<u>Last time</u> suppose X = prod_{i in I} X_i

the <u>box topology</u> on X is gen by {prod i U i | U i open in X i for all i}

the <u>product topology</u> on X is gen by {prod_i U_i | U_i open in X_i for all i, $U_i \neq X_i$ for only fin many i}

if $I = \{1, ..., n\}$ and X i = R for all i, then $X = R^n$

here, box = product

Q1 is it the same as the analytic top? [yes]
[square balls are open in box top]
[prod's of anlyte opens are anlyte open]

Q2 any open set in R^n not of the form $U_1 \times U_2 \times ... \times U_n$?

[draw]

if $I = Z_+$ and $X_i = R$ for all i, then $X = R^{\omega}$

Q3 let $V = (-1, 1) \times (-1, 1) \times ...$ in R^{ω}

open in box topology? [yes] open in product topology? [no]

why not? $[V \neq \emptyset$, but no product basis elt sub V]

in general: prod top can be coarser than box top

for all i' in I

let $pr_{i'}$: $prod_{i} X_{i}$ to $X_{i'}$ be

the $projection map pr_{i'}((x_{i})_{i}) = x_{i'}$

Thm the product topology on prod_i X_i is the coarsest s.t. pr_{i'} is cts for all i'

Pf suppose that T is a top on prod_i X_i in which pr_i' is cts for all i'

then pr_{i'}^{-1}(U_{i'}) in T for all i' and U_{i'} open in X_{i'}

so for any finite J sub I, bigcap_{i' in J} pr_{i'}^{-1}(U_{i'}) is open but bigcap_{i' in J} pr_{i'}^{-1}(U_{i'}) = $\{(x_i) \mid x_{i'}\}$ in U_{i'} for all i' in J} = $\{prod_i U_i \mid U_i = X_i \text{ for all i notin J}\}$

so T contains the basis for the product top so T contains the product top

similarly,

Thm the subspace top on A sub X is the coarsest s.t. the inclusion of A is cts

subspace topology product topology makes inclusion cts projections cts

(Munkres §17)

suppose A sub X

Q what is the closure of R^{∞} in R^{ω} in the box top? in the product top?

interior Int_X(A)

- = {a in X | have U open in X s.t. a in U sub A}
- = union of open sets of X that are subsets of A

closure Cl_X(A)

- = X Int X(X A)
- $= X bigcup \{V sub X A and open in X\} V$
- = bigcap_{V sub X A and open in X} (X V)
- = bigcap {Z sup A and closed in X} Z
- = intersection of closed sets of X containing A

[draw]