Prof. Dr.-Ing. Martin Lapke

Nachname:	
Vorname:	
Matrikelnummer:	
Aufgabenpunkte:	von 95
Notenpunkte:	
Kommentar:	
Dauer:	90 min

Formales

- Die Aufgabenblätter und Lösungsblätter NUR in der richtigen Reihenfolge getackert abgeben. Lose Blätter werden nicht gewertet
- Lösung leserlich nur in den vorgesehenen Bereich unter den Aufgaben eintragen (keine Wertung von Antworten außerhalb dieses Bereichs).
- Sollte der Platz unterhalb der Aufgaben nicht ausreichen erhalten Sie dafür markierte Blätter. Nutzen Sie NUR diese Blätter sowie für jede Aufgabe jeweils ein eigenes Blatt. Kennzeichnen Sie jedes Blatt mit der entsprechenden Aufgabe sowie Namen & Matrikelnummer.
- Ansätze und Lösungswege sind Teil der Wertung und müssen nachvollziehbar und eindeutig sein.
- Genaueste aus der Vorlesung bekannte Berechnungsweise verwenden, sofern nicht in der Aufgabenstellung weitere N\u00e4herungen erlaubt sind.
- Stichwortartige Antworten sind ausreichend.

Zugelassene Hilfsmittel

- a) zugelassen
 - o Papier, Lineal, Stift
 - o Formelsammlung, (drei beidseitig, 6 einseitig handgeschriebene DINA4-Blätter)
 - o (programmierbarer) Taschenrechner
- b) insbesondere sind nicht zugelassen:
 - Computer, Laptops
 - Mobiltelefone und andere kommunikationsfähige Geräte mit aktiviertem Funk
 - o Bücher und gedruckte Formelsammlungen
 - o Kommunikation mit anderen Studierenden

Viel Erfolg!

1. Grundbegriffe

A) Gleichstrom

Der Schalter zwischen den Klemmen 1 und 2 ist geöffnet. Zudem sei $R1=4k\Omega$, $R2=8k\Omega$, $R3=8k\Omega$, $R4=2k\Omega$, $R5=100\Omega$

a) Bestimmen Sie den Gesamtwiderstand des nachfolgenden Netzwerkes bezüglich der Klemmen "a" und "b".

Ergebnis

B) DC-Analyse

- a) Kreuzen Sie richtige Aussagen an (Mehrfachnennungen möglich, richtige Antwort 1P, falsche Antwort 1P Abzug, Max 7P, Min 0P)
 - \Box I_{R1} ist negativ.
 - \Box I_{R2} ist positiv.
 - $\ \square$ Das Potential am Punkt A ist größer als am Punkt C.
 - ☐ Es gibt im Netzwerk genau 6 linear unabhängige Knoten.
 - \Box U_{R3} beträgt 70V.
 - □ Durch U_1 fließt ein Strom von 250mA.
 - \Box Durch U_1 und U_2 fließt der gleiche Strom.

Ergebnis

C) Wechselstrom, Ersatzschaltbild

Es liegt eine Wechselspannung mit einer Amplitude von 10V und einer Frequenz von 5kHz an. Im weiteren Verlauf wollen Sie die Impedanz Z des Bauteils zwischen den Klemmen a und b bestimmen.

a) Bestimmen Sie die Gesamtimpedanz Z des Bauteils zwischen den Klemmen "a" und" "b".

Ergebnis 5P

D) Wechselstromkenngrössen

Sie messen in an einem Bauteil den dargestellten Strom und die dargestellte Spannung.

a) Lesen Sie die Kenngrößen der Spannung und des Stroms aus dem Diagramm ab und schreiben Sie die Funktionen u(t) sowie i(t) in der Polarform d.h. mit Amplitude, Phase und Kreisfrequenz auf.

