Zusammenfassung Stochastik 3

© Tim Baumann, http://timbaumann.info/uni-spicker

Modell. Gegeben sei ein Parametrisches Modell, d. h.eine Zufallsgröße X, deren Verteilungsfunktion $P_X \in \{P_{\vartheta} \mid \vartheta \in \Theta \subset \mathbb{R}^n\}$ von einem Parameter ϑ abhängt.

Problem. Anhand einer **Stichprobe** $x_1, \ldots, x_n \in \mathbb{R}^1$ von X (d. h. x_1, \ldots, x_n sind Realisierung von iid ZGen $X_1, \ldots, X_n \sim P_X$) ist zu entscheiden, ob die sogenannte **Nullhypothese** $H_0: \vartheta \in \Theta_0 \subset \Theta$ oder eine **Gegenhypothese** $H_1: \vartheta \in \Theta_1 = \Theta \setminus \Theta_0$ angenommen oder abgelehnt werden soll.

Def. Der Stichprobenraum ist $(\mathbb{R}^n, \mathfrak{B}(\mathbb{R}^n), P_{\vartheta} \times \ldots \times P_{\vartheta})$

Terminologie. Die Hypothese H_i heißt einfach, falls $|\Theta_i| = 1$, andernfalls zusammengesetzt.

Def. Ein (nichtrandomisierter) **Test** für H_0 gegen H_1 ist eine Entscheidungsregel über die Annahme von H_0 basierend auf einer Stichprobe, die durch eine messbare Abbildung $\varphi: \mathbb{R}^n \to \{0,1\}$ augedrückt wird und zwar durch

$$\varphi(x_1, \dots, x_n) = \begin{cases} 0 & \text{bei Annahme von } H_0, \\ 1 & \text{bei Ablehung von } H_0. \end{cases}$$

Def. Der Ablehungsbereich oder kritische Bereich von φ ist

$$K_n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_n) = 1\}.$$

Bem. Es gilt $\varphi = \mathbb{1}_{K_n}$.

Def. Ein **Fehler 1. Art** ist eine Ablehnung der Nullhypothese H_0 , obwohl H_0 richtig ist; ein **Fehler 2. Art** ist eine Annahme von H_0 , obwohl H_0 falsch ist.

Def. Die Güte- oder Machtfunktion des Tests φ ist

$$m_{\varphi}: \Theta \to [0,1], m_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta} \varphi(X_1, \dots, X_n)$$

= $\mathbb{P}_{\vartheta}((X_1, \dots, X_n) \in K_n)$
= $(P_{\vartheta} \times \dots \times P_{\vartheta})(K_n)$

Die Gegenwsk. $(1-m_{\varphi}(\vartheta))$ heißt **Operationscharakteristik** von φ .

Bem. Es gilt

$$\begin{split} \mathbb{P}_{\vartheta}(\text{Fehler 1. Art}) &= m_{\varphi}(\vartheta) & \text{für } \vartheta \in \Theta_0, \\ \mathbb{P}_{\vartheta}(\text{Fehler 2. Art}) &= 1 - m_{\varphi}(\vartheta) & \text{für } \vartheta \in \Theta_1. \end{split}$$

Def. Ein Test $\varphi: \mathbb{R}^n \to \{0,1\}$ mit

$$\sup_{\vartheta \in \Theta_0} m_{\varphi}(\vartheta) \le \alpha$$

heißt α -Test o. Signifikanztest zum Signifikanzniveau $\alpha \in (0,1)$. Ein α -Test φ heißt unverfälscht (erwartungstreu, unbiased), falls

$$\inf_{\vartheta \in \Theta_1} m_{\varphi}(\vartheta) \ge \alpha.$$

Situation. Sei nun eine Stichprobenfunktion oder Teststatistik $T: \mathbb{R}^n \to \mathbb{R}^1$ gegeben. Wir wollen einen Test der einfachen Nullhypothese $H_0: \vartheta \in \Theta_0 = \{\vartheta_0\}$ entwickeln.

