

Operaciones en bases de datos

Gestión de Datos

Maximiliano Arancibia

Educación Profesional - Escuela de Ingeniería

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.

Tabla de Contenidos

Introducción

Operadores de bases de datos

Operador pipe

Operadores relacionales

Otros operadores (de R)

Pivotar

Separar y unir

Tabla de Contenidos

Introducción

Operadores de bases de datos

Otros operadores (de R)

Supongamos que tenemos las siguientes bases de datos:

actores

id	nombre	edad
1	Leonardo DiCaprio	41
2	Matthew McConaughey	46
3	Daniel Radcliffe	27
4	Jessica Chastain	39

actuo_en

id actor	id pelicula
1	2
2	1
4	1
3	3
1	5

peliculas

id	nombre	año	categoria	calificacion	director
1	Interstellar	2014	SciFi	8.6	C. Nolan
2	The Revenant	2015	Drama	8.1	A. Iñárritu
3	Harry Potter	2011	Fantasía	8.1	D. Yates
4	The Theory of Everything	2014	Biografía	7.7	J. Marsh
5	Inception	2010	Adventure	8.8	C. Nolan

¿Que cosas nos gustaría consultarle a la base de datos?

Ejemplo 1: Liste el nombre de todos los actores

nombre
Leonardo DiCaprio
Matthew McConaughey
Daniel Radcliffe
Jessica Chastain

Ejemplo 2: Liste el nombre y la clasificación de todas las películas

nombre	calificacion
Interstellar	8.6
The Revenant	8.1
Harry Potter	8.1
The Theory of Everything	7.7
Inception	8.8

Ejemplo 3: Liste el nombre y la clasificación de todas las películas con calificación inferior a 8.5

nombre	calificacion
The Revenant	8.1
Harry Potter	8.1
The Theory of Everything	7.7

Ejemplo 4: Liste todas las película de Nolan

id	nombre	año	categoria	calificacion	director
1	Interstellar	2014	SciFi	8.6	C. Nolan
5	Inception	2010	Adventure	8.8	C. Nolan

Ejemplo 5: Liste todos los id de los actores de la película "Interstellar"

id	
2	
4	

Ejemplo 6: Liste cada actor junto a todas las películas en las que ha actuado

id	nombre	nombre_pelicula
1	Leonardo DiCaprio	The Revenant
1	Leonardo DiCaprio	Inception
2	Matthew McConaughey	Interstellar
3	Daniel Radcliffe	Harry Potter
4	Jessica Chastain	Interstellar

Ejemplo 7: Liste todas las películas en que actúe Leonardo DiCaprio y que sean dirigidas por C. Nolan

nom	bre
Incep	ition

Ejemplo 8: Liste todas las películas y la calificación en que actúe Leonardo DiCaprio o que sean dirigidas por C. Nolan

nombre	calificacion
Interstellar	8.6
The Revenant	8.1
Inception	8.8

Ejemplo 9: Liste el nombre de todos los actores y directores

nombre
Leonardo DiCaprio
Matthew McConaughey
Daniel Radcliffe
Jessica Chastain
C. Nolan
A. Iñárritu
D. Yates
J. Marsh

Ejemplo 10: Liste el nombre de todos los actores dirigidos por C. Nolan y A. Iñárritu

id	nombre	edad
1	Leonardo DiCaprio	41

¿Qué podemos concluir?

- Los resultados de las consultas también son tablas
- Parecen haber operaciones en común

Tabla de Contenidos

Introducción

Operadores de bases de datos

Operador pipe

Operadores relacionales

Otros operadores (de R

Definiremos algunas operaciones que son comunes en los lenguajes de consulta.

