10. Útgildi

Stærðfræðigreining IIB, STÆ205G, 4. febrúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

10.1

Útgildi

Skilgreining 10.1

Látum f vera fall af tveim breytum skilgreint á mengi $\mathcal{D}(f)$.

Sagt er að f hafi staðbundið lággildi (e. local minimum) í punkti (a, b) ef til er tala r > 0 þannig að $f(a, b) \le f(x, y)$ fyrir alla punkta $(x, y) \in B_r(a, b) \cap \mathcal{D}(f)$.

Sagt er að f hafi staðbundið hágildi (e. local maximum) í punkti (a, b) ef til er tala r > 0 þannig að $f(a, b) \ge f(x, y)$ fyrir alla punkta $(x, y) \in B_r(a, b) \cap \mathcal{D}(f)$.

Í þeim punktum þar sem f tekur annað hvort staðbundið lággildi eða staðbundið hágildi er sagt að f hafi staðbundið útgildi (e. local extreme).

Ef $f(a,b) \leq f(x,y)$ fyrir alla punkta $(x,y) \in \mathcal{D}(f)$ þá er sagt að f taki *lægsta gildi* í (a,b) (e. global minimum). Ef $f(a,b) \geq f(x,y)$ fyrir alla punkta $(x,y) \in \mathcal{D}(f)$ þá er sagt að f taki *hæsta gildi* í (a,b) (e. global maximum).

10.2

Staðbundið útgildi

Upprifjun 10.2

Látum f vera fall af einni breytu skilgreint á mengi $\mathcal{D}(f) \subseteq \mathbb{R}$. Ef fallið f hefur staðbundið útgildi í punkti a þá gildir eitt af þrennu um a:

- 1. f'(a) = 0. (punkturinn a kallast stöðupunktur f).
- 2. Afleiðan f'(a) er ekki skilgreind.
- 3. Punkturinn a er jaðarpunktur $\mathcal{D}(f)$.

10.3

Staðbundið útgildi

Setning 10.3

Látum f vera fall af tveim breytum skilgreint á mengi $\mathcal{D}(f) \subseteq \mathbb{R}^2$. Ef fallið f hefur staðbundið útgildi í punkti (a,b) þá gildir eitt af þrennu um a

- 1. $\nabla f(a,b) = \mathbf{0}$. (punkturinn (a,b) kallast stöðupunktur f)
- 2. Stigullinn $\nabla f(a,b)$ er ekki skilgreindur.
- 3. Punkturinn (a, b) er jaðarpunktur $\mathcal{D}(f)$.

Dæmi: Föll skilgreind á svæðinu $-0.5 \le x \le 0.5, \, -0.5 \le y \le 0.5.$ Hvar eru staðbundin hágildi?

10.4

$$z = f(x, y) = 1 - \sqrt{x^2 + y^2}.$$

$$z = f(x, y) = x^2 + y^2$$
.

Tilvist útgilda

Setning 10.4

Látum f vera samfellt fall af tveim breytum skilgreint á lokuðu og takmörkuðu mengi $\mathcal{D}(f)$. Fallið f tekur þá bæði hæsta og lægsta gildi.

10.6

Söðulpunktur

Skilgreining 10.5

Punktur $(x,y) \in \mathcal{D}(f)$ sem er ekki jaðarpunktur kallast *söðulpunktur* ef $\nabla f(x,y) = \mathbf{0}$ en f hefur ekki staðbundið útgildi í (x,y).

Dæmi um föll með söðulpunkta.

10.7

 $z = f(x, y) = x^3.$

 $z = f(x, y) = x^3 + y^3$.

Staðbundið útgildi

Upprifjun 10.6

Látum f vera fall af einni breytistærð og gerum ráð fyrir að f' sé samfellt fall. Gerum einnig ráð fyrir að f'(a) = 0. Þá gildir:

- 1. Ef f''(a) > 0 þá hefur f staðbundið lággildi í a.
- 2. Ef f''(a) < 0 þá hefur f staðbundið hágildi í a.
- 3. Ef f''(a) = 0 þá gæti verið staðbundið lággildi í A, það gæti verið staðbundið hágildi í a eða það gætu verið beygjuskil í a, alltsvo. ekkert hægt að segja.

10.9

Hesse-fylki

Skilgreining 10.7

Látum f vera fall af n breytum $\mathbf{x} = (x_1, x_2, \dots, x_n)$ og gerum ráð fyrir að allar 2. stigs hlutafleiður f séu skilgreindar í punktinum \mathbf{x} . Skilgreinum $\frac{Hesse-fylki}{f}$ í punktinum \mathbf{x} sem $n \times n$ -fylkið

$$\mathcal{H}(\mathbf{x}) = \begin{bmatrix} f_{11}(\mathbf{x}) & f_{12}(\mathbf{x}) & \cdots & f_{1n}(\mathbf{x}) \\ f_{21}(\mathbf{x}) & f_{22}(\mathbf{x}) & \cdots & f_{2n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1}(\mathbf{x}) & f_{n2}(\mathbf{x}) & \cdots & f_{nn}(\mathbf{x}) \end{bmatrix}.$$

10.10

Ferningsform (sjá kafla 10.7 í Adams)

Upprifjun 10.8

Ferningsform Q af n-breytum x_1, x_2, \ldots, x_n er einsleit margliða af stigi 2 gefin með

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

þar sem A er samhverft $n \times n$ fylki með tölu a_{ij} í sæti (i,j) og $\mathbf{x} = [x_1, x_2, \dots x_n]^T$.

