MA141-A- PROVA I- 03 Setembro 2015-

QUESTÃO 1: (3,0)- Considere a matriz :
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
.

1a)Utilizando o Algorítmo de Gauss passo a passo, obtenha uma sequencia de matrizes elementares E_k de tal forma que o produto matricial $R=E_p \cdot \cdot \cdot E_1 A$ seja uma matriz ESCALONADA (ESCADA).

1b)Determine a matriz B tal que BA seja uma matriz escalonada.

1c)Se b for uma matriz coluna tal que b_1, b_2, b_3, b_4 sejam os 4 últimos dígitos de seu RA , verifique se o sistema Ax = b tem solução e, no caso, calcule uma delas.

RESOLUÇÃO: QUESTÃO 1:

1a)Sendo a matriz A, 4×3 , as matrizes elementares que representarão operações elementares nas linha de A são as matrizes E obtidas após submeter a matriz identidade I_4 , 4×4 , às respectivas operações elementares.

Algoritmo de Gauss passo a passo:

1-Verificação: Detecção do elemento candidato a pivô (isto é, o primeiro elemento não nulo) percorrendo colunas da esquerda para a direita de cima para baixo (ordem lexicografica). Resultado: Primeira coluna , segunda linha, $A_{21}=2$.

2-A primeira operação elementar a ser efetuada objetiva construir o pivo da primeira linha: **Troca** entre as linhas 1 e 2: $L_1' = L_2$, $L_2' = L_1$. A matriz elementar que realiza esta operação é obtida da identidade I_4 após efetuada esta operação

elementar:
$$E_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 e $E_1 A = \begin{pmatrix} 2 & 0 & 6 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix} = A^{(1)}$.

3-Segunda operação elementar objetiva a normalização do pivô da primeira linha e é uma **Multiplicação** da primeira linha por $\frac{1}{A_{21}}$: $L_1' = \frac{1}{2}L_1$, de onde vem que:

$$E_{2} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{e} \ E_{2}E_{1}A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix} = A^{(2)}.$$

4-Terceira e quarta operações elementares têm por objetivo "zerar" os elementos da coluna do pivô e abaixo dele: 2 Operações de **substituição**: $L_3' = L_3 + (-1)L_1$ e $L_4' = L_4 + L_1$ que são respectivamente representadas pelas matrizes elementares:

$$E_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} e E_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} e$$

$$A^{(4)} = E_{4}E_{3}E_{2}E_{1}A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \\ 0 & 1 & 4 \end{pmatrix}$$

5-Uma vez estabelecido o pivô da 1a linha, passamos à Verificação da matriz

à direita deste pivô, indicada pelas entradas em negrito
$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & \mathbf{1} & -\mathbf{1} \\ 0 & \mathbf{0} & -\mathbf{2} \\ 0 & \mathbf{1} & \mathbf{4} \end{pmatrix}$$
, que

encontra o primeiro termo não nulo $A_{22}^{(4)}=1$ como candidato a pivo da **2a linha**. A sua posição já está correta (2a linha) e normalizado $A_{22}^{(4)}=1$.

6-O objetivo agora é estabelecer o termo encontrado como pivô: Substituição

da 3a linha:
$$L_4^{\prime} = L_4 + (-1)L_2$$
, representada pela matriz $E_5 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$ de

onde vem
$$E_5 E_4 E_3 E_2 E_1 A = A^{(5)} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$
.

6-Estabelecido o pivô $A_{22}^{(5)}$, **verificamos** a matriz à direita do mesmo (indicada

em negrito):
$$A^{(5)} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -\mathbf{2} \\ 0 & 0 & \mathbf{5} \end{pmatrix}$$
 e encontramos o termo $A_{33}^{(5)} = -2$ como o

candidato a pivô da terceira linha.

