Machine Learning

Lecture 17: Dimension Reduction

杨思蓓

SIST

Email: yangsb@shanghaitech.edu.cn

$$A \in \mathcal{R}^{p \times d} : \boldsymbol{x} \in \mathcal{R}^p \to \boldsymbol{z} = A^T \boldsymbol{x} \in \mathcal{R}^d$$

Relation to Matrix Factorization

$$X = [x_1, x_2, \dots x_n] = UV = U[v_1, v_2, \dots v_n]$$

$$x_i = Uv_i$$

$$x_i \in \mathcal{R}^m, \quad v_i \in \mathcal{R}^k$$

• If there is a matrix $A \in \mathcal{R}^{k \times m}$ which satisfies:

$$AU = I$$
$$Ax_i = v_i$$

What is Dimensionality Reduction (Feature Reduction)?

- Feature reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space.
 - Criterion for feature reduction can be different based on different problem settings.
 - Unsupervised setting: minimize the information loss
 - Supervised setting: maximize the class discrimination
- Given a set of data points of p variables $\{x_1, \cdots, x_2\}$
- Compute the linear transformation (projection)

$$A \in \mathcal{R}^{p \times d} : \mathbf{x} \in \mathcal{R}^{p} \to \mathbf{z} = A^{T} \mathbf{x} \in \mathcal{R}^{d}$$

Feature Extraction vs Feature Selection

- Dimensionality reduction (Feature reduction)
 - Feature extraction
 - Feature selection
- Selection: choose a best subset of size d from the available p features
- Extraction: given p features (set X), extract d new features (set Z) by linear or non-linear combination of all the p features

$$A \in \mathcal{R}^{p \times d} : \mathbf{x} \in \mathcal{R}^p \to \mathbf{z} = A^T \mathbf{x} \in \mathcal{R}^d$$

- Selection: $A \in [0,1]^{p \times d}$, every column of A has only one 1.
- Extraction: $A \in \mathcal{R}^{p \times d}$
 - Non-linear: $\mathbf{z} = f(\mathbf{x})$

High-dimensional Data

Gene expression

Face images

Handwritten digits

- Intuition: More the number of features, the better the classification performance?
 - Not always!
- There are two issues that must be confronted with high dimensional feature spaces
 - How does the classification accuracy depend on the dimensionality and the number of training samples
 - The computational complexity of designing a classifier

G. V. Trunk. "A Problem of Dimensionality: A Simple Example", TPAMI, July 1979

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Query accuracy and efficiency degrade rapidly as the dimension increases.
- The intrinsic dimension may be small.
 - Handwritten digit images.
 - For example, the number of genes responsible for a certain type of disease may be small.

- Visualization: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage and retrieval.
- Noise removal: positive effect on query accuracy.

Application of Dimensionality Reduction

- Face recognition
- Handwritten digit recognition
- Text mining
- Image retrieval
- Microarray data analysis
- Protein classification

Dimensionality Reduction Algorithms

- Unsupervised
 - Latent Semantic Indexing (LSI): truncated SVD
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)
 - Canonical Correlation Analysis (CCA)
- Supervised
 - Linear Discriminant Analysis (LDA)
- Semi-supervised
 - Semi-supervised Discriminant Analysis (SDA)

Dimensionality Reduction Algorithms

Linear

- Latent Semantic Indexing (LSI): truncated SVD
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Canonical Correlation Analysis (CCA)

Nonlinear

- Nonlinear feature reduction using kernels
- Manifold learning

Algorithms

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Locality Preserving Projections (LPP)
- The framework of graph based dimensionality reduction.

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a data set by finding a new set of variables,
 smaller than the original set of variables
 - Retains most of the sample's information.
 - Useful for the compression and classification of data.
- By information we mean the variation present in the sample, given by the correlations between the original variables.
 - The new variables, called principal components (PCs), are uncorrelated, and are ordered by the fraction of the total information each retains.

Geometric Picture of Principal Components (PCs)

- The 1st PC z_1 is a minimum distance fit to a line in X space
- The 2^{nd} PC z_2 is a minimum distance fit to a line in the plane perpendicular to the 1^{st} PC
- PCs are a series of linear least squares fits to a line, each orthogonal to all the previous.

