MODELO RELACIONAL

Visão relacional de um banco de dados acadêmico:

DEPARTAMENTO

CODEPT	NODEPT
01	DCC
O2	Matemática
O3	Física

PROFESSOR

DISCIPLINA

NDISC	NODISC	N CRED	NPROF
1	Bancos de dados	4	O5
2	construção de compiladores	4	O3
3	Cálculo 1	4	07
4	Mecânica Quantica	3	O6
5	Técnicas de programação	3	O2

NPROF	NOPROF	CARGO	CODEPT
O2	Nivio Ziviani	Ad	01
O3	Daniel Arenas	Ad	01
04	Chico Buarque	Au	02
O5	Alberto Laender	Ad	01
06	Isaac Newton	Ti	O3
07	Frederich Gauss	Ti	02

ALUNO MATRICULA

NALUNO	NOALUNO	NPROF
01	Maria Bonita	O2
O2	Felipe Massa	07
O3	Don Quixote	06
O4	Sancho Panza	O5
O5	Dulcinea del Tobozo	O2

CODISC	NALUNO	NOTA
O3	01	2
04	01	1
O3	O2	4
02	O3	5
O4	O3	5
O5	O3	5
O3	O3	5
01	O4	3

Simples, poderoso e um modelo formal para representar a realidade. Linguagens de consulta poderosas e simples.

MODELO RELACIONAL

Ted Codd → 1970 (IBM San José)

F					FP		
F#	FNOME	STATUS	CIDADE		F#	P#	QUANT
F1	Jose	20	São Paulo		F1	P1	450
F2	Joâo	10	ВН		F1	P2	700
F3	Paulo	30	Rio		F1	P3	430
					F2	P1	300
					F2	P2	400
					F2	P3	200
P							
P#	PNOME	COR	PESO	CIDADE			
P1	Parafuso	Prateado	12	São Paulo			
P2	Perno	Prateado	17	Rio			
P3	Martelo	Dourado	17	ВН			
P4	Prego	Dourado	13	Porto Alegre			

Modelo Relacional

 Um banco de dados relacional consiste numa coleção de tabelas cada uma associada a um único nome.

```
Tabela semelhante arquivo seqüencial
Línhas ←→ registros ←→ tuplas
Colunas ←→ campos ←→ atributos
```

- Uma tabela também tem correspondência com o conceito matemático de relação.
- Os atributos de cada tabela toman valores de conjuntos chamados de domínios.
- Estes valores são atômicos ou indivisíveis

Conceitos

Grau

RELAÇÕES

Exemplos de domínios são:

- Números_Fornecedores: Conjunto de códigos possíveis dos fornecedores
- Nomes: Conjunto de nomes de pessoas
- Nomes_Peças: O conjunto de nomes de peças
- Notas: O conjunto de valores de 0, 10,....50.
- Cores_Peças: O conjunto de possíveis cores que as peças podem ter
- O domínio do atributo FNOME seria nomes
- O domínio do atributo COR seria Cores_Peças

RELAÇÕES

- Se D1= Números_Fornecedores (domínio de F#)
 - D2= Nomes (domínio de FNOME)
 - D3= Notas (domínio de STATUS)
 - D4= Nomes_Cidades (domínio de CIDADE)
- A tabela F é um subconjunto do produto cartesiano
 X Di
- cada 4-tupla (U1, U2, U3, U4) ∈ S, U1 ∈ D1, U2 ∈ D2, U3
 ∈ D3, U4 ∈ D4 e estão semanticamente relacionados
- As matemáticas definem uma relação como um subconjunto de um produto cartesiano de conjuntos
 definição de tabela

Modelo Relacional

Números_Fornecedores

Números_Peças

F#	P#
F1	P1
F1	P2
F1	P3
F2	P1
F2	P2
F2	P3
F3	P1
F3	P2
F3	P3

F#	P#
F	PI
FI	P3
F2	PI
F2	P2
F2	P3

Números_Fornecedores X

Números_Peças

Relação

provisional

Modelo Relacional

- DEPENDENTE(CódigoCliente, Nome, TipoRelação, Sexo, DataNasc)
 - É a relação esquema.
 - DEPEDENTE é o nome da relação.
 - O Grau da Relação é 5.
 - Os Domínios dos Atributos são:
 - dom(CódigoCliente) = 4 dígitos que representam o Código do Cliente.
 - dom(Nome) = Caracteres que representam nomes dos dependentes.
 - dom(TipoRelação) = Tipo da Relação (filho, esposa, pai, mãe e outras) do dependente em relação do seu cliente.
 - dom(Sexo) = Caractere: (M: Masculino, F: Feminino) do dependente.
 - dom(DataNasc) = Datas de Nascimento do dependente.

Notação Relacional

- A relação esquema R de grau n:
 - \blacksquare R(A₁, A₂, ..., A_n).
- A tupla t em uma relação r(R) :
 - $t = \langle v_1, v_2, ..., v_n \rangle$
 - v_i é o valor do atributos A_i.
- t[A_i] indica o valor v_i em t para o atributo A_i.
- t[A_u, A_w, ..., A_z] indica o conjunto de valores <v_u, v_w, ..., v_z> de t correspondentes aos atributos A_u, A_w, ..., A_z de R.

Exemplo

- A figura apresenta a Relação DEPENDENTE
- □ t = <0001, Ana, Filha, F, 03/03/2003> é uma tupla
- t[CódigoCliente] = 0001
- t[Nome, Sexo] = <Ana, F>.

