
Reversible System Solitary Waye

Background

Normal Forms

Bilinear

Functions

GPC

Travelling Wave

Result

GPC

MAC

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

Jonathan Leto

Overview

J.A. Leto

Overview

Normal Forms

Travelling Wave

MS

Definitions

- Background
- The Generalized Pochammer-Chree Equations
- A Generalized Microstructure Equation

Overview

Reversible

System

Jointary VV

Background

Normal Forms

Bilinear

GPO

MS

Travelling Wave

CDC

MS

Reversible Dynamical System (looss & Adelmeyer)

Consider

$$\frac{dz}{dt} = F(z; \mu), z \in \mathbb{R}^n, \mu \in \mathbb{R}$$
(1)

where

$$F\left(0;0\right) =0$$

. If there exists a unitary map

$$S: \mathbb{R}^n \mapsto \mathbb{R}^n, S \neq I$$

such that

$$F(Sz; \mu) = -SF(z; \mu)$$

for all z and μ then (1) is a reversible system.

Solitary Wave

Normal Forms

Travelling Wave

Families of Solitary Waves

Here we will use the term solitary wave or "soliton" to mean a pulse-like solution to an evolution equation. For example,

$$A(z) = \ell \operatorname{sech}^2 kz \tag{2}$$

is a two-parameter family of solitary waves.

where k and ℓ are parameters which determine the speed and the height of the wave.

Normal Form Theory

After a nonlinear change of variables (looss & Adelmeyer) one may put the Center Manifold into Normal Form.

Two-Dimenional Center Manifold

- $\lambda_{1-4} = 0, 0, \pm \lambda, \lambda \in \mathbb{R}$
- $Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$

Four-Dimenional Center Manifold

- $\lambda_{1-4} = 0, 0, \pm i\omega, \omega \in \mathbb{R}$
- $Y = A\zeta_0 + B\zeta_1 + C\zeta_+ + \bar{C}\zeta_- + \Psi(\epsilon, A, B, C, \bar{C})$

where $\zeta_0, \zeta_1, \zeta_+, \zeta_-$ are eigenvectors of the linearized operator.

Properties of Bilinear Functions

A function

$$B: \mathbb{C}x\mathbb{C} \mapsto \mathbb{C}$$

satisfying the following axioms

$$B(x + y, z) = B(x, z) + B(y, z)$$

$$B(\lambda x, y) = \lambda B(x, y)$$

$$B(x, y + z) = B(x, y) + B(x, z)$$

$$B(x, \lambda y) = \lambda B(x, y)$$

is called bilinear.

If B(x,y) is bilinear, then $f(y) \equiv B(y,y)$ is invariant under the transformation $y \mapsto -y$ and thus is **reversible**.

Overviev

Reversible System Solitary Way

Normal Forms

Bilinear Functions

GPC

GFC

Travelling Wave

Result

GPC MS

The Generalized Pochammer-Chree Equations

The Generalized Pochammer-Chree Equations govern the propagation of longitudinal waves in elastic rods.

GPC1

$$(u - u_{xx})_{tt} - (a_1 u + a_2 u^2 + a_3 u^3)_{xx} = 0$$
 (4)

• GPC2

$$(u - u_{xx})_{tt} - (a_1 u + a_3 u^3 + a_5 u^5)_{xx} = 0$$
 (5)

Normal Forms Bilinear

Functio

GPC

Travelling Wave

Results

GPC

Travelling Wave ODE

Let z=x-ct and $u(x,t)=\phi(z)$ to reduce (4) and (5) to the Travelling Wave ODE

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}_{1,2}[\phi] \tag{6}$$

where

$$p \equiv 0$$

$$q \equiv 1 - \frac{a_1}{c^2}$$

$$L_{pq} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ q/3 & 0 & 1 & 0 \\ 0 & q/3 & 0 & 1 \\ q^2 - p & 0 & q/3 & 0 \end{pmatrix}$$
 (8a)

$$\mathcal{N}_{1} [\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 2a_{2} \left(\phi_{zz}\phi_{z} + \phi_{z}^{2} \right) \right]$$

$$\mathcal{N}_{2} [\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 5a_{5} \left(4\phi^{3}\phi_{z}^{2} + \phi^{4}\phi_{zz} \right) \right]$$

0 101 1101

Reversible System

Background

Normal Forms Bilinear

Functions

GPC

. . . .