• Given a sample of n observations on a vector of p variables $\{x_1, \dots, x_n\} \in \mathcal{R}^p$

 Define the first principal component of the sample by the linear transformation

$$z_i^{(1)} = \boldsymbol{a}_1^T \boldsymbol{x}_i, \qquad i = 1, \dots n$$

is chosen such that $var(z^{(1)})$ is maximum.

$$var(z^{(1)}) = E\left(\left(z^{(1)} - \bar{z}^{(1)}\right)^{2}\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (a_{1}^{T} x_{i} - a_{1}^{T} \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_{1}^{T} (x_{i} - \bar{x})(x_{i} - \bar{x})^{T} a_{1} = a_{1}^{T} S a_{1}$$

Where
$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^T$$

is the covariance matrix and $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the mean.

$$\max_{\boldsymbol{a}_1} \boldsymbol{a}_1^T S \boldsymbol{a}_1$$
s.t. $\boldsymbol{a}_1^T \boldsymbol{a}_1 = 1$

Let λ be a Lagrange multiplier

$$L = \mathbf{a}_1^T S \mathbf{a}_1 - \lambda (\mathbf{a}_1^T \mathbf{a}_1 - 1)$$
$$\frac{\partial L}{\partial \mathbf{a}_1} = 2S \mathbf{a}_1 - 2\lambda \mathbf{a}_1 = 0$$
$$S \mathbf{a}_1 = \lambda \mathbf{a}_1$$

therefor, a_1 is an eigenvector of S corresponding to the largest eigenvalue $\lambda = \lambda_1$.

$$\max_{a_2} a_2^T S a_2$$
s.t. $a_2^T a_2 = 1, \text{cov}(z^{(2)}, z^{(1)}) = 0$

$$\text{cov}(z^{(2)}, z^{(1)}) = a_2^T S a_1 = \lambda_1 a_2^T a_1$$

$$L = a_2^T S a_2 - \lambda (a_2^T a_2 - 1) - \phi(\lambda_1 a_2^T a_1)$$

$$S a_2 = \lambda a_2$$

 a_2 is an eigenvector of S corresponding to the second largest eigenvalue $\lambda = \lambda_2$.

• In general:

$$var(z^{(k)}) = \boldsymbol{a}_k^T S \boldsymbol{a}_k = \lambda_k$$

- The k^{th} largest eigenvalue of S is the variance of k^{th} PC.
- The $k^{\rm th}$ PC $z^{(k)}$ retains the $k^{\rm th}$ greatest fraction of the variation in the sample.

- Main steps for computing PCs:
 - Form the covariance matrix *S*.
 - Compute its eigenvectors: $\{a_i\}_{i=1}^p$
 - Use the first d eigenvectors $\{a_i\}_{i=1}^d$ to form the d PCs.
 - The transformation A is given by

$$A = [\boldsymbol{a}_1, \cdots \boldsymbol{a}_d]$$

• A test point $\mathbf{x} \in \mathcal{R}^p \to A^T \mathbf{x} \in \mathcal{R}^d$

Reconstruction

Optimality Property of PCA

- Dimension reduction: $X \in \mathcal{R}^{p \times n} \to A^T X \in \mathcal{R}^{d \times n}$
- Original data: $A^TX \in \mathcal{R}^{d \times n} \to \bar{X} = A(A^TX) \in \mathcal{R}^{p \times n}$

Optimality Property of PCA

- Main theoretical result:
- The matrix A consisting of the first d eigenvectors of the covariance matrix S solves the following optimization problem:

$$\min_{A \in \mathcal{R}^{p \times d}} \|X - AA^T X\|_F^2 \text{ s.t. } A^T A = I_d$$

$$\|X - \bar{X}\|_F^2$$

Reconstruction error

• PCA projection minimizes the reconstruction error among all linear projections of size *d*.

PCA for Image Compression

d=8

d=32

Original Image

• Find a transformation a, such that the $a^T X w^T x$ is dispersed the most (maximum distribution)

Linear Discriminant Analysis (Fisher Linear Discriminant)

• Find a transformation a, such that the $a^T X_1$ and $a^T X_2$ are maximally separated & each class is minimally dispersed (maximum separation)

- Perform dimensionality reduction "while preserving as much of the class discriminatory information as possible".
- Seeks to find directions along which the classes are best separated.
- Takes into consideration the scatter within-classes but also the scatter between-classes.

