

인공지능 입문

Part 02. 인공지능과 기술

Chapter 06. 인공지능을 실현하기 위한 기술

목차

- 1. 인공지능을 실현하기 위한 기술 요소
- 2. 인공지능을 위한 하드웨어 기술 : GPU
- 3. 인공지능을 위한 네트워크 기술: 5G
- 4. 인공지능을 위한 인프라 기술: 클라우드
- 5. 인공지능을 위한 데이터 기술 : 사물인터넷

!. 인공지능 서비스 개발 과정

1) 데이터 수집

- 데이터 수집 방법은 매우 다양함
- 쇼핑몰 사이트에 기록된 사용자 문의를 이용 → 하지만 이 정도 데이터로는 챗 봇을 구축하기에 턱없이 부족함
- 대안으로 생각해 볼 수 있는 방법이 다른 회사와의 협업

그림 6-1 챗봇

I. 인공지능 서비스 개발 과정

2) 데이터 저장 및 처리

- 데이터 수집 방법이 마련되었다면, 장치를 마련해 수집된 데이터를 저장하고 처리해야 함
- 이러한 장치는 직접 구매하여 구축할 수도 있고, 간편하게 클라우드에서 제공하는 서비스를 이용할 수도 있음
- 초기 투자비용을 최소화하고 싶다면 사용량 기반 요금(Pay-per-use) 형식의 클라우드를 사용하는 것이 효율적임

I. 인공지능 서비스 개발 과정

3) 프로그램 제작

수집한 데이터를 클라우드에 저장한 후에는 인공지능 알고리즘을 이용하여사용자 질의에 대한 패턴을 분석하고 질의에 답변이 가능한 프로그램을 만듦

4) 서비스 배포

- 프로그램 제작이 완료되면 서비스를 배포해야 함
- 클라우드에서 제공하는 서비스를 이용하여 간편하게 배포·유지·관리 가능

Ⅱ. 인공지능 서비스 개발을 위한 기술

- 데이터 수집에 필요한 <u>사물인터넷 기술</u>
- 데이터를 전송하기 위한 <u>5G 기술</u>
- 데이터를 저장하고 처리하기 위한 <u>클라우드 기술</u>
- 패턴 분석을 위한 인공지능 기술

02

인공지능을 위한 하드웨어 기술: GPU

- 중앙처리장치(이하 CPU)만을 사용했던 시기에는 데이터를 처리하는 데 시간
 이 너무 많이 걸려서 실용적이지 못했음
- 그래픽처리장치(이하 GPU)를 연산에 적용하자 학습 속도가 가속화되면서 인 공지능이 더욱더 발전

(a) CPU : 인텔 코어 i9

그림 6-4 CPU와 GPU

(b) GPU: 엔비디아 지포스 RTX 3080

l. GPU를 활용한 인공지능의 도약

- GPU(Graphic Processing Unit)
 - 그래픽 처리 장치
 - 컴퓨터의 그래픽 요소를 처리하기 위해 만들어진 기술
 - 범용적인 컴퓨터에서도 사용할 수 있는 GPGPU(General-Purpose computing on GPU) 기술 개발 → GPGPU의 도입으로 인공지능 학습 시간이 짧아짐

I. GPU를 활용한 인공지능의 도약

- 인공지능은 학습을 위해 행렬곱 연산을 수행함
- 행렬: 행과 열의 조합으로 구성

- 행렬곱: 행렬과 행렬을 곱한 것으로, 인공지능 연산에서 많이 사용

I. GPU를 활용한 인공지능의 도약

- [그림 6-7]과 같이 두 개의 행렬이 있을 때 이들에 대한 곱셈

$$\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} \mathbf{x} \begin{bmatrix} 0 & 6 & 1 \\ 3 & 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \times 0 + (-2) \times 3 & 5 \times 6 + (-2) \times 5 & 5 \times 1 + (-2) \times 2 \\ 3 \times 0 + 1 \times 3 & 3 \times 6 + 1 \times 5 & 3 \times 1 + 1 \times 2 \end{bmatrix} = \begin{bmatrix} -6 & 20 & 1 \\ 3 & 23 & 5 \end{bmatrix}$$

