

VERSION 1

MAR 16, 2023

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.n92ldp6w8l5b/v1

Protocol Citation: Sophia Liu, Ruth Raichur, Fei Chen 2023. Slide-TCR-Seq v3 (IVT). protocols.io

https://dx.doi.org/10.17504/p rotocols.io.n92ldp6w8l5b/v1

MANUSCRIPT CITATION:

Liu, Sophia, et al. "Spatial Maps of T Cell Receptors and Transcriptomes Reveal Distinct Immune Niches and Interactions in the Adaptive Immune Response." Immunity, vol. 55, no. 10, 2022.

https://doi.org/10.1016/j.imm uni.2022.09.002.

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Slide-TCR-Seq v3 (IVT) V.1

Sophia Liu^{1,2,3}, Ruth Raichur³, Fei Chen^{3,4}

¹Biophysics Program, Harvard University, Boston, MA 02115, USA;

²Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

³Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;

⁴Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA

Ruth Raichur

ABSTRACT

T cells mediate antigen-specific immune responses to disease through the specificity and diversity of their clonotypic T cell receptors (TCRs). Determining the spatial distributions of T cell clonotypes in tissues is essential to understanding T cell behavior, but spatial sequencing methods remain unable to profile the TCR repertoire.

We developed Slide-TCR-seq, a 10-µm-resolution method, to sequence whole transcriptomes and TCRs within intact tissues. Our method yields insights into the spatial relationships between clonality, neighboring cell types, and gene expression that drive T cell responses.

The most recent version of our protocol uses in vitro transcription in lieu of rhPCR amplfiication, which overcomes the barcode switching introduced by the rhPCR and results in higher mapping rates.

MATERIALS

LIBRARY PREPARATION

- 1.5 mL Eppendorf LoBind Tubes (Eppendorf, 0030122275)
- 0.2 mL TempAssure PCR Flex-Free 8-Tube Strips, Attached Individual Optical Caps (USA Scientific, 1402-4700)
- UltraPure Distilled Water (Invitrogen, 10977015)
- NxGen RNase Inhibitor (Lucigen, F83923-1)
- Maxima H minus Reverse Transcriptase + Maxima 5X RT Buffer (Thermo Scientific, EP0752)
- Deoxynucleotide (dNTP) solution mix (New England BioLabs, N0447L)
- AmPure XP (SPRI beads) (Beckman Coulter, A63881)
- SPRIselect (SPRI beads) (Beckman Coulter, B23319)

Created: Mar 11, 2023

Last Modified: Mar 16, 2023

PROTOCOL integer ID:

78583

Keywords: T cell receptor, spatial transcriptomics, tertiary lymphoid structures, cancer niches, Slide-TCR-seq, IVT, in vitro transcription

- Qubit dsDNA HS Assay Kit (Thermofisher, Q32851)
- Bioanalyzer High Sensitive DNA kit (Agilent, 5067-4626)
- HiScribe™ T7 Quick High Yield RNA Synthesis Kit (New England BioLabs, E2050S)
- 2x KAPA Hifi Hotstart Readymix (Roche, KK2602)

OLIGONUCLEOTIDE SEQUENCES

A	В
Truseq-P5 Hybrid	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA CGCTCTTCCGATCT
T7 PCR primer	TCTAGATAATACGACTCACTATAGGG
Human T7- TCRV primer mix	See table 2
Mouse T7- TCRV primer mix	See table 3

Table 1: Oligonucleotide sequences

А	В
Name	Sequence
TRAV1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGAGGTCGTTTTTCTTCATTCCTTAGTC
TRAV2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGACGATACAACATGACCTATGAACGG
TRAV3.1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTTTGAAGCTGAATTTAACAAGAGCC
TRAV4.1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTCCCTGTTTATCCCTGCCGAC
TRAV5.1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGAACAAGACCAAAGACTCACTGTTC
TRAV6	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGAAGACTGAAGGTCACCTTTGATACC
TRAV7	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGACTAAATGCTACATTACTGAAGAATGG
TRAV8	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCATCAACGGTTTTGAGGCTGAATTTAA
TRAV9	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGAAACCACTTCTTTCCACTTGGAGAA
TRAV10	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTACAGCAACTCTGGATGCAGACAC
TRAV12	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGAAGATGGAAGGTTTACAGCACA
TRAV13.	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGACATTCGTTCAAATGTGGGCGAA

