Backtracking

Dr. Bart Algorithms

Problem: Generate all possible values from a pool

Example: All dice roll combinations

For (each possible first die value):

For (each possible second die value):

For (each possible third die value):

• • •

Print!

But what if we don't want to keep nesting for loops?

The Search Space

- Graph/Tree of possibilities
 - Internal vertices are partial candidates
 - Leaves are complete candidates
 - Edges represent adding a part
- Depth-First Search
 - Systematically construct all possible candidates

The Backtracking Algorithm

 Backtracking: Exhaustively find solutions by recursively building partial solutions and then abandoning them if they don't work

- Characteristics:
 - Brute force
 - Exhaustive
 - Recursive

What can we do with it?

- Produce all permutations/combinations of
 - A set
 - A string
 - •
- Parsing text (inefficiently)
- Solve games completely
- Logic programming

5	3	1	2	7	6	8	9	4
56	2	4	1	9	5	2		
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	60			5
				8			7	9

Solving Sudoku by trying all possible combinations

Exploring a maze

- Explore possible paths
 - If we hit the end,
 - We're done
 - Otherwise,
 - Try out each possible junction
- Orange: Internal
- Grey: Leaf

Algorithm and Psuedocode

- Explore(choices):
 - If there are no more choices
 - Then stop
 - Otherwise
 - Make a single choice C
 - Explore the remaining choices
 - Un-make choice C (backtrack)

```
def backtrack(candidate):
    if is_solution(candidate):
        process_solution(candidate)
    else:
        next_choices = make_candidates(candidate)
        for next_choice in next_choices:
            add_choice(candidate, next_choice)
            backtrack(candidate)
            remove_last(candidate)
```


Algorithm Implementation Questions

- ☐ What does the solution look like?
- ☐ What does a candidate look like?
- ☐ How do we know if a candidate is a solution?
- ☐ Do we stop when we find a solution?
- ■What are the next choices at each vertex?
- ☐ How do we add a choice to a candidate?
- ☐ How do we "undo" a choice from a candidate?
- ☐ How do we iterate through the choices?
- ☐ How do we combine the choices solutions?

Pruning

- Sometimes we hit a dead-end internal vertex
 - If a partial candidate is clearly not going to lead to success,
 - We can stop pre-emptively
- Also known as "Branch and Bound"
 - Branching is the way we explore the DFS
 - Bounding is the way we stop at dead-ends

Time Analysis

- DFS takes V+E time
 - AKA its time complexity is linear on the vertices and edges, whichever is bigger.
- But the number of vertices is the number of partial candidates
 - So how many partial candidates are there?

Time Analysis: Rolling Dice

If we roll N 6-sided dice, then there are 6^N permutations

- So what if we rolled 5 dice?
 - \bullet 6⁵ = 6 * 6 * 6 * 6 * 6
 - = 7776
- What about 10 dice?
 - $6^{10} = 6*6*6*6*6*6*6*6*6$
 - = 60466176
- 20 dice?
 - Really big quadrillion options!

Time Analysis: Drawing Cards

If we draw N cards from a 52-card deck, there are 52_n combinations

- So what if we draw 3 cards?
 - $52_3 = \frac{52!}{(52-3)!} = 52 * 51 * 50$
 - = 132600
- What about 6 cards?
 - $52_{10} = \frac{52!}{(52-6)!} = 52*51*50*49*48*47$
 - = 14658134400
- 20 cards?
 - Really, really big! Nonillion options!

Time Analysis: Conclusion

- Unfortunately, backtracking does not scale well
 - Brute force rarely works out well for us
- But if you have the computation power and time...
 - It's an easy way to get things done!

