TABLE OF CONTENTS

	Page	
Section 1 - INTRODUCTION	1	1/A6
Section 2 - PROGRAM DESCRIPTION	3	1/A8
Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS	. 23	1/814
Section 4 - AUXILIARY FILES	. 45	1/08
Section 5 - INPUT DESCRIPTION	. 53	1/E2
Section 6 - OUTPUT DATA	. 74	1/F9
Section 7 - REFERENCES	. 77	1/F12
Appendix A - LABELED COMMON BLOCKS IN USSAERO	. 73	1/F13
Appendix B - SAMPLE INPUT AND OUTPUT DATA	. 62	1/63
Appendix C - PLOTTING OUTPUT	. 123	2/F1

NAS1.26:3238

830-H-14

MASA Contractor Report 3228

ORIGINAL

ORIGINAL

COMPLETED

The Incorporation of Plotting Capability Into the "Unified Subsonic Supersonic Aerodynamic Analysis Program," Version B

Octavio A. Winter

CONTRACT NAS1-14900 MAY 1980

NASA Contractor Report 3228

The Incorporation of Plotting
Capability Into the "Unified
Subsonic Supersonic Aerodynamic
Analysis Program," Version B

Octavio A. Winter Computer Sciences Corporation Hampton, Virginia

Prepared for Langley Research Center under Contract NAS1-14900

Scientific and Technical Information Office

1980

TABLE OF CONTENTS

Section 1 - INTRODUCTION 1 Section 2 - PROGRAM DESCRIPTION 3 Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS 23 Section 4 - AUXILIARY FILES 45 Section 5 - INPUT DESCRIPTION 53 Section 6 - OUTPUT DATA 74 Section 7 - REFERENCES 77 Appendix A - LABELED COMMON BLOCKS IN USSAERO 78 Appendix B - SAMPLE INPUT AND OUTPUT DATA 82 Appendix C - PLOTTING OUTPUT 123	Į.	Page
Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS 23 Section 4 - AUXILIARY FILES 45 Section 5 - INPUT DESCRIPTION 53 Section 6 - OUTPUT DATA 74 Section 7 - REFERENCES 77 Appendix A - LABELED COMMON BLOCKS IN USSAERO 78 Appendix B - SAMPLE INPUT AND OUTPUT DATA 82	Section 1 - INTRODUCTION	1
Section 4 - AUXILIARY FILES	Section 2 - PROGRAM DESCRIPTION	3
Section 5 - INPUT DESCRIPTION	Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS	23
Section 6 - OUTPUT DATA	Section 4 - AUXILIARY FILES	45
Section 7 - REFERENCES	Section 5 - INPUT DESCRIPTION	53
Appendix A - LABELED COMMON BLOCKS IN USSAERO	Section 6 - OUTPUT DATA	74
Appendix B - SAMPLE INPUT AND OUTPUT DATA 82	Section 7 - REFERENCES	77
Appendix B - SAMPLE INPUT AND OUTPUT DATA 82		
	Appendix A - LABELED COMMON BLOCKS IN USSAERO	78
Appendix C - PLOTTING OUTPUT 123	Appendix B - SAMPLE INPUT AND OUTPUT DATA	82
	Appendix C - PLOTTING OUTPUT 1	123

LIST OF ILLUSTRATIONS

			Page
Figure	1	USSAERO PROGRAM OVERLAY STRUCTURE	2
Figure	2	CONFIGURATION INPUT AND SINGULARITY PANELING OVERLAYS	5
Figure	3	OVERLAYS FOR THE COMPUTATION OF THE U, V, AND W VELOCITY COMPONENTS AND OF THE INFLUENCE COEFFICIENT MATRICES	11
Figure	4	SOLUTION OVERLAY	11
Figure	5	PLOTTING OUTPUT OVERLAYS	19
Figure	6	AIRCRAFT COMPONENTS	49
Figure	7	CAMBERED AND UNCAMBERED AIRFOILS	50
Figure	8	UNCAMBERED FUSELAGE AIRCRAFT CONFIGURATION	51
Figure	9	CAMBERED FUSELAGE AIRCRAFT CONFIGURATION	52

Section 1

INTRODUCTION

The B01 version of the Unified Subsonic Supersonic Aerodynamic Analysis (USSAERO) program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure.

The most extensive modifications were made in November 1976, by Analytical Methods, Inc. These changes included a new procedure to calculate the strength of the source and vortex singularities in the non-planar boundary condition option for the wing. Also included in the November 1976 modifications were the added options to calculate the velocities and pressure coefficients at arbitrary field points, and to input normal velocities at body panel control points (inlet and exhaust nozzle modeling).

This report describes the revised input; the plotting overlay programs, which were also modified, and their associated subroutines; the auxiliary files used by the program; the revised output data; and the program overlay structure.

The locations of the different labeled common blocks used throughout the program, are listed in Appendix A. These might be helpful as a reference for a programmer.

The user will notice that some of the figures in this report are not referenced in the text. They are purposely introduced in the report to help a user not familiar with the terminology.

Figure 1
USSAERO PROGRAM OVERLAY STRUCTURE

Section 2 PROGRAM DESCRIPTION

The USSAERO computer program was converted to CDC FORTRAN EXTENDED VERSION 4, to be run under the NOS 1.3 operating system on CDC's CYBER-173 or CYBER-175. The program occupies 130,000 octal words to load and operates in the overlay mode. The purpose of the description which follows is to give the user a better view of the different functional areas of the program. To facilitate this reading, the user should refer to Figures 1 through 5.

2.1 Overlay (LWB, 0, 0)

This overlay consists of program USSAERO and subroutine HDR. Program USSAERO controls the sequence of computations to determine the aerodynamic characteristics of a wing body-tail configuration. It calls subroutine HDR to print out the program acronym in large block letters followed by the installation name, the program name, operating system version number and compiler name, date of run, and time of run. It then reads the entire input data from disk file TAPE 5 and prints it out. One should notice that TAPE 5 which contains the input data is not equivalenced to file INPUT, therefore it can afterwards be re-wound and read by the different routines throughout the program. The initial printout of the input data is generated to help the user check out his own input for correctness.

The following three primary overlay programs, GEOM, VELCMP, and SOLVE are then called to perform the remaining computations. The last primary overlay program CONPLT can be optionally called to plot the initial configuration geometry, the singularity paneling geometry and, finally, the pressure distributions.

2.2 Overlay (LWB, 1, 0)

This overlay consists of program GEOM and subroutines PANEL, DERIV, SCAMP4, DERIV1, DERIV2, COMCU, and CUBIC2. Although these subroutines are loaded with this overlay, they are called by some

of its secondary level overlays or by each other. The case identification and initial configuration parameters are read from the input file. The secondary overlay program CONFIG is then called to complete the input of the configuration description. The auxiliary case identification is then read, followed by the boundary condition and print option. Finally, the revised configuration parameters used for specifying the panel subdivisions are read. Depending on the values of the revised configuration parameters, the program calls the secondary overlay programs NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, or TALPAN, which interpolate the input geometry and calculate the corner points, control points and inclination angles of the panels on the wing, body, or tail.

2.3 Overlay (LWB, 1, 1)

This overlay consists of program CONFIG. As it was mentioned above, CONFIG completes the input of the initial configuration description. The configuration reference area is read from the input file if $J0 \neq 0$, otherwise the reference area is set equal to unity. The reference area is then written on TAPE 9. If $J1 \neq 0$, the wing geometry data is read from the input file in the order specified in reference 1. The program computes the upper and lower surface coordinates of the wing airfoils, and writes the entire wing geometry array as one record on TAPE 9.

If $J2 \neq 0$, the body geometry data is also read from the input file in the order specified in reference 1 for each body segment. For arbitrary cross-sections, the y and z ordinates of the body segment are read in, but for circular cross-sections, the body cross-sectional area is read in and the corresponding radius calculated by the program. The entire body geometry array is then written as one record on TAPE 9.

If $J3 \neq 0$, the pod geometry is read in, but no further use is made of this data.

If $J4 \neq 0$, the fin geometry data is read in. The program computes the coordinates of the fin airfoils and writes the fin geometry array as one record on TAPE 9. Similarly, if $J5 \neq 0$, the

Figure 2

CONFIGURATION 1.JPUT AND SINGULARITY PANELING OVERLAYS

the tail or canard geometry data is read in, the tail airfoil coordinates calculated, and the tail geometry array written on TAPE 9.

If one or more of the above components is missing, the program writes a dummy record on TAPE 9 and continues.

2.4 Overlay (LWB, 1, 2)

This overlay consists solely of program NEWORD. Program NEWORD revises the chordwise panel edge spacing on the wing and computes new airfoil ordinates by interpolation.

The program first checks the input data to determine if the wing has a round leading edge. If so, an array of wing leading edge radii is read in. The program then checks if the percent chord locations of the panel edges are to be redefined. If so, an array of revised chordwise locations are read in, otherwise the edges are used as originally defined.

The wing panel geometry is established by considering regions defined by sequential pairs of the originally defined airfoil sections. The leading and trailing edge slopes and dihedral angle of the region are calculated, and the origins and chord lengths of any intermediate panel edges obtained by linear interpolation in the spanwise direction.

The individual panel geometry is then calculated. For the planar boundary condition option, the corner points and control points are calculated in the plane of the wing, while the wing camber and thickness slopes at the panel edges are obtained by a linear interpolation of the slopes determined in the program NEWORD. For the non-planar boundary condition, the corner points and control points are calculated on the upper and lower surfaces of the wing, and the panel inclination angles determined by subroutine PANEL. In addition, both options calculate the panel area, chord, span, and leading edge x coordinate.

The same procedure is followed for each of the regions between the remaining airfoil sections. Prior to each step, the leading and trailing edge slopes and dihedral angles of the region are compared with those calculated for the previous region. If all these quantities are the same, the calculation proceeds normally. Otherwise, a new wing segment is defined, and the leading and trailing edge slopes, sine and cosine of the dihedral angle, and a wing indicator parameter for the segment are stored in a special array before continuing the calculations. The program also computes the number of rows and columns of panels in each wing segment, the total number of panels, and the total number of segments on the wing.

For each wing section, the original camber and thickness distributions are rewritten as one dimensional arrays. NEWORD calls DERIV to fit a chain of cubic curves having continuous first derivatives between each pair of points on these two curves, and the four coefficients of the cubic curve calculated within each interval. For wing sections having round leading edges with infinite leading edge slope, the slope at the second percent chord location is calculated by fitting the curve $z = \sqrt{2px} + ax + bx^2$ through the first three points. The program then calculates the coefficients of the cubic curves through the remaining points in the usual way, starting with the slope determined from the first derivative of the above formula.

The revised camber and thickness ordinates and slopes are then calculated at the new chordwise locations by the formulas

$$z = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

$$dz/dx = c_2 + 2c_3x + 3c_4x^2$$

where the coefficients correspond to the interval of the curve under consideration. For wings having round leading edges, the formula given in the previous paragraph is used in the first interval.

Each time DERIV is called, it calls subroutine SCAMP4 which in turn calls subroutines DERIV1, DERIV2, COMCU, and CUBIC2

2.5 Overlay (LWB, 1, 3)

This overlay consists only of program WNGPAN.

Program WNGPAN revises the spanwise panel edge spacing for the wing and computes the panel geometry.

The program first checks if the spanwise panel spacing is to be revised. If so, an array of revised panel edge locations is read in; otherwise, the panel edges are used as originally defined.

2.6 Overlay (LWB, 1, 4)

This overlay consists of program NEWRAD which revises the circumferential panel edge spacing for the fuselage.

For each body segment, there are three options for redefining the meridian lines. Considering the first segment, if KRADX(1) = 0, the meridian lines are not changed. If KRADX(1) is positive, the meridian lines are relocated at KRADX(1) equally spaced values of the meridian angle \emptyset . If KRADX(1) is negative, an array of arbitrary meridian angles is read in.

If the body has a circular cross section, the y and z coordinates are calculated at each axial station as follows:

 $y = r \cos \phi$

 $z = z_c + r \sin \phi$

where the body radius r and camber z_c have been previously calculated in program CONFIG.

If the body has an arbitrary cross section, the y and z coordinates are obtained by linear interpolation at the new values of the original y and z coordinates read in program CONFIG.

The x, y, and z coordinates are written on TAPE 10, and the procedure repeated for the remaining body segments.

2.7 Overlay (LWB, 1, 5)

This overlay consists of program BODPAN, which revises the axial panel edge spacing for the fuselage and computes the body panel geometry.

For each body segment, the x, y, and z coordinates of the cross sections are read from TAPE 10. If the value of KFORX of the segment is positive, an array of new axial stations for the segment is read in; otherwise the original axial stations are retained.

The body panel geometry is established by a linear interpolation along body meridian lines of the y and z coordinates at the new axial stations. The interpolation is started with the first ring of panels at the nose and continued until the last ring of panels on the last segment is reached. The corner point coordinates, the control point coordinates, the inclination angle, and area are calculated for each panel in sequence.

The panel control point coordinates, the panel dihedral angle 0, the panel inclination angle 0, the corner point coordinates and the panel areas are stored in the COMMON block POINT, and the entire sequence of arrays written as a single record on TAPE 10 following the wing and tail panel geometry arrays. The remaining body geometry parameters are stored in COMMON blocks PARAM and BTHET. Finally, if the print option is negative, the corner point coordinates, control point coordinates, inclination angles, and areas are written on the output file.

2.8 Overlay (LWB, 1, 6)

This overlay consists of program NUTORD which revises the chordwise panel spacing of fins, and/or canards, and computes the new airfoil ordinates.

The program first tests to determine if the component under consideration is a fin (vertical tail) or a canard (horizontal tail). The program then initializes the appropriate constants, and reads in an array of leading edge radii if the component has a round leading edge.

Each horizontal or vertical tail component is then treated as an additional wing segment, and the procedure follows the steps described under program NEWORD.

2.9 Overlay (LWB, 1, 7)

This overlay consists of program TALPAN which revises the spanwise panel edge spacing for the fins and/or canards, and computes the panel geometry.

The program first tests to determine if the component under consideration is a fin (vertical tail), or a canard (horizontal tail). The program initializes the appropriate constants, then rewinds TAPE 7, reads the wing geometry arrays from that file, and stores them in COMMON block POINT. Each horizontal or vertical tail component is then treated as an additional wing segment, following the steps described under subroutine WNGPAN.

At the completion of the calculation, the combined wing and tail geometry arrays are stored in COMMON block POINT, and the entire sequence of arrays is written as a single record back on TAPE 7. The augmented CHORD and SLOPE arrays are also written on TAPE 7 at this point. The remaining wing and tail geometry parameters are stored in COMMON blocks PARAM and SEG. Finally, if the print option is positive, the fin, canard or tail panel corner point coordinates, control point coordinates, inclination angles, areas, and chords are written on the output file.

2.10 Overlay (LWB, 2, 0)

This overlay consists of program VELCMP and subroutine TRAP. VELCMP computes the u, v, and w components of the velocity at panel control points and forms the aerodynamic influence coefficient matrices.

VELCMP reads from TAPE 5, the Mach number, angle of attack, (NORVEL) a flag indicating if normal velocities at body control points are to be input, a local Mach number flag (not used), and the number of field points where the calculation of velocities is desired.

If the Mach number is negative, or the same as the previous case, a return is executed. Otherwise, the program proceeds to compute the velocity components.

For wing alone, or wing-body configurations, a preliminary calculation is made to determine if the wing control points require relocation, and to compute the number and size of the wing diagonal blocks for later use in the matrix calculations. For wing-body

Calculation of velocity components induced at specified body panel control points

Calculation of velocity components induced at specified control points by source and vortex distributions on panels located on the plane of the wing and tall surfaces

Calculation of velocity components at panel control points, induced by source and vortex distributions on wing and tail surfaces

Figure 3

Overlays for the computation of the u, v, and w velocity components and of the influence coefficient matrices.

(LWB,3,0) SOLVE

Solves for strengths of body sources and wing vortices that satisfy the boundary condition of tangential flow at panel control points, and determine the corresponding pressure distributions, forces and moments on the configuration

Figure 4

SOLUTION OVERLAY

configurations, the body geometry is first placed in temporary storage on TAPE 10. The program then proceeds to recalculate the chordwise locations of the wing control points for wings having supersonic edges, provided the planar boundary condition option has been selected. (An edge is defined to be supersonic if the component of the Mach number normal to the edge is greater than one.) Considering one wing segment at a time, the program tests to determine if either the leading or trailing edge is supersonic. all edges are subsonic, the control points retain their original locations at the panel centroids. If the leading edge is subsonic and the trailing edge is supersonic, the control points in a given column of panels are adjusted uniformly between the centroid of the leading edge panel and the trailing edge of the last panel in the If both edges are supersonic, the control points are relocated at the panel leading edges, and the trailing edge of the last panel in the column. A wing supersonic trailing edge indicator array is also computed at this point in the program. revised control points are stored in COMMON block POINT, and the entire wing geometry array written on TAPE 7. The body geometry temporarily stored on TAPE 10 is then rewritten on TAPE 7 following the wing geometry arrays.

If NORVEL is greater than zero (see input description), VELCMP reads an array of normal velocities at body control points. The array of normal velocities is stored in labeled common (NORVEL).

If FLDPTS is greater than zero (see input description), VELCMP reads arrays of x, y, and z coordinates of control points at specified field locations. It then proceeds to calculate the u, v, and w velocity components at those control points, which are influenced by source distributions on the body panels or by vortex distributions on the wing panels.

2.11 Overlay (LWB, 2, 1)

This overlay consists of program EODVEL, and subroutines SUBPAN and SUPPAN. BODVEL computes the u, v, and w velocity components induced at specified control points, by body panels.

The x, y, and z coordinates of the control point, and the corresponding panel inclination angles θ and δ are read from COMMON block POINT.

Starting with the first body segment, the body panel corner point coordinates and inclination angles are also read from COMMON block POINT for each row and column of panels. Considering a single body panel, the corner point and control point coordinates are transformed to a new coordinate system with origin at the first corner of the panel and inclined at an angle θ with respect to the horizontal. The velocity components induced by this inclined constant source panel at the given control point are computed in routine SUBPAN or SUPPAN depending if Mach is less than one or if it is greater or equal to one, respectively. Either of the two subroutines is called twice to obtain the influence of panels located on both right and left sides of the body. velocity components are combined and transformed back to the reference coordinate system to obtain the final u, v, and w components of the velocity, and the velocity normal to the panel at the control point. This process is repeated for each panel on the body, following which the u, v, and w component arrays are written on TAPE 8, and the array of normal velocities on TAPE 9.

If the control point is in the same ring of panels on the body as the influencing panel and the body has more than 60 panels, the normal velocity at the control point is written on TAPE 10, and its value set to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. If the print option is selected, the axial and normal arrays are written on the output tape. The process is repeated for each control point.

2.12 Overlay (LWB, 2, 2)

This overlay consists of program LINVEL and subroutines SORVEL and VORVEL. Program LINVEL computes the u, v, and w velocity components induced at specified control points by source and vortex

distributions lying on the mean plane of the wing and tail surfaces.

The x, y, and z coordinates of the control point, and the corresponding panel inclination angles θ and δ are read from COMMON block POINT.

Starting with the first wing segment, the panel leading and trailing edge slopes are calculated and stored. The program then computes the velocity components induced by the panel corner points along the inboard edge of the first column of panels. These calculations are performed by subroutines VORVEL and SORVEL, which return the three components of velocity induced by constant and linear varying vortex and source distributions. These subroutines are called twice to obtain the contributions of both left and right wing panels. In addition, a second call to subroutine VORVEL is required at panel trailing edge corner points if the panel spacing is not uniform.

To compute the velocity components induced by the panel corner points along the <u>cutboard</u> edge of this and the remaining columns of panels, the procedure is repeated. However, for the remaining columns of panels, advantage is taken of the fact that the velocity components along the inboard edges of a given column of panels are the same as those computed at the outboard edges of the previous column of panels. Therefore, the inboard velocity components are not recomputed, but stored in temporary arrays prior to the calculation of the outboard velocity component arrays.

Once the velocity components induced by the panel corner points along the outboard edge of a given column of panels are computed, the inboard and outboard influences of each panel in the column are combined to obtain the resultant panel velocity components. First, the velocity components induced by the right and left wing panels are calculated, using appropriate combination rules for the souse and vortex panels, and applying special rules for leading and trailing edge panels. Finally, the contributions

of the left and right wing panels are combined, the velocity components "ransformed back to the reference coordinate system, and the velocity normal to the panel at the control point computed.

The procedure is repeated for each column of panels in each wing segment, until all wing panels are accounted for. At this point the u, v, and w components of velocity induced by the source panels are written as a single record on TAPE 8. followed by the r, v, and w components of velocity induced by the vortex panels. If the thickness option is not requested, only the vortex panel arrays are written on this tape. The normal velocities are then written as a single record on TAPE 9. If the control point is in the same column of panels on the wing as the influencing panel, and the wing has more than 60 panels, the normal velocity at the control point is written on TAPE 10 and its value set to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. Finally, if the print option is selected, the axial and normal velocity component arrays induced by the vortex panels and source panels are written on the output tape.

The process is repeated for each control point.

Note: The word wing includes any tail, fin, or canard in the above description.

2.13 Overlay (LWB, 2, 3)

This overlay consists of program WNGVEL and subroutines VORPAN and TRANS. Program WNGVEL computes the r, v, and w velocity components induced at specified control points by source and vortex distributions located on the wing and/or tail surfaces.

The program first applies the Gothert rule compressibility transformation to the tangent of the panel inclination angles, and computes trigonometric functions of the revised angles.

The three coordinates of the first control point, and the corresponding panel inclination angles θ and δ are read from COMMON block POINT. If the control point is on the body, the inclination angle θ is obtained from COMMON block BTHET.

The program then computes the influence of each panel at the control point. The panels on the upper surface of each chordwise column are considered first, followed by those on the lower surface. This process is repeated for each column of panels on a wing segment, starting with the inboard panel, and continued until all wing and tail segments have been included.

The coordinates of the four corner points of the influencing panel are obtained from COMMON block POINT in the reference coordinate system. They are indexed according to the panel row and column numbers. They are first used to calculate the leading and trailing edge slopes and the chord lengths of the inboard and outboard edges of the panel in a panel coordinate system lying in the plane of the panel and originating at the inboard leading edge corner. The control point is also transformed to the panel coordinate system, and the velocity components induced at the control point by each of the four corners computed by subroutine VORPAN. This subroutine is called twice for each corner point to obtain the contributions of both left and right wing panels.

The contribution of a wake consisting of two concentrated edge vortices with a constant strength vortex sheet between them is calculated following the last panel in each column. The wake vortices are all oriented in a streamwise direction, and are assumed to lie in a plane parallel to the reference axis and containing the trailing edge of the last panel in the column. The velocity components at the control point induced by the upstream corners of the wake are obtained by four additional calls to VORPAN.

The velocity components induced by the four corners of the panel and the wake are now combined to obtain the resultant velocities at the control point. The velocity components induced by the right and left wing panels are combined and the results transformed back to the reference coordinate system by subroutine TRANS. This subroutine calculates the u, v, and w velocity components and the normal velocity at the control point. A similar procedure is applied to calculate the transformed velocity components induced by

the three components of the wake. The wake velocity components are then multiplied by the appropriate strength factors and added to obtain the final values of the velocity components at the control point.

Special rules are applied to obtain the velocity components of the leading and trailing edge panels in each column. These rules are designed to provide a continuous vortex distribution around the nose of the airfoil, and to enforce the Kutta condition at the trailing edge.

The procedure is repeated for each column of panels of each wing segment. When all panel influences have been computed, the u, v, and w components of velocity are written as a single record on TAPE 8, and the normal velocities written in one array on TAPE 9. If the control point is in the same column of panels on the wing as the influencing panel, and the wing has more than 60 panels, the normal velocity at the control point is written on TAPE 10, and its value set equal to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. Finally, if the print option is selected, the axial and normal velocity component arrays are written on the output file.

This process is repeated for each control point.

2.14 Overlay (LWB, 3, 0)

This overlay consists of program SOLVE, and subroutine INVERT, PARTIN, DIAGIN, ITRATE, PRESS, and FORMOM. Program SOLVE first calculates the array of normal velocities required to satisfy the boundary conditions at the wing and body panel control points. The panel inclination angles θ and δ are obtained from the geometry arrays on TAPE 7, and the angle of attack α from common block PARAM.

If the planar boundary condition and wing thickness options have been selected, the program next computes the normal velocities induced on the body and non-coplanar wing or tail segments by wing source distribution. These normal velocities are subtracted from

those previously calculated to obtain the resultant normal velocities at the control points.

The coefficients of the equations to be solved have previously been stored in row order on TAPE 9. Three different procedures are followed to solve the equations depending on the order of the matrix of coefficients. If the configuration to be analyzed consists of an isolated wing or body, and the order of the matrix does not exceed 60, the equations are solved in subroutine PARTIN by direct inversion of the matrix. If the configuration consists of a wing-body combination, and the order of the wing and body partition does not exceed 60, subroutine PARTIN inverts the diagonal partitions of the matrix and writes the inverse matrices on TAPE 10. An iterative procedure described in subroutine ITRATE is then applied to solve the equations. For any configuration for which the order of the wing or body partition exceeds 60, the diagonal blocks of the matrix are read from TAPE 7, inverted, and written on TAPE 10 by subroutine DIAGIN. Subroutine ITRATE is then called to solve the resulting equations by an iterative procedure.

Once the strengths of the source and vortex distribution have been determined, the program calculates the three components of velocity and pressure coefficient at each panel control point, starting with the body panels. The velocity components corresponding to unit strength source and vortex distribution are obtained from TAPE 8. The first three records on this file contain the velocity components at body control points induced by the body source panels, the wing source panels (if present), and the wing vortex panels. The program multiplies these by the corresponding source and vortex strength, and sums the products to obtain the resultant velocity component arrays at each body control point. The magnitude of the normal velocity at the body control points is also calculated at this point. If the absolute value of the print option is greater than one, the three components of velocity and the normals are written on the output file. The program then calls subroutine PRESS to obtain the pressure coefficients at the body

Figure 5
PLOTTING OUTPUT OVERLAYS

panels, and subroutine FORMOM to integrate the pressures and calculate the force and moment acting on the body.

The velocity components at the wing and tail panel control points are computed next. The remaining three records containing the velocity components at wing and tail control points induced by the body source panels, the wing source panels (if present) and the wing vortex panels are read from TAPE 8. The program multiplies these by the corresponding source and vortex strengths and sums the products to obtain the resultant velocity component arrays at the wing and tail panel control points. If the absolute value of the print option is greater than one, the velocity component arrays are written on the output file. The program then calls subroutine PRESS to obtain the pressure coefficients, and subroutine FORMOM to calculate the force and moment acting on the wing.

If the planar boundary condition option has been selected, two passes through this section are required to obtain the velocity components, pressure and forces on both upper and lower surfaces.

The program writes the values of the stagnation pressure coefficient, the critical pressure coefficient, the vacuum pressure coefficient, and the elapsed time on the output file prior to returning.

2.15 Overlay (LWB, 4, 0)

This overlay consists solely of program CONPLT. Program CONPLT selects the proper plot control program. It calls overlays (LWB, 4, 1) and (LWB, 4, 2) or (LWB, 4, 3) to generate the input geometry plots, and it calls overlays (LWB, 4, 4) and (LWB, 4, 2) or (LWB, 4, 3) to plot the singularity paneling geometry. It finally calls overlay (LWB, 4, 5) to generate the pressure distribution plots of the configuration.

2.16 Overlay (LWB, 4, 1)

This overlay consists of program GPLTSV and subroutines SURCL and SURCC. Program GPLTSV reads the input geometry from TAPE 3, computes lines and normal unit vectors by either calling SURCL or

SURCC, and stores them in arrays, and writes them as alternate records to TAPE 12. Subroutine SURCL computes outward normal vectors with four adjoining input points taken in a clockwise direction. Subroutine SURCC computes outward normal vectors with the four adjoining input points taken in a counter-clockwise direction.

2.17 Overlay (LWB, 4, 2)

This overlay consists of program PLTORT and subroutines OTHPLT, PLOTIT, VISTST, PTROT, and VECROT, which it calls to generate orthographic and/or three-view plots. Subroutine OTHPLT is the control routine for the orthogonal projections. It calls subroutine PLOTIT. Subroutine PLOTIT reads lines of points and components of outward normal vectors defining a surface from TAPE 12, manipulates them in a specific manner, and plots them. This subroutine calls subroutines PTROT, VECROT, and VISTST to rotate and check visibility. Subroutine VECROT transforms outward normal vectors for desired paper plane. Subroutine VISTST tests a line of points for visibility.

2.18 Overlay (LWB, 4, 3)

This overlay consists of program PLTSTE and subroutines SPPLT, STERPT, and PLTIT3. Subroutine SPPLT is the control routine for the perspective and/or stereo plots. It calls subroutines STERPT and PLTIT3 to generate the plots. Subroutine STERPT generates a perspective view of input data for a given three-dimensional array. Two passes through this routine will generate a pair of stereo frames.

Subroutine PLTIT3 reads lines of points, and outward normal vectors defining a surface from a disk file and plots perspective views or stereo frames.

2.19 Overlay (LWB, 4, 4)

This overlay consists of program SPLTSV and subroutines SURCL and SURCC. Program SPLTSV reads singularity paneling geometry from

TAPE 3, computes the lines of points, and the outward normal vectors, stores them in arrays and writes them to TAPE 12, which will, later on, be read by overlay (LWB, 4, 2) and/or overlay (LWB, 4, 3). Subroutines SURCL and SURCC have been previously described in this section.

2.20 Overlay (LWB, 4, 5)

This overlay consists of program PLPRES and subroutines PRSWNG, AXLES, PRESBO, and LABEL. Program PLPRES reads TAPE 12, which contains the pressure distribution information for the fuse-lage and/or for the wing, computes maximum and minimum values, scale factors and calls subroutines AXLES, PRESBO, PRESWNG, and LABEL.

Subroutine AXLES (computes) plots axes and scales with their proper annotation. Subroutine PRESBO plots the fuselage pressure coefficients versus meridian angles for each ring of panels around it.

Subroutine PRESWNG plots the wing pressure coefficients for the upper or lower surface versus the chordwise percent distances. Subroutine LABEL plots legends to the graphs of the fuselage pressure distribution or the wing pressure distribution. A more detailed description of the plotting overlay programs and their associated routines follows in Section 3.

Section 3 DESCRIPTION OF THE PLOT OVERLAY PROGRAMS

3.1 Program CONPLT (Overlay (LWB, 4, 0))

PURPOSE: This program selects the proper plot control program.

INPUT: (1) Orthographic Projections

Variable	Value	Description
HORZ		"X", "Y", or "Z" for horizontal axis.
VERT		"X", "Y", or "Z" for vertical axis.
TEST1		Word "OUT" for deletion of hidden lines; otherwise, leave blank.
PHI		Roll angle, degrees.
THETA		Pitch angle, degrees.
PSI		Yaw angle, degrees.
PLOTSZ		PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of the configuration).
TYPE		Word "ORT"
KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.
INPUT:	(2) Thre	e-View Orthographic Plot
Variable	Value	Description
PHI		Y-origin on paper of plan view, in.
THETA		Y-origin on paper of side view, in.
PSI		Y-origin on paper of front view, in.
PLOTSZ		PLOTSZ determines size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of the configuration).

Variable	Value	<u>Description</u>
TYPE		Word "VU3"
KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.
INPUT:	(3)	Perspective Views
Variable	Value	<u>Description</u>
PHI		X-coordinate of view point in data coordinate system.
THETA		Y-coordinate of view point in data Coordinate system.
PSI		Z-coordinate of view point in data coordinate system.
XF		X-coordinate of focal point in data coordinate system.
YF		Y-coordinate of focal point in data coordinate system.
ZF		Z-coordinate of focal point in data coordinate system.
DIST		Distance from eye to viewing - plane, in.
FMAG		Viewing - plane magnification factor; it controls size of projected image.
PLOTSZ		Diameter of viewing - plane. DIST and PLOTSZ determine a cone which is the field of vision.
TYPE		Word "PER"
KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.
INPUT:	(4)	Stereo Frames
PLOT		Plot control flag
KONPLT		Integer used to select geometry plots or pressure distribution plots.

The plot card for the stereo frames is identical to that for the perspective views, except that the word "STE" is used in place of the word "PER".

USAGE: CALL OVERLAY (LWB, 4,0)

COMMON

BLOCKS: BLANK2, CONPLT, FILES, LWB, GRAPH, PTYPE

3.2 Program GPLTSV (Overlay (LWB, 4, 1))

PURPOSE: This program reads the configuration description from

TAPE 3, computes maximum and minimum dimensions, and

then proceeds to compute the outward normal unit vectors,

and writes the lines of points and vectors on TAPE 12.

