Bayesian Learning Lecture 9 - HMC, Stan and Variational Inference

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Hamiltonian Monte Carlo
- Stan
- Variational Inference

Hamiltonian Monte Carlo

- When $\theta = (\theta_1, \dots, \theta_p)$ is **high-dimensional**, $p(\theta|\mathbf{y})$ usually located in some subregion of \mathbb{R}^p with complicated geometry.
- MH: hard to find good proposal distribution $q\left(\cdot|\theta^{(i-1)}\right)$.
- MH: use very small step sizes otherwise too many rejections.
- Hamiltonian Monte Carlo (HMC):
 - distant proposals and
 - high acceptance probabilities.
- HMC: add extra momentum parameters $\phi = (\phi_1, \dots, \phi_p)$ and sample from

$$p(\theta, \phi | \mathbf{y}) = p(\theta | \mathbf{y}) p(\phi)$$

Hamiltonian Monte Carlo

- Physics: Hamiltonian system $H(\theta, \phi) = U(\theta) + K(\phi)$, where U is the potential energy and K is the kinetic energy.
- Hamiltonian Dynamics

$$\frac{d\theta_i}{dt} = \frac{\partial H}{\partial \phi_i} = \frac{\partial K}{\partial \phi_i},$$
$$\frac{d\phi_i}{dt} = -\frac{\partial H}{\partial \theta_i} = -\frac{\partial U}{\partial \theta_i}$$

- Hockey puck sliding over a friction-less surface: illustration.
- Use $U(\theta) = -\log [p(\theta) p(\mathbf{y}|\theta)]$.
- Use $\phi \sim N\left(0,\mathbf{M}\right)$ where \mathbf{M} is the mass matrix and

$$K(\phi) = -\log\left[p(\phi)\right] = \frac{1}{2}\phi^{T}\mathbf{M}^{-1}\phi + \text{const}$$

If we could propose θ in continuous time (spoiler: we can't), the acceptance probability would be one.

Hamiltonian Monte Carlo

Hamiltonian Dynamics

$$\begin{split} \frac{d\theta_{i}}{dt} &= \left[\mathbf{M}^{-1} \boldsymbol{\phi}\right]_{i}, \\ \frac{d\phi_{i}}{dt} &= \frac{\partial \log p\left(\boldsymbol{\theta} \middle| \mathbf{y}\right)}{\partial \theta_{i}} \end{split}$$

which can be simulated using the leapfrog algorithm

$$\phi_{i}\left(t+\frac{\varepsilon}{2}\right) = \phi_{i}\left(t\right) + \frac{\varepsilon}{2} \frac{\partial \log p\left(\theta(t)|\mathbf{y}\right)}{\partial \theta_{i}},$$

$$\theta\left(t+\varepsilon\right) = \theta\left(t\right) + \varepsilon \mathbf{M}^{-1}\phi(t),$$

$$\phi_{i}\left(t+\varepsilon\right) = \phi_{i}\left(t+\frac{\varepsilon}{2}\right) + \frac{\varepsilon}{2} \frac{\partial \log p\left(\theta(t)|\mathbf{y}\right)}{\partial \theta_{i}},$$

where ε is the step size.

Discretization \Rightarrow acceptance probability drops with ε .

The Hamiltonian Monte Carlo algorithm

- Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - **1** Sample the starting **momentum** $\phi_s \sim N\left(0, \mathbf{M}\right)$
 - 2 Simulate new values for (θ_p, ϕ_p) by iterating the **leapfrog** algorithm L times, starting in $(\theta^{(i-1)}, \phi_s)$.
 - 3 Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{p(\phi_p)}{p(\phi_s)} \right)$$

- 4 With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.
- Tuning parameters: 1. stepsize ε , 2. number of leapfrog iterations L and 3. mass matrix M. No U-turn.

