Common distributions in Julia, Python and R

Please report errors on https://github.com/sylvaticus/commonDistributionsInJuliaPythonR

Loading packages

Julia: using DistributionsPython: from scipy import statsR: library(extraDistr)

Discrete distributions

• Discrete Uniform : Complete ignorance

• Bernoulli : Single binary trial

• Binomial : Number of successes in independent binary trials

• Categorical : Individual categorical trial

• Multinomial : Number of successes of the various categories in independent multinomial trials

• Geometric: Number of independent binary trials until (and including) the first success (discrete time to first success)

• Hypergeometric: Number of successes sampling without replacement from a bin with given initial number of items representing successes

• Multivariate hypergeometric : Number of elements sampled in the various categories from a bin without replacement

• Poisson : Number of independent arrivals in a given period given their average rate per unit time

• Pascal: Number of independent binary trials until (and including) the n-th success (discrete time to n-th success).

Name	Parameters	Support	PMF	Expectations	Variance	CDF
D. Unif	$a,b \in Z$ with $b \ge a$	$x \in \{a, a+1, \dots, b\}$	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$	$\frac{x-a+1}{b-a+1}$
Bern	p ∈ [0,1]	x ∈ {0,1}	$p^x(1-p)^{1-x}$	p	p(1-p)	$\sum_{i=0}^{x} p^{i} (1-p)^{1-i}$
Bin	p ∈ [0,1], n in N+	$x \in \{0, \dots, n\}$	$\tbinom{n}{x}p^x(1-p)^{1-x}$	np	np(1-p)	$\sum_{i=0}^x inom{n}{i} p^i (1-p)^{1-i}$
Cat	p_1, p_2, \dots, p_K with $p_k \in [0, 1]$	x ∈ {1,2,,K}	$\prod_{k=1}^K p_k^{1(k=x)}$			

Name	Parameters	Support	PMF	Expectations	Variance	CDF
	and $\sum_{k=1}^K p_k = 1$					
Multin	n, p_1, p_2, \dots, p_K with $p_k \in [0, 1],$ $\sum_{k=1}^K p_k = 1$ and $n \in N^+$	$x\in\mathbb{N}_0^K$	$\binom{n}{x_1,x_2,,x_K}\prod_{k=1}^K \mathcal{P}_k^{x_K}$			
Geom	p ∈ [0,1]	x ∈ N*	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$1-(1-p)^x$
Hyperg	$n_s, n_f, n \in \mathbb{N}_0$	$x\in\mathbb{N}_0$ with $x\leq n_s$	$\frac{\binom{n_s}{x}\binom{n_f}{n-x}}{\binom{(n_s+n_f)}{n}}$	$nrac{n_s}{n_s+n_f}$	$nrac{n_s}{n_s+n_f}rac{n_f}{n_s+n_f}rac{n_s+n_f+n}{n_s+n_f+1}$	
Multiv hyperg	$n_1, n_2, \dots, n_K,$ n with $n \in \mathbb{N}_+, n_i \in \mathbb{N}_0$	$x \in \mathbb{N}_0^K$ with $x_i \leq n_i \ orall i, \ \sum_{i=1}^K x_i = n$	$\frac{\prod_{i=1}^{K} \binom{n_i}{x_i}}{\binom{\sum_{i=1}^{K} n_i}{n}}$	$nrac{n_i}{\sum_{i=1}^K n_i}$	$nrac{\sum_{j=1}^{K}n_{j}-n}{\sum_{j=1}^{K}n_{j}-1}rac{n_{i}}{\sum_{j=1}^{K}n_{j}}\Bigg(1-rac{n_{i}}{\sum_{j=1}^{K}n_{j}}\Bigg)$	
Pois	λ in R+	x ∈ N₀	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	
Pasc	n ∈ N+, p in [0,1]	x in N⁺	$inom{x-1}{n-1}p^n(1-p)^{x-n}$	$\frac{n}{p}$	$rac{n(1-p)}{p^2}$	

Distribution	Julia	Python (stats.[distributionName])	R
Discrete uniform	DiscreteUniform(lRange,uRange)	randint(lRange,uRange)	dunif(lRange,uRange)
Bernoulli	Bernoulli(p)	bernoulli(p)	bern(p)
Binomial	Binomial(n,p)	binom(n,p)	binom(n,p)
Categorical	Categorical(ps)	Not Av.	cat(ps)
Multinomial	Multinomial(n, ps)	multinomial(n, ps)	mnom(n,ps)
Geometric	Geometric(p)	geom(p)	geom(p)
Hypergeometric	Hypergeometric(nS, nF, nTrials)	hypergeom(nS+nF,nS,nTrials)	hyper(nS, nF, nTrias)
Mv hypergeometric	Not Av.	multivariate_hypergeom(initialNByCat,nTrials)	mvhyper(initialNByCat,nTrials)
Poisson	Poisson(rate)	poisson(rate)	pois(rate)

Distribution	Julia	Python (stats.[distributionName])	R
Negative Binomial	NegativeBinomial(nSucc,p)	nbinom(nSucc,p)	nbinom(nSucc,p)

