METHODOLOGY

3

Tissue Enrichment Analysis: TEA

David Angeles-Albores¹, Raymond Y Lee², Juancarlos Chan² and Paul W Sternberg^{1*}

*Correspondence: pws@caltech.edu

¹California Institute of Technology,
Division of Biology and Biological
Engineering, 1200 E California
Blvd, 91125 Pasadena, US
Full list of author information is
available at the end of the article

Abstract

12

13

14

15

16

18

Over the last ten years, there has been an explosive development in tools capable of measuring gene expression. These tools generate a large number of gene targets, but understanding these datasets, and forming hypotheses based on them remains challenging.

10

11

12

14

15

16

18 19

We present a method for detecting tissue enrichment in *C. elegans* using the tissue ontology for this organism. We also present an efficient method for trimming the ontology that results in concise yet useful output.

Our tool, Tissue Enrichment Analysis (TEA), can be found at www.wormbase.org/tea

Keywords: Gene Ontology; Tissue Ontology; Wormbase

19Background

RNA-seq and other high-throughput methods in biology have the ability to identify thousands of genes that are altered between conditions. These genes are often correlated in their biological characteristics or functions, but identifying these functions remains challenging. In order to interpret these long lists of genes, biologists need to abstract genes into fewer terms that are biologically relevant in order to form thy protheses about what is happening in the data. One such abstraction method rehappening in the form of an directed acyclic graph[1–3] that provide detailed information the molecular, cellular or biochemical functions of the gene among others. For a given gene list, certain software programs can query whether a particular gene is enriched[4–6]. However, GO is often difficult to interpret due to the large number of terms associated with a given gene. There exist a number of GO analytic tools for use by the community but a shared complaint for many programs is the very large number of GO terms that are significantly associated with any given gene list.

Angeles-Albores et al. Page 2 of 13

A common tool for GO analysis, DAVID, clusters terms into broad categories that
$^2{\rm are}$ amenable to exploration by researchers [7], whereas PANTHER, a different soft- 2
³ ware package [4, 8], attempts to solve this issue by employing a manually reduced ³
⁴ ontology, GOslim (pers. comm.).
5
6
7
$_8$ Here we provide a new framework that analyses user-input list for enrichment $_8$
$_{9}\mathrm{of}$ specific tissues. We believe that tissues are physiologically relevant units with $_{9}$
$_{10} \rm broad,$ relatively well-understood functionalities amenable to hypothesis formation. $_{10}$
₁₁ As such, we believe that identification of tissues is likely to provide researchers ₁ .
$_{12}$ with enough information to be able to form hypotheses about the physiological $_{12}$
$_{13}{\rm responses}$ of an organism to a specified condition. Our analysis also cuts down on $_{13}{\rm responses}$
₁₄ result verbosity by filtering the ontology before testing using a small set of well- ₁ .
defined criteria to remove terms that don't contribute extra information. To our
$_{16}$ knowledge, such filtering has never been performed in an algorithmic fashion for $_{16}$
$_{17}$ an ontology before — indeed, tools such as DAVID do not employ term trimming $_{1}$
$_{18}a\ priori$ of testing, but rather fuzzy clustering $post$ testing to reduce the number $_{18}$
19 of ontology terms. We believe our trimming methodology strikes a good balance
$_{20}$ between detailed tissue calling and conservative testing.
21
22
We built our software using a pre-established tissue ontology for the worm, C. ele-
gans [9]. The C. elegans database, Wormbase[10], maintains a carefully curated list
of gene expression data from GFP-reporters. We use this gold-standard list to de-
velop a tissue enrichment analysis that reliably identifies even small tissues and show
that we can reliably discriminate between embryonic and larval tissues. Our tool is
that we can remarkly discriminate between emoryonic and larval tissues. Our tool is 28 available in Wormbase at the address http://mangolassi.caltech.edu/azurebrd/cgi-
bin/testing/amigo/getWithPost.cgi and provides users with a text-based file of the
enrichment results as well as a simple and clear graph of the results that exhibit
the largest fold-change enrichment. Although we present results here for the worm,
we note that our software is species agnostic, and we are working to integrate tissue
33 antologies from other databases to provide a broader service to the community

