ДОКЛАДЫ

АКАДЕМИИ НАУК СССР

1956

TOM 108

Nº2

ИЗДАТЕЛЬСТВО АКАДЕМИИ НАУК СССР МОСКВА

MATEMATUKA

А. А. МУЧНИК

НЕРАЗРЕШИМОСТЬ ПРОБЛЕМЫ СВОДИМОСТИ ТЕОРИИ АЛГОРИТМОВ

(Представлено академиком М. А. Лаврентьевым 27 II 1956)

В данной заметке дается решение проблемы сводимости рекурсивно перечислимых множеств (р. п. м.), поставленной в 1944 г. Постом (1).

1°. Определение 1. Набором мы называем конечную или бесконечную последовательность чисел *.

Определение 2. Предикатом мы называем набор, состоящий только из единиц и нулей.

Определение $\vec{3}$. Числа, входящие в набор h, называются компонентами h.

Набор интерпретируется как функция **, заданная на всех числах до $N \leqslant \infty$. Ю. Медведев в (²) рассмотрел функциональное представление (ф. п.) операторов, рассматриваемых на всюду определенных функциях (т. е. бесконечных наборах). Для всякого оператора T существует функция δ (w), определяющая преобразование Δ наборов в наборы, совпадающее с T на бесконечных наборах, преобразуемых оператором T в наборы (Медведев). Берется геделевская нумерация упорядоченных пар конечных наборов. Функция δ (w) определяет преобразование набора v в набор v0 (v0) таким образом: v1 (v0) пара наборов с геделевским номером v2 (v0); скажем, что набор v3 является часть ю набора v4, если один из этих является частью другого; если v4 (v0) — часть набора v4, то v7, и всякая часть v8 является частью в некотором наборе v7 (v0) таком, что v7 и всякая часть v8 является частью в некотором наборе v3 управляется часть v4. Будем говорить, что функция v3 (v0) реализует v4 п. оператора v7.

Ю. Медведев доказал, что для всякого частично рекурсивного оператора (ч. р. о.) T существует примитивно рекурсивная функция (п. р. ф.)

 $\delta(w)$, реализующая его ф. п. (2).

Аналогичные утверждения справедливы для предикатов и операторов, определенных на предикатах и преобразующих их в предикаты (Π -опе-

раторы, Π -о).

 2° . Введем соотношение \gg для наборов: $f \gg h$, если это соотношение выполнено для тех соответствующих компонент f и h, которые определены и в f, и в h. \tilde{h} означает предикат, полученный из коночного предиката h продолжением нулями; \tilde{h} совпадает с h для бесконечных предикатов h. Предикат ξ из $h - [h]_{\xi}$ есть часть \tilde{h} , составленная из ξ компонент \tilde{h} .

Определение 4. Дизъюнкцией предикатов f_1 , f_2 , ..., f_s , ... $f_1 \bigvee f_2 \bigvee ... \bigvee f_s \bigvee ... - \bigvee_{s=1}^{\infty} f_s$ называется предикат f, i-я компонента которого — 0, если во всех предикатах f_s i-я компонента — 0; —1, если в не-

^{*} Под числом в заметке подразумевается натуральное число или 0. ** Рассматриваемые в заметке функции принимают значения чисел.

котором f_8 *i-я* компонента — 1; в противном случае *i-я* компонента fнеопределена.

Определение 5: Отрицание (отр.) 0-1, отр. 1-0, отр. предиката η — предикат $\exists \eta$, все компоненты которого суть отр. соответствующих компонент η .

Определение 6. Сцеплением предиката u по α (число) с предикатом $f(u, f)_{\alpha} = g$ называется предикат длины f, т. е. содержащий столько же компонент, совместный с $[u]_{\alpha}$ и такой, что компоненты g с номерами $> \alpha$ (если они определены) являются отр. соответствующих компонент f.

3°. Легко доказать существование универсального ф. п. для ч. р. Π -о, т. е. п. р. ф. $\varphi(x, w)$ такой, что ф. п. всякого ч. р. Π -о T реализуется функцией $\varphi_r(w) = \varphi(x, w)$. Π -о T обозначим T_x .

Пересчитаем пары чисел (x, w) п. р. ф. x(t) и w(t).

[f(t), f'(t)] — упорядоченная пара предикатов с геделевским номером

 $\psi[x(t), w(t)]; m(t)$ — длина f(t); m'(t) — длина f'(t).

