Natural Language Processing & Word Embeddings

Quiz, 10 questions

1 point
1. Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.
True
False
1 point
2. What is t CNE2
What is t-SNE?
A linear transformation that allows us to solve analogies on word vectors
A non-linear dimensionality reduction technique
A supervised learning algorithm for learning word embeddings
An open-source sequence modeling library
1 point
2

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train Natural Language Trongssing of Word in Sappy from a short snippet of text, using a small training set.

Quiz, 10 questions

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1

.

False

1 point

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} \approx e_{brother} - e_{sister}$$

$$e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$$

$$e_{boy} - e_{brother} \approx e_{girl} - e_{sister}$$

$$e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$$

1 point 5.

Let E

Natural Language, Processing & Word Embeddings

Quiz, 10 questions

be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*e_{1234}$

n Pyth	on?	
	It is computationally wasteful.	
	The correct formula is $E^T * e_{1234}$	
	This doesn't handle unknown words (<unk>). None of the above: Calling the Python snippet as described above is fine.</unk>	
1 point		
6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.		

True

False

1 point

7.

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.

Natural Language Processing & Word Embeddings

Quiz, 10 questions	is the sequence of all the words in the sentence before t
	•
	\bigcirc c
	is the one word that comes immediately before t
	•
	is a sequence of several words immediately before $\it t$
	1
	point
	8.
	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following
	softmax function:
	$e^{\theta_t^T e_c}$
	$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_{t'}^T e_c}}$
	Which of these statements are correct? Check all that apply.
	$\boxed{\boldsymbol{\theta}_t}$
	and e_c
	are both 500 dimensional vectors.
	$egin{pmatrix} heta_t \ heta_t \end{bmatrix}$
	and e_c are both 10000 dimensional vectors.
	$\frac{\theta_t}{and} e_c$
	are both trained with an optimization algorithm such as Adam or
	gradient descent.
	After training, we should expect θ_t
	to be very close to e_c
	when \emph{t} and \emph{c}

are the same word.

Natural Language Processing & Word Embeddings

Quiz, 10 questions

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_{i}^{T} e_{j} + b_{i} + b_{j}^{'} - log X_{ij})^{2}$$

Which of these statements are correct? Check all that apply.

- $\begin{array}{c} \theta_i \\ \text{and } e_j \\ \text{should be initialized to 0 at the beginning of training.} \end{array}$
- θ_i and e_j should be initialized randomly at the beginning of training.
- X_{ij} is the number of times word i appears in the context of word j.
- The weighting function f(.)must satisfy f(0) = 0

1 point

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

m₁
[Math Processing Error] << m₂