Graph-Based Posterior Regularization for Semi-Supervised Structured Prediction lennifer Gillenwater Luheng He Ben Taskar Penn

{luhe,jengi}@cis.upenn.edu, taskar@cs.washington.edu

GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

Minimize Laplacian-based objective, summing over all neighbors of unlabeled nodes:

$$\operatorname{Lap}(q) = \sum_{a=1}^{N} \sum_{b=L+1}^{N} w_{ab} ||\mathbf{q}_a - \mathbf{q}_b||_2^2$$

STRUCTURED PREDICTION

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z_{\theta}(\mathbf{x})} \exp \left[\sum_{t=1}^{T} \theta^{\top} \mathbf{f}(y_t, y_{t-1}, \mathbf{x}) \right]$$

Minimize negative log-likelihood, summing over all labeled sentences:

$$NLik(p_{\theta}) = -\sum_{i=1}^{\ell} \log p_{\theta}(\mathbf{y}^i \mid \mathbf{x}^i)$$

COMBINATION

Most closely related work: Subramanya et al. (EMNLP 2010) ---Iterative procedure, marginals of CRF initialize graph-propagation (GP), then GP results provide additional training data for CRF learning.

This work: retains efficiency of Subramanya et al (EMNLP 2010) while optimizing an extendible, joint objective.

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$
Couple the methods via KL divergence.

 $(\# \text{ tags})^8$ values, compactly represented by θ in the case of p

q	p_{θ}	The	soldiers	of	the	ninth	run	for	cover
7e-5	2e-5	N	N N	N	N	N	N	N	N
3e-6	8e-6	N	N	N	N	N	N	N	V
•••		• • •							

OPTIMIZATION

p's parameterization makes its update simple:

$$heta$$
 update: $heta' = heta - \eta rac{\partial \mathcal{J}(q,p_{ heta})}{\partial heta}$

q has more freedom: $q^i \in \Delta$ of dimension $(\# \text{ tags})^{(i'\text{s length})}$

standard gradient update:
$$q_{\mathbf{y}}^{i\prime} = \operatorname{proj}_{\Delta} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

-Problem 1: projection is hard $q_{\mathbf{y}}^i \notin \Delta$

-Problem 2: no compact form $(\# \text{ tags})^{(i\text{'s length})}$ values

Standard gradient descent on the primal isn't feasible for q

What about optimizing q in the dual? $\mathcal{J}(q,p_{ heta}) + \gamma \left(\sum q_{\mathbf{y}}^i - 1\right)$

Posterior Regularization (PR) of Ganchev et al. (JMLR 2010) uses the dual, and differs from our objective only in the first term.

This work: $Lap(q) \longrightarrow Standard PR: Linear(m)$

 $\operatorname{Lap}(m)$ is a quadratic function though, so its dual requires an expensive matrix inverse.

EXPONENTIATED GRADIENT

Alternative type of gradient update makes "projection" efficient:

$$q_{\mathbf{y}}^{i \prime} = \frac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^i}\right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] = \exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t, y_{t}, y_{t-1}}^{i}} + \eta \left(\log p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i}) - \log q_{\mathbf{y}}^{i} - 1\right)\right]$$

$$= \exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t, y_{t}, y_{t-1}}^{i}}\right] \underbrace{p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e}_{\mathbf{q}}$$
product of p-factors

 $\operatorname{proj}_{\Delta} \longrightarrow Z_q(\mathbf{x}^i)$, computable via forward-backward

EXTENSION

 $\operatorname{Lap}(q) \longrightarrow$ any convex, differentiable g(m)

Theorem: The EM-like optimization procedure below converges to a local optimum of the joint objective

M-step:
$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

E-step:
$$q_{\mathbf{y}}^{i\,\prime} = \frac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \frac{\partial \mathcal{J}(q,p_{\boldsymbol{\theta}})}{\partial q_{\mathbf{v}}^i}\right]$$

EXPERIMENTS

Part-of-speech tagging

Handwriting recognition

		GP	GP → CRF	CRF	J
ŀ	Mean	17.57	15.07	9.82	4.89
	StdDev	0.30	0.35	0.48	0.42

Code: https://code.google.com/p/pr-graph/