5T OTA Design Example

If VA slightly decreases with gm/ID, the chart of gm*ro vs gm/ID will be _____.

A	Curves with slightly decreasing slopes convex upwards	С	All answers are wrong
В	Straight lines	D	Curves with slightly increasing slopes convex downwards

If the long channel model (square-law) is valid, then VGS vs gm/ID chart should be _____.

A	All answers are wrong	С	Multiple curves with shortest L at top
В	Multiple curves with longest L at top	D	A single curve independent of L

$$I_D = \frac{uC_{ox}}{2} \times \frac{W}{L}V_{ov}^2 \rightarrow g_m = uC_{ox} \times \frac{W}{L}V_{ov} \rightarrow \frac{g_m}{I_D} = \frac{2}{V_{ov}} = \frac{2}{V_{GS} - V_{TH}} \neq f(L) \rightarrow \text{single curve}$$

3. If VDD = 2V and the required CMIR of an OTA is 0.2 V to 1.8 V, then the input stage should be _____.

A	NMOS and PMOS (both of them together)	С	PMOS
В	NMOS	D	NMOS and PMOS (anyone of them will work)

 For a 5T OTA, if you want to use larger gm/ID for the current mirror load while keeping the amplifier DC gain almost unchanged, this means you should use _____. Hint: Neglect VA variation with gm/ID.

А	Smaller W	В	Larger W	С	Larger L	D	Smaller L
4.1	omaner		Lai Sci VV	0	Eurger E		Omanoi E

5. For the shown 5T OTA, increasing L will increase the DC voltage gain and improve the matching at the expense of _____

A	Lower phase margin	В	Larger area	С	All are correct	D	Larger device caps

 $Increasing \ L \rightarrow Increase \ Area \rightarrow Increase \ device \ capacitances \rightarrow Increase \ C_{mirr} \rightarrow Reduce \ the \ PM$

6. For the shown 5T OTA, the gm/ID of ____ is a design parameter that affects the output swing.

A	$M_{3,4}$	В	All are correct	C	M_5	D	$\mathbf{M}_{1,2}$

7. For the shown 5T OTA, if CL is much larger than device capacitors, the main design parameter affecting the relation between power consumption and the GBW is _____.

A L of the input pair B gm/ID of the input pair C	L of the load D	gm/ID of the load
---	-----------------	-------------------

 $GBW = \frac{g_{m1,2}}{2\pi C_L} \rightarrow \text{for a given } I_D \text{ the GBW achived depends on the } g_m \text{choosed for the input pair}$

8. For the shown 5T OTA, using ____ will cause more CMRR degradation at high frequency.

A	Larger L for M1,2	В	All answers are correct	С	Larger gm/ID for M1,2	D	Larger gm/ID for M5

$$\begin{split} \text{CMRR} &= g_{m1,2}[r_{o2} \parallel r_{o4}] \times 2g_{m3,4}R_{ss} \\ \text{$C_{sb_{1,2}}$ will increase as $M_{1,2}$ area increase by larger L or larger $\frac{g_m}{I_D}$ (W) reducing} \\ & \text{Larger $\frac{g_m}{I_D}$ (W) for $M_5 \to $ larger area for $M_5 \to $ larger C_{gd5} and C_{db5}} \\ & \text{All these capacitance are parallel with R_{ss} reducing the effective R_{ss}} \end{split}$$

For the shown 5T OTA, assume the input pair is biased at a given gm/ID. Achieving higher _____ necessitates higher power consumption.

$$\text{GBW} = \frac{g_{m1,2}}{2\pi C_L} \rightarrow \text{for a given} \\ \frac{g_m}{I_D} \text{ the higher } I_D \rightarrow \text{ the higher } g_m \rightarrow \text{the higher GBW}$$

10. For the shown 5T OTA, if there is a strict spec on the fanout (FO = CL/Cin), i.e., a small Cin is required, then the following assumption should be used to satisfy the gain spec: _____.

A	ro2 << ro4	В	ro2 >> ro4	С	ro2 = ro4	D	All answers are wrong
---	------------	---	------------	---	-----------	---	-----------------------

Smaller $C_{in} \to Smaller$ Area of input devices \to Smaller L for input device $\to r_{o2} \ll r_{o4}$