Faculté des Sciences - UL Département de Maths

Géométrie Différentielle T
d $2\,$

J.Saab

1. Étude de la lemniscate d'équation $(x^2 + y^2)^2 - a^2(x^2 - y^2) = 0$

- (a) Donner la paramétrisation de la courbe en coordonnées polaires
- (b) Tracer son graphe
- (c) Montrer qu'elle est le lieu des points M tel que $|MA|.|MB| = \frac{1}{2}a^2$ où $A(-\frac{a}{\sqrt{2}},0), B(\frac{a}{\sqrt{2}},0)$

2. Étude de la courbe d'équation $x^2 + y^2 + xy + x + y = 1$

- (a) Donner une paramétrisation de la courbe en coordonnées cartésiennes
- (b) En déduire sa nature et calculer la courbure en chacun de ses points

3. Étude de la courbe de Lissajous définie par la paramétrisation

$$x(t) = \sin 4t, \ y(t) = \cos 6t$$

- (a) Étudier le tableau de variation de x(t) et y(t)
- (b) Expliciter ses points doubles
- (c) Tracer son graphe

4. Étude de la cardioïde définie par la paramétrisation

$$x(t) = \frac{a}{2}(2\cos t - \cos 2t), \quad y(t) = \frac{a}{2}(2\sin t - \sin 2t)$$

- (a) Tracer son graphe
- (b) Calculer sa courbure

5. La fonction $\gamma(t)=(t^2,t^4)$ est - elle une paramétrisation de la parabole $y=x^2$

6. Montrer que $\gamma(t)=(\cos^2 t-\frac{1}{2},\sin t\cos t,\sin t)$ est une paramétrisation de la courbe de Vivani (intersection du cylindre d'axe oz et de rayon $\frac{1}{2}$ avec la sphère unité de centre $(-\frac{1}{2},0,0)$)

7. Considérons le cissoïde de Diocles d'équation polaire

$$r(\theta) = \sin \theta \tan \theta, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

- (a) Trouver une paramétrisation de ce cissoïde, en considérant θ comme paramétre
- (b) Trouver une reparamétrisation de ce cissoïde sur]-1,1[
- 8. Soit $\gamma(t) = (t, \cosh t)$.
 - (a) Montrer que γ est régulière
 - (b) Trouver la longueur de l'arc γ , à partir du point (0,1)
 - (c) Trouver une reparamétrisation à vecteur vitesse unitaire de γ
 - (d) Calculer la courbure de γ

12. Soit $\gamma(t) = (e^{kt}\cos t, e^{kt}\sin t), t \in \mathbb{R}, k \neq 0$. Montrer qu'il existe une paramétrisation s à vecteur vitesse unitaire unique de γ telle que $s > 0, \forall t$ et $s \to 0$ quand $t \to \infty$ et exprimer s en fonction de t

Montrer que la courbure orientée de γ est $\frac{1}{ks}$. Réciproquement, décrire toute courbe ayant pour courbure $\frac{1}{ks}$, $k \neq 0$

13. Une courbe plane à vecteur vitesse unitaire γ a la propriété que son vecteur tangent t(s) définit un angle fixe θ avec la courbe $\gamma(s)$ pour tout s

$$\gamma(s) = r(s)\cos\theta \ t + r(s)\sin\theta \ n_s$$

Montrer que:

- (a) si $\theta = 0$ alors γ est un morceau de droite
- (b) si $\theta = \frac{\pi}{2}$ alors γ est un cercle
- (c) si $0 < \theta < \frac{\pi}{2}$ alors γ est un spiral
- 14. A- Soit γ une courbe plane dont la courbure n'est jamais nulle. On définit le centre de courbure $\varepsilon(t)$ de γ au point $\gamma(t_0)$ par

$$\varepsilon(t) = \gamma(t) + \frac{1}{k(t)}n$$

Montrer que le cercle de centre $\varepsilon(t)$ et de rayon $\frac{1}{k}$ est le cercle osculateur de γ au point $\gamma(t)$

Application: trouver le cercle osculateur de :

- (a) $\gamma(t) = (3\cos t, 5\sin t), \quad 0 \le t \le 2\pi \text{ en } t = \frac{\pi}{4}$
- (b) $\gamma(t) = (t^2, t^3 3), \quad -4 \le t \le 4 \text{ en } t = \frac{3}{5}$
- (c) $y = x(1-x)^{\frac{2}{5}}$, $-1 \le x \le 2$, en $x_0 = \frac{1}{2}$
- B- On va regarder $\varepsilon(t)$ comme une paramétrisation d'une nouvelle courbe dite l'évolution de γ
- (a) Montrer que si $k_s' > 0, \forall s$ alors la longueur de l'arc ε est $u_0 \frac{1}{k_s}$ où u_0 est constante. Calculer la courbure orientée de ε
- (b) Soit $\gamma(t) = a(t-\sin t, 1-\cos t), \quad 0 < t < 2\pi, \quad a > 0$. Montrer que l'evolution du cycloïde γ est $\varepsilon(t) = a(t+\sin t, -1+\cos t)$