# Reasoning about Bounded Reasoning

Shuige Liu

Gabriel Ziegler
University of Edinburgh

Bocconi University

19 May 2025

York-Durham-Edinburgh Theory Workshop

▶ Bounded Reasoning in Games:

 $\triangleright$  level-k model

(Nagel, 1995, Stahl II and Wilson, 1994, 1995)

- ▶ Bounded Reasoning in Games:
  - $\triangleright$  level-k model

(Nagel, 1995, Stahl II and Wilson, 1994, 1995)

▷ Cognitive Hierarchy Model

(Camerer, Ho, and Chong, 2004)

- Bounded Reasoning in Games:
  - ▷ level-k model (Nagel, 1995, Stahl II and Wilson, 1994, 1995)
  - Cognitive Hierarchy Model

(Camerer, Ho, and Chong, 2004)

▷ Sophisticated Strategic Reasoning:

Bounded Reasoning in Games:

 $\triangleright$  level-k model

(Nagel, 1995, Stahl II and Wilson, 1994, 1995)

Cognitive Hierarchy Model

(Camerer, Ho, and Chong, 2004)

▷ Sophisticated Strategic Reasoning:

▷ Epistemic Game Theory:

Explicit model of reasoning

Bounded Reasoning in Games:

 $\triangleright$  level-k model

(Nagel, 1995, Stahl II and Wilson, 1994, 1995)

Cognitive Hierarchy Model

(Camerer, Ho, and Chong, 2004)

Sophisticated Strategic Reasoning:

▷ Epistemic Game Theory:

Explicit model of reasoning

▷ Behavioral implications:

Rationalizability

 $\triangleright$  level-k model

(Nagel, 1995, Stahl II and Wilson, 1994, 1995)

(Camerer, Ho, and Chong, 2004)

▷ Sophisticated Strategic Reasoning:

▷ Epistemic Game Theory:

Explicit model of reasoning

Behavioral implications:

Rationalizability

#### Main question:

What is the relation of these approaches?

Is the former consistent with an explicit model of reasoning?

| Player 1 \ 2 | l    | c    | r   |
|--------------|------|------|-----|
| U            | 3, 2 | 2, 1 | 1,0 |
| M            | 2, 2 | 3, 1 | 2,0 |
| D            | 1, 1 | 1, 2 | 3,0 |
|              |      |      |     |

| Player 1 \ 2 | l    | c    | r   |
|--------------|------|------|-----|
| U            | 3, 2 | 2, 1 | 1,0 |
| M            | 2, 2 | 3, 1 | 2,0 |
| D            | 1, 1 | 1, 2 | 3,0 |
|              |      |      |     |

 $\triangleright$  Sophisticated Strategic Reasoning:

| Player $1 \setminus 2$ | l    | c    | r   |
|------------------------|------|------|-----|
| U                      | 3, 2 | 2, 1 | 1,0 |
| M                      | 2, 2 | 3, 1 | 2,0 |
| D                      | 1,1  | 1, 2 | 3,0 |

 $\, \triangleright \, \, \mathsf{Sophisticated} \, \, \mathsf{Strategic} \, \, \mathsf{Reasoning} ;$ 

▶ If players are rational

 $R^1 = A_1 \times \{l, c\}$ 

| Player 1 \ 2 | l    | c    | r   |
|--------------|------|------|-----|
| U            | 3, 2 | 2, 1 | 1,0 |
| M            | 2, 2 | 3, 1 | 2,0 |
| D            | 1,1  | 1, 2 | 3,0 |

 $\triangleright$  Sophisticated Strategic Reasoning:

▷ If players are rational  $R^1 = A_1 \times \{l, c\}$ 

▷ If Ps are rat. and believe in rat.

 $R^2 = \{U,M\} \times \{l,c\}$ 

| Player 1 \ 2 | l    | c    | r   |
|--------------|------|------|-----|
| U            | 3, 2 | 2, 1 | 1,0 |
| M            | 2, 2 | 3, 1 | 2,0 |
| D            | 1, 1 | 1, 2 | 3,0 |
|              |      |      |     |

▷ If Ps are rat. and believe in rat.

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $\rhd \ R^3 = \{U,M\} \times \{l\}$ 

| Player 1 \ 2 | l    | c    | r   |
|--------------|------|------|-----|
| U            | 3, 2 | 2, 1 | 1,0 |
| M            | 2, 2 | 3, 1 | 2,0 |
| D            | 1,1  | 1, 2 | 3,0 |

- $\, \triangleright \, \, \mathsf{Sophisticated} \, \, \mathsf{Strategic} \, \, \mathsf{Reasoning} ;$ 
  - ▷ If players are rational

$$R^1 = A_1 \times \{l, c\}$$

▷ If Ps are rat. and believe in rat.

$$R^2 = \{U, M\} \times \{l, c\}$$

$$\rhd \ R^3 = \{U,M\} \times \{l\}$$

$$\rhd \ R^4 = \{(U,l)\} = R^\infty$$

 $\triangleright$  Behavioral implications of RCBR

 $\triangleright$  Level-k model w. anchor  $p = (\delta_D, \delta_r)$ 

 $R^1 = A_1 \times \{l, c\}$ 

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $R^3 = \{U, M\} \times \{l\}$  $R^4 = \{(U, l)\} = R^{\infty}$ 

 $R^1 = A_1 \times \{l, c\}$ 

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $R^{3} = \{U, M\} \times \{l\}$  $R^{4} = \{(U, l)\} = R^{\infty}$ 

 ${\rm Level-}k \ {\rm model} \ {\rm w. \ anchor} \ p = (\delta_D, \delta_r)$   ${\rm P} \ L^1[p] = \{(D,c)\}$ 

 $R^1 = A_1 \times \{l, c\}$ 

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $R^{3} = \{U, M\} \times \{l\}$  $R^{4} = \{(U, l)\} = R^{\infty}$ 

#### 

$$\begin{tabular}{l} $ \blacktriangleright$ Level-$k$ model w. anchor $p=(\delta_D,\delta_r)$ \\ \\ $ \blacktriangleright$ $L^1[p]=\{(D,c)\}$ \\ \\ $ \blacktriangleright$ $L^2[p]=\{(M,c)\}$ \\ \\ \end{tabular}$$

 $R^1 = A_1 \times \{l, c\}$ 

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $R^3 = \{U, M\} \times \{l\}$  $R^4 = \{(U, l)\} = R^{\infty}$ 

 $R^2 = \{U, M\} \times \{l, c\}$ 

 $R^3 = \{U, M\} \times \{l\}$  $R^4 = \{(U, l)\} = R^{\infty}$ 

Player 
$$1 \setminus 2$$
  $l$   $c$   $r$  
$$U = 3,2 = 2,1 = 1,0$$
 
$$M = 2,2 = 3,1 = 2,0$$
 
$$D = 1,1 = 1,2 = 3,0$$
 
$$R^1 = A_1 \times \{l,c\}$$

```
▷ L<sup>1</sup>[p] = {(D, c)}

▷ L<sup>2</sup>[p] = {(M, c)}

▷ L<sup>3</sup>[p] = {(M, l)}

▷ L<sup>4</sup>[p] = {(U, l)}
```

