

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA

MAT 135 – Geometria Analítica e Álgebra Linear

 $5^{\underline{A}}$ Lista (Autovalores e Autovetores) – 2021/1

profa. Lana Mara Rodrigues dos Santos

Atualizada em: 16 de marco de 2021

- 1) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u=(2,1) e triplica o comprimento do vetor v=(1,2) sem alterar as direções e nem inverter os sentidos.
 - (a) Determine T(x, y)
 - (b) Qual é a matriz do operador T na base $\{(2,1),(1,2)\}$.
- 2) Verifique se o vetor v dado é autovetor da correspondente matriz A.

(a)
$$v = (-2, 1), A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$

(b)
$$v = (1, 1, 2), A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{pmatrix}$$

- 3) Seja o operador linear do \mathbb{R}^2 cujos autovalores são $\lambda_1 = 3$ e $\lambda_2 = -2$ associados, respectivamente, aos autovalores $v_1 = (1, 2)$ e $v_2 = (-1, 0)$. Determine T(x, y).
- 4) Determine os autovalores e autovetores das seguintes transformações lineares:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x+2y, -x+4y)$$

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + 2y, x + 3y)$$

(c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (x + y + z, 2y + z, 2y + 3z)$$

(d)
$$T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (x, -2x - y, 2x + y + 2z)$$

- 5) Seja [T] um operador linear em \mathbb{R}^3 e a matriz de T com respeito a base canônica é dada por $[T]_C=\begin{bmatrix}2&0&1\\0&-3&1\\0&0&-3\end{bmatrix}$. Encontre o polinômio característico de T, os autovalores e
- 6) Verifique se a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x,y,x-3y+2z) é diagonalizável. Caso a resposta seja positiva, indique a matriz diagonal de T e a base em relação a qual T é diagonalizável.
- 7) Suponha que λ_1 e λ_2 sejam autovalores distintos e diferentes de zero de $T: \mathbb{R}^2 \to \mathbb{R}^2$. Mostre que:
 - (a) Os autovetores v_1 e v_2 correspondentes são L.I.
 - (b) $T(v_1)$ e $T(v_2)$ são L.I.
- 8) O Teorema de Cayley-Hamilton afirma que uma matriz quadrada A é uma raíz de seu polinômio característico, isto é, se $p(x) = a_0 + a_1x + ... + a_nx^n$ é o polinômio característico de A então $a_0I + a_1A = a_2A^2 + ... + a_nA^n = 0$ (matriz nula).

(a) Verifique este resultado para
$$\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} e \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}.$$

(b) Este teorema proporciona um método para calcular a inversa e potências n de uma matriz, tendo conhecimento de potências inferiores. Verifique que isto é verdade tomando por exemplo uma matriz 2×2 com polinômio característico $c_0 + c_1 x + c_2 x^2$.

(c) Calcule agora
$$A^2$$
 e A^3 sendo $A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$ e calcule a inversa da matriz $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$.

- 9) Suponha que o polinômio característico de um operador T seja $p(x) = x(x+2)^2(x-2)^3(x-3)^4$. Em cada item responda a pergunta e explique seu raciocínio.
 - (a) Qual a dimensão do domínio de T?
 - (b) T é invertível?
 - (c) Quantos auto-espaços tem T?
 - (d) O que você pode dizer sobre as dimensões dos auto-espaços de T?
 - (e) O que você pode dizer sobre as dimensões dos auto-espaços de T, se você souber que T é diagonalizável?
 - (f) Seja $\{v_1, v_2, v_3\}$ um conjunto LI de autovetores de T, todos associados ao mesmo autovalor de T. O que você pode dizer sobre esse autovalor?
- 10) Determine o polinômio característico, os autovalores e os autovetores das matrizes:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix} e \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Observe neste exercício as seguintes propriedades:

- (a) Se um operador T admite $\lambda = 0$ como autovalor, então T não é invertível.
- (b) Uma matriz A e sua transposta possuem os mesmos autovalores.
- (c) Os autovalores de uma matriz triangular(ou diagonal) são os elementos da diagonal principal.
- 11) Seja T o operador linear do \mathbb{R}^2 . Sabendo que T duplica o vetor (1,-1) e triplica o vetor (0,1) sem alterar o sentido deles, determine T(x,y). A transformação é diagonalizável? Justifique sua resposta! Se for, dê a base do \mathbb{R}^2 com relação à qual a matriz de T é diagonal e escreva a matriz de T em relação a esta base.
- 12) Dê exemplos de:
 - (a) Um operador linear em \mathbb{R}^2 que não possui autovalores reais.
 - (b) Um operador linear em \mathbb{R}^3 que satisfaça todas as condições abaixo:
 - i. T é diagonalizável.
 - ii. T não é injetora.
 - iii. $T(v) \neq v$, para qualquer vetor não nulo.
 - iv. $\lambda = 2$ é autovalor de T.

v. $v_0 = (1, 0, -1)$ é autovetor de T.

vi.
$$T(v_0) \neq v_0$$
.

vii.
$$(0,0,2) \in Im(T)$$
.

