# Aussagenlogik und Prädikatenlogik 3. Übungsblatt



Fachbereich Mathematik

Prof. Dr. Ulrich Kohlenbach

Anton Freund, Jonathan Weinberger

SoSe 2018 Übung: 16.05.2018 Abgabe: 30.05.2018

#### Gruppenübung

## Aufgabe G1 (Terme und Formeln der Prädikatenlogik)

Im folgenden sei  $S = \{c, g, f, R\}$  eine Signatur mit Konstantensymbol c, binären Funktionssymbolen f und g, sowie binärem Relationssymbol R. Des Weiteren sei  $\mathfrak{I} = (\mathscr{A}, \beta)$  eine S-Interpretation mit Struktur

$$\mathcal{A} = (A, c^{\mathcal{A}}, g^{\mathcal{A}}, f^{\mathcal{A}}, R^{\mathcal{A}}) = (\mathbb{Z}, 1^{\mathbb{Z}}, +^{\mathbb{Z}}, \cdot^{\mathbb{Z}}, \leq^{\mathbb{Z}})$$

und Belegung  $\beta$ , die alle Variablen auf 0 abbildet. Füllen Sie folgende Tabelle aus:

| Ausdruck                              | Ist Formel? | Ist Term? | (Wahrheits-)Wert in 3 |
|---------------------------------------|-------------|-----------|-----------------------|
| gcc                                   | Х           | ✓         | 2                     |
| $\forall x \forall y (x \to Rxy)$     |             |           |                       |
| fgcxgxc                               |             |           |                       |
| Rf gccxc                              |             |           |                       |
| $Rcx \rightarrow \forall z Rzx$       |             |           |                       |
| $\forall x \exists y \ f \ x \ y = c$ |             |           |                       |
| fRcxgcc                               |             |           |                       |

#### Lösung:

| Ausdruck                                  | Ist Formel? | Ist Term? | (Wahrheits-)Wert in ${\mathfrak I}$ |
|-------------------------------------------|-------------|-----------|-------------------------------------|
| gcc                                       | Х           | ✓         | 2                                   |
| $\forall x \forall y (x \rightarrow Rxy)$ | Х           | Х         | _                                   |
| fgcxgxc                                   | Х           | ✓         | 1                                   |
| Rf gccxc                                  | <b>√</b>    | Х         | 1                                   |
| $Rcx \rightarrow \forall z Rzx$           | ✓           | X         | 1                                   |
| $\forall x \exists y \ f \ x y = c$       | <b>√</b>    | Х         | 0                                   |
| fRcxgcc                                   | Х           | Х         | _                                   |

## Aufgabe G2 (Modellierung in der Prädikatenlogik I)

Eine Meteorologin möchte die zeitliche Entwicklung des Wetters in der Prädikatenlogik formalisieren. Sie wählt dazu die Signatur  $S = \{N, <, S, R\}$  mit einem einstelligen Funktionssymbol N ("nächster Tag"), einem zweistelligen Relationssymbol N (für die zeitliche Ordnung der Tage) und einstelligen Relationssymbolen S, R (für Sonne bzw. Regen an einem gegebenen Tag). Formalisieren Sie die folgenden Aussagen:

- (a) Auf Regen folgt (immer irgendwann) Sonnenschein.
- (b) Genau jeden zweiten Tag scheint die Sonne.
- (c) Wenn an einem Tag die Sonne scheint, dann gibt es innerhalb von drei Tagen wieder Regen.

Lösung: Eine mögliche Lösung lautet:

(a) 
$$\forall x (Rx \rightarrow \exists y (x < y \land Sy))$$

- (b)  $\forall x((Sx \to \neg SNx) \land (\neg Sx \to SNx))$ ; wenn man annimmt, dass jeder Tag genau eine der Möglichkeiten "Sonne" und "Regen" erfüllt, dann ist auch folgendes möglich:  $\forall x((Sx \to RNx) \land (Rx \to SNx))$
- (c)  $\forall x(Sx \rightarrow (RNx \lor RNNx \lor RNNNx))$

#### Aufgabe G3 (Sequenzenkalkül)

Wir betrachten den Sequenzenkalkül SK für die Aussagenlogik.

