CAD project 2022 : Optimization and training of a hyperdimensional computing (HDC) circuit

Prof. Georges Gielen
Ali Safa, Sergio Massaioli, Francesco Lorenzelli
ESAT-MICAS
Katholieke Universiteit Leuven
gielen@kuleuven.be

© Georges Gielen - KU Leuven

THE TEACHING ASSISTANTS

Ali.Safa@imec.be

Sergio.Massaioli@esat.kuleuven.be

Francesco.Lorenzelli@imec.be

KU LEUVEN

GOAL: DESIGNING AN HDC CIRCUIT

WITH CIRCUIT OPTIMIZATION AND HDC LEARNING

- HDC is a state-of-the-art method for performing simple Machine Learning tasks with very little hardware overhead (area-memory-energy efficiency).
- In a nutshell, the idea behind HDC is to:
 - I. Encode input data into HW-efficient binary vectors.
 - 2. Classify these binary vectors via simple operations (such as taking a few inner products).
- In this project, we will write a CAD software in python for automating the design of an HDC circuit for cancer detection from biological signal measurements.

KU LEUVEN

MOTIVATION

AUTOMATED HDC CIRCUIT DESIGN FOR BIO-SIGNAL CLASSIFICATION TASKS

- Classification problems can be found in numerous tasks.
- ML methods to train classification algorithms allow for high flexibility and accuracy.
- Very effective, but to reach a high accuracy is computationally intensive (energy, time, area).
- > Optimal circuit implementation of such algorithm is needed for energy efficiency and speed.
- If the circuit represents one implementation of an algorithm it can be modelled and optimized before building it.
- In this lab we will model and optimize such a circuit via the HDC framework.

Recommended reading - HDC hardware implementation:

A. Menon, D. Sun, S. Sabouri, K. Lee, M. Aristio, H. Liew, J. Rabaey "A Highly Energy-Efficient Hyperdimensional Computing Processor for Biosignal Classification," in IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no. 4, pp. 524-534, Aug. 2022

U LEUVEN

-1

HDC ENCODER CIRCUIT AND THEORY

HDC CIRCUIT ARCHITECTURE I

A.K.A. HEAVILY QUANTIZED RANDOM FOURIER FEATURE MAPPING

• In Machine Learning, we are usually interested in providing a nonlinear, high-dimensional mapping of input signals into a feature space.

• A popular mapping $\phi(\bar{x})$ is given by the *Random Fourier Feature (RFF)* map with **D** dimension:

$$\phi_{RFF}(\overline{x}) = [\cos(\sigma \times \overline{w}_1^T \overline{x} + b_1), ..., \cos(\sigma \times \overline{w}_D^T \overline{x} + b_D)]$$

where b_l are random biases between $[0,2\pi[,\bar{w}_l$ are random weights drawn from a standard Normal distribution N(0,1) and σ is a constant setting the nonlinearity degree (the higher, the more nonlinear).

KULEUVE

HDC CIRCUIT ARCHITECTURE 2

QUANTIZING RFF

$$\phi_{RFF}(\overline{x}) = [\cos(\sigma \times \overline{w}_1^T \overline{x} + b_1), ..., \cos(\sigma \times \overline{w}_D^T \overline{x} + b_D)]$$

• We simply threshold the cosine values as -1, 0, +1 (ternary representation).

$$\phi_B(\overline{x})_i = \begin{cases} +1 \text{ if } \cos(\sigma \times \overline{w}_i^T \overline{x} + b_i) > t \\ 0 \text{ if } |\cos(\sigma \times \overline{w}_i^T \overline{x} + b_i)| \le t \\ -1 \text{ if } \cos(\sigma \times \overline{w}_i^T \overline{x} + b_i) < -t \end{cases}$$

with threshold t and σ optimized automatically by our CAD SW \odot

HDC CIRCUIT ARCHITECTURE 3

GETTING RID OF COSINES

$$\phi_B(\overline{x})_i = \begin{cases} +1 \text{ if } \cos(\sigma \times \overline{w}_i^T \overline{x} + b_i) > t \\ 0 \text{ if } |\cos(\sigma \times \overline{w}_i^T \overline{x} + b_i)| \le t \\ -1 \text{ if } \cos(\sigma \times \overline{w}_i^T \overline{x} + b_i) < -t \end{cases}$$

- To remove the cosines from the problem, we remark that the threshold t could be directly applied on the argument of the cosines.
- Under the condition that the argument wraps around e.g. 2π for exhibiting the cyclic behavior of the cosine.
- The argument $\overline{w}_i^T \overline{x}$ is an **inner product** and can be computed as a **recursive sum**:

$$Acc_k \leftarrow Acc_{k-1} + \sigma w_{i,k}x_k$$
, executed for $k = 1, ..., n$ steps

KU LEUVEN

HDC CIRCUIT ARCHITECTURE 4

ACCUMULATION WITH OVERFLOW

$$Acc_k \leftarrow Acc_{k-1} + \sigma w_{ik}x_k$$
, executed for $k = 1, ..., n$ steps

where $Acc_0 = 0$ and n is the dimensionality of \bar{x}, \bar{w} .