Angeles-Albores et al. Page 3 of 13

¹Methods ²Generating a Useful Dictionary ³Reducing term redundancy through a similarity metric ⁴As a first step to generate our tissue enrichment software, we wished to select tissue ⁵terms that were reasonably well-annotated, yet specific enough to provide insight ⁶ and not redundant with other terms. We also wanted to avoid testing tissues at ⁶ ⁷levels where redundancy becomes problematic. For example, several left and right 8 neurons have at least 25 annotating genes and we may want to include them for 8 $^9\mathrm{enrichment}$ testing. However, many left/right neuronal sisters have almost entirely 9 the same annotations, with at most one or two gene differences between them. We 10 reasoned that when two tissues have almost identical annotations, we cannot have statistical confidence in differentiating between them. As a result, testing these sister tissues provides no additional information compared with testing only the parent ¹⁴ node to these sisters. We refer to such sisters as 'redundant'. In order to identify ¹⁴ ¹⁵ redundancy, we defined a similarity metric 16 16 17 $s_i = \frac{|g_i|}{|\bigcup_{i=0}^k g_i|}$ $(1)^{18}$ 19

Where s_i is the similarity for a tissue i eith k sisters; g_i refers to the set of tissues₂₀ 2₁associated with tissue i and |g| refers to the cardinality of set g. For a given set₂₁ 2₂of sisters, we called them redundant if they exceeded a given similarity threshold.₂₂ 2₃We envisioned two possible criteria and built different dictionaries using each one.₂₃ 2₄Under a threshold criteron 'any' with parameter S between (0,1), a given set of₂₄ 2₅sisters j was considered redundant if the condition

$$s_{i,j} > S$$
 (2)₂₈

27

31

$$\frac{(2)}{28}$$

was true for any sister i in set j. Under a threshold criterion 'avg' with parameter 30

S, a given set of sisters j was considered redundant if the condition

27

$$E[s_i]_j > S \tag{3}$$

Angeles-Albores *et al.* Page 4 of 13

1 was true for the set of sisters j (see figure 1). 3 Terminal branch terms and parent terms can be safely removed in an algorithmic 5 Another problem arises from the fact that the tissue ontology is scarcely populated 6at this point in time. Many nodes have 0-10 annotations, which we consider too few. to accurately test. To solve this issue, we implemented a straightforward trimming, algorithm. For a given terminal node, we test whether the node has more than a othershold number of annotations. If it does not, the node is removed. The next node in the branch is tested and removed recursively until a node which satisfies the condition is found. At that point, no more nodes can be removed from that, ₁₂branch. This is guaranteed by the structure of the ontology: Parent nodes inherit, ₁₃all of the annotations of all of their descendants, so the number of annotating terms₁₃ $_{14}$ monotonically increases with increasing term hierarchy (see figure 2). In this way, $_{14}$ $_{15}$ we ensure that our term dictionary includes only those tissues that are considered $_{15}$ $_{16} {\rm sufficiently}$ well annotated for statistical purposes. Finally, we also wanted to remove as many terms as possible from the dictionary $_{17}$ $_{18}$ with the goals of reducing covariance between terms, decreasing multiple testing and $_{18}$ removing as many non-informative terms as possible. Decreasing covariance between 20 terms is important because we employ a frequentist approach that assumes all terms 20 are independent. Large covariation coefficients between some terms means that if 22 one of these tissues tests significant, the other terms are much more likely to pass 22 ₂₃ significance testing as well. This makes adequate correction for false positive rates 24 considerably more difficult. Moreover, from a data analysis perspective, we reasoned 25 that, for any parent node, if all its daughters were selected for testing, there was no 25 additional benefit to test the parent. In other words, if all the daughter nodes are 27 tested, there is little additional information to be gained by including the parent $_{28}$ node. To address this issue we removed parent nodes from the analysis if all their $_{28}$ 29 daughter nodes passed the annotation threshold (see figure 3). ³⁰Filtering greatly reduces the number of nodes used for analysis 30 $^{31}\mathrm{By}$ itself, each of these filters can reduce the number of nodes employed for analysis. Notably, these filters are not all commutative – while trimming and redundancy 33 filtering are commutative, applying the ceiling filter is not commutative with either

