US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12383023

August 12, 2025

Choi; Yoon Jeong et al.

Sole structure of an article of footwear and related methods

Abstract

A sole structure of an article of footwear is provided and includes a first midsole portion including a first sidewall and a second midsole portion including a second sidewall. The sole structure also includes a first sheet disposed between the first midsole portion and the second midsole portion and including a first surface and a second surface formed on an opposite side of the first sheet than the first surface. The first sheet includes one or more apertures extending through the first sheet from the first surface to the second surface. The first midsole portion and the second midsole portion are operably connected through the one or more apertures of the first sheet.

Inventors: Choi; Yoon Jeong (Portland, OR), Cross; Tory M. (Portland, OR), Steinbeck;

Christian Alexander (Portland, OR), Zormeir; James (Portland, OR)

Applicant: NIKE, Inc. (Beaverton, OR)

Family ID: 1000008752343

Assignee: NIKE, Inc. (Beaverton, OR)

Appl. No.: 18/351580

Filed: July 13, 2023

Prior Publication Data

Document IdentifierUS 20230354957 A1

Publication Date
Nov. 09, 2023

Related U.S. Application Data

continuation parent-doc US 16643288 US 11730231 WO PCT/US2018/048553 20180829 child-doc US 18351580

us-provisional-application US 62552885 20170831

Publication Classification

Int. Cl.: A43B13/12 (20060101); A43B3/00 (20220101); B29D35/00 (20100101); B29D35/14

(20100101); B29K105/04 (20060101)

U.S. Cl.:

CPC **A43B13/127** (20130101); **A43B3/0052** (20130101); **B29D35/0009** (20130101);

B29D35/0054 (20130101); **B29D35/142** (20130101); B29K2105/04 (20130101)

Field of Classification Search

USPC: None

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
1659339	12/1927	Franz	N/A	N/A
1701611	12/1928	Glidden	36/73	A43B 13/12
1704187	12/1928	Glidden	N/A	N/A
2333303	12/1942	Enos	N/A	N/A
2669036	12/1953	Israel	N/A	N/A
3345664	12/1966	Ludwig	N/A	N/A
3812604	12/1973	Sato	N/A	N/A
3878626	12/1974	Isman	N/A	N/A
3925914	12/1974	Marcoux	N/A	N/A
4005532	12/1976	Giese	N/A	N/A
4073072	12/1977	Gross	N/A	N/A
4241523	12/1979	Daswick	N/A	N/A
4561195	12/1984	Onoda	N/A	N/A
4608768	12/1985	Cavanagh	N/A	N/A
4653206	12/1986	Tanel	N/A	N/A
4798010	12/1988	Sugiyama	36/31	A43B
47,50010				13/187
4896440	12/1989	Salaverria	N/A	N/A
5022168	12/1990	Jeppson, III	N/A	N/A
5025573	12/1990	Giese et al.	N/A	N/A
5075984	12/1990	Shiew	N/A	N/A
5561920	12/1995	Graham	36/7.8	A43B
5501920	12/1333	Granani	30/7.0	1/0072
5572805	12/1995	Giese	36/31	A43B
3372003	12/1333	Cicsc	30/31	13/188
5575089	12/1995	Giese	N/A	N/A
5664343	12/1996	Byrne	N/A	N/A
5720118	12/1997	Mayer	N/A	N/A
5926974	12/1998	Friton	N/A	N/A
5930916	12/1998	Connor	N/A	N/A
6021585	12/1999	Cole	N/A	N/A

6167639 12/2000 Ventura N/A N/A 6205683 12/2001 Clark N/A N/A N/A 6389713 12/2001 Kita 36/31 A43B 13/18 6401366 12/2001 Foxen N/A N/A N/A 7197840 12/2006 Nakano N/A N/A N/A 7401421 12/2007 Brennan N/A N/A N/A 7627963 12/2008 Kilgore 36/43 A43B 3/26 7814686 12/2009 Becker N/A N/A N/A 9894958 12/2016 Earnshaw et al. N/A N/A N/A 10342292 12/2018 Del Biondi N/A A43B 13/12 D861304 12/2018 Avar et al. N/A N/A N/A 10448703 12/2018 Schiller N/A N/A N/A 10674791 12/2019 Bruce N/A N/A N/A 2001/0007177 12/2000 Brown N/A N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A N/A 2003/0093920 12/2004 Connolly et al. N/A N/A N/A 2005/0229431 12/2004 Gerlin N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2009/012871 12/2009 Wan N/A N/A N/A 2009/012871 12/2009 Brown N/A N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2009/012871 12/2009 Wan N/A N/A N/A 2009/012871 12/2009 Wan N/A N/A N/A 2009/012871 12/2004 Connolly et al. N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2009/012871 12/2006 Borel N/A N/A N/A 2009/012871 12/2009 Van Niekerk N/A N/A N/A 2011/0016748 12/2007 Leedy N/A N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/0016749 12/2011 Arnone et al. N/A N/A N/A 2011/0016740 12/2011 Arnone et al. N/A N/A N/A 2011/0016740 12/2011 Arnone et al. N/A N/A N/A 2011/0016740 12/2011 Arnone et al. N/A N/A N/A 2015/026959 12/2014 Katsuya N/A N/A N/A 2016/035384 12/2014 Farris N/A N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2016/035384 12/2016 Baghdadi N/A N/A N/A 2017/024655 12/2016 Baghdadi N/A N/A N/A 2017/024655 12/2016 Baghdadi N/A N/A N/A 2017/024655 12/2016 Baghdadi N/A N/A N/A 2018/013386 12/2017 Dallas N/A N/A N/A 2018/013386 12/2017 Dallas N/A N/A N/A 2018/013388 12/2017 Luedecke N/A N/A N/A 2018/013388 12/2017 Luedecke N/A N/A N/A 2018/013388 12/2017 Luedecke N/A N/A N/A 2018/0133884 12/2017 Luedecke N/A N/A N/A N/A 2018/0133884 12/2017 Luedecke N/A N/A N	6154983	12/1999	Austin	N/A	N/A
6205683 12/2000 Clark N/A N/A 6389713 12/2001 Kita 36/31 A43B 13/18 6401366 12/2001 Foxen N/A N/A 7197840 12/2006 Nakano N/A N/A 7401421 12/2007 Brennan N/A N/A 7627963 12/2008 Kilgore 36/43 A43B 3/26 7814686 12/2009 Becker N/A N/A 9794958 12/2016 Earnshaw et al. N/A N/A 984958 12/2017 Cheney et al. N/A N/A 10448703 12/2018 Avar et al. N/A N/A 10448703 12/2018 Schiller N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2005/0217148 12/2004 Gerlin N/A N/A 2007/0240331 12/2004 Gerlin					
6389713					
6401366 12/2001 Foxen N/A N/A 7197840 12/2006 Nakano N/A N/A 7401421 12/2008 Kilgore 36/43 A43B 3/26 7814686 12/2009 Becker N/A N/A 9794958 12/2016 Earnshaw et al. N/A N/A 9894958 12/2017 Cheney et al. N/A N/A 10342292 12/2018 Del Biondi N/A A43B 13/12 D861304 12/2018 Avar et al. N/A N/A 10448703 12/2018 Schiller N/A N/A 10448703 12/2019 Bruce N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2005/0217148 12/2002 Greene et al. N/A N/A 2007/0186446 12/2004 Connolly et al. N/A N/A 2007/0124031 12/2006 <td></td> <td></td> <td></td> <td></td> <td></td>					
7197840					
7401421 12/2007 Brennan N/A N/A 7627963 12/2008 Kilgore 36/43 A43B 3/26 7814686 12/20016 Earnshaw et al. N/A N/A 9794958 12/2016 Earnshaw et al. N/A N/A 9894958 12/2018 Del Biondi N/A A/A 10342292 12/2018 Del Biondi N/A A/A 10861304 12/2018 Schiller N/A N/A 10674791 12/2019 Bruce N/A N/A 2001/007/77 12/2000 Brown N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2001 Mayer et al. N/A N/A 2005/0229431 12/2004 Gennolly et al. N/A N/A 2007/0240331 12/2004 Gerlin N/A N/A 2007/0240331 12/2006 Lafortune N/A N/A 2010/0287795 12/2009 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
7627963 12/2008 Kilgore 36/43 A43B 3/26 7814686 12/2009 Becker N/A N/A 9794958 12/2016 Earnshaw et al. N/A N/A 9894958 12/2018 Del Biondi N/A A/A 10342292 12/2018 Del Biondi N/A A/A 10448703 12/2018 Avar et al. N/A N/A 104771 12/2019 Bruce N/A N/A 2001/000717 12/2000 Brown N/A N/A 2002/062246 12/2001 Mayer et al. N/A N/A 2003/093920 12/2002 Greene et al. N/A N/A 2005/022431 12/2004 Connolly et al. N/A N/A 2007/0186446 12/2004 Gerlin N/A N/A 2008/029431 12/2006 Borel N/A N/A 2009/012971 12/2006 Borel N/A N/A 2007/0240331 12/2006 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
7814686 12/2009 Becker N/A N/A 97949588 12/2016 Eamshaw et al. N/A N/A 9894958 12/2017 Cheney et al. N/A N/A 10342292 12/2018 Del Biondi N/A A43B 13/12 D861304 12/2018 Avar et al. N/A N/A 10448703 12/2018 Schiller N/A N/A 10674791 12/2009 Bruce N/A N/A 2001/0007177 12/2000 Brown N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2003/093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2007/0186446 12/2004 Gerlin N/A N/A 2007/0240331 12/2006 Borel N/A N/A 2010/0287795 12/2007 Leedy N/A N/A 2011/016748 12/2010					
9894958 12/2017 Cheney et al. N/A N/A 10342292 12/2018 Del Biondi N/A A43B 13/12 D861304 12/2018 Avar et al. N/A N/A 10448703 12/2018 Schiller N/A N/A N/A 10674791 12/2019 Bruce N/A N/A N/A 2001/0007177 12/2000 Brown N/A N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A N/A 2003/093920 12/2002 Greene et al. N/A N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2005/0219431 12/2004 Gerlin N/A N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2009/0172971 12/2008 Borel N/A N/A N/A 2009/0172971 12/2008 Peikert N/A N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/016748 12/2010 Soler N/A N/A 2011/025852 12/2010 Mahoney N/A N/A 2011/025852 12/2010 Mahoney N/A N/A 2012/030972 12/2012 Christensen et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2015/0164175 12/2013 Montross et al. N/A N/A 2015/016405 12/2014 Katsuya N/A N/A 2015/0269591 12/2014 Katsuya N/A N/A 2015/0269591 12/2014 Katsuya N/A N/A 2015/0269591 12/2014 Farris N/A N/A 2016/035384 12/2015 Cheney N/A N/A 2016/035384 12/2015 Cheney N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2017/024655 12/2016 Goussev et al. N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2017/024655 12/2016 Goussev et al. N/A N/A N/A 2017/024055 12/2016 Goussev et al. N/A N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2016/035384 12/2015 Cheney N/A N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A N/A 2017/024265 12/2016 Goussev et al. N/A N/A N/A 2017/024655 12/2016 Baghdadi N/A N/A N/A 2017/024655 12/2016 Baghdadi N/A N/A N/A 2017/024665 12/2016 Baghdadi N/A N/A N/A 2018/016336 12/2017 Dallas N/A N/A			<u> </u>		N/A
10342292 12/2018	9794958	12/2016	Earnshaw et al.	N/A	N/A
10342292	9894958		Cheney et al.		
10448703 12/2019 Bruce N/A N/A 10674791 12/2019 Bruce N/A N/A 2001/0007177 12/2000 Brown N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Gerlin N/A N/A 2005/0229431 12/2006 Lafortune N/A N/A 2007/0186446 12/2006 Borel N/A N/A 2007/0240331 12/2006 Borel N/A N/A 2008/098616 12/2007 Leedy N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0146104 12/2010 Soler N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2014/0030972 12/2011 Arnone et al. N/A N/A 2014/003617 12/2013	10342292	12/2018	_	N/A	A43B 13/12
10674791 12/2019 Bruce N/A N/A 2001/0007177 12/2000 Brown N/A N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A N/A 2005/0229431 12/2006 Lafortune N/A N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2008/0098616 12/2007 Leedy N/A N/A N/A 2008/0098616 12/2007 Leedy N/A N/A N/A 2009/0172971 12/2008 Peikert N/A N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/01646104 12/2010 Lafortune N/A N/A 2011/025852 12/2010 Mahoney N/A N/A N/A 2011/025852 12/2010 Mahoney N/A N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Elder et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0250259 12/2014 Jones N/A N/A 2016/0353834 12/2015 Bruce N/A N/A 2016/0353834 12/2015 Cheney N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0042265 12/2016 Baghdadi N/A N/A 2017/0240037 12/2016 Baghdadi N/A N/A 2017/0247665 12/2016 Baghdadi N/A N/A 2018/0192736 12/2017 Dallas N/A N/A 2018/019	D861304	12/2018	Avar et al.	N/A	N/A
2001/0007177 12/2000 Brown N/A N/A 2002/0162246 12/2001 Mayer et al. N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2005/0229431 12/2004 Gerlin N/A N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A N/A 2007/0240331 12/2006 Borel N/A N/A N/A 2008/0098616 12/2007 Leedy N/A N/A N/A 2008/0098616 12/2007 Leedy N/A N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A N/A 2011/016748 12/2010 Soler N/A N/A N/A 2011/025852 12/2010 Mahoney N/A N/A 2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0031617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0268063 12/2014 Katsuya N/A N/A 2015/026959 12/2014 Attey N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2016/0324264 12/2015 Bruce N/A N/A 2016/0324264 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Luedecke N/A N/A 2017/0340037 12/2016 Goussev et al. N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2016/0328652 12/2016 Baghdadi N/A N/A 2016/016336 12/2017 Dallas N/A N/A 2018/016336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke	10448703	12/2018	Schiller	N/A	N/A
2002/0162246 12/2001 Mayer et al. N/A N/A 2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2005/0229431 12/2006 Lafortune N/A N/A 2007/0240331 12/2006 Borel N/A N/A 2008/0998616 12/2007 Leedy N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/006803 12/2014 Farris N/A N/A 2015/0289591	10674791	12/2019	Bruce	N/A	N/A
2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A 2007/0240331 12/2006 Borel N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2011/0287795 12/2009 Van Niekerk N/A N/A 2011/016748 12/2010 Soler N/A N/A 2011/016748 12/2010 Lafortune N/A N/A 2011/0167401 12/2010 Mahoney N/A N/A 2011/0225852 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/028053 12/2014 Katsuya N/A N/A 2015/02606803<	2001/0007177	12/2000	Brown	N/A	N/A
2003/0093920 12/2002 Greene et al. N/A N/A 2005/0217148 12/2004 Connolly et al. N/A N/A 2005/0229431 12/2006 Lafortune N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A 2007/0240331 12/2006 Borel N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/016748 12/2010 Soler N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0289591 12/2014 Katsuya N/A N/A 2015/02959	2002/0162246	12/2001	Mayer et al.	N/A	N/A
2005/0229431 12/2004 Gerlin N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/0303972 12/2011 Arnone et al. N/A N/A 2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0668063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/0319973	2003/0093920	12/2002	<u> </u>	N/A	N/A
2005/0229431 12/2004 Gerlin N/A N/A 2007/0186446 12/2006 Lafortune N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A 2011/025852 12/2010 Mahoney N/A N/A 2012/0303972 12/2011 Arnone et al. N/A N/A 2014/0013617 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/0319973 12	2005/0217148	12/2004	Connolly et al.	N/A	N/A
2007/0240331 12/2006 Borel N/A N/A 2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Elder et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/0324264 <t< td=""><td>2005/0229431</td><td>12/2004</td><td></td><td>N/A</td><td>N/A</td></t<>	2005/0229431	12/2004		N/A	N/A
2008/0098616 12/2007 Leedy N/A N/A 2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/01016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2016/03884 12/2015 Kraft N/A N/A 2016/0324264 12/2015 Bruce N/A N/A 2016/0353834 12/20	2007/0186446	12/2006	Lafortune	N/A	N/A
2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/03844 12/2015 Kraft N/A N/A 2016/0324264 12/2015 Geneey N/A N/A 2016/0323834 12/2015 Luedecke N/A N/A 2017/0042265 12	2007/0240331	12/2006	Borel	N/A	N/A
2009/0172971 12/2008 Peikert N/A N/A 2010/0287795 12/2009 Van Niekerk N/A N/A 2011/0016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/03844 12/2015 Kraft N/A N/A 2016/0324264 12/2015 Geneey N/A N/A 2016/0323834 12/2015 Luedecke N/A N/A 2017/0042265 12	2008/0098616	12/2007	Leedy	N/A	N/A
2011/0016748 12/2010 Soler N/A N/A 2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0250259 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Attey N/A N/A 2016/035384 12/2015 Kraft N/A N/A 2016/0219973 12/2015 Bruce N/A N/A 2016/0353834 12/2015 Johnson N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/024037 <td< td=""><td>2009/0172971</td><td>12/2008</td><td>_</td><td>N/A</td><td>N/A</td></td<>	2009/0172971	12/2008	_	N/A	N/A
2011/0146104 12/2010 Lafortune N/A N/A 2011/0225852 12/2010 Mahoney N/A N/A 2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/095384 12/2015 Kraft N/A N/A 2016/016007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0353834 12/2015 Johnson N/A N/A 2017/004265	2010/0287795	12/2009	Van Niekerk	N/A	N/A
2011/0225852 12/2010 Mahoney N/A N/A 2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Attey N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0240037 12/2016 Baghdadi N/A N/A 2018/0116336	2011/0016748	12/2010	Soler	N/A	N/A
2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Attey N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0219094 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2018/0116336<	2011/0146104	12/2010	Lafortune	N/A	N/A
2012/0030972 12/2011 Arnone et al. N/A N/A 2013/0167402 12/2012 Christensen et al. N/A N/A 2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0289591 12/2014 Attey N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0219094 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2018/0116336<	2011/0225852	12/2010	Mahoney	N/A	N/A
2014/0013617 12/2013 Montross et al. N/A N/A 2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Bajley et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017	2012/0030972	12/2011	Arnone et al.	N/A	N/A
2014/0283412 12/2013 Elder et al. N/A N/A 2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0240037 12/2016 Baghdadi N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2013/0167402	12/2012	Christensen et al.	N/A	N/A
2015/0068063 12/2014 Farris N/A N/A 2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2014/0013617	12/2013	Montross et al.	N/A	N/A
2015/0164175 12/2014 Katsuya N/A N/A 2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Langvin N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Bajley et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2014/0283412	12/2013	Elder et al.	N/A	N/A
2015/0250259 12/2014 Attey N/A N/A 2015/0289591 12/2014 Jones N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Langvin N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2015/0068063	12/2014	Farris	N/A	N/A
2015/0289591 12/2014 Jones N/A N/A 2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Vontorcik, Jr. et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2015/0164175	12/2014	Katsuya	N/A	N/A
2016/0095384 12/2015 Kraft N/A N/A 2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Langvin N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0340037 12/2016 Baghdadi N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2015/0250259	12/2014	Attey	N/A	N/A
2016/0166007 12/2015 Bruce N/A N/A 2016/0219973 12/2015 Cheney N/A N/A 2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Vontorcik, Jr. et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2015/0289591	12/2014	Jones	N/A	N/A
2016/021997312/2015CheneyN/AN/A2016/032426412/2015JohnsonN/AN/A2016/035383412/2015LuedeckeN/AN/A2017/004226512/2016Goussev et al.N/AN/A2017/011909412/2016Vontorcik, Jr. et al.N/AN/A2017/023865212/2016LangvinN/AN/A2017/026785012/2016BaghdadiN/AN/A2017/034003712/2016Bailey et al.N/AN/A2018/011633612/2017DallasN/AN/A2018/019273612/2017LuedeckeN/AN/A	2016/0095384	12/2015	Kraft	N/A	N/A
2016/0324264 12/2015 Johnson N/A N/A 2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Vontorcik, Jr. et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2016/0166007	12/2015	Bruce	N/A	N/A
2016/0353834 12/2015 Luedecke N/A N/A 2017/0042265 12/2016 Goussev et al. N/A N/A 2017/0119094 12/2016 Vontorcik, Jr. et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2016/0219973	12/2015	Cheney	N/A	N/A
2017/004226512/2016Goussev et al.N/AN/A2017/011909412/2016Vontorcik, Jr. et al.N/AN/A2017/023865212/2016LangvinN/AN/A2017/026785012/2016BaghdadiN/AN/A2017/034003712/2016Bailey et al.N/AN/A2018/011633612/2017DallasN/AN/A2018/019273612/2017LuedeckeN/AN/A	2016/0324264	12/2015	Johnson	N/A	N/A
2017/0119094 12/2016 Vontorcik, Jr. et al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2016/0353834	12/2015	Luedecke	N/A	N/A
2017/0119094 12/2016 al. N/A N/A 2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2017/0042265	12/2016	Goussev et al.	N/A	N/A
2017/0238652 12/2016 Langvin N/A N/A 2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2017/0119094	12/2016		N/A	N/A
2017/0267850 12/2016 Baghdadi N/A N/A 2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A	2017/0238652	12/2016		N/A	N/A
2017/0340037 12/2016 Bailey et al. N/A N/A 2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A					
2018/0116336 12/2017 Dallas N/A N/A 2018/0192736 12/2017 Luedecke N/A N/A			9		
2018/0192736 12/2017 Luedecke N/A N/A			<u> </u>		
			Luedecke		
		12/2017		N/A	N/A

