Boston University Questrom School of Business

MF 793 – Fall 2021

Eric Jacquier

QUICK OVERVIEW OF PROBABILITIES

We will go very fast on the first part of this note as you saw these during your prep. course

- Great Book: "Statistical Inference" by Casella and Berger
- Key concepts: Probability space, probability, conditional probability, independence
- Fundamental Result: Total Probability Theorem, Bayes Theorem

1. Two Types of Probability

Classical probability

If a random experiment can result in \mathbf{n} mutually exclusive and equally likely outcomes, and If n_A of these outcomes have a characteristic A,

The probability of A, p(A), is the fraction n_A/n

o Throw 2 dice

Mutually exclusive equally likely outcome: Set of the two numbers on the two dice Characteristic A could be: "The sum is larger than four"

Throw a coin twice:

Three mutually exclusive outcomes: 2 Heads, a H and a Tail, 2 Tails

Say A is: We get two heads p(A) = 1/3?

Problem 1: What if the outcomes are **not** equally likely?

o A: a positive integer is even p(A) = 1/2?

Problem 2: What if the number of possible outcomes is **infinite**?

What is the probability that a cookie has more than three raisins?

We need to extend the classical probability to allow for **non equally likely** individual outcomes

Frequentist probability

Run the experiment of throwing the coin many times

Assume that there exists a number p which is the probability of Heads

Approximate p as the fraction of Heads in the large experiment

Complication:

Need to be able to run the experiment **many times** in pretty stable conditions

Problem:

What if we are interested in a future outcome for which there is no or little data?

Eg. The Russians lost a nuclear submarine in the Pacific, what is the probability it is within 50 miles of Honolulu. Yikes!

Subjective probability

Will free us from this problem ... To be seen in MF840: Bayesian Statistics

2. Probability Models

Let's think about this conceptual experiment ..

Every conceivable event an event is a sample point ω

The totality of the conceivable events is the sample space Ω

We may be interested in (many different) subsets of the sample space,

Connection to Set theory

Event A or Event B: One or the other or maybe both happen Union $A \cup B$

Event A and Event B: both happen Intersection $A \cap B$

Not A: Complement \bar{A}

The collection of all possible subsets of Ω is an Algebra \mathcal{A}

• A Probability is

a set function with domain \mathcal{A} and values in [0,1] satisfying

$$P(A) \ge 0, \quad \forall A \in \mathcal{A}$$

$$P(\Omega) = 1$$

$$P(\cup A_i) = \sum P(A_i)$$
 for mutually exclusive A_i s

• Probability Space: the triplet (Ω, \mathcal{A}, P)

... OK for the fancy words, probability is mostly about counting!

For MF793, we will concentrate on counting!

3. Let us count

Jar with M distinguishable balls – marked 1 to M for example, or with different colors

- # ordered samples of **n** balls drawn **with** replacement: **M**ⁿ [1]
- # ordered samples of n balls drawn without replacement: M (M-1) (M-2) x ... x (M-n+1)

That is:
$$\frac{M!}{(M-n)!}$$
 [2]

- # possible ways to order n objects? n (n-1) (n-2) x ... x 1 = n! [3]
- # subsets of size n in the jar ?

We have $\frac{M!}{(M-n)!}$ ordered samples of size n

A subset is **not** an ordered sample: Balls order does not matter: (1,2) is the same as (2,1)

So there are $\frac{M!}{(M-n)!n!}$ subsets of size n in the urn, aka number of combinations

This is the coefficient of $\mathbf{a^n} \mathbf{b^{M-n}}$ in the expansion of $(a+b)^M$: $\binom{M}{n}$ because it is the number of times that n a's come up in the polynomial.

- Prove that the sum of the binomial coefficients of (a+b)^M is 2^M
 - How many subsets does an urn of M balls contain

Number of subsets: 2[™] Why?