- (a) Beweisen Sie das Inversionslemma für die Regel ( $\neg R$ ). Zeigen Sie also: Wenn die Sequenz  $\Gamma \vdash \Delta, \neg \varphi$  in  $\mathcal{SK}$  herleitbar ist, dann ist auch  $\Gamma, \varphi \vdash \Delta$  herleitbar. (Hinweis: Argumentieren Sie per Induktion über die Herleitung von  $\Gamma \vdash \Delta, \neg \varphi$ . Um exzessive Schreibarbeit zu vermeiden, genügt es, wenn Sie das Axiom (Ax) und die Regeln ( $\neg L$ ) und ( $\neg R$ ) betrachten.)
- (b) Folgern Sie: Wenn  $\Gamma \vdash \Delta$ ,  $\neg \neg \varphi$  in SK herleitbar ist, dann ist auch  $\Gamma \vdash \Delta$ ,  $\varphi$  herleitbar (Sie können das Inversionslemma für die Regel ( $\neg$ L) verwenden, ohne es zu beweisen).

## Lösung:

- (a) Man argumentiert per Induktion über die Herleitung von  $\Gamma \vdash \Delta, \neg \varphi$  im Sequenzenkalkül. Um die Behauptung zu zeigen, dürfen wir also folgende Induktionsvoraussetzung annehmen: Wenn  $\Gamma' \vdash \Delta', \neg \varphi$  eine Herleitung hat, die kürzer ist als die gegebene Herleitung von  $\Gamma \vdash \Delta, \neg \varphi$ , dann ist auch  $\Gamma', \varphi \vdash \Delta'$  herleitbar. Als Basis der Induktion müssen wir die drei Axiome betrachten. Exemplarisch führen wir das Argument für (Ax) aus:
  - Im Fall von (Ax) muss  $\Gamma \vdash \Delta, \neg \varphi$  die Form  $\Gamma', p \vdash \Delta', p$  haben. Wegen der Negation kann  $\neg \varphi$  nicht die Aussagenvariable p sein. Also kommt p in  $\Delta$  vor und wir können  $\Delta, \varphi = \Delta'', p, \varphi$  schreiben. Beachte auch  $\Gamma = \Gamma', p$ . Nun kann man mit (Ax) auch  $\Gamma', p, \varphi \vdash \Delta'', p$  herleiten. Dies ist gerade die gewünschte Sequenz  $\Gamma, \varphi \vdash \Delta$ .

Im Induktionsschritt betrachten wir die verschiedenen Regeln des Sequenzenkalküls:

- Im Fall von  $(\neg L)$  wurde  $\Gamma', \neg \psi \vdash \Delta, \neg \varphi$  aus  $\Gamma' \vdash \Delta, \neg \varphi, \psi$  hergeleitet (man hat also  $\Gamma = \Gamma', \neg \psi$ ). Die Herleitung der Prämisse  $\Gamma' \vdash \Delta, \neg \varphi, \psi$  ist um eine Regel kürzer als die Herleitung von  $\Gamma \vdash \Delta, \neg \varphi$ . Nach Induktionsvoraussetzung gibt es also eine Herleitung von  $\Gamma', \varphi \vdash \Delta, \psi$ . Indem man die Regel  $(\neg L)$  wieder anwendet, erhält man  $\Gamma', \neg \psi, \varphi \vdash \Delta$ , wie gewünscht.
- Im entscheidenden Fall einer Regel ( $\neg R$ ) muss man zwei Fälle unterscheiden: Es kann sein, dass die Regel ( $\neg R$ ) gerade benutzt wurde, um die Formel  $\neg \varphi$  herzuleiten. Dann wurde also  $\Gamma \vdash \Delta$ ,  $\neg \varphi$  aus  $\Gamma$ ,  $\varphi \vdash \Delta$  hergeleitet. Die gewünschte Sequenz  $\Gamma$ ,  $\varphi \vdash \Delta$  ist also hier schon durch die Prämisse der Regel gegeben. Es kann aber auch sein, dass die Regel ( $\neg R$ ) benutzt wurde, um eine Formel  $\neg \psi$  aus  $\Delta$  herzuleiten. Dann wurde also  $\Gamma \vdash \Delta'$ ,  $\neg \psi$ ,  $\neg \varphi$  aus  $\Gamma$ ,  $\psi \vdash \Delta'$ ,  $\neg \varphi$  hergeleitet, wobei  $\Delta = \Delta'$ ,  $\neg \psi$ . Nach Induktionsvoraussetzung hat man  $\Gamma$ ,  $\psi$ ,  $\varphi \vdash \Delta'$ . Indem man ( $\neg R$ ) erneut anwendet, erhält man die gewünschte Sequenz  $\Gamma$ ,  $\varphi \vdash \Delta'$ ,  $\neg \psi$ .

