R note

#Rstudio: A free, open-source integrated development environment (IDE) for R #R markdown: enable you to embed R code and R output directly into document, pdf, HTML

```
#Assign and print value
x<-1:5
y=6:10
x
```

```
## [1] 1 2 3 4 5
```

у

[1] 6 7 8 9 10

print(x)

[1] 1 2 3 4 5

#R is case sensitive(X won't work)
#You can import data set from the click in the left or use read.table()
#Basic functions
#What's stored in the working menu
ls()

```
## [1] "x" "y"
```

remove x from working menu
rm(x)
#Arithmetic operation

sqrt(4) #square root of x

[1] 2

log(1000) #Natural logarithm of x

[1] 6.907755

exp(4) # exponential of x , anti-log

[1] 54.59815

log2(4) #log base 2 of x, other number are plausible

[1] 2

abs(-4) #absolute value of x

[1] 4

#Repetitive numbers and sequence m<-seq(from=1, to=3, by =0.25) #choose the range then set the difference n<- rep(1:3, times=3) #character and sequence can also be repeated m+n #every elements will be sum with x

[1] 2.00 3.25 4.50 2.75 4.00 5.25 3.50 4.75 6.00

seq(1:3)+seq(4) #if the elements are not equal, then your can't to the calculation

Warning in seq(1:3) + seq(4): 較長的物件長度並非較短物件長度的倍數

[1] 2 4 6 5

n[n<3] # use index to find specific element

[1] 1 2 1 2 1 2

#matrix

matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,byrow=TRUE) #create a matrix - byrow means the order of the numbers are by row

[,1] [,2] [,3] ## [1,] 1 2 3 ## [2,] 4 5 6 ## [3,] 7 8 9

#Create dataframe
?data.frame

starting httpd help server ... done

aa <- data.frame(nickname=c("John","Mary","Leo"), weight=60:62, Height=c(160,170,180))# each parameters has its own elements - every column is a variable - consist of three vectors names(aa) #find the names of each variable

```
## [1] "nickname" "weight"
                             "Height"
mean(aa$weight) #use $ to extract value from data
## [1] 61
attach(aa) #attach database to R search path - pro: call the variable directly, con: account
for working memories
mean(weight) #now you don't have to use $ for searching
## [1] 61
detach(aa)#just detach the database
levels(aa$weight) #show levels attribute of a variable
## NULL
?levels
summary(aa) #show some statistical information
##
      nickname
                           weight
                                          Height
##
   Length:3
                       Min.
                              :60.0
                                      Min.
                                           :160
##
   Class :character
                       1st Qu.:60.5
                                      1st Qu.:165
   Mode :character
                       Median :61.0
                                      Median :170
##
##
                       Mean :61.0
                                      Mean :170
                       3rd Qu.:61.5
                                      3rd Qu.:175
##
##
                       Max.
                              :62.0
                                            :180
                                      Max.
as.factor(aa$weight) #turn the variable into factor
## [1] 60 61 62
## Levels: 60 61 62
dim(aa) #dimension of the data (number of observations, number of variables)
## [1] 3 3
length(aa) #=3
## [1] 3
aa[1:2,] #first two rows
     nickname
                                                                                       Height
                                                            weight
     <chr>
                                                              <int>
                                                                                        <dbl>
```

	nickname <chr></chr>	weight <int></int>	Height <dbl></dbl>
1	John	60	160
2	Mary	61	170
2 ro	ws		

#import data

?read.csv #readcsv file - file.choose() allows you to search the file directly , header= whet her the first row is header

?read.table #read table - sep=how the elements were separated

?read.delim#read tab-delimited file , txt file

#some parameters - header = T(whether there is header), sep=','(seperation)

#or you can just type the import dataset on the right side then find your file

#export data

?write.table #it will be saved at current working directory - this can be saved with many for mats like csv,txt

?write.csv#save as csv file

#parameters - row.name=T(whether there is row name)

#setting and loading working directory
getwd()#find current working directory

[1] "C:/Users/Work/Desktop/Quantitavie Method for Deicsion Making"

?setwd() #set the working directory #or you can just click session and choose working directory

?save.image()# save as a work space image file #or just click session and save
?load() #input the file name or load(file.choose())- to directly choose the file or just clic
k session

#writing script

#click file to open or create a R script

#Run multiple lines of code - just select them all and run

#type and click tab key - Rstudio will show possible options of commands

#combining data

bb<-cbind(aa,aa\$nickname=='John') #bind the data with another data with additional column bb

nickname <chr></chr>	weight <int></int>	Height <dbl></dbl>	aa\$nickname == "John" < g >
John	60	160	TRUE
Mary	61	170	FALSE
Leo	62	180	FALSE
3 rows			

cc<-rbind(bb,c('Lien',52, 171, FALSE)) #bind with additional row
cc</pre>

nickname <chr></chr>	weight <chr></chr>	Height <chr></chr>	<pre>aa\$nickname == "John" <chr></chr></pre>	
John	60	160	TRUE	
Mary	61	170	FALSE	
Leo	62	180	FALSE	
Lien	52	171	FALSE	
4 rows				

```
#Apply function
data1<-matrix(seq(1,10),nrow=5,ncol = 2,byrow=F)
data1</pre>
```

```
[,1] [,2]
##
## [1,]
           1
## [2,]
           2
                7
## [3,]
         3
                8
## [4,]
          4
                9
               10
           5
## [5,]
```

?apply #MARGIN-1 means row, 2 means column, FUN - means function apply(data1,2, mean, na.rm=TRUE) #na.rm - remove missing values

```
## [1] 3 8
```

colMeans(data1,na.rm=TRUE) #calculate column mean

```
## [1] 3 8
```

apply(data1,2,quantile,prob=c(0.2,0.8))# quantile-calculate percentile, prob=c(0.2,0.8)- which percentile to calculate

```
## [,1] [,2]
## 20% 1.8 6.8
## 80% 4.2 9.2
```

apply(data1,2,plot,type='l', main='hi', xlab='Lien', ylab='I am') #use plot function to creat
e a line plot(type='l')

hi

NULL

R_note

plot(data1, type='l')

apply(data1,1,sum) #calculate the sum of the row

[1] 7 9 11 13 15

rowSums(data1,na.rm=T) #same calculate the row sum

[1] 7 9 11 13 15

#tapply function

?tapply # INDEX- a grouping variable to create subsets of data, simplify-let R know to simplify the result

age <dbl></dbl>	height <dbl></dbl>
13	168
12	157
14	167
15	177

age <dbl></dbl>	height <dbl></dbl>
15	169
13	172
6 rows	

```
attach(heightdata)
tapply(age,height>160,summary) #find subsets to calculate
```

```
## $`FALSE`
      Min. 1st Qu. Median
                               Mean 3rd Qu.
##
                                               Max.
##
        12
                12
                        12
                                 12
                                         12
                                                 12
##
## $`TRUE`
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                               Max.
                                 14
                                                  15
##
        13
                13
                         14
                                         15
```

```
#or you can use by command
?by

#install package
?install.packages() #install package , or leave it blank it will let you choose or you can cl
ick tools to install
library('base')#load the library of this package to available the commands - disappear after
end of R session
help(package=base)
?remove.packages()

rm(list=ls()) #remove all variables from global environment
```