

4.10.2. Определение параметров по справочным данным

В справочной литературе по асинхронным двигателям всегда приводятся следующие параметры, соответствующие номинальному режиму работы:

- механическая мощность P_N [BT];
- линейное или фазное напряжение питания U_{1N} [B];
- линейный или фазный ток I_{1N} [A];
- скорость вращения n_N [об/мин] или скольжение s_N ;
- номинальный момент нагрузки M_N [Нм]
- коэффициент мощности $\cos \varphi_{1N}$;
- коэффициент полезного действия η_N ;

а также:

• кратность максимального момента

$$\lambda = M_{\text{max}} / M_N$$
;

- кратность пускового момента $k_s = M_s / M_N$;
- кратность пускового тока $k_{sI} = I_s / I_{1N}$.

Для любого моделирования процессов в двигателе необходимо знание параметров схемы замещения. Поэтому всегда возникает задача вычисления этих параметров на основе справочных данных. Задача эта достаточно сложная и для её упрощения без внесения существенной погрешности обычно пренебрегают магнитными потерями. Тогда схема Г-образная замещения принимает вид, показанный на рис. 4.33, *а*.

Так как в справочных данных содержатся координаты трёх точек механической характеристики (номинальный момент и скорость вращения, момент опрокидывания и пусковой момент), а токи даны только для номинального и пускового режимов, то расчёт пяти параметров схемы замещения необходимо вести, основываясь на механических величинах. При этом для них может быть обеспечена сходимость к справочным данным, а для электрических величин будет возникать ошибка, связанная с несовершенством модели АД в виде схемы замещения.

Активное сопротивление статора r_1 можно определить по рассеваемой на нём мощности $\Delta P_{\rm ICu} = m_1 I_{1N}^2 r_1$, которая равна разности потребляемой активной мощности $P_1 = m_1 U_{1N} I_{1N} \cos \phi_{1N}$ и электромагнитной мощности в номинальном режиме $P_{em} = M_N \omega_1 / z_p$ —

ГОСУЛАРСТВЕННЫЙ У

$$\Delta P_{1Cu} = P_1 - P_{em}$$

$$\downarrow \qquad (4.88)$$

$$r_1 = \frac{U_{1N} I_{1N} \cos \varphi_{1N} - M_N \omega_1 / (m_1 z_p)}{I_{1N}^2}$$

где: m_1 – число фаз; $\omega_1 = 2\pi f_1$ – угловая частота питающей сети и z_p – число пар полюсов магнитного поля двигателя.

Однако величина r_1 будет несколько завышенной, Т.К. В электрическую мощность P_1 входит мощность потерь в магнитопроводе, неучтённая Завышенное замещения. значение сопротивления r_1 может в дальнейших расчётах приводить К некорректным (мнимым) значениям других параметров.

Поэтому лучше, вначале определить приведённое активное сопротивление ротора. Проще всего это сделать по двум координатам любой точки механической

характеристики и значению тока статора в этом режиме. Например, в номинальном режиме мощность скольжения равна

$$\Delta P_{2\text{Cu}} = M_N \Omega_1 s_N = M_N 2\pi f_1 s_N / z_p = m_1 (I_2')^2 r_2'.$$

Тогда, полагая $I_2 \approx I_1$, получим

$$r_2' = \frac{M_N 2\pi f_1 s_N}{z_p m_1 (I_{1N})^2}.$$
 (4.89)

Если по этому выражению рассчитать значения r_2' для целого ряда точек механической характеристики, полученных экспериментально, то получится кривая, показанная на рис. 4.34. Здесь видно, что значение, рассчитанное для точки номинального режима, будет заниженным, а истинная величина сопротивления ротора соответствует мощности скольжения вблизи точки опрокидывания. Однако в справочных данных критическое скольжение не приводится, поэтому воспользоваться выражением (4.89) невозможно.

