Define $m : (a,b) \to \mathbb{R}$ by

$$m(x) = \begin{cases} 0 & \text{if } x \in K \\ 1/r'_n(x) & \text{if } x \in (a_n, b_n) , n \in J \end{cases}$$

Then m is continuous and admissible. The given flow coincides with the one constructed from m in Theorem 3.17. Thus δ = δ_m .

<u>Remark</u>. Let $m : (a,b) \rightarrow \mathbb{R}$ be continuous. Then m is admissible if and only if the initial value problem

$$\dot{y}(t) = m(y(t))$$
 $(t \in \mathbb{R})$; $y(0) = x$

has a unique solution $y \in C^1(\mathbb{R},(a,b))$ which depends continuously on the initial value x (i.e., if $x_n \to x$ in (a,b) then the solution $y_n \in C^1(\mathbb{R},(a,b))$ with initial value $y_n(0) = x_n$ satisfies $y_n(t) \to y(t)$ $(n \to \infty)$ for all $t \in \mathbb{R}$). This is not difficult to see.

As we have seen above the operators $\delta_{\rm m}$, where m is an admissible function, do not exhaust all generators of automorphism groups. But one can obtain every such generator by a similarity transformation (see A-I,3.0) from some $\delta_{\rm m}$.

Theorem 3.24. Let $-\infty \le a < b \le \infty$. An operator δ on $C_O(a,b)$ is the generator of an automorphism group on $C_O(a,b)$ if and only if there exists an algebra isomorphism V from $C_O(a,b)$ onto $C_O(a,b)$ and an admissible function $m:(a,b)\to\mathbb{R}$ such that $\delta=V^{-1}\delta_mV$.

<u>Proof.</u> In order to prove the non-trivial implication let $(T(t))_{t\in\mathbb{R}}$ be an automorphism group on $C_{o}(a,b)$ with generator δ . Let ϕ be the continuous flow on (a,b) such that $T(t)f=f\circ\phi_{t}$ ($f\in C_{o}(a,b)$, $t\in\mathbb{R}$). Then ϕ is of the form given in Prop. 3.21. For every $n\in J$ choose a C^{1} -diffeomorphism q_{n} from (a_{n},b_{n}) onto $(-\infty,\infty)$ satisfying $q_{n}'(x)>0$ for all $x\in (a_{n},b_{n})$ in the case when r_{n} is increasing and $q_{n}'(x)<0$ for all $x\in (a_{n},b_{n})$ in the case when r_{n} is decreasing. Then $\beta_{n}:=r_{n}^{-1}\circ q_{n}$ is a homeomorphism from (a_{n},b_{n}) onto itself satisfying $\lim_{x\to a_{n}}\beta_{n}(x)=a_{n}$ and $\lim_{x\to b_{n}}\beta_{n}(x)=b_{n}$.

Let β : $(a,b) \rightarrow (a,b)$ be defined by

$$\beta(x) = \begin{cases} x & \text{if } x \in K \\ \beta_n(x) & \text{if } x \in (a_n, b_n) , n \in J. \end{cases}$$

Then β is a homeomorphism from (a,b) onto (a,b) and $\psi_+ := \beta^{-1} \circ \phi_+ \circ \beta \quad (t \in \mathbb{R}) \quad \text{defines a continuous flow on (a,b)} \ .$