- 1 Preliminaries and code snippets
- 2 Replication tasks
- 3 Data wrangling: Using ipums 1980

[Christian Schluter's] MAG1 Applied Econometrics: Project 4 based on Acemoglou and Angrist (2000, NBER).

Code ▼

(https://christianschluter.github.io)

This project is based on

• Acemoglou, D. and J. Angrist (2000), ``How Large Are Human-Capital Externalities? Evidence from Compulsory Schooling Laws", *NBER Macroeconomics Annual*, 15, 9-59.

Questions:

- Q1. Explain the research design of the paper. In particular, explain why estimation by OLS is likely to be invalid, explain the nature of the instruments, and discuss whether the proposed instrumental variable strategy is credible.
- Q2 (Replication Tasks). Using the data file AA_small.dta (and either stata or \(\mathbb{Q}\)):
 - Replicate first the OLS benchmark, reported in Acemoglou and Angrist (2000, AA2000) in Table 2 column 3 (.075).
 - Replicate the summary table presented below (in section 2).
 - Subsample analysis: Replicate AA2000 Tables 4 (cols 5-8) and 6 (as per in section 2 below).
 - Briefly explain and comment on the main story of these Tables.
- Q3 (Data Wrangling). Extract from ipums USA (https://usa.ipums.org/usa/) the relevant variables from the 1980 census, compare your data extract to the 1980 subsample from AA_small.dta, as well as the OLS benchmark result. Hint: Consult data wrangling exercises 2 (ipums) of your homework.

NB: The full sample AA_small.dta is large (we have 722,343 persons), and a single regressions will take a few minutes if the sets of controls include a large number of interacted terms (i.e. sob:yob).

1 Preliminaries and code snippets

The following code snippets (in R) could help you in your replications.

Hide

	storage	display	value	
variable name	type	format	label	variable label
		%10.0~		
age	-	%10.0g		age at census
avgEduc	aoubte	%10.0g		average grade completed in SOR at cen
sus	la contra	0/0 0-		
ca	byte	%9.0g		compulsory attendence requirment in S
OB at age 14	la contra	0/0 0-		
ca8	byte	_		ca <= 8
ca9	byte	%9.0g		ca = 9
ca10	byte	%9.0g		ca = 10
ca11	byte	_		ca = 11
cl	byte	%9.0g		child labor threshold in SOB at age 1
4		0/		
c16	byte	•		cl <= 6
c17	byte	•		cl = 7
c18	byte	_		c1 = 8
c19	byte	•		cl >= 9
indEduc	float	U		highest grade completed
lnwkwage	double	%10.0g		log weekly wages
qob	byte	%10.0g		quarter of birth
sample5080	byte	%9.0g		census years 1950-1980
sample5090	byte	%9.0g		census years 1950-1990
sample6080	byte	%9.0g		census years 1960-1980
sample6090	byte	%9.0g		census years 1960-1990
sob	byte	%10.0g		state of birth
sor	byte	%10.0g		state of residence at census
weight	double	%10.0g		sample line weight
year	int	%10.0g		census year
yob	int	%9.0g		year of birth
comp8	byte	%9.0g		

Using ipums, AA2000 have generated an extract of white men in their forties, drawn from each of the U.S. census samples available every decade from 1950 to 1990 (a total of 5 census). Then, a manually generated data set coding the child labour laws has been merged by state. This extra variable is c1, and AA2000 use the indicators (c17, c18, c19) as instruments.

2 Replication tasks

Question 2.2. Replicate (and interpret) the following table:

	Dependent variable				
	Years of schooling Log weekly wa			kly wages	
	(1)	(2)	(3)	(4)	
A. First-stage ar	nd reduced	d-form estim	ates	-44	
Child labor law req. 7 years	.166 (.067)	024 (.048)	.010 (.011)	013 (.011)	
Child labor law req. 8 years	.191 (.062)	.024 (.051)	.013 (.010)	.005 (.010)	
Child labor law req. 9 years or more	.400 (.098)	.016 (.053)	.046 (.017)	.008 (.014)	
B. Secon	nd-stage e	stimates			
Years of education			.124 (.036)	.399 (.360)	
State of birth dummies × linear year of birth trends	No	Yes	No	Yes	

Panel A.col(1) is essentially column 7 of AA2000's Table 4. Panel B.col(3) is essentially column 6 of their Table 6 (lower part). All specifications use census year (year), year of birth dummies (yob coded as factors), and state of birth (sob). Columns 2 and 4 include, in addition, the full set of interactions between sob and yob in order to capture state-specific trends. All SEs are clustered at the state-of-birth (sob) level.

Question 2.3 Subsamples analysis. Consider now the subsamples used in AA2000 Tables 4 (cols 5-8) and 6. The first stage regression results for the subsamples are:

Without State-of-Residence Controls						
1960–1980	1950–1980	1950–1990	1980			
(5)	(6)	(7)	(8)			
0.105	0.115	0.175	0.062			
(0.077)	(0.051)	(0.043)	(0.041)			
0.120	0.119	0.202	0.143			
(0.093)	(0.075)	(0.059)	(0.034)			
0.269	0.225	0.410	0.182			
(0.098)	(0.084)	(0.059)	(0.041)			

Turning to Table 6 (cols 1-3) using the Quarter-of-Birth instrument (qob:yob_fct), and then the Child Labour Laws instruments (cols 4-6):

	QOB Instruments			SOB-CL Instruments		
	1960–1980 (1)	1980 (2)	1960–1970 (3)	1960–1980 (4)	1950–1980 (5)	1950–1990 (6)
Including state-of- residence main effects	0.073 (0.012)	0.090 (0.016)	0.063 (0.017)	0.076 (0.034)	0.103 (0.038)	0.113 (0.018)
No state-of-residence main effects	0.073 (0.012)	0.088 (0.016)	0.063 (0.017)	0.080 (0.064)	0.112 (0.060)	0.126 (0.027)
N	609,852	376,479	233,373	609,852	626,511	729,695

You might not get exactly the same results. For instance, I have obtained:

```
## IV estimation: QoB
## ==============
##
##
            (1)
                  (2)
                        (3)
##
 -----
## indEduc
            0.072
                 0.089
                       0.065
           (0.014) (0.016) (0.019)
  -----
## Observations 603,993 372,597 231,396
## R2
            0.459
                 0.106
## =============
```

3 Data wrangling: Using ipums 1980

For census year 1980, generate the main data from scratch using ipums (https://www.ipums.org/) ([Census] Integrated Public Use Micro Samples) using \mathbf{Q} or stata. Recall that you need to create an extract of white US-born men in their forties with positive earnings.

If you want to use **Q**, recall the following code snippet (from data wrangling exercises 2 (ipums) of your homework):

Use of data from IPUMS USA is subject to conditions including that users should
cite the data appropriately. Use command `ipums_conditions()` for more details.

```
dat80
```

```
## # A tibble: 11,343,120 x 21
      YEAR
                  SAMPLE SERIAL HHWT CLUSTER STRATA
                                                          GQ PERNUM PERWT
##
                                                                              SEX
               <int+lbl> <dbl> <dbl>
                                        <dbl> <dbl> <int+l> <dbl> <int+l>
##
      <int>
##
      1980 198001 [198...
                             1
                                   20 1.98e12
                                                  22 1 [Hou...
                                                                  1
                                                                       20 2 [Fem...
      1980 198001 [198...
                                   20 1.98e12
                                                 22 1 [Hou...
                                                                       20 1 [Mal...
##
##
      1980 198001 [198...
                             1
                                   20 1.98e12
                                                 22 1 [Hou...
                                                                  3
                                                                       20 1 [Mal...
##
   4 1980 198001 [198...
                            1
                                   20 1.98e12 22 1 [Hou...
                                                                  4
                                                                       20 1 [Mal...
                                              22 1 [Hou...
                            1
   5 1980 198001 [198...
                                                                  5
##
                                   20 1.98e12
                                                                       20 1 [Mal...
##
   6 1980 198001 [198...
                            2
                                   20 1.98e12
                                                24 1 [Hou...
                                                                  1
                                                                       20 2 [Fem...
##
      1980 198001 [198...
                              2
                                   20 1.98e12
                                                 24 1 [Hou...
                                                                  2
                                                                       20 1 [Mal...
   8 1980 198001 [198...
                                                                       20 1 [Mal...
##
                             3
                                   20 1.98e12
                                                 28 1 [Hou...
                                                                  1
                                                                  2
   9 1980 198001 [198...
                              3
                                                                       20 2 [Fem...
##
                                   20 1.98e12
                                                  28 1 [Hou...
## 10 1980 198001 [198...
                              3
                                   20 1.98e12
                                                  28 1 [Hou...
                                                                  3
                                                                       20 2 [Fem...
  # ... with 11,343,110 more rows, and 11 more variables: AGE <int+lbl>,
##
       BIRTHQTR <int+lbl>, BIRTHYR <dbl+lbl>, RACE <int+lbl>, RACED <int+lbl>,
## #
       BPL <int+lbl>, BPLD <int+lbl>, EDUC <int+lbl>, EDUCD <int+lbl>,
## #
## #
      WKSWORK1 <dbl+lbl>, INCWAGE <dbl+lbl>
```

As a benchmark, replicate the sample characteristics (AA2000 Table 1, col 1980) and the OLS result. Note that education is slightly differently coded, the replication will not be exact.