DFS Applications Full Tree Traversal Cycle Finding Component Finding Articulation Point Finding

Week-10, Lecture-01

Course Code: CSE221

Course Title: Algorithms

Program: B.Sc. in CSE

Course Teacher: Tanzina Afroz Rimi

Designation: Lecturer

Email: tanzinaafroz.cse@diu.edu.bd

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can tree edges form cycles? Why or why not?
 - No

DFS Example

Tree edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Encounter a grey vertex (grey to grey)
 - Self loops are considered as to be back edge.

DFS Example

Tree edges Back edges

- DFS introduces an important distinction among edges in the original graph:
 - Tree edge: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Not a tree edge, though
 - From grey node to black node

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - *Cross edge*: between a tree or subtrees
 - From a grey node to a black node

DFS Example

Tree edges Back edges Forward edges Cross edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - Back edge: from descendent to ancestor
 - Forward edge: from ancestor to descendent
 - Cross edge: between a tree or subtrees
- Note: tree & back edges are important; most algorithms don't distinguish forward & cross

Textbooks & Web References

- Text Book (Chapter 22)
- www.geeksforgeeks.org

Practice

