

twopop_pulse_migration_msprime1 vs. twopop_pulse_migration_slim1: pooled_pop_stats diversity Tajimas D f_2 0.0014 0.0 0.0008 0.0012 -0 -0.50.0006 0.0010 --1.00.0004 0.0008 twopop_pulse_migration_slim1 -1.50.0006 -0.0002 -2.00.0004 -0.000500.000750.001000.00125 **-**2 -10 0.0002 0.0004 0.0006 0.0008 Y_2 segregating sites 0.008 0.0012 -0.0010 -0.007 ф 0.0008 -0.0006 -0.006 0.0004 -0.005 0.0002 0.000250.000500.000750.001000.001250.005 0.006 0.007 0.008 twopop pulse migration msprime1

twopop pulse migration msprime1 vs. twopop pulse migration slim1: linkage disequilibrium $\Delta bp \in [0 \text{ k}, 2 \text{ k})$ $\Delta bp \in [2k, 4k)$ $\Delta bp \in [4 \text{ k}, 6 \text{ k})$ $\Delta bp \in [6k, 8k)$ $\Delta bp \in [8 \text{ k}, 10 \text{ k})$ 0.075 0.050 0.025 $\Delta bp \in [10 \text{ k}, 12 \text{ k})$ Δ bp \in [12 k, 14 k) Δ bp \in [14 k, 16 k) Δ bp \in [16 k, 18 k) Δ bp \in [18 k, 20 k) 0.075 0.050 0.025 $\Delta bp \in [20 \text{ k}, 22 \text{ k})$ Δ bp \in [22 k, 24 k) Δ bp \in [24 k, 26 k) Δ bp \in [26 k, 28 k) Δ bp \in [28 k, 30 k) 0.075 0.050 0.025 Δ bp \in [30 k, 32 k) Δ bp \in [32 k, 34 k) Δ bp \in [34 k, 36 k) Δ bp \in [36 k, 38 k) Δ bp \in [38 k, 40 k) 0.075 0.050 0.025 0.06 0.02 0.02 0.02 0.02 0.04 0.04 0.06 0.04 0.06 0.04 0.06 0.02 0.04 0.06 twopop pulse migration msprime1

