# Appendix S1

Estimating Carrying Capacity for Chinook Parr using Quantile Random Forest Models

Kevin E. See<sup>1,\*</sup>, Michael W. Ackerman<sup>1</sup>, Richard A. Carmichael<sup>1</sup>, Sarah L. Hoffmann<sup>1</sup>, and Chris Beasle

June 10, 2020

#### 1 Choosing Habitat Covariates

One of the crucial steps in building this carrying capacity model was choosing which habitat covariates to include. Random forest models naturally incorporate interactions between correlated covariates, which is essential since nearly all habitat variables are considered correlated to one degree or another, however, we aimed to avoid overly redundant variables (i.e., variables that measure similar aspects of the habitat). Further, including too many covariates can result in overfitting of the model (e.g., including as many covariates as data points). Our goal was to select a group of covariates that captured as many different aspects of the stream habitat (e.g. substrate, flow, riparian condition, channel unit configuration, etc.) as possible, while still holding information about fish densities.

To prevent overfitting, we pared down the more than 100 metrics generated by the CHaMP protocol describing the quantity and quality of fish habitat for each survey site. Habitat metrics were first grouped into broad categories that included channel unit, complexity, cover, riparian areas, side channels, size, substrate, temperature, water quality, and woody debris. Habitat metrics measuring any large wood volume were scaled by the site length (in 100 m units). To assist in determining the habitat metrics to include in the QRF model, we used the Maximal Information-Based Nonparametric Exploration (MINE) class of statistics (Reshef et al. 2011) to determine those habitat characteristics (covariates) most highly associated with the log of observed parr densities. We calculated the maximal information coefficient (MIC), using the R package minerva (Filosi et al. 2019), to measure the strength of the linear or non-linear association between the natural log of fish density and each habitat metric (Reshef et al. 2011). MIC is a measure of correlation that incorporates potential non-linear associations, so for example if there is an expontential association the MIC value could be high, even when the standard correlation coefficient is low. We excluded categorical variables such as channel type (e.g. meandering, pool-riffle, plane-bed, etc.) because we assumed that other quantitative metrics would capture the differences between those qualitative categorical metrics.

Within each category, metrics were ranked according to their MIC value (Table S1 and Figure S1). The MIC value between each of the measured habitat characteristics and parr density was used to inform decisions on which habitat covariates to include in the QRF parr capacity model. We selected one or two variables amongst those with the highest MIC scores within each category, attempting to avoid covariates that were too highly correlated (Figure ??), while focusing on covariates we thought could influence fish behavior. For example, cumulative drainage area, mean annual flow and observed discharge are all highly correlated, but fish really only experience the observed flow, so we chose to include that metric in our QRF model. We also tried to include covariates that can be directly influenced by restoration actions or have been shown to impact salmonid juvenile density. Finally, we attempted to avoid metrics with too many missing values, or too many all zero values, in the data set, as well as metrics that may have too much observer error (Rosgen et al. 2018).

<sup>&</sup>lt;sup>1</sup> Biomark, Inc. 705 South 8th St., Boise, Idaho, 83702, USA

<sup>\*</sup> Correspondence: Kevin E. See < Kevin.See@biomark.com>

## 2 References

Filosi, M., R. Visintainer, and D. Albanese. 2019. Minerva: Maximal information-based nonparametric exploration for variable analysis.

Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. 2011. Detecting novel associations in large data sets. Science 334:1518–1524.

Rosgen, D., A. Taillacq, B. Rosgen, and D. Geenen. 2018. A technical review of the Columbia Habitat Monitoring Program's protocol, data quality.

