Name of School:	
Candidate's Name:	
Centre No. /Index No:	Signature:

P525/1 CHEMISTRY Paper 1 July - August 2 3/4 Hours

ELITE EXAMINATION BUREAU MOCK 2019

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 Hours 45 Minutes

INSTRUCTIONS TO CANDIDATES:

- This paper consists of two sections A and B.
- Section A is compulsory.
- Attempt only **six** questions in section B
- Answers must be written in the spaces provided only. $(R=0.0821 \text{ L.atm.mol}^1 \text{K}^1)$

	For examiner's use only									TOTAL				
1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17													

SECTION A: (46 marks)

Answer all questions from this section.

1.	Th	e standard electrode pot	entials for some half – cells are show	n below.
		$Fe_{(aq)}^{3+}, Fe_{(aq)}^{2+}/Pt(s)$	+0.77V	
		$Sn_{(aq)}^{4+}, Sn_{(aq)}^{2+}/Pt(s)$	+0.15V	
	a)	Write the convention for	the combined cell.	(1½ marks)
	b)	Write equation for the:		
		i) reaction at the catho	de	(01 mark)
		ii) reaction at the anode		(01 mark)
		iii) overall cell reaction		(1½ marks)
				•••••
	c)	Calculate the e.m.f of th	e cell.	(01 mark)
	c,			(or many
	d)	State one application of	electrode potentials.	(01 mark)

2. a) Draw the structure and name the shape of the following oxides. In each case state the oxidation state of the Sulphur atom. (02 marks)

Oxide	Structure	Shape	Oxidation state of sulphur
SO ₂			
SO_3			

b)	i)	Name the reagent that can be used to distinguish between the oxides in
(a)		(01 mark)
	ii)	State what would be observed, if a solution of each oxide is treated separately with the reagent you have named in b(i). (01 mark)
	iii)	Write equation(s) for the reaction(s) that would take place when solutions of each oxides are treated separately with the reagent you have named in b(i). $(1\frac{1}{2}$ marks)

3.	a)	Define the term solubility product.	(01 mark)
	b)	Calculate the solubility product of a solution containing 8.3	35 x 10 ⁻³ g of
		magnesium hydroxide in one litre of solution at 25°C.	(03marks)
	c)	State one application of solubility product.	(01 mark)
1	2)	Write equation for the reaction between water and	
┑.	a)	Write equation for the reaction between water and i) iron (III) chloride	(1½ marks)
		i) iidii (III) ciiidide	(172 marks)
		ii) tin (II) chloride	(1½ marks)
	b)	A piece of clean magnesium ribbon was added to the sol	ution in a(i).
		State what was observed and write equation for the reaction place.	on that took (2½
		marks)	(272

5.	Me	ethy	ylamine ionises in water according to the following equation	
			$CH_3NH_{2(aq)} + H_2O_{(l)} \rightleftharpoons CH_3NH_{3(aq)}^+ + \bar{O}H_{(aq)}$	
	a)	W	rite the expression for the ionization constant K_b of methylar	mine.
				(01 mark)
	b)		2 moles of methyl ammonium chloride was added to one litr	e of 0.2M
			ethylamine.	
		1)	Calculate the PH of the resultant solution. [The ionization of methylamine is 4.4×10^{-4} mol I^{-1} , Kw is 1.0×10^{-14} mol I^{-1}	
		ii)	State the assumption(s) you have made in b(i).	(½ mark)
6.		rite	equations to show how the following compounds can be sy	nthesized.
	a)		CH = N - OH	(21/
			from benzene	(2½ marks)

	b)	CH	OH I ₃ CHCH ₃	from ethano	ol				(2½ marks)
								•••••		
7.	aci	id c	iropwise ι	solution of (until in exces		O was ac	lded conce	ntrated	hydrochloric	:
	a)		ime: the coba added.	lt species pre	esent in th	e solutior	ı before hy	drochlor	ic acid was (01 mark)	
		ii)	the coba	lt species pre	esent in th	e solution	n containin	g excess	hydrochlor (01 mark)	ic
	b)	Th	e solution	containing	excess hy	drochloric	acid was o	diluted w	ith water	
	,	i)		e colour char	•				(01 mark)	
		ii)	Write an	equation for	the react	ion that to	ook place.		(1½ mark)	
8.	a)	so Ou	lution, a n	ene reacts wi mixture of a c echanism for	dibromo a	nd bromo	chloro com	npounds	are formed	

b)	Name the	e type of	mechani	ism for tl	ne reacti	on in (a).	ı	

9. The data below was obtained for the reaction.

 $A + B \longrightarrow Products$

Experiment		centrations dm ⁻³)	Initial rate
•	A	В	mol d m ⁻³ S ⁻¹
1	2.0	2.0	3.2 x 10 ⁻⁵
2	2.0	4.0	6.4 x 10 ⁻⁵
3	4.0	2.0	х
4	4.0	4.0	25.6 x 10 ⁻⁵

a)		rite the rate equation.	(01 mark)
h)		viculato.	
υ)	Ca	llculate	
	i)	the value of x	(01 mark)
	ii)	the rate constant for the reaction and state its units.	(02 marks)

SECTION B (54 Marks)

Answer six questions from this section.