그림 6-7 행렬곱 연산 수행

- 원리에 대한 이해를 돕기 위해 단순한 예를 들었지만 실제 인공지능(딥러닝)에서의 학습은 훨씬 더 복잡한 연산들이 수행됨
- 하지만 GPU 기술의 도입으로 딥러닝에서는 빠른 연산을 할 수 있게 되었고,그 결과 현재의 인공지능까지 발전할 수 있었음

II. CPU와 GPU의 차이

- 1) 구조적 측면에서의 차이
- CPU의 구성
 - 연산처리장치(ALU), 제어장치(CU), 캐시(Cache)
- GPU의 구성
 - 연산을 빠른 속도로 처리하기 위해 다수의 연산처리장치(ALU)로 구성

그림 6-8 CPU와 GPU의 구조 비교

II. CPU와 GPU의 차이

1) 구조적 측면에서의 차이

- CPU: 데이터 처리와 더불어 멀티태스킹을 위해 작업의 우선순위를 정하고 전환하며, 가상메모리를 관리하는 등 컴퓨터를 지휘하는 역할 수행
- GPU : 픽셀로 이루어진 영상을 처리하는 용도로 쓰기 위해 만들어졌으므로,
 반복적이고 비슷한 대량의 연산을 병렬적으로 처리하는 데 적합함

II. CPU와 GPU의 차이

2) 처리 방식에서의 차이

- 작업 처리 방식에서의 CPU와 GPU의 차이
 - CPU : 직렬 처리에 최적화된 몇 개의 코어로만 구성
 - GPU: 병렬 처리용으로 설계된 수천 개의 코어로 구성

그림 6-10 CPU와 GPU 코어 수 차이

II. CPU와 GPU의 차이

3) 성능 측면에서의 차이

- CPU : 복잡한 계산을 코어의 개수만큼씩 처리하므로, 간단한 계산식을 여러 개 처리하려면 오래 걸림
- GPU : 간단한 계산식을 동시에 빠르게 처리하지만, 복잡한 수식은 CPU보다연산속도가 느림

II. CPU와 GPU의 차이

- 3) 성능 측면에서의 차이
- CPU와 GPU를 비교 정리한 표

표 6-1 CPU와 GPU 비교

구분	CPU	GPU	
코어(Core) 수	적음	많음	
작업 처리 방식	순차적	병렬적	
연산 방식	소수의 연산	수천 개의 연산	
장점	낮은 대기시간	높은 처리량	

II. CPU와 GPU의 차이

- 3) 성능 측면에서의 차이
 - 처리해야 할 명령어와 데이터의 성격에 따라 때로는 CPU가, 때로는 GPU가 빠를 수 있음
 - <u>인공지능의 학습</u>은 행렬곱, 미분과 같이 수식의 풀이가 중요하기 때문에 GPU
 를 사용하는 것이 더 적합

l. 5G의 특성

- 5G
 - 5세대 이동통신
 - LTE보다 수십 배 빠른 속도(20Gbps)와 안정성
 - 4차 산업혁명의 핵심기술을 현실화시킬 통신 기술

표 6-2 이동통신 세대별 특징

구분	1G	2G	3G	4G(LTE)	5G
상용화 시기	1984년	2000년	2006년	2011년	2019년
최고 속도	14kbps	144kbps	14Mbps	100Mbps	20Gbps
주요 서비스	음성	음성 + 문자	화상	동영상	IoT, VR, AR
차별성	휴대 가능한 통신 기기	보편화된 이동통신	높아진 인터넷 접근성	고속 인터넷	초고속, 초연결, 초저지연

l. 5G의 특성

- 5G의 특성
 - 초고속성
 - 초연결성
 - 초저지연성

I. 5G의 특성

1) 초고속성

- 5G의 속도는 LTE보다 20배 빠른 최대 20Gbps(LTE보다 100배 많은 양의 데이터를 주고받음)

2) 초연결성

- 5G는 단위 면적(1km2)당 접속 가능 기기 수가 100만 대를 넘어서기 때문에 사물인터넷 분야에 서 5G 기술은 아주 활용도가 높음

3) 초저지연성

- 5G는 LTE 대비 10분의 1 수준인 1ms 지연시간을 가지므로, 끊김 없는 연결성을 제공(초저지연성)