7-O termo encontrado já está na terceira linha e, portanto, não haverá necessidade de troca de linhas. A proxima operação elementar será portanto de normalização, ou seja, **multiplicação** da 3a linha por $\frac{-1}{2}$: $L_3' = \frac{-1}{2}L_3$ representada

pela matriz elementar
$$E_6=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$
 de onde vem:

$$A^{(6)} = E_6 A^{(5)} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 5 \end{pmatrix}.$$

8-Para estabelecer o pivô da 3a linha aplicaremos uma operação de

substituição:
$$L_4' = L_4 + (-5)L_3$$
 representada pela matriz $E_7 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -5 & 1 \end{pmatrix}$

de onde vem finalmente:
$$A^{(7)} = E_7 E_6 E_5 E_4 E_3 E_2 E_1 A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 que é uma

matriz reduzida, já que não existe matriz à direita do pivô $A_{33}^{(1)}$

1b-A resposta para a questão é obviamente a matriz $B = E_7 E_6 E_5 E_4 E_3 E_2 E_1$, que pode ser obtida pela multiplicação das sete matrizes elementares tal como nesta expressão, ou, aplicando-se sucessivamente as 7 operações elementares partindo-se da Identidade I₄, cujo resultado é

$$B = \left(\begin{array}{cccc} 0 & \frac{1}{2} & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & \frac{1}{2} & \frac{-1}{2} & 0\\ -1 & \frac{-3}{4} & \frac{5}{2} & 1 \end{array}\right)$$

1c-A resolução da questão Ax = b pode ser obtida multiplicando a equação (à esquerda) pela matriz B de onde vem:

 $BAx = A^{(7)}x = Bb$. Como a quarta linha de $A^{(7)}$ é nula, se b_4 for diferente de zero, não haverá solução, (o que deve ter acontecido na maioria dos casos). Se, por coincidencia $b_4 = 0$ então , x_4 será indeterminado e as outras incognitas podem ser facilmente obtidas das equações restantes.

QUESTÃO 2–(3,0)Considere a matriz de ordem
$$3 \times 3$$
, $A = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$

2a) Utilizando o Algorítmo de Gauss passo a passo obtenha uma sequencia de matrizes

elementares E_1, \ldots, E_p de tal forma que $E_p \cdot \cdot \ldots \cdot E_1 A = R$ seja uma matriz **Escalonada Reduzida**.

2b)Moste que A é inversível obtendo a matriz A^{-1} em termos das matrizes elementares E_k . 2c)Resolva o sistema de equações $A^{-1}x = b$ onde b é uma matriz coluna cujas entradas são os 3 primeiros dígitos de seu **RA**.

2d) Resolva o sistema de equações Ax=b para a mesma matriz coluna b da questão 2c) anterior.

2e)Calcule det(-A).

2f)Calcule $\det(A^{-1})$.

RESOLUÇÃO DA 2a QUESTÃO:

2a-Quem já mostrou que conhece bem o Algoritmo de Gauss na primeira questão pode ser mais sucinto neste caso. Portanto, sem muitas explicações, realizaremos o processo com o seguinte esquema.

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ 0 & -1 & 0 \\ 1 & -1 & 1 \end{array}\right)$$
, Verificação detecção do candidato a pivô ($A_{31} = 1$)e

Troca de linhas
$$L_3^{'} = L_3$$
 , Matriz Elementar : $E_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$,

$$E_1A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, pivô da 1a Linha estabelecido.

Verificação da matriz à direita do pivô $A_{11}^{(1)}$ e detecção do elemento $A_{22}^{(1)}=-1$ como candidato a pivô da segunda linha. Como ele já está na 2a linha, não há necessidade de troca de linhas.

Multiplicação da
$$2a$$
 linha por (-1) : $L_2' = (-1)L_2$, $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$E_2E_1A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, o que normaliza o elemento candidato a pivô da 2a

linha.

Substituições:
$$L'_{3} = L_{3} - L_{2}$$

 $L'_{1} = L_{1} + L_{2}$

$$E_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, E_3 E_2 E_1 A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \text{ o que estabelece o pivô da}$$

segunda linha.

Verificação da Matriz à direita do pivô $A_{22}^{(3)}$ e detecção do candidado da pivô da 3a linha, que é $A_{22}^{(3)} = -1$.

