

AD A 0 74831

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TR-79-11 /		(9)
TITLE (and Subtitle)	Day and the same of the same o	5. TYPE OF REPORT & PERIOD COVERE
ELECTROMAGNETIC TRANSMISSION TO	ROUGH AN ANNULAR	/ Technical Repert No. 11
APERTURE IN AN INFINITE CONDUCT		Tree miles
		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)
Chung-Chi Cha	1/2	N00014-76-C-0225
Roger F. Harrington		
PERFORMING ORGANIZATION NAME AND ADDR		10 PROGRAM EL EMENT PROJECT TASI
		10. PROGRAM ELEMENT, PROJECT, TASK
Dept. of Electrical and Compute	er Engineering	
Syracuse University		
Syracuse. New York 13210 . CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
	(11)	September 1979
Department of the Navy Office of Naval Research		13. NUMBER OF PAGES
		90
Arlington Virginia 22217 MONITORING AGENCY NAME & ADDRESS(II diffe	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
(12) 93	1	/
1719	J	15. DECLASSIFICATION DOWNGRADING
. DISTRIBUTION STATEMENT (of the abetract ente	red in Block 20, if different fro	an Report)
. SUPPLEMENTARY NOTES		
. KEY WORDS (Continue on reverse side if necessary	and identify by block number)	
	Electromagne	
Annular apertures Apertures in planes	Equivalence	
Circular apertures	Generalized	
Computer programs	Method of mor	
Electromagnetic transmission	n through an annul	ar aperture in an infinite
conducting screen of zero thick	ness is investigat	ed. The circular aperture
included as a special case. The	e rields on both s	ides of the screen are ob-
tained from the free space Gree	n's function by me	ans of the equivalence prin
ple and image theory. An integ	ral equation for t	he equivalent magnetic cur-

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

496737

rent in the aperture is established by enforcing the continuity of the tangential components of both the electric and the magnetic field. This integral

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (cont.)

equation is solved by the method of moments to obtain the magnetic current, from which other transmission characteristics are obtained.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

NOTATION

A a vector in three dimensional space.

 $\frac{\tilde{A}}{\underline{A}}$ an operator which, when operating on an element in its domain, gives a vector.

 $\bar{A}_{N\times 1}$ = $[A_q]_{N\times 1}$ a column matrix with dimension N×1 and A_q as its qth element (dimension is sometimes omitted when understood).

 $\tilde{\bar{A}}_{M\times N}$ = $[A_{pq}]_{M\times N}$ a matrix operator with dimension M×N and A_{pq} as its element in the pth row and the qth column (dimension is sometimes omitted when understood).

Superscript * denotes the complex conjugate of the quantity.

Superscript T denotes the transpose of the matrix.

CONTENTS

			Page
ı.	INTRODUCTION		1
II.	PROBLEM	FORMULATION	
III.	PROBLEM	SPECIALIZATION	8
	III-a.	Expansion and Testing Functions	8
	III-b.	Incident Fields	10
IV. EVALUATION OF ADMITTANCE MATRIX AND EXCITATION MATRIX			12
	IV-a.	Admittance Matrix	12
	IV-b.	Excitation Matrix	21
V. GAIN PATTERN AND TRANSMISSION COEFFICIENT			25
	V-a.	Power Gain Pattern on the Transmitted Side	25
	V-b.	Transmission Coefficient	28
VI. NUMERICAL RESULTS AND DISCUSSION			29
VII. CONCLUSION			44
Appe	ndix A.	FORMULAS FOR ELLIPTICALLY POLARIZED INCIDENCE	45
Appendix B. COMPUTER PROGRAM LISTING AND DESCRIPTION		48	
		B-1.1. Subroutine CAD	48
		B-1.2. Subroutine PEX	55
		B-1.3. Subroutines DECOMP, SOLVE and BES	59
		B-1.4. Main Program 1	63
		B-2.1. Subroutine FAR	74
		B-2.2. Main Program 2	81
REFE	RENCES		88

I. INTRODUCTION

The problem of penetration of electromagnetic waves through an annular aperture in an infinite conducting screen of zero thickness is examined in the frequency domain. The formulation includes the circular aperture as a special case. The generalized network formulation for aperture problems by Harrington and Mautz [1] is used. The method of solution is, in general, a specialization of that for bodies of revolution by the above authors [2].

In the formulation, the equivalence principle [3] is used to establish an integral equation for the unknown magnetic current in the aperture. The method of moments [4] is used to solve this integral equation with expansion functions chosen to be harmonic in ϕ (azimuth angle) and subsectional in ρ (radial variable in the aperture). Because of the circular symmetry, Fourier modes are decoupled to one another and only matrices of considerably smaller sizes need to be dealt with one at a time.

Numerical results for the magnetic currents, radiation patterns, and transmission coefficients are given for some sample cases for both normal incidence and oblique incidence.

The assumption of a center conductor in the aperture in the present problem is difficult to realize in practice. However, further investigations of problems, such as wires and coaxial lines opening into a half space, may utilize some of the computer programs written. Also, results for complementary problems, such as scattering by conducting washers, can be obtained from the solution.

II. PROBLEM FORMULATION

The problem configuration is given in Fig. 1, which shows an annular aperture in a perfectly conducting screen with R_{in} and R_{out} as the inner and outer radius of the aperture, respectively. The conducting screen is infinite in the x and y directions and has zero thickness. Impressed sources \underline{J}^i and \underline{M}^i , which produce \underline{E}^{io} and \underline{H}^{io} in the absence of the screen, exist in the region to the left of the screen (region a, Z>0). The region to the right of the screen (region b, Z<0) is source free. The unit normal $\underline{\hat{n}}$ is defined on the x-y plane as pointing away from region a.

The equivalence principle is utilized to separate the two regions as described in [1]. The aperture is covered by a perfect electric conductor and the equivalent magnetic currents are used to produce the required tangential electric field where the aperture originally existed. The equivalent situations for regions a and b are shown in Fig. 2(a) and (b).

For region a, an equivalent magnetic current with surface density $\underline{M} = \hat{\underline{n}} \times \underline{E}$ (\underline{E} denotes total electric field), which is nonzero only over the aperture, is placed just to the left of the plane. This magnetic current, together with \underline{J}^i and \underline{M}^i , radiates in the presence of the complete conducting screen covering the entire x-y plane to produce the total field in region a.

For region b, an equivalent magnetic current with surface current density- \underline{M} is placed just to the right of the plane to radiate, in the presence of the complete conducting screen, the total field in

Fig. 1. Original problem configuration: An annular aperture in an infinite conducting screen of zero thickness.

Fig. 2(a). Equivalence for region a.

Fig. 2(b). Equivalence for region b.

region b. The use of \underline{M} in region a and $-\underline{M}$ in region b assures the continuity of the tangential component of electric field across the aperture.

The magnetic field in region a, denoted \underline{H}^a , is the sum of that due to the impressed source, denoted \underline{H}^i , plus that due to the equivalent source \underline{M} , denoted $\underline{\underline{H}}^a(\underline{M})$. Note that $\underline{\underline{H}}^i$ is produced by $\underline{\underline{J}}^i$ and $\underline{\underline{M}}^i$ in the presence of the conducting plane and $\underline{\underline{H}}^a$, operating on $\underline{\underline{M}}$, gives the magnetic field in region a due to $\underline{\underline{M}}$ in the presence of the conducting plane. Hence, we now have in region a,

$$\underline{\mathbf{H}}^{\mathbf{a}} = \underline{\mathbf{H}}^{\mathbf{i}} + \widetilde{\underline{\mathbf{H}}}^{\mathbf{a}}(\underline{\mathbf{M}}) \tag{1}$$

The magnetic field in region b, denoted $\underline{\underline{H}}^b$, is that due to the magnetic current- $\underline{\underline{M}}$, denoted $\underline{\underline{\widetilde{H}}}^b(-\underline{\underline{M}})$. Hence, in region b, we have

$$\underline{\mathbf{H}}^{\mathbf{b}} = -\underline{\widetilde{\mathbf{H}}}^{\mathbf{b}}(\underline{\mathbf{M}}) \tag{2}$$

where the minus sign was factored out due to the linearity of the operator. Again note that $-\widetilde{H}^b(\underline{M})$ gives the magnetic field produced by -M in the presence of the conducting plane in region b.

The boundary condition remaining to be satisfied is the continuity of the tangential magnetic field across the aperture. This gives, from (1) and (2),

$$-\underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{n}}} \times [\underline{\tilde{\mathbf{H}}}^{\mathbf{a}}(\underline{\mathbf{M}}) + \underline{\tilde{\mathbf{H}}}^{\mathbf{b}}(\underline{\mathbf{M}})] = \underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{n}}} \times \underline{\mathbf{H}}^{\mathbf{i}}$$
(3)

in the aperture region.

From image theory, we know that

$$\underline{\hat{\mathbf{n}}} \times \underline{\mathbf{H}}^{\mathbf{i}} = \underline{\hat{\mathbf{n}}} \times 2 \underline{\mathbf{H}}^{\mathbf{io}} \tag{4}$$

in the aperture and also that $\underline{\tilde{H}}^a = \underline{\tilde{H}}^b \neq 2 \underline{\tilde{H}}$ where $\underline{\tilde{H}}$ is defined by

$$\frac{\widetilde{H}(\underline{M})}{\widetilde{H}(\underline{M})} = \frac{1}{4\pi} \left\{ -j\omega\epsilon_{0} \iint_{\text{aperture}} \frac{\underline{M}(\underline{r}')e^{-jk}|\underline{r}-\underline{r}'|}{|\underline{r}-\underline{r}'|} da' + \frac{1}{j\omega\mu_{0}} \nabla \iint_{\text{aperture}} \frac{[\nabla'_{t} \cdot \underline{M}(\underline{r}')] e^{-jk}|\underline{r}-\underline{r}'|}{|\underline{r}-\underline{r}'|} da' \right\} (5)$$

Here k is the wave number, ϵ_0 and μ_0 are free space permittivity and permeability, respectively, and the surface divergence operator is

$$\nabla'_{t} \cdot \underline{M}(\underline{r}') = \frac{\partial}{\partial x'} M_{x}(x',y') + \frac{\partial}{\partial y'} M_{y}(x',y')$$
 (6)

where M_{x} and M_{y} denote the x and y components of \underline{M} .

From (4) and (5), (3) is now written as

$$-\underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{H}}}(\underline{\mathbf{M}}) = \underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{n}}} \times \underline{\hat{\mathbf{1}}} \times \underline{\mathbf{H}}^{io}$$
 (7)

in the aperture. Equation (7), together with the definition of $\underline{\tilde{H}}$ in (5), forms the basic equation for determining the equivalent magnetic current M.

The method of moments is used to obtain an approximate solution $\underline{\underline{M}}_0$ from (7). Let $\underline{\underline{M}}_0$ be a linear combination of a finite set of vector "expansion" functions, $\{\underline{\underline{M}}_q\}$, defined over the aperture region

$$\underline{\mathbf{M}}_{\mathbf{O}} = \sum_{\mathbf{q}=1}^{\mathbf{N}_{\mathbf{O}}} \mathbf{V}_{\mathbf{q}} \, \underline{\mathbf{M}}_{\mathbf{q}} \tag{8}$$

A symmetric product of two vector functions over the aperture is defined as

$$\langle \underline{A}, \underline{B} \rangle = \iint_{\text{aperture}} \underline{A} \cdot \underline{B} \, da$$
 (9)

A finite set of vector "testing" functions $\{\underline{W}_p\}$ is also defined over the aperture region. We assume that the number of elements of $\{\underline{M}_q\}$ is N_Q , the same as the number of elements of $\{\underline{W}_p\}$.

A matrix equation

$$\begin{bmatrix} Y_{pq} \end{bmatrix}_{\substack{N \times N \\ O}} \overline{V} = \overline{I} \tag{10}$$

is then obtained by requiring that the symmetric product of each \underline{W}_p with each side of (7), with \underline{M}_o substituted for \underline{M}_o , be the same. In (10), \overline{V} is a column matrix with dimension N_o whose elements are coefficients of the expansion of \underline{M}_o defined in (8), that is,

$$\bar{\mathbf{v}} = [\mathbf{v}_q]_{\substack{\mathbf{N} \times \mathbf{1} \\ \mathbf{0}}} \tag{11}$$

The \overline{I} is also a column matrix, called excitation matrix, of dimension N $_{\Omega}$

$$\bar{I} = [I_p]_{N_o \times 1} \tag{12}$$

where I is defined by

$$I_{p} = -\langle \underline{W}_{p}, \ \hat{\underline{n}} \times \hat{\underline{n}} \times \frac{1}{2} \underline{H}^{io} \rangle$$
 (13)

The $[Y_{pq}]_{N \times N_O}$ is a square matrix, called admittance matrix, of dimension $N_O \times N_O$ whose elements are defined by

$$Y_{pq} = \langle \underline{W}_p, \ \underline{\hat{n}} \times \underline{\hat{n}} \times \underline{H}(\underline{M}_q) \rangle$$
 (14)

Furthermore, if the testing functions are all tangential to the x-y plane, i.e.

$$\frac{\mathbf{W}}{\mathbf{p}} \cdot \hat{\mathbf{n}} = 0 \quad \text{for p=1,2,...,N}_{o}$$
 (15)

then (13) and (14) can be reduced to

$$I_{p} = \frac{1}{2} \langle \underline{W}_{p}, \underline{H}^{io} \rangle \tag{16}$$

and

$$Y_{pq} = -\langle \underline{W}_{p}, \ \underline{\tilde{H}}(\underline{M}_{q}) \rangle \tag{17}$$

The problem now is to determine the column matrix $\overline{\mathtt{V}}$ which, from (10), is given by

$$\bar{\mathbf{v}} = [\mathbf{Y}_{pq}]^{-1}\bar{\mathbf{I}} \tag{18}$$

when the inverse of $[Y_{pq}]$, denoted $[Y_{pq}]^{-1}$, is assumed to exist.

III. PROBLEM SPECIALIZATION

In this Section the expansion and testing functions used in solving the problem, and also the type of incident fields under consideration, are specified.

(a) Expansion and Testing Functions

The expansion and testing functions are described in polar coordinates in the x-y plane. The domain $[R_{\mbox{in}},\ R_{\mbox{out}}]$ is divided into M equal subintervals with a uniform length

$$\Delta = \frac{\mathrm{d}}{\mathrm{M}} \tag{19}$$

where

$$d = R_{out} - R_{in}$$
 (20)

A set of nodes are defined at the boundaries of those subintervals

$$\rho_{\ell} = R_{in} + \ell \Delta \tag{21}$$

for $\ell = 0, 1, 2, ..., M$.

For expansion functions, we use

$$\underline{\mathbf{M}}_{\mathbf{q}}(\rho, \, \phi) = \underline{\hat{\mathbf{u}}}_{\mathbf{S}} \, \mathbf{f}_{\mathbf{S}}(\rho) e^{\mathbf{j} \, \mathbf{n} \phi}$$
 (22)

where

$$q(s, \ell, n) = (n+N) (2M-1) + v_s(M-1) + \ell$$
 (23)

for

$$s = \rho, \phi$$

$$\ell = 1, 2, \dots, L_s$$

$$n = -N, -(N-1), ..., (N-1), N$$

and v_s is defined as

$$v_{s} = \begin{cases} 0 & \text{if } s = \rho \\ 1 & \text{if } s = \phi \end{cases}$$
(24)

L is defined as

$$L_{s} = \begin{cases} M-1 & \text{if } s = \rho \\ M & \text{if } s = \phi \end{cases}$$
 (25)

and
$$f_{s\ell}(\rho)$$
 is defined as
$$f_{\rho\ell}(\rho) = \frac{P_{\ell+\frac{1}{2}}(\rho)}{(\rho/d)}$$
(26)

$$f_{\varphi \ell} = P_{\ell}(\rho) \tag{27}$$

where

$$P_{\ell}(\rho) = \begin{cases} 1 & \text{for } \rho_{\ell} - \Delta \leq \rho \leq \rho_{\ell} \\ 0 & \text{elsewhere} \end{cases}$$
 (28)

$$P_{\ell+\frac{1}{2}}(\rho) = P_{\ell}(\rho - \frac{\Delta}{2})$$
 (29)

For testing functions, we use

$$\underline{\underline{W}}_{p}(\rho,\phi) = \underline{\hat{u}}_{\tau}g_{\tau i}(\rho)e^{-jm\phi}$$
(30)

where

$$P(\tau, i, m) = (N+m)(2M-1) + v_{\tau}(M-1) + i$$
 (31)

for $\tau = \rho, \phi$

$$i = 1, 2, \dots, L_{\tau}$$

$$m = -N, -(N-1), ..., (N-1), N$$

and $g_{\tau_i}(\rho)$ is defined as

$$g_{0i}(\rho) = c_1 f_{0i}(\rho) \qquad (32)$$

$$g_{\phi i}(\rho) = c_2 \delta(\rho - (\rho_i - \frac{\Delta}{2}))$$
 (33)

where

$$c_1 = \frac{2}{\Delta \pi d} \tag{34}$$

$$c_2 = \frac{2}{\Delta \pi} \tag{35}$$

and δ is the Dirac delta function. The constants c_1 and c_2 are used to avoid possible unnecessary common factors of $\tilde{\tilde{Y}}$ and \tilde{I} in their final forms.

(b) Incident Fields \underline{E}^{io} and \underline{H}^{io}

The incident fields considered here are plane waves, which are good approximations for fields radiated by sources distant from the aperture region. The propagation vector $\underline{\mathbf{k}}$ is assumed to lie in the x-z plane, and the angle of incidence, $\theta^{\mathbf{i}}$, is defined as:

$$\theta^{i} = \cos^{-1} \left(\underline{\hat{u}}_{k} \cdot \underline{\hat{u}}_{z} \right) \qquad 0 \leq \theta^{i} \leq \frac{\pi}{2}$$
 (36)

where

$$\frac{\hat{\mathbf{u}}_{\mathbf{k}}}{|\mathbf{k}|} = |\mathbf{k}/|\mathbf{k}| \tag{37}$$

For each propagation vector \underline{k} , two unit vectors $\underline{\hat{u}}_{\perp}$ and $\underline{\hat{u}}_{\#}$ are defined:

$$\frac{\hat{\mathbf{u}}}{1} = -\frac{\hat{\mathbf{u}}}{y} \tag{38}$$

$$\underline{\hat{\mathbf{u}}}_{\mathscr{I}} = \underline{\hat{\mathbf{u}}}_{\mathbf{y}} \times \underline{\hat{\mathbf{u}}}_{\mathbf{k}} \tag{39}$$

The incident plane waves considered are of the form

$$\underline{\underline{E}}^{io} = \underline{E}^{io} \ \underline{\hat{u}}_{e} \ e^{-j\underline{k} \cdot \underline{r}}$$
 (40)

$$\underline{\mathbf{H}}^{\mathbf{io}} = \frac{\hat{\mathbf{u}}_{\mathbf{k}}}{\eta_{\mathbf{o}}} \times \underline{\mathbf{E}}^{\mathbf{io}}$$
 (41)

where $\hat{\underline{u}}_e$ can be either $\hat{\underline{u}}_{\perp}$ or $\hat{\underline{u}}_{\#}$ and η_o denotes the free space

impedance $\sqrt{\frac{\mu_o}{\epsilon_o}}$.

