Chapter2 对偶理论

(Duality Theory)

本章主要内容:

- 线性规划的对偶模型
- 对偶性质
- 对偶问题的经济解释 影子价格
- 对偶单纯形法
- 灵敏度分析

对偶理论是线性规划的重要内容之一。每个线性规划问题都伴随一个相应的线性规划问题,称为对偶问题。

原问题和对偶问题有着密切的联系,它们有相同的最优目标函数值,并且在求得一个线性规划的最优解的同时,同时也得到对偶线性规划的最优解。

由对偶问题引伸出来的对偶解有着重要的经济意义,是研究经济学的重要概念和工具之一。

第一节 线性规划的对偶问题

- 1.1 对偶问题的提出
- 1.2 对称形式下对偶问题的一般形式
- 1.3 非对称形式的原 对偶问题关系
- 1.4 对偶关系对应表

1. 对偶问题的现实来源

设某工厂生产两种产品甲和乙,生产中需4种设备按A,B,C,D顺序加工,每件产品加工所需的机时数、每件产品的利润值及每种设备的可利用机时数列于下表:产品数据表

设备 产品	А	В	С	D	产品利润 (元 / 件)
甲	2	1	4	0	2
乙	2	2	0	4	3
设备可利用机时数(时)	12	8	16	12	

问: 充分利用设备机时,工厂应生产甲和乙产品各多少件才能获得最大利润?

解:设甲、乙产品各生产 x_1 及 x_2 件,则数学模型为:

$$\max z = 2x_{1} + 3x_{2}$$

$$\begin{cases} 2x_{1} + 2x_{2} \leq 12 \\ x_{1} + 2x_{2} \leq 8 \\ 4x_{1} \leq 16 \\ 4x_{2} \leq 12 \\ x_{1}, x_{2} \geq 0 \end{cases}$$

反过来问: 若厂长决定不生产甲和乙产品,决定出租机器用于接受外加工,只收加工费,那么4种机器的机时如何定价才是最佳决策?

在市场竞争的时代,厂长的最佳决策显然应符合两条:

- (1) 不吃亏原则。即机时定价所赚利润不能低于加工甲、乙型产品所获利润。
- (2)竞争性原则。即在上述不吃亏原则下,尽量降低机时总收费,以便争取更多用户。

设 y_1 , y_2 , y_3 , y_4 分别表示A、B、C、D设备的机时价(或单位增值价格,售价= 成本+增值)。单位增值价格实际就是单位产品利润。

min
$$\omega = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 3 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

把同种问题的两种提法所获得的数学模型用表2表示,将会发现一个有趣的现象。

原问题与对偶问题对比表

	$A(y_1)$	$B(y_2)$	$C(y_3)$	$D(y_4)$	
甲 (x ₁)	2	1	4	0	2
Z (x ₂)	2	2	0	4	3
	12	8	16	12	minω maxz

2. 原问题与对偶问题的对应关系

$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

原问题(对偶问题)

min
$$\omega = 12y_1 + 8y_2 + 16y_3 + 12y_4$$

$$\begin{cases} 2y_1 + y_2 + 4y_3 + 0y_4 \ge 2 \\ 2y_1 + 2y_2 + 0y_3 + 4y_4 \ge 3 \\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

对偶问题 (原问题)

原问题的模型与对偶问题的模型之间的对应关系如下:

(1)最大与最小互换; (2)右端常数项与目标函数系数互换; (3)约束矩阵转置; (4)不等号反号。

注: 称y₁, y₂, y₃,y₄为设备A、B、C、D的影子价格,是生产者宁愿停止生产而将设备转让出租的单位增值价格。影子价格并不是设备机时的实际价格,而是从制成产品的利润来估计所利用的设备机时的价值。

(1) 对称形式下对偶问题的一般形式

$$LP: \quad \max Z = CX \qquad DP : \qquad \min W = Y^T b$$

$$\begin{cases} AX \le b \\ X \ge 0 \end{cases} \qquad \begin{cases} A^T Y \ge C^T \\ Y \ge 0 \end{cases}$$

已知LP,写出DP

对称形式(或规范形式)的定义:

- (1)目标函数求极大值时,所有约束条件为≤号,变量非负;
- (2)目标函数求极小值时,所有约束条件为≥号,变量非负.

