Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data

Hangai MT team

M. Comeau¹, J. Käufl², A. Kuvshinov², **M. Becken¹**, J. Schmalzl¹, D. Harpering¹, R. Mann¹, J. Kamm¹, A. Grayver², N. Scha², S. Grazioli², D. Suoergel², S. Demberel³, U. Sukhbaatar³, E. Batmagnai³, S.Tserendug³, T. Nasan-Ochir³, S. Gantsogt³, B.Eldev-Ochir³, N. Nomuun³, Batbileg³

¹WWU, Münster, Germany
²ETH, Zürich, Switzerland
³IAG, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

and the driver Tsagaansukh, Shatar, Bayarjargal

- Inversion model along Line 2 northern section
- adaptive FE code and Occam Inversion Mare2DEM (Kerry Key)
- 1st run: same error floors, inversion to convergence
- 2nd run: Invert additionally for static shift at 2/3 of sites
- Misfit reduced to 1.0.

Fluids in the lower crust (compressional regimes)

→ stalled in hydraulically connected zones below the brittle-ductile transition zone

Conceptual model →

Over-pressurized fluid domains

→ stress profiles in the crust suggests negative vertical pressure gradient below BDTZ

Keeps fluids over-pressurized→

5 10 15 downflow zone, Δz stagnant 25 zone, δz 30 0.6 0.8 0.2 0.2 0.4 0.4 0.6 8.0 $\sigma_i(GPa)$ $P-\rho_f gz$ (GPa)

(Conolly and Podlachikov, 2008)

• Inversion model along Line 2 – northern section

Preferred interpretation: interconnected zones of fluids in lower crust.

→ Weakening effect

• Inversion model along Line 3 – northern section

Preferred interpretation: interconnected zones of fluids in lower crust.

BFS

 \otimes

40 km

5 ohm-m

60 km

300 ohm-m

100 km

120 km

140 km

160 km

180 km

80 km

→ Weakening effect

N

-10

10

30

40

50

10 ohm-m

0 km

20 km

Depth (km)

← mantle | lower crust |upper crust

• Inversion model along Line 6 – northern section

Preferred interpretation: interconnected zones of fluids in lower crust.

→ Weakening effect

MT Measurement Campaigns 2016 and 2017

 Lower crustal conductors are extended over > 150 km along the BFS.
Why? Lower crustal Flow?

Gobi Altai system (GFS)

Inversion model along Line 2 – southern section
→ Root of the transpressive Altai Mountain range (max. 4000 m asl)

Gobi Altai system (GFS)

← Hangay

lower crust upper crust

← mantle

-10

0,4265

10

30

40

50

60

320 km

340 km

360 km

380 km

400 km

Depth (km)

- Inversion model along Line 4 southern section
- → Mid-crustal conductors at the GFS (historical M8 earthquake)
- → Bayankhongor Ophiolite Belt (SHFZ) is zone of crustal weakness (carries mineralizations)

South Hangay Fault zone

Summary

- 1. Lithospheric resistivity model consistent with past geochemical and geophysical studies of the Hangai Dome
- 2. However, the lower crust beneath Hangai is enriched in fluids/melts and appears to be locally weak
- 3. (Crustal structure has inherited magma pathways)
- 4. (Hot springs correlate with moderately conductive pathways within the upper crust)
- 5. What initiated uplift process remains speculative; needs further modelling
- 6. Future work will continue on full dataset, including 3-D inversion

Acknowledgements: This project is funded by the Swiss (SNF) and German (DFG) science foundations. Instruments were provided by the Geophysical Instrument Pool Potsdam (GIPP).

Thank you for your attention!