F18T2A1

a) Wir betrachten die Gebiete

$$\Omega_1 := \{ z = x + iy \in \mathbb{C} \mid x > 0, y > 0 \}$$

und

$$\Omega_2 := \{ z = x + iy \mid x \in \mathbb{R}, 0 < y < 1 \}.$$

- (1) Zeige, dass eine biholomorphe Abbildung $f: \Omega_2 \to \Omega_1$ existiert.
- (2) Gib eine solche Abbildung explizit an.
- b) Bestimme die Anzahl der Nullstellen (mit Vielfachheiten) des Polynoms

$$z^{87} + 36z^{57} + 71z^4 + z^3 - z + 1$$

in dem Kreisring $K_{1/2}(0) = \{z \in \mathbb{C} \mid 1 < |z| < 2\}.$

Zu a, (1):

Das Gebiet Ω_1 ist gerade der erste Quadrant und damit offensichtlich einfach zusammenhängend (z.B. weil sternförmig zum Sternmittelpunkt 1+i) und nicht gleich \mathbb{C} .

Das Gebiet Ω_2 ist ein Streifen mit Breite 1 parallel zur reellen Achse und damit ebenfalls einfach zusammenhängen (z.B. weil sternförmig zum Sternmittelpunkt $\frac{1}{2}$) und nicht gleich \mathbb{C} . Damit gibt es nach dem Riemannschen Abbildungssatz biholomorphe Abbildungen $g:\Omega_1\to\mathbb{E},h:\Omega_2\to\mathbb{E}$ auf die Einheitskreisscheibe \mathbb{E} .

Die Komposition beider Abbildungen $f:=g^{-1}\circ h:\Omega_2\to\Omega_1$ ist dann wohldefiniert, weil $g^{-1}:\mathbb{E}\to\Omega_1$ als Umkehrfunktion der biholomorphen Abbildung $g:\Omega_1\to\mathbb{E}$ existiert und außerdem biholomorph ist. Damit ist f als Komposition biholomorpher Abbildungen biholomorph.

Zu a, (2):

Das Gebiet Ω_2 lässt sich mithilfe der gestauchten komplexen Exponentialfunktion $g: \Omega_2 \to \mathbb{H}$ auf die obere Halbebene \mathbb{H} abbilden. Schreiben wir nämlich $z \mapsto e^{z \cdot \pi}$ auf die obere Halbebene \mathbb{H} abbilden. Schreiben wir nämlich z = x + iy, so ist $g(z) = e^{\pi x} \cdot e^{i\pi y}$ und dabei handelt es sich für $x \in \mathbb{R}, y \in]0,1[$ um die eindeutige Polardarstellung eines Elements aus der oberen Halbebene. Die (bekanntlich) einfach zusammenhängende obere Halbebene können wir nun mithilfe des darauf wohldefinierten geeigneten Zweigs der 2. Wurzel/ des Hauptzweigs des Logarithmus auf den ersten Quadranten abbilden via

$$h: \mathbb{H} \to \Omega_1$$

 $z \mapsto \sqrt{z} := e^{\frac{1}{2}\text{Log}(z)}$. Schließlich gilt für $z = re^{i\varphi} \in \mathbb{H}$ gerade $h(z) = e^{\frac{1}{2}(\ln r + i\varphi)} = \sqrt{r} \cdot e^{i\frac{\varphi}{2}} \in \Omega_1$.

Als Verkettung biholomorpher Abbildungen sind g und h und damit auch deren Verkettung $f := h \circ g : \Omega_2 \to \Omega_1$ biholomorph. Es handelt sich bei f also um die gesuchte Abbildung.

Zu b:

Wir definieren zunächst

$$f_1: \mathbb{C} \to \mathbb{C}$$
 and $g_1: \mathbb{C} \to \mathbb{C}$ $z \mapsto 71z^4$ and $z \mapsto z^{87} + 36z^{57} + z^3 - z + 1$.

Dann gilt für alle z im Rand der Kreisscheibe $K(0,1):=\{z\in\mathbb{C}\mid |z|<1\}\subseteq\mathbb{C}$

$$|g_1(z)| \le |z|^{87} + 36|z|^{57} + |z|^3 + |z| + 1 = 40 < 71 = |f_1(z)|.$$

Weil f_1 in Null eine vierfache Nullstelle hat (und sonst in ganz \mathbb{C} keine weitere), hat nach dem Satz von Rouché auch $f_1 + g_1$ in der Einheitskreisscheibe genau vier Nullstellen und auf dem Rand der Einheitskreisscheibe keine Nullstellen. Definieren nun andererseits

$$f_2: \mathbb{C} \to \mathbb{C}$$
 and $g_2: \mathbb{C} \to \mathbb{C}$ $z \mapsto 36z^{57} + 71z^4 + z^3 - z + 1$.

Es folgt für alle z im Rand der Kreisscheibe $K(0,2) \subseteq \mathbb{C}$:

$$|g_2(z)| \le 36|z|^{57} + 71|z|^4 + |z|^3 + |z| + 1 \le 2^6 \cdot 2^{57} + 2^7 \cdot 2^4 + 2^3 + 2 + 1$$

 $\le 2^{63} \cdot 5 < 2^{87} = |f_2(z)|.$

Weil f_2 in z=0 eine 87-fache Nullstelle (und sonst keine weiteren in \mathbb{C}) aufweist, haben f_2 und f_2+g_2 nach dem Satz von Rouché in K(0,2) genau 87 Nullstellen. Nimmt man nun beide Aussagen zusammen, so hat das gegebenen Polynom $z^{87}+36z^{57}+71z^4+z^3-z+1=(f_1+g_1)(z)=(f_2+g_2)(z)$ in K(0,2) genau 87 und im Abschluss der Einheitskreisscheibe genau 4 Nullstellen. In $K_{1/2}(0)=K(0,2)\setminus\overline{K(0,1)}$ hat das Polynom also 87-4=83 Nullstellen.