

MAX96724/F/R

Click here to ask an associate for production status of specific part numbers.

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

General Description

The MAX96724/F/R deserializer converts four GMSL $^{\text{TM}}$ 2/1 inputs to 1, 2, or 4 MIPI D-PHY or C-PHY outputs. The device allows simultaneous transmit bidirectional transmissions over 50Ω coax or 100Ω STP cables that meet the GMSL channel specification. Contact the factory for the GMSL supporting collateral.

Up to four remotely located sensors can be supported using industry-standard coax or STP interconnects. Each GMSL2 serial link operates at a fixed rate of 3Gbps or 6Gbps in the forward direction and 187.5Mbps in the reverse direction. The MAX96724/F/R supports both aggregation and replication of video data, enabling streams from multiple remotely located sensors to be combined and routed to one or more of the available CSI-2 outputs.

Table 1. Typical Maximum Cable Length

	3.2mm Ø 50Ω Coax, Foam Dielectric	2.7mm Ø 50Ω Coax, Solid Dielectric	100Ω Shielded Twisted Pair, AWG26		
Attenuation at 3GHz (Typ, Room Temp)	0.9dB/m	1.6dB/m	1.8dB/m		
Attenuation at 3GHz (Max, Aged, +105°C)	1.1dB/m	2.0dB/m	2.2dB/m		
GMSL Fwd/Rev Data Rate	Typical Maximum Cable Length at +105°C (m)				
3Gbps/187.5Mbps	20	10	11		
6Gbps/187.5Mbps	15	9	8		

Applications

- High-Resolution Camera Systems
- Advanced Driver Assistance Systems (ADAS)

Benefits and Features

- · Automotive Grade High Speed Link
 - -21.0dB at 3.0GHz (6Gbps) Max Insertion Loss
 - -19.5dB at 1.5GHz (3Gbps) Max Insertion Loss
 - · Auto Adapt for Changes in Channel Conditions
 - Operates at -40°C to +105°C Ambient
- Quad Independently Configurable GMSL Inputs
 - 6/3Gbps GMSL2 and 3.12Gbps GMSL1 Link-Rates
 - 187.5Mbps/1Mbps (GMSL2/1) Reverse Link-Rates
 - Support for Mixed GMSL2/1 Pixel and Tunnel Inputs
- 2x4 or 4x2 Lane MIPI CSI-2 v1.3 Outputs
 - MIPI D-PHY v1.2 Rated at 2.5Gbps/Lane
 - C-PHY v1.0 Rated at 5.7Gbps/Lane
 - · Aggregation and Replication Functions
 - 16/32 Virtual channel support for D-PHY/C-PHY
- Auto D-PHY (Imager) to C-PHY (SoC) Conversion
- Reference over Reverse (RoR) Clocking
- Bidirectional Reverse Channel Supports
 - 9 x Configurable GPIOs
 - 2 x I²C Ports, up to 1Mbps
- ASIL-B Compliant (MAX96724/F)
- Ease of Use Features
- Reduce BOM and Space Savings
 - Small 8x8mm TQFN Standard and Side-Wettable
 - Industry's Smallest Power-over-Coax (PoC)

Simplified Block Diagram

TABLE OF CONTENTS

General Description. 1 Applications 1 Benefits and Features 1 Simplified Block Diagram 2 Absolute Maximum Ratings. 7 Package Information 7 56-pin TOFN.SW 7 56-pin TOFN. 7 Electrical Characteristics 8 Pin Configurations. 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Descriptions 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 I ² C Write Packet Format 25 I ² C Read Packet Format 25 I ² C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 <t< th=""><th></th><th></th></t<>		
Benefits and Features 1 Simplified Block Diagram 2 Absolute Maximum Ratings 7 Package Information 7 56-pin TQFN-SW 7 56-pin TQFN 7 Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Descriptions 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 <td>·</td> <td></td>	·	
Simplified Block Diagram 2 Absolute Maximum Ratings 7 Package Information 7 56-pin TQFN-SW 7 56-pin TQFN 7 Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Descriptions 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 I ² C Write Packet Format 25 I ² C Read Packet Format 25 J ² C Read Packet Format 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 25 ESD Protection 26 Figures 26 GMSL1 Serial Output Parameters 29 <td< td=""><td></td><td></td></td<>		
Absolute Maximum Ratings. 7 Package Information 7 56-pin TQFN-SW 7 56-pin TQFN 7 Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Description 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL1 Reverse Channel Serial Outputs 27 GMSL2 Reverse Channel Serial Outputs 27 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Power-up Delay 3		
Package Information 7 56-pin TQFN-SW 7 56-pin TQFN. 7 Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 Li ² C Write Packet Format 25 Li ² C Read Packet Format 25 Li ² C Write Packet Format 25	•	
56-pin TQFN-SW 7 56-pin TQFN. 7 Electrical Characteristics 8 Pin Configurations. 18 Pin Description 18 Functional Diagrams 23 MAY96724 23 Descriptions 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 I ² C Write Packet Format 25 I ² C Read Packet Format 25 I ² C Read Packet Format 25 Secommended Operating Conditions 25 Secommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 G-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL1 GPI-to-GPO Delay and Skew 30 GMSL1 Power-up	Absolute Maximum Ratings	7
56-pin TQFN. 7 Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Detailed Description 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL1 Serial	•	
Electrical Characteristics 8 Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 Video Latency 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay	·	
Pin Configurations 18 Pin Description 18 Functional Diagrams 23 MAX96724 23 Detailed Description 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 Power-up Delay 31 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay and Skew 30 GMSL1 GPI-to-GP	56-pin TQFN	7
Pin Description 18 Functional Diagrams 23 MAX96724 23 Description 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 27 G-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GP	Electrical Characteristics	8
Functional Diagrams 23 MAX96724 23 Descriptions 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 I ² C Write Packet Format 25 I ² C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Hock Time 30 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32 <td>Pin Configurations</td> <td> 18</td>	Pin Configurations	18
MAX96724 23 Detailed Description 24 Descriptions 24 Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication 24 I ² C Write Packet Format 25 I ² C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL1 Cok Time 30 GMSL1 Power-up Delay 31 GMSL1 OPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Pin Description	18
Detailed Description24Descriptions24Thermal Management24Control Channel Programming24Host-to-Peripheral Main 1^2 C and Pass-Through 1^2 C Communication24 1^2 C Write Packet Format25 1^2 C Read Packet Format25Device Address25Advanced GMSL User Documentation25Recommended Operating Conditions25External Component Requirements25External Component Requirements25ESD Protection26Figures26GMSL2 Reverse Channel Serial Outputs27GMSL1 Serial Output Parameters28C-PHY Possible Δ VCPTX and Δ VOD Distortions of Single-Ended HS Signals29C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals29GMSL2 Video Latency30GMSL2 GPI-to-GPO Delay and Skew30GMSL1 Dock Time30GMSL1 Power-up Delay31GMSL1 Power-up Delay31GMSL1 GPI-to-GPO Delay31Product Overview31Cabling Options32	Functional Diagrams	23
Descriptions24Thermal Management24Control Channel Programming24Host-to-Peripheral Main I^2C and Pass-Through I^2C Communication24 I^2C Write Packet Format25 I^2C Read Packet Format25Device Address25Advanced GMSL User Documentation25Recommended Operating Conditions25External Component Requirements25ESD Protection26Figures26GMSL2 Reverse Channel Serial Outputs27GMSL1 Serial Output Parameters28C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals29C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals29GMSL2 Wide Latency30GMSL1 Lock Time30GMSL1 Power-up Delay and Skew30GMSL1 Power-up Delay31GMSL1 Power-up Delay31GMSL1 GPI-to-GPO Delay31Product Overview31Cabling Options32	MAX96724	23
Thermal Management 24 Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Detailed Description	24
Control Channel Programming 24 Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Descriptions	24
Host-to-Peripheral Main I²C and Pass-Through I²C Communication 24 I²C Write Packet Format 25 I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Thermal Management	24
I ² C Write Packet Format 25 I ² C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 GPI-to-GPO Delay 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Control Channel Programming	24
I²C Read Packet Format 25 Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Host-to-Peripheral Main I ² C and Pass-Through I ² C Communication	24
Device Address 25 Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	I ² C Write Packet Format	25
Advanced GMSL User Documentation 25 Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Video Latency 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	I ² C Read Packet Format	25
Recommended Operating Conditions 25 External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Device Address	25
External Component Requirements 25 ESD Protection 26 Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Advanced GMSL User Documentation	25
ESD Protection. 26 Figures. 26 GMSL2 Reverse Channel Serial Outputs. 27 GMSL1 Serial Output Parameters. 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew. 30 GMSL1 Lock Time. 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	Recommended Operating Conditions	25
Figures 26 GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	External Component Requirements	25
GMSL2 Reverse Channel Serial Outputs 27 GMSL1 Serial Output Parameters 28 C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals 29 C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 Video Latency 31 GMSL1 OPI-to-GPO Delay 31 CMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	ESD Protection	26
GMSL1 Serial Output Parameters28C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals29C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals29GMSL2 Video Latency30GMSL2 GPI-to-GPO Delay and Skew30GMSL1 Lock Time30GMSL1 Power-up Delay31GMSL1 Video Latency31GMSL1 GPI-to-GPO Delay31Product Overview31Cabling Options32	Figures	26
GMSL1 Serial Output Parameters28C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals29C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals29GMSL2 Video Latency30GMSL2 GPI-to-GPO Delay and Skew30GMSL1 Lock Time30GMSL1 Power-up Delay31GMSL1 Video Latency31GMSL1 GPI-to-GPO Delay31Product Overview31Cabling Options32	GMSL2 Reverse Channel Serial Outputs	27
C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals 29 GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32		
GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	·	
GMSL2 Video Latency 30 GMSL2 GPI-to-GPO Delay and Skew 30 GMSL1 Lock Time 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals	29
GMSL1 Lock Time. 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32		
GMSL1 Lock Time. 30 GMSL1 Power-up Delay 31 GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	GMSL2 GPI-to-GPO Delay and Skew	30
GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32	·	
GMSL1 Video Latency 31 GMSL1 GPI-to-GPO Delay 31 Product Overview 31 Cabling Options 32		
GMSL1 GPI-to-GPO Delay	·	
Product Overview	·	
Cabling Options	•	

TABLE OF CONTENTS (CONTINUED)

GMSL2 Minimum Blanking	
AEQ (Automatic Adaptive Equalization)	
GMSL2 Overview	
Tunneling vs. Pixel Modes	34
Video Pipes, Aggregation, and Replication	
Frame Sync	
Vertical and Data Enable or Data Valid Sync Outputs	
D-PHY to C-PHY Packet Conversion	
Control Channel Latency	
I ² C	
General Purpose Inputs and Outputs (GPIO)	40
Link Error Generator	40
GMSL1 Backwards Compatibility	40
Video PRBS Generator/Checker	40
RoR (Reference over Reverse)	40
CFG Latch at Power-up Pins	40
Multifunction Pin Configuration	42
Power-Up and Link Start-Up	42
Device Reset	43
Link and Video Lock	43
GMSL2 Link Lock	43
Video Lock	44
Spread-Spectrum Clocking	44
Error and Fault Condition Monitoring	44
GPIO Aggregation	44
EMB8 — ERRB Forwarding	45
Functional Safety Features	45
Ordering Information	46
Register Map	
MAX96724/F/R	47
Register Details	96
Revision History	474

LIST OF FIGURES

Figure 1. I ² C Write Packet Format	25
Figure 2. I ² C Read Packet Format	25
Figure 3. GMSL2 Serial Output Parameters	27
Figure 4. GMSL1 Serial Output Parameters	28
Figure 5. C-PHY Possible ΔV _{CPTX} and ΔV _{OD} Distortions of Single-Ended HS Signals	29
Figure 6. C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals	29
Figure 7. GMSL2 Video Latency	30
Figure 8. GMSL2 GPI-to-GPO Delay and Skew	30
Figure 9. GMSL1 Lock Time	30
Figure 10. GMSL1 Power-up Delay	31
Figure 11. GMSL1 Video Latency	31
Figure 12. GMSL1 GPI-to-GPO Delay	31
Figure 13. Video Frame Format for Bandwidth Calculation	33
Figure 14. Video Timing	33
Figure 15. Pixel Mode	34
Figure 16. Tunneling Mode	35
Figure 17. Video Pipes and Routing	36
Figure 18. MAX96724/F/R Video Pipe Example with Partial FCFS Aggregation	36
Figure 19. GMSL2 Memory Reading and Writing	37
Figure 20. I ² C Routing	39
Figure 21. Configuration Pin Connection	41
Figure 22. GMSI 2 Lock Time	43

LIST OF TABLES

Table 1. Typical Maximum Cable Length	
Table 2. Recommended Operating Conditions	25
Table 3. External Component Requirements	26
Table 4. ESD Protection	26
Table 5. Forward- and Reverse-Link Bandwidth Utilization	32
Table 6. Control Channel Latency	38
Table 7. CFG0 Input Map	41
Table 8. CFG1/MFP6 Input Map	41
Table 9. MFP Pin Function Map	42

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

Absolute Maximum Ratings

(All voltages with respect to ground.)	DA/B_P/N, CKA/B/C/FP/N (<u>Note b</u>)0.3V to (V _{TERM} + 0.1V)
V _{DDIO} 0.3V to +3.9V	DA_P/N, CKA/CP/N (<i>Note b</i>)0.3V to (V _{TERM} + 0.1V)
V _{DD18} 0.3V to +2.0V	XRES, X20.3V to (V _{DD18} + 0.3V)
V _{DD} 0.3V to +2.0V	All Other Pins (<u>Note c</u>)0.3V to (V _{DDIO} + 0.3V)
V _{TERM} 0.3V to +1.32V	Continuous Power Dissipation, Multilayer Board (Note
CAP_VDD0.3V to +1.2V	<u>₫</u>)2619mW
SIO_(Active State) (<u>Note a</u>)(V _{DD18} - 1.1V) to V _{DD18}	Storage Temperature Range40°C to +150°C
SIO_ (Inactive State) (Note a)0.3V to +1.1V	Soldering Temperature (reflow)+260°C

- Note a: Active state means the device is powered-up and not power-down mode. Inactive means the device is not in power-down mode.
- Note b: Specified maximum voltage or 1.36V, whichever is lower
- Note c: Specified maximum voltage or 3.9V, whichever is lower.
- Note d: Derate 47.6mW/°C above T_A = +70°C. Maximum dissipation is determined using specified θ_{JA} and assuming maximum acceptable die temperature of +125°C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

56-pin TQFN-SW

Package Code	T5688Y+6C
Outline Number	<u>21-100046</u>
Land Pattern Number	<u>90-100048</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	25
Junction to Case (θ_{JC})	4

56-pin TQFN

Package Code	T5688+6C			
Outline Number	<u>21-0135</u>			
Land Pattern Number	<u>90-100041</u>			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ _{JA})	25			
Junction to Case (θ_{JC})	4			

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(V_{TERM} = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	CONT	DITIONS	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHAR						IVIAA	UNITS
	ACTERIOTICS / (JIVIOLZ REVERSE G	HANNEL SERIAL UU		rigure 3)		
Output Voltage Swing (Single-ended)	Vo	R _L = 100Ω ±1%		190	250	310	mV
Output Voltage Swing (Differential)	V _{ODT}	R _L = 100Ω ±1% peak-to-peak differe	ential voltage	380	500	620	mV
Change in V _{OD} between Complementary Output States	ΔV _{OD}	$R_L = 100\Omega \pm 1\%, \ V$	'OD(H) - V _{OD(L)}			25	mV
Differential Output Offset Voltage	V _{OS}	R _L = 100Ω ±1% offset voltage in each	ch output state	V _{DD18} - 0.45	V _{DD18} - 0.3	V _{DD18} - 0.15	V
Change in V _{OS} between Complementary Output States	ΔV _{OS}	$R_{L} = 100\Omega \pm 1\% V_{C}$	os(H) - V _{OS(L)}			25	mV
Termination Resistance (Internal)	R _T	Any Pin to V _{DD18}		50	55	60	Ω
DC ELECTRICAL CHAR	ACTERISTICS /	GMSL1 REVERSE C	HANNEL SERIAL OU	TPUTS — (Figure 4)		
Differential High Output		Forward channel	HIM disabled	30		70	
Peak Voltage V _(SIO_P) - V _(SIO_N)	V _{RODH}	disabled STP mode R _L =100Ω	HIM enabled	50		110	mV
Differential Low Output		Forward channel	HIM disabled	-70		-30	
Peak Voltage V _(SIO_P) - V _(SIO_N)	V _{RODL}	disabled	HIM enabled	-110		-50	mV
		Forward channel	HIM disabled	30		70	
Single-Ended High Output Peak Voltage	V _{ROSH}	$\begin{array}{c} \text{disabled} \\ \text{coax mode} \\ \text{R}_L = 100\Omega \end{array}$	HIM enabled	50		110	mV
		Forward channel	HIM disabled	-70		-30	
Single-Ended Low Output Peak Voltage	V _{ROSL}	disabled coax mode R _L =100Ω	HIM enabled	-110		-50	mV
Differential Output Offset Voltage (V(SIO_P) + V(SIO_N)/2	V _{OS}	STP mode		V _{DD18} - 0.3		V _{DD18}	V
Termination Resistance (Internal)	R _T	Any Pin to V _{DD18}		50	55	60	Ω
DC ELECTRICAL CHAR	ACTERISTICS /	C-PHY and D-PHY L	PTRANSMITTER				
Thevenin High-Level Output Voltage	V _{OH}			0.95	1.2	1.3	V
Thevenin Low-Level Output Voltage	V _{OL}			-50		50	mV
Output Impedance	Z _{OLP}			110			Ω

 $(V_{TERM} = 1.14V \text{ to } 1.26V, V_{DD18} = 1.7V \text{ to } 1.9V, V_{DD} = 0.95V \text{ to } 1.05V \text{ or } V_{DD} = 1.14V \text{ to } 1.26V, V_{DDIO} = 1.7V \text{ to } 3.6V, T_A = -40^{\circ}\text{C} \text{ to } +105^{\circ}\text{C}$, EP connected to PCB ground, typical values are at $V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, T_A = +25^{\circ}\text{C}$, unless otherwise noted.) (*Note 1*)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHAR	ACTERISTICS / I	D-PHY HS TRANSMITTER				•
HS Transmit Static Common-Mode Voltage	V _{CMTX}		150	200	250	mV
V _{CMTX} Mismatch when Output is Differential-1 or Differential-0	ΔV _{CMTX(1, 0)}	$\Delta V_{\text{CMTX}(1,0)} = (V_{\text{CMTX}(1)} - V_{\text{CMTX}(0)}) / 2$			5	mV
HS Transmit Differential Voltage	$ v_{\rm OD} $		140	200	270	mV
V _{OD} Mismatch when Output is Differential-1 or Differential-0	ΔV _{OD}				14	mV
HS Output High Voltage	V _{OHHS}				360	mV
Single-Ended Output Impedance	Z _{OS}		40	50	62.5	Ω
Single-Ended Output Impedance Mismatch	ΔZ _{OS}				10	%
DC ELECTRICAL CHAR	ACTERISTICS / 0	C-PHY HS TRANSMITTER				_
HS Transmit Static Common-Point Voltage	V _{CPTX}	Z _{ID} = 100Ω	175		310	mV
V _{CPTX} Mismatch when Output is in any of the Six High-Speed States	ΔV _{CPTX(HS)}	(<u>Figure 5</u>)			9	mV
HS Transmit Differential Voltage of the Differential Strong 1 and Strong 0	V _{OD} strong	$Z_{\text{ID}} = 100\Omega \text{ (Figure 6)}$			300	mV
HS Transmit Differential Voltage of the Differential Weak 1 and Weak 0	$\left V_{ m OD} ight $ weak	$Z_{\text{ID}} = 100\Omega \text{ (Figure 6)}$	97			mV
V _{OD} Mismatch Between the Absolute Values of the Differential Strong 1 and Strong 0 Output Voltages in any of the Six Possible High- Speed States	^{ΔV} OD	(Figure 5)			17	mV
HS Output High Voltage	V _{OHHS}	Z _{ID} =100Ω			425	mV
Single-Ended Output Impedance	Z _{OS}		40	50	60	Ω
Single-Ended Output Impedance Mismatch	ΔZ _{OS}				10	%
DC ELECTRICAL CHAR	ACTERISTICS / I	O PINS				
High-Level Input Voltage	V _{IH}		0.7 x V _{DDIO}			V

(V_{TERM} = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, T_A = +25°C, unless otherwise noted.) (*Note 1*)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low-Level Input Voltage	V_{IL}				0.3 x V _{DDIO}	V
High-Level Output Voltage	V _{OH}	I _{OH} = -4mA	V _{DDIO} - 0.4			V
Low-Level Output Voltage	V_{OL}	I _{OL} = 4mA			0.4	V
Input Current	I _{IN}	All pullup/pulldown devices disabled. V _{IN} = 0V to V _{DDIO}			1	μA
Input Capacitance	C_{IN}			3		pF
Internal Pullup/Pulldown	R _{IN}	40kΩ enabled		40		kΩ
Resistance	ININ	1MΩ enabled		1		МΩ
DC ELECTRICAL CHARA	CTERISTICS /	OPEN-DRAIN PINS				
High-Level Input Voltage	V_{IH}		0.7 x V _{DDIO}			V
Low-Level Input Voltage	V_{IL}				0.3 x V _{DDIO}	V
Low-Level Open-Drain Output Voltage	V_{OL}	I _{OL} = 4mA			0.4	V
Input Current	I _{IN}	All pullup/pulldown devices disabled. V _{IN} = 0V to V _{DDIO}			1	μA
Input Capacitance	C _{IN}			3		pF
Internal Pullup	D.	40kΩ enabled		40		kΩ
Resistance R _{PU}		1MΩ enabled		1		МΩ
DC ELECTRICAL CHARA	CTERISTICS /	PWDNB INPUT				•
High-Level Input Voltage	V _{IH}		0.7 x V _{DDIO}			V
Low-Level Input Voltage	V _{IL}				0.3 x V _{DDIO}	V
Input Current	I _{IN}	V _{IN} = 0V to V _{DDIO}			6	μΑ
Internal Pulldown Resistance	R _{PD}			1		МΩ
Input Capacitance	C _{IN}			3		pF
DC ELECTRICAL CHARA	CTERISTICS /	PUSH-PULL OUTPUTS	•			
High-Level Output Voltage	V _{OH}	I _{OH} = -4mA	V _{DDIO} - 0.4			V
Low-Level Output Voltage	V _{OL}	I _{OL} = 4mA			0.4	V
DC ELECTRICAL CHARA	CTERISTICS /	LINE FAULT DETECTION INPUTS	<u> </u>			
0 5: 1/ #	V _{O0}	LMN0, LMN2		1.25		.,
Open Pin Voltage	V _{O1}	LMN1, LMN3		0.75		V
DC ELECTRICAL CHARA	CTERISTICS /	REFERENCE CLOCK INPUT (CRYSTAL) (X1/OSC, X2))		
X1 Input Capacitance	C _{IN_X1}			3		pF

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
X2 Input Capacitance	C _{IN X2}				1		pF
Internal X2 Limit Resistor	R _{LIM}				1.2		kΩ
Internal Feedback Resistor	R _{FB}				10		kΩ
Transconductance	9 _m				28		mA/V
DC ELECTRICAL CHARA	CTERISTICS / I	REFERENCE CLOCK	(INPUT (EXTERNAL I	INPUT ON X1	I/OSC, X2	UNCONN	ECTED)
High-Level Input Voltage	V _{IH}			0.9			V
Low-Level Input Voltage	V _{IL}					0.4	V
Input Impedance	R _{IN}				10		kΩ
X1 Input Capacitance	C _{IN_X1}				3		pF
DC ELECTRICAL CHARA		POWER SUPPLY CU	RRENT — GMSL2 MC	DDE			1
		4x 3Gbps input,	V _{TERM} = 1.26V		17	25	
		4x 2.45Gbps	V _{DD18} = 1.9V		280	325	1
		payload input, PRBS24,	V _{DD} = 1.05V		197	625	
	1x 4-lane D-PHY, 2500Mbps/lane 4x 6Gbps input, 4x 5.2Gbps	1x 4-lane D-PHY,	V _{DD} = 1.26V		191	600	
			V _{TERM} = 1.26V		19	35	
			V _{DD18} = 1.9V		280	325	
			V _{DD} = 1.05V		244	675	1
			V _{DD} = 1.26V		228	650	
Supply Current		Replicate Mode,	V _{TERM} = 1.26V		34	50	mA
Cappi, Calloni		4x 3Gbps input,	V _{DD18} = 1.9V		280	325	1 ""
		4x 2.45Gbps payload input,	V _{DD} = 1.05V		224	675	1
	PRBS24, 2x 4-lane D-PHY,		V _{DD} = 1.26V		218	650	
	I_{DD2}	Replicate Mode,	V _{TERM} = 1.26V		37	70	1
4x 5. paylo PRB 2x 4- 5700		4x 6Gbps input,	V _{DD18} = 1.9V		280	325	
		4x 5.2Gbps payload input,	V _{DD} = 1.05V		272	725	
	PRBS24, 2x 4-lane C-PHY, 5700Mbps/lane (MAX96724)	V _{DD} = 1.26V		265	700		
V _{DDIO} Supply Current	1==:-	Per toggling GPIO,	V _{DDIO} = 1.8V		44		\ / \ / \ / \ / \
(<u>Note 3</u>)	IDDIO	C _L = 20pF	V _{DDIO} = 3.3V		81		μA/MHz

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARA	ACTERISTICS / I	POWER SUPPLY CU	RRENT — GMSL1 MC	DE			
		4x 3.12Gbps input,	V _{TERM} = 1.2V		16	25	
		4x 2.45Gbps payload input,	V _{DD18} = 1.8V		155	200	
	I _{DD1}	PRBS24,	V _{DD} = 1.05V		113	550	1
		1x 4-lane D-PHY, 2500Mbps/lane	V _{DD} = 1.26V		107	525	
Supply Current		Replicate Mode,	V _{TERM} = 1.2V		29	50	mA
		4x 3.12Gbps input, 4x 2.45Gbps	V _{DD18} = 1.8V		155	200	
	I _{DD2}	payload input,	V _{DD} = 1.05V		138	575	1
	PRBS24, 2x 4-lane D-PHY, 2500Mbps/lane	V _{DD} = 1.26V		132	550		
V _{DDIO} Supply Current		Per toggling GPIO,	V _{DDIO} = 1.8V		44		0 /0 /1 1-
(<u>Note 3</u>)	IDDIO	C _L = 20pF	V _{DDIO} = 3.3V		81		μA/MHz
DC ELECTRICAL CHARA	ACTERISTICS / I	POWER-DOWN CUR	RENT				
Power-Down Current	\	\/ 1 26\/	T _A = +25°C		< 1		
		V _{TERM} = 1.26V	T _A = +105°C		< 1		
		\/ - 1 0\/	T _A = +25°C		< 1		
		V _{DD18} = 1.9V	T _A = +105°C		14		
	$V_{DD} = 1$	\/ = 1 26\/	T _A = +25°C		< 1		μΑ
		VDD - 1.20V	T _A = +105°C		< 1		
		\/ = 2.6\/	T _A = +25°C		7		
		V _{DDIO} = 3.6V	T _A = +105°C		7		
AC ELECTRICAL CHARA	ACTERISTICS /	GMSL2 FORWARD C	HANNEL				
Lock Time	t _{LOCK2}	From power-up, one edge of PWDNB to r (Note 9, Note 10) (Figure 22)			45	60	ms
Maximum Video Initialization Time	^t VIDEOSTART	Time from GMSL2 v to valid packets at th (assumes link locked configured).			0.1ms + (6600 x t _{PCLK})		ms
Maximum Video Latency	t _{VL}	Time from the first pixel in SIO_ to CSI-2 output. (Figure 7)			1 video line + (128 x t _{PCLK})		s
PWDNB Hold Time	t _{HOLD_PWDNB}	Minimum time to reset the device.			1		μs
AC ELECTRICAL CHAR	ACTERISTICS / (GMSL2 REVERSE CH	IANNEL				
GMSL Reverse Channel Transmitter Rise/Fall Time	t _R , t _F	20% to 80%, V _O = 2	50mV, R _L = 100Ω		2300		ps

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Total Serial Output p-p Jitter	t _{TSOJ}	PRBS7, single-ended or differential output		0.15		UI
Deterministic Serial Output p-p Jitter	t _{DSOJ}	PRBS7, single-ended or differential output		0.1		UI
GPI-GPO Delay		Delay-Compensated Mode (Figure 8)		15		
Reverse Path	t _{GPDR}	Non-Delay-Compensated Mode (<u>Figure</u> <u>8</u>)		6		μs
GPI-GPO Skew Reverse Path	t _{SKEW}	Delay-compensated Mode (Figure 8)		7		ns
AC ELECTRICAL CHAR	ACTERISTICS /	GMSL1				
Lock Time	tLOCK1	(Figure 9)		4		ms
Power-up Time	t _{PU}	(Figure 10)		8.5		ms
Video Latency	t _{VL}	Time from the first pixel in a video line at SIO_ to the first pixel in the CSI-2 output packet. (Figure 11)		1 video line + (128 x t _{PCLK})		s
PWDNB Hold Time	tHOLD_PWDNB	The minimum duration PWDNB must be held LOW to reset the device		1		μs
Reverse Control- Channel Output Rise Time	t _R	No forward channel data transmission (Figure 4) (Note 2)	100		400	ns
Reverse Control- Channel Output Fall Time	t _F	No forward channel data transmission (Figure 4) (Note 2)	100		400	ns
GPI-to-GPO Delay	t _{GPIO}	Deserializer GPI to serializer GPO (cable delay not included) (Figure 12) (Note 2)			350	μs
AC ELECTRICAL CHAR	ACTERISTICS /	C-PHY and D-PHY LP TRANSMITTER (<u>Not</u>	<u>te 2</u>)			
15%-85% Rise Time and Fall Time	T _{RLP} /T _{FLP}	(<u>Note 4</u>)			25	ns
30%-85% Rise Time	T _{REOT}	(<u>Note 5</u>)			35	ns
Load Capacitance	C _{LOAD}	(<u>Note 4</u>)	0		70	pF
AC ELECTRICAL CHAR	ACTERISTICS / I	D-PHY HS TRANSMITTER (<u>Note 2</u>)				
Common-Level Variations, HF	ΔV _{CMTX(HF)}	> 450MHz			15	mV _{RMS}
Common-Level Variations, LF	ΔV _{CMTX(LF)}	50 to 450MHz			25	mV _{PEAK}
20%-80% Rise Time	t _R and t _F				0.4	UI
and Fall Time	K and th		50			ps
Differential-Mode						
Reflection Coefficient (Note 6)	Sdd _{TX}	f _{MAX} = 1.875GHz		-2.5		dB

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Common-Mode Reflection Coefficient (<u>Note 6</u>)	Scc _{TX}	f _{MAX} = 1.875GHz		-2.5		dB
Data Lane Bit Rate	DL _{BR}		80		2500	Mbps
Clock Lane Frequency	CL _{FREQ}		40		1250	MHz
CSI-2 Output Inter- packet Spacing	tSPACE			300ns + 370UI		ns
AC ELECTRICAL CHARA	ACTERISTICS / I	D-PHY DATA-CLOCK TIMING (<u>Note 2</u>)				
UI Instantaneous	UI _{INST}		0.4		12.5	ns
UI Variation	ΔUI	UI ≥ 1ns within a single burst	-10%		10%	UI
Of Variation	ДОГ	0.667ns ≤ UI ≤ 1ns within a single burst	-5%		5%	Oi
Data to Clock Skew	T _{SKEW}	0.08 to 1.0Gbps	-0.15		0.15	UI _{INST}
Data to Glock Grew	SKEW	> 1.0 to 1.5Gbps	-0.2		0.2	OINST
Static Data to Clock Skew	T _{SKEW} Static	> 1.5Gbps	-0.2		0.2	UI _{INST}
Dynamic Data to Clock Skew	T _{SKEW} Dynamic	> 1.5Gbps	-0.15		0.15	UI _{INST}
AC ELECTRICAL CHARA	ACTERISTICS / I	D-PHY GLOBAL OPERATION TIMING (No	te 2)			
Transition from LP to HS Mode	T _{CLK-PRE}		8			UI
State Before the HS-0 Line State Starting the HS Transmission	T _{CLK-} PREPARE		38		95	ns
T _{CLK-PREPARE} + Time Prior to Starting the Clock	T _{CLK-} PREPARE + T _{CLK-} ZERO		300			ns
T _{HS-TRAIL} or T _{CLK-} TRAIL, to LP-11	T _{EOT}				105 + 12xUI	ns
LP-11 Following a HS Burst	T _{HS-EXIT}		100			ns
Data Lane LP-00 Before HS-0	T _{HS-PREPARE}		40 + 4xUI		85 + 6xUI	ns
T _{HS-PREPARE} + HS-0 State Prior to Sync	T _{HS-PREPARE} + T _{HS-ZERO}		145 + 10xUI			ns
State After Last HS Burst	T _{HS-TRAIL}		60 + 4xUI			ns
Initialization Time	T _{INIT}		100			μs
Length of any LP Period	T _{LPX}		50			ns
Skew-Calibration Sync Pattern, 0xFFFF	T _{SKEWCAL_} SYNC			16		UI
Skew-Calibration Initial	T _{SKEWCAL}		C1E		100	μs
Time	J. 127707 12		2 ¹⁵			UI

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Skew-Calibration	T _{SKEWCAL}				10	μs
Periodic Time	SKEWCAL		210			UI
AC ELECTRICAL CHARA	ACTERISTICS /	C-PHY HS TRANSMITTER (<u>Note 2</u>)				
Common-Level	ΔV _{CPTX(HF)}	> 450MHz			15	mV _{RMS}
Variations	ΔV _{CPTX(LF)}	50 to 450MHz			25	mV _{PEAK}
Rise Time	t _R	Strong 0 to weak 1 transition, -58mV to +58mV, Z_{ID} = 100 Ω			0.285	UI
Fall Time	t _F	Strong 1 to weak 0 transition, +58mV to -58 mV, Z_{ID} = 100 Ω			0.285	UI
Rise Time and Fall Time	^t RISE-FALL- MAX	-58mV to +58mV, Z _{ID} = 100Ω. (<u>Note 8</u>)			360	ps
Differential-Mode		f _{hMAX} = 1.25GHz		-5		
Reflection Coefficient (Note 7)	Sdd _{TX}	f _{MAX} = 1.875GHz		-3		dB
Common-Mode Reflection Coefficient (Note 7)	Scc _{TX}	f _{MAX} = 1.875GHz		-3		dB
C-PHY Lane Bit Rate	C _{BR}		182		5700	Mbps
CSI-2 Output Inter- packet Spacing	^t SPACE			300ns + 370UI		ns
UI Instantaneous	UI _{INST}		0.4		12.5	ns
AC ELECTRICAL CHARA	ACTERISTICS /	C-PHY GLOBAL OPERATION TIMING (<u>No</u>	<u>te 2)</u>			
Time that the Transmitter Drives the 3-Wire LP-000 Line State Immediately Before the HS_+x Line State Starting the HS Transmission	[†] 3-PREPARE		38		95	ns
Time that the Transmitter Drives LP-111 Following a HS Burst	t _{3-HS-EXIT}		100			ns
Transmitted Length of any Low-Power State Period	t _{LPX}		50			ns
Initialization Time	t _{INIT}		100			μs
AC ELECTRICAL CHAR	ACTERISTICS /	² C TIMING				
Output Fall Time	t _F	70% to 30%, C_L = 20pF to 100pF, 1kΩ pullup to V_{DDIO} (<i>Note 2</i>)	20 x V _{DDIO} /5. 5V		150	ns
I ² C Wake Time	^t WAKEUP	From power-up or rising edge of PWDNB to local register access. For remote register access, I ² C Wake Time is the same as Lock Time (t _{LOCK1} , t _{LOCK2}).		2.25		ms

 $(V_{TERM}$ = 1.14V to 1.26V, V_{DD18} = 1.7V to 1.9V, V_{DD} = 0.95V to 1.05V or V_{DD} = 1.14V to 1.26V, V_{DDIO} = 1.7V to 3.6V, T_A = -40°C to +105°C, EP connected to PCB ground, typical values are at V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, V_{DD} =

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
AC ELECTRICAL CHARA	CTERISTICS	1 ² C TIMING	•			•	
		Low f _{SCL} range: (I2C_MST_BT = 010, I2C_SLV_SH = 10)	9.6		100		
SCL Clock Frequency	f _{SCL}	Mid f _{SCL} range: (I2C_MST_BT = 101, I2C_SLV_SH = 01)	100		400	kHz	
		High f _{SCL} range: (I2C_MST_BT = 111, I2C_SLV_SH = 00)	400		1000		
		f _{SCL} range, low	4				
Start Condition Hold Time	t _{HD:STA}	f _{SCL} range, mid	0.6			μs	
Time		f _{SCL} range, high	0.26			1	
		f _{SCL} range, low	4.7				
Low Period of SCL Clock	t _{LOW}	f _{SCL} range, mid	1.3			μs	
Olock		f _{SCL} range, high	0.5				
		f _{SCL} range, low	4				
High Period of SCL Clock	tHIGH	f _{SCL} range, mid	0.6			μs	
Olock		f _{SCL} range, high	0.26				
		f _{SCL} range, low	4.7				
Repeated Start	^t su:sta	f _{SCL} range, mid	0.6			μs	
Condition Setup Time		f _{SCL} range, high	0.26				
	t _{HD:DAT}	f _{SCL} range, low	0				
Data Hold Time		f _{SCL} range, mid	0			ns	
		f _{SCL} range, high	0			1	
		f _{SCL} range, low	250				
Data Setup Time	tsu:dat	f _{SCL} range, mid	100				
		f _{SCL} range, high	50			1	
		f _{SCL} range, low	4				
Setup Time for Stop Condition	tsu:sto	f _{SCL} range, mid	0.6			μs	
Condition		f _{SCL} range, high	0.26			1	
		f _{SCL} range, low	4.7				
Bus Free Time	t _{BUF}	f _{SCL} range, mid	1.3			μs	
		f _{SCL} range, high	0.5				
		f _{SCL} range, low			3.45		
Data Valid Time	t _{VD:DAT}	f _{SCL} range, mid			0.9	μs	
		f _{SCL} range, high			0.45	1	
		f _{SCL} range, low			3.45		
Data Valid Acknowledge Time	t _{VD:ACK}	f _{SCL} range, mid			0.9	μs	
THIIC		f _{SCL} range, high			0.45		

 $(V_{TERM} = 1.14V \text{ to } 1.26V, V_{DD18} = 1.7V \text{ to } 1.9V, V_{DD} = 0.95V \text{ to } 1.05V \text{ or } V_{DD} = 1.14V \text{ to } 1.26V, V_{DDIO} = 1.7V \text{ to } 3.6V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C$, EP connected to PCB ground, typical values are at $V_{TERM} = 1.2V, V_{DD18} = V_{DDIO} = 1.8V, V_{DD} = 1.0V, T_A = +25^{\circ}C$, unless otherwise noted.) (*Note 1*)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
5		f _{SCL} range, low		50		
Pulse Width of Spikes Suppressed	t _{SP}	f _{SCL} range, mid			50	ns
Сирргоосси		f _{SCL} range, high			50	
Capacitive Load On Each Bus Line	C _B	(<u>Note 2</u>)			100	pF
AC ELECTRICAL CHARA	ACTERISTICS /	REFERENCE CLOCK REQUIREMENTS (C	RYSTAL) (K1/OSC, X2	2) (<u>Note 2</u>)	
Frequency	f _{XTAL}			25		MHz
Frequency Stability + Frequency Tolerance	f _{TN}				±200	ppm
AC ELECTRICAL CHARA UNCONNECTED) (Note:		REFERENCE CLOCK REQUIREMENTS (E	XTERNAL I	NPUT ON	X1/OSC, X2	!
Frequency	F _{REF}			25		MHz
Frequency Stability + Frequency Tolerance	f _{TN}		-200		+200	ppm
Duty Cycle	DC		40	50	60	%
Input Jitter	t _{JIN}	Sinusoidal jitter < 1MHz (rising edge)			150	ps (p-p)
Input Rise Time	t _R	10% to 90%		5		ns
Input Fall Time	t _F	90% to 10%		5		ns

- Note 1: Limits are 100% tested at T_A = +105°C unless otherwise noted. Limits within the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
- Note 2: Not production tested. Guaranteed by design and characterization.
- Note 3: MFP pin speed programmed to fastest setting (TTS = 00). See <u>Multifunction Pin Configuration</u> for details regarding MFP speed programming.
- **Note 4:** C_{LOAD} includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.
- Note 5: Additional capacitance up to 60pF (D-PHY) or 90pF (C-PHY) at RX termination center tap.
- Note 6: Differential-mode and common-mode reflection coefficient are compliant with MIPI D-PHY V1.2 requirements over all specified operating frequencies.
- Note 7: Differential-mode and common-mode reflection coefficient are compliant with MIPI C-PHY V1.0 requirements over all specified operating frequencies.
- **Note 8:** For rates \leq 1.5Gbps, t_R and t_F shall be \leq min (0.4UI, $t_{RISE-FALL-MAX}$).
- Note 9: From power-up, release of RESET_LINK, or rising edge of the PWDNB pin, to rising edge of the LOCK pin. t_{RD} must be <90ms if serializer powers up or is released from link reset before deserializer. For more information, see the GMSL2 Link Lock section.

Note 10: Production tested using ECS ECS-250-18-33Q-DS crystal.

Pin Configurations

Pin Description

DIM	NAME		FUNCTION MODE		FUNCTION
PIN	NAME	GMSL2	GMSL1	MAX96724R	FUNCTION
GMSL2/G	MSL1 SERIAL	LINK			
5	SIODP	SIODP	SIODP	SIODP	Noninverted Serial-Data I/O D.
6	SIODN	SIODN	SIODN	SIODN	Inverted Serial-Data I/O D.
10	SIOCP	SIOCP	SIOCP	SIOCP	Noninverted Serial-Data I/O C.
9	SIOCN	SIOCN	SIOCN	SIOCN	Inverted Serial-Data I/O C.
18	SIOBP	SIOBP	SIOBP	SIOBP	Noninverted Serial-Data I/O B.
19	SIOBN	SIOBN	SIOBN	SIOBN	Inverted Serial-Data I/O B.
23	SIOAP	SIOAP	SIOAP	SIOAP	Noninverted Serial-Data I/O A.
22	SIOAN	SIOAN	SIOAN	SIOAN	Inverted Serial-Data I/O A.
CSI-2 INT	TERFACE — PO	ORT A/C/D (* deno	tes default state a	ifter power-up)	
31	DA0P	DA0P* DC0P A0A C0A	DA0P* DC0P A0A C0A	DA0P* DC0P A0A C0A	DA0P: D-PHY Port A Data Lane 0 (4-lane) DC0P: D-PHY Port C Data Lane 0 (2-lane) A0A: C-PHY Port A Lane 0 Output A (4-lane) C0A: C-PHY Port C Lane 0 Output A (2-lane)
32	DA0N	DA0N* DC0N A0B C0B	DA0N* DC0N A0B C0B	DA0N* DC0N A0B C0B	DA0N: D-PHY Port A Data Lane 0 (4-lane) DC0N: D-PHY Port C Data Lane 0 (2-lane) A0B: C-PHY Port A Lane 0 Output B (4-lane) C0B: C-PHY Port C Lane 0 Output B (2-lane)

			FUNCTION MODE		
PIN	NAME	GMSL2	GMSL1	MAX96724R	FUNCTION
33	СКСР	DISABLED* CKCP CKAP(alt) A0C C0C	DISABLED* CKCP CKAP(alt) A0C C0C	DISABLED* CKCP CKAP(alt) A0C C0C	DISABLED: CKCP is Disabled in 4-Lane Mode CKCP: D-PHY Port C Clock Lane (2-lane) CKAP(alt): D-PHY Port A CLK ALT (4-lane) A0C: C-PHY Port A Lane 0 Output C (4-lane) C0C: C-PHY Port C Lane 0 Output C (2-lane)
34	CKCN	DISABLED* CKCN CKAN(alt) A1A C1A	DISABLED* CKCN CKAN(alt) A1A C1A	DISABLED* CKCN CKAN(alt) A1A C1A	DISABLED: CKCN is Disabled in 4-Lane Mode CKCN: D-PHY Port C Clock Lane (2-lane) CKAN(alt): D-PHY Port A CLK ALT (4-lane) A1A: C-PHY Port A Lane 1 Output A (4-lane) C1A: C-PHY Port C Lane 1 Output A (2-lane)
35	DA1P	DA1P* DC1P A1B C1B	DA1P* DC1P A1B C1B	DA1P* DC1P A1B C1B	DA1P: D-PHY Port A Data Lane 1 (4-lane) DC1P: D-PHY Port C Data Lane 1 (2-lane) A1B: C-PHY Port A Lane 1 Output B (4-lane) C1B: C-PHY Port C Lane 1 Output B (2-lane)
36	DA1N	DA1N* DC1N A1C C1C	DA1N* DC1N A1C C1C	DA1N* DC1N A1C C1C	DA1N: D-PHY Port A Data Lane 1 (4-lane) DC1N: D-PHY Port C Data Lane 1 (2-lane) A1C: C-PHY Port A Lane 1 Output C (4-lane) C1C: C-PHY Port C Lane 1 Output C (2-lane)
37	DA2P	DA2P* DD0P A2A D0A	DA2P* DD0P A2A D0A	DA2P* DD0P A2A D0A	DA2P: D-PHY Port A Data Lane 2 (4-lane) DD0P: D-PHY Port D Data Lane 0 (2-lane) A2A: C-PHY Port A Lane 2 Output A (4-lane) D0A: C-PHY Port D Lane 0 Output A (2-lane)
38	DA2N	DA2N* DD0N A2B D0B	DA2N* DD0N A2B D0B	DA2N* DD0N A2B D0B	DA2N: D-PHY Port A Data Lane 2 (4-lane) DD0N: D-PHY Port D Data Lane 0 (2-lane) A2B: C-PHY Port A Lane 2 Output B (4-lane) D0B: C-PHY Port D Lane 0 Output B (2-lane)
39	СКАР	CKAP* CKDP DISABLED A2C D0C	CKAP* CKDP DISABLED A2C D0C	CKAP* CKDP DISABLED A2C D0C	CKAP: D-PHY Port A Clock Lane (4-lane) CKDP: D-PHY Port D Clock Lane (2-lane) DISABLED: When CKAP/N(alt) is Enabled A2C: C-PHY Port A Lane 2 Output C (4-lane) D0C: C-PHY Port D Lane 0 Output C (2-lane)
40	CKAN	CKAN* CKDN DISABLED A3A D1A	CKAN* CKDN DISABLED A3A D1A	CKAN* CKDN DISABLED A3A D1A	CKAN: D-PHY Port A Clock Lane (4-lane) CKDN: D-PHY Port D Clock Lane (2-lane) DISABLED: When CKAP/N(alt) is Enabled A3A: C-PHY Port A Lane 3 Output A (4-lane) D1A: C-PHY Port D Lane 1 Output A (2-lane)
41	DA3P	DA3P* DD1P A3B D1B	DA3P* DD1P A3B D1B	DA3P* DD1P A3B D1B	DA3P: D-PHY Port A Data Lane 3 (4-lane) DD1P: D-PHY Port D Data Lane 1 (2-lane) A3B: C-PHY Port A Lane 3 Output B (4-lane) D1B: C-PHY Port D Lane 1 Output B (2-lane)
42	DA3N	DA3N* DD1N A3C D1C	DA3N* DD1N A3C D1C	DA3N* DD1N A3C D1C	DA3N: D-PHY Port A Data Lane 3 (4-lane) DD1N: D-PHY Port D Data Lane 1 (2-lane) A3C: C-PHY Port A Lane 3 Output C (4-lane) D1C: C-PHY Port D Lane 1 Output C (2-lane)
CSI-2 IN	TERFACE — PC	PRT B/E/F (* denot	es default state a	fter power-up)	
43	DB0P	DB0P* DE0P B0A E0A	DB0P* DE0P B0A E0A	N.C.	DB0P: D-PHY Port B Data Lane 0 (4-lane) DE0P: D-PHY Port E Data Lane 0 (2-lane) B0A: C-PHY Port B Lane 0 Output A (4-lane) E0A: C-PHY Port E Lane 0 Output A (2-lane) N.C.: No Connect

			FUNCTION MODE		
PIN	NAME	GMSL2	GMSL1	MAX96724R	FUNCTION
44	DB0N	DB0N* DE0N B0B E0B	DB0N* DE0N B0B E0B	N.C.	DB0N: D-PHY Port B Data Lane 0 (4-lane) DE0N: D-PHY Port E Data Lane 0 (2-lane) B0B: C-PHY Port B Lane 0 Output B (4-lane) E0B: C-PHY Port E Lane 0 Output B (2-lane) N.C.: No Connect
45	СКВР	CKBP* CKEP DISABLED B0C E0C	CKBP* CKEP DISABLED B0C E0C	N.C.	CKBP: D-PHY Port B Clock Lane (4-lane) CKEP: D-PHY Port E Clock Lane (2-lane) DISABLED: When CKBP/N(alt) is Enabled B0C: C-PHY Port B Lane 0 Output C (4-lane) E0C: C-PHY Port E Lane 0 Output C (2-lane) N.C.: No Connect
46	CKBN	CKBN* CKEN DISABLED B1A E1A	CKBN* CKEN DISABLED B1A E1A	N.C.	CKBN: D-PHY Port B Clock Lane (4-lane) CKEN: D-PHY Port E Clock Lane (2-lane) DISABLED: When CKBP/N(alt) is Enabled B1A: C-PHY Port B Lane 1 Output A (4-lane) E1A: C-PHY Port E Lane 1 Output A (2-lane) N.C.: No Connect
47	DB1P	DB1P* DE1P B1B E1B	DB1P* DE1P B1B E1B	N.C.	DB1P: D-PHY Port B Data Lane 1 (4-lane) DE1P: D-PHY Port E Data Lane 1 (2-lane) B1B: C-PHY Port B Lane 1 Output B (4-lane) E1B: C-PHY Port E Lane 1 Output B (2-lane) N.C.: No Connect
48	DB1N	DB1N* DE1N B1C E1C	DB1N* DE1N B1C E1C	N.C.	DB1N: D-PHY Port B Data Lane 1 (4-lane) DE1N: D-PHY Port E Data Lane 1 (2-lane) B1C: C-PHY Port B Lane 1 Output C (4-lane) E1C: C-PHY Port E Lane 1 Output C (2-lane) N.C.: No Connect
49	DB2P	DB2P* DF0P B2A F0A	DB2P* DF0P B2A F0A	N.C.	DB2P: D-PHY Port B Data Lane 2 (4-lane) DF0P: D-PHY Port F Data Lane 0 (2-lane) B2A: C-PHY Port B Lane 2 Output A (4-lane) F0A: C-PHY Port F Lane 0 Output A (2-lane) N.C.: No Connect
50	DB2N	DB2N* DF0N B2B F0B	DB2N* DF0N B2B F0B	N.C.	DB2N: D-PHY Port B Data Lane 2 (4-lane) DF0N: D-PHY Port F Data Lane 0 (2-lane) B2B: C-PHY Port B Lane 2 Output B (4-lane) F0B: C-PHY Port F Lane 0 Output B (2-lane) N.C.: No Connect
51	CKFP	DISABLED* CKFP CKBP(alt) B2C F0C	DISABLED* CKFP CKBP(alt) B2C F0C	N.C.	DISABLED: CKFP Output is Disabled in 4-Lane CKFP: D-PHY Port F Clock Lane (2-lane) CKBP(alt): D-PHY Port B Clock Lane (4-lane) B2C: C-PHY Port B Lane 2 Output C (4-lane) F0C: C-PHY Port F Lane 0 Output C (2-lane) N.C.: No Connect
52	CKFN	DISABLED* CKFN CKBN(alt) B3A F1A	DISABLED* CKFN CKBN(alt) B3A F1A	N.C.	DISABLED: CKFN is Disabled in 4-Lane CKFN: D-PHY Port F Clock Lane (2-lane) CKBN(alt): D-PHY Port B CLK ALT (4-lane) B3A: C-PHY Port B Lane 3 Output A (4-lane) F1A: C-PHY Port F Lane 1 Output A (2-lane) N.C.: No Connect

			FUNCTION MODE	<u> </u>	
PIN	NAME	GMSL2	GMSL1	MAX96724R	FUNCTION
53	DB3P	DB3P* DF1P B3B F1B	DB3P* DF1P B3B F1B	N.C.	DB3P: D-PHY Port B Data Lane 3 (4-lane) DF1P: D-PHY Port F Data Lane 1 (2-lane) B3B: C-PHY Port B Lane 3 Output B (4-lane) F1B: C-PHY Port F Lane 1 Output B (2-lane) N.C.: No Connect
54	DB3N	DB3N* DF1N B3C F1C	DB3N* DF1N B3C F1C	N.C.	DB3N: D-PHY Port B Data Lane 3 (4-lane) DF1N: D-PHY Port F Data Lane 1 (2-lane) B3C: C-PHY Port B Lane 3 Output C (4-lane) F1C: C-PHY Port F Lane 1 Output C (2-lane) N.C.: No Connect
MULTIFU	JNCTION PINS -	— (* denotes defa	ult state after pow	/er-up) (** GMSL1	has limited GPIO tunneling capability)
1	MFP0	FSYNC LMN0 GPIO0 DISABLED*	FSYNC LMN0 GPI0 GPIO0** DISABLED*	FSYNC LMN0 GPIO0 DISABLED*	FSYNC: FSync Output (Master) or Input (Slave) LMN0: Line Fault Monitor Input GPI0: GPI-GPO Sync Signal GPI00: General Purpose I/O. Disabled with 1MΩ pulldown. DISABLED: Disabled at Power-Up and is Hi-Z
2	MFP1	VSYNC0 DE0 HSYNC0 LMN1 GPIO1 DISABLED*	VSYNC0 DE0 HSYNC0 CNTL0 CNTL1 LMN1 GPI1 GPIO1** DISABLED*	VSYNC0 DE0 HSYNC0 LMN1 GPIO1 DISABLED*	VSYNC0: Vertical Sync Push-Pull Output DE0: Data Enable Push-Pull Output HSYNC0: Horizontal Sync Push-Pull Output CNTL0: Control 0 with Push-Pull Driver CNTL2: Control 2 with Push-Pull Driver LMN1: Line Fault Monitor Input GPI1: Input GPI-GPO Sync GPIO1: 1MΩ pulldown DISABLED: Pin is Disabled and is Hi-Z
3	MFP2	LMN2 GPIO2 DISABLED*	CNTL1 CNTL3 LMN2 GPI2 GPIO2** DISABLED*	LMN2 GPIO2 DSIABLED*	CNTL1: Control 1 with Push-Pull Driver CNTL3: Control 3 with Push-Pull Driver LMN2: Line Fault Monitor Input GPI2: Input GPI-GPO Sync GPIO2: 1MΩ pulldown DISABLED: Pin is Disabled and is Hi-Z
12	MFP3	VSYNC1 DE1 HSYNC1 LMN3 GPIO3 DISABLED*	VSYNC1 DE1 HSYNC1 CNTL4 LMN3 GPI3 GPIO3** DISABLED*	VSYNC1 DE1 HSYNC1 LMN3 GPIO3 DISABLED*	VSYNC1: Vertical Sync Push-Pull Output DE1: Data Enable Push-Pull Output HSYNC1: Horizontal Sync Push-Pull Output CNTL4: Control Output 4 with Push-Pull Driver LMN3: Line Fault Monitor Input GPI3: Input for GPI-GPO Sync GPIO3: 1MΩ pulldown DISABLED: Pin is Disabled and is Hi-Z
13	MFP4	LOCK* GPIO4	LOCK* GPIO4**	LOCK* GPIO4	LOCK: Open-Drain with 40kΩ Pullup to V _{DDIO} GPIO4: General Purpose I/O
14	MFP5	ERRB* ERRB/LOCK GPIO5	ERRB* ERRB/LOCK GPIO5**	ERRB* ERRB/LOCK GPIO5	ERRB: Open-Drain with $40k\Omega$ Pullup to V_{DDIO} ERRB/LOCK: Open-Drain with $40k\Omega$ Pullup to V_{DDIO} GPIO5: General Purpose I/O
25	CFG1/MFP6	CFG1 GPIO_Aggregat ion GPO6 DISABLED*	CFG1 GPIO_Aggregat ion GPO6** DISABLED*	CFG1 GPIO_Aggregat ion GPO6 DISABLED*	CFG1: Latched at Power-Up. See <u>Table 8</u> . GPIO_Aggregation: See User Guide. GPO6: General-Purpose Output. DISABLED: After Latching CFG1 at Power-Up, Pin is disabled and goes to Hi-Z.

PIN	NAME		FUNCTION MODE		EUNCTION
PIN	NAIVIE	GMSL2	GMSL1	MAX96724R	FUNCTION
26	SDA1/MFP7	SDA1* FSYNC(ALT) VSYNC2 DE2 HSYNC2 GPIO7	FSYNC(ALT) VSYNC2 DE2 HSYNC2 GPIO7**	SDA1* FSYNC(ALT) VSYNC2 DE2 HSYNC2 GPIO7	SDA1: Open-Drain with 40kΩ Pullup to V _{DDIO} FSYNC (ALT): ALT. Output (Master) or Input (Slave) VSYNC2: Vertical Sync Push-Pull Output DE2: Data Enable Push-Pull Output HSYNC2: Horizontal Sync Push-Pull Output GPIO7: General Purpose I/O
27	SCL1/MFP8	SCL1* VSYNC3 DE3 HSYNC3 GPIO8	VSYNC3 DE3 HSYNC3 GPIO8**	SCL1* VSYNC3 DE3 HSYNC3 GPIO8	SCL1: Open-Drain Output with 40kΩ Pullup to VDDIO VSYNC3: Vertical Sync Push-Pull Output DE3: Data Enable Push-Pull Output HSYNC3: Horizontal Sync Push-Pull Output GPIO8: General Purpose I/O
MISCELL	ANEOUS — (Ta	able 3)			
4	CFG0	CFG0	CFG0	CFG0	Latched at Power-Up (Table 7)
8, 20	CAP_VDD	CAP_VDD	CAP_VDD	CAP_VDD	Decoupling for V _{DD} Core Supply.
11	PWDNB	PWDNB	PWDNB	PWDNB	PWDNB: Active-low, Input with a 1MΩ Pulldown to Ground. Set low to enter Power-Down mode. Attach pullup resistor to VDDIO for normal operation.
28	SDA	SDA	SDA	SDA	Open-Drain with 40kΩ Pullup to V _{DDIO} .
29	SCL	SCL	SCL	SCL	Open-Drain with 40kΩ Pullup to V _{DDIO} .
15	X1/OSC	X1/OSC	X1/OSC	X1/OSC	25MHz Crystal/Clock Source.
16	X2	X2	X2	X2	Connect to 25MHz. OSC requires X2 to be floating.
17	XRES	XRES	XRES	XRES	Connect 402Ω 1% resistor to ground.
POWER	SUPPLIES — (I	able 3)			
7, 21	V _{DD18}	V _{DD18}	V _{DD18}	V _{DD18}	1.8V Analog Supply.
24	V _{DDIO}	V_{DDIO}	V_{DDIO}	V _{DDIO}	3.3V or 1.8V I/O Power Supply.
30	V _{TERM}	V _{TERM}	V _{TERM}	V _{TERM}	1.2V CSI C/D-PHY Supply.
55, 56	V _{DD}	V_{DD}	V _{DD}	V _{DD}	1.2/1.0V core supply. 1.2V uses an internal regulator. 1.0V will bypass the regulator.
EP	EP	EP	EP	EP	Exposed Pad connect to ground.

Functional Diagrams

MAX96724

Detailed Description

Descriptions

Thermal Management

Power consumption of the MAX96724/F/R varies based on the use case. Care must be taken by the user to provide sufficient heat dissipation with proper board design and cooling techniques. The package's exposed pad must be connected to the PCB ground plane by an array of vias. This approach simultaneously provides the lowest electrical and thermal impedances.

System thermal management must keep the operating junction temperature below +125°C to meet electrical specifications and avoid impacting device reliability.

Refer to Tutorial 4083 (www.maximintegrated.com/thermal-tutorial) for further guidance.

Control Channel Programming

MAX96724/F/R internal registers can be accessed locally via any of the two available I^2C ports. Lower indexed ports have a higher priority in the case of simultaneous queries. By default, remote GMSL serializer register access is available via I^2C port 0 only. However, the internal I^2C crossover enables any of the two ports to connect to the control channel, which thereby provides access to remote serializer registers. Only one of the two ports can access the control channel at a given time, and the other I^2C port then functions essentially as remote pass-throughs from the perspective of the serializer. See I^2C for further details regarding the routing of I^2C ports in the MAX96724/F/R. For multi-master configurations with microcontrollers connected to both the serializer and deserializer, bus contention can be avoided by using register settings to disable the remote control channel.

Host-to-Peripheral Main I²C and Pass-Through I²C Communication

When communicating between a host and peripheral, main and pass-through I²C operation is the same. An I²C tunnel across the GMSL2 link connects the host's I²C master to the remote I²C slave. This logically connects separated I²C buses, enabling I²C transactions across the serial link to occur (with some delay) as if performed on the same physical I²C bus. The GMSL2 serializer and deserializer are intermediary devices; the host I²C master connects to a GMSL2 device I²C slave, and the peripheral I²C slave connects to a GMSL2 device I²C master.

For example, when the host I^2C master transacts on one side of the link (local-side), the I^2C slave of the local-side GMSL2 device forwards data to the other side (remote-side). Data is then received by the I^2C master of the remote-side GMSL2 device, which in turn generates the same I^2C transaction with the peripheral slave I^2C . The remote-side GMSL2 device sends back any I^2C data expected by the local-side.

The I²C interface uses clock stretching (holding SCL low) to account for timing differences between master and slave and to allow time for data to be forwarded and received across the serial link. The host I²C master and peripheral I²C slave must support clock stretching by the GMSL2 device.

SDA and SCL lines operate as both an input and an open-drain output. External pullup resistors are required on SDA and SCL.

Each transmission consists of a START condition sent by a master, followed by the device's 7-bit slave address plus a R/W bit, register address bytes, one or more data bytes, and finally a STOP condition.

Register addresses are 16-bits wide. Single or multiple data bytes can be written or read (by address autoincrements).

I²C Write Packet Format

Figure 1. I²C Write Packet Format

I²C Read Packet Format

Figure 2. I²C Read Packet Format

Device Address

Each device on the I²C control channel must have a unique address. This includes both peripherals and GMSL devices. The GMSL2 device address is set to one of several 7-bit addresses according to the voltage level of the CFG0 pin at power-up. See CFG Latch at Power-up Pins for further details. Note that the device address can be changed after power-up by writing to the DEV_ADDR register.

Advanced GMSL User Documentation

This data sheet contains electrical specifications, pin and functional descriptions, feature overviews and register definitions. Designers must also have the following information to correctly design using this device:

- The GMSL2 Channel Specification contains physical layer requirements for the PCB traces, cables and connectors that constitute the GMSL2 link.
- The **GMSL2 Hardware Design Guide** contains recommendations for PCB design, applications circuits, selection of external components and guidelines for use of GMSL2 signal integrity tools.
- The GMSL2 User Guide contains detailed programming guidelines for GMSL2 device features.
- Errata sheets contain deviations from published device specifications and are specific to part number and revision ID.

Contact the factory for the above documents and for additional guidance on MAX96724/F/R features.

Recommended Operating Conditions

Table 2. Recommended Operating Conditions

PARAMETER	PIN	NOMINAL VOLTAGE	MIN	TYP	MAX	UNIT
Supply Range	V _{TERM}		1.14	1.2	1.26	
	V _{DD18}		1.7	1.8	1.9	
	V_{DD}	1.0V	0.95	1.0	1.05	V
		1.2V	1.14	1.2	1.26	
	V _{DDIO}		1.7		3.6	
Operating Junction Temperature (T _J)			-40		125	°C

External Component Requirements

Critical components that must be connected to the specified pins for correct functionality.

Table 3. External Component Requirements

COMPONENT	SYMBOL	CONDITION		VALUE	UNIT	
XRES	R _{XRES}	Connect the resistor to XRES and ground.		402 ±1%	Ω	
Link Isolation Capacitors	C _{LINK}	Place in close proximity to the SIO pins.	GMSL2, GMSL1 - HIM Enabled	0.1	μF	
			GMSL2, GMSL1 - HIM Enabled	0.22	μΓ	
Termination for Coax mode	R _{TERM}	Place near associated SIO_N pin.		49.9 ±1%	Ω	
Crystal		Place as close as possible to pins X1 and X2.		25MHz ±200ppm		
V _{DDIO} Decoupling Capacitors*		Place as close as possible to pin V _{DDIO} .		0.01μF + 10μF		
V _{DD18} Decoupling Capacitors*		Place as close as possible to each V _{DD18} pin.		2 x 0.01μF + 10μF		
V _{DD} Decoupling Capacitors*		Place as possible to each V _{DD} pin.		2 x 0.1µF + 10µF		
V _{TERM} Decoupling Capacitors*		Place as close as possible to pin V _{TERM} .		0.01μF + 10μF		
CAP_VDD Decoupling Capacitors		Place as close as possible to each	possible to each CAP_VDD pin.		2 x 0.1μF + 10μF	
Configuration Pins (CFG0, CFG1/	R1, R2			See <u>Table 7</u> .		
MFP6)	R1, R2			See <u>Table 8</u> .		
Power-over-Coax (PoC)		Contact the factory, PoC cannot be used with line-fault.				
Line Fault	User Guide	Refer to GMSL User Guide for proper line-fault setup.				

^{*} Power supply decoupling capacitor values are recommendations only. It is the responsibility of the board designer to determine what decoupling is necessary for the specific application.

ESD Protection

Table 4. ESD Protection

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
SIO_	V _{ESD}	Human Body Model (HBM), $R_D = 1.5k\Omega$, $C_S = 100pF$		±8			
		ISO10605, R_D = 330 Ω , C_S = 150pF, Contact Discharge, Coax Configuration		±6		kV	
		ISO10605, R_D = 330 Ω , C_S = 150pF, Contact Discharge, STP Configuration		±4			
		ISO10605, R_D = 330 Ω , C_S = 150pF, Air Discharge		±8			
		AEC-Q100-011 Rev-C1, Charged Device Model (CDM)		750		٧	
All Other Pins	V _{ESD}	Human Body Model (HBM), $R_D = 1.5k\Omega$, $C_S = 100pF$		±3		kV	
		AEC-Q100-011 Rev-C1, Charged Device Model (CDM)		750		V	

Figures

GMSL2 Reverse Channel Serial Outputs

Figure 3. GMSL2 Serial Output Parameters

GMSL1 Serial Output Parameters

Figure 4. GMSL1 Serial Output Parameters

C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals

Figure 5. C-PHY Possible ΔV_{CPTX} and ΔV_{OD} Distortions of Single-Ended HS Signals

Copyright © 2013-2014 MIPI Alliance, Inc. All rights reserved.

C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals

Figure 6. C-PHY Ideal Single-Ended and Resulting Differential High-Speed Signals

Copyright © 2013-2014 MIPI Alliance, Inc. All rights reserved.

GMSL2 Video Latency

Figure 7. GMSL2 Video Latency

GMSL2 GPI-to-GPO Delay and Skew

Figure 8. GMSL2 GPI-to-GPO Delay and Skew

GMSL1 Lock Time

Figure 9. GMSL1 Lock Time

GMSL1 Power-up Delay

Figure 10. GMSL1 Power-up Delay

GMSL1 Video Latency

Figure 11. GMSL1 Video Latency

GMSL1 GPI-to-GPO Delay

Figure 12. GMSL1 GPI-to-GPO Delay

Product Overview

The MAX96724/F/R deserializer converts four GMSL2 or GMSL1 inputs to up to four independent MIPI CSI-2 C/D-PHY outputs containing a combined total of up to four lanes. It also sends and receives control channel data, enabling full-duplex transmission of forwarding path video and bidirectional control data over low-cost 50Ω coax or 100Ω STP cables

that meet the GMSL2 channel specification. In GMSL1 mode, the MAX96724/F/R can be paired with first-generation GMSL1 serializers or GMSL2 serializers in GMSL1 mode, operating up to 3.12Gbps.

The MAX96724/F/R has 4-lane or dual 2-lane CSI-2 v1.3 output ports that support data rates of 80Mbps to 2.5Gbps per lane in D-PHY mode or 182Mbps to 5.7Gbps per lane in C-PHY mode. The number of active data lanes in each CSI-2 port is programmable with 4-lane ports providing one, two, three, or four lanes and 2-lane ports providing one or two lanes.

The MAX96724/F/R is intended to be paired with GMSL2 serializers or previous generation GMSL1 serializers. Several common multi-sensor use cases are supported with the MAX96724/F/R being particularly well suited to surround-view sensor systems that include four physically separate cameras or other sensors. The simplest conceptual system following this topology includes four independent sensors, each with a serializer routed to the MAX96724/F/R's four GMSL inputs. The resulting CSI-2 streams from each sensor are then routed to two independent CSI-2 C/D-PHY outputs in 2x2-lane mode, providing a system with four independent inputs and two outputs where data from two sensors are aggregated and routed to a dedicated output.

MAX96724/F/R has built-in ease of use functionality:

- Use Case Profiles
- MIPI Controller Mapping
- D-PHY to C-PHY conversion
- Automatic Detection of Pixel or Tunnel Mode per Input

Cabling Options

GMSL1/2 supports operation with either 50Ω coaxial or 100Ω shielded twisted pair (STP) cabling. Contact the factory for GMSL Channel Specifications. Coax or STP operation is determined by the level of CFG pins at power-up as detailed in the <u>CFG Latch at Power-up Pins</u> section. In coax mode, use only the noninverted SIO pin. In STP configurations, both the noninverted and inverted SIO pins are enabled by default. Any unused SIO pins should be AC terminated with 50Ω to ground.

GMSL2 Bandwidth Information and Calculation

Forward links have a fixed link rate of 3Gbps or 6Gbps for the MAX96724/F/R. The reverse-link rate is fixed at 187.5Mbps. The GMSL2 protocol and channel coding overhead is roughly 14%. This leaves approximately 2.6Gbps or 5.2Gbps of data throughput in the forward direction and 162Mbps in the reverse direction. Ensure that the worst-case use cases do not exceed the available throughput of the forward and reverse links. The GMSL SerDes GUI includes a bandwidth (BW) calculator that can be used for initial bandwidth requirements estimates. It is recommended to consult the factory for high-bandwidth use cases to ensure error-free performance.

Table 5 provides rough estimates of the bandwidth utilization for each communication channel.

Table 5. Forward- and Reverse-Link Bandwidth Utilization

DATA	APPROXIMATE BANDWIDTH UTILIZATION		
Video (Forward Path Only)	H x V x fps x bpp x (1+ (% horizontal blanking)/100 + (% vertical blanking)/100) x 1.14 Maximum bandwidth is limited by pixel clock rate PCLK. Pixel mode: GMSL PCLK = Received MIPI data rate/bpp Pixel mode (double pixel mode): PCLK = MIPI data rate/(2*bpp) Tunneling mode: GMSL PCLK = Received MIPI data rate/24 Maximum GMSL PCLK: 300MHz for 3Gbps link rate Maximum GMSL PCLK = 600MHz for 6Gbps link rate		
I ² C	18 to 60 x I ² C clock rate, depending on available link bandwidth		
GPIO	60 x GPIO transition rate without delay compensation 80 x GPIO transition rate with delay compensation enabled		

Definitions:

H = Horizontal resolution (active pixels)

V = Vertical resolution (active video lines)

fps = Frames per second

bpp = Bits per pixel

MIPI data rate = Aggregate data rate of all lanes in the MIPI interface

Figure 13. Video Frame Format for Bandwidth Calculation

GMSL2 Minimum Blanking

The minimum horizontal blanking period needed by the CSI-2 serializers and deserializers is the maximum of either 40 pixels or 300ns + 370UI (where UI is defined as the period of CSI-2 lane rate). For most cases, 40 pixels is the larger number. The minimum vertical blanking period is one video line. The minimum vertical front porch is one video line. Recommended vertical back porch is one video line.

Minimum vertical back porch in pixel mode is the maximum of:

- 40 pixels
- 300ns + 370UI

Minimum vertical back porch in tunneling mode is the maximum of:

- 40 pixels
- 200 PCLK periods + 233ns, where PCLK = total MIPI data rate/24
- 300ns + 370UI

Figure 14. Video Timing

AEQ (Automatic Adaptive Equalization)

The GMSL2 devices automatically adapt the forward path receiver characteristics to compensate for insertion loss and

return loss characteristics of the channel, which consist of the cables, connectors, temperature, and PCBs. This approach optimizes performance on any channel that meets the GMSL2 channel specifications. Initial adaptation is performed during link lock and then is invoked at every second to track temperature and voltage variations. This is critical for a changing automotive safety application.

GMSL2 Overview

GMSL2 uses a packet-based protocol to seamlessly share the link bandwidth between communication channels in a flexible way. Bandwidth allocation is dynamic so that if a certain channel is not active, it does not consume any link bandwidth, and all the remaining active channels can share the full link bandwidth. Maximum packet size is limited to prevent a single channel from utilizing the link bandwidth for an extended time. The same data protocol is used on forward and reverse channels and for both video and control-channel data.

GMSL2 provides extensive data integrity and safety features. Some of these features include CRC error detection that enables identification of errors in the video or control-data streams. In the case of control-channel CRC errors, automatic retransmission of the flagged packet maximizes control-channel speed and reliability.

GMSL2 devices incorporate numerous link-margin optimization and monitoring functions that ensure high link margin and robust functionality. Continuous adaptive equalization occurs every second to optimize link margin to adapt to environmental changes and cable aging. An eye-opening monitor function provides continuous link-margin diagnosis.

Tunneling vs. Pixel Modes

The MAX96724/F/R is specifically designed for Advanced Driver Assistance Systems (ADAS), where data integrity is a key safety requirement. Prior GMSL2 solutions supported only Pixel mode for transporting received data from a MIPI CSI-2 interface over the GMSL link. In Pixel mode, the CSI-2 data is depacketized at the serializer's CSI-2 input interface. The received CSI-2 packet header includes an error correction code (ECC), which is checked and removed at the serializer input. The received CSI-2 packet footer contains the CSI-2 cyclic redundancy check (CRC), which is also checked and removed.

Video line pixel data and video routing information, such as data type and virtual channel, are received and extracted at the CSI-2 interface. Both video pixel data, control channel data, and routing information are input into a scheduler in the serializer. The scheduler packetizes and encapsulates the data using GMSL protocol and sequences data transmission across the GMSL link. Video data transport across the GMSL link is protected by line CRCs that are part of the GMSL protocol.

The deserializer receives the GMSL packets and verifies the GMSL2 line CRCs. A CSI-2 interface at the deserializer output encapsulates each video line using CSI-2 protocol and outputs it in CSI-2 format across a CSI-2 interface to the SoC. See Figure 15.

Figure 15. Pixel Mode

In Tunneling mode, the received CSI-2 ECC byte and CRC bytes are checked at the serializer input. These, as well as routing and pixel data, are received as a byte stream. The byte stream is split into smaller packets that are encapsulated using GMSL2 protocol.

The serializer adds a line CRC, protecting transmission across the GMSL channel. This CRC covers the entire GMSL2 packetized byte stream for a video line. See <u>Figure 16</u>. The deserializer receives the transmitted GMSL2 packets

and control channel packets, checks and removes the GMSL CRC, separates the video data from control data, and reconstructs each received CSI-2 packet that is the output to the SoC on a CSI-2 interface. A CRC is calculated on the video data output on the CSI-2 interface. This CRC is compared by the deserializer to the original CRC received from the video source. This comparison guarantees that the entire data packet output on the standard MIPI interface is identical to that received at the serializer input. Tunneling mode is more bandwidth-efficient if multiple data types are being sent. Because data received at the serializer input and data output from the deserializer are verified to be identical, Tunneling mode does not allow for the processing of video data, such as watermarking or lossy data compression. Different data rate and different lane count on serializer and deserializer are still possible. See Figure 16.

Figure 16. Tunneling Mode

Video Pipes, Aggregation, and Replication

In GMSL2 mode, the transmission of video data is based on the concept of video pipes. Carrying data in pipes allows GMSL2 to bridge different digital video interfaces.

A pipe carries a video stream (or streams) and video synchronization data. Each pipe operates in one of three modes. In all modes, a pipe can carry multiple concurrent video streams, with each stream having different virtual channels and data types.

Mode 1: Streams with constant bits per pixel (bpp) of up to 24bpp. The bpp of the streams must be the same.

Mode 2: Streams with 16, 14, 12, 10 or 8bpp. Streams less than 16bpp are padded with zeros.

Mode 3: Streams with two different bpp. The bpp of one stream must be twice the bpp of the other stream. The higher bpp stream maximum is 24bpp.

Modes 1 and 3 carry data at full bandwidth but put more restrictions on bpp than mode 2. Mode 2 allows streams with different bpp, but streams of less than 16bpp are carried using more bandwidth than necessary on the GMSL2 link because of zero padding. Mode 1 or 3 are sufficient for most applications. Mode 2 requires less programming and is more convenient if the application does not require maximum link bandwidth.

The MAX96724/F/R has four GMSL input ports, each accommodating up to four independent pipes in GMSL2 mode. In GMSL1 mode, only a single, dedicated video pipe is available per link. Each pipe can be mapped to any one of the incoming GMSL video streams; as a result, up to four pipes can be mapped to a single GMSL2 output port. In GMSL1 mode, a total of four video pipes is available with a fixed mapping between each GMSL1 input and a single internal pipe as shown in Figure 17. In mixed GMSL1/GMSL2 systems, the GMSL1 input streams are routed to the dedicated GMSL1 pipe associated with each active GMSL1 input. Incoming GMSL2 streams can be routed to any of the available pipes that are not dedicated to an active GMSL1 input. The pipes are available sources for synchronous aggregation.

Figure 17. Video Pipes and Routing

A single camera requires either one or two pipes for Pixel mode depending on whether it supports high dynamic range (HDR) imaging. Tunnel mode uses only one pipe, even if there are multiple data types and VC's on the incoming GMSL input. A Pixel mode example is shown in <u>Figure 18</u> illustrates an application in which one link interfaces to an HDR camera (two dedicated pipes) while the other two links stream video from standard cameras (one dedicated pipe).

Figure 18. MAX96724/F/R Video Pipe Example with Partial FCFS Aggregation

When video data is received by one of the MAX96724/F/R's GMSL inputs, it is immediately forwarded to one of the internal video pipes. Note that a single pipe can carry many separate streams, provided that they comply with certain mode-dependent format limitations. The channel ID of each incoming CSI stream can be reassigned if desired. Video data then fills the dedicated line buffer associated with each pipe as controlled by the sync data. Each line buffer can be routed to any one of the four aggregators, which can be used to combine data from multiple video pipes and/or virtual

channels within a single CSI-2 stream. Only one aggregator can read data out of a given buffer. Up to four pipes can be aggregated by one aggregator. Video data can be routed according to DT or VC based on the source CSI-2 packet's DT/VC, or it can be routed by a DT/VC assigned in the MAX96724/F/R.

Aggregated data is typically read out from line memory on a first come first served (FCFS) basis. In this case, data from all four video pipes are visible to the aggregators. The order in which the line memories reach filled status is the order in which they are read out. In this case, the outgoing CSI data streams can be viewed as independent parallel streams that may have independent timing, although they may be effectively synchronized depending on the nature of the video sources used. Alternatively, data can be aggregated in specific sequences corresponding to side-by-side (4WxH) or line-interleaved (Wx4H) output formats. All data sources must use the same resolution and virtual channel assignment, and they must be precisely synchronized. The resulting output is a single stream consisting of a superframe that holds video data from all aggregated streams. Synchronous aggregation can effectively provide a single combined image output from multiple sensors, such as a single image surround-view stream. Side-by-side aggregation combines incoming streams from up to four sensors, resulting in a frame that has equal height and up to 4x the width of single sensor output. Pixel mode supports both 4WxH and Wx4H modes. Tunnel mode only supports Wx4H mode.

The MAX96724/F/R includes features that minimize the disruption resulting from one of the links failing in multi-link systems that use aggregation. With systems using synchronous aggregation, the MAX96724/F/R masks the failed link's video data with 0's. This allows overall timing to continue as expected, enabling the remaining video streams to proceed uninterrupted. Similarly, with systems using FCFS aggregation, the video stream associated with a link that has failed will be terminated at the end of a line to avoid a sudden disruption that may impact other streams using the same physical interface.

The MAX96724/F/R supports a new feature called "cut-through" in the Tunnel mode that allows the controller to start reading from the memory sooner. Register PKT_START_ADDR can adjust when to start reading from memory after written to. This allows an extension to the video line memory for lines longer than 4096 pixels and can also reduce latency by allowing the ability to read the memory quicker. Once data is read out, it cannot be read out a second time. Figure 19 shows the MAX96724/F/R memory operation.

Figure 19. GMSL2 Memory Reading and Writing

To prevent buffer overflow, the CSI-2 port data rate must be programmed to an equal to or greater rate than the incoming data rate. Programming the output rate to be faster than the bandwidth of the incoming video or data increases packet spacing (LP time between packets). The video memory has built-in overflow detection - BACKTOP11. This occurs when the video bandwidth is higher than the data going out on the MIPI port, not giving a chance for the memory to empty. No reformatting of the data occurs in Tunnel mode. It is a requirement for functional safety that the video data is unchanged, such that it can be compared against the tunneled CSI-2 CRC by the host. After data exits a retiming buffer, it goes through a data type (DT) and virtual channel (VC) reassignment stage. If the video source has a CSI-2 output, packets DT and VC can each be left as-is or reassigned by register programming.

The MAX96724/F/R GMSL2 protocols allocate 24 bits of each packet for video content to effectively use the GMSL2 forward channel bandwidth. The serializer and MAX96724/F/R contain the double Pixel mode, which place x2 8bpp/

10bpp/12bpp into the same packet. See bpp8dbl / bpp10dbl / bpp12dbl bitfields in the register map for more information.

Frame Sync

In some camera applications, a frame-sync signal is required by the sensors to synchronize the output of a frame with the other cameras in the system. The MAX96724/F/R can generate FSYNC signal internally or receive an FSYNC signal from external SoC and send it over to the sensor through the GMSL reverse channel. MFP0 or MFP7 is programmed to receive the external FSYNC signal and MAX96724/F/R are programmed as slaves. To generate the internal FSYNC, the MAX96724/F/R are programmed as masters. Refer to the MAX96724/F/R User Guide for more information.

Vertical and Data Enable or Data Valid Sync Outputs

The MAX96724/F/R can output the vertical sync (VS) and data enable/data valid (DE/DV) of a video stream to monitor the video timing by a processor. This feature provides access to VS and DE/DV signals not available directly at the CSI-2 output. Refer to the MAX96724/F/R User Guide for how to use this feature.

D-PHY to C-PHY Packet Conversion

MAX96724/F/R has the ability to convert Imager sensor D-PHY packets to C-PHY packets while still maintaining ASIL functionality. This is done automatically when C-PHY is selected.

Control Channel Latency

All control channels exhibit finite latency. Typical latency for each function is given in <u>Table 6</u>. For I²C, which requires an immediate ACK from the receiver following each byte, clock stretching is used to temporarily pause communication as the ACK propagates through the control channel. All I²C devices that communicate over the link must support clock stretching.

Table 6. Control Channel Latency

FUNCTION	FORWARD	REVERSE
I ² C	< 10µs	< 10µs

I²C

The MAX96724/F/R includes two independent I^2C interfaces. These interfaces are the only means by which local or remote (serializer) registers can be accessed. The master μC is typically located on the MAX96724/F/R side of the link, although this is not strictly required, and communication can be initiated by a device on either side of the link. For correct operation, the control channel of each of the MAX96724/F/R's links must be configured in the same mode as the serializer connected to that link. I^2C outputs are open drain and require appropriately-sized external pullup resistors for proper operation.

In general, each of the I²C ports can be used to access internal MAX96724/F/R registers, remote serializer registers, and remote peripheral registers. Both ports provide concurrent local register access. Each GMSL2 link provides a dedicated control channel through which any one of the ports can communicate with either a remote serializer connected to that link or with any remote peripherals connected to the serializer's control channel port. Routing of the I²C ports to each control channel is independent, enabling different combinations of local ports to access the control channel and the tunneled channels of each GMSL link. Regarding local (deserializer) register access, both ports provide simultaneous local access with lower indexed ports having the highest priority. In I²C mode, a local port's local register access cannot be disconnected unless the port is disabled. Therefore, all active I²C ports have local register access at all times.

Remote serializer registers are visible only by means of the dedicated GMSL2 link control channel, which supports only a single port. Therefore, only one port at a time can access remote registers over a given link. By default, port 0 is routed to the control channel of each link. With appropriate configuration, port 1 can also be routed to the control channel to support remote serializer register access. Any links operated in GMSL1 mode provide only a single control channel with both serializer and peripheral register access.

Figure 20. I²C Routing

General Purpose Inputs and Outputs (GPIO)

Multifunction pins can be programmed as GPI (input), GPO (push-pull output or open-drain output, although some MFP pins only support open-drain output), or GPIO (bidirectional input/output). Most GPIOs can also be programmed for $1M\Omega$ or $40k\Omega$ pullup or pulldown (or none). The state of each GPIO can be read or written by register either locally, using any of the two I²C ports, or remotely via the I²C interface that is routed to the GMSL2 control channel. Refer to the MAX96724/F/R User Guide for proper GPIO setup.

Link Error Generator

Each of the GMSL links includes a configurable error generator that injects errors into the outgoing data stream immediately prior to transmission. The deserializer injects errors into the reverse channel; the serializer injects errors into the forward channel. The receiving device detects, counts, and flags the errors, enabling a thorough validation of the system's response to error conditions of varying severity.

GMSL1 Backwards Compatibility

The MAX96724/F/R is designed to pair with any GMSL1 serializer with high immunity mode (HIM). However, the device does not support the entire range of features available across all GMSL1 serializers. GMSL1 backward compatibility is only supported with forward link rates from 500Mbps to 3.12Gbps and a reverse link rate of 1Mbps. When paired with a GMSL2 serializer for GMSL1 operation, both devices must be configured to use GMSL1 compatibility mode. When the MAX96724/F/R is paired with a legacy GMSL1 only serializer, the MAX96724/F/R must be configured for GMSL1 compatibility mode, and the available forward link rate is reduced to the rate limitations of the specified GMSL1 serializer. Refer to the MAX96724/F/R User Guide for more information.

Video PRBS Generator/Checker

GMSL2 devices include built-in video PRBS generators/checkers for video link testing for pixel mode operation. For example, a serializer's PRBS generator can be used in conjunction with a deserializer's PRBS checker to test the GMSL2 video channel that connects the two devices. Here, the MAX96724/F/R's PRBS checker functionality compares the received PRBS stream with the predicted PRBS data to establish any errors. To run the video PRBS test, refer to the MAX96724/F/R GMSL2 User Guide for more information.

RoR (Reference over Reverse)

Reference clock over reverse channel (RoR) is a GMSL clock operating mode where the serializer receives its reference clock from the deserializer over the GMSL link. RoR eliminates the need for a crystal oscillator on the serializer side of the link.

In RoR mode, the serializer's timing reference is extracted from the signal sent on the reverse channel. The recovered clock coming from the deserializer is used by the serializer on-chip phase-locked loop (PLL) to synthesize the serializer output reference clock RCLKOUT.

RoR mode is automatically supported when the serializer is configured in RoR mode.

The removal of the crystal oscillator in RoR provides several advantages:

- Reduced system cost
- Increased reliability
- Reduced board area
- Simplified board layout

CFG Latch at Power-up Pins

At power-up or after reset, the voltages at the CFG0 and CFG1/MFP6 pins are sampled. The sampled level is used to set the initial value of certain registers.

Figure 21. Configuration Pin Connection

The voltage level at each pin is set by an external precision resistor divider connected between V_{DDIO} and ground. Figure 21, Table 7, and Table 8 show the recommended resistor values to select each configuration. The voltage level at the CFG pins is typically latched 11ms after supplies reach the minimum levels required. CFG pins must not be loaded with more than 10pF at power-up to ensure the proper voltage level.

Table 7. CFG0 Input Map

SPECIFICATION (NOTE a) (PERCENTAGE OF V _{DDIO})		(NOTE	SISTOR VALUES ES b, c) ERANCE)	MAPPED CONFIGURATION				
MIN	TYP	MAX	R1 (Ω)	R1 (Ω) R2 (Ω)		I2CSEL MAX96724R	DEVICE ADDRESS	
0.0%	0.0%	11.7%	OPEN	10k			0x4E	
16.9%	20.2%	23.6%	80.6k	20.5k	I ² C	I ² C	0x5C	
28.8%	31.2%	35.5%	68.1k 32.4k] 1-0	1-0	0x9C	
40.7%	40.7% 44.0% 47.4%		56.2k	44.2k			0x9E	
All other v	oltage leve	ls are reser	ved or not applicable) <u>.</u>	•		•	

Table 8. CFG1/MFP6 Input Map

(PERCE	CFG1/MFP6 INPUT VOLTAGE (PERCENTAGE of V _{DDIO}) (NOTES a, b) SUGGESTED RESISTOR VALUES (±1% TOLERANCE) (NOTE c)				MAPPED CONFIGURATION (NOTE d)					
MIN	TYP	MAX	R1 (Ω)	R2 (Ω)	CX/ STP	GMSL1/ GMSL2	MAX96724	MAX96724F/R		
0.0%	0.0%	11.7%	OPEN	10000		GMSL2	6Gbps	2Chna		
16.9%	20.2%	23.6%	80600	20500	COAX	GIVISL2	3Gbps	3Gbps		
28.8%	32.1%	35.5%	68100	32400		GMSL1	HIM Disabled	HIM Disabled		
40.7%	44.0%	47.9%	56200	44200		GMSL2	6Gbps	2Chna		
52.6%	56.0%	59.3%	44200	56200	STP	GIVISL2	3Gbps	- 3Gbps		
64.5%	67.9%	71.2%	32400	68100		GMSL1	HIM Enabled	HIM Enabled		

(PERCE	CFG1/MFP6 INPUT VOLTAGE (PERCENTAGE of V _{DDIO}) (NOTES a, b) SUGGESTED RESISTOR VALUES (±1% TOLERANCE) (NOTE c)				ONFIGURATION OTE d)	N		
76.4%	79.8%	83.1%	20500	80600			HIM Disabled	HIM Disabled
88.3%	100%	100%	10000	OPEN	COAX	GMSL1	HIM Enabled	HIM Enabled

Notes:

- a. CFG0 or CFG1/MFP6 input voltage to exceed the maximum or minimum limits.
- b. Until the input voltage is latched, any load on CFG0 or CFG1/MFP6 (other than R1 and R2) must be ≥ 25 x (R1 + R2). Load capacitance (including R1 and R2) must be lumped load ≤ 10pF.
- c. Each resistor in the voltage divider must be $\leq 100 \text{k}\Omega$.
- d. GMSL1 default BWS = 0 (24 bit).

Multifunction Pin Configuration

MAX96724/F/R has several possible MFP states, but only one can be used at a time.

The <u>Pin Descriptions</u> section shows default and alternate functions for each MFP, listed in order of priority (highest priority listed first). [[MFP Pin Function Map]] also shows priority, with highest priority on the left. A higher priority function must be disabled when a lower-priority function is enabled, both by register writes.

Table 9. MFP Pin Function Map

PIN	HIGHEST PRIORITY	DECF	REASING PRIO	RITY FROM LE	FT TO RIG	нт	LOWEST PRIORITY	DEFAULT
MFP0	FSYNC				Line Fault 0	GPI0 (GMSL1)	GPIO0	Disabled*
MFP1		VS0/DE0/HS0	CNTL0 (GMSL1)	CNTL2 (GMSL1)	Line Fault 1	GPI1 (GMSL1)	GPIO1	Disabled*
MFP2			CNTL1 (GMSL1)	CNTL3 (GMSL1)	Line Fault 2	GP12 (GMSL1)	GPIO2	Disabled*
MFP3		VS1/DE1/HS1	CNTL4 (GMSL1)		Line Fault 3	GP13 (GMSL1)	GPIO3	Disabled*
MFP4	LOCK						GPIO4	LOCK
MFP5	ERRB	ERRB/LOCK					GPIO5	ERRB
MFP6	CFG1 (Startup Only)	GPIO Aggregation					GPO6	CFG1
MFP7	SDA1	FSYNC (Alternate)	VS2/DE2/ HS2				GPIO7	SDA1
MFP8	SCL1		VS3/DE3/ HS3				GPIO8	SCL1

^{*}Disabled represents a high impedance state where the MFP pin receiver is disabled and the $1M\Omega$ internal pull-down resistor enabled.

Power-Up and Link Start-Up

GMSL2 ICs are in power-down mode when the PWDNB pin is low or when any of the power supplies are disabled. When in power-down mode, the device configuration is reset to the default power-up state.

The serializer and descrializer can power up in any order. After PWDNB is released and all power supplies have settled, each device starts its power-up sequence and performs the following operations:

- 1. Latch CFG pin states and set internal registers accordingly. See Table 7 and Table 8.
- 2. Main control channel I²C is functional on local side. Local device registers are writable and readable. Perform local configuration as needed to establish links.
- 3. Links are established based on default configuration specified by CFG[1:0] pin power-up state, which specifies the global configuration for all links.
- 4. Perform link calibration, equalizer adaptation, and data channel locking. LOCK pin is driven high when all enabled links are locked and ready. The status of individual links can be monitored by reading individual link lock status bits.
- 5. Control channel is available from/to the remote side.

