REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or an					ching existing data sources, gathering and
including suggestions for reduce Highway, Suite 1204, Arlington	cing this burden to Department 1, VA 22202-4302. Responder	of Defense, Washington Headqua	arters Services, Directorate for In anding any other provision of lav	formation Operations ar v, no person shall be su	nd Reports (0704-0188), 1215 Jefferson Davis bject to any penalty for failing to comply with a
1. REPORT DATE (DE 26-03-2009	D-MM-YYYY)	2. REPORT TYPE Technical Paper	<u> </u>		DATES COVERED (From - To)
4. TITLE AND SUBTIT				5a.	CONTRACT NUMBER
Thermodynamic Stability and Kinetic Lability of Fully-Condensed Fluorinated Polyhedral Oligomeric Silsesquioxane (POSS) Cages					GRANT NUMBER
					PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Timothy Haddad (E)	FRL/RZSP); Sarah We	eber & Joseph Mabry	5d.	PROJECT NUMBER	
(AFRL/RZSM)				5e. TASK NUMBER	
					WORK UNIT NUMBER 030521
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					PERFORMING ORGANIZATION PORT NUMBER
Air Force Research Laboratory (AFMC) AFRL/RZSM					RL-RZ-ED-TP-2009-117
9 Antares Road Edwards AFB CA 93524-7401					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)					SPONSOR/MONITOR'S RONYM(S)
Air Force Research Laboratory (AFMC)					
AFRL/RZS 5 Pollux Drive					SPONSOR/MONITOR'S NUMBER(S)
Edwards AFB CA 93524-70448					RL-RZ-ED-TP-2009-117
12. DISTRIBUTION / A	VAILABILITY STATE	MENT			
Approved for public	release; distribution	unlimited (PA #09158	3).		
13. SUPPLEMENTAR For presentation at the		ociety National Meeting,	Washington D.C., 16-2	0 August 2009.	
14. ABSTRACT					
virtually every type of octomeric cage is prefe	polymer imaginable. erentially formed in all	The most common of the	nese materials are the Rays reported. However,	$_{8}{ m S}_{i8}{ m O}_{12}$ derivative well-defined olige	exploited as property modifiers to es (also known as the T_8 's), as the omeric cages with $n=6,\ 10,\ 12$ or
15. SUBJECT TERMS					
10. OODULUT TEKMO					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			Dr. Joseph Mabry 19b. TELEPHONE NUMBER
	TT 1 100 T		SAR	3	(include area code)

Unclassified

Unclassified

Unclassified

N/A

THERMODYNAMIC STABILITY AND KINETIC LABILITY OF FULLY-CONDENSED FLUORINATED POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) CAGES

Timothy S. Haddad, Jerry Boatz, Sarah Weber, and Joseph M. Mabry

ERC Inc., ²Air Force Research Laboratory Building 8451, 10 East Saturn Boulevard Edwards Air Force Base, CA 93524-7680

Introduction

Polyhedral Oligomeric Silsesquioxane (POSS) eages [RSiO_{1.3}], are a class of nano-particles that are being exploited as property modifiers to virtually every type of polymer imaginable. The most common of these materials are the $R_8Si_8O_{12}$ derivatives (also known as the T_8 's), as the octomeric cage is preferentially formed in almost all synthetic pathways reported. However, well-defined oligomeric cages with $n=6,\,10,\,12$ or 14 are also known and their polyhedral structures proven with single crystal X-ray crystallography. Representations of the unknown T_4 along with the most common POSS motifs are shown in Figure 1; for ease of viewing, a polyhedron made from just the silicon atoms is shown below each oligomer.

Figure 1. Representations of various [RSiO_{1.5}]_a cages including the unknown T_4 along with the four most common oligomers, T_6 , T_6 , T_{10} and T_{12} .

