Tutorium 09: let-Polymorphismus

David Kaufmann

09. Januar 2023

Tutorium Programmierparadigmen am KIT

Rückblick

Rückblick

Bisherige Themen:

- Haskell: Funktionale Programmierung
- Lambda-Kalkül: Beta-Reduktion, Church-Encodings
- Typisierung: Lambda-Typen, Let, Typinferenz
- Prolog: Logische Programmierung

Ab jetzt:

- Parallelprogrammierung: MPI, Java
- Design by Contract: OpenJML
- Compiler: Parser + Java ByteCode

ÜB 7/8

Let-Polymorphismus: Motivation

$$\lambda f. f f$$

- Diese Funktion verwendet f auf zwei Arten:
 - $\alpha \rightarrow \alpha$: Rechte Seite.
 - $(\alpha \to \alpha) \to (\alpha \to \alpha)$: Linke Seite, nimmt f als Argument und gibt es zurück.

Let-Polymorphismus: Motivation

$\lambda f. f f$

- Diese Funktion verwendet f auf zwei Arten:
 - $\alpha \rightarrow \alpha$: Rechte Seite.
 - (α → α) → (α → α): Linke Seite, nimmt f als Argument und gibt es zurück.
- Problem: $\alpha \to \alpha$ und $(\alpha \to \alpha) \to (\alpha \to \alpha)$ sind nicht unifizierbar!
 - \bullet "occurs check": α darf sich nicht selbst einsetzen.
- Idee: Bei jeder Verwendung eines polymorphen Typen erzeugen wir *neue Typvariablen*, um diese Beschränkung zu umgehen.

Typschemata und Instanziierung

- Idee: Bei jeder Verwendung eines polymorphen Typen erzeugen wir *neue Typvariablen*, um diese Beschränkung zu umgehen.
- Ein Typschema ist ein Typ, in dem manche Typvariablen allquantifiziert sind:

$$\phi = \forall \alpha_1. \dots \forall \alpha_n. \tau$$
$$\alpha_i \in FV(\tau)$$

Typschemata und Instanziierung

• Ein Typschema spannt eine Menge von Typen auf, mit denen es *instanziiert* werden kann:

$$\begin{split} \forall \alpha.\alpha &\to \alpha \succeq \mathsf{int} \to \mathsf{int} \\ \forall \alpha.\alpha &\to \alpha \succeq \tau \to \tau \\ \forall \alpha.\alpha &\to \alpha \not\succeq \tau \to \sigma \\ \forall \alpha.\alpha &\to \alpha \not\succeq \tau \to \tau \to \tau \\ \forall \alpha.\alpha &\to \alpha \succeq (\tau \to \tau) \to (\tau \to \tau) \end{split}$$

Zusammenfassung

Def. aus VL: Für $n \in \mathbb{N}_0$ heist $\forall \alpha_1 \dots \forall \alpha_n . \tau$ Typschema. Es bindet freie Typvariablen $\alpha_1, \dots, \alpha_n$ in τ .

Def. aus VL: Für Typen τ_1, \ldots, τ_n ist der Typ $\tau[\alpha_1 \mapsto \tau_1, \ldots, \alpha_n \mapsto \tau_n]$ eine **Instanziierung** vom Typschema $\forall \alpha_1, \ldots, \forall \alpha_n, \tau$.

Schreibweise: $\forall \alpha_1 \dots \forall \alpha_n . \tau \succeq \tau [\alpha_1 \mapsto \tau_1, \dots, \alpha_n \mapsto \tau_n]$

Das Typschema $ta(\tau, \Gamma) = \forall \alpha_1, \dots, \forall \alpha_n, \tau$ heißt **Typabstraktion** von τ relativ zu Γ , wobei $\alpha_i \in FV(\tau) \setminus FV(\Gamma)$

Um Typschemata bei der Inferenz zu verwenden, müssen wir zunächst die Regel für Variablen anpassen:

$$\frac{\Gamma(x) = \phi \qquad \phi \succeq_{\mathsf{frische}\ \alpha_i} \tau}{\Gamma \vdash x : \alpha_j} \mathsf{VAR}$$
$$\mathsf{Constraint:}\ \{\alpha_j = \tau\}$$

- $\succeq_{\mathsf{frische}} \alpha_i$ instanziiert ein Typschema mit α_i , die noch nicht im Baum vorkommen.
- Jetzt brauchen wir noch eine Möglichkeit, Typschemata zu erzeugen.