Ergebnis:	6P	

E) Wechselspannungsmessung mit einem Digitalmultimeter

Datenblattauszug Digital Multimeter DMM Model TECH

Mess- funktion	B. B. C. and B. C. and P. L.	Auflösung bei Mess-			impedanz	Eigenunsicherheit bei Referenzbedingungen					
IUIIKUOII	Messbereich	bereichsendwert		±(% v.		±(% v. MW + D)	±(% v. MW + D)				
		11999	1199		~/≂		~ ⁴)	₹4)			
	100 mV	10 μV		≥9 MΩ	≥9 MΩ // < 50 pF	0,09 + 5 mit ZERO	1 + 30 (> 300 D) 1)	1 + 30 (> 300 D) 1)			
	1 V	100 μV		≥9 MΩ	\geq 9 M Ω // < 50 pF	0,05 + 3	0,5 + 9 (> 200 D)	1 + 30 (> 300 D)			
V	10 V	1 mV		≥9 MΩ	\geq 9 M Ω // < 50 pF	0,05 + 3	0,5 + 9 (> 200 D)	1 + 30 (> 300 D)			
	100 V	10 mV		≥9 MΩ	≥9 MΩ // < 50 pF	0,05 + 3	0,5 + 9 (> 200 D)	1 + 30 (> 300 D)			
	1000 V	100 mV		≥9 MΩ	\geq 9 M Ω // < 50 pF	0,09 + 3	0,5 + 9 (> 200 D)	1 + 30 (> 300 D)			
				Spannungsabfall o	a. bei Endwert MB		~ ⁴)	₹4)			
A E	100 μA	10 nA		12 mV	12 mV	0,5 + 5	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
A	1 mA	100 nA		120 mV	120 mV	0,5 + 3	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
A X-TRA OUTDOOR PRO	10 mA	1 μΑ		16 mV	16 mV	0,5 + 3	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
OUTDOOR	100 mA	10 μA		160 mV	160 mV	0,5 + 3	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
PRO F	2 1 A	100 μΑ		40 mV	40 mV	0,9 + 10	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
r nu		1 mA		600 mV 600 mV		0,9 + 10	1,5 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
	10 mA	1 μA		16 mV 16 mV		0,1 + 5	1 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
A	₹ 100 mA	10 μA		160 mV	160 mV	0,1 + 5	1 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
TECH	100 mA 1 A	100 μΑ		40 mV	40 mV	0,9 + 10	1 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
	10 A	1 mA		600 mV	600 mV	0,9 + 10	1 + 10 (> 200 D)	1,5 + 30 (> 200 D)			
Fa	aktor 1:1/10/100/1000	Eingang		Eingangs	impedanz						
A>C		100 mA		Ctrommo	accingang	Spezifikatio	n eigha Strommaccharair	ommessbereiche A (TECH)			
_	1/10/100/1000 A	1 A		Strommesseingang Spezifikation siehe Strommessbereiche A (TE (Buchse X A)		Silo A (ILOII)					
TECH 10	0/100/1000/10000A	10 A		(Duone	ν Λ ^{''})	zuzüglich	lich Fehler Zangenstromwandler				
A>C	0,1/1/10/100 A	100 mV		Spannungsr	nesseingang	±(0,5% v. MW + 10 D)	±(1 % v. MW + 30 D)	±(1 % v. MW + 30 D)			
TECH	1/10/100/1000 A	1 V			Ri = 1 M Ω /9 M Ω	±(0,5 % V. IVIVV + 10 D)	> 300 D	> 300 D			
BASE 10	0/100/1000/10000A	10 V		BASE: (Buchse	Base: (Buchse XV) Ri ~1 MΩ		h Fehler Zangenstro	msensor			
				Leerlaufspannung	Messstrom @ Endwert MB	±(% v. MW + D)					
	100 Ω	10 mΩ		< 1,4 V	ca. 300 µA	0,2 + 5 mit Funktion ZERO aktiv					
	1 kΩ	$100\mathrm{m}\Omega$		< 1,4 V	ca. 250 µA	0,2 + 5					
	10 kΩ	1 Ω		< 1,4 V	ca. 100 µA	0,2 + 5					
Ω	100 kΩ	10 Ω		< 1,4 V	ca. 12 µA	0,2 + 5					
	1 MΩ	100 Ω		< 1,4 V	ca. 1,2 µA	0,2 + 5					
	10 MΩ 1 kΩ <1,4 V ca. 125 nA			0,5 + 10							
	40 MΩ	10 kΩ		< 1,4 V ca. 20 nA		2,0 + 10					
山)	100 Ω	_	0,1 Ω	ca. 8 V	ca. 1 mA konst.	3 + 5					
→-	5,1 V ³⁾	_	1 mV	ca. 8 V	ca. 1 mA konst.	0,5 + 3					

a) Geben Sie die Messunsicherheiten einer Gleich-Spannungsmessung mit dem 5-stelligen DMM Model TECH an, wenn der angezeigte Wert 013,45V beträgt.

Ergebnis: 6P

Prof. Dr.-Ing. Martin Lapke

F) Zeigerdarstellung

Das nebenstehende Diagramm zeigt einen Ausschnitt aus einer Schaltung. Die komplexen Effektivwerte der Ströme $\underline{I_1}$ und $\underline{I_2}$ sind bekannt.

a) Zeichnen Sie maßstabsgetreu die Ströme $\underline{I_1}$ und $\underline{I_2}$ und bestimmen Sie graphisch den Strom $\underline{I_3}$ und geben Sie den Wert in unter Angabe von Real- und Imaginärteil an. Die Achsen sind mit der von Ihnen gewählten Skalierung zu versehen und zu beschriften.

Ergebnis: 5P

G) Leistungsanpassung

Gegeben sei folgende Schaltung:

Es sei $G_1=1$ mS, $R_2=1$ k Ω , $I_1=3$ mA und $U_2=1$,2 V.

a) Wählen Sie R_3 , so dass in R_3 maximale Leistung umgesetzt wird.