 $\triangleright$  More generally,  $L^k[p] \subseteq R^k$ 

 $\triangleright$  Level-k model w. anchor  $p = (\delta_D, \delta_r)$ 

Player 1 
$$\setminus$$
 2  $\qquad l \qquad c$ 

U

M

 $R^4 = \{(U, l)\} = R^{\infty}$ 

$$3,2$$
  $2,1$   $1,0$   $2,2$   $3,1$   $2,0$ 

$$D = 1, 1, 1, 2, 3, 0$$

$$R^{1} = A_{1} \times \{l, c\}$$

$$R^{2} = \{U, M\} \times \{l, c\}$$

$$R^{3} = \{U, M\} \times \{l\}$$

$$\triangleright \ L^3[p] = \{(M,l)\}$$
 
$$\triangleright \ L^4[p] = \{(U,l)\}$$
 
$$\triangleright \ \mathsf{More\ generally},\ L^k[p]$$

$$ightharpoonup$$
 level- $k$  is consistent with assumptions about rationality and higher-order

reasoning about rationality

#### Our Approach

- ▶ We study *complete* information games
  - ▷ A player is uncertain only about action choices of others

(Actually, also about the reasoning about this uncertainty  $\rightarrow$  EGT)

#### **Our Approach**

- ▶ We study *complete* information games
  - ▷ A player is uncertain only about action choices of others

(Actually, also about the reasoning about this uncertainty  $\rightarrow$  EGT)

▷ In models like level-k or CH, there is additional uncertainty about the level of co-players, at least potentially (and also about the reasoning about this)

#### **Our Approach**

- ▶ We study *complete* information games
  - ▷ A player is uncertain only about action choices of others

(Actually, also about the reasoning about this uncertainty  $\rightarrow$  EGT)

- ▷ In models like level-k or CH, there is additional uncertainty about the level of co-players, at least potentially (and also about the reasoning about this)
- ▶ We analyze the complete information game by transforming it into an *incomplete* information game
  - $\triangleright$  Allows to unify level-k, CH, and a robust (belief-free) generalization within one framework

#### Agenda

- 1. Model set-up and background knowledge
- 2. Downward Rationalizability
- 3. Level-k Rationalizability

1 – The Set-Up

# The Primitive Object: A Complete Information Game

- ho A finite two-player game with complete information  $G = \langle I, (A_i, \pi_i)_{i \in I} \rangle$ 
  - $hd \ \$  Set of players  $I=\{1,2\}$  and finite set of actions  $A_i$  for each player i.
  - $\triangleright \ \pi_i : A_i \times A_{-i} \to \mathbb{R}$  is player *i*'s payoff.

#### Conjectures, best-replies, and rationalizability

hd A conjecture of player i is a distribution over co-player's actions  $u^i \in \Delta(A_{-i})$ 

#### Conjectures, best-replies, and rationalizability

- $\triangleright$  A *conjecture* of player i is a distribution over co-player's actions  $\nu^i \in \Delta(A_{-i})$
- $ho R^n:=R_1^n imes R_2^n$  denote the action profiles surviving n rounds of iteratively deleting strictly dominated actions. (Also set  $R^0:=A$ )
  - $\triangleright$  Behavioral implications of rationality and (n-1)-order belief in rationality (for  $n \ge 1$ )

#### Conjectures, best-replies, and rationalizability

- $\triangleright$  A *conjecture* of player i is a distribution over co-player's actions  $\nu^i \in \Delta(A_{-i})$
- $\triangleright R^n := R_1^n \times R_2^n$  denote the action profiles surviving n rounds of iteratively deleting strictly dominated actions. (Also set  $R^0 := A$ )
  - $\triangleright$  Behavioral implications of rationality and (n-1)-order belief in rationality (for  $n \ge 1$ )
- $ho \ R^{\infty} := R_1^{\infty} \times R_2^{\infty} := \bigcap_{n \geq 0} R_1^n \times \bigcap_{n \geq 0} R_2^n$  denote the *rationalizable* action profiles.
  - ▷ Behavioral implications of rationality and common belief in rationality (RCBR)

### The level-k model (Nagel, 1995)

ho An *anchor* is a distribution over each player's actions  $p=(p_1,p_2)\in\Delta(A_1)\times\Delta(A_2)$ 

## The level-k model (Nagel, 1995)

- ho An *anchor* is a distribution over each player's actions  $p=(p_1,p_2)\in\Delta(A_1)\times\Delta(A_2)$
- $\triangleright$  Fixing an anchor p, the level-k solution is given inductivity as follows:

**Step** 1. For every  $i \in I$ ,  $L_i^1[p] := r_i(p_{-i})$ .

**Step** k+1. For every  $i \in I$  and  $a_i \in A_i$ ,  $a_i \in L_i^{k+1}[p]$  if and only if there exists

- $\nu^i \in \Delta(A_{-i})$  such that:
  - (i)  $a_i \in \arg \max_{a_i \in A_i} \sum_{a_{-i} \in A_{-i}} \nu^i(a_{-i}) \pi_i(a_i, a_{-i})$ , and
  - (ii)  $\nu^i(L_{-i}^k[p]) = 1.$

# The level-k model (Nagel, 1995)

- ho An *anchor* is a distribution over each player's actions  $p=(p_1,p_2)\in\Delta(A_1)\times\Delta(A_2)$
- $\triangleright$  Fixing an anchor p, the level-k solution is given inductivity as follows:

**Step** 1. For every  $i \in I$ ,  $L_i^1[p] := r_i(p_{-i})$ .

**Step** k+1. For every  $i \in I$  and  $a_i \in A_i$ ,  $a_i \in L_i^{k+1}[p]$  if and only if there exists  $\nu^i \in \Delta(A_{-i})$  such that:

- (i)  $a_i \in \arg \max_{a_i \in A_i} \sum_{a_{-i} \in A_{-i}} \nu^i(a_{-i}) \pi_i(a_i, a_{-i})$ , and
- (ii)  $\nu^i(L_{-i}^k[p]) = 1.$
- ▷ In contrast to most of behavioral GT literature, we do not assume a tie-breaker.

