Diszkrét matematika 2.

Szoftvertervező szakirány 1. előadás

1. Clouda

Juhász Zsófia jzsofi@gmail.com, jzsofia@compalg.inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2019. ősz

Számelmélet: bevezetés Diszkrét matematika 2. 2019. ősz

Bevezetés

"Isten megteremtette a természetes számokat, minden más az ember műve." (Leopold Kroenecker, 1823 – 1891)

A **számelmélet** az egész számok tulajdonságaival foglalkozik.

Alkalmazásai:

- kriptográfia: nyilvános kulcsú rejtjelezés
- kódolás: hibajavító kódok
- számítógépes számelmélet
- sok eredménye általánosítható más struktúrákra: más számhalmazokra, polinomgyűrűkre, ill. ún. egységelemes integritási tartományokra

:

Számelmélet: bevezetés Diszkrét matematika 2. 2019. ősz

Áttekintés: Mit tanulunk Számelméletből?

A teljesség igénye nélkül:

- Alapfogalmak, például:
 - oszthatóság és alaptulajdonságai, legnagyobb közös osztó (Inko), legkisebb közös többszörös (Ikkt), irreducibilis számok, prímek, maradékos osztás és következményei . . .
 - (Bővített) euklideszi algoritmus és következményei
 - Számelmélet alaptétele, kanonikus alak, Inko és Ikkt meghatározása a kanonikus alakból, Euler-féle φ -függvény
- Diofantikus egyenletek: kétváltozós lineáris diofantikus egyenletek megoldása
- Kongruenciák: kongruenciák és alaptulajdonságaik, maradékosztályok, egyváltozós lineáris kongruenciák megoldása, szimultán kongruenciarendszerek megoldása a Kínai maradéktétel segítségével
- Euler-Fermat tétel és egy alkalmazása: az RSA nyilvános kulcsú rejtjelező algoritmus
- Prímekről: néhány klasszikus eredmény, bizonyítás nélkül

Néhány összefüggés tanult szémelméleti tételek között

Oszthatóság

Ha a és b racionális számok ($b \neq 0$), akkor az a/b osztás mindig elvégezhető (és az eredmény szintén racionális).

Ha a és b egész számok, az a/b osztás nem mindig végezhető el (a hányados nem feltétlenül lesz egész).

Definíció (oszthatóság)

Az a egész osztja a b egészet (b osztható a-val): $a \mid b$, ha létezik olyan c egész, mellyel $a \cdot c = b$ (azaz $a \neq 0$ esetén b/a szintén egész).

Példák

- $1 \mid 13$, mert $1 \cdot 13 = 13$;
- $1 \mid n$, mert $1 \cdot n = n$;
- $6 \mid 12$, mert $6 \cdot 2 = 12$;
- $-6 \mid 12$, mert $(-6) \cdot (-2) = 12$.

A definíció kiterjeszthető például a Gauss-egészekre: $\{a+bi: a,b\in\mathbb{Z}\}$. Példák

- $i \mid 13$, mert $i \cdot (-13i) = 13$;
- $1+i \mid 2$, mert $(1+i) \cdot (1-i) = 2$.

Oszthatóság tulajdonságai

Állítás (Oszthatóság alaptulajdonságai, HF)

Minden $a, b, c, \ldots \in \mathbb{Z}$ esetén

- a | a;
- 2 $a \mid b \text{ \'es } b \mid c \Rightarrow a \mid c$;
- 3 $a \mid b \text{ \'es } b \mid a \Rightarrow a = \pm b;$
- \bullet a | b és a' | b' \Rightarrow aa' | bb';
- \bullet a | b \Rightarrow ac | bc:
- **o** ac | bc és $c \neq 0 \Rightarrow a \mid b$;
- \bigcirc a | $b_1, \ldots, b_k \Rightarrow$
- $\Rightarrow a \mid c_1b_1 + \ldots + c_kb_k$;
- **3** $a \mid 0$, ui. $a \cdot 0 = 0$;
 - $0 \mid a \Leftrightarrow a = 0;$
 - **1** | $a \in -1$ | a:

Példák

- **1** 6 | 6:
- 2 | 6 és 6 | 12 \Rightarrow 2 | 12;
- **3** $a \mid 3 \text{ és } 3 \mid a \Rightarrow a = \pm 3;$
- \bigcirc 2 | 4 és 3 | 9 \Rightarrow 2 · 3 | 4 · 9;
- **5** $3 \mid 6 \Rightarrow 5 \cdot 3 \mid 5 \cdot 6$;
- **1** $3 \cdot 5 \mid 6 \cdot 5 \text{ és } 5 \neq 0 \Rightarrow 3 \mid 6$;
- $\bigcirc 3 \mid 6,9 \Rightarrow 3 \mid 6c_1 + 9c_2$

Egységek

Definíció (egységek)

Ha egy ε szám bármely másiknak osztója, akkor ε -t egységnek nevezzük.

Állítás (Egységek az egészek körében)

Az egész számok körében két egység van: 1, -1.

Bizonyítás

A ±1 nyilván egység.

Megfordítva: ha ε egység, akkor $1 = \varepsilon \cdot q$ valamely q egész számra. Mivel $|\varepsilon| \ge 1$, $|q| \ge 1 \Rightarrow |\varepsilon| = 1$, azaz $\varepsilon = \pm 1$.

Példa A Gauss-egészek körében az i is egység: a + bi = i(b - ai).

Megjegyzés

Pontosan 1 osztói az egységek.

Asszociáltak

Oszthatóság szempontjából nincs különbség a 12 ill. -12 között.

Definíció (asszociáltak)

Két szám asszociált, ha a | b és b | a.

Meg jegyzés

Két szám a és b pontosan akkor asszociált, ha egymás egységszeresei.

Bizonyítás

 \implies : Legyen $b = ab_1$ és $a = ba_1$. Ekkor $b = ab_1 = ba_1b_1$, így $a_1b_1 = 1$, vagyis a_1 és b_1 is egységek.

 \Leftarrow : Ha $b = \varepsilon a$ és $a = \varepsilon' b$, ahol $\varepsilon, \varepsilon'$ egységek, akkor a|b és b|a nyilvánvaló.

Definíció (triviális osztók)

Egy számnak az asszociáltjai és az egységek a triviális osztói.

Prímek, felbonthatatlanok

Definíció (felbonthatatlan számok)

Egy nem-nulla, nem egység a számot felbonthatatlannak (irreducibilisnek) nevezünk, ha $\forall b, c \in \mathbb{Z} : a = bc \Rightarrow b$ egység vagy c egység.

Példa 2, -2, 3, -3, 5, -5 felbonthatatlanok. 6 nem felbonthatatlan, mert $6 = 2 \cdot 3$.

Állítás (Felbonthatatlanok ekvivalens jellemzése)

Egy nem-nulla, nem egység szám pontosan akkor felbonthatatlan, ha a triviális osztóin kívül nincs más osztója.

