Term Structure and Credit Spread Estimation with R

Robert Ferstl

Institute for Operations Research WU Wien

July 5, 2006

Basic principles of bond pricing

- coupon bond which matures in n years
- investor gets at the times i = 1, ... n coupon payments C and a redemption payment R at t = n
- ullet clean price p_c is quoted on the market
- seller also receives accrued interest for holding the bond over the period since the last coupon payment

$$a = \frac{\text{number of days since last coupon}}{\text{number of days in current coupon period}} C$$

- investor has to pay the dirty price p_d
- bond pricing equation with continuous compounding

$$p_c + a = C \sum_{i=1}^{n} e^{-s_i m_i} + R e^{-s_n m_n}$$

Basic principles of bond pricing

yield to maturity

$$p_c + a = C \sum_{i=1}^{n} e^{-ym_i} + Re^{-ym_n}$$

- equivalent formulation of the bond price equation uses the **discount factors** $d_i = \delta(m_i) = e^{-s_i m_i}$
- continuous **discount function** $\delta(\cdot)$ is formed by interpolation of the discount factors

$$p_c + a = C \sum_{i=1}^{n} \delta(m_i) + \delta(m_n)R$$

implied j-period forward rate

$$f_{t|j} = \frac{js_j - ts_t}{j - t}$$

• duration is a weighted average of time to cash flows

$$D = \frac{1}{p_c + a} \left[C \sum_{i=1}^{n} \delta(m_i) m_i + \delta(m_n) R m_n \right]$$

Term structure estimation

- estimate zero-coupon yield curves and credit spread curves from market data
- usual way for calculation of credit spread curves

$$c_i(m) = s_i(m) - s_{ref}(m)$$

parsimonious approach widely used by central banks

Nelson and Siegel (1987) approach

Instantaneous forward rates

$$f(m, \boldsymbol{b}) = \beta_0 + \beta_1 \exp(-\frac{m}{\tau_1}) + \beta_2 \frac{m}{\tau_1} \exp(-\frac{m}{\tau_1})$$

Nelson and Siegel (1987) approach

Spot rates

$$s(m, \mathbf{b}) = \beta_0 + \beta_1 \frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} + \beta_2 \left(\frac{1 - \exp(-\frac{m}{\tau_1})}{\frac{m}{\tau_1}} - \exp(-\frac{m}{\tau_1}) \right)$$

Objective function

$$\boldsymbol{b}_{opt} = \min_{\boldsymbol{b}} \sum_{i=1}^{n} \omega_{i} \left(\hat{P}_{i} - P_{i} \right)^{2}$$
 weighted price errors

$$\boldsymbol{b}_{opt} = \min_{\boldsymbol{b}} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
 yield errors

Extensions

 Svensson (1994) extended the functional form by two additional parameters which allows for a second hump-shape

Instantaneous forward rates

$$f(m, \mathbf{b}) = \beta_0 + \beta_1 \exp(-\frac{m}{\tau_1}) + \beta_2 \frac{m}{\tau_1} \exp(-\frac{m}{\tau_1}) + \beta_3 \frac{m}{\tau_2} \exp(-\frac{m}{\tau_2})$$

- simple calculation method of credit spread curves could lead to twisting curves
- Jankowitsch and Pichler (2004) proposed a joint estimation method, which leads to smoother and more realistic credit spread curves

Multi-curve approach

Jankowitsch and Pichler (2004)

credit spread curve for the i-th country

$$c_i(m) = \gamma_{0,i} + \gamma_{1,i} \frac{1 - \exp\left(-\frac{m}{\kappa_1}\right)}{\frac{m}{\kappa_1}} + \gamma_{2,i} \exp\left(-\frac{m}{\kappa_1}\right)$$

with parameters $\kappa = (\gamma_{0,i}, \gamma_{1,i}, \gamma_{2,i}, \kappa_i)$

zero-coupon yield curve for the i-th country

$$s_i(m) = s_{ref}(m) + c_i(m)$$

parameters for joint estimation:

$$\boldsymbol{\alpha} = (\beta_0, \beta_1, \beta_2, \tau_1, ; \gamma_{0,1}, \gamma_{1,1}, \gamma_{2,1}, \kappa_1; \dots; \gamma_{0,C}, \gamma_{1,C}, \gamma_{2,C}, \kappa_C)$$

Example: Government Bonds I

Single-curve estimation

Example: Government Bonds II

Single-curve estimation

Example: Government Bonds III

Multi-curve estimation

Example: Government Bonds IV

Multi-curve estimation

Example: Corporate Bonds I

Single-curve estimation

Maturities

Example: Corporate Bonds II

Single-curve estimation

Example: Corporate Bonds III

Multi-curve estimation

12 14

Example: Corporate Bonds IV

Multi-curve estimation

References I

Bank for International Settlements
Zero-coupon yield curves: technical documentation
BIS Papers, No. 25, October 2005

David Bolder, David Streliski
Yield Curve Modelling at the Bank of Canada
Bank of Canada, Technical Report, No. 84, 1999

Alois Geyer, Richard Mader
Estimation of the Term Structure of Interest Rates - A Parametric Approach

References II

- Rainer Jankowitsch, Stefan Pichler
 Parsimonious Estimation of Credit Spreads
 The Journal of Fixed Income, 14(3):49–63, 2004
- Charles R. Nelson, Andrew F. Siegel Parsimonious Modeling of Yield Curves The Journal of Business, 60(4):473–489, 1987
- Lars E.O. Svensson
 Estimating and Interpreting Forward Interest Rates:
 Sweden 1992 -1994
 National Bureau of Economic Research,
 Technical Report, No. 4871, 1994

