Алгебра 1 семестр ПИ, Лекция, 10/08/21

Собрано 11 октября 2021 г. в 11:53

Содержание

1.	Теория сравнений	1
	1.1. Начала теории сравнений	1
	1.2. Классы вычетов	2
	1.3. Кольцо классов вычетов	3
	1.4. Приведенная система вычетов	4
	1.5. Функция Эйлера	4

1.1. Начала теории сравнений

Def. 1.1.1. а u b называются сравнимыми по модулю m > 0, если они имеют одинаковые остатки при делении на m

$$a \equiv b \pmod{m}, a \equiv b(m), a \stackrel{m}{\equiv} b$$

Утверждение 1.1.2.

$$\Leftrightarrow \begin{cases} a \equiv b \pmod{m} \\ a - b : m \\ a \equiv b + mt \end{cases}$$

Доказательство. $1) \Rightarrow 2$)

$$a = mq_1 + r, b = mq_2 + r \Rightarrow a - b = m(q_1 - q_2)$$
:m

$$2) \Rightarrow 3)$$

$$a - b : m \Rightarrow a - b = mt \Rightarrow a = b + mt$$

 $3) \Rightarrow 1$). Поделим a и b на m:

$$a = mq_1 + r_1, b = mq_2 + r_2$$

3):
$$a = b + mt \Rightarrow mq_1 + r_1 = mq_2 + r_2 + mt \Rightarrow$$

 $\Rightarrow m(q_1 - q_2 - t) = r_2 - r_1 \Rightarrow m|r_2 - r_1 \Rightarrow r_2 - r_1 = 0$

Свойства:

- 1. Рефлексивность. $a \equiv a \pmod{m}$
- 2. Симметричность. $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$
- 3. Транзитивность. $a \equiv b \pmod{m} \Rightarrow b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

Доказательство.

$$a-c=a-b+b-c$$
:m

4.
$$a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$$

5.
$$a \equiv b \pmod{m}, c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$$

Доказательство.

$$ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d)$$
:m

$$\underline{6. \ d|a,d|b,d|m,a\equiv b \ (\mathrm{mod}\ m)\Rightarrow \frac{a}{d}\equiv \frac{b}{d} \ (\mathrm{mod}\ \frac{)}{m}d}$$

Доказательство.

$$a - b = a_1 d - b_1 d = my = m_1 dt \Rightarrow a_1 - b_1 = m_1 t$$

- 7. $a \equiv b \pmod{m} \Rightarrow ka \equiv kb \pmod{m}$
- 8. $d|a,d|b,(m,d)=1, a\equiv b \pmod{m} \Rightarrow \frac{a}{d}\equiv \frac{b}{d} \pmod{m}$

Доказательство.

$$a = a_1d, b = b_1d, a - b:m \Rightarrow (a_1 - b_1) \cdot d:m \Rightarrow a_1 - b_1:m$$

- 9. $d|m, a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$
- 10. $a \equiv b \pmod{m} \Rightarrow (a, m) = (b, m)$

Доказательство.

$$a \equiv b \pmod{m} \Rightarrow a = b + mt \Rightarrow (a, m) = (b, m)$$

1.2. Классы вычетов

Def. 1.2.1. Классом вычетов по \pmod{m} называется множество чисел, сравнимых c а по модулю m

$$m = 7, \overline{1} = \{-6, 8, 1, 15, ...\}$$

 $\overline{a} = \{x | x \equiv a \pmod{m}\}$

Элементы классов вычетов – **вычеты**. Обычно рассматривают наименьший неотрицательный вычет.

Def. 1.2.2. Множество вычетов, взятых по одному из разных классов образуют полную систему вычетов. Например

$$\{0,1,2,...,m-1\}$$

 $\underline{\text{Lm}}$ 1.2.3. Множество из m чисел, попарно несравнимых по модулю m, образуют полную систему вычетов.

Теорема 1.2.4. (a, m) = 1. Если x пробегает полную систему вычетов по $\pmod{m} \Rightarrow b \to ax + b$ тоже пробегает полную систему вычетов по \pmod{m}

Доказательство. x принадлежит m значений $\Rightarrow ax+b$ принадлежит m значений. Пусть $x_1 \not\equiv x_2 \pmod m$. Предположим, что $ax_1+b \equiv ax_2+b \pmod m \Rightarrow ax_1 \equiv ax_2 \pmod m \Rightarrow x_1 \equiv \pmod m$

1.3. Кольцо классов вычетов

Def. 1.3.1. Определим сложение и умножение вычетов по фиксированному модулю т.

$$\overline{a} + \overline{b} = \overline{a+b}, \overline{a} \cdot \overline{b} = \overline{ab}$$

<u>Lm</u> 1.3.2. Сложение и умножение определены корректно

Доказательство. $a \equiv a_1 \pmod{m}, b \equiv b_1 \pmod{m}$

$$\Rightarrow a + b = a_1 + b_1 \pmod{m}, a \cdot b = a_1 \cdot b_1 \pmod{m} \Rightarrow \overline{a} + \overline{b} = \overline{a}_1 + \overline{b}_1, \overline{a} \cdot \overline{b} = \overline{a}_1 \cdot \overline{b}_1$$

