MIDTERM EXAM - MATH 563, SPRING 2016

NAME:	SOLUTION	
TNAIVILL:	SOLUTION	

Exam rules:

There are $\bf 5$ problems on this exam.

You must show **all** work to receive credit, state any theorems and definitions clearly. The instructor will NOT answer any questions during the exam.

Problem	Points
1	5+10+10/ 25
2	5+5+5+5/20
3	7+7+6 / 20
4	5+15 / 20
5	15 / 15

TOTAL GRADE: (out of 90)

Problem 1. [This problem is about statistics and data reduction techniques.]

a) What does data reduction mean? In other words, how can a statistic T(X), where X is a random sample in the sample space \mathcal{X} , be used for data reduction?

SOLUTION:

A statistic T(X) is used for data reduction by partitioning the sample space \mathcal{X} into equivalence classes $\{X:T(X)=t\}$. Any different samples in the same equivalence class take the same value of T(X), and are viewed as containing the same amount of information with regards to T.

b) Define a *sufficient* and *ancillary* statistic.

SOLUTION:

Let X be a random sample from a population, whose distribution depends on a parameter θ ,

- A statistic T(X) is called sufficient if the conditional distribution of X given T(X) does not depend on θ :
- A statistic S(X) is called ancillary if its own distribution does not depend on θ .

Problem 1, continued.

Solve only ONE of the following two problems, c) OR d):

- c) Let N be a random variable taking values $1, 2, \ldots$ with known probabilities p_1, p_2, \ldots , where $\sum_i p_i = 1$. Having observed N = n, perform n Bernoulli trials with success probability θ , obtaining X successes. Prove that the pair (X, N) is minimal sufficient and N is ancillary for θ .

 [Hint: use a criterion, not the definition of minimal sufficient.]
- d) Prove Basu's Theorem in the DISCRETE case: If T(X) is a complete and minimal sufficient statistic, then T(X) is independent of every ancillary statistic.

[Hint: Let S(X) be any ancillary statistic, and show that P(S(X) = s | T(X) = t) - P(S(X) = s) = 0.]

SOLUTION of c):

This is Exercise 6.12(a) from textbook. See Solution to HW#3 for its answer.

SOLUTION of d):

Let S(X) be any ancillary statistic. As is stated in the hint, to prove that T(X) and S(X) are independent, it suffices to show that

(1)
$$P(S(X) = s|T(X) = t) - P(S(X) = s) = 0$$

Since S(X) is ancillary, P(S(X) = s) does not depend on θ . Also, since T(X) is sufficient, P(S(X) = s | T(X) = t) does not depend on θ . Note that

(2)
$$P(S(X) = s) = \sum_{t} P(S(X) = s | T(X) = t) P_{\theta}(T(X) = t)$$

Also, since $\sum_{t} P_{\theta}(T(X) = t) = 1$, we have

(3)
$$P(S(X) = s) = \sum_{t} P(S(X) = s) P_{\theta}(T(X) = t)$$

If we substract (3) from (2), we obtain

(4)
$$\sum_{t} [P(S(X) = s | T(X) = t) - P(S(X) = s)] \cdot P_{\theta}(T(X) = t) = 0$$

Since T(X) is a complete statistic, we can obtain (1) from (4). This completes the proof.

Problem 2. [This problem is about computing point estimators.]

1) Let Y_1, \ldots, Y_n denote a random sample from the probability density function

$$f(y|\theta) = \begin{cases} (\theta+1)y^{\theta}, & \text{for } 0 < y < 1\\ 0 & \text{otherwise.} \end{cases}$$

Find the method of moments estimator for θ .

SOLUTION:

We have $E(Y|\theta) = \int_{-\infty}^{\infty} y f(y|\theta) dy = \int_{0}^{1} (\theta+1) y^{\theta+1} dy = \frac{\theta+1}{\theta+2}$. Solving θ from $E(Y|\theta) = \bar{Y}$, we obtain $\hat{\theta}_{MoM} = \frac{1-2\bar{Y}}{\bar{Y}-1}$.

2) Let X_1, \ldots, X_n be a random sample from the pdf $f_{\theta}(x) = \theta x^{\theta-1}$, for $x \in (0,1)$ (a beta distribution). Compute the MLE of θ .

