东南大学 2010-2011 学年第二学期《高等数学(上)》 期中考试试卷

课程名称	高等数	学 A、B(期	中) 考试	学期 10	11-2	得分	
适用专业		科类	考试形式_	闭卷	考试时 ——	间长度 120	0 分包
题号	_	=	Ξ	四	五	六	t
得分							
一.填空题(每个空格 4 分, 本题满分 24 分)							
1. $\lim_{x\to 0} \frac{\sqrt{1}}{}$	$\frac{x}{x} - \sqrt{1}$	<u>- x</u> =	;				
2. 已知 f (:	$\begin{pmatrix} x \end{pmatrix} = \begin{cases} (1+2x) \\ a e^x \end{cases}$	$(2x)^{\frac{3}{\sin x}}, x > 0$	在 x = 0 处	连续,则 a = _		;	
3. 设f(x):	= arctan e ^x	,则微分df (.	x) =	_		;	
4. 设 f(x):	$=x^{2010}\cos$	x,则f ⁽²⁰¹⁰	⁽⁰⁾ (0) =	14	;		
5. 设 $y = y(x)$ 是由方程 $y = 1 - xe^{2y}$ 所确定的隐函数,则 $y'(0) =;$							
6. 曲线 $x^{\frac{3}{2}}$	$+ y^{\frac{3}{2}} = 16 \tilde{4}$	在点(4,4)处	的切线方程》	h			
二.单项选择	题(每小是	0.4分,本题	[满分 12 分)				
7. 当 $x \to 0$	时, x-s	in ax 与x² lı	n(1 – bx) 是等	等价无穷小,	则]]
(A) $a=1,b$	$=-\frac{1}{6} \qquad ($	B) a = 1, b =	$=\frac{1}{6}$ (C) a	=-1, b=-1	$\frac{1}{6}$ (D) $a =$	$=-1,b=\frac{1}{6}$	
8. 函数 f(x	. 2	$\frac{1}{x-1}$ 的 $\frac{\pi x}{2}$	间断点[]			

9. 设 f(x) 在 x = a 的邻域内有定义,则 f(x) 在 x = a 可导的一个充分条件是 []

(C) 都是无穷间断点 (D) 分别是可去间断点、跳跃间断点与无穷间断点

(A) 都是可去间断点 (B) 都是跳跃间断点

$$\text{(A)} \quad \lim_{h \to +\infty} h \Bigg(f \bigg(a + \frac{1}{h} \bigg) - f(a) \Bigg)$$
存在
$$\text{(B)} \quad \lim_{h \to 0} \frac{f(a+2h) - f(a+h)}{h}$$
 存在

(B)
$$\lim_{h\to 0} \frac{f(a+2h)-f(a+h)}{h}$$
存在

(C)
$$\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$$
存在 (D) $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在

(D)
$$\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$$
存在

三.计算题(每小题8分,本题满分32分)

10. 求极限
$$\lim_{x\to 0^+} \left(1 - \frac{1}{x} e \right)^x$$

11.求极限
$$\lim_{n \to \infty} \left(\frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n} \right)$$

12. 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - 2 \arctan t \\ y = \frac{t^3}{3} - t \end{cases}$$
 所确定,试求 $\frac{dy}{dx}$ 、 $\frac{d^2y}{dx^2}$.

13. 写出函数 $f(x) = x \ln x$ 在 x = 1 处的带有 Lagrange 余项的 3 阶 Taylor 公式.

四(14). (13分)设 $_a$ 和 $_b$ 都是实常数, $_b$ <0,定义 $_f(x)$ =

回答下列问题,并说明理由。

- (1) 当a、b 满足什么条件时,f(x) 不是连续函数?
- (2) 当a、b 满足什么条件时,f(x) 连续,但不可导?
- (3) 当a、b 满足什么条件时,f(x) 可导,但f'(x) 在区间[-1,1] 上无界?
- (4) 当a 、b 满足什么条件时, f'(x) 在区间[-1,1]上有界,但 f'(x) 不连续?
- (5) 当a、b 满足什么条件时, f'(x) 连续?

五(15). (8分) 对不同的实数 a , 讨论方程 $x \ln x = a$ 有几个实根.

六(16). (6 分)设函数 f(x) 在区间 (a,b) 上可导, 且 f'(x) 在区间 (a,b) 上单调增加, 试证明:

若 $x_0 \in (a,b)$, 对任意 $x \in (a,b)$, 有 $f(x) \ge f(_0x) + 'f(_0x)(x)$.

七(17). (5分) 设 $f \in C[a,b]$, 且 f 在(a,b) 内有二阶导数,试证存在 $c \in (a,b)$,使

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(c)$$
.

