

1K Commercial X2212 256 x 4 Bit

Nonvolatile Static RAM

FEATURES

- Single 5V Supply
- Fully TTL Compatible
- Infinite E²PROM Array Recall, RAM Read and Write Cycles
- Access Time of 300 ns Max.
- Nonvolatile Store Inhibit: V_{CC} = 3V Typical
- High Reliability
 - -Store Cycles: 100,000
- -Data Retention: 100 Years
- JEDEC Standard 18-Pin Package

DESCRIPTION

The Xicor X2212 is a 256 x 4 NOVRAM featuring a high-speed static RAM overlaid bit-for-bit with a nonvolatile E²PROM. The X2212 is fabricated with the same reliable N-channel floating gate MOS technology used

in all Xicor 5V nonvolatile memories. The X2212 features the JEDEC approved pinout for 4-bit-wide memories, compatible with industry standard RAMs.

The NOVRAM design allows data to be easily transferred from RAM to E2PROM (store) and from E2PROM to RAM (recall). The store operation is completed in 10 ms or less and the recall is typically completed in 1 μ s.

Xicor NOVRAMs are designed for unlimited write operations to RAM, either from the host or recalls from E²PROM. The E²PROM array is designed for a minimum 100,000 store cycles and inherent data retention is specified to be greater than 100 years. Refer to RR-520 and RR-515 for details on Xicor nonvolatile memory endurance and data retention characteristics.

PIN CONFIGURATION

PIN NAMES

A ₀ -A ₇	Address Inputs
1/01-1/04	Data Inputs/Outputs
WE	Write Enable
<u>CS</u>	Chip Select
ARRAY RECALL	Array Recall
STORE	Store
V _{CC}	+ 5V
V _{SS}	Ground
NC	No Connect

FUNCTIONAL DIAGRAM

0058-2

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias X2212
X2212I
Storage Temperature65°C to +150°C
Voltage on any Pin with Respect to Ground
Respect to Ground
D.C. Output Current
Lead Temperature
(Soldering, 10 Seconds)

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. OPERATING CHARACTERISTICS

X2212 $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = +5V \pm 10\%$, unless otherwise specified. X2212I $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +5V \pm 10\%$, unless otherwise specified.

Symbol	Parameter	X22	12 Limits	X22	12I Limits	Units	Test Conditions	
Cybc.	T diamoto:	Min.	Max.	Min.	Max.			
lcc	Power Supply Current		60		70	mA	All Inputs = V _{CC} I _{I/O} = 0 mA	
I _{LI}	Input Load Current		10		10	μΑ	$V_{IN} = GND$ to V_{CC}	
lLO	Output Leakage Current		10		10	μΑ	$V_{OUT} = GND$ to V_{CO}	
V _{IL} (2)	Input Low Voltage	-1.0	0.8	-1.0	0.8	V		
V _{IH} (2)	Input High Voltage	2.0	V _{CC} + 1.0	2.0	V _{CC} + 1.0	V		
V _{OL}	Output Low Voltage		0.4		0.4	V	I _{OL} = 4.2 mA	
V _{OH}	Output High Voltage	2.4		2.4		V	$I_{OH} = -2 \text{ mA}$	

ENDURANCE AND DATA RETENTION

Parameter	Min.	Units	Conditions
Endurance	10,000	Data Changes Per Bit	Xicor Reliability Reports RR-520 and RR-504
Store Cycles	100,000	Store Cycles	Xicor Reliability Reports RR-520 and RR-504
Data Retention	100	Years	Xicor Reliability Report RR-515

CAPACITANCE $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = 5V$

Symbol	Test	Max.	Units	Conditions
C _{I/O} (1)	Input/Output Capacitance	8	pF	V _{I/O} = 0V
C _{IN} (1)	Input Capacitance	6	pF	$V_{IN} = 0V$

Notes: (1) This parameter is periodically sampled and not 100% tested.

(2) VIL min. and VIH max. are for reference only and are not tested.

A.C. CONDITIONS OF TEST

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and C _L = 100 pF

MODE SELECTION

		Inputs		Input Output	Mode
CS	WE	ARRAY RECALL	STORE	1/0	Mode
Н	Х	Н	н	Output High Z	Not Selected(3)
L	Н	Н	Н	Output Data	Read RAM
L	L	н	Н	Input Data High	Write "1" RAM
L	L	Н	Н	Input Data Low	Write "0" RAM
Х	Н	L	Н	Output High Z	Array Recall
Н	Х	L	Н	Output High Z	Array Recall
Х	H	Н	L	Output High Z	Nonvolatile Storing(4)
Н	Χ	Н	L	Output High Z	Nonvolatile Storing(4)

A.C. CHARACTERISTICS

X2212 T_A = 0°C to +70°C, V_{CC} = +5V \pm 10%, unless otherwise specified. X2212I T_A = -40°C to +85°C, V_{CC} = +5V \pm 10%, unless otherwise specified.

