Introduction to Multiple Linear Regression

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's lecture

- Multiple Linear Regression
 - Interpretation
 - Notation

Multiple linear regression model

■ Observe data $(y_i, x_{i1}, ..., x_{ip})$ for subjects 1, ..., n. Want to estimate $\beta_0, \beta_1, ..., \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Assumptions (residuals have mean zero, constant variance, are independent) are as in SLR
- Impose linearity which (as in the SLR) is a big assumption
- Our primary interest will be $E(y|\mathbf{x})$
- Eventually estimate model parameters using least squares

Interpretation of β_1

Omitted variable bias

What happens if we ignore x_2 and fit the simple linear regression:

$$y_i = \beta_0^* + \beta_1^* x_{i,1} + \epsilon_i^*$$

Does $\beta_1^* = \beta_1$?

Omitted variable bias

When should you be concerned?

If both of the following conditions are met, then $\beta_1^* = \beta_1$:

- The omitted variable is unrelated to the outcome
- The omitted variable is uncorrelated with the retained variable

Extra credit for problem set 1: create a simulation where you show an example of omitted variable bias.

Matrix notation

• Observe data $(y_i, x_{i1}, \dots, x_{ip})$ for subjects $1, \dots, n$. Want to estimate $\beta_0, \beta_1, \dots, \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Notation is cumbersome. To fix this, let
 - $\mathbf{x}_i = [1, x_{i1}, \dots, x_{ip}]$
 - $\beta^T = [\beta_0, \beta_1, \dots, \beta_p]$
 - Then $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

Matrix notation

Let

$$\mathbf{y} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right], \quad \mathbf{X} = \left[\begin{array}{ccc} 1 & x_{11} & \dots & x_{1\rho} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{n\rho} \end{array} \right], \quad \boldsymbol{\beta} = \left[\begin{array}{c} \beta_0 \\ \vdots \\ \beta_p \end{array} \right], \quad \boldsymbol{\epsilon} = \left[\begin{array}{c} \epsilon_1 \\ \vdots \\ \epsilon_n \end{array} \right]$$

■ Then we can write the model in a more compact form:

$$\mathbf{y}_{n imes 1} = \mathbf{X}_{n imes (p+1)} oldsymbol{eta}_{(p+1) imes 1} + \epsilon_{n imes 1}$$

■ **X** is called the *design matrix*

Matrix notation

$$y = X\beta + \epsilon$$

- ullet is a random vector rather than a random variable
- $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 I$
- Note that *Var* is an abuse of notation; in the present context it really means the "variance-covariance matrix"

Today's big ideas

 Multiple linear regression models, interpretation, notation, biases