FEM Tetraeder

Erzeugt von Doxygen 1.8.6

Fre Aug 17 2018 16:02:12

Inhaltsverzeichnis

Date	i-Verzei	ichnis	1
1.1	Auflistu	ung der Dateien	1
Date	i-Dokur	mentation	3
2.1	bicgsta	ab_solve.cpp-Dateireferenz	3
	2.1.1	Ausführliche Beschreibung	3
	2.1.2	Dokumentation der Funktionen	4
		2.1.2.1 bicgstab_solve	4
2.2	constr	nulvkt.cpp-Dateireferenz	6
	2.2.1	Ausführliche Beschreibung	7
	2.2.2	Dokumentation der Funktionen	7
		2.2.2.1 constmulvkt	7
2.3	dim_te	tr.cpp-Dateireferenz	8
	2.3.1	Ausführliche Beschreibung	9
	2.3.2	Dokumentation der Funktionen	9
		2.3.2.1 dim_tetr	9
2.4	dim_te	tr_pkt.cpp-Dateireferenz	10
	2.4.1	Ausführliche Beschreibung	10
	2.4.2	Dokumentation der Funktionen	11
		2.4.2.1 dim tetr pkt	11
2.5	dot pro		11
	2.5.1		12
	2.5.2		12
			12
26	FFM c		13
2.0			14
		•	14
	2.0.2		14
27	Flacob		
2.1			
			17
	1.1 Date 2.1 2.2 2.3	1.1 Auflisto Datei-Dokut 2.1 bicgsta 2.1.1 2.1.2 2.2 constru 2.2.1 2.2.2 2.3 dim_te 2.3.1 2.3.2 2.4 dim_te 2.4.1 2.4.2 2.5 dot_pru 2.5.1 2.5.2 2.6 FEM.c 2.6.1 2.6.2 2.7 Flaech 2.7.1	Datei-Dokumentation 2.1 biogstab_solve.cpp-Dateireferenz 2.1.1 Ausführliche Beschreibung 2.1.2 Dokumentation der Funktionen 2.1.2.1 biogstab_solve 2.2 constmulvkt.cpp-Dateireferenz 2.2.1 Ausführliche Beschreibung 2.2.2 Dokumentation der Funktionen 2.2.2.1 constmulvkt 2.3 dim_tetr.cpp-Dateireferenz 2.3.1 Ausführliche Beschreibung 2.3.2 Dokumentation der Funktionen 2.3.2.1 dim_tetr 2.4 dim_tetr_pkt.cpp-Dateireferenz 2.4.1 Ausführliche Beschreibung 2.4.2 Dokumentation der Funktionen 2.4.2.1 dim_tetr_pkt 2.5 dot_product.cpp-Dateireferenz 2.5.1 Ausführliche Beschreibung 2.5.2 Dokumentation der Funktionen 2.5.2.1 dot_product 2.6 FEM.cpp-Dateireferenz 2.6.1 Ausführliche Beschreibung 2.6.2.1 main 2.7.1 Ausführliche Beschreibung

iv INHALTSVERZEICHNIS

		2.7.2.1 Flaechen_RB
2.8	funktion	ns.h-Dateireferenz
	2.8.1	Ausführliche Beschreibung
	2.8.2	Dokumentation der Funktionen
		2.8.2.1 bicgstab_solve
		2.8.2.2 constmulvkt
		2.8.2.3 dim_tetr
		2.8.2.4 dim_tetr_pkt
		2.8.2.5 dot_product
		2.8.2.6 Flaechen_RB
		2.8.2.7 matmulvkt
		2.8.2.8 randpunkte_InnerePkt
		2.8.2.9 randpunkte_PNummerF
		2.8.2.10 RBdimension
		2.8.2.11 SteifigkeitsMatrix
		2.8.2.12 tetr_input
		2.8.2.13 tetr_pkt_input
		2.8.2.14 vktminus
		2.8.2.15 vktplus
2.9	matmu	lvkt.cpp-Dateireferenz
	2.9.1	Ausführliche Beschreibung
	2.9.2	Dokumentation der Funktionen
		2.9.2.1 matmulvkt
2.10	randpu	nkte_InnerePkt.cpp-Dateireferenz
	2.10.1	Ausführliche Beschreibung
	2.10.2	Dokumentation der Funktionen
		2.10.2.1 randpunkte_InnerePkt
2.11	randpu	nkte_PNummerF.cpp-Dateireferenz
	2.11.1	Ausführliche Beschreibung
	2.11.2	Dokumentation der Funktionen
		2.11.2.1 randpunkte_PNummerF
2.12	RBdim	ension.cpp-Dateireferenz
	2.12.1	Ausführliche Beschreibung
	2.12.2	Dokumentation der Funktionen
		2.12.2.1 RBdimension
2.13	Steifigk	keitsMatrix.cpp-Dateireferenz
	2.13.1	Ausführliche Beschreibung
	2.13.2	Dokumentation der Funktionen
		2.13.2.1 SteifigkeitsMatrix
2.14	tetr_inp	out.cpp-Dateireferenz

INHALTSVERZEICHNIS

	2.14.1	Ausführliche Beschreibung	44
	2.14.2	Dokumentation der Funktionen	44
		2.14.2.1 tetr_input	44
2.15	tetr_pk	t_input.cpp-Dateireferenz	45
	2.15.1	Ausführliche Beschreibung	45
	2.15.2	Dokumentation der Funktionen	45
		2.15.2.1 tetr_pkt_input	45
2.16	vktminu	us.cpp-Dateireferenz	46
	2.16.1	Ausführliche Beschreibung	47
	2.16.2	Dokumentation der Funktionen	47
		2.16.2.1 vktminus	47
2.17	vktplus	.cpp-Dateireferenz	48
	2.17.1	Ausführliche Beschreibung	48
	2.17.2	Dokumentation der Funktionen	48
		2.17.2.1 vktplus	48
Index			51

Kapitel 1

Datei-Verzeichnis

1.1 Auflistung der Dateien

Hier folgt die Aufzählung aller Dateien mit einer Kurzbeschreibung:

bicgstab_solve.cpp	
Das BiCG-Verfahren	3
constmulvkt.cpp	
Ein Unterprogramm für konstant∗Vektor	6
dim_tetr.cpp	
Anzahl des Tetraeder bestimmen	8
dim_tetr_pkt.cpp	
	10
dot_product.cpp	
	11
FEM.cpp	
· · · · · · · · · · · · · · · · · · ·	13
Flaechen_RB.cpp Flächen Randbedingung	15
funktions.h	I
	18
matmulvkt.cpp	
	33
randpunkte InnerePkt.cpp	
	35
randpunkte_PNummerF.cpp	
Randpunkte bestimmen	37
RBdimension.cpp	
•	39
SteifigkeitsMatrix.cpp	
	41
tetr_input.cpp	
	43
tetr_pkt_input.cpp	
	45
vktminus.cpp Ein Unterprogramm für $\vec{a}-\vec{b}$.,
, +	46
vktplus.cpp	10
Ein Unterprogramm für $ec{a}+ec{b}$	48

