KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

LİSANS TEZİ

YAPAY ZEKA İLE MOBİL ROBOT KONTROLÜ

OYA OKUTAN MUHSIN EROL

KOCAELİ 2020

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİTİRME PROJESİ

YAPAY ZEKA İLE MOBİL ROBOT KONTROLÜ

OYA OKUTAN MUHSİN EROL

Prof.Dr. Ahmet SAYAR Danışman, Kocaeli Üniv.	
Doç.Dr. Onur GÖK Jüri Üyesi, Kocaeli Üniv.	
Dr.Öğr.Üyesi Ali AK Jüri Üyesi, Kocaeli Üniv.	

Tezin Savunulduğu Tarih: 07.01.2020

ÖNSÖZ VE TEŞEKKÜR

Bu tez çalışması lisans tezi amacıyla gerçekleştirilmiştir.

Tez çalışmamda desteğini esirgemeyen, çalışmalarıma yön veren, bana güvenen ve yüreklendiren danışmanıma sonsuz teşekkürlerimi sunarım.

Tez çalışmamın tüm aşamalarında bilgi ve destekleriyle katkıda bulunan hocama teşekkür ediyorum.

Tez çalışmamda gösterdiği anlayış ve destek için sayın aileme teşekkürlerimi sunarım.

Hayatım boyunca bana güç veren en büyük destekçilerim, her aşamada sıkıntılarımı ve mutluluklarımı paylaşan sevgili aileme teşekkürlerimi sunarım.

Mayıs – 2020

Oya OKUTAN, Muhsin EROL

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur. Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde referans edilmiş ve dokümanda belirtilmiştir.

Öğrenci No: 112201589
Adı Soyadı: Oya Okutan
İmza:
Öğrenci No: 124201581
Adı Soyadı: Muhsin Erol

İmza:

İÇİNDEKİLER

ÖNSÖZ VE TEŞEKKÜR	i
İÇİNDEKİLER	ii
ŞEKİLLER DİZİNİ	iii
TABLOLAR DİZİNİ	iv
SİMGELER VE KISALTMALAR DİZİNİ	V
ÖZET	vii
ABSTRACT	viii
GİRİŞ	1
1. SAYISAL KORUMADA TEMEL KAVRAMLAR	3
1.1. Ayrık İşaretlerin Fazörel Gösterimi	3
1.2. Arıza Tipinin Belirlenmesi	6
2. İLETİM HATLARINDA ALGORİTMALARI	12
2.1. Tek Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algorit	maları13
2.1.1. Basit reaktans algoritması	13
2.1.2. Takagi algoritması	
2.1.3. Geliştirilmiş Takagi algoritması	14
2.2. İki Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritn	naları14
2.1.1. Basit arıza gerilimi eşitliği algoritması	14
2.1.2. Asimetrik arıza yeri bulma algoritması	
2.1.3. Negatif bileşenler ile arıza yeri bulma algoritması	16
2.1.4. Simetrik arıza yeri bulma algoritması	17
3. EMPEDANSA DAYALI ALGORİTMALARININ FARKI	
3.1. Homojen Test Sistemi	20
3.2. Homojen Olmayan Test Sistemi	24
3.3. Homojen Olmayan Test Sistemi (Orta Uzun Hat Modeli -	Pi Eşdeğer Devresi) 28
4. SERİ KAPASİTÖRLÜ İLETİM HATLARINDA ARIZA YERİ	
5. SERİ KAPASİTÖRLÜ İLETİM HATLARI İÇİN PERFORMA	
DAYALI ARIZA YERİ BULMA ALGORİTMASI	37
5.1. Algoritmanın Temel Arıza Yeri Bulma Algoritmaları İle	
Karşılaştırması	
5.2. Seri Kapasitörlü İletim Hatlarını Baz Alan Arıza Yeri Bulı	
Karşılaştırılması	
6. SONUÇLAR VE ÖNERİLER	
KAYNAKLAR	
EKLER	
KİŞİSEL YAYIN VE ESERLER	68
ÖZGECMİS	69