I. 5G의 특성

표 6-3 4G와 5G의 비교

구분	4G	5G	비고
최대 전송 속도	1Gbps(2분 25초)	20Gbps(7,2초)	=
고속 이동성(최대)	350Km/h	500Km/h	고속철도에서 끊김 없이 제공 가능
지연시간	10ms	1ms	-
기기 최대 연결 수	10만 대/km²	100만 대/km²	4G 대비 10배 이상의 기기 수용

II. 5G로 구현하는 인공지능

- 1) 5G의 초고속성 활용
 - 5G는 20Gbps의 속도를 제공
 - 이렇게 빠른 속도를 활용하면 용량이 매우 큰 실감형 콘텐츠의 유통 및 서비스 활성화가 가능

(a) 가상현실

그림 6-13 가상현실과 증강현실

(b) 증강현실

II. 5G로 구현하는 인공지능

- 2) 5G의 초연결성 활용
 - 다양한 스마트 기기의 연결 및 데이터 수집·제어·전송에는 5G의 초연결성 필수
 - 5G 시대에는 진정한 스마트홈 시대가 시작될 것

그림 6-14 스마트시티

II. 5G로 구현하는 인공지능

- 3) 5G의 초저지연성 활용
- 초저지연성을 잘 활용할 수 있는 분야
 - 자율주행차 : 주변 도로 환경을 인지하고 즉각적으로 행동하기 위해 필요
 - 스마트팩토리: 물리적 시설을 가상으로 투영시킨 공장(디지털 트윈)을 통해모든 현황을 실시간으로 모니터링 가능

그림 6-15 디지털 트윈

04

인공지능을 위한 인프라 기술 : 클라우드

04. 인공지능을 위한 인프라 기술 : 클라우드

I. 클라우드의 개념

- 클라우드 컴퓨팅(Cloud Computing, 이하 클라우드)
 - 인터넷 어딘가에 존재하는 컴퓨팅 자원을 필요할 때마다 컴퓨터나 스마트폰
 등에 불러와 사용하는 서비스
 - 구름을 뜻하는 클라우드(Cloud)라는 단어처럼 구름에 덮여 보이지 않는 듯한 컴퓨팅 자원을 원하는 대로 가져다 사용할 수 있음

04. 인공지능을 위한 인프라 기술: 클라우드

Ⅱ. 클라우드의 장점

1) 신속한 인프라 도입

- 클라우드는 컴퓨팅 자원을 빌려 쓰겠다는 신청서를 제출하면 10분 내로 인프라를 도입해서 서비스 개발 가능
- 그만큼 인프라 도입에 드는 시간을 절감하고 서비스 제공 시기를 앞당길 수 있음

04. 인공지능을 위한 인프라 기술 : 클라우드

Ⅱ. 클라우드의 장점

2) 유연한 인프라 관리

- 기업에서 인프라를 직접 구매하여 구축할 경우에는 서비스를 이용할 사용자 의 규모를 예측한 후 인프라를 도입해야 함

그림 6-17 클라우드 도입으로 인한 유연한 인프라 관리 가능

» 수요를 예측하기 힘들 경우에는 클라우드 서비스를 사용하는 것이 편리

04. 인공지능을 위한 인프라 기술: 클라우드

Ⅱ. 클라우드의 장점

3) 손쉬운 글로벌 서비스

- 클라우드 사업자가 미리 구축한 글로벌 데이터센터를 활용해 서비스 제공 가능
- 클라우드 사업자는 전 세계 주요 대륙에 보통 30~40개, 많게는 100개가 넘는 데 이터센터를 갖추고 있음

그림 6-18 마이크로소프트의 글로벌 데이터센터 위치

04. 인공지능을 위한 인프라 기술: 클라우드

Ⅱ. 클라우드의 장점

4) 강력한 보안과 장애 없는 서비스

- 많은 클라우드 사업자는 데이터를 안전하게 보관할 수 있도록 보안에 신경 씀
- 고객들의 서비스를 24시간 내내 쉬지 않고 유지하기 위해, 동일한 서비스를 다수의 장비에 구성하거나 체계적인 백업을 유지하고 있음

