REGRESSÃO

Prof. André Backes | @progdescomplicada

- Correlação
 - Indica a força e a direção do relacionamento linear entre dois atributos
 - Trata-se de uma medida da relação entre dois atributos, embora correlação não implique causalidade
 - Duas variáveis podem estar altamente correlacionadas e não existir relação de causa e efeito entre elas

Correlação não implica causalidade!

https://www.tylervigen.com/spurious-correlations

Correlação

- Em muitas aplicações duas ou mais variáveis estão relacionadas, sendo necessário explorar a natureza desta relação
 - Correlação muito próximo de 1, ou de (1), existe uma relação linear entre os dois atributos
 - Ela permite verificar se é possível ajustar um modelo que expresse a mencionada relação
 - Esse é o objetivo da análise de regressão

- O que é?
 - É uma série de técnicas voltadas para a modelagem e a investigação de relações entre dois ou mais atributos (variáveis aleatórias)
 - Exemplo
 - Na análise de correlação linear, o objetivo é determinar o grau de relacionamento entre duas variáveis.
 - Já na análise de regressão linear, o objetivo é determinar o modelo que expressa esta relação (equação de regressão), a qual é ajustada aos dados

- Para que serve?
 - Ela permite construir um modelo matemático que represente dois atributos
 x e y
 - y = f(x), onde $f(\cdot)$ é a função que relaciona $x \in y$
 - x é a variável independente da equação
 - y = f(x) é a variável dependente das variações de x

- Para que serve?
 - Podemos usar esse modelo para predizer o valor de y para um dado valor de x
 - Realizar previsões sobre o comportamento futuro de algum fenômeno da realidade.
 - Neste caso extrapola-se para o futuro as relações de causa-efeito já observadas no passado – entre as variáveis.

- Qual função usar?
 - Na maioria dos casos, f(·) é desconhecida
 - Cabe ao usuário escolher uma função apropriada para aproximar f(·)
 - Normalmente usa-se um modelo polinomial
 - Também podemos usar o modelo para fins de otimização

- A análise de regressão compreende quatro tipos básicos de modelos
 - Linear simples
 - Linear multivariado
 - Não linear simples
 - Não linear multivariado

Regressão simples

- Nesse tipo de regressão existe apenas uma variável de saída (y) e uma de entrada (x)
 - Exemplo: y = f(x)

Regressão múltipla

- Nesse tipo de regressão existe apenas uma variável de saída (y) e várias de entrada (x_i, i=1,...p)
 - Exemplo: $y = f(x_1, x_2, ..., x_p)$

Regressão linear

- Tem esse nome porque se considera que a relação da entre as variáveis é descrita por uma função linear (equação da reta ou do plano)
 - Exemplo: $y = \alpha + \beta x$

Regressão não linear

- Nesse caso, a relação entre as variáveis não pode ser descrita por uma função linear. Pode ser uma função exponencial ou logarítmica
 - Exemplo: $y = \alpha e^{\beta x}$

Gráfico de dispersão (scatterplot)

- É uma representação puramente visual dos dados
 - Gráfico cartesiano dos pares de informação x e y referente a cada observação
 - Consiste de uma "nuvem" de pontos que, por sua vez, define um eixo ou direção que caracterizará o padrão de relacionamento entre as variáveis x e
 y

Gráfico de dispersão (scatterplot)

- A regressão será linear se observada uma tendência ou eixo linear na nuvem de pontos
 - Sempre verificar o gráfico de dispersão para saber que modelo usar

у	X
122	139
114	126
86	90
134	144
146	163
107	136
68	61
117	62
71	41
98	120

- Definições básicas
 - Existe uma única variável de saída, y
 - Variável dependente
 - Existe uma (x) de entrada
 - variável independente ou regressora
 - Assume-se que as variáveis de entrada são medidas com erro (i.e. ruído) desprezível
 - Exemplo: $y = \alpha + \beta x + \varepsilon$