- 13) Seja A uma matriz de ordem 4 com as seguintes características:
 - \diamond A possui somente 2 autovalores distintos.
 - \diamond Existem $v_1, v_2 \in \mathbb{R}^4$ tais que $\{v_1, v_2\}$ é LI e $Av_1 = 2v_1, Av_2 = 2v_2$.
 - δ A dimensão do autoespaço associado ao autovalor $\lambda = -3$ é igual a 1.
 - (a) Quais os possíveis polinômios característicos de A?
 - (b) Se é diagonalizável, qual o polinômio característico de A?
- 14) Verifique se as afirmações são verdadeiras ou falsas e justifique sua resposta.
 - (a) Se $Ax = \lambda x$ para algum escalar λ não nulo então λ é um autovetor de A.
 - (b) Se λ é um autovalor de A então o sistema linear $(\lambda I A)x = 0$ só tem a solução trivial.
 - (c) Se u_1 e u_2 são autovetores associados a um mesmo autovalor de A, então qualquer vetor não nulo, combinação linear de u_1 e u_2 é um autovetor de A.
- 15) Seja A uma matriz quadrada de ordem n.
 - (a) Defina autovalor de A.
 - (b) Se λ é autovalor de A, mostre que 2 é autovalor de 2A.
 - (c) Se λ é autovalor de A, mostre que λ^2 é autovalor de A^2 .
 - (d) Se $\lambda = 0$ é autovalor de A, então A não é invertível.
 - (e) $A \in A^T$ tem os mesmos autovalores.
 - (f) Se A é uma matriz triangular (ou diagonal) os autovalores de A são os elementos da diagonal principal.
- 16) Verifique se as afirmações abaixo são verdadeiras ou falsas. Justifique sua resposta!
 - (a) Se uma matriz A não tem autovetores, então A é invertível.
 - (b) Uma matriz A é dita diagonalizável se existem uma matriz invertível P e uma matriz diagonal D tal que $A = P^{-1}DP$. Se $P^T = P^{-1}$ então A é simétrica.
 - (c) Se v é um autovetor de um operador T associado ao autovalor λ , então u=3v é também um autovetor de T associado ao mesmo autovalor λ .
 - (d) Seja um operador linear T sobre um espaço vetorial V de dimensão n. Um condição suficiente para que T seja diagonalizável é que tenha n autovalores distintos.
- 17) Seja a matriz $A = \begin{bmatrix} -1 & -4 & -1 \\ 0 & 1 & 0 \\ 2 & 4 & 2 \end{bmatrix}$.
 - (a) Mostre que $\lambda_1 = 0$ e $\lambda_2 = 1$ são os autovalores de A.
 - (b) Determine uma base e a dimensão do autoespaço associado ao autovalor $\lambda_2 = 1$.
 - (c) A é invertível? Justifique!

