MATERIAUX?

Céramiques

LIAISONS ENTRE ATOMES

Les liaisons assurent la cohésion du matériau

- Liaison covalente: mise en commun d'un doublet d'e⁻ (polymères, élastomères).
 La liaison covalente est dirigée → fortes contraintes géométriques sur les empilements atomiques.
- Liaison ionique: attraction électrostatique entre deux ions (cas classique de NaCl)
 La liaison ionique est forte et non dirigée. Ex. Al2O3, MgO et ZrO2.
- Liaison métallique: la mise en commun d'un ou de plusieurs électrons dans un nuage « délocalisé ». métaux = assemblage d'ions positifs dans un « gaz d'e-». Liaison non dirigée et conduit à des assemblages compacts.
- Liaison de Van der Waals C'est une liaison faible, due à l'attraction électrostatique entre doublets électrons-noyau. Ex. polymères organiques, gaz rares à basse T°.
- Liaison hydrogène ← résonance entre deux positions d'un proton entre deux anions voisins fortement électronégatifs (O2-, F-), caractère ionique marqué. (ex. l'eau, la glace, les sels hydratés, les polymères organiques et inorganiques.

Définitions

Liasons ioniques - Liasons covalentes

Matériaux cristallins∵ordre à longue distance

Composition

éléments métalliques Mg. Al, Ti...

+

él éments non métalliques

O: oxydes

Nontrures Coarbures

F: flurorures

Forme

agglomérat de grains de poudre soudés (frittés) entre eux pour donner une pièce massive et bien densifiée

A),O), - Establish beina für Konmische Terrebusch ind Sammoorkelle

Céramiques naturelles : les pierres

grès surtout SiO₂

granit silicates d'alumine

calcaire surtout CaCO₃

marbre surtout CaCO3

Premières céramiques synthétiques : (souvent vitrifiées)

porcelaine

faïence

potenie

briques

à base d'argiles aluminosilicates hydratés m élangés à d'autres minéraux inertes

 $quartz = SiO_2 kaolin = Al_2(Si_2O_5)(OH)_4$

Les céramiques techniques

à base d'oxydes

réfractaires et abrasifs Al₂O₃, ZrO₂, MgO

ferrites: $\mathrm{MFe_2O_4}$ manganites: $\mathrm{Mn_{G-x)}M_xO_4}$

magnétiques :

pour le nucléaire : UO

ferroélectriques: LiNbO₃, Pb($Z_{r_x}T_{1.x}$)O₃

piézo él ectriques : ZnO

zéolithes $M_{xh}[(A1O_2)_x(SiO_2)_y]_mH_2O$ à porosité

(membrares, tamis moléculaires, échangeurs de cations, applications catalytiques)

biocéramiques : Al₂O₃

Les céramiques techniques

à base de nitrures et oxynitrures

réfractaires: Si₂N₄

à base de carbures

abrasifs: SiC, TiC

à base de borures

réfractaires: TiB₂,

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

Verres

Liasons ioniques - Liasons covalentes

éléments métalliques Mg, Al, Ti...

él éments non métalliques

O: oxydes N: nitrures C: carbures

F : flurorures

pas d'ordre à longue distance

Verre = Solide non cristallin - Matériau amorphe

Substances vitrifiables

groupes V et VI : P, S et Se	
léments	

Oxydes

SiO, GeO, BiO, PiO, AsiO, StyO,

importance industrielle: 70 SiO2, 20 Na₂O₃, 10 CaO

AsS, AsSe, PSe, GeSe - transparents dans 1°IR

Chalcogénures

Halogénures

 BeF_2 faible indice de réfraction - lasers de puissance ZrF_4 transparent dans l'IR

ZnCl

Sels fondus

mélanges de nitrates K(NOத)-Ca(NOது sulfates KHSO4, fluoroborates etc...

Composés organiques MeOH, Etch

polyéthylène, chlorure de polyvinyl, polystyrène, etc... (verres or garn ques) Polymères organiques

alliages Pd Si, Fe B, Fe Ni P B, Ni Nb, Cu Zn

Métaux

Définitions

🍮 macromolécule - répétition d'un motif constitutif

e.g. : $\operatorname{motif} = -\operatorname{CH}_2$

polyéthylène

- liaisons chimiques covalentes à l'intérieur des chaînes 0
- cohésion entre macromolécules par <mark>liaisons physiques</mark> (van der Waals ou H) **o**
- parfois pont covalent entre chânes

Propriétés

coefficient de frôttement et d'adhésion faibles tenue haute température, (poëles, joints, etc...) polytétrafluoroéthylène (FTFE)

quelques exemples (suite)

Plexiglas plaques transparentes hublots d'avions, etc... polyméthacrylate de méthyle (PMMA)

quelques exemples (suite)

