica datos y estructuras apropiadas. Antes de implementar la BD.
- Responsable de :
 - Comunicación con futuros usuarios.
 - · Comprender sus necesidades.
 - Presentar un diseño que las satisfaga.

Administrador BD:

- Autoriza el acceso a la BD (cuentas).
- Coordina, vigila el uso de la BD.
- Compra recursos hardware / software necesarios.
- Responsable de seguridad y velocidad Sistema.

Usuario final:

- Utiliza la BD para consultas/actualizaciones /generar informes.
- Categorías:
 - Esporádicos: Lenguaje de consulta avanzado.
 - Simples: Transacciones preprogramadas.
 - Avanzados (ingenieros, analistas,...).
 - Autónomos (usan BD personalizadas).

Actores (2)

Analista:

- Determina los requisitos del usuario final.
- Especifica las transacciones.

Programador:

- Implementa las transacciones.
- Las prueba, depura y documenta.
- Las mantiene.

Otros actores:

- Diseñador e implementador del SGBD.
- Creador de herramientas.
- Operadores: Controlan el funcionamiento día a día del hardware y software de BD.

Ventajas de utilizar un SGBD

Control de la redundancia:

Cada dato se almacena en un solo lugar o la redundancia se controla evitando inconsistencias.

Evitar accesos no autorizados a la BD:

- Cuentas de acceso a la BD.
- Restricción a determinados datos.
- Restricción sobre las operaciones que se pueden realizar (ej. sólo consultar).
- Control sobre el Software de creación de cuentas y concesión de permisos (sólo el Administrador BD).

Persistencia.

• Inferencias:

Deducción de información a partir de los datos almacenados (BD deductivas: de forma declarativa).

Ventajas de utilizar un SGBD (2)

• Múltiples interfaces:

Como lenguajes de consulta, menús, lenguaje natural, ...

• Vínculos complejos:

Que se obtengan y actualicen con rapidez.

• Restricciones de integridad:

El SGBD permite definirlas y es responsable de que se cumplan.

- Ejemplo: "Todo registro de sección debe estar relacionado con un registro de curso existente".
- Algunas restricciones pueden precisar su verificación en los programas de actualización de la BD.

• Copias de seguridad y recuperación:

Si el sistema falla durante su ejecución el SGBD restaura el estado previo a la ejecución del programa (o reanuda la ejecución desde el punto en el que fue interrumpido).

Implicaciones del enfoque de BD

Posibilidad de imponer normas:

En nombres, formatos de campos, formatos de presentación, informes, terminología, etc...

• Menor tiempo de desarrollo:

Cuando la BD está construida, para el desarrollo de nuevas aplicaciones. (1/6-1/4 menor que con archivos)

Flexibilidad:

Para modificar la estructura: Añadir un nuevo archivo, un nuevo campo, ...

• Información actualizada:

Importante en aplicaciones bancarias o de reservas.

• Economía:

Entre todos los departamentos interesados invierten en un solo equipo. Reduce los costos de operación y control (al ser sólo un equipo).

SBD: Cronología

- Hasta los 70
- 45 cintas magnéticas.
- 59 sistema RAMAC (IBM) (acceso no secuencial a datos).
- 61 diseño SGBD IDS.
- 67 CODASYL.
- 69 IBM: sistema IMS.
- · 70
- 70 modelo relacional (Codd).
- 71 informe CODASYL.
- 75 primer ACM SIGMOD.
- 75 primer VLDB.
- 76 modelo ER (Chen).
- 78 Arquitectura 3 niveles.

- · 80
- 83 estudio ANSI SPARC: más de 100 sistemas relacionales.
- 85 norma preliminar de SQL.
- BD Distribuidas.
- SGBDOO.
- Modelos semánticos.
- 90 hasta la actualidad
- SGBDOO Comerciales (O2).
- Se demanda extender los SGBD para manejar:
 - Datos temporales (BD temporales).
 - Espacio (BD geográficas).
 - Multimedia.
 - Múltiples BD.
 - Procesos paralelos.