

## Strategies of Net Zero Buildings - Space Cooling

- Reduce the room load
- Reduce the system load
- Meet the load by passive cooling methods

### Vapor absorption system

Working Pairs: LiBr – H<sub>2</sub>O, NH<sub>3</sub> – H<sub>2</sub>O, R134a - DMAC



### **Power generation – Transmission – Compression Cooling**





### **Expected losses in power lines**

Power plant loss : 70%

*(Efficiency = 30%)* 

**Generator Loss**: 5%

T &D Loss : 30%

End Equipment loss : 10%

25 kW - 7.5 kW - 6.75 kW - 4.75 kW - 4.25 kW

Heat Source to Site Power Factor: 4.25/25 = 0.17

### Trombe wall / Solar chimney



## **Ventilation cooling**

## Wind tower



### Estimate the energy demand (EER) of an air-conditioner

Inlet condition: DBT=20°C, WBT=14°C

Outlet condition: DBT=12.7°C, WBT=11.3°C

Capacity = 20 TR

Air velocity = 2.5 m/s

Cross sectional area =  $1.2 \text{ m}^2$ 

Power drawn by compressor = 10.69 kW

#### (Valid from the 1st July, 2023 to30th June, 2025)

| Indian Seasonal Energy Efficiency Ratio(kWh/kWh) |         |         |  |  |  |
|--------------------------------------------------|---------|---------|--|--|--|
| Star Rating                                      | Minimum | Maximum |  |  |  |
| 1 Star                                           | 2.70    | 3.09    |  |  |  |
| 2 Star                                           | 3.10    | 3.39    |  |  |  |
| 3 Star                                           | 3.40    | 3.69    |  |  |  |
| 4 Star                                           | 3.70    | 3.99    |  |  |  |
| 5 Star                                           | >=4.00  |         |  |  |  |

### Compressor

- A compressor is capable of compressing the gas to very high pressures.
- Commonly used in industrial facilities to perform a wide variety of tasks such as cleaning, operating pneumatic equipment, and even refrigeration.
- It is often referred to as the **fourth utility** after electricity, water, and natural gas or oil.
- Compressors are responsible for most energy consumption in many facilities.
- The electricity consumption associated with compressors and compressed air systems may represent 70% of total consumption
- Refrigerant or Air Compressor

## A typical distribution of costs associated with compressors



### Classification

- Compressors are broadly classified as positive displacement (or displacement) and dynamic compressors.
- In positive displacement compressors, an application of shaft work decreases the volume of the fluid chamber, thus compressing it.
- In **dynamic compressors**, an application of external work allows the transfer of angular momentum to the fluid, and this result in an increase in fluid pressure.
- Positive displacement compressor: reciprocating and rotary.
  - Rotary compressor: vane, screw, roots, and liquid ring.
  - Reciprocating compressor: trunk, crosshead, free piston, labyrinth, and diaphragm.
- Dynamic compressor: radial or centrifugal, axial, and ejector.
- Classification according to lubricant/non-lubricant, Water/air cooled, Single/Multi Cylinder, Single/Multi stage

## Reciprocating compressor



## Centrifugal compressor



### Screw compressor



## Selection of Compressor

| Type of Compressor      | Capacity (m <sup>3</sup> /h) |        | Pressure (bar) |     |
|-------------------------|------------------------------|--------|----------------|-----|
| Type of Compressor      | From                         | То     | From           | То  |
| Roots blower compressor | 100                          | 30000  | 0.1            | 1   |
| single stage            |                              |        |                |     |
| Reciprocating           |                              |        |                |     |
| - Single / Two stage    | 100                          | 12000  | 0.8            | 12  |
| - Multi stage           | 100                          | 12000  | 12.0           | 700 |
| Screw                   |                              |        |                |     |
| - Single stage          | 100                          | 2400   | 0.8            | 13  |
| - Two stage             | 100                          | 2200   | 0.8            | 24  |
| Centrifugal             | 600                          | 300000 | 0.1            | 450 |

## Comparison of Compressors

| Item                                            | Reciprocating       | Rotary vane                        | Rotary Screw                       | Centrifugal                        |
|-------------------------------------------------|---------------------|------------------------------------|------------------------------------|------------------------------------|
| Efficiency at full load                         | High                | Medium-high                        | High                               | High                               |
| Efficiency at part load                         | High due to staging | Poor: below<br>60% of full<br>load | Poor: below<br>60% of full<br>load | Poor: below<br>60% of full<br>load |
| Efficiency at no load (power as % of full load) | High (10-25%)       | Medium (30-<br>40%)                | High-poor<br>(25-60%)              | High-medium (20-30%)               |

# Compressor air system



## **Compressor work**

$$w_{\rm rev,in} = \int_1^2 v \, dP$$

Isentropic ( $Pv^k = constant$ ):

$$w_{\text{comp,in}} = \frac{kR(T_2 - T_1)}{k - 1} = \frac{kRT_1}{k - 1} \left[ \left( \frac{P_2}{P_1} \right)^{(k-1)/k} - 1 \right]$$

Polytropic ( $Pv^n = constant$ ):

$$w_{\text{comp,in}} = \frac{nR(T_2 - T_1)}{n - 1} = \frac{nRT_1}{n - 1} \left[ \left( \frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right]$$

Isothermal (Pv = constant):

$$w_{\text{comp,in}} = RT \ln \frac{P_2}{P_1}$$



The adiabatic compression ( $Pv^k$  = constant) requires the maximum work and the isothermal compression (T = constant) requires the minimum.