(cf., Brandenburger, Friedenberg, and Kneeland, 2020)

# The Derived Object: An Incomplete Information Game

- $ho \ G = \langle I, (A_i, \pi_i)_{i \in I} \rangle$  induces an incomplete information game  $\hat{G} = \langle I, (A_i, \Theta_i, u_i)_{i \in I} \rangle$ 
  - ▷ Players and actions as before.
  - ho **Payoff types**: refer to as **level-**k **types** with  $\Theta_i := \{\theta_{i,0}, \theta_{i,1}, ...\} = \{\theta_{i,k} : k \in \mathbb{N}_0\}$

### The Derived Object: An Incomplete Information Game

- $ho \ G = \langle I, (A_i, \pi_i)_{i \in I} \rangle$  induces an incomplete information game  $\hat{G} = \langle I, (A_i, \Theta_i, u_i)_{i \in I} \rangle$ 
  - > Players and actions as before.
  - ho *Payoff types*: refer to as *level-k types* with  $\Theta_i := \{\theta_{i,0}, \theta_{i,1}, ...\} = \{\theta_{i,k} : k \in \mathbb{N}_0\}$
  - ▷ (Private values) Payoffs:

$$u_i(\theta,a) = egin{cases} 0 & ext{if } heta_i = heta_{i,0}, \ \pi_i(a) & ext{otherwise}. \end{cases}$$

# The Derived Object: An Incomplete Information Game

- $\triangleright G = \langle I, (A_i, \pi_i)_{i \in I} \rangle$  induces an incomplete information game  $\hat{G} = \langle I, (A_i, \Theta_i, u_i)_{i \in I} \rangle$ 
  - ▷ Players and actions as before.
  - $\triangleright$  **Payoff types**: refer to as **level-**k **types** with  $\Theta_i := \{\theta_{i,0}, \theta_{i,1}, ...\} = \{\theta_{i,k} : k \in \mathbb{N}_0\}$
  - ▷ (Private values) Payoffs:

$$u_i(\theta, a) = \begin{cases} 0 & \text{if } \theta_i = \theta_{i,0}, \\ \pi_i(a) & \text{otherwise.} \end{cases}$$

"Authentic" payoff uncertainty because of level-0 types. Also these types are barley labels, no restriction on strategic sophistication or cognitive ability

 $\triangleright G = \langle I, (A_i, \pi_i)_{i \in I} \rangle$  induces an incomplete information game  $\hat{G} = \langle I, (A_i, \Theta_i, u_i)_{i \in I} \rangle$ 

- ,
  - ▷ Players and actions as before.
  - ho *Payoff types*: refer to as *level-k types* with  $\Theta_i := \{\theta_{i,0}, \theta_{i,1}, ...\} = \{\theta_{i,k} : k \in \mathbb{N}_0\}$
  - ▷ (Private values) Payoffs:

$$u_i(\theta, a) = \begin{cases} 0 & \text{if } \theta_i = \theta_{i,0}, \\ \pi_i(a) & \text{otherwise.} \end{cases}$$

labels, no restriction on strategic sophistication or cognitive ability

"Authentic" payoff uncertainty because of level-0 types. Also these types are barley

⊳ Note: Not a Bayesian Game (or incomplete information á la Fudenberg and Tirole, '91)

### Reasoning in the incomplete information game

- $\triangleright$  We want to model *reasoning* explicitly in this game of incomplete information
- $\triangleright$  In particular, we want to impose (some) restrictions on what each level-k type "thinks" and considers possible
  - $\,\,
    hd$  For example, a level-k type only considers lower types possible

#### Reasoning in the incomplete information game

- ▶ We want to model reasoning explicitly in this game of incomplete information
- $\triangleright$  In particular, we want to impose (some) restrictions on what each level-k type "thinks" and considers possible
- ▶ But, not only do we want to impose these restrictions, but they should be *transparent* to the players themselves too
  - ▶ Informally, these restrictions should be common knowledge among the players
  - ▶ More formally, the restrictions are true and there is common correct belief in these restrictions among the players

# Reasoning in the incomplete information game

- ▶ We want to model reasoning explicitly in this game of incomplete information
- ightharpoonup In particular, we want to impose (some) restrictions on what each level-k type "thinks" and considers possible
  - $\triangleright$  For example, a level-k type only considers lower types possible
- ▶ But, not only do we want to impose these restrictions, but they should be *transparent* to the players themselves too
  - ▷ Informally, these restrictions should be *common knowledge* among the players
- $\triangleright$  We formalize this by relying on  $\Delta$ -rationalizability due to Battigalli (1999) and Battigalli and Siniscalchi (2003).

# 2 - Downward Rationalizability

Allow for all conjectures for a k-type that satisfy:

(K1) 
$$\mu^{i}(\theta_{-i,0}) > 0 \implies \mu^{i}(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$$

(imposes the anchor)

Allow for all conjectures for a k-type that satisfy:

(K1) 
$$\mu^{i}(\theta_{-i,0}) > 0 \implies \mu^{i}(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$$

(K2) supp  $\operatorname{marg}_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}$ 

(for k-type only lower types possible)

(imposes the anchor)

Allow for all conjectures for a k-type that satisfy:

(K1) 
$$\mu^i(\theta_{-i,0}) > 0 \implies \mu^i(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$$
 (imposes the anchor) (K2) supp  $\max_{\Theta} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}$  (for  $k$ -type only lower types possible)

Capture transparent restrictions reminiscent of models of bounded reasoning, but

- ▶ robust: belief-free (cf., robust mechanism design) and "broadly downward looking"
- ▶ unbounded reasoning here with restriction on which types are deemed possible

Allow for all conjectures for a k-type that satisfy:

(K1) 
$$\mu^i(\theta_{-i,0}) > 0 \implies \mu^i(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$$
 (imposes the anchor) (K2) supp  $\max_{\Theta} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}$  (for  $k$ -type only lower types possible)

Capture transparent restrictions reminiscent of models of bounded reasoning, but

- ▷ *robust*: belief-free (*cf.*, robust mechanism design) and "broadly downward looking"
- ▷ unbounded reasoning here with restriction on which types are deemed possible
- $\triangleright$  Notation:  $R_{i,p}^n$  for the resulting  $\Delta$ -rationalizability: **Downward Rationalizability**

#### **Downward Rationalizability: Example**

| Player 1 \ 2               | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| $\overline{U}$             | 3, 2 | 2, 1 | 1,0  |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |

| n/k | $\mathbb{R}^n$           | $L^k[p]$    |
|-----|--------------------------|-------------|
| 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |

 $L^k[p]$ 

 $\{(D,c)\}$ 

| Player 1 \ 2               | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| U                          | 3, 2 | 2, 1 | 1, 0 |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |

| n/k |
|-----|
| 1   |
| 2   |
| 3   |
| 4   |
|     |

| 1<br>2<br>3<br>4 | $A_1 \times \{l, c\}$ $\{U, M\} \times \{l, c\}$ $\{U, M\} \times \{l\}$ $\{(U, l)\}$ |
|------------------|---------------------------------------------------------------------------------------|
|                  |                                                                                       |
| _                |                                                                                       |

