Касьяненко Вера (Р3220, Теор.Вероятн. 5.1)

ИДЗ 19.1 (вариант 5)

Дано:

В результате эксперимента получены данные, записанные в виде статистического ряда:

1,6	4,4	10,9	6,4	4,0	2,8	5,2	1,2	7,6	3,4
2,9	5,3	1,7	7,7	6,9	10,1	5,4	4,1	8,8	6,5
6,6	4,2	5,5	0,5	8,9	4,5	1,8	5,6	7,8	3,0
1,9	10,2	7,9	2,5	5,7	3,1	6,7	4,3	0,6	9,0
6,8	3,2	4,4	9,1	10,3	6,0	7,9	6,9	8,0	2,0
7,0	10,7	8,1	2,1	5,8	6,4	0,3	4,5	9,2	3,3
7,6	9,3	3,4	4,6	5,0	3,8	5,9	8,2	2,2	7,1
2,3	0,8	7,2	8,3	11,1	6,5	3,5	9,4	10,8	4,7
4,8	6,1	3,6	9,5	8,4	2,4	6,2	7,3	5,7	0,9
7,4	8,5	5,8	1,1	5,9	4,9	3,7	9,6	2,6	6,1

Решение:

а) Располагаем значения результатов эксперимента в порядке возрастания, т.е. записываем вариационный ряд:

0,3	0,5	0,6	0,8	0,9	1,1	1,2	1,6	1,7	1,8
1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,8	2,9
3,0	3,1	3,2	3,3	3,4	3,4	3,5	3,6	3,7	3,8
4,0	4,1	4,2	4,3	4,4	4,4	4,5	4,5	4,6	4,7
4,8	4,9	5,0	5,2	5,3	5,4	5,5	5,6	5,7	5,7
5,8	5,8	5,9	5,9	6,0	6,1	6,1	6,2	6,4	6,4
6,5	6,5	6,6	6,7	6,8	6,9	6,9	7,0	7,1	7,2
7,3	7,4	7,6	7,6	7,7	7,8	7,9	7,9	8,0	8,1
8,2	8,3	8,4	8,5	8,8	8,9	9,0	9,1	9,2	9,3
9,4	9,5	9,6	10,1	10,2	10,3	10,7	10,8	10,9	11,1

б) Находим размах варьирования: $\omega = x_{max} - x_{min} = 11,1-0,3 = 10,8$

Величина отдельного интервала: $h = \frac{\omega}{9} = \frac{10,8}{9} = 1,2$

Номер частичного интервала l_i	Границы интервала $x_i - x_i + 1$	Середина интервала $x_i' = \frac{x_i + x_i + 1}{2}$	Частота интервала n_i	Относительная	Плотность относительной частоты $\frac{W_i}{h}$
1	0,3-1,5	0,9	7	0.07	0,0583
2	1,5-2,7	2,1	11	0.11	0,0917
3	2,7-3,9	3,3	12	0.12	0,1
4	3,9-5,1	4,5	13	0.13	0,1083
5	5,1-6,3	5,7	15	0.15	0,125
6	6,3-7,5	6,9	14	0.14	0,117
7	7,5 - 8,7	8,1	12	0.12	0,1
8	8,7-9,9	9,3	9	0.09	0,075
9	9,9 - 11,1	10,5	7	0.07	0,0583
\sum_{i}	_	_	100	_	_

в) Строим полигон частот и гистограмму относительных частот и график эмпирической функции распределения.

Находим значения эмпирической функции распределения $F^*(x) = \frac{n_x}{n}$: $F^*(0,3) = 0$;

$$F^*(1,5) = 0.07; F^*(2,7) = 0.18; F^*(3,9) = 0.3; F^*(5,1) = 0.43; F^*(6,3) = 0.58;$$

$$F^*(7,5) = 0.72; F^*(8,7) = 0.84; F^*(9,9) = 0.93; F^*(11,1) = 1.$$

г) Находим выборочное среднее и выборочную дисперсию:

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} x_i' n_i = 5,64$$

$$D_{\text{B}} = \frac{1}{n} \sum_{i=1}^{k} (x_i' - \bar{x})^2 n_i = \frac{1}{n} \sum_{i=1}^{k} (x_i')^2 n_i - \bar{x}^2 = 7,5852$$

$$\sigma_{\text{B}} = \sqrt{D_{\text{B}}} = 2,75412$$

Расчетная таблица:

	Границы	Середина	Частота			
m_i	интервала	интервала	интервала	$n_i x_i'$	$(x_i')^2$	$n_i(x_i')^2$
	$x_i; x_{i+1}$	x_i'	n_i			
1	0,3 - 1,5	0,9	7	6,3	0,81	5,67
2	1,5 - 2,7	2,1	11	23,1	4,41	48,51
3	2,7 - 3,9	3,3	12	39,6	10,89	130,68
4	3,9 - 5,1	4,5	13	58,5	20,25	487,35
5	5,1 - 6,3	5,7	15	85,5	32,49	487,35
6	6,3 - 7,5	6,9	14	96,6	47,61	666,54
7	7,5 – 8,7	8,1	12	97,2	65,61	787,32
8	8,7 – 9,9	9,3	9	83,7	86,49	778,41
9	9,9 - 11,1	10,5	7	73,5	110,25	771,75
$-\sum$	_	_	100	564	_	4163,58
-						, , , ,