Definíció (prímek)

Egy nem-nulla, nem egység p számot prímszámnak nevezünk, ha $p \mid ab \Rightarrow p \mid a$ vagy $p \mid b$.

Példa
$$2, -2, 3, -3, 5, -5$$
.
6 nem prímszám, mert $6 \mid 2 \cdot 3$ de $6 \nmid 2$ és $6 \nmid 3$.

10.

Prímek, felbonthatatlanok

Állítás (Minden prím felbonthatatlan)

Minden prímszám felbonthatatlan.

Bizonyítás

Legyen p prímszám és legyen p=ab egy felbontás. Igazolnunk kell, hogy a vagy b egység.

```
Mivel p = ab, így p \mid ab, ahonnan például p \mid a. Ekkor a = pk = a(bk), azaz bk = 1, ahonnan következik, hogy b és k is egység.
```

A fordított irány nem feltétlenül igaz:

- Z-ben igaz, (lásd később);
- $\{a+bi\sqrt{5}: a,b\in\mathbb{Z}\}$ -ben nem igaz.

11.

Maradékos osztás

A számelméletben a fő eszközünk a maradékos osztás lesz:

Tétel (Maradékos osztás tétele az egész számok körében)

Tetszőleges a egész számhoz és $b \neq 0$ egész számhoz egyértelműen léteznek q, r egészek, hogy

$$a = bq + r$$
 és $0 \le r < |b|$.

Bizonyítás

A tételt csak nemnegatív számok esetében bizonyítjuk.

- Létezés: a szerinti indukcióval.
 - Ha $1 \le a \le b$, akkor $a = b \cdot 0 + a$ (q = 0, r = a).
 - Legyen a ≥ b és tegyük fel, hogy az a-nál kisebb számok mind felírhatók ilyen alakban. Az indukciós feltevés értelmében a − b = bq* + r*. Ekkor a = b(q* + 1) + r* (q = q* + 1, r = r*).
- ② Egyértelműség: Legyen $a = bq_1 + r_1 = bq_2 + r_2$ valamely q_1, q_2, r_1, r_2 egészekre, ahol $0 \le r_1, r_2 < b$. Tf. indirekt, hogy $q_1 \ne q_2$. Ekkor $b(q_1 q_2) = r_2 r_1$. Így $q_1 \ne q_2$ miatt $|b(q_1 q_2)| = |b| \cdot |q_1 q_2| \ge |b| \cdot 1 = |b|$, míg $0 \le r_1, r_2 < b$ miatt $|r_2 r_1| < |b|$, így $|b(q_1 q_2)| \ne |r_2 r_1|$, ami ellentmondás. Ezért $q_1 = q_2$ és $r_1 = r_2$.

12.

Maradékos osztás

Definíció (osztási maradék)

Legyenek a és b egész számok ($b \neq 0$). Legyen $a = b \cdot q + r$, ahol q és r egészek, $0 \leq r < |b|$. Ekkor $a \mod b = r$ az a szám b-vel vett osztási maradéka.

Megjegyzés:

$$q=\lfloor a/b \rfloor$$
, ha $b>0$, és $q=\lceil a/b \rceil$, ha $b<0$.

Példa

- $123 \mod 10 = 3$, $123 \mod 100 = 23$, $123 \mod 1000 = 123$;
- $123 \mod -10 = 3, \ldots$
- $-123 \mod 10 = 7$, $-123 \mod 100 = 77$, $-123 \mod 1000 = 877$;
- $-123 \mod -10 = 7, \ldots$

13.

Maradékos osztás

hétfő $\mapsto 0$

Példa

- Ha most 9 óra van, hány óra lesz 123 óra múlva? Osszuk el maradékosan 123-at 24-gyel: 123 = 24 · 5 + 3. Tehát 9 + 3 = 12: déli 12 óra lesz!
- Osszuk el maradékosan 116-ot 24-gyel: 116 = 24 · 4 + 20. Tehát 9 + 20 = 29. Újabb redukció: 29 = 24 · 1 + 5: hajnali 5 óra lesz!
- Tegyük fel, hogy ma 2014. november 11-e (kedd) van. Milyen napra fog esni jövőre november 11-e? Milyen napra esett három éve november 15-e?

```
\begin{array}{lll} \operatorname{kedd} \mapsto 1 \\ \operatorname{szerda} \mapsto 2 \\ \operatorname{cs\"{u}t\"{o}rt\"{o}k} \mapsto 3 \\ \operatorname{p\'{e}ntek} \mapsto 4 \\ \operatorname{szombat} \mapsto 5 \\ \operatorname{vas\'{a}rnap} \mapsto 6 \end{array} & \operatorname{kedd} + 1 \operatorname{nap} \leftrightarrow 1 + 1 = 2 \leftrightarrow \operatorname{szerda} \\ \operatorname{Osszuk} \operatorname{el} \operatorname{marad\'{e}kosan} - (365 + 365 + 366) - \operatorname{ot} (2012. \\ \operatorname{sz\"{o}k\'{o}\'{e}v}) \operatorname{7-tel} : -1096 = 7 \cdot (-157) + 3. \\ \operatorname{szombat} + 3 \operatorname{nap} \leftrightarrow 5 + 3 = 8 \overset{\operatorname{redukc\'{i}\'{o}}}{=} 1 \leftrightarrow \operatorname{kedd} \end{array}
```

Osszuk el maradékosan 365-öt 7-tel: $365 = 7 \cdot 52 + 1$.

14.

Számrendszerek

10-es számrendszerben a 123:

$$123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$$

2-es számrendszerben a 123:

$$1111011_{(2)} = 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 1 \cdot 64 + 1 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1

Tétel (Számok felírása különböző számrendszerekben)

Legyen b>1 rögzített egész. Ekkor bármely n pozitív egész egyértelműen

felírható
$$n = \sum_{i=0}^{\infty} a_i b^i$$
 alakban, ahol $0 \le a_i < b$ egészek, $a_k \ne 0$.

- Ez a felírás *n b* alapú számrendszerben történő felírása.
- b a számrendszer alapja.
- a_0, \ldots, a_k az n jegyei.
- $k = \lfloor \log_b n \rfloor$.

Számrendszerek

n felírása a b alapú számrendszerben: $n = \sum_{i=0}^{n} a_i b^i$.

Bizonyítás

A tételt indukcióval bizonyítjuk.

- **1** n < b esetén $a_0 = n$ választással $n = a_0 b^0$. A felírás egyértelműsége triviális (Miért?).
- ② Legyen $n \geq b$ és tfh. az állítás igaz minden n-nél kisebb pozitív egészre. Legyen r és q az n-nek b-vel vett osztási maradéka, ill. hányadosa (n = bq + r). Mivel $1 \leq q < n$, az indukciós feltevés alapján q felírható a kívánt $q = \sum_{i=1}^k a_i b^{i-1}$ alakban. Ekkor $a_0 = r$ választással $n = bq + r = \sum_{i=1}^k a_i b^i + a_0 = \sum_{i=0}^k a_i b^i$ az n felírása.

