QUICK SORT

18-SORT

ALGORITMO

ALGORITMO

```
Partition (A, i, f):
       x \leftarrow índice aleatorio en \{i, \dots, f\}
p \leftarrow A[x]
A[x] \rightleftarrows A[f]
     i ← i
     for k = i ... f - 1:
            if A[k] < p:
                 A[j] \rightleftarrows A[k]
                 j \leftarrow j + 1
       A[j] \rightleftarrows A[f]
        return j
10
```

return j

10

```
Partition (A, i, f):
       x \leftarrow índice aleatorio en \{i, \dots, f\}
p \leftarrow A[x]
A[x] \rightleftarrows A[f]
     j ← i
     for k = i ... f - 1:
            if A[k] < p:
                 A[j] \rightleftarrows A[k]
                j \leftarrow j + 1
       A[j] \rightleftarrows A[f]
```

Partition (A, i, f):

- 1 $x \leftarrow \text{ indice aleatorio en } \{i, \dots, f\}$
- $p \leftarrow A[x]$
- $A[x] \rightleftarrows A[f]$
- $i \leftarrow i$
 - for k = i ... f 1:
- ·c 4[1]
- 6 **if** A[k] < p:
- $A[j] \rightleftarrows A[k]$
- $j \leftarrow j + 1$
- $9 \qquad A[j] \rightleftarrows A[f]$
- 10 return *j*

Aleatorio

```
Partition (A, i, f):
```

- 1 $x \leftarrow \text{ indice aleatorio en } \{i, \dots, f\}$
- $p \leftarrow A[x]$
- $A[x] \rightleftarrows A[f]$
- 4 $j \leftarrow i$
- 5 **for** $k = i \dots f 1$:
- 15. 15.13
- if A[k] < p:
- $A[j] \rightleftarrows A[k]$
- $j \leftarrow j + 1$
- 9 $A[j] \rightleftarrows A[f]$
- 10 return *j*

- Aleatorio
- El primer elemento

```
Partition (A, i, f):
```

- 1 $x \leftarrow \text{ indice aleatorio en } \{i, \dots, f\}$
- $p \leftarrow A[x]$
- $3 \qquad A[x] \rightleftarrows A[f]$
- $i \leftarrow i$
 - for k = i ... f 1:
- ·c 4[1]
- 6 **if** A[k] < p:
- $7 A[j] \rightleftarrows A[k]$
- $j \leftarrow j + 1$
- 9 $A[j] \rightleftarrows A[f]$
- 10 return *j*

- Aleatorio
- El primer elemento
- El último elemento

```
Partition (A, i, f):
```

- 1 $x \leftarrow \text{ indice aleatorio en } \{i, \dots, f\}$
- $p \leftarrow A[x]$
- $A[x] \rightleftarrows A[f]$
- 4 $j \leftarrow i$
 - for k = i ... f 1:
- if A[k] < p:
- $7 A[j] \rightleftarrows A[k]$
- $\begin{array}{ccc}
 & j \leftarrow j + 1 \\
 & j \leftarrow j + 1
 \end{array}$
- 9 $A[j] \rightleftharpoons A[f]$
- 10 return *j*

- Aleatorio
- El primer elemento
- El último elemento
- El elemento central

Partition (A, i, f):

- 1 $x \leftarrow$ índice aleatorio en $\{i, \dots, f\}$
- $p \leftarrow A[x]$
- $3 \qquad A[x] \rightleftarrows A[f]$
- $4 \quad j \leftarrow i$
 - for k = i ... f 1:
- 6 **if** A[k] < p:
- \(\(\(\) \(\) \\ \(\) \
- $A[j] \rightleftarrows A[k]$
- $j \leftarrow j + 1$
- 9 $A[j] \rightleftarrows A[f]$
- 10 return *j*

- Aleatorio
- El primer elemento
- El último elemento
- El elemento central
- Mediana entre los 3 anteriores

Partition (A, i, f):

- 1 $x \leftarrow$ índice aleatorio en $\{i, \dots, f\}$
- $p \leftarrow A[x]$
- $A[x] \rightleftarrows A[f]$
- $4 \quad j \leftarrow i$
- 5 **for** k = i ... f 1:
- if A[k] < p:
- $7 A[j] \rightleftarrows A[k]$
- $j \leftarrow j + 1$
- 9 $A[j] \rightleftarrows A[f]$
- 10 return *j*