# 3 Tables

Table S1: MIC statistic for top metrics in each habitat category. Metrics selected for the QRF model are in bold.

| Category    | Name                                     | Abbry                        | MIC   | perc_non0 |
|-------------|------------------------------------------|------------------------------|-------|-----------|
| ChannelUnit | Channel Unit Frequency                   | CU_Freq                      | 0.241 | 0.979     |
| ChannelUnit | Fast Turbulent Frequency                 | FstTurb_Freq                 | 0.230 | 0.918     |
| ChannelUnit | Fast NonTurbulent Frequency              | $FstNT\_Freq$                | 0.209 | 0.692     |
| ChannelUnit | Slow Water Frequency                     | SlowWater_Freq               | 0.208 | 0.927     |
| ChannelUnit | Fast Turbulent Percent                   | FstTurb_Pct                  | 0.195 | 0.918     |
| ChannelUnit | ChnlUnitTotal_Ct                         | $ChnlUnitTotal\_Ct$          | 0.189 | 0.979     |
| ChannelUnit | Channel Unit Count                       | $\mathrm{CU}_{-}\mathrm{Ct}$ | 0.189 | 0.979     |
| ChannelUnit | Fast Turbulent Count                     | FstTurb_Ct                   | 0.178 | 0.918     |
| ChannelUnit | Slow Water Percent                       | $SlowWater\_Pct$             | 0.177 | 0.927     |
| ChannelUnit | Fast NonTurbulent Percent                | $FstNT\_Pct$                 | 0.169 | 0.692     |
| Complexity  | Wetted Width To Depth Ratio Avg          | $WetWDRat\_Avg$              | 0.247 | 0.997     |
| Complexity  | Bankfull Width To Depth Ratio Avg        | BfWDRat_Avg                  | 0.245 | 0.997     |
| Complexity  | Wetted Depth SD                          | $\operatorname{DpthWet\_SD}$ | 0.232 | 0.997     |
| Complexity  | Wetted Channel Braidedness               | WetBraid                     | 0.212 | 0.997     |
| Complexity  | Bankfull Channel Braidedness             | $\operatorname{BfBraid}$     | 0.211 | 0.997     |
| Complexity  | Wetted Channel Qualifying Island Count   | $Wet\_QIsland\_Ct$           | 0.209 | 0.165     |
| Complexity  | Bankfull Width CV                        | $BfWdth\_CV$                 | 0.209 | 0.997     |
| Complexity  | Bankfull Width To Depth Ratio CV         | ${ m BfWDRat}\_{ m CV}$      | 0.202 | 0.997     |
| Complexity  | Detrended Elevation SD                   | $DetrendElev\_SD$            | 0.196 | 0.997     |
| Complexity  | Bankfull Channel Qualifying Island Count | $Bf_QIsland_Ct$              | 0.193 | 0.220     |
| Cover       | Fish Cover: Total                        | FishCovTotal                 | 0.225 | 0.970     |
| Cover       | Fish Cover: None                         | FishCovNone                  | 0.224 | 0.979     |
| Cover       | Fish Cover: LW                           | $\operatorname{FishCovLW}$   | 0.213 | 0.845     |
| Cover       | Fish Cover: Terrestrial Vegetation       | FishCovTVeg                  | 0.204 | 0.948     |
| Cover       | Percent Undercut by Length               | $UcutLgth\_Pct$              | 0.185 | 0.524     |
| Cover       | Percent Undercut by Area                 | $UcutArea\_Pct$              | 0.184 | 0.524     |
| Cover       | Fish Cover: Aquatic Vegetation           | FishCovAqVeg                 | 0.166 | 0.369     |
| Cover       | Fish Cover: Artificial                   | FishCovArt                   | 0.136 | 0.149     |
| Riparian    | Riparian Cover: Understory               | RipCovUstory                 | 0.206 | 1.000     |
| Riparian    | RipCovUstoryNone                         | RipCovUstoryNone             | 0.206 | 1.000     |
| Riparian    | Riparian Cover: No Canopy                | RipCovCanNone                | 0.194 | 1.000     |
| Riparian    | Riparian Cover: Some Canopy              | RipCovCanSome                | 0.194 | 0.905     |
| Riparian    | Riparian Cover: Big Tree                 | RipCovBigTree                | 0.184 | 0.817     |
| Riparian    | Riparian Cover: Ground                   | RipCovGrnd                   | 0.182 | 1.000     |
| Riparian    | RipCovGrndNone                           | RipCovGrndNone               | 0.170 | 0.997     |
| Riparian    | Riparian Cover: Woody                    | RipCovWood                   | 0.168 | 1.000     |
| Riparian    | Riparian Cover: Non-Woody                | RipCovNonWood                | 0.166 | 1.000     |
| Riparian    | Riparian Cover: Coniferous               | RipCovConif                  | 0.164 | 0.808     |
| SideChannel | Bankfull Side Channel Width              | $\operatorname{BfSCWdth}$    | 0.223 | 0.204     |
| SideChannel | Wetted Side Channel Width                | WetSCWdth                    | 0.213 | 0.168     |
| SideChannel | Wetted Side Channel Percent By Area      | $WetSC\_Pct$                 | 0.209 | 0.180     |
| SideChannel | SCSm_Freq                                | $SCSm\_Freq$                 | 0.153 | 0.079     |
| SideChannel | $SCSm\_Ct$                               | $SCSm\_Ct$                   | 0.153 | 0.079     |
| SideChannel | SC_Area_Pct                              | $SC\_Area\_Pct$              | 0.153 | 0.079     |
| Size        | Mean Annual Flow                         | MeanU                        | 0.346 | 0.524     |
| Size        | Wetted Width Integrated                  | $WetWdth\_Int$               | 0.332 | 0.997     |
| Size        | Bankfull Width Integrated                | BfWdthInt                    | 0.324 | 0.997     |
| Size        | Wetted Width Avg                         | $WetWdth\_Avg$               | 0.324 | 0.997     |