INPUT:

J0	Reference area parameter
Jl	Wing definition parameter
J2	Fuselage definition parameter
J3	Pod definition parameter
J4	Fin definition parameter
J5	Canard or tail definition parameter
J6	Fuselage camber parameter
NWAF	Number of wing airfoil sections
NWAFOR	Number of ordinates used to define each wing airfoil section.
WAFORG	Origin cordinates used to define each wing airfoil section $(x, y, z, chord)$.
WAFORD	Array of half-thickness ordinates in percent chord.
XAF	Array of percent chords for wing airfoil ordinates.
TZORD	Array of mean camber line ordinates.

NFUS Number of fuselage segments.

NRADX Array containing integers which are the number of points used to define half-sections of the fuselage segments.

NFORX Array containing integers which are the number of axial stations of the fuselage segments.

XFUS Array containing the x-coordinates of the axial stations of a fuselage segment.

ZFUS Array of fuselage camber ordinates

SFUS Array of y and z ordinates used to define half-sections of an arbitrary fuselage segment.

FUSARD Array of fuselage cross sectional areas.

NP Number of pods.

XPOD Array of x-coordinates of pod axial stations.

NPODOR Number of axial stations on pod.

PODORD Array of pod radii.

NF Number of fins.

NFINOR Number of ordinates used to define fin airfoil sections.

FINORG Origin coordinates and chord of fin airfoil sections (x, y, z, chord).

XFIN Array of percent chords for fin airfoil.

FINORD Array of fin airfoil half-thickness ordinates in percent chord.

NCAN Number of canards or tails.

NCANOR Number of ordinates used to define canard airfoil (x, y, z, chord).

CANORG Origin ordinates and chord length of canard airfoil (x, y, z, chord).

XCAN Array of percent chords for canard airfoil sections.

CANARD Array of canard airfoil half-thickness ordinates in

percent chord.

OUTPUT:

ALRT Array of point chordinates defining lines.

VECRT Array of numbers representing outward normal unit

vectors.

USAGE: CALL OVERLAY (LWB, 4,1)

COMMON

BLOCKS: BLANK, BLANK2, FILES, ONE, SCRAT, PI

ROUTINES

CALLED : SURCC, SURCL

NOTE: This program is called only once for each configuration.

Arrays ALRT, VECRT are stored on TAPE 12.

3.2.1 Subroutine SURCL

PURPOSE: This routine computes the outward normal unit vectors

with four adjoining points taken in clockwise direction.

INPUT:

NPT Number of points.

FLINE Array of line points

OUTPUT:

FVEC Array containing outward normal unit vector components.

COMMON

BLOCKS: None

USAGE: CALL SURCL (NPT, FLINE, FVEC)

ERROR

RETURNS: None

3.2.2 Subroutine SURCC

PURPOSE: This routine computes the outward normal unit vectors with four adjoining points taken in a counterclockwise direction.

INPUT:

NPT Number of points.

FLINE Array of line points.

OUTPUT:

FVEC Array containing outward normal unit vector components.

COMMON

BLOCKS: None

USAGE: CALL SURCC (NPT, FLINE, FVEC)

ERROR

RETURNS: None

3.3 Program PLTORT (Overlay (LWB, 4, 2))

PURPOSE: This routine is the control routine for the orthographic projection options. It notates the plot title, sets the origin for the plot, and after that it calls OTHPLT.

INPUT:

PHI Y-origin on paper of plan view, inches, (stacked three-view plots only).

THETA Y-origin on paper of side view, inches, (stacked three-view plots only).

PSI Y-origin on paper of front view, inches, (stacked three-view plots only).

BIGD Maximum value of XMAX, YMAX, ZMAX dimensions.

TYPE BCD variable indicating type of plot.

PLOTSZ Variable which determines the size of the plot. Scale factor is calculated using PLOTSZ and maximum dimension

of configuration.

PLOT Plot control integer.

OUTPUT:

YORG Y-origin computed for placing view of plot.

USAGE: CALL OVERLAY (LWB, 4,2)

COMMON

BLOCKS: BLANK, BLANK2, NEWCOM, FILES, HEAD, GRAPH, PTYPE

SUB-

ROUTINES

CALLED : CALPLT, NFRAME, NOTATE, OTHPLT

3.3.1 Subroutine OTHPLT

PURPOSE: This routine adjusts minimum values of X, Y, and Z for the grid lines, sets up the axes, checks paper plane (centers plot within paper size if size of plot is greater than 28 inches), and establishes the offsets for the placement of the plot; then it calls subroutine PLOTIT for the plotting of the different components of the aircraft.

INPUT:

XMAX Maximum value of X (input Coord. Sys.).

XMIN Minimum value of X (Input Coord. Sys.).

YMAX Maximum value of Y (Input Coord. Sys.).

YMIN Minimum value of Y (Input Coord. Sys.).

ZMAX Maximum value of Z (Input Coord. Sys.).

ZMIN Minimum value of Z (Input Coord. Sys.).

HORZ "X", "Y", or "Z" for horizontal axis.

VERT "X", "Y", or "Z" for vertical axis.

PHI Same as defined in PLTCON.

THETA Same as defined in PLTCON.

PSI Same as defined in PLTCON.

OUTPUT:

NWAF Number of airfoil sections used to describe the wing.

NW Number of ordinates used to describe each wing airfoil section.

ITEST Control integer for checking paper plane.

ITEST1 Test control integer for hidden lines,

ITEST2 Control integer which equals 0 if PSI=THETA=PHI=0,
 otherwise it equals 1.

IHORZ Control integer which determines whether X, Y, or Z is the horizontal variable.

IVERT Control integer which determines whether X, Y, or Z is the vertical variable.

HMIN Minimum value of the horizontal variable (X, Y, or Z).

VMIN Minimum value of the vertical variable (X, Y, or Z).

SCALE Scale factor.

A Rotation matrix array.

C Coefficients of vector transformation equation.

NANG1 Number of points used to define a half-section of a fuselage segment,

NUM2 Number of fin airfoil sections.

NFOR Number of points used to define a fin airfoil section.

NCOR Number of points used to define a canard airfoil section.

USAGE: CALL OTHPLT

COMMON

BLOCKS: NEWCOM, GRAPH, BLANK, BLANK2, PTYPE, ONE, PI

SUB-

ROUTINES

CALLED : PLOTIT

3.3.2 Subroutine PLOTIT

PURPOSE: This routine generates instructions which drive the equipment to produce plots. It reads lines of points and outward normal unit vectors from itermediate storage (TAPE 12) and manipulates them as necessary.

INPUT:

NL Number of lines.

NPT Number of points.

ITEST Control integer for checking paper plane.

ITEST1 Control integer for testing of hidden lines.

ITEST2 Control integer which equals 0 when PSI=THETA=PHI=0, otherwise equals 1.

IHORZ Control integer which determines whether X, Y, or Z is the horizontal variable.

IVERT Control integer which determines whether X, Y, or Z is the vertical variable.

HMIN Minimum value of the horizontal variable.

VMIN Minimum value of the vertical variable.

SCALE Scale factor.

A Rotation matrix array.

C Array containing coefficients of transformation equation.

OUTPUT: Orthographic plots.

USAGE: CALL PLOTIT

COMMON

BLOCKS: FILES

SUB-

ROUTINES

CALLED : PTROT, VERCROT, VISTST

3.3.3 Subroutine PTROT

PURPOSE: This routine rotates and projects a set of 3-D points.

INPUT:

NPT Number of points.

A Rotation matrix array.

ALINE Array containing rotated line.

OUTPUT:

RLINE Array containing rotated line.

USAGE: CALL PTROT

COMMON

BLOCKS: None

SUB-

ROUTINES

CALLED : None

3.3.4 Subroutine VECROT

PURPOSE: This routine does the vector transformation.

INPUT:

NVEC Number of vectors.

C Array containing transformation coefficients.

FVEC Input vectors.

OUTPUT:

RVEC Transformed vectors.

USAGE: CALL VECROT

COMMON

BLOCKS: None

SUB-

ROUTINES

CALLED : None

3.3.5 Subroutine VISTST

PURPOSE: This routine tests a line of points for visibility.

INPUT:

KODE Control integer which tells us whether we have the

first line, last line or any other.

NPT Number of points.

RLINE Array containing line of points to be tested for

visibility.

RVEC Array of transformed vectors.

OUTPUT:

PLINE Array containing visible points.

ICOUNT Counter containing number of visible points.

NNUM Array containing counter ICOUNT for each set of points

which are visible.

USAGE: CALL VISTST

COMMON

BLOCKS: None

SUB-

ROUTINES

CALLED : None

3.4 Program PLTSTE (Overlay (LWB, 4, 3))

PURPOSE: This routine is the control routine for the perspective and stereo plots.

INPUT:

ISP Control integer specifying the type to be stereo or

perspective:

ISP=1 perspective

ISP=2 stereo

USAGE: CALL OVERLAY (LWB, 4, 3)

COMMON

BLOCKS: GRAPH, BLANK, BLANK2, FILES, HEAD, PTYPE

SUB-

ROUTINES

CALLED : SPPLT

3.4.1 Subroutine SPPLT

PURPOSE: This routine calls subroutine STERPT to generate the perspective views or stereo views of an aircraft.

INPUT:

PLOT Plot control integer:

0 - No plot output.

- 1 Plot output of singularity paneling on the Calcomp plotter.
- 2 Plot output of singularity paneling on the Varian or Versatec plotter.

A negative value of PLOT will generate the input configuration plots.

PHI X - of view point (location of viewer) in data coordinate system.

THETA Y - of view point in data coordinate system.

PSI Z - of view point in data coordinate system.

XF X - of focal point (determines direction and focus) in data coordinate system.

YF Y - of focal point in data coordinate system.

ZF Z - of focal point in data coordinate system.

DIST Distance from eye to viewing plane, inches.

FMAG Viewing plane magnification factor FMAG controls the size of the projected image.

PLOTSZ Diameter of viewing plane, (inches). DIST and PLOTSZ together, determine a cone which is the field of vision.

ISP Control integer indicating whether more than one set of arrays will be plotted in the same frame set from the same view point.

Jl Wing definition parameter.

J2 Fuselage definition parameter.

J3 Pod definition parameter.

J4 Fin definition parameter.

J5 Canard definition parameter.

NWAF Number of wing airfoil sections.

NWAFOR Number of ordinates used to describe a wing airfoil section.

NFUS Number of fuselage segments.

NRADX Number of points used to represent a half-section of a fuselage segment.

NFORX Number of sections in a fuselage segment.

NP Number of pods.

NPODOR Number of stations at which pod radii are to be specified.

NF Number of fins.

NFINOR Number of ordinates used to define each fin airfoil

section.

NCAN Number of canards.

NCANOR Number of ordinates used to define each canard airfoil

section.

Kl through

K5: Same as J1 through J5. Used for singularity paneling

plots.

KWAF Same as NWAF, but used for singularity paneling only.

KWAFOR Same as NWAFOR. Singularity paneling.

KRADX Same as NRADX. Singularity paneling.

KFORX Same as NFORX. Singularity paneling.

KF Number of airfoil sections used to define inboard

and outboard edges of singularity panels of a fin.

KFINOR Same as NFINOR. Singularity paneling.

KAN Number of airfoil sections used to define inboard

and outboard edges of singularity panels of a canard.

KANOR Number of ordinates specifying leading and trailing

edges of singularity panels of a canard.

COMMON

BLOCKS: NEWCOM, BLANK, BLANK2, FILES, GRAPH, ONE

SUB-

ROUTINES

CALLED : PLTIT3

3.4.2 Subroutine PLTIT3

PURPOSE: This routine reads from TAPE 12 lines of points which

define a surface, and plots perspective or stereo views.

INPUT:

ALINE Array containing lines of points.

NL Number of lines.

NPT Number of points.

PHI X - of viewing point in data coordinate system.

THETA Y - of viewing point in data coordinate system.

PSI 2 - of viewing point in data coordinate system.

XF X of focal point in data coordinate system.

YF Y of focal point in data coordinate system.

ZF Z of focal point in data coordinate system.

PLOTSZ Diameter of viewing plane, inches.

DIST Distance from eye to viewing plane.

FMAG Magnification factor of viewing plane.

NCI Integer value indicating that more than one set of

arrays will be plotted in the same frame set from

the same viewing point.

OUTPUT: Perspective or stereo frames.

COMMON

BLOCKS: FILES

SUB-

ROUTINES

CALLED : STERPT

3.4.3 Subroutine STERPT

PURPOSE: This routine plots the stereo frames, or the perspective view. Stereo plots are generated in two passes.

INPUT:

X, Y, Arrays of X, Y, and Z values to be transformed and

AND Z: plotted.

N Number of points to be plotted.

K Interleave factor of a mixed array (normally 1).

NC Integer value indicating whether more than one set of arrays will be plotted in the same frame set from the

same view point:

0 - First set of arrays.

1 to N successive sets of arrays.

-1 - Plot the left frame for an array.

-2 - Plot the right frame for an array.

IP 3 - Pen up when moving to first point in the array.

PAG Diameter in floating point inches of the viewing

plane. Determined by DIST and PLOTSZ.

PLA Distance from eye to viewing plane specified in

floating point inches.

XPR Viewing plane magnification factor.

OUTPUT: Perspective or stereo plots.

COMMON

BLOCKS: PI

SUB-

ROUTINE

CALLED: None

3.5 Program SPLTSV

PURPOSE: This program reads the singularity paneling data from TAPE 3, computes maximum and minimum dimensions. It then proceeds to compute outward normal unit vectors,

generates lines, and stores lines of points and vectors on TAPE 12.

INPUT:

KO Reference area parameter.

Kl Wing definition parameter.

K2 Fuselage definition parameter.

K3 Pod definition parameter.

K4 Fin definition.

K5 Canard definition parameter.

K6 Fuselage camber parameter.

KWF Number of wing airfoil sections.

KWAFOR Number of ordinates used to define each wing airfoil

section.

NFUS Number of fuselage segments.

KRADX Number of fuselage axial stations in one segment.

NF Number of fins.

KWF Number of airfoil sections.

NCANR Number of ordinates used to define a canard airfoil

section.

XC Array containing X-coordinates of panel corner points.

YC Array containing Y-coordinates of panel corner points.

ZC Array containing Z-coordinates of panel corner points.

OUTPUT:

ALRT Array containing lines of points.

VECRT Array containing outward normal unit vectors.

COMMON

BLOCKS: NEWCOM, FILES, BLANK, BLANK2

SUB-

ROUTINES

CALLED : SURCL, SURCC

3.6 Program PLPRES (Overlay (LWB, 4, 5))

PURPOSE: This is the control routine for the plotting of the pressure distributions on the fuselage and on the wing.

INPUT:

NP Number of panels of component.

COMPT Component identification integer:

1 - Fuselage.

2 - Wing and/or tail.

NPASS Pass number:

- 1 Fuselage pressure distribution and wing pressure distributions for upper and lower surfaces if non-planar boundary condition option is selected. Wing pressure distribution for the upper surface if planar boundary condition option is selected.
- 2 Wing pressure distribution for the lower surface if the planar boundary condition option is selected.
- X Fuselage panel control points X-coordinate.
- Y Fuselage panel control points Y-coordinate.
- Z Fuselage panel control points 2-coordinate.
- CP Array of pressure coefficients.
- XQ Array of wing panel X-coordinates.

NFUS Number of fuselage segments.

PLOT Plot control integer:

0 - No plot output.

1 - Plot output on Calcomp plotter.

2 - Plot output on Varian plotter.

NRADX(I) Number of points used to represent a half-section in

fuselage segment (I = 1,NFUS).

NFORX(I) Number of sections (stations) in fuselage segment

(I = 1,NFUS).

NSEG Number of wing segments.

NROW Array containing numbers of rows of panels in each wing

segment.

NCOL Array containing numbers of columns of panels in each

wing segment.

OUTPUT:

PHI Array containing meridian angles (in degrees)

fuselage panel control points.

XX Array of fuselage panel control point X-coordinates.

YY Array of wing panel control point Y-coordinates.

CP Array of pressure coefficients.

NR Number of fuselage panels at a specified station.

XQ Array of wing panel X-coordinates.

NPW Number is wing panels at a specified column.

USAGE: CALL OVERLAY (LWB, 4, 3)

COMMON

BLOCKS: SCALE, PARAM, GRAPH, PRESS, SEG, FILES, NEWCOM, PI, CLINE

SUB-

ROUTINES

CALLED : PRESBO, AXLES, PRSWNG, LABEL

3.6.1 Subroutine PRESBO

PURPOSE: This routine plots the pressure distribution at specified sections (stations) of the fuselage. The curves are plotted in groups of ten or less. Each curve represents the pressure distribution at a station.

INPUT:

X Fuselage pagel control point X-coordinate.

KF Number of points to be plotted per curve.

PHI Array containing the meridian angles (in degrees)

of panel control points.

CP Array containing pressure coefficients.

CPMIN Minimum value in CP-array.

CSCALE Scale factor.

KK Control integer which specifies symbol to be used in

the plotting of each curve. Values of KK from 1 to 10.

OUTPUT: Fuselage pressure distribution plots.

USAGE: CALL PRESBO(X, KF, PHI, CP)

COMMON

BLOCKS: SCALE

3.6.2 Subroutine AXLES

PURPOSE: This routine computes the axes for the pressure distribution plots.

INPUT:

COMPT Component identification integer.

CSCALE Scale factor for CP-arrays.

CPMIN Origin of CP scale.

PLOT Plot control integer.

OUTPUT: Axes with or without grid.

USAGE: CALL AXLES (COMPT)

3.6.3 Subroutine PRSWNG

PURPOSE: This subroutine plots the wing pressure distribution

for each column of panels each time it is called.

INPUT:

NR Number of panels.

CSCALE Scale factor of CP's in column.

CPMIN Origin of CP-axes.

XQ Non-dimensional panel X-coordinate.

CP Array of pressure coefficients.

OUTPUT: Pressure distributions plots for each column on wing.

USAGE: CALL PRESWNG (NR, L, XQ, CP)

COMMON

BLOCKS: SCALE, GRAPH

3.6.4 Subroutine LABEL

PURPOSE: This subroutine plots the legends to the graphs of

the fuselage pressure distribution or of the wing

pressure distribution.

INPUT:

PLOT Plot control integer.

COMPT Component identification integer.

LL Total number of curves plotted.

Array of X or Y-coordinates of the different sections for which pressure distribution was plotted. XX

KL Total number of curves to be plotted.

L Integer counter of number of curves per frame, L<10.

Plots of the legends to the graphs of the pressure OUTPUT:

distribution frames.

CALL LABEL(LL, XX, KL, L, COMPT) USAGE:

COMMON

SCALE, GRAPH, FILES, PARAM BLOCKS:

Section 4 AUXILIARY FILES

USSAERO designates TAPE 6 as its output file and which contains its printed tables.

Disk file TAPE 5 contains the input data to the program. The contents of TAPE 5 are initially read in, each record in 8Al0 format printed out under the same format, and then, the file is re-wound before being used throughout the program. The initial printout of the contents of TAPE 5 gives the user the opportunity to check his input data.

In addition to TAPE 5 and TAPE 6, USSAERO specifies nine auxiliary files which are utilized as temporary storage and data transfer. These files are designated: TAPE 3, TAPE 7, TAPE 8, TAPE 9, TAPE 10, TAPE 11, TAPE 12, TAPE 13, and TAPE 14.

TAPE 3 is used as temporary storage of the input geometry data which is followed by the singularity paneling geometry data. The input geometry data is written to TAPE 3 by program CONFIG (Overlay (LWB, 1, 1)). The singularity paneling geometry data is written to TAPE 3 by programs WNGPAN (Overlay (LWB, 1, 3)).

BODPAN (Overlay (LWB, 1, 5)), and TALPAN (Overlay (LWB, 1, 7)).

TAPE 7 is primarily used for the storage of the panel geometry data. The first logical record is written to this file by program WNGPAN, and it contains wing panel geometry data. If the configuration has additionally, fins and/or canards, the first logical record will be re-written to TAPE 7 by program TALPAN, and its contents will be wing, fin, and/or canard panel geometry data. The second logical record is written to TAPE 7 by program BODPAN, and its contents are the body (fuselage) panel geometry data. Additional records are written to TAPE 7 by program VELCMP (Overlay (LWB, 2, 0)), if the aerodynamic matrix partitions matrices are further subdivided into blocks. The diagonal block matrices are stored in individual logical records on this file after the panel geometry

data. A maximum of 50 additional records containing the elements of the diagonal block matrices may be written to this file.

TAPE 8 is used to store the velocity component arrays u, v, and w. Each record in this file contains one row of the velocity components from a given matirx partition. In the first partition, NBODY logical records are written to TAPE 8 by program BODVEL (Overlay (LWB, 2, 1)). In the second partition, another NBODY logical records are written to TAPE 8 by program LINVEL (Overlay (LWB, 2, 2)) or program WNGVEL (Overlay (LWB, 2, 3)). However, if the planar boundary condition with thickness option is selected, program LINVEL writes an additional NBODY records to this file. In the third partition, NWING records are written to TAPE 8 by program BODVEL. In the fourth partition, another NWING records are written to this file, by either program LINVEL (Overlay (LWB, 2, 2)) or by program WNGVEL (Overlay (LWB, 2, 3)). If the planar boundary condition with thickness option is selected, program LINVEL writes an additional NWING records to TAPE 8.

TAPE 9 is first used in program CONFIG to store the input configuration geometry data. Five logical records are written to TAPE 9, and they contain: reference area, wing geometry data, body (fuselage) geometry data. Dummy records are written to TAPE 9 for missing components. TAPE 9 is re-initiated in program VELCMP, and used to store normal velocity arrays. Each logical record contains one row of normal velocities from a given matrix partition. In the first partition, NBODY records are written to this file by program WNGVEL. In the third partition, NWING records are written to TAPE 9 by program BODVEL, and in the fourth partition, an additional NWING records are written to this file by program LINVEL or by program WNGVEL. Thus, a total of two (NBODY + NWING) records are written to TAPE 9.

TAPE 10 is first used in program NEWRAD as temporary storage for the body panel corner point coordinates. It is reinitialized by program VELCMP, and then used to store the elements of the

diagonal block matrices, if the matrix partitions are further subdivided into blocks. Each record contains one row of normal velocities from a given diagonal block matrix in a given matrix partition. The records are written at the same time the normal velocity arrays for the remainder of the row are written on TAPE 9. Thus, a total of two (NBODY + NWING) records are also written on TAPE 10. These records are subsequently read by program VELCMP, transferred to TAPE 7, and the file re-initialized a second time. TAPE 10 is finally used to store the elements of the inverse diagonal block matrices, or the inverse diagonal partition matrices, if the matrix is not subdivided into blocks. In the former case, the elements of each inverse diagonal block matrix are written as a single record on TAPE 10 by subroutine DIAGIN, or in the latter case, the elements of each inverse diagonal partition matrix are written on this file by subroutine PARTIN.

TAPE 11 is first used by program GEOM as temporary storage for the input geometry control integers and for the revised configuration paneling description control integers. The first record is read by program CONPLT (Overlay (LWB, 4, 0)) and program GPLTSV (Overlay (LWB, 4, 1)). The second is read in by program SPLTSV (Overlay (LWB, 4, 4)).

TAPE 12 is first used by program GPLTSV which writes arrays of lines alternately with arrays of outward normal vectors to it, for the plotting of the input geometry. The file is then re-initialized by program SPTSV which writes arrays of lines alternately with arrays of outward normal vectors to it, for the plotting of the singularity paneling. The file is re-initialized for the last time in subroutine FORMOM which writes fuselage and wing (upper surface only) pressure distribution. The number of records written to this file is a function of the input geometry and of the singularity paneling.

TAPE 13 is first used by program GEOM which writes the plot control cards to it. The file is re-initialized by subroutine

FORMOM which writes the wing (lower surface only) pressure distribution to it.

TAPE 14 is first used as a temporary storage for the normal velocity arrays in subroutine ITRATE, if NBODY and NWING are not equal to zero. The NBODY records in TAPE 9 which correspond to the second partition and the NWING records in the same file corresponding to the fourth partition, are copied to TAPE 14. This file is re-initialized in plot overlay programs PLTORT and/or PLTSTE where it is used as temporary storage for alpha-numeric information to be notated on the geometry plots.

Figure 6
AIRCRAFT COMPONENTS

Figure 7

CAMBERED AND UNCAMBERED AIRFOILS

Figure 8
UNCAMBERED FUSELAGE AIRCRAFT CONFIGURATION

Figure 9
CAMBERED FUSELAGE AJRCRAFT CONFIGURATION

Section 5 INPUT DESCRIPTION

The input to the USSAERO program consists of two parts, namely, the numerical description of the initial configuration geometry followed by the plot information cards; and the auxiliary input data which specifies the singularity paneling scheme, program options, Mach number, angle of attack, normal velocities, and field points, again, followed by plot information cards. The project input is illustrated in Appendix B.

Input Geometry

Columns	Variable	Value	Description
1-80	TITLE1		This card contains any desired identifying information.

Control Integers

Columns	Variable	Value	Description
1-3	J0	0	No reference area. Reference area to be read.
4-6	J1	0 1 -1	No wing data. Cambered wing data to be read. Uncambered wing data to be read.
7-9	J2	0 1 -1	No fuselage data. Data for arbitrarily shaped fuselage to be read. Data for circular fuselage to be read. (With J6=0, fuselage will be cambered. With J6=-1, fuselage will be symmetrical with respect to the xy-plane. With J6=1, entire configuration will be symmetrical with respect to the xy-plane.)
10-12	J3	0	No POD (Nacelle) data. POD (Nacelle) data to be read.

Columns	Variable	Value	Description
13-15	J4	0	No fin (vertical tail) data. Fin data to be read.
16-18	J5	0 1	No canard (horizontal tail data). Canard data to be read.
19-21	J 6	0 1	A cambered circular or arbitrary fuselage if J2 is non-zero. Complete configuration is symmetrical with respect to the xy-plane, which implies an uncambered circular fuselage, if there is one. Uncambered circular fuselage with J2 non-zero.
22-24	NWAF	2-20	Number of airfoil sections used to describe the wing.
25-27	NWAFOR	3-30	Number of ordinates used to define each wing airfoil section. If the value of NWAFOR is input with a nega- tive sign, the program will expect to read lower surface ordinates also.
28-30	NFUS	1-4	Number of fuselage segments.
31-33	NRADX(1)	3-20	Number of points used to represent half-section of first fuselage segment. If fuselage is circular, the program computes the indicated number of Y-and Z-coordinates.
34-36	NFORX(1)	2-30	Number of stations for first fuselage segment.
37-39	NRADX(2)	3-20	Same as NRADX(1), but for the second fuselage segment.
40-42	NFORX(2)	2-30	Same as NFORX(1), but for the second fuselage segment.
43-45	NRADX (3)	3-20	Same as NRADX(1), but for the third fuselage segment.
46-48	NFORX(3)	2-30	Same as NFORX(1), but for the third fuselage segment.

Columns	Variable	Values	Description
49-51	NRADX(4)	3-20	Same as NRADX(1), but for the fourth fuselage segment.
52-54	NFORX (4)	2-30	Same as NFORX(1), but for the fourth fuselage segment.
55-57	NP	0-9	Number of PODS (Nacelles).
58-60	NPODOR	4-30	Number of stations at which pod radii are to be specified.
61-63	NF	0-6	Number of fins (vertical tails) to be described.
64-66	NFINOR	3-10	Number of ordinates used to describe each fin airfoil section.
67-69	NCAN	0-6	Number of canards (horizontal tails) to be described.
70-72	NCANOR	3-10	Number of ordinates used to define each canard airfoil section. If the value of CANOR is negative, the program will expect to read lower surface ordinates also; otherwise, the airfoil is assumed to be symmetrical.
73-75	PLOT	-1	Plot flag. Plots of input geometry + singularity paneling geometry + pressure distributions. In this case, plot cards should be placed before TITLE2 card and before the MACH NO., ALPHA cards. No plots will be generated.
		+1	Plots of singularity paneling geometry and pressure distributions will be generated. Plot cards should be placed before the MACH NO., ALPHA cards.

Reference Area

Columns	<u>Variable</u>	Value	Description
1-7	REFA		Reference Area Card.
			Wing
Columns	Variable	Value	Description
1-7	XAF		Cards, each containing up to 10 values of percent chord, at which ordinates of airfoils are to be specified. Total of NWAFOR values. Each card may be identified in columns 73-80 by XAFJ, where J denotes the last location specified on that card.
1-7	WAFORG		NWAF cards, each containing values of: X-coordinate of wing airfoil leading
8-14			edge, Y-coordinate of wing airfoil leading
15-21			edge, Z-coordinate of wing airfoil leading edge,
22-28			wing airfoil streamwise chord length. Each card may be identified in columns 73-80 by WAFORGJ, where J denotes the airfoil number, starting from the most inboard airfoil.
1-7 8-14 etc.	TZORD		NWAF cards, each containing up to 10 values of DELTAZ (mean camber line). A total of NWAFOR values will be read per airfoil. Each card may be identified in columns 73-80 by TZORJ, where J denotes the last location on that card. These values will be input only if J1<0.
1-7 8-14 etc.	WAFORD		Cards, each containing up to 10 values of wing half-thickness, (each specified as percent of the chord) specified for each wing airfoil. If NWAFOR<0, the same number of values will be read for the wing lower surface.

Body (Fuselage)

Columns	Variable	Value	Description
1-7 8-14 etc.	XFUS		Cards, each containing up to 10 values of X-coordinates of body axial stations specified for each body segment. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by XFUSJ, where J denotes the last location on that card.
1-7 8-14 etc.	ZFUS		Cards, each containing up to 10 values of Z-ordinates of fuselage camber line, specified at each fuselage segment. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by ZFUSJ, where J denotes the last location on that card.
1-7 8-14 etc.	SFUS		Cards, each containing up to 10 values of Y-ordinates of half-cross-section points. A total of NRADX values are input. The cards containing NRADX values of Y-coordinates are followed by cards containing the Z-coordinates of the same points. These sets of cards are repeated for each fuselage segment. They will only be read, if J1 = 1. (Fuselage of arbitrary shape).
1-7 8-14 etc.	PUSARD		Cards, each containing up to 10 values of fuselage cross-sectional areas. Total of NFORX values will be read per fuselage segment. Each card may be identified in columns 73-80 by FUSARDJ, where J denotes last station specified on that card. Fuselage has circular cross-sections.

Fin

Columns	Variable	Value	Description
1-7	FINORG		X-ordinate on inboard airfoil leading
1-7			edge,
8-14			Y-ordinate on inboard airfoil leading edge,
15-21			Z-ordinate on inboard airfoil leading
22-28			edge, Chord length of inboard airfoil,
29-35			X-ordinate on outboard airfoil leading edge,
36-42			Y-ordinate of outboard airfoil leading edge,
43-49			2-ordinate of outboard airfoil leading
50-56			edge, Chord length of outboard airfoil. This card may be identified in columns 73-80 by FINORGJ, where J denotes the fin number.
1-7 8-14 etc.	XFIN		Cards, each containing up to 10 values of fin airfoil percent chord. Each card can be identified in columns 73-80 by XFINJ, where J denotes the fin number.
1-7	FINORD		Cards, each containing up to 10 values of fin airfoil half-thickness, expressed in percent chord. Since the fin airfoil must be summetrical, only the ordinates on the positive Y-side of the fin chord plane are required. each card may be identified in columns 73-80 by FINORDJ, where J denotes the fin number.

NOTE: FINORG, XFIN and FINORD are input for each fin.

Canard

Columns	Variable	Value			Descript	ion	
1-7	CANORG		X-ordinate	of	inboard	airfoil	leading
8-14			edge, Y-ordinate edge.	of	inboard	airfoil	leading

Columns	Variable	<u>Value</u>	Description
15-21			Z-ordinate of inboard airfoil leading edge,
22-28			Chord length of inboard airfoil.
29-35			X-ordinate of outboard airfoil leading edge,
36-42			Y-ordinate of outboard airfoil leading edge,
43-49			Z-ordinate of outboard airfoil leading edge,
50-56			Chord length of outboard airfoil. This card may be identified in columns 73-80 by CANORGJ, where J denotes canard number.
1-7 8-14 etc.	XCAN		Cards, each containing up to 10 values of canard airfoil percent chord. Each card may be identified in columns 73-80 by XCANJ, where J denotes canard number. Total number of values is NCANOR/airfoil.
1-7 8-14 etc.	CANORD		Cards, each containing up to 10 values of canard airfoil half-thickness, expressed in percent chord. If canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD set of cards. The program expects both upper and lower ordinates to be punched as positive values in percent chord.

NOTE: CANORG, XCAN, and CANORD are input for each canard.

Plot Cards

For

(1) Orthographic Projections

Columns	Variable	Value	Description
1	HORZ		"X", "Y", or "Z" for horizontal axis.
3	VERT		"X", "Y", or "Z" for vertical axis.
5-7	TEST1		Word "OUT" for deletion of hidden lines; otherwise, leave blank.

