

Stein Variational Gradient Descent: Main ideas

Gaëtan Serré

École Normale Supérieure Paris-Saclay Master Mathématiques, Vision, Apprentissage gaetan.serre@ens-paris-saclay.fr

1 Goal

Given a smooth density π supported on $\mathcal{X} \subseteq \mathbb{R}^d$, find μ on \mathcal{X} as close as possible to π .

2 Stein framework

Stein identity: Let A_{π} a Stein operator s.t.

$$\mathcal{A}_{\pi}\phi = \nabla \log \pi(\cdot)^{\top} \phi(\cdot) + \nabla \cdot \phi(\cdot)$$

with $\phi(x) = [\phi_1(x), ..., \phi_d(x)]^{\top}$. Then, if ϕ is in the Stein class of π i.e. $\phi(x)\pi(x) = 0$ for all $x \in \partial \mathcal{X}$ if \mathcal{X} is compact or $\lim_{\|x\| \to \infty} \phi(x)\pi(x) = 0$ if $\mathcal{X} = \mathbb{R}^d$, we have:

$$\mathbb{E}_{x \sim \pi}[\mathcal{A}_{\pi}\phi(x)] = 0 \tag{1}$$

Proof.

$$\mathbb{E}_{x \sim \pi}[\mathcal{A}_{\pi}\phi(x)] = \int_{\mathcal{X}} \left(\nabla \log \pi(\cdot)^{\top} \phi(\cdot) + \nabla \cdot \phi(\cdot) \right) \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \pi(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx + \sum_{k=1}^{d} \left([\pi(x) \phi_{k}(x)]_{\mathcal{X}} - \int_{\mathcal{X}} \frac{\partial \pi(x)}{\partial x_{k}} \phi_{k}(x) dx \right)$$

$$= \int_{\mathcal{X}} \nabla \log \pi(\cdot)^{\top} \phi(\cdot) \pi(x) dx - \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \pi(x)}{\partial x_{k}} \phi_{k}(x) dx$$

$$= \int_{\mathcal{X}} \pi(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) - \pi(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) dx \text{ (log trick)}$$

$$= 0$$

Now, let μ a smooth density supported on \mathcal{X} different from π . Now, Eq. 1 do not hold anymore with $x \sim \mu$. However, we can use $\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)]$ as a discrepancy measure between μ and π , as its magnitude relates to how different μ and π are (see Liu and Wang [2016] & Liu [2017]). Indeed, if we assume ϕ to be in the Stein class of μ as well (this is mild condition as π and μ are two densities on \mathcal{X} , one can choose ϕ to be in the Stein class of all distribution on \mathcal{X} . E.g. if $\mathcal{X} = \mathbb{R}^d$, one can pick

2 Serré

 $\phi(x) = \exp[-\|x - y\|^2]$), we have:

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)] = \int_{\mathcal{X}} \left(\nabla \log \pi(x)^{\top} \phi(x) + \nabla \cdot \phi(x) \right) \mu(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(x)^{\top} \phi(x) \mu(x) dx + \sum_{k=1}^{d} \left(\left[\mu(x) \phi_{k}(x) \right]_{\mathcal{X}} - \int_{\mathcal{X}} \frac{\partial \mu(x)}{\partial x_{k}} \phi_{k}(x) dx \right)$$

$$= \int_{\mathcal{X}} \mu(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) - \mu(x) \sum_{k=1}^{d} \frac{\partial \log \mu(x)}{\partial x_{k}} \phi_{k}(x) dx \text{ (log trick)}$$

$$= \int_{\mathcal{X}} \mu(x) \left[\sum_{k=1}^{d} \phi_{k}(x) \left(\frac{\partial \log \pi(x)}{\partial x_{k}} - \frac{\partial \log \mu(x)}{\partial x_{k}} \right) \right] dx$$

$$= \int_{\mathcal{X}} \mu(x) \left[\sum_{k=1}^{d} \phi_{k}(x) \left(\frac{\partial \log \pi(x)}{\partial x_{k}} - \frac{\partial \log \mu(x)}{\partial x_{k}} \right) \right] dx.$$

$$(2)$$

As expected, the scale of $\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)]$ increases w.r.t. the difference between μ and π .