When $\hat{\underline{u}}_e = \hat{\underline{u}}_\perp$, the incident waves above are said to be of vertical (denoted E_\perp) polarization and the polar components of the magnetic field in the aperture are:

$$H_{\rho}^{io} = \frac{E^{io}}{\eta_{o}} \cos \theta^{i} \cos \phi e^{-jk\rho \sin \theta^{i} \cos \phi}$$
 (42)

$$H_{\phi}^{io} = -\frac{E^{io}}{\eta_{o}} \cos \theta^{i} \sin \phi e^{-jk\rho \sin \theta^{i}} \cos \phi \tag{43}$$

When $\hat{\underline{u}}_e = \hat{\underline{u}}_{\#}$, the incident waves in (40) and (41) are said to be of horizontal (denoted E $_{\#}$) polarization and,

$$H_{\rho}^{io} = \frac{E^{io}}{\eta_{o}} \sin \phi \ e^{-jk\rho \ \sin \theta^{i} \cos \phi} \tag{44}$$

$$H_{\phi}^{io} = \frac{E^{io}}{\eta_{o}} \cos \phi \ e^{-jk\rho \ \sin \theta^{i}} \cos \phi \tag{45}$$

in the aperture.

Notice that, although the two linear polarizations above are considered separately, the transmission of an elliptically polarized wave can be obtained from the results of these separate considerations.

Appendix A gives a brief discussion of this.

IV. EVALUATION OF ADMITTANCE MATRIX AND EXCITATION MATRIX

(a) Admittance Matrix

In the preceding sections, the general formulation of the problem and the specification of expansion and testing functions have been given. In this section, approximations used in the computation of the admittance matrix $[Y_{pq}]$ are discussed. These approximations, together with some of the intermediate steps, are summarized and the final forms of the matrix elements are given.

(i) The surface divergence (6) can be written in its polar form as

$$\nabla_{\mathbf{t}} \cdot \underline{\mathbf{A}} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \mathbf{A}_{\rho}) + \frac{1}{\rho} \frac{\partial \mathbf{A}_{\phi}}{\partial \phi}$$
 (46)

where ${\bf A}_{\rho}$, ${\bf A}_{\varphi}$ are polar components of $\underline{\bf A}$. From (22) and (46), we have

$$\nabla_{t}^{\prime} \cdot \underline{M}_{q}(\rho^{\prime}, \phi^{\prime}) = \operatorname{jn} P_{\varrho}(\rho^{\prime}) e^{\operatorname{jn}\phi^{\prime}}/\rho^{\prime} \text{ for } s = \phi$$
 (47)

Recall here that q is a function of s, ℓ and n and conversely, s, ℓ and n are each functions of q, as shown in (23).

To compute ∇'_t · $\underline{\underline{M}}_q(\rho', \varphi')$ for s=0, a finite difference approximation is used to spread out the impulse functions encountered:

$$\nabla_{t}' \cdot \underline{M}_{q}(\rho', \phi') = \frac{d}{\rho'} \frac{\partial}{\partial \rho'} \left[P_{\ell} + \frac{1}{2} (\rho') e^{jn\phi'} \right]$$

$$\left[P_{\ell}(\rho') - P_{\ell+1}(\rho') \right] e^{jn\phi'} / (\Delta \rho'/d)$$
for s= ρ (48)

(ii) The admittance matrix elements are calculated according to (17) because the testing functions (30) are tangential to the x-y plane. Equation (17) is written here again with the subscripts of the elements written, explicitly, as functions.

$$Y_{pq} = -\langle W_{p(s,\ell,n)}, \frac{\widetilde{H}(\underline{M}_{q(\tau,i,m)}) \rangle$$
 (49)

where

$$p(s, \ell, n) = (n+N)(2M-1) + v_s(M-1) + \ell$$
 (50)

$$q(\tau, i, m) = (m+N)(2M-1) + \nu_{\tau}(M-1) + i$$
 (51)

and

$$v_{s} = \begin{cases} 0 & \text{if } s = \rho \\ 1 & \text{if } s = \phi \end{cases}$$
 (52)

(iii) It can be shown that

$$<\underline{W}_{p(s,\ell,n)}, \ \underline{\widetilde{H}}(\underline{M}_{q(\tau,i,m)})>=0 \text{ for } m \neq n$$
 (53)

and from this result, together with (49) to (52), equation (10) will look like

$$\begin{bmatrix} \widetilde{Y}^{-N} \\ \widetilde{Y}^{-(N-1)} \\ \vdots \\ \widetilde{Y}^{N} \end{bmatrix} \begin{bmatrix} \overline{V}^{-N} \\ V^{-(N-1)} \\ \vdots \\ \vdots \\ \overline{V}^{N} \end{bmatrix} = \begin{bmatrix} \overline{I}^{-N} \\ \overline{I}^{-(N-1)} \\ \vdots \\ \vdots \\ \overline{I}^{N} \end{bmatrix}$$
(54)

there submatrices \tilde{Y}^{n} 's all have the same dimension (2M-1) × (2M-1) and can again be written in terms of their submatrices.

$$\widetilde{Y}^{n} = \begin{bmatrix} [A_{i\ell}^{n}] & [B_{i\ell}^{n}] \\ [C_{i\ell}^{n}] & [D_{i\ell}^{n}] \end{bmatrix}$$
(55)

for n = -N, -(N-1),...,N and where

$$A_{i\ell}^{n} = -\langle \underline{W}_{p(\rho,i,n)}, \, \underline{\widetilde{H}}(\underline{M}_{q(\rho,\ell,n)}) \rangle$$
 (56)

for i = 1, 2, ..., M-1

 $\ell = 1, 2, ..., M-1$

and

$$B_{i\ell}^{n} = -\langle \underline{W}_{p(\rho,i,n)}, \underline{\widetilde{H}}(\underline{M}_{q(\phi,\ell,n)}) \rangle$$
 (57)

for i = 1, 2, ..., M-1

 $\ell = 1, 2, ..., M$

and

$$C_{i\ell}^{n} = -\langle \underline{W}_{p(\phi,i,n)}, \, \underline{\tilde{H}}(\underline{M}_{q(\rho,\ell,n)}) \rangle$$
 (58)

for i = 1, 2, ..., M

 $\ell = 1, 2, ..., M-1$

and

$$D_{i\ell}^{n} = -\langle \underline{W}_{p(\phi,i,n)}, \, \underline{\widetilde{H}}(\underline{M}_{q(\phi,\ell,n)}) \rangle$$
 (59)

for i = 1,2,..., M

 $\ell = 1, 2, ..., M$

The column matrices \overline{V}^{n} 's and \overline{I}^{n} 's all have the same dimension (2M-1) and are defined as

$$\vec{v}^{n} = \begin{bmatrix} v_{\rho 1}^{n} \\ v_{\rho 2}^{n} \\ \vdots \\ v_{\rho (M-1)}^{n} \\ v_{\phi 1}^{n} \\ \vdots \\ v_{\phi M}^{n} \end{bmatrix}$$
(60)

$$\vec{I}^{n} = \begin{bmatrix}
\vec{I}^{n}_{\rho 1} \\
\vec{I}^{n}_{\rho 2} \\
\vdots \\
\vec{I}^{n}_{\rho (M-1)} \\
\vec{I}^{n}_{\phi 1} \\
\vdots \\
\vec{I}^{n}_{\phi M}
\end{bmatrix}$$
(61)

where $V^n_{s\ell}$'s are coefficients of the expansion functions $\underline{\underline{M}}_q(s,\ell,n)$'s and $I^n_{s\ell}$'s are defined by

$$I_{s\ell}^{n} = \frac{1}{2} \langle \underline{W}_{q(s,\ell,n)}, \underline{H}^{io} \rangle$$
 (62)

for $s = \rho, \phi$ $\ell = 1, 2, \dots, L_s$.

From (54), we now have (2N+1) matrix equations of the form

$$\tilde{\tilde{\mathbf{Y}}}^n \tilde{\mathbf{V}}^n = \tilde{\mathbf{I}}^n$$
 for $n = -N, -(N-1), ..., N$ (63)

with $\tilde{\vec{Y}}^n$, $\bar{\vec{V}}^n$ and $\bar{\vec{I}}^n$ defined by (55)-(62).

(iv) Integrations in (5) and (9) are done in polar coordinates

$$\iint_{\text{aperture}} da = \int_{R_{\text{in}}}^{R_{\text{out}}} \rho d\rho \int_{0}^{2n} d\phi$$
 (64)

$$\iint_{\text{aperture}} da' = \int_{R_{\text{in}}}^{R_{\text{out}}} \rho' d\rho' \int_{0}^{2n} d\phi'$$
(65)

(v) Inner products of unit vectors are summarized here:

$$\underline{\hat{\mathbf{u}}}_{\rho} \cdot \underline{\hat{\mathbf{u}}}_{\rho'} = \underline{\hat{\mathbf{u}}}_{\phi} \cdot \underline{\hat{\mathbf{u}}}_{\phi'} = \cos (\phi' - \phi)$$
 (66)

$$\underline{\hat{\mathbf{u}}}_{\varphi} \cdot \underline{\hat{\mathbf{u}}}_{\varphi}, = -\underline{\hat{\mathbf{u}}}_{\varphi} \cdot \underline{\hat{\mathbf{u}}}_{\varphi}, = \sin(\varphi' - \varphi)$$
 (67)

- (vi) It can be shown that, for all admittance matrix elements, a single variable $(\varphi'-\varphi)$ in the angle direction is needed during the integration and thus a single variable φ , instead of $(\varphi'-\varphi)$, will be used from now on.
 - (vii) New variables are used for integrations according to

$$\rho = \Delta t \tag{68}$$

$$\rho' = \Delta t' \tag{69}$$

and

$$\phi = \frac{\pi}{2} (\theta + 1) \tag{70}$$

The last one is done for the convenience of numerical integration by Gaussian quadratures in the range of φ from 0 to π_*

(viii) The pulse P $\frac{1}{2}(\rho)$ is approximated by four impulses during the integration.

$$P_{\ell+\frac{1}{2}}(\rho) \approx \frac{1}{4} \sum_{m=1}^{4} \delta(\rho - \rho_{\ell m})$$
 (71)

where

$$\rho_{\ell m} = \rho_{\ell} + \frac{(m - 2.5)\Delta}{4} \tag{72}$$

(ix) The integration in θ (θ introduced in (70)) is approximated by the Gaussian-quadrature method

$$\int_{-1}^{1} d\theta f(\theta) \approx \sum_{m=1}^{N} w_m f(\theta_m)$$
 (73)

where w_m's and θ_m 's are the weight factors and abscissas of the N_gth order Gaussian-quadrature integration.

(x) The exponential

-jkR

where

$$R = \sqrt{\rho_{pl}^2 + \rho'^2 - 2\rho_{pl}\rho'\cos\phi_m}$$
 (74)

with

$$\phi_{\rm m} = \frac{\pi}{2} \; (\theta_{\rm m} + 1)$$

is approximated by the first two terms of its Taylor series expansion about the value of R when ρ' assumes the mean value of its domain of integration, i.e.,

$$e^{-jkR} \approx e^{-jkR_0} [1 - jk(R - R_0)]$$
 for $\rho_a \le \rho' \le \rho_a + \Delta$ (75)

where

$$R_{o} = \sqrt{\rho_{p\ell}^{2} + \rho_{c}^{2} - 2\rho_{p\ell} \rho_{c} \cos \phi_{m}}$$
 (76)

$$\rho_{c} = \rho_{a} + \frac{\Delta}{2} \tag{77}$$

The validity of (75) is based on the condition

$$\frac{\mathbf{k}\wedge}{2} << 1 \tag{78}$$

or, equivalently

$$\pi(\frac{\Delta}{\lambda}) << 1 \tag{79}$$

where λ is the wavelength of the wave.

The final forms of the admittance matrix elements are now given in terms of the submatrices \tilde{A}^n , \tilde{B}^n , \tilde{C}^n , \tilde{D}^n . Note that although approximations are involved as described in (i), (viii), (ix) and (x), equality signs are still used for simplicity.

$$A_{pq}^{n} = \frac{M}{\eta_{o}} \sum_{m=1}^{N_{g}} w_{m} \left\{ \frac{j\kappa}{4} F_{1}(\theta_{m}) \left[\sum_{k=1}^{4} g_{1}(p,q,k,m) \right] - \frac{1}{j\kappa} F_{3}(\theta_{m}) \left[g(p,q,6,m) - g(p,q,5,m) + g(p,q+1,5,m) - g(p,q+1,6,m) \right] \right\}$$
(80)

$$B_{pq}^{n} = -\frac{1}{\eta_{o}} \sum_{m=1}^{N_{g}} w_{m} \left\{ \frac{\kappa}{4} F_{2}(\theta_{m}) \left[\sum_{k=1}^{4} h(p,q,k,m) \right] + \frac{n}{\kappa} \right\}$$

$$F_3(\theta_m)[g(p,q,6,m) - g(p,q,5,m)]$$
 (81)

$$c_{pq}^{n} = \frac{M}{\eta_{o}} \sum_{m=1}^{N_{g}} w_{m} \{ \kappa(x_{p} - \frac{1}{2}) F_{2}(\theta_{m}) g_{\frac{1}{2}}(p,q,5,m) - \frac{1}{2} \}$$

$$\frac{n}{\kappa} F_{3}(\theta_{m})[g(p,q,5,m) - g(p,q+1,5,m)]$$
 (82)

$$D_{pq}^{n} = \frac{1}{\eta_{o}} \sum_{m=1}^{N_{g}} w_{m} [j\kappa(x_{p} - \frac{1}{2}) F_{1}(\theta_{m}) h(p,q,5,m) + \frac{1}{2} F_{1$$

 $\frac{n^2}{j\kappa} F_3(\theta_m) g(p,q,5,m)]$ (83)

where

$$\kappa = k\Delta \tag{84}$$

 θ_m 's and w_m 's $(m=1,2,\ldots,N_g)$ are the abscissas and weight factors of Gaussian-quadrature integration of order N_g as described in (ix), and

$$F_1(\theta_m) = \frac{1}{2} \{\cos[(n+1) \frac{\pi}{2} (\theta_m + 1)] + \cos[(n-1) \frac{\pi}{2} (\theta_m + 1)]\}$$
 (85)

$$F_2(\theta_m) = \frac{1}{2} \{\cos[(n+1) \frac{\pi}{2} (\theta_m + 1)] - \cos[(n-1) \frac{\pi}{2} (\theta_m + 1)]\}$$
 (86)

$$F_3(\theta_m) = \cos[n \frac{\pi}{2} (\theta_m + 1)]$$
 (87)

and

$$g(p,q,\ell,m) = \int_{x_{q-1}}^{x_q} \frac{e^{-j\kappa R}p\ell m}{e^{R}p\ell m} dt$$
 (88)

$$\frac{g_{1}(p,q,\ell,m)}{\frac{1}{2}} = \int_{x_{q-1/2}}^{x_{q+1/2}} \frac{e^{-j\kappa R}p\ell m}{\frac{R}p\ell m} dt$$
(89)

$$h(p,q,\ell,m) = \int_{x_{q-1}}^{q} \frac{te^{-j\kappa R} p \ell m}{R} dt$$
(90)

where

$$R_{p\ell m} = \sqrt{t^2 + x_{p\ell}^2 + 2t x_{p\ell} \sin \left[\frac{\pi}{2} \theta_m\right]}$$
 (91)

$$x_q = x_0 + q$$
 $q = 0, \frac{1}{2}, 1, \frac{3}{2}, ..., M$ (92)

$$x_{pl} = \frac{\rho_{pl}}{\Delta} = x_0 + p + \frac{(\ell - 2.5)}{4} \quad p = 1, 2, ..., M-1$$

$$\ell = 1, 2, 3, 4$$
(93)

$$x_{o} = R_{in}/\Delta \tag{94}$$

To evaluate g, g and h, an approximation of e plm as described in (x) is used with results as given below:

$$g(p,q,\ell,m) = e^{-j\kappa R} p(q-1/2) \ell m \left[(1+j R_{p(q-1/2)} \ell m) S_{pq\ell m} - j\kappa \right]$$
(95)

$$g_{1/2}(p,q,l,m) = g(p,q+1/2,l,m)$$
 (96)

$$h(p,q,\ell,m) = e^{-j\kappa R} p(q-1/2) \ell m \left\{ (1+j\kappa R_{p(q-1/2)} \ell m) \left[R_{pq} \ell m^{-R} p(q-1) \ell m \right] - \kappa_{p\ell} \sin(\frac{\pi}{2}\theta_m) S_{pq\ell m} \right\} - j\kappa(\kappa_q - \frac{1}{2})$$
(97)

where

$$R_{pq\ell m} = R_{p\ell m} \left| t = x_{q} \right|$$

$$S_{pq\ell m} = \ln \left[\frac{\left(t_{pq\ell m} + \frac{1}{2} \right) + \sqrt{\left(t_{pq\ell m} + \frac{1}{2} \right)^{2} + d_{p\ell m}^{2}}}{\left(t_{pq\ell m} - \frac{1}{2} \right) + \sqrt{\left(t_{pq\ell m} - \frac{1}{2} \right)^{2} + d_{p\ell m}^{2}}} \right]$$

and

$$t_{pq\ell m} = \left| x_{q} + x_{p\ell} \sin \left(\frac{\pi}{2} \theta_{m} \right) - \frac{1}{2} \right|$$
 (100)

$$d_{p\ell m}^2 = x_{p\ell}^2 \cos^2 \left(\frac{\pi}{2} \theta_{m}\right) \tag{101}$$

a different form of S_{pqlm} ,

$$S_{pq\ell m} = \ln \left\{ \frac{\left[(t_{pq\ell m} + \frac{1}{2}) + \sqrt{(t_{pq\ell m} + \frac{1}{2}) + d_{p\ell m}^2} \right] \left[-(t_{pq\ell m} - \frac{1}{2}) + \sqrt{(t_{pq\ell m} - \frac{1}{2})^2 + d_{p\ell m}^2} \right]}{d_{p\ell m}^2} \right\}$$
(102)

is used for $t_{pqlm} < \frac{1}{2}$ to reduce numerical errors.

