Application No.: 09/973,981
Office Action Dated: May 29, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1-6 (Withdrawn from consideration).

- 7. (Canceled)
- 8. (Currently Amended) The compound of claim [[101]] 112 wherein said amino acid is amino caproic acid.
- 9. (Currently Amended) The compound of claim [[101]] $\underline{112}$ wherein said X_4 is the side chain of glutamic acid.
- 10. (Currently Amended) The compound of claim [[101]] $\underline{112}$ wherein said X_6 has one of the formulas:

Office Action Dated: May 29, 2003

wherein:

SS is a solid support; X_7 is O or CH₂; Bx is a nucleobase, C₄-C₁₄ heterocyclyl or hydrogen; z is an integer from 1 to 50; and u is an integer from 2 to 5.

11. (Currently Amended) The compound of claim [[101]] $\underline{112}$ wherein said R_1 is dimethoxytrityl.

12. (Canceled)

Claims 13-20 (Withdrawn from consideration)

Claims 21-31 (Canceled)

32. (Previously Presented) The method of claim 104 wherein W_1 has the formula $-O-(CH_2)_n$ -NH-, wherein n is from 1 to about 10.

33. (Original) The method of claim 32 wherein n is 6.

34. (Canceled)

35. (Previously Presented) The method of claim 104 wherein R_1 is dimethoxytrityl, A has the formula -O-(CH_2)_n-NH- where n is 6, m is 2, R_4 is t-butoxy, R_5 is trifluoroacetoyl, R_6 is -C(=O)- $CH(CH_3)_2$, and R_{30} is FMOX.

Claims 36-39 (Canceled).

40. (Previously Presented) The method of claim 105 wherein R_1 is dimethoxytrityl, W_1 has the formula -O-(CH₂)_n-NH- where n is 6, m is 2, R_4 is t-butoxy, R_5 is trifluoroacetoyl, R_6 is -C(=O)-CH(CH₃)₂, and R_{30} is FMOX.

41. (Canceled)

42. (Previously Presented) The method of claim 26 wherein said compound IX is prepared by reacting folic acid:

Office Action Dated: May 29, 2003

with a reagent effective to form pterin aldehyde:

$$\begin{array}{c|c} O & O \\ \hline \\ N & NH \\ \hline \\ N & NH_2 \\ \end{array}$$

and

protecting the amino group of said pterin aldehyde.

Claims 43 and 44 (Withdrawn from consideration).

Claims 45-62 (Canceled).

63 (Previously Presented). The compound of claim [[107]] 115 wherein m is 2.

64. (Original) The compound of claim 63 wherein W_1 is $-O-(CH_2)_6$ -NH-.

Office Action Dated: May 29, 2003

65. (Previously Presented) The compound of claim 64 wherein R_4 is t-butoxy.

66 (Original). The compound of claim 65 wherein R₁ is dimethoxytrityl, R₅ is trifluoroacetoyl, and R₆ is

PATENT

 $-C(=O)-CH(CH_3)_2$.

67 (Original). The compound of claim 66 wherein q is 0.

Claims 68-71 (Canceled).

72 (Original). A composition comprising a compound of claim 63, said composition being substantially free of a compound of formula XVA, XVB, XVC or XVD:

XVD

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

$$R_{1} = 0$$

$$R_{21}$$

$$R_{21}$$

$$R_{20}$$

$$R_{15}$$

$$R_{20}$$

$$R_{15}$$

$$R_{1} = 0$$

$$R_{21}$$

$$R_{1} = 0$$

$$R_{1} = 0$$

$$R_{1} = 0$$

$$R_{21}$$

$$R_{1} = 0$$

$$R_{1} = 0$$

$$R_{20}$$

$$R_{21}$$

$$R_{20}$$

$$R_{21}$$

$$R_{20}$$

$$R_{21}$$

$$R_{20}$$

$$R_{21}$$

wherein W_{15} has the formula:

$$\left\{ -W_1 - C - (CH_2)_2 - CH - NH \right\}$$

$$R_4 O$$

$$R_5 N N NH$$

$$R_6 C + CH_2 + CH_2 + CH_2 + CH_3 + CH_4 + CH_4 + CH_5 + CH_$$

XVC

Office Action Dated: May 29, 2003

Claims 73-78 (Canceled).

79 (Previously Presented). The compound of claim [[108]] 116 wherein m is 2.

