

FLOOD FREQUENCY ANALYSIS USING STATISTICAL METHODS

CE F321 Engineering Hydrology

Methodology and Tools

ReturnPeriod	WeibullProb 🖣	Rank +	ams 🖣	year
10	0.1	1	147448	2016
5	0.2	2	83359	2020
3.3333333333333333	0.3	3	75654	2021
2.5	0.4	4	70000	2022
2	0.5	5	53335	2024
1.66666666666666	0.6	6	41044	2023
1.428571428571429	0.7	7	22612	2017
1.25	0.8	8	5350	2019
1.111111111111111	0.9	9	1877	2018

2.LP3

Data

Conclusion

Distribution Results

Т	Gumbel_M LE	Gumbel_Ma nual	LogNormal_ Manual	LogNormal_ MLE	LP3_MLE	Weibull_ML E	Gamma_M LE
2	47,964.65	49,470.45	31,703.30	31,703.30	42,574.23	40,842.60	38,907.47
5	89,748.35	103,730.24	105,356.61	98,363.38	74,265.39	88,566.05	89,364.91
10	116,080.70	139,654.93	197,373.59	177,774.25	94,965.12	123,078.98	127,372.16
25	147,907.27	185,045.89	385,491.02	334,169.83	136,377.42	167,441.66	177,514.55
50	170,518.90	218,719.49	594,051.33	502,384.14	194,021.14	200,302.37	215,398.82
100	192,155.71	252,144.45	876,506.31	724,946.02	301,029.17	232,691.30	253,255.54
200	212,941.86	285,447.45	1,251,296.01	1,014,071.73	513,676.03	264,685.39	291,091.57

Observations Inferences

- 1. Manual Gumbel predicted 34% higher discharge 1. MLE to reduce human bias than MLE at T=200.
- 2. Manual Log-Normal estimates double the value 2. Multi-model ensembles of MLE at T=200.
- 3. LP3 discharge triples between T=50 and 200.

 3. Validation of the use of LP3 distribution
- 4. At T=50, Gamma and Weibull differ by only $\sim 7.5\%$.

Goodness of Fit Results

Distribution	*	KS_Statistic	KS_PValue ♦	AD_Statistic ♦	AD_PValue
Gamma		0.1856	0.8629	0.3724	0.8727
Gumbel		0.1321	0.991	0.1979	0.9917
Log-Normal		0.2428	0.5832	0.6356	0.6103
Weibull		0.1685	0.9248	0.3797	0.8656

Observations Inferences

- 1. Gumbel shows lowest KS-statistic and highest 1. Gumbel distribution should be prioritised. p-values.
- 2. Log-Normal shows highest KS-statistic and 2. Importance of extreme value prediction accuracy lowest p-values.
- 3. Gamma and Weibull show intermediate statistics 3. Gumbel > Weibull > Gamma > Log-Normal with comparable values.
- 4. All distributions have p-values above 0.05 4. Strong justification for use of Gumbel threshold.

Performance Metrics Results

				_
Distribution	♦	RMSE ♦	NSE 🌲	KGE ♦
Gumbel (MME)		8780.18	0.958	0.9575
Gumbel (MLE)		12032.41	0.9212	0.7968
Log-Normal (MME)		22519.84	0.7239	0.6309
Log-Normal (MLE)		17697.5	0.8295	0.7658
LP3		20106.53	0.7799	0.5863
Gamma (MLE)		12024.44	0.9213	0.8254
Weibull (MLE)		12245.4	0.9184	0.8013

Observations Inferences

- and KGE.
- 1. Gumbel shows lowest RMSE and highest NSE 1. Gumbel distribution should be the primary choice.
- 2. Log-Normal shows highest RMSE and lowest 2. Prioritise MME approach. NSE.
- MLE is substantial.
- 3. For same distributions, difference in MME and 3. Gumbel(MME) > Gumbel(MLE) ≈Gamma (MLE) ≈ Log-Normal(MLE) > LP3 Weibull(MLE) > Log-Normal(MME)
- 4. LP3 shows high RMSE yet moderate NSE with the lowest KGE.

Comparative Analysis & Conclusion

- 1. *Optimal Model:* Gumbel MME outperforms all distributions with lowest RMSE (8,780.18), highest NSE (0.958) and KGE (0.9575), validated by KS/AD p-values >0.99.
- 2. *Critical Divergence*: 5x higher discharge estimates at T=200 (Log-Normal: 1,251,296 vs Gumbel: 285,447) impacts infrastructure costs (₹2,800Cr vs ₹14,200Cr.
- 3. *MME > MLE*: Method of Moments Estimation yields more reliable predictions than MLE for Gumbel in this watershed.
- 4. **Recommendation:** Mandatory multi-model analysis for >50-year events to balance statistical validity and engineering practicality.

THANK YOU!