그림 6-19 장애 없는 서비스 제공

04. 인공지능을 위한 인프라 기술 : 클라우드

Ⅲ. 클라우드의 단점

1) 비싼 이용 비용

- 클라우드는 서비스 운영 비용이 높음
- 기업이 서비스를 제공함에 있어 비용을 가장 중요한 요소로 생각한다면, 클라우드는 적절한 대안이 아닐 수 있음

04. 인공지능을 위한 인프라 기술: 클라우드

Ⅲ. 클라우드의 단점

2) 데이터 보관의 불안함

- 보안상 클라우드 사업자가 고객의 데이터에 접근할 수 없을 뿐만 아니라 외부
 에 제공하지 않는다고 하지만, 기업 입장에서는 불안한 것이 사실
- 그래서 데이터의 외부 유출이 곤란한 기업이나 공공기관은 클라우드 도입을 신중하게 결정해야 함

그림 6-21 데이터 보관의 불안함

04. 인공지능을 위한 인프라 기술: 클라우드

IV. 클라우드 서비스의 유형

- 서비스 관리 주체와 수준에 따른 클라우드 서비스의 구분
 - laaS
 - PaaS
 - SaaS

04. 인공지능을 위한 인프라 기술 : 클라우드

IV. 클라우드 서비스의 유형

- 1) laaS(Infrastructure as a Service)
- IaaS
 - 인프라에 대한 서비스
 - 사용자가 관리할 수 있는 범위가가장 넓은 클라우드 컴퓨팅 서비스

IV. 클라우드 서비스의 유형

- 2) PaaS(Platform as a Service)
- PaaS
 - 플랫폼에 대한 서비스
 - 클라우드 위에 사용자가 서비스를 개발할 수 있도록 개발 환경을 서비스 형태로 제공

IV. 클라우드 서비스의 유형

- 3) SaaS(Software as a Service)
- SaaS
 - 소프트웨어에 대한 서비스
 - 가장 완성된 형태의 클라우드 서비스

V. 클라우드와 인공지능의 관계

1) AlaaS(Al as a Service)

AlaaS

클라우드 환경에서 인공지능 프레임워크 및 알고리즘을 빠르고 안정적이며 비교적 저렴하게 사용할 수 있도록 제공하는 서비스

그림 6-25 AlaaS

V. 클라우드와 인공지능의 관계

2) 클라우드에서 제공하는 API

클라우드 사업자는 이용자들이 AlaaS를 통해 인공지능을 쉽게 이용할 수 있도
 록 다양한 API(Application Programming Interface)를 제공

표 6-4 클라우드 서비스 시장 규모(단위: 억 달러)

클라우드 서비스 종류	2018년 지출	2018년 시장점유율	2019년 지출	2019년 시장점유율	전년 대비 성장률
아마존 웹서비스(AWS)	254	32.7%	346	32,3%	36.0%
마이크로소프트 애저(Azure)	110	14.2%	181	16,9%	63,9%
구글 클라우드	33	4.2%	62	5.8%	87.8%
알리바바 클라우드	32	4.1%	52	4.9%	63.8%
기타	349	44.8%	430	40.1%	23.3%
합계	778	100%	1,071	100%	37,6%

V. 클라우드와 인공지능의 관계

- 2) 클라우드에서 제공하는 API
- 아마존 웹서비스 AWS
 - 이미지 인식, 문자-음성 전환, 자연어 인식 등의 API 제공

그림 6-26 인공자능 스피커 '아마존 에코'

- » 아마존 레코그니션(Amazon Recognition): 이미지 인식과 분석 서비스
- » 아마존 폴리(Amazon Polly) : 문자를 음성으로 바꿔주는 기능
- » 아마존 렉스(Amazon Lex): 자동 음성 인식과 자연어 인식 기능
- » 이러한 기능들을 이용한다면 아마존에서 제공하는 아마존 에코(Amazon Echo)와 같은 인공지능 스피커를 손쉽게 개발 가능

