Compacidad contable, Secuencial y Local

David Cardozo

8 de abril de 2015

Ejercicio1. Pruebe que toda sucesión convergente en $\beta\mathbb{N}$ es eventualmente constante.

Teorema 1. Toda sucesión convergente en $\beta\mathbb{N}$ es eventualmente constante.

Solución. Suponga que $\sigma = p_{n \in \mathbb{N}}$ es una secuencia no eventualmente constante en $\beta \mathbb{N}$ y converge a algún $p \in \beta \mathbb{N}$, sin perdida de generalidad asuma que es uno a uno y que $p_n \neq p$ para todo $n \in \mathbb{N}$. Tenemos entonces que $D \coloneqq \{p_n : n \in \mathbb{N}\}$ es un conjunto discreto en $\beta \mathbb{N}$, entonces para n existen clopens disjuntos dos a dos U_n que cumplen con que $p_n \in U_n$, ahora sea $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$.

Ahora defina $f:D\to [0,1]$ mediante f(n)=0 si n es par y f(n)=1 si n es impar; D es discreto, y por lo tanto f es una función continua. Consideremos ahora

$$\bar{f}: \mathbb{N} \to [0, 1]$$

$$n \mapsto \begin{cases} f(p_k), & \text{si } n \in \mathbb{N} \cap U_k \\ \\ 0, & \text{si } n \in \mathbb{N} \setminus \bigcup \mathcal{U}. \end{cases}$$

Ahora considere F como la extensión \overline{f} a $\beta\mathbb{N}$ (en mismas condiciones de la anterior tarea). Cada U_n es un clopen en $\beta\mathbb{N}$, por lo tanto $\overline{\mathbb{N}}\cap \overline{U_n}x=\overline{U_n}=U_n$, y (como en la anterior tarea) encontramos que $F\upharpoonright_D=f$, $F(p_n)=f(p_n)$ y $p\in\overline{D}$, tal que:

$$F(p) = \lim_{n \to \infty}$$

y vemos que este limite no existe, entonces es contradictorio.

Ejercicio 2. Sea $I = \mathcal{P}(\mathbb{N})$ y para cada $n \in \mathbb{N}$ sea $p_n : I \to \{0,1\}$ la función definida por $p_n(A) = 1$ si $n \in A$ y $p_n(A) = 0$ si $n \notin A$. Note que $P := \{p_n : n \in \mathbb{N}\}$ es un subconjunto del espacio producto $\{0,1\}^I$. Demuestre que para todo $x \in \{0,1\}^I$ se tiene que:

$$x \in \overline{P} \iff \{A \in I : x(A) = 1\}$$
 es un ultrafiltro sobre \mathbb{N}

Solución. Ver Ejercicio 1 para un lado de la demotración.

Ejercicio3. Muestre que $[0,1]^\omega$ con la topología uniforme no es contablemente compacto

Solución. Para este ejercicio, utilizaremos la siguiente proposición:

Proposición 1. Sea $[0,1]^{\omega}$ un espacio topológico con la topología uniforme. Existe un subconjunto infinito de este espacio que no tiene punto limite.

Demostración. Sea d la métrica uniforme. Escoja $c \in (0,1]$. Sea $A = \{0,c\}^{\omega} \subset [0,1]^{\omega}$. Observar que si a y b son puntos distintos en A entonces d(a,b) = c. Para cualquier x la bola $B_{c/3}(x)$ tiene diámetro menor o igual a 2c/3, por lo tanto $B_{c/3}(x)$ no puede tener mas de un punto de A, se tiene entonces que x no es un punto limite de A

Ahora para el gran teorema:

Teorema 2. $[0,1]^{\omega}$ con la topología uniforme no es contablemente compacto

Demostración. Sea d la métrica uniforme. Suponga que $[0,1]^{\omega}$ es localmente compacto, particular en 0. Entonces $0 \in U \subset C$, donde U abierto y C compacto. Entonces existe $\epsilon > 0$ para la cual $B_{\epsilon}(0) \subset U$. Ahora damos nota que $A = \{0, \epsilon/3\}^{\omega} \subset B_{\epsilon}(0)$, tenemos entonces $A \subset C$, y por teorema 28.2 A tiene un punto limite en C, pero esto contradice nuestro hecho de la proposición anterior.

Ejercicio4. Muestre que $\mathbb Q$ con la topología heredada de $\mathbb R$ no es localmente compacto.