80 (Original). The compound of claim 79 wherein W_1 is -O-(CH_2)_n-NH- wherein n is from 1 to about 10.

81 (Original). The compound of claim 80 wherein n is 6.

Claims 82-87 (Canceled).

88. (Previously Presented) The compound of claim [[109]] 117 wherein m is 2.

89. (Original) The compound of claim 88 wherein W_1 is -O-(CH₂)_n-NH- wherein n is from 1 to about 10.

90. (Original) The compound of claim 89 wherein n is 6.

Claims 91 and 92 (Withdrawn from consideration).

93 (Currently Amended). The compound of claim [[101]] $\underline{112}$ wherein said R_4 is a hydroxyl group protected with C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl or C_2 - C_{20} alkynyl.

Claims 94-100 (Withdrawn from consideration).

PATENT

Office Action Dated: May 29, 2003

Claims 101-103 (Canceled).

104 (Currently Amended) A synthetic method comprising the steps of:

(a) providing a compound of formula IA, IB, IC or ID:

Office Action Dated: May 29, 2003

 \dot{R}_{20}

IC

 \dot{R}_{21}

$$R_1$$
—O B
 W_{1a} R_{21}
 W_{1a} R_{21}
 W_{1a} R_{21}
 W_{1a} Q
 W_{1a} Q

ID

wherein:

 W_{1a} is $W_{1b}\text{-H},\,\text{OH},\,\text{NH}_2$ or SH, where W_{1b} is a linking group;

Application No.: 09/973,981

Office Action Dated: May 29, 2003

R₁ is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether, a group that enhances the pharmacodynamic properties of oligonucleotides, or a group that enhances the pharmacokinetic properties of oligonucleotides;

v is from 0 to about 10;

or R_{21} has one of the formulas:

$$-(O)_{y1}-(CH_2)_{y2}$$
 $O-E$

$$--(O)_{y1} - (CH_2)_{y2} - O - N - (CH_2)_{y2} - O - E$$

Office Action Dated: May 29, 2003

wherein:

y1 is 0 or 1;

y2 is 0 to 10;

y3 is 1 to 10;

E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

q is from zero to about 50, provided that when said compound has formula ID, q is at least 1;

M is an optionally protected internucleoside linkage;

(b) reacting said compound of formula I with a compound of formula II:

$$R_{30}$$
—NH $-X_3$ -C-OH

Π

wherein:

 R_{30} is an amino protecting group;

 X_3 is a group of formula XII:

$$\{$$
 $\}_{m}$

XII

Office Action Dated: May 29, 2003

wherein m is 1 or 2;

 R_4 is a hydroxyl group, or a protected hydroxyl group; to form a compound of formula IVA, IVB, IVC, or IVD:

$$R_1$$
-O B
 R_{21}
 q
 R_{20}
 M
 R_{20}
 M
 R_{20}
 M

$$W_{4} = \begin{bmatrix} 0 & B \\ R_{21} & q \\ R_{20} & R_{21} \end{bmatrix}$$

$$IVC$$

wherein:

W₄ has the formula:

Office Action Dated: May 29, 2003

where W_1 is a linking group, O, NH, or S; and treating said compound of formula IVA, IVB, IVC or IVD with a deprotecting reagent to form a compound of formula VA, VB, VC or VD:

wherein W₅ has the formula:

$$\left\{ \begin{matrix} O \\ - W_1 \end{matrix} \begin{matrix} \begin{matrix} O \\ \parallel \end{matrix} \begin{matrix} - C \end{matrix} - X_3 - NH_2 \end{matrix} \right\}$$
 and

Office Action Dated: May 29, 2003

PATENT

(c) condensing said compound of Formula V with a compound of Formula VI:

$$O \longrightarrow N \longrightarrow NH$$

$$R_5 \longrightarrow N \longrightarrow NH$$

$$R_6$$

VI

wherein:

R₅ is H or an amino protecting group;

R₆ is H or an amino protecting group;

DOCKET NO.: ISIS-4803

Application No.: 09/973,981
Office Action Dated: May 29, 2003

to form a compound of Formula VIIA, VIIB, VIIC, or VIID:

$$\begin{array}{c|c} W_7 & & & \\ \hline \\ M & & \\ \hline \\ R_{20} & R_{21} \end{array} \qquad \begin{array}{c} q \\ \\ R_{20} & R_{21} \end{array}$$