Columns	Variable	Value	Description
8-12	PHI		Roll angle, degrees.
13-17	THETA		Pitch angle, degrees.
18-22	PSI		Yaw angle, degrees.
48-52	PLOTSZ		PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of configuration).
53-55	TYPE		Word "ORT"
72	KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.

(2) Three-View Orthographic Plot

Columns	Variable	Value	Description
8-12	PHI		Y-origin on paper of plan view, in.
13-17	THETA		Y-origin on paper of side view, in.
18-22	PSI		Y-origin on paper of front view, in.
48-52	PLOTSZ		PLOTSZ determines size of plot (A scale factor is calculated using PLOTSZ and the maximum dimension of the configuration).
53-55	TYPE		Word "VU3".
72	KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.

(3) Perspective Views

Columns	Variable	Value	Description
8-12	PHI		X-coordinate of view point is data coordinate system.
13-17	THETA		Y-coordinate of view point in data coordinate system.

Columns	Variable	Value	Description
18-22	PSI		Z-coordinate of view point in data coordinate system.
23-27	XF		X-coordinate of focal point in data cordinate system.
28-32	YF		Y-coordinate of focal point in data coordinate system.
33-37	ZF		Z-coordinate of focal point in data coordinate system.
38-42	DIST		Distance from eye to viewing - plane, in.
43-47	FMAG		Viewing - plane magnification factor; it controls size of projected image.
48-52	PLOTSZ		Diameter of viewing - plane. DIST and PLOTSZ determine a cone which is the field of vision.
53-55	TYPE		Word "PER"
72	KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.

(4) Stereo Frames

Input is identical to that for perspective views except that word "STE" is used in columns 53-55.

The USSAERO Program is restricted to a total of 600 singularity panels on the wing-fin-canard combination. There is an additional restriction that the total number of singularity panels in the spanwise direction on the wing-fin-canard combination cannot exceed 20. The remaining input cards contain detailed description of the singularity paneling of each component of the configuration. Each card contains up to ten (10) values, each value punched in a 7-column field with a decimal point, and may be identified in columns 73-80. The cards are arranged in the following order:

- 1) Title Card, 2) Options Card, 3) Control Integer,
- 4) Reference Lengths, 5) Wing Data Cards, 6) Body Data Cards,
- 7) Fin Data Cards, 8) Canard Data Cards, 9) Singularity Paneling Plot Information Cards and, finally, 10) Mach Number, Angle of Attack Cards.

singularity Paneling Geometry

Columns	Variable	Value	Description
1-50	TITLE2		This card contains identifying information.

Options

Columns	Variable	Value	Description
1-3	LINBC	0	Non-planar boundary condition. Planar boundary condition.
4-6	THICK	0	Do not calculate wing thickness matrix. Calculate wing thickness matrix if LINBC = 1.
7-8	PRINT	0 1 2 3 4	Print option flag. Print the pressures, the forces and the moments. Print option 0 and print the spanwise loads on the wing, fin and canard. Print option 1 and print the velocity components, source and vortex strengths. Print option 2 and print the steps in the iterative solution. Print option 3 and print the axial and normal velocity matrices. If PRINT 0, the panel geometry will be included in the printout.
9-12	LCPA	blank	Not used.
13-15	LCPB	blank	Not used.
16-18	ITMETH	0, 2	Iterative solution method selection flag. Blocked GAUSS-SEIDEL iterative solution procedure.

Columns	Variable	Value	Description
16-18	ITMETH	1	Blocked JACOBI iterative solution
		3	procedure. Blocked controlled successive over- relaxation iterative solution procedure.
		4	Blocked successive over-relaxation iterative solution procedure.
19-21	ITMAX	0	Maximum number of iterations set at 50.
		integer	Maximum number of iterations specified.
22-24	CCTEST	0. real	Convergence criterion set at .001 Convergence criterion specified.
29-35	DCTEST	0. real	Divergence criterion set at 1000. Divergence criterion specified.
36-42	ALF1		Relaxation factor < 1
43-49	ALF2		Relaxation factor > 1

Control Integers

Columns	Variable	Value	Description
1-3	к0	0 1	Reference length flag. No reference length to be read. Reference length to be read.
4-6	K1	0 1 3	Wing definition flag. No wing data to be read. Wing data follows. Wing has sharp leading edge. Wing data follows. Wing has round leading edge.
7-9	K2	0 1	Body (fuselage) definition flag. No fuselage data to be read. Fuselage data to be read.
10-12	к3		POD definition flag (Not used).
13-15	K4	0	Fin definition flag. No fin data to be read. Fin data follows. Fin has sharp leading edge.

Columns	Variable	Value	Description
13-15	K4	3	Fin data to be read. Fin has round leading edge.
16-18	к5 ,	0 1 3	Canard (horizontal tail) definition flag. No canard data to be read. Canard data to follow. Canard has sharp leading edge. Canard data follows. Canard has round leading edge.
19-21	K6		Not used.
22-24	KWAP	0	Number of wing sections used to define the inboard and outboard panel edges. If KWAF = 0, the panel edges are defined by NWAF in geometry input.
24-27	KWAFOR	0 3-30	Number of ordinates used to define the leading and trailing edges of the wing panels. If KWAFOR = 0, the panel edges are defined by NWAFOR in the input geometry.
28-30	KFUS		Number of fuselage segments. The program sets KFUS = NFUS.
31-33	KRADX(1)	0 3-20	Number of meridian lines used to define panel edges of first body segment. There are 3 options for defining the panel edges. If KRADX(1) = 0, the meridian lines are defined by NRADX(1) in geometry input. If KRADX(1) is positive, the meridian lines calculated at equally spaced PHIK's. If KRADX(1) is negative, the meridian lines are calculated at specified values of PHIK.
34-36	KFORX(1)	0, 2-30	Number of axial stations used to define leading and trailing edges of panels on first body segment. If KFORX(1)=0, the panel edges are defined by NFORX(1) in the geometry input.
37-39	KRADX(2)	0, 3-20	Same as KRADX(1), but for second body segment.

Columns	Variable	Value	Description
40-42	KFORX (2)	0, 2-30	Same as KFORX(1), but for second body segment
43-45	KRADX (3)	0, 3-20	Same as KFORX(1), but for third body segment.
46-48	KFORX(3)	0, 2-30	Same as KFORX(1), but for third body segment.
49-51	KRADX(4)	0, 3-20	Same as KRADX(1), but for fourth body segment.
52-54	KFORX(4)	0, 2-30	Same as KFORX(1), but for fourth body segment.

Additional Revised
Configuration Paneling Description Control Integers

Columns	Variable	Value	Description
1-3	KF(1)	0, 2-20	Number of fin sections used to define the inboard and outboard panel edges on the first fin. If $KF(1) = 0$, the root and tip chords define the panel edges.
4-6	KFINOR(1)	0, 3-30	Number of ordinates used to define the leading and trailing edges of the fin panels on the first fin. If KFINOR(1) = 0, the panel edges are defined by NFINOR.
7-9	KF(2)	0, 2-20	Same as for KF(1), but for second fin.
10-12	KFINOR(2)	0, 3-30	Same as for KFINOR(1), but for second fin.
13-15	KF (3)	0, 2-20	Same as for $KF(1)$, but for third fin.
16-18	KFINOR(3)	0, 3-30	Same as for $KFINOR(1)$, but for third fin.
19-21	KF (4)	0, 2-20	Same as for $KF(1)$, but for fourth fin.

Columns	Variable	Value	Description
22-24	KFINOR(4)	0, 3-30	Same as for KPINOR(1), but for fourth fin.
25-27	KF(5)	0, 2-20	Same as for KF(1), but for fifth fin.
28-30	KFINOR(5)	0, 3-30	Same as for KFINOR(1), but for fifth fin.
31-33	KF(6)	0, 2-20	Same as for KF(1), but for sixth fin.
34-36	KFINOR(6)	0, 3-30	Same as for KFINOR(1), but for sixth fin.
37-39	KCAN(1)	0, 2-20	Number of canard sections used to define edges on the first canard. If KCAN(1) = 0, the root tip chords define the panel edges. If KCAN(1) negative, no vortex sheets carry through the body and concentrated vortices are shed from the inboard edge of the canard or tail surface.
40-42	KCANOR(1)	0, 3-30	Number of ordinates used to define the leading and trailing edges of the first canard. If KCANOR(1) = 0, the panel edges are defined by NCANOR.
43-45	KCAN(2)	0, 2-20	Same as for KCAN(1), but for second canard.
46-48	KCANOR(2)	0, 3-30	Same as for KCANOR(1), but for second canard.
49-51	KCAN (3)	0, 2-20	Same as for KCAN(1) but for third canard.
52-54	KCANOR(3)		Same as for KCANOR(1), but for third canard.
55-57	KCAN (4)	0, 2-20	Same as for KCAN(1), but for fourth canard.
58-60	KCANOR(4)	0, 3-30	Same as for KCANOR(1), but for fourth canard.

Columns	Variable	Value	Description
61-63	KCAN (5)	0, 2-20	Same as for KCAN(1), but for fifth canard.
64-66	KCANOR (5)	0, 3-30	Same as for KCANOR(1), but for fifth canard.
67-69	KCAN(6)	0, 2-20	Same as for KCAN(1), but for sixth canard.
70-72	KCAN (6)	0, 3-30	Same as for KCANOR(1), but for sixth canard.

REFERENCE LENGTHS: This card can be identified with REFL in columns 73-80, and contains the following:

Columns	Variable	Value	Description
1-7	REFAR		Wing reference area. If REFAR = 0, the value of the reference area is defined as the value of REFA in the geometry input.
8-14	REFB		Wing semi-span. If REFB = 0, a value of 1.0 is used for the reference semi-span.
15-21	REFC		Wing reference chord. If REFC = 0, a value of 1.0 is used for the reference chord.
22-28	REFD		Body reference diameter. If FERD = 0, a value of 1.0 is used for the reference diameter.
29-35	REFL		Body reference length. If REFL = 0, a value of 1.0 is used for the reference length.
36-42	REFX		X-coordinate of moment center.
43-49	REFZ		Z-coordinate of moment center.

Wing

Columns	Variable	Value	Description
1-7 8-14 etc.	RHO		Cards containing NWAF values. RADII of wing leading edge, expressed in percent of the chord. Required, only if Kl = 3. It may be identified in columns 73-80 by RHOJ, where J denotes the number of the last radius given on that card. This card contains NWAF values RHO.
1-7 8-14 etc	XAFK		Cards containing WAFOR values of wing panel leading edge locations, expressed in percent chord. This card may be identified in columns 73-80 as XAFKJ, where J denotes the last location given on that card. Omit if KWAFOR=0.
1-7	YK		Card containing KWAF values of Y-coordinate of Wing panel inboard and outboard edges. This card may be identified in columns 73-80 by YKJ, where J denotes last Y-coordinate on that card.

Body (Fuselage)

Columns	Variable	Value	Description
1-7 8-14 etc.	PHIK		Cards containing KRADX(1) values of the body meridian angles expressed in degrees, and may be identified in columns 73-80 by PHIKJ, where J denotes the body segment number. Convention used is that PHIK = 0. at the bottom of the body and PHIK = 180 at the top of the body. Omit, unless KRADX(1) is negative. Repeat same cards for each fuselage segment.
1-7 8-14 etc.	ХJ		Array containing KFORX(1) values of X-coordinates of body axial stations. This card may be identified in columns 73-80 by XFUSKJ, where J denotes the body segment number. Omit if KFORX = 0. Repeat this card for each fuselage segment.

Fin

Columns	Variable	Value	Description
1-7 8-14 etc.	RHO		Array containing NF fin leading edge RADII. This array is required only if K4 = 3. This card is identified in columns 73-80 by RHOFIN.
1-7 8-14 etc.	XAFK		Array containing KFINOR(1) values of fin panel leading edge locations. This card is required only if K4 = 1. It may be identified in columns 73-80 by KFINKJ, where J denotes the fin number. Repeat this card for each fin.
1-7 8-14 etc.	YK		This array contains KF(1) values of the Z-coordinates of the fin panel inboard edges. This card is identi- fied in columns 73-80 as ZFINKJ, where J denotes the fin number. These values start with the most inboard values.

Canard

Columns	Variable	Value	Description
1-7 8-14 etc.	RHO		Cards containing NCAN values of canard leading edge RADII, one value for each canard. This card can be identified in columns 73-80 as RHOCAN. This array is input only if K5 = 3.
1-7 8-14 etc.	XCAN		Card containing KCANOR(1) values of canard panel leading edge X-coordinates expressed in percent chord. The cards may be identified in columns 73-80 by XCANKJ, where J denotes the canard number. Repeat this card for each canard.
1-7	YK		Card containing KCAN(1) values of Y-coordinates of panel inboard edges. This card may be identified in columns 73-80 by YCANKJ, where J denotes canard number. Repeat this card for each canard.

Plot Cards

For

(1) Orthographic Projections

Columns	Variable	Value	Description
1	HORZ		"X", "Y", or "Z" for horizontal axis.
3	VERT		"X", "Y", or "Z" for vertical axis.
5-7	TEST1		Word "OUT" for deletion of hidden lines; otherwise, leave blank.
8-12	PHI		Roll angle, degrees.
13-17	THETA		Pitch angle, degrees.
18-22	PSI		Yaw angle, degrees.
48-52	PLOTSZ		PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of configuration).
53-55	TYPE		Word "ORT"
72	KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.

(2) Three-View Orthographic Plot

Columns	Variable	Value	Description
8-12	PHI		Y-origin on paper of plan view, in.
13-17	THETA		Y-origin on paper of side view, in.
18-22	PSI		Y-origin on paper of front view, in.
48-52	PLOTSZ		PLOTSZ determines size of plot. (A scale factor is calculated using PLOTSZ and the maximum dimension of the configuration.)
53-55	TYPE		Word "VU3"

Columns	Variable	Value	Description
72	KODE	0	Continue reading plot cards After processing this plot card, end reading plot cards.

(3) Perspective Views

Columns	Variable	Value	Description
8-12	PHI		X-coordinate of view point in data coordinate system.
13-17	THETA		Y-coordinate of view point in data coordinate system.
18-22	PSI		Z-coordinate of view point in data coordinate system.
23-27	XF		X-coordinate of focal point in data coordinate system.
28-32	YF		Y-coordinate of focal point in data coordinate system.
33-37	ZF		Z-coordinate of focal point in data coordinate system.
38-42	DIST		Distance from eye to viewing - plane, in.
43-47	FMAG		Viewing - plane magnification factor; It controls size of projected image.
48-52	PLOTSZ		Diameter of viewing-plane. DIST and PLOTSZ determine a cone which is the field of vision.
53-55	TYPE		Word "PER"
72	KODE	0	Continue reading plot cards. After processing this plot card, end reading plot cards.

(4) Stereo Frames

Input is identical to that for perspective views except that word "STE" is used in columns 53-55.

Mach Number, Angle of Attack

Columns	Variable	Value	Description
1-7	MACH	real	The free stream subsonic or supersonic Mach for which a solution is desired. This value indicates the last case for the current configuration was just run. After completion, the program will read geometry cards for the next configuration or terminate if no configuration remains.
3-14	ALPHA		The angle of attack in degrees for which a solution is desired.
15-21	NORVEL	1.	Apply the usual boundary condition of zero normal velocity on the body panels. Modify the usual boundary condition by the addition of the normal velocities specified on the normal velocity input cards.
22-28	LMACH	blank	Local Mach number flag. Not used.
29-35	FLDPTS	_ <600	No field point calculations Velocities and pressures will be cal- culated at the field points specified on the field point coordinates input cards. FLDPTS specifies the number of field points. This card may be identified in columns 73-80 by MALPHA.

Normal Velocities

Columns	Variable	Value	Description
1-7	QB		This card contains NBODY values of normal velocity Omit if NORVEL = 0.
8-14			normal velocity Omit if NORVEE - 0.
etc.			

Field Point

Columns	Variable	Value	Description
1-7 8-14 etc.	XPT		Cards, containing X, Y, and Z-coordinates of flow-field points at which velocities and pressure coefficients are to be computed. Omit if FLDPTS = 0.

Section 6

The USSAERO program output consists of two parts:

- 1) A complete listing of the input data cards,
- Program execution output.

The quantity and type of execution output depends upon the PRINT option selected, the number of panels used, and/or the number of components of the configuration.

The program execution output options are described below:

- PRINT = 0The program prints the case description, Mach number and angle of attack, followed by a table listing the panel number, control point coordinates (both dimensional and non-dimensional), pressure coefficient, normal force, axial force, and pitching moment. Separate tables are printed for the body and wing panels, noting that any tail, fin or canard panels are included with the wing output. If the planar boundary condition option has been selected, the results for the wing upper surface are given in one table, followed by a separate table giving the results for the wing lower surface. Additional tables giving the total coefficients on the body, the wing and the complete configuration follow the pressure coefficient tables. These include the reference area, reference span and reference chord, the normal force, axial force, pitching moment, lift and drag coefficients, and the center of pressure of the component.
- PRINT = 1 In addition to the output described for PRINT = 0, the program prints out additional tables giving the normal force, axial force, pitching moment

lift and drag coefficients, and the center of pressure of each column of panels on the wing and tail surfaces. In addition, the indices of the first and last panel in the column are listed, together with the span, chord and origin of the column.

- PRINT = 2 In addition to the output described for PRINT = 1, the program prints out tables listing the panel number, the source or vortex strength of that panel, and the axial velocity u, lateral velocity v, and vertical velocity w at the panel control point. The normal velocity is also calculated for body panels. Separate tables are printed for the body and wing panels, noting again that any tail, fin, or canard panels are included with the wing output. If the planar boundary condition option has been selected, separate tables are given for the wing upper and lower surfaces.
- PRINT = 3 In addition to the output described for PRINT = 2, the program prints out the iteration number, and the source and vortex strength arrays obtained at each step of the iterative solution procedure.
- PRINT = 4 In addition to the output described for PRINT = 3, the program prints out tables of the axial and normal velocity components which make up the elements of the aerodynamic matrices. The program prints out the matrix row number, and gives the number of elements in that row. A maximum of four matrix partitions will be printed if this option is selected, each of which is identified by a number and its influence description prior to printing the velocity component tables.

If a negative value of PRINT is selected, the program prints all the information described above for the positive values, together with the complete panel geometry description of the configuration following the list of input cards. This consists of tables giving the wing panel corner points, control points, inclination angles, areas, and chords. If the configuration has a horizontal tail, fin or canard, additional tables are printed giving the same information as listed above for the wing. Finally, if the configuration includes a body, the body panel corner points, control points, areas, and inclination angles are listed.

The program output is illustrated in Appendix B.

Section 7

REFERENCES

- Craidon, Charlotte B.: <u>Description of a Digital Computer</u>
 <u>Program for Airplane Configuration Plots</u>. NASA TM X-2074.
 1970.
- Woodward, F. A.: An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations in Subsonic and Supersonic Flow. NASA CR-2228, Parts I and II, 1973;
 Vol. I - Theory and Application. Vol. II Computer Program Description.
- Woodward, F. A.: USSAERO Computer Program Development, Versions B and C. NASA CR-3227, 1980.

Appendix A

LABELED COMMON BLOCKS

IN

USSAERO

LIST OF SYMBOLS

COMMON

BLOCKS

ROUTINES

BODCOM

USSAERO, BODVEL, SUBPAN, SUPPAN

BTHET

USSAERO, BODVEL, WNGVEL, BODPAN

BLANK

USSAERO, GEOM, CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, GPLTSV, PLTORT, OTHPLT,

PLTSTE, SPPLT, SPLTSV

BLANK2

USSAERO, GEOM, CONFIG, CONPLT, GPLTSV, PLTORT,

OTHPLT, PLTSTE, SPPLT, SPLTSV

COEF

USSAERO, DERIV, COMCU, NEWORD, NUTORD

COMPS

USSAERO, LINVEL, SORVEL, VORVEL

COMPV

USSAERO, WNGVEL, VORPAN

CONPLT

USSAERO, CONPLT

CLINE

USSAERO, BODPAN, PLPRES

EPS

USSAERO, PANEL, WNGPAN, TALDAN, VELCMP, SUBPAN, SUPPAN, LINVEL, SORVEL, VOR EL, WNGVEL, VORPAN,

ITRATE, FORMON

FORM

USSAERO, SOLVE, FORMOM

FILES

USSAERO, GEOM, CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, VELCMP, BODVEL, SUPPAN, LINVEL, WNGVEL, SOLVE, INVERT, PARTIN, DIAGIN, ITRATE, FORMOM, CONPLT, GPLTSV, PLTORT, PLOTIT, PLTSTE, SPPLT, PLTIT3, SPLTSV, PSPRES, LABEL

GRAPH

USSAERO, GEOM, CONFIG, WNGPAN, BODPAN, TALPAN, FORMOM, CONPLT, PLTORT, OTHPLT, PLTSTE, SPPLT,

PLPRES, PRSWNG, LABEL

HEAD

USSAERO, GEOM, FORMOM, PLTORT, PLTSTE

ITERAT

USSAERO, GEOM, ITRATE

ITB

USSAERO

ITB1

USSAERO

COMMON BLOCKS

KUTTA USSAERO, WNGPAN, TALPAN, VELCMP, BODVEL

LINCOM USSAERO, WNGPAN, TALPAN, VELCMP, SOLVE

LWB USSAERO, GEOM, VELCMP, SOLVE, CONPLT

MATCOM USSAERO, VELCMP, SOLVE

NEWCOM USSAERO, GEOM, NEWORD, WNGPAN, NEWRAD, BODPAN,

NUTORD, TALPAN, VELCMP, BODVEL, FORMOM, PLTORT,

ROUTINES

OTHPLT, SPPLT, SPLTSV, PLPRES

NORVEL USSAERO, VELCMP, SOLVE

ONE USSAERO, CONFIG, GPLTSV, OTHPLT, SPPLT

PI USSAERO, CONFIG, WNGPAN, NEWRAD, BODPAN, TALPAN,

SUBPAN, SUPPAN, LINVEL, SORVEL, VORVEL, WNGVEL, VORPAN, SOLVE, GPLTSV, OTHPLT, STERPT, PLPRES

PTYPE USSAERO, CONPLT, PLTORT, OTHPLT, PLTSTE, GEOM

POINT USSAERO, PANEL WNGPAN, NEWRAD, BODPAN, TALPAN,

DIAGIN, ITRATE, FORMOM

PARAM USSAERO, GOEM, WNGPAN, BODPAN, TALPAN, VELCMP,

BODVEL, LINVEL, VORVEL, WNGVEL, VORPAN, SOLVE, PARTIN, DIAGIN, ITRATE, PRESS, FORMOM, PLPRES.

LABEL

PRESS USSAERO, GEOM, SOLVE, FORMOM, PLPRES

SEG USSAERO, GOEM, WNBPAN, TALPAN, VELCMP, BODVEL

LINVEL, WNGVEL, SOLVE, PARTIN, DIAGIN, ITRATE,

FORMOM, PLPRES

SCRAT USSAERO, GEOM, PANEL, CONFIG, NEWORD, WNGPAN,

NEWRAD, BODPAN, NUTORD, TALPAN, VELCMP, BODVEL,

LINVEL WNGVEL, SOLVE, PARTIN, ITRATE, FORMOM,

GPLTSV

SCALE USSAERO, PLPRES, PRESWNG, PRESBO, LABEL

SUPER USSAERO, VELCMP, SOLVE

TRAN USSAERO, WNGVEL, TRANS

COMMON

BLOCKS

ROUTINES

VELCOM

USSAERO, GEOM, WNGPAN, BODPAN, TALPAN, VELCMP, BODVEL, LINVEL, WNGVEL, SOLVE, PARTIN, DIAGIN, ITRATE, FORMOM

Appendix B
SAMPLE INPUT AND OUTPUT DATA

```
MACA RM L51F07 TRANSONIC WING-BODY SEFINITION

1 -1 1 2 26 1 7 20

.50 .75 1.25 2.90 5.0 7.5 10

30. 35. 40. 45. 50. 55. 60.

80. 85. 90. 95. 100.
                                                                                                                                                 TAF1
TAF2
TAF3
WAFORG
     0 -1 -1
.50
                             .79
35.
85.
6.
0.
.563
2.945
1.083
  0.
25.
                                                                                                                15.
                                                                                                                              20.
 75. 60.
14.325 1.6
25.375 12.
                                            90.
7.1
                                                                                                                                                    PAFORE
 0.
2.687
                                            .718
                                                          .981
                                                                       1.313
                                                                                    1.591
                                                                                                  1.024
                                                                                                                                                    MAFORD
                                                         2.992 2.925
               2.842
                                           2.996
                                                                                                  2.602
                                                                                                                                                    MAFORD
             1.437
.464
2.842
1.437
  1.775
                                           .727
                                                                                                                                                    WAFORD
 0. .464 .563 .715
2.667 2.842 2.945 2.996 2.992 2.925 2.72
1.775 1.437 1.083 .727 .370 .013
0. 2. 4. 6. 8. 10. 12. 14. 16. 18.
20. 22. 24. 26. 28. 30. 32. 34. 36. 38.
0. .7329 1.9607 3.385 4.799 6.0524 7.0666 7.7931 8.3264 8.6361
8.7616 8.6049 8.1433 7.4506 6.4063 4.9323 3.2174 2.0106 2.0106 2.0106
8. 2. 4. 10.097
                                                                                    1.591
                                                                                                1.024
                                                                                                                                                    WAFDED
                                                                                                                                                    MAFORD
                                                                                                                                                    WAFDED
                                                                                                                                                    art/51
                                                                                                                                                    BFLSZ
                                                                                                                                                    FUSARD
                                                                                                                                                   FUSAPD
                                                                                                                                              O GPLOT
O GPLOT
1 GPLOT
     1 1 1
                                               6 15 1 0 18
               12.
22.
2.5
                              e.125
 144.
                                                                       20.
                                                                                                                                                   PEFA
          21.425 23.00
0. 0. 0.
                                                                                                                                                   BHO
BAFEL
                                           10.
95.
6.40
 0.
70.
1.60
                                                         19.
                                                                                    30.
                                                         100.
                                                                                                                                                    BAFKZ
                                                                      12.0
                                                                                                                                                    TE
0.
20.02
                                         25.0
                                                                                                                                                   KF DREI
                                                         20.0
                                                                                    14.325 15.73. 17.16 18.59
                                                                      13.
                                                                                                                                             SPPLT
1 SPPLT
                                                                                                 38.0
10.08T
                                                                                    36.0
                                         :
```

LUU UUU 22222222222 2222222222 ********* EEEEEEEEEE 0000000000000 EFFEFFFFFFFF 0000000000000 LUU ULU 22222222222 22222222222 ********* 000 UUU VVV 355 555 333 \$55 EEE 000 000 000 UUU UUU 555 355 EEE ********** 000 000 UUU UUU 355 222 EEE \$3555555555 333333333333 CUD 000 UUT UUU REFEREE \$\$\$\$\$\$\$\$\$\$\$\$\$ \$55555555555 EEFEELE COD 000 LUU UUU 000 עעיו UUU EEE 000 555 555 UUU וועט 555 EFF 000 060 555 LUII 555 ::: 555 555 EEE 000 000 ULU ... ELECTIFEEEEE ... 555555555555 3553355555555 0000000000000 いっいひひひひひひいひじひ 33535555555 \$\$\$\$\$\$\$\$\$\$\$\$\$ EEEEEEEEEE

HASA-LANGLEY RESEARCH CENTER , CDC CYDER SERIES

UNIFIED SUBSONIC-SUPERSONIC AERODYNAMICS PROGRAM

VERSION 801 - MDS-FTM DATE OF RUN 79/08/31. TIME OF PUN 09.47.20.

LIST OF IMPUT CARDS

0 -1 -1 1 2 20 1 7 20 050 .75 1.25 2.50 5.0 25. 30. 35. 40. 45. 50. 75. 00. 05. 00. 95. 105. 14.325 1.6 0. 7.1 25.375 12. 0. 4.5 0464 .503 .718 .981 1.31 2.687 2.842 2.945 2.996 2.992 2.92 1.775 1.457 1.003 .727 .370 .013	WAFDEG
29. 30. 39. 40. 45. 50. 75. 80. 85. 90. 95. 105. 14.325 1.6 9. 7.1 25.375 12. 0. 4.5 0464 .563 .718 .981 1.31 2.687 2.842 2.945 2.996 2.992 2.92	55. 60. 65. 70. 24F2 14F3 VAFORG
75. 80. 85. 90. 95. 105. 14.325 1.6 9. 7.1 25.375 12. 0. 4.5 9. 7.18 .981 1.31 0. 7.18 .981 1.31 2.687 2.842 2.945 2.996 2.992 2.92	MAF3 WAFDING
14.325 1.6 0. 7.1 25.375 12. 0. 4.5 0464 .563 .718 .981 1.31 2.687 2.842 2.945 2.906 2.902 2.92	WAFDEG
25.375 12. 0. 4.5 0464 .563 .718 .981 1.31 2.687 2.842 2.945 2.996 2.992 2.92	
0464 .963 .718 .981 1.31 2.687 2.842 2.945 2.996 2.992 2.92	W4.5.04.5
2.487 2.842 2.945 2.996 2.992 2.92	VAFCRG
1 174 1 417 1 AAS 118 17A AS	5 2.793 2.602 2.364 2.087 WATCRD
	WAF DED
0464 .563 .718 .981 1.31	
2.687 2.842 2.945 2.996 2.992 2.92	5 2.793 2.602 2.364 2.087 WAFGED
1.775 1.437 1.063 .727 .370 .011	PAFCED
0. 2. 4. 6. 0. 10.	12. 14. 16. 10. 19051
20. 22. 24. 24. 28. 30.	32. 34. 36. 30. 15152
07329 1.9607 3.385 4.799 6.05	24 7.0686 7.7931 8.3266 8.6361 FUSARD
8.7616 2.6049 2.1433 7.4506 6.4063 4.93	23 3.2174 2.0106 2.0106 2.0106 FUSARD
6. 2. 4.	10.VU3 0 CPLCT
1 2 DUT 30. 30. 30.	10.00T 0 GPL01
I Y OUT 30. 30. 30.	10-047 1 GPL07
MACA TRANSONIC WING-BODY PANELING	
0 1 -3 3	
1 1 1 0 10 10	
144. 12. 6.125 20.	*114
.229 .229	9HQ
0. 2.5 5. 10. 15. 20.	30. 40. 50. 66. 14541
70. 80. 90. 95. 100.	14143
1.60 3.60 6.00 6.40 10.60 12.0	
0. 2. 5. 6. 11. 13.	14.325 15.73 17.16 10.50 870811
20.02 21.425 23.00 25.0 20.0 31.0	ATTOCK AFTER ATTOCK ATTOCK
1 T 0. 0. 0.	
i i i ii	36.9 38.0 RFDRIZ
	36.9 39.0 RF0832
:i. ·	36.9 38.0 RFDRIZ

WING PANEL CORNE	POINT COOK	DIMATES					
1 AND 3 INDICATE	WING PANEL	LEADING-EDGE	POINTS.	2 480 4	INDI CATE	TRAILING-EDGE	POLKTS