Regressão Linear Simples | Exemplo

- Função
- y = 1,55 * x + 3,86

 A regressão implica no ajuste de uma reta que represente forma "adequada" a estrutura dos dados

X
139
126
90
144
163
136
61
62
41
120

- O que seria uma reta ajustada de forma "adequada"?
 - Reta com "menor distância possível" em relação aos valores observados
 - Para isso, devemos "Minimizar a Soma dos Quadrados dos Resíduos"

- Informações importantes
 - Na análise de regressão linear parte-se da suposição de que os erros (ou resíduos) têm distribuição normal
 - Média igual a zero e variância σ_{ε}^2
 - Os resíduos também podem ser escritos na forma $\varepsilon = y \alpha \beta x$

- Desenvolvimento
 - Proposto por Carl Friedrich Gauss em 1795
 - Utilizou o método no cálculo de órbitas de planetas e cometas a partir de medidas obtidas por telescópios
 - Adrien Marie Legendre publicou primeiro em 1806
 - Desenvolveu o mesmo método de forma independente

- O que é?
 - Técnica de otimização matemática
 - Procura o melhor ajuste para um conjunto de dados
 - (x(1),y(1)), (x(2),y(2)),..., (x(n),y(n))
 - Ao mesmo tempo em que tenta minimizar a soma dos quadrados das diferenças entre o valor estimado e os dados observados
 - $\sum_{i=1}^{n} \varepsilon_i^2$

Objetivo

• Procurar pelos parâmetros α e β que minimizem a soma dos quadrados dos resíduos

•
$$J(\alpha, \beta) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y(i) - \alpha - \beta x(i))^2$$

 Isso equivale a fazer com que a soma dos quadrados dos resíduos entre os valores medidos (observações) e a reta de regressão seja mínima

- Equação de regressão
 - É calculada a partir das derivadas parciais da soma dos quadrados dos resíduos
 - Derivadas parciais com relação aos parâmetros α e β

•
$$\frac{d}{d\alpha}J(\alpha,\beta) = -2\sum_{i=1}^{n} (y(i) - \alpha - \beta x(i))^2$$

•
$$\frac{d}{d\beta}J(\alpha,\beta) = -2\sum_{i=1}^{n} (y(i) - \alpha - \beta x(i))^2 x(i)$$

- Equação de regressão
 - Algumas deduções matemáticas e substituições depois e temos que
 - $\alpha = \bar{y} \beta \bar{x}$
 - $\beta = \frac{\sum_{i=1}^{n} (x(i) \bar{x})(y(i) \bar{y})}{\sum_{i=1}^{n} (x(i) \bar{x})^2}$
 - Onde \bar{x} e \bar{y} são as médias amostrais de x e y, respectivamente

Método dos Mínimos Quadrados | Exemplo

Calcular a regressão para o seguinte conjunto de dados

у	X
122	139
114	126
86	90
134	144
146	163
107	136
68	61
117	62
71	41
98	120

Método dos Mínimos Quadrados | Exemplo

Calcular a regressão para o seguinte conjunto de dados

•	α	=	52.	69
	u		<i>J</i> 4 ,	\mathbf{O}

•
$$\beta = 0.4954$$

•
$$y = 52,69 + 0,4954x$$

Média y	Média x
106,3	108,2

- Importante
 - Normalmente, a relação linear $y = \alpha + \beta x$ é considerada válida apenas para $x \in [x_{min}, x_{max}]$
 - Modelos de regressão linear não costumam ser válidos para fins de extrapolação, apenas de interpolação

- Extrapolação
 - Calcular um valor de uma equação ou função, em um lugar fora da zona conhecida

- Interpolação
 - Calcular um valor de uma equação ou função, em um lugar da zona conhecida

- Como podemos avaliar a qualidade do nosso modelo?
 - O modelo é adequado?
 - Os erros tem distribuição normal?
 - Os erros são independentes?
 - Os erros tem variância constante?
 - Por acaso existem valores discrepantes ?
 - Presença de outliers

