Solutions to selected exercises in R.Greenberg's Park City Note - Chapter 3

Ruichen XU December 2023

Exercise 3.10 (by Luchen Ther)

(throughout, we let A to be the Pontragin dual of A).

Steps: Let Y be the topological generator of T. We see since

$$(A^T)^{\wedge} = \widehat{A}_{\Gamma} = \widehat{A}/(\gamma-1)\widehat{A}$$

as A^T is finte, $\widehat{A}/(x-1)\widehat{A}$ is then finite. By [Greenberg, PC note, Thm3.9], (i.e. the topological Nakayama's Lenna), \widehat{A} is a finitely generated torsion 1-module S tepz: We translate the condition $A^{TnH} = A^{Tn}$ into its chal, that is

an exact sequence $0 \longrightarrow \frac{\gamma^{p-1}}{\gamma^{pn+1}} \cdot A^{\vee} \longrightarrow A^{\vee}(\gamma^{pn+1}) A^{\vee} \xrightarrow{A^{\vee}} A^{\vee}(\gamma^{pn}) A^{\vee} \longrightarrow 0$

here: the subjectivity (+) follows from the natural inclusion $A^{Tn} \subseteq A^{Tm+1}$ and that $A^{Tn+1} = A^{Tn}$ implies that (+) has trivial kernel, i.e.

$$\frac{\gamma^{p^{n}}-1}{\gamma^{p^{n+1}}} \cdot A^{\vee} \stackrel{\text{(b)}}{=} (\gamma^{p^{n}}-1)A^{\vee} \otimes \gamma^{p} = 0 \qquad (**)$$

where $g = \frac{\gamma^{pn+1}}{\gamma^{pn}-1} \in \Lambda$. We then note that:

- . (γ^{p}_{-1}) A^{V} is a finitely generated Λ -module: indeed from <u>Step 1</u> we see A^{V} is so.
- · (g) \subseteq manSpec Λ : to see this, we identify $\Lambda = \mathbb{Z}_p[iT]$ with the power series ring $\mathbb{Z}_p[iT]$ and $g = \frac{\omega_{n+i}(T)}{\omega_n(T)}$. Then one checks directly that $g \in (p,T) =$ the unique maximal ideal of $\mathbb{Z}_p[iT]$.

So we apply the (abstract) Nakayama's Lemma on (**) to see $(\gamma^p_{-1})A^V=0$. Finally, this implies $A^V_{(\gamma p^n_{-1})A^V}=A^V$. Taking the Pontryagui dual again back, we see this is exactly $A=A^{Tn}$, as desired.

Remark: Here in (*). We used the property that for $f,g \in R$ and A an R-module. $fA/(fg)A \simeq fA \otimes R/g$.

Frencise 3.11

- (a) We apply Exercise 3.10: for any me $\mathbb{Z}_{>0}$, we use $A = E(Foo)[p^m]$, n = 1, $T = Gost(Foo/F) \simeq \mathbb{Z}_p$ to see that since $A^T = E(F)[p^m]$ is finite, we get $E(Foo)[p^m] = E(F)[p^m]$. Since this holds for any m, take the direct limit we obtain $E(Foo)[p^{00}] = E(F)[p^{00}]$.
- (b) To show E(Ob)tor = E(OD)tor, we consider two separated cases:

(ase 1: For l + 2, E(Do)[loo] = E(D)[loo] = 0.

Indeed, for $l \neq 2$, since E has good reduction at 2, we can consider for any $n \geqslant 0$, by [Silverman, VIII.1.4], Here is an injection

 $\mathbb{E}(\mathbb{Q}_n)[\mathbb{L}] \longrightarrow \mathbb{E}(\mathbb{F}_{2^{m(n)}}) \qquad --- (*)$

where for @n/@, the price 2 has price p_n of @n lying above it with residue field $F_{2m(n)}$, $m(n) \ge 1$ depending on n. Now we use [Silverman, Exercise 5.13] to see inductively that for any $m \ge 0$,

 $\#\widetilde{E}(\mathbb{F}_{2^{m+2}}) = \text{ an even number } - \#\widetilde{E}(\mathbb{F}_{2^{m+1}})$.

So since $\#E(\mathbb{F}_2)$ is 4, we see that $\#E(\mathbb{F}_{2^m})$ is an even number for any m>0. Now the injection has righthand side order even and left hand side of possible order ℓ , ℓ^2 and zero. Since ℓ is odd, this forces $E(\Re_n)[\ell]=0$.

Now we have seen in particular that $E(Q)[l^{QO}] = 0$. Moreover, by Exercise 1.15(a), $E(Qoo)[l^{QO}]$ is finite, say they are Q_1, \dots, Q_N and WLOG we assume they are l-torsion. By such a finiteness result, we can choose a common $n \geqslant 0$ s.t. $Q_1, \dots, Q_N \in E(Q_n)[l^{QO}]$. But as we have seen above, $E(Q_n)[l] = 0$, so this forces $E(Q_{O})[l^{QO}] = 0$. In particular, this guido $E(Q_{O})[l^{QO}] = E(Q)[l^{QO}] = 0$.

Exercise 3.11

(bo) There is a small gap on computing the first layer @1/@. Here we are dealing with Z_2 -extension, which is a little bit subtle. Note:

As $Gal(Q(1_{200})/Q)$ has a order 2 retember element being the complex conjugation, and $(\mathbb{Z}_2^{\times})_{tor}$ is exactly of order 2. Q_{00}/Q is the maximal real subfield of Q_{00} . Passing to each layers, Q_{01} is the maximal real subfield of $Q(1_{200})_{tor}$ for n>0. In particular, $Q_{1}=Q(\sqrt{2})$.

Remark: In [Greenberg, LNM note], it is also needed to compute @2: so we need to compute the maximal real subfield of @(\$,6), which is:

$$\mathcal{Q}_2 = \mathcal{Q}(\mathcal{I}_{16} + \mathcal{I}_{16}^{-1}) = \mathcal{Q}(\cos \frac{\pi}{8}) = \mathcal{Q}(\frac{\sqrt{2+\sqrt{2}}}{2}).$$

again quite explicit.

Canall: this is a quite ad-hoc computation since \mathbb{Z}_2^{\times} has torsion subgroup of order 2, similarly for \mathbb{Z}_3^{\times} , so the order 2 element is precisely to corresponds to the complex conjugation. For $p \geqslant 5$,

 $\mathbb{Z}_{p}^{\times} = \mathbb{F}_{p}^{\times} \times (1 + p \mathbb{Z}_{p})$

with \mathbb{T}_p^{\times} of order p-1. Then $\mathfrak{Q}_n \subseteq \mathfrak{Q}(\mathcal{L}_{pmn})$ (note: when p=2, we have $\mathfrak{Q}_n \subseteq \mathfrak{Q}(\mathcal{L}_{pmn})$) is of index p-1, contained in $(\mathfrak{Q}(\mathcal{L}_{pmn})^{\dagger})$ but is even Smaller. To make it more explicit, we can use $[\hat{a}] \not \to p$, $[\hat{b}] \not \to \hat{b} \not \to \hat{b}$