 $:4^{\circ}$. Теорема 1. Существуют р.п. нерекурсивные множества H_{1} и H_2 такие, что для всех х $T_x(h_1) \neq h_2$ и $T_x(h_2) \neq h_1$, где h_1 и h_2 — характеристические функции $(x. \phi.)$ H_1 и H_2 , соответственно, т. е. H_1 и H_2 не сводятся друг к другу ч.р. операторами.

Определим р. п. последовательность чисел $r_0 < r_1 < r_2 < \ldots < r_{2k} < < r_{2k+1} < \ldots$ и конечных предикатов $h_1(0), h_1(1), \ldots, h_1(2k), \ldots;$ $h_2(0), h_2(1), \ldots$ Примем за $r_0 = 0; h_1(0) = f(0); h_2(0) = \bigcap_i f'(0).$

Пусть построены числа $r_0 < r_1 < \ldots < r_{2k}$ и предикаты $h_1(0), h_1(1), \ldots$ $h_1(2k); h_2(0), h_2(1), \ldots, h_2(2k).$

Тогда $r_{2k+1} = \mu t^*$, удовлетворяющее следующим условиям:

I,1. $t > r_{2h}$.

I,2. $f(t) \gg h_2(2k)$.

- f(t) совместен с $[h_2(2k)]_{\alpha(t)}$, где $\alpha(t)=\max{\{\alpha_1(t), \alpha_2(t)\}}$, $\alpha_1(t) = \max\{m(r_i)\} + 10, \ \alpha_2(t) = \max\{m'(r_i)\} + 10, \ a \ r_i = \max\{r_i\}.$
 - I,4. Предикат $h_1(2k) \bigvee (h_1(2k), f'(t))_{\alpha(t)}$ несовместен с f'(t).
 - $\max_{\substack{x(r_{2i+1})=x(t)}} \{r_{2i+1}\} =$ I,5. Либо $x(t) \neq x(r_{2i+i})$ (i < k) либо, обозначая

 $=r_{2m+1},\;\;f\left(r_{2m+1}
ight)\;\;$ несовместен с $h_{2}\left(2k
ight),\;\;\;$ либо $f'\left(r_{2m+1}
ight)\;\;$ совместен с $h_1(2k)$. За $h_2(2k+1)$ примем $h_2(2k) \bigvee f(r_{2k+1})$, за $h_1(2k+1)$ — предикат $h_1(2k)\bigvee(h_1(2k),f'(r_{2k+1}))_{\alpha(r_{2k+1})}.$

 $r_{2k+2} = \mu t$, удовлетворяющее условиям II,1—II,5, получающимся из I, 1 - I, 5, если заменить в них r_{2k} на r_{2k+1} , $h_1(2k)$ на $h_2(2k+1)$, $h_2(2k)$ на $h_1(2k+1)$, r_{2i+1} на r_{2i+2} , r_{2m+1} на r_{2m+2} .

Положим $h_1(2k+2) = h_1(2k+1) \lor f(r_{2k+2}), h_2(2k+2) = h_2(2k+1) \lor$

 $\bigvee (h_2(2k+1), f'(r_{2k+2}))_{\alpha(r_{2k+2})}$.

Построенные последовательности являются вычислимыми, ибо условия I, 1-5 и II, 1-5 эффективно проверяются. Можно доказать, что эти последовательности р. п.

Поэтому наборы $h_1=\bigvee_{l=0}^\infty h_1\left(l\right)$ и $h_2=\bigvee_{l=0}^\infty h_2\left(l\right)$ — х. ф. р. п. м. H_1 и H_2 , соответственно.

Доказательство теоремы 1 вытекает из лемм 1-7.

 Π емма 1. Для всякого числа x_0 существует не более конечного множества корней уравнения $x(r_i) = x_0$.

Доказательство проводится индукцией по x_0 .

^{*} μt означает наименьшее t.

Лемма 2. x_0 — некоторое число (произвольное). Если s — наименьшее число такое, что $x(r_l) \gg x_0$ при l > s, то существует не более одного четного u не более одного нечетного l > s таких, что $x(r_l) = x_0$.

Лемма 3. Пусть s определено из условий леммы 2. Тогда предикат $[h_1(s)]_{\lambda_1(s)+10}$ совместен c h_1 , a $[h_2(s)]_{\lambda_2(s)+10}$ совместен c h_2 , c0 $h_2(s)$ — длина $h_1(s)$, a $h_2(s)$ — длина $h_2(s)$.

Отсюда следует:

 Π емма 4. H в h_1 , и в h_2 бесконечно много нулей (т. е. дополнения κ H_1 и κ H_2 бесконечны).