Notice, from the above formulas, the following symmetry exists:

$$\begin{bmatrix} \begin{bmatrix} \bar{A}_{pq}^{n} \end{bmatrix} & [B_{pq}^{-n}] \\ [C_{pq}^{-n}] & [D_{pq}^{-n}] \end{bmatrix} = \begin{bmatrix} [A_{pq}^{n}] & -[B_{pq}^{n}] \\ -[C_{pq}^{n}] & [D_{pq}^{n}] \end{bmatrix}$$
(103)

(b) Excitation Matrix $[I_p]$

The excitation matrix is considered for the two polarizations described in Sec. III-(a).

(i) E_1 -polarization

Substituting (30), (42) and (43) into (62), one obtains

$$I_{\rho q}^{n} = E^{io} i_{\rho q}^{nL}$$
 (104)

$$I_{\phi q}^{n} = E^{io} i_{\phi q}^{n1} \tag{105}$$

where

$$i_{\rho q}^{n_1} = i_{\rho q}^{-n_1} = \frac{-1}{\eta_0} j^{-n+1} \cos \theta^i \int_{x_{q-1/2}}^{x_{q+1/2}} [J_{n+1}(\beta t) - J_{n-1}(\beta t)] dt$$
 (106)

$$i_{\phi q}^{n_{\downarrow}} = -i_{\phi q}^{-n_{\downarrow}} = \frac{-1}{\eta_{o}} j^{-n} x_{q-1/2} \cos \theta^{i} [J_{n+1}(\beta x_{q-1/2}) + J_{n-1}(\beta x_{q-1/2})]$$
(107)

$$\beta = \kappa \sin \theta^{i} \tag{108}$$

The integral formula for Bessel functions,

$$J_{n}(x) = \frac{j^{n}}{2\pi} \int_{0}^{2\pi} e^{-jn\phi} - jx \cos\phi d\phi$$
 (109)

is used.

It can be shown that, when $\frac{\kappa}{2} << 1$ (typically $\Delta \sim \frac{\lambda}{30}$), the following approximation for $i_{\rho q}^{n_1}$ is of little error (typically 1%),

$$i_{\beta q}^{n\perp} = \frac{-1}{\eta_0} j^{-n+1} \cos \theta^i \left[J_{n+1}(\beta x_q) - J_{n-1}(\beta x_q) \right]$$
 (110)

Now, a column matrix

$$\vec{v}^{n1} = \begin{bmatrix} \vec{v}^{n1} \\ \vec{v}^{n1} \\ \end{bmatrix} = \begin{bmatrix} v^{n1} \\ v^{n1} \\ \vdots \\ v^{n1} \\ v^{n1} \end{bmatrix} = \begin{bmatrix} v^{n1} \\ \vdots \\ v^{n1} \\ v^{n1} \\ \downarrow v^{n1} \\ \vdots \\ v^{n1} \\ \psi^{n1} \end{bmatrix}$$
(111)

is introduced as the solution of the equation

$$\tilde{\tilde{Y}}^{n} \tilde{v}^{n} = \tilde{i}^{n}$$
 (112)

where

as the solution of the equation
$$\widetilde{Y}^{n} \ \overline{v}^{n1} = \overline{i}^{n1} \qquad (112)$$

$$\overline{i}^{n1} = \begin{bmatrix} \overline{i}_{0}^{n1} \\ \overline{i}_{0}^{n1} \end{bmatrix} = \begin{bmatrix} i_{01}^{n1} \\ \vdots \\ i_{0M-1}^{n} \end{bmatrix}$$

$$\begin{bmatrix} i_{01}^{n1} \\ \vdots \\ i_{0M}^{n} \end{bmatrix}$$

$$\begin{bmatrix} i_{01}^{n1} \\ \vdots \\ \vdots \\ i_{0M}^{n} \end{bmatrix}$$

The magnetic current in this case can now be written as

$$\underline{\mathbf{M}}_{o} = \mathbf{E}^{io} \left(\mathbf{m}_{o}^{i} \, \hat{\underline{\mathbf{u}}}_{o} + \mathbf{m}_{\phi}^{i} \, \hat{\underline{\mathbf{u}}}_{\phi} \right) \tag{114}$$

where

$$\mathfrak{m}_{\rho}^{\perp} = \mathfrak{T}_{\rho}^{o}(\rho) + \sum_{n=1}^{N} \mathfrak{T}_{\rho c}^{n}(\rho) \cos n\phi \qquad (115)$$

$$m_{\phi}^{\perp} = \sum_{n=1}^{N} T_{\phi s}^{n}(\rho) \sin n\phi$$
 (116)

$$T_{\rho}^{o}(\rho) = \frac{d}{\rho} \sum_{q=1}^{M-1} v_{\rho q}^{o\perp} P_{q+1/2}(\rho)$$
 (117)

$$T_{\rho c}^{n}(\rho) = \frac{2d}{\rho} \sum_{q=1}^{M-1} v_{\rho q}^{n_1} P_{q+1/2}(\rho) \quad n=1,2,...,N$$
 (118)

$$T_{\phi s}^{n}(\rho) = 2j \sum_{q=1}^{M} v_{\phi q}^{n\downarrow} P_{q}(\rho)$$
 $n=1,2,...,N$ (119)

Notice the symmetry,

$$\overline{\mathbf{v}}_{\rho}^{-n_{1}} = \overline{\mathbf{v}}_{\rho}^{n_{1}} \tag{120}$$

$$\bar{\mathbf{v}}_{\phi}^{-\mathbf{n}_{\perp}} = -\bar{\mathbf{v}}_{\phi}^{\mathbf{n}_{\perp}} \tag{121}$$

which can be seen from (103), (106) and (107).

(ii) E_{"-Polarization}

Similarly, from (30), (44), (45) and (62), we can obtain, for this polarization,

$$I_{\rho q}^{n} = E^{i_0} i_{\rho q}^{n \prime \prime} \tag{122}$$

$$I_{\phi q}^{n} = E^{io} i_{\phi q}^{n \prime \prime} \tag{123}$$

where

$$i_{\rho q}^{n"} = -i_{\rho q}^{-n"} = \frac{1}{\eta_0} j^{-n} [J_{n+1}(\beta x_q) + J_{n-1}(\beta x_q)]$$
 (124)

$$i_{\phi q}^{n''} = i_{\phi q}^{-n''} = \frac{-1}{\eta_0} j^{-n+1} x_{q-1/2} [J_{n+1}(\beta x_{q-1/2}) - J_{n-1}(\beta x_{q-1/2})]$$
 (125)

and a column matrix

is introduced as the solution of the equation

$$\tilde{\tilde{Y}}^{n} \tilde{v}'' = \tilde{i}^{n}$$
 (127)

where

as the solution of the equation
$$\tilde{Y}^{n} \tilde{v}^{n'''} = \tilde{i}^{n''} \qquad (127)$$

$$\tilde{i}^{n'''} = \begin{bmatrix} \tilde{i}^{n''} \\ \tilde{i}^{n''} \\ \tilde{i}^{n''} \end{bmatrix} = \begin{bmatrix} \tilde{i}^{n''} \\ \tilde{i}^{n''} \end{bmatrix}$$

$$\text{Trent in this case can be written as}$$

The magnetic current in this case can be written as

$$\underline{\underline{M}}_{O} = E^{iO}(\underline{m}_{\rho}'' \underline{\hat{u}} + \underline{m}_{\phi}'' \underline{\hat{u}}_{\phi})$$
 (129)

where

$$m_{\rho}'' = \sum_{n=1}^{N} T_{\rho s}^{n}(\rho) \sin n\phi$$
 (130)

$$m_{\phi}'' = T_{\phi}^{o}(\rho) + \sum_{n=1}^{N} T_{\phi c}^{n}(\rho) \cos n\phi$$
 (131)

$$T_{\rho s}^{n}(\rho) = \frac{2jd}{\rho} \sum_{q=1}^{M-1} v_{\rho q}^{n} P_{q+1/2}(\rho) \quad n=1,2,...,N$$
 (132)

$$T_{\phi}^{o}(\rho) = \sum_{q=1}^{M} v_{\phi q}^{o \prime \prime} P_{q}(\rho)$$
 (133)

$$T_{\phi c}^{n}(\rho) = 2 \sum_{q=1}^{M} v_{\phi q}^{n} P_{q}(\rho)$$
 $n=1,2,...,N$ (134)

The symmetry used in this case is

$$\bar{v}_{\rho}^{-n} = -\bar{v}_{\rho}^{n}$$
 (135)

$$\bar{\mathbf{v}}_{\phi}^{-\mathbf{n}\prime\prime} = \bar{\mathbf{v}}_{\phi}^{\mathbf{n}\prime\prime} \tag{136}$$

V. GAIN PATTERN AND TRANSMISSION COEFFICIENT

Formulas for the two transmission characteristics are given here in terms of the magnetic current coefficients.

(a) Power Gain Pattern on the Transmitted Side

The power gain pattern $G(\theta,\varphi)$ on the transmitted side is defined as

$$G(\theta, \phi) = \pi r^2 \frac{k^2}{\eta_0} [|F_{\phi}|^2 + |F_{\theta}|^2]/P_t$$
 (137)

where $\mathbf{F}_{\varphi}\text{, }\mathbf{F}_{\theta}$ are components of the vector potential $\underline{\mathbf{F}}\text{,}$

$$\underline{F} = \frac{e^{-jkr}}{2\pi r} \iint_{\text{aperture}} \underline{M}_{0}(\underline{r}')e^{-jkr'\cos\xi} da'$$
(138)

in the far zone and

$$\cos \xi = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi' - \phi)$$
 (139)

while $(r,\theta,\phi),(r',\theta',\phi')$ denote the field point and source point, respectively.

 $P_{\mbox{\it t}}$ is the time average of the total power transmitted through the aperture and is given by,

$$P_{t} = \frac{1}{2} \iint_{\text{aperture}} \operatorname{Re}(\hat{\underline{\mathbf{n}}} \cdot \underline{\underline{\mathbf{E}}}^{\star} \times \underline{\underline{\mathbf{H}}}) \, da \qquad (140)$$

or,

$$P_{t} = \frac{1}{2} \iint_{\text{aperture}} \text{Re}(\underline{M}^{\star} \cdot \underline{H}) \text{ da}$$
 (141)

From (2), (8) and (141), we obtain

$$P_{t} = Re \sum_{ij} v_{i}^{*} v_{j} < \underline{M}_{i}^{*}, \ \underline{\widetilde{H}}(\underline{M}_{j}) >$$
 (142)

From Section III-(a), we notice that when the subsections are small, $\underline{\underline{M}}_{i}^{\star}$ in (142) can be approximated by $\underline{\underline{W}}_{i}^{\star}$ with a constant factor and an approximate expression for \underline{P}_{t} is obtained,

$$P_{t} = \text{Re } \left\{ \frac{\pi \Delta^{2}}{2} \sum_{n=-N}^{N} \left[\sum_{q=1}^{M-1} M V_{\rho q}^{n*} I_{\rho q}^{n} + \sum_{q=1}^{M} V_{\phi q}^{n*} I_{\phi q}^{n} \right] \right\}$$
 (143)

From (104), (105), (112) and (143), we obtain, for the E_1 -polarization,

$$P_{t} = \frac{1}{2} \operatorname{Re} \left\{ \left| E^{io} \right|^{2} \pi \Delta^{2} \sum_{n=0}^{N} \varepsilon_{n} \left[\begin{array}{c} M \ \overline{v}_{\rho}^{ni} \\ \overline{v}_{\phi}^{ni} \end{array} \right]^{*T} \right\}$$
 (144)

where ε_n = 1 for n = 0 and ε_n = 2 for n \geq 1. From (122), (123), (127) and (143), we obtain, for the E_H -polarization

$$P_{t} = \frac{1}{2} \operatorname{Re} \left\{ \left| E^{io} \right|^{2} \pi \Delta^{2} \sum_{n=0}^{N} \varepsilon_{n} \left[\begin{array}{c} M \ \vec{v}_{\rho}^{n} \\ \vec{v}_{\phi} \end{array} \right]^{*T} \right\}$$
 (145)

Another method for calculating P_t is to integrate the far field radiation:

$$P_{t} = \frac{k^{2}}{2\eta_{0}} \int_{0}^{\pi/2} r^{2} \sin\theta \, d\theta \int_{0}^{2\pi} [|F_{\phi}|^{2} + |F_{\theta}|^{2}] d\phi$$
 (146)

The ϕ -integration in Eq. (146) is trivial because of the orthogonality of the trigonometric functions. The θ -integration is done by quadratures.

 $F_{\varphi},\ F_{\theta}$ used in (137) and (146) are given in terms of the magnetic current coefficients in two separate polarizations:

(149)

(i) E₁-polarization

For incident fields defined by (40) and (41) with $\hat{\underline{u}}_e = \hat{\underline{u}}_1$, substitute (115) to (119) into (138), assume the condition of (79), and obtain

$$F_{\phi} = E^{io} f_{\phi}^{i} \tag{147}$$

$$F_{\theta} = E^{io} f_{\theta}^{\perp}$$
 (148)

where

$$\begin{split} f_{\phi}^{1} &= \frac{\Delta^{2} e^{-jkr}}{r} \sum_{n=1}^{N} \sin n\phi \{j^{n+1}M \sum_{q=1}^{M-1} v_{\rho q}^{n1} [J_{n+1}(\kappa x_{q} \sin \theta) + J_{n-1}(\kappa x_{q} \sin \theta)] \\ &- j^{n} \sum_{q=1}^{M} v_{\phi q}^{n1} [x_{q-1/2}(J_{n+1}(\kappa x_{q-1/2} \sin \theta) - J_{n-1}(\kappa x_{q-1/2} \sin \theta)) \\ &+ \frac{\kappa \sin \theta}{24} (2J_{n}(\kappa x_{q-1/2} \sin \theta) - J_{n+2}(\kappa x_{q-1/2} \sin \theta)) \end{split}$$

$$f_{\theta}^{\perp} = \frac{\Delta^{2} e^{-jkr}}{2r} \cos \theta \sum_{n=0}^{N} \varepsilon_{n} \cos n\phi \{j^{n+1} \sum_{q=1}^{M-1} v_{pq}^{n\downarrow} [J_{n+1}(\kappa x_{q} \sin \theta) - J_{n-1}(\kappa x_{q} \sin \theta)]\}$$

$$-j^{n} \int_{q=1}^{M} v_{\varphi q}^{n} [x_{q-1/2} (J_{n+1} (\kappa x_{q-1/2} \sin \theta) + J_{n-1} (\kappa x_{q-1/2} \sin \theta))]$$

$$\kappa \sin \theta (\tau x_{q-1/2} \sin \theta) + \kappa \sin \theta (\tau x_{q-1/2} \sin \theta) + \kappa \sin \theta (\tau x_{q-1/2} \sin \theta)$$

$$-\frac{\kappa \sin \theta}{24} \left(J_{n+2}(\kappa x_{q-1/2}\sin \theta) - J_{n-2}(\kappa x_{q-1/2}\sin \theta)\right)\right\} (150)$$

- $J_{n-2}(\kappa x_{q-1/2}\sin \theta))]$

and $\varepsilon_n = 1$ for n = 0 and $\varepsilon_n = 2$ for $n \neq 0$

(ii) E,-polarization

For incident fields defined by (40) and (41) with $\underline{\hat{u}}_e = \underline{\hat{u}}_{\#}$, substitute (130) to (134) into (138), assume the condition of (79), and obtain

$$F_{\phi} = E^{io} f_{\phi}^{\prime\prime} \tag{151}$$

$$F_{\theta} = E^{io} f_{\theta}'' \tag{152}$$

where

$$f_{\phi}'' = \frac{\Delta^{2} e^{-jkr}}{2r} \sum_{n=0}^{N} \varepsilon_{n} \cos n\phi \{j^{n}M \sum_{q=1}^{M-1} v_{\rho q}^{n}[J_{n+1}(\kappa x_{q} \sin \theta) + J_{n-1}(\kappa x_{q} \sin \theta)]$$

$$+ j^{n+1} \sum_{q=1}^{M} v_{\phi q}^{n}[x_{q-1/2}(J_{n+1}(\kappa x_{q-1/2} \sin \theta) - J_{n-1}(\kappa x_{q-1/2} \sin \theta))$$

$$+ \frac{\kappa \sin \theta}{24} (2J_{n}(\kappa x_{q-1/2} \sin \theta) - J_{n+2}(\kappa x_{q-1/2} \sin \theta)$$

$$- J_{n-2}(\kappa x_{q-1/2} \sin \theta)] \}$$
 (153)

$$f_{\theta}'' = \frac{\Delta^{2} e^{-jkr}}{r} \sum_{n=1}^{N} \sin n\phi \{-j^{n}M \sum_{q=1}^{M-1} v_{\rho q}^{n}[J_{n+1}(x_{q}\sin \theta) - J_{n-1}(\kappa x_{q}\sin \theta)]$$

$$- j^{n+1} \sum_{q=1}^{M} v_{\phi q}^{n}[x_{q-1/2}(J_{n+1}(\kappa x_{q-1/2}\sin \theta) + J_{n-1}(\kappa x_{q-1/2}\sin \theta))$$

$$- \frac{\kappa \sin \theta}{24} (J_{n+2}(\kappa x_{q-1/2}\sin \theta) - J_{n-2}(\kappa x_{q-1/2}\sin \theta))] \} (154)$$

(b) Transmission Coefficient

The transmission coefficient is defined as the ratio,

$$TC = \frac{P_t}{P_{in}}$$
 (155)

where P_{t} is defined in the last section and P_{in} is the time average of

the total power incident upon the aperture by the incident sources when the incidence is normal. It is given by,

$$P_{in} = \frac{|E^{io}|^2}{2\eta_o} \pi (R_{out}^2 - R_{in}^2)$$
 (156)

or

$$P_{in} = \frac{|E^{io}|^2}{2\eta_o} \pi \Delta^2 M(M + 2x_o)$$
 (157)

VI. NUMERICAL RESULTS AND DISCUSSION

Numerical results for a number of cases are given in this section. Several examples are given first with normal incident waves where only the n=1 mode is needed and only one polarization needs to be considered. E_1 -polarization is chosen for these examples. The results for the other polarization are easily obtained from this polarization. Results for oblique incidences are illustrated for two typical apertures (one small and one intermediate). Both polarizations are considered and an adequate number of modes are used.

