

Myötäsyötteiset neuroverkot

Jimi Käyrä

15.12.2022

Matemaattiset tieteet

Ohjatun oppimisen malli

► Mallia opetetaan opetusdatajoukolla

$$L = \{(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})\} \subset X \times Y,$$

jossa $x^{(i)} \in X$ on opetusesimerkin i piirrevektori ja $y^{(i)} \in Y$ vastaava kohdemuuttujan arvo.

► Tavoitteena on etsiä sellainen kuvaus $g: X \to Y$, että g(x) vastaa mahdollisimman hyvin tuntematonta arvoa, kun $x \in X$ on opetusdataan kuulumaton piirrevektori.

Opetuksen ongelmia

Keinotekoinen neuroni

 Jimi Käyrä
 Oulun yliopisto
 15.12.2022
 (4/21)

Aktivaatiofunktio

- Summaimen lähtö $\mathbf{w}^{\top}\mathbf{x} + b$ on syötteen \mathbf{x} affiini muunnos \Rightarrow aktivaatiofunktio f mahdollistaa epälineaarisuuden
- Kynnystys (vrt. biologinen neuroni)

Bias

- Aktivaatioon vaadittavan kynnyksen säätö
- Voidaan mieltää vakiosyötteeksi

$$y = f(x_1)$$

$$y = f(w_1x_1)$$

$$y = f(w_1x_1 + b)$$

Neuroverkon arkkitehtuuri

Määritelmä

Neuroverkon arkkitehtuuri voidaan kuvata järjestettynä nelikkona (I, L, O, E), jossa I on syötepaikkojen joukko, L laskentayksikkösolmujen joukko, O lähtöpaikkojen joukko ja E joukko, joka koostuu painotetuista, suunnatuista linkeistä. Linkki on kolmikko (u, v, w), jossa $u \in I \cup L$, $v \in L \cup O$ ja $w \in \mathbb{R}$.

Määritelmä

Neuroverkko on myötäsyötteinen (feed-forward) täsmälleen silloin, kun se ei sisällä syklejä.

Neuroverkon arkkitehtuuri

- Merkitään
 - $w_{ij}^{(I)}$: kerroksen L_{I+1} neuronia i ja kerroksen L_I neuronia j yhdistävän linkin paino,
 - $b_i^{(l)}$: kerroksen L_{l+1} neuronin i bias-termi,
 - $\blacktriangleright h_i^{(I)}$: kerroksen L_I neuronin i lähtö.

syötekerros piilokerros lähtökerros

- Miten määrätään verkon lähtö (output), kun syöte (input) tunnetaan?
- Käytetään syötekerroksen neuronien lähtöjä seuraavan kerroksen neuronien syötteinä ja lasketaan neuronien lähtö.
- Edetään näin rekursiivisesti lähtökerrokseen asti.

Neuroverkon opettaminen

- Miten määrätään opetusdatan avulla painot ja bias-termit siten, että verkko approksimoisi mahdollisimman hyvin syötteiden ja lähtöjen välistä riippuvuutta?
- Kvantifioidaan tavoite määrittelemällä aluksi yksittäiselle opetusesimerkille $(x^{(i)}, y^{(i)})$ virhefunktio

$$J(W, b; x^{(i)}, y^{(i)}) = \frac{1}{2} \|h_{W, b}(x^{(i)}) - y^{(i)}\|^2$$

kuvaa verkon tuottaman ennusteen ja todellisen arvon välistä eroa

Neuroverkon opettaminen

 Huomioidaan kaikki opetusnäytteet määrittelemällä kokonaisvirhefunktio

$$J(W,b) = \underbrace{\frac{1}{M} \sum_{i=1}^{M} J(W,b;x^{(i)},y^{(i)})}_{\text{keskineliövirhe}} + \underbrace{\frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} \left(w_{ji}^{(l)}\right)^2}_{\text{painotermi}}.$$

► Tavoitteena on etsiä sellaiset W^* ja b^* , että J minimoituu, ts.

$$W^*, b^* = \arg \min J(W, b)$$

⇒ optimointiongelma!

Gradienttilaskeutuminen

Päivityssäännöt painoille ja biaksille:

$$w_{ij}^{(I)} \leftarrow w_{ij}^{(I)} - \alpha \frac{\partial J(W, b)}{\partial w_{ij}^{(I)}},$$

$$b_i^{(I)} \leftarrow b_i^{(I)} - \alpha \frac{\partial J(W, b)}{\partial b_i^{(I)}}.$$

$$x^{(i+1)} = x^{(i)} - \alpha \cdot \nabla f(x^{(i)})$$

Jimi Käyrä Oulun yliopisto 15.12.2022 (15/21)

Gradienttilaskeutuminen

Suoralla laskulla havaitaan, että

$$\frac{\partial J(W,b)}{\partial w_{ij}^{(I)}} = \frac{1}{M} \sum_{k=1}^{M} \frac{\partial J(W,b;x^{(k)},y^{(k)})}{\partial w_{ij}^{(I)}} + \lambda w_{ij}^{(I)},$$
$$\frac{\partial J(W,b)}{\partial b_{i}^{(I)}} = \frac{1}{M} \sum_{k=1}^{M} \frac{\partial J(W,b;x^{(k)},y^{(k)})}{\partial b_{i}^{(I)}}.$$

