## Idea del Kernel SVM

### **SVM** separa bien estos puntos















### ¿Por qué no funciona?

Porque esta nube de puntos no es LINEALMENTE SEPARABLE

### Linealmente Separable



# Espacios de Dimensión Superior

























#### Pero hay un precio a pagar...

Transformar una variable a un Espacio de Dimension Superior puede ser muy costoso computacionalmente

## El truco del Kernel

$$K\left(\overrightarrow{x},\overrightarrow{l}\right) = e^{-\frac{\left\|\overrightarrow{x}-\overrightarrow{l}\right\|^2}{2\sigma^2}}$$



$$K\left(\overrightarrow{x},\overrightarrow{l}^{i}\right) = e^{-\frac{\left\|\overrightarrow{x}-\overrightarrow{l}^{i}\right\|^{2}}{2\sigma^{2}}}$$

Image source: http://www.cs.toronto.edu/~duvenaud/cookbook/index.htm









# Tipos de funciones de Kernel

### Tipo de Funciones de Kernel



**Kernel Gaussiano RBF** 

$$K\left(\overrightarrow{x},\overrightarrow{l}^{i}\right) = e^{-\frac{\left\|\overrightarrow{x}-\overrightarrow{l}^{i}\right\|^{2}}{2\sigma^{2}}}$$

**Kernel Sigmoide** 

$$K(X,Y) = \tanh(\gamma \cdot X^T Y + r)$$

**Kernel Polinómico** 

$$K(X,Y) = (\gamma \cdot X^T Y + r)^d, \ \gamma > 0$$