Проанализируем уравнения механической характеристики (4.61), обозначив $x_{s1} + c_1 x_{s2}' = x_{ks}$

$$M(s) = \frac{m_1 z_p U_{1N}^2 r_2'}{\omega_1 s \left[\left(r_1 + c_1 r_2' / s \right)^2 + \left(x_{ks} \right)^2 \right]}.$$
 (4.90)

Найдём значение производной $\partial M/\partial s$ в режиме холостого хода.

$$\frac{\partial M}{\partial s} = \frac{m_1 z_p U_{1N}^2}{\omega_1} \left\{ \frac{2(r_2')^2 (r_1 + c_1 r_2' / s) c_1}{s^3 \left[(r_1 + c_1 r_2' / s)^2 + (x_{ks})^2 \right]^2} - \frac{r_2'}{s^2 \left[(r_1 + c_1 r_2' / s)^2 + (x_{ks})^2 \right]} \right\},$$

а затем предел при $s \to 0$

$$\lim_{s\to 0}\frac{\partial M}{\partial s}=\frac{m_1 z_p U_{1N}^2}{\omega_1 c_1^2 r_2'}.$$

Заменяя в этом выражении производную конечными разностями между точками холостого хода и номинального режима, получим

$$\frac{\partial M}{\partial s} = \frac{m_1 z_p U_{1N}^2}{\omega_1 c_1^2 r_2'} \approx \frac{\Delta M}{\Delta s} = \frac{M_N}{s_N} \implies r_2' \approx \frac{m_1 z_p U_{1N}^2 s_N}{\omega_1 c_1^2 M_N}$$

Это выражение даёт хорошее приближение, но его можно несколько упростить, т.к. коэффициент приведения Т-образной схемы к Г-образной c_1 находится в пределах $1{,}02 < c_1 < 1{,}06$ и $c_1^2 \approx 1{,}0$. Тогда для приведённого сопротивления ротора получим:

$$r_2' \approx \frac{m_1 z_p U_{1N}^2 s_N}{\omega_1 M_N}$$
 (4.91)

Выражение (4.91) позволяет найти такое значение r_2' , при котором наклон касательной к механической характеристике в точке холостого хода будет несколько больше наклона секущей, проходящей через точку номинального режима, т.к. величина r_2' несколько завышена за счёт условия $c_1^2 \approx 1,0$.

Второй точкой справочных данных является точка опрокидывания. Расчётная механическая характеристика должна пройти через неё, однако предварительно нужно определить неизвестное критическое скольжение.

Из формулы Клосса

$$\frac{M_N}{M_{\text{max}}} = \frac{1}{\lambda} = \frac{2(1 + as_m)}{s_N / s_m + s_m / s_N + 2as_m}$$
(4.92)

критическое скольжение можно найти как

$$s_m = \frac{s_N}{A} \left(\lambda + \sqrt{\lambda^2 - A} \right), \tag{4.93}$$

где $-a = \frac{r_1}{c_1 r_2'}$ и $A = 1 - 2as_N(\lambda - 1)$. Значение a зависит от мощности АД и

изменяется в широких пределах $1,5 < a < 1/s_m$.

Коэффициент приведения Т-образной схемы замещения к Γ -образной равен

$$\underline{C}_1 = 1 + \underline{Z}_1 / \underline{Z}_m \approx c_1 = \left| 1 + \underline{Z}_1 / \underline{Z}_m \right| \approx 1 + x_{s_1} / x_m. \tag{4.94}$$

Из выражения для критического момента

^{*} В ветви намагничивания на рис. 4.33 исключено активное сопротивление ротора r_1 , т.к. оно несущественно влияет на величину комплексного сопротивления $\underline{Z}_1 + \underline{Z}_m = r_1 + jx_{1\sigma} + jx_m \approx j(x_{1\sigma} + x_m) = jc_1x_m$