In the figures showing results for the magnetic currents, points are plotted according to the actual representation at the centers of each subsection (ρ -component is marked by symbol Δ , ϕ - component is marked by symbol \Box). Note that subsections for the two polar components are shifted from each other by $\frac{\Delta}{2}$. Points are then connected by straight line segments. At ρ = R out, the value zero is plotted for the ρ -component corresponding to the boundary condition. At ρ = R in, except for the case when R = 0 and n = $\frac{1}{2}$ 1, the value of the ρ -component should also go to zero. This is discussed in previous work [5]. For the exception just

mentioned, no value is plotted at $\rho = R_{in}$.

The power gain patterns are computed in both the E-plane and the H-plane at elevation angles one degree apart. The transmission coefficient is computed for both $\rm E_1$ and $\rm E_{\it H}$ -polarization at angles of incidence 15° apart.

Figure 3 shows both components of the magnetic currents for normal incidence on an aperture with R $_{\rm out}$ = .05 λ , while R $_{\rm in}$ varies from 0 to .01 λ to .03 λ . Figures 4 to 6 show both components of the magnetic currents for circular apertures of sizes R $_{\rm out}$ = .25 λ , .5 λ and 1.5 λ respectively.

These results (Figs. 4-6) were compared with previous work [7]. Better convergence is observed for the first two cases, while in the third case ($R_{out} = 1.5\lambda$), our result is quite different from theirs and seems to be more accurate.

In Figs. 7 to 11, results for oblique incidences on a small aperture ($R_{out} = .02\lambda$, $R_{in} = 0$) are shown. For this small an aperture, the n=1 mode dominates for E_1 -incidence, while both n=0 and n=1 modes are important for $E_{/\!\!/}$ -incidence. This result can be seen from examining the Bessel functions and the matrix elements. Both components of n=1 mode are shown for E_1 -polarization and for a number of angles of incidence in Figs. 7, 8. Figures 10, 11 are the equivalences of Figs. 7, 8 for $E_{/\!\!/}$ -polarization while Fig. 9 shows the circulating current (n=0 mode) for this polarization.

Gain patterns for this aperture are also computed. For $\rm E_1$ -polarization, a simple dipole pattern is observed. A change in the

angle of incidence only changes the magnitude of the dipole (the n=1 mode) and doesn't change the pattern shape. These simple dipole patterns are not shown, since they are well known. For E_H-polarization, since both dipoles exist (the n=0 and n=1 modes), the patterns are more complicated and are shown for a number of oblique incidences in both planes in Figs. 18 and 19.

In Figs. 12 to 17, magnetic currents for oblique incidences on an aperture of medium size ($R_{out} = .25\lambda$, $R_{in} = 0$) are shown. At 45° incidence, the magnitudes of the first few dominant modes are compared for both components and for both polarizations. The same is done for 90° incidence, except in this case E_{\perp} -polarization doesn't excite the aperture.

Gain patterns for oblique incidences on this aperture are shown in Figs. 20 to 23, again, for both E and H-planes and for both polarizations.

The transmission coefficients versus angle of incidence are plotted in Figs. 24 and 25 for the two apertures, both polarizations considered. For the case where $R_{\text{out}} = .02\lambda$, the result compare very well with formulas by Bethe [6]. A slower convergence than that for the currents was observed, and the pulse representation of the edge behavior of the ϕ -component of the current is considered the reason for this.

Power gain patterns shown in the figures are normalized with respect to the maximum gain in each particular plane. Table 1 retains the information needed when these patterns are normalized.

Fig. 3. First mode, ρ and ϕ components of magnetic current, $-jT^1_{\rho_C}$ and $J^1_{\phi s}$, for apertures of R_{out} = .05 λ . (a) R_i = 0, (b) R_{in} = .01 λ , (c) R_i = .03 λ . Normal incidence.

Fig. 4. First mode, ρ and ϕ components of magnetic current, $|T^1|$ and $|T^1_{\phi s}|$, for a circular aperture of $R_{out} = .25\lambda$, normal incidence.

H.

.

See May a series of the series

ATTE STORE

Fig. 5. First mode, ρ and ϕ components of magnetic current, $|T^1|$ and $|T^1_{\phi S}|$ for a circular aperture of R_{out} = .5 λ ,normal incidence.

Fig. 6. First mode, ρ and ϕ components of magnetic current, $|T^1|$ and $|T^1|$ for a circular aperture of R out incidence.

Fig. 7. First mode, ρ component of magnetic current for E₁-polarization, -jT¹ for a circular aperture of R_{out} = .02 λ , angles of incidence (a) 0°, (b) 30°, (c) 45°, (d) 60° and (e) 75°.

Fig. 8. First mode, ϕ component of magnetic current for E₁-polarization, jT^1 , for a circular aperture of R₀ = .02 λ , angles of incidence (a) 0°, (b) 30°, (c) 45°, (d) 60° and (e) 75°.

I

Fig. 9. Zeroth mode, ϕ component of magnetic current for E - polarization, $-T_{\phi}^{O}$, for a circular aperture of R = .02 λ , angles of incidence (a) 30°, (b) 45°, (c) 60°, and (d) 90°.

Fig. 10. First mode, ρ component of magnetic current for E_H - polarization, jT¹, for a circular aperture of R = .02 λ , angles of incidence (a) 30°, (b) 45°, (c) 60° and (d) 90°.

Fig. 11. First mode, φ component of magnetic current for E__ = polarization, jT_{\varphi c}^1, for a circular aperture of R_ = .02 \lambda, angles of incidence (a) 30°, (b) 45°, (c) 60° and (d) 90°.

Fig. 12. Zeroth, first and second mode, ρ component of magnetic current for E₁-polarization (a) $|T_{\rho}^{0}|$, (b) $|T_{\rho c}^{1}|$, and (c) $|T_{\rho c}^{2}|$, for a circular aperture of R_{out} = .25 λ , 45° incidence.

Fig. 13. First and second mode, ϕ component of magnetic current for E₁ - polarization, (a) $|T_{\phi s}^{1}|$, (b) $|T_{\phi s}^{2}|$, for a circular aperture of R = .25 λ , 45° incidence.

Fig. 14. First and second mode, ρ component of magnetic current for E_H -polarization, (a) $|T^1|$, (b) $|T^2|$, for a circular aperture of R_{out} = .25 λ , 45° incidence.

Fig. 15. Zeroth, first and second mode, ϕ component of magnetic current for $E_{/\!\!/}$ -polarization, (a) $T_{\phi}^{O}|$, (b) $|T_{\phi}^{1}|$, and (c) $|T_{\phi}^{2}|$, for a circular aperture of $R_{out} = .25\lambda$, 45° incidence.

Fig. 16. First and second mode, ρ component of magnetic current for E_{//} - polarization, (a) $|T_{\rho s}^1|$, (b) $|T_{\rho s}^2|$, for a circular aperture of R_{out} = .25 λ , 90° incidence.

- 10 T & 10 T &

Fig. 17. Zeroth, first and second mode, ϕ component of magnetic current for E_{\(\pi\)} -polarization, (a) $|T_{\phi}^{0}|$, (b) $|T_{\phi c}^{1}|$, and (c) $|T_{\phi c}^{2}|$, for a circular aperture of R_{out} = .25\(\lambda\), 90° incidence.

Curve	G(θ _{max})	θ _{max}	Curve	G(θ _{max})	θ _{max}
18-(a)	1.874	90°	21-(a)	2.358	0°
-(b)	2.195	90°	-(b)	2.345	3°
-(c)	2.430	90°	-(c)	2.331	4°
-(d)	2.581	90°	-(d)	2.323	5°
-(e)	2.662	90°	22-(a)	2.312	2°
-(f)	2.687	90°	-(b)	2.191	4°
19-(a)	1.480	0°	-(c)	2.111	4°
-(b)	1.341	. 0°	23-(a)	2.309	0°
-(c)	1.225	0°	-(b)	2.184	0°
20	2.331	0°	-(c)	2.102	0°

Table 1. Maximum gains in each normalized gain patterns and elevation angles at which they occur.

for E₁-polarization, angles of incidence (a) 0°, (b) 30°, (c) 60°, and (d) 75°.

Normalized gain pattern in the H-plane for a circular aperture of R $_{\rm out}$ = .25 λ ,

Fig. 21.

Fig. 20. Normalized gain pattern in the E-plane for a circular aperture of R = .25 λ , for E₁-polarization. All angles of incidence produce the same pattern.

for E_{μ} -polarization, angle of incidence (a) 30°, (b) 60°, (c) 90°.

polarization, angles of incidence (a) 30° , (b) 60° , and (c) 90° .

Fig. 24. Transmission coefficient for a circular aperture of $R_{\rm out}$ = .02 λ .

Fig. 25. Transmission coefficient for a circular aperture of $R_{\rm out}$ = .25 λ .

VIII. CONCLUSION

A numerical solution for the problem of electromagnetic transmission through an annular aperture in an infinite conducting screen of zero thickness is developed. The moment method is used to solve the integral equation for the equivalent magnetic current in the aperture. The expansion functions are subsectional in ρ and harmonic in φ . The number of subsections used is determined by the size of the aperture. The number of Fourier modes used can be determined, in general, from the size of the aperture, the angle of incidence and an inspection on the Bessel functions. The results are observed to converge with respect to the number of expansion functions and some of the results are compared with previous literature.

An attempt was made to use triangle expansion functions combined with the Fourier modes to solve the same problem, however, poorer results, especially for small apertures, were obtained. The edge condition of the ϕ -component of the magnetic current, and the fact that triangles are less independent from each other (they are actually 2-subsectional) than the pulses are suspected to be the cause of the failure.

Appendix A

FORMULAS FOR ELLIPTICALLY POLARIZED INCIDENCE

The general form of an elliptically polarized plane wave incidence can be written as:

$$\underline{\mathbf{E}}^{io} = \mathbf{E}_{o}(\mathbf{e}_{1} \hat{\mathbf{u}}_{/\!/} + \mathbf{e}_{2} \hat{\mathbf{u}}_{1}) \mathbf{e}^{-j} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}}$$
 (A-1)

where the normalization is done wuch that

$$|e_1|^2 + |e_2|^2 = 1$$
 (A-2)

The equivalent magnetic current for this incidence is simply the linear combination:

$$\underline{\mathbf{M}}_{o} = \mathbf{E}_{o} [(\mathbf{e}_{1} \mathbf{m}_{\rho}^{"} + \mathbf{e}_{2} \mathbf{m}_{\rho}^{\perp}) \hat{\underline{\mathbf{u}}}_{\rho} + (\mathbf{e}_{1} \mathbf{m}_{\phi}^{"} + \mathbf{e}_{2} \mathbf{m}_{\phi}^{\perp}) \hat{\mathbf{u}}_{\phi}]$$
(A-3)

where $\mathbf{m}_{\rho}^{1},\;\mathbf{m}_{\rho}^{\prime\prime}$, $\mathbf{m}_{\varphi}^{1},\;\mathbf{m}_{\varphi}^{\prime\prime}$ are defined in Sec. IV-b.

The far field components are linear quantities too:

$$F_{\theta} = E_{o}(e_{1}f_{\theta}'' + e_{2}f_{\theta}^{1}) \tag{A-4}$$

$$F_{\phi} = E_{o}(e_{1}f_{\phi}'' + e_{2}f_{\phi}^{1})$$
 (A-5)

where $f_{\theta}^{\,\prime\prime}$, $f_{\theta}^{\,1}$, $f_{\varphi}^{\,\prime\prime}$, $f_{\varphi}^{\,1}$ are defined in Sec. IV-b also.

The transmission coefficient is a power characteristic, but, since the cross products don't contribute (which can be seen from the symmetry), the total transmission is still a linear combination of those contributed by the two polarizations:

$$\operatorname{TC} = \frac{\left\{ \sum_{n=0}^{N} \varepsilon_{n} \left(e_{1} \begin{bmatrix} M \ \overline{v}_{\rho}^{n} \\ \\ -\overline{v}_{\rho}^{n} \end{bmatrix}^{*^{T}} \overline{i}^{n} + e_{2} \begin{bmatrix} M \ \overline{v}_{\rho}^{n \perp} \\ \\ -\overline{v}_{\phi}^{n \perp} \end{bmatrix}^{*^{T}} \overline{i}^{n \perp} \right) \right\}}{M(M + 2x_{o})/\eta_{o}}$$
(A-6)

The normalized constants e_1 and e_2 for an elliptically polarized plane wave can be obtained from the ratio of the length of the minor axis to that of the major axis, r, the angle between the major axis and the vector $\hat{u}_{\#}$, ψ , where $0 \leq \psi \leq \pi$, and (when the wave is not linearly polarized) the helicity of the wave.

An elliptically polarized wave is said to be of positive (negative) helicity if the electric field vector rotates counterclockwise (clockwise) when the observer is facing into the oncoming wave.

If $r \neq 0$ and $r \neq 1$, e_1 and e_2 can be obtained as:

$$e_1 = r_1 \tag{A-7}$$

$$e_2 = r_2 e^{j\alpha}$$
 (A-8)

where

$$r_1 = \sqrt{\sin^2 \psi + \frac{\cos 2\psi}{1 + r^2}}$$
 (A-9)

$$r_2 = \sqrt{\cos^2 \psi - \frac{\cos 2\psi}{1 + r^2}}$$
 (A-10)

$$\alpha = \begin{cases} \cos^{-1} \left[\frac{\sin 2\psi (1 - r^2)}{2r_1 r_2 (1 + r^2)} \right] - \pi & \text{for positive helicity} \\ \cos^{-1} \left[\frac{\sin 2\psi (1 - r^2)}{2r_1 r_2 (1 + r^2)} \right] & \text{for negative helcity} \end{cases}$$
(A-11)

For the two special cases:

(i) When r = 1, the plane wave is circularly polarized and we have,

$$e_1 = \frac{1}{\sqrt{2}} \tag{A-12}$$

$$e_{2} = \begin{cases} \frac{-j}{\sqrt{2}} & \text{for positive helicity} \\ \frac{j}{\sqrt{2}} & \text{for negative helicity} \end{cases}$$
(A-13)

(ii) When r = 0, the plane wave is linearly polarized and we have,

$$e_1 = \cos \Psi \tag{A-14}$$

$$e_2 = \sin \psi$$
 (A-15)

Appendix B

COMPUTER PROGRAM LISTING AND DESCRIPTION

Two programs are given in this section. One solves for the equivalent magnetic current and the other computes the power gain and transmission coefficient from this current. Section B-1.4 gives the description, listing and sample output of the first program. Sections B-1.1 to B-1.3 give the description and listing of the subprograms used. Section B-2.2 describes and lists the second program with its sample output. The subprogram used is given in B-2.1.

B-1.1. Subroutine CAD

Subroutine CAD(NP,N1,N2,RD,RI,LL,W,Q) computes submatrices \tilde{Y}^{N1} , \tilde{Y}^{N1+1} ,..., \tilde{Y}^{N2} of the admittance matrix. The constant factor $\frac{1}{\eta_o}$ is left out for all submatrices. Elements are stored in Y by columns and one submatrix after another, starting with the lowest mode (\tilde{Y}^{N1}) . The input variables are defined in terms of the variables introduced in previous sections as

NP = M, number of subdomains used.

 $RO = R_{out}$, outer radius (in wavelengths) of the aperture.

RI = R_{in}, inner radius (in wavelengths) of the aperture.

 $LL = N_{g}$, order of the Gaussian-quadrature integration in ϕ .

 $W(m) = w_m$, weight factor of the Gaussian-quadrature integration in ϕ .

 $Q(m) = \theta_m$, abscissa of the Gaussian-quadrature integration in ϕ .

The output Y is transferred to the main program in the common block BLK2 by

COMMON /BLK2/Y

to avoid unnecessary storage space.

Minimum allocations are given by

COMPLEX Y(NY)

DIMENSION X(6), Q(LL), W(LL), SN(LL),

CS(LL), U1(NL), U2(NL), U3(NL), D(NT),

T(NT), R1(NT), R2(NT), R3(NT), R4(NT)

where

$$NY = (N2 - N1 + 1)(2M-1)^2$$

$$NL = (N2 - N1 + 1)LL$$

NT = 6 LL

The matrix elements A_{pq}^n , B_{pq}^n , C_{pq}^n and D_{pq}^n are computed according to (80) to (83). The double DO loop 38 covers the ranges of both subscripts p,q. DO loop 36 does the Gaussian-quadrature integration in ϕ , or, equivalently, the summation $\sum_{k=1}^{Ng} f_k$ in (80) to (83). DO loop 18 carries out the summation f_k in (80) and (81). DO loops 14, 17, 23, f_k 28, 32 and 35 cover the range f_k n = N1, N1+1,...,N2 for all modes considered.