东南大学 2010~2011 高等数学 AB 期中试卷参考答案

1.
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{1}{1-x}$$

2. 设
$$f(x) = \begin{cases} (1+2x)^{\frac{3}{\sin x}}, & x > 0 \\ a e^x, & x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,

3. 设
$$f(x) = \arctan e^x$$
, 则微分 $df(x) = \frac{e^x}{1 + e^{2x}} dx$;

4. 设
$$f(x) = x^{2010} \cos x$$
,则 $f^{(2010)}(0) = 2010!$;

6. 曲线
$$x^{\frac{3}{2}} + y^{\frac{3}{2}} = 16$$
在点(4,4)处的的切线方程为

$$x+y=8$$

二、选择题 7.A 8.D 9.D

三、计算

11. 求极限
$$\lim_{n\to\infty} \left(\frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n}\right)$$

解 $\frac{n^2 + \frac{n(n+1)}{2}}{n^2+n} \le \frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n} \le \frac{n^2 + \frac{n(n+1)}{2}}{n^2}$,

由于
$$\lim_{n\to\infty} \frac{n^2 + \frac{n(n+1)}{2}}{n^2 + n} = \lim_{n\to\infty} \frac{n^2 + \frac{n(n+1)}{2}}{n^2} = \frac{3}{2}$$
, 故由夹逼定理得知,原式 = $\frac{3}{2}$.

12. 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - 2 \arctan t \\ y = \frac{t^3}{3} - t \end{cases}$$
 所确定,试求 $\frac{dy}{dx}$ 、 $\frac{d^2y}{dx^2}$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + t^2,$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{2t}{1 - \frac{2}{1 + t^2}} = \frac{2t(1 + t^2)}{t^2 - 1}.$$

13. 写出函数 $f(x) = x \ln x$ 在 x = 1 处的 带有 Lagrange 余项的 3 阶 Taylor 公式.

$$f(1) = 0, \quad f'(1) = 1, \quad f''(1) = 1,$$

$$f'''(1) = -1, \quad f^{(4)}(x) = \frac{2}{x^3},$$

所以
$$x \ln x = x - 1 + \frac{1}{2}(x - 1)^2 - \frac{1}{6}(x - 1)^3 + \frac{1}{12(1 + \theta(x - 1))^3}(x - 1)^4, \quad 0 < \theta < 1$$

四(14)(13 分)设 a 和 b 都是实常数, b<0, 定义

$$f(x) = \begin{cases} x^a \sin(x^b), x > 0 \\ 0, & x \le 0 \end{cases}$$

1) a, b 满足什么条件时, f(x) 不是连续函数?

解 f(x)不连续 \Leftrightarrow f(x) 在 x = 0 处不连续

即
$$\lim_{x\to 0} f(x) \neq f(0)$$
.

注意到 f(0-0) = f(0) = 0, 所以只需 $f(0+0) \neq 0$

又 $\lim_{x\to 0^+} \sin(x^b)$ 既不存在也不为 ∞ ,故 $a \le 0$.

2) 当a, b满足什么条件时, f(x)连续, 但不可导?

解 a > 0时 f(x) 连续、f(x) 不可导⇔ f(x) 在 x = 0 处不可导

注意到 f'(0) = 0, 所以只需

$$0 \neq f'_{+}(0) = \lim_{x \to 0^{+}} \frac{x^{a} \sin x^{b}}{x^{b}} = \lim_{x \to 0^{+}} x^{a-1} \sin x^{b},$$

又 $\lim_{x\to 0^+} \sin(x^b)$ 既不存在也不为 ∞ ,因此 $\alpha-1\leq 0$. 故 $0<\alpha\leq 1$.

- 3) a, b 满足什么条件时, f(x) 可导, 但 f'(x) 在区间[-1,1] 上无界?
- 解a > 1时 f(x) 可导.

注意到 $-1 \le x \le 0$ 时 f'(x) = 0,有界;

$$0 < x \le 1$$
 if $f'(x) = ax^{a-1} \sin(x^b) + ax^{a+b-1} \cos(x^b)$

a > 1时 $\lim_{x \to 0^+} x^{a-1} \sin x^b = 0$,而 $\cos(x^b)$ 有界,

因此要使 f'(x) 在 [-1,1] 上无界,只需

$$\lim_{x \to 0^+} x^{a+b-1} = \infty \Leftrightarrow a+b-1 < 0, \quad \text{If } 1 < a < 1-b.$$

4) a, b 满足什么条件时, f'(x)在[-1,1]上有界,

但 f'(x) 不连续?

解 $a \ge 1-b$ 时 f'(x)在[-1,1]上有界.

$$f'(x) = \begin{cases} ax^{a-1}\sin(x^b) + bx^{a+b-1}\cos(x^b), & 0 < x \le 1\\ 0, & -1 \le x \le 0 \end{cases}$$

在 $x \neq 0$ 时连续,且f'(0-0) = f'(0) = 0,

所以要使 f'(x) 不连续, 只需 $f'(0+0)\neq 0$

$$a > 1-b$$
时, $\lim_{x \to 0^+} x^{a-1} \sin x^b = 0$, $\lim_{x \to 0^+} x^{a+b-1} \cos x^b = 0$, 此时 $f'(0+0) = 0$. 说明 $f'(x)$ 连续. $a = 1-b$ 时, $\lim_{x \to 0^+} x^{a-1} \sin x^b = 0$, $\lim_{x \to 0^+} x^{a+b-1} \cos x^b$ 不存在, 故 $a = 1-b$.

