- 1. a quantum state can be represented as a ket $|\psi\rangle$ in hilbert space
- 2. Hermitian operator
- 3. The eigenvalue of \hat{A}
- 4. taking the inner product of $|\psi\rangle$ and $|a_i\rangle$
- 5. determined by the action of a unitary operator $\hat{U}(t)$ that preserves the normalization of the state
- 6. $\alpha, \beta, \gamma, \delta$
- 7. $P(\alpha) = |\langle \psi | \alpha \rangle|^{2}$ $= |\alpha|^{2}$ $= (\frac{1}{\sqrt{6}})^{2}$ $= \frac{1}{6}$
- 8. $P(\beta) = |\langle \psi | \beta \rangle|^{2}$ $= |\beta|^{2}$ $= (\frac{1}{\sqrt{3}})^{2}$ $= \frac{1}{3}$
- 9. $P(\gamma) = |\langle \psi | \gamma \rangle|^{2}$ $= |\gamma|^{2}$ $= (0)^{2}$ = 0
- 10. $P(\delta) = |\langle \psi | \delta \rangle|^2$ $= |\delta|^2$ $= (\frac{1}{\sqrt{2}})^2$ $= \frac{1}{2}$
- 11. $|\psi\rangle = |D\rangle$
- 12. $|\psi\rangle = |A\rangle$

This document write using LATEX author: Felix Montalfu(03082180055)