10. Complete the following equations and write a mechanism for the reaction in each case.

a) CH₃ÇH₂	\sim NHNH ₂ H ⁺		
C = O+			(04 marks)
CH₃	•		

.....

b) OH				
0	+	CH₃COCI	$\xrightarrow{NaOH_{(aq)}}$	(3½ marks)

c) $CH_3CH_2CI \xrightarrow{HC \equiv \bar{C}Na^+}$ (1½ marks)

dry ether

11. a)) State the common oxidation states of manganese.	(1½ marks)
ii)	the most stable oxidation state of Manganese.	(½ mark)
iii)	the reason for your answer in a(ii).	(½ mark)
b) W	/rite a half equation for the reduction of permanganate ion i	า
i)	acid medium	(01 mark)
ii)	alkaline medium	(01 mark)
-	n acidified solution of potassium iodide was added to otassium permanganate.	a solution of
	State what was observed.	(01 mark)
ii)	Write the ionic equation for the reaction that took place.	(1½ marks)
d) S i)	two advantages of using potassium permanganate as	_
	volumetric analysis.	(01 mark)

	ii)	two reasons why pota	assium pe	rmangana	te is not a	•	standard. (01 marks)
			••••				•••••
12.	a)	Define the term "F	Partition	coefficie	nt"	((01 mark)
	•••						
	•••					•••••	
			•••••				
b)	be	opper (II) ions forms elow shows the results ns and trichloromethar	of partition				
		$[NH_3] (0.1M Cu_{(aq)}^{2+})$	0.88	1.08	1.34	1.56	1.80
		[NH₃(CHCl₃).	0.02	0.03	0.04	0.05	0.06
	i)	Plot a graph of [NH ₃]	(0.1M Cu)	$\binom{2+}{(aq)}$ agair	nst [NH₃(C	HCl_3). ((03 marks)

i	i) Determine the value of n in the complex.	$(2\frac{1}{2} \text{ marks})$
c) i) Determine the partition coefficient, K_{D} of ammonia betw	veen adueous
C) 1	copper (II) ions and trichloromethane.	(1½ marks)
ii	 i) State what the value of K_D you have determined indicat distribution of ammonia. 	es about the (01 mark)
	distribution of animonia.	(OI Mark)
13. N	Name a regent that can be used to distinguish between the fo	ollowing pairs
	rganic compounds and in each case state what is observed.	31
	H_2 NH $_2$ H_3 H_4	
	and NH ₂	(3marks)
-		
ŀ	Reagent:	
	 Observation:	
	b) HCOOH and CH₃COOH	
F	Reagent:	

		Ob	servation:	
	(c)		CH ₂ Br CH ₃ O and	
		R	eagent:	
	 . (tabl	Ob	servation:	
14		ole. Sta		
		1)	the common oxidation states exhibited by the elements in compounds.	their ions or (01 mark)
		ii)	how the stability of each oxidation state in a(i) varies down	the group. (01 marks)
	b)	Giv	re a reason for your answer in (a) (ii).	(01 mark)

C)	tetrachloride (include equations of reactions if any)	(2½ marks)
d)	Describe the reaction if any between each of carbon tetrachlo	ride and lead
•	tetrachloride with water.	(01 manulca)
ا.) Carbon tetrachloride	(01 marks)
ii)) Lead tetrachloride	(2½ marks)
15.	Ctate what would be observed and write equation for the	roaction that
_	State what would be observed and write equation for the buld take place when	reaction that
	Solid sodium iodide is heated with concentrated sulphuri marks)	c acid. (2½
h)	A mixture of benzoic acid and iron (III) chloride solution is hea	atod
D)	A mixture of benzoic acid and from (III) chloride solution is nea	
		(02 marks)
		•

c)	c) Sodium nitrite was added to acidified potassium dichromate solutio				
		(2½ marks)			
d)	A mixture of ethanal and silver nitrate in ammonia solution.	(02 marks)			
,					
16.	The conductimetric curve for the titration of ethanoic acid a	and ammonia			
	lution is given below.	ind aminoma			
	$C \longrightarrow D$				
	₹ /				
	Ţ.				
	Conductivity				
	S B				
		\rightarrow			
	Volume of ammonia solution	(04 manulca)			
	Explain the shape of the graph.	(04 marks)			
		•••••			

b)	nit	e molar conductivity of nitric acid, sodium bromoethanoate and sodium rate are 421, 89.3 and $121.3\Omega^{-1}$ cm ² mol ⁻¹ respectively at inifinite dilution 25° C.Calculate the:
	i)	molar conductivity of bromoethanoic acid at infinite dilution.(1½ marks)
	ii)	Dissociation constant, Ka, of a 0.1M bromoethanoic acid solution. (The electrolytic conductivity of bromoethanoic acid is $4.38 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$) (3½ marks)
17.	a) 	Differentiate between soap and soapless detergents. (02 marks)
b)		rite equations to show how a soapless detergent can be prepared from decanol, $CH_3(CH_2)_{10}CH_2OH$. (02 marks)

c)	Exp	lain the cleansing action	of soap.		(0:	3 marks)
d)		te the advantage and read of soap in washing.	disadvantage of	using a	soapless	detergent
		Advantage .			`	1 mark)
					•••••	
	ii)	Disadvantage			(0	1 mark)
	,					

