- Welcome to Algorithm Design.
- Class times: M, F 8:30am 10:00am IST.
- Instructors: Sanjeer Duividi, Rajir Gandhi
- Teaching assistants: Mona Gandhi, Srushti Nandu
- Piatza
- Recipe for Success

Proofs.

Algorithms.

Mathematical logic-

Proposition: Stut that is either True or felse.

2+2=5

P, q: simple propositions

P: is a proposition that is False if
p is True & it is True 0.w.

procesion prog: True, if both programe True false, o.w.

PVq: True, if at least one of parque
true & false, o.w.

PAQ: True, if exactly one & pavq is
True & falx, o.w.

p ⇒> 9: "It p then 9".

Bi conditional "if and only if".

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

 \mathbf{r}_{i} , \mathbf{r}_{i} , \mathbf{r}_{i}

P	9	P => 9	2=> }	9 => 9
T	T	I	T	T
T	F	F	T	F
F	T	T	F	F
	F	T	T	

Logical Equivalence.

Contrapositu 2 P ⇒ 2.

9	9	P	1	P 3 2	$\overline{q} \Rightarrow \overline{p}$
1-11-44	TITT	F.F T	F.TPT	F T T	T T T

, 1 / / / / /

Tautology: Strut that is always true.

Contradiction: Stut that is always false.

<u>5</u> :	7 =	P >			
P	P	C	P	C	
丁	£	F	T		
F	丁	C	F		

Quantifiers.

Ex:
$$\exists x \in \mathbb{Z}$$
 s.t. $2 \mid x$ and $2 \mid x+1$
 \Rightarrow evenly

 $\exists x \in \mathbb{Z}$
 $\Rightarrow \exists x \in \mathbb{Z}$

Negation!

 $\forall x \in \mathbb{Z}$ 2 $\nmid x$ or $2 \nmid x \neq 1$.

Proofs.

n is even iff I an integn k s.t n=2k.

n is odd iff I an integer k s.t.

N = 2k+1.

An integr n is prime iff n>1 and for all positive integrs r&s if n=r.s,

then rel or Sel, Otherwip, N's

Composte.

 $\lceil x \rceil = n \iff n \leq x \iff n \neq 1$, where $n \in an \text{ int}$.

[6.1] = 7

[7]=7

[6.9] = 7

[x]: largest mtep that is $\leq x$.

A real no. is rational iff it

Can be expressed as a vation of

two regress st. the demonishment is

non-tens.

$$\Upsilon = \frac{P}{2}, \quad P, \mathcal{E} \in \mathbb{Z}, \quad 2 \neq 0.$$

Es: Porne: if the sum of two integers is even then so is their difference.

$$\frac{\text{Proof}}{18-6} = 24$$
 $18-6 = 12$

bogus!

Let x & y be arbitrary, but particular integers. S.t. xx y is even.

Can I: 2 + y i even.

By def Some x+j=dk, fundt wtepsk. x+j-ly=2k-ly

x-4 = 2 (K-4)

x-j's even become

k lj æn intepns &

Liffmenn J two intepns
'is an integns.

Can I at J & odd.
Vacuously frue.

Ex: Prove that for all integers

n, if n is odd then $n^2 + n + 1$ is odd.

Proof: Let n be arbitrary but particula integn sit. n is odd. By defn,

n = 2k+1, for some at k. $n^2 + n+1 =$ $(41, 1)^2 + (2)^2 + (1)^2 + 1$

(メドナリ) T(ベアリソ)

$$= (4 k^{2} + 4 k + 1) + (2 k + 1) + 1$$

$$= 2(2k^2 + 3k + 1) + 1$$

$$N^2+N+1$$
 2 $2l+1$, when $l=2$ $2k^2+3k+1$

van int.

-, n2 fn+1 is odd.