Vytěžování dat

Filip Železný

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA)

7. dubna 2009

Reálné příznaky

• Lineární/polynomiální modely: příznaky jsou reálná čísla

Nominální příznaky

teplota	bolest svalů	diagnóza
zvýšená	ne	nachlazení
normální	ne	hypochondr
horečka	ano	chřipka

Nominální příznaky

teplota	bolest svalů	diagnóza
zvýšená	ne	nachlazení
normální	ne	hypochondr
horečka	ano	chřipka

• Lze převést na příznaky s oborem $\{0,1\}$: reprezentace "1 z n"

	teplota		bolest		diagnóza	
normální	zvýšená	horečka	svalů	nachlaz.	chřipka	hypoch.
0	1	0	0	1	0	0

- Umožňuje využití lineárních resp. polynomiálních klasifikátorů, ale nešikovné.
- Klasifikační modely přímo pro nominální příznaky?

Filip Železný (ČVUT) Vytěžování dat 7. dubna 2009 3 / 24

Rozhodovací strom

- Klasifikační model
- Uzly: testy příznaků, hrany: možné hodnoty

Rozhodovací strom

- Klasifikační model
- Uzly: testy příznaků, hrany: možné hodnoty
- Klasifikace: cesta z kořene do listu podle hodnot příznaků

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Rozhodovací strom

- Klasifikační model
- Uzly: testy příznaků, hrany: možné hodnoty
- Klasifikace: cesta z kořene do listu podle hodnot příznaků
- Jak strom zkonstruovat?

Rekurzivní rozdělování: příklad

• 2 binární příznaky

$$x_1, x_2 \in \{+, -\}$$

- Instance spadají do 3 tříd:
 - 10 červených instancí
 - 8 zelených instancí
 - 5 modrých instancí
- Všech 10 s $x_1 = + \text{ má } y =$

10 8 5

Rekurzivní rozdělování: příklad

- Všech 10 s $x_1 = + \text{ má } y =$
- Zbývá 13 instancí s $x_1 = -$

Rekurzivní rozdělování: příklad

- Všech 8 s $x_2 = + \text{ má } y =$
- Všech 5 s $x_2 = \text{ má } y = \bullet$

Algoritmus pro tvorbu rozhodovacího stromu

```
TDIT(D,I) /* Top Down Induction of Decision Trees */
Input: D trénovací data, I indexy příznaků
if všechny instance v D mají stejnou třídu y then return uzel označený y
else
    if I = \emptyset then return uzel označený většinovou třídou v D
    else
        vyber i \in I a vytvoř uzel označený x_i
        for \forall v_i \in Range(x_i) /* konečný obor hodnot x_i */ do
             E_i = všechny instance z D u nichž x_i = v_i
            V_yveď z uzlu x_i hranu označenou v_i
            if E_i = \emptyset then připoj list na hranu v_i označený většinovou třídou v D
            else
                 připoj výsledek TDIT(E_i, I \setminus \{i\}) na hranu v_i
            end
        end
    end
end
return vytvořený strom s kořenem x_i
```

TDIT: rekurzivní volání

Výběr příznaku

- Jak implementovat příkaz "vyber $i \in I$ " v algoritmu TDIT?
- Příklad

- Třída: barva
- Příznaky: tvar, velikost, průhlednost
- Začínáme konstruovat strom.
- Jaký příznak zvolit první?
- Měl by co 'nejčistěji' dělit data podle tříd

Výběr příznaku

9 / 24

Entropie

Entropie množiny instancí D s t třídami

$$H(D) = \sum_{i=1}^{t} -p_i \log_2 p_i$$

- $p_1, p_2 \dots p_t \dots$ poměrné velikosti tříd (v počtu instancí)
- Minimální H(D) = 0, pokud jsou všechny příklady v jedné třídě.
- Maximální $H(D) = \log_2 t$, pokud $p_1 = p_2 = \ldots = p_t$.

Filip Železný (ČVUT)

Entropie

$$p_{\mathsf{zelená}} = p_{\mathsf{\check{c}erven\acute{a}}} = \frac{1}{2}$$

$$H(D) = -rac{1}{2}\log_2\left(rac{1}{2}
ight) - rac{1}{2}\log_2\left(rac{1}{2}
ight) = 1$$

Entropie po rozdělení množiny

$$E_{\text{velk\'e}} = \text{velk\'e instance}$$

$$p_{\text{zelená}} = p_{\text{červená}} = 0.5$$

$$H(E_{\text{velk\'e}}) = 1$$

$$E_{\rm mal\acute{e}}={\rm mal\acute{e}}$$
 instance

$$p_{\text{zelená}} = p_{\text{červená}} = 0.5$$

$$H(E_{\mathsf{mal\'e}}) = 1$$

Vážený průměr entropií

$$\sum_{j \in \{\mathsf{velk\acute{e}}, \mathsf{mal\acute{e}}\}} \frac{|E_j|}{|D|} \cdot H(E_j) = \frac{2}{4} \cdot 1 + \frac{2}{4} \cdot 1 = 1$$

