Course Code	Course Title	L	Т	Р	С
PMDS605L Data Structure and Algorithms				0	3
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives

- 1. To provide knowledge on various data structures and its real time applications
- 2. To familiar in design and performance evaluation of data structure and algorithms
- 3. To familiar in advanced techniques with industrial development

Course Outcomes

At the end of the course, the students will be able to:

- 1. Understand the foundation of data structure, compute the complexity and notations, design and implement Array ADT.
- 2. Identify suitable algorithm for the abstract data structure Stack, Queue and List.
- 3. Classify various Tree data structures and its applications.
- 4. Select the suitable algorithm for Sorting and Searching.
- 5. Develop suitable data structure for Graph and its Applications.

Module:1 Foundation of Data Structure

7 hours

Importance of Data Structure - Asymptotic Notations (Big O, Small O, Theta, Omega) Performance of Algorithm and Analysis - Time and Space Complexity - ADT- Arrays: One dimension and Two dimension, Structure and Union - Pointers, Storage Allocation: Static and Dynamic Allocation

Module:2 Stacks and Queue

6 hours

Stack: Definition, Operations, Implementations, Applications: Recursion, Infix to Postfix and Evaluation of Postfix, Queue: Definition, Operations, Implementations, Applications: Circular Queue - Multiple Stack and Queues.

Module:3 | Lists

6 hours

Linked List: Definition, Operations (INSERT, DELETE, TRAVERSE- DISPLAY) – Implementation: Singly Linked Lists, Doubly Linked Lists, Circular Linked Lists-Application: Polynomial Addition using Linked List

Module:4 Trees

6 hours

Definition, Terminology, Binary Tree: Binary Tree Representation, Binary Search Tree, Binary Tree Traversal: In order, Pre order, Post Order and Level order traversal. Heap Data Structure- Min Heap and Max Heap Tree construction.

Module:5 | Advanced Trees

6 hours

Balanced Trees - AVL trees: Terminology, basic operations (rotation, insertion and deletion), 2-3 Trees, 2-3-4 Trees, B Trees, B+ Trees

Module:6 Graphs

6 hours

Graph ADT, Elementary Graph Operation, Minimum cost spanning tree Algorithms, Shortest Path -Single Source and All Pair Algorithms.

Module:7 | Search and Sort

6 hours

Search - Linear and Binary Search - Applications; Sorting: Bubble Sort, Insertion Sort, Selection Sort Quick, Merge Sort and Heap Sort.

Module:8 | Contemporary Issues

2 hours

Total Lecture hours | 45 hours

Text Book(s)							
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest and Clifford Stein, Introduction to Algorithms, 2022, 4 th Edition, Mcgraw Hill/ MIT Press.						
2	Langsam, Augenstein and Tanenbaum, Data Structures Using C and C++,						
	2015, 2 nd Edition, Pearson.						
Reference Book(s)							
1	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of						
	Data Structures in C, 2008, 2 nd Edition, University Press.						
2	R.C.T Lee, S.S Tseng, R.C Chang and Y.T Tsai, Introduction to the Design						
	and Analysis of Algorithms, 2012, Tata McGraw-Hill.						
3	Ellis Horowitz and Sartaj Sahni, Fundamental of Computer Algorithms, 1985,						
	Galgotia.						
4	Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,						
	Introduction to Algorithms, 2010, 3rd Edition, Prentice Hall.						
Mode of Evaluation: CAT, Assignment, Quiz and FAT							
Recommended by Board of Studies 15-02-2024							
Appr	roved by Academic Council	No. 73	Date	14-03-2024			