GLOBAL SPACE TOPOGRAPHIC MISSION TOPSAT

University of Naples, Sergio Vetrella

Third Spaceborne Imaging Radar Symposium

I	HYDROLOGY
[.1	Global water balance
1.2	Lumped catchment rtg.
1.3	Funct. rei. model
I.4	Snow accumulation
1.5	Fin. Elem. / diff. mod.
1.6	Westland Circulation
П	ECOLOGY
П.1	Life Zones
п.2	Hillslope position
п.3	Wetland dynamics
Ш	GEOMORPHOLOGY
ПП.1	Tectonic provences
m.2	Mountain ranges
Ш.3	Large valley Systems
П.4	Hillslopes streams
Ш.5	Dunes
Ш.6	Coastal Changes
ш.7	Large landslides and landslides fields in seismically active areas
III.S	Worldwide landslide mapping
III.9	Study of specific landslides
īV	GLACIOLOGY
IV.1	Glacial Moraines
IV.2	Alpine glaciers
IV.3	¹Ice sheets
v	GEOLOGY/GEOPHYSICS
V.1	Gravity/Magnetics
V.2	Plate boundaries
V.3	Marine geology
V.4	Structurai geology
V.5	Fault Zone Tectonics
V.6	Flow and ash volumes
V.7	Volcanic sweiling
V.8	Volcano morphology
V.9	Global long term monitoring in regional tectonic movements
V.10	Subsiding area
VI	DISASTER MANAGEMENT
VI.1	Earthquakes
VT.2	Volcanic Eruptions
V1.3	Avaianches
V1.4	Landslides
VI.5	Floods
V1.6	Wildfire
VII	CARTOGRAPHY
VTT.1	1:1.000.000
VII.2	1: 500.000
VΠ.3	1: 150.000
VTL4	1: 1(1),(00)

POLAR REGION APPLICATIONS CONTINENTAL TOPOGRAPHY ב

WHY STUDY THE POLAR REGIONS?

- POLAR ICE SHEETS HOLD 80-90% OF WORLD'S FRESH WATER
- CHANGES IN ICE SHEET VOLUME COULD HAVE MAJOR EFFECTS ON GLOBAL SEA **LEVEL AND CLIMATE**
- ICE SHEET STABILITY IS NOT KNOWN
- ATMOSPHERIC CO₂ IS INCREASING; GREENHOUSE EFFECT?

WHY IS ELEVATION DATA IMPORTANT IN THE POLAR REGIONS?

- **BASIC LANDFORM INVENTORY**
- UNDULATIONS
 - PIFTS FLOW LINES
- GIVE INFORMATION ON DETAILED FLOW DYNAMICS

2) MASS BALANCE AND DYNAMICS

- ICE FLOW IS RELATED TO SURFACE HEIGHT AND THICKNESS
- REPEAT, HIGH RESOLUTION ELEVATION DATA WOULD ALLOW MONITORING OF ICE TRANSPORT AND ABLATION

CONTINENTAL TOPOGRAPHY

In this last will be

TERRESTRIAL ECOSYSTEM **APPLICATIONS**

ABSOLUTE ELEVATION, LOCAL SLOPE AND SLOPE ASPECT (e.g., N OR S-FACING) EXERT FUNDAMENTAL INFLUENCE ON THE TERRESTRIAL ECOSYSTEM

EXAMPLES INCLUDE:

