Appunti di Analisi Matematica II corso della prof.ssa B.Noris Politecnico di Milano

F. Piazza G. Michieletto September 28, 2022

Chapter 1

Equazioni differenziali

1.1 Equazioni differenziali del 1° ordine

Definizione 1. Una equazione differenziale o EDO del 1° ordine è una relazione tra una funzione y e la sua derivata y' che può essere scritta come

$$y' = f(y) \tag{1.1}$$

dove f è una funzione continua su un intervallo $I \subseteq \mathbb{R}$.

Esempi:

- $y'=t\sqrt{y_{(t^2)}+1}$ è in forma normale con $f(t,s)=t\sqrt{s^2+1}$. Il dominio di f è $I=\mathbb{R}\times\mathbb{R}$.
- $y'_{(t)} = \frac{1}{t}$ con t > 0 diventa $f(t, s) = \frac{1}{t}$. Oss: f non dipende esplicitamente da s.

Il dominio di f è $\{(t,s)\in\mathbb{R}^2:s\in\mathbb{R},t\in\mathbb{R}^*\}$, dunque è diviso in due parti. Dovrò quindi risolvere la EDO nelle due regioni.

Definizione 2. Si chiama integrale generale l'insieme delle soluzioni.

Definizione 3. Si chiama soluzione particolare una specifica soluzione.

Una EDO del 1° ordine ha ∞^1 , soluzioni, cioè avrà una costante arbitraria. In modo analogo, una EDO del 2° ordine avrà ∞^2 soluzioni, cioè avrà due costanti arbitrarie. Esempi:

- integrale generale ce^t con c costante arbitraria. Esempi di soluzioni particolari: e^t , $2e^t$, $-e^t$.
- $z_{(t)} = -1 + arctan(t)$ con $t \in \mathbb{R}^*$. Esempio di soluzione: $z' = 0 + \frac{1}{1+t^2}$.

Oss: La EDO $y'_{(t)} = f(t,y_{(t)})$ è definita per $(t,y) \in dom(f)$

4

Problema di Cauchy

Definizione 4. Data una EDO del 1° ordine $y'_{(t)} = f(t, y_{(t)})$ sia (t_0, y_0) dove la EDO è definita. Cioè $(t_0, y_0) \in dom(f)$

Si chiama problema di Cauchy il problema di determinare $y:I\subseteq\mathbb{R}\to\mathbb{R}$ che soddisfa:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Nota: il sistema ha una condizione perché è del 1° ordine. La condizione trova la soluzione particolare che passa per (t_0, y_0) .

Come si risolve?

Step:

- 1. Trova l'integrale generale. (∞^1 soluzioni dipendenti da 1 parametro)
- 2. Impongo la condizione $y(t_0) = y_0$ e la costante c
- 3. Sostituisco c in 1.

Esempi

Aggiungi Esempi

EDO 1° ordine lineari

Definizione 5. Una EDO del 1° ordine lineare in forma normale è:

$$y'_{(t)} = a(t)y_{(t)} + b(t) (1.2)$$

dove a e b sono funzioni continue su un intervallo J di \mathbb{R} .

N.B. J è il più grande intervallo di \mathbb{R} tale che $a, b \in J$.

Definizione 6. Si chiama EDO omogenea associata

$$y'_{(t)} = a(t)y_{(t)} (1.3)$$

Esempio: esempio

Principio di sovrapposizione

prova