Лекция1

•••

Expressml

Приложения нейронных сетей

- Компьютерное зрение
- Распознавание речи
- Анализ текста
- Управление сложными системами
- Анализ разнородных данных
- Сжатое представление данных
- Artistic view
- Автоматические автомобили

Одна из первых задач MNIST

Распознавание рукописных цифр

~ 32-32

CIFAR

Распознавание объектов на маленьких картинках

ImageNet - 1000 1.5 mm - 2112 - 15 mm

Распознавание объектов на картигках

COCO ~ 120 k vap junece

- Детектирование объектов
- Локализация объектов
- Сегментация объектов
- Сопоставление предложения картинке
- ...

Синтаксический анализ текста

Мнемоническое правило

Нейросеть хорошо справляется с тем, с чем хорошо справляется человек

План на сегодня

- Математическая модель нейрона
 - Биологический нейрон
 - Математическая модель
 - Функции активации
- Нейросети, выполняющие функции логических элементов
 - o NOT
 - o AND
 - \circ OR
 - o XOR
- Двуслойная нейронная сеть, почему она нелинейная

План на сегодня

- Что нужно для тренировки:
 - Архитектура
 - Функция потерь и метрики
 - о Оптимизатор
- Типы задач, которые решаются при помощи нейронных сетей
 - О Классификация
 - Регрессия
 - о Ранжирование
 - о Сжатие размерности

Математическая модель нейрона

Биологческий нейрон

Математическая модель

thresh(x)=
$$\begin{cases} 1 & \text{if } x \ge 0 \\ 29 & \text{wi} \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Функции активации

Пороговая

• Сигмоида
$$G(x) = \frac{1}{1 + e^{-x}}$$

$$6(x) = \left(\frac{1}{1+e^{-x}}\right)^{1} = \frac{+e^{-x}}{(1+e^{-x})^{2}} = \frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)^{2} = \sigma(1-6)$$

Нейрон NOT

Нейрон AND

Нейрон OR

$$y = \frac{4}{1}$$

Нейрон XOR

Нейронная сеть

Однослойная нейронная сеть, линейность

Двуслойная нейронная сеть

Двуслойная нейронная сеть

Больше слоёв...

Все что нужно :)

Функция потерь

ВСЕ =
$$-\frac{y}{\log p} - \frac{(1-y)\log(1-p)}{(1-y)} = \frac{38cF}{3\frac{1}{2}} = -\frac{y}{p} - \frac{(1-y)}{1-p} \cdot \frac{(1-y)}{1-p} = \frac{y}{1-p} \cdot \frac{(1-y)}{1-p} \cdot \frac{(1-y)}{1-p} \cdot \frac{(1-y)}{1-p} = \frac{y}{1-p} \cdot \frac{(1-y)}{1-p} \cdot \frac{(1-y)}{$$

Оптимизатор —> 1) Град. Спуск.

Типы задач, решаемые при помощи Нейтронных Сетей

Бинарная классификация

Многоклассовая классификация

MAE

Ранжирование

Сжатие размерности

N nodopachbanuch
$$p-opin$$
 $(1-p)-penusa$
 $P=C_N\cdot p^n\cdot (1-p)^{(N-n)}=$ likelihood $(p)\to max$
 $(aghikelihood= (aghihood= (N-n) (aghihood= (N-$

$$\phi(x) = \frac{1}{\sqrt{2\pi}6} \cdot \exp\left(-\frac{(x-\mu)^2}{267}\right)$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sqrt{5}}\right)$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}6} \cdot \exp\left(-\frac{(x-\mu)^2}{262}\right)$$

$$\phi(x) = \frac{1}{\sqrt{2\pi} 6} \cdot \exp\left(-\frac{(x-\mu)^2}{262}\right)$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{(x-\mu)^2}{\sqrt{2\pi}}\right)$$

$$\frac{2\sqrt{2}(x_i-\mu)}{i=0}$$