Capítulo 14

Problema 01

$$H_0: p_1 = p_2 = \dots = p_6 = 1/6$$

Ocorrência (i)	1	2	3	4	5	6	Total
Freq. Observada (n _i)	43	49	56	45	66	41	300
Freq. Esperada (n_i^*)	50	50	50	50	50	50	300
$(n_i - n_i^*)^2 / n_i^*$	0,98	0,02	0,72	0,5	5,12	1,62	8,96

$$\chi_a^2 = 8.96$$
; $s = 6$; g.l. = 5.

$$\hat{\alpha} = P(\chi_5^2 > 8.96) = 0.111$$
.

Problema 02

Exemplo 14.5:

$$\chi_o^2 = 12,875$$
; $s = 11$; g.l. = 10.

$$\hat{\alpha} = P(\chi_{10}^2 > 12,875) = 0,231.$$

Exemplo 14.6:

$$\chi_o^2 = 3.87$$
; $s = 4$; g.l. = 3.

$$\hat{\alpha} = P(\chi_3^2 > 3.87) = 0.276$$
.

Problema 03

$$H_0$$
: $p_1 = 0,656$; $p_2 = 0,093$; $p_3 = 0,093$; $p_4 = 0,158$

Categoria (i)	C1	C2	C3	C4	Total
Freq. Observada (n _i)	125	18	20	34	197
Freq. Esperada (n_i^*)	129,232	18,321	18,321	31,126	197
$(n_i - n_i^*)^2 / n_i^*$	0,139	0,006	0,154	0,265	0,563

$$\chi_o^2 = 0.563$$
; $s = 4$; g.l. = 3.

$$\hat{\alpha} = P(\chi_3^2 > 0.563) = 0.905$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 7.815$.

Não rejeitamos H_0 , ou seja, há evidências de que os dados estão de acordo com o modelo genético postulado.

Problema 04

 $H_0: P = N(30;100)$

Quartis da N(30;100): Q(0,25) = 23,26; Q(0,50) = 30; Q(0,75) = 36,74.

Categoria (i)	(-∞;23,26]	(23,26;30,00]	(30,00;36,74]	(36,74;+∞)	Total
Freq. Observada (n _i)	8	4	4	4	20
Freq. Esperada (n_i^*)	5	5	5	5	20
$(n_i - n_i^*)^2 / n_i^*$	1,800	0,200	0,200	0,200	2,400

$$\chi_o^2 = 2,400$$
; $s = 4$; g.l. = 3.

$$\hat{\alpha} = P(\chi_3^2 > 2,400) = 0,494$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 7.815$.

Não rejeitamos H_0 , ou seja, há evidências de que os dados são observações de uma distribuição N(30;100).

Problema 05

$$H_0: p_1 = p_2 = \dots = p_6 = 1/6$$

Ocorrência	1	2	3	4	5	6	Total
Freq. Observada (n _i)	158	186	179	161	141	175	1000
Freq. Esperada (n_i^*)	166,667	166,667	166,667	166,667	166,667	166,667	1000
$(n_i - n_i^*)^2 / n_i^*$	0,451	2,243	0,913	0,193	3,953	0,417	8,168

$$\chi_o^2 = 8,168$$
; $s = 6$; g.l. = 5.

$$\hat{\alpha} = P(\chi_5^2 > 8,168) = 0,147$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 11.070$.

Não rejeitamos H_0 , ou seja, há evidências de que o dado é balanceado.

Problema 06

$$H_0: P_1 = P_2$$

Freqüências observadas (n_{ij})

Escola	(0;2,5]	(2,5;5,0]	(5,0;7,5]	(7,5;10,0]	Total
Pública	15	22	18	3	58
Particular	6	10	20	6	42

Total	21	32	38	9	100

Freqüências esperadas (n_{ij}^*)

Escola	(0;2,5]	(2,5;5,0]	(5,0;7,5]	(7,5;10,0]	Total
Pública	12,18	18,56	22,04	5,22	58
Particular	8,82	13,44	15,96	3,78	42
Total	21	32	38	9	100

$$(n_{ij} - n_{ij}^*)^2 / n_{ij}^*$$

Escola	(0;2,5]	(2,5;5,0]	(5,0;7,5]	(7,5;10,0]	Total
Pública	0,653	0,638	0,741	0,944	
Particular	0,902	0,880	1,023	1,304	
Total					7,084

$$\chi_o^2 = 7,084$$
; $s = 4$; $r = 2$; g.l. = 3.

$$\hat{\alpha} = P(\chi_3^2 > 7,084) = 0,069.$$

Se
$$\alpha = 0.01$$
: $\chi_C^2 = 11.345$.