2 Datei-Verzeichnis

Kapitel 2

Datei-Dokumentation

2.1 bicgstab_solve.cpp-Dateireferenz

Das BiCG-Verfahren.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include <time.h>
#include <stdlib.h>
#include <limits>
#include <iomanip>
#include "funktions.h"
Include-Abhängigkeitsdiagramm für bicgstab_solve.cpp:
```


Funktionen

• void bicgstab_solve (int ndim, double **a, double *b, double *x, double **PTetr)

Funktion des BiCG-Verfahrens.

2.1.1 Ausführliche Beschreibung

Das BiCG-Verfahren. Ein iteratives numerisches Verfahren zur approximativen Lösung eines linearen Gleichungssystems: $A*\vec{x}=\vec{b}, A\in\mathbb{R}^{n*n}$

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.1.2 Dokumentation der Funktionen

2.1.2.1 void bicgstab_solve (int *ndim*, double ** a, double ** b, double ** double ** PTetr)

Funktion des BiCG-Verfahrens.

Parameter

ndim	Anzahl der Matrix und des Vektors
**a	2-Dimension Matrix(linke Seite)
*b	Vektor(rechte Seite)
*X	unbekanter Vektor
**PTetr	Punktnummern im Tetraeder

Rückgabe

Keine Rückgabe, aber ein Gnuplot-Skript wird aufgerufen um den Fehler zu sehen

double variables declaration:

< alpha: Reelle Zahl lpha

< beta: Reele Zahl eta

< delta: Fehler Δ

< omega: Reelle Zahl ω

< rho: Reelle Zahl ho

< rho_alt: Reelle Zahl ho_{alt}

< eps: Genauigkei arepsilon

< u: Standard Lösung

< xnetz: X-Koordinaten

< ynetz: Y-Koordinaten

< znetz: Z-Koordinaten

<*p: Vektor \vec{p}

<*r: Vektor \vec{r}

<*r0: Vektor $\vec{r_0}$

<*v: Vektor \vec{v}

<*s: Vektor \vec{s}

 $<*t: Vektor \vec{t}$

 $< *tmp1: Zwischen Vektor <math>\overrightarrow{tmp1}$

< *tmp2: Zwischen Vektor $\overrightarrow{tmp2}$

< it: Zähler für Iterationsschleife

< st0,ste: Zeit Messung des Verfahrens

< cpu_sekunden: Zeitdauer des Verfahrens

Genauigkeit der double Zahl

BiCG-Verfahren anfangen:

Initialisiren $\vec{x} = 3.0$

Setze $\vec{p} = \vec{b} - A * \vec{x}$

Setze $\vec{b} = \vec{b} - A * \vec{x}$

Setze $\vec{r}_0 = \vec{r}$

Setze $ho = \vec{r} \cdot \vec{r}$

Iterationsschleife anfangen:

proof $\vec{r} \cdot \vec{r} > \varepsilon$?

$$\vec{v} = A * \vec{p}$$

$$\alpha = \rho/(\vec{v}\cdot\vec{r}_0)$$

$$\vec{s} = \vec{r} - \alpha * \vec{v}$$

$$\vec{t} = A * \vec{s}$$

$$\omega = \frac{\vec{t} \cdot \vec{s}}{\vec{r} \cdot \vec{s}}$$

$$\vec{x}_{k+1} = \vec{x}_k + \alpha * \vec{p} + \omega * \vec{s}$$

$$\vec{r} = \vec{s} - \omega * \vec{t}$$

 ρ_k speichern

$$\rho_{k+1} = \vec{r} \cdot \vec{r}_0$$

$$\beta = \alpha/\omega * \rho_{k+1}/\rho_k$$

$$\vec{p} = \vec{r} + \beta * (\vec{p} - \omega * \vec{v})$$

Zeitdauer des Verfahrens

Die Lösung wird in "fort.33" ausgegeben

Gnuplot-Skript "cg_Tetraed.dem" aufrufen

Hier ist ein Graph, der zeigt, was diese Funktion aufruft:

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.2 constmulvkt.cpp-Dateireferenz

Ein Unterprogramm für konstant*Vektor.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für constmulvkt.cpp:

Funktionen

double * constmulvkt (double a, double *b, int brow)
 Funktion Konstant* Vektor.

2.2.1 Ausführliche Beschreibung

Ein Unterprogramm für konstant*Vektor.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.2.2 Dokumentation der Funktionen

2.2.2.1 double * constmulvkt (double a, double * b, int brow)

Funktion Konstant*Vektor.

Parameter

a ein Konstant

*b	Vektor
brow	Dimension des Vektors

Rückgabe

geben den Lösung Vektor zurück

```
< *out: der Lösung-Vektor</p>
```

$$out_i = a * b_i$$

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.3 dim_tetr.cpp-Dateireferenz

Anzahl des Tetraeder bestimmen.

```
#include <iostream>
#include <string>
#include <fstream>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für dim_tetr.cpp:

Funktionen

• int dim_tetr (string &str, int n_tetr_pkt)

Funktion um die Anzahl des Tetraeders zu bestimmen.

2.3.1 Ausführliche Beschreibung

Anzahl des Tetraeder bestimmen. Ein "*.msh" File wird als Input eingelesen

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.3.2 Dokumentation der Funktionen

2.3.2.1 int dim_tetr (string & str, int n_tetr_pkt)

Funktion um die Anzahl des Tetraeders zu bestimmen.

