Теоритично контролно №1 1, І, Информатика

Иво Стратев

1 февруари 2017 г.

1 Комплексни числа (\mathbb{C})

$$z = -5 - 4i$$

1.1 Re z

$$Re z = -5$$

1.2 Im z

$$Im z = -4$$

1.3
$$|z|$$

$$|z| = \sqrt{(Re\,z)^2 + (Im\,z)^2} = \sqrt{25 + 16} = \sqrt{41}$$

1.4
$$\operatorname{tg} Arg z$$

$$\operatorname{tg} \operatorname{Arg} z = \frac{\operatorname{Im} z}{\operatorname{Re} z} = \frac{-4}{-5} = \frac{4}{5}$$

1.5 $\sin Arg z$

$$\sin Arg \, z = \frac{Im \, z}{|z|} = \frac{-4}{\sqrt{41}} \frac{\sqrt{41}}{\sqrt{41}} = \frac{-4\sqrt{41}}{41}$$

1.6 $\cos Arg z$

$$\cos Arg z = \frac{Re z}{|z|} = \frac{-5}{\sqrt{41}} \frac{\sqrt{41}}{\sqrt{41}} = \frac{-5\sqrt{41}}{41}$$

$$2 \quad z = \frac{5-3i}{4+i} \quad Re \, z + Im \, z$$

$$z = \frac{5 - 3i}{4 + i}$$

$$z = \frac{5 - 3i}{4 + i} \frac{4 - i}{4 - i}$$

$$z = \frac{(5-3i)(4-i)}{4^2+1^2}$$

$$z = \frac{20-5i-12i-3}{17}$$

$$z = \frac{47-47i}{47}$$

$$z = 1-i$$

$$Re z + Im z = 1 + (-1) = 1 - 1 = 0$$

3 Формули на Моавър

3.1
$$z^n$$

$$z^n = |z|^n (\cos n \operatorname{Arg} z + i \sin n \operatorname{Arg} z)$$
3.2 $\sqrt[n]{z}$

$$\sqrt[n]{z} = \sqrt[n]{|z|} (\cos \frac{\operatorname{Arg} z + 2k\pi}{n} + i \sin \frac{\operatorname{Arg} z + 2k\pi}{n}) \quad k = 0, 1, \dots, n-1$$

4 Системи линейни уравнения

4.1 съвместима

Една система от линейни уравнения се нарича съвместима, когато има поне едно решение.

4.2 несъвместима

Една система от линейни уравнения се нарича несъвместима, когато няма решение.

4.3 определена

Една система от линейни уравнения се нарича определена, когато е съвместима и има точно едно решение.

4.4 неопределена

Една система от линейни уравнения се нарича неопределена, когато е съвместима и има повече от едно решение.

5 Релации и изображения

5.1 Релации

$$R \subset X \times X; (x,y) \in R \implies xRy$$

5.1.1 симетрична релация

Ot
$$xRy \implies yRx \quad \forall x, y \in X$$

5.1.2 транзитивна релация

От
$$xRy$$
 и $yRz \implies xRz \quad \forall x,y,z \in X$

5.1.3 рефлексивна релация

$$xRx \quad \forall x \in X$$

5.2 Изображения

$$f: X \to Y \\ X \ni x \mapsto y \in Y$$

5.2.1 инективно изображение

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \ \forall x_1, x_2 \in X$$

5.2.2 сюрективно изображение

$$\forall y \in Y \ \exists x \in X; f(x) = y$$

5.2.3 биекция

Едно изображение е едновременно инективно и сюрективно. $x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \ \forall x_1, \ x_2 \in X$ $\forall y \in Y \ \exists x \in X; f(x) = y$

6 Бинарни операции

$$R:X R X \to X$$

6.1 асоциативност

$$(aRb)Rc = aR(bRc) = aRbRc \quad \forall a, b, c \in X$$

6.2 комутативност

$$a R b = b R a \quad \forall a, b \in X$$

6.3 неутрален елемент

```
\exists \theta; \ x R \theta = x \quad \forall x \in X
```

7 Матрици

7.1 A^t

$$A = (a_{ij})_{m \times n} \in F_{m \times n} \ (i = 1, 2, ..., m, j = 1, 2, ..., n);$$

