Programmiersprachen und Übersetzer Übung 9

Ausgabe am: **Juni 11 2024** Abgabe bis: **Juni 18 2024**

Abgabe: Die Antworten müssen im bestehenden Repository in einem neu zu erstellenden Verzeichnis "ex9" eingereicht werden.

Wir betrachten ein simply-typed λ calculus mit Subtypisierung, mit den Typen A, B, C, D, und E, sowie den folgenden Subtypisierungsregeln:

Aufgabe 1 - Subtyping (5 Punkte)

Geben Sie alle Paare S_i und T_j an, für die $S_i <: T_j$ gilt.

$$S_1 = \{x : D\} \rightarrow \{y : A\}$$
 $S_1 = \{x : D\} \rightarrow \{y : A\}$
 $T_1 = E$
 $S_2 = \{y : B\}$
 $T_2 = \{x : D\}$
 $T_3 = \{\}$
 $T_4 = \{x : E\} \rightarrow \{y : B\}$
 $T_5 = \{y : E\}$

Aut	gabe 1.													
S ₁ :	Es gi	bł ken	· Tj ,	514	ij									
Sz	: 52<	: 13			-{3:8}		مث ا	(5	-Rcclu	vidth)				
				32 :	. 59.10.) <. (2=13							
	: S3 <													
	S3 4	<: 15			A <:	E		2-12	11.5					
					۶4:A3 <	· { 4 : F	- (3-1 - (3-1	/Car 100)	4 1					
				ર પ્રઃ	{z:A} < A. n:A}	۰۰ Cb ۲:۶ ч	E i	(S-R	Celwith)		10			
					A, n:13 = { n:1	A , 4 : /	144:	ع : F	4 515	(S-Ra	Morni			
						., 0	יי כי	د ای	و د ر					
					2		>							
541	544:	11			54 = D	<: E	= 1							
										ul.				
25	S5<	: '3			2º -	ૄેયઃ &ે ૮	: ٤٤.	<u>. </u>	S-Red	wiath				

Aufgabe 2 - Joins und Meets (6 Punkte)

Unter Berücksichtigung der Subtypisierungsregeln:

- A type J is called a join of a pair of types S and T if S <: J, T <: J, and, for all types U, if S <: U and T <: U, then J <: U.
- A type M is a meet of S and T if M <: S, M <: T, and, for all types L, if L <: S and L <: T, then L <: M.

Geben Sie die "joins" und "meets" der Paare von Typen an, sofern sie existieren, andernfalls *nicht definiert*. Wir nehmen an, dass wir einen *Top* Typen haben, zu dem jeder anderer Typ ein Subtyp ist.

A & B D & E B & C A & E

a) $\{x : E, y : C\}$ and $\{x : B, y : B\}$

b) $\{x : B\}$ and $\{y : B\}$

$$join = \{\}$$

c) $\{x : A\}$ and $\{x : D\}$

meet = Es gibt kenne Sulptypen zu

A und D. Deshalb ist meet
meht definiert.

Aufgabe 3 - Vtables (2 Punkte)

Gegeben sind die folgenden Klassendeklarationen:

```
class One {
    void setTag(Tag t) { ... }
    Tag getTag() { ... }
}

class Two extends One {
    @Override
    void setTag(Tag t) { ... }
    void reset() { ... }
}
```

Geben Sie die (vollständig materialisierten) vtables für One und Two an.