─ Federal Ministry
Republic of Austria
Climate Action, Environment,
Energy, Mobility,
Innovation and Technology

ELEKTROLYSE IM VERTEILNETZ

Eine techno-ökonomische Analyse zum netzstützenden Einsatz

IEWT 2025

<u>Philipp Ortmann</u>, Roman Schwalbe, Andreas Patha, Daniel Schwabeneder, Klara Maggauer (AIT) Stefan Fink, Gregor Taljan, Moritz Meixner, Oliver Schellander, Maximilian Prasser, Maria Aigner (ENS)

Das Proiekt .SETHub' wird unterstützt im Rahmen der 3. FFG Ausschreibung Energie.Frei.Raum

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
- 4. Schlussfolgerungen

AUSGANGSLAGE & KERNFRAGE

Auf einer Fallstudienbasis wurde untersucht, ob Elektrolyseure eine kosteneffiziente und wirksame Maßnahme darstellen können, um Restriktionen im Verteilernetz zu beheben

- Massiver Ausbau erneuerbarer Stromerzeugung erwartet
 - Verschärfte Situationen im Stromverteilernetz
 - Massive Netzverstärkungen notwendig
- Netzdienlich betriebene Elektrolyse könnte eine wirksame Maßnahme darstellen

- Technoökonomische Modellierung eines Elektrolyseurs im Verteilnetz
 - Wie sieht ein netzdienlicher/marktbasierter Betrieb eines Elektrolyseurs aus?
 - Wie ist der Einsatz von Elektrolyse in ökonomischer Hinsicht zu bewerten?
- NICHT in dieser Analyse: Regulatorische Fragestellungen

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
- 4. Schlussfolgerungen

FALLSTUDIEN: AUSWAHL DER STANDORTE

STROMNETZ UND GEPLANTES H2-NETZ IN DER STEIERMARK 2040

Anforderungen

- Starker Ausbau Erneuerbarer
- Netzengpässe erwartet
- Nähe zum geplanten H2-Netz gegeben

Schwerpunkt im Südwesten

- 4 potenzielle Standorte identifiziert
- 2 Standorte präsentiert

Quelle: Energienetze Steiermark

NETZMODELL UND INPUTS: STANDORT A

- Elektrolyseur soll Umspannwerk entlasten => Verbrauch auf NE4
- Aktueller Verbrauch: +9 MW, Aktuelle Rückspeisung: -17 MW
- Umspanner-Kapazität:
 +50 MW (n-1-sicher) ... -100 MW
- Massiver PV-Zuwachs, aber keine Windkraft erwartet
- Aufnahmekapazität im 110 kV-Netz gegeben

NETZMODELL UND INPUTS: STANDORT B

- Elektrolyseur soll 110 kV Ausläufer entlasten => Verbrauch auf NE3
- Aktueller Verbrauch: +50 MW, Aktuelle Rückspeisung: -15 MW
- Leitungs-Kapazität (n-1-sicher): A – B: +100 MVA ... -200 MVA B – C: +200 MVA ... -400 MVA
- Massiver PV- und Windkraft-Zuwachs erwartet
- Geplant ist Anbindung des
 Elektrolyseurs über separaten
 Umspanner, d.h. keine Versorgung
 über bestehendes MS-Netz

NETZDIENLICHER EINSATZ & DIMENSIONIERUNG

SKIZZENHAFTE DARSTELLUNG

Netzdienlicher Einsatz

- aus Sicht des Netzes minimal erforderlicher Elektrolyseurbetrieb, um von Einspeisung verursachte Grenzwertverletzungen zu verhindern
- Entweder positiv, um Übereinspeisung zu kompensieren oder null, um Netz nicht zusätzlich lastseitig zu überlasten

Elektrische Nennleistung Elektrolyse

 ermittelt sich aus der maximal beobachteten Überlastung in jedem zukünftigen Jahr

Unzulässiger Betriebsbereich

Overall System Efficiency

100

Faraday Efficiency

Energy Efficiency

Power Load [%]

Electrolyser Efficiency

TECHNISCHE SIMULATION

- El. Übertragungs- bzw. Verteilnetz
 - Grenzwerte f

 ür Bezug
- Umspanner
 - Leistungsvariabler Wirkungsgrad
 - Nur für einen Standort relevant
- Gleichrichter
 - Leistungsvariabler Wirkungsgrad
- Elektrolyseur
 - PEM-Elektrolyseur
 - Leistungsvariabler Wirkungsgrad
 - Minimallast von 20 %
 - Inkl. Hilfsenergiebedarf v. 5 % der nominalen DC-Leistung
- Wasserstoffnetz
 - Grenzwert f

