ANT 6973: DATA VISUALIZATION AND EXPLORATION

DATA MANIPULATION, PART 3: TWO-TABLE OPERATIONS

TWO-TABLE OPERATIONS

- Combining variable and cases
- Joins
- Set operations

COMBINING VARIABLES AND CASES

Columns don't need to match

- bind_rows()
 - Bind multiple data frames by row (i.e., paste one table "below" the other)
 - When row-binding, columns are matched by name, and any missing columns will be filled with NA.

Remember messy_ktc_data.xlsx?

Home Insert Page Layout Formulas Data Review View Normal Page Break Page Custom Preview Layout Views Freeze Freeze First Split $f_x \times \sqrt{f_x} = \frac{7}{9}/2012$ Н K M N 0 Q S U Z AA AB D 17 A SW2 1.5 HVV 28-Jul-08 Mollusc data 2 2 1.7 HVV Element 18 A SW₂ 2 1 Trench Unit Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 28-Jul-08 Context Taxon Mass (g) 9-Jul-12 SW2 HVV 19 A SW₂ 2 6.3 HVV 2 Unknown Bivalve 1 NA 1 28-Jul-08 A Max L/W mBurnt/Not Burr Cutmark/N Recorder NOTES 20 A 2 1 Trench Unit Element Date SW2 3.5 HVV 28-Jul-08 Context Taxon Mass (g) Count 21 A SW2 1.4 HVV 28-Jul-08 SW4 HVV 9-Jul-12 5 F. Viviparid Gastropod 1.3 1 NA N 22 A 2 SW4 HVV 9-Jul-12 SW2 1 3 HVV 28-Jul-08 5 F. Arcidae / Bivalve 0.8 1 NA N 23 A 2 1 2.3 HVV 28-Jul-08 SW4 1.5 N HVV 9-Jul-12 SW2 5 F. Muricida Gastropod 1 NA 2 2 24 A SW₂ 1 4.6 HVV 28-Jul-08 SW4 5 F. Potamidi Gastropod 16.7 8 NA HVV 9-Jul-12 25 A 2 1 SW4 5 Unknown Gastropod 3.2 HVV 9-Jul-12 SW2 3.1 HVV 28-Jul-08 8 NA 26 A SW₂ 2 1.8 HVV 28-Jul-08 SW4 1.4 12 NA HVV 9-Jul-12 5 Unknown Bivalve 27 A SW2 2 2 1 1.2 HVV 28-Jul-08 SW4 5 Unknown Bivalve 3.7 4 NA N HVV 9-Jul-12 28 A SW2 2 2 1 3.2 HVV 28-Jul-08 SW4 5 F. Cyclopho Gastropod 2 NA N HVV 9-Jul-12 29 A SW2 2 2 1 1.1 HVV 28-Jul-08 Trench Unit Context Taxon Element Mass (g) Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 30 A 2 1.3 HVV SW5 21.16 N SW2 1 2 1 28-Jul-08 Α 9 F. Cyclopho Gastropod 1.3 CC F-100-0168 10-Jul-12 SW5 25.06 N CC 31 A SW₂ 2 1 0.8 HVV Α 1.7 N F-100-0161 10-Jul-12 28-Jul-08 9 F. Neritidae Gastropod 32 A SW5 28.24 N CC SW2 2 2 1 1.1 HVV Α 2.7 F-100-0174 10-Jul-12 28-Jul-08 9 F. Cyclopho Gastropod 1 CC 33 A 2 SW5 2.5 27.34 N SW2 2 1 1 HVV 28-Jul-08 Α 9 F. Cyclopho Gastropod 1 F-100-0169 10-Jul-12 CC 34 A SW₂ 2 1 1 1.5 HVV A SW5 9 F. Viviparid Gastropod 4.5 2 NA 10-Jul-12 28-Jul-08 N 2 2 Α SW5 N CC 35 A SW2 1 1 HVV 28-Jul-08 9 F. Camaeni Gastropod 3.2 1 NA 10-Jul-12 CC 36 A 2 1 0.9 HVV A SW5 2.5 N 10-Jul-12 SW2 28-Jul-08 9 F. Cyclophc Gastropod 