Um den Beweis zu vervollständigen, müsste man noch die Regeln ( $\vee$ L), ( $\vee$ R), ( $\wedge$ L), ( $\wedge$ R), ( $\rightarrow$ L) und ( $\rightarrow$ R) betrachten. Das Argument ist aber immer ähnlich. Die vielen Fälle machen Argumente mit dem Sequenzenkalkül recht schreibintensiv. Es gibt aber Varianten des Sequenzenkalküls, die den Schreibaufwand deutlich reduzieren.

(b) Wenn  $\Gamma \vdash \Delta$ ,  $\neg \neg \varphi$  herleitbar ist, dann ist nach Teil (a) auch  $\Gamma$ ,  $\neg \varphi \vdash \Delta$  herleitbar. Mit dem Inversionslemma für die Regel ( $\neg$ L) folgt, dass auch  $\Gamma \vdash \Delta$ ,  $\varphi$  herleitbar ist.

## Hausübung

## Aufgabe H1 (Shoenfieldkalkül und Sequenzenkalkül)

(12 Punkte)

Wir vergleichen Shoenfields Variante des Hilbert-Systems (vgl. Übungsblatt 2, Aufgabe H2) mit dem Sequenzenkalkül.

- (a) Man zeige, dass die Sequenz  $\Gamma, \varphi \vdash \Delta, \varphi$  für jede aussagenlogische Formel  $\varphi$  im Sequenzenkalkül SK herleitbar ist. (Tipp: Induktion über den Aufbau von  $\varphi$ .)
- (b) Man zeige die folgende Aussage: Wenn es im Kalkül von Shoenfield einen Beweisbaum mit Blättern  $\Gamma = \varphi_1, \dots, \varphi_n$  und Wurzel  $\psi$  gibt, dann ist die Sequenz  $\Gamma \vdash \psi$  im Sequenzenkalkül  $\mathcal{SK}^+$  (also mit der Schnittregel) herleitbar.

Hinweis: Sie können Abschwächungslemma, Inversionslemma und Kontraktionslemma verwenden.

## Lösung:

- (a) [6 Punkte] Als Basis der Induktion müssen wir zunächst die Fälle betrachten, in denen  $\varphi$  eine einzelne Aussagenvariable oder eine der Konstanten 0,1 ist:
  - Angenommen,  $\varphi = p$  ist eine Aussagenvariable. Dann ist  $\Gamma, \varphi \vdash \Delta, \varphi$  ein Axiom (Ax).
  - Angenommen,  $\varphi = 0$ . Dann ist  $\Gamma, \varphi \vdash \Delta, \varphi$  ein Axiom (0-Ax).
  - Angenommen,  $\varphi = 1$ . Dann ist  $\Gamma, \varphi \vdash \Delta, \varphi$  ein Axiom (1-Ax).

Im Induktionsschritt betrachten wir die verschiedenen Möglichkeiten für eine zusammengesetzte Formel  $\varphi$ :

