A Quick Introduction to Machine Learning (K-means Clustering)

Lecturer: John Guttag

K-means Clustering

Given a set of points X, and a positive integer k, partition X into k clusters such that it approximately minimizes the objective function

Minimizing the sum of the mean square differences

K-means Algorithm

randomly choose k examples as centroids while true:

create k clusters by assigning each example to closest centroid compute k new centroids by averaging examples in each cluster if centroids don't change:

break

Example

Choose Initial Centroids (k = 4)

Assign Points to Clusters

Reassign Points to Clusters

Reassign Points

Reassign Points

No Points Move

Issues with K-means

Final result can depend upon initial centroids

Greedy algorithm can find different local optima

Choosing the "wrong" k can lead to nonsense

Choosing K

A priori knowledge about application domain

There are five different kinds of bacteria: k = 5There are two kinds of people in the world: k = 2

Search for a good k

Try different values of k, and evaluate quality of results

Choosing Centroids

Try multiple random choices and choose best

Finding the "Best" Solution

```
best = kMeans(points)
for t in range(numTrials):
    C = kMeans(points)
    if badness(C) < badness(best):
        best = C</pre>
```

$$V(c) = \mathop{\mathrm{a}}_{x \mid c} (mean(c) - x)^2$$
 $badness(C) = \mathop{\mathrm{a}}_{c \mid C} V(c)$

Hierarchical vs. K-means

Hierarchical looks at different numbers of clusters From 1 to n

K-means looks at many ways of creating k clusters

Hierarchical is slow

K-means is fast

Hierarchical is deterministic

K-means is non-deterministic

