Job No.: Shane Atkinson Address: 1708 Te Kopia Road, Waikite Valley, Rotorua, New Date: 3/2/2025

Zealand

Latitude: -38.492781 **Longitude:** 176.193031 **Elevation:** 355.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.7 m
Wind Region	NZ2	Terrain Category	2.66	Design Wind Speed	38.29 m/s
Wind Pressure	0.88 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.85 m Cpe = -0.9933 pe = -0.79 KPa pnet = -0.79 KPa

For roof CP,e from 1.85 m To 3.70 m Cpe = -0.8533 pe = -0.68 KPa pnet = -0.68 KPa

For wall Windward $Cp_i = -0.3$ side Wall $Cp_i = -0.3$

For wall Windward and Leeward CP,e from 0 m To 6 m Cpe = 0.7 pe = 0.55 KPa pnet = 0.81 KPa

For side wall CP,e from 0 m To 3.70 m Cpe = pe = -0.51 KPa pnet = -0.51 KPa

Maximum Upward pressure used in roof member Design = 0.79 KPa

Maximum Downward pressure used in roof member Design = $0.41\ KPa$

Maximum Wall pressure used in Design = 0.81 KPa

Maximum Racking pressure used in Design = 0.95 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 3350 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.75 S1 Downward = 9.63 S1 Upward = 18.44

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.43 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	293.02 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.3 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	129.23 %
M _{0.9D-WnUp}	-0.71 Kn-m	Capacity	-1.57 Kn-m	Passing Percentage	221.13 %

Second page

V _{1.35D}	0.51 Kn	Capacity	7.24 Kn	Passing Percentage	1419.61 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	1.07 Kn	Capacity	9.65 Kn	Passing Percentage	901.87 %
V0 9D-WnUn	-0.85 Kn	Capacity	-12.06 Kn	Passing Percentage	1418.82 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.85 mm

Deflection under Dead and Service Wind = 10.40 mm

Limit by Woolcock et al, 1999 Span/240 = 13.75 mm Limit by Woolcock et al, 1999 Span/100 = 33.00 mm

Reactions

Maximum downward = 1.07 kn Maximum upward = -0.85 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 3500 mm

Internal Rafter Span = 5850 mm

Try Rafter 2x240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.71 S1 Upward = 6.71

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	5.05 Kn-m	Capacity	19.9 Kn-m	Passing Percentage	394.06 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	10.63 Kn-m	Capacity	26.54 Kn-m	Passing Percentage	249.67 %
$M_{0.9D\text{-W}nUp}$	-8.46 Kn-m	Capacity	-33.18 Kn-m	Passing Percentage	392.20 %
V _{1.35D}	3.46 Kn	Capacity	36.82 Kn	Passing Percentage	1064.16 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	7.27 Kn	Capacity	49.08 Kn	Passing Percentage	675.10 %
$ m V_{0.9D ext{-}WnUp}$	-5.78 Kn	Capacity	-61.36 Kn	Passing Percentage	1061.59 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.985 mm

Deflection under Dead and Service Wind = 18.255 mm

Limit by Woolcock et al, 1999 Span/240 = 25.00 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 7.27 kn Maximum upward = -5.78 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -5.78 Kn

Rafter Design External

External Rafter Load Width = 1750 mm

External Rafter Span = 5830 mm

Try Rafter 240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.82 S1 Upward =13.82

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	2.51 Kn-m	Capacity	9.37 Kn-m	Passing Percentage	373.31 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.28 Kn-m	Capacity	12.49 Kn-m	Passing Percentage	236.55 %
$M_{0.9D\text{-W}nUp}$	-4.20 Kn-m	Capacity	-15.61 Kn-m	Passing Percentage	371.67 %
V _{1.35D}	1.72 Kn	Capacity	18.41 Kn	Passing Percentage	1070.35 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	3.62 Kn	Capacity	24.54 Kn	Passing Percentage	677.90 %
$ m V_{0.9D ext{-}WnUp}$	-2.88 Kn	Capacity	-30.68 Kn	Passing Percentage	1065.28 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 15.54 mm

Deflection under Dead and Service Wind = 18.26 mm

Limit by Woolcock et al, 1999 Span/240= 25.00 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 3.62 kn Maximum upward = -2.88 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -30.05 \text{ kn} > -2.88 \text{ Kn}$

Single Shear Capacity under short term loads = -14.56 Kn > -2.88 Kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm

Intermediate Span = 3250 mm

Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.68

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.60 Kn-m	Capacity	7.46 Kn-m	Passing Percentage	466.25 %
V _{0.9D-WnUp}	1.97 Kn	Capacity	32.16 Kn	Passing Percentage	1632.49 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.8 mm

Limit by Woolcock et al, 1999 Span/100 = 32.50 mm

Reactions

Maximum = 1.97 kn

Girt Design Front and Back

Girt's Spacing = 0 mm

Girt's Span = 3500 mm

Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
V _{0.9D-WnUp}	0.00 Kn	Capacity	0.00 Kn	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al, 1999 Span/100 = 35.00 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 3000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.79 S1 Downward = 9.63 S1 Upward = 17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.18 Kn-m Capacity 1.65 Kn-m Passing Percentage 139.83 % $V_{0.9D-WnUp}$ 1.58 Kn Capacity 12.06 Kn Passing Percentage 763.29 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 11.79 mm

Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Maximum = 1.58 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 3460 mm 27598 mm2 20698.2421875 mm2 Area As 646820 mm3 60639381 mm4 ZxIx Iy 60639381 mm4 Zx 646820 mm3 Lateral Restraint 1300 mm c/c

Loads

Total Area over Pole = 10.5 m^2

2.63 Kn 2.63 Kn Dead Live Wind Down 4.30 Kn Snow 0.00 Kn Moment wind 8.51 Kn-m Phi 0.8 K8 1.00 K1 snow 0.8 K1 Dead 0.6 1 K1wind

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	397.41 Kn	PhiMnx Wind	18.78 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	238.44 Kn	PhiMnx Dead	11.27 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.48 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.23 < 1 OK$

Deflection at top under service lateral loads = 27.28 mm < 34.60 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

fl = 2775 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 7.03 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.72 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.73 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level) Dry Use Height 3460 mm

Area 20729 mm2 As 15546.6796875 mm2

7/9

Ix	34210793 mm4	Zx	421056 mm3
Iy	34210793 mm4	Zx	421056 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 10.5 m^2

Dead	2.63 Kn	Live	2.63 Kn
Wind Down	4.30 Kn	Snow	0.00 Kn
	4.4.4.77		

Moment Wind 4.26 Kn-m

 Phi
 0.8
 K8
 0.61

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	181.50 Kn	PhiMnx Wind	7.43 Kn-m	PhiVnx Wind	36.81 Kn
PhiNcx Dead	108.90 Kn	PhiMnx Dead	4.46 Kn-m	PhiVnx Dead	22.09 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.63 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.38 < 1 OK$

Deflection at top under service lateral loads = 25.79 mm < 36.91 mm

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 2775 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 10.5 m^2

Moment Wind = 4.26 Kn-m Shear Wind = 1.53 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.03 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.72 Kn-m Ultimate Moment Capacity of Pile

Checks

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1500 mm Pile embedment length

f1 = 2775 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 4.26 Kn-m Shear Wind = 1.53 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.03 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.72 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.36 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 22.56 Kn

Uplift on one Pile = 5.93 Kn

Uplift is ok