2018/0352895	12/2017	Chang	N/A	N/A
2019/0125028	12/2018	Bartel et al.	N/A	N/A
2020/0046068	12/2019	Choi	N/A	B32B 5/22
2020/0253326	12/2019	Choi et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
238134	12/1944	CH	N/A
1881914	12/1962	DE	N/A
8305716	12/1982	DE	N/A
102010046278	12/2010	DE	N/A
102012110573	12/2013	DE	N/A
0130816	12/1984	EP	N/A
0922400	12/1998	EP	N/A
2975962	12/2015	EP	N/A
3001924	12/2015	EP	N/A
2975962	12/2017	EP	N/A
1433481	12/1975	GB	N/A
20070093375	12/2006	KR	N/A
101638304	12/2015	KR	N/A
WO-2016165734	12/2015	WO	N/A
WO-2017058419	12/2016	WO	N/A
WO-2018175734	12/2017	WO	N/A
WO-2019046438	12/2018	WO	N/A

OTHER PUBLICATIONS

European Patent Office as IPEA, International Preliminary Report of Patentability for PCT Application No. PCT/US2018/048553, mailed Jul. 23, 2019. cited by applicant European Patent Office as ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2018/048553, mailed Feb. 13, 2019. cited by applicant European Patent Office, Communication pursuant to Article 94(3) EPC for App. No. 18 811 089.4, mailed Jun. 7, 2021. cited by applicant

European Patent Office as ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2018/048562, mailed Feb. 13, 2019. cited by applicant European Patent Office as IPEA, Written Opinion of the International Preliminary Examining Authority for PCT Application No. PCT/US2018/048562, mailed Jul. 18, 2019. cited by applicant European Office Action, Application No. 18 811 090.2, mailed Jun. 7, 2021. cited by applicant European Patent Office, Communication Pursuant to Article 94(3) EPC dated Oct. 20, 2021 for application No. 18811089.4. cited by applicant

USPTO, Final Office Action for U.S. Appl. No. 16/642,991, mailed Oct. 6, 2022. cited by applicant International Search Report for PCT/US2019/045757 mailed on Nov. 19, 2019. cited by applicant International Search Report and Written Opinion for Application No. PCT/US2021/024544 dated Jul. 13, 2021. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 17/214,887, mailed Aug. 23, 2022. cited by applicant

European Patent Office as ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2020/025594, mailed Jun. 23, 2020. cited by applicant USPTO, Final Office Action for U.S. Appl. No. 16/833,617, mailed Sep. 26, 2022. cited by applicant

USPTO, Final Office Action for U.S. Appl. No. 17/214,887, mailed Jan. 18, 2023. cited by

applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/833,617, mailed Feb. 8, 2022. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/833,617, mailed Dec. 21, 2022. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/643,288, mailed Dec. 19, 2022. cited by applicant

USPTO, Final Office Action for U.S. Appl. No. 16/643,288, mailed May 18, 2022. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/643,288, mailed Feb. 1, 2022. cited by applicant

USPTO, Final Office Action for U.S. Appl. No. 16/643,288, mailed Sep. 28, 2021. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/643,288, mailed Jun. 4, 2021. cited by applicant

European Patent Office, Extended EP Search Report for EP App. No. 23167727.9, mailed Jun. 14, 2023. cited by applicant

USPTO, Final Office Action for U.S. Appl. No. 16/642,991, mailed Aug. 2, 2023. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/642,991, mailed Mar. 17, 2023. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 16/642,991, mailed Apr. 1, 2022. cited by applicant

USPTO, Non-Final Office Action for U.S. Appl. No. 18/428,569, mailed Oct. 22, 2024. cited by applicant

Primary Examiner: Mohandesi; Jila M

Attorney, Agent or Firm: Honigman LLP

Background/Summary

CROSS REFERENCE TO RELATED APPLICATION (1) This application is a continuation of U.S. application Ser. No. 16/643,288, filed Feb. 28, 2020, which is a national phase entry of International Application No. PCT/US2018/048553, filed Aug. 29, 2018, which claims priority to U.S. Provisional Application No. 62/552,885, filed Aug. 31, 2017, the disclosures of which are hereby incorporated by reference in their entirety.

FIELD

(1) The present disclosure relates generally to an article of footwear and more particularly to a sole structure for an article of footwear.

BACKGROUND

- (2) This section provides background information related to the present disclosure and is not necessarily prior art.
- (3) Articles of footwear conventionally include an upper and a sole structure. The upper may be formed from any suitable material(s) to receive, secure, and support a foot on the sole structure. The upper may cooperate with laces, straps, or other fasteners to adjust the fit of the upper around the foot. A bottom portion of the upper, proximate to a bottom surface of the foot, attaches to the sole structure.

(4) Sole structures generally include a stacked arrangement of a midsole and an outsole extending between a ground surface and the upper. The outsole provides abrasion-resistance and traction with the ground surface and may be formed from rubber or other materials that impart durability and wear-resistance, as well as enhancing traction with the ground surface. The midsole is disposed between the outsole and the upper. While existing sole structures perform adequately for their intended purpose, improvements to sole structures are continuously being sought in order to advance the arts.

Description

DESCRIPTION OF THE DRAWINGS

- (1) The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
- (2) FIG. **1** is a perspective view of an article of footwear incorporating a sole structure in accordance with the principles of the present disclosure;
- (3) FIG. **2** is a perspective exploded view of a portion of the article of footwear of FIG. **1**;
- (4) FIG. **3** is an exemplary top view of the article of footwear according to arrow **3** of FIG. **2**;
- (5) FIG. **4** is an exemplary alternative top view of the article of footwear according to arrow **3** of FIG. **2**;
- (6) FIG. **5** is another exemplary alternative top view of the article of footwear according to arrow **3** of FIG. **2**;
- (7) FIG. **6** is an exemplary partial side view of the article of footwear according to arrow **6** of any of FIG. **3**, **4** or **5**;
- (8) FIG. **7** is an exemplary alternative partial side view of the article of footwear according to arrow **6** of any of FIG. **3**, **4** or **5**;
- (9) FIG. **8** is another exemplary alternative partial side view of the article of footwear according to arrow **6** of any of FIG. **3**, **4** or **5**;
- (10) FIG. **9** is yet another exemplary alternative partial side view of the article of footwear according to arrow **6** of any of FIG. **3**, **4** or **5**;
- (11) FIG. **10** is a perspective view of an exemplary mold tool and the portion of the article of footwear corresponding to FIG. **2**;
- (12) FIG. **11** is a further perspective view of the mold tool and the portion of the article of footwear of FIG. **10** arranged in an assembled state;
- (13) FIG. **12** is a perspective view of an article of footwear incorporating a sole structure in accordance with the principles of the present disclosure;
- (14) FIG. 13 is a perspective exploded view of a portion of the article of footwear of FIG. 12;
- (15) FIG. 14 is an exemplary top view of the article of footwear according to arrow 14 of FIG. 13;
- (16) FIG. **15** is an exemplary alternative top view of the article of footwear according to arrow **14** of FIG. **13**;
- (17) FIG. **16** is another exemplary alternative top view of the article of footwear according to arrow **14** of FIG. **13**;
- (18) FIG. **17** is an exemplary partial side view of the article of footwear according to arrow **17** of any of FIG. **14**, **15**, or **16**;
- (19) FIG. **18** is an exemplary alternative partial side view of the article of footwear according to arrow **17** of any of FIG. **14**, **15**, or **16**;
- (20) FIG. **19** is another exemplary partial alternative side view of the article of footwear according to arrow **17** of any of FIG. **14**, **15**, or **16**;
- (21) FIG. **20** is yet another exemplary partial alternative side view of the article of footwear according to arrow **17** of any of FIGS.;

- (22) FIG. **21** is a perspective view of an exemplary mold tool and the portion of the article of footwear corresponding to FIG. **13**;
- (23) FIG. **22** is a further perspective view of the mold tool and the portion of the article of footwear of FIG. **21** arranged in an assembled state;
- (24) FIG. **23** is a perspective view of an article of footwear incorporating a sole structure in accordance with the principles of the present disclosure;
- (25) FIG. 24 is a perspective exploded view of a portion of the article of footwear of FIG. 23;
- (26) FIG. 25 is an exemplary top view of the article of footwear according to arrow 25 of FIG. 24;
- (27) FIG. **26** is an exemplary alternative top view of the article of footwear according to arrow **25** of FIG. **24**;
- (28) FIG. **27** is another exemplary alternative top view of the article of footwear according to arrow **25** of FIG. **24**;
- (29) FIG. **28** is an exemplary partial side view of the article of footwear according to arrow **28** of any of FIG. **25**, **26** or **27**;
- (30) FIG. **29** is an exemplary partial alternative side view of the article of footwear according to arrow **28** of any of FIG. **25**, **26** or **27**;
- (31) FIG. **30** is another exemplary partial alternative side view of the article of footwear according to arrow **28** of any of FIG. **25**, **26** or **27**;
- (32) FIG. **31** is yet another exemplary partial alternative side view of the article of footwear according to arrow **28** of any of FIG. **25**, **26** or **27**;
- (33) FIG. **32** is a perspective view of an exemplary mold tool and the portion of the article of footwear corresponding to FIG. **24**;
- (34) FIG. **33** is a further perspective view of the mold tool and the portion of the article of footwear of FIG. **32** arranged in an assembled state;
- (35) FIG. **34** is a perspective exploded view of an alternative exemplary first midsole portion having a non-flat pattern and an alternative exemplary second midsole portion having a non-flat pattern that may be included in any of the articles of footwear described above at FIGS. **1-33**;
- (36) FIG. **35** is an exemplary partial side view of an article of footwear including the first midsole portion and the second midsole portion of FIG. **34**;
- (37) FIG. **36** is a perspective exploded view of another alternative exemplary first midsole portion having a non-flat pattern and another alternative exemplary second midsole portion having a non-flat pattern that may be included in any of the articles of footwear described above at FIGS. **1-33**;
- (38) FIG. **37** is an exemplary partial side view of an article of footwear including the first midsole portion and the second midsole portion of FIG. **36**;
- (39) FIG. **38** is an exemplary partial side view of an article of footwear including the first midsole portion and the second midsole portion of any of FIGS. **1-33** and one or more alternative exemplary strips of material having a non-flat pattern;
- (40) FIG. **39** is an exemplary partial side view of an article of footwear including the first midsole portion and the second midsole portion of any of FIGS. **1-33** and one or more alternative exemplary strips of material having a non-flat pattern;
- (41) FIG. **40** is a perspective view of a foam cutting system including a receiver portion, an insertion portion and a foam workpiece portion;
- (42) FIG. **41** is a side view of the foam cutting system and the foam workpiece portion of FIG. **40**;
- (43) FIG. **42** is a further side view of the foam cutting system and the foam workpiece portion of FIG. **41**;
- (44) FIG. **43** is a further side view of the foam cutting system and the foam workpiece portion of FIG. **42** illustrating the foam workpiece portion being separated into a midsole component portion and a scrap piece portion;
- (45) FIG. **44** is a further side view of the foam cutting system and the foam workpiece portion of FIG. **43** illustrating the foam workpiece portion separated for defining the midsole component

portion and the scrap piece portion;

- (46) FIG. **45** is another side view of the foam cutting system and another foam workpiece portion of FIG. **40**;
- (47) FIG. **46** is a further side view of the foam cutting system and the foam workpiece portion of FIG. **45** illustrating the foam workpiece portion being separated into a midsole component portion and a scrap piece portion; and
- (48) FIG. **47** is a further side view of the foam cutting system and the foam workpiece portion of FIG. **46** illustrating the foam workpiece portion separated for defining the midsole component portion and the scrap piece portion.
- (49) Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION

- (50) The present disclosure is related to a sole structure for an article of footwear. The sole structure includes one or more midsole portions (see, e.g., first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e*) and one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* (see, e.g., strips of material **52**.sub.1-**52**.sub.3, **52***a*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***c*, **52***d*, **52***e*. In an example, the one or more midsole portions may be molded around, molded through or molded around-and-through the one or more strips of material. One or more of the one or more strips of material and the one or more midsole portions may be pre-formed to define a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like). One or a combination of the one or more strips of material and the pattern contributes to a desired characteristic (e.g., shear strength, shear stability, shear loading) in one or more regions (e.g., a forefoot region, a midfoot region and a heel region) of the sole structure of the article of footwear. Accordingly, the sole structure may provide improved stability in one or a combination of a parallel loading direction and a perpendicular loading direction when a load is imparted to the sole structure by a user's foot.
- (51) Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope of those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well known technologies are not described in detail.
- (52) The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of moded features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
- (53) When an element or sheet is referred to as being "on," "engaged to," "connected to," or "coupled to" another element or sheet, it may be directly on, engaged, connected or coupled to the other element or sheet, or intervening elements or sheets may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to," or

"directly coupled to" another element or sheet, there may be no intervening elements or sheets present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

- (54) Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, sheets and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, sheet or section from another region, sheet or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, sheet or section discussed below could be termed a second element, component, region, sheet or section without departing from the teachings of the example embodiments.
- (55) Spatially relative terms, such as "inner," "outer," "beneath," "below," "lower," "above," "upper," and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the example term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. (56) One aspect of the disclosure provides a sole structure of an article of footwear and related methods. The sole structure includes a first midsole portion including a first sidewall and a second midsole portion including a second sidewall. The sole structure also includes a first sheet disposed between the first midsole portion and the second midsole portion and including a first surface and a second surface formed on an opposite side of the first sheet than the first surface. The first sheet includes one or more apertures extending through the first sheet from the first surface to the second surface. The first midsole portion and the second midsole portion are operably connected through the one or more apertures of the first sheet.
- (57) Implementations of the disclosure may include one or more of the following optional features. In some examples, the sole structure includes a second sheet disposed between the first midsole portion and the second midsole portion. The second sheet may include a third surface and a fourth surface formed on an opposite side of the second sheet than the third surface. The sole structure may also include one or more apertures extending through the second sheet from the third surface to the fourth surface. In these examples, the second sheet may be spaced apart from the first sheet in a first direction. The first direction may be substantially parallel to a longitudinal axis of the sole structure. The second sheet and the first sheet may each include a longitudinal axis that is substantially perpendicular to a longitudinal axis of the sole structure. Optionally, the second sheet and the first sheet may each include a longitudinal axis that is formed at an angle relative to a longitudinal axis of the sole structure. Additionally or alternatively, a longitudinal axis of the first sheet and a longitudinal axis of the second sheet may be substantially parallel to one another or a longitudinal axis of the first sheet and a longitudinal axis of the second sheet are convergent. When a second sheet is disposed between the first midsole portion and the second midsole portion, the second sheet may be in contact with the first sheet. The second sheet may cross the first sheet. (58) In some implementations, a first distal end of the first sheet is visible at one of a medial side of the sole structure and a lateral side of the sole structure. Here, a second distal end of the first sheet may be visible at the other of the medial side of the sole structure and the lateral side of the sole structure. Optionally, a first distal end of the first sheet may extend from one of a medial side of the sole structure and a lateral side of the sole structure. Here, a second distal end of the first sheet may

extend from the other of the medial side of the sole structure and the lateral side of the sole structure.

(59) In some configurations, a first distal end of the first sheet is substantially planar at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the first sheet is substantially planar at the other of the medial side of the sole structure and the lateral side of the sole structure. Optionally, a first distal end of the first sheet may include a sinusoidal shape at one of a medial side of the sole structure and a lateral side of the sole structure and the lateral side of the sole structure. Additionally or alternatively, a first distal end of the first sheet may include a saw-tooth shape at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the first sheet may include a saw-tooth shape at one of the first sheet may include a saw-tooth shape at the other of the medial side of the sole structure and the lateral side of the sole structure.

(60) In some examples of the sole structure, each aperture of the one or more apertures is at least 3.0 mm in length in a largest dimension or at least 1 mm in length in a smallest dimension. Each aperture of the one or more apertures may be a post-processed aperture defined by material removed from the first sheet. The first sheet may be woven, knit, or braided for integrally defining each aperture of the one or more apertures. The sole structure may further include an outsole including a ground-contacting surface. Here, the first midsole portion may be disposed between the outsole and the first sheet. Optionally, the first midsole portion may define at least one first contact region and the second midsole portion may define at least one second contact region. The at least one first contact region may be in contact with the at least one second contact region at the one or more apertures. In some examples, the first midsole portion and the second midsole portion are bonded to one another at the one or more apertures. Additionally, or alternatively, a material of the first midsole portion and a material of the second midsole portion may be melded at the one or more apertures.

(61) In some configurations, the first midsole portion includes a first surface in contact with the first sheet and the second midsole portion includes a second surface in contact with the first sheet. The first surface of the first midsole portion and the second surface of the second midsole portion may each include a plurality of surface features. Here, each of the plurality of surface features may have a minimum height or depth of at least 2 mm or may have a minimum height or depth of at least 5 mm. Each of the plurality of surface features may also have a maximum height or depth of less than 22 mm or may have a maximum height or depth of less than 17 mm. The height or depth of each of the plurality of surface features may range from about 2 mm to about 15 mm. (62) In some implementations, the first midsole portion includes a first series of peaks and a first series of valleys and the second midsole portion includes a second series of peaks and a second series of valleys. The first series of peaks may oppose the second series of valleys and the second series of peaks may oppose the first series of valleys. The first sheet may conform to the shape of the first series of peaks and the first series of valleys and may also conform to the shape of the second series of peaks and the second series of valleys. The first series of peaks, the first series of valleys, the second series of peaks, and the second series of valleys may cooperate to provide the first sheet with a side surface having a sinusoidal or saw-tooth configuration. In some examples, the sole structure includes an adhesive disposed between the first midsole portion and the second midsole portion. The adhesive may be applied to at least one of the first midsole portion, the second midsole portion, the first surface of the sheet, and the second surface of the sheet. (63) In some configurations, the first sheet includes a mesh textile defining the one or more apertures in a structure of the mesh. The one or more apertures may each be at least 0.5 mm in length in a largest dimension or may each be at least 1.0 mm in length in a largest dimension. Additionally or alternatively, the one or more apertures may each be less than 10 mm in length in a largest dimension, may each be less than 5.0 mm in length in a largest dimension, or may each be

less than 3.0 mm in length in a largest dimension. Optionally, the one or more apertures may each have a length in a largest dimension from about 0.5 mm to about 3.0 mm.

- (64) In some examples, the first sheet is a textile configured to stretch in in only one dimension. Optionally, the first sheet may be a textile configured to stretch in two dimensions. The first sheet may be an embroidered textile. The embroidered textile may include a first embroidered region and a second embroidered region. The first embroidered region may have a different concentration of fibers than the second embroidered region. Additionally or alternatively, the first sheet includes embroidered regions disposed at discrete locations of the sheet.
- (65) In some implementations, at least one of the first midsole portion and the second midsole portion is formed from a polymeric material having a foam structure. The polymeric material having a foam structure may be an injection-molded foam or may be a compression-molded foam. (66) Another aspect of the disclosure provides a method of making a sole structure for an article of footwear. The method includes providing a first midsole portion including a first sidewall and providing a second midsole portion including a second sidewall. The method further includes positioning a first sheet of material between the first midsole portion and the second midsole portion. The first sheet has a first surface and has a second surface formed on an opposite side of the first sheet than the first surface. The first sheet also includes one or more apertures extending through the sheet from the first surface to the second surface. The method also includes connecting the first midsole portion and the second midsole portion through the one or more apertures of the first sheet.
- (67) Implementations of the disclosure may include one of more of the following optional features. In some examples, the method includes positioning a second sheet between the first midsole portion and the second midsole portion. In this example, positioning a second sheet may include providing a second sheet having a third surface and a fourth surface formed on an opposite side of the second sheet than the third surface. The method may also include providing one or more apertures that extend through the second sheet from the third surface to the fourth surface. The method may further include spacing the second sheet apart from the first sheet in a first direction. Here, spacing the second sheet apart from the first sheet in a first direction may include spacing the second sheet apart from the first sheet in a direction that is substantially parallel to a longitudinal axis of the sole structure.
- (68) In some implementations, the method includes providing the second sheet and the first sheet with a longitudinal axis that is substantially perpendicular to a longitudinal axis of the sole structure. Optionally, the method may include providing the second sheet and the first sheet with a longitudinal axis that is formed at an angle relative to a longitudinal axis of the sole structure. Additionally or alternatively, the method may include positioning a longitudinal axis of the first sheet and a longitudinal axis of the second sheet substantially parallel to one another or positioning a longitudinal axis of the first sheet and a longitudinal axis of the second sheet convergent to one another. The method may include placing the second sheet in contact with the first sheet. When placing the second sheet in contact with the first sheet, the method may include crossing the second sheet and the first sheet.
- (69) In some configurations, the method includes exposing a first distal end of the first sheet at one of a medial side of the sole structure and a lateral side of the sole structure. The method may also include exposing a second distal end of the first sheet at the other of the medial side of the sole structure and the lateral side of the sole structure. Optionally, the method may include extending a first distal end of the first sheet from one of a medial side of the sole structure and a lateral side of the sole structure. Here, the method may further include extending a second distal end of the first sheet from the other of the medial side of the sole structure and the lateral side of the sole structure. (70) In some examples, the method includes providing a first distal end of the first sheet with a substantially planar configuration at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a substantially planar

configuration at the other of the medial side of the sole structure and the lateral side of the sole structure. Optionally, the method may include providing a first distal end of the first sheet with a sinusoidal shape at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a sinusoidal shape at the other of the medial side of the sole structure and the lateral side of the sole structure. Additionally or alternatively, the method may include providing a first distal end of the first sheet with a saw-tooth shape at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a saw-tooth shape at the other of the medial side of the sole structure and the lateral side of the sole structure.

