Red GaAsP 0.5-Inch 7-Segment Numeric LED Displays

FND500, FND507 FND560, FND567

Optoelectronic Products

General Description

The FND500, FND507, FND580 and FND567 are red GaAsP single-digit 7-Segment LED displays with a 0.5-inch character height. These displays are designed for applications in which the viewer is within twenty feet of the display.

Low Forward Voltage—Typically $V_F=1.7~V$ Fits Standard DIP Sockets with 0.6-Inch Pin Row Maximized Contrast Ratio With Integral Lens Cap Horizontal Stacking 0.6-Inch Minimum,

1-inch Typical

FND560/567 Suitable For Use in High Ambient Light

FND500 Common Cathode, Right-Hand Decimal Point

FND507 Common Anode, Right-Hand Decimal Point FND560 Common Cathode, Right-Hand Decimal

Point, High Brightness
FND567 Common Anode, Right-Hand Decimal

Point, High Brightness

Absolute Maximum Ratings

Maximum Temperature and Humidity

Storage Temperature -25°C to +85°C
Operating Temperature -25°C to +85°C
Pin Temperature (Soldering, 5 s) 260°C

Pin Temperature (Soldering, 5 s) 260° Relative Humidity at 65°C 98%

Maximum Voltage and Currents

V_R Reverse Voltage 3.0 V

Average Forward do Current/Segment or

Decimal Point

Derate from 25°C

Ambient Temperature 0.3 mA/°C

25 mA

pk Peak Forward Current

Segment or Decimal Point

(100 µs pulse width)

1000 pps, TA = 25°C 200 mA

Package Outline

Notes All dimensions in inches bold and millimeters (parentheses) Tolerance unless specified = ±.015 (±.381)

Connection Diagram Typical Electrical Characteristics

FND500, FND507 FND560, FND567

Pin Connections (Front View)

Pin FND507/567 1 Segment E

2 Segment D 3 Common Anode 4 Segment C

5 Decimal Point 6 Segment B 7 Segment A

8 Common Anode 9 Segment F

10 Segment G

FND500/560

Segment E Segment D

Common Cathode

Segment C
Decimal Point

Segment B Segment A

Common Cathode

Segment F Segment G

Electrical and Radiant Characteristics $T_A = 25$ °C

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
VF	Forward Voltage	1.5	1.7	2.0	V	I _E = 20 mA
BVR	Reverse Breakdown Voltage	3.0	12		v	I _R = 1.0 mA
10	Axial Luminous Intensity, Average	}	}	}	ì	} ''
	Each Segment	j				
	FND500, FND507	300	600	1	μcd	I _F = 20 mA
	FND560, FND567	740	1200		μcd	I _F = 20 mA
ΔlO	Intensity Matching, Segment-to-Segment		±33	1	96	I _F = 20 mA
	Intensity Matching Within One Intensity Class	1	±20	1	1%	I _F = 20 mA,
		ļ	ļ	}	J	all segments
		İ	1	1	1	at once
LO	Average Segment Luminance	İ		1		
	FND500, FND507	1	35		ftL	I _F = 20 mA
	FND560, FND567	1	70	1	ftL	IF = 20 mA
θ 1/2	Viewing Angle to Half Intensity	1	±27	1	degrees	1
λ_{pk}	Peak Wavelength	}	665	ł	nm	IF = 20 mA