Entropie po rozdělení množiny

$$E_{\text{průhledné}} = \text{průhledné instance}$$

$$E_{\mathsf{nepr}\mathring{\mathsf{u}}\mathsf{hledn}\acute{\mathsf{e}}} = \mathsf{nepr}\mathring{\mathsf{u}}\mathsf{hledn}\acute{\mathsf{e}} \; \mathsf{instance}$$

$$p_{\mathsf{zelená}} = 1$$

$$p_{\mathsf{zelen\acute{a}}} = 1/3$$

$$p_{
m \check{c}erven\acute{a}}=0$$

$$p_{\text{červená}} = 2/3$$

$$H(E_{\text{průhledné}}) = 0$$

$$H(E_{\mathsf{nepr}\mathring{\mathsf{u}}\mathsf{hledn}\acute{\mathsf{e}}}) = 0.92$$

Vážený průměr entropií

$$\sum_{j \in \{\text{průhledné}, \text{neprůhledné}\}} \frac{|E_j|}{|D|} \cdot H(E_j) = \frac{1}{4} \cdot 0 + \frac{3}{4} \cdot 0.92 = 0.69$$

13 / 24

Entropie po rozdělení množiny

$$E_{\text{hranaté}} = \text{hranaté instance}$$

$$p_{\mathsf{zelená}} = 1$$

$$p_{\text{červená}} = 0$$

$$H(E_{\text{hranaté}}) = 0$$

$E_{\text{kulat\'e}} = \text{kulat\'e instance}$

$$p_{\text{zelená}} = 0$$

$$p_{
m \check{c}erven\acute{a}}=1$$

$$H(E_{\text{kulat\'e}}) = 0$$

Vážený průměr entropií

$$\sum_{j \in \{\mathsf{hranat\acute{e}}, \mathsf{kulat\acute{e}}\}} \frac{|E_j|}{|D|} \cdot \mathsf{H}(E_j) = \frac{2}{4} \cdot 0 + \frac{2}{4} \cdot 0 = 0$$

Zisk entropie

$$\Delta E(D, x_i) = H(D) - \sum_{v_j \in Range(x_i)} \frac{|E_j|}{D} H(E_j)$$

- Rozdíl entropie původní množiny D a váženého průměru entropií množiny rozdělené hodnotami příznaku x_i
- Jak implementovat příkaz "vyber $i \in I$ " v algoritmu TDIT?
 - Vybereme i, které maximalizuje $\Delta E(D, x_i)$
- Pozn: pro výběr i není sčítanec H(D) důležitý (nezávisí na i).

Zisk entropie

- Jak implementovat příkaz "vyber $i \in I$ " v algoritmu TDIT?
 - Vybereme i, které maximalizuje $\Delta E(D, x_i)$

Složitost rozhodovacího stromu

Filip Železný (ČVUT)

- Algoritmus TDIT se snaží minimalizovat trénovací chybu za cenu velké složitosti (košatosti) stromu
- Stále platí kompromis mezi složitostí modelu a trénovací chybou!

- Vymyslete úpravu algoritmu TDIT omezující složitost stromu
 - Upravte podmínku "if všechny instance v D mají stejnou třídu y".

7. dubna 2009

17 / 24

Ordinální příznaky

Ordinální veličina

- Veličina, jejíž obor hodnot je uspořádán
- Např. přirozená (nebo reálná) čísla

$$1 < 2 < 3 < \dots$$

• ale i např.

$$n$$
ízký $<$ střední $<$ vysoký

Ordinální příznaky

Pro ordinální příznaky obvykle test

v uzlech, kde h je zvolená hraniční hodnota

Převod na nominální příznaky

Před tvorbou stromu můžeme každý ordinální příznak, např.

teplota

převést na množinu nominálních příznaků

teplota
$$> h_1$$
, teplota $> h_2, \ldots$, teplota $> h_n$

z nichž každý má binární obor hodnot.

- Co jsou $h_1, h_2, ..., h_n$?
- V nejjednodušším případě celý obor hodnot původního příznaku, je-li konečný (a malý).
- Obvykle ale jen některé z oboru hodnot. Které?

Diskretizace

U některých veličin se hraniční hodnoty 'nabízejí'.

$x_i < 36.5$	podchlazení
$36.5 \le x_i < 37$	normální teplota
$37 \le x_i < 38$	zvýšená teplota
$38 \le x_i < 42$	horečka
$42 \leq x_i$	smrt

- Zde tedy uvažujeme hraniční hodnoty {36.5, 37, 38, 42}
- Pozn.: převedení reálné veličiny (teplota) na veličinu s konečným oborem hodnot = diskretizace.
- V obecném případě vhodné hraniční hodnoty předem neznáme.

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Diskretizace: 3 obecné způsoby

Intervaly stejné délky

Intervaly stejné pravděpodobnosti

Intervaly obsahující instance stejné třídy (nejužívanější pro stromy)

Separace: srovnání

Lineární klasifikátor (nelze rozdělit)

Separace: srovnání

Kvadratický klasifikátor

Separace: srovnání

Rozhodovací strom

Separace rozhodovacím stromem

Separace rozhodovacím stromem

Separace rozhodovacím stromem

