

FMBA 2018 사전 교육

프로그래밍(R)

KAIST 경영공학과 석박사통합과정 유승현 rambor12@business,kaist,ac,kr

목 차

- 1. 개요
- 2. R 설치
- 3. RStudio 인터페이스
- 4. R 연산
- 5. R 프로그래밍
- 6. R 응용: 회귀분석

Github Repository

ㅁ 프로그래밍 교육 자료

https://github.com/Seung-hyeon/KAIST FMBA Programming 2018

1. 개요

- ✓ GNU GPL(일반 공중 사용 허가서)하에 배포되는 무료 통계 프로그 래밍 언어
- ✓ 사용자의 입력에 대한 결과 즉시 확인 가능 (VBA와 다름)
- ✓ 강력한 시각화 그래프 제공
- ✓ 다양한 패키지 제공 (CRAN)
 - o ggplot2
 - o polynom
 - o tseries
 - o quantmod
 - o stringr

...

✓ 주로 통계학, 데이터 분석에 많이 사용

출처: https://en.wikipedia.org/wiki/R_(programming_language)

1. 개요

- ✓ R 기본편집기의 부족한 부분 보완
- ✓ 실시간으로 프로그램 실행 결과, 변수 값 확인 가능
- ✓ 자동 명령어 완성
- ✓ 코드 구문 강조(색깔)
- ✓ 버전, 프로젝트 관리

□ R 설치 방법

- ① R 다운로드 홈페이지 접속
 https://cran.r-project.org/bin/windows/base/
- ② "Download R X.X.X for Windows" 클릭, 바탕화면에 저장

R-3.3.2 for Windows (32/64 bit)

□ R 설치 방법

- ③ 다운받은 파일 실행, "한국어"로 설치
- ④ 운영체제 환경에 맞게 64-bit or 32-bit 맞춰서 설치

□ R 설치 방법

- ⑤ 계속 "다음" 버튼 눌러 설치
- ⑥ 설치 끝난 후 "완료" 클릭

- □ RStudio 설치 방법 (주의: 계정 이름이 한글이면 에러 발생)
 - ① RStudio 다운로드 홈페이지 접속
 https://www.rstudio.com/products/rstudio/download/
 - ② 맨 왼쪽 "DOWNLOAD" 클릭 후 윈도우버전 Installer 다운로드

□ RStudio 설치 방법

- ④ 다운로드 받은 파일 실행
- ⑤ 계속 "다음" 버튼 눌러 설치
- ⑥ 마지막에 "마침" 클릭

□ RStudio 설치 방법

- ⑦ "문서" 폴더로 들어가기
- ® "RStudio" → "bin" 폴더 들어가기

□ RStudio 설치 방법

- ⑨ "bin"폴더 맨 아래 "rstudio.exe"를 바탕화면에 복사하기
- ⑩ 바탕화면의 "rstudio.exe" 실행 (앞으로 여기서 계속 실행하면 됨)

□ RStudio 설치 방법

⑪ "New File" → "R Script" 클릭하여 스크립트 만들기

3. RStudio 인터페이스

3. R 인터페이스

□ 기본 명령어

대입연산자((-): 오른쪽 값을 왼쪽에 대입('='과 동일한 기능)

```
# 값 대입
a = 5 #or
a <- 5

# R 도움말 이용하기
help([물어볼 대상])

# R 종료하기
quit() #or
q()

# 정의했던 변수 나열하기
ls()

# 타입 확인하기
typeof([확인할 대상])
```

□ 수식 표현

$$8 + \frac{6 \times (1 + \sqrt{5})}{2}$$
 >>8+ $(6*(1+\operatorname{sqrt}(5)))/2$ $\frac{4}{3} \times \pi \times 10^3$ >>4 / $3*\operatorname{pi}*10^3$ $e^{\sqrt{3}} + \pi \times 10^3$ >>exp(sqrt(3)) + pi*10^3 $e^{\pi \times \sqrt{-1}}$ >>exp(pi*1i) R 에서는 허수를 1i 라고 씀

- ① π 는 pi로 기술
- ② 자연상수 e는 exp(1)로 기술, e^x 는 exp(x)로 기술
- ③ 1i는 허수 단위(imaginary number unit)