Parameter

&str	Name des Inputfiles	
n_tetr_pkt	Anzahl aller Punkten	1

Rückgabe

geben die Anzahl des Tetraeders zurück

- < dim: Zähler des Tetraeders
- < a: 1.Spalt des Files
- < b: 2.Spalt des Files

Das File besteht aus 2 Teilen:

- 1: Alle Punkte mit XYZ-Koordinaten
- 2: Alle Element mit Punktnummer

lesen das File bis zu Anfang des Elements ein

- 1. Spalt ist die Nummer des Elements
- 2. Spalt ist der Typ des Elements

Typ Nummer:

- 1: Linie(2 Knoten)
- 2: Dreiecke(3 Knoten)
- 3: Vierecke(4 Knoten)
- 4: Tetraeder(4 Knoten)
- 5: Hexaeder(8 Knoten)
- 6: Prisma(6 Knoten)
- 7: Pyramide(5 Knoten)
- 8: Linie 2.Ordnung(3 Knoten)
- 9: Dreiecke 2.Ordnung(6 Knoten)
- 11: Tetraeder 2.Ordnung(10 Knoten)
- 15: Punkt(1 Knoten)

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.4 dim_tetr_pkt.cpp-Dateireferenz

Anzahl der Punkten bestimmen.

```
#include <iostream>
#include <string>
#include <fstream>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für dim_tetr_pkt.cpp:

Funktionen

int dim_tetr_pkt (string &str)
 Funktion um die Anzahl der Punkten zu bestimmen.

2.4.1 Ausführliche Beschreibung

Anzahl der Punkten bestimmen. Ein "*.msh" File wird als Input eingelesen

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.4.2 Dokumentation der Funktionen

2.4.2.1 int dim_tetr_pkt (string & str)

Funktion um die Anzahl der Punkten zu bestimmen.

Parameter

&str	Name des Inputfiles

Rückgabe

geben die Anzahl der Punkten

< dim: Zähler der Punkten

Die Anzahl steht in die 5.Zeile des Files, kann direkt eingelesen werden

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.5 dot_product.cpp-Dateireferenz

Skalarprodukt.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für dot_product.cpp:

Funktionen

double dot_product (double *a, double *b, int arow, int brow)
 Funktion Skalarprodukt.

2.5.1 Ausführliche Beschreibung

Skalarprodukt.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.5.2 Dokumentation der Funktionen

2.5.2.1 double dot_product (double * a, double * b, int arow, int brow)

Funktion Skalarprodukt.

Parameter

* <i>a</i>	Vektor a

*b	Vektor b
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben die Lösung $\vec{a}\cdot\vec{b}$ zurück

< out: Die Lösung

$$\sum_{i=1}^{n} a_i * b_i$$

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.6 FEM.cpp-Dateireferenz

Hauptprogramm FEM_Tetraeder.

#include <cmath>
#include <fstream>
#include <iostream>
#include <string>
#include "funktions.h"

Include-Abhängigkeitsdiagramm für FEM.cpp:

Funktionen

• int main ()

main Funktion

2.6.1 Ausführliche Beschreibung

```
Hauptprogramm FEM Tetraeder.
```

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.6.2 Dokumentation der Funktionen

```
2.6.2.1 int main ( )
```

main Funktion

- < n_tetr_pkt: Anzahl der Punkten
- < n_tetr : Anzahl des Tetraeders
- < **P: Koordinatenssystem jeder Punkts(n_tetr_pkt Zeilen, 3 Spalte)</p>
- < **T: Tetraeder Element(besteht aus 4 Knoten ==>n_tetr Zeilen, 4 Spalte)
- < NRanddim: Randpunktdimensionen
- < **PNummerF: Randpunkt(NRanddim Zeilen, 6 Spalte)</p>
- < **InnerePkt: Innere Punkte(n_tetr_pkt Zeilen)</pre>
- <**global: globale Steifigkeitsmatrix und b-Matrix zusammen:
 - 1. 1 bis n tetr pkt Spalte ===> Steifigkeitsmatrix
 - 2. n_tetr_pkt Spalt ===> b-Matrix(rechte Seite)

Name des Inputfiles

Anzahl der Punkten bestimmen

Anzahl des Tetraeders bestimmen

- < *bglobal : b-Matrix dimensionieren(n_tetr_pkt Zeilen)</p>
- < **Sglobal: Steifigkeitsmatrix dimensionieren (n tetr pkt Zeilen, n tetr pkt Spalte)</p>
- < *x: Temperaturverteilung dimensionieren(n_tetr_pkt Zeilen)</p>

Punkte einlesen

Tetraeder einlesen

Randpunktedimension bestimmen

Randpunkte bestimmen

Innerepunkt bestimmen

globale Steifigkeitsmatrix und b-Matrix berechnen
globale SteifigkeitsMatrix wird in " SglobalSteifigkeitMain.txt" ausgegeben
globale b-Matrix wird in " bglobalSteifigkeitMain.txt" ausgegeben
globale SteifigkeitsMatrix mit RB wird in " SglobalFlaechenMain.txt" ausgegeben
globale b-Matrix mit RB wird in " bglobalFlaechenMain.txt" ausgegeben
Temperaturverteilung initialisieren
Das BiCG-Verfahren aufrufen

Hier ist ein Graph, der zeigt, was diese Funktion aufruft:

2.7 Flaechen_RB.cpp-Dateireferenz

Flächen Randbedingung.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
Include-Abhängigkeitsdiagramm für Flaechen RB.cpp:
```


Funktionen

• double ** Flaechen_RB (int NRanddim, int n_tetr_pkt, int **PNummerF, double **P, double *bglobal, int *InnerePkt, double **Sglobal)

Funktion um Flächen Randbedingung zu berechnen Multiplikation der Steifigkeitsmatrix mit T_k in der ki_ten Spalte Randbedingung an der k. Randflaeche

(k=1 : linke Tetraederflaeche) (k=2 : untere Tetraederflaeche) (k=3 : vordere Tetraederflaeche) (k=4 : rechte Tetraederflaeche)

2.7.1 Ausführliche Beschreibung

Flächen Randbedingung.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.7.2 Dokumentation der Funktionen

2.7.2.1 double** Flaechen_RB (int NRanddim, int n_tetr_pkt, int ** PNummerF, double ** P, double * bglobal, int *
InnerePkt, double ** Sglobal)

Funktion um Flächen Randbedingung zu berechnen

Multiplikation der Steifigkeitsmatrix mit T_k in der ki_ten Spalte

Randbedingung an der k. Randflaeche

(k=1 : linke Tetraederflaeche)

(k=2 : untere Tetraederflaeche)

(k=3 : vordere Tetraederflaeche)

(k=4 : rechte Tetraederflaeche)

Parameter

NRanddim	Anzahl der Randpunkten
n_tetr_pkt	Anzahl aller Punkten
**PNummerF	Randpunkte
**P	Alle Punkte
*bglobal	globale b-Matrix
*InnerePkt	Innere Punkte
**Sglobal	globale Steifigkeitsmatrix

Rückgabe

geben die neue globale Matrix(Sglobal und bglobal) zurück

< **global: globale Matrix dimensionieren

< urand: kubische Lösung

< x, y, z: XYZ-Kooridinaten

< f1zaehler: Punkte auf Randflächen F_1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F3

< f4zaehler: Punkte auf Randflächen F_4

< f5zaehler: Punkte auf Randflächen F_5

< f6zaehler: Punkte auf Randflächen F_6

kubische Lösung:

$$urand = 20 - 2 * y^2 + x^3 * y - x * y^3 + z^3 * x - z * x^3$$

Hier werden alle Komponenten belegt!