 $\mathbb{R}^n$ 

$$\begin{array}{c|c} R_1^n(\theta_{i,k}), \ R_2^n(\theta_{i,k}) & & \\ \hline k \downarrow & & 1 \\ \hline 1 & & \{D\}, \{c\} \\ 2 & & \\ 3 & & \\ \geq 4 & & \\ \end{array}$$

$$n 
ightarrow 3$$
  $\geq 4$ 

n/k

 $R^n$ 

| Player $1 \setminus 2$     | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| U                          | 3, 2 | 2, 1 | 1,0  |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |
|                            |      |      |      |  |  |

$$\begin{array}{c|c} R_1^n(\theta_{i,k}), \ R_2^n(\theta_{i,k}) & & \\ \hline k \downarrow & 1 & \\ 1 & \{D\}, \{c\} \\ 2 & A_1, \{l, c\} \\ 3 & \\ \geq 4 & \end{array}$$



n/k

 $R^n$ 

# Downward Rationalizability: Example

 $\{D\},\{c\}$  $A_1, \{l, c\}$  $A_1, \{l, c\}$  $A_1, \{l, c\}$ 

| Player $1 \setminus 2$     | l    | c    | r   |  |  |  |
|----------------------------|------|------|-----|--|--|--|
| U                          | 3, 2 | 2, 1 | 1,0 |  |  |  |
| M                          | 2, 2 | 3, 1 | 2,0 |  |  |  |
| D                          | 1, 1 | 1, 2 | 3,0 |  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |     |  |  |  |
|                            |      |      |     |  |  |  |

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ 

 $k\downarrow$ 

 $\{U,M\} \times \{l,c\} \quad \{(M,c)\}$ 3  $\{U, M\} \times \{l\}$   $\{(M, l)\}$  $\{(U,l)\}$  $\{(U,l)\}$  $n \rightarrow$ > 4

 $A_1 \times \{l, c\}$   $\{(D, c)\}$ 

2 - Downward Rationalizability

n/k

 $R^n$ 

# Downward Rationalizability: Example

 $\{D\}, \{c\}$ 

 $A_1, \{l, c\}$  $A_1, \{l, c\}$  $A_1, \{l, c\}$ 

| Player 1 \ 2 | l                      | c     | r    |
|--------------|------------------------|-------|------|
| U            | 3, 2                   | 2, 1  | 1,0  |
| M            | 2, 2                   | 3, 1  | 2, 0 |
| D            | 1, 1                   | 1, 2  | 3,0  |
| p =          | $(\delta_D, \delta_D)$ | $_r)$ |      |

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ 

 $k\downarrow$ 

> 4

 $\{U, M\} \times \{l, c\} \quad \{(M, c)\}$  $\{U,M\} \times \{l\}$   $\{(M,l)\}$  $\{(U,l)\}$  $\{(U,l)\}$  $n \rightarrow$ > 4  $\{D\}, \{c\}$  $\{D\}, \{c\}$  $\{D\}, \{c\}$ 

2 - Downward Rationalizability

 $A_1 \times \{l, c\}$   $\{(D, c)\}$ 

 $\{D\}, \{c\}$   $\{D\}, \{c\}$ 

 $A_1, \{l, c\}$  $A_1, \{l, c\}$  n/k

 $R^n$ 

# Downward Rationalizability: Example

| Player 1 \ 2 | $\iota$                | c    | r    |
|--------------|------------------------|------|------|
| U            | 3, 2                   | 2, 1 | 1,0  |
| M            | 2, 2                   | 3, 1 | 2, 0 |
| D            | 1, 1                   | 1, 2 | 3,0  |
| p =          | $(\delta_D, \delta_t)$ | r)   |      |
|              |                        |      |      |

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ 

 $k\downarrow$ 

 $\{U, M\} \times \{l, c\} \quad \{(M, c)\}$  $\{U,M\} \times \{l\} \qquad \{(M,l)\}$  $\{(U,l)\}$  $\{(U,l)\}$  $n \rightarrow$ > 4  $\{D\}, \{c\}$  $\{D\}, \{c\}$  $A_1, \{l, c\} \{M, D\}, \{c\}$ 

 $A_1 \times \{l, c\}$   $\{(D, c)\}$ 

2 - Downward Rationalizability

# **Downward Rationalizability: Example**

 $A_1,\{l,c\}$  $A_1, \{l, c\}$ 

| Player 1 \ 2   | l                      | c     | r    |
|----------------|------------------------|-------|------|
| $\overline{U}$ | 3, 2                   | 2, 1  | 1,0  |
| M              | 2, 2                   | 3, 1  | 2, 0 |
| D              | 1, 1                   | 1, 2  | 3,0  |
| p =            | $(\delta_D, \delta_D)$ | $_r)$ |      |

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$  $k\downarrow$ 

| n/k |
|-----|
| 1   |
| 2   |
| 3   |
| 4   |
|     |
|     |

|    | 2, 1  1, 0    |                 | 1               | $A_1 \times \{l, d\}$ | $c$ }             | $\{(D,c)\}$        |
|----|---------------|-----------------|-----------------|-----------------------|-------------------|--------------------|
|    | 3, 1  2, 0    |                 | 2               | $\{U,M\}$             | $\times \{l, c\}$ | $\{(M,c)\}$        |
|    | 1, 2  3, 0    |                 | 3               | $\{U,M\}$             | $\times \{l\}$    | $\{(M,l)\}$        |
| .) |               | •               | 4               | $\{(U,l)\}$           |                   | $\{(U,l)\}$        |
|    |               |                 |                 |                       |                   |                    |
|    |               |                 | $n \rightarrow$ |                       |                   |                    |
|    | 1             | 2               |                 | 3                     | ≥                 | 4                  |
|    | $\{D\},\{c\}$ | $\{D\}, \{c\}$  | $\{L$           | $\{c\}$               | $\{D\}$           | $\overline{\{c\}}$ |
|    | $A_1,\{l,c\}$ | $\{M,D\},\{c\}$ | $\{M,$          | $D\},\{c\}$           | $\{M, L\}$        | $\{c\}$            |
|    | $A_1,\{l,c\}$ |                 |                 |                       |                   |                    |
|    | A (1 a)       |                 |                 |                       |                   |                    |

 $\mathbb{R}^n$ 

2 - Downward Rationalizability

 $A_1, \{l, c\}$   $A_1, \{l, c\}$ 

 $A_1, \{l, c\}$ 

# **Downward Rationalizability: Example**

| Player 1 \ 2 | l                     | c    | r    |
|--------------|-----------------------|------|------|
| U            | 3, 2                  | 2, 1 | 1,0  |
| M            | 2, 2                  | 3, 1 | 2, 0 |
| D            | 1, 1                  | 1, 2 | 3,0  |
| p =          | $(\delta_D,\delta_1)$ | r)   |      |