A	В
TRAV13. 2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGCAAGGCCAAAGAGTCACCGT
TRAV14	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCAGAAGGCAAGAAAATCCGCCA
TRAV16	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGACCTTAACAAAGGCGAGACA
TRAV17	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAAGAGTCACGCTTGACACTTCCA
TRAV18	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAGAGGTTTTCAGGCCAGTCCT
TRAV19	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCACCAGTTCCTTCAACTTCACC
TRAV20	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCACATTAACAAAGAAGGAAAGCT
TRAV21	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCTCGCTGGATAAATCATCAGGA
TRAV22	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGAC
TRAV23	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACAATCTCCTTCAATAAAAGTGCCA
TRAV24	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGAC
TRAV25	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTTTGGAGAAGCAAAAAAGAACAGCT
TRAV26. 1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGAAGACAGAAAGTCCAGCACCT
TRAV26. 2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCGCTGAAGACAGAAAGTCCAGT
TRAV27	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGAC
TRAV29	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTAAACAAAAGTGCCAAGCACCTC
TRAV30	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATATCTGCTTCATTTAATGAAAAAAAGC
TRAV34	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAAGTTGGATGAGAAAAAGCAGCA
TRAV35	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCAGTTTGGTATAACCAGAAAGGA
TRAV36	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGAAGACTAAGTAGCATATTAGATAAG
TRAV38	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGTGAACTTCCAGAAAGCAGCCA
TRAV39	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCACTTGATACCAAAGCCCGT
TRAV40	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAAGACAGAGACAGAGGCGGAAATATTAAAGACAAAAACTC
TRAV41	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTAATTGCCACAATAAACATACAGG

Α	В
TRBV2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCCTGATGGATCAAATTTCACTCTG
TRBV3-1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTCTCACCTAAATCTCCAGACAAAGCT
TRBV4	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCCTGAATGCCCCAACAGCTCTC
TRBVS- 48	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTCTGAGCTGAATGTGAACGCCT
TRBVS-1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCGATTCTCAGGGCGCCAGTTCTCT
TRBV6-1	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTGGCTACAATGTCTCCAGATTAAACAA
TRBV6- 23	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCCCTGATGGCTACAATGTCTCCAGA
TRBV6-4	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGTGTCTCCAGAGCAAACACAGATGATT
TRBV6- 56	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGTCTCCAGATCAACCACAGAGGAT
TRBV6-8	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGTCTCTAGATTAAACACAGAGGATTTC
TRBV6-9	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGCTACAATGTATCCAGATCAAACA
TRBV7-2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTCGCTTCTCTGCAGAGAGGACTGG
TRBV7-3	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCGGTTCTTTGCAGTCAGGCCTGA
TRBV7-8	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCCAGTGATCGCTTCTTTGCAGAAA
TRBV?- 46	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTCTCCACTCTGAMGATCCAGCGCA
TRBV7-7	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCAGAGAGGCCTGAGGGATCCAT
TRBV7-9	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTGCAGAGAGGCCTAAGGGATCT
TRBV9	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTCCGCACAACAGTTCCCTGACTT
TRBV10- 13	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCAGATGGCTAYAGTGTCTCTAGATCAAA
TRBV10- 2	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGTTGTCTCCAGATCCAAGACAGAGAA
TRBV11	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCAGAGAGGCTCAAAGGAGTAGACT
TRBV12- 34	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCTAAGATGCCTAATGCATCATTCTC
TRBV12- 5	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCTCAGCAGAGATGCCTGATGCAACT
TRBV13	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTCTCAGCTCAACAGTTCAGTGACTA