ŞEKİLLER DİZİNİ

r7
ım9
20
24
28
37
sında olma durumu38
ş diyagramı41
42
43

TABLOLAR DİZİNİ

Tablo 1.1.	Arıza tiplerine göre pozitif bileşen empedans eşitlikleri	10
Tablo 3.1.	Homojen test sisteminde farklı uzaklıklardaki çeşitli arıza tipleri	
	için yüzde hata oranları	21
Tablo 3.2.	Homojen test sisteminde farklı arıza dirençlerindeki çeşitli arıza	
	tipleri için yüzde hata oranları	23
Tablo 3.3.	Homojen olmayan test sisteminde farklı uzaklıklardaki çeşitli arıza	
	tipleri için yüzde hata oranları	25
Tablo 3.4.	Homojen olmayan test sisteminde farklı arıza dirençlerindeki çeşitli	
	arıza tipleri için yüzde hata oranları	26
Tablo 3.5.	Homojen olmayan test hata oranları	29
	Homojen olmayan pi eşdeğer devreli test hata oranları	
	Seri kompanzasyonun etkileri ve sonuçları	33
	Seri kompanze edilmiş iletim sistemleri için kullanılan bazı	
	algoritmalar ve özellikleri	34
Tablo 5.1.	Test sistemi parametreleri	42
	Test sisteminin simülasyon parametreleri	42
	Test sisteminin farklı uzaklıklardaki çeşitli arıza tipleri için yüzde	
	hata oranları	44
Tablo 5.4.	Test sisteminin farklı arıza dirençlerindeki faz-faz-toprak arıza tipi	
	için yüzde hata oranları	45
Tablo 5.5.	Seri kapasitörü dikkate alan algoritmaların karşılaştırılması	
	Seri kapasitörü dikkate alan algoritmaların genel özellikleri	
2		,

SİMGELER VE KISALTMALAR DİZİNİ

α_{1,2,3} : Eğim için alınan açı, (°)

φ : Açı, (°) θ : Açı, (rad)

d : Arıza noktasının referans baraya uzaklığı, (%)

d_{capS}
 Seri kapasitörün S barasına uzaklığı, (%)
 d_{capR}
 Seri kapasitörün R barasına uzaklığı, (%)
 d_S
 Arıza noktasının S barasına uzaklığı, (%)
 d_R
 Arıza noktasının R barasına uzaklığı, (%)

f₀ : İşaretin frekansı, (Hz)
f_S : Örnekleme frekansı, (Hz)
I⁰ : Sıfır bileşen akımı, (A)
I¹ : Pozitif bileşen akımı, (A)
I² : Negatif bileşen akımı, (A)

I_a : a fazı akımı, (A)

I_{ab} : a fazı ve b fazı akımları farkı, (A)

I_b : b fazı akımı, (A)

 I_{bc} : b fazı ve c fazı akımları farkı, (A)

I_c : c fazı akımı, (A)

I_{ca} : c fazı ve a fazı akımları farkı, (A)

 I_{cap} : Seri kapasitör üzerinden geçen akım, (A)

I_F : Arıza noktasından geçen akım, (A)

IFR : Arıza noktasından geçen akımın R barasından gelen kısmı, (A)
 IFS : Arıza noktasından geçen akımın S barasından gelen kısmı, (A)

I_{önce} : Arıza öncesi akım, (A)

 $\begin{array}{lll} I_R & : & R \ barasından çıkan akımı, (A) \\ I_{ref} & : & Alınan referans akım, (A) \\ I_S & : & S \ barasından çıkan akımı, (A) \\ I_{süp} & : & Süperpozisyon akımı, (A) \end{array}$

I_{süp}* : Süperpozisyon akımının eşleniği, (A)

 R_F : Arıza noktası empedansı, (Ω)

X_L: Hat empedansının imajiner bileşeni, (Ω)
 xd'': Senkron makinenin subtransientreaktansı, (pu)

V⁰ : Sıfır bileşen gerilimi, (V) V¹ : Pozitif bileşen gerilimi, (V) V² : Negatif bileşen gerilimi, (V)

V_a : a fazı gerilimi, (V)

V_{ab} : a fazı ve b fazı gerilimleri farkı, (V)