 $B = (b_{ij})_{n \times m} = A^t \in F_{n \times m}; \ b_{ij} = a_{ji} \ (i = 1, 2, ..., n, j = 1, 2, ..., m);$

7.2 A + B

$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n} \in F_{m \times n};$$

$$A + B = C = (c_{ij})_{m \times n} \in F_{m \times n};$$

$$c_{ij} = a_{ij} + b_{ij} \ (i = 1, 2, ..., m, j = 1, 2, ..., n)$$

7.3 λA

$$\lambda \in F, A = (a_{ij})_{m \times n} \in F_{m \times n};$$

 $\lambda A = C = (c_{ij})_{m \times n} \in F_{m \times n};$
 $c_{ij} = \lambda a_{ij} \ (i = 1, 2, ..., m, j = 1, 2, ..., n)$

8 Вектори в линейно пространство

F - числово поле, V - линейно пространство над F

8.1 нулевият вектор е единствен

```
Нека \theta' и \theta'' са нулеви вектори от V. Тогава: \theta' + \theta'' = \theta'' (защото \theta' е нулев вектор) \theta' + \theta'' = \theta' (защото \theta'' е нулев вектор) \implies \theta' = \theta''
```

8.2 противоположният вектор е единствен

Нека а е вектор от V и нека a' и a'' са негови противоположни вектори от V. Тогава:

$$a' + a + a'' = (a' + a) + a'' = \theta + a'' = a''$$
 (защото a' е противоположен вектор на а)

$$a' + a + a'' = a' + (a + a'') = a' + \theta = a'$$
 (защото a'' е противоположен вектор на а)

$$\implies a' = a''$$

8.3
$$0a = \theta$$

$$a + 0a = 1a + 0a = (1 + 0)a = a$$

 $a + 0a = a \mid + (-a)$
 $\theta + 0a = \theta$
 $0a = \theta$

8.4
$$\lambda \theta = \theta$$

$$\begin{aligned} a &\in V \\ a + 0a &= 1a + 0a = (1+0)a = a \\ a + 0a &= a \mid + (-a) \\ \theta + 0a &= \theta \\ 0a &= \theta \\ \lambda(\mu a) &= (\lambda \mu)a \\ \mu &= 0 \\ \Longrightarrow \lambda \theta = 0a = \theta \end{aligned}$$

8.5 -1a = -a

$$\begin{aligned} a + (-1a) &= \theta \\ 1a + (-1a) &= \theta \\ (1 + (-1))a &= \theta \\ 0a &= \theta \\ a + 0a &= 1a + 0a = (1+0)a = a \\ a + 0a &= a \mid + (-a) \\ \theta + 0a &= \theta \\ 0a &= \theta \end{aligned}$$

9 Линейно пространство, линейна комбинация и линейна зависимост/независимост

9.1 линейна комбинация

$$n\in\{\mathbb{N}\cup\{\infty\}\}$$
 $(\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n)\in F^n$ $a1,\,a2,\,\ldots,\,a_n\in V$ $\sum_{i=1}^n\lambda_ia_i\in V$ - линейна комбинация

9.2 линейно подпространство

$$W \neq \emptyset \subset V$$

$$\forall w_1, w_2 \in W \quad w_1 + w_2 \in W$$

$$\forall \lambda \in F, \forall w \in W \quad \lambda w \in W$$

9.3 линейна обвивка

$$A \neq \emptyset \subset V$$

$$l(A) = \{ n \in \mathbb{N}; \ \forall a1, a2, \dots, a_n \in A \ \exists (\lambda_1, \lambda_2, \dots, \lambda_n) \in F^n, \ | \ \sum_{i=1}^n \lambda_i a_i \in A \}$$

9.4 линейна зависимост

$$n \in \mathbb{N}$$

$$(\lambda_1, \lambda_2, \dots, \lambda_n) \in F^n$$

$$a_1, a_2, \dots, a_n \in V$$

$$\sum_{i=1}^n \lambda_i a_i = \theta; \ (\lambda_1, \lambda_2, \dots, \lambda_n) \neq (0, 0, \dots, 0)$$

