Hall Ticket No.:							SRIT R19
						· · · · · · · · · · · · · · · · · · ·	

SRINIVASA RAMANUJAN INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)

II B. Tech I Sem – Semester End Examinations – Supplementary – Dec 2022

DISCRETE MATHEMATICS [194GA05301]

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART-A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - Is $\neg (P \land (P \lor Q)) \rightarrow Q$ a tautology or not? a)
 - Write the converse and inverse for $P \rightarrow Q$. b)
 - Identify the Properties in the given Relation $A=\{1,2,3,4\}$ and c) $R=\{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (3,1), (1,3)\}.$
 - Define Lattice. d)
 - What is Group Homomorphism? e)
 - Find the GCD of 60 and 42? f)
 - Define generating function. g)
 - Write the major applications of Circular Permutations. h)
 - Define Hamiltonian Graph. i)
 - Differentiate Path and Circuit. **i**)

PART-B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT-1

- 2 Show that $R \rightarrow S$ can be derived from the Premises $P \rightarrow (Q \rightarrow S)$, $\neg R \lor P$ and Q? [5M] a)
 - Obtain principal disjunctive normal form of $(\neg P \lor Q)$? b)

OR

3 Prove the Validity of the following Statements using Predicate Calculus? a) All men are Clever

Sachin is Man

Therefore sachin is clever

Explain the inference theory for predicate calculus. b)

[5M]

[5M]

[5M]

UNIT-2

Illustrate various properties of Binary Relations with clear examples. 4 a)

[5M]

Let $A = \{1, 2, 3, 4, 6, 8, 12\}$, define the partial ordering relation R b) by aRb if and only if a divides b. Draw the Hasse diagram for R.

[5M]

Given the functions defined by f and g find $(f \circ g)(x)$ and $(g \circ f)(x)$. 5 a)

[5M]

i) f(x)=4x-1, g(x)=3xii) f(x)=5x+1, g(x)=2x-3

- Check whether the Poset (S_{1}) is a distributive Lattice or not where $S=\{1,2,3,6\}$? b)

[5M]

UNIT-3

- Let $W = \{1, -1, i, -i\}$ and * is a multiplication operation. Find whether $\langle W, * \rangle$ is a group 6 [5M] or not
 - Prove that $\langle Z_5, +_5 \rangle$ is an abelian group of order 5. b)

[5M]

		OR	
7		Explain the Euclidean algorithm with example.	[10M]
		UNIT-4	
8	a)	Write about Sum rule and Product rule with an example.	[5M]
	b)	Determine the Coefficient of X^9Y^3 in the expansion of $(x+2y)^{12}$?	[5M]
		OR	
9	a)	How many six character passwords in computer possible, if first 2 characters are Letters and others are digits?	[5M]
	b)	Define Multinomial Theorem. Find number of integers less than 250 and divisible by 3 or 5 or 11?	[5M]
		UNIT-5	
10	a)	Prove that complete graph of 5 vertices is non-planar.	[5M]
	b)	Define the following with examples:	[5M]
	ŕ	(i) Directed Graph (ii) Non-directed Graph (iii) Simple Graph.	
		OR	
11	a)	How many vertices will the graph contain 6 edges and all vertices of degree 3.	[5M]
	b)	Distinguish Depth First Search and Breadth First Search algorithms.	[5M]
