Predicting Credit Worthiness

Francesca Furia 3078906 Anna Illiano 3185116 Poorva Seth 3170386

Paper #1:

R. Turkson; E.Baagyere; G. Wenya (2009)

The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients

6 ML techniques

GOAL: Find the model the best estimates the *probability* of default

Evaluates the models using 'Sorting Smoothing Method' to estimate the true probability of defaulting

Paper #2:

Yeh, I.-C., Lien, C.-H. (2016)

A Machine Learning Approach for Predicting Bank Credit Worthiness

16 ML techniques

GOAL: Find the model the best classifies **whether or not** the client defaults

Variable selection to show no difference outperformance for 5 top models on 5 top variables

1 Dataset

- Both papers use the same dataset, collecting information about credit card clients in Taiwan, between April and October 2005.
- Source: Paper #1, published in UCI Machine Learning Data Repository.
- Response Variable: Binary variable indicating whether or not the client defaulted in October 2005
- Explanatory Variables: Set of 23 variables, including both numerical and categorical ones

AGE	Demographics
SEX	
MARRIAGE	
EDUCATION	
LIMIT_BAL	Amount of the given credit, including individual consumer and their family credit
PUNCTUALITY	6 variables indicating history of past payment in the previous 6 months
BILL_AMT	6 variables indicating the amount of the bill statement in the previous 6 months
PAY_AMT	6 variables indicating the amount of payments in the previous 6 months

Our Approach

Data Exploration

Distribution of Defaulters in the Sample

Defaulters by Amount of Credit Given

Checking for Biases

• Gender bias:

Racial bias: not applicable in this case

We specifically care about keeping false negatives low, as it's worse to lend money to people who will actually default, rather than the other way around.

Hence we primarily use **recall** to assess our methods, as it measures the ability to find all the positive samples.

Recall:

 $\frac{True\ Positives}{True\ Positives + False\ Negatives}$

In order to avoid overfitting on the defaulting class, we used **macro-averaging**

Sorting Smoothing Method

GOAL: estimate the "true" probability of default

- Order the predictions by increasing estimated probability of default
- 2. Compute "true" probability of defaulting as

$$P_i = \frac{Y_{i-n} + \dots + Y_{i-1} + Y_i + Y_{i+1} + \dots + Y_{i+n}}{2n+1}$$

where $Y_i = 1$ if default

- Evaluate the predicted probabilities from the model:
 - Scatterplot estimated probability VS "true" probability
 - Running a OLS and look at R², intercept and slope coefficient

Ideally, we would want...

Sorting Smoothing Method

GOAL: estimate the "true" probability of default

- Order the predictions by increasing estimated probability of default
- 2. Compute "true" probability of defaulting as

$$P_i = \frac{Y_{i-n} + \dots + Y_{i-1} + Y_i + Y_{i+1} + \dots + Y_{i+n}}{2n+1}$$

where $Y_i = 1$ if default

- 3. Evaluate the predicted probabilities from the model:
 - Scatterplot estimated probability VS "true" probability
 - Running a OLS and look at R², intercept and slope coefficient

Ideally, we would want...

Logistic Regression

Confusion Matrix

(normalized by true label)

Predicted Label

macro-recall: 0.62

macro-precision: 0.58 accuracy: 0.56

K Nearest Neighbors

Confusion Matrix

(normalized by true label)

Predicted Label

macro-recall: 0.64

macro-precision: 0.62 accuracy: 0.70

Quadratic Discriminant Analysis

Confusion Matrix

(normalized by true label)

Predicted Label

macro-recall: 0.71

macro-precision: 0.70 accuracy: 0.78

Naive Bayes

Confusion Matrix

(normalized by true label)

Predicted Label

macro-recall: 0.70

macro-precision: 0.66 accuracy: 0.74

Bagging

Confusion Matrix

(normalized by true label)

Predicted Label

macro-recall: 0.64

macro-precision: 0.72 accuracy: 0.81

Neural Network

Confusion Matrix (normalized by true label)

macro-recall: 0.71 macro-precision: 0.68 accuracy: 0.77

Based on:

- Correlation of each predictor with the response variable
- P-value of FPR test
- SelectKBest algorithm

Chosen Variables:

- LIMIT_BAL
- SEX
- EDUCATION
- PUNCTUALITY_AVG

After Variable Selection

Logistic Regression

KNN

QDA

1 +39% Accuracy: 0.78

√ -54% R²: 0.32

1 +4% Accuracy: 0.73

√ -15% R²: 0.744

1 +3% Accuracy: 0.80

1 +4% R²: 0.813

Naive Bayes

1 +14% Accuracy: 0.80

1 +12% R2: 0.858

Bagging

1 -22% Recall: 0.63

= 0% Accuracy: 0.81

¹√ -0.5% R²: 0.944

Neural Network

√ -2% Recall: 0.69

= 0% Accuracy: 0.77

¹√ -2% R²: 0.887

Best Performing Models

R²

0.945

2. Neural Network

Bagging

0.908

3. KNN

0.890

Macro-Recall

1. Neural Network & QDA

0.71

2. Naive Bayes

0.70

Other possible strategies:

- Changing the evaluation metric to AUC or accuracy
- Varying the decision threshold

Thank you!

Do you have any questions?