VIIC

VIID

DOCKET NO.: ISIS-4803 PATENT

Application No.: 09/973,981

Office Action Dated: May 29, 2003

wherein W_7 has the Formula:

$$\{-w_1-C-x_3-NH \} \\ 0 \\ R_5 \\ N \\ NH \\ R_6 \\ R_$$

Application No.: 09/973,981

Office Action Dated: May 29, 2003

105. (Currently Amended) A synthetic method comprising the steps of:

(a) providing a compound of formula IA, IB, IC or ID:

$$R_1$$
— O
 M
 W_1a
 Q
 R_{20}
 R_{21}

ID

DOCKET NO.: ISIS-4803 PATENT

Application No.: 09/973,981

Office Action Dated: May 29, 2003

wherein:

W_{1a} is W_{1b}-H, OH, NH₂ or SH, where W_{1b} is a linking group;

R₁ is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH, or N- R_{22} - $(R_{23})_{\nu}$

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether, a group that enhances the pharmacodynamic properties of oligonucleotides, or a group that enhances the pharmacokinetic properties of oligonucleotides;

v is from 0 to about 10;

or R_{21} has one of the formulas:

$$(O)_{y1}$$
 $--(CH_2)_{y2}$ O $--E$

$$--(O)_{y_1} - (CH_2)_{y_2} - O - N - (CH_2)_{y_2} - O - E$$

PATENT

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

wherein:

y1 is 0 or 1;

y2 is 0 to 10;

y3 is 1 to 10;

E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

q is from zero to about 50, provided that when said compound has formula ID, q is at least 1;

M is an optionally protected internucleoside linkage;

(b) reacting said compound of formula I with a compound of formula II:

$$R_{30}$$
—NH $-X_3$ -C—OH

II

wherein:

R₃₀ is an amino protecting group;

X₃ is a group of formula XII:

XII

PATENT

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

wherein m is 1 or 2;

R₄ is a hydroxyl group, or a protected hydroxyl group; to form a compound of formula IVA, IVB, IVC, or IVD:

$$R_{1} = O$$

$$R_{21}$$

$$R_{20}$$

$$R_{20}$$

$$R_{21}$$

$$R_{21}$$

$$R_{21}$$

$$R_{21}$$

$$R_{21}$$

$$R_1$$
-O O B R_{21} q O B W_4 R_{21} $IV B$

$$W = \begin{bmatrix} 0 & B \\ R_{21} & q \\ R_{20} & R_{21} \end{bmatrix}$$
IV C

IVD

wherein:

W₄ has the formula:

Office Action Dated: May 29, 2003

where W₁ is a linking group, O, NH, or S; and treating said compound of formula IVA, IVB, IVC or IVD with a deprotecting reagent to form a compound of formula VA, VB, VC or VD:

$$R_{1} = O \longrightarrow B$$

$$R_{21} \longrightarrow Q$$

$$R_{20} \longrightarrow W_{5}$$

$$VA$$

$$VB$$

$$R_{1} = O \longrightarrow B$$

$$R_{21} \longrightarrow Q$$

$$R_{21} \longrightarrow Q$$

$$R_{21} \longrightarrow Q$$

$$R_{20} \longrightarrow R_{21}$$

wherein W₅ has the formula:

V D

Office Action Dated: May 29, 2003

PATENT

$$O \longrightarrow N \longrightarrow NH$$

$$R_5 \longrightarrow N \longrightarrow NH$$

$$R_6$$

condensing said compound of Formula V with a compound of Formula VI:

VI

wherein:

R₅ is H or an amino protecting group;

R₆ is H or an amino protecting group;

DOCKET NO.: ISIS-4803

Application No.: 09/973,981 Office Action Dated: May 29, 2003

to form a compound of Formula VIIA, VIIB, VIIC, or VIID:

VIIA

$$R_1$$
—O M
 W_7
 Q
 R_{20}
 R_{21}
VIID

Application No.: 09/973,981

Office Action Dated: May 29, 2003

wherein W₇ has the Formula:

(d) contacting said compound of Formula VIIA or VIID with a phosphitylating reagent to form a compound of Formula VIIIA or VIIID:

$$R_1$$
-O B
 R_1 -O B
 R_2 1

 R_3 -O R_2 1

 R_3 -O R_2 1

 R_3 -O R_2 1

 R_3 -O R_2 1

VIIIA

VIIID

wherein W₇ has the Formula:

PATENT

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

$$\{-w_1-C-x_3-NH \bigcup_{O} \bigvee_{R_5} \bigvee_{N} \bigvee_{NH} \bigvee_{NH} R_6$$

Application No.: 09/973,981 Office Action Dated: May 29, 2003

106 (Currently Amended).