- Usaremos el lenguaje R para llevarlas a cabo pero hay que destacar que estas operaciones son transversales en los lenguajes de consulta como lo es por ejemplo SQL.
- Estas operaciones forman los cimientos de todos los lenguajes de consulta

Veremos los operadores:

Proyección

- Proyección
- Selección

- Proyección
- Selección
- Unión

- Proyección
- Selección
- Unión
- Renombrar

- Proyección
- Selección
- Unión
- Renombrar
- Producto cruz

- Proyección
- Selección
- Unión
- Renombrar
- Producto cruz
- Join

- Proyección
- Selección
- Unión
- Renombrar
- Producto cruz
- Join
- Intersección

- Proyección
- Selección
- Unión
- Renombrar
- Producto cruz
- Join
- Intersección
- Diferencia

Operador pipe

Importante entender el **operador pipe de dplyr** (%>%): Sirve para concatenar operaciones de dplyr.

Ejemplo, digamos que necesitamos aplicar mas de una función, la instrucción seria:

tercero(segundo(primero(data)))

Usando el operador pipe nos permite escribir una secuencia de funciones de izquierda a derecha. Si es que alguna de las funciones tuviera algún parametro de entrada lo ponemos en el parentesis correspondiente:

$$primero(data)\% > \%segundo(param_2)\% > \%third(param_3)$$

Diremos que la **Proyección** es la operación que nos permite seleccionar atributos de una relación.

En R esto lo logramos con la función select:

$$select(tabla, c(a_1, a_2, ...))$$

Ejemplos:

Seleccione el nombre y el año de la tabla de películas:

Peliculas(ID, Nombre, Año, Categoria, Calificacion)

Ejemplos:

Seleccione el nombre y el año de la tabla de películas:

Peliculas(ID, Nombre, Año, Categoria, Calificacion)

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

Ejemplos:

Seleccione el nombre y el año de la tabla de películas:

Esto en R lo programamos de esta manera:

```
select(peliculas, c('Nombre Película', 'Año'))
```


Ejemplos:

Seleccione el nombre y el año de la tabla de películas:

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

Ejemplos:

Seleccione el nombre y el año de la tabla de películas.

Películas

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	The Revenant	2015	Drama	8.1
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7

Ejemplos:

Seleccione el nombre y el año de la tabla de películas.

Nombre Película	Año
Interstellar	2014
The Revenant	2015
The Imitation Game	2014
The Theory of Everything	2014

Selección o filtro

Dada una relación, diremos que la **selección o filtro** de esta en base a una condición, es una nueva relación que deja solo tuplas (filas) que cumplan dicha condición.

Estas condiciones pueden definirse con:

$$<,\leq,\geq,>,=,\neq$$

y combinar con entre ellas con las operaciones lógicas 'y' (\land) y 'o' (\lor)

Selección o filtro

En R encontramos dos maneras de utilizar el filtro:

• Con función filter:

```
filter(tabla, condicion)
```

• Buscando los datos con selectores booleanos:

tabla[condicion,]

Selección o filtro

Ejemplo:

Busquemos las películas de la categoría 'Biografia'

Selección o filtro

Ejemplo:

Busquemos las películas de la categoría 'Biografia'

filter(peliculas, Categoria=='Biografia')

Selección o filtro

Ejemplo:

Busquemos las películas de la categoría 'Biografia'

- filter(peliculas, Categoria=='Biografia')
- peliculas[peliculas\$Categoria=='Biografia',]

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

Selección o filtro

Ejemplo:

Busquemos las películas de la categoría 'Biografia'

- filter(peliculas, Categoria=='Biografia')
- peliculas[peliculas\$Categoria=='Biografia']

ID Película	Nombre Película	Año	Categoría	Calificación (IMDB)
1	Interstellar	2014	Fantasía	8.6
2	Batman	2005	Acción	8.3
3	The Imitation Game	2014	Biografía	8.1
4	The Theory of Everything	2014	Biografía	7.7
5	Batman	1995	Acción	5.4

Unión

Usamos la operación de unión cuando queremos juntar las tuplas de dos relaciones distintas. Es necesario que ambas relaciones tengan la misma cantidad y tipo de atributos.