- TEMPERATURE, INFLUENCED BY a) ABSOLUTE ELEVATION
 - - SLOPE ASPECT
- MOISTURE AVAILABILITY, INFLUENCED BY a) OROGRAPHIC EFFECTS ন
- REGIONAL DRAINAGE NETWORKS
 - LOCAL RUNOFF CONDITIONS
 - I) LOCAL SLOPE
- SLOPE ASPECT (AFFECTS EVAPO-TRANSPIRATION)
 - **ABSÓLUTE ELEVATION** SOIL TYPE, AFFECTED BY
 - LOCAL SLOPE SLOPE SLOPE
- MOST OF THESE APPLICATIONS REQUIRE
- HIGH SPATIAL RESOLUTION TOPOGRAPHIC DATA, ≅ 30 m (TO MATCH) RESOLUTION OF IMAGING SENSORS SUCH AS LANDSAT TM)
- GOOD VERTICAL ACCURACY (5 m OR BETTER) FOR ACCURATE SLOPE CALIBRATION
- EXISTING DATA ARE INADEQUATE; BEST QUALITY DEM DATA MAY HAVE 30 m HORIZONTAL RESOI UTION. BUT VERTICAL ACCURACY 10-50 m DEPENDING ON RELIEF

Table 1 - List of requirements for each of the applications

Application	Planimetric Resolution min-max	Planimetric Error A/P min max	Altimetric Extent error A/P G/R/L min-max	Extent G/R/L	Site E/A/SS	Repetitevity	Vegetation V/G	Sensor I(m)/N	Mission Lifetime
HYDROLOGY									
Global water balance	1000-100	500-100	10-5	9	E	0.5	U	I(2)	>10
Lumped catchment	500-50		5-1A	æ	A	8	Λ		
Funct. rel.	100-50		1-0.5 ^P	æ	K	8	Λ		
Snow	80-10	50-20	1A-02	R/L	a	0.3	9	1(2)	>10
S Fin. elem./ 8 diff. mod.	20-8	·	0.6-0.1 [₽]	ı	SS	8	5		
Westland circulation	700-100		0.2-0.1A	R	A/SS	8	9		
ECOLOGY									
Life zones	5000-1000		10-5A	~	A	8	Λ	I(>6)	
Hillslope position	60-10		1-0.5	ı	Ħ	8	9		
Wetland dynamics	700-100		0.1-0.05A	R	A		9	1(2)	
GEOMORPHOLOGY									-
Tectonic provences	10.000-2000		100-40A	ც	V	8	v	H	
Mountain ranges	5000-200		50-8A	G	A	8	5		
Large valley systems	500-100		10A-1	æ	A	8	9	I	

			•	•			
Note							:
s s M i s s i o n Note	61 < sent	OI < **	4 %	٨ _	× 3	>3	:
Class on m cric value I/N	œ	æ	8	20	20	20	
Vegetation V/C;	N/D	۵/۸	0/\0	0/0	N/9	CJ/V	7
Frequency Vegetation repetitivity V/G	9	2 !	7	\$	5	\$	
Site Select E/A/SS	·	<u>=</u>	E/SS	SS	SS	SS	- Company of the latest of the
Extent G/R/L	:	G/R	2	R/L	٦	٦	
Altimetric error min max A/P	(A) (A) (A)	(A) 15 (A) 30	75 8 (A(16	30 6(A) 12	15 3(A) 6	1,5 (A) 3	-
	100 (A) 300	50 (A) 150	25 (A) 75	10 (V) 30	S (A) 15	2.5 2.5(A) 7.5 1.5(A)	
Planimetreic Plan resolution c min max min	56 LS	29 48	14 25	6 10	3 5	1,5 2,5	
Application Planimetreic Planimetric resolution erorr unin max min max Cartografy (scale)	1:1.000.000	1:500,000	1:250.000	1:100.000	1:50.000	1:25.000	

GLOBAL TOPOGRAPHY MISSION

SCIENCE REQUIREMENTS

surface elevation measurements with horizontal resolution of 30 m, horizontal accuracy of 10 m, and vertical accuracy of 3 m over ≥ 95% of the Earth's land surfaces and ice sheets. Obtain global, contiguous Earth center-of-mass referenced

measurements with horizontal resolution of 30 m, horizontal accuracy of 10 m, and vertical accuracy of 20 cm - 1 m over selected areas of the Earth's land surfaces and ice sheets. Obtain regional, contiguous Earth center-of-mass referenced surface elevation, roughness, and vegetation height

order to monitor seasonal and shorter period changes of ice, continue measurement capability for at least 12 months in Obtain complete global coverage in less than 6 months and vegetation, wetlands, and time-varying landforms.

