

ELECTROMAGNETIC FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

i) The Gauss's law of electrostatics is expressed as

a)
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

b)
$$\nabla^2 v = -\frac{t}{\in 0}$$

c)
$$\vec{E} = -\nabla v$$

d)
$$\oint_s \vec{D} \cdot d\vec{s} = \int_{\vartheta} \nabla \cdot \vec{D} d\vartheta$$
.

- ii) A Gaussi an surface for application is
 - a) a closed surface
 - b) a symmetrical closed surface
 - c) a semi-closed surface
 - d) any surface.

4155 [Turn over

- Capacitance of the earth of radius R is
 - a) $2\pi \in_0 R$
- b) $4\pi \in \frac{1}{R}$ d) $4\pi \in_0 R$.
- c) $\frac{4}{3}\pi \in_0 R^3$
- Which of these statements is not characteristic of a iv) static magnetic field?
 - it is conservative a)
 - b) it is solenoidal
 - it has link & sources c)
 - d) magnetic flux lines are always closed.
- Electric field in a region containing space charges can v) be found using
 - Laplace's equation a)
- b) Poisson's equation
- c) Coulomb's law
- d) Helmholtz equation.
- In a transmission line, electromagnetic energy in vi) transported by
 - the flow of electrons a)
 - the flow of electrons & holes b)
 - the associated electric & magnetic field c)
 - electric field only. d)

- vii) In a certain region, the electric field $\vec{E} = 0$, potential V there must be
 - a) zero

- b) a constant
- c) a function of position d) infinity.
- viii) The work done by the force $F = 4\overrightarrow{ax} 3\overrightarrow{ay} + 2\overrightarrow{az}$ N in giving a 1 nc charge a displacement of $10\overrightarrow{ax} + 2\overrightarrow{ay} 7\overrightarrow{az}$ m is
 - a) 103 nJ

b) 60 nJ

c) 64 nJ

- d) 20 nJ.
- ix) Which of the following is a mathematically incorrect expression?
 - a) grad div
- b) curl grad
- c) div grad
- d) curl curl.
- x) The flux through each turn of a 100 turn coil is $(t^3 2t) m$ wb is where t is in seconds. The induced emf

at t = 2s is

a) 1 V

b) -1 V

c) 4 mv

d) 0.4 V.

- a) attenuation constant
- b) constitutive parameters (α , \in , μ)
- c) loss tangent
- d) reflection co-efficient.
- xii) Which of these functions do not satisfy the wave equation?
 - a) $\sin x \cos t$
- b) $\cos^2(y+5t)$
- c) $(x+2t)^2$
- d) $\sin w (10z + t)$.

GROUP – B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Find the divergence and curl of the following vectors $\overrightarrow{A} = x^2yz \overrightarrow{ax} + xz \overrightarrow{az}$.
- 3. Given point P (2, 6, 3). Express P in cylindrical and spherical co-ordinates.
- 4. A point charge of 30 nc is located at the origin while plane y = 3 carries charge 10 nc/m^2 . Find \vec{D} at (0, 4, 3).

4155

- 5. Two dipoles with dipole moments $-5\overrightarrow{az}$ nc/m & $9\overrightarrow{az}$ nc/m are located at points (0, 0, -2) & (0, 0, 3) respectively. Find the potential at the origin.
- 6. A thin ring of radius 5 cm is placed o plane z=1 cm so that its centre is at (0,0,1) cm. If the ring carries 50 mA along $a\phi$ find \overrightarrow{H} at (0,0,-1) cm.
- 7. A transmission line operating at 500 mHz has $z_0 = 80\Omega$, $\alpha = 0.04 \text{ Np/m}, \ \beta = 1.5 \text{ rad/m}. \text{ Find the line parameters } R, L,$ G, & C.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Derive the following equations
 - i) $\nabla \times \overrightarrow{H} = J$
 - ii) $\nabla \cdot \vec{B} = 0$.
 - b) A solenoid of length 'l' and radius 'a' consists of N turns of wire carrying current I. Show that at point P along its axis $\overrightarrow{H} = \frac{nI}{2} \left(cm \ \theta_2 cm \ \theta_1 \right) \overrightarrow{az}$ where $n = N/l \ \& \ \theta_1 \ \& \ \theta_2$ are the angles subtended at P by the end turns.
 - c) Determine the self inductance of a co-axial cable of inner radius 'a' & outer radius 'b'. 4 + 6 + 5

- b) Write Lorentz force equation. Hence obtain the expression of force acting on a straight conduction of length 'L' in a uniform magnetic field \vec{B} .
- c) Find the force an a straight conductor of length 0.20 m carrying a current of 5.0 A in the \overrightarrow{az} direction where the field in $\overrightarrow{B} = 4 \times 10^{-3} \left(\overrightarrow{ax} + \overrightarrow{ay} \right)$ tesla. 4 + 6 + 5
- 10. a) In a one dimensional device the charge density in given by $\vartheta_v = \vartheta_0 \frac{x}{a}$. If $\vec{E} = 0$ at x = 0 & v = 0 at x = a, find $v \& \vec{E}$.
 - b) A homogeneous dielectric $(\in_r = 2 \cdot 5)$ fills region $\frac{1}{D_1} (x < 0)$ while region $\frac{2}{D_1} (x > 0)$ is free space. If $\overrightarrow{D_1} = 12 \overrightarrow{ax} 10 \overrightarrow{ay} + 4 \overrightarrow{az} \text{ nc/m}^2$, find $\overrightarrow{D_2} \& \theta_2$.
 - c) Derive continuity of current equation. 4 + 7 + 4
- 11. a) The magnetic field component of a plane wave in a lossless dielectric $(\mu_r = l)$ is $\overrightarrow{H} = 30$ $\sin \left(\lambda \pi \times 10^8 t 5x\right) \overrightarrow{az} \ mA/m$ find
 - i) \in_r
 - ii) the wavelength and wave velocity
 - iii) the wave impedance
 - iv) the polarization of the wave
 - v) the corresponding electric field component.
 - b) Develop the analogy between the uniform plane EM waves and the electric transmission line. 10 + 5

4155

What are skin effect and skin depth? 12. a)

- What is polarization of electro-magnetic wave? c)
- Explain the significance of pointing vector. 4 + 4 + 4 + 3d)

7 [Turn over