IOT DEVELOPMENT USING EMBEDDED C

INTRODUCTION TO LED INTERFACING

The LEDs are connected to pin 2 and pin 3 of port 3 of the microcontroller(P3.2 and P3.3) as shown in the figure. Inputs are given to glow the LEDs.

• Common Anode

[Port bit = 0
LED Conducts
i.e glows]

Anodes of all LED's connected
together to 5V

Cathodes of LED's connected to port lines

Microprocessor interface to LED (common anode).

Bit 0

FIG 1: LED CONNECTION TO 8051 PORT

+5 V

FIG 3: SYMBOL OF LED

EXP1:TO TOGGLE LED

Input 0 and 1 are given to these pins and status of LED is observed.

INPUT (LED1)	INPUT (LED2)	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
0	1	ON	OFF
1	0	OFF	ON

CODE:

experiments\P1-toggle LED\test.uvproj

DATA TYPES

TYPE	MEMORY	DECLARATION EXAMPLES
SBIT	1 BIT	sbit LED=P3^2;
INT	2 BYTES	int b=6;
CHAR	1 BYTE	char c='a';
FLOAT	4 BYTES	float d=1.6;
DOUBLE	8 BYTES	double d=0.2;
SPECIAL FUNCTION	1 BYTE=8 BITS	sfr j=0x80; //points to P0.0

REGISTER(SFR)

1. SBIT data type used to toggle LEDs at P3.2 and P3.3

```
sbit LED1=P3^2; //single bit data type //value of P3.5 is given to variable LED1 sbit LED2=P3^3; LED1=0; LED2=1; //LED1 is ON and LED2 is OFF delay(150); //calling the delay function defined in code LED1=1;LED2=0; //LED1 is OFF and LED2 is ON delay(150);
```

EXAMPLES:

INPUT (LED1)	INPUT (LED2)	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
0	1	ON	OFF
1	0	OFF	ON

2. INT data type used to toggle LEDs

```
int b;
for(b=0;b<=7;b++) //for loop to give values to variable b from 0-7
{ P3=61; //both the LEDs on port 3 are off
delay(75); //calling the delay function
P3=b; // binary code stored in port
delay(150); //calling the delay function
}
```

NOTE: If input in port is 61, it is stored in the binary form as follows. Pin 2 and 3 of port 3 have values 1 and hence the LEDs are off.

PORT 3

P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
0	0	1	1	1	1	0	1

• EXAMPLES:

DECIMAL	BINARY	STATUS (LED1	STATUS (LED2
NUMBER	NUMBER	AT P3.2)	AT P3.3)
(INPUT)	(STORED)		
0	0000	ON	ON
1	0001	ON	ON
6	0110	OFF	ON
7	0111	OFF	ON

3. CHAR data type used to toggle LEDs at port 3

CAPITAL LETTERS

• EXAMPLES:

CHARACTER (INPUT)	ASCII CODE	BINARY CODE	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
А	65	1000001	ON	ON
D	68	1000100	OFF	ON
Н	72	1001000	ON	OFF
L	76	1001100	OFF	OFF
Р	80	1010000	ON	ON
Т	84	1010100	OFF	ON
Z	90	1011010	ON	OFF

SMALL LETTERS

EXAMPLES:

CHARACTER	ASCII CODE	BINARY CODE	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
b	98	01100010	ON	ON
g	103	01100111	OFF	ON
k	107	01101011	ON	OFF
0	111	01101111	OFF	OFF
S	115	01110011	ON	ON
W	119	01110111	OFF	ON
Z	122	01111010	ON	OFF

4. FLOAT data type used to toggle LEDs at port 3

```
float a; for(a=0.6;a<=7.6;a++)//for loop gives values to variable a from 0.6 to 7.6 \{ P3=61; //Both \ LEDs \ are \ OFF \ delay(75); \ P3=a; //binary \ code \ stored \ in \ port 3 \ delay(150); \}
```

EXAMPLES

NUMBER (INPUT)	WHOLE NUMBER OF	BINARY NUMBER	STATUS (LED1 AT	STATUS (LED2 AT
	INPUT	(STORED)	P3.2)	P3.3)
2.6	2	0010	ON	ON
3.6	3	0011	ON	ON
4.6	4	0100	OFF	ON
5.6	5	0101	OFF	ON