SOLUTION:

The likelihood is

$$L(\theta|X) = \prod_{i=1}^{n} f(x_i|\theta) = \theta^n (x_1 \cdots x_n)^{\theta-1}$$

Thus the log likelihood is

$$l(\theta|X) = \log L(\theta|X) = n\log\theta + (\theta - 1)\sum_{i=1}^{n}\log x_i$$

Thus

$$\frac{\partial l(\theta|X)}{\partial \theta} = 0 \Rightarrow \frac{n}{\theta} + \sum_{i=1}^{n} \log x_i = 0 \Rightarrow \hat{\theta}_{MLE} = -\frac{n}{\sum_{i=1}^{n} \log x_i}$$

It is also easy to verify $\frac{\partial^2 l(\theta|X)}{\partial \theta^2} < 0$, thus $l(\theta|X)$ attains its maximum at $\hat{\theta}_{MLE}$.

Problem 2, continued.

- 3) Let X_n, \ldots, X_n be a random sample from $Poisson(\lambda)$. Since Gamma is a conjugate family for Poisson, let λ have a Gamma distribution. As written on the board during the exam, the X_i are meant to just be Y_i here.
 - a) Write down the formula you would use for computing the posterior distribution of λ , and explain the meaning of each term in your formula. [Please do NOT write down the formulas for the densities!]
 - b) **Assume** that the calculation in part a) would provide that the posterior distribution of λ is $Gamma(y+\alpha,\frac{\beta}{n\beta+1})$, with $E[\lambda|y]=(y+\alpha)\frac{\beta}{n\beta+1}$ and $Var(\lambda|y)=(y+\alpha)\frac{\beta^2}{(n\beta+1)^2}$. What would you use as the Bayes estimator for λ ?

SOLUTION:

(a) The formula used here is

$$\pi(\lambda|y) = \frac{f(y|\lambda)\pi(\lambda)}{m(y)}$$

- $\pi(\lambda|y)$ is the posterior density of λ , which is the density estimated after the data is observed.
- $\pi(\lambda)$ is the prior density of λ , which is the density set before the data is collected.
- $f(y|\lambda)$ is the sampling density of data given λ .
- $m(y) = \int f(y|\lambda)\pi(\lambda)d\lambda$ is the marginal distribution of data.
- (b) We can use $E(\lambda|y) = \frac{(y+\alpha)\beta}{n\beta+1}$ as the natural Bayesian estimator.

Problem 3. [This problem is about evaluating point estimators.]

Let X_1, \ldots, X_n be a random sample from $Bernoulli(\theta)$.¹ Then, $T = \sum_{i=1}^n X_i$ is a sufficient statistic. The goal of this problem is to estimate $\eta = \theta(1 - \theta)$.

a) Show that the 'naive' estimator $\tilde{\eta} = X_1(1 - X_2)$ is unbiased.

SOLUTION:

Since X_1 and X_2 are independent, so are X_1 and $1 - X_2$. We then have

$$E(\tilde{\eta}) = E[X_1(1 - X_2)] = (EX_1)(1 - EX_2) = \theta(1 - \theta) = \eta$$

- . Thus $\tilde{\eta}$ is unbiased.
- b) Find a better estimator $\hat{\eta} = E[\tilde{\eta}|T=t]$ using the Rao-Blackwell Theorem. (Hint: The random variable $X_1(1-X_2)$ is either 0 or 1; it's 1 if and only if $X_1=1$ and $X_2=0$.) SOLUTION:

According to the hint, we have

$$\begin{split} \hat{\eta} &= E(\tilde{\eta}|T=t) \\ &= P(\tilde{\eta}=0|T=t) \cdot 0 + P(\tilde{\eta}=1|T=t) \cdot 1 \\ &= P(\tilde{\eta}=1|T=t) \\ &= P(X_1=1, X_2=0|\sum_{i=1}^n X_i=t) \\ &= \frac{P(X_1=1, X_2=0, \sum_{i=1}^n X_i=t)}{P(\sum_{i=1}^n X_i=t)} \\ &= \frac{P(X_1=1)P(X_2=0)P(\sum_{i=3}^n X_i=t-1)}{P(\sum_{i=1}^n X_i=t)} \\ &= \frac{\theta(1-\theta)\binom{n-2}{t-1}\theta^{t-1}(1-\theta)^{(n-2)-(t-1)}}{\binom{n}{t}\theta^t(1-\theta)^{n-t}} \\ &= \frac{\binom{n-2}{t-1}}{\binom{n}{t}} \\ &= \frac{t(n-t)}{n(n-1)} \end{split}$$

c) What is a minimum variance unbiased estimator (MVUE) of η ? Could it be that $\hat{\eta}$ is an MVUE? SOLUTION:

According to Rao-Blackwell Theorem, if $\tilde{\eta}$ is an unbiased estimator of η (which was proven in part a), and if T(X) is a sufficient statistic (which is given in the problem), then $E(\tilde{\eta}|T)$ is a MVUE. Therefore, yes, $\hat{\eta}$ computed in (b) is a MVUE.