## **Multistage Compression with Intercooling**

The gas is compressed in stages and cooled between each stage by passing it through a heat exchanger called an *intercooler*.

$$w_{\text{comp,in}} = w_{\text{comp I,in}} + w_{\text{comp II,in}}$$

$$= \frac{nRT_1}{n-1} \left[ \left( \frac{P_x}{P_1} \right)^{(n-1)/n} - 1 \right] + \frac{nRT_1}{n-1} \left[ \left( \frac{P_2}{P_x} \right)^{(n-1)/n} - 1 \right]$$



$$P_x = (P_1 P_2)^{1/2}$$

To minimize compression work during two-stage compression, the pressure ratio across each stage of the compressor must be the same.

### **Multistage Compression with Intercooling**



### **Multistage Compression**

Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 300 K to an exit pressure of 900 kPa. Determine the compressor work per unit mass for (a) isentropic compression with k = 1.4, (b) polytropic compression with n = 1.3, (c) isothermal compression, and (d) ideal two-stage compression with intercooling with a polytropic exponent of 1.3.

### Isentropic ( $Pv^k$ = constant):

$$w_{\text{comp,in}} = \frac{kR(T_2 - T_1)}{k - 1} = \frac{kRT_1}{k - 1} \left[ \left( \frac{P_2}{P_1} \right)^{(k-1)/k} - 1 \right]$$

### Polytropic ( $Pv^n = constant$ ):

$$w_{\text{comp,in}} = \frac{nR(T_2 - T_1)}{n - 1} = \frac{nRT_1}{n - 1} \left[ \left( \frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right]$$

### Isothermal (Pv = constant):

$$w_{\text{comp,in}} = RT \ln \frac{P_2}{P_1}$$

## Compressor Performance

$$\eta_{\text{comp}} = \frac{w_{\text{isothermal}}}{w_{\text{actual}}}$$



$$Volumetric \ Efficiency = \frac{Free \ Air \ Delivered}{Compressor \ Displacement}$$

### Efficient Operation of Compressor

- Cool air intake Compressor room always at a high temp Every 4°C drop 1% reduction in power Fresh cool intake with less pressure drop
- Dust free intake need of high eff filter, maintenance Every 250 mm WC pressure drop due to choked filter increase the power consumption by 2%
- Dry air intake moisture not suitable for pneumatics
- Location of compressor Accessibility of clean, cold and dry air
- Adequate intercooler approach the isothermal compression
- Adequate after-cooler A high temp. and humid air enters the receiver which may lead to condensation –
   corrosion, pressure drop and leakage in pipe lines
- Reduced delivery pressure if possible lesser the pressure ratio lesser the power requirement

### Efficient Operation of Compressor

- Segregate the low and high pressure requirements don't use reducing valves if possible
- Minimum pressure drop in the air lines 0.3 bar in the main line 0.5 bar in the distribution line
- Avoid misuse of compressed air like body or floor cleaning use blower air instead
- Elevation higher the altitude and higher the power

| Altitude Meters | Barometric<br>Pressure milli bar* | Percentage Relative Volumetric<br>Efficiency Compared with Sea Level |          |
|-----------------|-----------------------------------|----------------------------------------------------------------------|----------|
|                 |                                   | At 4 bar                                                             | At 7 bar |
| Sea level       | 1013                              | 100.0                                                                | 100.0    |
| 500             | 945                               | 98.7                                                                 | 97.7     |
| 1000            | 894                               | 97.0                                                                 | 95.2     |
| 1500            | 840                               | 95.5                                                                 | 92.7     |
| 2000            | 789                               | 93.9                                                                 | 90.0     |
| 2500            | 737                               | 92.1                                                                 | 87.0     |

### Avoid air leakage

- Manufacturers are quick to identify energy (and thus money) losses from hot surfaces and to insulate those surfaces.
- Not so sensitive to save compressed air since they view air as being free
- Attention is when the air and pressure losses interfere with the normal operation of the plant.
- Several studies at plants have revealed that up to 40% of the compressed air is lost through leaks.
- Eliminating the air leaks totally is impractical, and a leakage rate of 10% is considered acceptable.
- Air leak locations: Joints, flange connections, elbows, reducing bushes, sudden expansions, valve systems, filters, hoses, check valves, relief valves, extensions, and the equipment connected to the compressed-air lines.

### Detecting air leaks

- Perhaps the simplest way of detecting a large air leak is to listen for it.
- The high velocity of the air escaping the line produces a hissing sound that is difficult not to notice except in environments with a high noise level.
- Another way of detecting air leaks, especially small ones, is to test the suspected area with soap water and to watch for soap bubbles.
- This method is obviously not practical for a large system with many connections.
- A modern way of checking for air leaks is to use an acoustic leak detector, which consists of a directional microphone, amplifiers, audio filters, and digital indicators.
- Pressure drop test

### Capacity control

- ON/OFF control using pressure switches suitable for small compressors
- Load/Unload Compressors may consume power even at unload conditions
- Multi-step control High capacity compressor 100, 75, 50 and 25%
- Vane / Speed control Centrifugal type

### References

- https://www.trane.com/content/dam/Trane/Commercial/global/products-systems/education-training/engineers-newsletters/airside-design/admapn020en-0406.pdf
- https://nzeb.in/knowledge-centre/hvac-2/radiant-cooling-systems/
- NPTEL, Mechanical Engineering Refrigeration and Air Conditioning
- https://archive.nptel.ac.in/courses/112/105/112105129/
- Karthik Panchabikesan, Kumaresan Vellaisamy, Velraj Ramalingam, Passive cooling potential in buildings under various climatic conditions in India, Renewable and Sustainable Energy Reviews, Volume 78, 2017, Pages 1236-1252,
- https://climate.earthathome.org/sunlight-stored-in-soil/
- https://fairconditioning.org/knowledge/passive-design/shading/
- https://www.sciencedirect.com/science/article/pii/S1364032116002665#f0010
- https://www.bigrentz.com/blog/how-air-compressors-work

Add a footer 26