Az egyértelműséghez vegyük észre, hogy n bármely $n = \sum_{i=0}^k a_i b^i$ felírása esetén $a_0 = r$, ami egyértelmű. A többi "jegy" egyérteműsége abból következik, hogy q = (n-r): $b = (\sum_{i=0}^k a_i b^i - a_0)$: $b = \sum_{i=1}^k a_i b^{i-1}$ a q egy felírása b alapú számrendszerben, ami az ind. feltevés alapján egyértelmű.

Számrendszerek

Az előbbi bizonyítás módszert is ad a felírásra: Példa Írjuk fel az $n=123\,$ 10-es számrendszerben felírt számot 2-es számrendszerben.

i	n	<i>n</i> mod 2	$\frac{n-a_i}{2}$	jegyek
0	123	1	<u>123-1</u> 2	1
1	61	1	$\frac{61-1}{2}$	11
2	30	0	<u>30−0</u> 2	011
3	15	1	<u>15-1</u> 2	1 011
4	7	1	<u>7-1</u>	1 1011
5	3	1	$\frac{3-1}{2}$	1 11011
6	1	1	$\frac{1-1}{2}$	1 111011

17.

Legnagyobb közös osztó

Definíció (legnagyobb közös osztó)

Az a és b számoknak a d szám legnagyobb közös osztója (kitüntetett közös osztója), ha: $d \mid a, d \mid b$, és $(c \mid a \land c \mid b) \Rightarrow c \mid d$.

- Figyelem! Itt a "legnagyobb" nem a szokásos rendezésre utal:
 12-nek és 9-nek legnagyobb közös osztója lesz a -3 is.
- A legnagyobb közös osztó csak asszociáltság erejéig egyértelmű.
- Jelölés: Legyen (a, b) = lnko(a, b) a nemnegatív legnagyobb közös osztó!

Definíció (relatív prímek)

(a, b) = 1 esetén azt mondjuk, hogy a és b relatív prímek.

Definíció (legkisebb közös többszörös)

Az a és b számoknak az m szám legkisebb közös többszöröse (kitüntetett közös töbszöröse), ha: $a \mid m, b \mid m$, és $(a \mid c \land b \mid c) \Rightarrow m \mid c$. Legyen [a, b] = lkkt(a, b) a nemnegatív legkisebb közös többszörös!

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Tétel (Euklideszi algoritmus az egészek körében)

Bármely két egész számnak létezik legnagyobb közös osztója, és ez meghatározható az euklideszi algoritmussal.

Bizonyítás

Ha valamelyik szám 0, akkor a legnagyobb közös osztó a másik szám. Tfh a, b nem-nulla számok. Végezzük el a következő osztásokat:

$$a = bq_1 + r_1, \quad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}.$$

Ekkor az Inko az utolsó nem-nulla maradék: $(a, b) = r_n$. Itt $a = r_{-1}$, $b = r_0$.

Euklideszi algoritmus helyessége

Bizonyítás (folyt.)

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}.$$

 $a = bq_1 + r_1, \quad 0 < r_1 < |b|,$

Az algoritmus véges sok lépésben véget ér: $|b| > r_1 > r_2 > \dots$ Az r_n maradék közös osztó: $r_n \mid r_{n-1} \Rightarrow r_n \mid r_{n-1}q_n + r_n = r_{n-2} \Rightarrow \dots \Rightarrow r_n \mid b \Rightarrow r_n \mid a$.

Az r_n maradék a legnagyobb közös osztó: legyen $c \mid a, c \mid b \Rightarrow$

 $c \mid a - bq_1 = r_1 \Rightarrow c \mid b - r_1q_2 = r_2 \Rightarrow \ldots \Rightarrow c \mid r_{n-2} - r_{n-1}q_n = r_n.$

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Példa Számítsuk ki (172,62) értékét!

i	r_i	q_i	$r_{i-2}=r_{i-1}q_i+r_i$
-1	172	_	_
0	62	_	_
1	48	2	$172 = 62 \cdot 2 + 48$
2	14	1	$62 = 48 \cdot 1 + 14$
3	6	3	$48 = 14 \cdot 3 + 6$
4	2	2	$14 = 6 \cdot 2 + 2$
5	0	3	$6 = 2 \cdot 3 + 0$

A legnagyobb közös osztó: (172, 62) = 2

Legnagyobb közös osztó kiszámolása rekurzióval

Tétel (Legnagyobb közös osztó kiszámolása rekurzióval)

Legyen a, b egész szám. Ha b = 0, akkor (a, b) = |a|. Ha $b \neq 0$, akkor $(a, b) = (b, a \mod b)$.

Bizonyítás

Ha b=0, akkor a tétel nyilvánvaló. Egyébként $a=bq+(a\bmod b)$ valamely q egészre,így a a b és a mod b egy egész együtthatójú lin. komb.-ja. Ezért $(b, a\bmod b) \mid a$, tehát $(b, a\bmod b) \mid (a, b)$. Hasonlóan, a mod b=a-bq miatt a mod b egész együtthatójú lin. komb.-ja a-nak és b-nek, így $(a,b) \mid (b, a\bmod b)$. Innen $(a,b)=(b, a\bmod b)$ következik.

Példa

Számítsuk ki (172,62) értékét!

(a, b)	a mod b	
(172, 62)	48	
(62, 48)	14	
(48, 14)	6	
(14, 6)	2	
(6.2)	0	

A legnagyobb közös osztó: (172, 62) = 2.

21.

22.

Legnagyobb közös osztó, további észrevételek

Hasonló módon definiálható több szám legnagyobb közös osztója is: (a_1, a_2, \ldots, a_n) .

Definíció (legnagyobb közös osztó általános esetben)

Az a_1, a_2, \ldots, a_n számoknak egy d szám legnagyobb közös osztója, ha $d|a_i \ (1 \le i \le n)$ és $\forall c \in \mathbb{Z} : c|a_i \ (1 \le i \le n) \Rightarrow c|d$.

Állítás (Legnagyobb közös osztó létezése általános esetben)

Bármely $a_1, a_2, ..., a_n$ egész számokra létezik $(a_1, a_2, ..., a_n)$ és $(a_1, a_2, ..., a_n) = ((...(a_1, a_2), ..., a_{n-1}), a_n).$

Állítás

Bármely a, b, c egész számokra (ca, cb) = c(a, b).

Bizonyítás

HF. Ötlet: alkalmazzuk az euklideszi algoritmust ca-ra és cb-re.

23.

Bővített euklideszi algoritmus

Tétel (Bővített euklideszi algoritmus)

Minden a, b egész szám esetén léteznek x, y egészek, hogy $(a,b) = x \cdot a + y \cdot b$.

Bizonyítás

Legyenek q_i , r_i az euklideszi algoritmussal megkapott hányadosok, maradékok.

Legyen $x_{-1} = 1$, $x_0 = 0$ és $i \ge 1$ esetén legyen $x_i = x_{i-2} - q_i x_{i-1}$, továbbá $y_{-1} = 0$, $y_0 = 1$ és $i \ge 1$ esetén legyen $y_i = y_{i-2} - q_i y_{i-1}$.