Angeles-Albores et al. Page 5 of 13

the trimming or the redundancy filter. If the ceiling filter is applied before any cother filter, only terminal nodes will remain, since all the parents have complete daughter sets. Since terminal nodes are the most poorly annotated, after applying daughter sets. Since terminal nodes will be left behind if any. On the other hand, the remaining filters very few nodes will be left behind if any. On the other hand, for applying the ceiling operator after trimming and redundancy filtering will result in forgreater numbers of nodes. We always applied the ceiling at the end. For validation forgreater numbers of nodes and number of different dictionaries. The original ontology has for a searcely annotated ontology can be reduced by tenfold by application of a few simple filters.

These filters were used to compile a static dictionary that we employ for all anal-¹² ¹³yses. Because we have integrated our scripts to draw on the WormBase databases, ¹³ ¹⁴ our dictionary will remain up to date as tissue expression data improves. Our com-¹⁴ ¹⁵ pleted static trimmed dictionary is available for download at the following ftp URL: ¹⁵ ¹⁶XX. The final dictionary includes XX tissues for testing, and has XX annotating ¹⁶ ¹⁷ genes. All code was implemented in Python.

18

19 Tissue enrichment testing via a hypergeometric model

 $_{20}$ Having built a static dictionary, we generated a Python script that implements $_{20}$ $_{21}$ significance testing algorithm based on the hypergeometric model. Briefly, the hy- $_{21}$ $_{22}$ pergeometric model assumes the existence of an urn with a pre-determined number $_{22}$ $_{23}$ of balls inside it. The balls can be painted one of several colors. The hypergeometric $_{23}$ $_{24}$ model provides an answer to the question: If an individual removes N balls, what $_{24}$ $_{25}$ is the probability of observing n_i balls of color i, if the balls are selected without $_{25}$ $_{26}$ replacement? Mathematically, this is expressed as:

28
29
$$P(n_i|N, m_1, ..., m_k, M) = \frac{\binom{m_i}{n_i} \binom{M - m_i}{N - n_i}}{\binom{N}{n_i}}$$
30
$$(4)^{29}$$
30

Here, n_i is the number of balls of type i drawn, N is the total number of draws, ³² m_i is tissue i and $M = \sum_i m_i$ is the total number of balls in the urn. In our specific ³³ case, M_i is equal to the total number of annotations in our dictionary. N is found ³³