Def. $K_n^T \subset \mathbb{R}^1$ heißt kritischer Bereich der Teststatistik, falls

$$K_n = T^{-1}(K_n^T).$$

Bem. Es gilt

$$m_{\varphi}(\vartheta_0) = \mathbb{P}_{\vartheta_0} ((X_1, \dots, X_n) \in K_n) =$$

$$= \mathbb{P}_{\vartheta_0} ((T(X_1), \dots, T(X_n)) \in K_n^T) = \int_{K_n^T} f_T(x) \, \mathrm{d}x \le \alpha,$$

wobei f_T die Dichte von $T(X_1, \ldots, X_n)$ unter H_0 ist.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, σ bekannt und $\alpha \in (0, 1)$ vorgegeben. Zum Test von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ wählen wir als Statistik

$$T(X_1,\ldots,X_n) := \frac{\sqrt{n}}{\sigma} (\overline{X}_n - \mu_0) \text{ mit } \overline{X}_n := \frac{1}{n} (X_1 + \ldots + X_n).$$

Unter Annahme von H_0 gilt $T(X_1, \ldots, X_n) \sim \mathcal{N}(0, 1)$. Der Ablehnungsbereich der Statistik ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > z_{1-\alpha/2} \} \quad \text{mit} \quad z_{1-\alpha/2} := \Phi^{-1}(1 - \alpha/2).$$

Für $\alpha = 0,5$ gilt beispielsweise $z_{1-\alpha/2} \approx 1,96$.

Bem. Es gilt

$$\begin{split} t \in (K_n^T)^c &\iff |t| \le z_{1-\alpha/2} &\iff |\overline{X}_n - \mu_0| \le \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \\ &\iff \mu_0 \in \left[\overline{X}_n - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right]. \end{split}$$

Letzteres Intervall wird Konfidenzintervall für μ_0 zum Konfidenzniveau $1-\alpha$ genannt.

Bsp. Sei wieder $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 aber diesmal unbekannt. Zum Testen von $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ verwenden wir

$$\hat{T}(X_1,...,X_n) = \frac{\sqrt{n}}{S_n} (\overline{X}_n - \mu_0), \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Dabei ist S_n die (korrigierte) Stichprobenvarianz. Man kann zeigen, dass $\hat{T}(X_1,\ldots,X_n)\sim t_{n-1}$ unter H_0 . Dabei ist t_m die Student'sche t-Verteilung mit m Freiheitsgraden.

Der Ablehnungsbereich ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > t_{n-1,1-\alpha/2} \}.$$

Bem. S_n^2 und \overline{X}_n sind unabhängig für $n \geq 2$.

Diskussion. • Je kleiner α ist, desto "nullhypothesenfreundlicher" ist der Test. Häufig verwendet wird $\alpha \in \{10\%, 5\%, 1\%, 0, 5\%\}$.

• Einseitige Tests: Die Gegenhypothese zu $H_0: \mu = \mu_0$ ist $H_1: \mu > \mu_0$. Die Nullhypothese wird nur abgelehnt, falls zu große Stichprobenmittelwerte \overline{x}_n vorliegen. Es ist dann $K_n^T = (z_{1-\alpha}, \infty)$.

Def. Es seien $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$. Dann heißt die Summe $X_1^2 + \ldots + X_n^2 \sim \chi_n^2$ **Chi-Quadrat-verteilt** mit n Freiheitsgraden.

Def. Falls $X \sim \mathcal{N}(0,1)$ und $Y_n \sim \chi_n^2$ unabhängig sind, so heißt

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \sim t_n$$

t-verteilt mit n-Freiheitsgraden.

Lem. $\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$

Kor. \hat{T} aus dem zweiten obigen Bsp ist tatsächlich t-verteilt.

Def. Seien $Y_{n_i} \sim \chi_{n_i}^2$, i = 1, 2 zwei unabhängige ZGen. Dann heißt

$$\frac{Y_{n_1}/n_1}{Y_{n_2}/n_2} \sim F_{n_1,n_2}$$

F-verteilt (wie Fisher) mit (n_1, n_2) Freiheitsgraden.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit μ unbekannt. Wir testen $H_0: \sigma = \sigma_0$ vs. $H_1: \sigma \neq \sigma_0$ mit

$$T := \frac{n-1}{\sigma_0^2} S_n^2$$

Unter Annahme von H_0 gilt T χ^2_{n-1} . Falls μ bekannt ist, muss man

$$\widetilde{T} := \frac{n}{\sigma_0^2} \widetilde{S}_n^2, \quad \widetilde{S}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

als Statistik wählen. Unter Annahme von H_0 ist $\widetilde{T} \sim \chi_n^2$.