Teljes indukcióval bebizonyítjuk, hogy $r_{-1} = a$ és $r_0 = b$ jelöléssel $i \ge -1$ esetén $r_i = x_i a + y_i b$.

i = -1-re $a = 1 \cdot a + 0 \cdot b$, i = 0-ra $b = 0 \cdot a + 1 \cdot b$.

Feltéve, hogy i-nél kisebb értékekre teljesül az összefüggés az euklideszi algoritmus i-edik sora alapján:

$$r_i = r_{i-2} - q_i r_{i-1} = x_{i-2} a + y_{i-2} b - q_i (x_{i-1} a + y_{i-1} b) =$$

= $(x_{i-2} - q_i x_{i-1}) a + (y_{i-2} - q_i y_{i-1}) b = x_i \cdot a + y_i \cdot b$
Speciálisan $x_n a + y_n b = r_n = (a, b)$.

24.

Bővített euklideszi algoritmus

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x_{-1} = 1$, $x_0 = 0$, $x_i = x_{i-2} - q_ix_{i-1}$, $y_{-1} = 0$, $y_0 = 1$, $y_i = y_{i-2} - q_iy_{i-1}$.

Példa

Számítsuk ki (172,62) értékét, és oldjuk meg a 172x + 62y = (172,62) egyenletet!

i	r_i	q_i	x _i	Уi	$r_i = 172x_i + 62y_i$
-1	172	_	1	0	$172 = 172 \cdot 1 + 62 \cdot 0$
0	62	_	0	1	$62 = 172 \cdot 0 + 62 \cdot 1$
1	48	2	1	-2	$48 = 172 \cdot 1 + 62 \cdot (-2)$
2	14	1	-1	3	$14 = 172 \cdot (-1) + 62 \cdot 3$
3	6	3	4	-11	$6 = 172 \cdot 4 + 62 \cdot (-11)$
4	2	2	<u>-9</u>	25	$2 = 172 \cdot (-9) + 62 \cdot 25$
5	0	3	_	_	_

A felírás: $2 = 172 \cdot (-9) + 62 \cdot 25$, x = -9, y = 25.

Bővített euklideszi algoritmus

Állítás

 $\forall a,b,c \in \mathbb{Z} : (a|bc \wedge (a,b) = 1) \Rightarrow a|c$

Bizonyítás

A bővített euklideszi algoritmus alapján létezik $x,y\in\mathbb{Z}$, hogy 1=xa+yb, így $c=xac+ybc=(xc)\cdot a+y\cdot (bc)$. Az oszthatóság lineáris kombinációra vonatkozó tulajdonsága alapján a|c.

Diofantikus egyenletek

Diofantikus egyenletek: egyenletek egész megoldásait keressük.

Kétváltozós lineáris diofantikus egyenlet: ax + by = c, ahol a, b, c egészek adottak, valamint x, y egészek ismeretlenek.

Tétel (Kétvált. lin. diofant. egyelet megoldhatósága)

Az ax + by = c diofantikus egyenlet pontosan akkor oldható meg, ha $(a,b) \mid c$. A bővített euklideszi algoritmus segítségével megadható egy megoldás.

Bizonyítás

 \implies : Mivel (a,b) osztója a-nak és (a,b) osztója b-nek, ezért tetszőleges lineáris kombinációjuknak is, így $x,y\in\mathbb{Z}$ esetén ax+by-nak is, ami egyenlő c-vel, ha (x,y) megoldás.

 \Leftarrow : A bővített euklideszi algoritmus segítségével megadható olyan $x', y' \in \mathbb{Z}$, hogy ax' + by' = (a,b). Mindkét oldalt $\frac{c}{(a,b)} \in \mathbb{Z}$ -val szorozva az $a\frac{x'c}{(a,b)} + b\frac{y'c}{(a,b)} = c$ egyenletet kapjuk, amiből leolvasható az

 $x_0 = \frac{x'c}{(a,b)}$, $y_0 = \frac{y'c}{(a,b)}$ megoldása az egyenletnek.

27.

Diofantikus egyenletek

Tétel (Kétvált. lin. diofant. egyelet összes megoldása)

Ha az ax + by = c diofantikus egyenletnek (x_0, y_0) megoldása, akkor az összes megoldás megadható a következő alakban:

$$x_t = x_0 + \frac{b}{(a,b)}t, \quad y_t = y_0 - \frac{a}{(a,b)}t, \quad t \in \mathbb{Z}.$$

Bizonyítás

 $ax_t + by_t = ax_0 + \frac{ab}{(a,b)}t + by_0 - \frac{ab}{(a,b)}t = ax_0 + by_0 = c$, így ezek tényleg megoldások.

Legyenek (x_0, y_0) és (x', y') megoldások. Ekkor $ax_0 + by_0 = c = ax' + by'$, amiből $a(x' - x_0) = b(y_0 - y')$, így $b|a(x' - x_0)$, továbbá $\frac{b}{(a,b)}|\frac{a}{(a,b)}(x' - x_0)$.

Mivel $(\frac{b}{(a,b)},\frac{a}{(a,b)})=1$ (Miért?), ezért a korábbi állítás értelmében

 $\frac{b}{(a,b)}|(x'-x_0)$. Tehát $x'-x_0=\frac{b}{(a,b)}t$, azaz $x'=x_0+\frac{b}{(a,b)}t$ valamely $t\in\mathbb{Z}$ -re. Behelyettesítve ax'+by'=c-be adódik $y'=y_0-\frac{a}{(a,b)}t$.

Diofantikus egyenletek

Példa

Oldjuk meg a 172x+62y=6 egyenletet az egész számok halmazán! (172,62)=2|6, ezért van megoldás. A bővített euklideszi algoritmus alapján:

$$2 = 172 \cdot (-9) + 62 \cdot 25 / \cdot 3$$

 $6 = 172 \cdot (-27) + 62 \cdot 75$
 $x_0 = -27, y_0 = 75$

$$x_t = -27 + 31 \cdot t,$$

$$y_t = 75 - 86 \cdot t,$$

ahol $t \in \mathbb{Z}$ tetszőleges.

29

Felbonthatatlanok, prímek

Emlékeztető:

- f felbonthatatlan: f nem-nulla, nem-egység és $\forall b,c\in\mathbb{Z}: f=bc \implies b$ egység vagy c egység, ami azzal ekvivalens, hogy f nem-egység és csak triviális osztói vannak: ε , $\varepsilon \cdot f$ típusú osztók (ahol ε egy egység).
- p prím: p nem-nulla, nem-egység és $\forall a, b \in \mathbb{Z} : p \mid ab \Rightarrow p \mid a$ vagy $p \mid b$.

Ha p prím, akkor p felbonthatatlan.

Az egész számok körében a fordított irány is igaz:

Tétel (Z-ben minden felbonthatatlan szám prím)

Minden felbonthatatlan szám prímszám.

