Group Members: Cai Yang, Cui Jiayi, Nannan Wang, (group 2) Yang Yang, Yu Wenting

Post-processing For OCR Data

Use topic models to improve OCR (D1,C5)

Content

Part I

Error Detection

Part II

Error Correction

Part III

Performance Evaluation

Part IV

PART I Data Cleaning Process

- Comparing with ground-truth by rows
- Delete the uneven lines.
- Uneven: in our project means two lines don't equal number of characters.

PART II Error Detection (garbage words)

From Paper D1 Sectiom2.2

PART III Error Correction-Topic Models

From Paper C5 Section 3.2

PART III Error Correction-Topic Models

From Paper C5 Section 3.2

$$P(w) = \sum_{k}^{M} P(w|t_k)P(t_k)$$

Probability of a word under a topic

Probability of a topic in a document

 $P(l_j^f|l_j^s)$ is the probability that letter l_j^s

was mistaken for l_j^f

Step1 LDA Topic Models

$$P(w) = \sum_{k}^{M} P(w|t_k)P(t_k)$$

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of "topics," which are distributions over words, exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.

Topics

gene 0.04 dna 0.02 genetic 0.01

life evolve	0.02
organism	0.01
.,,	

brain	0.04
neuron	0.02
nerve	0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

LDA Topic Models

Train set: 80 documents

Test set: 20 documents

$$P(w) = \sum_{k}^{M} P(w|t_k)P(t_k)$$

EXHIBIT	1.410324e-04 8	.846296e-05	7.364094e-05	5.873865e-05	1.108232e-04
D	1.231148e-04 1	.154478e-04	1.046156e-04	1.662151e-04	6.583606e-05
STAFF	4.647684e-05 4	.590222e-05	2.177579e-05	4.548453e-05	5.449980e-05
REPORT	4.253964e-04 6	.966216e-04	3.498882e-04	3.949201e-04	3.565690e-04
Ма	1.576632e-05 6	6.805707e-06	2.936210e-06	5.375728e-06	4.781064e-06
rch	1.576632e-05 6	6.805707e-06	2.936210e-06	5.375728e-06	4.781064e-06
1972	5.053519e-05 3	. 319093e-05	5.028957e-05	2.846623e-05	5.555214e-05
EXHIBIT	9.563508e-05 9	.106156e-05	1.034338e-04	4.510108e-05	1.403734e-04
D	1.117193e-04 1	.142945e-04	1.041921e-04	6.427003e-05	1.292587e-04
STAFF	6.617885e-05 5	.329141e-05	2.870197e-05	4.474444e-05	3.796790e-05
REPORT	3.535541e-04 3	. 484049e-04	4.056158e-04	2.550544e-04	3.958782e-04
Ма	9.883238e-06 1	.010469e-05	2.172914e-06	2.900113e-06	2.859871e-06
rch	9.883238e-06 1	.010469e-05	2.172914e-06	2.900113e-06	2.859871e-06
1972	1.077024e-04 3	.817442e-05	4.753034e-05	3.762594e-05	5.468387e-05
EXHIBIT	8.324368e-05 1	.040504e-04	7.825063e-05	8.481069e-05	6.941038e-05
D	1.038833e-04 9	.960531e-05	8.868838e-05	9.997992e-05	8.889652e-05
STAFF	1.480647e-05 4	.940796e-05	8.757694e-06	4.271602e-05	8.525086e-06
REPORT	3.584698e-04 6	5.567046e-04	3.688413e-04	3.545804e-04	3.311007e-04
Ма	3.870949e-09 3	.627672e-06	7.296715e-07	6.081534e-06	2.652052e-06
rch	3.870949e-09 3	.627672e-06	7.296715e-07	6.081534e-06	2.652052e-06
1972	4.584370e-05 3	.190681e-05	3.499714e-05	4.573325e-05	4.219801e-05
EXHIBIT	4.076456e-05 5	.857666e-05	5.383475e-05	8.581376e-05	7.694486e-05
D	6.664174e-05 7	.668749e-05	8.565761e-05	1.105256e-04	9.644555e-05
STAFF	1.548654e-05 5	.620396e-05	8.138561e-06	2.534409e-05	3.718760e-05
REPORT	4.494475e-04 3	.932211e-04	2.982990e-04	3.954002e-04	3.809855e-04
Ма	4.837995e-06 1	.118029e-05	3.435429e-12	5.388202e-06	1.296698e-05
rch	4.837995e-06 1	.118029e-05	3.435429e-12	5.388202e-06	1.296698e-05
1972	1.548822e-05 3	.848495e-05	1.697548e-05	3.481470e-05	3.156877e-05

