24 Lecture 24 (Evaluation of real integrals)

Summary

- Trigonometric integral
- Integral of rational function
- Jordan lemma

The integral of a rational function $R(\cos \theta, \sin \theta)$ in $\cos \theta$ and $\sin \theta$, for θ from 0 to 2π , can be transformed to complex integral,

$$\int_0^{2\pi} R(\cos \theta, \sin \theta) \, d\theta = \int_{|z|=1} \frac{1}{iz} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) dz.$$

The complex integral on the right is computed on the unit circle, with counter-clockwise orientation. Recall that $z = e^{i\theta}$ when z is on the unit circle, and $z'(\theta) = iz$. The integrand on the right is a rational function in z, and can be evaluated using residue theorem.

Example 24.1. Show that

$$\int_0^{2\pi} \frac{1}{1 + a\cos\theta} \, d\theta = \frac{2\pi}{\sqrt{1 - a^2}} \quad \text{for } a \in \mathbb{R}, \ |a| < 1$$

Let C be the unit circle with clock-wise orientation. Parameterize C by $z(\theta)$ for $0 \le \theta \le 2\pi$. The trigonometric integral can be written as

$$\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \int_C \frac{dz}{iz(1 + a(\frac{z+z^{-1}}{2}))}$$
$$= \frac{2}{i} \int_C \frac{dz}{az^2 + 2z + a}.$$

The denominator is a quadratic function. Let α and β be the roots

$$\alpha = \frac{-1 + \sqrt{1 - a^2}}{a}, \quad \beta = \frac{-1 - \sqrt{1 - a^2}}{a}.$$

Both α and β are real roots. We can show that α is inside the unit circle, while β is outside the unit circle. For example, when a > 0, we have $\beta < -1$ and $0 > \alpha = 1/\beta > -1$. Likewise, we can show that when a < 0, we have $\beta > 1$ and $0 < \alpha < 1$. When a = 0, there is only one root at z = 0. We may assume 0 < |a| < 1 in the following calculations.

Figure 1: Boundary of a semi-circle

By the residue theorem (Theorem 21.2), we can compute

$$\int_0^{2\pi} \frac{1}{1 + a\cos\theta} d\theta = 4\pi \operatorname{Res}\left(\frac{1}{a(z - \alpha)(z - \beta)}; \alpha\right)$$
$$= 4\pi \frac{1}{a} \left(\frac{1}{z - \beta}\right) \Big|_{z = \alpha}$$
$$= \frac{4\pi}{a(\alpha - \beta)}$$
$$= \frac{2\pi}{\sqrt{1 - a^2}}.$$

Consider a real integral in the form

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \, dx$$

where P(x) and Q(x) are polynomial function and $\deg Q(x) \geq 2 + \deg P(x)$. The function Q(x) in the denominator is assumed to be analytic on the real axis.

We can use complex integral to compute the principal value

$$\lim_{a \to \infty} \int_{-a}^{a} \frac{P(x)}{Q(x)} \, dx$$

using contour shown in Figure 1.

The first part C_1 is a line segment from -a to a. The real integral $\int_{-a}^{a} P(x)/Q(x) dx$ is the same as the complex integral $\int_{C_1} P(z)/Q(z) dz$.

The second part C_2 is a semi-circle in the upper half plane from a to -a. The assumption that deg $Q \ge 2 + \deg P$ implies that the integral $\int_{C_2} P(z)/Q(z) \, dz$ approaches 0 as $a \to \infty$.

Example 24.2. Show that

$$\int_0^\infty \frac{1}{1+x^2} \, dx = \frac{\pi}{2}.\tag{24.1}$$

Since the integrand is an even function, it is equivalent to

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \pi.$$

Referring to the contour in Fig. 1, when a > 1, the pole at z = i is inside the contour, and the the residue is

$$\operatorname{Res}\left(\frac{1}{1+z^2};i\right) = \left(\frac{1}{z+i}\right)\Big|_{z=i} = \frac{1}{2i}.$$

The integral along C_1 is

$$\int_{C_1} \frac{1}{1+z^2} \, dz = \int_{-a}^a \frac{1}{1+x^2} \, dx.$$

When z is a point on C_2 , the function value is upper bounded by $\frac{1}{a^2-1}$. By ML inequality (Theorem 13.3),

$$\left| \int_{C_2} \frac{1}{1+z^2} \, dz \right| \le \frac{1}{a^2 - 1} (\pi a) = O(1/a).$$

The modulus converges to zero as $a \to \infty$. Hence, the integral to be computed can be written as

$$\lim_{a \to \infty} \int_{-a}^{a} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \int_{C_{1}} \frac{1}{1+z^{2}} dz$$

$$= 2\pi i \operatorname{Res} \left(\frac{1}{1+z^{2}}; i\right) - \lim_{a \to \infty} \int_{C_{2}} \frac{1}{1+z^{2}} dz$$

$$= \pi - 0 = \pi.$$

This proves (24.1).