En R podemos para dos tablas podemos usar los comandos:

- union(tabla1, tabla2): entrega tuplas únicas en ambas tablas
- rbind(tabla1, tabla2): entrega concatenación de ambas bases de datos

Unión

Usamos **union** para unir tablas y usamos **rbind** para concatenar. Ejemplo:

• Nombre de actores y nombres de películas:

```
npelis <- select(peliculas, c('Nombre'))
nact <- select(actores, c('Nombre'))
union(npelis,nact)
¿Qué pasa si usamos rbind?</pre>
```


Renombrar

Podemos cambiar el nombre de los atributos, para esto usamos la función de R:

```
rename(tabla,c('atributo1'='at1'))
```

En este caso cambiamos el nombre del atributo 'at1' por el nombre 'atributo1' en la tabla.

Renombrar

Usamos **rename** para cambiar el nombre de algún atributo. Ejemplo:

- rename(peliculas,c('Agno'='Año'))
- rename(peliculas,c('ID'='ID Pelicula'))
- rename(peliculas,c('Nombre'='Nombre Pelicula'))

Producto Cruz

Nos falta cruzar información entre tablas, la función **crossing** permite hacer el producto cartesiano de dos relaciones. En otras palabras:

$R_1.A$	$R_1.B$	$R_2.A$	$R_2.C$	$R_2.D$
<i>a</i> ₁	b_1	a 1	<i>c</i> ₁	d_1
a_1	b_1	a_2	c_2	d_2
a_2	b_2	a 1	c_1	d_1
a_2	b_2	a_2	<i>C</i> ₂	d_2

Observacion: la cardinalidad (numero de tuplas) está dada por

$$|R_1\times R_2|=|R_1|\cdot |R_2|$$

Liste todos los id de los actores de la película "Interstellar"

1) Hacemos el producto cruz de *peliculas* y *actuo_en*

crossing(peliculas, actuo_en)

Liste todos los id de los actores de la película "Interstellar"

1) Hacemos el producto cruz de *peliculas* y *actuo_en*

crossing(peliculas, actuo_en)

pelicula .id	pelicula.nom bre	pelicula. año	pelicula.c ategoria	pelicula.cali ficacion	pelicula. director	actuo_e n.id_act or	actuo_en.id _pelicula
1	Interstellar	2014	SciFi	8.6	C. Nolan	1	2
1	Interstellar	2014	SciFi	8.6	C. Nolan	2	1
1	Interstellar	2014	SciFi	8.6	C. Nolan	4	1
1	Interstellar	2014	SciFi	8.6	C. Nolan	3	3
1	Interstellar	2014	SciFi	8.6	C. Nolan	1	5
2	The Revenant	2015	Drama	8.1	A. Iñárritu	1	2
2	The Revenant	2015	Drama	8.1	A. Iñárritu	2	1
2	The Revenant	2015	Drama	8.1	A. Iñárritu	4	1
2	The Revenant	2015	Drama	8.1	A. Iñárritu	3	3
2	The Revenant	2015	Drama	8.1	A. Iñárritu	1	5

Liste todos los id de los actores de la película "Interstellar"

- 1) Hacemos el producto cruz de *peliculas* y *actuo_en*
- 2) Filtramos cuando *id* de *pelicula* sea igual al *id_pelicula* en la tabla *actuo_en*
 - cast <- crossing(peliculas, actuo_en)
 - filter(cast, peliculas.id==actuo_en.id_pelicula)

peliculas .id	peliculas.no mbre	pelicula s.año	peliculas. categoria	peliculas.ca lificacion	peliculas .director	actuo_e n.id_act or	actuo_en.id _pelicula
1	Interstellar	2014	SciFi	8.6	C. Nolan	2	1
1	Interstellar	2014	SciFi	8.6	C. Nolan	4	1
2	The Revenant	2015	Drama	8.1	A. Iñárritu	1	2
3	Harry Potter	2011	Fantasía	8.1	D. Yates	3	3
5	Inception	2010	Adventure	8.8	C. Nolan	1	5