DOUBLE data type used to toggle LEDs at P3.2 and P3.3

EXAMPLES:

NUMBER (INPUT)	WHOLE NUMBER OF INPUT	BINARY NUMBER (STORED)	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
1.2	1	0001	ON	ON
2.2	2	0010	ON	ON
5.2	5	0101	OFF	ON
6.2	6	0110	OFF	ON

 SPECIAL FUNCTION REGISTER data type used to assign value of P0.0 to port 3 to toggle LEDs

INPUT	STATUS (LED1 AT P3.2)	STATUS (LED2 AT P3.3)
0	ON	ON
61	OFF	OFF

CODE:

experiments\P2-data types\P1.uvproj

EXP3:TO DEMONSTRATE STATUS OF LEDs USING EXPRESSIONS

- LOGICAL OPERATORS (&&, | |,!)
- BOOLEAN OPERATORS (&, |,^)
- ARITHMETIC OPERATORS(+,-,*,/)
- RELATIONAL OPERATORS(<,>,<=,>=)

• LOGICAL AND OPERATOR (&&)-true if both operands are non zero. It takes value 1 if true and 0 if false.

EXAMPLES:

	VALUE OF VARIABLE 'b'	a &&b	VALUE IN LED1 (a && b)	STATUS OF LED1
0	0	FALSE	0	ON
0	1	FALSE	0	ON
1	0	FALSE	0	ON
1	1	TRUE	1	OFF

experiments\P3-expressions\P3.uvproj

LOGICAL OR OPERATOR(||)-true if one of the operands is non zero.
 It takes value 0 if false and 1 if true.

```
for(a=0;a<=1;a++)
{
    for(b=0;b<=1;b++)
        {
        LED2=a||b; //LED2 assigned value of result a||b
        LED1=0;
        delay(150);
        LED1=61;
        delay(75);
    }
}</pre>
```

VALUE OF	VALUE OF	a b	VALUE IN	STATUS OF
VARIABLE 'a'	VARIABLE 'b'		LED2 (a b)	LED2
0	0	FALSE	0	ON
0	1	TRUE	1	OFF
1	0	TRUE	1	OFF
1	1	TRUE	1	OFF

LOGICAL NOT OPERATOR(!)

```
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                  for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                            //LOGICAL AND OPERATOR
                            LED1=!(a && b); //LED1 assigned value of result a&&b
                            //following code so as to observe variations in LED1 clearly
                            LED2=0; //LED2 ON
                            delay(150); //delay function called with input 150
                            LED2=61; //LED2 OFF
                            delay(75); //delay function called with input 75
```

	VALUE OF VARIABLE 'b'	!(a&&b)	VALUE IN LED2 (a b)	STATUS OF LED2
0	0	TRUE	1	ON
0	1	TRUE	1	OFF
1	0	TRUE	1	OFF
1	1	FALSE	0	OFF

• BOOLEAN AND OPERATOR(&) experiments\P3-expressions\P3.uvproj

```
//BOOLEAN AND OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                  for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                            LED1=a&b; //LED1 assigned value of result a&b as per truth table
                            //following code so as to observe variations in LED1 clearly
                            LED2=0; //LED2 ON
                            delay(150); //delay function called with input 150
                            LED2=61; //LED2 OFF
                            delay(75); //delay function called with input 75
```

VALUE OF VARIABLE 'a'	VALUE OF VARIABLE 'b'	VALUE IN LED1 (a & b)	STATUS OF LED1
0	0	0	ON
0	1	0	ON
1	0	0	ON
1	1	1	OFF

BOOLEAN OR OPERATOR(|)

```
//BOOLEAN OR OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                 for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                          LED2=a|b; //LED2 assigned value of result a|b as per truth table
                          LED1=0;
                          delay(150);
                          LED1=61;
                          delay(75);
```