Ergebnis:	3P	
Ergebnis:	3P	

b) Bestimmen Sie für Fall a) die in R_3 umgesetzte Leistung.

Ergebnis:

Prof. Dr.-Ing. Martin Lapke

	H)	Spannung	und Strom	am Kond	densator
--	----	----------	-----------	---------	----------

Ein Kondensator der Kapazität $20~\mu\text{F}$ wird mit einem exponentiell abnehmendem Strom eine Sekunde lang aufgeladen (t=0...1s). Welche Spannung liegt anschließend am Kondensator an.

Es sei dabei: $i(t) = 2mA \cdot e^{-\frac{t}{1s}}$ der gegebene Ladestrom für $t = 0 \dots 1s$

Ergebnis: 5P

Summe (max. 45 P.)

2. Wheatstone'sche Brückenschaltung

Bei der folgenden Wheatstone'schen Brücke wird die Brückenspannung über ein **Voltmeter mit** einem Innenwiderstand R_i abgenommen. In der Schaltung ist anstelle des Voltmeters nur dessen Innenwiderstand eingezeichnet. Im abgeglichenen Zustand haben die Widerstände R_1 , R_2 , R_3 und R_4 einen Wert von 100Ω . Die Schaltung wird mit einer Gleichspannung von 20 V gespeist. Es soll der Einfluss des Innenwiderstandes des R_i ; auf die angezeigte Spannung analysiert werden.

Dazu wird im Folgenden der Widerstand $R_1=110\Omega$ erhöht.

a) Stellen Sie die Matrixgleichung für die Brückenschaltung in allgemeiner Form unter Berücksichtigung von R_i auf. Verwenden Sie dazu die vorgegebenen Maschen.

Ergebnis:	8P	

b) Berechnen Sie den Maschenstromvektor für $R_{i,1}=10\Omega$ und $R_{i,2}=10k\Omega$.

Ergebnis: 4P

Klausur Grundlagen Elektrotechnik 1- GE1 - SS2020

30. September 2020 Prof. Dr.-Ing. Martin Lapke

Ergebnis:

Im Folgenden soll die Lösung des Gleichungssystems für $R_1=110\Omega$ und zwei unterschiedlichen Werten von R_i mit $R_{i,1}=10\Omega$ und $R_{i,2}=10k\Omega$ vorgegeben sein.

Werten von
$$R_i$$
 mit $R_{i,1} = 10\Omega$ und $R_{i,2} = 10k\Omega$ vorgegeben sein. Für $R_{i,1}$: $\overrightarrow{I_1} = \begin{pmatrix} 195,24\\100,21\\99,78 \end{pmatrix}$ mA und für $R_{i,2}$: $\overrightarrow{I_2} = \begin{pmatrix} 195,239\\100,024\\99,976 \end{pmatrix}$ mA

c) Berechnen Sie jeweils für $R_{i,1}$ und $R_{i,2}$ die zugehorige Brückenspannung $U_{AB,1}$ und $U_{AB,2}$.

a)	Innenwiderstand $R_i \rightarrow \infty$.	U_{AB}	jur	$R_1 = 11032$	una	einen	unenalich	none
Eı	gebnis:						4P	
e)	Erläutern Sie, wie der Innenwiderstand R_i	_, gewo	ählt v	verden sollte ι	ınd be	gründe	n Sie dies.	

Summe (max. 25 P.)

Ergebnis:

3. Strom/ Spannungsbeträge und Phasen

Gegeben sei folgende Schaltung, der ideale Schalter zwischen den Klemmen "1" und "2" sei zunächst **geschlossen**.

a) Bestimmen Sie zunächst die Impedanz \underline{Z}_P der Parallelschaltung aus R1 & C1 in Allgemeiner Form

Ergebnis: 4P		
--------------	--	--

b) Trennen Sie die Impedanz \underline{Z}_P in Real- und Imaginärteil.

Ergebnis:

Prof. Dr.-Ing. Martin Lapke

c)	Bestimmen Sie den Betrag Z_P der Impedanz \overline{Z}_P .		
E	rgebnis:	4P	
	Folgenden soll der Schalter zwischen den Klemmen "1" und "2" geöffnet sein. Der We $$ duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich:		t.
	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_{G} nich	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	
Inc	duktivität $L1$ soll so bestimmt werden, dass sich der Betrag des Gesamtstromes I_G nich Wie groß muss jetzt der Betrag der Gesamtimpedanz \overline{Z}_G sein sodass sich der	t ändei	

Prof. Dr.-Ing. Martin Lapke

Nehmen Sie im Folgenden an, dass: $R1=150\Omega$ sowie $C1=3.5\mu$ F gelte zudem sei V1 eine Ideale Spannungsquelle mit U1=10V sowie einer Frequenz von f=400Hz.

e) Bestimmen Sie den Wert der Induktivität L1 so, dass sich der Betrag Stromes nicht ändert.

Ergebnis:		 8P	
	Summe (max. 25 P.)		