Therefore, one can define an objective to find a density μ^* close to π :

$$\mu^* = \arg\min_{\mu} \mathbb{S}(\mu, \pi) = \arg\min_{\mu} \max_{\phi \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi} \phi(x)] \}, \tag{3}$$

as $\mathbb{S}(\mu, \pi) = 0$ iff $\mu = \pi$ and $\mathbb{S}(\mu, \pi) > 0$ otherwise with \mathcal{H} sufficiently large. The choice of \mathcal{H} is therefore crucial. One way to ensure it is both rich enough and computationally tractable is to let \mathcal{H} be a RKHS.

2.1 Kernelized Stein Discrepancy

Let \mathcal{H}_0 be a RKHS with a kernel k(x, x') in the Stein class of π and μ . Let $\mathcal{H} = (\mathcal{H}_0^{(1)}, \dots, \mathcal{H}_0^{(d)})$. The KSD maximizes ϕ in the unit ball of \mathcal{H} . The objective in (3) is then:

$$\mathbb{S}(\mu, \pi) = \max_{\phi \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)], \ s.t. \ \|\phi\|_{\mathcal{H}} \le 1 \}. \tag{4}$$

Within this framework, one can show that the optimal solution of (4) (see [Liu et al., 2016, Oates et al., 2014, Chwialkowski et al., 2016]) is ¹:

$$\phi(x) = \frac{\phi^*(x)}{\|\phi^*\|_{\mathcal{H}}}, \text{ where } \phi^*(.) = \mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi} \otimes k(x, \cdot)] = \int_{\mathcal{X}} k(x, \cdot) \nabla \log \pi(x) + \nabla k(x, \cdot) d\mu(x),$$
 (5)

where $\mathcal{A}_{\pi} \otimes f(x) = f(x) \nabla \log \pi(x) + \nabla f(x)$, is a variant of Stein operator. Moreover, $\mathbb{S}(\mu, \pi) = \|\phi^*\|_{\mathcal{H}}$.

3 Link with Kullback-Leibler Divergence

Let $T: \mathcal{X} \to \mathcal{X}$, $x \mapsto (I + \gamma \phi)(x)$. One can show that (see Liu and Wang [2016] Theorem 3.1):

$$\nabla_{\gamma} K L(T_{\#}\mu||\pi) = -\mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)]. \tag{6}$$

Therefore, assuming $\phi \in \mathcal{H}$ with \mathcal{H} as defined as in Section 2.1, using (5), we know that:

$$\phi^*(.) = \int_{\mathcal{X}} k(x, \cdot) \nabla \log \pi(x) + \nabla k(x, \cdot) d\mu(x)$$
 (7)

¹ J'ai fait la preuve sur papier, je l'écrirai plus tard. (définir \mathcal{B} et utiliser ineg triangulaire sur $\langle \mathcal{B}, f \rangle_{\mathcal{H}}$)

minimizes $\nabla_{\gamma} KL(T_{\#}\mu||\pi)$. Furthermore, one can show that:

$$P_{\mu}\nabla\log\frac{\mu}{\pi}(\cdot) = \int_{\mathcal{X}} k(x,\cdot)\nabla\log\mu(x)d\mu(x) - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= \int_{\mathcal{X}} k(x,\cdot)\nabla\mu(x)dx - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= -\int_{\mathcal{X}} \nabla k(x,\cdot)d\mu(x) - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= -\int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x) + \nabla k(x,\cdot)d\mu(x)$$

$$= -\phi^*(\cdot)$$
(8)

The Stein Variational Gradient Descent (SVGD) algorithm consists in an iterative procedure where one apply successive transformations to an initial density μ_0 towards the "direction" ϕ^* that minimizes the gradient of the Kullback-Leibler divergence:

$$\mu_{n+1} = (I + \gamma \phi^*)_{\#} \mu_n = \left(I - \gamma P_{\mu} \nabla \log \frac{\mu}{\pi}\right)_{\#} \mu_n.$$
 (9)

4 Not understood yet

- $-k(x,\cdot)$ in the Stein class of π and μ ?
- Link with Wasserstein distance?
- Why did they defined so much about their RKHS?

Bibliography

- Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit, 2016. URL https://arxiv.org/abs/1602.02964.
- Qiang Liu. Stein variational gradient descent as gradient flow, 2017. URL https://arxiv.org/abs/1704.07520.
- Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm, 2016. URL https://arxiv.org/abs/1608.04471.
- Qiang Liu, Jason D. Lee, and Michael I. Jordan. A kernelized stein discrepancy for goodness-of-fit tests and model evaluation, 2016. URL https://arxiv.org/abs/1602.03253.
- Chris J. Oates, Mark Girolami, and Nicolas Chopin. Control functionals for monte carlo integration, 2014. URL https://arxiv.org/abs/1410.2392.