 $\bar{\Pi}$ е м м а $\bar{}$ 5. Последовательность $r_0 < r_1 < \ldots < r_l < \ldots$ бесконечна.

 Π емма 6. H_1 и H_2 — гиперпростые множества (1).

Лемма 7. $T_x(h_1) \neq h_2$ и $T_x(h_2) \neq h_1$ при любом x.

Теорема 1 может быть значительно усилена.

Теорема 2. Существует р. п. последовательность гиперпростых р. п. м. $H_1, H_2, \ldots, H_n, \ldots$, члены которой попарно не сводимы друг к другу ч. р. о.

T е о р е м а 3. Каково бы ни было р. n. нерекурсивное множество G, существует гиперпростое р. n. м. H, которое сводится к G и к которому

G не сводится ч.р.о.

5°. Дальнейшие результаты (как и предыдущие) относятся к исчис-

лению массовых проблем, созданному Ю. Медведевым (2).

Следуя Медведеву, назовем массовой проблемой A всякий класс функций (всюду определенных) $\{A\}$ и скажем, что проблема A сводится к проблеме B ($A \leq B$), если существует ч. р. о. T, преобразующий всякую функцию класса $\{B\}$ в функцию класса $\{A\}$. Если $A \leq B$, но $B \nleq A$, то запишем, что $A \prec B$. Если $A \nleq B$ и $B \nleq A$, то назовем A и B несравнимыми проблемами ($A \times B$).

Рассмотрим проблему A_{ψ} продолжаемости ч. р. функции $\psi(n)$, состоящую из всех функций, совпадающих с $\psi(n)$ в точках, где $\psi(n)$ определена.

Пусть проблема В состоит из одной функции.

Теорема 4. Если проблема B сводится κ A_{ψ} , то B — разрешимая проблема.

Следствие. Если проблема разрешимости множества E сводится к какой-нибудь проблеме отделимости р.п.м., то множество E рекурсивно.

Теорема 5. Для всякой пары рекурсивно (р.)-неотделимых р. п. м. E_1 и E_2 существует р. п. нерекурсивное множество H такое, что проблема отделимости E_1 и E_2 не сводится к проблеме разрешимости H.

Теорема 6. Существует р.п. последовательность попарно несравни-

мых проблем отделимости р. п. множеств.

Теорема 7. Для всякой неразрешимой проблемы $A_{E_1E_2}$ отделимости p.n. м. E_1 и E_2 существует проблема отделимости $A_{H_1H_2}$ p-неотделимых p.n. м. H_1 и H_2 такая, что $A_{E_1E_2} \not \leq A_{H_1H_2}$.

6°. Метод, примененный к доказательству теорем 1, 2, 5—7, позволяет исследовать целый ряд задач исчисления массовых проблем и некоторые

другие вопросы.

Обозначая A_n -м. рекурсивно проективное (р. пр.) множество класса n, B_n -ф.— р. пр. функцию класса n * (3), назовем B_n -оператором оператор T, ф. п. которого реализует некоторая B_n -ф. δ (w). Проблему M назовем B_n -разрешимой, если она содержит хотя бы одну B_n -ф. B_n -м.— множество, х. ф. которого B_n -ф.

Теоремы 1-3, 5-7 остаются в силе, если заменить в них р. п. м. на A_n -м., а сводимость ч. р. о. на сводимость B_n -операторами, причем доказательства обобщенных теорем по методу сходны с доказательствами теорем 1-3, 5-7.

Теорема 4 также обобщается при замене ч.р.ф. на частичную B_n -ф.

^{*} Имеется в виду классификация Клин Мостовского.

(ч. B_n -ф.), т. е. на B_n -ф., быть может, не всюду определенную, а разрешимости — на B_n -разрешимость.

Сводимость B_n -операторами — B_n -сводимость — является уточнением интуитивного представления о сводимости проблем при условии разрешимости в с е х A_{n-1} -м. или, что то же самое, перечислимости в с е х A_n -м. Можно построить такое A_{n-1} -м. E (у н и в е р с а л ь н о е), что если проблема M B_n -сводится к проблеме L, то $M \le L_1$, где L_1 — коньюнкция (2) проблемы L и проблемы разрешимости E ($L \cup A_E$). Обратно, если $M \le L \cup A_E$, то проблема M B_n -сводится к L. Для того чтобы множество E обладало указанными свойствами, необходимо и достаточно, чтобы оно было B_n -м. и чтобы всякое B_n -м. сводилось к нему.

