Урок 35 Розв'язування задач з теми «Світлові явища». Підготовка до контрольної роботи № 2

Мета уроку: закріпити знання за темою ІІ «Світлові явища», продовжити формувати навички та вміння розв'язувати фізичні задачі різних типів, застосовуючи набуті знання.

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Провести фронтальну бесіду за матеріалами теми ІІ «Світлові явища» (за основу взяти матеріал, поданий у таблицях і схемах рубрики «Підбиваємо підсумки розділу ІІ "Світлові явища"» підручника).

ІІІ. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

Усно

- 1. Яке оптичне явище ілюструє фотографія?
- а) Відбивання світла
- б) Поглинання світла
- в) Дисперсію світла
- г) Заломлення світла

• 3

2. Промінь світла падає з повітря на поверхню скляної пластини. На якому з наведених рисунків правильно зазначено всі три кути: кут падіння α , кут відбивання β і кут заломлення γ ?

- 3. Яка точка ϵ зображенням світної точки S у плоскому дзеркалі?
 - a) 1
- б) 2
- B) 3
- г) Зображення в дзеркалі немає
- 4. Яку ваду зору має людина, якщо вона носить окуляри, нижня частина яких опуклі стекла, а верхня частина плоскі?
 - а) Далекозорість

- б) Короткозорість
- в) Людина не має вад зору
- г) Визначити неможливо
- 5. Людина наближається до дзеркала зі швидкістю 2 м/с. Із якою швидкістю до людини наближається її зображення в дзеркалі?

Так як людина наближається до дзеркала із швидкістю $v=2\,\mathrm{m/c}$, то й зображення людини наближається до дзеркала з такою ж швидкістю.

 $v_1 = 2v = 2 \cdot 2$ м/c = 4 м/c — швидкість наближення людини із її зображенням.

Письмово

6. Чому дорівнює оптична сила лінзи, хід променів у якій показано на рисунку?

$$D = \frac{1}{F}$$
 $[D] = \frac{1}{M} = 1$ дптр
 $D = \frac{1}{0.04} = 25$ (дптр)

 $\it Bidnosids: D = 25$ дптр.

7. Кут падіння променя на дзеркальну поверхню дорівнює 70°. Чому дорівнює кут між відбитим променем і дзеркальною поверхнею?

За 2-м законом відбивання світла:

$$\alpha = \beta = 70^{\circ}$$

$$\phi = 90^{\circ} - \beta$$
$$\phi = 90^{\circ} - 70^{\circ} = 20^{\circ}$$

Biδnosiδь: $\gamma = 20^\circ$.

8. Світло падає з повітря на поверхню прозорої речовини під кутом 45° . Визначте показник заломлення цієї речовини, якщо заломлене світло поширюється під кутом 60° до межі поділу середовищ.

$$n_{21} = \frac{\sin \alpha}{\sin \gamma} = \frac{\sin \alpha}{\sin(90^{\circ} - \phi)}$$

$$n_{21} = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}} = \sqrt{2}$$
$$\approx 1.41$$

Відповідь: $n_{21} \approx 1,41$

9. Предмет розташований на відстані 1 м від збиральної лінзи з фокусною відстанню 0,5 м. На якій відстані від лінзи розташоване зображення предмета?

Дано: d = 1 м F = 0.5 м

Розв'язання

$$f - ?$$

$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}; \qquad \frac{1}{f} = \frac{1}{F} - \frac{1}{d}$$

$$\frac{1}{f} = \frac{d - F}{dF}; \qquad f = \frac{dF}{d - F}$$

$$[f] = \frac{\mathsf{M} \cdot \mathsf{M}}{\mathsf{M}} = \mathsf{M}; \qquad f = \frac{1 \cdot 0.5}{1 - 0.5} = 1 \; (\mathsf{M})$$

Відповідь: f = 1 м.

10. На рисунку подано головну оптичну вісь KM лінзи, предмет AB і його зображення A_1B_1 . Визначте тип лінзи, її фокусну відстань і оптичну силу.

Аналіз фізичної проблеми, розв'язання

- 1) Провівши пряму BB_1 , знайдемо точку її перетину з головною оптичною віссю лінзи (точка O). Ця точка і ϵ оптичним центром лінзи.
- 2) Лінза перпендикулярна до головної оптичної осі, тому, провівши через точку O пряму, яка перпендикулярна до KM, знайдемо положення лінзи.
- 3) Із рисунка бачимо, що зображення розташоване з іншого боку від лінзи і далі від головної оптичної осі. Таке зображення дає *збиральна лінза*.
- 4) Проведемо через точку B промінь, паралельний головній оптичній осі. Після заломлення він пройде через фокус лінзи та через точку B_1 .
- 5) Другий фокус знайдемо зважаючи на те, що фокуси розташовані на однаковій відстані від оптичного центра лінзи.

Дано:
$$F = 50 \text{ см} = 0.5 \text{ м}$$
 $D - ?$

Розв'язання

$$D = \frac{1}{F}$$
 $[D] = \frac{1}{M} = 1$ дптр
 $D = \frac{1}{0.5} = 2$ (дптр)

Відповідь: Збиральна, F = 0.5 м, D = 2 дптр.

IV. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

V. ДОМАШН€ ЗАВДАННЯ

Повторити § 9–16

Виконати завдання рубрики «Завдання для самоперевірки до розділу ІІ "Світлові явища"» підручника: № 2, 3, 8, 13, 15, 16, 15

Виконане Д/з відправте на Нитап,

Або на електрону адресу Kmitevich.alex@gmail.com