Como o valor observado é menor que o valor crítico, não rejeitamos H_0 ao nível de 1%, ou seja, não há evidências de que as notas obtidas por estudantes de escolas públicas sejam menores que as notas obtidas por estudantes de escolas particulares.

Problema 07

 $H_0: P_1 = P_2$

Freqüências observadas (n_{ij})

	Exercício correto	Exercício errado	Total
Mét. convencional	33	17	50
Mét. Novo	37	13	50
Total	70	30	100

	Exercício correto	Exercício errado	Total
Mét. Convencional	35	15	50
Mét. Novo	35	15	50
Total	70	30	100

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

	Exercício correto	Exercício errado	Total
Mét. convencional	0,114	0,267	
Mét. Novo	0,114	0,267	
Total			0,762

$$\chi_o^2 = \overline{0762}$$
; $s = 2$; $r = 2$; g.l. = 1.

$$\hat{\alpha} = P(\chi_1^2 > 0.762) = 0.383.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Logo, não rejeitamos H_0 , ou seja, não há evidências de que o novo método de ensino de Probabilidades seja superior ao método tradicional.

Problema 08

$$H_0: P_A = P_B$$

Freqüências observadas (n_{ii})

	Eficaz	Não eficaz	Total
Droga A	55	25	80
Droga B	48	32	80
Total	103	57	160

	Eficaz	Não eficaz	Total
Droga A	51,5	28,5	80
Droga B	51,5	28,5	80
Total	103	57	160

$$(n_{ij} - n_{ij}^*)^2 / n_{ij}^*$$

	Eficaz	Não eficaz	Total
Droga A	0,238	0,430	
Droga B	0,238	0,430	
Total			1,335

$$\chi_o^2 = \overline{1,335}; s = 2; r = 2; \text{g.l.} = 1.$$

$$\hat{\alpha} = P(\chi_1^2 > 1{,}335) = 0{,}248.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Logo, não rejeitamos H_0 , ou seja, há evidências de que as duas drogas para rinite alérgica são igualmente eficazes.

Problema 09

$$H_0: P_A = P_B$$

Freqüências observadas (n_{ij})

Cidade	Gostou	Não gostou	Total
A	32	68	100
В	12	38	50
Total	44	106	150

Freqüências esperadas (n_{ij}^*)

Cidade	Gostou	Não gostou	Total
A	29,333	70,667	100
В	14,667	35,333	50
Total	44	106	150

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

Cidade	Gostou	Não gostou	Total
A	0,242	0,101	
В	0,485	0,201	
Total			1,029

$$\chi_o^2 = \overline{1,029}$$
; $s = 2$; $r = 2$; g.l. = 1.

$$\hat{\alpha} = P(\chi_1^2 > 1,029) = 0,310$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Logo, não rejeitamos H_0 , ou seja, há evidências de que o produto seja igualmente aceito nas duas cidades.

Problema 10

$$H_0: p_{ij} = p_{i.}p_{.j}$$

Freqüências observadas (n_{ij})

Opinião	Urbano	Suburbano	Rural	Total
A favor	30	35	35	100
Contra	60	25	15	100
Total	90	60	50	200

Freqüências esperadas (n_{ij}^*)

Opinião	Urbano	Suburbano	Rural	Total
A favor	45	30	25	100
Contra	45	30	25	100
Total	90	60	50	200

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

Opinião	Urbano	Suburbano	Rural	Total
A favor	5,000	0,833	4,000	,
Contra	5,000	0,833	4,000	
Total				19,667

$$\chi_o^2 = 19,667$$
; $s = 3$; $r = 2$; g.l. = 2.

$$\hat{\alpha} = P(\chi_2^2 > 19,667) = 0,000.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 5.991$.

Logo, rejeitamos H_0 , ou seja, ou seja, há evidências de que a opinião depende do local de residência.

