빠른중성자검출용 가소물검출기에 대한 연구

흥윤학, 송철욱

보통 유기섬광체들은 가소물이나 액체물질의 내부에서 일어나는 중성자-양성자산란을 리용하여 빠른중성자들을 검출하는데 리용되고있다.[1,2]

우리는 폴리스티롤+테트라페닐부타디엔 가소물섬광체를 가공하여 중성자발생장치나 Pu-Be원천에서 나오는 빠른중성자를 검출할수 있는 중성자검출기를 제작하였다.

1. 가소물섬광체가공 및 외피설계

가소물섬광체는 폴리스티롤과 폴리비닐톨루올에 일련의 유기섬광체들을 혼합한 고체 혼합물이다. 일반적으로 혼합물에 리용되는 섬광물질은 기초물질에 첨가되여 균일하게 혼합된다. 이 주요섬광체의 농도는 혼합물질량의 약 1%인데 이것은 높은 빛거둠률을 일으키기에 충분하다. 혼입물로서 폴리스티롤이나 폴리비닐톨루올을 리용하며 활성체로서 1~5% 스틸벤, 비페닐, 나프탈린, 테트라페닐부타디엔 등을 리용한다.

가소물섬광체는 화학적으로 안정하고 광학적균등성정도가 높으며 임의의 모양으로 자르고 기계적가공을 할수 있는 우점을 가진다.

폴리스티롤+테트라페닐부타디엔 가소물섬광체는 밀도가 ~1g/cm³이고 최대발광스펙트르가 450nm로서 측정에 유리하다. ← 42.6mm →

가소물섬광체는 외형상 폴리에틸렌수지와 비슷하다. 그러므로 가공성이 아주 좋다. 가공할 때 주의할 점은 섬광체가 높은 온도에서 특성이 변하기때문에 낮은 온도 에서 가공 및 연마를 진행하여야 한다.

가소물섬광체가공방법은 다음과 같다.

먼저 덩어리모양의 섬광체를 물랭각하면서 원기둥모

→ 51.2mm

그림 1. 가공된 섬광체의 크기

양으로 기계적가공을 진행하였다. 다음 물속에서 보드라운 연마지를 통하여 1차연마를 진

그림 2. 섬광체외피

행하고 2차연마로서 광연마를 진행하여 투명한 섬 광체로 만들었다.(그림 1)

섬광체의 크기는 φ51.2×42.6mm² 이고 체적은 94.64mm³, 질량은 93.051g이다.

섬광체외피는 두께가 2mm인 알루미니움으로 제작하였다.(그림 2) 연마된 섬광체를 5mm두께의 산화마그네시움가루가 충진된 섬광체외피속에 넣 고 섬광체와 알루미니움외피사이에 1mm두께로 산 화마그네시움가루를 충진하였다. 다음 섬광체의 면 과 광학유리를 접착시키고 봉입하였다.

2. 가소물검출기의 중성자검출특성

예비증폭기를 방사극반복기로 구성하였다. 2개의 3극소자로 구성된 복합소자를 리용하여 입구저항이 크고 출구저항이 작은 방사극반복기의 특성을 개선하였다.(그림 3)

방사극반복기의 전압증폭결수는 1을 넘지 못하지만 전류증폭결수는 충분히 크다. 복합소자의 전류증폭결수는 $\beta \approx \beta_1\beta_2$ 로서 이 값은 수천 \sim 수만에 달한다. 복합소자로 반복기를 구성하는 경우 $R_{\mathrm{Ql},\Sigma} \approx \beta_1\beta_2R_4$ 이므로 수 $\mathrm{M}\Omega$ 이상이다. 복합소자반복기의 출구저항은 T_1 의 출구저항이 T_2 에 작용하는 신호원천의 내부저항역할을 하므로 $R_{\frac{1}{2}} \approx R_4$ 로서 크게 변하지 않는다.

예비증폭기의 전원은 전망적으로 CAMAC체계에서 리용할것을 목적하였으므로 +24V를 리용하였다.

 $R_1 \sim R_4$ 는 각각 33kΩ, 150kΩ, 8.2kΩ, 680Ω, $C_1 \sim C_4$ 는 각각 1nF/3kV, 100nF, 100nF, 100nF인 경우

빛증배판으로서는 안티몬-세시움 (Sb-Cs)빛음극이 달린《ΦЭУ-93》을 리용하였다. 일반적으로 빛음극의 감도스펙트르는 섬광체의 섬광스펙트르와 일치하여야 좋다. 《ΦЭУ-93》의 빛음극의 감도스펙트르는 300~600nm이다. 안티몬-세시움빛음극의 감도스펙트르의 최대값이 490~510nm령역(최대감도파장은 450nm)에 있으므로 폴리스티롤+테트라페닐부타디엔 가소물섬광체의 최대발광스펙트르 450nm와 일치한다.

섬광체를 외피에 조립하고 원천세 기가 1.6·10⁶개/s 인 Pu-Be중성자원천에

대한 계수실험을 통하여 검출기의 빠른중성자검출특성을 고찰하였다.
Pu-Be원천은 파라핀덩어리에 직경 5cm정도의 구멍을 내고 설치하였고 원천과 검출기사이의 거리를 20cm로 정하였다. 고압전원으로는 단통로스펙트르분석기 《NK-225》의

1 000V고압을 리용하였다. 선형증폭기는 NV-804형을 사용하였다.

유기섬광체나 가소물섬광체는 수소를 많이 포함하고있으므로 스펙트르측정에서 반충핵의 스펙트르를 중성자스펙트르로 변환시켜야 한다. 반충핵의 에네르기는 중성자에네르기의 간단한 함수이므로 반충핵의 에네르기분포를 측정하여 중성자의에네르기도 측정할수 있다.

그림 4에 통로번호에 따르는 Pu-Be원천에서의 가소물검출기의 검출특성을 보여주었다.

그림 4. Pu-Be원천에서의 가소물 검출기의 검출특성

그림 4로부터 제작한 검출기가 빠른중성자를 검출한다는것을 알수 있다. 그림 4에서 Pu-Be원천의 스펙트르는 γ 선과 반충양성자의 성분들을 포함하고있다.

맺 는 말

빠른중성자를 검출할수 있는 폴리스티롤+테트라페닐부타디엔 가소물섬광체에 의한 중성자검출기를 제작하고 Pu-Be원천에 의하여 그것의 빠른중성자검출특성을 밝혔다.

참 고 문 헌

- [1] L. Stevanato et al.; Applied Radiation and Isotopes, 69, 369, 2011.
- [2] T. Fujibuchi et al.; Nuclear Instruments and Methods in Physics Research, B 349, 239, 2015.

주체107(2018)년 6월 5일 원고접수

Research on Plastic Detector for Detection of Fast Neutron

Hong Yun Hak, Song Chol Uk

We have manufactured neutron detector with Polystyrene+Tetraphenyl-butadiene that is able to detect fast neutron and have studied the fast neutron detection character by using Pu-Be source.

Key words: plastic detector, measurement of fast neutron