PAREL	•	٠,	t,	٠,	٠,	٠,	٠,	٠,	,	٠,	٠.	1,
	-			-	-	-			-			
1	14.32500	1.40000	0.00000	14.50250	1.40000	.01915	10.49500	3.00000	0.00000	16.61500	3.40000	.00475
2	14.50250	1.00000		14.65000	1.00000	.09322	16.61500	3.00000	.06475	10.78000	3.60000	.00100
,	14.67000	1.60000		15.03500	1.00000		16.70000	3.00000		17.11000	3.0000	.12030
•	15.03500	1.60000		13.39000	1.60000		17.11000	3.40000		17.44000	3.00000	.1
,	13.39000	1.00000		15.74500	1.00000		17.44000	3.00000		17.77000	3.00000	.10320
•	15.74500	1.00000		10.45500	1.00000		17.77000	3.00000		10.430-20	3.4 6000	.10757
·	16.45*00	1.0000		17.16500	1.00000		10.43000	3.00000		19.09000	3.01.000	.16774
	17.10000	1.00000	~~~~~	17.47500	1.60000		19.09000	3.40000		10.756.0	1.0000	.19305
10	17.07500	1.0000		18.58500	1.60000		19.75000	3.00000		20.41000	1.60000	.17173
	10.50500	1.00000		14.24100	1.60000		20.41000	3.40000		21.07000	1.0000	-13774
112	19.29300	1.60000		20.00500	1.60000		21.07000	3.60000		21.73000	3.60060	.00084
15	20.00500	1-60000		20.71500	1.60000		21.73600	3.40000		22.39000	3.40000	.04748
15	20.71500	1.60000		21.07000	1.60000		22.39000	3.00000		22.72600	3.6GU00	.02**2
ii	14.32500	1.60000		21.42300	1.60000		22.72000	3.60000		45.01500	3.60000	.00366
10	14.50750	1.60000		14.69830	1.40000	22	16.61500	3.40000		16.78500	1.60000	01473
17	14.65000	1.00000		15.93560	1.60000		16.7*000	3.40000		17.110-3	1.00000	12038
ii	15.03500	1.65000		15.39000	1.00000		17.11000	3.40000		17.44460	3.00000	14480
10	19.39000	1.60000		15.74500	1.60000		17.44600	3.t0000		17.77000	3.00000	10320
20	15.74500	1.40000		10.45500	1.60000		17.77000	3.40000		10.43000	3.60000	10737
21	16.45500	1.40000		17.10500	1.60000		10.43000	3.00000		19.09600	3.00000	19774
22	17.14560	1.66000		17.07500	1.00000		19.69000	3.00000		19.75000	1.00000	19365
23	17.07500	1.60000		10.36550	1.66000		19.75000	3.60000		20.11000	1.00000	17173
24	17.57500	1.60002		19.29500	1.00000		20.41000	3.45500		21.07000	3.00000	13774
25	19.29500	1.00000		20.00363	1.00000		21.07000	3.00000		21.73000	3.00200	09484
20	20.00500	1.00000		20.71500	1.60000		21.73000	3.00000		22.39000	3.40000	04798
27	20.71500	1.00000	05162	21.07000	1.60000	024.27	22.39000	3.40000		22.72600	3.00000	02442
20	21.07000	1.60000	026.27	21.42500	1.60000	00692	22.72000	3.60000	02442	23.05000	1.46000	00000
29	16.45000	3. (00.00	0.00000	10.01500	3.60000	.06475	19.00000	0.00000	0.00000	19.15000	6.00000	.65000
30	16.61500	3.60000	.06475	16.78000	3.00000	.00000	19.15000	6.00000	.05000	19.36000	6.00000	.07070
31	10.70000	3.00000	.07666	17.11000	3.40000	.12030	19.30000	0.00000	.67678	19.60000	6.00000	.10944
32	17.11000	3.40000	.12030	17.44000	3.00000		19.60000	0.00000	.10944	19.90000	0.00000	.13104
33	17.44000	3.00000	.14480	17.77000	3.60000	.10328	19.90000	0.00666	.13104	26.20006	0.00000	.14644
34	17.77000	3.00000		18.43000	3.40060	. 19/57	20.2000	e.cscop	.14844	20.t0C00	6.00000	.17052
35	10.43000	3.60000		14.00000	3.40000	.19774	20.00000	6.00000	.17052	21.40000	A.CCO00	.17070
36	19.09000	3.60000	.19774	19.75003	3.60000	.19305	21 7000	6.00000	.17976	22.00000		.17550
37	19.71000	3.60000		20.41006	3.60000	.17173	22.00000	6.00000	.17550	22.60000	6.00000	.15012
30	20.41000	3.60000		21.07000	3-60000		22.60009	···		23.20000	6.00000	.12522
39	21.07000	3.00000		21.73000	3.00000		23.20000	6.60666		23.50000	6. 66060	.00022
-0	21.73000	3.60000		22.39000	3.60000		23.00000	0.00000		24.40000	6.00000	.04362
41	22.39000	3.60000		22.72000	3.60000		24.40000	6.00000		24.70000		.02220
4.7	22.72000	1.6000	.02442	23.03000	3.60000	. 00084	24.70000	4.00000	.02220	25.00000		.00070

**	16.45000	3.40000	0.00000 14.4150		14-00000			19.15000		05000
**	10-61500	3.40000	06475 16.7800		14.15000			14.30000	ccsee	07678
49	36.70000	3.40000	08666 17.1100		 19.30000			14.00000	•-CDDDD	10944
**	17.11000	3.60000	12030 17.440		 14.00000			19.90000	0.0000	13164
47	17.44000	3.60000	14480 17.7700		 14.40008			20.20000	6.00000	1-5
**	17.77000	3.60000	16328 18.4300		 10-10000			20.00000	0.0000	17052
4.0	18.43000	3.60000	18757 19.0900		50.0000			21.40000	0.00000	17070
50	19.09000	3.00000	19774 19.750		21-40000			\$2.00000	6-0C000	17550
51	19.75000	3.6000	19303 20.4100		\$5.00000			22.40000	0.0000	15:12
32	\$0.41000	3.00000	17173 21.070		\$5.0000			\$3.50000	•.00000	12:522
**	21.07000	3.60000	13774 21.736		\$3-50000			23.00000	6-00000	0e122
34	21.73000	3.60000	09484 22.3900		 23.00000			24.46600	●.00000	0.302
33	22.39000	3.60000	04708 22.7200		 24.46000			24.70000	P-01000	02220
20	22.72600	3.60000	02442 23.0500		 24.70000			25.00000		06076
37	14.00000		0.00000 19.1500		 21.55000			21.00500		.05297
**	19.15000	6.0CC00	.05000 19.3000		 21.66500			\$1.45000	0.4L000	.07090
**	14.30000	4.00000	.07070 19.4600		 21.02000			\$5.09000	0.40000	.09620
	14.60000	6.00000	.10544 19.9000		 22.09000			22.30000	8.46668	.110.0
*1	14.00000		.13164 20.2000		 22.30000		~~~~	22.63000	0.46600	.13360
62	20.20000	0.0000	.14844 20.0000		 25-93000			23.17000		.133-7
63	50.40000	\$- v0000	.17052 71,4000		 21.17000	~~~~~~		23.71000		.16178
	21.40000	6-0DC00	.17976 22.000		 23.71000			24.23600		.15795
	\$5.0CCC0	6.00000	·17550 22.600		24.25000			24.74000		.1.651
**	\$5.00000		.15612 23.2000		 24.79000			23.33000	0.4000	.11270
• 7	23.2000		.12522 23.6000		 23.33000			25.87000	0.46363	.67760
••	23.00000		.00022 24.4000		 23.07000			24.41000	8.40000	.03=20
••	24.40000	4.00000	.04362 24.7500		 26.41000			20.00000		.015-0
70	24.70000	6.00000	.02220 25.0000		 26.65000			28.95000	8.40000	.00678
71	14.00000	6.C0000	0.00000 19.1500		 21.55000			21.00500		03297
72	19.15000	0.60000	03666 19.3000		 21.64500			21.02000	0.40000	07040
73	14.30000	6.00000	07878 19.6060		21.82000			\$5.00000		69730
7.	39.00000	8.00000	18944 19.9000		 55.04000			\$5.35000		110-0
75	14.40000	0.00C0C	13164 20.2000		 22.36000			55-03000		13360
76	50.50000	0.00000	14844 20.8000		 22.63000			23.17600	0.46060	153-7
77	20.0000	0.00000	17052 21.4000		 23-17000			23.71668	0.4CDD0	16170
79	21.40000	0.00000	17976 22.0000		 23.71000			24.25000		15 745
**		0.00000	17950 22.6000		24.79060			24.79000	0000	14031
	22.40000	4.00000			 			23.33000	0.40000	11270
:;	23.20000	4.00000	12522 23.6000		 25.33000			25.87000	0.40000	07760
**	23.80000	A. 00000	00622 24.4001		 23.07000	0.46500		20.41000	0.46000	03626
::	24.40000	4.60000	04362 24.7801		 26.41000			28.68000	0.40000	01998
::	24.70000	0.00000	02220 23.0000	2 2	 24-55000			26.95000	1.46886	00070
	21.35000	8.40000	0.00000 21.6030		 24.10000					.04709
*	21.05300	0.40000	.05297 21.0200		24.22600			24.34000		.06302
**	21.07000	0.40000	.07090 22.0900		 24.34000		~~~~~	24.34000	****	.06755
×	22.00000	0.40000	.09050 22.3500		 24.56000			24.62000		.10531
	22.30000	8.40000	.11648 22.6300		 24.82000			25.00000		.11075
**	22.43000	. 40000	-13360 Z3.1700		 23.04000			27.34000		.13642
••	23.17000		.14447 73.7100	0 1.40000	 P1.51000	TH. PRICE	.13647	PA -62000	10.0000	-14361

•2	23.71000 8.40000	-16178 24.25000			20.02000			24-50000 10		.14040
*1	24.23000 8.40000	.15795 24.79000			28.50000			20.99000 10		.12490
**	24.79000 8.40000	.14051 25.23000	0.40000		16.98000			27.46000 10		.10010
**	25.33000 6.40000	.11270 25.87000			27.46000			27.94000 10		.06698
**	25.87000 8.40000	.07760 26.41008	0.40000		27.94000			20.42000 10		.03490
*7	28.41000 8.40000	.03926 26.66030	0.40000		28.42000	*		20.ec000 10		.01776
	26.67000 8.40000	.01998 25.95000	0.40000		28.66000			28.90000 10		.00002
	21.35000 8.40000	0.00000 21.68500	0.4000		24.10000			24.22000 10		04709
100	21.07500 8.40000	05297 21.02000	0.40000		24.22000			24.34600 10		06 102
101	21.72000 8.40000	07090 22.09000	6.40000		24.34000			24.55000 10		08733
203	22.09000 €.40000	09850 22.36000			24.56000			24.82000 10		10>31
104	27.36000 0.40000	11848 22.63000			24.02600			25.0ccv0 10		11:79
105		133L0 23.17000	8.40000		23.0:000		~~~~	25.54600 10		13542
100	23.17000 0.40000	15347 23.71000	0.46060		23.34000			24.62000 10		1-301
107	24.23000 8.40000	16178 24.25000	. 40,00		26.02000	*	~~~~~	26.90000 10		14640
229	24.75000 8.40000	15795 24.79000	0.40000		26.50000			26.91000 10		12-90
109	23.12000 8.40000	14051 25.33000	8.40000		26.98000	9000000		27.46600 10		10010
110	25.87000 8.40000	07760 26.41000	8.46000		27.94000			27.94000 10		06698
111	26.41000 8.40000	03926 26.41000	8.40000					28.42000 10		03+90
117	26.6:000 8.40100	01998 24.95000			23.44000			28.50000 10		01776
113	24.10000 10.00000	0.00000 24.24000			23.37500					06062
114	24.77000 10.00000	.04709 24.34000	****		23.48750			23.45.40 12		.04415
115	24.34000 10.40000	.06302 24.38000	*****		25.60000					.63904
116	24.37000 10.60000	.07733 24.82000	**		23.82500			25.62500 12		.00200
117	24.87000 10.80000	.10531 25.06000			26.05000			26.05000 12		.04873
110	25.04000 10.00000	.11875 23.54000	****		21-27500			26.27500 12		-11133
119	25.54000 10.50000	.13642 26.02000			26.27500			27.17500 12		.12769
120	26.02000 10.0000	.14381 24.56000			27.17500			27.62500 12		.13462
121	24.30000 10.40000	.14040 26.98000			27.62500			28.07100 12		.11764
122	26.90000 10.00400	.12490 27,44000	****		28.07560			28.32300 12		.09392
123	27,44000 10,80000	.10010 27.94000	****		20.52500			28.97900 12		-01467
124	27,94000 10,00000	.06598 28.42000			28.97500			29.47500 12		.03271
123	28.42000 10.70000	.03490 28.66000	****		29.42360			29.61000 12		.01:65
126	28.44500 10.50000	.01775 24.96000			29.45600			29.87506 12		.00030
127	24.10000 10.50000	0.00000 24.22000			25.37500			25.48750 12		04419
120	24.22000 10.50000	04709 24.34000	****		25-48750			25.40000 12		05909
129	24.24000 10.40000	01302 24.35000			25.60000			25.92500 12		06208
110	24.50000 10.00000	08755 24.82000	10.00000		25.82500			24.01660 12		09873
131	24.87000 10.90000	10531 25.06000	10.0000	11075	26-05000	12.00005		24.27500 12		11133
132	25.01000 10.00000	11875 25.54000	10.00000	13042	20.27500	12.00400		20.72500 12		12789
133	23.34000 10.00000	13642 26.02000	10.00000		26.72560			27.17500 12		13462
134	26.02000 10.00000	14381 24.50000	10.00000		27-17100			27.62560 12		13163
133	28.36000 10.80000	14040 26.96000	10.00000	12490	27.62500	12.00000	13163	28.07500 12	.01000	11769
126	26.98000 10.80000	12490 27.46000	10.00000		20.07500		11709	28.52500 12	.60000	09392
137	1. 44000 10.40000	10018 27.94000	10.00000	06698	28.52500	12.00000	09392	28.97500 12	.00000	04467
130	27.94000 10.95000	06698 28.42000	10.00000	03490	28.97500	12.00000	06467	29.42500 12	.00000	03271
139	20.42000 16.00000	03490 28.46000	10.00000	01776	29.42500	12.00000	03271	29.65000 12	.00000	01005
140	28.44000 10.10000	61774 78.90000	10.snnnn		**	17,00000	01665	29.87500 12	.00000	00050

TABLE OF CONTENTS

	Page	
Section 1 - INTRODUCTION	. 1	1/A6
Section 2 - PROGRAM DESCRIPTION	. 3	1/A8
Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS	23	1/814
Section 4 - AUXILIARY FILES	45	1/08
Section 5 - INPUT DESCRIPTION	53	1/E2
Section 6 - OUTPUT DATA		
Section 7 - REFERENCES	77	1/F12
Appendi" A - LABELED COMMON BLOCKS IN USSAERO	78	1/F13
Appendix B - SAMPLE INPUT AND OUTPUT DATA	62	1/63
Appendix C - PLOTTING OUTPUT	123	2/F1

WING PANEL CENTROID POINTS AND INCLINATION ANGLES

POINT	x _{CP}	*cr	2 CP	THETA	PAD	THETA	DELTA
1	15.46024	2.58783	.03361	39501	.34749	-22.63248	19.90948
2	15.63156	2.58783	.07860	14177	.13072	-0.12254	7.48960
3	15.00055	2.58783	.10749	11014	.10123	-6.31084	5.60025
•	16.23120	2.56783	.13768	08116	.07362	-4.64992	4.21629
;	16.57386	2.58783	.15995	06260	.05583	-3.59631	3.19891
÷	17.08763	2.58783	.10215	04342	.03675	-2.48765	2.10555
6	17.77314	2.58783	.20004	00066	00710	-1.27820	40679
÷	19.14375	2.56783	.18938	46220	03228	1.31578	-1.84952
10	19.82905	2.58783	-16067	.04047	05141	2.31857	-2.94572
ii	20.51436	2.56783	.12075	.05242	05482	3.00356	-3.71390
12	21.19966	2.58783	.07415	.05758	07076	3.29916	-4.05448
13	21.71364	7.56783	.03759	.05797	07116	3.31629	-4.07716
14	22.05629	2.58783	.01312	.05792	07115	3.31829	-4.07716
15	15.46024	2.58783	03361	.39501	34749	22.63248	-19.90948
16	15.63156	2.56783	07860	.14177	13072	8.12254	-7.48960
17	15.68855	2.56763	10749	.11014	10123	6.31084	-5.60025
18	16.23120	2.56783	13768	.06116	67362	4.64992	-4.21929
19	16.57386	2.58783	15995	.06260	05583	3.59831	-3.19891
50	17.08783	2.56783	18215	.04342	03675	2.48765	-2.10555
21	17.77314	2.58783	20004	.02231	01539	1.27420	68207
22 23	18.45644	2.56783	20268	.00066	.00710	.03760	.40679
24	19.82905	2.58783	16067	04047	.05141	-1.31578 -2.31857	2.94572
25	20.51436	2.58783	12075	05242	.05482	-3.00356	3.71390
26	21.19966	2.58783	07415	05758	.07076	-3.29716	4.05448
27	21.71364	2.56783	03759	05792	.07116	-3.31629	4.07716
28	22.05629	2.56783	01312	05792	.07116	-3.31629	4.07716
29	17.78357	4.78095	.03092	39501	.34749	-22.63248	19.90948
30	17.94119	4.78095	.07232	14177	.13072	-8.12254	7.48960
31	18.17762	4.78095	.09889	11014	.10123	-6.31084	5.80025
32	18.49786	4.78095	.12666	08116	.07362	-4.64992	4.21659
33	18.00010	4.78095	.14715	06260	.05583	-3.59831	3.19691
34	19.70095	4.76095	.16758	04342	.03675	-2.48765	2.10555
35	19.91143	4.78095	.18404	02231	.01539	-1.27#20	.68207
36	20.54190	4.76095	.18665	00006	00710	03760	40679
37	21.17238	4.78095	.17423	.02296	03226	1.31578	-1.64952
36 39	21.40286	4.78095	.14782	.04047	05141	2.31657	-2.94572
40	23.06361	4.78095	.11109	.05242	07076	3.00356	-3.71390
71	23.53667	4.78095	.03458	.05792	07116	3.31829	-4.05448
42	23.55190	4.78095	.01207	.05792	07116	3.31829	-4.07716
43	17.78357	4.78095	03092	.39501	34749	22.63240	-19.90948

**	17.94119	4.70095	07232	-14177	13072	0.12254	-7.48960	
45	18.17762	4.78095	09889	.00116	10123	4.64992	-5.80025	
47	18.00010	4.78095	14715		05583	3.59631	-3.19891	
46	19.28093	4.76095	16758	.06280	03675	2.48765	-2.10355	
49	19.91143	4.78095	18404	.02231	01539	1.27620	00207	
30	20.54190	4.78095	18655	.00066	.00710	.037£0	.40679	
51	21 17738	4.76095	17423	02296	.03225	-1.31570	1.64952	
52	21.00286	4.76095	14762	04047	.05141	-2.31657	2.94572	
53	27.43333	4.75095	11109	05242	.06482	-3.00356	3.71390	
54	21.06301	4.78095	06622	65758	.07076	-3.29916	4.05448	
55	23.53667	4.78095	03458	05792	.07116	-3.31729	4.07716	
56	23.65190	4.70095	01207	05792	.07116	-3.31629	4.07716	
57	10.32395	7.17895	.02798	39501	.34749	-22.63248	19.90948	
58	20.46658	7.17895	.06544	14177	.13072	-8.12254	7.48960	
59	20.68053	7.17895	.08949	11014	.10123	-6.31084	5.60025	
10	20.56579	7.17895	.11462	08116	.07362	-4.64992	4.21629	
61	21.25105	7.17895	.13316	04280	.05563	-3.59831	3.19891	
50	21.67695	7.17895	.15165	04347	.03675	-2.48765	2.10555	
63	22.24947	7.17095	.10654	02231	.01539	-1.27620	.68207	
**	22.02000	7.17895	.16890	00066	00710	03760	40£79	
65	23.29053	7.17895	.15766	.02296	03228	1.31578	-1.64952	
66	23.96165	7.17075	.13376	.0 -0 -7	05141	2.31657	-2.94572	
67	24.53150	7.17895	.10053	.05242	06482	3.00356	-3.71390	
60	25.10211	7.17895	.06173	.05758	07076	3.29916	-4.05448	
69	25.:3000	7.17695	.03129	.05792	07116	3.31629	-4.07716	
70	25.61256	7.17895	.01093	.05792	07116	3.31829	-4.07716	
71	20.32395	7.17895	02798	.39501	34749	22.63248	-19.96946	
72	20.46658	7.17895	06544	.14177	13072	8.17254	-7.46960	
73	20.67653	7.17895	06949	.11014	10123	6.31064	-5.60025	
74	20.96579	7.17895	11462	.08116	07362	4.64992	-4.21629	
75	21.75105	7.17095	13216	.06260	05583	3.59831	-3.19891	
76	21.67895	7.17895	15165	.04342	03675	1.27620	-2.10555 ee207	
77 78	22.24947	7.17895	16890	.00066	01539	.03760	.40679	
79	23.39053	7.17895	15766	02296	.03220	-1.31578	1.84952	
80	23.96105	7.17895	13376	04047	.03141	-2.31857	2.94572	
*1	24.53150	7.17895	10053	05242	.06482	-3.00356	3.71390	
éż	25.10711	7.17895	06173	05756	.67076	-3.29916	4.05448	
63	25.53000	7.17895	03129	05792	.07116	-3.31629	4.07716	
**	25.71526	7.17695	01093	05792	.07116	-3.31029	4.07716	
	22.06382	9.57647	.02504	39501	.34749	-22.63248	19.90948	
00	22.99147	9.57647	.05856	14177	.13072	-0.12254	7.48900	
87	23.10294	9.57647	.08009	11014	.10123	-0.31084	5.00025	
	23.43624	9.57647	.10258	06116	.07362	-4.64992	4.21229	
69	23.69353	9.57647	.11917	06280	.05583	-3.55831	3.19691	
.90	24.07647	9.57647	.13571	04342	.03675	-2.48765	2.10555	
01	24.58706	9.57647	.14904	02231	.01539	-1.27820	. 68207	
97	25.09765	0.57647	.15116	00066	00710	03760	40679	

,

93	25.60024	9.57647	.14110	.02296	03228	1.31578	-1.84952
94	26.11002	9:57647	.11971	.04047	05141	2.31657	-2.94572
95	26.62941	9.57647	.0899?	.05242	06482	3.00356	-3.71390
96	27.14000	9.57647	.05525	.05758	07076	3.29916	-4.05448
97	27.52294	9.57647	.02001	.05792	07116	3.31829	-4.07716
98	27.77824	9.57647	.00978	.05792	07116	3.31650	-4.07716
99	22.86382	9.57647	02504	.39501	34749	22.63248	-19.90948
100	22.59147	9.57647	05656	-14177	13072	8.12254	
101	23.10294	9.57647	05009				-7.48960
102	23.43624	9.57647		.11014	10123	6.31004	-5.60025
103	23.69353		10258	.64116	07362	4.64992	-4.21629
		9.57647	11917	.06210	05583	3.59631	-3.19691
104	24.07647	9.57647	13571	.04342	03675	2.46765	-2.10555
105	24.58706	9.57647	14904	.62231	01539	1.27820	
106	25.69765	9.57647	15116	.00066	.03710	.03760	.40579
107	25.60624	9.57647	14110	02296	.03228	-1.31578	1.64952
100	26.11682	9.57647	11971	04047	.05141	-2.31657	2.94572
109	26.62941	9.57647	00997	0:242	.06482	-3.00356	3.71390
110	27.14000	9.57647	05525	05758	.07076	-3.29916	4.05448
211	27.52294	9.57647	02801	05792	.07116	-3.31829	4.07716
112	27.77574	0.57647	00978	05792	.07116	-3.31829	4.07716
113	24.76679	11.39355	.02282	39501	.34749	-22.63240	19.90948
114	24.90508	11.39355	.05335	14177	.13072	-0.12254	7.48960
115	25.07952	11.39355	.07296	11014	.10123	-6.31084	5.+6025
116	25.31210	11.39355	.09345	01116	.07362	-4.64992	4.21829
117	25.84468	11.39355	.10657	06260	.05583	-3.59831	3.19891
118	25.69355	11.39355	.12364	04342	.03675	-2.48765	2.10555
119	26.35671	11.39355	.13578	02231	.01539	-1.27820	.00267
120	26.82387	11.39355	.13771	00066	00710	03760	40679
121	27.20903	11.39355	.12855	46223.	03228	1.31578	-1.64915
122	27.75419	11.39355	.16906	.04047	05141		
123	28.21935	11.39355	.08198			2.31657	-2.94572
124	20.00452	11.39355		.05242	06482	3.00356	-3.71390
125	29.03339	11.39355	.05033	.05750	07676	3.29916	-4.05448
			.02551	.05192	07116	3.31650	-4.07716
126	29.26597	11.39355	.00691	.057 2	07116	3.31629	-4.07716
127	24.78779	11.39355	62585	.39501	34749	22.63748	-19.00048
170	24.90500	11.39355	05335	.14177	13072	6.12234	-7.48960
179	25.07952	11.39355	07296	.11014	10123	6.31064	-5.10025
130	25.21210	11.39355	09345	.0 F116	073e2	4.64992	-4.21629
131	25.54468	11.39355	10457	.06280	05583	3.59831	-3.19691
132	25.89355	21.39355	17364	.04342	03675	2.46765	-2.10555
133	26.35871	11.39355	13576	.02231	01539	1.27520	66207
134	26.82387	11.39355	13771	.00000	.00710	.03760	.40679
135	27.28903	11.39355	12655	02296	.03220	-1.31578	1.84952
136	27.75419	11.39355	10906	04047	.05141	-2.31657	2.94572
137	20.21935	11.39355	00196	05242	.06482	-3.00356	3.71390
130	28.68452	11.39355	05033	05750	.07076	-3.25916	4.03448
139	29.03339	11.39355	02551	05792	.07116	-3.31629	4.07716
140	29.26597	11.39355	00891	05792	.07116	-3.31829	4.07716

	WING PAREL	AREAS AND CHORDS	47	.75868	.31524	**	1.22911	.51059
PANEL			40	1.51445	.63048	97	.61450	.25529
	ANEA	CHORD	49	1.51256	.63048	98	.61458	.25529
1	.39466		50	1.51204	.63048	69	.35260	.12765
2	.34195		51	1.51319	.63048	100	.31176	.127e5
,	.69272		92	1.51524	.63040	101	.61690	.25529
:	.66613		53	1.51727	.63048	102	.61569	.25529
,	.68742		54	1.51631	.63048	103	.61417	.25529
•	1.37222		55	.75619	.31524	104	1.22598	.51059
?	1.37050		56	.75919	.31524	105	1.22445	.51059
•	1.37003		57	.39409	.1+263	106	1.22403	.51059
.:	1.37108	.68530	50	.24844	.14263	107	1.77496	.51059
10	1.37294		59	.69171	.28526	100	1.72462	.31059
11	1.37477	.66530	e0	. (0 71 2	.28526	109	1.22+26	.51059
12	1.37572		e1	. eft. 2	.28526	110	1.22911	.31059
13	.68789	.34265	62	1.37022	.57053	111	.61458	.25529
14	.68789	.34269	63	1.30000	.57053	112	. 61458	.25529
15	. 39466	.17133	64	1.36503	.57053	113	.1ec75	.11629
16	.34895	.17133	45	1.36 907	.57053	114	.14213	.11c29
17	.69272	.34265	66	1.37093	.57053	115	.20215	.23250
10	.68913	.34265	67	1.37276	.57053	116	.20000	.22750
19	.68742	.34265	60	1.37371	.57053	117	.27999	.23250
20	1.37272	.68530			.26526	110	.55890	.46516
21	1.37650	.6 25 30	70	.67179	.28526	119	.55021	.46516
72	1.37003	.65330	71	.39409	.14263	120	.55601	.46516
23	1.27109	.66530	72	.34844	.14263	171	.22644	.46516
24	1.37294	.65> 50	73	.69171	.24526	122	.15920	.46516
25	1.37477	.66530	74		.28526	173	.55994	.46516
26	1.37572	.68530	75		.20526	124	.56033	.46516
27	789	.34265	76	1.37022	.57053	125	.20010	.23250
20	.64789	.34265	77	1.30050	.57053	126	.20010	.23250
20	.43557	.15762	78	1.36603	.57053	127	.10075	.11029
30	.3*512	.15762	79			121	.14213	.11029
31	.76452	.31524		1.36907	.57053		.20215	.23250
32	.76016	.31524	60	1.37093	.57053	129	.70010	.23250
33	.75668	.31524	61	1.37776	.57053			.23250
34	1.51445	.63048	ez	1.37371	.57053	121	.27999	.46516
35	1.51256	.63048	*3	.68689	.21526	132	.55190	
36			**	.60609	.26250	123	.55021	.46516
37	1.51204	.63046	65	.35260	.12765	134	.55001	.40510
30	1.51319	.63040		.31176	.12765	135	.55744	.46:16
	1.51524	.63048	67	.61690	.25529	136	.55920	.46516
39	1.51727	.63048	**	.61569	.25529	137	. : 5 9 0 4	.46516
40	1.51631	.63048	**	.61417	.25529	130	.56033	.46516
*1	.75919	.31524	90	1.22598	.51059	139	.20016	.23250
42	.75919	.31524	91	1.22445	.51059	140	.20010	.23250
43	.43557	.15762	92	1.77403	.51059			
**	. 30512	.15762	93	1.22496	.51059			
45	.76452	.31524	••	1.22662	.51059			
**	.76036	.31524	01	1.22026	.51059			

BODY PAME: CORRER POINT COORDINATES
1 AND 3 INDICATE BODY PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE POINTS

PANEL	,	•	2		•	2	,		2			2
	1	1	1	- 72	2		3	3	,	•	•	•
1	0.00000	0.00000	0.00000	2.00000	.00000	48300	0.00000	0.00000	0.00000	2.00000	.24150	41029
ž	0.00000	0.00000	0.00000	2.00000	-24150	41629	0.00000	0.00000	0.00000	2.00000	.41829	24150
i	0.00000	0.00000	0.00000	2.00000	.41829	24150	0.00000	0.00000	0.00000	2.00000	.48300	.00000
	0.00000	0.00000	0.00000	2.00000	.48300	.00000	0.00000	0.00000	0.00000	2.00000	.41829	.24150
5	0.00000	0.00000	0.00000	2.00000	.41829	.24150	0.00000	0.00000	0.00000	2.00000	.24150	.41629
	0.00000	0.00000	0.00000	2.00000	.24150	.41629	0.00000	0.00000	0.00000	2.00000	00000	.46300
,	2.00005	.00000	48300	3.00000	.00000	91401	2.00000	.24150	41629	5.00000	.45701	79156
•	2.00000	.24150	41829	5.00000	.45701	79156	2.00000	.41629	24150	5.00000	.79156	45 701
•	2.00000	.41729	24150	5.00000	.79156	45701	2.00000	.48300	.00000	5.00000	.91401	.00000
10	2.00000	.46300	.00000	5.00000	.91401	.00000	2.00000	.41029	.24150	5.00000	.79150	.45701
11	2.20000	.41829	.24150	5.00000	.79155	.45701	2.00000	.24150	.41829	5.00000	.45701	.79150
12	2.00000	. 24150	.41829	3.00000	.45701	.79156	2.00000	00000	.48300	5.00000	66060	.91401
13	5.00000	.00000	91461	8.00000	.00000	-1.23555	3.00000	.45701	79156	0.00000	.61797	-1.07636
14	9.00000	.45701	79156	8.60000	.61797	-1.07036	5.00000	.79156	45701	8.00000	1.07036	61797
15	9.00000	. 79156	45701	8.00000	1.07036	61797	5.00000	.91401	.00000	8.00000	1.23545	.00000
16	5.00000	.91401	.00000	8.00000	1.23595	.00000	5.00000	.79156	.45701	e.coaco	1.07036	.61797
17	5.00000	.79156	.45701	0.00000	1.07036	.61797	5.00000	.45701	.79156	8.66666	.61797	1.07036
18	3.00000	.45701	.79156	8.00000	.61797	1.07636	5.00000	00000	.91401	8.00000	01000	1.23595
10	0.00000	.00000	-1.23595	11.00000	.20000	-1.44400	e.00000	.61797	-1.07036	11-00000	.72200	-1.25654
20	0.00000	.61707	-1.07036	11.00000	.72200	-1.25054	8.00000	1.07036	61797	11.00000	1.25054	72200
21	e.croco	1.07036	61147	11.00000	1.25054	72200	2.00000	1.23595	.00000	11.60000	1.44400	.00000
22	0.00000	1.23595		11.00000	1.44400	.00000	0.00000	1.07036	.61797	11.00000	1.25054	.72260
23	e.000c0	1.67036		11.00000	1.25054	.72200	9.00000	.61797	1.67636	11.60000	.72260	1.25054
24	6.00000	.61797	1.07636	11.00000	.72200	1.25054	0.00000	00000		11.00000	00000	1.44400
25	11.00000		-1.44400			-1.53750				13.00000	.76675	-1.33151
2.6	11.00000		-1.25054			-1.33151		1.25054		13.00000	1.33151	7e 675
27	11.00000	1.25054		13.00000	1.33151		11.00000	1.44400		13.00000	1.53750	.00000
2.0	11.00000	1.44400		13.00000	1.53750		11.00000	1.2>054		13.00000	1.33151	.76.675
5.0	11.00000	1.25054		13.00000	1.33151		11.00000	.72200		13.00000	.76875	1.33151
30	11.00000	.72200		13.00000	.76875		11.00000	00000		13.00000	00000	1.53750
31	13.00000		-1.53750			-1.50361				14.32500		-1.37145
32	13.00000		-1.33151			-1.37145		1.33151		14.32500	1.371.5	79101
33	13.00000	1.33151		14.32500	1.37145		13.00000	1.53750		14.32500	1.50361	
34	13.00000	1.53750		14.32500	1.50361		13.00000	1.33151		14.32560	1.37145	.79161
35	13.00000	1.33151		14.32500	1.37145		13.00000	.76875		14.32500	.79181	1.37145
36	13.00000	.76275		14.32500	.79161		13.00000	00000		14.32500	00000	1.50361
37	14.32500		-1.56361			-1.62084				13.73000	.01042	-1.46369
38	14.32500					-1.40369		1.37145		15.73000	1.40369	01042
39	14.37500	1.37145		15.73000	1.40369		14.32500	1.50361		15.73060	1.62064	.00000
40	14.32500	1.58361		15.73000	1.62084		14.32500	1.37145		15.73000	1.46369	.01042
41	14.32500	1.37145		15.73000	1.40369		14.32560	.79181		15.73000	.01042	1.40369
.,	14.17500	70101	1.17144	14.71000		1.40140	14.37500	^^^	1.58361	15.73000	00000	1.02084