A synthetic method comprising the steps of:

providing a compound of formula IA, IB, IC or ID: (a)

$$\begin{array}{c|c} W_1 a & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

ID

Office Action Dated: May 29, 2003

wherein:

W_{1a} is W_{1b}-H, OH, NH₂ or SH, where W_{1b} is a linking group;

R₁ is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH, or N- R_{22} - $(R_{23})_v$

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether, a group that enhances the pharmacodynamic properties of oligonucleotides, or a group that enhances the pharmacokinetic properties of oligonucleotides;

v is from 0 to about 10;

or R_{21} has one of the formulas:

PATENT

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

$$\boxed{ (O)_{y1} - (CH_2)_{y2} } O - E$$

$$---(O)_{y1}--(CH_{2})_{y2}--O-N-(CH_{2})_{y2}-O-E$$

wherein:

y1 is 0 or 1; y2 is 0 to 10; y3 is 1 to 10;

E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

q is from zero to about 50, provided that when said compound has formula ID, q is at least 1;

PATENT

Office Action Dated: May 29, 2003

M is an optionally protected internucleoside linkage;

reacting said compound of formula I with a compound of formula II: (b)

$$R_{30}$$
—NH $-X_3$ -C—OH

II

wherein:

R₃₀ is an amino protecting group;

X₃ is a group of formula XI:

$$\left\{ -(CH_2)_{p} \right\}$$

XI

wherein:

p is 1 or 2;

R₄ is a hydroxyl group, or a protected hydroxy group;

or X_3 is a group of formula XII:

$$\{$$
 $\}_{m}$

XII

wherein m is 1 or 2;

 Z_1 is the sidechain of a naturally occurring amino acid, or a protected sidechain of a naturally occurring amino acid;

Office Action Dated: May 29, 2003

R₄ is a hydroxyl group, or a protected hydroxyl group;

p is 1 or 2; to form a compound of formula IVA, IVB, IVC, or IVD:

$$R_1$$
—O B
 W_4
 Q
 R_{20}
 R_{21}

IVD

wherein:

W₄ has the formula:

IVC

$$\left\{ -W_{1} - C - X_{3} - N - R_{30} \right\}$$

where W₁ is a linking group, O, NH, or S; and

V D

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

treating said compound of formula IVA, IVB, IVC or IVD with a deprotecting reagent to form a compound of formula VA, VB, VC or VD:

$$R_{1} = 0$$

$$R_{21} = 0$$

$$R$$

wherein W_5 has the formula:

VC

Office Action Dated: May 29, 2003

(c) condensing said compound of Formula V with a compound of Formula VI:

$$O \longrightarrow N \longrightarrow NH$$

$$R_5 \longrightarrow N \longrightarrow NH$$

$$R_6$$

VI

wherein:

R₅ is H or an amino protecting group;

R₆ is H or an amino protecting group;

to form a compound of Formula VIIA, VIIB, VIIC, or VIID:

DOCKET NO.: ISIS-4803

Application No.: 09/973,981 Office Action Dated: May 29, 2003

$$\begin{array}{c|c} W_7 & & & \\ & & & \\ & & & \\ M & & & \\ & & & \\ R_{20} & R_{21} \end{array}$$

VIIC

$$R_1$$
-O B
 R_{21}
 q
 W_7
 R_{21}

VIID

PATENT

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

wherein W₇ has the Formula:

wherein said compound of formula VI is prepared by the steps of reacting a compound of formula IX:

with a compound of formula X:

$$H_2N$$
 C
 C
 C
 C
 C

and treating the product of said reaction with a protecting group reagent to form said compound of formula VI.

DOCKET NO.: ISIS-4803 PATENT

Application No.: 09/973,981

Office Action Dated: May 29, 2003

Claims 107-109 (Canceled)

110 (New). The compound of claim 112 wherein said R_{20} is a group of formula:

$$R_3$$
— O
 R_2

wherein R_2 is diisopropylamino and R_3 is β -cyanoethyl.

