n-gram analysis of biological sequences in R

Michał Burdukiewicz¹, Piotr Sobczyk², Małgorzata Kotulska³, Paweł Mackiewicz¹

¹University of Wrocław, Department of Genomics,

 $^{^2}$ Wrocław University of Science and Technology, Faculty of Pure and Applied Mathematics.

³Wrocław University of Science and Technology, Department of Biomedical Engineering

Introduction

biogram package

biogram: the ${f R}$ package for the n-gram analysis of biological sequences.

n-grams: features describing the sequence.

biogram workflow:

- 1. Extract n-grams.
- 2. Change an alphabet.
- 3. Filter n-grams.

Long chains of amino acids (proteins) or nucleotides (RNA or DNA).

Sample protein sequence:

MRKLYCVLLLSAFEFTYMINFGRGQNYWEHPYQKSDVYHP

INEHREHPKEYQYPLHQEHTYQQEDSGEDENTLQHAYPID

HEGAEPAPQEQNLFSSIEIV...

Plasmodium falciparum. Source: http://www.protists.ensembl.org

Protein of *Plasmodium falciparum*:

MRKLYCVLLLSAFEFTYMINFGRGQNYWEHPYQKSDVYHP
INEHREHPKEYQYPLHQEHTYQQEDSGEDENTLQHAYPID
HEGAEPAPQEQNLFSSIEIV...

 ${\it Plasmodium\ falciparum}.\ {\tt Source:\ http://www.protists.ensembl.org}$

Protein of *Plasmodium falciparum*:

MRKLYCVLLLSAFEFTYMINFGRGQNYWEHPYQKSDVYHP

INEHREHPKEYQYPLHQEHTYQQEDSGEDENTLQHAYPID

HEGAEPAPQEQNLFSSIEIV...

Signal peptide (red): n-terminal amino acid sequence directing proteins to the endomembrane system and next to extracellular localizations.

MRKLYCVLLLSAFEFTYMINFGRGQNYWEHPYQKSDVYHP

INEHREHPKEYQYPLHQEHTYQQEDSGEDENTLQHAYPID

HEGAEPAPQEQNLFSSIEIV...

n-grams (k-tuples) are vectors of n characters derived from input sequence(s).

	P1	P2	P3	P4	P5	P6	P7	P8	P9
PF	М	R	K	L	Υ	С	V	L	L
HS	Μ	G	L	F	Ν	I	S	L	L
SL	М	Α	F	G	S	L	L	Α	F
SP	М	Е	R	G	Α	G	Α	K	L

1-grams: M, M, M, M, R, G, A, E

7

	P1	P2	P3	P4	P5	P6	P7	P8	P9
PF	М	R	K	L	Υ	С	V	L	L
HS	М	G	L	F	Ν	1	S	L	L
SL	М	Α	F	G	S	L	L	Α	F
SP	М	Е	R	G	Α	G	Α	K	L

2-grams: MR, MG, MA, ME, RK, GL, AF, ER

	P1	P2	P3	P4	P5	P6	P7	P8	P9
PF	М	R	K	L	Υ	С	V	L	L
HS	Μ	G	L	F	Ν	1	S	L	L
SL	М	Α	F	G	S	L	L	Α	F
SP	М	Е	R	G	Α	G	Α	K	L

3-grams: MRK, MGL, MAF, MER, RKL, GLF, AFG, ERG

	P1	P2	P3	P4	P5	P6	P7	P8	P9
PF	М	R	K	L	Υ	С	V	L	L
HS	M	G	L	F	Ν	I	S	L	L
SL	М	Α	F	G	S	L	L	Α	F
SP	М	Е	R	G	Α	G	Α	K	L

2-grams (with a single gap): M-K, M-L, M-F, M-R, R-L, G-F, A-G, E-G

	P1	P2	P3	P4	P5	P6	P7	P8	P9
PF	М	R	K	L	Υ	С	V	L	L
HS	М	G	L	F	Ν	1	S	L	L
SL	М	Α	F	G	S	L	L	Α	F
SP	М	Е	R	G	Α	G	Α	K	L

3-grams (with gaps):
$$M - K - C$$
, $M - L - I$, $M - F - L$, $M - R - G$, $R - L - V$, $G - F - S$, $A - G - L$, $E - G - A$

