Лекция 1. Теория вероятностей. Случайные процессы с дискретным временем

September 9, 2025

План

- Вероятностное пространство: определения и свойства
- Условное математическое ожидание
- Замена меры, производная Радона-Никодима
- Фильтрация: определение и свойства
- Случайные процессы: основные опредлеения
- Мартингалы, моменты остановки
- Теоремы Дуба. Дискретный стохастический интеграл

Вероятностное пространство

Определение

Вероятностное пространство это тройка $(\Omega, \mathcal{F}, \mathbb{P})$, где:

- ullet Ω пространство элементарных исходов,
- $\mathcal{F} \subseteq 2^{\Omega} \sigma$ -алгебра событий,
- \mathbb{P} счётно-аддитивная вероятностная мера.

σ -алгебра $^{\prime}$

Определение

Пусть Ω – множество. Семейство подмножеств Ω $\mathcal F$ называется алгеброй, если:

- $\bullet \emptyset \in \mathcal{F}$
- $\forall A, B \in \mathcal{F}$: $A \cup B \in \mathcal{F}$
- $\forall A \in \mathcal{F} : \Omega \backslash A \in \mathcal{F}$

Алгебра ${\mathcal F}$ называется σ -алгеброй, если она замкнута относительно счётного объединения:

$$\forall A_1, A_2, \ldots \in \mathcal{F} : \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$$

Примеры:

- ullet $\mathcal{F}=(\emptyset,\Omega)$ тривиальная σ -алгебра
- ullet $\mathcal{F}=2^{\Omega}$ множество всех подмножеств
- $\Omega = \{1, 2, 3, 4\}, \mathcal{F} = \{\emptyset, \Omega, \{1, 2\}, \{3, 4\}\}$

σ -алгебра

Пусть Ω — множество, \mathcal{F} — σ -алгебра. Тогда:

- $\emptyset \in \mathcal{F}, \Omega \in \mathcal{F}$
- $\forall A, B \in \mathcal{F} : A \cap B \in \mathcal{F}$
- $\forall A_1, A_2, \ldots \in \mathcal{F} : \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$
- ullet Если $G-\sigma$ -алгебра, то $\mathcal{F}\cap G-\sigma$ -алгебра
- Если $\{\mathcal{F}_{\gamma}, \gamma \in \Gamma\}$ семейство σ -алгебр, то $\bigcap_{\gamma \in \Gamma} \mathcal{F}_{\gamma}$ σ -алгебра.

Определение

Пусть $\Omega=\mathbb{R}$. Борелевская σ -алгебра $B(\mathbb{R})$ – минимальная сигма-алгебра, содержащая все множества вида $(-\infty,a)$, $a\in\mathbb{R}$.

По определению σ -алгебры, борелевская σ -алгебра содержит также все отрезки, лучи, интервалы и полуинтервалы, открытые и закрытые множества.

Вероятностная мера

Определение

Вероятностная мера \mathbb{P} это неотрицательная функция на \mathcal{F} , удовлетворяющая свойствам:

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1$
- $\forall A_1, A_2, \ldots \in \mathcal{F} : \mathbb{P}\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$

Пример. Пусть $\Omega=1,2,\ldots,n$, $\mathcal{F}=2^{\Omega}$. Тогда $\mathbb{P}(A)=\frac{\#A}{n}$ – вероятностная мера.

Случайные величины

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство.

Определение

Функция $\xi(\omega):\Omega\to\mathbb{R}$ называется измеримой относительно σ -алгебры \mathcal{F} , если $\forall x\in\mathbb{R}$:

$$\{\omega : \xi(\omega) < x\} \in \mathcal{F}$$

Измеримые функции также будем называть случайными величинами (коротко с.в.). Обозначение $\xi \in \mathcal{F}$. Множество $\{\omega: \xi(\omega) < x\}$ также будем записывать как $\{\xi < x\}$.

Утверждение

Если $\xi \in \mathcal{F}$, то:

- $\{\xi \ge x\} \in \mathcal{F}$
- $\{y \le \xi < x\} \in \mathcal{F}$
- $\{\xi = x\} \in \mathcal{F}$

Случайные величины

Определение

Пусть $\xi:\Omega o \mathbb{R}$ – функция. Положим

$$\sigma(\xi) = \{\xi^{-1}(A), A \in \mathcal{B}(\mathbb{R})\}\$$

<u>Утв</u>ерждение

 $\sigma(\xi)$ — минимальная σ -алгебра, относительно которой ξ измерима.