111 (New). The compound of claim 67 wherein R_{20} is a group of formula:

where R_3 is β -cyanoethyl, and R_2 is diisopropylamino.

DOCKET NO.: ISIS-4803

Application No.: 09/973,981 Office Action Dated: May 29, 2003

112 (New). A compound having formula XVIA, XVIB, XVIC or XVID:

PATENT

DOCKET NO.: ISIS-4803 Application No.: 09/973,981

Office Action Dated: May 29, 2003

wherein:

W₁₄ has the formula

$$-X_{6}-X_{5}-X_{4}-N \longrightarrow R_{5}" \longrightarrow N \longrightarrow N \longrightarrow R_{6}$$

wherein:

 X_4 is -CH(X_4) or a group of formula:

$$-(CH_2)_t$$

 $X_{4'}$ is the side chain of a naturally-occurring or non-naturally-occurring amino acid, or a protected side chain of a naturally-occurring or non-naturally-occurring amino acid;

t is 1 or 2;

 X_5 is -N(X_6)C(O)-, -C(O)NH-, -NHC(O)-, -OC(O)NH-,-C(S)NH-, -SC(S)NH-, -SC(O)NH-, -OC(S)NH-, -C(O)O-, -C(O)(CH₂)_n- or a bond;

n is an integer from 1 to 50;

each X_6 and $X_{6'}$ is, independently, a bond, hydrogen or a hydrocarbyl group selected from C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl, C_5 - C_{14} fused cycloalkyl, C_4 - C_{14} heterocycle, C_4 - C_{14} heterocyclylalkyl, C_4 - C_{14} heteroarylalkyl; wherein said hydrocarbyl group is substituted with at least two hydroxyl groups,

Office Action Dated: May 29, 2003

and is optionally substituted with oxo, acyl, alkoxy, alkoxycarbonyl, alkyl, alkenyl, alkynyl, amino, amido, azido, aryl, heteroaryl, carboxylic acid, cyano, guanidino, halo, haloalkyl, haloalkoxy, hydrazino, ODMT, alkylsulfonyl, nitro, sulfide, disulfide, sulfone, sulfonate, sulfonamide, thiol, and thioalkoxy; provided that X_6 is not hydrogen and X_6 is not a bond;

R₁ is hydrogen or a hydroxyl protecting group;

R₄ is a hydroxyl group or a protected hydroxyl group;

each $R_{5'}$ and R_{40} is, independently, hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl or an amino-protecting group

 $R_{5"}$ is hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl, formyl, aminoalkyl or hydroxymethyl;

R₆ is hydrogen or an amino protecting group;

R₂₀ is hydroxyl or a group of formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

R₇ is straight or branched chain alkyl having from 1 to 10 carbons;

R₃ is a phosphorus protecting group;

 R_{21} is hydrogen, hydroxyl, fluoro or a group of formula $Z-R_{22}-(R_{23})_v$;

Z is O, S, NH or $N-R_{22}-(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-

Office Action Dated: May 29, 2003

aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R₂₁ has one of the formulas:

$$(O)_{y_1}$$
 $- (CH_2)_{y_2}$ O $- E$

$$---(O)_{y_1} - ---(CH_2)_{y_2} - O - N - ----(CH_2)_{y_2} - O - E$$

wherein:

y1 is 0 or 1; each y2 is, independently, 0 to 10; y3 is 1 to 10; E is N(R₄₁)(R₄₂) or N=C(R₄₁)(R₄₂);

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

B is a nucleobase;

DOCKET NO.: ISIS-4803 PATENT

Application No.: 09/973,981

Office Action Dated: May 29, 2003

M is an optionally protected internucleoside linkage;

q is 0 to about 50; and

v is from zero to about 10;

provided that when said compound has formula XVID, q is at least 1.

