

MATEMÁTICA

Questão 28

a) De acordo com os gráficos, obtém-se, fazendo o produto dos dados apresentados:

Ano	Área plantada (em milhões de ha)	Produtividade (em kg/ha)	Produção total (em milhões de toneladas)
2000	13,6	2.400	32,64
2001	14	2.700	37,8
2002	16,4	2.500	41
2003	18,5	2.800	51,8
2004	21,5	2.300	49,45
2005	23	2.200	50,6
2006	22	2.500	55
2007	21	2.800	58,8

b) O gráfico está ilustrado abaixo.

Questão 29

- a) **Hipótese**: Considere an definido por $a_1 = \sqrt{a}$ e $a_{n+1} = \sqrt{a\sqrt{a_n}}$ para n = 1, 2, 3, ... e $a \ge 2$. **Tese**: $a_n < a$ para n = 1, 2, 3...
- b) Como $\alpha \ge 2$ então $\alpha > 0$ e ($\alpha 1$) > 0, logo α ($\alpha 1$) > 0 pois é o produto de dois números positivos.
- c) Do item b temos que a (a -1) > 0 ou a2 > a logo a > \sqrt{a} . d) Como an < a, então $a_{n+1} = \sqrt{a + a_n} < \sqrt{a + \sqrt{a}}$. Do item c temos $\sqrt{n} < a$ que, logo $a_{n+1} < \sqrt{2a}$.
- e) Como $2 \le a$ e $a_{n+1} < \sqrt{2a}$, logo $a_{n+1} < \sqrt{a^2} = a$.
- f) O item c prova a proposição para n = 1. Os itens d e e provam que se válida para n então também é válida para n + 1.

Pelo princípio da indução finita, segue que a proposição é válida para todo número natural n.

Questão 40

a) Para demonstrar que IJKL é um paralelogramo o estudante pode mostrar que os triângulos IBJ e KDL são congruentes (ALA); da mesma forma o triângulo IAL é congruente ao triângulo KCJ (ALA). Em seguida, usa-se a propriedade dos paralelogramos: um quadrilátero com lados postos congruentes é um paralelogramo. Outra forma é mostrar pela definição identificando os ângulos...

b)
$$A(x) = 63 - 2 \frac{(5-x)x}{2} - 2 \frac{9(x)x}{2} = 2x^2 - 16x + 63$$

O estudo do ponto crítico (de mínimo) pode ser feito usando derivada e também usando o gráfico da função do segundo grau.

c) Congruência de triângulo, propriedades do paralelogramo, estudo do gráfico da função do segundo grau.

Questão 51

- a) Pela definição de g_k , segue que $g_k(x) = 1 kf(x)$. Logo se para $k \neq 0$, $g_k(x_k) = 0$, então $f'(x_0) \frac{1}{k}$.
- b) Como por hipótese a função não é injetora, então existem pelo menos dois pontos nos quais ela tem o mesmo valor. Para cada $k \in \mathbb{R}$ esses pontos escolhidos podem ser denotados por $\alpha_k \in \beta_k$. Aplicando o teorema do valor médio para a função g_k , no intervalo $[\alpha_k \beta_k]$ obtém-se um ponto no interior desse intervalo que será denotado por, θ_k , que satisfaz a condição $g_k(\theta_k) = 0$.
- c) Como $\mathbf{g}_{k}(\mathbf{G}_{k}) = \mathbf{0}$, então pela definição de \mathbf{g}_{k} e que $\mathbf{f}(\mathbf{G}_{k}) = \frac{1}{k}$. Como c é um número real diferente de zero qualquer, então a derivada de \mathbf{f} não é limitada, uma vez que se pode escolher c arbitrariamente próximo de zero, o que implica que existem pontos em \mathbb{R} nos quais a derivada de \mathbf{f} é arbitrariamente grande.