Egzamin w dniu 1.02.2013 - zestaw pierwszy

- 1. Jednostką podstawową układu SI jest:
 - A) amper (A)
 - B) coulomb (C)
 - C) niuton (N)
 - D) wolt (V)
- 2. Rząd wielkości zredukowanej stałej Plancka $\hbar=1{,}054571\cdot10^{-34}J\cdot s$ wynosi:
 - A) -34
 - B) -1
 - C) -33
 - D) 1
- 3. Przedstawione na rysunku wektory \vec{a} i \vec{b} mają:

- A) różne punkty przyłożenia
- B) taki sam kierunek
- C) taką samą długość
- D) taki sam zwrot
- 4. Dane są wektory $\vec{a}=[-1,2,0]$ i $\vec{b}=[-2,2,3]$. Ile wynosi ich iloczyn skalarny $\vec{a}\cdot\vec{b}$?
 - A) [6, 3, 2]
 - B) [6, -3, 2]
 - C) 4
 - D) 6
- 5. Do studni wrzucono kamień. Plusk usłyszano po jednej sekundzie. Jak głęboko znajduje się lustro wody od miejsca, z którego wypuszczono kamień? $\underline{[g=10m/s^2]}$
 - A) $\sqrt{10}m$
 - B) $\sqrt{5}m$
 - C) 10m
 - D) 5m
- 6. W ruchu jednostajnym po okręgu
 - A) wektor predkości nie zmienia się w czasie
 - B) prędkość jest prostopadła do wektora położenia
 - C) przyspieszenie wynosi zero
 - D) prędkość jest równoległa do przyspieszenia

- 7. Pocisk o masie 10g uderza z prędkością 700m/s w worek wypełniony piaskiem, o masie 10kg, wiszący (początkowo) nieruchomo na sznurze. Pocisk grzęźnie we wnętrzu worka. Traktując całe zdarzenie jako zderzenie niesprężyste, znaleźć prędkość worka zaraz po zderzeniu.
 - A) około 7m/s
 - B) około 0.7m/s
 - C) około 0.07m/s
 - D) około 0.007m/s
- 8. Saneczkarz znajduje się na szczycie pagórka o wysokości 20m. Zakładając, że nie ma tarcia ani innych oporów ruchu, jaką prędkość osiągnąłby saneczkarz u podstawy pagórka? $[g=10m/s^2]$
 - A) 40m/s
 - B) 20m/s
 - C) $10\sqrt{10}m/s$
 - D) $10\sqrt{20}m/s$
- 9. Jaką pracę wykonamy przesuwając po stole bez tarcia przedmiot o masie 10kg ma odległość 10cm?
 - A) 10J
 - B) -10J
 - C) 1kJ
 - D) 0J
- 10. Mamy dane dwa jednakowe ciężarki, które chcemy przymocować do obracającej się okrągłej tarczy w taki sposób, aby jak najbardziej zwiększyć moment bezwładności tarczy. Gdzie przymocować ciężarki?
 - A) blisko krawędzi tarczy
 - B) na środku tarczy
 - C) w dowolnym miejscu tarczy
 - D) w okolicach połowy promienia tarczy
- 11. W czasie zawodów w łyżwiarstwie figurowym łyżwiarz o początkowej prędkości kątowej 2rad/s zmniejszył swój moment bezwładności czterokrotnie. Jego nowa prędkość kątowa wynosi:
 - A) 8rad/s
 - B) 4rad/s
 - C) 2rad/s
 - D) 1/2rad/s
- 12. Załóżmy, że mamy do dyspozycji dwie kule o takiej samej średnicy, jedną wykonaną z ciężkiego ołowiu a drugą z lekkiego aluminium. Jeżeli jednocześnie upuścimy na podłogę te kule z tej samej wysokości, to (opór powietrza zaniedbujemy):
 - A) kolejność zależy od szerokości geograficznej
 - B) ołowiana spadnie pierwsza
 - C) aluminiowa spadnie pierwsza
 - D) spadną w tym samym momencie