Angeles-Albores et al. Page 6 of 13

¹ by taking the user-input list and removing any genes that are not in our annotation ¹
$^2{\rm dictionary}.$ The remaining genes are then associated with their annotation ${\rm profiles}^2$
$^3-$ if a tissue is associated with s tissues, it generates s balls of s colors. Our program 3
⁴ counts the number of times each tissue appears in the user list, and calculates the ⁴
$^5\mathrm{probability}$ of having with drawn as many or more balls for each tissue in the user 5
$^6\mathrm{list.}$ Due to the discrete nature of the hypergeometric distribution, this algorithm 6
$^7\mathrm{can}$ generate artifacts when the list is small. To avoid spurious results, a tissue is 7
$^8\mathrm{never}$ considered significant if there are no annotations for it in the user-provided 8
⁹ list.
Once the probability of drawing the labels has been quantified, we apply a stan-
$^{11}\mathrm{dard}\;\mathrm{FDR}$ correction using a Benjamini-Hochberg step-up algorithm [11]. Genes that 12
$^{12}\mathrm{have}$ a q-value less than a given alpha are considered significant. Our default setting 12
13 is to set the alpha threshold at 0.1, but users will be able to modify this value either 13
14 in batch or in our web application. The program returns a text-based table showing 1
$^{15}{\rm the}$ tissues that tested significant, along with their associated q-value, the expected $^{15}{\rm the}$
$^{16}\mathrm{number}$ of hits for a list of that size, the observed number of hits and the enrichment 16
$^{17}\mathrm{fold}$ change (observed hits / expected hits). Finally, the program can also return a 17
$^{18}\mathrm{bar}$ chart of the enrichment fold change for the fifteen tissues with the largest en- 18
richment fold change. Our software relies heavily on the Pandas, Numpy, Seaborn 18
20 and SciPy modules to perform all statistical testing and data handling[12–14].
Our software is implemented in an easy to use GUI within WormBase. Users input ^{2:}
a gene-list (see figure 4) using any valid gene name for $C.$ elegans. These names are
processed into standard WBIDs and the result is displayed in the same window in 23
an easy to read format containing all the relevant information, and a graph of the $^{2^4}$
results is also displayed (see figure 5).
26 26
²⁷ Validation of the algorithm and parameter selection
In order to select an appropriate dictionary and validate our tool, we found a set of
29 30 gold standards based on microarray and RNA-seq literature which are believed to
be enriched in specific tissues []. Some of these studies went on to use GFP to identify 30
31 expression patterns and for this reason we generated a clean Since the expression
32 data is curated from GFP expression at this time and does not include RNA-seq 32
data, these gold standards are statistically independent from the dataset. We wanted

Angeles-Albores et al. Page 7 of 13

¹to select a dictionary which included enough terms to be specific beyond the largest ¹ ²C. elegans tissues, yet would minimize the number of spurious results and which had² ³a good dynamic range in terms of enrichment fold-change. Selection of a dictionary ³ ⁴based only on minimization of spurious results would result in a dictionary with a⁴ ⁵large number of annotations per tissue, and would therefore include only the major⁵ ⁶tissues. On the other hand, selecting a dictionary that can detect smaller tissues ⁷will bias us towards tissues with lesser annotations. To our knowledge there is no ⁷ ⁸good method for assessing false-positive or false-negative results for annotations. As a first attempt to select a good dictionary, we generated all the possible combinations of dictionaries with minimal annotations of 10, 25, 50 and 100 genes and 10 similarity cutoffs of 0.9, 0.95 and 1, using 'average' or 'any' thresholding criteria for 11 ¹²the latter (see table 1). For these dictionaries, the number of tissues tested ranged ¹² ¹³ from 97 to 676. The number of tissues was inversely correlated to the minimum ¹³ ¹⁴ annotation, as expected, and was largely insensitive to the redundancy threshold, ¹⁴ ¹⁵ at least in the range we explored (0.9-1). Next, we analyzed all 30 datasets using ¹⁵ each dictionary. Because of the large number of results, instead of analyzing each set 16 ¹⁷ of terms individually, we pooled all results for a given dictionary into histograms. ¹⁷ ¹⁸When we analyzed the distribution of significant q-values for the dictionaries, we ¹⁸ ¹⁹ found that the similarity threshold mattered relatively little for any dictionary. We ¹⁹ ²⁰ also noticed that the 'any' thresholding method resulted in tighter histograms with ²¹ a mode closer to 0 (data not shown). For this reason, we chose the 'any' method²¹ ²² for dictionary generation. The average q-value increased with decreasing annotation ²³cut-off (see figure 6), which reflects the decreasing statistical power associated with fewer annotations per term, but we remained agnostic as to how significant the 24 ²⁵trade-off between power and term specificity is. Based on these observations, we ²⁵ ²⁶ ruled out the dictionary with the 100 annotation cut-off - it had the fewest terms ²⁶ ²⁷ and its q-values were not low enough to compensate the trade-off in specificity. To select between dictionaries generated between 50, 33 and 25 annotation cutoffs, and also to ensure the terms that are selected as enriched by our algorithm are reasonable, we looked in detail at the enrichment analysis results. Most results were 31 highly comparable and in line with what was expected. For some sets, all dictionaries seemed to perform well. For example, in our 'all neuron enriched set' ?? the result ³² was an amalgamation of neuron related terms including mechanosensory neurons,