Stan

- Stan is a probabilistic programming language based on HMC.
- Allows for Bayesian inference in many models with automatic implementation of the MCMC sampler.
- Named after Stanislaw Ulam (1909-1984), co-inventor of the Monte Carlo algorithm.
- Written in C++ but can be run from R using the package rstan

Stan logo

Stanislaw Ulam

Stan - toy example: three plants

Three plants were observed for four months, measuring the number of flowers

Stan Model 1: iid normal

$$y_i \stackrel{iid}{\sim} N\left(\mu, \sigma^2\right)$$

```
library(rstan)
y = c(4,5,6,4,0,2,5,3,8,6,10,8)
N = length(y)
StanModel = '
data {
 int<lower=0> N: // Number of observations
  int<lower=0> y[N]; // Number of flowers
parameters {
 real mu:
 real<lower=0> sigma2;
model {
  mu ~ normal(0.100); // Normal with mean 0, st.dev. 100
  sigma2 ~ scaled_inv_chi_square(1,2); // Scaled-inv-chi2 with nu 1, sigma 2
 for(i in 1:N)
    y[i] ~ normal(mu,sqrt(sigma2));
31
```

Stan Model 2: multilevel normal

$$y_{i,p} \sim N(\mu_p, \sigma_p^2), \quad \mu_p \sim N(\mu, \sigma^2)$$

```
StanModel = '
data {
 int<lower=0> N: // Number of observations
 int<lower=0> v[N]; // Number of flowers
 int<lower=0> P: // Number of plants
transformed data {
 int<lower=0> M; // Number of months
 M = N / P:
parameters {
 real mu:
 real<lower=0> sigma2;
 real mup[P];
 real sigmap2[P];
model {
 mu ~ normal(0.100); // Normal with mean 0, st.dev. 100
 sigma2 ~ scaled inv chi square(1,2): // Scaled-inv-chi2 with nu 1, sigma 2
 for(p in 1:P){
    mup[p] ~ normal(mu,sqrt(sigma2));
   for(m in 1:M)
      v[M*(p-1)+m] ~ normal(mup[p],sqrt(sigmap2[p]));
```

Stan Model 3: multilevel Poisson

$$y_{i,p} \sim Poisson(\mu_p), \quad \mu_p \sim logN(\mu, \sigma^2)$$

```
StanModel = '
data {
 int<lower=0> N: // Number of observations
 int<lower=0> v[N]: // Number of flowers
  int<lower=0> P; // Number of plants
transformed data {
  int<lower=0> M; // Number of months
  M = N / P:
parameters {
  real mu;
  real<lower=0> sigma2;
  real mup[P];
model {
  mu ~ normal(0.100); // Normal with mean 0, st.dev. 100
  sigma2 ~ scaled_inv_chi_square(1,2); // Scaled-inv-chi2 with nu 1, sigma 2
  for(p in 1:P){
    mup[p] ~ lognormal(mu,sqrt(sigma2)); // Log-normal
    for(m in 1:M)
     v[M*(p-1)+m] ~ poisson(mup[p]); // Poisson
31
```

Stan: fit model and analyze output

```
data = list(N=N, y=y, P=P)
burnin = 1000
niter = 2000
fit = stan(model_code=StanModel,data=data,
           warmup=burnin,iter=niter,chains=4)
# Print the fitted model
print(fit,digits_summary=3)
# Extract posterior samples
postDraws <- extract(fit)
# Do traceplots of the first chain
par(mfrow = c(1,1))
plot(postDraws$mu[1:(niter-burnin)],type="1",vlab="mu",main="Traceplot")
# Do automatic traceplots of all chains
traceplot(fit)
# Bivariate posterior plots
pairs(fit)
```

Stan - useful links

- Getting started with RStan
- RStan vignette
- Stan Modeling Language User's Guide and Reference Manual
- Stan Case Studies

Variational Inference

- Let $\theta = (\theta_1, ..., \theta_p)$. Approximate the posterior $p(\theta|y)$ with a (simpler) distribution $q(\theta)$.
- Before: Normal approximation from optimization: $q(\theta) = N\left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta})\right]$.
- Mean field Variational Inference (VI): $q(\theta) = \prod_{i=1}^{p} q_i(\theta_i)$
- **Parametric VI**: Parametric family $q_{\lambda}(\theta)$ with parameters λ
- Find the $q(\theta)$ that minimizes the Kullback-Leibler distance between the true posterior p and the approximation q:

$$\mathit{KL}(q,p) = \int q(\theta) \ln rac{q(\theta)}{p(\theta|y)} d\theta = \mathit{E}_q \left[\ln rac{q(\theta)}{p(\theta|y)}
ight].$$

Mean field approximation

Mean field VI is based on factorized approximation:

$$q(\theta) = \prod_{i=1}^{p} q_i(\theta_i)$$

- No specific functional forms are assumed for the $q_i(\theta)$.
- Optimal densities can be shown to satisfy:

$$q_j(\theta) \propto \exp\left(E_{-\theta_j} \ln p(\mathbf{y}, \theta)\right)$$

where $E_{-\theta_j}(\cdot)$ is the expectation with respect to $\prod_{k\neq j} q_k(\theta_k)$.