It was reported that under aggressive refluxing conditions with large relative quantities of sodium salts or base that some alkyl-substituted T_a 's can be converted to mixtures of mostly T_a , T_{10} and T_{12} . Theoretical calculations have also shown a higher enthalpic stability for the larger cages. For this particular work, theoretical calculations on the relative enthalpies for these derivatives as a function of "R" group (methyl verses trifluoromethyl) were carried out along with laboratory experiments designed to measure the proportions of each cage under mild conditions conductive to isomerization.

Experimental

Materials. All POSS compounds were obtained from Hybrid Plastics or else synthesized according to the literature procedures.⁶ NE13 was dried by refluxing over CaH2 and distilled under dry nitrogen. CDCl3 was first dried over CaH2, then over molecular sieves, and vacuum transferred to a flask and stored under dry nitrogen. C₆F₆, AK225G (CCIFH-CF₂-CF₂CI) and Freon 113 (CCI₂F-CF₂CI) were degassed prior to use.

Theoretical Calculations. The POSS cage geometries were optimized using density functional theory (DFT) methods. The B3LYP hybrid functional⁸, which included the SVWN5⁹ correlation functional, was used in conjunction with the 6-31 G(d,p)¹⁰ basis set. All structures were verified as local minima via diagonalization of the matrix of energy second derivatives with respect to nuclear Cartesian coordinates (i.e., the hessian matrix.) Relative energies were refined by calculating single-point MP2¹¹ energies at the DFT geometries. All calculations were performed using the GAMESS¹² ab initio electronic structure code.

Results and Discussion

Calculations to determine the relative stabilities of a series of POSS cages, $\{RSiO_{1.5}\}_n$ with R= methyl or trifluoromethyl and n=4,6,8,10,12, were undertaken to help understand the why some cage sizes appear to be preferentially formed. The data is shown in figure 2, along with correlating data from reference 5. Based on these numbers alone, one would expert that for enthalpic reasons (ΔH), larger cages would lead to a lower free energy of formation than smaller cages. However, the effect of entropy is not accounted for and entropy will always favor smaller cages (more particles). Another

factor that can play a role is a difference in solubility of various polyhedra. If during synthesis, one cage has a limited solubility in the reaction medium, it may preferentially precipitate and lead to high yield of a single isomer. Thus both thermodynamic and kinetic factors can be important.

Figure 2. Relative energy per silicon atom (kcal/mol) for the $(CH_3)_nT_n$ and $(CF_3)_nT_n$ series. The data in the top row is taken from reference 5b.

During the high-yield synthesis of various fluoroPOSS derivatives, $[RSiO_{1.5}]_s R = CH_2CH_2(CF_2)_mCF_3$, a variation in POSS cages was observed. When m=3,5,7 or 9, then immediately after synthesis, cage mixtures were sometimes observed, but after a work-up procedure removed all traces of strong base (hydroxide), the isolated product was pure T_0 with, at most, traces of T_{10} contaminant. The lone exception was the trifluoropropyl derivative (m=0) which always yielded a cage mixture of T_0 , T_{10} and T_{12} .

When the pure T_4 compounds are dissolved in C_6F_8 and a fractional amount of a soft base such as NE₁ is added, then the solution slowly changes over a period of days to a thermodynamic mixture of T_8 , T_{10} , and T_{12} along with traces of unidentified compounds that are presumably the higher oligomers. Interestingly, the proportion of the cages is the same for fluoropropyl, fluorohexyl and fluorocetylPOSS (m = 0, 3 or 5).

Figure 3. ²⁹Si NMR spectra of fluoropropyl₈T₈ in C₆F₆. On the left is a spectrum taken after 24 hours in solution without any added base. Shown on the right is the resulting mixture after 3days with NEt₃.

The eages are completely stable in C_6F_6 solution without the addition of any base. Once triethylamine is added, it takes 2 - 3 days at room temperature to achieve what appears to be a thermodynamic equilibrium of which the molar proportions of T_5 , T_{10} and T_{12} are about 40:50:10. Figure 3 shows this data along with the ^{20}S 1 assignments: the T_4 has 8 equivalent silicons resonating at -67.1 ppm; T_{10} has 10 equivalent silicons resonating at -69.1 ppm and at -72.0 ppm in a ratio of 1:2.

