GATE EE EXAM (2012), Question 47

Amaan

June 21,2021

Prerequisites

State Space

The set of all possible states the system/object can be in. Without loss in generality, the state space can be identified with the set $S = \{1, 2, \dots, \ell\}$, where ℓ is a fixed arbitrary natural number.

Random Variables

Let $\{X_0, X_1, X_2 \dots\}$ be a sequence of discrete random variables, where each $X_t \in S$, and X_t represents the state of the system at time t.

Markov Processes and Markov Chains

- A process is said to be a Markov Process if the probability of transitioning to any particular state is dependent solely on the current state and does not depend on how the current state was reached.
- Mathematically, $\{X_0, X_1, \ldots\}$ is called a Markov chain if

$$\Pr((X_n = i_n \mid X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \Pr(X_n = i_n \mid X_{n-1} = i_{n-1})$$
(1)

Transition Matrix

- For each pair $i, j \in S$, consider the (conditional) probability $p_{ij} \in [0,1]$ for the transition of the object or system from state i to j within one time step.
- The $\ell \times \ell$ matrix $\mathbf{P} = (p_{ij})_{i,j=1,...,\ell}$ of the transition probabilities p_{ij} where

$$p_{ij} \ge 0$$
, $p_{ij} = \Pr(X_{n+1} = j \mid X_n = i)$ (2)

is called one-step transition matrix or simply transition matrix of the Markov chain.

June 21,2021

Definition 1

The standard form of a state transition matrix is,

$$\mathbf{P} = \begin{array}{cc} A & N \\ N & \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{R} & \mathbf{Q} \end{bmatrix} \end{array} \tag{3}$$

where,

Table: Notations and their meanings

Α	Absorbing states	
N	Non-absorbing states	
I	Identity matrix	
0	Zero matrix	
R, Q	Other sub-matrices	

Definition 2

The limiting matrix for absorbing Markov chain is,

$$\bar{\mathbf{P}} = \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{F}\mathbf{R} & \mathbf{O} \end{bmatrix} \tag{4}$$

where,

$$\mathbf{F} = (\mathbf{I} - \mathbf{Q})^{-1} \tag{5}$$

is called the fundamental matrix of **P**.

Definition 3

A element \bar{p}_{ij} of $\bar{\mathbf{P}}$ denotes the absorption probability in state j, starting from state i.

Question

GATE EE EXAM (Dec 2012), Question 47

A fair coin is tossed till head appears for the first time. The probability that the number of required tosses is odd, is,

- $0 \frac{1}{3}$
- 2
- 3
- 4

Solution

Given, a fair coin is tossed till heads turns up,

$$p = \frac{1}{2}, q = \frac{1}{2} \tag{6}$$

Let us define a Markov chain $\{X_0, X_1, X_2 \dots\}$, where $X_n \in S$ $\forall n \in \{0, 1, 2, \dots\}$, and $S = \{1, 2, 3, 4\}$ is the state space.

Table: Definition of Random Variables

R.V	Value=0	Value=1
X	$N_{tosses} = 2k$	$N_{tosses} = 2k - 1$
Y	Н	T

The definition of state space S,

Table: Markov states and Notations

Notation	State
S=1	(X,Y)=(0,1)
<i>S</i> = 2	(X,Y)=(1,1)
<i>S</i> = 3	(X,Y)=(0,0)
<i>S</i> = 4	(X,Y)=(1,0)

Markov chain diagram

For the above discussed Markov Chain, the states 3 and 4 are the Absorbing states, and, 1 and 2 are Non-absorbing states,

Corollary 1

The state transition matrix for the above Markov chain is,

$$\mathbf{P} = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 2 & 0.5 & 0 & 0.5 & 0 \end{bmatrix}$$
 (7)

From (3) and (7), we get,

$$\mathbf{R} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix} \tag{8}$$

Corollary 2

Limiting Matrix of the Markov chain under observation is,

$$\mathbf{\bar{P}} = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 3 & 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 \\ 1 & \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 2 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \end{bmatrix}$$

Corollary 3

The required probability is,

$$P = \bar{p}_{14} \tag{10}$$

From (9) and (10),

$$P = \frac{2}{3} \tag{11}$$

... option 3 is correct.