Problema 11

$$H_0:p_{ij}=p_{i.}p_{.j}$$

Freqüências observadas (n_{ij})

	Homens	Mulheres	Total
Usaram hospital	100	150	250
Não usaram hospital	900	850	1750
Total	1000	1000	2000

	Homens	Mulheres	Total
Usaram hospital	125,000	125,000	250
Não usaram hospital	875,000	875,000	1750
Total	1000	1000	2000

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

Homens	Mulheres	Total

Usaram hospital	5,000	5,000
Não usaram hospital	0,714	0,714

Total 11,429

$$\chi_o^2 = 11,429$$
; $s = 2$; $r = 2$; g.l. = 1.

$$\hat{\alpha} = P(\chi_1^2 > 11,429) = 0,001.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Rejeita-se H_0 , ou seja, o uso de hospital depende do sexo.

Problema 12

$$H_0: p_{ij} = p_{i.}p_{.j}$$

Freqüências observadas (n_{ij})

Continua	Alta	Média	Baixa	Total
Sim	200	220	380	800
Não	200	280	720	1200
Total	400	500	1100	2000

Freqüências esperadas (n_{ij}^*)

Continua	Alta	Média	Baixa	Total
Sim	160	200	440	800
Não	240	300	660	1200
Total	400	500	1100	2000

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

Continua	Alta	Média	Baixa	Total
Sim	10,000	2,000	8,182	
Não	6,667	1,333	5,455	
Total				33,636

$$\chi_o^2 = 33,636$$
; $s = 3$; $r = 2$; g.l. = 2.

$$\hat{\alpha} = P(\chi_2^2 > 33,636) = 0,000$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 5.991$.

Rejeita-se H_0 , ou seja, existe dependência entre os fatores tendência a prosseguir os estudos e classe social.

Problema 13

 $H_0: p_{ij} = p_{i.}p_{.j}$

Freqüências observadas (n_{ij})

	Alta fidelidade	Baixa fidelidade	Total
Homens	100	100	200
Mulheres	120	80	200
Total	220	180	400

Freqüências esperadas (n_{ij}^*)

	Alta fidelidade	Baixa fidelidade	Total
Homens	110,0	90,0	200
Mulheres	110,0	90,0	200
Total	220	180	400

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

	Alta fidelidade	Baixa fidelidade	Total
Homens	0,909	1,111	
Mulheres	0,909	1,111	
Total			4,040

$$\chi_o^2 = 4,040$$
; $s = 2$; $r = 2$; g.l. = 1.

$$\hat{\alpha} = P(\chi_1^2 > 4,040) = 0,044.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Rejeita-se H_0 , ou seja, há evidências de que o grau de fidelidade ao produto depende do sexo.

Problema 14

 $H_0: p_{ij} = p_{i.}p_{.j}$

Freqüências observadas (n_{ij})

Opinião	1ª tentativa	2ª tentativa	3ª tentativa	Total
Excelente	62	36	12	110
Satisfatório	84	42	14	140
Insatisfatório	24	22	24	70

Total	170	100	50	320

Freqüências esperadas (n_{ij}^*)

Opinião	1ª tentativa	2ª tentativa	3ª tentativa	Total
Excelente	58,44	34,38	17,19	110
Satisfatório	74,38	43,75	21,88	140
Insatisfatório	37,19	21,88	10,94	70
Total	170	100	50	320

$$(n_{ij}-n_{ij}^*)^2/n_{ij}^*$$

Opinião	1ª tentativa	2ª tentativa	3ª tentativa	Total
Excelente	0,217	0,077	1,566	
Satisfatório	1,246	0,070	2,835	
Insatisfatório	4,677	0,001	15,600	
Total				26,288

$$\chi_o^2 = 26,\overline{288}$$
; $s = 3$; $r = 3$; g.l. = 4.

$$\hat{\alpha} = P(\chi_4^2 > 26,288) = 0,000.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 9.488$.

Rejeita-se H_0 , ou seja, existe relação entre a resposta e o número de tentativas.

Problema 15

$$n = 12$$
; $r = 0.6$

A. Hipóteses: $H_0: \rho = 0$ versus $H_1: \rho \neq 0$

B. Estatística do teste: $T = r\sqrt{\frac{n-2}{1-r^2}}$. Sob H_0 , $T \sim t(n-2)$.

C. Região crítica: $\alpha = 5\%$; g.l.=10; $t_C = 2,228$.

$$RC = \{T : |T| > 2,228\}.$$

D. Resultado da amostra

$$T = 0.6\sqrt{\frac{12-2}{1-0.6^2}} = 2.372$$
.

