Motion Control Tuning

Contents

- Mechatronics Training Curriculum
- Details of Course Motion Control Tuning

Mechatronics Training Curriculum

www.mechatronics-academy.nl

Mechatronics Training

- December 31, 2009 Philips decided to stop all its training activities, which were carried out by the *Philips Centre for Technical Training (CTT)*, and all training programs were transferred to external parties.
- Currently, all former Philips trainings (and more) are offered to the market under the umbrella of <u>The High Tech Institute</u> (www.hightechinstitute.nl).
- Content partner for all Mechatronics courses is <u>Mechatronics Academy B.V.</u>
 (www.mechatronics-academy.nl) which is set-up and supervised by:
 - Professor Dr.ir. Jan van Eijk
 - Professor Dr.ir. Maarten Steinbuch
 - Dr.ir. Adrian Rankers

Motion Control Tuning

Course Directors / Trainers

Course Director(s)

- · Prof.dr.ir. M. Steinbuch
- Dr.ir. A.J.J. van der Weiden

Teachers

- TU/Eindhoven:
 - Prof.dr.ir. M. Steinbuch, Dr. ir. T. Oomen, Dr. ir. P. Nuij,
 - Ir. J.J. Bolder, Ir. T. Gommans, Ir. R. van der Maas
- Other:
 - Dr.ir. A.J.J. van der Weiden
 - Ir. P. Teerhuis
 - Dr.ir. E.P. van der Laan (OCE)
 - Dr.ir. M.J.M. van de Wal (ASML)
 - D.ir. D. Rijlaarsdam (NTS)
 - Ir. F.B. Sperling (Nobleo)
 - Ir. M. Vervoordeldonk (ASML)
 - Dr.ir. G. Witvoet (TNO)

Program

Day	Timing	Topic	Trainers
1	Morning	Introduction / Who is who / Program / GoalsBasic Modelling	Steinbuch Teerhuis
	Afternoon	Time domain tuning - theory & hands-on practice	Nuij
2	Morning	Frequency domain	Vervoordeldonk
	Afternoon	Stability	Van der Weiden a.o.
3	Morning	Frequency response measurements – theory & hands-on practice	Oomen / Bolder
	Afternoon	Mechatronics	Sperling
4	Morning	• Filters	Witvoet
	Afternoon Evening	Loopshaping gameDinner	Van der Weiden / v.d. Maas / Gommans
5	Morning	Design for performance	v.d. Wal
	Afternoon	Feedforward – theory & hands-on practice	Vd Laan/ Bolder
6	Morning	Learning controlNon-linear identification / feedforward	Oomen Rijlaarsdam
	Afternoon	Motion control researchInteraction in control systems	Steinbuch Van der Weiden

Day 1 (morning): Intro / Basic Modelling

- Introduction / Goals
- Modelling of motion systems

r = reference speed

 $F - k(x_1 - x_2) = m_1 \ddot{x}_1$ $+ k(x_1 - x_2) = m_2 \ddot{x}_2$

Day 1 (afternoon): Time domain tuning

- Tuning in time domain
- Theory & Hands-on
- Matlab/Simulink + exp. setup

Day 2 (morning): Frequency domain

- Frequency domain
 - Transfer function
 - Frequency response function
- Physical interpretation

	PD controller	Mass spring system	Mass
1. equation of motion	$F_s(t) = k_p e(t) + k_v \dot{e}(t)$	$m\ddot{x} + d\dot{x} + kx = F$	$m\ddot{x} = F$
2. replace 'd/dt' by 's'	$F_s(s) = k_p e(s) + k_v s e(s)$	$ms^2x + dsx + kx = F$	$ms^2x = F$
	$\frac{F_s}{e}(s) = k_p + k_v s$	$\frac{x}{F}(s) = \frac{1}{ms^2 + ds + k}$	$\frac{x}{F} = \frac{1}{ms^2}$
3. replace 's' by 'jω'	$F_s = k_p e + k_v j \omega e$	$m(j\omega)^2 x + dj\omega x + kx = F$	$-m\omega^2 x = F$
FRF	$\frac{F_s}{e}(\omega) = k_p + k_v j\omega$	$\frac{x}{F}(\omega) = \frac{1}{-m\omega^2 + dj\omega + k}$	$\frac{x}{F} = \frac{-1}{m\omega^2}$

Day 2 (afternoon): Stability

- Introduction
- Stability in the time domain
- Stability in the frequency domain
- Nyquist stability criterion
- Stability margins
- Modulus margin

Day 3 (morning): FRF measurements

- Linear systems
- Non-parametric identification
 - Open loop
 - Closed loop (direct/indirect)
- Enhancing estimation quality
- Autopower/Crosspower
- Coherence

Day 3 (afternoon): Mechatronics

- Conceptual dynamics & servo control
- Modelbuilding
- Servo control basics
- Key specifications for 0.2 µm lithography
- Case: stepper concepts

Global layout lithography tool

Light source + light shaping

Reticle for pattern generation

Lens for 4:1 reduction image of the reticle to the wafer

Wafer on wafer stage

Day 4 (morning): Filters

- PID
- Lead/Lag
- General second order
- Second order notch
- Low pass filter
- Phase turning filter

Tuning Exercise with SHAPE-IT!

Day 4 (afternoon): Tuning Game

GO for the highest bandwidth. Winning team gets bottle of wine!

Day 5 (morning): Design for performance

- Waterbed effect
- Bandwidth definitions
- High-gain feedback

Requirements + disturbance + system => best controller

Day 5 (afternoon): Feed forward

Feedback vs. Feedforward
General feefforward scheme
Practical guidelines
Hands-on exercise

Feedback vs feedforward

Feedback:

- Controller responds to an error
- Error thus already exists
- Feedback = looking back
 - · you're always lagging behind

Feedforward:

- Use knowledge about the input
- Correct before the error can occur
- Feedforward = looking ahead
 - · anticipate what happens or what is needed

Day 6 (morning): Special topics-1

- Learning Feedforward + Demo
- Non-linear identification / FF

ILC example

Day 6 (afternoon): Special topics-2

- Motion Control Research
- MiMo systems
 - Interaction analysis
 - Sequential loop closure
 - MiMo design
 - decoupling
 - model based multivariable control design

Coupled electrical drives

Sign-up for this training

Via the website of our partner
The High Tech Institute

