Calculus I Revision Notes

Francesco Chotuck

Contents

T	Stai	ndard Notation	4
2	Fun	actions of one variable	5
	2.1	Definition of a function	5
	2.2	Well-defined functions	5
	2.3	Domain and Range	6
	2.4		6
	2.5	Inverse functions	7
	2.6	Composition of functions	8
			8
	2.7	Standard functions	8
		2.7.1 Even and Odd functions	8
		2.7.2 Logarithm	8
	2.8		9
		2.8.1 Radians	9
		0	9
		2.8.3 Trigonometric Identities	0
		3	2
		2.8.5 Trigonometric functions with Complex variables	3
	2.9	Hyperbolic functions	4
		2.9.1 Inverse hyperbolic functions	5
		2.9.2 Hyperbolic identities	6
		2.9.3 Hyperbolic functions with Complex variables	7
3	Lim	site 1	7
J	3.1		. 8
	3.2		.8
	5.2		9
	3.3		9
	3.4	•	. 9 20
	0.4		ıU

	3.5	ntermediate Value Theorem				
	3.6	Sandwich Theorem				
	3.7	Limits to learn				
		3.7.1 A common trick				
		3.7.2 Standard limits				
		3.7.3 Common Limits				
	D.a.					
4		Generatiation 22 Differentiation from First Principles				
	4.1	F				
	4.3	T · · · · · · · · · · · · · · · · · · ·				
	4.4	Derivatives inverse functions				
	4.5	Mean Value Theorem				
	4 C	4.5.1 Rolle's Theorem				
	4.6	Standard derivatives				
		4.6.1 Trigonometric derivatives				
		4.6.2 Hyperbolic derivatives				
5	Inte	egration 25				
	5.1	Riemann Integral				
	5.2	Fundamental theorem of Calculus				
	5.3	Integration techniques				
		5.3.1 t-substitution				
		5.3.2 Integration by parts				
		5.3.3 Partial fractions				
	5.4	Volume of revolution				
	5.5	Length of a curve				
		5.5.1 Cartesian coordinates				
		5.5.2 Parametric coordinates				
		5.5.3 Polar coordinates				
_	_					
6		ver Series 30				
	6.1	Infinite sums				
	6.2	Convergence				
	6.3	Series convergence criteria				
		6.3.1 Limit comparison test				
		6.3.2 The n'th Root Test or Cauchy's Criterion				
		6.3.3 The Ratio Test or D'Alembert's Criterion				
	6.4	Series as a function of x				
	6.5	Taylor's theorem				
		6.5.1 Maclaurin series 34				

	6.5.2	Common Maclaurin's serie	s .				•				34
7	L'Hôpital's	s Rule									34

1 Standard Notation

$$\begin{split} \mathbb{N} &= \{1,2,3\ldots\} & \text{the set of natural numbers,} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} & \text{the set of integers,} \\ \mathbb{Q} &= \{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\} & \text{the set of rational numbers,} \\ \mathbb{R} &= (-\infty,\infty) & \text{the set of real numbers,} \\ \mathbb{R}^+ &= (0,\infty) & \text{the set of positive numbers,} \\ \mathbb{R}^+_0 &= [0,\infty) & \text{the set of non-negative real numbers.} \end{split}$$

2 Functions of one variable

2.1 Definition of a function

Definition 2.1. A function $f: A \to B$ is a map from a set A to a set B that associates a unique element in B to each element in A.

Notation: The symbol \rightarrow indicates a map between sets, $f: A \rightarrow B$, and the symbol \mapsto indicated a map acting on a single element in a set, $x \mapsto y$, $(x \in A, y \in B)$.

Remark. A function $f: A \to B$ acts on **all** elements in A to give an element in B but it is **not necessary** that every element in B is associated with an element in A by a function.

2.2 Well-defined functions

Definition 2.2. A function is said to be **well-defined** if and only if the function is **not** a **many-to-one** function.

The vertical line test can be used to deduce whether a 'function' is well-defined:

Definition 2.3. Given a function f, every vertical line that may be drawn intersect the graph of f no more than once. If any vertical line intersects a set of points more than once, the set of points does not represent a function.

Figure 1: Illustration of vertical line test.

2.3 Domain and Range

Definition 2.4. For a function $f: A \to B$, the set A is called the **domain** of f and the set B is called the **range** of f.

Terminology: The set of all elements f(x) for all $x \in A$ is called the **image** of f.

2.4 Injections, Surjections and Bijections

Definition 2.5. A function $f: A \to B$ is **injective** (or **one-to-one**) if every element $f(x) \in B$ is mapped to by at most one element in the domain A. An injective function is called an **injection**.

