Practice 6

Activities sheet

Activity 1. Given the vectors $\vec{u} = (3, 5, -1, 0)$ and $\vec{v} = (1/2, 1/4, 1/3, -3)$, compute

- (a) $\vec{u} \cdot \vec{v}$, $||\vec{u}||$ and $||\vec{v}||$
- (b) the distance between \vec{u} and \vec{v}
- (c) a unitary vector with the direction of \vec{u} .

SOLUTION:

(a) With Scilab:

(b) The distance between two vectors is the norm of the difference. With Scilab:

```
-->norm(u-v)
ans =
6.2920806
```

3.0697901

(c) A unitary vector with the direction of \vec{u} can be obtained dividing \vec{u} by its norm:

```
-->u/norm(u)
ans =

0.5070926
0.8451543
- 0.1690309
0.
```

Activity 2. Given the vectors $\vec{b} = (1, 2, 3)$ and $\vec{c} = (1, 0, 2)$.

- (a) Determine the value of m such that the vector $\vec{y} = (m, -1, 2)$ is orthogonal to \vec{b} and \vec{c} .
- (b) Compute H^{\perp} , where $H = \operatorname{span}(\vec{b}, \vec{c})$.
- (c) Check that the vector \vec{y} that you have obtained in (a) belongs to $H^{\perp}.$

SOLUTION:

(a) \vec{y} is orthogonal to \vec{b} if and only if the dot product $b \cdot \vec{y}$ is equal to zero. This is equivalent to:

$$m-2+6=0$$
.

Similarly, \vec{y} is orthogonal to \vec{c} if and only if

$$m + 4 = 0$$
.

The unique value of m satisfying both conditions is m = -4.

(b) A vector $\vec{x}=(x,y,z)$ belongs to H^\perp if and only if it is orthogonal to \vec{b} and \vec{c} . Imposing both conditions we get the system

$$x + 2y + 3z = 0$$

$$x + 2z = 0$$

And solving it we obtain that

$$H^{\perp} = \text{span}(-2, -1/2, 1).$$

(c) The vector \vec{y} that we have obtained in (a) (with m=-4) is $\vec{y}=(-4,-1,2)$. Notice that $\vec{y}=2(-2,-1/2,1)$ and, therefore, $\vec{y}\in \mathrm{span}(-2,-1/2,1)=H^{\perp}$.

Activity 3. Let $\vec{r}=(1,-2,4,-1)$ and let $W=\operatorname{span}(\vec{r})$

- (a) Compute the orthogonal projection of the vector $\vec{x} = (3, 0, -3, 5)$ over W.
- (b) Compute a basis of W^{\perp} .
- (c) Check that the vector that you have obtained in (a) is orthogonal to the vectors of the basis of W^{\perp} .

SOLUTION:

(a) Since W is a line, we need to obtain, first, a unitary vector \vec{q} in the direction of the line (that is, we need to make \vec{r} unitary). With Scilab:

- 0.2132007
- 0.4264014
 - 0.8528029
- 0.2132007

Now we need to apply the formula $Proj_W(\vec{x}) = (\vec{q}^t \vec{x}) \vec{q}$. With Scilab:

- 0.6363636
 - 1.2727273
- 2.5454545
 - 0.6363636
- (b) A vector (x,y,z,t) belongs to W^\perp if and only if it is orthogonal to \vec{r} , that is, if and only if

$$x - 2y + 4z - t = 0.$$

Solving this equation we have that:

$$W^{\perp} = \operatorname{span}\begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{bmatrix} -4\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}).$$

The obtained spanning set is a basis of W^{\perp} .

(c) We only need to check that the dot products of the vector that you have obtained in (a) and the vectors in the obtained spanning set of W^{\perp} is zero. With Scilab:

0.

0.

Activity 4. Consider $W = \mathrm{span}(\vec{u}_1, \vec{u}_2)$ where $\vec{u}_1 = (-1, 2, 4)$ and $\vec{u}_2 = (4, -5, 1)$

- (a) Write the orthogonal projection of the vector $\vec{x} = (2, 2, 3)$ over W, $Proj_W(\vec{x})$, as a linear combination of the vectors \vec{u}_1 and \vec{u}_2 .
- (b) Compute $Proj_W(\vec{x})$ by means of the projection matrix P_W . Check that it is obtained the same result given in (a).
- (c) Compute $Proj_W(\vec{z})$ and $Proj_W(\vec{t})$, where $\vec{z}=(-6,9,7)$ and $\vec{t}=(-22/3,-17/3,1)$. Can you deduce a conclusion from the obtained results?

SOLUTION:

(a) First we define in Scilab the needed vectors and the matrix M(S), where $S = \{\vec{u}_1, \vec{u}_2\}$:

Now we need to compute a solution \vec{y} of the system

$$M(S)^t M(S) \vec{y} = M(S)^t \vec{x}.$$

Using the \ command:

0.7647059

0.2058824

And this means that

$$Proj_W(\vec{x}) = 0.7647059 \ \vec{u}_1 + 0.2058824 \ \vec{u}_2.$$

This vector can be computed also as the product $M(S)\vec{y}$. With Scilab:

3.2647059

(b) Notice that $S=\{\vec{u}_1,\vec{u_2}\}$ is linearly independent and, therefore, we can also use the projection matrix to compute $Proj_W(\vec{x})$. With Scilab:

Activity 5. Let W be a vector subspace of \mathbb{R}^n . Check that any projection matrix P_W is symmetric and idempotent $(P_W^2 = P_W)$.

SOLUTION:

To simplify notation, let's name M=M(S), where S is a fixed basis of W. Then

$$P_W = M(M^t M)^{-1} M^t.$$

Let's check that P_W is symmetric:

$$P_W^t = [M(M^t M)^{-1} M^t]^t = (M^t)^t ((M^t M)^{-1})^t M^t = M((M^t M)^t)^{-1} M^t$$
$$= M(M^t (M^t)^t)^{-1} M^t = M(M^t M)^{-1} M^t = P_W.$$

Let's check that P_W is idempotent:

$$P_W^2 = [M(M^t M)^{-1} M^t][M(M^t M)^{-1} M^t] = M \underbrace{(M^t M)^{-1} M^t M}_{I} (M^t M)^{-1} M^t$$
$$= MI(M^t M)^{-1} M^t = M(M^t M)^{-1} M^t = P_W.$$