- (71) In some implementations, the method includes providing each aperture of the one or more apertures with a length that is at least 3.0 mm in a largest dimension. Optionally, the method may include providing each aperture of the one or more apertures with a length that is at least 1 mm in a smallest dimension. The method may include forming each aperture of the one or more apertures by removing material from the first sheet. Additionally or alternatively, positioning the first sheet may include positioning a sheet that is woven, knit, or braided for integrally defining each aperture of the one or more apertures. The method may further include providing an outsole including a ground-contacting surface. When providing an outsole including a ground-contacting surface, the method may also include positioning the first midsole portion between the outsole and the first sheet.
- (72) In some examples, providing a first midsole portion includes providing a first midsole portion that defines at least one first contact region and providing a second midsole portion includes providing a second midsole portion that defines at least one second contact region. Here, the at least one first contact region may be in contact with the at least one second contact region at the one or more apertures. The method may also include bonding the first midsole portion and the second midsole portion to one another at the one or more apertures. Additionally or alternatively, the method may further include melding a material of the first midsole portion and a material of the second midsole portion at the one or more apertures.
- (73) In some configurations, the method also includes contacting a first surface of the first midsole portion with the first sheet and contacting a second surface of the second midsole portion with the first surface of the first midsole portion and the second surface of the second midsole portion may each include a plurality of surface features. The method may also include providing each of the plurality of surface features with a minimum height or depth of at least 2 mm or with a minimum height or depth of at least 5 mm. Additionally or alternatively, the method may further include providing each of the plurality of surface features with a maximum height or depth of less than 22 mm or with a maximum height or depth of less than 17 mm. Optionally the method may also include providing each of the plurality of surface features with a height or depth that ranges from about 2 mm to about 15 mm.
- (74) In some implementations, the method includes providing the first midsole portion with a first series of peaks and a first series of valleys and providing the second midsole portion with a second series of peaks and a second series of valleys. Here, the method may include opposing the first series of peaks with the second series of valleys and opposing the second series of peaks with the first series of valleys. The method may also include conforming the first sheet to the shape of the first series of peaks and the first series of valleys and conforming the first sheet to the shape of the second series of peaks and the second series of valleys. Optionally, the method may include providing the first sheet with a side surface having a sinusoidal or saw-tooth configuration. (75) In some examples, the method includes positioning an adhesive between the first midsole portion and the second midsole portion. The adhesive may be applied to at least one of the first midsole portion, the second midsole portion, the first surface of the sheet, and the second surface of the sheet. When positioning a first sheet, the method may include positioning a first sheet that includes a mesh textile defining the one or more apertures in a structure of the mesh. The method

may also include providing each of the one or more apertures with a length of at least 0.5 mm in a largest dimension or may include providing each of the one or more apertures with a length of at least 1.0 mm in a largest dimension. Optionally, the method may further include providing each of the one or more apertures with a length that is less than 10 mm in a largest dimension, a length that is less than 5.0 mm in a largest dimension, or a length that is less than 3.0 mm in a largest dimension. Additionally or alternatively, the method may also include providing each of the one or more apertures with a length from about 0.5 mm to about 3.0 mm in a largest dimension. (76) In some configurations, when providing a first sheet, the method includes providing a first sheet that is a textile configured to stretch in in only one dimension or the method includes providing a first sheet that is a textile configured to stretch in two dimensions. When providing a

- first sheet, the method may also include providing a first sheet that is an embroidered textile. Here, an embroidered textile may include providing a textile that has a first embroidered region and a second embroidered region. The first embroidered region may a have different concentration of fibers than the second embroidered region. Optionally, the method may further include providing the first sheet with embroidered regions disposed at discrete locations of the sheet.
- (77) In some examples, the method includes forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure. When forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure, then method may include incorporation of an injection-molded foam. Optionally, when forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure, the method may include incorporation of a compression-molded foam.
- (78) With reference to FIG. **1**, an exemplary article of footwear **10** is provided and includes an upper **12** and a sole structure **14** attached to the upper **12**. The article of footwear **10** may be divided into one or more regions. The regions may include a forefoot region **16**, a midfoot region **18**, and a heel region **20**. The forefoot region **16** may correspond with toes and joints connecting metatarsal bones with phalanx bones of a foot. The midfoot region **18** may correspond with an arch area of the foot while the heel region **18** may correspond with rear portions of the foot, including a calcaneus bone. The article of footwear **10** may additionally include a medial side **22** and a lateral side **24** that correspond with opposite sides of the article of footwear **10** and extend through the regions **16**, **18**, **20**.
- (79) The sole structure **14** includes a midsole **28** and optionally includes an outsole **26**. A cushioning arrangement (not shown) may optionally be disposed generally between the outsole **26** and the midsole **28**.
- (80) Referring to FIG. **2**, the outsole **26** includes a midsole-contacting surface **30** and a ground-contacting surface **32**. The outsole **26** further includes a sidewall surface **34** extending between the midsole-contacting surface **30** and the ground-contacting surface **32**.
- (81) As also shown in, for example, FIG. **2**, the midsole **28** includes a first midsole portion **36** and a second midsole portion **44**. The first midsole portion **36** includes a top surface **38**, a bottom surface **40** and a sidewall surface **42** extending between the top surface **38** and the bottom surface **40**. The sidewall surface **42** may define a thickness (T.sub.36) of the first midsole portion **36** extending between the top surface **38** and the bottom surface **40**.
- (82) The top surface **38** and the bottom surface **40** of the first midsole portion **36** may generally define an outer surface profile of the first midsole portion **36**. In an example, each of the top surface **38** and the bottom surface **40** of the first midsole portion **36** may be substantially flat (e.g., planar). In this regard, each of the top surface **38** and the bottom surface **40** may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **38** of the first midsole portion **36** may be substantially parallel to the bottom surface **40** of the first midsole portion **36** such that the thickness (T.sub.36) of the first midsole portion **36** is substantially the same across a length (L.sub.14) of the sole structure **14** as shown in, for

example, FIG. 11.

- (83) With continued reference to FIG. **2**, the second midsole portion **44** includes atop surface **46**, a bottom surface **48** and a sidewall surface **50** extending between the top surface **46** and the bottom surface **48**. The sidewall surface **50** may define a thickness (T.sub.44) of the second midsole portion **44** extending between the top surface **46** and the bottom surface **48**.
- (84) The top surface **46** and the bottom surface **48** of the second midsole portion **44** may generally define an outer surface profile of the second midsole portion **44**. In an example, each of the top surface **46** and the bottom surface **48** of the second midsole portion **44** may be substantially flat (e.g., planar). In this regard, each of the top surface **46** and the bottom surface **48** may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **46** of the second midsole portion **44** may be substantially parallel to the bottom surface **48** of the second midsole portion **44** such that the thickness (T.sub.44) of the second midsole portion **44** is substantially the same across the length (L.sub.14) of the sole structure **14** as shown in, for example, FIG. **11**.
- (85) In some examples, at least one of the first midsole portion **36** and the second midsole portion **44** are formed from a foamed material. In some instances, one or both of the first midsole portion **36** and the second midsole portion **44** are formed from a polymeric material. In some examples, the first midsole portion **36** and the second midsole portion **44** are formed from the same material. In another example, the first midsole portion **36** and the second midsole portion **44** are formed from different materials. The first midsole portion **36** may be formed from a first material and the second midsole portion 44 may be formed from a second material. The first material forming the first midsole portion 36 may have substantially the same stiffness as the second material forming the second midsole portion 44. In some instances, the first material forming the first midsole portion 36 has a different stiffness than the second material forming the second midsole portion 44. In other examples, the first material forming the first midsole portion **36** is the same as the second material forming the second midsole portion **44**. In yet another example, the first material forming the first midsole portion **36** is different than the second material forming the second midsole portion **44**. (86) As shown in FIGS. **2-3**, the article of footwear **10** further includes one or more strips of material **52**. In an example, the one or more strips of material **52** may include three strips of material **52**.sub.1-**52**.sub.3.
- (87) With reference to FIGS. 3, 4 and 5, if the one or more strips of material 52 includes, for example, three strips of material **52**.sub.1-**52**.sub.3, in some instances the one or more strips of material **52** may be arranged as follows: (1) a width (W.sub.52-1) of a first strip of material **52**.sub.1 extends across a width (W.sub.16) of the forefoot region **16** of the article of footwear **10** from the medial side **22** to the lateral side **24** of the article of footwear **10**, (2) a width (W.sub.52-2) of a second strip of material 52.sub.2 extends across a width (W.sub.18) of the midfoot region 18 of the article of footwear 10 from the medial side 22 to the lateral side 24 of the article of footwear 10, and (3) a width (W.sub.52-1) of a third strip of material **52**.sub.3 extends across a width (W.sub.20) of the heel region 20 of the article of footwear 10 from the medial side 22 to the lateral side 24 of the article of footwear **10**. As shown in FIGS. **3**, **4** and **5**, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends substantially perpendicularly θ.sub.52 along respective axes A.sub.16-A.sub.16, A.sub.18-A.sub.18, A.sub.20-A.sub.20, corresponding to the widths (W.sub.16, W.sub.18, W.sub.20) of the forefoot region **16**, the midfoot region **18** and the heel region **20** of the article of footwear **10** with respect to an axis A.sub.14-A.sub.14 extending along the length (L.sub.14) of the sole structure 14. (88) Referring back to FIG. 2, each strip of material 52.sub.1-52.sub.3 of the one or more strips of material **52** includes a top surface **54**, a bottom surface **56** and a sidewall surface **58** extending between the top surface **54** and the bottom surface **56**. The sidewall surface **58** may define a thickness (T.sub.52) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extending between the top surface **54** and the bottom surface **56**.

- (89) In an example, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is formed from a flexible material. Each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may include a fabric material, a woven textile (see, e.g., enlarged view of the each strip of material **52** in FIG. **2**), or a knitted textile (see, e.g., enlarged view of the each strip of material **52** in FIG. **2**). In some instances, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is porous. Each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be a thermoformable material. In some examples, if each strip of material 52 is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 2), the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52** is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 2), each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material 52 may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52** may permit one or both of the first midsole portion **36** and the second midsole portion **44** to directly contact one another. In other implementations, one or both of the first midsole portion **36** and the second midsole portion **44** may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52**.
- (90) In some instances, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is an embroidered textile. In some examples, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** has one or more first regions including embroidery and one or more second regions without embroidery or with a lower percentage of embroidered surface area as comparted to the one or more first regions. The embroidery can provide reduced stretch or a "lock down" feature to areas of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** provide a reduced stretch quality and may be located, for example, at a region of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** that is arranged between the first midsole portion **36** and the second midsole portion **44**, or, alternatively at a region that extends beyond the sidewall surface **58** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**.sub.3 of the one or more strips of material **52**.sub.3 of the one or more strips of material **52**.sub.3 of the one or more strips of material **52**.sub.3 of the one or
- (91) With reference to FIG. **2**, the first midsole portion **36** is disposed between the outsole **26** and the upper **12**. When the sole structure **14** is attached to the upper **12** as shown in FIG. **1**, the second midsole portion **44** is disposed between the first midsole portion **36** and the upper **12**. As shown in FIGS. **2** and **11**, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is disposed between the first midsole portion **36** and the second midsole portion **44**. The bottom surface **56** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends across the top surface **38** of the first midsole portion **36**. The top surface **54** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends across the bottom surface **48** of the second midsole portion **44**.
- (92) As shown in FIG. **2**, the sidewall surface **58** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be further defined by a medial sidewall surface portion **58**.sub.M and a lateral sidewall surface portion **58**.sub.L. The width (W.sub.52-1, W.sub.52-2, W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends between the medial sidewall surface portion **58**.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. Furthermore, the sidewall surface **42**, **50** of each of the first midsole portion **36** and the second

midsole portion **44** may be further defined by a medial sidewall surface portion **42**.sub.M, **50**.sub.M and a lateral sidewall surface portion **42**.sub.L, **50**.sub.L that respectively define a width (W.sub.36, W.sub.44) of each of the first midsole portion **36** and the second midsole portion **44**. The width (W.sub.36, W.sub.44) of each of the first midsole portion **36** and the second midsole portion **44** correspondingly varies and defines, for example, the widths (W.sub.16, W.sub.18, W.sub.20) of the forefoot region **16**, the midfoot region **18** and the heel region **20** of the sole structure **14** of the article of footwear **10**.

- (93) With reference to FIG. **2** and FIGS. **6**, **7**, **8** and **9**, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) extending between the medial sidewall surface portion 58.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be selectively sized with respect to the width (W.sub.36, W.sub.44) of each of the first midsole portion **36** and the second midsole portion **44**. As shown in FIGS. **2**, **3** and **6**, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is selectively sized such that each of the medial sidewall surface portion **58**.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52.**sub.1-**52.**sub.3 of the one or more strips of material **52** is respectively aligned with the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion **44**. As a result of the alignment of the respective medial sidewall surface portions **42**.sub.M, **50**.sub.M, **58**.sub.M and the lateral sidewall surface portions **42**.sub.L, **50**.sub.L, **58**.sub.L described above, the medial sidewall surface portion **58**.sub.M or the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is visible when viewing the medial side **22** or the lateral side **24** the of the sole structure **14**.
- (94) In another example as shown in FIG. 7, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is selectively sized such that each of the medial sidewall surface portion **58**.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is not aligned with and does extend beyond the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion **44**. As a result of the non-alignment of the respective medial sidewall surface portions **42**.sub.M, **50**.sub.M, **58**.sub.M and the lateral sidewall surface portions **42**.sub.L, **50**.sub.L, **58**.sub.L described above, the medial sidewall surface portion **58**.sub.M or the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is not visible when viewing the medial side **22** or the lateral side **24** the of the sole structure **14**.
- (95) In yet another example as shown in FIG. **8**, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is selectively sized such that each of the medial sidewall surface portion **58**.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends beyond the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion **44**. Therefore, a first portion (W.sub.52-1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extending from of the medial sidewall surface portion **58**.sub.M of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and a second portion (not shown) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extending from of the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may respectively extend along and be arranged adjacent, for example, the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole

portion **36** and the second midsole portion **44**. However, as shown in FIG. **8**, the first portion (W.sub.52-P1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the second portion (not shown) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** do not respectively extend along and are not respectively arranged adjacent the upper **12** of the article of footwear **10**. As a result, the first portion (W.sub.52-P1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the second portion (not shown) of each width (W.sub.52-1), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is visible when viewing the medial side **22** or the lateral side **24** the of the sole structure **14**.

- (96) In another example as shown in FIG. **9**, the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is selectively sized such that each of the medial sidewall surface portion 58.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends beyond the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion 44. Therefore, a first portion (W.sub.52-P1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extending from of the medial sidewall surface portion 58.sub.M of each strip of material 52.sub.1-**52.**sub.3 of the one or more strips of material **52** and a second portion (not shown) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extending from of the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may respectively extend along and be arranged adjacent, for example: (1) the medial sidewall surface portion 42.sub.M, **50.**sub.M and the lateral sidewall surface portion **42.**sub.L, **50.**sub.L of each of the first midsole portion **36** and the second midsole portion **44** and (2) at least a portion of, respectively, the medial side and the lateral side of the upper **12**. As a result, the first portion (W.sub.52-P1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the second portion (not shown) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material 52.sub.1-52.sub.3 of the one or more strips of material 52 is visible when viewing the medial side 22 or the lateral side 24 the of the sole structure **14**.
- (97) With reference to FIGS. 4 and 5, one or more regions of at least one strip 52.sub.1-52.sub.3 (see, e.g., all of the strips 52.sub.1-52.sub.3 in FIG. 4 or one strip 52.sub.2 in FIG. 5) of the one or more strips of material 52 may further define at least one passage or aperture 68 or absence of at least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52. The at least one passage 68 extends through the thickness (T.sub.52) of the at least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52 between the top surface 54 and the bottom surface 56. If a polymeric material defines one or both of the first midsole portion 36 and the second midsole portion 44, the polymeric material may be molded around any surface defining the at least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52 and/or through at least one passage 68 extends through the thickness (T.sub.52) of the at least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52.
- (98) The at least one passage **68** may include a plurality of passages or apertures **68**.sub.1-**68**.sub.n For example, the at least one passage **68** may include a first passage **68**.sub.1, a last passage **68**.sub.n and one or more intermediate passages **68**.sub.2-**68**.sub.n-1. In an example, as shown in FIG. **4**, the plurality of passages **68**.sub.1-**68**.sub.n may be arranged in any desirable pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) such that the plurality of passages or apertures **68**.sub.1-**68**.sub.n are arranged between the forefoot region **16**

```
and the heel region 20 of the sole structure 14 (i.e., across substantially most or all of the length
(L.sub.14) of the sole structure 14) and between the medial side 22 and the lateral side 24 of the
article of footwear 10 (i.e., across the width (W.sub.14) of the sole structure 14). In other
implementations, the plurality of passages 68.sub.1-68.sub.n may be arranged in a pattern (e.g., in:
(1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) that does not
extend across the forefoot region 16 and the heel region 20 of the sole structure 14 or between the
medial side 22 and the lateral side 24 of the article of footwear 10. Although the plurality of
passages 68.sub.1-68.sub.n may extend across substantially most or all of the length (L.sub.14) of
the sole structure 14 as described above, the plurality of passages 68.sub.1-68.sub.n may be
arranged in a pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a
random pattern) extending across: (1) some or all of the heel region 20 of the sole structure 14 but
not the forefoot region 16 or the midfoot region 18 of the sole structure 14, (2) some or all of the
forefoot region 16 of the sole structure 14 but not the midfoot region 18 or the heel region 20 of the
sole structure 14 (3) some or all of the forefoot region 16 and the heel region 20 of the sole
structure 14 but not the midfoot region 18 of the sole structure 14 or (4) as shown in FIG. 5, some
or all of the midfoot region 18 but not the forefoot region 16 and the heel region 20.
(99) With continued reference to FIGS. 4 and 5, each passage of the plurality of passages 68.sub.1-
68. sub.n is shown being defined by a substantially circular or oval shape having any dimension or
diameter (D.sub.6). In some examples, the dimension or diameter (D.sub.68) may be approximately
equal to about 0.5 mm or about 3.0 mm. In other examples, the dimension or diameter (D.sub.68)
may be between approximately 0.5 mm and approximately 3.0 mm. Furthermore, each passage of
the plurality of passages 68.sub.1-68.sub.n defines a substantially similar dimension or diameter
(D.sub.6). Although each passage of the plurality of passages 68.sub.1-68.sub.n may define a
substantially similar sized or shaped dimension or diameter (D.sub.6), implementations of the at
least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52 may include at least one
passage of the plurality of passages 68.sub.1-68.sub.n having a different sized or shaped dimension
or diameter (D.sub.6). For example, at least one passage of the plurality of passages 68.sub.1-
68.sub.n may have a different sized or shaped dimension or diameter (D.sub.68) than another
passage of the plurality of passages 68.sub.1-68.sub.n in the heel region 20 of the sole structure 14,
the forefoot region 16 of the sole structure 14, the midfoot region 18 of the sole structure 14 or the
forefoot region 16 and the heel region 20 of the sole structure 14.
(100) With reference to FIG. 2, the top surface 38 of the first midsole portion 36 may further define
at least one second midsole contacting region 70 and at least one strip of material contacting region
72. The bottom surface 48 of the second midsole portion 44 may further define at least one first
midsole contacting region 74 and at least one strip of material contacting region 76.
(101) Each of the at least one second midsole contacting region 70 of the first midsole portion 36
and the at least one first midsole contacting region 74 of the second midsole portion 44 may define
a size or shape that generally corresponds to a size or shape of the at least one passage 68 of the at
least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52. If the at least one passage
68 of the at least one strip 52.sub.1-52.sub.3 of the one or more strips of material 52 defines a
plurality of passages 68.sub.1-68.sub.n, each of the at least one second midsole contacting region
70 of the first midsole portion 36 and the at least one first midsole contacting region 74 of the
second midsole portion 44 may define a corresponding plurality of second midsole contacting
regions 70.sub.1-70.sub.n and a plurality of first midsole contacting regions 74.sub.1-74.sub.n.
Furthermore, each passage and contacting region of the plurality of passages 68.sub.1-68.sub.n
may be respectively axially aligned with one of the plurality of second midsole contacting regions
70i-70.sub.n and one of the plurality of first midsole contacting regions 74.sub.1-74.sub.n.
(102) In an example, when the article of footwear 10 is formed, surfaces of the outsole 26, the first
midsole portion 36, the second midsole portion 44 and each strip of material 52.sub.1-52.sub.3 of
the one or more strips of material 52 may be arranged near, proximate, spaced-apart-from or
```

adjacent one another. For example, the at least one strip of material contacting region **72** of the top surface **38** of the first midsole portion **36** may be disposed adjacent the bottom surface **56** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**, and the at least one strip of material contacting region **76** of the bottom surface **48** of the second midsole portion **44** may be disposed adjacent the top surface **54** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**.

(103) Once each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is arranged relative to the first midsole portion **36** and the second midsole portion **44**, as described above, each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be said to be arranged between the first midsole portion **36** and the second midsole portion **44**. Even though each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be disposed between the first midsole portion **36** and the second midsole portion **44**, one or more portions of the first midsole portion **36** may be in direct contact with one or more portions of the second midsole portion **44** as a result of, for example, one or a combination of (1) a longitudinal spacing between each strip of material 52.sub.1-52.sub.3 of the one or more strips of material 52 and (2) the formation of the at least one passage **68** of at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** such that: (A) portions of the top surface **38** of the first midsole portion **36** and the bottom surface **48** of the second midsole portion **44** that are not separated by the one or more strips of material **52** may contact one another and (B) at least one second midsole contacting region **70** of the top surface **38** of the first midsole portion **36** may be disposed adjacent the at least one first midsole contacting region **74** of the bottom surface **48** of the second midsole portion **44**. After arranging the first midsole portion **36** adjacent the second midsole portion **44** as described above with respect to each strip of material 52.sub.1-52.sub.3 of the one or more strips of material 52, the midsole 28 defined by the first midsole portion 36, the second midsole portion 44 and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be arranged in a mold tool **92** (see, e.g., FIGS. **10-11**) for directly bonding the first midsole portion **36** to the second midsole portion **44**.