More formally expressed as:

$$f: A \to B, \ \forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

Example. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 3x + 7. Prove that f is injective. **Solution:** Suppose f(x) = f(y) for some $x, y \in \mathbb{Z}$. So, substituting into f, 3x + 7 + 3y + 7. Therefore, $3x = 3y \Rightarrow x = y$. Hence, f is injective.

Theorem 2.1. A function f is injective if and only if every horizontal line intersects the graph of f no more than once.

Remark. Variations of the horizontal line test can be used as such:

- The function f is surjective if and only if its graph intersects any horizontal line at **least** once.
- f is bijective if and only if any horizontal line will intersect the graph exactly once.

Figure 2: Illustration of the horizontal line test

Definition 2.6. A function $f: A \to B$ is **surjective** (or **onto**) if every element in B is mapped to by at least one element of A. A surjective function is called a **surjection**.

In mathematical notation the definition is as follows:

$$f: A \to B, \forall y \in B, \exists x \in A \text{ such that } y = f(x).$$

Example. Define the function g from the integers to the integers by the formula q(x) = x - 8. Prove that q is surjective.

Solution: Need to show that for every integer y, there is an integer x such that f(x) = y. so, choose x = y + 8. The chosen value of x is an integer since it is the sum of two integers. Therefore, g(x) = g(y + 8) = (y + 8) - 8 = y. The function g is surjective.

Definition 2.7. A function $f: A \to B$ is **bijective** if it is both surjective and injective. A bijective function is called a **bijection**.

2.5 Inverse functions

Definition 2.8. The **inverse function**, denoted f^{-1} , of a bijective function $f: A \to B$ is a function defined by

$$f^{-1}: B \to A, \quad f^{-1}(f(a)) = a \quad \forall a \in A.$$

Remark. For a function to have an inverse it must be bijective.

Remark. The graph of the inverse function is a reflection of the function on the line y = x, i.e. the graph is given by the original function but with the x-axis and y-axis interchanged.

2.6 Composition of functions

Definition 2.9. The composition $f \circ g$ of functions $g: A \to B$ and $f: B \to C$ is defined as

$$(f \circ g)(x) := f(g(x)), \quad \forall x \in A.$$

Remark. Most of the times $f \circ g \neq g \circ f$

2.6.1 Equal functions

Definition 2.10. The functions f and g are said to be equal if and only if

- f and g have the same domain;
- f(x) = g(x) for every x in that domain.

Example. Is $f(x) = \frac{x^2}{x}$ the same function as g(x) = x? **Solution:** If the domain is \mathbb{R} then no, because $f(0) \neq g(0)$. The domain can be changed so that f = q.

Standard functions 2.7

Even and Odd functions

Definition 2.11. Even functions are symmetric about the y-axis:

$$f(x) = f(-x)$$
 for all x .

Definition 2.12. Odd functions are symmetric about the origin:

$$-f(x) = f(-x)$$
 for all x .

Remark. Common even functions: cosine, hyperbolic cosine and absolute value. Common odd functions: sine, hyperbolic sine, identity function.

2.7.2 Logarithm

Definition 2.13. The logarithmic function, or logarithm, to the base $a \in$ $\mathbb{R}^+\setminus\{1\}$, written as $\log(x)$, is the inverse of the function $f:\mathbb{R}\to\mathbb{R}^+, f(x)=a^x$.

Theorem 2.2. Properties of the Logarithm:

- (i) Change of basis, $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$;
- (ii) Additive property, $\log_a(xy) = \log_a(x) + \log_a(y)$;
- (iii) Subtractive property, $\log_a(\frac{x}{y}) = \log_a(x) \log_a(y)$;
- (iv) $\log_a(x^y) = y \log_a(x)$.

2.8 Trigonometric functions

2.8.1 Radians

Definition 2.14. One **radian** is the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle.

Figure 3: The radian measure of an angle θ .

2.8.2 Definition of trigonometric functions

Definition 2.15. The functions **cosine** and **sine** are defined by the point (x, y) is at an angle θ to the x-axis are denoted as follows: $(x, y) = (\cos(\theta), \sin(\theta))$.

Figure 4: Graphs of trigonometric functions

Remark. The graph of the functions sec(x) and csc(x) sit on the peaks of cos(x) and sin(x) respectively.

2.8.3 Trigonometric Identities

Even and Odd

1. Cosine is an even function:

$$\cos(\theta) = \cos(-\theta);$$

2. Sine is an odd function:

$$\sin(-\theta) = -\sin(-\theta).$$

Reciprocal identities

1.