Continuous distributions

- Uniform complete ignorance, pick at random, all equally likely outcomes
- \bullet Exponential waiting time to first event whose rate is λ (continuous time to first success)
- Normal The asymptotic distribution of a sample means
- Erlang Time of the n-th arrival
- Cauchy The ratio of two independent zero-means normal r.v.
- Chi-squared The sum of the squared of iid standard normal r.v.
- T distribution The distribution of a sample means
- F distribution : The ratio of the ratio of two indep X² r.v. with their relative parameter
- Beta distribution The Beta distribution
- Gamma distribution Generalisation of the exponential, Erlang and chi-square distributions

Name	Parameters	Support	PMF	Expectations	Variance	CDF
Unif	$a,b \in R$ with $b \ge a$	x \in [a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{x-a}{b-a}$
Expo	λ ∈ R⁺	x ∈ R*	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$1-e^{-\lambda x}$
Normal	$\mu \in R, \sigma^2 \in R^*$	x ∈ R	$rac{1}{\sigma\sqrt{2\pi}}e^{rac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	
Erlang	$n \in N^*, \lambda \in R^*$	$x \in R_0$	$rac{\lambda^n x^{n-1} e^{-\lambda x}}{(n-1)!}$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$	
Cauchy	$x_0 \in R \text{ (location)}, \gamma \in R^* \text{ (scale)}$	$rac{1}{\pi\gamma(1+(rac{x-x_0}{\gamma})^2)}$				
Chi-sq	$d \in N^*$	x ∈ R*	$rac{1}{2rac{d}{2}\Gamma(rac{d}{2})}x^{rac{d}{2})^{-1}e^{-rac{x}{2}}$	d	2d	
Т	v ∈ R*	x ∈ R	$rac{\Gamma(rac{ u+1}{2})}{\sqrt{ u\pi}\Gamma(rac{ u}{2})}\Big(1+rac{x^2}{ u}\Big)^{-rac{ u+1}{2}}$			

Name	Parameters	Support	PMF	Expectations	Variance	CDF
F	$d_1 \in N^* d_2 \in N^*$	x ∈ R⁺	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{x\mathbf{B}\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$	$rac{d_2}{d_2-2}$ for $d_2>2$	$rac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$ for $d_2>4$	
Beta	$\alpha, \beta \in R^+$	x ∈ [1,0]	$rac{1}{B(lpha,eta)}x^{lpha-1}(1-x)^{eta-1}$	$\frac{\alpha}{\alpha+eta}$	$rac{lphaeta}{\left(lpha+eta ight)^2\left(lpha+eta+1 ight)}$	
Gamma	$\alpha \in R^*$ (shape), $\beta \in R^*$ (rate)	x ∈ R+	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{eta^2}$	

Beta function : $B(\alpha,\beta)=rac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}=rac{\alpha+\beta}{\alpha\beta}$ Gamma function: $\Gamma(x)=(x-1)!\ \forall x\in N$

Distribution	Julia	Python (stats.[distributionName])	R
Uniform	Uniform(lRange,uRange)	uniform(lRange,uRange)	unif(lRange,uRange)
Exponential	Exponential(rate)	expon(rate)	exp(rate)
Normal	Normal(μ,sqrt(σsq))	norm(μ,math.sqrt(σsq))	norm(μ,sqrt(σsq))
Erlang	Erlang(n,rate)	erlang(n,rate)	Use gamma
Cauchy	Cauchy(μ, σ)	cauchy(μ, σ)	cauchy(μ,σ)
Chisq	Chisq(df)	chi2(df)	chisq(df)
T Dist	TDist(df)	t(df)	t(df)
F Dist	FDist(df1, df2)	f(df1, df2)	f(df1,df2)
Beta Dist	Beta(shapeα,shapeβ)	beta(shapeα,shapeβ)	beta(shapeα,shapeβ)
Gamma Dist	Gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)	gamma(shapeα,1/rateβ)

Note: The Negative Binomial returns the number of failures before n successes instead of the total trials to n successes as the Pascal distribution

Distribution summaries

Julia	Python

	Julia	Python
Mean	mean(d)	d.mean()
Variance	var(d)	d.var()
Median	median(d)	d.median()

Sample

Julia: rand(d)Python: d.rvs()

 $\bullet \ R \hbox{:} \ r \hbox{[distributionName](1,distributionParameters) , e.g. } \ runif(1,10,20)$

Quantile

y = CDF(x), i.e. $y \in [0,1]$

Julia: quantile(d,y)Python: d.ppf(y)

• R: q[distributionName](y, distributionParameters), e.g. qunif(0.2,10,20)

PDF/PMF

• Julia: pdf(d,x)

 \bullet Python: d.pmf(x) for discrete r.v. and d.pdf(x) for continuous ones

• R: d[distributionName](x, distributionParameters), e.g. dunif(15,10,20)

CDF

Julia: cdf(d,x)Python: d.cdf(x)

• R: p[distributionName](x, distributionParameters), e.g. punif(15,10,20)