Example 24.3. Derive

$$\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^{n+1}} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \pi$$

for integer $n \geq 1$.

We use the same contour as in Fig. 1. Let f(z) denote the complex function $\frac{1}{(1+z^2)^{n+1}}$. By residue theorem (Theorem 21.2), we obtain

$$\int_{C_1} + \int_{C_2} = 2\pi i \operatorname{Res}(f; i).$$

We can use similar analysis as in the previous example to show that the integral over C_2 tends to 0 as the radius approach infinity. Hence, what we need to show is

$$2\pi i \operatorname{Res}(f; i) = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \pi.$$
 (24.2)

In this example, the pole at z = i has order n + 1. We first calculate

$$\frac{d^n}{dz^n}(z-i)^{n+1}f(z) = \frac{d^n}{dz^n} \frac{1}{(z+i)^{n+1}}$$
$$= \frac{(-1)^n(n+1)(n+2)\cdots(2n)}{(z+i)^{2n+1}}$$

Then we take limit as z tends to i and multiply by $2\pi i/n!$,

$$\frac{2\pi i}{n!} \lim_{z \to i} \frac{d^n}{dz^n} (z - i)^{n+1} f(z) = \frac{2\pi i}{n!} \frac{(-1)^n (n+1)(n+2) \cdots (2n)}{(2i)^{2n+1}}$$

$$= \frac{\pi}{n!} \frac{(n+1)(n+2) \cdots (2n)}{2^{2n}}$$

$$= \pi \frac{(2n)!}{2^2 \cdot 4^2 \cdot 6^2 \cdots (2n)^2}$$

$$= \pi \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}.$$

This proves (24.2) and completes the derivation.

Lemma 24.1 (Jordan lemma). Consider the contour C_R shown in Fig. 2 Assume f is analytic on the contour C_R for all sufficiently large R. If $|f(z)| \leq M_R$ for z on the semi-circle C_R and $M_R \to 0$ as $R \to \infty$, then

$$\lim_{R\to\infty}\int_{C_R}f(z)e^{iaz}\,dz=0\quad \text{for any real constant }a>0.$$

Proof. We first prove the following Jordan inequality, which is an inequality for real integral,

$$\int_0^{\pi} e^{-R\sin\theta} d\theta < \frac{\pi}{R} \quad \text{for } R > 0.$$
 (24.3)

For θ in the range $0 \le \theta \le \pi/2$, the value $\sin \theta$ is larger than or equal to $2\theta/\pi$. We can see this by comparing the curve of $\sin \theta$ for $0 \le \theta \le \pi/2$ and the line segment from the origin

Figure 2: The semi-circular contour in Jordan lemma.

to the point $(\pi/2, 1)$. This yields

$$\int_0^{\pi/2} e^{-R\sin\theta} d\theta \le \int_0^{\pi/2} e^{-R(2\theta/\pi)} d\theta$$
$$= \left[\frac{-\pi}{2R} e^{-R2\theta/\pi} \right]_0^{\pi/2}$$
$$= \frac{\pi}{2R} (1 - e^R)$$
$$< \frac{\pi}{2R}.$$

By using the symmetry of the graph of sine function, we can see that the same argument apply to the second part of the interval from $\pi/2$ to π ,

$$\int_{\pi/2}^{\pi} e^{-R\sin\theta} \, d\theta < \frac{\pi}{2R}.$$

This proves (24.3).

For real constant a > 0, we have

$$\int_{C_R} f(z)e^{iaz} dz = \int_0^{\pi} f(Re^{i\theta})e^{iaR(\cos\theta + i\sin\theta)}(Rie^{i\theta}) d\theta.$$

By triangle inequality for complex integral (Theorem (13.1)),

$$\left| \int_0^{\pi} f(Re^{i\theta}) e^{iaR(\cos\theta + i\sin\theta)} (Rie^{i\theta}) d\theta \right| \le RM_R \int_0^{\pi} e^{-aR\sin\theta} d\theta.$$

By Jordan inequality, the integral on the right-hand side is less than or equal to π/R . As a result, the modulus of $\int_{C_R} f(z)e^{iaz} dz$ is upper bounded by πM_R , which approaches 0 as R approaches ∞ .