3 NA 37 A 2 N CC SW2 1 **4.4 HVV** 28-Jul-08 Α SW5 9.6 4 NA 10-Jul-12 9 F. Muricida Gastropod 38 A 1 SW5 40.8 N CC 10-Jul-12 SW2 1.9 HVV 28-Jul-08 Α 9 F. Potamidi Gastropod 3 NA 39 A 2 2 3 0.9 CC SW5 36.7 N CC 10-Jul-12 SW2 28-Jul-08 Α 9 F. Arcidae Bivalve 3 NA 40 A SW3 3 3 12.5 HVV 28-Jul-08 A SW5 9 F. Amblemi Bivalve 9 1 NA N CC 10-Jul-12 41 A SW3 3 3 5 3 12.1 HVV 28-Jul-08 Α SW5 9 F. Potamidi Gastropod 224.6 134 NA N CC 10-Jul-12 55.7 N CC 42 A SW3 3 3 5 5 10.8 HVV 28-Jul-08 Α SW5 9 Unknown Gastropod 75 NA 10-Jul-12 SW5 151 150 NA N CC 43 A SW3 3 3 5 19.9 HVV 28-Jul-08 Α 9 Unknown Bivalve N 10-Jul-12 Mass (g) Max L/W m Burnt/Not Burr Cutmar 44 A SW3 3 3 11 35.4 HVV Unit Count N Recorder Date 28-Jul-08 Trench Context Taxon Element NOTES 21 89.9 CC 45 A SW3 3 3 56.7 HVV 28-Jul-08 SW6 12 F. Potamidi Gastropod 52 NA 11-Jul-12 N 46 CC 46 A 3 SW4 65.7 CC 28-Jul-08 SW6 12 F. Potamidi Gastropod 15.4 2 NA N 11-Jul-12 CC 47 A SW4 3 1 28-Jul-08 SW6 1.8 N 11-Jul-12 2.4 CC 12 F. Cyclopho Gastropod 2 NA 3 CC 11-Jul-12 48 A SW4 4 5 1 1.8 CC 28-Jul-08 SW6 32.4 54 NA N 12 Unknown Gastropod 49 A 3 1 9.2 CC 28-Jul-08 SW6 117.6 115 NA N HVV 11-Jul-12 SW4 12 Unknown Bivalve 50 A SW4 3 5 1 5.8 CC 28-Jul-08 SW6 1.4 25.19 N CC F-100-0187 11-Jul-12 4 12 F. Cyclopho Gastropod 51 A 3 1 4.5 CC SW6 12 F. Cyclophc Gastropod 0.4 25.93 N CC SW4 28-Jul-08 F-100-0184 11-Jul-12 1 52 A 3 5.9 CC SW6 12 GB Gastropod 3.2 CC 11-Jul-12 SW4 5 1 28-Jul-08 1 NA F-100-0179 53 A SW4 3 3 10.2 HVV 28-Jul-08 SW6 12 F. Amblemi Bivalve 29.6 9 NA N HVV 11-Jul-12 54 A SW4 3 17 17 HVV 28-Jul-08 SW6 12 BiA Bivalve 14 1 NA N HVV F-100-0190 11-Jul-12 55 A SW4 3 7 15 33.1 HVV 28-Jul-08 Trench Unit Context Taxon Element Mass (g) Count Max L/W m Burnt/Not Burr Cutmark/N Recorder NOTES Date 56 A 7 SW6 SW4 3 10 11.1 HVV 28-Jul-08 13 F. Potamidi Gastropod 25.8 19 NA N CC 11-Jul-12 Α SW6 CC 57 A SW4 3 16 0.3 N F-100-0194 11-Jul-12 16.7 HVV 28-Jul-08 Α 13 GC Gastropod 1 NA 58 A SW4 7.6 HVV 28-Jul-08 SW6 13 F. Achatinic Gastropod 1.3 1 NA CC 11-Jul-12 59 A 3 7 1 4.6 HVV SW6 13 F. Potamidi Gastropod N CC SW4 28-Jul-08 Α 9.6 1 NA 11-Jul-12 60 A CC 4.4 HVV 28-Jul-08 SW6 13 F. Amblemi Bivalve 2.8 11-Jul-12 SW4 1 1 NA N 61 A CC 11-Jul-12 3 7 1 1.3 HVV 28-Jul-08 A SW6 13 Unknown Bivalve 14.2 N SW4 27 NA 62 A 13 Unknown Gastropod 1 0.6 HVV 28-Jul-08 SW6 8.4 N CC 11-Jul-12 SW4 20 NA 63 A 7 1 1.3 HVV SW6 N CC 11-Jul-12 SW4 3 28-Jul-08 13 F. Cyclopho Gastropod 3.8 3 NA N