Application No.: 09/973,981 Office Action Dated: May 29, 2003

113 (New). A compound having formula XVIA, XVIB, XVIC or XVID:

$$W_{14}$$
 O
 B
 M
 R_{21}
 Q
 B
 Q
 B
 Q
 R_{20}
 R_{21}

XVIC

XVIB

$$\begin{array}{c} R_1O & \\ \\ M & W_{14} \end{array} \begin{array}{c} \\ \\ \\ R_{20} & R_{21} \end{array}$$
 XVID

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

wherein:

W₁₄ has the formula:

$$-X_{6}-X_{5}-X_{4}-N$$
 X_{9}
 X_{9}
 X_{1}
 X_{1}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{1}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}
 X_{5}
 X_{5}
 X_{1}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}

wherein:

 X_4 is -CH(X_4) or a group of formula:

$$-(CH_2)_t$$

 $X_{4'}$ is the side chain of a naturally-occurring or non-naturally-occurring amino acid, or a protected side chain of a naturally-occurring or non-naturally-occurring amino acid;

t is 1 or 2;

 $X_5 \text{ is -N(X}_6)C(O)-, -C(O)NH-, -NHC(O)-, -OC(O)NH-, -C(S)NH-, -SC(S)NH-, -SC(O)NH-, -OC(S)NH-, -C(O)O-, -C(O)(CH_2)_n- or a bond;$

n is an integer from 1 to 50;

each X_6 , X_6 and X_9 is, independently, a bond, hydrogen or a hydrocarbyl group selected from C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl,

Application No.: 09/973,981

Office Action Dated: May 29, 2003

 C_5 - C_{14} fused cycloalkyl, C_4 - C_{14} heterocycle, C_4 - C_{14} heterocyclylalkyl, C_4 - C_{14} heteroaryl and C_4 - C_{14} heteroarylalkyl; wherein said hydrocarbyl group is substituted with at least two hydroxyl groups, and is optionally substituted with oxo, acyl, alkoxy, alkoxycarbonyl, alkyl, alkenyl, alkynyl, amino, amido, azido, aryl, heteroaryl, carboxylic acid, cyano, guanidino, halo, haloalkyl, haloalkoxy, hydrazino, ODMT, alkylsulfonyl, nitro, sulfide, disulfide, sulfone, sulfonate, sulfonamide, thiol, and thioalkoxy; provided that each X_6 and X_9 is not hydrogen and X_6 is not a bond;

 R_1 is hydrogen or a hydroxyl protecting group;

R₄ is a hydroxyl group or a protected hydroxyl group;

each $R_{5'}$ and R_{40} is, independently, hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl or an amino-protecting group

 $R_{5"}$ is hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl, formyl, aminoalkyl or hydroxymethyl;

R₆ is hydrogen or an amino protecting group;

R₂₀ is hydroxyl or a group of formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

R₇ is straight or branched chain alkyl having from 1 to 10 carbons;

R₃ is a phosphorus protecting group;

 R_{21} is hydrogen, hydroxyl, fluoro or a group of formula Z- R_{22} - $(R_{23})_v$;

Z is O, S, NH or N- R_{22} - $(R_{23})_v$;

 R_{22} is $C_1\text{-}C_{20}$ alkyl, $C_2\text{-}C_{20}$ alkenyl, or $C_2\text{-}C_{20}$ alkynyl;

Office Action Dated: May 29, 2003

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R_{21} has one of the formulas:

$$---(O)_{y1} - ---(CH_2)_{y2} - O - N - ----(CH_2)_{y2} - O - E$$

wherein:

y1 is 0 or 1; each y2 is, independently, 0 to 10; y3 is 1 to 10; E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

B is a nucleobase;

M is an optionally protected internucleoside linkage;

q is 0 to about 50; and

v is from zero to about 10;

provided that when said compound has formula XVIC, at least one R_{21} is a group other than hydrogen, and when said compound has formula XVIC or XVID, q is at least 1.

114 (New) A compound having formula XVIA, XVIB, XVIC or XVID:

DOCKET NO.: ISIS-4803 Application No.: 09/973,981
Office Action Dated: May 29, 2003

$$W_{14} = \begin{cases} & & & \\ & &$$

$$\begin{array}{c|c} R_1O & B \\ \hline M & W_{14} \\ \hline Q & B \\ \hline R_{20} & R_{21} \\ \hline XVID \end{array}$$

Office Action Dated: May 29, 2003

wherein:

W₁₄ has the formula:

wherein:

 X_4 is -CH(X_4) or a group of formula:

$$-(CH_2)_t$$

 $X_{4'}$ is the side chain of a naturally-occurring or non-naturally-occurring amino acid, or a protected side chain of a naturally-occurring or non-naturally-occurring amino acid;

t is 1 or 2;