Bizonyítás

Legyen p felbonthatatlan, és legyen $p \mid ab$. Tfh. $p \nmid b$. Ekkor p és b relatív prímek (Miért?). A bővített euklideszi algoritmussal kaphatunk x, y egészeket, hogy px + by = 1. Innen pax + aby = a. Mivel p osztója a bal oldalnak, így osztója a jobb oldalnak is: $p \mid a$.

30.

Számelmélet alaptétele

Tétel (Számelmélet alaptétele)

Minden 0-tól és egységektől különböző egész szám sorrendtől és asszociáltaktól eltekintve egyértelműen felírható prímszámok szorzataként.

Bizonyítás

Csak nemnegatív számokra.

Létezés: Indukcióval: n=2 esetén igaz (prím). Általában ha n prím, akkor készen vagyunk, ha nem, akkor szorzatra bomlik nemtriviális módon. A tényezők már felbonthatók indukció alapján.

Egyértelműség: Indukcióval: n=2 esetén igaz (felbonthatatlan). Általában, ha n felbonthatatlan és így a felbontás egyértelmű. (Miért?) Tfh. n felbontható és minden n-nél kisebb számnak lényegében egyértelmű a prímek szorzataként való felírása. Legyen $n=p_1p_2\cdots p_k=q_1q_2\cdots q_\ell$ az n két felbontása. Az általánosság megszorítása nélkül feltehető, hogy p_1,p_2,\ldots,p_k és q_1,q_2,\ldots,q_ℓ mind pozitívak. Ekkor $p_1p_2,\cdots p_k=q_1q_2\cdots q_\ell$ és p_1 osztja a bal oldalt, ezért osztja a jobb oldalt, így a prímtulajdonság miatt osztja annak valamelyik tényezőjét; feltehető $p_1|q_1$. Mivel q_1 felbonthatatlan (hiszen prím), ezért $p_1=q_1$. Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapján ez már egyértelmű.

31.

Számelmélet alaptétele

Definíció (kanonikus alak)

Egy 0-tól és egységektől különböző *n* egész szám kanonikus alakja:

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell} = \pm \prod_{i=1}^{\ell} p_i^{\alpha_i}$$
, ahol p_1, p_2, \ldots, p_ℓ különböző pozitív prímek, $\alpha_1, \alpha_2, \ldots, \alpha_\ell$ pozitív egészek.

Következmény

Legyenek n, m>1 pozitív egészek: $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$, $m=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$, (ahol most α_i , $\beta_i\geq 0$ nemnegatív egészek!). Ekkor

$$(n, m) \cdot [n, m] = n \cdot m;$$

1 ha
$$(n, m) = 1$$
, akkor $[n, m] = n \cdot m$.

32.

Osztók száma

Definíció $(\tau(n))$

Egy n > 0 egész esetén legyen $\tau(n)$ az n pozitív osztóinak száma.

Példa

$$\tau(6)=$$
 4, osztók: 1, 2, 3, 6; $\tau(96)=$ 12, osztók: 1, 2, 3, 4, 6, 8, . . .

Tétel (Osztók száma a kanonikus alakból)

Legyen n > 1 egész, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_\ell^{\alpha_\ell}$ kanonikus alakkal. Ekkor $\tau(n) = (\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_\ell + 1)$.

Bizonyítás

n lehetséges osztóit úgy kapjuk, hogy a $d=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$ kifejezésben az összes β_i kitevő végigfut a $\{0,1,\ldots,\alpha_i\}$ halmazon. Így ez a kitevő α_i+1 -féleképpen választható.

Példa

$$\tau(2\cdot 3) = (1+1)\cdot (1+1) = 4;$$
 $\tau(2^5\cdot 3) = (5+1)\cdot (1+1) = 12.$

Kongruenciák Diszkrét matematika 2. 2019. ősz

33.

Kongruenciák

Oszthatósági kérdésekben sokszor csak a maradékos osztás esetén kapott maradék fontos:

- hét napjai;
- órák száma.

Példa

 $16 \mod 3 = 1$, $4 \mod 3 = 1$: 3-mal való oszthatóság esetén 16 "=" 4.

Definíció (kongruencia relációk)

Legyenek a, b, m egészek, ekkor $a \equiv b \pmod{m}$ ($a \in b \text{ kongruensek}$), modulo m), ha $m \mid a - b$, és $a \not\equiv b \pmod{m}$ ($a \in b \text{ inkongruensek}$), ha $m \nmid a - b$.

Ekvivalens megfogalmazás: $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$, azaz m-mel osztva ugyanazt az osztási maradékot adják.

Példa

 $16 \equiv 4 \text{ (mod 3)}$ ui. $3 \mid 16-4 \Leftrightarrow 16 \text{ mod } 3 = 1 = 4 \text{ mod 3;}$

 $16 \equiv 4 \pmod{2}$ ui. $2 \mid 16 - 4 \Leftrightarrow 16 \mod 2 = 0 = 4 \mod 2$;

 $16 \not\equiv 4 \pmod{5}$ ui. $5 \nmid 16 - 4 \Leftrightarrow 16 \mod{5} = 1 \neq 4 = 4 \mod{5}$.

Kongruenciák Diszkrét matematika 2. 2019. ősz

34.

Kongruencia tulajdonságai

Tétel (A kongruenciák néhány alaptulajdonsága)

Minden a, b, c, d, m és m' egész számra igaz:

- 1. $a \equiv a \pmod{m}$; (reflexivitás)
- 2. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$; (szimmetria)
- 3. $a \equiv b \pmod{m}$, $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$; (tranzitivitás)
- 4. $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$;
- 5. $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$;
- 6. $a \equiv b \pmod{m}$, $m' \mid m \Rightarrow a \equiv b \pmod{m'}$.

Bizonyítás

- 1. $m \mid 0 = a a$;
- 2. $m \mid a b \Rightarrow m \mid b a = -(a b);$
- 3. $m \mid a b, m \mid b c \Rightarrow m \mid a c = (a b) + (b c)$:
- 4. $m \mid a b, m \mid c d \Rightarrow m \mid (a + c) (b + d) = (a b) + (c d);$
- 5. $a = q_1 m + b$, $c = q_2 m + d \Rightarrow$ $\Rightarrow ac = (q_1 m + b)(q_2 m + d) = m(q_1 q_2 m + q_1 d + q_2 b) + bd$;
- 6. $m' \mid m \mid a b \Rightarrow m' \mid a b$.

Kongruenciák Diszkrét matematika 2. 2019. ősz

35.

Kongruencia tulajdonságai: maradékosztályok

Az előbbi tétel 1., 2. és 3. pontjai alapján tetszőleges m egész esetén a modulo m kongruencia (\equiv) ekvivalenciareláció \mathbb{Z} -n. Ennek ekvivalenciaosztályait modulo m maradékosztályoknak nevezzük.

