Master MIASHS Modèles Linéaires Mixtes

Christian Lavergne et Catherine Trottier

Année universitaire 2016-2017

Le modèle linéaire gaussien à structure de covariance paramétrée et séparable $(\beta \perp \theta)$

- **Définition** $Y = X\beta + \epsilon$, avec X de dimension $n \times p$ $\epsilon \sim \mathcal{N}_{\mathbb{R}^N}(0, \Gamma_{\theta})$ avec θ paramètre inconnu de \mathbb{R}^K .
- La vraisemblance

$$f(\beta, \theta; y) = \frac{1}{(2\pi)^{N/2}} |\Gamma_{\theta}|^{-1/2} \exp\{-\frac{1}{2}(y - X\beta)'\Gamma_{\theta}^{-1}(y - X\beta)\}$$

et $I(\beta, \theta) = -2\log(f(\beta, \theta; y))$

• Cas particulier : le modèle linéaire élémentaire. Repose sur l'hypothèse d'erreur gaussienne et de structure de covariance $\sigma_{\epsilon}^2\Gamma$ avec Γ connue. Le cas le plus répandu étant $\Gamma = \operatorname{Id}_n$.

Le maximum de vraisemblance dans un modèle linéaire général

Estimateur du maximum de vraisemblance : ML

$$\begin{split} \hat{\beta}_{ML} &= \arg\min_{\beta} ((y - X\beta)' \Gamma_{\theta}^{-1} (y - X\beta)) \\ \hat{\theta}_{ML} &= \arg\min_{\theta} ((y - X\beta)' \Gamma_{\theta}^{-1} (y - X\beta) + \log(|\Gamma_{\theta}|)) \end{split}$$

Fonction score

$$U_{\beta}(\hat{\theta}_{ML}) = \frac{\partial I(\beta, \theta)}{\partial \beta} \Big|_{\theta = \hat{\theta}_{ML}}$$

$$= -2X'\Gamma_{\theta}^{-1}(y - X\beta) \Big|_{\theta = \hat{\theta}_{ML}}$$
(1)

donc
$$\hat{\beta}_{ML} = (X'\Gamma_{\hat{\theta}_{ML}}^{-1}X)^{-1}X'\Gamma_{\hat{\theta}_{ML}}^{-1}y$$
.

$$U_{\theta}^{ML}(\hat{\beta}_{ML}) = \frac{\partial I(\beta, \theta)}{\partial \theta} \Big|_{\beta = \hat{\beta}_{ML}}$$

$$= -(y - X\beta)' \Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta} \Gamma_{\theta}^{-1} (y - X\beta) + \underline{\operatorname{tr}} (\Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta}) \Big|_{\beta = \hat{\beta}_{ML}}$$

$$= -y' P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta} P_{\theta} y + \underline{\operatorname{tr}} (\Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta})$$
(2)

οù

- $P_{\theta} = \Gamma_{\theta}^{-1} (\operatorname{Id} X(X'\Gamma_{\theta}^{-1}X)^{-1}X'\Gamma_{\theta}^{-1}),$
- $u'A_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta} A_{\theta} u = \text{est le vecteur de composantes } [u'A_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta_{j}} A_{\theta} u]_{j=1,...,K}$
- resp. $\underline{\operatorname{tr}}(A_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta}) = [\operatorname{tr}(A_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta_{i}})]_{j=1,\dots,K}$

$$\mathsf{rappel} : \tfrac{\partial \Gamma_{\theta}^{-1}}{\partial \theta_i} = -\Gamma_{\theta}^{-1} \tfrac{\partial \Gamma_{\theta}}{\partial \theta_i} \Gamma_{\theta}^{-1} \; \mathsf{et} \; \tfrac{\partial \log(|\Gamma_{\theta}|)}{\partial \theta_i} = \mathsf{tr} (\Gamma_{\theta}^{-1} \tfrac{\partial \Gamma_{\theta}}{\partial \theta_i})$$

Estimation du paramètre de dispersion σ^2 : cas $\Gamma_\theta = \sigma^2 \operatorname{Id}$ $\widehat{\sigma^2} = \frac{1}{n-p} \|Y - X\widehat{\beta}\|^2$ est un estimateur sans biais de σ^2 .

$$||Y - X\widehat{\beta}||^2 = ||Y - X(^tXX)^{-1t}XY||^2$$

= $||[Id - X(^tXX)^{-1t}X]Y||^2 = ||MY||^2 = {}^tY^tMMY$

Or M projecteur orthogonal sur \mathcal{X}^{\perp} donc : ${}^{t}M = M$; M.M = M et MX = 0.

