

Retículas / Látices II

Semana 02 - Clase 06

Propiedades

Dentro de las retículas tenemos distintas propiedades que nos permiten resolver fácilmente distintos escenarios, como determinar si es distributiva o no. Se define la cota superior como ($a \lor b$), y la inferior ($a \land b$).

- $a \leq (a \vee b)$ y $b \leq (a \vee b)$
- Si $(a \le c)$ y $(b \le c)$, entonces $(a \lor b) \le c$; $a \lor b$ es la mínima cota superior.
- Si $(a \wedge b) \leq a$ y $(a \wedge b) \leq b$; $a \wedge b$ es una cota inferior.
- Si $c \leq a$ y $c \leq b$, entonces $c \leq (a \wedge b)$; $a \wedge b$ es la máxima cota inferior de a,b .
- Si a|c y b|c, entonces mcm(a,b)|c.
- Si $A\subseteq C$ y $B\subseteq C$, entonces $(A\cup B)\subseteq C$.

Teoremas

Sea $\,L\,$ una retícula, entonces para todo $\,a,b\in L\,$, se cumplen los siguientes teoremas:

- $a \lor b = b$, si y sólo si $a \le b$.
- $a \wedge b = a$, si y sólo si $a \leq b$.
- $a \wedge b = a$, si y sólo si $a \vee b = b$.

Por definición dado un conjunto linealmente ordenado (orden total). Si $a,b\in L$, entonces $a\le b$ ó $b\le a$. De esta forma se implica que L es una retícula, ya que cada pareja de elementos tiene una MCS y MCI.

Propiedades

Existen 4 propiedades principales: Ley de idempotencia, conmutativa, asociativa y de absorció; que permiten reducir una expresión, es así que a partir de esta definición salen conceptos tales como retícula distributiva, acotada.

Idempotent Properties

- $> a \lor a = a$
- > a ∧ a = a

Commutative Properties

- $\rightarrow a \lor b = b \lor a$
- $\rightarrow a \wedge b = b \wedge a$

Associative Properties

- $\rightarrow a \lor (b \lor c) = (a \lor b) \lor c$
- \Rightarrow a \land (b \land c) = (a \land b) \land c

Absorption Properties

- $\rightarrow a \lor (a \land b) = a$
- $\rightarrow a \wedge (a \vee b) = a$
- \rightarrow a \vee b = b if and only if a R b.
- \rightarrow a \wedge b = a if and only if a R b.
- \rightarrow a \wedge b = a if and only if a \vee b = b.

Retícula acotada

Una retícula L se denomina acotada, si tiene un elemento máximo y un elemento mínimo, donde el máximo se denomina top (1), y el mínimo bottom (0).

Por ejemplo la retícula (\mathbb{Z}^+ , |), NO es una retícula acotada, pues no tiene máximo, el mínimo sería el 1 (divide a todos). Al igual que (\mathbb{Z} , \leq), pues siempre se cumple que $a-1\leq a$.

Retícula distributiva

Una retícula será distributiva si para cualesquiera elementos a,b y $c\in L$, se cumplen las siguientes propiedades distributivas:

- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Además por las propiedades de retículas, si $b \leq c$, entonces se cumple que $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$. De este modo, si a / b sean el mínimo ó máximo se cumple.

Además si dada una retícula $\,L\,$, será no distributiva si y sólo si contiene una subretícula isomorfa a alguna de las dos retículas mostradas anteriormente.