Jordan lemma is useful in evaluating integral of type

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos(x) dx \quad \text{or } \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin(x) dx$$

where P(x) and Q(x) are polynomials and $\deg Q - \deg P \ge 1$.

Example 24.4. Derive

$$\int_{-\infty}^{\infty} \frac{\cos(bx)}{1+x^2} dx = \frac{\pi}{e^b} \quad \text{for } b > 0.$$

Since $(\sin x)/(1+x^2)$ is an odd function, establishing the above equation is the same as showing

$$p.v. \int_{-\infty}^{\infty} \frac{e^{ibx}}{1+x^2} dx = \frac{\pi}{e^b} \quad \text{for } b > 0.$$

Let C_1 and C_2 be the contours in Figure 1. We compute the complex integral

$$\int_{C_1+C_2} \frac{e^{iz}}{1+z^2} \, dz$$

along the closed path formed by C_1 and C_2 .

By Lemma 24.1,

$$\left| \int_{C_2} \frac{e^{iz}}{1+z^2} dz \right| \to 0, \quad \text{as } a \to \infty.$$

Hence

$$\lim_{a \to \infty} \int_{C_1 + C_2} \frac{e^{iz}}{1 + z^2} \, dz = \int_{-\infty}^{\infty} \frac{e^{ibx}}{1 + x^2} \, dx.$$

On the other hand, the residue of $\frac{e^{ibz}}{1+z^2}$ at z=i is

$$\operatorname{Res}\left(\frac{e^{ibz}}{1+z^2};i\right) = \frac{e^{ibz}}{z+i}\bigg|_{z=i} = \frac{e^{-b}}{2i}.$$

By residue theorem (Theorem 21.2), we get

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} \, dx = \int_{-\infty}^{\infty} \frac{e^{ibx}}{1+x^2} \, dx = 2\pi i \frac{e^{-b}}{2i} = \frac{\pi}{e^b}.$$

Example 24.5. Show that

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Since $\frac{\sin x}{x}$ is an even function and $\frac{\cos x}{x}$ is odd, it is sufficient to prove

$$p.v. \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = \pi i.$$

The function $\frac{e^{iz}}{z}$ has a pole at the origin. In order to avoid the pole, we consider the following indented contour.

The outer semi-circle has radius R and the inner semi-circle has radius ϵ .

The function $\frac{e^{iz}}{z}$ is analytic inside the contour. By Cauchy theorem (Theorem 14.6), we have

$$\int_{L_1 + L_2 + C_R + C_\epsilon} \frac{e^{iz}}{z} dz = 0.$$

By Jordan lemma (Lemma 24.1), the integral of $\frac{e^{iz}}{z}$ along C_R approaches 0 as $R \to \infty$. The integrals on the real axis approaches $\int_{-\infty}^{\infty} e^{iz}/z \, dz$ as $R \to \infty$ and $\epsilon \to 0$. The problem reduces to proving

$$\int_{C_{\epsilon}} \frac{e^{iz}}{z} \, dz = -\pi i.$$

The integrand can be represented by Laurent series

$$\frac{e^{iz}}{z} = \frac{1}{z} + i - \frac{z}{2} - \frac{iz^2}{6} + \cdots$$

For small enough $\epsilon > 0$, the analytic part $+i - \frac{z}{2} - \frac{iz^2}{6} + \cdots$ is bounded (because it converges and is continuous at z = 0). By ML inequality (Theorem 13.3),

$$\left| \int_C +i - \frac{z}{2} - \frac{iz^2}{6} + \cdots dz \right| \to 0$$

as $\epsilon \to 0$. The integral of 1/z on C_{ϵ} is equal to

$$\int_{C_{\epsilon}} \frac{1}{z} dz = \int_{-\pi}^{0} \frac{i\epsilon e^{i\theta}}{\epsilon e^{i\theta}} d\theta = -\pi i.$$

This proves that

$$i\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \int_{-\infty}^{\infty} \frac{e^{iz}}{z} dz = \lim_{\substack{R \to 0 \\ \epsilon \to 0}} \int_{L_1 + L_2} \frac{e^{iz}}{z} dz = -\lim_{\epsilon \to 0} \int_{C_{\epsilon}} \frac{e^{iz}}{z} dz = i\pi.$$

25 Lecture 25 (Keyhole contour, analytic at infinity)

Summary

- Evaluating real integral in the form $\int_0^\infty P(x)/Q(x)\,dx$.
- Being analytic at the point at infinity
- Residue at the point at infinity.

