FRA 331: Basic Control Theory

Homework Assignment 1: Modelling

Written

1: Integrator Circuit

The following circuit is an analog inverting PID controller. Using Krichoff's Voltage and Current laws, derive the expression of v_o in term of t, R_1 , R_2 , C_1 , C_2 , and v_i .

In order to receive full credits, determine the gains of inverting PID controller K_P , K_I , and K_D in term of R_1 , R_2 , C_1 ,and C_2 based on the following form.

$$v_o = -\left[K_P(v_i) + K_I\left(\int v_i dt\right) + K_D\left(\frac{dv_i}{dt}\right)\right] \tag{1}$$

Problem 1

2: second-order circuit

Problem 2

Using Kirchoff's Voltage and Current laws, show that the dynamics of the circuit is the following. You do not need to box the answer for this problem.

$$\begin{split} L\frac{di_L}{dt} &= -\Big(\frac{R_1}{R_1 + R_2}\Big)\Big(R_2i_L + v_c - \frac{R_2}{R_1}v_i\Big) \\ C\frac{dv_c}{dt} &= -\Big(\frac{R_1}{R_1 + R_2}\Big)i_L - \Big(\frac{1}{R_1 + R_2} + \frac{1}{R_3}\Big)(v_c - v_i) \\ v_o &= v_c - v_i \end{split}$$

3: Belt-Driven Mechanism

Problem 3

The given belt-driven mechanism consists of a brushless DC motor with the following specification.

- R: internal resistance $[\Omega]$
- L: internal inductance [H]
- K_m : motor-torque constant $[\frac{N \cdot m}{A}]$
- K_b : internal inductance $\left[\frac{V\cdots}{rad}\right]$
- r: gearbox ratio []
- J_m : total motor inertia $[kg \cdot m^2]$
- B_m : total motor mechanical damping $[\frac{kg \cdot m^2}{s}]$

Given an input voltage of v_{in} and external load the output shaft τ_l , the current of the motor i_a and the angular displacement of output shaft θ_s change due to its dynamics.

The belt mechanism can be modeled as a mass-damper-spring system with a mass of m, mechanical damping of b, and a stiffness of k. The radius of the pulley is c. Let the linear displacement z of the belt mechanism.

Derive the equation which describes the dynamics of the entire system, where v_{in} is the input. DO NOT LEAVE THE ANSWER IN TERM OF θ (Note: the transmission formula for belt is $\tau_l=cf$, where f is the transmitted force by the belt. And $z=c\theta$, where θ is the angular displacement of the output shaft at the pulley)