Случайные величины и мера

Определение

Функция распределения $F:\mathbb{R} o [0,1]$ с.в. ξ называется функция:

$$F = \mathbb{P}(\xi < x).$$

Определение корректно, так как $\{\xi < x\} \in \mathcal{F}$

Определение

Распределением μ_{ξ} с.в. ξ называется вероятностная мера на $\mathbb{R},\mathcal{B}(\mathbb{R})$, определённая как:

$$\mu_{\xi}(B) = \mathbb{P}(\xi \in B) = \mathbb{P}(\xi^{-1}(B)) \forall B \in \mathcal{B}(\mathbb{R})$$

Мат. ожидание

Определение

Мат. ожидание с.в. ξ $\mathbb{E}\xi$ это интеграл Лебега по Ω :

$$\mathbb{E} \xi = \int_{\Omega} \xi(\omega) d\mathbb{P}(\omega)$$

Утверждение

Для произвольной функции $g:\mathbb{R} o \mathbb{R}$ такой, что $g(\xi)$ интегрируема выполнено:

$$\mathbb{E}g(\xi) = \int_{\Omega} g(\xi(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} g(x) d\mu_{\xi}(x) = \int_{\mathbb{R}} g(x) dF(x)$$

Сигма-алгебры и разбиения

Пусть Ω – пространство элементарных исходов. Пусть $\mathcal{A} = \{A_i\}_{i=1}^n$ – разбиение множества Ω , т.е.:

$$\bigcup_{i} A_{i} = \Omega, \ A_{i} \cap A_{j} = \emptyset$$

 $H=\sigma(\mathcal{A})-\sigma$ -алгебра, порождённая разбиением. Состоит из элементов вида $B=\bigcup_k A_{n_k}.$

Сигма-алгебры и случайные величины

Теорема

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство. Тогда дискретная функция $\xi(\omega)$ измерима $\iff \forall i \; A_i \in \mathcal{F}$

Доказательство.
$$\{\xi < x\} = \bigcup_{a_i < x} \{\xi = a_i\} = \bigcup_{a_i < x} A_i$$
.

Условное мат. ожидание

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Пусть $A, B \in \mathcal{F}, P(B) \neq 0.$

Определение

Условная вероятность:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Определение

Пусть $\xi \in \mathcal{F}$. Условным мат. ожиданием ξ при условии B будем называть число:

$$\mathbb{E}^B \xi = \frac{\mathbb{E}\left(\xi \mathbb{I}_B\right)}{P(B)}$$

Также будем использовать обозначение $\mathbb{E}\left[\xi|B
ight]$

Дискретный случай

Пусть $\mathcal{A} = \{A_i\}_{i=1}^n$ — разбиение множества Ω , $\mathcal{H} = \sigma(\mathcal{A})$ — σ -алгебра, порождённая этим разбиением.

Определение

Пусть $\xi \in \mathcal{F}$. Условным мат. ожиданием ξ при условии \mathcal{H} будем называть случайную величину:

$$\mathbb{E}\left[\xi|\mathcal{H}\right] = \sum_{i=1}^{n} \mathbb{I}_{A_i} \frac{\mathbb{E}\left(\xi \mathbb{I}_{A_i}\right)}{P(A_i)} = \sum_{i=1}^{n} \mathbb{I}_{A_i} \mathbb{E}^{A_i} \xi$$

 $\mathbb{E}\left[\xi | \mathcal{H}
ight]$ — дискретная случайная величина:

$$\mathbb{E}\left[\xi|\mathcal{H}
ight](\omega)=\mathbb{E}^{A_i}\xi,$$
если $\omega\in A_i$

Условное мат. ожидания, свойства

Пусть $\mathcal{A} = \{A_i\}_{i=1}^n$ — разбиение множества Ω , $\mathcal{H} = \sigma(\mathcal{A})$ — σ -алгебра, порождённая этим разбиением. Пусть $\eta = \mathbb{E}\left[\xi|\mathcal{H}\right]$. Тогда:

- $\eta \in \mathcal{H}$
- $\forall A \in \mathcal{H}$:

$$\mathbb{E}\left[\eta\cdot\mathbb{I}_{A}\right]=\mathbb{E}\left[\xi\cdot\mathbb{I}_{A}\right]$$

Первое утверждение очевидно, второе достаточно проверить для $A \in \mathcal{A}$.

