Masterclass: Introduction to Deep Learning

Kyle Swanson

Today

- Machine learning recap
- What is deep learning?
- How do neural networks work?
- Deep learning applications
- Case study
 - Deep learning for breast cancer detection

Machine learning recap

- Machine learning: "Field of study that gives computers the ability to learn without being explicitly programmed." (Arthur Samuel, 1959)
- Types of problems
 - Classification
 - Regression
 - Generation
- Types of learning
 - Supervised learning
 - Reinforcement learning
 - Unsupervised learning
- Applications
 - Translation, chatbots, facial recognition, stock market prediction, movie recommendation, etc.

What is deep learning?

- **Deep learning:** A subfield of machine learning concerned with algorithms inspired by the structure and function of the brain.
- These algorithms are called neural networks

From one neuron to many

Universal approximation theorem

- **Math:** A single layer neural network with a finite number of neurons can approximate continuous functions on compact subsets of \Re^n
- **English:** A single layer neural network can approximate any reasonable function (i.e. it can compute virtually anything)
- Reality: Approximating complex functions with a single layer is hard
- Solution:

From one layer to many

Multiple layers build abstractions

How do neural networks work? - neurons

- Each neuron computes a weighted sum of the inputs
- Different neurons have different weights, meaning neurons focus on different features of the input
- A non-linear function is applied to the weighted sum

$$v_k = \sum_{i=1}^n w_i x_i$$

$$y_k = \phi(v_k)$$

How do neural networks work? - prediction

- Output of one layer becomes input of the next layer
- Final prediction is the output of the last layer
 - Special non-linear function on last layer to output probability distribution (softmax)

How do neural networks work? - learning

- Different weights lead to different predictions
- How do we learn the weights to make the correct prediction?
- Define a loss function J(w)
 - A function of the weights of the network
 - Quantifies how far away we are from the correct prediction
 - Lower loss is better
- Backpropagation algorithm (calculus)
 - Determine how changing each weight changes the loss
 - Compute the gradient of the loss with respect to the weight
 - Change the weight to minimize the loss
 - Perform a gradient descent update

$$w_{new} = w_{old} - \eta \cdot \nabla_w J(w)$$

How do neural networks work? - learning

Deep learning for breast cancer detection

Overview

- Statistics
 - 266,120 cases annually in the US
 - 99% survival for local cancer
 - 26% survival for metastatic cancer
 - Early detection is crucial

About 1 in 8 women in the U.S.

will get breast cancer in her lifetime.

- US recommends women receive annual mammograms starting at age 50
- **Problem:** radiologists are imperfect
 - <u>False positives:</u> Over a 10-year period, half of women receiving annual mammograms will be told they have cancer
 - False negatives: 1 in 5 cases of breast cancer are missed by radiologists
- Goal: Use deep learning to improve cancer detection in mammography

Related work - object detection

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 1.2 million images, 1000 categories

Related work - object segmentation

Related work - cancer pathology

Tumor probability

What makes mammography hard?

- Large images
 - o 3000 x 4000 pixels rather than 256 x 256 pixels
 - GPU memory is limited
- Small region of interest
 - Cancers are typically 200 x 200 pixels
 - That's only 0.3% of the image!
 - Non-cancer pixels significantly outweigh cancer pixels
- Masses can be benign or malignant
- One view is not enough
 - o Radiologists see 2 or more views of the same breast
- Current mammogram is not enough
 - Radiologists rely on prior mammograms for comparison

How do we solve these problems?

- Start with an easier task
 - Predict risk of cancer
 - Global rather than local image feature
 - Use breast density as a proxy for risk
 - Standard methods achieve excellent results
- Proceed to the real task
 - Detect cancer itself
 - Current methods: Solve image size problems with patch-aggregator model
 - Future work: Use multiple views, prior images

Density prediction - overview

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

<25% Density
Fatty Breast Tissue

Control Density
Scattered Density
Scattered Density
Heterogeneously Dense
Extremely Dense

- Density as a risk factor
 - Women with high density breasts are 4-5 times more likely to get breast cancer than women with low density breasts
 - High density makes detecting cancer on mammograms more difficult
- Legislation: Many US states require that doctors notify women found to have dense breasts
- Density rating
 - 1-4 scale from low to high
 - 1,2 = low density
 - \circ 3,4 = high density
- Highly subjective: Doctors across the US disagree on density ratings
- Our aim: Provide density ratings consistent with a top hospital (MGH)

Density prediction - methods

Convolutional Neural Network (CNN)

Density prediction - methods

Deep Residual Network (ResNet)

Density prediction - results (preliminary)

- Low vs. high: 85.0% model accuracy vs. 80.5% human accuracy
- 4-way: 71.0% model accuracy vs. 66.3% human accuracy

Cancer detection - methods

Patch-aggregator model

Cancer detection - future work

Multi-view Multi-time

Summary

- Machine learning recap
- What is deep learning?
- How do neural networks work?
- Deep learning applications
- Case study
 - o Deep learning for breast cancer detection
- Questions?
- Email: swansonk@mit.edu