We can use the keyhole contour in Fig. 3 to evaluate real integral

$$\int_0^\infty \frac{P(x)}{Q(x)} \, dx,$$

where deg $Q \ge \deg P + 2$ and $Q(x) \ne 0$ for $x \ge 0$. We demonstrate the procedure using the following example:

Evaluate
$$\int_0^\infty \frac{1}{x^3 + 1} dx$$
.

The first step is to multiply the function to be integrated by a log function, and consider the complex integral

$$\int_C \frac{\log z}{z^3 + 1} \, dz,$$

over the keyhole contour C as shown in Fig. 3. For the complex log function we take the nonnegative real axis as the branch cut, i.e., for complex number in polar form $re^{i\theta}$, with $0 < \theta < 2\pi$, the log function is evaluated as

$$\log r + i\theta$$
 for $0 < \theta < 2\pi$.

The contour C consists of four parts. The outer circle C_R has radius R and positive orientation. The inner circle C_{ϵ} has radius ϵ and negative orientation. The distance between L_1 and L_2 is 2δ . When $R \to \infty$, $\epsilon \to 0$ and $\epsilon \to 0$, the integrals along L_1 and L_2 have limits

$$\int_{L_1} \frac{\log z}{z^3 + 1} dz \to \int_0^\infty \frac{\log x}{x^3 + 1} dx$$
$$\int_{L_2} \frac{\log z}{z^3 + 1} dz \to -\int_0^\infty \frac{\log x + 2\pi i}{x^3 + 1} dx.$$

Figure 3: Keyhole contour

The integral over C_{ϵ} has modulus upper bounded by

$$\left| \int_{C_{\epsilon}} \frac{\log z}{z^3 + 1} \, dz \right| \le 2\pi \epsilon M_{\epsilon} \max_{|z| = \epsilon} |\log z|$$

where M_{ϵ} denotes the maximum of $1/(z^3+1)$ on the circle $|z|=\epsilon$. Since it is assumed that Q(z) is defined at z=0, M_{ϵ} can be upper bounded by another constant independent of ϵ . In this example M_{ϵ} is approach 1 as ϵ approaches 0, and hence we can say that $M_{\epsilon}<2$ for all sufficiently small ϵ . The modulus of $\log(z)$ is no more than the modulus of $\log(\epsilon) + i2\pi$. Hence, as $\epsilon \to 0$, the modulus of the integral of C_{ϵ} is upper bounded by a constant times $\epsilon |\log \epsilon|$, which decreases to zero as $\epsilon \to 0$.

For complex number z on C_R , the modulus $|\log(z)/(z^3+1)|$ is upper bounded by a constant times $\frac{\log R}{R^3-1}$. The integral over C_R approaches 0 in the order of $O(R\frac{\log R}{R^3})$.

Therefore,

$$\lim_{\substack{\epsilon \to 0 \\ \delta \to 0 \\ R \to \infty}} \int_{L_1 + L_2 + C_R + C_\epsilon} \frac{\log(z)}{z^3 + 1} \, dz = -2\pi i \int_0^\infty \frac{1}{x^3 + 1} \, dx.$$

We can re-write the above equation as

$$\int_0^\infty \frac{1}{x^3 + 1} \, dx = -\lim_{\substack{\epsilon \to 0 \\ \delta \to 0 \\ R \to \infty}} \frac{1}{2\pi i} \int_{L_1 + L_2 + C_R + C_\epsilon} \frac{\log(z)}{z^3 + 1} \, dz.$$

The polynomial $z^3 + 1$ has three roots, namely, -1, $e^{\pi i/3}$ and $e^{5\pi i/3}$. By residue theorem (Theorem 21.2), we can compute the integral by

$$\int_0^\infty \frac{1}{x^3 + 1} dx = -\left[\text{Res}\left(\frac{\log(z)}{z^3 + 1}; -1\right) + \text{Res}\left(\frac{\log(z)}{z^3 + 1}; e^{\pi i/3}\right) + \text{Res}\left(\frac{\log(z)}{z^3 + 1}; e^{5\pi i/3}\right) \right].$$