Bsp. Seien Stichproben $X_1^{(1)}, \ldots, X_{n_1}^{(1)} \sim \mathcal{N}(\mu_1, \sigma_1^2)$ und $X_1^{(2)}, \ldots, X_{n_2}^{(2)} \sim \mathcal{N}(\mu_2, \sigma_2^2)$ gegeben. Wir wollen $H_0: \sigma_1 = \sigma_2$ gegen $H_1: \sigma_1 \neq \sigma_2$ testen. Dazu verwenden wir

$$T = \frac{S_{X^{(1)}}^2}{S_{X^{(2)}}^2}, \quad S_{X^{(j)}}^2 \coloneqq \frac{1}{n-1} \sum_{i=1}^{n_j} \left(X_i^{(j)} - \overline{X}_n^{(j)} \right)^n.$$

Falls H_0 gilt, so ist $T \sim F_{n_1-1,n_2-1}$.

Bsp. Situation wie im letzten Beispiel mit $\sigma_1 = \sigma_2$. Wir testen $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$ mit

$$T = \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} \cdot \frac{\overline{X}_{n_1}^{(1)} - \overline{X}_{n_2}^{(2)}}{S_{n_1, n_2}}, \quad S_{n_1, n_2}^2 = \frac{(n_1 - 1)S_{X^{(1)}}^2 + (n_2 - 1)S_{X^{(2)}}^2}{n_1 + n_2 - 2}$$

Unter H_0 gilt $T \sim t_{n_1+n_2-2}$.

Bsp. Seien $\binom{X_1}{Y_1}, \dots, \binom{X_n}{Y_n} \sim \mathcal{N}\left(\binom{\mu_1}{\mu_2}, \binom{\sigma_1^2 & \sigma_1 \sigma_2 \rho}{\sigma_1 \sigma_2 \rho & \sigma_2^2}\right)$.

Wir testen $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$ mit

$$T := \frac{\sqrt{n-2} \cdot \hat{\rho}_n}{\sqrt{1-\hat{\rho}_n^2}}, \quad \hat{\rho}_n := \frac{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)}{S_{X,n} \cdot S_{Y,n}}.$$

Falls H_0 richtig ist, so gilt $T \sim t_{n-2}$.

Um $H_0: \rho = \rho_0 \in (0,1)$ vs. $H_1: \rho \neq \rho_0$ zu testen, kann man

$$T = \frac{\sqrt{n-3}}{2} \left(\log \frac{1+\hat{\rho}_n}{1-\hat{\rho}_n} - \log \frac{1+\rho_0}{1-\rho_0} \right)$$

verwenden. Für n groß gilt $T \sim \mathcal{N}(0,1)$ unter H_0 .

Lem. Seien (X_n) , (Y_n) zwei Folgen von ZGn über $(\Omega, \mathfrak{A}, \mathbb{P})$ mit $X_n \xrightarrow[n \to \infty]{\mathbb{P}} c = \text{const } (d. \text{h. } \forall \, \epsilon > 0 \, : \, \mathbb{P}(|X_n - c| > \epsilon) \to 0)$ und $Y_n \xrightarrow[n \to \infty]{d} Y \, (d. \text{h. } \mathbb{P}(Y_n \leq y) \to \mathbb{P}(Y \leq y)$ für alle Stetigkeitspunkte $y \, \text{der VF} \, y \mapsto \mathbb{P}(Y \leq y)$). Dann gilt:

$$X_n + Y_n \xrightarrow{d} c + Y$$
, $X_n \cdot Y_n \xrightarrow{d} c \cdot Y$, $Y_n / X_n \xrightarrow{d} Y / c$ (falls $c \neq 0$)
und allgemeiner $f(X_n, Y_n) \xrightarrow{d} f(c, Y)$ für jede Fkt $f \in \mathcal{C}(\mathbb{R}^2, \mathbb{R})$.

Bem. Unabhängigkeit von (X_n) und (Y_n) wird nicht vorausgesetzt!