Московский государственный педагогический институт им. В. И. Ленина

Поступило 20 II 1956

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. L. Post, Bull. Am. Math. Soc., **50**, 284 (1944). ² Ю. Медведев, Диссертация, МГУ, 1955. ³ S. C. Kleene, Trans. Am. Math. Soc., **53** (1943). ⁴ J. C. E. Dekker, Proc. Am. Math. Soc., **5**, № 5 (1954).

Doklady AN SSSR 1956. Volume 108, No. 2

MATHEMATICS

A[lbert] A. MUCHNIK

NEGATIVE ANSWER TO THE REDUCIBILITY PROBLEM IN THE THEORY OF ALGORITHMS

(Submitted by academician M.A. Lavrentiev, February 27, 1956)

In this note we provide a solution to the problem of reducibility for recursively [computably] enumerable sets posed in 1944 by Post [1].

1. DEFINITION 1. A *tuple* is a finite or an infinite sequence of numbers.¹ DEFINITION 2. A *predicate* is a tuple that contains only zeros and ones.

DEFINITION 3. Numbers that appear in a tuple h are called *components* of h.

A tuple is considered as a function² defined on numbers smaller than some $N \leq \infty$. Y[ury] Medvedev in [2] considered a functional representation of operators acting on total functions (i.e., infinite tuples). For every operator T there exists a function $\delta(w)$ that determines a transformation Δ acting on tuples; this transformation coincides with T on infinite tuples that are mapped by T into tuples (Medvedev). Consider the Gödel numbering of ordered pairs of finite tuples. The function $\delta(w)$ defines the corresponding mapping T of a tuple η into a tuple λ (so $\Delta(\eta) = \lambda$) as follows. Let [d(w), d'(w)] be a pair of tuples that has Gödel number $\delta(w)$. We say that a tuple d is a d a part of a tuple d if every component of d exists (and is the same) in d is a part of the tuple d is a part of them is a part of the other one; if d(w) is a part of the tuple d is a part of d appears as a part of some d'(w) such that d(w) is a part of d. We say that the function d appears a functional representation of d.

Yu. Medvedev has shown that for every partial recursive operator T there exists a primitive recursive function $\delta(w)$ that represents it [2].

A similar statements are true for predicates and operators transforming predicates into predicates (Π -operators).

2. Let us introduce are relation \geqslant on tuples; namely, $f \geqslant h$, if this inequality holds component-wise for the components of the tuples that are defined both in f and h [and have the same index]. By \widetilde{h} we denote an infinite tuple obtained from h by adding trailing zeros; if h is infinite, we have $\widetilde{h} = h$.

¹By numbers we mean natural numbers, including 0.

²In this paper we consider functions whose arguments and values are numbers.

DEFINITION 4. The *disjunction* of predicates $f_1, f_2, ..., f_s, ...$ (denoted by $f_1 \lor f_2 \lor f_3 \lor ... \lor f_s \lor ... \lor f_s \lor ... \lor f_s \lor ...$ is a predicate f whose ith component is

- 0, if all the predicates f_s have *i*th component 0;
- 1, if some predicate f_s has ith component 1;
- undefined otherwise [i.e., if some predicates have *i*th component 0 and others are undefined there].

DEFINITION 5. The *negation* of a predicate η is a predicate $\neg \eta$ whose components are negations of the corresponding components of η .

DEFINITION 6. A *mixture* [сцепление] of a predicate u with a predicate f at point α (where α is a number), denoted by $g = (u, f)_{\alpha}$, is a predicate that has the same length as f that is compatible with $[u]_{\alpha}$ [=the prefix of u of length α] and whose components with indices greater than α are the negations of the corresponding components of f. [We start as in u and after α terms switch to the negation of f.]

3. It is easy to show there exists a *universal* functional representation for partial recursive operators on predicates, i.e., a primitive recursive function $\varphi(x, w)$ such that every partial recursive operator T has a functional representation by a function $\varphi_x(w) = \varphi(x, w)$. The latter operator is denoted by T_x .

Let two primitive recursive function x(t) and w(t) enumerate all pairs (x, w) of numbers. Let [f(t), f'(t)] be an ordered pair of predicates with Gödel number $\varphi[x(t), w(t)]$; let m(t) and m'(t) be the lengths of f(t) and f'(t) respectively.