Условное мат. ожидания

Определение

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, пусть ξ — интегрируемая с.в. Пусть $\mathcal{H} \subseteq \mathcal{F}$ — σ -алгебра. Тогда с.в. η , удовлетворяющая свойствам:

- $\eta \in \mathcal{H}$
- $\forall A \in \mathcal{H}$:

$$\mathbb{E}\left[\eta\cdot\mathbb{I}_{A}\right]=\mathbb{E}\left[\xi\cdot\mathbb{I}_{A}\right]$$

называется условным мат. ожиданием ξ при условии ${\mathcal H}$ и обозначается:

$$\eta = \mathbb{E}\left[\xi|\mathcal{H}\right]$$

Замечание В отличии от предыдущего определения ${\cal H}$ — произвольная σ -подалгебра. Можно доказать, что такая с.в. η всегда существует и п.н. единственна ([TODO])

Свойства условного математического ожидания

• Линейность

$$\mathbb{E}\left[\alpha\xi + \beta\eta|\mathcal{H}\right] = \alpha\mathbb{E}\left[\xi|\mathcal{H}\right] + \beta\mathbb{E}^{H}\left[\eta|\mathcal{H}\right]$$

- ullet Если $\xi \in H$, то $\mathbb{E}\left[\xi | \mathcal{H}
 ight] = \xi$
- ullet Если $\xi\perp H$, то $\mathbb{E}\left[\xi|\mathcal{H}
 ight]=\mathbb{E}\xi$
- ullet Повторное мат. ожидание. Пусть $G\subseteq H$.

$$\mathbb{E}\left[\mathbb{E}\left[\xi|\mathcal{H}\right]|G\right] = \mathbb{E}\left[\xi|\mathcal{G}\right]$$

В частности:

$$\mathbb{E}\xi = \mathbb{E}(\mathbb{E}\left[\xi|\mathcal{H}\right])$$

ullet Неравенство Йенсена. Если f выпуклая, то:

$$f(\mathbb{E}[\xi|\mathcal{H}]) \leq \mathbb{E}[f(\xi)|\mathcal{H}]$$

ullet Если $\eta \in \mathcal{H}$, то

$$\mathbb{E}\left[\eta \cdot \xi | \mathcal{H}\right] = \eta \cdot \mathbb{E}\left[\xi | \mathcal{H}\right]$$

Условное мат. ожидание как проекция

Утверждение

Пусть ξ — квадратично-интегрируемая с.в., т.е. $\mathbb{E}\xi^2<\infty$. Пусть \mathcal{H} — σ -подалгебра \mathcal{F} . Тогда:

$$\mathbb{E}\left[\xi|\mathcal{H}\right] = \arg\min_{\eta \in \mathcal{H}} \mathbb{E}(\xi - \eta)^2$$

Условное мат. ожидание относительно случайной величины

Пусть ξ, η – случайные величины. Положим:

$$\mathbb{E}\left[\xi|\eta\right] = \mathbb{E}\left[\xi|\sigma(\eta)\right]$$

Так как $\mathbb{E}\left[\xi|\eta\right]\in\sigma(\eta)$, то $\exists g:\mathbb{R}\to\mathbb{R}$:

$$\mathbb{E}\left[\xi|\eta\right] = g(\xi)$$

Задача

Пусть ξ, η – i.i.d. Найти $\mathbb{E}\left[\xi | \xi + \eta\right]$.

Задача

Пусть X,Y имеют совместное нормальное распределение с параметрами $\mu=(\mu_X,\mu_Y), \Sigma=\begin{pmatrix}\sigma_X^2&\sigma_{XY}\\\sigma_{XY}&\sigma_Y^2\end{pmatrix}$. Найти $\mathbb{E}\left[X|Y\right]$

Абсолютная непрерывность мер

Пусть (Ω, \mathcal{F}) – пространство с σ -алгеброй.

