Tarea 1

Andrés de Lago Gómez A01371779

15-08-2017

1. Funciones

(a) Inyectivas

Una función $f: X \to Y$ es inyectiva si a cada elemento de X le pertenece un elemento distinto de Y i.e.

$$\forall a, b \in X, \quad f(a) = f(b) \implies a = b$$

(b) Sobreyectivas

Una función $f:X\to Y$ es sobreyectiva si cada elemento de Y es la imagen de al menos un elemento de X i.e.

$$\forall y \in Y \quad \exists x \in X, \quad f(x) = y$$

(c) Biyectivas

Una función $f:X\to Y$ es biyectiva si es inyectiva y sob reyectiva i.e.

$$\forall y \in Y \quad \exists ! x \in X, \quad f(x) = y$$

2. Definición de cardinalidad

La cardinalidad de un conjunto A (representada por |A| o card(A)) es la cantidad de elementos que contiene

3. Demostrar $\forall n \in \mathbb{N}$:

(a)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

i. Prueba con elemento ínfimo

$$\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2+1)}{6} = 1$$

ii. Hipótesis

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

iii. P.D.
$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\sum_{i=1}^k i^2 = 1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$$

$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$\frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$\frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$\frac{(k+1)[2k^2 + 7k + 6]}{6}$$

$$\frac{(k+1)(k+1)(2k+3)}{6}$$

$$\vdots$$

$$\sum_{i=1}^k i^2 = \frac{k(k+1)(2k+1)}{6} \quad \forall k \in \mathbb{N}$$

- (b) $\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$
 - i. Prueba con elemento ínfimo

$$\sum_{i=1}^{1} i^3 = \left[\frac{1(1+1)}{2}\right]^2 = 1$$

ii. Hipótesis

$$\sum_{i=1}^{k} i^3 = \left[\frac{k(k+1)}{2}\right]^2$$

iii. P.D.

$$\sum_{i=1}^{k+1} i^3 = \left[\frac{(k+1)(k+2)}{2} \right]^2$$

$$\sum_{i=1}^{k} i^3 = 1^3 + 2^3 + 3^3 + \dots + k^3 = \left[\frac{k(k+1)}{2}\right]^2$$

$$\sum_{i=1}^{k} i^3 = 1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3 = \left[\frac{k(k+1)}{2}\right]^2 + (k+1)^3$$

$$\left[\frac{k(k+1)}{2}\right]^2 + (k+1)^3 = \frac{k^2(k+1)^2}{4} + (k+1)^3$$

$$\frac{(k+1)^2(k+2)^2}{4}$$

$$[\frac{(k+1)(k+2)}{2}]^2$$

$$\vdots$$

$$\sum_{i=1}^k i^3 = [\frac{k(k+1)}{2}]^2 \quad \forall k \in \mathbb{N}$$

- (c) $n! \ge 2^{n-1}$
 - i. Prueba con elemento ínfimo

$$1! = 2^0 = 1$$

ii. Hipótesis

$$k! \ge 2^{k-1}$$

iii. P.D.

$$(k+1)! \ge 2^k$$

$$k! = 1 * 2 * 3 * \dots * k \ge 2^{k-1}$$

$$1 * 2 * 3 * \dots * k * (k+1) \ge 2^{k-1}(k+1)$$

$$2^{k-1}(k+1) = 2^{k-1}k + 2^{k-1}$$

$$2^{k-1}k + 2^{k-1} \ge 2^k$$

$$\vdots$$

$$k! \ge 2^{k-1} \quad \forall k \in \mathbb{N}$$

References

[1] Juan Carlos del Valle Sotelo. Álgebra lineal para estudiantes de ingeniería y ciencias. McGraw-Hill, 2012.