4. THEOREM 1. There exist a recursive enumerable non-recursive sets H_1 and H_2 such that $T_x(h_1) \neq h_2$ and $T_x(h_2) \neq h_1$ for all x; here h_1 and h_2 are characteristic functions of H_1 and H_2 respectively. In other words, H_1 and H_2 are not reducible to each other by partial recursive operators.

Let us construct a recursively enumerable sequences of numbers $r_0 < r_1 < r_2 < \ldots < r_{2k} < r_{2k+1} < \ldots$ and finite predicates $h_1(0), h_1(1), \ldots, h_1(2k), \ldots$, and $h_2(0), h_2(1), \ldots, h_2(2k)$ in the following way. We let $r_0 = 0, h_1(0) = f(0), h_2(0) = \neg f'(0)$.

Assume that the numbers $r_0 < r_1 < ... < r_{2k}$ are already constructed, as well as the predicates $h_1(0), h_1(1), ..., h_1(2k)$ and $h_2(0), h_2(1), ..., h_2(2k)$.

Then r_{2k+1} is the minimal number t that satisfies the following requirements:

I, 1. $t > r_{2k}$.

I,2. $f(t) \ge h_2(2k)$.

I,3. f(t) is consistent with $[h_2(2k)]_{\alpha(t)}$, where

$$\alpha(t) = \max\{\alpha_1(t), \alpha_2(t)\},\$$

$$\alpha_1(t) = \max_{r_l \leqslant r_j} \{m(r_l)\} + 10,\$$

$$\alpha_2(t) = \max_{r_l \leqslant r_j} \{m'(r_l)\} + 10,\$$

$$r_j = \max_{r_i < t, \ x(r_i) \leqslant x(t)} \{r_i\}.$$

- **I,4.** Predicate $h_1(2k) \vee (h_1(2k), f'(t))_{\alpha(t)}$ is inconsistent with f'(t).
- **I,5.** Either $x(t) \neq x(r_{2i+1})$ (i < k), or, denoting

$$\max_{x(r_{2i+1})=x(t), \ r_{2i+1} < t} \{r_{2i+1}\}$$

by r_{2m+1} , we have $f(r_{2m+1})$ inconsistent with $h_2(2k)$, or $f'(r_{2m+1})$ is consistent with $h_1(2k)$. We let $h_2(2k+1)$ to be $h_2(2k) \vee f(r_{2k+1})$, and let $h_1(2k+1)$ be the predicate $h_1(2k) \vee (h_1(2k), f'(r_{2k+1}))_{\alpha(r_{2k+1})}$.

We also let r_{2k+2} be the minimal value of t that satisfies the conditions II,1–II,5 that are obtained from I,1–I,5 by replacing r_{2k} by r_{2k+1} , $h_1(2k)$ by $h_2(2k+1)$, $h_2(2k)$ by $h_1(2k+1)$, r_{2i+1} by r_{2i+2} , r_{2m+1} by r_{2m+2} .

Let

$$h_1(2k+2) = h_1(2k+1) \lor f(r_{2k+2}),$$

$$h_2(2k+2) = h_2(2k+1) \lor (h_2(2k+1), f'(r_{2k+2}))_{\alpha(r_{2k+2})}.$$

The sequences we constructed are computable because the conditions I,1–5 and II,1–5 can be checked effectively. One can show that these sequences are recursively enumerable.

Therefore the tuples $h_1 = \bigvee_{l=0}^{\infty} h_1(l)$ and $h_2 = \bigvee_{l=0}^{\infty} h_2(l)$ are characteristic functions of some recursively enumerable sets H_1 and H_2 . Now the proof of Theorem 1 can be finished by using the following lemmas 1–7.

LEMMA 1. For every number x_0 the equation $x(r_i) = x_0$ has only finitely many solutions.

Proof: induction over x_0 .

LEMMA 2. Let x_0 be an arbitrary number. If s is the minimal number such that $x(r_l) \ge x_0$ for all l > s, there is at most one even and at most one odd number l > s such that $x(r_l) = x_0$.

LEMMA 3. Assume that s satisfies the conditions from Lemma 2. Then the predicate $[h_1(s)]_{\lambda_1(s)+10}$ is consistent with h_1 , and the predicate $[h_2(s)]_{\lambda_2(s)+10}$

is consistent with h_2 , where $\lambda_1(s)$ and $\lambda_2(s)$ are the lengths of $h_1(s)$ and $h_2(s)$ respectively.

This implies that:

LEMMA 4. Both h_1 and h_2 contain infinitely many zeros; in other words, complements to H_1 and H_2 are infinite.

LEMMA 5. The sequence $r_0 < r_1 < ... < r_l < ...$ is infinite.

