Question 1

Relative humidity; 90%

Atmospheric pressure= 1028hPa Therefore total air pressure = 102.8kPa

Temperature effettiva; 2°C; T = 275.15K

From the chart;

Wet bulb Temperature= 1 °C

Absolute humidity $\omega = 0.0035$

$$\omega = \frac{0.622P_v}{P - P_v} = 0.0035 \frac{Kg_{vapour}}{kg_{dryAir}}$$

$$P_{v} = 0.575kP_{a}$$

If we take the room to be 12 by 8 by 4.5m

Formula for air;
$$m_a = \frac{\mathrm{P_a V_a}}{\mathrm{R_a T}} \ \mathrm{R_{sp.}} = \frac{\mathrm{R_{global}}}{\mathrm{M_{gas}}}$$

$$m_V = \underline{0.575 * (12*8*4.5)}$$

0.4615 * (275.15 + 2)

$$= 1.94 kg$$

 m_g =mass of water at sat condition

$$\phi = \frac{m_v}{m_g} = \underline{1.94}$$
86%

$$m_g = 2.26 \mathrm{kg}$$

Question 2

Height of building 2.5m² Floor area 200 m² Wall area 144 m²

Internal Gains

Qig. sensible = 136 + 2.2 Acf + 22 Noc

= 136 + 2.2 * 200 + 22* 2

= 620W

Qig. latent = 20 + 0.22 Acf + 12 Noc

= 20 + 0.22 * 200 + 12* 2

= 88W

<u>Infiltration</u>

Good quality (AuI) = 1.4 cm² /m²

Aes = Roof area = 200 +144

 $A_L = A_{es} * A_{ul} = (200 + 144) * 1.4 = 481.6 \text{ cm}^3$

V infiltration heating = AL *IDF

IDF $_{\text{heating}} = 0.073 \text{L/5cm}^2$

 $IDF_{cooling} = 0.03L/5cm^2$

V infiltration heating(Q_L) = A_L *IDF = 481.6 * 0.073 = 35.16L/s

V infiltration cooling (QL) = AL *IDF = 481.6 * 0.033 = 15.89L/s

Ventilation

V ventilation = 0.05*Acf + 3.5(Nbr + 1) = 0.05*200 + 3.5*2 = 17L/s

V inf-ventilation heating = 35.16 + 17 = 52.16L/s

V inf-ventilation cooling = 15.89 + 17 = 32.89L/s

$$\Delta$$
 T_{cooling} = 31.1 °C -24 °C=7.1 °C=7.1 K

$$\Delta$$
 T_{heating} =21 °C -(-4. 1 °C)=25.1 °C=25.1 K

 $C_{sensible} = 1.23$, $C_{latent} = 3010$ $\Delta\omega Cooling=0.0039$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} * \dot{V} \Delta T_{Cooling} = 1.23 * 32.89 * 7.1 = 287.25 \text{ W}$$

$$\dot{Q}_{inf-ventilation_{cooling_{latent}}} \ = \ C_{latent} \ * \dot{V} \Delta \omega_{Cooling} = 3010 \ * 32.89 \ * \ 0.0039 = 386.13 \ W$$