4.4. Bir Vektör Uzayının Bazı

Tanım.

V bir vektör uzayı ve $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ kümesi V vektör uzayının sonlu bir kümesi olsun. Eğer S kümesi V yi geriyor ve S lineer bağımsız bir küme ise $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ kümesine V vektör uzayının bir **bazı** adı verilir.

Örnek.

 R^n de standart birim vektörler $\mathbf{e}_1 = (1,0,\cdots,0)$, $\mathbf{e}_2 = (0,1,\cdots,0),\dots,\mathbf{e}_n = (0,0,\cdots,1)$ lineer bağımsız olduğunu daha önce göstermiştik. Ayrıca R^n de her $\mathbf{x} = (x_1,x_2,\cdots,x_n)$ vektörü

$$\mathbf{x} = x_1 \cdot \mathbf{e}_1 + x_2 \cdot \mathbf{e}_2 + \dots + x_n \cdot \mathbf{e}_n$$

şeklinde standard birim vektörlerin lineer kombinasyonu olarak yazılabilir. O halde R^n de $\mathbf{e}_1 = (1,0,\cdots,0)$, $\mathbf{e}_2 = (0,1,\cdots,0)$,..., $\mathbf{e}_n = (0,0,\cdots,1)$ kümesi R^n nin bir bazıdır.

Daha özel olarak R^3 deki standart birim vektörler $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ de lineer bağımsız olduklarından ve R^3 ü gerdiklerinden R^3 ün bir bazıdır.

Teorem.

116

V bir vektör uzayı ve $S=\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n\}$ kümesi V vektör uzayının bir bazı olsun. Budurumda V vektör uzayındaki her vektör

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

olarak tek bir şekilde baz vektörlerinin bir lineer kombinasyonu olarak yazılabilir.

Tanım.

V bir vektör uzayı ve $S=\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n\}$ kümesi V vektör uzayının bir bazı olsun. Bu durumda V vektör uzayındaki bir vektör

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

olarak baz vektörlerinin bir lineer kombinasyonu olarak yazıldığında c_1, c_2, \cdots, c_n skalerlerine \mathbf{v} vektörünün S bazına göre koordinatları adı verilir. c_1, c_2, \cdots, c_n koordinatlarının oluşturduğu R^n deki (c_1, c_2, \cdots, c_n) vektörü $\mathbf{v_s}$ ile gösterilir.

Teorem.

Sonlu boyutlu bir vektör uzayındaki bütün bazlardaki vektör sayıları aynıdır.

4.5. Bir Vektör Uzayının Boyutu

Tanım.

Sonlu boyutlu bir V vektör uzayının boyutu bir bazındaki vektörlerin sayısıdır ve $\dim(V)$ ile gösterilir.

Örnek.

$$\dim(R^n) = n$$

$$\dim(R^3) = 3$$

Teorem.

Eğer W sonlu boyutlu bir V vektör uzayının bir alt vektör uzayı ise bu durumda W alt vektör uzayı da sonlu boyutludur. W alt vektör uzayının boyutu V vektör uzayının boyutundan küçük yada eşittir yani $\dim(W) \leq \dim(V)$ dir . Ayrıca W = V olması için gerek ve yeter şart $\dim(W) = \dim(V)$ olmasıdır.

Örnek.

$$3.x_1 + x_2 - x_3 = 0$$
$$2x_1 + 2x_2 + 2x_3 = 0$$
$$x_1 - x_3 = 0$$

Homogen lineer sistemini göz önüne alalım. Çözüm uzayının boyutunu ve bir bazını bulunuz.

Çözüm.

Sistemin ilaveli matrisi

$$\begin{bmatrix} 3 & 1 & -1 & 0 \\ 2 & 2 & 2 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

dır. Satırca indirgenmiş eşolon matrisi ise

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

dır. Böylece genel çözümü $x_1=k, x_2=-2k, x_3=k$ olarak elde edilir. Çözüm vektörü ise

$$(x_1, x_2, x_3) = (k, -2k, k) = k.(1, -2, 1)$$

olarak elde edilir. Bu ise $\mathbf{v}_I = (1, -2, I)$ vektörünün çözüm uzayını gerdiğini gösterir. Ayrıca $\mathbf{v}_I = (1, -2, I)$ vektörü kendi başına lineer bağımsızdır. O halde $\mathbf{v}_I = (1, -2, I)$ çözüm uzayının bir bazıdır ve çözüm uzayının boyutu 1 dir.

Bölüm Özeti
118

Bu bölümde;

- Vektör uzayının tanımını,
- Örnek bazı vektör uzaylarını,
- Alt vektör uzayını,
- Vektörlerin lineer kombinasyonunu,
- Germenin ne olduğunu,
- Lineer bağımsızlığı,
- Lineer bağımsızlığın geometrik yorumunu,
- Bir matrisin rankını,
- Wronskiyen kavramını,
- Bir vektör uzayının bazını,
- Bir vektör uzayının boyutunu,

öğrendiniz.

Şimdi bu konuları daha iyi pekiştirmek için değerlendirme sorularına geçiniz.