• Two Classes
$$\omega_1$$
, ω_2

$$z = a^T x$$

$$\tilde{\mu}_i = \frac{1}{n_i} \sum_{z \in \omega_i} z$$

$$\mu_i = \frac{1}{n_i} \sum_{x \in \omega_i} x, \tilde{\mu}_i = a^T \mu_i$$

$$|\tilde{\mu}_1 - \tilde{\mu}_2| = |a^T (\mu_1 - \mu_2)|$$

$$\tilde{s}_i^2 = \sum_{z \in \omega_i} (z - \tilde{\mu}_i)^2$$

$$\frac{1}{n} (\tilde{s}_1^2 + \tilde{s}_2^2)$$

$$J(a) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$

Two Classes

$$J(\boldsymbol{a}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{s}_1^2 + \tilde{s}_2^2} = \frac{\boldsymbol{a}^T S_B \boldsymbol{a}}{\boldsymbol{a}^T S_W \boldsymbol{a}}$$

$$\tilde{s}_{i}^{2} = \sum_{y \in \omega_{i}} (y - \tilde{\mu}_{i})^{2} = \sum_{x \in \omega_{i}} (a^{T}x - a^{T}\mu_{i})^{2} = \sum_{x \in \omega_{i}} (a^{T}x - a^{T}\mu_{i})(a^{T}x - a^{T}\mu_{i})^{T}$$

$$= a \sum_{x \in \omega_{i} \in \omega_{i}} (x - \mu_{i})(x - \mu_{i})^{T} a = a^{T}S_{i}a$$

$$S_{i}: scatter\ matrix$$

within-class scatter matrix: $S_W = S_1 + S_2$ $\tilde{s}_1^2 + \tilde{s}_2^2 = \boldsymbol{a}^T S_W \boldsymbol{a}$

$$\tilde{s}_1^2 + \tilde{s}_2^2 = \boldsymbol{a}^T S_W \boldsymbol{a}$$

$$(\tilde{\mu}_1 - \tilde{\mu}_2)^2 = (a^T \mu_1 - a^T \mu_2)^2 = a^T (\mu_1 - \mu_2) (\mu_1 - \mu_2)^T a = a^T S_B a$$

between-class scatter matrix: $S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$

Two Classes

$$J(a) = rac{a^T S_B a}{a^T S_W a}$$
 $S_B a = \lambda S_W a$? Try it
 $a^* = S_W^{-1}(\mu_1 - \mu_2)$
 $S_W = \sum_i^2 S_i = \sum_i^2 \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$

Multi-classes

$$J(\boldsymbol{a}) = \frac{\boldsymbol{a}^T S_B \boldsymbol{a}}{\boldsymbol{a}^T S_W \boldsymbol{a}}$$

$$\mu = \frac{1}{n} \sum_{x} x = \frac{1}{n} \sum_{i=1}^{c} n_i \mu_i$$

$$S_W \equiv \sum_{i=1}^{\mathbf{Z}} S_i \equiv \sum_{i=1}^{\mathbf{Z}} \sum_{\mathbf{x} \in \omega_i} (\mathbf{x} - \boldsymbol{\mu}_i) (\mathbf{x} - \boldsymbol{\mu}_i)^T$$

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

$$S_T = \sum_{x} (x - \mu)(x - \mu)^T = \sum_{i=1}^{c} \sum_{x \in \omega_i} (x - \mu_i + \mu_i - \mu)(x - \mu_i + \mu_i - \mu)^T$$

$$= \sum_{i=1}^{c} \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T + \sum_{i=1}^{c} \sum_{x \in \omega_i} (\mu_i - \mu)(\mu_i - \mu)^T$$

$$= S_W + \sum_{i=1}^{c} n_i (\mu_i - \mu) (\mu_i - \mu)^T = S_B$$

$$S_T = S_W + S_B$$

$$S_T = S_W + S_B$$

$$J(\boldsymbol{a}) = \frac{\boldsymbol{a}^T S_B \boldsymbol{a}}{\boldsymbol{a}^T S_W \boldsymbol{a}}$$

$$S_W = \sum_{i=1}^{c} S_i = \sum_{i=1}^{c} \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$$

$$S_B = \sum_{i=1}^{c} n_i (\boldsymbol{\mu}_i - \boldsymbol{\mu}) (\boldsymbol{\mu}_i - \boldsymbol{\mu})^T$$

$$S_B \mathbf{a} = \lambda S_W \mathbf{a}$$

$$S_B a = \lambda S_T a$$

- Main steps:
 - Form the scatter matrices S_B and S_W .
 - Compute the eigenvectors $\{a_i\}_{i=1}^{c-1}$ corresponding to the non-zero eigenvalue of the generalized eigen-problem:

$$S_B \mathbf{a} = \lambda S_W \mathbf{a}$$
 or $S_B \mathbf{a} = \lambda S_T \mathbf{a}$

• The transformation A is given by

$$A = [\boldsymbol{a}_1, \cdots \boldsymbol{a}_{c-1}]$$

• A test point $\mathbf{x} \in \mathcal{R}^p \to A^T \mathbf{x} \in \mathcal{R}^{(c-1)}$

