Robust Statistics

Main idea: parameter estimate maintains approximate optimal performance under "small" perturbations in a "neighborhood" of an assumed model

Agenda

- Measuring Robustness
 - Sensitivity Curve
 - Influence Function
 - Breakdown Point
- Propublica Dataset Experiments
 - Mapping to fairness metrics
 - Drop row results + thoughts
- Next Steps?

Sensitivity Curve

 How much an estimate changes by adding an additional point x where x ranges in value

$$S(x) = \hat{\mu}(x_1, ..., x_n, x) - \hat{\mu}(x_1, ..., x_n)$$

Sensitivity Curve

 How much an estimate changes by adding an additional point x where x ranges in value

$$S(x) = \hat{\mu}(x_1, ..., x_n, x) - \hat{\mu}(x_1, ..., x_n)$$

How much an estimate changes by adding m additional outliers of value x

$$S(m) = \hat{\mu}(x, ..., x, x_{m+1}, ..., x_n) - \hat{\mu}(x_1, ..., x_n)$$

- Asymptotic version of sensitivity curve
 - Sample size tends to infinity
 - € contamination approaches 0, where € is m / n

- Asymptotic version of sensitivity curve
 - Sample size tends to infinity
 - € contamination approaches 0, where € is m / n
- Assume we have a distribution F that is approximately known, and we are interested in the behavior of a metric over a "neighborhood"

$$(1 - \epsilon)F + \epsilon G : G \in \mathcal{G}$$

 ${\cal G}$ is the set of distributions, can be set of point mass distributions

x: some point

T: some statistical estimator

F: some distribution

x: some point

T: some statistical estimator

F: some distribution

$$IF(x,T;F) = \lim_{\epsilon \to 0} \frac{T((1-\epsilon)F + \epsilon \,\delta_x) - T(F)}{\epsilon}$$

x: some point

T: some statistical estimator

F: some distribution

$$IF(x, T; F) = \lim_{\epsilon \to 0} \frac{T((1 - \epsilon)F + \epsilon \delta_x) - T(F)}{\epsilon}$$

*Dwork uses this as a starting point to derive some nice guarantees with respect to epsilon, delta differential privacy

Breakdown Point

Largest proportion of atypical points that the data may contain such that an estimator $\hat{\theta}$ still gives some information about the actual distribution θ

Breakdown Point

- Largest proportion of atypical points that the data may contain such that an estimator $\hat{\theta}$ still gives some information about the actual distribution θ
- In order for the estimate to give some info, the contamination should not be able to drive the estimator to infinity or to some other boundary

$$T((1-\epsilon)F + \epsilon \,\delta_x) \in K, \forall \epsilon < \epsilon^*, \forall \delta_x$$

where K is some bounded set

Mapping to Statistical Parity

- Motivation: fairness metrics should also maintain approximate optimal behavior under small perturbations of assumed model
 - Data is dirty entry errors, dropped and modified values during cleaning

Mapping to Statistical Parity

- Motivation: fairness metrics should also maintain approximate optimal behavior under small perturbations of assumed model
 - Data is dirty entry errors, dropped and modified values during cleaning
- What is an "outlier" for a binary value? A flipped decision far from boundary?
 - Flip outcome label for predicted dataset or flip outcome label for training dataset?
- Can we represent robustness of these fairness metrics in terms of breakdown point and influence function?

Propublica

Dataset Statistics: 5278 rows, 12 columns

African American: 3175

High: 845

Medium: 984

Low: 1346

Caucasian: 2103

High: 223

Medium: 473

Low: 1407

 Adding rows to an existing dataset doesn't make sense – but removing does

Propublica Experiment Setup

Output label: score_text

Label target: "High"

Protected attribute: race

```
delta: proportion of overall population of 5278
epsilon: measured as absolute value of
   P[ score_text = "High" | race = African American ] -
   P[ score_text = "High" | race = Caucasian ]
```

Propublica Experiment Setup

Output label: score_text

Label target: "High"

Protected attribute: race

```
delta: proportion of overall population of 5278
epsilon: measured as absolute value of
P[ score_text = "High" | race = African American ] -
```

P[score_text = "High" | race = Caucasian]

Procedure:

- 1. Drop rows at random
- 2. Drop rows at random w/in Caucasian community only
- 3. Drop rows at random w/in African American community only

DELETE delta proportion rows at RANDOM

DELETE delta proportion Caucasian rows at

RANDOM

DELETE delta proportion rows at RANDOM

More specific subgroup targeting: epsilon values as delta increases

	delta										
	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
Low//Caucasian	0.16	0.16	0.15	0.15	0.15	0.14	0.14	0.14	0.13	0.12	0.12
High//African-American	0.16	0.15	0.13	0.12	0.10	0.09	0.07	0.05	0.04	0.02	0.00
Both	0.16	0.15	0.14	0.14	0.13	0.12	0.11	0.10	0.09	0.08	0.07

Next Steps?

- Goal is to show which metrics are robust intuition is that statistical parity probably isn't because it's a conditional probability, thus, the metric is sensitive to subgroup size
- Synthetic dataset experiments
 - For 4 subgroups (2 attributes), try different combinations of equal/unequal populations, equal/unequal probability of outcome, and satisfying/not satisfying statistical parity
- Is this an interesting problem?