Attorney Docket No. 2002-0066 / 24061.461 Customer No. 42717

Amendments To The Claims

The following list of the claims replaces all prior versions and lists of the claims in this application.

1. (Previously presented) A method of forming multiple gate insulator layers on semiconductor substrate having a core region and an input/output (I/O) region, the method comprising the steps of:

forming a first insulator layer over a silicon containing semiconductor substrate;

removing said first insulator layer from the I/O region of said semiconductor substrate, resulting in a first gate insulator layer having a first insulator thickness, located on the core region of said semiconductor substrate;

performing a pre-clean procedure, wherein said pre-clean procedure can remove a native oxide from said semiconductor substrate; and

selectively forming a second gate insulator layer, having a second insulator thickness, on said I/O region of said semiconductor substrate.

- 2. (Original) The method of claim 1, wherein a first pre-clean procedure is performed in a buffered hydrofluoric (BHF), acid solution, comprised of HF in ammonium fluoride, performed prior to formation of said first insulator layer.
- 3. (Previously presented) The method of claim 2, wherein said first pre-clean procedure is a wet procedure, performed in a dilute HF acid solution, comprised of HF in de-ionized water.

- 4. (Previously presented) The method of claim 2, wherein said first pre-clean procedure is a dry procedure, performed via use of HF vapors.
- 5. (Previously presented) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, comprised with said first insulator thickness is less than about 30 Angstroms and said second gate insulator layer is a silicon dioxide layer with said second gate insulator layer thickness greater than about 30 Angstroms.
- 6. (Original) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, obtained via direct plasma nitridization on said semiconductor substrate.
- 7. (Original) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, obtained via direct thermal nitridization procedures on said semiconductor substrate.
- 8. (Original) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, obtained via rapid thermal chemical vapor deposition (RTCVD), procedures.
- 9. (Original) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, obtained via remote plasma enhanced chemical vapor deposition (RPCVD), procedures.
- 10. (Original) The method of claim 1, wherein said first insulator layer is a silicon nitride layer, obtained via atomic layer chemical vapor deposition (ALCVD), procedures.

- 11. (Original) The method of claim 1, wherein said first insulator layer is removed from said second portion of said semiconductor substrate using a hot phosphoric acid solution as an etchant for said first insulator layer.
- 12. (Original) The method of claim 1, wherein said first insulator layer is removed from said second portion of said semiconductor substrate via dry etch procedures using CF₄ or Cl₂ as an etchant for said first insulator layer.
- 13. (Original) The method of claim 1, wherein said pre-clean procedure is a wet procedure, performed in a buffered hydrofluoric (BI-IF), acid solution, comprised of HF in ammonium fluoride.
- 14. (Original) The method of claim 1, wherein said pre-clean procedure is a wet procedure, performed in a dilute HF acid solution, comprised of HF in de-ionized water.
- 15. (Original) The method of claim 1, wherein said pre-clean procedure is a dry procedure, performed via use of HF vapors.
- 16. (Original) The method of claim 1, wherein said second gate insulator layer is a silicon dioxide layer, comprised with said second insulator thickness between about 30 to 80 Angstroms.

Attorney Docket No. 2002-0066 / 24061.461 Customer No. 42717

- 17. (Original) The method of claim 1, wherein said second gate insulator layer is formed via a thermal oxidation procedure, performed in an oxygen content ambient.
- 18. (Original) The method of claim 1, wherein said second gate insulator layer is formed via a plasma oxidation procedure, performed in an oxygen content ambient.
- 19. (Original) The method of claim 1, wherein said first gate insulator layer is annealed during formation of said second gate insulator layer.
- 20. (Currently amended) A method of forming multiple thickness gate insulator layers on a silicon containing substrate, featuring a hydrofluoric (HF), pre-clean precedure performed prior to formation of each gate insulator layer, comprising the steps of:

performing a first hydrofluoric (HF) pre-clean procedure;