Определение

Мера $\mathbb Q$ абсолютно непрерывна относительно $\mathbb P$, если $orall A \in \mathcal F$:

$$\mathbb{P}(A) = 0 \to \mathbb{Q}(A) = 0$$

Обозначение $\mathbb{Q} \ll \mathbb{P}$

Определение

Мера $\mathbb Q$ эквивалентна $\mathbb P$, если $\mathbb Q\ll\mathbb P,\mathbb P\ll\mathbb Q.$ Обозначение $\mathbb Q\sim\mathbb P$

Абсолютная непрерывность мер

Примеры:

ullet Пусть $\Omega=\mathbb{N}, \mathcal{F}=2^{\mathbb{N}}$. Тогда:

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \mathbb{Q}(n) \leq \mathbb{P}(n)$$

ullet Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$. Пусть $\mathbb{P}(dx)=p(x)dx, \mathbb{Q}(dx)=q(x)dx$, тогда

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \operatorname{supp} [q] \subseteq \operatorname{supp} [p]$$

Производная Радона-Никодима

Пусть $f(\omega) \geq 0$ – фунцкия. Введём:

$$\mathbb{Q}(A) = \int_A f(\omega) d\mathbb{P}(\omega), \ A \in \mathcal{F}$$

Тогда $\mathbb Q$ — мера и $\mathbb Q \ll \mathbb P$. $\mathbb Q$ — вероятностная мера, если $\mathbb E f=1$. Верно и обратное:

Теорема Радона-Никодима

Пусть $\mathbb{Q} \ll \mathbb{P}$. Тогда $\exists f \in \mathcal{F}, f(\omega) \geq 0$:

$$\mathbb{Q}(A) = \int_A f(\omega) d\mathbb{P}(\omega)$$

Обозначение:
$$f(\omega) = \frac{d\mathbb{Q}}{d\mathbb{P}}$$

Производная Радона-Никодима: примеры

ullet Пусть $\Omega=\mathbb{N}, \mathcal{F}=2^{\mathbb{N}},\ \mathbb{Q}\ll\mathbb{P}.$ Тогда:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(n) = \frac{\mathbb{Q}(\{n\})}{\mathbb{P}(\{n\})} \cdot \mathbb{I}(\mathbb{P}(\{n\}) \neq 0)$$

при $n \in \mathbb{N}$.

• Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$. Пусть $\mathbb{P}(dx)=p(x)dx, \mathbb{Q}(dx)=q(x)dx$ и $\mathbb{Q}\ll\mathbb{P}$. Тогда:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(x) = \frac{q(x)}{p(x)} \cdot \mathbb{I}(p(x) \neq 0)$$

Производная Радона-Никодима: свойства

Пусть (Ω,\mathcal{F}) — пространство с σ -алгеброй, $\mathbb{P}\sim\mathbb{Q}$ — две вероятностные меры, $f=\dfrac{d\mathbb{Q}}{d\mathbb{P}}$. Пусть $\xi\in\mathcal{F}$ — случайная величина.

- $Q(A) = \int_A f(\omega) d\mathbb{P}(\omega)$
- $\mathbb{E}^{\mathbb{Q}}\xi = \int_{\Omega} \xi(\omega) dQ(\omega) = \int_{\Omega} \xi(\omega) f(\omega) d\mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}} \left[\xi \cdot f \right]$
- $\mathbb{E}^{\mathbb{Q}}1 = \mathbb{E}^{\mathbb{P}}f = 1$

Случайные процессы

Определение

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство. Пусть \mathcal{T} – некоторое множество индексов. Случайным процессом ξ будем называть совокупность с.в. $\{\xi_t\}_{t\in\mathcal{T}}$, заданных на одном вероятностном пространстве.

- ullet Случайный процесс функция двух переменных: $\xi: \mathcal{T} imes \Omega o \mathbb{R}$, измеримая по второму аргументу.
- ullet Если ${\cal T}$ конечно, то случаный процесс = многомерная с.в.
- Обычно $\mathcal{T} \in \{\mathbb{N}, \mathbb{R}^+, [0, T]\}$.
- ullet Для фиксированного $t\in\mathcal{T}$ отображение $\omega\mapsto \xi(t,\omega)$ которое обозначим ξ_t сечение процесса ξ .
- Для фиксированного ω отображение $t \mapsto \xi(t, \omega)$ детерменированная функция, реализация(траектория) случайного процесса.