Device Reset

There are three general reset options available through register writes:

- 1. RESET ALL resets all blocks, including all registers and digital and analog blocks. This bit is auto cleared.
- 2. Setting RESET_LINK_x resets all GMSL PHY related logic as well as the data pipeline for the specified link (where x is A, B, C, or D). After this bit is set, all local control registers are still accessible. The link remains in RESET until the bit is cleared.
- 3. Setting RESET_ONESHOT_x resets all GMSL PHY related logic and the data pipeline for the associated link (where x is A, B, C, or D). This bit is auto cleared.

When configuring a GMSL link, program registers that control operation of the desired GMSL link first, then issue a RESET LINK x or RESET ONESHOT x bits.

Link and Video Lock

GMSL2 Link Lock

Figure 22. GMSL2 Lock Time

<u>Figure 22</u> illustrates the sequence that is used to characterize GMSL2 link lock time. Device A is the first device (serializer or deserializer) to power-up or resume operation from a RESET_LINK state. Device B is the device (deserializer or serializer) at the other end of the GMSL link.

Link lock indicates that the data receive paths are locked (forward channel in the deserializer, reverse channel in the serializer). Video and control channel functions (I²C, GPIO) can be used immediately after link lock is asserted.

The device will establish single link GMSL2 connectivity and link lock automatically following power-up. This is an indication that the cable is plugged in and the system is up and running. Lock is obtained with no interaction between

MAX96724/F/R

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

the μ C and GMSL devices. Both serializers and deserializers have an open-drain LOCK output pin and a related status register.

The GMSL2 link uses the crystal as the reference clock for GMSL2 links, so a valid video input (PCLK) is not needed for the GMSL2 link to lock.

Notes:

- The lock sequence is initiated by the release of the PWDNB pin or the RESET_LINK bit in either the serializer or the
 deserializer.
- Lock time is measured from the later of PWDNB or RESET_LINK release in either the serializer or deserializer to LOCK being asserted.
- 3. The PWDNB/RESET_LINK states on the two sides of the link must have overlap when both devices are in PWDNB/RESET_LINK mode prior to the lock process starting.
- 4. If RESET_LINK is used to initiate lock, PWDNB is assumed to be high after power-up (normal operation).
- 5. If PWDNB is used to initiate the lock, RESET_LINK is assumed to be low after power-up (normal operation).
- To achieve the specified lock time, time delay t_{RD} (delay between release of the PWDNB/RESET_LINK on the two
 devices) must be less than the threshold specified in <u>Note 9</u>. Contact the factory for guidance if this timing cannot be
 guaranteed.
- 7. Lock time and maximum allowed t_{RD} vary between different families of GMSL devices. They depend on the characteristics of both the serializer and the deserializer. The typical lock time of a specific link can be best estimated as the longer of the lock times specified in each device data sheet. Similarly, the maximum permissible t_{RD} for a specific link can be estimated as the smaller of the values specified in each device data sheet. For further guidance, contact the factory.
- 8. If there is an instantaneous interruption to link lock, a period of 100ms following loss of lock should be provided to enable the link to automatically recover prior to any ECU initiated resets being issued. This will minimize any disruptions caused by a transient loss in connectivity.

Video Lock

Video lock indicates that the deserializer is receiving valid video data. After the GMSL2 link is locked, the deserializer video output PLL starts its locking sequence. The deserializer normally starts outputting video data several milliseconds after it asserts line lock, provided that it is receiving video packets from the serializer. Video lock status is typically read from a register.

Spread-Spectrum Clocking

MAX96724/F/R can accept forward channel 6/3Gbps spread spectrum which can be used to mitigate electromagnetic interference emitted from the device. Narrow frequency peaks are reduced by modulating the internal 6GHz clock at a rate of 25kHz with a saw-tooth profile. To enable this functionality, refer to the GMSL2 User Guide and contact the factory. Registers are not visible to customers for this feature.

Error and Fault Condition Monitoring

The MAX96724/F/R includes an open-drain, multipurpose error reporting, and interrupt status output. The active-low ERRB pin is driven by the logical OR of a wide variety of error and event status indicators. Errors can be automatically forwarded across the link from the serializer so certain serializer side errors, such as CSI-2 input CRC errors, can automatically be flagged by the MAX96724/F/R's LOCK output. The ability of each error condition to drive ERRB is maskable by register settings. Each error and event that can drive ERRB has a status flag within a sub-block of registers, so the reason for assertion of ERRB can be determined by reading the register status.

GPIO Aggregation

MFP6 has the ability to aggregate the error signals from the serializer, image sensor, and other peripherals connected to the same quad deserializer. Aggregation allows for a single pin on the quad deserializer to be the error-reporting mechanism for everything connected upstream. This reduces the number of connections between deserializer MFPs and SoC inputs.

More information on this feature can be found in the MAX96724/F/R User Guide.

MAX96724/F/R

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

EMB8 — **ERRB** Forwarding

MAX96724/F has the ability to capture any ERRB information and forward this information to an EMB8 packet on the MIPI data. The EMB8 packet can be inserted at the start of frame/end of frame. More information on this feature can be found in the MAX96724/F/R User Guide.

Functional Safety Features

The MAX96724/F integrates a number of safety features. For more information on these safety features, contact the factory for the MAX96724/F Safety Items and Implementation Guide.

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	SPEED
MAX96724GTN/VY+	-40°C to +105°C	56 TQFN-SW-EP	6Gbps
MAX96724GTN/VY+T	-40°C to +105°C	56 TQFN-SW-EP	6Gbps
MAX96724FGTN/V+	-40°C to +105°C	56 TQFN-EP	3Gbps
MAX96724FGTN/V+T	-40°C to +105°C	56 TQFN-EP	3Gbps
MAX96724FGTN/VY+	-40°C to +105°C	56 TQFN-SW-EP	3Gbps
MAX96724FGTN/VY+T	-40°C to +105°C	56 TQFN-SW-EP	3Gbps
MAX96724RGTN/V+	-40°C to +105°C	56 TQFN-EP	3Gbps
MAX96724RGTN/V+T	-40°C to +105°C	56 TQFN-EP	3Gbps

N Denotes an Automotive Qualified Product.

Y Denotes Wettable Flank.

⁺ Denotes a lead(Pb)-free/RoHS-compliant Package.

T Denotes tape-and-reel.

EP Denotes Exposed Pad.

Register Map

MAX96724/F/R

ADDRESS	RESET	NAME	MSB							LSB	
DEV	1		1			<u> </u>		<u> </u>			
0x00	0x4E	REG0[7:0]			DE	EV_ADDR[6	:0]			CFG_BL OCK	
0x01	0xC0	REG1[7:0]	RSVI	RSVD[1:0] DIS_LOC_CC[1:0]			_	_	_	_	
0x03	0xAA	REG3[7:0]	DIS_REM_CC_D[1:			DIS_REM_	_CC_A[1:0				
0x04	0x0F	REG4[7:0]	_	_	_	_	VID_EN_ 3	VID_EN_ 2	VID_EN_ 1	VID_EN_ 0	
0x05	0xC0	REG5[7:0]	LOCK_E N	ERRB_E N	LOCK_C FG	ERRB_L OCK_OE N	ERRB_M ST_RST	-	_	RSVD	
0x06	0xFF	REG6[7:0]	GMSL2_ D	GMSL2_ C	GMSL2_ B	GMSL2_ A	LINK_EN _D	LINK_EN _C	LINK_EN _B	LINK_EN _A	
0x07	0x00	REG7[7:0]	CC	_CROSSO	VER_SEL[3	3:0]		RSVI	D[3:0]		
0x0A	0x00	CTRL12[7:0]	RSVD	RSVD	-	_	LOCKED _B	-	-	_	
0x0B	0x00	CTRL13[7:0]	RSVD	RSVD	-	_	LOCKED _C	_	-	_	
0x0C	0x00	CTRL14[7:0]	RSVD	RSVD	-	-	LOCKED _D	-	-	-	
0x0D	0xA2	REG13[7:0]			•	DEV_	ID[7:0]		•		
0x10	0x22	REG26[7:0]		_PHYB[1:)]		:_PHYB[1:)]	TX_RATE		RX_RATE	:_PHYA[1:)]	
0x11	0x22	REG27[7:0]		_PHYD[1:)]		:_PHYD[1:)]	TX_RATE	_PHYC[1:		ATE_PHYC[1: 0]	
TOP_CTRL			,				1				
0x12	0x00	PWR0[7:0]	VDDE	AD_STATU	JS[2:0]		CMI	P_STATUS	[4:0]		
0x13	0x00	PWR1[7:0]	RSVD	RESET_ ALL			RSVI	D[5:0]			
0x18	0x00	CTRL1[7:0]	RESET_ LINK_D	RESET_ LINK_C	RESET_ LINK_B	RESET_ LINK_A	RESET_ ONESH OT_D	RESET_ ONESH OT_C	RESET_ ONESH OT_B	RESET_ ONESH OT_A	
0x1A	0x10	CTRL3[7:0]	RSVD	RSVD	RSVI	D[1:0]	LOCKED _A	ERROR	CMU_LO CKED	LOCK_P IN	
0x22	0xFF	CTRL11[7:0]	RSVD	CXTP_D	RSVD	CXTP_C	RSVD	CXTP_B	RSVD	CXTP_A	
0x25	0x0F	INTR2[7:0]	RSVD	RSVD	RSVD	RSVD	DEC_ER R_OEN_ D	DEC_ER R_OEN_ C	DEC_ER R_OEN_ B	DEC_ER R_OEN_ A	
0x26	0x00	INTR3[7:0]	RSVD	RSVD	RSVD	RSVD	DEC_ER R_FLAG _D	DEC_ER R_FLAG _C	DEC_ER R_FLAG _B	DEC_ER R_FLAG _A	
0x27	0xF4	INTR4[7:0]	EOM_E RR_OEN _D	EOM_E RR_OEN _C	EOM_E RR_OEN _B	EOM_E RR_OEN _A	RSVD	LFLT_IN T_OEN	_	_	

ADDRESS	RESET	NAME	MSB							LSB
	_		EOM_E	EOM_E	EOM_E	EOM_E		LFLT_IN		
0x28	0x00	INTR5[7:0]	RR_FLA G_D	RR_FLA G_C	RR_FLA G_B	RR_FLA G_A	RSVD	T T	_	_
			G1 D E	G1 C E	G1_B_E	G1_A_E	LCRC E	VPRBS_	REM_ER	FSYNC_
0x29	0xFF	INTR6[7:0]	RR_OEN	RR_OEN	RR_OEN	RR_OEN	RR_OEN	ERR_OE N	R_OEN	ERR_OE N
0x2A	0x00	INTR7[7:0]	G1_D_E RR_FLA	G1_C_E RR_FLA	G1_B_E RR FLA	G1_A_E RR FLA	LCRC_E RR FLA	VPRBS_ ERR_FL	REM_ER	FSYNC_ ERR FL
UNZI	UXUU	iitiiti[i.o]	G	G	G	G	G	AG	R_FLAG	AG
0x2B	0x00	<u>INTR8[7:0]</u>	RSVD	RSVD	RSVD	RSVD	IDLE_ER R_OEN	IDLE_ER R_OEN_	IDLE_ER R_OEN_	IDLE_ER R_OEN_
UNZD	UXUU	iiviiko[i.o]	NOVB	NOVB	NOVE	NOVB	D	C	B	A
0x2C	0x00	<u>INTR9[7:0]</u>	RSVD	RSVD	RSVD	RSVD	IDLE_ER R_FLAG	IDLE_ER R_FLAG	IDLE_ER R_FLAG	IDLE_ER R_FLAG
UXZC	UXUU	<u> </u>	KSVD	KSVD	KSVD	KSVD	_D	C	_B	K_FLAG _A
0x2D	0x0F	INTR10[7:0]	RT_CNT _OEN_D	RT_CNT _OEN_C	RT_CNT _OEN_B	RT_CNT OEN A	MAX_RT _OEN_D	MAX_RT _OEN_C	MAX_RT _OEN_B	MAX_RT _OEN_A
			RT_CNT	RT_CNT	RT_CNT	RT_CNT	MAX_RT	MAX_RT	MAX_RT	MAX_RT
0x2E	0x00	INTR11[7:0]	_FLAG_ D	_FLAG_ C	_FLAG_ B	_FLAG_ A	_FLAG_ D	_FLAG_ C	_FLAG_ B	_FLAG_ A
0x2F	0x9F	INTR12[7:0]	ERR_TX	_	_					
UXZI	0.01	<u> </u>	_EN		_	ERR_TX_ID[4:0]				
0x30	0xDF	INTR13[7:0]	ERR_RX _EN_A	ERR_RX _RECVE D_A	_		ERF	R_RX_ID_A	[4:0]	
0x31	0xDF	INTR14[7:0]	ERR_RX	ERR_RX RECVE	_		ERF	R RX ID B	[4:0]	
			_EN_B	D_B						
0x32	0xDF	INTR15[7:0]	ERR_RX _EN_C	ERR_RX _RECVE D_C	_		ERF	R_RX_ID_C	[4:0]	
0.00	0.05	INTD40[7.0]	ERR RX	ERR_RX			EDI	. DV ID D		
0x33	0xDF	INTR16[7:0]	_EN_D	_RECVE D_D	_		ERF	R_RX_ID_D	[4:0]	
0x35	0x00	CNT0[7:0]				DEC_ER	R_A[7:0]			
0x36	0x00	CNT1[7:0]					R_B[7:0]			
0x37	0x00	CNT2[7:0]					R_C[7:0]			
0x38	0x00	CNT3[7:0]					R_D[7:0]			
0x39	0x00	CNT4[7:0]					R_A[7:0]			
0x3A	0x00	CNT5[7:0]					RR_B[7:0]			
0x3B	0x00	CNT6[7:0]				IDLE_ERR_C[7:0]				
0x3C	0x00	CNT7[7:0]			_	IDLE_ERR_D[7:0]				
		VID_PXL_CR	VIDEO_	VIDEO_	VIDEO_	VIDEO_	VID_PXL	VID_PXL	VID_PXL	VID_PXL
0x44	0xFF	C ERR VIDE OMASK OEN	MASKE D_3 OE	MASKE D_2 OE	MASKE D_1_OE	MASKE D_0_OE	_CRC_E RR_OEN	_CRC_E RR_OEN	_CRC_E RR_OEN	_CRC_E RR_OEN
		[7:0]	N N	N N	N N	N N	_D	_C	_B	_A
		VID_PXL_CR	VIDEO_	VIDEO_	VIDEO_	VIDEO_	VID_PXL	VID_PXL	VID_PXL	VID_PXL
0x45	0x00	C_VIDEOMA SK_INT_FLA	MASKE D_3_FL	MASKE D_2_FL	MASKE D_1_FL	MASKE D_0_FL	_CRC_E	_CRC_E	_CRC_E	_CRC_E
		G[7:0]	AG	AG	AG	ĀĞ	RR_D	RR_C	RR_B	RR_A

ADDRESS	RESET	NAME	MSB							LSB
ADDITEGO	KLOLI		VDDBAD							LOD
0x48	0xC1	PWR_STATU S_OEN[7:0]	_INT_OE	RSVD	_	RSVD	_	_	RSVI	D[1:0]
0x49	0x00	PWR_STATU S_OV_FLAG[7:0]	VDDBAD _INT_FL AG	RSVD	RSVD	RSVD	CMP_ST ATUS_V DD_OV	CMP_ST ATUS_V DD12_O V	CMP_ST ATUS_v ddio_ov	CMP_ST ATUS_V DD18_O V
0x4A	0xA7	VDDCMP_MA SK[7:0]	VDDCM P_INT_O EN	-	CMP_VT ERM_M ASK	M VDDCMP_MASK[4:0]				
0x4B	0x00	VDDCMP_ST ATUS_FLAG[7:0]	VDDCM P_INT_F LAG	_	CMP_VT ERM_ST ATUS	_	_	_	_	-
0x4C	0x01	DEV_REV[7:0]	_	_	_	_		DEV_R	EV[3:0]	
0x4D	0x10	EFUSE_CTR L[7:0]	_	EFUSE_ CRC_ER R_RST_ OS	EFUSE_ CRC_ER R_RST	EFUSE_ CRC_ER R_OEN	_	_	_	-
0x4E	0x00	EFUSE_CRC _ERR[7:0]	_	_	_	EFUSE_ CRC_ER R	_	_	-	-
CFGH_VIDE	EO_CRC	I								
0x60	0x00	CFGH_VIDE O_CRC0[7:0]		RX_CRC_EN_A_B[7:0]						
0x61	0x00	CFGH_VIDE O_CRC1[7:0]				RX_CRC_E	N_C_D[7:0]			
CFGI_A INF	OFR									
0x70	0xF0	TR0[7:0]	TX_CRC _EN	RX_CRC _EN	RSVI	D[1:0]	PRIO_\	/AL[1:0]	RSVI	D[1:0]
0x71	0xB0	TR1[7:0]	BW_MU	JLT[1:0]			BW_V	AL[5:0]		
0x72	0x00	TR2[7:0]	-	_	-	_	-	TX	SRC_ID[2	:0]
0x73	0xFF	TR3[7:0]			•	RX_SRC	SEL[7:0]			
CFGI_B INF	OFR									
0x74	0xF0	TR0[7:0]	TX_CRC _EN_B	RX_CRC _EN_B	RSVI	D[1:0]	PRIO_VA	AL_B[1:0]	RSVI	D[1:0]
0x75	0xB0	TR1[7:0]	BW_MUI	_T_B[1:0]			BW_VA	L_B[5:0]		
0x76	0x00	TR2[7:0]	_	_	-	_	-	TX_	SRC_ID_B	[2:0]
0x77	0xFF	TR3[7:0]				RX_SRC_	SEL_B[7:0]			
CFGI_C INF	FOFR									
0x78	0xF0	TR0[7:0]	TX_CRC _EN_C	RX_CRC _EN_C	RSVI	D[1:0]	PRIO_VA	AL_C[1:0]	RSVI	D[1:0]
0x79	0xB0	TR1[7:0]	BW_MUL	_T_C[1:0]			BW_VA	L_C[5:0]		
0x7A	0x00	TR2[7:0]	_	_	_	_	_	TX_	SRC_ID_C	[2:0]
0x7B	0xFF	TR3[7:0]				RX_SRC_S	SEL_C[7:0]			
CFGI_D INF	FOFR									
0x7C	0xF0	TR0[7:0]	TX_CRC _EN_D	RX_CRC _EN_D	RSVI	D[1:0]	PRIO_VA	AL_D[1:0]	RSVI	D[1:0]

ADDRESS	RESET	NAME	MSB							LSB		
0x7D	0xB0	TR1[7:0]		 _T_D[1:0]			BW VA	LD[5:0]				
0x7E	0x00	TR2[7:0]			_	_			SRC_ID_D	2:01		
0x7E	0xFF	TR3[7:0]				RX SRC !	L SEL_D[7:0]	17.	_0.10_10_0	0]		
CFGL_A GF		110[1.0]				101_0110_1	0					
0xA0	0xF0	TR0[7:0]	TX_CRC _EN	RX_CRC _EN	RSVI	D[1:0]	PRIO_\	/AL[1:0]	RSVI	D[1:0]		
0xA1	0xB0	TR1[7:0]	BW_MU	JLT[1:0]	LT[1:0] BW_VAL[5:0]							
0xA3	0x00	TR3[7:0]	_	_					SRC_ID[2	:0]		
0xA4	0xFF	TR4[7:0]			RX_SRC_SEL[7:0]							
0xA6	0x72	ARQ1[7:0]	-	N	MAX_RT[2:0)]	RSVD	RSVD	MAX_RT _ERR_O EN	RT_CNT _OEN		
0xA7	0x00	ARQ2[7:0]	MAX_RT _ERR			F	RT_CNT[6:0)]	1			
CFGL_B GF	PIO			•								
0xA8	0xF0	TR0[7:0]	TX_CRC _EN_B	RX_CRC _EN_B								
0xA9	0xB0	TR1[7:0]	BW_MUI	_T_B[1:0]	.T_B[1:0] BW_VAL_B[5:0]							
0xAB	0x00	TR3[7:0]	_	_	TX_SRC					_SRC_ID_B[2:0]		
0xAC	0xFF	TR4[7:0]				RX_SRC_	SEL_B[7:0]					
0xAE	0x72	ARQ1[7:0]	-	M	MAX_RT_B[2:0]			RSVD	MAX_RT _ERR_O EN_B	RT_CNT _OEN_B		
0xAF	0x00	ARQ2[7:0]	MAX_RT _ERR_B			R'	T_CNT_B[6	:0]				
CFGL_C GF	PIO		1									
0xB0	0xF0	TR0[7:0]	TX_CRC _EN_C	RX_CRC _EN_C	RSVI	D[1:0]	PRIO_VA	AL_C[1:0]	RSVI	D[1:0]		
0xB1	0xB0	TR1[7:0]	BW_MUI	_T_C[1:0]			BW_VA	L_C[5:0]				
0xB3	0x00	TR3[7:0]	_	_	_	_	_	TX_	SRC_ID_C	[2:0]		
0xB4	0xFF	TR4[7:0]				RX_SRC_	SEL_C[7:0]					
0xB6	0x72	ARQ1[7:0]	_	M	AX_RT_C[2	:0]	RSVD	RSVD	MAX_RT _ERR_O EN_C	RT_CNT _OEN_C		
0xB7	0x00	ARQ2[7:0]	MAX_RT _ERR_C			R ⁻	T_CNT_C[6	:0]				
CFGL_D GF	PIO	-	•	•								
0xB8	0xF0	TR0[7:0]	TX_CRC _EN_D	RX_CRC _EN_D	RSVI	D[1:0]	PRIO_VA	AL_D[1:0]	RSVI	D[1:0]		
0xB9	0xB0	TR1[7:0]	BW_MUI	_T_D[1:0] BW_VAL_D[5:0]								
0xBB	0x00	TR3[7:0]	_	TX_SRC_ID_D				[2:0]				
0xBC	0xFF	TR4[7:0]				RX_SRC_S	SEL_D[7:0]					
0xBE	0x72	ARQ1[7:0]	_	MAX_RT_D[2:0] RSVD RSVD _E			MAX_RT _ERR_O EN_D	RT_CNT _OEN_D				
0xBF	0x00	ARQ2[7:0]	MAX_RT _ERR_D			R'	T_CNT_D[6	:0]				

ADDRESS	RESET	NAME	MSB							LSB
СС										
0xC7	0x66	I2C_7[7:0]	I2C_RE GSLV_1 _TIMED _OUT	I2C_INTI	REG_SLV_	1_TO[2:0]	I2C_RE GSLV_0 _TIMED _OUT	I2C_INTI	REG_SLV_()_TO[2:0]
LINE_FAUL	Т									
0xE0	0x00	REG0[7:0]	_	_	_	_	PU_LF3	PU_LF2	PU_LF1	PU_LF0
0xE1	0x22	REG1[7:0]	_		LF_1[2:0]		-		LF_0[2:0]	
0xE2	0x22	REG2[7:0]	_		LF_3[2:0]		_		LF_2[2:0]	
0xE5	0x00	REG5[7:0]	_	_	_	_		LFLT_INT	_FLAG[3:0]	
0xE6	0x00	REG6[7:0]	-	_	_	_	MASK_L F3	MASK_L F2	MASK_L F1	MASK_L F0
VIDEO_PIP	E_SEL				•			•		
0xF0	0x62	VIDEO_PIPE _SEL_0[7:0]	V	IDEO_PIPE	E_SEL_1[3:	0]	V	IDEO_PIPE	E_SEL_0[3:	0]
0xF1	0xEA	VIDEO_PIPE _SEL_1[7:0]	V	IDEO_PIPE	E_SEL_3[3:	0]	V	IDEO_PIPE	E_SEL_2[3:	0]
0xF4	0x1F	VIDEO_PIPE _EN[7:0]	-	-	_	STREAM _SEL_A _LL		VIDEO_PII	PE_EN[3:0]	
HVD_GPIO	CTRL									
0xFA	0x00	HVD_GPIO_ CTRL_EN[7:0	-	-	_	_		HVD_OU	T_EN[3:0]	
0xFB	0x00	HVD_GPIO_ CTRL_HS[7:0]	HVD_HS_	SEL3[1:0]	HVD_HS_	_SEL2[1:0]	HVD_HS_	SEL1[1:0]	HVD_HS_	_SEL0[1:0]
0xFC	0x00	HVD_GPIO_ CTRL_VS[7:0]	HVD_VS_	SEL3[1:0]	HVD_VS_	_SEL2[1:0]	HVD_VS_	SEL1[1:0]	HVD_VS_	_SEL0[1:0]
0xFD	0x00	HVD_GPIO_ CTRL_DE[7:0]	HVD_DE_	SEL3[1:0]	HVD_DE_	_SEL2[1:0]	HVD_DE_	SEL1[1:0]	HVD_DE_	_SEL0[1:0]
0xFE	0x00	HVD_GPIO CTRL_SEL[7: 0]		Γ_SEL3[1:)]		T_SEL2[1:)]		Γ_SEL1[1:)]		T_SEL0[1:)]
0xFF	0x00	HVD_GPIO CTRL_ST[7:0]	HVD_ST_	SEL3[1:0]	HVD_ST_	SEL2[1:0]	HVD_ST_	SEL1[1:0]	HVD_ST_	SEL0[1:0]
VID_RX 0										
0x100	0x32	<u>VIDEO_RX0[</u> 7:0]	LCRC_E RR	RSVD	RSVD	SEQ_MI SS_EN	RSVD	RSVD	LINE_C RC_EN	DIS_PKT _DET
0x106	0x12	<u>VIDEO_RX6[</u> 7:0]		RSVD[2:0]		VID_SE Q_ERR_ OEN	LIM_HE ART	_	RSVD	RSVD
0x108	0x02	<u>VIDEO_RX8[</u> 7:0]	RSVD VID_LO VID_PKT VID_SE CK _DET Q_ERR RSVD[3:0]							
VID_RX 1	1		<u> </u>	1			l .			
0x112	0x32	<u>VIDEO_RX0[</u> 7:0]	LCRC_E RR	RSVD	RSVD	SEQ_MI SS_EN	RSVD	RSVD	LINE_C RC_EN	DIS_PKT _DET

ADDRESS	RESET	NAME	MSB							LSB
0x118	0x12	<u>VIDEO_RX6[</u> 7:0]		RSVD[2:0]		VID_SE Q_ERR_ OEN	LIM_HE ART	-	RSVD	RSVD
0x11A	0x02	<u>VIDEO_RX8[</u> 7:0]	RSVD	VID_LO CK	VID_PKT _DET	VID_SE Q_ERR		RSVI	D[3:0]	
VID_RX 2		-								
0x124	0x32	<u>VIDEO_RX0[</u> 7:0]	LCRC_E RR	RSVD	RSVD	SEQ_MI SS_EN	RSVD	RSVD	LINE_C RC_EN	DIS_PKT _DET
0x12A	0x12	<u>VIDEO_RX6[</u> 7:0]		RSVD[2:0]		VID_SE Q_ERR_ OEN				RSVD
0x12C	0x02	VIDEO_RX8[7:0]	RSVD	VID_LO CK	VID_PKT _DET	VID_SE Q_ERR		RSVI	D[3:0]	
VID_RX 3										
0x136	0x32	<u>VIDEO_RX0[</u> 7:0]	LCRC_E RR	RSVD	RSVD	SEQ_MI SS_EN	RSVD	RSVD	LINE_C RC_EN	DIS_PKT _DET
0x13C	0x12	<u>VIDEO_RX6[</u> 7:0]		RSVD[2:0] VID_SE Q_ERR_ OEN LIM_HE ART - RSVD					RSVD	
0x13E	0x02	VIDEO_RX8[7:0]	RSVD	VID_LO VID_PKT VID_SE CK _DET Q_ERR RSVD[3:0]						
VID_RX_PK	T_DET						•			
0x160	0x0A	LIM_HEART_ TIMEOUT_0[7:0]	_			LIM_HEA	RT_TIMEO	UT_0[6:0]		
0x161	0x0A	LIM_HEART_ TIMEOUT_1[7:0]	_			LIM_HEA	RT_TIMEO	UT_1[6:0]		
0x162	0x0A	LIM_HEART_TIMEOUT_2[7:0]	-			LIM_HEA	RT_TIMEO	UT_2[6:0]		
0x163	0x0A	LIM_HEART_ TIMEOUT_3[7:0]	_			LIM_HEA	.RT_TIMEO	UT_3[6:0]		
VRX0 0			ı							
0x1D8	0x18	CROSS_HS[7 :0]	_	CROSS_ HS_I	CROSS_ HS_F		CF	ROSS_HS[4	:0]	
0x1D9	0x19	CROSS_VS[7 :0]	_	CROSS_ VS_I	CROSS_ VS_F		CF	ROSS_VS[4	:0]	
0x1DA	0x1A	CROSS_DE[7 :0]	_	CROSS_ DE_I	CROSS_ DE_F		CF	ROSS_DE[4	:0]	
0x1DB	0x00	PRBS_ERR[7 :0]				VPRBS_ERR[7:0]				
0x1DC	0x80	<u>VPRBS[7:0]</u>	PATGEN _CLK_S RC	VPRBS_ CHECK	VPRBS_ FAIL	VPRBS2 VPRBS7 VPRBS9 DIS_GLI VIDEO_ 4_GENC				
VRX0 1										
0x1F8	0x18	CROSS_HS[7 :0]	_	CROSS_ HS_I	CROSS_ HS_F	CROSS_HS[4:0]				

ADDRESS	RESET	NAME	MSB							LSB
0x1F9	0x19	CROSS_VS[7 :0]	_	CROSS_ VS_I	CROSS_ VS_F		CF	ROSS_VS[4	:0]	
0x1FA	0x1A	CROSS_DE[7:0]	_	CROSS_ DE_I	CROSS_ DE_F		CF	ROSS_DE[4	:0]	
0x1FB	0x00	PRBS_ERR[7 :0]				VPRBS_	ERR[7:0]			
0x1FC	0x80	VPRBS[7:0]	PATGEN _CLK_S RC	VPRBS_ CHECK	VPRBS_ FAIL	VPRBS2 4_GENC HK_EN	VPRBS7 _GENCH K_EN	VPRBS9 _GENCH K_EN	DIS_GLI TCH_FIL T	VIDEO_ LOCK
VRX0 2										
0x218	0x18	CROSS_HS[7 :0]	_	CROSS_ HS_I	CROSS_ HS_F		CF	ROSS_HS[4	:0]	
0x219	0x19	CROSS_VS[7 :0]	-	CROSS_ VS_I	CROSS_ VS_F		CF	ROSS_VS[4	:0]	
0x21A	0x1A	CROSS_DE[7 :0]	_	CROSS_ DE_I	CROSS_ DE_F		CF	ROSS_DE[4	:0]	
0x21B	0x00	PRBS_ERR[7 :0]				VPRBS_	ERR[7:0]			
0x21C	0x80	<u>VPRBS[7:0]</u>	PATGEN _CLK_S RC	VPRBS_ CHECK	VPRBS_ FAIL	VPRBS2 4_GENC HK_EN	VPRBS7 _GENCH K_EN	VPRBS9 _GENCH K_EN	DIS_GLI TCH_FIL T	VIDEO_ LOCK
VRX0 3			•		•					
0x238	0x18	CROSS_HS[7 :0]	_	CROSS_ HS_I	CROSS_ HS_F		CF	ROSS_HS[4	:0]	
0x239	0x19	CROSS_VS[7 :0]	-	CROSS_ VS_I	CROSS_ VS_F		CF	ROSS_VS[4	:0]	
0x23A	0x1A	CROSS_DE[7:0]	_	CROSS_ DE_I	CROSS_ DE_F		CF	ROSS_DE[4	i:0]	
0x23B	0x00	PRBS_ERR[7 :0]				VPRBS_	ERR[7:0]			
0x23C	0x80	VPRBS[7:0]	PATGEN _CLK_S RC	VPRBS_ CHECK	VPRBS_ FAIL	VPRBS2 4_GENC HK_EN	VPRBS7 _GENCH K_EN	VPRBS9 _GENCH K_EN	DIS_GLI TCH_FIL T	VIDEO_ LOCK
GPIO_AGG	R0									
0x2E0	0x00	POLARITY_A _L[7:0]				POLARIT	Y_A_L[7:0]			
0x2E1	0x00	POLARITY_B _L[7:0]				POLARIT	Y_B_L[7:0]			
0x2E2	0x00	POLARITY_C _L[7:0]				POLARIT	Y_C_L[7:0]			
0x2E3	0x00	POLARITY_D _L[7:0]				POLARIT	Y_D_L[7:0]			
0x2E4	0x00	POLARITY_A B_H[7:0]	_	POL	POLARITY_B_H[2:0] – POLARITY_A_H[2:0]					
0x2E5	0x00	POLARITY_C D_H[7:0]	_	POLARITY_D_H[2:0] - POLARITY_C_H[2:0]						·[2:0]
0x2E6	0x00	ENABLE_A_L [7:0]		ENABLE_A_L[7:0]						
0x2E7	0x00	ENABLE_B_L [7:0]				ENABLE.	_B_L[7:0]			

ADDRESS	RESET	NAME	MSB							LSB
0x2E8	0x00	ENABLE C L [7:0]				ENABLE.	_C_L[7:0]			
0x2E9	0x00	ENABLE_D_L [7:0]				ENABLE	_D_L[7:0]			
0x2EA	0x00	ENABLE_AB_ H[7:0]	_	EN	ABLE_B_H[[2:0]	_	EN	ABLE_A_H[2:0]
0x2EB	0x00	ENABLE_CD H[7:0]	_	EN	ABLE_D_H[[2:0]	_	EN	ABLE_C_H[2:0]
0x2EC	0x00	READ A L[7: 0]				READ_	A_L[7:0]			
0x2ED	0x00	READ_B_L[7: 0]				READ_	B_L[7:0]			
0x2EE	0x00	READ_C_L[7: 0]				READ_	C_L[7:0]			
0x2EF	0x00	READ_D_L[7: 0]				READ_	D_L[7:0]			
0x2F0	0x00	READ_AB_H[7:0]	_	RI	EAD_B_H[2	:0]	_	RI	EAD_A_H[2	:0]
0x2F1	0x00	READ_CD_H[7:0]	_	RI	EAD_D_H[2	:0]	_	RI	EAD_C_H[2	:0]
0x2F2	0x00	OUTPUT[7:0]	_	_	_					READ_F LAG
GPIO0 0										
0x300	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x301	0xA0	<u>GPIO_B[7:0]</u>	PULL_UP :(DN_SEL[1 D]	OUT_TY PE		GF	O_TX_ID[1:0]	
0x302	0x40	<u>GPIO_C[7:0]</u>	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4:0]	
GPIO1 1	•			•	•	•				
0x303	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x304	0xA1	GPIO_B[7:0]	PULL_UP :(DN_SEL[1 0]	OUT_TY PE		GF	PIO_TX_ID[1:0]	
0x305	0x41	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4	4:0]	
GPIO2 2										
0x306	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x307	0xA2	GPIO_B[7:0]	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	OTX_ID[4	1:0]	
0x308	0x42	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD	GPIO_RX_ID[4:0]				
GPIO3 3										
0x309	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN				GPIO_O UT_DIS	
0x30A	0xA3	GPIO_B[7:0]	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	PIO_TX_ID[4	1:0]	

ADDRESS	RESET	NAME	MSB							LSB
0x30B	0x43	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4:0]	
GPIO4 4										
0x30C	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x30D	0xA4	GPIO_B[7:0]	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	O_TX_ID[4	4:0]	
0x30E	0x44	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4	4:0]	
GPIO5 5										
0x310	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x311	0xA5	GPIO_B[7:0]	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	O_TX_ID[4	4:0]	
0x312	0x45	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD	GPIO_RX_ID[4:0]				
GPIO6 6										
0x313	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x314	0x26	<u>GPIO_B[7:0]</u>	PULL_UP	DN_SEL[1)]	OUT_TY PE		GF	OD_TX_ID[4	4:0]	
0x315	0x46	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4:0]	
GPI07 7										
0x316	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x317	0xA7	<u>GPIO_B[7:0]</u>	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	PIO_TX_ID[4	4:0]	
0x318	0x47	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4	4:0]	
GPIO8 8										
0x319	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x31A	0xA8	<u>GPIO_B[7:0]</u>	PULL_UP :(DN_SEL[1)]	OUT_TY PE		GF	PIO_TX_ID[4	4:0]	
0x31B	0x48	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD		GP	IO_RX_ID[4	4:0]	
GPIO9 9										
0x31C	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS
0x31D	0xA9	GPIO_B[7:0]		DN_SEL[1)]	OUT_TY PE	GPIO_TX_ID[4:0]				
0x31E	0x49	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD	GPIO_RX_ID[4:0]				
GPIO10 10										
0x320	0x81	GPIO_A[7:0]	RES_CF G	RSVD	TX_COM P_EN	GPIO_O UT	GPIO_IN	GPIO_R X_EN	GPIO_T X_EN	GPIO_O UT_DIS

ADDRESS	RESET	NAME	MSB			LSB				
0x321	0xAA	GPIO_B[7:0]		DN_SEL[1 0]	OUT_TY PE	GPIO_TX_ID[4:0]				
0x322	0x4A	GPIO_C[7:0]	OVR_RE S_CFG	GPIO_R ECVED	RSVD	GPIO_RX_ID[4:0]				
GPIO0_B 0										
0x337	0x00	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x338	0x40	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 1										
0x33A	0x01	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x33B	0x41	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 2			•							
0x33D	0x02	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x33E	0x42	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 3										
0x341	0x03	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x342	0x43	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 4			•							
0x344	0x04	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x345	0x44	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 5										
0x347	0x05	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x348	0x45	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 6		•								
0x34A	0x06	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				
0x34B	0x46	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]				
GPIO0_B 7		•								
0x34D	0x07	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]				

ADDRESS	RESET	NAME	MSB			LSB			
0x34E	0x47	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]			
GPIO0_B 8									
0x351	0x08	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]			
0x352	0x48	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]			
GPIO0_B 9									
0x354	0x09	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]			
0x355	0x49	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]			
GPIO0_B 10	0								
0x357	0x0A	GPIO_B[7:0]	RSVD	TX_COM P_EN_B	GPIO_T X_EN_B	GPIO_TX_ID_B[4:0]			
0x358	0x4A	GPIO_C[7:0]	_	GPIO_R ECVED_ B	GPIO_R X_EN_B	GPIO_RX_ID_B[4:0]			
GPIO0_C 0									
0x36D	0x00	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]			
0x36E	0x40	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]			
GPIO0_C 1	•								
0x371	0x01	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]			
0x372	0x41	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]			
GPIO0_C 2									
0x374	0x02	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]			
0x375	0x42	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]			
GPIO0_C 3									
0x377	0x03	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]			
0x378	0x43	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]			
GPIO0_C 4									
0x37A	0x04	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]			

ADDRESS	RESET	NAME	MSB			LSB
0x37B	0x44	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 5			l .	1		
0x37D	0x05	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x37E	0x45	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 6						
0x381	0x06	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x382	0x46	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 7						
0x384	0x07	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x385	0x47	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 8						
0x387	0x08	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x388	0x48	<u>GPIO_C[7:0]</u>	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 9			·	1	'	
0x38A	0x09	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x38B	0x49	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_C 10)					
0x38D	0x0A	GPIO_B[7:0]	RSVD	TX_COM P_EN_C	GPIO_T X_EN_C	GPIO_TX_ID_C[4:0]
0x38E	0x4A	GPIO_C[7:0]	_	GPIO_R ECVED_ C	GPIO_R X_EN_C	GPIO_RX_ID_C[4:0]
GPIO0_D 0				1		
0x3A4	0x00	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3A5	0x40	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 1						
0x3A7	0x01	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]

ADDRESS	RESET	NAME	MSB			LSB
0x3A8	0x41	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 2						
0x3AA	0x02	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3AB	0x42	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 3						
0x3AD	0x03	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3AE	0x43	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 4			•			
0x3B1	0x04	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3B2	0x44	GPIO_C[7:0]	_	RSVD	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 5						
0x3B4	0x05	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3B5	0x45	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 6						
0x3B7	0x06	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3B8	0x46	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 7						
0x3BA	0x07	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3BB	0x47	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 8			•	1		
0x3BD	0x08	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3BE	0x48	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]
GPIO0_D 9						
0x3C1	0x09	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D	GPIO_TX_ID_D[4:0]
0x3C2	0x49	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D	GPIO_RX_ID_D[4:0]

ADDRESS	RESET	NAME	MSB							LSB
GPIO0_D 10				I	l	l		l .		
0x3C4	0x0A	GPIO_B[7:0]	RSVD	TX_COM P_EN_D	GPIO_T X_EN_D		GPI	O_TX_ID_D	[4:0]	
0x3C5	0x4A	GPIO_C[7:0]	_	GPIO_R ECVED_ D	GPIO_R X_EN_D		GPI	O_RX_ID_C	0[4:0]	
ВАСКТОР			•	•	•	•				
0x400	0x01	BACKTOP1[7 :0]	CSIPLL3 _LOCK	CSIPLL2 _LOCK	CSIPLL1 _LOCK	CSIPLL0 _LOCK	RSVD	RSVD	RSVD	RSVD
0x401	0x00	BACKTOP2[7 :0]				VS_VC	D_L[7:0]			
0x402	0x00	BACKTOP3[7 :0]				VS_VC)_H[7:0]			
0x403	0x00	BACKTOP4[7 :0]				VS_VC	1_L[7:0]			
0x404	0x00	BACKTOP5[7 :0]				VS_VC	1_H[7:0]			
0x405	0x00	BACKTOP6[7 :0]				VS_VC	2_L[7:0]			
0x406	0x00	BACKTOP7[7 :0]				VS_VC2	2_H[7:0]			
0x407	0x00	BACKTOP8[7 :0]		VS_VC3_L[7:0]						
0x408	0x00	BACKTOP9[7 :0]				VS_VC	3_H[7:0]			
0x409	0x00	BACKTOP10[7:0]	DE_SEL 3	DE_SEL 2	DE_SEL 1	DE_SEL 0	RSVD	RSVD	RSVD	RSVD
0x40A	0x00	BACKTOP11[7:0]	cmd_ove rflow3	cmd_ove rflow2	cmd_ove rflow1	cmd_ove rflow0	LMO_3	LMO_2	LMO_1	LMO_0
0x40B	0x02	BACKTOP12[7:0]		SC	oft_bpp_0[4:	:0]		_	CSI_OU T_EN	RSVD
0x40C	0x00	BACKTOP13[7:0]		soft_vo	:_1[3:0]			soft_vo	2_0[3:0]	
0x40D	0x00	BACKTOP14[7:0]		soft_vo	:_3[3:0]			soft_vo	2[3:0]	
0x40E	0x00	BACKTOP15[7:0]	soft_dt_	1_h[1:0]			soft_dt	:_0[5:0]		
0x40F	0x00	BACKTOP16[7:0]		soft_dt_	2_h[3:0]			soft_dt_	_1_I[3:0]	
0x410	0x00	BACKTOP17[7:0]			soft_dt	:_3[5:0]			soft_dt_	.2_l[1:0]
0x411	0x00	BACKTOP18[7:0]	sof	soft_bpp_2_h[2:0] soft_bpp_1[4:0]						
0x412	0x00	BACKTOP19[7:0]	_		soft_bpp_3[4:0] soft_bpp_2_l[1:0]					
0x413	0x00	BACKTOP20[7:0]	phy0_csi_tx_dpll_fb_fraction_in_l[7:0]							
0x414	0x00	BACKTOP21[7:0]	bpp8dbl3	bpp8dbl2	bpp8dbl1	bpp8dbl0	phy0_c	si_tx_dpll_fl	o_fraction_ir	n_h[3:0]

ADDRESS	RESET	NAME	MSB							LSB
0x415	0x2F	BACKTOP22[7:0]	override_ bpp_vc_ dt_1	override_ bpp_vc_ dt_0	phy0_csi _tx_dpll_ fb_fractio n_predef _en		phy0_csi_t	x_dpll_pred	ef_freq[4:0]	
0x416	0x00	BACKTOP23[7:0]			phy1_c	si_tx_dpll_f	b_fraction_i	n_l[7:0]		
0x417	0x00	BACKTOP24[7:0]	bpp8dbl3 _mode	bpp8dbl2 _mode	bpp8dbl1 _mode	bpp8dbl0 _mode	phy1_c	si_tx_dpll_fl	o_fraction_ir	n_h[3:0]
0x418	0x2F	BACKTOP25[7:0]	override_ bpp_vc_ dt_3	override_ bpp_vc_ dt_2	phy1_csi _tx_dpll_ fb_fractio n_predef _en		phy1_csi_t	x_dpll_pred	ef_freq[4:0]	
0x419	0x00	BACKTOP26[7:0]			phy2_c	si_tx_dpll_f	b_fraction_i	n_l[7:0]		
0x41A	0x00	BACKTOP27[7:0]	yuv_8_1 0_mux_ mode3	yuv_8_1 0_mux_ mode2	yuv_8_1 0_mux_ mode1	yuv_8_1 0_mux_ mode0	phy2_c	si_tx_dpll_fl	o_fraction_ir	n_h[3:0]
0x41B	0x2F	BACKTOP28[7:0]	_	_	phy2_csi _tx_dpll_ fb_fractio n_predef _en		phy2_csi_t	x_dpll_pred	ef_freq[4:0]	
0x41C	0x00	BACKTOP29[7:0]			phy3_c	si_tx_dpll_f	b_fraction_i	n_l[7:0]		
0x41D	0x00	BACKTOP30[7:0]	_	_	bpp10dbl 3_mode	bpp10dbl 3	phy3_c	si_tx_dpll_fl	b_fraction_ir	n_h[3:0]
0x41E	0x2F	BACKTOP31[7:0]	bpp10dbl 2_mode	bpp10dbl 2	phy3_csi _tx_dpll_ fb_fractio n_predef _en		phy3_csi_t	x_dpll_pred	ef_freq[4:0]	
0x41F	0x00	BACKTOP32[7:0]	bpp10dbl 1_mode	bpp10dbl 1	bpp10dbl 0_mode	bpp10dbl 0	bpp12dbl 3	bpp12dbl 2	bpp12dbl 1	bpp12dbl 0
BACKTOP_	1									
0x420	0x01	BACKTOP1[7 :0]		ERRB_PK	T_EN[3:0]		-	_	RSVI	D[1:0]
0x421	0x55	BACKTOP2[7 :0]	ERRB_Ph Mode	(T_Insert_ _4[1:0]	ERRB_Ph Mode	_3[1:0]		KT_Insert_ _2[1:0]	ERRB_PM Mode	(T_Insert_ _1[1:0]
0x422	0x00	BACKTOP3[7 :0]	_	ERRB_P KT_EDG E_SEL_ 4	_	ERRB_P KT_EDG E_SEL_ 3	_	ERRB_P KT_EDG E_SEL_ 2	_	ERRB_P KT_EDG E_SEL_ 1
0x423	0x12	BACKTOP4[7 :0]	ERRB_P KT_DBL _MODE_ 1	_	ERRB_PKT_DT_1[5:0]					
0x424	0x12	BACKTOP5[7 :0]	ERRB_P KT_DBL _MODE_ 2	_	ERRB_PKT_DT_2[5:0]					

ADDRESS	RESET	NAME	MSB							LSB
0x425	0x12	BACKTOP6[7 :0]	ERRB_P KT_DBL _MODE_ 3	_			ERRB_PK1	Γ_DT_3[5:0]		
0x426	0x12	BACKTOP7[7 :0]	ERRB_P KT_DBL _MODE_ 4	_			ERRB_PK1	「_DT_4[5:0]		
0x427	0x0F	BACKTOP8[7 :0]	ERRB_P KT_VC_ OVRD_E N_1	_	_		ERRB_PI	KT_VC_OVI	RD_1[4:0]	
0x428	0x0F	BACKTOP9[7 :0]	ERRB_P KT_VC_ OVRD_E N_2	_	_		ERRB_PI	KT_VC_OVI	RD_2[4:0]	
0x429	0x0F	BACKTOP10[7:0]	ERRB_P KT_VC_ OVRD_E N_3	_	-		ERRB_PI	KT_VC_OVI	RD_3[4:0]	
0x42A	0x0F	BACKTOP11[7:0]	ERRB_P KT_VC_ OVRD_E N_4	_	-		ERRB_PI	KT_VC_OVI	RD_4[4:0]	
0x42B	0x00	BACKTOP12[7:0]	-	_	-	ERRB_PKT_VC_1[4:0]				
0x42C	0x00	BACKTOP13[7:0]	_	_	_		ERRE	B_PKT_VC_	2[4:0]	
0x42D	0x00	BACKTOP14[7:0]	-	_	-		ERRE	B_PKT_VC_	3[4:0]	
0x42E	0x00	BACKTOP15[7:0]	_	_	_		ERRE	B_PKT_VC_	4[4:0]	
0x435	0x01	BACKTOP22[7:0]	-	_	-	_		n_vs_bl	ock[3:0]	
0x436	0x00	BACKTOP23[7:0]	_	_	_	_	dis_vs3	dis_vs2	dis_vs1	dis_vs0
0x437	0x00	BACKTOP24[7:0]	ERRB_P KT_WC_ OVRD_E N_4	ERRB_P KT_WC_ OVRD_E N_3	ERRB_P KT_WC_ OVRD_E N_2	ERRB_P KT_WC_ OVRD_E N_1	_	_	_	_
0x438	0x00	BACKTOP25[7:0]			E	RRB_PKT_	WC_1_H[7:	0]		
0x439	0x00	BACKTOP26[7:0]			E	RRB_PKT_	WC_1_L[7:	0]		
0x43A	0x00	BACKTOP27[7:0]			Е	RRB_PKT_	WC_2_H[7:	0]		
0x43B	0x00	BACKTOP28[7:0]	ERRB_PKT_WC_2_L[7:0]							
0x43C	0x00	BACKTOP29[7:0]	ERRB_PKT_WC_3_H[7:0]							
0x43D	0x00	BACKTOP30[7:0]			E	RRB_PKT_	WC_3_L[7:	0]		

ADDRESS	RESET	NAME	MSB							LSB
0x43E	0x00	BACKTOP31[7:0]			Е	RRB_PKT_	WC_4_H[7:	0]		
0x43F	0x00	BACKTOP32[7:0]			E	RRB_PKT_	WC_4_L[7:	0]		
0x440	0x00	BACKTOP33[7:0]	_	_	_	_	FIFO_E MPTY_3	FIFO_E MPTY_2	FIFO_E MPTY_1	FIFO_E MPTY_0
0x442	0x80	BACKTOP1_ HDR_ERR[7: 0]	TUN_HD R_ERR_ FLAG_0 _OEN	TUN_HD R_ERR_ FLAG_0	TUN_HD R_CRC_ ERR_3_ FLAG_0	TUN_HD R_CRC_ ERR_2_ FLAG_0	TUN_HD R_CRC_ ERR_1_ FLAG_0	TUN_HD R_CRC_ ERR_0_ FLAG_0	TUN_HD R_ECC_ ERR_FL AG_0	TUN_HD R_ECC_ FLAG_0
0x443	0x80	BACKTOP2 HDR_ERR[7: 0]	TUN_HD R_ERR_ FLAG_1 _OEN	TUN_HD R_ERR_ FLAG_1	TUN_HD R_CRC_ ERR_3_ FLAG_1	TUN_HD R_CRC_ ERR_2_ FLAG_1	TUN_HD R_CRC_ ERR_1_ FLAG_1	TUN_HD R_CRC_ ERR_0_ FLAG_1	TUN_HD R_ECC_ ERR_FL AG_1	TUN_HD R_ECC_ FLAG_1
0x444	0x80	BACKTOP3 HDR_ERR[7: 0]	TUN_HD R_ERR_ FLAG_2 _OEN	TUN_HD R_ERR_ FLAG_2	TUN_HD R_CRC_ ERR_3_ FLAG_2	TUN_HD R_CRC_ ERR_2_ FLAG_2	TUN_HD R_CRC_ ERR_1_ FLAG_2	TUN_HD R_CRC_ ERR_0_ FLAG_2	TUN_HD R_ECC_ ERR_FL AG_2	TUN_HD R_ECC_ FLAG_2
0x445	0x80	BACKTOP4 HDR_ERR[7: 0]	TUN_HD R_ERR_ FLAG_3 _OEN	TUN_HD R_ERR_ FLAG_3	TUN_HD R_CRC_ ERR_3_ FLAG_3	TUN_HD R_CRC_ ERR_2_ FLAG_3	TUN_HD R_CRC_ ERR_1_ FLAG_3	TUN_HD R_CRC_ ERR_0_ FLAG_3	TUN_HD R_ECC_ ERR_FL AG_3	TUN_HD R_ECC_ FLAG_3
0x446	0xF0	BACKTOP39[7:0]	BKTP3_ LINE_LE N_OVRD	BKTP3_ LINE_LE N_OVRD	BKTP3_ LINE_LE N_OVRD	BKTP3_ LINE_LE N_OVRD	BKTP3_ LINE_LE N_OVRD	BKTP2_ LINE_LE N_OVRD	BKTP1_ LINE_LE N_OVRD	BKTP0_ LINE_LE N_OVRD
0x447	0x07	BACKTOP40[7:0]			В	KTP0_LINE	_LEN_H[7:	0]		
0x448	0x53	BACKTOP41[7:0]			В	KTP0_LINE	_LEN_L[7:0	0]		
0x449	0x07	BACKTOP42[7:0]			В	KTP1_LINE	_LEN_H[7:	0]		
0x44A	0x53	BACKTOP43[7:0]			В	KTP1_LINE	_LEN_L[7:0	0]		
0x44B	0x07	BACKTOP44[7:0]			В	KTP2_LINE	_LEN_H[7:	0]		
0x44C	0x53	BACKTOP45[7:0]			В	KTP2_LINE	_LEN_L[7:0	0]		
0x44D	0x07	BACKTOP46[7:0]			В	KTP3_LINE	_LEN_H[7:	0]		
0x44E	0x53	BACKTOP47[7:0]			В	KTP3_LINE	_LEN_L[7:0	0]		
0x44F	0xFF	BACKTOP48[7:0]		M_TIMEO IV[1:0]	BKTP3_V UT_D	M_TIMEO IV[1:0]		M_TIMEO IV[1:0]		M_TIMEO IV[1:0]
0x450	0x00	BACKTOP_E MBED0[7:0]	EMBED_ LL_NUM_B EMBED EMBED_ LL_NUM_B KTP0[1:0]		EMBED_F KTP(L_NUM_B)[1:0]				
0x451	0x00	BACKTOP_E MBED1[7:0]	EMBED_ LL_EN_ BKTP1	-				EMBED_F KTP	L_NUM_B [[1:0]	
0x452	0x00	BACKTOP_E MBED2[7:0]	EMBED_ LL_EN_ BKTP2	_		L_NUM_B 2[1:0]	EMBED_ FL_EN_ BKTP2	-	EMBED_F KTP2	L_NUM_B 2[1:0]

ADDRESS	RESET	NAME	MSB							LSB
0x453	0x00	BACKTOP_E MBED3[7:0]	EMBED_ LL_EN_ BKTP3	_		L_NUM_B 3[1:0]	EMBED_ FL_EN_ BKTP3	_		L_NUM_B 3[1:0]
0x454	0xFF	CMD_LMO_E RRB_EN[7:0]	CMD_O VFL_3_E RRB_OE N	CMD_O VFL_2_E RRB_OE N	CMD_O VFL_1_E RRB_OE N	CMD_O VFL_0_E RRB_OE N	LMO_3_ ERRB_O EN	LMO_2_ ERRB_O EN	LMO_1_ ERRB_O EN	LMO_0_ ERRB_O EN
0x455	0x0F	DPLL_ERRB_ OEN[7:0]	CSIPLL3 _LOL_S TICKY_F LAG	CSIPLL2 _LOL_S TICKY_F LAG	CSIPLL1 _LOL_S TICKY_F LAG	CSIPLL0 _LOL_S TICKY_F LAG	CSI_DPL L3_ERR B_OEN	CSI_DPL L2_ERR B_OEN	CSI_DPL L1_ERR B_OEN	CSI_DPL L0_ERR B_OEN
0x456	0x00	BACKTOP_O VERRIDE_BP P_DT[7:0]	OVERRI DE_VC_ 3	OVERRI DE_VC_ 2	OVERRI DE_VC_ 1	OVERRI DE_VC_ 0	OVERRI DE_BPP _DT_3	OVERRI DE_BPP _DT_2	OVERRI DE_BPP _DT_1	OVERRI DE_BPP _DT_0
0x457	0x00	BACKTOP_O VERRIDE_VC [7:0]	_	_	_	_	_	_	_	OVERRI DE_VC_ BITS_2_ AND_3
0x458	0xF0	SRAM_LCRC _ERR[7:0]	SRAM_L CRC_ER R_OEN_ 3	SRAM_L CRC_ER R_OEN_ 2	SRAM_L CRC_ER R_OEN_ 1	SRAM_L CRC_ER R_OEN_ 0	SRAM_L CRC_ER R_3	SRAM_L CRC_ER R_2	SRAM_L CRC_ER R_1	SRAM_L CRC_ER R_0
0x459	0x00	SRAM_LCRC _EN[7:0]	SRAM_L CRC_TU N_CHK_ DIS_3	SRAM_L CRC_TU N_CHK_ DIS_2	SRAM_L CRC_TU N_CHK_ DIS_1	SRAM_L CRC_TU N_CHK_ DIS_0	SRAM_L CRC_PI XEL_CH K_DIS_3	SRAM_L CRC_PI XEL_CH K_DIS_2	SRAM_L CRC_PI XEL_CH K_DIS_1	SRAM_L CRC_PI XEL_CH K_DIS_0
0x45A	0x00	SRAM_LCRC _RESET[7:0]	INIT_SR AM_LCR C_ERR_ DIS_3	INIT_SR AM_LCR C_ERR_ DIS_2	INIT_SR AM_LCR C_ERR_ DIS_1	INIT_SR AM_LCR C_ERR_ DIS_0	SRAM_L CRC_M ATCH_R ESET_3	SRAM_L CRC_M ATCH_R ESET_2	SRAM_L CRC_M ATCH_R ESET_1	SRAM_L CRC_M ATCH_R ESET_0
ERR_INJ			<u> </u>							
0x480	0x00	BKTOP_ERR _INJ_1[7:0]	_	_	_	-	SRAM_L CRC_ER R_INJ_D IS_3	SRAM_L CRC_ER R_INJ_D IS_2	SRAM_L CRC_ER R_INJ_D IS_1	SRAM_L CRC_ER R_INJ_D IS_0
0x481	0x00	MEM_ERR_I NJ_1BIT[7:0]	-	_	_	_	MEM_E RR_INJ_ 1BIT_BK TP4	MEM_E RR_INJ_ 1BIT_BK TP3	MEM_E RR_INJ_ 1BIT_BK TP2	MEM_E RR_INJ_ 1BIT_BK TP1
0x482	0x00	MEM_ERR_I NJ_2BIT[7:0]	_	_	_	_	MEM_E RR_INJ_ 2BIT_BK TP4	MEM_E RR_INJ_ 2BIT_BK TP3	MEM_E RR_INJ_ 2BIT_BK TP2	MEM_E RR_INJ_ 2BIT_BK TP1
0x483	0x01	MEM_ERR_I NJ_WORD_L OC_EN[7:0]	-	-	-	-	-	-	MEM_E RR_INJ_ WORD_ LOC_2_ EN	MEM_E RR_INJ_ WORD_ LOC_1_ EN
0x484	0x00	MEM_ERR_I NJ_WORD_L OC_1[7:0]	MEM_ERR_INJ_WORD_LOC_1[7:0]							
0x485	0x00	MEM_ERR_I NJ_WORD_L OC_2[7:0]			MEM_	ERR_INJ_V	VORD_LOC	_2[7:0]		

ADDRESS	RESET	NAME	MSB							LSB
0x486	0x00	MEM_ERR_I NJ_PKT_NU M[7:0]	-	-	-	-	MEM	1_ERR_INJ	_PKT_NUM	[3:0]
0x487	0x03	MEM_ERR_I NJ_BIT1_LO C[7:0]	_	-	_		MEM_ERF	R_INJ_BIT1	_LOC[4:0]	
0x488	0x00	MEM_ERR_I NJ_BIT2_LO C[7:0]	_	-	_		MEM_ERF	R_INJ_BIT2	_LOC[4:0]	
FSYNC										
0x4A0	0x0C	FSYNC_0[7:0]	RSVD	RSVD	FSYNC_ OUT_PI N	EN_VS_ GEN FSYNC_MODE[1:0] FSYNC_METH[
0x4A1	0x00	FSYNC_1[7:0]	RSVI	D[1:0]	RSVI	D[1:0]		FSYNC_PE	ER_DIV[3:0]	
0x4A2	0x81	FSYNC_2[7:0]	MST	_LINK_SEL	[2:0]	K_VAL_ SIGN		K_VA	L[3:0]	
0x4A3	0x00	FSYNC_3[7:0]				P_VAL	_L[7:0]			
0x4A4	0x00	FSYNC_4[7:0]	_	-	P_VAL_ SIGN		Р	_VAL_H[4:0)]	
0x4A5	0x00	FSYNC_5[7:0]			ļ	FSYNC_PE	RIOD_L[7:0]			
0x4A6	0x00	FSYNC_6[7:0]			F	FSYNC_PE	RIOD_M[7:0]		
0x4A7	0x00	FSYNC_7[7:0]			İ	FSYNC_PE	RIOD_H[7:0]		
0x4A8	0x00	FSYNC_8[7:0]			FR	M_DIFF_EF	RR_THR_L[7	7:0]		
0x4A9	0x0F	FSYNC_9[7:0]	_	_	_		FRM_DIF	F_ERR_TH	IR_H[4:0]	
0x4AA	0x00	FSYNC_10[7: 0]				OVLP_WIN	DOW_L[7:0]			
0x4AB	0x00	FSYNC_11[7: 0]	EN_FSI N_LAST	_	_		OVLP_	_WINDOW_	H[4:0]	
0x4AF	0xCF	FSYNC_15[7: 0]	FS_GPI O_TYPE	FS_USE _XTAL	_	AUTO_F S_LINKS	FS_LINK _3	FS_LINK _2	FS_LINK _1	FS_LINK _0
0x4B0	0x00	FSYNC_16[7: 0]				FSYNC_ER	R_CNT[7:0]			
0x4B1	0xF0	FSYNC_17[7: 0]		FSY	NC_TX_ID	[4:0]		FSYN	C_ERR_TH	IR[2:0]
0x4B2	0x00	FSYNC_18[7: 0]		CALC_FRM_LEN_L[7:0]						
0x4B3	0x00	FSYNC_19[7: 0]			(CALC_FRM_LEN_M[7:0]				
0x4B4	0x00	FSYNC_20[7: 0]			(CALC_FRM	_LEN_H[7:0]		
0x4B5	0x00	FSYNC_21[7: 0]				FRM_DII	F_L[7:0]			

ADDRESS	RESET	NAME	MSB							LSB	
0x4B6	0x00	FSYNC_22[7: 0]	FSYNC_ LOSS_O F_LOCK	FSYNC_ LOCKED			FRM_DIF	F_H[5:0]			
0x4B7	0x00	FSYNC_23[7: 0]	RSVD	RSVD	FSYNC_ RST_MO DE	-	RSVD	RSVD	RSVD	RSVD	
CFGC_A C	C_0		•				•	•	•		
0x500	0xF0	TR0[7:0]	TX_CRC _EN	RX_CRC _EN	RSVI	D[1:0]	PRIO_\	/AL[1:0]	PRIO_C	FG[1:0]	
0x501	0xB0	TR1[7:0]	BW_MU	JLT[1:0]			BW_V	AL[5:0]	•		
0x503	0x00	TR3[7:0]	_	_	-	_	_	T	(_SRC_ID[2	:0]	
0x504	0xFF	TR4[7:0]				RX_SRC	_SEL[7:0]	•			
0x506	0x72	ARQ1[7:0]	-	N	MAX_RT[2:0] RSVD RSVD _ERR_(RT_CNT _OEN	
0x507	0x00	ARQ2[7:0]	MAX_RT _ERR			F	RT_CNT[6:0)]			
CFGC_B C	C_0										
0x510	0xF0	TR0[7:0]	TX_CRC _EN_B	RX_CRC _EN_B	RSVD[1:0] PRIO_VAL_B[1:0] F					PRIO_CFG_B[1:0]	
0x511	0xB0	TR1[7:0]	BW_MUI	_T_B[1:0]	BW_VAL_B[5:0]				•		
0x513	0x00	TR3[7:0]	_	_	-	_	_	TX_	SRC_ID_B	[2:0]	
0x514	0xFF	TR4[7:0]		•		RX_SRC_	SEL_B[7:0]	•			
0x516	0x72	ARQ1[7:0]	_	M	AX_RT_B[2	:0]	RSVD	RSVD	MAX_RT _ERR_O EN_B	RT_CNT _OEN_B	
0x517	0x00	ARQ2[7:0]	MAX_RT _ERR_B			R'	T_CNT_B[6	:0]			
CFGC_C CC	5_0	1	<u> </u>								
0x520	0xF0	TR0[7:0]	TX_CRC _EN_C	RX_CRC _EN_C	RSVI	D[1:0]	PRIO_VA	AL_C[1:0]	PRIO_CF	G_C[1:0]	
0x521	0xB0	TR1[7:0]	BW_MUL	_T_C[1:0]			BW_VA	L_C[5:0]			
0x523	0x00	TR3[7:0]	-	_	1	_	_	TX_	SRC_ID_C	[2:0]	
0x524	0xFF	TR4[7:0]				RX_SRC_	SEL_C[7:0]				
0x526	0x72	ARQ1[7:0]	-	M	AX_RT_C[2	:0]	RSVD	RSVD	MAX_RT _ERR_O EN_C	RT_CNT _OEN_C	
0x527	0x00	ARQ2[7:0]	MAX_RT _ERR_C			R ⁻	T_CNT_C[6	:0]			
CFGC_D C	C_0		•	•							
0x530	0xF0	TR0[7:0]	TX_CRC _EN_D	RX_CRC _EN_D						G_D[1:0]	
0x531	0xB0	TR1[7:0]	BW_MUL	_T_D[1:0]	_D[1:0] BW_VAL_D[5:0]						
0x533	0x00	TR3[7:0]	_	_	_	=	_	TX_	SRC_ID_D	[2:0]	
0x534	0xFF	TR4[7:0]				RX_SRC_S	SEL_D[7:0]				
0x536	0x72	ARQ1[7:0]		M	AX_RT_D[2	:0]	RSVD	RSVD	MAX_RT _ERR_O EN_D	RT_CNT _OEN_D	

ADDRESS	RESET	NAME	MSB							LSB	
0x537	0x00	ARQ2[7:0]	MAX_RT _ERR_D		1	R ⁻	T_CNT_D[6	:0]	1		
CFGC_A C	C_1		,								
0x560	0xF0	TR0[7:0]	TX_CRC _EN	RX_CRC _EN	RSVD	[1:0]	PRIO_\	/AL[1:0]	PRIO_C	FG[1:0]	
0x561	0xB0	TR1[7:0]	BW_MU	JLT[1:0]			BW_V	AL[5:0]			
0x563	0x00	TR3[7:0]	_	_	TX_SRC_						
0x564	0xFF	TR4[7:0]		RX_SRC_SEL[7:0]							
0x566	0x72	ARQ1[7:0]	_	N	//AX_RT[2:0]]	RSVD	RSVD	MAX_RT _ERR_O EN	RT_CNT _OEN	
0x567	0x00	ARQ2[7:0]	MAX_RT _ERR			F	RT_CNT[6:0)]			
CFGC_B C	C_1		•								
0x570	0xF0	TR0[7:0]	TX_CRC _EN_B	RX_CRC RSVD[1:0] PRIO_VAL_B[1:0] PRIO						G_B[1:0]	
0x571	0xB0	TR1[7:0]	BW_MUI	_T_B[1:0] BW_VAL_B[5:0]							
0x573	0x00	TR3[7:0]	_	TX_SR(SRC_ID_B[2:0]		
0x574	0xFF	TR4[7:0]			-	RX_SRC_	SEL_B[7:0]				
0x576	0x72	ARQ1[7:0]	-	 MAX_RT_B[2:0]			RSVD	RSVD	MAX_RT _ERR_O EN_B	RT_CNT _OEN_B	
0x577	0x00	ARQ2[7:0]	MAX_RT _ERR_B			R	T_CNT_B[6	:0]			
CFGC_C CC	C_1										
0x580	0xF0	TR0[7:0]	TX_CRC _EN_C	RX_CRC _EN_C	RSVD	[1:0]	PRIO_VA	AL_C[1:0]	PRIO_CF	G_C[1:0]	
0x581	0xB0	TR1[7:0]	BW_MUL	_T_C[1:0]			BW_VA	L_C[5:0]]		
0x583	0x00	TR3[7:0]	_	-	-	-	- TX_SRC_ID_C[2:0]			[2:0]	
0x584	0xFF	TR4[7:0]				RX_SRC_	SEL_C[7:0]				
0x586	0x72	ARQ1[7:0]	_	M	AX_RT_C[2:	0]	RSVD	RSVD	MAX_RT _ERR_O EN_C	RT_CNT _OEN_C	
0x587	0x00	ARQ2[7:0]	MAX_RT _ERR_C			R	T_CNT_C[6	:0]			
CFGC_D C	C_1										
0x590	0xF0	TR0[7:0]	TX_CRC _EN_D	RX_CRC _EN_D	RSVD	[1:0]	PRIO_VA	AL_D[1:0]	PRIO_CF	G_D[1:0]	
0x591	0xB0	TR1[7:0]		JLT_D[1:0] BW_VAL_D[5:0]							
0x593	0x00	TR3[7:0]	_	TX_SRC_				SRC_ID_D	[2:0]		
0x594	0xFF	TR4[7:0]		RX_SRC_SEL_D[7:0]							
0x596	0x72	ARQ1[7:0]	-	M	AX_RT_D[2:	<u> </u>	RSVD	RSVD	MAX_RT _ERR_O EN_D	RT_CNT _OEN_D	
0x597	0x00	ARQ2[7:0]	MAX_RT _ERR_D			R ⁻	T_CNT_D[6	:0]			

ADDRESS	RESET	NAME	MSB					LSB	
CC_G2P0_/	A		•	•			•		
0x640	0x26	I2C_0[7:0]	_	RSVD	SLV_SH_P0_A[1:0]	_	SLV	/_TO_P0_A[2:0]	
0x641	0x56	I2C_1[7:0]	RSVD	MS	Γ_BT_P0_A[2:0]	_	MST	T_TO_P0_A[2:0]	
0x642	0x00	I2C_2[7:0]			SRC_A_P0_A[6:0]		_	
0x643	0x00	I2C_3[7:0]			DST_A_P0_A[5:0]		_	
0x644	0x00	I2C_4[7:0]			SRC_B_P0_A[6:0]		_	
0x645	0x00	I2C_5[7:0]			DST_B_P0_A[5:0]		_	
CC_G2P0_E	3								
0x650	0x26	I2C_0[7:0]	_	_	SLV_SH_P0_B[1:0]	_	SLV	/_TO_P0_B[2:0]	
0x651	0x56	<u>I2C_1[7:0]</u>	RSVD	MS	Γ_BT_P0_B[2:0]	_	MST	T_TO_P0_B[2:0]	
0x652	0x00	<u>I2C_2[7:0]</u>			SRC_A_P0_B[6:0]		_	
0x653	0x00	I2C_3[7:0]			DST_A_P0_B[5:0]		_	
0x654	0x00	I2C_4[7:0]			SRC_B_P0_B[6:0]		_	
0x655	0x00	<u>I2C_5[7:0]</u>			DST_B_P0_B[5:0]		_	
CC_G2P0_0	•								
0x660	0x26	<u>I2C_0[7:0]</u>	_	_	SLV_SH_P0_C[1:0]	_	SLV	/_TO_P0_C[2:0]	
0x661	0x56	<u>I2C_1[7:0]</u>	RSVD						
0x662	0x00	<u>I2C_2[7:0]</u>		,	SRC_A_P0_C[6:0]	,	_	
0x663	0x00	<u>I2C_3[7:0]</u>			DST_A_P0_C[3:0]		_	
0x664	0x00	<u>I2C_4[7:0]</u>			SRC_B_P0_C[6:0]		_	
0x665	0x00	<u>I2C_5[7:0]</u>			DST_B_P0_C[3:0]		_	
CC_G2P0_I)								
0x670	0x26	<u>I2C_0[7:0]</u>	_	_	SLV_SH_P0_D[1:0]	_	SLV	/_TO_P0_D[2:0]	
0x671	0x56	<u>I2C_1[7:0]</u>	RSVD	MS	Γ_BT_P0_D[2:0]	_	MST	T_TO_P0_D[2:0]	
0x672	0x00	<u>I2C_2[7:0]</u>			SRC_A_P0_D[6:0]		_	
0x673	0x00	<u>I2C_3[7:0]</u>			DST_A_P0_D[6:0]		_	
0x674	0x00	<u>I2C_4[7:0]</u>			SRC_B_P0_D[6:0]		_	
0x675	0x00	<u>I2C_5[7:0]</u>			DST_B_P0_D[6:0]		_	
CC_G2P1_A	4								
0x680	0x26	I2C_0[7:0]	-	I2C_HS M_P1	SLV_SH_P1_A[1:0]	_	SLV	/_TO_P1_A[2:0]	
0x681	0x56	<u>I2C_1[7:0]</u>	RSVD	MS	Γ_BT_P1_A[2:0]	_	MST	T_TO_P1_A[2:0]	
0x682	0x00	<u>I2C_2[7:0]</u>			SRC_A_P1_A[6:0]		_	
0x683	0x00	<u>I2C_3[7:0]</u>			DST_A_P1_A[3:0]		_	
0x684	0x00	I2C_4[7:0]			SRC_B_P1_A[6:0]		_	
0x685	0x00	<u>I2C_5[7:0]</u>			DST_B_P1_A[5:0]		_	
CC_G2P1_E	3								
0x690	0x26	<u>I2C_0[7:0]</u>	_	_	SLV_SH_P1_B[1:0]	_	SLV	/_TO_P1_B[2:0]	
0x691	0x56	<u>I2C_1[7:0]</u>	RSVD	RSVD MST_BT_P1_B[2:0] - MST_TO_P1_B					
0x692	0x00	<u>I2C_2[7:0]</u>		SRC_A_P1_B[6:0] -					
0x693	0x00	I2C_3[7:0]			DST_A_P1_B[5:0]			
0x694	0x00	<u>I2C_4[7:0]</u>			SRC_B_P1_B[6:0]			
0x695	0x00	I2C_5[7:0]			DST_B_P1_B[3:0]			

ADDRESS	RESET	NAME	MSB							LSB
CC_G2P1_0	;					•		•	•	
0x6A0	0x26	<u>I2C_0[7:0]</u>	_	_	SLV_SH_	P1_C[1:0]	_	SLV	_TO_P1_C	[2:0]
0x6A1	0x56	<u>I2C_1[7:0]</u>	RSVD	MST	_BT_P1_C	[2:0]	_	MST	Γ_TO_P1_C	[2:0]
0x6A2	0x00	<u>I2C_2[7:0]</u>			SR	C_A_P1_C[6:0]			-
0x6A3	0x00	<u>I2C_3[7:0]</u>			DS	T_A_P1_C[6:0]			-
0x6A4	0x00	<u>I2C_4[7:0]</u>			SR	C_B_P1_C[6:0]			_
0x6A5	0x00	<u>I2C_5[7:0]</u>		DST_B_P1_C[6:0]						_
CC_G2P1_)									
0x6B0	0x26	<u>I2C_0[7:0]</u>	_	1 22 72 72 72 73 73 75 75						
0x6B1	0x56	<u>I2C_1[7:0]</u>	RSVD	MST	_BT_P1_D	[2:0]	_	MS	Г_TO_P1_D	[2:0]
0x6B2	0x00	<u>I2C_2[7:0]</u>				C_A_P1_D[_
0x6B3	0x00	<u>I2C_3[7:0]</u>		DST_A_P1_D[6:0]						_
0x6B4	0x00	<u>I2C_4[7:0]</u>				C_B_P1_D[_
0x6B5	0x00	<u>I2C_5[7:0]</u>		DST_B_P1_D[6:0]						_
PROFILE_C	TRL									
0x6E1	0x00	PROFILE_MI PI_SEL[7:0]	-	PROFILE_MIPI_SEL[5:0]						
0x6EA	0x00	PROFILE G MSL 1 0[7:0]	-	PROF	ILE_GMSL	_1[2:0]	- PROF		FILE_GMSL_0[2:0]	
0x6EB	0x00	PROFILE G MSL 3 2[7:0]	-	- PROFILE_GMSL_			_	PROF	ILE_GMSL_	_2[2:0]
MIPI_TX_EX	(T 0						1	•		
0x800	0x00	MIPI_TX_EXT 0[7:0]	MAF	SRC_0_H	[2:0]	MAF	P_DST_0_H	[2:0]	_	-
0x801	0x00	MIPI_TX_EXT 1[7:0]	MAF	SRC_1_H	[2:0]	MAP_DST_1_H[2:0]			_	_
0x802	0x00	MIPI_TX_EXT 2[7:0]	MAF	SRC_2_H	[2:0]	MAP_DST_2_H[2:0]			_	-
0x803	0x00	MIPI_TX_EXT 3[7:0]	MAF	SRC_3_H	[2:0]	MAF	P_DST_3_H	[2:0]	-	-
0x804	0x00	MIPI_TX_EXT 4[7:0]	MAF	SRC_4_H	[2:0]	MAF	P_DST_4_H	[2:0]	_	_
0x805	0x00	MIPI_TX_EXT 5[7:0]	MAF	SRC_5_H	[2:0]	MAF	P_DST_5_H	[2:0]	_	-
0x806	0x00	MIPI_TX_EXT 6[7:0]	MAF	SRC_6_H	[2:0]	MAF	P_DST_6_H	[2:0]	_	-
0x807	0x00	MIPI_TX_EXT 7[7:0]	MAP_SRC_7_H[2:0]			MAF	P_DST_7_H	[2:0]	_	_
0x808	0x00	MIPI_TX_EXT 8[7:0]	MAP_SRC_8_H[2:0]			MAP_DST_8_H[2:0]			_	Ι
0x809	0x00	MIPI_TX_EXT 9[7:0]	MAP_SRC_9_H[2:0]			MAP_DST_9_H[2:0]			-	_
0x80A	0x00	MIPI_TX_EXT 10[7:0]	MAP	_SRC_10_F	H[2:0]	MAP_DST_10_H[2:0]			-	_
0x80B	0x00	MIPI_TX_EXT 11[7:0]	MAP	_SRC_11_H	H[2:0]	MAP	_DST_11_F	H[2:0]	_	-

ADDRESS	RESET	NAME	MSB					LSB
0x80C	0x00	MIPI_TX_EXT 12[7:0]	MAP_SRC	_12_H[2:0]	MAP_[OST_12_H[2:0]	_	-
0x80D	0x00	MIPI_TX_EXT 13[7:0]	MAP_SRC	_13_H[2:0]	MAP_[OST_13_H[2:0]	-	_
0x80E	0x00	MIPI_TX_EXT 14[7:0]	MAP_SRC	_14_H[2:0]	MAP_[OST_14_H[2:0]	_	-
0x80F	0x00	MIPI_TX_EXT 15[7:0]	MAP_SRC	_15_H[2:0]	MAP_[DST_15_H[2:0]	_	_
MIPI_TX_EX	KT 1							
0x810	0x00	MIPI_TX_EXT 0[7:0]	MAP_SRC	C_0_H[2:0]	MAP_	DST_0_H[2:0]	-	_
0x811	0x00	MIPI_TX_EXT 1[7:0]	MAP_SRC	C_1_H[2:0]	MAP_	DST_1_H[2:0]	-	_
0x812	0x00	MIPI_TX_EXT 2[7:0]	MAP_SRC	C_2_H[2:0]	MAP_	DST_2_H[2:0]	-	_
0x813	0x00	MIPI_TX_EXT 3[7:0]	MAP_SRC	C_3_H[2:0]	MAP_	DST_3_H[2:0]	-	_
0x814	0x00	MIPI_TX_EXT 4[7:0]	MAP_SRC	C_4_H[2:0]	MAP_	DST_4_H[2:0]	-	_
0x815	0x00	MIPI_TX_EXT 5[7:0]	MAP_SRC	C_5_H[2:0]	MAP_	DST_5_H[2:0]	-	_
0x816	0x00	MIPI_TX_EXT 6[7:0]	MAP_SRC	C_6_H[2:0]	MAP_	DST_6_H[2:0]	-	-
0x817	0x00	MIPI_TX_EXT 7[7:0]	MAP_SRC	C_7_H[2:0]	MAP_	DST_7_H[2:0]	_	-
0x818	0x00	MIPI_TX_EXT 8[7:0]	MAP_SRC	C_8_H[2:0]	MAP_	DST_8_H[2:0]	-	_
0x819	0x00	MIPI_TX_EXT 9[7:0]	MAP_SRC	C_9_H[2:0]	MAP_	DST_9_H[2:0]	-	_
0x81A	0x00	MIPI_TX_EXT 10[7:0]	MAP_SRC	_10_H[2:0]	MAP_[OST_10_H[2:0]	-	_
0x81B	0x00	MIPI_TX_EXT 11[7:0]	MAP_SRC	_11_H[2:0]	MAP_[OST_11_H[2:0]	-	-
0x81C	0x00	MIPI_TX_EXT 12[7:0]	MAP_SRC	_12_H[2:0]	MAP_[OST_12_H[2:0]	_	-
0x81D	0x00	MIPI_TX_EXT 13[7:0]	MAP_SRC	_13_H[2:0]	MAP_[OST_13_H[2:0]	_	-
0x81E	0x00	MIPI_TX_EXT 14[7:0]	MAP_SRC	_14_H[2:0]	MAP_[OST_14_H[2:0]	_	_
0x81F	0x00	MIPI_TX_EXT 15[7:0]	MAP_SRC	_15_H[2:0]	MAP_[OST_15_H[2:0]	_	_
MIPI_TX_EX	KT 2							
0x820	0x00	MIPI_TX_EXT 0[7:0]	MAP_SRC	C_0_H[2:0]	MAP_	DST_0_H[2:0]	_	_
0x821	0x00	MIPI_TX_EXT 1[7:0]	MAP_SRC	C_1_H[2:0]	MAP_	DST_1_H[2:0]		
0x822	0x00	MIPI_TX_EXT 2[7:0]	MAP_SRC	C_2_H[2:0]	MAP_	DST_2_H[2:0]	-	_

ADDRESS	RESET	NAME	MSB							LSB
0x823	0x00	MIPI_TX_EXT 3[7:0]	MAF	SRC_3	3_H[2:0]	MAF	P_DST_3_H	I[2:0]	_	_
0x824	0x00	MIPI_TX_EXT 4[7:0]	MAF	SRC_4	I_H[2:0]	MAF	P_DST_4_F	I[2:0]	_	_
0x825	0x00	MIPI_TX_EXT 5[7:0]	MAF	SRC_5	5_H[2:0]	MAF	P_DST_5_F	I[2:0]	_	-
0x826	0x00	MIPI_TX_EXT 6[7:0]	MAF	SRC_6	6_H[2:0]	MAF	P_DST_6_H	I[2:0]	_	-
0x827	0x00	MIPI_TX_EXT 7[7:0]	MAF	SRC_7	'_H[2:0]	MAF	P_DST_7_F	I[2:0]	-	-
0x828	0x00	MIPI_TX_EXT 8[7:0]	MAF	SRC_8	3_H[2:0]	MAF	P_DST_8_F	I[2:0]	-	-
0x829	0x00	MIPI_TX_EXT 9[7:0]	MAF	SRC_9)_H[2:0]	MAF	P_DST_9_F	I[2:0]	-	-
0x82A	0x00	MIPI_TX_EXT 10[7:0]	MAP	_SRC_1	0_H[2:0]	MAP	DST_10_I	H[2:0]	_	-
0x82B	0x00	MIPI_TX_EXT 11[7:0]	MAP	_SRC_1	1_H[2:0]	MAP	_DST_11_I	H[2:0]	_	_
0x82C	0x00	MIPI_TX_EXT 12[7:0]	MAP	_SRC_1	2_H[2:0]	MAP	_DST_12_I	H[2:0]	_	-
0x82D	0x00	MIPI_TX_EXT 13[7:0]	MAP	_SRC_1	3_H[2:0]	MAP	_DST_13_I	H[2:0]	_	_
0x82E	0x00	MIPI_TX_EXT 14[7:0]	MAP	_SRC_1	4_H[2:0]	MAP	DST_14_I	H[2:0]	_	-
0x82F	0x00	MIPI_TX_EXT 15[7:0]	MAP	_SRC_1	5_H[2:0]	MAP	_DST_15_I	H[2:0]	_	_
MIPI_TX_EX	(T 3									
0x830	0x00	MIPI_TX_EXT 0[7:0]	MAF	SRC_0)_H[2:0]	MAF	P_DST_0_H	I[2:0]	_	-
0x831	0x00	MIPI_TX_EXT 1[7:0]	MAF	SRC_1	I_H[2:0]	MAF	P_DST_1_H	I[2:0]	_	-
0x832	0x00	MIPI_TX_EXT 2[7:0]	MAF	SRC_2	2_H[2:0]	MAF	P_DST_2_H	I[2:0]	_	_
0x833	0x00	MIPI_TX_EXT 3[7:0]	MAF	SRC_3	3_H[2:0]	MAF	P_DST_3_F	I[2:0]	_	-
0x834	0x00	MIPI_TX_EXT 4[7:0]	MAF	SRC_4	I_H[2:0]	MAF	P_DST_4_F	I[2:0]	_	_
0x835	0x00	MIPI_TX_EXT 5[7:0]	MAF	SRC_5	5_H[2:0]	MAF	P_DST_5_H	I[2:0]	_	-
0x836	0x00	MIPI_TX_EXT 6[7:0]	MAF	SRC_6	6_H[2:0]	MAF	P_DST_6_H	I[2:0]	_	-
0x837	0x00	MIPI_TX_EXT 7[7:0]	MAF	SRC_7	'_H[2:0]	MAF	P_DST_7_H	I[2:0]	_	-
0x838	0x00	MIPI_TX_EXT 8[7:0]	MAF	SRC_8	3_H[2:0]	MAF	P_DST_8_F	I[2:0]	_	-
0x839	0x00	MIPI_TX_EXT 9[7:0]	MAF	SRC_9)_H[2:0]	MAF	P_DST_9_H	I[2:0]	_	-
0x83A	0x00	MIPI_TX_EXT 10[7:0]	MAP	_SRC_1	0_H[2:0]	MAP	_DST_10_I	H[2:0]	_	-

ADDRESS	RESET	NAME	MSB							LSB	
0x83B	0x00	MIPI_TX_EXT 11[7:0]	MAP	SRC_11_F	H[2:0]	MAP	 _DST_11_F	H[2:0]	_	_	
0x83C	0x00	MIPI_TX_EXT 12[7:0]	MAP	_SRC_12_H	H[2:0]	MAP	_DST_12_H	H[2:0]	_	_	
0x83D	0x00	MIPI_TX_EXT 13[7:0]	MAP	_SRC_13_H	H[2:0]	MAP_DST_13_H[2:0]			_	-	
0x83E	0x00	MIPI_TX_EXT 14[7:0]	MAP	_SRC_14_H	H[2:0]	MAP	_DST_14_F	H[2:0]	_	_	
0x83F	0x00	MIPI_TX_EXT 15[7:0]	MAP	_SRC_15_H	H[2:0]	MAP	_DST_15_F	H[2:0]	-	_	
MIPI_PHY	•										
0x8A0	0x04	MIPI_PHY0[7: 0]	force_csi _out_en				phy_1x4 a_22	phy_2x4	RSVD	phy_4x2	
0x8A1	0x00	MIPI_PHY1[7: 0]	t_hs_prz	zero[1:0]	t_hs_p	rep[1:0]	t_clk_t	rail[1:0]	t_clk_pr	zero[1:0]	
0x8A2	0xF4	MIPI_PHY2[7: 0]		phy_Stdl	by_n[3:0]		t_lpx	([1:0]	t_hs_tı	rail[1:0]	
0x8A3	0xE4	MIPI_PHY3[7: 0]		phy1_lane_map[3:0]					phy0_lane_map[3:0]		
0x8A4	0xE4	MIPI_PHY4[7: 0]		phy3_lane	e_map[3:0]			phy2_lane_map[3:0]			
0x8A5	0x00	MIPI_PHY5[7: 0]	t_clk_p	t_clk_prep[1:0] phy1_pol_map[2:0]					0_pol_map	[2:0]	
0x8A6	0x00	MIPI_PHY6[7: 0]	_	_	phy	3_pol_map	[2:0]	phy	2_pol_map	[2:0]	
0x8A8	0x00	MIPI_PHY8[7: 0]	1	t_lpxesc[2:0]	RSVD	RSVD	RSVD	RSVD	RSVD	
0x8A9	0x00	MIPI_PHY9[7: 0]		ı	ohy_cp0[4:0]		_	RSVD	RSVD	
0x8AA	0x02	MIPI_PHY10[7:0]		ŗ	ohy_cp1[4:0]		_	RSVD	RSVD	
0x8AB	0x00	MIPI_PHY11[7:0]		phy_cp_	_err[3:0]		_	_	RSVD	_	
0x8AD	0x1F	MIPI_PHY13[7:0]	_	_			t_t3_pret	pegin[5:0]			
0x8AE	0x5D	MIPI_PHY14[7:0]	_		ţ	_t3_post[4:0)]		t_t3_pr	rep[1:0]	
0x8B0	0x78	MIPI_PHY16[7:0]	_	TUN_CO NV_DAT A_CRC_ ERR_OE N	TUN_DA TA_CRC _ERR_O EN	TUN_EC C_UNC ORR_ER R_OEN	TUN_EC C_COR R_ERR_ OEN	_	_	_	
0x8B1	0x00	MIPI_PHY17[7:0]	-	TUN_CO NV_DAT A_CRC_ ERR	TUN_DA TA_CRC _ERR	TUN_EC C_UNC ORR_ER R	TUN_EC C_COR R_ERR	-	-	-	
0x8B2	0x00	MIPI_PHY18[7:0]	csipll3_P LLORan geH	csipll3_P LLORan geL	csipll2_P LLORan geH	csipll2_P LLORan geL	csipll1_P LLORan geH	csipll1_P LLORan geL	csipll0_P LLORan geH	csipll0_P LLORan geL	

ADDRESS	RESET	NAME	MSB							LSB	
0x8B3	0x00	MIPI_PHY19[7:0]	csipll3_P LLORan geH_flag	csipll3_P LLORan geL_flag	csipll2_P LLORan geH_flag	csipll2_P LLORan geL_flag	csipll1_P LLORan geH_flag	csipll1_P LLORan geL_flag	csipll0_P LLORan geH_flag	csipll0_P LLORan geL_flag	
0x8B4	0xFF	MIPI_PHY20[7:0]	csipll3_P LLORan geH_oen	csipll3_P LLORan geL_oen	csipll2_P LLORan geH_oen	csipll2_P LLORan geL_oen	csipll1_P LLORan geH_oen	csipll1_P LLORan geL_oen	csipll0_P LLORan geH_oen	csipll0_P LLORan geL_oen	
0x8C0	0x00	MIPI_PRBS_ 0[7:0]	MIPI_PRE _LN′		MIPI_PRE _LN(MIPI_PRE _LN′	S_EN_P0 [[1:0]	MIPI_PRE _LN(
0x8C1	0x00	MIPI_PRBS_ 1[7:0]		S_EN_P3 [[1:0]		BS_EN_P3 [1:0]	MIPI_PRE _LN′	S_EN_P2 [[1:0]	MIPI_PRE		
0x8C2	0x00	MIPI_PRBS_ 2[7:0]	MIPI_CU ST_SEE D_EN_P 3_LN1	MIPI_CU ST_SEE D_EN_P 3_LN0	MIPI_CU ST_SEE D_EN_P 2_LN1	MIPI_CU ST_SEE D_EN_P 2_LN0	MIPI_CU ST_SEE D_EN_P 1_LN1	MIPI_CU ST_SEE D_EN_P 1_LN0	MIPI_CU ST_SEE D_EN_P 0_LN1	MIPI_CU ST_SEE D_EN_P 0_LN0	
0x8C3	0xF2	MIPI_PRBS_ 3[7:0]	RSVD	RSVD	RSVD	RSVD	MIPI_CUSTOM_S ED_2[1:0]				
0x8C4	0x78	MIPI_PRBS_ 4[7:0]			MIF	PI_CUSTON	_SEED_1[D_1[7:0]			
0x8C5	0x9A	MIPI_PRBS_ 5[7:0]			MIF	PI_CUSTON	/_SEED_0[ED_0[7:0]			
0x8C6	0x0F	MIPI_PHY21[7:0]		Force_Vide	o_Mask[3:0]	1		Auto_Mask_En[3:0]			
0x8C7	0x0F	MIPI_PHY22[7:0]	Video_M ask_Latc h_Reset	-	_	_	Vic	Video_Mask_Restart_En[3:0]			
0x8C9	0x00	MIPI_PHY24[7:0]	_	_	_	_		RST_MIPIT	X_LOC[3:0]		
0x8CA	0xE4	MIPI_CTRL_ SEL[7:0]		RL_SEL_3[0]		RL_SEL_2[0]		RL_SEL_1[0]		RL_SEL_0[0]	
0x8D0	0x00	MIPI_PHY25[7:0]		csi2_tx1_p	kt_cnt[3:0]			csi2_tx0_p	kt_cnt[3:0]		
0x8D1	0x00	MIPI_PHY26[7:0]		csi2_tx3_p	okt_cnt[3:0]			csi2_tx2_p	kt_cnt[3:0]		
0x8D2	0x00	MIPI_PHY27[7:0]		phy1_pk	t_cnt[3:0]			phy0_pk	t_cnt[3:0]		
0x8D3	0x00	MIPI_PHY28[7:0]		phy3_pk				phy2_pk	t_cnt[3:0]		
0x8D4	0xF0	MIPI_PHY_C P_ERR_OE[7 :0]	PHY_CP 1_UF_E RR_OEN	PHY_CP 1_OV_E RR_OEN	PHY_CP 0_UF_E RR_OEN	PHY_CP 0_OV_E RR_OEN	_	I	_	I	
0x8D5	0x00	MIPL_PHY_FL AGS[7:0]	-	-	_	_	DESKE DESKE DESKE DESK W_STAR W_STAR W_STAR W_STA T_OVER T_OVER T_OVER T_OVE LAP_FL LAP_FL LAP_FL LAP_F AG_3 AG_2 AG_1 AG_0				
0x8D6	0x0F	MIPL PHY O EN[7:0]	-	-	-	_	DESKE DESKE DESKE DESKE W_STAR W_STAR W_STAR W_STAR T_OVER T_OVER T_OVER T_OVE LAP_OE LAP_OE LAP_O N_3 N_2 N_1 N_0				
0x8D8	0x3E	MIPI_ERR_P KT_0[7:0]	ERR_PK T_EN_0	_			ERR_PKT	_DT_0[5:0]			

