회사 내 주요 부품 및 설계도면의 현황에 대한 결재 보고서

관리자: 전우치

	담당	팀 장	사 장
결			
재			

1. 회사 내 주요 부품 현황

구분	이미지	설명	비고
부품 1◈	이하 첨부 내용 확인	고밀도 다층 PCB. 통신모듈 및 고속 데이터 처리	6 Layer, 금도금 처리
부품 2◈	이하 첨부 내용 확인	고속 인터커넥션용 패키지 서브스트레이트 고대역폭 메모리 (HBM) 인터페이스 설계	10 Layer, 반도체 패키징
부품 3◈	이하 첨부 내용 확인	대형 제어 모듈용 메인 PCB. 다양 한 인터페이스를 통합 지원.	8 Layer, EMI Shielding 적용

◈ 부품 명은 회사 내규에 따라 기밀 사항. 확인 희망 시 반드시 접근 권한을 확인할 것.

(왼쪽 위에서부터 시계 방향으로)

부품 1, 부품 2, 부품 3

2. 경쟁사(A사) 자료 첨부

◈ 이하 내용은 대외비로, 외부 유출을 엄격히 금지함.

현재 개발 시스템은 기본 성능 요건을 만족하는 수준에 도달 했으나, 이송 로봇의 장기 내구성 평가와 진공 인터페이스 씰 수명 시험에 대한 추가 검증이 필요함. 본 시스템이 외부 유출 시 경쟁사 대비 기술 우위(약 18개월 예상) 상실이 우려되므로, 각별한 관리가 필요할 것으로 판단됨

구분	위험 요소	보호 대책
Linear Stage	고속 이동 중 충격 발생 가능성	비상 감속 장치 및 소프트 리밋 소프트웨어 적용
Robot Arm	정밀 조립 시 오차 발생 가능성	실시간 보정 알고리즘 및 서보 튜닝 강화
Vacuum Interface	씰 누출 리스크 존재	2중 구조 씰 및 진공 감지 센서 이중화

현재 개발 시스템은 A사 시스템 대비 기본 성능 요건을 만족하는 수준에 도달 했으나, 이송 로봇의 장기 내구성 평가와 진공 인터페이스 씰 수명 시험에 대한 추가 검증이 필요함. 본 시스템이 외부 유출 시 경쟁사 대비 기술 우위(약 18개월 예상) 상실이 우려되므로, 각별한 관리가 필요할 것으로 판단됨.

Linear Stage 동작 분석 검증

- 시험 대상: EVS-300 Linear Stage Prototype

- 시험 환경: Class 1 Clean Room, 22±1°C

- 시험 장비: 레이저 간섭계, 고속 데이터 로거

현재 테스트 결과 고속/고정밀 이송 모두 설계 목표를 만족하는 수준이<mark>며</mark>, 양산을 위한 신뢰성 테 스트 단계로 진입 예정.

-사내 배포는 **기술개발본부 내**로 한정하며, 외부 전송, 복제, 인용을 엄격히 금지합니다.-