Donc

$$||Y - X\widehat{\beta}||^2 = {}^tYMY = {}^t(X\beta + \epsilon)M(X\beta + \epsilon) = {}^t\epsilon M\epsilon.$$

D'après le lemme :

$$E(\|Y - X\widehat{\beta}\|^2) = E({}^t \epsilon M \epsilon) = \sigma^2 \operatorname{trace} M = \sigma^2 (n - p) \bullet$$

Estimation dans la cas $Var(\epsilon) = \sigma^2 \Gamma$

• Γ est une matrice symétrique, définie positive donc diagonalisable et à valeurs propres > 0.

$$\Gamma = {}^t U \Lambda U$$
 avec ${}^t U U = I d$

Posons $\sqrt{\Lambda}$ la matrice diagonale des racines carrés des valeurs propres de Γ et le changement de variable Z=HY avec $H=\sqrt{\Lambda}^{-1}U$ alors : $\mathrm{Var}(Z)=\sigma^2\mathrm{Id}$ et on applique au modèle $Z=HX\beta+\epsilon_Z$ les résultats précédents.

L2M 2016/2017 6 /

Interprétation géométrique; propriété de W. Kruskal 1968

$$\widehat{\beta} = (X'\Gamma^{-1}X)^{-1}X'\Gamma^{-1}Y = (X'X)^{-1}X'Y$$

l'espace \mathcal{X} est invariant par l'opérateur Γ ($\Gamma X = X$)

$$\widehat{\sigma}^2 = \frac{1}{n} ||Y - X \widehat{\beta}_{ML}||_{\Gamma^{-1}}^2 = \frac{1}{n} ||Y - X \widehat{\beta}_{\mathsf{Id}}||^2$$

les espaces $\mathcal X$ et $\mathcal X^\perp$ sont invariants par l'opérateur Γ

L2M

Théorème de Kruskal, démonstration

Les deux estimateurs $\widehat{\beta}_{\text{Id}}$ et $\widehat{\beta}_{\Gamma^{-1}}$ sont identiques si et seulement si \mathcal{X} est invariant par la matrice Γ .

$$\widehat{\beta}_{\text{ld}}$$
 est définie par : $\langle y - X \widehat{\beta}_{\text{ld}}, z \rangle_{\text{ld}} = 0, \ \forall z \in \mathcal{X};$

$$\widehat{\beta}_{\Gamma^{-1}} \text{ est définie par : } < y - X \widehat{\beta}_{\Gamma^{-1}}, z>_{\Gamma^{-1}} = < y - X \widehat{\beta}_{\Gamma^{-1}}, \Gamma^{-1}z>_{\text{ld}} = 0.$$

De plus \mathcal{X} invariant par la matrice Γ (ou Γ inv.)

$$\Leftrightarrow \Gamma \mathcal{X} = \mathcal{X} \Leftrightarrow \Gamma^{-1} \mathcal{X} = \mathcal{X} \Leftrightarrow \Gamma^{-1} z \in \mathcal{X}, \ \forall z \in \mathcal{X}.$$

$$\text{a) } \widehat{\beta}_{\text{Id}} = \widehat{\beta}_{\Gamma^{-1}} \Rightarrow < y - X \widehat{\beta}_{\text{Id}}, \Gamma^{-1}z >_{\text{Id}} = 0, \text{ donc } \Gamma^{-1}z \in \mathcal{X}, \ \forall z \in \mathcal{X}.$$

b)
$$\mathcal{X}$$
 est invariant par Γ (ou Γ^{-1}) alors la condition sur $\widehat{\beta}_{\Gamma^{-1}}$: $< y - X \widehat{\beta}_{\Gamma^{-1}}, \Gamma^{-1} z >_{\text{ld}} = 0$ se transforme en $: < y - X \widehat{\beta}_{\Gamma^{-1}}, z >_{\text{ld}} = 0$.

De par l'unicité $\widehat{\beta}_{ld} = \widehat{\beta}_{\Gamma^{-1}}$.

