Nekonečné rady Číselné rady

Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

5. októbra 2011

Postupnosť a nekonečný rad

Definícia (Postupnosť)

Pod postupnosťou rozumieme reálnu funkciu definovanú na množine prirodzených čísel.

Postupnosť a nekonečný rad

Definícia (Postupnosť)

Pod postupnosťou rozumieme reálnu funkciu definovanú na množine prirodzených čísel.

Definícia (Nekonečný rad)

Nech $\{a_n\}$ je postupnosť. Pod nekonečným (číselným) radom rozumieme súčet

$$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n.$$

Postupnosť a nekonečný rad

Definícia (Postupnosť)

Pod postupnosťou rozumieme reálnu funkciu definovanú na množine prirodzených čísel.

Definícia (Nekonečný rad)

Nech $\{a_n\}$ je postupnosť. Pod nekonečným (číselným) radom rozumieme súčet

$$a_1+a_2+\cdots+a_n+\cdots=\sum_{n=1}^\infty a_n.$$

V čom je rozdiel Rad ⇔ Postupnosť

Nekonečný číselný rad predstavuje súčet prvkov postupnosti!

Súčet nekonečného číselného radu

Definícia (Postupnosť čiastočných súčtov)

Nech $\{a_n\}$ je postupnosť. Pre ľubovoľné $n\in\mathbb{N}$ položme

$$s_n=a_1+a_2+\cdots+a_n.$$

Postupnosť $\{s_n\}$ nazývame postupnosť čiastočných súčtov nekonečného radu $\sum_{n=1}^{\infty} a_n$.

Súčet nekonečného číselného radu

Definícia (Postupnosť čiastočných súčtov)

Nech $\{a_n\}$ je postupnosť. Pre ľubovoľné $n\in\mathbb{N}$ položme

$$s_n=a_1+a_2+\cdots+a_n.$$

Postupnosť $\{s_n\}$ nazývame postupnosť čiastočných súčtov nekonečného radu $\sum_{n=1}^{\infty} a_n$.

Definícia (Konvergencia nekonečného radu)

Nech $\sum_{n=1}^{\infty} a_n$ je nekonečný rad a $\{s_n\}$ postupnosť jeho čiastočných súčtov.

Ak existuje vlastná limita lim $s_n = s$, tak hovoríme, že rad $\sum_{n=1}^{\infty} a_n$ konverguje a číslo s nazývame jeho súčtom.

Ak neexistuje vlastná limita $\lim s_n = s$, hovoríme, že rad diverguje.

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak $\lim s_n = \infty$

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak
$$\lim s_n = \infty$$

• ak
$$\lim s_n = -\infty$$

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak $\lim s_n = \infty$

• ak $\lim s_n = -\infty$

• ak $\lim s_n$ neexistuje

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak $\lim s_n = \infty$ hovoríme, že rad určite diverguje k $+\infty$,

• ak $\lim s_n = -\infty$

• ak lim s_n neexistuje

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak $\lim s_n = \infty$ hovoríme, že rad určite diverguje k $+\infty$,

• ak $\lim s_n = -\infty$ hovoríme, že rad určite diverguje k $-\infty$,

• ak lim s_n neexistuje

V prípade, že nekonečný rad diverguje, môžeme rozlíšiť tri prípady:

• ak $\lim s_n = \infty$ hovoríme, že rad určite diverguje k $+\infty$,

• ak $\lim s_n = -\infty$ hovoríme, že rad určite diverguje k $-\infty$,

• ak $\lim s_n$ neexistuje hovoríme, že rad osciluje.

Príklady

Určte súčet nekonečných radov

- $\bullet \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

- $\sum_{n=1}^{\infty} (\sqrt{n+2} 2\sqrt{n+1} + \sqrt{n})$
- Vyjadrite číslo 0, 215 v tvare zlomku v základnom tvare.
- Nech platí $a \neq 0$, $q \neq 0$. Vyšetrite konvergenciu a určte súčet nekonečného geometrického radu

$$a + aq + \cdots + aq^{n-1} + \cdots = \sum_{n=1}^{\infty} aq^{n-1}.$$

Podmienky konvergencie

Nutná podmienka konvergencie

Nech rad $\sum_{n=1}^{\infty} a_n$ konverguje. Potom platí lim $a_n = 0$.

Podmienky konvergencie

Nutná podmienka konvergencie

Nech rad $\sum_{n=1}^{\infty} a_n$ konverguje. Potom platí lim $a_n = 0$.

