Class 11: RNA-Seq continued

Hong (PID: A16558957)

2/22/2022

The data for this hands-on session comes from a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects

Import/Read the data from Himes et al.

```
counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")</pre>
```

Have a little look see:

head(counts)

##		SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
##	ENSG0000000003	723	486	904	445	1170
##	ENSG0000000005	0	0	0	0	0
##	ENSG00000000419	467	523	616	371	582
##	ENSG00000000457	347	258	364	237	318
##	ENSG00000000460	96	81	73	66	118
##	ENSG00000000938	0	0	1	0	2
##		SRR1039517	SRR1039520	SRR1039521		
##	ENSG0000000003	1097	806	604		
##	ENSG0000000005	0	0	0		
##	ENSG00000000419	781	417	509		
##	ENSG00000000457	447	330	324		
##	ENSG00000000460	94	102	74		
##	ENSG00000000938	0	0	0		
	HIDGOOOOOOOO	•	•			

head(metadata)

```
## 1 SRR1039508 control N61311 GSM1275862
## 2 SRR1039509 treated N61311 GSM1275863
## 3 SRR1039512 control N052611 GSM1275866
## 4 SRR1039513 treated N052611 GSM1275867
## 5 SRR1039516 control N080611 GSM1275870
## 6 SRR1039517 treated N080611 GSM1275871
```

I always need to double check that the columns of my countdata and my coldata (metadata) match.

```
metadata$id

## [1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"

## [6] "SRR1039517" "SRR1039520" "SRR1039521"

colnames(counts)

## [1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"

## [6] "SRR1039517" "SRR1039520" "SRR1039521"

all(metadata$id == colnames(counts))

## [1] TRUE

all(c(T,T,T))

## [1] TRUE
```

I can use the all() function to make sure all my values match(e.e. all values are TRUE)

2. Extract control and treated counts for comparision

First lets extract the control counts columns

```
control.ids <- metadata[metadata$dex == "control",]$id
control.counts <- counts[,control.ids]
head(control.counts)</pre>
```

```
SRR1039508 SRR1039512 SRR1039516 SRR1039520
##
## ENSG0000000003
                                     904
                          723
                                                1170
                                                            806
## ENSG00000000005
                            0
                                       0
                                                  0
                                                              0
                          467
                                     616
## ENSG0000000419
                                                582
                                                            417
## ENSG0000000457
                          347
                                     364
                                                 318
                                                            330
## ENSG0000000460
                           96
                                      73
                                                 118
                                                            102
## ENSG0000000938
```

```
# Take the mean count value per gene (i.e. row)
control.mean <- rowMeans(control.counts)
head(control.mean)</pre>
```

```
## ENSG00000000003 ENSG00000000005 ENSG000000000419 ENSG000000000457 ENSG000000000460

## 900.75 0.00 520.50 339.75 97.25

## ENSG00000000938

## 0.75
```

Now do the same thing for "treated" samples.

```
treated.ids <- metadata[metadata$dex == "treated",]$id
treated.counts <- counts[,treated.ids]
head(treated.counts)</pre>
```

##		SRR1039509	SRR1039513	SRR1039517	SRR1039521
##	ENSG0000000003	486	445	1097	604
##	ENSG0000000005	0	0	0	0
##	ENSG00000000419	523	371	781	509
##	ENSG00000000457	258	237	447	324
##	ENSG00000000460	81	66	94	74
##	ENSG00000000938	0	0	0	0

```
treated.mean <- rowMeans(treated.counts)
head(treated.mean)</pre>
```

Now we can make a plot comparing treated vs control

```
plot(treated.mean, control.mean)
```


When we see data that is so skewed like this over quite a wide range of values we start to think of log transformations to make our analysis easier.

```
## Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 x values <= 0 omitted
## from logarithmic plot
## Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 y values <= 0 omitted</pre>
```


We are after changes in gene expression: treated vs control and this would represent points (i.e. genes) that do not like on the diagonal.

We like to work with $\log 2$ values

from logarithmic plot

```
log2(40/20)

## [1] 1

log2(640/20)
```

[1] 5

Now let's calculate the log2 fold change

```
log2fc <- log2(treated.mean/control.mean)</pre>
```

Store my work so far

```
meancounts <- data.frame(control.mean, treated.mean, log2fc)
head(meancounts)</pre>
```

```
##
                  control.mean treated.mean
                                                 log2fc
## ENSG0000000003
                        900.75
                                     658.00 -0.45303916
## ENSG0000000005
                          0.00
                                       0.00
                                                    {\tt NaN}
## ENSG0000000419
                        520.50
                                     546.00 0.06900279
## ENSG0000000457
                        339.75
                                     316.50 -0.10226805
## ENSG0000000460
                         97.25
                                     78.75 -0.30441833
## ENSG0000000938
                          0.75
                                       0.00
                                                   -Inf
```

Filter our data to remove genes with zero expression values.

```
c(10,200,0,40) == 0
```

[1] FALSE FALSE TRUE FALSE

```
which(c(10,200,0,40) == 0)
```

[1] 3

```
z \leftarrow \text{data.frame}(x=c(10,0,30,40), y=c(10,0,30,0))
which(z == 0, arr.ind = TRUE)
```

```
## row col
## [1,] 2 1
## [2,] 2 2
## [3,] 4 2
```

```
i <- which(z == 0, arr.ind = TRUE)
unique(i[,1])</pre>
```

```
## [1] 2 4
```