1

2

3

5

6

DO 7 I=1.NT

```
SUBROUTINE CAD(NP.N1.N2.RO.RI.LL.W.Q)
COMMON /BLK2/Y
COMPLEX Y(2500), C.CJ, CR, CEXP, CE, E, F, G.H, AA, BB
DIMENSION X(6),Q(30),SN(30),CS(30),U1(360),U2(360),U3(360), D(180)
6.T(180).R1(180).R2(180).R3(180).R4(180),W(30)
NR=NP-1
NN=NR+NP
NA=NN+NR
NB=NA+NR
 NN2=NN**2
 JS=N1+1
 JF=N2+1
 JS1=JS+1
 JF 1=JF+1
 JF2=JF+2
JD=JF1-JS
NT=NN2 * JD
PI=3.14159
DD=RO-RI
AK=(2*P[*DD)/NP
CJ=(0..1.)
C=CJ*AK
X0=(R[*NP)/DD
DO 1 1=1.LL
Q(I)=PI*(Q(I)+1)/2
SN(I)=SIN(Q(I))
CS(1)=COS(Q(1))
K=0
DO 2 I=1.LL
DO 2 J=1, JD
K=K+1
U1(K)=0.
U2(K)=0.
00 5 I=1.LL
K=JD*(1-1)
DO 5 J=JS.JF2
K=K+1
AC=COS((J-2)*Q(1))
IF(J.GT.JF)GO TO 3
U1 (K) = U1 (K) +AC/2.
U2(K)=U2(K)-AC/2.
IF(J.EQ.JS)GO TO 4
IF(J.GT.JF1)GO TO 4
K1=K-1
U3(K1) = AC
IF(J.LE.JS1)GO TO 5
K2=K-2
U1(K2)=U1(K2)+AC/2.
U2 (K2) =U2 (K2) +AC/2.
CONTINUE
DO 6 1=1.4
X(1)=X0+(1-2.5)/4.
```

```
Y(1)=0.
      DO 38 [=1.NP
      DO 8 K=1.4
8
       X(K)=X(K)+1
      X(5) = X0 + 1 - .5
      X(6)=X0+[+.5
      M=O
      DO 9 K=1.LL
      DO 9 L=1.6
      M=M+1
      T(M)=XO-X(L)*CS(K)
      D(M) = (X(L) * SN(K)) **2
      R3(M) = SQRT(T(M) ** 2+D(M))
      R4(M) = SQRT((T(M) + .5) * *2 + D(M))
9
      K2=NR+1
      K4=NB+I
      IF(1.EQ.NP)GO TO 10
      K1=1
      K3=NA+I
      DO 38 J=1.NP
10
      M=0
      DO 11 K=1.LL
      DO 11 L=1'.6
      M=M+1
      T(M)=T(M)+L.
      R1(M)=R3(M)
      R2(M)=R4(M)
      R3(M)=SQRT(T(M)**2+D(M))
11
      R4(M) = SQRT((T(M)+.5)**2+D(M))
      K=0
      DO 36 M=1.LL
       JLL=JD*(M-1)
      IF(1.EQ.NP)GO TO 19
      DO 18 MP=1.4
      K=K+1
      TT=ABS(T(K)-.5)
      T1=TT+.5
      T2=TT-.5
      TA=T1+SQRT(T1 ** 2+D(K))
      TB=T2+SQRT(T2**2+D(K))
      IF (T2.LT.0.)GO TO 12
      HT=ALOG(TA/TB)
      GO TO 13
12
      TB=TB-2*T2
      HT=ALUG(TA*TB/D(K))
13
      CR=C*R2(K)
      CE=CEXP(-CR)
      H=CE*((1+CR)*(R3(K)-R1(K)+X(MP)*CS(M)*HT)-C*(J-.5+X0))
      JLB=JLL
      JNB=K3
      AA=-AK + W( M) +H/4 .
      DO 14 JN=JS.JF
      JLB=JLB+1
      Y(JNB)=Y(JNB)+AA*U2(JLB)
      JNE=JNB+NN2
14
```

```
IF (J.EQ.NP) GO TO 18
      SS=ABS(T(K))
      S1=SS+.5
      52=55-.5
      SA=S1+SQRT(S1 **2+D(K))
      SB=S2+SQRT(S2**2+D(K))
      IF(S2.LT.0.)GO TO 15
      GT=ALOG(SA/SB)
      GO TO 16
      SB=SB-2*S2
15
      GT=ALOG(SA+SB/D(K))
16
      CR=C*R3(K)
      CE=CEXP(-CR)
      G=CE*((1.+CR)*GT-C)
      JLB=JLL
      JNB=K1
      AA=C+NP+W(M)+G/4.
      DO 17 JN=JS.JF
      JLB=JLB+1
      Y(JNB)=Y(JNB)+AA+U1(JLB)
17
      JNB=JNB+NN2
      CONTINUE
18
      GO TO 20
19
      K=K+4
20
      K=K+1
      TT=ABS(T(K)-.5)
      T1=TT+.5
      T2=TT-.5
      TA=T1+SORT(T1 **2+D(K))
      TB=T2+SQRT(T2++2+D(K))
      IF (T2.LT.0.)GD TO 21
      HT=ALOG(TA/TB)
      GO TO 22
      TB=TB-2*T2
21
      HT=ALOG(TA+TB/D(K))
      CR=C*R2(K)
22
      CE=CEXP(-CR)
      H=CE*((1+CR)*(R3(K)-R1(K)+X(5)*CS(M)*HT)-C*(J-.5+X0))
      G=CE*((1.+CR)*HT-C)
      JLB=JLL
      JNB=K4
      AA=C+W(M) *( [-.5+X0] *H
      BB=W(M) +G/C
      DO 23 JN= JS.JF
      JLB=JLB+1
      Y(JNB)=Y(JNB)+AA+U1(JLB)+(JN-1)++2+BB+U3(JLB)
23
      JNB=JNB+NN2
      TT=ABS(T(K)+.5)
      T1=TT+.5
      T2=TT-.5
      TA=T1+SQRT(T1 ++2+D(K))
      TB=T2+SQRT(T2**2+D(K))
      IF(T2.LT.0.)GO TO 24
      GT=ALOG(TA/TB)
      GO TO 25
      TB=TB-2*T2
24
```

```
GT=ALUG(TA*TB/D(K))
25
      CR=C*R4(K)
      CE=CEXP(-CR)
      E=CE*((1.+CR)*GT-C)
      IF(J.EQ.NP)GO TO 29
      SS=ABS(T(K))
      S1=SS+.5
      S2=SS-.5
      SA=S1+SQRT(S1 **2+D(K))
      SB=S2+SQRT(S2**2+D(K))
      (F(S2.LT.0.)G0 TO 26
      GT=ALDG(SA/SB)
      GO TO 27
      SB=SB-S2*2
26
      GT=ALOG(SA*SB/D(K))
27
      CR=C*R3(K)
      CE=CEXP(-CR)
      F=CE*((1.+CR)*GT-C)
      JLB=JLL
      JNB=K2
      AA=NP+W(M)+AK+(I-.5+X0)+F
      BB=-NP*W(M)*(G-E)/AK
      00 28 JN=JS.JF
      JLB=JLB+1
      Y(JNB)=Y(JNB)+AA*U2(JLB)+(JN-1)*BB*U3(JLB)
28
      JNB=JNB+NN2
29
      K=K+1
      IF(I.EQ.NP)GO TO 36
      TT=ABS(T(K)-.5)
      T1=TT+.5
      T2=TT-.5
      TA=T1+SQRT(T1 ** 2+D(K))
      TB=T2+SQRT(T2 **2+D(K))
      IF(T2.LT.0.)GO TO 30
      HT=ALOG(TA/TB)
      GO TO 31
30
      TB=TB-2*T2
      HT=ALOG(TA+TB/D(K))
31
      CR=C*R2(K)
      CE=CEXP(-CR)
      F=CE*((1.+CR)*HT-C)
      JLB=JLL
      JNB=K3
      AA=-W(M)*(F-G)/AK
      DO 32 JN=JS.JF
      JLB=JLB+1
      Y(JNB)=Y(JNB)+(JN-L)+AA+U3(JLB)
32
      JNB=JNB+NN2
      IF(J.EQ.NP)GO TO 36
      TT=ABS(T(K)+.5)
      T1=TT+.5
      T2=TT-.5
      TA=T1+SQRT(T1## 2+D(K))
      TB=T2+SQRT(T2 ++ 2+D(K))
      IF(T2.LT.0.1G0 TO 33
      GT=ALUG(TA/TB)
```

GO TO 34 33 TB=TB-2*T2 GT=ALOG(TA+TB/D(K)) 34 CR=C*R4(K) CE=CEXP(-CR) H=CE*((1.+CR)*GT-C) JLB=JLL JNB=K1 AA=-NP+W(M)+(F-G-H+E)/C DO 35 JN=JS.JF JLB=JLB+1 Y(JNB)=Y(JNB)+AA+U3(JLB) 35 SNN+BNC=BNC CONTINUE 36 K4=K4+NN IF(I.EQ.NP)GO TO 37 K3=K3+NN IF(J.GE.NR)GO TO 38 37 K2=K2+NN IF(I.EQ.NP)GO TO 38 KI=KI+NN

> CONTINUE RETURN END

38

B-1.2. Subroutine PEX

Subroutine PEX(AI,RO,RI,M,N) computes the column matrices \overline{i}^{O1} , \overline{i}^{11} ,..., \overline{i}^{N1} for the E₁-polarization and $\overline{i}^{O''}$, $\overline{i}^{1''}$,..., $\overline{i}^{N''}$ for the E_N-polarization. The constant factor $\frac{1}{\eta_0}$ is left out for all matrices. The \overline{i}^{D1} 's are stored, starting from \overline{i}^{O1} , in W and $\overline{i}^{D''}$'s in Q. The input variables are defined as

 $AI = \theta^{i}$, the angle of incidence, in degrees

 $RO = R_{out}$, the outer radius (in wavelengths) of the aperture.

 $RI = R_{in}$, the inner radius (in wavelengths) of the aperture.

M = M, number of subdomains used.

The outputs W and Q are transferred to the main program in the common block BLK1 by

Common /BLK1/W,Q

to avoid unnecessary storage space.

Minimum allocations are given by

COMPLEX W(NI), Q(NI)

DIMENSION X(M-1), Y(M)

COMMON /BLK4/BJ(N+2)

where

NI = (2M-1)(N+1)

The matrix elements of \bar{i}^{n_1} 's and $\bar{i}^{n_{m_1}}$'s are computed according to (106), (107), (124) and (125). DO loop 9 adds $J_n(x_q)$, n=0,1,...,N+1, q = 1,2,...,M-1, one at a time, to the proper elements of W,Q, with the proper constant factors. DO loop 14 has the same function for $J_n(x_{q-1/2})$'s.

If AI = 0 (θ^i = 0), only \bar{i}^{11} and \bar{i}^{1} are stored in W and Q and they are stored as W(2M) to W(4M-2) and Q(2M) to Q(4M-2). Simple computation are done without computing the Bessel functions. This is done by the control statement

IF(AI. EQ. 0.) GO TO 15

LISTING OF PEX

```
SUBROUTINE PEX(AL.RO.RI.M.N)
      COMMON /BLK1/W.Q/BLK4/BJ(100)
      COMPLEX W(300),Q(300),CJ.CK.CA.TW.TQ
      DIMENSION X(24) .Y(25) 4
      MM=M-1
      MD=M+MM
      NP=N+1
      NP2=NP+1
      MN=MD+NP
      D=RO-RI
      CJ=(0..1.)
      X0=M+R1/D
      E=X0-.5
      DO 1 1=1.M
      E=E+1.
      Y(1)=E
ı
      E=X0
      DO 2 [=1.MM
      E=E+1.
2
      X(()=E
       IF (AL.EQ. 0.) GO TO 15
      PI=3.141593
      A1=A1*P1/180.
      A=COS(A1)
      B=2.*P[*D*SIN(A1)/M
      CA=CJ#A
      00 3 1=1.MN
      W(1)=0.
      0(1)=0.
3
      DO 9 [=1.MM
      T=8*X(1)
      CALL BES(NP.T)
      K=I
      IF(AL.EQ.90.) GO TO 4
      W(K)=-2. + CA+BJ(2)
      CK=1.
      DO 9 J=1.NP2
      K=K+MD
      CK=CK/CJ
      IF (AL. EQ. 90.) GO TO 5
      TW=CA+BJ(J)/CK
      TQ=-BJ(J)/CK
5
      IF (J.GT.N)GO TO 7
      IF (AI . EQ. 90.) GU TO 6
      W(K)=W(K)+TW
      Q(K)=Q(K)-TQ
      IF(J.LT.3)GO TO 9
      L=K-2+MD
      IF (AL.EQ. 90.) GO TO 8
      W(L)=W(L)+TW
      Q(L)=Q(L)+TQ
8
      CONTINUE
```

DO 14 1=1 .M T=B*Y(1) CALL BES(NP.T) CK=1. K= I+MM Q(K)=-2.*CJ*Y([)*BJ(2) DO 14 J=1.NP2 K=K+MD CK=CK/CJ IF (AI . EQ. 90 .) GO TO 10 TW=-A*Y(1)*BJ(J)/CK 10 TQ=CJ+Y([)+BJ(J)/CK IF(J.GT.N)GO TO 12 IF(A1.EQ.90.)GO TO 11 W(K)=W(K)+TW 11 Q(K)=Q(K)+TQ IF(J.LT.3)GO TO 14 12 L=K-2*MD IF(AL.EQ.90.)GO TO 13 W(L)=W(L)-TW 13 Q(L)=Q(L)+TQ CONTINUE 14 GO TO 18 15 K=MD DO 16 1=1 .MM K=K+1 Q(K)=-CJ W(K)=1. 16 00 17 1=1 .M K=K+1 Q(K)=Y(1) 17 W(K)=CJ*Y([) RETURN 18

END

B-1.3. Subroutines DECOMP, SOLVE and BES

The subroutines DECOMP and SOLVE uses the method of Gaussian elimination and LU decomposition to solve a linear system of equations with complex coefficients. These subroutines are described in [8]. Only input instructions and output descriptions are summarized here.

The input into DECOMP (N, IPS, UL) is N and the matrix $\tilde{\tilde{A}}$ of coefficients of the set

$$\tilde{\bar{A}} = \bar{b}$$

of N linear equations stored by columns in UL. N \geq 2. The output from DECOMP is IPS and UL. DECOMP does not change N. SOLVE (N, IPS, UL, B, X) uses N, IPS, UL, and the elements of \bar{b} stored in B to calculate and stored in X the elements of the solution \bar{x} . SOLVE does not change any of the input variables.

Minimum allocations are given by

COMPLEX UL(N²)

DIMENSION SCL(N), IPS(N)

in DECOMP and by

COMPLEX $UL(N^2)$, B(N), X(N)

DIMENSION IPS(N)

in SOLVE.

Subroutine BES(N,X) computes and store in BJ the values of $J_0(x)$, $J_1(x)$, ..., $J_N(x)$ by the numerical method in 9.12 on page 385 of [9].

Minimum allocation is given by

COMMON /BLK4/BJ(100)

LISTING OF DECOMP

END

```
SUBROUTINE DECOMP (N. [PS.UL)
      COMPLEX UL (2500) . P(VOT. EM
      DIMENSION SCL (50) , [PS (50)
      DO 5 1=1.N
      IPS(1)=1
      RN=0.
      J1=1
      DO 2 J=1.N
      ULM=ABS(REAL(UL(J1)))+ABS(A[MAG(UL(J1)))
      J1=J1+N
      (F(RN-ULM) 1.2.2
      RN=ULM
2
      CONTINUE
      SCL(1)=1./RN
5
      CONTINUE
      NM 1=N-1
      K2=0
      DO 17 K=1 .NM1
      B [ G=0 .
      DO 11 1=K . N
      IP=IPS(I)
      IPK=IP+K2
      SIZE=(ABS(REAL(UL(IPK)))+ABS(AIMAG(UL(IPK))))*SCL(IP)
      IF(SIZE-BIG) 11.11.10
10
      BIG=SIZE
      IPV=I
11
      CONTINUE
      (F(IPV-K) 14.15.14
      J=IPS(K)
      IPS(K)=IPS(IPV)
      IPS(IPV)=J
15
      KPP=IPS(K)+K2
      P(VOT=UL(KPP)
      KP1=K+1
      DO 16 1=KP1.N
      KP=KPP
      IP= IPS( 1) +K2
      EM=-UL(IP)/PIVOT
18
      UL(IP) =-EM
      DO 16 J=KP1.N
      IP=IP+N
      KP=KP+N
      UL(IP)=UL(IP)+EM#UL(KP)
16
      CONTINUE
      K2=K2+N
17
      CONTINUE
      RETURN
```

LISTING OF SOLVE

SUBROUTINE SOLVE(N. IPS. UL. 8.X) COMPLEX UL (2500) . B(50) . X(50) . SUM DIMENSION IPS(50) NP1=N+1 IP=IPS(1) X(1)=B(IP) DO 2 1=2.N IP=IPS(I) IPB=IP IM1=1-1 SUM=0. DO 1 J=1. [M1 SUM=SUM+UL([P] * X(J) IP=IP+N X([)=B([PB)-SUM 2 K2=N*(N-1) IP=IPS(N)+K2 X(N)=X(N)/UL(IP)DO 4 IBACK=2.N I=NP1-IBACK K2=K2-N IP (= [PS([)+K2 IP1=I+1 SUM=0. (P=IPI DO 3 J=1P1.N IP=IP+N SUM=SUM+UL([P] *X(J) 3 X(I)=(X(I)-SUM)/UL(IPI)RETURN END

LISTING OF BES

SUBROUTINE BES(N.X)

COMMON /BLK4/EJ(100)/BLK3/Y0(33)

PI=3.141593

PI2=2./PI

PI4=PI/4.

PI7=.75*PI

MZ=10+N+2*IFIX(X)

BJ(MZ+1)=0.

BJ(MZ)=1.E-60

ALP=0.

IF(MZ-(MZ/2)*2) 13,14,13

14 JT=-1

GO TO 15

13 JT=1

15 M2=MZ-2

X2=2./X DO 16 K=1 . M2 MK=MZ-K BJ(MK)=X2*FLOAT(MK)*BJ(MK+1)-BJ(MK+2)TL-=TL S= 1+JT ALP=ALP+BJ(MK)+S 16 CONTINUE BJ(1)=X2+BJ(2)-BJ(3) ALP=ALP+BJ(1) NP=N+1 DO 17 K=1 . NP BJ(K)=BJ(K)/ALP 17 CONTINUE RETURN END

B-1.4. Main Program 1.

This program treats an annular aperture with a number of incidences. For each incidence, the admittance matrix is the same, only excitations vary. Punched data cards are read early in the main program according to input statements in the following sequence.

101 FORMAT (I3)

102 FORMAT (2E14.7)

103 FORMAT (16F5.1)

104 FORMAT (2613)

114 FORMAT (10F8.5)

READ (1,101)M

READ (1,101) ICASE

READ (1,101)LL

READ (1,102) RO, RI

READ (1,103) (AI(J), J=1, ICASE)

READ (1,104) (NS(J), J=1, ICASE)

READ (1,104) (NF(J), J=1, ICASE)

READ (1,114) (WW(J), J=1, LL)

READ (1,114) (QQ(J), J=1, LL)

The above input data is defined as

M = number of subdomains used.

ICASE = number of incidences considered.

LL = order of the Gaussian-quadrature integration in ϕ for admittance matrix elements.

RO,RI = outer and inner radius (in wavelengths) of the aperture, R_{out} and R_{in} .

- AI(i) = angle of incidence of the ith incidence (in degrees).
- NS(i) = order of the lowest mode used for the
 ith incidence.
- NF(i) = order of the highest mode used for the
 ith incidence.
- WW(i) = weight factor of the Gaussian-quadrature integration in ϕ .
- QQ(i) = abscissa of the Gaussian-quadrature integration in ϕ .

Minimum allocations are given by

COMPLEX Y(MY), Z(MZ), W(NI), Q(NI),

P1(2M-1), P2(2M-1), V1(2M-1), V2(2M-1).