- Podemos fazer isso analisando os resíduos
 - Temos a disposição um conjunto de técnicas utilizadas para investigar o quão adequado um modelo de regressão está com base nos resíduos
 - O resíduo e(i) é calculado como sendo a diferença entre nosso dado y(i) e a sua estimativa $\hat{y}(i)$
 - $e(i) = y(i) \hat{y}(i)$
 - $y(i) = \alpha + \beta x(i)$

 A análise dos resíduos permitem validar as suposições impostas pelo termo de erro do modelo e, portanto, adequado

- Suposições impostas
 - Média zero
 - Não correlacionados
 - Distribuição normal

- Presença de valores discrepantes ou outliers
 - Construir um histograma da frequência dos resíduos
 - Normalizar os resíduos: $d(i) = \frac{e(i)}{\widehat{\sigma_{\epsilon}}}$
 - O histograma dos resíduos deve ser semelhante a uma distribuição gaussiana

- Presença de valores discrepantes ou outliers
 - Se os erros tiverem distribuição normal, então
 - Aproximadamente 95% dos resíduos normalizados devem cair dentro do intervalo (-2,+2)
 - Resíduos muito fora do intervalo (-2,+2) podem indicar a presença de um valor atípico em relação ao restante dos dados (outlier)

- O que fazer com um outlier?
 - Alguns autores recomendam que eles sejam descartados
 - Outros autores acham que eles n\u00e3o devem ser descartados
 - Outliers fornecem informação importante sobre "falhas" e são de interesse para o experimentador

Coeficiente de Determinação

- Observe a reta de regressão
 - Os pontos estão distribuídos acima e abaixo dela
 - O coeficiente de determinação, R², indica a quantidade de variabilidade dos dados que o modelo de regressão é capaz de explicar

- Calculando R²
 - O coeficiente de determinação é dado por

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y(i) - \hat{y}(i))^{2}}{\sum_{i=1}^{n} (y(i) - \overline{y}(i))^{2}}$$

- O valor resultante será $0 \le R^2 \le 1$
 - Quanto mais próximo o valor de R² está de 1, mais adequado é o modelo de regressão

$$R^2 = 0.44$$

$$R^2 = 0.93$$

Dados não lineares

- O que fazer quando o modelo de regressão linear não é apropriado?
 - Solução 1:
 - Podemos dividir o domínio original dos dados em sub-domínios
 - Aplicar o modelo linear dentro de cada sub-domínios

Dados não lineares

- O que fazer quando o modelo de regressão linear não é apropriado?
 - Solução 2:
 - Podemos utilizar um modelo de regressão polinomial de ordem maior do que 1 ou não linear
 - Aplicar uma linearização dos dados e continuar usando a regressão linear

Definição

- Forma de regressão em que os dados são modelados por uma função que é uma combinação não linear de parâmetros
 - Pelo menos um dos seus parâmetros deve estar na forma não linear

Exemplos

- Função exponencial: $y = \alpha e^{\beta x}$
- Função logarítmica: $y = \alpha + \beta \log x$
- Função de Potência: $y = \alpha x^{\beta}$

- Por quê usar?
 - Muito importante na Biologia
 - Muitas aplicações biológicas são modeladas por meio de relações não lineares
 - Modelos de crescimento
 - Modelos de rendimento
 - Relações alométricas;

- Como calcular a regressão?
 - Podemos tentar transformar uma relação não linear em linear (transformação linearizante)
 - Em seguida resolvemos o problemas como linear
 - Exemplo
 - Relação exponencial: $y = \alpha e^{\beta x}$
 - Modelada como: $y' = \alpha' + \beta x$
 - Onde $y' = \log y \in \alpha' = \log \alpha$

- Como calcular a regressão?
 - Nem sempre é possível fazer essa transformação
 - Algumas relações não lineares não são linearizáveis
 - Estimar os parâmetros na relação linearizada não produz os mesmos resultados que estimar os parâmetros na relação não linear original

