B.Sc. Engg. / HD CSE 3rd Semester (67)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2015-2016

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4305: Computer Organization and Architecture

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

Define throughput and response time. Why is it difficult to define performance? 1. a)

4+4

8

Consider three different processors P1, P2 and P3 executing the same instruction set with the clock rates and CPIs given in the following table:

	Table 1	CDI
Processor	Clock Rate	CPI
P1	2 GHz	1.5
P2	1.5 GHz	1.0
P3	3 GHz	2.5

Answer the following questions:

Which processor has the highest performance?

If each processor execute a program in 10 seconds, find the number of cycles and the number of instructions.

Consider the following sequence of MIPS instructions:

4+5

5

10

Answer the following questions:

Determine and describe the data hazard(s) in the instruction sequence. i.

Reorder the instructions into a new schedule so that it will execute without any stalls ii. on a 5-stage pipelined processor with forwarding.

- 2. a) Briefly describe the five fields of R-type instructions in MIPS.
 - Describe the following with the help of appropriate examples:
 - Pseudodirect addressing
 - **Pseudoinstructions**
 - Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively. Write the MIPS assembly code for the C statements below:
 - f = -g + h + B[1]
 - ii. f = A[B[g]+1]

- 3. a) Define combinational element and state element. What is a clocking methodology and why 4+3
 - b) Consider the MIPS datapath shown in Figure 1. Suppose the following latencies (time needed to do their work) for the logic blocks are given:

	Table 2						Shift-left	
l	I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-extend	
	400ps	100ps	30ps	120ps	200ps	350ps	20ps	0ps

Answer the following questions:

- i. What is the clock cycle time if the only type of instruction you need to support are ALU instructions (add, and, etc.)?
- ii. What is the clock cycle time if you only had to support 1w instructions?
- iii. What is the clock cycle time if you must support add, beq, lw, and sw instructions?
- c) Consider the MIPS datapath and assume that the breakdown of the executed instructions is given as below:

Table 3						
add	addi	not	beq	lw	sw	
30%	15%	5%	20%	20%	10%	

Answer the following questions:

- i. What is the percentage of the data memory usage?
- ii. What is the purpose of the "sign-extend" circuit? What percentage of the time is this circuit needed?
- iii. If you can improve the latency of one of the given datapath components by 10%, which component should it be? Explain. What is the speed-up from this improvement? Refer to Table 2 for the latency values.
- 4. a) Consider the MIPS datapath with the control unit. Fill up the following table with 1, 0 or X (don't care) so that the control lines are appropriately determined for the respective instruction.

Table 4: Control Values

140.0								
Instruction	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	
R-format								
lw								
sw		•						
beq								

b) Answer the questions considering the following two instructions.

lw: 1000110001000011000000000010000 beq: 00010000010001100000000001100

- i. What are the outputs of the "sign-extended" unit for each of the instructions?
- ii. What is the new PC address after the instruction is executed?
- c) What are the five steps of a MIPS instruction execution?

5

10

9

9

Figure 1: MIPS Datapath along with the Control unit