Assignment

ai24btech11028 - Ronit Ranjan

A. FILL IN THE BLANKS

- 1) The coefficient of x^{99} in the polynomial (x-1)(x-2)...(x-100) is...... (1982-2 Marks)
- 2) If 2 + isqrt3 is a root of the equation $x^2 + px + q = 0$, where p and q are real, then(p,q)=(......,). (1982 2 Marks)
- 3) If the product of the roots of the equation $x^2 3kx + 2e^{2lnk} 1 = 0$ is 7, then the roots are real for k = (1984 2 Marks)
- 4) If the quadratic equation $x^2 + ax + b = 0$ and $x^2 + bx + c = 0 (a \ne b)$ have a common root then value of a+b is..... (1986 2 Marks)
- 5) The solution of equation $log_7 log_5(sqrtx + 5 + sqrtx = 0 \text{ is.....})$ (1986 2 Marks)
- 6) If $x < 0, y, 0, x + y + \frac{x}{y} = \frac{1}{2}$ and $(x + y)(\frac{x}{y}) = -\frac{1}{2}$, then $x = \dots$ and $y = \dots$ (1990 2 Marks)
- 7) Let n and k be such positive numbers such that $n \ge \frac{(k)(k+1)}{2}$. The number of solutions $(x_1, x_2,x_k), x_1 \ge 1, x_2 \ge 2, ..., x_k \ge k$, all integers, satisfying $x_1 + x_2 + ...x_k = n$, is....... (1996 2Marks)
- 8) The sum of all the real roots of the equation $|x-2|^2 + |x-2| 2 = 0$ is (1997 2 Marks)

B. TRUE / FALSE

- 1) For every integer n > 1, the inequality $(n!)^{\frac{1}{n}} < \frac{n+1}{2}$ holds. (1981 2 Marks)
- 2) The equation $2x^2 + 3x + 1 = 0$ has an irrational root. (1983 1 Mark)
- 3) If $a_ib_ic_id$, then the roots of the equation (x a)(x c) + 2(x b)(x d) = 0 are real and distinct. (1984 1 Mark)
- 4) If n_1, n_2,n_p are p positive integers, whose sum is an even number, then the number of odd integers among them is odd. (1985 1 Mark)
- 5) If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where ac \neq 0, then P(x)Q(x)=0 has at least two real roots. (1985 1 Marks)
- 6) If x and y are positive real numbers and m,n are any positive integers, then $\frac{x^n y^m}{(1+x^{2n})(1+y^{2m})} > \frac{1}{4}$ (1989 1 Mark)