ADDRESS	RESET	NAME	MSB							LSB		
0x8D9	0x3E	MIPI_ERR_P KT_1[7:0]	ERR_PK T_EN_1	_			ERR_PKT	_DT_1[5:0]				
0x8DA	0x3E	MIPLERR P KT_2[7:0]	ERR_PK T_EN_2	_			ERR_PKT	_DT_2[5:0]				
0x8DB	0x3E	MIPLERR P KT 3[7:0]	ERR_PK T_EN_3	-			ERR_PKT	_DT_3[5:0]				
0x8DC	0x0F	MIPI_ERR_P KT_4[7:0]	ERR_PK T_VC_O VRD_EN _0	_	-		ERR_Pk	(T_VC_OV	RD_0[4:0]			
0x8DD	0x0F	MIPI_ERR_P KT_5[7:0]	ERR_PK T_VC_O VRD_EN _1	_	_		ERR_Pk	(T_VC_OV	RD_1[4:0]			
0x8DE	0x0F	MIPI_ERR_P KT_6[7:0]	ERR_PK T_VC_O VRD_EN _2	_	_	ERR_PKT_VC_OVRD_2[4:0]						
0x8E0	0x0F	MIPI_ERR_P KT_7[7:0]	ERR_PK T_VC_O VRD_EN _3	_	-		ERR_Pk	(T_VC_OV	RD_3[4:0]			
0x8E1	0x00	MIPI_ERR_P KT_8[7:0]	_	_	-		ERR	_PKT_VC_	0[4:0]			
0x8E2	0x00	MIPI_ERR_P KT_9[7:0]	_	_	_		ERR	_PKT_VC_	1[4:0]			
0x8E3	0x00	MIPI_ERR_P KT_10[7:0]	-	-	_		ERR	_PKT_VC_	2[4:0]			
0x8E4	0x00	MIPI_ERR_P KT_11[7:0]	_	_	_		ERR	_PKT_VC_	3[4:0]			
0x8E5	0x00	MIPI_ERR_P KT_12[7:0]	ERR_PK T_WC_O VRD_EN _3	ERR_PK T_WC_O VRD_EN _2	ERR_PK T_WC_O VRD_EN _1	ERR_PK T_WC_O VRD_EN _0	-	_	_	_		
0x8E6	0x00	MIPI_ERR_P KT_13[7:0]			E	ERR_PKT_V	VC_0_H[7:0)]				
0x8E7	0x00	MIPI_ERR_P KT_14[7:0]			I	ERR_PKT_\	VC_0_L[7:0)]				
0x8E8	0x00	MIPI_ERR_P KT_15[7:0]			E	ERR_PKT_V	VC_1_H[7:0)]				
0x8E9	0x00	MIPI_ERR_P KT_16[7:0]			i	ERR_PKT_\	VC_1_L[7:0)]				
0x8EA	0x00	MIPI_ERR_P KT_17[7:0]			E	ERR_PKT_WC_2_H[7:0]						
0x8EB	0x00	MIPI_ERR_P KT_18[7:0]			ERR_PKT_WC_2_L[7:0]							
0x8EC	0x00	MIPI_ERR_P KT_19[7:0]			ERR_PKT_WC_3_H[7:0]							
0x8ED	0x00	MIPI_ERR_P KT_20[7:0]			Ī	ERR_PKT_\	VC_3_L[7:0)]				

ADDRESS	RESET	NAME	MSB								LSB	
MIPI_TX 0	I					1		ı				
0x901	0x00	MIPI_TX1[7:0]				MOD	E[7:0]					
0x902	0x00	MIPI TX2[7:0]					JS[7:0]					
0x903	0x87	MIPI_TX3[7:0]					 '_INIT[7:0]					
0x904	0x81	MIPI_TX4[7:0]					 _PER[7:0]					
0x905	0x71	MIPI_TX5[7:0]					 PRE[7:0]					
0x906	0x19	MIPI_TX6[7:0]					POST[7:0]					
0x907	0x1C	MIPI_TX7[7:0]				CSI2_TX	_GAP[7:0]					
0x908	0x00	MIPI_TX8[7:0]				CSI2_TWA	KEUP_L[7:0]				
0x909	0x01	MIPI_TX9[7:0]			(CSI2_TWAK	(EUP_M[7:0)]				
0x90A	0xD0	MIPI_TX10[7: 0]	CSI2_LAN	IE_CNT[1:	CSI2_CP HY_EN	csi2_vcx _en	_	CSI	2_TWA	KEUP_	_H[2:0]	
0x90B	0x00	MIPI_TX11[7: 0]				MAP_E	N_L[7:0]					
0x90C	0x00	MIPI_TX12[7: 0]				MAP_E	N_H[7:0]					
0x90D	0x00	MIPI_TX13[7: 0]		MAP_SRC_0[7:0]								
0x90E	0x00	MIPI_TX14[7: 0]		MAP_DST_0[7:0]								
0x90F	0x00	MIPI_TX15[7: 0]		MAP_DST_0[7:0] MAP_SRC_1[7:0]								
0x910	0x00	MIPI_TX16[7: 0]				MAP_DS	ST_1[7:0]					
0x911	0x00	MIPI_TX17[7: 0]				MAP_SF	RC_2[7:0]					
0x912	0x00	MIPI_TX18[7: 0]				MAP_DS	ST_2[7:0]					
0x913	0x00	MIPI_TX19[7: 0]				MAP_SF	RC_3[7:0]					
0x914	0x00	MIPI_TX20[7: 0]				MAP_DS	ST_3[7:0]					
0x915	0x00	MIPI_TX21[7: 0]				MAP_SF	RC_4[7:0]					
0x916	0x00	MIPI_TX22[7: 0]				MAP_DS	ST_4[7:0]					
0x917	0x00	MIPI_TX23[7: 0]				MAP_SF	RC_5[7:0]					
0x918	0x00	MIPI_TX24[7: 0]	MAP_DST_5[7:0]									
0x919	0x00	MIPI_TX25[7: 0]				MAP_SF	RC_6[7:0]					
0x91A	0x00	MIPI_TX26[7: 0]				MAP_DS	ST_6[7:0]					
0x91B	0x00	MIPI_TX27[7: 0]	MAP_SRC_7[7:0]									
0x91C	0x00	MIPI_TX28[7: 0]				MAP_DS	ST_7[7:0]					

ADDRESS	RESET	NAME	MSB							LSB
0x91D	0x00	MIPI_TX29[7: 0]				MAP_SF	RC_8[7:0]			
0x91E	0x00	MIPI_TX30[7: 0]				MAP_DS	ST_8[7:0]			
0x91F	0x00	MIPI_TX31[7: 0]				MAP_SF	RC_9[7:0]			
0x920	0x00	MIPI_TX32[7: 0]				MAP_DS	ST_9[7:0]			
0x921	0x00	MIPI_TX33[7: 0]				MAP_SR	C_10[7:0]			
0x922	0x00	MIPI_TX34[7: 0]				MAP_DS	T_10[7:0]			
0x923	0x00	MIPI_TX35[7: 0]				MAP_SR	C_11[7:0]			
0x924	0x00	MIPI_TX36[7: 0]				MAP_DS	T_11[7:0]			
0x925	0x00	MIPI_TX37[7: 0]				MAP_SR	C_12[7:0]			
0x926	0x00	MIPI_TX38[7: 0]				MAP_DS	T_12[7:0]			
0x927	0x00	MIPI_TX39[7: 0]				MAP_SR	C_13[7:0]			
0x928	0x00	MIPI_TX40[7: 0]				MAP_DS	T_13[7:0]			
0x929	0x00	MIPI_TX41[7: 0]				MAP_SR	C_14[7:0]			
0x92A	0x00	MIPI_TX42[7: 0]				MAP_DS	T_14[7:0]			
0x92B	0x00	MIPI_TX43[7: 0]				MAP_SR	C_15[7:0]			
0x92C	0x00	MIPI_TX44[7: 0]				MAP_DS	T_15[7:0]			
0x92D	0x00	MIPI_TX45[7: 0]		HY_DEST_ I:0]		IY_DEST_ :0]		HY_DEST_ I:0]	MAP_DPH 0[1	
0x92E	0x00	MIPI_TX46[7: 0]		HY_DEST_ I:0]		HY_DEST_ 1:0]		HY_DEST_ I:0]	MAP_DPF 4[1	
0x92F	0x00	MIPI_TX47[7: 0]	MAP_DPH 11[HY_DEST_ 1:0]	MAP_DPH 10[IY_DEST_ 1:0]		HY_DEST_ I:0]	MAP_DPH 8[1	
0x930	0x00	MIPI_TX48[7: 0]	MAP_DPH 15[HY_DEST_ 1:0]	MAP_DPH 14[IY_DEST_ 1:0]		HY_DEST_ 1:0]	MAP_DPH 12[IY_DEST_ 1:0]
0x931	0x00	MIPI_TX49[7: 0]								
0x932	0x00	MIPI_TX50[7: 0]	SKEW_PER_SEL[7:0]							
0x933	0x00	MIPI_TX51[7: 0]	-	_	_	ALT2_M EM_MA P8	MODE_ DT	ALT_ME M_MAP1 0	ALT_ME M_MAP8	ALT_ME M_MAP1 2
0x934	0x00	MIPI_TX52[7: 0]	vi	deo_maske	d_latched[3:	:0]		video_ma	asked[3:0]	

ADDRESS	RESET	NAME	MSB							LSB
0x936	0x08	MIPI_TX54[7: 0]	TUN_NO _CORR	DESKEW_	_TUN[1:0]		R_LANE_N [1:0]		_TUN_SR 1:0]	TUN_EN
0x938	0x00	MIPI_TX56[7: 0]			F	PKT_STAR	Γ_ADDR[7:0)]		
0x939	0x10	MIPI_TX57[7: 0]	DIS_AU TO_SER _LANE_ DET	DIS_AU TO_TUN _DET	TUN_DI	EST[1:0]	_	TUN_DP HY_TO_ CPHY_C ONV	TUN_DP HY_TO_ CPHY_C ONV_OV RD	RSVD
0x93A	0x00	MIPI_ERR_IN J_B1[7:0]	DCPHY_ CONV_E RR_INJ_ B1_EN	1	-	DC	CPHY_CON	V_ERR_INJ	_B1_SITE[4	1:0]
0x93B	0x00	MIPI_ERR_IN J_B2[7:0]	DCPHY_ CONV_E RR_INJ_ B2_EN	-	-	DC	CPHY_CON	V_ERR_INJ	_B2_SITE[4	1:0]
0x93C	0x00	MIPI_ERRB_ DESKEW_OR DER[7:0]	-	-	-	-	DESKE W_BEF ORE_ER RB_PKT _MODE	DESKE W_AFTE R_ERRB _PKT_M ODE	DESKE W_BEF ORE_VS _PKT_M ODE	-
MIPI_TX 1										
0x941	0x00	MIPI_TX1[7:0]				MOD	E[7:0]			
0x942	0x00	MIPI_TX2[7:0]				STATU	JS[7:0]			
0x943	0x87	MIPI_TX3[7:0]				DESKEW	_INIT[7:0]			
0x944	0x81	MIPI_TX4[7:0]				DESKEW	_PER[7:0]			
0x945	0x71	MIPI_TX5[7:0]				CSI2_T_	PRE[7:0]			
0x946	0x19	MIPI_TX6[7:0]				CSI2_T_F	POST[7:0]			
0x947	0x1C	MIPI_TX7[7:0]					_GAP[7:0]			
0x948	0x00	MIPI_TX8[7:0]				CSI2_TWA				
0x949	0x01	MIPI_TX9[7:0]			(CSI2_TWAK	(EUP_M[7:0)]		
0x94A	0xD0	MIPI_TX10[7: 0]	CSI2_LAN	IE_CNT[1:)]	CSI2_CP HY_EN	csi2_vcx _en	_	CSI2_	TWAKEUP_	_H[2:0]
0x94B	0x00	MIPI_TX11[7: 0]				MAP_E	N_L[7:0]			
0x94C	0x00	MIPI_TX12[7: 0]				MAP_EI	N_H[7:0]			
0x94D	0x00	MIPI_TX13[7: 0]				MAP_SF	RC_0[7:0]			
0x94E	0x00	MIPI_TX14[7: 0]	MAP_DST_0[7:0]							
0x94F	0x00	MIPI_TX15[7: 0]				MAP_SF	RC_1[7:0]			
0x950	0x00	MIPI_TX16[7: 0]				MAP_DS	ST_1[7:0]			
0x951	0x00	MIPI_TX17[7: 0]				MAP_SRC_2[7:0]				
0x952	0x00	MIPI_TX18[7: 0]				MAP_DS	ST_2[7:0]			

ADDRESS	RESET	NAME	MSB							LSB		
0x953	0x00	MIPI_TX19[7: 0]				MAP_SF	RC_3[7:0]					
0x954	0x00	MIPI_TX20[7: 0]				MAP_DS	ST_3[7:0]					
0x955	0x00	MIPI_TX21[7: 0]				MAP_SF	RC_4[7:0]					
0x956	0x00	MIPI_TX22[7: 0]				MAP_DS	ST_4[7:0]					
0x957	0x00	MIPI_TX23[7: 0]				MAP_SF	RC_5[7:0]					
0x958	0x00	MIPI_TX24[7: 0]				MAP_DS	ST_5[7:0]					
0x959	0x00	MIPI_TX25[7: 0]				MAP_SF	RC_6[7:0]					
0x95A	0x00	MIPI_TX26[7: 0]				MAP_DS	ST_6[7:0]					
0x95B	0x00	MIPI_TX27[7: 0]				MAP_SF	RC_7[7:0]					
0x95C	0x00	MIPI_TX28[7: 0]				MAP_DS	ST_7[7:0]					
0x95D	0x00	MIPI_TX29[7: 0]				MAP_SF	RC_8[7:0]					
0x95E	0x00	MIPI_TX30[7: 0]				MAP_DS	ST_8[7:0]					
0x95F	0x00	MIPI_TX31[7: 0]				MAP_SF	RC_9[7:0]					
0x960	0x00	MIPI_TX32[7: 0]				MAP_DS	ST_9[7:0]					
0x961	0x00	MIPI_TX33[7: 0]				MAP_SR	C_10[7:0]					
0x962	0x00	MIPI_TX34[7: 0]				MAP_DS	T_10[7:0]					
0x963	0x00	MIPI_TX35[7: 0]				MAP_SR	C_11[7:0]					
0x964	0x00	MIPI_TX36[7: 0]				MAP_DS	T_11[7:0]					
0x965	0x00	MIPI_TX37[7: 0]				MAP_SR	C_12[7:0]					
0x966	0x00	MIPI_TX38[7: 0]				MAP_DS	T_12[7:0]					
0x967	0x00	MIPI_TX39[7: 0]		MAP_SRC_13[7:0]								
0x968	0x00	MIPI_TX40[7: 0]	MAP_DST_13[7:0]									
0x969	0x00	MIPI_TX41[7: 0]	MAP_SRC_14[7:0]									
0x96A	0x00	MIPI_TX42[7: 0]	MAP_DST_14[7:0]									
0x96B	0x00	MIPI_TX43[7: 0]				MAP_SR	C_15[7:0]					

ADDRESS	RESET	NAME	MSB							LSB
0x96C	0x00	MIPI_TX44[7:				MAP DS	T_15[7:0]			
	OXOO .	0]								
0x96D	0x00	MIPI_TX45[7: 0]	MAP_DPF 3[1	IY_DEST_ :0]	MAP_DPF 2[1	HY_DEST_ 1:0]	MAP_DPF 1[1	HY_DEST_ 1:0]	MAP_DPH 0[1	:0]
0x96E	0x00	MIPI_TX46[7: 0]		IY_DEST_ :0]	MAP_DPF 6[1	HY_DEST_ 1:0]	_	HY_DEST_ 1:0]	MAP_DPH 4[1	
0x96F	0x00	MIPI_TX47[7: 0]		IY_DEST_ 1:0]	MAP_DPH 10[HY_DEST_ [1:0]		HY_DEST_ 1:0]	MAP_DPH 8[1	
0x970	0x00	MIPI_TX48[7: 0]		IY_DEST_ 1:0]	MAP_DPH 14[HY_DEST_ [1:0]		HY_DEST_ [1:0]	MAP_DPH 12[
0x971	0x00	MIPI_TX49[7: 0]			I	MAP_C	ON[7:0]		1	
0x972	0x00	MIPI_TX50[7: 0]				SKEW_PE	R_SEL[7:0]			
0x973	0x00	MIPI_TX51[7: 0]	_	-	-	ALT2_M EM_MA P8	MODE_ DT	ALT_ME M_MAP1 0	ALT_ME M_MAP8	ALT_ME M_MAP1 2
0x974	0x00	MIPI_TX52[7: 0]	vio	video_masked_latched[3:0] video_masked[3:0] N NO DESCRIME TUNIA:01 TUN SER LANE N DESKEW_TUN_SR						
0x976	0x08	MIPI_TX54[7: 0]	TUN_NO _CORR							TUN_EN
0x978	0x00	MIPI_TX56[7: 0]		CORR DESKEW_TUN[1:0] UM[7:0] C[1:0] C[1:0] PKT_START_ADDR[7:0]						
0x979	0x10	MIPI_TX57[7: 0]	DIS_AU TO_SER _LANE_ DET	DIS_AU TO_TUN _DET	TUN_DI	EST[1:0]	-	TUN_DP HY_TO_ CPHY_C ONV	TUN_DP HY_TO_ CPHY_C ONV_OV RD	RSVD
0x97A	0x00	MIPI_ERR_IN J_B1[7:0]	DCPHY_ CONV_E RR_INJ_ B1_EN	-	-	DC	CPHY_CON	V_ERR_INJ	B1_SITE[4	l:0]
0x97B	0x00	MIPI_ERR_IN J_B2[7:0]	DCPHY_ CONV_E RR_INJ_ B2_EN	-	-	DC	CPHY_CON	V_ERR_INJ	_B2_SITE[4	l:0]
0x97C	0x00	MIPI_ERRB_ DESKEW_OR DER[7:0]	_	-	_	_	DESKE W_BEF ORE_ER RB_PKT _MODE	DESKE W_AFTE R_ERRB _PKT_M ODE	DESKE W_BEF ORE_VS _PKT_M ODE	-
MIPI_TX 2										
0x981	0x00	MIPI_TX1[7:0]				MOD	E[7:0]			
0x982	0x00	MIPI_TX2[7:0]	STATUS[7:0]							
0x983	0x87	MIPI_TX3[7:0]				DESKEW	_INIT[7:0]			
0x984	0x81	MIPI_TX4[7:0]				DESKEW	_PER[7:0]			
0x985	0x71	MIPI_TX5[7:0]				CSI2_T_	PRE[7:0]			
0x986	0x19	MIPI_TX6[7:0]	O] CSI2_T_POST[7:0]							
0x987	0x1C	MIPI_TX7[7:0]				CSI2_TX	_GAP[7:0]			
0x988	0x00	MIPI_TX8[7:0]				CSI2_TWA	KEUP_L[7:0]		

ADDRESS	RESET	NAME	MSB							LSB
0x989	0x01	MIPI_TX9[7:0]			(CSI2_TWAK	EUP_M[7:0]			1
0x98A	0xD0	MIPI_TX10[7: 0]		IE_CNT[1:	CSI2_CP HY_EN	csi2_vcx _en	-	CSI2_	_TWAKEUF	P_H[2:0]
0x98B	0x00	MIPI_TX11[7: 0]				MAP_E	N_L[7:0]			
0x98C	0x00	MIPI_TX12[7: 0]				MAP_E	N_H[7:0]			
0x98D	0x00	MIPI_TX13[7: 0]				MAP_SR	RC_0[7:0]			
0x98E	0x00	MIPI_TX14[7: 0]				MAP_DS	ST_0[7:0]			
0x98F	0x00	MIPI_TX15[7: 0]				MAP_SF	RC_1[7:0]			
0x990	0x00	MIPI_TX16[7: 0]				MAP_DS	ST_1[7:0]			
0x991	0x00	MIPI_TX17[7: 0]				MAP_SF	RC_2[7:0]			
0x992	0x00	MIPI_TX18[7: 0]				MAP_DS	ST_2[7:0]			
0x993	0x00	MIPI_TX19[7: 0]				MAP_SF	RC_3[7:0]			
0x994	0x00	MIPI_TX20[7: 0]				MAP_DS	ST_3[7:0]			
0x995	0x00	MIPI_TX21[7: 0]				MAP_SF	RC_4[7:0]			
0x996	0x00	MIPI_TX22[7: 0]				MAP_DS	ST_4[7:0]			
0x997	0x00	MIPI_TX23[7: 0]				MAP_SF	RC_5[7:0]			
0x998	0x00	MIPI_TX24[7: 0]				MAP_DS	ST_5[7:0]			
0x999	0x00	MIPI_TX25[7: 0]				MAP_SF	RC_6[7:0]			
0x99A	0x00	MIPI_TX26[7: 0]				MAP_DS	ST_6[7:0]			
0x99B	0x00	MIPI_TX27[7: 0]				MAP_SF	RC_7[7:0]			
0x99C	0x00	MIPI_TX28[7: 0]				MAP_DS	ST_7[7:0]			
0x99D	0x00	MIPI_TX29[7: 0]	MAP_SRC_8[7:0]							
0x99E	0x00	MIPI_TX30[7: 0]				MAP_DS	ST_8[7:0]			
0x99F	0x00	MIPI_TX31[7: 0]				MAP_SF	RC_9[7:0]			
0x9A0	0x00	MIPI_TX32[7: 0]				MAP_DS	ST_9[7:0]			
0x9A1	0x00	MIPI_TX33[7: 0]				MAP_SR	C_10[7:0]			

ADDRESS	RESET	NAME	MSB							LSB
0x9A2	0x00	MIPI_TX34[7: 0]		•		MAP_DS	T_10[7:0]			
0x9A3	0x00	MIPI_TX35[7: 0]				MAP_SR	C_11[7:0]			
0x9A4	0x00	MIPI_TX36[7: 0]				MAP_DS	T_11[7:0]			
0x9A5	0x00	MIPI_TX37[7: 0]				MAP_SR	C_12[7:0]			
0x9A6	0x00	MIPI_TX38[7: 0]				MAP_DS	T_12[7:0]			
0x9A7	0x00	MIPI_TX39[7: 0]				MAP_SR	C_13[7:0]			
0x9A8	0x00	MIPI_TX40[7: 0]				MAP_DS	T_13[7:0]			
0x9A9	0x00	MIPI_TX41[7: 0]				MAP_SR	C_14[7:0]			
0x9AA	0x00	MIPI_TX42[7: 0]				MAP_DS	T_14[7:0]			
0x9AB	0x00	MIPI_TX43[7: 0]				MAP_SR	C_15[7:0]			
0x9AC	0x00	MIPI_TX44[7: 0]				MAP_DS	T_15[7:0]			
0x9AD	0x00	MIPI_TX45[7: 0]	MAP_DPF 3[1	HY_DEST_ 1:0]	MAP_DPF 2[1	HY_DEST_ 1:0]	_	HY_DEST_ 1:0]	MAP_DPH 0[1	HY_DEST_ I:0]
0x9AE	0x00	MIPI_TX46[7: 0]	MAP_DPF 7[1	HY_DEST_ 1:0]		HY_DEST_ 1:0]	_	HY_DEST_ 1:0]	MAP_DPF 4[1	HY_DEST_ I:0]
0x9AF	0x00	MIPI_TX47[7: 0]	_	IY_DEST_ 1:0]		IY_DEST_ 1:0]	_	HY_DEST_ 1:0]	MAP_DPH 8[1	
0x9B0	0x00	MIPI_TX48[7: 0]		IY_DEST_ 1:0]		IY_DEST_ 1:0]		HY_DEST_ [1:0]	MAP_DPH 12[HY_DEST_ 1:0]
0x9B1	0x00	MIPI_TX49[7: 0]				MAP_C	ON[7:0]			
0x9B2	0x00	MIPI_TX50[7: 0]				SKEW_PE	R_SEL[7:0]			
0x9B3	0x00	MIPI_TX51[7: 0]	-	_	_	ALT2_M EM_MA P8	MODE_ DT	ALT_ME M_MAP1 0	ALT_ME M_MAP8	ALT_ME M_MAP1 2
0x9B4	0x00	MIPI_TX52[7: 0]	vi	deo_maske	d_latched[3	:0]		video_ma	asked[3:0]	
0x9B6	0x08	MIPI_TX54[7: 0]	TUN_NO DESKEW_TUN[1:0] TUN_SER_LANE_N DESKEW_TUN_SR TUN_CORR UM[1:0] TUN_SER_LANE_N DESKEW_TUN_SR TUN_						TUN_EN	
0x9B8	0x00	MIPI_TX56[7: 0]	PKT_START_ADDR[7:0]							
0x9B9	0x10	MIPI_TX57[7: 0]	DIS_AU TO_SER _LANE_ _DET	DIS_AU TO_TUN _DET	TUN_DI	EST[1:0]	-	TUN_DP HY_TO_ CPHY_C ONV	TUN_DP HY_TO_ CPHY_C ONV_OV RD	TUN_NO _CORR_ LENGTH

ADDRESS	RESET	NAME	MSB							LSB				
ADDITECT	KLOLI	IVANE	DCPHY											
0x9BA	0x00	MIPI_ERR_IN J_B1[7:0]	CONV_E RR_INJ_ B1_EN	-	_	DC	PHY_CON	V_ERR_INJ	_B1_SITE[²	1:0]				
0x9BB	0x00	MIPI_ERR_IN J_B2[7:0]	DCPHY_ CONV_E RR_INJ_ B2_EN	-	_	DC	PHY_CON	V_ERR_INJ	_B2_SITE[4	1:0]				
0x9BC	0x00	MIPI_DESKE W_ERRB_OR DER[7:0]	_	-	_	-	DESKE W_BEF ORE_ER RB_PKT _MODE	DESKE W_AFTE R_ERRB _PKT_M ODE	DESKE W_BEF ORE_VS _PKT_M ODE	_				
MIPI_TX 3					•		1	•	•	•				
0x9C1	0x00	MIPI_TX1[7:0]				MODI	E[7:0]							
0x9C2	0x00	MIPI_TX2[7:0]				STATU	JS[7:0]							
0x9C3	0x87	MIPI_TX3[7:0]				DESKEW	_INIT[7:0]							
0x9C4	0x81	MIPI_TX4[7:0]				DESKEW_PER[7:0] CSI2_T_PRE[7:0]								
0x9C5	0x71	MIPI_TX5[7:0]				_ : :								
0x9C6	0x19	MIPI_TX6[7:0]												
0x9C7	0x1C	MIPI_TX7[7:0]				CSI2_TX_	_GAP[7:0]							
0x9C8	0x00	MIPI_TX8[7:0]			(CSI2_TWAK	KEUP_L[7:0]						
0x9C9	0x01	MIPI_TX9[7:0]			(CSI2_TWAK	EUP_M[7:0)]						
0x9CA	0xD0	MIPI_TX10[7: 0]		IE_CNT[1:	CSI2_CP HY_EN	csi2_vcx _en	_	CSI2_	TWAKEUP_	_H[2:0]				
0x9CB	0x00	MIPI_TX11[7: 0]				MAP_E	N_L[7:0]							
0x9CC	0x00	MIPI_TX12[7: 0]				MAP_EN	N_H[7:0]							
0x9CD	0x00	MIPI_TX13[7: 0]				MAP_SR	RC_0[7:0]							
0x9CE	0x00	MIPI_TX14[7: 0]				MAP_DS	ST_0[7:0]							
0x9CF	0x00	MIPI_TX15[7: 0]				MAP_SR	RC_1[7:0]							
0x9D0	0x00	MIPI_TX16[7: 0]				MAP_DS	ST_1[7:0]							
0x9D1	0x00	MIPI_TX17[7: 0]				MAP_SR	RC_2[7:0]							
0x9D2	0x00	MIPI_TX18[7: 0]				MAP_DST_2[7:0]								
0x9D3	0x00	MIPI_TX19[7: 0]				MAP_SRC_3[7:0]								
0x9D4	0x00	MIPI_TX20[7: 0]				MAP_DST_3[7:0]								
0x9D5	0x00	MIPI_TX21[7: 0]				MAP_SRC_4[7:0]								
0x9D6	0x00	MIPI_TX22[7: 0]				MAP_DS	ST_4[7:0]							

ADDRESS	RESET	NAME	MSB							LSB
0x9D7	0x00	MIPI_TX23[7: 0]				MAP_SF	RC_5[7:0]			
0x9D8	0x00	MIPI_TX24[7: 0]				MAP_DS	ST_5[7:0]			
0x9D9	0x00	MIPI_TX25[7: 0]				MAP_SF	RC_6[7:0]			
0x9DA	0x00	MIPI_TX26[7: 0]				MAP_DS	ST_6[7:0]			
0x9DB	0x00	MIPI_TX27[7: 0]				MAP_SF	RC_7[7:0]			
0x9DC	0x00	MIPI_TX28[7: 0]				MAP_DS	ST_7[7:0]			
0x9DD	0x00	MIPI_TX29[7: 0]				MAP_SF	RC_8[7:0]			
0x9DE	0x00	MIPI_TX30[7: 0]				MAP_DS	ST_8[7:0]			
0x9DF	0x00	MIPI_TX31[7: 0]				MAP_SF	RC_9[7:0]			
0x9E0	0x00	MIPI_TX32[7: 0]				MAP_DS	ST_9[7:0]			
0x9E1	0x00	MIPI_TX33[7: 0]				MAP_SR	C_10[7:0]			
0x9E2	0x00	MIPI_TX34[7: 0]				MAP_DS	T_10[7:0]			
0x9E3	0x00	MIPI_TX35[7: 0]				MAP_SR	C_11[7:0]			
0x9E4	0x00	MIPI_TX36[7: 0]				MAP_DS	T_11[7:0]			
0x9E5	0x00	MIPI_TX37[7: 0]				MAP_SR	C_12[7:0]			
0x9E6	0x00	MIPI_TX38[7: 0]				MAP_DS	T_12[7:0]			
0x9E7	0x00	MIPI_TX39[7: 0]				MAP_SR	C_13[7:0]			
0x9E8	0x00	MIPI_TX40[7: 0]				MAP_DS	T_13[7:0]			
0x9E9	0x00	MIPI_TX41[7: 0]				MAP_SR	C_14[7:0]			
0x9EA	0x00	MIPI_TX42[7: 0]				MAP_DS	T_14[7:0]			
0x9EB	0x00	MIPI_TX43[7: 0]				MAP_SR	C_15[7:0]			
0x9EC	0x00	MIPI_TX44[7: 0]	MAP_DST_15[7:0]							
0x9ED	0x00	MIPI_TX45[7: 0]	3[1:0] 2[1:0] 1[1:0] 0[1:0]							
0x9EE	0x00	MIPI_TX46[7: 0]	MAP_DPHY_DEST_ MAP_DPHY_DEST_ MAP_DPHY_DEST_ MAP_DPHY_DEST_ 7[1:0] 6[1:0] 5[1:0] 4[1:0]							
0x9EF	0x00	MIPI_TX47[7: 0]	MAP_DPH 11[IY_DEST_ 1:0]	MAP_DPH 10[MAP_DPH 9[IY_DEST_ :0]	MAP_DPH 8[1	IY_DEST_ I:0]

ADDRESS	RESET	NAME	MSB							LSB	
		MIPI TX48[7:	MAP_DPF	L IY DEST	MAP DPF	L IY DEST	MAP DPF	L IY DEST	MAP DPF		
0x9F0	0x00	0]		1:0]		1:0]		1:0]		1:0]	
0x9F1	0x00	MIPI_TX49[7: 0]			,	MAP_C	ON[7:0]		1		
0x9F2	0x00	MIPI_TX50[7: 0]				SKEW_PE	R_SEL[7:0]				
0x9F3	0x00	MIPI_TX51[7: 0]	_	_	_	ALT2_M EM_MA P8	MODE_ DT	ALT_ME M_MAP1 0	ALT_ME M_MAP8	ALT_ME M_MAP1 2	
0x9F4	0x00	MIPI_TX52[7: 0]	vi	deo_maske	d_latched[3:	:0]		video_ma	sked[3:0]		
0x9F6	0x08	MIPI_TX54[7: 0]	TUN_NO _CORR	DESKEW	_TUN[1:0]		R_LANE_N [1:0]		_TUN_SR 1:0]	TUN_EN	
0x9F8	0x00	MIPI_TX56[7: 0]			F	PKT_STAR	Γ_ADDR[7:0)]			
0x9F9	0x10	MIPI_TX57[7: 0]	DIS_AU TO_SER _LANE_ DET	DIS_AU TO_TUN _DET	TUN_DI	EST[1:0]	-	TUN_DP HY_TO_ CPHY_C ONV			
0x9FA	0x00	MIPI_ERR_IN J_B1[7:0]	DCPHY_ CONV_E RR_INJ_ B1_EN	_	_	DC	CPHY_CON	CONV_ERR_INJ_B1_SITE[4:0]			
0x9FB	0x00	MIPI_ERR_IN J_B2[7:0]	DCPHY_ CONV_E RR_INJ_ B2_EN	-	-	DC	CPHY_CON	V_ERR_INJ	_B2_SITE[4	1:0]	
0x9FC	0x00	MIPI_DESKE W_ERRB_OR DER[7:0]	-	_	-	_	DESKE W_BEF ORE_ER RB_PKT _MODE	DESKE W_AFTE R_ERRB _PKT_M ODE	DESKE W_BEF ORE_VS _PKT_M ODE	П	
GMSL1 A											
0xB04	0x03	GMSL1_4[7:0]	_	_	PRBSEN	_	CC_POR T_SEL	_	REVCCE N	FWDCC EN	
0xB05	0x39	GMSL1_5[7:0]	RSVD	NO_RE M_MST	HVTR_M ODE	EN_EQ		EQTUI	NE[3:0]		
0xB06	0x6F	GMSL1_6[7:0]	HIGHIM M	MAX_RT _EN	I2C_RT_ EN	GPI_CO MP_EN	GPI_RT_ EN	ŀ	HV_SRC[2:0)]	
0xB07	0x04	GMSL1_7[7:0]	DBL	DRS	BWS	_	HIBW	HVEN	_	PXL_CR C	
0xB08	0x21	GMSL1_8[7:0]	GPI_S	EL[1:0]	GPI_EN	EN_FSY NC_TX	_	PKTCC_ EN	CC_CRC_ 1:	LENGTH[0]	
0xB0D	0x00	GMSL1_D[7:0	I2C_LOC _ACK	RSVD	_	_	_	HS_TRA CK_FSY NC	RSVD	RSVD	
0xB0E	0x00	GMSL1_E[7:0]				DET_T	HR[7:0]				
0xB0F	0x01	GMSL1_F[7:0]	_	EN_DE_ FILT	EN_HS_ FILT	EN_VS_ FILT	DE_EN	_	_	PRBS_T YPE	

ADDRESS	RESET	NAME	MSB							LSB
0xB10	0x02	GMSL1_10[7: 0]	RCEG_T	YPE[1:0]	RCEG_B OUND		RCEG_ER	R_NUM[3:0]		RCEG_E N
0xB11	0xF0	GMSL1_11[7: 0]	1	RCEG_ERF	R_RATE[3:0]		RCEG_LC B[1	D_BST_PR I:0]		D_BST_LE 1:0]
0xB12	0x52	GMSL1_12[7: 0]	UNDER BST_DE T_EN	CC_CRC _ERR_E N	LINE_CRO	C_LOC[1:0	LINE_C RC_EN_ GMSL1	_	MAX_RT _ERR_E N	RCEG_E RR_PER _EN
0xB13	0xC0	GMSL1_13[7: 0]	EOM_E N_G1	EOM_PE R_MOD E_G1	EOM_M AN_TRG _REQ_G 1		EOM_	MIN_THR_0	G1[4:0]	
0xB14	0x80	GMSL1_14[7: 0]	AEQ_EN	AEQ_PE R_MOD E	AEQ_MA N_TRG_ REQ		EOM	I_PER_THF	R[4:0]	
0xB15	0x00	GMSL1_15[7: 0]				DET_E	RR[7:0]			
0xB16	0x00	GMSL1_16[7: 0]				PRBS_E	ERR[7:0]			
0xB17	0x00	GMSL1_17[7: 0]	RSVD	MAX_RT _ERR_I2 C	PRBS_O K	GPI_IN	MAX_RT _ERR_G PI	-	-	_
0xB18	0x00	GMSL1_18[7: 0]				CC_RETR_CNT[7:0]				
0xB19	0x00	GMSL1_19[7: 0]			(CC_CRC_ERRCNT[7:0]				
0xB1A	0x00	GMSL1_1A[7: 0]				RCEG_ER	R_CNT[7:0]			
0xB1B	0x00	GMSL1_1B[7: 0]	_	_	_	_	_	LINE_C RC_ERR	_	_
0xB1C	0x00	GMSL1_1C[7: 0]	_	_			EOM_EYE_	WIDTH[5:0]	•
0xB1D	0x00	GMSL1_1D[7: 0]	-	-	-	UNDER BOOST_ DET		AEQ_E	3ST[3:0]	
0xB20	0x00	GMSL1_20[7: 0]				CRC_VAL	-UE_0[7:0]			
0xB21	0x00	GMSL1_21[7: 0]				CRC_VAL	UE_1[7:0]			
0xB22	0x00	GMSL1_22[7: 0]				CRC_VAL	.UE_2[7:0]			
0xB23	0x00	GMSL1_23[7: 0]				CRC_VAL	.UE_3[7:0]			
0xB96	0x3B	GMSL1_96[7: 0]		CONV_GN	//SL1_DATA	ATATYPE[4:0] RSVD CONV_ GMSL1_ EN GN_				
0xBCB	0x00	GMSL1_CB[7 :0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LOCKED _G1
GMSL1 B							•		•	•
0xC04	0x03	GMSL1_4[7:0]	_	_	PRBSEN	-	CC_POR T_SEL	_	REVCCE N	FWDCC EN

ADDRESS	RESET	NAME	MSB							LSB
0xC05	0x39	GMSL1_5[7:0	RSVD	NO_RE M_MST	HVTR_M ODE	EN_EQ		EQTUI	NE[3:0]	
0xC06	0x6F	GMSL1_6[7:0	HIGHIM M	MAX_RT _EN	I2C_RT_ EN	GPI_CO MP_EN	GPI_RT_ EN	ŀ	HV_SRC[2:0)]
0xC07	0x04	GMSL1_7[7:0]	DBL	DRS	BWS	_	HIBW	HVEN	_	PXL_CR C
0xC08	0x21	GMSL1_8[7:0]	GPI_S	EL[1:0]	GPI_EN	EN_FSY NC_TX	_	PKTCC_ EN		LENGTH[0]
0xC0D	0x00	GMSL1_D[7:0	I2C_LOC _ACK	RSVD	-	-	-	HS_TRA CK_FSY NC	RSVD	RSVD
0xC0E	0x00	GMSL1_E[7:0				DET_T	T_THR[7:0]			
0xC0F	0x01	GMSL1_F[7:0]	-	EN_DE_ FILT	EN_HS_ FILT	EN_VS_ FILT	DE_EN	-	-	PRBS_T YPE
0xC10	0x02	GMSL1_10[7: 0]	RCEG_T	YPE[1:0]	RCEG_B OUND		RCEG_ER	R_NUM[3:0]		RCEG_E N
0xC11	0xF0	GMSL1_11[7: 0]		RCEG_ERF	R_RATE[3:0]		RCEG_LC B[1	D_BST_PR 1:0]	RCEG_LC N[1	
0xC12	0x52	GMSL1_12[7: 0]	UNDER BST_DE T_EN	CC_CRC _ERR_E N	LINE_CRO	C_LOC[1:0	LINE_C RC_EN_ GMSL1	-	MAX_RT _ERR_E N	RCEG_E RR_PER _EN
0xC13	0xC0	GMSL1_13[7: 0]	EOM_E N_G1	EOM_PE R_MOD E_G1	EOM_M AN_TRG _REQ_G 1		EOM_	MIN_THR_0	G1[4:0]	
0xC14	0x80	GMSL1_14[7: 0]	AEQ_EN	AEQ_PE R_MOD E	AEQ_MA N_TRG_ REQ		EOM	I_PER_THF	R[4:0]	
0xC15	0x00	GMSL1_15[7: 0]				DET_E	RR[7:0]			
0xC16	0x00	GMSL1_16[7: 0]				PRBS_E	ERR[7:0]			
0xC17	0x00	GMSL1_17[7: 0]	RSVD	MAX_RT _ERR_I2 C	PRBS_O K	GPI_IN	MAX_RT _ERR_G PI	-	-	-
0xC18	0x00	GMSL1_18[7: 0]				CC_RETR	R_CNT[7:0]			
0xC19	0x00	GMSL1_19[7: 0]			(CC_CRC_E	RRCNT[7:0]		
0xC1A	0x00	GMSL1_1A[7: 0]				RCEG_ER	R_CNT[7:0]			
0xC1B	0x00	GMSL1_1B[7: 0]	-	_	_	-	_	LINE_C RC_ERR	_	_
0xC1C	0x00	GMSL1_1C[7: 0]	_	_			EOM_EYE_	WIDTH[5:0]]	
0xC1D	0x00	GMSL1_1D[7: 0]	_	-	_	UNDER BOOST_ DET		AEQ_B	3ST[3:0]	
0xC20	0x00	GMSL1_20[7: 0]				CRC_VAL	.UE_0[7:0]			

ADDRESS	RESET	NAME	MSB							LSB
0xC21	0x00	GMSL1_21[7: 0]				CRC_VAL	_UE_1[7:0]			
0xC22	0x00	GMSL1_22[7: 0]				CRC_VAL	_UE_2[7:0]			
0xC23	0x00	GMSL1_23[7: 0]				CRC_VAL	_UE_3[7:0]			
0xC96	0x3B	GMSL1_96[7: 0]		CONV_GN	//SL1_DATA	TYPE[4:0]		RSVD	CONV_ GMSL1_ EN	DBL_ALI GN_TO
0xCCB	0x00	GMSL1_CB[7 :0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LOCKED _G1
GMSL1 C										
0xD04	0x03	GMSL1_4[7:0]	_	-	PRBSEN	-	CC_POR T_SEL	-	REVCCE N	FWDCC EN
0xD05	0x39	GMSL1_5[7:0]	RSVD	NO_RE M_MST	HVTR_M ODE	EN_EQ		EQTUI	NE[3:0]	
0xD06	0x6F	GMSL1_6[7:0]	HIGHIM M	MAX_RT _EN	I2C_RT_ EN	GPI_CO MP_EN	GPI_RT_ EN	ŀ	HV_SRC[2:0)]
0xD07	0x04	GMSL1_7[7:0 1	DBL	DRS	BWS	_	HIBW	HVEN	_	PXL_CR C
0xD08	0x21	GMSL1_8[7:0	GPI_S	EL[1:0]	GPI_EN	EN_FSY NC_TX	-	PKTCC_ EN		LENGTH[0]
0xD0D	0x00	GMSL1_D[7:0	I2C_LOC _ACK	RSVD	-	_	_	HS_TRA CK_FSY NC	RSVD	RSVD
0xD0E	0x00	GMSL1_E[7:0]			1	DET_T	HR[7:0]		1	
0xD0F	0x01	GMSL1_F[7:0]	_	EN_DE_ FILT	EN_HS_ FILT	EN_VS_ FILT	DE_EN	-	_	PRBS_T YPE
0xD10	0x02	GMSL1_10[7: 0]	RCEG_T	YPE[1:0]	RCEG_B OUND		RCEG_ER	R_NUM[3:0]		RCEG_E N
0xD11	0xF0	GMSL1_11[7: 0]		RCEG_ERF	R_RATE[3:0]]	RCEG_LC B[1	D_BST_PR I:0]		D_BST_LE 1:0]
0xD12	0x52	GMSL1_12[7: 0]	UNDER BST_DE T_EN	CC_CRC _ERR_E N	LINE_CRO	C_LOC[1:0 	LINE_C RC_EN_ GMSL1	-	MAX_RT _ERR_E N	RCEG_E RR_PER _EN
0xD13	0xC0	GMSL1_13[7: 0]	EOM_E N_G1	EOM_PE R_MOD E_G1	EOM_M AN_TRG _REQ_G 1		EOM_	MIN_THR_0	G1[4:0]	
0xD14	0x80	GMSL1_14[7: 0]	AEQ_EN	AEQ_PE R_MOD E	AEQ_MA N_TRG_ REQ		EOM	I_PER_THF	R[4:0]	
0xD15	0x00	GMSL1_15[7: 0]		•	•	DET_E	RR[7:0]			
0xD16	0x00	GMSL1_16[7: 0]				PRBS_E	ERR[7:0]			
0xD17	0x00	GMSL1_17[7: 0]	RSVD	MAX_RT _ERR_I2 C	PRBS_O K	GPI_IN	MAX_RT _ERR_G PI		_	

ADDRESS	RESET	NAME	MSB							LSB
0xD18	0x00	GMSL1_18[7: 0]				CC_RETF	R_CNT[7:0]		1	
0xD19	0x00	GMSL1_19[7: 0]			(CC_CRC_E	RRCNT[7:0]		
0xD1A	0x00	GMSL1_1A[7: 0]				RCEG_ER	R_CNT[7:0]			
0xD1B	0x00	GMSL1_1B[7: 0]	_	_	_	_	_	LINE_C RC_ERR	_	_
0xD1C	0x00	GMSL1_1C[7: 0]	_	_			EOM_EYE_	WIDTH[5:0]]	
0xD1D	0x00	GMSL1_1D[7: 0]	_	-	_	UNDER BOOST_ DET		AEQ_B	ST[3:0]	
0xD20	0x00	GMSL1_20[7: 0]				CRC_VAL	_UE_0[7:0]			
0xD21	0x00	GMSL1_21[7: 0]				CRC_VAL	_UE_1[7:0]			
0xD22	0x00	GMSL1_22[7: 0]				CRC_VAL	_UE_2[7:0]			
0xD23	0x00	GMSL1_23[7: 0]		CRC_VALUE_3[7:0]						
0xD96	0x3B	GMSL1_96[7: 0]		CONV_GN	//SL1_DATA	TYPE[4:0]		RSVD	CONV_ GMSL1_ EN	DBL_ALI GN_TO
0xDCB	0x00	GMSL1_CB[7 :0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LOCKED _G1
GMSL1 D		I	L		L					
0xE04	0x03	GMSL1_4[7:0]	_	-	PRBSEN	-	CC_POR T_SEL	-	REVCCE N	FWDCC EN
0xE05	0x39	GMSL1_5[7:0]	RSVD	NO_RE M_MST	HVTR_M ODE	EN_EQ		EQTUI	NE[3:0]	
0xE06	0x6F	GMSL1_6[7:0]	HIGHIM M	MAX_RT _EN	I2C_RT_ EN	GPI_CO MP_EN	GPI_RT_ EN	ŀ	HV_SRC[2:0]
0xE07	0x04	GMSL1_7[7:0]	DBL	DRS	BWS	_	HIBW	HVEN	_	PXL_CR C
0xE08	0x21	GMSL1_8[7:0]	GPI_S	EL[1:0]	GPI_EN	EN_FSY NC_TX	_	PKTCC_ EN	CC_CRC_ 1:	
0xE0D	0x00	GMSL1_D[7:0	I2C_LOC _ACK	RSVD	_	-	_	HS_TRA CK_FSY NC	RSVD	RSVD
0xE0E	0x00	GMSL1_E[7:0		DET_THR[7:0]						
0xE0F	0x01	GMSL1_F[7:0]	-	EN_DE_ FILT	EN_HS_ FILT	EN_VS_ FILT	DE_EN	-	_	PRBS_T YPE
0xE10	0x02	GMSL1_10[7: 0]	RCEG_T	YPE[1:0]	[1:0] RCEG_B OUND RCEG_ERR_NUM[3:0] RCEG_E					RCEG_E N
0xE11	0xF0	GMSL1_11[7: 0]	I	RCEG_ERF	R_RATE[3:0]]	RCEG_LC B[1		RCEG_LC N[1	

ADDRESS	RESET	NAME	MSB							LSB
		GMSL1_12[7:	UNDER	CC_CRC	LINE_CRO	LOC[1:0	LINE_C		MAX_RT	RCEG_E
0xE12	0x52	0]	BST_DE T_EN	_ERR_E N]	RC_EN_ GMSL1	_	_ERR_E N	RR_PER _EN
0xE13	0xC0	GMSL1_13[7: 0]	EOM_E N_G1	EOM_PE R_MOD E_G1	EOM_M AN_TRG _REQ_G 1		EOM_	MIN_THR_0	G1[4:0]	
0xE14	0x80	GMSL1_14[7: 0]	AEQ_EN	AEQ_PE R_MOD E	AEQ_MA N_TRG_ REQ		EOM	I_PER_THF	R[4:0]	
0xE15	0x00	GMSL1_15[7: 0]				DET_E	RR[7:0]			
0xE16	0x00	GMSL1_16[7: 0]				PRBS_E	ERR[7:0]			
0xE17	0x00	GMSL1_17[7: 0]	RSVD	MAX_RT _ERR_I2 C	PRBS_O K	GPI_IN	MAX_RT _ERR_G PI	_	-	I
0xE18	0x00	GMSL1_18[7: 0]				CC_RETR_CNT[7:0]				
0xE19	0x00	GMSL1_19[7: 0]			(CC_CRC_E	C_CRC_ERRCNT[7:0]			
0xE1A	0x00	GMSL1_1A[7: 0]				RCEG_ER	G_ERR_CNT[7:0]			
0xE1B	0x00	GMSL1_1B[7: 0]	_	_	_	-	_	LINE_C RC_ERR	_	-
0xE1C	0x00	GMSL1_1C[7: 0]	_	_			EOM_EYE_	WIDTH[5:0]	
0xE1D	0x00	GMSL1_1D[7: 0]	_	_	_	UNDER BOOST_ DET		AEQ_E	ST[3:0]	
0xE20	0x00	GMSL1_20[7: 0]				CRC_VAL	.UE_0[7:0]			
0xE21	0x00	GMSL1_21[7: 0]				CRC_VAL	.UE_1[7:0]			
0xE22	0x00	GMSL1_22[7: 0]				CRC_VAL	.UE_2[7:0]			
0xE23	0x00	GMSL1_23[7: 0]				CRC_VAL	.UE_3[7:0]			
0xE96	0x3B	GMSL1_96[7: 0]		CONV_GN	/ISL1_DATA	TYPE[4:0]		RSVD	CONV_ GMSL1_ EN	DBL_ALI GN_TO
0xECB	0x00	GMSL1_CB[7 :0]	RSVD	RSVD	RSVD	D RSVD RSVD RSVD RSVD LOCKEI				
GMSL A										
0x1001	0x00	TX1[7:0]	RSVD	_	_	ERRG_E N	_	_	RSVD	RSVD
0x1002	0x20	TX2[7:0]	ERRG_0	CNT[1:0]	ERRG_R	RRG_RATE[1:0] ERRG_BURST[2:0] ERRG_I				ERRG_P ER
0x1003	0x44	TX3[7:0]	RSVI	D[1:0]	_	_	_	Т	IMEOUT[2:0	0]
0x1004	0x00	RX0[7:0]	PKT_CNT	_LBW[1:0]	-	RSVD		PKT_CNT	_SEL[3:0]	

ADDRESS	RESET	NAME	MSB							LSB
0x1008	0x41	<u>GPIOA[7:0]</u>	RSVD	GPIO_T X_CASC			GPIO_FWD	_CDLY[5:0]	l	
0x1009	0x88	<u>GPIOB[7:0]</u>		_WNDW[1:)]			GPIO_REV	_CDLY[5:0]		
GMSL B										
0x1011	0x00	TX1[7:0]	RSVD	_	_	ERRG_E N	_	_	RSVD	RSVD
0x1012	0x20	TX2[7:0]	ERRG_0	CNT[1:0]	ERRG_F	RATE[1:0]	ERF	RG_BURST	[2:0]	ERRG_P ER
0x1013	0x44	TX3[7:0]	RSVI	D[1:0]	_	_	-	Т	IMEOUT[2:	0]
0x1014	0x00	RX0[7:0]	PKT_CNT	_LBW[1:0]	-	RSVD		PKT_CNT	_SEL[3:0]	
0x1018	0x41	<u>GPIOA[7:0]</u>	RSVD	GPIO_T X_CASC			GPIO_FWD	_CDLY[5:0]]	
0x1019	0x88	<u>GPIOB[7:0]</u>		_WNDW[1:			GPIO_REV	_CDLY[5:0]		
GMSL C										
0x1021	0x00	TX1[7:0]	RSVD	_	_	ERRG_E N	_	_	RSVD	RSVD
0x1022	0x20	TX2[7:0]	ERRG_0	CNT[1:0]	ERRG_RATE[1:0] ERRG_BURST[2:0]					ERRG_P ER
0x1023	0x44	TX3[7:0]	RSVI	D[1:0]	TIMEOUT[2:0]					0]
0x1024	0x00	RX0[7:0]	PKT_CNT	_LBW[1:0]						
0x1028	0x41	<u>GPIOA[7:0]</u>	RSVD	GPIO_T X_CASC			GPIO_FWD	_CDLY[5:0]	1	
0x1029	0x88	<u>GPIOB[7:0]</u>	GPIO_TX_				GPIO_REV	_CDLY[5:0]		
GMSL D			ı							
0x1031	0x00	TX1[7:0]	RSVD	_	_	ERRG_E N	-	_	RSVD	RSVD
0x1032	0x20	TX2[7:0]	ERRG_0	CNT[1:0]	ERRG_F	RATE[1:0]	ERF	RG_BURST	[2:0]	ERRG_P ER
0x1033	0x44	TX3[7:0]	RSVI	D[1:0]	_	_	_	Т	IMEOUT[2:	0]
0x1034	0x00	RX0[7:0]	PKT_CNT	_LBW[1:0]	_	RSVD		PKT_CNT	_SEL[3:0]	
0x1038	0x41	GPIOA[7:0]	RSVD	GPIO_T X_CASC			GPIO_FWD	_CDLY[5:0]	l	
0x1039	0x88	<u>GPIOB[7:0]</u>		_WNDW[1:)]			GPIO_REV	_CDLY[5:0]		
VRX_PATG	EN_0 0									
0x1050	0x03	PATGEN_0[7: 0]	GEN_VS	GEN_HS	GEN_DE	VS_INV	HS_INV	DE_INV	VTG_M	ODE[1:0]
0x1051	0x00	PATGEN_1[7: 0]	GRAD_ MODE	_	PATGEN_MODE[1:0 VS_TF					VS_TRI G
0x1052	0x00	VS_DLY_2[7: 0]			VS_DLY_2[7:0]					
0x1053	0x00	VS_DLY_1[7: 0]			VS_DLY_1[7:0]					
0x1054	0x00	VS_DLY_0[7: 0]			VS_DLY_0[7:0]					

ADDRESS	RESET	NAME	MSB							LSB	
0x1055	0x00	VS_HIGH_2[7 :0]				VS_HIG	H_2[7:0]				
0x1056	0x2A	VS_HIGH_1[7 :0]				VS_HIG	H_1[7:0]				
0x1057	0xF8	VS_HIGH_0[7 :0]				VS_HIG	H_0[7:0]				
0x1058	0x26	VS_LOW_2[7: 0]				VS_LO\	N_2[7:0]				
0x1059	0x40	VS_LOW_1[7: 0]				VS_LO\	N_1[7:0]				
0x105A	0x00	VS_LOW_0[7: 0]				VS_LO\	N_0[7:0]				
0x105B	0x00	V2H_2[7:0]				V2H_	_2[7:0]				
0x105C	0x00	V2H_1[7:0]				V2H_	1[7:0]				
0x105D	0x00	V2H_0[7:0]				V2H_	0[7:0]				
0x105E	0x00	HS_HIGH_1[7 :0]									
0x105F	0xD0	HS_HIGH_0[7 :0]		HS_HIGH_1[7:0] HS_HIGH_0[7:0]							
0x1060	0x09	HS_LOW_1[7 :0]				HS_LO\	W_1[7:0]				
0x1061	0x50	HS_LOW_0[7 :0]				HS_LO\	W_0[7:0]				
0x1062	0x04	HS_CNT_1[7: 0]				HS_CN	T_1[7:0]				
0x1063	0xDA	HS_CNT_0[7: 0]				HS_CN	T_0[7:0]				
0x1064	0x00	<u>V2D_2[7:0]</u>				V2D_	_2[7:0]				
0x1065	0x55	V2D_1[7:0]				V2D_	_1[7:0]				
0x1066	0xF0	V2D_0[7:0]				V2D_	0[7:0]				
0x1067	0x07	DE_HIGH_1[7 :0]				DE_HIG	6H_1[7:0]				
0x1068	0x80	DE_HIGH_0[7 :0]				DE_HIG	6H_0[7:0]				
0x1069	0x00	DE_LOW_1[7 :0]				DE_LO\	W_1[7:0]				
0x106A	0x40	DE_LOW_0[7 :0]				DE_LO\	W_0[7:0]				
0x106B	0x04	DE_CNT_1[7: 0]				DE_CN	T_1[7:0]				
0x106C	0xB0	DE_CNT_0[7: 0]	DE_CNT_0[7:0]								
0x106D	0x06	GRAD_INCR[7:0]				GRAD_I	NCR[7:0]				
0x106E	0x80	CHKR_COLO R_A_L[7:0]			C	CHKR_COL	OR_A_L[7:0	0]			
0x106F	0x00	CHKR_COLO R_A_M[7:0]			С	HKR_COL	OR_A_M[7:	0]			

ADDRESS	RESET	NAME	MSB							LSB	
0x1070	0x04	CHKR_COLO R A H[7:0]			C	CHKR_COL	OR_A_H[7:0)]			
		CHKR COLO									
0x1071	0x00	R B L[7:0]			(CHKR_COL	OR_B_L[7:0)]			
0x1072	0x08	CHKR_COLO R_B_M[7:0]			C	CHKR_COLO	OR_B_M[7:0	0]			
0x1073	0x80	CHKR_COLO R_B_H[7:0]			(CHKR_COL	OR_B_H[7:0	0]			
0x1074	0x50	CHKR_RPT_ A[7:0]				CHKR_R	PT_A[7:0]				
0x1075	0x50	CHKR_RPT_ B[7:0]				CHKR_R	PT_B[7:0]				
0x1076	0x50	CHKR_ALT[7:				CHKR_/	ALT[7:0]				
TEST_CTRI	<u>l</u> L	<u> </u>	<u> </u>								
0x1191	0xFF	DP_ORSTB_CTL[7:0]	DPLL_A UTO_RS T	UTO_RS DP_RST STABL DP_RST DP_R							
VID_PXL_C	RC_ERR										
0x11D0	0x00	CNT_AX[7:0]		VID_PXL_CRC_ERR_AX[7:0]							
0x11D1	0x00	CNT_AY[7:0]			VIE	_PXL_CRC	ERR_AY[7:0]			
0x11D2	0x00	CNT_AZ[7:0]			VIE	_PXL_CRC	ERR_AZ[7:0]			
0x11E0	0x00	CNT_AU[7:0]			VID	_PXL_CRC	ERR_AU[7:0]			
0x11E1	0x00	CNT_BX[7:0]			VID	_PXL_CRC	ERR_BX[7:0]			
0x11E2	0x00	CNT_BY[7:0]			VID	_PXL_CRC	ERR_BY[7:0]			
0x11E3	0x00	CNT_BZ[7:0]			VIE	_PXL_CRC	ERR_BZ[7:0]			
0x11E4	0x00	CNT_BU[7:0]			VID	_PXL_CRC	ERR_BU[7:0]			
0x11E5	0x00	CNT_CX[7:0]			VID	_PXL_CRC	ERR_CX[7:0]			
0x11E6	0x00	CNT_CY[7:0]			VID	_PXL_CRC	ERR_CY[7:0]			
0x11E7	0x00	CNT_CZ[7:0]			VIE	_PXL_CRC	ERR_CZ[7:0]			
0x11E8	0x00	CNT_CU[7:0]			VID	_PXL_CRC	ERR_CU[7:0]			
0x11E9	0x00	CNT_DX[7:0]			VID	_PXL_CRC	ERR_DX[7:0]			
0x11EA	0x00	CNT_DY[7:0]			VID	_PXL_CRC	ERR_DY[7:0]			
0x11EB	0x00	CNT_DZ[7:0]			VIE	_PXL_CRC	ERR_DZ[7:0]			
0x11EC	0x00	CNT_DU[7:0]			VID	_PXL_CRC	ERR_DU[7:0]			
VID_HVD_D	ET										
0x11F0	0x00	DE_DET[7:0]	_	DE_DET DE_DET DE_DET DE_DET							
0x11F1	0x00	HS_DET[7:0]	_	_	_	_	HS_DET _3	HS_DET _2	HS_DET _1	HS_DET _0	
0x11F2	0x00	<u>VS_DET[7:0]</u>	_	_	-	_	VS_DET	VS_DET	VS_DET	VS_DET _0	
0x11F3	0x00	HS_POL[7:0]	_	_	_	_	HS_POL _3	HS_POL _2	HS_POL _1	HS_POL _0	
0x11F4	0x00	<u>VS_POL[7:0]</u>	_	_	_	_	VS_POL	VS_POL _2	VS_POL _1	VS_POL _0	

ADDRESS	RESET	NAME	MSB							LSB	
0x11F9	0x0F	HVD_CNT_C TRL[7:0]	HVD_CN T_RST_ 3	HVD_CN T_RST_ 2	HVD_CN T_RST_ 1	HVD_CN T_RST_ 0	HVD_CN T_EN_3	HVD_CN T_EN_2	HVD_CN T_EN_1	HVD_CN T_EN_0	
0x11FA	0x00	HVD_CNT_O S[7:0]	-	-	-	-	HVD_CN T_OS_E N_3	HVD_CN T_OS_E N_2	HVD_CN T_OS_E N_1	HVD_CN T_OS_E N_0	
0x1200	0x03	VS_CNT_WN DW_0_MSB[7 :0]	-	ı	ı	-	-	ı	VS_CNT_ _0_MS		
0x1201	0xE8	VS_CNT_WN DW_0_LSB[7: 0]			VS_	CNT_WIND	OW_0_LSB	[7:0]			
0x1202	0x00	<u>VS_CNT_0_C</u> <u>MP[7:0]</u>	_	_			VS_CNT_0	_CMP[5:0]			
0x1203	0x00	HS CNT 0 C MP MSB[7:0]	-	I	I	_	HS	S_CNT_0_C	MP_MSB[3	:0]	
0x1204	0x00	HS CNT 0 C MP LSB[7:0]			Н	S_CNT_0_C	CMP_LSB[7	:0]			
0x1205	0x00	DE CNT 0 C MP MSB[7:0]	_	_	_	_	DE	E_CNT_0_C	MP_MSB[3	:0]	
0x1206	0x00	DE CNT 0 C MP LSB[7:0]			DI	E_CNT_0_C	CMP_LSB[7:0]				
0x1207	0x00	VS_CNT_0[7: 0]	_	-			VS_CN	T_0[5:0]			
0x1208	0x00	HS_CNT_0 MSB[7:0]	_	_	_	_		HS_CNT_0	D_MSB[3:0]		
0x1209	0x00	HS_CNT_0_L SB[7:0]				HS_CNT_0	0_LSB[7:0]				
0x120A	0x00	DE CNT 0 MSB[7:0]	_	_	ı	_		DE_CNT_0	D_MSB[3:0]		
0x120B	0x00	DE CNT 0 L SB[7:0]				DE_CNT_0	0_LSB[7:0]				
0x120C	0xE0	VRX_0_CMP _ERR_OEN[7 :0]	VS_CNT _0_CMP _ERR_O EN	HS_CNT _0_CMP _ERR_O EN	DE_CNT _0_CMP _ERR_O EN	_	_	-	_	-	
0x120D	0x00	VRX_0_CMP _ERR_FLAG[7:0]	VS_CNT _0_CMP _ERR_F LAG	HS_CNT _0_CMP _ERR_F LAG	DE_CNT _0_CMP _ERR_F LAG	_	_	-	_	-	
0x1210	0x03	VS_CNT_WN DW_1_MSB[7 :0]	_	_	-	_	VS_CNT_WINDOW _1_MSB[1:0]				
0x1211	0xE8	VS_CNT_WN DW_1_LSB[7: 0]			VS_	CNT_WIND	NT_WINDOW_1_LSB[7:0]				
0x1212	0x00	VS_CNT_1_C MP[7:0]	_	_		VS_CNT_1_CMP[5:0]					
0x1213	0x00	HS CNT 1 C MP MSB[7:0]	_	_	_	_	HS	S_CNT_1_C	CMP_MSB[3	:0]	

ADDRESS	RESET	NAME	MSB							LSB		
0x1214	0x00	HS CNT 1 C MP LSB[7:0]			H	S_CNT_1_0	CMP_LSB[7	:0]				
0x1215	0x00	DE_CNT_1_C MP_MSB[7:0]	-	_	_	_	DE	E_CNT_1_C	CMP_MSB[3	:0]		
0x1216	0x00	DE CNT 1 C MP_LSB[7:0]			DI	E_CNT_1_0	CMP_LSB[7	:0]				
0x1217	0x00	VS_CNT_1[7: 0]	_	_			VS_CN	T_1[5:0]				
0x1218	0x00	HS CNT 1 MSB[7:0]	_	-	- HS_CNT_1_MSB[3:0]							
0x1219	0x00	HS_CNT_1_L SB[7:0]			HS_CNT_1_LSB[7:0]							
0x121A	0x00	DE CNT 1 MSB[7:0]	_	_	_	_		DE_CNT_	1_MSB[3:0]			
0x121B	0x00	DE CNT 1 L SB[7:0]				DE_CNT_1_LSB[7:0]						
0x121C	0xE0	VRX_1_CMP _ERR_OEN[7 :0]	VS_CNT _1_CMP _ERR_O _EN	HS_CNT _1_CMP _ERR_O _EN	DE_CNT _1_CMP _ERR_O _EN	_	_	_	_	_		
0x121D	0x00	VRX_1_CMP _ERR_FLAG[_7:0]	VS_CNT _1_CMP _ERR_F LAG	HS_CNT _1_CMP _ERR_F LAG	DE_CNT _1_CMP _ERR_F LAG	_	_	_	_	_		
0x1220	0x03	VS_CNT_WN DW_2_MSB[7 :0]	-	_	-	_	-	_	VS_CNT_ _2_MS	WINDOW SB[1:0]		
0x1221	0xE8	VS CNT WN DW 2 LSB[7:			VS_	CNT_WIND	OW_2_LSE	B[7:0]				
0x1222	0x00	VS_CNT_2_C MP[7:0]	_	_			VS_CNT_2	2_CMP[5:0]				
0x1223	0x00	HS CNT 2 C MP_MSB[7:0]	_	_	_	_	Н	S_CNT_2_0	CMP_MSB[3	:0]		
0x1224	0x00	HS CNT 2 C MP LSB[7:0]			H	S_CNT_2_0	CMP_LSB[7	:0]				
0x1225	0x00	DE CNT 2 C MP MSB[7:0]	_	_	_	_	DE	E_CNT_2_C	CMP_MSB[3	:0]		
0x1226	0x00	DE CNT 2 C MP LSB[7:0]			DI	E_CNT_2_0	CMP_LSB[7	:0]				
0x1227	0x00	VS_CNT_2[7: 0]	_	_			VS_CN	T_2[5:0]				
0x1228	0x00	HS CNT 2 MSB[7:0]	_	_	- HS_CNT_2_MSB[3:0]							
0x1229	0x00	HS CNT 2 L SB[7:0]				HS_CNT_2_LSB[7:0]						
0x122A	0x00	DE CNT 2 MSB[7:0]	_	_	- DE_CNT_2_MSB[3:0]							
0x122B	0x00	DE_CNT_2_L SB[7:0]				DE_CNT_	2_LSB[7:0]					

ADDRESS	RESET	NAME	MSB							LSB
0x122C	0xE0	VRX 2 CMP ERR OEN[7 :0]	VS_CNT _2_CMP _ERR_O _EN	HS_CNT _2_CMP _ERR_O _EN	DE_CNT _2_CMP _ERR_O _EN	-	-	-	-	-
0x122D	0x00	VRX_2_CMP _ERR_FLAG[7:0]	VS_CNT _2_CMP _ERR_F _LAG	HS_CNT _2_CMP _ERR_F _LAG	DE_CNT _2_CMP _ERR_F _LAG	_	-	_	-	-
0x1230	0x03	VS_CNT_WN DW_3_MSB[7 :0]	_	_	_	_	_	_	VS_CNT_ _3_MS	
0x1231	0xE8	VS_CNT_WN DW_3_LSB[7: 0]			VS_	CNT_WIND	OW_3_LSB	[7:0]		
0x1232	0x00	VS_CNT_3_C MP[7:0]	_	_		VS_CNT_3_CMP[5:0]				
0x1233	0x00	HS CNT 3 C MP MSB[7:0]	_	_	_	_	HS_CNT_3_CMP_MSB[3:0]			
0x1234	0x00	HS CNT 3 C MP LSB[7:0]			Н	S_CNT_3_C	3_CMP_LSB[7:0]			
0x1235	0x00	DE CNT 3 C MP MSB[7:0]	_	_	_	_	DE_CNT_3_CMP_MSB[3:0]			
0x1236	0x00	DE CNT 3 C MP_LSB[7:0]		•	DI	E_CNT_3_C	_3_CMP_LSB[7:0]			
0x1237	0x00	VS_CNT_3[7: 0]	_	_			VS_CN	T_3[5:0]		
0x1238	0x00	HS_CNT_3 MSB[7:0]	_	_	_	_		HS_CNT_3	3_MSB[3:0]	
0x1239	0x00	HS_CNT_3_L SB[7:0]				HS_CNT_	3_LSB[7:0]			
0x123A	0x00	DE_CNT_3 MSB[7:0]	_	_	_	_		DE_CNT_3	3_MSB[3:0]	
0x123B	0x00	DE_CNT_3_L SB[7:0]		•		DE_CNT_	3_LSB[7:0]			
0x123C	0xE0	VRX_3_CMP _ERR_OEN[7 :0]	VS_CNT _3_CMP _ERR_O _EN	HS_CNT _3_CMP _ERR_O _EN	DE_CNT _3_CMP _ERR_O _EN	_	_	_	_	-
0x123D	0x00	VRX_3_CMP _ERR_FLAG[_7:0]	VS_CNT _3_CMP _ERR_F LAG	HS_CNT _3_CMP _ERR_F LAG	DE_CNT _3_CMP _ERR_F LAG	-	-	_	-	-
TUN_DET										
0x1260	0x00	TUN_MODE_ DET[7:0]	CPHY_M ODE_OV RD_EN	_	_	_	BACKTO P4_TUN _DET	BACKTO P3_TUN _DET	BACKTO P2_TUN _DET	BACKTO P1_TUN _DET
0x1261	0xF0	TUN_CPHY_ DET[7:0]	BACKTO P4_CPH Y_MOD E_OVRD	BACKTO P3_CPH Y_MOD E_OVRD	BACKTO P2_CPH Y_MOD E_OVRD	BACKTO P1_CPH Y_MOD E_OVRD	BACKTO P4_CPH Y_MOD E_DET	BACKTO P3_CPH Y_MOD E_DET	BACKTO P2_CPH Y_MOD E_DET	BACKTO P1_CPH Y_MOD E_DET

ADDRESS	RESET	NAME	MSB							LSB
0x1262	0x00	TUN_CPHY_LANE_DET[7: 0]	PHY_SER	P4_TUN_C R_LANE_D 1:0]	PHY_SER	P3_TUN_C R_LANE_D [1:0]	BACKTOF PHY_SER ET[BACKTOF PHY_SER ET[L_LANE_D
0x1264	0x00	TMD_HEADE R_ERR_FLA GS_1[7:0]	BACKTO P1_TMD _SP_DE T_ERR	_	BACKTO P1_TMD _CRC_2 L_ERR_ FLAG	BACKTO P1_TMD _CRC_1 L_ERR_ FLAG	-	-	BACKTO P1_TMD _ECC_E RR_FLA G	BACKTO P1_TMD _ECC_F LAG
0x1265	0x00	TMD_HEADE R_ERR_FLA GS_2[7:0]	BACKTO P2_TMD _SP_DE T_ERR	_	BACKTO P2_TMD _CRC_2 L_ERR_ FLAG	BACKTO P2_TMD _CRC_1 L_ERR_ FLAG	-	I	BACKTO P2_TMD _ECC_E RR_FLA G	BACKTO P2_TMD _ECC_F LAG
0x1266	0x00	TMD_HEADE R_ERR_FLA GS_3[7:0]	BACKTO P3_TMD _SP_DE T_ERR	_	BACKTO P3_TMD _CRC_2 L_ERR_ FLAG	BACKTO P3_TMD _CRC_1 L_ERR_ FLAG	-	-	BACKTO P3_TMD _ECC_E RR_FLA G	BACKTO P3_TMD _ECC_F LAG
0x1267	0x00	TMD_HEADE R_ERR_FLA GS_4[7:0]	BACKTO P4_TMD _SP_DE T_ERR	_	BACKTO P4_TMD _CRC_2 L_ERR_ FLAG	BACKTO P4_TMD _CRC_1 L_ERR_ FLAG	-	-	BACKTO P4_TMD _ECC_E RR_FLA G	BACKTO P4_TMD _ECC_F LAG
0x126A	0x00	TMD_PKT_C NT_1[7:0]				TMD_PKT_	CNT_1[7:0]			
0x126B	0x00	TMD_PKT_C NT_2[7:0]				TMD_PKT_	CNT_2[7:0]			
0x126C	0x00	TMD_PKT_C NT_3[7:0]				TMD_PKT_	CNT_3[7:0]			
0x126D	0x00	TMD_PKT_C NT_4[7:0]				TMD_PKT_	CNT_4[7:0]			
0x126E	0x00	TMD_PKT_C NT_1_H[7:0]	_	_	_		TMD_F	KT_CNT_1	_H[4:0]	
0x126F	0x00	TMD_PKT_C NT_2_H[7:0]	_	_	_		TMD_F	KT_CNT_2	_H[4:0]	
0x1270	0x00	TMD_PKT_C NT_3_H[7:0]	_	_	_		TMD_F	KT_CNT_3	_H[4:0]	
0x1271	0x00	TMD_PKT_C NT_4_H[7:0]	_	_	_		TMD_F	KT_CNT_4	_H[4:0]	

Register Details

REG0 (0x0)

Device I²C address and Blocks I²C register writes

BIT	7	6	5	4	3	2	1	0		
Field	DEV_ADDR[6:0]									
Reset		0b0100111								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
DEV_ADDR	7:1	Device Address Default address is set by the CFG0 pin at power-up. Refer to data sheet discussion of the CFG0 pin for further information. Address can be changed following power-up by updating the contents of this register.	Ob0000000: I ² C write/read address is 0x00/0x01 0b0000001: I ² C write/read address is 0x02/0x03 Ob1001000: I ² C write/read address is 0x90/0x91 0b1001001: I ² C write/read address is 0x94/0x95 0b1001100: I ² C write/read address is 0x94/0x99 0b1101000: I ² C write/read address is 0xD0/0xD1 0b1101010: I ² C write/read address is 0xD4/0xD5 0b1101100: I ² C write/read address is 0xD8/0xD9 0b0101000: I ² C write/read address is 0x50/0x51 0b0101010: I ² C write/read address is 0x54/0x55 Ob11111111: I ² C write/read address is 0xFE/0xFF
CFG_BLOCK	0	Configuration Block When set, all registers become non-writable (read-only). Only blocks writeable registers from being written. This bit is used to freeze the chip configuration. After set, this bit becomes not writeable. To reset the register to "Not blocked," the part must be powered down or power cycled.	0b0: Not blocked 0b1: Blocked

REG1 (0x1)

BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	DIS_LOC_CC[1:0]		_	_	_	_
Reset	0b	11	0b00		_	_	_	_
Access Type			Write,	Write, Read		_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
		Disables control channel connection to I ² C Ports 1 and 0	0bx0: Port 0 Rx/SDA and Tx/SCL connected to control channel 0bx1: Port 0 Rx/SDA and Tx/SCL disconnected
DIS_LOC_C C	5:4	Bit 4 controls Port 0. Bit 5 controls Port 1.	from control channel 0b0x: Port 1 Rx1/SDA1 and Tx1/SCL1 connected to control channel
		See bit 2 for control of control channel Port 2.	0b1x: Port 1 Rx1/SDA1 and Tx1/SCL1 disconnected from control channel

REG3 (0x3)

BIT	7	6	5	4	3	2	1	0
Field	DIS_REM_CC_D[1:0] DIS_REM_CC_		_CC_C[1:0]	DIS_REM_CC_B[1:0]		DIS_REM_CC_A[1:0]		
Reset	0b10		0b10		0b10		0b10	
Access Type	Write,	Read	Write,	Write, Read		Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
DIS_REM_C C_D	7:6	Disable GMSL2 remote control channel link from each CC port to Link D Bit 0 disables the connection from port 0. Bit 1 disables the connection from port 1.	0b0: Remote control channel enabled 0b1: Remote control channel disabled
DIS_REM_C C_C	5:4	Disable GMSL2 remote control channel link from each CC port to Link C Bit 0 disables the connection from port 0. Bit 1 disables the connection from port 1.	0b0: Remote control channel enabled 0b1: Remote control channel disabled
DIS_REM_C C_B	3:2	Disable GMSL2 remote control channel link from each CC port to Link B Bit 0 disables the connection from port 0. Bit 1 disables the connection from port 1.	0b0: Remote control channel enabled 0b1: Remote control channel disabled
DIS_REM_C C_A	1:0	Disable GMSL2 remote control channel link from each CC port to Link A Bit 0 disables the connection from port 0. Bit 1 disables the connection from port 1.	0b0: Remote control channel enabled 0b1: Remote control channel disabled

REG4 (0x4)

Video channel - GMSL2 Video pipe access

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	VID_EN_3	VID_EN_2	VID_EN_1	VID_EN_0
Reset	_	-	_	_	0b1	0b1	0b1	0b1
Access Type	_	-	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
VID_EN_3	3	VID_EN3 Video Enable - Video switch used to access Pipe 3 video flow	0b0: Video transmit Channel 3 disabled 0b1: Video transmit Channel 3 enabled
VID_EN_2	2	VID_EN2 Video Enable - Video switch used to access Pipe 2 video flow	0b0: Video transmit Channel 2 disabled 0b1: Video transmit Channel 2 enabled
VID_EN_1	1	VID_EN1 Video Enable - Video switch used to access Pipe 1 video flow	0b0: Video transmit Channel 1 disabled 0b1: Video transmit Channel 1 enabled
VID_EN_0	0	VID_EN0 Video Enable - Video switch used to access Pipe 0 video flow	0b0: Video transmit Channel 0 disabled 0b1: Video transmit Channel 0 enabled

REG5 (0x5)

LOCK and ERRB enable and configuration

BIT	7	6	5	4	3	2	1	0
Field	LOCK_EN	ERRB_EN	LOCK_CFG	ERRB_LOC K_OEN	ERRB_MST _RST	-	_	RSVD
Reset	0x1	0x1	0b0	0b0		_	_	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write Clears All, Read	-	-	

BITFIELD	BITS	DESCRIPTION	DECODE		
LOCK_EN	7	Enable LOCK output	0b0: LOCK output disabled 0b1: LOCK output enabled		
ERRB_EN	6	Enables ERRB output to GPIO	0b0: ERRB output disabled 0b1: ERRB output enabled		

BITFIELD	BITS	DESCRIPTION	DECODE
LOCK_CFG	5	Configures LOCK pin behavior. See the LOCK_POUT register field for additional information.	0b0: GMSL2 link locked 0b1: GMSL2 link locked and MIPI output started
ERRB_LOCK _OEN	4	Enable output of lock through the ERRB pin. 1'b0 - Disable 1'b1 - Enable When enabled, if any one of the enabled GMSL links is not locked, the status is reflected on the ERRB pin that is asserted low.	0x0: Disable 0x1: Enable
ERRB_MST_ RST	3	Master ERRB output reset. Write 1 to clear all the inputs to the ERRB generation logic. This bit self-clears. Note: This does not clear the error condition(s) that resulted from assertion of the ERRB output. The user must address and fix the cause for the error condition(s) before asserting this master reset.	0x0: Disabled 0x1: Enabled - returns to 0 after assertion

REG6 (0x6)

BIT	7	6	5	4	3	2	1	0
Field	GMSL2_D	GMSL2_C	GMSL2_B	GMSL2_A	LINK_EN_D	LINK_EN_C	LINK_EN_B	LINK_EN_A
Reset	0b1	0b1	0b1	0b1	0x1	0x1	0x1	0x1
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
GMSL2_D	7	GMSL1/GMSL2 Selection for Link D Bit is set according to the latched CFG1/ MFP6 pin value at power-up	0b0: GMSL1 0b1: GMSL2
GMSL2_C	6	GMSL1/GMSL2 Selection for Link C Bit is set according to the latched CFG1/ MFP6 pin value at power-up	0b0: GMSL1 0b1: GMSL2
GMSL2_B	5	GMSL1/GMSL2 Selection for Link B Bit is set according to the latched CFG1/ MFP6 pin value at power-up	0b0: GMSL1 0b1: GMSL2
GMSL2_A	4	GMSL1/GMSL2 Selection for Link A Bit is set according to the latched CFG1/ MFP6 pin value at power-up	0b0: GMSL1 0b1: GMSL2
LINK_EN_D	3	Enables Link D	0b0: DisableLink D 0b1: Enable Link D
LINK_EN_C	2	Enables Link C	0b0: Disable Link C 0b1: Enable Link C
LINK_EN_B	1	Enables Link B	0b0: Disable Link B 0b1: Enable Link B
LINK_EN_A	0	Enables Link A	0b0: Disable Link A 0b1: Enable Link A

REG7 (0x7)

BIT	7	6	5	4	3	2	1	0	
Field		CC_CROSSO	VER_SEL[3:0]		RSVD[3:0]				
Reset		0:	к0						
Access Type		Write,	Read						

CTRL12 (0xA)

GMSL Link Lock status

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	_	_	LOCKED_B	_	_	_
Reset	0b0	0b0	_	_	0b0	_	_	_
Access Type			_	_	Read Only	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
LOCKED_B	3	GMSL2 Link Locked - Link B Only	0b0: GMSL2 link not locked 0b1: GMSL2 link locked

CTRL13 (0xB)

GMSL Link Lock status

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	_	_	LOCKED_C	_	_	_
Reset	0b0	0b0	_	_	0b0	_	_	_
Access Type			_	_	Read Only	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
LOCKED_C	3	GMSL2 Link Locked - Link C Only	0b0: GMSL2 link not locked 0b1: GMSL2 link locked

CTRL14 (0xC)

GMSL Link Lock status

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	_	_	LOCKED_D	-	_	_
Reset	0b0	0b0	_	_	0b0	_	_	_
Access Type			_	_	Read Only	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
LOCKED_D	3	GMSL2 Link Locked - Link D Only	0b0: GMSL2 link not locked 0b1: GMSL2 link locked

REG13 (0xD)

BIT	7	6	5	4	3	2	1	0			
Field		DEV_ID[7:0]									
Reset				0x	A2						
Access Type				Read	Only						

BITFIELD	BITS	DESCRIPTION	DECODE
DEV_ID	7:0	Device Identifier	0xA2: MAX96724 0xA3: MAX96724F 0xA4: MAX96724R

REG26 (0x10)

BIT	7	6	5	4	3	2	1	0
Field	TX_RATE_PHYB[1:0]		RX_RATE_PHYB[1:0]		TX_RATE_PHYA[1:0]		RX_RATE_PHYA[1:0]	
Reset	0x0		0x2		0x0		0:	x2
Access Type	Write,	Read	Write,	Read	Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
TX_RATE_P HYB	7:6	Transmitter Rate (when changed, becomes active after next link reset)	0b00: 187.5Mbps 0b01: Reserved 0b10: Reserved 0b11: Reserved
RX_RATE_P HYB	5:4	Receiver Rate (when changed, becomes active after next link reset) Default value is set by CFG1/MFP6 pin at power-up.	0b00: Reserved 0b01: 3Gbps 0b10: 6Gbps 0b11: Reserved
TX_RATE_P HYA	3:2	Transmitter Rate (when changed, becomes active after next link reset)	0b00: 187.5Mbps 0b01: Reserved 0b10: Reserved 0b11: Reserved
RX_RATE_P HYA	1:0	Receiver Rate (when changed, becomes active after next link reset) Default value is set by CFG1/MFP6 pin at power-up.	0b00: Reserved 0b01: 3Gbps 0b10: 6Gbps 0b11: Reserved

REG27 (0x11)

BIT	7	6	5	4	3	2	1	0
Field	TX_RATE_	_PHYD[1:0]	RX_RATE_PHYD[1:0]		TX_RATE_PHYC[1:0]		RX_RATE_PHYC[1:0]	
Reset	0:	x0	0x2		0x0		0:	(2
Access Type	Write,	Read	Write, Read		Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
TX_RATE_P HYD	7:6	Transmitter Rate (when changed, becomes active after next link reset)	0b00: 187.5Mbps 0b01: Reserved 0b10: Reserved 0b11: Reserved
RX_RATE_P HYD	5:4	Receiver Rate (when changed, becomes active after next link reset) Default value is set by CFG1/MFP6 pin at power-up.	0b00: Reserved 0b01: 3Gbps 0b10: 6Gbps 0b11: Reserved
TX_RATE_P HYC	3:2	Transmitter Rate (when changed, becomes active after next link reset)	0b00: 187.5Mbps 0b01: Reserved 0b10: Reserved 0b11: Reserved

BITFIELD	BITS	DESCRIPTION	DECODE
RX_RATE_P HYC	1:0	Receiver Rate (when changed, becomes active after next link reset) Default value is set by CFG1/MFP6 pin at power-up.	0b00: Reserved 0b01: 3Gbps 0b10: 6Gbps 0b11: Reserved

PWR0 (0x12)

BIT	7	6	5	4	3	2	1	0		
Field	VDD	BAD_STATUS	S[2:0]	CMP_STATUS[4:0]						
Reset		0x0		0x0						
Access Type	Read Only					Read Only				

BITFIELD	BITS	DESCRIPTION	DECODE
VDDBAD_ST ATUS	7:5	Power manager switched 1V supply comparator status bits.	0bXX1: Latched high when VDDA_sw < 0.82V 0bX1X: Latched high when VDD_sw < 0.82V 0b1XX: Reserved
CMP_STATU S	4:0	Power manager comparator status bits.	0bXXXX0: Latched low when V _{DD18} < 1.617V 0bXXX0X: Latched low when switched V _{DDIO} supply < 1.617V 0bXX0XX: Latched low when CAPVDD < 0.82V 0bX0XXX: Reserved 0b0XXXX: Reserved

PWR1 (0x13)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RESET_AL L	RSVD[5:0]					
Reset	0b0	0b0			0)	(0		
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
		Device Reset	
RESET_ALL	6	Writing 1 to this bit resets the device. All blocks and registers are reset to defaults.	0b0: No action 0b1: Activate chip reset
		This is equivalent to toggling the PWDNB pin. The bit is cleared when written.	

CTRL1 (0x18)

BIT	7	6	5	4	3	2	1	0
Field	RESET_LIN K_D	RESET_LIN K_C	RESET_LIN K_B	RESET_LIN K_A	RESET_ON ESHOT_D	RESET_ON ESHOT_C	RESET_ON ESHOT_B	RESET_ON ESHOT_A
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write Clears All, Read	Write Clears All, Read	Write Clears All, Read	Write Clears All, Read

BITFIELD	BITS	DESCRIPTION	DECODE
		Link D Reset	
RESET_LIN K_D	7	Resets whole data path (keep register settings).	0b0: Release link reset 0b1: Activate link reset
		Write 1 to activate reset, write 0 to release reset.	
		Link C Reset	
RESET_LIN K_C	6	Resets whole data path (keep register settings).	0b0: Release link reset 0b1: Activate link reset
		Write 1 to activate reset, write 0 to release reset.	
		Link B Reset	
RESET_LIN K_B	5	Resets whole data path (keep register settings).	0b0: Release link reset 0b1: Activate link reset
		Write 1 to activate reset, write 0 to release reset.	
		Link A Reset	
RESET_LIN K_A	4	Resets whole data path (keep register settings).	0b0: Release link reset 0b1: Activate link reset
		Write 1 to activate reset, write 0 to release reset.	
		Link D One-Shot Reset	
RESET_ONE SHOT_D	3	Resets whole data path (keep register settings) one shot.	0b0: No action 0b1: Reset data path
		Write 1 to activate reset, bit self-clears and automatically releases reset.	
		Link C One-Shot Reset	
RESET_ONE SHOT_C	2	Resets whole data path (keep register settings) one shot.	0b0: No action 0b1: Reset data path
		Write 1 to activate reset, bit self-clears and automatically releases reset.	
		Link B One-Shot Reset	
RESET_ONE SHOT_B	1	Resets whole data path (keep register settings) one shot.	0b0: No action 0b1: Reset data path
		Write 1 to activate reset, bit self-clears and automatically releases reset.	
		Link A One-Shot Reset	
RESET_ONE SHOT_A	0	Resets whole data path (keep register settings) one shot.	0b0: No action 0b1: Reset data path
		Write 1 to activate reset, bit self-clears and automatically releases reset.	

