

DeepReserve: dynamic edge server reservation for connected vehicles with deep reinforcement learning

Jiawei Zhang
Wireless Networking and Artificial Intelligence Lab
Advisor: Prof. Xudong Wang

Problem statement

Computational resource demands change according to vehicle mobility

- Edge servers should be dynamically reserved (rent or start) for providing service
 - > Reduce cost for idle server
 - > Ensure available server for nearby users

Challenges

- Reservation according to statistical demands is infeasible
 - > Participants are **unwilling** to share routes
 - > Statistical information cannot be aligned with real-time demands

Related work

Physical placement of edge servers

- With given demand information
 - > Determine the positions of edge servers that are geographically close to users [1,2]
 - Determine locations of edge servers based on the number of user requests aggregated in nearby BSs [3]
 - Choose suitable edge servers to hold multiple interrelated services [4]
 - > Determine the placement of multiple services into edge servers with heterogeneous capacities [5]

Difference: they determine **fixed placement** based on **given statistical demands**, while the edge-server reservation problem requires an **online solution** adaptive to the real-time demands

- Without demand information
 - > Leverages the collected contexts of connected users (e.g., equipment types and external environment factors) to predict the demands [6]

Difference: we do not assume any context information of users

- [1] H. Yin, et. al, "Edge provisioning with flexible server placement," IEEE Trans. Parallel Distrib. Syst (TPDS), 2016.
- [2] Z. Xu, et. al, "Efficient algorithms for capacitated cloudlet placements," IEEE Trans. Parallel Distrib. Syst (TPDS), 2015.
- [3] S. Wang, et. al, "Edge server placement in mobile edge computing," J. Parallel Distrib. Computing, 2019.
- [4] I. Lera, et. al, "Availability-aware service placement policy in fog computing based on graph partitions," IEEE Internet of Things J, 2018.
- [5] S. Pasteris, et. al, "Service placement with provable guarantees in heterogeneous edge computing systems," in *Proc. INFOCOM*, 2019.
- [6] L. Chen, et. al, "Spatio-temporal edge service placement: A bandit learning approach," IEEE Trans. Wireless Commun. (TWC), 2018.

Problem formulation

Optimization problem

- Task: dynamically reserve edge servers $x_{i,t}$
- Target: maximize the system utility
 - ➤ (Reward of providing service) (server cost) (punishment of connection failure)

$$\max \sum_{i \in \mathcal{E}} (-\alpha x_{i,t} + \beta u_{i,t} - \gamma q_{i,t})$$

Constraints

- ightharpoonup Latency $d_{i,j,t}y_{i,j,t} \leq Dx_{i,t}$
- ightharpoonup Connect to at most one server $\sum y_{i,j,t} \leq 1$
- \triangleright Edge server capacity $\sum_{i \in \mathcal{V}_t} y_{i,j,t} \leq Ux_{i,t}$
- \triangleright Connect to reserved server $y_{i,j,t} \leq x_{i,t}$

Infeasibility of optimization method

- This problem can be reduced to the K-median problem which is proved to be NP-hard [1]
- Lack of parameters
 - \triangleright Workload $u_{i,t}$ cannot be obtained before reservation
 - ightharpoonup Latency $d_{i,i,t}$ cannot be measured, due to unknown CV location and network status

Basic idea of DeepReserve

Facts observed from the system

- Vehicle distribution reflects on workload of edge servers
- Vehicles show spatio-temporal relation

Basic idea

Learn from the spatio-temporal correlated workload information of edge servers to guide reservation

Basic tool

Deep reinforcement learning

RL model design

RL model

- States: $\mathbf{s}_t = [u_{1,t} + q_{1,t}, \cdots, u_{E,t} + q_{E,t}]$ The number of **connected** and **denied** vehicles
- Actions: $\mathbf{a}_t = [x_{1,t}, \cdot \cdot \cdot, x_{E,t}]$ The **reservation** decision of edge server

Reward:
$$r_t = \sum_{i=1}^{E} (-\alpha x_{i,t} + \beta u_{i,t} - \gamma q_{i,t})$$
Cost of deploying Reward from Punishment of edge servers connected vehicles connection failure

Challenge in such an RL problem

- The system has large state space (e.g., workload of 1910 edge servers) and action space (up to 2^1910)
- Traditional exploration process is hard to obtain sufficient "good" experience for a DRL agent [1]

RL framework selection and remaining challenges

Framework: DDPG [1]