Multiplicação:
$$L_3' = (-1)L_3$$
, $E_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $E_4E_3E_2E_1A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Substituição: $L_1' = L_1 - L_3$,

$$E_5 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_5 E_4 E_3 E_2 E_1 A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$
. Fim do algoritmo para

obtenção da forma reduzida.

2b)A expressão acima $(E_5E_4E_3E_2E_1)A = I_3$, mostra que A é inversivel e que $A^{-1} = E_5E_4E_3E_2E_1$.

2c)-Para resolver a equação $A^{-1}x = b$, basta multiplicar convenientemente (isto é, multiplicação à esquerda) os dois lados da equação por A de onde vem que, x = Ab. Para calcular a , única, solução x basta realizar a multilicação indicada onde b_1, b_2, b_3 são os primeiros digitos de seu RA.

2d)-Para resolver o sistema Ax = b basta multiplicar a equação convenientemente por A^{-1} de onde teremos: $A^{-1}(Ax) = A^{-1}b$, ou seja, $x = A^{-1}b$. A matriz A^{-1} pode ser imediatamente obtida da questão 2a) de duas maneiras: i)Realizando a sequencia indicada de operações elementares sobre a matriz identidade ou, ii) Efetuando o produto indicado de matrizes elementares. O

resultado é
$$E_5E_4E_3E_2E_1=A^{-1}=\left(\begin{array}{ccc}1&0&1\\0&-1&0\\-1&-1&0\end{array}\right)$$
 e a solução do sistema é

$$x = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & -1 & 0 \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right).$$

2e)-A matriz -A é obtida multiplicando cada linha por (-1), ou seja, $-A = M_1 M_2 M_3 A$ onde M_k é multiplicação da k -ésima linha por (-1) e como $\det(M_k) = -1$ concluimos que $\det(-A) = (-1)(-1)(-1)\det A = -\det A$.

Para calcular $\det A$ basta utilizarmos a decomposição $E_5E_4E_3E_2E_1A=I_3$, a propriedade fundamental do determinante ("determinante do produto é o produto dos determinantes dos fatores"), ou seja,

 $\det(E_5)\det(E_4)\det(E_3)\det(E_2)\det(E_1)\det A = \det I = 1$ e utilizando a "taboada" dos determinantes de matrizes elementares sabemos que:

$$det(E_5) = 1, det(E_4) = -1, det(E_3) = 1, det(E_2) = -1, det(E_1) = -1$$
 de onde vem que: $det A = -1e \ det(-A) = 1$.

2f)-Sabendo que $\det(A^{-1}A) = \det(A^{-1})\det(A) = \det I = 1$ obtemos também , $\det A^{-1} = \frac{1}{\det A} = -1$.

Como foi insistentemente avisado, o determinante das matrizes teria que ser calculado UTILIZANDO as matrizes elementares e o algoritmo de Gauss. Regras de Chió, Sarrus, Ramanujan, PEPPA PIG e etc. não seriam aceitaveis. PORTANTO, A QUESTÃO NÃO É OBTER O VALOR NUMÉRICO DO DETERMINANTE DESTA MATRIZINHA CHINFRIN 3×3 , MAS MOSTRAR COMO OBTER O DETERMINANTE DE QUALQUER MATRIZ COM O ALGORITMO DE GAUSS.

QUESTÃO 3-(1,5)

3a)-Verifique se é possivel obter um polinômio de terceiro grau na forma $p(x) = ax^3 + bx^2 + cx + d$ cujo gráfico passe pelos seguintes valores p(0) = 1, p(1) = 0, p(-1) = 0 e, neste caso, obtenha um exemplo do mesmo.

3b)A mesma questão acrescentando-se um quarto ponto p(2) = 0.

3c)A mesma questão acrescentando-se ainda um quinto ponto p(3) = 1.