对称形式的线性规划的对偶问题还是对称形式。

例2 写出下列线性规划的对偶问题

$$\max Z = 4y_1 + y_2$$

$$\begin{cases} 4y_1 + y_2 \le 5 \\ y_1 - 7y_2 \le -2 \end{cases}$$

$$\begin{cases} -y_1 + 5y_2 \le 3 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

解: 其对偶问题为

$$\min Z = 5x_1 - 2x_2 + 3x_3$$

$$\begin{cases} 4x_1 + x_2 - x_3 \ge 4\\ x_1 - 7x_2 + 5x_3 \ge 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

1.3 非对称形式的原一对偶问题关系

问题:并非所有线性规划问题都具有对称形式,那么一般线性规划问题如何写出其对偶问题?

思路: 化为对称形式,再转化。

例3 写出线性规划问题的对偶问题

$$\max Z = 2x_1 - 3x_2 + 4x_3$$

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 \ge 2 \\ 3x_1 + x_2 + 7x_3 \le 3 \\ -x_1 + 4x_2 + 6x_3 \ge 5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

例3 写出线性规划问题的对偶问题

$$\max Z = 2x_1 - 3x_2 + 4x_3$$

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 \ge 2\\ 3x_1 + x_2 + 7x_3 \le 3\\ -x_1 + 4x_2 + 6x_3 \ge 5\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 首先将原问题变形为对称形式

$$\max Z = 2x_1 - 3x_2 + 4x_3$$

$$\begin{cases} -2x - 3x_2 + 5x_3 \le -2 \\ 3x_1 + x_2 + 7x_3 \le 3 \\ x_1 - 4x_2 - 6x_3 \le -5 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

対偶问题: $\min W = -2y_1 + 3y_2 - 5y_3$ $\begin{cases} -2y_1 + 3y_2 + y_3 \ge 2 \\ -3y_1 + y_2 - 4y_3 \ge -3 \end{cases}$ $\begin{cases} 5y_1 + 7y_2 - 6y_3 \ge 4 \\ y_1, y_2, y_3 \ge 0 \end{cases}$

注意: 不要求等式右端项 $b \ge 0$,原因在对偶单纯形表中只保证 $\lambda_j \le 0$ 而不保证 $B^{-1}b \ge 0$,故b可以是负数。

例4 写出下述线性规划问题的对偶问题

max
$$z = x_1 + 4x_2 + 3x_3$$

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 \le 2 \\ 3x_1 - x_2 + 6x_3 \ge 1 \end{cases}$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 \ge 0, x_2 \le 0, x_3 \text{ 无约束} \end{cases}$$

$$\max z = x_1 + 4x_2 + 3x_3$$

先化成对称形式的线性规划问题:

$$\max z = x_{1} - 4x_{2} + 3x_{3} - 3x_{3}^{"}$$

$$\begin{cases} 2x_{1} - 3x_{2}^{"} - 5x_{3}^{"} + 5x_{3}^{"} \leq 2\\ -3x_{1} - x_{2}^{"} - 6x_{3}^{"} + 6x_{3}^{"} \leq -1 \end{cases}$$

$$s.t.\begin{cases} x_{1} - x_{2}^{"} + x_{3}^{"} - x_{3}^{"} \leq 4\\ -x_{1} + x_{2}^{"} - x_{3}^{"} + x_{3}^{"} \leq -4\\ x_{1}, x_{2}^{"}, x_{3}^{"}, x_{3}^{"} \geq 0 \end{cases}$$

$$\max_{x_1 = x_1 + 4x_2 + 5x_3} (2x_1 + 3x_2 - 5x_3 \le 2)$$

$$3x_1 - x_2 + 6x_3 \ge 1$$

$$x_1 + x_2 + x_3 = 4$$

$$x_1 \ge 0, x_2 \le 0, x_3$$
 无约束

写出其对偶问题为:

$$min \ w = 2y_{1} - y_{2} + 4y_{3} - 4y_{3}^{"}$$

$$\begin{cases} 2y_{1} - 3y_{2}^{"} + y_{3}^{"} - y_{3}^{"} \ge 1\\ -3y_{1} - y_{2}^{"} - y_{3}^{"} + y_{3}^{"} \ge -4\\ -5y_{1} - 6y_{2}^{"} + y_{3}^{"} - y_{3}^{"} \ge 3\\ 5y_{1} + 6y_{2}^{"} - y_{3}^{"} + y_{3}^{"} \ge -3\\ y_{1}, y_{2}^{"}, y_{3}^{"}, y_{3}^{"} \ge 0 \end{cases}$$

写出其对偶问题为:

min
$$w = 2y_1 - y_2' + 4y_3' - 4y_3''$$

$$\begin{cases}
2y_1 - 3y_2' + y_3' - y_3'' \ge 1 \\
-3y_1 - y_2' - y_3' + y_3'' \ge -4 \\
-5y_1 - 6y_2' + y_3' - y_3'' \ge 3 \\
5y_1 + 6y_2' - y_3' + y_3'' \ge -3 \\
y_1, y_2', y_3', y_3'' \ge 0
\end{cases}$$