Angeles-Albores et al. Page 8 of 13

¹ thermosensitive neurons, interneurons, ganglions and male rays regardless of the ¹
$^2\mathrm{dictionary}$ used. On the other hand, when we looked at a gene set enriched for^2
$^3\mathrm{germline}$ precursor expression in the embryo $\ref{eq:constraint}$, the dictionary with the 50 cutoff^3
$^4\mathrm{was}$ only able to identify 'oocyte WBbt:006797'; whereas the two smaller dictionaries 4
$^5\mathrm{were}$ able to single out cells germline precursor cells – at the 33-cutoff, our tool 5
$^6\mathrm{identified}$ 'Z2' and 'Z3' as being five-fold enriched; whereas at the 25 gene-cutoff 6
$^{7}{\rm the~terms~'Psub4', 'Psub3'}$ and 'Psub2' were identified in addition to 'Z2' and 'Z3'. $^{7}{\rm }$
$^8\mathrm{We}$ queried an embryonic stage intestine precursor associate geneset $\ref{eq:constraints}$. Notably, 8
$^9{\rm this}$ gene set yielded no enrichment when using the 25 cutoff dictionary, nor when 9
$^{10}\mathrm{using}$ the 50 cutoff dictionary. However, the 33 cutoff dictionary suggested, probably 10
11 correctly, that the E lineage was heavily enriched in this set. Not all queries worked 11
$^{12}\mathrm{equally}$ well. For example, a number of intestinal enriched genes sets $\ref{eq:condition}$ were not 12
$^{13}\mathrm{enriched}$ in intestine in any dictionary, but they were enriched for pharynx- and 13
$^{14}\mathrm{hypodermis}\text{-related terms}.$ We were somewhat surprised that intestinal gene sets 14
$^{15}\mathrm{performed}$ poorly, since the intestine is a relatively well-annotated tissue. We also 15
$^{16} \mathrm{assessed}$ the internal agreement of our tool by using independent gene-sets that we 16
17 expected to be enriched in the same tissues. We had two independent pan-neuronal 17
$^{18}\mathrm{sets}$??; two independent PVD enriched sets ??; two independent GABAergic gene 18
19 sets ??; two independent pharyngeal gene sets; and two independent intestinal gene 19
$^{20}\mathrm{sets}$??. Overall, the tool seems to have good internal agreement. On most sets, the 20
21 same terms were enriched, although order was somewhat variable. However, most 21
$^{22}\mathrm{high}\text{-scoring}$ terms were preserved between gene sets. The intestinal gene-sets and 22
23 pharyngeal gene sets comparisons were exceptions, since at least one gene set was 23
24 missing each for intestine and pharynx in every dictionary, so we didn't consider 24
²⁵ them as informative for assessing internal agreement.
26
27
28
All comparisons can be found online at: www.XXX.com. Overall, the dictionary
generated by a 33 gene annotation cutoff with 0.95 redundancy threshold using the
'any' criterion. seemed to perform well, with a good balance between specificity,
verbosity and accuracy, so we selected this parameter set to generate our static 32
dictionary.
v

