Projekt 2 "Pierwszość Liczby" Sebastian Krzyżaniak

Przykładowy kod

```
static bool exPrime(ulong n)
                                //exemplary
   if (n < 2) return false;
    else if (n < 4) return true;
    else if (n % 2 == 0) return false;
    else
      ulong m = (n >> 1); // n/2;
      for (ulong i = 3; i < m; i += 2)
        if (n % i == 0) return false;
    return true;
```

```
static void Main()
            ulong n = 1009140613399;
            Console.WriteLine(exPrime(n));
                      static int Count OP = 0; //counts operations
           static void Main()
             { ulong n = 1009140613399;
              Stopwatch st = new Stopwatch();
              St.Start; bool t = OptPrime(n); St.Stop;
              long time = st.ElapsedMilliseconds;
              Console.WriteLine(t \n time \n Count_OP);
if (n % i == 0) return false;
Count Op++;
```

Przyzwoity kod

```
//optimum
static bool OptPrime(ulong n)
                                                                   static void Main()
    if (n < 2) return false;
                                                                       ulong n = 1009140613399;
    else if (n < 4) return true;
                                                                       Console.WriteLine(exPrime(n));
    else if (n % 2 == 0) return false;
    else if ((n + 1) \% 6 != 0 \&\& (n - 1) \% 6 != 0) return false;
                                                                                     else
                                                                     static int Count OP = 0; //counts operations
                                                                      static void Main()
      ulong s = (ulong)Math.Sqrt(n);
                                      //square n
                                                                        { ulong n = 1009140613399;
      for (ulong i = 3; i <= s; i += 2)
                                                                         Stopwatch st = new Stopwatch();
                                                                         St.Start; bool t = OptPrime(n); St.Stop;
        if (n % i == 0) return false;
                                                                         long time = st.ElapsedMilliseconds;
                                                                         Console.WriteLine(t \n time \n Count_OP);
    return true;
                                                         if (n % i == 0) return false;
                                                         Count Op++;
```

Optymalny kod

```
static void Main()
    ulong d, num;
                     //multiplier of power 2 in divider num - 1 //d-mnożnik potegi 2 w dzielniku num - 1
    int s, quality;
    bool t;
    num = 100913;
                       //number
    quality = 20; //quality //chance 1 to 1099511627776 (for 20)
             //exponent of power 2 in the divider num - 1 //wykładnik potęgi 2 w dzielniku num - 1
    s = 0;
    for (d = num - 1; d \% 2 == 0; s++) d /= 2;
    t = true;
                                                             //quality == number of operations
    t = CheckPrime(d, num, s, quality, t);
    Console.WriteLine(t);
                                                             Stopwatch st = new Stopwatch();
                                                             st.Start;
                                                             t = CheckPrime(d, num, s, quality, t);
                                                             st.Stop;
                                                             long time = st.ElapsedMilliseconds;
                                                             Console.WriteLine(t \n time \n quality)
```

```
private static bool CheckPrime(ulong d, ulong num, int s, int quality, bool t)
   ulong rnd num, x; //x-number of string //x-wyraz ciągu Millera-Rabina
   if (MaybePrime(num) == false) return t = false;  //ADDTL SCRTY SPEED
   for (int i = 1; i \le quality; i++)
     rnd num = Random(num - 2); //number selected randomly
     x = ExptnMod(rnd num, d, num); //modulo exponentiation //potegowanie modulo
     if ((x == 1) | | (x == num - 1)) continue; //num has passed the exam --> num is prime
     for (int j = 1; (j < s) && (x != num - 1); j++)
       x = MultipletnMod(x, x, num); //multiplication of modulo //mnożenie modulo
       if (x == 1)
         t = false; break;
     if (!t) break; //additional security
     if (x != num - 1)
       t = false; break;
   return t:
```

```
Part III
```

```
static bool MaybePrime(ulong num) //additional method (security and speed)
    if ((num + 1) \% 6 == 0 | | (num - 1) \% 6 == 0) return true;
    else return false;
                                                                          ulong w = 0;
                                                                            a = (a << 1) \% n;
static ulong w = 0;
                                                                          return w;
static ulong Random(ulong b)
    Random rnd = new Random();
    for (int i = 1; i \le 8; i++) //8x for better randomness
                                                                         ulong p, w;
      w = (ulong)rnd.Next(2, 2147483647);
                                                                         p = a; w = 1;
    return w;
                                                                         return w;
```

```
static ulong MultiplctnMod(ulong a, ulong b, ulong n)
   for (ulong m = 1; m != 0; m <<= 1)
                                        //64x loops
      if ((b \& m) != 0) w = (w + a) \% n;
static ulong ExptnMod(ulong a, ulong e, ulong n)
   for (ulong m = 1; m != 0; m <<= 1) //64x loops
     if ((e \& m) != 0) w = MultiplctnMod(w, p, n);
     p = MultiplctnMod(p, p, n);
```

	n	Przykładowy	Przyzwoity	Optymalny	przy auglity –– 20
Number of operat.	100913	25227	158	20	przy quality == 20
	1009139	252283	501	20	
	10091401	2522849	1587	20	
	100914061	25228514	5022	20	
	1009140611	252285151	15882	20	
	10091406133	2522851522	50227	20	
	100914061337	25228515166	158834	20	
	1009140613399	252285151643	502279	20	
	n	Przykładowy	Przyzwoity	Optymalny	Przyzwoity x500
Time[ms]	100913	0	1	1074	O a trusa a la
	1009139	5	5	1222	Optymalny x500 quality == 20
	10091401	49	16	1343	quanty = 2
	100914061	514	55	1390	
	1009140611	5476	177	1493	for quality 1
	10091406133	73453	761	2252	for quality == 1 == 116
	100914061337	732608	2432	2360	== 124
	1009140613399	7995539	7907	2657	== 137

Wnioski

Algorytm przykładowy początkowo ma niewielkie koszta, lecz już gdy pojawiają się "pierwsze duże liczby", rosną one diametralnie szybko.

Dla małych liczb nie ma znaczenia czy użyjemy przykładowego, czy przyzwoitego, różnice są niewielkie. Wraz ze wzrostem liczby, przewaga przyzwoitego nad przykładowym rośnie. Dla dużych liczb najlepszy okazuje się optymaly, gdyż jego złożoność rośnie bardzo powoli a już przy niedużych liczbach zaczyna mieć przewagę; przy małych jest mniej efektywny.

Algorytm optymalny [złożoność logarytmiczna] – napisany przy użyciu testu Millera Rabina, działa podobnie jak: "Chiński Warunek Pierwszości", "Twierdzenie Fermata" czy "Liczby Carmichaela".

Algorytm bada daną liczbę z szansą (¼)^n, że liczba złożona zostanie uznana za pierwszą, a później robi jej 'testy', które zmniejszając tę szansę z każdym obiegem pętli (ilość testów == n == quality). Za to największą zaletą programu jest jego ogromna szybkość, nieporównywalna dla dużych liczb.

Zestawienie złożoności - time[ms]

n	Przykładowy	Przyzwoity	Optymalny
100913	0	0	2
1009139	5	0	2
10091401	49	0	2
10094061	514	0	2
100940611	5476	0	2
1009406133	73453	1	4
10094061337	732608	2	4
100950613399	7995539	7	6

Zestawienie złożoności - time[ms] - Wykres