Liste todos los id de los actores de la película "Interstellar"

- 1) Hacemos el producto cruz de *peliculas* y *actuo_en*
- 2) Filtramos cuando *id* de *pelicula* sea igual al *id_pelicula* en la tabla *actuo_en*
- 3) Filtramos según id de pelicula 'Interstellar'
 - cast <- crossing(peliculas, actuo_en)
 - cast <- filter(cast, peliculas.id==actuo_en.id_pelicula)
 - filter(cast, peliculas.id==1)

peliculas .id	peliculas.no mbre	pelicula s.año	peliculas. categoria	peliculas.ca lificacion	peliculas .director	actuo_e n.id_act or	actuo_en.id _pelicula
1	Interstellar	2014	SciFi	8.6	C. Nolan	2	1
1	Interstellar	2014	SciFi	8.6	C. Nolan	4	1

Ojo!: De este punto en adelante renombraremos las relaciones para facilitar la escritura:

Liste cada actor junto a todas las películas en las que ha actuado

Liste cada actor junto a todas las películas en las que ha actuado

Debemos usar dos productos cruz:

- Entre peliculas y actuo_en
- Entre actuo_en y actores

y luego usar selección para ver que los id correspondientes calcen.

En base a esta operación definimos Join (inner_join en R) que se compone de un producto cruz y un filtro.

Supongamos que tenemos dos relaciones R_1 y R_2 con un atributo llamado 'key'. Abusando de nuestra notación podemos definir:

$$\textit{inner_join}(\textit{R}_{1},\textit{R}_{2},\textit{by} = "\textit{key}") = \textit{filter}(\textit{crossing}(\textit{R}_{1},\textit{R}_{2}),\textit{R}_{1}.\textit{key} == \textit{R}_{2}.\textit{key})$$

Notese que el comando de la derecha no funciona en R ¿por qué?

Lo ideal es que el join se realice sobre una llave (foranea), sin embargo se puede realizar con atributos que no generen una llave.

Gracias a esta definición podemos escribir las consultas de manera más simple:

• Liste todos los id de los actores de la película "Interstellar"

 $filter(inner_join(actuo_en, peliculas, c('id_p' = 'id')), id == 1)$

Gracias a esta definición podemos escribir las consultas de manera más simple:

Liste todos los id de los actores de la película "Interstellar"

$$\textit{filter}(\textit{inner_join}(\textit{actuo_en}, \textit{peliculas}, \textit{c}('\textit{id_p'} = '\textit{id'})), \textit{id} == 1)$$

• Liste cada actor junto a todas las películas en las que ha actuado

$$db1 < -inner_join(actuo_en, P, c('id_p' = 'id'))$$
 $db1.rename(c('Nombre' = 'NombrePeliculd'))$
 $db < -inner_join(db1, A, c('id_d' = 'id'))$
 $select(db, c('NombrePelicula', 'Nombre'))$

- Una unión izquierda (left_join) mantiene todas las observaciones en x.
- Una unión derecha (right_join)
 mantiene todas las observaciones
 en y .
- Una unión completa (full_join)
 mantiene todas las observaciones
 en x e y .

Con las claves duplicadas (en el caso que un atributo no sea llave) se mantienen todas las combinaciones posibles en la base de datos resultante.

Sean las relaciones R_1 , R_2 ambas con los mismos atributos, puede calcularse la intersección y diferencia entre estas mediante las funciones:

- intersect(x, y) : devuelve las observaciones comunes en x e y .
- setdiff(x, y): (diferencia de conjuntos) devuelve las observaciones en x pero no en y.

Con un efecto parecido tambien pueden encontrarse las uniones de filtro. Tienen un funcionamiento similar a los Join usuales, sin embargo se ven afectadas las observaciones de la primera relacion y no las variables.