Sheet1 Sheet2 Sheet3 +

• • • □ ₩ × · ∪ ₹

Review from Data Import module

```
artifacts_path <- here::here("08_data-import/spreadsheets", "messy_ktc_data.xlsx")
```

```
molluscs_sw4 <- artifacts_path %>%
  read_excel(range = "L20:X28",
```

```
Read in the "SW4" chunk
```

```
col_types = c("text", "text", "text", "text", "text", "numeric", "numeric", "numeric", "text", "text", "text", "date")) %>%
```

clean_names()

Read in the "SW6" chunk

```
molluscs_sw6 <- artifacts_path %>% ...
```

Bind them together.

```
sw4_6 <- bind_rows(molluscs_sw4, molluscs_sw6)</pre>
```

trench unit context taxon mass_g count max_l_w_mm burnt_not_burnt cutmark_no_cutmark recorder notes date element <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dttm> F. Viviparidae SW4 5 Gastropod 1.3 1 A NA N HVVNA 2012-07-09 00:00:00 1 0.8 2 A SW4 5 F. Arcidae Anadara sp. Bivalve NA N HVV2012-07-09 00:00:00 1 N NA F. Muricidae 3 A SW4 5 Gastropod 1.5 NA N Ν HVV NA 2012-07-09 00:00:00 1 F. Potamididae SW4 5 Gastropod 16.7 8 NA N Ν HVV 2012-07-09 00:00:00 4 A NA Unknown 2012-07-09 00:00:00 5 A SW4 5 Gastropod 3.2 8 NA N Ν HVVNA Bivalve Unknown HVV 2012-07-09 00:00:00 6 A SW4 5 1.4 12 NA N Ν NA Unknown 2012-07-09 00:00:00 SW4 5 7 A Bivalve 3.7 4 NA N HVV NA F. Cyclophoridae 5 Gastropod 1 HVV2012-07-09 00:00:00 8 A SW4 2 NA Ν N NA F. Potamididae Gastropod 9 A SW6 12 89.9 52 NA N N CC NA 2012-07-11 00:00:00 F. Potamididae Telescopium telescopium Gastropod CC 10 A SW6 12 15.4 2 NA N Ν NA 2012-07-11 00:00:00 F. Cyclophoridae Gastropod CC 11 A SW6 12 1.8 2 NA N Ν NA 2012-07-11 00:00:00 CC 12 A Unknown Gastropod 32.4 SW6 12 54 NA N Ν NA 2012-07-11 00:00:00 Unknown Bivalve 118. HVV 2012-07-11 00:00:00 13 A SW6 12 115 NA N N F. Cyclophoridae Rhiostoma housei CC Gastropod F-100-0187 B-100-0188 2012-07-11 00:00:00 14 A SW6 12 1.4 25.2 N N 1 F. Cyclophoridae Rhiostoma housei Gastropod 25.9 N 15 A SW6 12 Ν CC F-100-0184 B-100-0185 2012-07-11 00:00:00 0.4 1 3.2 NA N 16 A SW6 12 GB Gastropod Ν CC F-100-0179 B-100-0182 2012-07-11 00:00:00 1 HVV F. Amblemidae Pseudodon sp. Bivalve 17 A SW6 12 29.6 9 NA N Ν NA 2012-07-11 00:00:00 Bivalve 18 A SW6 12 BiA 14 NA N Ν HVV F-100-0190 B-100-0189 2012-07-11 00:00:00

A tibble: 18 x 13

COMBINING VARIABLES AND CASES

Rows do need to match

- bind_cols()
 - Bind multiple data frames by column (i.e., paste tables "side-by-side")
 - When column-binding, rows are matched by position, so all data frames must have the same number of rows!

```
bind_cols(tibble(x = 1),
          tibble(y = 1:2))
Error: Argument 2 must be
length 1, not 2
bind_cols(tibble(x = 1:2),
          tibble(y = 3:4))
# A tibble: 2 x 2
  <int> <int>
```