VALUE OF VARIABLE	VALUE OF VARIABLE 'b'	VALUE IN LED1 (a b)	STATUS OF LED1
0	0	0	ON
0	1	1	OFF
1	0	1	OFF
1	1	1	OFF

BOOLEAN XOR OPERATOR(^)

```
//BOOLEAN XOR OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                 for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                          LED1=a^b; //LED1 assigned value of result a^b as per truth table
                          LED2=0;
                          delay(150);
                          LED2=61;
                          delay(75);
```

VALUE OF VARIABLE 'a'	VALUE OF VARIABLE 'b'	VALUE IN LED1 (a ^ b)	STATUS OF LED1
0	0	0	ON
0	1	1	OFF
1	0	1	OFF
1	1	0	ON

All values in LED1 except 0 are taken as OFF

```
//ARITHMETIC '-' OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                 for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                         LED1=a-b; //all other values except 0 are taken as OFF
                         LED2=0;
                         delay(150);
                         LED2=61;
                         delay(75);
```

}	,		
VALUE OF VARIABLE 'a'	VALUE OF VARIABLE 'b'	VALUE IN LED1 (a- b)	STATUS OF LED1
0	0	0	ON
0	1	-1	OFF
1	0	1	OFF
1	1	0	ON

ARITHMETIC '/' OPERATOR

```
//ARITHMETIC '/' OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                  for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                           LED2=a/b; //all other values except 0 are taken as OFF
                           LED1=0;
                           delay(150);
                           LED1=61;
                           delay(75);
```

VALUE OF VARIABLE	VALUE OF VARIABLE	VALUE IN LED2 (a/b)	STATUS OF LED2
'a'	'b'		
0	0	0/0	OFF
0	1	0	ON
1	0	1/0	OFF
1	1	1	OFF

RELATIONAL '>' OPERATOR

```
//RELATIONAL > OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                  for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                            LED1=0;
                           if(a>b)
                                     LED2=b;
                            else
                                     LED2=a;
                            delay(150);
                            LED1=61;
                            delay(75);
```

}			
VALUE OF VARIABLE	VALUE OF VARIABLE	VALUE IN LED2 (b if	STATUS OF LED2
'a'	'b'	a>b)	
0	0	0	ON
0	1	0	ON
1	0	0	ON
1	1	1	OFF

RELATIONAL '>=' OPERATOR

```
//RELATIONAL >= OPERATOR
for(a=0;a<=1;a++) //for loop gives value 0 and 1 to 'a' variable
                for(b=0;b<=1;b++) //for loop gives value 0 and 1 to 'b' variable
                         LED2=0;
                         if(a>=b)
                                 LED1=a;
                         else
                                 LED1=b;
                         delay(150);
                         LED2=61;
                         delay(75);
```

• EXAMPLES:

VALUE OF VARIABLE 'a'	VALUE OF VARIABLE 'b'	VALUE IN LED1 (a if a>=b)	STATUS OF LED1
0	0	0	ON
0	1	1	OFF
1	0	1	OFF
1	1	1	OFF

• CODE:

experiments\P3-expressions\P3.uvproj

EXP4:TO EXPLORE CONTROL STRUCTURES

- FOR LOOP
- WHILE LOOP
- SWITCH CASE
- IF ELSE

FOR LOOP

```
//for loop
for(a=0;a<=5;a++)
{
    P3=61; //both LEDs on port 3 are OFF
    delay(75); //calling the delay function with input 75
    P3=a; //assigning number to the port
    delay(150); //calling the delay function with input 150
}
```

VALUE OF VARIABLE 'a'	BINARY CODE	STATUS OF LED1 (AT P3.2)	STATUS OF LED2 (AT P3.3)
0	0000	ON	ON
1	0001	ON	ON
2	0010	ON	ON
3	0011	ON	ON
4	0100	OFF	ON
5	0101	OFF	ON

experiments\P4-loops\P4.uvproj

WHILE LOOP

VALUE OF VARIABLE	BINARY CODE	STATUS OF LED1 (AT	•
'a'		P3.2)	P3.3)
0	0000	ON	ON
1	0001	ON	ON
2	0010	ON	ON
3	0011	ON	ON
4	0100	OFF	ON
5	0101	OFF	ON