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$  $k\downarrow$ 

| $ \begin{array}{ccc} 2,1 & 1,0 \\ 3,1 & 2,0 \\ 1,2 & 3,0 \end{array} $ |                                     | 1<br>2<br>3<br>4 | $A_1 \times \{l, c \in \{U, M\} \times \{U, M\} \times \{U, M\} \times \{(U, l)\}$ | $\{l,c\}$ | $\{(D,c)\}\$<br>$\{(M,c)\}\$<br>$\{(M,l)\}\$<br>$\{(U,l)\}$ |
|------------------------------------------------------------------------|-------------------------------------|------------------|------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|
|                                                                        |                                     | $n \rightarrow$  |                                                                                    |           |                                                             |
| 1                                                                      | 2                                   |                  | 3                                                                                  | $\geq$    | 4                                                           |
| $\{D\}, \{c\}$<br>$A_1, \{l, c\}$                                      | $\{D\}, \{c\}$<br>$\{M, D\}, \{c\}$ |                  | $\{c\}$<br>$\{c\}$<br>$\{c\}$                                                      | . ,       | $\overline{(c)}, \{c\}$<br>$\overline{(c)}, \{c\}$          |

n/k  $R^n$ 

2 - Downward Rationalizability

| I layer 1 \ 2 | ·                      | C    |      |
|---------------|------------------------|------|------|
| U             | 3, 2                   | 2, 1 | 1, 0 |
| M             | 2, 2                   | 3, 1 | 2, 0 |
| D             | 1, 1                   | 1, 2 | 3,0  |
| p =           | $(\delta_D, \delta_D)$ | r)   |      |
|               |                        |      |      |

Player 1 \ 2

n/k

 $R^n$ 

 $A_1 \times \{l, c\}$  $\{(D,c)\}$  $\{U, M\} \times \{l, c\} \quad \{(M, c)\}$  $\{U,M\} \times \{l\}$  $\{(M, l)\}$  $\{(U,l)\}$  $\{(U,l)\}$  $n \rightarrow$ > 4  $\{D\}, \{c\}$  $\{D\}, \{c\}$  $\{D\}, \{c\}$  $A_1, \{l, c\} \in \{M, D\}, \{c\} \in \{M, D\}, \{c\}$ 

2 - Downward Rationalizability

 $A_1, \{l, c\}$ 

 $L^k[p]$ 

 $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$  $k\downarrow$  $\{D\}, \{c\}$  $A_1, \{l, c\}$   $A_1, \{l, c\}$   $\{M, D\}, \{l, c\}$   $\{M, D\}, \{l, c\}$  $A_1, \{l, c\}$   $A_1, \{l, c\}$   $A_1, \{l, c\}$ > 4

| $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ |                | n 	o            |                   |                   |  |  |  |
|--------------------------------------------|----------------|-----------------|-------------------|-------------------|--|--|--|
| $k\downarrow$                              | 1              | 2               | 3                 | ≥ <b>4</b>        |  |  |  |
| 1                                          | $\{D\}, \{c\}$ | $\{D\}, \{c\}$  | $\{D\}, \{c\}$    | $\{D\},\{c\}$     |  |  |  |
| 2                                          | $A_1,\{l,c\}$  | $\{M,D\},\{c\}$ | $\{M,D\},\{c\}$   | $\{M,D\},\{c\}$   |  |  |  |
| 3                                          | $A_1,\{l,c\}$  | $A_1,\{l,c\}$   | $\{M,D\},\{l,c\}$ | $\{M,D\},\{l,c\}$ |  |  |  |
| <u>≥ 4</u>                                 | $A_1,\{l,c\}$  | $A_1,\{l,c\}$   | $A_1,\{l,c\}$     | $A_1,\{l,c\}$     |  |  |  |

| $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ |               |                 | $n \rightarrow$   |                   |
|--------------------------------------------|---------------|-----------------|-------------------|-------------------|
| $k\downarrow$                              | 1             | 2               | 3                 | ≥ 4               |
| 1                                          | $\{D\},\{c\}$ | $\{D\},\{c\}$   | $\{D\},\{c\}$     | $\{D\},\{c\}$     |
| 2                                          | $A_1,\{l,c\}$ | $\{M,D\},\{c\}$ | $\{M,D\},\{c\}$   | $\{M,D\},\{c\}$   |
| 3                                          | $A_1,\{l,c\}$ | $A_1,\{l,c\}$   | $\{M,D\},\{l,c\}$ | $\{M,D\},\{l,c\}$ |
| $\geq 4$                                   | $A_1,\{l,c\}$ | $A_1,\{l,c\}$   | $A_1,\{l,c\}$     | $A_1,\{l,c\}$     |

# Proposition (Bounded Reasoning)

For every  $i \in I$ , every  $k \in \mathbb{N}_0$ , and every  $t \geq k$ ,  $R_{i,p}^t(\theta_{i,k}) = R_{i,p}^k(\theta_{i,k})$ .

2 - Downward Rationalizability

# **Downward Rationalizability: Properties**

| $R_1^n(\theta_{i,k}), R_2^n(\theta_{i,k})$ | n 	o          |                 |                   |                   |  |  |
|--------------------------------------------|---------------|-----------------|-------------------|-------------------|--|--|
| $k\downarrow$                              | 1             | 2               | 3                 | ≥ 4               |  |  |
| 1                                          | $\{D\},\{c\}$ | $\{D\}, \{c\}$  | $\{D\}, \{c\}$    | $\{D\}, \{c\}$    |  |  |
| 2                                          | $A_1,\{l,c\}$ | $\{M,D\},\{c\}$ | $\{M,D\},\{c\}$   | $\{M,D\},\{c\}$   |  |  |
| 3                                          | $A_1,\{l,c\}$ | $A_1,\{l,c\}$   | $\{M,D\},\{l,c\}$ | $\{M,D\},\{l,c\}$ |  |  |
| $\geq 4$                                   | $A_1,\{l,c\}$ | $A_1,\{l,c\}$   | $A_1,\{l,c\}$     | $A_1,\{l,c\}$     |  |  |

# Proposition (Bounded Reasoning)

For every  $i \in I$ , every  $k \in \mathbb{N}_0$ , and every  $t \geq k$ ,  $R_{i,n}^t(\theta_{i,k}) = R_{i,n}^k(\theta_{i,k})$ .

Proposition (Increasing Monotone: higher level, more predictions)

For every  $i \in I$ , every  $n \in \mathbb{N}_0 \cup \{\infty\}$ , and every  $k \in \mathbb{N}$   $R_{i,n}^n(\theta_{i,k}) \subseteq R_{i,n}^n(\theta_{i,k+1})$ ,

#### Downward Rationalizability: Characterization

Even high level and high reasoning, do not get consistency with  $\mathbb{R}^n$ , but robust characterization across all anchors is possible.

### **Downward Rationalizability: Characterization**

Even high level and high reasoning, do not get consistency with  $\mathbb{R}^n$ , but robust characterization across all anchors is possible.

#### Theorem

For every  $i \in I$ ,  $R_i^1 = \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcap_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k}) = \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcup_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k}).$ 

- ▷ Every undominated action is consistent with some anchor and all type levels.
- $\, \triangleright \,$  Conversely, every downward rational. action for some anchor and level is undominated.

## Downward Rationalizability: Characterization

Even high level and high reasoning, do not get consistency with  $\mathbb{R}^n$ , but robust characterization across all anchors is possible.

#### Theorem

For every  $i \in I$ ,  $R_i^1 = \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcap_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k}) = \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcup_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k})$ .

