3-laboratoriya jumısı Rezistiv shınjırlarda Kirxgof nızamların eksperimental izertlew

Jumistiń maqseti: tok hám kernew dárekleri bolgan rezistiv shinjirlarda Kirxgof nizamları ámel etiwin tekseriw.

1. Qısqasha teoriyalıq mağlıwmat

Elektr shinjirlarının analizi hám sintez etiliwinde nemis alımı Kirxgof janalıq ashqan nızamlar jatadı. Olar barlıq - sızıqlı hám nochiziqli elektr shinjirları ushin tiyisli bolıp tabıladı.

Kirxgofning birinshi nızamı - elektr shınjırınıń qandayda bir túyinine jalganıwshı barlıq shaqapshalarındağı toklardın algebrik jıyındısı nólge teń.

1-súwret. Túyinge mısal

Bul nızamga kóre, shınjırdın qandayda bir tüyinine n ta shaqapsha jalgangan hám olar tokları I_1 , I_2 , . . , I_n bolsa, ol jagdayda waqtının qálegen oni ushın

$$\sum_{k=1}^{n} I_k = 0 (3.1)$$

Bunda toklardın bağdarları itibarğa alınıp, túyinge kirip atırğan hám odan shığıp atırğan toklar belgileri teris bolıwı shárt.

Mısal retinde 1- suwretde qandayda bir elektr shınjırının C túyinindegi bağdarları saylanğan: oń belgili (túyinge kiretuğın) I_2 , I_4 hám keri belgili (túyinnen shığıwshı) I_1 , I_4 tokları sxeması keltirilgen. Kirxgoftın birinshi nızamına muwapıq - $I_1 + I_2 + I_3$ - $I_4 = 0$.

Kirxgoftıń ekinshi nızamı - elektr shınjırınıń qálegen jabıq konturındağı shaqapshalarındağı EJKlardıń algebrik jıyındısı, kernew páseyiwinıń algebrik jıyındısına teń. Bul nızamga kóre, eger kontur quramında kernewleri

u₁, u₂, ..., u_m bolgan m ta shaqapsha ámeldegi bolsa, waqtınin qálegen oni ushın

$$\sum_{k=1}^{n} E_k = \sum_{k=1}^{m} I_k R_k \tag{3.2}$$

Bunda konturdı aylanıp ótiw (qálegen) bağdarına shaqapsha kernewi (EJKi) uyqas bolsa, onıń belgisi «+» hám keri bolganda - belgisi «-» qabıl etiledi, dep shama menen oylaymız.

2. Dáslepki esaplawlar

2. 1. Om nızamı járdeminde R₁, R₂, R₃ rezistorlardagi (2.2-súwret) kernewler páseyiwi esaplab shığılasın.

2-súwret. Esaplaw ushin sxema

Shınjırdağı tok tómendegine teń: $I=\frac{E}{R_1+R_2+R_3}$. Ol halda rezistorlardagi kernewler páseyiwi

$$U_{R1} = I \cdot R_1 = \frac{E \cdot R_1}{R_1 + R_2 + R_3}; U_{R2} = I \cdot R_2 = \frac{E \cdot R_2}{R_1 + R_2 + R_3}; U_{R3} = I \cdot R_3 = \frac{E \cdot R_3}{R_1 + R_2 + R_3}.$$

Esaplaw ushın berilgen bahalardı 2.1-kesteden alamız. Esaplawlar nátiyjelerin bolsa 2-kestege kiritemiz.

2.2. Kirxgoftıń ekinshi nızamı elektr shınjırları ushın haqli ekenin tastıyıqlaw ushın quramında kernew deregi hám úsh rezistori bolgan eki konturlı (3-súwret) shınjırdı tekseremiz.

3-súwret. Eki konturlı shınjır

Shaqapshalar tokları hám rezistorlardagi kernewler páseyiwin esaplaw ushın analitik ańlatpalar Om hám Kirxgof nızamlarına tiykarlanadı.

Om nizamina kóre:
$$I_1 = \frac{E}{R_1 + \frac{R_3 R_2}{R_3 + R_2}}; \quad I_2 = \frac{E - I_1 R_1}{R_2}; \quad I_3 = \frac{E - I_1 R_1}{R_3}.$$

Esaplawlardıń tuwrı ekenligin tekseriw ushın Kirxgoftıń birinshi nızamınan paydalanamız.