벡터(배열) 생성

'c()' 함수로 벡터를 생성하면 행, 열 구분 없음! 계산시 필요할 때 행, 열 자동 변환

```
> # 벡터(배열) 생성
> a = c(1, 2, 3)
> a
[1] 1 2 3
>
> # 열(column) 벡터 생성
> cbind(a)
        a
[1,] 1
[2,] 2
[3,] 3
>
> # 행(row) 벡터 생성
> rbind(a)
        [,1] [,2] [,3]
a 1 2 3
```

벡터 변환(Transpose): 't()' 사용하기

```
> # 벡터 transpose
> t(a)
  [,1] [,2] [,3]
[1,] 1 2 3
```

벡터 원소 참조 브라켓[] 사용

```
> # 벡터 원소 참조
> a[1]
[1] 1
>
> a[2]
[1] 2
>
> 
> # 여러 원소 참조
> a[2:3]
[1] 2 3
> 
> # 해당 원소 제외하고 참조
> a[-1]
[1] 2 3
```

다양한 원소 추출 방법

```
> # 1. TRUE, FALSE를 이용한 추출
> a[c(TRUE, FALSE, TRUE)]
[1] 1 3
> a[c(FALSE,TRUE,FALSE)]
> # 2. 인덱스 번호 배열을 이용한 추출
> a[c(1,3)]
[1] 1 3
> # 3. 논리 조건을 미용한 추출
> a[a/2+1 > 2]
[1] 3
> a[a\%3 == 1]
[1] 1
  나머지 연산자
```

순차적인 벡터 생성

```
> # 순차적인 벡터 생성
> a = 1:3
> a
[1] 1 2 3
>

*** 간격이 정해져있는 벡터
> a = seq(1, 2, 0.2)
> a
[1] 1.0 1.2 1 4 1.6 1.8 2.0
시작 값
마지막 값
간격의 길이
```

□ 단일 벡터 연산

```
> exp(a)
[1] 2.718282 7.389056 20.085537
>
> log(a)
[1] 0.00000000 0.6931472 1.0986123
>
> sqrt(a)
[1] 1.000000 1.414214 1.732051
>
> abs(a)
[1] 1 2 3
>
> a^2
[1] 1 4 9
```

```
각 벡터의 원소 x에 대해 e^{\sqrt{3}x} + \pi \times 10^{-1} + x 계산
```

```
> exp(sqrt(3)*a) + pi*10^(-1) + a
[1] 6.966393 34.261905 183.890282
```

벡터 길이 확인

```
> length(a)
[1] 3
```

기타: min, max, sum, mean, var, sd 등도 가능!

□ 벡터 간 연산

```
> a = c(1, 2, 3)

> b = c(4, 5, 6)

>

> # 벡터의 합과 차

> a + b

[1] 5 7 9

>

> a - b

[1] -3 -3 -3
```

재사용규칙(Recycling Rule) 벡터 길이가 다를때 짧은 길이의 벡터를 반복적으로 사용

```
> # 재사용규칙(Recycling Rule)
> c(1, 2, 4) + c(3, 5, 8, 2, 0)
[1] 4 7 12 3 2
Warning message:
In c(1, 2, 4) + c(3, 5, 8, 2, 0):
longer object length is not a multiple of shorter object length
```

```
> # 벡터의 내적
> a %*% b
    [,1]
[1,] 32
> rbind(a) %*% cbind(b)
   b
a 32
> # 벡터의 외적(Cross Product)
> crossprod(a, b) # 이게 아님!
    [,1]
            주의 R에선 Cross Product 구하는
[1,]
                    기본 함수가 없음
> # 벡터의 외적(Outer Product)
> a %o% b #or
    [,1] [,2] [,3]
[1,]
            5
                 6
[2,]
           10
                12
[3,]
      12
           15
              18
> cbind(a) %*% rbind(b)
    [,1] [,2] [,3]
[1,]
            5
                 6
[2,]
       8
           10
               12
[3,]
      12
           15
               18
```

□ 행렬 생성

행렬 생성

```
> # 방법 1
> M = matrix(c(1,2,3,4,5,6,7,8,9),
           nrow=3, ncol=3, byrow=TRUE)
> M
    [,1] [,2] [,3]
                        TRUE면 row 먼저 채움
[1,]
     1
[2,]
[3,]
> # 방법 2 row 개수 하나만 지정
> M = matrix(c(1,2,3,4,5,6,7,8,9), nrow=3)
    [,1] [,2] [,3]
[1,]
       1
           4 7
[2,]
[3,]
       3
> # 행렬 원소 참조
                -> 인덱스는 1부터 시작
> M[1,3]
[1] 7
```