JOINS

nycflights13

Data about every flight that departed La Guardia, JFK, or Newark airports in 2013

```
# install.packages("nycflights13")
library("nycflights13")
```

flights

year	month	daŷ	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delaŷ	carrier	flight	tailnum	origin	dest	air_time	distance	hour	minute	time_hour
2013	1	1	517	515	2	830	819	11	UA	1545	N14228	EWR	IAH	227	1400	5	15	2013-01-01 05:00:00
2013	1	1	533	529	4	850	830	20	UA	1714	N24211	LGA	IAH	227	1416	5	29	2013-01-01 05:00:00
2013	1	1	542	540	2	923	850	33	AA	1141	N619AA	JFK	MIA	160	1089	5	40	2013-01-01 05:00:00
2013	1	1	544	545	-1	1004	1022	-18	B6	725	N804JB	JFK	BQN	183	1576	5	45	2013-01-01 05:00:00
2013	1	1	554	600	-6	812	837	-25	DL	461	N668DN	LGA	ATL	116	762	6	0	2013-01-01 06:00:00
2013	1	1	554	558	-4	740	728	12	UA	1696	N39463	EWR	ORD	150	719	5	58	2013-01-01 05:00:00
2013	1	1	555	600	-5	913	854	19	B6	507	N516JB	EWR	FLL	158	1065	6	0	2013-01-01 06:00:00
2013	1	1	557	600	-3	709	723	-14	EV	5708	N829AS	LGA	IAD	53	229	6	0	2013-01-01 06:00:00
2013	1	1	557	600	-3	838	846	-8	B6	79	N593JB	JFK	МСО	140	944	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	753	745	8	AA	301	N3ALAA	LGA	ORD	138	733	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	849	851	-2	B6	49	N793JB	JFK	PBI	149	1028	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	853	856	-3	B6	71	N657JB	JFK	TPA	158	1005	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	924	917	7	UA	194	N29129	JFK	LAX	345	2475	6	0	2013-01-01 06:00:00
2013	1	1	558	600	-2	923	937	-14	UA	1124	N53441	EWR	SFO	361	2565	6	0	2013-01-01 06:00:00
2013	1	1	559	600	-1	941	910	31	AA	707	N3DUAA	LGA	DFW	257	1389	6	0	2013-01-01 06:00:00
2013	1	1	559	559	0	702	706	-4	B6	1806	N708JB	JFK	BOS	44	187	5	59	2013-01-01 05:00:00
2013	1	1	559	600	-1	854	902	-8	UA	1187	N76515	EWR	LAS	337	2227	6	0	2013-01-01 06:00:00
2013	1	1	600	600	0	851	858	-7	В6	371	N595JB	LGA	FLL	152	1076	6	0	2013-01-01 06:00:00
2013	1	1	600	600	0	837	825	12	MQ	4650	N542MQ	LGA	ATL	134	762	6	0	2013-01-01 06:00:00
2013	1 ,	1	601	600	1	844	850	-6	B6	343	N644JB	EWR	PBI	147	1023	6	0	2013-01-01 06:00:00
2013	1	1	602	610	-8	812	820	-8	DL	1919	N971DL	LGA	MSP	170	1020	6	10	2013-01-01 06:00:00
2013	1	1	602	605	-3	821	805	16	MQ	4401	N730MQ	LGA	DTW	105	502	6	5	2013-01-01 06:00:00

Details

⚠ The class of service you searched may not be available on one or more flights

BNA - ORD

ORD - YVR

Flight 1 of 2

Flight 2 of 2

Nashville, TN to Chicago, IL Thursday, July 26, 2018

 $4:10 \text{ pm} \rightarrow 6:03 \text{ pm}$

Travel info

me· 1h 53m

AA 3246 CR7-Canadair RJ 700
Operated by SkyWest Airlines As American Eagle

Travel time: 1h 53m
Connection time: 2h 33m

Performand

On time: 52 Late: 43% Performance*

On time: 52%**

Late: 43%

Main Cabin

Meals: Beverage service

Booking code: V Class: Economy **Business**

Meals: Beverage service

Booking code: I Class: First

** The on-time arrival percentage for the selected flight is based on arrival within 14 minutes after the scheduled arrival as reported monthly to the U.S. Department of Transportation.