RELAÇÕES

TODA A TEORIA ELEMENTAL DE RELAÇÕES PODE SER USADA PARA TRATAR VÁRIOS PROBLEMAS PRÁTICOS

Alguns conceitos

Instância de uma relação = tabela com filas e colunas Conjuntos destas instâncias = extensão do BD Esquema de uma relação = descrição da tabela Exemplo: F= (F#, Fnome, status, cidade) Conjuntos de estes esquemas —— esquema do BD ou "intension"

- A noção de identificador do modelo ER pode ser aplicado aqui. Identificador é chamado de chave.
- Superchave, chave-candidata e chave primária.

- Superchave: Subconjunto de atributos de uma relação cujos valores são distintos:
 - t₁[SC] ≠ t₂[SC]
- Chave: É uma Superchave mínima
- Chave-Candidata: Chaves de uma relação
- Chave-Primária: Uma das Chaves escolhidas entre as Chaves-Candidatas de uma relação.

- Superchave trivial da relação DEPENDENTE:
 - SC_a = { CódigoCliente, Nome, TipoRelação, Sexo, DataNasc }
- Outras superchaves:
 - SC_b = { CódigoCliente, Nome, TipoRelação, Sexo }
 SC_b = SC_a − { DataNasc }
 - SC_c = { CódigoCliente, Nome, TipoRelação, DataNasc }
 SC_c = SC_a { Sexo }
 - SC_d = { CódigoCliente, Nome, TipoRelação }
 SC_d = SC_a { DataNasc, Sexo }
 - SC_e = { CódigoCliente, Nome }
 SC_e = SC_a { DataNasc, Sexo , TipoRelação}

- SC_e uma superchave mínima:
 - Pois não é possível retirar de SC_e nenhum de seus atributos: CódigoCliente ou Nome, e o subconjunto resultante continuar com a propriedade de superchave.
- Assim, SC_e, além de ser superchave, é uma chave da relação esquema DEPENDENTE.

- Uma relação esquema pode possuir mais de uma chave.
- Nestes casos, tais chaves são chamadas de chaves-candidatas.
- O esquema da relação EMPREGADO possui três chaves-candidatas:

EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

```
CC1 = { Código }
```

- As chaves-candidatas são candidatas à chaveprimária.
- A chave-primária é a escolhida, dentre as chaves-candidatas, para identificar de forma única, tuplas de uma relação.
- A chave-primária é indicada na relação esquema sublinhando-se os seus atributos.

EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

RESTRIÇÕES DE INTEGRIDADE

- Um esquema relacional do banco de dados S é um conjunto de esquemas de relações S= {R1, R2, ... Rn } e um conjunto de restrições de integridade. (IC).
- Uma instância relacional do banco de dados, DB de S, é um conjunto de instâncias de relações. DB= {r1, r2, ..rn} tal que ri é uma instância de Ri e tal que os Vi's satisfazem IC.
- Versões iniciais do modelo relacional obrigavam que o mesmo conceito do mundo real, quando seja representado por um atributo, deviam ter nomes de atributos iguais em todas as relações.

Classificação Restrições

- Integridade de entidade Nenhum valor de uma chave primária pode ser nulo
- Integridade referencial Atributo que é CHAVE EXTRANGEIRA. Só pode ter valores nulos ou iguais aos de uma chave primária de alguma relação.
- O Uma chave estrangeira pode referenciar a sua própria relação
- O LDD deveria incluir facilidades para especificar vários tipos de restrições para que o SMBD automaticamente as suporte.
- SMBDs em geral suportam a integridade referencial (comerciais)
- Algumas Restrições de integridade semânticas são suportadas pelas SMBDs comerciais

Restrição de Integridade Referencial

Restrições de integridade referencial exibidas no esquema de um banco de dados relacional EMPRESA.

Restrições inerentes

Regra da 1NF.

- A ordem das tuplas não é significativo.
- Regra da tupla única.
- A ordem dos atributos não é significativo

Restrições Explícitas

- Chave primária;
- Unicidade (UNIQUE)
- Obrigatoriedade
- Integridade Referencial
- o Restrições de rejeição:
 - Verificação (Check) sobre um único elemento.
 - Asserção [Assertion) afeta vários els.
- Disparadores (Triggers).

ALGUNS CONCEITOS

 ○ Representação do esquema → definição de tipos num L.P

```
F = (F#, Fnome, status, cidade)
FP = (F#, P#, quantidade)
P = (P#, Pnome, cor, peso, cidade)
```

- o conceito de CHAVE é similar ao de MER.
- Única diferença → Todos os atributos de uma chave pertencem à relação

CARACTERÍSTICAS

- uma relação é definida como um conjunto de tuplas——
 nenhum ordem entre elas (a nível lógico). A nível físico?
- De acordo com a definição de relação uma n-tupla é uma lista ordenada de n valores. Entretanto, a nível lógico, a ordem dos atributos, e valores dos atributos não é importante, una tupla pode ser considerada como um conjunto { ([atributos] , [valor]) , ...} Primeira definição simplifica a notação.
- Valores nas tuplas são atômicas. Primeira forma normal. Pesquisas → NF2 ou "nested relations"
 Valores nulos → Valor desconhecido ou não se aplicam. Complicam a manipulação
- Uma relação representa uma entidade o "relação".
 - interpretada como um predicado PROLOG
- Os domínios que formam uma relação não são necessariamente diferentes.