Multi-threading Models: User, Kernel, and Combined Threads Quiz

1.	What is the primary characteristic of user threads?
	 □ A) Managed by the operating system kernel □ B) Managed entirely by the application using a thread library □ C) Managed through both the kernel and the application □ D) Non-blocking system calls are used by default
2.	What is a major disadvantage of user threads?
	 □ A) They have high context switching overhead. □ B) User threads can only run on multi-core systems. □ C) If one thread blocks, the entire process is blocked. □ D) They cannot communicate with other threads within the same process
3.	How do kernel threads differ from user threads in terms of blocking?
	 □ A) Kernel threads block the entire process when one thread is blocked. □ B) Kernel threads do not block other threads in the process if one thread is blocked. □ C) Kernel threads never block. □ D) Kernel threads are always faster than user threads.
4.	What is a key advantage of using kernel threads?
	 □ A) They are faster to create than user threads. □ B) They can be used on systems with only a single processor. □ C) They allow threads to run on different CPUs in multi-processor systems □ D) They have lower context switching overhead than user threads.
	Which threading model allows threads to map to multiple kernel reads?
	 □ A) Many-to-one □ B) One-to-one □ C) Many-to-many □ D) One-to-many
	Which system call is used to create a new thread in the POSIX read library?
	 □ A) Pthread_exit □ B) Pthread_create □ C) Pthread_join □ D) Pthread_yield

7. In a many-to-one threading model, how are user threads mapped to kernel threads?
 □ A) One user thread maps to multiple kernel threads. □ B) Multiple user threads map to a single kernel thread. □ C) One user thread maps directly to one kernel thread. □ D) All user threads map to all kernel threads.
8. How does the SELECT system call improve thread execution efficiency?
 □ A) It prevents blocking by avoiding page faults. □ B) It predicts whether a subsequent operation, such as READ, would block □ C) It increases the number of kernel threads available to a process. □ D) It speeds up context switching between user threads.
9. What happens when a page fault occurs within a multi-threaded process?
 □ A) Only the thread that caused the page fault is blocked. □ B) The entire process is blocked, even if other threads could continue. □ C) The system immediately terminates the thread causing the fault. □ D) The fault is ignored, and the thread continues execution.
10. What is the purpose of wrapper code in thread management?
 □ A) To handle errors in thread creation. □ B) To manage thread execution before and after a system call. □ C) To create threads faster. □ D) To terminate threads that are no longer needed.
11. What is the main disadvantage of using kernel threads compared to user threads?
 □ A) Kernel threads are slower to create and manage. □ B) Kernel threads cannot use multiple CPUs. □ C) Kernel threads do not allow blocking calls. □ D) Kernel threads are less efficient at managing resources.
12. Which threading model offers the most flexibility for utilizing multi-core processors?
 □ A) Many-to-one model □ B) One-to-one model □ C) Many-to-many model □ D) User-level threading only

13. What system feature helps prevent global blocking in kernel threads?
 □ A) Thread library management □ B) Non-blocking system calls □ C) Kernel-level scheduling □ D) Predictive thread state management
14. Which of the following is not a feature of user threads?
 □ A) Faster context switching than kernel threads □ B) Managed by the operating system kernel □ C) Portable across different platforms □ D) Prone to global blocking during I/O operations
15. What is the major benefit of the combined threading model?
 □ A) It eliminates the need for kernel threads. □ B) It balances the fast context switching of user threads with the multiprocessing capabilities of kernel threads. □ C) It allows more user threads to be created than kernel threads. □ D) It uses less memory than user or kernel threads.
Answers:
1. B
2. C
3. B
4. C
5. C
6. B
7. B
8. B
9. B
10. B

- 11. A
- 12. C
- 13. C
- 14. B
- 15. B