RESOLUÇÃO DA QUESTÃO 3:

3a)Para obter um polinomio da forma $p(x) = ax^3 + bx^2 + cx + d$ precisamos calcular seus coeficientes , (a,b,c,d) que passam a ser incognitas e as equações que devem satisfazer são:

 $p(0) = a0^3 + b0^2 + c0 + d = d = 1, p(1) = a(1)^3 + b(1)^2 + c(1) + d = a + b + c + d = 0, p(0)$, o que constitui tres equações lineares para 4 incognitas numéricas (a,b,c,d). O sistema pode ser escrito na forma matricial Ay = h com a matriz 3×4 ,

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{pmatrix}, \text{ sendo } y = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \text{e } h = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \text{ A matriz } A \text{ pode ser }$$

transformada em uma matriz escalonada com as operações elementares de Troca $L_1'=L_2, L_2'=L_1$, , seguidas das operação de substituição $L_3'=L_3+L_1$, a troca de $L_2'=L_3, L_3'=L_2$, pela multiplicação , $L_2'=\frac{1}{2}L_2$, resultando em

$$E_4E_3E_2E_1A=\left(\begin{array}{cccc} 1&1&1&1\\ 0&1&0&1\\ 0&0&0&1 \end{array}\right)$$
 que obviamente tem infinitas soluções: O valor

de d é fixo (na 3a equação, d=1), o valor de c também é fixo (na segunda equação), mas os valores de a e c são ligados por uma única equação linear (a primeira) , ou seja, o sistema exibe um grau de liberdade (atribuindo um valor qualquer para a obtemos imediatamente o valor correspondente para c, ou vice-versa). Então, d=1 e b=-1 (sem discussão!) mas, por exemplo, se a=1 temos c=1, ou, se c=10, temos a=-10 e daí por diante.

3b)Acrescentado-se uma outra equação, obtemos a matriz de coeficientes

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 8 & 4 & 2 & 1 \end{pmatrix}.$$
 Realizando as mesma operações de linha anteriores,

$$\begin{bmatrix} -1 & 1 & -1 & 1 \\ 8 & 4 & 2 & 1 \end{bmatrix}$$
 mantendo a 4a linha sem modificação chegamos à $E_4E_3E_2E_1A=\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 8 & 4 & 2 & 1 \end{bmatrix}$.

Trocando a ultima linha com a terceira, podemos em seguida por substituições sucessivas, estabelecer o pivo da 1a linha, o da segunda linha, da terceira linha e preservar o da quarta linha o que demonstra que o sistema tem apenas uma solução.

3c)-Como o sistema com quatro equações a quatro incognitas tem uma unica solução, se acrescentarmos uma outra (quinta) equação (p(3) = 1) ela apenas excepcionalmente será satisfeita, ou seja o sistema de 5 equações a quatro incognitas será incompativel a menos que o polinomio encontrado na questão 3b), por coincidencia, tenha o valor p(3) = 1.

QUESTÃO 4: (2,5pt)-Verificar se as afirmativas abaixo são falsas ou verdadeiras-Respostas sem justificativas não serão consideradas.

4a)O produto ABC de tres matrizes $A(1 \times 4) B, (4 \times 5) \in C, (5 \times 1)$ é um número!

4b)O produto
$$AB$$
 entre as matrizes $A = (-1, 3, 8, 5, 4, 9, 7)$ e $B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 10^5 \end{pmatrix}$ é inversivel.

4c)O produto BA das matrizes A e B da questão Ab) é também um número, mas diferente de AB.

4d)Se A for uma matriz 10×7 cuja 3^a linha é a matriz $A_3 = (1, -1, 0, 2, 0, 5, 0)$ e M uma matriz 7×20 cuja 13^a coluna é igual à matriz B de ordem 7×1 , da questão anterior, então o elemento $C_{3,13}$ de C=AM pode ser calculado e tem valor 4.

4e)Os pivôs a_{1j_1} e a_{2j_2} da matriz escalonada obtida da aplicação do **Algoritmo de Gauss** à

elementares representadas por matrizes elementares E_k , de tal forma que E_{28} $E_1A = I$ e $\det A = 2$.

4f)Dada uma matriz M de ordem 3×4 sempre é possivel transforma-la em uma matriz escalonada com uma sequencia de p operações elementares com $p \leq 8$.