특수 행렬 생성

```
> m = 5
> # 대각선 원소가 1로 구성된 mxm 정방행렬
> diag(m)
     [,1] [,2] [,3] [,4] [,5]
[1,]
                           0
[2,]
[3,]
[4,]
[5,]
                           1
> # 모든 원소가 0인 mxn 행렬 생성
> matrix(OL, nrow=m, ncol=n)
    [,1] [,2] [,3]
[1,]
                 0
[2,]
[3,]
[4,]
            0
                 0
[5,]
                 0
> # 모든 원소가 1인 mxn 행렬 생성
> matrix(1L, nrow=m, ncol=n)
    [,1] [,2] [,3]
       1
                 1
[1,]
[2,]
       1
                 1
[3,]
                 1
[4,]
                 1
[5,]
                 1
```

□ 행렬 연산

```
> # 행렬 차원 확인
> dim(M)
[1] 3 3
```

역행렬 계산

```
> # 역행렬 계산
> solve(M)
Error in solve.default(M):
 Lapack routine dgesv: system is exactly singular: U[3,3] = 0
> M
     [,1] [,2] [,3]
     1
[1,]
[2,]
[3,]
                                                  > M
                                                       [,1] [,2] [,3]
                                                  [1,]
                                                        5 1
                                                  [2,]
                                                         7
                                                  [3,]
                                                                   12
                                                  > # 역행렬 계산
                                                  > solve(M)
                                                              [,1]
                                                                          [,2]
                                                  [1,] 0.46320869 -0.18817853 0.001206273
                                                  [2,] 0.09529554 -0.06996381 0.013268999
                                                  [3,] -0.70566948  0.50542823 -0.009650181
```

3. R 인터페이스

□ **예제1** 다음 행렬의 곱을 구하여라.

$$\begin{pmatrix} 2 & 4 & 9 \\ 1 & 2 & 1 \\ 3 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 5 & 5 & 2 \\ 2 & 2 & 1 \\ 1 & 3 & 3 \end{pmatrix} = ?$$

$$= A = B$$

```
# Sample Code
                                                    행렬 생성
                 > # 행렬 A 생성
                 > A = matrix(c(2,4,9,1,2,1,3,0,2), nrow=3, byrow = TRUE)
                 > # 행렬 B 생성
                 > B = matrix(c(5,5,2,2,2,1,1,3,3), nrow=3, byrow = TRUE)
                 > A %*% B
                      [,1] [,2] [,3]
                 [1,] 27
                            45
                 [2,]
                       10
                            12
                                7
                 [3,]
                       17
                            21
                                 12
```

□ 함수 만들기

```
# 함수 만들기
[함수명] = function(인수1, 인수2...){
  [명령문]
  return(결과)
}
```

예제2 sin(x)/x 그리는 'myfunction' 함수를 만들고 실행하라.

```
# 함수 정의
myfunction = function(x){

y = sin(x)/x

plot(x, y, type='l')

return(y)

}
# 함수 실행
x = seq(-10,10,0.01)
myfunction(x)
```


□ R—file

- ① R 명령어들을 포함하는 텍스트 파일
- ② 명령어가 너무 길거나 반복적으로 써야할 때 사용
- ③ 파일의 확장자는 반드시 ".R"이어야 함
- ④ Run 을 눌러 실행할 수 있음

이름	수정한 날짜	유형	크기
test.R	2017-01-15 오후	R 파일	2KB

- □ R-file (R 콘솔창에서 실행하기)
 - ① R-file이 저장된 디렉토리로 이동후에 다음과 같이 실행가능

□ R-file (R 콘솔창에서 실행하기)

#참고: R-file을 RStudio로 열기

- ① R-file 우측클릭 -> 연결프로그램 클릭
- ② 찾아보기 클릭: 문서->RStudio->bin->rstudio.exe 열기
- ③ "이 종류의 파일을 열 때 항상 선택된 프로그램 사용" 체크, 확인

□ R 기초 문법

1. 변수의 선언: (Declaration)

숫자, 벡터, 행렬의 생성 => 이미 했음.