| Category     | Name                                          | Abbry               | MIC   | perc_non0 |
|--------------|-----------------------------------------------|---------------------|-------|-----------|
| Size         | Drainage Area (Flowline)                      | CUMDRAINAG          | 0.302 | 0.659     |
| Size         | Bankfull Width Avg                            | BfWdth_Avg          | 0.298 | 0.997     |
| Size         | DpthThlwg_Avg                                 | DpthThlwg_Avg       | 0.280 | 0.997     |
| Size         | Discharge                                     | Q                   | 0.259 | 0.963     |
| Size         | Bankfull Depth Avg                            | DpthBf_Avg          | 0.245 | 0.982     |
| Size         | Bankfull Depth Max                            | DpthBf_Max          | 0.240 | 0.982     |
| Substrate    | Substrate < 6mm                               | SubLT6              | 0.237 | 0.945     |
| Substrate    | Substrate < 2mm                               | SubLT2              | 0.227 | 0.918     |
| Substrate    | Substrate: D16                                | SubD16              | 0.219 | 0.988     |
| Substrate    | Substrate: Embeddedness Avg                   | SubEmbed_Avg        | 0.204 | 0.683     |
| Substrate    | Substrate: D50                                | SubD50              | 0.197 | 0.988     |
| Substrate    | Substrate Est: Sand and Fines                 | SubEstSandFines     | 0.190 | 0.970     |
| Substrate    | Substrate Est: Cobbles                        | SubEstCbl           | 0.185 | 0.973     |
| Substrate    | Substrate: D84                                | SubD84              | 0.185 | 0.988     |
| Substrate    | Substrate Est: Boulders                       | SubEstBldr          | 0.183 | 0.851     |
| Substrate    | Substrate: Embeddedness SD                    | $SubEmbed\_SD$      | 0.181 | 0.680     |
| Temperature  | Avg. August Temperature                       | avg_aug_temp        | 0.272 | 1.000     |
| Temperature  | $\mathrm{Elev}_{-}\mathrm{M}$                 | $Elev\_M$           | 0.262 | 0.637     |
| Temperature  | August Temperature                            | aug_temp            | 0.188 | 0.845     |
| Temperature  | Solar Access: Summer Avg                      | SolarSummr_Avg      | 0.186 | 0.930     |
| WaterQuality | Conductivity                                  | Cond                | 0.254 | 0.973     |
| WaterQuality | Alkalinity                                    | Alk                 | 0.225 | 0.973     |
| WaterQuality | Drift Biomass                                 | DriftBioMass        | 0.000 | 0.616     |
| Wood         | Large Wood Volume: Bankfull Slow Water        | $LWVol\_BfSlow$     | 0.213 | 0.768     |
| Wood         | Large Wood Volume: Wetted Slow Water          | $LWVol\_WetSlow$    | 0.207 | 0.710     |
| Wood         | Large Wood Frequency: Wetted                  | $LWFreq\_Wet$       | 0.199 | 0.875     |
| Wood         | Large Wood Volume: Bankfull                   | LWVol_Bf            | 0.189 | 0.915     |
| Wood         | Large Wood Volume: Wetted Fast Turbulent      | $LWVol\_WetFstTurb$ | 0.187 | 0.726     |
| Wood         | Large Wood Frequency: Bankfull                | $LWFreq\_Bf$        | 0.178 | 0.915     |
| Wood         | Large Wood Volume: Bankfull Fast NonTurbulent | $LWVol\_BfFstNT$    | 0.175 | 0.479     |
| Wood         | Large Wood Volume: Wetted                     | LWVol_Wet           | 0.166 | 0.875     |
| Wood         | Large Wood Volume: Wetted Fast NonTurbulent   | LWVol_WetFstNT      | 0.159 | 0.405     |