Propriété	Métaux	Céramiques	Polymères
Densité o lkg/m³1	8000	4000	1000
	(200022000)	(200018000)	(9002000)
Dilatation thermisms ~ [1/K]	10.10	3.10°	100.10-8
Dualation menimque a [1/15]	(1·10° 100·10°)	(1·10° 20·10°)	(50-10° 500-10°)
V2	200	006	1500
Capacite caloningue $c_p[J/(\kappa g. \kappa)]$	(1001000)	(5001000)	(1000.3000)
	100	1	1
Conductivite merindue x [w/(m/x)]	(10 500)	(0.1 20)	(0.1 20)
Température de fusion ou de transition	1000	2000	400
vitreuse $T_{\mathrm{m}}\left[\mathrm{K}\right]$	(2503700)	(10004000)	(350600)
Module d'élasticité, module de Young E	200	200	1
[GPa]	(20400)	(100500)	(10 ⁻³ 10)
	0.3	0.25	0.4
Coefficient de Poisson	(0.25.0.35)	(0.20.3)	(0.3.0.5)
	6	100	20
Contrainte à rupture or [MPa]	200	(10400 tract.)	(10150 tract.)
	(100:5500)	(505000 compr.)	(10350 compr.)
Dureté	Moyenne	Haute	Basse
Usinabilité	Bonne	Très mauvaise	Très Bonne
Résistance à l'impact	Bonne	Mauvaise	Très Mauvaise
Résistance au fluage thermique	Moyenne	Excellente	Très mauvaise
Conductivité électrique	Haute	Très faible	Très faible
Résistance à la corrosion	Moyenne	Excellente	Bonne

Contraintes et déformations

Notions élémentaires

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

Une **déformation** se produit lorsque les matériaux sont soumises à des **contraintes**.

Les types de déformations

Essai de traction

Striction

Un essai de traction permet de mesurer le degré de résistance à la rupture d'un matériau quelconque.

On enregistre l'allongement et la force appliquée, que l'on convertit ensuite en déformation et contrainte.

Essai de traction

$$S_0 = \frac{\pi D^2}{4}$$

$$\sigma = \frac{F}{S}$$

$$\varepsilon = \frac{\Delta l}{l_0}$$

L'essai de traction donne plusieurs valeurs importantes :

- Module de Young E, ou module d'élasticité longitudinale ;
- Limite élastique Re ou σe, qui sert à caractériser un domaine conventionnel de réversibilité ;
- Limite à la rupture Rm ou σm ;
- Allongement à la rupture A, qui mesure la capacité d'un matériau à s'allonger sous charge avant sa rupture, propriété intéressante dans certaines applications;
- Coefficient de Poisson, qui chiffre la variation de volume induite par la déformation des matériaux dans le domaine élastique.

Détermination de Re

Fig. 2.5 Stress-strain diagram for determination of yield strength by offset method

Figure 2-6 — Stress-strain diagram for determination of yield strength by 0.5% strain extensions under load method.

Source: Auto Steel Partnerhip web

Aciers doux - traction

La ductilité

- Qualité des matériaux à être déformé de façon permanente sans se rompre.
- La ductilité d'un matériau se mesure par son allongement à la rupture (A%) ou par la striction à la rupture (Z%)

Allongement à la rupture

$$A\% = \frac{L_f - L_0}{L_0} \cdot 100$$

Striction à la rupture

$$Z\% = \frac{S_0 - S_f}{S_0} \cdot 100$$

 S_0 (S_f) sections initiale (finale) de l'éprouvette

Déformations réelles

Les déformations sont très élevées lors de la mise en forme par déformation plastique:. Pour mieux les mesurer, on utilise les déformations réelles définies :

Déformations réelles

$$\varepsilon = \int_{L_0}^{L_f} \frac{dl}{l} = ln \left(\frac{L_f}{L_0} \right)$$

conversions

$$\varepsilon = ln(1+e)$$

$$\sigma_r = \sigma_{eng} \left(1 + e \right)$$

e: déformation calculée ou d'ing.

Engineering (ksi) Stress Basses def. e < 20%, $e = \varepsilon$ Engineering (Percent)

Figure 2-8 — Comparison of true stress-true strain curve with an engineering stress-strain curve. True stress-strain shows continuous increase to failure.

Relations σ - ε ; échelle réelle

Coefficient d'écrouissabilité (n)

- Formabilité: $\sigma = K \epsilon^n$.
- n est l'exposant d'écrouissabilité. Il indique l'habilité du matériau à distribuer uniformément les déformation lors du formage.

