Ecole Nationale des Sciences Appliquées

Al Hoceima TD de Statique des fluides

Série 3

Exercice 1

- 1. Un cylindre homogène en bois, de masse volumique ρ_b , de rayon R et de hauteur h, flotte sur un fluide au repos de masse volumique ρ_f . Quand il est en équilibre, son axe est vertical et il est immergé sur une profondeur h_1 (voir figure 1). Déterminer la masse volumique du cylindre ρ_b en fonction de h, h_1 et la masse volumique du fluide ρ_f .
- 2. En suite, on exerce sur le cylindre une force F pour soulever le cylindre d'une hauteur h_2 (voir figure 2). Déterminer le module de la force F en fonction de : R, h_2 , g et la masse volumique du fluide ρ_f .

Exercice 2

On considère une sphère creuse en acier (ρ = 7.85g/cm³). Plongée dans l'eau (ρ_1 = 1g/cm³), elle flotte laissant émerger un volume de 200cm³. Plongée dans l'huile (ρ_2 = 0, 8g/cm³), elle flotte laissant émerger un volume de 150cm³. (Figure 3)

On demande de déterminer

- 1. Le poids de la sphère
- 2. Le volume extérieur de la sphère

Fig.3

Exercice 3

Un solide homogène en forme de parallélépipédique de masse volumique ρ_s , de section S et de hauteur h est immergé dans deux liquides non miscibles en équilibre. Les deux liquides sont respectivement du mercure de masse volumique ρ_1 et de l'eau salée de masse volumique ρ_2 . Calculer la hauteur d'immersion x_0 du solide en équilibre (Figure 4).

Filière: CP2, S4

Année universitaire : 2019/2020

AN: $\rho_s = 7.1 \text{g/cm}^3$, $\rho_1 = 13.6 \text{g/cm}^3$, $\rho_2 = 1.1 \text{g/cm}^3$ et h = 15cm.

Fig. 4

Exercice 4

On considère un cylindre (1) en acier, de rayon R et de hauteur H. Ce cylindre est suspendu par un fil (3) à l'intérieur d'un récipient contenant de l'huile (2). On donne :

- l'accélération de la pesanteur $g=9.81 \text{ m/s}^2$
- la masse volumique de l'huile ρ_{huile} =824 kg/m^3
- la masse volumique de l'acier ρ_{acier} =7800 kg/m^3

- 1) Déterminer l'expression de la tension T du fil en appliquant le théorème d'Archimède.
- 2) Retrouver la même expression en utilisant la relation fondamentale de l'hydrostatique.
- 3) Faire une application numérique pour R=0,1 m et H=0,2 m.

Correction

Exercice 1

1. La masse volumique du cylindre en bois :

Le cylindre est en équilibre dans le fluide, et il subit deux forces : le poids \vec{P} et la force d'Archimède \vec{F}_{Arch} , donc :

$$\vec{P} + \vec{F}_{Arch} = \vec{0}$$

Les deux forces sont situées suivant l'axe z et ont des sens opposés :

$$-P + F_{Arch} = 0 \Leftrightarrow P = F_{Arch}$$

$$\Leftrightarrow \rho_b.V_{cyl}.g = \rho_f.V_{imm}.g$$

$$\Leftrightarrow \rho_b.V_{cyl}.g = \rho_f.S.h_1.g$$

$$\Rightarrow \rho_b = \rho_f \frac{S.h_1}{V_{cyl}} = \rho_f \frac{S.h_1}{S.h}$$

$$\Rightarrow \rho_b = \rho_f \frac{h_1}{h}$$

2. Le module de la force *F* :

Le cylindre est en équilibre mais il est soumis à trois forces maintenant :

$$\begin{split} \vec{P} + \vec{F}_{Arch} + \vec{F} &= \vec{0} \\ \Longrightarrow -P + F_{Arch} + F &= 0 \\ \Longleftrightarrow F &= P - F_{Arch} = \rho_b.V_{cyl}.g - \rho_f.V_{imm}.g \end{split}$$