DIMENSION AI(ICASE), NS(ICASE), NF(ICASE)

IPS(2M-1), IPSL(NI), WW(LL)

QQ(LL)

where

 $MY = (max (NF(i)) - min (NS(i)) + 1) (2M-1)^{2}$

 $MZ = (2M-1)^2$

NI = (max (NF(i)) + 1) (2M-1)

DO loop 3 determines the order of the highest and the lowest modes, MA and MI, needed for all incidences considered. These two integers are then fed into the subroutine CAD as the input parameters N1 and N2. In DO loop 6, admittance matrices \tilde{Y}^{MI} , \tilde{Y}^{MI+1} ,..., \tilde{Y}^{MA} are taken out of Y, one at a time, stored in Z, and fed into DECOMP, the output Z is stored back into Y and the output IPS is stored into IPSL for each mode. This is done early because the LU decomposition needs to be done only once for all excitations.

Different modes of different incidences are then treated in the double DO loop 14 where subroutine PEX is called to generate excitations for both polarizations according to the modes specified for each incidence. Different modes are then solved for each incidence. Here, submatrices for each mode are again taken out of Y and IPSL and fed into SOLVE together with the proper excitation matrices. The output V1 is the solution $\overline{v}^{n_{\perp}}$ and the output V2 is the solution $\overline{v}^{n_{\parallel}}$.

Notice that the current solutions are printed out at each stage but not kept in a permanent storage. Data should be punched out, if needed, inside the DO loops.

PROGRAM 1

```
CUMMUN /BLK1/W.Q/BLK2/Y/BLK3/Y0(33)
      CDMPLEX Y(2500).Z(2500).W(300).Q(300).P1(50).P2(50).V1(50).V2(50).
     6CJ.VT
      DIMENSION A1(20).NS(20).NF(20).IPS(50).IPSL(300).WW(30).QQ(30)
101
      FORMAT([3)
102
      FORMAT (2E14.7)
103
      FORMAT(16F5.1)
1 04
      FORMAT (2613)
105
      FORMAT('1'.1X.'ANNULAR APERTURE PROBLEM'.///)
      FORMAT (5X . OUTER RADIUS/WAVELENGTH . 4X . INNER RADIUS/WAVELENGTH . 4
1 06
     6x, NUMBER OF SUBDOMA(NS'./. 11 x. E12.5.16 x. E12.5.17 x. 12.//)
      FORMAT(5x, 'CASE', 3x, 'ANGLE OF [NCIDENCE', 3x, 'MUDES USED', /, 16x, '(D
107
     6EGREES) . . //)
108
      FORMAT(5X,13,10X,F5.1,10X,13, TO',12)
      FORMAT( 1 . 5X , EQUIVALENT MAGNETIC CURRENT: 1,///)
109
      FORMAT (6X . 'CA SE' . 13 . //)
110
      FORMAT(/, 7x, N= , [2,//, 11x, VERTICAL POLARIZATION ,/)
111
112
      FORMAT (11X, [2,5E12.4)
113
      FORMAT(11 X. [2.2 X. '0.'. 10 X. '0.'. 10 X. '0.')
114
      FORMAT (10F8.5)
      FORMAT (/. 11x, 'HOR [ZCNTAL POLAR[ZATION',/)
115
      FORMAT(///.5X.[3. POINTS GAUSSIAN QUADRATURE INTEGRATION IS USED
116
     6.)
      READ(1.101)M
      READ(1.101) ICASE
      READ(1.101)LL
      READ(1,102)RO,RI
      READ(1,103)(AI(J),J=1,(CASE)
      READ(1.104)(NS(J).J=1.ICASE)
      READ(1.104) (NF(J).J=1. [CASE)
      READ(1.114)(WW(J).J=1.LL)
      READ(1.114)(QQ(J).J=1.LL)
      WRITE (3.105)
      WRITE(3,106)RO.RI.M
      WRITE (3,107)
      MM=M-1
      MD=M+MM
      MD2=MD **2
      CJ=(0..1.)
      X0=M*RI/(RO-RI)
      DO 1 J=1. ICASE
      WRITE(3.108) J.AI( J) .NS( J) .NF( J)
      WRITE(3.116)LL
      MA=0
      MI=100000
      DO 3 J=1. ICASE
      IF(NS(J).GE.MI)GO TO 2
      M(=NS(J)
2
      IF(NF(J).LE.MA)GO TO 3
      MA=NF(J)
      CONTINUE
3
      CALL CAD(M.MI.MA.RO.RI.LL.WW.QQ)
      K=0
```

```
KK=0
      L=0
      ND=MA-MI+1
      DO 6 J=1.ND
      DO 4 N=1.MD2
      K=K+1
      Z(N)=Y(K)
      CALL DECOMP(MD. IPS. Z)
      DO 5 N=1, MD2
      KK=KK+1
5
      Y (KK) = Z(N)
      DO 6 N=1. MD
      L=L+1
      IPSL(L)=IPS(N)
      WRITE(3,109)
      DO 14 J=1 . I CASE
      WRITE(3,110)J
      JS=NS(J)
      JS1=JS+1
      JF=NF(J)
      JF1=JF+1
      AN=AL(J)
      CALL PEX(AN.RO.RI.M.JF)
      K=MD2*(JS-M()
      L=MD+JS
      LL=MD*(JS-MI)
      DO 14 N=JS1.JF1
      N1=N-1
      DO 7 [=1, MD2
      K=K+L
      Z(1)=Y(K)
7
      DO 8 1=1.MD
      L=L+1
      LL=LL+1
      P1(()=W(L)
      P2(1)=Q(L)
      IPS(I)=IPSL(LL)
      CALL SOLVE(MD. IPS.Z.P1.V1)
      CALL SOLVE(MD. [PS.Z.P2.V2)
      WRITE (3,111)N1
      DO 9 1=1. MM
      VT=V1(1)+M/(X0+1)
      VTA=CABS(VT)
      IF(N1 .EQ. 0)GO TO 9
      VT=VT+2
      VTA=VTA+2
      WRITE(3.112)1.V1(1).VT.VTA
      DO 11 I=1 .M
      IF (N1.EQ. 0) GU TO 10
      11=1+MM
      VT=2*CJ*V1([[)
      VTA=CABS(VT)
      WRITE(3.112)[.VI([[].VT.VTA
      GO TO 11
      WRITE(3.113)I
10
```

11 CONTINUE WRITE(3.115) DO 13 I=1 . MM (F(N1.EQ.0)GO TO 12 VT=2*CJ*V2([)*M/(X0+[) VTA=CABS(VT) WRITE(3.112)1.V2(1).VT.VTA GO TO 13 12 WRITE(3.113)1 13 CONTINUE DO 14 [=1 .M [[= [+MM VT=V2([[] VTA=CABS(VT) IF(N1.EQ.0)GO TO 14 VT=VT+2 VTA=VTA+2 WRITE(3.112)[.V2([[).VT.VTA STOP END

SAMPLE OUTPUT

OUTER RADIUS/WAVELENGTH INNER RADIUS/WAVELENGTH NUMBER OF SUBDOMAINS
0.20000E-01 0.00000E 00 15

CASE ANGLE OF INCIDENCE MODES USED
(DEGREES)

1 0.0 1 TO 1 2 30.0 0 TO 1

20 POINTS GAUSSIAN QUADRATURE INTEGRATION IS USED

EQUIVALENT MAGNETIC CURRENT:

CASE I

VERTICAL POLARIZATION

```
0.1586E-05
                 0.3686E-02
                             0.4758E-04
                                         0.1106E 00
                                                      0.1106E 00
                                          0.1045E 00
    0.2885E-05
                 0.6966E-02
                             0.4328E-04
                                                       0.1045E 00
    0.4292E-05
                 0.1043E-01
                             0.4292E-04
                                          0.1043E 00
                                                       0.1043E 00
    0.5626E-05
                 0.1366E-01
                             0.4219E-04
                                          0.1025E 00
                                                      0.1025E 00
                                          0.1003E 00
    0.6880E-05
                0.1671E-01
                             0.4128E-04
                                                      0.1003E 00
                0.1949E-01
    0.8061E-05
                             0.4031E-04
                                          0.9743E-01
                                                      0.9743E-01
    0.9075E-05
                0.2195E-01
                             0.3889E-04
                                          0.94 06E-01
                                                      0.9406E-01
    0.9901E-05
                 0.2398E-01
                             0.3713E-04
                                          0.8993E-01
                                                      0.8993E-01
    0.1053E-04
                0.2550E-01
                             0.3509E-04
                                          0.8501E-01
                                                      0.8501E-01
    0.1090E-04
                                          0.7912E-01
10
                0.2637E-01
                             0.3270E-04
                                                      0.7912E-01
    0.1092E-04
                0.2641E-01
                             0.2977E-04
                                          0.7203E-01
11
                                                      0.7203E-01
12
    0.1047E-04
                0.2536E-01
                             0.2617E-04
                                          0.6339E-01
                                                      0.6339E-01
    0.9382E-05
                0.2269E-01
                             0.2165E-04
                                          0.5236E-01
                                                      0.5236E-01
13
14
    0.7366E-05
                0.1786E-01
                             0.1578E-04
                                          0.3827E-01
                                                      0.3827E-01
1 -0.5538E-01
                0.2382E-04 -0.4764E-04 -0.1108E 00
                                                      0.1108E 00
2 -0.4998E-01
                0.1991E-04 -0.3982E-04 -0.9996E-01
                                                      0.9996E-01
                0.2233E-04 -0.4465E-04 -0.1085E 00
3 -0.5427E-01
                                                      0.1085E 00
 4 -0.5292E-01
                0.2248E-04 -0.4496E-04 -0.1058E 00
                                                      0.1058E 00
5 -0.5337E-01
                0.2299E-04 -0.4598E-04 -0.1067E 00
                                                      0.1067E 00
6 -0.5329E-01
                0.2415E-04 -0.4831E-04 -0.1066E 00
                                                      0.1066E 00
7 -0.5379E-01
                0.2450E-04 -0.4901E-04 -0.1076E 00
                                                      0.1076E 00
               0.2530E-04 -0.5061E-04 -0.1079E 00
8 -0.5396E-01
                                                      0.1079E 00
9 -0.5447E-01
                0.2684E-04 -0.5368E-04 -0.1089E 00
                                                      0.1089E 00
10 -0.5529E-01
                0.2888E-04 -0.5777E-04 -0.1106E 00
                                                      0.1106E 00
                0.3111E-04 -0.6222E-04 -0.1132E 00
11 -0.5659E-01
                                                      0.1132E 00
12 -0.5901E-01
                0.3459E-04 -0.6917E-04 -0.1180E 00
                                                      0.1180E 00
                0.4099E-04 -0.8198E-04 -0.1279E 00
13 -0.6393E-01
                                                      0.1279E 00
                0.4856E-04 -0.9712E-04 -0.1410E 00
14 -0.7049E-01
                                                      0.1410E 00
15 -0.1507E 00
                0.1203E-03 -0.2407E-03 -0.3013E 00
                                                      0.3013E 00
```

HORIZONTAL POLARIZATION

```
0.4758E-04
                                          0.1106E 00
                                                       0.1106E 00
    0.3686E-02 -0.1586E-05
                                          0.1045E 00
                                                       0.1045E 00
                             0.4328E-04
    0.6966E-02 -0.2885E-05
2
                             0.4292E-04
                                          0.1043E 00
                                                       0.1043E 00
    0.1043E-01 -0.4292E-05
                                          0.1025E 00
                                                       0.1025E 00
    0.1366E-01 -0.5626E-05
                             0.4219E-04
                                          0.1003E 00
                                                       0.1003E 00
    0.1671E-01 -0.6880E-05
                             0.4128E-04
5
    0.1949E-01 -0.8061E-05
                             0.4031E-04
                                          0.9743E-01
                                                       0.9743E-01
    0.2195E-01 -0.9075E-05
                             0.3889E-04
                                          0.9406E-01
                                                       0.9406E-01
7
    0.2398E-01 -0.9901E-05
                             0.3713E-04
                                          0.8993E-01
                                                       0.8993E-01
8
                             0.35 09E-04
                                          0.8501E-01
                                                       0.8501 E-01
    0.2550E-01 -0.1053E-04
    0.2637E-01 -0.1090E-04
                             0.3270E-04
                                          0.7912E-01
                                                       0.7912E-01
10
    0.2641E-01 -0.1092E-04
                             0.2977E-04
                                          0.7203E-01
                                                       0.7203E-01
11
    0.2536E-01 -0.1047E-04
                             0.2617E-04
                                          0.6339E-01
                                                       0.6339E-01
12
    0.2269E-01 -0.9382E-05
                             0.2165E-04
                                          0.5236E-01
                                                       0.5236E-01
13
    0.1786E-01 -0.7366E-05
                             0.1578E-04
                                          0.3827E-01
                                                       0.3827E-01
14
```

```
0.5538E-01
                               0.4764E-04
                                            0.1108E 00
                                                         0.1108E 00
 1
    0.2382E-04
                               0.3982E-04
                                            0.9996E-01
                                                         0.9996E-01
    0.1991E-04
                 0.4998E-01
 2
                                            0.1085E 00
                                                         0.1085E 00
                 0.5427E-01
                               0.4465E-04
 3
    0.2233E-04
    0.2248E-04
                 0.5292E-01
                               0.4496E-04
                                            0.1058E 00
                                                         0.1058E 00
    0.2299E-04
                 0.5337E-01
                               0.4598E-04
                                            0.1067E 00
                                                         0.1067E 00
    0.2415E-04
                 0.5329E-01
                               0.4831E-04
                                            0.1066E 00
                                                         0.1066E 00
 7
    0.2450E-04
                 0.5379E-01
                               0.4901E-04
                                            0.1076E 00
                                                         0.1076E 00
    0.2530E-04
 8
                 0.5396E-01
                               0.5061E-04
                                            0.1079E 00
                                                         0.1079E 00
    0.2684E-04
9
                 0.5447E-01
                              0.5368E-04
                                           0.1089E 00
                                                         0.1089E 00
    0.2888E-04
                 0.5529E-01
10
                               0.5777E-04
                                           0.1106E 00
                                                         0.1106E 00
11
    0.3111E-04
                 0.5659E-01
                               0.6222E-04
                                            0.1132E 00
                                                         0.1132E 00
12
    0.3459E-04
                 0.5901 E-01
                               0.6917E-04
                                           0.1180E 00
                                                         0.1180E 00
13
    0.4099F-04
                 0.6393E-01
                               0.81 98E-04
                                           0.1279E 00
                                                         0.1279E 00
    0.4856E-04
                 0.7049E-01
                              0.9712E-04
14
                                           0.1410E 00
                                                         0.1410E 00
                 0.1507E 00
15
    0.1203E-03
                              0.2407E-03
                                           0.3013E 00
                                                         0.3013E 00
```

CASE 2

N= 0

VERTICAL POLARIZATION

```
0.5334E-11
                                                         0.7868E-04
                 0.3556E-12
                              0.7868E-04
    0.5245E-05
                              0.1819E-03
                                                         0.1819E-03
                 0.1975E-11
                                           0.1481E-10
2
    0.2426E-04
                                                         0.2765E-03
    0.5530E-04 -0.4101E-13
                              0.2765E-03 -0.2051E-12
                              0.3660E-03
                                           0.4014E-12
                                                         0.3660E-03
    0.9759E-04
                 0.1070E-12
                                                         0.4494E-03
    0.1498E-03 -0.2058E-11
                              0.44 94E-03 -0.61 73E-11
5
                              0.5256E-03 -0.3576E-10
                                                         0.5256E-03
    0.2102E-03 -0.1431E-10
6
                              0.5926E-03 -0.3063E-10
                                                         0.5926E-03
    0.2765E-03 -0.1430E-10
7
                              0.6482E-03 -0.5217E-10
                                                         0.6482E-03
    0.3457E-03 -0.2783E-10
    0.4139E-03 -0.3645E-10
                              0.6899E-03 -0.6074E-10
                                                         0.6899E-03
9
    0.4760E-03 -0.4206E-10
                              0.7140E-03 -0.6308E-10
                                                         0.7140E-03
10
    0.5249E-03 -0.6040E-10
                                                         0.7158E-03
                              0.7158E-03 -0.8236E-10
11
                              0.6880E-03 -0.7456E-10
    0.5504E-03 -0.5965E-10
                                                         0.6880E-03
12
                              0.6163E-03 -0.7013E-10
                                                         0.6163E-03
13
    0.5341E-03 -0.6078E-10
                              0.4883E-03 -0.5574E-10
                                                         0.4883E-03
14
    0.4558E-03 -0.5202E-10
1
    0.
                 0.
                 0.
2
    0.
                 0.
3
    0.
    0.
                 0.
    0.
5
                 0.
                 0.
6
    0.
7
                 0.
    0.
                 0.
    0.
8
                 0.
9
    0.
                 0.
10
    0.
                 0.
11
    0.
                 0.
12
    0.
                 0.
13
    0.
    0.
                 0.
14
                 0.
15
    0.
```

HURIZONTAL POLARIZATION

```
0.
    0.
                 0.
 3
    0.
                 0.
                0.
    0.
    0.
                 0.
    0.
                 0.
    0.
                 0.
    0.
                 0.
9
    0 .
                 0.
10
    0.
                 0.
11
    0 .
                 0.
12
    0.
                 0.
13
    0.
                 0.
14
    0.
                 0.
1 -0.1113E-01 -0.5055E-05 -0.1113E-01 -0.5055E-05
                                                      0.1113E-01
2 -0.3172E-01 -0.9362E-05 -0.3172E-01 -0.9362E-05
                                                     0.3172E-01
3 -0.5352E-01 -0.1493E-04 -0.5352E-01 -0.1493E-04
                                                      0.5352E-01
 4 -0.7611E-01 -0.2101E-04 -0.7611E-01 -0.2101E-04
                                                      0.7611E-01
5 -0.9989E-01 -0.2740E-04 -0.9989E-01 -0.2740E-04
                                                      0.9989E-01
 6 -0.1254E 00 -0.3436E-04 -0.1254E 00 -0.3436E-04
                                                      0.1254E 00
 7 -0.1531E 00 -0.4188E-04 -0.1531E 00 -0.4188E-04
                                                      0.1531E 00
8 -0.1842E 00 -0.5064E-04 -0.1842E 00 -0.5064E-04
                                                      0.1842E 00
9 -0.2197E 00 -0.6003E-04 -0.2197E 00 -0.6003E-04
                                                      0.2197E 00
10 -0.2620E 00 -0.7187E-04 -0.2620E 00 -0.7187E-04
                                                      0.2620E 00
11 -0.3146E 00 -0.8596E-04 -0.3146E 00 -0.8596E-04
                                                      0.3146E 00
12 -0.3842E 00 -0.1050E-03 -0.3842E 00 -0.1050E-03
                                                      0.3842E 00
13 -0.4906E 00 -0.1342E-03 -0.4906E 00 -0.1342E-03
                                                      0.4906E 00
14 -0.6276E 00 -0.1713E-03 -0.6276E 00 -0.1713E-03
                                                      0.6276E 00
                                                      0.1700E 01
15 -0.1700E 01 -0.4639E-03 -0.1700E 01 -0.4639E-03
```

