Heterogeneous Domain Generalization via Domain Mixup

Yufei Wang^{1,2}, Haoliang Li², and Alex C. Kot²

¹University of Electronic Science and Technology of China, China ²Nanyang Technological University, Singapore

*Work done during an internship at the Rapid-Rich Object Search (ROSE) Lab, Nanyang Technological University (NTU)

Domain Generalization (DG)

real

sketch

painting

infograph

Heterogeneous DG

Empirical Risk Minimization

• Minimize the average of the loss function l over the data distribution P, also known as the **expected risk**:

$$R(f) = \int l(f(x), y) dP(x, y).$$

$$P_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x = x_i, y = y_i)$$

$$R_{\delta}(f) = \int l(f(x), y) dP_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i)$$

Vicinal Risk Minimization

In the Vicinal Risk Minimization (VRM) principle (Chapelle et al., 2000), the distribution P is approximated by

•
$$P_{\nu}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} \nu(\tilde{\mathbf{x}}, \tilde{\mathbf{y}} | \mathbf{x}_i, \mathbf{y}_i)$$

where v is a vicinity distribution that measures the probability of finding the virtual feature-target pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ in the vicinity of the training feature-target pair $(\mathbf{x}_i, \mathbf{y}_i)$.

MIXUP: a vicinal distribution

Vanilla MIXUP

$$\mu(\tilde{x}, \tilde{y} | x_i^q, \hat{y}_i^q) = \frac{1}{n} \sum_{j=1}^n \mathbb{E}_{\lambda} [\delta(\tilde{x} = \lambda x_i^q + (1 - \lambda) x_j^q, \tilde{y} = \lambda \hat{y}_i^q + (1 - \lambda) \hat{y}_j^q)]$$

Cross-domain MIXUP

$$\mu_{HDG}\left(\widetilde{x},\widetilde{y}\Big|x_{i}^{q},\widehat{y_{i}^{q}}\right) = \frac{1}{n_{sum}}\sum_{j=1}^{|\mathcal{D}_{\mathcal{S}}|}\sum_{k=1}^{|D_{j}|}E_{\lambda}\left[\delta\left(\widetilde{x} = \lambda \cdot x_{i}^{q} + (1-\lambda) \cdot x_{k}^{j},\widetilde{y} = \lambda \cdot \widehat{y_{i}^{q}} + (1-\lambda) \cdot \widehat{y_{k}^{j}}\right)\right]$$

Sampling strategies

1.MIXUP: A simple sampling strategy from the Cross-Domain MIXUP distribuiton

•
$$\tilde{x} = \lambda x_i^p + (1 - \lambda) x_j^q$$

•
$$\tilde{y} = \lambda \hat{y_i^p} + (1 - \lambda)\hat{y_j^q}$$

where $\lambda \sim \text{Beta}(\alpha, \alpha)$ for $\alpha \in (0, \infty)$

2. MIXALL: mix all samples from |Ds| source domains in one iteration

•
$$\tilde{x} = \sum_{q=1}^{|\mathcal{D}_s|} \lambda_q x_i^q$$

•
$$\tilde{y} = \sum_{q=1}^{|\mathcal{D}_s|} \lambda_q \widehat{y_i^q}$$

where $\lambda_q = \frac{e^{u_q}}{\sum_{q=1}^{|\mathcal{D}_{\mathcal{S}}|} e^{u_q}}$ and random variable $u_q{\sim}U(0{,}\beta)$

Multi-domain MIXUP: A toy example

Result

Table 1. classification accuracy (%) and VD scores on target datasets in VD using SVM.

Target	SVM Classifier									
	Im.N. PT	CrossGrad [10]	MR [11]	MR-FL [14]	Reptile [12]	AGG [14]	FC [14]	MIXUP	MIX-ALL	
Aircraft	16.62	19.92	20.91	18.18	19.62	19.56	20.94	21.00	20.61	
D. Textures	41.70	36.54	32.34	35.69	37.39	36.49	38.88	39.36	39.04	
VGG-Flowers	51.57	57.84	35.49	53.04	58.26	58.04	58.53	59.71	61.37	
UCF101	44.93	45.80	47.34	48.10	49.85	46.98	50.82	51.74	55.99	
Ave.	38.71	40.03	34.02	38.75	41.28	40.27	42.29	42.95	44.25	
VD-Score	308	280	269	296	324	290	344	357	400	

Table 2. classification accuracy (%) and VD scores on target datasets in VD using KNN.

Target	KNN Classifier									
	Im.N. PT	CrossGrad [10]	MR [11]	MR-FL [14]	Reptile [12]	AGG [14]	FC [14]	MIXUP	MIX-ALL	
Aircraft	11.46	15.93	12.03	11.46	13.27	14.03	16.01	14.52	14.85	
D. Textures	39.52	31.98	27.93	39.41	32.80	32.02	34.92	34.26	33.67	
VGG-Flowers	41.08	48.00	23.63	39.51	45.80	45.98	47.04	48.24	49.71	
UCF101	35.25	37.95	34.43	35.25	39.06	38.04	41.87	45.03	46.41	
Ave.	31.83	33.47	24.51	31.41	32.73	32.52	34.96	35.51	36.16	
VD-Score	215	188	144	215	201	189	236	259	268	

Ablation Study

Fig. 2. The performance of MIXUP with different α which controls the strength of mixup.

Fig. 3. The performance of MIX-ALL with different hyperparameter β which controls the strength of mixup. In this figure, the dotted line represents the baseline in Sec. 2.2

THANKS!