Задача №4

Расшифруйте указанные в цепочке вещества, напишите уравнения соответствующих реакций (номера реакций указаны жирным шрифтом рядом со стрелочками):

Про X_8 известно, что это бинарное соединение, в котором атомная доля одного из элементов составляет 22,22%. Все вещества, кроме X_6 , содержат серу. Что произойдет, если растворить X_8 в соляной кислоте? Напишите уравнение соответствующей реакции (*12-ая реакция*).

Решение:

1) Так как сера образуется при взаимодействии сероводорода с X_1 , которое также содержит атомы серы, то логично предположить, что X_1 – диоксид серы, который вступает в сопропорционирование с сероводородом в присутствии воды. Тогда можно понять, какие ещё вещества зашифрованы в цепочке.

Вещество X_7 – сульфид натрия, тогда вещество X_8 – один из полисульфидов натрия $\mathrm{Na_2S_n}$ (п принимает значения от 2 до 7). Чтобы понять, какой полисульфид имеется в виду, необходимо проанализировать атомные доли атомов в веществе. Очевидно, что указанная атомная доля – это доля натрия. Тогда:

$$\frac{2}{2+n} = 0.2222$$

При решении этого уравнения находим, что n=7. Следовательно, $\mathbf{X_8}-\mathrm{Na_2S_7}$. Все вещества, приведенные в задаче:

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X_7	X ₈
SO_2	SO ₂ Cl ₂	H ₂ SO ₄	BaSO ₄	BaS	Ba(OH) ₂	Na ₂ S	Na ₂ S ₇

2) Уравнения реакций:

- 1. $S + O_2 \rightarrow SO_2$
- 2. $SO_2 + Cl_2 \rightarrow SO_2Cl_2$
- 3. $SO_2Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCl$
- 4. $SO_2 + 2HNO_{3(KOHIL)} \rightarrow H_2SO_4 + 2NO_2$
- 5. $4H_2SO_{4(pa36)} + Ba_3P_2 \rightarrow 3BaSO_4 + 2PH_3$

Также можно принимать реакции, в которых участвует концентрированная серная кислота. Тогда в продуктах должно быть указано вещество, в котором у фосфора положительная степень окисления (H_3PO_2 , H_3PO_3 , H_3PO_4).

6.
$$BaSO_4 + 4C_{(H36.)} \rightarrow BaS + 4CO$$

Нельзя принимать реакцию, если в продуктах указан CO_2 , т.к. в условии сказано, что уголь берется в избытке.

7. BaS +
$$2H_2O \rightarrow Ba(OH)_2 + H_2S$$

8. BaS +
$$H_2SO_4$$
(разб.) \rightarrow BaSO₄ + H_2S

9.
$$H_2S + 2NaOH \rightarrow Na_2S + 2H_2O$$

10.
$$2H_2S + SO_2 \rightarrow 3S + 2H_2O$$

11.
$$Na_2S + 6S \rightarrow Na_2S_7$$

При взаимодействии Na₂S₇ и соляной кислоты протекает реакция:

12.
$$Na_2S_7 + 2HCl \rightarrow 2NaCl + 6S + H_2S$$

- 3) Система оценивания:
- а) За каждое правильно угаданное вещество даётся 1 балл. Если вывод X_8 не подтвержден расчетом, то даже за правильно написанную формулу вещества следует поставить 0 баллов. За все вещества максимум можно получить 8 баллов.
- б) За каждое правильно уравнение реакции даётся 1 балл. За все реакции максимум можно получить 12 баллов.

Итого: 20 баллов