Tối ưu hóa 2-bước

- 1. Tại thời điểm biên dịch, tạo một kế hoạch tĩnh chỉ với thứ tự thao tác và các phương thức truy nhập
- 2. Tại thời điểm khởi động, thực hiện lựa chọn trạm và sao chép lựa chọn cũng như định vị các hoạt động cho các trạm.

Kế hoạch tĩnh

63

Định nghĩa bài toán 2-bước

- Cho
 - □ Tập các trạm $S = \{s_1, s_2, ..., s_n\}$ với tải trọng tại mỗi trạm.
 - Một truy vấn Q ={q₁, q₂, q₃, q₄} sao cho mỗi truy vấn con q_i là đơn vị xử lý tối đa truy nhập vào một quan hệ và truyền thông với các truy vấn hàng xóm của nó.
 - □ Với mỗi q_i trong Q, một tập các trạm định vị khả thi S_q ={ s_1 , s_2 , ..., s_k } trong đó mỗi trạm lưu trữ một bản sao của quan hệ trong q_i
- Mục tiêu là tìm ra phân bổ tối ưu của Q cho S sao cho
 - □ Sự mất cân bằng tải của S được giảm thiểu
 - □ Tổng chi phí truyền thông được giảm thiểu

64

Thuật toán 2-bước

- Với mỗi q trong Q tính toán tải (S_q)
- Chừng nào Q không rỗng thì thực hiện:
 - 1. Chọn truy vấn con a với độ linh hoạt phân bổ ít nhất
 - 2. Chọn trạm tốt nhất b cho a (với tải ít nhất và lợi ích tốt nhất)
 - 3. Loai bỏ a khỏi Q và tính toán lai tải nếu cần

Ví du thuật toán 2-bước

- Đặt Q = {q₁, q₂, q₃, q₄} trong đó q₁ liên kết với R₁, q₂ liên kết với R₂ được kết nối với kết quả q₁,...
- Lặp 1: chọn q_4 , phân bổ cho s_1 , đặt tải $(s_1)=2$
- Lặp 2: chọn q₂, phân bổ tới s₂, đặt tải (s₂)=3
- Lặp 3: chọn q_3 , phân bổ tới s_1 , đặt tải $(s_1) = 3$
- Lặp 4: chọn q₁, phân bổ tới s₃ hoặc s₄

Sites	Load	R ₁	R ₂	R ₃	R ₄
s_1	1	R ₁₁		R ₃₁	R ₄₁
52	2		R ₂₂		33,3
s ₃	2	R ₁₃	0.000	R ₃₃	
54	2	R ₁₄	R ₂₄		

Chú ý: nếu trong lần lặp 2, q_2 đã được phân bổ tới s_4 , thì sẽ tạo ra một kế hoạch tốt hơn. Như vậy, việc tối ưu hóa lai vẫn có thể bỏ sót các phương án tối ưu.

Nội dung

- Xử lý truy vấn phân tán
 - Phân rã và cục bộ hóa truy vấn
 - ☐ Tối ưu hóa truy vấn phân tán
 - Trình tư kết nối
 - Xử lý truy vấn thích ứng

07

Xử lý truy vấn thích ứng – Động lực

- Giả thiết tối ưu hóa truy vấn cơ bản
 - □ Bộ tối ưu hóa có đủ thông tin về thời gian chạy
 - Thông tin chi phí
 - Điều kiện thời gian chạy vẫn ổn định trong quá trình thực hiện truy vấn
- Thích hợp cho các hệ thống có ít nguồn dữ liệu trong môi trường được kiểm soát
- Không phù hợp trong môi trường thay đổi với số lượng lớn nguồn dữ liệu và điều kiện thời gian chạy không thể đoán trước

68

Ví dụ: Kế hoạch thực thi truy vấn (QEP) với toán tử bị chặn

- Giả sử mỗi quan hệ ASG, EMP, PROJ và PAY được đặt tại tram khác nhau.
- Nếu trạm ASG ngừng hoạt động, thì toàn bộ đường kết nối bị chặn
- Tuy nhiên, với một vài tổ chức lại, kết nối EMP và PAY vẫn có thể được thực hiện trong khi chờ ASG

Xử lý truy vấn thích ứng – Định nghĩa

- Quá trình xử lý truy vấn có tính thích ứng nếu nó nhận thông tin từ môi trường thực thi và xác định hành vi của nó tương ứng
 - Vòng lặp phản hồi giữa bộ tối ưu hóa và môi trường thời gian chay
 - Truyền thông tin thời gian chạy giữa các thành phần của hệ quản trị CSDLPT
- Các thành phần bổ sung
 - □ Theo dõi, đánh giá, phản ứng
 - Được nhúng trong các toán tử điều khiển của QEP
- Cân bằng giữa khả năng phản ứng và chi phí thích ứng

70

Các thành phần thích ứng

- Các tham số giám sát (được thu thập bởi các cảm biến trong QEP)
 - Kích thước bộ nhớ
 - Tỷ lệ dữ liệu đến
 - Thống kê thực tế
 - Chi phí thực thi toán tử
 - Thông lượng mạng
- Phản ứng thích ứng
 - Thay đổi lịch trình
 - □ Thay thế toán tử bằng một toán tử tương đương
 - Sửa đổi hành vi của môt toán tử
 - Phân vùng lại dữ liệu

Cách tiếp cận xoáy (Eddy)

- Biên dịch truy vấn: rạo ra một bộ ⟨D, P, C, Eddy⟩
 - □ D: tập các nguồn dữ liệu (ví dụ, các quan hệ)
 - □ P: tập các vị từ
 - □ C: các ràng buộc về thứ tự phải được tuân theo trong thời gian chay
 - □ Toán tử Eddy: toán tử *n*-ary giữa D và P
- Thực thi truy vấn: toán tử sắp xếp dựa trên cơ sở bộ dữ liêu sử dung Eddy
 - Định tuyến bộ nhanh chóng tới các toán tử dựa trên chi phí và phép chọn.
 - □ Thay đổi thứ tự phép kết nối trong quá trình thực thi
 - Cần các thuật toán kết nối đối xứng như, ví du Ripple

QEP với Eddy

- D= {R, S, T}
- $P = \{ \sigma_P(R), R \bowtie_1 S, S \bowtie_2 T \}$
- C = {S < T} trong đó < đặt các bộ S thăm dò các bộ T bằng cách sử dụng chỉ mục trên thuộc tính nối
 - □ Truy nhập tới T được bao bọc bởi ⋈

Tài liêu tham khảo

M. Tamer Özsu, Patrick Valduriez, "Principles of Distributed Database Systems", Fourth Edition, Springer, 2020.

https://link.springer.com/book/10.1007/978-3-030-26253-2