Pré-Prática Franck - Hertz

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

> Instituto de Física de São Carlos Universidade de São Paulo

> > 08/05/2024

Espectros Observados Séc. XIX

$$\lambda = B \cdot (\frac{m^2}{m^2 - n^2})$$
 (a)

$$\frac{1}{\lambda} = R_h \cdot (\frac{1}{n_f^2} - \frac{1}{n_i^2}) \tag{b}$$

Equações empíricas para descrever o espectro do Hidrogênio: (a) Série de Balmer (1885); (b) Série de Rydberg (1888)

Nascimento da Teoria Quântica

• Estudo de Corpo Negro (Planck 1901)

 $\Delta E = nhf$

Efeito Fotoelétrico (Einstein 1905)

Figura 3: Ilustração do efeito fotoelétrico.

Figura 2: Emissão de corpo negro.

Modelo Atômico de Bohr (1913)

Figura 4: Ilustração do modelo atômico de Bohr.

Hipóteses para o modelo

- O elétron pode se mover em determinadas órbitas (estacionárias) sem irradiar, possuindo energias bem definidas.
- ullet O momento angular do elétron é quantizado, $mrv=nh\cdot$
- Para que o elétron mude de estado estacionário o átomo deve absorver ou emitir radiação. De forma que $E_f-E_i=h \nu \ \cdot$

Experimento de Franck - Hertz:

Figura 5: Colisões elásticas e inelásticas de um elétron com um átomo de mercúrio.

Figura 6: Criadores do experimento: (a) James Franck; (b) Gustav Hertz.

Prêmio Nobel 1925

- Estudar a colisão de elétrons com átomos;
- Evidenciou a existência das órbitas estacionárias

Montagem experimental:

Figura 7: Diagrama de uma válvula tetrodo contendo vapor de mercúrio, ilustrando elétrons sendo acelerados.

Figura 8: Corrente medida no anodo em função da tensão de aceleração dos elétrons.

> Transições dos níveis de energia do mercúrio:

Figura 9:
Esquema simplificado dos
níveis de energia dos
menores estados do
átomo de mercúrio.

Figura 10: Seções de choque para o impacto de um elétron para alguns estados do mercúrio em função da energia.

Transmissão dos elétrons:

Livre caminho médio:
$$\lambda=\frac{1}{N\sigma}=\frac{K_BT}{p\sigma}=\frac{K_BT}{p\sqrt{2}\pi d_0^2}$$

Pressão do mercúrio para temperaturas entres 300K e 500K:

$$p = 8.7 \times 10^{(9 - (3110/T))}$$

Figura 11:

Esquema ilustrando a transferência de energia dos elétrons para os átomos, com o livre caminho médio entre as colisões.

Figura 12:Dependência do livre caminho médio com a temperatura.

OBJETIVOS

- Estudar a dinâmica de colisões entre elétrons e átomos, utilizando a curva de corrente por tensão;
 - **Uma excitação:** Analisar a dependência da curva de uma colisão com a variação da temperatura do forno.
 - Múltiplas colisões: Analisar o comportamento das múltiplas colisões do elétron para diferentes temperaturas e estudar a curva de corrente por tensão para temperatura fixa. Obter o potencial de contato.
 - **Ionização:** Analisar o surgimento de uma corrente positiva, interpretando para diferentes temperaturas. Determinar a energia de ionização do átomo.

Figura 13: Imagens do aparato experimental a ser utilizado.

- Uma Excitação:
 - As tensões utilizadas serão V4 por volta de 2V e V3 em torno de 10 a 15V com V1 na tensão máxima. Dessa forma, colhemos os dados da curva para diferentes temperaturas (40°C, 60°C, 80° C, 100°C e 130°C);

Figura 14: (a) Esquema do experimento de uma excitação, (b) ilustração da tensão sobre o elétron.

Múltiplas Excitações:

- Variar a temperatura do forno entre (120°C, 130°C, 140°C, 150°C, 160°C), mantendo V₁, V₂ e V₄ por volta de 0.5V e V₃ em 50V;
- Manter o forno a 160° C e variar V₄, variar logo após a tensão do filamento. Repetir para temperatura fixa de 170° C

Figura 15: (a) Esquema do experimento de múltiplas colisões, (b) ilustração da tensão sobre o elétron.

➤ Ionização:

 As tensões V1 e V4 permanecerão máximas com V2 por volta de 3V e V3 a 25V. Alterando a temperatura entre 130° C, 115°C e 100°C, assim analisamos a curva em função da temperatura;

Figura 16: (a) Esquema do experimento de ionização, (b) ilustração da tensão sobre o elétron.

RESULTADOS ESPERADOS

Espera-se reproduzir os resultados obtidos por Franck-Hertz em 1914.

Figura 17: Representação tridimensional das curvas características obtidas no experimento de Franck-Hertz.