Proposed model

$$\mathbf{y} \sim \mathbf{n}\text{-}\mathbf{gram}_1 + \mathbf{n}\text{-}\mathbf{gram}_2 + \ldots + \mathbf{n}\text{-}\mathbf{gram}_n$$

Problems:

- large number of possible n-grams,
- the majority of n-grams is noninformative.

n-gram counts

n-gram counts

	A_0	C_0	D_0	E_0	F_0	 L.F_0	M.F_0	N.F_0	
PF	1	1	0	1	3	 0	0	1	
HS	2	2	0	1	2	 1	0	0	
SL	9	1	0	1	2	 0	0	0	
SP	4	1	1	1	1	 0	0	0	

The sparcity of the n-gram count matrix grows with n.

Sparse matrix representation

Sparse matrix with R

Packages:

- Matrix: S4, part of the base R distribution (499 depending or importing CRAN packages).
- SparseM: S4 (26 depending or importing CRAN packages).
- slam: S3, very small matrices (50 depending or importing CRAN packages).

All packages add their methods to common functions and operators for dense matrices.

Sparse matrix with R

Packages:

- Matrix: S4, part of base R distribution, well-developed (499 depending or importing CRAN packages).
- SparseM: S4 (26 depending or importing CRAN packages).
- slam: S3, very small matrices (50 depending or importing CRAN packages, including biogram).

All packages add their methods to common functions and operators for dense matrices.

slam representation

Reduction of the amino acid

alphabet

Properites of amino acids

Amino acids may be described using their physicochemical properites.

Properites of amino acids

PCA analysis of amino acid frequency in signal peptides.

Group	Amino acids
	D, E, H, K, N, Q, R
П	G, P, S, T, Y
Ш	F, I, L, M, V, W
IV	A, C

PCA analysis of amino acid frequency in signal peptides.

Filtering n-grams

Permutation Test

Informative n-grams are usually selected using permutation tests.

During a permutation test we shuffle randomly class labels and compute a defined statistic (e.g. information gain). Values of the statistic for permuted data are compared with the value of statistic for original data.

Permutation Test

target	Original data	Permuted data 1	Permuted data 2	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	1	1	0	
1	0	0	0	

$$\text{p-value} = \frac{N_{T_P > T_R}}{N}$$

 $N_{T_P > T_R}$: number of cases, where T_P (permuted test statistic) has more extreme values than T_R (test statistic for original data).

N: number of permutations.

QuiPT

Quick **P**ermutation **T**est is a fast alternative to permutation tests for n-gram data. It computes a probability for a given contigency table providing the exact p-value for the specic value level of the test statistic.

IG: 0.0032

IG: 0.2917

Target	n-gram I	Count
0	0	29
1	0	25
0	1	21
1	1	25

Target	n-gram II	Count
0	0	45
1	0	9
0	1	5
1	1	41

QuiPT

Sensitivity of QuiPT

QuiPT works best for large data sets of short sequences.

Summary and conclusion

Summary

biogram: the ${f R}$ package for the n-gram analysis of biological sequences.

biogram workflow:

- Extract n-grams (count_ngrams() and count_multigrams()).
- 2. Change an alphabet (calc_ed() and calc_si()).
- Filter n-grams (test_features()).

Summary

 $\it biogram$: the R package for the n-gram analysis of biological sequences.

```
https://CRAN.R-project.org/package=biogram (1.3)
http://github.com/michbur/biogram (1.4)
```

Case study

Burdukiewicz M, Sobczyk P, Rödiger S, Duda-Madej A, Mackiewicz P, Kotulska M. (2016) **Prediction of amyloidogenicity based on the n-gram analysis.** *PeerJ Preprints* 4:e2390v1 https://doi.org/10.7287/peerj.preprints.2390v1

A novel method of detecting amyloids, proteins involded in many neurodegenerative disorders, such as Alzheimer's or Creutzfeldt-Jakob's diseases based on n-grams used to train a random forest classifier (from the *ranger* package).

Acknowledgements and funding

This research was partially funded by the KNOW Consortium and National Science Center (2015/17/N/NZ2/01845).

- Paweł Mackiewicz,
- Małgorzata Kotulska,
- biogram package (https://cran.r-project.org/package=biogram):
 - Piotr Sobczyk,
 - · Chris Lauber.