forming a first dielectric layer over said silicon containing substrate, said forming of said first dielectric layer being carried out after said performing of said first hydrofluoric (HF) preclean procedure;

selectively removing using a photoresist shape said first dielectric layer from a second portion of said silicon containing substrate resulting in a first dielectric gate insulator layer, having a first insulator thickness, located on a first portion of said silicon containing substrate; and

then removing said photoresist shape;

then performing a second hydrofluoric (HF) pre-clean procedure; and

Attorney Docket No. 2002-0066 / 24061.461 Customer No. 42717

performing an oxidation procedure to form a second dielectric gate insulator layer, having a second insulator thickness greater than the first thickness, on said second portion of said silicon containing substrate, said performing of said oxidation procedure being carried out after said performing of said second hydrofluoric (HF) pre-clean procedure, wherein the removal rate of said second dielectric gate insulator layer is higher than the removal rate of said first dielectric layer using a prescribed etchant.

- 21. (Currently amended) The method of claim 20, wherein a wherein said first HF preclean procedure is performed prior to formation of said first dielectric layer, performed in a buffered hydrofluoric (BHF), acid solution, comprised of HF in ammonium fluoride, or performed in a dilute HF acid solution, comprised of HF in de-ionized water.
- 22. (Currently amended) The method of claim 20, wherein a wherein said first HF based pre-clean procedure is performed prior to formation of said-first dielectric layer via use of HF vapors.
- 23. (Original) The method of claim 20, wherein said first dielectric layer is a silicon nitride layer, obtained at a thickness between about 5 to 30 Angstroms, via a direct plasms nitridization procedure, performed on said silicon containing substrate.
- 24. (Original) The method of claim 20, wherein said first dielectric layer is a silicon nitride layer, obtained at a thickness between about 5 to 30 Angstroms, via direct thermal nitridization on said silicon containing substrate.

- 25. (Original) The method of claim 20, wherein said first dielectric layer is a silicon nitride layer, obtained at a thickness between about 5 to 30 Angstroms, via rapid thermal chemical vapor deposition (RTCVD), procedures, or performed via remote plasma enhanced chemical vapor deposition (RPCVD), procedures, performed using silane or disilane, and ammonia as reactants.
- 26. (Original) The method of claim 20, wherein said first dielectric layer is a silicon nitride layer; obtained at a thickness between about 5 to 30 Angstroms, via atomic layer chemical vapor deposition (ALCVD), procedures.
- 27. (Original) The method of claim 20, wherein said first dielectric layer is selectively removed from said second portion of said semiconductor substrate using a hot phosphoric acid solution as an etchant.
- 28. (Original) The method of claim 20, wherein said first dielectric layer is selectively removed from said second portion of said semiconductor substrate via dry etch procedures using CF₄ or Cl₂ as an etchant.
- 29. (Currently amended) The method of claim 20, wherein a wherein said second HF pre-clean procedure is performed prior to said exidation procedure, in a buffered hydrofluoric (BHF), acid solution, comprised of HF in ammonium fluoride, or performed in a dilute HF acid solution, comprised of HF in de-ionized water.

- 30. (Original) The method of claim 20, wherein said second dielectric gate insulator layer is a silicon oxide gate insulator layer is comprised with a thickness between about 30 to 80 Angstroms.
- 31. (Currently amended) The method of claim 20, wherein a wherein said second HF pre-clean procedure, performed prior to said exidation procedure, is performed via use of HF vapors.
- 32. (Original) The method of claim 20, wherein said oxidation procedure used to form said second dielectric gate insulator layer is a thermal oxidation procedure, performed at a temperature between about 500 to 1100° C, in an oxygen content ambient.
- 33. (Original) The method of claim 20, wherein said procedure used to form said second dielectric gate insulator layer is a plasma oxidation procedure, performed at a temperature between about 25 to 800° C, in an oxygen content ambient.
 - 34. (Canceled).