A	В
TRBV14	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCTGAAAGGACTGGAGGGACGTAT
TRBV15	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGATAACTTCCAATCCAGGAGGCCG
TRBV16	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGCTAAGTGCCTCCCAAATTCACCC
TRBV18	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGAACGATTTTCTGCTGAATTTCCCA
TRBV19	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGTACAGCGTCTCTCGGGAGAAGA
TRBV20-	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGACAAGTTTCTCATCAACCATGCAA
TRBV24-	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTGGATACAGTGTCTCTCGACAGGC
TRBV25-	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCAACAGTCTCCAGAATAAGGACGGA
TRBV27-	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGTACAAAGTCTCTCGAAAAGAGAAGAG
TRBV28	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGGGGTACAGTGTCTCTAGAGAGA
TRBV29	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGGTTTCCCATCAGCCGCCCAAACCTA
TRBV30	TCTAGATAATACGACTCACTATAGGGTCGTGGGCTCGGAGATGTGTA TAAGAGACAGCAGACCCCAGGACCGGCAGTTCAT

Table 2: Human T7-UPS2-TCRV oligo sequences

A	В
mAV01	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCGCTCGAATGGGTACAGTTACCTGA
mAV02	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCGGAAGCTCAGCACTCTGAACCTGA
mAV03	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACACTCTCTGAACCTCACAGCTGCCCAA
mAV041	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCGCTACAGCACCCTGCACATCAC
mAV042	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTTCTAAGGAGAGCTACAGCACCCTGCAA
mAV043	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTTCTAAGGAGAGCTACAGCACCCCGCAA
mAV044	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTTCTAAGGAGCTCTACAGCACCCTGCAA
mAV051	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTTACAGCCACTCAGCCTGGAGACTA
mAV052	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCAGACACCCAGCCTGGAGACA

A	В
mAV061	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCTTCCACTTGCAGAAAGCCTCAGTA
mAV062	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCCTTCCACTTACAGAAAGCCTCAGTGCT
mAV063	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGGAAGCAGCAGAGGTTTTGAAGCTACAC
mAV071	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCAGCTCACTCAATAAGGCCAGCCTGA
mAV072	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGAGAC
mAV073	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCAGAGAGTCGCAACCCAGTGACTCA
mAV074	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCAATAGAGCCAGCCTGCATGTTTCA
mAV075	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGTGTCCATCTTCTCTGATGGTGAAAAGGT
mAV081	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAGCCACCCTTGACACCTCCAGCCT
mAV082	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCAGTGGAAGACTCAGAGCCACCCTTA
mAV091	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGAAAGCCTCCGTGCACTGGAGCGT
mAV092	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCTTCGAGGCTGAGTTCAGCAAGAC
mAV093	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAGTAACTCTTCCTTCCACCTGCGGAAAT
mAV10	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACATCACAGCCACACAGCCTGAAGAC
mAV11	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCACAGCACGCTGCACATCACAGA
mAV12	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCAGCTCCTTCCATCTGCAGAAGTCCA
mAV131	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCTCTTTGCACATTTCCTCCTCCAGAA
mAV132	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCTCTTTGACTATATCCTCCTCCCAGACCT
mAV141	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAGACTCTCAGCCTGGAGACTCAGCCT
mAV142	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAGGAAGATGGACGATTCACAATCTTCTTCAC
mAV151	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCGCTATTCTGTAGTCTTCCAGAAATCACA
mAV152	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCATCAGCCTTGTCATTTCAGCCTCACT
mAV16	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAGCCAAAAAGTTCCATCGGACTCATCAC
mAV17	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCTTTCAACCTGAAGAAATCCCCAGCCCATA