Hier wird nur die ki-te Komponente belegt!

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8 funktions.h-Dateireferenz

Funktionen declaration.

#include <string>
#include <iostream>

Include-Abhängigkeitsdiagramm für funktions.h:

Dieser Graph zeigt, welche Datei direkt oder indirekt diese Datei enthält:

Funktionen

• int dim_tetr_pkt (string &str)

Funktion um die Anzahl der Punkten zu bestimmen.

int dim_tetr (string &str, int n_tetr_pkt)

Funktion um die Anzahl des Tetraeders zu bestimmen.

double ** tetr_pkt_input (string &str, int n_tetr_pkt)

Funktion um alle Punkte einzulesen.

int ** tetr_input (string &str, int n_tetr_pkt, int n_tetr)

Funktion um die Tetraeder Element einzulesen.

int RBdimension (int n_tetr_pkt, double **p)

Funktion um Anzahl der Randpunkte zu bestimmen.

```
    int ** randpunkte_PNummerF (int n_tetr_pkt, int NRanddim, double **p)

          Funktion um alle Randpunkte zu bestimmen
          diese Funktion ist gleich wie randpunkte_InnerePkt()
          der Unterschied dazwischen ist nur die Rückgabe.
    • int * randpunkte InnerePkt (int n tetr pkt, int NRanddim, double **p)
          Funktion um innere Punktenummer zu bestimmen.

    double ** SteifigkeitsMatrix (int n_tetr_pkt, int n_tetr, int **T, double **P)

           Funktion um die Steifigkeismatrix zu berechnen.
    • double ** Flaechen RB (int NRanddim, int n tetr pkt, int **PNummerF, double **P, double *bglobal, int
       *InnerePkt, double **Sglobal)
          Funktion um Flächen Randbedingung zu berechnen
          Multiplikation der Steifigkeitsmatrix mit T_k in der ki_ten Spalte
          Randbedingung an der k. Randflaeche
          (k=1 : linke Tetraederflaeche)
          (k=2 : untere Tetraederflaeche)
          (k=3 : vordere Tetraederflaeche)
           (k=4 : rechte Tetraederflaeche)

    void bicgstab solve (int ndim, double **a, double *b, double *x, double **PTetr)

          Funktion des BiCG-Verfahrens.

    double * matmulvkt (double **a, double *b, int arow, int acol, int brow)

          Funktion Matrix* Vektor
          Anzahl des Matrix-Spalts soll gleich die Vektor-Dimension sein.

    double dot_product (double *a, double *b, int arow, int brow)

          Funktion Skalarprodukt.

    double * vktminus (double *a, double *b, int arow, int brow)

    double * vktplus (double *a, double *b, int arow, int brow)

          Funktion \vec{a} + \vec{b}.

    double * constmulvkt (double a, double *b, int brow)

          Funktion Konstant* Vektor.
2.8.1 Ausführliche Beschreibung
Funktionen declaration.
Autor
      Youyu Chen
Version
      1.0
Datum
      09.08.2018
2.8.2 Dokumentation der Funktionen
2.8.2.1 void bicgstab_solve ( int ndim, double *** a, double ** b, double ** x, double *** PTetr )
Funktion des BiCG-Verfahrens.
```

Parameter

ndim	Anzahl der Matrix und des Vektors
**a	2-Dimension Matrix(linke Seite)
*b	Vektor(rechte Seite)
*X	unbekanter Vektor
**PTetr	Punktnummern im Tetraeder

Rückgabe

Keine Rückgabe, aber ein Gnuplot-Skript wird aufgerufen um den Fehler zu sehen

double variables declaration:

< alpha: Reelle Zahl lpha

< beta: Reele Zahl eta

< delta: Fehler Δ

< omega: Reelle Zahl ω

< rho: Reelle Zahl ho

< rho_alt: Reelle Zahl ho_{alt}

< eps: Genauigkei arepsilon

< u: Standard Lösung

< xnetz: X-Koordinaten

< ynetz: Y-Koordinaten

< znetz: Z-Koordinaten

<*p: Vektor \vec{p}

<*r: Vektor \vec{r}

<*r0: Vektor $\vec{r_0}$

<*v: Vektor \vec{v}

<*s: Vektor \vec{s}

<*t: Vektor \vec{t}

 $< *tmp1: Zwischen Vektor \overrightarrow{tmp1}$

< *tmp2: Zwischen Vektor $\overrightarrow{tmp2}$

< it: Zähler für Iterationsschleife

< st0,ste: Zeit Messung des Verfahrens

< cpu_sekunden: Zeitdauer des Verfahrens

Genauigkeit der double Zahl

BiCG-Verfahren anfangen:

Initialisiren $\vec{x} = 3.0$

Setze $\vec{p} = \vec{b} - A * \vec{x}$

Setze $\vec{b} = \vec{b} - A * \vec{x}$

Setze $\vec{r}_0 = \vec{r}$

Setze $ho = \vec{r} \cdot \vec{r}$

Iterationsschleife anfangen:

proof $\vec{r} \cdot \vec{r} > \varepsilon$?

$$\vec{v} = A * \vec{p}$$

$$\alpha = \rho/(\vec{v}\cdot\vec{r}_0)$$

$$\vec{s} = \vec{r} - \alpha * \vec{v}$$

$$\vec{t} = A * \vec{s}$$

$$\omega = \frac{\vec{t} \cdot \vec{s}}{\vec{t} \cdot \vec{t}}$$

$$\vec{x}_{k+1} = \vec{x}_k + \alpha * \vec{p} + \omega * \vec{s}$$

$$\vec{r} = \vec{s} - \omega * \vec{t}$$

 ρ_k speichern

$$\rho_{k+1} = \vec{r} \cdot \vec{r}_0$$

$$\beta = \alpha/\omega * \rho_{k+1}/\rho_k$$

$$\vec{p} = \vec{r} + \beta * (\vec{p} - \omega * \vec{v})$$

Zeitdauer des Verfahrens

Die Lösung wird in "fort.33" ausgegeben

Gnuplot-Skript "cg_Tetraed.dem" aufrufen

Hier ist ein Graph, der zeigt, was diese Funktion aufruft:

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.2 double * constmulvkt (double a, double * b, int brow)

Funktion Konstant*Vektor.

Parameter

а	ein Konstant
*b	Vektor
brow	Dimension des Vektors

Rückgabe

geben den Lösung Vektor zurück

< *out: der Lösung-Vektor

 $out_i = a * b_i$

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.3 int dim_tetr (string & str, int n_tetr_pkt)

Funktion um die Anzahl des Tetraeders zu bestimmen.