Cauchy-Bolzanovo kritérium

Nekonečný rad $\sum_{n=1}^{\infty} a_n$ konverguje práve vtedy, ak pre každé $\varepsilon>0$ existuje $n_0\in\mathbb{N}$ také, že pre každé $n\in\mathbb{N}$, $n\geq n_0$ a pre všetky $m\in\mathbb{N}$ platí

$$|a_{n+1} + a_{n+2} + \cdots + a_{n+m}| < \varepsilon.$$

Operácie s radmi

Súčet a násobok radov

Nech $\sum a_n$ a $\sum b_n$ sú konvergentné rady so súčtami $\sum a_n = s$, $\sum b_n = t$ a nech $k \in \mathbb{R}$. Potom konvergujú aj rady $\sum (a_n + b_n)$ a $\sum ka_n$ a platí

$$\sum (a_n + b_n) = s + t$$

$$\sum ka_n=k\cdot s$$

Operácie s radmi

Neplatnosť bežných pravidiel

Pre nekonečné rady neplatí asociatívny ani komutatívny zákon!

Operácie s radmi

Neplatnosť bežných pravidiel

Pre nekonečné rady neplatí asociatívny ani komutatívny zákon!

Grandiho rad (Príklad neplatnosti asociativity)

Uvažujme rad $1+(-1)+1+(-1)+\cdots=\sum_{n=0}^{\infty}(-1)^n$. Tento rad diverguje, lebo $s_1=s_3=\cdots=1$ a $s_2=s_4=\cdots=0$, teda $\limsup s_n$ neexistuje.

Avšak rad $1+[(-1)+1]+[(-1)+1]+\cdots$ konverguje, $s_n=1$ pre každé $n\in\mathbb{N}$ a $s=\lim s_n=1$.

Podobne rad $[1+(-1)]+[1+(-1)]+\cdots$ konverguje, $s_n=0$ pre každé $n\in\mathbb{N}$ a $s=\lim s_n=0$.

Príklady

- Harmonický rad Ukážte, že pre rad $\sum_{n=1}^{\infty} \frac{1}{n}$ je splnená nutná podmienka konvergencie avšak rad diverguje.
- ② Dokážte konvergenciu a určte súčet radu $\sum_{n=1}^{\infty} \frac{5 \cdot 4^n 3^{n+1}}{6^n}$
- Riešte rovnice
 - a) $\log x + \log \sqrt{x} + \log \sqrt[4]{x} + \log \sqrt[8]{x} + \dots = 2$,
 - b) $1 \lg x + \lg^2 x \lg^3 x + \dots = \frac{\lg 2x}{1 + \lg 2x}$
- Rozhodnite o konvergencii radov

 - a) $\sum_{n=1}^{\infty} \ln n$, b) $\sum_{n=1}^{\infty} \frac{1}{\arctan n}$,
 - c) $\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$.
- 5 Do štvorca zo stranou dĺžky 2 je vpísaný štvorec, ktorého vrcholy ležia v strede strán pôvodného štvorca. Do tohto štvorca je rovnakým spôsobom vpísaný ďalší štvorec atď. Vypočítajte súčet plošných obsahov a obvodov všetkých štvorcov.

Rad s nezápornými členmi

Definícia (Rad s nezápornými členmi)

Nekonečný rad $\sum a_n$ nazývame rad s nezápornými (kladnými) členmi ak platí $a_n \geq 0$ ($a_n > 0$) pre každé $n \in \mathbb{N}$.

Veta o konvegencii

Každý rad s nezápornými členmi buď konverguje alebo určite diverguje $k + \infty$. Konverguje vtedy a len vtedy, ak je postupnosť jeho čiastočných súčtov zhora ohraničená.

Prvé porovnávacie kritérium

Nech $\sum a_n$ a $\sum b_n$ sú rady s nezápornými členmi a nech pre každé $n \in \mathbb{N}$ platí $a_n \leq b_n$. Potom platí:

- **1** Ak konverguje rad $\sum b_n$, tak konverguje aj rad $\sum a_n$.
- ② Ak diverguje rad $\sum a_n$, tak diverguje aj rad $\sum b_n$.

Príklady:

- Vyšetrite konvergenciu radu $\sum \frac{1}{n2^n}$.
- ② V závislosti od hodnoty $k \in \mathbb{R}$ rozhodnite o konvergecii radu $\sum \frac{1}{n^k}$.

Kritériá konvergencie

Porovnávacie kritériá

Druhé porovnávacie kritérium

Nech $\sum a_n$ a $\sum b_n$ sú rady s kladnými členmi a nech pre každé $n \in \mathbb{N}$ platí $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Potom platí:

- **1** Ak konverguje rad $\sum b_n$, tak konverguje aj rad $\sum a_n$.
- ② Ak diverguje rad $\sum a_n$, tak diverguje aj rad $\sum b_n$.