Or, le volume immergé dans ce cas est $V_{imm} = (h_1 - h_2).S$,

$$\Rightarrow$$
 $F = \rho_b.V_{cyl}.g - \rho_f.(h_1 - h_2).S.g$

En remplaçant ρ_b et V_{cyl} par leurs relations, on trouve :

$$F = \rho_f g S h_2$$

$$\Rightarrow F = \rho_f g \pi R^2 h_2$$

Exercice 2

$$\begin{split} Equilibre &\Leftrightarrow \sum \vec{F}_{ext} = \vec{0} \Leftrightarrow P = F_{Arch}. \\ &\Rightarrow \begin{cases} P = (V - 200)\rho_{eau} \ g & (1) \\ P = (V - 150)\rho_{huile} \ g & (2) \end{cases} \end{split}$$

avec V le volume extérieur de la sphère et P son poids.

$$\Rightarrow \begin{cases} P = (V - 200) \times 1 \times 9,81 \\ P = (V - 150) \times 0,8 \times 9,81 \end{cases}$$

$$\Rightarrow \begin{cases} P = 9,81V - 1962 \\ P = 7,848V - 1177,2 \end{cases}$$

$$(1) = (2) \Rightarrow 1,962V = 784,8$$

$$\Rightarrow V = 400 \text{ cm}^{3}$$

$$\Rightarrow P = 1.962 N$$

Exercice 3

$$Equilibre \Leftrightarrow \sum \vec{F}_{ext} = \vec{0} \Leftrightarrow P = F_{Arch}.$$

On a:

$$P = \rho_s. V. g = \rho_s. h. S. g$$

 $F_{Arch} = F_m(appliquée\ par\ le\ mercure) + F_e(appliquée\ par\ l'eau\ salée).$ $F_{Arch} = \rho_1 x_0 Sg + \rho_2 (h - x_0) Sg$

$$P = F_{Arch} \iff \rho_s. h. S. g = \rho_1 x_0 Sg + \rho_2 (h - x_0) Sg$$

$$\implies x_0 = \frac{\rho_s - \rho_2}{\rho_1 - \rho_2}.h$$

$$\implies x_0 = 7,2 cm$$

Exercice 4

1) L'expression de la tension du fil en utilisant le théorème d'Archimède: On a :

$$\vec{P} + \vec{F}_{Arch} + \vec{T} = \vec{0}$$

$$\Rightarrow -P + F_{Arch} + T = 0$$

$$\Leftrightarrow -\rho_{acier} \cdot V_{acier} \cdot g + \rho_{huile} \cdot V_{acier} \cdot g + T = 0 \qquad (V_{imm} = V_{acier})$$

$$\Rightarrow T = \pi R^2 H(\rho_{acier} - \rho_{huile})g$$

2) L'expression de la tension du fil en utilisant la relation fondamentale de l'hydrostatique :

On a:

$$\vec{P} + \vec{T} + \vec{F}_A + \vec{F}_B + \vec{F}_L = \vec{0}$$

 \vec{F}_A : force de pression du fluide sur la surface en haut.

 \vec{F}_B : force de pression du fluide sur la surface en bas.

 \vec{F}_L : force de pression du fluide sur la surface latérale.

Suivant l'axe Z on a : $\vec{F}_L = \vec{0}$

$$\Rightarrow -P + T - F_A + F_B = 0$$

$$\Leftrightarrow T = P + F_A - F_B$$

$$\Leftrightarrow T = \rho_{acier} \pi R^2 H g + \pi R^2 (P_A - P_B)$$

Relation fondamentale de l'hydrostatique :
$$P_A - P_B = -\rho_{huile} g(z_A - z_B)$$

 $\Rightarrow T = \rho_{acier} \pi R^2 Hg - \pi R^2 \rho_{huile} g(z_A - z_B)$

$$\Rightarrow T = \pi R^2 Hg \; (\rho_{acier} - \rho_{huile})$$

3) Application numérique : T = 429,99 N.