□ R 기초 문법

2. 조건문: (Selection)

조건에 따라 어떤 코드를 실행할 것인가?


```
# Example
a = 1
if (a<0){
b = -1
} else if (a>1)
b = 1
} else{
b = 0
}
# 실행하면 b=0
```

□ R 기초 문법

3. 반복문: (Iteration)

이 코드를 언제까지 반복할 것인가?

```
# for 문 : 반복적인 작업 수행

for (변수 in 범위){

[명령문] 실행할 명령문

반복 조건

if([탈출조건]){

break
}

탈출 조건
```

```
# Example
j = 0
for (i in 0 : 100){
j = j + i
if(i>4){
break
}
}
# 실행하면 j=15 이 실행됨
```

□ R 기초 문법

3. 반복문: (Iteration)

이 코드를 언제까지 반복할 것인가?

```
# while 문 : 반복회수가 정해지지 않을 때 사용
while([반복조건]){
  [명형문] → 실행할 명령문
}
```

반복 조건 : 이 조건이 맞지 않으면 탈출함

```
# Example (for 문과 정확히 동등한 예)
j = 0
i = 0
while(i<=5){
j = j + i
i = i + 1
}
# 실행하면 j=15 이 실행됨
```

□ R 기초 문법 추가: Data Frame

	LungCap	Age ‡	Height [©]	Smoke [‡]	Gender	Caesarean
1	6.475	6	62.1	no	male	no
2	10.125	18	74.7	yes	female	no
3	9.550	16	69.7	no	female	yes
4	11.125	14	71.0	no	male	no
5	4.800	5	56.9	no	male	no
6	6.225	11	58.7	no	female	no
7	4.950	8	63.3	no	male	yes
8	7.325	11	70.4	no	male	no
9	8.875	15	70.5	no	male	no
10	6.800	11	59.2	no	male	no
11	11.500	19	76.4	no	male	yes
12	10.925	17	71.7	no	male	no
13	6.525	12	57.5	no	male	no
14	6.000	10	61.1	no	female	no
15	7.825	10	61.2	no	male	no
16	9.525	13	63.5	no	male	yes
17	7.875	15	59.2	no	male	no
18	5.050	8	56.1	no	male	no
19	7 025	11	61.2	ves	female	no

```
> df = data.frame(LungCap=c(6.475, 10.125, 9.550, 11.125...),
                  Age=c(6,18,16,14,5,11,8,11,15,11,19,17...),
                  Height=c(62.1,74.7,69.7,71.0,56.9,58.7...),
> names(df)
                           "Height"
[1] "LungCap"
                                       "Smoke"
                                                   "Gender"
 [6] "Caesarean"
> dim(df)
[1] 725 6
> summary(df)
    LungCap
                       Age
                                     Height
                                                 Smoke
 Min. : 0.507
                 Min. : 3.00
                                 Min.
                                       :45.30
                                                 no:648
 1st Qu.: 6.150
                 1st Qu.: 9.00
                                 1st Qu.:59.90
                                                 yes: 77
 Median : 8.000
                 Median :13.00
                                 Median :65.40
 Mean : 7.863
                 Mean :12.33
                                 Mean
                                       :64.84
 3rd Qu.: 9.800
                  3rd Qu.:15.00
                                 3rd Qu.:70.30
 Max.
        :14.675
                         :19.00
                                        :81.80
                 Max.
                                 Max.
    Gender
              Caesarean
 female:358 no:561
 male :367 yes:164
> nrow(df)
[1] 725
> ncol(df)
[1] 6
```

