Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа 3220	_ К работе допущен		
Студент <u>Гафурова Ф. Ф.</u>	Работа выполнена		
Преподаватель Пулькин Н. С.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.01

«Исследование распределения случайной величины»

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений батончика «Степ».

- 2. Задачи, решаемые при выполнении работы.
- 1) Провести многократные измерения батончика «Степ».
- 2) Построить гистограмму распределения результатов измерения.
- 3) Вычислить среднее значение и дисперсию полученной выборки.
- 4) Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Длина батончиков «Степ»

- 4. Метод экспериментального исследования.
 - 1) Анализ
 - 2) Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

$$ho(a)=rac{1}{\sigma\sqrt{2\pi}}\exp\left(-rac{(a-\langle a
angle)^2}{2\sigma^2}
ight)$$
 - функция Гаусса для нормального распределения

$$\langle a \rangle_N = \frac{1}{N}(a_1 + a_2 + \dots + a_N) = \frac{1}{N}\sum_{i=1}^N a_i$$
 - математическое ожидание или среднеарифметическое всех результатов измерений

$$\sigma_N = \sqrt{rac{1}{(N-1)}\sum_{i=1}^N (a_i - \langle a
angle_N)^2}$$
 - выборочное среднеквадратичное отклонение

 $ho_{max} = rac{1}{\sigma\sqrt{2\pi}}$ - максимальная высота гистограммы

 $P\left(a_{1} < a < a \right) pprox rac{N_{12}}{N}$ — вероятность при условии реализации нормального распределения случайной величины

$$t \in [\langle a \rangle - \sigma, \langle a \rangle + \sigma], P_{\sigma} \cong 0.683$$

 $t \in [\langle a \rangle - 2\sigma, \langle a \rangle + 2\sigma], P_{2\sigma} \cong 0,954$ - стандартные доверительные интервалы для нахождения приближённых значений вероятности

$$t \in [\langle a \rangle - 3\sigma, \langle a \rangle + 3\sigma], P_{3\sigma} \cong 0.997$$

$$[\langle a \rangle_N - \sigma_N, \langle a \rangle_N + \sigma_N],$$
 $[\langle a \rangle_N - 2\sigma_N, \langle a \rangle_N + 2\sigma_N],$ - промежутки для нахождения приближённых значений границ интервалов $[\langle a \rangle_N - 3\sigma_N, \langle a \rangle_N + 3\sigma_N]$

$$\sigma_{\langle a \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (a_i - \langle a \rangle_N)^2}$$
 - среднеквадратичное отклонения среднего значения

 $\Delta a = a_{\alpha,N} * \sigma_{\langle a \rangle}$ - доверительный интервал для измеряемого в работе промежутка

 σ_N - среднеквадратичное отклонение

 $\rho(a)$ - плотность вероятности

N - полное количество измерений

 $\langle a \rangle$ - математическое ожидание

 $\sigma_{\langle a \rangle}$ - среднеквадратичное отклонение среднего значения

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка 15 см	Измерительный	[10;13]	0,1 мм

7. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1: Результаты прямых измерений

Nº	a_i , см	$a_i - \langle a angle_N$, см	$(a_i - \langle a \rangle_N)^2$, cm ²
1	10,2	-1,16	1,35
2	11,2	-0,16	0,03
3	11,6	0,24	0,06
4	10,8	-0,56	0,32
5	11,3	-0,06	0,00
6	11,4	0,04	0,00
7	11,5	0,14	0,02
8	11,7	0,34	0,11
9	10,9	-0,46	0,21
10	11,1	-0,26	0,07
11	11,9	0,54	0,29
12	11	-0,36	0,13
13	11,3	-0,06	0,00
14	11,6	0,24	0,06
15	10,8	-0,56	0,32
16	11,8	0,44	0,19
17	11,4	0,04	0,00
18	12	0,64	0,41
19	12,1	0,74	0,54
20	11,2	-0,16	0,03
21	11,1	-0,26	0,07
22	10,7	-0,66	0,44
23	11,8	0,44	0,19
24	11,2	-0,16	0,03
25	10,7	-0,66	0,44
26	11,5	0,14	0,02
27	11,6	0,24	0,06
28	12,3	0,94	0,88
29	11,2	-0,16	0,03
30	11	-0,36	0,13
31	11,5	0,14	0,02
32	10,9	-0,46	0,21
33	11,6	0,24	0,06
34	10,7	-0,66	0,44
35	12,4	1,04	1,08
36	12	0,64	0,41
37	11,8	0,44	0,19
38	11,7	0,34	0,11
39	11,6	0,24	0,06
40	11,4	0,04	0,00
41	11,5	0,14	0,02
42	11,2	-0,16	0,03
43	11	-0,36	0,13
	10,7	-0,66	0,44

45	10,8	-0,56	0,32
46	10,9	-0,46	0,21
47	11,9	0,54	0,29
48	12,1	0,74	0,54
49	11,2	-0,16	0,03
50	11,3	-0,06	0,00
	$\langle a \rangle_N = 11,36 {\rm cm}$	$\sum_{i=1}^N (a_i - \langle a \rangle_N)$ = 0,00 cm	$\sigma_N = 0.47 \text{ cm}$ $P_{max} = 1.05 \text{ cm}^{-1}$