^{*} This is based on information from the month of May 2018

^{**} The on-time arrival percentage for the selected flight is based on arrival within 14 minutes after

nycflights13

nycflights13

What airline had the longest delays?


```
flights %>%
select(carrier) %>%
View()
```

One row per flight (many duplicate carriers)

One row per carrier (no duplicates)

	carrier
1	UA
2	UA
3	AA
4	B6
5	DL
6	UA
7	B6
8	EV
9	B6
10	ΔΔ

View(a	irline	s)	
	corrior ÷	ma ma	

	carrier	name
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	B6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.
7	F9	Frontier Airlines Inc.
8	FL	AirTran Airways Corporation
9	HA	Hawaiian Airlines Inc.
10	MO	Envoy Air

nycflights13

What airline had the longest delays?

MUTATING JOINS

ADD NEW VARIABLES TO ONE TABLE FROM MATCHING ROWS IN ANOTHER

MUTATING VS. FILTERING JOINS

- Mutating joins use information from one data set to add variables to another data set (like mutate())
- Filtering joins use information from one data set to extract cases from another data set (like filter())

MUTATING JOINS

INNERJOIN

- Matches pairs of observations whenever their keys are equal.
- Output of an inner join is a new data frame that contains the key, the x values, and the y values.
- Unmatched rows are not included in the result!
- This can be useful, but it can also be dangerous (you'll lose observations if you're not careful).

COMMON SYNTAX

Each join function returns a data frame / tibble.

PRACTICE DATA

```
instrument <- tibble(name = ...),
    plays = ...))</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

PRACTICE DATA

INNERJOIN

band %>% inner_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass

MUTATING JOINS

LEFT JOIN

- Preserves the original observations from first ("left") table, even when there isn't a match.
- Use whenever you look up additional data from another table.
- Should be your default join.

LEFT JOIN

band %>% left_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

MUTATING JOINS

RIGHT JOIN

- Like a left-join, but preserves observations in the second ("right") table.
- Usually no reason to use: just switch the order of the tables and make it a left join.
- Only situation where I might use a right join is at the end of a chain of piped operations.

RIGHT JOIN

band %>% right_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

MUTATING JOINS

FULL JOIN

 Preserves all observations from both tables, even when there isn't a match.

FULL JOIN

band %>% full_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

AIRLINE NAMES

	carrier
1	UA
2	UA
3	AA
4	B6
5	DL
6	UA
7	B6
8	EV
9	B6
10	ΔΔ

	carrier	name
1	9E	Endeavor Air Inc.
2	AA	American Airlines Inc.
3	AS	Alaska Airlines Inc.
4	B6	JetBlue Airways
5	DL	Delta Air Lines Inc.
6	EV	ExpressJet Airlines Inc.
7	F9	Frontier Airlines Inc.
8	FL	AirTran Airways Corporation
9	HA	Hawaiian Airlines Inc.
10	MO	Envoy Air

ACTIVITY 1

Which airlines had the largest arrival delays? Complete the code below.

```
flights %>%
    drop_na(arr_delay) %>%
    _____ %>%
    group_by(_____) %>%
    arrange(_____)
```

1. Join airlines to flights

2. Compute and order the average arrival delays by airline. Display full names, no codes.

Note: arrival delay NAs are cancelled flights

```
flights %>%
  drop_na(arr_delay) %>%
  left_join(airlines, by = "carrier") %>%
  group_by(name) %>%
  summarise(delay = mean(arr_delay)) %>%
  arrange(delay)
```

```
## # A tibble: 16 × 2
##
                                    delay
                            name
                           <chr> <dbl>
##
            Alaska Airlines Inc. -9.9308886
## 1
           Hawaiian Airlines Inc. -6.9152047
## 2
           American Airlines Inc. 0.3642909
             Delta Air Lines Inc.
## 4
                                  1.6443409
                   Virgin America 1.7644644
## 5
```

BACK TO THIS DATA...

```
instrument <- tibble(name = ...),
    plays = ...))</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

WHAT IF THE NAMES DON'T MATCH?

```
instrument <- tibble(artist = ...),
    plays = ...))</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

artist	plays
John	guitar
Paul	bass
Keith	guitar

WHAT IF THE NAMES DON'T MATCH?

Use the by argument to specify the different names.