Miten määrätään osittaisderivaatat

$$\frac{\partial J(W,b;x^{(i)},y^{(i)})}{\partial w_{ij}^{(l)}} \text{ ja } \frac{\partial J(W,b;x^{(i)},y^{(i)})}{\partial b_i^{(l)}}?$$

► Tarkastellaan ensin lähtökerrosta. Voidaan osoittaa, että nyt

$$\frac{\partial J}{\partial w_{12}^{(2)}} = \frac{\partial J}{\partial h_1^{(3)}} \frac{\partial h_1^{(3)}}{\partial z_1^{(3)}} \frac{\partial z_1^{(3)}}{\partial w_{12}^{(2)}} = \underbrace{\left[-(y_1 - h_1^{(3)}) \cdot f'(z_1^{(3)})\right]}_{\delta_1^{(3)}} h_2^{(2)}.$$

Yleisesti vektorimuodossa lähtökerrokselle

$$\delta^{(n_l)} = -(y^{(i)} - h^{(n_l)}) \odot f'(z^{(n_l)}),$$

jolloin

$$\frac{\partial J}{\partial W^{(n_l-1)}} = \delta^{(n_l)} (h^{(n_l-1)})^\top.$$

Havaitaan, että piilokerroksen neuroni vaikuttaa koko verkon lähtöön lähtökerroksen neuronien välityksellä.

► Edetään piilokerrokseen kirjoittamalla

$$\frac{\partial J}{\partial w_{11}^{(1)}} = \frac{\partial J}{\partial z_{1}^{(2)}} \frac{\partial z_{1}^{(2)}}{\partial w_{11}^{(1)}} = \left(\sum_{i=1}^{2} \underbrace{\frac{\partial J}{\partial z_{i}^{(3)}}}_{i} \frac{\partial z_{i}^{(3)}}{\partial z_{1}^{(2)}} \right) \frac{\partial z_{1}^{(2)}}{\partial w_{11}^{(1)}}$$

- ⇒ laskennassa voidaan hyödyntää edeltävän kerroksen jo laskettuja virhetermejä!
- ► Voidaan näyttää, että yleisesti piilokerroksille

$$\delta^{(l)} = \left[(W^{(l)})^{\top} \underline{\delta^{(l+1)}} \right] \odot f'(z^{(l)}),$$

jolloin

$$\frac{\partial J}{\partial W^{(l)}} = \delta^{(l+1)} (h^{(l)})^{\top}.$$

- 1. Lasketaan lähtökerrokselle $\delta^{(n_l)} = -(y^{(i)} h^{(n_l)}) \odot f'(z^{(n_l)})$.
- Lasketaan rekursiivisesti

$$\delta^{(l)} = \left[(W^{(l)})^\top \delta^{(l+1)} \right] \odot f'(z^{(l)})$$

ensimmäiseen piilokerrokseen asti.

3. Määrätään osittaisderivaatat painojen suhteeen:

$$\frac{\partial J}{\partial W^{(I)}} = \delta^{(I+1)} (h^{(I)})^{\top}.$$

4. Määrätään osittaisderivaatat biasten suhteen:

$$\frac{\partial J}{\partial h^{(l)}} = \delta^{(l+1)}.$$

Opetusalgoritmi

Algoritmi 3 (Opetusalgoritmi)

- Syöttö: opetusdatajoukko $L = \{(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})\}$, painotuskerroin λ , oppimisnopeus α
- Askel 1: Alustetaan kaikki painomatriisit $W^{(I)}$ ja biasvektorit $b^{(I)}$ satunnaisluvuilla
- Askel 2: Alustetaan $\Delta W^{(I)}$ ja $\Delta b^{(I)}$ nolliksi kaikille I
- Askel 3: **jokaiselle** $(x^{(i)}, y^{(i)}) \in L$:
 - a. Suoritetaan myötäsyöttö syötteellä $x^{(i)}$
 - b. Lasketaan vastavirta-algoritmilla virhevektorit $\delta^{(I)}$

c.
$$\Delta W^{(I)} \leftarrow \Delta W^{(I)} + \delta^{(I+1)} (h^{(I)})^{\top}$$
 kaikille I d. $\Delta h^{(I)} \leftarrow \Delta h^{(I)} + \delta^{(I+1)}$ kaikille I

Askel 4:
$$W^{(l)} \leftarrow W^{(l)} - \alpha \left[\frac{1}{M} \Delta W^{(l)} + \lambda W^{(l)} \right]$$

Askel 5:
$$b^{(I)} \leftarrow b^{(I)} - \alpha \left[\frac{1}{M} \Delta b^{(I)} \right]$$

Askel 6: Palataan askeleeseen 2, jos lopetusehtoa ei ole saavutettu **Ulostulo:** optimaaliset painomatriisit $W^{(I)}$ ja biasvektorit $b^{(I)}$