Parameter

&str	Name des Inputfiles
n_tetr_pkt	Anzahl aller Punkten

Rückgabe

geben die Anzahl des Tetraeders zurück

< dim: Zähler des Tetraeders

< a: 1.Spalt des Files

< b: 2.Spalt des Files

Das File besteht aus 2 Teilen:

1: Alle Punkte mit XYZ-Koordinaten

2: Alle Element mit Punktnummer

lesen das File bis zu Anfang des Elements ein

- 1. Spalt ist die Nummer des Elements
- Spalt ist der Typ des Elements Typ Nummer:

- 1: Linie(2 Knoten)
- 2: Dreiecke(3 Knoten)
- 3: Vierecke(4 Knoten)
- 4: Tetraeder(4 Knoten)
- 5: Hexaeder(8 Knoten)
- 6: Prisma(6 Knoten)
- 7: Pyramide(5 Knoten)
- 8: Linie 2.Ordnung(3 Knoten)
- 9: Dreiecke 2.Ordnung(6 Knoten)
- 11: Tetraeder 2.Ordnung(10 Knoten)
- 15: Punkt(1 Knoten)

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.4 int dim_tetr_pkt (string & str)

Funktion um die Anzahl der Punkten zu bestimmen.

Parameter

&str	Name des Inputfiles

Rückgabe

geben die Anzahl der Punkten

< dim: Zähler der Punkten

Die Anzahl steht in die 5.Zeile des Files, kann direkt eingelesen werden

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.5 double dot_product (double * a, double * b, int arow, int brow)

Funktion Skalarprodukt.

Parameter

*a	Vektor a
*b	Vektor b
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben die Lösung $\vec{a}\cdot\vec{b}$ zurück

< out: Die Lösung

 $\sum_{i=1}^{n} a_i * b_i$

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.6 double** Flaechen_RB (int *NRanddim*, int *n_tetr_pkt*, int ** *PNummerF*, double ** *P*, double * *bglobal*, int * *InnerePkt*, double ** *Sglobal*)

Funktion um Flächen Randbedingung zu berechnen

Multiplikation der Steifigkeitsmatrix mit T_k in der ki_ten Spalte

Randbedingung an der k. Randflaeche

(k=1 : linke Tetraederflaeche)

(k=2 : untere Tetraederflaeche)

(k=3: vordere Tetraederflaeche)

(k=4 : rechte Tetraederflaeche)

Parameter

NRanddim	Anzahl der Randpunkten
n_tetr_pkt	Anzahl aller Punkten
**PNummerF	Randpunkte
**P	Alle Punkte
*bglobal	globale b-Matrix
*InnerePkt	Innere Punkte
**Sglobal	globale Steifigkeitsmatrix

Rückgabe

geben die neue globale Matrix(Sglobal und bglobal) zurück

< **global: globale Matrix dimensionieren

< urand: kubische Lösung

< x, y, z: XYZ-Kooridinaten

< f1zaehler: Punkte auf Randflächen F_1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F_3

< f4zaehler: Punkte auf Randflächen F_4

< f5zaehler: Punkte auf Randflächen F_5

< f6zaehler: Punkte auf Randflächen F_6

kubische Lösung:

$$urand = 20 - 2 * y^2 + x^3 * y - x * y^3 + z^3 * x - z * x^3$$

Hier werden alle Komponenten belegt!

Hier wird nur die ki-te Komponente belegt!

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.7 double * matmulvkt (double ** a, double * b, int arow, int acol, int brow)

Funktion Matrix*Vektor

Anzahl des Matrix-Spalts soll gleich die Vektor-Dimension sein.

Parameter

**a	Matrix a
*b	Vektor b
arow	Anzahl der Zeile a
acol	Anzahl des Spalts a
brow	Vektor-Dimension

Rückgabe

geben einen neuen Vektor zurück

< *out: der Lösung-Vektor

$$\overrightarrow{out} = A * \overrightarrow{b}$$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.8 int* randpunkte_InnerePkt (int n_tetr_pkt, int NRanddim, double ** p)

Funktion um innere Punktenummer zu bestimmen.

Parameter

n_tetr_pkt	Anzahl aller Punkten
NRanddim	Dimension des Randpunkts
**p	Punkte mit Koordinatenssystem

Rückgabe

geben die innere Punktenummer zurück

< **pnummerf: Nummerfeld der Randpunkt dimensionieren</p>

< *innerepkt: Innerepunkte dimensionieren</p>

< f1zaehler: Punkte auf Randflächen F1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F_3

< f4zaehler: Punkte auf Randflächen F_4

< f5zaehler: Punkte auf Randflächen F_5

< f6zaehler: Punkte auf Randflächen F_6

< eps: Genauigkeit Vergliech zu Null

< xmax: Größte Zahl in X-Richtung

< xmin: kleinste Zahl in X-Richtung

< ymax: Größte Zahl in Y-Richtung

< ymin: kleinste Zahl in Y-Richtung

< zmax: Größte Zahl in Z-Richtung

< zmin: kleinste Zahl in Z-Richtung

Randflächen suchen

Punkte auf Randflächen F_1 (ymax)

Punkte auf Randflächen F_2 (ymin)

Punkte auf Randflächen F_3 (xmax)

Punkte auf Randflächen $F_4(xmin)$

Punkte auf Randflächen $F_5(zmax)$

Punkte auf Randflächen $F_6(zmin)$

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.9 int** randpunkte_PNummerF (int n_tetr_pkt, int NRanddim, double ** p)

Funktion um alle Randpunkte zu bestimmen

diese Funktion ist gleich wie randpunkte_InnerePkt()

der Unterschied dazwischen ist nur die Rückgabe.

Parameter

n_tetr_pkt	Anzahl aller Punkten
NRanddim	Dimension des Randpunkts
**p	Punkte mit Koordinatenssystem

Rückgabe

geben die Randpunkte(auf 6 Flächen) zurück

Siehe auch

randpunkte_InnerePkt()

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.10 int RBdimension (int n_tetr_pkt , double **p)

Funktion um Anzahl der Randpunkte zu bestimmen.