CTRL3 (0x1A)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD[1:0]		LOCKED_A	ERROR	CMU_LOC KED	LOCK_PIN
Reset	0b0	0b0	0>	0x1		0b0	0b0	0x0
Access Type						Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE	
LOCKED_A	3	GMSL2 link lock (bidirectional)—Link A only	0b0: GMSL2 link not locked 0b1: GMSL2 link locked	
ERROR	OR 2 Reflects error status (inverse of ERRB pin value) 0b0: ERRB not asserted (ERRB pin = 1) 0b1: ERRB asserted (ERRB pin = 0)			
CMU_LOCK ED	1	Clock Multiplier Unit (CMU) lock	0b0: CMU not locked 0b1: CMU locked	
LOCK_PIN	0	Reflects LOCK pin output. See the LOCK_EN, LOCK_CFG, and ERRB_LOCK register fields for additional information.	0x0: 1 or more enabled GMSL links are not locked 0x1: All enabled GMSL links are locked	

CTRL11 (0x22)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	CXTP_D	RSVD	CXTP_C	RSVD	CXTP_B	RSVD	CXTP_A
Reset	0b1	0b1	0b1	0b1	0b1	0b1	0b1	0b1
Access Type		Write, Read		Write, Read		Write, Read		Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE	
		Coax/Twisted-Pair Cable Select for Link D	0b0: Shielded twisted-pair drive	
CXTP_D	6	Bit is set according to the latched CFG1/MFP6 pin value at power-up.	0b1: Coax drive	
		Coax/Twisted-Pair Cable Select for Link C	0b0: Shielded twisted-pair drive	
CXTP_C 4		Bit is set according to the latched CFG1/MFP6 pin value at power-up.	0b1: Coax drive	
		Coax/Twisted-Pair Cable Select for Link B	0b0: Shielded twisted-pair drive	
CXTP_B	2	Bit is set according to the latched CFG1/MFP6 pin value at power-up.	0b1: Coax drive	
		Coax/Twisted-Pair Cable Select for Link A	0b0: Shielded twisted-pair drive	
CXTP_A	0	Bit is set according to the latched CFG1 pin value at power-up.	0b1: Coax drive	

INTR2 (0x25)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	DEC_ERR_ OEN_D	DEC_ERR_ OEN_C	DEC_ERR_ OEN_B	DEC_ERR_ OEN_A
Reset	0b0	0b0	0b0	0b0	0b1	0b1	0b1	0b1
Access Type					Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_ OEN_D	3	Enables reporting of decoding errors (DEC_ERR_FLAG_D—0x26) at ERRB pin.	0b0: Disable reporting of decoding errors (DEC_ERR_FLAG_D) at ERRB pin 0b1: Enable reporting of decoding errors (DEC_ERR_FLAG_D) at ERRB pin
DEC_ERR_ OEN_C	2	Enables reporting of decoding errors (DEC_ERR_FLAG_C—0x26) at ERRB pin.	0b0: Disable reporting of decoding errors (DEC_ERR_FLAG_C) at ERRB pin 0b1: Enable reporting of decoding errors (DEC_ERR_FLAG_C) at ERRB pin
DEC_ERR_ OEN_B	1	Enables reporting of decoding errors (DEC_ERR_FLAG_B—0x26) at ERRB pin.	0b0: Disable reporting of decoding errors (DEC_ERR_FLAG_B) at ERRB pin 0b1: Enable reporting of decoding errors (DEC_ERR_FLAG_B) at ERRB pin
DEC_ERR_ OEN_A	0	Enables reporting of decoding errors (DEC_ERR_FLAG_A—0x26) at ERRB pin.	0b0: Disable reporting of decoding errors (DEC_ERR_FLAG_A) at ERRB pin 0b1: Enable reporting of decoding errors (DEC_ERR_FLAG_A) at ERRB pin

INTR3 (0x26)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	DEC_ERR_ FLAG_D	DEC_ERR_ FLAG_C	DEC_ERR_ FLAG_B	DEC_ERR_ FLAG_A
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type					Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_F LAG_D 3		Decoding error flag for Link D, asserted when DEC_ERR_D ≥ DEC_ERR_THR.	0b0: DEC_ERR_D < DEC_ERR_THR 0b1: DEC_ERR_D ≥ DEC_ERR_THR
		To clear this flag, read register DEC_ERR_D	
DEC_ERR_F LAG_C	2	Decoding error flag for Link C, asserted when DEC_ERR_C ≥ DEC_ERR_THR.	0b0: DEC_ERR_C < DEC_ERR_THR 0b1: DEC_ERR_C ≥ DEC_ERR_THR
		To clear this flag, read register DEC_ERR_C	
DEC_ERR_F LAG B		Decoding error flag for Link B, asserted when DEC_ERR_B ≥ DEC_ERR_THR.	0b0: DEC_ERR_B < DEC_ERR_THR 0b1: DEC_ERR_B ≥ DEC_ERR_THR
		To clear this flag, read register DEC_ERR_B	
DEC_ERR_F LAG_A	0	Decoding error flag for Link A, asserted when DEC_ERR_A ≥ DEC_ERR_THR.	0b0: DEC_ERR_A < DEC_ERR_THR 0b1: DEC_ERR_A ≥ DEC_ERR_THR
		To clear this flag, read register DEC_ERR_A	

INTR4 (0x27)

BIT	7	6	5	4	3	2	1	0
Field	EOM_ERR_ OEN_D	EOM_ERR_ OEN_C	EOM_ERR_ OEN_B	EOM_ERR_ OEN_A	RSVD	LFLT_INT_ OEN	_	_
Reset	0b1	0b1	0b1	0b1	0b0	0x1	_	_
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_ERR_ OEN_D	7	Enables reporting of eye-opening monitor error (EOM_ERR_FLAG_D—0x28) for Link D at ERRB pin.	0b0: Disable reporting of eye-opening monitor error (EOM_ERR_FLAG_D) for Link D at ERRB pin 0b1: Enable reporting of eye-opening monitor error (EOM_ERR_FLAG_D) for Link D at ERRB pin
EOM_ERR_ OEN_C	6	Enables reporting of eye-opening monitor error (EOM_ERR_FLAG_C—0x28) for Link C at ERRB pin.	0b0: Disable reporting of eye-opening monitor error (EOM_ERR_FLAG_C) for Link C at ERRB pin 0b1: Enable reporting of eye-opening monitor error (EOM_ERR_FLAG_C) for Link C at ERRB pin
EOM_ERR_ OEN_B	5	Enables reporting of eye-opening monitor error (EOM_ERR_FLAG_B—0x28) for Link B at ERRB pin.	0b0: Disable reporting of eye-opening monitor error (EOM_ERR_FLAG_B) for Link B at ERRB pin 0b1: Enable reporting of eye-opening monitor error (EOM_ERR_FLAG_B) for Link B at ERRB pin
EOM_ERR_ OEN_A	4	Enables reporting of eye-opening monitor error (EOM_ERR_FLAG_A0x28) for Link A at ERRB pin.	0b0: Disable reporting of eye-opening monitor error (EOM_ERR_FLAG_A) for Link A at ERRB pin 0b1: Enable reporting of eye-opening monitor error (EOM_ERR_FLAG_A) for Link A at ERRB pin
LFLT_INT_O EN	2	Enable reporting of line fault interrupt (LFLT_INT) at ERRB pin	0b0: Disable reporting of line fault interrupt (LFLT_INT) at ERRB pin 0b1: Enable reporting of line fault interrupt (LFLT_INT) at ERRB pin

INTR5 (0x28)

BIT	7	6	5	4	3	2	1	0
Field	EOM_ERR_ FLAG_D	EOM_ERR_ FLAG_C	EOM_ERR_ FLAG_B	EOM_ERR_ FLAG_A	RSVD	LFLT_INT	_	_
Reset	0b0	0b0	0b0	0b0	0x0	0b0	_	_
Access Type	Read Only	Read Only	Read Only	Read Only		Read Only	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_ERR_ FLAG_D	7	Link D Eye-opening Threshold Status Indicates whether or not eye-opening is below configured threshold for Link D.	0b0: Eye-opening is above configured threshold for Link D 0b1: Eye-opening is below configured threshold for Link D
EOM_ERR_ FLAG_C	6	Link C Eye-opening Threshold Status Indicates whether or not eye-opening is below configured threshold for Link C.	0b0: Eye-opening is above configured threshold for Link C 0b1: Eye-opening is below configured threshold for Link C
EOM_ERR_ FLAG_B	5	Link B Eye-opening Threshold Status Indicates whether or not eye-opening is below configured threshold for Link B.	0b0: Eye-opening is above configured threshold for Link B 0b1: Eye-opening is below configured threshold for Link B

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_ERR_ FLAG_A	4	Link A Eye-opening Threshold Status Indicates whether or not eye-opening is below configured threshold for Link A.	0b0: Eye-opening is above configured threshold for Link A 0b1: Eye-opening is below configured threshold for Link A
LFLT_INT	2	Line Fault Interrupt Asserted when any one of the line fault monitors indicates a fault status. When enabled, this interrupt will be enabled onto the ERRB pin. See register LFLT_INT_OEN See the LF_0, LF_1, LF_2, LF_3, and LFLT_INT_FLAG register fields. Note: This bit is sticky and will only be cleared when the LFLT_INT_FLAG is read. The individual line fault interrupt outputs maybe masked. See the MASK_LF0, MASK_LF1, MASK_LF2, and MASK_LF3 registers.	0x0: no Line Fault interrupt asserted 0x1: Line Fault Interrupt asserted

INTR6 (0x29)

BIT	7	6	5	4	3	2	1	0
Field	G1_D_ERR _OEN	G1_C_ERR _OEN	G1_B_ERR _OEN	G1_A_ERR _OEN	LCRC_ERR _OEN	VPRBS_ER R_OEN	REM_ERR_ OEN	FSYNC_ER R_OEN
Reset	0x1	0x1	0x1	0x1	0b1	0b1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
G1_D_ERR_ OEN	7	Enables reporting of GMSL1 Link D errors (G1_D_ERR_FLAG) at ERRB pin. This controls a composite output to the ERRB pin. Individual error flag outputs to the ERRB pin are controlled by the following registers for Link D: DET_ERRB_OEN (DER_ERR_FLAG) EOM_ERRB_OEN (EOM_ERR_FLAG) LINE_CRC_ERRB_OEN (LINE_CRC_ERR_FLAG) UNDERBST_DET_ERRB_OEN (UNDERBST_DET_FLAG) MAX_RT_I2C_ERRB_OEN (MAX_RT_I2C_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (CC_CRC_ERRB_OEN (CC_CRC_ERRB_OEN	0b0: Disable GMSL1 Link D error reporting (G1_D_ERR_FLAG) at ERRB pin 0b1: Enable GMSL1 Link D error reporting (G1_D_ERR_FLAG) at ERRB pin
	<u> </u>	PRBS_ERRB_OEN (PRBS_ERR_FLAG)	

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
G1_C_ERR_ OEN	6	Enables reporting of GMSL1 Link C errors (G1_C_ERR_FLAG) at ERRB pin. This controls a composite output to the ERRB pin. Individual error flag outputs to the ERRB pin are controlled by the following registers for Link C: DET_ERRB_OEN (DER_ERR_FLAG) EOM_ERRB_OEN (EOM_ERR_FLAG) LINE_CRC_ERRB_OEN (LINE_CRC_ERRB_OEN (LINE_CRC_ERR_FLAG) UNDERBST_DET_ERRB_OEN (UNDERBST_DET_FLAG) MAX_RT_I2C_ERRB_OEN (MAX_RT_I2C_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (CC_CRC_ERRB_OEN (CC_CRC_ERRB_OEN (PRBS_ERR_FLAG)) PRBS_ERRB_OEN (PRBS_ERR_FLAG)	0b0: Disable GMSL1 Link C error reporting (G1_C_ERR_FLAG) at ERRB pin 0b1: Enable GMSL1 Link C error reporting (G1_C_ERR_FLAG) at ERRB pin
G1_B_ERR_ OEN	5	Enables reporting of GMSL1 Link B errors (G1_B_ERR_FLAG) at ERRB pin. This controls a composite output to the ERRB pin. Individual error flag outputs to the ERRB pin are controlled by the following registers for Link B: DET_ERRB_OEN (DER_ERR_FLAG) EOM_ERRB_OEN (EOM_ERR_FLAG) LINE_CRC_ERRB_OEN (LINE_CRC_ERRB_OEN (LINE_CRC_ERR_FLAG) UNDERBST_DET_ERRB_OEN (UNDERBST_DET_FLAG) MAX_RT_I2C_ERRB_OEN (MAX_RT_I2C_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (CC_CRC_ERRB_OEN (CC_CRC_ERRB_OEN (PRBS_ERR_FLAG) PRBS_ERRB_OEN (PRBS_ERR_FLAG)	0b0: Disable GMSL1 Link B error reporting (G1_B_ERR_FLAG) at ERRB pin 0b1: Enable GMSL1 Link B error reporting (G1_B_ERR_FLAG) at ERRB pin

BITFIELD	BITS	DESCRIPTION	DECODE
G1_A_ERR_ OEN	4	Enables reporting of GMSL1 Link A errors (G1_A_ERR_FLAG) at ERRB pin. This controls a composite output to the ERRB pin. Individual error flag outputs to the ERRB pin are controlled by the following registers for Link A: DET_ERRB_OEN (DER_ERR_FLAG) EOM_ERRB_OEN (EOM_ERR_FLAG) LINE_CRC_ERRB_OEN (LINE_CRC_ERRB_OEN (LINE_CRC_ERR_FLAG) UNDERBST_DET_ERRB_OEN (UNDERBST_DET_FLAG) MAX_RT_I2C_ERRB_OEN (MAX_RT_I2C_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (MAX_RT_GPI_ERRB_OEN (CC_CRC_ERRB_OEN (CC_CRC_ERRB_OEN (PRBS_ERR_FLAG) PRBS_ERRB_OEN (PRBS_ERR_FLAG)	0b0: Disable GMSL1 Link A error reporting (G1_A_ERR_FLAG) at ERRB pin 0b1: Enable GMSL1 Link A error reporting (G1_A_ERR_FLAG) at ERRB pin
LCRC_ERR_ OEN	3	Enables reporting of video line CRC errors (LCRC_ERR_FLAG—0x2A) at ERRB pin.	0b0: Disable video line CRC error reporting (LCRC_ERR_FLAG) at ERRB pin 0b1: Enable video line CRC error reporting (LCRC_ERR_FLAG) at ERRB pin
VPRBS_ERR _OEN	2	Enables reporting of video PRBS errors (VPRBS_ERR_FLAG—0x2A) at ERRB pin.	0b0: Disable video PRBS error reporting (VPRBS_ERR_FLAG) at ERRB pin 0b1: Enable video PRBS error reporting (VPRBS_ERR_FLAG) at ERRB pin
REM_ERR_ OEN	1	Enables reporting of remote error status (REM_ERR—0x2A) at ERRB pin.	0b0: Disable remote error status (REM_ERR) reporting at ERRB pin 0b1: Enable remote error status (REM_ERR) reporting at ERRB pin
FSYNC_ERR _OEN	0	Enables reporting of frame sync errors (FSYNC_ERR_FLAG—0x2A) at ERRB pin.	0b0: Disable frame sync error reporting (FSYNC_ERR_FLAG) at ERRB pin 0b1: Enable frame sync error reporting (FSYNC_ERR_FLAG) at ERRB pin

INTR7 (0x2A)

BIT	7	6	5	4	3	2	1	0
Field	G1_D_ERR _FLAG	G1_C_ERR _FLAG	G1_B_ERR _FLAG	G1_A_ERR _FLAG	LCRC_ERR _FLAG	VPRBS_ER R_FLAG	REM_ERR_ FLAG	FSYNC_ER R_FLAG
Reset	0x0	0x0	0x0	0x0	0b0	0b0	0b0	0b0
Access Type	Read Only	Read Only	Read Only					

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
G1_D_ERR_ FLAG	7	GMSL1 Link D Error Flag When PRBS test is enabled, this bit is asserted if at least one PRBS error is detected. When PRBS test is not enabled, this flag is asserted when any of these conditions is true: 1. The number of detected decoding errors is greater than the detected error threshold (DET_ERR (0xB15) > DET_THR (0xC0E)). 2. The measured eye-opening is less than or equal to the eye-opening threshold (EOM_EYE_WIDTH (0xC1C) ≤ EOM_MIN_THR_G1 (0xB13)). 3. The adaptive EQ has detected an under boost. 4. A video line CRC error is detected. 5. The maximum retransmission count in PKTCC communication has been exceeded. 6. A CRC error is detected in PKTCC communication.	0b0: No error detected 0b1: Error detected
G1_C_ERR_ FLAG	6	When PRBS test is enabled, this bit is asserted if at least one PRBS error is detected. When PRBS test is not enabled, this flag is asserted when any of these conditions are true: 1. The number of detected decoding errors is greater than the detected error threshold (DET_ERR (0xB15) > DET_THR (0xCOE)). 2. The measured eye-opening is less than or equal to the eye-opening threshold (EOM_EYE_WIDTH (0xC1C) ≤ EOM_MIN_THR_G1 (0xB13)). 3. The adaptive EQ has detected an under boost. 4. A video line CRC error is detected. 5. The maximum retransmission count in PKTCC communication is exceeded. 6. A CRC error is detected in PKTCC communication.	0b0: No error detected 0b1: Error detected

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL1 Link B Error Flag When PRBS test is enabled, this bit is	
		asserted if at least one PRBS error is detected.	
		When PRBS test is not enabled, this flag is asserted when any of these conditions are true:	
		1. The number of detected decoding errors is greater than the detected error threshold (DET_ERR (0xB15) > DET_THR (0xCOE)).	
G1_B_ERR_ FLAG	5	2. The measured eye-opening is less than or equal to the eye-opening threshold (EOM_EYE_WIDTH (0xC1C) ≤ EOM_MIN_THR_G1 (0xB13)).	0b0: No error detected 0b1: Error detected
		3. The adaptive EQ has detected an under boost.	
		4. A video line CRC error is detected.	
		5. The maximum retransmission count in PKTCC communication is exceeded.	
		A CRC error is detected in PKTCC communication.	
		GMSL1 Link A Error Flag	
		When PRBS test is enabled, this bit is asserted if at least one PRBS error is detected.	
		When PRBS test is not enabled, this flag is asserted when any of these conditions are true:	
		1. The number of detected decoding errors is greater than the detected error threshold (DET_ERR (0xB15) > DET_THR (0xCOE)).	
G1_A_ERR_ FLAG	4	2. The measured eye-opening is less than or equal to the eye-opening threshold (EOM_EYE_WIDTH (0xC1C) ≤ EOM_MIN_THR_G1 (0xB13)).	0b0: No error detected 0b1: Error detected
		3. The adaptive EQ has detected an under boost.	
		4. A video line CRC error is detected.	
		5. The maximum retransmission count in PKTCC communication is exceeded.	
		6. A CRC error is detected in PKTCC communication.	

BITFIELD	BITS	DESCRIPTION	DECODE
LCRC_ERR_ FLAG	3	Video Line CRC Error Flag Assert when a video line CRC error is detected.	0b0: No video line CRC error detected 0b1: Video line CRC error detected
VPRBS_ERR _FLAG	2	Video PRBS Error Flag Asserted when VPRBS_ERR (0x1D8) > 0.	0b0: VPRBS_ERR ≤ 0 0b1: VPRBS_ERR > 0
REM_ERR_F LAG	1	Receives remote side error status (inverse of remote side ERRB pin level).	0b0: No remote side error status received 0b1: Remote side error status received
FSYNC_ERR _FLAG	0	Frame Sync Error Flag Asserted when FSYNC_ERR_CNT (0x4B0) ≥ FSYNC_ERR_THR (0x4B1).	0b0: FSYNC_ERR_CNT < FSYNC_ERR_THR 0b1: FSYNC_ERR_CNT ≥ FSYNC_ERR_THR

INTR8 (0x2B)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	IDLE_ERR_ OEN_D	IDLE_ERR_ OEN_C	IDLE_ERR_ OEN_B	IDLE_ERR_ OEN_A
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type					Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_ OEN_D	3	Enables reporting of idle word errors (IDLE_ERR_FLAG_D) at ERRB pin.	0b0: Disable idle word error reporting (IDLE_ERR_FLAG_D) at ERRB pin 0b1: Enable idle word error reporting (IDLE_ERR_FLAG_D) at ERRB pin
IDLE_ERR_ OEN_C	2	Enables reporting of idle word errors (IDLE_ERR_FLAG_C) at ERRB pin.	0b0: Disable idle word error reporting (IDLE_ERR_FLAG_C) at ERRB pin 0b1: Enable idle word error reporting (IDLE_ERR_FLAG_C) at ERRB pin
IDLE_ERR_ OEN_B	1	Enables reporting of idle word errors (IDLE_ERR_FLAG_B) at ERRB pin.	0b0: Disable idle word error reporting (IDLE_ERR_FLAG_B) at ERRB pin 0b1: Enable idle word error reporting (IDLE_ERR_FLAG_B) at ERRB pin
IDLE_ERR_ OEN_A	0	Enables reporting of idle word errors (IDLE_ERR_FLAG_A) at ERRB pin.	0b0: Disable idle word error reporting (IDLE_ERR_FLAG_A) at ERRB pin 0b1: Enable idle word error reporting (IDLE_ERR_FLAG_A) at ERRB pin

INTR9 (0x2C)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	IDLE_ERR_ FLAG_D	IDLE_ERR_ FLAG_C	IDLE_ERR_ FLAG_B	IDLE_ERR_ FLAG_A
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type					Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_F LAG_D	3	Idle Word Error Flag D Asserted when IDLE_ERR_D (0x3C) ≥ DEC_ERR_THR (0x23).	0b0: IDLE_ERR_D < DEC_ERR_THR 0b1: IDLE_ERR_D ≥ DEC_ERR_THR
IDLE_ERR_F LAG_C	2	Idle Word Error Flag C Asserted when IDLE_ERR_C (0x3B) ≥ DEC_ERR_THR.	0b0: IDLE_ERR_C < DEC_ERR_THR 0b1: IDLE_ERR_C ≥ DEC_ERR_THR
IDLE_ERR_F LAG_B	1	Idle Word Error Flag B Asserted when IDLE_ERR_B (x3A0 ≥ DEC_ERR_THR (0x23).	0b0: IDLE_ERR_B < DEC_ERR_THR 0b1: IDLE_ERR_B ≥ DEC_ERR_THR
IDLE_ERR_F LAG_A	0	Idle Word Error Flag A Asserted when IDLE_ERR_A (0x39) ≥ DEC_ERR_THR (0x23).	0b0: IDLE_ERR_A < DEC_ERR_THR 0b1: IDLE_ERR_A ≥ DEC_ERR_THR

INTR10 (0x2D)

BIT	7	6	5	4	3	2	1	0
Field	RT_CNT_O EN_D	RT_CNT_O EN_C	RT_CNT_O EN_B	RT_CNT_O EN_A	MAX_RT_O EN_D	MAX_RT_O EN_C	MAX_RT_O EN_B	MAX_RT_O EN_A
Reset	0b0	0b0	0b0	0b0	0b1	0b1	0b1	0b1
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RT_CNT_OE N_D	7	Enables reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_D—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_D) at ERRB pin 0b1: Enable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_D) at ERRB pin
RT_CNT_OE N_C	6	Enables reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_C—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_C) at ERRB pin 0b1: Enable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_C) at ERRB pin
RT_CNT_OE N_B	5	Enables reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_B—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_B) at ERRB pin 0b1: Enable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_B) at ERRB pin
RT_CNT_OE N_A	4	Enables reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_A—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_A) at ERRB pin 0b1: Enable reporting of combined ARQ retransmission event flag (RT_CNT_FLAG_A) at ERRB pin

BITFIELD	BITS	DESCRIPTION	DECODE		
MAX_RT_OE N_D	3	Enables reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_D—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_D) at ERRB pin 0b1: Enable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_D) at ERRB pin		
MAX_RT_OE N_C	2	Enables reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_C—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_C) at ERRB pin 0b1: Enable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_C) at ERRB pin		
MAX_RT_OE N_B	1	Enables reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_B—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_B) at ERRB pin 0b1: Enable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_B) at ERRB pin		
MAX_RT_OE N_A	0	Enables reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_A—0x2E) at ERRB pin.	0b0: Disable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_A) at ERRB pin 0b1: Enable reporting of combined ARQ maximum retransmission limit error flag (MAX_RT_FLAG_A) at ERRB pin		

INTR11 (0x2E)

BIT	7	6	5	4	3	2	1	0
Field	RT_CNT_F LAG_D	RT_CNT_F LAG_C	RT_CNT_F LAG_B	RT_CNT_F LAG_A	MAX_RT_F LAG_D	MAX_RT_F LAG_C	MAX_RT_F LAG_B	MAX_RT_F LAG_A
Reset	0b0							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
RT_CNT_FL AG_D	7	Combined ARQ Retransmission Event Flag D Asserted when any of the selected channels have done at least one ARQ retransmission. Selection is done by each channel's RT_CNT_OEN_D (0x2D) register bit.	0b0: None of the selected channels have done at least one ARQ retransmission 0b1: One or more of the selected channels has done at least one ARQ retransmission
RT_CNT_FL AG_C	6	Combined ARQ Retransmission Event Flag C Asserted when any of the selected channels have done at least one ARQ retransmission. Selection is done by each channel's RT_CNT_OEN_C (0x2D) register bit.	0b0: None of the selected channels have done at least one ARQ retransmission 0b1: One or more of the selected channels has done at least one ARQ retransmission
RT_CNT_FL AG_B	5	Combined ARQ Retransmission Event Flag B Asserted when any of the selected channels have done at least one ARQ retransmission. Selection is done by each channel's RT_CNT_OEN_B (0x2D) register bit.	0b0: None of the selected channels have done at least one ARQ retransmission 0b1: One or more of the selected channels has done at least one ARQ retransmission

BITFIELD	BITS	DESCRIPTION	DECODE
RT_CNT_FL AG_A	4	Combined ARQ Retransmission Event Flag A Asserted when any of the selected channels have done at least one ARQ retransmission. Selection is done by each channel's RT_CNT_OEN_A (0x2D) register bit.	0b0: None of the selected channels have done at least one ARQ retransmission 0b1: One or more of the selected channels has done at least one ARQ retransmission
MAX_RT_FL AG_D	3	Combined ARQ Maximum Retransmission Limit Error Flag D Asserted when any of the selected channel's ARQ retransmission limit is reached. Selection is done by each channel's MAX_RT_ERR_OEN_D (0x2D) register bit.	0b0: None of the selected channels have reached the maximum retry limit 0b1: One or more of the selected channels has reached the maximum retry limit
MAX_RT_FL AG_C	2	Combined ARQ Maximum Retransmission Limit Error Flag C Asserted when any of the selected channel's ARQ retransmission limit is reached. Selection is done by each channel's MAX_RT_ERR_OEN_C (0x2D) register bit.	0b0: None of the selected channels have reached the maximum retry limit 0b1: One or more of the selected channels has reached the maximum retry limit
MAX_RT_FL AG_B	1	Combined ARQ Maximum Retransmission Limit Error Flag B Asserted when any of the selected channel's ARQ retransmission limit is reached. Selection is done by each channel's MAX_RT_ERR_OEN_B (0x2D) register bit.	0b0: None of the selected channels have reached the maximum retry limit 0b1: One or more of the selected channels has reached the maximum retry limit
MAX_RT_FL AG_A	0	Combined ARQ Maximum Retransmission Limit Error Flag A Asserted when any of the selected channel's ARQ retransmission limit is reached. Selection is done by each channel's MAX_RT_ERR_OEN_A (0x2D) register bit.	0b0: None of the selected channels have reached the maximum retry limit 0b1: One or more of the selected channels has reached the maximum retry limit

INTR12 (0x2F)

BIT	7	6	5	4	3	2	1	0
Field	ERR_TX_E N	ı	_	ERR_TX_ID[4:0]				
Reset	0b1	_	_	0x1F				
Access Type	Write, Read	-	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_TX_EN	7	Transmits local error status (inverse of ERRB pin level) to remote side through GPIO channel.	0b0: Do not transmit local error status to remote side through GPIO channel 0b1: Transmit local error status to remote side through GPIO channel
ERR_TX_ID	4:0	GPIO ID used for transmitting ERR_TX.	0bXXXXX: GPIO ID used for transmitting ERR_TX

INTR13 (0x30)

BIT	7	6	5	4	3	2	1	0
Field	ERR_RX_E N_A	ERR_RX_R ECVED_A	_	ERR_RX_ID_A[4:0]				
Reset	0b1	0b1	-	0x1F				
Access Type	Write, Read	Write, Read	-	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_RX_EN _A	7	Receives remote error status (inverse of ERRB pin level) through GPIO channel for GMSL2 Link A.	0b0: Do not receive remote error status through GPIO channel for GMSL2 Link A 0b1: Receive remote error status through GPIO channel for GMSL2 Link A
ERR_RX_RE CVED_A	6	Received ERR_RX value for Link A	0b0: ERR_RX value for Link A received 0b1: ERR_RX value for Link A not received
ERR_RX_ID _A	4:0	GPIO ID used for receiving ERR_RX for GMSL2 Link A.	0bXXXXX: GPIO ID used for receiving ERR_RX Link A

INTR14 (0x31)

BIT	7	6	5	4	3	2	1	0
Field	ERR_RX_E N_B	ERR_RX_R ECVED_B	-	ERR_RX_ID_B[4:0]				
Reset	0b1	0b1	-	0x1F				
Access Type	Write, Read	Write, Read	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
ERR_RX_EN _B	7	Receives remote error status (inverse of ERRB pin level) through GPIO channel for GMSL2 Link B.	0b0: Do not receive remote error status through GPIO channel for GMSL2 Link B 0b1: Receive remote error status through GPIO channel for GMSL2 Link B		
ERR_RX_RE CVED_B	6	Received ERR_RX value for link B	0x0: ERR_RX value for Link B received 0x1: ERR_RX value for Link B not received		
ERR_RX_ID _B	4:0	GPIO ID used for receiving ERR_RX for GMSL2 Link B.	0bXXXXX: GPIO ID used for receiving ERR_RX Link B		

INTR15 (0x32)

BIT	7	6	5	4	3	2	1	0
Field	ERR_RX_E N_C	ERR_RX_R ECVED_C	_	ERR_RX_ID_C[4:0]				
Reset	0b1	0b1	_	0x1F				
Access Type	Write, Read	Write, Read	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_RX_EN _C	7	Receives remote error status (inverse of ERRB pin level) through GPIO channel for GMSL2 Link C.	0b0: Do not receive remote error status through GPIO channel for GMSL2 Link C 0b1: Receive remote error status through GPIO channel for GMSL2 Link C

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_RX_RE CVED_C	6	Received ERR_RX value for Link C	0x0: ERR_RX value for Link C received 0x1: ERR_RX value for Link C not received
ERR_RX_ID _C	4:0	GPIO ID used for receiving ERR_RX for GMSL2 link C	0bXXXXX: GPIO ID used for receiving ERR_RX link C

INTR16 (0x33)

BIT	7	6	5	4	3	2	1	0
Field	ERR_RX_E N_D	ERR_RX_R ECVED_D	ı	ERR_RX_ID_D[4:0]				
Reset	0b1	0b1	_	0x1F				
Access Type	Write, Read	Write, Read	-			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_RX_EN _D	7	Receives remote error status (inverse of ERRB pin level) through GPIO channel for GMSL2 Link D.	0b0: Do not receive remote error status through GPIO channel for GMSL2 Link D 0b1: Receive remote error status through GPIO channel for GMSL2 Link D
ERR_RX_RE CVED_D	6	Received ERR_RX value for Link D	0x0: ERR_RX value for Link D received 0x1: ERR_RX value for Link D not received
ERR_RX_ID _D	4:0	GPIO ID used for receiving ERR_RX for GMSL2 link D	0bXXXXX: GPIO ID used for receiving ERR_RX link D

CNT0 (0x35)

BIT	7	6	5	4	3	2	1	0		
Field		DEC_ERR_A[7:0]								
Reset		0x00								
Access Type				Read C	lears All					

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_A	7:0	The number of decoding (disparity) errors detected at Link A Reset after reading or with the rising edge of LOCK.	0xXX: Number of Link A decoding errors detected

CNT1 (0x36)

BIT	7	6	5	4	3	2	1	0		
Field		DEC_ERR_B[7:0]								
Reset		0x00								
Access Type				Read C	lears All					

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_B	7:0	The number of decoding (disparity) errors detected at Link B Reset after reading or with the rising edge of LOCK.	0xXX: Number of Link B decoding errors detected

CNT2 (0x37)

BIT	7	6	5	4	3	2	1	0	
Field		DEC_ERR_C[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_C	7:0	The number of decoding (disparity) errors detected at Link C Reset after reading or with the rising edge of LOCK.	0xXX: Number of Link C decoding errors detected

CNT3 (0x38)

BIT	7	6	5	4	3	2	1	0		
Field		DEC_ERR_D[7:0]								
Reset		0x00								
Access Type				Read C	lears All					

BITFIELD	BITS	DESCRIPTION	DECODE
DEC_ERR_D	7:0	The number of decoding (disparity) errors detected at Link D Reset after reading or with the rising edge of LOCK.	0xXX: Number of Link D decoding errors detected

CNT4 (0x39)

BIT	7	6	5	4	3	2	1	0	
Field		IDLE_ERR_A[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_ A	7:0	The number of idle word errors detected at Link A Reset after reading or with the rising edge of LOCK.	0xXX: Number of idle word errors detected

CNT5 (0x3A)

BIT	7	6	5	4	3	2	1	0
Field		IDLE_ERR_B[7:0]						
Reset		0x00						
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_ B	7:0	The number of idle word errors detected at Link B Reset after reading or with the rising edge of LOCK.	0xXX: Number of idle word errors detected

CNT6 (0x3B)

BIT	7	6	5	4	3	2	1	0
Field		IDLE_ERR_C[7:0]						
Reset		0x00						
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_ C	7:0	The number of idle word errors detected at Link C Reset after reading or with the rising edge of LOCK.	0xXX: Number of idle word errors detected

CNT7 (0x3C)

Field IDLE_ERR_D[7:0] Reset 0x00 Access Type Read Clears All	BIT	7	6	5	4	3	2	1	0
	Field		IDLE_ERR_D[7:0]						
Access Type Read Clears All	Reset		0x00						
	Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
IDLE_ERR_ D	7:0	Number of idle word errors detected at Link D Reset after reading or with the rising edge of LOCK.	0xXX: Number of idle word errors detected

VID_PXL_CRC_ERR_VIDEOMASK_OEN (0x44)

BIT	7	6	5	4	3	2	1	0
Field	VIDEO_MA SKED_3_O EN	VIDEO_MA SKED_2_O EN	VIDEO_MA SKED_1_O EN	VIDEO_MA SKED_0_O EN	VID_PXL_C RC_ERR_O EN_D	VID_PXL_C RC_ERR_O EN_C	VID_PXL_C RC_ERR_O EN_B	VID_PXL_C RC_ERR_O EN_A
Reset	0x1	0x1	0x1	0x1	0x1	0x1	0x1	0x1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VIDEO_MAS KED_3_OEN	7	Enable Video Masked 3 status on ERRB	0x0: Video Masked 3 status disabled on ERRB pin 0x1: Video Masked 3 status enabled on ERRB pin
VIDEO_MAS KED_2_OEN	6	Enable Video Masked 2 status on ERRB	0x0: Video Masked 2 status disabled on ERRB pin 0x1: Video Masked 2 status enabled on ERRB pin
VIDEO_MAS KED_1_OEN	5	Enable Video Masked 1 status on ERRB	0x0: Video Masked 1 status disabled on ERRB pin 0x1: Video Masked 1 status enabled on ERRB pin

BITFIELD	BITS	DESCRIPTION	DECODE
VIDEO_MAS KED_0_OEN	4	Enable Video Masked 0 status on ERRB	0x0: Video Masked 0 status disabled on ERRB pin 0x1: Video Masked 0 status enabled on ERRB pin
VID_PXL_C RC_ERR_O EN_D	3	Video Pixel CRC Error Counter Interrupt Output Enable	0b0: Disable video pixel CRC error counter interrupt output 0b1: Enable video pixel CRC error counter interrupt output
VID_PXL_C RC_ERR_O EN_C	2	Video Pixel CRC Error Counter Interrupt Output Enable	0b0: Disable video pixel CRC error counter interrupt output 0b1: Enable video pixel CRC error counter interrupt output
VID_PXL_C RC_ERR_O EN_B	1	Video Pixel CRC Error Counter Interrupt Output Enable	0b0: Disable video pixel CRC error counter interrupt output 0b1: Enable video pixel CRC error counter interrupt output
VID_PXL_C RC_ERR_O EN_A	0	Video Pixel CRC Error Counter Interrupt Output Enable	0b0: Disable video pixel CRC error counter interrupt output 0b1: Enable video pixel CRC error counter interrupt output

VID PXL CRC VIDEOMASK INT FLAG (0x45)

BIT	7	6	5	4	3	2	1	0
Field	VIDEO_MA SKED_3_F LAG	VIDEO_MA SKED_2_F LAG	VIDEO_MA SKED_1_F LAG	VIDEO_MA SKED_0_F LAG	VID_PXL_C RC_ERR_D	VID_PXL_C RC_ERR_C		VID_PXL_C RC_ERR_A
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Read Clears All	Read Clears All	Read Clears All	Read Clears All	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
VIDEO_MAS KED_3_FLA G	7	Sticky status value for Video Masked 3. Flag will be set if any of Video Pipes 0-3 apart of 4WxH or Wx4H synchronous aggregation of Controller 3 lose video lock. See video_masked registers in MIPI_TX_x registers to determine which Video Pipe was masked.	0x0: Video Pipe 3 video output has not been masked 0x1: Video Pipe 3 video output has been masked
VIDEO_MAS KED_2_FLA G	6	Sticky status value for Video Masked 2. Flag will be set if any of Video Pipes 0-3 apart of 4WxH or Wx4H synchronous aggregation of Controller 2 lose video lock. See video_masked registers in MIPI_TX_x registers to determine which Video Pipe was masked.	0x0: Video Pipe 2 video output has not been masked 0x1: Video Pipe 2 video output has been masked
VIDEO_MAS KED_1_FLA G	5	Sticky status value for Video Masked 1. Flag will be set if any of Video Pipes 0-3 apart of 4WxH or Wx4H synchronous aggregation of Controller 1 lose video lock. See video_masked registers in MIPI_TX_x registers to determine which Video Pipe was masked.	0x0: Video Pipe 1 video output has not been masked 0x1: Video Pipe 1 video output has been masked

BITFIELD	BITS	DESCRIPTION	DECODE		
VIDEO_MAS KED_0_FLA G	4	Sticky status value for Video Masked 0. Flag will be set if any of Video Pipes 0-3 apart of 4WxH or Wx4H synchronous aggregation of Controller 0 lose video lock. See video_masked registers in MIPI_TX_x registers to determine which Video Pipe was masked.	0x0: Video Pipe 0 video output has not been masked 0x1: Video Pipe 0 video output has been masked		
VID_PXL_C RC_ERR_D	3	Video Pixel CRC Error Counter Interrupt	0b0: No video pixel CRC error counter interrupt detected 0b1: Video pixel CRC error counter interrupt detected		
VID_PXL_C RC_ERR_C	2	Video Pixel CRC Error Counter Interrupt	0b0: No video pixel CRC error counter interrupt detected 0b1: Video pixel CRC error counter interrupt detected		
VID_PXL_C RC_ERR_B	1	Video Pixel CRC Error Counter Interrupt	0b0: No video pixel CRC error counter interrupt detected 0b1: Video pixel CRC error counter interrupt detected		
VID_PXL_C RC_ERR_A	0	Video Pixel CRC Error Counter Interrupt	0b0: No video pixel CRC error counter interrupt detected 0b1: Video pixel CRC error counter interrupt detected		

PWR_STATUS_OEN (0x48)

BIT	7	6	5	4	3	2	1	0
Field	VDDBAD_I NT_OEN	RSVD	_	RSVD	-	_	RSVD[1:0]	
Reset	0x1	0x1	_	0x0	_	_	0x1	
Access Type	Write, Read		_		-	_		

BITFIELD	BITS	DESCRIPTION
VDDBAD_INT_OEN	7	Enable reporting of VDDBAD interrupt (VDDBAD_INT_FLAG) at ERRB pin

PWR STATUS OV FLAG (0x49)

BIT	7	6	5	4	3	2	1	0
Field	VDDBAD_I NT_FLAG	RSVD	RSVD	RSVD	CMP_STAT US_VDD_O V	CMP_STAT US_VDD12 _OV	CMP_STAT US_vddio_o v	CMP_STAT US_VDD18 _OV
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Read Clears All				Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
VDDBAD_IN T_FLAG	7	Combined VDDBAD indicator	
CMP_STATU S_VDD_OV	3	VDD Comparator Status	0x0: VDD operating in normal range 0x1: VDD measured above overvoltage comparator threshold

BITFIELD	BITS	DESCRIPTION	DECODE
CMP_STATU S_VDD12_O V	2		0x0: VTERM operating in normal range 0x1: VTERM measured above overvoltage comparator threshold
CMP_STATU S_vddio_ov	1		0x0: VDDIO operating in normal range 0x1: VDDIO measured above overvoltage comparator threshold
CMP_STATU S_VDD18_O V	0		0x0: VDD18 operating in normal range 0x1: VDD18 measured above overvoltage comparator threshold

VDDCMP_MASK (0x4A)

BIT	7	6	5	4	3	2	1	0
Field	VDDCMP_I NT_OEN	_	CMP_VTER M_MASK	VDDCMP_MASK[4:0]				
Reset	0x1	_	0x1		0x07			
Access Type	Write, Read	_	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION
VDDCMP_INT_OEN	7	Enables reporting of V _{DD} comparator interrupt (VDDCMP_INT_FLAG) at ERRB pin. See registers VDDCMP_MASK, CMP_STATUS, and VDDCMP_INT_FLAG
CMP_VTERM_MASK	5	Enable V _{TERM} voltage comparator status to drive VDDCMP_INT_FLAG error flag and ERRB pin output. See CMP_VTERM_STATUS register. Program to zero to mask status contribution to VDDCMP_INT_FLAG and ERRB pin. Program to one to enable status contribution to VDDCMP_INT_FLAG and ERRB pin.
VDDCMP_MASK	4:0	Select which voltage comparator status bits are masked from contributing to the VDDCMP_INT_FLAG error flag and ERRB pin. See the CMP_STATUS register field. Programming a bit to zero will mask the corresponding bit in the CMP_STATUS register field and prevent it from contributing to the VDDCMP_INT_FLAG. Note that this does not mask the CMP_STATUS register field; it only masks the contribution to the VDDCMP_INT_FLAG and ERRB pin output. 0 - Mask corresponding CMP_STATUS bit contribution to VDDCMP_INT_FLAG and ERRB 1 - Enable corresponding CMP_STATUS bit contribution to VDDCMP_INT_FLAG and ERRB
		See the VDDCMP_INT_FLAG and VDDCMP_INT_OEN register fields.

VDDCMP_STATUS_FLAG (0x4B)

BIT	7	6	5	4	3	2	1	0
Field	VDDCMP_I NT_FLAG	_	CMP_VTER M_STATUS	_	_	_	_	_
Reset	0x0	_	0x0	_	_	_	_	_
Access Type	Read Clears All	_	Read Only	_	_	_	_	_

BITFIELD	BITS	DESCRIPTION
VDDCMP_INT_FLAG	7 Combined V _{DD} comparator output. See CMP_STATUS and VDDCMP_MASK registers.	
CMP_VTERM_STATUS	5	Power manager V _{TERM} comparator status. Latched low when switched V _{TERM} supply < 1V. Cleared when the CMP_STATUS word (register 0x12) is read and the switched V _{TERM} supply is > 1V.

DEV_REV (0x4C)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	DEV_REV[3:0]			
Reset	_	_	_	_	0x1			
Access Type	_	_	-	_	Read Only			

BITFIELD	BITS	DESCRIPTION	DECODE
DEV_REV	3:0	Device Revision	0x0: Revision number

EFUSE_CTRL (0x4D)

BIT	7	6	5	4	3	2	1	0
Field	_		EFUSE_CR C_ERR_RS T		ı	_	-	ı
Reset	_	0b0	0b0	0b1	ı	_	-	-
Access Type	_	Write Clears All, Read	Write, Read	Write, Read	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
EFUSE_CRC _ERR_RST_ OS	6	Resets EFUSE CRC Error output. Write 1 to reset the EFUSE CRC Error output. This register is self clearing.	0x0: normal operation 0x1: Reset eFuse CRC Error Output (self-clearing)
EFUSE_CRC _ERR_RST	5	Resets EFUSE CRC Error output. Write 1 to reset the EFUSE CRC Error output. Write 0 to clear the reset request. This register is not self clearing.	0x0: clear eFuse CRC Error Output Reset 0x1: Reset eFuse CRC Error Output (NOT self- clearing)
EFUSE_CRC _ERR_OEN	4	Enable reporting efuse CRC at ERRB pin	0x0: Efuse CRC error report not enabled at ERRB pin 0x1: Efuse CRC error report enabled at ERRB pin

EFUSE_CRC_ERR (0x4E)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	EFUSE_CR C_ERR	_	_	_	_
Reset	_	_	_		_	-	_	_
Access Type	_	_	_	Read Only	_	-	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
EFUSE_CRC _ERR	4		0x0: Efuse CRC error not reported at ERRB pin 0x1: Efuse CRC error observed at ERRB pin

CFGH_VIDEO_CRC0 (0x60)

BIT	7	6	5	4	3	2	1	0
Field		RX_CRC_EN_A_B[7:0]						
Reset		0b0						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RX_CRC_EN _A_B	7:0	Received Packet CRC Enable for Ports A and B Each bit enables CRC for one pipe within a GMSL link as described below. Setting a given bit indicates that packets received at the corresponding port/pipe have appended CRC and CRC checking must be performed at each packet. Bit 0: RX_CRC_EN_A_VIDEO_X Bit 1: RX_CRC_EN_A_VIDEO_Y Bit 2: RX_CRC_EN_A_VIDEO_Z Bit 3: RX_CRC_EN_A_VIDEO_U Bit 4: RX_CRC_EN_B_VIDEO_U Bit 5: RX_CRC_EN_B_VIDEO_X Bit 5: RX_CRC_EN_B_VIDEO_Y Bit 6: RX_CRC_EN_B_VIDEO_Y Bit 6: RX_CRC_EN_B_VIDEO_Z Bit 7: RX_CRC_EN_B_VIDEO_U	0bXXXXXXX0: No CRC on received packets—RX_CRC_EN_A_VIDEO_X 0bXXXXXXX1: Received packets have CRC and checking is enabled—RX_CRC_EN_A_VIDEO_X 0bXXXXXX0X: No CRC on received packets—RX_CRC_EN_A_VIDEO_Y 0bXXXXXX1X: Received packets have CRC and checking is enabled—RX_CRC_EN_A_VIDEO_Y 0b0XXXXXXXX: No CRC on received packets—RX_CRC_EN_B_VIDEO_U 0b1XXXXXXX: Received packets have CRC and checking is enabled—RX_CRC_EN_B_VIDEO_U

CFGH_VIDEO_CRC1 (0x61)

BIT	7	6	5	4	3	2	1	0
Field		RX_CRC_EN_C_D[7:0]						
Reset		0b0						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RX_CRC_EN _C_D	7:0	Received Packet CRC Enable for Ports C and D Each bit enables CRC for one pipe within a GMSL link as described below. Setting a given bit indicates that packets received at the corresponding port/pipe have appended CRC and CRC checking must be performed at each packet. Bit 0: RX_CRC_EN_C_VIDEO_X Bit 1: RX_CRC_EN_C_VIDEO_Y Bit 2: RX_CRC_EN_C_VIDEO_Z Bit 3: RX_CRC_EN_C_VIDEO_U Bit 4: RX_CRC_EN_D_VIDEO_U Bit 6: RX_CRC_EN_D_VIDEO_X Bit 5: RX_CRC_EN_D_VIDEO_Y Bit 6: RX_CRC_EN_D_VIDEO_Y Bit 6: RX_CRC_EN_D_VIDEO_Z Bit 7: RX_CRC_EN_D_VIDEO_Z	0bXXXXXXX0: No CRC on received packets—RX_CRC_EN_C_VIDEO_X 0bXXXXXXX1: Received packets have CRC and checking is enabled—RX_CRC_EN_C_VIDEO_X 0bXXXXXX0X: No CRC on received packets—RX_CRC_EN_C_VIDEO_Y 0bXXXXXX1X: Received packets have CRC and checking is enabled—RX_CRC_EN_C_VIDEO_Y 0b0XXXXXXXX: No CRC on received packets—RX_CRC_EN_D_VIDEO_U 0b1XXXXXXX: Received packets have CRC and checking is enabled—RX_CRC_EN_D_VIDEO_U

TR0 (0x70)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N	RX_CRC_E N	RSVD[1:0]		PRIO_VAL[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0:	0x3		0x0		(0
Access Type	Write, Read	Write, Read		CAG .		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled
RX_CRC_EN	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled
PRIO_VAL	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority

TR1 (0x71)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MU	JLT[1:0]	BW_VAL[5:0]						
Reset	0x2		0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT	7:6	Channel bandwidth-allocation multiplication factor.	0b00: Multiply BW_VAL by 1 0b01: Multiply BW_VAL by 4 0b10: Multiply BW_VAL by 16 0b11: Multiply BW_VAL by 16

BITFIELD	BITS	DESCRIPTION	DECODE
BW_VAL	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL x BW_MULT/10 as a percentage of total link bandwidth.	0bXXXXXX: Channel base-bandwidth value

TR2 (0x72)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID[2:0]		
Reset	_	_	-	_	-		0x0	
Access Type	_	_	-	_	-	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR3 (0x73)

BIT	7	6	5	4	3	2	1	0	
Field	RX_SRC_SEL[7:0]								
Reset		0xFF							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE	7:0	Receives packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

TR0 (0x74)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_B	RX_CRC_E N_B	RSVD[1:0]		PRIO_VAL_B[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0:	x3	0x0		0:	(0
Access Type	Write, Read	Write, Read				Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _B	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled

BITFIELD	BITS	DESCRIPTION	DECODE		
RX_CRC_EN _B	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled		
PRIO_VAL_ B	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority		

TR1 (0x75)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MULT_B[1:0]		BW_VAL_B[5:0]						
Reset	0x2		0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ B	7:6	Channel bandwidth-allocation multiplication factor.	0b00: Multiply BW_VAL_B by 1 0b01: Multiply BW_VAL_B by 4 0b10: Multiply BW_VAL_B by 16 0b11: Multiply BW_VAL_B by 16
BW_VAL_B	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_B x BW_MULT_B/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR2 (0x76)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	_	- TX_SRC_ID_B[2:0]			
Reset	_	_	_	_	_	0x0		
Access Type	_	_	_	_	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ B	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR3 (0x77)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_B[7:0]							
Reset		0xFF							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_B	7:0	Receives packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_B = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

TR0 (0x78)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_C	RX_CRC_E N_C	RSVD[1:0]		PRIO_VAL_C[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0:	0x3		0x0		k 0
Access Type	Write, Read	Write, Read				Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_CRC_EN _C	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled		
RX_CRC_EN _C	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled		
PRIO_VAL_ C	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority		

TR1 (0x79)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MULT_C[1:0]		BW_VAL_C[5:0]							
Reset	0x2		0x30							
Access Type	Write,	Read			Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE	
BW_MULT_ C	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_C by 1 0b01: Multiply BW_VAL_C by 4 0b10: Multiply BW_VAL_C by 16 0b11: Multiply BW_VAL_C by 16	
BW_VAL_C	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_C x BW_MULT_C/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value	

TR2 (0x7A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID_C[2:0]		
Reset	_	_	-	_	-	0x0		
Access Type	_	_	_	_	-	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR3 (0x7B)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_C[7:0]							
Reset		0xFF							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_C	7:0	Receives packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_C = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

TR0 (0x7C)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_D	RX_CRC_E N_D	RSVD[1:0]		PRIO_VAL_D[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0>	0x3		0x0		(0
Access Type	Write, Read	Write, Read		55		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE	
TX_CRC_EN _D	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled	
RX_CRC_EN _D	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled	
PRIO_VAL_	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority	

TR1 (0x7D)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MUL	_T_D[1:0]	BW_VAL_D[5:0]							
Reset	0x2		0x30							
Access Type	Write,	Read			Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_D by 1 0b01: Multiply BW_VAL_D by 4 0b10: Multiply BW_VAL_D by 16 0b11: Multiply BW_VAL_D by 16
BW_VAL_D	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_D x BW_MULT_D/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR2 (0x7E)

BIT	7	6	5	4	3	2	1	0
Field	_		_	_	_	TX_SRC_ID_D[2:0]		
Reset	_	-	_	_	_	0x0		
Access Type	_	-	_	_	_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR3 (0x7F)

BIT	7	6	5	4	3	2	1	0
Field		RX_SRC_SEL_D[7:0]						
Reset		0xFF						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_D	7:0	Receives packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_D = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

TR0 (0xA0)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N	RX_CRC_E N	RSVD[1:0]		PRIO_VAL[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0x3		0x0		0>	(0
Access Type	Write, Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled
RX_CRC_EN	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled
PRIO_VAL	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority

TR1 (0xA1)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MU	JLT[1:0]	BW_VAL[5:0]							
Reset	0x2		0x30							
Access Type	Write,	Read			Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL by 1 0b01: Multiply BW_VAL by 4 0b10: Multiply BW_VAL by 16 0b11: Multiply BW_VAL by 16
BW_VAL	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL x BW_MULT/ 10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0xA3)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID[2:0]		
Reset	_	_	_	_	_	0x0		
Access Type	_	_	_	_	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0xA4)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL[7:0]							
Reset		0xFF							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L	7:0	Receives packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0xA6)

BIT	7	6	5	4	3	2	1	0
Field	-	MAX_RT[2:0]			RSVD	RSVD	MAX_RT_E RR_OEN	RT_CNT_O EN
Reset	_		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT	6:4	Maximum retransmit limit. ARQ will stop retransmission after reaching the limit for a single packet.	0bXXX: Maximum retransmit limit
MAX_RT_ER R_OEN	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR—0xA7) for this channel at ERRB pin	0b0: ARQ maximum retransmit limit errors reporting at ERRB pin disabled 0b1: ARQ maximum retransmit limit errors reporting at ERRB pin enabled
RT_CNT_OE N	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT (0xA7) of this channel is greater than 0.	0b0: ARQ retransmission count reporting at ERRB pin disabled 0b1: ARQ retransmission count reporting at ERRB pin enabled

ARQ2 (0xA7)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR		RT_CNT[6:0]						
Reset	0b0		0x0						
Access Type	Read Clears All		Read Clears All						
BITFIELD	BITS		DESCRIPTION DECODE						

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R	7	Reached maximum retransmit limit (MAX_RT—0xA6) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached

BITFIELD	BITS	DESCRIPTION	DECODE
RT_CNT	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmissions for this channel

TR0 (0xA8)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_B	RX_CRC_E N_B	RSVD[1:0]		PRIO_VAL_B[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0:	0x3		0x0		(0
Access Type	Write, Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _B	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled
RX_CRC_EN _B	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled
PRIO_VAL_ B	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority

TR1 (0xA9)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MUL	_T_B[1:0]			BW_VAL_B[5:0]				
Reset	0:	k 2	0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ B	7:6	Channel bandwidth-allocation multiplication factor.	0b00: Multiply BW_VAL_B by 1 0b01: Multiply BW_VAL_B by 4 0b10: Multiply BW_VAL_B by 16 0b11: Multiply BW_VAL_B by 16
BW_VAL_B	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_B x BW_MULT_B/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0xAB)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID_B[2:0]		
Reset	_	_	_	_	-	0x0		
Access Type	-	_	_	_	-	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ B	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0xAC)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_B[7:0]							
Reset		0xFF							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_B	7:0	Receives packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_B = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0xAE)

BIT	7	6	5	4	3	2	1	0
Field	_	1	MAX_RT_B[2:0]			RSVD	MAX_RT_E RR_OEN_B	RT_CNT_O EN_B
Reset	_		0x7			0x0	0b1	0b0
Access Type	_		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_B	6:4	Maximum retransmit limit. ARQ will stop retransmission after reaching the limit for a single packet.	0bXXX: Maximum retransmit limit
MAX_RT_ER R_OEN_B	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_B—0xAF) for this channel at ERRB pin	0b0: ARQ maximum retransmit limit errors reporting at ERRB pin disabled 0b1: ARQ maximum retransmit limit errors reporting at ERRB pin enabled
RT_CNT_OE N_B	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_B (0xAF) of this channel is greater than 0.	0b0: ARQ retransmission count reporting at ERRB pin disabled 0b1: ARQ retransmission count reporting at ERRB pin enabled

ARQ2 (0xAF)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR_B		RT_CNT_B[6:0]						
Reset	0b0		0x0						
Access Type	Read Clears All		Read Clears All						

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_B	7	Reached maximum retransmit limit (MAX_RT_B—0xAE) for one packet in this channel.	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_B	6:0	Total retransmission count in this channel.	0bXXXXXXX: Count of retransmissions for this channel

TR0 (0xB0)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_C	RX_CRC_E N_C	RSVD[1:0]		PRIO_VAL_C[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0>	0x3		0x0		(0
Access Type	Write, Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _C	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled
RX_CRC_EN _C	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled
PRIO_VAL_	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority

TR1 (0xB1)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MUL	_T_C[1:0]	BW_VAL_C[5:0]							
Reset	0>	(2	0x30							
Access Type	Write,	Read			Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_	7:6	Channel bandwidth-allocation multiplication factor.	0b00: Multiply BW_VAL_C by 1 0b01: Multiply BW_VAL_C by 4 0b10: Multiply BW_VAL_C by 16 0b11: Multiply BW_VAL_C by 16
BW_VAL_C	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_C x BW_MULT_C/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0xB3)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	_	_	TX_SRC_ID_C[2:0]			
Reset	_	_	_	_	_		0x0		
Access Type	_	_	_	_	_		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ C	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0xB4)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_C[7:0]							
Reset		0xFF							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_C	7:0	Receives packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_C = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0xB6)

BIT	7	6	5	4	3	2	1	0
Field	_	ſ	MAX_RT_C[2:0]			RSVD	MAX_RT_E RR_OEN_C	RT_CNT_O EN_C
Reset	_		0x7		0x0	0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_C	6:4	Maximum retransmit limit. ARQ will stop retransmission after reaching the limit for a single packet.	0bXXX: Maximum retransmit limit
MAX_RT_ER R_OEN_C	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_C—0xB7) for this channel at ERRB pin	0b0: ARQ maximum retransmit limit errors reporting at ERRB pin disabled 0b1: ARQ maximum retransmit limit errors reporting at ERRB pin enabled
RT_CNT_OE N_C	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_C (0xB7) of this channel is greater than 0.	0b0: ARQ retransmission count reporting at ERRB pin disabled 0b1: ARQ retransmission count reporting at ERRB pin enabled

ARQ2 (0xB7)

BIT	7	6	5	4	3	2	1	0
Field	MAX_RT_E RR_C		RT_CNT_C[6:0]					
Reset	0b0				0x0			
Access Type	Read Clears All		Read Clears All					

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_C	7	Reached maximum retransmit limit (MAX_RT_C—0xB6) for one packet in this channel.	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_C	6:0	Total retransmission count in this channel.	0bXXXXXXX: Count of retransmissions for this channel

TR0 (0xB8)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_D	RX_CRC_E N_D	RSVD[1:0]		PRIO_VAL_D[1:0]		RSVD[1:0]	
Reset	0b1	0b1	0>	k 3	0x0		0:	k 0
Access Type	Write, Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _D	7	When set, calculates and appends CRC to each packet transmitted from this port.	0b0: Transmit CRC disabled 0b1: Transmit CRC enabled
RX_CRC_EN _D	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Receive CRC disabled 0b1: Receive CRC enabled
PRIO_VAL_	3:2	Sets the priority for this channel's packet requests.	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority

TR1 (0xB9)

BIT	7	6	5 4 3 2 1 0						
Field	BW_MUL	_T_D[1:0]			/AL_D[5:0]				
Reset	0:	x2	0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ D	7:6	Channel bandwidth-allocation multiplication factor.	0b00: Multiply BW_VAL_D by 1 0b01: Multiply BW_VAL_D by 4 0b10: Multiply BW_VAL_D by 16 0b11: Multiply BW_VAL_D by 16
BW_VAL_D	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_D x BW_MULT_D/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0xBB)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	_	_	TX_SRC_ID_D[2:0]			
Reset	_	_	_	_	_		0x0		
Access Type	_	_	_	_	_		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0xBC)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_D[7:0]							
Reset		0xFF							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_D	7:0	Receives packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_D = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0xBE)

BIT	7	6	5	4	3	2	1	0
Field	-	ľ	MAX_RT_D[2:0]			RSVD	MAX_RT_E RR_OEN_D	RT_CNT_O EN_D
Reset	_		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_D	6:4	Maximum retransmit limit. ARQ will stop retransmission after reaching the limit for a single packet.	0bXXX: Maximum retransmit limit
MAX_RT_ER R_OEN_D	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_D—0xBF) for this channel at ERRB pin	0b0: ARQ maximum retransmit limit errors reporting at ERRB pin disabled 0b1: ARQ maximum retransmit limit errors reporting at ERRB pin enabled
RT_CNT_OE N_D	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_D (0xBF) of this channel is greater than 0.	0b0: ARQ retransmission count reporting at ERRB pin disabled 0b1: ARQ retransmission count reporting at ERRB pin enabled

ARQ2 (0xBF)

BIT	7	6	5	4	3	2	1	0
Field	MAX_RT_E RR_D		RT_CNT_D[6:0]					
Reset	0b0				0x0			
Access Type	Read Clears All			-	Read Clears Al	I		

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_D	7	Reached maximum retransmit limit (MAX_RT_D—0xBE) for one packet in this channel.	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_D	6:0	Total retransmission count in this channel.	0bXXXXXXX: Count of retransmissions for this channel

<u>I2C_7 (0xC7)</u>

BIT	7	6	5	4	3	2	1	0	
Field	I2C_REGSL V_1_TIMED _OUT	I2C_IN			I2C_REGSL V_0_TIMED _OUT	I2C_IN	I2C_INTREG_SLV_0_TO[2:0]		
Reset	0x0		0x6		0x0		0x6		
Access Type	Read Only		Write, Read		Read Only		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_REGSL V_1_TIMED_ OUT	7	Internal I ² C-to-register slave for Port 1 has timed out while waiting for the master or the internal register access FSM.	0b0: Internal I ² C-to-register slave for Port 1 has not timed out 0b1: Internal I ² C-to-register slave for Port 1 has timed out
I2C_INTREG _SLV_1_TO	6:4	I ² C-to-Internal Register Slave 1 Timeout Setting Internal register I ² C Slave 1 times out after the configured duration if it does not receive any response from the external master or internal register FSM. This slave serves I ² C Port 1.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled
I2C_REGSL V_0_TIMED_ OUT	3	Internal I ² C-to-register slave for Port 0 has timed out while waiting for the master or the internal register access FSM.	0b0: Internal I ² C-to-register slave for Port 0 has not timed out 0b1: Internal I ² C-to-register slave for Port 0 has timed out
I2C_INTREG _SLV_0_TO	2:0	I ² C-to-Internal Register Slave 0 Timeout Setting Internal register I ² C Slave 0 times out after the configured duration if it does not receive any response from the external master or internal register FSM. This slave serves I ² C Port 0.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

REG0 (0xE0)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	PU_LF3	PU_LF2	PU_LF1	PU_LF0
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
PU_LF3	3	Power up Line Fault monitor 3	0b0: Line fault monitor 3 disabled 0b1: Line fault monitor 3 enabled
PU_LF2	2	Power up Line Fault monitor 2	0b0: Line fault monitor 2 disabled 0b1: Line fault monitor 2 enabled
PU_LF1	1	Power up Line Fault monitor 1	0b0: Line fault monitor 1 disabled 0b1: Line fault monitor 1 enabled
PU_LF0	0	Power up Line Fault monitor 0	0b0: Line fault monitor 0 disabled 0b1: Line fault monitor 0 enabled

REG1 (0xE1)

BIT	7	6	5	4	3	2	1	0
Field	_		LF_1[2:0]		_	LF_0[2:0]		
Reset	_		0x2				0x2	
Access Type	_		Read Only		_		Read Only	

BITFIELD	BITS	DESCRIPTION	DECODE
LF_1	6:4	Line Fault status of wire connected to LMN1 pin	0b000: Short to battery 0b001: Short to GND 0b010: Normal Operation 0b011: Line Open 0b1XX: Line-to-line short
LF_0	2:0	Line Fault status of wire connected to LMN0 pin	0b000: Short to battery 0b001: Short to GND 0b010: Normal Operation 0b011: Line Open 0b1XX: Line-to-line short

REG2 (0xE2)

BIT	7	6	5	4	3	2	1	0	
Field	_		LF_3[2:0]		_	LF_2[2:0]			
Reset	_		0x2		_	0x2			
Access Type	_		Read Only		_		Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
LF_3	6:4	Line Fault status of wire connected to LMN3 pin	0b000: Short to battery 0b001: Short to GND 0b010: Normal Operation 0b011: Line Open 0b1XX: Line-to-line short

BITFIELD	BITS	DESCRIPTION	DECODE
LF_2	2:0	Line Fault status of wire connected to LMN2 pin	0b000: Short to battery 0b001: Short to GND 0b010: Normal Operation 0b011: Line Open 0b1XX: Line-to-line short

REG5 (0xE5)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	LFLT_INT_FLAG[3:0]			
Reset	_	_	_	_	0x0			
Access Type	_	_	_	_	Read Clears All			

BITFIELD	BITS	DESCRIPTION	DECODE
LFLT_INT_F LAG	3:0	Line-Fault Error Flag Indicators	0x0: Gets set to 1 when (!mask_lf0 && pu_lf0 && (LF_0 != 3'b010)). Read clears 0x1: Gets set to 1 when (!mask_lf1 && pu_lf1 && (LF_1 != 3'b010)). Read clears 0x2: Gets set to 1 when (!mask_lf2 && pu_lf2 && (LF_2 != 3'b010)). Read clears 0x3: Gets set to 1 when (!mask_lf3 && pu_lf3 && (LF_3 != 3'b010)). Read clears

REG6 (0xE6)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	MASK_LF3	MASK_LF2	MASK_LF1	MASK_LF0
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
MASK_LF3	3	Mask Line Fault monitor 3 Interrupt	0b0: Line fault monitor 3 interrupt enabled 0b1: Line fault monitor 3 interrupt masked		
MASK_LF2	2	Mask Line Fault monitor 2 Interrupt	0b0: Line fault monitor 2 interrupt enabled 0b1: Line fault monitor 2 interrupt masked		
MASK_LF1	1	Mask Line Fault monitor 1 Interrupt	0b0: Line fault monitor 1 interrupt enabled 0b1: Line fault monitor 1 interrupt masked		
MASK_LF0	0	Mask Line Fault monitor 0 Interrupt	0b0: Line fault monitor 0 interrupt enabled 0b1: Line fault monitor 0 interrupt masked		

VIDEO_PIPE_SEL_0 (0xF0)

BIT	7	6	5	4	3	2	1	0	
Field		VIDEO_PIPE	_SEL_1[3:0]		VIDEO_PIPE_SEL_0[3:0]				
Reset		0)	k 6		0x2				
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
VIDEO_PIPE _SEL_1	7:4	Video Pipe 1 Input Selection Control Bits [7:6]: GMSL2 Phy Link selection for Pipe 1 Bits [5:4]: Input Pipe selection for Pipe 1	Bits [7:6] 0b00: GMSL2 PHY A 0b01: GMSL2 PHY B 0b10: GMSL2 PHY C 0b11: GMSL2 PHY D Bits [5:4] 0b00: Pipe X 0b01: Pipe Y 0b10: Pipe Z 0b11: Pipe U
VIDEO_PIPE _SEL_0	3:0	Video Pipe 0 Input Selection Control Bits [3:2]: GMSL2 Phy Link selection for Pipe 0 Bits [1:0]: Input Pipe selection for Pipe 0	Bits [3:2] 0b00: GMSL2 PHY A 0b01: GMSL2 PHY B 0b10: GMSL2 PHY C 0b11: GMSL2 PHY D Bits [1:0] 0b00: Pipe X 0b01: Pipe Y 0b10: Pipe Z 0b11: Pipe U

VIDEO_PIPE_SEL_1 (0xF1)

BIT	7	6	5	4	3	2	1	0	
Field		VIDEO_PIPE	_SEL_3[3:0]		VIDEO_PIPE_SEL_2[3:0]				
Reset		0:	ке		0xa				
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
VIDEO_PIPE _SEL_3	7:4	Video Pipe 3 Selection Bits [7:6]: GMSL2 Phy Link selection for Pipe 3 Bits [5:4]: Input Pipe selection for Pipe 3	Bits [7:6] 0b00: GMSL2 PHY A 0b01: GMSL2 PHY B 0b10: GMSL2 PHY C 0b11: GMSL2 PHY D Bits [5:4] 0b00: Pipe X 0b01: Pipe Y 0b10: Pipe Z 0b11: Pipe U
VIDEO_PIPE _SEL_2	3:0	Video Pipe 2 Selection Bits [3:2]: GMSL2 Phy Link selection for Pipe 2 Bits [1:0]: Input Pipe selection for Pipe 2	Bits [3:2] 0b00: GMSL2 PHY A 0b01: GMSL2 PHY B 0b10: GMSL2 PHY C 0b11: GMSL2 PHY D Bits [1:0] 0b00: Pipe X 0b01: Pipe Y 0b10: Pipe Z 0b11: Pipe U

VIDEO_PIPE_EN (0xF4)

BIT	7	6	5	4	3	2	1	0
Field	_	ı	ı	STREAM_S EL_ALL	VIDEO_PIPE_EN[3:0]			
Reset	_	ı	-	0x1	0xF			
Access Type	_	-	-	Write, Read	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE		
STREAM_SE L_ALL	4	When set to a 1, overrides VIDEO_PIPE_SEL_*[1:0] select bits such that all X,Y,Z, and U streams are selected, not just one. When cleared to 0, VIDEO_PIPE_SEL_0[1:0] will select which stream to pass to pipe 0.	0x0: Legacy (MAX96712) mode 0x1: Select all streams (X,Y,Z and/or U)		
VIDEO_PIPE _EN	3:0	Video Pipe Enable Register	0bXXXXXX0: Disable Pipe 0 0bXXXXXX1: Enable Pipe 0 0bXXXXXX0X: Disable Pipe 1 0bXXXXXX1X: Enable Pipe 1 0bXXXXXX0X: Disable Pipe 2 0bXXXXX1XX: Enable Pipe 2 0bXXXXX0XX: Disable Pipe 3 0bXXXX1XX: Enable Pipe 3		

HVD_GPIO_CTRL_EN (0xFA)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	_	HVD_OUT_EN[3:0]			
Reset	_	_	_	_	0x0			
Access Type	_	_	-	_	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
HVD_OUT_E N	3:0	This register field controls which (if any) of the VSYNC/HSYNC/DE GPIO are enabled. Desired output signals are selected using the HVD_HS_SEL*, HVD_VS_SEL*, HVD_DE_SEL*, and HVD_OUT_SEL registers When Bit 0 = 1 Enables HDV GPIO on MFP1 When Bit 1 = 1 Enables HDV GPIO on MFP3 When Bit 2 = 1 Enables HDV GPIO on MFP7 When Bit 3 = 1 Enables HDV GPIO on MFP8	0x0: Disable all HVD GPIO 0x1: Enable only HVD GPIO on MFP1, all others disabled 0x2: Enable only HVD GPIO on MFP3, all others disabled 0x3: Enable HVD GPIO on MFP1 and MFP3, all others disabled 0x4: Enable only HVD GPIO on MFP7, all others disabled 0x5: Enable HVD GPIO on MFP1 and MFP7, all others disabled 0x6: Enable HVD GPIO on MFP3 and MFP7, all others disabled 0x7: Enable HVD GPIO on MFP1, MFP3, and MFP7, all others disabled 0x8: Enable HVD GPIO on MFP1, MFP3, all others disabled 0x9: Enable HVD GPIO on MFP1 and MFP8 0xA: Enable HVD GPIO on MFP1 and MFP8, all others disabled 0x9: Enable HVD GPIO on MFP1, MFP3 and MFP8, all others disabled 0xC: Enable HVD GPIO on MFP1, MFP3 and MFP8, all others disabled 0xC: Enable HVD GPIO on MFP1, MFP7 and MFP8, all others disabled 0xE: Enable HVD GPIO on MFP1, MFP7, and MFP8, all others disabled 0xF: Enable HVD GPIO on MFP1, MFP7, and MFP8, all others disabled 0xF: Enable HVD GPIO on MFP1, MFP3, MFP7, and MFP8, all others disabled

HVD_GPIO_CTRL_HS (0xFB)

BIT	7	6	5	4	3	2	1	0
Field	HVD_HS_SEL3[1:0] HVD_HS_S		SEL2[1:0]	HVD_HS_SEL1[1:0]		HVD_HS_SEL0[1:0]		
Reset	0b	00	0b00		0b00		0b00	
Access Type	Write,	Read	Write, Read		Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION
HVD_HS_SEL3	7:6	Selects which Video Pipe HS Sync to Output on MFP8 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - HS Sync for Video Pipe 0 2'b01 - HS Sync for Video Pipe 1 2'b10 - HS Sync for Video Pipe 2 2'b11 - HS Sync for Video Pipe 3
HVD_HS_SEL2	5:4	Selects which Video Pipe HS Sync to Output on MFP7 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - HS Sync for Video Pipe 0 2'b01 - HS Sync for Video Pipe 1 2'b10 - HS Sync for Video Pipe 2 2'b11 - HS Sync for Video Pipe 3

BITFIELD	BITS	DESCRIPTION
HVD_HS_SEL1	3:2	Selects which Video Pipe HS Sync to Output on MFP3 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - HS Sync for Video Pipe 0 2'b01 - HS Sync for Video Pipe 1 2'b10 - HS Sync for Video Pipe 2 2'b11 - HS Sync for Video Pipe 3
HVD_HS_SEL0	1:0	Selects which Video Pipe HS Sync to Output on MFP1 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - HS Sync for Video Pipe 0 2'b01 - HS Sync for Video Pipe 1 2'b10 - HS Sync for Video Pipe 2 2'b11 - HS Sync for Video Pipe 3

HVD GPIO CTRL VS (0xFC)

BIT	7	6	5	4	3	2	1	0
Field	HVD_VS_	SEL3[1:0]	HVD_VS_SEL2[1:0]		HVD_VS_SEL1[1:0]		HVD_VS_SEL0[1:0]	
Reset	0b	0b00 0b00		00	0b00		0b00	
Access Type	Write,	Read	Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION
HVD_VS_SEL3	7:6	Selects which Video Pipe VS Sync to Output on MFP8 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - VS Sync for Video Pipe 0 2'b01 - VS Sync for Video Pipe 1 2'b10 - VS Sync for Video Pipe 2 2'b11 - VS Sync for Video Pipe 3
HVD_VS_SEL2	5:4	Selects which Video Pipe VS Sync to Output on MFP7 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - VS Sync for Video Pipe 0 2'b01 - VS Sync for Video Pipe 1 2'b10 - VS Sync for Video Pipe 2 2'b11 - VS Sync for Video Pipe 3
HVD_VS_SEL1	3:2	Selects which Video Pipe VS Sync to Output on MFP3 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - VS Sync for Video Pipe 0 2'b01 - VS Sync for Video Pipe 1 2'b10 - VS Sync for Video Pipe 2 2'b11 - VS Sync for Video Pipe 3
HVD_VS_SEL0	1:0	Selects which Video Pipe VS Sync to Output on MFP1 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - VS Sync for Video Pipe 0 2'b01 - VS Sync for Video Pipe 1 2'b10 - VS Sync for Video Pipe 2 2'b11 - VS Sync for Video Pipe 3

HVD GPIO CTRL DE (0xFD)

BIT	7	6	5	4	3	2	1	0
Field	HVD_DE_	SEL3[1:0]	HVD_DE_SEL2[1:0]		HVD_DE_SEL1[1:0]		HVD_DE_SEL0[1:0]	
Reset	0b00 0b00		00	0b00		0b00		
Access Type	Write,	Read	Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION
HVD_DE_SEL3	7:6	Selects which Video Pipe DE to Output on MFP8 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - DE Sync for Video Pipe 0 2'b01 - DE Sync for Video Pipe 1 2'b10 - DE Sync for Video Pipe 2 2'b11 - DE Sync for Video Pipe 3
HVD_DE_SEL2	5:4	Selects which Video Pipe DE to Output on MFP7 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - DE Sync for Video Pipe 0 2'b01 - DE Sync for Video Pipe 1 2'b10 - DE Sync for Video Pipe 2 2'b11 - DE Sync for Video Pipe 3
HVD_DE_SEL1	3:2	Selects which Video Pipe DE to Output on MFP3 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - DE Sync for Video Pipe 0 2'b01 - DE Sync for Video Pipe 1 2'b10 - DE Sync for Video Pipe 2 2'b11 - DE Sync for Video Pipe 3
HVD_DE_SEL0	1:0	Selects which Video Pipe DE to Output on MFP1 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - DE Sync for Video Pipe 0 2'b01 - DE Sync for Video Pipe 1 2'b10 - DE Sync for Video Pipe 2 2'b11 - DE Sync for Video Pipe 3

HVD GPIO CTRL SEL (0xFE)

BIT	7	6	5	4	3	2	1	0
Field	HVD_OUT	_SEL3[1:0]	HVD_OUT_SEL2[1:0]		HVD_OUT_SEL1[1:0]		HVD_OUT_SEL0[1:0]	
Reset	0b	00	0b00		0b00		0b00	
Access Type	Write,	Read	Write, Read		Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION
HVD_OUT_SEL3	7:6	Selects Signal type, VSYNC, HSYNC, or DE to be output on MFP8. Using the HVD_HS_SEL*, HVD_VS_SEL*, and HVD_DE_SEL* registers, users can select one of any of the video pipe HSYNC, VSYNC, or DE signals to be output on MFP8. 2'b00 - Output HSYNC selected by HVD_HS_SEL3 on MFP8 2'b01 - Output VSYNC selected by HVD_VS_SEL3 on MFP8 2'b10 - Output DE selected by HVD_DE_SEL3 on MFP8 2'b11 - Output TX Start selected by HVD_ST_SEL3 on MFP8

BITFIELD	BITS	DESCRIPTION
HVD_OUT_SEL2	5:4	Selects Signal type, VSYNC, HSYNC, or DE to be output on MFP7. Using the HVD_HS_SEL*, HVD_VS_SEL*, and HVD_DE_SEL* registers, users can select one of any of the video pipe HSYNC, VSYNC, or DE signals to be output on MFP7. 2'b00 - Output HSYNC selected by HVD_HS_SEL2 on MFP7 2'b01 - Output VSYNC selected by HVD_VS_SEL2 on MFP7 2'b10 - Output DE selected by HVD_DE_SEL2 on MFP7 2'b11 - Output TX Start selected by HVD_ST_SEL2 on MFP7
HVD_OUT_SEL1	3:2	Selects Signal type, VSYNC, HSYNC, or DE to be output on MFP3. Using the HVD_HS_SEL*, HVD_VS_SEL*, and HVD_DE_SEL* registers, users can select one of any of the video pipe HSYNC, VSYNC, or DE signals to be output on MFP3. 2'b00 - Output HSYNC selected by HVD_HS_SEL1 on MFP3 2'b01 - Output VSYNC selected by HVD_VS_SEL1 on MFP3 2'b10 - Output DE selected by HVD_DE_SEL1 on MFP3 2'b11 - Output TX Start selected by HVD_ST_SEL1 on MFP3
HVD_OUT_SEL0	1:0	Selects Signal type, VSYNC, HSYNC, or DE to be output on MFP1. Using the HVD_HS_SEL*, HVD_VS_SEL*, and HVD_DE_SEL* registers, users can select one of any of the video pipe HSYNC, VSYNC, or DE signals to be output on MFP1. 2'b00 - Output HSYNC selected by HVD_HS_SEL0 on MFP1 2'b01 - Output VSYNC selected by HVD_VS_SEL0 on MFP1 2'b10 - Output DE selected by HVD_DE_SEL0 on MFP1 2'b11 - Output TX Start selected by HVD_ST_SEL0 on MFP1

HVD GPIO CTRL ST (0xFF)

BIT	7	6	5	4	3	2	1	0
Field	HVD_ST_	SEL3[1:0]	HVD_ST_SEL2[1:0]		HVD_ST_SEL1[1:0]		HVD_ST_SEL0[1:0]	
Reset	0b00 0b00		00	0b00		0b00		
Access Type	Write,	Read	Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION
HVD_ST_SEL3	7:6	Selects which Video Pipe TX Start to Output on MFP8 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - TX Start for Video Pipe 0 2'b01 - TX Start for Video Pipe 1 2'b10 - TX Start for Video Pipe 2 2'b11 - TX Start for Video Pipe 3
HVD_ST_SEL2	5:4	Selects which Video Pipe TX Start to Output on MFP7 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - TX Start for Video Pipe 0 2'b01 - TX Start for Video Pipe 1 2'b10 - TX Start for Video Pipe 2 2'b11 - TX Start for Video Pipe 3
HVD_ST_SEL1	3:2	Selects which Video Pipe TX Start to Output on MFP3 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - TX Start for Video Pipe 0 2'b01 - TX Start for Video Pipe 1 2'b10 - TX Start for Video Pipe 2 2'b11 - TX Start for Video Pipe 3

BITFIELD	BITS	DESCRIPTION
HVD_ST_SEL0	1:0	Selects which Video Pipe TX Start to Output on MFP1 Note: Must also program HVD_OUT_EN and HVD_OUT_SEL 2'b00 - TX Start for Video Pipe 0 2'b01 - TX Start for Video Pipe 1 2'b10 - TX Start for Video Pipe 2 2'b11 - TX Start for Video Pipe 3

VIDEO RX0 (0x100, 0x112, 0x124, 0x136)

BIT	7	6	5	4	3	2	1	0
Field	LCRC_ERR	RSVD	RSVD	SEQ_MISS _EN	RSVD	RSVD	LINE_CRC_ EN	DIS_PKT_D ET
Reset	0x0	0b0	0b1	0b1	0b0	0b0	0b1	0b0
Access Type	Read Clears All			Write, Read			Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
LCRC_ERR	7	Video Line CRC Error Flag Asserted when a video line CRC error is detected	0b0: No video line CRC error detected 0b1: Video line CRC error detected
SEQ_MISS_ EN	4	Video sequence miss detection enable	0b0: Disable Video Sequence Miss Detection 0b1: Video Sequence Miss Detection Enabled (Default)
LINE_CRC_ EN	1	Video Line CRC Enable	0b0: Disable video line CRC 0b1: Enable video line CRC
DIS_PKT_D ET	0	Disable Packet Detector If the video is restarted with a different BPP when the packet detector is disabled, toggle this register or the video receive enable register to make sure the video link restarts.	0b0: Enable packet detect (default) 0b1: Disable packet detect

VIDEO_RX6 (0x106, 0x118, 0x12A, 0x13C)

BIT	7	6	5	4	3	2	1	0
Field	RSVD[2:0]			VID_SEQ_ ERR_OEN	LIM_HEAR T	_	RSVD	RSVD
Reset	0x0			0b1	0b0	_	0b1	0b0
Access Type				Write, Read	Write, Read	_		

BITFIELD	BITS	DESCRIPTION	DECODE
VID_SEQ_E RR_OEN	4	Enables reflection of Video Sequencing Error onto the ERRB pin. Refer to the VID_SEQ_ERR register field.	0x0: Disabled 0x1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
LIM_HEART	3	If enabled, there is a configurable timeout using VRX_PKT_DET.TIMEOUT_x (default is 10ms) to detect loss of video lock. If disabled, there is a 100us timeout to detect loss of video lock. If Heartbeat is disabled (LIM_HEART = 1 on Serializer), set VRX_PKT_DET.TIMEOUT_x from 1 to 127ms, as per requirement. Use together with SEQ_MISS_EN and DIS_PKT_DET registers in deserializer. Embedded data should use the Heartbeat to ensure loss of video lock timeout does not occur.	0x0 0x1: See Description

VIDEO_RX8 (0x108, 0x11A, 0x12C, 0x13E)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	VID_LOCK	VID_PKT_D ET	VID_SEQ_ ERR	RSVD[3:0]			
Reset	0b0	0b0	0b0	0b0	0x2			
Access Type		Read Only	Read Only	Read Clears All				

BITFIELD	BITS	DESCRIPTION	DECODE		
VID_LOCK	6	Video pipeline locked	0b0: Video pipeline not locked 0b1: Video pipeline locked		
VID_PKT_D ET	5	Video Rx sufficient packet throughput detection.	0b0: Insufficient packet throughput 0b1: Sufficient packet throughput		
VID_SEQ_E RR	4	Video Rx sequence error detection.	0b0: No video Rx sequence error detected 0b1: Video Rx sequence error detected		

LIM HEART TIMEOUT 0 (0x160)

BIT	7	6	5	4	3	2	1	0	
Field	_		LIM_HEART_TIMEOUT_0[6:0]						
Reset	_		0xA						
Access Type	_				Write, Read				

BITFIELD	BITS	DESCRIPTION
LIM_HEART_TIMEOUT _0		Video Pipe 0 Packet Detection Timeout used when LIM_HEART=1. Timeout can be configured from 1 to 127 in milliseconds.
	6:0	bits [6:0]: Timeout count (in ms)
		Note: Value of 0 will also default to 1ms.

LIM_HEART_TIMEOUT_1 (0x161)

BIT	7	6	5	4	3	2	1	0	
Field	_		LIM_HEART_TIMEOUT_1[6:0]						
Reset	_		0xA						
Access Type	_				Write, Read				

BITFIELD	BITS	DESCRIPTION
LIM HEADT TIMEOUT		Video Pipe 1 Packet Detection Timeout used when LIM_HEART=1. Timeout can be configured from 1 to 127 in milliseconds.
LIM_HEART_TIMEOUT	6:0	bits [6:0]: Timeout count (in ms)
		Note: Value of 0 will also default to 1ms.

LIM_HEART_TIMEOUT_2 (0x162)

BIT	7	6	5	4	3	2	1	0	
Field	_		LIM_HEART_TIMEOUT_2[6:0]						
Reset	_				0xA				
Access Type	-				Write, Read				

BITFIELD	BITS	DESCRIPTION
LIM HEART TIMEOUT		Video Pipe 2 Packet Detection Timeout used when LIM_HEART=1. Timeout can be configured from 1 to 127 in milliseconds.
_2	6:0	bits [6:0]: Timeout count (in ms)
		Note: Value of 0 will also default to 1ms.

LIM_HEART_TIMEOUT_3 (0x163)

BIT	7	6	5	4	3	2	1	0	
Field	_		LIM_HEART_TIMEOUT_3[6:0]						
Reset	_				0xA				
Access Type	_				Write, Read				

BITFIELD	BITS	DESCRIPTION
LIM HEART TIMEOUT		Video Pipe 3 Packet Detection Timeout used when LIM_HEART=1. Timeout can be configured from 1 to 127 in milliseconds.
_3	6:0	bits [6:0]: Timeout count (in ms)
		Note: Value of 0 will also default to 1ms.