- Angenommen,  $\varphi = \neg \psi$ . Nach Induktionsvoraussetzung ist  $\Gamma, \psi \vdash \Delta, \psi$  herleitbar. Mit einer Regel ( $\neg$ L) erhält man  $\Gamma, \psi, \neg \psi \vdash \Delta$ . Mit einer Regel ( $\neg$ R) erhält man  $\Gamma, \neg \psi \vdash \Delta, \neg \psi$ . Wegen  $\varphi = \neg \psi$  ist das gerade die gewünschte Sequenz.
- Angenommen,  $\varphi = \psi \vee \theta$ . Nach Induktionsvoraussetzung sind  $\Gamma, \psi \vdash \Delta, \psi$  und  $\Gamma, \theta \vdash \Delta, \theta$  herleitbar. Mit dem Abschwächungslemma sind auch  $\Gamma, \psi \vdash \Delta, \psi, \theta$  und  $\Gamma, \theta \vdash \Delta, \psi, \theta$  herleitbar. Mit der Regel ( $\vee$ L) erhält man  $\Gamma, \psi \vee \theta \vdash \Delta, \psi, \theta$ . Die Regel ( $\vee$ R) gibt schließlich  $\Gamma, \psi \vee \theta \vdash \Delta, \psi \vee \theta$ .
- Angenommen,  $\varphi = \psi \land \theta$ . Nach Induktionsvoraussetzung sind  $\Gamma, \psi \vdash \Delta, \psi$  und  $\Gamma, \theta \vdash \Delta, \theta$  herleitbar. Mit dem Abschwächungslemma sind auch  $\Gamma, \psi, \theta \vdash \Delta, \psi$  und  $\Gamma, \psi, \theta \vdash \Delta, \theta$  herleitbar. Mit der Regel ( $\land$ R) erhält man  $\Gamma, \psi, \theta \vdash \Delta, \psi \land \theta$ . Die Regel ( $\land$ L) gibt schließlich  $\Gamma, \psi \land \theta \vdash \Delta, \psi \land \theta$ .
- Angenommen,  $\varphi = \psi \to \theta$ . Nach Induktionsvoraussetzung sind  $\Gamma, \psi \vdash \Delta, \psi$  und  $\Gamma, \theta \vdash \Delta, \theta$  herleitbar. Mit dem Abschwächungslemma sind auch  $\Gamma, \psi \vdash \Delta, \theta, \psi$  und  $\Gamma, \psi, \theta \vdash \Delta, \theta$  herleitbar. Die Regel ( $\to$ L) ergibt  $\Gamma, \psi, \psi \to \theta \vdash \Delta, \theta$ . Mit der Regel ( $\to$ R) erhält man schließlich  $\Gamma, \psi \to \theta \vdash \Delta, \psi \to \theta$ .
- (b) [6 Punkte] Man argumentiert per Induktion über den Aufbau des gegebenen Beweisbaums:
  - Betrachte zunächst den Beweisbaum, der aus einem einzelnen Blatt mit der freien Annahme  $\varphi$  besteht. Dieses Blatt ist zugleich die Wurzel des Baumes. Wir müssen also zeigen, dass  $\varphi \vdash \varphi$  im Sequenzenkalkül herleitbar ist. Das ist das Ergebnis von Teilaufgabe (a).
  - Betrachte nun den Baum, der aus einem einzelnen Blatt mit dem Axiom  $\neg \psi \lor \psi$  besteht. Hier brauchen wir  $\vdash \neg \psi \lor \psi$ . Wie eben hat man  $\psi \vdash \psi$ . Mit der Regel (¬R) bekommt man  $\vdash \neg \psi, \psi$ . Die Regel (∨R) liefert  $\vdash \neg \psi \lor \psi$ , wie gewünscht.
  - Betrachte nun einen Baum mit Blättern  $\Gamma = \varphi_1, \dots, \varphi_n$ , der in der Regel  $\frac{\psi}{\psi \vee \theta}$  endet. Nach Induktionsvoraussetzung ist  $\Gamma \vdash \psi$  im Sequenzenkalkül herleitbar. Mit dem Abschwächungslemma ist auch  $\Gamma \vdash \psi, \theta$  herleitbar. Die Regel ( $\vee$ R) liefert  $\Gamma \vdash \psi \vee \theta$ .
  - Betrachte einen Baum mit Blättern  $\Gamma$ , der in der Regel  $\frac{\psi \lor \psi}{\psi}$  endet. Nach Induktionsvoraussetzung hat man  $\Gamma \vdash \psi \lor \psi$ . Inversion für die Regel ( $\lor$ R) liefert  $\Gamma \vdash \psi, \psi$ . Mit dem Kontraktionslemma bekommt man  $\Gamma \vdash \psi$ .
  - Betrachte einen Baum mit Blättern  $\Gamma$ , der in der Regel  $\frac{\psi \lor (\theta \lor \chi)}{(\psi \lor \theta)\lor \chi}$  endet. Nach Induktionsvoraussetzung hat man  $\Gamma \vdash \psi \lor (\theta \lor \chi)$ . Inversion für die Regel ( $\lor$ R) ergibt zunächst  $\Gamma \vdash \psi, \theta \lor \chi$  und dann  $\Gamma \vdash \psi, \theta, \chi$ . Mit der Regel ( $\lor$ R) erhält man  $\Gamma \vdash \psi \lor \theta, \chi$  und schließlich  $\Gamma \vdash (\psi \lor \theta) \lor \chi$ .
  - (VR) erhält man  $\Gamma \vdash \psi \lor \theta$ ,  $\chi$  und schließlich  $\Gamma \vdash (\psi \lor \theta) \lor \chi$ .