Parameter

n_tetr_pkt	Anzahl aller Punkte
** p	Punkte mit Koordinatenssystem

Rückgabe

geben die Anzahl der Randpunkte zurück

< NRanddim: Anzahl der Randpunkt

< f1zaehler: Punkte auf Randflächen F_1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F3

< f4zaehler: Punkte auf Randflächen F_4

< f5zaehler: Punkte auf Randflächen F_5

< f6zaehler: Punkte auf Randflächen F_6

< eps: Genauigkeit

< xmax: Größte Zahl in X-Richtung

< xmin: kleinste Zahl in X-Richtung

< ymax: Größte Zahl in Y-Richtung

< ymin: kleinste Zahl in Y-Richtung

< zmax: Größte Zahl in Z-Richtung

< zmin: kleinste Zahl in Z-Richtung

Randflächen suchen

Punkte auf Randflächen F_1 (ymax)

Punkte auf Randflächen F_2 (ymin)

Punkte auf Randflächen F_3 (xmax)

Punkte auf Randflächen $F_4(xmin)$

Punkte auf Randflächen F_5 (zmax)

Punkte auf Randflächen F_6 (zmin)

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.11 double** SteifigkeitsMatrix (int n_tetr_pkt, int n_tetr, int ** T, double ** P)

Funktion um die Steifigkeismatrix zu berechnen.

Parameter

n_tetr_pkt	Anzahl aller Punkte
n_tetr	Anzahl der Tetraeder
** <i>T</i>	Tetraeder Element
**P	Punkte mit Koordinatenssystem

Rückgabe

geben die globale Steifigkeitsmatrix und b-Matrix zurück

< *bglobal: rechte Seite b dimensionieren

< **Sglobal: Steifigkeitsmatrix dimensionieren</p>

< **global: globale Steifigkeitsmatrix und b-Matrix zusammen:</p>

1. 1 bis n_tetr_pkt Spalte ===> Steifigkeitsmatrix

2. n_tetr_pkt Spalt ===> b-Matrix(rechte Seite)

< Ndim: Dimension

< det_Phi: Determinante ϕ

< one_by_Phi: $\frac{1}{det\phi}$

< Slocal[4][4]: locale Steifigkeitsmatrix

< blocal[4] : locale b-Matrix

Slocal[4][4] initialisieren

blocal[4] initialisieren

 $x_2 - x_1$

 $y_2 - y_1$

 $z_2 - z_1$

 $x_3 - x_1$

 $y_3 - y_1$

 $z_3 - z_1$

 $x_4 - x_1$

 $y_4 - y_1$

 z_4-z_1

vermeintlicher Fehler <== ELMER

$$u(x, y, z) = 20 - 2 \cdot y^2 + x^3 \cdot y - x \cdot y^3 + z^3 \cdot x - z \cdot x^3$$

Rechte Seite * q=4 und die 1/6 der Steifigkeitsmatrix auf die andere Seite

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.12 int** tetr_input (string & str, int n_tetr_pkt, int n_tetr)

Funktion um die Tetraeder Element einzulesen.

Parameter

&str	Name des Inputfiles
n_tetr_pkt	Anzahl aller Punkten
n_tetr	Anzahl des Tetraeder

< **t: Tetraederfeld dimensionieren

< idummy1: Element Index

< idummy2: Element Typ

< idummy3: Nummer der tags

< idummy4: <tags>

< idummy5: Knoten Nummer-List

< dim_element: Anzahl aller Elemente

< a,b,c,d: 4 Knoten

Lesen das File bis zu die Zeile ein, die zu Element gehört

Typnummer des Tetraeders ist gleich 4 ==> idummy2 == 4 ?

4 Knoten einlesen

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.13 double** tetr_pkt_input (string & str, int n_tetr_pkt)

Funktion um alle Punkte einzulesen.

< **p: Punktefeld dimensionieren</p>

< idummy: Punktenummer

< a,b,c: XYZ-Koordinatenssystem

XYZ-Knoten einlesen

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.14 double * vktminus (double * a, double * b, int arow, int brow)

Funktion $\vec{a} - \vec{b}$.

Dimension \vec{a} soll gleich wie \vec{b} sein

Parameter

*a	Vektor
*b	Vektor
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben den Lösung Vektor zurück

Siehe auch

vktplus()

< *out: der Lösung-Vektor

 $out_i = a_i * b_i$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.8.2.15 double* vktplus (double * a, double * b, int arow, int brow)

Funktion $\vec{a} + \vec{b}$.

Dimension \vec{a} soll gleich wie \vec{b} sein

Parameter

* <i>a</i>	Vektor
* <i>b</i>	Vektor
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben den Lösung Vektor zurück

Siehe auch

vktminus()

```
< *out: der Lösung-Vektor
```

 $out_i = a_i * b_i$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.9 matmulvkt.cpp-Dateireferenz

Ein Unterprogramm für Matrix*Vektor.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für matmulvkt.cpp:

Funktionen

double * matmulvkt (double **a, double *b, int arow, int acol, int brow)
 Funktion Matrix* Vektor
 Anzahl des Matrix-Spalts soll gleich die Vektor-Dimension sein.

2.9.1 Ausführliche Beschreibung

Ein Unterprogramm für Matrix*Vektor.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.9.2 Dokumentation der Funktionen

2.9.2.1 double * matmulvkt (double ** a, double * b, int arow, int acol, int brow)

Funktion Matrix*Vektor

Anzahl des Matrix-Spalts soll gleich die Vektor-Dimension sein.

Parameter

**a	Matrix a
*b	Vektor b
arow	Anzahl der Zeile a
acol	Anzahl des Spalts a
brow	Vektor-Dimension

Rückgabe

geben einen neuen Vektor zurück

< *out: der Lösung-Vektor

 $\overrightarrow{out} = A * \overrightarrow{b}$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.10 randpunkte_InnerePkt.cpp-Dateireferenz

Innere Punktenummer bestimmen.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für randpunkte_InnerePkt.cpp:

Funktionen

• int * randpunkte_InnerePkt (int n_tetr_pkt, int NRanddim, double **p)

Funktion um innere Punktenummer zu bestimmen.

2.10.1 Ausführliche Beschreibung

Innere Punktenummer bestimmen.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.10.2 Dokumentation der Funktionen

2.10.2.1 int* randpunkte_InnerePkt (int n_tetr_pkt, int NRanddim, double ** p)

Funktion um innere Punktenummer zu bestimmen.