- ▶ Every undominated action is consistent with some anchor and **all** type levels.
- ▷ Conversely, every downward rational. action for some anchor and level is undominated.
- ▶ Design Insight: Robustness to (as-if) "bounded reasoning" requires mechanism that implements in undominated actions. Identification of levels requires strong assumption.

Step 1: 
$$R_i^1 \subseteq \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcap_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k})$$

Step 2:  $\bigcup_{p\in\Delta(A_1)\times\Delta(A_2)}\bigcup_{k\in\mathbb{N}}R_{i,p}^\infty(\theta_{i,k})\subseteq R_i^1$ 

#### **Downward Rationalizability: Proof**

Step 1: 
$$R_i^1 \subseteq \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcap_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k})$$

- $\triangleright$  Take undominated action  $a_i$ , by Pearce's Lemma, it is justified by  $\nu^i$ , then set  $p_{-i}=v_i$ .
- $ho \ a_i \in R^1_{i,p}( heta_{i,1})$  by construction,  $a_i \in R^\infty_{i,p}( heta_{i,1})$  by "bounded reasoning", and
- $\triangleright a_i \in R^{\infty}_{i,p}(\theta_{i,k})$  for every  $k \ge 1$  because "increasing monotone"

Step 2:  $\bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcup_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k}) \subseteq R_i^1$ 

#### **Downward Rationalizability: Proof**

Step 1: 
$$R_i^1 \subseteq \bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcap_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k})$$

- $\triangleright$  Take undominated action  $a_i$ , by Pearce's Lemma, it is justified by  $\nu^i$ , then set  $p_{-i} = v_i$ .
- $ho \ a_i \in R^1_{i,p}( heta_{i,1})$  by construction,  $a_i \in R^\infty_{i,p}( heta_{i,1})$  by "bounded reasoning", and
- $\triangleright \ a_i \in R_{i,p}^{\infty}(\theta_{i,k})$  for every  $k \ge 1$  because "increasing monotone"
- Step 2:  $\bigcup_{p \in \Delta(A_1) \times \Delta(A_2)} \bigcup_{k \in \mathbb{N}} R_{i,p}^{\infty}(\theta_{i,k}) \subseteq R_i^1$ 
  - ightharpoonup Take  $a_i \in R_{i,p}^{\infty}(\theta_{i,k})$  for some  $k \in \mathbb{N}$  and p. Clearly, it is a best-reply to some conjecture, and therefore undominated by Pearce's Lemma.

# 3 – Level-k Rationalizability

Recall for a k-type: (K2) supp  $\max_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}.$ 

Recall for a k-type: (K2) supp  $\max_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}.$ 

Level-k, but not CH, imposes something stronger:

(KL) supp  $\operatorname{marg}_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,k-1}\}$ 

Recall for a k-type: (K2) supp marg<sub> $\Theta$ </sub>  $\mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}$ .

Level-k, but not CH, imposes something stronger:

 $\triangleright$  Put  $\mu^i \in \Delta^i_h$  if the conjecture satisfies:

That 
$$\mu \in \Delta_k$$
 is the conjecture satisfies.

(K1)  $\mu^{i}(\theta_{-i,0}) > 0 \implies \mu^{i}(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$ 

(imposes the anchor)

(KL) supp marg<sub> $\Theta$ </sub>  $\mu^i \subseteq \{\theta_{-i,k-1}\}$ 

Recall for a k-type: (K2) supp  $\operatorname{marg}_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}.$ 

Level-k, but not CH, imposes something stronger:

- ho Put  $\mu^i \in \Delta^i_k$  if the conjecture satisfies:
  - (K1)  $\mu^i(\theta_{-i,0}) > 0 \implies \mu^i(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$  (imposes the anchor)

(KL) supp  $\operatorname{marg}_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,k-1}\}$  (for

- ho Notation:  $L^n_{i,p}$  for the resulting  $\Delta$ -rationalizability:  $\emph{L(evel-k)}$ -Rationalizability
- $\triangleright$  Same interpretation as before: transparent and unbounded reasoning

Recall for a k-type: (K2) supp  $\max_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,0}, \theta_{-i,1}, \dots, \theta_{-i,k-1}\}.$ 

Level-k, but not CH, imposes something stronger:

- ho Put  $\mu^i \in \Delta^i_k$  if the conjecture satisfies:
  - That  $\mu \in \Delta_k$  is the conjecture satisfies.

(K1) 
$$\mu^{i}(\theta_{-i,0}) > 0 \implies \mu^{i}(a_{-i}|\theta_{-i,0}) = p_{-i}(a_{-i})$$

(imposes the anchor)

(KL) supp  $\operatorname{marg}_{\Theta_{-i}} \mu^i \subseteq \{\theta_{-i,k-1}\}$ 

- $\triangleright$  Notation:  $L_{i,p}^n$  for the resulting  $\Delta$ -rationalizability: L(evel-k)-Rationalizability
- ▷ Same interpretation as before: transparent and unbounded reasoning
- $\triangleright$  Observation: (KL)  $\Longrightarrow$  (K2) so that  $L_{i,p}^n \subseteq R_{i,p}^n$ , i.e. a refinement

| Player $1 \setminus 2$     | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| U                          | 3, 2 | 2, 1 | 1,0  |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |

| n/k | $\mathbb{R}^n$           | $L^k[p]$    |
|-----|--------------------------|-------------|
| 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |

| Player $1 \setminus 2$     | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| U                          | 3, 2 | 2, 1 | 1,0  |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |

| n/k | $R^n$                    | $L^k[p]$    |
|-----|--------------------------|-------------|
| 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |
|     |                          |             |

| $L_1^n(\theta_{i,k}), L_2^n(\theta_{i,k})$ |                | $n \rightarrow$ |   |     |  |  |  |
|--------------------------------------------|----------------|-----------------|---|-----|--|--|--|
| $k\downarrow$                              | 1              | 2               | 3 | ≥ 4 |  |  |  |
| 1                                          | $\{D\}, \{c\}$ |                 |   |     |  |  |  |
| 2                                          | C 3, C 3       |                 |   |     |  |  |  |
| 3                                          |                |                 |   |     |  |  |  |
| $\geq 4$                                   |                |                 |   |     |  |  |  |

| Player 1 \ 2               | l    | c    | r    |  |  |
|----------------------------|------|------|------|--|--|
| U                          | 3, 2 | 2, 1 | 1, 0 |  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |  |

| n/k | $\mathbb{R}^n$           | $L^k[p]$    |
|-----|--------------------------|-------------|
| 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |
|     |                          |             |

| $L_1^n(\theta_{i,k}), L_2^n(\theta_{i,k})$ |                | $n \rightarrow$ |                |                          |  |
|--------------------------------------------|----------------|-----------------|----------------|--------------------------|--|
| $k\downarrow$                              | 1              | 2               | 3              | ≥ <b>4</b>               |  |
| 1                                          | $\{D\}, \{c\}$ | $\{D\}, \{c\}$  | $\{D\}, \{c\}$ | $\overline{\{D\},\{c\}}$ |  |
| 2                                          |                |                 |                |                          |  |
| 3                                          |                |                 |                |                          |  |
| ≥ 4                                        |                |                 |                |                          |  |