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)};$$

2.

$$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)};$$

3.

$$\csc(\theta) = \frac{1}{\sin(\theta)};$$

4.

$$\sec(\theta) = \frac{1}{\cos(\theta)}.$$

Pythagorean identities

1.

$$\sin^2(\theta) + \cos^2(\theta) = 1;$$

2.

$$1 + \tan^2(\theta) = \sec^2(\theta);$$

3.

$$1 + \cot^2(\theta) = \csc^2(\theta).$$

Addition and subtraction

1.

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta);$$

2.

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta).$$

3.

$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(y)}.$$

Double angle

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta);$$

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1$$
$$= 1 - 2 sin^{2}(\theta).$$

2.8.4 Inverse trigonometric functions

Definition 2.16. The trigonometric functions are not bijective so, they are not invertible on their full domains. By restricting the domain the inverse trigonometric functions are defined as follows:

•

$$\arcsin(x): [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right];$$

•

$$\arccos(x): [-1,1] \to [0,\pi];$$

•

$$\arctan(x): \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Figure 5: The graph of each of the inverse trigonometric functions

2.8.5 Trigonometric functions with Complex variables

Definition 2.17. Euler's formula is

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

where $\theta \in \mathbb{R}$.

From Euler's formula it is possible to derive the following identities:

 $\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right);$

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right).$$

2.9 Hyperbolic functions

Definition 2.18. The hyperbolic sine and cosine are defined as follows:

$$\sinh(x): \mathbb{R} \to \mathbb{R} \quad \sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh(x): \mathbb{R} \to [1, \infty) \quad \cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Definition 2.19. The hyperbolic tangent is defined as:

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

where $tanh : \mathbb{R} \to (-1, 1)$.

Figure 6: Graphs of hyperbolic functions

2.9.1 Inverse hyperbolic functions

Definition 2.20. The inverse hyperbolic sine, cosine and tangent are defined as follows:

$$\operatorname{arcsinh}(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$
$$\operatorname{arccosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$
$$\operatorname{arctanh}(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right).$$

Figure 7: Graphs of the inverse hyperbolic functions

Example. Find the inverse of the hyperbolic sine function.

Solution: Begin by writing $y = \frac{1}{2}(e^x - e^{-x})$ and rearrange the expression to find

x as a function of y.

$$e^{x} - e^{-x} - 2y = 0$$

$$e^{2x} - 1 - 2ye^{x} = 0$$

$$(e^{x} - y)^{2} - y^{2} - 1 = 0 \quad \text{(by completing the square)}$$

$$\Rightarrow e^{x} - y = \sqrt{1 + y^{2}}$$

$$x = \ln\left(y + \sqrt{1 + y^{2}}\right).$$

2.9.2 Hyperbolic identities

1. $\cosh^2(x) - \sinh^2(x) = 1$

 $1 - \tanh^2(x) = \operatorname{sech}^2(x)$

3. $\coth^2(x) - 1 = \operatorname{cosech}^2(x)$

Addition and subtraction

1. $\sinh(x \pm y) = \sinh(x)\cosh(y) \pm \cosh(x)\sinh(y)$

2. $\cosh(x \pm y) = \cosh(x)\cosh(y) \pm \sinh(x)\sinh(y)$

3. $\tanh(x \pm y) = \frac{\tanh(x) \pm \tanh(y)}{1 \pm \tanh(x) \tanh(y)}$

Double 'angle'

1. $\sinh(2x) = 2\sinh(x)\cosh(x)$

2. $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$ $= 2\cosh^2(x) - 1$ $= 2\cosh^2(x) - 1$

2.9.3 Hyperbolic functions with Complex variables

Using Euler's formula the following identities can be derived:

1.

$$\sin x = -i\sinh(ix)$$

2.

$$\cos x = \cosh(ix)$$

3.

$$\tan x = -i \tanh(ix)$$

4.

$$\sinh x = -i\sin(ix)$$

5.

$$\cosh x = \cos(ix)$$

6.

$$\tanh x = -i\tan(ix)$$

3 Limits

Definition 3.1. The **right limit**:

$$\lim_{x \to a^+} = L \iff \forall \varepsilon > 0 \; \exists \delta > 0 \text{ such that } 0 < x - a < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Definition 3.2. The **left limit**:

$$\lim_{x \to a^{-}} = L \iff \forall \varepsilon > 0 \; \exists \delta > 0 \text{ such that } 0 < a - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Definition 3.3. The limit:

$$\lim_{x \to a} f(x) = L \iff \forall \varepsilon > 0 \; \exists \delta > 0 \text{ such that } 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

Remark. The limit of a function exists if and only if both the left and right limit exist and they are equal.

