

AOD472

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD472 uses advanced trench technology and design to provide excellent $R_{\text{DS}(\text{ON})}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

Features

$$\begin{split} &V_{DS} \; (V) = 25V \\ &I_{D} = 55A \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 6 \; m\Omega \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 9.5 \; m\Omega \; (V_{GS} = 4.5V) \end{split}$$

100% UIS Tested 100% R_g Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	25	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _C =25°C		55					
Current ^G	T _C =100°C	I _D	43	7				
Pulsed Drain Current ^d		I _{DM}	200	A				
Pulsed Forward Diode Current ^C		I _{SM}	200	7				
Avalanche Current ^C		I _{AR}	50					
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	125	mJ				
	T _C =25°C	В	60	W				
Power Dissipation ^B	T _C =100°C	$-P_{D}$	30	VV				
	T _A =25°C	В	2.5	10/				
Power Dissipation ^A	T _A =70°C	-P _{DSM}	1.6	W				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	15	20	°C/W				
Maximum Junction-to-Ambient A	Steady-State		41	50	°C/W				
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	2.1	2.5	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	25			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1 5	μА
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.4	2.5	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	150			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =30A		5	6	
		T_J =125°C V_{GS} =4.5V, I_D =20A		7.5 7.6	9.5	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_D = 20A$		49	0.0	S
V _{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.74	1	V
I _S	Maximum Body-Diode Continuous Curre			50	Α	
DYNAMIC	PARAMETERS				ı	
C _{iss}	Input Capacitance			2050	2460	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =12.5V, f=1MHz		485	600	pF
C _{rss}	Reverse Transfer Capacitance	1		280	400	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.86	1.5	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			41	50	nC
Q _g (4.5V)	Total Gate Charge	1		20	25	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =12.5V, I _D =20A		7.3	8.8	nC
Q_{gsVth}	Gate Source Charge at Vth	1		3.4	4	nC
Q_{gd}	Gate Drain Charge	1		8.2	11.5	nC
t _{D(on)}	Turn-On DelayTime			7.5	10	ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =12.5V,		11	22	ns
$t_{D(off)}$	Turn-Off DelayTime	R_L =0.68 Ω , R_{GEN} =3 Ω		27	35	ns
t _f	Turn-Off Fall Time	7		8	16	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs		30	36	ns
Q _{rr}	Body Diode Reverse Recovery Charge	_{Je} I _F =20A, dI/dt=100A/μs		19	23	nC

A: The value of R $_{0JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The Power dissipation P $_{DSM}$ is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C: Repetitive rating, pulse width limited by junction temperature T $_{\text{J(MAX)}}$ =175°C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu s$ pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T $_{J(MAX)}$ =175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.
- *This device is guaranteed green after data code 8X11 (Sep 1 $^{\rm ST}$ 2008). Rev9: Feb 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 13: Power De-rating (Note B)

Figure 14: Current De-rating (Note B)

Figure 15: Single Pulse Power Rating Junctionto-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

