Lecture 16

Systems of linear equations:

 $a_{11}X_1 + a_{12}X_2 + \cdots$

 $a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n = b_2$

ai, bie IR for all i,j. Xi are variables.

 $+ a_{in} X_n = b_i$

 $a_{mn} X_n = b_m$

Example
$$m=2, n=2$$

 $2X_1 + 3X_2 = 5$ — (1)
 $-X_1 + X_2 = 7$ — (2)
Add $2 \times Eqn(2)$ to Eqn(1).

Solve eqn (3) for X2

 $0 + 5x_2 = 19$ — (3) Eqn (3) $x_1 + x_2 = 7$ eqn (1)

 $- \times_{1} + \times_{2} = 7$

 $-X_1 + X_2 = 7$

$$X_2 = 19/5$$

Substitute the value of X_2 in eqn (2) and solve for X_1 .
 $-X_1 + 19/5 = 7$
So $X_1 = 19/5 - 7 = -16/5$

Solution: {(-16/5, 19/5)}

Example:
$$m=3$$
, $n=2$
 $X_1 - X_2 = 3$ — (1)
 $2X_1 - 3X_2 = 1$ — (2)
 $-X_1 + 2X_2 = -1$ — (3)
Add (-2)x Eqn(1) to Eq

Add $(-2) \times \text{Eqn}(1)$ to Eqn(2). $0 - X_2 = -5$ — (4) | Replaces eqn(2). Add eqn(1) to eqn(3). $0 + X_2 = 2$ — (5) | Replaces eqn (3). Now we have the system

 $X_{1} - X_{2} = 3$ $- X_2 = -5$

 $X_{2} = 2$

This system has no solutions.

Solution set = $\phi = \{ \}$.

Example
$$m = 2$$
, $n = 3$

$$X_{1} + X_{2} - X_{3} = 4 - (1)$$

$$2X_{1} - X_{2} + 3X_{3} = 1 - (2)$$

 $2X_1 - X_2 + 3X_3 = 1 - (2)$ Add (-2) x eqn (1) to eqn(2). $X_1 + X_2 - X_3 = 4 - (1)$

 $0 - 3X_2 + 5X_3 = -7$ (3) Divide eqn (3) by (-3).

$$X_1 + X_2 - X_3 = 4 - (1)$$
 $X_2 - (5/3)X_3 = 7/3 - (4)$

Add $(-1) \times eqn(4)$ for eqn (1).

 $X_1 + 0 + (2/3)X_3 = 5/3 - (5)$
 $X_2 - (5/3)X_3 = 7/3$.

Choose any value for X_3 and Solve for X_1 and X_2 .

Suppose we set $X_3 = t$ for some $t \in IR$. Then, we get $X_1 = \frac{5}{3} - \frac{2}{3}t$

and $X_2 = \frac{7}{3}t$.

Solution set:

$$\{(\frac{5}{3}-\frac{2}{3}t,\frac{7}{3}+\frac{5}{3}t,t)| t \in \mathbb{R} \}$$

Thus, we see that when we solve a system of linear equations, one of three things could happen: (1) Unique solution.

(3) Family of solutions

(2) No solution.

Understanding the method We are given a system(A) of equations. We perform some operations and create a system (B) What is the relationship between the solutions of (A) and (B) ?

Example Consider the system (A) consisting

 $(X-1)^2 = 25.$

of squaring both sides.

We get the system (B):

of one equation: X-1=5.

Suppose we perform the operation

But only 6 is a solution of (A). So, these two systems are not <u>equivalent</u>. Every solution of (A) must satisfy (B), but not the other way around.

Solutions of (B) are 6 and -4.