E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 . Logo, há evidências de que a correlação entre as notas de Estatística e Metodologia da Pesquisa não seja nula

Intervalo de confiança

$$\xi_0 = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = 0,693 ; \sigma_{\xi}^2 = \frac{1}{n-3} = \frac{1}{9} = 0,111.$$

$$IC(\mu_{\xi};95\%) = \xi_0 \pm 1,96\sigma_{\xi} = 0,693 \pm 1,96\sqrt{0,111} = [0,040;1,346]$$

Mas:
$$\rho = \frac{e^{2\mu_{\xi}} - 1}{e^{2\mu_{\xi}} + 1}$$
.

Logo: $IC(\rho;95\%) = [0,040;0,873]$

Problema 16

$$n = 9$$
; $r = 0.979$

A. Hipóteses : H_0 : $\rho = 0$ versus H_1 : $\rho \neq 0$

B. Estatística do teste: $T = r\sqrt{\frac{n-2}{1-r^2}}$. Sob H_0 , $T \sim t(n-2)$.

C. Região crítica : $\alpha = 5\%$; g.l.=7; $t_C = 2,365$. $\Rightarrow RC = \{T : |T| > 2,365\}$.

D. Resultado da amostra: $T = 0.979 \sqrt{\frac{9-2}{1-0.979^2}} = 12,852$.

E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 , ou seja, há evidências de que existe relação entre o volume da carga e o tempo gasto para acondicioná-la

Problema 17

$$H_0: p_{ij} = p_{i.}p_{.j}$$

Freqüências observadas (n_{ij})

Propriedade	Costeira	Fluvial	Internacional	Total
Estatal	5	141	51	197
Particular	92	231	48	371
Total	97	372	99	568

Propriedade	Costeira	Fluvial	Internacional	Total
Estatal	33,643	129,021	34,336	197
Particular	63,35	57 242,	979 64,664	371
Total	97	372	99	568

$$(n_{ij} - n_{ij}^*)^2 / n_{ij}^*$$

Propriedade	Costeira	Fluvial	Internacional	Total
Estatal	24,386	1,112	8,087	
Particular	12,949	0,591	4,294	
Total				51,418

$$\chi_o^2 = 5\overline{1,418}$$
; $s = 3$; $r = 2$; g.l. = 2.

$$\hat{\alpha} = P(\chi_2^2 > 51,418) = 0,000.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 5.991$.

propriedade das embarcações

Problema 18

 $H_0: P = Binomial(4;2/5)$

Número de caras	0	1	2	3	4	Total
Freq. Observada (n _i)	72	204	228	101	20	625
Freq. Esperada (n_i^*)	81	216	216	96	16	625
$(n_i - n_i^*)^2 / n_i^*$	1,0	0,7	0,7	0,3	1,0	3,594

$$\chi_o^2 = 3,594$$
; $s = 5$; g.l. = 4.

$$\hat{\alpha} = P(\chi_4^2 > 3,594) = 0,464.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 9.488$

Logo, os dados confirmam a suposição de que a moeda favorece coroa na proporção de 2 caras para 3 coroas (P(cara)=2/5).

Problema 19

$$H_0: P_1 = P_2$$

Freqüências observadas (n_{ii})

Sexo	Preferem A	Preferem B	Indecisos	Total
Feminino	50	110	40	200
Masculino	150	42	8	200
Total	200	152	48	400

Sexo	Preferem A	Preferem B	Indecisos	Total
Feminino	100	76	24	200
Masculino	100	76	24	200

Total	200	152	48	400

$$(n_{ij} - n_{ij}^*)^2 / n_{ij}^*$$

Sexo	Preferem A	Preferem B	Indecisos	Total
Feminino	25,0	15,2	10,7	
Masculino	25,0	15,2	10,7	
Total				101,754

$$\chi_o^2 = 101,754$$
; $s = 2$; $r = 2$; g.l. = 1.

$$\hat{\alpha} = P(\chi_1^2 > 101,754) = 0,0000.$$

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 3.841$.

Logo, rejeitamos H_0 , ou seja, a distribuição de preferências com relação aos adoçantes não é a mesma nos dois sexos.