Travelling Wave

Results

GPC

Reversible Form

Denoting $Y = \langle y_1, y_2, y_3, y_4 \rangle^T = \langle \phi, \phi_z, \phi_{zz}, \phi_{zzz} \rangle^T$ equation (6) can be written

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y) \tag{9}$$

where

$$L_{pq} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ q/3 & 0 & 1 & 0 \\ 0 & q/3 & 0 & 1 \\ q^2 - p & 0 & q/3 & 0 \end{pmatrix}$$

$$\textit{G}_{1,2}(\textit{Y},\textit{Y}) = \left\langle 0,0,0,-\mathcal{N}_{1,2}\left(\textit{Y},\textit{Y}\right)\right\rangle^{\textit{T}}$$

Overviev

Definitio

Reversible System

Solitary Wav

Normal Forms

Bilinear

GPC

GFC

Travelling Wave

Result

GPC

Near C_0 : Normal Form

The eigenvalues are $\lambda_{1,4}=0,0,\pm\lambda$, $\lambda\in\mathbb{R}$, We write the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B) \tag{10}$$

with corresponding normal form

$$\frac{dA}{dz} = B \tag{11a}$$

$$\frac{dB}{dz} = b\epsilon A + \tilde{c}A^2 \tag{11b}$$

where ϵ measures the perturbation about C_0 and

$$\zeta_0 = \langle 1, 0, -q/3, 0 \rangle^T \tag{12a}$$

$$\zeta_1 = \langle 0, 1, 0, -2q/3 \rangle^T \tag{12b}$$

How do we determine the coefficients b and \tilde{c} ?

O VEI VIEV

Reversible System Solitary Way

Background Normal Forms Bilinear Functions

GPC

GFC

Travelling Wave

Results

GPC

Finding Coefficients Of The Normal Form

When you follow two separate chains of thought, Watson, you will find some point of intersection which should approximate the truth. - Sir Arthur Conan Doyle

By computing $\frac{dY}{dz}$ in two ways and comparing the coefficients of each term in the normal form, we find systems of equations which determine each coefficient. For example, to find \tilde{c} , we compare $\mathcal{O}(A^2)$ terms.

Reversible System

Background

Normal Forms

Bilinear Functions

GPC

٠. ٠

Travelling Wave

CDC

GPC

Method 1
Use the Center Manifold

 $Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$

in the reversible system

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y)$$

and repetedly use the bilinear properties of $G_{1,2}$ to simplify.

GPC

Travelling Wave

Normal Forms

Two Ways to Compute $\frac{dY}{dz}$

Method 1

Use the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

in the reversible system

$$\frac{dY}{dz} = L_{pq}Y - G_{1,2}(Y,Y)$$

and repetedly use the bilinear properties of $G_{1,2}$ to simplify.

where

Method 2

Differentiate the Center Manifold

$$Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$$

and use the Normal Form

$$\frac{dA}{dz} = B$$

$$\frac{dB}{dz} = b\epsilon A + \tilde{c}A^2$$

to simplify all derivatives.

$$\Psi(\epsilon, A, B) = \epsilon A \Psi_{10}^1 + \epsilon B \Psi_{01}^1 + A^2 \Psi_{20}^0 + AB \Psi_{11}^0 + B^2 \Psi_{02}^0 + \cdots$$

MS

Finding \tilde{c}

Matching $\mathcal{O}\left(A^2\right)$ terms in each method gives us the two systems of equations

GPC 1

$$\tilde{c}\zeta_1 = L_{0q}\Psi^0_{20} - G_1(\zeta_0, \zeta_0)$$

Let $\Psi^0_{20} = \langle x_1, x_2, x_3, x_4 \rangle^T$ which implies

$$0 = x_{2}$$

$$\tilde{c} = \frac{q}{3}x_{1} + x_{3}$$

$$0 = \frac{q}{3}x_{2} + x_{4} \implies x_{4} = 0$$

$$-\frac{2q}{3}\tilde{c} = \frac{q}{3}\left(\frac{q}{3}x_{1} + x_{3}\right) + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$= \frac{q}{3}\tilde{c} + \frac{q}{3c^{2}}a_{3}$$

$$\implies \tilde{c} = -\frac{a_3}{3c^2}$$

Finding \tilde{c}

Matching $\mathcal{O}(A^2)$ terms in each method gives us the two systems of equations

GPC 1

$$c_{\zeta_1} = L_{0\alpha} \Psi_{20}^0 - G_1 (\zeta_0, \zeta_0)$$

$$\tilde{c}\zeta_{1} = \mathit{L}_{0q} \Psi_{20}^{0} \, - \, \mathit{G}_{1} \, \left(\zeta_{0}, \, \zeta_{0} \right)$$

