

All Tracks > Math > Number Theory > Totient Function

Math

IVE EVENITS

Solve any problem to achieve a rank
 View Leaderboard

Topics:

Totient Function

Totient Function

TUTORIAL

PROBLEMS

What is Euler's Totient Function?

Number theory is one of the most important topics in the field of Math and can be used to solve a variety of problems. Many times one might have come across problems that relate to the prime factorization of a number, to the divisors of a number, to the multiples of a number and so on.

Euler's Totient function is a function that is related to getting the number of numbers that are coprime to a certain number X that are less than or equal to it. In short , for a certain number X we need to find the count of all numbers Y where $\gcd(X,Y)=1$ and $1\leq Y\leq X$.

A naive method to do so would be to **Brute-Force** the answer by checking the gcd of X and every number less than or equal to X and then incrementing the count whenever a GCD of 1 is obtained. However, this can be done in a much faster way using Euler's Totient Function.

According to Euler's product formula, the value of the Totient function is below the product over all prime factors of a number. This formula simply states that the value of the Totient function is the product after multiplying the number N by the product of (1-(1/p)) for each prime factor of N.

So,
$$\phi(n) = n \prod_{p ext{ prime } p \mid n} \left(1 - rac{1}{p}
ight)$$

Algorithm steps:

- Generate a list of primes.
- While dealing with a certain N, check and store all the primes that perfectly divide N.
- Now, it is just needed to use these primes and the above formula to get the result.

Implementation:

```
set<> primes;
static void mark(int num,int max,int[] arr)
    int i=2,elem;
    while((elem=(num*i))<=max)</pre>
    {
         arr[elem-1]=1;
         i++;
    }
}
GeneratePrimes()
{
    int arr[max_prime];
    for(int i=1;i<arr.length;i++)</pre>
    {
         if(arr[i]==0)
         {
              list.add(i+1);
              mark(i+1,arr.length-1,arr);
         }
    }
}
main()
{
    GeneratePrimes();
    int N=nextInt();
    int ans=N;
    for(int k:set)
    {
         if(N%k==0)
              ans*=(1-1/k);
    print(ans);
}
```

There are a few subtle observations that one can make about Euler's Totient Function.

- The sum of all values of Totient Function of all divisors of N is equal to N.
- The value of Totient function for a certain prime P will always be P-1 as the number P will always have a GCD of 1 with all numbers less than or equal to it except itself.

• For 2 number A and B, if GCD(A,B) == 1 then $Totient(A) \times Totient(B) =$ $Totient(A \cdot B)$.

Contributed by: Anand Jaisingh

Did you find this tutorial helpful?

TEST YOUR UNDERSTANDING

Euler Totient Function

In number theory, the totient Φ of a positive integer N is defined as the number of positive integers less than or equal to N that are co-prime to N.

Given an integer N. Compute the value of the totient Φ .

Input:

First and the only line of input contains single integer N.

Output:

Print the $\Phi(N)$ in a single line.

Constraints:

 $1 \le N \le 1000000$


```
5/17/2017
```

```
return 0;
6
7
   }
8
```

1:1

■ Provide custom input

COMPILE & TEST

SUBMIT

Press Ctrl-space for autocomplete suggestions.

POWERED BY code table

COMMENTS (4) 2

SORT BY: Relevance▼

Join Discussion...

Cancel

Post

abhishek vanjani 5 months ago

if k==int 1/k==0 ans=N always, can someone plz reply

▲ 0 votes • Reply • Message • Permalink

Mouad NACIRI @ Edited 5 months ago

Yes you are right, the example code is incorrect:) Use float

Instead of calculating "1 - 1/k" calculate "(k-1)/k" since 1 - 1/k == (k-1)/kso the formula phi(n) = n * (Product of (k-1)/k) where k is primeand since all k are divisors of n, u can divide ur n by k and then multiply it by (k-1) This is an example: http://pastebin.com/KACa2Pz9 (AC in the example problem)

▲ 1 vote • Reply • Message • Permalink

Sushant Gupta 5 months ago

Euler's Totient function seems to be way slower than using normal method if there is only a single n

▲ 0 votes • Reply • Message • Permalink

About Us

EMILIO WUERGES 16 days ago

No, because when you only need to generate primes up to sqrt(N).

Hackathons

▲ 0 votes • Reply • Message • Permalink

Talent Solutions

University Program Developers Wiki Blog

Press Careers Reach Us

Terms and Conditions | Privacy |© 2017 HackerEarth