Figure S1: Barplots of MIC statistics, faceted by habitat category.

Figure S2: Barplot of MIC statistics, colored by habitat category.

## 4 Figures









Figure S3: Correlation plot of habitat metrics used in QRF model.



Figure S4: Pairs plot of habitat metrics used in QRF model with a correlation coefficient greater than 0.5.

#### 4.0.1 Colophon

This report was generated on 2020-06-10 15:06:54 using the following computational environment and dependencies:

```
setting value
#>
   version R version 3.6.1 (2019-07-05)
#>
             macOS Mojave 10.14.6
#> system x86_64, darwin15.6.0
#> ui
             X11
#> language (EN)
   collate en US.UTF-8
#>
#> ctype
             en US.UTF-8
#> tz
             America/Los Angeles
             2020-06-10
#> date
#>
* version date lib source
#> package
                  * Version date 110 Source

0.2.1 2019-03-21 [2] CRAN (R 3.6.0)

1.1.6 2020-04-05 [1] CRAN (R 3.6.2)

0.17 2020-01-11 [1] CRAN (R 3.6.0)

0.5.3 2019-12-14 [1] CRAN (R 3.6.0)

3.4.3 2020-03-28 [1] CRAN (R 3.6.2)

1.1.0 2016-07-27 [2] CRAN (R 3.6.0)

2.0.2 2020-02-28 [1] CRAN (R 3.6.0)
#> assertthat
#> backports
#> bookdown
#> broom
#> callr
#> cellranger
#> cli
#> colorspace
                    1.4-1
                               2019-03-18 [2] CRAN (R 3.6.0)
                                 2019-07-12 [1] CRAN (R 3.6.0)
#>
   corrr
                  * 0.4.0
#> crayon
                  1.3.4
                                 2017-09-16 [2] CRAN (R 3.6.0)
                              2018-05-02 [2] CRAN (R 3.6.0)
#> DBI
                    1.0.0
                    1.4.2 2019-06-17 [2] CRAN (R 3.6.0)
1.2.0 2018-05-01 [1] CRAN (R 3.6.0)
2.2.1 2019-09-24 [1] CRAN (R 3.6.0)
#> dbplyr
                   1.4.2
#> desc
#> devtools
                   2.2.1
#> digest
                   0.6.25 2020-02-23 [1] CRAN (R 3.6.0)
                  * 0.8.5
                               2020-03-07 [1] CRAN (R 3.6.0)
#> dplyr
                     0.3.0
                                 2019-09-20 [2] CRAN (R 3.6.0)
#> ellipsis
#> evaluate
                   0.14
                               2019-05-28 [2] CRAN (R 3.6.0)
#> fansi
                   0.4.1
                                 2020-01-08 [1] CRAN (R 3.6.0)
#> farver
                   2.0.3
                                 2020-01-16 [1] CRAN (R 3.6.0)
                  * 0.5.0
                                 2020-03-01 [1] CRAN (R 3.6.0)
#> forcats
#> fs
                    1.3.1
                                 2019-05-06 [2] CRAN (R 3.6.0)
#> generics
                    0.0.2
                                 2018-11-29 [2] CRAN (R 3.6.0)
                                 2018-05-17 [1] CRAN (R 3.6.0)
                    1.4.0
#>
   GGally
#>
    ggcorrplot
                     0.1.3
                                 2019-05-19 [1] CRAN (R 3.6.0)
                                 2020-03-05 [1] CRAN (R 3.6.0)
#> ggplot2
                  * 3.3.0
#> glue
                     1.4.0
                                 2020-04-03 [1] CRAN (R 3.6.2)
                              2019-03-25 [2] CRAN (R 3.6.0)
2019-11-08 [2] CRAN (R 3.6.0)
#>
   gtable
                     0.3.0
#> haven
                     2.2.0
#> highr