Example. Prove $\lim_{x\to 1}(3x-1)=2$ with the definition of the limit.

Solution: Proceed by choosing a suitable δ for which the definition of the limit for f(x) = 3x - 1 is satisfied.

Rough work:

$$|f(x) - L| < \varepsilon \Rightarrow |(3x - 1) - 2| < \varepsilon$$

$$\Rightarrow |3x - 3| < \varepsilon$$

$$\Rightarrow 3|x - 1| < \varepsilon$$

$$\Rightarrow |x - 1| < \frac{\varepsilon}{3}.$$

In this case, choose $\delta = \frac{\varepsilon}{3}$ then,

$$|x-1| < \delta \Rightarrow |x-1| < \frac{\varepsilon}{3}$$

$$\Rightarrow 3|x-1| < \varepsilon$$

$$\Rightarrow |3x-3| < \varepsilon$$

$$\Rightarrow |(3x-1)-2| < \varepsilon.$$

The proof is complete.

3.1 Limits involving infinity

Definition 3.4.

$$\lim_{x \to \infty} f(x) = L \iff \forall \varepsilon > 0, \ \forall x > X, \ \exists X > 0 \text{ such that } |f(x) - L| < \varepsilon.$$

Definition 3.5.

$$\lim_{x \to -\infty} f(x) = L \iff \forall \varepsilon > 0, \ \forall x < X, \ \exists X < 0 \text{ such that } |f(x) - L| < \varepsilon.$$

3.2 Algebra of limits

Theorem 3.1. For any real number a and any constant c,

1.

$$\lim_{x \to a} x = a;$$

2.

$$\lim_{x \to a} c = c.$$

Theorem 3.2. Let f(x) and g(x) be defined for all $x \neq a$ over some open interval containing a. Assume that L and M are real numbers such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$. Let c be a constant. Then, each of the following statements holds:

1. Sum and Difference law:

$$\lim_{x\to a}(f(x)\pm g(x))=\lim_{x\to a}f(x)\pm \lim_{x\to a}g(x)=L\pm M;$$

2. Constant multiple law:

$$\lim_{x \to a} cf(x) = c \cdot \lim_{x \to a} f(x) = cL;$$

3. Product law:

$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right) = LM;$$

4. Quotient law:

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$$

for $M \neq 0$;

5. Power law:

$$\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n = L^n$$

for every positive integer n;

6. Root law:

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L}$$

for all L if n is odd and for $L \ge 0$ if n is even.

3.2.1 Limits of composite functions

Theorem 3.3. If f(x) is continuous at L and $\lim_{x\to a} g(x) = L$, then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L).$$

3.3 Multiple limits

Theorem 3.4. For functions of multiple variables the limits are defined as:

$$\lim_{x \to a} \lim_{y \to b} f(x, y) := \lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right).$$

Remark. In general

$$\lim_{x \to a} \lim_{y \to b} f(x, y) \neq \lim_{y \to b} \lim_{x \to a} f(x, y).$$

Example. Show that changing the order the limits are taken in the following double limit changes its value:

$$\lim_{x \to \infty} \lim_{y \to -\infty} (1 + \tanh(x + y)).$$

Solution:

$$\lim_{x \to \infty} \left(\lim_{y \to -\infty} (1 + \tanh(x + y)) \right) = \lim_{x \to \infty} (1 - 1) = 0 \quad \text{whereas,}$$

$$\lim_{y \to -\infty} \left(\lim_{x \to \infty} (1 + \tanh(x + y)) \right) = \lim_{y \to -\infty} (1 + 1) = 2.$$

3.4 Continuous functions

Definition 3.6. A function f(x) is **continuous at the point** x = a if $\lim_{x\to a} f(x)$ exists and is equal to f(a).

Definition 3.7. A function f(x) is **continuous** if it is continuous at all points in its domain.

3.5 Intermediate Value Theorem

Theorem 3.5. Let f(x) be a continuous function on [a,b] and suppose f(a) < y < f(b) then there exists an x = c with $c \in (a,b)$ such that f(c) = y.

Example. Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ in the interval [1, 2].

Solution: Consider the function $f(x) = 4x^3 - 6x^2 + 3x - 2$ over the closed interval [1,2]. The function f is a polynomial, therefore it is continuous over [1,2]. It follows that f(1) = -1 and f(2) = 12. Since, f(1) < 0 < f(2) by the Intermediate Value Theorem there exists a value c in the interval (1,2) such that f(c) = 0, i.e. there is a solution for the equation f(x) = 0 in the interval (1,2).