- (d) Mostre que A é diagonalizável.
- (e) Determine uma matriz diagonal D e uma matriz invertível P tal que $A = PDP^{-1}$.
- 18) Em uma certa região, cerca de 10% da população urbana se mudam para os subúrbios vizinhos a cada ano e cerca de 20% da população suburbana se mudam para a cidade. Em 2019, existiam 100.000 residentes na cidade e 200.000 nos subúrbios.
 - (a) Monte uma equação de diferenças $(x_{k+1} = Mx_k, \text{ para } k \leq 0)$ que descreve essa situação, onde x_0 é a população inicial em 2019.
 - (b) Obtenha uma estimativa da população na cidade e nos subúrbios dois anos mais tarde, em 2021.
- 19) Uma espécie de pássaro admite duas fases de vida: juventude (até 1 ano de idade) e adulta. Em uma determinada reserva florestal, suponha que o número de fêmeas jovens no ano k + 1 é 30% do número de fêmeas adultas no ano k (baseado na taxa de nascimentos). Cada ano, 20% das jovens sobrevivem e se tornam adultas e 50% das adultas sobrevivem. Para $k \ge 0$, seja $x_k = (j_k, a_k)$, onde as componentes de x_k representam os números das fêmeas jovens e adultas no ano k.
 - (a) Obtenha a matriz de fase M tal que $x_{k+1} = Mx_k$, para $k \ge 0$.
 - (b) Suponha que $x_0 = (150, 100)$, isto é, existem 150 fêmeas jovens e 100 fêmeas adultas nesse ano. Estime a população dessa espécie de pássaro na reserva no ano seguinte.
 - (c) Sabendo-se que $\lambda_1 = -0, 1$ e $\lambda_2 = 0, 6$ são os autovalores de M, justifique por que M é diagonalizável e mostre que $B = \{(3, 1), (1, 2)\}$ é uma base de autovetores.
 - (d) Justifique (usando os dados do item anterior) por que, após muitos anos, essa espécie tente a desaparecer dessa reserva.
- 20) Uma população de plantas se encontra distribuída nas quantidades a_n, b_n e c_n de todos os tipos possíveis de genótipos AA, Aa e aa, respectivamente. Deseja-se implantar um programa de melhoramento genético no qual toda planta é sempre fertilizada por um individuo AA. As equações abaixo exprimem a distribuição da população na geração n+1 a partir da distribuição populacional na geração n.

$$\begin{cases} a_{n+1} = a_n + \frac{1}{2}b_n \\ b_{n+1} = \frac{1}{2}b_n + c_n \\ c_{n+1} = 0 \end{cases}$$

- (a) Construa a matriz de fase F do processo de melhoramento genético.
- (b) Determine os autovalores de F.
- (c) O sistema é estável para alguma distribuição populacional? Justifique.
- (d) F é diagonalizável? Justifique.
- (e) Supondo o vetor população inicial $x_0 = (100, 200, 100)$, determine a distribuição da população na segunda geração.
- 21) Dado $A=\frac{1}{4}\begin{bmatrix}1 & -3\\ -3 & 1\end{bmatrix}$, calcule $A^{10}.$ Exiba uma fórmula para $A^n.$

Gabarito

- 1) (a) $T(x,y) = \frac{1}{3}(5x + 2y, -2x + 10y)$
 - (b) $[T]_B^B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$
- 2) (a) (-2,1) é autovetor de A associado a $\lambda=1$.
 - (b) (1,1,2) é autovetor de A associado a $\lambda = 4$.
- 3) $T(x,y) = (\frac{-4x+5y}{2},3y)$
- 4) (a) $\lambda_1 = 2, v_1 = (2, 1), \lambda_2 = 3, v_2 = (1, 1)$
 - (b) $\lambda_1 = 4, v_1 = (1, 1), \lambda_2 = 1, v_2 = (-2, 1)$
 - (c) $\lambda_1 = 1, v_1 = (1, 0, 0), v_2 = (0, -1, 1)\lambda_2 = 4, v_3 = (1, 1, 2)$
 - (d) $\lambda_1 = -1, v_1 = (0, -3, 1), \lambda_2 = 1, v_2 = (-1, 1, 1), \lambda_3 = 2, v_3 = (0, 0, 1)$
- 5) $p(x) = -(x-2)(x+3)^2$, $\lambda_1 = -3$, $v_1 = (0,1,0)$, $\lambda_2 = 2$, $v_3 = (1,0,0)$
- 6) T é diagonalizável. Uma base de autovetores de T é $B = \{(-1,0,1), (3,1,0), (0,0,1)\}$ e $[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
- 9) (a) A é quadrada e de ordem 10.
 - (b) A não é inversível pois admite $\lambda = 0$ como autovalor.
 - (c) 4 autoespaço.
 - (d) $\dim V(0) = 1$, $\dim V(-2) \le 2$, $\dim V(2) \le 3$, $\dim V(3) \le 4$.
 - (e) dim V(0) = 1, dim V(-2) = 2, dim V(2) = 3, dim V(3) = 4.
 - (f) Esse autovalor tem multiplicidade geométrica geq3, logo ele só poderá ser $\lambda = 2$ ou $\lambda = 3$.
- 10) $p_1(x) = (x-5)(x^2-3x+3)$. Autovetor v = (6,13,-2) associado ao autovalor x = 5. $p_2(x) = -(x-1)(x+1)(x-2)$. Autovalores 1, -1, 3, 2 com respectivos autovetores (1,0,0,0), (1,-1,0,0), (3,1,4/3,0), (29/3,-7/3,-3,1)
- 11) T(x,y) = (2x, x + 3y). T é diagonalizável, pois possui uma base de autovetores $B = \{(1,-1), (0,1)\}$. A matriz de T em relação a base de autovetores é a matriz diagonal $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.
- 12) (a) T(x,y) = (-2y, 2x)
 - (b) T(x, y, z) = (3x, 0, = x + 2z)
- 13) (a) $p(x) = (x-2)^2(x+3)^2$ ou $p(x) = (x-2)^3(x+3)$
 - (b) $p(x) = (x-2)^3(x+3)$.
- (a) (F) (b) (F)
- 15) (a) λ é autovalor de A, se existe um vetor X (não nulo) tal que $AX = \lambda X$.
 - (b) $AX = \lambda X \Rightarrow 2(AX) = 2(\lambda) \Rightarrow (2A)X = (2\lambda)X$.
 - (c) $AX = \lambda X \Rightarrow A(AX) = A(\lambda X) \Rightarrow (A^2)X = \lambda AX) \Rightarrow (A^2)X = \lambda(\lambda X) \Rightarrow (A^2)X = (\lambda^2)X$.