CROSS_HS (0x1D8, 0x1F8, 0x218, 0x238)

BIT	7	6	5	4	3	2	1	0	
Field	_	CROSS_HS _I	CROSS_HS _F	CROSS_HS[4:0]					
Reset	_	0x0	0x0		0x18				
Access Type	_	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CROSS_HS_	6	Inverts CrossX	0b0: Do not invert bit 0b1: Invert bit
CROSS_HS_ F	5	Forces CrossX to 0 before inversion	0b0: Do not force bit to zero 0b1: Force bit to zero
CROSS_HS	4:0	Maps selected internal signal to Cross X	0bXXXXX: Incoming bit position

CROSS_VS (0x1D9, 0x1F9, 0x219, 0x239)

BIT	7	6	5	4	3	2	1	0	
Field	_	CROSS_VS _I	CROSS_VS _F	CROSS_VS[4:0]					
Reset	_	0x0	0x0		0x19				
Access Type	_	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CROSS_VS_	6	Inverts CrossX	0b0: Do not invert bit 0b1: Invert bit
CROSS_VS_ F	5	Forces CrossX to 0 before inversion	0b0: Do not force bit to zero 0b1: Force bit to zero
CROSS_VS	4:0	Maps selected internal signal to Cross X	0bXXXXX: Incoming bit position

CROSS_DE (0x1DA, 0x1FA, 0x21A, 0x23A)

BIT	7	6	5	4	3	2	1	0	
Field	_	CROSS_DE _I	CROSS_DE _F	CROSS_DE[4:0]					
Reset	_	0x0	0x0		0x1A				
Access Type	_	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CROSS_DE_	6	Inverts CrossX	0b0: Do not invert bit 0b1: Invert bit
CROSS_DE_ F	5	Forces CrossX to 0 before inversion	0b0: Do not force bit to zero 0b1: Force bit to zero
CROSS_DE	4:0	Maps selected internal signal to Cross X	0bXXXXX: Incoming bit position

PRBS_ERR (0x1DB, 0x1FB, 0x21B, 0x23B)

BIT	7	6	5	4	3	2	1	0		
Field		VPRBS_ERR[7:0]								
Reset		0x00								
Access Type				Read C	lears All					

BITFIELD	TIELD BITS DESCRIPTION		DECODE
VPRBS_ERR	7:0	Video PRBS error counter, clears on read	0xXX: Number of video PRBS errors since last read

VPRBS (0x1DC, 0x1FC, 0x21C, 0x23C)

BIT	7	6	5	4	3	2	1	0
Field	PATGEN_C LK_SRC	VPRBS_CH ECK	VPRBS_FAI	VPRBS24_ GENCHK_E N	VPRBS7_G ENCHK_EN	VPRBS9_G ENCHK_EN	DIS_GLITC H_FILT	VIDEO_LO CK
Reset	0x1	0b0	0b0	0b0	0b0	0b0	0x0	0b0
Access Type	Write, Read	Read Only	Read Only	Write, Read	Write, Read	Write, Read	Write, Read	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
PATGEN_CL K_SRC	7	Pattern generator clock source for video PRBS7, PRBS9, PRBS24, checkerboard, and gradient patterns. 0 = 150MHz, 1 = 375MHz (default).	0b0: 150MHz 0b1: 375MHz (default)
VPRBS_CHE CK	6	Indicates when PRBS checker has synchronized and is checking received PRBS data.	PRBS Checker has not started checking PRBS Checker started checking
VPRBS_FAIL	5	Indicates when PRBS checker could not synchronize and PRBS test failed.	0: PRBS Checker synchronized and test passed 1: PRBS Checker could not synchronize and test failed
VPRBS24_G ENCHK_EN	4	Enables video PRBS24 generator/checker	0b0: Video PRBS24 generator/checker disabled 0b1: Video PRBS24 generator/checker enabled
VPRBS7_GE NCHK_EN	3	Enables video PRBS7 generator/checker	0b0: Video PRBS7 generator/checker disabled 0b1: Video PRBS7 generator/checker enabled
VPRBS9_GE NCHK_EN	2	Enables video PRBS9 generator/checker	0b0: Video PRBS9 generator/checker disabled 0b1: Video PRBS9 generator/checker enabled
DIS_GLITCH _FILT	1	Disables HS, VS, and DE glitch filtering	0b0: Glitch filter enabled 0b1: Glitch filter disabled
VIDEO_LOC K	0	Video channel is locked and outputting valid video data	0b0: Video channel is not locked 0b1: Video channel is locked

POLARITY A L (0x2E0)

BIT	7	6	5	4	3	2	1	0	
Field		POLARITY_A_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
POLARITY_ A_L	7:0	Packet GPIO[7:0] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)

POLARITY B L (0x2E1)

BIT	7	6	5	4	3	2	1	0	
Field		POLARITY_B_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
POLARITY_ B_L	7:0	Packet GPIO[7:0] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)

POLARITY C L (0x2E2)

BIT	7	6	5	4	3	2	1	0	
Field		POLARITY_C_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
POLARITY_ C_L	7:0	Packet GPIO[7:0] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)

POLARITY D L (0x2E3)

BIT	7	6	5	4	3	2	1	0	
Field		POLARITY_D_L[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE		
POLARITY_ D_L	7:0	Packet GPIO[7:0] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)		

POLARITY AB H (0x2E4)

BIT	7	6	5	4	3	2	1	0
Field	_	PO	POLARITY_B_H[2:0]			POLARITY_A_H[2:0]		
Reset	_		0x0			0x0		
Access Type	-		Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
POLARITY_ B_H	6:4	Packet GPIO[10:8] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)

BITFIELD	BITS	DESCRIPTION	DECODE
POLARITY_ A_H	2:0	Packet GPIO[10:8] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)

POLARITY_CD_H (0x2E5)

BIT	7	6	5	4	3	2	1	0
Field	_	PO	LARITY_D_H[2:0]	_	POLARITY_C_H[2:0]		
Reset	_		0x0		_		0x0	
Access Type	_		Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE		
POLARITY_ D_H	6:4	Packet GPIO[10:8] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)		
POLARITY_ C_H	2:0	Packet GPIO[10:8] RX Aggregation Polarity/ Inversion Function	0x0: Acitve Low (True State, default) 0x1: Active High (Invert State)		

ENABLE_A_L (0x2E6)

BIT	7	6	5	4	3	2	1	0	
Field	ENABLE_A_L[7:0]								
Reset	0x0								
Access Type	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_A_ L	7:0	Packet GPIO[7:0] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

ENABLE_B_L (0x2E7)

BIT	7	6	5	4	3	2	1	0
Field	ENABLE_B_L[7:0]							
Reset		0x0						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_B_ L	7:0	Packet GPIO[7:0] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

ENABLE C L (0x2E8)

BIT	7	6	5	4	3	2	1	0	
Field	ENABLE_C_L[7:0]								
Reset		0x0							
Access Type	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_C_	7:0	Packet GPIO[7:0] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

ENABLE D L (0x2E9)

BIT	7	6	5	4	3	2	1	0	
Field	ENABLE_D_L[7:0]								
Reset	0x0								
Access Type	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_D_ L	7:0	Packet GPIO[7:0] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

ENABLE_AB_H (0x2EA)

BIT	7	6	5	4	3	2	1	0
Field	ı	E1	ENABLE_B_H[2:0]			ENABLE_A_H[2:0]		
Reset	_		0x0				0x0	
Access Type	-		Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_B_ H	6:4	Packet GPIO[10:8] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)
ENABLE_A_ H	2:0	Packet GPIO[10:8] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

ENABLE_CD_H (0x2EB)

BIT	7	6	5	4	3	2	1	0
Field	_	EI	ENABLE_D_H[2:0]			EI	NABLE_C_H[2	:0]
Reset	_		0x0				0x0	
Access Type	_		Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
ENABLE_D_ H	6:4	Packet GPIO[10:8] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)
ENABLE_C_ H	2:0	Packet GPIO[10:8] RX Aggregation Enable	0x0: Disabled (GPIO RX data bit set high to aggregator or AND function, default) 0x1: Enabled (GPIO RX data bit passed to aggregator or AND function)

READ_A_L (0x2EC)

BIT	7	6	5	4	3	2	1	0
Field		READ_A_L[7:0]						
Reset		0x0						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
READ_A_L	7:0	Packet GPIO[7:0] RX Aggregation Read State

READ B L (0x2ED)

BIT	7	6	5	4	3	2	1	0
Field		READ_B_L[7:0]						
Reset		0x0						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
READ_B_L	7:0	Packet GPIO[7:0] RX Aggregation Read State

READ_C_L (0x2EE)

BIT	7	6	5	4	3	2	1	0
Field		READ_C_L[7:0]						
Reset		0x0						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
READ_C_L	7:0	Packet GPIO[7:0] RX Aggregation Read State

READ_D_L (0x2EF)

BIT	7	6	5	4	3	2	1	0
Field		READ_D_L[7:0]						
Reset		0x0						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
READ_D_L	7:0	Packet GPIO[7:0] RX Aggregation Read State

READ_AB_H (0x2F0)

BIT	7	6	5	4	3	2	1	0
Field	_	F	READ_B_H[2:0]			READ_A_H[2:0]		
Reset	_		0x0			0x0		
Access Type	_		Read Only		_		Read Only	

BITFIELD	BITS	DESCRIPTION
READ_B_H	6:4	Packet GPIO[10:8] RX Aggregation Read State
READ_A_H	2:0	Packet GPIO[10:8] RX Aggregation Read State

READ_CD_H (0x2F1)

BIT	7	6	5	4	3	2	1	0
Field	_	F	READ_D_H[2:0]			READ_C_H[2:0]		
Reset	_		0x0				0x0	
Access Type	_		Read Only			Read Only		

BITFIELD	BITS	DESCRIPTION
READ_D_H	6:4	Packet GPIO[10:8] RX Aggregation Read State
READ_C_H	2:0	Packet GPIO[10:8] RX Aggregation Read State

OUTPUT (0x2F2)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	OUTPUT_I NVERT	OUTPUT_E NABLE	DESTINATI ON	READ_FLA G
Reset	_	-	_	_	0x0	0x0	0x0	0x0
Access Type	_	-	_	_	Write, Read	Write, Read	Write, Read	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
OUTPUT_IN VERT	3	Packet GPIO RX Aggregation Output Invert	0x0: Aggregation Output True 0x1: Aggregation Output Inverted
OUTPUT_EN ABLE	2	Packet GPIO RX Aggregation Output Enable to ERRB Pin	0x0: Disabled (default) 0x1: Enabled
DESTINATIO N	1	Packet GPIO RX Aggregation Output destination or output enable to MFP6	0x0: Disabled to MFP6 0x1: Enabled to MFP6

BITFIELD	BITS	DESCRIPTION	DECODE
READ_FLAG	0	Packet GPIO RX Aggregation Output, Active Low	0x0: Aggregation Error 0x1: Aggregation No Error

GPIO_A (0x300)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x301)

BIT	7	6	5	4	3	2	1	0		
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]						
Reset	0>	k 2	0b1	0x00						
Access Type	Write, Read Write, R			Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x302)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x00				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x300) and PULL_UPDN_SEL (0x301) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO A (0x303)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ		
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1		
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1		
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled		

GPIO_B (0x304)

BIT	7	6	5	4	3	2	1	0
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]				
Reset	0x2		0b1	0x01				
Access Type	-		Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x305)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x01				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x303) and PULL_UPDN_SEL (0x304) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x306)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x307)

BIT	7	6	5	4	3	2	1	0
Field	PULL_UPDN_SEL[1:0] OUT_TYPE		GPIO_TX_ID[4:0]					
Reset	0x2		0b1	0x02				
Access Type	Write, Read Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x308)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x02				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x306) and PULL_UPDN_SEL (0x307) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x309)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ		
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1		
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1		
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_TX_E	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled		

GPIO_B (0x30A)

BIT	7	6	5	4	3	2	1	0	
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]					
Reset	0x2		0b1	0x03					
Access Type	Write, Read		Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved		
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull		
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x30B)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x03				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x309) and PULL_UPDN_SEL (0x30A) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO A (0x30C)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE	
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ	
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled	
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1	
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1	
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception	
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission	
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled	

GPIO_B (0x30D)

BIT	7	6	5	4	3	2	1	0	
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]					
Reset	0x2		0b1	0x04					
Access Type	Write, Read W		Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE		
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved		
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull		
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x30E)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x04				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x30C) and PULL_UPDN_SEL (0x30D) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x310)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1		
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1		
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled		

GPIO_B (0x311)

BIT	7	6	5	4	3	2	1	0		
Field	PULL_UPD	N_SEL[1:0]	OUT_TYPE	GPIO_TX_ID[4:0]						
Reset	0x2		0b1	0x05						
Access Type	Write,	Read	Write, Read			Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x312)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x05				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x310) and PULL_UPDN_SEL (0x311) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x313)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x314)

BIT	7	6	5	4	3	2	1	0		
Field	PULL_UPD	N_SEL[1:0]	OUT_TYPE	GPIO_TX_ID[4:0]						
Reset	0x0		0b1	0x06						
Access Type			Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration by default MFP6 does not have a pull down selection like the other MFPs.	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x315)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x06				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x313) and PULL_UPDN_SEL (0x314) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x316)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x317)

BIT	7	6	5	4	3	2	1	0
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]				
Reset	0x2		0b1	0x07				
Access Type	Write, Read		Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE	
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved	
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull	
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID	

GPIO_C (0x318)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x07				
Access Type	Write, Read	Write, Read		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x316) and PULL_UPDN_SEL (0x317) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x319)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x31A)

BIT	7	6	5	4	3	2	1	0	
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]					
Reset	0x2		0b1	0x08					
Access Type	Write, Read		Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE	
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved	
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull	
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID	

GPIO_C (0x31B)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0	0x08				
Access Type	Write, Read	Write, Read				Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x319) and PULL_UPDN_SEL (0x31A) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_A (0x31C)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_TX_E	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled

GPIO_B (0x31D)

BIT	7	6	5	4	3	2	1	0	
Field	PULL_UPDN_SEL[1:0]		OUT_TYPE	GPIO_TX_ID[4:0]					
Reset	0x2		0b1	0x09					
Access Type	Write,	Read	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE		
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved		
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull		
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x31E)

BIT	7	6	5	4	3	2	1	0
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]				
Reset	0x0	0b1	0b0			0x09		
Access Type	Write, Read	Write, Read	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x31C) and PULL_UPDN_SEL (0x31D) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO A (0x320)

BIT	7	6	5	4	3	2	1	0
Field	RES_CFG	RSVD	TX_COMP_ EN	GPIO_OUT	GPIO_IN	GPIO_RX_ EN	GPIO_TX_ EN	GPIO_OUT _DIS
Reset	0b1	0x0	0x0	0b0	0b0	0b0	0b0	0b1
Access Type	Write, Read		Write, Read	Write, Read	Read Only	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE	
RES_CFG	7	Resistor pullup/pulldown strength	0b0: 40kΩ 0b1: 1MΩ	
TX_COMP_E N	5	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled	
GPIO_OUT	4	GPIO pin output drive value when GPIO_RX_EN = 0	0b0: This GPIO pin output is driven to 0 0b1: This GPIO pin output is driven to 1	
GPIO_IN	3	GPIO pin input level	0b0: This GPIO pin value is 0 0b1: This GPIO pin value is 1	
GPIO_RX_E N	2	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception	
GPIO_TX_E N	1	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission	
GPIO_OUT_ DIS	0	Enable/disable GPIO output driver	0b0: Output driver enabled 0b1: Output driver disabled	

GPIO_B (0x321)

BIT	7	6	5	4	3	2	1	0		
Field	PULL_UPD	N_SEL[1:0]	OUT_TYPE	GPIO_TX_ID[4:0]						
Reset	0x2 0b1			0x0A						
Access Type	Write, Read Write, Read			Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
PULL_UPDN _SEL	7:6	Buffer pullup/pulldown configuration	0b00: None 0b01: Pullup 0b10: Pulldown 0b11: Reserved
OUT_TYPE	5	Driver type selection	0b0: Open-drain 0b1: Push-pull
GPIO_TX_ID	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x322)

BIT	7	6	5	4	3	2	1	0		
Field	OVR_RES_ CFG	GPIO_REC VED	RSVD	GPIO_RX_ID[4:0]						
Reset	0x0	0b1	0b0		0x0A					
Access Type	Write, Read	Write, Read				Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVR_RES_C FG	7	Override non-GPIO port function IO setting. When set, RES_CFG (0x320) and PULL_UPDN_SEL (0x321) are effective when pin is configured as non-GPIO. When cleared, non-GPIO pin function determines IO type.	0b0: Non-GPIO function determines IO type when alternate function is selected 0b1: RES_CFG and PULL_UPDN_SEL determine IO type for non-GPIO configuration
GPIO_RECV ED	6	Received GPIO value	
GPIO_RX_ID	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x337)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x00				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x338)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0			0x00		
Access Type	_	Write, Read	Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x33A)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x01				
Access Type		Write, Read	Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	4'II GPIO II) for hin while transmitting		0bXXXXX: This GPIO transmit ID		

GPIO_C (0x33B)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x01				
Access Type	_	Write, Read	Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO B (0x33D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x02				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x33E)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0			0x02		
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x341)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x03				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x342)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x03				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x344)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x04				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO C (0x345)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x04				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x347)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x05				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x348)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x05				
Access Type	_	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x34A)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x06				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	O_TX_ID 4:0 GPIO ID for pin while transmitting		0bXXXXX: This GPIO transmit ID		

GPIO_C (0x34B)

BIT	7	6	5	4	3	2	1	0
Field	-	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	-	0b1	0b0	0x06				
Access Type	-	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO B (0x34D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x07				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x34E)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x07				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x351)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x08				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x352)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x08				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x354)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x09				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO C (0x355)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x09				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x357)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_B	GPIO_TX_ EN_B	GPIO_TX_ID_B[4:0]				
Reset	0x0	0x0	0b0	0x0a				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_B	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_E N_B	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _B	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x358)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_B	GPIO_RX_ EN_B	GPIO_RX_ID_B[4:0]				
Reset	_	0b1	0b0	0x0a				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_B	6	Received GPIO value	
GPIO_RX_E N_B	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _B	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x36D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x00				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x36E)

BIT	7	6	5	4	3	2	1	0
Field	-	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	-	0b1	0b0	0x00				
Access Type	-	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x371)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x01				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x372)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0			0x01		
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x374)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x02				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x375)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x02				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x377)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x03				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO C (0x378)

BIT	7	6	5	4	3	2	1	0
Field	ı	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x03				
Access Type	-	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x37A)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x04				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x37B)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x04				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x37D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x05				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x37E)

BIT	7	6	5	4	3	2	1	0
Field	-	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0			0x05		
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_RECV ED_C	6	Received GPIO value			
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID		

GPIO B (0x381)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]					
Reset	0x0	0x0	0b0		0x06				
Access Type		Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x382)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x06				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID		

GPIO_B (0x384)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x07				
Access Type		Write, Read	Write, Read	1 1				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x385)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x07				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x387)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x08				
Access Type		Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO C (0x388)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x08				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x38A)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x09				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x38B)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	_	0b1	0b0	0x09				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x38D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_C	GPIO_TX_ EN_C	GPIO_TX_ID_C[4:0]				
Reset	0x0	0x0	0b0	0x0a				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_C	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_C	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _C	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x38E)

BIT	7	6	5	4	3	2	1	0
Field	-	GPIO_REC VED_C	GPIO_RX_ EN_C	GPIO_RX_ID_C[4:0]				
Reset	-	0b1	0b0	0x0a				
Access Type	-	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_C	6	Received GPIO value	
GPIO_RX_E N_C	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _C	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO B (0x3A4)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x00				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3A5)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x00				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3A7)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x01				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3A8)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x01				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3AA)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x02				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO C (0x3AB)

BIT	7	6	5	4	3	2	1	0
Field	ı	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x02				
Access Type	-	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3AD)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x03				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3AE)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x03				
Access Type	_	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3B1)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x04				
Access Type		Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3B2)

BIT	7	6	5	4	3	2	1	0
Field	-	RSVD	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	-	0b1	0b0	0x04				
Access Type	-		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception	
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID	

GPIO B (0x3B4)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x05				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3B5)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x05				
Access Type	_	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3B7)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D					
Reset	0x0	0x0	0b0	0x06				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x3B8)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x06				
Access Type	_	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO B (0x3BA)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x07				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE	
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled	
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission	
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID	

GPIO C (0x3BB)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x07				
Access Type	_	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_RECV ED_D	6	Received GPIO value			
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID		

GPIO_B (0x3BD)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0			80x0		
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled		
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission		
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID		

GPIO_C (0x3BE)

BIT	7	6	5	4	3	2	1	0
Field	-	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0			0x08		
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_RECV ED_D	6	Received GPIO value			
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception		
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID		

GPIO B (0x3C1)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]				
Reset	0x0	0x0	0b0	0x09				
Access Type		Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3C2)

BIT	7	6	5	4	3	2	1	0	
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]					
Reset	_	0b1	0b0	0x09					
Access Type	_	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

GPIO_B (0x3C4)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD	TX_COMP_ EN_D	GPIO_TX_ EN_D	GPIO_TX_ID_D[4:0]					
Reset	0x0	0x0	0b0		0x0a				
Access Type		Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
TX_COMP_E N_D	6	Jitter minimization compensation enable	0b0: Jitter compensation disabled 0b1: Jitter compensation enabled
GPIO_TX_E N_D	5	GPIO Tx source control	0b0: This GPIO source disabled for GMSL2 transmission 0b1: This GPIO source enabled for GMSL2 transmission
GPIO_TX_ID _D	4:0	GPIO ID for pin while transmitting	0bXXXXX: This GPIO transmit ID

GPIO_C (0x3C5)

BIT	7	6	5	4	3	2	1	0
Field	_	GPIO_REC VED_D	GPIO_RX_ EN_D	GPIO_RX_ID_D[4:0]				
Reset	_	0b1	0b0	0x0a				
Access Type	_	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_RECV ED_D	6	Received GPIO value	
GPIO_RX_E N_D	5	GPIO out source control	0b0: This GPIO source disabled for GMSL2 reception 0b1: This GPIO source enabled for GMSL2 reception
GPIO_RX_ID _D	4:0	GPIO ID for pin while receiving	0bXXXXX: This GPIO receive ID

BACKTOP1 (0x400)

BIT	7	6	5	4	3	2	1	0
Field	CSIPLL3_L OCK	CSIPLL2_L OCK	CSIPLL1_L OCK	CSIPLL0_L OCK	RSVD	RSVD	RSVD	RSVD
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b1
Access Type	Read Only	Read Only	Read Only	Read Only				

BITFIELD	BITS	DESCRIPTION	DECODE	
CSIPLL3_LO CK	7	CSIPLL1 lock	0b0: PLL not locked 0b1: PLL locked	
CSIPLL2_LO CK	6	CSIPLL0 lock	0b0: CSI2 0 PLL not locked 0b1: CSI2 0 PLL locked	
CSIPLL1_LO CK	5	CSIPLL1 lock	0b0: PLL not locked 0b1: PLL locked	
CSIPLL0_LO CK	4	CSIPLL0 lock	0b0: CSI2 0 PLL not locked 0b1: CSI2 0 PLL locked	

BACKTOP2 (0x401)

BIT	7	6	5	4	3	2	1	0		
Field		VS_VC0_L[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC0_L	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 0 enabled 0xXXXXXX1X: Virtual Channel 1 enabled 0xXXXXXX1XX: Virtual Channel 2 enabled 0xXXXXX1XXX: Virtual Channel 3 enabled 0xXXX1XXXX: Virtual Channel 4 enabled 0xXX1XXXXX: Virtual Channel 5 enabled 0xX1XXXXXX: Virtual Channel 6 enabled 0x1XXXXXXX: Virtual Channel 7 enabled

BACKTOP3 (0x402)

BIT	7	6	5	4	3	2	1	0	
Field		VS_VC0_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC0_H	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 8 enabled 0xXXXXXX1X: Virtual Channel 9 enabled 0xXXXXXX1XX: Virtual Channel 10 enabled 0xXXXXX1XXX: Virtual Channel 11 enabled 0xXXXX1XXXX: Virtual Channel 12 enabled 0xXX1XXXXX: Virtual Channel 13 enabled 0xX1XXXXXX: Virtual Channel 14 enabled 0x1XXXXXXX: Virtual Channel 15 enabled

BACKTOP4 (0x403)

BIT	7	6	5	4	3	2	1	0	
Field		VS_VC1_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC1_L	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 0 enabled 0xXXXXXXX1X: Virtual Channel 1 enabled 0xXXXXXX1XX: Virtual Channel 2 enabled 0xXXXXX1XXX: Virtual Channel 3 enabled 0xXXXX1XXXX: Virtual Channel 4 enabled 0xXX1XXXXX: Virtual Channel 5 enabled 0xX1XXXXXX: Virtual Channel 6 enabled 0x1XXXXXXX: Virtual Channel 7 enabled

BACKTOP5 (0x404)

BIT	7	6	5	4	3	2	1	0	
Field		VS_VC1_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC1_H	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 8 enabled 0xXXXXXX1X: Virtual Channel 9 enabled 0xXXXXXX1XX: Virtual Channel 10 enabled 0xXXXXX1XXX: Virtual Channel 11 enabled 0xXXX1XXXX: Virtual Channel 12 enabled 0xXX1XXXXX: Virtual Channel 13 enabled 0xX1XXXXXX: Virtual Channel 14 enabled 0x1XXXXXXX: Virtual Channel 15 enabled

BACKTOP6 (0x405)

BIT	7	6	5	4	3	2	1	0		
Field		VS_VC2_L[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC2_L	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 0 enabled 0xXXXXXXX1X: Virtual Channel 1 enabled 0xXXXXXX1XX: Virtual Channel 2 enabled 0xXXXXX1XXX: Virtual Channel 3 enabled 0xXXXX1XXXX: Virtual Channel 4 enabled 0xXX1XXXXX: Virtual Channel 5 enabled 0xX1XXXXXX: Virtual Channel 6 enabled 0x1XXXXXXX: Virtual Channel 7 enabled

BACKTOP7 (0x406)

BIT	7	6	5	4	3	2	1	0		
Field		VS_VC2_H[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC2_H	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 8 enabled 0xXXXXXX1X: Virtual Channel 9 enabled 0xXXXXXX1XX: Virtual Channel 10 enabled 0xXXXXX1XXX: Virtual Channel 11 enabled 0xXXXX1XXXX: Virtual Channel 12 enabled 0xXX1XXXXXX: Virtual Channel 13 enabled 0xX1XXXXXXX: Virtual Channel 14 enabled 0x1XXXXXXXX: Virtual Channel 15 enabled

BACKTOP8 (0x407)

BIT	7	6	5	4	3	2	1	0	
Field		VS_VC3_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC3_L	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 0 enabled 0xXXXXXX1X: Virtual Channel 1 enabled 0xXXXXXX1X: Virtual Channel 2 enabled 0xXXXXX1XX: Virtual Channel 3 enabled 0xXXXX1XXX: Virtual Channel 4 enabled 0xXXX1XXXX: Virtual Channel 5 enabled 0xX1XXXXXX: Virtual Channel 6 enabled 0x1XXXXXXX: Virtual Channel 7 enabled

BACKTOP9 (0x408)

BIT	7	6	5	4	3	2	1	0		
Field		VS_VC3_H[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
VS_VC3_H	7:0	Override Frame Start-End short packet VC enable. Each bit corresponds to a Virtual Channel number enable	0x0: Default behavior 0xXXXXXXX1: Virtual Channel 8 enabled 0xXXXXXXX1X: Virtual Channel 9 enabled 0xXXXXXX1XX: Virtual Channel 10 enabled 0xXXXXX1XXX: Virtual Channel 11 enabled 0xXXXX1XXXX: Virtual Channel 12 enabled 0xXX1XXXXX: Virtual Channel 13 enabled 0xX1XXXXXX: Virtual Channel 14 enabled 0x1XXXXXXX: Virtual Channel 15 enabled

BACKTOP10 (0x409)

BIT	7	6	5	4	3	2	1	0
Field	DE_SEL3	DE_SEL2	DE_SEL1	DE_SEL0	RSVD	RSVD	RSVD	RSVD
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DE_SEL3	7	Use HS for creation of long packets instead of DE	0x0: Use DE for creation of long packets 0x1: Use HS for creation of long packets
DE_SEL2	6	Use HS for creation of long packets instead of DE	0x0: Use DE for creation of long packets 0x1: Use HS for creation of long packets
DE_SEL1	5	Use HS for creation of long packets instead of DE	0x0: Use DE for creation of long packets 0x1: Use HS for creation of long packets
DE_SEL0	4	Use HS for creation of long packets instead of DE	0x0: Use DE for creation of long packets 0x1: Use HS for creation of long packets

BACKTOP11 (0x40A)

BIT	7	6	5	4	3	2	1	0
Field	cmd_overflo w3	cmd_overflo w2	cmd_overflo w1	cmd_overflo w0	LMO_3	LMO_2	LMO_1	LMO_0
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
cmd_overflo w3	7	Pipe 3 command FIFO overflow. Cleared on read. See the CMD_OVFL_3_ERRB_OEN register to enable output of this status on ERRB pin.	0b0: No overflow 0b1: Overflow
cmd_overflo w2	6	Pipe 2 command FIFO overflow. Cleared on read. See the CMD_OVFL_2_ERRB_OEN register to enable output of this status on ERRB pin.	0b0: No overflow 0b1: Overflow
cmd_overflo w1	5	Pipe 1 command FIFO overflow. Cleared on read. See the CMD_OVFL_1_ERRB_OEN register to enable output of this status on ERRB pin.	0b0: No overflow 0b1: Overflow
cmd_overflo w0	4	Pipe 0 command FIFO overflow. Cleared on read. See the CMD_OVFL_0_ERRB_OEN register to enable output of this status on ERRB pin.	0b0: No overflow 0b1: Overflow
LMO_3	3	Pipe 3 line memory overflow sticky register. Cleared on read.	0b0: No overflow 0b1: Overflow
LMO_2	2	Pipe 2 line memory overflow sticky register. Cleared on read.	0b0: No overflow 0b1: Overflow
LMO_1	1	Pipe 1 line memory overflow sticky register. Cleared on read.	0b0: No overflow 0b1: Overflow
LMO_0	0	Pipe 0 line memory overflow sticky register. Cleared on read. See LMO_0_ERRB_EN to enable output of this status to the ERRB pin	0b0: No overflow 0b1: Overflow

BACKTOP12 (0x40B)

BIT	7	6	5	4	3	2	1	0
Field		;	soft_bpp_0[4:0]	-	CSI_OUT_ EN	RSVD		
Reset			0x00			_	0b1	0b0
Access Type			Write, Read	-	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
soft_bpp_0	7:3	Pipe 0 BPP software-override: Software-override video data BPP.	0x8: Data types = 0x2A, 0x10-12, 0x31-37 0xA: Data types = 0x2B 0xC: Data types = 0x2C 0xE: Data types = 0x2D 0x10: Data types = 0x22, 0x1E, 0x2E 0x12: Data types = 0x23 0x14: Data types = 0x1F, 0x2F 0x18: Data types = 0x24, 0x30 All other values: Reserved
CSI_OUT_E N	1	Enables MIPI CSI output	0b0: CSI output disabled 0x1: CSI output enabled

BACKTOP13 (0x40C)

BIT	7	6	5	4	3 2 1 0				
Field		soft_vo	:_1[3:0]		soft_vc_0[3:0]				
Reset		0:	к0			0x0			
Access Type		Write, Read Write, Read							
BITFIELD	BITS	BITS DESCRIPTION DECODE							
- ·		D: 4340	-		2 37 2				

BITFIELD	DIIO	DESCRIPTION	DECODE
soft_vc_1	7:4	Pipe 1 VC software-override	0xX: Software-defined virtual channel for Pipe 1
soft_vc_0	3:0	Pipe 0 VC software-override	0xX: Software-defined virtual channel for Pipe 0

BACKTOP14 (0x40D)

BIT	7	6	5	4	3	3 2 1 0				
Field		soft_vo	:_3[3:0]		soft_vc_2[3:0]					
Reset		0)	к0		0x0					
Access Type		Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
soft_vc_3	7:4	Pipe 3 VC software-override	0xX: Software-defined virtual channel for Pipe 3
soft_vc_2	3:0	Pipe 2 VC software-override	0xX: Software-defined virtual channel for Pipe 2

BACKTOP15 (0x40E)

BIT	7	6	5	4	3	2	1	0	
Field	soft_dt_	1_h[1:0]	soft_dt_0[5:0]						
Reset	0x0 0x00								
Access Type	Write,	Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
soft_dt_1_h	7:6	Pipe 1 DT (high bits) software-override bitfield. Works together with soft_dt_1_I in BACKTOP16 register (0x40F).	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x35: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8
soft_dt_0	5:0	Pipe 0 DT software-override.	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8

BACKTOP16 (0x40F)

BIT	7	6	5	4	3	3 2 1 0				
Field		soft_dt_	2_h[3:0]		soft_dt_1_I[3:0]					
Reset		0)	(0		0x0					
Access Type		Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
soft_dt_2_h	7:4	Pipe 2 DT (high bits) software-override bitfield. Works together with soft_dt_2_I in BACKTOP17 register (0x410).	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8
soft_dt_1_l	3:0	Pipe 1 DT (low bits) software-override bitfield. Works together with soft_dt_1_h in BACKTOP16 register (0x40E).	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x35: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8

BACKTOP17 (0x410)

BIT	7	6	5	4	3	2	1	0	
Field		soft_dt_3[5:0] sc							
Reset		0x00 0x0							
Access Type			Write,	Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
soft_dt_3	7:2	Pipe 3 DT software-override	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x34: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8
soft_dt_2_l	1:0	Pipe 2 DT (low bits) software-override. Works together with soft_dt_2_h in BACKTOP16 register (0x40F).	0x10: GENERIC8 0x11: GENERIC8 0x12: EMBEDDED 0x1E: YUV422 8-bit 0x1F: YUV422 10-bit 0x22: RGB565 0x23: RGB666 0x24: RGB888 0x2A: RAW8 0x2B: RAW10 0x2C: RAW12 0x2D: RAW14 0x2E: RAW16 0x2F: RAW20 0x30: YUV422 12-bit 0x31: UDP8 0x32: UDP8 0x33: UDP8 0x35: UDP8 0x36: UDP8 0x37: UDP8

BACKTOP18 (0x411)

BIT	7	6	5	4	3	2	1	0	
Field	So	oft_bpp_2_h[2:	0]	soft_bpp_1[4:0]					
Reset		0x0		0x00					
Access Type		Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
soft_bpp_2_h	7:5	Pipe 2 BPP (high bits) software-override bitfield: Works together with soft_bpp_2_l in BACKTOP19 register (0x412).	0bXX: High bits of software-defined BPP for Pipe 2
soft_bpp_1	4:0	Pipe 1 BPP software-override bitfield: Software override video data BPP.	0x8: Data types = 0x2A, 0x10-12, 0x31-37 0xA: Data types = 0x2B 0xC: Data types = 0x2C 0xE: Data types = 0x2D 0x10: Data types = 0x22, 0x1E, 0x2E 0x12: Data types = 0x23 0x14: Data types = 0x1F, 0x2F 0x18: Data types = 0x24, 0x30

BACKTOP19 (0x412)

BIT	7	6	5	4	3	2	1	0
Field	_			soft_bpp_2_l[1:0]				
Reset	_		0x00 0x0					
Access Type	_			Write, Read			Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
soft_bpp_3	6:2	Pipe 3 BPP software-override bitfield: Software override video data BPP.	0x8: Data types = 0x2A, 0x10-12, 0x31-37 0xA: Data types = 0x2B 0xC: Data types = 0x2C 0xE: Data types = 0x2D 0x10: Data types = 0x22, 0x1E, 0x2E 0x12: Data types = 0x23 0x14: Data types = 0x1F, 0x2F 0x18: Data types = 0x24, 0x30 0bXX: New BPP for Pipe 4
soft_bpp_2_I	1:0	Pipe 2 BPP software-override register: Software override video data BPP (low bits). Works together with soft_bpp_2_h in BACKTOP18 register (0x412).	0bXX: Low bits of software-defined BPP for Pipe 2

BACKTOP20 (0x413)

BIT	7	6	5	4	3	2	1	0	
Field		phy0_csi_tx_dpll_fb_fraction_in_l[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
phy0_csi_tx_ dpll_fb_fracti on_in_l	7:0	Low byte of software-override value for CSI PHY0 frequency fine tuning	0xXX: PHY frequency fine tuning override low byte

BACKTOP21 (0x414)

BIT	7	6	5	4	3	2	1	0
Field	bpp8dbl3	bpp8dbl2	bpp8dbl1	bpp8dbl0	phy0_csi_tx_dpll_fb_fraction_in_h[3:0]			
Reset	0b0	0b0	0b0	0b0	0x0			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
bpp8dbl3	7	Pipe 3 BPP8 double-pixel register: BPP = 8 processed as 16-bit color	0b0: Disable process BPP = 8 as 16-bit color 0b1: Enable process BPP = 8 as 16-bit color
bpp8dbl2	6	Pipe 2 BPP8 double-pixel register: BPP = 8 processed as 16-bit color	0b0: Disable process BPP = 8 as 16-bit color 0b1: Enable process BPP = 8 as 16-bit color
bpp8dbl1	5	Pipe 1 BPP8 double-pixel register: BPP = 8 processed as 16-bit color	0b0: Disable process BPP = 8 as 16-bit color 0b1: Enable process BPP = 8 as 16-bit color
bpp8dbl0	4	Pipe 0 BPP8 double-pixel register: BPP = 8 processed as 16-bit color	0b0: Disable process BPP = 8 as 16-bit color 0b1: Enable process BPP = 8 as 16-bit color
phy0_csi_tx_ dpll_fb_fracti on_in_h	3:0	High nibble of software-override value for CSI PHY0 frequency fine tuning	0xX: PHY0 frequency fine tuning override high nibble

BACKTOP22 (0x415)

BIT	7	6	5	4	3	2	1	0
Field	override_bp p_vc_dt_1	override_bp p_vc_dt_0	phy0_csi_tx _dpll_fb_fra ction_predef _en	nhv0 csi ty doll predef freg(4:0)				
Reset	0b0	0b0	0b1	0x0F				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
override_bpp _vc_dt_1	7	Pipe 1 software-override enable bitfield Note: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. • RRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for	0b0: Disable 0b1: Enable
		errb_pkts	

BITFIELD	BITS	DESCRIPTION	DECODE
override_bpp _vc_dt_0	6	Pipe 0 software-override enable bitfield Note: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. • ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC _#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0b0: Disable 0b1: Enable
phy0_csi_tx_ dpll_fb_fracti on_predef_e n	5	MIPI PHY0 software-override disable for frequency fine tuning	0b0: Enable software override for frequency fine tuning 0b1: Disable software override for frequency fine tuning
phy0_csi_tx_ dpll_predef_f req	4:0	MIPI PHY0 DPLL frequency bitfield. Set DPLL frequency on multiple of 100MHz. DPHY: Clock frequency is half, data rate is equivalent bps/lane. CPHY: 2.28bits/symbol.	DPHY data rate/lane 0x02: 200MHz DPLL, 200Mbps/lane 0x19: 2500MHz DPLL, 2.5Gbps/lane CPHY data rate/trio 0x02: 200MHz DPLL, 456Mbps/lane 0x19: 2500MHz DPLL, 5.7Gbps/lane

BACKTOP23 (0x416)

BIT	7	6	5	4	3	2	1	0	
Field	phy1_csi_tx_dpll_fb_fraction_in_l[7:0]								
Reset		0x00							
Access Type		Write, Read							
RITFIFI D	RITS	RITS DESCRIPTION DECODE							

BITFIELD	BITS	DESCRIPTION	DECODE
phy1_csi_tx_ dpll_fb_fracti on_in_l	7:0	Low byte of software-override value for CSI PHY1 frequency fine tuning	0xXX: PHY1 frequency fine tuning override low byte

BACKTOP24 (0x417)

BIT	7	6	5	4	3	2	1	0	
Field	bpp8dbl3_m ode	bpp8dbl2_m ode	bpp8dbl1_m ode	bpp8dbl0_m ode	phy1_csi_tx_dpll_fb_fraction_in_h[3:0]				
Reset	0b0	0b0	0b0	0b0	0x0				
Access Type	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
bpp8dbl3_mo de	7	Pipe 3 BPP8 double-pixel mode register: 8-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
bpp8dbl2_mo de	6	Pipe 2 BPP8 double-pixel mode register: 8-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected

BITFIELD	BITS	DESCRIPTION	DECODE
bpp8dbl1_mo de	5	Pipe 1 BPP8 double-pixel mode register: 8-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
bpp8dbl0_mo de	4	Pipe 0 BPP8 double-pixel mode register: 8-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
phy1_csi_tx_ dpll_fb_fracti on_in_h	3:0	High nibble of software-override value for CSI PHY1 frequency fine tuning	0xX: PHY1 frequency fine tuning override high nibble

BACKTOP25 (0x418)

BIT	7	6	5	4	3	2	1	0
Field	override_bp p_vc_dt_3	override_bp p_vc_dt_2	phy1_csi_tx _dpll_fb_fra ction_predef _en	phy1_csi_tx_dpll_predef_freq[4:0]				
Reset	0b0	0b0	0b1	0x0F				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
override_bpp _vc_dt_3	7	Pipe 3 software-override enable bitfield Note: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. • ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC _#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0b0: Disable 0b1: Enable
override_bpp _vc_dt_2	6	Pipe 2 software-override enable bitfield Note: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. • ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC _#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0b0: Disable 0b1: Enable
phy1_csi_tx_ dpll_fb_fracti on_predef_e n	5	MIPI PHY1 software-override disable for frequency fine tuning	0b0: Enable software override for frequency fine tuning 0b1: Disable software override for frequency fine tuning

BITFIELD	BITS	DESCRIPTION	DECODE
phy1_csi_tx_ dpll_predef_f req	4:0	MIPI PHY1 DPLL frequency bitfield: Set DPLL frequency on multiple of 100MHz. DPHY: Clock frequency is half; data rate is equivalent bps/lane. CPHY: 2.28bits/symbol.	DPHY data rate/lane 0x02: 200MHz DPLL, 200Mbps/lane 0x19: 2500MHz DPLL, 2.5Gbps/lane CPHY data rate/trio 0x02: 200MHz DPLL,456Mbps/lane 0x19: 2500MHz DPLL, 5.7Gbps/lane

BACKTOP26 (0x419)

BIT	7	6	5	4	3	2	1	0		
Field		phy2_csi_tx_dpll_fb_fraction_in_l[7:0]								
Reset		0x00								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
phy2_csi_tx_ dpll_fb_fracti on_in_l	7:0	Low byte of software-override value for CSI PHY2 frequency fine tuning	0xXX: PHY1 frequency fine tuning override low byte

BACKTOP27 (0x41A)

BIT	7	6	5	4	3	2	1	0
Field	yuv_8_10_ mux_mode3	yuv_8_10_ mux_mode2	yuv_8_10_ mux_mode1	yuv_8_10_ mux_mode0	phy2_csi_tx_dpll_fb_fraction_in_h[3:0]			
Reset	0x0	0x0	0x0	0x0		0:	к0	
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
yuv_8_10_m ux_mode3	7	Pipe 3 YUV422 8-bit and 10-bit mux	0b0: Disable 8-/10-bit mux 0b1: Enable 8-/10-bit mux
yuv_8_10_m ux_mode2	6	Pipe 2 YUV422 8-bit and 10-bit mux	0b0: Disable 8-/10-bit mux 0b1: Enable 8-/10-bit mux
yuv_8_10_m ux_mode1	5	Pipe 1 YUV422 8-bit and 10-bit mux	0b0: Disable 8-/10-bit mux 0b1: Enable 8-/10-bit mux
yuv_8_10_m ux_mode0	4	Pipe 0 YUV422 8-bit and 10-bit mux	0b0: Disable 8-/10-bit mux 0b1: Enable 8-/10-bit mux
phy2_csi_tx_ dpll_fb_fracti on_in_h	3:0	High nibble of software-override value for CSI PHY2 frequency fine tuning	0xX: PHY1 frequency fine tuning override high nibble

BACKTOP28 (0x41B)

BIT	7	6	5	4	3	2	1	0
Field	-	-	phy2_csi_tx _dpll_fb_fra ction_predef _en _ phy2_csi_tx_dpll_predef_freq[4:0]					
Reset	_	_	0b1	0b1 0x0F				
Access Type	_	_	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
phy2_csi_tx_ dpll_fb_fracti on_predef_e n	5	MIPI PHY2 software-override disable for frequency fine tuning	0b0: Enable software override for frequency fine tuning 0b1: Disable software override for frequency fine tuning
phy2_csi_tx_ dpll_predef_f req	4:0	MIPI PHY2 DPLL frequency bitfield: Set DPLL frequency on multiple of 100MHz. DPHY: Clock frequency is half; data rate is equivalent bps/lane. CPHY: 2.28bits/symbol.	DPHY data rate/lane 0x02: 200MHz DPLL, 200Mbps/lane 0x19: 2500MHz DPLL, 2.5Gbps/lane CPHY data rate/trio 0x02: 200MHz DPLL,456Mbps/lane 0x19: 2500MHz DPLL, 5.7Gbps/lane

BACKTOP29 (0x41C)

BIT	7	6	5	4	3	2	1	0		
Field		phy3_csi_tx_dpll_fb_fraction_in_l[7:0]								
Reset		0x00								
Access Type	Write, Read									

BITFIELD	BITS	DESCRIPTION	DECODE
phy3_csi_tx_ dpll_fb_fracti on_in_l	7:0	Low byte of software-override value for CSI PHY3 frequency fine tuning	0xXX: PHY1 frequency fine tuning override low byte

BACKTOP30 (0x41D)

BIT	7	6	5	4	3	2	1	0
Field	-	ı	bpp10dbl3_ mode	bpp10dbl3	phy3_csi_tx_dpll_fb_fraction_in_h[3:0]			
Reset	_	_	0b0	0b0		0>	(0	
Access Type	_	ı	Write, Read	Write, Read	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE		
bpp10dbl3_m ode	5	Pipe 3 BPP10 double-pixel mode register: 10-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected		
bpp10dbl3	4	Pipe 3 BPP10 double-pixel register: BPP = 10 processed as 20-bit color	0b0: Disable process BPP = 10 as 20-bit color 0b1: Enable process BPP = 10 as 20-bit color		

BITFIELD	BITS	DESCRIPTION	DECODE
phy3_csi_tx_ dpll_fb_fracti on_in_h	3:0	High nibble of software-override value for CSI PHY3 frequency fine tuning	0xX: PHY1 frequency fine tuning override high nibble

BACKTOP31 (0x41E)

BIT	7	6	5	4	3	2	1	0
Field	bpp10dbl2_ mode	bpp10dbl2	phy3_csi_tx _dpll_fb_fra ction_predef _en		phy3_csi_	_tx_dpll_predef	f_freq[4:0]	
Reset	0b0	0b0	0b1			0x0F		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
bpp10dbl2_m ode	7	Pipe 2 BPP10 double-pixel mode register: 10-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
bpp10dbl2	6	Pipe 2 BPP10 double-pixel register: BPP = 10 processed as 20-bit color	0b0: Disable process BPP = 10 as 20-bit color 0b1: Enable process BPP = 10 as 20-bit color
phy3_csi_tx_ dpll_fb_fracti on_predef_e n	5	MIPI PHY3 software-override disable for frequency fine tuning	0b0: Enable software override for frequency fine tuning 0b1: Disable software override for frequency fine tuning
phy3_csi_tx_ dpll_predef_f req	4:0	MIPI PHY3 DPLL frequency bitfield: Set DPLL frequency on multiple of 100MHz. DPHY: Clock frequency is half; data rate is equivalent bps/lane. CPHY: 2.28bits/symbol.	DPHY data rate/lane 0x02: 200MHz DPLL, 200Mbps/lane 0x19: 2500MHz DPLL, 2.5Gbps/lane CPHY data rate/trio 0x02: 200MHz DPLL,456Mbps/lane 0x19: 2500MHz DPLL, 5.7Gbps/lane

BACKTOP32 (0x41F)

BIT	7	6	5	4	3	2	1	0
Field	bpp10dbl1_ mode	bpp10dbl1	bpp10dbl0_ mode	bpp10dbl0	bpp12dbl3	bpp12dbl2	bpp12dbl1	bpp12dbl0
Reset	0b0	0b0	0b0	0b0	0b0	0b0	0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
bpp10dbl1_m ode	7	Pipe 1 BPP10 double-pixel mode register: 10-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
bpp10dbl1	6	Pipe 1 BPP10 double-pixel register: BPP = 10 processed as 20-bit color	0b0: Disable process BPP = 10 as 20-bit color 0b1: Enable process BPP = 10 as 20-bit color
bpp10dbl0_m ode	5	Pipe 0 BPP10 double-pixel mode register: 10-bit alternate bit mapping to rams	0b0: Alternative bit mapping not selected 0b1: Alternative bit mapping selected
bpp10dbl0	4	Pipe 0 BPP10 double-pixel register: BPP = 10 processed as 20-bit color	0b0: Disable process BPP = 10 as 20-bit color 0b1: Enable process BPP = 10 as 20-bit color

BITFIELD	BITS	DESCRIPTION	DECODE
bpp12dbl3	3	Pipe 3 BPP12 double-pixel register: BPP = 12 processed as 24-bit color	0b0: Disable process BPP = 12 as 24-bit color 0b1: Enable process BPP = 12 as 24-bit color
bpp12dbl2	2	Pipe 2 BPP12 double-pixel register: BPP = 12 processed as 24-bit color	0b0: Disable process BPP = 12 as 24-bit color 0b1: Enable process BPP = 12 as 24-bit color
bpp12dbl1	1	Pipe 1 BPP12 double-pixel register: BPP = 12 processed as 24-bit color	0b0: Disable process BPP = 12 as 24-bit color 0b1: Enable process BP P= 12 as 24-bit color
bpp12dbl0	0	Pipe 0 BPP12 double-pixel register: BPP = 12 processed as 24-bit color	0b0: Disable process BPP = 12 as 24-bit color 0b1: Enable process BPP = 12 as 24-bit color

BACKTOP1 (0x420)

BIT	7	6	5	4	3	2	1	0
Field		ERRB_PK	T_EN[3:0]		_	_	RSVI	D[1:0]
Reset		0b0	000		_	_	0x	01
Access Type		Write,	Read		_	_		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ EN	7:4	Enable the ERRB packet to each video pipe.	Obxxx0: Disable ERRB packet out to video pipe 0 Obxxx1: Enable ERRB packet out to video pipe 0 Obxx0x: Disable ERRB packet out to video pipe 1 Obxx1x: Enable ERRB packet out to video pipe 1 Obx0xx: Disable ERRB packet out to video pipe 2 Obx1xx: Enable ERRB packet out to video pipe 2 Ob0xxx: Disable ERRB packet out to video pipe 2 Ob0xxx: Disable ERRB packet out to video pipe 3 Ob1xxx: Enable ERRB packet out to video pipe 3

BACKTOP2 (0x421)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT_Insert_Mode_ 4[1:0]		ERRB_PKT_Insert_Mode_ 3[1:0]		ERRB_PKT_Insert_Mode_ 2[1:0]		ERRB_PKT_Insert_Mode_ 1[1:0]	
Reset	0b01		0b01		0b01		0b	01
Access Type	Write, Read		Write,	Read	Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ Insert_Mode _4	7:6	Specify where the ERRB packet is inserted. Specify if ERRB_PKT comes out before or after the "Frame Start/End short packet". Used in conjuction with ERRB_PKT_EDGE_SEL which is used to select Frame Start or Frame End.	0b00: No insertion 0b01: ERRB packet inserted before the Frame Start/End Packet 0b10: ERRB packet inserted after the Frame Start/ End Packet 0b11: Reserved
ERRB_PKT_ Insert_Mode _3	5:4	Specify where the ERRB packet is inserted. Specify if ERRB_PKT comes out before or after the "Frame Start/End short packet". Used in conjuction with ERRB_PKT_EDGE_SEL which is used to select Frame Start or Frame End.	0b00: No insertion 0b01: ERRB packet inserted before the Frame Start/End Packet 0b10: ERRB packet inserted after the Frame Start/ End Packet 0b11: Reserved

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ Insert_Mode _2	3:2	Specify where the ERRB packet is inserted. Specify if ERRB_PKT comes out before or after the "Frame Start/End short packet". Used in conjuction with ERRB_PKT_EDGE_SEL which is used to select Frame Start or Frame End.	0b00: No insertion 0b01: ERRB packet inserted before the Frame Start/End Packet 0b10: ERRB packet inserted after the Frame Start/ End Packet 0b11: Reserved
ERRB_PKT_ Insert_Mode _1	1:0	Specify where the ERRB packet is inserted. Specify if ERRB_PKT comes out before or after the "Frame Start/End short packet". Used in conjuction with ERRB_PKT_EDGE_SEL which is used to select Frame Start or Frame End.	0b00: No insertion 0b01: ERRB packet inserted before the Frame Start/End Packet 0b10: ERRB packet inserted after the Frame Start/ End Packet 0b11: Reserved

BACKTOP3 (0x422)

BIT	7	6	5	4	3	2	1	0
Field	_	ERRB_PKT _EDGE_SE L_4	-	ERRB_PKT _EDGE_SE L_3	-	ERRB_PKT _EDGE_SE L_2	-	ERRB_PKT _EDGE_SE L_1
Reset	_		_		-		_	
Access Type	_	Write, Read	_	Write, Read	-	Write, Read	-	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ EDGE_SEL_ 4	6	0 = ERRB_PKT comes out at Frame End 1 = ERRB_PKT comes out at Frame Start	0x0: 0 = ERRB_PKT comes out at Frame End 0x1: 1 = ERRB_PKT comes out at Frame Start
ERRB_PKT_ EDGE_SEL_ 3	4	0 = ERRB_PKT comes out at Frame End 1 = ERRB_PKT comes out at Frame Start	0x0: 0 = ERRB_PKT comes out at Frame End 0x1: 1 = ERRB_PKT comes out at Frame Start
ERRB_PKT_ EDGE_SEL_ 2	2	0 = ERRB_PKT comes out at Frame End 1 = ERRB_PKT comes out at Frame Start	0x0: 0 = ERRB_PKT comes out at Frame End 0x1: 1 = ERRB_PKT comes out at Frame Start
ERRB_PKT_ EDGE_SEL_ 1	0	0 = ERRB_PKT comes out at Frame End 1 = ERRB_PKT comes out at Frame Start	0x0: 0 = ERRB_PKT comes out at Frame End 0x1: 1 = ERRB_PKT comes out at Frame Start

BACKTOP4 (0x423)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _DBL_MOD E_1	I	ERRB_PKT_DT_1[5:0]					
Reset	0x0	ı		0x12				
Access Type	Write, Read	_			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ DBL_MODE_ 1	7	0 = Double mode disabled 1 = Double mode enabled For pixel mode only. Double mode allows the ERRB packet to be packed more efficiently into memory. Must be used for data types with bpp > 16 and pixels per line count over 2700. Note: Double mode can only be used if the word count of the incoming video is an even number.	0x0: Double mode disabled 0x1: Double mode enabled
ERRB_PKT_ DT_1	5:0	Specify the data type for ERRB packet, 0x12 or 0x31-37	0xxX: Data type of ERRB packet

BACKTOP5 (0x424)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _DBL_MOD E_2	_			ERRB_PK1	Γ_DT_2[5:0]		
Reset	0x0	_		0x12				
Access Type	Write, Read	_			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ DBL_MODE_ 2	7	0 = Double mode disabled 1 = Double mode enabled For pixel mode only. Double mode allows the ERRB packet to be packed more efficiently into memory. Must be used for data types with bpp > 16 and pixels per line count over 2700. Note: Double mode can only be used if the word count of the incoming video is an even number.	0x0: Double mode disabled 0x1: Double mode enabled
ERRB_PKT_ DT 2	5:0	Specify the data type for ERRB packet, 0x12 or 0x31-37	0xxX: Data type of ERRB packet

BACKTOP6 (0x425)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _DBL_MOD E_3	-	ERRB_PKT_DT_3[5:0]					
Reset	0x0	-		0x12				
Access Type	Write, Read	-			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ DBL_MODE_ 3	7	0 = Double mode disabled 1 = Double mode enabled For pixel mode only. Double mode allows the ERRB packet to be packed more efficiently into memory. Must be used for data types with bpp > 16 and pixels per line count over 2700. Note: Double mode can only be used if the word count of the incoming video is an even number.	0x0: Double mode disabled 0x1: Double mode enabled
ERRB_PKT_ DT_3	5:0	Specify the data type for ERRB packet, 0x12 or 0x31-37	0xxX: Data type of ERRB packet

BACKTOP7 (0x426)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _DBL_MOD E_4	_	ERRB_PKT_DT_4[5:0]					
Reset	0x0	_		0x12				
Access Type	Write, Read	_			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ DBL_MODE_ 4	7	0 = Double mode disabled 1 = Double mode enabled For pixel mode only. Double mode allows the ERRB packet to be packed more efficiently into memory. Must be used for data types with bpp > 16 and pixels per line count over 2700. Note: Double mode can only be used if the word count of the incoming video is an even number.	0x0: Double mode disabled 0x1: Double mode enabled
ERRB_PKT_ DT_4	5:0	Specify the data type for ERRB packet, 0x12 or 0x31-37	0xxX: Data type of ERRB packet

BACKTOP8 (0x427)

BIT	7	6	5	4	3	2	1	0	
Field	ERRB_PKT _VC_OVRD _EN_1	_	_	ERRB_PKT_VC_OVRD_1[4:0]					
Reset	0x0	_	_	0xF					
Access Type	Write, Read	-	_		Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_	7	0 = Pick random VC from video source in pipe 1 as the VC for ERRB packets 1 = Use VC specified in ERRB_PKT_VC_OVRD_1 register as the VC for ERRB packets Notes: • Control registers, override_bpp_vc_dt_#	0x0: Pick random VC from video source in pipe 0 as the VC for ERRB packets
VC_OVRD_E N_1	7	and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register.	0x1: Use VC specified in ERRB_PKT_VC_OVRD_0 register as the VC for ERRB packets
		• ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#,OVERRIDE_VC _#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	
ERRB_PKT_ VC_OVRD_1	4:0	Specify Virtual Channel number for ERRB Packet when ERRB_PKT_VC_OVRD_EN is set	0xX: Virtual channel number of ERRB packet

BACKTOP9 (0x428)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _VC_OVRD _EN_2	ı	-	ERRB_PKT_VC_OVRD_2[4:0]				
Reset	0x0	_	_		0xF			
Access Type	Write, Read	-	_			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ VC_OVRD_E N_2	7	0 = Pick random VC from video source in pipe 2 as the VC for ERRB packets 1 = Use VC specified in ERRB_PKT_VC_OVRD_2 register as the VC for ERRB packets Notes: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. • ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#,OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0x0: Pick random VC from video source in pipe 1 as the VC for ERRB packets 0x1: Use VC specified in ERRB_PKT_VC_OVRD_1 register as the VC for ERRB packets
ERRB_PKT_ VC_OVRD_2	4:0	Specify Virtual Channel number for ERRB Packet when ERRB_PKT_VC_OVRD_EN is set	0xX: Virtual channel number of ERRB packet

BACKTOP10 (0x429)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _VC_OVRD _EN_3	_	_	ERRB_PKT_VC_OVRD_3[4:0]				
Reset	0x0	_	_		0xF			
Access Type	Write, Read	_	_			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_	_	0 = Pick random VC from video source in pipe 3 as the VC for ERRB packets 1 = Use VC specified in ERRB_PKT_VC_OVRD_3 register as the VC for ERRB packets Notes: • Control registers, override bpp vc dt #	0x0: Pick random VC from video source in pipe 2 as the VC for ERRB packets
VC_OVRD_E N_3	7	and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register.	0x1: Use VC specified in ERRB_PKT_VC_OVRD_2 register as the VC for ERRB packets
		• ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#,OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	
ERRB_PKT_ VC_OVRD_3	4:0	Specify Virtual Channel number for ERRB Packet when ERRB_PKT_VC_OVRD_EN is set	0xX: Virtual channel number of ERRB packet

BACKTOP11 (0x42A)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _VC_OVRD _EN_4	-	_	ERRB_PKT_VC_OVRD_4[4:0]				
Reset	0x0	_	_		0xF			
Access Type	Write, Read	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
		0 = Pick random VC from video source in pipe 4 as the VC for ERRB packets 1 = Use VC specified in ERRB_PKT_VC_OVRD_4 register as the VC for ERRB packets	
ERRB_PKT_ VC_OVRD_E N_4	7	Notes: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register.	0x0: Pick random VC from video source in pipe 3 as the VC for ERRB packets 0x1: Use VC specified in ERRB_PKT_VC_OVRD_3 register as the VC for ERRB packets
		• ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#,OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	
ERRB_PKT_ VC_OVRD_4	4:0	Specify Virtual Channel number for ERRB Packet when ERRB_PKT_VC_OVRD_EN is set	0xX: Virtual channel number of ERRB packet

BACKTOP12 (0x42B)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERRB_PKT_VC_1[4:0]				
Reset	_	_	_	0x0				
Access Type	_	_	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ VC_1	4:0	Virtual Channel number used by ERRB Packet	0xX: Virtual channel number of ERRB packet

BACKTOP13 (0x42C)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERRB_PKT_VC_2[4:0]				
Reset	_	_	_	0x0				
Access Type	_	_	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ VC_2	4:0	Virtual Channel number used by ERRB Packet	0xX: Virtual channel number of ERRB packet

BACKTOP14 (0x42D)

BIT	7	6	5	4	3	2	1	0
Field	_	ı	_	ERRB_PKT_VC_3[4:0]				
Reset	_	_	_	0x0				
Access Type	-	-	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ VC_3	4:0	Virtual Channel number used by ERRB Packet	0xX: Virtual channel number of ERRB packet

BACKTOP15 (0x42E)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERRB_PKT_VC_4[4:0]				
Reset	_	_	-	0x0				
Access Type	_	_	_	Read Only				

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ VC_4	4:0	Virtual Channel number used by ERRB Packet	0xX: Virtual channel number of ERRB packet

BACKTOP22 (0x435)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	n_vs_block[3:0]			
Reset	_	_	_	_	0x1			
Access Type	_	_	_	_	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
n_vs_block	3:0	Frame block: Block the first 1-15 frames after video lock	0x0: All frames out 0x1: Block the first frame 0xF: Block the first 15 frames

BACKTOP23 (0x436)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	dis_vs3	dis_vs2	dis_vs1	dis_vs0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
dis_vs3	3	Pipe 3 disable VS: Disable the transmission of VS to MIPI output.	0b0: Enable VS out 0b1: Disable VS out
dis_vs2	2	Pipe 2 disable VS: Disable the transmission of VS to MIPI output.	0b0: Enable VS out 0b1: Disable VS out
dis_vs1	1	Pipe 1 disable VS: Disable the transmission of VS to MIPI output.	0b0: Enable VS out 0b1: Disable VS out

BITFIELD	BITS	DESCRIPTION	DECODE		
dis_vs0	0	Pipe 0 disable VS: Disable the transmission of VS to MIPI output.	0b0: Enable VS out 0b1: Disable VS out		

BACKTOP24 (0x437)

BIT	7	6	5	4	3	2	1	0
Field	ERRB_PKT _WC_OVR D_EN_4	ERRB_PKT _WC_OVR D_EN_3	ERRB_PKT _WC_OVR D_EN_2	ERRB_PKT _WC_OVR D_EN_1	-	-	_	_
Reset	0x0	0x0	0x0	0x0	-	-	_	_
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
ERRB_PKT_ WC_OVRD_ EN_4	7	0 = Pick random word count from video source in pipe 4 as the word count for ERRB packets 1 = Use word count specified in ERRB_PKT_WC_4_H/L register as the word count for ERRB packets	0x0 0x1: See Description
ERRB_PKT_ WC_OVRD_ EN_3	6	0 = Pick random word count from video source in pipe 3 as the word count for ERRB packets 1 = Use word count specified in ERRB_PKT_WC_3_H/L register as the word count for ERRB packets	0x0 0x1: See Description
ERRB_PKT_ WC_OVRD_ EN_2	5	0 = Pick random word count from video source in pipe 2 as the word count for ERRB packets 1 = Use word count specified in ERRB_PKT_WC_2_H/L register as the word count for ERRB packets	0x0 0x1: See Description
ERRB_PKT_ WC_OVRD_ EN_1	4	0 = Pick random word count from video source in pipe 1 as the word count for ERRB packets 1 = Use word count specified in ERRB_PKT_WC_1_H/L register as the word count for ERRB packets	0x0 0x1: See Description

BACKTOP25 (0x438)

BIT	7	6	5	4	3	2	1	0
Field		ERRB_PKT_WC_1_H[7:0]						
Reset		0x0						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_1_H	7:0	If ERRB_PKT_WC_OVRD_EN_1 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP26 (0x439)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_1_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_1_L	7:0	If ERRB_PKT_WC_OVRD_EN_1 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP27 (0x43A)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_2_H[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_2_H	7:0	If ERRB_PKT_WC_OVRD_EN_2 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP28 (0x43B)

BIT	7	6	5	4	3	2	1	0
Field		ERRB_PKT_WC_2_L[7:0]						
Reset		0x0						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_2_L	7:0	If ERRB_PKT_WC_OVRD_EN_2 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP29 (0x43C)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_3_H[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_3_H	7:0	If ERRB_PKT_WC_OVRD_EN_3 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP30 (0x43D)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_3_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_3_L	7:0	If ERRB_PKT_WC_OVRD_EN_3 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP31 (0x43E)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_4_H[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_4_H	7:0	If ERRB_PKT_WC_OVRD_EN_4 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP32 (0x43F)

BIT	7	6	5	4	3	2	1	0	
Field		ERRB_PKT_WC_4_L[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
ERRB_PKT_WC_4_L	7:0	If ERRB_PKT_WC_OVRD_EN_4 is set, this register sets the word count for ERRB packet. When not in WC override mode, this register reads back detected word count from incoming video used for ERRB packet.

BACKTOP33 (0x440)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	FIFO_EMP TY_3	FIFO_EMP TY_2	FIFO_EMP TY_1	FIFO_EMP TY_0
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION
FIFO_EMPTY_3	3	Pipe 3 FIFO empty
FIFO_EMPTY_2	2	Pipe 2 FIFO empty

BITFIELD	BITS	DESCRIPTION
FIFO_EMPTY_1	1	Pipe 1 FIFO empty
FIFO_EMPTY_0	0	Pipe 0 FIFO empty

BACKTOP1_HDR_ERR (0x442)

BIT	7	6	5	4	3	2	1	0
Field	TUN_HDR_ ERR_FLAG _0_OEN	TUN_HDR_ ERR_FLAG _0	TUN_HDR_ CRC_ERR_ 3_FLAG_0	TUN_HDR_ CRC_ERR_ 2_FLAG_0	TUN_HDR_ CRC_ERR_ 1_FLAG_0	TUN_HDR_ CRC_ERR_ 0_FLAG_0	TUN_HDR_ ECC_ERR_ FLAG_0	TUN_HDR_ ECC_FLAG _0
Reset	0b1	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_HDR_E RR_FLAG_0 _OEN	7	Pipe 0 tunneling mode header error flag going to ERRB pin output enable.	0b0: Disable reporting of header error flag (TUN_HDR_ERR_FLAG_1) at ERRB pin 0b1: Enable reporting of header error flag (TUN_HDR_ERR_FLAG_1) at ERRB pin
TUN_HDR_E RR_FLAG_0	6	Pipe 0 tunneling mode header error flag going to ERRB pin. This error flag takes 2-bit ECC error (bit 1 of same register) when in DPHY mode, logic AND of CPHY header 1 and 2 (bits 2 and 3 in same register) in 1-lane CPHY mode, and logic AND of CPHY header 1, 2, 3 and 4 (bits 2, 3, 4 and 5 in same register) in 2-lane CPHY mode. This flag is sticky (i.e., clear on read).	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_3_ FLAG_0	5	Pipe 0 tunneling mode CPHY fourth header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_2_ FLAG_0	4	Pipe 0 tunneling mode CPHY third header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_1_ FLAG_0	3	Pipe 0 tunneling mode CPHY second header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_0_ FLAG_0	2	Pipe 0 tunneling mode CPHY first header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_ERR_FL AG_0	1	Pipe 0 tunneling mode DPHY header 2-bit (uncorrectable) ECC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_FLAG_0	0	Pipe 0 tunneling mode DPHY header 1-bit (correctable) ECC error flag	0x0: no error detected 0x1: Error Detected

BACKTOP2 HDR ERR (0x443)

BIT	7	6	5	4	3	2	1	0
Field	TUN_HDR_ ERR_FLAG _1_OEN	TUN_HDR_ ERR_FLAG _1	TUN_HDR_ CRC_ERR_ 3_FLAG_1	TUN_HDR_ CRC_ERR_ 2_FLAG_1	TUN_HDR_ CRC_ERR_ 1_FLAG_1	TUN_HDR_ CRC_ERR_ 0_FLAG_1	TUN_HDR_ ECC_ERR_ FLAG_1	TUN_HDR_ ECC_FLAG _1
Reset	0b1	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_HDR_E RR_FLAG_1 _OEN	7	Pipe 1 tunneling mode header error flag going to ERRB pin output enable.	0b0: Disable reporting of header error flag (TUN_HDR_ERR_FLAG_2) at ERRB pin 0b1: Enable reporting of header error flag (TUN_HDR_ERR_FLAG_2) at ERRB pin
TUN_HDR_E RR_FLAG_1	6	Pipe 1 tunneling mode header error flag going to ERRB pin. This error flag takes 2-bit ECC error (bit 1 of same register) when in DPHY mode, logic AND of CPHY header 1 and 2 (bits 2 and 3 in same register) in 1-lane CPHY mode, and logic AND of CPHY header 1, 2, 3 and 4 (bits 2, 3, 4 and 5 in same register) in 2-lane CPHY mode. This flag is sticky (i.e., clear on read).	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_3_ FLAG_1	5	Pipe 1 tunneling mode CPHY fourth header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_2_ FLAG_1	4	Pipe 1 tunneling mode CPHY third header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_1_ FLAG_1	3	Pipe 1 tunneling mode CPHY second header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_0_ FLAG_1	2	Pipe 1 tunneling mode CPHY first header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_ERR_FL AG_1	1	Pipe 1 tunneling mode DPHY header 2-bit (uncorrectable) ECC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_FLAG_1	0	Pipe 1 tunneling mode DPHY header 1-bit (correctable) ECC error flag	0x0: no error detected 0x1: Error Detected

BACKTOP3 HDR ERR (0x444)

BIT	7	6	5	4	3	2	1	0
Field	TUN_HDR_ ERR_FLAG _2_OEN	TUN_HDR_ ERR_FLAG _2	TUN_HDR_ CRC_ERR_ 3_FLAG_2	TUN_HDR_ CRC_ERR_ 2_FLAG_2	TUN_HDR_ CRC_ERR_ 1_FLAG_2	TUN_HDR_ CRC_ERR_ 0_FLAG_2	TUN_HDR_ ECC_ERR_ FLAG_2	TUN_HDR_ ECC_FLAG _2
Reset	0b1	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_HDR_E RR_FLAG_2 _OEN	7	Pipe 2 tunneling mode header error flag going to ERRB pin output enable.	0b0: Disable reporting of header error flag (TUN_HDR_ERR_FLAG_3) at ERRB pin 0b1: Enable reporting of header error flag (TUN_HDR_ERR_FLAG_3) at ERRB pin
TUN_HDR_E RR_FLAG_2	6	Pipe 2 tunneling mode header error flag going to ERRB pin. This error flag takes 2-bit ECC error (bit 1 of same register) when in DPHY mode, logic AND of CPHY header 1 and 2 (bits 2 and 3 in same register) in 1-lane CPHY mode, and logic AND of CPHY header 1, 2, 3 and 4 (bits 2, 3, 4 and 5 in same register) in 2-lane CPHY mode. This flag is sticky (i.e., clear on read).	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_3_ FLAG_2	5	Pipe 2 tunneling mode CPHY fourth header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_2_ FLAG_2	4	Pipe 2 tunneling mode CPHY third header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_1_ FLAG_2	3	Pipe 2 tunneling mode CPHY second header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_0_ FLAG_2	2	Pipe 2 tunneling mode CPHY first header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_ERR_FL AG_2	1	Pipe 2 tunneling mode DPHY header 2-bit (uncorrectable) ECC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_FLAG_2	0	Pipe 2 tunneling mode DPHY header 1-bit (correctable) ECC error flag	0x0: no error detected 0x1: Error Detected

BACKTOP4_HDR_ERR (0x445)

BIT	7	6	5	4	3	2	1	0
Field	TUN_HDR_ ERR_FLAG _3_OEN	TUN_HDR_ ERR_FLAG _3	TUN_HDR_ CRC_ERR_ 3_FLAG_3	TUN_HDR_ CRC_ERR_ 2_FLAG_3	TUN_HDR_ CRC_ERR_ 1_FLAG_3	TUN_HDR_ CRC_ERR_ 0_FLAG_3	TUN_HDR_ ECC_ERR_ FLAG_3	TUN_HDR_ ECC_FLAG _3
Reset	0b1	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_HDR_E RR_FLAG_3 _OEN	7	Pipe 3 tunneling mode header error flag going to ERRB pin output enable.	0b0: Disable reporting of header error flag (TUN_HDR_ERR_FLAG_4) at ERRB pin 0b1: Enable reporting of header error flag (TUN_HDR_ERR_FLAG_4) at ERRB pin

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_HDR_E RR_FLAG_3	6	Pipe 3 tunneling mode header error flag going to ERRB pin. This error flag takes 2-bit ECC error (bit 1 of same register) when in DPHY mode, logic AND of CPHY header 1 and 2 (bits 2 and 3 in same register) in 1-lane CPHY mode, and logic AND of CPHY header 1, 2, 3 and 4 (bits 2, 3, 4 and 5 in same register) in 2-lane CPHY mode. This flag is sticky (i.e., clear on read).	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_3_ FLAG_3	5	Pipe 3 tunneling mode CPHY fourth header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_2_ FLAG_3	4	Pipe 3 tunneling mode CPHY third header CRC error flag. Obsolete when SER is in 1-lane CPHY mode.	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_1_ FLAG_3	3	Pipe 3 tunneling mode CPHY second header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_C RC_ERR_0_ FLAG_3	2	Pipe 3 tunneling mode CPHY first header CRC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_ERR_FL AG_3	1	Pipe 3 tunneling mode DPHY header 2-bit (uncorrectable) ECC error flag	0x0: no error detected 0x1: Error Detected
TUN_HDR_E CC_FLAG_3	0	Pipe 3 tunneling mode DPHY header 1-bit (correctable) ECC error flag	0x0: no error detected 0x1: Error Detected

BACKTOP39 (0x446)

BIT	7	6	5	4	3	2	1	0
Field	BKTP3_LIN E_LEN_OV RD	BKTP3_LIN E_LEN_OV RD	BKTP3_LIN E_LEN_OV RD	BKTP3_LIN E_LEN_OV RD	BKTP3_LIN E_LEN_OV RD	BKTP2_LIN E_LEN_OV RD	BKTP1_LIN E_LEN_OV RD	BKTP0_LIN E_LEN_OV RD
Reset	0x1	0x1	0x1	0x1	0x0	0x0	0x0	0x0
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
BKTP3_LINE _LEN_OVRD	7	Enable use of timeout timer for video masking. By default, the timer is set to wait 1/8th of a line. The time for a line is autodetected. Use BKTPx_VM_TIMEOUT_DIV to select between 1, 1/2, 1/4, or 1/8th of a line. Use BKTPx_VM_TIMEOUT_OVRD and BKTPx_VM_TIMEOUT registers to override timeout value in 3ns increments.	0x0: Disabled 0x1: Enabled
BKTP3_LINE _LEN_OVRD	6	Enable use of timeout timer for video masking	0x0: Disabled 0x1: Enabled
BKTP3_LINE _LEN_OVRD	5	Enable use of timeout timer for video masking	0x0: Disabled 0x1: Enabled
BKTP3_LINE _LEN_OVRD	4	Enable use of timeout timer for video masking	0x0: Disabled 0x1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
BKTP3_LINE _LEN_OVRD	3	Enable use of BKTPx_VM_TIMEOUT_H/L registers to assert video timeout masking in synchronous aggregation mode.	0x0: Disabled 0x1: Enabled
BKTP2_LINE _LEN_OVRD	2	Enable use of BKTPx_VM_TIMEOUT_H/L registers to assert video timeout masking in synchronous aggregation mode.	0x0: Disabled 0x1: Enabled
BKTP1_LINE _LEN_OVRD	1	Enable use of BKTPx_VM_TIMEOUT_H/L registers to assert video timeout masking in synchronous aggregation mode.	0x0: Disabled 0x1: Enabled
BKTP0_LINE _LEN_OVRD	0	Enable use of BKTPx_VM_TIMEOUT_H/L registers to assert video timeout masking in synchronous aggregation mode.	0x0: Disabled 0x1: Enabled

BACKTOP40 (0x447)

BIT	7	6	5	4	3	2	1	0	
Field		BKTP0_LINE_LEN_H[7:0]							
Reset		0x7							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
BKTP0_LINE_LEN_H	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP41 (0x448)

BIT	7	6	5	4	3	2	1	0	
Field		BKTP0_LINE_LEN_L[7:0]							
Reset		0x53							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
BKTP0_LINE_LEN_L	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP42 (0x449)

BIT	7	6	5	4	3	2	1	0	
Field		BKTP1_LINE_LEN_H[7:0]							
Reset		0x7							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
BKTP1_LINE_LEN_H	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP43 (0x44A)

BIT	7	6	5	4	3	2	1	0	
Field		BKTP1_LINE_LEN_L[7:0]							
Reset		0x53							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
BKTP1_LINE_LEN_L	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP44 (0x44B)

BIT	7	6	5	4	3	2	1	0
Field		BKTP2_LINE_LEN_H[7:0]						
Reset	0x7							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
BKTP2_LINE_LEN_H	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP45 (0x44C)

BIT	7	6	5	4	3	2	1	0
Field		BKTP2_LINE_LEN_L[7:0]						
Reset	0x53							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
BKTP2_LINE_LEN_L	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP46 (0x44D)

BIT	7	6	5	4	3	2	1	0
Field		BKTP3_LINE_LEN_H[7:0]						
Reset	0x7							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
BKTP3_LINE_LEN_H	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP47 (0x44E)

BIT	7	6	5	4	3	2	1	0
Field		BKTP3_LINE_LEN_L[7:0]						
Reset	0x53							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
BKTP3_LINE_LEN_L	7:0	Used to assert video timeout masking in tunneling mode in synchronous aggregation (Wx4H) mode. If video is detected in other aggregated pipes and current pipe does not receive video in the specified timeout time, current pipe will be masked until video resumes at the beginning of a frame. Value specified in this register is in 2.67ns increments.

BACKTOP48 (0x44F)

BIT	7	6	5	4	3	2	1	0
Field	BKTP4_VM_TIMEOUT_DI V[1:0]		BKTP3_VM_TIMEOUT_DI V[1:0]		BKTP2_VM_TIMEOUT_DI V[1:0]		BKTP1_VM_TIMEOUT_DI V[1:0]	
Reset	0x3		0x3		0x3		0:	x3
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
BKTP4_VM_ TIMEOUT_DI V	7:6	Selects between 1, 3/4, 1/2, or 1/4 of a line.	0x0: 1/4 of a line 0x1: 1/2 of a line 0x2: 3/4 of a line 0x3: 1 line
BKTP3_VM_ TIMEOUT_DI V	5:4	Selects between 1, 3/4, 1/2, or 1/4 of a line.	0x0: 1/4 of a line 0x1: 1/2 of a line 0x2: 3/4 of a line 0x3: 1 line
BKTP2_VM_ TIMEOUT_DI V	3:2	Selects between 1, 3/4, 1/2, or 1/4 of a line.	0x0: 1/4 of a line 0x1: 1/2 of a line 0x2: 3/4 of a line 0x3: 1 line

BITFIELD	BITS	DESCRIPTION	DECODE
BKTP1_VM_ TIMEOUT_DI V	1:0	Selects between 1, 3/4, 1/2, or 1/4 of a line.	0x0: 1/4 of a line 0x1: 1/2 of a line 0x2: 3/4 of a line 0x3: 1 line

BACKTOP EMBED0 (0x450)

BIT	7	6	5	4	3	2	1	0
Field	EMBED_LL _EN_BKTP 0	_	EMBED_LL_NUM_BKTP0 [1:0]		EMBED_FL _EN_BKTP 0	_	EMBED_FL_ [1:	
Reset	0b0	_	Ol	0b0		-	Ot	00
Access Type	Write, Read	_	Write, Read		Write, Read	-	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
EMBED_LL_ EN_BKTP0	7	Enable conversion of last few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP0 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_LL_ NUM_BKTP0	5:4	When the embedded packet type is enabled to be located in the last few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOPO only. See the EMBED_LL_EN_BKTPO register bit. 2'b00 - Use Last Line 2'b01- Use Second from Last Line 2'b10 - Use Third from Last Line 2'b11 - Use Fourth from Last Line	0x0 0x1: See Description
EMBED_FL_ EN_BKTP0	3	Enable conversion of first few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP0 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_FL_ NUM_BKTP0	1:0	When the embedded packet type is enabled to be located in the first few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOPO only. See the EMBED_FL_EN_BKTPO register bit. 2'b00- Use first line. 2'b01- Use second line. 2'b10- Use fourth line	0x0 0x1: See Description

BACKTOP_EMBED1 (0x451)

BIT	7	6	5	4	3	2	1	0
Field	EMBED_LL _EN_BKTP 1	_	EMBED_LL_NUM_BKTP1 [1:0]		EMBED_FL _EN_BKTP 1	_	EMBED_FL_ [1	NUM_BKTP1 :0]
Reset	0b0	_	Ol	0b0		_	Ol	00
Access Type	Write, Read	_	Write, Read		Write, Read	_	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
EMBED_LL_ EN_BKTP1	7	Enable conversion of last few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP1 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_LL_ NUM_BKTP1	5:4	When the embedded packet type is enabled to be located in the last few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP1 only. See the EMBED_LL_EN_BKTP1 register bit. 2'b00 - Use Last Line 2'b01- Use Second from Last Line 2'b10 - Use Third from Last Line 2'b11 - Use Fourth from Last Line	0x0 0x1: See Description
EMBED_FL_ EN_BKTP1	3	Enable conversion of first few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP1 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_FL_ NUM_BKTP1	1:0	When the embedded packet type is enabled to be located in the first few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP1 only. See the EMBED_FL_EN_BKTP1 register bit. 2'b00- Use first line. 2'b01- Use second line. 2'b10- Use third line 2'b11- Use fourth line	0x0 0x1: See Description

BACKTOP EMBED2 (0x452)

BIT	7	6	5	4	3	2	1	0
Field	EMBED_LL _EN_BKTP 2	_		NUM_BKTP2 :0]	EMBED_FL _EN_BKTP 2	_	EMBED_FL [1:	NUM_BKTP2 :0]
Reset	0b0	_	Ol	0b0		_	Ot	00
Access Type	Write, Read	_	Write, Read		Write, Read	_	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
EMBED_LL_ EN_BKTP2	7	Enable conversion of last few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP2 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_LL_ NUM_BKTP2	5:4	When the embedded packet type is enabled to be located in the last few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP2 only. See the EMBED_LL_EN_BKTP2 register bit. 2'b00 - Use Last Line 2'b01- Use Second from Last Line 2'b10 - Use Third from Last Line 2'b11 - Use Fourth from Last Line	0x0 0x1: See Description
EMBED_FL_ EN_BKTP2	3	Enable conversion of first few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP02only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_FL_ NUM_BKTP2	1:0	When the embedded packet type is enabled to be located in the first few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP2 only. See the EMBED_FL_EN_BKTP2 register bit. 2'b00- Use first line. 2'b01- Use second line. 2'b10- Use fourth line	0x0 0x1: See Description

BACKTOP EMBED3 (0x453)

BIT	7	6	5	4	3	2	1	0
Field	EMBED_LL _EN_BKTP 3	_	EMBED_LL_NUM_BKTP3 [1:0]		EMBED_FL _EN_BKTP 3	-		NUM_BKTP3 :0]
Reset	0b0	_	Ol	0b0		_	Ot	00
Access Type	Write, Read	_	Write, Read		Write, Read	_	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
EMBED_LL_ EN_BKTP3	7	Enable conversion of last few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP3 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
EMBED_LL_ NUM_BKTP3	5:4	When the embedded packet type is enabled to be located in the last few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP3 only. See the EMBED_LL_EN_BKTP3 register bit. 2'b00 - Use Last Line 2'b01- Use Second from Last Line 2'b10 - Use Third from Last Line 2'b11 - Use Fourth from Last Line	0x0 0x1: See Description
EMBED_FL_ EN_BKTP3	3	Enable conversion of first few pixel lines of each frame into MIPI embedded data type. Applies to MIPI BACKTOP3 only. 0: Disable 1: Enable	0x0: Disabled 0x1: Enabled
EMBED_FL_ NUM_BKTP3	1:0	When the embedded packet type is enabled to be located in the first few lines of each frame, this register field sets the line number to be used for the converted embedded data type. Applies to MIPI BACKTOP3 only. See the EMBED_FL_EN_BKTP3 register bit. 2'b00- Use first line. 2'b01- Use second line. 2'b10- Use third line. 2'b11- Use fourth line.	0x0 0x1: See Description

CMD_LMO_ERRB_EN (0x454)

BIT	7	6	5	4	3	2	1	0
Field	CMD_OVFL _3_ERRB_ OEN	CMD_OVFL _2_ERRB_ OEN	CMD_OVFL _1_ERRB_ OEN	CMD_OVFL _0_ERRB_ OEN	LMO_3_ER RB_OEN	LMO_2_ER RB_OEN	LMO_1_ER RB_OEN	LMO_0_ER RB_OEN
Reset	0b1	0b1	0b1	0b1	0b1	0b1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
CMD_OVFL_ 3_ERRB_OE N	7	Enable Pipe 3 command FIFO overflow Status on ERRB output	0x0: Disabled 0x1: Enabled
CMD_OVFL_ 2_ERRB_OE N	6	Enable Pipe 2 command FIFO overflow Status on ERRB output	0x0: Disabled 0x1: Enabled
CMD_OVFL_ 1_ERRB_OE N	5	Enable Pipe 1 command FIFO overflow Status on ERRB output	0x0: Disabled 0x1: Enabled
CMD_OVFL_ 0_ERRB_OE N	4	Enable Pipe 0 command FIFO overflow Status on ERRB output	0x0: Disabled 0x1: Enabled
LMO_3_ERR B_OEN	3	Enable Pipe 3 line memory overflow status on ERRB output. See the LMO_3_ERRB_EN to enable output of this status to the ERRB pin	0x0: Disabled 0x1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
LMO_2_ERR B_OEN	2	Enable Pipe 2 line memory overflow status on ERRB output. See the LMO_2_ERRB_EN to enable output of this status to the ERRB pin	0x0: Disabled 0x1: Enabled
LMO_1_ERR B_OEN	1	Enable Pipe 1 line memory overflow status on ERRB output See the LMO_1_ERRB_EN to enable output of this status to the ERRB pin	0x0: Disabled 0x1: Enabled
LMO_0_ERR B_OEN	0	Enable Pipe 0 line memory overflow status on ERRB output.	0x0: Disabled 0x1: Enabled

DPLL_ERRB_OEN (0x455)

BIT	7	6	5	4	3	2	1	0
Field	CSIPLL3_L OL_STICKY _FLAG	CSIPLL2_L OL_STICKY _FLAG	CSIPLL1_L OL_STICKY _FLAG	CSIPLL0_L OL_STICKY _FLAG	CSI_DPLL3 _ERRB_OE N	CSI_DPLL2 _ERRB_OE N	CSI_DPLL1 _ERRB_OE N	CSI_DPLL0 _ERRB_OE N
Reset	0x0	0x0	0x0	0x0	0b1	0b1	0b1	0b1
Access Type	Read Only	Read Only	Read Only	Read Only	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
CSIPLL3_LO L_STICKY_F LAG	7	CSIPLL3 Loss of lock ERRB Flag. This flag is the sticky bit output for the CSIPLL3 Loss of Lock and is directly associated with the CSIPLL3_LOCK register bit. The CSIPLL3_LOCK status data is live data, however, this bit is intended to catch a loss of lock event and will maintain that information until this register bit is cleared. This register bit is cleared upon reading. This register information is also reflected onto the ERRB pin unless otherwise disabled from doing so. See the CSI_DPLL3_ERRB_OEN register.	0x0: no error detected 0x1: Error Detected
CSIPLL2_LO L_STICKY_F LAG	6	CSIPLL2 Loss of Lock ERRB Flag. This flag is the sticky bit output for the CSIPLL2 Loss of Lock and is directly associated with the CSIPLL2_LOCK register bit. The CSIPLL2_LOCK status data is live data; however, this bit is intended to catch a loss of lock event and will maintain that information until this register bit is cleared. This register bit is cleared upon reading. This register information is also reflected onto the ERRB pin unless otherwise disabled from doing so. See the CSI_DPLL2_ERRB_OEN register.	0x0: no error detected 0x1: Error Detected

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
CSIPLL1_LO L_STICKY_F LAG	5	CSIPLL1 Loss of Lock ERRB Flag. This flag is the sticky bit output for the CSIPLL1 Loss of Lock and is directly associated with the CSIPLL1_LOCK register bit. The CSIPLL1_LOCK status data is live data; however, this bit is intended to catch a loss of lock event and will maintain that information until this register bit is cleared. This register bit is cleared upon reading. This register information is also reflected onto the ERRB pin unless otherwise disabled from doing so. See the CSI_DPLL1_ERRB_OEN register.	0x0: no error detected 0x1: Error Detected
CSIPLLO_LO L_STICKY_F LAG	4	CSIPLL0 Loss of Lock ERRB Flag. This flag is the sticky bit output for the CSIPLL0 Loss of Lock and is directly associated with the CSIPLL0_LOCK register bit. The CSIPLL0_LOCK status data is live data; however, this bit is intended to catch a loss of lock event and will maintain that information until this register bit is cleared. This register bit is cleared upon reading. This register information is also reflected onto the ERRB pin unless otherwise disabled from doing so. See the CSI_DPLL0_ERRB_OEN register.	0x0: no error detected 0x1: Error Detected
CSI_DPLL3_ ERRB_OEN	3	Enable CSI DPLL 3 Loss of Lock status on ERRB output. See the CSIPLL3_LOCK status output register bit and the CSIPLL3_LOL_STICKY_FLAG register bit.	0x0: Disabled 0x1: Enabled
CSI_DPLL2_ ERRB_OEN	2	Enable CSI DPLL 2 Loss of Lock status on ERRB output. See the CSIPLL2_LOCK status output register bit and the CSIPLL2_LOL_STICKY_FLAG register bit.	0x0: Disabled 0x1: Enabled
CSI_DPLL1_ ERRB_OEN	1	Enable CSI DPLL 1 Loss of Lock status on ERRB output. See the CSIPLL1_LOCK status output register bit and the CSIPLL1_LOL_STICKY_FLAG register bit.	0x0: Disabled 0x1: Enabled
CSI_DPLL0_ ERRB_OEN	0	Enable CSI DPLL 0 Loss of Lock status on ERRB output. See the CSIPLL0_LOCK status output register bit and the CSIPLL0_LOL_STICKY_FLAG register bit.	0x0: Disabled 0x1: Enabled

BACKTOP OVERRIDE BPP DT (0x456)

BIT	7	6	5	4	3	2	1	0
Field	OVERRIDE _VC_3	OVERRIDE _VC_2	OVERRIDE _VC_1	OVERRIDE _VC_0	OVERRIDE _BPP_DT_ 3	OVERRIDE _BPP_DT_ 2	OVERRIDE _BPP_DT_ 1	OVERRIDE _BPP_DT_ 0
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
OVERRIDE_ VC_3	7	This register allows software override of VC only, similar to override_bpp_vc_dt_#. Notes: Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0x0: Disable 0x1: Enable
OVERRIDE_ VC_2	6	This register allows software override of VC only, similar to override_bpp_vc_dt_#. Notes: Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0x0: Disable 0x1: Enable
OVERRIDE_ VC_1	5	This register allows software override of VC only, similar to override_bpp_vc_dt_#. Notes: Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0x0: Disable 0x1: Enable

BITFIELD	BITS	DESCRIPTION	DECODE
OVERRIDE_ VC_0	4	This register allows software override of VC only, similar to override_bpp_vc_dt_#. Notes: Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over the OVERRIDE_VC_BITS_2_AND_3 register. ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3 for errb_pkts	0x0: Disable 0x1: Enable
OVERRIDE_ BPP_DT_3	3	This register allows software override of BPP and DT only, similar to override_bpp_vc_dt_#.	0x0: Disable 0x1: Enable
OVERRIDE_ BPP_DT_2	2	This register allows software override of BPP and DT only, similar to override_bpp_vc_dt_#.	0x0: Disable 0x1: Enable
OVERRIDE_ BPP_DT_1	1	This register allows software override of BPP and DT only, similar to override_bpp_vc_dt_#.	0x0: Disable 0x1: Enable
OVERRIDE_ BPP_DT_0	0	This register allows software override of BPP and DT only, similar to override_bpp_vc_dt_#.	0x0: Disable 0x1: Enable

BACKTOP OVERRIDE VC (0x457)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	_	_	-	-	OVERRIDE _VC_BITS_ 2_AND_3
Reset	_	_	-	_	_	-	-	0x0
Access Type	_	_	_	_	_	-	_	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
OVERRIDE_ VC_BITS_2_ AND_3	0	Override VC [3:2] such that VCs for each pipe start with 4'h0, 4'h4,4'h8, and 4'hC respectively. VC bits [1:0] are still passed through. Notes: • Control registers, override_bpp_vc_dt_# and/or OVERRIDE_VC_# have priority over this OVERRIDE_VC_BITS_2_AND_3 register. • ERRB_PKT_VC_OVRD_EN has priority over override_bpp_vc_dt_#, OVERRIDE_VC_#, and/or OVERRIDE_VC_BITS_2_AND_3	0x0: Disable 0x1: Enable

SRAM_LCRC_ERR (0x458)

BIT	7	6	5	4	3	2	1	0
Field	SRAM_LCR C_ERR_OE N_3	SRAM_LCR C_ERR_OE N_2	SRAM_LCR C_ERR_OE N_1	SRAM_LCR C_ERR_OE N_0	SRAM_LCR C_ERR_3	SRAM_LCR C_ERR_2	SRAM_LCR C_ERR_1	SRAM_LCR C_ERR_0
Reset	0x1	0x1	0x1	0x1	0x0	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION
SRAM_LCRC_ERR_OE N_3	7	SRAM Line CRC Error Ouput Enable.
SRAM_LCRC_ERR_OE N_2	6	SRAM Line CRC Error Ouput Enable.
SRAM_LCRC_ERR_OE N_1	5	SRAM Line CRC Error Ouput Enable.
SRAM_LCRC_ERR_OE N_0	4	SRAM Line CRC Error Ouput Enable.
SRAM_LCRC_ERR_3	3	SRAM Line CRC Error Detection. Compares CRC value of data written to the Video Line SRAM vs CRC value of data read out of the Video Line SRAM.
SRAM_LCRC_ERR_2	2	SRAM Line CRC Error Detection. Compares CRC value of data written to the Video Line SRAM vs CRC value of data read out of the Video Line SRAM.
SRAM_LCRC_ERR_1	1	SRAM Line CRC Error Detection. Compares CRC value of data written to the Video Line SRAM vs CRC value of data read out of the Video Line SRAM.
SRAM_LCRC_ERR_0	0	SRAM Line CRC Error Detection. Compares CRC value of data written to the Video Line SRAM vs CRC value of data read out of the Video Line SRAM.

SRAM LCRC EN (0x459)

BIT	7	6	5	4	3	2	1	0
Field	SRAM_LCR C_TUN_CH K_DIS_3	SRAM_LCR C_TUN_CH K_DIS_2	SRAM_LCR C_TUN_CH K_DIS_1	SRAM_LCR C_TUN_CH K_DIS_0	SRAM_LCR C_PIXEL_C HK_DIS_3	_	_	SRAM_LCR C_PIXEL_C HK_DIS_0
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION
SRAM_LCRC_TUN_CH K_DIS_3	7	SRAM Line CRC Tunnel Mode Check Disable
SRAM_LCRC_TUN_CH K_DIS_2	6	SRAM Line CRC Tunnel Mode Check Disable
SRAM_LCRC_TUN_CH K_DIS_1	5	SRAM Line CRC Tunnel Mode Check Disable
SRAM_LCRC_TUN_CH K_DIS_0	4	SRAM Line CRC Tunnel Mode Check Disable
SRAM_LCRC_PIXEL_C HK_DIS_3	3	SRAM Line CRC Pixel Mode Check Disable
SRAM_LCRC_PIXEL_C HK_DIS_2	2	SRAM Line CRC Pixel Mode Check Disable

BITFIELD	BITS	DESCRIPTION
SRAM_LCRC_PIXEL_C HK_DIS_1	1	SRAM Line CRC Pixel Mode Check Disable
SRAM_LCRC_PIXEL_C HK_DIS_0	0	SRAM Line CRC Pixel Mode Check Disable

SRAM_LCRC_RESET (0x45A)

BIT	7	6	5	4	3	2	1	0
Field	INIT_SRAM _LCRC_ER R_DIS_3	INIT_SRAM _LCRC_ER R_DIS_2	INIT_SRAM _LCRC_ER R_DIS_1	INIT_SRAM _LCRC_ER R_DIS_0	SRAM_LCR C_MATCH_ RESET_3	SRAM_LCR C_MATCH_ RESET_2	SRAM_LCR C_MATCH_ RESET_1	SRAM_LCR C_MATCH_ RESET_0
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write Clears All, Read	Write Clears All, Read	Write Clears All, Read	Write Clears All, Read

BITFIELD	BITS	DESCRIPTION
INIT_SRAM_LCRC_ER R_DIS_3	7	Initial SRAM Line CRC Error Disable. Disables requirement for SRAM Line CRC Match within first 3 lines written to memory.
INIT_SRAM_LCRC_ER R_DIS_2	6	Initial SRAM Line CRC Error Disable. Disables requirement for SRAM Line CRC Match within first 3 lines written to memory.
INIT_SRAM_LCRC_ER R_DIS_1	5	Initial SRAM Line CRC Error Disable. Disables requirement for SRAM Line CRC Match within first 3 lines written to memory.
INIT_SRAM_LCRC_ER R_DIS_0	4	Initial SRAM Line CRC Error Disable. Disables requirement for SRAM Line CRC Match within first 3 lines written to memory.
SRAM_LCRC_MATCH_ RESET_3	3	SRAM Line CRC Match Reset. Setting this bit to a logic 1 will reset internal register such that if another LCRC Match does not occur within 3 video lines, an SRAM LCRC Error will occur. Orthogonal Safety Check. Self-clearing register.
SRAM_LCRC_MATCH_ RESET_2	2	SRAM Line CRC Match Reset. Setting this bit to a logic 1 will reset internal register such that if another LCRC Match does not occur within 3 video lines, an SRAM LCRC Error will occur. Orthogonal Safety Check. Self-clearing register.
SRAM_LCRC_MATCH_ RESET_1	1	SRAM Line CRC Match Reset. Setting this bit to a logic 1 will reset internal register such that if another LCRC Match does not occur within 3 video lines, an SRAM LCRC Error will occur. Orthogonal Safety Check. Self-clearing register.
SRAM_LCRC_MATCH_ RESET_0	0	SRAM Line CRC Match Reset. Setting this bit to a logic 1 will reset internal register such that if another LCRC Match does not occur within 3 video lines, an SRAM LCRC Error will occur. Orthogonal Safety Check. Self-clearing register.