(104) The mold tool **92** includes an upper mold half **92**.sub.U and a lower mold half **92**.sub.L. Each of the upper mold half **92**.sub.U and the lower mold half **92**.sub.L may define a mold surface for bonding the first midsole portion **36** to the second midsole portion **44** under heat and pressure. (105) As shown in FIG. **10**, the mold tool **92** is arranged in an open configuration by spacing apart the upper mold half **92**.sub.U and the lower mold half **92**.sub.L such that the first midsole portion **36**, the second midsole portion **44** and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** are arranged therebetween. Then, as shown in FIG. **11**, after arranging the mold tool **92** in a closed configuration for a period of time, the mold tool **92** may be returned to the open configuration with the first midsole portion **36** bonded to the second midsole portion **44** and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** secured therebetween.

(106) Thereafter, the midsole-contacting surface **30** of the outsole **26** may be disposed adjacent the bottom surface **40** of the first midsole portion **36** for joining the outsole **26** to the first midsole portion **36**. In an example, the outsole **26** may be joined to the first midsole portion **36** with an adhesive or by way of a molding tool in a substantially similar manner as described above. (107) With reference to FIG. **8** or **9**, if the width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** is selectively sized such that each of the medial sidewall surface portion **58**.sub.M and the lateral sidewall surface portion **58**.sub.L of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** extends beyond the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion **44**, the first portion (W.sub.52-P1) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the second portion

(not shown) of each width (W.sub.52-1), (W.sub.52-2), (W.sub.52-3) of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** may be respectively folded or extended upwardly adjacent or along, for example: as shown in FIGS. **8** and **9** (1) the medial sidewall surface portion **42**.sub.M, **50**.sub.M and the lateral sidewall surface portion **42**.sub.L, **50**.sub.L of each of the first midsole portion **36** and the second midsole portion **44** and, in an alternative embodiment as shown in FIG. **9** but not in FIG. **8** (2) at least a portion of, respectively, the medial side and the lateral side of the upper **12**.

(108) Although the mold tool **92** may be utilized for joining the first midsole portion **36** to the second midsole portion 44 under heat and pressure, in some configurations, an optional adhesive (not shown) may also or alternatively be utilized for adhering the first midsole portion **36** to the second midsole portion **44**. In some instances, the optional adhesive may be provided in the form of a sheet. In other examples, the optional adhesive may conform to any desirable shape, pattern or configuration, such as, for example, the shape, pattern or configuration of the of the at least one passage **68** of the at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. (109) In an example, a first optional adhesive may be arranged between the first midsole portion **36** and the second midsole portion 44; furthermore, the first optional adhesive may be arranged between the top surface **38** of the first midsole portion **36** and the bottom surface **56** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** such that the first optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68** of the at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. The first optional adhesive adhesively bonds the first midsole portion **36**, the second midsole portion **44** and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** together.

(110) In another example, a second optional adhesive may be arranged between the first midsole portion **36** and the second midsole portion **44**; furthermore, the second optional adhesive may be arranged between the top surface **54** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the bottom surface **48** of the second midsole portion **44** such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68** of the at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. The second optional adhesive adhesively bonds the first midsole portion **36**, the second midsole portion **44** and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** together.

(111) In yet another example, the first optional adhesive and the second optional adhesive may be arranged between the first midsole portion **36** and the second midsole portion **44**. The first optional adhesive may be arranged between the top surface 38 of the first midsole portion 36 and the bottom surface **56** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** such that the first optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68** of the at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. The second optional adhesive may be arranged between the top surface **54** of each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** and the bottom surface **48** of the second midsole portion **44** such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68** of the at least one strip **52**.sub.1-**52**.sub.3 of the one or more strips of material **52**. The first optional adhesive and the second optional adhesive adhesively bonds the first midsole portion **36**, the second midsole portion **44** and each strip of material **52**.sub.1-**52**.sub.3 of the one or more strips of material **52** together. (112) With reference to FIG. **12**, an exemplary article of footwear **10***a* is provided and includes an upper **12***a* and a sole structure **14***a* attached to the upper **12***a*. The article of footwear **10***a* may be divided into one or more regions. The regions may include a forefoot region **16***a*, a midfoot region **18***a*, and a heel region **20***a*. The forefoot region **16***a* may correspond with toes and joints

connecting metatarsal bones with phalanx bones of a foot. The midfoot region **18***a* may correspond with an arch area of the foot while the heel region **18***a* may correspond with rear portions of the foot, including a calcaneus bone. The article of footwear **10***a* may additionally include a medial side **22***a* and a lateral side **24***a* that correspond with opposite sides of the article of footwear **10***a* and extend through the regions **16***a*, **18***a*, **20***a*.

- (113) The sole structure **14***a* optionally includes an outsole **26***a*. With reference to FIGS. **12** and **13**, the sole structure **14***a* may include a midsole **28***a*. A cushioning arrangement (not shown) may optionally be disposed generally between the outsole **26***a* and the midsole **28***a*.
- (114) Referring to FIG. **13**, the outsole **26***a* includes a midsole-contacting surface **30***a* and a ground-contacting surface **32***a*. The outsole **26***a* further includes a sidewall surface **34***a* extending between the midsole-contacting surface **30***a* and the ground-contacting surface **32***a*.
- (115) As also shown in, for example, FIG. **13**, the midsole **28***a* includes a first midsole portion **36***a* and a second midsole portion **44***a*. The first midsole portion **36***a* includes a top surface **38***a*, a bottom surface **40***a* and a sidewall surface **42***a* extending between the top surface **38***a* and the bottom surface **40***a*. The sidewall surface **42***a* may define a thickness (T.sub.36a) of the first midsole portion **36***a* extending between the top surface **38***a* and the bottom surface **40***a*.
- (116) The top surface **38***a* and the bottom surface **40***a* of the first midsole portion **36***a*. In an example, each of the top surface **38***a* and the bottom surface **40***a* of the first midsole portion **36***a* may be substantially flat (e.g., planar). In this regard, each of the top surface **38***a* and the bottom surface **40***a* may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **38***a* of the first midsole portion **36***a* may be substantially parallel to the bottom surface **40***a* of the first midsole portion **36***a* such that the thickness (T.sub.36*a*) of the first midsole portion **36***a* is substantially the same across a length (L.sub.14a) of the sole structure **14***a* as shown in, for example, FIG. **22**.
- (117) With continued reference to FIG. **13**, the second midsole portion **44***a* includes a top surface **46***a*, a bottom surface **48***a* and a sidewall surface **50***a* extending between the top surface **46***a* and the bottom surface **48***a*. The sidewall surface **50***a* may define a thickness (T.sub.44a) of the second midsole portion **44***a* extending between the top surface **46***a* and the bottom surface **48***a*. (118) The top surface **46***a* and the bottom surface **48***a* of the second midsole portion **44***a* may generally define an outer surface profile of the second midsole portion **44***a*. In an example, each of the top surface **46***a* and the bottom surface **48***a* of the second midsole portion **44***a* may be
- **48***a* may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **46***a* of the second midsole portion **44***a* may be substantially parallel to the bottom surface **48***a* of the second midsole portion **44***a* such that the thickness (T.sub.44a) of the second midsole portion **44***a* is substantially the same across the length (L.sub.14a) of the sole structure **14***a* as shown in, for example, FIG. **22**.
- (119) In some examples, at least one of the first midsole portion **36***a* and the second midsole portion **44***a* are formed from a foamed material. In some instances, one or both of the first midsole portion **36***a* and the second midsole portion **44***a* are formed from a polymeric material. In some examples, the first midsole portion **36***a* and the second midsole portion **44***a* are formed from the same material. In another example, the first midsole portion **36***a* and the second midsole portion **44***a* are formed from different materials. The first midsole portion **36***a* may be formed from a second material. The first material forming the first midsole portion **36***a* may have substantially the same stiffness as the second material forming the second midsole portion **44***a*. In some instances, the first material forming the second midsole portion **44***a*. In other examples, the first material forming the first midsole portion **36***a* is the same as the second material forming the second midsole portion **44***a*. In yet another

example, the first material forming the first midsole portion 36a is different than the second material forming the second midsole portion 44a.

- (120) As shown in FIGS. **13-14**, the article of footwear **10***a* further includes one or more strips of material **52***a*. In an example, the one or more strips of material **52***a* may include three strips of material **52***a*.sub.1-**52***a*.sub.3.
- (121) With reference to FIGS. **14**, **15** and **16**, if the one or more strips of material **52***a* includes, for example, three strips of material **52***a*.sub.1-**52***a*.sub.3, in some instances the one or more strips of material **52***a* may be arranged as follows: (1) a width (W.sub.52a-1) of a first strip of material **52***a*.sub.1 extends across a width (W.sub.16a) of the forefoot region **16***a* of the article of footwear **10***a* from the medial side **22***a* to the lateral side **24***a* of the article of footwear **10***a*, (2) a width (W.sub.52a-2) of a second strip of material **52***a*.sub.2 extends across a width (W.sub.18a) of the midfoot region **18***a* of the article of footwear **10***a* from the medial side **22***a* to the lateral side **24***a* of the article of footwear 10a, and (3) a width (W.sub.52a-1) of a third strip of material 52a.sub.3 extends across a width (W.sub.20a) of the heel region **20***a* of the article of footwear **10***a* from the medial side **22***a* to the lateral side **24***a* of the article of footwear **10***a*. As shown in FIGS. **14**, **15**, and **16**, the width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material 52a extends substantially non-perpendicularly θ .sub.52a with respect to respective axes A.sub.16a-A.sub.16a, A.sub.18a-A.sub.18a, A.sub.20a-A.sub.20a, corresponding to the widths (W.sub.16a, W.sub.18a, W.sub.20a) of the forefoot region **16***a*, the midfoot region **18***a* and the heel region **20***a* of the article of footwear **10***a* with respect to an axis A.sub.14a-A.sub.14a extending along the length (L.sub.14a) of the sole structure **14***a*. (122) Referring back to FIG. **13**, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* includes a top surface **54***a*, a bottom surface **56***a* and a sidewall surface **58***a* extending between the top surface **54***a* and the bottom surface **56***a*. The sidewall surface **58***a* may define a thickness (T.sub.52a) of each strip of material **52***a*.sub.1**-52***a*.sub.3 of the one or more strips of material **52***a* extending between the top surface **54***a* and the bottom surface **56***a*. (123) In an example, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is formed from a flexible material. Each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may include a fabric material, a woven textile (see, e.g., enlarged view of the each strip of material **52***a* in FIG. **13**), or a knitted textile (see, e.g., enlarged view of the each strip of material **52***a* in FIG. **13**). In some instances, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is porous. Each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be a thermoformable material. In some examples, if each strip of material **52***a* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 13), the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52***a* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 13), each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***a* may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***a* may permit one or both of the first midsole portion **36***a* and the second midsole portion **44***a* to directly contact one another. In other implementations, one or both of the first midsole portion **36***a* and the second midsole portion **44***a* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***a*.
- (124) In some instances, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is an embroidered textile. In some examples, each strip of material **52***a*.sub.1-

```
52a.sub.3 of the one or more strips of material 52a has one or more first regions including
embroidery and one or more second regions without embroidery or with a lower percentage of
embroidered surface area as comparted to the one or more first regions. The embroidery can
provide reduced stretch or a "lock down" feature to areas of each strip of material 52a.sub.1-
52a.sub.3 of the one or more strips of material 52a. Such areas of each strip of material 52a.sub.1-
52a.sub.3 of the one or more strips of material 52a provide a reduced stretch quality may be
located, for example, at a region of each strip of material 52a.sub.1-52a.sub.3 of the one or more
strips of material 52a that is arranged between the first midsole portion 36a and the second midsole
portion 44a, or, alternatively at a region that extends beyond the sidewall surface 58a of each strip
of material 52a.sub.1-52a.sub.3 of the one or more strips of material 52a.
(125) With reference to FIG. 13, the first midsole portion 36a is disposed between the outsole 26a
and the upper 12a. When the sole structure 14a is attached to the upper 12a as shown in FIG. 12,
the second midsole portion 44a is disposed between the first midsole portion 36a and the upper
12a. As shown in FIGS. 13 and 22, each strip of material 52a.sub.1-52a.sub.3 of the one or more
strips of material 52a is disposed between the first midsole portion 36a and the second midsole
portion 44a. The bottom surface 56a of each strip of material 52a.sub.1-52a.sub.3 of the one or
more strips of material 52a extends across the top surface 38a of the first midsole portion 36a. The
top surface 54a of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material
52a extends across the bottom surface 48a of the second midsole portion 44a.
(126) As shown in FIG. 13, the sidewall surface 58a of each strip of material 52a.sub.1-52a.sub.3
of the one or more strips of material 52a may be further defined by a medial sidewall surface
portion 58a.sub.M and a lateral sidewall surface portion 58a.sub.L. The width (W.sub.52a-1,
W.sub.52a-2, W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips
of material 52a extends between the medial sidewall surface portion 58a.sub.M and the lateral
sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one or more
strips of material 52a. Furthermore, the sidewall surface 42a, 50a of each of the first midsole
portion 36a and the second midsole portion 44a may be further defined by a medial sidewall
surface portion 42a.sub.M, 50a.sub.M and a lateral sidewall surface portion 42a.sub.L, 50a.sub.L
that respectively define a width (W.sub.36a, W.sub.44a) of each of the first midsole portion 36a and
the second midsole portion 44a. The width (W.sub.36a, W.sub.44a) of each of the first midsole
portion 36a and the second midsole portion 44a correspondingly varies and defines, for example,
the widths (W.sub.16a, W.sub.18a, W.sub.20a) of the forefoot region 16a, the midfoot region 18a
and the heel region 20a of the sole structure 14a of the article of footwear 10a.
(127) With reference to FIG. 13 and FIGS. 17, 18, 19 and 20, the width (W.sub.52a-1), (W.sub.52a-
2), (W.sub.52a-3) extending between the medial sidewall surface portion 58a.sub.M and the lateral
sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one or more
strips of material 52a may be selectively sized with respect to the width (W.sub.36a, W.sub.44a) of
each of the first midsole portion 36a and the second midsole portion 44a. As shown in FIGS. 13, 14
and 17, the width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-
52a.sub.3 of the one or more strips of material 52a is selectively sized such that each of the medial
sidewall surface portion 58a.sub.M and the lateral sidewall surface portion 58a.sub.L of each strip
of material 52a.sub.1-52a.sub.3 of the one or more strips of material 52a is respectively aligned
with the medial sidewall surface portion 42a.sub.M, 50a.sub.M and the lateral sidewall surface
portion 42a.sub.L, 50a.sub.L of each of the first midsole portion 36a and the second midsole
portion 44a. As a result of the alignment of the respective medial sidewall surface portions
42a.sub.M, 50a.sub.M, 58a.sub.M and the lateral sidewall surface portions 42a.sub.L, 50a.sub.L,
58a.sub.L described above, the medial sidewall surface portion 58a.sub.M or the lateral sidewall
surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of
material 52a is visible when viewing the medial side 22a or the lateral side 24a the of the sole
structure 14a.
```

```
(W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material
52a is selectively sized such that each of the medial sidewall surface portion 58a.sub.M and the
lateral sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one
or more strips of material 52a is not aligned with and does extend beyond the medial sidewall
surface portion 42a.sub.M, 50a.sub.M and the lateral sidewall surface portion 42a.sub.L, 50a.sub.L
of each of the first midsole portion 36a and the second midsole portion 44a. As a result of the non-
alignment of the respective medial sidewall surface portions 42a.sub.M, 50a.sub.M, 58a.sub.M and
the lateral sidewall surface portions 42a.sub.L, 50a.sub.L, 58a.sub.L described above, the medial
sidewall surface portion 58a.sub.M or the lateral sidewall surface portion 58a.sub.L of each strip of
material 52a.sub.1-52a.sub.3 of the one or more strips of material 52a is not visible when viewing
the medial side 22a or the lateral side 24a the of the sole structure 14a.
(129) In yet another example as shown in FIG. 19, the width (W.sub.52a-1), (W.sub.52a-2),
(W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material
52a is selectively sized such that each of the medial sidewall surface portion 58a.sub.M and the
lateral sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one
or more strips of material 52a extends beyond the medial sidewall surface portion 42a.sub.M,
50a.sub.M and the lateral sidewall surface portion 42a.sub.L, 50a.sub.L of each of the first midsole
portion 36a and the second midsole portion 44a. Therefore, a first portion (W.sub.52a-P1) of each
width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of
the one or more strips of material 52a extending from of the medial sidewall surface portion
58a.sub.M of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material 52a
and a second portion (not shown) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of
each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material 52a extending from
of the lateral sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the
one or more strips of material 52a may respectively extend along and be arranged adjacent, for
example, the medial sidewall surface portion 42a.sub.M, 50a.sub.M and the lateral sidewall surface
portion 42a.sub.L, 50a.sub.L of each of the first midsole portion 36a and the second midsole
portion 44a. However, as shown in FIG. 19, the first portion (W.sub.52a-P1) of each width
(W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the
one or more strips of material 52a and the second portion (not shown) of each width (W.sub.52a-1),
(W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the one or more
strips of material 52a do not respectively extend along and are not respectively arranged adjacent
the upper 12a of the article of footwear 10a. As a result, the first portion (W.sub.52a-P1) of each
width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of
the one or more strips of material 52a and the second portion (not shown) of each width
(W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the
one or more strips of material 52a is visible when viewing the medial side 22a or the lateral side
24a the of the sole structure 14a.
(130) In another example as shown in FIG. 20, the width (W.sub.52a-1), (W.sub.52a-2),
(W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of the one or more strips of material
52a is selectively sized such that each of the medial sidewall surface portion 58a.sub.M and the
lateral sidewall surface portion 58a.sub.L of each strip of material 52a.sub.1-52a.sub.3 of the one
or more strips of material 52a extends beyond the medial sidewall surface portion 42a.sub.M,
50a.sub.M and the lateral sidewall surface portion 42a.sub.L, 50a.sub.L of each of the first midsole
portion 36a and the second midsole portion 44a. Therefore, a first portion (W.sub.52a-P1) of each
width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material 52a.sub.1-52a.sub.3 of
the one or more strips of material 52a extending from of the medial sidewall surface portion
```

58*a*.sub.M of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and a second portion (not shown) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of

(128) In another example as shown in FIG. 18, the width (W.sub.52a-1), (W.sub.52a-2),

each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* extending from of the lateral sidewall surface portion **58***a*.sub.L of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may respectively extend along and be arranged adjacent, for example: (1) the medial sidewall surface portion **42***a*.sub.M, **50***a*.sub.M and the lateral sidewall surface portion **42***a*.sub.L, **50***a*.sub.L of each of the first midsole portion **36***a* and the second midsole portion **44***a* and (2) at least a portion of, respectively, the medial side and the lateral side of the upper **12***a*. As a result, the first portion (W.sub.52a-P1) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and the second portion (not shown) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is visible when viewing the medial side **22***a* or the lateral side **24***a* the of the sole structure **14***a*. (131) With reference to FIGS. **15** and **16**, one or more regions of at least one strip **52***a*.sub.1-**52***a*.sub.3 (see, e.g., all of the strips **52***a*.sub.1-**52***a*.sub.3 in FIG. **15** or one strip **52***a*.sub.2 in FIG. **16**) of the one or more strips of material **52***a* may further define at least one passage or aperture **68***a* or absence of at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. The at least one passage **68***a* extends through the thickness (T.sub.52a) of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* between the top surface **54***a* and the bottom surface **56***a*. If a polymeric material defines one or both of the first midsole portion **36***a* and the second midsole portion **44***a*, the polymeric material may be molded around any surface defining the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and/or through at least one passage **68***a* extends through the thickness (T.sub.52a) of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*.

(132) The at least one passage **68***a* may include a plurality of passages or apertures **68***a*.sub.1-**68***a*.sub.n. For example, the at least one passage **68***a* may include a first passage **68***a*.sub.1, a last passage **68***a*.sub.n and one or more intermediate passages **68***a*.sub.2-**68***a*.sub.n-1. In an example, as shown in FIG. **15**, the plurality of passages **68***a*.sub.1-**68***a*.sub.n may be arranged in any desirable pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) such that the plurality of passages or apertures **68***a*.sub.1-**68***a*.sub.n are arranged between the forefoot region **16***a* and the heel region **20***a* of the sole structure **14***a* (i.e., across substantially most or all of the length (L.sub.14a) of the sole structure **14***a*) and between the medial side **22***a* and the lateral side **24***a* of the article of footwear **10***a* (i.e., across the width (W.sub.14a) of the sole structure **14***a*). In other implementations, the plurality of passages **68***a*.sub.1-**68***a*.sub.n may be arranged in a pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) that does not extend across the forefoot region **16***a* and the heel region **20***a* of the sole structure **14***a* or between the medial side **22***a* and the lateral side **24***a* of the article of footwear **10***a*. Although the plurality of passages **68***a*.sub.1**-68***a*.sub.n may extend across substantially most or all of the length (L.sub.14a) of the sole structure **14***a* as described above, the plurality of passages **68***a*.sub.1-**68***a*.sub.n may be arranged in a pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) extending across: (1) some or all of the heel region **20***a* of the sole structure **14***a* but not the forefoot region **16***a* or the midfoot region **18***a* of the sole structure **14***a*, (2) some or all of the forefoot region **16***a* of the sole structure **14***a* but not the midfoot region **18***a* or the heel region **20***a* of the sole structure **14***a* (3) some or all of the forefoot region **16***a* and the heel region **20***a* of the sole structure **14***a* but not the midfoot region **18***a* of the sole structure **14***a* or (4) as shown in FIG. **16**, some or all of the midfoot region **18***a* but not the forefoot region **16***a* and the heel region **20***a*.

(133) With continued reference to FIGS. **15** and **16**, each passage of the plurality of passages **68***a*.sub.1-**68***a*.sub.n is shown being defined by a substantially circular or oval shape having any dimension or diameter (D.sub.68a). In some examples, the dimension or diameter (D.sub.68a) may be approximately equal to about 0.5 mm or about 3.0 mm. In other examples, the dimension or diameter (D.sub.68a) may be between approximately 0.5 mm and approximately 3.0 mm.

