Literature review on non-spherical particles

Alessio Raimondi

October 3, 2019

Literature review (Drag coefficient)

Before

Correlation for arbitrary shaped partiçles

- 1.Ganser [1993]
- 2.Haider and Levenspiel [1989]
- 3.Hartman [1994]
- 4.Chien [1994] (
- 5.Swamme and Ojha [1991]

Performance

H A B

R A

9

9

9

Correlation for specific shaped particles

- •Brenner [1963]
- Bowen and Masliyah [1973]
- •Tripathi et al [1994]
- •Militzer et al [1989]
- *Huner and Hussey [1977]
- •Huner and Hussey [197 •Ui et al [1984]
- •Michael [1966]
- •Shail and Norton [1969]
- •Davis [1990]

-<u>Spheroid</u> -<u>Cylinder</u> -Disc **After**

Correlation for arbitrary shaped particles

- 1.Holzer and Sommerfeld[2008]
- 2.Tran-Cong et al. [2004]

Correlation for specific shaped particles

- •Zastawny et al.[2012]
- •Loth [2008]
- •Yow [1994]
- •Vakil and Green[2011]
- •Mando and Rosendahl [2010]

The correlations must take into account:

- ■Particle shape.
- ■Particle orientation.
- ☐Particle rotation.

.

Holzer and Sommerfeld - 2008

- ► Huge literature and data review (2061 values)
- ▶ Interpolation of different previous models
- Arbitrary shape (and Orientation!)
- ► Valid for all the Subcritical Regime

$$c_D = \frac{8}{Re} \frac{1}{\sqrt{\Phi_{//}}} + \frac{16}{Re} \frac{1}{\Phi} + \frac{3}{\sqrt{Re}} \frac{1}{\Phi^{\frac{3}{4}}} + 0.4210^{0.4(-\log \Phi)^{0.2}} \frac{1}{\Phi_{\perp}}$$

Holzer and Sommerfeld - 2008

	Haider and Levenspiel [1]	Ganser incl. Leith [2]	Present Eq. (9)	Present Eq. (10
Mean relative deviation				
Sphere (683 values)	6.59%	10.9%	9.17%	9.17%
Isometric particles (655 values)	6.65%	6.46%	10.5%	10.9%
Cuboids and cylinders (337 values)	42.3%	38.4%	27.2%	29%
Disks and plates (386 values)	2 103%	1.8 10 ³ %	17.7%	16.8%
All Data (2061 values)	383%	348%	14.1%	14.4%
Maximum relative deviation				
Sphere (683 values)	44%	43%	45%	45%
Isometric particles (655 values)	50%	55%	68%	68%
Cuboids and cylinders (337 values)	1.1 103%	1.1 10 ³ %	88%	88%
Disks and plates (386 values)	2.1 104%	2.4 104%	75%	75%

- Works better than the other for disks and plates
- ► Ganser works better for isometric particles
- Works well overall

Sanjeevi, Padding and Kuipers – 2015

DNS of a prolate Ellipsoid with $\Phi=0.886$

Stokes Regime

$$c_D = \frac{8}{Re} \frac{1}{\sqrt{\Phi_\perp}} + \frac{16}{Re} \frac{1}{\Phi}$$

- ► Leith's (or Ganser's) model 1993
- ▶ Valid for low Re (≤ 10)
- ▶ For sphere $(\Phi_{\perp} = \Phi_{/\!/} = \Phi)$ degenerates to Stokes' analytical solution
- ▶ Modification: $\Phi_{\perp} \to \Phi_{/\!/}$ (for better approximation of the c_D as a function of the particle orientation)

Newton Regime

Blasius - 1908

Friction drag for plates and disks (small cross-sectional area)

$$c_D = 1.327 \cdot 2 \left(\frac{8}{9}\right)^{\frac{1}{4}} \pi^{\frac{1}{4}} \left(\frac{\mathsf{depth}}{\mathsf{length}}\right)^{\frac{1}{4}} \frac{1}{\Phi^{\frac{3}{4}}} \frac{1}{\sqrt{Re}}$$

for square plates: $c_D = 3.43/(\Phi^{\frac{3}{4}}\sqrt{Re})$

Tran-Cong (2004) and Ganser (1993)

Term for high Re proportional to the projected cross-sectional area (Tran-Cong) with the same factor of proportionality of Ganser.

$$c_D = 0.4210^{0.4(-\log \Phi)^{0.2}} \frac{1}{\Phi_{\perp}}$$

Symbols

Sphericity

$$\Phi = \frac{A_{\rm eq~sphere}}{A_{\rm particle}}$$

Ratio between the surface area of the volume-equivalent sphere and the area of the actual particle

Crosswise Sphericity

$$\Phi_{\perp} = \frac{A_{\rm eq~sphere,~cross}}{A_{\rm particle,\perp}}$$

Ratio between the cross-sectional area of the volume-equivalent sphere and the projected cross-sectional area of the actual particle

Symbols

Lengthwise Sphericity

$$\Phi_{/\!/} = \frac{A_{\rm eq~sphere,~cross}}{\Delta A}$$

$$\Delta A = \frac{A_{\rm particle}}{2} - \bar{L_{/\!/}}$$

Ratio between the cross-sectional area of the volume-equivalent sphere and the difference between half the surface area and the *average* mean longitudinal projected cross-sectional area of the actual particle.

Since $L_{/\!/}$ depends on the angle of view, an arithmetic average over an entire revolution is used

Recent work – camera-based methods

China - 2017

Correlation	Prediction er	ror	
	r	s_1	<i>S</i> ₂
Haider and Levenspiel [23]	13.84%	9.85	2.47
Swamee and Ojha [24]	21.27%	22.22	7.07
Ganser [25]	8.41%	3.46	0.73
Chien [1]	17.27%	13.21	3.23
Yow et al. [29]	47.77%	130.24	/
Holzer and Sommerfeld [36]	11.07%	5.75	1.32
Our equation	4.91%	1.45	0.30

Limitations:

 Only three major regular particle shapes investigated (sphere, cube, cylinder)

Recent work - camera-based methods

Limitations:

- ► Small data sample
- ► No comparison with Holzer and Sommerfeld (although good agreement with Ganser)

To do list

- ► Read Loth-2008 (Snow??)
- ▶ Replicate the work of the workshop on SU2
- ► (Try the H&S formula on the Italian data)