Случайные процессы

Конечномерные распределения

Всевозможные совместные распределения с.в. $\xi_{t_1}, \dots, \xi_{t_n}$ называются конечномерными распределениями процесса ξ_t :

$$F_{t_1,...,t_n}(x_1,...,x_n) = \mathbb{P}(\xi_{t_1} \leq x_1,...,\xi_{t_n} \leq x_n)$$

- ullet Мат. ожидание случайного процесса: $m(t)=\mathbb{E} \xi_t$
- ullet Автоковариационная функция: $b(t,s) = \mathrm{cov}(\xi_t,\xi_s)$

Случайные процессы: пример

Примеры.

- $\mathcal{T} = [0,1]$. Пусть $\eta \sim N(0,1)$. Положим $\xi_t = t \cdot \eta$.
- Пусть $\mathcal{T}=\mathbb{N}$, $\xi_t\sim Be(1/2)$ i.i.d.

Упражнение. Для каждого примера:

- ullet опишите траектории и сечения процесса $\xi_t,$
- выпишите функции конечномерных распределений,
- мат. ожидание и ковариационную функцию.

Пример: случайное блуждание

Пусть $\mathcal{T}=\mathbb{N}$, $\xi_t\sim Be(1/2)$ – i.i.d.

Определение

Случайное блуждание X_t это случайный процесс:

$$X_t = \sum_{s=1}^t \xi_s$$
$$X_0 = 0$$

Свойства:

- $\mathbb{E}X_t = 0$, $\mathbb{D}X_t = t$
- $\bullet \mathbb{E}\left[X_{t}|X_{t-1}\right] = X_{t-1}$
- $\bullet \ \operatorname{cov}(X_t, X_s) = \min(t, s)$

Фильтрация

Пусть $\mathcal{T} = \mathbb{N}$.

Определение

 $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство.

Фильтрацией $(\mathcal{F}_t)_{t\geq 0}$ называется последовательность вложенных σ -подалгебр:

$$(\mathcal{F}_t)_{t\geq 0}: \mathcal{F}_s \subseteq \mathcal{F}_t, \forall s \leq t$$

где $\mathcal{F}_t \subseteq \mathcal{F} - \sigma$ -под алгебры.

 \mathcal{F}_t — информация, доступная к моменту времени t.

Процесс $\{\xi_t\}$ – адаптированный, если $\xi_t \in \mathcal{F}_t orall t \in \mathbb{N}.$

Процесс $\{\xi_t\}$ – предсказуемый, если $\xi_t \in \mathcal{F}_{t-1} orall t \in \mathbb{N}$.

Естественная фильтрация

Определение

Пусть $\{\xi_t\}$ – случайный процесс. Определим:

$$\mathcal{F}_t = \sigma(\{\xi_s, s \leq t\}),$$

т.е. \mathcal{F}_t — минимальная σ -алгебра, относительно которой все с.в. $\xi_s, s \leq t$ измеримы. Тогда

- ullet $(\mathcal{F}_t)_{t>0}$ фильтрация
- ullet $\{\xi_t\}_{t\geq 0}$ адаптированный к фильтрации процесс

 $(\mathcal{F}_t)_{t\geq 0}$ называется естественной фильтрацией.

Мартингалы

Определение

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $(\mathcal{F}_t)_{t\geq 0}$ – фильтрация. Случайный процесс $(\xi_t)_{t\geq 0}$ называется мартингалом относительно фильтрации $(\mathcal{F}_t)_{t\geq 0}$, если:

- ullet $\mathbb{E}|\xi_t|<\infty$ интегрируемость
- ullet $\xi_t \in \mathcal{F}_t$ адоптированность
- ullet $\mathbb{E}\left[\xi_t|\mathcal{F}_s
 ight]=\xi_s$ для всех $s\leq t$ мартингальное свойство.
- Если фильтрация явно не указана, в качестве неё берёся естественная фильтрация процесса $(\xi_t)_{t\geq 0}$.
- Процесс называется суб(супер) мартингалом, если:

$$\mathbb{E}\left[\xi_t|\mathcal{F}_s\right] \leq (\geq)\xi_s$$

Мартингалы: примеры

- Случайное блуждание. Пусть
 - ξ_t i.i.d., $\mathbb{E}\xi_t = 0$,
 - $X_t = \sum_{s=1}^t \xi_s$