- Aleatorio
 - El primer elemento
- El último elemento
- El elemento central
- Mediana entre los 3 anteriores
- El que se les pueda ocurrir bajo criterios buenos

ALGORITMO

```
Partition (A, i, f):
       x \leftarrow índice aleatorio en \{i, \dots, f\}
p \leftarrow A[x]
A[x] \rightleftarrows A[f]
     i ← i
     for k = i ... f - 1:
            if A[k] < p:
                 A[j] \rightleftarrows A[k]
                 j \leftarrow j + 1
       A[j] \rightleftarrows A[f]
        return j
10
```

ALGORITMO

```
Partition (A, i, f):
                                                           QuickSort (A, i, f):
       x \leftarrow indice aleatorio en \{i, \dots, f\}
                                                                if i \le f:
    p \leftarrow A[x]
                                                                     p \leftarrow \text{Partition}(A, i, f)
     A[x] \rightleftarrows A[f]
                                                                     Quicksort(A, i, p - 1)
     j ← j
                                                                     Quicksort(A, p + 1, f)
       for k = i ... f - 1:
           if A[k] < p:
                A[j] \rightleftarrows A[k]
                j \leftarrow j + 1
       A[j] \rightleftarrows A[f]
        return j
10
```

VISUALICEMOS EL ALGORITMO

https://visualgo.net/en/sorting

https://www.youtube.com/watch?v=8hEyhs30V1w

Mejor caso → O(n log n)

Mejor caso → O(n log n)

Caso promedio → O(n log n)

Mejor caso → O(n log n)

Caso promedio → O(n log n)

Mejor caso → O(n log n)

Caso promedio → O(n log n)

• Peor caso \rightarrow $0(n^2)$

Mejor caso → O(n log n)

Caso promedio → O(n log n)

• Peor caso \rightarrow $O(n^2)$

MEJOR CASO

MEJOR CASO

• Ocurre cuando los pivotes elegidos dividen los arreglos y sub-arreglos en 2 mitades del mismo tamaño.

$$T(1) = 1$$

 $T(n) = 2 T(n/2) + n$

MEJOR CASO

• Ocurre cuando los pivotes elegidos dividen los arreglos y sub-arreglos en 2 mitades del mismo tamaño.

$$T(1) = 1$$

 $T(n) = 2 T(n/2) + n$

• Es la misma ecuación que MergeSort, por ende la misma demostración

PEOR CASO

PEOR CASO

• Ocurre cuando los pivotes elegidos corresponden a los mínimos o máximos de los arreglos y sub-arreglos.

$$T(1) = 1$$

 $T(n) = T(n-1) + n$

PEOR CASO

• Ocurre cuando los pivotes elegidos corresponden a los mínimos o máximos de los arreglos y sub-arreglos.

$$T(1) = 1$$

 $T(n) = T(n-1) + n$

• Vemos que los llamados solo van eliminando de a 1 elemento con pasadas lineales.

Consideremos 2 elementos cualquiera i y j dentro de nuestro arreglo.
 Definamos Y_{ii} como la cantidad de veces que se comparan estos 2 elementos.

- Consideremos 2 elementos cualquiera i y j dentro de nuestro arreglo.
 Definamos Y_{ii} como la cantidad de veces que se comparan estos 2 elementos.
- Si pensamos en todos los posibles pares, tenemos:

$$\sum_{i=1}^{n-1} \sum_{i+1}^{n} Y_{ij}$$

- Consideremos 2 elementos cualquiera i y j dentro de nuestro arreglo.
 Definamos Y_{ii} como la cantidad de veces que se comparan estos 2 elementos.
- Si pensamos en todos los posibles pares, tenemos:

$$\sum_{i=1}^{n-1} \sum_{i+1}^{n} Y_{ij}$$

• ¿A qué se deben esos subíndices?

- Consideremos 2 elementos cualquiera i y j dentro de nuestro arreglo.
 Definamos Y_{ii} como la cantidad de veces que se comparan estos 2 elementos.
- Si pensamos en todos los posibles pares, tenemos:

$$\sum_{i=1}^{n-1} \sum_{i+1}^{n} Y_{ij}$$

- ¿A qué se deben esos subindices?
- Nos interesa saber la esperanza de esta sumatoria. ¿Por qué?

$$\sum_{i=1}^{n-1} \sum_{i+1}^{n} E(Y_{ij})$$

•	Tengamos e partición.	ар,	nuestro	pivote	tras	1 apl ⁻	icación	del	algoritmo	de

• Tengamos en cuenta a p, nuestro pivote tras 1 aplicación del algoritmo de partición.