(I túyin ushın): $I_1 - I_2 - I_3 = 0$.

tómendegishe esaplanadı:

Kirxgoftıń ekinshi nızamı tiykarında

I kontur ushin: $E = I_1 \cdot R_1 + I_2 \cdot R_2$; II kontur ushin: $I_3 \cdot R_3 - I_2 \cdot R_2 = 0$.

Esaplaw ushın parametrler bahaların 2.1-kesteden alınadı. Esaplaw nátiyjelerin bolsa 2.3-kestege kiritiledi.

Esaplaw ushin berilgen bahalar

1-keste

Stend №	Ólsh. birlik.	1	2	3	4	5	6	7	8	9	10	11	12	13
Е	V	3, 5	4	4, 5	5	5, 5	6	6, 5	7	7, 5	8	8, 5	9	9, 5
R_1	Ω	50	50	60	70	80	10	10	10	10	10	10	10	10
		0	0	0	0	0	00	00	00	00	00	00	00	00
R_2	Ω	30	35	50	50	50	50	60	70	80	70	85	85	85
		0	0	0	0	0	0	0	0	0	0	0	0	0
R_3	Ω	10	15	15	10	15	30	25	30	35	60	55	60	70
		0	0	0	0	0	0	0	0	0	0	0	0	0

3. Jumisti orinlaw tártibi

- 1. 4-súwretde kelirilgan sxemanı qosıń. Parametrleri bahaların 1-kesteden saylangan varianttan alıń.
- 2. Ólshew tártibi:
- derek E2 ge voltmetr V1 dı jalgań hám shıgıw kernewin retlew dástegi járdeminde E2 (1-keste) mugdarında ornatıń;
- voltmetr V2 dan R_1 , R_2 , R_3 rezistorlarga jalganıp, voltmetr kórsetkishin 2-kestege jazıń.

4-súwret. Esaplaw ushin sxema

Esaplawlar hám ólshewler nátiyjeleri

2-keste

Variant №	E_2	I	U_{R1}	U_{R2}	U_{R3}
variant no	V	A	V	V	V
Dáslepki esaplawlar					
Tájiriybe					

- 3. Óz variantıńız ushın 2.1-kestede keltirilgen parametrlerdi tańlap, shınjır sxemasın (2.4-súwret) qosıń.
 - 2.4. Ólshewler tómendegi tártipte orınlansın:
- voltmetr V1 ni E2 derekke jalgań hám shigiw kernewin retlew dástegi járdeminde E2 (1-keste) ma`nisi mugdarında ornatıń;
 - keyininen voltmetr V2 dan R₁, R₂, R₃ rezistorlarga jalganıp, voltmetr korsetkishin 3-kestege jazıń.

5-súwret. Esaplaw ushin sxema

Esaplawlar hám ólshewler nátiyjeleri

3-keste

Variant №	E_2	I_1	I_2	I_3	U_{R1}	U_{R2}	U_{R3}
	V	A	A	A	V	V	V
Dáslepki esaplawlar							
Eksperiment							

- 4. Ólshew nátiyjelerine qayta islew
- 4.1. Tok ma`nisin esaplaw (2.4-súwret):

$$I = \frac{U_{R1}}{R_1}; \quad I = \frac{U_{R2}}{R_2}; \quad I = \frac{U_{R3}}{R_3}.$$

Úsh ańlatpalarda da tok I bahaları birdey boliwi shárt.

4.2. Shaqapshalardagi toklardı esaplaw (2.5-súwret):

$$I_1 = \frac{U_{R1}}{R_1}; \quad I_2 = \frac{U_2}{R_2}; \quad I_3 = \frac{U_{R3}}{R_3}.$$

5. Esabat quramı

- 5.1. Laboratoriya jumısından maqset.
- 5.2. Úyrenilip atırgan elektr shınjır sxemisi hám parametrlerinin berilgen bahaları.
- 5.3. Esaplaw ańlatpaları.
- 5.4. Dáslepki esaplar hám eksperiment nátiyjeleri kestesi.
- 5.5. Izertlew nátiyjeleri kestesi boyınsha juwmaqlar.

6. Qadagalaw sorawları

- 6.1. Kirxgoftıń birinshi hám ekinshi nızamları tariypini keltiriń.
- 6.2. Shinjir quramında tok deregi ámeldegi bolganda Kirxgof nızamları boyınsha teńlemeler dúziwdiń qanday qásiyetleri bar?
 - 6.3. «1» túyin ushın Kirxgoftıń birinshi nızamı boyınsha jazılgan teńlemeni saylań.