Parameter

n_tetr_pkt	Anzahl aller Punkten

NRanddim	Dimension des Randpunkts
** p	Punkte mit Koordinatenssystem

Rückgabe

geben die innere Punktenummer zurück

< **pnummerf: Nummerfeld der Randpunkt dimensionieren</p>

< *innerepkt: Innerepunkte dimensionieren</p>

< f1zaehler: Punkte auf Randflächen F_1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F_3

< f4zaehler: Punkte auf Randflächen F4

< f5zaehler: Punkte auf Randflächen F5

< f6zaehler: Punkte auf Randflächen F_6

< eps: Genauigkeit Vergliech zu Null

< xmax: Größte Zahl in X-Richtung

< xmin: kleinste Zahl in X-Richtung

< ymax: Größte Zahl in Y-Richtung

< ymin: kleinste Zahl in Y-Richtung

< zmax: Größte Zahl in Z-Richtung

< zmin: kleinste Zahl in Z-Richtung

Randflächen suchen

Punkte auf Randflächen F_1 (ymax)

Punkte auf Randflächen F_2 (ymin)

Punkte auf Randflächen F_3 (xmax)

Punkte auf Randflächen $F_4(xmin)$

Punkte auf Randflächen F_5 (zmax)

Punkte auf Randflächen F_6 (zmin)

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.11 randpunkte_PNummerF.cpp-Dateireferenz

Randpunkte bestimmen.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
Include-Abhängigkeitsdiagramm für randpunkte PNummerF.cpp:
```


Funktionen

int ** randpunkte_PNummerF (int n_tetr_pkt, int NRanddim, double **p)
 Funktion um alle Randpunkte zu bestimmen
 diese Funktion ist gleich wie randpunkte_InnerePkt()
 der Unterschied dazwischen ist nur die Rückgabe.

2.11.1 Ausführliche Beschreibung

Randpunkte bestimmen.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.11.2 Dokumentation der Funktionen

2.11.2.1 int** randpunkte_PNummerF (int n_tetr_pkt, int NRanddim, double ** p)

Funktion um alle Randpunkte zu bestimmen

diese Funktion ist gleich wie randpunkte_InnerePkt()

der Unterschied dazwischen ist nur die Rückgabe.

Parameter

n_tetr_pkt	Anzahl aller Punkten
NRanddim	Dimension des Randpunkts
**p	Punkte mit Koordinatenssystem

Rückgabe

geben die Randpunkte(auf 6 Flächen) zurück

Siehe auch

randpunkte_InnerePkt()

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.12 RBdimension.cpp-Dateireferenz

Anzahl der Randpunkte bestimmen.

#include <iostream>
#include <algorithm>
#include <cmath>

Include-Abhängigkeitsdiagramm für RBdimension.cpp:

Funktionen

• int RBdimension (int n_tetr_pkt, double **p)

Funktion um Anzahl der Randpunkte zu bestimmen.

2.12.1 Ausführliche Beschreibung

Anzahl der Randpunkte bestimmen.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.12.2 Dokumentation der Funktionen

2.12.2.1 int RBdimension (int n_tetr_pkt, double ** p)

Funktion um Anzahl der Randpunkte zu bestimmen.

Parameter

n_tetr_pkt	Anzahl aller Punkte
** <i>p</i>	Punkte mit Koordinatenssystem

Rückgabe

geben die Anzahl der Randpunkte zurück

< NRanddim: Anzahl der Randpunkt

< f1zaehler: Punkte auf Randflächen F_1

< f2zaehler: Punkte auf Randflächen F_2

< f3zaehler: Punkte auf Randflächen F_3

< f4zaehler: Punkte auf Randflächen F_4

< f5zaehler: Punkte auf Randflächen F_5

< f6zaehler: Punkte auf Randflächen F_6

< eps: Genauigkeit

< xmax: Größte Zahl in X-Richtung

< xmin: kleinste Zahl in X-Richtung

< ymax: Größte Zahl in Y-Richtung

< ymin: kleinste Zahl in Y-Richtung

< zmax: Größte Zahl in Z-Richtung

< zmin: kleinste Zahl in Z-Richtung

Randflächen suchen

Punkte auf Randflächen F_1 (ymax)

Punkte auf Randflächen F_2 (ymin)

Punkte auf Randflächen F_3 (xmax)

Punkte auf Randflächen $F_4(xmin)$

Punkte auf Randflächen F_5 (zmax)

Punkte auf Randflächen F_6 (zmin)

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.13 SteifigkeitsMatrix.cpp-Dateireferenz

Steifigkeitsmatrix berechnen.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für SteifigkeitsMatrix.cpp:

Funktionen

• double ** SteifigkeitsMatrix (int n_tetr_pkt, int n_tetr, int **T, double **P)

Funktion um die Steifigkeismatrix zu berechnen.

2.13.1 Ausführliche Beschreibung

Steifigkeitsmatrix berechnen.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.13.2 Dokumentation der Funktionen

2.13.2.1 double** SteifigkeitsMatrix (int n_tetr_pkt , int n_tetr , int ** T, double ** P)

Funktion um die Steifigkeismatrix zu berechnen.

Parameter

n_tetr_pkt	Anzahl aller Punkte
n_tetr	Anzahl der Tetraeder
** <i>T</i>	Tetraeder Element
**P	Punkte mit Koordinatenssystem

Rückgabe

geben die globale Steifigkeitsmatrix und b-Matrix zurück

- < *bglobal: rechte Seite b dimensionieren</p>
- <**Sglobal: Steifigkeitsmatrix dimensionieren
- < **global: globale Steifigkeitsmatrix und b-Matrix zusammen:</p>
 - 1. 1 bis n_tetr_pkt Spalte ===> Steifigkeitsmatrix
 - 2. n_tetr_pkt Spalt ===> b-Matrix(rechte Seite)
- < Ndim: Dimension
- < det_Phi: Determinante ϕ
- < one_by_Phi: $\frac{1}{det\phi}$
- < Slocal[4][4]: locale Steifigkeitsmatrix
- < blocal[4] : locale b-Matrix

Slocal[4][4] initialisieren

blocal[4] initialisieren

 $x_2 - x_1$

 $y_2 - y_1$

 $z_2 - z_1$

 $x_3 - x_1$

 $y_3 - y_1$

 $z_3 - z_1$

 $x_4 - x_1$

$$y_4 - y_1$$

$$z_4 - z_1$$

vermeintlicher Fehler <== ELMER

$$u(x, y, z) = 20 - 2 * y^{2} + x^{3} * y - x * y^{3} + z^{3} * x - z * x^{3}$$

Rechte Seite * q=4 und die 1/6 der Steifigkeitsmatrix auf die andere Seite

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.14 tetr_input.cpp-Dateireferenz

Tetraeder Element einlesen.

#include <iostream>
#include <string>
#include <fstream>
#include "funktions.h"

Include-Abhängigkeitsdiagramm für tetr_input.cpp:

Funktionen

int ** tetr_input (string &str, int n_tetr_pkt, int n_tetr)

Funktion um die Tetraeder Element einzulesen.

2.14.1 Ausführliche Beschreibung

Tetraeder Element einlesen. Tetraeder Element besteht aus 4 Knoten.

Dieses Unterprogramm kann Tetraeder Element aus alle Element sortieren.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.14.2 Dokumentation der Funktionen

2.14.2.1 int** tetr_input (string & str, int n_tetr_pkt, int n_tetr)

Funktion um die Tetraeder Element einzulesen.

Parameter

&str	Name des Inputfiles
n_tetr_pkt	Anzahl aller Punkten
n_tetr	Anzahl des Tetraeder

< **t: Tetraederfeld dimensionieren

< idummy1: Element Index

< idummy2: Element Typ

< idummy3: Nummer der tags

< idummy4: <tags>

< idummy5: Knoten Nummer-List

< dim_element: Anzahl aller Elemente

< a,b,c,d: 4 Knoten

Lesen das File bis zu die Zeile ein, die zu Element gehört

Typnummer des Tetraeders ist gleich 4 ==> idummy2 == 4 ?

4 Knoten einlesen

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.15 tetr_pkt_input.cpp-Dateireferenz

Koordinatenssystem aller Punkten einlesen.

