

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Week 4: Diodes Part 1

Introduction to Electronics

An introduction to electronic components and a study of circuits containing such devices.

Introduction To PN Junctions

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce PN junctions and explain their physical behavior.

Lesson Objectives

- Demonstrate the physics of semiconductors
- Introduce PN Junctions

Semiconductor

Doping - Add impurities such as Boron or Phosphorus

Number of electrons in outer shell:

- Boron has 3 electrons
- Phosphorus has 5 electrons

P-Type and N-Type Semiconductors

P-Type: extra holes

N-Type: extra free electrons

PN Junction

Energy – heat or light makes electrons at the junction diffuse to fill nearest holes

P-Type

N-Type

PN Junction

Depletion Region

PN Junction: Conducting

PN Junction: Conducting

PN Junction: Not Conducting

Summary of Behavior

Conducting

Not Conducting

Diode

Summary

- Semiconductors become better conductors when
 - Doped
 - Exposed to heat or light
- PN Junctions (Diodes)

Remainder of Module 3: Diodes

- Circuit analysis with simple diode models
- Applications: rectifiers, AM detector, LEDs, voltage limiters, voltage regulators, AC to DC conversion

Diode Behavior and Models

Professor and Associate Chair School of Electrical and Computer Engineering

Introduce ideal and non-ideal diode I-V curves

Previous Lesson

The physics of PN junctions

Lesson Objectives

- Analyze diode behavior
- Introduce diode applications
- Describe different operating regions
- Introduce simple diode models that approximate the actual device

Background

Uses:

- Block current flow in a specific direction
- Rectifier (AC to DC conversion)
- Voltage regulator and limiter (protection)
- Light Emitting Diodes (LEDs)
- AM Detectors
- Electronic tuners
- Photodiodes

Circuit Symbol:

I-V Characteristics

Simple Diode Models

Ideal Diode Model

Ideal Diode + Voltage Source Model Ideal Diode + Voltage Source + Resistor Model

Ideal Diode

Summary

- Diodes have three operating regions
 - Forward bias, i_D > 0
 - Reverse bias, V_D< 0
 - Breakdown
- Ideal diodes only allow current to flow in one direction
- Three models: ideal, ideal + voltage source, ideal + voltage source + resistor

Ideal Diode Model

Professor and Associate Chair School of Electrical and Computer Engineering

Introduce ideal diodes in circuits

Lesson Objectives

- Introduce ideal diode operation
- Describe how to analyze DC diode circuits

Ideal Diode Model

Ideal Diode Model

Two possible states: ON and OFF

ON (conducting): if $i_D > 0$

OFF (blocking): if $V_D < 0$, $i_D = 0$

Example

Summary

Diodes act as a short or an open, depending on the bias

Assumed States Method

Professor and Associate Chair School of Electrical and Computer Engineering

Introduce ideal diode circuits with multiple diodes

Lesson Objective

 Describe the procedure for handling multiple diodes in a single circuit

Assumed States Procedure

- 1) Identify all possible diode state combinations
 - 1 diode \Rightarrow 2 states
 - 2 diodes \Rightarrow 4 states
 - 3 diodes \Rightarrow 2³ = 8 states
- 2) Analyze each state by replacing the diodes with the corresponding open or short.
- 3) Determine which state is consistent:
 - ON: $i_D > 0$
 - OFF: $V_D < 0$

A) OFF: (+) 10 V	2 V (+	

B) ON:		R R	
(†) 10 V	2 V(†

States	D1	Consistent?
Α	OFF	
В	ON	

$$-10 + V_D + 2 = 0, V_D > 0$$
 (not consistent)

$$-10 + i_D 1k + 2 = 0$$
, $i_D = 0.008A > 0$ (consistent)

Two Diode Example

Find V₁

States	D1	D2	Consistent?
Α	OFF	OFF	
В	OFF	ON	
С	ON	OFF	
D	ON	ON	

KVL:
$$-5 + V_{D2} = 0$$
 \longrightarrow $V_{D1} = 5 > 0$ (Not consistent)

Example continued

States	D1	D2	Consistent?
Α	OFF	OFF	No
В	OFF	ON	
С	ON	OFF	
D	ON	ON	

KVL:
$$-10 + V_{D1} + 5 = 0$$
, $V_{D1} = 5V > 0$ (Not consistent)

$$V_{D2} = 5V > 0$$
 (Not consistent)

Example continued

States	D1	D2	Consistent?
Α	OFF	OFF	No
В	OFF	ON	No
С	ON	OFF	No
D	ON	ON	

KVL: $-10 + 1000i_{D1} + 5 = 0$ $i_{D1} = 0.005A > 0$ $i_{D2} = 5/2000 > 0$ (Consistent)

Operating state: D_1 and D_2 are ON V_1 = 1000(0.005) = 5V

Summary

- Diodes act as a short or an open, depending on the bias
- When solving a circuit, assume each possible state, and check to see if the behavior is consistent with that state

Ideal Diode + Voltage Source Model

Dr. Bonnie H. Ferri
Professor and Associate Chair
School of Electrical and
Computer Engineering

Introduce another diode model for circuit analysis

Lesson Objective

Examine the ideal diode + voltage source model

Ideal Diode with a Voltage Source

Replace

Example $_{_{1k\Omega}}^{_{1k\Omega}}$

States	D1	D2	Consistent?
Α	OFF	OFF	
В	OFF	ON	
С	ON	OFF	
D	ON	ON	

Example

Summary

- Ideal diode + voltage source model has threshold voltage that must be surpassed before the diode is turned on.
 - 0.7 V Silicon
 - 0.3-0.4 V Germanium
 - 1-4 V LED
- Replace diode with ideal diode + voltage source and analyze using ideal diode methods.