Data Analytics and Business Intelligence (8696/8697)

Decision Trees

Graham.Williams@togaware.com

Data Scientist Australian Taxation Office

Adjunct Professor, University of Canberra

Graham.Williams@togaware.com
http://datamining.togaware.com

- Introduction
- 2 Decision Trees
 - Basics
 - Example
 - Algorithm
- 3 Building Decision Trees
 - In Rattle
 - In R

- Introduction
- 2 Decision Trees
 - Basics
 - Example
 - Algorithm
- Building Decision Trees
 - In Rattle
 - In R

- Introduction
- **2** Decision Trees
 - Basics
 - Example
 - Algorithm
- Building Decision Trees
 - In Rattle
 - In R

PREDICTIVE MODELLING: CLASSIFICATION

- Goal of classification is to build models (sentences) in a knowledge representation (language) from examples of past decisions.
- The model is to be used on unseen cases to make decisions.
- Often referred to as supervised learning.
- Common approaches: decision trees; neural networks; logistic regression; support vector machines.

LANGUAGE: DECISION TREES

- Knowledge representation: A flow-chart-like tree structure
- Internal nodes denotes a test on a variable
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

TREE CONSTRUCTION: DIVIDE AND CONQUER

- Decision tree induction is an example of a recursive partitioning algorithm: divide and conquer.
- At start, all the training examples are at the root
- Partition examples recursively based on selected variables

TRAINING DATASET: BUYS COMPUTER?

What rule would you "learn" to identify who buys a computer?

Age	Income	Student	Credit	Buys
< 30	High	No	Poor	No
< 30	High	No	Good	Yes
30 – 40	High	No	Poor	Yes
> 40	Medium	No	Poor	Yes
> 40	Low	Yes	Poor	Yes
> 40	Low	Yes	Good	No
30 – 40	Low	Yes	Good	Yes
< 30	Medium	No	Poor	No
< 30	Low	Yes	Poor	No
> 40	Medium	Yes	Poor	Yes
< 30	Medium	Yes	Good	Yes
30 – 40	Medium	No	Good	Yes
30 – 40	High	Yes	Poor	Yes
> 40	Medium	No	Good	No

ALGORITHM FOR DECISION TREE INDUCTION

- A greedy algorithm: takes the best immediate (local) decision while building the overall model
- Tree constructed top-down, recursive, divide-and-conquer
- Begin with all training examples at the root
- Data is partitioned recursively based on selected variables
- Select variables on basis of a measure
- Stop partitioning when?
 - All samples for a given node belong to the same class
 - There are no remaining variables for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

BASIC MOTIVATION: ENTROPY

- A random data set may have high entropy:
 - Y is from a uniform distribution
 - a frequency distribution would be flat!
 - a sample will include uniformly random values of Y
- A data set with low entropy:
 - Y's distribution will be very skewed
 - a frequency distribution will have a single peak
 - a sample will predominately contain just Yes or just No
- Work towards reducing the amount of entropy in the data!

BASIC MOTIVATION: ENTROPY

- A random data set may have high entropy:
 - Y is from a uniform distribution
 - a frequency distribution would be flat!
 - a sample will include uniformly random values of Y
- A data set with low entropy:
 - Y's distribution will be very skewed
 - a frequency distribution will have a single peak
 - a sample will predominately contain just Yes or just No
- Work towards reducing the amount of entropy in the data!

ALGORITHM

BASIC MOTIVATION: ENTROPY

- A random data set may have high entropy:
 - Y is from a uniform distribution
 - a frequency distribution would be flat!
 - a sample will include uniformly random values of Y
- A data set with low entropy:
 - Y's distribution will be very skewed
 - a frequency distribution will have a single peak
 - a sample will predominately contain just Yes or just No
- Work towards reducing the amount of entropy in the data!

BASIC MOTIVATION: ENTROPY

- A random data set may have high entropy:
 - Y is from a uniform distribution
 - a frequency distribution would be flat!
 - a sample will include uniformly random values of Y
- A data set with low entropy:
 - Y's distribution will be very skewed
 - a frequency distribution will have a single peak
 - a sample will predominately contain just Yes or just No
- Work towards reducing the amount of entropy in the data!

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Assuming this represents true probabilities:

$$P(Yes) = 0.5$$

 $P(Math) = 0.5$
 $P(Math \& Yes) = 0.25$
 $P(History \& Yes) = 0$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

Assuming this	represents	true
probabilities:		

$$P(Yes) = 0.5$$

 $P(Math) = 0.5$
 $P(Math \& Yes) = 0.25$
 $P(History \& Yes) = 0$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on Y

ALGORITHM

$$P(Yes) = 0.5$$
$$P(No) = 0.5$$

$$E(p, n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{p}{p+n}$$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on Y

$$P(Yes) = 0.5$$

$$P(No) = 0.5$$

Uniform distribution of Y Entropy of Y is 1

$$E(p, n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

 $log_2(0.5) = -1$

We are trying to predict output Y from input X.