□ R 기초 문법 추가: Data Frame

	LungCap	Age ‡	Height [‡]	Smoke [‡]	Gender	Caesareañ
1	6.475	6	62.1	no	male	no
2	10.125	18	74.7	yes	female	no
3	9.550	16	69.7	no	female	yes
4	11.125	14	71.0	no	male	no
5	4.800	5	56.9	no	male	no
6	6.225	11	58.7	no	female	no
7	4.950	8	63.3	no	male	yes
8	7.325	11	70.4	no	male	no
9	8.875	15	70.5	no	male	no
10	6.800	11	59.2	no	male	no
11	11.500	19	76.4	no	male	yes
12	10.925	17	71.7	no	male	no
13	6.525	12	57.5	no	male	no
14	6.000	10	61.1	no	female	no
15	7.825	10	61.2	no	male	no
16	9.525	13	63.5	no	male	yes
17	7.875	15	59.2	no	male	no
18	5.050	8	56.1	no	male	no
19	7 025	11	61.2	ves	female	no

```
> class(df)
[1] "data.frame"
> df$Age
 [1] 6 18 16 14 5 11 8 11 15 11 19 17 12 10 10 13 15 8 11 14
 [21] 6 8 16 11 11 12 12 9 4 18 4 13 13 13 12 10 6 9 11 17
 [41] 14 17 8 12 6 11 11 12 17 7 15 15 11 10 18 6 13 19 9 12
 [61] 12 14 Q 13 13 13 11 11 11 12 14 11 11 13 13 12 14 Q 17 11
> df[1,3]
[1] 62.1
> df[5:6,]
  LungCap Age Height Smoke Gender Caesarean
           5
                 56.9
                               male
    4.800
                          no
                                            no
                          no female
    6.225 11
                 58.7
                                            no
>
 df[df\$Age < 5,]
    LungCap Age Height Smoke Gender Caesarean
                   48.7
                            no female
      1.125
                                               no
31
      4.650
              4
                   53.7
                            no female
                                              no
114
      5.875
                   55.9
                            no
                                 male
                                              no
150
      0.507
               3
                   51.6
                            no female
                                             yes
190
      2.875
               4
                   55.4
                            no
                                 male
                                              no
222
      1.175
                   51.9
                                 male
                            no
                                               no
229
      4.700
               3
                   52.7
                                 male
                            no
                                              no
293
      5.475
               3
                   52.9
                                 male
                            no
                                              no
      1.025
318
                   47.0
                            no female
                                               no
390
                   55.6
      3.400
               4
                                 male
                                              no
401
      2.000
                   51.0
                            no female
                                              no
405
      3.225
                   52.8
                            no female
                                              no
487
      2.375
               4
                   51.7
                            no female
                                             yes
514
      1.675
                   51.9
                            no
                                 male
                                              no
531
      4.075
                   53.6
                                 male
                            no
                                             yes
596
      1.450
                   45.3
                            no female
                                              no
      3.675
621
                   54.2
                                 male
                            no
                                             yes
660
      3.250
               3
                   52.0
                            no
                                 male
                                              no
713
      3.425
                   51.0
                                 male
                                             yes
```

□ R 기초 문법 추가: Data Frame

> df_edit = edit(df)

파일	편집 도움	말						
	LungCap	Age	Height	Smoke	Gender	Caesarean	var7	var8
1	6.475	4	62.1	no	male	no		
2	10.125	18	74.7	yes	female	no		
3	9.55	16	69.7	no	female	yes		
4	11.125	14	71	no	male	no		
5	4.8	5	56.9	no	male	no		
6	6.225	11	58.7	no	female	no		
7	4.95	8	63.3	no	male	yes		
8	7.325	11	70.4	no	male	no		
9	8.875	15	70.5	no	male	no		
10	6.8	11	59.2	no	male	no		
11	11.5	19	76.4	no	male	yes		
12	10.925	17	71.7	no	male	no		
13	6.525	12	57.5	no	male	no		
14	6	10	61.1	no	female	no		
15	7.825	10	61.2	no	male	no		
16	9.525	13	63.5	no	male	yes		
17	7.875	15	59.2	no	male	no		
18	5.05	8	56.1	no	male	no		
19	7.025	11	61.2	yes	female	no		

- □ R 패키지 사용하기 (ggplot2)
 - ① 전세계의 유능한 사람들이 다양한 패키지를 무료로 제공
 - ② 필요한 패키지 찾아서 사용하면 됨
 - ③ ggplot2: R의 대표적은 그래프 그리기패키지

#패키지 관련 명령어

```
# 현재 설치된 패키지 목록 확인 installed.packages()
```

패키지 설치

install.packages([패키지 이름])

ggplot2 패키지 설치

install.packages("ggplot2") # CRAN mirror는 Korea로 선택

ggplot2 패키지 사용하기 library(ggplot2)

□ R 패키지 사용하기 (ggplot2)

2차원 그래프

□ R 패키지 사용하기 (plotly)

3차원 곡면 그래프

왼쪽클릭 드래그 : 돌려보기

우측클릭 드래그 : 시점 이동

스크롤 클릭 드래그: 확대 및 축소

출처: https://plot.ly/r/3d-surface-plots/

□ 회귀분석

- ✓ 회귀분석이란 통계학에서 연속된 변수간의 관계를 찾는 것
- ✓ Y가 종속변수이고 X가 설명변수일 때 회귀계수는 다음 식으로 구할 수 있음

$$b = (X'X)^{-1}X'Y$$

✓ 가상의 데이터를 다음과 같이 생성한다.

$$X = 1:100$$

 $Y = 3 + 2 * X + 4 * \varepsilon$

(여기서 ε 는 표준정규분포 확률변수이다.)