- Large action space → policy gradient → continuous action space
- Large state space → deep neural network → replace large Q tables
- Speedup training → Actor Critic

Remaining issues

- Fully-connected layers in DNN adopted by DDPG do not encode spatial and temporal features
 - > output of DNN is not an accurate prediction of future states
- Random exploration from the huge action space is unlikely to gather enough high-reward experiences
 - low system utility during exploration

DDPG based DRL method

No vehicles recently

Two designs to improve DDPG

No vehicles in nearby edge servers

Technique 2: **ConvLSTM** to capture spatio-temporal information

(b) The critic network

[1] Xingjian, S. H. I., et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." in Proc. NeurIPS. 2015.

DR-Train to accelerate training

Two key designs

- Training initializer
 - > Apply the greedy algorithm to initialize experience pools
 - Avoid "bad" experiences to deteriorate training
- Forking model branches
 - > To adapt to different traffic pattern

Algorithm 1 DR-Train

- Randomly initialize critic online network Q_w(·) and actor online network μ_w(·) for weekdays with parameters θ^Q_w and θ^μ_w, respectively;
- 2: Initialize target networks $Q'_w(\cdot)$ and $\mu'_w(\cdot)$ with parameters $\theta_w^{Q'} \leftarrow \theta_w^Q$ and $\theta_w^{\mu'} \leftarrow \theta_w^\mu$, respectively;
- Initialize a random process N and experience pools R_w and R_h for weekdays and weekends, respectively;
- Receive initial observation state s₁;
- 5: for z in Z do
- 6: if z is weekday then
- 7: **for** t = 1 **to** T **do**
- 8: If z is the first weekday then
- Select a_t according to the greedy algorithm;

• • • • •

- 21: else
- 22: if z is the first weekend then
- 23: Initiate the critic networks $Q_h(\cdot)$ and $Q_h'(\cdot)$ and

• • • • •

Experimental settings

Data sets

- Didi express in Chendu in 2018.10.8-11.30
- Base station positions in Chendu

Metrics

- > training loss of both the critic network and actor network
- > system utility
- > average resource utilization of reserved MEC servers
- > the probability of successful connections among all CVs

Benchmarks

- Variants: 1) DC (remove ConvLSTM), 2) DA (remove action amender), 3) DDPG
- Server placement with demand information: 1) UC [1], 2) HAF [2], 3) GSP [3]
- Others: 1) optimal, 2) random

- [1] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and F. Li, "Edge provisioning with flexible server placement," *IEEE Trans. Parallel Distrib. Syst.*, vol. 28, no. 4, pp. 1031–1045, 2016.
- [2] M. Jia, J. Cao, and W. Liang, "Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks," IEEE Trans. Cloud Computing, vol. 5, no. 4, pp. 725–737, 2015.
- [3] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, "It's hard to share: Joint service placement and request scheduling in edge clouds with sharable and non-sharable resources," in Proc. Int. Conf. Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 365–375.

Experimental results: DR-Train

(a) Convergence of the critic network

(b) Convergence of the actor network

Fig. 7. The training loss with experience-pool initialization.

Quickly converge to reduce inefficient tries

(a) Average system utility

(b) Average resource utilization

Fig. 8. The effectiveness of dividing model branches.

Improve performance with forking branches

Experimental results: variants of DeepReserve

(a) System utility

Observation: action amender and ConvLSTM contribute differently

(b) Average resource utilization

Fig. 11. The performance compared with different variants of DeepReserve.

Experimental results: compared to benchmark approaches

DeepReserve
DC
DA
DA
DDPG
UC
HAF
Opt
Rand
0.8
0.8
0.85
0.9
0.95
1
Probabilty

Fig. 13. The CDF plot of the probability of successful connection.

Fig. 10. The performance compared with benchmark approaches. Fig. 12. The performance compared with state-of-the-art approaches.

Near performance with optimal and the approaches with full demand information

Contributions

- The system model of edge computing based CV system is built and the edge-server reservation problem is formulated, which is proved to be NP-hard.
- A DRL based scheme called **DeepReserve** is developed, which is adapted from DDPG with two
 improvements, i.e., adopting ConvLSTM and the action amender. DeepReserve can efficiently learn to
 dynamically reserve edge servers without accurate demand information
- A training method called **DR-Train** is designed. Featured with two techniques, i.e., experience-pool initialization and model branches, DR-Train can stably train models for different vehicle traffic patterns.

Thank you!