3.6 Sandwich Theorem

Theorem 3.6. Suppose

$$f(x) \le g(x) \le h(x)$$

for all x such that $0 < |x - a| < \delta$ with some $\delta > 0$, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

where $L \in \mathbb{R}$. Then

$$\lim_{x \to a} g(x) = L.$$

Example. Find

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right).$$

Solution: When trying to find functions to use to 'sandwich', the functions must be similar enough to g(x) and easier to evaluate their limit as $x \to a$. To do this, start with the most complicated part of g(x), to find constants or simpler functions that it stays between.

In this case the cosine function is bounded by -1 and 1, so

$$-1 \le \cos\left(\frac{1}{x^2}\right) \le 1$$
$$-x^2 \le x^2 \cos\left(\frac{1}{x^2}\right) \le x^2.$$

Since

$$\lim_{x \to 0} -x^2 = \lim_{x \to 0} x^2 = 0$$

by the Sandwich theorem,

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right)$$

3.7 Limits to learn

3.7.1 A common trick

A common trick to evaluate limits:

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{\ln f(x)^{g(x)}} \lim_{x \to a} e^{g(x) \ln f(x)} = e^{\lim_{x \to a} (g(x) \ln f(x))}.$$

3.7.2 Standard limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

3.7.3 Common Limits

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 0$$

3.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

4 Differentiation

4.1 Differentiation from First Principles

Definition 4.1. The **derivative** of a function f(x) with respect to x is

$$\frac{\mathrm{d}f}{\mathrm{d}x} \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

4.2 Differentiable functions

Definition 4.2. A function f(x) is **differentiable** at the point x = a if the derivative $\frac{\mathrm{d}f}{\mathrm{d}x}$ exists at x = a. A function for which the derivative exists for all points in its domain is called a **differentiable function**.

Theorem 4.1. If a function $f(a,b) \to \mathbb{R}$ is differentiable on the interval (a,b), then it is continuous on (a,b).

4.3 Properties of derivatives

Theorem 4.2. Let f and g be differentiable functions.

- The product rule: (fg)' = gf' + fg';
- the quotient rule: $\left(\frac{f}{g}\right) = \left(\frac{gf' fg'}{g^2}\right)$ if $g \neq 0$.

4.4 Derivatives inverse functions

Theorem 4.3. Let f(x) be a function that is both invertible and differentiable. Let $y = f^{-1}(x)$ be the inverse of f(x). For all x satisfying $f'(f^{-1}(x)) \neq 0$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(f^{-1}(x) \right) = \frac{1}{f'(f^{-1}(x))}.$$

Alternatively, if y = g'(x) is the inverse of f(x), then

$$g(x) = \frac{1}{f'(g(x))}.$$

Example. Find the derivative of $g(x) = \arcsin(x)$.

Solution: Since for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $f(x) = \sin(x)$ is the inverse of $g(x) = \arcsin(x)$, begin by finding f'(x).

$$f(x) = \sin(x)$$

$$f'(x) = \cos(x)$$

$$f'(q(x)) = \cos(\arcsin(x)) = \sqrt{1 - x^2}.$$

Therefore,

$$g'(x) = \frac{\mathrm{d}}{\mathrm{d}x}(\arcsin(x)) = \frac{1}{f'(g(x))} = \frac{1}{\sqrt{1-x^2}}.$$

4.5 Mean Value Theorem

Theorem 4.4. Let f be a continuous function on [a, b] and a differentiable function on (a, b), then there exists a point $c \in (a, b)$ where

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Corollary 4.4.1. Let f be differentiable over an interval I. If f'(x) = 0 for all $x \in I$, then f(x) is constant for all $x \in I$.

4.5.1 Rolle's Theorem

Theorem 4.5. Let f be a continuous function over the closed interval [a, b] and differentiable over the open interval (a, b) such that f(a) = f(b). There then exists at least one $c \in (a, b)$ such that f'(c) = 0.

Remark. This is a special case of the mean value theorem.

Example. Show that $f(x) = x^3 - 7x^2 + 25x + 8$ has exactly one real root. **Solution:** Note that f(0) = 8 and f(-1) = -25 so, f(-1) < 0 < f(0). Therefore, by the Intermediate Value Theorem there exists a $c \in (-1,0)$ such that f(c) = 0. This proves that the function has at least one real root. Assume there is more than one real root hence, there exists a and b, such that

$$f(a) = f(b) = 0.$$

Since, f(x) s a polynomial it is continuous and differentiable everywhere by Rolle's theorem there exists a c such that f'(c) = 0. If such c exists then

$$f'(x) = 3x^2 - 14x + 25$$

$$\Rightarrow f'(c) = 3c^2 - 14c + 25 = 0$$

$$\Rightarrow c = \frac{7 \pm \sqrt{26}i}{3}.$$

No such $c \in \mathbb{R}$ exists so, f(x) has exactly one real root.