 ür Wasserstoffabnahme
 - Möglicherweise notwendiger Kompressor wird dem Wasserstoffnetz zugerechnet

50

20

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
 - 1. Rein netzdienlicher Betrieb
 - 2. Netzdienlicher + Marktbasierter Betrieb
 - 3. Vergleich mit herkömmlichem Netzausbau
- 4. Schlussfolgerungen

ERGEBNISSE NETZDIENLICHER BETRIEB

ABGEREGELTE EINSPEISUNG

Standort A Standort B 12 10 8 5032 5035 5040 604 2045 5040 5040 5040 5040 5040 5040 5040 5040 5040 5040 505

VERLORENE ERLÖSE STROMMARKT

ELEKTROLYSE NENNLEISTUNG

- In der Ausgangslage gehen Strommarkterlöse (für den EE-Erzeuger) durch abgeregelte Einspeisung verloren
- Durch den Betrieb des Elektrolyseurs kann die Abregelung vermieden werden, in der Folge als "gewonnene Einspeisung" bezeichnet

Elektrolyse wurde auf maximale Netzüberlastung ausgelegt und in 5-Jahres Schritten ausgebaut

VORLÄUFIGE ERGEBNISSE NETZDIENLICHER BETRIEB

VOLLLASTSTUNDEN

VARIATION DER NENNLEISTUNG ELEKTROLYSE

Rein netzdienlicher Betrieb nicht darstellbar

- → Zu geringe Volllaststunden
- → Zusätzlich marktbasierter Einsatz notwendig, um Kostendegression zu erreichen

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
 - 1. Rein netzdienlicher Betrieb
 - 2. Netzdienlicher + Marktbasierter Betrieb
 - 3. Vergleich mit herkömmlichem Netzausbau
- 4. Schlussfolgerungen

MARKTBASIERTER BETRIEB

OPTIMIERUNG GEGEN MARKTPREISE

Optimale Fahrweise auf Marktbasis

- Verhältnis von Strom/H2-Preis/Netzentgelten und Effizienz
- · Kann auch Auslastung von Null ergeben
- Simultane Bestimmung von Leistungsspitze (abhängig von NE) sowie laufender Betrieb mittels perfect foresight

Technische Randbedingungen

- Minimum Stable Load nicht relevant (immer volle Last)
- Rampen nicht relevant auf 15-min Zeitskala (10%/s)

Zeitliche Abfolge

Netzdienlicher Einsatz ist als Einsatz definiert, der über den marktbasierten Betrieb hinaus geht 03/03/2025

ENERGIEWIRTSCHAFTLICHE ANNAHMEN

HISTORISCHE STROMPREISE (AT, 60M, 2023)

NETZENTGELTE, NETZEBENE 4, STEIERMARK (2023)²

	Leistung	Variabel
Netzentgelte	35,520 €/MW/a	17.4 €/MWh
Steuern & Gebühren	0	1 €/MWh
Summe	35,520 €/MW/a	18.4 €/MWh

TECHNOÖKONOMISCHE ANNAHMEN ELEKTROLYSE¹

	2025	2030	2040
CAPEX [€/kW]	1425	950	725
OPEX [%/kW/a]	2	2	2

- Strompreise auf Historischer Basis, Jahr 2023, AT
- WACC Annahme 4%, real
- Netzentgelte f
 ür den Bezug sind zu bezahlen (Ausnahme nur bei Voll-Integrierter-Netzkomponente)
- Elektrolyse Technologie PEM, System Größe ~10MW

^{1 –} Danish Technology Catalogue Renewable Fuels (April 2024)

^{2 -} Reduziert per SNE-VO März 2023

ERGEBNIS: MARKTBASIERT UND NETZDIENLICH

Bei höheren H2-Preisen steigt die Auslastung. Damit wird bei hohen H2-Preisen der netzdienliche Bedarf bereits marktbasiert gelöst es ist keine 'rein' netzdienliche Fahrweise mehr notwendig

VOLLLASTSTUNDEN Standort A Standort B 7000 6000 Rein netzdienlicher Einsatz 5000 Volllaststunden 4000 VLS flachen ab 3000 Kipppunkt durch durch höhere leistungsabhängige 2000 Strompreise Netzentgelte 1000 Marktbasierter **Betrieb** 8 10 €/kg H2

NETZBEDINGTER EINSATZ MARKTBASIERT GELÖST

GESAMTWIRTSCHAFTLICHE BEWERTUNG

Die Vorteilhaftigkeit des Elektrolyse Einsatzes hängt stark vom anzunehmenden Wasserstoff Preis ab. Ab einem Preis von 6-7 €/kg ist der Einsatz von Elektrolyse insgesamt wirtschaftlich vorteilhaft