| Player $1 \setminus 2$ $l$ $c$ $r$ |  |  |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|--|--|
| $U \qquad \qquad 3,2  2,1  1,0$    |  |  |  |  |  |  |  |
| M = 2, 2, 3, 1, 2, 0               |  |  |  |  |  |  |  |
| D = 1, 1 = 1, 2 = 3, 0             |  |  |  |  |  |  |  |
| $p = (\delta_D, \delta_r)$         |  |  |  |  |  |  |  |

| n/k | $\mathbb{R}^n$           | $L^k[p]$    |
|-----|--------------------------|-------------|
| 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |

| $L_1^n(\theta_{i,k}), L_2^n(\theta_{i,k})$ |                | $n \rightarrow$ |                |               |  |
|--------------------------------------------|----------------|-----------------|----------------|---------------|--|
| $k\downarrow$                              | 1              | 2               | 3              | ≥ 4           |  |
| 1                                          | $\{D\}, \{c\}$ | $\{D\}, \{c\}$  | $\{D\}, \{c\}$ | $D$ , $\{c\}$ |  |
| 2                                          | $A_1,\{l,c\}$  |                 |                |               |  |
| 3                                          |                |                 |                |               |  |
| <u> </u>                                   |                |                 |                |               |  |

 $L^{k}[n]$ 

#### L-Rationalizability: Example

| Player $1 \setminus 2$     | Player $1 \setminus 2$ $l$ $c$ $r$ |  |  |  |  |  |  |
|----------------------------|------------------------------------|--|--|--|--|--|--|
| $\overline{U}$             | $U \qquad \qquad 3,2  2,1  1,0$    |  |  |  |  |  |  |
| M                          | M = 2, 2, 3, 1, 2, 0               |  |  |  |  |  |  |
| D                          | D = 1, 1 = 1, 2 = 3, 0             |  |  |  |  |  |  |
| $p = (\delta_D, \delta_r)$ |                                    |  |  |  |  |  |  |

| 10/10           | 10                       | L[p]        |
|-----------------|--------------------------|-------------|
| 1               | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2               | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3               | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4               | $\{(U,l)\}$              | $\{(U,l)\}$ |
|                 |                          |             |
| $n \rightarrow$ |                          |             |
|                 | 2                        | <u> </u>    |

n/k

 $R^n$ 

$$\begin{array}{c|cccc} L_1^n(\theta_{i,k}), \ L_2^n(\theta_{i,k}) & & & & n \to \\ \hline k \downarrow & & 1 & 2 & 3 & \geq 4 \\ \hline 1 & & \{D\}, \{c\} & & \{D\}, \{c\} & & \{D\}, \{c\} & & \{D\}, \{c\} \\ 2 & & A_1, \{l, c\} \\ 3 & & A_1, \{l, c\} \\ \geq 4 & & A_1, \{l, c\} \end{array}$$

 $L^k[p]$ 

#### L-Rationalizability: Example

| Player 1 \ 2               | Player $1 \setminus 2$ $l$ $c$ $r$ |  |  |  |  |  |  |
|----------------------------|------------------------------------|--|--|--|--|--|--|
| U                          | U = 3, 2 - 2, 1 - 1, 0             |  |  |  |  |  |  |
| M                          | M 	 2, 2 	 3, 1 	 2, 0             |  |  |  |  |  |  |
| D = 1, 1 = 1, 2 = 3, 0     |                                    |  |  |  |  |  |  |
| $p = (\delta_D, \delta_r)$ |                                    |  |  |  |  |  |  |

|                 |                          | u j         |
|-----------------|--------------------------|-------------|
| 1               | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
| 2               | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 3               | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
| 4               | $\{(U,l)\}$              | $\{(U,l)\}$ |
|                 |                          |             |
| $n \rightarrow$ |                          |             |
|                 | 3                        | > 4         |

n/k

 $R^n$ 

| Player $1 \setminus 2$     | Player $1 \setminus 2$ $l$ $c$ $r$                           |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
| U                          | $U \hspace{1cm} 3,2 \hspace{0.25cm} 2,1 \hspace{0.25cm} 1,0$ |  |  |  |  |  |  |
| M                          | M = 2, 2, 3, 1, 2, 0                                         |  |  |  |  |  |  |
| D 	 1, 1 	 1, 2 	 3, 0     |                                                              |  |  |  |  |  |  |
| $p = (\delta_D, \delta_r)$ |                                                              |  |  |  |  |  |  |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | n/k | $\mathbb{R}^n$           | $L^k[p]$    |
|-------------------------------------------------------|-----|--------------------------|-------------|
| 3 $\{U, M\} \times \{l\}$ $\{(M, l)\}$                | 1   | $A_1 \times \{l, c\}$    | $\{(D,c)\}$ |
|                                                       | 2   | $\{U,M\} \times \{l,c\}$ | $\{(M,c)\}$ |
| 4 $\{(U,l)\}$ $\{(U,l)\}$                             | 3   | $\{U,M\} \times \{l\}$   | $\{(M,l)\}$ |
|                                                       | 4   | $\{(U,l)\}$              | $\{(U,l)\}$ |

| $L_1^n(\theta_{i,k}), L_2^n(\theta_{i,k})$ |                | $n \rightarrow$ |                |                |  |
|--------------------------------------------|----------------|-----------------|----------------|----------------|--|
| $k\downarrow$                              | 1              | 2               | 3              | ≥ 4            |  |
| 1                                          | $\{D\}, \{c\}$ | $\{D\}, \{c\}$  | $\{D\}, \{c\}$ | $\{D\}, \{c\}$ |  |
| 2                                          | $A_1,\{l,c\}$  | $\{M\},\{c\}$   | $\{M\},\{c\}$  | $\{M\},\{c\}$  |  |
| 3                                          | $A_1,\{l,c\}$  |                 |                |                |  |
| $\geq 4$                                   | $A_1,\{l,c\}$  |                 |                |                |  |
|                                            |                |                 |                |                |  |