SWITCH CASE

```
//switch
                                                                    case 2:
for(b=0;b<=3;b++) //for loop for different
                                                                         P3=61;
cases
                                                                         delay(75);
          switch(b)
                                                                         P3=b:
                                                                         delay(150);
                 case 0:
                                                                case 3:
                          P3=61;
                           delay(75);
                                                                         P3=61;
                          P3=b;
                                                                         delay(75);
                          delay(150);
                                                                         P3=b;
                                                                         delay(150);
                  case 1:
                                                                default: P3=0;
                                                       }//switch ends
                           P3=61;
                                              }//for loop ends
                           delay(75);
                           P3=b;
                           delay(150);
```

• EXAMPLES:

VALUE OF	BINARY	CASE	STATUS OF	STATUS OF
VARIABLE 'a'	CODE	CALLED	LED1 (AT	LED2 (AT
			P3.2)	P3.3)
0	0000	0	ON	ON
1	0001	1	ON	ON
2	0010	2	ON	ON
3	0011	3	ON	ON

IF-ELSE

```
for(a=0;a<=1;a++)
        if(a==0)
                  P3=61; delay(75);
                         delay(150);
                  P3=a;
         }
        else
                  P3=61; delay(75);
                  P3=0;
                           delay(150);
         }
```

	LED2
VARIABLE 'a' TO P3 (AT P3.2) (AT P3.3)	3)
0 a i.e.0 ON ON	

ON ON 0

CODE:

experiments\P4-loops\P4.uvproj

P5:TO EXPLORE FUNCTIONS

 Different operations such as add, subtract, multiply, divide and recursion are performed using functions. The output is observed by observing the status of LEDs.

FUNCTION	VALUE GIVEN TO PORT 3	BINARY CODE	STATUS OF LED1 (AT P3.2)	STATUS OF LED2 (AT P3.3)
ADD()	4	0100	OFF	ON
SUBTRACT()	3	0011	ON	ON
MULTIPLY()	1	0001	ON	ON
DIVIDE()	1	0001	ON	ON
RECURSIVE()	0	0000	ON	ON

CODE:

experiments\P5-functions\P5.uvproj

EXP6:TO EXPLORE ARRAYS

- Various values are stored in single dimensional and multi dimensional arrays. Then values of array is given to port 3.
- 1D ARRAY

```
for(i=0;i<5;i++)
a[i]=i;
for(i=0;i<5;i++)
{
        P3=61; //both LEDs OFF
        delay(75); //calling delay() function with input 75
        P3=a[i]; //assigning values to port 3
        delay(150); //calling delay() function with input 150
}</pre>
```

OBSERVATIONS

VALUE GIVEN TO PORT 3	BINARY CODE		STATUS OF LED2 (AT P3.3)
a[0]=0	0000	ON	ON
a[1]=1	0001	ON	ON
a[2]=2	0010	ON	ON
a[3]=3	0011	ON	ON
a[4]=4	0100	OFF	ON

experiments\P6-arrays\p6.uvproj

2D ARRAY

```
for(j=0;j<2;j++)
         for(k=0;k<3;k++)
                   b[j][k]=j*k; //assigning values to array
for(j=0;j<2;j++)
         for(k=0;k<3;k++)
                    P3=61;
                    delay(75);
                    P3=b[j][k]; //assigning values to port 3
                   delay(150);
```

OBSERVATIONS

VALUE GIVEN TO	BINARY CODE	STATUS OF LED1	STATUS OF LED2
PORT 3		(AT P3.2)	(AT P3.3)
b[0][0]=0	0000	ON	ON
b[0][1]=0	0000	ON	ON
b[0][2]=0	0000	ON	ON
b[1][0]=0	0000	ON	ON
b[1][1]=1	0001	ON	ON
b[1][2]=2	0010	ON	ON