ГОСУЛАРСТВЕННЫЙ У

$$M_{\text{max}} = \frac{m_1 z_p U_{1N}^2}{2\omega_1 c_1 \left(r_1 + \sqrt{r_1^2 + x_{ks}^2}\right)} = \frac{m_1 z_p U_{1N}^2}{2\omega_1 c_1 \left(r_1 + c_1 r_2' / s_m\right)}$$
(4.95)

с учётом выражения для критического скольжения

$$s_m = \frac{c_1 r_2'}{\sqrt{r_1^2 + x_{ks}^2}} \tag{4.96}$$

можно найти r_1

$$r_{1} = \frac{m_{1}z_{p}U_{1N}^{2}}{2\omega_{1}\lambda M_{N}} - \frac{c_{1}r_{2}'}{s_{m}},$$
(4.97)

а затем из выражения (4.96) можно определить x_{ks} :

$$x_{ks} = \sqrt{\left(\frac{c_1 r_2'}{s_m(a, c_1)}\right)^2 - r_1^2} = x_{s1} + c_1 x_{s2}'. \tag{4.98}$$

Индуктивное сопротивление короткого замыкания x_{ks} далее можно разделить на сопротивления потоков рассеяния статора и ротора x_{s1} и x_{s2}^{\prime} , полагая

$$x_{s1} = x'_{s2} = x_{ks}/2. (4.99)$$

Для определения индуктивного сопротивления ветви намагничивания x_m преобразуем последовательное соединение главной цепи схемы рис. 4.33, a в параллельное, выделив активную и реактивную составляющие комплексной проводимости (рис. 4.33, δ)

$$g(s) = \frac{r_1 + c_1 r_2' / s}{c_1 \left[\left(r_1 + c_1 r_2' / s \right)^2 + x_{ks}^2 \right]}; \ b(s) = \frac{x_{ks}}{c_1 \left[\left(r_1 + c_1 r_2' / s \right)^2 + x_{ks}^2 \right]}.$$
 (4.100)

Величина x_m слабо влияет на электромеханические процессы и входит в уравнение механической характеристики АД только посредством коэффициента c_1 . В то же время, проводимость ветви намагничивания $1/x_m$ в режимах близких к номинальному соизмерима с реактивной проводимостью главной цепи b(s) и существенно влияет на энергетические параметры. Поэтому её целесообразно определять из баланса реактивной мощности $Q_1 = Q_{ks} + Q_m = U_{1N}I_{1N}\sqrt{1-\cos^2\phi_{1N}}$, где Q_{ks} — реактивная мощность, расходуемая на формирование полей рассеяния статора и ротора. После преобразования главной цепи схемы замещения мощности потоков рассеяния и основного потока могут быть представлены через одинаковое для всех ветвей фазное напряжение U_{1N} как $Q_{ks} = U_{1N}^2 b(s_N)$, и $Q_m = U_{1N}^2 b_m = U_{1N}^2/(c_1x_m)$. Подставляя эти выражения в уравнение баланса мощностей, получим —

$$x_{m} = \frac{1}{c_{1} \left[I_{1N} \sqrt{1 - \cos^{2} \varphi_{1N}} / U_{1N} - b(s_{N}) \right]} \approx \frac{1}{I_{1N} \sqrt{1 - \cos^{2} \varphi_{1N}} / U_{1N} - b(s_{N})}.$$
(4.101)

Таким образом, из исходных данных мы получили все искомые параметры в виде функций коэффициентов a и c_1 , которые, в свою очередь, определяются величинами сопротивлений r_1 и r_2' .

На рабочем участке механическая характеристика вполне удовлетворительно определяется точной формулой Клосса, т.е. тремя константами M_{\max} , s_m и a, одна из которых M_{\max} является справочным значением. Поэтому параметры схемы замещения должны обеспечивать сходимость расчётного M_{\max} и справочного значений \tilde{M}_{\max} .

