Teorema sui massimi e minimi di una funzione (teorema di Fermat)

enunciato

Sia:

- f(x) una funzione
- [*a*, *b*] un intervallo chiuso e limitato contenuto nel dominio D della funzione
- x_0 un punto di **massimo** o **minimo** relativo della funzione interno ad [a,b]

Se f(x) è derivabile in x_0 allora $f'(x_0) = 0$

dimostrazione

Supponiamo che x_0 sia un punto di massimo relativo. Allora, per definizione di massimo relativo si ha:

$$\exists I_{x_0}: f(x_0) \ge f(x) \ \forall \ x \in (I_{x_0} \cap D)$$

Consideriamo il rapporto incrementale di f(x) in x_0

$$\frac{f(x) - f(x_0)}{x - x_0}$$

Determiniamo il segno del rapporto incrementale nei due casi in cui x sia maggiore di x_0 o minore di x_0

se
$$x > x_0$$
 allora $\frac{f(x) - f(x_0)}{x - x_0} = \frac{-}{+} \le 0$

se
$$x < x_0$$
 allora $\frac{f(x) - f(x_0)}{x - x_0} = \frac{-}{-} \ge 0$

Calcoliamo il limite per $x \to x_0$ di entrambi i rapporti incrementali. Si ottiene la derivata destra e la derivata sinistra di f(x) in x_0

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'_+(x_0) \le 0$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = f'_-(x_0) \ge 0$$

Essendo per ipotesi la funzione derivabile in x_0 , la derivata destra è uguale alla derivata sinistra.

Questo è possibile solo se sono entrambe uguali a zero, cioè la tesi:

$$f'(x_0) = 0$$

osservazione

Il teorema di Fermat non si inverte. Infatti se la derivata prima in un punto x_0 è uguale a zero, il punto x_0 può essere un punto di massimo relativo, di minimo relativo oppure un punto di flesso a tangente orizzontale.

I punti che annullano la derivata prima di una funzione vengono detti punti stazionari.