Situation. Sei $T_n = T(X_1, \dots, X_n)$ eine Statistik. Falls der ZGWS für T_n die Form

$$\sqrt{n}(T_n - \vartheta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, g(\vartheta))$$

besitzt, so benötigen wir für Hypothesentests eine Möglichkeit, die Abhängigkeit der Varianz von Parameter ϑ zu beseitigen. Man sagt, man führt eine varianzstabilisierende Transformation durch. Wir suchen dazu eine stetig diff'bare Funktion $f: \Theta \to \mathbb{R}^1$, sodass

$$\sqrt{n}(f(T_n) - f(\vartheta)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Man zeigt, dass dafür gelten muss:

$$f'(\vartheta) = \frac{1}{\sqrt{g(\vartheta)}}, \text{ also } f(\theta) = \int \frac{d\vartheta}{\sqrt{g(\vartheta)}}.$$

Bspe. • Sei $X \sim \operatorname{Exp}(\mu)$, $\hat{\mu}_n := \frac{1}{\overline{X}_n}$. Dann gilt $\sqrt{n}(\overline{X}_n - \frac{1}{\mu}) \xrightarrow{d} \mathcal{N}(0, g(\frac{1}{\mu})) \quad \text{mit} \quad g(\vartheta) := \vartheta^2.$ $\rightsquigarrow \operatorname{Mit} f(\theta) := \int \frac{\mathrm{d}\vartheta}{\sqrt{g(\vartheta)}} = \int \frac{\mathrm{d}\vartheta}{\vartheta} = \log \theta$

gilt
$$\sqrt{n}(\log(\overline{X}_n - \log(\frac{1}{\mu}))) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1).$$

• Wir wollen eine unbek. Wahrscheinlichkeit p schätzen, etwa durch Wurf einer Münze. Der ZGWS von de-Moirre-Laplace besagt

$$\sqrt{n}(\hat{p}_n - p) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, p(1-p)),$$

wobei \hat{p}_n die relative Häufigkeit ist. Zur Stabilisierung der Varianz verwenden wir nun

$$f(\theta) := \int \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = 2\arcsin(\sqrt{\theta}).$$

Def. Die k-dim (Gaußsche) Normalverteilung $\mathcal{N}_k(m, C)$ mit EW $m \in \mathbb{R}^k$ und einer nichtnegativ-definiten, symmetrischen Kovarianzmatrix $C \in \mathbb{R}^{k \times k}$ ist gegeben durch die Dichte

$$f_{\mathcal{N}_k(m,C)}(x) := ((2\pi)^{k/2} \sqrt{\det(C)})^{-1} \exp(-\frac{1}{2}(x-m)C^{-1}(x-m)^T)$$

Bem. Bei k=2 schreibt man oft

$$C = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix} \quad \text{mit} \quad \rho := \text{Cor}(X_1, X_2).$$

Def. Die charakteristische Fkt eines ZV $X = (X_1, \dots, X_k)^T$ ist

$$\varphi: \mathbb{R}^k \to \mathbb{R}, \ t \mapsto \mathbb{E}e^{i(t|X)} = \int_{\mathbb{R}^k} e^{i(t_1x_1 + \dots + t_kx_k)} \, \mathrm{d}F_X(x_1, \dots, x_k).$$

Bem. Die charakteristische Funktion von $\mathcal{N}_k(m,C)$ ist

$$\varphi_{\mathcal{N}_k(m,C)}(t) = \exp\left(i\sum_{i=1}^k t_i m_i - \frac{1}{2}\sum_{i,j=1}^k t_i c_{ij} t_j\right).$$

Satz. Für $A \in \mathbb{R}^{k \times l}$ gilt $\mathcal{N}_k(m, C) \cdot A = \mathcal{N}_l(m \cdot A, A^T C A)$.

Aufgabe. Prüfe, ob eine vorliegende Stichprobe x_1, \ldots, x_n aus einer bestimmten (stetig oder diskret verteilten) Grundgesamtheit gezogen wurde. Wir testen also $H_0: F = F_0$ vs. $H_1: F \neq F_0$.

