

우리나라 화재 현황

"화재 발생 건수에 비하여 재산피해가 증가 하는 추세이다."

I.분석 배경 및 목적

주제 선정 배경

KT 아현 지사

√ 재산피해: 80억

"서비스 기관 건물일 경우 피해액이 더욱 상승한다."

분석 목적

화재 피해 현황

"재산 피해의 큰 비중 을 차지하는 화재는 소수의 대형화재" 화재 피해 요소

"화재를 분석하여 대형 화재에 관련된 요소를 찾음"

화재 규모 파악을 통해 대형화재 예방

데이터 수집

출처: 공공데이터 포털:

https://www.data.go.kr/dataset/15002228/fileData.do

"공공데이터와 통계청에서 자료 수집"

Ⅱ. 데이터 분석

출처: 통계청 데이터: http://kosis.kr

출처: 통계청 데이터: http://kosis.kr

결측치 처리

지역별, 장소 분류별 피해를 결측치에 대입

지역별 평균 피해량

장소별 피해량

장소 대분류에서 산업, 판매, 업무 시설의 재산피해가 가장 크다

데이터 추출

왜 경기도 피해가 큰가?

피해가 규모가 큰 공장, 창고 시설들이 경기도

에 모여 있음을 파악 -> 특성 적용

인터뷰

A1. 1월 화재는 부주의가 많다. 주로 아파트화재인데 부주의로 난방 관련 부주의 가 많다.

A2. 화재 위험도에 따라서 관리를 다르게 하고있다.

Q1. 화재발생에 영향을 크게 미치는 것은?

> Q2. 화재 위험도가 도움이 되는지 ?

A3. 지하실에서불이 나면 접근과 소화가 어렵다.

Q3. 화재 진압시 어려운 곳은?

데이터 상관관계 파악

광주지역에 소급 적용

구별 차량 수에 따른 건당 피해량 비교

분석 결과(Logistic Regression)

```
In [745]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
print("x_train : {}, x_test : {}, y_train : {}, y_test : {}".format(x_train.shape, x_test.shape, y_train.shape, y_test.shape))
model = LogisticRegression()
model.fit(x_train, y_train)
# 인명피해, 화재발생활, 장소분류(52개로분류), 사고요인(43개로분류)
print("train socre : {}".format(model.score(x_train, y_train)))
print("test socre : {}".format(model.score(x_test, y_test)))
#print("컬럼들의 중요도 : {}".format(model.feature_importances_.sort()))

print(metrics.classification_report(y_test, model.predict(x_test))) # 정밀도, 재현율, f1 스코어, 서포트를 알려준다.
```

x train: (35342, 96), x test: (8836, 96), y train: (35342,), y test: (8836,) train socre : 0.802218323807368 test socre: 0.8020597555454957 precision recall f1-score support 1.00 0.02 0.03 65 0.80 0.62 0.70 3230 0.80 0.92 0.86 5541 0.79 avg / total 0.80 0.80 8836

분석 결과

Train score: 0.80

Test score: 0.80

분석 결과(RFC)

```
In [740]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y) print("x_train : {}, x_test : {}, y_train : {}, y_test : {}".format(x_train.shape, x_test.shape, y_train.shape, y_test.shape)) model = RandomForestClassifier() model.fit(x_train, y_train) # 인명피해, 화재발생월, 장소분류(52개로분류), 사고요인(43개로분류) print("train socre : {}".format(model.score(x_train, y_train))) print("test socre : {}".format(model.score(x_test, y_test))) #print("컬럼들의 중요도 : {}".format(model.feature_importances_.sort())) print(metrics.classification_report(y_test, model.predict(x_test))) # 정밀도, 재현율, f1 스코어, 서포트를 알려준다.
```

```
x train : (35342, 96), x test : (8836, 96), y train : (35342,), y test : (8836,)
train socre : 0.8533472921736178
test socre: 0.8036441828881847
            precision recall f1-score support
                          0.03
                                    0.05
                                               65
                 0.25
                0.76
                          0.70
                                    0.73
                                              3230
                          0.88
                                    0.85
                 0.83
                                              5541
avg / total
                 0.80
                          0.80
                                    0.80
                                              8836
```

분석 결과

Train score: 0.85

Test score: 0.80

분석 결과(XGB)

