The West Nile Virus: From Data to Actions Adi Jaishankar SparkBeyond, 03/04/2020

WNV: leading cause of mosquito-borne disease in the US

Percentage of infected people

reporting mild symptoms

20 PERCENT presenting serious, sometimes fatal, conditions

0.67
PERCENT

Cost of WNV related hospitalizations since 1999

800 MILLION

The City of Chicago has set up a comprehensive surveillance program to detect WNV

Mosquito Data: Date of testing, location of trap, number of mosquitos in trap, WNV present Boolean

Detailed Weather Data: Date of testing, location of trap, number of mosquitos in trap, WNV present Boolean

Predictive models are required for effective disease management

Predictive models are required for effective disease management

What is the raw WNV testing data telling us: preliminary cleaning and feature engineering

Number of Positives correlated with number of measurements

Circle size:

Number of times a trap was sampled

Circle color:

Number of positive tests at a trap location

Correlation coefficient: 0.92

Several traps show statistically significant levels of increased WNV incidence

Total number of positives Ratio of Positives = Total number of measurements

> $H_0: \mu_t \le \mu_0$ $H_1: \mu_t > \mu_0$

> > Mean incidence: 5%

Trap Number	Latitude	Longitude	Incidence
T143	41.999	-87.796	19.4%
T223	42.010	-87.807	14.0%
T096	41.732	-87.678	13.3%
T003	41.964	-87.758	12.0%
T235	41.776	-87.627	11.5%

Action Items:

- Monitor and control high risk traps more effectively
- Collect more data on traps T006, T005, T015, T054C and T070

Culex Pipiens drives the presence of WNV almost singlehandedly

Action Item: Look into specific control measures for culex pipiens (targeted insecticides, nematodes, etc.)

Sub-sampling performed on heavily imbalanced dataset

Baseline Logistic Regression Model performs reasonably well

Model Metrics

Accuracy: 0.76 **ROC-AUC:** 0.84 **F1-Score:** 0.76

Several data cleaning steps were applied to the weather data

- Missing filled with the persistence model (previous non-empty entry)
- Trace rainfall values replaced with 0.005

Feature engineering of weather data performed based on domain knowledge

Mosquito counts and activity are potentially a lagging indicator of weather

Engineered feature	Description	
FG_count FU_count TS_count	The number of days having FG/FU/TS events in the preceding 10 days	
Tavg_median DewPoint_median WetBulb_median	The median Tavg/DewPoint/WetBulb temperatures in the preceding 10 days	
Total_rainfall_10days	The total precipitation in the preceding 10 days	

Calculated absolute humidity from first principles absolute humidity = f(Tavg, WetBulb, StnPressure)

Including engineered features improves model performance

Feature importances help develop action items

Recursive Feature Elimination helps identify key drivers for improved model interpretability

Simplified model performs nearly as well as full model

Model	Accuracy	ROC-AUC	F1-Score
Baseline	0.76	0.84	0.76
Feature Engineered	0.81	0.86	0.82
Reduced feature set	0.80	0.84	0.81

Final recommendations and Action Items

Finding: Traps T143, T223, T096, T003 and T235 show statistically significant increased incidence rate **Actionable:** Divert resources to these traps for more effective control (in a balanced manner)

Finding: Traps T006, T005, T015, T054C and T070 show borderline significance of increased risk

Actionable: Collect more data at these traps to reject/fail to reject hypothesis

Finding: Culex Pipiens single-handedly drives WNV incidence

Actionable: Research/implement effective control measures for this species

Finding: Weeks with high humidity, high number of T'showers are followed by a rise in WNV incidence

Actionable: Ramp up mosquito control measures following such periods

Finding: Weeks of May, June and July show low incidence of WNV

Actionable: If resource strapped, redirect from testing to prevention and control measures

Pitfalls

- Did not check for yearly/cyclical variations in mosquito numbers and WNV incidence
- Conclusions on species might be due to limited data
- Bootstrapping techniques might yield better results compared to sub-sampling
- Logistic Regression does not account for highly non-linear effects and feedback loops
- Viruses evolve with time, sometimes very rapidly

Additional Data

- Bird population, roosting and migration data
- Demographics and health data
- Data on how trap locations were selected

Some locations have many more tests than others

Normalizing by number of measurements reveals higher risk locations

Modeling on imbalanced dataset gives poor results

Station 1 and Station 2 are strongly correlated

Absolute humidity calculation

http://biomet.ucdavis.edu/conversions/HumCon.pdf

I CALUIC

