SSIE 660: Stochastic Systems Dr. Sung H. Chung

Note 12

Chapter 5. The Exponential Distribution and the Poisson Process

Interarrival and Waiting Time Distributions

Consider a Poisson process
$$P[N(t) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

Time of the first event = T_1

Time elapsed between the $(n-1)^{th}$ and n^{th} event = T_n (for n >1)

Then, the sequence $\{T_1, T_2, ..., T_n\}$ is the sequence of inter arrival times.

Probability distribution of T_n : $f_{T_1}(t_1)$

$$F_{T_1}(t_1) = P[T_1 \le t_1] =$$

$$1 - F_{T_1}(t_1) = P[T_1 > t_1] =$$

$$P[N(t_1) = 0] =$$

$$f_{T_1}(t_1) =$$

Now let us find $f_{T_2}(t_2)$.

$$P[T_2 > t_2] = P\{T_2 > t_2 | T_1\}$$

However,

$$P[T_2 > t_2 | T_1 = t_1] = P[0 \text{ event in } (t_1, t_1 + t_2) | T_1 = t_1]$$

= $P[0 \text{ event in } (t_1, t_1 + t_2)]$
= $e^{-\lambda t_2}$

$$F_{T_2}(t_2) =$$

$$f_{T_2}(t_2) =$$

Proposition 1. T_i , i = 1, 2, ... are independent and identically distributed exponential random variables having mean $1/\lambda$.

Probability distribution of the time until the n^{th} arrival.

Let
$$S_n = \sum_{i=1}^n T_i$$

Probability distribution: $f_{S_n}(t)$

$$f_{S_n}(t) \longleftarrow F_{S_n}(t)$$

$$F_{S_n}(t) =$$

$$f_{S_n}(t) =$$

Further properties of Poisson process:

1. Consider two independent Poisson processes $\{N_1(t), t \geq 0\}$ with rate λ_1 and $\{N_2(t), t \geq 0\}$ with rate λ_2 . Let S_n^1 denote the time of the n^{th} event of the first process and S_m^2 denote the time of the m^{th} event of the second process. Find $P[S_n^1 < S_m^2]$. That is,

P

- We know that the inter arrival times of these processes follow exponential density functions with means $1/\lambda_1$ and $1/\lambda_2$, respectively.
- Let us consider the case when n = 1, m = 1.
- We know from earlier results that

$$P[S_1^1 < S_1^2] =$$

$$P[S_1^2 < S_1^1] =$$

- How about this probability with n = 2, m = 1? That is, 2 events of type 1 should occur before 1 event of type 2. $(P[S_2^1 < S_1^2])$.
- This will happen if 1st event of type 1 occurs before type 2 event and 2nd event of type 1 occurs before type 2 event.

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

because, after the 1^{st} event of type 1 occurs, the process starts all over again.

$$P[S_2^1 < S_1^2] =$$

• Now let us consider the case with n = 2, m = 5.

$$P[S_2^1 < S_5^2]$$

• The events included in the event { 2 events of type 1 before 5 events of type 2 } are:

$$P[Type 1] =$$

$$P[Type 2] =$$

of Type 1

of Type 2

$$P[S_2^1 < S_5^2] =$$

In general,

$$P[S_n^1 < S_m^2] =$$

2. Decomposition of a Poisson process: (Proposition 5.2)

Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ . Suppose that each time an event occurs. It is classified as type 1, 2, ... and k with probabilities $p_1, p_2, ...$ and p_k , respectively. Let $N_i(t)$ be the number of events of type i in time t, i = 1, 2, ...k. Then $\{N_i(t), t \geq 0\}$ is a Poisson process with rate $\lambda * p_i$ and is *independent* of $N_1(t), N_2(t), ..., N_{i-1}(t), N_{i+1}(t), ... N_k(t)$ for i = 1, 2, ..., k. $p_1 + p_2 + \cdots p_k = 1$.

Example 2. Vehicles stopping at a roadside restaurant form a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda = 30$ /hour. Twenty percent of these vehicles are trucks, thirty percent are buses, and the remaining are passenger cars. The number of passengers in a truck is one. the number of passengers in a passenger car is equal to 1, 2, 3, 4, and 5 with probabilities 0.3, 0.3, 0.2, 0.1, and 0.1, respectively. The number of passengers in a bus is more than 20. What is the probability that within a period of 2 hours, four cars with one passenger will stop at the restaurant?

3. Superposition of Poisson processes (Reverse of the decomposition property, not in the book).

Let $\{N_1(t), t \geq 0\}, \{N_2(t), t \geq 0\}, \dots, \{N_k(t), t \geq 0\}$ be k independent Poisson processes with rates $\lambda_1, \lambda_2, \dots \lambda_k$, repectively. Then

$$N(t) = N_1(t) + N_2(t) + \cdots + N_k(t)$$

is a Poisson process with rate

$$\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_k$$

Example 3. Consider the road network pictured below. The inputs into streets A, B and K are Poisson processes (independent) with the rates indicated. The probabilities of a vehicle choosing the indicated directions are written parentheses along the arcs. What is the probability that the number of vehicles using street M within 3 hours is 20?

$$\lambda_E =$$

$$\lambda_I =$$

$$\lambda_L =$$

$$\lambda_M =$$

$$P[N_M(3) = 20] =$$

Conditional Distribution of Arrival Times

To find the conditional p.d.f. of the time at which an event occurred, given that exactly only one event has occurred by time t.

Let *s* be the time at which it occurred.

To find $f_S(s|N(t) = 1)$, it is better to find $F_S(s|N(t) = 1)$.

Probability distribution/Density function known:

- (i) P[N(t) = n]
- (ii) $f_S(s)$

$$F_S(s|N(t)=1] =$$

$$f_S(s|N(t)=1] =$$

Uniform in the range of (0, t).

Each interval of equal length in the interval (0,t) has the same probability of containing the event.