- 13. Trzy ciała o masach m_1 , m_2 i m_3 znajdują się w wierzchołkach trójkąta równobocznego o boku a. Ile wynosi energia potencjalna (grawitacyjna) takiego układu?
 - A) $-Gm_1m_2/a^2 Gm_1m_3/a^2 Gm_2m_3/a^2$
 - B) $-Gm_1m_2/a Gm_1m_3/a Gm_2m_3/a$
 - C) $-Gm_1^2/a Gm_2^2/a Gm_3^2/a$
 - D) $-Gm_1^2/a^2 Gm_2^2/a^2 Gm_3^2/a^2$
- 14. W zbiorniku z wodą o gęstości $\rho_1 = 1g/cm^3$ jest zanurzona jest kula o gęstości $\rho_2 = 2g/cm^3$ i masie 100 kg. Z jaką siłą kula naciska na dno zbiornika? $[g = 10m/s^2]$
 - A) $F = 200 \ N$
 - B) $F = 2000 \ N$
 - C) $F = 1000 \ N$
 - D) $F = 500 \ N$
- 15. Jakie równanie łączy powierzchnię tłoków i siły przedstawione na rysunku?

- A) $F_1S_1 = F_2S_2$
- B) $F_1S_1^2 = F_2S_2^2$
- C) $F_1/S_1^2 = F_2/S_2^2$
- D) $F_1/S_1 = F_2/S_2$
- 16. Przykładem fali poprzecznej jest:
 - A) fala dźwiękowa
 - B) fala w zwojach sprężyny
 - C) fala wzdłuż naciągniętej struny
 - D) fala uderzeniowa
- 17. Przemieszczenie w fali poprzecznej możemy opisać równaniem $y(x,t)=y_m\sin(kx-\omega t)$. Parametr y_m nazywamy
 - A) fazą fali
 - B) liczbą falową
 - C) amplitudą fali
 - D) częstością fali
- 18. Przy opisie ruchu falowego przyjmuje się, że wypadkowe wychylenie ośrodka jest sumą algebraiczną $y(x,t) = y_1(x,t) + y_2(x,t)$. Jest to
 - A) warunek ruchu harmonicznego
 - B) warunek rezonansu
 - C) zasada bezwładności
 - D) zasada superpozycji

- 19. Z której zasady wynika istnienie parametru termodynamicznego zwanego temperaturą?
 - A) z zerowej zasady termodynamiki
 - B) z pierwszej zasady termodynamiki
 - C) z drugiej zasady termodynamiki
 - D) z trzeciej zasady termodynamiki
- 20. Wiedząc, że 0K (kelwinów) to $-273,15^{\circ}C$ (stopni Celsjusza), podaj ile stopni Celsjusza to 120mK.
 - A) $-120,15^{\circ}C$
 - B) $-153,15^{\circ}C$
 - C) $-273,27^{\circ}C$
 - D) $-273,03^{\circ}C$
- 21. W zamkniętym zbiorniku o objętości $V = 2dm^3$ znajduje się gaz pod ciśnieniem 1000hPa i temperaturze $27^{\circ}C$. O ile musi zmienić się temperatura gazu, by ciśnienie wzrosło dwukrotnie?
 - A) Musi wzrosnać o $13.5^{\circ}C$
 - B) Musi wzrosnąć o $27^{\circ}C$
 - C) Musi wzrosnąć o $300^{\circ}C$
 - D) Musi wzrosnać o $54^{\circ}C$
- 22. Ile ciepła trzeba dostarczyć, aby kilogram lodu o temperaturze $0^{\circ}C$ zamienić na wodę o temperaturze $10^{\circ}C$? Ciepło topnienia lodu wynosi L = 333kJ/kg, ciepło właściwe lodu $c_l = 2220J/(kg \cdot K)$, ciepło właściwe wody $c_w = 4190J/(kg \cdot K)$.
 - A) 337,19kJ
 - B) 374.9kJ
 - C) 67.43kJ
 - D) 64.1kJ
- 23. Dwie identyczne kulki naładowano ładunkami q i 2q i umieszczono w pewnej odległości od siebie. Na którą kulkę działa większa siła elektrostatyczna?
 - A) to zależy od odległości między kulkami
 - B) działające siły są takie same
 - C) na kulkę z ładunkiem 2q
 - D) na kulkę z ładunkiem q
- 24. Ile wynosi impedancja układu szeregowego RL dla prądu zmiennego o częstości 50Hz, jeżeli $R=3\Omega$ oraz L=80mH.
 - A) $Z = 4\Omega$
 - B) $Z = 5\Omega$
 - C) $Z = 7\Omega$
 - D) $Z = 1\Omega$