$$X = Course$$

Y = Purchase Neo1973

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on Y

$$P(Yes) = 0.5$$

 $P(No) = 0.5$

Uniform distribution of Y Entropy of Y is 1

$$E(p, n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

 $log_2(0.5) = -1$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on just students of History

$$P(Yes) = 0$$

 $P(No) = 1$

Skewed distribution of *Y* Entropy of *Y* is 0

$$E(p, n) = -\frac{0}{0+2} \log_2 \frac{0}{0+2} \\ -\frac{2}{0+2} \log_2 \frac{2}{0+2}$$

 $log_2(0) = -Inf log_2(1) = 0$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on just students of History

$$P(Yes) = 0$$

 $P(No) = 1$

Skewed distribution of Y Entropy of Y is 0

$$E(p, n) = -\frac{0}{0+2} \log_2 \frac{0}{0+2} -\frac{2}{0+2} \log_2 \frac{2}{0+2}$$

We are trying to predict output Y from input X.

X = Course

Y = Purchase Neo1973

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Focus on just students of History

$$P(Yes) = 0$$

 $P(No) = 1$

Skewed distribution of Y Entropy of Y is 0

$$E(p, n) = -\frac{0}{0+2} \log_2 \frac{0}{0+2} \\ -\frac{2}{0+2} \log_2 \frac{2}{0+2}$$

 $log_2(0) = -Inf log_2(1) = 0$

Variable Selection Measure: Entropy

- Information gain (ID3/C4.5)
- Select the variable with the highest information gain
- Assume there are two classes: P and N
- Let the data S contain p elements of class P and n elements of class N
- The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I_E(p,n) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

VARIABLE SELECTION MEASURE: GINI

- Gini index of impurity traditional statistical measure CART
- Measure how often a randomly chosen observation is incorrectly classified if it were randomly classified in proportion to the actual classes.
- Calculated as the sum of the probability of each observation being chosen times the probability of incorrect classification, equivalently:

$$I_G(p, n) = 1 - (p^2 + (1 - p)^2)$$

 As with Entropy, the Gini measure is maximal when the classes are equally distributed and minimal when all observations are in one class or the other.

VARIABLE SELECTION MEASURE

INFORMATION GAIN

- Now use variable A to partition S into v cells: $\{S_1, S_2, \dots, S_v\}$
- If S_i contains p_i examples of P and n_i examples of N, the information now needed to classify objects in all subtrees S_i is:

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

• So, the information gained by branching on A is:

$$Gain(A) = I(p, n) - E(A)$$

So choose the variable A which results in the greatest gain in information.

- Introduction
- 2 Decision Trees
 - Basics
 - Example
 - Algorithm
- Building Decision Trees
 - In Rattle
 - In R

STARTUP RATTLE

library(rattle) rattle()

LOAD EXAMPLE WEATHER DATASET

- Click on the Execute button and an example dataset is offered.
- Click on Yes to load the weather dataset.

SUMMARY OF THE WEATHER DATASET

• A summary of the weather dataset is displayed.

Model Tab — Decision Tree

• Click on the Model tab to display the modelling options.

BUILD TREE TO PREDICT RAINTOMORROW

Decision Tree is the default model type—simply click Execute.

DECISION TREE PREDICTING RAINTOMORROW

 Click the Draw button to display a tree (Settings → Advanced Graphics).

EVALUATE DECISION TREE

• Click Evaluate tab—options to evaluate model performance.

EVALUATE DECISION TREE—ERROR MATRIX

- Click Execute to display simple error matrix.
- Identify the True/False Positives/Negatives.

DECISION TREE RISK CHART

Click the Risk type and then Execute.

DECISION TREE ROC CURVE

• Click the ROC type and then Execute.

Score a Dataset

Click the Score type to score a new dataset using model.

Log of R Commands

- Click the Log tab for a history of all your interactions.
- Save the log contents as a script to repeat what we did.

Log of R Commands—rpart()

- Here we see the call to rpart() to build the model.
- Click on the Export button to save the script to file.

$\text{Help} \rightarrow \text{Model} \rightarrow \text{Tree}$

Rattle provides some basic help—click Yes for R help.

OVERVIEW

- - Basics
 - Example
 - Algorithm
- **3** Building Decision Trees
 - In Rattle
 - In R

Weather Dataset - Inputs

```
ds <- weather
head(ds, 4)
```

```
##
         Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine
## 1 2007-11-01 Canberra
                      8.0
                             24.3
                                     0.0
                                               3.4
                                                       6.3
  2 2007-11-02 Canberra 14.0 26.9 3.6
                                               4.4
                                                      9.7
## 3 2007-11-03 Canberra 13.7 23.4 3.6
                                            5.8 3.3
## 4 2007-11-04 Camberra 13.3 15.5
                                    39.8
                                               7.2
                                                       9.1
```

. . . .

