TABLE 1: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m·s ⁻²
Permittivity for free space	$\boldsymbol{\mathcal{E}}_0$	$8.85 \times 10^{-12} \text{Fm}^{-1}$
Speed of light in a vacuum	С	$3.0 \times 10^8 \mathrm{m} \times \mathrm{s}^{-1}$
Planck's constant	h	6,63×10 ⁻³⁴ J×s

TABLE 2: FORMULAE

FORCE

F _{net} = ma	p = mv
$f_s^{\text{max}} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	$F_g = mg$

WORK, ENERGY AND POWER

$W = F\Delta x \cos \theta$	$U = mgh$ or $E_p = mgh$
$K = \frac{1}{2}mv^2$ or $E_k = \frac{1}{2}mv^2$	$\Delta K = K_f - K_i$ or $\Delta E_k = E_{kf} - E_{ki}$
$M_E = E_k + E_p$	$P = \frac{W}{\Delta t}$
$P_{ave} = Fv_{ave}$	

ELASTICITY, VISCOSITY AND HYDRAULICS

$\sigma = \frac{F}{A}$	$\varepsilon = \frac{\Delta L}{L}$
$\frac{\sigma}{\varepsilon} = K$	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$

ELECTROSTATICS

$C = \frac{k\epsilon \cdot A}{d}$ and $C = \frac{\epsilon \cdot A}{d}$	$E = \frac{V}{d}$
$C = \frac{Q}{V}$	

IEB Copyright © 2021 PLEASE TURN OVER

CURRENT ELECTRICITY

$R = \frac{V}{I}$	$q = I\Delta t$
$W = VQ$ $W = VI\Delta t$ $W = I^{2}R\Delta t$ $W = \frac{V^{2}\Delta t}{R}$	$P = \frac{W}{\Delta t}$ $P = VI$ $P = I^{2}R$ $P = \frac{V^{2}}{R}$
$R_{s} = R_{1} + R_{2} + \dots$ $\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$	

ELECTROMAGNETISM

$\phi = BA$	$\epsilon = -N\frac{\Delta \varphi}{\Delta t}$
$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	

WAVES, SOUND AND LIGHT

$c = f \lambda$	$T = \frac{1}{f}$
$E = hf$ or $E = h\frac{C}{\lambda}$	