Linkage versus association

Linkage studies

Association studies

cases

controls

Case-control association study

 Statistical significant differences between frequency of variants in patients compared with control individuals

Candidate-gene vs genome-wide

Candidate-gene vs genome-wide

Scientific and technological breakthroughs

Key concepts to understand GWAS

Key concepts I - SNP = single nucleotide polymorphism

Key concepts I - SNP = single nucleotide polymorphism

a DNA sequence variation occurring when a single nucleotide (A,T,C or G) in the genome differs between members of a species, or between paired chromosomes in an individual at a particular locus

E.g.

Potential genotypes for a person at this locus: CC/CT/TT

Key concepts I – Single Nucleotide Polymorphisms (SNPs)

- Phenotypically normal individuals
- SNP based genome variation about 0.1%
- Believed to explain majority of
 - our phenotypic variation
 - inherited Mendelian and complex disorders

Each SNP has a unique rs id

Key concepts II – MAF = minor allele frequency

- The frequency of the SNP's less frequent allele in a given population
 - As the total allele frequency is 1 (100%), a MAF must always be less than 0.5 (50%), otherwise it would be a major allele
 - E.g. if we genotype a variant (A/G) in 1000 people
 - 550 are (A,A), 400 are (A,G) and 50 are (G,G)
 - There are 2000 alleles in total
 - The G allele is less common, accounting for 500 alleles
 - Therefore, the MAF is 500/2000 = 0.25 or 25%
- Rare variants: MAF < 0.5% (76% of all variants)
- Low-frequency variants: MAF 0.5-5% (14% of all variants)
- Common variants: MAF > 5% (10% of all variants)
 - Estimated to be > 10 million common variants in human
 - Focus of GWAS usually on common variants (SNPs)

Key concepts III – Hardy-Weinberg equilibrium

- HWE = Hardy-Weinberg equilibrium
 - Both allele and genotype frequencies remain constant in a population unless specific disturbing influences are introduced
 - mutation, migration, non-random mating etc.
 - selection
 - Under HWE, genotype frequencies can be estimated from allele frequencies
 - Assume alleles A1 with P(A1)=p and A2 with P(A2)=q
 - P(A1A1)=p2
 - P(A1A2)=2pq
 - P(A2A2)=q2

	A1	A2
A1	A1A1 (p*p=p²)	A1A2 (p*q)
A2	A2A1 (q*p)	A2A2 (q*q=q²)

X²-test to test for deviances from the expected

- Specific region of the genome
- 5 SNPs with two frequent alleles each

- <u>Theoretically</u> there are 2⁵ different combinations (haplotypes)
- Practically there will only be a few
 - Eg if A, then always ATACT
 - Eg if G, then almost always GGACC
 - These alleles are in LD

Patterns of variation

Locus	Allele	Observed frequency
Α	A1	p1
Α	A2	p2
В	B1	q1
В	B2	q2

← locus A	A2		A1
← locus B	B2		B1
		↑ ↑	

Haplotype A1B1

Haplotype	Expected frequency ¹	
A1B1	p1 * q1	
A1B2	p1 * q2	
A2B1	p2 * q1	
A2B2	p2 * q2	

¹under linkage equilibrium

Locus	Allele	Observed frequency
Α	A1	p1
Α	A2	p2
В	B1	q1
В	B2	q2

Haplotype	Expected frequency ¹	Observed frequency
A1B1	p1 * q1	<i>x</i> 11
A1B2	p1 * q2	<i>x</i> 12
A2B1	p2 * q1	<i>x</i> 21
A2B2	p2 * q2	<i>x</i> 22

¹under linkage equilibrium

Locus	Allele	Observed frequency
Α	A1	p1
Α	A2	p2
В	B1	q1
В	B2	q2

When 2 alleles occur on the same haplotype more often than expected

Haplotype	Expected frequency ¹	Observed frequency	A2 and B2 in positive LD
A1B1	p1 * q1	<i>x</i> 11	<i>x</i> 11 > p1 * q1
A1B2	p1 * q2	<i>x</i> 12	<i>x</i> 12 < p2 * q2
A2B1	p2 * q1	<i>x</i> 21	<i>x</i> 21 < p2 * q1
A2B2	p2 * q2	<i>x</i> 22	<i>x</i> 22 > p2 * q2

¹under linkage equilibrium

Locus	Allele	Observed frequency
Α	A1	p1
Α	A2	p2
В	B1	q1
В	B2	q2

When 2
alleles occur
on the same
haplotype
more often
than expected

When 2 alleles occur on the same haplotype less often than expected

Haplotype	Expected frequency ¹	Observed frequency	A2 and B2 in positive LD	A2 and B2 in negative LD
A1B1	p1 * q1	<i>x</i> 11	<i>x</i> 11 > p1 * q1	<i>x</i> 11 < p1 * q1
A1B2	p1 * q2	<i>x</i> 12	<i>x</i> 12 < p2 * q2	<i>x</i> 12 > p2 * q2
A2B1	p2 * q1	<i>x</i> 21	<i>x</i> 21 < p2 * q1	<i>x</i> 21 > p2 * q1
A2B2	p2 * q2	<i>x</i> 22	<i>x</i> 22 > p2 * q2	<i>x</i> 22 < p2 * q2