Limitné porovnávacie kritérium

Nech $\sum a_n$ a $\sum b_n$ sú rady s nezápornými členmi a nech existuje limita $\lim \frac{a_n}{b_n} = q \in \overline{\mathbb{R}}$ Potom platí:

- Ak je $q < \infty$ a rad $\sum b_n$ konverguje, tak konverguje aj rad $\sum a_n$.
- ② Ak je q > 0 a rad $\sum b_n$ diverguje, tak diverguje aj rad $\sum a_n$.

Kritériá konvergencie Porovnávacie kritériá

rorovnavacie kriteria

Príklady:

- **1** Rozhodnite o konvergencii radu $\sum \sin \frac{\pi}{n}$.
- ② Nech $k \in \mathbb{N}, q \in \mathbb{R}, q > 1$. Dokážte, že rad $\sum \frac{n^k}{q^n}$ konverguje.
- 3 Rozhodnite o konvergencii radu $\sum \ln \left(1 + \frac{1}{n^2}\right)$.

Kritériá konvergencie Odmocninové kritériá

Odmocninové (Cauchyho) kritérium

Nech $\sum a_n$ je rad s nezápornými členmi.

- Ak pre každé $n \in \mathbb{N}$ platí $\sqrt[n]{a_n} \le q < 1$, tak rad $\sum a_n$ konverguje.
- ② Ak pre nekonečne mnoho indexov $n \in \mathbb{N}$ platí $\sqrt[n]{a_n} \ge 1$, tak rad $\sum a_n$ diverguje.

Limitné odmocninové kritérium

Nech $\sum a_n$ je rad s nezápornými členmi a nech existuje limita lim $\sqrt[n]{a_n}=q\in\overline{\mathbb{R}}$ Potom platí:

- **1** Ak je q < 1 tak rad $\sum a_n$ konverguje.
- 2 Ak je q > 1 tak rad $\sum a_n$ diverguje.

Kritériá konvergencie Podielové kritériá

Podielové (D'Alambertovo) kritérium

Nech $\sum a_n$ je rad s kladnými členmi.

- **1** Ak pre každé $n \in \mathbb{N}$ platí $\frac{a_{n+1}}{a_n} \leq q < 1$, tak rad $\sum a_n$ konverguje.
- ② Ak pre každé $n \in \mathbb{N}$ platí $\frac{a_{n+1}}{a_n} \geq 1$, tak rad $\sum a_n$ diverguje.

Limitné podielové kritérium

Nech $\sum a_n$ je rad s kladnými členmi a nech existuje limita $\lim \frac{a_{n+1}}{a_n} = q \in \overline{\mathbb{R}}$ Potom platí:

- **1** Ak je q < 1 tak rad $\sum a_n$ konverguje.
- ② Ak je q > 1 tak rad $\sum a_n$ diverguje.

Príklady

Rozhodnite o konvergencii nekonečných radov

$$\bullet \sum_{n=1}^{\infty} \frac{n}{\left(3+\frac{1}{n}\right)^n},$$

Kritériá konvergencie

Raabeho kritériá

Raabeho kritérium

Nech $\sum a_n$ je rad s kladnými členmi.

- **1** Ak pre skoro všetky $n \in \mathbb{N}$ platí $n\left(1-\frac{a_{n+1}}{a_n}\right) \geq q > 1$, tak rad $\sum a_n$ konverguje.
- ② Ak pre skoro všetky $n \in \mathbb{N}$ platí $n\left(1-\frac{a_{n+1}}{a_n}\right) \leq 1$, tak rad $\sum a_n$ diverguje.

Limitné Raabeho kritérium

Nech $\sum a_n$ je rad s kladnými členmi a nech existuje limita $\lim n\left(1-\frac{a_{n+1}}{a_n}\right)=q\in\overline{\mathbb{R}}$ Potom platí:

- **1** Ak je q > 1 tak rad $\sum a_n$ konverguje.
- ② Ak je q < 1 tak rad $\sum a_n$ diverguje.