Verfahren. Wir teilen zunächst \mathbb{R} in Klassen ein,

$$\mathbb{R} = \bigcup_{i=1}^{s+1} I_j \quad \text{mit} \quad I_j := (y_{j-1}, y_j], \quad \text{wobei}$$
$$-\infty = y_0 < y_1 < \dots < y_s < y_{s+1} = +\infty.$$

Wir setzen

$$\begin{split} h_{n_j} &:= |\{k \in \{1,\dots,n\} \,|\, X_k \in I_j\}| \quad \text{(absolute Klassenhäufigkeit)} \\ p_j^{(0)} &:= \mathbb{P}(X \in I_j) = F_0(y_j) - F_0(y_{j-1}) \quad \text{(Klassenwktn unter H_0)} \end{split}$$

Die Klassenhäufigkeiten sind nun multinomialverteilt:

$$\mathbb{P}(h_{n_1} = n_1, ..., h_{n_{s+1}} = n_{s+1}) = \binom{n}{n_1, ..., n_{s+1}} (p_1^{(0)})^{n_1} \cdots (p_{s+1}^{(0)})^{n_{s+1}}.$$

Als (näherungsweises) Maß für die Abweichung einer empirischen Verteilung von F_0 bei gegebener Klasseneinteilung dient

$$T_{n,s+1} \coloneqq \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)})^2}{np_j^{(0)}}.$$

Satz. $T_{n,s+1} \xrightarrow[n\to\infty]{d} \chi_s^2$

Faustregel. Für $np_j^{(0)} \ge 5$, j = 1, ..., s+1 ist $T_{n,s+1}$ mit guter Näherung χ_s^2 -verteilt.

Entscheidungsregel (χ^2 -Anpassungstest). Die Nullhypothese $H_0: F = F_0$ wird genau dann verworfen, wenn $T_{n,s+1} > \chi^2_{s,1-\alpha}$.

Bemn. • $T_{n,s+1}$ misst eigentlich nicht die Abweichung von der VF F_0 , sondern von der Multinomialverteilung $\mathcal{M}(n,p^{(0)})$.

• Der χ^2 -Anpassungstest gilt als hypothesenfreundlich.

• Es ist üblich, zunächst die Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_r)$ der VF F_0 durch MLE zu schätzen, also durch

$$\begin{split} \hat{\vartheta}_n &\coloneqq \arg\max L(h_{n_1},\dots,h_{n_{s+1}};\vartheta), \quad \text{wobei} \\ L(h_{n_1},\dots,h_{n_{s+1}};\vartheta) &\coloneqq \prod_{i=1}^{s+1} \left(p_j^{(0)}\right)^{h_{n_j}}. \end{split}$$

Es kann (unter "natürlichen" Bedingungen) gezeigt werden, dass

$$T_{n,s+1}(\hat{\vartheta}_n) = \sum_{j=1}^{s+1} \frac{(h_{n_j} - np_j^{(0)}(\hat{\vartheta}_n))^2}{np_j^{(0)}(\hat{\vartheta}_n)} \xrightarrow[n \to \infty]{d} \chi_{s-r}^2,$$

wobei r die Anzahl der geschätzten Parameter ist.

• Manchmal wird die Parameter-Schätzung auch direkt aus der SP x_1, \ldots, x_n ermittelt (z. B. $\tilde{\mu}_n := \frac{1}{n}(x_1 + \ldots + x_n)$ für den MW einer Normalverteilung). In manchen Fällen kann dann auf die Reduktion der Freiheitsgrade von s auf s-r verzichtet werden.

Ziel. Überprüfen, ob die Komponenten X und Y eines zweidim Zufallsvektors $(X,Y)^T$ unabhängig sind.

Verfahren. Seien $I_1, \ldots, I_k \subset \mathbb{R}^{n_1}$ und $J_1, \ldots, J_l \subset \mathbb{R}^{n_2}$ jeweils Familien paarweise disjunkter Mengen mit $\mathbb{P}(X \in I_1 \cup \ldots \cup I_k) = 1$ bzw. $\mathbb{P}(Y \in J_1 \cup \ldots \cup J_l) = 1$. Wir setzen

$$p_{ij} := \mathbb{P}((X,Y) \in I_i \times J_j) = \mathbb{P}(\{X \in I_i\} \cap \{X_j \in J_j\}),$$

$$p_{i\bullet} := \sum_{j=1}^{l} p_{ij} = \mathbb{P}(X \in I_i), \quad p_{\bullet j} := \sum_{i=1}^{k} p_{ij} = \mathbb{P}(Y \in J_j).$$