V_b : b fazı gerilimi, (V)

V_{bc} : b fazı ve c fazı gerilimleri farkı, (V)

V_c : c fazı gerilimi, (V)

 V_{ca} : c fazı ve a fazı gerilimleri farkı, (V)

V_{cap} : Kapasitör öncesindeki bağlantı noktasının gerilimi, (V)

V_R : R barası (uzak bara) gerilimi, (V)

Kısaltmalar

AC : AlternativeCurrent (Alternatif Akım)

ANN : ArtificialNeural Networks (Yapay Sinir Ağları)

DDA : DeterministicDifferentialApproach (Deterministik Diferansiyel Yaklaşım)

FACTS : FlexibleAlternativeCurrentTransmissionSystem IEEE : Elektrik ve Elektronik Mühendisleri Enstitüsü

Im : İmajiner min : Minimum

MOV : Metal OxideVaristor (Metal Oksit Varistör)PMU : PhasorMeasurementUnit (Fazör Ölçüm Ünitesi)

R : Receiving (Alan)

Re : Reel

S : Sending (Gönderen)

SC : Series Capacitor (Seri Kapasitör)

YAPAY ZEKA İLE MOBİL ROBOT KONTROLÜ

ÖZET

Bu çalışmada ön tanımlı, ızgara tabanlı bir harita üzerinde otonom olarak hareket edebilen ve verilen senaryolardaki görevleri yerine getirebilen mobil bir robotun tasarımı ve prototip üretimi yapılmıştır. Tasarım hibrid mobil kontrol yapısı, hibrid yol bulma algoritması, yazılımsal ve donanımsal kontrol sistemlerini içermektedir. Geliştirilen hibrid kontrol yapısı davranış temelli ve hiyerarşik kontrol yaklaşımlarının özelliklerini bir arada barındırmaktadır. Yol bulma algoritması ise A* ve Dijkstra algoritmalarının ortak özelliklerini barındırmakta; daha az hafıza gereksinimi ve simülasyonlarda daha üstün başarım sergilemesi ile öne çıkmaktadır. Tasarlanan bu yol bulma algoritması ile en kısa yolun hesaplanması garantilenmektedir. Kontrol yapısı ve yol bulma algoritması, geliştirilen donanımsal ve yazılımsal sistemlerle desteklenerek robotun verilen senaryo ve görevleri başarı ile tamamlaması sağlanmıştır.

Anahtar kelimeler: Mobil Cihazlar, Nesnelerin İnterneti, Simülasyon, Algoritma.

AN EXAMPLE APPLICATION IN CLOUD COMPUTING AND EDUCATION

ABSTRACT

Purpose of this study is to examine impedance based algorithms on transmission lines for fault location and to develop a new algorithm for series compensated lines.

First of all, one and two end basic fault location algorithms are described. At a sample test system, results of the basic fault location algorithms are compared by changing system and fault related parameters. The system parameters consist of the line model and the cases of the system being homogeneous or nonhomogeneous while the fault related parameters are considered as fault type, fault location and fault resistance.

In the series compensated transmission lines, inadequacy of the basic impedance based fault location algorithms and necessity of a new particular fault location algorithmare shown by a simulation. The particular algorithms are analyzed and summarized. Then a new performance based algorithm is developed for the series compensated transmission lines in this thesis.

The developed algorithm iteratively estimates the fault location based on the calculated fault voltage and current using two end measurements and the line parameters, the algorithm can compare all the samples to attain a single outcome with minimal error. On the various test systems, the proposed algorithm is examined with two algorithm type, the basic algorithms and the particular algorithms designed for series compensated lines and the results are compared. The test systems are modeled and analyzed on DigSILENT and the gained current and voltage information is used in MATLAB for coded algorithms.

Keywords: Cloud Computing, Pipelines, Education, Sql, Azure, Database.

GİRİŞ

Her geçen yıl bilgisayar alanında büyük değişimler meydana gelmektedir. Boyutları büyük, işlevleri sınırlı bilgisayarlar ile başlayan çağ, işlem gücü yüksek taşınabilir bilgisayarlara doğru uzanan bir çizgi izlemiştir.