Figure 4. ⁷⁹Si NMR spectra of fluoroPOSS plus NEt₃ in C_6F_6 after several weeks; fluoropropyl is on the right (131 days) and fluorohexyl is on the left (42 days).

Comparing figures four and three demonstrates that the thermodynamic ratio of cages is very similar for fluoropropyl and fluorobexylPOSS. In

addition, the higher oligomers can be seen "growing in" when the reaction is allowed to proceed for extended periods of time.

Figure 5. 29 Si NMR spectra of fluoropropyl₁₂T₁₂ in C₆F₆ before NEt₃ addition (on left) and 4 days later after addition of base (on right).

The data in figure 5 shows the definitive experiment proving that for fluoropropylPOSS, the thermodynamically favored products in C_6F_6 are T_8 , T_{10} and T_{12} in a ratio of about 40:50:10. In this case, the starting POSS compound was pure T_{12} and after a few days equilibrating with NEt₃ catalyst in C_6F_6 , most of the T_{12} was replaced with predominately T_8 and T_{10} .

The choice of solvent can also affect the equilibration. It is much slower in THF, and barely takes place in AK225G, CCIFH(CF₂)CF₂CI. It is possible that the acidic proton in the AK225G solvent ties up the NE1, catalyst to slow the reaction. In mixed C_0F_0 , Freen113 solvent, as the fluoropropylT_N equilibrates, the small amounts of T_{12} produced are barely detectable by ²⁹Si mut spectroscopy because it nearly quantitatively precipitates from solution, milking the T_{12} isomer from the others.

Figure 6. ²⁹Si NMR spectra of styrenyl₈T₈ in CDCl₃ before base addition (on left) and 118 days after adding NEt₃ (on right).

Under similar conditions to that tried with the fluoroalkylPOSS, no equilibration occurred to cyclohexyl, $T_{\rm e}$, cyclohexyl, $T_{\rm e}$, vinyl, $T_{\rm e}$ or styrenyl, $T_{\rm e}$, demonstrating that there is something in the nature of the fluoroalkyl groups that induces kinetic lability to these eages in the presence of soft base. Both electron-donating alkyl and electron-withdrawing alkenyl groups seem to be immune to this equilibration with triethylamine. However, stronger bases should prompte the reaction.

Canclusions

It is apparent that although the T₈ structure is the most common type of POSS, it is likely not the most thermodynamically stable motif; both theory and experiment show this to be the case. Under conditions where a soluble POSS cage is exposed to a mild "soft" base such as NEt₃, T₈ cages with very electron-withdrawing fluoroalkyl groups (-CH₂CH₂(CF₂)₆CF₃), slowly convert to mixtures favoring larger cages. This reaction does not affect POSS cages with electron donating alkyl groups or those with electron-withdrawing alkenyl groups. It is presumed that the fluoroalkyl group increases the lability of the polarizable Si-O bond opening a kinetic pathway that allows the isomerization to take place. Clearly, when POSS with electron-withdrawing groups is incorporated into polymers containing basic sites, one must be aware that under certain conditions, it might be possible for the cages to rearrange into an alternate structure. For tethered POSS copolymers this pathway could lead to polymer chain crosslinking.

Acknowledgement. We gratefully acknowledge the Air Force Office of Scientific Research, and the Air Force Research Laboratory, Propulsion Directorate for their financial support.