Step2 Confusion Matrix -- Fuzzy Matching

Step1

LD_similarity=1-(levenshtein distance)/(nchar of actual world)

##Levenshtein distance : the minimum number of deletions, insertions, or substitutions required to transform string_s into string_t

Step2

Choose the one with largest *LD_similarity* in *CANDIDATE_NUM* (here we choose 3) of OCR words.

Step3

To match the actual word.

If none of these candidate has *LD_similarity* above *SIM_THRES* (we choose 0.5), then give up this actual word.

We also give up the words which do not have the equal length

Step2 Confusion Matrix -- Fuzzy Matching

Ground Truth	OCR	
Air	Alr	
Quality	0	
Committee	allity	
	Committee	

Alr : *LD* = 1

0: LD = 4

allity : LD = 5

Alr: LD similarity = 1-1/3 = 2/3 > 0.5

O : LD_similarity = 1- 4/3 = -1/3

allity : *LD_similarity* = 1-5/3 = 2/3

Ground Truth	OCR		
Air	Alr		
Quality	0		
Committee	allity		
	Commlttee		

O : LD = 7

allity : LD = 3

Committee : LD = 8

O : *LD_similarity* = 1- 7/7= 0

allity : $LD_similarity = 1 - 3/7 = 4/7 > 0.5$

Committee: LD_similarity = 1-8/7=-1/7

Step2 Confusion Matrix -- results: 110 * 110 matrix

110 strings:

[1] '	''-''	11 1 11	"-"	"-"	"\f"	"į"	"\""	"#"	"\$"	11%11	"&"	"("	")"	11 % 11	"
[16]	11 11	"/"	":"	11 . 11 7	"?"	"["	"//"	"]"	"∧"	"_"	"{"	" "	"}"	"~"	11 6 11
[31]	11 7 11	11 44 11	11 77 11	" 🕻 "	'' <u>£</u> ''	"+"	"<"	"fi"	"fl"	"="	">"	"«"	***************************************	''§''	11 ® 11
[46]	11 0 11	• 11	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"	"a"	"A"	"b"
[61]	"B"	"c"	"C"	"d"	"D"	"e"	"E"	"é"	"f"	"F"	"g"	"G"	"h"	"H"	"i"
[76]	"I"	"j"	"J"	"k"	"K"	"ן"	"L"	"m"	"M"	"n"	"N"	"o"	"0"	"p"	"P"
[91]	"q"	''Q''	"r"	"R"	"s"	"S"	"t"	"T"	"u"	"U"	"\"	"V"	"W"	"W"	"x"
[106]	"X"	"у"	"Y"	"z"	"Z"										

Step2 Confusion Matrix -- results: 110 * 110 matrix

Part of Matrix:

 $P(l_j^f|l_j^s)$

U									
0.9941036	1.89E-05	7.57E-05	0	0.001022166	0.000208219	0	0	0.001808	9.46E-06
9.93E-05	0.999007	0	0	0	9.93E-05	0	0	0	0
0	0	0.998337541	0	0	0	0	0	6.16E-05	0
0.0079727	0	0	0.9453303	0	0	0	0.001139	0	0.001708428
0	0	2.16E-05	2.16E-05	0.995407008	0.003212938	6.47E-05	2.16E-05	4.31E-05	0
0	9.93E-05	0	0	0.027209533	0.972095333	0	0	0	0
0	0	0	0	4.03E-05	0	0.999737924	0	0	0
0	0	0	0	0	0	0	0.7914206	0	0
1.21E-05	0	0	0	0.000363192	1.21E-05	6.05E-06	0	0.999425	0
0.0020937	0	0	0.0093413	0	0.00048317	0	0.0011274	0.046706	0.922853922
0	0	0	0	0	0	0	0	0.333333	0
0	0	3.69E-05	0	0	0	7.38E-05	0	3.69E-05	0
0	0.000543	0	0	0	0.000543183	0	0	0	0
0	0	0	0	8.41E-05	0	0	0	0	0
0	0	0	0	0.002925688	0.007606788	0	0	0	0
0	0	0.000725581	0	0	0	0	0	2.13E-05	0
0	0	0.000837054	0.000558	0	0	0	0.000279	0	0.000279018
0	0	0	0	0	0	0.000314994	0	0	0
0	0.000193	0.000192567	0	0	0.001733102	0	0.0025034	0	0
0	0	0	0	0	0	0	0.0007782	0	0
0	0	0	0	0.000952381	0	0	0	0	0
0	0	0	0	0	0	0	0	0.00041	0
0	0	0	0	0	0	0	0	0	0
1.61E-05	0	8.04E-06	0	0	7.23E-05	0	3.22E-05	3.22E-05	1.61E-05
0	0.000563	0.00056338	0	0	0	0	0	0	0
8.49E-05	0	0	0	2.83E-05	0	2.83E-05	2.83E-05	5.66E-05	2.83E-05
0	0	0	0	0	0.000407166	0	0	0	0
0	0	0.000266388	0	6.91E-05	0	3.95E-05	0.0001085	2.96E-05	0
0	0	0	0	0	0	0	0	0	0
5.81E-05	0	0	9.69E-06	0	0	0	0	1.94E-05	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.000244439	0	0	0	0.000244439
0	0	0	0	0	0	0	0	0.000685	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	2.32E-05	0	4.64E-05	0	4.64E-05	0
0	0	0	0	0	0	0	0	0	0.010419251
0.0006944	0	0	4.87E-05	0.000682186	0	1.22E-05	0	0.001206	0
0	0	0	0	0	0	0	0	0	0
3.36E-05	0	0	0	0.000151352	0	0.000496098	0	8.41E-06	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2.66E-05	0.0009322	0	0
0	0	0	0	0	0		0.0023041	0	0
-	-	-	-	-		-		-	-

Step3 Compute all candidates Scores

(generate all possible candidates)

$$P(w_c)$$
 + bias(1+e5)

Step4 Select the best candidates (the highest score)

Truth	Tesseract	Processed Tesseract
exhibit	exhlblt	exhibit
driver	driver	driver
before	before	before
in	1n	an
last	last	last

PART IV Performance Evaluation

Step1

Find unique words in two texts separately. And only the ones that appear in both texts are used.

Use unique words as anchors to split each segment into smaller ones

Delete unique words from all segments (delete the first and the last word in every segments)

Step3

Use levenshtein distance to calculate the number of incorrect characters in every segments

The distance gives the minimal possibly weighted number of insertions, deletions and substitutions needed to transform one string into another.

Step4

Calculate precision and recall

Recall: number of correct items/number of items in ground truth

PART IV Performance Evaluation

	Tesseract	Tesseract with (detection)	Tesseract with (correction)
Word_wise_recall	0.6245921	0.5822522	0.5868309
Word_wise_precision	0.6160689	0.7250324	0.7087555
character_wise _recall	0.72467	0.48775	0.57566
character_wise _precision	0.71864	0.47854	0.56715

Thanks for Listening!

Have a nice day!