Since the pole of $\log(z)/(z^3+1)$ are all simple roots, we can evaluate the residues at -1, $e^{\pi i/3}$ and $e^{5\pi i/3}$ by

$$\begin{aligned} &\operatorname{Res}\left(\frac{\log(z)}{z^3+1};-1\right) = \frac{\log(z)}{3z^2}\Big|_{-1} = \pi i \frac{1}{3} \\ &\operatorname{Res}\left(\frac{\log(z)}{z^3+1};e^{\pi i/3}\right) = \frac{\log(z)}{3z^2}\Big|_{e^{\pi i/3}} = \frac{\pi i}{3} \frac{e^{-2\pi i/3}}{3} \\ &\operatorname{Res}\left(\frac{\log(z)}{z^3+1};e^{5\pi i/3}\right) = \frac{\log(z)}{3z^2}\Big|_{e^{5\pi i/3}} = \frac{5\pi i}{3} \frac{e^{-10\pi/3}}{3}. \end{aligned}$$

(See Question 5 in Homework 14.)

Adding the three residues, we get

$$\frac{i\pi}{3} \left[1 + \frac{-1 - \sqrt{3}i}{6} + 5 \frac{-1 + \sqrt{3}i}{6} \right] = -\frac{2\sqrt{3}}{9}\pi.$$

Hence, the answer is

$$\int_0^\infty \frac{1}{x^3 + 1} \, dx = \frac{2\sqrt{3}}{9} \pi.$$

To understand the behavior of a function f(z) at the point at infinity, we make a change of variable w = 1/z. The new variable 1/z is called the *local parameter* at ∞ .

Definition 25.1. Given a complex function f(z), make a change of variable and define a new function g(w) = f(1/w). We say that the function f(z) is analytic at $z = \infty$ if g(w) is analytic at w = 0. The point at infinity is said to be a removable singularity (resp. pole, or essential singularity) if g(w) has a removable regularity (resp. pole, or essential singularity) at w = 0.

Example 25.1. The function f(z) = z has a simple pole at $z = \infty$, because g(w) = f(1/w) = 1/w has a simple pole at w = 0.

Example 25.2. The function f(z) = 1/z has a simple zero at $z = \infty$, because g(w) = f(1/w) = w has a simple zero at w = 0.

Example 25.3. The function $f(z) = e^z$ has an essential singularity at $z = \infty$, because

$$g(w) = \exp(1/w) = 1 + \frac{1}{w} + \frac{1}{2w^2} + \cdots$$

has an essential singularity at w = 0.

Definition 25.2. Suppose f(z) has finitely many singular points in the complex plane, so that f converges in the domain R < |z| for some R. The <u>residue at</u> ∞ of f(z) is defined as

$$\operatorname{Res}(f; \infty) \triangleq \frac{1}{2\pi i} \int_{C_0} f(z) dz$$

where C_0 is a circle containing all singular points in the interior, with *clockwise orientation*.

The assumption that f(z) has finitely many singular points is the same as assuming that the point at infinity is an isolated singular point.

By making a change of variable w = 1/z, $dw = -1/z^2 dz$, we get

$$\frac{1}{2\pi i}\int_{C_0} f(z)\,dz = \frac{1}{2\pi i}\int_C \frac{-1}{w^2} f\big(\frac{1}{w}\big)\,dw = -\operatorname{Res}\Big(\frac{1}{w^2} f\big(\frac{1}{w}\Big);0).$$

where C is the image of C_0 under the transformation w = 1/z. In the w-plane, the function $\frac{-1}{w^2} f\left(\frac{1}{w}\right)$ has a isolated singularity at w = 0. This proves the following property.

Theorem 25.3. Suppose f has finitely many singular points and γ is a contour with positive orientation, containing all singular points in the interior. Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \operatorname{Res} \Big(\frac{1}{w^2} f\Big(\frac{1}{w} \Big); 0 \Big).$$

Example 25.4. Evaluate

$$\int_{|z|=2} \frac{4z+1}{z(z-1)} \, dz.$$

There are two simple poles at z=0 and z=1. Both of them are inside the contour. Using the previous theorem, we can calculate the complex integral by

$$\int_{|z|=2} \frac{4z+1}{z(z-1)} dz = 2\pi i \operatorname{Res} \left(\frac{1}{w^2} \frac{4(1/w)+1}{(1/w)((1/w)-1)}; 0 \right)$$
$$= 2\pi i \operatorname{Res} \left(\frac{4+w}{w(1-w)}; 0 \right)$$
$$= 2\pi i \cdot 4 = 8\pi i.$$