¹Recall that $\theta = E[X_i]$ in this case.

Problem 4. [This problem is about convergence.]

Let X_1, \ldots, X_n denote a random sample from a distribution with mean μ and variance σ^2 .

a) State the Weak Law of Large Numbers. (Reminder: this is a statement about the sample mean $\overline{X_n}$.) SOLUTION:

WLLN states that if $\sigma^2 < \infty$, then $\bar{X}_n \xrightarrow{P} \mu$ as $n \to \infty$. This means $\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 1$

. Also, see P232, Theorem 5.5.2 in the textbook.

b) Show that the sample variance S_n^2 is a *consistent* estimator of σ^2 .

SOLUTION:

We need to assume $Var(X_i^2) < \infty$ for $i = 1, \dots, n$.

Then by WLLN, as $n \to \infty$, we have

$$\bar{X}_n \xrightarrow{P} \mu$$

(6)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} E(X_i^2) = \mu^2 + \sigma^2.$$

Thus

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

$$= \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n\bar{X}_n^2)$$

$$= \frac{n}{n-1} (\frac{1}{n} \sum_{i=1}^n X_i^2) - \frac{n}{n-1} \bar{X}_n^2$$

From (5) and (6), and the fact that $\lim_{n\to\infty}\frac{n}{n-1}=1$, we can conclude from Slutsky's Theorem that as $n\to\infty$,

$$S_n^2 \xrightarrow{P} (\mu^2 + \sigma^2) - \mu^2 = \sigma^2$$

This completes the proof.

Problem 5. [This problem is about evaluating point estimators asymptotically.]

Let X_1, \ldots, X_n be a random sample from Bernoulli(p).² Recall that the MLE of p is $\hat{p} = \overline{X}$ and that it is an unbiased estimator.

Show that the MLE attains the Cramer-Rao lower bound.

SOLUTION:

Note that this example is exactly from the lectures (when the Fisher information was introduced and when the example of the Cramer-Rao lower bound was computed). Here is the complete answer:

From Corollary 7.3.10 (P337), we need to prove

$$Var(\bar{X}) = \frac{(\frac{d}{dp} E \bar{X})^2}{nE[(\frac{\partial}{\partial p} \log f(X|p))^2]}.$$

Since Bernoulli distribution belongs to the exponential family, from Lemma 7.3.11(P338), it is equivalent to show

(7)
$$\operatorname{Var}(\bar{X}) = \frac{\left(\frac{d}{dp} E \bar{X}\right)^2}{-n E\left[\frac{\partial^2}{\partial p^2} \log f(X|p)\right]}$$

Since $X_i \sim Bernoulli(p)$, we have $EX_i = p$, $Var(X_i) = p(1-p)$, for $i = 1, \dots, n$. Thus $E\bar{X} = EX_i = p$, $Var(\bar{X}) = \frac{1}{n}Var(X_i) = \frac{p(1-p)}{n}$. We then have

(8)
$$\frac{d}{dp}E\bar{X} = 1$$

(9)
$$\operatorname{Var}(\bar{X}) = \frac{p(1-p)}{n}$$

Also,

$$\log f(X|p) = \log[p^X(1-p^{1-X})] = X \log p + (1-X)\log(1-p),$$

$$\Rightarrow \frac{\partial}{\partial p} \log f(X|p) = \frac{X}{p} - \frac{1-X}{1-p}$$

$$\Rightarrow \frac{\partial^2}{\partial p^2} \log f(X|p) = -\frac{X}{p^2} - \frac{1-X}{(1-p)^2}$$

Bearing in mind that EX = p, we have

(10)
$$E\left[\frac{\partial^2}{\partial p^2} \log f(X|p)\right] = -\frac{1}{p} - \frac{1}{1-p} = -\frac{1}{p(1-p)}$$

Taking (8) and (10) into (7), we find the right side of it to be $\frac{1}{-\frac{n}{-p(1-p)}} = \frac{p(1-p)}{n}$, which, according to (9), is the left side of (7). This completes our proof of (7).

²Recall that $E[X_i] = p$ and $Var(X_i) = p(1-p)$.