Definíció (maradékosztályok modulo m)

Egy rögzített m modulus és a egész esetén, az a-val kongruens elemek halmazát az a által reprezentált maradékosztálynak nevezzük:

```
\overline{a} = \{x \in \mathbb{Z} : x \equiv a \pmod{m}\} = \{a + \ell m : \ell \in \mathbb{Z}\}.
```

Megjegyzések:

- Két szám pontosan akkor tartozik ugyanahhoz a mod m maradékosztályhoz, ha m-mel való osztási maradékuk megegyezik.
- A mod m maradékosztályok száma m.

Kongruencia tulajdonságai

Emlékeztető:

- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$
- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$

Példa

Mi lesz $345 \mod 7 = ?$

$$345 = 34 \cdot 10 + 5 \equiv 6 \cdot 3 + 5 = 18 + 5 \equiv 4 + 5 = 9 \equiv 2 \pmod{7}.$$

Emlékeztető: $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$.

Következmény: $a \equiv b \pmod{m} \Rightarrow ac \equiv bc \pmod{m}$.

Példa

 $14 \equiv 6 \pmod{8} \Rightarrow 42 \equiv 18 \pmod{8}$

A másik irány nem igaz!

 $2 \cdot 7 \equiv 2 \cdot 3 \pmod{8} \not\Rightarrow 7 \equiv 3 \pmod{8}$.

37.

Kongruencia tulajdonságai

Tétel (Kongruencia osztása)

Legyenek a, b, c, m egész számok. Ekkor $ac \equiv bc \pmod{m} \Leftrightarrow a \equiv b \pmod{\frac{m}{(c,m)}}$

Következmény: (c, m) = 1 esetén $ac \equiv bc \pmod{m} \Leftrightarrow a \equiv b \pmod{m}$.

Példa

$$2 \cdot 7 \equiv 2 \cdot 3 \pmod{8} \Rightarrow 7 \equiv 3 \pmod{\frac{8}{2}}$$
.

Bizonyítás

Legyen d = (c, m). Ekkor $ac \equiv bc \pmod{m} \Leftrightarrow m \mid c(a-b) \Leftrightarrow \frac{m}{d} \mid \frac{c}{d}(a-b)$. Mivel $\left(\frac{m}{d}, \frac{c}{d}\right) = 1$, ezért $\frac{m}{d} \mid \frac{c}{d}(a-b) \Leftrightarrow \frac{m}{d} \mid (a-b) \Leftrightarrow a \equiv b \pmod{\frac{m}{d}}$.

Lineáris kongruenciák

Oldjuk meg a $2x \equiv 5 \pmod{7}$ kongruenciát!

Ha x egy megoldás és $x \equiv y \pmod{7}$, akkor y szintén megoldás.

Keressük a megoldást a $\{0,1,\ldots,6\}$ halmazból!

$$x = 0 \Rightarrow 2x = 0 \not\equiv 5 \pmod{7};$$

$$x = 1 \Rightarrow 2x = 2 \not\equiv 5 \pmod{7};$$

$$x = 2 \Rightarrow 2x = 4 \not\equiv 5 \pmod{7};$$

$$x = 3 \Rightarrow 2x = 6 \not\equiv 5 \pmod{7};$$

$$x = 4 \Rightarrow 2x = 8 \equiv 1 \not\equiv 5 \pmod{7};$$

$$x = 5 \Rightarrow 2x = 10 \equiv 3 \not\equiv 5 \pmod{7};$$

$$x = 6 \Rightarrow 2x = 12 \equiv 5 \pmod{7}.$$

A kongruencia megoldása: $\{6+7\ell:\ \ell\in\mathbb{Z}\}.$

Van-e jobb módszer? Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruenciát! Kell-e 211 próbálkozás?

Lineáris kongruenciák

Tétel (Lineáris kongruenciák megoldása)

Legyenek a, b, m egész számok, m > 1. Ekkor az ax $\equiv b \pmod{m}$ kongruencia pontosan akkor oldható meg, ha $(a, m) \mid b$. Ez esetben pontosan (a, m) darab páronként inkongruens megoldás van mod m.

Bizonyítás

 $ax \equiv b \pmod{m} \Leftrightarrow m|b-ax \Leftrightarrow ax+my=b \ valamely \ y \ egészre.$ Tehát $ax \equiv b \pmod{m}$ megoldásai pontosan ax+my=b "x-beli" megoldásai lesznek. Mivel ax+my=b pontosan akkor oldható meg, ha $(a,m)\mid b$, így $ax \equiv b$ megoldhatáságának is ugyanez a feltétele. A kétváltozós, lineáris, diofantikus egyenletekről tanultak alapján tehát a kongruencia megoldásai az $x_t = x_0 + \frac{m}{(a,m)} \cdot t$ alakú számok lesznek, ahol $t \in \mathbb{Z}$ és x_0 egy tetszőleges megoldás.

Tekintsük a következő (a, m) db megoldást:

$$x_k = x_0 + k \frac{m}{(a,m)}$$
: $k = 0, 1, ..., (a, m) - 1$.

Ezek páronként inkongruensek mod m (Miért?), és bármely x megoldás esetén van köztük x-szel kongruens mod m (Miért?).

Lineáris kongruenciák

- 1. $ax \equiv b \pmod{m} \Leftrightarrow \exists y \in \mathbb{Z} : ax + my = b$.
- 2. Pontosan akkor van megoldás, ha $(a, m) \mid b$.
- 3. Oldjuk meg az ax' + my' = (a, m) egyenletet (bővített euklideszi algoritmus)!
- 4. Megoldások: $x_k = \frac{b}{(a,m)}x' + k\frac{m}{(a,m)}$: k = 0, 1, ..., (a, m) 1.

Példa Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruenciát!

i	r_i	q_i	x_i'
$\overline{-1}$	23	_	1
0	211	_	0
1	23	0	1
2	4	9	<u>-9</u>
3	3	5	46
4	1	1	-55

3

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x'_{-1} = 1$, $x'_0 = 0$, $x'_i = x'_{i-2} - q_i x'_{i-1}$.

Lnko: $(23, 211) = 1 \mid 4 \Rightarrow$

Egy megoldás: $x_0 = 4(-55) \equiv 202 \pmod{211}$.

Összes megoldás: $\{202 + 211\ell : \ell \in \mathbb{Z}\}.$

(EII.: ezek megoldások: $23 \cdot (202 + 211\ell) - 4 = 4642 + 211\ell = (22 + \ell) \cdot 211$)

Lineáris kongruenciák

Példa

Oldjuk meg a $10x \equiv 8 \pmod{22}$ kongruenciát!

i	r_i	q_i	x_i'
$\overline{-1}$	10	_	1
0	22	_	0
1	10	0	1
2	2	2	-2
3	0	5	_

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x'_{-1} = 1$, $x'_0 = 0$, $x'_i = x'_{i-2} - q_i x'_{i-1}$

Lnko:
$$(10, 22) = 2 \mid 8 \Rightarrow$$

Két inkongruens megoldás:
 $x_0 = 4(-2) \equiv 14 \pmod{22}$
 $x_1 = 4(-2) + 1 \cdot \frac{22}{2} \equiv 14 + 11 \equiv 3 \pmod{22}$.