43	15.73000		-1.62084				15.73060			17.10000		-1.42496
**	15.73000		-1.40369				15.73000	1.40369		17.16000	1.42496	02270
**	15.73000	1.40369		17.16000	1.42496		15.73000	1.62084		17.16000	1.64540	*00100
47	15.73000	1.62084		17.16000	1.64540		15.73000	1.40359		17.16000	1.42496	.82270
**	15.73000	1.40369		17.16000	1.42496		15.73000	.81042		17.16000	.02270	1.47496
	17.1:000	.00000		17.16000	.82270		15.73000	00000		17.16000	00000	1.64540
50	17-1:000	.22270					17.1e000		-1.42496		.83077	-1.43593
51	17.1(000	1.42496		18.59000	1.43893		17.16000	1.42498		10.59600	1.43893	63077
52	17.14000	1.44340		18.59000	1.65154		17.1t000	1.04540		18.59000	1.66154	.00000
53	17.14000	1.42496		18.59000	1.43893		17.16000	1.42498		18.54000	1.43693	.63077
34	17.1ecc0	.02270		18.59000	.83077		17.16000	00000		18.59000	.03077	1.43693
55	18.59000		-1.66154				18.59000	. \$3077		20.02000	0(000	1.66154
36	10.59000		-3.43693				10.34000	1.43893		20.02000	1.44613	63493
37	18.39000	1.43593		20.02000	1.44613		18.59000	1.66154		20.02000	1.65985	.00000
5.0	16.59000	1.00154		20.02000	1.66985		18.59000	1.43693		20.02000	1.44013	.53493
50	18.59000	1.43193		20.02000	1.44613		18.59000	.03077		26.02000	83493	1.44013
6.0	18.55000	.63077		20.02000	.83493		10.39000	00000		20.02000	00000	1.00503
0.1	20.02000		-1.66985			-1.65931		. 23493	-1.44613			-1.43701
6.2	20.02000		-1.44613				20.02000	1.44013		21.42300	1.43701	82966
	20.02000	1.44613	83493	21.42100	1.43701		20.02000	1.00905		21.42500	1.65731	.00000
	20.02000	1.66985	.00000	21.42500	1.65931		20.02000	1.44613		21.42500	1.43701	. \$2966
8.5	20.02000	1.44613	. 6 3493	21.42500	1.43701		20.02000	.83493		21.42500	.82926	1.43701
	20.02000	. 63493	1.44613	21.42500	.02966		26.02000	00000		21.42100	00000	1.05931
67	21.42500	.00000	-1.65931	23.00000	.00000	-1.03250		. 82966	-1.43701	~~~~~~		-1.41379
**	21.42500	. 62966	-1.43701	23.00000	.81625	-1.41379	21.42500	1.43701		23.000.00	1.41379	61025
6.9	21.42500	1.43701	02966	23.00000	1.41379	61625	21.42500	1.05931	.00000	23.00000	1.63250	.00000
70	21.47500	1.65931	.00000	23.00000	1.63250	.00000	21.42500	1.43701		23.00000	1.41379	. 81625
71	21.42500	1.43701	.82966	23.0000	2.41379	. 61625	21.12500	.02966		23.00000	. 01025	1.41379
72	21.42500	. \$2966		23.66600	.01025		21.42500	00000		23.00000	00000	1.63230
73	23.00000		-1.63250			-1.57500		.01025	-1.41379	25.00000	.76750	-1.36399
74	23.00000	.01625	-1.41379			-1.36309	21.00000	1.41379	61625	25.00000	1.36399	76750
75	23.00000	1.41370		25.C0000	1.36399		\$3.00000	1.63250	.66000	25.00000	1.57500	.00000
76	\$3.00000	1.63250		25.00000	1.37500		23.00000	1.41379	.61655	25.02200	1.36399	.76750
77	23.00000	1.41379		25.00000	1.36300		23.00000	. 61023	1.41379	25.00000	.76750	1.36299
7.	23.00000	.01625		29.00000	.70750		23.00000	00000		23.00000	00000	1.57560
79	29.00000		-1.57500			-1.42600		. 70 750	-1.36309		.71400	-1.23669
.0	25.00000		-1.36399	~		-1.23009		1.36300		20.00.000	1.23009	71-00
*1	25.00000	1.36300		20.00000	1.23069		25.00000	1.57500		20.00000	1.42800	.00000
92	25.00000	1.57500		20.00000	1.42000		25.00000	1.36399		20.0000	1.23009	.71+00
• • • • • • • • • • • • • • • • • • • •	23.0000	1.36300		20.00000	1.23009		25.00000	.78750		20.00000	.71400	1.23009
**	23.00000	.78750		56.00000	.71400		25.60000	00000		28.00000	00000	1.42000
**	20.00000		-1.42000		.00000		28.00000		-1.23669		.45300	76461
.,	28.00000		-1.23669		.45300		20.0000	1.23669		33.00000	.78461	45300
**	20.00000	1.23669		33.00000	.76461		20.00000	1.47800		33.00000	.96599	.00000
::	20.00000	1.42800		33.00000	.60569		28.00000	1.23669		33.00000	.75461	.45300
**	20.0000	1.23669		13.00000	.70461		28.00000	.71400		33.00000	.43300	.78461
21	31.00000	.71400		33.00000	.45300		28.00000	00000		33.00000	00000	.90599
71	1. binui	.00000	60230	34-00000	· (cecon	0000	21-00000	45 300	78461	ja.nonna	. 40000	69767

BLANK PAGE

CLARE PAGE

```
92
        33.00000
                   .45300 -.78461 36.00000
                                              .40000 -.69282 33.00000
                                                                         .78461 -.45300 36.00000
                                                                                                    .69282 -.40000
 93
        33.00000
                           -.45300 36.00000
                                              .69282 -.40000 33.00000
                                                                         .90599
                                                                                  .00000 35.00000
                   . 78461
                                                                                                    .80000
                                                                                                             .00000
 94
                            .00000 35.00000
                                                       .00000 33.00000
        33.00000
                   .90599
                                                                         .78461
                                                                                  .45300 36.00000
                                              .80000
                                                                                                    .69282
                                                                                                             .40000
 95
                            .45300 36.00000
                                              .69282
                                                                         .45300
        33.00000
                   .78461
                                                       .40000 33.00000
                                                                                  .78461 36.00000
                                                                                                    .40000
                                                                                                             .69282
 96
                   . 45 300
                            .76461 36.00000
                                                       .69282 33.00000 -.00000
        33.00000
                                              .40000
                                                                                  .90599 36.00000
                                                                                                   -.00000
                                                                                                             . 80000
 97
                   .00000
                                                                         .40000
                                                                                 -.69282 38.00000
                                                                                                    .40000
        36.00000
                           -.80000 38.00000
                                              .00000 -.80000 36.00000
                                                                                                            -.69282
 98
                                                     -.69282 36.00000
       36.00000
                   .40000
                           -.69282 38.00000
                                              .40000
                                                                         .69282
                                                                                 -.40000 38.00000
                                                                                                    $8590
                                                                                                            -.40000
 99
        36.00000
                           -.40000 38.00000
                                              .69282 -. 40G00 36.00000
                   .£928Z
                                                                         . E0000
                                                                                  .00000 32.00000
                                                                                                    .80000
                                                                                                             .00000
100
        36.00000
                                                       .00000 36.30000
                   . F0000
                            .00000 38.00000
                                              .00000
                                                                         .69282
                                                                                  .40000 32.00000
                                                                                                    .69282
                                                                                                             . 46000
101
        36.00000
                   .69282
                            .40000 38.00000
                                              $8590.
                                                       .40000 36.00000
                                                                         .40000
                                                                                  .69282 38.00000
                                                                                                    .40000
                                                                                                             .69282
102
        36.00000
                   .40000
                            .69282 38.00000
                                              .40000
                                                       .69282 36.00000 -.C0000
                                                                                  .00000 38.00000
                                                                                                   -.00000
                                                                                                             . 80000
```

BODY	PANEL CENTROID	POINT COOR	DINATES	44	16.44679	1.11546	-1.11546	93		****	
	_	_	_	45	16.44679	1.52375	40829	**	34.46693	.79688	21352
POINT		¥	2	46	16.44679	1.52375	.40629	95	34.46893	.79688	.21352
	CP	CP	CP	47	16.44679	1.11546	1.11546	96	34.46893	.58336	.58336
				48	16.44679	.40029	1.52375	97	34.46893	.21352	.79688
				49	17.87616	.41337	-1.54272		37.00000	.20000	74641
1	1.33333	.08050	30043	50	17.67616	1.12935	-1.12935	98	37.00000	.54641	54641
2	1.33333	.21993	21993	51	17.67616	1.54272		99	37.00000	.74641	20000
3	1.33333	.30043	CE050	52	17.67616		41337	100	37.00000	.74641	.20000
•	1.23333	.30043	.08050	53		1.54272	.41337	101	37.00000	.54641	.54641
,	1.33333	.21993	.21993	54	17.87616	1.12935	1.12935	102	37.00000	.20000	.74641
	1.33323	.06050	.30043	2.	17.87616	.41337	1.54272				
7	3.05426	.18017	67239	35	19.30559	.41542	-1.55412				
	3.65426	.49223	49223	56	19.30559	1.13769	-1.13769				
	3.44476	.67239	10017	57	19.30559	1.55412	41642				
10	3.65426	.67239	.10017	58	19.30559	1.55412	.41442				
11	3.65426	.49223	.49223	59	19.30559	1.13769	1.13764				
12	3.65426	·1f017	.67239	e0	19.30559	.41642	1.55412				
13	6.57487	.27075	-1.01047	61	20.72176	.41615	-1.55300				
14	6.57487	.73971	73971	62	20.72176	1.13693	-1.13693				
15	6.57487	1.01047	27075	63	20.72176	1.55308	41615				
16	6.57467	1.01047	.27075	64	20.72176	1.55308	.41615				
17	6.57487	.73971	.73971	65 .	20.72176	1.13693	1.13693				
10	6.57487	.27075	1-01047	66	20.72176	.41615	1.55308				
19	9.53002	.33567		67	22.21036	.41149	-1.53568				
50	9.53882	.91706	-1.25272	68	22.21036	1.12420	-1.12420				
21	9.53662		91706	69	22.21036	1.53568	41149				
**		1.25272	33567	70	22.21036	1.53560	.41149				
22	9.53172	1.25272	.33567	71	22.21036	1.12420	1.17420				
.,	9.53552	.91706	.91706	72	22.21036	.41149	1.53568				
24	9.53862	.33567	1.25272	73	23.99402	.40098	-1.49648				
23	12.01045	.37281	-1.39134	74	23.99402	1.09550	-1.00550				
26	12.01045	1.01854	-1.01654	75	23.99402	1.49648	40098				
27	12.01045	1.39134	37281	76	23.09402	1.49648	.40098				
26	12.01045	1.39134	.37261	77	23.99402	1.09550	1.09550				
29	12.01045	.1.01854	1.01854	7.0	23.99402	.40098	1.49648				
30	12.01045	.37261	1.39134	79	26.47552	.37567	-1.40204				
31	13.66576	.39017	-1.45612	00	26.47552	1.02636	-1.02636				
35	13.66576	1.06596	-1.06596	61	26.47552	1.40204	37567				
33	13.66576	1.45612	39017	62	26.47552	1.40204	.37567				
34	13.66576	1.45612	.39017	63	26.47552	1.02636	1.02636				
35	13.66576	1.06596	1.06596	84	26.47552	.37567	1.40204				
36	13.66576	.39017	1.45612	85	30.31362	.29661	-1.10698				
37	15.03022	.40057	-1.49497	**	30.31362	.81036	01036				
36	15.03022	1.09439	-1.09439	87	30.31362	1.10698	29661				
39	15.03022	1.49497	40057	88	30.31362	1.10698	.29661				
40	15.03022	1.49497	.40057	89	30.31362	.01036	.01036				
41	15.03022	1.09439	1.09439	90	30.31362	.29661	1.10698				
42	15.03022	.40057	1.49497	91							
41	16.44679	-40829	-1.42175	91	34.46693	.21352	79688				
					16.44.601	46234	- 44334				

PAREL APEA DELT2 THCT2 DELTA THCTA 45 1.70004 .01058 -1.0000 .0203 -7.50000 .00001 .1.70004 .01058 -1.0000 .00033 -7.500000 .01058 .1.70004 .01058 .1.0000 .00033 -7.500000 .00000 .01058 .1.70004 .01058 .7.70000 .00033 -7.500000 .00000 .01058 .7.70000 .01058 .7.70000 .01058 .7.70000 .01058 .7.70000 .01058 .7.70000 .01058 .7.700000 .01058 .7.70000 .00058 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000 .7.70000	9007	PANEL APEAS	AND INCLIN	ATION ANGLE	\$		**	1.20904	.01658	-2.35619	.95023 -135.00000
### 1.2006 ### 1.2006				TUPPA		THETA					
1.29073 .22917 -2.87979 13.13065 -163.00000 50 1.27401 .01090 -1.87120 .27407 -1.51.00000 2.29273 .27417 -2.35419 13.13065 -163.00000 51 .77401 .01090 -1.87120 .27407 -1.51.00000 3.25673 .27417 -1.82160 13.13065 -103.00000 52 1.27401 .01090 -1.87120 .27407 -1.51.00000 4.27273 .27417 -1.82160 13.13065 -103.00000 52 1.27401 .01090 -1.87120 .27407 -73.00000 5.25673 .27417 -7.8400 13.13065 -103.00000 53 1.27401 .01090 -7.8450 .27407 -73.00000 6.27673 .27417 -7.8400 13.13065 -3.000000 53 1.27401 .01090 -7.8450 .27407 -73.00000 7.164712 .13789 -2.87479 7.40076 -163.00000 55 1.27300 .00011 -2.87499 .32717 -130.00000 8.164712 .13789 -2.87479 7.40076 -163.00000 55 1.27300 .00011 -2.87499 .32717 -130.00000 8.164712 .13789 -2.87479 7.40076 -163.00000 58 1.27300 .00011 -1.87200 .32717 -75.00000 9.164712 .13789 -2.87479 7.40076 -163.00000 58 1.27300 .00011 -7.840 .32717 -75.00000 1.09312 .13789 -2.87479 7.40076 -163.00000 58 1.27300 .00051 -7.840 .32717 -75.00000 1.09312 .13789 -2.87479 7.40076 -163.00000 58 1.27300 .00051 -7.840 .32717 -75.00000 1.09312 .13789 -2.87479 -7.40076 -163.00000 58 1.27300 .00051 -7.840 .32717 -75.00000 1.09312 .13789 -2.87479 -7.40076 -163.00000 58 1.27300 .00051 -7.840 .32717 -75.00000 1.09312 .13789 -2.87479 -7.40076 -13.00000 58 1.27055 .00072 -2.87479 -4.5110 -13.00000 1.09312 .13789 -7.8180 7.40076 -7.800000 59 1.27055 -0.00072 -2.87479 -4.5110 -13.00000 1.09312 .13789 -7.8180 7.40076 -7.800000 59 1.27055 -0.00072 -2.87479 -4.5110 -13.00000 1.09312 .13789 -7.8180 7.40076 -7.800000 59 1.27055 -0.00072 -2.87479 -4.5110 -7.800000 1.09312 .13789 -7.8180 -7.8000000 59 1.27055 -0.0000	PAMEL	APEA									
1 .29673 .22417 -2.87474 13.13065 -165.00000 50 1.27461 .01090 -2.87474 -1.05.00000 2 .27467 .27474 .275414 13.13065 -135.000000 31 1.27461 .01090 -1.051000 .27467 -1.05.000000 32 .27467 .27474					060	DEG					.95023 -45.00000
1											
2		. 25473	. 22017	-2.47070	12.12045	-145-00000					
\$.25673 .22017 -1.8200 13.13085 -105.00000 52 1.2200 .01000 1.13000 6.2217 -2.10000 5 .22673 .22017 -2.10000 13.13085 -7.5.00000 53 1.2200 .01000 -2.100 6.2227 -2.5.00000 5 .22673 .22017 -2.2161 13.13085 -1.5.00000 55 1.2300 .0001 -2.100 6.2227 -2.5.00000 7 1.0011 .13789 -2.6779 7.0078 -1.5.00000 55 1.2300 .0001 -2.100 .01000 -2.100 .01000 -2.100 .01000 -2.100 .01000 -2.1000											
\$.25e73 .22e17 -1.5e900 13.130e5 -75.0000 53 1.27e01 .010e0 -77e50 .82e7 -1.5c000 6 .25e73 .22e17 -28e10 13.130e5 -5.900000 55 1.73500 .005e1 -2.87e78 .22e17 -2.81e0 13.130e5 -15.00000 55 1.73500 .005e1 -2.87e78 .32171 -15.00000 6 1.0e312 .137e9 -2.87e78 -7.0c076 -15.00000 57 1.2300 .005e1 -2.87e78 .32171 -15.00000 6 1.0e312 .137e9 -1.83e0 7.0o7e -15.00000 57 1.2300 .005e1 -1.83e0 .32171 -15.00000 10 1.0e312 .137e9 -1.83e0 7.0o7e -15.00000 59 1.23000 .005e1 -1.83e0 .32171 -15.00000 10 1.0e312 .137e9 -1.83e0 7.0o7e -5.00000 59 1.23000 .005e1 -1.83e0 .32171 -5.00000 11 1.0e312 .137e9 -7.82e0 7.0o7e -5.00000 60 1.23000 .005e1 -7.85e0 .32171 -5.00000 12 1.0e312 .137e9 -7.82e0 7.0o7e -5.00000 60 1.23000 .005e1 -7.85e0 .32171 -5.00000 12 1.0e312 .137e9 -7.85e0 7.0o7e -5.00000 60 1.23000 .005e1 -7.85e0 .32171 -5.00000 12 1.0e312 .137e9 -7.85e0 7.0o7e -5.00000 60 1.23000 .005e1 -7.85e0 .32171 -5.00000 12 1.0e322 .137e9 -7.85e0 .7.0o7e -1.85e0 .00000 62 1.210e5 -0.007e -7.85e0 .32171 -5.00000 13 1.87e30 .10129 -7.85e0 .5.00000 62 1.210e5 -0.007e -7.85e0 .41510 -15.00000 15 1.87e30 .10129 -7.85e0 .5.00000 65 1.210e5 -0.007e -7.85e0 .41510 -15.00000 15 1.87e30 .10129 -7.85e0 .5.00000 65 1.210e5 -0.007e -7.85e0 .41510 -15.00000 15 1.87e30 .10129 -7.85e0 .5.00000 65 1.210e5 -0.007e -7.85e0 .41510 -15.00000 17 1.87e30 .10129 -7.85e0 .5.00000 65 1.210e5 -0.007e -7.85e0 .41510 -45.00000 17 1.87e30 .10129 -7.85e0 .10129 -7.85e0 .81910 -7.85e000 65 1.210e5 -0.007e -7.85e0 .41510 -45.00000 17 1.87e30 .10129 -7.85e00 .18127 -7.86e000 65 1.210e5 -0.007e -7.85e0 .41510 -45.00000 17 1.87e30 .10129 -7.85e00 .18127 -7.86e000 67 1.37e0 .01644 .7.87e10 -4.81510 -45.00000 17 1.37e0 .01644 .7.87e10 -4.81510 -4.80e000 .18127 -7.86e000 67 1.37e0 .01644 .7.87e10 -4.81510 -4.80e000 .18127 -7.86e000 77 1.37e0 .01644 .7.87e10 -4.81510 -4.80e000 .18127 -7.86e000 77 1.37e0 .01644 .7.87e10 -4.81510 -4.80e0000 77 1.37e0 .01644 .7.87e10 -4.81510 -4.80e000 .18127 -7.86e000 77 1.37e000 .18127 -7.86e000 77 1.37e000 .18127 -7.86e000 77 1.37e0000	_										
5 .73673 .72917 -78540 13.13065 -45.00000 54 1.72401 .01090 -7.2130 .8213 -15.00000 7 1.0912 .13769 -2.8777 -7.6105 .15.00000 55 1.73300 .00511 -7.2130 .2213 -15.00000 7 1.0912 .13769 -2.8777 7.0076 -15.00000 56 1.73300 .00511 -7.1300 .2213 -15.00000 7 1.0912 .13769 -2.8777 7.0076 -15.00000 57 1.73300 .00511 -7.1300 .2213 -15.00000 7 1.09512 .13769 -1.81320 7.0076 -75.00000 59 1.73300 .00511 -7.1500 .1213 -15.00000 10 1.09512 .13769 -1.81320 7.0076 -75.00000 59 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -1.81510 -7.0076 -75.00000 59 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.0076 -15.00000 69 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.0076 -15.00000 60 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.0076 -15.00000 60 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.0076 -15.00000 60 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.00770 60 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.00770 60 1.73300 .00511 -7.1500 .1213 -1.00512 .13769 -7.81510 7.00770 60 1.73300 .00511 -7.81510 .10770 -7.8151	:										
0											
7 1.0012 13769 -2.87679 7.00076 -135.00000 55 1.23300 .00511 -2.33110 .32171 -135.00000 6 1.00512 .37779 -2.35169 7.00076 -135.00000 58 1.23300 .00511 -1.3720 .32171 -135.00000 10 1.00512 .37779 -1.30000 7.00076 -75.00000 59 1.23300 .00511 -3.00000 .37171 -75.00000 11 1.00512 .37779 -1.30000 7.00076 -75.00000 59 1.23300 .00561 -3840 .32171 -45.00000 11 1.00512 .37779 -1.30000 7.00076 -75.00000 60 1.23300 .00561 -3840 .32171 -45.00000 12 12 12 12 12 12 12 12 12 12 12 12 12											
## 1.00512 13789 -2.35619 7.00076 -135.00000 59 1.23300 .00561 -1.6276 .32171 -105.00300 10 1.00512 13789 -1.82600 7.00076 -155.00000 59 1.23300 .00561 -1.16276 .32171 -155.00300 11 1.00512 13789 -7.8500 7.00076 -755.00000 59 1.23300 .00561 -7.8540 .32171 -75.00000 11 1.00512 13789 -7.8540 7.00076 -755.00000 60 1.23300 .00561 -7.8540 .32171 -75.00000 12 1.23300 .00561 -7.8540 .32171 -75.00000 12 1.23300 .00561 -7.8540 .32171 -75.00000 12 1.23300 .00561 -7.8540 .32171 -75.00000 12 1.23300 .00561 -7.8540 .32171 -75.00000 13 1.2780 .00572 -7.35619 .9.1780 -755.00000 60 1.23300 .00561 -7.8540 .32171 -75.00000 13 1.2780 .10529 -7.35619 .9.1780 -135.00000 62 1.21055 -0.0724 -2.28519 -4.1310 -135.00000 13 1.27820 .10529 -7.35619 .9.1780 -135.00000 64 1.21055 -0.0724 -7.35619 .4.1310 -135.00000 13 1.27820 .10529 -1.80000 .9.1780 -755.00000 64 1.21055 -0.0724 -7.28540 -4.1310 -135.00000 13 1.27820 .10529 -7.8540 .9.1780 -755.00000 65 1.21055 -0.0724 -7.28540 -4.1310 -755.00000 13 1.27820 .10529 -7.8540 .9.1780 -755.00000 66 1.21055 -0.0724 -7.28140 -4.1510 -755.00000 13 1.27820 .10529 -7.8540 .9.1780 -755.00000 66 1.21055 -0.0724 -7.28140 -7.48150 -7.55.00000 13 1.27820 .00520 -7.8540 .9.1780 -7.55.00000 66 1.21055 -0.0724 -7.28140 -7.48150 -7.55.00000 13 1.27820 .00520 -7.8540 .9.1780 -7.55.00000 66 1.21055 -0.0724 -7.28140 -7.48150 -7.55.00000 12 1.27820 .00520 -7.8540 .8.18237 -1.55.00000 67 1.35206 -0.0044 -7.28150 -7.4812 -1.35.00000 12 1.27820 -0.0044 -7.28150 -7.4812 -1.35.00000 12 1.27820 -0.00000 12 1.27820 -0.00000 12 1.27820 -0.00000 12 1.27820 -0.00000 12 1.27820 -0.00000 12 1.27820 -0.00000 -0.00000 -0.000000 -0.00000000	÷										
1.0512 13789 -1.8260 7.60076 -15.00000 58 1.23300 .00561 -1.30400 .32171 -77.00500 10 1.0512 13789 -2.1500 7.60076 -75.00000 1.23300 .00561 -78160 .32171 -77.00500 11 1.0512 13789 -2.2500 7.60076 -57.00000 1.23300 .00561 -78160 .32171 -77.00500 12 12 12 12 13 12 13 12 13 13											
10 1.09312 13769 -1.30000 7.00076 -75.00000 59 1.23300 .0056178540 .32171 -75.00000 12 1.09312 1376978540 7.0076 -75.00000 60 1.23300 .0056178540 .32171 -45.00000 12 1.09312 13769 -2.28767 5.91700 -105.00000 61 1.23300 .0056128100 .32171 -15.00000 13 1.07630 .10329 -2.35519 5.91700 -105.00000 62 1.23055 -0.0724 -2.7779 -4.1510 -105.00000 13 1.07630 .10329 -2.35519 5.91700 -105.00000 62 1.23055 -0.0724 -1.8220 -4.1510 -103.00000 13 1.07630 .10329 -1.83220 5.91700 -105.00000 64 1.21055 -0.0724 -1.8220 -4.1510 -103.00000 13 1.07630 .10329 -1.09000 5.91700 -105.00000 65 1.21055 -0.0724 -1.8220 -4.1510 -103.00000 13 1.07630 .10329 -1.09000 5.91700 -105.00000 65 1.21055 -0.0724 -1.8220 -4.1510 -103.00000 13 1.07730 .10329 -7.8540 5.91700 -45.00000 65 1.21055 -0.0724 -2.2550 -4.1510 -103.00000 17 1.07730 .10329 -7.8540 5.91700 -45.00000 65 1.21055 -0.0724 -2.2550 -4.1510 -103.00000 18 1.07730 .10329 -7.8540 5.91700 -45.00000 66 1.21055 -0.0724 -2.2550 -4.1510 -15.00000 18 1.07730 .10329 -7.8540 5.91700 -45.00000 66 1.21055 -0.0724 -2.2550 -4.1510 -15.00000 18 1.07730 .10329 -7.8540 5.91700 -15.00000 66 1.21055 -0.0724 -2.2550 -4.1510 -15.00000 18 1.07730 .10329 -7.8540 5.91700 -15.00000 66 1.21055 -0.0724 -2.2550 -4.1510 -15.00000 18 1.07730 .10329 -7.8540 5.91700 -15.00000 66 1.21055 -0.0724 -2.2550 -4.1510 -15.00000 18 1.07730 -105.000											
11 1.00912 .1378078940 7.0078 -13.0000 e0 1.23300 .0006126180 32171 -13.00000 12 1.60912 .1378078180 7.0078 -13.00000 e2 1.23000 .0006126180 32171 -13.00000 13 1.67830 .10329 -2.35619 3.01700 -103.00000 e3 1.2306500724 -2.3519 -4.1510 -133.00000 15 1.67830 .10329 -1.83280 5.01700 -103.00000 e3 1.2306500724 -1.00000 -4.15100 -100.00000 16 1.67830 .10329 -1.00000 5.01700 -13.00000 e5 1.2306500724 -1.00000 -4.15100 -100.000000 17 1.67830 .10329 -1.00000 5.01700 -13.00000 e5 1.230650072421000 -4.15100 -100.00000 18 1.67830 .10329 -7.8940 5.01700 -45.00000 e5 1.230650072421000 -4.15100 -45.00000 18 1.67830 .10329 -7.8940 5.01700 -45.00000 e5 1.23065007242100 -4.1510 -15.00000 19 2.06953 .00689 -2.25619 3.9127 -105.00000 e7 1.3420001644 -2.8797904212 -103.00000 21 2.08953 .00689 -2.35619 3.91277 -105.00000 e0 1.3470001644 -1.832000212 -105.00000 22 2.08953 .00689 -2.35619 3.91277 -105.00000 e0 1.3470001644 -1.832000212 -105.00000 23 2.08953 .00689 -1.00000 3.91277 -105.00000 e0 1.3470001644 -1.832000212 -105.00000 22 2.08953 .00689 -1.00000 3.91277 -105.00000 e0 1.3470001644 -1.832000212 -105.00000 23 2.08953 .00689 -1.00000 3.91277 -105.00000 e0 1.3470001644 -1.832000212 -105.00000 24 2.08953 .00689 -1.00000 3.91277 -105.00000 71 1.3470001644 -1.832000212 -105.00000 25 2.08953 .00689 -2.28100 3.83277 -105.00000 71 1.3470001644 -1.832000212 -105.00000 26 2.08953 .00689 -2.28100 3.83237 -15.00000 72 1.3470001644 -1.832000212 -105.00000 27 2.08953 .00689 -2.28100 3.83237 -15.00000 73 1.200001644 -1.832000212 -105.00000 28 2.08953 .00689 -2.28100 3.83237 -15.00000 72 1.3470001644 -1.832000212 -105.00000 29 3.000000000000000000000000000000000000		1.09512									
12	11										
13	;;										
14 1.57230 .10329 -2.35619 5.91790 -135.00000 64 1.2106500724 -1.8320 -4.1510 -130.00000 16 1.77230 .10329 -1.30290 5.91790 -75.00000 64 1.2106500724 -1.80000 -4.1510 -75.00000 17 1.77250 .10329 -1.30290 5.91790 -75.00000 65 1.210650072472550 -4.1510 -75.00000 17 1.77250 .10329 -7.26100 5.91790 -75.00000 65 1.210650072472550 -4.1510 -75.00000 18 1.77250 .1032926160 5.91790 -75.00000 67 1.34266 -01644 -2.8797904212 -155.00000 19 2.0053 .00699 -2.87779 3.82237 -135.00000 69 1.3420601644 -2.8797904212 -155.00000 21 2.0053 .00699 -2.87799 3.82237 -75.00000 70 1.3420601644 -1.8326004212 -155.00000 21 2.0053 .00699 -1.83260 3.83237 -75.00000 70 1.3420601644 -1.8326004212 -155.00000 21 2.0053 .00699 -1.83260 3.83237 -75.00000 71 1.3420601644 -1.8326004212 -75.00000 21 2.0053 .00699 -1.83260 3.83237 -45.00000 71 1.3420601644 -1.8326004212 -75.00000 21 2.0053 .00699 -1.83260 3.83237 -45.00000 71 1.3420601644 -2.816004212 -45.00000 21 2.0053 .00699 -7.8540 3.83237 -45.00000 71 1.3420601644 -7.816004212 -75.00000 21 2.0053 .00699 -7.8540 3.83237 -45.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.816004212 -75.00000 72 1.3420601644 -7.8160 -7.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.00000000	11										
1.67830	14										
16											
17											
1.67#20											
10											
20										-2.27979	
21											
22 2.08553 .00689 -1.30900 3.83237 -75.00000 72 1.34206016447814094212 -45.00000 23 2.08553 .0068978540 3.83237 -15.00000 73 1.609602776 -2.87979 -1.59072 -125.00000 25 1.54491 .04513 -2.87979 2.58556 -125.00000 74 1.609602776 -2.87979 -1.59072 -125.00000 26 1.54491 .04513 -2.35619 2.58556 -135.00000 75 1.6609602776 -1.83260 -1.59072 -135.00000 27 1.54491 .04513 -1.8260 2.58556 -105.00000 76 1.6609602776 -1.83260 -1.59072 -75.00000 28 1.54491 .04513 -1.80900 2.58556 -105.00000 76 1.6609602776 -1.83260 -1.59072 -75.00000 29 1.54491 .04513 -1.80900 2.58556 -15.00000 77 1.860960277628510 -1.59072 -75.00000 30 1.54491 .0451328140 2.58556 -45.00000 78 1.60960277628140 -1.59072 -45.00000 31 1.07094 .03360 -2.87979 1.92526 -125.00000 80 2.3343104729 -2.77979 -2.70976 -125.00000 32 1.07094 .03360 -2.35619 1.92526 -125.00000 80 2.3343104729 -2.85619 -2.70976 -135.00000 31 1.07094 .03360 -2.35619 1.92526 -125.00000 81 2.3343104729 -1.83260 -2.70976 -155.00000 32 1.07094 .03360 -1.83260 1.92526 -125.00000 82 2.3343104729 -1.83260 -2.70976 -105.00000 33 1.07094 .03360 -1.83260 1.92526 -155.00000 82 2.3343104729 -1.83260 -2.70976 -155.00000 34 1.07094 .03360 -1.83260 1.92526 -155.00000 82 2.3343104729 -1.83260 -2.70976 -155.00000 35 1.07094 .03360 -1.83260 1.92526 -155.00000 82 2.3343104729 -1.83260 -2.70976 -155.00000 36 1.07094 .03360 -7.8540 1.92526 -155.00000 82 2.3343104729 -7.8540 -2.70976 -155.00000 39 1.16565 .02559 -2.87979 1.46625 -155.00000 86 3.0357310050 -2.87979 -5.75647 -155.00000 40 1.18565 .02559 -2.85610 1.46625 -155.00000 87 3.0357310050 -7.8540 -5.75647 -155.00000 41 1.18565 .02559 -1.83260 1.46625 -755.00000 89 3.0357310050 -7.8540 -5.75647 -755.00000 42 1.18565 .02559 -2.87979 1.46625 -155.00000 89 3.0357310050 -7.8540 -5.75647 -155.00000 43 1.18565 .02559 -2.8560 1.46625 -755.00000 89 3.0357310050 -7.8540 -5.75647 -155.00000 44 1.18565 .02559 -2.8560 1.46625 -755.00000 91 1.22540 -0.03412 -2.87979 -1.95468 -105.00000											
23											
24											
25											
1.54491	25										
1.54491											
1.54491											
1.54491											
1.54491 .0451326180 2.58556 -15.00000 79 2.3343104729 -2.76779 -2.76976 -165.00000 31 1.07694 .03360 -2.87979 1.92526 -165.00000 80 2.2343104729 -2.35619 -2.76976 -135.00000 32 1.07094 .03360 -2.35619 1.92526 -135.00000 81 2.3343104729 -1.83260 -2.76976 -135.00000 33 1.67094 .03360 -1.83260 1.92526 -105.00000 82 2.3343104729 -1.83260 -2.76976 -75.00000 34 1.67094 .03360 -1.30900 1.92526 -75.00000 83 2.3343104729 -7.8540 -2.76976 -45.00000 35 1.07094 .0336076540 1.92526 -45.00000 84 2.334310472926180 -2.76976 -45.00000 36 1.07694 .0336026190 1.92526 -45.00000 84 2.334310472926180 -2.76976 -15.00000 37 1.16565 .02559 -2.87979 1.46625 -165.00000 86 3.03573 -10050 -2.87979 -5.75647 -125.00000 38 1.16565 .02559 -2.35619 1.46625 -135.00000 87 3.03573 -10050 -1.82260 -5.75647 -105.00000 39 1.16565 .02559 -2.35619 1.46625 -105.00000 87 3.03573 -10050 -1.82260 -5.75647 -105.000000 40 1.16565 .02559 -1.83260 1.46625 -105.00000 89 3.03573 -10050 -1.82260 -5.75647 -105.00000000000000000000000000000000000											
1 1.07694 .03360 -2.87979 1.92526 -185.00000 80 2.2343104729 -2.35619 -2.76976 -135.00000 81 2.3343104729 -1.83260 -2.76976 -135.00000 82 2.3343104729 -1.83260 -2.76976 -155.00000 82 2.3343104729 -1.83260 -2.76976 -75.00000 82 2.3343104729 -1.80000 -2.76976 -75.00000 82 2.3343104729 -7.8540 -2.76976 -75.00000 83 2.3343104729 -2.26180 -2.76976 -45.00000 84 2.3343104729 -2.26180 -2.76976 -45.00000 85 2.3343104729 -2.26180 -2.76976 -45.00000 85 2.3343104729 -2.26180 -2.76976 -45.00000 85 2.3343104729 -2.26180 -2.76976 -45.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 85 2.3343104729 -2.26180 -2.76976 -15.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 -5.75447 -75.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2.3547 -10.000000 -5.7547 -75.000000 87 2.3547 -10.00000 87 2.3547 -10.00000 87 2				26180	2.56556	-15.00000					
32 1.07094 .03360 -2.35619 1.92526 -135.00000 81 2.3343104729 -1.83265 -2.70776 -105.00000 33 1.07094 .03360 -1.83260 1.92526 -105.00000 82 2.3343104729 -1.30900 -2.70976 -75.00000 34 1.07094 .03360 -1.30900 1.92526 -75.00000 83 2.3343104729 -7.7056 -2.70776 -45.00000 35 1.07094 .0336076540 1.92526 -45.00000 84 2.334310472926160 -2.70976 -15.00000 36 1.07094 .0336026190 1.92526 -15.00000 85 3.03573 -10050 -2.867979 -5.75647 -105.000000 37 1.16565 .02559 -2.87979 1.46625 -165.00000 86 3.03573 -10050 -2.35619 -5.75647 -105.00000000000000000000000000000000000											
33 1.67094 .03360 -1.83260 1.92526 -105.00000 82 2.3343104729 -1.30900 -2.7(476 -75.00000 83 2.334310477978540 -2.76776 -45.00000 85 2.334310477978540 -2.76776 -45.00000 85 2.334310477978540 -2.76776 -45.00000 85 2.334310472926160 -2.76976 -15.00000 85 2.334310472926160 -2.76976 -2.66160 -2.7				-2.35619							
1.07094 .03360 -1.30900 1.97526 -75.00000 83 2.334310477978540 -2.70776 -45.00000 84 2.334310472926180 -2.70776 -15.00000 85 1.07094 .0336026190 1.92526 -15.00000 85 3.0357310550 -2.87979 -5.75847 -165.00000 85 3.0357310550 -2.35619 -5.75847 -165.00000 86 3.0357310550 -2.35619 -5.75847 -165.00000 87 3.0357310550 -2.35619 -5.75847 -165.00000 87 3.0357310550 -2.35619 -5.75847 -165.00000 87 3.0357310550 -2.35619 -5.75847 -165.00000 87 3.0357310550 -2.35619 -5.75847 -75.000000 87 3.0357310550 -2.35619 -5.75847 -75.000000 88 3.0357310550 -2.35619 -5.75847 -45.00000 88 3.0357310550 -2.35619 -5.75847 -45.00000 88 3.035731055078540 -5.75847 -45.00000 89 3.035731055078540 -5.75847 -45.00000 89 3.035731055026180 -5.75847 -45.00000 89 3.035731055026180 -5.75847 -15.00000 89 3.035731055026180 -5.75847 -45.00000 89 3.035731055026180 -5.75847 -45.00000 89 3.035731055026180 -5.75847 -15.00000 89 3.035731055026180 -5.75847 -45.00000 89 3.035731055026180 -5.75847 -15.00000 89 3.03573		1.67094	.03360	-1.83260	1.92526	-105.00000					-2.70.76 -105.00000
35 1.07094 .0336076540 1.92526 -45.60000 64 2.334310472926180 -2.70976 -15.60000 36 1.07094 .0336026180 1.92526 -15.00000 85 3.035731050 -2.87979 -5.75647 -125.60000 37 1.16565 .02559 -2.87979 1.46625 -165.60000 86 3.035731050 -2.35619 -5.75647 -125.60000 38 1.16565 .02559 -2.35619 1.46625 -135.00000 87 3.035731050 -1.6260 -5.75647 -105.60000 39 1.16565 .02559 -1.63260 1.46625 -105.60000 88 3.035731050 -1.6260 -5.75647 -75.60000 40 1.16565 .02559 -1.83260 1.46625 -75.00000 89 3.0357310050 -1.30900 -5.75647 -75.60000 41 1.16565 .02559 -76540 1.46625 -45.00000 90 3.63573105026180 -5.75647 -15.60000 42 1.16565 .0255976540 1.46625 -45.00000 91 1.2254003412 -2.87979 -1.95468 -165.00000		1.67094	.03360	-1.30900	1.97526	-75.C0C00					-2.76476 -75.66600
36		1.07094	.03360	78540	1.92526	-45.60000					
37	36	1.07094	.03360	26190	1.92526	-15.00000					
38	37		.02559	-2.67979	1.40625	-165.00000					
39	30			-2.35619	1.46625	-135.00000					-1.71447 -101.00000
40 1.16565 .02559 -1.30900 1.46625 -75.00000 69 3.035731005076540 -5.75647 -45.00000 41 1.16565 .0255976540 1.46625 -45.00000 90 3.035731005026180 -5.75647 -15.00000 42 1.16565 .0255926180 1.46625 -15.00000 91 1.2254003412 -2.67979 -1.95468 -165.00000	39		.02559	-1.63260	1.46625	-105.00000					
41 1.16565 .0255976540 1.46625 -45.00000 90 3.635731605026180 -5.75647 -15.60000 42 1.16565 .0255926180 1.46625 -15.00000 91 1.2254003412 -2.67979 -1.95468 -165.00000	40			-1.30900	1.46625	-75.00000	69				
1.16565 .0255926180 1.46625 -15.00000 91 1.2254003412 -2.67979 -1.95468 -165.00000				78540	1.40625	-45.00000	90				-1.75#47 -15.00000
44 1.2004 0144 -2.47070 .01411 -144 (4004 00 1.444)			.02559	26180			91				
	41	1.20904	-01658	-2.47070	.95023	-144.60000	92				

```
93
94
95
96
97
97
98
           1.32540
                      -.03412 -1.03260
                                           -1.95468 -105.00000
           1.32540
                      -.63412
                                -1.30900
                                            -1.95460 -75.00000
           1.32540
                      -.03412
                                 -. 70540
                                            -1.95468 -45.00000
           3.32540
                      -.03412
                                 -.26180
                                            -1.95468 -15.00000
                      0.00000
            .ezezz
                                -2.87979
                                            0.00000 -165.00000
            . 22722
                      0.00000 -2.35619
                                            0.00000 -135.00000
            0.00000
                                -1.63260
                                            0.00000 -105.00000
100
            . + ? + ? 2
                      0.00000
                                -1.30900
                                            0.00000 -75.00000
101
            .ezezz
                      0.00600
                                 -. 78540
                                            0.00000 -45.00000
162
            .+2+22
                      0.00000
                                 -.26160
                                            0.00000 -15.00000
```