BKTOP ERR INJ 1 (0x480)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	SRAM_LCR C_ERR_INJ _DIS_3		SRAM_LCR C_ERR_INJ _DIS_1	
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION
SRAM_LCRC_ERR_IN J_DIS_3	3	SRAM Line CRC Error Injection Disable
SRAM_LCRC_ERR_IN J_DIS_2	2	SRAM Line CRC Error Injection Disable
SRAM_LCRC_ERR_IN J_DIS_1	1	SRAM Line CRC Error Injection Disable
SRAM_LCRC_ERR_IN J_DIS_0	0	SRAM Line CRC Error Injection Disable

MEM_ERR_INJ_1BIT (0x481)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	MEM_ERR _INJ_1BIT_ BKTP4	MEM_ERR _INJ_1BIT_ BKTP3	MEM_ERR _INJ_1BIT_ BKTP2	MEM_ERR _INJ_1BIT_ BKTP1
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MEM_ERR_I NJ_1BIT_BK TP4	3	Inject one 1-bit error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one-time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_1BIT_BK TP3	2	Inject one 1-bit error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_1BIT_BK TP2	1	Inject one 1-bit error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_1BIT_BK TP1	0	Inject one 1-bit error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error

MEM_ERR_INJ_2BIT (0x482)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	MEM_ERR _INJ_2BIT_ BKTP4	MEM_ERR _INJ_2BIT_ BKTP3	MEM_ERR _INJ_2BIT_ BKTP2	MEM_ERR _INJ_2BIT_ BKTP1
Reset	-	-	-	-	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MEM_ERR_I NJ_2BIT_BK TP4	3	Inject 2-bits of error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_2BIT_BK TP3	2	Inject 2-bits of error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_2BIT_BK TP2	1	Inject 2-bits of error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error
MEM_ERR_I NJ_2BIT_BK TP1	0	Inject 2-bits of error into each word (MEM_ERR_INJ_WORD_LOC and MEM_ERR_INJ_WORD2_LOC) when word locations are enabled. Errors are injected one time into the packet number specified in MEM_ERR_INJ_PKT_NUM.	0x0: Normal operation 0x1: Inject error

MEM ERR INJ WORD LOC EN (0x483)

BIT	7	6	5	4	3	2	1	0
Field	-	-	I	_	-	_	MEM_ERR _INJ_WOR D_LOC_2_ EN	MEM_ERR _INJ_WOR D_LOC_1_ EN
Reset	_	_	-	_	_	_	0x0	0x1
Access Type	_	_	_	_	_	_	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MEM_ERR_I NJ_WORD_L OC_2_EN	1	Enables second memory error injection word location	0x0: Injection Disabled 0x1: Injection Enabled
MEM_ERR_I NJ_WORD_L OC_1_EN	0	Enables memory error injection word location	0x0: Injection Disabled 0x1: Injection Enabled

MEM_ERR_INJ_WORD_LOC_1 (0x484)

BIT	7	6	5	4	3	2	1	0		
Field		MEM_ERR_INJ_WORD_LOC_1[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS		DESCRIPTION		
MEM_ERR_INJ_WORD	7:0	injected on bit locati MEM_ERR_INJ_BI	ount location to inject 1-bit or lons specified by MEM_ERR T2_LOC. s can only be injected into pi	_INJ_BIT_LOC and	
			Inject Header Error	Inject Pixel Error	
		DPHY	< 2	≥ 2	
		CPHY 1-lane	< 4	≥ 4	
		CPHY 2-lanes	< 8	≥ 8	

MEM ERR INJ WORD LOC 2 (0x485)

BIT	7	6	5	4	3	2	1	0
Field	MEM_ERR_INJ_WORD_LOC_2[7:0]							
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS		DESCRIPTION		
		are injected on bit id MEM_ERR_INJ_BI	4-bits) count location to inject cations specified in MEM_E Γ2_LOC. Is can only be injected into pi	RR_INJ_BIT_LOC and	
MEM_ERR_INJ_WORD LOC 2	7:0		Inject Header Error	Inject Pixel Error	
		DPHY	< 2	≥ 2	
		CPHY 1-lane	< 4	≥ 4	
		CPHY 2-lanes	< 8	≥ 8	
		Enabling word2_loc	can result in a total of 4-bits	of errors injected.	

MEM ERR INJ PKT NUM (0x486)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	MEM_ERR_INJ_PKT_NUM[3:0]			
Reset	_	_	_	_	0x0			
Access Type	_	_	_	_	Write, Read			

BITFIELD	BITS	DESCRIPTION
MEM_ERR_INJ_PKT_N UM	3:0	Sets the packet to inject 1-bit or 2-bit errors. Packet is counted from the next frame-start packet after MEM_ERR_INJ_1/2_BIT_BKTPx is set .

MEM_ERR_INJ_BIT1_LOC (0x487)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	MEM_ERR_INJ_BIT1_LOC[4:0]				
Reset	_	_	_		0x03			
Access Type	_	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION
MEM_ERR_INJ_BIT1_L OC	4:0	Specify bit location to inject 1-bit error on a 24-bit bus. Min = 0, Max = 23. If set to more than 23, no error will be injected.
		Bit and Bit 2 locations are used by both word locations.

MEM ERR INJ BIT2 LOC (0x488)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	MEM_ERR_INJ_BIT2_LOC[4:0]				
Reset	_	_	_		0x00			
Access Type	_	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION
MEM_ERR_INJ_BIT2_L OC	4:0	Specify second bit location to inject 2-bit error on a 24-bit bus. Min = 0, Max = 23. If set to more than 23, no error will be injected.
		Bit and bit 2 locations are used by both word locations.

FSYNC 0 (0x4A0)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	FSYNC_OU T_PIN	EN_VS_GE N	FSYNC_MODE[1:0] FSYNC_METH[ИЕТН[1:0]	
Reset	0x0	0x0	0b0	0x0	0x3		0>	(0
Access Type			Write, Read	Write, Read	Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE		
FSYNC_OUT _PIN			0b0: MFP0 0b1: MFP7		
EN_VS_GEN	4	Selects whether or not VS is generated internally by the frame sync generator (not effective when FSYNC_MODE = 11)	0b0: VS is not generated internally by the frame sync generator 0b1: VS is generated internally by the frame sync generator		

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_MO DE	3:2	Frame Synchronization Mode	0b00: Frame sync generation is on. GPIO is not used as FSYNC input or output 0b01: Frame sync generation is on. GPIO is used as FSYNC output and drives a slave device 0b10: Frame sync generation is off. GPIO is used as FSYNC input driven by a master device for GMSL1 links. Any enabled GPIO input can be used as FSYNC input for GMSL2 links. 0b11: Frame sync generation is off. GPIO is not used as FSYNC input or output
FSYNC_MET H	1:0	Frame Synchronization Method	0b00: Manual 0b01: Semi-auto 0b10: Auto 0b11: Reserved

FSYNC_1 (0x4A1)

BIT	7	6	5	4	3	2	1	0
Field	RSVD[1:0]		RSVD[1:0]		FSYNC_PER_DIV[3:0]			
Reset	0x0		0x0		0x0			
Access Type						Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_PER _DIV	3:0	Frame sync transmission period in terms of VSYNC periods	0x0: 1 0x1: 2 0x2: 3 0x3: 6 0x4: 8 0x5: 10 0x6: 12 0x7: 16 0x8: 20 0x9: 24 0xA: 32 0xB: 48 0xC: 64 0xD: 80 0xE: 96 0xF: 128

FSYNC 2 (0x4A2)

BIT	7	6	5	4	3	2	1	0	
Field	MST_LINK_SEL[2:0]			K_VAL_SIG N	K_VAL[3:0]				
Reset		0x4		0x0	0x1				
Access Type	Write, Read			Write, Read		Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
MST_LINK_ SEL	7:5	Master link select for frame sync generation	0b000: Video 0 0b001: Video 1 0b010: Video 2 0b011: Video 3 0b100: Auto select 0b101: Auto select 0b110: Auto select 0b111: Auto select		
K_VAL_SIG N	4	Sign bit of K_VAL	0b0: K_VAL is positive 0b1: K_VAL is negative		
K_VAL	3:0	Desired frame sync margin with respect to either the VSYNC of the slowest link in automatic mode or the VSYNC of the master link in semi-automatic mode.	0x0: 0.85µs 0x1: 1.71µs 0x2: 2.56µs 0x3: 3.41µs 0x4: 4.27µs 0x5: 5.12µs 0x6: 5.97µs 0x7: 6.83µs 0x8: 8.53µs 0x9: 10.24µs 0xA: 11.95µs 0xB: 13.65µs 0xC: 17.07µs 0xD: 20.48µs 0xE: 23.89µs 0xF: 27.31µs		

FSYNC_3 (0x4A3)

BIT	7	6	5	4	3	2	1	0
Field	P_VAL_L[7:0]							
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
P_VAL_L	7:0	Low byte of desired frame sync margin in terms of PCLK cycles with respect to the VSYNC of the slowest link in automatic mode or with respect to the VSYNC of the master link in semi-automatic mode	0bXXXXXXXX: Low byte of desired frame sync margin

FSYNC_4 (0x4A4)

BIT	7	6	5	4	3	2	1	0
Field	_	ı	P_VAL_SIG N	P_VAL_H[4:0]				
Reset	_	_	0x0			0x00		
Access Type	_	-	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
P_VAL_SIG N	5	Sign bit of P_VAL	0b0: P_VAL is positive 0b1: P_VAL is negative		

BITFIELD	BITS	DESCRIPTION	DECODE
P_VAL_H	4:0	High bits of desired frame sync margin in terms of PCLK cycles with respect to the VSYNC of the slowest link in automatic mode or with respect to the VSYNC of the master link in semi-automatic mode	0bXXXXX: High bits of desired frame sync margin

FSYNC 5 (0x4A5)

BIT	7	6	5	4		3	2	1	0	
Field		FSYNC_PERIOD_L[7:0]								
Reset		0x00								
Access Type		Write, Read								
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
FSYNC_PER IOD_L	7:0	Low byte of frame sync period in terms of pixel clock (effective when FSYNC_METH = 00 and FSYNC_MODE = 0x) Low byte of frame sync period in terms of 0xXX: Low byte of number of PLCK of FSYNC period				ycles in				

FSYNC 6 (0x4A6)

BIT	7	6	5	4	3	2	1	0
Field	FSYNC_PERIOD_M[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_PER IOD_M	7:0	Middle byte of frame sync period in terms of pixel clock (effective when FSYNC_METH = 00 and FSYNC_MODE = 0x)	0xXX: Middle byte of number of PLCK cycles in FSYNC period

FSYNC_7 (0x4A7)

BIT	7	6	5	4	3	2	1	0
Field		FSYNC_PERIOD_H[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_PER IOD_H	7:0	High byte of frame sync period in terms of pixel clock (effective when FSYNC_METH = 00 and FSYNC_MODE = 0x)	0xXX: High byte of number of PLCK cycles in FSYNC period

FSYNC_8 (0x4A8)

BIT	7	6	5	4	3	2	1	0
Field		FRM_DIFF_ERR_THR_L[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
FRM_DIFF_ ERR_THR_L	7:0	Low byte of the error threshold for the difference between the earliest and latest VSYNCs in terms of PCLK cycles (default is 40µs for 96MHz PCLK) (disabled when all 13 bits are 0's)	0xXX: Low byte of number of PLCK cycles in VSYNC error threshold

FSYNC_9 (0x4A9)

BIT	7	6	5	4	3	2	1	0
Field	_	_	- FRM_DIFF_ERR_THR_H[4:0]					
Reset	_	_	-	0x0F				
Access Type	_	_	-	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
FRM_DIFF_ ERR_THR_H	4:0	High bits of the error threshold for the difference between the earliest and latest VSYNCs in terms of PCLK cycles (default is 40µs for 96MHz PCLK) (disabled when all 13 bits are 0's)	0bXXXXX: High bits of number of PLCK cycles in VSYNC error threshold

FSYNC_10 (0x4AA)

BIT	7	6	5	4	3	2	1	0
Field	OVLP_WINDOW_L[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
OVLP_WIND OW_L	7:0	Low byte of the overlap window value in terms of PCLK cycles (default is 60µs for 96MHz PCLK) (disabled when all 13 bits are 0's)	0xXX: Low byte of number of PCLK cycles in the VSYNC-FSYNC overlap window

FSYNC_11 (0x4AB)

BIT	7	6	5	4	3	2	1	0
Field	EN_FSIN_L AST	-	_	OVLP_WINDOW_H[4:0]				
Reset	0x0	_	_	0x00				
Access Type	Write, Read	-	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
EN_FSIN_LA ST	7	When set to 0, FSIN can occur anywhere with respect to VS rising edges When set to 1, FSIN should occur after all VS rising edges	0b0: FSIN can occur anywhere with respect to VS rising edges 0b1: FSIN occurs after all rising edges		
OVLP_WIND OW_H	4:0	High bits of the overlap window value in terms of PCLK cycles (default is 60µs for 96MHz PCLK) (disabled when all 13 bits are 0's)	0bXXXXX: High bits of number of PCLK cycles in the VSYNC-FSYNC overlap window		

FSYNC_15 (0x4AF)

BIT	7	6	5	4	3	2	1	0
Field	FS_GPIO_T YPE	FS_USE_X TAL	_	AUTO_FS_ LINKS	FS_LINK_3	FS_LINK_2	FS_LINK_1	FS_LINK_0
Reset	0x1	0x1	_	0x0	0x1	0x1	0x1	0x1
Access Type	Write, Read	Write, Read	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
FS_GPIO_T YPE	7	Selects the type of FSYNC signal to output from GPIO	0b0: GSML1 type 0b1: GMSL2 type
FS_USE_XT AL	6	Uses crystal oscillator clock for generating frame sync signal	0b0: Disabled 0b1: Enabled
AUTO_FS_LI NKS	4	Selects how links are selected for frame sync generation	0b0: Include links selected by FS_LINK_x register bits in frame sync generation 0b1: Include all enabled links in frame sync generation
FS_LINK_3	3	Includes Video Pipe 3 in frame sync generation This is used only if AUTO_FS_LINKS = 0	0b0: Do not include Video Pipe 3 in frame sync generation 0b1: Include Video Pipe 3 in frame sync generation
FS_LINK_2	2	Includes Video Pipe 2 in frame sync generation This is used only if AUTO_FS_LINKS = 0	0b0: Do not include Video Pipe 2 in frame sync generation 0b1: Include Video Pipe 2 in frame sync generation
FS_LINK_1	1	Includes Video Pipe 1 in frame sync generation This is used only if AUTO_FS_LINKS = 0	0b0: Do not include Video Pipe 1 in frame sync generation 0b1: Include Video Pipe 1 in frame sync generation
FS_LINK_0	0	Includes Video Pipe 0 in frame sync generation This is used only if AUTO_FS_LINKS = 0	0b0: Do not include Video Pipe 0 in frame sync generation 0b1: Include Video Pipe 0 in frame sync generation

FSYNC_16 (0x4B0)

BIT	7	6	5	4	3	2	1	0
Field	FSYNC_ERR_CNT[7:0]							
Reset	0x00							
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE		
FSYNC_ERR _CNT	7:0	Frame Sync Error Counter (resets to 0 when read or when FSYNC_LOCKED (0x4B6) goes high)	0xXX: Number of frame sync errors detected since last error counter reset		

FSYNC_17 (0x4B1)

BIT	7	6	5	4	3	2	1	0
Field		FS	SYNC_TX_ID[4	FSYNC_ERR_THR[2:0]				
Reset			0x1E	0x0				
Access Type			Write, Read		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_TX_I D	7:3	GPIO ID used for transmitting FSYNC signal	0bXXXXX: GPIO ID associated with FSYNC transmission
FSYNC_ERR _THR	2:0	Frame sync error reporting threshold. FSYNC_ERR_FLAG is asserted when FSYNC_ERR_CNT ≥ FSYNC_ERR_THR.	0b000: 1 error 0b001: 2 errors 0b010: 4 errors 0b011: 8 errors 0b100: 16 errors 0b101: 32 errors 0b110: 64 errors 0b111: 128 errors

FSYNC_18 (0x4B2)

BIT	7	6	5	4	3	2	1	0
Field		CALC_FRM_LEN_L[7:0]						
Reset		0x00						
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
CALC_FRM_ LEN_L	7:0	Low byte of calculated VS period of master link in terms of pixel clock in automatic or semi-automatic synchronization mode (Use when FSYNC_METH = 10 and FSYNC_MODE = 0x)	0xXX: Low byte of number of PCLKs in VS period in master link auto or semi-auto synchronization mode.

FSYNC_19 (0x4B3)

BIT	7	6	5	4	3	2	1	0
Field	CALC_FRM_LEN_M[7:0]							
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
CALC_FRM_ LEN_M	7:0	Middle byte of calculated VS period of master link in terms of pixel clock in automatic or semi-automatic synchronization mode (Use when FSYNC_METH = 10 and FSYNC_MODE = 0x)	0xXX: Middle byte of number of PCLKs in VS period in master link auto or semi-auto synchronization mode

FSYNC_20 (0x4B4)

BIT	7	6	5	4	3	2	1	0
Field		CALC_FRM_LEN_H[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
CALC_FRM_ LEN_H	7:0	High byte of calculated VS period of master link in terms of pixel clock in automatic or semi-automatic synchronization mode (Use when FSYNC_METH = 10 and FSYNC_MODE = 0x)	0xXX: High byte of number of PCLKs in VS period in master link auto or semi-auto synchronization mode

FSYNC_21 (0x4B5)

BIT	7	6	5	4	3	2	1	0	
Field		FRM_DIFF_L[7:0]							
Reset		0x00							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
FRM_DIFF_L	7:0	Low byte of the difference between the fastest and the slowest frame in terms of master PCLK cycles	0xXX: Low byte of the difference between the fastest and the slowest frame

FSYNC_22 (0x4B6)

BIT	7	6	5	4	3	2	1	0
Field	FSYNC_LO SS_OF_LO CK	FSYNC_LO CKED	FRM_DIFF_H[5:0]					
Reset	0x0	0x0	0x00					
Access Type	Read Clears All	Read Only	Read Only					

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_LOS S_OF_LOCK	7	Frame Synchronization Lost Lock This bit is set to 1 when frame synchronization loses lock. It is cleared when read.	0b0: Frame synchronization loss of lock has not been detected or has been cleared by a previous read operation 0b1: Frame synchronization loss of lock has been detected
FSYNC_LOC KED	6	Frame Synchronization Lock	0b0: Frame synchronization is not locked 0b1: Frame synchronization is locked
FRM_DIFF_ H	5:0	High bits of the difference between the fastest and the slowest frame in terms of master PCLK cycles	0bXXXXX: High bits of the difference between the fastest and the slowest frame

FSYNC_23 (0x4B7)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	FSYNC_RS T_MODE	_	RSVD	RSVD	RSVD	RSVD
Reset	0x0	0x0	0b0	_	0x0	0x0	0x0	0x0
Access Type			Write, Read	-				

BITFIELD	BITS	DESCRIPTION	DECODE
FSYNC_RST _MODE	5		0x0: Legacy 0x1: Start frame sync state machine regardless of video locks.

TR0 (0x500, 0x560)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N	RX_CRC_E N	RSVD[1:0]		PRIO_VAL[1:0]		PRIO_CFG[1:0]	
Reset	0b1	0b1	0:	x3	0x0		0x0	
Access Type	Write, Read	Write, Read			Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE		
TX_CRC_EN	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet		
RX_CRC_EN	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet		
PRIO_VAL	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority		
PRIO_CFG	1:0	Adjusts the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used		

TR1 (0x501, 0x561)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MULT[1:0]			BW_VAL[5:0]						
Reset	0>	k 2	0x30							
Access Type	Write,	Read		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL by 1 0b01: Multiply BW_VAL by 4 0b10: Multiply BW_VAL by 16 0b11: Multiply BW_VAL by 16

BITFIELD	BITS	DESCRIPTION	DECODE
BW_VAL	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL x BW_MULT/ 10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0x503, 0x563)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID[2:0]		
Reset	_	_	_	_	_	0x0		
Access Type	_	_	_	_	_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x504, 0x564)

BIT	7	6	5	4	3	2	1	0		
Field		RX_SRC_SEL[7:0]								
Reset		0xFF								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L	7:0	Receives packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL = 00001001, packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x506, 0x566)

BIT	7	6	5	4	3	2	1	0
Field	_		MAX_RT[2:0]			RSVD	MAX_RT_E RR_OEN	RT_CNT_O EN
Reset	_		0x7		0x0	0x0	0b1	0b0
Access Type	_		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	

BITFIELD	BITS	DESCRIPTION	DECODE		
MAX_RT_ER R_OEN	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR—ARQ2 register) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors		
RT_CNT_OE N	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event		

ARQ2 (0x507, 0x567)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR	RT_CNT[6:0]							
Reset	0b0		0x0						
Access Type	Read Clears All	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE		
MAX_RT_ER R	7	Reached maximum retransmit limit (MAX_RT—ARQ1) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached		
RT_CNT	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel		

TR0 (0x510)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_B	RX_CRC_E N_B	RSVD[1:0]		PRIO_VAL_B[1:0]		PRIO_CFG_B[1:0]	
Reset	0b1	0b1	0x3		0:	x0	0>	κ0
Access Type	Write, Read	Write, Read			Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _B	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet
RX_CRC_EN _B	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_ B	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ B	1:0	Adjusts the priority to be used for requests from this channel	00: Priority from Tx adapter is used 01: Priority from Tx adapter is increased 10: Priority from Tx adapter is decreased 11: Priority in PRIO_VAL register is used

TR1 (0x511)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MUL	_T_B[1:0]	BW_VAL_B[5:0]						
Reset	0x2		0x2 0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS DESCRIPTION DECODE				
BW_MULT_ B	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_B by 1 0b01: Multiply BW_VAL_B by 4 0b10: Multiply BW_VAL_B by 16 0b11: Multiply BW_VAL_B by 16		
BW_VAL_B	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_B x BW_MULT_B/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value		

TR3 (0x513)

BIT	7	6	5	4	3	2	1	0
Field	_		_	_	_	TX_SRC_ID_B[2:0]		
Reset	_	-	_	_	_	0x0		
Access Type	_	-	_	_	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ B	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x514)

BIT	7	6	5	4	3	2	1	0	
Field	RX_SRC_SEL_B[7:0]								
Reset		0xFF							
Access Type	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_B	7:0	Received packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_B = 00001001, packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x516)

BIT	7	6	5	4	3	2	1	0
Field	-	ı	MAX_RT_B[2:0]			RSVD	MAX_RT_E RR_OEN_B	RT_CNT_O EN_B
Reset	-		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_B	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_B	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_B (0x517)) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_B	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_B (0x517) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x517)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR_B		RT_CNT_B[6:0]						
Reset	0b0				0x0				
Access Type	Read Clears All		Read Clears All						

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_B	7	Reached maximum retransmit limit (MAX_RT_B (0x516)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_B	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel

TR0 (0x520)

BIT	7	6	5	4	3	2	1	0	
Field	TX_CRC_E N_C	RX_CRC_E N_C	RSVD[1:0]		PRIO_VAL_C[1:0]		PRIO_CFG_C[1:0]		
Reset	0b1	0b1	0:	x3	0x0		0x0		
Access Type	Write, Read	Write, Read		55		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _C	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet

BITFIELD	BITS	DESCRIPTION	DECODE
RX_CRC_EN _C	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_ C	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ C	1:0	Adjusts the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used

TR1 (0x521)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MUL	BW_MULT_C[1:0]				BW_VAL_C[5:0]				
Reset	0>	k 2	0x30							
Access Type	Write,	Read		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ C	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_C by 1 0b01: Multiply BW_VAL_C by 4 0b10: Multiply BW_VAL_C by 16 0b11: Multiply BW_VAL_C by 16
BW_VAL_C	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_C x BW_MULT_C/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0x523)

BIT	7	6	5	4	3	2	1	0
Field	_		_	_	_	TX_SRC_ID_C[2:0]		
Reset	_	-	-	_	_	0x0		
Access Type	_	-	-	_	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ C	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x524)

BIT	7	6	5	4	3	2	1	0		
Field		RX_SRC_SEL_C[7:0]								
Reset		0xFF								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_C	7:0	Received packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_C = 00001001, packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x526)

BIT	7	6	5	4	3	2	1	0
Field	_	r	MAX_RT_C[2:0]			RSVD	MAX_RT_E RR_OEN_C	RT_CNT_O EN_C
Reset	_		0x7			0x0	0b1	0b0
Access Type	_		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_C	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_C	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_C (0x527)) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_C	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_C (0x527) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x527)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR_C		RT_CNT_C[6:0]						
Reset	0b0				0x0				
Access Type	Read Clears All				Read Clears Al	I			

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_C	7	Reached maximum retransmit limit (MAX_RT_C (0x526)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_C	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel

TR0 (0x530)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_D	RX_CRC_E N_D	RSVD[1:0]		PRIO_VAL_D[1:0]		PRIO_CFG_D[1:0]	
Reset	0b1	0b1	0:	0x3		0x0		κ0
Access Type	Write, Read	Write, Read			Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _D	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet
RX_CRC_EN _D	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ D	1:0	Adjusts the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used

TR1 (0x531)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MUL	_T_D[1:0]	BW_VAL_D[5:0]						
Reset	0>	k 2	0x30						
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_D by 1 0b01: Multiply BW_VAL_D by 4 0b10: Multiply BW_VAL_D by 16 0b11: Multiply BW_VAL_D by 16
BW_VAL_D	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_D x BW_MULT_D/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0x533)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID_D[2:0]		
Reset	_	_	-	_	-	0x0		
Access Type	_	_	_	_	-		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x534)

BIT	7	6	5	4	3	2	1	0		
Field		RX_SRC_SEL_D[7:0]								
Reset		0xFF								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_D	7:0	Received packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_D = 00001001, packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x536)

BIT	7	6	5	4	3	2	1	0
Field	_	ſ	MAX_RT_D[2:0]			RSVD	MAX_RT_E RR_OEN_D	RT_CNT_O EN_D
Reset	_		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_D	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_D	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_D (0x537)) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_D	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_D (0x537) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x537)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR_D		RT_CNT_D[6:0]						
Reset	0b0		0x0						
Access Type	Read Clears All				Read Clears Al	I			

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_D	7	Reached maximum retransmit limit (MAX_RT_D (0x536)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_D	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel

TR0 (0x570)

BIT	7	6	5	4	3	2	1	0	
Field	TX_CRC_E N_B	RX_CRC_E N_B	RSVD[1:0]		PRIO_VAL_B[1:0]		PRIO_CFG_B[1:0]		
Reset	0b1	0b1	0:	0x3		0x0		0x0	
Access Type	Write, Read	Write, Read			Write, Read		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _B	7	When set, calculates and appends CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet
RX_CRC_EN _B	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_ B	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ B	1:0	Adjust the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used

TR1 (0x571)

BIT	7	6	5	4	3	2	1	0	
Field	BW_MUL	_T_B[1:0]		BW_VAL_B[5:0]					
Reset	0>	0x30							
Access Type	Write,	Read			Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ B	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_B by 1 0b01: Multiply BW_VAL_B by 4 0b10: Multiply BW_VAL_B by 16 0b11: Multiply BW_VAL_B by 16
BW_VAL_B	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_B x BW_MULT_B/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0x573)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID_B[2:0]		
Reset	_	_	_	_	_	0x0		
Access Type	-	_	_	_	_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x574)

BIT	7	6	5	4	3	2	1	0		
Field		RX_SRC_SEL_B[7:0]								
Reset		0xFF								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_B	7:0	Receives packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_B = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x576)

BIT	7	6	5	4	3	2	1	0
Field	-	ı	MAX_RT_B[2:0]			RSVD	MAX_RT_E RR_OEN_B	RT_CNT_O EN_B
Reset	_		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_B	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_B	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR (0x577)) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_B	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT (0x577) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x577)

BIT	7	6	5	4	3	2	1	0	
Field	MAX_RT_E RR_B		RT_CNT_B[6:0]						
Reset	0b0		0x0						
Access Type	Read Clears All				Read Clears Al	I			

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_B	7	Reached maximum retransmit limit (MAX_RT_B (0x576)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached
RT_CNT_B	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel

TR0 (0x580)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_C	RX_CRC_E N_C	RSVD[1:0]		PRIO_VAL_C[1:0]		PRIO_CFG_C[1:0]	
Reset	0b1	0b1	0:	k 3	0x0		0>	0
Access Type	Write, Read	Write, Read				Write, Read		Read

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _C	7	When set, calculate and append CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet
RX_CRC_EN _C	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_ C	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ C	1:0	Adjust the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used

TR1 (0x581)

BIT	7	6	5	4	3	2	1	0
Field	BW_MUL	_T_C[1:0]	BW_VAL_C[5:0]					
Reset	0>	k 2	0x30					
Access Type	Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
BW_MULT_ C	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_C by 1 0b01: Multiply BW_VAL_C by 4 0b10: Multiply BW_VAL_C by 16 0b11: Multiply BW_VAL_C by 16
BW_VAL_C	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_C x BW_MULT_C/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value

TR3 (0x583)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	TX_SRC_ID_C[2:0]		
Reset	_	_	_	_	-	0x0		
Access Type	_	_	_	_	-		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ C	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x584)

BIT	7	6	5	4	3	2	1	0	
Field		RX_SRC_SEL_C[7:0]							
Reset		0xFF							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_C	7:0	Receive packets from selected sources Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_C = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x586)

BIT	7	6	5	4	3	2	1	0
Field	-	ľ	MAX_RT_C[2:0)]	RSVD	RSVD	MAX_RT_E RR_OEN_C	RT_CNT_O EN_C
Reset	-		0x7			0x0	0b1	0b0
Access Type	-		Write, Read				Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_C	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_C	1	Enable reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR_C—0X587) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_C	0	Enable reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_C (0x587) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x587)

BIT	7	6	5	4	3	2	1	0
Field	MAX_RT_E RR_C			1	RT_CNT_C[6:0]		
Reset	0b0		0x0					
Access Type	Read Clears All		Read Clears All					

BITFIELD	BITS	DESCRIPTION	DECODE	
MAX_RT_ER R_C	7	Reached maximum retransmit limit (MAX_RT_C (0x586)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached	
RT_CNT_C	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel	

TR0 (0x590)

BIT	7	6	5	4	3	2	1	0
Field	TX_CRC_E N_D	RX_CRC_E N_D	RSVD[1:0]		PRIO_VAL_D[1:0]		PRIO_CFG_D[1:0]	
Reset	0b1	0b1	0:	k 3	0x0		0x0	
Access Type	Write, Read	Write, Read			Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TX_CRC_EN _D	7	When set, calculate and append CRC to each packet transmitted from this port	0b0: Do not calculate and append CRC to each packet 0b1: Calculate and append CRC to each packet

BITFIELD	BITS	DESCRIPTION	DECODE
RX_CRC_EN _D	6	When set, indicates that packets received at this port have appended CRC. CRC checking should be performed at each packet.	0b0: Do not perform CRC check at each packet 0b1: Perform CRC check at each packet
PRIO_VAL_ D	3:2	Sets the priority for this channel's packet requests	0b00: Low priority 0b01: Normal priority 0b10: High priority 0b11: Urgent priority
PRIO_CFG_ D	1:0	Adjust the priority to be used for requests from this channel	0b00: Priority from Tx adapter is used 0b01: Priority from Tx adapter is increased 0b10: Priority from Tx adapter is decreased 0b11: Priority in PRIO_VAL register is used

TR1 (0x591)

BIT	7	6	5	4	3	2	1	0		
Field	BW_MULT_D[1:0]			BW_VAL_D[5:0]						
Reset	0x2		0x30							
Access Type	Write, Read		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE		
BW_MULT_	7:6	Channel bandwidth-allocation multiplication factor	0b00: Multiply BW_VAL_D by 1 0b01: Multiply BW_VAL_D by 4 0b10: Multiply BW_VAL_D by 16 0b11: Multiply BW_VAL_D by 16		
BW_VAL_D	5:0	Channel bandwidth-allocation base. Fair bandwidth use ratio = BW_VAL_D x BW_MULT_D/10 as a percentage of total link bandwidth	0bXXXXXX: Channel base-bandwidth value		

TR3 (0x593)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	T	SRC_ID_D[2	:0]
Reset	_	_	_	_	-	0x0		
Access Type	_	_	-	-	-	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
TX_SRC_ID_ D	2:0	Source identifier used in packets transmitted from this port. Default value is set by CFG0 pin.	0bXXX: Source ID for packets from this channel

TR4 (0x594)

BIT	7	6	5	4	3	2	1	0
Field		RX_SRC_SEL_D[7:0]						
Reset		0xFF						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RX_SRC_SE L_D	7:0	Received packets from selected sources. Each bit indicates whether packets with that source ID should be received or not. For example, when RX_SRC_SEL_D = 00001001, then packets with source ID equal to 0 and 3 will be received.	0x00: No packets received 0x01: Packets from source ID 0 received 0x02: Packets from source ID 1 received 0x03: Packets from source ID 0 and 1 received 0x04: Packets from source ID 2 received 0xFF: Packets from all source IDs received

ARQ1 (0x596)

BIT	7	6	5	4	3	2	1	0
Field	_	r	MAX_RT_D[2:0]			RSVD	MAX_RT_E RR_OEN_D	RT_CNT_O EN_D
Reset	_		0x7			0x0	0b1	0b0
Access Type	_	Write, Read					Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_D	6:4	Maximum retransmission limit. ARQ will stop retransmission after reaching the limit for a single packet.	
MAX_RT_ER R_OEN_D	1	Enables reporting of ARQ maximum retransmission limit errors (MAX_RT_ERR (0x597)) for this channel at ERRB pin	0b0: Disable reporting of ARQ maximum retransmission limit errors 0b1: Enable reporting of ARQ maximum retransmission limit errors
RT_CNT_OE N_D	0	Enables reporting of ARQ retransmission event for this channel at ERRB pin. When enabled, ERRB is asserted when RT_CNT_D (0x597) of this channel is greater than 0.	0b0: Disable reporting of ARQ retransmission event 0b1: Enable reporting of ARQ retransmission event

ARQ2 (0x597)

BIT	7	6	5	4	3	2	1	0
Field	MAX_RT_E RR_D		RT_CNT_D[6:0]					
Reset	0b0		0x0					
Access Type	Read Clears All	Read Clears All						

BITFIELD	BITS	DESCRIPTION	DECODE		
MAX_RT_ER R_D	7	Reached maximum retransmit limit (MAX_RT_D (0x596)) for one packet in this channel	0b0: Maximum retransmission limit not reached 0b1: Maximum retransmission limit reached		
RT_CNT_D	6:0	Total retransmission count in this channel	0bXXXXXXX: Count of retransmission for this channel		

I2C_0 (0x640)

BIT	7	6	5	4	3	2	1	0
Field	_	RSVD	SLV_SH_P0_A[1:0]		_	SLV_TO_P0_A[2:0]		
Reset	_	0x0	0x2		_	0x6		
Access Type	_		Write,	Write, Read			Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P0 _A	5:4	Link A GMSL1 and GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold). Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P0 _A	2:0	Link A GMSL1 and GMSL2 I ² C-to-I ² C Slave Timeout Setting. Internal I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x641)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MS	MST_BT_P0_A[2:0]			MST_TO_P0_A[2:0]		
Reset	0x0		0x5				0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		Link A GMSL1 and GMSL2 I ² C-to-I ² C Master Bit Rate Setting.	3b000: 9.92Kbps - Set for I ² C Standard-mode
MST_BT_P0 _A		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	speed 3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-
	6:4	This setting applies only to I ² C Port 0 for GMSL2 Link A.	mode speed 3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed
		This setting applies to all I ² C Ports for GMSL1 Link A.	3b101: 397Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
		Link A GMSL1 and GMSL2 I ² C-to-I ² C Master Timeout Setting.	
MST_TO_P0 _A	2:0	Internal I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16μs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms
		This setting applies only to I ² C Port 0 for GMSL2.	0b101: 16ms 0b110: 32ms 0b111: Disabled
		This setting applies to all I ² C Ports for GMSL1.	

I2C 2 (0x642)

BIT	7	6	5	4	3	2	1	0
Field	SRC_A_P0_A[6:0]							_
Reset	0x0							_
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P0_ A	7:1	Link A GMSL1 and GMSL2 I ² C Address Translator Source A. When I ² C device address matches SRC_A_P0_A, internal I ² C master (on remote side) replaces the device address by DST_A_P0_A. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x643)

BIT	7	6	5	4	3	2	1	0
Field	DST_A_P0_A[6:0]							_
Reset		0x0						
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P0_	7:1	Link A GMSL1 and GMSL2 I ² C Address Translator Destination A. This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC_A_P0_A.	 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_4 (0x644)</u>

BIT	7	6	5	4	3	2	1	0
Field	SRC_B_P0_A[6:0]							_
Reset	0x0							_
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P0_ A	7:1	Link A GMSL1 and GMSL2 I ² C Address Translator Source B. When I ² C device address matches SRC_B_P0_A, internal I ² C master (on remote side) replaces the device address by DST_B_P0_A. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x645)</u>

BIT	7	6	5	4	3	2	1	0
Field	DST_B_P0_A[6:0]							_
Reset		0x0						
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P0_	7:1	Link A GMSL1 and GMSL2 I ² C Address Translator Destination B. This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC_B_P0_A.	0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_0 (0x650)

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P0_B[1:0]		_	SLV_TO_P0_B[2:0]		
Reset	_	_	0>	0x2		0x6		
Access Type	_	_	Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P0 _B	5:4	Link B GMSL1 and GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold) Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P0 _B	2:0	Link B GMSL1 and GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x651)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MST_BT_P0_B[2:0]			_	MST_TO_P0_B[2:0]		
Reset	0x0		0x5				0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		Link B GMSL1 and GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode
MST_BT_P0 _B		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	speed 3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-
	6:4	This setting applies only to I ² C Port 0 for GMSL2 Link B.	mode speed 3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed
		This setting applies to all I ² C Ports for GMSL1 Link B.	3b101: 397Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
		Link B GMSL1 and GMSL2 I ² C-to-I ² C Master Timeout Setting	
MST_TO_P0	2:0	Internal I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms
_		This setting applies only to I ² C Port 0 for GMSL2.	0b101: 16ms 0b110: 32ms 0b111: Disabled
		This setting applies to all I ² C Ports for GMSL1.	

I2C 2 (0x652)

BIT	7	6	5	4	3	2	1	0
Field		SRC_A_P0_B[6:0]						
Reset		0x0						
Access Type	Write, Read						-	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P0_ B	7:1	Link B GMSL1 and GMSL2 I ² C Address Translator Source A When I ² C device address matches SRC_A_P0_B, internal I ² C master (on remote side) replaces the device address by DST_A_P0_B. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x653)

BIT	7	6	5	4	3	2	1	0
Field	DST_A_P0_B[6:0]							-
Reset		0x0						
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P0_ B	7:1	Link B GMSL1 and GMSL2 I ² C Address Translator Destination A. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1. See the description of SRC A P0 B.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_4 (0x654)</u>

BIT	7	6	5	4	3	2	1	0
Field		SRC_B_P0_B[6:0]						
Reset		0x0						
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P0_ B	7:1	Link B GMSL1 and GMSL2 I ² C Address Translator Source B When I ² C device address matches SRC_B_P0_B, internal I ² C master (on remote side) replaces the device address by DST_B_P0_B. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x655)</u>

BIT	7	6	5	4	3	2	1	0	
Field	DST_B_P0_B[6:0]								
Reset		0x0							
Access Type	Write, Read							-	

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P0_	7:1	Link B GMSL1 and GMSL2 I ² C Address Translator Destination B This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC_B_P0_B.	0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_0 (0x660)</u>

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P0_C[1:0]		_	SLV_TO_P0_C[2:0]		
Reset	_	_	0x2		_	0x6		
Access Type	_	_	Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P0 _C	5:4	Link C GMSL1 and GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold). Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P0 _C	2:0	Link C GMSL1 and GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x661)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MST_BT_P0_C[2:0]			_	MST_TO_P0_C[2:0]		
Reset	0x0		0x5				0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		Link C GMSL1 and GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode
MST_BT_P0 _C		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	speed 3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-
	6:4	This setting applies only to I ² C Port 0 for GMSL2 Link C.	mode speed 3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed
		This setting applies to all I ² C Ports for GMSL1 Link C.	3b101: 397Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
		Link C GMSL1 AND GMSL2 I ² C-to-I ² C Master Timeout Setting	
MST_TO_P0	2:0	Internal I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms
		This setting applies only to I ² C Port 0 for GMSL2.	0b101: 16ms 0b110: 32ms 0b111: Disabled
		This setting applies to all I ² C Ports for GMSL1.	

I2C 2 (0x662)

BIT	7	6	5	4	3	2	1	0
Field		SRC_A_P0_C[6:0]						
Reset	0x0							_
Access Type	Write, Read						_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P0_ C	7:1	Link C GMSL1 and GMSL2 I ² C Address Translator Source A When I ² C device address matches SRC_A_P0_C, internal I ² C master (on remote side) replaces the device address by DST_A_P0_C. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x663)

BIT	7	6	5	4	3	2	1	0
Field		DST_A_P0_C[6:0]						
Reset	0x0							-
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P0_	7:1	Link C GMSL1 and GMSL2 I ² C Address Translator Destination A This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC A P0 C.	 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_4 (0x664)</u>

BIT	7	6	5	4	3	2	1	0
Field		SRC_B_P0_C[6:0]						
Reset	0x0							_
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P0_ C	7:1	Link C GMSL1 and GMSL2 I ² C Address Translator Source B When I ² C device address matches SRC_B_P0_C, internal I ² C master (on remote side) replaces the device address by DST_B_P0_C. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x665)</u>

BIT	7	6	5	4	3	2	1	0
Field	DST_B_P0_C[6:0]							
Reset		0x0						
Access Type	Write, Read							-

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P0_	7:1	Link C GMSL1 and GMSL2 I ² C Address Translator Destination B This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC_B_P0_C.	0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_0 (0x670)</u>

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P0_D[1:0]		_	SLV_TO_P0_D[2:0]		
Reset	_	_	0>	0x2		0x6		
Access Type	_	_	Write,	Write, Read			Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P0 _D	5:4	Link D GMSL1 and GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold) Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P0 _D	2:0	Link D GMSL1 and GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x671)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MS	MST_BT_P0_D[2:0]			MST_TO_P0_D[2:0]		
Reset	0x0		0x5				0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		Link D GMSL1 and GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode
MST_BT_P0 _D		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	speed 3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-
	6:4	This setting applies only to I ² C Port 0 for GMSL2 Link D.	mode speed 3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed
		This setting applies to all I ² C Ports for GMSL1 Link D.	3b101: 397Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
		Link D GMSL1 and GMSL2 I ² C-to-I ² C Master Timeout Setting	
MST_TO_P0	2:0	Internal I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16μs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms
_		This setting applies only to I ² C Port 0 for GMSL2.	0b101: 16ms 0b110: 32ms 0b111: Disabled
		This setting applies to all I ² C Ports for GMSL1.	

I2C 2 (0x672)

BIT	7	6	5	4	3	2	1	0
Field		SRC_A_P0_D[6:0]						
Reset	0x0							-
Access Type	Write, Read						-	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P0_ D	7:1	Link D GMSL1 and GMSL2 I ² C Address Translator Source A. When I ² C device address matches SRC_A_P0_D, internal I ² C master (on remote side) replaces the device address by DST_A_P0_D. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x673)

BIT	7	6	5	4	3	2	1	0
Field	DST_A_P0_D[6:0]							
Reset	0x0							-
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P0_	7:1	Link D GMSL1 and GMSL2 I ² C Address Translator Destination A This setting applies only to I ² C Port 0 for GMSL2.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies to all I ² C Ports for GMSL1. See the description of SRC_A_P0_D.	 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_4 (0x674)</u>

BIT	7	6	5	4	3	2	1	0	
Field		SRC_B_P0_D[6:0]							
Reset	0x0							-	
Access Type	Write, Read							_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P0_ D	7:1	Link D GMSL1 and GMSL2 I ² C Address Translator Source B When I ² C device address matches SRC_B_P0_D, internal I ² C master (on remote side) replaces the device address by DST_B_P0_D. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for GMSL1.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x675)</u>

BIT	7	6	5	4	3	2	1	0
Field	DST_B_P0_D[6:0]							
Reset		0x0						
Access Type	Write, Read							_

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P0_	7:1	Link D GMSL1 and GMSL2 I ² C address translator destination B. This setting applies only to I ² C Port 0 for GMSL2. This setting applies to all I ² C Ports for	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		GMSL1. See the description of SRC_B_P0_D.	 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_0 (0x680)</u>

BIT	7	6	5	4	3	2	1	0
Field	_	I2C_HSM_ P1	SLV_SH_P1_A[1:0]		_	SLV_TO_P1_A[2:0]		
Reset	_	0x0	0:	0x2			0x6	
Access Type	_	Write, Read	Write,	Write, Read			Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_HSM_P	6	I ² C High-Speed Mode Enable for Port 1 ALL GMSL2 links. Set this to run I ² C at up to 5Mbps on local side and 3.4Mbps on remote side	
SLV_SH_P1 _A	5:4	GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold) Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 1 for GMSL2 Link A.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P1 _A	2:0	GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal GMSL2 I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 1 for GMSL2 Link A.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

I2C_1 (0x681)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MST_BT_P1_A[2:0]			_	MST_TO_P1_A[2:0]		
Reset	0x0		0x5			0x6		
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode speed
MST_BT_P1 _A		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-mode speed
	6:4	This setting applies only to I ² C Port 1 for GMSL2 Link A.	3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed 3b101: 397Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
MST_TO_P1 _A	2:0	GMSL2 I ² C-to-I ² C Master Timeout Setting Internal GMSL2 I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms
		This setting applies only to I ² C Port 1 for GMSL2 Link A.	0b110: 32ms 0b111: Disabled

I2C_2 (0x682)

BIT	7	6	5	4	3	2	1	0
Field	SRC_A_P1_A[6:0]							
Reset	0x0							_
Access Type	Write, Read							-

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P1_ A	7:1	GMSL2 I ² C Address Translator Source A. When I ² C device address matches SRC_A_P1_A, internal I ² C master (on remote side) replaces the device address by DST_A_P1_A. This setting applies only to I ² C Port 1 for GMSL2 Link A.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_3 (0x683)</u>

BIT	7	6	5	4	3	2	1	0
Field	DST_A_P1_A[6:0]							
Reset	0x0							
Access Type				Write, Read				_

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE		
DST_A_P1_ A	7:1	GMSL2 I ² C Address Translator Destination A. This setting applies only to I ² C Port 1 for GMSL2 Link A. See the description of SRC_A_P1_A	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF		

I2C_4 (0x684)

BIT	7	6	5	4	3	2	1	0	
Field	SRC_B_P1_A[6:0]								
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P1_ A	7:1	GMSL2 I ² C Address Translator Source B When I ² C device address matches SRC_B_P1_A, internal I ² C master (on remote side) replaces the device address by DST_B_P1_A.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies only to I ² C Port 1 for GMSL2 Link A.	 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x685)</u>

BIT	7	6	5	4	3	2	1	0	
Field	DST_B_P1_A[6:0]								
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE		
DST_B_P1_ A	7:1	GMSL2 I ² C Address Translator Destination B. This setting applies only to I ² C Port 1 for GMSL2 Link A. See the description of SRC_B_P1_A.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF		

I2C_0 (0x690)

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P1_B[1:0]		_	SLV_TO_P1_B[2:0]		
Reset	_	_	0>	0x2		0x6		
Access Type	_	_	Write,	Read	-		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P1 _B	5:4	GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold) Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 1 for GMSL2 Link B.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P1 _B	2:0	GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal GMSL2 I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 1 for GMSL2 Link B.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x691)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MST_BT_P1_B[2:0]			_	MST_TO_P1_B[2:0]		
Reset	0x0		0x5			0x6		
Access Type			Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MST_BT_P1	6:4	GMSL2 I ² C-to-I ² C Master Bit Rate Setting Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master). This setting applies only to I ² C Port 1 for GMSL2 Link B. Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101	3b000: 9.92Kbps - Set for I ² C Standard-mode speed 3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-mode speed 3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed 3b101: 397Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus
		Standard-mode = 000 to 010	3b111: 980Kbps - Set for I ² C Fast-mode Plus speed

BITFIELD	BITS	DESCRIPTION	DECODE		
MST_TO_P1 _B	2:0	GMSL2 I ² C-to-I ² C Master Timeout Setting Internal GMSL2 I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device. This setting applies only to I ² C Port 1 for GMSL2 Link B.	0b000: 16μs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled		

I2C_2 (0x692)

BIT	7	6	5	4	3	2	1	0	
Field	SRC_A_P1_B[6:0]								
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P1_ B	7:1	GMSL2 I ² C Address Translator Source A. When I ² C device address matches SRC_A_P1_B, internal I ² C master (on remote side) replaces the device address by DST_A_P1_B	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies only to I ² C Port 1 for GMSL2 Link B.	0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x693)

BIT	7	6	5	4	3	2	1	0		
Field	DST_A_P1_B[6:0]									
Reset	0x0									
Access Type				Write, Read				_		

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P1_ B	7:1	GMSL2 I ² C Address Translator Destination A. This setting applies only to I ² C Port 1 for GMSL2 Link B. See the description of SRC_A_P1_B.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_4 (0x694)

BIT	7	6	5	4	3	2	1	0		
Field	SRC_B_P1_B[6:0]									
Reset	0x0									
Access Type				Write, Read				_		

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_B_P1_ B	7:1	GMSL2 I ² C Address Translator Source B. When I ² C device address matches SRC_B_P1_B, internal I ² C master (on remote side) replaces the device address by DST_B_P1_B. This setting applies only to I ² C Port 1 for GMSL2 Link B.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x695)</u>

BIT	7	6	5	4	3	2	1	0		
Field	DST_B_P1_B[6:0]									
Reset	0x0									
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P1_ B	7:1	GMSL2 I ² C Address Translator Destination B. This setting applies only to I ² C Port 1 for GMSL2 Link B. See the description of SRC_B_P1_B.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_0 (0x6A0)</u>

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P1_C[1:0]		_	SLV_TO_P1_C[2:0]		
Reset	_	_	0x2		_	0x6		
Access Type	_	_	Write, Read		_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_SH_P1 _C	5:4	GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold) Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave. Set this according to the I ² C speed mode. This setting applies only to I ² C Port 1 for GMSL2 Link C.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode 0b11: Reserved
SLV_TO_P1 _C	2:0	GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal GMSL2 I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 1 for GMSL2 Link C.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

<u>I2C_1 (0x6A1)</u>

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MS	MST_BT_P1_C[2:0]			MST_TO_P1_C[2:0]		
Reset	0x0		0x5				0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode speed
MST_BT_P1 _C MST_TO_P1 _C		Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast-mode speed
	6:4 This setting applies only to I ² C Port 1 for GMSL2 Link C. Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010		3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed 3b101: 397Kbps - Set for I ² C Fast or Fast-mode
		Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed	
	Internal GMSL2 I ² the configured durany response while the remote device.	GMSL2 I ² C-to-I ² C Master Timeout Setting Internal GMSL2 I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16µs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms
		This setting applies only to I ² C Port 1 for GMSL2 Link C.	0b110: 32ms 0b111: Disabled

I2C_2 (0x6A2)

BIT	7	6	5	4	3	2	1	0	
Field		SRC_A_P1_C[6:0]							
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P1_ C	7:1	GMSL2 I ² C Address Translator Source A. When I ² C device address matches SRC_A_P1_C, internal I ² C master (on remote side) replaces the device address by DST_A_P1_C. This setting applies only to I ² C Port 1 for GMSL2 Link C.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x6A3)

BIT	7	6	5	4	3	2	1	0	
Field		DST_A_P1_C[6:0]							
Reset		0x0							
Access Type				Write, Read				-	

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P1_ C	7:1	GMSL2 I ² C Address Translator Destination A. This setting applies only to I ² C Port 1 for GMSL2 Link C. See the description of SRC_A_P1_C.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_4 (0x6A4)</u>

BIT	7	6	5	4	3	2	1	0	
Field		SRC_B_P1_C[6:0]							
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C Address Translator Source B.	0b0000000: Write/read device address is 0x00/ 0x01
SRC_B_P1_	7:1	When I ² C device address matches SRC_B_P1_C, internal I ² C master (on remote side) replaces the device address by DST_B_P1_C.	0b0000001: Write/read device address is 0x02/ 0x03
		This setting applies only to I ² C Port 1 for GMSL2 Link C.	0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x6A5)</u>

BIT	7	6	5	4	3	2	1	0	
Field		DST_B_P1_C[6:0]							
Reset		0x0							
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C Address Translator Destination B.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/
DST_B_P1_ C	T_B_P1_ 7:1	This setting applies only to I ² C Port 1 for GMSL2 Link C.	0x03
		See the description of SRC_B_P1_C.	 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_0 (0x6B0)

BIT	7	6	5	4	3	2	1	0
Field	_	_	SLV_SH_P1_D[1:0]		_	SLV_TO_P1_D[2:0]		
Reset	_	_	0>	0x2		0x6		
Access Type	_	_	Write,	Read	_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C-to-I ² C Slave Setup and Hold Time Setting (setup, hold)	
SLV_SH_P1	5:4	Configures the interval between SDA and SCL transitions when driven by the internal I ² C slave.	0b00: Fast-mode Plus 0b01: Fast-mode 0b10: Standard-mode
		Set this according to the I ² C speed mode.	0b11: Reserved
		This setting applies only to I ² C Port 1 for GMSL2 Link D.	

BITFIELD	BITS	DESCRIPTION	DECODE
SLV_TO_P1 _D	2:0	GMSL2 I ² C-to-I ² C Slave Timeout Setting Internal GMSL2 I ² C slave times out after the configured duration if it does not receive any response while waiting for a packet from remote device. This setting applies only to I ² C Port 1 for GMSL2 Link D.	0b000: 16μs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms 0b110: 32ms 0b111: Disabled

I2C_1 (0x6B1)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MS	ST_BT_P1_D[2	2:0]	_	MST_TO_P1_D[2:0]		
Reset	0x0	0x5			_		0x6	
Access Type			Write, Read		_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
		GMSL2 I ² C-to-I ² C Master Bit Rate Setting	3b000: 9.92Kbps - Set for I ² C Standard-mode speed
MST_BT_P1 _D	6:4	Configures the I ² C bit rate used by the internal I ² C master (in the device on remote side from the external I ² C master).	3b001: 33.2Kbps - Set for I ² C Standard-mode speed 3b010: 99.2Kbps - Set for I ² C Standard or Fast- mode speed
		This setting applies only to I ² C Port 1 for GMSL2 Link D.	3b011: 123Kbps - Set for I ² C Fast-mode speed 3b100: 203Kbps - Set for I ² C Fast-mode speed 3b101: 397Kbps - Set for I ² C Fast or Fast-mode
		Set this according to the I ² C speed mode: Fast-mode Plus = 101 to 111 Fast-mode = 010 to 101 Standard-mode = 000 to 010	Plus speed 3b110: 625Kbps - Set for I ² C Fast or Fast-mode Plus speed 3b111: 980Kbps - Set for I ² C Fast-mode Plus speed
MST_TO_P1	2:0	GMSL2 I ² C-to-I ² C Master Timeout Setting Internal GMSL2 I ² C master times out after the configured duration if it does not receive any response while waiting for a packet from the remote device.	0b000: 16μs 0b001: 1ms 0b010: 2ms 0b011: 4ms 0b100: 8ms 0b101: 16ms
		This setting applies only to I ² C Port 1 for GMSL2 Link D.	0b110: 32ms 0b111: Disabled

<u>I2C_2 (0x6B2)</u>

BIT	7	6	5	4	3	2	1	0	
Field	SRC_A_P1_D[6:0]								
Reset	0x0								
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC_A_P1_	7:1	GMSL2 I ² C Address Translator Source A When I ² C device address matches SRC_A_P1_D, internal I ² C master (on remote side) replaces the device address by DST_A_P1_D. This setting applies only to I ² C Port 1 for GMSL2 Link D.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_3 (0x6B3)

BIT	7	6	5	4	3	2	1	0	
Field	DST_A_P1_D[6:0]								
Reset	0x0								
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
DST_A_P1_ D	7:1	GMSL2 I ² C Address Translator Destination A This setting applies only to I ² C Port 1 for GMSL2 Link D. See the description of SRC_A_P1_D.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

I2C_4 (0x6B4)

BIT	7	6	5	4	3	2	1	0	
Field	SRC_B_P1_D[6:0]								
Reset	0x0								
Access Type				Write, Read				-	

BITFIELD	BITS	DESCRIPTION	DECODE
SRC B P1		GMSL2 I ² C Address Translator Source B When I ² C device address matches SRC_B_P1_D, internal I ² C master (on	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03
D D	7:1	remote side) replaces the device address by DST_B_P1_D.	
		This setting applies only to I ² C Port 1 for GMSL2 Link D.	0b1111111: Write/read device address is 0xFE/ 0xFF

<u>I2C_5 (0x6B5)</u>

BIT	7	6	5	4	3	2	1	0	
Field	DST_B_P1_D[6:0]								
Reset	0x0								
Access Type				Write, Read				_	

BITFIELD	BITS	DESCRIPTION	DECODE
DST_B_P1_ D	7:1	GMSL2 I ² C Address Translator Destination B This setting applies only to I ² C Port 1 for GMSL2 Link D. See the description of SRC_B_P1_D.	0b0000000: Write/read device address is 0x00/ 0x01 0b0000001: Write/read device address is 0x02/ 0x03 0b1111111: Write/read device address is 0xFE/ 0xFF

PROFILE MIPI SEL (0x6E1)

BIT	7	6	5	4	3	2	1	0
Field	_	_	PROFILE_MIPI_SEL[5:0]					
Reset	_	-	0x0					
Access Type	_	_	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
PROFILE_MI PI_SEL	5:0	Changing PROFILE_SEL automatically implements the selected profile. Use PROFILE_DISABLE to prevent profiles from being implemented. Disables profiles from executing. For GMSL1 profiles that use YUV, the yuv_8_10_mux_mode# registers are set to 1. To know exactly which registers are written, refer to the MAX96724 User Guide.	0x0: Default - no configuration registers modified if written to 0 0x1: Implement profile 1 0x2: Implement profile 2 0x10: Implement profile 16

PROFILE GMSL 1_0 (0x6EA)

BIT	7	6	5	4	3	2	1	0
Field	_	PRO	FILE_GMSL_1	[2:0]	I	PROFILE_GMSL_0[2:0]		
Reset	_	0x0			-	0x0		
Access Type	_		Write, Read		ı		Write, Read	

BITFIELD	BITS	DESCRIPTION
PROFILE_GMSL_1	6:4	

BITFIELD	BITS	DESCRIPTION
PROFILE_GMSL_0	2:0	Register version of the CFG1/MFP6 pin. Configures each GMSL PHY individually. Directly affects the following registers: CXTP_A GMSL2_A RX_RATE_A HIGHIMM_A (TERM_CAL_OFFSET)

PROFILE_GMSL_3_2 (0x6EB)

BIT	7	6	5	4	3	2	1	0
Field	_	PROFILE_GMSL_3[2:0]			_	PROFILE_GMSL_2[2:0]		
Reset	_	0x0			_	0x0		
Access Type	_	Write, Read			_		Write, Read	

BITFIELD	BITS	DESCRIPTION
PROFILE_GMSL_3	6:4	
PROFILE_GMSL_2	2:0	

MIPI_TX_EXT0 (0x800, 0x810, 0x820, 0x830)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_0_H[2:0]			MAP_DST_0_H[2:0]			_	_
Reset	0x0			0x0			_	_
Access Type	Write, Read		Write, Read		-	_		

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 0:	
		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_0, for use in VC extended mode. See MAP_SRC_0 register associated with this Video Pipe.	
MAP_SRC_0 _H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_0_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_0
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the 0th mapping pair.	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_0 _H	4:2	Video Pipe Extended VC Destination Mapping register 0: Most Significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_0, for use in VC extended mode. See MAP_DST_0 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_0_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the 0th mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_0

MIPI_TX_EXT1 (0x801, 0x811, 0x821, 0x831)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_1_H[2:0]		MAP_DST_1_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read		Write, Read		_	_		

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 1:	
MAP_SRC_1 7:5		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_1, for use in VC extended mode. See MAP_SRC_1 register associated with this Video Pipe.	
	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_1_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_1
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the 1st mapping pair.	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 _H	4:2	Video Pipe Extended VC Destination Mapping register 1: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_1, for use in VC extended mode. See MAP_DST_1 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_1_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the first mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_1

MIPI_TX_EXT2 (0x802, 0x812, 0x822, 0x832)

BIT	7	6	5	4	3	2	1	0
Field	MA	P_SRC_2_H[2:0]		MAP_DST_2_H[2:0]			_	_
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		-	_	

BITFIELD	BITS	DESCRIPTION	DECODE	
		Video Pipe Extended VC Source Mapping register 2:		
		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_2, for use in VC extended mode. See MAP_SRC_2 register associated with this Video Pipe.		
MAP_SRC_2 _H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_2_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_2	
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the 2nd mapping pair.		

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_2 _H	4:2	Video Pipe Extended VC Destination Mapping register 2: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_2, for use in VC extended mode. See MAP_DST_2 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_2_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the second mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_2

MIPI_TX_EXT3 (0x803, 0x813, 0x823, 0x833)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_3_H[2:0]		MAP_DST_3_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		_	_	

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 3:	
		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_3, for use in VC extended mode. See MAP_SRC_3 register associated with this Video Pipe.	
MAP_SRC_3 7:5	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_3_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_3
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the 3rd mapping pair.	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_3 _H	4:2	Video Pipe Extended VC Destination Mapping register 3: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_3, for use in VC extended mode. See MAP_DST_3 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_3_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the third mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_3

MIPI_TX_EXT4 (0x804, 0x814, 0x824, 0x834)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_4_H[2:0]		MAP_DST_4_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		_	_	

BITFIELD	BITS	DESCRIPTION	DECODE		
		Video Pipe Extended VC Source Mapping register 4:			
MAD CDC 4		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_4, for use in VC extended mode. See MAP_SRC_4 register associated with this Video Pipe.			
MAP_SRC_4 7:5	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_4_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_4		
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the fourth mapping pair.			

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_4 _H	4:2	Video Pipe Extended VC Destination Mapping register 4: Most Significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_4, for use in VC extended mode. See MAP_DST_4 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_4_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the fourth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_4

MIPI_TX_EXT5 (0x805, 0x815, 0x825, 0x835)

BIT	7	6	5	4	3	2	1	0
Field	MA	MAP_SRC_5_H[2:0]		MAP_DST_5_H[2:0]			_	_
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		_	_	

BITFIELD	BITS	DESCRIPTION	DECODE	
		Video Pipe Extended VC Source Mapping register 5:		
MAD CDC 5		Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_5, for use in VC extended mode. See MAP_SRC_5 register associated with this Video Pipe.		
MAP_SRC_5 _H	Type VC ar MAP_ Note: source	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_5_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_5	
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the fifth mapping pair.		

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_5 _H	4:2	Video Pipe Extended VC Destination Mapping register 5: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_5, for use in VC extended mode. See MAP_DST_5 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_5_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the fifth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_5

MIPI_TX_EXT6 (0x806, 0x816, 0x826, 0x836)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_6_H[2:0]		MAP_DST_6_H[2:0]			_	-	
Reset	0x0		0x0			_	-	
Access Type	Write, Read			Write, Read		-	-	

BITFIELD	BITS	DESCRIPTION	DECODE		
		Video Pipe Extended VC Source Mapping register 6:			
MAD ODG C		Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_6, for use in VC extended mode. See MAP_SRC_6 register associated with this Video Pipe.			
MAP_SRC_6 _H		Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_6_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_6		
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the sixth mapping pair.			

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_6 _H	4:2	Video Pipe Extended VC Destination Mapping register 6: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_6, for use in VC extended mode. See MAP_DST_6 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_6_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the sixth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_6

MIPI_TX_EXT7 (0x807, 0x817, 0x827, 0x837)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_7_H[2:0]		MAP_DST_7_H[2:0]			_	-	
Reset	0x0		0x0			_	-	
Access Type	Write, Read			Write, Read		-	-	

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 7:	
		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_7, for use in VC extended mode. See MAP_SRC_7 register associated with this Video Pipe.	
MAP_SRC_7 _H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_7_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_7
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the seventh mapping pair.	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_7 _H	4:2	Video Pipe Extended VC Destination Mapping register 7: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_7, for use in VC extended mode. See MAP_DST_7 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_7_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the seventh mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_7

MIPI_TX_EXT8 (0x808, 0x818, 0x828, 0x838)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_8_H[2:0]		MAP_DST_8_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		_	_	

BITFIELD	BITS	DESCRIPTION	DECODE	
		Video Pipe Extended VC Source Mapping register 8:		
MAD 000 0		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_8, for use in VC extended mode. See MAP_SRC_8 register associated with this Video Pipe.		
MAP_SRC_8 _H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_8_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_8	
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the eighth mapping pair.		

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_8 _H	4:2	Video Pipe Extended VC Destination Mapping register 8: Most Significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_8, for use in VC extended mode. See MAP_DST_8 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_8_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the eighth mapping pair.	0XXX: MS 3 bits of VC destination mapping for MAP_DST_8

MIPI_TX_EXT9 (0x809, 0x819, 0x829, 0x839)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_9_H[2:0]		MAP_DST_9_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		_	_	

BITFIELD	BITS	DESCRIPTION	DECODE		
		Video Pipe Extended VC Source Mapping register 9:			
		Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_9, for use in VC extended mode. See MAP_SRC_9 register associated with this Video Pipe.			
MAP_SRC_9 _H 7:5	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_9_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_9		
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the ninth mapping pair.			

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_9 _H	4:2	Video Pipe Extended VC Destination Mapping register 9: Most Significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_9, for use in VC extended mode. See MAP_DST_9 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_9_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the ninth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_9

MIPI_TX_EXT10 (0x80A, 0x81A, 0x82A, 0x83A)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_10_H[2:0]		MAP_DST_10_H[2:0]			_	-	
Reset	0x0		0x0			_	-	
Access Type	Write, Read			Write, Read		-	-	

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 10:	
MAP_SRC_1 0_H	7:5	Most Significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_10, for use in VC extended mode. See MAP_SRC_10 register associated with this Video Pipe. Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_10_H. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the tenth mapping pair.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_10

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 0_H	4:2	Video Pipe Extended VC Destination Mapping register 10: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_10, for use in VC extended mode. See MAP_DST_10 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_10_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the tenth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_10

MIPI_TX_EXT11 (0x80B, 0x81B, 0x82B, 0x83B)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_11_H[2:0]		MAP_DST_11_H[2:0]			_	_	
Reset	0x0		0x0			_	_	
Access Type	Write, Read			Write, Read		-	_	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP SRC 1		Video Pipe Extended VC Source Mapping register 11: Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_11, for use in VC extended mode. See MAP_SRC_11 register associated with this Video Pipe.	ObXXX: MS 3 bits of VC mapping for
1_H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_11_H. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the eleventh mapping pair.	MAP_SRC_11

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 1_H	4:2	Video Pipe Extended VC Destination Mapping register 11: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_11, for use in VC extended mode. See MAP_DST_11 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_11_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the eleventh mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_11

MIPI_TX_EXT12 (0x80C, 0x81C, 0x82C, 0x83C)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_12_H[2:0]		MAP_DST_12_H[2:0]			_	-	
Reset	0x0		0x0			_	-	
Access Type	Write, Read			Write, Read		-	-	

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 12:	
MAP_SRC_1 2_H	7:5	Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_12, for use in VC extended mode. See MAP_SRC_12 register associated with this Video Pipe. Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_12_H. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the twelfth mapping pair.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_12

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 2_H	4:2	Video Pipe Extended VC Destination Mapping register 12: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_12, for use in VC extended mode. See MAP_DST_12 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_12_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the twelfth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_12

MIPI_TX_EXT13 (0x80D, 0x81D, 0x82D, 0x83D)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_13_H[2:0]		MAP_DST_13_H[2:0]			_	-	
Reset	0x0		0x0			_	-	
Access Type	Write, Read			Write, Read		-	-	

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD	BITS	Video Pipe Extended VC Source Mapping register 13: Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_13, for use in VC extended mode. See MAP_SRC_13 register associated with this Video Pipe.	DECODE
MAP_SRC_1 3_H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_13_H. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the thirteenth mapping pair.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_13

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 3_H	4:2	Video Pipe Extended VC Destination Mapping register 13: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_13, for use in VC extended mode. See MAP_DST_13 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_13_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the thirteenth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_13

MIPI_TX_EXT14 (0x80E, 0x81E, 0x82E, 0x83E)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_14_H[2:0]			MA	P_DST_14_H[_	_	
Reset	0x0			0x0			_	_
Access Type		Write, Read			Write, Read		-	_

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD	BITS	Video Pipe Extended VC Source Mapping register 14: Most significant 3 bits of Virtual Channel (VC) Source Mapping register, MAP_SRC_14, for use in VC extended mode. See MAP_SRC_14 register associated with this	DECODE
MAP_SRC_1 4_H	7:5	Video Pipe. Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_14_H. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the fourteenth mapping pair.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_14

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 4_H	4:2	Video Pipe Extended VC Destination Mapping register 14: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_14, for use in VC extended mode. See MAP_DST_14 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_14_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the fourteenth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_14

MIPI_TX_EXT15 (0x80F, 0x81F, 0x82F, 0x83F)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_15_H[2:0]			MA	P_DST_15_H[_	-	
Reset	0x0			0x0			_	-
Access Type		Write, Read			Write, Read		_	-

BITFIELD	BITS	DESCRIPTION	DECODE
		Video Pipe Extended VC Source Mapping register 15: Most significant 3 bits of Virtual Channel (VC)	
		Source Mapping register, MAP_SRC_15, for use in VC extended mode. See MAP_SRC_15 register associated with this Video Pipe.	
MAP_SRC_1 5_H	7:5	Incoming Video streams whose VC and Data Type match this setting are mapped to the VC and Data Type programmed in MAP_DST_15_H.	0bXXX: MS 3 bits of VC mapping for MAP_SRC_15
		Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source part of the fifteenth mapping pair.	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 5_H	4:2	Video Pipe Extended VC Destination Mapping register 15: Most significant 3 bits of Virtual Channel (VC) Destination mapping register, MAP_DST_15, for use in VC extended mode. See MAP_DST_15 register associated with this Video Pipe. This setting provides the corresponding destination map associated with the MAP_SRC_15_H register. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination part of the fifteenth mapping pair.	0bXXX: MS 3 bits of VC destination mapping for MAP_DST_15

MIPI_PHY0 (0x8A0)

BIT	7	6	5	4	3	2	1	0
Field	force_csi_o ut_en	force_clk3_ en	force_clk0_ en	phy_1x4b_2 2	phy_1x4a_2 2	phy_2x4	RSVD	phy_4x2
Reset	0b0	0b0	0b0	0b0	0b0	0b1	0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
force_csi_out _en	7	Set to force all MIPI clocks running.	0b0: Normal mode 0b1: Force all MIPI clocks running
force_clk3_e n	6	Set to force PHY3 MIPI clock running.	0b0: DPHY0 not enabled as clock 0b1: DPHY0 not enabled as clock
force_clk0_e n	5	Set to force PHY0 MIPI clock running.	0b0: DPHY0 not enabled as clock 0b1: DPHY0 not enabled as clock
phy_1x4b_22	4	MIPI PHY 1x4b + 2x2 mode: MIPI output configured as one 4-lane port and two 2-lane ports. PHY2 and PHY3 combined as 4-lane. PHY0 and PHY1 are 2-lane ports	0b0: 2x4 not selected 0b1: 2x4 selected
phy_1x4a_22	3	MIPI PHY 1x4a + 2x2 mode: MIPI output configured as one 4-lane port and two 2-lane ports. PHY0 and PHY1 combined as 4-lane. PHY2 and PHY3 are 2-lane ports	0b0: 2x4 not selected 0b1: 2x4 selected
phy_2x4	2	MIPI PHY 2x4 mode: MIPI output configured as two ports with four data lanes each. PHY0 and PHY1 combined, and PHY2 and PHY3 combined.	0b0: 2x4 not selected 0b1: 2x4 selected
phy_4x2	0	MIPI PHY 4x2 mode: MIPI output configured as four 2-lane MIPI ports.	0b0: 4x2 configuration not selected 0b1: 4x2 configuration selected

MIPI_PHY1 (0x8A1)

BIT	7	6	5	4	3	2	1	0
Field	t_hs_przero[1:0]		t_hs_prep[1:0]		t_clk_trail[1:0]		t_clk_przero[1:0]	
Reset	0x0		0x0		0x0		0x0	
Access Type	Write,	Read	Write,	Read	Write,	Read	Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
t_hs_przero	7:6	Typical DPHY data lane HS_prep + HS_zero timing	0b00: 146ns + 24UI 0b01: 160ns + 24UI 0b10: 173ns + 24UI 0b11: 200ns + 24UI
t_hs_prep	5:4	Typical DPHY data lane HS_prepare timing	0b00: 46.7ns + 4UI 0b01: 53.4ns + 4UI 0b10: 60.0ns + 4UI 0b11: 66.7ns + 4UI
t_clk_trail	3:2	Typical DPHY clock HS_trail timing	0b00: 160ns 0b01: 167ns 0b10: 173ns 0b11: 180ns
t_clk_przero	1:0	Typical DPHY clock lane HS_prepare + HS_zero timing	0b00: 306ns 0b01: 600ns 0b10: 900ns 0b11: 1200ns

MIPI_PHY2 (0x8A2)

BIT	7	6	5	4	3	2	1	0
Field		phy_Std	by_n[3:0]		t_lpx[1:0]			ail[1:0]
Reset		0:	хF		0x1 0x0			k 0
Access Type	Write, Read				Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
phy_Stdby_n	7:4	MIPI PHY Enable bit [7]: Enable MIPI PHY3 bit [6]: Enable MIPI PHY2 bit [5]: Enable MIPI PHY1 bit [4]: Enable MIPI PHY0	0bXXX0: Put MIPI PHY0 in standby mode 0bXXX1: Enable MIPI PHY0 0bXX0X: Put MIPI PHY1 in standby mode 0bXX1X: Enable MIPI PHY1 0bX0XX: Put MIPI PHY2 in standby mode 0bX1XX: Enable MIPI PHY2 0b0XXX: Put MIPI PHY3 in standby mode 0b1XXX: Enable MIPI PHY3
t_lpx	3:2	Typical DPHY t _{LPX} timing	0b00: 53.4ns 0b01: 106.7ns 0b10: 160ns 0b11: 213.4ns
t_hs_trail	1:0	Typical DPHY data lane HS_trail timing	0b00: 66.7ns + 8UI 0b01: 80ns + 8UI 0b10: 93.4ns + 8UI 0b11: 106.7ns + 8UI

MIPI_PHY3 (0x8A3)

BIT	7	6	5	4	3	2	1	0	
Field		phy1_lane	e_map[3:0]		phy0_lane_map[3:0]				
Reset		0)	κE		0x4				
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
phy1_lane_m ap	7:4	MIPI PHY1 lane mapping register: bits [5:4]: Set PHY1 D0 Output mapping bits [7:6]: Set PHY1 D1 Output mapping The settings for these bit fields are dependent upon the settings for the MIPI configuration. See register fields in MIPI_PHY0 (0x8A0). For MIPI configurations 4x2 and (1x4b+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D2 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 1 is mapped to PHY1 for MIPI configurations 4x2 and (1x4b+2x2). For MIPI configurations 2x4 and (1x4a+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D1 2'b11 = Map PHY Output to data lane D1 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 1 is mapped to both PHY0 and PHY1 for MIPI configurations 2x4 and (1x4a+2x2). CSI-2 Controller 0 is unused. In 4x2 mode, phy#_lane_map register bits [3] and [1] will always read back 1'b0 since hardware will mask them to 1'b0 in this mode.	0bXX00: Map D0 to data lane D0 0bXX01: Map D0 to data lane D1 0bXX10: Map D0 to data lane D2 0bXX11: Map D0 to data lane D3 0b00XX: Map D1 to data lane D0 0b01XX: Map D1 to data lane D1 0b10XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D3

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
phy0_lane_m ap	3:0	MIPI PHY0 lane mapping register: bits [1:0]: Set PHY0 D0 Output mapping bits [3:2]: Set PHY0 D1 Output mapping The settings for these bit fields are dependent upon the settings for the MIPI configuration. See register fields in MIPI_PHY0 (0x8A0). For MIPI configurations 4x2 and (1x4b+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = RSVD, do not use 2'b11 = RSVD, do not use Note: CSI-2 Controller 0 is mapped to PHY0 for MIPI configurations 4x2 and (1x4a+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D1 2'b11 = Map PHY Output to data lane D2 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 1 is mapped to both PHY0 and PHY1 for MIPI configurations 2x4 and (1x4a+2x2). CSI-2 Controller 0 is unused.	0bXX00: Map D0 to data lane D0 0bXX01: Map D0 to data lane D1 0bXX10: Map D0 to data lane D2 0bXX11: Map D0 to data lane D3 0b00XX: Map D1 to data lane D0 0b01XX: Map D1 to data lane D1 0b10XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D3

MIPI_PHY4 (0x8A4)

BIT	7	6	5	4	3	2	1	0	
Field		phy3_lane	_map[3:0]		phy2_lane_map[3:0]				
Reset		0>	¢Ε		0x4				
Access Type		Write,	Read			Write,	Read		

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
phy3_lane_m ap	7:4	MIPI PHY3 lane mapping register: bits [5:4]: Set PHY3 D0 Output mapping bits [7:6]: Set PHY3 D1 Output mapping The settings for these bit fields are dependent upon the settings for the MIPI configuration. See register fields in MIPI_PHY0 (0x8A0). For MIPI configurations 4x2 and (1x4a+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = RSVD, do not use 2'b11 = RSVD, do not use Note: CSI-2 Controller 3 is mapped to PHY3 for MIPI configurations 4x2 and (1x4a+2x2).	0bXX00: Map D0 to data lane D0 0bXX01: Map D0 to data lane D1 0bXX10: Map D0 to data lane D2 0bXX11: Map D0 to data lane D3 0b00XX: Map D1 to data lane D0 0b01XX: Map D1 to data lane D1 0b10XX: Map D1 to data lane D1 0b10XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D2
		For MIPI configurations 2x4 and (1x4b+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D2 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 2 is mapped to both PHY2 and PHY3 for MIPI configurations 2x4 and (1x4b+2x2). CSI-2 Controller 3 is unused.	ODTIAX. Map DT to data rarie DS
phy2_lane_m ap	3:0	MIPI PHY2 lane mapping register: bits [1:0]: Set PHY2 D0 Output mapping bits [3:2]: Set PHY2 D1 Output mapping The settings for these bit fields are dependent upon the settings for the MIPI configuration. See register fields in MIPI_PHY0 (0x8A0). For MIPI configurations 4x2 and (1x4a+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D2 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 2 is mapped to PHY2 for MIPI configurations 4x2 and (1x4a+2x2). For MIPI configurations 2x4 and (1x4b+2x2), the following mappings apply: 2'b00 = Map PHY Output to data lane D0 2'b01 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D1 2'b10 = Map PHY Output to data lane D2 2'b11 = Map PHY Output to data lane D3 Note: CSI-2 Controller 2 is mapped to both PHY2 and PHY3 for MIPI configurations 2x4 and (1x4b+2x2). CSI-2 Controller 3 is unused.	0bXX00: Map D0 to data lane D0 0bXX01: Map D0 to data lane D1 0bXX10: Map D0 to data lane D2 0bXX11: Map D0 to data lane D3 0b00XX: Map D1 to data lane D0 0b01XX: Map D1 to data lane D1 0b10XX: Map D1 to data lane D2 0b11XX: Map D1 to data lane D2

MIPI_PHY5 (0x8A5)

BIT	7	6	5	4	3	2	1	0
Field	t_clk_prep[1:0]		phy1_pol_map[2:0]			phy0_pol_map[2:0]		
Reset	0:	x0	0x0			0x0		
Access Type	Write,	Read	Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE		
t_clk_prep	7:6	Typical DPHY clock lane HS_prepare timing	0b00: 40ns 0b01: 46.7ns 0b10: 53.4ns 0b11: 60ns		
phy1_pol_ma p	5:3	MIPI PHY1 lane polarity register: bit [5]: Set polarity on PHY1 CLK lane bit [4]: Set polarity on PHY1 D1 lane bit [3]: Set polarity on PHY1 D0 lane 1'b0 = normal polarity, 1'b1 = inversed polarity	0bXX0: D0 normal polarity, P is positive, N is negative 0bXX1: D0 inverse polarity, P is negative, N is positive 0bX0X: D1 normal polarity, P is positive, N is negative 0bX1X: D1 inverse polarity, P is negative, N is positive 0b0XX: CK normal polarity, P is positive, N is negative 0b1XX: CK inverse polarity, P is negative, N is positive		
phy0_pol_ma p	2:0	MIPI PHY0 lane polarity register: bit [2]: Set polarity on PHY0 CLK lane bit [1]: Set polarity on PHY0 D1 lane bit [0]: Set polarity on PHY0 D0 lane 1'b0 = normal polarity, 1'b1 = inversed polarity	0bXX0: D0 normal polarity, P is positive, N is negative 0bXX1: D0 inverse polarity, P is negative, N is positive 0bX0X: D1 normal polarity, P is positive, N is negative 0bX1X: D1 inverse polarity, P is negative, N is positive 0b0XX: CK normal polarity, P is positive, N is negative 0b1XX: CK inverse polarity, P is negative, N is positive		

MIPI_PHY6 (0x8A6)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	ph	ny3_pol_map[2	:0]	phy2_pol_map[2:0]			
Reset	_	_		0x0			0x0		
Access Type	_	_	Write, Read				Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
phy3_pol_ma p	5:3	MIPI PHY3 lane polarity register: bit [5]: Set polarity on PHY3 CLK lane bit [4]: Set polarity on PHY3 D1 lane bit [3]: Set polarity on PHY3 D0 lane 1'b0 = normal polarity, 1'b1 = inversed polarity	0bXX0: D0 normal polarity, P is positive, N is negative 0bXX1: D0 inverse polarity, P is negative, N is positive 0bX0X: D1 normal polarity, P is positive, N is negative 0bX1X: D1 inverse polarity, P is negative, N is positive 0b0XX: CK normal polarity, P is positive, N is negative 0b1XX: CK inverse polarity, P is negative, N is positive
phy2_pol_ma p	2:0	MIPI PHY0 lane polarity register: bit [2]: Set polarity on PHY2 CLK lane bit [1]: Set polarity on PHY2 D1 lane bit [0]: Set polarity on PHY2 D0 lane 1'b0 = normal polarity, 1'b1 = inversed polarity	0bXX0: D0 normal polarity, P is positive, N is negative 0bXX1: D0 inverse polarity, P is negative, N is positive 0bX0X: D1 normal polarity, P is positive, N is negative 0bX1X: D1 inverse polarity, P is negative, N is positive 0b0XX: CK normal polarity, P is positive, N is negative 0b1XX: CK inverse polarity, P is negative, N is positive

MIPI_PHY8 (0x8A8)

BIT	7	6	5	4	3	2	1	0
Field	t_lpxesc[2:0]			RSVD	RSVD	RSVD	RSVD	RSVD
Reset	0x0			0b0	0b0	0b0		0b0
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
t_lpxesc	7:5	Typical DPHY t _{LPX} timing in escape mode	0b000: 66.67ns 0b001: 80ns 0b010: 100ns 0b011: 133ns 0b100: 200ns 0b101: 400ns 0b110: 1000ns 0b111: 2000ns

MIPI_PHY9 (0x8A9)

BIT	7	6	5	4	3	2	1	0
Field			phy_cp0[4:0]	_	RSVD	RSVD		
Reset			0x00	_	0b0	0b0		
Access Type			Write, Read	-				

BITFIELD	BITS	DESCRIPTION	DECODE		
phy_cp0	7:3		[4:3]: PHY copy 0 source [6:5]: PHY copy 0 destination [7]: PHY copy 0 enable		

MIPI_PHY10 (0x8AA)

BIT	7	6	5	4	3	2	1	0
Field			_	RSVD	RSVD			
Reset			0x00	_	0b1	0b0		
Access Type			Write, Read	_				

BITFIELD	BITS	DESCRIPTION	DECODE
phy_cp1	7:3	PHY copy 1, replicates data from source PHY to destination PHY (valid source and destinations are PHY 2 and 3 only)	[4:3]: PHY copy 0 source [6:5]: PHY copy 0 destination [7]: PHY copy 0 enable

MIPI_PHY11 (0x8AB)

BIT	7	6	5	4	3	2	1	0
Field		phy_cp	_err[3:0]		_	_	RSVD	_
Reset	0x00				_	-	0b0	-
Access Type		Read	Only		_	-		-

BITFIELD	BITS	DESCRIPTION	DECODE
phy_cp_err	7:4		0bXXX1: PHY copy 0 FIFO overflow 0bXX1X: PHY copy 0 FIFO underflow 0bX1XX: PHY copy 1 FIFO overflow 0b1XXX: PHY copy 1 FIFO underflow

MIPI_PHY13 (0x8AD)

BIT	7	6	5	4	3	2	1	0
Field	_	_	t_t3_prebegin[5:0]					
Reset	_	_	0x1F					
Access Type	-	_	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
			0b000000: 7UI 0b000001: 14UI
t_t3_prebegi n	5:0	CPHY pre-begin phase of the preamble (t3_prebegin + 1) x 7UI	
			0b111110: 441UI 0B111111: 448UI

MIPI_PHY14 (0x8AE)

BIT	7	6	5	4	3	2	1	0
Field	_		t_t3_post[4:0]					
Reset	_		0x17 0x1					
Access Type	_		Write, Read Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE	
t_t3_post	6:2	CPHY post length after HS data = (t3_post + 1) x 7UI	0bXXXXX: CPHY post length	
t_t3_prep	1:0	CPHY Ths_prepare timing	0b00: 40ns 0b01: 55ns 0b10: 66.7ns 0b11: 86.7ns	

MIPI_PHY16 (0x8B0)

BIT	7	6	5	4	3	2	1	0
Field	_	TUN_CONV _DATA_CR C_ERR_OE N	TUN_DATA _CRC_ERR _OEN	TUN_ECC_ UNCORR_ ERR_OEN	TUN_ECC_ CORR_ER R_OEN	_	_	_
Reset	_	0x1	0x1	0b1	0b1	_	_	_
Access Type	_	Write, Read	Write, Read	Write, Read	Write, Read	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_CONV_ DATA_CRC_ ERR_OEN	6	For tunneling mode, enable reporting at ERRB pin of DPHY/CPHY data CRC errors	0x0: Errorr not forwarded to ERRB pin 0x1: Error reporting forwarded to ERRB pin
TUN_DATA_ CRC_ERR_ OEN	5	For tunneling mode, enable reporting at ERRB pin of DPHY/CPHY data CRC errors	0x0: Errorr not forwarded to ERRB pin 0x1: Error reporting forwarded to ERRB pin
TUN_ECC_U NCORR_ER R_OEN	4	For tunneling mode, enable reporting at ERRB pin of uncorrectable errors on DPHY ECC or CPHY header CRC	0x0: Errorr not forwarded to ERRB pin 0x1: Error reporting forwarded to ERRB pin
TUN_ECC_C ORR_ERR_ OEN	3	For tunneling mode, enable reporting at ERRB pin of correctable errors on DPHY ECC or CPHY header CRC	0x0: Errorr not forwarded to ERRB pin 0x1: Error reporting forwarded to ERRB pin

MIPI_PHY17 (0x8B1)

BIT	7	6	5	4	3	2	1	0
Field	_	TUN_CONV _DATA_CR C_ERR	TUN_DATA _CRC_ERR	TUN_ECC_ UNCORR_ ERR	TUN_ECC_ CORR_ER R	_	-	1
Reset	_	0b0	0b0	0b0	0b0	_	-	ı
Access Type	_	Read Only	Read Only	Read Only	Read Only	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_CONV_ DATA_CRC_ ERR	6	For tunneling mode, DPHY to CPHY conversion (header) data CRC errors Combined for all MIPI PHYs. Read individual MIPI_TX STATUS registers to clear.	0x0: no Error Detected 0x1: Error Detected
TUN_DATA_ CRC_ERR	5	For tunneling mode, DPHY/CPHY data CRC errors Combined for all MIPI PHYs. Read individual MIPI_TX STATUS registers to clear.	0x0: no Error Detected 0x1: Error Detected
TUN_ECC_U NCORR_ER R	4	For tunneling mode, uncorrectable errors on DPHY ECC or CPHY header CRC Combined for all MIPI PHYs. Read individual MIPI_TX STATUS registers to clear.	0x0: no Error Detected 0x1: Error Detected
TUN_ECC_C ORR_ERR	3	For tunneling mode, correctable errors on DPHY ECC or CPHY header CRC. Combined for all MIPI PHYs. Read individual MIPI_TX STATUS registers to clear.	0x0: no Error Detected 0x1: Error Detected

MIPI PHY18 (0x8B2)

BIT	7	6	5	4	3	2	1	0
Field	csipll3_PLL ORangeH	csipll3_PLL ORangeL	csipll2_PLL ORangeH	csipll2_PLL ORangeL	csipll1_PLL ORangeH	csipll1_PLL ORangeL	csipll0_PLL ORangeH	csipll0_PLL ORangeL
Reset	0x0							
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
csipll3_PLLO RangeH	7	Live status bit that indicates csipll3 is above range.	0x0: within range 0x1: indicates csipll is above range
csipll3_PLLO RangeL	6	Live status bit that indicates csipll3 is below range.	0x0: within range 0x1: indicates csipll is below range.
csipll2_PLLO RangeH	5	Live status bit that indicates csipll2 is above range.	0x0: within range 0x1: indicates csipll is above range
csipll2_PLLO RangeL	4	Live status bit that indicates csipll2 is below range.	0x0: within range 0x1: indicates csipll is below range.
csipll1_PLLO RangeH	3	Live status bit that indicates csipll1 is above range.	0x0: within range 0x1: indicates csipll is above range
csipll1_PLLO RangeL	2	Live status bit that indicates csipll1 is below range.	0x0: within range 0x1: indicates csipll is below range.
csipll0_PLLO RangeH	1	Live status bit that indicates csipll0 is above range.	0x0: within range 0x1: indicates csipll is above range
csipll0_PLLO RangeL	0	Live status bit that indicates csipll0 is below range.	0x0: within range 0x1: indicates csipll is below range.

MIPI_PHY19 (0x8B3)

BIT	7	6	5	4	3	2	1	0
Field	csipll3_PLL	csipll3_PLL	csipll2_PLL	csipll2_PLL	csipll1_PLL	csipll1_PLL	csipll0_PLL	csipll0_PLL
	ORangeH_fl	ORangeL_fl	ORangeH_fl	ORangeL_fl	ORangeH_fl	ORangeL_fl	ORangeH_fl	ORangeL_fl
	ag							
Reset	0x0							
Access	Read							
Type	Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
csipll3_PLLO RangeH_flag	7	Sticky flag that indicates csipll3 was above range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was above range. Read clears.
csipll3_PLLO RangeL_flag	6 range at some point since last cleared (or		0x0: within range 0x1: Sticky flag that indicates csipll was below range. Read clears.
csipll2_PLLO RangeH_flag	range at some point since last cleared (or		0x0: within range 0x1: Sticky flag that indicates csipll was above range. Read clears.
csipll2_PLLO RangeL_flag	4	Sticky flag that indicates csipll2 was below range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was below range. Read clears.
csipll1_PLLO RangeH_flag	3	Sticky flag that indicates csipll1 was above range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was above range. Read clears.
csipll1_PLLO RangeL_flag	2	Sticky flag that indicates csipll1 was below range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was below range. Read clears.
csipll0_PLLO RangeH_flag	1	Sticky flag that indicates csipll0 was above range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was above range. Read clears.
csipll0_PLLO RangeL_flag	0	Sticky flag that indicates csipll0 was below range at some point since last cleared (or since device was reset). Read clears the flag.	0x0: within range 0x1: Sticky flag that indicates csipll was below range. Read clears.

