Research Notes

Deepak E. Gopinath

June 19 2017

Comparison between Miller et al. problem formulation and an intent recognition problem

Components of formulation	Miller et. al, Wilson et al.	Intent Recognition Formula-
Components of formulation	Willief et. al, wilson et al.	tion
1. What is being estimated?	$\alpha \in \mathbb{R}^2$, the 2-D position of	$g \in \mathcal{G}$, the user's intended
	an object in a workspace.	goal. The goal is hid-
		den/latent (not revealed di-
		rectly) and therefore needs
		to be inferred from observ-
		ing 'user input'.
2. Sensor used	An electrosense sensor	The "sensor" can be thought
	which generates voltages in	of as the "confidence" mea-
	the presence of objects. The	surement.
	controllable parameters of	
	the sensor is the 1D position	
	x(t). The paper assumes	
	kinematic model (single	
	integrator) for the $x(t)$	
3. Measurement model	The paper presents a mea-	What would be an equiv-
	surement model for the volt-	alent "noisy sensor model"
	age as	for intent inference? A pos-
		sible way would be to con-
	$z = \Upsilon(x, \boldsymbol{\alpha}) + \delta$	sider the confidences condi-
	<u>.</u>	tioned on the mode as the
	where δ is Gaussian noise	sensor.
	and Υ is a deterministic re-	
	lation between the sensor	$c = \Gamma(m, g) + \delta$
	position, object position and	
	voltage (z) recorded and de-	This is not equivalent to an
	pends on the electric field,	electrosense model due to
	conductance et cetera.	various reasons. First of all,
		m and g are discrete vari-
		ables.

4 Eigher Information	Under Gaussian noise assumptions $\delta \sim \mathcal{N}(0, \sigma^2)$, the measurement model $p(z_k(t_j) \boldsymbol{\alpha}, x_k(t_j))$ for the k^{th} iteration and timestamp t_j is a Gaussian distribution with mean $\Upsilon(x_k(t_j), \boldsymbol{\alpha})$ and variance σ . (This is similar to the stuff in Probabilistic Robotics book). It also notes that the model has to differentiable .	Second of all, m and g do not belong to the same space like x and α . This might violate the differentiability requirements of the sensor model. It might be that there is a better measurement model that can be used which is not tied to confidences et cetera. But it is not apparent to me right now.
4. Fisher Information (FI)/Expected Information Matrix (EIM)/Expected Information Density (EID)	With Gaussian noise model, the Fisher Information is given by $\mathcal{I}_{i,j}(x,\alpha) = \frac{1}{\sigma^2} \frac{\partial^2 \Upsilon(x,\alpha)}{\partial \alpha_i \partial \alpha_j}$ The EIM is simply the expectation of FI with respect to the entire parameter space, 2D in this case, since α is 2D. The EID is the determinant of EIM. (D-optimality). Wilson et al. uses E-optimality and chooses to focus on the minimum eigenvalue of EIM. The EID is the determinant of EIM. (D-optimality).	Fisher information definition requires differentiability of the "measurement model" wrt the "unknown parameter". Since the unknown parameter in the intent inference is the discrete goal, I am not entirely sure how this will work out. I might be thinking along the wrong lines when I am trying to fit the confidence based formulation into a measurement model.
5. Ergodic optimal Control	Once EID is defined, it is used as the objective function in an optimal control problem, the solution of which will generate a $x(t)$ such as that the Fisher Information is maximized along the trajectory thereby resulting in better estimate of the "unknown parameter".	Selecting the "best" mode for information maximization can be framed as an optimal control problem, where the action space might be defined as a discrete, finite set $\mathcal{A} = \{pickM_1, pickM_2, \dots, pickM_N\}$