Matrice d'information :

Posons $\gamma = (\beta, \theta)$ et

$$\mathcal{I}_{eta, heta} = \mathcal{E}_{eta, heta} \left[-rac{\partial^2 \log f(eta, heta; y)}{\partial \gamma \partial \gamma'}
ight]$$

alors

$$\mathcal{I}_{eta, heta} = \mathcal{E}_{eta, heta} \left[rac{1}{2} rac{\partial^2 I(eta, heta)}{\partial \gamma \partial \gamma'}
ight] = \mathcal{E}_{eta, heta} \left[rac{1}{2} \left(egin{array}{cc} rac{\partial U_eta}{\partial eta'} & rac{\partial U_eta}{\partial heta'} \ rac{\partial U_{ heta'}}{\partial eta'} & rac{\partial U_{ heta'}}{\partial heta'} \end{array}
ight)
ight].$$

On vérifie aisément que $\frac{\partial U_{\beta}}{\partial \beta'} = 2 X' \Gamma_{\theta}^{-1} X$ et que $E_{\beta,\theta} \left[\frac{\partial U_{\beta}}{\partial \theta'} \right] = 0$.

D'autre part :

$$\left[\frac{\partial U_{\theta}^{ML}}{\partial \theta'}\right]_{ij} = \operatorname{tr}(\Gamma_{\theta}^{-1}(\frac{\partial^{2}\Gamma_{\theta}}{\partial \theta_{i}\partial \theta_{j}} - \frac{\partial \Gamma_{\theta}}{\partial \theta_{i}}\Gamma_{\theta}^{-1}\frac{\partial \Gamma_{\theta}}{\partial \theta_{j}}))
-(y - X\beta)'\Gamma_{\theta}^{-1}(\frac{\partial^{2}\Gamma_{\theta}}{\partial \theta_{i}\partial \theta_{i}} - 2\frac{\partial \Gamma_{\theta}}{\partial \theta_{i}}\Gamma_{\theta}^{-1}\frac{\partial \Gamma_{\theta}}{\partial \theta_{i}})\Gamma_{\theta}^{-1}(y - X\beta)$$

Donc

$$\mathcal{I}_{\beta,\theta} = \left(\begin{array}{cc} \mathcal{I}_{\beta} = X' \Gamma_{\theta}^{-1} X & 0 \\ 0 & \mathcal{I}_{\theta}^{\textit{ML}} = \left[\frac{1}{2} \text{tr} (\Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta_{i}} \Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta_{j}}) \right]_{i,i=1,\ldots,K} \right)$$

Le maximum de vraisemblance restreint : REML

 \bullet La vraisemblance restreinte : c'est la vraisemblance marginale après intégration sur β

$$f_{RE}(\theta; y) = \frac{1}{(2\pi)^{(N-p)/2}} |\Gamma_{\theta}|^{-1/2} |X' \Gamma_{\theta}^{-1} X|^{-1/2} \exp\{-\frac{1}{2} y' P_{\theta} |y\}$$

et

$$I_{RE}(\theta) = -2\log(f_{RE}(\theta; y))$$

• Estimateur maximun de vraisemblance restreinte

$$\hat{\theta}_{REML} = \arg\min_{\theta} (y' P_{\theta} | y + \log(|\Gamma_{\theta}|) + \log(|X' \Gamma_{\theta}^{-1} X|)$$

Fonction score

$$U_{\theta}^{REML} = \frac{\partial I_{RE}(\theta)}{\partial \theta}$$

$$= -y' P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta} P_{\theta} y + \underline{\operatorname{tr}}(\Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta})$$

$$-\underline{\operatorname{tr}}((X'\Gamma_{\theta}^{-1}X)^{-1}X'\Gamma_{\theta}^{-1} \frac{\partial \Gamma_{\theta}}{\partial \theta} \Gamma_{\theta}^{-1}X)$$

$$= -y' P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta} P_{\theta} y + \underline{\operatorname{tr}}(P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta})$$
(3)

et $\hat{\beta}_{REML}$ est solution de l'équation $U_{\beta}(\hat{\theta}_{REML}) = 0$.