4.6 Standard derivatives

4.6.1 Trigonometric derivatives

1. $\frac{d(\arcsin x)}{dx} = \frac{1}{\sqrt{1 - x^2}}$ 2. $\frac{d(\arccos x)}{dx} = -\frac{1}{\sqrt{1 - x^2}}$ 3. $\frac{d(\arctan x)}{dx} = \frac{1}{\sqrt{1 + x^2}}$ 4. $\frac{d(\sec x)}{dx} = \sec x \tan x$ 5. $\frac{d(\cot x)}{dx} = -\csc^2 x$ 6. $\frac{d(\csc x)}{dx} = -\csc x \cot x$

4.6.2 Hyperbolic derivatives

1.
$$\frac{\mathrm{d}(\tanh(x))}{\mathrm{d}x} = \mathrm{sech}^2(x)$$

2.
$$\frac{\mathrm{d}(\coth(x))}{\mathrm{d}x} = -\operatorname{cosech}^{2}(x)$$

3.
$$\frac{\mathrm{d}(\mathrm{sech}(x))}{\mathrm{d}x} = -\operatorname{sech}(x)\tanh(x)$$

4.
$$\frac{\mathrm{d}(\operatorname{cosech}(x))}{\mathrm{d}x} = -\operatorname{cosech}(x)\operatorname{coth}(x)$$

5.
$$\frac{\mathrm{d}(\operatorname{arcsinh} x)}{\mathrm{d}x} = \frac{1}{\sqrt{1+x^2}}$$

6.
$$\frac{\mathrm{d}(\operatorname{arccosh} x)}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 - 1}}$$

7.
$$\frac{\mathrm{d}(\operatorname{arctanh} x)}{\mathrm{d}x} = \frac{1}{1 - x^2}$$

5 Integration

Definition 5.1. The **integral** $\int_a^b f(x) dx$ is the total **signed** area between the graph y = f(x) and the x-axis in the (x, y) plane between x = a and x = b, counted positively for f(x) > 0 and negatively for f(x) < 0.

Theorem 5.1. If $f:[a,b]\to\mathbb{R}$ is continuous, then $\int_a^b f(x)\,dx$ exists.

5.1 Riemann Integral

5.2 Fundamental theorem of Calculus

Theorem 5.2. FTC I Let $f:[a,b]\to\mathbb{R}$ be a continuous function and let $F:[a,b]\to\mathbb{R}$ be defined by

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then, F is a continuous function on [a, b], differentiable on the interval (a, b) and

$$\frac{dF}{dx} = f(x).$$

Remark. The function F(x) is called the **antiderivative** or the **primitive** of f(x).

Example. Let

$$F(x) = \int_0^{x^3} \sin(e^t) dt.$$

Find F'(x).

Solution: Let

$$H(x) = \int_0^x \sin(e^t) dt$$

then, by FTC I

$$H'(x) = \sin(e^x).$$

Note that

$$F(x) = H(x^3)$$

$$\Rightarrow F'(x) = \frac{\mathrm{d}}{\mathrm{d}x}(H(x^3))$$

$$= 3x^2 H'(x^3) \text{ (by the chain rule)}$$

$$= 3x^2 \sin(e^{x^3}).$$

Example. Let

$$F(x) = \int_0^{\cosh(x)} e^{\sqrt{t} + x^2} dt.$$

Write F'(x) in terms of F(x).

Solution: Notice that

$$F(x) = \int_0^{\cosh(x)} e^{\sqrt{t} + x^2} dt$$
$$= e^{x^2} \int_0^{\cosh(x)} e^{\sqrt{t}} dt.$$

Let

$$H(x) = \int_0^x e^{\sqrt{t} \, dt.}$$

Now

$$F(x) = e^{x^2} H(\cosh(x))$$

$$F'(x) = 2xe^{x^2} H(\cosh(x)) + e^{x^2} H'(\cosh(x)) \sinh(x)$$

$$= 2xF(x) + e^{x^2} e^{\sqrt{x}} \sinh(x).$$

Therefore,

$$F'(x) = 2xF(x) + e^{x^2 + \sqrt{x}}\sinh(x).$$

Theorem 5.3. Let $f:[a,b]\to\mathbb{R}$ be a continuous function and let $F:[a,b]\to\mathbb{R}$ be defined by

$$\frac{dF}{dx} = f(x) \quad \forall x \in [a, b].$$

Then, if f(x) is integrable on [a, b],

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

5.3 Integration techniques

5.3.1 t-substitution

For complicated integrals involving trigonometric functions we can use the following substitution.

