INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY

Department of Mathematics SI 427 (Probability Theory)

Tutorial Sheet-II

- 1. Let X be a constant function and \mathcal{F} is a σ -field. Show that X is a random variable with respect to \mathcal{F} .
- 2. Let X be a constant function. Find $\sigma(X)$.
- 3. Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $\mathcal{F} = \{\emptyset, \{1, 2, 3, 4\}, \{5, 6, 7, 8, 9, 10\}, \Omega\}$. Define $X(\omega) = \omega^2, \omega \in \Omega$. Show that X is not a random variable with respect to \mathcal{F} .
- 4. Let Ω be a sample space and \mathcal{F} be a σ -field. Show that I_A is a random variable with respect to \mathcal{F} iff $A \in \mathcal{F}$.
- 5. Let Ω be a sample space and \mathcal{F} be a σ -field. Then $X : \Omega \to \mathbb{R}$ is a random variable with respect to \mathcal{F} iff $X^{-1}(O) \in \mathcal{F}$ for all open set O of \mathbb{R} .
- 6. Let X and Y be random variables. Show that (i) e^{XY} (ii) $X^+ := \max\{X, 0\}$ (iii) |X + Y| are random variables.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ is a continuous function and X is a random variable. Show that $f \circ X$ is a random variable. Hint: Under f, inverse images of open sets are open.
- 8. Let X be random variable such that X > 0. Show that $\ln X$ is a random variable.
- 9. Let $X : \Omega \to \mathbb{R}$. Show that $\sigma(X)$ is the smallest σ -field with respect to which X is a random variable.

- 10. Let A and B be mutually exclusive events in (Ω, \mathcal{F}, P) . Find $\sigma(I_A + I_B)$.
- 11. Let Ω be a sample space and \mathcal{F} be a σ -field and X, Y be random variables such that $\sigma(X) = \sigma(Y)$. Show that $\sigma(X + Y) \subseteq \sigma(X)$.
- 12. Let Ω be a sample space and \mathcal{F} be a σ -field and X be a random variable. Show that $\sigma(X^2) \subseteq \sigma(X)$.
- 13. Give an example of a random variable such that $\sigma(X^2) \neq \sigma(X)$ and also a random variable with $\sigma(X^2) = \sigma(X)$.
- 14. Let Ω and X as in Q3. Is there exists a σ -field with respect to it, X is a random variable? If so, find the smallest such σ -field.
- 15. Let $X_n, n \geq 1$ be a sequence of random variables on (Ω, \mathcal{F}) such that there exists a constant M such that $|X_n| \leq M$ for all $n \geq 1$. Show that $\limsup_{n \to \infty} X_n$ is a random variable with respect to \mathcal{F} .