Leandro Forge Ferndadez vega

2.3 Homomorphisms, karnels and normal subgroups.

Let G. If be groups. We say a function g: G->+1 is an homomorphism \$\{\phi\} \{\quad \{\quad \quad \quad \{\quad \quad \qquad \quad \quad \quad \quad \qquad \qquad \quad \quad \q

We define the parnel and the image of & as:

 $\text{Ker } g = \{g \in G/\{g\}\} = e_{H}\} \qquad \text{Im } g = \{h \in H \mid Jg \in G \text{ so that } \{g\} = h\}$

7-3.1 Theorem: Let 8:6 -> H be an homomorphism. Then:

* f(PG)=PH

* YK=H1 8-1(K) = [d = G/ & (d) = K) = G

* & (g-1) = & (g) - 1 YaeG

* & is injective = Kev-8 = fegg

* Ker8 & G, Img & H

2.3.2 Remark

We say NEG is normal (N26) YGEG, QNB1= N ()
YGEG, NEN, Grg-1 EN

Trivially, if G is abolian => VH = G, H=G.

2.3-3 Proposition Let f: G->H be an homomorphism. Then Kerf & G

2.5 Quotient Groups

Let G be a group, H=G. We can now define the guartient aroup G/H = [xH/xcG] with internal operation degined as:

H(Wx) = H WHx

In Hish't normal we can't quarantee Hx=xH VXCG, so GIH wouldn't have a group structure.

Proofs:

ret NeHI rec/ XH + HX >> 3 MeH/ NX & XH => NHXH = LXH = XH, but NH = eH = RH = RH = XH !!!

2.5.2 Proposition (1st Isomorphism Theorem):

Let $g: G \rightarrow H$ be a group isomorphism. Then, $\exists g: G/\text{ker} g \xrightarrow{\sim} \text{Im} g/$ & (x KAR8) = f(x) Axec, so that the next diagram commutes:

G => H where i is the inclusion function and Pr $\sqrt[3]{i}$ pr: $G \rightarrow G/\text{ker8} \mid \text{pr}(x) = x \text{ker8}$ is the G/ker8 = x tm quotient map homomorphism.

2.5.4 (orollary (2 nd Isomorphism Theorem):

Let G be a group, N=G, H=G. We degine HN = [hn/nefineN]. Than, HNN =H and HON N

· Proposition: Let G, H.N be groups, HEG, FSG. Then HF= FTI.

· Direct Sum:

Given Gitt groups, we desine their firect product $G_{XH} = [(g_{1}N)/g \in G, h \in H]$, with internal operation $(g_{1}h)(g_{1}h') = (g_{1}h)(g_{1}h')$ When $G_{1}H$ are abelian, we write their direct product as a direct sum $G_{1}H$.

2.8 Trying to clasify finite groups, part 1.

2.8.2 Proposition: Let Git be cyclic groups/ oxd(161/141)=1=>GxH cyclic

· Proposition: Aut(G) = [8:6 -> 6/g isomorphism] is a group gov composition and identity the identity map 16 (1618) = 9 ygeG)

7.8.6 Proposition: Aut (But 2 Plnx.

Definition: Given groups HIN, we consider &: H -> Aut(N)

We denote the semi-direct product group of H and N one HX8N,

the set HXN with group aperation defined as:

Proposition: $G \cong H \times_g N \iff C \iff_{-H \cap N = he}^{-H \cap N = he}$ where g is the consugate action.

Let G be a group.

1) 161-P, P prime.

By Lagrange's Theorem, there are no proper subgroups. recessarily, given DEG, g + eg, necessarily means G = cg>= Cp.

2) ICI-pq, piq primes.

We can suppose PCq. $nq|P nq = 1 mod q \Rightarrow nq = 1 = 7$ 31Pq = B 4-SS/ |Pq = 9

ubld ub=1 modb => nb=100

· np=1 => 3, Pp P-SS/IPpl=P => G= CpxCq=Cq

·np= q => p/(q-1)

We have an isomorphism $P = \mathcal{R}_P \stackrel{\sim}{=} AUT(\mathcal{R}_q) \stackrel{\sim}{=} \mathcal{R}_q^{\times}$ Pax is an abelian group of order divisible by P=>

326 8 4/ 121=P

We can take 8: 8p -> Aut (89) 1 8(x)(8) = 2x8, which gives a semidirect product Rpx & Zq, as It coult be abelian (there are elements which don't commute).

How many diggerent semi-products are there?

Now we consider the isomorphism i: Zp -> Pp and 8: Pp -> AU+(Pq) / 8(i(11) = Z'

Since I is prime to Pr

 $\Re(i(k)) = \Re(ki(v)) = \Re(i(v))_k = (S_i)_k = S_{fk} = 5$

As a result, up to isomorphism there is a unique semidirect product.