• CODE:

experiments\P6-arrays\p6.uvproj

EXP7:TO EXPLORE POINTERS

```
void main()
         int i=1,j=6,k=72; //integer variable declaration
          int *a; //pointer variable declaration
          a=&i; //pointer stores the address of variable i
         P3=61: //both LEDs OFF
        delay(75); //calling delay() function with input 75
         P3=*a; //the port is given the value of pointer
        delay(150); //calling delay() function with input 150
        a=&j; //pointer stores the address of variable j
          P3=61:
        delay(75);
        P3=*a:
        delay(150);
        a=&k; //pointer stores the address of variable k
         P3=61:
        delay(75);
         P3=*a:
        delay(150);
```

OBSERVATIONS:

VALUE GIVEN TO PORT 3	BINARY CODE	STATUS OF LED1 (AT P3.2)	STATUS OF LED2 (AT P3.3)
		F 3.2)	F 3.3)
1	0000001	ON	ON
6	00000110	OFF	ON
72	01001000	ON	OFF

- CODE:
- experiments\P7-pointers\P7.uvproj

INTERFACING IR SENSOR

BUZZER

PIN DIAGRAM

INTERFACING SENSORS

```
#include<reg51.h> //include library to use registers defined in it
sbit sensor=P3^5; //sensor is connected to pin 5 of port 3
sbit LED1=P3^2; //
sbit LED2=P3<sup>3</sup>;
sbit buzzer=P3^7; //buzzer is connected to pin 7 of port 3
void main()
        if(sensor) //if change is sensed
        LED1=0; //ON
        LED2=0; //ON
        buzzer=0; //buzzer sounds
        else
                 LED1=1; //OFF
                 LED2=1; //OFF
                 buzzer=1;
```

CODE:

experiments\P8-sensors\P8.uvproj

EXERCISES

Interface the following sensors such that when change is detected,

- LEDs should be ON
- ii. Buzzer should be ON
- iii. Both LEDs and Buzzer should be ON

- Sensors:
- i. IR sensor
- ii. Touch sensor
- iii. Clap sensor
- iv. Push button

INPUT IN P3	BINARY CODE	STATUS OF LED 1 AT P3.2	STATUS OF LED2 AT P3.3
3			
5			
Q			
S			
G			
V			
1			
r			
X			
t			
6.9			
3.5			
1.0			
2.5			
59	00111011		
61	00111101		
35	00100011		
47	00101111		

VALUE OF VARIABLE 'a'	VALUE OF VARIABLE 'b'	EXPRESSION	STATUS OF LED (P3.2)
0	0	a&&b	
1	1	!a	
0	1	a b	
0	0	!b	
1	1	a-b	
1	0	a*b	
0	0	a+b	
1	1	a/b	
0	1	if(a<=b) LED=b;	
1	0	if(a>b) LED=a;	
1	0	if(a <b) LED=a;</b) 	
1	1	if(a>=b) LED=b;	
0	0	if(a==b) LED=a;	
0	1	if(a!=b) LED=b;	
0	1	if(a!=b)	

REFERENCES

FIG1:

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjImsis96_UAhWEtI8KHXR2ADwQjRwIBw&url=http%3A%2F%2Fslideplayer.com%2Fslide%2F3422738%2F&psig=AFQjCNHEva3UGecux_9bo3gOpq-xlofU_g&ust=1497069157431406

• FIG 2:

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiTwJTo96_UAhXERY8KHVlfBpYQjRwlBw&url=http%3A%2F%2Fmakertech.blogspot.com%2F2015%2F05%2Finterface-switch-with-8051.html&psig=AFQjCNHEva3UGecux9bo3gOpq-xlofUg&ust=1497069157431406

• FIG 3:

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiatu_d96_UAhUJpo8KHYosBDwQjRwIBw&url=http%3A%2F%2F8051programming.blogspot.com%2F2013%2F12%2F8051-seven-segment-display-ssd-interface.html&psig=AFQjCNHEva3UGecux_9bo3gOpq-xlofU_g&ust=1497069157431406

Pin diagram

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiHqOfH_LLUAhWKuI8KHeaIDVsQjRwIBw&url=http%3A%2F%2Fworld4tronix.blogspot.com%2F2013%2F08%2Ffunctional-pin-diagram-of-8051.html&psig=AFQjCNHutZH7sVOumLy_BleadzcGaTWmOg&ust=1497173604441811