MIPI_PHY20 (0x8B4)

BIT	7	6	5	4	3	2	1	0
Field	csipll3_PLL ORangeH_ oen	csipll3_PLL ORangeL_o en	csipll2_PLL ORangeH_ oen	csipll2_PLL ORangeL_o en	csipll1_PLL ORangeH_ oen	csipll1_PLL ORangeL_o en	csipll0_PLL ORangeH_ oen	csipll0_PLL ORangeL_o en
Reset	0x1							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
csipll3_PLLO RangeH_oen	7	This register controls whether csipll3_PLLORangeH_flag contributes to the setting of ERROR.	0x0: csipll3_PLLORangeH_flag does NOT contribute to ERROR condition 0x1: csipll3_PLLORangeH_flag is ORed with other flags to set ERROR condition

BITFIELD	BITS	DESCRIPTION	DECODE
csipll3_PLLO RangeL_oen	6	This register controls whether csipll3_PLLORangeL_flag contributes to the setting of ERROR.	0x0: csipll3_PLLORangeL_flag does NOT contribute to ERROR condition 0x1: csipll3_PLLORangeL_flag is ORed with other flags to set ERROR condition
csipll2_PLLO RangeH_oen	5	This register controls whether csipll2_PLLORangeH_flag contributes to the setting of ERROR.	0x0: csipll2_PLLORangeH_flag does NOT contribute to ERROR condition 0x1: csipll2_PLLORangeH_flag is ORed with other flags to set ERROR condition
csipll2_PLLO RangeL_oen	4	This register controls whether csipll2_PLLORangeL_flag contributes to the setting of ERROR.	0x0: csipll2_PLLORangeL_flag does NOT contribute to ERROR condition 0x1: csipll2_PLLORangeL_flag is ORed with other flags to set ERROR condition
csipll1_PLLO RangeH_oen	3	This register controls whether csipll1_PLLORangeH_flag contributes to the setting of ERROR.	0x0: csipll1_PLLORangeH_flag does NOT contribute to ERROR condition 0x1: csipll1_PLLORangeH_flag is ORed with other flags to set ERROR condition
csipll1_PLLO RangeL_oen	2	This register controls whether csipll1_PLLORangeL_flag contributes to the setting of ERROR.	0x0: csipll1_PLLORangeL_flag does NOT contribute to ERROR condition 0x1: csipll1_PLLORangeL_flag is ORed with other flags to set ERROR condition
csipll0_PLLO RangeH_oen	1	This register controls whether csipll0_PLLORangeL_flag contributes to the setting of ERROR.	0x0: csipll0_PLLORangeH_flag does NOT contribute to ERROR condition 0x1: csipll0_PLLORangeH_flag is ORed with other flags to set ERROR condition
csipll0_PLLO RangeL_oen	0	This register controls whether csipll0_PLLORangeL_flag contributes to the setting of ERROR.	0x0: csipll0_PLLORangeL_flag does NOT contribute to ERROR condition 0x1: csipll0_PLLORangeL_flag is ORed with other flags to set ERROR condition

MIPI PRBS 0 (0x8C0)

BIT	7	6	5	4	3	2	1	0
Field		IPI_PRBS_EN_P1_LN1[MIPI_PRBS_EN_P0_LN1[1:0]		MIPI_PRBS_EN_P0_LN0[1:0]	
Reset	0x0		0x0		0:	к0	0>	(0
Access Type	Write,	Read	Write,	Read	Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_PRBS_ EN_P1_LN1	7:6	PRBS enable for PHY1 lane 1 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled
MIPI_PRBS_ EN_P1_LN0	5:4	PRBS enable for PHY1 lane 0 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled
MIPI_PRBS_ EN_P0_LN1	3:2	PRBS enable for PHY0 lane 1 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_PRBS_ EN_P0_LN0	1:0	PRBS enable for PHY0 lane 0 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled

MIPI PRBS 1 (0x8C1)

BIT	7	6	5	4	3	2	1	0
Field	MIPI_PRBS_EN_P3_LN1[1:0]		MIPI_PRBS_EN_P3_LN0[1:0]		MIPI_PRBS_EN_P2_LN1[1:0]		MIPI_PRBS_EN_P2_LN0[1:0]	
Reset	0x0		0x0		0x0		0x0	
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_PRBS_ EN_P3_LN1	7:6	PRBS enable for PHY3 lane 1 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled
MIPI_PRBS_ EN_P3_LN0	5:4	PRBS enable for PHY3 lane 0 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled
MIPI_PRBS_ EN_P2_LN1	3:2	PRBS enable for PHY2 lane 1 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled
MIPI_PRBS_ EN_P2_LN0	1:0	PRBS enable for PHY2 lane 0 eye diagram. Set CPHY enable for CPHY symbols.	0b00: Disabled 0b01: PRBS 9 enabled 0b10: PRBS 11 enabled 0b11: PRBS 18 enabled

MIPI_PRBS_2 (0x8C2)

BIT	7	6	5	4	3	2	1	0
Field	MIPI_CUST _SEED_EN _P3_LN1	MIPI_CUST _SEED_EN _P3_LN0	MIPI_CUST _SEED_EN _P2_LN1	MIPI_CUST _SEED_EN _P2_LN0	MIPI_CUST _SEED_EN _P1_LN1	MIPI_CUST _SEED_EN _P1_LN0	MIPI_CUST _SEED_EN _P0_LN1	MIPI_CUST _SEED_EN _P0_LN0
Reset	0x0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CUST_ SEED_EN_P 3_LN1	7	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 3_LN0	6	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 2_LN1	5	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CUST_ SEED_EN_P 2_LN0	4	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 1_LN1	3	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 1_LN0	2	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 0_LN1	1	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled
MIPI_CUST_ SEED_EN_P 0_LN0	0	Use custom seed for reset value of PRBS generator.	0b0: Disabled 0b1: Enabled

MIPI_PRBS_3 (0x8C3)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	_	_	MIPI_CUSTOM_SEED_2[1:0]	
Reset	0b1	0b1	0b1	0b1	_	_	0x2	
Access Type					_	_	Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CUST OM_SEED_2	1:0	Custom seed [17:16] for MIPI PRBS eye diagrams. Reset value for PRBS if enabled by MIPI custom seed enable register. Default reset is from CPHY spec.	Bits [17:16]: Reset value for PRBS if enabled by MIPI custom seed enable register

MIPI_PRBS_4 (0x8C4)

BIT	7	6	5	4	3	2	1	0
Field	MIPI_CUSTOM_SEED_1[7:0]							
Reset	0x78							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CUST OM_SEED_1	7:0	Custom seed [15:8] for MIPI PRBS eye diagrams. Reset value for PRBS if enabled by MIPI custom seed enable register. Default reset is from CPHY spec.	Bits [15:8]: Reset value for PRBS if enabled by MIPI custom seed enable register

MIPI_PRBS_5 (0x8C5)

BIT	7	6	5	4	3	2	1	0	
Field		MIPI_CUSTOM_SEED_0[7:0]							
Reset		0x9a							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CUST OM_SEED_0	7:0	Custom seed [7:0] for MIPI PRBS eye diagrams. Reset value for PRBS if enabled by MIPI custom seed enable register. Default reset is from CPHY spec.	Bits [7:0]: Reset value for PRBS if enabled by MIPI custom seed enable register

MIPI_PHY21 (0x8C6)

BIT	7	6	5	4	3	2	1	0	
Field		Force_Vide	o_Mask[3:0]		Auto_Mask_En[3:0]				
Reset		0:	x0		0xF				
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
Force_Video _Mask	7:4	Forces video output to be masked (send all 0's) in 4WxH or Wx4H synchronous aggregation modes. Masking impacts video streams from video pipes 0-3.	0bXXX1: Force video from Video Pipe 0 to be masked. 0bXX1X: Force video from Video Pipe 1 to be masked. 0bX1XX: Force video from Video Pipe 2 to be masked. 0b1XXX: Force video from Video Pipe 3 to be masked.
Auto_Mask_ En	3:0	Auto Video Mask Enable Automatically insert 0s into synchronized aggregated video outputs if a Video Pipe 0-3 video lock is lost. This allows the other video streams to continue being transmitted on the MIPI interface.	0bXXX1: Auto video mask enabled for Video Pipe 0 0bXX1X: Auto video mask enabled for Video Pipe 1 0bX1XX: Auto video mask enabled for Video Pipe 2 0b1XXX: Auto video mask enabled for Video Pipe 3

MIPI_PHY22 (0x8C7)

BIT	7	6	5	4	3	2	1	0
Field	Video_Mask _Latch_Res et	ı	_	_		Video_Mask_F	Restart_En[3:0]	
Reset	0b0	_	_	_		0:	кF	
Access Type	Write Clears All, Read	-	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
Video_Mask_ Latch_Reset	7	Reset all Video_Mask_Latched latches. Write 1 to activate reset, bit self clears and automatically releases reset.	0x0: No action 0x1: Reset latches

BITFIELD	BITS	DESCRIPTION	DECODE
Video_Mask_ Restart_En	3:0	Automatically restarts video streams that were previously masked off due to loss of video lock	0bXXX1: Restart video from Video Pipe 0 0bXX1X: Restart video from Video Pipe 1 0bX1XX: Restart video from Video Pipe 2 0b1XXX: Restart video from Video Pipe 3

MIPI PHY24 (0x8C9)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	- RST_MIPITX_LOC[3:0]			
Reset	_	_	_	_	0x0			
Access Type	_	_	_	_	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
RST_MIPITX _LOC	3:0	Active high reset to MIPI controllers. Disabled by asserting DP_RST_MIPI. Bit 0: Controller 0 reset Bit 1: Controller 1 reset Bit 2: Controller 2 reset Bit 3: Controller 3 reset	0bxxx0: Controller 0 reset not asserted 0bxxx1: Controller 0 reset asserted 0bxx0x: Controller 1 reset not asserted 0bxx1x: Controller 1 reset asserted 0bx0xx: Controller 2 reset not asserted 0bx1xx: Controller 2 reset asserted 0b0xxx: Controller 3 reset not asserted 0b1xxx: Controller 3 reset asserted

MIPI_CTRL_SEL (0x8CA)

BIT	7	6	5	4	3	2	1	0
Field	MIPI_CTRL_SEL_3[1:0]		MIPI_CTRL_SEL_2[1:0]		MIPI_CTRL_SEL_1[1:0]		MIPI_CTRL_SEL_0[1:0]	
Reset	0x3		0x2		0)	c 1	0;	k 0
Access Type	Write,	Read	Write,	Read	Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CTRL_ SEL_3	7:6	Selects target MIPI Controller for video pipe 3 This can be used in place of the FCFS MAP_SRC and MAP_DST registers to re- map everything. Using this register will map everything by default, then the user can re- map specific data types to other controllers as before.	0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset automatically based on the associated GMSL PHY and Video Pipe reset during a one-shot reset or link reset
MIPI_CTRL_ SEL_2	5:4	Selects target MIPI Controller for video pipe 2 This can be used in place of the FCFS MAP_SRC and MAP_DST registers to re- map everything. Using this register will map everything by default, then the user can re- map specific data types to other controllers as before.	0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset automatically based on the associated GMSL PHY and Video Pipe reset during a one-shot reset or link reset
MIPI_CTRL_ SEL_1	3:2	Selects target MIPI Controller for video pipe 1 This can be used in place of the FCFS MAP_SRC and MAP_DST registers to re- map everything. Using this register will map everything by default, then the user can re- map specific data types to other controllers as before.	0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset automatically based on the associated GMSL PHY and Video Pipe reset during a one-shot reset or link reset

BITFIELD	BITS	DESCRIPTION	DECODE
MIPI_CTRL_ SEL_0	1:0	Selects target MIPI Controller for video pipe 0 This can be used in place of the FCFS MAP_SRC and MAP_DST registers to re- map everything. Using this register will map everything by default, then the user can re- map specific data types to other controllers as before. Note: The MIPI CRTL reset logic from RESET_LINK uses the mapping registers. If only MIPI_CTRL_SEL is used for mapping, then the reset logic may not work as expected because it does not know which controller to reset. In other words, RESET_LINK_0 will reset CTRL0 and RESET_LINK_1 will reset CTRL_1, unless only the mapping registers are used.	0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset automatically based on the associated GMSL PHY and Video Pipe reset during a one-shot reset or link reset

MIPI_PHY25 (0x8D0)

BIT	7	6	5	4	3	2	1	0	
Field		csi2_tx1_p	okt_cnt[3:0]		csi2_tx0_pkt_cnt[3:0]				
Reset		0x	:00		0x00				
Access Type		Read	l Only			Read	l Only		

BITFIELD	BITS	DESCRIPTION
csi2_tx1_pkt_cnt	7:4	Packet count of CSI2 Controller 1
csi2 tx0 pkt cnt	3:0	Packet count of CSI2 Controller 0

MIPI_PHY26 (0x8D1)

BIT	7	6	5	4	3	2	1	0	
Field	csi2_tx3_pkt_cnt[3:0]				csi2_tx2_pkt_cnt[3:0]				
Reset		0x	00		0x00				
Access Type		Read	Only			Read	Only		

BITFIELD	BITS	DESCRIPTION	DECODE			
csi2_tx3_pkt _cnt	7:4	Packet count of CSI2 Controller 3	0bXXXX: Toggling bits indicate MIPI data is active on controller 3			
csi2_tx2_pkt _cnt	3:0	Packet count of CSI2 Controller 2	0bXXXX: Toggling bits indicate MIPI data is active on controller 2			

MIPI PHY27 (0x8D2)

BIT	7	6	5	4	3	2	1	0	
Field		phy1_pk	t_cnt[3:0]		phy0_pkt_cnt[3:0]				
Reset		0x	00		0x00				
Access Type		Read	Only			Reac	l Only		

BITFIELD	BITS	DESCRIPTION	DECODE
phy1_pkt_cnt	7:4	Packet count of MIPI PHY1	0bXXXX: Toggling bits indicate MIPI data is active on PHY 1
phy0_pkt_cnt	3:0	Packet count of MIPI PHY0	0bXXXX: Toggling bits indicate MIPI data is active on PHY 0

MIPI_PHY28 (0x8D3)

BIT	7	6	5	4	3	2	1	0	
Field		phy3_pk	t_cnt[3:0]		phy2_pkt_cnt[3:0]				
Reset		0x	00		0x00				
Access Type		Read	Only			Read	l Only		

BITFIELD	BITS	DESCRIPTION	DECODE
phy3_pkt_cnt	7:4	Packet count of MIPI PHY3	0bXXXX: Toggling bits indicate MIPI data is active on PHY 3
phy2_pkt_cnt	3:0	Packet count of MIPI PHY2	0bXXXX: Toggling bits indicate MIPI data is active on PHY 2

MIPI PHY CP ERR OE (0x8D4)

BIT	7	6	5	4	3	2	1	0
Field	PHY_CP1_ UF_ERR_O EN	PHY_CP1_ OV_ERR_O EN	PHY_CP0_ UF_ERR_O EN	PHY_CP0_ OV_ERR_O EN	1	_	-	-
Reset	0b1	0b1	0b1	0b1	-	_	-	-
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
PHY_CP1_U F_ERR_OEN	7	Enable Reflection of phy_cp_err[3] onto the ERRB pin. This corresponds to the PHY copy 1 FIFO underflow error. See the phy_cp_err register field bit 3. (bit 7 of register byte)	0x0: Mask error from ERRB pin 0x1: Enable error onto ERRB pin
PHY_CP1_O V_ERR_OEN	6	Enable Reflection of phy_cp_err[2] onto the ERRB pin. This corresponds to the PHY copy 1 FIFO overflow error. See the phy_cp_err register field bit 2. (bit 6 of register byte)	0x0: Mask error from ERRB pin 0x1: Enable error onto ERRB pin
PHY_CP0_U F_ERR_OEN	5	Enable Reflection of phy_cp_err[1] onto the ERRB pin. This corresponds to the PHY copy 0 FIFO underflow error. See the phy_cp_err register field bit 1. (bit 5 of register byte)	0x0: Mask error from ERRB pin 0x1: Enable error onto ERRB pin
PHY_CP0_O V_ERR_OEN	4	Enable Reflection of phy_cp_err[0] onto the ERRB pin. This corresponds to the PHY copy 0 FIFO overflow error. See the phy_cp_err register field bit 0. (bit 4 of register byte)	0x0: Mask error from ERRB pin 0x1: Enable error onto ERRB pin

MIPI_PHY_FLAGS (0x8D5)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	DESKEW_ START_OV ERLAP_FL AG_3	DESKEW_ START_OV ERLAP_FL AG_2	DESKEW_ START_OV ERLAP_FL AG_1	DESKEW_ START_OV ERLAP_FL AG_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Read Clears All	Read Clears All	Read Clears All	Read Clears All

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_S TART_OVER LAP_FLAG_ 3	3	Error flag that indicates that the MIPI controller tried to start outputing data while initial deskew was still running. Either speed up the MIPI output so the deskew finishes sooner or increase n_vs_block.	0x0: No error 0x1: Initial deskew and tx_start overlapped.
DESKEW_S TART_OVER LAP_FLAG_ 2	2	Error flag that indicates that the MIPI controller tried to start outputing data while initial deskew was still running. Either speed up the MIPI output so the deskew finishes sooner or increase n_vs_block.	0x0: No error 0x1: Initial deskew and tx_start overlapped.
DESKEW_S TART_OVER LAP_FLAG_ 1	1	Error flag that indicates that the MIPI controller tried to start outputing data while initial deskew was still running. Either speed up the MIPI output so the deskew finishes sooner or increase n_vs_block.	0x0: No error 0x1: Initial deskew and tx_start overlapped.
DESKEW_S TART_OVER LAP_FLAG_ 0	0	Error flag that indicates that the MIPI controller tried to start outputing data while initial deskew was still running. Either speed up the MIPI output so the deskew finishes sooner or increase n_vs_block.	0x0: No error 0x1: Initial deskew and tx_start overlapped.

MIPI_PHY_OEN (0x8D6)

BIT	7	6	5	4	3	2	1	0
Field	_	-	-	_	DESKEW_ START_OV ERLAP_OE N_3	DESKEW_ START_OV ERLAP_OE N_2	DESKEW_ START_OV ERLAP_OE N_1	DESKEW_ START_OV ERLAP_OE N_0
Reset	_	_	_	_	0b1	0b1	0b1	0b1
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_S TART_OVER LAP_OEN_3	3	Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.	0x0: Does not affect ERRB pin. 0x1: Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.
DESKEW_S TART_OVER LAP_OEN_2	2	Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.	0x0: Does not affect ERRB pin. 0x1: Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.
DESKEW_S TART_OVER LAP_OEN_1	1	Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.	0x0: Does not affect ERRB pin. 0x1: Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.
DESKEW_S TART_OVER LAP_OEN_0	0	Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.	0x0: Does not affect ERRB pin. 0x1: Enable DESKEW_START_OVERLAP_ERR_FLAG to go to ERRB pin.

MIPI_ERR_PKT_0 (0x8D8)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ EN_0	-	ERR_PKT_DT_0[5:0]					
Reset	0b0	ı			0x	3E		
Access Type	Write, Read	-			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_E N_0	7	Enable output of special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 0. 0 = Disabled 1 = Enabled	0x0: Disabled 0x1: Enabled
ERR_PKT_D T_0	5:0	Specifies the MIPI Data Type for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN control. See the ERR_PKT_EN register field.	0x0 0x1: Datatype value

MIPI_ERR_PKT_1 (0x8D9)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ EN_1	-	ERR_PKT_DT_1[5:0]					
Reset	0b0	-			0x	3E		
Access Type	Write, Read	-			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_E N_1	7	Enable output of special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 1. 0 = Disabled 1 = Enabled	0x0: Disabled 0x1: Enabled
ERR_PKT_D T_1	5:0	Specifies the MIPI Data Type for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN control. See the ERR_PKT_EN register field.	0x0 0x1: Datatype value

MIPI ERR PKT 2 (0x8DA)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ EN_2	_	ERR_PKT_DT_2[5:0]					
Reset	0b0	_			0x	3E		
Access Type	Write, Read	_			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_E N_2	7	Enable output of special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 2. 0 = Disabled 1 = Enabled	0x0: Disabled 0x1: Enabled
ERR_PKT_D T_2	5:0	Specifies the MIPI Data Type for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN control. See the ERR_PKT_EN register field.	0x0 0x1: Datatype value

MIPI ERR PKT 3 (0x8DB)

BIT	7	6	5	4	3	2	1	0	
Field	ERR_PKT_ EN_3	-	ERR_PKT_DT_3[5:0]						
Reset	0b0	_			0x	3E			
Access Type	Write, Read	_		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_E N_3	7	Enable output of special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 3. 0 = Disabled 1 = Enabled	0x0: Disabled 0x1: Enabled

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_D T_3	5:0	Specifies the MIPI Data Type for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN control. See the ERR_PKT_EN register field.	0x0 0x1: Datatype value

MIPI_ERR_PKT_4 (0x8DC)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ VC_OVRD_ EN_0	_	_	ERR_PKT_VC_OVRD_0[4:0]				
Reset	0b0	_	_		0x0F			
Access Type	Write, Read	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_OVRD_E N_0	7	Enable virtual channel override value for special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 0.	0x0: Use VC of random video stream in current controller 0x1: Use VC specified in ERR_PKT_VC_OVRD_0 register
ERR_PKT_V C_OVRD_0	4:0	Specifies the MIPI Virtual Channel for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN_0 and ERR_PKT_VC_OVRD_EN_0. See the ERR_PKT_EN_0 register field.	0x0: 0x0 0x1: 0x1 0x2: 0x2 0x3: 0x3 0x4: 0x0 0x5: 0x1 0x6: 0x2 0x7: 0x3 0x8: 0x0 0x9: 0x1 0xA: 0x2 0xB: 0x3 0xC: 0x0 0xD: 0x1 0xE: 0x2 0xF: 0x3 0x10: 0x0 0x11: 0x1 0x12: 0x2 0x13: 0x3 0x14: 0x0 0x15: 0x1 0x16: 0x2 0x17: 0x3 0x18: 0x0 0x19: 0x1

MIPI ERR PKT 5 (0x8DD)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ VC_OVRD_ EN_1	_	-		ERR_P	KT_VC_OVRE	0_1[4:0]	
Reset	0b0	_	_	0x0F				
Access Type	Write, Read	_	-			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_OVRD_E N_1	7	Enable virtual channel override value for special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 1.	0x0: Use VC of random video stream in current controller 0x1: Use VC specified in ERR_PKT_VC_OVRD_1 register
ERR_PKT_V C_OVRD_1	4:0	Specifies the MIPI Virtual Channel for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN_1 and ERR_PKT_VC_OVRD_EN_1. See the ERR_PKT_EN_1 register field.	0x0: 0x0 0x1: 0x1 0x2: 0x2 0x3: 0x3 0x4: 0x0 0x5: 0x1 0x6: 0x2 0x7: 0x3 0x8: 0x0 0x9: 0x1 0xA: 0x2 0xB: 0x3 0xC: 0x0 0xD: 0x1 0xE: 0x2 0xF: 0x3 0x10: 0x0 0x11: 0x1 0x12: 0x2 0x13: 0x3 0x14: 0x0 0x15: 0x1 0x16: 0x2 0x17: 0x3 0x18: 0x0 0x19: 0x1 0x110x1

MIPI ERR PKT 6 (0x8DE)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ VC_OVRD_ EN_2	_	_	ERR_PKT_VC_OVRD_2[4:0]				
Reset	0b0	_	_	0x0F				
Access Type	Write, Read	_	_			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_OVRD_E N_2	7	Enable virtual channel override value for special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 2.	0x0: Use VC of random video stream in current controller 0x1: Use VC specified in ERR_PKT_VC_OVRD_2 register
ERR_PKT_V C_OVRD_2	4:0	Specifies the MIPI Virtual Channel for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN_2 and ERR_PKT_VC_OVRD_EN_2. See the ERR_PKT_EN_2 register field.	0x0: 0x0 0x1: 0x1 0x2: 0x2 0x3: 0x3 0x4: 0x0 0x5: 0x1 0x6: 0x2 0x7: 0x3 0x8: 0x0 0x9: 0x1 0xA: 0x2 0xB: 0x3 0xC: 0x0 0xD: 0x1 0xE: 0x2 0xF: 0x3 0x10: 0x0 0x11: 0x1 0x12: 0x2 0x13: 0x3 0x14: 0x0 0x15: 0x1 0x16: 0x2 0x17: 0x3 0x16: 0x2 0x17: 0x3 0x10: 0x0 0x115: 0x1 0x16: 0x2 0x17: 0x3 0x10: 0x0 0x115: 0x1 0x16: 0x2 0x17: 0x3 0x18: 0x0 0x19: 0x1 0x1A: 0x2 0x1B: 0x3 0x1C: 0x0 0x1D: 0x1 0x1E: 0x2 0x1F: 0x3

MIPI_ERR_PKT_7 (0x8E0)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ VC_OVRD_ EN_3	_	_	ERR_PKT_VC_OVRD_3[4:0]				
Reset	0b0	_	_	0x0F				
Access Type	Write, Read	_	_			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_OVRD_E N_3	7	Enable virtual channel override value for special MIPI Error Packet when uncorrectable header errors occur in Tunnel Mode for MIPI controller 3.	0x0: Use VC of random video stream in current controller 0x1: Use VC specified in ERR_PKT_VC_OVRD_3 register
ERR_PKT_V C_OVRD_3	4:0	Specifies the MIPI Virtual Channel for the special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. Must be enabled using the ERR_PKT_EN_3 and ERR_PKT_VC_OVRD_EN_3. See the ERR_PKT_EN_3 register field.	0x0: 0x0 0x1: 0x1 0x2: 0x2 0x3: 0x3 0x4: 0x0 0x5: 0x1 0x6: 0x2 0x7: 0x3 0x8: 0x0 0x9: 0x1 0xA: 0x2 0xB: 0x3 0xC: 0x0 0xD: 0x1 0xE: 0x2 0xF: 0x3 0x10: 0x0 0x11: 0x1 0x12: 0x2 0x13: 0x3 0x14: 0x0 0x15: 0x1 0x16: 0x2 0x17: 0x3 0x18: 0x0 0x19: 0x1 0x10: 0x1

MIPI ERR PKT 8 (0x8E1)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERR_PKT_VC_0[4:0]				
Reset	_	_	_					
Access Type	_	_	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_0	4:0	Reads back the MIPI Virtual Channel value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Virtual Channel value

MIPI ERR PKT 9 (0x8E2)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERR_PKT_VC_1[4:0]				
Reset	_	-	-					
Access Type	_	-	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_1	4:0	Reads back the MIPI Virtual Channel value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Virtual Channel value

MIPI_ERR_PKT_10 (0x8E3)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERR_PKT_VC_2[4:0]				
Reset	_	_	_					
Access Type	-	_	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_2	4:0	Reads back the MIPI Virtual Channel value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Virtual Channel value

MIPI ERR PKT 11 (0x8E4)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ERR_PKT_VC_3[4:0]				
Reset	_	_	_					
Access Type	_	_	_			Read Only		

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_V C_3	4:0	Reads back the MIPI Virtual Channel value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Virtual Channel value

MIPI_ERR_PKT_12 (0x8E5)

BIT	7	6	5	4	3	2	1	0
Field	ERR_PKT_ WC_OVRD _EN_3	ERR_PKT_ WC_OVRD _EN_2	ERR_PKT_ WC_OVRD _EN_1	ERR_PKT_ WC_OVRD _EN_0	ı	-	_	ı
Reset	0x0	0x0	0x0	0x0	-	_	_	-
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	-	_	_	-

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_OVRD_ EN_3	7	0 = Pick random word count from video source in MIPI controller 3 as the word count for MIPI Error Packets 1 = Use word count specified in ERR_PKT_WC_3_H/L register as the word count for MIPI Error Packets	0x0: 0 = Pick random word count from video source in MIPI controller 3 as the word count for MIPI Error Packets 0x1: 1 = Use word count specified in ERR_PKT_WC_3_H/L register as the word count for MIPI Error Packets
ERR_PKT_ WC_OVRD_ EN_2	6	0 = Pick random word count from video source in MIPI controller 2 as the word count for MIPI Error Packets 1 = Use word count specified in ERR_PKT_WC_2_H/L register as the word count for MIPI Error Packets	0x0: 0 = Pick random word count from video source in MIPI controller 2 as the word count for MIPI Error Packets 0x1: 1 = Use word count specified in ERR_PKT_WC_2_H/L register as the word count for MIPI Error Packets
ERR_PKT_ WC_OVRD_ EN_1	5	0 = Pick random word count from video source in MIPI controller 1 as the word count for MIPI Error Packets 1 = Use word count specified in ERR_PKT_WC_1_H/L register as the word count for MIPI Error Packets	0x0: 0 = Pick random word count from video source in MIPI controller 1 as the word count for MIPI Error Packets 0x1: 1 = Use word count specified in ERR_PKT_WC_1_H/L register as the word count for MIPI Error Packets
ERR_PKT_ WC_OVRD_ EN_0	4	0 = Pick random word count from video source in MIPI controller 0 as the word count for MIPI Error Packets 1 = Use word count specified in ERR_PKT_WC_0_H/L register as the word count for MIPI Error Packets	0x0: 0 = Pick random word count from video source in MIPI controller 0 as the word count for MIPI Error Packets 0x1: 1 = Use word count specified in ERR_PKT_WC_0_H/L register as the word count for MIPI Error Packets

MIPI ERR PKT 13 (0x8E6)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_0_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_0_H	7:0	If ERR_PKT_WC_OVRD_EN_0 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI_ERR_PKT_14 (0x8E7)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_0_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_0_L	7:0	If ERR_PKT_WC_OVRD_EN_0 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI ERR PKT 15 (0x8E8)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_1_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_1_H	7:0	If ERR_PKT_WC_OVRD_EN_1 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI_ERR_PKT_16 (0x8E9)

BIT	7	6	5	4	3	2	1	0
Field		ERR_PKT_WC_1_L[7:0]						
Reset		0x00						
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_1_L	7:0	If ERR_PKT_WC_OVRD_EN_1 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI_ERR_PKT_17 (0x8EA)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_2_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_2_H	7:0	If ERR_PKT_WC_OVRD_EN_2 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI ERR PKT 18 (0x8EB)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_2_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_2_L	7:0	If ERR_PKT_WC_OVRD_EN_2 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI_ERR_PKT_19 (0x8EC)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_3_H[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_3_H	7:0	If ERR_PKT_WC_OVRD_EN_3 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI ERR PKT 20 (0x8ED)

BIT	7	6	5	4	3	2	1	0	
Field		ERR_PKT_WC_3_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
ERR_PKT_ WC_3_L	7:0	If ERR_PKT_WC_OVRD_EN_3 is set, this register sets the word count for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode. When not in WC override mode, this register reads back the word count value for special MIPI Error Packet which is output when uncorrectable header errors occur in Tunnel Mode.	0x0 0x1: Word Count value. See register description

MIPI_TX1 (0x901, 0x941)

BIT	7	6	5	4	3	2	1	0	
Field		MODE[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MODE	7:0	MIPI Tx mode: b0 = 1: Enables MIPI VS short packet counter, cyclic 1~16.	0bXXXXXXX0: Disable MIPI VS short packet counter 0bXXXXXXX1: Enable MIPI VS short packet counter

MIPI_TX2 (0x902, 0x942)

BIT	7	6	5	4	3	2	1	0	
Field		STATUS[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
STATUS	7:0	MIPI Tx Status Register The register is split into decode segments: bit[0] SYNC mode enable. bit[1] Video sync flag bit[2] Loss of video sync flag bit[3] Tunneling mode: DPHY ECC or CPHY header CRC error (correctable) bit[4] Tunneling mode: DPHY ECC or CPHY header CRC error (uncorrectable) bit[5] Tunneling mode: DPHY/CPHY data CRC error bit[6] Tunneling mode: DPHY to CPHY conversion data protection CRC error	0bXXXXXXX0: SYNC mode disabled 0bXXXXXXX1: SYNC mode enabled 0bXXXXXX0X: Video channels not in-sync 0bXXXXXX1X: Video channels in-sync 0xXXXXX0XX: No loss of video sync 0xXXXXX1XX: Video sync lost after last read of this register or reset.

MIPI_TX3 (0x903, 0x943)

BIT	7	6	5	4	3	2	1	0		
Field		DESKEW_INIT[7:0]								
Reset		0x87								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_IN IT	7:0	DPHY Deskew Initial Calibration Control The register is split into six decode segments: Bit [7]: Selects auto-initial deskew calibration on or off Bit [6]: Reserved Bit [5]: Any bit change initiates an initial calibration if bit 4 = 1 Bit [4]: Selects manual initial on or off Bit [3]: Reserved Bits [2:0]: Selects initial deskew width	0bXXXXX000: Initial deskew width = 1 x 32k UI 0bXXXXX001: Initial deskew width = 2 x 32k UI 0bXXXXX010: Initial deskew width = 3 x 32k UI 0bXXXXX011: Initial deskew width = 4 x 32k UI 0bXXXXX100: Initial deskew width = 5 x 32k UI 0bXXXXX101: Initial deskew width = 6 x 32k UI 0bXXXXX110: Initial deskew width = 7 x 32k UI 0bXXXXXX111: Initial deskew width = 7 x 32k UI 0bXXXXXXXXX: Reserved 0bXXXXXXXXX: Reserved 0bXXXXXXXX: Manual initial off 0bXXXXXXXX: Manual initial on 0bXXXXXXXX: If bit 4 = 1, triggers one time immediate initial skew calibration 0bXX1XXXXX: If bit 4 = 1, triggers one time immediate initial skew calibration 0bX0XXXXXX: Reserved 0bX1XXXXXX: Reserved 0bX1XXXXXX: Reserved 0bX1XXXXXX: Reserved 0bX1XXXXXX: Auto initial deskew off 0b1XXXXXXXX: Auto initial deskew on (should be used only in DPHY mode and PLL greater than or equal to 1.5G)

MIPI_TX4 (0x904, 0x944)

BIT	7	6	5	4	3	2	1	0		
Field		DESKEW_PER[7:0]								
Reset		0x81								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_P ER	7:0	DPHY Periodic Deskew Calibration Control The register is split into four decode segments: bit [7]: Selects periodic deskew calibration on or off bit [6]: Selects generation on rising or falling edge of VS bits [5:3]: Selects periodic interval bits [2:0]: Selects periodic deskew width	ObXXXXX000: Periodic deskew width = 1k UI ObXXXXX001: Periodic deskew width = 2k UI ObXXXXX010: Periodic deskew width = 3k UI ObXXXXX010: Periodic deskew width = 4k UI ObXXXXX100: Periodic deskew width = 5k UI ObXXXXX101: Periodic deskew width = 5k UI ObXXXXX101: Periodic deskew width = 7k UI ObXXXXX111: Periodic deskew width = 8k UI ObXXXXX111: Periodic deskew width = 8k UI ObXX000XXX: Periodic deskew calibration generated every frame ObXX011XXX: Periodic deskew calibration generated every 4 frames ObXX010XXX: Periodic deskew calibration generated every 8 frames ObXX011XXX: Periodic deskew calibration generated every 16 frames ObXX100XXX: Periodic deskew calibration generated every 32 frames ObXX111XXX: Periodic deskew calibration generated every 64 frames ObXX111XXX: Periodic deskew calibration generated every 128 frames ObXX111XXX: Periodic deskew calibration generated at rising edge of VS ObXXXXXXX: Periodic deskew calibration generated at falling edge of VS ObXXXXXXX: Periodic deskew calibration generated at falling edge of VS ObOXXXXXXX: Periodic deskew calibration off Ob1XXXXXXX: Periodic deskew calibration off

MIPI_TX5 (0x905, 0x945)

BIT	7	6	5	4	3	2	1	0		
Field		CSI2_T_PRE[7:0]								
Reset		0x71								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_T_PRE	7:0	Number of clock cycles to wait before enabling HS data	0xXX: Number of MIPI byte clocks

MIPI_TX6 (0x906, 0x946)

BIT	7	6	5	4	3	2	1	0		
Field		CSI2_T_POST[7:0]								
Reset		0x19								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_T_POS T	7:0	Number of byte clocks to hold clock active after data	0xXX: Number of MIPI byte clocks

MIPI_TX7 (0x907, 0x947)

BIT	7	6	5	4	3	2	1	0	
Field		CSI2_TX_GAP[7:0]							
Reset		0x1C							
Access Type		Write, Read							
		1							

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TX_GA	7:0	Sets the number of clocks to wait after the HS CLK has entered LP before enabling it again for the next transmission	0xXX: Number of MIPI byte clocks

MIPI_TX8 (0x908, 0x948)

BIT	7	6	5	4	3	2	1	0	
Field		CSI2_TWAKEUP_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TWAK EUP_L	7:0	Sets DPHY timing parameter t _{WAKEUP} . Set the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0xXX: Number of MIPI byte clocks

MIPI_TX9 (0x909, 0x949)

BIT	7	6	5	4	3	2	1	0	
Field		CSI2_TWAKEUP_M[7:0]							
Reset		0x01							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TWAI	7:0	Sets DPHY timing parameter t _{WAKEUP} . Set the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0xXX: Number of MIPI byte clocks

MIPI_TX10 (0x90A, 0x94A)

BIT	7	6	5	4	3	2	1	0
Field	CSI2_LANI	E_CNT[1:0]	CSI2_CPH Y_EN	csi2_vcx_en	ı	CSI2_TWAKEUP_H[2:0]		
Reset	0:	x3	0b0	0x1	-	0x0		
Access Type	Write,	Read	Write, Read	Write, Read	-	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_LANE_ CNT	7:6	MIPI Lane Count In 4x2 mode, CSI2_LANE_CNT register bit [1] will always read back 1'b0 since hardware will mask this to 1'b0 in this mode.	0b00: One data lane 0b01: Two data lanes 0b10: Three data lanes (Reserved for registers 0x90A and 0x9CA) 0b11: Four data lanes (Reserved for registers 0x90A and 0x9CA)
CSI2_CPHY _EN	5	CPHY Enable	0b0: DPHY mode 0b1: CPHY mode
csi2_vcx_en	4	Enables virtual channel extension	0b0: Select 2-bit VC 0b1: Select 5-bit VC (CPHY) or 4-bit VC (DPHY)
CSI2_TWAK EUP_H	2:0	High bits of DPHY timing parameter t _{WAKEUP} . Sets the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0bXXX: Number of MIPI byte clocks

MIPI_TX11 (0x90B, 0x94B)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_EN_L[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
		Mapping enable low byte [7:0]. Each bit enables 1 of 8 mapping and	0b00000000: No mapping enabled 0bXXXXXXX1: Map SRC_0 to DES_0 0bXXXXXX1X: Map SRC_1 to DES_1 0bXXXXX1XX: Map SRC_2 to DES_2
MAP_EN_L	7:0	distribution entries (defined in MAP_SRC_x, MAP_DST_x, and MAP_DPHY_DST_x) for the current video stream. Non-matched virtual channel (VC) and data types (DT) pass to the corresponding CSI2 controller.	0bXXXX1XX: Map SRC_2 to DES_2 0bXXXX1XXX: Map SRC_3 to DES_3 0bXXX1XXXX: Map SRC_4 to DES_4 0bXX1XXXXX: Map SRC_5 to DES_5 0bX1XXXXXX: Map SRC_6 to DES_6 0b1XXXXXXX: Map SRC_7 to DES_7

MIPI_TX12 (0x90C, 0x94C)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_EN_H[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_EN_H	7:0	Mapping enable high byte [15:8]. Each bit enables 1 of 8 mapping and distribution entries (defined in MAP_SRC_x, MAP_DST_x, and MAP_DPHY_DST_x) for the current video stream. Non-matched virtual channel (VC) and data types (DT) pass to the corresponding CSI2 controller.	0b0000000: No mapping enabled 0bXXXXXXX1: Map SRC_8 to DES_8 0bXXXXXX1X: Map SRC_9 to DES_9 0bXXXXX1XX: Map SRC_10 to DES_10 0bXXXX1XXX: Map SRC_11 to DES_11 0bXXX1XXXX: Map SRC_12 to DES_12 0bXX1XXXXX: Map SRC_13 to DES_13 0bX1XXXXXX: Map SRC_14 to DES_14 0b1XXXXXXX: Map SRC_15 to DES_15

MIPI_TX13 (0x90D, 0x94D)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_SRC_0[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_0	7:0	Video Pipe Source Mapping Register 0 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_0_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. See register MAP_DST_0 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX14 (0x90E, 0x94E)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_0[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_0	BITS 7:0	DESCRIPTION Video Pipe Destination Mapping Register 0 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_0_H associated with this Video Pipe.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX
		The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. See register MAP_SRC_0 to program the source setting.	

MIPI_TX15 (0x90F, 0x94F)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_1[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1	7:0	Video Pipe Source Mapping Register 1 - Virtual Channel/Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_1_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the first mapping pair. See register MAP_DST_1 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX16 (0x910, 0x950)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_1[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1	7:0	Video Pipe Destination Mapping Register 1 - Virtual Channel/Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_1_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the first mapping pair. See register MAP_SRC_1 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX17 (0x911, 0x951)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_2[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_2	7:0	Video Pipe Source Mapping Register 2 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_2_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the second mapping pair. See register MAP_DST_2 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX18 (0x912, 0x952)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_2[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_2	7:0	Video Pipe Destination Mapping Register 2 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_2_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the second mapping pair. See register MAP_SRC_2 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX19 (0x913, 0x953)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_3[7:0]							
Reset		0x00							
Access Type				Write,	Read				

Video Pipe Source Mapping Register 3 - Virtual Channel / Data Type The register is split into two decode	BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_3 7:0 MAP_SRC_3 7:0 In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_3_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the third mapping pair. See register MAP_DST_3 to program the			Video Pipe Source Mapping Register 3 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_3_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the third mapping pair.	[7:6]: VC – 0bXX

MIPI_TX20 (0x914, 0x954)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_3[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_3	7:0	Video Pipe Destination Mapping Register 3 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_3_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the third mapping pair. See register MAP_SRC_3 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX21 (0x915, 0x955)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_4[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_4	7:0	Video Pipe Source Mapping Register 4 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_4_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fourth mapping pair. See register MAP_DST_4 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX22 (0x916, 0x956)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_4[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_4	7:0	Video Pipe Destination Mapping Register 4 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_4_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fourth mapping pair. See register MAP_SRC_4 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX23 (0x917, 0x957)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_5[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_5	7:0	Video Pipe Source Mapping Register 5 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_5_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fifth mapping pair. See register MAP_DST_5 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX24 (0x918, 0x958)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_5[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_5	7:0	Video Pipe Destination Mapping Register 5 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_5_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fifth mapping pair. See register MAP_SRC_5 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX25 (0x919, 0x959)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_6[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD BITS DESCRIPTION	DECODE
Video Pipe Source Mapping Register 6 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC 6 Hassociated with this Video [7:6]: VC	/C – 0bXX OT– 0bXXXXXX

MIPI_TX26 (0x91A, 0x95A)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_6[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_6	7:0	Video Pipe Destination Mapping Register 6 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_6_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the sixth mapping pair. See register MAP_SRC_6 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX27 (0x91B, 0x95B)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_7[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_7	7:0	Video Pipe Source Mapping Register 7 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_7_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the seventh mapping pair. See register MAP_DST_7 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX28 (0x91C, 0x95C)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_7[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_7	7:0	Video Pipe Destination Mapping Register 7 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_7_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the seventh mapping pair. See register MAP_SRC_7 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX29 (0x91D, 0x95D)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_8[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_8	7:0	Video Pipe Source Mapping Register 8 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_8_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the eighth mapping pair. See register MAP_DST_8 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX30 (0x91E, 0x95E)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_8[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_8	7:0	Video Pipe Destination Mapping Register 8 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_8_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the eighth mapping pair. See register MAP_SRC_8 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX31 (0x91F, 0x95F)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_9[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_9	7:0	Video Pipe Source Mapping Register 9 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_9_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the ninth mapping pair. See register MAP_DST_9 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX32 (0x920, 0x960)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_9[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_9	7:0	Video Pipe Destination Mapping Register 9 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_9_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the ninth mapping pair. See register MAP_SRC_9 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX33 (0x921, 0x961)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_10[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 0	7:0	Video Pipe Source Mapping Register 10 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_10_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the tenth mapping pair. See register MAP_DST_10 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX34 (0x922, 0x962)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_10[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 0	7:0	Video Pipe Destination Mapping Register 10 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_10_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the tenth mapping pair. See register MAP_SRC_10 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX35 (0x923, 0x963)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_11[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 1	7:0	Video Pipe Source Mapping Register 11 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_11_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the eleventh mapping pair. See register MAP_DST_11 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX36 (0x924, 0x964)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_11[7:0]						
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1	7:0	Video Pipe Destination Mapping Register 11 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_11_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the eleventh mapping pair. See register MAP_SRC_11 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX37 (0x925, 0x965)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_12[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 2	7:0	Video Pipe Source Mapping Register 12 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_12_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the twelfth mapping pair. See register MAP_DST_12 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX38 (0x926, 0x966)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_12[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 2	7:0	Video Pipe Destination Mapping Register 12 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_12_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the twelfth mapping pair. See register MAP_SRC_12 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX39 (0x927, 0x967)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_13[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1	7:0	Video Pipe Source Mapping Register 13 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_13_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the thirteenth mapping pair. See register MAP_DST_13 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX40 (0x928, 0x968)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_13[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 3	7:0	Video Pipe Destination Mapping Register 13 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_13_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the thirteenth mapping pair. See register MAP_SRC_13 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX41 (0x929, 0x969)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_14[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 4	7:0	Video Pipe Source Mapping Register 14 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_14_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fourteenth mapping pair. See register MAP_DST_14 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX42 (0x92A, 0x96A)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_14[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 4	7:0	Video Pipe Destination Mapping Register 14 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_14_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fourteenth mapping pair. See register MAP_SRC_14 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX43 (0x92B, 0x96B)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_15[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1	7:0	Video Pipe Source Mapping Register 15 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_15_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fifteenth mapping	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX
		1. 0	

MIPI_TX44 (0x92C, 0x96C)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_15[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 5	7:0	Video Pipe Destination Mapping Register 15 - Virtual Channel / Data Type The register is split into two decode segments: bits [7:6]: VC - Virtual channel bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_15_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fifteenth mapping pair. See register MAP_SRC_15 to program the source setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX45 (0x92D, 0x96D)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_3[1:0]		MAP_DPHY_DEST_2[1:0]		MAP_DPHY_DEST_1[1:0]		MAP_DPHY_DEST_0[1:0]	
Reset	0>	0x0		0x0		0x0		x0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_3	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_3 and MAP_DST_3 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_2	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_2 and MAP_DST_2 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_1	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_1 and MAP_DST_1 mapping registers	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_0	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_0 and MAP_DST_0 mapping registers.	0b00: Map to controller 0 0b01: Map to controller 1 0b10: Map to controller 2 0b11: Map to controller 3

MIPI_TX46 (0x92E, 0x96E)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_7[1:0]		MAP_DPHY_DEST_6[1:0]		MAP_DPHY_DEST_5[1:0]		MAP_DPHY_DEST_4[1:0]	
Reset	0x0		0x0		0x0		0:	x0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_7	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_7 and MAP_DST_7 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_6	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_6 and MAP_DST_6 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_5	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_5 and MAP_DST_5 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_4	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_4 and MAP_DST_4 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

MIPI_TX47 (0x92F, 0x96F)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_11[1: 0]		MAP_DPHY_DEST_10[1: 0]		MAP_DPHY_DEST_9[1:0]		MAP_DPHY_DEST_8[1:0]	
Reset	0:	0x0		0x0		0x0		0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_11	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_11 and MAP_DST_11 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_10	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_10 and MAP_DST_10 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_9	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_9 and MAP_DST_9 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_8	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_8 and MAP_DST_8 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

MIPI TX48 (0x930, 0x970)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_15[1: 0]		MAP_DPHY_DEST_14[1: 0]		MAP_DPHY_DEST_13[1: 0]		MAP_DPHY_DEST_12[1: 0]	
Reset	0x0		0x0		0x0		0>	k 0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE		
MAP_DPHY_ DEST_15	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_15 and MAP_DST_15 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3		
MAP_DPHY_ DEST_14	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_14 and MAP_DST_14 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3		
MAP_DPHY_ DEST_13	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_13 and MAP_DST_13 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3		
MAP_DPHY_ DEST_12	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_12 and MAP_DST_12 mapping registers	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3		

MIPI_TX49 (0x931, 0x971)

BIT	7	6	5	4	3	2	1	0
Field		MAP_CON[7:0]						
Reset		0x00						
Access Type		Write, Read						

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_CON	7:0	MIPI controller SYNC concatenation register. The register is split into four decode segments: bit [7]: 1'b1 = 4WxH, 1'b0 = Wx4H bit [6]: Reserved bits [5:4]: Select the first line to concatenate. All others follow in order bits [3:0]. 2'b00 = Select Pipe 0 to be the master 2'b01 = Select Pipe 1 to be the master 2'b10 = Select Pipe 2 to be the master 2'b11 = Select Pipe 3 to be the master 2'b11 = Select Pipe 3 to be the master bit [3]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 3 bit [2]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 2 bit [1]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 1 bit [0]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 1 bit [0]: 1'b0 = disable, 1'b1 = concatenate	0bXXXXXXX1: Concatenate Video Pipeline 0 0bXXXXXX1X: Concatenate Video Pipeline 1 0bXXXXX1XX: Concatenate Video Pipeline 2 0bXXXX1XXX: Concatenate Video Pipeline 3 0bXX00XXXX: Select Video Pipeline 0 as master 0bXX01XXXX: Select Video Pipeline 1 as master 0bXX10XXXX: Select Video Pipeline 2 as master 0bXX11XXXX: Select Video Pipeline 3 as master 0bXX11XXXX: Enable Wx4H mode 0b1XXXXXXXX: Enable 4WxH mode

MIPI_TX50 (0x932, 0x972)

BIT	7	6	5	4	3	2	1	0
Field		SKEW_PER_SEL[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
SKEW_PER _SEL	7:0	Periodic deskew select register. The register is split into three decode segments: bit [7]: Select periodic deskew calibration for one or all virtual channels bits [6:5]: Reserved bits [4:0]: Virtual channel to generate periodic deskew calibration when only one channel is selected by bit 7	Ob0xxxxxxx: Generate periodic calibration deskew calibration on all virtual channels Ob1xx00000: Periodic deskew calibration generated by virtual Channel O Ob1xx00001: Periodic deskew calibration generated by virtual Channel 1 Ob1xx00010: Periodic deskew calibration generated by virtual Channel 2 Ob1xx00011: Periodic deskew calibration generated by virtual Channel 3 Ob1xx00100: Periodic deskew calibration generated by virtual Channel 4 Ob1xx00101: Periodic deskew calibration generated by virtual Channel 5 Ob1xx00110: Periodic deskew calibration generated by virtual Channel 6 Ob1xx00111: Periodic deskew calibration generated by virtual Channel 6 Ob1xx01010: Periodic deskew calibration generated by virtual Channel 7 Ob1xx01000: Periodic deskew calibration generated by virtual Channel 8 Ob1xx01001: Periodic deskew calibration generated by virtual Channel 9 Ob1xx01010: Periodic deskew calibration generated by virtual Channel 10 Ob1xx01011: Periodic deskew calibration generated by virtual Channel 11 Ob1xx01010: Periodic deskew calibration generated by virtual Channel 11 Ob1xx01101: Periodic deskew calibration generated by virtual Channel 12 Ob1xx01101: Periodic deskew calibration generated by virtual Channel 13 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 13 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 15

MIPI_TX51 (0x933, 0x973)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ALT2_MEM _MAP8	MODE_DT	ALT_MEM_ MAP10	ALT_MEM_ MAP8	ALT_MEM_ MAP12
Reset	_	_	_	0b0	0b0	0b0	0b0	0b0
Access Type	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE	
ALT2_MEM_ MAP8	4	Alternative memory read mapping enable for 8-bit DT when sharing the same video pipe with RAW16	0b0: Alternative memory read mapping not enabled for 8-bit DT 0b1: Alternative memory read mapping enabled for 8-bit DT	
MODE_DT	3	Select 24-bit mode for user-defined data types	0b0: 24-bit mode for user-defined data types not enabled 0b1: 24-bit mode for user-defined data types enabled	

BITFIELD	BITS	DESCRIPTION	DECODE
ALT_MEM_ MAP10	2	Alternative memory read mapping enable for 10-bit DT	0b0: Alternative memory read mapping not enabled for 10-bit DT 0b1: Alternative memory read mapping enabled for 10-bit DT
ALT_MEM_ MAP8	1	Alternative memory read mapping enable for 8-bit DT	0b0: Alternative memory read mapping not enabled for 8-bit DT 0b1: Alternative memory read mapping enabled for 8-bit DT
ALT_MEM_ MAP12	0	Alternative memory read mapping enable for 12-bit DT	0b0: Alternative memory read mapping not enabled for 12-bit DT 0b1: Alternative memory read mapping enabled for 12-bit DT

MIPI_TX52 (0x934, 0x974)

BIT	7	6	5	4	3	2	1	0	
Field		video_maske	d_latched[3:0]		video_masked[3:0]				
Reset		0:	x0		0x0				
Access Type		Read	l Only			Read	Only		

BITFIELD	BITS	DESCRIPTION	DECODE		
video_maske d_latched	7:4	Indicates video pipes 0-3 were masked off at one point while in 4WxH or Wx4H synchronous aggregation mode.	0bXXX1: Video pipe 0 previously masked off 0bXX1X: Video pipe 1 previously masked off 0bX1XX: Video pipe 2 previously masked off 0b1XXX: Video pipe 3 previously masked off		
video_maske d	3:0	Video pipe currently masked off while in 4WxH or Wx4H synchronous aggregation mode.	0bXXX1: Video pipe 0 previously masked off 0bXX1X: Video pipe 1 previously masked off 0bX1XX: Video pipe 2 previously masked off 0b1XXX: Video pipe 3 previously masked off		

MIPI_TX54 (0x936, 0x976)

BIT	7	6	5	4	3	2	1	0
Field	TUN_NO_C ORR	DESKEW	V_TUN[1:0] TUN_SER_LANE_NUM[1 0]		JN_SER_LANE_NUM[1: DESKEW_TUN_SRC[1:0]		TUN_EN	
Reset	0x0	0:	0x0		0x1		(0	0x0
Access Type	Write, Read	Write,	, Read	Write,	Read	Write,	Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_NO_C ORR	7	Do not enable header error correction in tunneling mode	0x0: Automatic correction for correctable header error 0x1: Turn off correction for correctable header error
DESKEW_T UN	6:5	Deskew Mode for CSI2 Tunneling	O: Periodic deskew as in HS94 (determined by deskew_per_* registers). 1: Periodic deskew follows SER. 2: Periodic deskew START follows SER but width as register defined. 3: Not used

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_SER_L ANE_NUM	4:3	Tunneling Serializer Lane Number Used ONLY in tunneling mode when source is in CPHY mode	0x0: 1-lane 0x1: 2-lanes
DESKEW_T UN_SRC	2:1	Tunneling Deskew Source Select DESKEW_TUN_SRC register must select one of the mapped pipes for this controller.	0x0: Pipe 0 0x1: Pipe 1 0x2: Pipe 2 0x3: Pipe 3
TUN_EN	0	Tunneling Enabled This register takes effect only if DIS_AUTO_TUN_DET is 1.	0b0: Tunneling disabled 0b1: Tunneling enabled

MIPI_TX56 (0x938, 0x978)

BIT	7	6	5	4	3	2	1	0		
Field		PKT_START_ADDR[7:0]								
Reset		0x0								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION
BITFIELD PKT_START_ADDR	BITS 7:0	DESCRIPTION Specifies the start address of the long packet. 0: The long packet is sent out when the whole line is filled in line memory. Not 0: The long packet begins when PKT_START_ADDR x 128 bytes are filled in the line memory in tunnel mode or when PKT_START_ADDR x 64 pixels are filled in the line memory in pixel mode. Make sure register n_vs_block is 2 or more (default = 1). Notes: • "Cut-through" only works with 1-3 virtual channels. May increase to 4 VCs in future revisions.
		Bytes are packed differently into memory when in tunnel mode. For example, in tunnel mode, a BPP of 24 is equal to 1.33 pixels per address. In pixel mode, a BPP of 24 is equal to 1 pixel per address. When in tunnel mode, the units for PKT_START_ADDR are in bytes. In pixel mode, the units are in pixels.

MIPI_TX57 (0x939, 0x979)

BIT	7	6	5	4	3	2	1	0
Field	DIS_AUTO _SER_LAN E_DET	DIS_AUTO _TUN_DET	TUN_DEST[1:0]		_	TUN_DPHY _TO_CPHY _CONV	TUN_DPHY _TO_CPHY _CONV_OV _RD	RSVD
Reset	0x0	0x0	0)	0x1		0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write,	Read	_	Write, Read	Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
DIS_AUTO_ SER_LANE_ DET	7	Disable auto SER lane count detect. When this register is set to 1 (automatic detection of SER lane count is disabled), TUN_SER_LANE_NUM register will need to be set to the SER lane count.	0b0: Tunneling disabled 0b1: Tunneling enabled
DIS_AUTO_ TUN_DET	6	Disable auto tunneling mode detect. When this register is set to 1 (automatic detection of tunneling mode disabled), TUN_EN registers will set pixel mode (TUN_EN = 0) or tunneling mode (TUN_EN = 1).	0b0: Tunneling disabled 0b1: Tunneling enabled
TUN_DEST	5:4	Tunneling controller Destination	0x0: Controller 0 0x1: Controller 1
TUN_DPHY_ TO_CPHY_C ONV	2	Only used when TUN_DPHY_TO_CPHY_CONV_OVRD bit is set. Manual override bit to enable DPHY to CPHY conversion in tunneling mode (must also disable auto tunneling mode detect DIS_AUTO_TUN_DET = 1 and manually set tunneling mode TUN_EN = 1). When set to 0, SER headers are evaluated to detect DPHY/CPHY mode, if SER is sending DPHY and the DES MIPI PHY is sent to CPHY mode, conversion is turn on.	0x0: Controller 0 0x1: Controller 1
TUN_DPHY_ TO_CPHY_C ONV_OVRD	1	Enable value in TUN_DPHY_TO_CPHY_CONV register to override automatic detection.	0x0: Controller 0 0x1: Controller 1

MIPI_ERR_INJ_B1 (0x93A, 0x97A)

BIT	7	6	5	4	3	2	1	0
Field	DCPHY_C ONV_ERR_ INJ_B1_EN	-	_	DCPHY_CONV_ERR_INJ_B1_SITE[4:0]				
Reset	0b0	_	_	0x00				
Access Type	Write Clears All, Read	_	_			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
DCPHY_CO NV_ERR_IN J_B1_EN	7	Enable Error Injection for the first bit error injection location selection. See the DCPHY_CONV_ERR_INJ_B1_SITE register field description. Write 1 to trigger the error injection. This bit will self clear.	
DCPHY_CO NV_ERR_IN J_B1_SITE	4:0	First Bit Error Injection location in the DPHY header. Used to inject errors into the MIPI DPHY standard output header which is then converted to MIPI CPHY standard output during tunnel mode.	0-7: DATA ID (DT) 8-23: DATA FIELD 24-30: ECC 31-32: VCX

MIPI_ERR_INJ_B2 (0x93B, 0x97B)

BIT	7	6	5	4	3	2	1	0
Field	DCPHY_C ONV_ERR_ INJ_B2_EN	_	-		DCPHY_COI	NV_ERR_INJ_	B2_SITE[4:0]	
Reset	0b0	_	-	0x00				
Access Type	Write Clears All, Read	_	-			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
DCPHY_CO NV_ERR_IN J_B2_EN	7	Enable Error Injection for the second bit error injection location selection. See the DCPHY_CONV_ERR_INJ_B2_SITE register field description. Write 1 to trigger the error injection. This bit will self clear.	
DCPHY_CO NV_ERR_IN J_B2_SITE	4:0	Second Bit Error Injection location in the DPHY header. Used to inject errors into the MIPI DPHY standard output header which is then converted to MIPI CPHY standard output during tunnel mode.	0-7: DATA ID (DT) 8-23: DATA FIELD 24-30: ECC 31-32: VCX

MIPI_ERRB_DESKEW_ORDER (0x93C, 0x97C)

BIT	7	6	5	4	3	2	1	0
Field	-	_	-	_	DESKEW_ BEFORE_E RRB_PKT_ MODE	DESKEW_ AFTER_ER RB_PKT_M ODE	DESKEW_ BEFORE_V S_PKT_MO DE	-
Reset	_	_	_	_	0x0	0x0	0x0	_
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	-

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_B EFORE_ER RB_PKT_MO DE	3	This bit can control when the DESKEW occurs relative to ERRB_PKT. This register, DESKEW_BEFORE_ERRB_PKT_MODE, has priority over DESKEW_AFTER_ERRB_PKT_MODE Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW may occur before or after ERRB_PKT depending on other registers (see complete table) 0x1: DESKEW occurs before ERRB_PKT
DESKEW_A FTER_ERRB _PKT_MODE	2	This bit can control when the DESKEW occurs relative to ERRB_PKT. Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW may occur before or after ERRB_PKT depending on other registers (see complete table) 0x1: DESKEW occurs after ERRB_PKT
DESKEW_B EFORE_VS_ PKT_MODE	1	This bit can control when the DESKEW occurs relative to a VS (frame-start or frame-end) pkt. Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW occurs after the VS pkt 0x1: DESKEW occurs before the VS pkt

MIPI_TX1 (0x981, 0x9C1)

BIT	7	6	5	4	3	2	1	0		
Field		MODE[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MODE	7:0	MIPI Tx mode: b0 = 1: Enables MIPI VS short packet counter, cyclic 1~16.	0bXXXXXXX0: Disable MIPI VS short packet counter 0bXXXXXXX1: Enable MIPI VS short packet counter

MIPI TX2 (0x982, 0x9C2)

BIT	7	6	5	4	3	2	1	0	
Field		STATUS[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
STATUS	7:0	MIPI Tx Status Register The register is split into decode segments: Bit[0] SYNC mode enable. Bit[1] Video sync flag Bit[2] Loss of video sync flag Bit[3] Tunneling mode: DPHY ECC or CPHY header CRC error (correctable) Bit[4] Tunneling mode: DPHY ECC or CPHY header CRC error (uncorrectable) Bit[5] Tunneling mode: DPHY/CPHY data CRC error Bit[6] Tunneling mode: DPHY to CPHY conversion data protection CRC error	0bXXXXXXX0: SYNC mode disabled 0bXXXXXXX1: SYNC mode enabled 0bXXXXXXX0X: Video channels not in-sync 0bXXXXXX1X: Video channels in-sync 0xXXXXX0XX: No loss of video sync 0xXXXXX1XX: Video sync lost after last read of this register or reset.

MIPI TX3 (0x983, 0x9C3)

BIT	7	6	5	4	3	2	1	0	
Field		DESKEW_INIT[7:0]							
Reset		0x87							
Access Type				Write,	Read				

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_IN	7:0	DPHY Deskew Initial Calibration Control The register is split into six decode segments: Bit [7]: Selects auto-initial deskew calibration on or off Bit [6]: Reserved Bit [5]: Any bit change initiates an initial calibration if bit 4 = 1 Bit [4]: Selects manual initial on or off Bit [3]: Reserved Bits [2:0]: Selects initial deskew width	ObXXXXX000: Initial deskew width = 1 x 32k UI ObXXXXX001: Initial deskew width = 2 x 32k UI ObXXXXX010: Initial deskew width = 3 x 32k UI ObXXXXX011: Initial deskew width = 4 x 32k UI ObXXXXX100: Initial deskew width = 5 x 32k UI ObXXXXX101: Initial deskew width = 6 x 32k UI ObXXXXX110: Initial deskew width = 7 x 32k UI ObXXXXXX111: Initial deskew width = 8 x 32k UI ObXXXXXXXX: Reserved ObXXXXXXX: Reserved ObXXXXXXX: Manual initial off ObXXXXXXX: Manual initial on ObXXOXXXXX: If bit 4 = 1, triggers one time immediate initial skew calibration ObXX1XXXXX: Reserved ObXXXXXXX: Reserved ObXXXXXXX: Reserved ObXXXXXXX: Reserved ObXXXXXXX: Reserved ObXXXXXXX: Auto initial deskew off Ob1XXXXXXX: Auto initial deskew on (should be used only in DPHY mode and PLL greater than or equal to 1.5G)

MIPI_TX4 (0x984, 0x9C4)

BIT	7	6	5	4	3	2	1	0	
Field		DESKEW_PER[7:0]							
Reset		0x81							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_P ER	7:0	DPHY Periodic Deskew Calibration Control The register is split into four decode segments: Bit [7]: Selects periodic deskew calibration on or off Bit [6]: Selects generation on rising or falling edge of VS Bits [5:3]: Selects periodic interval Bits [2:0]: Selects periodic deskew width	ObXXXXX000: Periodic deskew width = 1k UI ObXXXXX001: Periodic deskew width = 2k UI ObXXXXX010: Periodic deskew width = 3k UI ObXXXXX011: Periodic deskew width = 4k UI ObXXXXX100: Periodic deskew width = 5k UI ObXXXXX101: Periodic deskew width = 6k UI ObXXXXX110: Periodic deskew width = 7k UI ObXXXXX111: Periodic deskew width = 8k UI ObXXXXX111: Periodic deskew width = 8k UI ObXX000XXX: Periodic deskew calibration generated every frame ObXX011XXX: Periodic deskew calibration generated every 4 frames ObXX011XXX: Periodic deskew calibration generated every 8 frames ObXX100XXX: Periodic deskew calibration generated every 16 frames ObXX101XXX: Periodic deskew calibration generated every 32 frames ObXX111XXX: Periodic deskew calibration generated every 64 frames ObXX111XXX: Periodic deskew calibration generated every 128 frames ObXX111XXX: Periodic deskew calibration generated at rising edge of VS ObXXXXXXX: Periodic deskew calibration generated at falling edge of VS ObXXXXXXX: Periodic deskew calibration generated at falling edge of VS ObXXXXXXX: Periodic deskew calibration off Ob1XXXXXXX: Periodic deskew calibration onf

MIPI_TX5 (0x985, 0x9C5)

BIT	7	6	5	4	3	2	1	0	
Field		CSI2_T_PRE[7:0]							
Reset		0x71							
Access Type				Write,	Read				

BITFIE	LD	BITS	DESCRIPTION	DECODE
CSI2_T_I	PRE	7.0	Number of clock cycles to wait before enabling HS data	0xXX: Number of MIPI byte clocks

MIPI_TX6 (0x986, 0x9C6)

BIT	7	6	5	4	3	2	1	0
Field		CSI2_T_POST[7:0]						
Reset		0x19						
Access Type		Write, Read						
BITFIFI D	BITS	BITS DESCRIPTION DECODE						

BITFIELD	BITS	DESCRIPTION	DECODE		
CSI2_T_POS T	7:0	Number of byte clocks to hold clock active after data	0xXX: Number of MIPI byte clocks		

MIPI_TX7 (0x987, 0x9C7)

BIT	7	6	5	4	3	2	1	0	
Field		CSI2_TX_GAP[7:0]							
Reset		0x1C							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TX_GA	7:0	Sets the number of clocks to wait after the HS CLK has entered LP before enabling it again for the next transmission	0xXX: Number of MIPI byte clocks

MIPI_TX8 (0x988, 0x9C8)

Field CSI2_TWAKEUP_L[7:0] Reset 0x00									
Ponet 0v00									
Neset 0X00	0x00								
Access Type Write, Read									

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TWAK EUP_L	7:0	Sets DPHY timing parameter T _{wakeup} . Set the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0xXX: Number of MIPI byte clocks

MIPI_TX9 (0x989, 0x9C9)

BIT	7	6	5	4	3	2	1	0			
Field		CSI2_TWAKEUP_M[7:0]									
Reset		0x01									
Access Type				Write,	Read						

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_TWAK EUP_M	7:0	Sets DPHY timing parameter T _{wakeup} . Set the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0xXX: Number of MIPI byte clocks

MIPI_TX10 (0x98A, 0x9CA)

BIT	7	6	5	4	3	2	1	0
Field	CSI2_LANE_CNT[1:0]		CSI2_CPH Y_EN	csi2_vcx_en	ı	CSI2_TWAKEUP_H[2:0]		·[2:0]
Reset	0x3		0b0	0x1	_		0x0	
Access Type	Write, Read		Write, Read	Write, Read	-		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
CSI2_LANE_ CNT	7:6	MIPI Lane Count	0b00: One data lane 0b01: Two data lanes 0b10: Three data lanes (Reserved for registers 0x90A and 0x9CA) 0b11: Four data lanes (Reserved for registers 0x90A and 0x9CA)
CSI2_CPHY _EN	5	CPHY Enable	0b0: DPHY mode 0b1: CPHY mode
csi2_vcx_en	4	Enables virtual channel extension	0b0: Select 2-bit VC 0b1: Select 5-bit VC (CPHY) or 4-bit VC (DPHY)
CSI2_TWAK EUP_H	2:0	High bits of DPHY timing parameter T _{wakeup} . Sets the number of clock cycles to keep clock and data in Mark-1 state after exiting ULPS.	0bXXX: Number of MIPI byte clocks

MIPI_TX11 (0x98B, 0x9CB)

BIT	7	6	5	4	3	2	1	0				
Field		MAP_EN_L[7:0]										
Reset		0x00										
Access Type				Write,	Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_EN_L	7:0	Mapping enable low byte [7:0]. Each bit enables 1 of 8 mapping and distribution entries (defined in MAP_SRC_x, MAP_DST_x, and MAP_DPHY_DST_x) for the current video stream. Non-matched virtual channel (VC) and data types (DT) pass to the corresponding CSI2 controller.	0b00000000: No mapping enabled 0bXXXXXXX1: Map SRC_0 to DES_0 0bXXXXXX1X: Map SRC_1 to DES_1 0bXXXXX1XX: Map SRC_2 to DES_2 0bXXXX1XXX: Map SRC_3 to DES_3 0bXXX1XXXX: Map SRC_4 to DES_4 0bXX1XXXXX: Map SRC_5 to DES_5 0bX1XXXXXX: Map SRC_6 to DES_6 0b1XXXXXXX: Map SRC_7 to DES_7

MIPI_TX12 (0x98C, 0x9CC)

BIT	7	6	5	4	3	2	1	0			
Field		MAP_EN_H[7:0]									
Reset		0x00									
Access Type				Write,	Read						

BITFIELD	BITS	DESCRIPTION	DECODE
		Mapping enable high byte [15:8].	0b0000000: No mapping enabled 0bXXXXXX1: Map SRC_8 to DES_8
MAP_EN_H	7:0	Each bit enables 1 of 8 mapping and distribution entries (defined in MAP_SRC_x, MAP_DST_x, and MAP_DPHY_DST_x) for the current video stream. Non-matched virtual channel (VC) and data types (DT) pass to the corresponding CSI2 controller.	0bXXXXXX1X: Map SRC_9 to DES_9 0bXXXXX1XX: Map SRC_10 to DES_10 0bXXXX1XXX: Map SRC_11 to DES_11 0bXXX1XXXX: Map SRC_12 to DES_12 0bXX1XXXXX: Map SRC_13 to DES_13 0bX1XXXXXX: Map SRC_14 to DES_14 0b1XXXXXXX: Map SRC_15 to DES_15

MIPI_TX13 (0x98D, 0x9CD)

BIT	7	6	5	4	3	2	1	0		
Field	MAP_SRC_0[7:0]									
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_0	7:0	Video Pipe Source Mapping Register 0 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_0_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. See register	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX
		MAP_DST_0 to program the destination setting.	

MIPI_TX14 (0x98E, 0x9CE)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_0[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_0	BITS 7:0	DESCRIPTION Video Pipe Destination Mapping Register 0 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_0_H associated with this Video Pipe.	T:6]: VC - 0bXX
		The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. See register MAP_SRC_0 to program the source setting.	

MIPI_TX15 (0x98F, 0x9CF)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_SRC_1[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1	7:0	Video Pipe Source Mapping Register 1 - Virtual Channel/Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_1_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the first mapping pair. See register MAP_DST_1 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX16 (0x990, 0x9D0)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_1[7:0]							
Reset		0x00							
Access Type				Write,	Read				

Video Pipe Destination Mapping Register 1 -	BITFIELD	DECODE	BITS
Virtual Channel/Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_1_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination setting of the first mapping pair. See register MAP_SRC_1 to program the source setting		[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX	

MIPI_TX17 (0x991, 0x9D1)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_2[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_2	7:0	Video Pipe Source Mapping Register 2 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_2_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the second mapping pair. See register MAP_DST_2 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX18 (0x992, 0x9D2)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_DST_2[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_2	7:0	Video Pipe Destination Mapping Register 2 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_2_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the second mapping pair. See register MAP_SRC_2 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX19 (0x993, 0x9D3)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_SRC_3[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_3	7:0	Video Pipe Source Mapping Register 3 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_3_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the third mapping pair. See register MAP_DST_3 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX20 (0x994, 0x9D4)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_3[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_3	7:0	Video Pipe Destination Mapping Register 3 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_3_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the third mapping pair. See register MAP_SRC_3 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX21 (0x995, 0x9D5)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_SRC_4[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_4	7:0	Video Pipe Source Mapping Register 4 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_4_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fourth mapping pair. See register MAP_DST_4 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX22 (0x996, 0x9D6)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_4[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_4	7:0	Video Pipe Destination Mapping Register 4 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_4_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fourth mapping pair. See register MAP_SRC_4 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX23 (0x997, 0x9D7)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_5[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_5	7:0	Video Pipe Source Mapping Register 5 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_5_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fifth mapping pair. See register MAP_DST_5 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX24 (0x998, 0x9D8)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_DST_5[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_5	7:0	Video Pipe Destination Mapping Register 5 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_5_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fifth mapping pair. See register MAP_SRC_5 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX25 (0x999, 0x9D9)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_6[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_6	7:0	Video Pipe Source Mapping Register 6 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_6_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the sixth mapping	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX
		pair. See register MAP_DST_6 to program the destination setting.	

MIPI_TX26 (0x99A, 0x9DA)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_6[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_6	7:0	Video Pipe Destination Mapping Register 6 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_6_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the sixth mapping pair. See register MAP_SRC_6 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX27 (0x99B, 0x9DB)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_7[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_7	7:0	Video Pipe Source Mapping Register 7 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_7_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the seventh mapping pair. See register MAP_DST_7 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX28 (0x99C, 0x9DC)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_DST_7[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_7	7:0	Video Pipe Destination Mapping Register 7 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_7_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the seventh mapping pair. See register MAP_SRC_7 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX29 (0x99D, 0x9DD)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_8[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_8	7:0	Video Pipe Source Mapping Register 8 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_8_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the eighth mapping pair. See register MAP_DST_8 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX30 (0x99E, 0x9DE)

BIT	7	6	5	4	3	2	1	0		
Field		MAP_DST_8[7:0]								
Reset		0x00								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_8	7:0	Video Pipe Destination Mapping Register 8 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_8_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the eighth mapping pair. See register MAP_SRC_8 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX31 (0x99F, 0x9DF)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_9[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD MAP_SRC_9	BITS 7:0	Video Pipe Source Mapping Register 9 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_9_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX
		source-to-destination mappings. This register is the source setting of the ninth mapping pair. See register MAP_DST_9 to program the destination setting.	

MIPI_TX32 (0x9A0, 0x9E0)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DST_9[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_9	7:0	Video Pipe Destination Mapping Register 9 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_9_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the ninth mapping pair. See register MAP_SRC_9 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX33 (0x9A1, 0x9E1)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_10[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 0	7:0	Video Pipe Source Mapping Register 10 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_10_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the tenth mapping pair. See register MAP_DST_10 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX34 (0x9A2, 0x9E2)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DST_10[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 0	7:0	Video Pipe Destination Mapping Register 10 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_10_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the tenth mapping pair. See register MAP_SRC_10 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX35 (0x9A3, 0x9E3)

BIT	7	6	5	4	3	2	1	0
Field	MAP_SRC_11[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 1	7:0	Video Pipe Source Mapping Register 11 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_11_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the eleventh mapping pair. See register MAP_DST_11 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX36 (0x9A4, 0x9E4)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DST_11[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 1	7:0	Video Pipe Destination Mapping Register 11 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_11_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the eleventh mapping pair. See register MAP_SRC_11 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX37 (0x9A5, 0x9E5)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_12[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 2	7:0	Video Pipe Source Mapping Register 12 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_12_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the twelfth mapping pair. See register MAP_DST_12 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX38 (0x9A6, 0x9E6)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_12[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 2	7:0	Video Pipe Destination Mapping Register 12 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_12_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the twelfth mapping pair. See register MAP_SRC_12 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX39 (0x9A7, 0x9E7)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_13[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 3	7:0	Video Pipe Source Mapping Register 13 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_13_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the thirteenth mapping pair. See register MAP_DST_13 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX40 (0x9A8, 0x9E8)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_13[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 3	7:0	Video Pipe Destination Mapping Register 13 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_13_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the thirteenth mapping pair. See register MAP_SRC_13 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX41 (0x9A9, 0x9E9)

BIT	7	6	5	4	3	2	1	0
Field		MAP_SRC_14[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1	7:0	Video Pipe Source Mapping Register 14 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_14_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fourteenth mapping pair. See register MAP_DST_14 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX42 (0x9AA, 0x9EA)

BIT	7	6	5	4	3	2	1	0
Field		MAP_DST_14[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 4	7:0	Video Pipe Destination Mapping Register 14 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_14_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fourteenth mapping pair. See register MAP_SRC_14 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX43 (0x9AB, 0x9EB)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_SRC_15[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_SRC_1 5	7:0	Video Pipe Source Mapping Register 15 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_SRC_15_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the source setting of the fifteenth mapping pair. See register MAP_DST_15 to program the destination setting.	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX44 (0x9AC, 0x9EC)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_DST_15[7:0]							
Reset		0x00							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DST_1 5	7:0	Video Pipe Destination Mapping Register 15 - Virtual Channel / Data Type The register is split into two decode segments: Bits [7:6]: VC - Virtual channel Bits [5:0]: DT - Data type In addition, the VC field can be extended using VC extended mode. See register MAP_DST_15_H associated with this Video Pipe. The Data Type field decode matches that in the MIPI specification. Note: Each Video Pipe has 16 distinct source-to-destination mappings. This register is the destination setting of the fifteenth mapping pair. See register MAP_SRC_15 to program the source setting	[7:6]: VC – 0bXX [5:0]: DT– 0bXXXXXX

MIPI_TX45 (0x9AD, 0x9ED)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_3[1:0]		MAP_DPHY_DEST_2[1:0]		MAP_DPHY_DEST_1[1:0]		MAP_DPHY_DEST_0[1:0]	
Reset	0>	0x0		0x0		0x0		x0
Access Type	Write,	Write, Read		Write, Read		Write, Read		Read

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_3	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_3 and MAP_DST_3 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_2	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_2 and MAP_DST_2 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_1	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_1 and MAP_DST_1 mapping registers	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_0	DPHY and CPHY Mapping destination		0b00: Map to controller 0 0b01: Map to controller 1 0b10: Map to controller 2 0b11: Map to controller 3

MIPI_TX46 (0x9AE, 0x9EE)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_7[1:0]		MAP_DPHY_DEST_6[1:0]		MAP_DPHY_DEST_5[1:0]		MAP_DPHY_DEST_4[1:0]	
Reset	0>	0x0		0x0		0x0		0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_7	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_7 and MAP_DST_7 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_6	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_6 and MAP_DST_6 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_5	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_5 and MAP_DST_5 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_4	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_4 and MAP_DST_4 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

MIPI_TX47 (0x9AF, 0x9EF)

BIT	7	6	5	4	3	2	1	0	
Field	MAP_DPHY_DEST_11[1: 0]		MAP_DPHY_DEST_10[1: 0]		MAP_DPHY_DEST_9[1:0]		MAP_DPHY_DEST_8[1:0]		
Reset	0:	0x0		0x0		к0	0:	k 0	
Access Type	Write,	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_11	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_11 and MAP_DST_11 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_10	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_10 and MAP_DST_10 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_9	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_9 and MAP_DST_9 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_8	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_8 and MAP_DST_8 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

MIPI TX48 (0x9B0, 0x9F0)

BIT	7	6	5	4	3	2	1	0
Field	MAP_DPHY_DEST_15[1: 0]		MAP_DPHY_DEST_14[1: 0]		MAP_DPHY_DEST_13[1: 0]		MAP_DPHY_DEST_12[1: 0]	
Reset	0>	0x0		0x0		0x0		k 0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_DPHY_ DEST_15	7:6	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_15 and MAP_DST_15 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_14	5:4	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_14 and MAP_DST_14 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_13	3:2	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_13 and MAP_DST_13 mapping registers.	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3
MAP_DPHY_ DEST_12	1:0	DPHY and CPHY Mapping destination controller register. CSI2 PHY destination for MAP_SRC_12 and MAP_DST_12 mapping registers	0b00: CSI2 controller 0 0b01: CSI2 controller 1 0b10: CSI2 controller 2 0b11: CSI2 controller 3

MIPI_TX49 (0x9B1, 0x9F1)

BIT	7	6	5	4	3	2	1	0	
Field		MAP_CON[7:0]							
Reset		0x00							
Access Type	Write, Read								

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
MAP_CON	7:0	MIPI controller SYNC concatenation register. The register is split into four decode segments: Bit [7]: 1'b1 = 4WxH, 1'b0 = Wx4H Bit [6]: Reserved Bits [5:4]: Select the first line to concatenate. All others follow in order bits [3:0]. 2'b00 = Select Pipe 0 to be the master 2'b01 = Select Pipe 1 to be the master 2'b10 = Select Pipe 2 to be the master 2'b11 = Select Pipe 3 to be the master 2'b11 = Select Pipe 3 to be the master Bit [3]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 3 Bit [2]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 1 Bit [0]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 1 Bit [0]: 1'b0 = disable, 1'b1 = concatenate Video Pipe 0	0bXXXXXXX1: Concatenate Video Pipeline 0 0bXXXXXX1X: Concatenate Video Pipeline 1 0bXXXXX1XX: Concatenate Video Pipeline 2 0bXXXX1XXX: Concatenate Video Pipeline 3 0bXX00XXXX: Select Video Pipeline 0 as master 0bXX01XXXX: Select Video Pipeline 1 as master 0bXX10XXXX: Select Video Pipeline 2 as master 0bXX11XXXX: Select Video Pipeline 3 as master 0bXX11XXXX: Enable Wx4H mode 0b1XXXXXXXX: Enable 4WxH mode

MIPI_TX50 (0x9B2, 0x9F2)

BIT	7	6	5	4	3	2	1	0
Field	SKEW_PER_SEL[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
SKEW_PER _SEL	7:0	Periodic deskew select register. The register is split into three decode segments: Bit [7]: Select periodic deskew calibration for one or all virtual channels Bits [6:5]: Reserved Bits [4:0]: Virtual channel to generate periodic deskew calibration when only one channel is selected by bit 7	Ob0xxxxxxx: Generate periodic calibration deskew calibration on all virtual channels Ob1xx00000: Periodic deskew calibration generated by virtual Channel O Ob1xx00001: Periodic deskew calibration generated by virtual Channel 1 Ob1xx00010: Periodic deskew calibration generated by virtual Channel 2 Ob1xx00011: Periodic deskew calibration generated by virtual Channel 3 Ob1xx00100: Periodic deskew calibration generated by virtual Channel 4 Ob1xx00101: Periodic deskew calibration generated by virtual Channel 5 Ob1xx00110: Periodic deskew calibration generated by virtual Channel 6 Ob1xx00111: Periodic deskew calibration generated by virtual Channel 6 Ob1xx01100: Periodic deskew calibration generated by virtual Channel 7 Ob1xx01000: Periodic deskew calibration generated by virtual Channel 8 Ob1xx01001: Periodic deskew calibration generated by virtual Channel 9 Ob1xx01010: Periodic deskew calibration generated by virtual Channel 10 Ob1xx01011: Periodic deskew calibration generated by virtual Channel 11 Ob1xx01010: Periodic deskew calibration generated by virtual Channel 12 Ob1xx01101: Periodic deskew calibration generated by virtual Channel 13 Ob1xx01101: Periodic deskew calibration generated by virtual Channel 13 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 14 Ob1xx01111: Periodic deskew calibration generated by virtual Channel 15

MIPI_TX51 (0x9B3, 0x9F3)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	ALT2_MEM _MAP8	MODE_DT	ALT_MEM_ MAP10	ALT_MEM_ MAP8	ALT_MEM_ MAP12
Reset	_	_	_	0b0	0b0	0b0	0b0	0b0
Access Type	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
ALT2_MEM_ MAP8	4	Alternative memory read mapping enable for 8-bit DT when sharing the same video pipe with RAW16	0b0: Alternative memory read mapping not enabled for 8-bit DT 0b1: Alternative memory read mapping enabled for 8-bit DT		
MODE_DT	3	Select 24-bit mode for user-defined data types	0b0: 24-bit mode for user-defined data types not enabled 0b1: 24-bit mode for user-defined data types enabled		

BITFIELD	BITS	DESCRIPTION	DECODE
ALT_MEM_ MAP10	2	Alternative memory read mapping enable for 10-bit DT	0b0: Alternative memory read mapping not enabled for 10-bit DT 0b1: Alternative memory read mapping enabled for 10-bit DT
ALT_MEM_ MAP8	1	Alternative memory read mapping enable for 8-bit DT	0b0: Alternative memory read mapping not enabled for 8-bit DT 0b1: Alternative memory read mapping enabled for 8-bit DT
ALT_MEM_ MAP12	0	Alternative memory read mapping enable for 12-bit DT	0b0: Alternative memory read mapping not enabled for 12-bit DT 0b1: Alternative memory read mapping enabled for 12-bit DT

MIPI_TX52 (0x9B4, 0x9F4)

BIT	7	6	5	4	3	0			
Field		video_maske	d_latched[3:0]		video_masked[3:0]				
Reset		0:	x0		0x0				
Access Type		Read	l Only			Read	Only		

BITFIELD	BITS	DESCRIPTION	DECODE		
video_maske d_latched	7:4	Indicates video pipes 0-3 were masked off at one point while in 4WxH or Wx4H synchronous aggregation mode.	0bXXX1: Video pipe 0 previously masked off 0bXX1X: Video pipe 1 previously masked off 0bX1XX: Video pipe 2 previously masked off 0b1XXX: Video pipe 3 previously masked off		
video_maske d	3:0	Video pipe currently masked off while in 4WxH or Wx4H synchronous aggregation mode.	0bXXX1: Video pipe 0 previously masked off 0bXX1X: Video pipe 1 previously masked off 0bX1XX: Video pipe 2 previously masked off 0b1XXX: Video pipe 3 previously masked off		

MIPI_TX54 (0x9B6, 0x9F6)

BIT	7	6	5	4	3	2	1	0
Field	TUN_NO_C ORR	DESKEW_TUN[1:0]		TUN_SER_LANE_NUM[1: 0]		DESKEW_TUN_SRC[1:0]		TUN_EN
Reset	0x0	0x0		0x1		0:	(0	0x0
Access Type	Write, Read	Write, Read		Write,	Read	Write,	Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
TUN_NO_C ORR	7	Do not enable header error correction in tunneling mode	0x0: Automatic correction for correctable header error 0x1: Turn off correction for correctable header error		
DESKEW_T UN	6:5	Deskew Mode for CSI2 Tunneling	0: periodic deskew as in HS94 (determined by deskew_per_* registers). 1: periodic deskew follows SER. 2: periodic deskew START follows SER but width as register defined. 3: not used		

BITFIELD	BITS	DESCRIPTION	DECODE
TUN_SER_L ANE_NUM	4:3	Tunneling Serializer Lane Number Used ONLY in tunneling mode when source is in CPHY mode	0x0: 1-lane 0x1: 2-lanes
DESKEW_T UN_SRC	2:1	Tunneling Deskew Source Select DESKEW_TUN_SRC register must select one of the mapped pipes for this controller.	0x0: Pipe 0 0x1: Pipe 1 0x2: Pipe 2 0x3: Pipe 3
TUN_EN	0	Tunneling Enabled This register takes effect only if DIS_AUTO_TUN_DET is 1.	0b0: Tunneling disabled 0b1: Tunneling enabled

MIPI_TX56 (0x9B8, 0x9F8)

BIT	7	6	5	4	3	2	1	0
Field	PKT_START_ADDR[7:0]							
Reset		0x0						
Access Type				Write,	Read			

BITFIELD	BITS	DESCRIPTION
PKT_START_ADDR	BITS 7:0	DESCRIPTION Specifies the start address of the long packet. 0: The long packet is sent out when the whole line is filled in line memory. Not 0: The long packet begins when PKT_START_ADDR x 128 bytes are filled in the line memory in tunnel mode or when PKT_START_ADDR x 64 pixels are filled in the line memory in pixel mode. Make sure register n_vs_block is 2 or more (default = 1). Notes: • "Cut-through" only works with 1-3 virtual channels. May increase to 4 VCs in future revisions. • Bytes are packed differently into memory when in tunnel mode. For example, in tunnel mode, a BPP of 24 is equal to 1.33 pixels per address. In pixel mode, a BPP of 24 is equal to 1 pixel per address.
		When in tunnel mode, the units for PKT_START_ADDR are in bytes. In pixel mode, the units are in pixels.

MIPI_TX57 (0x9B9, 0x9F9)

BIT	7	6	5	4	3	2	1	0
Field	DIS_AUTO _SER_LAN E_DET	DIS_AUTO _TUN_DET	TUN_DEST[1:0]		_	TUN_DPHY _TO_CPHY _CONV	TUN_DPHY _TO_CPHY _CONV_OV _RD	TUN_NO_C ORR_LENG TH
Reset	0x0	0x0	0x1		_	0x0	0x0	0x0
Access Type	Write, Read	Write, Read	Write,	Read	_	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
DIS_AUTO_ SER_LANE_ DET	7	Disable auto SER lane count detect. When this register is set to 1 (automatic detection of SER lane count is disabled), TUN_SER_LANE_NUM register will need to be set to the SER lane count.	0b0: Tunneling disabled 0b1: Tunneling enabled
DIS_AUTO_ TUN_DET	6	Disable auto tunneling mode detect. When this register is set to 1 (automatic detection of tunneling mode disabled), TUN_EN registers will set pixel mode (TUN_EN = 0) or tunneling mode (TUN_EN = 1).	0b0: Tunneling disabled 0b1: Tunneling enabled
TUN_DEST	5:4	Tunneling Controller Destination	0x0: Controller 0 0x1: Controller 1
TUN_DPHY_ TO_CPHY_C ONV	2	Only used when TUN_DPHY_TO_CPHY_CONV_OVRD bit is set. Manual override bit to enable DPHY to CPHY conversion in tunneling mode (must also disable auto tunneling mode detect DIS_AUTO_TUN_DET = 1 and manually set tunneling mode TUN_EN = 1). When set to 0, SER headers are evaluated to detect DPHY/CPHY mode, if SER is sending DPHY and the DES MIPI PHY is sent to CPHY mode, conversion is turn on.	0x0: Controller 0 0x1: Controller 1
TUN_DPHY_ TO_CPHY_C ONV_OVRD	1	Enable value in TUN_DPHY_TO_CPHY_CONV register to override automatic detection.	0x0: Controller 0 0x1: Controller 1
TUN_NO_C ORR_LENG TH	0	Do not enable header error packet length correction in tunneling mode	0b0: Tunneling error correction enabled 0b1: Tunneling error correction disabled

MIPI_ERR_INJ_B1 (0x9BA, 0x9FA)

BIT	7	6	5	4	3	2	1	0
Field	DCPHY_C ONV_ERR_ INJ_B1_EN	ı	_		DCPHY_COI	NV_ERR_INJ_	B1_SITE[4:0]	
Reset	0b0	-	_	0x00				
Access Type	Write Clears All, Read	-	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DCPHY_CO NV_ERR_IN J_B1_EN	7	Enable Error Injection for the first bit error injection location selection. See the DCPHY_CONV_ERR_INJ_B1_SITE register field description. Write 1 to trigger the error injection. This bit will self clear.	