PAPTITION - 1 TIPE - 11.93000
NWING- 140 NBODY- 102 NCPT- 140 NSEG- 1
NBPDU(N),N-1, 2
NWPDU(N),N-1, 3
2P 28 28 20 20
NPCV(K),N-1, 1
14
NCOL(N),N-1, 1
5
INFLLENCE OF BODY ON BODY

PAPTITION . 2 TIPE . 44.42200 INFLUENCE OF WING ON BODY

PARTITION . 3 TIME . 305-35600 INFLUENCE OF BODY ON WING PAPTITION • 4 TIME • 550.42500
INFLUENCE OF WING ON WING
NWING• 140 NBCDY• 102 NCPT• 140 MSEG• 1
MBBLOX• 2 NWBLOK• 5

VELCRP, TIPE -1181.72200

BEGIN A NEW CASE

COMPOULED SUCCESSIVE OVERBELANATION METHOD ALF1. ALF2. 1.10

TTRAT	 -			
11041		11EG	. Deec	9

		•••							
SP(N),N-1,									
.36550	.34553	.27631	.19639	.12717	.08720	.29422	.25420	.10407	.10403
.03550	00452	.25973	-21996	.15100	.07154	.00266	03711	.21931	.17971
.11112	.03192	03667	07627	.19427	.15498	.08693	.00839	05965	09893
.1*040	.14157	.07431	00335	07061	10944	.16971	.13160	.06559	01063
07663	11474	.15640	.11931	.05507	01911	08336	12045	.15108	-11767
.05343	02059	08543	12264	.15704	.11301	.04759	02887	09509	13332
.13754	. Cont Z	.03121	04664	11405	15298	.12947	.09017	.62210	05649
12436	16345	.11854	.07903	.01040	06842	13685	17636	.09519	.05894
00972	00901	15767	19731	.03998	00002	06931	14931	21000	25860
.11+55	.07798	.00772	07341	14367	10423	.14793	.10905	.04170	036C7
10342	14230								
GUIK), N-1,									
.410+2	-11447	.11165	.0 65 59	.06330	.04273	.01854	00#32	03988	06082
07313	07516	071 61	06854	.20704	.09509	.05732	.03652	.02586	.01846
.00974	.00498	.00202	.00072	00053	00076	00047	00026	.41029	.11404
.11136	. Ce160	.0e256	-041 97	.01818	00822	03944	Ot 611	07232	07444
07122	06306	.23029	.10686	.06519	.04273	.63145	.02372	.01+01	.00225
.00460	.00229	.00100	.69039	.00016	.00011	.41005	.11390	.11125	.08155
.00241	.04181	.01809	00821	03937	05996	07213	07424	07104	06791
.23004	.11173	.06643	.04527	.03373	.025 85	.015#9	.00761	.00185	.00327
-001 74	.00089	.00044	.00026	.40986	.11379	-11115	.ce147	.06234	.04172
.01602	00122	03935	05989	07200	07409	07090	06778	.25216	.11767
.07250	.04842	.03651	.02843	.01622	.01182	.00750	.00457	.06272	.00156
.00002	.00091	.41220	.11510	.11248	. C#292	.06401	.04327	.C1t 73	06841
04012	04114	07345	07543	071 98	06865	.19250	.08763	. 052 35	.03263
.02243	.0 15 45	.00756	.00342	.00004	00073	00139	00130	00076	00044
ITPATE, TIM	E -11 (9.34)	000							
ITERATION N	URBER 2								
GEINI.Nel.									
.31005	. 3 46 38	.27663	.1 90 14	.12649	.0 8627	.29572	.25529	.10524	.10446
.03455	00e11	.26196	.22159	-15163	.07093	.00109	03972	.22291	.10241
.11204	.03076	04033	08131	.19963	.15923	.08895	.00021	06770	11042
.10074	.14596	.01265	00626	01195	13485	.10201	.13693	.20607	03222
11195	15719	.15346	-14484	.32023	17667	12032	16765	. 17223	.16821
.32972	24553	14213	16742	-19276	.1 80 %	.25789	78497	14550	15779
.10117	-17047	.10141	30714	16574	14444	14137	.14004	. 20256	29311

10535	10561	-14400	-14959	-21378	20944	20524	20983	.14904	-13483
-15414	25483	23310	24100	-10425	.07057	-62222	26245	30459	32129
.19795	-16434	.06477	13079	2 2001	26324	.22553	-19155	.09245	08722
16564	21969	•••••	******		******	******	******		
CUINI, N-1,									
40611	-11714	.10922	-07940	.06012	-03937	.01543	01151	04264	06310
07517	07705	07371	07054	.37140	.17556	.10945	-07498	-05779	.04615
.03134	.02111	-01363	-00825	.00344	.03265	.00111	-00070	.41030	.11555
.11319	.08327	.06401	.04319	.01000	00814	04049	061 71	07405	
07264	01942	.42166	.19972	.12455	.08546				07600
.01933	.01357	.00926	-00597	.00336	.00212	.42066	.65327	.036.00	.02673
.0t+75	.04370	.01929	00799	04027	06138	07357	-11667	-11445	.06422
.46108	.21000	.13685	.09442				07541	07199	06676
.01138	.CC743	.00420		.07369	.05974	.04224	.01109	.02291	.01640
.01928	00791	03991	.00265	.42054	.11695	.11.49	.68422	.06473	.04367
-145 72			06077	07276	07458	07122	06803	.49102	-23312
	-10049	.07833	-06337	.04436	.03200	.022 90	.01579	.01047	.00650
.00349	.00716	.42107	.11716	.11490	.06513	.06630	.04593	.02100	33566
03421	05989	07279	57516	07191	Cotto7	.49222	.23105	.14210	.093c3
.66823	.05050	.03013	.01932	.01237	.00568	. 60244	.00047	00024	00020
ITPATE, TIPE	E -1190.76	100							
TTERATION M	URBE# 3								
GB(N) .N-1.									
.38766	-34727	.27697	. 19579	-12547		.20732	*****	****	
.03318	00766	.26439	.22330	.15230	.00407		.25647	. 105 71	.10390
.11322	.02944	04324	08 5 27		.07010	00100	04205	.22711	-10550
	.15670	.00724		-20601	-16506	-09115	.00369	072 95	11730.
.19361			01120	09789	14456	-17469	.15647	.26457	10240
12735	16792	.16929	-17010	.50676	37ec6	15762	18051	.19598	.21570
.59961	54751	10726	1 8564	.22104	.23996	. 52995	55556	26485	1 6221.
.22520	. 23963	.45398	55500	23503	20488	.22356	.23641	.46816	~.55322
26219	22613	.21550	.233e7	.45410	55738	28942	25044	.20598	.25631
.45200	55227	32657	79933	.10200	.19570	.16742	40528	41233	39990
.29695	.27701	.13705	20323	33830	3e217	.32257	.29530	.15714	15107
28952	31664								
GUINI.N-1.7									
.40571	.11202	.10908	.07923	.03990	.03909	.01513	01124	04244	06300
07498	07684	07348	-,07029	.43119	.26749	-13206	. 69428	.07600	.06461
.04630	.03600	. 026 48	.01893	.01335	.00951	.00394	.00365	.41563	-11537
.11298	.07308	.06383	.04302	.01000	60419	04044	06159	67389	07582
072 46	06924	.48189	.23027	.14511	-101t7	.08116	.06748	. 05070	-03950
.03153	. C2429	.01010	.01200	.00772	.00499	.41935	.11655	.11412	.08394
.06450	.04349	.01913	00803	04023	06128	07345	07529	07100	06865
.51505	.24646	.15528	-10199	.00003	.07221	.05429	.04273	.63371	.02504
.01917	.01334	.00794	.00510	.41982	.11442	-11-10	.01394	.00449	.04347
.61914	00791	03990	66073	07274	07455	07119	00001	.53690	.25615
.1(106	.11256	.00710	.07363	.03426	.04150	.03146	.02298	-01012	.01057
.00194	.00374	.42021	.11695	.11466	.08492	.06609	.04571	.02161	60557
01707	01977	- 07740	- 61611	- 07140	- 01014	.00004	.04771	.02161	00337

.07230	.05415	.03302	.02170	.01441	.00879	.00443	.00149	.00014	.00000
ITPATE, TIM	E -1192.15	260							
ITERATION N	-								
GP(W), N-1,	165								
. 37844	.34770	.27712	. 19562	.12304	.08429	.20011	.25704	.10391	.10376
.63261	00648	.26561	.22427	.15242	.05984	00100	04331	.22927	.10709
.11379	.02766	04487	08748	.21070	.10003	.09223	-00250	07601	12130
.1 0087	. 16200	.08941	01360	10333	15114	.10040	.16571	.20921	12590
13703	17701	.1 63 70	.19531	.59467	46393	17544	19160	-20659	-23868
.74225	65471	21064	19663	.23488	.27104	.66843	71410	2 3c 02	19951
.24256	.27700	.61066	72117	27300	22211	.24435	.20029	-64360	72625
30610	24000	.24033	.2 *2 6 9	.66453	73721	33050	21343	.23e13	.26337
.62154	72478	36166	32951	.22624	.25072	.2 79 12	49932	47700	44326
.35333	.33794	.10292	24922	40338	41847	.37765	.35748	.19761	19266
35167	37100								
Guini, 1 .									
.40586	-11501	.10900	.07923	.05991	.03911	-01313	01121	04241	06297
07496	07682	07345	07026	.461 51	.22355	.14321	.10352	.08451	.07226
.03620	.04332	.03331	.02503	.01854	.01370	.0877	.00571	.41356	.11535
.11296	.06700	.06381	.04301	.01085	00919	04013	06150	07387	07581
07744	06923	.51260	.24554	.15516	.10953	.68779	.07349	.65600	.04488
.03e16	.02843	.02171	.01556	.00952	.00610	.41944	.11652	.11400	.08391
.01448	.04347	.61912	00FC2	04022	06126	67343	07528	C7187	04845
.34251	.25951	.16373	.11523	.09206	.07601	.05016	.04620	.03684	.02050
.02147	.01512	.00910	.00587	.41970	-11039	-11412	. 00 391	-05446	.04345
.01912	00791	03989	06072	07274	07455	67120	06 801	.55697	-26560
-16719	.11000	.04201	.07046	.05631	.04304	.03267	.02367	-01678	.01102
.001.22	.00391	.42013	.11693	.11444	.05440	.00007	.04568	.02150	00559
03799	0:974	07270	07512	67189	06 866	.52955	.24966	.15355	.10174
.07465	.05584	.03403	.02242	.014#3	.00889	.00446	.00149	.00013	00000
ITRATE, TIM	•1193.55	300							
ITERATION M	UMB ER 5								
GB(N), N=1,	102								
.30071	.34789	.27719	.19555	.12484	-08402	.29848	.25731	.10+61	.10300
.03234	00884	.26619	. 22449	-15270	.04949	00230	04300	-23030	.10704
-11407	.02850	04562	08850	.21270	-10947	. 09 2 79	.00203	07744	12320
.20295	.16459	.09078	01477	125 89	15419	-19033	.17633	.30193	13874
14160	15114	.100 50	-20101	.63780	50705	10305	19671	. 21156	.24944
.01002	75240	22155	20105	.24117	.2 0560	. 76407	78970	25059	20581
.25030	.29463	.69723	19969	25046	22989	.25340	.30052	.72722	61146
32435	25619	.25129	.30515	.75033	02267	34098	25446	.24944	.30853
.70451	0 Ce 71	40462	34266	.24562	.20859	.32372	54175	50060	46265
.37872	.25760	.20434	27070	-,41322	-,44383	.40277	. 36598	.2 16 77	21167
30014	39475								

201H) .W .1 .	140						+		
.405 ep	.11201	-10908	.07923	.05991	-03911	.01515	01121	04241	06297
07496	07662	07345	07025	.4 75 95	.2 3092	.14834	.10779	.06846	.07607
.05979	.04653	.C3618	.02750	.02060	.01532	.00984	.00640	.41556	.11535
.11296	.08307	.06391	.04301	.01885	00819	04043	06158	07387	075 60
07244	04923	.52577	.25210	.15948	-11283	.09065	.07609	.05t3b	.04696
.03799	.02999	.02296	-01649	.01011	.00656	.41945	-11652	.11408	.00391
-04448	.04347	.01912	00902	04022	01126	07343	07528	07167	06664
.55320	.26475	.16712	.11773	. 69417	.07866	.05972	.04752	.03793	.02945
.02212	.01557	.00936	.00603	.41971	.11659	.11412	.06392	.06446	.04345
.01913	00791	03789	.0 to 72	07274	07455	07119	06801	.50518	.26979
.16974	.11073	. 69414	.07778	.05738	.04393	.03338	.02442	.01717	.01128
.CO6 37	.00400	.42013	.11693	.11464	.08490	.06637	.04528	.02158	00560
03799	05974	07270	67512	07169	06766	.53577	.23202	.15541	.10301
.07561	.05660	. 63454	.02279	.01:10	.00909	. 00458	.00153	.0015	.00000
ITPATE, TIM	E •1194.95	400							
ITERATION N									
GB(N),N-1,									
.36863	.34798	. 27722	.19552	.12476	.08390	. 29864	.25743	. 18605	.10362
.03222	00900	. 26644	.22488	.15265	.06962	00249	04413	.23075	.1 6617
.11419	.02846	04595	08895	.21354	.17010	.09303	.00181	07 607	12413
.20431	.16573	.09130	01529	10703	15555	.19221	.17230	.30762	14441
14365	18300	.19080	.20759	.65734	52660	16765	19899	.21366	.25443
. 64046	70292	22635	20395	.24385	.29193	.79721	8 2 2 8 5	25692	20849
.25359	.30219	.73097	03345	29822	23319	.25752	.30910	.76280	84691
33444	26212	. 25590	.31462	.76679	85899	37047	29909	. 25501	.31913
.73928	84152	41743	34 845	.25376	.30111	.34254	56261	51918	47078
.38940	.38041	.21341	27960	44581	45450	.41327	.39801	.22479	21972
39217	46722								
GU(N),N-1,									
.40566	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07496	07682	07345	07025	-48206	.23412	.15057	.16963	.0 9015	.07770
.06130	.04787	. 03737	.02850	.02142	.01595	.01024	.00006	.41556	.11535
.11296	.01307	.06361	.04301	.01665	00819	04043	06150	07367	07580
07244	06923	.53134	.254 66	.16129	-11421	.09184	.07715	. 059 29	.04779
.03873	.030cl	.02346	.01686	.91033	.00671	.41945	.11652	.11408	.08391
.06448	.04347	.01912	00002	04022	06126	07343	07528	071 67	06864
.55774	.26697	.16856	.11 8 60	.09506	.07944	.06038	.04 609	.03843	.02986
.02245	-01581	.00951	.00613	.41971	.11659	.11+12	.08392	.00446	.04345
.01913	00791	03969	06072	0 72 74	07455	07119	00001	.56670	.27149
·170 t 3	.11952	.09478	.07833	.057 ez	.04429	.03368	.02465	.01734	.01140
.00643	.00405	.42013	.11693	.11464	.0 24 90	.0 c c 07	.04568	. C2158	00550
03799	0:974	07270	07512	07189	06866	-53646	.2:331	.15621	. 10355
.07602	.05691	.03474	.02294	.01521	.00916	.00462	.00156	.06315	.00001

17PATE, TIME -1196.37100

GP(N),N-1,	102								
.30 6 6 0	.34802	.27724	.19550	.12472	.08385	.29870	-25748	.18607	.10340
.03218	00907	-26654	.22495	-1 52 67	.06959	00256	04423	.23094	. 18831
-11424	.02041	04609	08914	-21369	.17037	.09313	.00171	07834	12448
.20468	.16621	.09152	01551	1C752	15612	.19300	.17325	.31007	146tb
14453	16379	-19176	.20921	.66568	53494	18927	19994	.21454	.25645
.0 53 31	79577	22836	20483	-24497	.29458	.01113	83677	25957	20961
.25497	. 30534	.74506	84754	30136	23457	.25915	.31268	.77762	861 c7
33852	26377	.25783	.31857	.80198	07412	37442	30102	. 25734	.32355
.75393	85t 01	421 85	35078	.25716	.30633	. 350 39	57046	52440	47417
.393 66	.3 2566	.21719	28359	45106	45695	.41764	.40303	. 22814	22307
39718	41159						******	*****	
GUINI, N-1.									
.46506	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07496	07(82	07345	07025	.48461	.23546	. 15 15 0	.11041	.05386	. 07d 38
.06193	.04842	.03785	.02891	.02175	.01620	.01041	.00677	.41550	.11535
.11296	.08307	.06381	.04301	.01885	00819	04043	01158	07387	07560
07244	01923	.53367	.25602	.16205	.11479	.09233	.07760	.05968	.04815
.03904	.03CE7	.02368	.01702	.01043	.0677	.41944	.11652	.11408	.06391
.06448	.04347	.01912	00EC2	04022	06126	67343	07528	C7187	06864
.55955	.26791	.16916	.11924	.09544	.07977	.06066	.04834	.03864	.03004
.02259	.01591	.00957	.00617	.41971	.11659	-11412	.08392	.06446	.64345
.01913	00791	03989	05072	07274	07455	07119	06801	.57017	.27221
.17129	.11985	.09505	.07856	.05800	.64444	.033 67	.02474	.01741	.01145
.00£46	-06406	.42013	.11693	.11464	.084 90	.C6607	.04568	.02158	00560
03799	01974	07270	07512	07189	06866	.5 3956	.25384	.15654	
.07619	.05704	.03483	.02300	.01525	.00918	.06464	.00157	.00016	.10376
*****		.03403	.02300	.01727	.00410	.00104	.00157	.00019	.00061
ITPATE, TIP	-1197.77	600							
TTERATION NO	148 ER 8								
GB(N) . No 1 . 1									
.38890	.34803	.27724	.19550	-12470	.0e3e3	.29873	.25750	.18408	.10359
.03215	00909	.26659	.22498	.15289	.06938	00260	04428	-23102	. 188 37
.11426	.02839	04615	08922	.21404	.17048	.09317	.00167	07843	12463
.20512	.16642	.09161	01560	10772	15636	.19332	.17362	.31100	14788
14469	11412	.19216	.20988	.66915	53841	18994	20034	.21491	.25729
. 65865	00111	22920	20520	.24544	.2 9560	.81670	84254	26067	
-25555	.30666	.75090	85339	30269	23514	.25984	.31417		21068
34001	26445	.25863	32022	.80227	88039	37607		.78376	86778
.75995	06202	42369		.25858			3C1e3	.75832	.32539
.39572	.38765	.21876		45325	. 308 51	.35364	57372	52657	47559
39926	41341	·5 16 10	26516	4 732 7	460tl	.41947	.46512	.22952	22440
GU(N) .N -1 .1									
		10000			*****				
.40586	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07496	076 RZ	07345	07025	.4 85 68	. 23602	.15189	.11073	.09115	.07866
.06219	.04765	.03806	.02908	.02189	.01631	.01046	.005.82	.41556	.11535
.11296	.08307	.06381	.04301	.01885	00819	04043	06158	07387	075 60
67744	01971	.43444	. 25450	-16237	.11403	00754	07770	.05985	.04830

.03918	-03099	.02377	.01709	-01047	.00680	.41944	-11652	-11409	-08391
.06448	.04347	.01912	00802	04022	0t126	07343	07528	07167	06864
.54045	.76830	.16941	.11943	. 69559	.07991	.06077	.04844	. 03873	-03011
.02265	.01595	.00759	. 226 19	.41971	.11559	.11412	.08392	.00446	.04345
.01913	00791	03989	06072	07274	07455	07119	0t801	.57078	.27250
.17148	-11999	.09517	.07866	.05000	.04450	.03365	.02478	.01744	.01147
.00647	.00+C7	.42013	.11693	-11464	.08490	.06607	.04568	. 02158	00560
03799	05974	07270	67512	07169	Dotto	.54005	.25406	.15668	.10307
.07627	.05710	.034 87	.02303	.01527	.00920	.00464	.00157	.00016	.00001
ITPATE, TIP	E -1199.16	700							
ITERATION N									
GB(N) .N-1.									
.30091	.34804	. 27724	.19550	-1 24 70	.00382	.29874	.25751	. 184 08	-10359
.03215	00911	.20001	.22500	. 15287	-06958	00261	04430	.23105	.1 6639
-11427	. 02838	04617	029 26	-21410	.17052	.09319	.66165	07 t50	12469
.20522	.16650	. 09165	01564	10760	15646	.19346	.17377	.31151	14830
14504	18425	.192 32	.21016	-67060	53986	15022	20051	.21506	.25744
. * 60**	66334	22956	20535	-24563	.29614	.81932	84496	26113	21027
.25579	. 30721	.75336	65584	30324	23539	.26012	.31480	.76635	87036
34064	26474	.25897	.32091	.01092	88303	37676	30217	.25872	. 32617
.76249	16455	42446	35217	.25917	.30942	.35501	57509	52748	47610
.39649	.36677	.21942	28582	45417	46158	.42023	.46599	. 23011	22505
40014	41418	*****				******			
GUINI.H-1.									
.405F6	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07496	07682	07345	67025	.48613	.23626	.15205	.11086	.09128	.07878
.06230	.04 775	.C3814	.02915	.02195	.01636	.01051	.00684	. 41336	.11535
.11796	.07307	.06381	.04301	.01885	00819	04043	0(158	07367	67580
07244	06923	.53505	-25570	.16250	-11513	.09263	.07767	.05992	.04836
.33923	.03103	.023 60	.01712	.01049	.006F1	.41744	.11652	-11408	.08391
.06448	.04347	.01912	00002	04022	06126	07343	07528	071 67	06564
.56078	.26646	.16952	-11951	.09566	.07997	.06002	.04848	.03876	.03014
.02267	.01597	.00961	.00619	.41971	.11059	-11412	.0 6 3 9 2	.66446	.04345
.01913	00791	01969	06072	07274	07455	07119	0(801	.57104	.27263
.17156	.12005	.09521	.07870	.05011	.04453	.03367	.024 EO	.01745	.01148
.00648	.00408	.42013	.11693	.11464	.06490	.0 6t 07	.04568	. 02150	00560
03799	05974	07270	07512	07189	06866	.54025	.23415	-15674	.10391
.07630	.05712	.03488	.02364	.01528	.00920	.00445	-00157	.06016	.00001
ITRATE, TIME	-1200.57¢	100							
ITERATION NO	URPER 10								
GFINI,N-1,									
.30091	.34804	.27724	. 195 49	.12470	.08382	.29875	.25751	.10600	.10359
.03214	00911	.26661	.22500	.152.09	.06937	00262	04430	.23106	.10040
-11427	.02030	04618	08927	.21413	.17054	.09720	.00164	07032	12472
.20424	. 18654	.001A7	01944	10784	14440	. 10357	.17183	-31169	14848