9.5 линейна независимост

$$n \in \mathbb{N}$$

$$(\lambda_1, \lambda_2, \dots, \lambda_n) \in F^n$$

$$a_1, a_2, \dots, a_n \in V$$

$$\sum_{i=1}^n \lambda_i a_i = \theta; \ (\lambda_1, \lambda_2, \dots, \lambda_n) = (0, 0, \dots, 0)$$

10 Линейна зависимост/независимост

10.1 ако един вектор е линейно независим, то той е ненулев вектор

Отрицание на твърдението: "ако един вектор е линейно независим, то той е ненулев вектор"е: "ако един вектор е линейно зависим, то той е нулев вектор"

$$\begin{split} &\lambda \in F, \, a \in V; \, \lambda a = \theta; \, \, \lambda \neq 0 \\ &\lambda a = \theta \, | \, \lambda^{-1} \\ &1.a = \theta \\ &a = \theta \end{split}$$

⇒ ако един вектор е линейно независим, то той е ненулев вектор

10.2 ако един вектор е линейно зависим то, той е нулевият вектор

$$\begin{array}{l} \lambda \in F, \, a \in V; \, \lambda a = \theta; \, \, \lambda \neq 0 \\ \lambda a = \theta \, | \, \lambda^{-1} \\ 1.a = \theta \\ a = \theta \end{array}$$

10.3 всяка подсистема на линейно независима система от вектори е също линейно независима

 $n, k \in \mathbb{N}; k \leq n$

 $A = \{a_1, a_2, \dots, a_n\}$ - линейно независима система от вектори

 $B = \{a_1, \, a_2, \, \dots, \, a_k\}$ допускаме, че B е линейно зависима

$$\implies \exists (\lambda_1, \lambda_2, \dots, \lambda_k) \in F^k; \sum_{i=1}^k \lambda_i a_i = \theta, \lambda_1 \neq 0$$

$$\implies \sum_{i=1}^{k} \lambda_i a_i + \sum_{j=k+1}^{n} 0 a_j = \theta$$

⇒ противоречие с факта, че A е линейно независима система от вектори

10.4 ако една система от вектори съдържа линейно зависима подсистема, то тази система също е линейно зависима

 $n, k \in \mathbb{N}; k < n$

 $A = \{a_1, a_2, \dots, a_n\}$ - система от вектори

 $B = \{a_1, a_2, \dots, a_k\}$ - линейно зависима подсистема от вектори

От В линейно зависима подсистема от вектори

$$\implies \exists (\lambda_1, \lambda_2, \dots, \lambda_k) \in F^k; \sum_{i=1}^k \lambda_i a_i = \theta, \lambda_1 \neq 0$$

$$\implies \sum_{i=1}^{k} \lambda_i a_i + \sum_{j=k+1}^{n} 0 a_j = \theta$$

От $\lambda_1 \neq 0 \implies A$ е линейно зависима система от вектори

ако една система от вектори съдържа два пропорционални вектора, то тя е линейно зависима

 $n\in\mathbb{N};\ A=\{a_1,\,a_2,\,\ldots,\,a_n\}$ - система от вектори $a_2=\lambda a_1 \implies \lambda a_1-a_2=\theta$ $\implies \lambda a_1+(-1)a_2+\sum_{i=3}^n 0a_i=\theta$

$$a_2 = \lambda a_1 \implies \lambda a_1 - a_2 = \theta$$

$$\implies \lambda a_1 + (-1)a_2 + \sum_{i=2} 0a_i = 0$$

⇒ А е линейно зависима система от вектори

10.6 ако в една система от поне два вектора един от векторите е линейна комбинация на останалите, то системата е линейно зависима

 $n \in \mathbb{N}; \ n > 1$

 $A = \{a_1, a_2, \dots, a_n\}$ - система от вектори

$$a_1 = \sum_{i=2}^n \lambda_i a_i$$
 $\implies -a_1 + \sum_{i=2}^n \lambda_i a_i = \theta$
 $\implies (-1)a_1 + \sum_{i=2}^n \lambda_i a_i = \theta$
 $\implies A$ е линейно зависима система от вектори