```
band %>% left_join(instrument2, by = c("name" = "artist"))
```

Column name in the first data set

Column name in the second data set

band %>% left_join(instrument2, by = c("name" = "artist"))

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

artist	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

AIRPORT NAMES

airports %>% select(1:2)

flights %>% select(14:15)

	faa <chr></chr>	name <chr></chr>
	04G	Lansdowne Airport
	06A	Moton Field Municipal Airport
	06C	Schaumburg Regional
	06N	Randall Airport
	09J	Jekyll Island Airport
	0A9	Elizabethton Municipal Airport
	0G6	Williams County Airport
	0G7	Finger Lakes Regional Airport

air_time <dbl></dbl>
227
227
160
183
116
150
158
53

• Use flights and airports to compute the average arr_delay by destination airport (names only, not codes), and the number of flights that this is based on.

Arrange by average delay, from worst to best.

```
# A tibble: 101 x 3
                                mean_delay n_flights
   name
   <chr>
                                     <dbl>
                                              <int>
1 Columbia Metropolitan
                                                 106
                                      41.8
2 Tulsa Intl
                                      33.7
                                                 294
3 Will Rogers World
                                                 315
                                      30.6
4 Jackson Hole Airport
                                      28.1
                                                  21
```

```
flights %>%
 drop_na(arr_delay) %>%
 left_join(airports, by = c("dest" = "faa")) %>%
 group_by(name) %>%
  summarise(mean_delay = mean(arr_delay),
           n_flights = n()) \%>\%
  arrange(desc(mean_delay))
# A tibble: 101 x 3
                                mean_delay n_flights
   name
  <chr>
                                     <dbl> <int>
1 Columbia Metropolitan
                                      41.8
                                                 106
 2 Tulsa Intl
                                      33.7
                                                294
3 Will Rogers World
                                      30.6
                                                 315
4 Jackson Hole Airport
                                      28.1
                                                  21
```

- Can you figure out how to get the full name of **both** the origin airport (origin) and the destination airport (dest) in the flights table?
- Do as before, but group by both origin name and destination name.

```
# A tibble: 218 x 4
                                              mean_delay n_flights
 origin_name
                      dest_name
                                                    <dbl>
   <chr>
                       <chr>
                                                              <int>
1 Newark Liberty Intl Columbia Metropolitan
                                                     44.6
                                                                 94
 2 Newark Liberty Intl Mc Ghee Tyson
                                                     41.2
3 Newark Liberty Intl Tulsa Intl
                                                                294
                                                     33.7
4 Newark Liberty Intl Will Rogers World
                                                     30.6
                                                                315
```

```
1. First join gets
flights %>%
                 the origin name.
 drop_na(arr det_______
 left_join(select(airports, faa, origin_name = name),
            by = c("origin" = "faa")) %>%
 left_join(select(airports, faa, dest_name = name),
            by = c("dest" = "faa")) %>%
 group_by(origin_name, dest_name) %>%
  summarise(mean_delay = mean(arr_delay),
            n_flights = n()) %>%
                                      5. Group by both
  arrange(desc(mean_delay))
                                          origin and
```

2. Rename on the fly in select().

destination

3. Match "origin" column to "faa.

4. Second join gets the destination name by repeating the three steps.

FILTERING JOINS

FILTER ONE TABLE AGAINST THE ROWS OF ANOTHER

MUTATING VS. FILTERING JOINS

- Mutating joins use information from one data set to add variables to another data set (like mutate())
- Filtering joins use information from one data set to extract cases from another data set (like filter())

FILTERING JOINS

SEMI-JOIN

- Keeps all observations in first table that have a match in second table.
- Useful for matching filtered summary tables back to the original rows.

SEMI-JOIN

band %>% semi_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

instrument

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band
John	Beatles
Paul	Beatles

FILTERING JOINS

ANTI-JOIN

- Keeps the rows that **don't** have a match (inverse of semi-join).
- Most useful for diagnosing join mismatches.

ANTI-JOIN

band %>% anti_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

instrument

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band
Mick	Stones

AIRPORT NAMES

airports %>% select(1:2)

flights %>% select(14:15)

	faa <chr></chr>	name <chr></chr>
	04G	Lansdowne Airport
	06A	Moton Field Municipal Airport
	06C	Schaumburg Regional
	06N	Randall Airport
	09J	Jekyll Island Airport
	0A9	Elizabethton Municipal Airport
	0G6	Williams County Airport
	0G7	Finger Lakes Regional Airport

air_time <dbl></dbl>
227
227
160
183
116
150
158
53

 How many airports in airports are serviced by flights originating in New York (i.e. flights in our dataset?)