L2M 2016/2017 12 / 20

Matrice d'information associée au vecteur y

Posons

$$\mathcal{I}_{\theta}^{REML} = E_{\theta} \left[- \frac{\partial^2 \log f_{RE}(\theta; y)}{\partial \theta \partial \theta'} \right]$$

alors

$$\mathcal{I}_{\theta}^{REML} = E_{\theta} \left[\frac{1}{2} \frac{\partial^{2} I_{RE}(\theta)}{\partial \theta \partial \theta'} \right] = E_{\theta} \left[\frac{1}{2} \frac{\partial U_{\theta}^{REML}}{\partial \theta'} \right].$$

Un calcul similaire au cas précédent

$$\mathcal{I}_{\theta}^{\textit{REML}} = \left[\frac{1}{2} \text{tr}(P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta_{i}} P_{\theta} \frac{\partial \Gamma_{\theta}}{\partial \theta_{j}})\right]_{i,j=1,...,K}$$

Remarque:

• En résumé :

$$\hat{\theta}_{ML}$$
 est donc solution de la minimisation du critère :

CritèreML =
$$y'P_{\theta} y + \log(|\Gamma_{\theta}|)$$
;

 $\hat{\theta}_{REML}$ est solution de la minimisation du critère :

CritèreREML = CritèreML +
$$\log(|X'\Gamma_{\theta}^{-1}X|)$$

et
$$\hat{\beta}_{\cdot} = (X'\Gamma_{\hat{\theta}_{\cdot}}^{-1}X)^{-1}X'\Gamma_{\hat{\theta}_{\cdot}}^{-1}y$$
.

• Remarquant que $E_{\theta}(P_{\theta}|y) = 0$ et $P_{\theta}\Gamma_{\theta}P_{\theta} = P_{\theta}$ alors

$$E_{\theta}(y'P_{\theta}\frac{\partial\Gamma_{\theta}}{\partial\theta}P_{\theta}|y) = \underline{\operatorname{tr}}(P_{\theta}\frac{\partial\Gamma_{\theta}}{\partial\theta}).$$

La fonction score U_{θ}^{REML} est donc une statistique centrée contrairement à la fonction score U_{θ}^{ML} .

Critères de choix de modèles.

Les critères d'informations que l'on cherche à minimiser sont construits sur la log-vraisemblance en $\widehat{\beta}_{ML}$ et $\widehat{\theta}_{ML}$ notée $\mathcal{L}(\mathcal{M})$.

On désigne par $q(\mathcal{M})$ le nombre de paramètres estimés dans le modèle $(q(\mathcal{M}) = p + K)$.

AIC: Akaike Information Criterium

$$-2\mathcal{L}(\mathcal{M}) + 2 * q(\mathcal{M})$$

BIC: Bayesian Information Criterium

$$-2\mathcal{L}(\mathcal{M}) + \ln(n) * q(\mathcal{M})$$

Le modèle linéaire mixte : L2M

$$Y = X\beta + ZU + \epsilon = X\beta + \sum_{k=1}^{K} Z_k U_k + \epsilon$$

- $\epsilon \sim \mathcal{N}_{\mathbb{R}^N}(0, R = \theta_0 V_0)$, V_0 est une matrice connue.
- $U_k \sim \mathcal{N}_{\mathbb{R}^{q_k}}(0, \theta_k G_k)$ pour tout k = 1, ..., K; les G_k sont des matrices connues.

 U_1, U_2, \ldots, U_k sont les effets aléatoires non observés; ils sont indépendants entre eux et indépendants de ϵ .

•
$$U \sim \mathcal{N}_{\mathbb{R}^q}(0, G_\theta)$$
 où $q = \sum_{k=1}^K q_k$

$$Var(Y) = \Gamma_{\theta} = R + \mathbb{Z}G_{\theta}\mathbb{Z}' = \sum_{k=0}^{K} \theta_k V_k \text{ où } V_k = Z_k G_k Z_k'$$

les θ_k ($\in \mathbb{R}^+$) sont appelés les composantes de la variance.