Stereo electro-optical sensors

1

- Along-track stereoscopic observation (e.g. Large Format Camera, Stereo MOMS)
- allows simultaneous acquisition of a stereoscopic pair
- requires a complex attitude control system to ensure automatic correlation along epipolar planes

- Cross-track stereoscopic observation (e.g. HRV SPOT)
- stereoscopic pair obtained from two different orbits under different illumination conditions

SPACE-BASED STEREOSCOPIC * **MISSIONS**

						TOTAL	
INSTRUMENT/ MISSION	AGENCY/ YEAR	RESOLUTION OR GROUND PIXEL SIZE (m)	BASE/ HEIGHT	RMS-ACCURACY (m) HEIGHT [†] PLANIM.	JRACY (m) PLANIM.	GROUND COVER [‡] 10 ⁶ km ²	SWATH WIDTH km
METRIC CAMERA SPACELAB-1/STS-9	ESA/DFVLR 1983	~13	1:3-1.6	15	51	12	190
LARGE FORMAT CAM. STS-41C	NASA 1984	&	1:1.6-1:0.8	01	0	∞	190
HRV SPOT-1	CNES 1986	10	1:2-1:1	10	0	٠	8
MEOSS SROSS-II	DFVLR/ISRO	98	Ξ	~20	96	INDIA, SOUTHERN EUROPE	255
HRV SPOT-2	CNES 1988/89	10	1:2-1:1	10	10	NOT DEFINED	8
METRIC CAMERA ATLAS-1	DFVLR/NASA 1991	LO .	1:3-1:1.6	~10	~10	10	190
STEREO-MOMS SPACELAB-D2	DFVLR/NASA 1991/92	5-10	Ξ	~10	~10	0.25	32
SPOT 3	CNES 1991/92	10	1:2-1:1	10	0	NOT DEFINED	09
ADVANCED LANDSAT (LANDSAT-7)	EOSAT 1992	10	TBD	ТВО	ТВО	NOT DEFINED	4

SOURCE: NASA TOPOGRAPHIC SCIENCE WORKING GROUP REPORT; M. SCHROEDER, DFVLR, 1987

Ξ

=

NOTE THAT VERTICAL ACCURACY DOES NOT MEET MAJORITY OF SCIENCE REQUIREMENTS

 $[\]ddagger$ PROBLEMS ASSOCIATED WITH CLOUD COVER DATA , REDUCTION COSTS, AND COSTS DUE TO NEED FOR EXTENSIVE GROUND CONTROL PRECLUDE FULL GLOBAL COVERAGE ($zz \times 10^8$ km ²LAND PLUS ICE SURFACE AREA) WITH OPTICAL STEREO

GLOBAL TOPOGRAPHY MISSION

OPTICAL STEREO APPROACH

ADVANTAGES

- EXISTING TOPOGRAPHIC DATA BASED ON OPTICAL STEREO (MAINLY AIRCRAFT);
 - STRONG TECHNICAL HERITAGE SPACE-BASED STEREO (e.g., SPOT) IS FEASIBLE NOW FOR SELECTED AREAS; NO ADDITIONAL SPACE SEGMENT COSTS
 - SPATIAL RESOLUTION 10-30 m

DISADVANTAGES

- VERTICAL PRECISION 5-10 m; VERTICAL ACCURACY > 10 m, EXACT AMOUNT DEPENDING ON NUMBER OF GCP's
 - GLOBAL COVERAGE UNLIKELY (LIMITED BY CLOUDS, ORBITAL CONSTRAINTS, IMAGING
 - POLAR COVERAGE RESTRICTED DUE TO NEED FOR TERRAIN MATCHING AND TIE **POINTS**
- COVERAGE ACQUIRED PIECEMEAL (5-10 years) PRECLUDING CONTIGUOUS, UNIFORM QUALITY DATA SET, AND COMPLICATING CHANGE DETECTION
- ACQUISITION COSTS AT CURRENT PRICES > \$400 M
- DATA REDUCTION
- GROUND CONTROL POINTS

