

Kenny Dao Data Bootcamp, Monash University

Melbourne, Australia Thursday, 18th February, 2021

ABOUT THE PROJECT

The project aims to provide a snapshot of community profiles analysis, stats (demography, employment, income, occupation) and predictions of population growth and house prices across Victoria

DATA SOURCE

Australian Bureau of Statistics (abs.gov.au)
https://abs.gov.au (csv)

Community Profile https://content.id.com.au (csv)

Suburb boundaries geoJSON

GeoJson-Data-master: (https://github.com/tonywr71/GeoJson-Data.git)

vic_suburb_stats.json

Kaggle

Victoria property (cvs)

TOOLBOX

Python: Numpy, Scipy, Sklearn

Pandas library, Flask App

D3, Matplotlib, Seaborn

HTML, Javascript

Leaflet, JQuery, Ajax, ...

Tableau

Deployment: Heroku

ETL - Python / Pandas Library

- Data transformation cleaning, parsing, merging and extracting data from multiple sources & format
- Looking at the data using matplotlib

df.shape (68035, 7)

Price distribution

Front End/Flask App

• Front End:

- HTML, CSS, Bootstrap
- JavaScript interactivity powered by D3.js,
 Leaflet.js, jQuery.js
 Price Sold By Year Month
- Plugins: \$()autocomplete, Datatable (to display data)

• Flask App:

- Serving html and multiple route
- Handling <form> tag with [POST] methodology
- Loading dataset, processing and executing prediction Models.

ML/Prediction

In [62]:

loading the model

Prediction about population growth and house price based on user input (suburb, # of bedroom, year).

- Population growth prediction: on-the-flight model (linear regression) for over 800 suburbs across Victoria.
- House price prediction: Skcikit, Joblib

```
filename = 'Vic house trained model 1.pkl'
           loaded model = joblib.load(filename)
 In [63]: result = loaded model.score(X test, y test)
           print(result)
           0.6958833985852149
In [138]: predictions = model.predict(X test)
In [139]: plt.scatter(y test, predictions)
Out[139]: <matplotlib.collections.PathCollection at 0x1b29cffb3c8>
```

Visualization

Embed visualization from Tableau

55 - 59

Consideration for further enhancement

- Collection & loading additional data into app
- Enhancement of prediction model/algorithm on house prices
- Utilize data available to add on more meaningful charts
- Migrate data onto Cloud platform, enablement of refreshment on a regular basis

Findings & Challenges

- Data collection and cleaning indeed requires lot of time (90% of the project). Data == GOLD.
- Integration of multiple technologies/platform within limited time
- Selection of the prediction model
- Building application is a team effort

HUGE THANKS!

Instruction Team:
David Palamara, Oscar, Hamim
Nathanael Lampe and Ifrin

Bootcamp Team: Gabriel O'Sullivan, SSM Nicola King, CSM

THANK YOU FOR YOUR ATTENTION.