Let
$$\Psi^0_{20} = \langle x_1, x_2, x_3, x_4 \rangle^T$$
 which implies

$$\bar{c} = \frac{q}{3}x_1 + x_3$$

$$0 = \frac{q}{3}x_2 + x_4 \implies x_4 = 0$$

$$-\frac{2q}{3}\bar{c} = \frac{q}{3}\left(\frac{q}{3}x_1 + x_3\right) + \frac{q}{3}\left(3s_3 + 5s_5\right)$$

$$\implies \tilde{c} = -\frac{a_3}{3c^2}$$

= $\frac{q}{2}\tilde{c} + \frac{q}{2}a_3$

GPC 2

$$\tilde{c}\zeta_1 = L_{0q}\Psi^0_{20} - G_2(\zeta_0, \zeta_0)$$

Letting
$$\Psi^0_{20} \,=\, \left< x_1^{},\, x_2^{},\, x_3^{},\, x_4^{} \right>^{\it T}$$
 yields the equations

$$0 = x_{2}$$

$$\bar{c} = \frac{q}{3}x_{1} + x_{3}$$

$$0 = \frac{q}{3}x_{2} + x_{4} \implies x_{4} = 0$$

$$-\frac{2q}{3}\bar{c} = \frac{q}{3}\left(\frac{q}{3}x_{1} + x_{3}\right) + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$= \frac{q}{3}\bar{c} + \frac{q}{3c^{2}}\left(3a_{3} + 5a_{5}\right)$$

$$\implies \tilde{c} = -\frac{1}{3c^2} \left(3a_3 + 5a_5 \right)$$

Overview

Reversible System

Background Normal Form

Normal Forms Bilinear

GPC

GPC

Travelling Wave

Reculte

GPC

Normal Form Near C₀

Therefore the Normal Form near C_0 is GPC 1 GPC 2

$$\begin{array}{lll} \frac{dA}{dz} & = & B & \frac{dA}{dz} & = & B \\ \frac{dB}{dz} & = & -\frac{\epsilon}{q}A - \frac{a_3}{c^2}A^2 & \frac{dB}{dz} & = & -\frac{\epsilon}{q}A - \frac{1}{3c^2}\left(3a_3 + 5a_5\right)A^2 \end{array}$$

These equations admit homoclinic solutions near C_0 of the form

$$A(z) = \ell \mathrm{sech}^2(kz)$$

Normal Forms

GPC

Travelling Wave

To determine k and ℓ , we write the Normal Form as a single second order equation, use our expression for A(z) and note the hyperbolic identity $\operatorname{sech}^2(z) - \operatorname{sech}^4(z) = \operatorname{sech}^2(z) \tanh^2(z)$ which implies

GPC 1 GPC 2

$$k = \sqrt{\frac{-\epsilon}{4q}}$$

$$k = \sqrt{\frac{-\epsilon}{4q}}$$

$$\ell = \frac{-3\epsilon c^2}{2qa_3}$$

$$\ell = \frac{-9\epsilon c^2}{2q(3a_3 + 5a_5)}$$

Overview

Reversible System Solitary Way

Normal Forms

Bilinear Functions

GPC

MS

Travelling Wave

Results

GPC

A Generalized Microstructure PDE

One dimensional wave propagation in microstructured solids has recently been modeled [?] by an equation

$$v_{tt} - bv_{xx} - \frac{\mu}{2} \left(v^2 \right)_{xx} - \delta \left(\beta v_{tt} - \gamma v_{xx} \right)_{xx} = 0$$
 (20)

Travelling Wave

Result

MS

Travelling Wave ODE

Let z=x-ct and $u(x,t)=\phi(z)$ to reduce to the Travelling Wave ODE

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}[\phi] \tag{21}$$

where

$$\mathcal{N}\left[\phi\right] = -\Delta_1 \phi_z^2 - b\Delta_1 \phi \phi_{zz}$$

$$\Delta_1 = \frac{\mu}{\delta \left(\beta c^2 - \gamma\right)}$$
(22)

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

J.A. Leto

Overview

D C 111

Reversible System

Solitary Wa

Backgrou

Normal Forms

Rilingar

unctions

CDC

0. 0

Travelling Wave

Result

GPC MS Results: The Generalized Pochammer-Chree Equations

(23)

Reversible

Normal Forms

Travelling Wave

GPC

MS

Results: A Generalized Microstructure PDE