Полученные выше выражения не позволяют аналитически решить уравнение $M_{\rm max}(r_1,r_2')-\tilde{M}_{\rm max}=0$, однако возможны два способа численного решения. Первый является методом последовательных приближений и основан на том, что выражения (4.88) и (4.91) позволяют вычислить завышенные значения r_1 и r_2' . Поэтому, последовательно уменьшая их с некоторым шагом и определяя остальные параметры, а также максимальный момент, можно создать цикл расчёта, условием прерывания которого будет приближение расчётного опрокидывающего момента к справочному значению с заданной точностью TOL.

На рис. 4.35, a приведена блок-схема алгоритма такого расчёта. Сначала с помощью выражений (4.88) и (4.91) по справочным данным рассчитываются исходные завышенные значения активных сопротивлений статора и ротора r_{10} и r_{20}^{\prime} . Затем в блоке 1a вычисляются остальные параметры схемы замещения, а также критическое скольжение s_m и относительное значение опрокидывающего момента

$$\mu_{m} = \frac{m_{1}z_{p} \left[\underline{I'}_{2}(s_{m}) \right]^{2} \left| k_{2}r'_{20} \right|}{\omega_{1}s_{m}M_{N}}.$$
(4.102)

Причём приведённый ток ротора при критическом скольжении $\underline{I'}_2(s_m)$ рассчитывается по Т-образной схеме замещения на рис. 4.9, a. Полученное значение μ_m сравнивается с предыдущим расчётным значением μ'_m и если $\delta_n = |\mu_m - \mu'_m|/\mu'_m > \text{TOL}$, то коэффициент k_1 , на который умножается значение r_{10} , уменьшается на величину $\Delta_k \approx 10^{-4}$.

При достаточной сходимости значений $\mu_{\scriptscriptstyle m}$ в соседних циклах ($\delta_{\scriptscriptstyle n}$ < TOL) проверяется соответствие расчётной кратности максимального момента $\mu_{\scriptscriptstyle m}$

5

 $^{^{*}}$ Столь малый декремент необходим для обеспечения сходимости решения у машин мощностью выше $20~\mathrm{\kappa Br}$

справочному значению λ . Если отклонение $\delta_{\mu} = (\mu_m - \lambda)/\lambda > \text{TOL}$, то величину сопротивления ротора r_{20}' нужно уменьшить на величину Δ_k и повторить цикл вычислений. После выполнения некоторого количества циклов с уменьшением r_{20}' отклонение δ_{μ} снижается до заданного значения TOL и задача определения постоянных параметров схемы замещения завершается.

Полученные величины обеспечивают с заданной точностью соответствие опрокидывающего момента справочному значению. Однако при скольжениях больше критического погрешность схемы замещения с постоянными

параметрами увеличивается и при пуске может стать многократной. Для учёта влияния вытеснения тока в обмотке ротора необходимо определить относительную глубину паза

$$\xi = h/h_{eq} \approx h|s|^{\beta},\tag{4.103}$$

где s — скольжение; β — показатель степени, обычно принимаемый равным 1/2, однако для получения формы механической характеристики, соответствующей справочным данным, его значение можно увеличивать.

Очевидно, что ни реальную глубину паза h, ни эквивалентную глубину h_{eq} при каком-либо скольжении определить невозможно, но приближённое равенство (4.103) позволяет найти h численным решением уравнения

$$\mu_{s}(h) - k_{s} = \frac{z_{p} m_{1} U_{1}^{2} r_{2} \cdot k_{r}(1)}{\omega_{1} \left\{ \left[r_{1} + r_{2}' k_{r}(1) \right]^{2} + \left[x_{1\sigma} + x_{2\sigma}' k_{x}(1) \right]^{2} \right\} M_{n}} - k_{s} = 0, \quad (4.104)$$

т.к. при s=1 относительная глубина паза $\xi \approx h\big|_{s=1}$ и тогда коэффициенты вытеснения (4.73) и (4.74) равны

$$k_r(1) = h \frac{\sinh 2h + \sin 2h}{\cosh 2h - \cos 2h}; \ k_x(1) = \frac{3}{2h} \frac{\sinh 2h - \sin 2h}{\cosh 2h - \cos 2h}.$$
 (4.105)

Подставляя эти выражения в уравнение (4.104) и решая его относительно h, мы получим требуемое значение.

