

HCF4015B

DUAL 4-STAGE STATIC SHIFT REGISTER WITH SERIAL INPUT/PARALLEL OUTPUT

- MEDIUM SPEED OPERATION 12 MHz (Typ.) CLOCK RATE AT V_{DD} V_{SS} = 10V
- **FULLY STATIC OPERATION**
- 8 MASTER-SLAVE FLIP-FLOPS PLUS INPUT AND OUTPUT BUFFERING
- HIGH NOISE IMMUNITY
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

HCF4015B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. HCF4015B consists of two identical, independent, 4 stage serial-input/parallel-output registers. Each register has independent CLOCK and RESET inputs as well as a single serial DATA input. "Q" outputs are available from each of the

ORDER CODES

PACKAGE	TUBE	T & R
DIP	HCF4015BEY	
SOP	HCF4015BM1	HCF4015M013TR

four stages on both registers. All register stages are D-TYPE, MASTER-SLAVE flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive going clock transition. The resetting of all stages is accomplished by a high level on the reset line. It is possible to expand the register to 8 stages using one HCF4015B package and to expand to more than 8 stages by using addition HCF4015Bs.

PIN CONNECTION

September 2002 1/10

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION				
1, 9	CLOCK A CLOCK B	Clock Input				
6, 14	RESET A RESET B	Reset Input				
7, 15	DATA A DATA B	Data Inputs				
5, 4, 3, 10	QnA	Outputs A-Stage				
13, 12, 11, 2	QnB	Outpus B-Stage				
8	V_{SS}	Negative Supply Voltage				
16	V_{DD}	Positive Supply Voltage				

FUNCTIONAL DIAGRAM

TRUTH TABLE

CLOCK	D	R	Q ₁	Q _n
	L	L	L	Q _n - 1
	Н	L	Н	Q _n - 1
	Х	L	Q ₁	Q _n - (NO CHANGE)
Х	Х	Н	L	0

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Symbol Parameter		v _o	I _O	V _{DD}	T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	(μΑ)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	μA
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		IIIA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
lį	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (T_{amb} = 25^{\circ}\text{C}, \;\; C_{L} = 50 \text{pF}, \; R_{L} = 200 \text{K}\Omega, \;\; t_{f} = t_{f} = 20 \; \text{ns})$

Ormak s.l		Test Condition			Value (*)		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
CLOCKE	D OPERATION			<u>'</u>	I	ı	
	Propagation Delay Time	5			160	320	
	(carry out or decoded out	10			80	160	ns
	lines)	15			60	120	
t _{THL} t _{TLH}	Transition Time (carry out	5			100	200	
	or decoded out lines)	10			50	100	ns
		15			40	80	
f _{CL}	Maximum Clock Input	5		3	6		
OL	Frequency	10		6	12		MHz
		15		8.5	17		
t _W Clock Pulse Width	Clock Pulse Width	5		180	90		
		10		80	40		ns
		15		50	25		
t _r , t _f ⁽¹⁾	Clock Input Rise or Fall	5				15	
1,1	Time	10				15	μs
		15				15	
t _{setup}	Data Setup Time	5		70	35		
		10		40	20		ns
		15		30	15		
RESET O	PERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time	5			200	400	
·	10			100	200	ns	
		15			80	160	
t _W	Reset Pulse Width	5		200	100		
		10		80	40		ns
		15		60	30		

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.
(1) If more than one unit is cascaded in the parallel clocked application, t_rCL should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transmission time of the carry output driving stage of the estimated capacitive load.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM 1: MINIMUM PULSE WIDTH, PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

47/ 6/10

WAVEFORM 2: MINIMUM SETUP TIME (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

SO-16 MECHANICAL DATA

DIM		mm.			inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.				
Α			1.75			0.068				
a1	0.1		0.2	0.003		0.007				
a2			1.65			0.064				
b	0.35		0.46	0.013		0.018				
b1	0.19		0.25	0.007		0.010				
С		0.5			0.019					
c1			45°	(typ.)						
D	9.8		10	0.385		0.393				
E	5.8		6.2	0.228		0.244				
е		1.27			0.050					
e3		8.89			0.350					
F	3.8		4.0	0.149		0.157				
G	4.6		5.3	0.181		0.208				
L	0.5		1.27	0.019		0.050				
М			0.62			0.024				
S		8° (max.)								

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.