Structured mean field approximation. Group subset of parameters in tractable blocks. Similar to Gibbs sampling.

Mean field approximation - algorithm

- Initialize: $q_2^*(\theta_2), ..., q_M^*(\theta_p)$
- Repeat until convergence:

- Note: no assumptions about parametric form of the $q_i(\theta)$.
- Optimal $q_i(\theta)$ often **turn out** to be parametric (normal etc).
- Just update hyperparameters in the optimal densities.

Mean field approximation - Normal model

- Model: $X_i | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$.
- Prior: $\theta \sim N(\mu_0, \tau_0^2)$ independent of $\sigma^2 \sim Inv \chi^2(\nu_0, \sigma_0^2)$.
- Mean-field approximation: $q(\theta, \sigma^2) = q_{\theta}(\theta) \cdot q_{\sigma^2}(\sigma^2)$.
- Optimal densities

$$\begin{split} q_{\theta}^*(\theta) &\propto \exp\left[E_{q(\sigma^2)} \ln p(\theta, \sigma^2, \mathbf{x})\right] \\ q_{\sigma^2}^*(\sigma^2) &\propto \exp\left[E_{q(\theta)} \ln p(\theta, \sigma^2, \mathbf{x})\right] \end{split}$$

Normal model - VB algorithm

■ Variational density for σ^2

$$\sigma^2 \sim \mathit{Inv} - \chi^2 \left(\tilde{v}_{\mathit{n}}, \tilde{\sigma}_{\mathit{n}}^2 \right)$$

where
$$\tilde{\nu}_n = \nu_0 + n$$
 and $\tilde{\sigma}_n = \frac{\nu_0 \sigma_0^2 + \sum_{i=1}^n (x_i - \tilde{\mu}_n)^2 + n \cdot \tilde{\tau}_n^2}{\nu_0 + n}$

■ Variational density for θ

$$\theta \sim N\left(\tilde{\mu}_n, \tilde{\tau}_n^2\right)$$

where

$$\tilde{\tau}_n^2 = \frac{1}{\frac{n}{\tilde{\sigma}_n^2} + \frac{1}{\tau_0^2}}$$

$$\tilde{\mu}_n = \tilde{w}\bar{x} + (1 - \tilde{w})\mu_0,$$

where

$$\tilde{w} = \frac{\frac{n}{\tilde{\sigma}_n^2}}{\frac{n}{\tilde{\sigma}_n^2} + \frac{1}{\tau_0^2}}$$

Normal example from Murphy ($\lambda = 1/\sigma^2$)

Probit regression

Model:

$$\Pr\left(y_i = 1 | \mathbf{x}_i\right) = \Phi(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Prior: $\beta \sim N(0, \Sigma_{\beta})$. For example: $\Sigma_{\beta} = \tau^2 I$.
- Latent variable formulation with $u = (u_1, ..., u_n)'$

$$\mathbf{u}|\beta \sim \textit{N}(\mathbf{X}\beta,1)$$

and

$$y_i = \begin{cases} 0 & \text{if } u_i \le 0 \\ 1 & \text{if } u_i > 0 \end{cases}$$

Factorized variational approximation

$$q(\mathbf{u}, \beta) = q_{\mathbf{u}}(\mathbf{u})q_{\beta}(\beta)$$

VI for probit regression

VI posterior

$$eta \sim extstyle N \left(ilde{\mu}_eta, \left(extstyle extstyle extstyle extstyle extstyle (extstyle ex$$

where

$$ilde{\mu}_{eta} = \left(\mathbf{X}^{T} \mathbf{X} + \Sigma_{eta}^{-1}
ight)^{-1} \mathbf{X}^{T} ilde{\mu}_{\mathbf{u}}$$

and

$$\tilde{\mu}_{\mathbf{u}} = \mathbf{X} \tilde{\underline{\mu}}_{\beta} + \frac{\phi \left(\mathbf{X} \tilde{\underline{\mu}}_{\beta} \right)}{\Phi \left(\mathbf{X} \tilde{\underline{\mu}}_{\beta} \right)^{\mathbf{y}} \left[\Phi \left(\mathbf{X} \tilde{\underline{\mu}}_{\beta} \right) - \mathbf{1}_{n} \right]^{\mathbf{1}_{n} - \mathbf{y}}}.$$

Probit example (n=200 observations)

Probit example