6) Q (1

Kritériá konvergencie Integrálne Cauchy–Maclaurinovo kritérium

Integrálne Cauchy-Maclaurinovo kritérium

Nech f je funkcia, definovaná na intervale $< 1, \infty$), ktorá je na tomto intervale nezáporná a nerastúca. Nech pre $n \in \mathbb{N}$ platí $f(n) = a_n$. Potom rad $\sum a_n$ konverguje práve vtedy, ak konverguje nevlastný integrál

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x.$$

Príklady

Rozhodnite o konvergencii nekonečných radov

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n},$$

$$\sum_{n=1}^{\infty} \frac{n!}{(a+1)(a+2)\cdots(a+n)}, \quad a>0.$$

Alternujúce rady

Definícia (Alternujúci rad)

Nekonečný rad $\sum_{n=1}^{\infty} a_n$ nazývame alternujúci práve vtedy, ak pre každé $n \in \mathbb{N}$ platí

$$\operatorname{sgn} a_{n+1} = -\operatorname{sgn} a_n.$$

Alternujúce rady

Definícia (Alternujúci rad)

Nekonečný rad $\sum_{n=1}^{\infty} a_n$ nazývame alternujúci práve vtedy, ak pre každé $n \in \mathbb{N}$ platí

$$\operatorname{sgn} a_{n+1} = -\operatorname{sgn} a_n.$$

Leibnitzovo kritérium

Nech a_n je nerastúca postupnosť kladných čísel. Potom alternujúci rad $\sum_{n=1}^{\infty} (-1)^n a_n$ konverguje práve vtedy, ak platí

$$\lim_{n\to\infty}a_n=0.$$

Príklady

Rozhodnite o konvergencii nekonečných radov

$$\bullet \sum_{n=1}^{\infty} (-1)^n \frac{1}{n},$$

Absolútna konvergencia

Definícia (Absolútna konvergencia)

hovoríme, že rad $\sum a_n$ konverguje absolútne práve vtedy, ak konverguje rad $\sum |a_n|$. Ak konverguje rad $\sum a_n$ avšak rad $\sum |a_n|$ diverguje, tak hovoríme, že rad $\sum a_n$ konverguje neabsolútne.

Absolútna konvergencia

Definícia (Absolútna konvergencia)

hovoríme, že rad $\sum a_n$ konverguje absolútne práve vtedy, ak konverguje rad $\sum |a_n|$. Ak konverguje rad $\sum a_n$ avšak rad $\sum |a_n|$ diverguje, tak hovoríme, že rad $\sum a_n$ konverguje neabsolútne.

Veta

Ak konverguje rad $\sum |a_n|$, tak konverguje aj rad $\sum a_n$.

Absolútna konvergencia

Definícia (Absolútna konvergencia)

hovoríme, že rad $\sum a_n$ konverguje absolútne práve vtedy, ak konverguje rad $\sum |a_n|$. Ak konverguje rad $\sum a_n$ avšak rad $\sum |a_n|$ diverguje, tak hovoríme, že rad $\sum a_n$ konverguje neabsolútne.

Veta

Ak konverguje rad $\sum |a_n|$, tak konverguje aj rad $\sum a_n$.

Príklad

Opak zrejme neplatí. Stačí zobrať do úvahy alternujúci rad

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

Porovnávacie kritérium

Nech $\sum b_n$ je konvergentný rad s nezápornými členmi a $\sum a_n$ rad s ľubovoľnými členmi. Ak pre každé $n\in\mathbb{N}$ platí $|a_n|\leq b_n$, tak rad $\sum a_n$ konverguje absolútne.

Porovnávacie kritérium

Nech $\sum b_n$ je konvergentný rad s nezápornými členmi a $\sum a_n$ rad s ľubovoľnými členmi. Ak pre každé $n \in \mathbb{N}$ platí $|a_n| \leq b_n$, tak rad $\sum a_n$ konverguje absolútne.

Odmocninové kritérium

Ak pre každé $n\in\mathbb{N}$ platí $\sqrt[n]{|a_n|}\leq q<1$, tak rad $\sum a_n$ konverguje absolútne. Ak pre nekonečne veľa $n\in\mathbb{N}$ platí $\sqrt[n]{|a_n|}\geq 1$, tak tento rad diverguje.

Ak existuje lim $\sqrt[n]{|a_n|} = q \in \mathbb{R}$, tak v prípade q < 1 rad $\sum a_n$ konverguje absolútne a v prípade q > 1 rad $\sum a_n$ diverguje.

Podielové kritérium

Nech $\sum a_n$ je rad s nenulovými členmi a nech pre každé $n\in\mathbb{N}$ platí $\frac{|a_{n+1}|}{|a_n|}\leq q<1$. Potom rad $\sum a_n$ konverguje absolútne. Ak pre všetky $n\in\mathbb{N}$ platí nerovnosť $\frac{|a_{n+1}|}{|a_n|}\geq 1$, tak rad $\sum a_n$ diverguje.

