CSC 461: Machine Learning Fall 2024

Dimensionality Reduction

Prof. Marco Alvarez, Computer Science University of Rhode Island

Dimensionality reduction

- Fundamentally ...
 - unsupervised learning algorithms for extracting latent structure (potentially low dimensional) from high-dimensional data
 - can range from simple <u>feature selection</u> to <u>complex nonlinear transformations</u>
 - allows working with more compact data representation, ideally without losing information
- Examples
 - PCA, kernel PCA, t-SNE, autoencoders, matrix factorization
- Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$, find a representation $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$, with d' < d
 - certain properties should be preserved (e.g., variance, distances, neighborhood structure)

High dimensional data

- Prevalent in many areas of machine learning and data science
- Examples:
 - image data, for instance a single 224 × 224 RGB image has >150k dimensions
 - text data, in NLP applications, transformers typically embed tokens into 768 or more dimensions
 - genomic data, gene expression data often has thousands of dimensions
 - audio signals, especially when converted to spectrograms
 - time series from sensor data or financial data
 - network traffic data
 - ...

Dimensionality reduction

- ▶ Why?
 - visualization (2D or 3D)
 - preprocessing data before machine learning
 - focusing on important features/patterns
 - more efficient training
 - removing noise and redundant information
 - data compression

d' < d

Preliminaries

y-variance y-variance x-variance

Different data, same variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$V_x = \frac{2^2 + 0^2 + 2^2}{3} = \frac{8}{3}$$

$$V_x = \frac{1^2 + 0^2 + 1^2}{3} = \frac{8}{3}$$

$$V_{y} = \frac{1^{2} + 0^{2} + 1^{2}}{3} = \frac{2}{3}$$

Figure credit: https://serrano.academy/unsupervised-learning/

Covariance

Figure credit: https://serrano.academy/unsupervised-learnin

"biased" estimator default in numpy

 $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$

$$Cov_x = \frac{(-2) + 0 + (-2)}{3} = \frac{-4}{3}$$
 negative covariance
$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Cov_y = \frac{2 + 0 + 2}{3} = \frac{4}{3}$$
 positive covariance

Figure credit: https://serrano.academy/unsupervised-learning/

Covariance matrix

Every element (i, j) of the covariance matrix Σ represents the covariance between <u>feature</u> i (column) and <u>feature</u> j from the data matrix X

Eigenvectors and eigenvalues

- ► The decomposition of a square matrix A into eigenvalues and eigenvectors is known as eigen decomposition
 - for real symmetric matrices eigenvectors can be chosen real and orthonormal

$$A = V \Lambda V^T \quad A \mathbf{v} = \lambda \mathbf{v}$$

columns of V are the eigenvectors of A and Λ is a diagonal matrix whose entries are the eigenvalues of A

PCA

- ▶ Proposed by Pearson (1901) and Hotelling (1933)
 - used for data compression, visualization, and identifying patterns/structures
- ▶ Key idea
 - high-dimensional data often lies on a lower-dimensional subspace
 - overcomplete (redundant dimensions)
 - dimensions frequently correlated

Principal Component Analysis (PCA)

Goal of PCA

- ► Find projections of the data onto directions that maximize variance
 - directions are **orthogonal** to each other, and have lower intrinsic dimensionality
 - projected data points are as similar to the originals as possible

https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/

PCA approach

- ▶ Input: data matrix $X_{d\times n}$
 - **center** the data (subtract the mean)
 - calculate the **covariance** matrix $\Sigma = \frac{1}{n}XX^T$
 - compute eigendecomposition $V\Lambda V^T$ of the covariance matrix
 - sort the eigenvectors by eigenvalues in decreasing order
- → Output
 - sorted <u>orthonormal</u> eigenvectors V and eigenvalues Λ
 - use V as the projection matrix

eigenvectors can then be used for projecting the data into lower dimensions (XV)

Explained variance

- Each eigenvalue corresponds to the amount of variance explained by its associated eigenvector
 - **explained variance** is often presented as a **percentage**, i.e., eigenvalues divided by the <u>total sum of eigenvalues</u>
- ► The <u>sum of percentages</u> of the top-k principal components is usually referred to as the "cumulative explained variance"
 - often used to select how many components to keep for a reduced dataset

Remarks

- The <u>larger</u> the eigenvalue, the <u>more important</u> the corresponding eigenvector
 - that's why we **sort** eigenvalues (and corresponding eigenvectors) in **decreasing order**
- All eigenvalues of a positive semidefinite matrix are **non-negative**
 - covariance matrix is always symmetric and p.s.d.
- For <u>dimensionality reduction</u>, we can ignore eigenvectors associated with smaller eigenvalues

Explained variance

PC	Eigenvalue	Variance (%)	Cumulative Variance
1st	23.31800	59.072%	59.072%
2nd	7.01200	17.764%	76.835%
3rd	4.61800	11.699%	88.534%
4th	1.98100	5.018%	93.553%
5th	1.00100	2.536%	96.089%
6th	0.82100	2.080%	98.168%
7th	0.64100	1.624%	99.792%
8th	0.03100	0.079%	99.871%
9th	0.02900	0.073%	99.944%
10th	0.02200	0.056%	100.000%

PCA Notebooks

https://colab.research.google.com/drive/ 1MzPdVsJi8gUxhwiXFcKA8RJsw8DY1OhE

https://colab.research.google.com/drive/ 1r7JPdmmWS11yl2WVOMi0GMhlDM9s37GI