Összes megoldás: $\{14+22\ell:\ \ell\in\mathbb{Z}\}\bigcup\{3+22\ell:\ \ell\in\mathbb{Z}\}.$

Ezek megoldások:
$$x_0 = 14$$
: $10 \cdot 14 - 8 = 132 = 6 \cdot 22$, $x_1 = 3$: $10 \cdot 3 - 8 = 22 = 1 \cdot 22$.

Szimultán kongruenciák

Szeretnénk olyan x egészet, mely egyszerre elégíti ki a következő kongruenciákat:

$$2x \equiv 1 \pmod{3}$$
$$4x \equiv 3 \pmod{5}$$

A kongruenciákat külön megoldva:

$$x \equiv 2 \pmod{3}$$
$$x \equiv 2 \pmod{5}$$

Látszik, hogy x = 2 megoldás lesz!

Vannak-e más megoldások?

- 2, 17, 32, ..., $2 + 15\ell$;
- további megoldások?
- hogyan oldjuk meg az általános esetben:

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$

Szimultán kongruenciák

Feladat: Oldjuk meg a következő kongruenciarendszert:

$$\left. \begin{array}{l} a_1 x \equiv b_1 \; (\bmod \, m_1) \\ a_2 x \equiv b_2 \; (\bmod \, m_2) \\ \vdots \\ a_n x \equiv b_n \; (\bmod \, m_n) \end{array} \right\}$$

Az egyes $a_i x \equiv b_i \pmod{m_i}$ lineáris kongruenciák külön megoldhatóak:

$$\left. \begin{array}{l} x \equiv c_1 \; (\operatorname{\mathsf{mod}} m_1) \\ x \equiv c_2 \; (\operatorname{\mathsf{mod}} m_2) \\ \vdots \\ x \equiv c_n \; (\operatorname{\mathsf{mod}} m_n) \end{array} \right\}$$

Szimultán kongruenciák

Feladat: Oldjuk meg a következő kongruenciarendszert:

$$\left. \begin{array}{l} x \equiv c_1 \; (\operatorname{\mathsf{mod}} m_1) \\ x \equiv c_2 \; (\operatorname{\mathsf{mod}} m_2) \\ \vdots \\ x \equiv c_n \; (\operatorname{\mathsf{mod}} m_n) \end{array} \right\}$$

Feltehető, hogy az m_1,m_2,\ldots,m_n modulusok páronként relatív prímek, mert az általános eset mindig visszavezethető erre az esetre.

Kínai maradéktétel

Tétel (Kínai maradéktétel)

Legyenek $1 < m_1, m_2, \ldots, m_n$ páronként relatív prím számok, c_1, c_2, \ldots, c_n egészek. Ekkor az

$$x \equiv c_1 \pmod{m_1}$$

$$x \equiv c_2 \pmod{m_2}$$

$$\vdots$$

$$x \equiv c_n \pmod{m_n}$$

kongruenciarendszer megoldható, és bármely két megoldás kongruens egymással modulo $m_1 \cdot m_2 \cdots m_n$.

Kínai maradéktétel

 $x \equiv c_1 \pmod{m_1}, x \equiv c_2 \pmod{m_2}, \ldots, x \equiv c_n \pmod{m_n}. x =?$

Bizonyítás

A bizonyítás konstruktív!

Legyen $m=m_1m_2$. A bővített euklideszi algoritmussal oldjuk meg az $m_1x_1+m_2x_2=1$ egyenletet. Legyen $c_{1,2}=m_1x_1c_2+m_2x_2c_1$. Ekkor $c_{1,2}\equiv c_j\pmod{m_j}$ (j=1,2) (Miért?). Ha $x\equiv c_{1,2}\pmod{m}$, akkor x megoldása az első két kongruenciának. Megfordítva: ha x megoldása az első két kongruenciának, akkor $x-c_{1,2}$ osztható m_1 -gyel, m_2 -vel, így a szorzatukkal is: $x\equiv c_{1,2}\pmod{m}$, mivel m_1 és m_2 relatív prímek. Az eredeti kongruenciarendszer ekvivalens az

$$egin{aligned} x &\equiv c_{1,2} \; (\operatorname{\mathsf{mod}} m_1 m_2) \ x &\equiv c_3 \; (\operatorname{\mathsf{mod}} m_3) \ dots \ x &\equiv c_n \; (\operatorname{\mathsf{mod}} m_n) \end{aligned}$$

kongruenciarendszerrel. n szerinti indukcióval adódik az állítás.

Szimultán kongruenciák

Példa

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$

Oldjuk meg az $3x_1 + 5x_2 = 1$ egyenletet!

Megoldások:
$$x_1 = 2$$
, $x_2 = -1$. \Rightarrow
 $\Rightarrow c_{1,2} = 3 \cdot 2 \cdot 3 + 5 \cdot (-1) \cdot 2 = 18 - 10 = 8$.

Összes megoldás:
$$\{8+15\ell: \ell \in \mathbb{Z}\}.$$

Példa

$$\begin{array}{c} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{7} \end{array} \right\} \quad \stackrel{c_{1,2}=8}{\Longrightarrow} \quad \begin{array}{c} x \equiv 8 \pmod{15} \\ x \equiv 4 \pmod{7} \end{array} \right\}$$

Oldjuk meg a $15x_{1,2} + 7x_3 = 1$ egyenletet!

Megoldások:
$$x_{1,2} = 1$$
, $x_3 = -2$. \Rightarrow

$$\Rightarrow c_{1,2,3} = 15 \cdot 1 \cdot 4 + 7 \cdot (-2) \cdot 8 = 60 - 112 = -52.$$

Összes megoldás: $\{-52+105\ell:\ \ell\in\mathbb{Z}\}=\{53+105\ell:\ \ell\in\mathbb{Z}\}.$

Teljes maradékrendszer

Definíció (teljes maradékrendszer)

Egy rögzített m modulus esetén egy olyan számhalmazt, amely minden modulo m maradékosztályból pontosan egy számot tartalmaz, teljes maradékrendszernek nevezzük modulo m.

Példa

 $\{33, -5, 11, -11, -8\}$ teljes maradékrendszer modulo 5.

Gyakori választás teljes maradékrendszerekre

- Lehetséges mod m maradékok: $\{0, 1, \dots, m-1\}$;
- "Legkisebb abszolút értékű maradékok":

$$\{0, \pm 1, \dots, \pm \frac{m-1}{2}\}$$
, ha $2 \nmid m$; $\{0, \pm 1, \dots, \pm \frac{m-2}{2}, \frac{m}{2}\}$, ha $2 \mid m$.

Redukált maradékrendszer

Megjegyzés: ha egy maradékosztály valamely eleme relatív prím a modulushoz, akkor az összes eleme az: $(a + \ell m, m) = (a, m) = 1$. Ezeket a maradékosztályokat redukált maradékosztályoknak nevezzük.