А	В
mAV19	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCTTCTCACTGCACATCACAGCCTCCCT
mAV21	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTGGCTATTGCCTCTGACAGAAAGTCAC
mBV01	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCTGATACGGAGCTGAGGCTGCAAGA
mBV02	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCAGATCACAGCTCTAAAGCCTGATGACC
mBV03	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCAACCCA
mBV04	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCGCTTCTCACCTCAGTCTTCAGATAAC
mBV05	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTGCCCAGACAGCTCCAAGCTACA
mBV12	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCCAGCAGATTCTCAGTCCAACAGTC
mBV131	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCCACCAGAACAACGCAAGAAGC
mBV132	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACAAGGCCTCCAGACCAAGCCAAT
mBV14	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCCTAAAGGAACTAACTCCACTCTCAAGAC
mBV15	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTGAAGATTCAACCTACAGAACCCAAGGACA
mBV16	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTGAAGATCCAGAGCACGCAACCCCT
mBV17	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCTCTACATTGGCTCTGCAGGCCTAGT
mBV19	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCACTGTGACATCTGCCCAGAAGAT
mBV20	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTTCCCATCAGTCATCCCAACTTATCCTA
mBV23	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTCTGCAGCCTGGGAATCAGAACGA
mBV24	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCATCCTGGAAATCCTATCCT
mBV25	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACCCCAATCTCATCCTTCATCTTGGAAATGCT
mBV26	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACTGCAGCCTAGAAATTCAGTCCTCTGAGA
mBV29	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGGGAGCATTTCTCCCTGATTCTGGATTA
mBV30	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACGCCAAACCTAACATTCTCAACGTTGACAGA
mBV31	AGATAATACGACTCACTATAGGGTCGTGGGTCGTGGGCTCGGAGATGT GTATAAGAGACACGGAGAAGCTGCTTCTCAGCCACA

Table 3: Mouse T7-UPS2-TCRV oligo sequences

PCR to add T7 to cDNA libraries

- This protocol amplifies TCRs from unfragmented, full-length cDNA from Slide-Seq.

 Prepare two 10-nanogram* dilutions of all samples into 12.25 µL of ultrapure water for amplifying TCR alpha and beta sequences in separate reactions.
 - *We have successfully tested down to 2 ng for low-concentration samples.
- Prepare the primer extension PCR master mix using KAPA Hifi Hotstart Readymix 2X and T7-TCRV primer pool. Gently mix by pipetting and run the PCR program below.

Note: TRAV and TRBV primers are pooled separately and are treated as individual reactions for each sample.

Primer extension PCR mix per sample:

A	В	С
Volume (µL)	Reagent	Final concentration
12.5	KAPA Hifi Hotstart Readymix 2X	1 X
0.25	100 µM T7- TCRV primer pool	1 μΜ
4-10 ng	cDNA	
up to 25 μL	Ultrapure water	

Final volume 25 μL

Primer extension PCR protocol:

A	В	С
Cycles	Temp	Time
5	95 °C	5 minutes
	65 °C for human primer pool/70 °C for mouse primer pool	30 seconds
	72 °C	3 minutes

A	В	С
1	4°C	hold

Safe stopping point, store at 4 °C

- Add 25 μ L of water to bring the reaction to 50 μ L. Perform a PCR clean-up following the manufacturer's instructions using SPRIselect or AMPure XP beads at 0.6X (30 μ L of SPRI beads to 50 μ LPCR reaction volume). Elute in 9 μ L of water.
- 4 Prepare the T7/Truseq PCR master mix with KAPA Hifi Hotstart Readymix 2X. Add 16 μ L of master mix to 9 μ L of the sample. Gently mix by pipetting and run the PCR program below.

T7/Truseq PCR mix per sample:

A	В	С
Volume (uL)	Reagent	Final concentration
12.5	KAPA Hifi Hotstart Readymix 2X	1 X
0.5	100uM Truseq-P5 Hybrid primer	2 μΜ
0.5	100uM T7 PCR primer	2 μΜ
9	Sample	
2.5	Ultrapure water (up to 25)	

Final volume 25 μL

T7/Truseq PCR protocol:

Α	В	С
Cycles	Temp	Time
1	98 °C	2 minutes
10	98 °C	1 minute
	60 °C	30 seconds
	72 °C	3 minutes
1	72 °C	5 minutes
	4 °C	hold

Safe stopping point, store at 4 °C

Add 25 μ L of water to bring the reaction to 50 μ L. Perform a PCR clean-up following the

manufacturer's instructions using SPRIselect or AMPure XP beads at 0.6X (30 μ L of SPRI beads to 50 μ LPCR reaction volume). Elute in 8 μ L of water.

IVT amplification

Follow the manufacturer's instructions on the HiScribe RNA synthesis kit using 8 μ L of the sample eluted in the previous step. Incubate reaction for 2 hours at 37 °C.

