Propagation guidée sur une structure métallique planaire

On considère la structure suivante, dans laquelle les deux plans positionnés en $x=\pm a$ sont parfaitement conducteurs. Le milieu qui les sépare est l'air, caractérisé par sa permittivité absolue ϵ_0 et sa perméabilité absolue μ_0 .

On cherche à propager une onde électromagnétique à la fréquence f (pulsation ω), à l'intérieur de cette structure (pour $-a \le x \le a$), dans la direction des z croissants.

- 1 Considérant les qualités de la structure mise en jeu, que peut-on dire sur la constante de propagation ?
- 2-A partir de la relation de dispersion $K_c^2 = \Gamma^2 + \epsilon_{ca} \mu_c \omega^2$, à appliquer aux conditions du problème, et dans le cas où la propagation est possible, discuter sur le type de K_c^2 d'abord, puis de K_c .

Parmi les différents modes susceptibles de se propager sur cette structure, on va considérer uniquement les modes pour lesquels le champ électrique n'a qu'une composante, suivant Oy. On peut remarquer qu'il s'agit de modes TE particuliers.

- 3 Considérant la forme du champ électrique, et écrivant l'équation de Maxwell $\operatorname{div} \vec{\mathcal{D}} = 0$, montrer que le champ électrique est indépendant de y.
- 4 A partir d'une autre des équations de Maxwell, montrer qu'on a forcément $\mathcal{H}_{v}(x, y, z) = 0$.

5 – Donner alors les relations qui lient \mathcal{H}_x et \mathcal{H}_z à \mathcal{E}_v .

En déduire que \mathcal{H}_{x} et \mathcal{H}_{z} sont indépendants de y.

6 – Ecrire l'équation d'onde vérifiée par la composante $h_z(x,y)$ du champ électromagnétique, telle que :

$$\mathcal{H}_{z}(x,y,z) = h_{z}(x,y)e^{\pm\Gamma z}$$
.

- 7 Résoudre cette équation de propagation vérifiée par h_z . On fera intervenir les constantes d'intégration nécessaires à l'écriture de la solution.
- 8 Utilisant les conditions aux limites sur le champ magnétique, peut-on, d'emblée, déterminer les constantes d'intégration mises en jeu dans la forme de h_z ?
- 9 Utilisant les équations obtenues à la 5 ème question, déterminer \mathcal{E}_{y} , puis \mathcal{H}_{x} .
- 10 Ecrire les conditions aux limites nécessaires à la détermination des constantes d'intégration introduites à la question 7.
- 11 On peut remarquer qu'on obtient un système de deux équations à deux inconnues. En cherchant à éviter le cas où les deux constantes d'intégration sont nulles, on obtient l'expression de la constante K_c .

Montrer que K_c peut alors s'écrire sous la forme $K_c=\frac{n\pi}{2a}$, où "n" est un entier relatif.

- 12 Reprenant l'expression de \mathcal{H}_z , et exprimant l'une des constantes d'intégration en fonction de l'autre, montrer que $\mathcal{H}_z(x,z)$ peut s'écrire sous la forme $\mathcal{H}_z(x,z) = H_0 \left[e^{-jK_cx} + (-1)^n e^{+jK_cx} \right] e^{-\Gamma z}$, où H_0 est une constante (A/m) et "n" numérote le mode considéré.
- 13 On reprend la relation de dispersion donnée à la question 2. Comment s'écrit cette relation dans le cas où la propagation du mode numéro "n" est possible ?

En déduire l'expression de $\beta_{\rm g}^2$ en fonction des données du problème et de l'indice "n".

On définit la fréquence de coupure d'un mode comme étant la fréquence en dessous de laquelle le mode ne peut plus se propager, c'est-à-dire celle pour laquelle $\beta_g=0$.

- 14 Calculer la fréquence de coupure f_{cn} pour un mode TE_n . Que remarque-t-on pour les modes TE_n et TE_n , quant à la fréquence de coupure ?
- 15 Que remarque-t-on sur l'expression de $\mathcal{H}_z(x,z)$ pour les modes TE_n et TE_n ? Que peut-on en déduire sur le mode TE_n en fonction du mode TE_n ?

16 – Déterminer la vitesse de phase et la vitesse de groupe, associées à un mode indicé "n". Les modes TE_n sont-ils dispersifs sur cette structure ?

17 – Montrer que
$$v_{\phi}.v_{g}=\frac{1}{\epsilon_{0}\mu_{0}}$$
. On rappelle que la célérité de la lumière dans l'air est

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}.$$

Laquelle de ces deux vitesses est-elle supérieure à la vitesse de la lumière dans l'air ? Que cela signifie-t-il physiquement ?

- 18 On considère maintenant le cas où $K_c = \frac{\pi}{2a}$. Ecrire l'ensemble des composantes du champ électromagnétique complexe, en fonction de la constante H_0 (A/m), de la constante de phase β_g et des données du problème.
- 19 Calculer alors le vecteur de Poynting complexe, en valeur instantanée. On le séparera en composantes transversales et composante longitudinale.
- 20 Déterminant maintenant le vecteur de Poynting réel en valeur moyenne sur le temps, que remarque-t-on pour sa composante transversale, par rapport à sa composante longitudinale ?
- 21 Que cela signifie-t-il physiquement, quant à la densité de puissance transportée ?