CONCLUSIONS

- "MISSION" COSTS > \$500 M
- VERTICAL ACCURACY DOES NOT MEET SCIENCE REQUIREMENTS
- COVERAGE NOT GLOBAL DIFFICULT TO ENSURE UNIFORM QUALITY, CONTIGNUOUS DATA SET

Comparison of laser and radar altimetry.

RADAR INTERFEROMETRY

THEORY

DEFINING GEOMETRY AND PARAMETERS:

× •

$$\delta = \phi \lambda / 2\pi$$

RESULTING EQUATIONS FOR MEASURED PHASE ϕ , WAVELENGTH λ

$$\sin(\theta - \alpha) = ((\rho + \delta) * * 2 - \rho * * 2 - B * * 2)/(2 * \rho * B)$$

$$z(x) = h - \rho \cos(\theta)$$

TOPSAT SATELLITE IMPLEMENTATIONS REPEAT PASS / SINGLE / TWIN SATELLITES

ALONG TRACK INTERFEROMETRY

In the case of along-track interferometry, only the line of site velocity can be measured and therefore the along track velocity component is unknown.

ON-CRBIT CONFIGURATION

TOPSAT - VISTA

System Approach

- pm local time ascending node, 450 Km altitude Sun-synchronous orbit, 6
 - Frequency: 1.25 GHz
- Cross-track resolution by bandwidth projection
 - Along-track resolution by focused SAR
 - Spatial resolution 30 m x 30 m
- 50 Km (SR) cross-track swath achleved
 - side-looking at 25 deg (a_0)
- Two 8.7 m (L) x 2.6 m (W) antennas
- Antenna separation (B): 500 to 1000 m Antennas bound by flexible tether
 - - **Fwo satellites needed**
- Global land coverage in six months: 95%
- SNR19.5 dB (at 25 deg surface Incidence and for .20 dB 00)
- Antenna elevation beamwidth ($heta_{\it E}$) (-3 dB): 5.29
- Antenna azimuth beamwidth (θ_A) (-3 dB): 1.58
- Number of looks: 8 azlmuth / 1 range
 - Helght accuracy: ~3 m

VISTA Advantages

Meets all science requirements, including vertical and horizontal resolution;

Uses existing SAR technology with proven history of use;

Exploits existing investments by NASA and ASI in tether technology;

Configuration is stabilized by the gravity gradient force;

A long variable baseline is offered for new experiments.

WISTA Disadvantages

Tether technology is new

Antenna attitude uncertainty may be a major source of error

Tether lifetime may be a problem

Two platforms are required

Attitude control of each platform

Larger antennas are more difficult to stow and deploy

ISARA

System Approach

- Frequency: 35 GHz
- Cross-track resolution by bandwidth projection
- Along-track resolution by unfocused SAR
- Spatial resolution: 33 m imes 33 m
- 10-km cross-track swath achieved by sidelooking at 25°
- . Two 8 m \times 0.3 m antennas
- Antenna separation: 10 m
- Complete global coverage in 1 year
- \bullet Single pulse SNR \geq 17 dB (at 30° surface incidence and for -10 dB $\sigma^{\circ})$
- Number of looks = 8
- Height accuracy: ~4 m

