

Session 3 – From Learning-Architectures to Decision-Profiles

Leo Klenner, Henry Fung, Cory Combs

From Deduction to Induction

Deduction

Learning-architectures → decision-profiles

Learning-architectures [?] decision-profiles

Induction

Review of Sessions 1 and 2

- > Architectures for decision-making
 - > **Learning in human teams** (supervision, interaction)
 - > **Reinforcement learning** (online-offline, learning with state-action pairs)
 - > **Rule-based systems** (Finite State Machines, conditional logic)
 - > Multi-agent learning (joint-seperate, "Policy Geometry")

Outline

- 1. Exercise on Rule-Based Systems
- 2. Recap on Reinforcement Learning
- 3. Q-Learning
- 4. Case on Inferring Learning Architectures from Observed Behavior

Location X

Review of Reinforcement Learning Basics

- > RL is suitable to a class of problems known as the Markov Decision Process (MDP)
 - > Outcome of applying action to any state depends only on this action α and state s (and not on preceding α or s)
 - > Information available to the agent: rewards and subsequent state for each state-action transition

> What are the components of a MDP?

What is the Total (Cumulative) Reward?

- > After performing action a in state s (state action pair s, a):
 - > The agent receives immediate reward of either 0 or 100
 - > The agent goes to the next state
- > The action that the agent chooses in every state s is dictated by a policy π
- $> \pi(s_t) = a_t$
- > The total reward that the agent gets (from π) is the sum of the sequence of rewards that it gets by following π , discounted by Υ

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + y^2 r_{t+2} + \cdots$$

What is the Agent's Goal?

- > What is the goal of an agent that uses RL?
 - > Pick the best policy that will maximize the total rewards that the agent receives
- > How does it do that?
 - > The agent needs to evaluate the "goodness" of each state. How good is it to be in Grid A, in Grid E?
 - > This evaluation can be done if the agent knows the maximum total reward that it can achieve in each state
 - > We call this the "optimal value function" V*(s)
 - > If we have good estimates of V*(s), then we can choose the optimal policy

$$V^*(s=A)$$

$$\pi^*(s) = \underset{a}{argmax}[r(s, a) + \gamma V^*(\delta(s, a))]$$

The Q-Function

- > Rather than evaluating the "goodness" of each state, we can also evaluate the goodness of each state-action pair
 - > How good it is for me to perform RIGHT in state D (as oppose to RIGHT) in state B?
 - > Compare the Q value of doing RIGHT in D and RIGHT in B
 - > Q value is the maximum achievable total reward that the robot get by performing α in s, and then following optimal policy thereafter

$$Q(s,a) = r(s,a) + \gamma V^* (\delta(s,a))$$
$$Q(s = D, a = right) = 0 + 0.9 * 100 = 90$$

The Bellman Equation

> The Q-function can be rewritten as the Bellmann Equation:

$$Q(s,a) = r(s,a) + \gamma \max Q(\delta(s,a),a')$$

- > Learning Q corresponds to learning the optimal policy.
- > What is Q(s=D, a=RIGHT) from the Bellmann Equation?
- > Learning Q corresponds to learning the optimal policy. Assuming Q-values are known, what is the optimal strategy starting from A?

$$\pi^*(s) = \underset{a}{argmax} \ Q(s, a)$$

Learn V*(s) or Q(s, a)?

> **Approach 1:** If we know the true V*(s) values, we know the optimal policy:

$$\pi^*(s) = \underset{a}{argmax}[r(s, a) + \gamma V^*(\delta(s, a))]$$

> **Approach 2:** If we know the true Q-values, we know the optimal policy:

$$\pi^*(s) = \underset{a}{argmax} \ Q(s, a)$$

> Which approach should we choose?

Model-based vs. Model-free Learning

Model-Based Learning

- > Model of the environment : reward and state-transition need to be known
- > The agent interacts with environment, and from the "history" of its interactions, the agent will approximate the reward and state transition
- > After that, the agent learns the V*(s) using an algorithm called "Value iteration".
 Once the V*(s) values are known, the agent can find the optimal policy

$$\pi^*(s) = \underset{a}{argmax}[r(s,a) + \gamma V^*(\delta(s,a))]$$

Model Free Learning

- > The agent will not try to "guess" the reward and state transition functions. It will only "experience" them as it explores the environment
- > By trail and error, the robot discovers what are the good and bad actions in each state
- > Uses "Q learning" to approximate the Q(s, a) values and find optimal policy

$$\pi^*(s) = \underset{a}{argmax} \ Q(s, a)$$

The Q-Learning Algorithm

> Assumptions:

- > (A1) Reward and state-transitions functions are unknown but deterministic.
- > (A2) Robot visit every possible state with non-zero frequency overtime.
- > (A3) Rewards are bounded (not infinite).

> Algorithm:

- 1. Initially fill the table of \widehat{Q} (estimated Q-values) with zeros
- Observe current state s
- Select and action a and executes it
- Receive immediate reward r
- 5. Observe the new state s'
- 6. Update the table entry for $\hat{Q}(s, a)$ using the Bellman equation
- 7. Set state s' to s, repeat 2-6 until \hat{Q} converges (new \hat{Q} values do change much from old values)

Example: Information Propagation

Training Episode 1

Some Training Episode after 1

Strategies for Experementation

- > The Q-learning algorithm does not specify how the agent chooses its actions
- > If the agent *always* selects the state-action pair with the highest estimated Q-values, then it will "overcommit" to its actions found in the early training sessions, while failing to explore other state-action pairs that might have even higher Q-values
- > Solution to Exploration vs. Exploitation dilemma:
 - > During early training episodes: All actions have a chance of being executed
 - > During the latter training episodes: Actions with higher \hat{Q} will be assigned with increasingly higher probabilities, so overtime, the agent will do more exploitation and less exploration

Decision-Profiles in Unbounded Environments

Learning-architectures ← decision-profiles

- > Does each architecture correspond to a distinctive decision-profile?
- > How can we discern this decision-profile?
- > What are the consequences, if we answer the first or second question negatively?

AV Flight Trajectory

> Goerzen, et al. 2009. A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance

Toy Model of Learning Architectures

> Does each architecture correspond to a distinctive decision-profile?

Rule-based → precise solution, no adaptation

Reinforcement learner → multiple degrees of adaptation

Human → full adaptation and rule generation

- > Assumes we have perfect information about the environment
- > Real-world is often too complex to justify such an assumption

Possible Architectures for Trajectory

Why Care about Verification?

19

Differentiating Human from Machine

> **Hypothesis**: A system that would not pass the Turing Test in theory might pass it in practice, because the test environment is fuzzy

Other Mechanisms of Verifcation

Performance	Worse than human	Human-level	Better than human
Verifcation	Easy	Hard	Easy; depends
	Clear failure modes	Internal factors:	Unparalleled performance
		Unexpected decision patterns	
		Unexpected failure modes	
		External factors:	
		Change in force structure	
		Change in strategy	
		Introduce disturbances in env	•

Petrov Verification

- > September 26, 1983
- > Five U.S. ICBMs surface on Soviet radar, station monitored by Stanislav Petrov
- > Petrov reasons that this is a false alarm, decides not to launch counter-attack

= Petrov Verification: combination of internal and external factors; educated guess across domains on limited information

Appendix on Counter-Measures

> Krishna et al. 2005. Parametric Control of Multiple Unmanned Air Vehicles over an Unknown Hostile Territory