Problema 20

$$\chi^{2} = \sum_{i=1}^{s} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum_{i=1}^{s} \frac{O_{i}^{2} + E_{i}^{2} - 2O_{i}E_{i}}{E_{i}} = \sum_{i=1}^{s} \frac{O_{i}^{2}}{E_{i}} + \sum_{i=1}^{s} E_{i} - 2\sum_{i=1}^{s} O_{i} = \sum_{i=1}^{s} \frac{O_{i}^{2}}{E_{i}} + n - 2n = \sum_{i=1}^{s} \frac{O_{i}^{2}}{E_{i}} - n$$

Problema 21

n = 8; r = 0.866

A. Hipóteses: $H_0: \rho = 0$ versus $H_1: \rho \neq 0$

B. Estatística do teste: $T = r\sqrt{\frac{n-2}{1-r^2}}$. Sob H_0 , $T \sim t(n-2)$.

C. Região crítica: $\alpha = 5\%$; g.l.=6; $t_C = 2,447 \implies RC = \{T : |T| > 2,447\}$.

D. Resultado da amostra: $T = 0.866 \sqrt{\frac{8-2}{1-0.866^2}} = 4,242$.

E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 , ou seja, há evidências de que a correlação entre o setor primário e o índice de analfabetismo não seja nula.

Intervalo de confiança

$$\xi_0 = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = 1,317 \; ; \; \sigma_{\xi}^2 = \frac{1}{n-3} = \frac{1}{5} = 0,2 \; .$$

$$IC(\mu_{\xi};95\%) = \xi_0 \pm 1,96\sigma_{\xi} = 1,317 \pm 1,96\sqrt{0,2} = [0,440;2,193]$$

Logo: $IC(\rho;95\%) = [0,414;0,975]$

Problema 22

n = 100

Cara = 0; Coroa = 1.

 X_1 : resultado do cruzado; X_2 : resultado do quarto de dólar.

$$r = \frac{\sum x_{1i}x_{2i} - n\overline{x}_1 \overline{x}_2}{\sqrt{\sum x_{1i}^2 - n\overline{x}_1^2} \sqrt{\sum x_{2i}^2 - n\overline{x}_2^2}} = \frac{26 - 100 \times 0,48 \times 0,54}{\sqrt{48 - 100 \times 0,48^2} \sqrt{54 - 100 \times 0,54^2}} = 0,0032$$

A. Hipóteses: $H_0: \rho = 0$ versus $H_1: \rho \neq 0$

B. Estatística do teste: $T = r\sqrt{\frac{n-2}{1-r^2}}$. Sob H_0 , $T \sim t(n-2)$.

C. Região crítica: $\alpha = 5\%$; g.l.= 98; $t_C = 1,984$. $\Rightarrow RC = \{T : |T| > 1,984\}$.

D. Resultado da amostra: $T = 0.0032 \sqrt{\frac{100 - 2}{1 - 0.0032^2}} = 0.032$.

E. Conclusão: Como o valor observado não pertence à RC, não rejeitamos H_0 , ou seja, não há evidências de que exista correlação entre o resultado do cruzado e do quarto de dólar.

Problema 23

n = 10; r = 0.41

A. Hipóteses: $H_0: \rho \ge 0.60$ versus $H_1: \rho < 0.60$

B. Estatística do teste: $\xi = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$. Sob H_0 , $\xi \sim N(\mu_{\xi}; \sigma_{\xi}^2)$, onde $\mu_{\xi} = \frac{1}{2} \ln \frac{1.6}{0.4} = 0.693$ e

$$\sigma_{\xi}^{2} = \frac{1}{7} = 0,143.$$

C. Região crítica : $\alpha = 5\%$; $\xi_{C} = 0.693 - 1.645\sqrt{0.143} = 0.071$. $\Rightarrow RC = \{\xi : \xi < 0.071\}$.

D. Resultado da amostra $\xi = 0.436$.

E. Conclusão: Como o valor observado não pertence à RC, não rejeitamos H_0 . Ou seja, não há evidências de que a correlação entre os salários de marido e mulher seja inferior a 0,6.

Problema 24

X e Y (n = 10; r = 0.949)

A. Hipóteses: $H_0: \rho(X,Y) = 0$ versus $H_1: \rho(X,Y) \neq 0$

B. Estatística do teste: $T = r\sqrt{\frac{n-2}{1-r^2}}$. Sob H_0 , $T \sim t(n-2)$.

- C. Região crítica: $\alpha = 5\%$; g.l.= 8; $t_C = 2,306 \Rightarrow RC = \{T : |T| > 2,306\}$.
- D. Resultado da amostra T = 8,514.
- E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 , ou seja, há evidências de que a correlação entre X e Y não seja nula.

$$X e Z (n = 10; r = 0.707)$$

A. Hipóteses: $H_0: \rho(X,Z) = 0$ versus $H_1: \rho(X,Z) \neq 0$

B. Estatística do teste:
$$T = r\sqrt{\frac{n-2}{1-r^2}}$$
. Sob H_0 , $T \sim t(n-2)$.

- C. Região crítica: $\alpha = 5\%$; g.l.= 8; $t_C = 2,306$. $\Rightarrow RC = \{T \mid T > 2,306\}$.
- D. Resultado da amostra: T = 2,828.
- E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 , ou seja, há evidências de que a correlação entre X e Z não seja nula.