5) a, b 满足什么条件时, f'(x) 连续?

$$\mathbf{A}^{2} f'(x) = \begin{cases} ax^{a-1} \sin(x^{b}) + bx^{a+b-1} \cos(x^{b}), \ 0 < x \le 1 \\ 0, \qquad - \le x \le 0 \end{cases}$$

f'(x)连续 $\Leftrightarrow f'(x)$ 在 x = 0 处连续,

由于 f'(0-0) = f'(0) = 0, 因此只需 f'(0+0) = 0,

$$\lim_{x \to 0^+} ax^{a-1} \sin(x^b) + bx^{a+b-1} \cos(x^b) = 0 ,$$

$$\lim_{x \to 0^+} a > 1 - b .$$

五(15)(8分) 对不同的实数a, 讨论方程 $x \ln x = a$ 有几个实根.

可以构造 $f(x) = x \ln x - a$ 或 $g(x) = \ln x - \frac{a}{x}$ 等

解设
$$f(x) = \ln x - \frac{a}{x}$$
, $x \in (0, +\infty)$,

 $a \ge 0$ 时, f'(x) > 0, f(x)严格单增.

$$a=0$$
时, $f(1)=0$, $f(x)$ 有唯一零点,

即方程xlnx=0有唯一实根:

$$a > 0$$
时, $f(e^{-1}) = -1 - ae < 0$, $f(e^{a}) = a(1 - e^{-a}) > 0$,

f(x)有唯一零点,即方程 $x \ln x = a$ 有唯一实根;

$$a < 0$$
时,令 $f'(x) = \frac{x+a}{x^2} = 0$,得

f(x)的唯一的极小值点(最小值点)x=-a.

若
$$f_{\min} = f(-a) = \ln(-a) + 1 > 0$$
,即 $a < -e^{-1}$ 时,

方程 $x \ln x = a$ 无实根;

$$a = -e^{-1}$$
时, $f_{min} = f(e^{-1}) = 0$, $f(x)$ 有唯一零点,即方程 $x \ln x = -e^{-1}$ 有唯一实根;

$$-e^{-1} < a < 0$$
时, $f_{min} < 0$, $f(e^a) = a(1 - e^{-a}) > 0$, $f(e^{-a}) = -a(1 + e^a) > 0$. $0 < x < -a$ 时, $f(x)$ 严格单减, $-a < x < +\infty$ 时, $f(x)$ 严格单增, 因此 $f(x)$ 有且仅有两个零点,

即方程 $x \ln x = a$ 有且仅有实根.

六(16) (6分) 设函数 f(x) 在区间 (a,b) 上可导, f'(x) 在区间 (a,b) 上单增, $x_0 \in (a,b)$ 证明 对任意 $x \in (a,b)$,有 $f(x) \geq f(x_0) + f'(x_0)(x - x_0)$ 证明 由 f(x) 在 (a,b) 上可导及 Lagrange 中值定理知, 存在 ξ (介于 x 与 x_0 间),使得 $f(x) - f(x_0) - f'(x_0)(x - x_0) = (f'(\xi) - f'(x_0))(x - x_0)$ 又 f'(x) 在 (a,b) 上单增,故 $f(x) - f(x_0) - f'(x_0)(x - x_0) \geq 0$. 证毕.

还可以运用凹凸函数的性质来证明

七(17)(5分) 设 $f \in C[a,b]$, $f \in C(a,b)$ 内有二阶导数,证明:存在 $c \in (a,b)$,使

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(c)$$

左边=
$$\left[f\left(\frac{a+b}{2}+\frac{b-a}{2}\right)-f\left(\frac{a+b}{2}\right)\right]-\left[f\left(a+\frac{b-a}{2}\right)-f(a)\right]$$

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4}f''(c)$$

左边 =
$$\varphi\left(\frac{a+b}{2}\right) - \varphi(a) = \varphi'(\xi)\frac{b-a}{2}$$
 $\xi \in \left(a, \frac{a+b}{2}\right)$

$$= \left[f'\left(\xi + \frac{b-a}{2}\right) - f'(\xi)\right]\frac{b-a}{2}$$

$$= f''\left(\xi + \theta\frac{b-a}{2}\right)\left(\frac{b-a}{2}\right)^2 \quad \theta \in (0, 1)$$

$$(b-a)^2 \quad \text{for all } \theta = 0$$

$$=\frac{(b-a)^2}{4}f''(c)$$
 $c=\xi+ hetarac{b-a}{2}\in(a,b)$ 还可以用泰勒公式和达布定理来证明