Package 'MetaPersonalized'

October 4, 2017

October 4, 2017
Type Package
Title What the Package Does (Title Case)
Version 0.1.0
Author Who wrote it
Maintainer The package maintainer <yourself@somewhere.net></yourself@somewhere.net>
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports glmnet, SGL
R topics documented:
MetaPersonalized MetaPersonalized_cv predict.mp predict.mp_cv simulated_dataset
Index
MetaPersonalized Meta-analysis for Personalized Medicine
<pre>Usage MetaPersonalized(Xlist, Ylist, Trtlist, Plist, typelist = NULL, model = c("linear", "meta", "sparse group lasso", "group lasso", "lasso"), lambda1 = NULL, lambda2 = NULL, unique_rule_lambda = NULL, alpha = NULL, unique_rule = FALSE)</pre>

2 MetaPersonalized

Arguments

Xlist a list object with kth element denoting the covariate matrix of study kYlist a list object with kth element denoting the response vector of study k

Trtlist a list object with kth element denoting the treatment vector of study k (coded as

0 or 1)

model the model to be used for the above framework, can be linear, meta-analysis,

sparse group lasso, group lasso or lasso

lambda1 in the framework above lambda2 lambda2 in the framework above unique_rule_lambda

 λ_{uni} when unique treatment rule is required

alpha alpha in the framework above

unique_rule a logical value, whether a unique treatment rule is required

typlelist a list object with kth element denoting the type of response in study k, can be

continuous or binary, default is continuous

Details

Assume the total number of studies is K. This function implements meta-analysis for personalized medicine based on the following framework:

$$\min_{g_1, \dots, g_K} \sum_{k=1}^K \sum_{i=1}^{n_k} \frac{|\hat{C}_k(X_i)|}{\sum_{i=1}^{n_k} |\hat{C}_k(X_i)|} \left[1\{\hat{C}_k(X_i) > 0\} - g_k(X_i) \right]^2 + h(g_1, \dots, g_K)$$

Here the regularization function h is of the form of a sum of sparse group lasso and fused lasso penalty

$$h = (1 - \alpha)\lambda_1 \sqrt{q} \sum_{j=1}^p \|\beta_j\|_2 + \alpha \lambda_1 \sum_{j=1}^p \|\beta_j\|_1 + \lambda_2 \sum_{j=1}^p \sum_{1 \le a < b \le K} |\beta_{ja} - \beta_{jb}|$$

where $\boldsymbol{\beta_j} = (\beta_{j1}, \dots, \beta_{jK})$

If we would like a unique rule to be obtained, we should let $g_1 = \ldots = g_K$ and

$$h = \lambda_{uni} \|\beta\|_1$$

By setting $\lambda_1, \lambda_2, \alpha$ differently, different models could be obtained.

- If $\lambda_1, \lambda_2 \neq 0$ and $alpha \neq 0$ or 1, we call it a complete meta-analysis model.
- If $\lambda_2 = 0$ and $\alpha \neq 0$ or 1, a sparse group lasso model is fitted.
- If $\lambda_2 = 0$ and $\alpha = 0$, a group lasso model is fitted.
- If $\lambda_2 = 0$ and $\alpha = 1$, a lasso model is fitted.
- If $\lambda_1, \lambda_2 = 0$, a linear model is fitted.

Value

an S3 object of class "mp", which contains the information of the fitted model. It could be supplied to the predict function

MetaPersonalized_cv 3

Description

Meta-analysis for Personalized Medicine with Cross Validation

Usage

```
MetaPersonalized_cv(Xlist, Ylist, Trtlist, Plist, typelist, model = c("meta",
   "sparse group lasso", "group lasso", "lasso"), lambda1 = NULL,
   lambda2 = NULL, unique_rule_lambda = NULL, alpha = NULL,
   unique_rule = FALSE, cv_folds = 5)
```

Arguments

Xlist	a list object with k th element denoting the covariate matrix of study \mathbf{k}
Ylist	a list object with k th element denoting the response vector of study \mathbf{k}
Trtlist	a list object with k th element denoting the treatment vector of study k (coded as 0 or 1)
model	the model to be used for the above framework, can be meta-analysis, sparse group lasso, group lasso or lasso(linear does not need tuning)
lambda1	lambda1 in the framework above
lambda2	lambda2 in the framework above
unique_rule_la	mbda
	λ_{uni} when unique treatment rule is required
alpha	alpha in the framework above
unique_rule	a logical value, whether a unique treatment rule is required
cv_folds	number of folds needed for cross-validation, default is 5
typlelist	a list object with k th element denoting the type of response in study k , can be continuous or binary, default is continuous

Value

an S3 object of class " mp_cv ", which contains the information of the model with the best fitted lambda. It can be supplied to the predict function.

4 predict.mp_cv

ct.mp Predict Function for "mp" object
--

Description

This function predict the benefit scores and optimal treatment for new patients

Usage

```
## S3 method for class 'mp'
predict(mp, newx, weight = NULL, overall_rec = TRUE)
```

Arguments

mp the fitted "mp" object

newx the covariate matrix of the new patients

weight a weight vector for the overall recommendation. If leave as NULL, a equally

weighted recommendation will be made.

overall_rec a logical value. If TRUE, an overall recommendation will be made weighted by

the "weight" parameter.

Value

treatment recommended treatment for each patient for each study/outcome. If overall_rec = TRUE,

the weighted overall recommended treatment will be computed as well. If the overall recommend treatment is equal to 0.5, it means the sum of weight is

equal for 0 and 1.

benefit_score the benefit score computed from g_1, \ldots, g_K

Description

This function predict the benefit scores and optimal treatment for new patients

Usage

```
## S3 method for class 'mp_cv'
predict(mp_cv, newx, weight = NULL, overall_rec = TRUE)
```

Arguments

mp_cv the fitted "mp_cv" object

newx the covariate matrix of the new patients

weight a weight vector for the overall recommendation. If leave as NULL, a equally

weighted recommendation will be made.

overall_rec a logical value. If TRUE, an overall recommendation will be made weighted by

the "weight" parameter.

simulated_dataset 5

Value

treatment recommended treatment for each patient for each study/outcome. If overall_rec = TRUE,

the weighted overall recommended treatment will be computed as well. If the overall recommend treatment is equal to 0.5, it means the sum of weight is

equal for 0 and 1.

benefit_score the benefit score computed from g_1, \ldots, g_K

Description

This function could generate a simulated dataset for the test and usage of this package.

Usage

```
simulated_dataset(n)
```

Arguments

n sample size

Value

A simulated dataset.

Xlist a list object with kth element denoting the covariate matrix of study k Ylist a list object with kth element denoting the response vector of study k

Trtlist a list object with kth element denoting the treatment vector of study k (coded as

0 or 1)

Index

```
MetaPersonalized, 1
MetaPersonalized_cv, 3
predict.mp, 4
predict.mp_cv, 4
simulated_dataset, 5
```