Wir wollen nun die Nullhypothese $H_0: \forall (i,j): p_{ij} = p_{i\bullet} \cdot p_{\bullet j}$ gegen $H_1: \exists (i,j): p_{ij} \neq p_{i\bullet} \cdot p_{\bullet j}$ testen. Wir zählen dazu die Häufigkeiten einer Stichprobe $(X_1,Y_1), \ldots, (X_n,Y_n)$:

$$h_{ij}^{(n)} := |\{m \in \{1, \dots, n\} \mid (X_m, Y_m) \in I_i \times J_j\}|,$$

 $h_{i\bullet} := \sum_{j=1}^{l} h_{ij}, \quad h_{\bullet j} := \sum_{i=1}^{k} h_{ij}.$

Diese Häufigkeiten werden in einer Kontingenztafel dargestellt:

Wir können den Test nun wie folgt als Spezialfall des χ^2 -Anpassungstests verstehen: Die Nullhypothese ist, dass die Verteilung von (X,Y) das Produkt der Verteilungen von X und Y ist. Dabei schätzen wir zunächst die Verteilungen von X und Y mit

$$L(h_{1\bullet}^{(n)}, \dots, h_{k\bullet}^{(n)}, h_{\bullet 1}^{(n)}, \dots, h_{\bullet l}^{(n)}; p_{1\bullet}, \dots p_{k-1, \bullet}, p_{\bullet 1}, \dots, p_{\bullet, l-1})$$

$$\coloneqq \prod_{i=1}^{k} (p_{i\bullet})^{h_{i\bullet}^{(n)}} \cdot \prod_{j=1}^{l} (p_{\bullet j})^{h_{\bullet j}^{(n)}}.$$

Diese Funktion wird maximal bei $\hat{p}_{i\bullet} = h_{i\bullet}^{(n)}/n$ und $\hat{p}_{\bullet j}^{(n)} = h_{\bullet j}^{(n)}/n$. Als Test-Statistik verwenden wir

$$\hat{T}_{k,l}^{(n)} := \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - n\hat{p}_{i\bullet}\hat{p}_{\bullet j})^{2}}{n \cdot \hat{p}_{i\bullet}\hat{p}_{\bullet j}} = n \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(h_{ij}^{(n)} - h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)}/n)^{2}}{h_{i\bullet}^{(n)} \cdot h_{\bullet j}^{(n)}}$$

$$\frac{d}{n \to \infty} \chi_{kl-1-(k-1)-(l-1)}^{2} = \chi_{(k-1)(l-1)}^{2}$$

Testregel: Die Nullhypothese wird genau dann abgelehnt, falls

$$\hat{T}_{k,l}^{(n)} > \chi_{(k-1)(l-1),1-\alpha}^2$$
.

Bemn. \bullet Zum Testen eines höherdim. ZV (X_1,\ldots,X_r) auf Unabhängigkeit aller Komponenten untersuchen wir die Ereignisse

$$(X_1, \dots, X_r) \in I_{i_1}^{(1)} \times \dots \times I_{i_r}^{(r)}$$
 für $(i_1, \dots, i_r) \in \sum_{j=1}^r \{1, \dots, k_j\}$

für eine passende Intervalleinteilung. Wir verwenden dann

$$\hat{T}_{k_{1},...,k_{r}}^{(n)} := n^{r-1} \sum_{i_{1}=1}^{k_{1}} \cdots \sum_{i_{r}=1}^{k_{r}} \frac{\left(h_{i_{1}\cdots i_{r}}^{(n)} - n^{-r+1} \prod_{s=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}^{(n)}\right)^{2}}{\prod_{s=1}^{r} h_{\bullet \cdots i_{j}\cdots \bullet}}$$

$$\xrightarrow{\frac{d}{n\to\infty}} \chi_{k_{1}\cdots k_{s}-k_{1}-\cdots -k_{r}+r-1}^{2}$$

