

AUTOVALORES E AUTOVETORES

A matriz NXN

$$A\vec{V} = \lambda\vec{V}$$
, \vec{V} e' auto vetor $\{\vec{V}_1, \vec{V}_2, \dots \vec{V}_N\}$
 $\vec{\lambda}$ e' auto valor $\{\vec{\lambda}_1, \vec{\lambda}_2, \dots \vec{\lambda}_N\}$

e vanos assumir que
$$|\lambda_1| > |\lambda_2| > ... > |\lambda_n|$$
autovalor dominante

POWER METHOD

O Método: Iniciamos com um vetor bo arbitrário e definimos a relação de recorrência

$$\vec{b}_{k+1} = \frac{A \vec{b}_k}{|A \vec{b}_k|} \qquad e \qquad \mu_k = \vec{b}_k A \vec{b}_k$$

Après sucessivas iterações be \vec{V}_1 e $\mu_k \rightarrow \lambda_1$.

Para entender o funcionamento do método de POWER, vamos expandir bo em termos dos autovalores mormalizados

$$\vec{b}_0 = \sum_{i=1}^N \alpha_i \vec{v}_i$$

Multiplicando A^{k} em ambos os membros $A^{k}\overrightarrow{b}_{0} = \sum_{i=1}^{N} \alpha_{i} A^{k} \overrightarrow{V}_{i} = \sum_{i=1}^{N} \alpha_{i} \lambda_{i}^{k} \overrightarrow{V}_{i}$ $= \lambda_{1}^{k} \left[\alpha_{1} \overrightarrow{V}_{1} + \sum_{i=1}^{N} \alpha_{i} \left(\lambda_{i} / \lambda_{4} \right)^{k} \overrightarrow{V}_{i} \right] \xrightarrow{k \to \infty} \lambda_{1}^{k} \alpha_{1} \overrightarrow{V}_{1}$

$$b_{k} = \frac{A^{k} \overrightarrow{b_{o}}}{|A^{k} \overrightarrow{b_{o}}|} \xrightarrow{k \to \infty} \frac{\lambda_{1}^{k} \alpha_{1} \overrightarrow{V_{1}}}{|\lambda_{1}^{k} \alpha_{1} \overrightarrow{V_{1}}|} = \overrightarrow{V_{1}}$$

- O valor inicial deve ter componente não nula na direção do vetor associado

Exemplo
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$
, cujo autovalor dominante $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ varios iniciar com $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\vec{b}_{k+1} = \frac{A\vec{b}_k}{|A\vec{b}_k|}$$

$$\overrightarrow{Ab_0} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\vec{b}_{1} = \frac{\binom{1}{2}}{\sqrt{1^{2}+2^{2}}} = \frac{1}{\sqrt{5}} \binom{1}{2}, \quad \mu_{1} = \frac{1}{\sqrt{5}} \binom{1}{2} \binom{1}{2} \frac{3}{\sqrt{5}} \binom{1}{2}$$
$$= \frac{1}{5} \binom{12}{3} \binom{7}{4} = \frac{19}{5} = 3.8$$

K	b _k		Mĸ
0	1.	0.	1.
1	0.44721359	0.89442719	3.8
2	0.75925660	0.65079137	3.89411
3	0.69310871	0.72083306	4.01767
4	0.71054762	0.7036491	3.99500
0			
20	0.70710678	0.70710678	3.99999

- A convergêncie é linear com $\left|\frac{\lambda_1}{\lambda_2}\right|^k$ e pode ser aceler ada com outros métodos.
- Além do "POWER METHOD" Existem varios outros métodos para obtenção de autovalores e autovetores. Uma boa referência é BURDEN & FAIRES
- Existem "pacetes" gratuitos para algebra linear como o LAPACK. A "NAG LIBRARY" incorpora as rotinas do LAPACK e tem tutoriais com exemplos de utilização do LAPACK