Angeles-Albores et al. Page 9 of 13

¹Results

$^2\mathrm{We}$ applied our tool to the RNA-seq datasets developed by Engelmann et al. $\left[15\right]^2$
3 in order to attempt to gain further understanding of the biology underlying these 3
$^4\mathrm{datasets}.$ Engelmann et al. exposed young adult worms to 5 different pathogenic 4
$^5\mathrm{bacteria}$ or fungi for 24 hours, after which mRNA was extracted from the worms 5
$^6 {\rm for}$ sequencing. We obtained the genes that Engelmann et al identified as up- ${\rm or}^6$
$^7{\rm down\text{-}}$ regulated in their assay, and ran TEA using these lists. Initially we noticed 7
8 that genes that are down-regulated tend to be twice better annotated on aver- 8
$^9\mathrm{age}$ than genes that were up-regulated, suggesting that our understanding of the 9
0 worm immune system is scarce, in spite of important advances made over the last 1
decade. Strikingly, 4 out of the five samples showed enrichment of neuronal tis-
sues or neuronal precursor tissues (in the case of Harposporium sp) amongst the 1:
³ down-regulated genes. A possible explanation for this might be that the infected ¹
4 worms are sick and the neurons are beginning to shut down; an alternative hy- 1
5 pothesis would be that the worm is down-regulating specific neuronal pathways as 11
$^{.6}$ a behavioural response against the pathogen. Indeed, several studies $\left[16,\ 17\right]$ have 10
7 provided evidence that $C.$ elegans uses chemosensory neurons to identify pathogens 1
8 Interestingly, one bacterium did not exhibit the same pattern of down-regulation of
9 neuronal-associated genes. $E.\ faecalis$ showed increased expression of genes associ-
ated with neuronal tissues, hinting that $E.$ faecalis may have a different pathogenic
²¹ profile. Up-regulated tissues, when detected, included the hypodermis and excretory 2
22 duct. Our results highlight the involvement of various $C.$ elegans neuronal tissues
in pathogen defense and/or illness.
24
²⁵ Discussion
We have presented a tissue enrichment analysis tool that employs a standard hyper-
geometric model to test the $C.$ elegans tissue ontology. We have also presented the
first, to our knowledge, ontology trimming algorithm. This algorithm, which is very
easy to execute, places strong limits on the number of terms selected for testing.
Due to the nature of all ontologies as hierarchical, acyclical graphs with term in-
heritance, term annotations are correlated along any given branch. This correlation ³
reduces the benefits of including all terms for statistical analysis - for any given
term along a branch, if that term passes significance, there is a high probability 3:

Angeles-Albores et al. Page 10 of 13

¹that many other terms along that branch will also pass significant. If the branch ¹ ² is enriched by random chance, error propagation along a branch means that many ³more false positives will follow. Thus, a researcher might be misled by the number ³ ⁴of terms of correlated function and assign importance to this finding; the fact that ⁴ ⁵the branching structure of GO amplifies false positive signals is a powerful argu-⁵ ⁶ment for either reducing branch length or branch intracorrelation, or both. On the ⁶ ⁷other hand, if a term is actually enriched, we argue that there is little benefit to ⁷ ⁸presenting the user with additional terms along that branch. Instead, a user will⁸ ⁹benefit most from testing sparsely along the tree at a suitable specificity for hy-¹⁰pothesis formation. Related terms of the same level should only be tested when ¹⁰ ¹¹there is sufficient annotation to differentiate, with statistical confidence, whether ¹¹ ¹²one term is enriched above the other (see SI for a back-of-the-envelope calculation ¹² ¹³of when this can be the case). Our algorithm reduces branch length by identifying ¹³ ¹⁴ and removing nodes that are insufficiently annotated and parents that are likely to ¹⁴ ¹⁵include sparse information. It is important to note that our tool is not the first tissue enrichment model¹⁶ ¹⁷ for the worm that has been reported. Chikina et al [18] report a tissue enrichment ¹⁷ model based on an SVM classifier that has been trained on microarray studies. SVM 18 ¹⁹ classifiers are powerful tools capable of great sensitivity, but they require continuous retraining as tissue expression data widens. Our tool benefits from the fact that it 20 will be integrated in WormBase and will therefore be updated continuously as new 21 $^{22}\mathrm{data}$ is integrated. 22 We have tried hard to benchmark our tool well. However, our analysis suffers from the drawback that is very hard to benchmark negative controls. Even for our set of positive controls, the statistical analysis sometimes throws out unexpected ²⁵ results. For example, the embryonic germline precursor gene set had the term 'AB' as the most enriched term in the dictionaries with cut off of 25 and 33. Is this an error, or does this hint at new biology? Although we were unable to determine false-positive and false-negative rates, we don't believe this should deter scientists from using our tool. Rather, we encourage researchers to use our tool carefully as a guide, integrating evidence from multiple sources to inform the most likely 31 hypotheses. As with any other tool based on statistical sampling, our analysis is most vulnerable to bias in the data collection stage. For example, we know that