Furthermore, each passage of the plurality of passages **68***a*.sub.1-**68***a*.sub.n define a substantially similar dimension or diameter (D.sub.68a). Although each passage of the plurality of passages **68***a*.sub.1-**68***a*.sub.n may define a substantially similar sized or shaped dimension or diameter (D.sub.68a), implementations of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may include at least one passage of the plurality of passages **68***a*.sub.1-**68**.sub.a having a different sized or shaped dimension or diameter (D.sub.68a). For example, at least one passage of the plurality of passages **68***a*.sub.1-**68***a*.sub.n may have a different sized or shaped dimension or diameter (D.sub.68a) than another passage of the plurality of passages **68***a*.sub.1-**68***a*.sub.n in the heel region **20***a* of the sole structure **14***a*, the forefoot region **16***a* of the sole structure **14***a* or the forefoot region **16***a* and the heel region **20***a* of the sole structure **14***a*.

- (134) With reference to FIG. **13**, the top surface **38***a* of the first midsole portion **36***a* may further define at least one second midsole contacting region **70***a* and at least one strip of material contacting region **72***a*. The bottom surface **48***a* of the second midsole portion **44***a* may further define at least one first midsole contacting region **74***a* and at least one strip of material contacting region **76***a*.
- (135) Each of the at least one second midsole contacting region **70***a* of the first midsole portion **36***a* and the at least one first midsole contacting region **74***a* of the second midsole portion **44***a* may define a size or shape that generally corresponds to a size or shape of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. If the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* defines a plurality of passages **68***a*.sub.1-**68***a*.sub.n, each of the at least one second midsole contacting region **70***a* of the first midsole portion **36***a* and the at least one first midsole contacting region **74***a* of the second midsole portion **44***a* may define a corresponding plurality of second midsole contacting regions **70***a*.sub.1-**70***a*.sub.n and a plurality of first midsole contacting regions **74***a*.sub.1-**74***a*.sub.n. Furthermore, each passage and contacting region of the plurality of second midsole contacting regions **70***a*.sub.1-**70***a*.sub.n and one of the plurality of first midsole contacting regions **70***a*.sub.1-**70***a*.sub.n and one of the plurality of first midsole contacting regions **74***a*.sub.1-**74***a*.sub.n.
- (136) In an example, when the article of footwear **10***a* is formed, surfaces of the outsole **26***a*, the first midsole portion **36***a*, the second midsole portion **44***a* and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be arranged near, proximate, spaced-apartfrom or adjacent one another. For example, the at least one strip of material contacting region **72***a* of the top surface **38***a* of the first midsole portion **36***a* may be disposed adjacent the bottom surface **56***a* of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*.sub.1-**52***a*.sub.3 of the bottom surface **48***a* of the second midsole portion **44***a* may be disposed adjacent the top surface **54***a* of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*.sub.1-
- (137) Once each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is arranged relative to the first midsole portion **36***a* and the second midsole portion **44***a*, as described above, each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be said to be arranged between the first midsole portion **36***a* and the second midsole portion **44***a*. Even though each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be disposed between the first midsole portion **36***a* and the second midsole portion **44***a*, one or more portions of the first midsole portion **36***a* may be in direct contact with one or more portions of the second midsole portion **44***a* as a result of, for example, one or a combination of (1) a longitudinal spacing between each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* such that: (A) portions of the top surface **38***a* of the first midsole portion **36***a* and the bottom surface **48***a* of the second midsole portion **44***a* that are not

separated by the one or more strips of material **52***a* may contact one another and (B) at least one second midsole contacting region **70***a* of the top surface **38***a* of the first midsole portion **36***a* may be disposed adjacent the at least one first midsole contacting region 74a of the bottom surface 48a of the second midsole portion **44***a*. After arranging the first midsole portion **36***a* adjacent the second midsole portion **44***a* as described above with respect to each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*, the midsole **28***a* defined by the first midsole portion **36***a*, the second midsole portion **44***a* and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material 52a may be arranged in a mold tool 92a (see, e.g., FIGS. 21-22) for directly bonding the first midsole portion **36***a* to the second midsole portion **44***a*. (138) The mold tool **92***a* includes an upper mold half **92***a*.sub.U and a lower mold half **92***a*.sub.L. Each of the upper mold half **92***au* and the lower mold half **92***a*.sub.L may define a mold surface for bonding the first midsole portion **36***a* to the second midsole portion **44***a* under heat and pressure. (139) As shown in FIG. **21**, the mold tool **92***a* is arranged in an open configuration by spacing apart the upper mold half **92***au* and the lower mold half **92***a*.sub.L such that the first midsole portion **36***a*, the second midsole portion **44***a* and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* are arranged therebetween. Then, as shown in FIG. **22**, after arranging the mold tool **92***a* in a closed configuration for a period of time, the mold tool **92***a* may be returned to the open configuration with the first midsole portion **36***a* bonded to the second midsole portion **44***a* and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* secured therebetween.

(140) Thereafter, the midsole-contacting surface 30a of the outsole 26a may be disposed adjacent the bottom surface **40***a* of the first midsole portion **36***a* for joining the outsole **26***a* to the first midsole portion **36***a*. In an example, the outsole **26***a* may be joined to the first midsole portion **36***a* with an adhesive or by way of a molding tool in a substantially similar manner as described above. (141) With reference to FIG. **19** or **20**, if the width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* is selectively sized such that each of the medial sidewall surface portion **58***a*.sub.M and the lateral sidewall surface portion **58***a*.sub.L of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* extends beyond the medial sidewall surface portion **42***a*.sub.M, **50***a*.sub.M and the lateral sidewall surface portion **42***a*.sub.L, **50***a*.sub.L of each of the first midsole portion **36***a* and the second midsole portion **44***a*, the first portion (W.sub.52a-P1) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and the second portion (not shown) of each width (W.sub.52a-1), (W.sub.52a-2), (W.sub.52a-3) of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* may be respectively folded or extended upwardly adjacent or along, for example: as shown in FIGS. **19** and **20** (1) the medial sidewall surface portion **42***a*.sub.M, **50***a*.sub.M and the lateral sidewall surface portion **42***a*.sub.L, **50***a*.sub.L of each of the first midsole portion **36***a* and the second midsole portion **44***a* and, in an alternative embodiment as shown in FIG. **20** but not in FIG. **19** (2) at least a portion of, respectively, the medial side and the lateral side of the upper **12***a*. (142) Although the mold tool **92***a* may be utilized for joining the first midsole portion **36***a* to the second midsole portion **44***a* under heat and pressure, in some configurations, an optional adhesive (not shown) may also or alternatively be utilized for adhering the first midsole portion **36***a* to the second midsole portion **44***a*. In some instances, the optional adhesive may be provided in the form of a sheet. In other examples, the optional adhesive may conform to any desirable shape, pattern or configuration, such as, for example, the shape, pattern or configuration of the of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. (143) In an example, a first optional adhesive may be arranged between the first midsole portion **36***a* and the second midsole portion **44***a*; furthermore, the first optional adhesive may be arranged between the top surface **38***a* of the first midsole portion **36***a* and the bottom surface **56***a* of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* such that the first

optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. The first optional adhesive adhesively bonds the first midsole portion **36***a*, the second midsole portion **44***a* and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* together.

(144) In another example, a second optional adhesive may be arranged between the first midsole

- portion **36***a* and the second midsole portion **44***a*; furthermore, the second optional adhesive may be arranged between the top surface **54***a* of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and the bottom surface **48***a* of the second midsole portion **44***a* such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. The second optional adhesive adhesively bonds the first midsole portion **36***a*, the second midsole portion **44***a* and each strip of material **52***a*.sub.1**-52***a*.sub.3 of the one or more strips of material **52***a* together. (145) In yet another example, the first optional adhesive and the second optional adhesive may be arranged between the first midsole portion **36***a* and the second midsole portion **44***a*. The first optional adhesive may be arranged between the top surface **38***a* of the first midsole portion **36***a* and the bottom surface **56***a* of each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* such that the first optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. The second optional adhesive may be arranged between the top surface 54a of each strip of material 52a.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* and the bottom surface **48***a* of the second midsole portion **44***a* such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***a* of the at least one strip **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a*. The first optional adhesive and the second optional adhesive adhesively bonds the first midsole portion **36***a*, the second midsole portion **44** and each strip of material **52***a*.sub.1-**52***a*.sub.3 of the one or more strips of material **52***a* together.
- (146) With reference to FIG. **23**, an exemplary article of footwear **10***b* is provided and includes an upper **12***b* and a sole structure **14***b* attached to the upper **12***b*. The article of footwear **10***b* may be divided into one or more regions. The regions may include a forefoot region **16***b*, a midfoot region **18***b*, and a heel region **20***b*. The forefoot region **16***b* may correspond with toes and joints connecting metatarsal bones with phalanx bones of a foot. The midfoot region **18***b* may correspond with an arch area of the foot while the heel region **18***b* may correspond with rear portions of the foot, including a calcaneus bone. The article of footwear **10***b* may additionally include a medial side **22***b* and a lateral side **24***b* that correspond with opposite sides of the article of footwear **10***b* and extend through the regions **16***b*, **18***b*, **20***b*.
- (147) The sole structure **14***b* optionally includes an outsole **26***b*. With reference to FIGS. **23** and **24**, the sole structure **14***b* may include a midsole **28***b*. A cushioning arrangement (not shown) may optionally be disposed generally between the outsole **26***b* and the midsole **28***b*.
- (148) Referring to FIG. **24**, the outsole **26**b includes a midsole-contacting surface **30**b and a ground-contacting surface **32**b. The outsole **26**b further includes a sidewall surface **34**b extending between the midsole-contacting surface **30**b and the ground-contacting surface **32**b.
- (149) As also shown in, for example, FIG. **24**, the midsole **28***b* includes a first midsole portion **36***b* and a second midsole portion **44***b*. The first midsole portion **36***b* includes a top surface **38***b*, a bottom surface **40***b* and a sidewall surface **42***b* extending between the top surface **38***b* and the bottom surface **40***b*. The sidewall surface **42***b* may define a thickness (T.sub.36b) of the first midsole portion **36***b* extending between the top surface **38***b* and the bottom surface **40***b*. (150) The top surface **38***b* and the bottom surface **40***b* of the first midsole portion **36***b* may

generally define an outer surface profile of the first midsole portion **36***b*. In an example, each of the top surface **38***b* and the bottom surface **40***b* of the first midsole portion **36***b* may be substantially flat (e.g., planar). In this regard, each of the top surface **38***b* and the bottom surface **40***b* may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **38***b* of the first midsole portion **36***b* may be substantially parallel to the bottom surface **40***b* of the first midsole portion **36***b* such that the thickness (T.sub.36b) of the first midsole portion **36***b* is substantially the same across a length (L.sub.14b) of the sole structure **14***b* as shown in, for example, FIG. **33**.

- (151) With continued reference to FIG. **24**, the second midsole portion **44***b* includes a top surface **46***b*, a bottom surface **48***b* and a sidewall surface **50***b* extending between the top surface **46***b* and the bottom surface **48***b*. The sidewall surface **50***b* may define a thickness (T.sub.44b) of the second midsole portion **44***b* extending between the top surface **46***b* and the bottom surface **48***b*. (152) The top surface **46***b* and the bottom surface **48***b* of the second midsole portion **44***b* may generally define an outer surface profile of the second midsole portion **44***b*. In an example, each of the top surface **46***b* and the bottom surface **48***b* of the second midsole portion **44***b* may be substantially flat (e.g., planar). In this regard, each of the top surface **46***b* and the bottom surface **48***b* may not be interrupted with one or more recesses, trenches, valleys, or other similar features. Furthermore, in an example, the top surface **46***b* of the second midsole portion **44***b* may be substantially parallel to the bottom surface **48***b* of the second midsole portion **44***b* such that the thickness (T.sub.44b) of the second midsole portion **44***b* is substantially the same across the length (L.sub.14b) of the sole structure **14***b* as shown in, for example, FIG. **33**.
- (153) In some examples, at least one of the first midsole portion **36***b* and the second midsole portion **44***b* are formed from a foamed material. In some instances, one or both of the first midsole portion **36***b* and the second midsole portion **44***b* are formed from a polymeric material. In some examples, the first midsole portion **36***b* and the second midsole portion **44***b* are formed from the same material. In another example, the first midsole portion **36***b* and the second midsole portion **44***b* are formed from different materials. The first midsole portion **36***b* may be formed from a first material and the second midsole portion **44***b* may be formed from a second material. The first material forming the first midsole portion **36***b* may have substantially the same stiffness as the second material forming the second midsole portion **44***b*. In some instances, the first material forming the second midsole portion **44***b*. In other examples, the first material forming the first midsole portion **36***b* is the same as the second material forming the second midsole portion **44***b*. In yet another example, the first material forming the first midsole portion **36***b* is different than the second material forming the second midsole portion **44***b*.
- (154) As shown in FIGS. **24-25**, the article of footwear **10***b* further includes one or more strips of material **52***b*. In an example, the one or more strips of material **52***b* may include six strips of material **52***b*.sub.1-**52***b*.sub.6. In an example, the six strips of material **52***b*.sub.1-**52***b*.sub.6 may be grouped into three pairs of strips of material defined by first and second strips of material **52***b*.sub.3, third and fourth strips of material **52***b*.sub.3-**52***b*.sub.4 and fifth and sixth strips of material **52***b*.sub.5-**52***b*.sub.6. As shown in FIG. **25**, the strips of material defining each pair of strips of material **52***b*.sub.1-**52***b*.sub.2, **52***b*.sub.3-**52***b*.sub.4 and **52***b*.sub.5-**52***b*.sub.6 are arranged in an overlapping or "crisscross" pattern forming an "X" configuration. Although the overlapping or "crisscross" pattern forming an "X" configuration are defined by two strips of material, in another implementation, the "crisscross" pattern forming an "X" configuration may be formed from one unit of material that is stamped, shaped, cut or otherwise formed to define the "crisscross" pattern forming an "X" configuration may be defined by one unit of material and not two strips of material). (155) With reference to FIGS. **25**, **26** and **27**, if the one or more strips of material **52***b* includes, for

(155) With reference to FIGS. **25**, **26** and **27**, if the one or more strips of material **52***b* includes, fo example, six strips of material **52***b*.sub.1-**52***b*.sub.6, in some instances the one or more strips of

material **52***b* may be arranged as follows: (1) a width (W.sub.52b-1) of the first strip of material **52***b*.sub.1 and the second strip of material **52***b*.sub.2 extends across a width (W.sub.16b) of the forefoot region **16***b* of the article of footwear **10***b* from the medial side **22***b* to the lateral side **24***b* of the article of footwear 10b, (2) a width (W.sub.52b-2) of the third strip of material 52.sub.3 and the fourth strip of material **52***b*.sub.4 extends across a width (W.sub.18b) of the midfoot region **18***b* of the article of footwear **10***b* from the medial side **22***b* to the lateral side **24***b* of the article of footwear **10***b*, and (3) a width (W.sub.52b-1) of the fifth strip of material **52***b*.sub.5 and the sixth strip of material **52***b*.sub.6 extends across a width (W.sub.20b) of the heel region **20***b* of the article of footwear **10***b* from the medial side **22***b* to the lateral side **24***b* of the article of footwear **10***b*. As shown in FIGS. 25, 26 and 27, the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extends substantially nonperpendicularly θ.sub.52b with respect to respective axes A.sub.16b-A.sub.16b, A.sub.18b-A.sub.18b, A.sub.20b-A.sub.20b, corresponding to the widths (W.sub.16a, W.sub.18a, W.sub.20a) of the forefoot region **16***a*, the midfoot region **18***a* and the heel region **20***a* of the article of footwear **10***a* with respect to an axis A.sub.14a-A.sub.14a extending along the length (L.sub.14a) of the sole structure 14a.

(156) Referring back to FIG. **24**, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* includes atop surface **54***b*, a bottom surface **56***b* and a sidewall surface **58***b* extending between the top surface **54***b* and the bottom surface **56***b*. The sidewall surface **58***b* may define a thickness (T.sub.52b) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extending between the top surface **54***b* and the bottom surface **56***b*. (157) In an example, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is formed from a flexible material. Each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may include a fabric material, a woven textile (see, e.g., enlarged view of the each strip of material **52***b* in FIG. **24**), or a knitted textile (see, e.g., enlarged view of the each strip of material 52b in FIG. 24). In some instances, each strip of material 52b.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is porous. Each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material 52b may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be a thermoformable material. In some examples, if each strip of material **52***b* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 24), the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material 52b is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 24), each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***b* may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***b* may permit one or both of the first midsole portion **36***b* and the second midsole portion **44***b* to directly contact one another. In other implementations, one or both of the first midsole portion **36***b* and the second midsole portion **44***b* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***b*.

(158) In some instances, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is an embroidered textile. In some examples, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* has one or more first regions including embroidery and one or more second regions without embroidery or with a lower percentage of embroidered surface area as comparted to the one or more first regions. The embroidery can provide reduced stretch or a "lock down" feature to areas of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. Such areas of each strip of material **52***b*.sub.1-

```
52b.sub.6 of the one or more strips of material 52b provide a reduced stretch quality may be
located, for example, at a region of each strip of material 52b.sub.1-52b.sub.6 of the one or more
strips of material 52b that is arranged between the first midsole portion 36b and the second midsole
portion 44b, or, alternatively at a region that extends beyond the sidewall surface 58b of each strip
of material 52b.sub.1-52b.sub.6 of the one or more strips of material 52b.
(159) With reference to FIG. 24, the first midsole portion 36b is disposed between the outsole 26b
and the upper 12b. When the sole structure 14b is attached to the upper 12b as shown in FIG. 23,
the second midsole portion 44b is disposed between the first midsole portion 36b and the upper
12b. As shown in FIGS. 24 and 33, each strip of material 52b.sub.1-52b.sub.6 of the one or more
strips of material 52b is disposed between the first midsole portion 36b and the second midsole
portion 44b. The bottom surface 56b of each strip of material 52b.sub.1-52b.sub.6 of the one or
more strips of material 52b extends across the top surface 38b of the first midsole portion 36b. The
top surface 54b of each strip of material 52b.sub.1-52b.sub.6 of the one or more strips of material
52b extends across the bottom surface 48b of the second midsole portion 44b.
(160) As shown in FIG. 24, the sidewall surface 58b of each strip of material 52b.sub.1-52b.sub.6
of the one or more strips of material 52b may be further defined by a medial sidewall surface
portion 58b.sub.M and a lateral sidewall surface portion 58b.sub.L. The width (W.sub.52b-1,
W.sub.52b-2, W.sub.52b-3) of each strip of material 52b.sub.1-52b.sub.6 of the one or more strips
of material 52b extends between the medial sidewall surface portion 58b.sub.M and the lateral
sidewall surface portion 58b.sub.L of each strip of material 52b.sub.1-52b.sub.6 of the one or more
strips of material 52b. Furthermore, the sidewall surface 42b, 50b of each of the first midsole
portion 36b and the second midsole portion 44b may be further defined by a medial sidewall
surface portion 42b.sub.M, 50b.sub.M and a lateral sidewall surface portion 42b.sub.L, 50b.sub.L
that respectively define a width (W.sub.36b, W.sub.44b) of each of the first midsole portion 36b
and the second midsole portion 44b. The width (W.sub.36b, W.sub.44b) of each of the first midsole
portion 36b and the second midsole portion 44b correspondingly varies and defines, for example,
the widths (W.sub.16b, W.sub.18b, W.sub.20b) of the forefoot region 16b, the midfoot region 18b
and the heel region 20b of the sole structure 14b of the article of footwear 10b.
(161) With reference to FIG. 24 and FIGS. 28, 29, 30 and 31, the width (W.sub.52b-1), (W.sub.52b-
2), (W.sub.52b-3) extending between the medial sidewall surface portion 58b.sub.M and the lateral
sidewall surface portion 58b.sub.L of each strip of material 52b.sub.1-52b.sub.6 of the one or more
strips of material 52b may be selectively sized with respect to the width (W.sub.36b, W.sub.44b) of
each of the first midsole portion 36b and the second midsole portion 44b. As shown in FIGS. 24, 25
and 28, the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material 52b.sub.1-
52b.sub.6 of the one or more strips of material 52b is selectively sized such that each of the medial
sidewall surface portion 58b.sub.M and the lateral sidewall surface portion 58b.sub.L of each strip
of material 52b.sub.1-52b.sub.6 of the one or more strips of material 52b is respectively aligned
with the medial sidewall surface portion 42b.sub.M, 50b.sub.M and the lateral sidewall surface
portion 42b.sub.L, 50b.sub.L of each of the first midsole portion 36b and the second midsole
portion 44b. As a result of the alignment of the respective medial sidewall surface portions
42b.sub.M, 50b.sub.M, 58b.sub.M and the lateral sidewall surface portions 42b.sub.L, 50b.sub.L,
58b.sub.L described above, the medial sidewall surface portion 58b.sub.M or the lateral sidewall
surface portion 58b.sub.L of each strip of material 52b.sub.1-52b.sub.6 of the one or more strips of
material 52b is visible when viewing the medial side 22b or the lateral side 24b the of the sole
```

(162) In another example as shown in FIG. **29**, the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is selectively sized such that each of the medial sidewall surface portion **58***b*.sub.M and the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is not aligned with and does extend beyond the medial sidewall

structure **14***b*.

surface portion **42***b*.sub.M, **50***b*.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b*. As a result of the non-alignment of the respective medial sidewall surface portions **42***b*.sub.M, **50***b*.sub.M, **50***b*.sub.M, **58***b*.sub.M and the lateral sidewall surface portions **42***b*.sub.L, **50***b*.sub.L, **58***b*.sub.L described above, the medial sidewall surface portion **58***b*.sub.M or the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is not visible when viewing the medial side **22***b* or the lateral side **24***b* the of the sole structure **14***b*.