BITFIELD	BITS	DESCRIPTION	DECODE
DCPHY_CO NV_ERR_IN J_B1_SITE	4:0	First Bit Error injection location in the DPHY header. Used to inject errors into the MIPI DPHY standard output header which is then converted to MIPI CPHY standard output during tunnel mode.	0-7: DATA ID (DT) 8-23: DATA FIELD 24-30: ECC 31-32: VCX

MIPI_ERR_INJ_B2 (0x9BB, 0x9FB)

BIT	7	6	5	4	3	2	1	0
Field	DCPHY_C ONV_ERR_ INJ_B2_EN	_	-		DCPHY_COM	NV_ERR_INJ_	B2_SITE[4:0]	
Reset	0b0	_	-			0x00		
Access Type	Write Clears All, Read	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DCPHY_CO NV_ERR_IN J_B2_EN	7	Enable Error Injection for the second bit error injection location selection. See the DCPHY_CONV_ERR_INJ_B2_SITE register field description. Write 1 to trigger the error injection. This bit will self clear.	
DCPHY_CO NV_ERR_IN J_B2_SITE	4:0	Second Bit Error injection location in the DPHY header. Used to inject errors into the MIPI DPHY standard output header which is then converted to MIPI CPHY standard output during tunnel mode.	0-7: DATA ID (DT) 8-23: DATA FIELD 24-30: ECC 31-32: VCX

MIPI_DESKEW_ERRB_ORDER (0x9BC, 0x9FC)

BIT	7	6	5	4	3	2	1	0
Field	_	-	-	_	DESKEW_ BEFORE_E RRB_PKT_ MODE	DESKEW_ AFTER_ER RB_PKT_M ODE	_	-
Reset	_	_	_	_	0x0	0x0		_
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	_

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
DESKEW_B EFORE_ER RB_PKT_MO DE	3	This bit can control when the DESKEW occurs relative to ERRB_PKT. This register, DESKEW_BEFORE_ERRB_PKT_MODE, has priority over DESKEW_AFTER_ERRB_PKT_MODE Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW may occur before or after ERRB_PKT depending on other registers (see complete table) 0x1: DESKEW occurs before ERRB_PKT
DESKEW_A FTER_ERRB _PKT_MODE	2	This bit can control when the DESKEW occurs relative to ERRB_PKT. Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW may occur before or after ERRB_PKT depending on other registers (see complete table) 0x1: DESKEW occurs after ERRB_PKT
DESKEW_B EFORE_VS_ PKT_MODE	1	This bit can control when the DESKEW occurs relative to a VS (frame-start or frame-end) pkt. Note: When trying to control the order of DESKEW, VS, and ERRB_PKT, please consider these registers: ERRB_PKT_Insert_Mode[1:0] ERRB_PKT_EDGE_SEL DESKEW_PER[6] DESKEW_BEFORE_VS_PKT_MODE DESKEW_AFTER_ERRB_PKT_MODE DESKEW_BEFORE_ERRB_PKT_MODE	0x0: DESKEW occurs after the VS pkt 0x1: DESKEW occurs before the VS pkt

GMSL1_4 (0xB04, 0xC04, 0xD04, 0xE04)

BIT	7	6	5	4	3	2	1	0
Field	_	-	PRBSEN	-	CC_PORT_ SEL	-	REVCCEN	FWDCCEN
Reset	_	-	0x0	_	0b0	-	0x1	0x1
Access Type	_	-	Write, Read	_	Write, Read	-	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
PRBSEN	5	PRBS test enable (in HIBW mode, PRBS_TYPE—0xB0F must be set to zero)	0b0: Set device normal operation 0b1: Enable PRBS test
CC_PORT_S EL	3	Selects which I ² C port is connected to this link	0b00: Port 0 (RX0_SDA0, TX0_SCL0) 0b01: Port 1 (RX1_SDA1, TX1_SCL1)
REVCCEN	1	Enables reverse control channel from deserializer	0b0: Disable reverse control channel receiver 0b1: Enable reverse control channel receiver
FWDCCEN	0	Enables forward control channel to deserializer	0b0: Disable forward control channel transmitter 0b1: Enable forward control channel transmitter

GMSL1_5 (0xB05, 0xC05, 0xD05, 0xE05)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD	NO_REM_ MST	HVTR_MO DE	EN_EQ	EQTUNE[3:0]				
Reset	0x0	0x0	0x1	0x1	0x9				
Access Type		Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
NO_REM_M ST	6	Set to 1 to indicate that there is no I ² C master on remote side so this (local) chip should ignore any I ² C packet initiation (start condition) from remote side	0b0: Master 0b1: No master
HVTR_MOD E	5	HV tracking allows continuous HSYNC format	0b0: Use partial periodic HV tracking 0b1: Use partial and full periodic HV tracking
EN_EQ	4	Enables equalizer for manual and adaptive modes	0b0: Disable equalization 0b1: Enable equalization
EQTUNE	3:0	Equalizer boost level at 750 MHz (effective when adaptive EQ is turned off)	0b0000: 1.6dB manual EQ setting 0b0001: 2.1dB manual EQ setting 0b0010: 2.8dB manual EQ setting 0b0011: 3.5dB manual EQ setting 0b0100: 4.3dB manual EQ setting 0b0101: 5.2dB manual EQ setting 0b0101: 5.2dB manual EQ setting 0b0111: 7.3dB manual EQ setting 0b0101: 9.7dB manual EQ setting 0b1000: 8.5dB manual EQ setting 0b1001: 9.7dB manual EQ setting 0b1010: 11dB manual EQ setting 0b1010: 12.2dB manual EQ setting 0b1011: 12.2dB manual EQ setting 0b1100: Reserved 0b1110: Reserved 0b1111: Reserved

GMSL1_6 (0xB06, 0xC06, 0xD06, 0xE06)

BIT	7	6	5	4	3	2	1	0
Field	HIGHIMM	MAX_RT_E N	I2C_RT_EN	GPI_COMP _EN	GPI_RT_E N	HV_SRC[2:0]		
Reset	0x0	0x1	0x1	0x0	0x1	0x7		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
HIGHIMM	7	Reverse channel high immunity mode (initial value set by the CFG1/MFP6 pin state at power-up)	0b0: Reverse channel high immunity mode disabled 0b1: Reverse channel high immunity mode enabled		
MAX_RT_EN	6	Maximum retransmission limit enable	0b0: Disable maximum retransmission limit 0b1: Enable maximum retransmission limit		
I2C_RT_EN	5	I ² C retransmission enable	0b0: Disable I ² C retransmission 0b1: Enable I ² C retransmission enable		
GPI_COMP_ EN	4	Reverse channel high immunity mode (initial value set by the CFG1/MFP6 pin state at power-up)	0b0: Disable GPI skew compensation 0b1: Enable GPI skew compensation		
GPI_RT_EN	3	GPI retransmission enable	0b0: Disable GPI retransmission 0b1: Enable GPI retransmission		
HV_SRC	2:0	HS_VS bit selection	0b000: Use D18/D19 for HS/VS (use this setting when the serializer is a 3.125Gbps device or if HIBW mode is used; otherwise, this setting is for use with the MAX9273 when DBL = 0 or HVEN = 1) 0b001: Use D14/D15 for HS/VS (for use with the MAX9271/ MAX96705 when DBL = 0 or HVEN = 1) 0b010: Use D12/D13 for HS/VS (for use with the MAX96707 when DBL = 0 or HVEN = 1) 0b011: Use D0/D1 for HS/VS (for use with the MAX9671/ MAX9273/MAX96705/MAX96707 when DBL = 1 and HVEN = 0) 0b100: Reserved 0b101: Reserved 0b101: Automatically determine the source of HSYNC/VSYNC (for use with the MAX96707) 0b111: Automatically determine the source of HSYNC/VSYNC (for use with the MAX96705)		

GMSL1_7 (0xB07, 0xC07, 0xD07, 0xE07)

BIT	7	6	5	4	3	2	1	0
Field	DBL	DRS	BWS	_	HIBW	HVEN	_	PXL_CRC
Reset	0x0	0x0	0x0	_	0x0	0x1	_	0x0
Access Type	Write, Read	Write, Read	Write, Read	_	Write, Read	Write, Read	-	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
DBL	7	Double-output mode	0b0: Use single-rate output 0b1: Use double-rate output (2x word rate at 1/2x width)

BITFIELD	BITS	DESCRIPTION	DECODE
DRS	6	Data rate select	0b0: Use normal data rate output 0b1: Use 1/2 rate data output (for use with low data rates)
BWS	5	Bus width select	0b0: Set bus width for 22-/24-bit bus, 24-/27-bit mode (depending on HIBW setting) 0b1: Set bus width for 30-bit bus (32-bit mode)
HIBW	3	High-bandwidth mode	0b0: Disable high-bandwidth mode 0b1: Enable high-bandwidth mode (when BWS = 0)
HVEN	2	HS/VS encoding enable	0b0: Disable HS/VS encoding 0b1: Enable HS/VS encoding
PXL_CRC	0	Pixel error detection type (this is controllable by pin when LCCEN = 0)	0b0: Use 1-bit parity (compatible with all devices) 0b1: Use 6-bit CRC

GMSL1_8 (0xB08, 0xC08, 0xD08, 0xE08)

BIT	7	6	5	4	3	2	1	0
Field	GPI_SEL[1:0]		GPI_EN	EN_FSYNC _TX	-	PKTCC_EN	CC_CRC_L	ENGTH[1:0]
Reset	0x0		0x1	0x0	-	0x0	0:	< 1
Access Type	Write,	Read	Write, Read	Write, Read	-	Write, Read	Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE		
GPI_SEL	7:6	Selects GPI pin to transmit to serializer	0b00: GPI_0 0b01: GPI_1 0b10: GPI_2 0b11: GPI_3		
GPI_EN	5	Enables GPI-to-GPO signal transmission to serializer	0b0: Disable GPI-to-GPO transmission 0b1: Enable GPI-to-GPO transmission		
EN_FSYNC_ TX	4	Enables frame sync signal transmission	0b0: Disable frame sync signal transmission 0b1: Enable frame sync signal transmission		
PKTCC_EN	2	Packet-based control-channel mode enable	0b0: Disable packet-based control-channel mode 0b1: Enable packet-based control-channel mode		
CC_CRC_LE NGTH	1:0	Control channel CRC length	0b00: 1-bit CRC 0b01: 5-bit CRC 0b10: 8-bit CRC 0b11: Reserved		

GMSL1_D (0xB0D, 0xC0D, 0xD0D, 0xE0D)

BIT	7	6	5	4	3	2	1	0
Field	I2C_LOC_A CK	RSVD	_	-	_	HS_TRACK _FSYNC	RSVD	RSVD
Reset	0x0	0x0	_	_	_	0x0	0x0	0x0
Access Type	Write, Read		_	-	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_LOC_A CK	7	Enables I ² C-to-I ² C slave local acknowledge when forward channel is not available	0b0: Disable local acknowledge when forward channel is not available 0b1: Enable local acknowledge when forward channel is not available
HS_TRACK_ FSYNC	2	0 = Allow infinite length vertical blanking 1 = Lose HLOCKED with VLOCKED	0x0: Allow infinite length vertical blanking 0x1: Lose HLOCKED with VLOCKED

GMSL1 E (0xB0E, 0xC0E, 0xD0E, 0xE0E)

BIT	7	6	5	4	3	2	1	0
Field	DET_THR[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DET_THR	7:0	Threshold for detected errors	0xXX: Number of errors for detected error threshold

GMSL1_F (0xB0F, 0xC0F, 0xD0F, 0xE0F)

BIT	7	6	5	4	3	2	1	0
Field	_	EN_DE_FIL T	EN_HS_FIL T	EN_VS_FIL T	DE_EN	_	-	PRBS_TYP E
Reset	_	0x0	0x0	0x0	0x0	_	_	0x1
Access Type	_	Write, Read	Write, Read	Write, Read	Write, Read	_	_	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
EN_DE_FILT	6	Enables glitch filtering on DE	0b0: Disable DE glitch filtering 0b1: Enable DE glitch filtering
EN_HS_FILT	5	Enables glitch filtering on HS	0b0: Disable HS glitch filtering 0b1: Enable HS glitch filtering
EN_VS_FILT	4	Enables glitch filtering on VS	0b0: Disable VS glitch filtering 0b1: Enable VS glitch filtering
DE_EN	3	Enables processing separate HS and DE signals	0b0: Disable processing HS and DE signals 0b1: Enable processing HS and DE signals
PRBS_TYPE	0	PRBS type select (in HIBW mode, set PRBS_TYPE = 0)	0b0: GMSL legacy style PRBS test 0b1: MAX9272 style PRBS test

GMSL1_10 (0xB10, 0xC10, 0xD10, 0xE10)

BIT	7	6	5	4	3	2	1	0
Field	RCEG_TYPE[1:0]		RCEG_BO UND		RCEG_EN			
Reset	0>	(0	0x0	0x1				0x0
Access Type	Write, Read		Write, Read	Write, Read			Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
RCEG_TYPE	7:6	Reverse channel generated error type	0b00: Random 0b01: Short burst 0b10: Long burst 0b11: Long burst
RCEG_BOU ND	5	Reverse channel generated error boundary (effective when RCEG_TYPE = 0x)	0b0: Errors are unbounded to symbols 0b1: Errors are bounded to symbols
RCEG_ERR _NUM	4:1	Number of RCEG errors generated with each request (effective when RCEG_TYPE = 0x)	0xX: Number of errors generated per request
RCEG_EN	0	Enable reverse channel error generator	0b0: Disable reverse channel error generator 0b1: Enable reverse channel error generator enabled

GMSL1_11 (0xB11, 0xC11, 0xD11, 0xE11)

BIT	7	6	5	4	3	2	1	0
Field		RCEG_ERF	R_RATE[3:0]		RCEG_LO_BST_PRB[1:0] RCEG_LO_BST_LEN			3ST_LEN[1:0]
Reset		0:	кF		0)	x 0	0:	x0
Access Type		Write,	Read		Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
RCEG_ERR _RATE	7:4	Error generation rate in terms of bit time = 2-(RCEG_ERR_RATE + 3). Effective when RCEG_TYPE = 0X.	0x0: Rate is 2-3 0x1: Rate is 2-4 0x2: Rate is 2-5 0xF: Rate is 2-18
RCEG_LO_B ST_PRB	3:2	Long burst error probability. Effective when RCEG_TYPE = 10.	0b00: 1/1024 0b01: 1/128 0b10: 1/32 0b11: 1/8
RCEG_LO_B ST_LEN	1:0	Long burst error length in terms of bit time. Effective when RCEG_TYPE = 10.	0b00: Continuous 0b01: 128 (~150µs) 0b10: 8192 (~9.83ms) 0b11: 1048576 (~1.26s)

GMSL1_12 (0xB12, 0xC12, 0xD12, 0xE12)

BIT	7	6	5	4	3	2	1	0
Field	UNDERBST _DET_EN	CC_CRC_E RR_EN	LINE_CRO	C_LOC[1:0]	LINE_CRC_ EN_GMSL1	_	MAX_RT_E RR_EN	RCEG_ER R_PER_EN
Reset	0x0	0b1	0:	κ1	0x0	_	0b1	0x0
Access Type	Write, Read	Write, Read	Write,	Read	Write, Read	_	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
UNDERBST_ DET_EN	7	Enable underboost detection	0b0: Disable underboost detection 0b1: Enable underboost detection

BITFIELD	BITS	DESCRIPTION	DECODE
CC_CRC_E RR_EN	6	Enables reporting of (CC_CRC_ERR_CNT > 0) on the ERRB pin. Note: This only applies to the composite GMSL1 error output to the ERRB pin. See registers G1_A_ERR_OEN, G1_B_ERR_OEN, G1_C_ERR_OEN, and G1_D_ERR_OEN For individual control see register	
		CC_CRC_ERRB_OEN.	
LINE_CRC_L OC	5:4	Video line CRC insertion location	0b00: [14] 0b01: [58] 0b10: [912] 0b11: [1316]
LINE_CRC_ EN_GMSL1	3	Video line CRC enable	0b0: Disable video line CRC 0b1: Enable video line CRC
MAX_RT_ER R_EN	1	Enables reflection of maximum retransmission error on the ERRB pin. Note: This control only applies to the composite GMSL1 ERRB output. See registers G1_A_ERRB_OEN, G1_B_ERRB_OEN, G1_C_ERRB_OEN, and G1_D_ERRB_OEN This applies to both I ² C retransmissions as well as GPI transmissions. For individual control see registers MAX_RT_I2C_ERRB_OEN and MAX_RT_GPI_ERRB_OEN.	0b0: Disable maximum retransmission error on the ERROR pin 0b1: Enable maximum retransmission error on the ERROR pin
RCEG_ERR _PER_EN	0	Periodic error generation enable. Effective when RCEG_TYPE (0xB10) = 0x.	0b0: Disable periodic error generator 0b1: Enable periodic error generator

GMSL1_13 (0xB13, 0xC13, 0xD13, 0xE13)

BIT	7	6	5	4	3	2	1	0
Field	EOM_EN_ G1	EOM_PER_ MODE_G1	EOM_MAN _TRG_REQ _G1	EOM_MIN_THR_G1[4:0]				
Reset	0x1	0x1	0x0			0x00		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_EN_G 1	7	Eye-opening monitor enable	0b0: Disable EOM 0b1: Enable EOM
EOM_PER_ MODE_G1	6	Eye-opening monitor periodic mode select	0b0: Set EOM to use nonperiodic mode 0b1: Set EOM to use periodic mode
EOM_MAN_ TRG_REQ_ G1	5	Eye-opening monitor (EOM) manual trigger request. Valid on the rising edge of this bit when not in periodic mode.	0b0: Do not trigger EOM 0b1: Manually trigger the EOM

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_MIN_T HR_G1	4:0	Eye-opening minimum threshold (in terms of percent) for flagging ERRB pin	0b00000: Disabled 0b00001: 3.125% 0b00010: 6.25% 0b11111: 100%

GMSL1_14 (0xB14, 0xC14, 0xD14, 0xE14)

BIT	7	6	5	4	3	2	1	0
Field	AEQ_EN	AEQ_PER_ MODE	AEQ_MAN_ TRG_REQ	EOM_PER_THR[4:0]				
Reset	0x1	0x0	0x0	0x00				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
AEQ_EN	7	Adaptive equalization enable	0b0: Disable AEQ 0b1: Enable AEQ
AEQ_PER_ MODE	6	Adaptive equalizer periodic mode select	0b0: Set AEQ to use nonperiodic mode 0b1: Set AEQ to use periodic mode
AEQ_MAN_T RG_REQ	5	Adaptive equalizer manual fine-tune request enable. Valid on the rising edge of this bit when not in periodic mode.	0b0: Do not trigger AEQ fine tuning 0b1: Manually trigger the AEQ fine tuning
EOM_PER_T HR	4:0	Eye-opening threshold to trigger a fine-tune operation	0b00000: Eye-opening threshold is disabled 0b10000: 50% eye-opening triggers fine-tune operation All other values: Reserved

GMSL1_15 (0xB15, 0xC15, 0xD15, 0xE15)

BIT	7	6	5	4	3	2	1	0		
Field		DET_ERR[7:0]								
Reset		0x00								
Access Type	Read Only									

BITFIELD	BITS	DESCRIPTION	DECODE
DET_ERR	7:0	Detected error counter	0xXX: Number of detected errors

GMSL1 16 (0xB16, 0xC16, 0xD16, 0xE16)

BIT	7	6	5	4	3	2	1	0			
Field		PRBS_ERR[7:0]									
Reset		0x00									
Access Type	Read Only										

BITFIELD	BITS	DESCRIPTION	DECODE
PRBS_ERR	7:0	PRBS error counter	0xXX: Number of detected PRBS errors

GMSL1_17 (0xB17, 0xC17, 0xD17, 0xE17)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MAX_RT_E RR_I2C	PRBS_OK	GPI_IN	MAX_RT_E RR_GPI	-	_	_
Reset	0x0	0x0	0x0	0x0	0x0	-	_	_
Access Type		Read Only	Read Only	Read Only	Read Only	-	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
MAX_RT_ER R_I2C	6	Maximum retransmission error flag. Cleared when read.	0b0: No control-channel retransmission error 0b1: Control-channel retransmission maximum limit reached
PRBS_OK	5	MAX9271/73 compatible PRBS test for link is completed normally. Check PRBS_ERR register for the PRBS success. For other SERDES read PRBS_ERR registers.	0b0: No MAX9271/MAX9273 compatible PRBS test completed 0b1: MAX9271/MAX9273 compatible PRBS test completed normally
GPI_IN	4	GPI pin level	0b0: GPI is input low 0b1: GPI is input high
MAX_RT_ER R_GPI	3	Maximum retransmission error flag. Cleared when read.	0b0: No control-channel retransmission error 0b1: Control-channel retransmission maximum limit reached

GMSL1_18 (0xB18, 0xC18, 0xD18, 0xE18)

BIT	7	6	5	4	3	2	1	0		
Field		CC_RETR_CNT[7:0]								
Reset		0x00								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
CC_RETR_C NT	7:0	I ² C packet retransmit count	0xXX: Number of I ² C packets retransmitted

GMSL1_19 (0xB19, 0xC19, 0xD19, 0xE19)

BIT	7	6	5	4	3	2	1	0	
Field		CC_CRC_ERRCNT[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
CC_CRC_E RRCNT	7:0	Packet-based control-channel CRC error counter	0xXX: Number of control-channel CRC errors

GMSL1_1A (0xB1A, 0xC1A, 0xD1A, 0xE1A)

BIT	7	6	5	4	3	2	1	0	
Field		RCEG_ERR_CNT[7:0]							
Reset		0x00							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
RCEG_ERR _CNT	7:0	Control-channel number of generated errors	0xXX: Number of control-channel generated errors

GMSL1_1B (0xB1B, 0xC1B, 0xD1B, 0xE1B)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	LINE_CRC_ ERR	_	_
Reset	_	_	_	_	_	0x0	_	_
Access Type	_	_	_	_	_	Read Only	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
LINE_CRC_ ERR	2	CRC error bit. Latched on error, cleared to 0 when read.	0b0: Video line CRC ok 0b1: Video line CRC mismatch detected

GMSL1_1C (0xB1C, 0xC1C, 0xD1C, 0xE1C)

BIT	7	6	5	4	3	2	1	0	
Field	-	_		EOM_EYE_WIDTH[5:0]					
Reset	-	_	0x00						
Access Type	-	_			Read	Only			

BITFIELD	BITS	DESCRIPTION	DECODE
EOM_EYE_ WIDTH	5:0	Measured eye opening. Opening width = EOM_EYE_WIDTH/63 x 100%	0b000000: Width is 0% 0b000001: Width is 1/63 x 100% 0b000010: Width is 2/63 x 100% 0b11111: Width is 63/63 x 100%

GMSL1_1D (0xB1D, 0xC1D, 0xD1D, 0xE1D)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	UNDERBO OST_DET	AEQ_BST[3:0]				
Reset	_	_	_	0x0	0x0				
Access Type	_	_	_	Read Only		Read Only			

BITFIELD	BITS	DESCRIPTION	DECODE
UNDERBOO ST_DET	4	Underboost detected	0b0: Normal operation 0b1: Underboost (at maximum AEQ gain) detected
AEQ_BST	3:0	Adaptive equalizer boost value. Selected adaptive equalizer value; settings correspond to gain at 750MHz	0b0000: 1.6dB manual EQ setting 0b0001: 2.1dB manual EQ setting 0b0010: 2.8dB manual EQ setting 0b0011: 3.5dB manual EQ setting 0b0100: 4.3dB manual EQ setting 0b0101: 5.2dB manual EQ setting 0b0101: 5.2dB manual EQ setting 0b0110: 6.3dB manual EQ setting 0b0111: 7.3dB manual EQ setting 0b1000: 8.5dB manual EQ setting 0b1001: 9.7dB manual EQ setting 0b1010: 11dB manual EQ setting 0b1010: 11dB manual EQ setting 0b1011: 12.2dB manual EQ setting 0b1100: Reserved 0b1110: Reserved 0b1111: Reserved

GMSL1_20 (0xB20, 0xC20, 0xD20, 0xE20)

BIT	7	6	5	4	3	2	1	0		
Field		CRC_VALUE_0[7:0]								
Reset		0x00								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
CRC_VALUE	7:0	Bits [7:0] of CRC output for the latest line	0xXX: CRC[7:0] of latest line

GMSL1 21 (0xB21, 0xC21, 0xD21, 0xE21)

BIT	7	6	5	4		3	2	1	0
Field		CRC_VALUE_1[7:0]							
Reset		0x00							
Access Type		Read Only							
BITFIELD	BITS	BITS DESCRIPTION DECODE							
CRC_VALUE	7:0	Bits [15:8] o	Bits [15:8] of CRC output for the latest line			0xXX: C	RC[15:8] of I	atest line	

GMSL1_22 (0xB22, 0xC22, 0xD22, 0xE22)

BIT	7	6	5	4	3	2	1	0
Field		CRC_VALUE_2[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
CRC_VALUE	7:0	Bits [23:16] of CRC output for the latest line	0xXX: CRC[23:16] of latest line

GMSL1_23 (0xB23, 0xC23, 0xD23, 0xE23)

BIT	7	6	5	4	3	2	1	0
Field		CRC_VALUE_3[7:0]						
Reset		0x00						
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
CRC_VALUE	7:0	Bits [31:24] of CRC output for the latest line	0xXX: CRC[31:24] of latest line

GMSL1_96 (0xB96, 0xC96, 0xD96, 0xE96)

BIT	7	6	5	4	3	2	1	0
Field		CONV_G	GMSL1_DATAT	RSVD	CONV_GM SL1_EN	DBL_ALIGN _TO		
Reset			0x07	0x0	0x1	0x1		
Access Type			Write, Read		Write, Read	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
CONV_GMS L1_DATATY PE	7:3	Converts from GMSL1 color format mapping to GMSL2 CSI transmitter color format	0x0: RGB888 OLDI 0x1: RGB565 0x2: RGB666 0x3: YUV422 8-bit mux mode (use yuv_8_10_mux_mode) 0x4: YUV422 10-bit mux mode (use yuv_8_10_mux_mode) 0x5: RAW8 single 0x6: RAW10 single 0x7: RAW12 single 0x8: RAW14 0x9: User-defined generic 24-bit 0xA: User-defined YUV422 12-bit 0xB: User-defined generic 8-bit 0xC: Reserved 0xD: Reserved 0xD: Reserved 0xE: Reserved 0x10: RGB888 VESA 0x11: Reserved 0x12: Reserved 0x13: YUV422 8-bit normal mode 0x14: YUV422 10-bit normal mode 0x15: RAW8 double (use alt_mem_map10) 0x17: RAW12 double (use alt_mem_map10) 0x17: RAW12 double (use alt_mem_map12) 0x18: Reserved 0x10: Reserved 0x10: Reserved 0x10: Reserved 0x17: RAW12 double (use alt_mem_map10) 0x18: Reserved 0x18: Reserved 0x18: Reserved 0x18: Reserved
CONV_GMS L1_EN	1	Enable conversion from GMSL1 color format mapping to GMSL2 CSI transmitter	0x0: GMSL1 color format conversion to GMSL2 not Enabled 0x1: GMSL1 color format conversion to GMSL2 Enabled
DBL_ALIGN_ TO	0	HBM DBL mode type 1 = DBL-DBL mode with no alignment(d) 0 = DBL-Single mode with alignment	

GMSL1_CB (0xBCB, 0xCCB, 0xDCB, 0xECB)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	LOCKED_G 1						
Reset	0x0							
Access Type								Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
LOCKED_G1	0	Link Locked	0b0: Link not locked 0b1: Link locked

TX1 (0x1001)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	_	_	ERRG_EN	_	_	RSVD	RSVD
Reset	0b0	_	-	0b0	-	-	0b0	0b0
Access Type		_	_	Write, Read	-	_		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRG_EN	4	From denerator enable	0b0: Disable error generator for Link A 0b1: Enable error generator for Link A

TX2 (0x1002)

BIT	7	6	5	4	3	2	1	0
Field	ERRG_CNT[1:0]		ERRG_RATE[1:0]		ERRG_BURST[2:0]			ERRG_PER
Reset	0x0		0x2		0x0			0b0
Access Type	Write, Read		Write, Read		Write, Read			Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ERRG_CNT	7:6	Number of errors to be generated	0b00: Continuous 0b01: 16 0b10: 128 0b11: 1024
ERRG_RAT E	5:4	Error generator average bit error rate	0b00: 1/5120 bits 0b01: 1/81920 bits 0b10: 1/1310720 bits 0b11: 1/20971520 bits
ERRG_BUR ST	3:1	Error generator burst error length	0b000: 1 0b001: 2 0b010: 3 0b011: 4 0b100: 8 0b101: 12 0b110: 16 0b111: 20
ERRG_PER	0	Error generator error distribution selection	0b0: Pseudorandom 0b1: Periodic

TX3 (0x1003)

BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	_	_	_	TIMEOUT[2:0]		
Reset	0;	x1	_	_	_	0x4		
Access Type			_	_	_	Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE		
TIMEOUT	2:0	Link ARQ Timeout Duration Multiplier Multiplies a timeout base constant to set the ARQ timeout. Timeout Base = 8µs	0b000: 0.5 x Timeout Base 0b001: 1.0 x Timeout Base 0b010: 1.5 x Timeout Base 0b011: 2.0 x Timeout Base 0b100: 2.5 x Timeout Base 0b101: 3.0 x Timeout Base 0b110: 3.5 x Timeout Base 0b111: 4.0 x Timeout Base		

RX0 (0x1004)

BIT	7	6	5	4	3	2	1	0
Field	PKT_CNT	_LBW[1:0]	_	RSVD	PKT_CNT_SEL[3:0]			
Reset	0:	x0	_	0b0	0x0			
Access Type	Write,	Read	_		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
PKT_CNT_L BW	7:6	Select the sub-type of low-bandwidth packets to count at PKT_CNT register	0b00: Count data packets 0b01: Count acknowledge packets 0b10: Count data and acknowledge packets 0b11: Reserved
PKT_CNT_S EL	3:0	Select the type of received packets to count at PKT_CNT (0x40–0x43)	0b0000: None 0b0001: Video 0b0010: Reserved 0b0011: INFOFR 0b0100: Reserved 0b0101: I ² C 0b0110: Reserved 0b0111: GPIO 0b1000: Reserved 0b1001: Reserved 0b1011: Reserved 0b1010: Reserved 0b1010: Reserved 0b1010: Reserved 0b1010: Reserved 0b1011: Reserved 0b1110: Reserved 0b1110: All non-idle packets 0b1111: Unknown/Error

GPIOA (0x1008)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD	GPIO_TX_ CASC	GPIO_FWD_CDLY[5:0]						
Reset	0b0	0x1			0x	01			
Access Type		Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
GPIO_TX_C ASC	6	Allow multiple pin transitions to be transmitted in the same packet	0b0: Multiple pin transitions not allowed 0b1: Multiple pin transitions allowed		

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_FWD_ CDLY	5:0	Compensation delay multiplier for the forward direction. This must be same value as GPIO_FWD_CDLY of the chip on the other side of the link. Total delay is the (value + 1) multiplied by 1.7µs. Default delay is 3.4µs.	0bXXXXXX: Forward compensation delay multiplier value

GPIOB (0x1009)

BIT	7	6	5 4 3 2 1							
Field	GPIO_TX_	WNDW[1:0]	GPIO_REV_CDLY[5:0]							
Reset	0:	x2	0x08							
Access Type	Write,	, Read	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_W NDW	7:6	Wait time after a GPIO transition to create a packet. This allows grouping transitions of different GPIO inputs in a single packet and so increases GPIO bandwdith usage efficiency.	0b00: Disabled 0b01: 200ns 0b10: 500ns 0b11: 1000ns
GPIO_REV_ CDLY	5:0	Compensation delay multiplier for the reverse direction. This must be same value as GPIO_REV_CDLY of the chip on the other side of the link. Total delay is the (value + 1) multiplied by 1.7µs. Default delay is 15.3µs.	0bXXXXXX: Reverse compensation delay multiplier value

TX1 (0x1011, 0x1021, 0x1031)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	_	_	ERRG_EN	_	_	RSVD	RSVD
Reset	0b0	-	-	0b0	_	-	0b0	0b0
Access Type		_	_	Write, Read	-	_		

BITFIELD	BITS	DESCRIPTION	DECODE
ERRG_EN	4	From denerator enable	0b0: Disable error generator 0b1: Enable error generator

TX2 (0x1012, 0x1022, 0x1032)

BIT	7	6	5	4	3	2	1	0
Field	ERRG_CNT[1:0] EF		ERRG_R	ERRG_RATE[1:0]		ERRG_BURST[2:0]		
Reset	0x0		0x2		0x0			0b0
Access Type	Write,	Read	Write, Read		Write, Read			Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ERRG_CNT	7:6	Number of errors to be generated	0b00: Continuous 0b01: 16 errors 0b10: 128 errors 0b11: 1024 errors
ERRG_RAT E	5:4	Error generator average bit error rate	0b00: 1/5120 bits 0b01: 1/81920 bits 0b10: 1/1310720 bits 0b11: 1/20971520 bits
ERRG_BUR ST	3:1	Error generator burst error length	0b000: 1 0b001: 2 0b010: 3 0b011: 4 0b100: 8 0b101: 12 0b110: 16 0b111: 20
ERRG_PER	0	Error generator error distribution selection	0b0: Pseudorandom 0b1: Periodic

TX3 (0x1013, 0x1023, 0x1033)

BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	_	_	_	TIMEOUT[2:0]		
Reset	0x1		_	_	_		0x4	
Access Type			_	-	_		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
TIMEOUT	2:0	Link ARQ Timeout Duration Multiplier Multiplies a timeout base constant to set the ARQ timeout. Timeout Base = 8µs	0b000: 0.5 x Timeout Base 0b001: 1.0 x Timeout Base 0b010: 1.5 x Timeout Base 0b011: 2.0 x Timeout Base 0b100: 2.5 x Timeout Base 0b101: 3.0 x Timeout Base 0b110: 3.5 x Timeout Base 0b111: 4.0 x Timeout Base

RX0 (0x1014, 0x1024, 0x1034)

BIT	7	6	5	4	3	2	1	0
Field	PKT_CNT_LBW[1:0]		_	RSVD	PKT_CNT_SEL[3:0]			
Reset	0x0		_	0b0		0>	(0	
Access Type	Write,	Read	_		Write, Read		Read	

BITFIELD	BITS	DESCRIPTION	DECODE
PKT_CNT_L BW	7:6	Selects the sub-type of low-bandwidth packets to count at PKT_CNT_x bitfield (0x40–0x43).	0b00: Count data packets 0b01: Count acknowledge packets 0b10: Count data and acknowledge packets 0b11: Reserved

BITFIELD	BITS	DESCRIPTION	DECODE
PKT_CNT_S EL	3:0	Selects the type of received packets to count at PKT_CNT_x bitfield (0x40–0x43)	0x0: None 0x1: Video 0x2: Reserved 0x3: INFOFR 0x4: Reserved 0x5: I ² C 0x6: Reserved 0x7: GPIO 0x8: Reserved 0x9: Reserved 0xA: Reserved 0xA: Reserved 0xA: Reserved 0xA: Reserved 0xB: Reserved 0xB: Reserved 0xC: Reserved 0xC: Reserved 0xC: Reserved 0xC: None-idle packets 0xF: Unknown/Error

GPIOA (0x1018, 0x1028, 0x1038)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	GPIO_TX_ CASC	GPIO_FWD_CDLY[5:0]					
Reset	0b0	0x1	0x01					
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_C ASC	6	Allows multiple pin transitions to be transmitted in the same packet	0b0: Multiple pin transitions not allowed 0b1: Multiple pin transitions allowed
GPIO_FWD_ CDLY	5:0	Compensation delay multiplier for the forward direction. This must be same value as GPIO_FWD_CDLY of the chip on the other side of the link. Total delay is the (value + 1) multiplied by 1.7µs. Default delay is 3.4µs.	0bXXXXXX: Forward compensation delay multiplier value

GPIOB (0x1019, 0x1029, 0x1039)

BIT	7	6	5	4	3	2	1	0		
Field	GPIO_TX_WNDW[1:0]			GPIO_REV_CDLY[5:0]						
Reset	0x2		0x08							
Access Type	Write,	Read	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_TX_W NDW	7:6	Wait time after a GPIO transition to create a packet. This allows grouping transitions of different GPIO inputs in a single packet and so increases GPIO bandwidth usage efficiency.	0b00: Disabled 0b01: 200 ns 0b10: 500 ns 0b11: 1000 ns

BITFIELD	BITS	DESCRIPTION	DECODE
GPIO_REV_ CDLY	5:0	Compensation delay multiplier for the reverse direction. This must be same value as GPIO_REV_CDLY of the chip on the other side of the link. Total delay is the (value + 1) multiplied by 1.7µs. Default delay is 15.3µs.	0bXXXXXX: Reverse compensation delay multiplier value

PATGEN_0 (0x1050)

BIT	7	6	5	4	3	2	1	0
Field	GEN_VS	GEN_HS	GEN_DE	VS_INV	HS_INV	DE_INV	VTG_M	DDE[1:0]
Reset	0x0	0x0	0x0	0x0	0x0	0x0	0>	κ3
Access Type	Write, Read	Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
GEN_VS	7	Enable to generate VS output according to the timing definition	0b0: Do not generate VS 0b1: Generate VS
GEN_HS	6	Enable to generate HS output according to the timing definition Also, consider setting LS_LE_EN* to 1 as this bit defaults to 0 for some parts.	0b0: Do not generate HS 0b1: Generate HS
GEN_DE	5	Enable to generate DE output according to the timing definition	0b0: Do not generate DE 0b1: Generate DE
VS_INV	4	Inverts VSYNC output of video timing generator	0b0: Do not invert VS 0b1: Invert VS
HS_INV	3	Inverts HSYNC output of video timing generator	0b0: Do not invert HS 0b1: Invert HS
DE_INV	2	Inverts DE output of video timing generator	0b0: Do not invert DE 0b1: Invert DE

BITFIELD	BITS	DESCRIPTION	DECODE
VTG_MODE	1:0	Video interface timing generation mode. 00 or 11 = VS tracking mode. VS input's period (VS_HIGH + VS_LOW) is tracked. After VS tracking is locked, any VS input edge (glitches) not in the expected PCLK cycle is ignored. VS tracking is locked with three consecutive matches and unlocked by three consecutive mismatches. When unlocked or power-up, the next VS input edge is assumed to be the right VS edge. 01 = VS one-trigger mode One VS input edge will trigger the generation of one frame of VSO/HSO/DEO. If next VS input edge comes earlier or later than expected by VS period, the newly generated frame will be correct. The current VSO/HSO/DEO will be cut or extended at the time point of rising edge of the newly generated VSO/HSO/DEO. 10 = Auto-repeat mode (default) VS input edge will trigger the generation of continuous frames of VSO/HSO/DEO even if there are no more VS input edges. If next VS input edge comes earlier or later than expected by VS period, the newly generated frame will be correct. The current VSO/HSO/DEO will be cut or extended at the time point of rising edge of the newly generated VSO/HSO/DEO will be cut or extended at the time point of rising edge of the newly generated VSO/HSO/DEO.	0b00: VS tracking mode 0b01: VS on trigger mode 0b10: Auto-repeat mode 0b11: Free-running mode

PATGEN_1 (0x1051)

BIT	7	6	5	4	3	2	1	0
Field	GRAD_MO DE	_	PATGEN_MODE[1:0]		_	_	_	VS_TRIG
Reset	0x0	_	0:	0x0		-	_	0x0
Access Type	Write, Read	_	Write, Read		_	_	_	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
GRAD_MOD E	7	Gradient pattern generator mode	0b0: Gradient mode disabled 0b1: Gradient mode enabled		
PATGEN_M ODE	5:4	Pattern generator mode	0b00: Reserved 0b01: Generate checkerboard pattern 0b10: Generate gradient pattern 0b11: Reserved		
VS_TRIG	0	Select VS trigger edge	0b0: Falling edge 0b1: Rising edge		

VS_DLY_2 (0x1052)

BIT	7	6	5	4	3	2	1	0		
Field		VS_DLY_2[7:0]								
Reset		0x00								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
VS_DLY_2	7:0	VS delay in terms of PCLK cycles. The output VS is delayed by VS_DELAY cycles from the input VS. (bits [23:16])	0xXX: Most significant byte of VS delay

VS_DLY_1 (0x1053)

BIT	7	6	5	4	3	2	1	0		
Field		VS_DLY_1[7:0]								
Reset		0x00								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE
VS_DLY_1	7:0	VS delay in terms of PCLK cycles. The output VS is delayed by VS_DELAY cycles from the input VS. (bits [15:8])	0xXX: Middle significant byte of VS delay

VS_DLY_0 (0x1054)

BIT	7	6	5	4	3	2	1	0	
Field		VS_DLY_0[7:0]							
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
VS_DLY_0	7:0	VS delay in terms of PCLK cycles. The output VS is delayed by VS_DELAY cycles from the input VS. (bits [7:0])	0xXX: Least significant byte of VS delay

VS_HIGH_2 (0x1055)

BIT	7	6	5	4	3	2	1	0
Field		VS_HIGH_2[7:0]						
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
VS_HIGH_2	7:0	VS high period in terms of PCLK cycles (bits [23:16])	0xXX: Most significant byte of VS high period

VS_HIGH_1 (0x1056)

BIT	7	6	5	4	3	2	1	0
Field		VS_HIGH_1[7:0]						
Reset	0x2A							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE		
VS_HIGH_1	7:0	VS high period in terms of PCLK cycles (bits [15:8])	0xXX: Middle significant byte of VS high period		

VS_HIGH_0 (0x1057)

BIT	7	6	5	4	3	2	1	0
Field		VS_HIGH_0[7:0]						
Reset	0xF8							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
VS_HIGH_0	7:0	VS high period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of VS high period

VS_LOW_2 (0x1058)

BIT	7	6	5	4	3	2	1	0
Field		VS_LOW_2[7:0]						
Reset	0x26							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
VS_LOW_2	7:0	VS low period in terms of PCLK cycles (bits [23:16])	0xXX: Most significant byte of VS low period

VS_LOW_1 (0x1059)

BIT	7	6	5	4	3	2	1	0
Field		VS_LOW_1[7:0]						
Reset	0x40							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE		
VS_LOW_1	7:0	VS low period in terms of PCLK cycles (bits [15:8])	0xXX: Middle significant byte of VS low period		

VS_LOW_0 (0x105A)

BIT	7	6	5	4	3	2	1	0
Field		VS_LOW_0[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
VS_LOW_0	7:0	VS low period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of VS low period

V2H_2 (0x105B)

BIT	7	6	5	4	3	2	1	0
Field		V2H_2[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2H_2	7:0	VS edge to the rising edge of the first HS in terms of PCLK cycles (bits [23:16])	0xXX: Most significant byte of VS edge to first HS rising edge

V2H_1 (0x105C)

BIT	7	6	5	4	3	2	1	0
Field	V2H_1[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2H_1	7:0	VS edge to the rising edge of the first HS in terms of PCLK cycles (bits [15:8])	0xXX: Middle significant byte of VS edge to first HS rising edge

V2H_0 (0x105D)

BIT	7	6	5	4	3	2	1	0
Field		V2H_0[7:0]						
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2H_0	7:0	VS edge to the rising edge of the first HS in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of VS edge to first HS rising edge

HS_HIGH_1 (0x105E)

BIT	7	6	5	4	3	2	1	0
Field		HS_HIGH_1[7:0]						
Reset		0x00						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
HS_HIGH_1	7:0	HS high period in terms of PCLK cycles (bits [15:8])	0xXX: Most significant byte of HS high period

HS_HIGH_0 (0x105F)

BIT	7	6	5	4	3	2	1	0
Field	HS_HIGH_0[7:0]							
Reset		0xD0						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
HS_HIGH_0	7:0	HS high period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of HS high period

HS_LOW_1 (0x1060)

BIT	7	6	5	4	3	2	1	0
Field	HS_LOW_1[7:0]							
Reset	0x09							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
HS_LOW_1	7:0	HS low period in terms of PCLK cycles (bits [15:8])	0xXX: Most significant byte of HS low period

HS_LOW_0 (0x1061)

BIT	7	6	5	4	3	2	1	0
Field		HS_LOW_0[7:0]						
Reset		0x50						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
HS_LOW_0	7:0	HS low period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of HS low period

HS_CNT_1 (0x1062)

BIT	7	6	5	4	3	2	1	0
Field	HS_CNT_1[7:0]							
Reset	0x04							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
HS_CNT_1	7:0	HS pulses per frame (bits [15:8])	0xXX: Most significant byte of HS pulses per frame

HS_CNT_0 (0x1063)

BIT	7	6	5	4	3	2	1	0
Field		HS_CNT_0[7:0]						
Reset	0xDA							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
HS_CNT_0	7:0	HS pulses per frame (bits [7:0])	0xXX: Least significant byte of HS pulses per frame

V2D_2 (0x1064)

BIT	7	6	5	4	3	2	1	0
Field	V2D_2[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2D_2	7:0	VS edge to the rising edge of the first DE in terms of PCLK cycles (bits [23:16])	0xXX: Most significant byte of VS edge to first DE

V2D_1 (0x1065)

BIT	7	6	5	4	3	2	1	0
Field	V2D_1[7:0]							
Reset	0x55							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2D_1	7:0	VS edge to the rising edge of the first DE in terms of PCLK cycles (bits [15:8])	0xXX: Middle significant byte of VS edge to first DE

V2D_0 (0x1066)

BIT	7	6	5	4	3	2	1	0
Field		V2D_0[7:0]						
Reset	0xF0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
V2D_0	7:0	VS edge to the rising edge of the first DE in terms of PCLK cycles (bits [23:16])	0xXX: Least significant byte of VS edge to first DE

DE_HIGH_1 (0x1067)

BIT	7	6	5	4	3	2	1	0
Field	DE_HIGH_1[7:0]							
Reset	0x07							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DE_HIGH_1	7:0	DE high period in terms of PCLK cycles (bits [15:8])	0xXX: Most significant byte of DE high period

DE_HIGH_0 (0x1068)

BIT	7	6	5	4	3	2	1	0
Field		DE_HIGH_0[7:0]						
Reset	0x80							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DE_HIGH_0	7:0	DE high period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of DE high period

DE_LOW_1 (0x1069)

BIT	7	6	5	4	3	2	1	0
Field	DE_LOW_1[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DE_LOW_1	7:0	DE low period in terms of PCLK cycles (bits [15:8])	0xXX: Most significant byte of DE low period

DE_LOW_0 (0x106A)

BIT	7	6	5	4	3	2	1	0
Field		DE_LOW_0[7:0]						
Reset	0x40							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DE_LOW_0	7:0	DE low period in terms of PCLK cycles (bits [7:0])	0xXX: Least significant byte of DE low period

DE_CNT_1 (0x106B)

BIT	7	6	5	4	3	2	1	0
Field		DE_CNT_1[7:0]						
Reset	0x04							
Access Type		Write, Read						
BITFIFI D	RITS	DESCRIPTION DECODE						

BITFIELD	BITS	DESCRIPTION	DECODE
DE_CNT_1	7:0	Active lines per frame (bits [15:8])	0xXX: Most significant byte of DE pulses per frame

DE_CNT_0 (0x106C)

BIT	7	6	5	4	3	2	1	0
Field	DE_CNT_0[7:0]							
Reset	0xB0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DE_CNT_0	7:0	Active lines per frame (bits [7:0])	0xXX: Least significant byte of DE pulses per frame

GRAD_INCR (0x106D)

BIT	7	6	5	4	3	2	1	0
Field	GRAD_INCR[7:0]							
Reset	0x06							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
GRAD_INCR	7:0	Gradient mode increment amount (increment amount is the register value divided by 4)	0xXX: Gradient increment base

CHKR COLOR A L (0x106E)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_A_L[7:0]							
Reset	0x80							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_COL OR_A_L	7:0	Checkerboard mode color A low byte	0xXX: Least significant byte of checkerboard mode color A

CHKR_COLOR_A_M (0x106F)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_A_M[7:0]							
Reset	0x00							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE	
CHKR_COL OR_A_M	7:0	Checkerboard mode color A middle byte	0xXX: Middle significant byte of checkerboard mode color A	

CHKR_COLOR_A_H (0x1070)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_A_H[7:0]							
Reset	0x04							
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_COL OR_A_H	7:0	Checkerboard mode color A high byte	0xXX: Most significant byte of checkerboard mode color A

CHKR_COLOR_B_L (0x1071)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_B_L[7:0]							
Reset		0x00						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE		
CHKR_COL OR_B_L	7:0	Checkerboard mode color B low byte	0xXX: Least significant byte of checkerboard mode color B		

CHKR COLOR B M (0x1072)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_B_M[7:0]							
Reset	80x0							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_COL OR_B_M	7:0	Checkerboard mode color B middle byte	0xXX: Middle significant byte of checkerboard mode color B

CHKR_COLOR_B_H (0x1073)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_COLOR_B_H[7:0]							
Reset	0x80							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_COL OR_B_H	7:0	Checkerboard mode color B high byte	0xXX: Most significant byte of checkerboard mode color B

CHKR_RPT_A (0x1074)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_RPT_A[7:0]							
Reset	0x50							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_RPT_ A	7:0	Checkerboard mode color A repeat count	0xXX: Repeat count of checkerboard mode color A

CHKR_RPT_B (0x1075)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_RPT_B[7:0]							
Reset	0x50							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_RPT_ B	7:0	Checkerboard mode color B repeat count	0xXX: Repeat count of checkerboard mode color B

CHKR_ALT (0x1076)

BIT	7	6	5	4	3	2	1	0
Field	CHKR_ALT[7:0]							
Reset	0x50							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
CHKR_ALT	7:0	Checkerboard mode alternate line count	0xXX: Checkerboard mode alternate line count

DP_ORSTB_CTL (0x1191)

BIT	7	6	5	4	3	2	1	0
Field	DPLL_AUT O_RST	DP_RST_M IPI3	DP_RST_S TABLE	DP_RST_M IPI2	DP_RST_M IPI	DP_RST_V P	DP_RST_F S	DP_RST_C C
Reset	0x1	0x1	0x1	0b1	0b1	0b1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
DPLL_AUTO _RST	7		0x0: No auto reset will be generated (If user changes phy0_csi_tx_dpll_predef_freq, assert either config_soft_rst_n_CSl1, config_soft_rst_n_CSl2, or phy_Stdby_n[1:0]. 0x1: When changes to phy#_csi_tx_dpll_predef_freq occur, a reset pulse to associated csipll#_rstb is generated. When changes to phy_4x2, phy_2x4, force_csi_out_en occur (or any write to 0x08A0), a reset pulse to all csipll#_rstb is generated.
DP_RST_MI PI3	6	Selects RST mode CMD FIFO read pointer	0b0: Rev B behavior – CMD FIFO read pointer is not reset automatically when video lock is lost 0b1: (Default) Rev C behavior – CMD FIFO read pointer is reset automatically when video lock is lost
DP_RST_ST ABLE	5	Selects RST mode	0b0: Do not prevent reset glitches when changing reset behavior between individualized resets (Rev C behavior) vs. non-individualized resets (Rev B behavior) 0b1: (Default) Prevent reset glitches when changing reset behavior between individualized resets (Rev C behavior) vs. non-individualized resets (Rev B behavior)
DP_RST_MI PI2			0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset automatically based on the associated GMSL PHY and Video Pipe reset during a one-shot reset or link reset

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

BITFIELD	BITS	DESCRIPTION	DECODE
DP_RST_MI PI	3	Selects RST mode to MIPI controllers.	0b0: (Default) Rev B behavior – All MIPI controllers will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each MIPI controller can be reset individually based on RST_MIPITX_LOC[3:0] (0x8C9)
DP_RST_VP	2	Selects RST mode to video_rx, vrx blocks.	0b0: (Default) Rev B behavior – All video pipes will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each video pipe will be reset individually based on the associated GMSL PHY reset during a one-shot reset or link reset
DP_RST_FS	1	Selects reset mode to frame sync block	0b0: (Default) Rev B behavior – Frame sync block will be reset during any one-shot reset or link reset 0b1: Rev C behavior – The internal frame sync block will not be reset during a one-shot reset or link reset
DP_RST_CC	0	Selects reset mode for iic_mux_uart blocks	0b0: (Default) Rev B behavior – All I ² C ports will be reset during any one-shot reset or link reset 0b1: Rev C behavior – Each I ² C port will be reset individually based on the associated GMSL PHY reset during a one-shot reset or link reset

CNT AX (0x11D0)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_AX[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_AX	7:0	Total number of video pixel CRC errors detected at video stream AX. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE SEL.	0xXX: Total number of video pixel CRC errors detected at video stream AX

CNT_AY (0x11D1)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_AY[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_AY	7:0	Total number of video pixel CRC errors detected at video stream AY. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE SEL.	0xXX: Total number of video pixel CRC errors detected at video stream AY

CNT_AZ (0x11D2)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_AZ[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
		Total number of video pixel CRC errors detected at video stream AZ. Reset after reading or with the rising edge of LOCK.	
VID_PXL_C RC_ERR_AZ	7:0	Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE SEL.	0xXX: Total number of video pixel CRC errors detected at video stream AZ

CNT AU (0x11E0)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_AU[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_AU	7:0	Total number of video pixel CRC errors detected at video stream AU. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream AU

CNT_BX (0x11E1)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_BX[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_BX	7:0	Total number of video pixel CRC errors detected at video stream BX. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream BX

CNT_BY (0x11E2)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_BY[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_BY	7:0	Total number of video pixel CRC errors detected at video stream BY. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and	0xXX: Total number of video pixel CRC errors detected at video stream BY
		DES PIPE_SEL.	

CNT_BZ (0x11E3)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_BZ[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD BITS DESCRIPTION	DECODE
Total number of video pixel CRC errors detected at video stream BZ. Reset after reading or with the rising edge of LOCK. VID_PXL_C RC_ERR_BZ 7:0 Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream BZ

CNT_BU (0x11E4)

BIT	7	6	5	4	3	2	1	0
Field		VID_PXL_CRC_ERR_BU[7:0]						
Reset		0x00						
Access Type				Read C	lears All			

BITFIELD	BITS	DESCRIPTION	DECODE
		Total number of video pixel CRC errors detected at video stream BU. Reset after reading or with the rising edge of LOCK.	
VID_PXL_C RC_ERR_BU	7:0	Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream BU

CNT CX (0x11E5)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_CX[7:0]							
Reset		0x00							
Access Type				Read C	lears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_CX	7:0	Total number of video pixel CRC errors detected at video stream CX. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream CX

CNT_CY (0x11E6)

BIT	7	6	5	4	3	2	1	0
Field		VID_PXL_CRC_ERR_CY[7:0]						
Reset		0x00						
Access Type				Read C	lears All			

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_CY	7:0	Total number of video pixel CRC errors detected at video stream CY. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE SEL.	0xXX: Total number of video pixel CRC errors detected at video stream CY

CNT_CZ (0x11E7)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_CZ[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

Total number of video pixel CRC errors	BITS	BITFIELD	DESCRIPTION	DECODE
reading or with the rising edge of LOCK. Note: With STREAM SEL ALL set to 1 or	7:0		detected at video stream CZ. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and	0xXX: Total number of video pixel CRC errors detected at video stream CZ

CNT_CU (0x11E8)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_CU[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD	BITS	DESCRIPTION	DECODE
		Total number of video pixel CRC errors detected at video stream CU. Reset after reading or with the rising edge of LOCK.	
VID_PXL_C RC_ERR_C U	7:0	Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream CU

CNT_DX (0x11E9)

BIT	7	6	5	4	3	2	1	0
Field	VID_PXL_CRC_ERR_DX[7:0]							
Reset		0x00						
Access Type				Read C	lears All			

BITFIELD	BITS	DESCRIPTION	DECODE
		Total number of video pixel CRC errors detected at video stream DX. Reset after reading or with the rising edge of LOCK.	
VID_PXL_C RC_ERR_DX	7:0	Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream DX

CNT DY (0x11EA)

BIT	7	6	5	4	3	2	1	0
Field	VID_PXL_CRC_ERR_DY[7:0]							
Reset	0x00							
Access Type		Read Clears All						

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_DY	7:0	Total number of video pixel CRC errors detected at video stream DY. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE SEL.	0xXX: Total number of video pixel CRC errors detected at video stream DY

CNT_DZ (0x11EB)

BIT	7	6	5	4	3	2	1	0	
Field		VID_PXL_CRC_ERR_DZ[7:0]							
Reset		0x00							
Access Type				Read C	ears All				

BITFIELD	BITS	DESCRIPTION	DECODE
VID_PXL_C RC_ERR_DZ	7:0	Total number of video pixel CRC errors detected at video stream DZ. Reset after reading or with the rising edge of LOCK. Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream DZ

CNT_DU (0x11EC)

BIT	7	6	5	4	3	2	1	0
Field		VID_PXL_CRC_ERR_DU[7:0]						
Reset		0x00						
Access Type		Read Clears All						

BITFIELD	BITS	DESCRIPTION	DECODE
		Total number of video pixel CRC errors detected at video stream DU. Reset after reading or with the rising edge of LOCK.	
VID_PXL_C RC_ERR_D U	7:0	Note: With STREAM_SEL_ALL set to 1 or enabled (default), all Video Pixel CRC Errors will end up at video stream X only. If desired, set STREAM_SEL_ALL to 0 or disabled to allow visibility on specific video pixel stream CRC errors by matching SER STR_SEL and DES PIPE_SEL.	0xXX: Total number of video pixel CRC errors detected at video stream DU

DE_DET (0x11F0)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	DE_DET_3	DE_DET_2	DE_DET_1	DE_DET_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
DE_DET_3	3	DE activity is detected in Video Pipe 3. Bit stays high if DE period < ~1ms.	0b0: DE is not detected 0b1: DE is detected

BITFIELD	BITS	DESCRIPTION	DECODE
DE_DET_2	2	DE activity is detected in Video Pipe 2. Bit stays high if DE period < ~1ms.	0b0: DE is not detected 0b1: DE is detected
DE_DET_1	1	DE activity is detected in Video Pipe 1. Bit stays high if DE period < ~1ms.	0b0: DE is not detected 0b1: DE is detected
DE_DET_0	0	DE activity is detected in Video Pipe 0. Bit stays high if DE period < ~1ms.	0b0: DE is not detected 0b1: DE is detected

HS_DET (0x11F1)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	HS_DET_3	HS_DET_2	HS_DET_1	HS_DET_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	-	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
HS_DET_3	3	HS activity is detected in Video Pipe 3. Bit stays high if HS period < ~1ms.	0b0: HS is not detected 0b1: HS is detected
HS_DET_2	2	HS activity is detected in Video Pipe 2. Bit stays high if HS period < ~1ms.	0b0: HS is not detected 0b1: HS is detected
HS_DET_1	1	HS activity is detected in Video Pipe 1. Bit stays high if HS period < ~1ms.	0b0: HS is not detected 0b1: HS is detected
HS_DET_0	0	HS activity is detected in Video Pipe 0. Bit stays high if HS period < ~1ms.	0b0: HS is not detected 0b1: HS is detected

VS_DET (0x11F2)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	-	VS_DET_3	VS_DET_2	VS_DET_1	VS_DET_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
VS_DET_3	3	VS activity is detected in Video Pipe 3. Bit stays high if VS period < ~128ms.	0b0: VS is not detected 0b1: VS is detected
VS_DET_2	2	VS activity is detected in Video Pipe 2. Bit stays high if VS period < ~128ms.	0b0: VS is not detected 0b1: VS is detected
VS_DET_1	1	VS activity is detected in Video Pipe 1. Bit stays high if VS period < ~128ms.	0b0: VS is not detected 0b1: VS is detected
VS_DET_0	0	VS activity is detected in Video Pipe 0. Bit stays high if VS period < ~128ms.	0b0: VS is not detected 0b1: VS is detected

HS_POL (0x11F3)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	HS_POL_3	HS_POL_2	HS_POL_1	HS_POL_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	_	_	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
HS_POL_3	3	Detected HS polarity in Video Pipe 3	0b0: Active low 0b1: Active high
HS_POL_2	2	Detected HS polarity in Video Pipe 2	0b0: Active low 0b1: Active high
HS_POL_1	1	Detected HS polarity in Video Pipe 1	0b0: Active low 0b1: Active high
HS_POL_0	0	Detected HS polarity in Video Pipe 0	0b0: Active low 0b1: Active high

VS_POL (0x11F4)

BIT	7	6	5	4	3	2	1	0
Field	_	ı	_	-	VS_POL_3	VS_POL_2	VS_POL_1	VS_POL_0
Reset	_	_	_	_	0b0	0b0	0b0	0b0
Access Type	_	-	_	-	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
VS_POL_3	3	Detected VS polarity in Video Pipe 3	0b0: Active low 0b1: Active high
VS_POL_2	2	Detected VS polarity in Video Pipe 2	0b0: Active low 0b1: Active high
VS_POL_1	1	Detected VS polarity in Video Pipe 1	0b0: Active low 0b1: Active high
VS_POL_0	0	Detected VS polarity in Video Pipe 0	0b0: Active low 0b1: Active high

HVD_CNT_CTRL (0x11F9)

BIT	7	6	5	4	3	2	1	0
Field	HVD_CNT_ RST_3	HVD_CNT_ RST_2	HVD_CNT_ RST_1	HVD_CNT_ RST_0	HVD_CNT_ EN_3	HVD_CNT_ EN_2	HVD_CNT_ EN_1	HVD_CNT_ EN_0
Reset	0x0	0x0	0x0	0x0	0x1	0x1	0x1	0x1
Access Type	Write, Read Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
HVD_CNT_R ST_3	7	Reset counter values.	0x0 0x1: Reset counter values		
HVD_CNT_R ST_2	6	Reset counter values.	0x0 0x1: Reset counter values		
HVD_CNT_R ST_1	5	Reset counter values.	0x0 0x1: Reset counter values		
HVD_CNT_R ST_0	4	Reset counter values.	0x0 0x1: Reset counter values		
HVD_CNT_E N_3	3	Enable VS and frames per line counters.	0x0: Disable 0x1: Enable		
HVD_CNT_E N_2	2	Enable VS and frames per line counters.	0x0: Disable 0x1: Enable		

BITFIELD	BITS	DESCRIPTION	DECODE
HVD_CNT_E N_1	1	Enable VS and frames per line counters.	0x0: Disable 0x1: Enable
HVD_CNT_E N_0	0	Enable VS and frames per line counters.	0x0: Disable 0x1: Enable

HVD CNT OS (0x11FA)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	HVD_CNT_ OS_EN_3	HVD_CNT_ OS_EN_2	HVD_CNT_ OS_EN_1	HVD_CNT_ OS_EN_0
Reset	_	_	_	_	0x0	0x0	0x0	0x0
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
HVD_CNT_O S_EN_3	3	Enable VS and frames per line counters in one-shot mode. Must be used when HVD_CNT_EN is disabled.	0x0: Disable 0x1: Enable
HVD_CNT_O S_EN_2	2	Enable VS and frames per line counters in one-shot mode. Must be used when HVD_CNT_EN is disabled.	0x0: Disable 0x1: Enable
HVD_CNT_O S_EN_1	1	Enable VS and frames per line counters in one-shot mode. Must be used when HVD_CNT_EN is disabled.	0x0: Disable 0x1: Enable
HVD_CNT_O S_EN_0	0	Enable VS and frames per line counters in one-shot mode. Must be used when HVD_CNT_EN is disabled.	0x0: Disable 0x1: Enable

VS_CNT_WNDW_0_MSB (0x1200)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	_	_	_	VS_CNT_WINDOW_0_M SB[1:0]	
Reset	_	_	_	_	_	_	0x3	
Access Type	_	_	_	_	_	_	Write, Read	

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_0_ MSB	1:0	VS counter counts number of frames within window specified in this register in milliseconds. Max window at 1.023s. Default set at 1s.

VS CNT WNDW 0 LSB (0x1201)

BIT	7	6	5	4	3	2	1	0			
Field		VS_CNT_WINDOW_0_LSB[7:0]									
Reset		0xE8									
Access Type				Write,	Read						

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_0_ LSB	7:0	VS counter counts number of frames within window specified in this register in milliseconds. Max window at 1.023ms. Default set at 1ms.

VS CNT 0 CMP (0x1202)

BIT	7	6	5	4	3	2	1	0			
Field	_	-	VS_CNT_0_CMP[5:0]								
Reset	_	_		0x0							
Access Type	_	-		Write, Read							

BITFIELD	BITS	DESCRIPTION
VS_CNT_0_CMP	5:0	Compare register for VS count value. When this register is non-zero, the counted value in VS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the VS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS CNT 0 CMP MSB (0x1203)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	_	HS_CNT_0_CMP_MSB[3:0]				
Reset	_	_	_	_	0x0				
Access Type	_	_	_	_	Write, Read				

BITFIELD	BITS	DESCRIPTION
HS_CNT_0_CMP_MSB	3:0	Upper 4-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_0_CMP_LSB (0x1204)

BIT	7	6	5	4	3	2	1	0						
Field	HS_CNT_0_CMP_LSB[7:0]													
Reset		0x0												
Access Type				Write,	Read			Write, Read						

BITFIELD	BITS	DESCRIPTION
HS_CNT_0_CMP_LSB	7:0	Lower 8-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE_CNT_0_CMP_MSB (0x1205)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	_	DE_CNT_0_CMP_MSB[3:0]				
Reset	_	_	-	_	0x0				
Access Type	_	_	_	-	Write, Read				

BITFIELD	BITS	DESCRIPTION
DE_CNT_0_CMP_MSB	3:0	Upper 4-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE CNT 0 CMP LSB (0x1206)

BIT	7	6	5	4	3	2	1	0			
Field		DE_CNT_0_CMP_LSB[7:0]									
Reset		0x0									
Access Type				Write,	Read						

BITFIELD	BITS	DESCRIPTION
DE_CNT_0_CMP_LSB	7:0	Lower 8-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

VS_CNT_0 (0x1207)

BIT	7	6	5	4	3	2	1	0		
Field	_	_	VS_CNT_0[5:0]							
Reset	_	_								
Access Type	-	_		Read Only						
BITFIE	LD	BITS	DESCRIPTION							

BITFIELD	BITS	DESCRIPTION
VS_CNT_0	5:0	VS counts within window specificed in VS_CNT_WINDOW registers.

HS CNT 0 MSB (0x1208)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	_	HS_CNT_0_MSB[3:0]			
Reset	_	_	_	_				
Access Type	_	-	-	-		Read	Only	

BITFIELD	BITS	DESCRIPTION
HS_CNT_0_MSB	3:0	Lines per frame HS counter.

HS CNT 0 LSB (0x1209)

BIT	7	6	5	4	3	2	1	0		
Field		HS_CNT_0_LSB[7:0]								
Reset										
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION
HS_CNT_0_LSB	7:0	Lines per frame HS counter.

DE_CNT_0_MSB (0x120A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	DE_CNT_0_MSB[3:0]			
Reset	_	_	_	_				
Access Type	_	_	_	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
DE_CNT_0_MSB	3:0	Lines per frame DE counter.

DE CNT 0 LSB (0x120B)

BIT	7	6	5	4	3	2	1	0
Field				DE_CNT_0	D_LSB[7:0]			
Reset								
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION
DE_CNT_0_LSB	7:0	Lines per frame DE counter.

VRX 0 CMP ERR OEN (0x120C)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_0 _CMP_ERR _OEN	HS_CNT_0 _CMP_ERR _OEN	DE_CNT_0 _CMP_ERR _OEN	I	_	-	I	-
Reset	0x1	0x1	0x1	_	_	_	_	_
Access Type	Write, Read	Write, Read	Write, Read	-	_	_	-	_

BITFIELD	BITS	DESCRIPTION	DECODE		
VS_CNT_0_ CMP_ERR_ OEN	7	VS count comparison error flag output enable. Refer to VS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin		
HS_CNT_0_ CMP_ERR_ OEN	6	HS count comparison error flag output enable. Refer to HS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin		

BITFIELD	BITS DESCRIPTION		DECODE
DE_CNT_0_ CMP_ERR_ OEN	5	DE count comparison error flag output enable. Refer to DE_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin

VRX 0 CMP ERR FLAG (0x120D)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_0 _CMP_ERR _FLAG	HS_CNT_0 _CMP_ERR _FLAG	DE_CNT_0 _CMP_ERR _FLAG	-	-	_	-	_
Reset	0x0	0x0	0x0	-	ı	_	-	_
Access Type	Read Only	Read Only	Read Only	-	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_0_ CMP_ERR_F LAG	7	VS count comparison error flag. Refer to VS_CNT_x_CMP register.	0x0: No VS count error detected 0x1: VS count error detected
HS_CNT_0_ CMP_ERR_F LAG	6	HS count comparison error flag. Refer to HS_CNT_x_CMP register.	0x0: No HS count error detected 0x1: HS count error detected
DE_CNT_0_ CMP_ERR_F LAG	5	DE count comparison error flag. Refer to DE_CNT_x_CMP register.	0x0: No DE count error detected 0x1: DE count error detected

VS_CNT_WNDW_1_MSB (0x1210)

BIT	7	6	5	4	3	2	1	0
Field	_	_	ı	_	_	_ VS_CNT_WINDOW_ SB[1:0]		
Reset	_	_	-	_	_	_	0x3	
Access Type	_	_	ı	_	_	_	Write, Read	

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_1_ MSB	1:0	VS counter counts number of frames within window specificed in this register in milliseconds. Max window at 1.023s. Default set at 1s.

VS_CNT_WNDW_1_LSB (0x1211)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_WINDOW_1_LSB[7:0]							
Reset		0xE8						
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_1_ LSB	7:0	VS counter counts number of frames within window specificed in this register in milliseconds. Max window at 1.023ms. Default set at 1ms.

VS_CNT_1_CMP (0x1212)

BIT	7	6	5	4	3	2	1	0
Field	_	_	VS_CNT_1_CMP[5:0]					
Reset	_	-	0x0					
Access Type	_	-	Write, Read					

BITFIELD	BITS	DESCRIPTION
VS_CNT_1_CMP	5:0	Compare register for VS count value. When this register is non-zero, the counted value in VS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the VS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_1_CMP_MSB (0x1213)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		HS_CNT_1_C	MP_MSB[3:0]	
Reset	_	_	_	_		0>	< 0	
Access Type	-	_	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION
HS_CNT_1_CMP_MSB	3:0	Upper 4-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_1_CMP_LSB (0x1214)

BIT	7	6	5	4	3	2	1	0		
Field		HS_CNT_1_CMP_LSB[7:0]								
Reset		0x0								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION
HS_CNT_1_CMP_LSB	7:0	Lower 8-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE_CNT_1_CMP_MSB (0x1215)

BIT	7	6	5	4	3	2	1	0
Field	_	ı	_	_	DE_CNT_1_CMP_MSB[3:0]			
Reset	_	_	_	_	0x0			
Access Type	-	-	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION
DE_CNT_1_CMP_MSB	3:0	Upper 4-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE CNT 1 CMP LSB (0x1216)

BIT	7	6	5	4	3	2	1	0		
Field		DE_CNT_1_CMP_LSB[7:0]								
Reset		0x0								
Access Type		Write, Read								

BITFIELD	BITS	DESCRIPTION
DE_CNT_1_CMP_LSB	7:0	Lower 8-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

VS_CNT_1 (0x1217)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	VS_CNT_1[5:0]						
Reset	_	_							
Access Type	_	_			Read	Only			

BITFIELD	BITS	DESCRIPTION
VS_CNT_1	5:0	VS counts within window specified in VS_CNT_WINDOW registers.

HS_CNT_1_MSB (0x1218)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		HS_CNT_	I_MSB[3:0]	
Reset	_	_	_	_				
Access Type	_	_	-	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
HS_CNT_1_MSB	3:0	Lines per frame HS counter.

HS_CNT_1_LSB (0x1219)

BIT	7	6	5	4	3	2	1	0
Field		HS_CNT_1_LSB[7:0]						
Reset								
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
HS_CNT_1_LSB	7:0	Lines per frame HS counter.

DE CNT 1 MSB (0x121A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		DE_CNT_1	_MSB[3:0]	
Reset	_	_	_	_				
Access Type	_	_	_	_		Read	Only	

BITFIELD	BITS	DESCRIPTION	
DE_CNT_1_MSB	3:0	Lines per frame DE counter.	

DE CNT 1 LSB (0x121B)

BIT	7	6	5	4	3	2	1	0	
Field		DE_CNT_1_LSB[7:0]							
Reset									
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION	
DE_CNT_1_LSB	7:0	Lines per frame DE counter.	

VRX 1 CMP ERR OEN (0x121C)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_1 _CMP_ERR _OEN	HS_CNT_1 _CMP_ERR _OEN	DE_CNT_1 _CMP_ERR _OEN	I	ı	ı	ı	-
Reset	0x1	0x1	0x1	_	_	_	_	_
Access Type	Write, Read	Write, Read	Write, Read	_	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_1_ CMP_ERR_ OEN	7	VS count comparison error flag output enable. Refer to VS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
HS_CNT_1_ CMP_ERR_ OEN	6	HS count comparison error flag output enable. Refer to HS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
DE_CNT_1_ CMP_ERR_ OEN	5	DE count comparison error flag output enable. Refer to DE_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin

VRX 1 CMP ERR FLAG (0x121D)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_1 _CMP_ERR _FLAG	HS_CNT_1 _CMP_ERR _FLAG	DE_CNT_1 _CMP_ERR _FLAG	_	_	ı	_	_
Reset	0x0	0x0	0x0	_	_	-	_	_
Access Type	Read Only	Read Only	Read Only	_	_	-	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_1_ CMP_ERR_F LAG	7	VS count comparison error flag. Refer to VS_CNT_x_CMP register.	0x0: No VS count error detected 0x1: VS count error detected
HS_CNT_1_ CMP_ERR_F LAG	6	HS count comparison error flag. Refer to HS_CNT_x_CMP register.	0x0: No HS count error detected 0x1: HS count error detected
DE_CNT_1_ CMP_ERR_F LAG	5	DE count comparison error flag. Refer to DE_CNT_x_CMP register.	0x0: No DE count error detected 0x1: DE count error detected

VS_CNT_WNDW_2_MSB (0x1220)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	_	VS_CNT_WI	NDOW_2_M 1:0]
Reset	_	_	_	_	_	_	0:	k 3
Access Type	_	_	_	_	_	_	Write, Read	

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_2_ MSB	1:0	VS counter counts number of frames within window specificed in this register in milliseconds. Max window at 1.023s. Default set at 1s.

VS CNT WNDW 2 LSB (0x1221)

BIT	7	6	5	4	3	2	1	0
Field		VS_CNT_WINDOW_2_LSB[7:0]						
Reset		0xE8						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_2_ LSB	7:0	VS counter counts number of frames within window specified in this register in milliseconds. Max window at 1.023ms. Default set at 1ms.

VS_CNT_2_CMP (0x1222)

BIT	7	6	5	4	3	2	1	0
Field	_	_	VS_CNT_2_CMP[5:0]					
Reset	_	_	0x0					
Access Type	_	_	Write, Read					

BITFIELD	BITS	DESCRIPTION
VS_CNT_2_CMP	5:0	Compare register for VS count value. When this register is non-zero, the counted value in VS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the VS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_2_CMP_MSB (0x1223)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		HS_CNT_2_C	MP_MSB[3:0]	
Reset	_	_	_	_		0>	< 0	
Access Type	-	_	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION
HS_CNT_2_CMP_MSB	3:0	Upper 4-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_2_CMP_LSB (0x1224)

BIT	7	6	5	4	3	2	1	0	
Field		HS_CNT_2_CMP_LSB[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
HS_CNT_2_CMP_LSB	7:0	Lower 8-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE CNT 2 CMP MSB (0x1225)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		DE_CNT_2_C	MP_MSB[3:0]	
Reset	_	-	_	-	0x0			
Access Type	_	_	_	_	Write, Read			

BITFIELD	BITS	DESCRIPTION
DE_CNT_2_CMP_MSB	3:0	Upper 4-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE CNT 2 CMP LSB (0x1226)

BIT	7	6	5	4	3	2	1	0	
Field		DE_CNT_2_CMP_LSB[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
DE_CNT_2_CMP_LSB	7:0	Lower 8-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

VS_CNT_2 (0x1227)

BIT	7	6	5	4	3	2	1	0
Field	_	_	VS_CNT_2[5:0]					
Reset	_	_						
Access Type	_	_			Read	Only		

BITFIELD	BITS	DESCRIPTION
VS_CNT_2	5:0	VS counts within window specified in VS_CNT_WINDOW registers.

HS_CNT_2_MSB (0x1228)

BIT	7	6	5	4	3	2	1	0
Field	_		_	_		HS_CNT_2	2_MSB[3:0]	
Reset	_	-	_	_				
Access Type	-	-	-	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
HS_CNT_2_MSB	3:0	Lines per frame HS counter.

HS_CNT_2_LSB (0x1229)

BIT	7	6	5	4	3	2	1	0
Field		HS_CNT_2_LSB[7:0]						
Reset								
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
HS_CNT_2_LSB	7:0	Lines per frame HS counter.

DE CNT 2 MSB (0x122A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		DE_CNT_2	2_MSB[3:0]	
Reset	_	_	_	_				
Access Type	_	_	_	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
DE_CNT_2_MSB	3:0	Lines per frame DE counter.

DE CNT 2 LSB (0x122B)

BIT	7	6	5	4	3	2	1	0
Field		DE_CNT_2_LSB[7:0]						
Reset								
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
DE_CNT_2_LSB	7:0	Lines per frame DE counter.

VRX 2 CMP ERR OEN (0x122C)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_2 _CMP_ERR _OEN	HS_CNT_2 _CMP_ERR _OEN	DE_CNT_2 _CMP_ERR _OEN	ı	1	_	-	1
Reset	0x1	0x1	0x1	_		_	_	ı
Access Type	Write, Read	Write, Read	Write, Read	-	1	_	_	-

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_2_ CMP_ERR_ OEN	7	VS count comparison error flag output enable. Refer to VS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
HS_CNT_2_ CMP_ERR_ OEN	6	HS count comparison error flag output enable. Refer to HS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
DE_CNT_2_ CMP_ERR_ OEN	5	DE count comparison error flag output enable. Refer to DE_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin

VRX 2 CMP ERR FLAG (0x122D)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_2 _CMP_ERR _FLAG	HS_CNT_2 _CMP_ERR _FLAG	DE_CNT_2 _CMP_ERR _FLAG	_	_	_	_	_
Reset	0x0	0x0	0x0	_	_	_	_	_
Access Type	Read Only	Read Only	Read Only	_	_	_	_	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_2_ CMP_ERR_F LAG	7	VS count comparison error flag. Refer to VS_CNT_x_CMP register.	0x0: No VS count error detected 0x1: VS count error detected
HS_CNT_2_ CMP_ERR_F LAG	6	HS count comparison error flag. Refer to HS_CNT_x_CMP register.	0x0: No HS count error detected 0x1: HS count error detected
DE_CNT_2_ CMP_ERR_F LAG	5	DE count comparison error flag. Refer to DE_CNT_x_CMP register.	0x0: No DE count error detected 0x1: DE count error detected

VS_CNT_WNDW_3_MSB (0x1230)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_	_	_	VS_CNT_WI	NDOW_3_M 1:0]
Reset	_	_	_	_	_	_	0:	k 3
Access Type	_	_	_	_	_	- Write, Read		Read

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_3_ MSB	1:0	VS counter counts number of frames within window specified in this register in milliseconds. Max window at 1.023s. Default set at 1ms.

VS CNT WNDW 3 LSB (0x1231)

BIT	7	6	5	4	3	2	1	0	
Field		VS_CNT_WINDOW_3_LSB[7:0]							
Reset		0xE8							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
VS_CNT_WINDOW_3_ LSB	7:0	VS counter counts number of frames within window specified in this register in milliseconds. Max window at 1.023ms. Default set at 1s.

VS_CNT_3_CMP (0x1232)

BIT	7	6	5	4	3	2	1	0
Field	_	_	VS_CNT_3_CMP[5:0]					
Reset	_	_	0x0					
Access Type	_	_	Write, Read					

BITFIELD	BITS	DESCRIPTION
VS_CNT_3_CMP	5:0	Compare register for VS count value. When this register is non-zero, the counted value in VS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the VS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_3_CMP_MSB (0x1233)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		HS_CNT_3_C	MP_MSB[3:0]	
Reset	_	_	_	_		0>	< 0	
Access Type	_	-	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION
HS_CNT_3_CMP_MSB	3:0	Upper 4-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

HS_CNT_3_CMP_LSB (0x1234)

BIT	7	6	5	4	3	2	1	0	
Field		HS_CNT_3_CMP_LSB[7:0]							
Reset		0x0							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION
HS_CNT_3_CMP_LSB	7:0	Lower 8-bits of compare register for HS count value. When this register is non-zero, the counted value in HS_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the HS_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE_CNT_3_CMP_MSB (0x1235)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	_	DE_CNT_3_CMP_MSB[3:0]			
Reset	_	_	_	_	0x0			
Access Type	_	-	_	_		Write,	Read	

BITFIELD	BITS	DESCRIPTION
DE_CNT_3_CMP_MSB	3:0	Upper 4-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

DE CNT 3 CMP LSB (0x1236)

BIT	7	6	5	4	3	2	1	0	
Field		DE_CNT_3_CMP_LSB[7:0]							
Reset		0x0							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION
DE_CNT_3_CMP_LSB	7:0	Lower 8-bits of compare register for DE count value. When this register is non-zero, the counted value in DE_CNT_x is checked against the value in this register. If the two values are not within +/- 2, the DE_CNT_x_CMP_ERR flag will get set. When this register is 0, the compare feature is disabled.

VS_CNT_3 (0x1237)

BIT	7	6	5	4	3	2	1	0
Field	_	_	VS_CNT_3[5:0]					
Reset	_	_						
Access Type	_	_	Read Only					

BITFIELD	BITS	DESCRIPTION
VS_CNT_3	5:0	VS counts within window specified in VS_CNT_WINDOW registers.

HS_CNT_3_MSB (0x1238)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		HS_CNT_3	3_MSB[3:0]	
Reset	_	_	_	_				
Access Type	-	_	-	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
HS_CNT_3_MSB	3:0	Lines per frame HS counter.

HS_CNT_3_LSB (0x1239)

BIT	7	6	5	4	3	2	1	0	
Field		HS_CNT_3_LSB[7:0]							
Reset									
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION
HS_CNT_3_LSB	7:0	Lines per frame HS counter.

DE CNT 3 MSB (0x123A)

BIT	7	6	5	4	3	2	1	0
Field	_	_	_	_		DE_CNT_3	3_MSB[3:0]	
Reset	-	_	_	_				
Access Type	_	_	_	_		Read	Only	

BITFIELD	BITS	DESCRIPTION
DE_CNT_3_MSB	3:0	Lines per frame DE counter.

DE CNT 3 LSB (0x123B)

BIT	7	6	5	4	3	2	1	0
Field		DE_CNT_3_LSB[7:0]						
Reset								
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
DE_CNT_3_LSB	7:0	Lines per frame DE counter.

VRX 3 CMP ERR OEN (0x123C)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_3 _CMP_ERR _OEN	HS_CNT_3 _CMP_ERR _OEN	DE_CNT_3 _CMP_ERR _OEN	ı	_	ı	-	_
Reset	0x1	0x1	0x1	_	_	_	_	_
Access Type	Write, Read	Write, Read	Write, Read	ı	_	ı	ı	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_3_ CMP_ERR_ OEN	7	VS count comparison error flag output enable. Refer to VS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
HS_CNT_3_ CMP_ERR_ OEN	6	HS count comparison error flag output enable. Refer to HS_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin
DE_CNT_3_ CMP_ERR_ OEN	5	DE count comparison error flag output enable. Refer to DE_CNT_x_CMP register.	0x0: Disable reporting of error to ERRB pin 0x1: Enable reporting of error to ERRB pin

VRX 3 CMP ERR FLAG (0x123D)

BIT	7	6	5	4	3	2	1	0
Field	VS_CNT_3 _CMP_ERR _FLAG	HS_CNT_3 _CMP_ERR _FLAG	DE_CNT_3 _CMP_ERR _FLAG	-	-	_	-	_
Reset	0x0	0x0	0x0	-	-	_	_	_
Access Type	Read Only	Read Only	Read Only	-	-	_	-	_

BITFIELD	BITS	DESCRIPTION	DECODE
VS_CNT_3_ CMP_ERR_F LAG	7	VS count comparison error flag. Refer to VS_CNT_x_CMP register.	0x0: No VS count error detected 0x1: VS count error detected
HS_CNT_3_ CMP_ERR_F LAG	6	HS count comparison error flag. Refer to HS_CNT_x_CMP register.	0x0: No HS count error detected 0x1: HS count error detected
DE_CNT_3_ CMP_ERR_F LAG	5	DE count comparison error flag. Refer to DE_CNT_x_CMP register.	0x0: No DE count error detected 0x1: DE count error detected

TUN_MODE_DET (0x1260)

BIT	7	6	5	4	3	2	1	0
Field	CPHY_MO DE_OVRD_ EN	_	_	_	BACKTOP4 _TUN_DET	BACKTOP3 _TUN_DET	BACKTOP2 _TUN_DET	BACKTOP1 _TUN_DET
Reset	0x0	_	_	_				
Access Type	Write, Read	_	_	_	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
CPHY_MOD E_OVRD_EN	7	Each backtop use values set in BACKTOPx_CPHY_MODE_OVRD register instead of detected (BACKTOPx_CPHY_MODE_DET). Used only in Wx4H aggregation in tunneling mode.	0x0: Controller 0 0x1: Controller 1
BACKTOP4_ TUN_DET	3	Detected tunneling mode flag	0x0: Tunnel Mode not detected 0x1: Tunnel Mode detected
BACKTOP3_ TUN_DET	2	Detected tunneling mode flag	0x0: Tunnel Mode not detected 0x1: Tunnel Mode detected
BACKTOP2_ TUN_DET	1	Detected tunneling mode flag	0x0: Tunnel Mode not detected 0x1: Tunnel Mode detected
BACKTOP1_ TUN_DET	0	Detected tunneling mode flag	0x0: Tunnel Mode not detected 0x1: Tunnel Mode detected

TUN_CPHY_DET (0x1261)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP4 _CPHY_MO DE_OVRD	BACKTOP3 _CPHY_MO DE_OVRD	BACKTOP2 _CPHY_MO DE_OVRD	BACKTOP1 _CPHY_MO DE_OVRD	BACKTOP4 _CPHY_MO _DE_DET	BACKTOP3 _CPHY_MO _DE_DET	BACKTOP2 _CPHY_MO _DE_DET	BACKTOP1 _CPHY_MO _DE_DET
Reset	0x1	0x1	0x1	0x1				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP4_ CPHY_MOD E_OVRD	7	Must also set CPHY_MODE_OVRD register to 1. BACKTOP4 cphy_mode override value (used only in Wx4H aggregation and DPHY-to-CPHY conversion in tunneling mode).	0x0: Controller 0 0x1: Controller 1
BACKTOP3_ CPHY_MOD E_OVRD	6	Must also set CPHY_MODE_OVRD register to 1. BACKTOP3 cphy_mode override value (used only in Wx4H aggregation and DPHY-to-CPHY conversion in tunneling mode).	0x0: Controller 0 0x1: Controller 1
BACKTOP2_ CPHY_MOD E_OVRD	5	Must also set CPHY_MODE_OVRD register to 1. BACKTOP2 cphy_mode override value (used only in Wx4H aggregation and DPHY-to-CPHY conversion in tunneling mode).	0x0: Controller 0 0x1: Controller 1
BACKTOP1_ CPHY_MOD E_OVRD	4	Must also set CPHY_MODE_OVRD register to 1. BACKTOP1 cphy_mode override value (used only in Wx4H aggregation and DPHY-to-CPHY conversion in tunneling mode).	0x0: Controller 0 0x1: Controller 1
BACKTOP4_ CPHY_MOD E_DET	3	Detected CPHY mode header/packets from SER in tunneling mode (used for Wx4H aggregation and setting DPHY-to-CPHY conversion mode in tunneling mode)	0x0: CPHY Tunnel Mode not Detected 0x1: CPHY Tunnel Mode Detected
BACKTOP3_ CPHY_MOD E_DET	2	Detected CPHY mode header/packets from SER in tunneling mode (used for Wx4H aggregation and setting DPHY-to-CPHY conversion mode in tunneling mode)	0x0: CPHY Tunnel Mode not Detected 0x1: CPHY Tunnel Mode Detected
BACKTOP2_ CPHY_MOD E_DET	1	Detected CPHY mode header/packets from SER in tunneling mode (used for Wx4H aggregation and setting DPHY-to-CPHY conversion mode in tunneling mode)	0x0: CPHY Tunnel Mode not Detected 0x1: CPHY Tunnel Mode Detected
BACKTOP1_ CPHY_MOD E_DET	0	Detected CPHY mode header/packets from SER in tunneling mode (used for Wx4H aggregation and setting DPHY-to-CPHY conversion mode in tunneling mode)	0x0: CPHY Tunnel Mode not Detected 0x1: CPHY Tunnel Mode Detected

TUN_CPHY_LANE_DET (0x1262)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP4_TUN_CPHY_ SER_LANE_DET[1:0]		BACKTOP3_TUN_CPHY_ SER_LANE_DET[1:0]		BACKTOP2_TUN_CPHY_ SER_LANE_DET[1:0]		BACKTOP1_TUN_CPHY_ SER_LANE_DET[1:0]	
Reset								
Access Type	Read	Only	Read	l Only	Read	Only	Read	Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP4_ TUN_CPHY_ SER_LANE_ DET	7:6	Detected number of CPHY lanes in SER	0x0: 1-lane 0x1: 2-lanes
BACKTOP3_ TUN_CPHY_ SER_LANE_ DET	5:4	Detected number of CPHY lanes in SER	0x0: 1-lane 0x1: 2-lanes
BACKTOP2_ TUN_CPHY_ SER_LANE_ DET	3:2	Detected number of CPHY lanes in SER	0x0: 1-lane 0x1: 2-lanes
BACKTOP1_ TUN_CPHY_ SER_LANE_ DET	1:0	Detected number of CPHY lanes in SER	0x0: 1-lane 0x1: 2-lanes

TMD_HEADER_ERR_FLAGS_1 (0x1264)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP1 _TMD_SP_ DET_ERR	-	BACKTOP1 _TMD_CRC _2L_ERR_F _LAG	BACKTOP1 _TMD_CRC _1L_ERR_F _LAG	-	-	BACKTOP1 _TMD_ECC _ERR_FLA G	BACKTOP1 _TMD_ECC _FLAG
Reset		_			_	_		
Access Type	Read Only	_	Read Only	Read Only	-	_	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP1_ TMD_SP_DE T_ERR	7	Detected header error in short-packet detect state. Short packet header after detected three consecutive matching headers did not match in mode (DPHY/CPHY 1-lane/CPHY 2-lane). This error will also reset the tmd_pkt_cnt in the same backtop.	0x0: No error detected 0x1: Detected Header Error
BACKTOP1_ TMD_CRC_2 L_ERR_FLA G	5	2-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP1_ TMD_CRC_1 L_ERR_FLA G	4	1-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP1_ TMD_ECC_E RR_FLAG	1	DPHY mode uncorrectable ECC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP1_ TMD_ECC_F LAG	0	DPHY mode ECC error (1-bit correctable) detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error

TMD_HEADER_ERR_FLAGS_2 (0x1265)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP2 _TMD_SP_ DET_ERR	-	BACKTOP2 _TMD_CRC _2L_ERR_F _LAG	BACKTOP2 _TMD_CRC _1L_ERR_F _LAG	_	-	BACKTOP2 _TMD_ECC _ERR_FLA G	BACKTOP2 _TMD_ECC _FLAG
Reset		_			_	_		
Access Type	Read Only	_	Read Only	Read Only	_	_	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP2_ TMD_SP_DE T_ERR	7	Detected header error in short-packet detect state. Short packet header after detected 3-consecutive matching headers did not match in mode (DPHY/CPHY 1-lane/CPHY 2-lane). This error will also reset the tmd_pkt_cnt in the same backtop.	0x0: No error detected 0x1: Detected Header Error
BACKTOP2_ TMD_CRC_2 L_ERR_FLA G	5	2-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP2_ TMD_CRC_1 L_ERR_FLA G	4	1-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP2_ TMD_ECC_E RR_FLAG	1	DPHY mode uncorrectable ECC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP2_ TMD_ECC_F LAG	0	DPHY mode ECC error (1-bit correctable) detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error

TMD_HEADER_ERR_FLAGS_3 (0x1266)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP3 _TMD_SP_ DET_ERR	_	BACKTOP3 _TMD_CRC _2L_ERR_F _LAG	BACKTOP3 _TMD_CRC _1L_ERR_F LAG	-	-	BACKTOP3 _TMD_ECC _ERR_FLA G	BACKTOP3 _TMD_ECC _FLAG
Reset		_				_		
Access Type	Read Only	_	Read Only	Read Only	_	_	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP3_ TMD_SP_DE T_ERR	7	Detected header error in short-packet detect state. Short packet header after detected 3-consecutive matching headers did not match in mode (DPHY/CPHY 1-lane/CPHY 2-lane). This error will also reset the tmd_pkt_cnt in the same backtop.	0x0: No error detected 0x1: Detected Header Error
BACKTOP3_ TMD_CRC_2 L_ERR_FLA G	5	2-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP3_ TMD_CRC_1 L_ERR_FLA G	4	1-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP3_ TMD_ECC_E RR_FLAG	1	DPHY mode uncorrectable ECC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP3_ TMD_ECC_F LAG	0	DPHY mode ECC error (1-bit correctable) detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error

TMD_HEADER_ERR_FLAGS_4 (0x1267)

BIT	7	6	5	4	3	2	1	0
Field	BACKTOP4 _TMD_SP_ DET_ERR	_	BACKTOP4 _TMD_CRC _2L_ERR_F _LAG	BACKTOP4 _TMD_CRC _1L_ERR_F _LAG	ı	-	BACKTOP4 _TMD_ECC _ERR_FLA G	BACKTOP4 _TMD_ECC _FLAG
Reset		_			_	_		
Access Type	Read Only	_	Read Only	Read Only	ı	_	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP4_ TMD_SP_DE T_ERR	7	Detected header error in short-packet detect state. Short packet header after detected 3-consecutive matching headers did not match in mode (DPHY/CPHY 1-lane/CPHY 2-lane). This error will also reset the tmd_pkt_cnt in the same backtop.	0x0: No error detected 0x1: Detected Header Error

BITFIELD	BITS	DESCRIPTION	DECODE
BACKTOP4_ TMD_CRC_2 L_ERR_FLA G	5	2-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP4_ TMD_CRC_1 L_ERR_FLA G	4	1-lane CPHY mode CRC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP4_ TMD_ECC_E RR_FLAG	1	DPHY mode uncorrectable ECC error detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error
BACKTOP4_ TMD_ECC_F LAG	0	DPHY mode ECC error (1-bit correctable) detected. This flag is sticky and will update when header is enabled (i.e. during tunnel mode detection OR Wx4H aggregation)	0x0: No error detected 0x1: Detected Error

TMD_PKT_CNT_1 (0x126A)

BIT	7	6	5	4	3	2	1	0
Field		TMD_PKT_CNT_1[7:0]						
Reset								
Access Type		Read Only						

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_1	7:0	Number of packets used to determine tunnel/pixel mode in BACKTOP1

TMD PKT CNT 2 (0x126B)

BIT	7	6	5	4	3	2	1	0		
Field		TMD_PKT_CNT_2[7:0]								
Reset										
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_2	7:0	Number of packets used to determine tunnel/pixel mode in BACKTOP2

TMD_PKT_CNT_3 (0x126C)

BIT	7	6	5	4	3	2	1	0		
Field		TMD_PKT_CNT_3[7:0]								
Reset										
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_3	7:0	Number of packets used to determine tunnel/pixel mode in BACKTOP3

TMD_PKT_CNT_4 (0x126D)

BIT	7	6	5	4	3	2	1	0		
Field		TMD_PKT_CNT_4[7:0]								
Reset										
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_4	7:0	Number of packets used to determine tunnel/pixel mode in BACKTOP4

TMD_PKT_CNT_1_H (0x126E)

BIT	7	6	5	4	3	2	1	0			
Field	_	_	_		TMD_PKT_CNT_1_H[4:0]						
Reset	_	_	_								
Access Type	_	_	_		Read Only						
BITFIE	LD	BITS			DESCRIPTION						

TMD_PKT_CNT_1_H 4:0 Number of packets used to determine tunnel/pixel mode in BACKTOP1

TMD_PKT_CNT_2_H (0x126F)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	TMD_PKT_CNT_2_H[4:0]					
Reset	_	_	_						
Access Type	_	_	-	Read Only					

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_2_H	4:0	Number of packets used to determine tunnel/pixel mode in BACKTOP2

TMD_PKT_CNT_3_H (0x1270)

BIT	7	6	5	4	3	2	1	0		
Field	_	_	_		TMD_PKT_CNT_3_H[4:0]					
Reset	_	_	_							
Access Type	_	_	_		Read Only					

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_3_H	4:0	Number of packets used to determine tunnel/pixel mode in BACKTOP3

TMD_PKT_CNT_4_H (0x1271)

BIT	7	6	5	4	3	2	1	0	
Field	_	_	_	TMD_PKT_CNT_4_H[4:0]					
Reset	_	_	_						
Access Type	_	_	-			Read Only			

BITFIELD	BITS	DESCRIPTION
TMD_PKT_CNT_4_H	4:0	Number of packets used to determine tunnel/pixel mode in BACKTOP4

Quad Tunneling GMSL2/1 to CSI-2 Deserializer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/22	Initial Release	_
1	7/22	Corrected typos in Table 9. MFP Pin Function Map	41
2	9/22	General description and Simplified Block Diagram updated.	1-2
3	10/22	Removed asterisks from future products in the Ordering Information table.	46
4	1/23	Changed the verbiage in the tunneling and pixel mode sections and adjusted the pictures.	34

GMSL is a trademark of Maxim Integrated Products, Inc.