Si (i ij</sub> = 0

• Tengamos en cuenta a p, nuestro pivote tras 1 aplicación del algoritmo de partición.

• Si (i \rightarrow el pivote separo para siempre i y j, por ende
$$Y_{ij} = 0$$

• Si (p < i < j) o (i < j < p) → el pivote dejo a i y j en la misma partición, con posibilidad de que se comparen a futuro.

• Tengamos en cuenta a p, nuestro pivote tras 1 aplicación del algoritmo de partición.

• Si
$$(i el pivote separo para siempre i y j, por ende $Y_{ij} = 0$$$

• Si (p < i < j) o (i < j < p) → el pivote dejo a i y j en la misma partición, con posibilidad de que se comparen a futuro.

• Si (p = i < j) o $(i < j = p) \rightarrow$ los elementos fueron comparados, por ende no vuelven a ser comparados. De esta forma $Y_{ij} = 1$

• Ya que Y_{ij} solo toma los valores 0 y 1:

$$E(Y_{ij}) = 0 \cdot Pr(Y_{ij} = 0) + 1 \cdot Pr(Y_{ij} = 1)$$

= $Pr(Y_{ij} = 1)$

• Ya que Y_{ii} solo toma los valores 0 y 1:

$$E(Y_{ij}) = 0 \cdot Pr(Y_{ij} = 0) + 1 \cdot Pr(Y_{ij} = 1)$$

= $Pr(Y_{ij} = 1)$

Para calcular Pr(Y_{ij} = 1) pensemos en el siguiente conjunto
 {i, i+1, i+2, · · ·, j-2, j-1, j}

• Ya que Y_{ii} solo toma los valores 0 y 1:

$$E(Y_{ij}) = 0 \cdot Pr(Y_{ij} = 0) + 1 \cdot Pr(Y_{ij} = 1)$$

= $Pr(Y_{ij} = 1)$

el pivote de 1 / (j-i+1). Recordemos cuando $Y_{ij} = 1$.

• Para calcular Pr(Y_{ii} = 1) pensemos en el siguiente conjunto

 $\{i, i+1, i+2, \cdots, j-2, j-1, j\}$

Ya que Y_{ii} solo toma los valores 0 y 1:

$$E(Y_{ij}) = 0 \cdot Pr(Y_{ij} = 0) + 1 \cdot Pr(Y_{ij} = 1)$$

= $Pr(Y_{ij} = 1)$

• Para calcular Pr(Y_{ii} = 1) pensemos en el siguiente conjunto

- Este arreglo posee j-i+1 elementos, si asumimos una distribución uniforme sobre la elección del pivote, cada elemento tiene una posibilidad de ser el pivote de 1 / (j-i+1). Recordemos cuando Y_{ij} = 1.
- Esto nos deja un valor muy claro, ya que solo hay 2 casos, cuando i es el pivote o cuando j es el pivote, así:

$$Pr(Y_{ij} = 1) = 2 / (j-i+1)$$

(casi) Finalmente vemos que

(casi) Finalmente vemos que

The there we we will see that
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathsf{E}(Y_{i,j})$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\sum_{k=2}^{n} (n+1-k) \cdot \frac{2}{k}$$

$$2 \cdot (n+1) \cdot \left(\sum_{k=2}^{n} \frac{1}{k}\right) - 2 \cdot (n-1)$$

$$2 \cdot (n+1) \cdot \left(\sum_{k=1}^{n} \frac{1}{k}\right) - 4 \cdot n$$

$$2 \cdot (n+1) \cdot \left(\sum_{k=1}^{n} \frac{1}{k}\right) - 4 \cdot n$$

iES LA SUMA ARMÓNICA!

iES LA SUMA ARMÓNICA!

$$\sum_{k=1}^{n} \frac{1}{k}$$

iES LA SUMA ARMÓNICA!

$$\log(n) \le \sum_{k=1}^{n} \frac{1}{k} \le \log(n) + 1$$

Logarítmico

$$\mathcal{O}(n\log(n))$$