- Como calcular a regressão?
 - Como na regressão linear, os dados são ajustados geralmente pelo método dos Mínimos Quadrados
 - Isso vale para relações linearizadas ou não
 - Ou podemos usar um método de aproximações sucessivas
 - Método de Gauss-Newton

- Idéia
 - A intuição nos diz que, geralmente, se pode melhorar uma predição se incluirmos novas variáveis independentes ao modelo (equação) de regressão
 - Uma reta é um polinômio de ordem 1
 - Usar de modelos polinomiais de ordem maior que 1

- Idéia
 - Antes de tudo devemos buscar o "equilíbrio" entre o número de parâmetros e a "capacidade preditiva" do modelo
 - Número excessivo de parâmetros
 - Sobreajustamento: modelo é muito específico
 - Número reduzido de parâmetros
 - Subajustamento: modelo pode ser pouco preditivo

- Idéia
 - A regressão múltipla funciona de forma parecida com a regressão simples
 - Basicamente, ela leva em consideração diversas variáveis de entrada x_i, i=1,...p, influenciando ao mesmo tempo uma única variável de saída, y
 - Exemplo

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \varepsilon$$

Regressão Linear Múltipla | Exemplo

- Função
- $y = 10 + 2x_1 + 5x_2$

- Informações importantes
 - A função de regressão na regressão múltipla é chamada de superfície de resposta
 - Ela descreve um hiperplano no espaço p-dimensional das variáveis de entrada x_i
 - Os parâmetros β_i , i=0,...,p são os coeficientes de regressão

- Vantagens
 - Permite representar modelos mais complexos e não apenas lineares
- Exemplo
 - Considere a seguinte equação de regressão com três variáveis de entrada
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$

- Exemplo (continuação)
 - Se considerarmos
 - $x_1 = x$
 - $x_2 = x^2$
 - $x_3 = x^3$
 - Teremos escrito um modelo n\u00e3o linear (polinomial c\u00fabico) em uma vari\u00e1vel de entrada
 - $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$

- Como calcular a superfície de regressão?
 - Usar o método dos mínimos quadrados como feito com a regressão linear simples
 - Ele pode ser usado para estimar os coeficientes de regressão β_i , i=0,...,p
 - Problema: elevado número de parâmetros
 - Temos $\bf n$ equações na forma $y=\beta_0+\beta_1x_1+\beta_2x_2+...+\beta_px_p+\varepsilon$, uma para cada observação dos dados

- Solução
 - Expressar as operações matemáticas utilizando notação matricial

$$\bullet \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} \dots & x_{p1} \\ 1 & x_{12} \dots & x_{p2} \\ \dots & \dots & \dots \\ 1 & x_{1p} \dots & x_{pn} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$$

•
$$y = X\beta + e$$

- Considerações importantes
 - Os erros (ou resíduos) têm distribuição normal
 - Média igual a zero e variância σ_{ε}^2
 - As observações não são correlacionadas
 - Temos *n* observações, sendo *n>p*
 - Há mais equações do que incógnitas

- Método dos Mínimos Quadrados
 - A solução continua a mesma: procurar pelos parâmetros β_i , $i=0,\ldots,p$ que minimizem a soma dos quadrados dos resíduos
 - $J(\beta) = \sum_{i=1}^{n} \varepsilon_i^2$
 - A equação acima pode ser reescrita como sendo
 - $J(\beta) = e'e$
 - Onde e é o vetor de resíduos, e e' é a sua transposta

- Método dos Mínimos Quadrados
 - Nosso objetivo é fazer com que a soma dos quadrados dos resíduos entre os valores medidos (observações) e a superfície de regressão seja mínima
 - Como $e = y X\beta$, nosso objetivo se torna minimizar
 - $J(\beta) = e'e = (y X\beta)'(y X\beta)$

Método dos Mínimos Quadrados

- Superfície de regressão
 - Algumas deduções matemáticas e substituições depois e temos que
 - $\beta = (X'X)^{-1}X'y$
 - Onde A^{-1} representa a matriz inversa da matriz A