Office Action Dated: May 29, 2003

 X_5 is -N(X_6)C(O)-, -C(O)NH-, -NHC(O)-, -OC(O)NH-, -C(S)NH-, -SC(S)NH-, -SC(O)NH-, -OC(S)NH-, -C(O)O-, -C(O)(CH₂)_n- or a bond;

n is an integer from 1 to 50;

each X_6 and X_6 is, independently, a bond, hydrogen or a hydrocarbyl group selected from C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl, C_5 - C_{14} fused cycloalkyl, C_4 - C_{14} heterocycle, C_4 - C_{14} heterocyclylalkyl, C_4 - C_{14} heteroaryl and C_4 - C_{14} heteroarylalkyl; wherein said hydrocarbyl group is substituted with at least two hydroxyl groups, and is optionally substituted with oxo, acyl, alkoxy, alkoxycarbonyl, alkyl, alkenyl, alkynyl, amino, amido, azido, aryl, heteroaryl, carboxylic acid, cyano, guanidino, halo, haloalkyl, haloalkoxy, hydrazino, ODMT, alkylsulfonyl, nitro, sulfide, disulfide, sulfone, sulfonate, sulfonamide, thiol, and thioalkoxy; provided that X_6 is not hydrogen and X_6 is not a bond;

R₁ is hydrogen or a hydroxyl protecting group;

R₄ is a hydroxyl group or a protected hydroxyl group;

each $R_{5'}$ and R_{40} is, independently, hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl or an amino-protecting group

 $R_{5"}$ is hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{14} aryl, C_6 - C_{14} aralkyl, C_3 - C_{14} cycloalkyl, formyl, aminoalkyl or hydroxymethyl;

R₆ is hydrogen or an amino protecting group;

 R_{20} is hydroxyl or a group of formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

R₇ is straight or branched chain alkyl having from 1 to 10 carbons;

Office Action Dated: May 29, 2003

R₃ is a phosphorus protecting group;

R₂₁ is hydrogen, hydroxyl, fluoro or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R_{21} has one of the formulas:

$$--(O)_{y1}$$
 $--(CH_2)_{y2}$ $--O$ N $--(CH_2)_{y2}$ $--O$ $--E$

wherein:

y1 is 0 or 1; each y2 is, independently, 0 to 10; y3 is 1 to 10; E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$; DOCKET NO.: ISIS-4803
PATENT

Application No.: 09/973,981

Office Action Dated: May 29, 2003

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

B is a nucleobase;

M is an optionally protected internucleoside linkage;

q is 0 to about 50; and

v is from zero to about 10;

provided that when said compound has formula XVID, q is at least 1.

Office Action Dated: May 29, 2003

115 (New) A compound having the formula XIIIA, XIIIB, XIIIC or XIIID:

$$R_1$$
 O B R_{21} q O B R_{20} W_{13} X IIIA

$$\begin{array}{c|c} W_{13} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

R₂₀

XIIID

wherein:

W₁₃ has the formula:

$$\{-W_1-C-X_3-NH \}$$

XIIIC

Office Action Dated: May 29, 2003

R₁ is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH or $N-R_{22}-(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R₂₁ has one of the formulas:

$$-(O)_{y1}-(CH_2)_{y2}$$
 $-(CH_2)_{y3}$ $-(CH_2)_{y3}$

$$---(O)_{y_1} - ---(CH_2)_{y_2} - O - N - ----(CH_2)_{y_2} - O - E$$

Office Action Dated: May 29, 2003

wherein:

y1 is 0 or 1; y2 is 0 to 10; y3 is 1 to 10; E is N(R₄₁)(R₄₂) or N=C(R₄₁)(R₄₂);

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

v is from 0 to about 10;
q is 0 to about 50; and
v is from zero to about 10;
M is an optionally protected internucleoside linkage;
W₁ is a linking group, O, NH or S;
R₂₀ is hydroxyl or a group of Formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

 R_7 is straight or branched chain alkyl having from 1 to 10 carbons;

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

R₃ is a phosphorus protecting group;

R₅ is H or an amino protecting group;

R₆ is H or an amino protecting group;

 X_3 has the formula XII:

$$\left\{\begin{array}{c} \left\{\begin{array}{c} \left\{\right\} \\ \left\{\right\} \\ R_4 \end{array}\right\}$$

XII

wherein m is 1 or 2; and

 R_4 is a hydroxyl group, or a protected hydroxyl group; provided that when said compound has formula XIIIC, at least one R_{21} is a group other than hydrogen, and when said compound has formula XIIIC or XIIID, q is at least 1.