Angeles-Albores et al. Page 11 of 13

$^{1}\mathrm{tissue}$ expression reports are negatively biased against germline expression due	to^1
² the difficulty associated with extrachromosomal array expression in that tissu	ie.²
³ Support from the community will be crucial in correcting these flaws going forwar	:d;³
⁴ indeed, without the community reports of tissue expression this tool would not	be ⁴
⁵ possible.	5
6	6
7Competing interests	7
The authors declare that they have no competing interests.	
Author's contributions	8
DA and PWS conceived of the project; DA developed algorithm; RYL made intellectual contributions to the project	9 ect;
10RYL and JC developed the web GUI.	10
11Acknowledgements	11
We would like to acknowledge all members of the Sternberg lab for helpful discussion.	12
Author details	
13 California Institute of Technology, Division of Biology and Biological Engineering, 1200 E California Blvd, 91125	13
$_{14}$ Pasadena, US. 2 California Institute of Technology, 1200 E California Blvd, 91125 Pasadena, US.	14
15References	15
1. The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology. Nature Genetics 25(may	'), 16
16 25–29 (2000). doi:10.1038/75556. 10614036	10
17 2. Ontology, G.: Gene Ontology. Nature Reviews Genetics 2009, 1–13 (2009)	17
 The Gene Ontology Consortium: Gene Ontology Consortium: going forward. Nucleic Acids Research 43(D1), 1049–1056 (2015). doi:10.1093/nar/gku1179 	18
4. Mi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S., Thomas, P.D.: PANTHER version 7: Improved	10
phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Research	19
20 38 (SUPPL.1) (2009). doi:10.1093/nar/gkp1019	20
5. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., Bejerano, G.: GREAT improves functional interpretation of cis-regulatory regions. Nature biotechnology 28(5), 495–501	21
22 (2010). doi:10.1038/nbt.1630	22
6. Huang, D.W., Lempicki, R.a., Sherman, B.T.: Systematic and integrative analysis of large gene lists using	23
DAVID bioinformatics resources. Nature Protocols 4(1), 44–57 (2009). doi:10.1038/nprot.2008.211	
 Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M.W., Lane, H.C., Lempicki, R.A.: DAVID Bioinformatics Resources: Expanded annotation database and novel 	24
25 algorithms to better extract biology from large gene lists. Nucleic Acids Research 35 (SUPPL.2) (2007).	25
doi:10.1093/nar/gkm415	26
8. Mi, H., Muruganujan, A., Thomas, P.D.: PANTHER in 2013: Modeling the evolution of gene function, and	
other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research 41(D1) (2013).	27
doi:10.1093/nar/gks1118 28 9. Lee, R.Y.N., Sternberg, P.W.: Building a cell and anatomy ontology of Caenorhabditis elegans (2003).	28
29 doi:10.1002/cfg.248	29
10. Harris, T.W., Baran, J., Bieri, T., Cabunoc, A., Chan, J., Chen, W.J., Davis, P., Done, J., Grove, C., Howe,	
Kishore, R., Lee, R., Li, Y., Muller, H.M., Nakamura, C., Ozersky, P., Paulini, M., Raciti, D., Schindelman,	G., ³⁰
Tuli, M.A., Auken, K.V., Wang, D., Wang, X., Williams, G., Wong, J.D., Yook, K., Schedl, T., Hodgkin, J., Berriman, M., Kersey, P., Spieth, J., Stein, L., Sternberg, P.W.: WormBase 2014: New views of curated	31
32 biology. Nucleic Acids Research 42 (D1) (2014). doi:10.1093/nar/gkt1063	32
11. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to 33	33
Multiple Testing (1005) 05/57280 doi:10/2307/2346101 http://www.istor.org/stable/2346101	

