Informe de Laboratorio

Tema: Oscilador con Resistencia Negativa

Cátedra: Teoría de Circuitos II

Año: 2019

Docentes: Ing. Costa, Nicolás. Aux. Consiglio, Dante

Alumnos: Rodriguez, Ana Victoria. Ulloa, Daniel Alejandro

Fecha de Entrega: 11/09/2019

Índice

1. Introducción	2
2. Objetivos	2
3. Modelado Matemático	2
4. Respuesta Temporal	2
5. Barrido Paramétrico	2
6. Conclusión	2

1. Introducción

2. Objetivos

- Modelar e interpretar el Circuito
- Obtener la respuesta temporal de la tensión de salida y graficarla en Mathematica
- lacktriangle Realizar un barrido paramétrico sobre la resistencia R_B y observar las diferentes respuestas.

3. Modelado Matemático

El circuito a modelar se muestra a continuación

Se consideró el amplificador operacional ideal y se analizó el nodo V_n . Se tiene dos corrientes en V_n , la correspondiente al RLC y la que pasa por la resistencia R2.

$$i(t) = i_{r2}(t) \tag{1}$$

Sabiendo que la corriente que pasa por el RLC es la del capacitor dado a que es el elemento con condiciones iniciales, esta es igual a

$$i(t) = C_1 * V_c'(t) \tag{2}$$

y la corriente que pasa por la resistencia R2

$$i_{r2}(t) = \frac{V_n(t) - V_o(t)}{R2}$$
 (3)

Donde las tensiones $V_n(t)$ y $V_p(t)$ son iguales al considerar que el amplificador operacional es ideal, y su vez , que V_p es la tensión de un divisor de tensión formado por las resistencias Ra y Rb y la tensión de salida $V_o(t)$.

$$V_p(t) = \frac{Rb * V_o(t)}{Ra + Rb}$$
(4)

De esta manera se obtiene la primera ecuación de nuestro sistema, a la cual se le aplicó la transformada de Laplace, obteniendo

$$eq1 = C1 * (sV_c(s) - V_c(t)) + \frac{\text{Ra} * V_o(s)}{\text{R2Ra} + \text{R2Rb}}$$
 (5)

Para la segunda ecuación se recorrio la malla que contiene a los componentes R1,R2, C, y L, cuya suma de las tensiones es igual a la tensión en la salida.

$$V_o(t) = V_c(t) + V_l(t) + V_r(t)$$
 (6)

$$V_o(t) = C * L * V_c''(t) + C * (R1 + R2) * V_o'(t) + V_c(t)$$
(7)

Nuevamente se aplico la transformada de Laplace, obtiendo la segunda ecuacion

$$eq2 = V_c(s) - V_o(s) + C1 * (R1 + R2) * (s * V_c(t) - V_0(t)) + L1 * C1 * (s^2 * V_c(t) - s * V_0(t))$$
(8)

4. Respuesta Temporal

5. Barrido Paramétrico

6. Conclusión