DOCKET NO.: ISIS-4803

Application No.: 09/973,981
Office Action Dated: May 29, 2003

116 (New) A compound having the formula XVIA, XVIB, XVIC or XVID:

XVIC

$$R_1$$
— O — O — B — W_{16} q
 O — B
 R_{20} R_{21}

XVIB

XVID

Office Action Dated: May 29, 2003

wherein:

W₁₆ has the formula:

 R_1 is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH or N- R_{22} - $(R_{23})_v$;

 $R_{22} \ is \ C_1\text{-}C_{20} \ alkyl, \ C_2\text{-}C_{20} \ alkenyl, \ C_2\text{-}C_{20} \ alkynyl, \ C_1\text{-}C_{20} \ akoxy, \ C_2\text{-}C_{20}$ alkenyloxy, or $C_2\text{-}C_{20}$ alkynyloxy;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R_{21} has one of the formulas:

$$-[(O)_{y1}-(CH_2)_{y2}]_{y3}O-E$$

wherein:

Office Action Dated: May 29, 2003

y1 is 0 or 1;

y2 is 0 to 10; y3 is 1 to 10;

E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

v is from 0 to about 10;

q is 0 to about 50;

M is an optionally protected internucleoside linkage;

W₁ is a linking group;

R₂₀ is hydroxyl or a group of Formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

 R_7 is straight or branched chain alkyl having from 1 to 10 carbons;

R₃ is a phosphorus protecting group;

X₃ has the formula XII:

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

$$\left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\}_{m}$$

XII

wherein m is 1 or 2;

 R_4 is a hydroxyl group, or a protected hydroxyl group; and provided that when said compound has formula XVID, q is at least 1.

DOCKET NO.: ISIS-4803 Application No.: 09/973,981 Office Action Dated: May 29, 2003

117 (New) A compound having the formula XVIIA, XVIIB, XVIIC or XVIID:

XVIIB

XVIIC

$$R_1$$
—O B
 W_{17}
 q
 R_{20}
 R_{21}

XVIID

Office Action Dated: May 29, 2003

wherein:

W₁₇ has the formula:

$$\{-W_1-C-X_3-NH\bigcup_{\substack{0\\ \\ 0}} NH$$

R₁ is H or a hydroxyl protecting group;

B is a nucleobase;

each R₂₁ is H, OH, F, or a group of formula Z-R₂₂-(R₂₃)_v;

Z is O, S, NH or N- R_{22} - $(R_{23})_v$;

 R_{22} is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, or C_2 - C_{20} alkynyl;

R₂₃ is hydrogen, amino, halogen, hydroxyl, thiol, keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, O-alkyl, S-alkyl, NH-alkyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, amino, N-phthalimido, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, aryl, heterocycle, carbocycle, intercalator, reporter molecule, conjugate, polyamine, polyamide, polyalkylene glycol, polyether;

or R_{21} has one of the formulas:

$$-[(O)_{y_1}-(CH_2)_{y_2}]_{y_3}O-E$$

Office Action Dated: May 29, 2003

wherein:

y1 is 0 or 1;

y2 is 0 to 10;

y3 is 1 to 10;

E is $N(R_{41})(R_{42})$ or $N=C(R_{41})(R_{42})$;

each R_{41} and each R_{42} is independently H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{41} and R_{42} taken together form a nitrogen protecting group; or R_{41} and R_{42} taken together with the N or C atom to which they are attached form a ring structure that can include at least one heteroatom selected from N and O;

v is from 0 to about 10;

q is 0 to about 50;

M is an optionally protected internucleoside linkage;

W₁ is a linking group, O, NH or S;

 R_{20} is hydroxyl or a group of Formula:

 R_2 is $-N(R_7)_2$, or a heterocycloalkyl or heterocycloalkenyl ring containing from 4 to 7 atoms, and having up to 3 heteroatoms selected from nitrogen, sulfur, and oxygen;

R₇ is straight or branched chain alkyl having from 1 to 10 carbons;

 R_3 is a phosphorus protecting group;

 X_3 has the formula XII:

DOCKET NO.: ISIS-4803 **Application No.:** 09/973,981

Office Action Dated: May 29, 2003

XII

wherein m is 1 or 2;

 R_4 is a hydroxyl group, or a protected hydroxyl group; and

R₅ is H or an amino protecting group;

provided that when said compound has formula XVIID, q is at least 1.