# Redes e Sistemas Distribuídos

Fundamentos de Redes

Prof. Dr. Gilberto Fernandes Junior

- Unidade de Ensino: 1
- Competência da Unidade: Conhecer os fundamentos e princípios das redes de computadores
- Resumo: Saber como ocorre a comunicação de dados em rede, tipos de meios, hardwares e protocolos
- Palavras-chave: redes, comunicação, OSI, TCP/IP
- Título da Teleaula: Fundamentos de Redes
- Teleaula nº: 1

1 2

# Contextualização

- Introdução a redes de computadores
- Comunicação de dados
  - Sinais e meios de transmissão
- · Classificação e topologia de redes
- Modelos de referência em redes
  - OSI e TCP/IP
- Protocolos e serviços de redes TCP/IP

# Introdução a Redes de Computadores

3 4

# Conceitos históricos de redes

Cada um dos três séculos anteriores foi dominado por uma única tecnologia.

- Séc. XVIII sistemas mecânicos (Revolução Industrial)
- Séc. XIX era das máquinas a vapor.
- Séc. XX se deram no campo da aquisição, do processamento e da distribuição de informações.
  - redes de telefonia em escala mundial, invenção do rádio e da televisão, o nascimento e o crescimento da indústria de informática e o lançamento dos satélites de comunicação.

# Importância da aplicação de redes

### Compartilhamento de recursos

 Tornar todos os programas, equipamentos e dados ao alcance de todas as pessoas na rede

# Compartilhamento de informações

6

- Empresas possuem dependência vital de informações computadorizadas
- permitir acesso a informações e documentos relevantes de forma instantânea





# Modos de Operação (Comunicação)

### Simplex

• comunicação unidirecional (rádio e TV)

### Half-duplex

• comunicação bidirecional alternada (rádio polícia)

• comunicação bidirecional simultânea (telefone)

# Comunicação de **Dados**

8

9 10

# Tipos de sinais na comunicação

# Sinal analógico

- são ondas eletromagnéticas que assumem infinitos valores ao longo do tempo.
- Este sinal é representado por uma onda senoidal com mplitude, frequência e fase

# **Sinal Digital**

- representado por 0 s e 1 s (binário)
- diminuir a taxa de oscilação = aumento na qualidade



# Tipos e meios de transmissão: Guiado

# Par-trançado

- Nesta modalidade os fios são enrolados de forma helicoidal, pela qual ocorre menos interferência, uma vez que as ondas formadas em volta dos fios se cancelam.
- Esses fios suportam sinais analógicos e digitais nas suas transmissões e são divididos em CAT 5, 5e, 6 e 7, que se diferenciam pela largura de banda suportada



ou pela presença ou não de blindagem.

# Tipos e meios de transmissão: Guiado

### Cabo coaxial

- Tem um núcleo de cobre, envolto por uma camada plástica isolante, circundada por uma malha externa.
- Possibilita ligar redes com distância maiores, maior velocidade que o par trançado e recebe menos ruídos.
- 10Base2 10 Mbps e segmentos de até 185m
- 10Base5 banda larga e alcance de até 500m.



### Tipos e meios de transmissão: Guiado

### Fibra óptica

• o cabo de fibra é constituído por um núcleo e uma casca de sílica em sua volta.



- A luz é injetada por leds onde os dados são transmitidos.
- Ao receber as informações, o sinal óptico é transformado em sinal elétrico.
- Nesse tipo de transmissão, é possível alcançar velocidade de até 10 terabytes por segundo.

14

13

# Tipos e meios de transmissão: Não guiado

### Rádio

 torres de transmissão até o ponto de instalação das antenas receptoras. Obstáculos causam perda na qualidade e às vezes até falha no sinal

### Micro-ondas

 ondas viajam em linha reta entre o emissor e o receptor. Até 80 km (antena) a 100 m do solo plano.

### Satélites

Classificação e Topologia de Redes

15 16

# Classificação de Redes: por tecnologia

### Redes de Broadcast

- Tipo de rede Dinâmica e estática
- Mensagens são enviadas e são recebidas por todos os nós da rede
- Exemplos: Redes Locais (LANs), Redes em anel, estrela, arvore, satélite, Redes em barra,

### **Redes Ponto a Ponto**

- Vários destinos para chegar a um lugar, roteadores...
- Exemplos: WANs, ligações dedicadas,

# Classificação de Redes: por escala

### Redes Locais (LAN)

- Redes privadas contidas em um único edifício ou campus universitário com até alguns quilômetros de extensão.
- Velocidade de 10 Mbit/s a 100 Gigabit/s
- Principais tecnologias: Ethernet IEEE 802.3, u, z, ae

### **Redes Metropolitanas (MAN)**

- Restrita a área de uma cidade até 10Km
- Exemplo: tv a cabo, WiMax

# Classificação de Redes: por escala

### Wide Area Network (WAN)

- · País ou Continente,
- Computadores s\u00e3o ligados a sub-redes que transportam as mensagens. Estas sub-redes s\u00e3o mantidas por companhias telef\u00f3nicas e outros provedores.
- · Comutação por pacotes
- · Sistema de satélite

# Classificação de Redes

### Redes sem fio

- Interconexão de sistemas (WPAN)
- · LANs sem fios (WLAN)
  - IEEE 802.11 (a, b, g) wi-fi
- WANs sem fios (WWAN)
  - IEEE 802.16 (WiMax) alternativa ao uso de cabos na última milha

19 20

# Topologias de Redes

### Topologia Malha

• cada um dos dispositivos da rede (nós) possui um link dedicado com os demais da rede.



### Topologia em Anel

Cada dispositivo possui uma conexão com o seu
"vizinho". O sinal, quando enviado, percorre o anel até
que o destino seja encontrado



# Topologias de Redes

### Topologia Estrela

 cada dispositivo possui um link ponto a ponto com um concentrador, podendo este ser um hub, roteador ou switch



# Topologia de Barramento

 Esta topologia é considerada ponto a ponto, pois para fazer a conexão é necessário um backbone (tronco central) para interligar os dispositivos

••••

21 22

# **Conhecendo os hardwares de Redes**

# Descrição da SP

- Para estruturar as redes, existem alguns componentes de hardware que são básicos porém essenciais para prover a comunicação entre os dispositivos.
- Você está aprofundando seus conhecimentos em redes de computadores e precisa elaborar um relatório contend os princiapais tipos de hardares encontrados em redes!

### Resolução da SP: Hardwares de Redes

### Placas de Rede

- correspondem a um dispositivo de E/S (entrada/saída) que se conecta por meio de cabeamento aos nos de rede (Hub, roteador, switch ou brigde).
- O controlador de interface da rede (NIC Network Interface Controller) pode estar ou não integrado à placa-mãe.



Fonte: Pixabay. Disponível em: https://pixabay.com/pi/ photos/piaca-de-redemana-pci-piaca-riser-568043/, Acesso em: 10

### Resolução da SP: Hardwares de Redes

### Modem

- Tem a função de fazer a modulação e a demodulação das mensagens, podendo também ser
- o mercado oferece modems do tipo residencial, com conexão cabeada, 4G e fibra óptica, com a possibilidade de wi-fi integrado



onte: Wikimedia Comons. isponivel em: ttps://commons.wikimedia.or /wiki/File:Linksys ADSL Mod m AM300 ethernet, USB, a d phone line ports.jpg.

25 26

# Resolução da SP: Hardwares de Redes

### Hub

- pode conter várias linhas de entrada que são responsáveis por distribuir conexão.
- Função de repetidor (replicar a mensagem recebida a todos os dispositivos)



# Resolução da SP: Hardwares de Redes

### Roteado

- contêm microprocessadores, responsáveis pelo gerenciamento dos tráfegos de pacotes de dados
- tem a capacidade de analisar o endereçamento lógico (TCP/IP).
- O roteador forma tabelas lógicas dos equipamentos disponíveis nas redes, como: roteador, switch, computadores, dispositivos móveis, impressoras IP e câmeras IP.

27 28

# Resolução da SP: Hardwares de Redes

### Switch

- É encontrado em empresas, faculdades, ou seja, redes que necessitam de maior número de dispositivos.
- quando a mensagem chega a uma das interfaces de rede, o sistema do equipamento l\u00e3o o endereço destino do cabeçalho e envia para a interface apropriada.
- · Domínio de colisão



O que são gargalos em redes de computadores?

# O Modelo de Referência OSI

# Introdução

- Proposta desenvolvida pela ISO (*International Standards Organization*) como um primeiro passo em direção à padronização internacional dos protocolos empregados nas diversas camadas
- O modelo possui 7 camadas
- Não é uma arquitetura de rede pois ele só define o modelo de referencia, ele não define exatamente os serviços e os protocolos para serem usados em cada nível

| 7 | Aplicação    |
|---|--------------|
| 6 | Apresentação |
| 5 | Sessão       |
| 4 | Transporte   |
| 3 | Rede         |
| 2 | Enlace       |
| 1 | Física       |
|   |              |

31

32

### Camadas do Modelo de Referência OSI

### Camada física

- transmissão de bits brutos por um canal de comunicação
- Como representar 0 e 1 no canal de transmissão
- Tempo de transmissão e transmissões simultâneas

### Camada de enlace

- · Organiza o acesso ao meio físico
- Prove um serviço de comunicação livre de erros, mediante a correção de erros

### Camadas do Modelo de Referência OSI

### Camada de rede

- · Controla a operação da sub-rede
- Se preocupa como os pacotes s\u00e3o roteados da origem para um destino
- Mantêm tabelas estáticas ou dinâmicas para o roteamento
- Controla e previne o congestionamento

33

34

# Camadas do Modelo de Referência OSI

### Camada de transporte

 Recebe os dados da camada acima (sessão), os quebra em pequenos pedaços, se necessário, e os encaminha ao nível de rede certificando-se que chequem corretamente do outro lado.

# Camada de sessão

 Permite que os usuários de máquinas distintas estabeleçam sessões entre si, que irá permitir por exemplo transporte de dados, remote login, etc...

# Camadas do Modelo de Referência OSI

### Camada de apresentação

- Diferentemente dos outros níveis que se preocupam apenas com a transferência de bits, o de apresentação se preocupa com a sintaxe dos dados.
- Execução de funções como compressão, encriptação e codificação (transformação de formatos)

# Camada de aplicação

 Contém uma variedade de protocolos que são necessários às aplicações/usuários (Por exe: HTTP)

# O Modelo de Referência TCP/IP

Interface de Rede

# Descrição da SP

Realizar um levantamento das principais características do modelo de referência TCP/IP, atualmente utilizado nas redes de computadores, comparando-o com o modelo ISO/OSI.

37 38

# Introdução Histórico (ARPANET) TCP/IP também é um modelo de referência para definição de camadas – 4 camadas Aplicação Aplicação TCP/IP TRANSPORTE Internet/Rede Internet/Rede

### Características

- TCP/IP é completamente independente de qualquer fabricante ou marca de hardware
- TCP/IP permite que dois computadores ligados na Internet via TCP/IP se conectem e se comuniquem em qualquer parte do mundo
- A arquitetura oferece descrição de standards para protocolos do nível de aplicação como: FTP, correio eletrônico e remote login

39 40



# Camadas do Modelo TCP/IP

# Aplicação

- Define a sintaxe e a semântica das mensagens trocadas entre aplicações.
- Implementação realizada através de processos do sistema operacional.
- Trata os detalhes específicos da cada tipo de aplicação

# Transporte

- comunicação fim-a-fim entre aplicações
- TCP e UDP

### Camadas do Modelo TCP/IP

### Internet (Inter-rede)

- realiza transferência e roteamento de pacotes entre dispositivos da inter-rede / evitar o congestionamento.
- Define um formato de pacote oficial e um protocolo chamado IP (Internet Protocol).

### Interface de Rede (enlace / host / física)

 Tradução de bits em sinais de transmissão, especificação dos meios de transmissão, endereçamento e chaveamento Modelo TCP/IP -Protocolos e Serviços de Redes: Camadas de Aplicação e Transporte

43 44

# Camada de Aplicação: protocolos e serviços

### TELNET (telephone network)

- · servico de terminal virtual
- efetuar a conexão remota utilizando um terminal (no Windows o prompt de comando).

### FTP (File Transfer Protocol)

• transferência de arquivos entre dois dispositivos

### **SMTP (Simple Mail Transfer Protocol)**

• gerenciar a distribuição de e-mail aos usuários

# Camada de Aplicação: protocolos e serviços

### **SNMP (Simple Network Management Protocol)**

- · Utilizado por administradores de redes (gerência)
- coleta e na manipulação de informações geradas.
- Possibilita ao responsável pela rede saber se algum evento inesperado ocorre

### **DNS (Domain Name System)**

• mapeamento de nomes em endereços de rede

### HTTP (Hypertext Transfer Protocol)

• WWW (World Wide Web)

45 46

# Camada de Transporte: protocolos

# TCP – Transmission Control Protocol

- Orientado à conexão
- Provê fluxo confiável de dados
- Divide o fluxo de dados em segmentos.
- Confirmar o recebimento / Estabelecer a conexão / Escolher um caminho confiável
- Conexões do tipo elástico confirmação de recebimento e retransmissão em caso de falha para que não ocorra a degradação dos serviços

### Camada de Transporte: protocolos

### **UDP - User Datagram Protocol**

- considerada uma versão simplificada do protocolo TCP
- Provê serviço de datagrama não confiável
- apenas envia pacotes de uma estação para outra
- não garante que sejam entregues à aplicação destino
- Exemplo de utilização: *streaming*



Modelo TCP/IP -Protocolos e Serviços de Redes: Camadas de Internet e de Interface de Rede

49 50

# Camada de Inter-Rede (Internet): protocolos

### IP (Internet Protocol)

- Fornece o endereçamento para os dispositivos nas redes de computadores.
- · Provê serviço de datagrama não confiável.
- Envia, recebe e roteia datagramas IP.

# Camada de Inter-Rede (Internet): protocolos

### ICMP (Internet Control Message Protocol)

- Permite a troca de informações de erro. Gerenciar os erros no processamento dos datagramas IP.
- Buffer Full: capacidade máxima de processamento.
- *Hops*: saltos necessários para que uma mensagem possa alcançar o seu destino.
- *Ping*: saber se a interface de rede está ativa ou inativa.
- Traceroute: mapear os saltos

51 52

### Camada de Inter-Rede (Internet): protocolos

# IGMP (Internet Group Management Protocol)

• Protocolo de controle de grupo de endereços:;

# BGP, OSPF e RIP

Protocolos de controle de informacões de roteamento

# ARP (Address Resolution Protocol)

 Permite certo computador se comunicar com outro computador em rede quando somente o endereço de IP é conhecido pelo destinatário.

# Camada de Interface de Rede: protocolos

- Protocolos com estrutura de rede própria (X.25, Frame-Relay, ATM)
- Protocolos de Enlace OSI (PPP, Ethernet, Token-Ring, FDDI, HDLC, SLIP, ...)
- Protocolos de Nível Físico (V.24, X.21)
- Protocolos de barramento de alta-velocidade (SCSI, HIPPI, ...)
- Protocolos de mapeamento de endereços (ARP Address Resolution Protocol)

Você sabe algum exemplo de programa que efetua transfeência de arquivos com FTP? Recapitulando

55 56

# Recapitulando

- Introdução a redes de computadores
- Comunicação de dados
  - Sinais e meios de transmissão
- Classificação e topologia de redes
- Modelos de referência em redes
  - OSI e TCP/IP
- Protocolos e serviços de redes TCP/IP