10.7 в една линейно зависима система от поне два вектора поне един вектор е линейна комбинация на останалите

$$n\in\mathbb{N};\ n>1$$
 $A=\{a_1,\,a_2,\,\ldots,\,a_n\}$ - линейно зависима система от поне два вектора $\Longrightarrow\exists (\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n)\in F^n;\ \sum_{i=1}^n\lambda_ia_i=\theta,\,\lambda_1\neq 0$ $\Longrightarrow\sum_{i=1}^n\lambda_ia_i=\theta\,|\lambda_1^{-1}\>\Longrightarrow a_1+\sum_{i=2}^n\frac{\lambda_i}{\lambda_1}a_i=\theta$ $\Longrightarrow a_1=\sum_{i=0}^n-\frac{\lambda_i}{\lambda_1}a_i$

11 Базис и размерност

V - линейно пространство над числовото поле F

11.1 Основна лема на алгебрата

$$n,k\in\mathbb{N}$$
 $A=\{i=1,\,2,\,\dots n\mid a_i\in V\}$ $B=\{j=1,\,2,\,\dots k;\; \exists (\lambda_1,\,\lambda_2,\,\dots,\,\lambda_n)\in F^n\mid b_j=\sum_{i=1}^n\lambda_ia_i\in V\}$ Ако $k>n\implies \mathrm{B}$ е линейно зависима система от вектори

11.2 Базис

$$B \neq \emptyset \subset V \neq \{\theta\}$$
 $B = \{b_1, b_2, \ldots b_n\}; n \in \{\mathbb{N} \cup \{\infty\}\}$ - линейно независима система от вектори $V = \{\forall (\lambda_1, \lambda_2, \ldots, \lambda_n) \in F^n \mid v = \sum_{i=1}^n \lambda_i b_i \in V\} = l(B)$

11.3 Крайномерно линейно пространство

$$B \neq \emptyset \subset V \neq \{\theta\}$$
 $B = \{b_1, b_2, \dots b_n\}; \ n \in \mathbb{N}$ - линейно независима система от вектори $V = \{\forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in F^n \mid v = \sum_{i=1}^n \lambda_i b_i \in V\} = l(B)$

11.4 Крайнопородено линейно пространство

$$\exists B = \{b_1, b_2, \dots b_n\} \ n \in \mathbb{N}$$

$$V = l(B) = \{ \forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in F^n \mid v = \sum_{i=1}^n \lambda_i b_i \in V \}$$

11.5 Размерност на линейно пространство

 $\forall B \neq \emptyset \subset V \neq \{\theta\}$ $B=\{b_1,\,b_2,\,\ldots b_n\}; n\in \{\mathbb{N}\cup \{\infty\}\}$ - линейно независима система от вектори $V=\{\forall (\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n)\in F^n\mid v=\sum_{i=1}^n\lambda_ib_i\in V\}=l(B)$ dim V=n

Ако едно крайномерно линейно пространство и едно негово линейно подпространство имат една и съща размерност, то те съвпадат

11.6 Координати на вектор в даден базис

$$dimV=n$$
 $B=\{b_1,\,b_2,\,\ldots,\,b_n\};\; V=l(B)$ $v=\sum_{i=1}^n\lambda_ib_i\in V\quad (\lambda_i\in F,\;i=1,\,2,\,\ldots,\,n)$ $\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_n$ са координатите на v в базиса $b_1,\,b_2,\,\ldots,\,b_n$

12 Сума на подпространства, директна сума на подпространства и ранг на система вектори

12.1 Сума на подпространства и директна сума на подпространства

V - линейно пространство над числовто поле F $V_1,\,V_2$ - крайномерни линейни подпространства на V

12.1.1 връзка между размерностите на сумата и сечението на две крайномерни линейни подпространства на дадено линейно пространство

$$\dim (V_1 + V_2) = \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2)$$

12.1.2 НДУ едно линейно пространство да е директна сума на две свои подпространства

$$V = V_1 \oplus V_2 \iff V = V_1 + V_2, \ V_1 \cap V_2 = \{\theta\}$$

12.2 Ранг на система вектори

12.2.1 Максимална линейно независима подсистема вектори на дадена система вектори

 $S\subset V,\ T\subset S$ е максимална линейно независима подсистема вектори на дадена система вектори ако T е линейно незавсима система вектори и $S\subset l(T)$

12.2.2 Ранг на система вектори

$$S \subset V, \ r(S) = \dim l(S)$$