 $\sum_{i=1}^{N} a_i$ = 568,1 см – сумма всех полных измерений

$$\langle a \rangle_N = \frac{568,1}{50} = 11,36$$
 см — математическое ожидание для представленных измерений

 $\sum_{i=1}^{N} (a_i - \langle a \rangle_N)^2 = 11,00$ см — сумма разницы полных измерений и математических ожиданий в соответствии с данными из таблицы

$$\sigma_N = \sqrt{\frac{1}{50-1}} * \sqrt{\sum_{i=1}^N (a_i - \langle a \rangle_N)^2} = 0,47$$
 см - среднеквадратичное отклонение

$$p_{max} = \frac{1}{0.47 * \sqrt{2\pi}} = 0.85 \; \text{cm}^{-1} - \text{максимальная высота гистограммы при соотношении a = ⟨a⟩}$$

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

Таблица 2: Данные для построения гистограммы и функции Гаусса. Интервалов взято 7, приближённое к $\sqrt{50}\approx 7$. Для удобства было выделено такое количество интервалов, чтобы разница между всеми была одинакова и была равна 0,3. В последнем интервале взята разница 0,4, чтобы уместить все измерения в 7 интервалов.

Границы интервалов, см	ΔΝ	$\frac{\Delta N}{N\Delta a}$, CM^{-1}	a, см	р, см ⁻¹	
[10,2	1	0,1	10,4	0,10	
10,5)	I	0,1	10,4	0,10	
[10,5	4	0,3	10,7	0,32	
10,8)					
[10,8	7	0,5	10,9	0,52	
11,1)					
[11,1	12	2 0,8	11,3	0.04	
11,4)	12			0,84	
[11,4	11	0,7 11,	44.6	0.7F	
11,7)	11		11,0	0,75	
[11,7	7	0.5	44.0	0.44	
12,0)	/	0,5	11,9	0,44	

[12,0	6	0.2	40.0	0.12
12,4)	О	0,3	12,3	0,12

 Δa (во втором столбце) = $(a_{max} - a_{min})/7 = 0.3$ см — разница между максимальным и минимальным значением измерений для представленных в таблице интервалов Рассчитаем опытное значение плотности вероятности на примере первого значения $\frac{\Delta N}{N\Delta a} = \frac{1}{0.3*50} = 0.1$ см

Рассчитаем плотность вероятности на примере первого значения $\rho(a)_1 = \frac{1}{0.47*\sqrt{2*3.14}} \exp{(-\frac{(10.4-\langle 11.36\rangle)^2}{2*(0.47)^2})} \approx 0.10 \text{ см}$

Таблица 3: Стандартные доверительные интервалы. Проверка выполнения в измерениях соотношения между вероятностями.

	Интервал, см <i>ΔN</i>		ΔΝ	$\frac{\Delta N}{N}$	P
	ОТ	до		N	
$\langle a \rangle_N \pm \sigma_N$	10,89	11,83	34	0,68	0,683
$\langle a \rangle_N \pm 2\sigma_N$	10,42	12,30	48	0,96	0,954
$\langle a \rangle_N \pm 3\sigma_N$	9,95	12,77	50	1	0,997

Значения «Р» взяты из приложенного методического пособия

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$a_{lpha, N}$$
 (при $lpha$ = 0,95) = 2.01 – коэффициент Стьюдента

 $\Delta a = a_{\alpha,\mathrm{N}} \cdot \sigma_{\langle \mathrm{a} \rangle}$ – доверительный интервал для измеряемого в работе промежутка температуры

 $\sigma_{(a)} = 0.07 \; \text{см} - \text{среднеквадратичное отклонение среднего значения}$

$$\Delta a = 2.01*0.07 = 0.1407 \text{ cm} \approx 0.14 \text{ cm}$$

- 11. Графики (перечень графиков, которые составляют Приложение 2).
- 12. Окончательные результаты.

$$a = (11,36 \pm 0,14)$$
 cm

Приложение 1:

13. Выводы и анализ результатов работы.

В процессе проведенных исследований и повторных измерений батончиков «Степ» были рассчитаны среднее значение и дисперсия полученных данных. Были построены гистограмма и функция плотности вероятности (Гаусса), основанные на математическом ожидании и стандартном отклонении. При сравнении гистограммы с функцией Гаусса было выявлено, что кривая проходит чуть выше столбцов, но рядом с ними по их высоте.

Анализ таблицы стандартных доверительных интервалов позволил обнаружить некоторые различия в соотношении количества измерений, входящих в каждый из этих интервалов, к общему числу измерений и нормальному распределению вероятностей Р. Сравнение показало, что во всех трех интервалах соотношение незначительно отличается от нормального распределения на несколько тысячных, что подтверждает правильность проведенных расчетов, практически приближенных к значениям из методического пособия.

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).