10.11

Ferningsform

Skilgreining 10.9

Ferningsform Q af n-breytum er sagt vera $j\acute{a}kvætt$ $\acute{a}kvarðað$ (e. positive definite) ef $Q(\mathbf{x}) > 0$ fyrir alla vigra $\mathbf{x} \neq \mathbf{0}$ í \mathbf{R}^n .

Sagt að ferningsformið Q sé neikvætt ákvarðað (e. negative definite) ef $Q(\mathbf{x}) < 0$ fyrir alla vigra $\mathbf{x} \neq \mathbf{0}$ í \mathbf{R}^n .

Síðan er sagt að ferningsformið Q sé <u>óákvarðað</u> (e. indefinite) ef $Q(\mathbf{x}) < 0$ fyrir einhvern vigur \mathbf{x} og $Q(\mathbf{y}) > 0$ fyrir einhvern vigur \mathbf{y} .

10.12

Ferningsform

Setning 10.10

Látum Q vera fernings form af n breytum og A samhverft $n \times n$ fylki þannig að $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ fyrir alla vigra \mathbf{x} ,

- 1. Ferningsformið er jákvætt ákvarðað ef og aðeins ef öll eigingildi A eru jákvæð.
- 2. Ferningsformið er neikvætt ákvarðað ef og aðeins ef öll eigingildi A eru neikvæð.
- 3. Ferningsformið er óákvarðað ef og aðeins ef A hefur bæði jákvæð og neikvæð eigingildi.

Staðbundið útgildi

Setning 10.11

Látum f vera fall af n breytum $\mathbf{x} = (x_1, x_2, \dots, x_n)$ þannig að allar 1. og 2. stigs hlutafleiður f eru samfelldar. Látum \mathbf{a} vera innri punkt á skilgreiningarsvæði f og gerum ráð fyrir að $\nabla f(\mathbf{a}) = \mathbf{0}$. Þá gildir: Ef $\mathcal{H}(\mathbf{a})$ er

- 1. ...jákvætt ákvarðað þá hefur f staðbundið lággildi í \mathbf{a} .
- 2. ...neikvætt ákvarðað þá hefur f staðbundið hágildi í \mathbf{a} .
- 3. ...óákvarðað þá hefur f söðulpunkt í \mathbf{a} .
- 4. ...hvorki jákvætt ákvarðað, neikvætt ákvarðað né óákvarðað þá nægja upplýsingarnar sem felast í jöfnunni $\nabla f(\mathbf{a}) = \mathbf{0}$ og Hesse-fylkinu ekki til að segja til um hvers eðlis stöðupunkturinn \mathbf{a} er.

10.14

Staðbundið útgildi

Fylgisetning 10.12

Látum f vera fall af tveim breytum þannig að 1. og 2. stigs hlutafleiður f eru samfelldar. Látum (a,b) vera innri punkt á skilgreiningarsvæði f og gerum ráð fyrir að $\nabla f(a,b) = \mathbf{0}$. Setjum

$$A = f_{11}(a, b),$$
 $B = f_{12}(a, b) = f_{21}(a, b)$ $C = f_{22}(a, b).$

Þá gildir:

- 1. Ef $B^2 AC < 0$ og A > 0 þá hefur f staðbundið lággildi í (a,b).
- 2. Ef $B^2 AC < 0$ og A < 0 þá hefur f staðbundið hágildi í (a, b).
- 3. Ef $B^2 AC > 0$ þá hefur f söðulpunkt í (a, b).
- 4. Ef $B^2 AC = 0$ þá er ekkert hægt að segja.

10.15

Ferningsform

Regla 10.13

Ef A er samhverft $n \times n$ fylki með tölu a_{ij} í sæti (i, j) og

$$D_i = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} \\ a_{21} & a_{22} & \cdots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} \end{vmatrix}$$

þá gildir

- 1. Ef $D_i > 0$ fyrir $1 \le i \le n$ þá er A jákvætt ákvarðað.
- 2. Ef $D_i > 0$ fyrir slétt i í $\{1, 2, ..., n\}$ og $D_i < 0$ fyrir oddatölu i í $\{1, 2, ..., n\}$ þá er A neikvætt ákvarðað.
- 3. Ef $det(A) = D_n \neq 0$ en hvorki 1 né 2 gilda þá er A óákvarðað.
- 4. Ef $\det(A) = 0$ þá er A hvorki jákvætt né neikvætt ákvarðað en getur verið óákvarðað.