DUAL SPACECRAFT CONCEPT

VIEW FROM BEHIND VELOCITY VECTOR

GEOMETRY NEEDED TO OBTAIN NEAR POLAR COVERAGE 65° TO 79° LATITUDE

L-band Technology Assessment Summary

Subsystem	Technology	Performance	Availability/Heritage	Risk
Antennas	Microstrip array 3.5 x 9.0 m	3.5 x 9.0 m	SEASAT	Low
Transmitter	Solid state	8 x 200 w	SEASAT/Magellan	Low
Waveform gen/ ref. Dig	ref. frequency generation Digital chirp 20 MHz	neration 20 MHz variable 50 us	SIR-C	Low
Stalo	Quartz oscillator <10-11	<10-11	SEASAT/Voyager	Low
Receiver	HEMT/GAs Fet	3-4 dB (<450K)	SEASAT/SIR-C	Low
Range processor	SAW		SEASAT	Low
A/D system	Offset video	20 MHz	SIR-B / SIR-C	Low
Digital data system CN	em CMOS FPGA	45MHz clock	SIR-B	Low
Calibration Subsyste	ystem			

TOPSAT TWO S/C / DELTA I FLIGHT CONFIGURATION

TWO S/C / DELTA II LAUNCH CONFIGURATION

RISK SUMMARY

lssue	L-band Dual Spacecraft	K-band Single Spacecraft
Sensor development	Гом	Moderate/Hi-amplifier &antenna
Spacecraft development	Low	Moderate-12m boom cont'l&know
Orbit/Operations	Moderate-navigation	Moderate-Frequent reboost
Science	Degraded performance near poles Loss of data in severe weather	Loss of data in severe weather
Mission duration	6 months	2 years
S/C failure scenario	Repeat-pass viable	None

TOPOGRAPHIC MAPPING LASER ALTIMETER LASER PULSES SUNLIGHT POLAR ORBIT 400 km SUN-SYNCHRONOUS 6am/6pm EARTH PROBE SPACECRAFT NADIR TRACK 6 km SWATH WIDTH

288

GLOBAL TOPOGRAPHY MISSION

Committee of the control of the cont

ROLE OF MULTI-BEAM LASER ALTIMETER

ABSOLUTE MEASUREMENT OF SURFACE ELEVATION *

SUB-METER VERTICAL CONTROL FOR INSAR AND STEREO-PHOTOGRAMMETRY UNAMBIGUOUS, DIRECT MEASUREMENT BY PULSE TIME-OF-FLIGHT SUB-PIXEL (~ 10 m) HORIZONTAL CONTROL

GLOBAL COVERAGE AT 200 m SPATIAL RESOLUTION OR PARTIAL COVERAGE AT HIGH RESOLUTION (30 m) REFERENCE TO A SINGLE, EARTH CENTER-OF-MASS COORDINATE SYSTEM

GROUND TOPOGRAPHY AND VEGETATION HEIGHT

RETURN-PULSE WAVEFORM MEASUREMENTS OF GROUND AND CANOPY LASER PENETRATION OF VEGETATION CANOPY

SURFACE SLOPE MEASUREMENT

SLOPE MEASUREMENT ACCURACY at the 1° LEVEL ALONG-TRACK AND ACROSS-TRACK SLOPES

ROLE OF MULTI-BEAM LASER ALTIMETER

(CONTINUED)

★ HIGH-ACCURACY ICE SHEET TOPOGRAPHY

ICE SHEET MAPPING - HIGH DENSITY OF DATA POINTS, TRACK SINGLE PULSE MEASUREMENT ACCURACY: ~ 20 cm

METER-LEVEL DATA QUALITY IN HIGH-RELIEF TERRAIN *

DATA ACQUISITION FOR ALL SLOPES (NO SHADOWING OR LAYOVER) < 3 m VERTICAL ACCURACY AT 20° SURFACE SLOPE</p>

SUB-PIXEL MEASUREMENT OF SURFACE VERTICAL STRUCTURE (i.e. roughness) *

RETURN-PULSE WAVEFORM SPREADING

HIGH-ACCURACY CONNECTION OF LAND AND OCEAN TOPOGRAPHY *

≤ 20 cm SURFACE HEIGHT ERRORS IN COASTAL REGIONS

< 10 cm WITH MULTI-PULSE AVERAGING