1980'li yıllarda kişisel bilgisayarların piyasaya girişi, bilişim dünyasında büyük bir değişime öncülük etmiştir. Kişisel bilgisayarlar evlerde, ofislerde ve günlük hayatın her alanında; hem iş amacıyla hem de kişisel amaçlı olarak yaygın bir şekilde kullanılmaya başlanmış ve sayıları hızla artmıştır. Günümüzde kişisel bilgisayarların kullanılmadığı bir alan düşünmek neredeyse imkânsızdır. Kişisel bilgisayarların yetenekleri hızla artarken, boyutları da giderek küçülmüş; taşınabilir bilgisayarlar ve cep bilgisayarları kullanıma sunulmuştur.

İnternetin ortaya çıkışı ve yaygınlaşması haberleşme ve veri alışverişinde önemli gelişmeler meydana getirmiştir. Belli merkezlerde depolanan veriler internet ağı üzerinden geniş bir kullanıcı kitlesine sunulmaya başlanmış; veri merkezlerinde hapsolmuş veriler internet ile dış dünyaya açılmıştır. Ofis ve evlerde kullanılan bilgisayarlar ve ardından taşınabilir cihazlarda internet kullanımı hızla yaygınlaşmıştır. Kullanıcı tarafındaki hızlı tüketim doğrultusunda web standartları da yeniden şekil almaya başlamış, yeni web teknolojileri ve servisleri ortaya çıkmıştır. Web 1.0 ve Web 2.0 arasında SOAP ve Point—to—Point (P2P) gibi teknolojiler kullanıma sunulmuş; günümüze doğru gelindiğinde, Web 2.0 ve 3.0 arasında zengin internet uygulamaları gündeme gelerek, iş uygulamaları hazırlanmaya başlanmıştır (Atay, 2010).

Süreç içerisinde kullanıcı talepleri; uygulamaları, zaman, mekan ve platformdan bağımsız olarak kullanabilme yönünde gelişmiştir. Bu isteklere cevap verebilmek için, "bulut bilişim (cloud computing)" adı verilen yeni bir oluşum gündeme gelmiştir.

1. SAYISAL KORUMADA TEMEL KAVRAMLAR

İletim hatlarında, arıza yerini belirlemek için, temel olarak bir veya iki baradan alınan gerilim ve akım ölçümleri, iletim hattı bilgileri bilinmelidir. Buradan da anlaşılabileceği gibi arıza yerinin tespit edilebilmesi için ilk adım baradan okunan akım ve gerilim verilerini irdelemektir.

1.1. Ayrık İşaretlerin Fazörel Gösterimi

Empedans tabanlı arıza yeri bulma algoritmaları, fazörel akım ve gerilim değerlerine ihtiyaç duyarlar. Baralardan okunan akım ve gerilim değerleri, zaman domenindedirler. Bu verilerin, empedans tabanlı algoritmalarda kullanılabilmesi için öncelikle frekans domenine dönüştürülmeleri gerekmektedir. Fazörel dönüşüm için, öncelikle örnekleme tanımının bilinmesi gerekir. Baradan alınan akım ve gerilim analog işaretlerinin, süreksiz özellikteki ayrık işaretlere dönüştürülmesi gerekmektedir, bu duruma örnekleme denilmektedir. Bu şekilde sinüzoidal dalga, örnekleme aralıklarıyla tanımlanarak işlem ve hafıza kullanımı azaltılır, böylece veriyi kullanan röle ve bilgisayar gibi işlemcilerin veri yükü azalır.

1.2. Arıza Tipinin Belirlenmesi

Bütün arıza tiplerinde arıza yeri tespitinin sadece faz bileşenleri ile yapılması genel olarak mümkün değildir. Faz bileşenlerini kullanan arıza yeri algoritmaları, özellikle toprak arızalarında simetrili bileşenlerden de faydalanırlar. Bunun dışında, sadece simetrili bileşenleri kullanarak arıza analizi yapan algoritmalar da bulunmaktadır. Bu nedenle arıza yeri tespiti algoritmalarına giriş yapmadan önce simetrili bileşenlerin bilinmesi gerekir.