- semi_join(x, y) mantiene todas las observaciones en x con coincidencias en y.
- anti_join(x, y) descarta todas las observaciones en x con coincidencias en y.

Supongamos que queremos la siguiente consulta:

Liste el nombre de todos los actores dirigidos por C. Nolan y no por A. Iñárritu

¿Como lo haríamos?

 Primero, crear bases de datos con información cruzada entre películas y actores:

```
pelis < -inner\_join(peliculas, actuo_en, c('id' = 'id\_peliculd'))
```

Crear dos bases con las peliculas de Nolan y de Iñarritu

$$pelis_nolan < -filter(pelis, director ==' C.Nolan')$$
 $pelis_inarritu < -filter(pelis, director ==' A.Inarritu')$

 Calcular la intersección en caso de que se quieran los actores dirigidos por ambos o la diferencia, que serian los actores dirigidos por uno pero no por el otro

select(pelis_nolan, c(" id_actor)) - select(pelis_inarritu, c(" id_actor))

Tabla de Contenidos

Introducción

Operadores de bases de datos

Otros operadores (de R)

Pivotar

Separar y unir

Al enfrentarse a un set de datos es importante:

1. Entender cuales son las observaciones y cuales las variables

Al enfrentarse a un set de datos es importante:

- 1. Entender cuales son las observaciones y cuales las variables
- 2. Resolver los problemas:

Al enfrentarse a un set de datos es importante:

- 1. Entender cuales son las observaciones y cuales las variables
- 2. Resolver los problemas:
 - Una variable se extiende por varias columnas

Al enfrentarse a un set de datos es importante:

- 1. Entender cuales son las observaciones y cuales las variables
- 2. Resolver los problemas:
 - Una variable se extiende por varias columnas
 - Una observación está dispersa entre múltiples filas.

El primer caso lo resolvemos con la función pivot_longer.

pais	anio	casos
fganistán	1999	745 ←
ganistán	2000	2666◆
rasil	1999	37737≮
Brasil	2000	80488
China	1999	212258
China	2000	213766

Figura 2:

El el segundo lo resolvemos con la función pivot_wide.

pais	anio	tipo	casos
Afganistán	1999	casos	745 -
Afganistán	1999	población	19987071 -
Afganistán	2000	casos	2666 -
Afganistán	2000	población	20595360 -
rasil	1999	casos	37737 -
Brasil	1999	población	172006362 -
Brasil	2000	casos	80488 -
Brasil	2000	población	174504898 -
China	1999	casos	212258 -
China	1999	población	1272915272 -
China	2000	casos	213766 -
China	2000	población	1280428583

Tabla 2

Figura 3:

Separar y unir

Puede ser que alguna de nuestras columnas tenga mas de un dato y por esto nos conviene separarlo en dos o mas variables. Esto lo logramos con la función *separate*, su inverso es la funcion *unite*

pais	anio	tasa
Afganistán	1999	745 / 19987071
Afganistán	2000	2666 / 20595360
Brasil	1999	37737 / 172006362
Brasil	2000	80488 / 17504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

		•	
pais	anio	casos	poblacion
Afganistán	1999	745	19987071
Afganistán	2000	2666	20595360
Brasil	1999	37737	172006362
Brasil	2000	80488	17504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Tabla 3

Figura 4:

Valores faltantes

Cambiar la forma de representar los datos puede llevarnos a descubrir una mayor cantidad de valores faltantes o NA (Not Available).

Existen dos formas en las que puede aparecer un valor NA:

- Explícita, esto es, aparece como NA.
- Implícita, esto es, simplemente no aparece en los datos.

anio	trimestre	retorno
<dbl></dbl>	<dbl></dbl>	<db1></db1>
2015	1	1.88
2015	2	0.59
2015	3	0.35
2015	4	NA
2016	2	0.92
2016	3	0.17
2016	4	2.66

Figura 5: Tabla con valores faltantes