HiScribe RNA Synthesis mix per sample:

A	В	С
Volume (uL)	Reagent	Final concentration
10	NTP Buffer Mix	10 mM each NTP
2	T7 RNA Polymerase Mix	
8	Sample	

Final volume 20 μL

7 Use RNAse away to clean all surfaces and pipettors.

Add 30 μ L of water to bring the reaction to 50 μ L. Perform a PCR clean-up using SPRIselect or AMPure XP beads at 0.6X (30 μ L of SPRI beads to 50 μ L PCR reaction volume), following the steps below:

For a 50 µL reaction, add 30 uL of SPRI beads.

Incubate for 5 minutes at RT.

Incubate for 2 minutes on a magnet until the solution turns clear.

Discard supernatant.

Wash on a magnet for 30 sec with 200 μL of freshly made 80% EtOH.

Repeat wash.

Discard supernatant.

Spin down briefly on a table spinner.

Remove all EtOH with a 20 µL pipette.

Elute with 20 µL of H2O.

8 Use a NanoDrop on the RNA setting to measure RNA concentration.

RT

Add 180 μ L of the following RT mix to 20 μ L of the RNA sample. Incubate reaction for 2 hours at 42 °C.

Reverse Transcription Mix per sample:

A	В	С
Volume (uL)	Reagent	Final concentration
40	Maxima 5X RT buffer	1 X
20	10 mM dNTPs	1 mM
5	RNAse inhibitor	
2	100 μM Truseq-P5 Hybrid primer	1 μΜ
10	Maxima H-RTase	
20	Template RNA (sample)	1 pg - 5 ug
103	Ultrapure water (up to 200)	

Final volume 200 μL

Safe stopping point, store at 4 °C

Perform a PCR clean-up following the manufacturer's instructions using SPRIselect or AMPure XP beads at 0.6X (120 µL of SPRI beads to 200 µL RT reaction volume). Elute in 20 µL of water. Record concentrations using a NanoDrop on the ssDNA setting and save all samples.

Index PCR

Prepare the PCR master mix with KAPA Hifi Hotstart Readymix 2X, P5-Truseq PCR primer, and Nextera PCR primer index. Gently mix by pipetting and divide the total volume of each sample into 4 PCR tubes each containing 50 µL (25%) of the total.

Note: Each sample must use a different i7 index if you intend to pool samples for multiplexed sequencing. We do not recommend dual-indexing of samples.

Index PCR mix per sample:

A	В	С
Volume (uL)	Reagent	Final Concentration
100	KAPA Hifi Hotstart Readymix 2X	1 X

A	В	С
4	100 μM Truseq-P5 Hybrid PCR primer	2 μΜ
4	100 μM Nextera PCR primer (i7)	2 μΜ
100 ng	Sample	
up to 200	ultrapure water	

Final volume 200 μL

Index PCR protocol:

А	В	С
Cycles	Temp	Time
1	98 °C	2 minutes
10	98 °C	1 minute
	67 °C	20 seconds
	72 °C	3 minutes
1	72 °C	5 minutes
	4 °C	hold

Safe stopping point, store at 4 °C

Recombine the samples that were split into 4 parts in the previous step and perform PCR clean-up following the manufacturer's instructions using SPRIselect or AMPure XP beads at 0.6X (120 μ L of SPRI beads to 200 μ L PCR reaction volume). Elute in 10 μ L of water.

To quantify the TCR libraries, use the Qubit dsDNA high-sensitivity kit and BioAnalyzer High-SensitivityThe expected DNA kit following the manufacturer protocols.

BioAnalyzer trace of a TRB library. The expected library length is around 1100bp.

BioAnalyzer trace of a TRA library. The expected library length is around 1300bp.

Sequencing

TRA libraries are best sequenced on a Nanopore. TRB libraries can be sequenced on a Nanopore or MiSeq.

For best results, it's generally advised to sequence each sample to a depth of 1-2 million reads.

MiSeq read structure is as follows:

Read 1: 42 bp Index 1: 8 bp Read 2: 270 bp Index 2: 0 bp