```
#include <iostream>
#include <string>
#include <fstream>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für tetr_pkt_input.cpp:

Funktionen

double ** tetr_pkt_input (string &str, int n_tetr_pkt)
 Funktion um alle Punkte einzulesen.

2.15.1 Ausführliche Beschreibung

Koordinatenssystem aller Punkten einlesen.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.15.2 Dokumentation der Funktionen

2.15.2.1 double** tetr_pkt_input (string & str, int n_tetr_pkt)

Funktion um alle Punkte einzulesen.

- < **p: Punktefeld dimensionieren</p>
- < idummy: Punktenummer
- < a,b,c: XYZ-Koordinatenssystem

XYZ-Knoten einlesen

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.16 vktminus.cpp-Dateireferenz

Ein Unterprogramm für $\vec{a} - \vec{b}$.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für vktminus.cpp:

Funktionen

• double * vktminus (double *a, double *b, int arow, int brow) ${\it Funktion} \ \vec{a} - \vec{b}.$

2.16.1 Ausführliche Beschreibung

Ein Unterprogramm für $\vec{a} - \vec{b}$.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.16.2 Dokumentation der Funktionen

2.16.2.1 double * vktminus (double * a, double * b, int arow, int brow)

Funktion $\vec{a} - \vec{b}$.

Dimension \vec{a} soll gleich wie \vec{b} sein

Parameter

* <i>a</i>	Vektor
*b	Vektor
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben den Lösung Vektor zurück

Siehe auch

vktplus()

< *out: der Lösung-Vektor

 $out_i = a_i * b_i$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

2.17 vktplus.cpp-Dateireferenz

Ein Unterprogramm für $\vec{a} + \vec{b}$.

```
#include <iostream>
#include <string>
#include <fstream>
#include <cmath>
#include "funktions.h"
```

Include-Abhängigkeitsdiagramm für vktplus.cpp:

Funktionen

```
• double * vktplus (double *a, double *b, int arow, int brow) 
 Funktion \vec{a} + \vec{b}.
```

2.17.1 Ausführliche Beschreibung

Ein Unterprogramm für $\vec{a} + \vec{b}$.

Autor

Youyu Chen

Version

1.0

Datum

09.08.2018

2.17.2 Dokumentation der Funktionen

```
2.17.2.1 double* vktplus ( double * a, double * b, int arow, int brow )
```

Funktion $\vec{a} + \vec{b}$.

Dimension \vec{a} soll gleich wie \vec{b} sein

Parameter

*a	Vektor
*b	Vektor
arow	Dimension des Vektors a
brow	Dimension des Vektors b

Rückgabe

geben den Lösung Vektor zurück

Siehe auch

vktminus()

< *out: der Lösung-Vektor

 $out_i = a_i * b_i$

Fehlermeldung

Hier ist ein Graph der zeigt, wo diese Funktion aufgerufen wird:

Index

bicgstab_solve	vktplus, 32
bicgstab_solve.cpp, 4	
funktions.h, 19	main
bicgstab_solve.cpp, 3	FEM.cpp, 14
bicgstab_solve, 4	matmulvkt
	funktions.h, 25
constmulvkt	matmulvkt.cpp, 34
constmulvkt.cpp, 7	matmulvkt.cpp, 33
funktions.h, 21	matmulvkt, 34
constmulvkt.cpp, 6	DD. "
constmulvkt, 7	RBdimension
	funktions.h, 27
dim_tetr	RBdimension.cpp, 40
dim_tetr.cpp, 9	RBdimension.cpp, 39
funktions.h, 22	RBdimension, 40
dim_tetr.cpp, 8	randpunkte_InnerePkt
dim_tetr, 9	funktions.h, 26
dim_tetr_pkt	randpunkte_InnerePkt.cpp, 36
dim_tetr_pkt.cpp, 11	randpunkte_InnerePkt.cpp, 35
funktions.h, 23	randpunkte_InnerePkt, 36
dim tetr pkt.cpp, 10	randpunkte_PNummerF
dim_tetr_pkt, 11	funktions.h, 27
dot product	randpunkte_PNummerF.cpp, 38
dot_product.cpp, 12	randpunkte_PNummerF.cpp, 37
funktions.h, 23	randpunkte_PNummerF, 38
dot_product.cpp, 11	
dot_product, 12	SteifigkeitsMatrix
	funktions.h, 29
FEM.cpp, 13	SteifigkeitsMatrix.cpp, 42
main, 14	SteifigkeitsMatrix.cpp, 41
Flaechen RB	SteifigkeitsMatrix, 42
Flaechen_RB.cpp, 17	Andre Service
funktions.h, 24	tetr_input
Flaechen RB.cpp, 15	funktions.h, 30
Flaechen_RB, 17	tetr_input.cpp, 44
funktions.h, 18	tetr_input.cpp, 43
bicgstab_solve, 19	tetr_input, 44
constmulvkt, 21	tetr_pkt_input
dim_tetr, 22	funktions.h, 31
dim_tetr, 22 dim_tetr_pkt, 23	tetr_pkt_input.cpp, 45
dot product, 23	tetr_pkt_input.cpp, 45
Flaechen_RB, 24	tetr_pkt_input, 45
	ulstrainun
matmulvkt, 25	vktminus
RBdimension, 27	funktions.h, 32
randpunkte_InnerePkt, 26	vktminus.cpp, 47
randpunkte_PNummerF, 27	vktminus.cpp, 46
SteifigkeitsMatrix, 29	vktminus, 47
tetr_input, 30	vktplus
tetr_pkt_input, 31	funktions.h, 32
vktminus, 32	vktplus.cpp. 48

52 INDEX

vktplus.cpp, 48 vktplus, 48