V. 클라우드와 인공지능의 관계

- 2) 클라우드에서 제공하는 API
 - **마이크로소프트:** 기존 인공지능 API의 한계를 뛰어넘는 커스텀 비전(사진 인식)과 커스텀 스피치(음성 인식)를 제공
 - 구글: 클라우드 기반 지능형 비디오 분석 API를 제공

그림 6-27 지능형 비디오 분석

05

인공지능을 위한 데이터 기술 : 사물인터넷

I. 사물인터넷의 개념

- 사물인터넷(IoT, Internet of Things)
 - 각종 사물에 센서와 통신 기능을 내장하여 인터넷에 연결하는 기술
 - 무선통신을 통해 각종 사물과 연결됨

그림 6-28 사물인터넷

Ⅱ. 사물인터넷 기술의 3요소

- 1) 센싱 기술
- 센싱(Sensing) 기술
 - 사물이 가진 데이터를 인식하고 추출해 인터넷으로 전송하는 기술

- 2) 유무선 네트워크 기술
- 유무선 네트워크 기술
 - 사람과 사물, 서비스 등의 분산된 컴퓨팅 자원을 유무선 통신으로 연결하여 고속처리, 병렬처리하는 기술

Ⅱ. 사물인터넷 기술의 3요소

- 3) 서비스 인터페이스 기술
- 서비스 인터페이스 기술
 - 각종 서비스 분야와 형태에 알맞게 정보를 가공·처리·융합하는 기술

그림 6-29 사물인터넷 기술의 3요소

III. 사물인터넷 기술의 진화

- ① 1단계-연결형 IoT(Connectivity IoT)
 - 2015년 전후로 등장했으며 사물과 사물의 연결성이 진행되는 단계.
- ② 2단계-지능형 IoT(Intelligence IoT)
 - 사물이 수집한 정보를 이용하여 원격에서 사물을 제어하는 단계.
- ③ 3단계-자율형 IoT(Autonomy IoT)
 - 사물과 사물이 분산협업지능을 기반으로 상호소통하며 공간·상황·사물 데이터의 복합처리를 통해 스스로 의사결정을 하고 물리세계(현실세계)를 자율적으로 제어하는 단계

III. 사물인터넷 기술의 진화

- AloT (Al of Things)
 - 인공지능(AI)과 사물인터넷(IoT)이 결합된 기술
 - 이 기술을 통해 사물인터넷 기기 스스로 문제를 인지하고 조치할 수 있음

그림 6-30 AloT 기반 기술

Ⅳ. 사물인터넷과 인공지능의 결합

- 사물인터넷은 다양한 센서를 갖춘 IoT 기기를 통해 수집한 데이터를 네트워크를 통해 전달하는 역할을 함(24시간 내내 데이터 수집)
- 클라우드에 수집된 데이터는 인공지능 알고리즘을 이용하여 분석되며, 그 결과는 다양한 산업 영역에 활용 가능

그림 6-31 인공지능과 시물인터넷의 결합

- 1) 드론 배송 서비스
- 드론(Drone)
 - 무선전파로 조종할 수 있는 무인항공기
 - 실생활에서는 주로 배송 서비스에 활용 가능성

그림 6-32 드론 배송 서비스

- 2) 스마트홈
- 스마트홈(Smart Home)
 - 가전제품을 비롯한 집안의 모든 장치를 센서로 연결해 제어하는 기술
 - 스마트홈 분야에 인공지능과 사물인터넷이 결합되면 스마트 기기를 이용해
 다양한 제어 가능

- 3) 스마트팜
- 스마트팜(Smart Farm)
 - 농업 · 임업 · 축산업 · 수산업의 '생산-가공-유통' 단계에 정보통신기술을 접목 하여 지능화한 농업 시스템
 - 스마트트팜 내 설치된 사물인터넷 기기는 온도, 습도, 햇빛 등을 스스로 조절

그림 6-34 스마트팜

- 4) 스마트팩토리
- 스마트팩토리(Smart Factory)
 - 설계, 개발, 제조, 유통 등의 과정에 정보통신기술을 적용하여 생산성, 품질, 고 객만족도를 향상시키는 지능형 생산공장

그림 6-35 스마트팩토리

Thank You!

