Problem B

Basel Problem

In 1734, the great mathematician Leonhard Euler solved the famous **Basel Problem**, which states that $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

He also provided a generalization: let n be an **even** positive integer, then the function $\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}$ is always equal to a rational multiple of π^n , i.e., $\zeta(n) = \frac{p_n}{q_n} \pi^n$ for some positive integers p_n and q_n with $\gcd(p_n, q_n) = 1$.

Almost 300 years later, another great mathematician **insert your name here** found a way to compute p_n and q_n very fast, but since those numbers can be very large, he really finds $p_n \times q_n^{-1} \mod 998244353$ only, where q_n^{-1} is the multiplicative inverse of q_n in that modulo.

Input

The first line of input contains a single integer T ($1 \le T \le 10^5$), representing the number of test cases. Each of the following T lines contain an even positive integer n ($2 \le n \le 2 \times 10^5$).

Output

For each test case output the value of $p_n \times q_n^{-1} \mod 998244353$. It can be shown that under the constraints given, $q_n \not\equiv 0 \mod 998244353$.

Input example 1	Output example 1
5	166374059
2	144190851
4	13732462
6	600319858
8	766467710
10	

Notes

•
$$\zeta(2) = \frac{1}{6}\pi^2$$

•
$$\zeta(4) = \frac{1}{90}\pi^4$$

$$\bullet \ \zeta(6) = \frac{1}{945}\pi^6$$

•
$$\zeta(8) = \frac{1}{9450}\pi^8$$

$$(10) = \frac{1}{93555} \pi^{10}$$