14511	18431	.19239	.21020	-6 7120	54046	19034	20056	.21513	.237/9
.ce1 e1	80427	22970	20542	.24571	.29634	.82034	64597	20133	21036
.25569	.30744	.75439	8 3667	30348	23549	.26024	-31506	.76743	87144
340-2	72 . 55	.2:911	.32120	.01203	00413	37705	30231	.25869	.32049
.76355	8 6 761	42479	35234	. 25942	.30960	. 35558	57506	52746	47643
.394.72	.30915	.21909	28610	45455	46191	.42055	.46636	.23035	22529
40000	41450	••••					******		
CUINI,N-1.									
.40576	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07+96	07652	07345	07025	. + 0¢ 31	.23635	.15212	.11042	.09133	.07893
.06235	.04979	.03919	.02919	.02190	.01638	.01023	.00564	.41550	.11535
-11796	.0 (307	.06301	.04301	.01885	00019	04043	06158	07367	07560
07244	06923	.53522	.25679	.1 . 2 56	.11510	.09267	.07790	.0:995	.01738
.03926	.03105	.02362	.01713	.01050	.006.62	.41944	.11652	.11408	.00391
.00448	.04347	.01912	00902	04022	06126	67343	07528	07187	00004
.56092	.26653	.16956	.11954	.003/9	.07999	.0(054	.04830	. C 2e 78	.03015
.02768	.01598	.00961	.00620	.41971	.11659	-11-12	.08342	.00440	.04345
·C1913	00791	03969	06072	07274	07455	07119	04 601	.57115	.27268
.17159	.12007	.09523	.07872	.05813	.04434	.03300	.02481	.01746	.01148
.00548	.00408	.42013	.11693	.11464	.08450	.06607	.04568	.02150	00560
03799	05974	07270	07512	07189	06666	.54033	.25419	.15677	.10393
.07631	.05713	.03449	.02304	.01520	.00920	.00465	.00150	.00016	.00001
ISPATE, TIP	E -1201.97	900							
*********	11								
ITTEATION N									
CB(1),4-1,	165					****		10.00	
.10091	.34804	.27724	.10540	-12+69	.06362	.20879	.25751	.18608	.10359
.10001	.34804	.20002	.22501	.15289	.06957	00262	04431	.23107	.18841
.30091 .03214 .11427	.34804 00711 .02837	04619	08927	.15200	.06957	00262	04431	07652	-,12473
.30091 .30091 .03214 .11427 .20528	.34804 00711 .02837 .16655	04619	-22501 08927 01566	.15289 .21414 10785	.06957 .17055 15652	00262 .09320 .19354	04431 .00164 .17386	.23107 07652 .31176	12473 14056
.03214 .03214 .11427 .20328	.34804 00711 .02837 .16655 14434	.26662 04619 .09167 .19242	-22501 08927 01566 -21033	.15289 .21414 10785 .67146	.06957 .17055 15652 54072	00262 .09320 .19354 19039	04431 .00164 .17386 20061	.23107 07652 .31176 .21515	12473 14856 25785
.38691 .03214 .11427 .20528 14513	.34804 00711 .02837 .16655 15434 60467	.26662 04619 .09167 .19242 22977	-22501 08927 01566 -21033 20544	.15289 .21414 10785 .67146 .24575	.06957 .17055 15652 54072 .29642	00262 .09320 .19354 19039 .82076	04431 .00164 .17386 20061	.23107 07652 .31176 .21515 26141	12473 14856 .25785 21039
.38691 .03214 .11427 .20528 -14513 .86221 .25593	.34804 00711 .02837 .16655 16434 60467	.26662 04619 .09167 .19242 22977 .754 FZ	-22501 -08927 -01566 -21033 -20544 -85730	.15289 .21414 10785 .67146 .24575 30357	.06957 .17055 15652 54072 .29642 23553	00262 .09320 .19354 19039 .82076 .26029	04431 .00164 .17386 20361 84640 .31317	.23107 07652 .31176 .21515 26141 .76768	12473 14856 25785
.38691 .03214 .11427 .20528 14513	.34804 00711 .02837 .16655 15434 60467	.26662 04619 .09167 .19242 22977 .754 82 .259 17	.22501 08927 01566 .21033 20544 85730 .32132	.15289 .21414 10785 .67146 .24575 30357	.06957 .17055 15652 54072 .29642	00262 .09320 .19354 19039 .82076	04431 .00164 .17386 20061	.23107 07652 .31176 .21515 26141	12473 14856 .25765 21039
.38691 .03214 .11427 .20528 -14513 .86221 .25593	.34804 00711 .02837 .16655 16434 60467	.26662 04619 .09167 .19242 22977 .754 FZ	-22501 -08927 -01566 -21033 -20544 -85730	.15289 .21414 10785 .67146 .24575 30357	.06957 .17055 15652 54072 .29642 23553	00262 .09320 .19354 19039 .82076 .26029	04431 .00164 .17386 20361 84640 .31317	.23107 07652 .31176 .21515 26141 .76768	12473 12473 14856 .25765 21039 67169
.35001 .03214 .114.27 .20528 -14513 .46221 .25503 -34101	.34804 00711 .02837 .16655 16434 60467 .30754 26491	.26662 04619 .09167 .19242 22977 .754 82 .259 17	.22501 08927 01566 .21033 20544 85730 .32132	.15289 .21414 10785 .67146 .24575 30357	.06957 .17055 15652 54072 .29642 23553 66460	00262 .04320 .14354 14034 .82076 .26024 37717	04431 .00164 .17386 20361 64540 .31317 30237	.23107 07652 .31176 .21515 26141 .76768 .25697	-18841 12473 14856 -25765 21039 67169 -32662
.35 mg1 .03214 .114.27 .26528 14513 .42221 .25593 34101 .76460	.34804 00711 .02837 .16653 16434 66467 .30754 26491 96606	.26662 04619 .09167 .19242 22977 .754 62 .259 17	.22501 08927 01566 .21033 20544 65730 .32132 35241	.15289 .21414 10785 .67146 .24575 30357 .61250 .25953	.06957 .17055 15652 54072 .29642 23553 66460	00262 .09320 .19354 19039 .82076 .26029 37717	04431 .00164 .17386 20061 84540 .31517 30237	.23107 07652 .31176 .21515 26141 .76766 .25697 52602	-18841 12473 14856 -25765 21039 87169 -32662 47653
	.34804 00711 .02837 .16655 16434 60467 .30754 26491 94606 .36931	.26662 04619 .09167 .19242 22977 .754 62 .259 17	.22501 08927 01566 .21033 20544 65730 .32132 35241	.15289 .21414 10785 .67146 .24575 30357 .61250 .25953	.06957 .17055 15652 54072 .29642 23553 66460	00262 .09320 .19354 19039 .82076 .26029 37717	04431 .00164 .17386 20061 84540 .31517 30237	.23107 07652 .31176 .21515 26141 .76766 .25697 52602	-18841 12473 14856 -25765 21039 87169 -32662 47653
.38 691 .03214 .111-27 .26528 -14513 .86221 .25593 -34101 .76460	.34804 00711 .02837 .16655 16434 60467 .30754 26491 94606 .36931	.26662 04619 .09167 .19242 22977 .754 62 .259 17	.22501 08927 01566 .21033 20544 65730 .32132 35241	.15289 .21414 10785 .67146 .24575 30357 .61250 .25953	.06957 .17055 15652 54072 .29642 23553 66460	00262 .09320 .19354 19039 .82076 .26029 37717	04431 .00164 .17386 20061 84540 .31517 30237	.23107 07652 .31176 .21515 26141 .76766 .25697 52602	-18841 12473 14856 -25765 21039 87169 -32662 47653
GB(N), N-1, .38891 .03214 .11427 .26528 -14513 .46221 .25593 -34101 .76406 -40066 GU(N), h-1,	.34804 00711 .02837 .16655 16434 60467 .30754 26491 46493 41463	.26662 04619 .09167 .19242 22977 .75462 .25917 42492	.22501 08927 01566 .21033 20544 85730 .37132 35241 28622	.15289 .21414 10785 .67146 .24575 30357 .81250 .25953 45471	.06957 .17055 15652 54072 .24642 23553 66460 .30006	00262 .09320 .19354 19039 .82076 .26029 37717 .355 82 .426 8	04431 .00164 .17386 20361 84640 .31517 30237 57190	. 23107 07852 .31176 .21515 20141 .76768 .25697 52602 .23046	12473 14656 .25765 21039 87189 .32662 47153 22540
- 14513 - 7521 - 14513 - 7522 - 14513 - 7522 - 34101 - 76460 - 39696 - 40066 GU(N) - 40066 - 40066	.34804 00711 .02837 .16655 16434 60467 .30754 26491 4606 .36931 41463	.26662 04619 .09167 .19242 22977 .754 62 .23917 42492 .23981	.22501 08927 01566 .21033 20544 85730 .32132 35241 26622	.15289 .21414 10785 .67146 .24575 30357 .61250 .25953 45471	.06957 .17055 15652 54072 .29642 21553 6f40 .36006 46205	00262 .04320 .14354 14034 .82076 .26024 37717 .355 82 .42648	04431 .00184 .17386 20061 84540 .31517 30237 57290 .40051	. 23107 07852 .31176 .21515 26141 .76766 .25697 52402 .23046	12473 14856 25785 21039 87189 87282 47853 22540
GB(N),N-1, .38891 .03214 .114.27 .26528 -14513 .86221 .25593 -34160 .39696 -40066 GW(N),N-1, .6086	102 .34804 00711 .02837 .16655 16434 66467 .36754 26491 41463 140 .11201 07662 .04881	.26662 04619 .09167 .19242 22977 .75462 .25917 42492 .21981	.22501 08927 01566 .21033 20544 85730 .32132 35241 26622	.15289 .21414 -10785 .67146 .24575 -30357 .81250 .25953 -45471	.06957 .17055 -15652 -54072 .29642 -23553 -87460 .30996 -46205	00262 .04320 .14354 14034 .82076 .26024 37717 .355 82 .42668	04431 .00164 .17386 20361 84540 .31317 30237 57190 .40551	. 231 07 07652 .31176 .21515 26141 .76768 .25697 52402 .23046	12473 12473 14656 21639 27169 32652 47163 22540 00297 07865 11535
GB(N),N-1, .38891 .03214 .11-27 .26528 -14513 .66221 .25593 -34101 .76400 .39696 -40066 GW(N),N-1, .40586 -07496 -07496	.34804 00711 .02837 .16655 16434 60467 .30754 26491 41463 140 .11201 07662 .04461 .08307	.26662 04619 .09167 .19242 22977 .754 62 .259 17 42492 .21981 .16968 07345 .08361	.22501 08927 01566 .211033 20544 85730 .37132 35241 27622	.15289 .21414 10785 .67146 .24575 30357 .81250 .25953 45471	.06957 .17055 15652 54072 .29642 23553 66460 .30996 46205	00262 .04320 .14354 14034 .82076 .26024 37717 .35572 .42668	04431 .00184 .17386 20361 30317 30237 57290 .40051 01121 .11094 .00085 06158	. 231 07 07852 .31176 .21515 26141 .76768 .25697 52402 .23046	12473 12473 14656 21039 67169 32652 47253 22540 06297 .07865 11535 07560
GB(N),N-1, .35mq1 .03214 .114.27 .2052814513 .84221 .2559334101 .76400 .39696 GW(N).N-1, .4058607496 .06237 .1129607244	.34804 00711 .02837 .16655 16434 60467 .36754 26491 96606 .36931 41463 140 .11201 07662 .04861 .068307 06923	.26662 04619 .09167 .19242 22977 .75462 .23917 42492 .21981 .16968 07345 .00361 .53529	.22501 08927 01566 .21033 20544 85730 .32132 35241 27622	.15289 .21414 10785 .67146 .24575 30357 .81250 .25953 45471	.06957 .17055 15652 54072 .29642 23553 66460 .30996 46205	00262 .09320 .19334 19039 .82076 .26029 37717 .355 82 .42668	04431 .00184 .17386 20961 8440 .31517 30237 57290 .40651 01121 .11094 .00685 00158	- 231 07 - 07852 - 31176 - 21515 - 26141 - 76768 - 25697 - 52602 - 23046 - 64241 - 06135 - 1356 - 07187 - 55996	12473 12473 14656 .25765 21039 67169 .32662 47153 22540 06297 .07865 .11535 07560 .04839
GB(N), N-1, .38m91 .03214 .11-27 .265281-513 .6-221 .255933-101 .76-60 .3-6-6006-5 .601N)1 .60237 .1129607246 .03-76	102 .34804 00711 .02837 .16653 16434 40467 .30754 26491 41463 140 .11201 07662 .04461 .08307 06923 .03108	.26662 04619 .09167 .19242 22977 .754 62 .23917 42492 .21981 .16968 07345 .03820 .06361 .35529	.22501 08927 01566 .21033 20544 85730 .32132 35241 26622 07025 .02920 .02920 .02920 .02920	.15289 .21414 10785 .67146 .24575 30357 .81250 .25953 45471 .05991 .48639 .02199 .01885 .16258	.06957 .17055 15652 54072 .29642 23553 66460 .36006 46205	00262 .04320 .19354 19039 .82076 .26029 37717 .355 F2 .42648 .01515 .01053 0403 .09268	04431 .00164 .17386 20061 84540 .31517 30237 57290 .40051 01121 .11094 .00885 00158	. 23107 07852 .31176 .21515 26141 .76766 .25697 52602 .23046 64241 .09135 .41556 07167 .23696 .11408	12473 14856 25785 21039 87189 32692 47653 22540 06297 .07885 11535 0789 .08393
G8(N),N-1, .38m91 .03214 .11+27 .26528 -14513 .96221 .25593 -34101 .39696 -40066 GU(N),N-16 .07496 .06237 .11296 -07496	102 .34804 .00711 .02837 .16655 16434 76467 .36731 41463 140 .11201 07662 .04861 .06307 06937 06937	.26662 04619 .09167 .19242 22977 .75462 .25917 42492 .21981 .16968 07345 .63820 .06361 .53529 .02383 .01912	.22501 08927 01566 .21033 20544 85730 .32132 35241 26622 .07923 07025 .02920 .04301 .25682	.15289 .21414 -10785 .67146 .24575 -30357 .81250 .25953 -,45471 .05991 .46539 .02199 .01885 .16258 .01050 -04022	.06957 .17055 -15652 -54072 .29642 -23553 -6440 .3696 -46205 .3911 .23640 .01639 -00019 .11519 .66662 -06126	00262 .04320 .14354 14034 .82076 .26027 37717 .355 82 .42668 01515 .15215 .01053 0404 07343	04431 .00164 .17386 20361 84540 .31517 30237 57590 .40551 01121 .11094 .00685 06158 .07792 .11652 07528	. 231 07 07852 .31176 .215 15 261 41 .7 67 68 .25697 52402 .23046 64241 .04135 .41556 07167	-12473 -14975 -14975 -27785 -21039 -87189 -32652 -47653 -22540 -06297 -07885 -11535 -07560 -0839 -0839
GB(N),N-1, .38891 .03214 .11427 .26528 -14513 .66221 .25593 -34160 .39696 -40066 GW(N),N-1, .6586 -07496 -07496 -07496 -07496 -07496 -07496 -07496 -07496	102 .34804 .00711 .02837 .16655 -16434 66467 .36754 36401 41463 140 .11201 07662 .04861 .08307 06923 .03106 .04347 .26656	.26662 04619 .09167 .19242 22977 .75462 .25917 42492 .21961 .16968 07345 .03820 .06361 .53529 .02383 .01912 .16958	.22501 08927 01566 .21033 20544 85730 .32132 35241 27622 .07025 .02920 .04301 .256m2 .01713 008C2 .11956	.15289 .21414 -10785 .67146 .24575 -30357 .81250 .25953 -45471 .05991 .48539 .01885 .16258 .01050 -04022 .09570	.06957 .17055 -15652 -54072 .29642 -23553 -8440 .30996 -46205 .01639 -00619 .11519 .00682 -06126	00262 .04320 .14354 14034 .82076 .26024 37717 .355 82 .42648 01515 .01515 .01053 04043 .09268 .11944 07343	04431 .00184 .17386 20361 20361 30237 30237 57290 .40651 01121 .11094 .00885 06158 .07792 .11652 07528 .04550	- 231 07 - 07852 - 31176 - 21515 - 787 68 - 25807 - 52402 - 23046 - 64241 - 09135 - 41556 - 07367 - 03679	124731465412473146542160396716932652472532254006297078651153507560083908390839108644
G8(N),N-1, .38m91 .03214 .11+27 .26528 -14513 .96221 .25593 -34101 .39696 -40066 GU(N),N-16 .07496 .06237 .11296 -07496	102 .34804 .00711 .02837 .16655 16434 76467 .36731 41463 140 .11201 07662 .04861 .06307 06937 06937	.26662 04619 .09167 .19242 22977 .75462 .25917 42492 .21981 .16968 07345 .63820 .06361 .53529 .02383 .01912	.22501 08927 01566 .21033 20544 85730 .32132 35241 26622 .07923 07025 .02920 .04301 .25682	.15289 .21414 -10785 .67146 .24575 -30357 .81250 .25953 -,45471 .05991 .46539 .02199 .01885 .16258 .01050 -04022	.06957 .17055 -15652 -54072 .29642 -23553 -6440 .3696 -46205 .3911 .23640 .01639 -00019 .11519 .66662 -06126	00262 .04320 .14354 14034 .82076 .26027 37717 .355 82 .42668 01515 .15215 .01053 0404 07343	04431 .00164 .17386 20361 84540 .31517 30237 57590 .40551 01121 .11094 .00685 06158 .07792 .11652 07528	. 231 07 07852 .31176 .215 15 261 41 .7 67 68 .25697 52402 .23046 64241 .04135 .41556 07167	-12473 -14675 -14675 -25765 -21039 -87169 -32652 -47653 -22540 -06297 -07865 -11535 -07560 -0839 -0839

-17161	-12000	.09524	.07872	.05013	.04435	.03309	.02481	-01746	.01140
.00548	.00408	.42013	.11693	.11464	.08490	.06607	.0 .568	.02150	00360
03799	05974	07270	07512	07189	06860	.54036	.25421	.15678	-10394
.07631	.05714	.034 89	.02304	.01528	.50921	.00465	.00150	.00016	.00001
THE ITERATI	ON CONVERG	ED AFTER	11 ETERAT	1045 WITH	A TEST CRE	TERION OF	.9010000		
THE SOLUTIO		REVIOUS IT	ERATION IS						
.3P#91	.34404	*****			*****	*****	****	*****	
		.27724	.19549	.12470	.06365	. 29875	.25751	.10000	.10359
.03214	00911	.26661	.225 CO	.15289	.06957	00262	04430	.23106	. 10840
.11427	.02838	04618	08927	.21413	.17054	.09320	.00164	07652	12472
.26526	-16654	.C9167	01566	10784	1:650	.19352	.17383	.31169	14848
14511	16431	.19239	.21026	.67120	54046	19034	20056	.21513	
.06161	80427	22970	20542	.24571	.2 96 34	.02034	84597	26133	21036
.25119	.30744	.75439	05687	30340	23549	.26024	.31506	.76743	67144
34090	26466	.25911	.32120	.01203	66413	37705	30231	.21864	.32649
.76355	0 e 5 e 1	42479	35234	.25942	.30980	.35558	57566	527 66	47643
.39662	.36915	.21969	28610	45455	46191	.42055	.40636	.23035	22529
46650	41450								
CA(M) 'M-1'									
.40506	.11201	.10908	.07923	.05991	.03911	.01515	01121	04241	06297
07496	07682	07345	07025	.4 86 31	.23635	-15712	.11092	.0 41 33	.07883
.06235	.04679	.03010	.02919	.02198	.01636	.01053	.00684	.41556	.11535
.11296	-07307	.06381	.04301	.01665	00619	04043	06158	07387	07590
07244	06923	.53522	.25679	.16256	.11510	.09267	.07790	.05995	.04838
.03926	.03105	.023 62	.01713	.01050	.006 65	. 41944	.11052	.11400	.08391
.00448	.04347	.01912	00002	04022	06126	67343	07520	C7167	06664
.56092	.26653	.1 09 56	.11954	.09569	.07949	.06084	.04850	.03678	.03015
.02750	.01598	.00961	.00620	.41971	.11659	-11412	.06 392	.00446	.04343
.01913	00791	03989	06072	0 72 74	(7455	07119	Ot = C1	.57115	. 27240
.17159	.12007	.09523	.07872	.05013	.04454	.03368	.02481	.01746	.01148
.00548	.00409	.42013	.11693	.11464	.0 64 93	.00007	.0.368	. 02150	00560
03799	01974	07270	07512	07169	01866	.54033	.23419	.15677	.10393
.07e31	.05713	.03489	.02304	.01520	.00920		.00150	.00016	.00001
ME SOLUTION		RESENT ITE	PATION IS						
GB(N) , N-1 ,							*****	*****	
.38*61	.34804	.27724	.19549	.12469	.08382	.29875	.25751	.1000	.10359
.03214	00911	.20002	.22501	.15200	.06937	00262	04431	-23107	.10041
-11427	.02837	04619	08927	.21414	.17055	.09320	.001 **	07652	12473
-5 02 56	.16655	.09167	01566	10705	15652	.19354	.17366	.31176	14056
14:13	18434	.19242	-21033	.67146	54072	19039	20061	.21515	.25785
. 66221	86467	22977	20544	.24575	.2 06 42	.02076	84640	26141	21039
.25593	.30754	.754 82	05730	30357	23553	.26029	.31517	.76788	87169
34101	26491	.25917	.32132	.01250		37717	30237	.25697	.32662
.76400	0 6 6 0 6	424.92	35241	.25953	.30996	.35562	57590	52002	47653
.39696	.36631	.21981	26622	45471	46205	.42068	.40651	.23046	22340
	41463								

GU(N) , N-1,	140								
.40586	-11201	.10900	.07923	.03991	-03911	.01515	01121	01241	06297
07496	07662	07345	07025	.4 66 39	. 23640	.15219	.11094	.09135	. 07885
.0e237	.04781	.03620	.02920	.02199	.01639	.01033	.00685	.41550	.11535
.112 96	.08307	.06361	.04301	.01985	00019	04043	06150	07387	07560
07244	0(923	.53529	.25482	.16238	.11519	.09268	.07792	.05996	.046 39
.03926	.03106	.02303	-01713	.01050	.00682	.41944	.11652	.11408	.08391
.05448	.04347	.01912	00902	54022	00126	07343	07520	07167	0 6 8 6 4
.3 C C * P	.20850	.10750	.11956	.09570	.0t000	.06063	.04850	. 038 79	-03016
.02260	.01:98	.00961	.00620	.41971	.11659	.11412	.01352	.00446	.04345
.01913	00791	03969	0 60 72	07274	07455	07119	06601	.57119	-27270
.17161	.12000	.09524	.07872	.05813	.04433	-03389	.02481	-01746	.01148
.00e48	.00+08	.42013	.11693	.11464	.08490	.00007	.04568	.02150	00560
03799	05974	07270	07512	07189	06866	.54036	.2 54 21	.15670	.10394
.07631	.05714	. 03489	.02364	.01528	.00921	. 06465	.00150	. 66616	.00001

VELOCITIES ON BODY, MACHO ... CO ALPHA- 4.000

PAREL	SDUPCE	ATTAL	LATERAL	VESTICAL	MORRAL	PRESSURE
NO.	STPENSTH	VELDCITY	METOCILA	AE FOCILA	WELDCITY	COE FF IC LEMT
1	. 39891	125 44	.07765	25662	.29224	.20012
2	.34804	11691	.21724	14303	.27465	.17456
,	.27724	16215	.23775	.01031	.24420	.13692
•	.19549	06310	.16961	.11966	.20904	.10372
,	.12469	07034	.0006	. 155 17	.17858	.06373
•	.00382	061 f2	.02050	.15073	. 161 CO	.07585
7	.29875	01117	.06986	1 00 00	.20386	.0ts77
•	.29751	04602	.16512	09130	.10576	.06723
•	.1000	03674	.10467	20050	-15501	.03996
10	.10354	02602	.09435	.09904	.11924	.01 274
11	.C3214	01674	. 02449	.09425	. C8827	.00917
12	CC+11	01130	00046	.07205	.07030	.00734
13	.20002	02134	.01230	15782	.16987	.035 40
14	.22501	01715	.14409	06938	. 15191	.01005
15	.15289	00968	. 13562	.03637	.12001	00349
16	.Ct957	00147	.01360	.09183	.0:489	02230
17	00262	.005 #1	.00126	.07607	· C5 379	62796
10	04431	.01002	00912	.04081	.03503	C2747
19	.73107	00457	.05429	12407	.13390	.0000
50	.10641	00131	.12142	04271	.11589	00799
21	.31427	.00441	.10201	.05162	.60469	02901
22	.02#37	.01109	.02:03	.08663	.04866	04248
23	04619	.01674	02648	.05284	.01746	04476
24	06927	.02033	01964	.00el0	00033	04200
23	.21414	00300	.05029	10273	.11231	.00000
26	.17055	00078	.10983	02350	.09428	00777
27	. (9320	.00555	.06325	.06392	.00304	03148
28	.00164	.01406	.00422	.09098	. 62497	04902
29	C7852	.02196	04760	.04245	60 - 27	05413
30	12473	.02e53	02 613	01+34	02231	05238
31	.2052 8	01693	.0.601	69133	.10065	.03588
32	.16655	02070	.10152	01467	.6+201	.03240
33	. 69 16 7	01698	. 67129	.00413	.03136	.01304
34	01566	.00818	01407	.11339	-01347	04>07
35	10785	.02926	66185	.0459.	01578	07174
36	15052	.03646	03554	02425	03362	61207
37	.19354	62664	.03320	Ott 56	.09200	.03669
30	.172*6	04094	.06459	0 39 79	.07423	.00037
39	. 31176	06351	.05640	.04841	. C4356	.11150
40	14736	.07034	03450	.10468	.00749	19311
41	14513	.06026	07370	.04265	62370	13529
42	16434	.05551	03757	03170	04183	11009
43	. 19242	01664	.01009	06171	.08391	.04139
**	.21033	02419	.02512	00745	-06585	.03233

45	. 67146	01691	.06751	-11953	.03455	00208
46	-,54072	.09835	05145	.19266	00146	26591
47	19039	.08612	04349	00083	03277	17809
48	20061	.07311	C2785	04390	05082	14582
49	. 21515	00194	.01320	07745	.07825	.00150
50	.25 785	.00245	.01698	06618	.Ce019	0032
51	.66221	.01904	.07828	.17982	.02886	10057
52	80467	.10223	05759	.19178	60711	- ,2 7421
53	22977	.Cf6t7	01:42	03741	03144	17466
54	20544	.07564	01567	05344	05650	15020
55	.24575	.01219	.01652	07119	.07297	01983
56	.29442	.02026	.0317€	04634	.054.91	03740
57	. 12076	.02640	.07570	.20554	.02358	14917
58	P464C	.06555	65324	.15273	01238	22094
59	26141	.07592	00428	05693	04371	15346
60	21639	.06974	00764	06145	05177	13752
61	.25593	.015+8	.01008	05733	.06014	02667
62	.36754	.01928	.03650	02081	.04208	03773
63	.754.02	.02817	.07326	.232e7	. 61675	14698
64	85730	.64726	06564	.14702	02521	14116
65	30357	.054 13	01074	01977	05653	10516
66	23553	.05480	00735	07567	074 60	10652
67	.26029	.01302	.01617	04821	.0509t	62196
	.31517	.01223	. C3229	01396	.03290	02360
69	78 78 8	.01366	.06774	.24762	.00157	12642
70	67169	.00t33	09144	.20791	C3437	09543
71	34101	.02860	02667	06473	06570	0;361
72	26 49 1	.03507	01196	08412	08376	Ot 5 2 6
73	.2:917	.01774	.012te	03716	.03505	03198
74	. 32132	.01892	.02491	06489	.62159	03794
75	.81250	.02684	.00t75	.29706	00973	18550
76	25460	.00225	12062	.27344	04566	13040
77	37717	.01522	05392	05558	07698	02877
78	30237	.02015	02082	09343	09504	03661
79	.25897	.02866	.01003	01656	.02013	05579
60	. 32 6 6 2	.03057	.02 489	.02399	.60209	36607
81	.76400	.03954	. 67415	.39674	02921	29393
6.2	ettot	00918	16563	. 36067	05512	19317
63	42 49 2	.000 t2	08921	04734	09641	00522
64	35241	.00369	(3335	10987	11445	00522
85	.25953	.0 2271	.01827	. 541 68	03307	05344
66	.30 996	.02292	.05348	.12930	05104	00325
87	.35582	.01788	.04432	.49148	08217	33731
	: 7:90	04591	23553	. 43861	11001	21525
89	52 6 0 2	05070	19274	01202	14914	.0t332
90	47653	05029	06903	15014	16711	.09221
91	. 39696	01110	.06282	01:35	.03329	.02031
92	.36931	01307	.15912	.13692	.01524	03714
69	. 710*1	07010	.1001 *	49308	01600	21406

94	20622	03459	16401	.41542	05205	18640
95	45471	04158	20553	.08967	08330	.01 846
96	46205	04352	07976	08207	10134	.06391
97	.42068	.00225	.07010	05095	.06736	00489
90	.40651	00259	-17E01	.10830	.04930	05310
60	.23046	01128	. 12454	.39511	. 618 04	20064
100	22540	02149	12444	.39472	01 004	18092
101	40066	03016	17770	.10799	04930	.00097
102	41463	03499	06996	05099	06736	.06863

NACA RM 152FO7 TRANSONIC WING-BODY DEFINITION NACA TRANSONIC WING-BODY PANELING

INTEGRATION OF THE PRESSURE DISTRIBUTION ON THE PODY

	MACH-	.6C00 AL	PHA- 4.0000	1							
POINT		•	z	1/1	7/0	2/0	CP	CH	CA	CM	P01#T
1	1.33333	.08050	30043	1. 33333	.08050	30043	, 20012	.04833	.01167	.89863	1
2	1. 33333	.21993	21993	1.33333	.21993	21993	.17456	.03086	. 01016	.57384	ž
3	1.33333	.30043	08050	1.33333	.30043	08050	.13692	.00886	.06799	.16475	3
•	1.33333	.30043	. 08050	1.33333	.30043	.08050	.10372	00671	.00t05	12480	•
5	1.33333	.21993	.21993	1.33333	.21993	.21993	.00373	01480	.00488	27525	•
	1. 33333	.0 e0 50	. 30043	1.33333	.0 6050	. 30043	.075 65	01832	.00442	34061	
7	3.65426	.10017	67239	3.65426	.16017	67239	.06677	.09091	.01306	1.47725	7
•	3.65426	.49223	49223	3.65426	.49223	49223	. C6773	.05156	.01015	.63765	•
•	3.65426	.67239	16017	3.65426	.67239	10017	.63996	.61122	.00502	.18230	•
10	3.6:426	.67239	.10017	3.65426	.67239	.18017	.01+74	00>26	.00282	08551	10
11	3.65426	.4 5223	. 49223	3.65-26	.49223	.49223	.00917	60703	.00136	11427	11
12	3.65426	.18017	.67239	3.65426	.16017	.672 39	.00734	00769	.00110	12497	12
13	6.57487	.2 70 75	-1.01047	6.57487	.27075	-1.01047	. 03:46	.05718	. 66614	. 76145	13
14	6.57487	.72971	73971	6.574 67	.73971	73971	.01805	.02131	. CC315	.2+37Z	14
15	6.57487	1.01047	27075	6.57487	1. 01047	27075	60549	00237	00075	03156	15
16	6.57487	1.61047	.27075	6.57487	1.01047	.27075	02230	.00964	00386	. 12633	16
17	6.57497	.73971	.73971	6.57487	.73971	.73471	02796	.03300	00484	. 43949	17
16	6.57487	.27075	1. 01047	6.574 67	.27675	1.01047	02747	.04429	00475	.54977	10
19	9.53 882	.33567	-1.25272	9.53882	. 33567	-1.25272	.00708	.61623	.00113	.16640	19
20	9.53665	.91706	91706	9.53662	.91706	91706	00799	01176	00111	12202	50
21	9.53*82	1.25272	33567	9.53882	1.25272	33567	02901	01562	00404	16208	51
2.5	9.52682	1.25272	. 23567	9.53862	1.25272	. 335 67	04248	.02288	00592	.23737	55
23	9.53182	.91766	.91 70 €	9.531 62	.91706	.91706	04476	.06586	Oue 24	.6 £322	23
24	9.52682	-33567	1.25272	9.53682	.33567	1.25272	04208	.08457	00587	.87740	24
25	12.01045	.37261	-1.39134	12.01045	.37261	-1.39134	. 00499	.01340	.00063	.10617	23
26	12.01045	1.01654	-1.01854	12.01045	1.01054	-1.01954	00777	00647	00054	06716	26
27	12.01045		37261	12.01045	1.39134	37261	63146	61257	00219	09964	27
20	12.61045	1.39134	.37261	12.01045	1.39134	.37201	04902	.01958	00342	.15510	20
79	12.01045	1.01854	1.01854	12.01045	1.01654	1.01854	05413	.05908	60377	.40815	29
30 31	12.61045	.37281	1.39134	12.01045	. 27201	1.39134	05238	. 67868	00365	-61877	30
32		.3 40 17	-1.45(12	13.66576	.39017	-1.45612	. 63566	.03709	.00129	.23306	31
	13.66576	1.00596	-1.06596	13.64576	1.06596	-1.06596	.03248	.02450	.00117	.15448	32
33	13.66576	1.45612	39017	13.66576	1.45612	39017	.01304	.00361	.00047	.02270	33
**	11.66576	1.45617	. 1001 7	13.66576	1.44417	19017	04507	.61749	60162	.07845	34

