PPL Assignment 4

Part 1: Theoretical Questions

- 1) Which of the following typing statement is true / false, explain why
 - a) **false** g receives 'a' of type T1 and returns a result of type T2, f receives g(x) of type T2 instead of type T1.
 - b) **true** f receives 'y' of type *T*2 and returns a result of type *T*1.
 - c) **true** f receives 'x' as a parameter of type *T*1 and returns a result of type *T*2.
 - d) **false** f receives 'x' and '100' as parameters, and it's false because T3 is not necessarily of type number.
- 2) Perform type inference manually on the following expressions, using the Type Equations method. List all the steps of the procedure
 - a) ((lambda (x1) (+ x1 1)) 4)
 - i) Rename bound variables:((lambda (x) (+ x 1)) 4)
 - ii) make type variables to every sub expression:

Expression	Variables
((lambda (x) (+ x 1)) 4)	Т-арр
(lambda (x) (+ x 1))	T-proc
(+ x 1)	T-add
+	T+
x	Тх
1	T1
4	T4

iii) make equations:

Sub-Expressions:

Expression	Equation
((lambda (x) (+ x 1)) 4)	T-proc = [T4 → T-app]
(lambda (x) (+ x 1))	T-proc = $[Tx \rightarrow T-add]$
(+ x 1)	$T+=[Tx * T1 \rightarrow T-add]$

Primitive equations:

Expression	Equation
+	T+=[number *number → number]
1	T1 = number
4	T4 = number

iv) Solve the equations:

Equation	Substitution
$T-proc = [T4 \rightarrow T-app]$	{}
$T-proc = [Tx \rightarrow T-add]$	
$T+ = [Tx * T1 \rightarrow T-add]$	
T+ = [number *number → number]	
T1 = number	
T4 = number	

Equation	Substitution
$T-proc = [Tx \rightarrow T-add]$	$\{ T-proc = [T4 \rightarrow T-app] \}$
$T+ = [Tx * T1 \rightarrow T-add]$	
T+ = [number *number → number]	
T1 = number	
T4 = number	

Equation	Substitution
$T+ = [Tx * T1 \rightarrow T-add]$	{ T-proc = [T4 → T-app] }
T+ = [number *number → number]	
T1 = number	
T4 = number	
Tx = T4	
T-app = T-add	

Equation	Substitution
T+ = [number *number → number]	$\{ T-proc = [T4 \rightarrow T-app], $
T1 = number	T+ = [Tx * T1 → T-add] }
T4 = number	
Tx = T4	
T-app = T-add	

Equation	Substitution
T1 = number	{ T-proc = [T4 → T-app],
T4 = number	T+ = [number *number \rightarrow number] }
Tx = T4	
T-app = T-add	
Tx = number	
T1 = number	
T-add = number	

Equation	Substitution
Tx = T4	{ T-proc = [T4 → T-app],
T-app = T-add	T+ = [number *number \rightarrow number],
Tx = number	T1 = number, T4 = number }
T-add = number	

Equation	Substitution
T-app = T-add	$\{ \text{T-proc} = [\text{T4} \rightarrow \text{T-app}],$
Tx = number	T+ = [number *number \rightarrow number],
T-add = number	T1 = number, T4 = number,
	Tx = number }

Equation	Substitution
	$\{ \text{ T-proc} = [\text{T4} \rightarrow \text{T-app}],$
	T+=[number *number → number],
	T1 = number, T4 = number,
	Tx = number, T-add = number ,
	T-app = number }

The type inference succeeds since we have a type for T-app, meaning that the expression is well typed. Because there are no free variables, the inferred type of T-app is: **Number**.

The expression is now typed as: ((lambda (x1:number):number (+ x1 1)) 4)

b) ((lambda (f1 x1) (f1 x1 1)) 4 +)

i) Rename bound variables:

((lambda (f x) (f x 1)) 4 +)

ii) make type variables to every sub expression:

Expression	Variables
((lambda (f x) (f x 1)) 4 +)	ТО
(lambda (f x) (f x 1))	T1
(f x 1)	T2
f	Tf
х	Tx
1	Tnum1
4	Tnum4
+	T+

iii) make equations:

Sub-Expressions:

Expression	Equation
((lambda (f x) (f x 1)) 4 +)	T1 = [Tnum4 * T+ → T0]
(lambda (f x) (f x 1))	$T1 = [Tf * Tx \rightarrow T2]$
(f x 1)	$Tf = [Tx * Tnum1 \rightarrow T2]$

Primitive equations:

Expression	Equation
+	T+ = [number *number → number]
1	Tnum1 = number
4	Tnum4 = number

iv) Solve the equations:

Equation	Substitution
T+ = [number *number \rightarrow number]	{}
Tnum1 = number	
Tnum4 = number	
T1 = [Tnum4 * T+ → T0]	
$T1 = [Tf * Tx \rightarrow T2]$	
$Tf = [Tx * Tnum1 \rightarrow T2]$	

Equation	Substitution
Tnum1 = number	{ T+ = [number *number → number] }
Tnum4 = number	
T1 = [Tnum4 * T+ → T0]	
$T1 = [Tf * Tx \rightarrow T2]$	
$Tf = [Tx * Tnum1 \rightarrow T2]$	

Equation	Substitution
T1 = [Tnum4 * T+ → T0]	$\{T+=[number*number\rightarrow number],\$
$T1 = [Tf * Tx \rightarrow T2]$	Tnum1 = number, Tnum4 = number }
$Tf = [Tx * Tnum1 \rightarrow T2]$	

Equation	Substitution
$T1 = [Tf * Tx \rightarrow T2]$	$\{T+=[number *number \rightarrow number],$
$Tf = [Tx * Tnum1 \rightarrow T2]$	Tnum1 = number, Tnum4 = number,
	T1 = [number * [number *number \rightarrow number] \rightarrow T0] }

Equation	Substitution
$T1 = [Tf * Tx \rightarrow T2]$	$\{T+=[number *number \rightarrow number],$
$Tf = [Tx * Tnum1 \rightarrow T2]$	Tnum1 = number, Tnum4 = number,
Tf = number	T1 = [number * [number *number \rightarrow number] \rightarrow T0]}
Tx = [number *number → number]	
T0 = T2	

Equation	Substitution
Tf = number	$\{T+=[number*number\rightarrow number],$
Tx = [number *number → number]	Tnum1 = number, Tnum4 = number,
T0 = T2	T1 = [number * [number *number → number] → T0],
	$Tf = [Tx * number \rightarrow T2] $

 $(Tf = number) \circ substitution = (number = [Tx * number \rightarrow T2])$ which is a wrong statement. There is no solution to this equations system because the constraint cannot be solved.

Part 2: Async Fun with TypeScript2.2 (b)

The 'Promise<R>' allows us to associate handlers with an asynchronous action's eventual success value or failure reason. This lets asynchronous methods (asyncMemo) return values like synchronous methods: instead of immediately returning the final value, the asynchronous method returns a promise to supply the value at some point in the future.

Part 3: Type Inference System3.1

Typing rule define:

Typing rule set!: