EE412 Foundation of Big Data Analytics, Fall 2019 HW4

Name: Cao Viet Hai Nam

Student ID: 20200817

Discussion Group (People with whom you discussed ideas used in your answers):

On-line or hardcopy documents used as part of your answers:

Answer to Problem 1

$$\frac{\partial W_{11}^{2}}{\partial L} = \frac{\partial L}{\partial L} \cdot \frac{\partial M_{2}}{\partial M_{2}} \cdot \frac{\partial M_{2}}{\partial M_{11}^{2}}$$

$$= (01 - 41) \cdot 01(1 - 01) \cdot 21$$

$$\left(\text{Since } \frac{\partial G_{\perp}}{\partial m_{2}} = \partial \left(\frac{e^{me}}{e^{me}+1}\right) = \frac{e^{m2}}{\left(e^{me}+1\right)^{2}} = O_{\perp}(1-O_{\perp})\right)$$

$$\frac{\partial L}{\partial w_{21}^2} = \frac{\partial L}{\partial 01} \cdot \frac{\partial 01}{\partial m_2} \cdot \frac{\partial m_2}{\partial w_{21}^2}$$

$$\frac{\partial L}{\partial w_{12}^{2}} = \frac{\partial L}{\partial o_{2}} \cdot \frac{\partial o_{2}}{\partial n_{2}} \cdot \frac{\partial n_{2}}{\partial w_{12}^{2}}$$

$$= (o_{2} - y_{2}) o_{2} (1 - o_{2}) t_{1}$$

$$\frac{\partial L}{\partial w_{22}^2} = \frac{\partial L}{\partial o_2} \cdot \frac{\partial o_2}{\partial w_{22}} \cdot \frac{\partial w_{22}}{\partial w_{22}^2}$$

$$= (02-y_2) 02(1-02) \frac{2}{2}$$

$$\frac{2}{2} \frac{\partial L}{\partial w_{1}^{1}} = \frac{\partial L}{\partial o_{1}} \frac{\partial o_{1}}{\partial m_{2}} \frac{\partial m_{2}}{\partial w_{1}^{1}} + \frac{\partial L}{\partial o_{2}} \frac{\partial o_{2}}{\partial n_{2}} \frac{\partial n_{2}}{\partial w_{1}^{1}}$$

we have:
$$\frac{\partial L}{\partial o_{1}} = o_{1} - y_{1}; \frac{\partial L}{\partial o_{2}} = o_{2} - y_{2}$$

$$\frac{\partial o_{1}}{\partial m_{2}} = o_{1} (1 - o_{1}); \frac{\partial o_{2}}{\partial n_{2}} = o_{2} (1 - o_{2})$$

$$\frac{\partial m_{2}}{\partial w_{1}^{1}} = \frac{\partial m_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial m_{2}} \frac{\partial m_{1}}{\partial w_{1}^{1}}$$

$$= W_{11}^{2} \cdot z_{1} (1 - z_{1}) \cdot x_{1}$$

$$\frac{\partial n_{2}}{\partial w_{11}^{1}} = \frac{\partial n_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial m_{2}} \frac{\partial m_{1}}{\partial w_{11}^{1}}$$

$$= u^{2} \cdot v_{1} \cdot v_{2} \cdot v_{1}$$

$$\frac{\partial n_2}{\partial w_1'} = \frac{\partial n_2}{\partial t_1} \cdot \frac{\partial z_1}{\partial m_1} \cdot \frac{\partial m_1}{\partial w_1'}$$

$$= W_{12}^2 \cdot t_1 (1 - t_1) x_1$$

Plug in
$$(x) =$$

$$\frac{\partial L}{\partial w_{11}^{2}} = (o_{2} - y_{1}) o_{1} (1 - o_{1}) . w_{11}^{2} . z_{1} (1 - z_{1}) . x_{1}$$

$$+ (o_{2} - y_{2}) o_{2} (1 - o_{2}) . w_{12}^{2} z_{1} (1 - z_{1}) w_{1}$$

Similarly 3 $\frac{\partial M_{7}}{\partial \Gamma} = (01 - 1) o_{1}(1 - 01) M_{11} 51(1 - 51) x^{5}$ + (02-42) 02(1-02) W12 21(1-21) X2

$$\frac{\partial L}{\partial w_{12}^{1}} = \frac{\partial L}{\partial 1} \cdot \frac{\partial O_{1}}{\partial 2} \cdot \frac{\partial m_{2}}{\partial w_{12}^{2}} + \frac{\partial L}{\partial 2} \cdot \frac{\partial O_{2}}{\partial n_{2}} \cdot \frac{\partial n_{2}}{\partial w_{12}^{2}}$$

$$= (O_{1} - y_{1}) o_{1} (1 - O_{1}) w_{21}^{2} 2_{2} (1 - 2_{2}) x_{1}$$

$$+ (O_{1} - y_{2}) o_{2} (1 - O_{2}) w_{21}^{2} 2_{2} (1 - 2_{2}) x_{2}$$

$$\frac{\partial L}{\partial w_{22}^{1}} = (O_{1} - y_{1}) o_{1} (1 - O_{1}) w_{21}^{2} 2_{2} (1 - 2_{2}) x_{2}$$

$$\frac{\partial L}{\partial w_{22}^{1}} + (O_{2} - y_{2}) o_{2} (1 - O_{2}) w_{22}^{2} 2_{2} (1 - 2_{2}) x_{2}$$

2) Mining Data Stream						
	9		$h_2(y) = (3x + 7)$	mod 32		
$h_3(x) = 4x \pmod{32}$						
Stream	hs(x)	h2(u)	hs(n)			
3	00111	10000	0 1100			
1	00611	01010	00100			
9	01001	10011	10000			
1	0001	01010	00100			
5	01011	(0110	10100			
3	10011	00010	00100			
2	00101	01101	01000			
6	01101	1(00)	11 <i>0</i> 00			
5	0161	10110	10100			
Max tail	0	4	4			
length						
(R)						
=) Estimated number of distinct elements for						
each hash gunetion is:						
$h_1: 2^{R_1} = 2^0 = 1$						
h2: 2 R2 = 24 = 16						
$h_3: 2^{R_3} = 2^4 = 16$						

For hash function (ax+b) mod 2k, when a is even and b is odd, the hash gunction always results in odd number - binary value ends by 1's making the tail length always equal to 0 when a and b are both even, it always result in even number - higher chance of getting 2 diggerent elements having a same representation gollowing the hash junction Chash function is supposed to generate dipperent values) Thus it is not advisable to choose a as or ever number 4.5.3

i	Xi element	Xi. value	
1	3	2	
2	l	3	
3	4	2	
4	1	۵.	
,	•	~	

5	3	1
6	4	1
7	۷	2
8	1	1
9	2	1

Estimated supprise number

$$= \frac{1}{9} \sum_{i=1}^{9} g(\lambda x_i. value - 1)$$

$$= \left[(2.2-1) + (2.3-1) + (2.2-1) + (2.1-1) +$$