

ISCD: Apprentissage supervisé (APV)

TP 3

S. Robert, A. Babev

Octobre 2024

Exercice 1: MLE dans le cas discret

En génétique, chaque gène peut s'exprimer sous différentes versions appelées allèles. Dans cet exercice, nous allons considérer un gène qui possède deux allèles différents notés A et a. Chaque individu diploïde possède un génotype composé de deux allèles, qui peuvent prendre les valeurs aa, Aa, ou AA. Nous ne faisons pas de distinction entre Aa et aA.

Soit X la variable aléatoire qui associe à chaque allèle sa valeur. Supposons encore que $\mathbb{P}[X=A]=\theta$.

- 1. Calculer la probabilité qu'un individu possède le génotype AA, Aa et aa respectivement notés p_1, p_2, p_3 en fonction de θ .
- 2. Supposons que grâce à un échantillon de taille n nous avons été capable de déterminer N_1 le nombre de génotype AA, N_2 le nombre de Aa et N_3 le nombre de aa. Remarquer que $N_1+N_2+N_3$. En utilisant la méthode du maximum de vraisemblance, estimer θ .

Exercice 2: MLE dans le cas discret

Soit X une variable aléatoire discrète qui prend les valeurs

$$\begin{cases} 0 & \text{avec une probabilité } 6\theta^2 - 4\theta + 1 \\ 1 & \text{avec une probabilité } \theta - 2\theta^2 \\ 2 & \text{avec une probabilité } 3\theta - 4\theta^2 \end{cases}$$

où $\theta \in [0, 1/2]$. Calculer le mle de θ à partir d'une seule observation x.

Exercice 3: MLE dans le cas continu

1. Soit $X_1, \ldots X_n \stackrel{iid}{\sim} \mathcal{W}(\lambda, 1/2)$. Rappelons que iid signifie ind'ependants et identique-ment distribu'es. $\mathcal{W}(\lambda, 1/2)$ est la loi de Weibull. C'est une loi continue qui a pour fonction de densité

$$x \longmapsto \begin{cases} \frac{1}{2\lambda\sqrt{x}}exp(-\frac{\sqrt{x}}{\lambda}) & x>0\\ 0 & \text{sinon} \end{cases}$$

Calculer le mle de λ .

2. Soit $X_1, \ldots X_n \stackrel{iid}{\sim} Unif(0, b)$. Rappelons que Unif(0, b) est la loi uniforme de paramètre b. C'est une loi continue qui a pour fonction de densité

$$x \longmapsto \begin{cases} \frac{1}{b} & \text{si } x \in [0, b] \\ 0 & x \text{ sinon} \end{cases}$$

où évidemment b > 0. Calculer le mle de b.

Exercie 4: MLE et moment

Soit $X_1, \ldots X_n$ un échantillon i.i.d. tiré d'une distribution de densité

$$x \longmapsto \begin{cases} 3\theta^3 x^{-4} & \text{si } x \ge \theta \\ 0 & \text{sinon} \end{cases}$$

où $\theta > 0$.

- 1. Estimer le paramètre θ par la méthode des moments.
- 2. Calculer le m
le de θ .