 $1 \quad A_1 \times \{l, c\} \qquad \{(D, c)\}$ 

 $L^k[p]$ 

#### L-Rationalizability: Example

| Player $1 \setminus 2$     | l    | c    | r    |  |
|----------------------------|------|------|------|--|
| $\overline{U}$             | 3, 2 | 2, 1 | 1,0  |  |
| M                          | 2, 2 | 3, 1 | 2, 0 |  |
| D                          | 1, 1 | 1, 2 | 3,0  |  |
| $p = (\delta_D, \delta_r)$ |      |      |      |  |

|         | 2<br>3<br>4     | $ \{U, M\} \times  \{U, M\} \times  \{(U, l)\} $ | $\{l\}$ $\{(I)\}$                | M, l $M, l$ $(J, l)$ |
|---------|-----------------|--------------------------------------------------|----------------------------------|----------------------|
|         | $n \rightarrow$ |                                                  |                                  | _                    |
|         |                 | 3                                                | ≥ <b>4</b>                       |                      |
| $\{c\}$ |                 | $\{D\}, \{c\}$<br>$\{M\}, \{c\}$                 | $\{D\}, \{c\}$<br>$\{M\}, \{c\}$ |                      |

n/k  $R^n$ 

 $L^k[p]$ 

#### L-Rationalizability: Example

| l                          | c              | r                                                                            |  |  |  |
|----------------------------|----------------|------------------------------------------------------------------------------|--|--|--|
| 3, 2                       | 2, 1           | 1,0                                                                          |  |  |  |
| 2, 2                       | 3, 1           | 2, 0                                                                         |  |  |  |
| 1, 1                       | 1, 2           | 3,0                                                                          |  |  |  |
| $p = (\delta_D, \delta_r)$ |                |                                                                              |  |  |  |
|                            | $2, 2 \\ 1, 1$ | $ \begin{array}{ccc} 3, 2 & 2, 1 \\ 2, 2 & 3, 1 \\ 1, 1 & 1, 2 \end{array} $ |  |  |  |

|         | 1<br>2<br>3<br>4 | $A_1 \times \{l, c\}$ $\{U, M\} \times$ $\{U, M\} \times$ $\{(U, l)\}$ | $\{l,c\}$ | $\{(D, c, C,$ | $\stackrel{(c)}{l)}$ |
|---------|------------------|------------------------------------------------------------------------|-----------|---------------------------------------------------|----------------------|
|         | $n \rightarrow$  |                                                                        |           |                                                   |                      |
|         |                  | 3                                                                      | $\geq$    | 4                                                 |                      |
| $\{c\}$ |                  | $\{D\},\{c\}$                                                          | $\{D\}$   | $,\{c\}$                                          |                      |

n/k

 $R^n$ 

$$\begin{array}{c|ccccc} L_1^n(\theta_{i,k}), \ L_2^n(\theta_{i,k}) & & & n \to & \\ \hline k \downarrow & 1 & 2 & 3 & \geq 4 \\ \hline 1 & \{D\}, \{c\} & \{D\}, \{c\} & \{D\}, \{c\} & \{D\}, \{c\} \\ 2 & A_1, \{l, c\} & \{M\}, \{c\} & \{M\}, \{c\} & \{M\}, \{c\} \\ 3 & A_1, \{l, c\} & \{U, M\}, \{l, c\} & \{M\}, \{l\} & \{M\}, \{l\} \\ \geq 4 & A_1, \{l, c\} & \{U, M\}, \{l, c\} & \{U, M\}, \{l\} & \{U\}, \{l\} \\ \end{array}$$

#### L-Rationalizability: Characterization

Now, consistency with rationality and higher-order reasoning about rationality in G:

#### Proposition (Consistency)

For every  $n \in \mathbb{N}_0$ ,  $k \ge n$ , and every  $i \in I$ ,  $L_{i,p}^n(\theta_{i,k}) \subseteq R_i^n$ .

#### L-Rationalizability: Characterization

Now, consistency with rationality and higher-order reasoning about rationality in G:

#### Proposition (Consistency)

For every  $n \in \mathbb{N}_0$ ,  $k \geq n$ , and every  $i \in I$ ,  $L^n_{i,p}(\theta_{i,k}) \subseteq R^n_i$ .

#### Theorem (Foundation of the level-k model)

For every  $k \in \mathbb{N}$ ,  $n \in \mathbb{N}_0$ , and every  $i \in I$ ,

$$L_{i,p}^n(\theta_{i,k}) = \begin{cases} R_i^n, & \text{if } n < k, \\ L_i^k[p], & \text{if } n \ge k. \end{cases}$$

#### L-Rationalizability: An Observational Challenge

"In our view, people stop at low levels mainly because they believe others will not go higher, not due to cognitive limitations[.]" — Crawford, Costa-Gomes, and Iriberri (2013, JEL)

| $k \downarrow /n \rightarrow$ | 1             | 2                 | 3             | ≥ 4           |
|-------------------------------|---------------|-------------------|---------------|---------------|
| 1                             | $\{D\},\{c\}$ | $\{D\},\{c\}$     | $\{D\},\{c\}$ | $\{D\},\{c\}$ |
| 2                             | $A_1,\{l,c\}$ | $\{M\}, \{c\}$    | $\{M\},\{c\}$ | $\{M\},\{c\}$ |
| 3                             | $A_1,\{l,c\}$ | $\{U,M\},\{l,c\}$ | $\{M\},\{l\}$ | $\{M\},\{l\}$ |

#### L-Rationalizability: An Observational Challenge

"In our view, people stop at low levels mainly because they believe others will not go higher, not due to cognitive limitations[.]" — Crawford, Costa-Gomes, and Iriberri (2013, JEL)

| $k\downarrow/n \rightarrow$ | 1             | 2                 | 3             | ≥ 4           |
|-----------------------------|---------------|-------------------|---------------|---------------|
| 1                           | $\{D\},\{c\}$ | $\{D\},\{c\}$     | $\{D\},\{c\}$ | $\{D\},\{c\}$ |
| 2                           | $A_1,\{l,c\}$ | $\{M\},\{c\}$     | $\{M\},\{c\}$ | $\{M\},\{c\}$ |
| 3                           | $A_1,\{l,c\}$ | $\{U,M\},\{l,c\}$ | $\{M\},\{l\}$ | $\{M\},\{l\}$ |

- $\triangleright$  In practice, we might not observe level of reasoning (n) or level-k type (or neither)
  - $\triangleright$  If k > 1 known, but any n possible: get again only undominated actions.

# L-Rationalizability: An Observational Challenge

"In our view, people stop at low levels mainly because they believe others will not go higher, not due to cognitive limitations[.]" — Crawford, Costa-Gomes, and Iriberri (2013, JEL)

| $k\downarrow/n \rightarrow$ | 1             | 2                 | 3             | ≥ 4           |
|-----------------------------|---------------|-------------------|---------------|---------------|
| 1                           | $\{D\},\{c\}$ | $\{D\},\{c\}$     | $\{D\},\{c\}$ | $\{D\},\{c\}$ |
| 2                           | $A_1,\{l,c\}$ | $\{M\},\{c\}$     | $\{M\},\{c\}$ | $\{M\},\{c\}$ |
| 3                           | $A_1,\{l,c\}$ | $\{U,M\},\{l,c\}$ | $\{M\},\{l\}$ | $\{M\},\{l\}$ |

- $\triangleright$  In practice, we might not observe level of reasoning (n) or level-k type (or neither)
  - $\,\,\vartriangleright\,$  If k>1 known, but any n possible: get again only undominated actions.
  - $\triangleright$  If n known, but any k is possible? Get (potentially) more than  $R^n$ .

#### That's it!

# Thanks!

Comments and questions much appreciated! As said, very much work in progress.

Gabriel Ziegler, U Edinburgh, ziegler@ed.ac.uk