(163) In yet another example as shown in FIG. 30, the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is selectively sized such that each of the medial sidewall surface portion **58***b*.sub.M and the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extends beyond the medial sidewall surface portion **42***b*.sub.M, **50***b*.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b*. Therefore, a first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extending from of the medial sidewall surface portion **58***b*.sub.M of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and a second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extending from of the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material 52b may respectively extend along and be arranged adjacent, for example, the medial sidewall surface portion 42b.sub.M, 50b.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b*. However, as shown in FIG. **30**, the first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* do not respectively extend along and are not respectively arranged adjacent the upper **12***b* of the article of footwear **10***b*. As a result, the first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is visible when viewing the medial side **22***b* or the lateral side **24***b* the of the sole structure **14***b*.

(164) In another example as shown in FIG. 31, the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is selectively sized such that each of the medial sidewall surface portion **58***b*.sub.M and the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extends beyond the medial sidewall surface portion **42***b*.sub.M, **50***b*.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b*. Therefore, a first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extending from of the medial sidewall surface portion **58***b*.sub.M of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and a second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* extending from of the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may respectively extend along and be arranged adjacent, for example: (1) the medial sidewall surface portion **42***b*.sub.M, **50***b*.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second

midsole portion **44***b* and (2) at least a portion of, respectively, the medial side and the lateral side of the upper **12***b*. As a result, the first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is visible when viewing the medial side **22***b* or the lateral side **24***b* the of the sole structure **14***b*.

(165) With reference to FIGS. **26** and **27**, one or more regions of at least one strip **52***b*.sub.1-

52*b*.sub.6 (see, e.g., all of the strips **52***b*.sub.1-**52***b*.sub.6 in FIG. **26** or two strips **52***b*.sub.3-**52***b*.sub.4 in FIG. **27**) of the one or more strips of material **52***b* may further define at least one passage or aperture **68***b* or absence of at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. The at least one passage **68***b* extends through the thickness (T.sub.52b) of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* between the top surface **54***b* and the bottom surface **56***b*. If a polymeric material defines one or both of the first midsole portion **36***b* and the second midsole portion **44***b*, the polymeric material may be molded around any surface defining the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and/or through at least one passage **68***b* extends through the thickness (T.sub.52b) of the at least one strip 52b.sub.1-52b.sub.6 of the one or more strips of material 52b. (166) The at least one passage **68***b* may include a plurality of passages or apertures **68***b*.sub.1-**68***b*.sub.n. For example, the at least one passage **68***b* may include a first passage **68***b*.sub.1, a last passage **68***b*.sub.n and one or more intermediate passages **68***b*.sub.2-**68***b*.sub.n-1. In an example, as shown in FIG. **26**, the plurality of passages **68***b*.sub.1-**68***b*.sub.n may be arranged in any desirable pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) such that the plurality of passages or apertures **68***b*.sub.1-**68***b*.sub.n are arranged between the forefoot region **16***b* and the heel region **20***b* of the sole structure **14***b* (i.e., across substantially most or all of the length (L.sub.14b) of the sole structure **14**b) and between the medial side **22**b and the lateral side **24***b* of the article of footwear **10***b* (i.e., across the width (W.sub.14b) of the sole structure **14***b*). In other implementations, the plurality of passages **68***b*.sub.1-**68***b*.sub.n may be arranged in a pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) that does not extend across the forefoot region **16***b* and the heel region **20***b* of the sole structure **14***b* or between the medial side **22***b* and the lateral side **24***b* of the article of footwear **10***b*. Although the plurality of passages **68***b*.sub.1**-68***b*.sub.n may extend across substantially most or all of the length (L.sub.14b) of the sole structure **14**b as described above, the plurality of passages **68***b*.sub.1-**68***b*.sub.n may be arranged in a pattern (e.g., in: (1) a row-and-column grid, (2) staggered rows and columns, or (3) a random pattern) extending across: (1) some or all of the heel region **20***b* of the sole structure **14***b* but not the forefoot region **16***b* or the midfoot region **18***b* of the sole structure **14***b*, (2) some or all of the forefoot region **16***b* of the sole structure **14***b* but not the midfoot region **18***b* or the heel region **20***b* of the sole structure **14***b* (3) some or all of the forefoot region **16***b* and the heel region **20***b* of the sole structure **14***b* but not the midfoot region **18***b* of the sole structure **14***b* or (4) as shown in FIG. **27**, some or all of the midfoot region **18***b* but not the forefoot region **16***b* and the heel region **20***b*. (167) With continued reference to FIGS. **26** and **27**, each passage of the plurality of passages

68*b*.sub.1-**68***b*.sub.n is shown being defined by a substantially circular or oval shape having any dimension or diameter (D.sub.68b). In some examples, the dimension or diameter (D.sub.68b) may be approximately equal to about 0.5 mm or about 3.0 mm. In other examples, the dimension or diameter (D.sub.68b) may be between approximately 0.5 mm and approximately 3.0 mm. Furthermore, each passage of the plurality of passages **68***b*.sub.1-**68***b*.sub.n define a substantially similar dimension or diameter (D.sub.68b). Although each passage of the plurality of passages **68***b*.sub.1-**68***b*.sub.n may define a substantially similar sized or shaped dimension or diameter (D.sub.68b), implementations of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips

of material **52***b* may include at least one passage of the plurality of passages **68***b*.sub.1**-68***b*.sub.n having a different sized or shaped dimension or diameter (D.sub.68b). For example, at least one passage of the plurality of passages **68***b*.sub.1**-68***b*.sub.n may have a different sized or shaped dimension or diameter (D.sub.68b) than another passage of the plurality of passages **68***b*.sub.1**-68***b*.sub.n in the heel region **20***b* of the sole structure **14***b*, the forefoot region **16***b* of the sole structure **14***b* or the forefoot region **16***b* and the heel region **20***b* of the sole structure **14***b*.

- (168) With reference to FIG. **24**, the top surface **38***b* of the first midsole portion **36***b* may further define at least one second midsole contacting region **70***b* and at least one strip of material contacting region **72***b*. The bottom surface **48***b* of the second midsole portion **44***b* may further define at least one first midsole contacting region **74***b* and at least one strip of material contacting region **76***b*.
- (169) Each of the at least one second midsole contacting region **70***b* of the first midsole portion **36***b* and the at least one first midsole contacting region **74***b* of the second midsole portion **44***b* may define a size or shape that generally corresponds to a size or shape of the at least one passage **68***b* of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. If the at least one passage **68***b* of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* defines a plurality of passages **68***b*.sub.1-**68***b*.sub.n, each of the at least one second midsole contacting region **70***b* of the first midsole portion **36***b* and the at least one first midsole contacting region **74***b* of the second midsole portion **44***b* may define a corresponding plurality of second midsole contacting regions **70***b*.sub.1-**70***b*.sub.n and a plurality of first midsole contacting regions **74***b*.sub.1-**74***b*.sub.n. Furthermore, each passage and contacting region of the plurality of second midsole contacting regions **70***b*.sub.1-**70***b*.sub.n and one of the plurality of first midsole contacting regions **70***b*.sub.1-**70***b*.sub.n and one of the plurality of first midsole contacting regions **74***b*.sub.1-**74***b*.sub.n.
- (170) In an example, when the article of footwear **10***b* is formed, surfaces of the outsole **26***b*, the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be arranged near, proximate, spaced-apart-from or adjacent one another. For example, the at least one strip of material contacting region **72***b* of the top surface **38***b* of the first midsole portion **36***b* may be disposed adjacent the bottom surface **56***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*, and the at least one strip of material contacting region **76***b* of the bottom surface **48***b* of the second midsole portion **44***b* may be disposed adjacent the top surface **54***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*.sub.1-
- (171) Once each strip of material 52b.sub.1-52b.sub.6 of the one or more strips of material 52b is arranged relative to the first midsole portion **36***b* and the second midsole portion **44***b*, as described above, each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be said to be arranged between the first midsole portion **36***b* and the second midsole portion **44***b*. Even though each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be disposed between the first midsole portion **36***b* and the second midsole portion **44***b*, one or more portions of the first midsole portion **36***b* may be in direct contact with one or more portions of the second midsole portion **44***b* as a result of, for example, one or a combination of (1) a longitudinal spacing between each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and (2) the formation of the at least one passage **68***b* of at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* such that: (A) portions of the top surface **38***b* of the first midsole portion **36***b* and the bottom surface **48***b* of the second midsole portion **44***b* that are not separated by the one or more strips of material **52***b* may contact one another and (B) at least one second midsole contacting region **70***b* of the top surface **38***b* of the first midsole portion **36***b* may be disposed adjacent the at least one first midsole contacting region 74b of the bottom surface 48bof the second midsole portion **44***b*. After arranging the first midsole portion **36***b* adjacent the

second midsole portion **44***b* as described above with respect to each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*, the midsole **28***b* defined by the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be arranged in a mold tool **92***b* (see, e.g., FIGS. **32-33**) for directly bonding the first midsole portion **36***b* to the second midsole portion **44***b*. (172) The mold tool **92***b* includes an upper mold half **92***b*.sub.U and a lower mold half **92***b*.sub.L.

Each of the upper mold half **92***b*.sub.U and the lower mold half **92***b*.sub.L may define a mold surface for bonding the first midsole portion **36***b* to the second midsole portion **44***b* under heat and pressure.

(173) As shown in FIG. **32**, the mold tool **92***b* is arranged in an open configuration by spacing apart the upper mold half **92***b*.sub.U and the lower mold half **92***b*.sub.L such that the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* are arranged therebetween. Then, as shown in FIG. **33**, after arranging the mold tool **92***b* in a closed configuration for a period of time, the mold tool **92***b* may be returned to the open configuration with the first midsole portion **36***b* bonded to the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* secured therebetween.

(174) Thereafter, the midsole-contacting surface **30***b* of the outsole **26***b* may be disposed adjacent the bottom surface **40***b* of the first midsole portion **36***b* for joining the outsole **26***b* to the first midsole portion **36***b*. In an example, the outsole **26***b* may be joined to the first midsole portion **36***b* with an adhesive or by way of a molding tool in a substantially similar manner as described above. (175) With reference to FIG. **30** or **31**, if the width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* is selectively sized such that each of the medial sidewall surface portion **58***b*.sub.M and the lateral sidewall surface portion **58***b*.sub.L of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material 52b extends beyond the medial sidewall surface portion 42b.sub.M, 50b.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b*, the first portion (W.sub.52b-P1) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the second portion (not shown) of each width (W.sub.52b-1), (W.sub.52b-2), (W.sub.52b-3) of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* may be respectively folded or extended upwardly adjacent or along, for example: as shown in FIGS. **30** and **31** (1) the medial sidewall surface portion **42***b*.sub.M, **50***b*.sub.M and the lateral sidewall surface portion **42***b*.sub.L, **50***b*.sub.L of each of the first midsole portion **36***b* and the second midsole portion **44***b* and, in an alternative embodiment as shown in FIG. **31** but not in FIG. **30** (2) at least a portion of, respectively, the medial side and the lateral side of the upper 12b.

(176) Although the mold tool **9**2*b* may be utilized for joining the first midsole portion **36***b* to the second midsole portion **4**4*b* under heat and pressure, in some configurations, an optional adhesive (not shown) may also or alternatively be utilized for adhering the first midsole portion **36***b* to the second midsole portion **4**4*b*. In some instances, the optional adhesive may be provided in the form of a sheet. In other examples, the optional adhesive may conform to any desirable shape, pattern or configuration, such as, for example, the shape, pattern or configuration of the of the at least one passage **68***b* of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. (177) In an example, a first optional adhesive may be arranged between the first midsole portion **36***b* and the second midsole portion **44***b*; furthermore, the first optional adhesive may be arranged between the top surface **38***b* of the first midsole portion **36***b* and the bottom surface **56***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* such that the first optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***b* of the at least one strip **52***b*.sub.1-

52*b*.sub.6 of the one or more strips of material **52***b*. The first optional adhesive adhesively bonds the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* together.

(178) In another example, a second optional adhesive may be arranged between the first midsole portion **36***b* and the second midsole portion **44***b*; furthermore, the second optional adhesive may be arranged between the top surface **54***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the bottom surface **48***b* of the second midsole portion **44***b* such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***b* of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. The second optional adhesive adhesively bonds the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* together. (179) In yet another example, the first optional adhesive and the second optional adhesive may be arranged between the first midsole portion **36***b* and the second midsole portion **44***b*. The first optional adhesive may be arranged between the top surface 38b of the first midsole portion 36b and the bottom surface **56***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* such that the first optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68**b of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. The second optional adhesive may be arranged between the top surface **54***b* of each strip of material **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b* and the bottom surface **48***b* of the second midsole portion **44***b* such that the second optional adhesive is axially aligned with and radially extends across at least a portion of the shape, pattern or configuration of the of the at least one passage **68***b* of the at least one strip **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52***b*. The first optional adhesive and the second optional adhesive adhesively bonds the first midsole portion **36***b*, the second midsole portion **44***b* and each strip of material **52***b*.sub.1-**52***b*.sub.6 of the

(180) Although the top surface **38**, **38***a*, **38***b* of the first midsole portion **36**, **36***a*, **36***b* and the bottom surface **48**, **48***a*, **48***b* of the second midsole portion **44**, **44***a*, **44***b* of each of the midsoles **28**, **28***a*, **28***b* of the sole structures **14**, **14***a* **14***b* have been described above to be substantially flat (e.g., planar) thereby not being interrupted with one or more recesses, trenches, valleys, or other similar features, a non-flat (i.e., non-planar) top surface **38***c* of a first midsole portion **36***c* and a non-flat (i.e., non-planar) bottom surface **48***c* of a second midsole portion **44***c* of an exemplary midsole **28***c* of an exemplary sole structure **14***c* are shown at FIG. **34**. In an example, each of the top surface **38***c* of the first midsole portion **36***c* and the bottom surface **48***c* of the second midsole portion **44***c* may respectively generally be defined by one or more peaks **84***c*, **88***c* and recesses, trenches or valleys **86***c*, **90***c* such that each of the top surface **38***c* of the first midsole portion **36***c* and the bottom surface **48***c* of the second midsole portion **44***c* defines a substantially mating sinusoidal pattern extending between the forefoot region **16***c* and the heel region **20***c* of the sole structure **14***c*. Furthermore, in an example, the mating sinusoidal pattern of each of the first midsole portion **36***c* and the second midsole portion **44***c* may be defined by a substantially constant or non-constant amplitude bound by each peak **84***c*, **88***c* and each valley **86***c*, **90***c* across a length (L.sub.14c) of the sole structure **14***c*. Further, the constant or non-constant amplitude may or may not remain substantially the same as each peak **84***c*, **88***c* extends between the medial side **22***c* and the lateral side **24***c* of the sole structure **14***c*. Yet even further, in an example, the mating sinusoidal pattern of each of the first midsole portion **36**c and the second midsole portion **44**c may be defined by a substantially constant or non-constant frequency as the mating sinusoidal pattern extends between the forefoot region **16***c* and the heel region **20***c* of the sole structure **14***c*.

one or more strips of material **52***b* together.

(181) In an example, the one or more strips of material **52***c* of the sole structure **14***c* of FIG. **35** includes a first strip of material **52***c*.sub.1 extending laterally across the forefoot region **16***c* a

second strip of material **52***c*.sub.2 extending laterally across the midfoot region **18***c* and a third strip of material **52***c*.sub.3 extending laterally across the heel region **20***c*. Although first, second and third strips of material **52***c*.sub.1, **52***c*.sub.2, **52***c*.sub.3 are shown respectively laterally extending across the forefoot region **16***c*, the midfoot region **18***c* and the forefoot region **20***c*, the sole structure **14***c* may include any desirable number of strips. For example, the sole structure **14***c* may include for example six strips of material that may be arranged in, for example, a "crisscross" pattern forming an "X" configuration. Furthermore, each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* may extend substantially perpendicularly or nonperpendicularly along/with respective to respective axes corresponding to the widths of the forefoot region **16***c*, the midfoot region **18***c* and the heel region **20***c* with respect to an axis A.sub.14c-A.sub.14c extending along the length (L.sub.14c) of the sole structure **14***c*.

(182) With reference to FIG. **35**, when the mating sinusoidal top surface **38***c* of the first midsole portion **36***c* and the mating sinusoidal bottom surface **48***c* of the second midsole portion **44***c* are joined together within, for example, a molding tool (as described above at reference numerals **92**, **92***a*, **92***b*), the mating sinusoidal pattern of the top surface **38***c* of the first midsole portion **36***c* and the bottom surface **48***c* of the second midsole portion **44***c* may cause each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* captured between the first midsole portion **36***c* and the second midsole portion **44***c* to be shaped to define a corresponding sinusoidal pattern. In an example, one or both of the mating sinusoidal top surface **38***c* of the first midsole portion **36***c* and the mating sinusoidal bottom surface **48***c* of the second midsole portion **44***c* may shape each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* from, for example, a substantially flat/planar shape defined by each of a top surface **54***c* and a bottom surface **56***c* of each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* to form at least a portion of a non-flat/non-planar mating sinusoidal pattern corresponding to the mating sinusoidal pattern defined by each of the top surface **38***c* of the first midsole portion **36***c* and the bottom surface **48***c* of the second midsole portion **44***c*.

(183) In an example, each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* is formed from a flexible material. Each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* may include a fabric material, a woven textile (see, e.g., enlarged view of the each strip of material **52***c* in FIG. **34**), or a knitted textile (see, e.g., enlarged view of the each strip of material **52***c* in FIG. **34**). In some instances, each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* is porous. Each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52***c*.sub.1-**52***c*.sub.3 of the one or more strips of material **52***c* may be a thermoformable material. In some examples, if each strip of material **52***c* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 34), the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52***c* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 34), each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***c* may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***c* may permit one or both of the first midsole portion **36***c* and the second midsole portion **44***c* to directly contact one another. In other implementations, one or both of the first midsole portion **36***c* and the second midsole portion **44***c* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***c*.

(184) Although the top surface **38**, **38***a*, **38***b* of the first midsole portion **36**, **36***a*, **36***b* and the bottom surface **48**, **48***a*, **48***b* of the second midsole portion **44**, **44***a*, **44***b* of each of the midsoles **28**,

28*a*, **28***b* of the sole structures **14**, **14***a* **14***b* have been described above to be substantially flat (e.g., planar) thereby not being interrupted with one or more recesses, trenches, valleys, or other similar features, a non-flat (i.e., non-planar) top surface **38***d* of a first midsole portion **36***d* and a non-flat (i.e., non-planar) bottom surface **48***d* of a second midsole portion **44***d* of an exemplary midsole **28***d* of an exemplary sole structure **14***d* are shown at FIG. **36**. In an example, each of the top surface **38***d* of the first midsole portion **36***d* and the bottom surface **48***d* of the second midsole portion **44***d* may respectively generally be defined by one or more peaks **84***d*, **88***d* and recesses, trenches or valleys **86***d*, **90***d* such that each of the top surface **38***d* of the first midsole portion **36***d* and the bottom surface **48***d* of the second midsole portion **44***d* defines a substantially mating saw-tooth pattern extending between the forefoot region **16***d* and the heel region **20***d* of the sole structure **14***d*. Furthermore, in an example, the mating saw-tooth pattern of each of the first midsole portion **36***d* and the second midsole portion **44***d* may be defined by a substantially constant or non-constant amplitude bound by each peak **84***d*, **88***d* and each valley **86***d*, **90***d* across a length (L.sub.14a) of the sole structure **14***d*. Further, the constant or non-constant amplitude may or may not remain substantially the same as each peak **84***d*, **88***d* extends between the medial side **22***d* and the lateral side **24***d* of the sole structure **14***d*. Yet even further, in an example, the mating saw-tooth pattern of each of the first midsole portion **36***d* and the second midsole portion **44***d* may be defined by a substantially constant or non-constant frequency as the mating saw-tooth pattern extends between the forefoot region **16***d* and the heel region **20***d* of the sole structure **14***d*.

(185) In an example, the one or more strips of material **52***d* of the sole structure **14***d* of FIG. **37** includes a first strip of material **52***d*.sub.1 extending laterally across the forefoot region **16***d* a second strip of material **52***d*.sub.2 extending laterally across the midfoot region **18***d* and a third strip of material **52***d*.sub.3 extending laterally across the heel region **20***d*. Although first, second and third strips of material **52***d*.sub.1, **52***d*.sub.2, **52***d*.sub.3 are shown respectively laterally extending across the forefoot region **16***d*, the midfoot region **18***d* and the forefoot region **20***d*, the sole structure **14***d* may include any desirable number of strips. For example, the sole structure **14***d* may include six strips of material that may be arranged in, for example, a "crisscross" pattern forming an "X" configuration. Furthermore, each strip of material **52***d*.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* may extend substantially perpendicularly or non-perpendicularly along/with respective to respective axes corresponding to the widths of the forefoot region **16***d*, the midfoot region **18***d* and the heel region **20***d* with respect to an axis A.sub.14d-A.sub.14d extending along the length (L.sub.14d) of the sole structure **14***d*.

(186) With reference to FIG. 37, when the mating saw-tooth top surface 38d of the first midsole portion 36d and the mating saw-tooth bottom surface 48d of the second midsole portion 44d are joined together within, for example, a molding tool (as described above at reference numerals 92, 92a, 92b), the mating saw-tooth pattern of the top surface 38d of the first midsole portion 36d and the bottom surface 48d of the second midsole portion 44d may cause each strip of material 52d.sub.1-52d.sub.3 of the one or more strips of material 52d captured between the first midsole portion 36d and the second midsole portion 44d to be shaped to define a corresponding sinusoidal pattern. In an example, one or both of the mating saw-tooth top surface 38d of the first midsole portion 36d and the mating saw-tooth bottom surface 48d of the second midsole portion 44d may shape each strip of material 52d.sub.1-52d.sub.3 of the one or more strips of material 52d from, for example, a substantially flat/planar shape defined by each of a top surface 54d and a bottom surface 56d of each strip of material 52d.sub.1-52d.sub.3 of the one or more strips of material 52d to form at least a portion of a non-flat/non-planar mating saw-tooth pattern corresponding to the mating saw-tooth pattern defined by each of the top surface 38d of the first midsole portion 36d and the bottom surface 48d of the second midsole portion 44d.