Angeles-Albores et al. Page 12 of 13

111	2. McKinney, W.: pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High	1
2	Performance and Scientific Computing, 1–9 (2011)	2
	3. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: A structure for efficient numerical	2
3	computation. Computing in Science and Engineering 13(2), 22–30 (2011). doi:10.1109/MCSE.2011.37.	3
	1102.1523	
4	 Oliphant, T.E.: SciPy: Open source scientific tools for Python. Computing in Science and Engineering 9, 10–2 	4
5		5
	(2007)	J
6	5. Engelmann, I., Pujol, N.: Innate Immunity in C . Elegans. Inverrtebrate Immunity, 105–121 (2010)	6
10	6. Meisel, J.D., Kim, D.H.: Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans. Trends in	
7	Immunology 35 (10), 465–470 (2014). doi:10.1016/j.it.2014.08.008	7
1	7. Zhang, Y., Lu, H., Bargmann, C.I.: Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis	
8	elegans. Nature 438(7065), 179–184 (2005). doi:10.1038/nature04216	8
918	8. Chikina, M.D., Huttenhower, C., Murphy, C.T., Troyanskaya, O.G.: Global prediction of tissue-specific gene	9
J	expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Computational Biology 5(6)	
10	(2009). doi:10.1371/journal.pcbi.1000417	10
	(,, ,,,	
¹¹ F	igures	11
		4.
12		_12
13	Figure 1 Schematic diagram of annotations for two sisters. The parent node (green) contains at	13
	least as many annotations as the union of the two sisters. These two sisters share annotations	
14	extensively. Therefore they are too similar and should be removed.	14
	oxensively. Therefore they are too similar and should be removed.	
15		15
16_		_16
		7`
17	$\textbf{Figure 2 Schematic showing terminal node removal}. \ \ \textbf{Nodes with less than a threshold number of}$	17
	genes are trimmed (light red) and discarded from the dictionary. Here, the threshold is 25 genes.	
18_		_18
10		10
19		19
20		20
	Figure 3 Schematic showing root node removal. We trim parent nodes (light red) if all their	
21	daughter nodes have more than the threshold number of annotations. Here, the threshold is 25	21
	genes.	
22_		22
23		23
20		
24	Figure 4 Communication of the major CIV	24
	Figure 4 Screenshot of the web GUI.	
25		25
200		20
26		26
27	Figure 5 Screenshot of results from web GUI.	27
28		28
29		-29
30	Figure 6 Kernel density estimates for 30 gold standard datasets. We ran TEA on 30 datasets	2
30	we believed to be enriched in particulae tissues and pooled all the results to observe the	30
31	distribution of q-values. The mode of the distribution for dictionaries with annotation cut-offs of	31
	100 and 50 genes are very similar; however, when the cut-off is lowered to 25 genes, the mode of	
32		32
L	the distribution shifts to the left, potentially signalling a decrease in measurement power.	
33		33

Angeles-Albores et al. Page 13 of 13

Figure 7 Comparison of Enrichment Results for dictionary size 50 (left) and 25 (right) for a PVD-OLL enriched gene set. Left, at 50 annotation cut-off, TEA singles PVD as highly enriched. Other mechanosensory neurons are also enriched . Right, when the dictionary cut-off is set to 25, TEA shows embryonic tissues that are unrelated to the PVD and OLL lineages. Figure 8 Genes altered in C. elegans after 24hr exposure to D. coniospora (fungus) Figure legend text. Figure 9 Genes altered in C. elegans after 24hr exposure to Harposporium sp. (fungus) Figure legend text. Figure 10 Genes altered in C. elegans after 24hr exposure to Serratia marcescens (bacteria) 11 Figure legend text. 12 12 Figure 11 Genes altered in C. elegans after 24hr exposure to E. faecalis (bacteria) Figure 13 legend text. $_{\rm 15} \mbox{{\sc Table 1}}$ Parameter specifications and number of tissues for all dictionaries. 15 16 16 17 Tables ¹⁸Additional Files 18 Additional file 1 — Supplementary Information 19 19 Complete results from benchmarking analysis 20 Additional file 2 — Supplementary Information 21 21 Complete results from re-analysis of Engelmann et al 22 Additional file 3 — IPython Notebook Tutorial for users interested in batch script generation using our software. 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33