Assignment-Regression Algorithm

Date: 19.09.2024

1. Problem Statement: Prediction of Insurance Charges based on several input parameters

2. About the Dataset:

No of Columns: 6

Input – Age, Sex, BMI, No of Children, Smoker

Output -Insurance Charges

No of rows: 1338

3. Preprocessing Method:

Categorical data (Nominal) to Numerical data for the inputs **One hot Encoding** for column expansion

- 1. Sex Male/Female
- 2. Smoker (Yes/No)

4. Sample Data: Insurance Premium:

- 1. Multiple Linear Regression R^2 Value = 0.7894
- 2. Support Vector Machine:

S.No	Regularization	R ² Value for different Kernel				
	Parameter 'C'	Linear	Poly	rbf	sigmoid	
1	1	-0.010	-0.075	-0.083	-0.075	
2	10	0.462	0.038	-0.0320	0.039	
3	100	0.628	0.617	0.320	0.527	
4	1000	0.764	0.856	0.810	0.287	
5	3000	0.741	0.859	<mark>0.866</mark>	-2.724	

For the given dataset, c=3000; Kernel = "rbf" fits data better; $r^2 = 0.866$

3. Decision Tree:

S.No	Criteria	Splitter	R_Value
1	squared_error	best	0.692
2	squared_error	random	0.712
3	friedman_mse	best	0.691
4	friedman_mse	random	0.718
5	absolute_error	best	0.663
6	<mark>absolute_error</mark>	<mark>random</mark>	0.739
8	poisson	best	0.662
9	poisson	random	0.728

For the given dataset, criteria = $absolute_error$; splitter = random fits data better; $r^2=0.739$

4. Random Forest

S.No	Criteria	n_esimators	R_Value
1	squared_error	10	0.843
2	squared_error	100	0.855
3	friedman_mse	10	0.837
4	<mark>friedman_mse</mark>	100	0.85 <mark>5</mark>
5	absolute_error	10	0.840
6	absolute_error	100	0.854
8	poisson	10	0.823
9	poisson	100	0.852

For the given dataset, criteria = $Friedman_mse$; n_estimators = 100 data better; r^2 =0.855

5. **SVR** seems to be the better model since it gives the highest R^2 value among all the algorithms – R^2 Value = 0.866