Static Noncooperative Infinite Games

Shulu Chen

shulu@gwu.edu

Content

- 1. Review
 - 1.1 Matrix games
 - 1.2 Saddle-point equilibriums
 - 1.3. Nash equilibriums
 - 1.4. Stackelberg equilibrium
- 2. Noncooperative Infinite Games
 - 2.1 ϵ equilibrium solutions
 - 2.2 Reaction curves
 - 2.3 Robust and stable Nash solution

11/14/2022

Review - Matrix Games

- $A = \{a_{ij}\}$, each entry is an outcome
- ith row: strategies for P1, jth column: strategies for P2
- Target of P1: find i^* th row to minimize the outcomes

$$\bar{V}(A) \stackrel{\Delta}{=} \max_{j} a_{i^*j} \leq \max_{j} a_{ij}, \quad i = 1, \ldots, m,$$

- *V(A)* -- loss ceiling of P1 (security level for his losses)
- row i* -- security strategy for P1
- Target of P2: find j^* th column to maximize the outcomes

$$\underline{V}(A) \stackrel{\Delta}{=} \min_{i} a_{ij^*} \geq \min_{i} a_{ij}, \quad j = 1, \ldots, n.$$

- V(A) -- gain-floor of P2 (security level for his gains)
- column j^* -- security strategy for P2

Review - Saddle-point equilibrium

• If the pair of inequalities:

$$a_{i^*j} \le a_{i^*j^*} \le a_{ij^*}$$

for all i and j, then the strategies {row i^* ,column j^* } are said to constitute a **saddle-point equilibrium**. And the matrix game is said to have a **saddle point** in pure strategies.

11/14/2022

Review - Mixed Strategies

 Key idea: enlarge the strategy spaces, allow the players to base their decisions on the outcome of random events.

E.g. $\{row1, row2, row3\}$ —pure strategies space $\{y_1, y_2, y_3\}$ —a mixed strategy, where $y_1 + y_2 + y_3 = 1$ $Y = \{(y_1, y_2, y_3), (y_1', y_2', y_3') \dots \}$ —the mixed strategy space of P1, comprised of all such probability distributions.

	$\mathbf{P}2$						
	1	3	3	-2			
P 1	0	-1	2	1			
	-2	2	0	1			

Review - Mixed Strategies

•
$$\overline{V}_m(A) = \min_{Y} \max_{Z} y'AZ$$

•
$$\underline{V}_m(A) = \max_Z \min_Y y'AZ$$

- The minimax theorem:
 - In any matrix game A, the average security levels of the players in mixed strategies coincide, that is:

$$\overline{V}_m(A) = \underline{V}_m(A)$$

 We have thus seen that, if the players are allowed to use mixed strategies, matrix games always admit a saddle-point solution which, thereby, manifests itself as the only reasonable equilibrium solution in zero-sum two-person games of that type

11/14/2022

Review - Mixed Equilibrium Strategies

Graphical solution for (2×2) matrix games

Mixed security strategy of P1

Mixed security strategy of P2

Review - Nash Equilibrium

• A pair of strategies {row i*, column j*} is said to constitute a noncooperative (Nash) equilibrium solution to a bimatrix game ($A = \{a_{ij}\}, B = \{b_{ij}\}$) if the following pair of inequalities is satisfied for all i = 1, ..., m and all j = 1, ..., n:

$$a_{i^*j^*} \le a_{ij^*}$$
$$b_{i^*j^*} \le b_{i^*j}$$

- Furthermore, the pair $(a_{i^*j^*}, b_{i^*j^*})$ is known as a noncooperative (Nash) equilibrium outcome of the bimatrix game.
- Example: (1,2) and (-1,0) are the equilibrium outcomes.

$$A = \begin{array}{|c|c|} \hline \mathbf{P2} & \mathbf{P2} \\ \hline \hline 1 & 0 \\ \hline 2 & -1 \end{array} \mathbf{P1} \qquad B = \begin{array}{|c|c|} \hline 2 & 3 \\ \hline \hline 1 & 0 \end{array} \mathbf{P1}$$

Review - Nash Equilibrium

• If a bimatrix game admits more than one admissible Nash equilibrium solution, then the equilibrium outcome of the game becomes rather ill-define.