Podielové kritérium

Nech $\sum a_n$ je rad s nenulovými členmi a nech pre každé $n \in \mathbb{N}$ platí $\frac{|a_{n+1}|}{|a_n|} \leq q < 1$. Potom rad $\sum a_n$ konverguje absolútne. Ak pre všetky $n \in \mathbb{N}$ platí nerovnosť $\frac{|a_{n+1}|}{|a_n|} \geq 1$, tak rad $\sum a_n$ diverguje.

Limitné podielové kritérium

Nech $\sum a_n$ je rad s nenulovými členmi. Ak existuje limita $\lim \left| \frac{a_{n+1}}{a_n} \right| = q$, tak:

$$q < 1 \Rightarrow \text{rad } \sum a_n \text{ konverguje absolútne},$$

 $q > 1 \Rightarrow \text{rad } \sum a_n \text{ diverguje}.$

Príklady

Rozhodnite o absolútnej konvergencii nekonečných radov

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n+1)^3},$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n},$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n!}}{(2+\sqrt{1})(2+\sqrt{2})\dots(2+\sqrt{n})}.$$

Abelovo a Dirichletovo kritérium

Abelovo kritérium

Nech $\{b_n\}$ je monotónna postupnosť, $\lim b_n = 0$ a nech postupnosť čiastočných súčtov radu $\sum a_n$ je ohraničená.

Potom rad $\sum a_n b_n$ konverguje.

Abelovo a Dirichletovo kritérium

Abelovo kritérium

Nech $\{b_n\}$ je monotónna postupnosť, $\lim b_n = 0$ a nech postupnosť čiastočných súčtov radu $\sum a_n$ je ohraničená.

Potom rad $\sum a_n b_n$ konverguje.

Dirichletovo kritérium

Nech $\{b_n\}$ je monotónna a ohraničená postupnosť a nech rad $\sum a_n$ konverguje.

Potom rad $\sum a_n b_n$ konverguje.

Príklady

Dokážte konvergenciu nekonečných radov:

Komutatívny zákon pre nekonečné rady

Definícia

Nech $\sum a_n$ je nekonečný rad a $\{k_n\}$ je nejaká permutácia množiny $\mathbb N$. Potom hovoríme, že rad $\sum a_{k_n}$ vznikol preusporiadaním radu $\sum a_n$.

Komutatívny zákon pre nekonečné rady

Definícia

Nech $\sum a_n$ je nekonečný rad a $\{k_n\}$ je nejaká permutácia množiny \mathbb{N} . Potom hovoríme, že rad $\sum a_{k_n}$ vznikol preusporiadaním radu $\sum a_n$.

Veta

Nech rad $\sum a_n$ konverguje absolútne. Potom konverguje absolútne aj každý rad $\sum a_{k_n}$, ktorý vznikol preusporiadaním radu $\sum a_n$ a platí $\sum a_{k_n} = \sum a_n$.

Komutatívny zákon pre nekonečné rady

Definícia

Nech $\sum a_n$ je nekonečný rad a $\{k_n\}$ je nejaká permutácia množiny \mathbb{N} . Potom hovoríme, že rad $\sum a_{k_n}$ vznikol preusporiadaním radu $\sum a_n$.

Veta

Nech rad $\sum a_n$ konverguje absolútne. Potom konverguje absolútne aj každý rad $\sum a_{k_n}$, ktorý vznikol preusporiadaním radu $\sum a_n$ a platí $\sum a_{k_n} = \sum a_n$.

Pozor!

Komutativita platí len pre súčty absolútne konvergentných radov.

Komutatívny zákon pre nekonečné rady

Pozor!

Komutativita platí len pre súčty absolútne konvergentných radov. Pre neabsolútnu konvergenciu dokonca platí viac.

Komutatívny zákon pre nekonečné rady

Pozor!

Komutativita platí len pre súčty absolútne konvergentných radov. Pre neabsolútnu konvergenciu dokonca platí viac.

Veta (Riemannova)

Nech rad $\sum a_n$ konverguje neabsolútne a nech $s \in \mathbb{R}$ je ľubovoľné. Potom existuje také preusporiadanie $\sum a_{k_n}$ radu $\sum a_n$, že $\sum a_{k_n} = s$. existuje tiež také preusporiadanie $\sum a_{p_n}$ radu $\sum a_n$, že $\sum a_{k_n}$ určite diverguje a preusporiadanie $\sum a_{q_n}$ radu $\sum a_n$, že $\sum a_{q_n}$ osciluje.