25. Ile wynosi opór zastępczy poniższego układu oporników? Przyjmij, że $R_1=1\Omega,\,R_2=2\Omega,\,R_3=3\Omega,\,R_4=4\Omega.$

- A) $R = 10\Omega$
- B) $R = 50/21\Omega$
- C) $R = 21/10\Omega$
- D) $R = 15/10\Omega$
- 26. Ile wynosi pojemność zastępcza poniższego układu kondensatorów? Przyjmij, że $C_1 = 1\mu F$, $C_2 = 2\mu F$, $C_3 = 3\mu F$, $C_4 = 4\mu F$.

- A) $C = 10 \mu F$
- B) $C = 50/21 \mu F$
- C) $C = 15/10\mu F$
- D) $C = 21/10\mu F$
- 27. Ile wynosi opór drutu żelaznego o długości 1m i polu przekroju poprzecznego $1mm^2$, jeżeli opór właściwy żelaza wynosi $9.68 \cdot 10^{-8} \Omega \cdot m$?
 - A) 0.968Ω
 - B) $9.68m\Omega$
 - C) $96.8m\Omega$
 - D) $9,68\Omega$
- 28. Chcemy aby transformator zmniejszał napięcie dwukrotnie. Jaki musi być stosunek liczby zwojów w uzwojeniu pierwotnym N_p do liczby zwojów uzwojenia wtórnego N_w ?
 - A) $N_p/N_w = 2$
 - $B) \quad N_p/N_w = 4$
 - C) $N_p/N_w = 1/4$
 - D) $N_p/N_w = 1/2$
- 29. Po dwukrotnym zwiększeniu szerokości jednowymiarowej nieskończonej studni potencjału energia stanu podstawowego uwięzionego w niej elektronu zmieni się $[E_n = h^2 n^2/(8mL^2)]$
 - A) 4 razy
 - B) 2 razy
 - C) 1/2 razy
 - D) 1/4 razy

30. W tabeli zaproponowano zestawy liczb kwantowych dla czterech stanów atomu wodoru. Który stan jest możliwy?

6

Odpowiedź	n	l	m_l
A)	3	2	0
B)	2	3	1
C)	5	5	0
D)	4	3	-4

- 31. Doświadczenie Sterna-Gerlacha pokazuje, że
 - A) elektrony podlegają zakazowi Pauliego
 - B) moment pędu i moment magnetyczny pojedyńczych atomów są ze sobą sprzężone
 - C) światło rozchodzi się w przestrzeni w postaci fotonów
 - D) magnetyczny moment dipolowy atomów srebra jest skwantowany
- 32. Który proces jest rozpadem α ?
 - A) $^{64}Cu \rightarrow ^{64}Ni + e^{+} + \nu_{e}$
 - B) $^{238}U \rightarrow ^{234}Th + ^{4}He$
 - C) $\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$
 - D) ${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e}$

Tabela odpowiedzi

Nr	Odpowiedź	Nr	Odpowiedź
1	_	17	_
2		18	
3		19	
4		20	
5		21	
6		22	
7		23	
8		24	
9		25	
10		26	
11		27	
12		28	
13		29	
14		30	
15		31	
16		32	