Sabancı University, CS 302 AUTOMATA THEORY 17.1.2023 Answers to Final Examination

Answer 1 (25 pts)

(a) (5 pts)

See the relevant slides.

(b) (10 pts) We first construct the NFA Z that accepts the complement language L^c as shown below.

Using the table below we compute the DFA (hence NFA) ${\it W}$ that accepts ${\it L}$

state	input	state'
A*:=1	0	B:=1,2
A*	1	A
B*	0	В
B*	1	C:=1,3
С	0	D:=1,2,3
С	1	С
D	0	D
D	1	С

(c) (10 pts) Minimal state Y is computed using the table filling algorithm as below

	С	D	A	В
С			0	0
D			0	0
A				1
В				

Answer 2 (25 pts)

(a) (12 pts)

$$E = (0+1)^* \cdot (0.0.0+0.0.1+0.1.0+1.0.0) \cdot (0+1)^* + (1+0) \cdot (1+0) + 1+0+e$$

(b) (13 pts)

The language L in question can be expressed as below:

$$L = (w \in \{0,1\}^* | if k := \#0's \text{ in } w ; m := \#1's \text{ in } w ; then |k-m| \le 1)$$

L is NOT a regular language as demonstrated by the pumping lemma (PL) as shown below:

Choose $w = 0^{n+1} 1^n \in L$ where **n** is the PL constant then by the PL

$$w = xyz$$
 and $|xy| \le n$; $|y| = q > 0$; and $xy^jz \in L$ for $j=0, 1, 2, 3...$

Hence $xy = 0^p$, $p \le n$ and so for j=2, $xy^2z \in L$

But
$$x = 0^{p-q}$$
, $y = 0^q$ and $z = 0^{n+1-p} 1^n$ so $x y^2 z = 0^{p-q} 0^{2q} 0^{n+1-p} 1^n = 0^{q+n+1} 1^n \notin L$

since |q+n+1-n|=q+1>1 and so PL is contradicted and L is not regular. and there is no regular expression E corresponding to L.

Answer 3 (25 pts)

(a) Given CFG:
$$S \rightarrow A \mid B$$
; $A \rightarrow aAb \mid C \mid e$; $C \rightarrow cCd \mid cC \mid e$; $B \rightarrow Bb$ convert into CNF

(i) Eliminate null productions

$$S \rightarrow A \mid B ; A \rightarrow aAb \mid C \mid ab ; C \rightarrow cCd \mid cC \mid cd \mid c ; B \rightarrow Bb$$

(ii) Eliminate unit pairs

$$S \rightarrow aAb \mid cCd \mid cC \mid cd \mid c \mid ab \mid Bb ; A \rightarrow aAb \mid cCd \mid cC \mid cd \mid c \mid ab \mid ;$$

$$C \rightarrow cCd \mid cC \mid cd \mid c ; B \rightarrow Bb$$

(iii) Eliminate the nongenerative variable **B**

$$S \rightarrow aAb \mid cCd \mid cC \mid cd \mid c \mid ab ; A \rightarrow aAb \mid cCd \mid cC \mid cd \mid c \mid ab \mid ;$$

$$C \rightarrow cCd \mid cC \mid cd \mid c$$

(iv) Replace terminals by nonterminals

$$S \rightarrow XAY \mid UCV \mid UC \mid UV \mid c \mid XY; A \rightarrow XAY \mid UCV \mid UC \mid UV \mid c \mid XY;$$

$$C \rightarrow UCV \mid UC \mid UV \mid c ; X \rightarrow a ; Y \rightarrow b ; U \rightarrow c ; V \rightarrow d ;$$

,

(iv) Reduce triple nonterminals

$$S \rightarrow WY \mid ZV \mid UC \mid UV \mid c \mid XY; A \rightarrow WY \mid ZV \mid UC \mid UV \mid c \mid XY;$$

$$C \rightarrow ZV \mid UC \mid UV \mid c; X \rightarrow a; Y \rightarrow b; U \rightarrow c; V \rightarrow d;$$

$$W \rightarrow XA; Z \rightarrow UC$$

- (b) $S \Rightarrow WY \Rightarrow XAY \Rightarrow aAY \Rightarrow aWYY \Rightarrow aXAYY \Rightarrow aaAYY \Rightarrow aaZVYY$ $\Rightarrow aaUCVYY \Rightarrow aacCVYY \Rightarrow aaccVYY \Rightarrow aaccdYY \Rightarrow aaccdYY \Rightarrow$ aaccdbb
- (c) $L = \{ a^n c^m d^k b^n \mid n, m, k \ge 0, n+m+k > 0, m \ge k \}$

Answer 4 (25 pts)

(a) (5 pts) L_1 is a CFL generated by $G = (\{S,A,B,C\},\{a,b,c\},R,S)$ where R is given as below.

$$S \rightarrow AC$$
; $A \rightarrow aAb \mid B$; $B \rightarrow aB \mid a$; $C \rightarrow cC \mid c$

(b) (10 pts) L_2 is not a CFL as proved by the PL below.

Given n > 0 choose $z = a^{n+1}b^{n+1}c^n \in L_2$ and |z| = 3n + 2 > n

Then by PL z=uvwxy, $|vwx| \le n$, |vx|=q>0 and $uv^jwx^jy \in L_2$ for j=0,1,2,3,...

But (i) $vwx = a^k$ or $=b^k$ or (ii) $=c^k$ where $k \le n$. If (i) prevails then for j=0 $wwy = a^{n+1-q}b^{n+1}c^n$ or $=a^{n+1}b^{n+1-q}c^n$ both not in L_2 since $n+1-q \ne n+1$ else if

(ii) prevails then for j=3 namely, $uv^3wx^3y=a^{n+1}\,b^{n+1}\,c^{n+2q}$ not in L_2 since n+2q>n+1.

Other two possibilities are (iii) $\mathbf{vwx} = \mathbf{a}^i \mathbf{b}^j$ or $= \mathbf{b}^i \mathbf{c}^j$ with $\mathbf{i} + \mathbf{j} \le \mathbf{n}$ which again leads to conclusion that either \mathbf{uwy} is not in \mathbf{L}_2 when $\mathbf{vwx} = \mathbf{a}^i \mathbf{b}^j$; or when $\mathbf{vwx} = \mathbf{b}^i \mathbf{c}^j$ with $\mathbf{i}, \mathbf{j} > 0$; \mathbf{uwy} is not in \mathbf{L}_2 . Hence PL is contradicted and \mathbf{L}_2 is not a CFL.

(c) (10 pts)

Label	Condition	TM
<i>M</i> >	-	$R_{\{a,b,c,\#\}}$. A
A	$\sigma^{=a}$	$x.R_{b,c,\#}.B$
	else	h _{NO}
В	$\sigma^{=b}$	$x \cdot R_{\{a,c,\#\}} \cdot C$
	else	h _{NO}
С	$\sigma = c$	$x \cdot R_{\{a,b,\#\}} \cdot D$
	else	h _{NO}
D	σ=#	L# . E
	else	h_{NO}
E	$\sigma = a$	$x.R_{\{b,c,\#\}}.F$
	σ=#	hyES
	else	h_{NO}
F	$\sigma = b$	$x \cdot R_{\{a,c,\#\}} \cdot G$
	else	h_{NO}
G	$\sigma = c$	$x \cdot R_{\{a,b,\#\}} \cdot H$
	else	h _{NO}
Н	σ=#	L# .E
	else	h_{NO}