     Betrachte einen Baum mit Blättern  $\Gamma$ , der in der Regel  $\frac{\psi \lor \theta}{\theta \lor \chi}$  endet. Mit Induktionsvoraussetzung und Abschwächung erhält man  $\Gamma \vdash \psi \lor \theta$  und  $\Gamma \vdash \neg \psi \lor \chi$  (beachte, dass Abschwächung nötig ist, weil die Teilbäume über den Prämissen  $\psi \lor \theta$  und  $\neg \psi \lor \chi$  nicht alle freien Annahmen aus  $\Gamma$  enthalten müssen). Mit Inversion für ( $\lor$ R) erhält man  $\Gamma \vdash \psi$ ,  $\theta$  und  $\Gamma \vdash \neg \psi$ ,  $\chi$ . Abschwächung und die Regel ( $\lor$ R) ergeben  $\Gamma \vdash \psi$ ,  $\theta \lor \chi$  und  $\Gamma \vdash \neg \psi$ ,  $\theta \lor \chi$ . Durch Inversion für ( $\neg$ R) erhält man  $\Gamma$ ,  $\psi \vdash \theta \lor \chi$ . Eine Anwendung der Schnittregel ergibt schließlich  $\Gamma \vdash \theta \lor \chi$ .

#### Aufgabe H2 (Modellierung in der Prädikatenlogik II)

(12 Punkte)

Wir betrachte prädikatenlogische Formeln über der Signatur  $\{f\}$ , wobei f ein 1-stelliges Funktionssymbol ist. Die Gleichheit = ist wie üblich zugelassen.

- (a) Man gebe eine Formel an, die in einem Modell genau dann erfüllt ist, wenn die Interpretation von f injektiv ist.
- (b) Man gebe eine Formel an, die in einem Modell genau dann erfüllt ist, wenn die Interpretation von f surjektiv ist.
- (c) Man gebe eine Formel an, die erfüllbar ist, aber nur unendliche Modelle hat. Begründen Sie kurz, warum die von Ihnen angegebene Formel diese Eigenschaft hat.

#### Lösung:

- (a) [4 Punkte] Eine mögliche Lösung ist  $\phi_{\text{inj}} = \forall x \forall y (f(x) = f(y) \rightarrow x = y)$ .
- (b) [4 Punkte] Eine mögliche Lösung ist  $\phi_{\text{surj}} = \forall y \exists x f(x) = y$ .
- (c) [4 Punkte] Eine mögliche Lösung ist  $\phi = \phi_{\text{inj}} \land \neg \phi_{\text{surj}}$ . Die Formel hat kein endliches Modell, weil jede injektive Funktion  $f: A \to A$  auf einer endlichen Menge A schon surjektiv ist (wenn f injektiv ist, dann hat das Bild von f genauso viele Elemente wie der Definitionsbereich A). Die Formel hat aber unendliche Modelle: Beispielsweise ist durch f(n) = n + 1 eine Funktion  $f: \mathbb{N} \to \mathbb{N}$  definiert, welche injektiv aber nicht surjektiv ist.

## **Aufgabe H3** (Folgerungsbeziehung in der Prädikatenlogik)

(12 Punkte)

Für eine Struktur  $\mathcal{A}$  und eine prädikatenlogische Formel  $\varphi$  vereinbaren wir

 $\mathscr{A} \models \varphi$  :  $\iff$  für jede Belegung  $\beta : \mathscr{V} \to \mathscr{A}$  gilt  $(\mathscr{A}, \beta) \models \varphi$ .

Man beachte, dass die Schreibweise  $\mathscr{A} \models \varphi$  in der Vorlesung nur für Sätze eingeführt wurde. In dieser Aufgabe verwenden wir sie auch für Formeln mit freien Variablen.

- (a) Man zeige, dass  $\varphi \models \psi$  schon  $\models \varphi \rightarrow \psi$  impliziert. (Tipp: Lesen Sie genau nach, was dies laut Vorlesung bedeutet.)
- (b) Man zeige durch ein Gegenbeispiel: Angenommen,  $\mathscr{A} \models \varphi$  impliziert  $\mathscr{A} \models \psi$  für jede Struktur  $\mathscr{A}$ . Dann muss dennoch nicht  $\mathscr{A} \models \varphi \rightarrow \psi$  für jede Struktur  $\mathscr{A}$  gelten.
- (c) Man zeige, dass die Aussage aus Teilaufgabe (b) für Sätze stimmt: Angenommen,  $\varphi, \psi$  haben keine freien Variablen und  $\mathscr{A} \models \varphi$  impliziert stets  $\mathscr{A} \models \psi$ . Dann gilt  $\mathscr{A} \models \varphi \rightarrow \psi$  für jede Struktur  $\mathscr{A}$ .

