# ЛЕКЦИЯ 10. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ГРАФОВ

## ПРИМЕРЫ ИЗ ИСТОРИИ

1. Кенигсберские мосты (критерий эйлеровости)



Puc. 6.4

- 2. Три дома и три колодца (критерий планарности)
- 3. Проблема четырёх красок (решена компьютером)
- 4. Задача коммивояжёра
- 5. Игра в пятнашки (кратчайший путь, две компоненты связности)

# ЧТО ТАКОЕ ГРАФ

### ОСНОВНОЕ ОПРЕДЕЛЕНИЕ

Теория графов не обладает устоявшейся терминологией.

О п р е д е л е н и е . Графом G называется совокупность двух конечных множеств G=<V,E>, где V- множество **вершин**, E- множество **дуг** или **рёбер,** представляющих собой пары вершин (соотвественно *упорядоченных* или *неупорядоченных*).

Если элементами множества E являются упорядоченные пары, то граф называется **ориентированным**, если неупорядоченные – **неориентированным**.

Граф удобно изображать в виде рисунка (диаграммы)



### ДРУГИЕ ОПРЕДЕЛЕНИЯ

Если элементами Е могут быть пары одинаковых вершин, то они называются **петлями**, а граф – **псевдографом**. Если Е является **мультимножеством** (один и тот же элемент может входить несколько раз), то граф называется **мультиграфом**.

Граф без петель и рёбер часто называют простым графом.

Если ребро может соединять не две, а **любое количество вершин**, то граф называется **гиперграфом**. Если каждому ребру графа приписано число, то он называется **взвешенным** или нагруженным.

БЕДА В ТОМ, что псевдографы и мультиграфы тоже называют графами!!!

## СТЕПЕНЬ ВЕРШИНЫ

Будем в дальнейшем обозначать через р и д кол-во вершин и кол-во рёбер графа:

$$|V| = p, |E| = q$$

Две вершины, соединённые ребром называют **смежными**. Это ребро называют **инцидентным** вершинам.

 $\Gamma(v)$  – множество смежных вершин.

 $\Gamma$ (v) – множество вершин, в которые выходят дуги из v

 $\Gamma^+(v)$  – множество вершин, откуда входят дуги в v

Степень вершины (или валентность) – deg(v) – количество смежных вершин.

**Полустепени выхода и захода**  $- deg^{-}(v)$  и  $deg^{+}(v)$ .

Теорема (лемма о рукопожатиях). Сумма степеней всех вершин в любом мультиграфе чётна и равна 2q.

Следствие. Количество вершин нечётной степени в мультиграфе чётно.

# ИЗОМОРФИЗМ ГРАФОВ

#### ИЗОБРАЖЕНИЕ ГРАФА

**Пример.** Три внешне различные диаграммы, приведённые на рис. 7.5, являются диаграммами одного и того же графа  $K_{3,3}$ .



Рис. 7.5. Диаграммы изоморфных графов

### **ИЗОМОРФИЗМ**

О п р е д е л е н и е . Два графа  $< V_1, E_1 >$  и  $< V_2, E_2 >$  называют изоморфными, если существует биекция вершин, сохраняющая их смежность. Т.е. такое биективное отображение

$$f: V_1 \to V_2 \text{, что}$$
 
$$(u,v) \in V_1 \Leftrightarrow (f(u),f(v)) \in V_2 \text{.}$$

Очевидно, изоморфизм является отношением эквивалентности.

#### ИНВАРИАНТЫ ГРАФА

Определение. Числовая характеристика, не изменяющаяся при изоморфизме, называется инвариантом графа.

#### Примеры:

- число вершин;
- число рёбер;
- упорядоченный список степеней вершин.

На данный момент не известно полного набора инвариантов, гарантирующих изоморфизма графов.

Пример неизоморфных графов с одинаковыми списками степеней вершин:



### ПУТИ НА ГРАФЕ

## ПУТИ, ЦЕПИ И ЦИКЛЫ



**Путём** в графе называется любая последовательность смежных вершин. Если первая и последняя вершины совпадают, то путь называется замкнутым.

Если все рёбра различны, то маршрут называется **цепью**. Если все вершины (а значит и все рёбра) различны, кроме быть может первой и последней, то маршрут называют **простой цепью**.

Замкнутая цепь называется циклом. Замкнутая простая цепь называется простым циклом.

#### **СВЯЗНОСТЬ**

Говорят, что вершины u и v **связаны**, если существует путь (а значит цепь и простая цепь!) из u в v. Граф, в котром все вершины связаны называют **связным**.

В неориентированном графе отношение связности является отношением эквивалентности. Классы эквивалентности по этому отношению называют компонентами связности. У связного графа одна компонента связности.

Для ориентированных графов различают понятия связности и сильной связности:

- связный = соотнесённый с ним неориентированный граф связный;
- сильно связный = можно попасть по стрелкам из любой вершины в любую другую (т.е. транзитивное замыкание полный граф).

Ребро графа называется **мостом**, если после его удаления число компонент связности увеличивается (на 1).

## РАССТОЯНИЕ МЕЖДУ ВЕРШИНАМИ

Длиной пути называют количество рёбер.

Расстоянием между вершинами называют длину кратчайшего пути.

Множество вершин, находящихся от заданной на расстоянии n, называют n-ым **ярусом**.

Диаметром графа называют расстояние между самыми удалёнными вершинами.

**Центром** графа называют вершину(ы), для которой расстояние от неё до самой удалённой вершины минимально. Это расстояние называют **радиусом** графа.