Simetrili bileşenler, dengeli olmayan faz değerlerinin üç farklı simetrili bileşen ile değiştirilmesi durumudur. Pozitif bileşen 1 indisi, negatif bileşen 2 indisi ve sıfır bileşen 0 indisi ile gösterilir. Pozitif ve negatif simetrili bileşenlerden farklı olarak, sıfır simetrili bileşenlerin arasında açı farkı yoktur ve bazı dengeli olmayan arıza tipleri incelendiğinde bu bileşenler ile karşılaşılır.

Bozulmuş verileri ayıkladıktan sonra yapılması gereken, arıza sonrası kısmın belirlenerek verilerin kullanılan algoritmaya uygun hale getirilmesidir. Arıza sonrası durumu tespit etmenin en temel yollarından biri, toplam hat empedansı ile baradan alınan gerilim ve akımdan elde edilen empedansın karşılaştırılması şeklindedir. Eğer bu hesaplanan empedans, toplam hat empedansından küçük değerde ise arızadan sonraki durum olduğu anlaşılır. Ancak bu empedans hesabı, iletim sistemleri üç fazlı olduğundan arıza tipi dikkate alınarak yapılır.

2. İLETİM HATLARINDA EMPEDANSA DAYALI ARIZA YERİ BULMA ALGORİTMALARI

İletim hatlarında arıza yeri bulma algoritmaları, genel olarak iki kısma ayrılabilir. Bunlar tek bara ölçümlerini kullanan algoritmalar ve iki bara ölçümlerini kullanan algoritmalardır.

Tek bara ölçümlerini kullanan algoritmalar, tek bir referans baradan alınan veriler yardımıyla ve dolayısıyla daha az veri ile arıza yerini belirlerler. Ancak kullandığı veri sınırlı olduğundan, iki bara ölçümlerini kullanan algoritmalardan daha fazla hata payları vardır. Buna rağmen, arıza yeri ve uzak bara arasındaki etkenlerden (seri kapasitör, admitans etkileri gibi), bu algoritmaların doğruluğunu etkilemez, bu yüzden referans alınan baraya yakın oluşan arızalarda arıza yeri bulma isabeti daha yüksektir. İki bara ölçümlerini kullanan algoritmaların doğruluğu yüksektir ve arıza yeri uzaklığından tek bara ölçümlerini kullanan algoritmalar kadar etkilenmezler, ancak her baradan senkronize ölçüm alması gerektiğinden maliyeti yüksektir.

2.1. Tek Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları

2.1.1. Basit reaktans algoritması

Bu algoritmanın doğruluğu, I_F ve I_S akımlarının aynı açıda veya Rdeğerinin sıfır olmasına bağlıdır.

2.1.2. Takagi algoritması

Takagi metodu, güç akışı ve arıza direncinin etkilerini azaltarak basit reaktans algoritmasını geliştirmeyi amaçlar. Ancak algoritma, bu geliştirme için arıza öncesi akıma ihtiyaç Bu varsayım homojen sistemler için geçerlidir, ancak bunun dışındaki sistemlerde bu iki akımın arasındaki açı arttıkça hata oranı da artacaktır.

2.1.3. Geliştirilmiş Takagi algoritması

Toprak arızalarında, Takagi algoritmasındaki süperpozisyon akımı yerine sıfır bileşen akımınıkullanarak, arıza öncesi akım ihtiyacının kaldırılması amaçlanmıştır. Hatta bu algoritmada, kaynak empedansları biliniyorsa açı doğrulama işlemi de yapılabilir.

2.2. İki Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları

2.1.1. Basit arıza gerilimi eşitliği algoritması

Arıza yeri bulma algoritmalarında ölçülen akım ve gerilim değerleri, sadece fazörel olarak değil, fazörel değerleri simetrili bileşenlere ayırarak da kullanılabilirler. Simetrili bileşenler kullanılarak, arıza yeri tespitinde sıfır, pozitif ve negatif bileşenlerin sonuca etkisi dikkate alınmalıdır.