summary(ds[c(3:5,23)])

```
Rainfall
                                             RISK_MM
##
     MinTemp
                   MaxTemp
##
   Min. :-5.30 Min. : 7.6 Min. : 0.00 Min. : 0.00
   1st Qu.: 2.30 1st Qu.:15.0 1st Qu.: 0.00 1st Qu.: 0.00
##
##
   Median: 7.45 Median: 19.6 Median: 0.00 Median: 0.00
   Mean : 7.27 Mean : 20.6 Mean : 1.43 Mean : 1.43
##
. . . .
```


Weather Dataset - Target

```
target <- "RainTomorrow"</pre>
summary(ds[target])
   RainTomorrow
    No :300
##
##
   Yes: 66
(form <- formula(paste(target, "~ .")))</pre>
## RainTomorrow ~ .
(vars < -names(ds)[-c(1, 2, 23)])
    [1] "MinTemp"
                         "MaxTemp"
                                          "Rainfall"
                                                           "Evaporation"
    [5] "Sunshine"
                                          "WindGustSpeed" "WindDir9am"
##
                         "WindGustDir"
    [9] "WindDir3pm"
                                          "WindSpeed3pm"
                                                           "Humidity9am"
                         "WindSpeed9am"
   [13] "Humidity3pm"
                         "Pressure9am"
                                          "Pressure3pm"
                                                           "Cloud9am"
   [17] "Cloud3pm"
                         "Temp9am"
                                          "Temp3pm"
                                                           "RainToday"
   [21] "RainTomorrow"
```


SIMPLE TRAIN/TEST PARADIGM

```
set.seed (1421)
train <- c(sample(1:nrow(ds), 0.70*nrow(ds))) # Training dataset</pre>
head(train)
## [1] 288 298 363 107 70 232
length(train)
## [1] 256
test <- setdiff(1:nrow(ds), train)
                                                 # Testing dataset
length(test)
## [1] 110
```


DISPLAY THE MODEL

```
model <- rpart(form, ds[train, vars])</pre>
model
## n = 256
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
##
    1) root 256 44 No (0.82812 0.17188)
##
      2) Humidity3pm< 59.5 214 21 No (0.90187 0.09813)
        4) WindGustSpeed< 64 204 14 No (0.93137 0.06863)
##
          8) Cloud3pm< 6.5 163 5 No (0.96933 0.03067) *
##
          9) Cloud3pm>=6.5 41 9 No (0.78049 0.21951)
##
           18) Temp3pm< 26.1 34 4 No (0.88235 0.11765) *
##
           19) Temp3pm>=26.1 7 2 Yes (0.28571 0.71429) *
##
```

Notice the legend to help interpret the tree.

Performance on Test Dataset

• The predict() function is used to score new data.

```
head(predict(model, ds[test,], type="class"))
## 2 4 6 8 11 12
## No No No No No No
## Levels: No Yes
table(predict(model, ds[test,], type="class"), ds[test, target])
##
##
        No Yes
##
    No 77 14
    Yes 11 8
##
```


EXAMPLE DTREE PLOT USING RATTLE

AN R SCRIPTING HINT

- Notice the use of variables ds, target, vars.
- Change these variables, and the remaining script is unchanged.
- Simplifies script writing and reuse of scripts.

```
ds <- iris
target <- "Species"
vars <- names(ds)</pre>
```

• Then repeat the rest of the script, without change.

AN R SCRIPTING HINT — UNCHANGED CODE

This code remains the same to build the decision tree.

```
form <- formula(paste(target, "~ ."))</pre>
train <- c(sample(1:nrow(ds), 0.70*nrow(ds)))</pre>
test <- setdiff(1:nrow(ds), train)</pre>
model <- rpart(form, ds[train, vars])</pre>
model
## n = 105
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
   1) root 105 69 setosa (0.34286 0.32381 0.33333)
##
     2) Petal.Length< 2.6 36 0 setosa (1.00000 0.00000 0.00000) *
##
     3) Petal.Length>=2.6 69 34 virginica (0.00000 0.49275 0.50725)
       6) Petal.Length< 4.95 35 2 versicolor (0.00000 0.94286 0.05714) *
##
##
       7) Petal.Length>=4.95 34 1 virginica (0.00000 0.02941 0.97059) *
```


AN R SCRIPTING HINT — UNCHANGED CODE

Similarly for the predictions.

```
head(predict(model, ds[test,], type="class"))
##
                            10
## setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica
table(predict(model, ds[test,], type="class"), ds[test, target])
##
##
                setosa versicolor virginica
##
                    14
    setosa
                                0
##
     versicolor
                               15
    virginica
##
```


Modelling Framework

Language Tree with single variable tests

Measure Entropy, Gini, . . .

Search Recursive partitioning

SUMMARY

- Decision Tree Induction.
- Most widely deployed machine learning algorithm.
- Simple idea, powerful learner.
- Available in R through the rpart package.
- Related packages include party, Cubist, C50, RWeka (J48).

Reference Book

Data Mining with Rattle and R

Graham Williams 2011, Springer, Use R!

ISBN: 978-1-4419-9889-7.

Chapter 11.

Reference Book

Data Mining with Rattle and R

Graham Williams 2011, Springer, Use R!

ISBN: 978-1-4419-9889-7.

Chapter 11.

