X E {1, 2, ..., m}

Pub. Am

Y & f2, 3, ... m3

Pi+P2, P3, -., Pm

2 8 {0,1, 2}.

Z=1, if X=1.

= 0, if X=2.

= 2, otherwise

Apply Chain Rule

* Mutual Information & its properties

I(x,y) = H(x) - H(x|y)

=H(X)+H(Y)-H(X,Y)

= H (Y) - H (Y)X)

 $= \sum_{x,y} b(x,y) \log \left[\frac{b(x,y)}{b(x)b(y)} \right]$

(x,x)] =I(Y,X)

Symmetric => Makes Se to call it m

information

D(p(x,y) 11 p(x)p(y))

題 I(X; Y)≥ 0 with = iff X IIY

I(x; y | z) := H(x|z) - H(x) y, z)

Chain Rule

 $I(X_i^n; Y) = \sum_{i=1}^n I(X_i; Y|X_i^{i-1})$

Thm: of (x; y) is a Complete function of f(z), for (y/x) fixing p(x,y) = p(x) p(y|x) b) I(x; y) is a concern function convex for of b(x)x) for to(x) fixed. Proof: a) I (X; Y) = H(Y)-H(Y|X) = H(x) - H(X) 4) = H(Y) - E b(x) H(YX=x) Communication of Noisy Channel? linear in 10(2) H (Y) is concave in p(Y). b(y) = = = b(x) b(y/2) (linear change of variable) ... H(y) is concave for of p(x) b) 1/2(x, y) = p(x) 1/0 (y |x), P, (2,7) = p/x) p, (4/x). Px(2,4) = (1-2) to (x,y + 2 + (x,y) (2/x) 14x+ (x/x) 04 (x-1) = (x/x) x4

" >> (x, y) = >(x) +>(y|x)

<>> X → Z → Y. X -> Y->Z I (Y; Z) > I (X, Z) Source Code is a Code that Compress * Channel Coding: -> alphabets and stationary is A discrete (time) $+\left(y_{i}^{n}\middle|x_{i}^{n}\right)=TTp\left(y_{i}\middle|x_{i}\right)$ - what we recieve at time i is same as wh we send at time i for each input we have p. m. f. of output (DMSC) tiput alphabet = X, output alphabet = y Channel characterized by: p(y/2), yEY, xEX M = # of possible messages, \$1,2,3, .., MZ A Codel En is a mapping En: {1,2, .., M} -> X A decoher on is a mapping of : y" -> {1,2,-,M}. 9 = 1 5 P (error given m was transmitted

* X
$$= h(y|x)$$
 $= Y$
 $I(x; Y) = \sum_{x \in Y} q(x) + (y|x) \times log \left[\frac{h(y|x)}{\sum q(x)h(y|x)}\right]$
 $= E \left[log \frac{h(y|x)}{2y(y)}\right]$
 $I(x; Y) = H(x) - H(x|y)$
 $I(x; Y) = H(x) - H(x|y)$
 $I(x; Y) = H(x) + H(x|y)$
 $I(x; Y) = H(y) - H(y|x)$
 $I(x; Y) = H(y) - H(y|x)$

H(Y) = H(Y, E)

$$= H(E) + H(Y|E) = h(E) + H(E)h(H) + 0$$

$$= H(E) + H(Y|E) = h(E) + H(E)h(H) + 0$$

$$= H(E) + H(Y|E) = h(E) + H(E)h(H) + 0$$

$$= H(E) + H(Y|E) = h(E) + H(E)h(H) + 0$$

$$= L(E) + H(Y|E) = h(E) + L(E) + L(E) + L(E) + 0$$

$$= L(E) + H(Y|E) = h(E) + L(E) + L(E) + L(E) + 0$$

$$= L(E) + H(Y|E) = h(E) + L(E) + L(E) + L(E) + 0$$

$$= L(E) + H(Y|E) = h(E) + L(E) + L(E) + L(E) + L(E) + 0$$

$$= L(E) + H(Y|E) = h(E) + L(E) + L(E)$$

K Channel Cobing thm:
The rate of a code is $R_n = \frac{\log_2(M)}{n}$ by $e.u.$
Defo : A rate R is aclievable if I a sequence of codes
to the things that P(N)
en of rate R such that $P_e^{(n)} = 0$.
stefn: Let Co: = sup & R: R is activenable?
MO : C - 1 - C
Ellem: Co = max I(x; y) = C. Operation 2(n) depend upon statistics.
Operation I depend upon
Strais etc.
Examples a) CErasure = 1-E.
Example 1
b) CBSC = 1-h(6) 1/2
* Joint AEP: Squeme is yelled
A(m):= { (x",y") E X" × y": -1 log(+(x") - H(x) < e
1- \frac{1}{2} \log(\frac{1}{2}) - H(y) < \epsilon,
yis are 1-1 log(p(x",y"))-H(x,y) <6}
also typics. I - I log (p(x),y))-H(x)) (e)
WILLN) [WILLN] (X", Y") E A") -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[WILN] n(W(X)) +6)
") IAE E2 "(HKY)-
2 for a large enough A () > (- 6) 2 (H(X,Y) - 6)) (X x x x x x x x x x x x x x x x x x x
with the company bear (some mangings as they
111) H (X) / (X)

then for n surge $(1-6)^{\frac{1}{2}} = n(I(X;Y) + 26) + (X^{n}, 9) \times A^{(n)} \times A^{(n)}$