2.1.2. Asimetrik arıza yeri bulma algoritması

Arıza yeri bulma algoritmalarında ölçülen akım ve gerilim değerleri, sadece fazörel olarak değil, fazörel değerleri simetrili bileşenlere ayırarak da kullanılabilirler. Simetrili bileşenler kullanılarak, arıza yeri tespitinde sıfır, pozitif ve negatif bileşenlerin sonuca etkisi dikkate alınmalıdır. Sıfır bileşen değerleri, genellikle kullanılmak istenmez bunun nedeni havai hatlarda sıfır bileşen değerlerinin belirsiz olarak düşünülmesidir. Ayrıca pozitif simetrili bileşenlerde, hattın şönt admitans etkisi daha fazla olduğundan negatif simetrili bileşenlerin kullanımı tercih edilir.

3. EMPEDANSA DAYALI ARIZA YERİ BULMA ALGORİTMALARININ FARKLI TEST SİSTEMLERİNDE UYGULANMASI

Bölüm 2de ele alınan algoritmalar bu bölümde homojen, homojen olmayan ve orta uzun iletim hattı modeli kullanılmış sistemlerde farklı arıza uzaklığı, arıza direnci ve arıza tipleri ile test edilerek, algoritmanın farklı etkenler altındaki hata oranları belirlenecektir. Bu sayede farklı durumlarda ve sistemlerde, hangi arıza algoritmasının kullanılmasının daha uygun olacağının analizi yapılabilecektir.

3.1. Homojen Test Sistemi

Homojen sistem, kaynak empedanslarının açısının, hat empedansı açısına eşit olma durumu olarak açıklanabilir

KAYNAKLAR

- [1] Takagi T., Yamakoshi Y., Yamaura M., Kandow R., Matsushima T., Development of A New Type Fault Locator Using The One-Terminal Voltage and Current Data, *IEEE Transactions on Power Apparatus and Systems*, 1982, **PAS-101**(8), 2892-2898.
- [2] Gale P. F., Crossley P. A., Bingyin X., Yaozhong G., Cory B. J., Barker J. R. G., Fault Location Based on Travelling Waves, *Fifth International Conference on Developments in Power System Protection*, York, United Kingdom, 30 March-01 April 1993.
- [3] Iżykowski J., Fault Location on Power Transmission Lines, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2008.
- [4] Lewis L. J., Traveling Wave Relations Applicable to Power-System Fault Locators, Transactions of the American Institute of Electrical Engineers, 1951, **70**(2), 1671-1680.
- [5] Aurangzeb M., Crossley P. A., Gale P., Fault Location on a Transmission Line Using High Frequency Travelling Waves Measured at a Single Line End, *IEEE Power Engineering Society Winter Meeting*, 2000, **4**, 2437-2442.
- [6] Lopes F. V., Fernandes D., Neves W. L. A., Fault Location on Transmission Lines Based on Travelling Waves, *International Conference on Power Systems Transients (IPST2011)*, Delft, Netherlands, 14-17 June 2011.
- [7] Siozinys V., Urniezius R., Transmission Line Protection and Fault Location Based on Travelling Wave Measurement, *Elektronika ir Elektrotechnika*, 2013, **19**(9), 21-24.
- [8] Saha M. M., Izykowski J., Rosolowski E., Fault Location on Power Networks, Springer, London, 2010.
- [9] Zimmerman K., Costello D., Impedance-Based Fault Location Experience, 58th Annual Conference for Protective Relay Engineers, College Station, Texas, USA, 5-7 April 2005.
- [10] Yin H., Fan L., PMU Data-Based Fault Location Techniques, *North American Power Symposium (NAPS)*, Arlington, Texas, USA, 26-28 September 2010.
- [11] Preston G., Radojevic Z. M., Kim C. H., Terzija V., New Settings-Free Fault Location Algorithm Based on Synchronised Sampling, *IET Generation*, *Transmission & Distribution*, 2011, **5**(3), 376-383.
- [12] Zhang Q., Zhang Y., Song W., Yu Y., Transmission Line Fault Location for Phase-to-Earth Fault Using One-Terminal Data, *IEE Proceedings-Generation*, *Transmission and Distribution*, 1999, **146**(2), 121-124.