References

- (1) a) Wu, J.; Mather P.T. J. Macromol. Sci. C: Polym. Rev. 2009, 49, 25. b) Lickiss, P.D.; Rataboul F. "Fully Condensed Polyhedral Oligosilsesquioxanes (POSS): From Synthesis to Application" Chapter 1 pp. 1-116, in "Advances in Organometallic Chemistry" West R. (ed.), Elsevier, Amsterdam, 2008. c) Piclichowski, K.; Njuguna, J.; Janowski, B.; Piclichowski, J. Adv. Polym. Sci. 2006, 201, 225. d) Abe, Y.; Gunji, T. Prog. Polym. Sci. 2004, 29,149. c) Phillips, S.H.; Haddad, T.S.; Tomezak, S.J. Curr. Op. Sol. St. Mat. Sci. 2004, 8, 21. f) Li, G.Z.; Wang, L.C.; Ni, H.L.; Pittman, C.U. J. Inorg. Organomet Polym. 2001, 11, 123.
- (2) a) Agaskar, P.A. Inorg. Chem. 1991, 30, 2707. b) Agaskar, P.A.; Klemperer, W.G. Inorg. Chim. Acta 1995, 229, 335.
- (3) a) Larsson, K. Arkiv Kemi 1960, 16, 203. b) Baidina, I.A.; Podberezskaya, N.V.; Borisov, S.V.; Alekseev, V.I.; Martynova, T.N.; Kanev, A.N. Z. Struk. Khim. 1979, 21, 125. c) Behbehani, H.; Brisdon, B.J.; Mahon, M.F.; Molloy, K.C. J. Organomet. Chem. 1994, 469, 19. d) Tornroos, K.H.; Burgi, H.-B.; Calzaferri, G.; Burgy, H. Acta Cryst. 1995, B51, 155. c) Agaskar, P.A.; Day, V.W.; Klemperer, W.G. J. A. Chem. Soc. 1987, 109, 5554.
- (4) Rikowski, E.; Marsmann, H.C. Polyhedron 1997, 16, 3357.
- (5) Xiang, K.-H.; Pandey, R.; Pernisz, U.C.; Freeman, C. J. Phys. Chem. B 1998, 102, 8704. b) Franco, R.; Kandalam, A.K.; Pandey, R.; Pemisz, U.C.; J. Phys. Chem. B 2002, 106, 1709.
- (6) a) Mabry, J.M.; Vij, A.; Iacono, S.T.; Viers, B.D. Angew. Chem., Int. Ed. 2008, 47, 4137. b) Iacono, S.T.; Vij, A.; Grabow, W.; Smith Jr., D.W.; Mabry, J.M. Chem. Comm., 2007, 4992.
- (7) Kohn, W.; Becke, A.D.; Parr, R.G. J. Phys. Chem. 1996, 100, 12974.
- (8) a) Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F., Frisch, M.J. J. Phys. Chem. 1994, 98, 11623. b) Becke, A.D. J. Chem. Phys. 1993, 98, 5648. c) Becke, A.D. Phys. Rev. A 1988, 38, 3098.
- Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
- (10) a) Krishnan, R.; Binkley, J.S.; Seeger R.; Pople, J.A. J. Chem. Phys. 1980, 72, 650. b) McLean A.D.; Chandler G.S. J. Chem. Phys. 1980, 72, 5639. c) Gordon, M.S. Chem. Phys. Lett. 1980, 76, 163.
- (11) a) Møller, C; Plesset, M.S. Phys. Rev. 1934, 46, 618 b) Pople, J.A.; Binkley, J.S.; Seeger, R. Int. J. Quant. Chem. 1976, \$10, 1. c) Frisch, M.J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275. d) Bartlett, R.J.; Silver, D.M. Int. J. Quant. Chem. 1975, \$9, 183.
- (12) a) Gordon, M.S.: Schmidt, M.W. "Advances in electronic structure theory: GAMESS a decade later" pp. 1167-1189, in "Theory and Applications of Computational Chemistry: the first forty years" Dykstra, C.E.: Frenking, G.; Kim, K.S.; Scuseria G.E. (eds.). Elsevier, Amsterdam, 2005. b) Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.J.; Windus, T.L.; Dupuis, M.; Montgomery, J.A. J. Comput. Chem. 1993, 14, 1347.