 $\bullet\,$ Im Spezialfall $k\!=\!l\!=\!2$ (Vierfeldertafel) hat die Statistik die Form

$$\hat{T}_{2,2}^{(n)} = n \cdot \frac{\left(h_{11}^{(n)} \cdot h_{22}^{(n)} - h_{12}^{(n)} \cdot h_{21}^{(n)}\right)^2}{h_{21}^{(n)} \cdot h_{22}^{(n)} \cdot h_{12}^{(n)} \cdot h_{22}^{(n)}} \xrightarrow[n \to \infty]{d} \chi_n^2 = \mathcal{N}^2(0,1)$$

und wir lehnen H_0 genau dann ab, wenn $\hat{T}_{2,2}^{(n)} > \chi_{1,1-\alpha}^2 = z_{1-\alpha/2}^2$.

Situation. Sei $X_1, \ldots, X_n \sim F$ eine math. SP. Wir sortieren die dabei gezogenen Werte aufsteigend: $X_{1:n} \leq X_{2:n} \leq \ldots \leq X_{n:n}$. Dann heißt $\hat{F}_n(x) := 1/n \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_{i:n})$ empirische VF.

Satz (Gliwenko, Hauptsatz der math, Statistik).

$$\sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - F(x)| \xrightarrow[n \to \infty]{\mathbb{P}\text{-f. s.}} 0$$

Lem. Sei F stetig. Dann ist die Verteilung von $\sup_{x} |\hat{F}_n(x) - F(x)|$ nicht von der VF F abhängig. Genauer:

$$\sup_{x} |\hat{F}_{n}(x) - F(x)| \stackrel{d}{=} \sup_{0 \le y \le 1} |\hat{G}_{n}(y) - G(y)|,$$

wobei
$$\hat{G}_n(y) := 1/n \sum_{i=1}^n \mathbb{1}_{[0,y]}(U_i)$$
 für $U_1, \dots, U_n \sim \mathcal{R}[0,1]$ i. i. d.

Kor. Sei F stetig, $n \ge 1$. Dann ist die VF

$$K_n(z) := \mathbb{P}(\sqrt{n} \cdot \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \le z)$$

unabhängig von F.

Satz. Falls F stetig ist, gilt

$$K_n(z) \xrightarrow[n \to \infty]{} K(z) := \sum_{k=-\infty}^{\infty} (-1)^k \exp(-2k^2 z^2).$$

Def. Dabei ist K die VF der Kolmogorow-Verteilung.

Entscheidungsregel (Kolmogorow-(Smirnow-)Test).

Wir testen $H_0: F=F_0$ gegen $H_1: F\neq F_1$. Dabei muss F_0 eine stetige VF sein. Wir verwenden dazu

$$T_n := \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)|.$$

Wir lehnen H_0 genau dann ab, wenn $T_n > K_{1-\alpha}$.

Bemn. • Für kleine $n \in \mathbb{N}$ sollte man $K_{n,1-\alpha}$ verwenden.

- Für große z ist $K(z) \approx 1 2 \exp(-2z^2)$, also $K_{1-\alpha} \approx \sqrt{-1/2 \cdot \log(\alpha/2)}$ für α klein.
- Das Supremum in T_n liegt bei einer Sprungstelle von \hat{F}_n .

Entscheidungsregel. Um $H_0: F = F_0$ gegen $H_1: F > F_0$ mit

$$T_n^+ := \sqrt{n} \cdot \sup_{x \in \mathbb{R}} (\hat{F}_n(x) - F(x)).$$

Es gilt

$$K_n^+(z) := \mathbb{P}(T_n^+ \le z) \xrightarrow[n \to \infty]{K} (z) := K^+(z) := 1 - \exp(-2\max(0, z)^2)$$

Wir lehnen H_0 ab, falls $T_n^+ > K_{1-\alpha}^+$.

Achtung. Der Kolmogorow-Test kann nicht verwendet werden, wenn die Parameter von F_0 aus der Stichprobe geschätzt werden.