Admits two admissible Nash equilibrium, no clean choice

Review - Stackelberg Equilibrium

Hierarchical (Stackelberg) equilibrium

- P1 leader, P2 follower:
 - (L,L) is the Stackelberg solution, (0,-1) is the Stackelberg outcome with P1 as the leader.
- P2 leader, P1 follower:
 - (L,R) is the Stackelberg solution, (3/2,-2/3) is the Stackelberg outcome with P1 as the leader.

Noncooperative Infinite Games

• Infinite: at least one of the players has at his disposal an infinite number of alternatives to choose from.

ϵ Equilibrium Solutions

Definition 4.2 For a given $\epsilon \geq 0$, the pair $\{u_{\epsilon}^{1^*}, u_{\epsilon}^{2^*}\} \in U^1 \times U^2$ is called an ϵ saddle point if

$$J(u_{\epsilon}^{1^*}, u^2) - \epsilon \leq J(u_{\epsilon}^{1^*}, u_{\epsilon}^{2^*}) \leq J(u^1, u_{\epsilon}^{2^*}) + \epsilon$$

for all $\{u^1, u^2\} \in U^1 \times U^2$. For $\epsilon = 0$ one simply speaks of a "saddle point".

			$\mathbf{P}2$			
P1/	2	1/2	1/3	1/4	1/5	
V	0	1/2	2/3	3/4	4/5	

Reaction curves

Definition 4.3 In an N-person nonzero-sum game, let the minimum of the cost function of P1, $J^1(u^1, \dots, u^N)$, with respect to $u^1 \in U^1$ be attained for each $u_{-1} \in U_{-1}$, where $u_{-1} \stackrel{\triangle}{=} \{u^2, \dots, u^N\}$ and $U_{-1} \stackrel{\triangle}{=} U^2 \times \dots \times U^N$. Then, the set $R^1(u_{-1}) \subset U^1$ defined by

$$R^{1}(u_{-1}) = \{ \xi \in U^{1} : J^{1}(\xi, u_{-1}) \le J^{1}(u^{1}, u_{-1}), \quad \forall u^{1} \in U^{1} \}$$

Robust Nash Solution

Definition 4.4 Given two connected curves $u^2 = l_2(u^1)$ and $u^1 = l_1(u^2)$ on the square, denote their weak δ -neighborhoods by N_{δ}^2 and N_{δ}^1 , respectively. Then, a point P of intersection of these two curves is said to be robust if, given $\epsilon > 0$, there exists a $\delta_0 > 0$ so that every ordered pair selected from $N_{\delta_0}^2$ and $N_{\delta_0}^1$ has an intersection in an ϵ -neighborhood of P.

P1 is robust P2 is not robust

All points are robust

Robust Nash Solution

Definition 4.4 Given two connected curves $u^2 = l_2(u^1)$ and $u^1 = l_1(u^2)$ on the square, denote their weak δ -neighborhoods by N_{δ}^2 and N_{δ}^1 , respectively. Then, a point P of intersection of these two curves is said to be robust if, given $\epsilon > 0$, there exists a $\delta_0 > 0$ so that every ordered pair selected from $N_{\delta_0}^2$ and $N_{\delta_0}^1$ has an intersection in an ϵ -neighborhood of P.

P1 is robust P2 is not robust

All points are robust

Stable Nash Solution

Definition 4.5 A Nash equilibrium u^{i^*} , $i \in \mathbb{N}$, is (globally) stable with respect to an adjustment scheme S if it can be obtained as the limit of the iteration:

$$u^{i^*} = \lim_{k \to \infty} u^{i(k)}, \tag{4.3}$$

$$u^{i(k+1)} = \arg \min_{u^i \in U^i} J^i(u^{(S_k)}_{-i}, u^i), \quad u^{i(0)} \in U^i, \quad i \in \mathbf{N},$$
 (4.4)

where the superscript S_k indicates that the precise choice of $u_{-i}^{(S_k)}$ depends on the readjustment scheme selected.

Thanks Happy Halloween Hope to meet you soon