#### Lösung:

(a) [4 Punkte] Um  $\models \varphi \rightarrow \psi$  zu zeigen, müssen wir nachweisen, dass  $\mathscr{I} \models \varphi \rightarrow \psi$  für jede Interpretation  $\mathscr{I} = (\mathscr{A}, \beta)$  gilt. Sei also  $\mathscr{I}$  beliebig. Man hat

$$(\varphi \to \psi)^{\mathscr{I}} = (\neg \varphi \lor \psi)^{\mathscr{I}} = \max\{(\neg \varphi)^{\mathscr{I}}, \psi^{\mathscr{I}}\} = \max\{1 - \varphi^{\mathscr{I}}, \psi^{\mathscr{I}}\}.$$

Nun unterscheiden wir zwei Fälle: Ist  $\varphi^{\mathscr{I}}=0$ , so gilt  $1-\varphi^{\mathscr{I}}=1$  und damit  $(\varphi\to\psi)^{\mathscr{I}}=1$ . Letzteres bedeutet  $\mathscr{I}\models\varphi\to\psi$ , wie gewünscht. Ist  $\varphi^{\mathscr{I}}=1$ , also  $\mathscr{I}\models\varphi$ , so können wir mit  $\varphi\models\psi$  auf  $\mathscr{I}\models\psi$  schließen. Man folgert  $\psi^{\mathscr{I}}=1$ , dann  $(\varphi\to\psi)^{\mathscr{I}}=1$ , und schließlich wieder  $\mathscr{I}\models\varphi\to\psi$ .

- (b) [4 Punkte] Wir wählen  $\varphi = Px$  und  $\psi = Py$  für ein Prädikatensymbol P und verschiedene Variablen x, y. Zunächst zeigen wir, dass  $\mathscr{A} \models \varphi$  dann  $\mathscr{A} \models \psi$  impliziert: Gilt  $\mathscr{A} \models \varphi$ , so haben wir  $(\mathscr{A}, \beta) \models Px$  für jede Belegung  $\beta$ . Somit muss  $P^{\mathscr{A}} = A$  gelten. Letzteres impliziert  $(\mathscr{A}, \beta) \models Py$  für jede Belegung  $\beta$ , und somit  $\mathscr{A} \models \psi$ . Nun zeigen wir, dass  $\mathscr{A} \models \varphi \to \psi$  im Allgemeinen nicht gilt: Wähle dazu  $A = \{0, 1\}$  und  $P^{\mathscr{A}} = \{0\}$ . Für die Belegung  $\beta$  mit  $\beta(x) = 0$  und  $\beta(y) = 1$  gilt dann  $(\mathscr{A}, \beta) \models \varphi$  aber nicht  $(\mathscr{A}, \beta) \models \psi$ . Somit gilt auch nicht  $(\mathscr{A}, \beta) \models \varphi \to \psi$ . Mit der Definition aus der Aufgabenstellung bedeutet dies, dass auch  $\mathscr{A} \models \varphi \to \psi$  nicht gilt.
- (c) [4 Punkte] Um  $\mathscr{A} \vDash \varphi \to \psi$  für jede Struktur  $\mathscr{A}$  nachzuweisen, genügt es,  $\mathscr{I} \vDash \varphi \to \psi$  für jede Interpretation  $\mathscr{I} = (\mathscr{A}, \beta)$  zu zeigen. Gemäß Teilaufgabe (a) reicht es aus,  $\varphi \vDash \psi$  zu beweisen. Betrachte also eine beliebige Interpretation  $\mathscr{I} = (\mathscr{A}, \beta)$  mit  $\mathscr{I} \vDash \varphi$ . Für Sätze hängt der Wahrheitswert nicht von der Belegung sondern nur von der Struktur ab (siehe Vorlesung). Daher gilt  $(\mathscr{A}, \beta') \vDash \varphi$  für jede Belegung  $\beta' : \mathscr{V} \to \mathscr{A}$ . Gemäß der Definition aus der Aufgabenstellung hat man also  $\mathscr{A} \vDash \varphi$ . Nach Annahme erhält man  $\mathscr{A} \vDash \psi$  und damit  $\mathscr{I} \vDash \psi$ , wie gewünscht.