Problem 1
$$f(n) = -2n^{3} + 9n^{2} + 2u$$

$$f'(n) = -6n^{2} + 18n$$

$$f'(m) = 0$$

$$-6n^{2} + 18n = 0$$

$$-6n + (n - 3) = 0$$

r	-00	5	3 😡
f'(u)	_	+	_
f(n)	\	^	V

is decreasing on
$$(-\infty,0)\cup(3,\infty)$$

is increasing on $(0,3)$

$$f(0) = 24 \implies \text{Relative minimum}$$

 $f(3) = 51 \implies \text{Relative manimum}$

$$\int_{0}^{\infty} (n) = -12\pi + 18$$

(om)

(2,75)

$$f(n) = 12n^{2/3} - 16n$$

$$f'(n) = 12 \times 2 \quad n^{-1/3} - 16$$

a	_00	9	8 00
J'(x)	_	+	_
(n)	V	1	7
<u>)</u>			

a)
$$\int_{0}^{1} (n) = 3n^{2} - 12$$

$$f(-4) = -8$$

$$(-2) = 24$$

$$(2) = -8$$

Absolute maximum = 24 At n = -2

Absolute minimum = -8 at n = -4 and n = 2

b)
$$\{ (n) : \frac{4}{3} n^{4} - n^{-43} \}$$

$$\frac{4}{3}\sqrt{12} - \frac{1}{3\sqrt{n^2}} = 0$$

et n=0, f'(0) is un defined

: with cal points are 3/4, 0

$$\begin{cases} (-1) & = 4 \\ (0) & = 0 \\ (3/u) & = -2.044 \\ (8) & = 10 \end{cases}$$

Problem 4

a)
$$\int_{1}^{1}(n) z 4n^{3} - 48n$$

 $\int_{1}^{1}(n) = 0$
 $4n^{3} - 48n = 0$

$$4n = 0$$
 $n^2 - 12 = 0$

$$n=0$$
 $n=\pm 2\sqrt{3}$

$$\int_{0}^{11} (\chi) = 12\chi^{2} - 48$$

$$\chi^2 - \psi = 0$$

Problem 5

$$3n^2 + 3n - 6 = 6$$

$$x^2 + x - 2 = 0$$

N	-00	- L	00
(n)	+	_	+
(a)	r	V	1

$$\int (-1) = 22$$

$$\int (1) = 8.5$$

$$\int_{1}^{11} (n) = 6n + 3$$

$$\int_{1}^{11} (n) = 6n + 3$$

$$6n + 3 = 0$$

$$2n + 1 = 0$$

$$n = -1/2$$

y surcept = (0,12) 2 surcept = (-3.85,0)

$$\int_{0}^{1} (x) = \frac{4}{3} x^{1/3} + \frac{4}{3} x^{1/3}$$

$$n^{1/3} = -1$$

$$\int_{0}^{4(n)} \frac{4}{3} \times \frac{1}{3} = \frac{-243}{3} + \frac{4}{3} \left(-\frac{2}{3}\right) x^{-5/3}$$

n	-00	2	0
("(n)	+	_	+
₹(x)	U	\cap	U

$$h = 10 - 2\omega^2 - 5 - \omega^2$$

$$2\omega$$

$$V=\omega t \left(\frac{5-\omega^2}{2\psi}\right)$$

$$\frac{1}{2} = \frac{5\omega}{2} = \frac{\omega^3}{2}$$

$$\frac{dV}{d\omega} = \frac{5}{2} = \frac{3}{2} \omega^2$$

$$\omega^2 = \frac{5}{3}$$

$$W = \pm \sqrt{\frac{5}{3}}$$

$$W = \sqrt{\frac{5}{3}}$$

$$V''\left(\sqrt{\frac{5}{3}}\right) = -\sqrt{15} < 0$$

Y is man at
$$w = \int \frac{5}{3}$$

$$\frac{h - 5 - w^2}{2w}$$

$$V=\frac{5\sqrt{15}}{9}$$
 m³

Problem 7

$$\frac{p'(n) = -200}{n^2} + 2$$