But suppose there exist some other operations which allow us to obtain system (A) from System (B). Then, every solution of (B) is a solution of (A). So the systems

are equivalent

Example

System A:
$$X_1 + X_2 = 5$$
 — (1)
 $2x_1 - x_2 = 2$ — (2).

$$2x_{1} - x_{2} = 2 - (2)$$
Operation: Replace eqn(1)
$$eqn(1) + 3 \times eqn(2).$$

$$(x_{1} + x_{2}) + 3(2x_{1} - x_{2}) = 5 + 3(2)$$

$$(3)$$

 $2\times_1 - \times_2 = 2$

Notice that eqn (3) is "implied" by eqn (1) and eqn(2). In other words, any solution of eqn (1) and eqn (2) is

a solution of eqn (3).

So, every solution of (A) is a solution of (B).

System B: $7x_1 - 2x_2 = 11 - (3)$ $2x_1 - x_2 = 2 - (2)$ Perform the following operation on (B): Replace eqn (3) by

Let us call the new system as (C).

eqn(3) - 3xeqn(2)

By the same argument as before, every solution of (B) is a solution of CC). But (C) is the same as (A).

 $(7x_1 - 2x_2) - 3(2x_1 - x_2) = 11 - 3(2)$ $x_1 + x_2 = 5$ So, systems (A) and (B) are equivalent, i.e. they have the same solution sets. This is because we obtained (B) from (A) by using a

reversible operation.

Not all operations are reversible. For example, if we start

with X - 1 = 5 and square

But if we start with $(x-1)^2=25$,

as square roots are not unique.

both sides, we get $(X-1)^2 = 25$.

we cannot deduce X-1=5

From $(X-1)^2 = 25$, we can only get the statement X-1=5 OR X-1=-5

This is because squaring is not a reversible operation.

They are as follows: (1) Replace eqn (i) by eqn(i)+ ax eqn(j) for some a E IR. Inverse: Replace equ(i) by eqn(i) + (-a) x eqn(j).

We will only use reversible operations

on systems of linear equations.

(2) Interchange eqn(i) and eqn(j).

<u>Inverse</u>: Interchange eqn (i) and
eqn (j).

(3) Replace eqn(i) by $a \times eqn(i)$ for some $a \neq 0$.

<u>Inverse</u>: Replace eqn(i) by (1/a) x eqn(i).

Key idea

Consider the system

 $a_{11}X_1 + a_{12}X_2 + \cdots$

$$a_{11}X_{1} + a_{12}X_{2} + \cdots + a_{1n}X_{n} = b_{1}$$

$$a_{21}X_{1} + a_{22}X_{2} + \cdots + a_{2n}X_{n} = b_{2}$$

$$a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n = b_2$$

 $a_{m1}X_1 + a_{m2}X_2 + \cdots + a_{mn}X_n = b_2$

 $a_{mn}X_n = b_m$ Suppose $a_n \neq 0$.

Then, we can replace eqn (1) by $\left(\frac{1}{a_{i,j}}\right)$ x eqn(1) to reduce to a situation where the coefficient of X, in eqn (1) is 1. Now perform the operations eqn(i) \longrightarrow eqn(i) + (-a_i,) eqn(1)

for i = 2, 3, ..., m.

This will eliminate
$$X_1$$
 from eqn(2), --- , eqn(m).
 $X_1 + C_{12}X_2 + \cdots + C_{1n}X_n = d_1$

Consider the system consisting of eqn(2), eqn(3), ..., eqn(m).

This is a smaller system with (n-1) variables and (m-1) equations.

Solve this smaller system for X_2, \dots, X_n and substitute in eqn(1). Solve eqn(1) for X_1 .

What if $a_{11} = 0$? Find some i such that $a_{ij} \neq 0$. Interchange equ(1) and equ(i). If $a_{ij} = 0$ for all i, then X, is not really there in any equation. Move on to X2.

How do we solve the smaller system we obtained? $C_{22}X_2 + \cdots + C_{2n}X_n = d_2$

 $C_{m_2}X_2 + \cdots + C_{m_n}X_n = d_m$ Use the same procedure. Start with X_2 instead of X_1 .

We will then end up with an even smaller system with (n-2) variables and (m-2) equations. ··· and so on. How does this process end?

(Next time).