(187) In an example, each strip of material **52***d*.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* is formed from a flexible material. Each strip of material **52***d*.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* may include a fabric material, a woven textile (see, e.g., enlarged

view of the each strip of material **52***d* in FIG. **36**), or a knitted textile (see, e.g., enlarged view of the each strip of material 52d in FIG. 36). In some instances, each strip of material 52d.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* is porous. Each strip of material **52***d*.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52***d*.sub.1-**52***d*.sub.3 of the one or more strips of material **52***d* may be a thermoformable material. In some examples, if each strip of material **52***d* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 36), the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52***d* is a woven or knit structure (as seen in, e.g., the enlarged view of FIG. 36), each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***d* may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***d* may permit one or both of the first midsole portion **36***d* and the second midsole portion **44***d* to directly contact one another. In other implementations, one or both of the first midsole portion **36***d* and the second midsole portion **44***d* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***d*.

(188) Although the top surface **54**, **54***a*, **54***b* and the bottom surface **56**, **56***a*, **56***b* of each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52**, **52***a*, **52***b* have been described above to be substantially flat (e.g., planar) thereby not being interrupted with one or more recesses, trenches, valleys, or other similar features, a non-flat (i.e., non-planar) top surface **54***e* and a bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3, of exemplary one or more strips of material **52***e* are shown at FIG. **38**. In an example, each of the top surface **54***e* and the bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3, of the one or more strips of material **52***e* may respectively generally be pre-formed to define one or more peaks **78***e* and recesses, trenches or valleys **80***e* such that each of the top surface **54***e* and the bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3, of the one or more strips of material **52***e* respectively defines a substantially sinusoidal pattern.

(189) In an example, the one or more strips of material **52***e* of the sole structure **14***e* of FIG. **38** includes a first strip of material **52***e*.sub.1 extending laterally across the forefoot region **16***e* a second strip of material **52***e*.sub.2 extending laterally across the midfoot region **18***e* and a third strip of material **52***e*.sub.3 extending laterally across the heel region **20***e*. Although first, second and third strips of material **52***e*.sub.1, **52***e*.sub.2, **52***e*.sub.3 are shown respectively laterally extending across the forefoot region **16***e*, the midfoot region **18***e* and the forefoot region **20***e*, the sole structure **14***e* may include any desirable number of strips. For example, the sole structure **14***e* may include six strips of material that may be arranged in, for example, a "crisscross" pattern forming an "X" configuration. Furthermore, each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may extend substantially perpendicularly or non-perpendicularly along/with respective to respective axes corresponding to the widths of the forefoot region **16***e*, the midfoot region **18***e* and the heel region **20***e* with respect to an axis A.sub.14e-A.sub.14e extending along the length (L.sub.14e) of the sole structure **14***e*.

(190) Furthermore, in an example, the sinusoidal pattern of each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may be defined by a substantially constant or non-constant amplitude bound by each peak **78***e* and each valley **80***e* across the length (L.sub.14e) of the sole structure **14***e*. Further, the constant or non-constant amplitude may or may not remain substantially the same as each peak **78***e* extends between the medial side and the lateral side of the sole structure **14***e*. Yet even further, in an example, the sinusoidal pattern of each of each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may be defined by a

substantially constant or non-constant frequency as the sinusoidal pattern extends between the forefoot region **16***e* and the heel region **20***e* of the sole structure **14***e*.

(191) As shown in FIG. **38**, when the sinusoidal top surface **54***e* and the sinusoidal bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3, of the one or more strips of material **52***e* are arranged opposite respective portions of the top surface **38***e* of the first midsole portion **36***e* and the bottom surface **48***e* of the second midsole portion **44***e* such that the first midsole portion **36***e*, the second midsole portion **44***e* and the one or more strips of material **52***e* are joined together within, for example, a molding tool (as described above at reference numerals **92**, **92***a*, **92***b*), the sinusoidal top surface **54***e* and the sinusoidal bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3 may cause respective portions of the top surface **38***e* of the first midsole portion **36***e* and the bottom surface **48***e* of the second midsole portion **44***e* to be shaped to define a corresponding sinusoidal pattern. In an example, one or both of the sinusoidal top surface **54***e* and the sinusoidal bottom surface **56***e* each strip of material **52***e*.sub.1-**52***e*.sub.3 may shape respective portions of the top surface **38***e* of the first midsole portion **36***e* and the bottom surface **48***e* of the second midsole portion **44***e* from, for example, a substantially flat/planar shape defined by each of the top surface **38***e* of the first midsole portion **36***e* and the bottom surface **48***e* of the second midsole portion **44***e* to form at least a portion of a non-flat/non-planar sinusoidal pattern corresponding to the sinusoidal pattern defined by each of the top surface 54e and the sinusoidal bottom surface 56e each strip of material **52***e*.sub.1-**52***e*.sub.3.

(192) In an example, each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* is formed from a flexible material. Each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may include a fabric material, a woven textile, or a knitted textile. In some instances, each strip of material 52e.sub.1-52e.sub.3 of the one or more strips of material **52***e* is porous. Each strip of material **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material 52e.sub.1-**52***e*.sub.3 of the one or more strips of material **52***e* may be a thermoformable material. In some examples, if each strip of material **52***e* is a woven or knit structure, the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52***e* is a woven or knit structure, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***e* may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***e* may permit one or both of the first midsole portion **36***e* and the second midsole portion **44***e* to directly contact one another. In other implementations, one or both of the first midsole portion **36***e* and the second midsole portion **44***e* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***e*.

(193) Although the top surface **54**, **54***a*, **54***b* and the bottom surface **56**, **56***a*, **56***b* of each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6 of the one or more strips of material **52**, **52***a*, **52***b* have been described above to be substantially flat (e.g., planar) thereby not being interrupted with one or more recesses, trenches, valleys, or other similar features, a non-flat (i.e., non-planar) top surface **54***f* and a bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3, of exemplary one or more strips of material **52***f* are shown at FIG. **39**. In an example, each of the top surface **54***f* and the bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3, of the one or more strips of material **52***f* may respectively generally be pre-formed to define one or more peaks **78***f* and recesses, trenches or valleys **80***f* such that each of the top surface **54***f* and the bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3, of the one or more strips of material **52***f* respectively defines a substantially saw-tooth pattern.

(194) In an example, the one or more strips of material **52***f* of the sole structure **14***f* of FIG. **39** includes a first strip of material **52***f*.sub.1 extending laterally across the forefoot region **16***f* a second strip of material **52***f*.sub.2 extending laterally across the midfoot region **18***f* and a third strip of material **52***f*.sub.3 extending laterally across the heel region **20***f*. Although first, second and third strips of material **52***f*.sub.1, **52***f*.sub.2, **52***f*.sub.3 are shown respectively laterally extending across the forefoot region **16***f*, the midfoot region **18***f* and the forefoot region **20***f*, the sole structure **14***f* may include any desirable number of strips. For example, the sole structure **14***f* may include six strips of material that may be arranged in, for example, a "crisscross" pattern forming an "X" configuration. Furthermore, each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may extend substantially perpendicularly or non-perpendicularly along/with respective to respective axes corresponding to the widths of the forefoot region **16***f*, the midfoot region **18***f* and the heel region **20***f* with respect to an axis A.sub.14f-A.sub.14f extending along the length (L.sub.14f) of the sole structure **14***f*.

(195) Furthermore, in an example, the saw-tooth pattern of each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may be defined by a substantially constant or non-constant amplitude bound by each peak **78***f* and each valley **80***f* across the length (L.sub.14f) of the sole structure **14***f*. Further, the constant or non-constant amplitude may or may not remain substantially the same as each peak **78***f* extends between the medial side and the lateral side of the sole structure **14***f* Yet even further, in an example, the saw-tooth pattern of each of each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may be defined by a substantially constant or non-constant frequency as the saw-tooth pattern extends between the forefoot region **16***f* and the heel region **20***f* of the sole structure **14***f*.

(196) As shown in FIG. **39**, when the saw-tooth top surface **54***f* and the saw-tooth bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3, of the one or more strips of material **52***f* are arranged opposite respective portions of the top surface **38** f of the first midsole portion **36** f and the bottom surface **48***f* of the second midsole portion **44***f* such that the first midsole portion **36***f*, the second midsole portion 44f and the one or more strips of material 52f are joined together within, for example, a molding tool (as described above at reference numerals **92**, **92***a*, **92***b*), the saw-tooth top surface **54***f* and the saw-tooth bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3 may cause respective portions of the top surface **38***f* of the first midsole portion **36***f* and the bottom surface **48***f* of the second midsole portion **44***f* to be shaped to define a corresponding saw-tooth pattern. In an example, one or both of the saw-tooth top surface **54***f* and the saw-tooth bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3 may shape respective portions of the top surface **38***f* of the first midsole portion **36***f* and the bottom surface **48***f* of the second midsole portion **44***f* from, for example, a substantially flat/planar shape defined by each of the top surface **38** *f* of the first midsole portion **36** *f* and the bottom surface **48** *f* of the second midsole portion **44** *f* to form at least a portion of a non-flat/non-planar saw-tooth pattern corresponding to the saw-tooth pattern defined by each of the top surface **54***f* and the saw-tooth bottom surface **56***f* each strip of material **52***f*.sub.1-**52***f*.sub.3.

(197) In an example, each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* is formed from a flexible material. Each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may include a fabric material, a woven textile, or a knitted textile. In some instances, each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* is porous. Each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may be formed from a polymeric material such as, for example, a thermoplastic polymeric material. An exemplary thermoplastic polymeric material may include, for example, a thermoset polymeric material or the like. In some examples, each strip of material **52***f*.sub.1-**52***f*.sub.3 of the one or more strips of material **52***f* may be a thermoformable material. In some examples, if each strip of material **52***f* is a woven or knit structure, the woven or knit structure may be formed from a polyester yarn. Furthermore, in other examples, if each strip of material **52***f* is a woven or knit structure, each

passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52** may be at least 0.5 mm in length in a largest dimension or at least 1.0 mm in length in a largest dimension. Furthermore, each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52** may permit one or both of the first midsole portion **36** and the second midsole portion **44** to directly contact one another. In other implementations, one or both of the first midsole portion **36***f* and the second midsole portion **44***f* may be injection molded around or through each passage or aperture formed by overlapping members defining the woven or knit structure of each strip of material **52***f*. (198) Referring to FIGS. **40-47**, a foam cutting system for manufacturing any of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* is shown generally at **100**. As shown in FIG. **40**, the system **100** generally includes a receiver portion **102** and an insertion portion **104**. The receiver portion **102** includes a conveyor **106**, a compression device **108** and a separating device **110** having a blade **111**. The insertion portion **104** includes one or more compression dies including a first compression die 112 and a second compression die 114 and one or more compression blocks such as, for example, a first compression block 116 and a second compression block **118**.

- (199) As shown in FIG. **40**, a virgin unit of foamed material F may be secured by the insertion portion **104** prior to being interfaced with the receiver portion **102**. Any of the first midsole portions **36**, **36a**, **36b**, **36c**, **36d**, **36e** and the second midsole portions **44**, **44a**, **44b**, **44c**, **44d**, **44e** is/are derived from the virgin unit of foamed material F. In the example shown at FIGS. **40-47**, the first and second compression dies **112**, **114** and the first and second compression blocks **116**, **118** may be generally shaped for forming the first midsole portion **36c** and the second midsole portion **44c**; however, it is understood that the first and second compression dies **112**, **114** and the first and second compression blocks **116**, **118** may be formed to include any desirable shape, configuration or geometry to form any of the other first midsole portions **36**, **36a 36b**, **36d**, **36e** and second midsole portions **44**, **44a**, **44b**, **44d**, **44e** or any other first midsole portion or second midsole portion that is not shown or described in the present disclosure.
- (200) Referring to FIG. **41**, in an example, prior to interfacing the insertion portion **104** with the receiver portion **102**, a virgin unit of foamed material F is disposed upon the first compression die **112** such that a lower surface F.sub.L of the virgin unit of foamed material F opposes a patterned surface **112**.sub.P of the first compression die **112**. In an example, the patterned surface **112**.sub.P of the first compression die **112** generally corresponds to a sinusoidal pattern having a generally constant amplitude and frequency. Furthermore, the first compression block **116** is disposed upon an upper surface F.sub.U of the virgin unit of foamed material F. The first compression block **116** may be derived from a foamed material that is defined by a hardness or stiffness that is greater than that of the virgin unit of foamed material F.
- (201) As shown in FIGS. **41-42**, the conveyor **106** advances the insertion portion **104** (defined by the first compression die **112** and the first compression block **116**) and the virgin unit of foamed material F secured thereby toward the compression device **108**, which may be defined by a plurality of roller members. The plurality of roller members of the compression device **108** may be spaced apart from an upper surface of the conveyor **106** at a distance D that is less than a combination of the collective thickness of the first compression die **112**, the first compression block **116** and the virgin unit of foamed material F.
- (202) As shown in FIG. **42**, once the insertion portion **104** and the virgin unit of foamed material F are interfaced with the receiver portion **102**, the plurality of roller members compress both of the first compression block **116** and the virgin unit of foamed material F such that the first compression block **116** urges at least a first portion F1 (see, e.g., FIGS. **43-44**) of the virgin unit of foamed material F into a cavity **113** (see, e.g., FIG. **41**) defined by the patterned surface **112**.sub.P of the first compression die **112**. Referring to FIGS. **42-43**, with the first portion F1 of the virgin unit of foamed material F urged into the cavity **113** of the first compression die **112**, the blade **111** of the

separating device 110 separates a second portion F2 (see, e.g., FIGS. 43-44) of the virgin unit of foamed material F from the first portion F1 of the virgin unit of foamed material F. (203) Referring to FIG. **44**, the first portion F1 of the virgin unit of foamed material F, which is defined by the patterned surface **112**.sub.P and cavity **113** of the first compression die **112** may generally define the size, shape and geometry of the second midsole portion **44***a* described above. Furthermore, as shown in FIG. 44, the second portion F2 of the virgin unit of foamed material F may be scrap piece of material defined by a negative impression corresponding to the first portion F1 of the virgin unit of foamed material F/the second midsole portion **44***a* described above. (204) Referring to FIG. **45**, in another example, prior to interfacing the insertion portion **104** with the receiver portion **102**, a virgin unit of foamed material F is disposed upon the second compression die **114** such that a lower surface F.sub.L of the virgin unit of foamed material F opposes a patterned surface **114**.sub.P of the first compression die **112**. In an example, the patterned surface **114**.sub.P of the second compression die **114** generally corresponds to a flat, non-sinusoidal pattern. Furthermore, the first compression block **116** is disposed upon an upper surface Fu of the virgin unit of foamed material F. The first compression block **116** may be derived from a foamed material that is defined by a hardness or stiffness that is greater than that of the virgin unit of foamed material F. Yet even further, a lower surface **118**.sub.L of the second compression block **118** is disposed upon an upper surface **116**.sub.U of the first compression block **116** whereby the lower surface **118**.sub.L of the second compression block **118** is defined by a sinusoidal pattern having a generally constant amplitude and frequency. Like the first compression block **116**, the second compression block 118 may be defined by hardness or stiffness that is greater than that of the virgin unit of foamed material F.

- (205) As shown in FIGS. **45-46**, the conveyor **106** advances the insertion portion **104** (defined by the second compression die **114**, the first compression block **116** and the second compression block **118**) and the virgin unit of foamed material F secured thereby toward the compression device **108**, which may be defined by a plurality of roller members. The plurality of roller members of the compression device **108** may be spaced apart from an upper surface of the conveyor **106** at a distance D that is less than a combination of the collective thickness of the first compression die **112**, the first compression block **116**, the second compression device **118** and the virgin unit of foamed material F.
- (206) As shown in FIG. **46**, once the insertion portion **104** and the virgin unit of foamed material F are interfaced with the receiver portion **102**, the plurality of roller members compress all of the first compression block **116**, the second compression block **118** and the virgin unit of foamed material F such that the first compression block **116** and the second compression block **118** urge at least a first portion F1 (see, e.g., FIGS. **46-47**) of the virgin unit of foamed material F into a cavity **115** (see, e.g., FIG. **45**) defined by the patterned surface **114**.sub.P of the second compression die **114**. Referring to FIGS. **46-47**, with the first portion F1 of the virgin unit of foamed material F urged into the cavity **115** of the second compression die **114**, the blade **111** of the separating device **110** separates a second portion F2 (see, e.g., FIGS. **46-47**) of the virgin unit of foamed material F from the first portion F1 of the virgin unit of foamed material F.
- (207) Referring to FIG. **47**, the first portion F1 of the virgin unit of foamed material F, which is defined by a combination of the lower surface **118**.sub.L of the second compression block **118** and the cavity **115** of the second compression die **114** may generally define the size, shape and geometry of the first midsole portion **36***c* described above. Furthermore, as shown in FIG. **47**, the second portion F2 of the virgin unit of foamed material F may be scrap piece of material defined by a negative impression corresponding to the first portion F1 of the virgin unit of foamed material F/the first midsole portion **36***c* described above.
- (208) Although a foam cutting system **100** has been described above at FIGS. **40-47** for cutting a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like) provided by any of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*,

44*d*, **44***e* other methodologies may be employed for cutting a pattern to either of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e*. In an example, a wire cutting device where, for example, a wire under tension, such as a heated wire is used as a "cutting blade."

(209) Furthermore, although one or both of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions 44, 44a, 44b, 44c, 44d, 44e may be cut for forming a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like), the pattern of one or both of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* may be formed in a non-cutting manner. For example, the one or both of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* may be injection molded around or through each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e*; in such an implementation at least one of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* and the each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* may be pre-formed to define a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like). If, for example, the each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* is pre-formed to define a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like), injection molding of one or both of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions 44, 44a, 44b, 44c, 44d, 44e around, through or around-and-through each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* will result in one or both of the first midsole portions 36, 36a, 36b, 36c, 36d, 36e and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* forming a pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like) corresponding to the preformed pattern of each strip of material 52.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e*. (210) The pattern (e.g., a sinusoidal pattern, a saw tooth pattern or the like) provided by any of the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* contributes to improved performance of the article of footwear **10**, **10***a*, **10***b*, **10***c*, **10***d*, **10***e* when worn by a user. Furthermore, as a result of each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* being captured between the first midsole portions **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portions **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e*, each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* may also contribute to improved performance of the article of footwear **10**, **10***a*, **10***b*, **10***c*, **10***d*, **10***e*.

(211) In an example, the improved performance of the article of footwear may arise from one or more characteristics (e.g. stiffness) of the selected material of at least one of the first midsole portion **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e*, the second midsole portion **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* and each strip of material **52**.sub.1-**52***e*.sub.3, **52***e*.sub.3, **52***e*.sub.1-**52***e*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* as well as the shape (e.g., the pattern, amplitude A and/or frequency) of at least one of the first midsole portion **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e*, the second midsole portion **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e* and each strip of material **52**.sub.1-**52***e*.sub.3, **52***e*.sub.3, **52***e*.sub.3, **52***b*.sub.1-**52***e*.sub.3 of the one or more strips

of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e*. In an example, at least one of the pattern, amplitude A and frequency may contribute to a desired amount of shear strength in one or more regions (e.g., the forefoot region **16**, **16***a*, **16***b*, **16***c*, **16***d*, **16***e* the midfoot region **18**, **18***a*, **18***b*, **18***c*, **18***d*, **18***e* and the heel region **20**, **20***a*, **20***b*, **20***c*, **20***d*, **20***e*) of the sole structure **14**, **14***a*, **14***b*, **14***c*, **14***d*, **14***e* of the article of footwear **10**, **10***a*, **10***b*, **10***c*, **10***d*, **10***e*.

- (212) In some instances, a shorter wavelength defined by, for example, sinusoidal pattern or saw tooth pattern may lead to an improved shear strength of the sole structure **14**, **14***a*, **14***b*, **14***c*, **14***d*, **14***e* in one or more regions (e.g., the forefoot region **16**, **16***a*, **16***b*, **16***c*, **16***d*, **16***e* the midfoot region **18**, **18***a*, **18***b*, **18***c*, **18***d*, **18***e* and the heel region **20**, **20***a*, **20***b*, **20***c*, **20***d*, **20***d*) of the article of footwear **10**, **10***a*, **10***b*, **10***c*, **10***d*, **10***e*. Even further, if, for example, each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* is a stretchable fabric, the sole structure **14**, **14***a*, **14***b*, **14***c*, **14***d*, **14***e* may yield an improved shear stability as a result of each strip of material 52.sub.1-52.sub.3, 52a.sub.1-52a.sub.3, 52b.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* being captured between the first midsole portion **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portion **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e*. Therefore, in an example, each strip of material **52**.sub.1-**52**.sub.3, **52***a*.sub.1-**52***a*.sub.3, **52***b*.sub.1-**52***b*.sub.6, **52***c*.sub.1-**52***c*.sub.3, **52***d*.sub.1-**52***d*.sub.3, **52***e*.sub.1-**52***e*.sub.3 of the one or more strips of material **52**, **52***a*, **52***b*, **52***c*, **52***d*, **52***e* may be placed in tension (arising from the selected pattern of the first midsole portion **36**, **36***a*, **36***b*, **36***c*, **36***d*, **36***e* and the second midsole portion **44**, **44***a*, **44***b*, **44***c*, **44***d*, **44***e*) in response to shear loading imparted by a user's foot so as to provide improved stability in one or a combination of a parallel loading direction and a perpendicular loading direction. (213) The following Clauses provide exemplary configurations of a sole structure and methods of making a sole structure, as described above.
- (214) Clause 1: A sole structure for an article of footwear, the sole structure comprising: a first midsole portion including a first sidewall; a second midsole portion including a second sidewall; and a first sheet disposed between the first midsole portion and the second midsole portion and including a first surface and a second surface formed on an opposite side of the first sheet than the first surface, the first sheet including one or more apertures extending through the first sheet from the first surface to the second surface; wherein the first midsole portion and the second midsole portion are operably connected through the one or more apertures of the first sheet.
- (215) Clause 2: The sole structure of Clause 1, further comprising a second sheet disposed between the first midsole portion and the second midsole portion.
- (216) Clause 3: The sole structure of Clause 2, wherein the second sheet includes a third surface and a fourth surface formed on an opposite side of the second sheet than the third surface.
- (217) Clause 4: The sole structure of Clause 3, further comprising one or more apertures extending through the second sheet from the third surface to the fourth surface.
- (218) Clause 5: The sole structure of any of Clauses 2-4, wherein the second sheet is spaced apart from the first sheet in a first direction.
- (219) Clause 6: The sole structure of Clause 5, wherein the first direction is substantially parallel to a longitudinal axis of the sole structure.
- (220) Clause 7: The sole structure of any of Clauses 2-6, wherein the second sheet and the first sheet each include a longitudinal axis that is substantially perpendicular to a longitudinal axis of the sole structure.
- (221) Clause 8: The sole structure of any of Clauses 2-6, wherein the second sheet and the first sheet each include a longitudinal axis that is formed at an angle relative to a longitudinal axis of the sole structure.
- (222) Clause 9: The sole structure of any of Clauses 2-8, wherein a longitudinal axis of the first sheet and a longitudinal axis of the second sheet are substantially parallel to one another.