                    0.8
                                2019-03-20 [2] CRAN (R 3.6.0)
                                2020-01-08 [1] CRAN (R 3.6.0)
#> hms
                     0.5.3
                   0.4.0
#> htmltools
                                 2019-10-04 [2] CRAN (R 3.6.0)
#> httr
                               2019-08-05 [2] CRAN (R 3.6.0)
                    1.4.1
                 1.6 2018-12-07 [2] CRAN (R 3.6.0)
* 1.1.0 2019-03-16 [1] CRAN (R 3.6.0)
1.27 2020-01-16 [1] CRAN (R 3.6.0)
#> jsonlite
#> kableExtra
#> knitr
```

```
2014-08-23 [2] CRAN (R 3.6.0)
    labeling
                      0.3
#>
    lattice
                      0.20 - 38
                                 2018-11-04 [2] CRAN (R 3.6.1)
#>
    lifecycle
                      0.2.0
                                 2020-03-06 [1] CRAN (R 3.6.0)
                                 2020-04-06 [1] CRAN (R 3.6.2)
#>
    lubridate
                      1.7.8
#>
    magrittr
                      1.5
                                 2014-11-22 [1] CRAN (R 3.6.0)
#>
    memoise
                                 2017-04-21 [1] CRAN (R 3.6.0)
                      1.1.0
#>
    minerva
                    * 1.5.8
                                 2019-05-27 [1] CRAN (R 3.6.0)
    modelr
                                 2019-08-08 [2] CRAN (R 3.6.0)
#>
                      0.1.5
                                 2018-06-12 [2] CRAN (R 3.6.0)
#>
    munsell
                      0.5.0
#>
    nlme
                      3.1-142
                                 2019-11-07 [1] CRAN (R 3.6.0)
#>
    pillar
                      1.4.3
                                 2019-12-20 [1] CRAN (R 3.6.0)
                                 2020-05-07 [1] CRAN (R 3.6.2)
    pkgbuild
                      1.0.8
#>
                                 2019-09-22 [2] CRAN (R 3.6.0)
#>
    pkgconfig
                      2.0.3
                                 2018-10-29 [1] CRAN (R 3.6.0)
#>
    pkgload
                      1.0.2
#>
                      1.8.5
                                 2019-12-10 [1] CRAN (R 3.6.0)
    plyr
#>
    prettyunits
                      1.1.1
                                 2020-01-24 [1] CRAN (R 3.6.0)
#>
                      3.4.2
                                 2020-02-09 [1] CRAN (R 3.6.0)
    processx
#>
                      1.3.3
                                 2020-05-08 [1] CRAN (R 3.6.2)
    ps
                    * 0.3.4
                                 2020-04-17 [1] CRAN (R 3.6.2)
#>
    purrr
#>
    QRFpaper
                    * 0.0.0.9000 2020-06-08 [1] local
#>
    quantregForest
                      1.3-7
                                 2017-12-19 [2] CRAN (R 3.6.0)
#>
                      2.4.1
                                 2019-11-12 [2] CRAN (R 3.6.0)
                                 2018-03-25 [2] CRAN (R 3.6.0)
#>
    randomForest
                      4.6-14
    RColorBrewer
                      1.1-2
                                 2014-12-07 [2] CRAN (R 3.6.0)
#>
                                 2020-04-09 [1] CRAN (R 3.6.1)
#>
    Rcpp
                      1.0.4.6
#>
    readr
                    * 1.3.1
                                 2018-12-21 [2] CRAN (R 3.6.0)
#>