Calcular a regressão para o seguinte conjunto de dados

у	x ₁	X ₂
122	139	0,115
114	126	0,12
86	90	0,105
134	144	0,09
146	163	0,1
107	136	0,12
68	61	0,105
117	62	0,08
71	41	0,1
98	120	0,115
107 68 117 71	136 61 62 41	0,12 0,105 0,08 0,1

Calcular a regressão para o seguinte conjunto de dados

$$\beta = \left(\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 139 & 126 & 90 & \cdots \\ 0,115 & 0,12 & 0,105 & \cdots \end{pmatrix} \times \begin{pmatrix} 1 & 139 & 0,115 \\ 1 & 126 & 0,12 \\ 1 & 90 & 0,105 \\ \cdots & \cdots & \cdots \end{pmatrix} \right)^{-1} \times \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 139 & 126 & 90 & \cdots \\ 0,115 & 0,12 & 0,105 & \cdots \end{pmatrix} \times \begin{pmatrix} 122 \\ 114 \\ 86 \\ \cdots \end{pmatrix}$$

у	x ₁	X ₂
122	139	0,115
114	126	0,12
86	90	0,105
134	144	0,09
146	163	0,1
107	136	0,12
68	61	0,105
117	62	0,08
71	41	0,1
98	120	0,115

- Calcular a regressão para o seguinte conjunto de dados
- Solução do sistema

$$\beta = \begin{pmatrix} 148,52\\ 0,6136\\ -1034,41 \end{pmatrix}$$

• $y = 148,52 + 0,6136x_1 - 1034,41x_2$

Calcular a regressão para o seguinte conjunto de dados

Problemas

- Nem sempre é possível calcular a inversa da matriz $(X'X)^{-1}$
 - Seu determinante muitas vezes é zero ou quase igual a zero
 - Isto geralmente ocorre quando as variáveis de entrada são intercorrelacionadas
 - Se a intercorrelação é grande existe multicolinearidade: as linhas da matriz X'X não são linearmente independentes

Multicolinearidade

- Como minimizar esse efeito?
 - Aplicar a regularização de Tikhonov
 - A regressão passa a ser chamada de regressão de cumeeira (ridge regression).
 - A equação usada para calcular os parâmetros β
 - $\beta = (X'X)^{-1}X'y$
 - É reescrita da seguinte forma
 - $\hat{\beta} = (X'X + \lambda I)^{-1}X'y$

Multicolinearidade

- Como minimizar esse efeito?
 - Basicamente, com a regularização de Tikhonov, nós somamos uma constante a diagonal principal da matriz de modo a tentar torná-la inversivel.
 - $\hat{\beta} = (X'X + \lambda I)^{-1}X'y$
 - Onde
 - $0 \le \lambda \ll 1$ é uma constante de valor pequeno
 - I é uma matriz identidade de ordem (p+1)

 O coeficiente de determinação também pode ser obtido para uma regressão múltipla

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y(i) - \hat{y}(i))^{2}}{\sum_{i=1}^{n} (y(i) - \overline{y}(i))^{2}}$$

- Problema
 - Nesse caso, um valor alto para R² não significa que o modelo seja bom

- Por que R² alto não significa "bom"?
 - Acrescentar uma variável ao modelo sempre aumentará o valor de R², mesmo que a variável adicional não seja significante (informativa)
 - O que fazer então?
 - Podemos calcular o coeficiente de determinação ajustado

Coeficiente de determinação ajustado

$$R_{aj}^{2} = 1 - \frac{\sum_{i=1}^{n} (y(i) - \hat{y}(i))^{2} / (n-k)}{\sum_{i=1}^{n} (y(i) - \bar{y}(i))^{2} / (n-1)}$$

- Onde k = p + 1
 - Desse modo, o valor do coeficiente de determinação irá crescer apenas se a adição de um novo termo reduzir significantemente a média quadrática dos erros

Agradecimentos

 Agradeço ao professor Guilherme de Alencar Barreto da Universidade Federal do Ceará (UFC) pelo material disponibilizado