N= 1

VERTICAL POLARIZATION

```
1 -0.1393E-05 -0.3148E-02 -0.4178E-04 -0.9445E-01
                                                     0.9445E-01
2 -0.2488E-05 -0.6069E-02 -0.3732E-04 -0.9104E-01
                                                     0.9104E-01
 3 -0.3726E-C5 -0.9077E-Q2 -0.3726E-Q4 -0.9077E-QL
                                                     0.9077E-01
 4 -0.4873E-05 -0.1184E-01 -0.3655E-04 -0.8881E-01
                                                     0.8881E-01
5 -0.5957E-05 -0.1448E-01 -0.3574E-04 -0.8687E-01
                                                     0.8687E-01
6 -0.6980E-05 -0.1688E-01 -0.3490E-04 -0.8438E-01
                                                     0.8438E-01
7 -0.7857E-05 -0.1900E-01 -0.3367E-04 -0.8144E-01
                                                     0.8144E-01
8 -0.8572E-05 -0.2076E-01 -0.3214E-04 -0.7786E-01
                                                     0.7786E-01
9 -0.9113E-05 -0.2208E-01 -0.3038E-04 -0.7360E-01
                                                     0.7360E-01
10 -0.9437E-05 -0.2283E-01 -0.2831E-04 -0.6849E-01
                                                     0.6849E-01
11 -0.9451E-05 -0.2286E-01 -0.2577E-04 -0.6235E-01
                                                     0.6235E-01
12 -0.9064E-05 -0.2194E-01 -0.2266E-04 -0.5486E-01
                                                     0.5486E-01
13 -0.8122E-05 -0.1964E-01 -0.1874E-04 -0.4531E-01
                                                     0.4531E-01
                                                     0.3312E-01
14 -0.6376E-05 -0.1546E-01 -0.1366E-04 -0.3312E-01
```

```
0.4730E-01 -0.2092E-04
                              0.4184E-04
                                           0.9459E-01
                                                        0.9459E-01
    0.4449E-01 -0.1679E-04
                              0.3359E-04
                                           0.8899E-01
                                                        0.8899E-01
2
    0.4707E-01 -0.1963E-04
                              0.3926E-04
                                           0.94 L4E-01
                                                        0.94 14 E-01
3
    0.4536E-01 -0.1934E-04
                              0.3869E-04
                                           0.9072E-'01
                                                        0.9072E-01
    0.4615E-01 -0.1988E-04
                              0.3977E-04
                                           0.9230E-01
                                                        0.9230E-01
5
    0.4608E-01 -0.2090E-04
6
                              0.4180E-04
                                           0.9215E-01
                                                        0.9215E-01
7
    0.4655E-01 -0.2121E-04
                              0.4243E-04
                                           0.9309E-01
                                                        0.9309E-01
    0.4669E-01 -0.2190E-04
                              0.4380E-04
                                           0.9339E-01
                                                        0.9339E-01
8
    0.4718E-01 -0.2323E-04
                              0.4646E-04
                                           0.9435E-01
                                                        0.9435E-01
9
10
    0.4780E-01 -0.2501E-04
                              0.5002E-04
                                           0.9560E-01
                                                        0.9560E-01
11
    0.4900E-01 -0.2693E-04
                              0.5386E-04
                                           0.9800E-01
                                                        0.9800E-01
12
    0.5106E-01 -0.2994E-04
                              0.5988E-04
                                           0.1021E 00
                                                        0.1021E 00
    0.5536E-01 -0.3548E-04
                              0.7097E-04
                                           0.1107E 00
                                                        0.1107E 00
13
    0.6102E-01 -0.4203E-04
                                                        0.1220E 00
                                           0.1220E 00
                              0.84 C7E-04
14
                              0.2084E-03
                                           0.2608E 00
    0.1304E 00 -0.1042E-03
                                                        0.2608E 00
15
```

HORIZONTAL POLARIZATION

```
0.1589E-05 -0.4768E-04 -0.9546E-01
                                                      0.9546E-01
 1 -0.3182E-02
                0.2880E-05 -0.4320E-04 -0.9109E-01
 2 -0.6073E-02
                                                      0-9109E-01
                                                      0.9157E-01
  -0.9157E-02
                0.4293E-05 -0.4293E-04 -0.9157E-01
  -0.1196E-01
                0.5604E-05 -0.4203E-04 -0.8971E-01
                                                      0.8971E-01
5 -0.1463E-01
                0.6871E-05 -0.4123E-04 -0.8778E-01
                                                      0.8778E-01
                0.8056E-05 -0.4028E-04 -0.8527E-01
                                                      0.8527E-01
  -0.1705E-01
  -0.1921E-01
                0.9061E-05 -0.3883E-04 -0.8231E-01
                                                      0.8231E-01
8 -0.2099E-01
                0.9886E-05 -0.3707E-04 -0.7870E-01
                                                      0.7870E-01
  -0.2232E-01
                0.1051E-04 -0.3504E-04 -0.7439E-01
                                                      0.7439E-01
10 -0.2307E-01
                0.1089E-04 -0.3266E-04 -0.6922E-01
                                                      0.6922E-01
                0.1090E-04 -0.2973E-04 -0.6303E-01
                                                      0.6303E-01
11 -0.2311E-01
12 -0.2218E-01
                0.1046E-04 -0.2615E-04 -0.5545E-01
                                                     0.5545E-01
                0.9369E-05 -0.2162E-04 -0.4580E-01
                                                      0.4580E-01
13 -0.1985E-01
                0.7359E-05 -0.1577E-04 -0.3346E-01
                                                     0.3346E-01
14 -0.1561E-01
1 -0.2388E-04 -0.4782E-01 -0.4775E-04 -0.9563E-01
                                                     0.9563E-01
2 -0.1978E-04 -0.4414E-01 -0.3956E-04 -0.8829E-01
                                                      0.8829E-01
                                                      0.9703E-01
3 -0.2243E-04 -0.4851E-01 -0.4486E-04 -0.9703E-01
4 -0.2212E-04 -0.4655E-01 -0.4424E-04 -0.9310E-01
                                                      0.9310E-01
5 -0.2319E-04 -0.4764E-01 -0.4638E-04 -0.9527E-01
                                                     0.9527E-01
6 -0.2420E-04 -C.4803E-01 -0.4839E-04 -0.9606E-01
                                                      0.9606E-01
7 -0.2438E-04 -0.4917E-01 -0.4875E-04 -0.9833E-01
                                                      0.9833E-01
8 -0.2526E-04 -0.5012E-01 -0.5053E-04 -0.1002E 00
                                                      0.1002E 00
9 -0.2684E-04 -0.5161E-01 -0.5368E-04 -0.1032E 00
                                                      0.1032E 00
10 -0.2886E-04 -0.5353E-01 -0.5772E-04 -0.1071E 00
                                                      0.1071E 00
11 -0.3106E-04 -0.5649E-01 -0.6212E-04 -0.1130E 00
                                                     0.1130E 00
12 -0.3464E-04 -0.6088E-01 -0.6929E-04 -0.1218E 00
                                                     0.1218E 00
                                                     0.1377E 00
13 -0.4092E-04 -0.6887E-01 -0.8184E-04 -0.1377E 00
14 -0.4859E-04 -0.7931E-01 -0.9718E-04 -0.1586E 00
                                                     0.1586E 00
15 -0.1203E-03 -0.1841E 00 -0.2405E-03 -0.3682E 00
                                                     0.3682E 00
```

Data for equivalent magnetic current in the above sample output is arranged as follows. The first and second columns are the real and imaginary parts of the elements of \overline{v}^{n_1} and \overline{v}^{n_2} for the two polarizations. For the E_1 -polarization, the last three columns are the real part, the imaginary part and the magnitude of $\frac{\varepsilon_n}{(x_0+q)}^{N} v_{\rho q}^{n_1}$ and $\varepsilon_n v_{\phi q}^{n_1}$. For the E-polarization, the last three columns are the real part, the imaginary part and the magnitude of $\frac{\varepsilon_n j}{(x_0+q)}^{N} v_{\rho q}^{n_2}$ and $\varepsilon_n v_{\phi q}^{n_2}$. The significance of these last three columns is obvious from (117) to (119) and (132) to (134). Notice that $\overline{v}_{\phi}^{n_1}$ and $\overline{v}_{\phi}^{n_2}$ are always zero matrices and only the first two columns are printed for them.

B-2.1. Subroutine FAR

Subroutine FAR (THETA, PE, PH, PEC, PHC, TC) computes the following two quantities: (1) the integral

$$t(\theta) = \frac{r^2 \sin \theta}{P_{in}} \int_{0}^{2\pi} \frac{k^2}{2\eta_o} (|F_{\phi}|^2 + |F_{\theta}|^2) d\phi$$
 (B-1)

and (2) the ratio

$$G'(\theta,\phi) = \pi r^2 \frac{k^2}{\eta_0} (|F_{\phi}|^2 + |F_{\theta}|^2)/P_{in}$$
 (B-2)

Notice that the transmission coefficient and the power gain can be related to the above quantities by

$$TC = \int_{0}^{\pi/2} t(\theta) d\theta$$
 (B-3)

and

$$G(\theta, \phi) = G'(\theta, \phi)/TC$$
 (B-4)

 F_{θ} , F_{ϕ} are computed according to (147) to (150) and (151) to (154). The integration in (B-1) is carried out analytically by integrating the trigonometric functions.

This subroutine treats a number of indicences at the same time. $t(\theta) \text{ for each incidence is computed and stored in TC. } G'(\theta, \phi) \text{ for each incidence is computed in two different planes. If } \phi_1 \text{ and } \phi_2 \text{ specify the two planes for the ith incidence, then, } G'(\theta, \phi_1), G'(\theta, \phi_2), G'(\theta, \phi_1+\pi) \text{ and } G'(\theta, \phi_2+\pi) \text{ are stored as the ith element of arrays PE, PH, PEC and PHC respectively. The input variables are defined as$

THETA = θ , the elevation angle (in radians)

$$X(i) = x_i, Y(i) = x_{i-1/2}$$
 as defined by (92)

- IMS(i) = the order of the lowest mode used for the
 ith incidence
- IMF(i) = the order of the highest mode used for the
 ith incidence
- PHH(i) = angle specifying the second plane for pattern of the
 ith incidence (in degrees).
 - W stores the $e_2^{\bar{v}^{n_1}}$'s starting with the lowest mode of the first incidence.
 - Q stores the $e_1^{\overline{v}^{n}}$'s starting with the lowest mode of the first incidence.

ICASE = the number of incidences considered.

NMAX = the order of the highest mode used for all incidences considered.

M = number of subdomains used.

AK = κ as defined by (84).

 $RI = R_{in}$ inner radius (in wavelengths) of the aperture.

Minimum allocations are given by

COMPLEX W(NW), Q(NW), CFP(NI), CFT(NI)

DIMENSION PE(ICASE), PH(ICASE), PEC(ICASE),

PHC(ICASE), TC(ICASE)

COMMON /BKF1/X(M-1), Y(M), IMS(ICASE),

IMF(ICASE), PHE(ICASE), PHH(ICASE)

/BKF4/BJ(NB)

where
$$NW = (2M-1) \sum_{q=1}^{ICASE} [IMF(q) - IMS(q) + 1]$$

$$NI = (2M-1) NMAX$$

$$NB = NMAX + 3$$

DO loops 2 and 3 compute and store in CFP and CFT the coefficients of $v_{\rho q}^n$'s and $v_{\varphi q}^n$'s as in (149) and (150). These two arrays are defined as

$$\overline{CFP} = \begin{bmatrix} \overline{CFP}^{0} \\ \overline{CFP}^{1} \\ \vdots \\ \overline{CFP}^{NMAX} \end{bmatrix}$$
(B-5)

$$\overline{CFT} = \begin{bmatrix}
\overline{CFT}^{0} \\
\overline{CFT}^{1} \\
\vdots \\
\overline{CFT}^{NMAX}
\end{bmatrix}$$
(B-6)

where

$$\text{CFP}^{n}(\ell) = \begin{cases} j^{n+1}M[J_{n+1}(\kappa x_{\ell}\sin\theta) + J_{n-1}(\kappa x_{\ell}\sin\theta)] \\ & \text{for } \ell = 1,2,\dots,M-1 \\ - j^{n}\{x_{\ell-M+1/2}[J_{n+1}(\kappa x_{\ell-M+1/2}\sin\theta) - J_{n-1}(\kappa x_{\ell-M+1/2}\sin\theta)] \\ + \frac{\kappa \sin\theta}{24} [2J_{n}(\kappa x_{\ell-M+1/2}\sin\theta) - J_{n+2}(\kappa x_{\ell-M+1/2}\sin\theta) \\ - J_{n-2}(\kappa x_{\ell-M+1/2}\sin\theta)] \} \\ & \text{for } \ell = M,\dots,2M-1 \end{cases}$$

$$\text{CFT}^{n}(\ell) = \begin{cases} j^{n+1}M \left[J_{n+1}(\kappa x_{\ell} \sin \theta) - J_{n-1}(\kappa x_{\ell} \sin \theta)\right] \\ \text{for } \ell = 1, 2, \dots, M-1 \\ -j^{n}\left\{x_{\ell-M+1/2}\left[J_{n+1}(\kappa x_{\ell-M+1/2} \sin \theta) + J_{n-1}(\kappa x_{\ell-M+1/2} \sin \theta)\right] \\ -\frac{\kappa \sin \theta}{24} \left[J_{n+2}(\kappa x_{\ell-M+1/2} \sin \theta) - J_{n-2}(\kappa x_{\ell-M+1/2} \sin \theta)\right] \end{cases}$$

$$\text{for } \ell = M, \dots, 2M-1$$

$$(B-8)$$

DO loops 5, 6 and 7 compute, for the ith incidence, $f(\theta)$ and $G'(\theta-\phi)$, according to the formulas

$$t(\theta) = \frac{\kappa^2 \sin \theta}{M(M+2\kappa_0)} \sum_{n=IMS(1)}^{IMF(1)} \{ \frac{\varepsilon}{2} | \overline{CFP}^n^T e_1 \overline{v}^{n//}|^2 + \cos^2 \theta | \overline{CFT}^n^T e_1 \overline{v}^{n//}|^2 + \frac{\varepsilon}{2} \cos^2 \theta | \overline{CFT}^n^T e_2 \overline{v}^{n//}|^2 + |\overline{CFP}^n^T e_2 \overline{v}^{n//}|^2 \}$$

$$(B-9)$$

and

$$G'(\theta,\phi) = \frac{2\kappa^2}{M(M+2\kappa_0)} \left\{ \left| \sum_{n=IMS(i)}^{IMF(i)} \left[\frac{\varepsilon}{2} \cos n\phi \ e_1 \overline{v}^{n} + \sin n\phi \ e_2 \overline{v}^{n} \right]^T \overline{CFP}^n \right|^2 + \cos^2\theta \left| \sum_{n=IMS(i)}^{IMF(i)} \left[\sin n\phi \ e_1 \overline{v}^{n} + \frac{\varepsilon_n}{2} \cos n\phi \ e_2 \overline{v}^{n} \right]^T \overline{CFT}^n \right|^2 \right\}$$

$$(B-10)$$

Subroutine BES, as introduced in B-1.3 is called in this subroutine. Notice this time, the output BJ of BES is transferred in the common block BLKF4.

2

```
SUBROUTINE FAR(THETA, PE, PH, PEC, PHC, TC)
 COMMON /BLKF1/X(50),Y(50), EMS(20), IMF(20),PHE(20),PHH(20)/BLKF2/W.
6Q/BLKF3/ICASE .NMAX . M. AK . R [/BLKF4/BJ(100)
COMPLEX W(2000) .Q(2000) .CFP(250) .CFT(250) .CJ.CK.FTE.FTH.FPE.FPH.SP
6W.SPQ.STW.STQ.FPEC.FPHC.FTEC, FTHC.TERM
DIMENSION PE(20).PH(20).TC(20).PEC(20).PHC(20)
P1=3.141593
 CJ=(0..1.)
 MM=M-1
 MD=M+MM
 X0=2*PI*RI/AK
 AK2=AK**2
 AREA=M*(M+2*X0)/AK2
 B=AK+SIN( THETA)
NI=NMAX+1
N2=N1+1
N3=N2+1
BS=B/24
BC=COS(THETA)
DO 2 1=1. MM
T=B*X(1)
CALL BES(N1.T)
00 1 J=1.N2
BJ(J)=M+BJ(J)
 CFT([)=2*CJ*BJ(2)
CFP(1)=0.
K= I
CK=1.
L1=2
L2=0
DO 2 J=1.NMAX
K=K+MD
L1=L1+1
L2=L2+1
CK=CK*CJ
CFP(K)=CK*(BJ(L1)+BJ(L2))
CFT(K)=CJ*CK*(BJ(L1)-BJ(L2))
DO 3 (=1. M
 TX=Y([)
 T=B*TX
 CALL BES(N2.T)
K=I+MM
CFP(K)=2*CJ*(TX*BJ(2)+BS*(BJ(1)-BJ(3)))
 CFT(K)=0.
 K=K+MD
CFP(K) =-TX+(BJ(3)-BJ(1))-BS+(3+BJ(2)-BJ(4))
 CFT(K)=-CJ*(TX*(BJ(3)+BJ(1))-BS*(BJ(4)+BJ(2)))
CK=CJ
L1=3
L2=1
L3=4
L4=2
```

```
L5=0
      DD 3 J=3.N1
      CK=CK+CJ
      L1=L1+1
      L2=L2+1
      L3=L3+1
      L4=L4+1
      L5=L5+1
      K=K+MD
      CFP(K) = CK * CJ * (TX * (BJ(L1) - BJ(L2)) + BS * (2 * BJ(L4) - BJ(L3) - BJ(L5)))
      CFT(K) = -CK * (TX * (BJ(L1) + BJ(L2)) - BS * (BJ(L3) - BJ(L5)))
3
      K=0
      DO 7 1=1.1CASE
      FPE=0.
      FPH=0.
      FTE=0.
      FTH=0.
      FPEC=0.
      FPHC=0 .
      FTEC=0.
      FTHC=0 .
      TR=0.
      NS=[MS([)+1
      NF=IMF(1)+1
      PH1=PHE([)*P[/180.
      PH2=PHH([)*P[/180.
      L=MD+(NS-1)
      DO 6 II=NS.NF
      SPQ=0.
      SPW=0 .
      STW=0.
      STQ=0.
      J=[[-1
      SN=(-1.)**J
      S1=SIN(J*PHL)
      C1=COS(J*PH1)
      S2=SIN(J*PH2)
      C2=COS(J*PH2)
      EN=1.
      FN=1.
      IF(J.NE.0)GD TO 4
      EN=.5
      FN=0.
      DO 5 JJ=1 . MD
      L=L+1
      K=K+1
      TERM=EN*( C1 *Q(K)+CJ*S1*W(K) )*CFP(L)
      FPE=FPE+TERM
      FPEC=FPEC+SN*TERM
      TERM=EN*(C2*Q(K)+CJ*S2*W(K))*CFP(L)
      FPH=FPH+TERM
      FPHC=FPHC+SN*TERM
      TERM=EN+(C1+W(K)+CJ+S1+Q(K))+CFT(L)
      FTE=FTE+TERM
      FTEC=FTEC+SN*TERM
```

TERM=EN*(C2*W(K)+CJ*S2*Q(K))*CFT(L)
FTH=FTH+IERM
FTHC=FTHC+SN*TERM
SPQ=SPQ+Q(K)*CFP(L)
SPW=SPW+W(K)*CFP(L)
STW=STW+W(K)*CFT(L)
STQ=STQ+Q(K)*CFT(L)
SPN=EN*CABS(SPQ)**2+FN*CABS(SPW)**2

- STN=EN*CABS(STW)**2+FN*CABS(STQ)**2

 TR=TR+SPN+STN*BC**2

 FTE=BC*FTE

 FTH=FTH*BC

 FTEC=FTEC*BC

 FTHC=FTHC*BC
 - FTEC=FTEC*BC

 FTHC=FTHC*BC

 PATE=CABS(FTE)**2+CABS(FPE)**2

 PATEC=CABS(FTEC)**2+CABS(FPEC)**2

 PATH=CABS(FTH)**2+CABS(FPH)**2

 PATHC=CABS(FTHC)**2+CABS(FPHC)**2

 PE(1)=PATE*2/AREA

 PE(1)=PATEC*2/AREA

 PH(1)=PATH*2/AREA

 PHC(1)=PATHC*2/AREA
- 7 TC(1)=TR*SIN(THETA)/AREA
 RETURN
 END

5

B-2.2. Main Program 2.

