Ejercicio de Teoría de Números:

Toma n tu número publicado para el ejer_ 2. Escríbe n en base 2, usa esas cifras para definir un polinomio, f(x), donde tu bit más significativo defina el grado del polinomio n, el siguiente bit va multiplicado por x^{n-1} y sucesivamente hasta que el bit menos significativo sea el término independiente. El polinomio que obtienes es universal en el sentido de que tiene coeficientes en cualquier anillo.

Ejercicio 1: Sea f(x) el polinomio que obtienes con coeficientes en \mathbb{Z} .

- i) Toma $g(x) = f(x) \mod 2$ y halla el menor cuerpo de característica 2 que contenga a todas las raíces de g. ¿ Qué deduces sobre la irreducibilidad de g(x) en $\mathbb{Z}_2[x]$?
- ii) Extrae la parte libre de cuadrados de g(x) y le calculas su matriz de Berlekamp por columnas. Resuelve el s.l. (B-Id)X=0.
- iii) Aplica Berlekamp si es necesario recursivamente para hallar la descomposición en irreducibles de g(x) en $\mathbb{Z}_2[x]$.
- iv) Haz lo mismo para hallar la descomposición en irreducibles de f(x) mod 3.
- v) ¿ Qué deduces sobre la reducibilidad de f(x) en $\mathbb{Z}[x]$?.