Simplification des fonctions scores $U_{ heta}^{ML}$ et $U_{ heta}^{REML}$ du modèle mixte

Dans ce cas particulier on a : $\frac{\partial \Gamma_{\theta}}{\partial \theta_k} = V_k$:

$$U_{\theta}^{ML}$$
: $y'P_{\theta}V_{k}P_{\theta}y = \operatorname{tr}(\Gamma_{\theta}^{-1}V_{k})$ pour $k = 0, ..., K$
 U_{θ}^{REML} : $y'P_{\theta}V_{k}P_{\theta}y = \operatorname{tr}(P_{\theta}V_{k})$ pour $k = 0, ..., K$

Comme pour $k = 0, \dots, K$

$$\operatorname{tr}(\Gamma_{\theta}^{-1}V_k) = \sum_{j=1}^{K}\operatorname{tr}(\Gamma_{\theta}^{-1}V_k\Gamma_{\theta}^{-1}V_j)\theta_j$$

et $\operatorname{tr}(P_{\theta}V_k) = \sum_{j=1}^{K}\operatorname{tr}(P_{\theta}V_kP_{\theta}V_j)\theta_j$

On obtient ainsi 2 systèmes linéaires identiques :

$$2\mathcal{I}_{\theta} \; \theta = F_{\theta} \; \text{où} \; F_{\theta} \; \text{est le vecteur} \; \{y'_{\theta}P_{\theta}V_{k}P_{\theta}y\}$$

_2M 2016/2017 17 / 20

L'algorithme EM

Principe : étant donné un vecteur aléatoire observé Y et un vecteur aléatoire non observé (ici les effets aléatoires) U, on cherche des statistiques exhaustives, fonction des données complètes x=(y',u')' qui permettent de réaliser l'estimation des paramètres inconnus γ : notées t(x). On obtient un algorithme qui à chaque itération [t] pour une valeur courante du paramètre $\gamma^{[t]}$ se décompose en 2 étapes :

- étape E : calculer l'espérance conditionnelle de t(x) sachant les données observées y et la valeur $\gamma^{[t]}$.
- ullet étape M : maximiser la vraisemblance des données complètes en remplaçant les statistiques exhaustives par l'espérance conditionnelle et obtenir ainsi $\gamma^{[t+1]}$.

L2M 2016/2017 18 / 2

Le modèle linéaire mixte : L2M

$$Y = X\beta + \sum_{k=1}^K Z_k U_k + \epsilon \; ; \; \epsilon \sim \mathcal{N}_{I\!\!R^N}(0, \theta_0 V_0), \; U_k \sim \mathcal{N}_{I\!\!R^{q_k}}(0, \theta_k G_k).$$

Donc si les U_k étaient observées, les estimations des paramètres seraient obtenues par :

$$\widehat{\theta_k} = \frac{U_k G_k^{-1} U_k'}{q_k} \text{ et } \widehat{\beta} = (X' V_0^{-1} X)^{-1} X' V_0^{-1} (y - \sum_{k=1}^K Z_k U_k)$$

On vérifie alors aisément que :

$$E(U_k G_k^{-1} U_k'|y) = \theta_k^2 (y - X\beta)' \Gamma_\theta^{-1} V_j \Gamma_\theta^{-1} (y - X\beta) + q_k \theta - \theta^2 \operatorname{tr}(\Gamma_\theta^{-1} V_j)$$

$$E(y - \sum_{k=1}^{K} Z_k U_k | y) = X\beta + \theta_0 V_0 \Gamma_{\theta}^{-1} (y - X\beta)$$

D'où l'algorithme EM pour ML :
$$\begin{cases} q_k \theta_k^{[t+1]} &= \theta_k^{2[t]} (y - X \beta^{[t]})' \Gamma_{\theta^{[t]}}^{-1} V_j \Gamma_{\theta^{[t]}}^{-1} (y - X \beta^{[t]}) \\ &+ q_k \theta^{[t]} - \theta^{2[t]} \mathrm{tr} (\Gamma_{\theta^{[t]}}^{-1} V_j) \\ X \beta^{[t+1]} &= (X' V_0^{-1} X)^{-1} X' V_0^{-1} [X \beta^{[t]} + \theta_0^{[t]} V_0 \Gamma_{\theta^{[t]}}^{-1} (y - X \beta^{[t]})] \end{cases}$$

La 1^{re} partie de l'algorithme peut aussi s'écrire :

$$\left\{ q_k \theta_k^{[t+1]} = \theta_k^{2[t]} y' P_{\theta^{[t]}} V_j P_{\theta^{[t]}} y + q_k \theta^{[t]} - \theta^{2[t]} \operatorname{tr}(\Gamma_{\theta^{[t]}}^{-1} V_j) \right\}$$

et en remplaçant $\Gamma_{\theta^{[t]}}^{-1}$ par $P_{\theta^{[t]}}$ on obtient l'algorithme EM pour REML.

L2M