Definíció (redukált maradékrendszer)

Rögzített m modulus esetén egy olyan számhalmazt, amely pontosan egy számot tartalmaz minden modulo m redukált maradékosztályból, redukált maradékrendszernek nevezünk modulo m.

Példa

- {1, 2, 3, 4} redukált maradékrendszer modulo 5.
- $\{1, -1\}$ redukált maradékrendszer modulo 3.
- $\{1, 19, 29, 7\}$ redukált maradékrendszer modulo 8.
- $\{0, 1, 2, 3, 4\}$ nem redukált maradékrendszer modulo 5.

Euler-féle φ függvény

Definíció (Euler-féle φ függvény)

Egy m>0 egész szám esetén legyen $\varphi(m)$ az m-nél kisebb, hozzá relatív prím természetes számok száma $\varphi(m)=|\{j:\ 0\leq j< m, (m,j)=1\}|.$

Példa

```
\varphi(5)=4: 5-höz relatív prím természetes számok: 1,2,3,4.
```

 $\varphi(6)=2$: 6-hoz relatív prím természetes számok: 1, 5.

 $\varphi(12)=4$: 12-höz relatív prím természetes számok: 1,5,7,11.

 $\varphi(15)=8$: 15-höz relatív prím természetes számok:

1, 2, 4, 7, 8, 11, 13, 14.

Megjegyzés: $\varphi(m)$ a redukált maradékosztályok száma modulo m.

51.

Euler-féle φ függvény

$$\varphi(m) = |\{j: \ 0 \le j < m, (m, j) = 1\}|$$

Tétel $(\varphi(m)$ kiszámítása m kanonikus alakjából)

Legyen m kanonikus alakja $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$. Ekkor

$$\varphi(m)=m\cdot\prod_{i=1}^{\ell}\left(1-\frac{1}{p_i}\right)=\prod_{i=1}^{\ell}(p_i^{\alpha_i}-p_i^{\alpha_i-1}).$$

$$\varphi(5) = 5 \left(1 - \frac{1}{5}\right) = 5^{1} - 5^{0} = 4;$$

$$\varphi(6) = 6 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = (2^{1} - 2^{0})(3^{1} - 3^{0}) = 2;$$

$$\varphi(12) = 12 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = (2^{2} - 2^{1})(3^{1} - 3^{0}) = 4;$$

$$\varphi(15) = 15 \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = (3^{1} - 3^{0})(5^{1} - 5^{0}) = 8.$$

52.

Euler-Fermat tétel

Tétel (Euler-Fermat tétel)

Legyen m>1 egész szám, a olyan egész, melyre (a,m)=1. Ekkor $a^{arphi(m)}\equiv 1\ ({
m mod}\, m).$

Következmény (Fermat tétel)

Legyen p prímszám, $p \nmid a$. Ekkor $a^{p-1} \equiv 1 \pmod{p}$, illetve tetszőleges a esetén $a^p \equiv a \pmod{p}$.

Példa

$$\varphi(6) = 2 \Rightarrow 5^2 = 25 \equiv 1 \pmod{6};$$
 $\varphi(12) = 4 \Rightarrow 5^4 = 625 \equiv 1 \pmod{12}; 7^4 = 2401 \equiv 1 \pmod{12}.$

Figyelem! $2^4 = 16 \equiv 4 \not\equiv 1 \pmod{12}$, mert $(2,12) = 2 \not\equiv 1$.

53.

Euler-Fermat tétel bizonyítása

Lemma (Teljes, ill. redukált maradékrendszer lineáris transzformációi)

Legyen m>1 egész, a_1 , a_2 , ..., a_m teljes maradékrendszer modulo m. Ekkor minden a, b egészre, melyre (a,m)=1, $a\cdot a_1+b$, $a\cdot a_2+b$,..., $a\cdot a_m+b$ szintén teljes maradékrendszer. Továbbá, ha a_1 , a_2 , ..., $a_{\varphi(m)}$ redukált maradékrendszer modulo m, akkor $a\cdot a_1$, $a\cdot a_2$,..., $a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

Bizonyítás

Tudjuk, hogy $aa_i + b \equiv aa_j + b \pmod{m} \Leftrightarrow aa_i \equiv aa_j \pmod{m}$. Mivel (a, m) = 1, egyszerűsíthetünk a-val: $a_i \equiv a_j \pmod{m}$. Tehát $a \cdot a_1 + b$, $a \cdot a_2 + b$,..., $a \cdot a_m + b$ páronként inkongruensek. Mivel számuk m, így teljes maradékrendszert alkotnak.

$$(a_i,m)=1 \wedge (a,m)=1 \Rightarrow (a \cdot a_i,m)=1$$
. Továbbá $a \cdot a_1, \ a \cdot a_2, \ldots, \ a \cdot a_{\varphi(m)}$ páronként inkongruensek, számuk $\varphi(m) \Leftrightarrow \text{redukált}$ maradékrendszert alkotnak

Tétel (Euler-Fermat) $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$.

Bizonyítás

Legyen a_1 , a_2 , ..., $a_{\varphi(m)}$ egy redukált maradékrendszer modulo m. Mivel $(a,m)=1\Rightarrow a\cdot a_1$, $a\cdot a_2$,..., $a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

Innen

$$a^{\varphi(m)}\prod_{j=1}^{\varphi(m)}a_j=\prod_{j=1}^{\varphi(m)}a\cdot a_j\equiv\prod_{j=1}^{\varphi(m)}a_j\;\big(\operatorname{mod} m\big).$$

Mivel $\prod a_j$ relatív prím m-hez, így egyszerűsíthetünk vele:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

 $\varphi(m)$

Euler-Fermat tétel

Tétel (Euler-Fermat)
$$(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$$

Példa

Mi lesz a 3¹¹¹ utolsó számjegye tízes számrendszerben?

Mi lesz 3¹¹¹ mod 10?

$$\varphi(10) = 4 \Rightarrow$$

$$3^{111} = 3^{4 \cdot 27 + 3} = (3^4)^{27} \cdot 3^3 \equiv 1^{27} \cdot 3^3 = 3^3 = 27 \equiv 7 \pmod{10}$$

Oldjuk meg a $2x \equiv 5 \pmod{7}$ kongruenciát!

 $\varphi(7)=6$. Szorozzuk be mindkét oldalt 2^5 -nel. Ekkor

$$5 \cdot 2^5 \equiv 2^6 x \equiv x \pmod{7}$$
. És itt $5 \cdot 2^5 = 5 \cdot 32 \equiv 5 \cdot 4 = 20 \equiv 6 \pmod{7}$.

Oldjuk meg a $23x \equiv 4 \pmod{211}$ kongruenciát! $\varphi(211) = 210$. Szorozzuk be mindkét oldalt 23^{209} -nel. Ekkor

$$4 \cdot 23^{209} \equiv 23^{210} x \equiv x \pmod{211}$$
. És itt $4 \cdot 23^{209} \equiv \dots \pmod{211}$.