Мартингальное свойство:

$$\mathbb{E}\left[X_{t}|\mathcal{F}_{s}\right] = \mathbb{E}\left[X_{t} - X_{s}|\mathcal{F}_{s}\right] + \mathbb{E}\left[X_{s}|\mathcal{F}_{s}\right] = X_{s}$$

- Геометрическое случайное блуждание.
 - ξ_t i.i.d., $\mathbb{E}\xi_t = 1$, $\xi_t > 0$
 - $X_t = \prod_{s=1}^t \xi_s$

Мартингальное свойство:

$$\mathbb{E}\left[X_t|\mathcal{F}_s\right] = \mathbb{E}\left[X_s \cdot \frac{X_t}{X_s}|\mathcal{F}_s\right] = X_s \cdot \mathbb{E}\left[\frac{X_t}{X_s}|\mathcal{F}_s\right] = X_s$$

Мартингалы: свойства

• В дискретном случае досаточно требовать свойства:

$$\mathbb{E}\left[\xi_{t+1}|F_t\right] = \xi_t$$

- $\mathbb{E}\xi_n = \mathbb{E}\xi_0 = const$
- Если $(\xi_t)_{t\geq 0}$ мартингал, f(x) выпуклая (вогнутая) функция, то процесс $\eta_t=f(\xi_t)$ суб (супер) мартингал.
- Если η произвольная интегрируемая случайная величина, то процесс $\xi_t = \mathbb{E}\left[\eta|\mathcal{F}_t\right]$ мартингал. В частности, на интервале [0,T] мартингал геренируется своим терминальным значением:

$$\xi_t = \mathbb{E}\left[\xi_T | \mathcal{F}_t\right]$$

• Пусть ξ_t — квадратично-интегрируемый мартингал, тогда его приращения некоррелированы:

$$cov(\xi_p - \xi_q, \xi_t - \xi_s) = 0$$

при $s \leq t \leq q \leq p$

Дискретный стохастический интеграл

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $(\mathcal{F}_t)_{t\geq 0}$ – дискретная фильтрация.

Определение

Пусть $(X_t)_{t\geq 0}, (Y_t)_{t\geq 0}$ — случайные процессы. Будем называть процесс Z_t , определённый как:

$$Z_t = (X \star Y)_t = \sum_{s=0}^t X_s (Y_s - Y_{s-1})$$

при условии $Y_{-1}=0$ дискретным стохастическим интегралом.

Дискретный стохастический интеграл

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $(\mathcal{F}_t)_{t\geq 0}$ – дискретная фильтрация.

Утверждение

Пусть

- ullet $(X_t)_{t\geq 0}$ предсказуемый процесс
- ullet $(Y_t)_{t\geq 0}$ мартингал
- ullet $\forall t \; X_t \cdot (Y_t Y_{t-1})$ интегрируемая с.в.

Тогда стохастический интеграл $(X\star Y)$ является мартингалом.

Момент остановки

Определение

Случайная величина au, принимающая значения из \mathcal{T} называется моментом остановки (марковским моментом) относительно фильтрации $(F_t)_{t>0}$, если

$$\forall t \geq 0 \ \{\tau \leq t\} \in F_t$$

В любой момент t можем решить, является ли au моментом остановки на основании информации до момента t.

Момент остановки

Определение

Случайная величина au, принимающая значения из \mathcal{T} называется моментом остановки (марковским моментом) относительно фильтрации $(F_t)_{t>0}$, если

$$\forall t \geq 0 \ \{\tau \leq t\} \in F_t$$

В любой момент t можем решить, является ли τ моментом остановки на основании информации до момента t. Пример. Пусть X_t — адаптированный процесс. Рассмотрим:

$$\tau = \inf\{t \ge 0, X_t \in A\}$$

где $A\subseteq\mathbb{R}$ – борелевское множество. au – марковский процесс.

Момент остановки

Определение

Случайная величина au, принимающая значения из $\mathcal T$ называется моментом остановки (марковским моментом) относительно фильтрации $(F_t)_{t\geq 0}$, если

$$\forall t \geq 0 \ \{\tau \leq t\} \in F_t$$

В любой момент t можем решить, является ли τ моментом остановки на основании информации до момента t. Пример. Пусть X_t — адаптированный процесс. Рассмотрим:

$$\tau = \inf\{t \ge 0, X_t \in A\}$$

где $A\subseteq\mathbb{R}$ — борелевское множество. au — марковский процесс. Доказательство:

$$\{\tau \leq t\} = \{\exists s \leq t : X_s \in A\} = \bigcup_{s=0}^t \{X_s \in A\} \in F_t$$

Теорема Дуба

Теорема

Пусть ξ_t — мартингал, au — момент остановки. Тогда остановленный процесс $\xi_t^ au=\xi_{\min(t, au)}$ является мартингалом.

