Punkty i proste

SIP, Eliminacje RMI. Dostępna pamięć: 256 MB.

25 VIII 2018

Danych jest n punktów na płaszczyźnie, ponumerowanych kolejnymi liczbami naturalnymi od 1 do n. i-ty punkt ma współrzędne (x_i, y_i) oraz etykietę w_i . Twoim zadaniem jest poprowadzić dwie proste równoległe tak, aby suma etykiet punktów pomiędzy tymi prostymi (włącznie z punktami na wybranych prostych) była jak największa. Oblicz, największą możliwą sumę etykiet punktów, które można "wyciąć" za pomocą dwóch prostych równoległych.

Wejście

W pierwszym wierszu standardowego wejścia zapisano jedną liczbę naturalną n ($1 \le n \le 2000$) – liczbę punktów. W kolejnych n wierszach opisano kolejne punkty. Opis każdego punktu składa się z trzech liczb całkowitych x_i, y_i, w_i ($-10^9 \le x_i, y_i \le 10^9$; $1 \le |w_i| \le 10^9$), oznaczających odpowiednio współrzędne punktu oraz jego etykietę. Nie ma dwóch punktów o tych samych współrzędnych.

Wyjście

W pierwszym wierszu standardowego wyjścia powinna znaleźć się jedna liczba całkowita – największa możliwa suma etykiet punktów, które można "wyciąć" za pomocą dwóch prostych równoległych.

Przykłady

Wejście:	Wejście:	Wejście:	
4	4	4	
1 2 -100	1 2 -10	4 5 2	
1 1 100	1 3 3	3 4 -2	
2 2 100	1 4 -1	2 4 -1	
2 1 -100	1 5 3	4 1 3	
	1 6 -10		
Wyjście:	Wyjście:	Wyjście:	
200	5	5	

Punktacja

- 1. 5 punktów
 - $n \le 100$,
 - $y_i = 0$ dla każdego $1 \leq i \leq n$.

2. 20 punktów

- $n \leq 100$,
- nie ma trzech punktów współliniowych,
- nie ma takich czterech różnych punktów p_1, p_2, p_3, p_4 , że prosta przechodząca przez p_1 i p_2 jest równoległa do prostej przechodzącej przez punkty p_3 i p_4 .

3. **35** punktów

Punkty i proste

- Nie ma trzech punktów współliniowych,
- ullet nie ma takich czterech różnych punktów p_1,p_2,p_3,p_4 , że prosta przechodząca przez p_1 i p_2 jest równoległa do prostej przechodzącej przez punkty p_3 i p_4 .

4. 20 punktów

• Nie ma trzech punktów współliniowych.

5. 20 punktów

 $\bullet\,$ Brak dodatkowych ograniczeń.

Punkty i proste