RESOLUÇÃO DA QUESTÃO 4:

- **4a**)-CORRETO! De fato o produto de AB é uma matriz 1×5 que multiplicada pela matriz C(que é 5×1) resultará em uma matriz 1×1 ou seja, apenas um número!
- **4b**)-CORRETO!-O produto das matrizes A (1 × 7) e B (7 × 1) é uma matriz 1 × 1 que é obviamente diferente de zero (basta ver que o ultimo termo da soma 7 10^5 é muito maior do que os outros) e portanto é inversivel.
- **4c**)-FALSO: O produto BA é obviamente uma matriz 7×7 e não pode ser um número! (Na verdade são 49 números!!).
- **4d**)-CORRETO: O termo $C_{3,13}$ é obtido calculando-se o produto da matriz linha (1×7) A_3 pela matriz coluna $(7 \times 1)B$ e o valor deste produto (que é um número pois é matriz 1×1) terá o valor $C_{3,13} = 2$.
- **4e**)-FALSO: Para responder esta questão basta aplicar o Algoritmo de Gauss à matriz até a obtenção do segundo pivo (da segunda linha). O primeiro elemento não nulo no processo de Verificação é $A_{22}=-2$ e a troca de linhas 1 e 2 desta matriz o conduzirá à posição do pivo da 1a linha estará na segunda coluna, enfim, $j_1=2$. Prosseguindo ao pivoteamento segundo o algoritmo de Gauss, Verificamos a matriz à direita do pivô anterior e o primeiro elemento não nulo candidato a pivô da segunda linha estará na terceira coluna e portanto $j_2=3$.
- **4f**)- CORRETO:A matriz é 7×7 . e observe que os elementos da diagonal são diferentes de zero e abaixo da diagonal são todos nulos. Portanto, podemos aplicar 7 operações elementares sucessivas de Multiplicações por numeros, M_1, \ldots, M_7 , que resultará em uma matriz com todos os elementos da diagonal unitários e, pela taboada de determinantes de matrizes elementares: $\det M_1 = \frac{7}{2}, \det M_2 = \frac{1}{3}, \det M_3 = \frac{1}{2}, \det M_4 = \frac{1}{2}, \det M_5 = 3, \det M_6 = \frac{2}{7}, \det M_7 = 2$. Em seguida, aplicamos para cada elemento da diagonal tantas operações de substituição quantos elementos houverem acima dele (o que nos dá $\frac{1}{2}(49-7)=21$) de tal forma que a reduzida , $S_{21}, \ldots, S_1M_7, \ldots, M_1A=I$, será a

matriz identidade com 28 operações elementares. Como os determinantes das matrizes de substituição tem valor unitário, concluimos que

$$\det A = \frac{1}{\det(M_1, \dots, M_7)} = \frac{1}{\frac{7}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{3}{7} \frac{2}{7}} = 2.$$

4g)-CORRETO: Se o pivô da 1a linha estiver na 1a coluna (isto é, se algum elemento da 1a coluna for diferente de zero, o primeiro deles será candidato a pivo e portanto, a primeira operação elementar será uma troca de linhas (se necessario) seguida de uma multiplicação para normaliza-lo. Depois, realizamos (se necessario) 2 substituições para "zerarmos" os elementos da coluna do 1o. pivo. Estabelecido o pivô da 1a linha, passamos à matriz à sua direita e fazemos uma troca, uma normalização (multiplicação) e uma substituição, em sequida passamos à terceira linha e normalizamos o pivo da 3a linha com a operação de multiplicação. Talvez nem todas as operações indicadas sejam necessarias, mas certamente não há necessidade de um numero maior. Para "construir" o primeiro pivo aplicamos uma troca, de linhas, uma multiplicação e duas substituições, para o segundo pivo, um troca de linha, uma multiplicação/normalização e uma substituição e finalmente realizamos uma multiplicação/normalização para o terceiro pivô, o que dá no máximo 8 operações elementares e, com sorte, menos do que isso.