Now do it for our real data set

```
zero.vals <- which(meancounts[,1:2]==0, arr.ind=TRUE)
to.rm <- unique(zero.vals[,1])
mycounts <- meancounts[-to.rm,]
head(mycounts)</pre>
```

```
##
                   control.mean treated.mean
                                                  log2fc
## ENSG00000000003
                         900.75
                                      658.00 -0.45303916
## ENSG0000000419
                         520.50
                                      546.00 0.06900279
## ENSG0000000457
                         339.75
                                      316.50 -0.10226805
## ENSG0000000460
                          97.25
                                       78.75 -0.30441833
## ENSG0000000971
                        5219.00
                                     6687.50 0.35769358
## ENSG0000001036
                        2327.00
                                     1785.75 -0.38194109
```

How many genes do we have left?

```
nrow(mycounts)
```

[1] 21817

A common threshold used for calling something differentially expressed is a log2(FoldChange) of greater than 2 or less than -2. Let's filter the dataset both ways to see how many genes are up or down-regulated.

"Up" genes \dots

##

```
sum(mycounts$log2fc > 2)
## [1] 250
"Down" genes ...
sum(mycounts$log2fc < -2)</pre>
## [1] 367
library(DESeq2)
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
##
  The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
```

union, unique, unsplit, which.max, which.min

```
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
```

```
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
       anyMissing, rowMedians
##
citation("DESeq2")
##
##
     Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change
##
     and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550
     (2014)
##
## A BibTeX entry for LaTeX users is
##
##
     @Article{,
       title = {Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2},
##
       author = {Michael I. Love and Wolfgang Huber and Simon Anders},
##
       year = {2014},
##
##
       journal = {Genome Biology},
       doi = \{10.1186/s13059-014-0550-8\},\
##
##
       volume = \{15\},
##
       issue = \{12\},
##
       pages = \{550\},
##
     }
dds <- DESeqDataSetFromMatrix(countData=counts,</pre>
                               colData=metadata,
                               design=~dex)
## converting counts to integer mode
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
```

```
res <- results(dds)
res
## log2 fold change (MLE): dex treated vs control
## Wald test p-value: dex treated vs control
## DataFrame with 38694 rows and 6 columns
##
                    baseMean log2FoldChange
                                                lfcSE
##
                                  <numeric> <numeric> <numeric> <numeric>
                   <numeric>
                                 -0.3507030 0.168246 -2.084470 0.0371175
## ENSG0000000000 747.1942
## ENSG0000000005
                      0.0000
                                         NA
                                                   NA
                                                             NA
## ENSG00000000419 520.1342
                                 0.2061078 0.101059 2.039475 0.0414026
## ENSG0000000457
                   322.6648
                                 0.0245269 0.145145 0.168982 0.8658106
## ENSG0000000460
                     87.6826
                                 -0.1471420 0.257007 -0.572521 0.5669691
## ...
## ENSG00000283115 0.000000
                                         NA
                                                   NA
                                                             NA
                                                                       NA
## ENSG00000283116 0.000000
                                         NA
                                                   NA
                                                             NA
                                                                       NA
## ENSG0000283119
                   0.000000
                                         NA
                                                   NA
                                                             NA
                                                                       NA
## ENSG00000283120 0.974916
                                  -0.668258
                                              1.69456 -0.394354
                                                                 0.693319
## ENSG00000283123 0.000000
                                         NA
                                                   NA
                                                             NA
                                                                       NA
##
                        padj
##
                   <numeric>
## ENSG0000000000 0.163035
## ENSG00000000005
                          NΑ
## ENSG0000000419 0.176032
## ENSG0000000457 0.961694
## ENSG0000000460 0.815849
## ENSG00000283115
                          NA
## ENSG00000283116
                          NA
## ENSG00000283119
                          NA
## ENSG00000283120
                          NA
## ENSG00000283123
                          NA
summary(res)
##
## out of 25258 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                      : 1563, 6.2%
## LFC < 0 (down)
                      : 1188, 4.7%
## outliers [1]
                      : 142, 0.56%
## low counts [2]
                      : 9971, 39%
## (mean count < 10)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
res05 <- results(dds, alpha=0.05)
summary(res05)
##
## out of 25258 with nonzero total read count
## adjusted p-value < 0.05
```

```
## LFC > 0 (up) : 1236, 4.9%
## LFC < 0 (down) : 933, 3.7%
## outliers [1] : 142, 0.56%
## low counts [2] : 9033, 36%
## (mean count < 6)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

Volcano plots

Let's make a commonly produced visualization from this data, namely a so-called Volcano plot. These summary figures are frequently used to highlight the proportion of genes that are both significantly regulated and display a high fold change.

```
plot(res$log2FoldChange, -log(res$padj))
abline(h=-log(0.05), col = "gray")
abline(v=c(-2,2),col="gray")
```


I want to polish this main results figure by adding color to the genes i will focus on next day

```
# I will start by making a gray vector for everything
mycols <- rep("gray", nrow(res))

# Now I will overwite the small padj values
mycols[res$padj < 0.005] <- "red"</pre>
```

```
# Now if my log2foldchange is small I will make them gray
mycols[abs(res$log2FoldChange) < 2] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col = mycols)
abline(h=-log(0.05))
abline(v=c(-2,2))</pre>
```


This is a common overall summary figure because it combines big changes (in terms of $\log 2$ foldchange) and significant changes (in terms of p-value) all in one figure.