MAT389 Fall 2013, Problem Set 4

Wirtinger derivatives

- **4.1** Use the Cauchy-Riemann equations as expressed using the Wirtinger operator $\partial/\partial \bar{z}$ to find out where each of the functions below is differentiable. Find the corresponding derivatives using $\partial/\partial z$.
 - (i) $f(z) = (z^3 1)\bar{z}$, (ii) $f(z) = (\bar{z}^3 1)z$, (iii) $f(z) = e^{\bar{z}}(\bar{z} iz)$,
 - (iv) $f(z) = \frac{az+b}{c\bar{z}+d}$, where $a,b,c,d \in \mathbb{C}$ and $\bar{a}d-\bar{b}c \neq 0$.

Holomorphic functions

- **4.2** For each of the functions below, determine the largest domain over which they are holomorphic.
 - (i) $f(z) = \frac{e^{iz}}{z^2 2z + 1}$, (ii) $f(z) = \log|z| + i\operatorname{Arg} z$, (iii) $f(z) = (z^3 1)\bar{z}$.
- **4.3** Prove that the composition of two entire functions is again an entire function.
- **4.4** Check that the functions below are entire. Can you write them in terms of z in some simple form?
 - (i) f(z) = 3x + y + i(3y x), (ii) $f(z) = \sin x \cosh y + i \cos x \sinh y$.

Hint: for (ii), notice that

$$\cosh y = \frac{e^y + e^{-y}}{2} = \frac{e^{-i(iy)} + e^{i(iy)}}{2} = \cos(iy)$$

Can you find a similar identity for $\sinh y$?

Harmonic functions

- **4.5** Check that each of the functions u(x,y) below is harmonic at every $(x,y) \in \mathbb{R}^2$, and find the unique harmonic conjugate, v(x,y), satisfying $v(0,0) = v_0$. Express the resulting holomorphic (entire, in fact) functions, f(z) = u(x,y) + iv(x,y), in terms of z.
 - (i) u(x,y) = ax + by + c (where $a,b,c \in \mathbb{R}$) and $v_0 = 0$,
 - (ii) $u(x,y) = x^2 y^2 2x$ and $v_0 = 1$,
 - (iii) $u(x,y) = y^3 3x^2y$ and $v_0 = 0$,
 - (iv) $u(x,y) = x^4 6x^2y^2 + y^4$ and $v_0 = 0$,
 - (v) $u(x,y) = e^{2y} \cos 2x$ and $v_0 = 1$.