SMART FARMER-IOT ENABLED SMART FARMING APPLICATION

NAALAIYATHIRAN IBM PROJECT REPORT

Date	20 November 2022
Team ID	PNT2022TMID29937
Submitted by	Venmathi.T (610519106076) Mithulkiruthik.N (610519106034) Harivignesh.S (610519106018) Deepika.M.S (610519106008)

TABLE OF CONTENT

S.NO	TITLE
01.	INTRODUCTION
	PROJECT REVIEW
	PURPOSE
02.	LITERATURE SURVEY
	PROBLEM STATEMENT
03.	IDEATION AND PROPOSED SOLUTION
	EMPATHY MAP

IDEATION AND BRAINSTORMING

	PROPOSED SOLUTION
	PROBLEM SOLUTION FIT
04.	REQUIREMENT ANALYSIS
	FUNCTIONAL REQUIREMENT
	NON-FUNCTIONAL REQUIREMENT
05.	PROJECT DESIGN
	DATA FLOW DIAGRAM
	SOLUTION & TECHNICAL ARCHITECTURE
	USER STORIES
06.	PROJECT PLANNING AND SCHEDULING
	SPRINT PLANNING, ESTIMATION, DELIVERY & SCHEDULING
07.	CODING & SOLUTION
08.	TESTING
	TEST CASE

	USER ACCEPTANCE TESTING
09.	RESULT
	PERFORMANCE
10.	ADVANTAGES & DISADVANTAGES
11.	FUTURE SCOPE
12.	CONCLUSION

01. INTRODUCTION

PROJECT OVERVIEW:

- O IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, temperature, and humidity using some sensors.
- Farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers.

PURPOSE:

- India is agriculture sector, on either sides, is losing ground every day, affecting the ecosystems output capacity. In order to restore vitality and put agriculture system necessitates a great deal of upkeep, knowledge, and oversight.
- The IoT is a network of interconnected devices thit can transmit and receive data over the internet and carry out tasks without human involvement.
- Agriculture provides a wealth of data analysis parameter, resulting in increased crop yields. The use of IoT devices in smart farming aids in the modernization of information and communication.

- Agriculture provides a wealth of data analysis parameter, resulting in increased crop yields. The use of IoT devices in smart farming aids in the modernization of information and communication.
- For better crop growth moisture, mineral, light and other factors can be assumed. This research looks into a few of these characteristics for data analysis with the goal of assisting users in making better agriculture decision using IoT.
- The technique is intended to help farmers increase their agricultural output.

02. LITERATURE SURVEY

PROBLEM STATEMENT:

Problem statement	l am	I'm trying to	But	Because	Which makes me feel
How the plants get the requirements?	Agriculturist	Gets sufficient nutrition	Areas is in hectare	Production is large	Difficult
By which method the agriculturist know the needs of crop form they are?	Agriculturist	Get information from where they are	The distance is too long	The agriculture field is in huge sectors	Hard to monitor
How can they use pesticides?	Agriculturist	Detect the pests to use the pesticides	Different crops needed various level or various types of pesticide	Each crop has its unique nature	confusion
What is the role of IoT in agriculture?	Agriculturist	Better crop production	Expensive, require continuous internet	Need is huge and mandatory	Highly critical

The four quadrants reflect four key traits, which the user demonstrated/possessed during the observation/research stage.

03.IDEATION AND PROPOSED SOLUTION

EMPATHY MAP:

It is a collaborative tool teams can use to gain a deeper insight into the (customers) agriculturist. An empathy map will help you understand your users(agriculturist) needs while we develop a deeper understanding of the person. The four quadrants reflect four key traits, which the user demonstrate during the observation stage.

IDEATION AND BRAINSTORMING:

PROPOSED SOLUTION:

S.NO	PARAMETER	DESCRIPTION			
1	Problem statement	Smart farming – detect the crop needed			
		from where we are.			
2	Idea/ solution description	This project helps the farmers to detect the needs of the crops (like, level of nutrition, pesticides, temperature, soil moisture & so on.,) and to know the cultivating and harvesting period of the crop. That we can know in the form of automatic message in mobile by using the sensors.			
3	Novelty /Uniqueness	Each & every crop situation can be detect & send their need to admin through GPS.			
4	Social impact / Customer satisfaction	Agriculturist can provide the healthy foods & crops to the consumers without the damage of the crops			
5	Business model (Revenue model)	 ⇒ Easy to yield the large production ⇒ Huge profit ⇒ Easy to implement 			
6	Scalability of the solution	High scalability			

PROBLEM SOLUTION FIT:

03. REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)			
FR-1	User Registration	Registration through Gmail Registration through form			
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP			
FR-3	User Login Login with Email Id and Password				
FR-4	Weather To find the information of climate in a particular a				
FR-5	FR-5 Sensors To show data from different sensors like moisture, temperature, weather etc				
FR-6	Exit	After user checked every information, user can exit the application			

NON-FUNCTIONAL REQUIREMENT:

FR No.	Non-Functional Requirement	Description		
NFR-1	Usability	Effective and Easy to Use, Time consumption is less		
NFR-2	Security	The data will be protected from the unauthorized users		
NFR-3	Reliability	To know the real-time status of the crops by capturing the data from sensors.		
NFR-4	Performance	Due to the high performance, productivity is high		
NFR-5	Availability	All the time, 24/7 it will be available		
NFR-6	Scalability	Scalability is main concern for IoT platform. It is perfectly scalable many new constraints can be added		

05.PROJECT DESIGN

DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

 The Arduino UNO is a processing unit to process the data from the sensors.

- By using the various sensors the soil, temperature, moisture content and humidity parameters are measured.
- As a result of these, the information from the sensors and other equipments are stored in IBM cloud

SOLUTION AND TECHNICAL ARCHITECTURE:

- The various parameters like temperature, soil moistures, weather detection, humidity, volve control are sensed and control by using the different sensors.
- The sensed values are transfer to the Arduino UNO that process the data obtained from the sensors.
- The GSM module is connected to the Arduino UNO and the data transfer happens then the data will be stored in cloud storage.
- NODE-RED is used to write the hardware, software, and APIs.
- The MQTT protocol is followed for the communication.
- All the collected data are provided to the users (Agriculturist) through a mobile application that was developed using the MIT app inventor.
- The user (Agriculturist) can decide through an app, whether to water the crop or not depending upon the sensor detection. By using the app, users (Agriculturist) can operate the motor switch by remotely.

USER STORIES:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	Agriculturist can register the application through Gmail. While registering through Gmail, by entering the password.	I can access my account / dashboard	High	Sprint-1
		USN-2	Agriculturist will receive confirmation email once they have registered for the application.	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	User can also register for the application through Facebook.	I can register & access the dashboard with Facebook Login	Low	Sprint-2
	6	USN-4	As a user, I can register for the application through Gmail	: 550	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	×	, A contract of		50	
Customer (Web user)		2.				
Customer Care Executive						
Administrator	(ii					

06.PROJECT PLANNING AND SCHEDULING SPRINT

PLANNING AND ESTIMATION:

Sprint	Functional Requirement (<u>Epic</u>)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Mithulkiruthik.N
Sprint-2	Software	USN-2	IBM Watson IoT platform, workflow for IoT scenarios using Node-Red	2	High	Deepika M.S.
Sprint-3	MIT app inventor	USN-3	Develop an application for the Smart farmer project using MIT App Inventor	2	High	Harivignesh s Mithulkiruthik N
Sprint-3	Dashboard	USN-3	Design the mobile application using MIT	2	High	Venmathi T Deepika M.S Harivignesh s Mithulkiruthik N
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Venmathi I Deepika M.S

07.CODING AND SOLUTION

th

08.TESTING

TEST CASES:

USER ACCEPTENCE TESTING:

09.RESULT

PERFORMANCE:

10.ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- Agriculturists can monitor the health of farm crops, even if the fields are far, results in high production.
- O It can assist in the smarter control of homes through mobile phone.

- O IoT-enabled agriculture allows agriculturist to monitor their product and conditions in real-time.
- It helps agriculturists to better understand the important factors such as water, topography, aspect, vegetation and soil types.

DISADVANTAGES:

- The smart farming based equipment require farmers to understand and learn the use of technology.
- Rural part of most of the developing countries do not fulfil this requirement.
- O More over internet connection is slower

11.FUTURE SCOPE

IoT smart agriculture are designed to help monitor crop fields using sensors and by automating irrigation systems. As a result, farmers and associated brands can easily monitor the field conditions from anywhere without any hassle. To managing farms using modern Information and communication technologies to increase the quantity and quality of products while optimizing the human labour required. We can update the this project by using solar power mechanism. So that the power supply from electric poles can be replaced with solar panels.

12.CONCLUSION

The agricultural sector is of vital importance for the region. It is undergoing a process of transition to a market economy, with substantial changes in the social, legal, structural & productive. The way to maintain

a parity between the increasing pressure of food demand and food production in the future.

GITHUP LINK:

https://github.com/IBM-EPBL/IBM-Project314491660200440