令
$$\mathbf{y_3} = \mathbf{y_3}$$
', $\mathbf{y_2} = -\mathbf{y_2}$ ', 得 $\max z = x_1 + 4x_2 + 3x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_3$ $\sup z = x_1 + 4x_2 + 4x_2 + 4x_2 + 4x_3 + 4x_2 + 4x_2 + 4x_2 + 4x_2 + 4x_3 + 4x_2 + 4x_2 + 4x_2 + 4x_3 + 4x_2 + 4x_2 + 4x_2 + 4x_2$

1.4 对偶关系对应表

原	问题(或对偶问题)	对偶问题(或原问题)		
约束条件右端项		目标函数变量的系数		
目标函数变量的系数		约束条件右端项		
约束条件系数矩阵A(A ^T)		约束条件系数矩阵A ^T (A)		
	目标函数 max	目标函数 min		
约束条件	m个	m个		
	\leq	≥0	变量	
	<u>></u>	≤0		
		无约束		
变量	n个	n个	约	
	≥0	\geq	束	
	≤0	<u>≤</u>	─ 条 件	
	无约束	=	11	

例5 写出下列线性规划的对偶问题

$$\min Z = x_1 + 5x_2 - 4x_3 + 9x_4$$

$$\begin{cases} 7x_1 - 2x_2 + 8x_3 - x_4 \le 18 \\ 6x_2 - 5x_4 \ge 10 \end{cases}$$

$$\begin{cases} 2x_1 + 8x_2 - x_3 = -14 \\ x_1$$

$$\begin{cases} x_1 \ne 0, x_2 \le 0, x_3, x_4 \ge 0 \end{cases}$$

解: 其对偶问题为:

$$\max w = 18y_1 + 10y_2 - 14y_3$$

$$\begin{cases} 7y_1 & +2y_3 = 1 \\ -2y_1 + 6y_2 + 8y_3 \ge 5 \\ 8y_1 - y_3 \le -4 \\ -y_1 - 5y_2 \le 9 \\ y_1 \le 0, y_2 \ge 0, y_3$$
 无约束

例6 写出下列线性规划的对偶问题

$$\min Z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases}
x_1 + x_2 - 3x_3 + x_4 \ge 5 \\
2x_1 + 2x_3 - 4x_4 \le 4
\end{cases}$$

$$x_2 + x_3 + x_4 = 6$$

$$x_1 \le 0, x_2, x_3 \ge 0, x_4$$
 无约束

对偶问题 $\max W = 5y_1 + 4y_2 + 6y_3$

$$\begin{cases} y_1 + 2y_2 \ge 2 \\ y_1 + y_3 \le 3 \\ -3y_1 + 2y_2 + y_3 \le -5 \\ y_1 - 4y_2 + y_3 = 1 \\ y_1 \ge 0, y_2 \le 0, y_3$$
无约束

练习:
$$1.\min Z = 2x_1 + 2x_2 + 4x_3$$

$$\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2\\ 3x_1 + x_2 + 7x_3 \le 3\\ x_1 + 4x_2 + 6x_3 \le 5\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$2.\min Z = 3x_1 + 2x_2 - 3x_3 + 4x_4$$

$$\begin{cases} x_1 - 2x_2 + 3x_3 + 4x_4 \le 0 \\ x_2 + 3x_3 + 4x_4 \ge -5 \end{cases}$$

$$2x_1 - 3x_2 - 7x_3 - 4x_4 = 2$$

$$x_1 \ge 0, \quad x_2 \le 0, x_3, \quad x_4$$
 无约束

答案
$$\mathbf{1.max}W = 2y_1 + 3y_2 + 5y_3$$

$$\begin{cases} 2y_1 + 3y_2 + y_3 \le 2 \\ 3y_1 + y_2 + 4y_3 \le 2 \\ 5y_1 + 7y_2 + 6y_3 \le 4 \\ y_1 \ge 0, y_2, y_3 \le 0 \end{cases}$$

$$2.\max W = 3y_1 - 5y_2 + 2y_3$$

$$\begin{cases} y_1 & +2y_3 \le 3 \\ -2y_1 + y_2 - 3y_3 \ge 2 \\ 3y_1 + 3y_2 - 7y_3 = -3 \\ 4y_1 + 4y_2 - 4y_3 = 4 \\ y_1 \le 0, y_2 \ge 0, y_3$$
无约束

作业:2.2(1)(4)