Coefficient de poisson (v)

v: rapport entre la déformation latérale et la déformation axiale

$$v = -\varepsilon_x/\varepsilon_z = -\varepsilon_y/\varepsilon_z$$

$$v = \frac{(d_0 - d)/d_0}{(L - L_0)/L_0}$$

do et d sont respectivement le diamètre initial et le diamètre sous charge, Lo et L la longueur initiale et la longueur sous charge. v est défini dans le domaine élastique et il mesure le rapport entre la contraction transversale unitaire et l'allongement axiale unitaire.

Isotropie vs anisotropie

 Isotropie : un matériaux est dit isotrope si ses propriétés sont conservées dans les 3 directions de l'espace.

Ténacité

l'énergie mécanique qu'est en mesure d'accumuler un matériau jusqu'à la rupture

Un matériau est tenace s'il est résistant et ductile

On compte la ténacité par unité de volume :

• W =
$$1/(S_0 \cdot I_0) \cdot \int F \cdot d(\Delta I) = \int \sigma \cdot d\epsilon$$

Energie élastique stockée

La courbe a pour équation:

$$\sigma = E \varepsilon$$

• La surface du triangle grisé est:

$$U_{\acute{e}l} = \frac{1}{2}\sigma \times \epsilon$$

Energie élastique stockée

$$U_{\ell l} = \frac{1}{2} \sigma \times \varepsilon \qquad \qquad \frac{N}{m^2} \times \frac{m}{m} = \frac{J}{m^3}$$

La densité d'énergie élastique stockée est donc:

$$\mathbf{U}_{\text{\'e}1} = \frac{\mathbf{\sigma}^2}{2\mathbf{E}}$$

Compression et cisaillement

 Des forces de compression, cisaillement et de torsion peuvent également déformer le matériau d'une manière plastique. Le comportement obtenu ressemble à celui de la traction, excepté que pour la compression on n'observe pas de striction

module de cisaillement

• Le **module de cisaillement**, ou *module de glissement*, est une grandeur physique intervenant dans la caractérisation des déformations causées par des efforts de cisaillement. Pour un matériau isotrope, il est relié au module d'élasticité *E* et au coefficient de Poisson v par l'expression

$$G = \frac{E}{2(1+v)}$$

Mesures de dureté par pénétration

Principe: un pénétrateur indéformable laisse une empreinte dans le matériau à tester. On mesure les dimensions de l'empreinte et on en déduit la dureté.

Dureté Brinell

- Faire pénétrer un pénétrateur en forme de bille dans un métal
- HB: dureté Brinell
- D: diamètre du pénétrateur (mm)
- d1 et d2 : mesure de l'empreinte réalisée à 90 (mm)
- *h* : profondeur (mm)
- F: charge d'essai (N)

$$H_{B} = Cte \frac{ch \arg e \ de \ l'essai}{Aire \ de \ l'empre int \ e}$$
$$= 0.102 \frac{F}{\pi \cdot D(D - \sqrt{D^{2} - d^{2}})}$$

, avec
$$d = \frac{d_1 + d_2}{2}$$

dureté Vickers

- pointe pyramidale normalisée en diamant de base carrée et d'angle au sommet entre face égal à 136°.
 L'empreinte a donc la forme d'un carré.
- HV: dureté Vickers
- d1 et d2 : mesure de l'empreinte réalisée à 90° (2 diagonales du carré de l'empreinte)(mm)
- F: charge d'essai (N)

$$H_V = Cte \ \frac{ch \arg e \ de \ l'essai}{Aire \ de \ l'empre int \ e} = 0.189 \ \frac{F}{d^2}$$
, avec $d = \frac{d_1 + d_2}{2}$

Méthodes de caractérisation de la microstructure

Microscope Optique

- -Miroir : réfléchit la lumière
- -Diaphragme : ouverture de diamètre variable
- -Platine porte-échantillon : où l'on pose l'échantillon. Mobile → balayer l'échantillon
- -Objectifs → grossissement.
- -Mise au point grossière et fine : focalisation → image nette
- -Oculaire: Image reposante pour l'oeil;
- L'oculaire peut être remplacé par un appareil photographique, par une caméra
- vidéo ou une caméra CCD pour faire une acquisitionnumérique.

Differents signals obtenus par l'interaction des electrons avec la matière dans un **microscope** électronique

Diffraction

 Le pattern resultant de la diffraction est donné par la loi de Braggs,

$$n\lambda = 2d\sin\theta$$

d: distance interplanaire

θ: angle d'incidence (angle de Bragg)

n: Nombre entier (0, 1, 2, 3)

λ: Longueur d'onde de l'electron incident

Note:

En diffraction, On utilise le **Réseau Réciproque** dans lequel un ensemble de plan du réseau est représenté simplement par des points.

Comme les plans cristallographiques peuvent être repérés par les indices de Miller {hkl}, on peut indexer les pics de diffraction selon ces indices.