- (223) Clause 10: The sole structure of any of Clauses 2-8, wherein a longitudinal axis of the first sheet and a longitudinal axis of the second sheet are convergent.
- (224) Clause 11: The sole structure of Clause 2, wherein the second sheet is in contact with the first sheet.
- (225) Clause 12: The sole structure of Clause 11, wherein the second sheet crosses the first sheet.
- (226) Clause 13: The sole structure of Clause 1, wherein a first distal end of the first sheet is visible at one of a medial side of the sole structure and a lateral side of the sole structure.
- (227) Clause 14: The sole structure of Clause 13, wherein a second distal end of the first sheet is visible at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (228) Clause 15: The sole structure of Clause 1, wherein a first distal end of the first sheet extends from one of a medial side of the sole structure and a lateral side of the sole structure.
- (229) Clause 16: The sole structure of Clause 15, wherein a second distal end of the first sheet extends from the other of the medial side of the sole structure and the lateral side of the sole structure.
- (230) Clause 17: The sole structure of any of the preceding clauses, wherein a first distal end of the first sheet is substantially planar at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the first sheet is substantially planar at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (231) Clause 18: The sole structure of any of Clauses 1-16, wherein a first distal end of the first sheet includes a sinusoidal shape at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the first sheet includes a sinusoidal shape at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (232) Clause 19: The sole structure of any of Clauses 1-16, wherein a first distal end of the first sheet includes a saw-tooth shape at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the first sheet includes a saw-tooth shape at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (233) Clause 20: The sole structure of Clause 1, wherein each aperture of the one or more apertures is at least 3.0 mm in length in a largest dimension.
- (234) Clause 21: The sole structure of Clause 1, wherein each aperture of the one or more apertures is at least 1 mm in length in a smallest dimension.
- (235) Clause 22: The sole structure of Clause 1, wherein each aperture of the one or more apertures is a post-processed aperture defined by material removed from the first sheet.
- (236) Clause 23: The sole structure of Clause 1, wherein the first sheet is woven, knit, or braided for integrally defining each aperture of the one or more apertures.
- (237) Clause 24: The sole structure of Clause 1, further comprising an outsole including a ground-contacting surface.
- (238) Clause 25: The sole structure of Clause 24, wherein the first midsole portion is disposed between the outsole and the first sheet.
- (239) Clause 26: The sole structure of Clause 1, wherein the first midsole portion defines at least one first contact region and the second midsole portion defines at least one second contact region, the at least one first contact region in contact with the at least one second contact region at the one or more apertures.
- (240) Clause 27: The sole structure of Clause 1, wherein the first midsole portion and the second midsole portion are bonded to one another at the one or more apertures.
- (241) Clause 28: The sole structure of Clause 1, wherein a material of the first midsole portion and a material of the second midsole portion are melded at the one or more apertures.
- (242) Clause 29: The sole structure of any of the previous clauses, wherein the first midsole portion includes a first surface in contact with the first sheet and the second midsole portion includes a second surface in contact with the first sheet, the first surface of the first midsole portion and the second surface of the second midsole portion each including a plurality of surface features.

- (243) Clause 30: The sole structure of Clause 29, wherein each of the plurality of surface features has a minimum height or depth of at least 2 mm.
- (244) Clause 31: The sole structure of Clause 29, wherein each of the plurality of surface features has a minimum height or depth of at least 5 mm.
- (245) Clause 32: The sole structure of Clause 29, wherein each of the plurality of surface features has a maximum height or depth of less than 22 mm.
- (246) Clause 33: The sole structure of Clause 29, wherein each of the plurality of surface features has a maximum height or depth of less than 17 mm.
- (247) Clause 34: The sole structure of Clause 29, wherein the height or depth of each of the plurality of surface features ranges from about 2 mm to about 15 mm.
- (248) Clause 35: The sole structure of any of the previous clauses, wherein the first midsole portion includes a first series of peaks and a first series of valleys and the second midsole portion includes a second series of peaks and a second series of valleys.
- (249) Clause 36: The sole structure of Clause 35, wherein the first series of peaks oppose the second series of valleys and the second series of peaks oppose the first series of valleys.
- (250) Clause 37: The sole structure of Clause 35, wherein the first sheet conforms to the shape of the first series of peaks and the first series of valleys and conforms to the shape of the second series of peaks and the second series of valleys.
- (251) Clause 38: The sole structure of any of Clauses 35-37, wherein the first series of peaks, the first series of valleys, the second series of peaks, and the second series of valleys cooperate to provide the first sheet with a side surface having a sinusoidal or saw-tooth configuration.
- (252) Clause 39: The sole structure of any of the preceding clauses, further comprising an adhesive disposed between the first midsole portion and the second midsole portion, the adhesive being applied to at least one of the first midsole portion, the second midsole portion, the first surface of the sheet, and the second surface of the sheet.
- (253) Clause 40: The sole structure of any of the preceding clauses, wherein the first sheet comprises a mesh textile defining the one or more apertures in a structure of the mesh.
- (254) Clause 41: The sole structure of Clause 40, wherein the one or more apertures are each at least 0.5 mm in length in a largest dimension.
- (255) Clause 42: The sole structure of Clause 40, wherein the one or more apertures are each at least 1.0 mm in length in a largest dimension.
- (256) Clause 43: The sole structure of Clause 40, wherein the one or more apertures are each less than 10 mm in length in a largest dimension.
- (257) Clause 44: The sole structure of Clause 40, wherein the one or more apertures are each less than 5.0 mm in length in a largest dimension.
- (258) Clause 45: The sole structure of Clause 40, wherein the one or more apertures are each less than 3.0 mm in length in a largest dimension.
- (259) Clause 46: The sole structure of Clause 40, wherein the one or more apertures each have a length in a largest dimension from about 0.5 mm to about 3.0 mm.
- (260) Clause 47: The sole structure of any of the preceding clauses, wherein the first sheet is a textile configured to stretch in in only one dimension.
- (261) Clause 48: The sole structure of any of the preceding clauses, wherein the first sheet is a textile configured to stretch in two dimensions.
- (262) Clause 49: The sole structure of any of the preceding clauses, wherein the first sheet is an embroidered textile.
- (263) Clause 50: The sole structure of Clause 49, wherein the embroidered textile includes a first embroidered region and a second embroidered region, the first embroidered region having a different concentration of fibers than the second embroidered region.
- (264) Clause 51: The sole structure of Clause 1, wherein the first sheet includes embroidered regions disposed at discrete locations of the sheet.

- (265) Clause 52: The sole structure of any of the preceding clauses, wherein at least one of the first midsole portion and the second midsole portion is formed from a polymeric material having a foam structure.
- (266) Clause 53: The sole structure of Clause 52, wherein the polymeric material having a foam structure is an injection-molded foam.
- (267) Clause 54: The sole structure of Clause 52, wherein the polymeric material having a foam structure is a compression-molded foam.
- (268) Clause 55: An article of footwear incorporating the sole structure of any of the preceding claims.
- (269) Clause 56: A method of manufacturing an article of footwear, comprising:providing the sole structure of any of Clauses 1-55; providing an upper for an article of footwear; affixing the sole structure and the upper to each other to form the article of footwear.
- (270) Clause 57: A method of making a sole structure for an article of footwear, the method comprising: providing a first midsole portion including a first sidewall; providing a second midsole portion including a second sidewall; positioning a first sheet of material between the first midsole portion and the second midsole portion having a first surface and a second surface formed on an opposite side of the first sheet than the first surface, the first sheet including one or more apertures extending through the sheet from the first surface to the second surface; and connecting the first midsole portion and the second midsole portion through the one or more apertures of the first sheet. (271) Clause 58: The method of Clause 57, further comprising positioning a second sheet between the first midsole portion and the second midsole portion.
- (272) Clause 59: The method of Clause 58, wherein positioning a second sheet includes providing a second sheet having a third surface and a fourth surface formed on an opposite side of the second sheet than the third surface.
- (273) Clause 60: The method of Clause 59, further comprising providing one or more apertures that extend through the second sheet from the third surface to the fourth surface.
- (274) Clause 61: The method of any of Clauses 58-60, further comprising spacing the second sheet apart from the first sheet in a first direction.
- (275) Clause 62: The method of Clause 61, wherein spacing the second sheet apart from the first sheet in a first direction includes spacing the second sheet apart from the first sheet in a direction that is substantially parallel to a longitudinal axis of the sole structure.
- (276) Clause 63: The method of any of Clauses 58-62, further comprising providing the second sheet and the first sheet with a longitudinal axis that is substantially perpendicular to a longitudinal axis of the sole structure.
- (277) Clause 64: The method of any of Clauses 58-62, further comprising providing the second sheet and the first sheet with a longitudinal axis that is formed at an angle relative to a longitudinal axis of the sole structure.
- (278) Clause 65: The method of any of Clauses 58-62, further comprising positioning a longitudinal axis of the first sheet and a longitudinal axis of the second sheet substantially parallel to one another.
- (279) Clause 66: The method of any of Clauses 58-62, further comprising positioning a longitudinal axis of the first sheet and a longitudinal axis of the second sheet convergent to one another.
- (280) Clause 67: The method of Clause 58, further comprising placing the second sheet in contact with the first sheet.
- (281) Clause 68: The method of Clause 67, further comprising crossing the second sheet and the first sheet.
- (282) Clause 69: The method of Clause 57, further comprising exposing a first distal end of the first sheet at one of a medial side of the sole structure and a lateral side of the sole structure.
- (283) Clause 70: The method of Clause 69, further comprising exposing a second distal end of the

- first sheet at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (284) Clause 71: The method of Clause 57, further comprising extending a first distal end of the first sheet from one of a medial side of the sole structure and a lateral side of the sole structure. (285) Clause 72: The method of Clause 71, further comprising extending a second distal end of the first sheet from the other of the medial side of the sole structure and the lateral side of the sole structure.
- (286) Clause 73: The method of any of the preceding clauses, further comprising providing a first distal end of the first sheet with a substantially planar configuration at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a substantially planar configuration at the other of the medial side of the sole structure and the lateral side of the sole structure.
- (287) Clause 74: The method of any of Clauses 57-72, further comprising providing a first distal end of the first sheet with a sinusoidal shape at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a sinusoidal shape at the other of the medial side of the sole structure and the lateral side of the sole structure. (288) Clause 75: The method of any of Clauses 57-72, further comprising providing a first distal end of the first sheet with a saw-tooth shape at one of a medial side of the sole structure and a lateral side of the sole structure and providing a second distal end of the first sheet with a saw-tooth shape at the other of the medial side of the sole structure and the lateral side of the sole structure. (289) Clause 76: The method of Clause 57, further comprising providing each aperture of the one or more apertures with a length that is at least 3.0 mm in a largest dimension.
- (290) Clause 77: The method of Clause 57, further comprising providing each aperture of the one or more apertures with a length that is at least 1 mm in a smallest dimension.
- (291) Clause 78: The method of Clause 57, further comprising forming each aperture of the one or more apertures by removing material from the first sheet.
- (292) Clause 79: The method of Clause 57, wherein positioning the first sheet includes positioning a sheet that is woven, knit, or braided for integrally defining each aperture of the one or more apertures.
- (293) Clause 80: The method of Clause 57, further comprising providing an outsole including a ground-contacting surface.
- (294) Clause 81: The method of Clause 80, further comprising positioning the first midsole portion between the outsole and the first sheet.
- (295) Clause 82: The method of Clause 57, wherein providing a first midsole portion includes providing a first midsole portion that defines at least one first contact region and providing a second midsole portion includes providing a second midsole portion that defines at least one second contact region, the at least one first contact region in contact with the at least one second contact region at the one or more apertures.
- (296) Clause 83: The method of Clause 57, further comprising bonding the first midsole portion and the second midsole portion to one another at the one or more apertures.
- (297) Clause 84: The method of Clause 57, further comprising melding a material of the first midsole portion and a material of the second midsole portion at the one or more apertures.
- (298) Clause 85: The method of any of the previous clauses, further comprising contacting a first surface of the first midsole portion with the first sheet and contacting a second surface of the second midsole portion with the first sheet, the first surface of the first midsole portion and the second surface of the second midsole portion each including a plurality of surface features.
- (299) Clause 86: The method of Clause 85, further comprising providing each of the plurality of surface features with a minimum height or depth of at least 2 mm.
- (300) Clause 87: The method of Clause 85, further comprising providing each of the plurality of surface features with a minimum height or depth of at least 5 mm.

- (301) Clause 88: The method of Clause 85, further comprising providing each of the plurality of surface features with a maximum height or depth of less than 22 mm.
- (302) Clause 89: The method of Clause 85, further comprising providing each of the plurality of surface features with a maximum height or depth of less than 17 mm.
- (303) Clause 90: The method of Clause 85, further comprising providing each of the plurality of surface features with a height or depth that ranges from about 2 mm to about 15 mm.
- (304) Clause 91: The method of any of the previous clauses, further comprising providing the first midsole portion with a first series of peaks and a first series of valleys and providing the second midsole portion with a second series of peaks and a second series of valleys.
- (305) Clause 92: The method of Clause 91, further comprising opposing the first series of peaks with the second series of valleys and opposing the second series of peaks with the first series of valleys.
- (306) Clause 93: The method of Clause 91, further comprising conforming the first sheet to the shape of the first series of peaks and the first series of valleys and conforming the first sheet to the shape of the second series of peaks and the second series of valleys.
- (307) Clause 94: The method of any of Clauses 91-93, further comprising providing the first sheet with a side surface having a sinusoidal or saw-tooth configuration.
- (308) Clause 95: The method of any of the preceding clauses, further comprising positioning an adhesive between the first midsole portion and the second midsole portion, the adhesive being applied to at least one of the first midsole portion, the second midsole portion, the first surface of the sheet, and the second surface of the sheet.
- (309) Clause 96: The method of any of the preceding clauses, wherein positioning a first sheet includes positioning a first sheet comprising a mesh textile defining the one or more apertures in a structure of the mesh.
- (310) Clause 97: The method of Clause 96, further comprising providing each of the one or more apertures with a length of at least 0.5 mm in a largest dimension.
- (311) Clause 98: The method of Clause 96, further comprising providing each of the one or more apertures with a length of at least 1.0 mm in a largest dimension.
- (312) Clause 99: The method of Clause 96, further comprising providing each of the one or more apertures with a length that is less than 10 mm in a largest dimension.
- (313) Clause 100: The method of Clause 96, further comprising providing each of the one or more apertures with a length that is less than 5.0 mm in a largest dimension.
- (314) Clause 101: The method of Clause 96, further comprising providing each of the one or more apertures with a length that is less than 3.0 mm in a largest dimension.
- (315) Clause 102: The method of Clause 96, further comprising providing each of the one or more apertures with a length from about 0.5 mm to about 3.0 mm in a largest dimension.
- (316) Clause 103: The method of any of the preceding claims, wherein providing a first sheet includes providing a first sheet that is a textile configured to stretch in in only one dimension.
- (317) Clause 104: The method of any of the preceding clauses, wherein providing a first sheet includes providing a first sheet that is a textile configured to stretch in two dimensions.
- (318) Clause 105: The method of any of the preceding clauses, wherein providing a first sheet includes providing a first sheet that is an embroidered textile.
- (319) Clause 106: The method of Clause 105, wherein providing an embroidered textile includes providing a textile having a first embroidered region and a second embroidered region, the first embroidered region having a different concentration of fibers than the second embroidered region.
- (320) Clause 107: The method of Clause 57, further comprising providing the first sheet with embroidered regions disposed at discrete locations of the sheet.
- (321) Clause 108: The method of any of the preceding clauses, further comprising forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure.

- (322) Clause 109: The method of Clause 108, wherein forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure includes incorporation of an injection-molded foam.
- (323) Clause 110: The method of Clause 108, wherein forming at least one of the first midsole portion and the second midsole portion from a polymeric material having a foam structure includes incorporation of a compression-molded foam.
- (324) Clause 111: An article of footwear incorporating the sole structure of any of the preceding clauses.
- (325) Clause 112: A method of manufacturing an article of footwear, comprising: providing the sole structure of any of Clauses 57-111; providing an upper for an article of footwear; affixing the sole structure and the upper to each other to form the article of footwear.
- (326) The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or feature of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims

- 1. An article of footwear comprising: an upper including a medial sidewall and a lateral sidewall spaced from the medial sidewall; and a sole structure, comprising: a first midsole portion including a first sidewall and a top surface; a second midsole portion including a second sidewall and a bottom surface; a first strip disposed between the top surface of the first midsole portion and the bottom surface of the second midsole portion and including a first surface and a second surface formed on an opposite side of the first strip than the first surface, a portion of the first surface of the first strip extending along the second sidewall of the second midsole portion and contacting at least one of the medial sidewall and the lateral sidewall of the upper; and a second strip disposed between the top surface of the first midsole portion and the bottom surface of the second midsole portion and including a first surface and a second surface formed on an opposite side of the second strip than the first surface of the second strip, the second strip being spaced apart from the first strip along a longitudinal axis of the sole structure, a portion of the first surface of the second strip extending along the second sidewall of the second midsole portion and contacting at least one of the medial sidewall and the lateral sidewall of the upper.
- 2. The sole structure of claim 1, wherein first strip and the second strip are substantially parallel to one another.
- 3. The sole structure of claim 1, wherein the first strip and the second strip each includes a longitudinal axis that is substantially perpendicular to a longitudinal axis of the sole structure.
- 4. The sole structure of claim 1, wherein the first strip and the second strip each includes a longitudinal axis that extends substantially non-perpendicularly to a longitudinal axis of the sole structure.
- 5. The sole structure of claim 1, wherein at least one of the first strip and the second strip is formed from a mesh textile.
- 6. The sole structure of claim 1, wherein a first distal end of at least one of the first strip and the second strip is visible at one of a medial side of the sole structure and a lateral side of the sole structure.
- 7. The sole structure of claim 1, wherein a first distal end of at least one of the first strip and the second strip is substantially planar at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the at least one of the first strip and the second strip is

substantially planar at the other of the medial side of the sole structure and the lateral side of the sole structure.

- 8. The sole structure of claim 1, wherein a first distal end of at least one of the first strip and the second strip includes a sinusoidal shape at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the at least one of the first strip and the second strip includes a sinusoidal shape at the other of the medial side of the sole structure and the lateral side of the sole structure.
- 9. The sole structure of claim 1, wherein a first distal end of at least one of the first strip and the second strip includes a saw-tooth shape at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the at least one of the first strip and the second strip includes a saw-tooth shape at the other of the medial side of the sole structure and the lateral side of the sole structure.
- 10. The sole structure of claim 1, wherein the first strip and the second strip conform to a shape of a first series of peaks and a first series of valleys of the first midsole portion and conform to a shape of a second series of peaks and a second series of valleys of the second midsole portion.
- 11. An article of footwear comprising: an upper including a medial sidewall and a lateral sidewall spaced from the medial sidewall; and a sole structure, comprising: a first midsole portion including a first sidewall and a top surface; a second midsole portion including a second sidewall and a bottom surface; a first strip disposed between the top surface of the first midsole portion and the bottom surface of the second midsole portion and including a first surface and a second surface formed on an opposite side of the first strip than the first surface, a portion of the first surface of the first strip extending along the second sidewall of the second midsole portion and contacting at least one of the medial sidewall and the lateral sidewall of the upper; and a second strip disposed between the top surface of the first midsole portion and the bottom surface of the second midsole portion and including a first surface and a second surface formed on an opposite side of the second strip than the first surface of the second strip, the second strip crossing the first strip, a portion of the first surface of the second strip extending along the second sidewall of the second midsole portion and contacting at least one of the medial sidewall and the lateral sidewall of the upper.

 12. The sole structure of claim 11, wherein the first strip and the second strip each includes a longitudinal axis that extends substantially non-perpendicularly to a longitudinal axis of the sole
- 13. The sole structure of claim 11, wherein at least one of the first strip and the second strip is formed from a mesh textile.
- 14. The sole structure of claim 11, wherein a first distal end of at least one of the first strip and the second strip is visible at one of a medial side of the sole structure and a lateral side of the sole structure.
- 15. The sole structure of claim 11, wherein a first distal end of at least one of the first strip and the second strip is substantially planar at one of a medial side of the sole structure and a lateral side of the sole structure and a second distal end of the at least one of the first strip and the second strip is substantially planar at the other of the medial side of the sole structure and the lateral side of the sole structure.