

NCERT Solutions For Class 10 Chapter 6 Triangles Exercise 6.4

1. Let \triangle ABC \sim \triangle DEF and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Ans. We have,
$$\frac{\text{Area }(\Delta ABC)}{\text{Area }(\Delta DEF)} = \frac{BC^2}{EF^2}$$

$$\Rightarrow \frac{64}{121} = \frac{BC^2}{(15.4)^2}$$

$$\Rightarrow \frac{8}{11} = \frac{BC}{15.4}$$

$$\Rightarrow$$
 BC = $\left(\frac{8}{11} \times 15.4\right)$ cm = 11.2 cm

2. Diagonals of a trapezium ABCD with $AB \parallel DC$ intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

Ans. In Δ s AOB and COD, we have,

 \angle AOB = \angle COD[Vertically opposite angles]

 \angle OAB = \angle OCD[Alternate angles]

By AA-criterion of similarity,

∴ ΔAOB~ ΔCOD

$$\frac{\text{Area } (\Delta \text{AOB})}{\text{Area } (\Delta \text{COD})} = \frac{\text{AB}^2}{\text{DC}^2}$$

$$\Rightarrow \frac{\text{Area } (\Delta \text{AOB})}{\text{Area } (\Delta \text{COD})} = \frac{(2\text{DC})^2}{\text{DC}^2} = \frac{4}{1}$$

Hence, Area (\triangle AOB) : Area (\triangle COD) = 4 : 1

3. In figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O,

show that
$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DBC)} = \frac{AO}{DO}$$

Ans. Given: Two \triangle s ABC and DBC which stand on the same base but on the opposite sides of BC.

$$\frac{\text{Area } (\Delta ABC)}{\text{Area } (\Delta DBC)} = \frac{\text{AO}}{\text{DO}}$$

To Prove:

Construction: Draw $AE^{\perp}BC$ and $DF^{\perp}BC$.

Proof: In \triangle s AOE and DOF, we have, \angle AEO = \angle DFO = 90°

and \angle AOE = \angle DOF[Vertically opposite)

∴ ΔAOE~ ΔDOF[By AA-criterion]

$$\frac{AE}{DF} = \frac{AO}{OD} \dots (i)$$

$$\frac{\text{Area }(\Delta ABC)}{\text{Area }(\Delta DBC)} = \frac{\frac{1}{2} \times BC \times AE}{\frac{1}{2} \times BC \times DF}$$
Now,

$$\Rightarrow \frac{\text{Area } (\Delta ABC)}{\text{Area } (\Delta DBC)} = \frac{AE}{DF}$$

$$\Rightarrow \frac{\text{Area } (\Delta ABC)}{\text{Area } (\Delta DBC)} = \frac{\text{AO}}{\text{OD}} \text{ [using eq. (i)]}$$

4. If the areas of two similar triangles are equal, prove that they are congruent.

Ans. Given: Two Δ s ABC and DEF such that Δ ABC $\sim \Delta$ DEF

And Area(\triangle ABC) = Area (\triangle DEF)

To Prove: \triangle ABC \cong \triangle DEF

Proof: $\triangle ABC \sim \triangle DEF$

$$\therefore \angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$

And
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

To establish \triangle ABC \cong \triangle DEF, it is sufficient to prove that, AB = DE, BC = EF and AC = DF

Now, Area(\triangle ABC) = Area(\triangle DEF)

$$\frac{\text{Area } (\Delta ABC)}{\text{Area } (\Delta DEF)} = 1$$

$$\Rightarrow \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2} = 1$$

$$\Rightarrow \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1$$

$$\Rightarrow$$
 AB = DE, BC = EF, AC = DF

Hence. \triangle ABC \cong \triangle DEF

5. D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the areas of \triangle DEF and \triangle ABC.

Ans. Since, D and E are the mid-points of the sides BC and CA of Δ ABC respectively.

$$\therefore$$
 DE || BA \Rightarrow DE || FA(i)

Since, D and F are the mid-points of the sides BC and AB of \triangle ABC respectively.

********* END ********