Read Cycle Limits

Symbol	Parameter	Min.	Max.	Units
t _{RC}	Read Cycle Time	300		ns
t _A	Access Time		300	ns
t _{CO}	Chip Select to Output Valid		200	ns
t _{OH}	Output Hold from Address Change	nge 50		ns
t _{LZ} (5)	Chip Select to Output in Low Z	10		ns
t _{HZ} (5)	Chip Deselect to Output in High Z	10	100	ns

Read Cycle

Notes: (3) Chip is deselected but may be automatically completing a store cycle.

- (4) STORE = L is required only to initiate the store cycle, after which the store cycle will be automatically completed (STORE = X).
- (5) t_{LZ} min. and t_{HZ} min. are periodically sampled and not 100% tested.

Write Cycle Limits

Symbol	Parameter		Min.	Max.	Units
twc	Write Cycle Time		300		ns
t _{CW}	Chip Select to End of	Write	150		ns
t _{AS}	Address Setup Time		50	-	ns
t _{WP}	Write Pulse Width		150		ns
twR	Write Recovery Time		25		ns
t _{DW}	Data Valid to End of V	Vrite	100		ns
t _{DH}	Data Hold Time	X2212	0		ns
חטי	Bata Hold Hillo	X2212I	20		ns
t _{WZ}	Write Enable to Output in High Z		10	100	ns
tow	Output Active from Er	nd of Write	10		ns

Write Cycle

1

Store Cycle Limits

Symbol	Parameter	Min.	Max.	Units
t _{STC}	Store Time		10	ms
tSTP	Store Pulse Width	100		ns
t _{STZ}	Store to Output in High Z		500	ns
tost	Output Active from End of Store	10		ns

Store Cycle

Array Recall Cycle Limits

Symbol	Parameter	Min.	Max.	Units
tRCC	Array Recall Cycle Time	1200		ns
t _{RCP}	Recall Pulse Width ⁽⁶⁾	450		ns
t _{RCZ}	Recall to Output in High Z		150	ns
torc	Output Active from End of Recall	10		ns
tARC	Recalled Data Access Time from End of Recall		750	ns

Array Recall Cycle

Note: (6) Array Recall rise time must be less than 1 μ s.

PIN DESCRIPTIONS AND DEVICE OPERATION Addresses (A_0-A_7)

The address inputs select a 4-bit memory location during a read or write operation.

Chip Select (CS)

The Chip Select input must be LOW to enable read/write operations with the RAM array. $\overline{\text{CS}}$ HIGH will place the I/O pins in the high impedance state.

Write Enable (WE)

The Write Enable input controls the I/O buffers, determining whether a RAM read or write operation is enabled. $\overline{\text{WE}}$ HIGH enables a read and $\overline{\text{WE}}$ LOW enables a write.

Data In/Data Out (I/O₁-I/O₄)

Data is written to or read from the X2212 through the I/O pins. The I/O pins are placed in the high impedance state when either $\overline{\text{CS}}$ is HIGH or during either a store or recall operation.

STORE

The STORE input, when LOW, will initiate the transfer of the entire contents of the RAM array to the E2PROM array. The WE and ARRAY RECALL inputs are inhibited during the store cycle. The store operation will be completed in 10 ms or less.

A store operation has priority over RAM read/write operations. If STORE is asserted during a read operation, the read will be discontinued. If STORE is asserted during a RAM write operation, the write will be immediately terminated and the store performed. The data at the RAM address that was being written will be unknown in both the RAM and E²PROM.

ARRAY RECALL

The $\overline{\text{ARRAY}}$ $\overline{\text{RECALL}}$ input, when LOW, will initiate the transfer of the entire contents of the E²PROM array to the RAM array. The transfer of data will typically be completed in 1 μs or less.

An array recall has priority over RAM read/write operations and will terminate both operations when $\overline{\text{ARRAY}}$ RECALL is asserted. $\overline{\text{ARRAY}}$ RECALL LOW will also inhibit the $\overline{\text{STORE}}$ input.

WRITE PROTECTION

The X2212 has three write protect features that are employed to protect the contents of the nonvolatile memory.

- V_{CC} Sense—All functions are inhibited when V_{CC} is ≤ 3V, typically.
- Write Inhibit—Holding either STORE HIGH or ARRAY RECALL LOW during power-up or powerdown will prevent an inadvertent store operation and E2PROM data integrity will be maintained. It should be noted; whichever method is employed, all control inputs should be stable and the device deselected prior to release of the controlling protection signal.
- Noise Protection—A STORE pulse of less than 20 ns (typical) will not initiate a store cycle.

Part Number	Store Cycles	Data Changes Per Bit
X2212 X2212I	10,000	1,000
X2212/5 X2212I/5	50,000	5,000
X2212/10 X2212I/10	100,000	10,000

SYMBOL TABLE

WAVEFORM	INPUTS Must be	OUTPUTS Will be
	steady May change from Low to	steady Will change
	High May change	from Low to High Will change
	from High to Low Don't Care:	from High to Low
\overline{XXXXX}	Changes Allowed	Changing : State Not Known
⋙ ⋘	N/A	Center Line is High Impedance

Normalized Active Supply Current vs. Ambient Temperature

Normalized Access Time vs. Ambient Temperature