- [13] Quingchao Z., Yao Z., Wennan S., Yixin Y., Zhigang W., Fault Location of Two-Parallel Transmission Line for Non-Eath Fault Using One-Terminal Data, *IEEE Transactions on Power Delivery*, 1999, **14**(3), 863-867.
- [14] Saha M. M., Izykowski J., Rosolowski E., Balcerek P., Fulczyk M., Accurate Location of Faults on Series-Compensated Lines with Use of Two-End Unsynchronised Measurements, *IET 9th International Conference on Developments in Power System Protection*, Galsgow, Scotland, 17-20 March 2008.
- [15] Funabashi T., Otoguro H., Mizuma Y., Dube L., Ametani A., Digital Fault Location for Parallel Double-Circuit Multi-Terminal Transmission Lines, *IEEE Transactions on Power Delivery*, 2000, **15**(2), 531-537.
- [16] Izykowski J., Rosolowski E., Balcerek P., Fulczyk M., Saha M. M., Accurate Noniterative Fault-Location Algorithm Utilizing Two-End Unsynchronized Measurements, *IEEE Transactions on Power Delivery*, 2011, **26**(2), 547-555.
- [17] Pereira C. E. M., Zanetta L. C., Fault Location in Multitapped Transmission Lines Using Unsynchronized Data and Superposition Theorem, *IEEE Transactions on Power Delivery*, 2011, **26**(4), 2081-2089.
- [18] Liu C., Lin T., Yu C., Yang Z., A Fault Location Technique for Two-Terminal Multisection Compound Transmission Lines Using Synchronized Phasor Measurements, *IEEE Transactions on Smart Grid*, 2012, **3**(1), 113-121.
- [19] Vieira D. A. G., Oliveira D. B., Lisboa A. C., A Closed-Form Solution for Untransposed Transmission-Lines Fault Location With Nonsynchronized Terminals, *IEEE Transactions on Power Delivery*, 2013, **28**(1), 524-525.
- [20] Vyas B., Maheshwari R. P., Das B., Protection of Series Compensated Transmission Line: Issues and State of Art, *Electric Power Systems Research*, DOI: 10.1016/j.epsr.2013.09.017.
- [21] Pašić J., Series Compensated Lines–Fast Detection of Energy Flow Direction, 18th International Conference on Systems, Signals and Image Processing (IWSSIP), Sarajevo, Bosnia and Herzegovina, 16-18 June 2011.
- [22] Gajbhiye R. K., Gopi B., Kulkarni P., Soman S. A., Computationally Efficient Methodology for Analysis of Faulted Power Systems With Series-Compensated Transmission Lines: A Phase Coordinate Approach, *IEEE Transactions on Power Delivery*, 2008, **23**(2), 873-880.
- [23] Yu C., Liu C., Yu S., Jiang J., A New PMU-Based Fault Location Algorithm for Series Compensated Lines, *IEEE Transactions on Power Delivery*, 2002, **17**(1), 33-46.
- [24] Saha M. M., Izykowski J., Rosolowski E., Kasztenny B., A New Accurate Fault Locating Algorithm for Series Compensated Lines, *IEEE Transactions on Power Delivery*, 1999, **14**(3), 789-797.

KİŞİSEL YAYIN VE ESERLER

Çapar A., Arsoy Basa A., A Performance Oriented Impedance Based Fault Location Algorithm for Series Compensated Transmission Lines, *International Journal of Electrical Power & Energy Systems*, DOI: 10.1016/j.ijepes.2015.02.020.

Çapar A., Arsoy Basa A., Evaluating Accuracy of Fault Location Algorithms Based on Terminal Current and Voltage Data, *International Journal of Electronics and Electrical Engineering*, DOI: 10.12720/ijeee.3.3.202-206.

ÖZGEÇMİŞ

Ahmet Kara 1988'de Balıkesir'de doğdu. Lise öğrenimini lisede tamamladı. 2007 yılında girdiği Kocaeli Üniversitesi Makine Mühendisliği Bölümünden mezun oldu. Araştırma görevlisi olarak görev yapmaktadır.