예제3 위와 같은 조건에서 가상의 데이터를 생성하고 회귀분석 결과를 그래프로 그려라. (rnorm(), lm(y~x)를 사용할 것)

□ 예제3 회귀 분석

```
# 가상의 데이터 생성하기
x=1:20
y=3+2*x + 4*rnorm(20)

data = data.frame(x=x, y=y)

# ggplot을 이용하여 그래프 그리기
library(ggplot2)
qplot(x=x, y=y, data=data)
```


□ 예제3 회귀 분석

```
# 1m을 이용한 회귀분석
  fit = lm(y \sim x, data = data)
  summary(fit)
  # 그래프 그리기
  plot(data)
  abline(fit)
                                                       5
                                                       9
Residuals:
            10 Median
   Min
                                  Max
                                                       40
-8.9415 -2.3544 0.0051 3.9887 8.6953
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                 2.853 0.0106 *
                        2.2747
(Intercept)
             6.4907
                        0.1899
                                 8.188 1.76e-07 ***
             1.5548
х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.897 on 18 degrees of freedom
Multiple R-squared: 0.7883, Adjusted R-squared: 0.7766
F-statistic: 67.04 on 1 and 18 DF, p-value: 1.758e-07
```


□ 예제3 회귀 분석

```
# 가상의 데이터 생성하기
x=1:20
y=3+2*x + 4*rnorm(20)

data = data.frame(x=x, y=y)

# ggplot을 이용하여 그래프 그리기
library(ggplot)

ggplot(data, aes(x=x, y=y))+
  geom_point(shape=1)+
  geom_smooth(mehotd=1m)
```


예제4 LungCapData: Multiple Regression & Visualization

```
# 데이터 불러오기
LungCapData = read.csv(file.choose(), header=T, sep='\t')
                                                                                                                            LungCap
# 데이터 표시하기
                                                                                                                               12
library(plotly)
plot_ly(LungCapData, x=~Age, y=~Height, z=~LungCap,
        type='scatter3d', marker=list(size=2, color='black'))
                                                                                                                               10
# fitting Surface 만들기
x_axis = seq(min(LungCapData$Age), max(LungCapData$Age), 1)
                                                                                                               55
                                                                                14
                                                                                                              60
                                                                                12
y_axis = seq(min(LungCapData$Height), max(LungCapData$Height), 1)
                                                                                 10
                                                                                                             65 Height
                                                                                  8
fit = lm(LungCap~Age+Height, LungCapData)
                                                                           LungCap 4
                                                                                   <sup>18</sup>16<sub>14</sub>12<sub>10 8 6 4</sub>
fit_surface = expand.grid(Age=x_axis, Height=y_axis)
                                                                                                          75
fit_z = matrix(predict.lm(fit, fit_surface), nrow=length(x_axis))
# 그래프 그리기
plot_ly(LungCapData, x=~Age, y=~Height, z=~LungCap, type='scatter3d',
        marker=list(size=2, color='black')) %>%
add_trace(z=t(fit_z), x=x_axis, y=y_axis,type='surface')
```

출처: https://www.youtube.com/watch?v=q1RD5ECsSB0

6. R 응용: 금융 데이터 분석

- □ 예제5 다우 존스 추세 분석
- quantmod package 설치
- □ 다우 존스 추세 분석

```
# 다우 존스 추세 분석

getSymbols("DJIA", src="FRED")

price = as.numeric(DJIA)

time = index(DJIA)

x = 1:length(price)
fit = lm(log(price)~x)
fit_exp = exp(fit$coef[1] + fit$coef[2]*x)

plot(x=time, y=price, main="Dow Jones", type="l")
lines(time, fit_exp, col=2, lwd=2)
```


End

Question & Comment