Def. 1.3.3. Группа G называется коммутативной (абелевой), Если

$$\forall x, y \in G \rightarrow xy = yx$$

Теорема 1.3.4. \mathbb{Z}_m образует коммутативную группу относительно сложения

Доказательство. $\overline{a} + \overline{b} = \overline{a+b} \in \mathbb{Z}_m$

1.
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a+b+\overline{c}} = \overline{a+b+c}$$

 $\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c} = \overline{a+b+c}$

2.
$$\overline{0}$$
. $\overline{a} + \overline{0} = \overline{a+0} = \overline{a}$

3.
$$-\overline{a} = \overline{m-a} \Rightarrow \overline{a} - \overline{a} = \overline{a+m-a} = \overline{0}$$

4.
$$\overline{a} + \overline{b} = \overline{b} + \overline{a}$$

Def. 1.3.5. (Ассоциативным) кольцом называется множество R, на котором заданы бинарные операции:

1.
$$\forall x, y, z \to (x+y) + z = x + (y+z)$$

2.
$$\exists 0 \in R : \forall x \in R \to x + 0 = x$$

3.
$$\forall x \in R \ \exists (-x) \in R : x + (-x) = 0$$

4.
$$\forall x, y \in R \to x + y = y + x$$

5.
$$\forall x, y, z \in Rx(y+z) = xy + xz, (x+y)z = xz + yz$$

6.
$$\forall x, y, z \in R \to (xy)z = x(yz)$$

3амечание 1.3.6. $\exists 1 \in R: \forall x \in R \to x \cdot 1 = 1 \cdot x = x$ – кольцо с единицей

 $\forall x,y \in R \to xy = yx$ – коммутативное кольцо

Теорема 1.3.7. \mathbb{Z}_m – коммутативное кольцо с единицей.

Доказательство.

$$\overline{a}(\overline{b} + \overline{z}) = \overline{a} \cdot \overline{b + c} = \overline{a(b + c)} = \overline{ab + ac}$$

и т.д.

Def. 1.3.8. Кольца R, в котором $\forall a,b \rightarrow (ab=0 \Rightarrow a=0 \lor b=0)$ называется кольцом без делителей нуля.

3/4

Eсли ab=0 и $a,b\neq 0$, то $a,b-\partial$ елители нуля

Def. 1.3.9. Коммутативное кольцо без делителей нуля – область целостности.

Теорема 1.3.10. 1. \mathbb{Z}_m имеет делители нуля $\Leftrightarrow m$ – составное число

2. \mathbb{Z}_p, p - простое – область целостности.

Доказательство. " \Rightarrow ". $m = n \cdot k, \overline{n} \cdot \overline{k} = \overline{0}$ в \mathbb{Z}_m " \Leftarrow ". $\overline{n} \cdot \overline{k} = \overline{0} \Rightarrow n \cdot k \equiv 0 \pmod{m}$

Преподоложим, что m – простое $\stackrel{\cdot}{\Rightarrow} m|n\vee m|k\Rightarrow \overline{n}=\overline{0}\vee \overline{k}=\overline{0}$. Но \overline{n} и \overline{k} – делители нуля, т.е. $\overline{n},\overline{k}\neq 0\Rightarrow m$ – составное.

$$1) \Rightarrow 2)$$

1.4. Приведенная система вычетов

Def. 1.4.1. Вычеты, выбранные из полной системы вычетов и взаимно-простые с модулем т обрузуют приведенную систему вычетов

Def. 1.4.2. Количество вычетов в приведенной системе вычетов обозначается $\varphi(m)$ – функция Эйлера.

<u>Lm</u> 1.4.3. Если p – простое, то

$$\varphi(p) = p - 1$$

Теорема 1.4.4. (a, m) = 1, x пробегает приведенную систему вычетов $\Rightarrow ax$ тоже пробегает приведенную систему вычетов по \pmod{m}

Доказательство. $x \to \varphi(m), ax \to \varphi(m)$ $(ax, m) = (a, m) = 1 \Rightarrow ax$ набор чисел из $\varphi(m)$, взаимно-простых с $m \Rightarrow \{ax\}$ – приведенная система вычетов.

1.5. Функция Эйлера

<u>**Lm**</u> **1.5.1.** p – простое, $\alpha > 0$

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}$$

Доказательство. $1, 2, 3, ..., p, 2p, 3p, ..., p \cdot p, ..., p^{\alpha} - 1$. Выбросим из этого множества числа, делящиеся на p. Таких чисел будет ровно количество коэффициентов при p до p^{α} , т.е. $p^{\alpha-1}$

Def. 1.5.2. Функия $\Theta : \mathbb{N} \to \mathbb{N}$ называется мультипликативной, если

$$(a,b) = 1 \Rightarrow \Theta(ab) = \Theta(a) \cdot \Theta(b)$$

4/4