Problema 26

- A. Hipóteses: $H_0: \rho_1 = \rho_2$ versus $H_1: \rho_1 \neq \rho_2$, ou equivalentemente, $H_0: \mu_D = 0$ versus $H_1: \mu_D \neq 0$.
- B. Estatística do teste: $D = Z_1 Z_2$. Sob H_0 , $D \sim N(0; \sigma_D^2)$.
- C. Região crítica: $\alpha = 5\%$; $d_C = 1.96 \times \sigma_D = 1.96 \times \sqrt{0.060} = 0.482$. $\Rightarrow RC = \{D : |D| > 0.482\}$.
- D. Resultado da amostra: $Z_1 = \frac{1}{2} \ln \left(\frac{1 + r_1}{1 r_1} \right) = -0.576$; $Z_2 = \frac{1}{2} \ln \left(\frac{1 + r_2}{1 r_2} \right) = -1.157$.

D = 0.580.

- E. Conclusão: Como o valor observado pertence à RC, rejeitamos H_0 , ou seja, há evidências de que o coeficiente de correlação dos homens é diferentes do das mulheres.
- O coeficiente de correlação negativo indica que quanto maior o resultado no teste do curso, menor tende a ser o número de erros cometidos ao realizar a tarefa.

Problema 28

 X_1 : Número de trabalhadores que nunca fumaram

 X_2 : Número de trabalhadores que fumaram no passado

 X_3 : Número de trabalhadores fumantes

$$P(X_1 = 5; X_2 = 2; X_3 = 3) = \frac{10!}{5!2!3!} 0,52^5 0,12^2 0,36^3 = 6,437\%$$
.

Problema 29

 $H_0: P = U(0,1)$

Solução 1: Teste de aderência (divisão pelos quartis)

Quartis da U(0,1): Q(0,25) = 0.25; Q(0,50) = 0.50; Q(0,75) = 0.75.

Categoria (i)	[0;0,25]	(0,25;0,5]	(0,5;0,75]	(0,75;1]	Total
Freq. Observada (n _i)	16	12	8	14	50
Freq. Esperada (n_i^*)	12,5	12,5	12,5	12,5	50
$(n_i - n_i^*)^2 / n_i^*$	1,0	0,0	1,6	0,2	2,8

$$\chi_o^2 = 2,800$$
; $s = 4$; g.l. = 3.

$$\hat{\alpha} = P(\chi_3^2 > 2,800) = 0,423$$
.

Se
$$\alpha = 0.05$$
: $\chi_C^2 = 7.815$.

Logo, aceita-se H0, ou seja, há evidências de que os dados são uma amostra de uma distribuição U(0,1).

Solução 2 – Teste de Komolgorov-Smirnov

X_i	$F(x_i)$	$F_e(x_i)$	$ F(x_i)-F_e(x_i) $
0,041	0,041	0,02	0,021
0,060	0,060	0,04	0,020
0,064	0,064	0,06	0,004
0,983	0,983	0,98	0,003
0,990	0,990	1,00	0,010
Máximo: D =			0,133

 $\alpha = 5\%$; Valor crítico (tabela): 0,192.

Como o valor observado é menor que o valor crítico, não rejeitamos H_0 , ou seja, há evidências de que os dados são uma amostra de uma distribuição U(0,1).

Problema 30

 $H_0: P = Exp(0,5)$

Teste de Komolgorov-Smirnov

\mathcal{X}_i	$F(x_i)$	$F_e(x_i)$	$ F(x_i)-F_e(x_i) $
0,009	0,018	0,050	0,032
0,063	0,118	0,100	0,018

	Máximo: D=		0,183
1,007	0,867	1,000	0,133
0,831	0,810	0,950	0,140
	•••	•••	
0,093	0,170	0,200	0,030
0,089	0,163	0,150	0,013

 $\alpha = 5\%$; Valor crítico (tabela): 0,294.

Como o valor observado é menor que o valor crítico, não rejeitamos H_0 , ou seja, há evidências de que os dados são uma amostra de uma distribuição exponencial com média 0,5.

Problema 31

Em elaboração