3) 161 = P94

we cannot conclude anything about the normality of sylow groups. We an establish these hypothesis: $q \neq 1 \mod p$ $r \neq 1 \mod p$ $qr \neq 1 \mod p$ $p \neq 1 \mod q$ $r \neq 1 \mod q$ $pr \neq 1 \mod q$ $p \neq 1 \mod r$ $q \neq 1 \mod r$ $pq \neq 1 \mod r$

they are enough to prove Pp. Pq. Pr are normal. We can conclude C= #p x Rq x Rv = Rpar

4) IGI = P2

these groups are either cyclic of order p^2 , $G \cong \mathcal{R}_{p^2}$, or G= Ppx Pp

s) 161= P9°

- · IS G abolian => G = Ppq2 V G = Ppq x Pq
 - · +8 G not abeliah => - P((q-1) => G= Ppxg Fq? V G= Ppxg(ZqxPq)
 - P (9+1), P+2 19+3 => 6= Rpx3(R4xRg) - 91(p-1) => G= Rpg V G= Rpg x Rq

. Other important Theorems:

- 1) Frery coroup C/ |G| = P2, p prime, is abelian.
- 2) Every group G/IGI = 2, is normal.
- 3) Every group & whose p-groups are normal is expressed as a direct product of them all.

· Groups up to order 15:

Orden	Abelianos	no Abelianos
1	1	
2	C_2	
3	C_3	
4	$C_2 \times C_2, \ C_4$	
5	C_5	
6	C_6	S_3
7	C_7	
8	$C_8, C_2 \times C_4, C_2 \times C_2 \times C_2.$	D_4, \mathbb{Q}_2
9	$C_9, C_3 \times C_3$	
10	C_{10}	D_5
11	C_{11}	
12	$C_{12}, C_2 \times C_6$	Q_3, D_6, A_4
13	C_{13}	
14	C_{14}	D_7
15	C_{15}	

7.9 Worked examples

2.9.1 Example: Let G, H be finite groups with relatively prime orders. Show that any group homomorphism $f: G \longrightarrow H$ is necessarily trivial (that is, sends every element of G to the identity in H.)

The 1st Isomorphism Theorem implies that
$$G/\text{kerg} \cong \text{Im} \$ \Rightarrow |G/\text{kerg}| = |\text{Im} \$| \Rightarrow \frac{|G|}{|\text{Kerg}|} = |\text{Im} \$| \Rightarrow \frac{|G|}{|\text{Kerg}|} = |\text{Im} \$| \Rightarrow |G/\text{kerg}| \Rightarrow |G/\text{kerg}| = |\text{Im} \$| \Rightarrow |G/\text{kerg}| = |\text{Im} \$| \Rightarrow |G/\text{kerg}| \Rightarrow |G/\text{$$

2.9.6 Example: Exhibit a non-abelian group of order $3 \cdot 7$.

we consider
$$\theta_i: P_3 \longrightarrow Aut(P_7) / \theta_i(y)(x) = yxy^{-1} = x^i$$

$$i=1.6$$

So I we have
$$P_3 \times_0 P_4 = P_3 \times_0 P_4$$
 Since $\text{Aut}(P_4) \cong P_4^{\times}$ and is $2eP_4^{\times}, |2| = 2 = 2$

$$P_3 \times_0 P_4 = \langle x_1 y / x^4 = 1, x^2 = 1/4 \times_0 P_4 = x^2 > 2$$

EXERCISES

. Theorems used:

- A) Sylow theorems
- \$\frac{1}{2} \quad \quad
- C) G=HXN = (-HIN=G).

 O G=HN

 O G=HN
- F) If all Sylow Subgroups of a group G are normal => G is direct product of them all.
- 6) P-Swlow and q-Swlow subgroups have trivial intersection.

2.3 Classify groups of order 9 and 10.

A)
$$|G| = 9 = 3^2$$

We know groups of order pr, p prime can either be G=CpxCp VG=Cp2 => G=C3xC3 V G=Cq

us 12 us=1 mods => us=1 => 3,Ps QG s-ss/ [Ps]=s

 $N_2 \setminus S$, $N_2 \equiv 1 \mod 2 \implies N_2 = 1$, S

$$N_2 | S_1 | N_2 = 1 \mod 2 \implies N_2 = 1 | S$$

 $N_2 | S_1 | N_2 = 1 \mod 2 \implies N_2 = 1 | S$
 $N_3 | S_1 | N_2 = 1 \mod 2 \implies N_2 = 1 | S$
 $N_3 | S_1 | N_2 = 1 \mod 2 \implies N_2 = 1 | S$
 $N_3 | S_1 | N_2 = 1 \mod 2 \implies N_2 = 1 | S$

· uz = s, we consider the homomorphism

G=P2×01 P5=C2×C5=C10 V G=C7×QC5=Cx18/x=1,8=1,x4x=y=>, since Aut(Ps)= 7, and is 4 = 2, |41 = 2

2.4 Classify groups of order 12.

N3 4, h3 = 1 mod 3 => N3=114

· N3=1, N2=3 => G=P2×0;P2 (avalog to pravious expanaises)

· n3=4, n2=3: cont count elements to sind contradiction. ??

2.5 Classify groups of order 21.

2.8 Classify groups of order 77.

2.10 Let N be a normal subgroup of a group G, and let H be a subgroup of G such that $G = H \cdot N$, that is, such that the collection of all products $h \cdot n$ with $h \in H$ and $n \in N$ is the whole group G. Show that $G/N \approx H/(H \cap N)$.

$$\overline{C} = \overline{HN} \approx \overline{HUN}$$

2.12 Let G be a group in which $g^2 = 1$ for every $g \in G$. Show that G is abelian.