From local to global... computationally.

SIAM CSE, Emerging Directions in Computational Topology,

1 March 2021

Paweł Dłotko

Dioscuri Centre in TDA, IMPAN.

Integration of data according to their proximity

- 1. Mapper algorithm,
- 2. Ball Mapper algorithm,
- 3. their combinations,
- 4. and new descriptors.

Point cloud X.

Point cloud X, $f: X \to \mathbb{R}^n$.

Point cloud X, $f: X \to \mathbb{R}^n$, I - cover of f(X).

Point cloud X, $f: X \to \mathbb{R}^n$, I - cover of f(X), clustering in $f^{-1}(i)$, for $i \in I$.

Point cloud X, $f: X \to \mathbb{R}^n$, I - cover of f(X), clustering in $f^{-1}(i)$, for $i \in I$, edges correspond to nonempty intersections of clusters.

Mapper is the most well know tool of TDA.

Conventional Mapper algorithm, knobs to adjust.

- 1. Cover of the line.
- 2. Lens function.
- 3. Clustering algorithm.
- 4. It is not easy to choose them all.
- 5. We may be tempted to "make up" lenses.
- 6. But, this may be dangerous as for every graph G there exist a point X cloud being a grid and a function $f:X\to\mathbb{R}$ giving a Mapper graph G plus one disconnected vertex.

Ball Mapper implementation.

BallMapper: The Ball Mapper Algorithm

The core algorithm is described in "Ball mapper: a stape summary for topological data analysis" by Pawel Diota, (2019) «arXive 1901.07.410». Piesses consult the following youther video <a href="https://www.youthec.com/www.

Version: 0.2

Imports: <u>igraph</u>, <u>scales</u>, <u>networkD3</u>, <u>testthat</u>, <u>fields</u>, methods, <u>stringr</u>

Published: 2019-08-20

Author: Pawel Dlotko [aut, cre]
Maintainer: Pawel Dlotko <pdlotko at gmail.com>

License: MIT + file LICENCE

NeedsCompilation: no

CRAN checks: BallMapper results

Down Loads

Reference manual: BallMapper.pdf

Package source: BallMapper 0.2.0.tan.gz
Windows binaries: r-devel: BallMapper 0.2.0.zip, r-release: BallMapper 0.2.0.zip, r-oldrel: BallMapper 0.2.0.zip

macOS binaries: r-release: BallMapper 0.2.0.tgz, r-oldrel: BallMapper 0.2.0.tgz

Old sources: <u>BallMapper archive</u>

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BallMapper to link to this page.

https://cran.r-project.org/web/packages/BallMapper https://github.com/dgurnari/pyBallMapper

Support for Brexit in 2016 referendum.

Where shall we go next?

- 1. Ball Mapper as simpler to use Mapper (a few used-cases are joint work with Simon and Wanling Rudkin).
- 2. Dimension and curvature-based coloring functions.
- 3. Conventional Mapper on Ball Mapper.
- 4. The whole story told in the space of knots.

Knots and their properties

With Davide Gurnari and Radmila Sazdanovic

Knots and their properties

- 1. A knot is an embedding of S^1 to \mathbb{R}^3 up to continuous deformations (isotopies).
- 2. A number of so called knot polynomials (Alexander, Jones, HOMPFLY-PT) have been introduced to describe knots.
- 3. As well as Khovanov Homology theory.

Ball Mapper on Jones data

Space of Jones Polynomials for knots up to 15 crossings.

Ball Mapper on Jones data: signature

Space of Jones Polynomials for knots up to $17\ \text{crossings}$ colored by signature.

Ball Mapper on Alexander data

Space of Alexander Polynomials for knots up to 15 crossings.

Alexander data: signature

Space of Alexander Polynomials for knots up to $15\ \text{crossings}$ colored by signature.

Non standard coloration

- 1. Local dimension:
 - 1.1 Distances to k-n-n and their ratios,
 - 1.2 Local PCA,
 - 1.3 Angles between nearest neighbors.
- 2. Curvature
- 3. Joint work with John Harvey.

Alexander 15 crossings local dimension.

Alexander 15 crossings local dimension, failure percentage.

Jones 15 crossings local dimension.

Jones 15 crossings local dimension, failure percentage.

Functorial Ball Mapper

- 1. Suppose we have different descriptors for the fixed data.
- 2. How to compare the space of descriptors?
- 3. Where are they similar, and where are they different?
- 4. All boils down to the question how to visualize a function $f: \mathbb{R}^n \to \mathbb{R}^m$?

 $f: \mathbb{R}^n \to \mathbb{R}$

Ball Mapper comparison of data sets: Alexander vs Jones

Ball Mapper comparison of data sets: Alexander vs Jones

https://github.com/dgurnari/mapper_GUI

Two more exotic knot descriptors

HOMFLY-PT: 15 crossings knots

Conventional mapper on Ball Mapper

Mapper on Ball Mapper; Hompfly-PT \rightarrow Jones

Mapper on Ball Mapper; Hompfly-PT \rightarrow Alexander

Mapper on Ball Mapper, general

Very high dimensional data $\xrightarrow{\text{projection}}$ High dimensional data Mapper $\xrightarrow{\text{lens}}$ Ball Mapper

Take home

- 1. Careful with all the knobs in mapper!
- 2. Simpler methods like Ball Mapper first?
- 3. New coloration functions; local dimension and curvature.
- 4. Visualization of functions $f: \mathbb{R}^n \to \mathbb{R}^m$.
- 5. Mapper on Ball Mapper cascade for high dimensional lenses.

Thank you for your time.

Dioscuri Centre in Topological Data Analysis @Facebook WE ARE HIRING POSTDOCS AND PHD STUDENTS!!

Paweł Dłotko pdlotko @ impan.pl pdlotko @ gmail pawel_dlotko @ skype