This program computes the power gain pattern and transmission coefficients for an aperture. A number of incidences are considered at the same time. Punch data cards are read according to the following input sequence:

101 FORMAT (13)

102 FORMAT (10F6.1)

103 FORMAT (2E14.7, I3)

104 FORMAT (213)

105 FORMAT (5E14.7)

READ (1,101) IT

READ (1,101) ICASE

READ (1,102) (PHE(I), I=1, ICASE)

READ (1,102) (PHH(I), I=1, ICASE)

READ (1,103) RO, RI, M

MD = 2*M-1

K = 1

L = MD

DO 2 I=1, ICASE

READ (1,104) IMS(I), IMF(I)

NSF = IMF(I) - IMS(I) + 1

DO 2 J=1, NSF

READ (1,105) (W(II), II=K,L)

READ (1,105) (Q(II), II=K,L)

K = K + MD

 $2 \qquad L = L + MD$

The input data is defined by

- IT = number of points used in the range of θ from 0 to $\frac{\pi}{2}$ where pattern is computed.
- ICASE = number of incidences considered.
- PHE(i) = azimuthal angle (in degrees) specifying the first
 plane where pattern is computed for the ith
 incidence.
- PHH(i) = azimuthal angle (in degrees) specifying the second plane where pattern is computed for the ith incidence.
- RI, RO are the inner and outer radius (in wavelengths) of the aperture.
 - M = number of subdomains used.
- IMS(i) = order of the lowest mode used for the ith incidence.
- IMF(i) = order of the highest mode used for the ith incidence.
 - W store the $e_2^{\overline{v}^{n_1}}$'s starting from the lowest mode of the first incidence
 - Q store the e_1^{-n} 's starting from the lowest mode of the first incidence

Minimum allocations are given by

COMPLEX W(NW), Q(NW)

DIMENSION PE(ICASE), PH(ICASE), PEC(ICASE), PHC(ICASE), TC(ICASE), PTE(NP), PTH(NP), TRAN(ICASE)

COMMON /BLKF1/X(M-1), Y(M), IMS(ICASE), IMF(ICASE),
PHE(ICASE), PHH(ICASE)

where

$$NW = \sum_{i=1}^{ICASE} (2M-1) (IMF(i) - IMS(i) + 1)$$

NP = 2IT · ICASE

The range 0 to $\frac{\pi}{2}$ of θ is divided into IT equal intervals. Power gain is computed at the centers of these intervals and the integration of (B-3) is done numerically using simple midpoint rules. D0 loop 6 computes and store in PTE, PTH $G'(\theta,\phi)$ for 2IT θ 's and both planes and all incidences. The first element of PTE is $G'(90^{\circ}(1-\frac{1}{\text{IT}}), \text{PHE}(1))$ and similarly for PTH. Transmission coefficients are also computed in D0 loop 6. TRAN stores transmission coefficients for all incidences. $G(\theta,\phi)$ is computed according to (B-4) in D0 loop 8 using $G'(\theta,\phi)$ and the transmission coefficient.

LISTING OF PROGRAM 2

```
COMMON /BLKF1/X(50) .Y (50) . [MS(20) . [MF(20] .PHE(20) .PHH(20] /BLKF2/W.
     60/BLKF3/ICASE .NMAX.M.AK.RI
      COMPLEX W(2000) .Q(2000)
      DIMENSION PE(20).PH(20).TC(20).TRAN(20).PEC(20).PHC(20).PTE(3600).
     6PTH(3600)
101
      FORMAT(13)
      FORMAT (10F6.1)
102
1 03
      ·FORMAT (2E 14.7,13)
104
      FORMAT (213)
      FORMAT (5E 14.7)
1 05
      FORMAT('1'.1X. FIELD PATTERN'.//)
106
      FORMAT("1",1X."CASE",13.///.7X."FIRST PLANE".3X."SECOND PLANE"./.
1 07
     67x. ('. F5.1. DEG.) . 3X. ('. F5.1. DEG.) . /)
108
      FORMAT (1X . 13. 2E14 .4)
      FORMAT(//.1x, 'TRANSMISSION COEFFICIENT= '.E11.4)
1 09
      READ(1.101) IT
      READ(1,101) ICASE
      READ(1.102) (PHE(1). [=1. [CASE)
      READ(1.102) (PHH(1).1=1.1CASE)
      READ(1.103)RO.R (. M
      PI=3.141593
      AK=2*P(*(RO-R()/M
      IT2=IT+2
      MM=M-1
      MD=M+MM
      D=RO-RI
      X0=M*R1/D
      NMAX=0
      K=1
      L=MD
      DO 2 1=1. ICASE
      READ(1,104)[MS(1),[MF(1)
      NSF=IMF(1)-[MS(1)+1
      IF (IMF (I) .LE. NMAX )GO TO 1
      NMAX=IMF(I)
      DO 2 J=1.NSF
      READ(1,105) (W(11),11=K,L)
      READ(1.105)(Q(II).II=K.L)
      K=K+MD
      L=L+MO
2
      T=XO
      DO 3 1=1.MM
      T=T+1.
3
      X(1)=T
      T=X0-.5
      DO 4 (=1.M
      T=T+1.
      Y(1)=T
      DT=P1/(2+1T)
      THETA=(PI+DT)/2.
      DO 5 1=1. ICASE
      TRAN(()=0.
5
```

DO 6 I=1. IT THETA=THETA-DT CALL FAR(THETA, PE .PH. PEC. PHC. TC) K=I L=172+1-1 DO 6 J=1. ICASE PTE(K)=PE(J) PTH(K)=PH(J) PTE(L)=PEC(J) PTH(L)=PHC(J) K=K+IT2 L=L+IT2 TRAN(J)=TRAN(J)+DT+TC(J) K=0 DU 7 1=1.1CASE DO 7 J=1.172 K=K+1 PTE(K)=PTE(K)/TRAN(1) PTH(K)=PTH(K)/TRAN(1) WRITE(3.106) K=0 LL=1-IT2 DO 11 1=1 . I CA SE WRITE(3.107)1.PHE(1).PHH(1) DO 10 J=1 . IT2 K=K+1 LL=LL+1 WRITE(3.108)J.PTE(K).PTH(K) 10 WRITE(3.109)TRAN(1) 11 STOP END

SAMPLE OUTPUT

CASE 1

FIRST PLA	NE	SECOND PLANE					
(0.0DE	3.)	(90.0DEG.)					
0.2195E	01	0.8660E-01	11	0.2181E	01	0.1306E	00
0.2195E	01	0.874 IE-01	12	0.2178E	01	0.1393E	00
0.2194E	01	0.8903E-01	13	0.2175E	01	0.1487E	00
0.2193E	01	0.9145E-01	14	0.2171E	01	0.1589E	00
0.2192E	01	0.9468E-01	15	0.2168E	01	0.1697E	00
0.2191E	01	0.9870E-01	16	0.2164E	01	0.1813E	00
0.2189E	01	0.1035E 00	17	0.216 OE	01	0.1936E	00
0.2188E	01	0.1091E 00	18	0.2156E	01	0.2066E	00
0.2186E	01	0.1155E 00	19	0.2151E	01	0.2202E	00
0.2183E	01	0.1227E 00	20	0.2146E	01	0.2345E	00
	0.00E0 0.2195E 0.2195E 0.2194E 0.2193E 0.2192E 0.2191E 0.2189E 0.2188E 0.2186E	F(RST PLANE (0.0DEG.) 0.2195E 01 0.2195E 01 0.2194E 01 0.2193E 01 0.2192E 01 0.2191E 01 0.2189E 01 0.2188E 01 0.2186E 01 0.2183E 01	(0.0DEG.) (90.0DEG.) 0.2195E 01				

21	0.2141E	01	0.2494E	00	76	0.1598E	0.1	0.1334E	01
22	0.2136E		0.2649E	00	77	0.1586E	01	0 .1 345E	-
23			0.2810E	00	78	0.1573E	01	0.1355E	01
					79	0.1561E			
24	0.2125E	01	0.2977E	00			01	0.1365E	
25	0.2119E		0.3149E	00	80		01	0.1374E	
26	0.211 3E	01	0.3327E	00	81	0.1536E	01	0.1382E	01
27	0.2106E	01	0.3509E	00	82	0.1523E	01	0.1389E	
28	0.2100E	01	0.3697E	00	83	0.151 IE	01	0.1395E	01
29	0.2093E	01	0.3889E	00	84	0.1498E	01	0.1401E	01
30	0.2086E	01	0.4086E	00	85	0.1486E	01	0.1406E	01
31	0.2079E	01	0.4287E	00	86	0.1473E	01	0 -1 41 OE	01
32	0.2071E	01	0.4492E	00	87	0.1461E	01	0.1413E	01
33	0.2064E	01	0.4701E	00	88	0.1449E	01	0.1415E	01
34	0.2056E	01	0.4913E	00	89	0.1436E	01	0.1417E	01
35	0.204 BE	01	0.5128E	00	90	0.1424E	01	0.1418E	01
36	0.2039E	01	0.5346E	00	91	0.1412E	01	0.1418E	01
37	0.2031E	01	0.5567E	00	92	0.1400E	01	0.1417E	01
38		01	0.5790E	00	93	0.1388E	01	0.1415E	01
 39	0.2014E		0.6015E	00	94	0.1375E	01	0.1413E	
40	0.2005E	01		00	95	0.1363E		0 .1 41 OE	
41	0.1995E	01	0.6471E	00	96	0.1351E	01	0.1406E	
42	0.1986E	01	0.6701E	00	97	0.1340E	01	0.1401E	
	0.1977E		0.6932E	00	98	0.1328E	01	0.1395E	
43	And the second s	01		-	99	0.1316E	01	0.1389E	
44	0-1967E		0.7164E					0.1382E	
45	0.1957E	01	0.7396E	00	100	0.1304E	01		
46	0.1947E	01	0.7628E	00	101	0.1293E	01	0.1374E	
47	0.1937E		0.7861E	00	102	0.1281E	01	0.1365E	
48	0.1927E		0.8093E	00	103		01	0.1355E	
49	0.1916E	01	0.8324E	00	104	0.1259E		0.1345E	
50	0.1906E		0.8554E	00	105	0.1247E	01	0.1334E	
51	0.1895E	01	0.8783E	00	106	0.1236E	01	0.1323E	
52	0 - 1 88 4E	01	0.9010E	00	107	0.1225E	01	0.1310E	
53	0.1873E	01	0.9236E	00	108	0 . 1 21 4E	01	0.1297E	
54	0.1862E	01	0.9459E	00	109	0.1203E	01	0.1284E	01
55	0.1851E	01	0.9681E	00	110	0.1193E	01	0.1269E	01
56	0.1840E	01	0.9899E	00	111	0.1182E	01	0.1254E	01
57	0.1829E	01	0.1011E	01	112	0.1172E	01	0.1239E	01
58	0 . 1 81 7E	01	0.1033E	01	113	0.1161E	01	0.1222E	01
59	0.1805E	01	0.1054E	01	114	0.1151E	01	0.1206E	01
60	0.1794E	01	0.1074E	01	115	0.1141E	01	0.1188E	01
61	0.1782E	01	0.1094E	01	116	0.1131E	01	0.1171E	01
62	0.1770E		0.1114E	01	117	0.1121E	01	0.1152E	01
63	0.1758E		0.1133E		118	0.1111E	01	0.1133E	01
64	0 - 1 74 6E		0.1152E		119	0.1101E	01	0-1114E	01
65	0.1734E		0.1171E		120	0.1092E	01	0.1094E	01
66	0.1722E		0.1188E		121	0.1083E		0.1074E	
67	0 . 1 71 OE		0.1206E		122	0.1073E		0 -1 054E	
68	0.1698E		0.1222E		123	0.1064E		0.1033E	
69	0.1685E		0.1239E		124	0.1055E		0.1011E	
70	0.1673E		0.1254E		125	0.1046E		0.9899E	
71	0.1661E		0.1269E		126	0.1038E		0.9681E	
72	0.1648E		0.1284E		127	0.1029E		0.9459E	
73					128	0.1021E		0.9236E	
	0.1636E		0.1297E		129	0.1012E		0.9010E	
74	0.1623E		0.1310E						
75	0.161 IE	01	0.1323E	01	130	0.1004E	01	0.8783E	00

131	0.9963E	00	0.8554E	00	156	0.8469E	00	0.3149E	00
132	0.9885E	00	0.8324E	00	157	0.8430E	00	0.2977E	00
133	0.9808E	00	0.8093E	00	158	0.8392E	00	0.2810E	00
134	0.9733E	00	0.7861E	00	159	0.8356E	00	0.2649E	00
135	0.9659E	00	0.7628E	00	160	0.8322E	00	0.2494E	00
136	0.9587E	00	0.7396E	00	161	0.8290E	00	0.2345E	00
137	0.951 6E	00	0.7164E	00	162	0.8259E	00	0.2202E	00
138	0.944 7E	00	0.6932E	00	163	0.8229E	00	0.2066E	00
139	0.9379E	00	0.6701E	00	164	0.8201E	00	0.1936E	00
140	0.931 3E	00	0.6471E	00	165	0.8175E	00	0.1813E	00
141	0.9248E	00	0.6242E	00	166	0.8151E	00	0.1697E	00
142	0.9185E	00	0.6015E	00	167	0.8128E	00	0.1589E	00
143	0.9124E	00	0.5790E	00	168	0.8107E	00	0.1487E	00
144	0.9064E	00	0.5567E	00	169	0.8087E	00	0.1393E	00
145	0.9005E	00	0.5346E	00	170	0.8069E	00	0.1306E	00
146	0.8949E	00	0.5128E	00	171	0.8053E	00	0.1227E	00
147	0.8893E	00	0.4913E	00	172	0.8038E	00	0.1155E	00
148	0.884 OE	00	0.4701E	00	173	0.8025E	00	0.1091E	00
149	0.8788E	00	0.4492E	00	174	0.801 4E	00	0.1035E	00
150	0.8737E	00	0.4287E	00	175	0.8004E	00	0.9870E-	01
151	0.8689E	00	0.4086E	00	176	0.7996E	00	0.9467E-	01
152	0.864 1E	00	0.3889E	00	177	0.7989E	00	0.9145E-	01
153	0.8596E	00	0.3697E	00	178	0.7984E	00	0.8903E-	01
154	0.8552E	00	0.3509E	00	179	0.7981E	00	0.8741E-	
155	0.851 OE	00	0.3327E	00	180	0.7979E	00	0.8660E-	01

TRANSMISSION COEFFICIENT = 0.6142E-04

The magnetic current generated for case 2, $\rm E_{\it M}$ -polarization, in Section B-1.4 is used to generate the sample output above.

REFERENCES

- [1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulation for Aperture Problems," Technical Report TR-75-13, November 1975, Syracuse University, Syracuse, New York, 13210.
- [2] J. R. Mautz and R. F. Harrington, "Generalized Network Parameters for Bodies of Revolution, Technical Report TR-68-7, June 1968, Syracuse University, Syracuse, New York, 13210.
- [3] R. F. Harrington, <u>Time-Harmonic Electromagnetic Fields</u>, McGraw-Hill Book Company, New York, 1969, Sec. 3-5.
- [4] R. F. Harrington, <u>Field Computation by Moment Methods</u>, Macmillan Company, New York, 1968.
- [5] A. W. Glisson and D. R. Wilton, "Simple and Efficient Numerical Techniques for Treating Bodies of Revolution," Phase Report RADC-TR-79-22, March 1979, University of Mississippi.
- [6] H. A. Bethe, "Theory of Diffraction by Small Holes," Physical Review, second series, vol. 66, October 1944.
- [7] B. D. Graves, T. T. Crow and C. D. Taylor, "On the Electromagnetic Field Penetration Through Apertures, IEEE Trans. on Electromagnetic Compatibility, vol. EMC-18, No. 4, November 1976.
- [8] J. R. Mautz and R. F. Harrington, "Transmission from a Rectangular Waveguide into Half Space Through a Rectangular Aperture," Technical Report TR-76-5, May 1976, Syracuse University, Syracuse, New York 13210.
- [9] M. Abramowitz and I. A. Stegun, <u>Handbook of Mathematical Functions</u>, U. S. Government Printing Office, Washington, D.C. (National Bureau of Standards, U.S. Applied Math. Ser. 55), 1964.