Analoges Vorgehen beim Cramér-von-Mises-Test

Def.

$$\omega_n^2(g) = n \int_{\mathbb{R}^1} g(F(x)) (\hat{F}_n(x) - F(x))^2 dF(x),$$

heißt gewichtete Cramér-von-Mises-Statistik oder ω^2 -Statistik. wobei $g:[0,1] \to [0,\infty]$ eine Gewichtsfunktion ist.

q(x) = 1, q(x) = 1/x(1-x) Anderson-Darling-Statistik

 \mathbf{Satz} . Sei F stetig. Dann ist

$$\omega_n^2(g) \stackrel{d}{=} n \int_0^1 g(u) \left(\hat{G}_n(u) - u \right)^2 du \xrightarrow[n \to \infty]{} \int_0^1 g(u) (\dot{B}(u))^2 du =: \omega^2(g).$$

Entscheidungsregel. Wir testen $H_0: F = F_0$ vs. $H_1: F \neq F_0$ anhand der CvM-Statistik. Wir lehnen H_0 genau dann ab, wenn $\omega_n^2(g) > \omega_{1-\alpha}^2(g)$.

Situation. Gegeben seien zwei unabhängige SPn $X_1,\ldots,X_n\sim F$ i.i.d. und $X_1^*,\ldots,X_m^*\sim F^*$ i.i.d., wobei F und F^* stetig sind. Wir wollen testen, ob $H_0:F=F^*$ oder $H_1:F\neq F^*$ gilt, indem wir die empirischen VFen \hat{F}_n und \hat{F}_m^* vergleichen. Dazu verwenden wir

$$T_{m,n} \coloneqq \sqrt{\frac{m \cdot n}{m+n}} \sup_{x \in \mathbb{R}^1} |\hat{F}_n(x) - \hat{F}_n^*(x)|$$

Satz. Falls $F = F^*$ stetig ist, so gilt

$$T_{m,n} \stackrel{\mathrm{d}}{=} \sqrt{\frac{m \cdot n}{m+n}} \sup_{0 \le u \le 1} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[0,u]}(U_i) - \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{[0,U]}(U_j^*) \right|, \text{ wobei}$$

$$X_i \stackrel{\mathrm{d}}{=} F^-(U_i), \ i = 1, \dots, n, \ X_i^* \stackrel{\mathrm{d}}{=} F^{*,-}(U_i^*), \ j = 1, \dots, m$$

Die Quantilfunktion ist

$$F^{-}(t) = \begin{cases} \min\{x \in \mathbb{R}^1 \mid F(x) \ge t\} & 0 < t \le 1, \\ \lim_{t \to 0} F^{-}(t) & t = 0 \end{cases}$$

Bem. Asymptotik von $T_{n,m}$ für $m, n \to \infty$

$$X_{m,n}(u) \coloneqq \sqrt{\tfrac{m \cdot n}{m+n}} \left(\hat{G}_n(u) - \hat{G}_m^*(u) \right), \quad 0 \le u \le 1.$$

$$\mathbb{E}X_{m,n} = \sqrt{\frac{m \cdot n}{m+n}} \left(\mathbb{E}\mathbb{1}_{[0,u]}(U_1) - \mathbb{E}\mathbb{1}_{[0,u]}(U_1^*) \right) = 0$$

$$\operatorname{Var}(X_{m,n}) = \frac{m+n}{m \cdot n} \left(\mathbb{E}(\hat{G}_n(u))^2 + \mathbb{E}(\hat{G}_m(u))^2 - 2\mathbb{E}\hat{G}_n^*(u) \cdot \mathbb{E}\hat{G}_m^*(u) \right)$$

Genauso wie oben ergibt sich

$$(X_{m,n}(u_1),\ldots,X_{m,n}(u_k)) \xrightarrow[n\to\infty]{d} \mathcal{N}_k(0,\Sigma) \quad \text{mit} \quad \Sigma_{ij} = u_i \wedge u_j - u_i \cdot u_j$$

Daraus folgt die schwache Konvergenz

$$X_{m,n}(-) \xrightarrow[n \to \infty]{d} \dot{B}(-)$$

im Skorodoch-Raum $\mathcal{D}[0,1]$

Somit
$$T_{m,n} = \sup_{0 \le u \le 1} |X_{m,n}(u)| \xrightarrow[n \to \infty]{d} \sup_{0 \le u \le 1} |\dot{B}(u)| \sim K$$

Entscheidungsregel. Die Nullhypothese $F = F^*$ wird abgelehnt, falls $T_{m,n} > k_{1-\alpha}$.