Generating LCD Calorimeter Showers with Generative Adversarial Networks (GANs)

Dawit Belayneh, University of Chicago Supervisor: Mia Liu, Fermilab

Introduction

- Worked on a Machine Learning framework (Triforce) during my internship at Fermilab.
- Triforce is a machine learning framework based on Pytorch:
 - Tries to synchronize efforts on Classification/Regression/GAN for reproducible results.
 - Input dataset: Linear collider detector (LCD) calorimeter dataset.
 - Implements various Networks for ML Tasks: Particle ID, Energy regression, and Calorimeter shower simulation.

Introduction

- My main focus:
 - Improving training speed (with focus on I/O speed) in Triforce.
 - Implement Generative adversarial networks (GANs) to simulate Linear
 Collider Detector (LCD) calorimeter showers

LCD Dataset

- Data generated using geometry for the LCD detector of the Compact Linear Collider (CLIC) linear electron - positron collider.
- A 51x51x25 ECAL slice and a 11x11x60 HCAL slice is cut around each object interacting with the calorimeters. Energy deposit from each cell is saved in a 3D array.
- Particle types: neutral pion, charged pion, electron, and photon
- Energy range: 10 500 Gev.
 - Classification: 60 Gev
 - Regression: 10 500 Gev
 - GAN: 100 500 Gev

60 GeV Photon Sample

Classification + Regression in Triforce

- Simple 4 layer, 256 neuron DNN classifier
- Separate regression DNN composed of ECAL and HCAL CNNs
- Both architectures implemented for the next iteration of the results

I/O in Triforce: Problem

- I/O is bottleneck for training.
 - Single file load speed: ~250s.
 - Typical training session spends **~ 7 hrs on puerly I/O tasks**.
- As a result, training time ~ days (a week for GANs) !!
- Reasons for I/O speed:
 - Size (10,000x51x51x25) and high sparsity (more than 90 % of all values are zero) of our 'ECAL' array.
 - Decompression takes time, data compression settings were not optimized.
 - Files were loaded sequentially.

I/O in Triforce: Attempts

- Improve I/O by optimizing compression settings
 - Some I/O speed up
- Load a single file using multiple processes.
 - Required re-building most of our software to enable single file parallel reading
 - Promising option for other projects
- Sparse array representations.
 - Storing indices of non-zero values
 - Minimal support in Pytorch
- Parallel I/O with smaller datasets OUR FIX.

Compression Optimization

- Experienced speed up (~ 20 seconds/file): ~40% by optimizing compression level.
- 2x I/O speed up by switching to smaller chunk sizes (10x51x51x25)

Compression Level	0	1	2	3	4 (default)
Size (MB)	6000	214	212	209	183
Access Time Increase (%)	0	14	14	13	52

Attempt: Single File Parallel I/O

- Implemented single file parallel I/O with python concurrency methods
 - ~10 times speedup
- Unfortunately Incompatible
 with Triforce environment on
 caltech cluster and
 Bluewaters at UIUC
 - Requires rebuilding HDF5,
 h5py, MPI with parallel config
- Can be an option for other projects.

I/O in Triforce: Our Fix

- Split files into small files containing no more than 200 events per file
- Instead of loading a single file using multiple processes, load smaller files at the same time using multiple processes (Parallel I/O).
- Optimize compression settings (amplified by multiprocessing)
- With these changes we managed to **speed up I/O 40 times!**

Parallel I/O: Code Implementation

 Over allocate memory during initialization

- Spawn multiple processes (workers)
- Single worker synchronization
- Differentiate b/n loaders and batch collectors

Parallel I/O workflow in Triforce

I/O in Triforce: Lessons Learnt

- Multiprocessing can offer great speed up when loading big data.
- Make sure default compression settings are optimal for task
- Avoid using Python slice syntax on big arrays (big_array[:]) and append calls
- Over allocate memory during init for data to be read into
- Smaller files (less events per file) are easier for use by parallel I/O
- Avoid passing large arrays between multiple processes in Python.

GANs

- A generator and discriminator network are in competition.
- Generator tries to mimic a given dataset
 (e.g. faces of celebrities)
- Discriminator differentiates between real and generated images and feedback is sent to generator.
- As a result, generator learns complex underlying behaviour of a dataset.

High-Res fake celebrity images generated using GANs.

SOURCE: <u>arXiv:1710.10196</u> [cs.NE]

GAN training: general routine for training GANs

GAN Implementation

- Discriminator network is identical to Binary Classifiers. (In this case classifying between real and fake images)

Generator network is similar to the above architecture but in reverse.

Status of implementing GAN in Triforce

- Implemented Generative Adversarial
 Networks for calorimeter simulation
 - Debugging, training, and testing in progress
- For past GAN results (based on keras, older version of the dataset) please see the group's paper:

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15 .pdf

Future Work

- Debug and improve GAN networks to better simulate LCD calorimeter data.
- Implement Auto-Encoders in Triforce for calorimeter simulation.
- Minimize the memory footprint of Triforce.
- Extend Triforce to work on other calorimeter datasets with boosted signatures.

Thank You!

Discriminator Architecture

Layer (type)	Output Shape	Param #
Conv3d-1 Dropout-2 Conv3d-4 BatchNorm3d-5 Dropout-6 Conv3d-12	[-1, 32, 25, 25, 25] [-1, 32, 25, 25, 25] [-1, 8, 25, 25, 25] [-1, 8, 25, 25, 25] [-1, 8, 25, 25, 25] [-1, 8, 23, 23, 23]	4,032 0 32,008] 16 0 8,008
() BatchNorm3d-13 Dropout-14 AvgPool3d-15 Linear-16	[-1, 8, 23, 23, 23] [-1, 8, 23, 23, 23] [-1, 8, 11, 11, 11] [-1]	0 0 0 10,649

Total params: 73,402 Trainable params: 73,402 Non-trainable params: 0 - Takes in an Input Image of shape (1, 25, 25, 25) either from dataset or generated data.

 Outputs a single number signifying the probability that a given image is fake or real.

Generator Architecture

Layer (type)	Output Shape	Param #
Linear-1 Conv3d-2 BatchNorm3d-3 Upsample-4 Conv3d-5 Upsample-6 Conv3d-7 Conv3d-8	[-1, 3136] [-1, 64, 6, 6, 7] [-1, 64, 6, 6, 7] [-1, 64, 12, 12, 14] [-1, 6, 13, 14, 9] [-1, 6, 26, 28, 27] [-1, 6, 26, 26, 26] [-1, 1, 25, 25, 25]	3,214,400 147,520 128 0 92,166 0 2,598 49

Total params: 3,456,861

Trainable params: 3,456,861

Non-trainable params: 0

- Takes in a tensor of shape (1, 1024) sampled from a random distribution
- Outputs an image of shape
 (1, 25, 25, 25) mimicking the features of the dataset we trained it on.
- By the end of training our generator has hopefully learnt to mimic the physics inside our calorimeter.

60 GeV π₀→γγ Sample w/ Opening Angle < 0.01 rad