    readxl
                      1.3.1
                                 2019-03-13 [1] CRAN (R 3.6.0)
                      2.1.0
                                 2019-06-24 [1] CRAN (R 3.6.0)
#>
    remotes
#>
    reprex
                      0.3.0
                                 2019-05-16 [2] CRAN (R 3.6.0)
#>
    reshape
                      0.8.8
                                 2018-10-23 [1] CRAN (R 3.6.0)
#>
    reshape2
                      1.4.3
                                 2017-12-11 [2] CRAN (R 3.6.0)
#>
    rlang
                      0.4.6
                                 2020-05-02 [1] CRAN (R 3.6.2)
#>
    rmarkdown
                      2.1
                                 2020-01-20 [1] CRAN (R 3.6.1)
                      1.3-2
                                 2018-01-03 [1] CRAN (R 3.6.0)
#>
    rprojroot
                                 2020-02-07 [1] CRAN (R 3.6.0)
#>
    rstudioapi
                      0.11
#>
                      0.3.5
                                 2019-11-08 [2] CRAN (R 3.6.0)
    rvest
#>
    scales
                      1.1.0
                                 2019-11-18 [2] CRAN (R 3.6.0)
#>
    sessioninfo
                      1.1.1
                                 2018-11-05 [1] CRAN (R 3.6.0)
#>
    stringi
                      1.4.6
                                 2020-02-17 [1] CRAN (R 3.6.0)
#>
    stringr
                    * 1.4.0
                                 2019-02-10 [2] CRAN (R 3.6.0)
    testthat
                      2.3.2
                                 2020-03-02 [1] CRAN (R 3.6.0)
#>
#>
    tibble
                    * 3.0.1
                                 2020-04-20 [1] CRAN (R 3.6.2)
                    * 1.0.3
                                 2020-05-07 [1] CRAN (R 3.6.2)
#>
    tidvr
                                 2020-01-27 [1] CRAN (R 3.6.0)
#>
    tidyselect
                      1.0.0
                                 2019-11-21 [1] CRAN (R 3.6.0)
#>
    tidyverse
                    * 1.3.0
#>
                                 2019-07-04 [1] CRAN (R 3.6.0)
    usethis
                      1.5.1
                                 2020-03-10 [1] CRAN (R 3.6.0)
#>
    vctrs
                      0.2.4
                      0.3.0
                                 2018-02-01 [2] CRAN (R 3.6.0)
#>
    viridisLite
#>
    webshot
                      0.5.2
                                 2019-11-22 [1] CRAN (R 3.6.0)
                      2.2.0
                                 2020-04-20 [1] CRAN (R 3.6.2)
#>
    withr
#>
    xfun
                      0.12
                                 2020-01-13 [1] CRAN (R 3.6.0)
                                 2019-08-09 [2] CRAN (R 3.6.0)
#>
    xm12
                      1.2.2
#>
    yaml
                      2.2.0
                                 2018-07-25 [2] CRAN (R 3.6.0)
#>
```

- #> [1] /Users/seek/Library/R/3.6/library
- #> [2] /Library/Frameworks/R.framework/Versions/3.6/Resources/library

The current Git commit details are:

#> Local: master /Users/seek/Documents/GitProjects/MyProjects/QRFpaper

#> Remote: master @ origin (git@github.com:KevinSee/QRFpaper.git)

#> Head: [8e70457] 2020-06-10: Merge branch 'master' of github.com:KevinSee/QRFpaper