```
A tibble: 101 x 8
                                                            alt
   faa
                                               lat
                                                      lon
                                                                   tz dst
                                                                             tzone
         name
   <chr> <chr>
                                            <dbl>
                                                    <dbl> <int> <dbl> <chr> <</pre>
         Albuquerque International Sunport
                                                                            America/Denver
1 ABQ
                                             35.0 -107.
                                                                   -7 A
                                                           5355
 2 ACK
         Nantucket Mem
                                                                            America/New_York
                                                   -70.1
                                                             48
                                             41.3
                                                                   -5 A
                                                                            America/New_York
3 ALB
         Albany Intl
                                             42.7 -73.8
                                                            285
                                                                   -5 A
         Ted Stevens Anchorage Intl
                                             61.2 - 150.
                                                                            America/
 4 ANC
                                                            152
                                                                   -9 A
Anchorage
         Hartsfield Jackson Atlanta Intl
                                                                            America/New_York
5 ATL
                                             33.6 -84.4
                                                          1026
                                                                   -5 A
                                                                            America/Chicago
6 AUS
         Austin Bergstrom Intl
                                                                   -6 A
                                             30.2
                                                   -97.7
                                                            542
```

airports %>% semi_join(flights, by = c("faa" = "dest"))

```
# A tibble: 101 x 8
                                                          alt
                                                                 tz dst
                                             lat
                                                    lon
   faa
                                                                          tzone
         name
                                                  <dbl> <int> <dbl> <chr> <chr>
   <chr> <chr>
                                           <dbl>
                                                                           America/Denver
         Albuquerque International Sunport
 1 ABQ
                                            35.0 - 107.
                                                         5355
                                                                 -7 A
         Nantucket Mem
                                                                           America/New_York
 2 ACK
                                            41.3 -70.1
                                                          48
                                                                 -5 A
 3 ALB
         Albany Intl
                                            42.7 - 73.8
                                                          285
                                                                 -5 A
                                                                           America/New_York
        Ted Stevens Anchorage Intl
                                                                           America/Anchorage
 4 ANC
                                            61.2 - 150.
                                                          152
                                                                 -9 A
         Hartsfield Jackson Atlanta Intl
                                                                           America/New_York
 5 ATL
                                            33.6 - 84.4
                                                         1026
                                                                 -5 A
         Austin Bergstrom Intl
                                                                           America/Chicago
 6 AUS
                                            30.2 - 97.7
                                                          542
                                                                 -6 A
```

 What are the unique dest codes present in the flights table that have no corresponding information in the airports table?.

```
# A tibble: 4 x 1
dest

<chr>
1 BQN
2 SJU
3 STT
4 PSE
```

```
flights %>%
  anti_join(airports, c("dest" = "faa")) %>%
  distinct(dest) Removes rows with duplicate
```

Removes rows with duplicate values in a column, and (by default) discards other columns.