¹under linkage equilibrium

- The non-random association of alleles at two or more loci such that they are inherited together more frequently than expected by chance
- Observed across the entire genome, not only nearby coding regions or genes causing disease
- Extent of LD varies greatly depending on the region of the genome
- When LD is strong, need fewer SNPs to capture variation in a region ('tag SNPs')
- Measures of LD: D, D', and r²

Measures of LD

D

 = difference between observed and expected haplotype frequencies

$$\circ = x_{11} - (p_1 * q_1)$$

Haplotype	Expected frequency ¹	Observed frequency
A1B1	p1 * q1	<i>x</i> 11 = p1 * q1 + D
A1B2	p1 * q2	<i>x</i> 12 = p1 * q2 - D
A2B1	p2 * q1	<i>x</i> 21 = p2 * q1 - D
A2B2	p2 * q2	x22 = p2 * q2 + D

o Hard to interpret...

- Can be negative (with arbitrary sign, depending on which one is set as A1, B1 or A2, B2)
- Range depends on allele frequencies, and is sensitive to allele frequencies at extreme values
 of 0 to 1 → hard to compare markers

Measures of LD

- D'
 - = normalized D
 - = divide D by its theoretical maximum for the observed allele frequencies (ie absolute maximal possible value of D)
 - $\circ = D/D_{max}$

D	D'
D > 0	D' = (x11 - p1 * q1) / min(p1*q2, p2*q1)
D < 0	D' = (x11 - p1 * q1) / min(p1*q1, p2*q2)
D = 0	D' = 0

- Ranges between -1 to +1
 - ±1 implies at least one of the observed haplotypes was not observed

More on D'

Pluses:

- D' = 1 or D' = -1 means no evidence for recombination between the markers
- If allele frequencies are similar, high D' means the markers are good surrogates for each other

Minuses:

- D' estimates inflated in small samples
- More likely to take extreme values when allele frequencies are small
- D' estimates inflated when one allele is rare

Measures of LD

- r²
 - equivalent to Pearson correlation coefficient
 - \circ = D²/(p1 * p2 * q1 * q2)
 - Ranges between 0 to +1
 - 1 when the two markers provide identical information
 - 0 when they are in perfect equilibrium
 - The measure preferred by population geneticists
 - Most commonly used in genetic association studies for human complex traits (common variants!)
 - Although it will drop with low allele frequencies (potential false negatives)
 - When deciding which measure to use, allele frequencies are often key

Linkage disequilibrium – need to knows

- Linkage vs linkage disequiliborum
 - Linkage = between two loci located close to each other
 - Linkage disequilibrium = between two alleles of linked loci
- SNPs that are physically far away from each other are usually not well correlating because of recombination
 - In general, LD between two SNPs decreases with physical distance
- The 'age' of a SNP also defines its correlation with neighboring SNPs
 - Small chance on recombination between two neighboring SNPs, but when time long enough recombination possible
- Recombination hotspots also define the correlation between neighboring SNPs

Scientific and technological breakthroughs

'High throughput' genotyping platform

- Commercially available tag sets
- Determination of alleles of different SNPs using SNP microarrays (DNA chips)
- Platform for 100,000's of SNPs each with 2 probes (one for each allele)
- Unbiased survey of the human genome

Commercial SNP arrays

Affymetrix

- Affymetrix GeneChip Human Mapping 500K
- o Axiom™ Biobank Plus Genotyping Array
- Affymetrix SNP 6.0 (900k)

Illumina

- Illumina Human Hap 300, 550, 650, 1M, 2.5M, 5M
- Illumina CardioMetaboChip, ImmunoChip
- Illumina ExomeChip, CoreExomeChip
- Illumina Global Screening Array (GSA)

Illumina SNP chip

- <u>Developed for different species (animal and plant):</u>
 - Humans (>4,3 million SNP/array)
 - Livestock (>750 000 SNP/array)
 - Horse (> 50 000 SNP/array)
 - Sheep (> 50 000 SNP/array)
 - Pig (> 60 000 SNP/array)
 - Chicken (> 50 000 SNP/array)
 - Dog (> 50 000 SNP/array)
 - Goat (> 50 000 SNP/array)
 - Maize (> 50 000 SNP/array)
 - Brassica (> 50 000 SNP/array)
 - Potato (> 5 000 SNP/array)
 - Tomato (> 5 000 SNP/array)

SNP chip: Principle

Illumina Workflow

Illumina SNP chip