- The cyclic behavior (wrapping around) of the argument is obtained each time the accumulator Acc_k under- or overflows.
- The larger σ , the sooner the accumulator overflows for a fixed bit width. (One can also keep σ fixed to 1 and optimize the **accumulator bit width** B_{σ} .)
- After the n steps, accumulation overflow terminates and Acc_n quantized as:

$$\phi_{B}(\overline{x})_{i} = \begin{cases} +1 \text{ if } Acc_{n} - 2^{B_{a}-1} > t \\ 0 \text{ if } |Acc_{n} - 2^{B_{a}-1}| \le t \\ -1 \text{ if } Acc_{n} - 2^{B_{a}-1} < -t \end{cases}$$

(U LEUVEN

HDC CIRCUIT ARCHITECTURE 5

BINARIZING THE INPUT \bar{x}

$$\phi_{RFF}(\overline{x}) = [\cos(\sigma \times \overline{w}_1^T \overline{x} + b_1), ..., \cos(\sigma \times \overline{w}_D^T \overline{x} + b_D)]$$

- We consider all entries in \bar{x} to be B_{in} -bit integers (e.g., 8-bit in the labs).
- Therefore, the maximum value in \bar{x} is 255 and there are 256 possible values.
- We can define a Look-up Table (LUT) which associates to each of the 256 possibilities, a random binary vector of dimensionality D

Input value	Associated HV
0	$[L_{0,1},\cdots,L_{0,D}]$
:	:
255	$[L_{255,1},\cdots,L_{255,D}]$

where $L_{i,j} \in \{-1, +1\}$.

- Each random binary vector L_i must represent its associated value i.
- Therefore, we generate $L_i \sim B_{p_i}$ with $p_i = \frac{i}{2^B i n 1}$
- Each element of \bar{x} is encoded using the LUT to obtain a $n \times D$ matrix of $\{-1, +1\}$ noted $L(\bar{x})$

HDC CIRCUIT ARCHITECTURE 6

BINARIZING THE RFF WEIGHTS $w_{i,k}$

$$\phi_{RFF}(\overline{x}) = [\cos(\sigma \times \overline{w}_1^T \overline{x} + b_1), ..., \cos(\sigma \times \overline{w}_D^T \overline{x} + b_D)]$$

- We have already projected n-dimensional \overline{x} into a $n \times D$ binary representation using our LUT: $\overline{x} \to L(\overline{x}) \in \{-1, +1\}$
- The weights \overline{w}_i undergo a similar binarization where **each entry** in \overline{w}_i is projected to a D-dimensional random binary vector drawn from a Bernoulli distribution B_p with probability p=0.5 (**equiprobable** outcomes -1 and +1).
- Therefore, the matrix $\begin{bmatrix} \overline{w}_1^T \\ \vdots \\ \overline{w}_D^T \end{bmatrix}$ becomes $W \in \{-1, +1\}$ of size $n \times D$
- All inner products i=1,...,D can therefore be approximated as an element-wise multiplication (simple XOR \oplus) followed by an accumulation ("bundling"):
- $\quad \quad \overline{w}_l^T \overline{x} \approx \left(\sum_{j=1}^n (L(\bar{x}) \oplus W)_j \right)_l \text{ where } j \text{ denotes the } j^{th} \text{ row of the } n \times D \text{ matrix } (L(\bar{x}) \oplus W)$

KU LEUVEN

HDC CIRCUIT ARCHITECTURE 7

PUTTING EVERYTHING TOGETHER

- 1. The input \bar{x} is encoded into the $n \times D$ $L(\bar{x})$ using our LUT.
- 2. The random $n \times D$ binary weight matrix W is XOR-ed element-wise with $L(\bar{x})$: $(L(\bar{x}) \oplus W)$. An $n \times D$ binary matrix is obtained:

U LEUVEN

12

HDCTRAINING I

VIA LEAST-SQUARE SUPPORT VECTOR MACHINES (LS-SVM)

- Given a dataset of N vectors \bar{x} of dimension n together with the labels $Y \in \{-1, +1\}$, a **traintest split** can be done (e.g., 60% of data as training set, rest as test set, **randomly chosen**).
- Both the train and test vectors \bar{x} can be encoded using our HDC encoder circuit to obtain the associated D-dimensional vectors $\phi(\bar{x}) \in \{-1,0,+1\}$
- An LS-SVM seeks a weight $\bar{\mu}$ and bias b such that:

$$\bar{\mu}, b = \arg\min_{\bar{\mu}, b} \frac{1}{2} \bar{\mu}^T \bar{\mu} + \gamma \sum_{i=1}^N \xi_i^2$$
 subject to:

$$Y_i(\bar{\mu}^T \phi(\bar{x}_i) + b) = 1 - \xi_i \ \forall i = 1, ..., N$$

✓ Intuition: **First term** is an L2 penalty for regularization against overfitting and second term is simply a **linear regression** with target values −1, +1 corresponding to class I or 2.

KU LEUVEN

17

HDCTRAINING 2

TRAINING VIA A LINEAR SYSTEM OF EQUATIONS

• By defining $\bar{\mu} = \sum_{i=1}^{N_{train}} \alpha_i \phi(\bar{x}_i)$, it can be shown that LS-SVM training reduces to:

$$\begin{bmatrix} 0 & \bar{Y}^T \\ \bar{Y} & \Omega + \gamma^{-1} I_N \end{bmatrix} \begin{bmatrix} b \\ \bar{\alpha} \end{bmatrix} = \begin{bmatrix} 0 \\ \bar{1}_N \end{bmatrix}$$
$$\Omega_{ij} = Y_i Y_j \phi^T(\bar{x}_i) \phi(\bar{x}_j)$$

- This system can easily be solved in order to find b and the α_i , $i=1,...,N_{train}$
- Then $\bar{\mu}$ can be retrieved. $\bar{\mu}$ will be referred to as the "HDC prototype" or "centroid".
- The smaller γ , the less the system over-fits. γ will be also automatically optimized via Nelder-Mead search.

KU LEUVE

18

HDC INFERENCE

USING THE TRAINED SYSTEM TO CLASSIFY DATA

- We can further quantize $\bar{\mu}$, b to B_u -bit (defined by the user upfront).
- For an incoming data point \bar{x} in the test set, we first encode it via our HDC encoder $\phi(\bar{x})$.
- Then, we perform the inner product test: $\overline{\mu}^T \phi(\overline{x}) + b \ge 0$?
- If this is verified, we infer the label "+1", else we give it the label "-1"
- We then check our inferred label against the test label and compute the accuracy of the system by averaging over all the data in the test set.

KU LEUVE

19

NELDER-MEAD HDC CIRCUIT OPTIMIZATION

CIRCUIT HYPERPARAMETER OPTIMIZATION

NELDER-MEAD BASICS

- The Nelder-Mead method seeks to find a solution \bar{s} which minimizes a cost $C(\bar{s})$.
- In our case $\bar{s} = [\gamma, t, \sigma]$ i.e., LS-SVM hyper-parameter, threshold and accumulation speed.
- In contrast to backprop etc... a precise knowledge of the function $f(\bar{s})$ is **not needed**, as long as it can be evaluated somehow.
- In our case, we will try to find solutions that are both high-accuracy and sparse (i.e., \(\bar{\mu}\) contains lots of 0).
- Therefore, our cost is defined as $f(\bar{s})=1-(\text{ACCURACY}+\lambda_1\text{SPARSITY})$ where ACCURACY and SPARSITY are evaluated on the HDC system trained with the parameters in \bar{s} .
- λ_1 sets the importance of having a high sparsity.
- We will sweep λ_1 in order to study the tradeoff between accuracy and sparsity.

KU LEUVEN

21

NELDER-MEAD I

INITIALIZING THE SIMPLEX

- A simplex is a bag of N_s hyperparameters \bar{s} that are initialized randomly Simp = $\{\bar{s}_i, i=1,...,N_s\}$ where N_s is chosen by the user.
- To each hyperparameter vector \bar{s} , an initial cost is associated, which gives us a "bag of costs" associated to each \bar{s}_i : Costs = $\{f(\bar{s}_i), i = 1, ... N_s\}$
- The simplex is therefore roughly covering a possibly large portion of the hyperparametercost space.
 Ensemble levels (contours) of the Cost

22

In this toy example, a simplex in red with $N_{\rm S}=3$ points converges to a possible solution of the cost minimization problem as Nelder-Mead iterates.