Let $t = \tan \frac{x}{2}$, then:

$$\sin x = \frac{2t}{1+t^2}; \quad \cos x = \frac{1-t^2}{1+t^2}; \quad \frac{dx}{dt} = \frac{2}{1+t^2}$$

5.3.2 Integration by parts

Theorem 5.4. Let u = f(x) and v = g(x) be functions with continuous derivatives. Then, the integration-by-parts formula for the integral involving these two functions is:

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, dx = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} dx$$

Remark. The acronym **LIATE** can be used to choose which function to differentiate. (The I stands inverse trig/hyp functions).

5.3.3 Partial fractions

Factor in denominator	Term in partial fraction decomposition
ax+b	$rac{A}{ax+b}$
$(ax+b)^k$	$rac{A_1}{ax+b}+rac{A_2}{\left(ax+b ight)^2}+\cdots+rac{A_k}{\left(ax+b ight)^k},k=1,2,3,\ldots$
ax^2+bx+c	$\frac{Ax+B}{ax^2+bx+c}$
$\left(ax^2+bx+c\right)^k$	$oxed{ egin{array}{c} rac{A_1x+B_1}{ax^2+bx+c} + rac{A_2x+B_2}{\left(ax^2+bx+c ight)^2} + \cdots + rac{A_kx+B_k}{\left(ax^2+bx+c ight)^k}, k=1,2,3,\ldots \end{array}}$

Figure 8: Table of partial fraction decomposition.

5.4 Volume of revolution

Figure 9: Illustration of a graph's revolution

Theorem 5.5. Let f(x) be continuous and non negative. Define R as the region bounded above by the graph of f(x), below by the x-axis, on the left by the line x = a, and on the right by the line x = b. Then, the volume of the solid of revolution formed by revolving R around the x-axis is given by

$$V = \int_a^b \pi \left[f(x) \right]^2.$$

Remark. For the volume of revolution around the y-axis, V is evaluated by

$$V = \int_{c}^{d} \pi \left[g(y) \right]^{2} dy.$$

5.5 Length of a curve

5.5.1 Cartesian coordinates

Theorem 5.6. Let f(x) be a smooth function over the interval [a, b]. Then the **arc length** of the portion of the graph of f(x) from the point (a, f(a)) to the point (b, f(b)) is given by

$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}} \, dx.$$

5.5.2 Parametric coordinates

Theorem 5.7.

$$s = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} dt.$$

5.5.3 Polar coordinates

Theorem 5.8.

$$s = \int_{a}^{b} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \, d\theta.$$

6 Power Series

6.1 Infinite sums

Definition 6.1. An **infinite series** is an expression of the form $\sum_{n=n_0}^{\infty} a_n$ where $n, n_0 \in \mathbb{Z}$. For a real series $a_n \in \mathbb{R}$.

Definition 6.2. A partial sum of an infinite series $S \equiv \sum_{n=n_0}^{\infty} a_n$ has the form $S_N \equiv \sum_{n=n_0}^{N} a_n$.

6.2 Convergence

Definition 6.3. A series $S \equiv \sum_{n=n_0}^{\infty} a_n$ is called **convergent** if the limit $S \equiv \lim_{N\to\infty} (S_N)$ exists, where $S_N \equiv \sum_{n=n_0}^N a_n$. If a series is not convergent it is called **divergent**.

Lemma 6.1. If an infinite series $S \equiv \sum_{n=n_0}^{\infty} a_n$ is convergent then,

$$\lim_{n \to \infty} (a_n) = 0.$$

Proof. Consider,

$$\lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} (S_n) - \lim_{n \to \infty} (S_{n-1}) = S - S = 0.$$

Definition 6.4. A series $\sum_{n=n_0}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=n_0}^{\infty} |a_n|$ converges.

Theorem 6.2. Every absolutely convergent series is convergent, i.e. if $\sum_{n=n_0}^{\infty} |a_n|$ converges then $\sum_{n=n_0}^{\infty} a_n$ is also convergent.

Theorem 6.3. Let $\sum_{n=n_0}^{\infty} b_n$ be a convergent series of non-negative numbers. Suppose there exists M >) and $N \in \mathbb{Z}$ such that

$$|a_n| \le Mb_n, \quad \forall n \ge N.$$

Then $\sum_{n=n_0}^{\infty} a_n$ is absolutely convergent. (Theorem 13.4 of Sequences and series lecture notes).