Gesamtwirtschaftliches Ergebnis Elektrolyse (illustrativ)

Kosten aus dem Elektrolysebetrieb

- Strombezug (Energiepreise + Netzentgelte)
- Fixkosten (CAPEX, OPEX)

Erlöse aus dem Elektrolysebetrieb

- Gewonnene Einspeisung Strom
- Erlöse Verkauf Wasserstoff

VARIATION NENNLEISTUNG ELEKTROLYSE

Leistung der Elektrolyse muss nicht unbedingt auf die maximale Netzverletzung ausgelegt werden, möglicherweise ist eine Kombination aus Abregelung und Elektrolyse gesamtwirtschaftlich sinnvoll

Bereits 85-95% der Erlöse können gewonnen werden

 bei einer Auslegung auf 50% der maximal beobachteten Grenzwertverletzung

Netzengpass ist nicht vollständig gelöst

- Gewisse Energiemenge geht verloren
- Fraglich, wie wertvoll Solar- & Windspitzen in Zukunft sein werden

Ökonomisches Optimum vorhanden?

Elektrolyse wirtschaftlich wenn Leistung reduziert?

MARKTBASIERTER BETRIEB: GEWONNENE EINSPEISUNG

Auch bei kleineren Elektrolyse-Nennleistungen wird durch den marktbasierten Betrieb bereits ein hoher Anteil an Einspeisung gewonnen, die ansonsten abgeregelt werden müsste

STANDORT A STANDORT B

Heatmaps zeigen die gewonnene Einspeisung alleine durch den marktbasierten Betrieb als Anteil der Energie, die ohne Maßnahmen abgeregelt werden müsste (%)

VARIATION NENNLEISTUNG ELEKTROLYSE

Je geringer die Zahlungsbereitschaft für Wasserstoff, desto kleiner sollte die Leistung der Elektrolyse ausfallen. Bei hohen H2-Preisen kann die Elektrolyse Leistung möglichst groß ausfallen

Ergebnisse zeigen die diskontierten Kosten und Erlöse über den gesamten Betrachtungszeitraum (2025-2055)

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
 - 1. Rein netzdienlicher Betrieb
 - 2. Netzdienlicher + Marktbasierter Betrieb
 - 3. Vergleich mit herkömmlichem Netzausbau
- 4. Schlussfolgerungen

VERGLEICH MIT NETZAUSBAU

VERGLEIGH WITH NETZ/100D/10

STANDORT B

Bei hoher Zahlungsbereitschaft für Wasserstoff (> 7 €/kg) ist Elektrolyse dem konventionellem Netzausbau vorzuziehen

Bei hohen H2-Preisen übersteigen die Gesamterlöse (H2-Verkauf, Stromeinspeisung) die laufenden und fixen Kosten

Bei niedrigen Preisen für Wasserstoff (< 7 €/kg)

Erzielt der Ausbau von Elektrolyse auf 25% der maximalen Leistung ein Ergebnis vergleichbar zum Netzausbau

- 1. Ausgangslage und Fragestellung
- 2. Methodik und Annahmen
- 3. Ergebnisse
- 4. Schlussfolgerungen

FAZIT, LIMITATIONEN UND AUSBLICK

Elektrolyse kann als Alternative zum herkömmlichen Netzausbau dienen

- Bei hoher Zahlungsbereitschaft für Wasserstoff (+ 7 €/kg)
- In Kombination mit Abregelung, Ausbau auf maximalen Wert eher nicht sinnvoll

Aussagekraft basiert auf zwei Standorten, die im Verteilnetz liegen Netzdienlichkeit im Übertragungsnetz noch zusätzliche Wertschöpfung Ökonomische Betrachtung erfolgt gegen historische DA-Preise

- In der vorliegenden Analyse wurden Day-ahead Preise 2023 betrachtet. Als weitere Use-Cases kommen Intraday Markt und Regelenergie Markt in Frage
- Volatilität der Preise (und damit Erlöspotenzial Elektrolyse) könnte zukünftig steigen

Das Projekt ,SETHub' wird unterstützt im Rahmen der 3. FFG Ausschreibung Energie.Frei.Raum

■ Federal Ministry
Republic of Austria
Climate Action, Environment,
Energy, Mobility,
Innovation and Technology

AIT

Philipp Ortmann, Roman Schwalbe, Andreas Patha, Daniel Schwabeneder, Klara Maggauer

ENS

Stefan Fink, Gregor Taljan, Moritz Meixner, Oliver Schellander, Maximilian Prasser, Maria Aigner