Geometric Representation

CPSC 453 – Fall 2016 Sonny Chan

Summary

- We examined ways to store geometry on the computer:
 - Discrete values or samples
 - Implicit functions
 - Parametric equations
 - Generative procedures
- We discussed how one might convert between them

Discrete Samples

- Essentially what you learned in kindergarten
- Advantages:
 - simple to use
 - flexible and expressive
- Disadvantages:
 - often just an approximation
 - needs a lot of points!

In Three Dimensions

Implicit Functions

- Essentially what you learned in high school
- Explicit form: $y = x^2$
- Implicit form: $x^2 y = 0$
- Write as functions in code, or store coefficients
 - compact, intuitive
- Really difficult to render!

In Three Dimensions

$$(2x^2 + y^2 + z^2 - 1)^3 - (0.1x^2 + y^2)z^3 = 0$$

[from B. Wyvill & K. van Overveld, Intl. J. Shape Modeling 2(4), 1996] 7

Parametric Equations

- Expresses points on a curve/surface as function of a free parameter
- 2D parametric equations:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sin u \\ \cos 2u \end{bmatrix}$$

- Fairly convenient to render
- Disadvantages:
 - not a unique representation
 - shape may not be intuitive

In Three Dimensions

Patches parameterized on *u*, *v*

Generative Functions

- Examples include
 - fractals, L-systems
 - subdivision schemes
 - textures, noise
 - terrain
- Maps very well to computer code
- Excels at describing a narrow set of phenomena

[from A. Runions, B. Lane & P. Prusinkiewicz, Eurographics Workshop, 2007] 11

Things to Remember

Every representation has advantages and disadvantages!

