1 Maps from the Generic Riemann Surface

Key terms: moduli spaces, smooth projective curves, least ramification, primitive faithful group, simple vs finite groups

Consider maps from the generic Riemann surface.

Denote a Riemann surface of genus g as χ_g .

Suppose that χ_g is generic. For example, for g=0, anything is generic. If g=1, $y^2=x(x-1)(x-t)$ is generic.

Let \mathfrak{m}_g be a moduli space of genus g of smooth projective curves over T_k .

Then dim
$$\mathfrak{m}_g = \begin{cases} 3g - 3, g \ge 2 \\ 4, g = 1 \\ 0, g = 0 \end{cases}$$
.

Suppose now g > 2. Then a property is generic if it holds on a non-empty open subset of \mathfrak{m}_g .

Theorem 1.1 (Enrique's Conjeture)

Fix $n \in \mathbb{Z}^+$.

If g > 6, there is no solvable map from the *generic* Riemannian surface of genus g to \mathbb{P}^1 of degree n.

Consider now $\{x \in \mathfrak{m}_j \mid \text{ there exists } \phi: x \to \mathbb{P}^1 \text{ of degree } n \text{ such that } \phi \text{ is solvable}\}.$

Remark 1.2. For every Riemann surface of genus g and each x, there exists $\phi: x \to \mathbb{P}^1$ of the degree similar to $\frac{g+1}{2}$.