 $\bar{s} = [x_1, x_2]$ in this toy example

KU LEUVE

NELDER-MEAD 2

BEST EXPLANATION WE FOUND IS FROM WIKIPEDIA

- A heuristical method... Moves downhill if cost is better while trying to reach lower and lower costs.
- Tries to extrapolate the behavior of the cost function between the points in the simplex.
- In the algorithm shown here, α, γ, ρ, σ are user-defined parameters setting the speed of convergence.
- The Nelder-Mead algorithm is straightforward to implement.

1. Order according to the values at the vertices $f(\mathbf{x}_1) \le f(\mathbf{x}_2) \le \cdots \le f(\mathbf{x}_{n+1})$. 3. Reflection Compute reflected point $\mathbf{x}_a = \mathbf{x}_a + \alpha(\mathbf{x}_a - \mathbf{x}_{n+1})$ with $\alpha > 0$ count full and home than the fact in fig. \ < fig. \ c fig. \. If the reflected point is the best point so far: $f(\mathbf{x}_*) < f(\mathbf{x}_*)$. then compute the expanded point $\mathbf{x}_{\sigma} = \mathbf{x}_{\sigma} + \gamma(\mathbf{x}_{r} - \mathbf{x}_{\sigma})$ with $\gamma > 1$ if the expanded point is better than the reflected point, $f(\mathbf{x}_{\sigma}) < f(\mathbf{x}_{\sigma})$. Then obtain a new simplex by replacing the worst point \mathbf{x}_{n+1} with the expanded point \mathbf{x}_n and go to slep to else obtain a new simplex by replacing the worst point \mathbf{x}_{n+1} with the reflected point \mathbf{x}_n and go to step to Here it is certain that $f(\mathbf{x}_r) \geq f(\mathbf{x}_n)$. (Note that \mathbf{x}_n is second or "next" to highest. $|f(\mathbf{x}_r)| < f(\mathbf{x}_{t+1})$ $f(\mathbf{x}_i) < f(\mathbf{x}_{i+1})$. Then complete the connected point on the outside $\mathbf{x}_c = \mathbf{x}_a + \rho(\mathbf{x}_c - \mathbf{x}_a)$ with $0 < \rho \le 0.5$. If the connected point is better than the reflected point i.e. $f(\mathbf{x}_c) < f(\mathbf{x}_c)$. then obtain a new simplex by replacing the worst point \mathbf{x}_{n+1} with the contracted point \mathbf{x}_c and go to step 1 Else go to step 6. then compute the contracted point on the smide $\mathbf{x}_i = \mathbf{x}_i + \rho(\mathbf{x}_{i+1} - \mathbf{x}_i)$ with $0 < \rho \le 0.5$. If the contracted point is better than the worst point, i.e. $f(\mathbf{x}_r) < f(\mathbf{x}_{n+1})$. Else go to step 6. 6. Shrink

 $\mathbf{x}_i = \mathbf{x}_1 + \sigma(\mathbf{x}_i - \mathbf{x}_1)$ and go to step 1

23

NELDER-MEAD 3

EARLY STOPPING AND TERMINATION

- The user defines a maximum number of iterations.
- Early stopping can be done to accelerate the code.
- As Nelder-Mead iterates, the N_S costs in the "bag of costs" Costs = $\{f(\bar{s_i}), i=1,...N_S\}$ converge to lower and lower values.
- At some point, all costs in the "bag" are close to each other, indicating that a solution has been found.
- By checking the standard deviation of Costs = $\{f(\bar{s}_i), i=1,...N_s\}$ against a threshold, the Nelder-Mead optimization is stopped when $std < t_{std}$

U LEUVEN

24

KU LEUVEN

RESULTS TO BE OBTAINED AT THE PROJECT'S END

CONCLUSION

NOW IT'S YOUR TURN !!!

- Don't hesitate to try out your custom ideas...
 But beware that time for the lab sessions is limited !!!
- > It is important that
 - 1. you produce and turn in a correct running code.
 - 2. your can critically reflect on the accuracy-sparsity tradeoff and explain **why** this matters.
- Plagiarism will not be accepted at all and will be checked upon (through software) !!! Plagiarism violations will be penalized by failing the project.
- > Any questions?

KU LEUVEN

27