```
# A tibble: 4 x 1
dest

<chr>
1 BQN
2 SJU
3 STT
4 PSE
```

```
flights %>%
   anti_join(rename(airports, dest = faa)) %>%
   distinct(dest, .keep_all = TRUE)
                                                             Keep all columns with
                                                              .keep_all = TRUE
# A tibble: 4 x 10
             day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
 <int> <int> <int>
                                         <dbl>
                                                                       <dbl> <chr>
                   <int>
                                <int>
                                                 <int>
                                                              <int>
                                                                                    • • •
  2013
                     544
                                  545
                                                  1004
                                                               1022
                                                                        -18 B6
                                                                                    . . .
                     615
                                  615
  2013
                                                  1039
                                                               1100
                                                                        -21 B6
                                                                                    • • •
  2013
                     909
                                  810
                                            59
                                                                         16 AA
                                                  1331
                                                               1315
                                                                                    • • •
  2013
                    2353
                                 2359
                                            -6
                                                   425
                                                                445
                                                                        -20 B6
                                                                                    • • •
```

RECAP: JOINS

SET OPERATIONS

TWO TABLE VERBS

Combine Tables

Combine Variables

Use **bind_cols()** to paste tables beside each other as

bind_cols(...)

Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables.

A B C D left_join(x, y, by = NULL, b u 2 2 copy=FALSE, suffix=c(".x",".y"),...) Join matching values from y to x.

A B C D right_join(x, y, by = NULL, copy = a t 1 3 b u 2 2 FALSE, suffix=c(".x",".y"),...) Join matching values from x to y.

A B C D inner_join(x, y, by = NULL, copy = a t 1 3 b u 2 2 FALSE, suffix=c(".x",".y"),...)

Join data. Retain only rows with matches.

A B C D full_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),...) Join data. Retain all values, all rows.

A B.x C B.y D Use **by** = **c**("col1", "col2") to a t 1 t 3 b u 2 u 2 specify the column(s) to match

 $left_{join}(x, y, by = "A")$

A.x B.x C A.y B.y Use a named vector, by = a t 1 d w c("col1" = "col2"), to match on c v 3 a t columns with different names in each data set.

left_join(x, y, by = c("C" = "D"))

A1 B1 C A2 B2 Use **suffix** to specify suffix to give

c v 3 a t left_join(x, y, by = c("C" = "D"), suffix = c("1", "2")

Combine Cases

Use **bind_rows()** to paste tables below each other as they are.

DF A B C bind_rows(..., .id = NULL)

x b u 2 Returns tables one on top of the other as a single table. Set .id to a column name to add a column of the original table names (as pictured)

intersect(x, y, ...)

Rows that appear in both x and z.

setdiff(x, y, ...**)**

union(x, y, ...**)**

Rows that appear in x or z. (Duplicates removed). union_all() retains duplicates.

Use **setequal()** to test whether two data sets contain the exact same rows (in any order).

Extract Rows

Use a "Filtering Join" to filter one table against the rows of another.

A B C semi_join(x, y, by = NULL, ...**)** Return rows of x that have a match in y.

USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, ...**)** Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED.

SETOPERATIONS

Combine Tables

Combine Variables

Use **bind_cols()** to paste tables beside each other as

bind_cols(...)

Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables.

A B C D left_join(x, y, by = NULL, b u 2 2 copy=FALSE, suffix=c(".x",".y"),...) Join matching values from y to x.

A B C D right_join(x, y, by = NULL, copy = a t 1 3 b u 2 2 FALSE, suffix=c(".x",".y"),...) Join matching values from x to y.

A B C D inner_join(x, y, by = NULL, copy = a t 1 3 b u 2 2 FALSE, suffix=c(".x",".y"),...)

Join data. Retain only rows with matches.

A B C D full_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),...) Join data. Retain all values, all rows.

A B.x C B.y D Use **by** = **c**("col1", "col2") to a t 1 t 3 b u 2 u 2 specify the column(s) to match

 $left_join(x, y, by = "A")$

 $A.x \mid B.x \mid C \mid A.y \mid B.y \mid Use a named vector, by =$ a t 1 d w c("col1" = "col2"), to match on c v 3 a t columns with different names in each data set.

left_join(x, y, by = c("C" = "D"))

A1 B1 C A2 B2 Use **suffix** to specify suffix to give

c v 3 a t left_join(x, y, by = c("C" = "D"), suffix = c("1", "2")

Combine Cases

Use **bind_rows()** to paste tables below each other as

DF A B C bind_rows(..., .id = NULL)

x b u 2 Returns tables one on top of the other as a single table. Set .id to a column name to add a column of the original table names (as pictured)

intersect(x, y, ...)

d w 4

setdiff(x, y, ...**)**

union(x, y, ...**)**

Use **setequal()** to test whether two data sets contain the exact same rows (in any order).

Extract Rows

Use a "Filtering Join" to filter one table against the rows of another.

A B C semi_join(x, y, by = NULL, ...**)**

Return rows of x that have a match in y. USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, ...**)** Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL

NOT BE JOINED.

Set operations