

ROCKET

RandOm Convolutional KErnel Transform

Transformação Convolucional Aleatória do Kernel

O QUE É O ROCKET?

- Algoritmo para classificação de séries temporais
- Kernels convolucionais aleatórios

O que significa isso?

Um kernel é uma pequena matriz (ou filtro) que "varre" a série temporal, realizando operações matemáticas entre os valores da série e os valores do kernel (produto escalar deslizante), e esse processo é chamado **convolução**

KERNELS ALEATÓRIOS NO ROCKET

• Ao invés de aprender os valores dos kernels durante o treinamento (como ocorre em redes neurais convolucionais), os kernels são gerados aleatoriamente antes de iniciar a transformação dos dados

• Parâmetros:

Comprimento: 7, 9 e 11

Pesos: N(0,1)

Bias: U(-1,1)

Dilatação: 2^{U(0,A)}

Padding: $((L_kernel - 1) \times d)/2$;

BIAS

- "Desloca" os valores resultantes da convolução, (ele pode aumentar ou diminuir os valores das *feature maps*). Essa mudança permite que diferentes aspectos da série temporal sejam enfatizados, já que dois kernels que são estruturalmente idênticos, mas possuem biases diferentes, podem resultar em *feature maps* que destacam características distintas.
- No ROCKET, apenas os valores positivos das *feature maps* são usados para gerar as features finais. Ou seja, depois que o *bias* desloca os valores no *feature map*, todos os valores negativos são descartados.

DILATAÇÃO

• A dilatação é um parâmetro que altera a "espessura" do kernel (filtro) aplicado a uma série temporal. Ao modificar a dilatação, o kernel pode "pular" valores na série temporal, efetivamente aumentando a distância entre os pontos amostrados.

• A escolha da dilatação permite que kernels com configurações semelhantes capturem os mesmos padrões, mas em frequências e escalas diferentes.

PADDING

$$((length_kernel - 1) \times dilation)/2$$

- Adição de valores (neste caso, zeros) nas extremidades de uma série temporal antes de aplicar um kernel.
- O principal objetivo do padding é garantir que o kernel seja centrado em cada ponto da série temporal, permitindo que o modelo capture padrões não apenas nas regiões centrais, mas também nas extremidades da série.
- Ao gerar cada kernel, é feita uma decisão aleatória, com igual probabilidade, sobre se o padding será utilizado ou não. Isso adiciona variabilidade ao modelo e permite que diferentes kernels explorem a série temporal de maneiras distintas

FEATURES

Os kernels aleatórios no ROCKET são usados para gerar features específicas, que capturam informações importantes sobre a série temporal:

 Percentage of Positive Values (PPV): A porcentagem de valores positivos obtidos após a convolução

• Maximum value (MAX): Pool máximo global

PORQUE FUNCIONA TÃO BEM?

- Kernels convolucionais aleatórios são extremamente eficazes para capturar padrões discriminativos em séries temporais
- Kernels aleatórios têm baixos requisitos computacionais, fazendo a aprendizagem e classificação extremamente rápidas
- PPV captura informações sobre a frequência com que um padrão detectado por cada kernel, permite que o classificador atribui pesos diferentes à prevalência de um padrão

Fig. 1 Mean rank of ROCKET versus state-of-the-art classifiers on the 85 'bake off' datasets.

- 6 minutos para o 'bake off' com o maior conjunto de treinamento (ElectricDevices, com 8.926 exemplos de treinamento), comparado a 1 hora e 35 minutos para Proximity Forest, 2 horas e 24 minutos para TS-CHIEF e 7 horas e 46 minutos para InceptionTime
- 4 minutos e 52 seg para 'bake off' com a maior série temporal (HandOutlines, comprimento 2.709), comparado a 8 horas e 10 minutos para InceptionTime, e quase 3 dias para Proximity Forest e mais de 4 dias para TS-CHIEF.

Fig. 3 Accuracy (left) and training time (right) versus training set size for the Satellite Image Time Series dataset.

Fig. 3 Accuracy (left) and training time (right) versus training set size for the Satellite Image Time Series dataset.

Um pouco sobre a minha ic..

Dataset	NORMAL		TSTUDENT	
	Acurácia	Desvio-padrão	Acurácia	Desvio-padrão
ArrowHead	0.7699428571	0.0219092064	0.7672	0.024045216
DistalPhalanxTW	0.679856115	0.012439587	0.6735251798	0.0139327319
FaceAl1	0.7556449704	0.010280119	0.7790532544	0.025914187
FiftyWords	0.721098901098	0.0090263463	0.72632967032	0.00871507739
GunPoint	0.97986666	0.0054693539	0.975466666	0.004937707
Ham	0.7540952380	0.029224160	0.762857142	0.0268858133

FaceAll dataset

FaceAll dataset

ShapeletSlim dataset

ShapeletSlim dataset

OBRIGADA!