- (d) Use fato de que det(A 0I) = det(A).
- (e) Use fato de que $det(B) = det(B^T)$
- (f) Use fato de que se A é triangular, $A \lambda I$ é triangular.
- 16) (a) (V) Se A não fosse inversível, como 0 = det(A) = det(A 0I), zero seria autovalor de A. Portanto, A teria, pelo menos, um autovalor.
 - (b) (V) $A^T = (P^{-1}DP)^T = P^TD^T(P^{-1})^T = P^TD^TP = P^{-1}DP = A$
 - (c) (V) $T(u) = T(3v) = 3T(v) = 3(\lambda v) = 3\lambda v = \lambda(3v) = \lambda u$
 - (d) (V)
- 17) (a) O polinômio característico de A é $p(x)=-x(x-1)^2$ cujas raízes são $\lambda_1=0$ e $\lambda_2=1$.
 - (b) $B_2 = \{(1,0,-2), (0,1,-4)\}, \dim(V_2) = 2.$
 - (c) Não, pois A tem autovalor zero e isto implica que det(A 0I) = det(A) = 0.
 - (d) A é diagonalizável, pois a soma das dimensões dos auto-espaços de A é igual a ordem de A que é 3.

(e)
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -4 \end{pmatrix}$$
 e $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

18) (a)
$$M = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix}, X_0 = \begin{pmatrix} 100.000 \\ 200.000 \end{pmatrix}$$

(b)
$$X_2 = \begin{pmatrix} 151.000 \\ 149.000 \end{pmatrix}$$

19) (a)
$$M = \begin{pmatrix} 0 & 0.3 \\ 0.2 & 0.5 \end{pmatrix}$$

- (b) $x_1 = \begin{pmatrix} 30 \\ 80 \end{pmatrix}$ ou seja, 30 fêmeas jovens e 80 fêmeas adultas.
- (c) M é diagonalizável pois admite dois autovalores distintos, $\lambda_1 = -0, 1$ e $\lambda_2 = 0, 6$, com autovalores associados $v_1 = (-3, 1)$ e $v_2 = (1, 2)$, respectivamente. $B = \{v_1, v_2\}$ é uma base de autovetores.
- (d) Como M é diagonalizável, $x_k = \alpha(-0,1)^k v_1 + \beta(0,6)^k v_2$. Se $k \to \infty, (-0,1)^k \to 0, (-0,6)^k \to 0$. Assim, ao longo do tempo, a população tende a desaparecer.

20) (a)
$$M = \begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

- (b) Os autovalores são 1, 1/2 e 0.
- (c) Sim, pois admite autovalor $\lambda = 1$.
- (d) Sim, pois possui 3 autovalores distintos.
- (e) $x_2 = (300, 100, 0)$

21)
$$A^{10} = \frac{1}{2048} \begin{bmatrix} 1025 & -1023 \\ -2023 & 1025 \end{bmatrix}$$
, $A^n = \frac{1}{2^{n+1}} \begin{bmatrix} 2^n + 1 & 1 - 2^n \\ 1 - 2^n & 2^n + 1 \end{bmatrix}$

Para estes cálculos, lembre-se que:

- i Se D é uma matriz diagonal com elementos d_i na diagonal, então D^n também é diagonal, d_i^n na diagonal.
- ii Se $A = PDP^{-1}$, em que D é uma matriz diagonal, então $A^n = PD^nP^{-1}$.