B.
$$I_1 + I_2 + I_3 + I_4 + I_5 = 0$$

C.
$$I_1 - I_2 - I_3 + I_4 - I_5 = 0$$

D.
$$-I_1 + I_2 + I_3 + I_4 + I_5 = 0$$

6.4. Tómendegi shınjır ushın nadurıs dúzilgen teńlemeni kórsetiń

- A. $R_1 \cdot I_1 + R_3 \cdot I_3 = E_1$
- B. $R_2 \cdot I_2 + R_3 \cdot I_3 = E_2$
- C. $R_1 \cdot I_1 + R_2 \cdot I_2 = E_1 E_2$
- D. $I_1 I_2 I_3 = 0$

6.5. Eger R₃ qarsılıqtı qısqa tutastırılsa, ólshew ásbapları kórsetkishleri qanday ózgeredi? Juwaplarda tómendegi belgiler qabıl etilgen:

↑-artıw;

↓ - kemeyiw.

Juwaplar:

- A. $I_1 \uparrow$; $I_2 \uparrow$; $I_3 \downarrow$;
 - B. $I_1 \uparrow$; $I_2 \uparrow$; $I_3 \uparrow$;
 - C. $I_1 \downarrow$; $I_2 \downarrow$; $I_3 \uparrow$;
 - D. I_1 , I_2 , $I_3 = const$

6.6. E = const bolganda R₂ kemeyse, shaqapshalardagı toklar muğdarı qanday ózgeredi?

Juwaplar:

- A. $I_1 = \text{const}$; $I_2 \uparrow$; $I_3 \uparrow$
- B. $I_1 \downarrow : I_2 \downarrow : I_3 \downarrow$
- C. $I_1 \uparrow : I_2 \uparrow : I_3 \uparrow :$
- D. $I_1 \uparrow$; $I_2 \uparrow$; $I_3 = const$

6.7. Eger R=10Ω, E₁=30V, E₂=10V bolsa voltmetr V niń kórsetiwin anıqlań.

Juwaplar: A. 30 V

- B. 10 V
- C. 20 V
- D. 40 V

6.8 Usı shınjır ushın nadurıs dúzilgen teńlemeni kórsetiń.

Juwaplar:

A.
$$I_1 + J + I_2 = 0$$

B.
$$-U_1 + U_2 + U_3 = E_2 - E_1$$

C. -
$$I_1$$
 - $J_2 = 0$

D.
$$U_1 - U_2 + U_3 = E_1 - E_2$$

6.9 E = const bolganda gilt úzilse, ólshew ásbapları kórsetkishleri qanday ózgeredi?

Juwaplar:

A.
$$I_1 \uparrow$$
; $I_2 \uparrow$; $I_3 = 0$

B.
$$I_1 \downarrow ; I_2 \downarrow ; I_3 \downarrow ;$$

C.
$$I_1 \uparrow$$
; $I_2 \downarrow$; $I_3 \downarrow$;

$$D . I_1 \uparrow ; I_2 \downarrow ; I_3 = const$$

6.10. Bir shınjır ushın Kirxgoftıń ekinshi nızamı boyınsha gárezsiz teńlemeler dúzilgen.

$$U_1 - U_2 + U_4 = 0$$

$$U_1 - U_2 - U_3 + U_5 \; = 0$$

$$U_2 + U_3 + U_6 = 0$$

Súwrette keltirilgen sxema usı teńlemelerge say keleme?

6.11. Eger sxema dağı R₃ qarsılıq qısqa tutastırılsa, elementler degi toklar bahaları ózgeredime?

6.12. Sol sxemadağı elektr shinjirinda R₁ qarsılıq qısqa tutastırılsa R₃ qarsılıqtağı kernew özgeredime?

6.13. Sol sxemadağı elektr shınjırında R₂ qarsılıq úzilse R₃ qarsılıqtağı kernew ózgeredime?

6.14. Eger E=10V, $R_1=1\Omega$, $R_2=3\Omega$, $R_3=6\Omega$ bolsa, rezistor R_3 tegi kúshleniwdi anıqlań. Juwaplar: A. 10V.; B. 1V.; C. 6V.;

D. 4V.; E. 2V.

6.15. Eger E = 10V, $R_1=6\Omega$, $R_2=R_3=8\Omega$ bolsa, I_1 toktı anıqlań.

Juwaplar: A. 1 A; B. 2 A.; C. 0,5A.; D. 4A.; E. 10A.

