Hubbard Model Exact Diagonalization

Generated by Doxygen 1.8.11

Contents

Index

1	Hubl	bard mo	odel exact	t diagonalization	1
2	Clas	s Index			3
	2.1	Class I	List		3
3	Clas	s Docu	mentation	n	5
	3.1	basis (Class Refe	erence	5
	3.2	hamil (Class Refe	erence	6
		3.2.1	Construc	ctor & Destructor Documentation	6
			3.2.1.1	hamil(basis §or, double t, double U)	6
		3.2.2	Member	Function Documentation	7
			3.2.2.1	diag()	7
			3.2.2.2	ground_state_energy()	7
			3.2.2.3	print_eigen()	7
			3.2.2.4	print_hamil()	7
		3.2.3	Member	Data Documentation	7
			3.2.3.1	eigenvalues	7
			3.2.3.2	H	7
			3.2.3.3	nHilbert	7
			3.2.3.4	psi_0	7
			3.2.3.5	psi_n0	7
			3.2.3.6	seed	8
	3.3	lhamil	Class Refe	erence	8
	3.4	Mat CI	ass Refere	ence	9
	3.5	Timer	Class Refe	erence	10
	3.6	Vec CI	ass Refere	ence	10

13

Chapter 1

Hubbard model exact diagonalization

References:

- 1. H. Q. Lin, J. E. Gubernatis, Harvey Gould, and Tobochnik, computers in physics, 7,400(1993)
- 2. S. A. Jafari, IJPR, 8,113,(2008)

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

basis																											;
hamil																											6
Ihamil																											8
Mat																											ç
Timer																										1	(
Vec	 																									- 1	(

4 Class Index

Chapter 3

Class Documentation

3.1 basis Class Reference

Public Member Functions

- basis (long, long, long)
- const basis & operator= (const basis &)
- long hopping_up (long, long, long)
- long hopping_down (long, long, long)
- long **potential** (long, long, long)
- long onsite_up (long, long)
- long onsite_down (long, long)
- long factorial (long, long)
- void init ()
- void **generate_up** (long)
- · void generate down (long)
- long creation (long, long)
- long annihilation (long, long)
- void prlong ()

Public Attributes

- · long nsite
- long nel_up
- · long nel down
- map< long, long > basis_up
- map< long, long > basis_down
- long nbasis_up
- long nbasis_down
- vector< long > id_up
- vector< long > id_down

Friends

ostream & operator<< (ostream &os, const basis &)

The documentation for this class was generated from the following files:

- basis.h
- basis.cpp

3.2 hamil Class Reference

Collaboration diagram for hamil:

Public Member Functions

- hamil (basis §or, double t, double U)
- double ground_state_energy ()
- void diag ()
- complex< double > **Greens_function** (double, double)
- void print_hamil ()
- void print_eigen ()

Public Attributes

- long nHilbert
- · unsigned seed
- Mat H
- std::vector< double > eigenvalues
- std::vector< double > psi_0
- $std::vector < double > psi_n0$

3.2.1 Constructor & Destructor Documentation

3.2.1.1 hamil::hamil (basis & sector, double t, double U)

Initialize the hamiltonian matrix elements.

Parameters

sector	basis sector,
t	hopping strength,
U	onsite replusive interaction strength

3.2 hamil Class Reference 7

3.2.2	Member Function Documentation
3.2.2.1	void hamil::diag ()
Diagon	alize the full hamiltonian
3.2.2.2	double hamil::ground_state_energy ()
Return	the ground state energy of the system
3.2.2.3	void hamil::print_eigen ()
Print th	e eigenvalues of the system
3.2.2.4	void hamil::print_hamil ()
Print th	e hamiltonian matrix
3.2.3	Member Data Documentation
3.2.3.1	std::vector <double> hamil::eigenvalues</double>
Eigenv	alues of the hamiltonian
3.2.3.2	Mat hamil::H
Hamilto	onian matrix in CSR format
3.2.3.3	long hamil::nHilbert
Size of	the Hilbert space
3.2.3.4	std::vector <double> hamil::psi_0</double>
Ground	d state wave function
3.2.3.5	std::vector <double> hamil::psi_n0</double>
First el	ement of all wave functions

3.2.3.6 unsigned hamil::seed

seed for the RNGs

The documentation for this class was generated from the following files:

- · hamiltonian.h
- · hamiltonian.cpp

3.3 Ihamil Class Reference

Collaboration diagram for Ihamil:

Public Member Functions

- Ihamil (const Mat &, long, long, unsigned)
- Ihamil (basis &, double, double, long, unsigned)
- void set_hamil (basis &, double, double)
- void psir0_creation_el_up (basis &, basis &, vector< double > &, long)
- void psir0_creation_el_down (basis &, basis &, vector< double > &, long)
- void psir0_annihilation_el_up (basis &, basis &, vector< double > &, long)
- void psir0_annihilation_el_down (basis &, basis &, vector< double > &, long)
- void **set_onsite_optc** (int r, int alpha, int annil)
- void coeff_update ()
- void coeff explicit update ()
- void coeff_update_wopt (vector< double >)
- void diag ()
- · void diag (int)
- void eigenstates_reconstruction ()
- double ground_state_energy ()
- double spectral_function (double omega, double eta)
- double **spectral_function** (double omega, double eta, int annil)
- complex< double > Greens_function (double omega, double eta, int annil)
- complex< double > Greens_function_ij_ab (int i, int j, int alpha, int beta, double E, double eta)
- complex < double > Greens function k (int k, int alpha, int beta, double E, double eta)
- void print_hamil ()
- void print_lhamil (int)
- void print_eigen (int)
- void save_to_file (const char *)
- void read_from_file (const char *)

3.4 Mat Class Reference 9

Public Attributes

· unsigned seed

Seed for RNGs.

· long nHilbert

Hilbert space size.

· long lambda

Lanczos update steps.

• double E0

Ground state eigen energy.

· basis sector

Basis.

· Mat H

Hamiltonian matrix in CSR format.

Mat O

Operator matrix in CSR format.

• std::vector< double > norm

Normalization coefficients vector in Lanczos update.

std::vector< double > overlap

Overlap coefficients vector in Lanczos update.

std::vector< double > psir 0

Ground state wave function in real-space.

• std::vector< double > psi_0

Ground state eigenvector in Krylov subspace.

• std::vector< double > psi_n0

First element of eigenvectors in Krylov subspace.

• std::vector< double > eigenvalues

Eigenvalues.

The documentation for this class was generated from the following files:

- · lanczos_hamiltonian.h
- · lanczos hamiltonian.cpp

3.4 Mat Class Reference

Public Member Functions

- Mat (const Mat &rhs)
- Mat & operator= (const Mat &rhs)
- Vec operator* (const Vec &) const
- vector< double > operator* (const vector< double > &) const
- void init (const vector < long > &, const vector < long > &, const vector < double > &)
- · void clear ()
- void print ()

Public Attributes

- std::vector< long > outer_starts
- std::vector< long > inner_indices
- std::vector< double > value

The documentation for this class was generated from the following files:

- · matrix.h
- · matrix.cpp

3.5 Timer Class Reference

Public Member Functions

- double elapsed ()
- unsigned long nanoseconds ()
- void reset ()

The documentation for this class was generated from the following file:

· init.h

3.6 Vec Class Reference

Public Member Functions

- Vec (long _size)
- Vec (long _size, const double _init)
- Vec (const Vec &rhs)
- void assign (long _size, const double _init)
- void init_random (unsigned)
- void init_random (long, unsigned)
- · void clear ()
- double normalize ()
- Vec & operator= (const Vec &rhs)
- Vec & operator-= (const Vec &rhs)
- Vec & operator+= (const Vec &rhs)
- Vec & operator*= (const double &rhs)
- Vec & operator/= (const double &rhs)
- Vec operator+ (const Vec &)
- Vec operator- (const Vec &)
- Vec operator* (const double &)
- Vec operator/ (const double &)
- double operator* (const Vec &)

3.6 Vec Class Reference

Public Attributes

- std::vector < double > value
- long size

Friends

• ostream & operator << (ostream &os, const Vec &)

The documentation for this class was generated from the following files:

- · matrix.h
- matrix.cpp

Index

```
basis, 5
diag
    hamil, 7
eigenvalues
    hamil, 7
ground_state_energy
    hamil, 7
Н
    hamil, 7
hamil, 6
    diag, 7
    eigenvalues, 7
    ground_state_energy, 7
    H, 7
    hamil, 6
    nHilbert, 7
    print_eigen, 7
    print_hamil, 7
    psi_0, 7
    psi_n0, 7
    seed, 7
Ihamil, 8
Mat, 9
nHilbert
    hamil, 7
print_eigen
    hamil, 7
print_hamil
    hamil, 7
psi_0
    hamil, 7
psi_n0
    hamil, 7
seed
    hamil, 7
Timer, 10
Vec, 10
```