Выборочная дисперсия является смещенно оценкой генеральной дисперсии, а исправленная дисперсия – несмещенной оценкой:

$$\widetilde{D}_{\text{B}} = \frac{n}{(n-1)} D_{\text{B}} = \frac{100}{99} * 7,5852 = 7,661$$

$$\widetilde{\sigma}_{\text{B}} = \sqrt{\widetilde{D}_{\text{B}}} = 2,768$$

Согласно критерию Пирсона необходимо сравнить эмпирические и теоретические частоты. Эмпирические частоты даны. Найдем теоретические частоты. Для этого пронумеруем X, т. е. перейдем к CB $z=(x-\bar{x})/\sigma_{\rm B}$ и вычислим концы интервалов z_i и z_{i+1} , причем наименьшее значение z, т.е. z_1 , положим стремящимся к $-\infty$, а наибольшее, т. е. z_{m+1} к $+\infty$. Результаты занесем в таблицу.

i	_	интервала x_{i+1}	_	_	Границы интервала z_i ; z_{i+1}	
	x_i x_{i+1}		$x_i - \bar{x}$	$x_{i+1} - \bar{x}$	$z_i = \frac{x_i - \bar{x}}{\sigma_{\rm B}}$	$z_{i+1} = \frac{x_{i+1} - \bar{x}}{\sigma_{\scriptscriptstyle B}}$
1	0,3	1,5	_	-4,14	_	-1,5032
2	1,5	2,7	-4,14	-2,94	-1,5032	-1,06749
3	2,7	3,9	-2,94	-1,74	-1,06749	-0,631781
4	3,9	5,1	-1,74	-0,54	-0,631781	-0,19607
5	5,1	6,3	-0,54	0,66	-0,19607	0,239641
6	6,3	7,5	0,66	1,86	0,239641	0,675352
7	7,5	8,7	1,86	3,06	0,675352	1,11106
8	8,7	9,9	3,06	4,26	1,11106	1,54677
9	9,9	11,1	4,26	_	1,54677	_

Находим теоретические вероятности P_i и теоретические частоты $n'_i = nP_i = 100P_i$. Составляем расчетную таблицу.

i	i Границы интервала $z_i; z_{i+1}$ z_i z_{i+1}		$\Phi(z_i)$	$\Phi(z_{i+1})$	$P_i = \Phi(z_{i+1}) - \Phi(z_i)$	$n_i' = 100P_i$
			1 (21)	1 (2(+1)		
1	_	-1,5032	-0,5000	-0,4332	0,0668	6,68
2	-1,5032	-1,06749	-0,4332	-0,3554	0,0778	7,78
3	-1,06749	-0,631781	-0,3554	-0,2357	0,1197	11,97
4	-0,631781	-0,19607	-0,2357	-0,0753	0,1604	16,04
5	-0,19607	0,239641	-0,0753	0,0910	0,1663	16,63
6	0,239641	0,675352	0,0910	0,2517	0,1607	16,07
7	0,675352	1,11106	0,2517	0,3665	0,1148	11,48
8	1,11106	1,54677	0,3665	0,4382	0,0717	7,17
9	1,54677	ı	0,4382	0,5000	0,0618	6,18
\sum_{i}	_	-	-	ı	1	100

Вычислим наблюдаемое значение критерия Пирсона. Для этого составим расчетную таблицу. Последние два столбца служат для контроля вычисления по формуле:

$$x_{\text{набл}}^2 = \frac{1}{n} \sum_{i=1}^k n_i^2 - n$$

i	n_i	n_i'	$n_i - n'_i$	$(n_i - n_i')^2$	$(n_i - n_i')^2/n_i'$	n_i^2	n_i^2/n_i'
1	7	6,68	0,32	0,1024	0,0153293	49	7,3353
2	11	7,78	3,22	10,3684	1,3327	121	15,5527
3	12	11,97	0,03	0,0009	0,000075	144	12,0301
4	13	16,04	-3,04	9,2416	0,57616	169	10,53616
5	15	16,63	-1,63	2,6569	0,159765	225	13,52977
6	14	16,07	-2,07	4,2849	0,26664	196	12,19664
7	12	11,48	0,52	0,2704	0,023554	144	12,54355
8	9	7,17	1,83	3,3489	0,467071	81	11,29707
9	7	6,18	0,82	0,6724	0,108803	49	7,9288
\sum_{i}	100	100	-	-	$x_{\text{набл}}^2 = 2,9500973$	-	102,95009

Контроль:
$$\frac{\sum n_i^2}{n_i'} - n = \frac{\sum (n_i - n_i')^2}{n} = 102,95009 - 100 = 2,95009$$

По таблице критических точек распределения χ^2 , уровню значимости $\alpha=0,0025$ и числу степеней свободы k=l-3=9-3=6 находим: $\chi^2_{\rm kp}=14,4$

Так как $\chi^2_{\rm Ha6\pi} < \chi^2_{\rm kp}$, то гипотеза H_0 о нормальном распределении генеральной совокупности принимается.

е) Если CB X генеральной совокупности распределена нормально, то с надежность $\gamma = 0.95$ можно утверждать, что математическое ожидание α CB X покрывается доверительным интервалом

$$\left(ar{x}-rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma};ar{x}+rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma}
ight)$$
, где $\delta=rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma}$ — точность оценки.

В нашем случае $\bar{x}=5,64$, $\tilde{\sigma}_{\rm B}=2,768$, n=100. $t_{\gamma}=1,984$, $\delta=0,549$. Доверительным интервалом для α будет (5,091; 6,189). Доверительный интервал, покрывающий среднее квадратичное отклонение σ с заданной надежностью γ , ($\tilde{\sigma}_{\rm B}(1-q)$; $\tilde{\sigma}_{\rm B}(1+q)$). При $\gamma=0,95$ и n=100 имеем: q=0,143. Доверительным интервалом для σ будет (2,625; 2,911)