In [59]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y) print("x_train : {}, x_test : {}, y_train : {}, y_test : {}".format(x_train.shape, x_test.shape, y_train.shape, y_test.shape)) model = XGBClassifier() model.fit(x_train, y_train) # 인명피해, 화재발생원, 장소분류(52개로분류), 사고묘인(43개로분류) print("train socre : {}".format(model.score(x_train, y_train))) print("test socre : {}".format(model.score(x_test, y_test))) #print("溢官量의 含息도 : {}".format(model.feature importances .sort())) print(metrics.classification_report(y_test, model.predict(x_test))) # 정밀도, 제헌물, fl 스코어, 서포트를 알려준다. x_train : (35342, 97), x_test : (8836, 97), y_train : (35342,), y_test : (8836,) C:\Users\chosun\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. not empty. 분석 결과 train socre : 0.8165072718012563 C:\Users\chosun\Anaconda3\lib\site-packages\sklearn\preprocesting\label.r :151: array is ambiguous. Returning False, but in future this will Train score: 0.81 not empty. if diff: test socre : 0.8066998641919421 Test score: 0.80 ing\label.py:151: array is ambiguous. Returning False, but in future this will result in an error. not empty. if diff: precision recall f1-score support 등급별 정밀도, 재현율, f1 스코어 ,서포트 0.25 1 1.00 0.40 65 0.71 3230 0.80 0.64 0.81 0.91 0.86 5541 가 높은 점수를 보임 avg / total 0.81 0.81 0.80 8836

> 여러 모델 사용 결과 XGB가 좋은 결과를 보여 주었다

분석 결과(모델 비교)

	Logistic Regression	Random ForestClassifire	XGBClassifire
정밀도	0.87	0.61	0.87
재현율	0.52	0.54	0.6
F1 score	0.53	0.54	0.67
1등급 예측 support	65	65	65

분석 결과

```
DeprecationWarning: The truth
         교차검증
                               alse, but in future this will res
In [608]:
         result = cross val sco
         print("모델의 정확도 :
                               that an array is not empty.
         C:\Users\chosun\Anacon
         DeprecationWarning: Th
         alse, but in future th
                                   if diff:
         that an array is not e
           if diff:
         C:\Users\chosun\Anacon
         DeprecationWarning: Th
         alse, but in future th
                               모델의 정확도 : 0.800134376592481
         that an array is not e
           if diff:
         C:\Users\chosun\Anacon
         DeprecationWarning: Th
         alse, but in future th
         that an array is not e
          if diff:
         C:\Users\chosun\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151:
         DeprecationWarning: The truth value of an empty array is ambiguous. Returning F
         alse, but in future this will result in n error. Use `array.size > 0` to check
         that an array is not empty.
           if diff:
         C:\Users\chosun\Anaconda3\lib\site-mackages\sklearn\preprocessing\label.py:151:
         DeprecationWarning: The truth value of an empty array is ambiguous. Returning F
         alse, but in future this will result in an error. Use 'array.size > θ' to check
         that an array is not empty.
          if diff:
         모델의 정환도 : 0.800134376592481
```

데이터 분석(XGB)

데이터 분석 시각화

- > 각각 등급표를 바탕으로 지역별 위험 관리 예측
- > 추가적인 지역 데이터를 세분화하여 관리 할 수 있다.

제주도

위험 등급별 시각화

등급별 지역별 화재 화재 건수

취약지역 확대 시각화

등급별 지역별 화재 화재 건수

Ⅲ. 분석 결과

개선할 점

✓ 취약지역 순찰 강화

<이미지제공=서울시청>

- ✓ 소방차 전용 구역 확대
- ✓ 진입로 경고문 부착

활용방안

✓ 화재 예산 측정에 도움

✓ 예방 중심 정책

✓ 자발적 화재 예방

한계점 및 아쉬운점

데이터 분석

✓ 위험 등급 수를 자세 하게 나누지 못한점 (A,B,C등급)

데이터 수집

✓ 데이터 테이블이 완벽하지 않은 점

전문지식

✓ 데이터 분석 기준 설정에 있어서 발 생하는 오차

시각화

✓ 시각화에 있어서 기존 화재 위험표 와 상대적 차이

참고자료

데이터	형식	출처	기준연도	비고
소방청_화재발생정보 _2017년	csv	공공데이터 포털	2017	2017년 화재 정보
시간별 화재요인	csv	통계청(크롤링)	2017년	2017년 화재 요인
2017년 광주 자동차 현 황	csv	통계청	2017년	2017년 광주 자동차 등록 현황

분석tool

-파이썬 자료 전처리 LogisticRegression, RFC,XGB

-R studio 자료 시각화

참고 자료

-논문 건축물의 화재 취약성에 따른 등급화 방안 연구, 김한용,2011년, 인재대학교

-인터뷰 북구 우산119 안전센터

-화재 보험협회 간행물 반복되는 대형화재의 시사점과 위험관리 개선방안