Solución. Sea $X=\mathbb{Q}\cap [0,1]$. Queremos ver que si $U\subset X$ entonces U no tiene clausura compacta. Siendo que X es T_2 esto muestra entonces que no es localmente compacto. Sea $x\in X$ y $\epsilon>0$ y tome un irracional $\pi\in B_{\epsilon}(x)$. Ahora sea $x-\epsilon$ y $b=x+\epsilon$, por lo tanto la siguiente es una cobertura abierta de $B_{\epsilon}(x)$ sin ninguna subcobertura finita:

$$\mathcal{O} \coloneqq \left\{ ((a, \pi - \frac{1}{n}) \cup (\pi + \frac{1}{n}, b)) \cap \mathbb{Q} : n \in \mathbb{N} \right\}$$

Esto debido a que observamos que $\mathcal O$ es una cubierta que podría ser ordenada bajo \supset y que ningún n cubre $B_\epsilon(x)$

Ejercicio 5. Demuestre que para cualquier familia $\{X_{\alpha}: \alpha \in I\}$ de espacios topológicos las siguientes afirmaciones son equivalentes:

- $\blacksquare \prod_{\alpha \in I} X_{\alpha}$ es localmente compacto
- Cada X_{α} es localmente compacto y $\{\alpha \in I : X_{\alpha} \text{ no es compacto }\}$ es finito.

Solución. Previamente haremos unas observaciones pertinentes:

Observación. Producto finito de espacios localmente compactos es localmente compacto

Demostración. Sean $X \times Y$ localmente compactos, y sean $(x,y) \in X \times Y$. Entonces existe una vecindad abierta U de xen X para la cual la clausura $\overline{U} \subset X$ es compacto. De manera similar, existe una vecindad abierta V de y en Y cuya clausura $\overline{V} \subset Y$ es compacto. Entonces $U \times V \subset X \times Y$ es una vecindad abierta de (x,y) y $U \times V \subset \overline{U} \times \overline{V}$ (ver Munkres p.101 #9) donde el conjunto cerrado $\overline{U} \times \overline{V} \subset X \times Y$ es compacto por Tychonoff. Entonces el producto $X \times Y$ de dos espacios localmente compactos es localmente compacto; por inducción, extendemos este resultado para casos finitos.

Teniendo esto en claro veamos que:

Teorema 3. Si $\prod X_{\alpha}$ es localmente compacto, entonces cada X_{α} es localmente compacto y X_{α} es compacto para todo α salvo finitos.

Demostración. Asuma que el producto $\prod X_{\alpha}$ es localmente compacto. Observar que las proyecciones son continuas y abiertas, también, como la propiedad de localmente compacto es preservada bajo mapas abiertos y continuos ya que estos conservan compacidad y abiertos, tenemos qe X_{α} es localmente compacto para todo α . Sea $x_{\alpha} \in X_{\alpha}$ y tome $x = (x_{\alpha})_{\alpha} \in X$. Por hipótesis, existe un básico abierto vecindad $U = \prod_{\alpha} U_{\alpha}$ de x en X para la cual la clausura $\overline{U} \subset X$ es compacto. Como en la observación de atrás, observamos que $\overline{U} = \prod_{i=1}^n \overline{U}_{\alpha_i} \times \prod_{\alpha \in A'} X_{\alpha}$. Ahora, la proyección $\pi_a : X \to X_{\alpha}$ es continua, y cada \overline{U}_{α_i} , es compacto para cada $i = 1, \ldots, n$ y X_{α} es compacto para $\alpha \in A'$. Tenemos entonces X_{α} es localmente compacto para $i = 1, \ldots n$.

Para nuestro segundo caso:

Teorema 4. Conversa del teorema anterior asumiendo el Teorema de Tychonoff

Demostración. Suponga $X = \prod_{\alpha \in A} X_{\alpha}$ donde cada X_{α} es localmente compacto. También $A = \{\alpha_1, \dots, \alpha_n\} \cup A'$ tal que X_{α} es compacto para $\alpha \in A'$. Por teorema de Tychonoff, $\prod_{\alpha \in A'} X_{\alpha}$ es compacto, entonces el producto:

$$X = X_{\alpha_1} \times \dots \times X_{\alpha_n} \times \prod_{\alpha \in A'} X_{\alpha}$$

Es localmente compacto por la observación al principio de la solución, siendo un producto finito de n+1 espacios localmente compactos.