# INTRO TO RPI (PART 1) BY SUTD IEEE

#### **AGENDA**

- Setting up your RPi
  - Install Raspbian
  - Configure Wi-Fi
  - Set static IP
  - Setup SSH
  - Setup VNC

- Using the RPi through the Terminal
- Using the RPi like an Arduino
  - GP I/O Pins with Python

#### WHAT'S AN RPI?!

- Single Board Computer
- Runs Linux (Most of the time)
- Small
- Access to GP I/O Pins (Input and Output)
  - Like an Arduino



## USES OF RPI'S

- Web Servers
- Cloud Servers
- Home Automation
- Home Security
- Arcade Games
- Supercomputing (Clusters)
- Cryptocurrency mining
- Robotics
- •



#### INSTALLING RASPBIAN ON THE RPI'S SD CARD

- Copy Etcher and the Raspbian image to your computer
- Connect the microSD Card
- Open Etcher
- Select the Raspbian image
- Click 'Flash!'

#### SETTING UP WI-FI

- Raspbian does not have a GUI that supports WPA2 Protocol
  - Cannot connect to SUTD\_Student directly!
  - Need to configure it manually
- Configure network in /etc/wpa\_supplicant/wpa\_supplicant.conf

#### SETTING UP WI-FI

- Open Terminal
- sudo nano /etc/wpa\_supplicant/wpa\_supplicant.conf
- Add this to the file:

```
network={
    ssid="SUTD_Student"
    key_mgmt=WPA-EAP
    eap=PEAP
    identity="100XXXX"
    password="YOUR_PASSWORD"
    phase1="peaplabe1=0"
    phase2="auth=MSCHAPV2"
```

• Reboot

#### SET STATIC IP ADDRESS

- What's an IP(v4) Address?
- Why? So we can connect to the RPi at the same address every time.
- Open Terminal:

```
ip -4 addr show | grep global
ip route | grep default | awk '{print $3}'
cat /etc/resolv.conf
```

#### SET STATIC IP ADDRESS

- sudo nano /etc/dhcpcd.conf
- Add this to the file:

```
interface wlan0
static ip_address=\frac{10.1.1.31/24}{10.1.1.1}
static routers=\frac{10.1.1.1}{10.1.1.1}
```

• Reboot

# WHAT IS SSH (SECURE SHELL)

- It is a protocol that allows a computer to remotely log in to another through the Terminal, allowing you to use that computer.
  - In this case the RPi

## SETTING UP SSH

- Open 'Applications Menu' (Top Left) >> 'Preferences' >> 'Raspberry Pi Configuration'
- Select the 'Interfaces' tab
- Enable SSH

# SETTING UP VNC (VIRTUAL NETWORK COMPUTING)

- RealVNC Free!
- Open 'Applications Menu' (Top Left) >> 'Preferences' >> 'Raspberry Pi Configuration'
- Select the 'Interfaces' tab
- Enable VNC

#### USING THE RPI THROUGH THE TERMINAL

- www.mprat.org/Terminus/
- Learn Linux commands to navigate and control the file system.



#### NOW FOR THE ELECTRONICS STUFF

- Program the RPi's GP I/O Pins
  - General Purpose Input/ Output
  - <a href="https://pinout.xyz/#">https://pinout.xyz/#</a>
- Use it like an Arduino
- Can be done using <u>Python</u>, C, C++, Bash, etc.

|                        | Pi Model B/B+ |                        |
|------------------------|---------------|------------------------|
| <b>3V3</b><br>Power    | 1 2           | <b>5V</b><br>Power     |
| GPIO2<br>SDA1 I2C      | 3 4           | <b>5V</b><br>Power     |
| GPIO3<br>SCL1 I2C      | 5 6           | Ground                 |
| GPIO4                  | 7 8           | GPIO14<br>UARTO_TXD    |
| Ground                 | 9 10          | GPIO15<br>UARTO_RXD    |
| GPIO17                 | 11 12         | GPIO18<br>PCM_CLK      |
| GPIO27                 | 13 (14)       | Ground                 |
| GPIO22                 | 15 16         | GPIO23                 |
| 3V3<br>Power           | 17 18         | GPIO24                 |
| GPIO10<br>SPI0_MOSI    | 19 20         | Ground                 |
| GPIO9<br>SPIO_MISO     | 21 22         | GPIO25                 |
| GPIO11<br>SPIO_SCLK    | 23 24         | GPIO8<br>SPIO_CEO_N    |
| Ground                 | <b>25 26</b>  | GPIO7<br>SPIO_CE1_N    |
| ID_SD<br>I2C ID EEPROM | 27 28         | ID_SC<br>I2C ID EEPROM |
| GPI05                  | 29 30         | Ground                 |
| GPIO6                  | 31 32         | GPIO12                 |
| GPIO13                 | 33 34         | Ground                 |
| GPIO19                 | 35 36         | GPIO16                 |
| GPIO26                 | 37 38         | GPIO20                 |
| Ground                 | 39 40         | GPIO21                 |
|                        | Pi Model B+   |                        |

# GP I/O WITH PYTHON

- Install RPI.GPIO
  - sudo pip install rpi.gpio
- In Python
  - import RPi.GPIO as GPIO

## GP I/O WITH PYTHON

- GPIO.setmode(MODE) => MODE is GPIO.BOARD or GPIO.BCM
- GPIO.setup(channel, GPIO.HIGH) => channel can be a list of channels
- GPIO.setup(channel, GPIO.HIGH, initial=GPIO.HIGH)
- GPIO.input(channel)
- GPIO.output(channel) => channel can be a list of channels
- GPIO.PWM(channel,frequency)
- GPIO.cleanup()

# ACTIVITY #1: BLINKING LED

- Connect +ve lead of LED (Longer leg) to BCM26
  - Refer to <a href="https://pinout.xyz/#">https://pinout.xyz/#</a>!
- Connect a resistor from the –ve lead of the LED to an empty space
- Connect the resistor to a GND pin
  - Refer to <a href="https://pinout.xyz/#">https://pinout.xyz/#</a>!



### ACTIVITY #1: BLINKING LED

- import RPi.GPIO as GPIO
- from time import sleep
- import sys
- GPIO.setmode(GPIO.BCM)
- GPIO.setup(26,GPIO.OUT)
- GPIO.output(26,GPIO.HIGH)
- sleep(1) // Sleep for 1s

# ACTIVITY #1: BLINKING LED

```
Try:
    while True:
        # Do Something
finally:
    GPIO.cleanup()
    sys.exit()
```

# ACTIVITY #2: FADING LED

- Connect +ve lead of LED (Longer leg) to BCM26
  - Refer to <a href="https://pinout.xyz/#">https://pinout.xyz/#</a>!
- Connect a resistor from the –ve lead of the LED to an empty space
- Connect the resistor to a GND pin
  - Refer to <a href="https://pinout.xyz/#">https://pinout.xyz/#</a>!



#### ACTIVITY #2: FADING LED

- pwm = GPIO.PWM(26,1000)
- pwm.start(0)
- pwm.ChangeDutyCycle(x)
- for i in range(100):

# ACTIVITY #3: PUSH BUTTON

- Connect one end of the button to BCM26
- Connect the other end on the same side to GND



# ACTIVITY #3: PUSH BUTTON

• GPIO.input(26)

# ACTIVITY #4

- Use a push button to toggle an LED on and off!
- TRY!

