Simulación de π mediante variables aleatorias uniformes

Andrés Miniguano Trujillo

Curso de LATEX, 201

Contenido

Proceso para estimar pi

2 Aproximación de π

Proceso para estimar pi

Ley de los grandes números

Mediante la ley de los grandes números se puede estimar el valor de π por medio de un algoritmo semejante a la regla de Laplace:

- $lackbox{0}$ Fijar un número natural n suficientemente grande e inicializar N=0.
- ② Generar $U_i \sim \mathcal{U}(0,1)$, vectores de dos componentes para cada $i \in \llbracket 1,n
 Vert$.
- $\ \, \mbox{0} \ \, \mbox{Si} \ U_{i,1}^2 + U_{i,2}^2 \leq 1 \mbox{, entonces} \ N \leftarrow N+1 \ . \ \,$
- ① Calcular $\tilde{\pi}_1 = 4N/n$. Este valor es una aproximación de π .

- $lackbox{0}$ Fijar un número natural n suficientemente grande e inicializar N=0.
- ② Generar $U_i \sim \mathcal{U}(0,1)$, vectores de dos componentes para cada $i \in \llbracket 1,n
 rbracket$.
- ① Calcular $\tilde{\pi}_1 = 4N/n$. Este valor es una aproximación de π .

- Fijar un número natural n suficientemente grande e inicializar $N=0\,.$
- ② Generar $U_i \sim \mathcal{U}(0,1)$, vectores de dos componentes para cada $i \in \llbracket 1,n
 rbracket$.
- \bullet Si $U_{i,1}^2 + U_{i,2}^2 \leq 1$, entonces $N \leftarrow N+1$.
- ① Calcular $\tilde{\pi}_1 = 4N/n$. Este valor es una aproximación de π .

- $lackbox{0}$ Fijar un número natural n suficientemente grande e inicializar N=0.
- ② Generar $U_i \sim \mathcal{U}(0,1)$, vectores de dos componentes para cada $i \in \llbracket 1,n
 rbracket$.
- \bullet Si $U_{i,1}^2 + U_{i,2}^2 \leq 1$, entonces $N \leftarrow N+1$.
- Calcular $\tilde{\pi}_1 = 4^N\!/n$. Este valor es una aproximación de π .

La idea es bastante sencilla: En el cuadrado de lado 1 y centrado en (1/2,1/2) generamos dos variables aleatorias uniformes (coordenadas de puntos). Luego contamos los puntos que caen dentro del círculo de radio 1 y centrado en (0,0). Finalmente, una aproximación de π está dada por 4 veces la razón entre los puntos dentro del círculo y el número total de puntos simulados. Pondré a prueba esta forma de simular π :

Forma para simular π

>
$$n$$
 < -5000 ;
> U < $-runif(2*n,0,1)$;
> V < $-(U[1:n]^2 + U[(n+1):(2*n)]^2)$
> a < $-V$ <= 1
> $pi1$ < $-4*sum(a)/n$

Obtengo la siguiente aproximación con su respectivo error:

π_1	error	error relativo
3.1592	0.01761	0.0056

Ahora realizaré esta prueba varias veces:

>
$$m < -2000; pi1 < -rep(0, m);$$

> $for(kin1:m)$ {
+ $U < -runif(2*n, 0, 1);$
+ $V < -(U[1:n]^2 + U[(n+1):(2*n)]^2)$
+ $a < -V <= 1; pi1[k] < -4*sum(a)/n$
+ }

Presento a continuación el histograma de frecuencia relativa de los errores relativos:

```
> hist(abs(pi1-pi)/pi, density=100, border="beige",
main="Histograma de error relativo", + xlab=,
ylab="Frecuencia relativa", freq=FALSE)
```