6

Mit einen Let -Term wird ein Typschema eingeführt:

$$\frac{\Gamma \vdash t_1 : \alpha_i \qquad \Gamma' \vdash t_2 : \alpha_j}{\Gamma \vdash \mathsf{let} \ x = t_1 \ \mathsf{in} \ t_2 : \alpha_k} \mathsf{LET}$$

$$\begin{split} &\sigma_{let} = \textit{mgu}(\textit{C}_{let}) \\ &\Gamma' = \sigma_{let}(\Gamma), \textit{x}: \textit{ta}(\sigma_{let}(\alpha_i), \sigma_{let}(\Gamma)) \\ &C'_{let} = \{\alpha_n = \sigma_{let}(\alpha_n) \mid \sigma_{let}(\alpha_n) \text{ ist definiert} \} \end{split}$$

Constraints: $C'_{let} \cup C_{body} \cup \{a_j = a_k\}$

Übung

let
$$f = \lambda x.2$$
 in $f(f true)$: int

Gegeben:

 $\lambda x.2: \alpha \rightarrow \text{int}$

 $\forall \alpha. \alpha \rightarrow \mathsf{int} \succeq \mathsf{bool} \rightarrow \mathsf{int} \mathsf{oder} \ \forall \alpha. \alpha \rightarrow \mathsf{int} \succeq \mathsf{int} \rightarrow \mathsf{int}$

Let-Typregel

LET
$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : \tau_2}$$

Angepasste Regeln:

VAR
$$\frac{\Gamma(x) = \phi \qquad \phi \succeq \tau}{\Gamma \vdash x : \tau}$$

7

Herleitung

Typinferenz ohne let

- Herleitungsbaum aufstellen (mit den Regeln und frischen Variablen für Typen in den Voraussetzungen
- Sammle dabei Constraints, die erfüllt sein müssen damit der Herleitungsbaum gültig ist
- Bestimme mgu des Gleichungssystems (Robinson Algorithmus)

Typinferenz mit let-Regel

- Betrachte zunächst nur den linken Teilbaum, um au_1 zu berechnen
 - Constraints: C_{let}
 - $\sigma_{\text{let}} = \text{mgu}(C_{\text{let}})$
- Berechne $\Gamma' := \sigma_{\mathsf{let}}(\Gamma), x : ta(\sigma_{\mathsf{let}}(\tau_1), \sigma_{\mathsf{let}}(\Gamma))$
- ullet Benutze Γ' im rechten Teilbaum, sammle Constrains in $\mathcal{C}_{\mathsf{body}}$
- Ergebnisconstraints sind $C'_{\text{let}} \cup C_{\text{body}} \cup$ mit $C'_{\text{let}} := \{\alpha_n = \sigma_{\text{let}}(\alpha_n) | \sigma_{\text{let}} \text{ definiert für } \alpha_n \}$

Beispiel: Let-Polymorphismus

$$\vdash$$
 let $f = \lambda x. x$ in $f f : \alpha_1$

Beispiel: Let-Polymorphismus

$$\frac{\Gamma'(f) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\sum \alpha_8 \to \alpha_8} \frac{\Gamma'(f) = \forall \alpha_5.\alpha_5 \to \alpha_5}{\sum \alpha_9 \to \alpha_9} \frac{\sum \alpha_9 \to \alpha_9}{\Gamma' \vdash f : \alpha_7} \frac{\text{VAR}}{\Gamma' \vdash f : \alpha_7} \frac{\Gamma' \vdash f : \alpha_7}{\text{APP}}$$

$$\frac{\Gamma' \vdash f : \alpha_3}{\text{Let } f = \lambda x. x \text{ in } f : \alpha_1} \frac{\text{Let } f : \alpha_7}{\text{Let } f : \alpha_7} \frac{\text{Let } f : \alpha_7}{\text{Let } f :$$

$$\begin{split} C_{let} &= \{\alpha_2 = \alpha_4 \rightarrow \alpha_5, \alpha_4 \rightarrow \alpha_5\} \\ \sigma_{let} &= [\alpha_2 \Leftrightarrow \alpha_5 \rightarrow \alpha_5, \alpha_4 \Leftrightarrow \alpha_5] \\ \Gamma' &= x : \forall \alpha_5.\alpha_5 \rightarrow \alpha_5 \\ C'_{let} &= \{\alpha_2 = \alpha_5 \rightarrow \alpha_5, \alpha_4 = \alpha_5\} \\ C_{body} &= \{\alpha_6 = \alpha_7 \rightarrow \alpha_3, \alpha_6 = \alpha_8 \rightarrow \alpha_8, \alpha_7 = \alpha_9 \rightarrow \alpha_9\} \\ C &= C'_{let} \cup C_{body} \cup \{\alpha_3 = \alpha_1\} \end{split}$$

Klausuraufgaben