SPRINT DELIVERY – 4

Team ID	PNT2022TMID46961
Project Name	IoT Enabled Smart
	Farming Application
Date	18 November 2022

5.5 Receiving commands from IBM cloud using Python program

```
import time
importsys
import ibmiotf.application
import ibmiotf.device import
random
#Provide your IBM Watson Device
Credentials
Organization = "3gcqg0"
DeviceType = "Devicetype_1"
DeviceId = "DeviceID_1"
authMethod = "token"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd): print("Command
received: %s" % cmd.data['command'])
status=cmd.data['command']
                               if status=="motoron":
print ("motor is on") elif status == "motoroff":
                                                   print
("motor is off") else:
    print ("please send proper command")
try:
       deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
```

#.....

```
except Exception as e:
      print("Caught exception connecting device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from
DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
  data = { 'temp' : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                   def
myOnPublishCallback(
):
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
%Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
      success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback)
                                              if not success:
      print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
```


- 0 ×

Ln: 22 Col: 21

Flow Chart

Observations & Results

4G 1.5K/s ▶	10:58 AM	3 □ { Yn2 4G 87% (■	
Screen2			
SMART A	GRIC	JLTUF	RE
TEMPERATU	IRE: 77		
HUMIDITY:	56		
SOIL MOIST	TURE :	30	
MOTOR ON	MOTOR	OFF	

6. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.