Chapter 15: View Serializability

View Serializability

Conflict equivalent

Conflict serializable

View equivalent

View serializable

Motivating example

Schedule Q		
<u>T1</u>	T ₂	T 3
Read(A)		
	Write(A)	
Write(A)		

Write(A)

Same as

Q = r1(A) w2(A) w1(A) w3(A)
P(Q): T1
$$\longrightarrow$$
 T2
T3

Not conflict serializable!

But now compare Q to Ss, a serial schedule:

Q	T ₁	T ₂	<u>T3</u>
	Read(A)		
		Write(A)	
	Write(A)		Write(A)
Ss	T ₁	T ₂	T 3
Ss	Read(A)	T ₂	<u>T3</u>
<u>Ss</u>	-	T ₂ Write(A)	<u>T3</u>

CS 245

Notes 11

- ◆T₁ reads same thing in Q, Ss
- ◆T2, T3 read samething (nothing?)
- ◆After Q or Ss, DB is left in same state

So what is wrong with Q?

<u>Definition</u> Schedules S₁,S₂ are <u>View Equivalent</u> if:

- (1) If in S₁: $w_j(A) \Rightarrow r_i(A)$ then in S₂: $w_j(A) \Rightarrow r_i(A)$
- ⇒ means "reads value produced"
- (2) If in S1: ri(A) reads initial DB value, then in S2: ri(A) also reads initial DB value
- (3) If in S₁: T_i does last write on A, then in S₂: T_i also does last write on A

Definition

Schedule S₁ is <u>View Serializable</u> if it is view equivalent to some serial schedule

View ? Conflict
Serializable Serializable

Conflict Serializable ⇒ Yiew Serializable

Lemma

Conflict Serializable ⇒ View Serializable

Proof:

_Swapping non-conflicting actions does not change what transactions read nor final DB state

Venn Diagram

All schedules

View Serializable

Conflict Serializable Note: All view serializable schedules that are <u>not</u> conflict serializable, involve <u>useless write</u>

$$S = W_2(A) \dots W_3(A) \dots$$
no reads

FALSE: Counterexample (Sorav Bansal): $w_3(Y) r_2(Y) w_1(X) r_2(X) w_3(X) r_4(X) w_5(X)$

How do we test for viewserializability?

P(S) not good enough... (see schedule Q)

One problem: some swaps involving conflicting actions are OK... e.g.:

$$S =w2(A)....r1(A)....w3(A)....w4(A)$$
this action can move
if this write exists ----

Another problem: useless writes

$$S = \dots W_2(A) \dots W_1(A) \dots$$
no A reads

To check if S is View Serializable

(1) Add final transaction T_f that reads all DB

(eliminates condition 3 of V-S definition)

E.g.:
$$S = \dots W_1(A) \dots W_2(A) \dots r_f(A)$$
Last A write add

(2) Add initial transaction Tb that writes all DB

(eliminates condition 2 of V-S definition)

(3) Create labeled precedence graph of S: (3a) If wi(A) \Rightarrow rj(A) in S, add Ti \rightarrow Tj

(3b) For each w_i(A) \Rightarrow r_j(A) do consider each w_k(A): [T_k \neq T_b]

- If
$$T_i \neq T_b \land T_j \neq T_f$$
 then insert
$$\begin{cases} T_k \xrightarrow{p} T_i & \text{some new p} \\ T_j \xrightarrow{p} T_k \end{cases}$$

- If $T_i = T_b \wedge T_j \neq T_f$ then insert $T_j \xrightarrow{0} T_k$
- If $T_i \neq T_b \land T_j = T_f$ then insert $T_k \xrightarrow{0} T_i$

- (4) Check if LP(S) is "acyclic" (if so, S is V-S)
 - For each pair of "p" arcs (p ≠ 0),
 choose one

Example: check if Q is V-S:

$$Q = r_1(A) w_2(A) w_1(A) w_3(A)$$

$$Q' = w_b(A) \rightarrow r_1(A) w_2(A) w_1(A) w_3(A) \rightarrow r_f(A)$$

CS 245

Notes 11

21

Another example:

$$Z=Wb(A) \rightarrow r1(A) W2(A) \rightarrow r3(A) W1(A) W3(A) \rightarrow rf(A)$$

CS 245

$$S_s=wb(A)r_1(A)w_1(A)w_2(A)r_3(A)w_3(A)r_f(A)$$
 T_1 T_2 T_3

Z + Ss indeed do same thing

- Checking view serializability is expensive
- ◆Still, V-S useful in some cases...

Example on useless transactions:

$$S = w_1(A) r_2(A) w_2(B) r_1(B) w_3(A) w_3(B)$$

Tb W1(A) \Rightarrow r2(A)W2(B) \Rightarrow r1(B) W3(A)W3(B) \Rightarrow Tf

To
$$T_1$$

$$T_0 \longrightarrow T_1$$

$$T_3 \longrightarrow T_1$$

$$T_2$$

- ◆If we only care about final state remove T₁, T₂; i.e., remove useless transactions
- ◆If we care what T₁, T₂ read (view equivalence), then do <u>not</u> remove useless transactions

◆If all transactions read what they write, (I.e., Tj=... Rj(A) ... Wj (A)...) then view serializability = conf. serializability

[Another way of saying: blind writes appear in any view-serializable schedule that is not conflict serializable]

Proof(?): say S₁ is view-ser. and no blind writes. S₁ V-equiv to S_s, serial schedule.

```
(1) Goal: Show that
      T_1 \rightarrow T_2 \text{ in } P(S_1) \Rightarrow T_1 < ssT_2
(2) Assume T_1 \rightarrow T_2
    if S_1 = ...w_1(A) ... r_2(A)...
                (direct read) clearly T_1 < ssT_2
    if S_1 = ...w_1(A)...r_2(A) w_3(A) ... r_2(A)...
                         also T_1 < ssT_2
    if S_1 = ... r_1(A) r_3(A) ... w_1(A) ... w_3(A) ... r_2(A)
                         not possible: T<sub>1</sub>,T<sub>3</sub> not
   serializable
                               Notes 11
                                                                   29
Other cases similar...
```

Implications:

If no blind writes, view-ser \iff conf-ser

P(S) acyclic ⇒ all transactions read the same as in a serial schedule