Theorem 6.4. Suppose $b_n \geq 0$ for all $n \geq n_0$ and there exists C > 0 such that

$$\sum_{n=n_0}^N b_n \le C \quad \forall N \ge n_0.$$

Then the series $\sum_{n=n_0}^{N} b_n$ converges and its sum is $\leq C$.

6.3 Series convergence criteria

6.3.1 Limit comparison test

Theorem 6.5. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be positive-term series $(a_n > 0)$ and $b_n > 0$ such that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L \neq 0.$$

Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

6.3.2 The n'th Root Test or Cauchy's Criterion

Theorem 6.6. Let $\sum_{n=1}^{\infty} a_n$ be a positive-term series. Then

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} \begin{cases} < 1 \sum_{n=1}^{\infty} a_n & \text{is convergent,} \\ = 1 & \text{test is inconclusive,} \\ > 1 \sum_{n=1}^{\infty} a_n & \text{is divergent.} \end{cases}$$

6.3.3 The Ratio Test or D'Alembert's Criterion

Theorem 6.7. Let $\sum_{n=1}^{\infty} a_n$ be a series of positive-terms and for each $n \in \mathbb{N}$ let $\alpha_n = \frac{a_{n+1}}{a_n}$.

$$\lim_{n \to \infty} |\alpha_n| \begin{cases} < 1 \sum_{n=1}^{\infty} a_n & \text{is convergent,} \\ = 1 & \text{test is inconclusive,} \\ > 1 \sum_{n=1}^{\infty} a_n & \text{is divergent.} \end{cases}$$

6.4 Series as a function of x

Definition 6.5. A function which can be locally written as a convergent power series is called an **analytic function**.

Definition 6.6. A power series is an expression of the form $S(x) \equiv \sum_{n=n_0}^{\infty} b_n x^n$.

Theorem 6.8. For every power series $\sum_{n=n_0}^{\infty} b_n x_n$ there exists $R \ge 0$ or $R = +\infty$ such that the series is absolutely convergent for all x with |x| < R and is divergent for all x with |x| > R.

Definition 6.7. The R from the previous theorem is known as radius of convergence of a power series $\sum_n b_n x^n$ where

$$R = \lim_{n \to \infty} |b_n|^{-\frac{1}{n}}$$

and, where it exists,

$$R = \lim_{n \to \infty} \left| \frac{b_n}{b_{n+1}} \right|.$$

Remark. What happens when

$$R = \begin{cases} |x| & inconclusive \\ 0 & the \ series \ diverges \ for \ all \ x \neq 0 \\ \infty & the \ series \ converges \ for \ all \ x \in \mathbb{R}. \end{cases}$$

Example. Find the radius of convergence for

$$S(x) = \sum_{n=0}^{\infty} \frac{x^n}{n}.$$

Solution: Here $b_n = \frac{1}{n}$ so,

$$R = \lim_{n \to \infty} \left| \frac{b_n}{b_{n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\frac{1}{n}}{\frac{1}{n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{n+1}{n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$$

Hence, the series converges absolutely for |x| < 1 and diverges for |x| > 1. At x = 1 the series $S(x) = \sum_{n=0}^{\infty} \frac{1}{n}$, so the series is divergent.

6.5 Taylor's theorem

Definition 6.8. If f has derivatives up to order N at x = a, then the **Taylor series** to order N for the function f at a is

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n + R_{N+1}(x) \quad \text{where } R_{N+1} = \frac{1}{N!} \int_a^x f^{N+1}(y) (x-y)^N \, dy.$$

6.5.1 Maclaurin series

Definition 6.9. The Maclaurin series for a function f(x) is a Taylor series expansion about x = 0 and to order N is written

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n + R_{N+1}(x) \quad \text{where } R_{N+1} = \frac{1}{N!} \int_a^x f^{N+1}(y) (x-y)^N \, dy.$$

6.5.2 Common Maclaurin's series

1. $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \quad x \in \mathbb{R}$

2. $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1!)} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots \quad x \in \mathbb{R}$

3. $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n!)} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad x \in \mathbb{R}$

4. $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n!} = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} \dots \quad x \in (-1,1]$

5. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots \quad x \in (-1,1)$

7 L'Hôpital's Rule

Theorem 7.1. Suppose f and g are differentiable functions over an open interval containing a, except possibly at a. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, then

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)} \right),$$

assuming the limit on the right exists or is $\pm \infty$.

Theorem 7.2. Suppose f and g are differentiable functions over an open interval containing a, except possibly at a. If $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)} \right),$$

assuming the limit on the right exists or is $\pm \infty$.