Теорема Дуба

Теорема

Пусть ξ_t — мартингал, au — момент остановки. Тогда остановленный процесс $\xi_t^ au = \xi_{\min(t, au)}$ является мартингалом.

Доказательство Введём $h_t=\mathbb{I}(au\geq t)=1-\mathbb{I}(au\leq t-1)\in \mathcal{F}_{t-1}.$

$$\xi_t^{\tau} = \sum_{s=0}^t h_s(\xi_s - \xi_{s-1}) = (h \star \xi)_t.$$

T.e. ξ_t^{τ} — стохастический интеграл по мартингалу, значит, тоже мартингал.

Теорема Дуба об оптимальной остановке

Теорема

Пусть ξ_t — мартингал, au — момент остановки. Пусть выполнено одно из условий:

- ullet au ограничено, т.е. $\exists c: \mathbb{P}(au \leq c) = 1$
- $\mathbb{E}\tau < \infty$, $\exists c : \forall t \ \mathbb{E}[|\xi_{t+1} \xi_t|\mathcal{F}_t] \le c$
- ullet $\xi_t^ au$ равномерно ограничено, т.е. $\exists c: orall t \ |\xi_t^ au| \leq c$

Тогда $\mathbb{E} \xi_{ au} = \mathbb{E} \xi_{0}$

Теорема Дуба об оптимальной остановке

Теорема

Пусть ξ_t — мартингал, au — момент остановки. Пусть выполнено одно из условий:

- ullet au ограничено, т.е. $\exists c: \mathbb{P}(au \leq c) = 1$
- $\mathbb{E}\tau < \infty$, $\exists c : \forall t \ \mathbb{E}\left[|\xi_{t+1} \xi_t|\mathcal{F}_t\right] \leq c$
- ullet $\xi_t^ au$ равномерно ограничено, т.е. $\exists c: orall t \ |\xi_t^ au| \leq c$

Тогда $\mathbb{E}\xi_{ au}=\mathbb{E}\xi_{0}$

Доказательство По предыдущей теореме $\xi_t^ au$ — мартингал, откуда $\mathbb{E}\xi_t^ au=\mathbb{E}\xi_0$. Переходим к пределу при $t o\infty$, получаем

$$\mathbb{E}\xi_t^{\tau} = \mathbb{E}\xi_{\min(t,\tau)} \to \mathbb{E}\xi_{\tau}$$

Условия теоремы нужны для обоснования сходимости.

Теорема Дуба о разолжении

Теорема

Пусть ξ_t — согласованный интегрируемый процесс. Тогда $\exists ! \ (M_t)_{t\geq 0}$ и $(A_t)_{t\geq 0}$ такие, что:

- M_t мартингал,
- ullet A_t предсказуемый процесс и $A_0=0$
- $\bullet \ X_t = M_t + A_t$

Теорема Дуба о разолжении

Доказательство. Пусть такое разложение существует, тогда:

$$\mathbb{E}[X_t|\mathcal{F}_{t-1}] = \mathbb{E}[M_t + A_t|F_{t-1}] = M_{t-1} + A_t = X_{t-1} + (A_t - A_{t-1})$$

Положим:

•
$$A_0 = 0$$
, $A_t = A_{t-1} + \mathbb{E}[X_t | \mathcal{F}_{t-1}] - X_{t-1}$

$$\bullet \ M_t = X_t - A_t$$

Очевидно, A_t — предсказуемый процесс, разложение $X_t = M_t + A_t$ выполнено автоматически, достаточно проверить мартингальность M_t :

$$\mathbb{E}[M_t|\mathcal{F}_{t-1}] = \mathbb{E}[X_t|\mathcal{F}_{t-1}] - A_t =$$

$$= \mathbb{E}[X_t|\mathcal{F}_{t-1}] - (A_{t-1} + \mathbb{E}[X_t|\mathcal{F}_{t-1}] - X_{t-1}) =$$

$$= X_{t-1} - A_{t-1} = M_{t-1}$$

