- (1) Follow the JFLAP tutorial at http://www.jflap.org/tutorial/fa/createfa/fa. html. Then use JFLAP to draw and simulate some of the DFAs/NFAs discussed in the lecture.
- (2) Consider the following DFA:

Without using JFLAP, practice *simulating* the behaviour of ths DFA using the following strings

abba babb aaa bbabba

For each string, list the sequence of states visited by this DFA (e.g. $q_0, q_2, q_0, q_1, q_3, \ldots$).

Produce the formal definition of the above DFA. This should consist of: the alphabet Σ , the set of states Q, the transition function δ , in table form, the start state, and the set of final states F.

(3) Consider the following NFA:

Without using JFLAP, practice *simulating* the behaviour of this NFA using the following strings.

abbaa babb aaaba abbbbbbbaab

For each string, list the <u>sets of states</u> visited by the NFA (e.g. $\{q_0\}, \{q_1, q_2\}, \{q_2, q_3\}, \ldots$).

Produce the formal definition $(\Sigma, Q, \delta, q_{\text{start}}, F)$ of the above NFA.

(4) The formal description $(Q, \Sigma, \delta, q_{\text{start}}, F)$ of a DFA is given by

$$(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_1, \{q_3\}),$$

where δ is given by the following table

	u	d
$\rightarrow q_1$	q_1	q_2
q_2	q_1	q_3
$*q_3$	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Give the state diagram of this machine.

- (5) Use JFLAP to design simple DFAs which recognize the following languages over the alphabet $\Sigma = \{a, b\}$
 - 1) The language of strings which begin with a.
 - 2) The language of strings which end with b.
 - 3) The language of strings which either begin **or** end with b.
 - 4) The language of strings which begin with a and end with b.
 - 5) The language of strings which contain the substring ba.
 - 6) The language of strings with all the a's on the left and b's on the right
 - 7) The language strings consisting of alternating a's and b's.
- (6) Use JFLAP to produce NFAs to recognize the following languages over $\Sigma = \{0, 1\}$
 - 1) The language of strings which begin and end with 01.
 - 2) The language of strings which do not end with 01.
 - 3) The language of strings which begin and end with different symbols.
 - 4) The language of strings of odd length.
 - 5) The language of strings which contain an even number of 0's.
 - 6) The language of binary numbers which are divisible by 4.

(7) If a is a *symbol* from an alphabet Σ then a^n denotes the string which consists of n successive copies of a.

Similarly, if x is a *string* of symbols then x^n denotes the string which consists of n successive copies of x. For example, $a^2 = aa$ and $(ab)^2 = abab$.

Let $\Sigma = \{0, 1\}$. Write $0^4, 1^4, (10)^3, 10^3$ explicitly as strings in the usual form.

- (8) If Σ is an alphabet then Σ^n denotes the set of all strings over Σ which have length exactly n symbols.
 - 1) Let $\Sigma = \{a, b, c\}$. Find Σ^2 .
 - 2) Let $\Sigma = \{a, b\}$. Find Σ^3 .
- (9) If Σ is an alphabet then the set of all finite-length strings over it is denoted by Σ^* .

Let $\Sigma_1 = \{a\}$ and $\Sigma_2 = \{a, b\}$. List the strings of length 0, 1, 2, 3, and 4 over these two alphabets. Write these in the form $\Sigma_1^* = \{...\}$ and $\Sigma_2^* = \{...\}$.

Note that

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4 \cup \cdots.$$

(1) Which of the strings listed below does the following NFA accept?

- 10011010
- 01010011
- 00010111
- 0010010

(2) Intersection, union and difference of DFAs

Given two languages described by two DFAs, the idea is to construct a new DFA that simulates simultaneously-running the given DFAs. To do this, the states of the new DFA will be pairs of states from the original DFAs.

Suppose $\mathcal{M}_1 = (Q_1, \Sigma, \delta_1, q_{\text{start }1}, F_1)$ and $\mathcal{M}_2 = (Q_2, \Sigma, \delta_2, q_{\text{start }2}, F_2)$ are DFAs recognizing L_1 and L_2 , respectively.

Let \mathcal{M} be the DFA given by $(Q, \Sigma, \delta, q_0, F)$ where

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_{\text{start }1}, q_{\text{start }2})$$

and the transition function δ is defined by

$$\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$$

for all $(p,q) \in Q_1 \times Q_2$ and $\sigma \in \Sigma$.

Then

- \mathcal{M} recognizes $L_1 \cap L_2$ if $F = \{(p,q) \mid p \in F_1 \land q \in F_2\} = F_1 \times F_2$
- \mathcal{M} recognizes $L_1 \cup L_2$ if $F = \{(p,q) \mid p \in F_1 \lor q \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- \mathcal{M} recognizes $L_1 L_2$ if $F = \{(p,q) \mid p \in F_1 \land q \notin F_2\} = F_1 \times (Q_2 F_2)$
- 1) Let the languages L_1 and L_2 be given by the two RegEx's: $b^*a\Sigma^*$ and $a^*b\Sigma^*$, respectively, where $\Sigma = \{a, b\}$.

First, produce state diagram for DFAs recognizing L_1 and L_2 , then use the above method to construct a DFA for

$$L_1 \cap L_2 = \{w \mid w \text{ has at least one a } \text{and at least one b} \},$$

then outline how it can be changed for $L_1 \cup L_2$ and $L_1 - L_2$.

2) Use the same method for the language

 $\{w \mid w \text{ has an even number of a's and each a is followed by at least one b}\}.$

(3) (Complement of a language)

In the special case where $L_1 = \mathcal{L}(\Sigma^*)$, i.e. the language of all possible strings over Σ , we get

$$\mathcal{M}_1 = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1) = (\{q_{0_1}\}, \Sigma, (q, \sigma) \mapsto q_{0_1}, q_{0_1}, \{q_{0_1}\})$$

This choice for \mathcal{M}_1 provides us with a method to produce the **complement** of L_2 which is defined as $\mathcal{L}(\Sigma^*) - L_2 = L_1 - L_2$.

Now, note that

$$Q = Q_1 \times Q_2 = \{q_{0_1}\} \times Q_2$$

 $F = F_1 \times (Q_2 - F_2) = \{q_{0_1}\} \times (Q_2 - F_2)$

means that the new DFA is essentially the **DFA for** L_2 **but with the accepting and non-accepting states "flipped." (swapping roles.)**

Use this observation to produce a DFA for the language

 $\{w \mid w \text{ does not contain the substring baba.}\}$

This does not always work for NFAs – give an example to show that it does not work. (Counter example)