Each of the M balls can be in the subset or not: 2 choices for each ball

But this includes the empty set (no ball at all):

Excluding the empty set, we have 2^M-1 subsets of balls in the urn,

○ So, 2^M is the sum of the binomial coefficients!

The number of subsets of 0, 1, 2, ..., n, ..., M-1, M, balls in the urn

.

4. Multiple Events, Fundamental Definitions

• Conditional Probability of A given B, written P(A | B) is defined as

$$P(A|B) = \frac{P(AB)}{P(B)} \qquad if P(B) > 0$$
 [4]

A and B are two events in Ω

P(AB): joint probability of A and B both occurring

P(A|B): conditional probability of A occurring given that B has occurred

Definition compatible with frequency probability definition (counting): $P(A|B) = N_{AB} / N_{B}$

Question: Toss two coins A and B,

P (2 Heads |
$$H_A$$
) = $\frac{1}{2}$ obviously = (by definition) /

You need to be able to go from joint probabilities to conditional probabilities ... and back!

Total Probability Theorem

 B_i collection of non-empty, mutually disjoint events satisfying $\bigcup B_i = \Omega$

$$\forall A \in \mathcal{A}, \ P(A) = P(\cup AB_i) = \sum P(AB_i) = \sum P(A|B_i) P(B_i)$$
 [5]

Obvious with sets, the idea: breaking A along all its intersection with the Bis

Corollary:
$$P(A) = P(A|B) P(B) + P(A|\overline{B}) P(\overline{B})$$
 [5']

Multiplication Rule:

$$P(A_1 A_2 A_n) = P(A_n | A_{n-1}, ... A_1) P(A_{n-1} | A_{n-2}, ..., A_1) ... P(A_2 | A_1) P(A_1)$$
[6]

Generalizes the conditional probability: p(A B) = p(A|B) p(B)

Used in econometrics, we will think of the As as the densities of data points.

Independence: A and B are independent if P(A|B) = P(A)

P(B) is the same whether or not we condition on A

Same as .. if
$$P(A) P(B) = P(AB)$$
 or $P(B|A) = P(B)$ [7]

5. Bayes Theorem

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$
 [8]

- Foundation of modern econometrics
- Crucial for two-stage experiments and medical statistics
- We often have A|B but we want the answer to B|A. Bayes Theorem gets the answer.
- Many reporting research confuse the two conditional probabilities (A|B and B|A)!
- Bayes Theorem is used to get the (interesting) reverse probability

Doctors see many lung cancer patients, ask them if they smoke, create a data base.

They estimate P(smoking | cancer)

But they want to know: P(cancer | smoking) and P(cancer | non-smoking)

• Example: Medical testing, we have a test to detect Tuberculosis:

p(TB) = 0.001. The unconditional probability observed in the entire population

Test Accuracy: test detects TB with probability 0.999 if subject has TB

Test False positive: test is positive with probability 0.002 in healthy subject

Test reacted positive on Johnny, what is the probability Johnny has TB?

P(Johnny has TB | positive test) =

Test reacted negative on Mary,

P(Mary has TB | negative test) =

 Note how using Bayes Theorem most always requires an application of the Total Probability Theorem.

Questions

- Probability that at least 2 students in a class of 60 have the same birthday ?
- Is the above question simpler than "...exactly 2 students..."?
- Famous Envelope puzzle:

A swami randomly puts m dollars and 2m dollars in two envelopes You don't know m.

You and your friend get one envelope.

You open your envelope and find x dollars (you know x, since you found it!)

Should you get your friend's unopened envelope or keep your x dollars?

Answer: what is your expectation of \$y, the amount in your friend's envelope

Warning: There is no simple mathematical answer without an assumption

• St Petersburg Game Paradox: How much would you pay to enter the following game?

A fair coin is tossed sequentially until...

... the first head appears, after N Tails, you earn 2^N Rubles and the game ends.

Hint: What is the expected earning of this game?