В алгоритме на рис. 4.35, a уравнение (4.104) решается в блоке 2a методом последовательных приближений при инкрементировании некоторого начального значения h_0^* . Условием прерывания цикла является сходимость относительного пускового момента $\mu_s = M_s/M_N$ к справочному значению кратности пускового момента k_s .

Для получения устойчивого решения необходимо начальное значение глубины паза h_0 предварительно более точно определить путём построения функция $\mu_s(h)$, т.к. она имеет экстремум, а при малых h производная $\partial \mu_s/\partial h$ равна нулю. На рис. 4.36, a показана поверхность относительного пускового момента $\mu_s = f(h, P_2)$, рассчитанного для двигателей серии 5A различной мощности P_2 по выражению (4.104), и поверхность справочной кратности пускового момента (непрозрачная поверхность), а на рис. 4.36, δ — функции $\mu_s(h)$ для двигателей минимальной и максимальной мощности. Искомые значения h соответствуют точкам кривых $\mu_s(h)$, где $\partial \mu_s/\partial h > 0$, т.е. точкам a и c. Поэтому для машины малой мощности начальное значение следует выбрать равным $h_0 \approx 1$, а для мощной машины — $h_0 \approx 3$.

Параметры схемы замещения асинхронного двигателя можно найти также с помощью библиотечных функций решения нелинейных алгебраических уравнений, имеющихся в математических пакетах. В пакете *Mathcad* это

^{*} Следует заметить, что в алгоритме программы на рис. 4.35, a для исключения бесконечных циклов ведётся подсчёт их числа n и осуществляется прерывание, если n превышает максимально допустимое значение N.

функция $\operatorname{root}[f(x), x_0]$, а в пакете $\operatorname{Matlab} - \operatorname{fzero}[f(x), x_0]$, причём, при решении в среде Matlab функцию f(x) необходимо описать m-файлом. Обе функции возвращают вещественное число, соответствующее условию f(x) = 0.

Алгоритм программы вычисления параметров с помощью библиотечных функций показан на рис. 4.35, δ . Блоки 2a и 2δ отличаются от блоков 1a и 1δ алгоритма рис. 4.35, a тем, что в них выполняется определение функции $f(r_2')$ и f(h), которые затем используются блоками решения уравнений $\mu_m(r_2') - \lambda = 0$ и $\mu_s(h) - k_s = 0$.

Оба алгоритма позволяют определить параметры схемы замещения, обеспечивающие при расчёте механических характеристик сходимость опрокидывающего и пускового моментов двигателя к справочным данным с заданной погрешностью. Отклонение остальных величин от справочных значений не определено. Произведём оценку этих погрешностей для двигателей серии 5А в диапазоне мощностей от 1,5 до 250 кВт. На рис. 4.37 показаны кривые относительных погрешностей вычисления номинального тока статора I_{1N} , электромагнитного момента M_N , коэффициентов мощности $\cos \varphi$ и полезного действия η , а также пускового тока I_s . Из этого рисунка следует, что наибольшая погрешность возникает при вычислении пускового тока (рис. 4.37, δ). Для двигателей мощностью выше 5 кВт она не превышает -10%, однако при уменьшении мощности быстро возрастает до -35%. Это объясняется неадекватностью Т-образной схемы замещения и модели эффекта вытеснения тока в стержнях обмотки ротора для машин малой мощности. Аналогичная тенденция наблюдается и в картине погрешностей вычисления других величин (рис. 4.37, а). Практически все они быстро возрастают в диапазоне мощностей $P_{N} < 10$ кВт, но при этом их величина значительно меньше, чем при

вычислении пускового тока, что объясняется отсутствием влияния эффекта вытеснения при номинальном скольжении. В целом отклонение расчётных

значений от справочных данных значительно меньше статистического разброса самих данных.