LEMMA 6. The sets H_1 and H_2 are hypersimple sets, see [1].

LEMMA 7. We have $T_x(h_1) \neq h_2$ and $T_x(h_2) \neq h_1$ for every x.

A much stronger version of Theorem 1 can be proven:

THEOREM 2. There exists a recursively enumerable sequence of hypersimple recursive enumerable sets $H_1, H_2, ...$ such that any two sets in this sequence are not reducible to each other by a partial recursive operator.

THEOREM 3. For every recursive enumerable non-recursive set G there exists a hypersimple recursively enumerable set H that is reducible to G but G is not reducible to H by a partial recursive operator.

5. The following results deal with *mass problems* in the sense of Yu. Medvedev [2].

Following Medvedev, a mass problem A is an arbitrary class of total functions. We say that problem A is reducible to problem B (notation: $A \leq B$) if there exists a partial recursive operator that maps every function in B to some function in A. If $A \leq B$ but not $B \leq A$, we write A < B. If $A \npreceq B$ and $B \npreceq A$, the problems A and B are called *incomparable* mass problems.

For a partial function ψ we consider an *extension* mass problem A_{ψ} that consists of all total extensions of ψ (total functions that coincide with ψ at the points where ψ is defined). Let B be a mass problem that contains only one function.

THEOREM 4. If B is reducible to A_{ψ} , then the problem B is decidable [i.e., the only element of B is computable].

COROLLARY. If a decision problem for some set E is reducible to the separation problem for some pair of recursively enumerable sets, then E is decidable.

THEOREM 5. For every pair of recursively inseparable recursively enumerable sets E_1 and E_2 there exists a recursively enumerable non-recursive set H such that the separation problem for E_1 and E_2 is not reducible to the decision problem for H.

THEOREM 6. There exists a recursively enumerable sequence of mutually incomparable separation problems for recursively enumerable sets.

THEOREM 7. For every undecidable separation problem A_{E_1,E_2} for recursively enumerable sets E_1 and E_2 there exists a separation problem A_{H_1,H_2} for inseparable recursive enumerable sets H_1, H_2 such that $A_{E_1,E_2} \npreceq A_{H_1,H_2}$.

6. The tools used to prove Theorems 1, 2, 5–7 can be applied to several questions about mass problems (and some other questions).

By A_n -set we mean the recursively projective set from the nth class³; by B_n -function we mean recursively projective function from class n. We consider B_n -operators whose function representation is given by some B_n -function $\delta(w)$. A [mass] problem M is called B_n -decidable if it contains at least one B_n -function. By B_n -set we mean a set whose characteristic function is a B_n -function.

Theorems 1–3, 5–7 remain valid if we replace recursive enumerable sets by A_n -sets, and reducibility by partial recursive operators by reducibility by B_n -operators, and these generalizations can be proved in a similar way.

Theorem 4 can also be generalized by replacing partial recursive functions by partial B_n -functions, and decidability by B_n -decidability.

The reduction by B_n -operators can be considered as a formal version of an intuitive notion of reduction assuming that all A_{n-1} -sets are decidable (or, equivalently, all A_n -sets are enumerable). One can construct an A_{n-1} -set E that is *universal* in the following sense: if a problem E is a problem E in the sense of [2]) of E and the decision problem for E (this conjunction is denoted by $E \cap E$). On the other hand, if E is a conjunction is denoted by E is a conjunction of the set E to have this universality property it is necessary and sufficient that E is a E is an and every E is reducible to E.

Moscow State Lenin Pedagogical Institute Submitted February 20, 1956

References

- [1] E.L. Post, [Recursively enumerable sets of positive integers and their decision problems], Bull[etin of the] Am[erican] Math[ematical] Soc[iety], **50**, 284 (1944) [https://doi.org/10.1090/S0002-9904-1944-08111-1]
- [2] Y[ury Tikhonovich] Medvedev, Ph.D. thesis, Moscow State University, 1955.
- [3] S.C. Kleene, Trans[actions of the] Am[erican] Math[ematical] Soc[iety], 53 (1943)
- [4] J.C.E. Dekker, Proc[eedings of the] Am[erican] Math[ematical] Soc[iety], 5, no. 5 (1954)

Translated by Alexander Shen, December 2022 sasha.shen@gmail.com

³We consider here Kleene–Mostowski hierarchy. [So B_n -sets are Σ_n^0 -sets; B_n -functions are functions whose graphs are Σ_n^0 -sets.]