35	13-66576	1.06596	1.06596	13.66576	1.06596	1.06596	07174	.05430	00258	.34117	35
36	13.66576	.39017	1. 1551 2	13-46576	. 39017	1.45612	07207	.07451	00259	.40817	36
37	15.03022	.40057	-1.49497	15.03022	.40057	-1.49497	.05669	.06380	.00159	.31456	37
38	15.03022	1.09439	-1.09439	15.03022	1.09439	-1.09439	.08037	.06622	.00240	. 32649	30
39	15.03022	1.49497	40057	15.03022	1.49497	40057	.11150	.03363	.00333	.16579	39
40		1.49497			1.49497						
	15.03022		.40057	15.03022		-40057	19311	.05624	00576	.20714	*0
41	15.03022	1.09439	1.09439	15.03022	1.09439	1.09439	13529	.11148	00464	.54961	41
42	15.63022	.40057	1.49497	15.03022	.46(57	1.49497	11069	.12 459	00330	.61424	42
43	16.444 79	.40029	-1.52375	16.44679	. 40829	-1.52375	.04139	.04833	.00083	.17046	43
**	16.44679	1.11546	-1.11546	16.44679	1.11546	-1.1154t	.05255	.04492	.00165	.1:843	**
45	16.44679	1.52375	40829	16.44679	1.52375	40029	00208	03365	CLC04	00229	45
46	16.44679	1.52375	.40629	16.44679	1.52375	.46929	26591	. 68 320	00133	.29344	40
47	16.44679	1.11546	1.11546	16.44579	1.11540	1.11546	17:09	.15223	66357	.53694	47
48	16.44679	.45629	1.52375	16.44679	.40629	1.52375	14562	.17026	00292	.60057	
40	17.87416	.41337	-1.54272	17.87616	.41337	-1.54272	.00+50	.01005	.00011	.02117	40
50	17. 474 16	1.12935	-1.12935	17.67616	1.12435	-1.12935	00032				50
								00029	00000	000>9	
51	17.67616	1.54272	4:337	17.87616	1.54272	41337	10097	03199	00135	Ce 736	51
52	17.07616	1.54272	.41337	17.87616	1.54272	.41337	27421	.06666	66366	.1 62 97	52
93	17.07016	1.12935	1.12935	17.67616	1.12935	1.12 + 35	17406	. 15064	00232	.31731	53
24	17.67616	.41337	1.54272	17.97616	.41337	54272	15020	.17757	00230	. 37465	54
55	19.30559	.41642	-1.55412	19.30559	.41042	-1.55412	01983	02 362	03014	01c19	55
56	19.30559	1.13769	-1.13769	19.36559	1.13769	-1.13769	03740	03261	00626	02235	56
57	19.30559	1.55412	41642	19.30559	1.55412	41542	1+917	64740	00103	03263	57
50	19.30559	1.55412	.41442	19.30559	1.55412	.41642	22694	.07051	00153	.04432	59
19	16.20559	1.12769	1.13769	19.30559	1.13769	1.13749	15046	.13118	00104	. Ce 291	39
60	19.20559	.41642	1.55412	19.30559	.41642	1.55412	13752	.16378	00095	.11225	60
61	20.77176	.41615	-1.55308	20.72176	.41615	-1.55308	02667	03719	. 16023	.02215	61
62	20.72176	1.13693	-1.13693	20.72176	1.13693	-1.13693	03773				
								0:230	.60033	.02293	62
63	20.77176	1.55308	41615	20.72176	1.55308	41615	- 14698	04603	.66129	.03270	63
64	26.72176	1.55300	. 41615	20.72176	1.5530€	.41615	14116	.04423	.00124	63141	••
e 5	20.72176	1.13663	1.13693	20.72176	1.13693	1.13693	10516	.09002	\$60005	00372	65
66	20.72176	.41615	1.55398	20.72176	.41615	1.55300	10652	.12456	.00093	06943	
67	22.21036	.41149	-1.53560	22.21036	.41149	-1.53568	02196	02647	.00048	.0e218	e7
69	22.21036	1.12470	-1.17420	22.21036	1.12420	-1.12420	62 280	02238	.06653	.04432	
6.0	22.21036	1.53568	41149	22.21036	1.53548	41149	12 642	04391	.00279	.09590	69
70	22.21036	1.53568	.41149	22:21036	1.53558	.41149	09643	.03349	.00213	07315	70
71	22.21C3e	1.12420	1.12420	22.21036	1.12420	1.12420	05361	.05086	.00118	11110	71
72	22.21036	.41149	1.53500	22.21036	.41149	1.53568	06626	.08590	.00146	16763	72
73	23.99402	.4C078	-1.49648	23.99402	.40030	-1.47648	03198	65129	.00147	.26264	73
74	23.99402	1.09550	-1.07550	23.95402	1.09550	-1.09550	03774	04455	.00175	.17600	74
75	23.99402		40098	23.99402	1.49648	40073					75
		1.49648					16550	07971	.00855	.31444	
76	23.99402	1.4 9648	.40098	23.99402	1.49648	.40098	13040	.6>604	.00601	22140	76
77	23.99402	1.09550	1.09550	23.99402	1.09550	1.09550	02877	.03378	.00133	13347	77
76	23.99402	.40098	1.49648	23.99402	.40098	1.49548	03061	.05671	.00169	23190	78
79	26.47552	.37567	-1.40204	26.47552	.37567	-1.40204	05579	12500	.00010	.60:07	79
0.0	26.47552	1.02636	-1.62636	26.47552	1.02636	-1.02036	06607	10893	.00729	.69790	
*1	26.47552	1.40204	37567	24.47552	1.40204	375e7	29093	17557	.03211	1.12467	
65	26.47:52	1.40204	.37567	26.47552	1.40204	.375e7	19317	.11658	.02132	74689	62
• •	** * ****		1. 074 34	74.47557		274.34	- 00411	.0001	. 00054	05517	

	26.47552	- 27567	1.40204	26.47552	.37567	1.40204	00522	-01176	.00038	07536	
25	30.31362	.29661	-1.10090	30.11362	. 29661	-1-10698	03344	15592	.01628	1.59004	
	30.31362	. 61036	61036	30.3136?	. 01036	61036	00325	17780	.02530	1.01322	
27	30. 31362	1.10698	29661	30.313e2	1.10698	29661	33731	26369	.10274	2.68909	67
	30.31362	1.10698	.29661	30.31362	1.10498	.29661	21525	-10827	.00556	-1.71000	**
	30.31362	.21036	.01036	30.31362	-61036	.01036	. Co 332	13524	01929	1.37923	
90	30.31362	.29001	1.10698	30.31362	. 29661	1.12098	15500.	20901	02809	2.74339	90
91	34.40 *93	.21352	79688	34.46893	.21352	79688	.02031	.62599	00092	37523	91
92	34.46 193	.51335	50336	34.46863	.56336	58136	-:01714	03479	.00168	.562.42	92
93	14.46893	.79669	21352	34.40193	. 794.08	21352	21400	07339	.00958	1.01978	93
94	34.4(893	.796.00	. 21 352	34.46893	.79000	.21352	10040	.05191	. 66843	92286	••
95	34.46693	. 583 36	.50330	34.46893	-58336	.50336	.01846	01729	00Ce 3	.24970	95
90	34,41193	.21352	.79698	34.46893	. 21352	.750 68	.CE 391	10736	00379	1.55040	**
97	37.00000	.2000	74641	37.00000	.20000	74041			0.00000		97
							03489	00391		.06544	
98	37.00000	.54641	54641	37.00000	.54641	54641	05310	03110	0.00000	. 52 8 6 7	
99	37.00000	.74041	20000	37.00000	.74641	20000	20064	04301	0.00000	.73115	
100	37.00000	.74641	.20000	37.00000	.74641	.20000	16092	- 6 38 78	0.00000	65929	100
101	37.00000	.54641	.54641	37.00000	. 34641	.54641	.00097	00037	0.00000	.00963	101
102	37.00000	.20000	.74641	37.00000	.20000	.74641	.06863	65491	0.00000	.93340	102

ON THE BODY

	144.0000	 1.0000	affl.	1.0000
	20.0000	 0.0000		
MAC +-	. eccoo			
AL PH &.	4.00000			
CN.	.01043			
C.	.0039€			
CM.	.00391			
CL-	.01011			
CD-	.00523			
167.	20262			

VELOCITIES ON WING, MACH- .600 ALPHA- 4.000

PAMEL	VOR IFE	ATTAL	LATEPAL	VERTICAL	MORMAL	PRESSURE
40.	STRENGTH	VELOCITY	VELOCITY	VELOCITY	VELOCITY	COEFFICIENT
1	.40386	.23130	22364	-50569	-27917	82204
2	. 11201	.26565	25713	.13470	.06156	00020
,	.10000	.19087	17482	.07103	.03104	44360
•	.07923	.16832	14711	.02040	.00464	37764
5	.05991	-15726	13140	-00316	01364	344 92
•	.03911	.14639	11474	02267	03299	31467
7	.01515	. 138 29	10250	04997	05437	29301
•	01121	.13109	09104	07771	07583	27511
•	04241	.11036	077:0	10750	10169	24700
10	Ce 297	.09946	06/11	12076	12087	26084
11	07498	.07481	047e2	14195	13412	15524
12	07602	.04421	03227	14357	13999	09132
13	07345	.01414	01:01	14290	14039	02906
14	C7025	01651	. Coses	1 3+ 35	14038	-03:10
15	.4*239	43810	.40010	08659	40024	.40091
10	.23640	19165	. 22669	1444)	19650	-30130
17	. 15 21 5	12675	. 36 36 8	140 67	16979	.21491
10	.11004	CE DG 0	.11775	12007	14272	-1+276
19	.C9135	05324	.09471	11009	12516	.09793
20	.07885	02 267	.07633	10209	16629	.05403
21	. Ct 237	.00033	. 05 596	06367	08509	.0000
22	.04001	.02331	.03917	06249	Ce2e7	04300
23	.03+20	.03490	.02820	03705	63750	06744
24	05950	.036.05	.02395	01749	01834	07119
25	.07199	.02720	. 62325	00436	00469	05473
50	.01639	.03073	• GZ 72 4	.00027	.C0100	02220
27	.01053	00736	.03514	00108	.00147	.01355
20	. CCe85	02661	.04720	00317	.00147	.03120
5.0	.41550	.27437	26486	.53976	.27917	90228
20	.11535	.29761	28549	.14362	.06156	75012
31	. 13296	.21277	20090	.07411	.03163	50191
32	.C#307	.18413	17044	-03135	.00404	41889
33	.0:381	.10005	13439	.06526	61384	37005
34	.04301	.15224	13701	02155	03299	33292
35	.01685	.14059	12728	04039	05437	30335
36	CC+19	.12950	11641	07768	07664	27716
37	04043	.11209	10469	10833	10190	23845
38	06150	.08750	08330	12909	12087	1 6516
3*	07387	.05899	06298	14173	13413	12469
40	07510	.62755	03877	14477	14000	05769
41	67244	00078	01701	14191	14039	.96093
*2	06923	03150	.00671	13636	14639	.06172
43	.93529	41906	. 51 465	06650	40024	.46325
**	.25687	155 78	.23633	14236	19850	.30296

45	.16250	12219	.13930	14159	16979	.20490
46	- 11519	07096	.10633	12968	14272	.12795
47	.09268	04233	. 67696	11041	12518	.07981
40	.07792	01792	.05192	10355	10630	.03657
49	.03496	.00e15	.02000	09461	08309	00037
50	. 04839	.02068	.01102	06252	Co2e7	01667
91	.03926	.02480	.00407	03584	03710	04615
52	. C31Ge	.01946	.00094	01766	01/34	03598
53	.02303	.00020	.01445	00514	00489	61543
54	.01713	00672	.02569	00005	.00107	.01287
25	.01050	07219	.03:52	(0223	.60147	595+0.
56	.00662	03976	.0.000	00426	.03147	.07634
57	.41044	.24016	29098	.55700	.27417	-1.02544
50	.11652	.30053	31093	.14867	.0(136	7:694
50	.11400	.21884	21719	.07850	.03143	52225
**	.0£391	.18714	18 477	.032**	.00+04	43042
*1	. Ct ++6	.16048	16715	.00611	C1384	38179
62	.04347	.15049	14876	02105	03299	33211
*3	.01912	.13615	13562	04027	05437	24594
64	00002	.12307	12464	07763	67484	26485
	0+022	.10433	10867	10784	10190	22201
**	01126	.07913	00726	12874	120e7	16777
67	07343	.05041	06 329	14119	13413	10633
**	07528	.01927	03766	14411	14000	04076
••	07107	00838	01550	14127	14039	.03658
70	01864	03826	.00 625	13777	1+039	.67555
72	.56098	47737	.52549	05479	40024	.47100
73	.20050	20683	.23010	14063	19850	.32143
74	.11956	07698	.15799	14007	16979	.22136
75	.09570	04760	.07.214	12953	14272	.14015
76	. CP000	02130	.04630	11841	12510	.09111
77	.06083	.00048	.07176	10359	10630	.04771
78	.04850	.61472	.00177	06756	06267	15000.
79	.03879	.0 1e 78	.00165	63197	02751	02476
10	.03016	.01356	.60518	01749	01634	02307
e1	. 62250	.00249	.01383	00>++	60.90	60442
*2	.01598	01245	.02349	66128	.00107	.02427
23	13933.	02011	.03766	00272	.60147	.03432
**	.00420	*.04002	.05170	00481	.06147	.0 6637
25	.41971	\$9502	20000	.56281	.27917	-1.04497
**	.11659	.30989	31754	.14910	. 66156	79396
87	-11412	.21002	** 22144	-07895	.03163	>22221
**	.00392	-1 64 70	18725	.03196	.06464	42590
	.00446	.16582	16820	.00597	01364	37415
*0	.04345	.14524	14762	02120	01299	32054
91	.01913	12892	13263	0494)	05437	27964
92	00791	.11398	11939	07757	07664	24427
**	61600	. 68 34 1	10165	. 10714	10100	19479

94	06072	.06726	07963	12762	12067	14173
95	07274	.03614	05570	14000	13413	0E013
eş.	07455	.00761	03116	14292	14000	01668
97	07119	01894	01007	14021	14039	.03736
98	06601	04660	.01202	13696	14039	.09176
99	.57119	48625	.53009	04939	40024	.47627
100	.27270	2 12 70	. 24044	13961	196>0	.33049
101	.17161	13363	.15767	14059	15979	.22821
102	. 12 008	07948	.10157	12943	14272	.14510
103	.09524	04930	.07657	11842	12510	.09424
104	.07872	02357	.04458	10366	10630	.04942
105	.05 t13	.OC158	.01962	08470	06509	.00109
106	.04455	.01669	.60521	66255	66267	02872
107	. C3349	•020 tb	.00068	03689	03751	03814
108	.02 491	.01489	.00472	01761	01634	02771
109	.01746	.06232	.C1360	00549	00490	00406
110	. 01148	01440	.02527	00142	.00167	.02855
111	.00648	03195	.03743	00298	.00146	.06207
112	.00408	05166	.05203	00523	.00146	.09927
113	.42013	.27734	27244	.54410	.27917	97614
114	.11693	.29639	29 256	.14383	.06156	74 6 61
115	. 11464	.20676	19621	.07502	. 63183	48689
116	.06490	.17131	15676	.02949	.00404	36645
117	.06607	.14687	13246	.06530.	61385	32268
118	.04568	.11720	11104	02391	03299	25124
119	.02150	.09337	10200	05066	05438	19746
120	00560	.07598	16623	07731	07c 84	1c023
121	03799	.05592	09354	10593	10190	11460
122	05974	.03190	00072	12604	12687	06904
123	67276	.00739	06353	13841	13413	01166
124	07512	0158e	04237	14190	14000	.02933
125	07169	03510	C2163	13973	14039	.06671
126	(! ! 6 6	05606	.00036	136 96	14639	.11013
127	.54C36	45802	. 51068	06856	40024	.46647
179	.25421	1 56 76	.22697	14504	19850	.29261
129	. 15 6 78	10741	. 14493	14427	16979	.16285
130	.10394	04971	.69689	13202	14272	.00902
131	.07631	01787	.07011	12017	12516	.03274
132	.05714	.00476	.03118	10442	10630	00846
133	.03489	.02216	. C3131	08476	06509	04090
134	.02304	.02883	. 01934	06246	05267	05361
135	.01520	.02571	.01133	03641	03751	04809
136	.00921	.01469	. CC937	01601	01834	02736
137	. 00465	00041	.00948	00544	60490	.00145
138	.00198	C1803	.01166	000009	.C01C6	.03575
1 29	.00016	03529	.01 615	00210	.00146	.06956
140	.00001	05599	.03086	00432	.00146	.10926

MACA RR L91FG7 TRINSONIC WING-BODY DEFINITION MACA TRANSONIC WING-BODY PANELING

INTEGRATION OF THE PRESSURE DISTRIBUTION ON THE WING

	MACH.	.6000 ALF	HA- 4.0000								
P0147		•	z	1/0	27/8	2/0	CP	CH	CA	CM	POINT
1	15.46024	2.50783	.03361	.01250	.21565	.004 90	02204	.20155	11040	1.27440	1
2	15.e315e	2.50703	.07860	.03750	. 21 565	.01147	66020	.22612	C3003	.98542	2
3	15.00055	2.50703	. 10749	.07500	.21565	.01569	44380	.30400	03107	1.24656	3
•	16.23120	2.56763	.13768	.12500	.21565	.02309	37704	.25827	01911	.97075	
3	16.57366	2.50763	.15995	.17500	.21565	.02334	34492	.23627	01323	.00739	5
6	17. C# 78 3	2.56783	.1 t 2 15	.25000	.21565	.02658	31467	.43109	01586	1.25253	
7	17.77314	2.54783	.20004	.35000	.21565	.02919	29301	.40142	CO618	.89267	7
	18.45 *44	2.56783	.20288	.450C0	. 21565	.02961	27511	. 37e71	.00250	.58156	
•	19.14375	2.50703	.10936	.55000	. 21565	.02764	24706	.33848	.01693	.29169	•
10	19. 22905	2.16783	.16067	.65000	.21565	.02345	20664	.29337	.01459	. 65079	10
11	2C. 5143e	2.50743	.12075	.75000	.21565	.01762	15524	.21269	.01362	10772	11
12	21.19966	2.58783	.07415	.85000	. 21 565	.010 02	09132	.12511	. 66888	14943	12
13	21.71364	2.56763	.03759	.92500	. 21 505	.20546	02906	.01991	. CC1+2	03406	13
14	22.05429	2.56763	.01312	.97500	.21565	.00191	. 03c10	02473	60177	.05063	14
15	15.40024	2.56763	03361	.01250	.21565	00490	.46891	.16060	.00302	.72047	15
16	15.63156	2.56783	07660	.03750	.21565	01147	.30130	.10322	.01371	. 449=5	16
17	15. 68655	2.56763	10749	.07:00	.215e5	61569	.21451	.14694	.01502	. 46231	17
16	14.23120	2.56783	13769	.12500	.21565	02009	.14276	.09779	.00724	.36756	10
19	16.57366	2.50783	15995	.17500	. 21565	62334	.09793	. 06769	.00376	.22+22	19
20	17.00783	2.18783	18215	.25000	. 21505	02558	. 03463	.07464	.00275	.21745	20
21	17.77314	2.50703	20204	.35000	.21505	02719	.00000	.00121	.00032	.00248	21
22	10.45844	2.56763	20286	.45000	.21555	10150	04360	65473	.00042	09217	22
23	19.14375	2.50703	16936	.55000	.21565	+4150	06744	69239	.00298	07967	23
24	19.82905	2.56763	16067	.650C0	.21565	02345	07119	04754	.00502	01748	24
23	20.51436	2.59783	12 0 75	.75000	.21565	01762	65 476	07493	.00487	.03795	25
26	21.19966	2.5+7+3	07415	. + 5000	.21565	01082	02226	03050	.00217	.03643	26
27	21.71364	2.10703	03759	.92500	.21565	00548	.01355	.00928	00066	015 00	27
20	22.05429	2.56763	01312	.9 75 00	.21595	00141	.05120	.03507	00250	07209	28
29	17.78357	4.71095	. 03092	.01250	. 39841	.00490	96228	.36174	14273	.60160	29
30	17.94119	4.78095	.07232	.03750	. 39641	.01147	75012	.28354	03765	.50104	30
31	10.17762	4.78095	.09889	.07500	. 39841	.01569	50191	.37945	03678	.66766	31
32	18.49786	4.78095	.12666	.12500	.39641	.02009	41669	.31668	02343	.47432	32
33	18. 00010	4 .7 10 95	. 14715	.17500	.39841	.02334	37605	.28429	01592	.33650	33
**	10 74064	4 70005	. 14744	-2 5000	20041	77450	- 11107	. 50338	01 657	.35005	14

35	19.91143	4.78095	.18404	.35000	.39841	.02919	30335	.43866	00706	.03932	35
36	20.54190	4.78095	. 18565	-4 50 00	. 39841	.02961	27716	.41906	.00298	22653	56
37	21.17238	• .7:045	- 17423	.55000	.39641	.02764	23645	.36053	.01165	42065	37
39	21.00286	4.7 60 95	.14732	.2:000	.39841	.02345	16516	.27995	.01442	50260	39
39	22.43333	4.70095	.11109	.7>000	.39641	.01762	12 405	-18757	.01219	45507	39
40	23. Ct 301	4.71095	.06822	.85000	.39641	.01092	05769	.06722	. GCo 19	20081	•0
41	23.53667	4.78095	.03458	.9 2300	.39641	.00548	.00693	00070	00005	.002+9	41
42	23.05190	4.76095	.01207	.97500	. 39841	.00191	.06172	04000	00333	.17970	42
43	17.70357	4.78695	01092	.01250	.39841	00490	.46325	.17511	.00671	.38599	43
**	17.94119	4 .7 60 65	07232	.03710	.395-1	01147	30396	.11490	.01520	.23545	**
45	10.17762	4.71095	(9889	.07500	. 39841	61569	.20690	.15042	.01:39	.2 #347	45
46	10.45266	4.76695	12666	.125 CO	39841	02069	.12795	. 67673	.03716	.14488	46
47	18.00010	4.70095	14715	.17500	.396-1	02334	.67481	.06633	.00338	.07142	47
48	19.24695	4.76095	1675 @	.25000	.39641	02458	.03657	.03130	.00203	.03942	48
49	16.91143	4.78095	19404	.35000	.39641	02919	00 637	01266	00019	00109	49
20	20.54190	4.70075	1 6665	.45000	.39841	02961	03567	03574	.00040	.03013	50
51	21.17239	4.70095	17422	.55000	.39841	32764	04615	06978	.00225	. 66141	51
52	21.00206	4.78695	14782	.61000	.396+1	02345	03498	05591	.00288	.10036	52
53	22.43333	4.71095	11109	.75000	. 39641	01762	01593	02409	.00157	.05844	53
34	23.06371	4.78095	06 22	.0 5000	.39641	01082	.01287	.01946	00130	05954	34
55	23.53667	4.78095	03458	.92500	.39841	00546	.04292	.03245	00232	11467	33
56	23.85190	4.71095	01207	.97500	. 39641	00191	.07634	.05771	60412	22225	50
37	20.32395	7.17895	.02798	.01250	.59825	.00490	-1.02544	. 35070	13761	11740	57
30	20.46158	7-17895	.06344	.03750	. 59825	.01147	70 694	.26913	01574	12791	50
39	20.64053	7.17895	. (6 9 6 9	.075(0	.59625	.01569	52225	.35722	03651	24630	59
60	20.91579	7.17895	. 11462	.12500	.59625	.02009	43042	.29440	02179	20683	60
61	21.25105	7.17695	-1331¢	-17500	.59825	.02134	36179	.20115	01462	32865	61
62	21. 17895	7.17895	.15165	.23000	.59825	.02658	33711	.45432	01672	76532	62
63	22.24947	7.17895	. 10034	.31000	.59825	.02919	29 594	.40484	06623	91172	63
64	22. + 2000	7.17845	.16590	.45000	.59625	.02961	24485	.36231	.00257	-1.02120	84
**	23.39053	7.17895	. 15766	.51000	.59825	.02764	22281	.30490	.00985	-1.03100	65
65	23.95105	7.17895	.13376	.05000	.59125	.02345	1e777	.22951	.01192	90752	66
67	24.23150	7.17695	.10053	.75000	.59825	.017e2	10:33	.14545	.00945	55 61 6	67
**	25.10211	7.17895	.06173	.0:000	.59675	.01082	04076	.65577	.00396	28426	
	25.53000	7.17895	. €3129	.92500	. 298 25	.00549	.01458	01134	00001	.06269	69
70	25.41526	7.17895	.01093	.97500	.59425	.06192	.07555	05168	00369	.30046	70
71	20. 22295	7.17895	02748	.01250	.59825	00490	.47160	. 10136	.00332	03404	71
72	20.46658	7.17895	06544	.03750	. 59825	01147	. 32143	.10993	.01460	05225	72
73	20.00033	7.17895	0894 \$.075CD	.59625	01569	.22116	.15128	.01346	10433	73
74	20.96579	7.17895	11402	.12500	.19625	02009	.14015	.095 60	.00769	09119	74
75	21.25105	7.17095	13316	-17500	.59425	02334	.09111	.05232	.00349	07843	75
76	21.67 695	7.17895	15 16 5	.25000	.59625	02658	.04771	.00526	.00240	10993	76
77	22.24947	7.17895	16554	.35000	.59425	02919	.00321	.00439	.00007	00988	77
78	22.02000	7.17895	16890	.45000	. 59825	02961	02476	03386	. 60024	.09349	78
79	23.39053	7.17095	15766	.55000	.59825	02764	03393	04042	.06150	.15710	79
*0	23.90105	7.17895	13376	.65000	. 59825	02345	02307	03429	.00177	.13560	80
*1	24.53158	7.17495	10053	.75000	.59625	01762	60442	60103	.00039	.62737	*1
82	25.10211	7.17895	C6173	.01000	.59825	010#2	.02427	.03320	00236	10920	
*1	25.53000	7 17805	01179	.92500	. 50875		.05452	.01729	00266	20613	•
											••

84	25.61526	7.17895	01093	.975 CO	.59825	00192	.00837	.06045	00432	35140	
25	22.00302	9.47447	.02504	.01250	.79804	.00491	-1.04497	.31976	12547	91888	
	22.99147	9.57647	.05555	.03750	.79104	-21147	79396	.24295	03226	72867	86
27	22.19294	9.57647	.00000	.07500	.79804	.01569	52221	.31960	03266	-1-01987	97
	23.43624	9.27647	.10250	.12500	.79804	.02009	42596	.20069	01929	85628	
	23.69353	9.57647	-11517	-175 CO	.79834	.02334	37415	.22898	01262	04720	
90	24.07647	9.57647	. 135 71	.2:000	.79804	.02658	32054	.39234	01444	-1.00132	93
91	24. 10706	9.57647	. 14704	.35300	.79504	.02919	27564				
92	25.09765	9.57547	.1511e	.43000				.34228	00527	-1.57653	91
91	25.60024	9.57647			.79804	.02961	24427	.24999	.60212	-1.523t0	92
			.14110	.35000	.79004	.02764	19879	.24331	.00786	-1.30345	93
	24.11872	9.57647	. 11971	.65000	.79134	.02345	14173	.17347	.00843	-1.0c030	94
95	26.62941	9.57647	.08997	.750CO	.79864	.01762	0e013	.09808	.00638	64963	95
95	27.14000	9.57647	.05525	. #5300	.74864	.01362	C1668	.02041	.00145	14567	96
97	27.52244	0.57647	.02 401	.92500	.75604	.00549	.03736	02286	03153	.17194	97
9.8	27.77824	9.57547	. (0978	.97500	.79104	.00141	.09176	65615	60401	.43674	98
99	22.65362	9.57647	02504	.01250	. 77804	00.91	.47127	.14574	.03719	41 dta	99
100	22.99147	9.57647	05856	.03750	.79804	01147	. 33649	.10113	.01343	36332	100
101	23.10294	9.57647	00009	.07500	. 79804	01569	.22*21	.13967	.01427	44559	101
102	23.43924	9.57647	10258	.12500	.79104	02009	-14:10	.68883	.00657	30539	102
103	23.49353	9.57647	11917	-17500	.79t04	02334	.09424	. 05 76 7	.00323	21346	103
10+	24.07647	9.57647	13571	.25000	. 79804	02658	.04842	.05926	.03218	24187	104
105	24.58700	9.57647	14904	.35000	.79804	02919	.00109	.00133	.00002	00612	105
106	25.09765	9.57647	1511e	.41000	.79604	02761	02872	03516		.17910	106
107	25.00+24	9.57647	14110	.55000	.79804	02764	03614	04008	.00151	.20159	167
100	20.11442	9.57647	11971	.65000	.79804	02345	02771	03392	.00175		
109	26.67941	9.57647	08997	.71000	.79804	01762	00408	00499		.20735	168
110	27.14000	9.57647	65525	.01000	. 79804	01012	.02855		.00032	.03306	109
111	27.52294	9.57647	07 001	.925.00	.79804			.03494	00240	24935	110
112	27.77824	9.57647	C(978	.97500	.79804	00549	.06207	.63799	00271	26>69	111
113	24.70079	11.393:5				03191	. 60027	.66075	00434	47249	112
			.62262	.01250	. 64.649	.00490	97614	.13617	05343	6:332	113
114	24.90508	11 -3 43 55	.05335	.03750	. 94946	.01147	74 + 61	. 10446	01367	51312	114
115	25.07952	11.29355	.07292	.07500	.94946	.01569	48689	.13564	01300	69102	115
116	25.31210	11.39355	.09345	.12500	.94946	.02009	38645	.10782	00798	57349	116
117	25.54468	11.39355	. 10057	.17500	. 60006	.02334	32266	.09333	06504	49972	117
110	25. ** 355	11.34355	.12364	.25300	.94946	.02558	25124	.14019	60:16	t26 t7	110
119	26.35+71	11.39355	.13578	.35000	. 94946	.02919	19746	.11010	00170	766m4	119
120	26.02297	11.35355	. 13771	.4:000	. 94946	10050.	16023	.00941	.00063	61003	120
121	27.25903	11.39355	. 12855	.55000	.94946	.02764	110tO	.06618	. 00214	4 t209	121
122	27.75419	11.39355	.10906	.65000	. 94946	.02345	05904	.03853	.00198	29653	122
123	20. 21935	11.39355	. 66136	.75000	.94940	.01762	61866	.01041	84223.	01552	123
124	28.65452	11.19315	.05033	.03000	. 64 646	.01082	.02911	01036	03116	.14200	124
125	29. 63339	11.39355	.02551	.92500	.94946	.00546	.00 t71	01917	00137	.17314	125
126	29.26597	11.39355	10503	.97500	.94946	.00191	.11013	0:073	00219		
127	24.70879	11.39355	02282	.01230	. 94 946	00-90	.46647	.06507		.26.69	126
120	24.90500	11.39355	05333	.03730	. 94 94 6	01147	.29281		.02553	31220	127
129	25.07952	11.39355	07296	.07500	.04046			.04013	.00342	26065	150
130	25.31210	11.29355	09345	.1 2300		01569	.16265	.05101	.00521	25951	150
131	23.34448	11.39355			.94946	02009	.08902	.02484	.00184	13210	130
:::	25.5446	11.34335	1065 7	.17560	.01.019	02334	.03274	.00913	.00051	05070	131
			17744	.25000				004 77	00017	-02784	112

133	20.35071	11.39355	13570	.35000	. 94946	02919	04090	02282	00033	.14510	133
134	26.02307	11.37255	13771	.45000	. 94946	02961	05361	02992	.00021	-20411	134
135	27.26903	11.39355	12 *>>	.22000	.94946	02764	04009	02663	.00067	.19548	135
136	27.75419	11.39355	1090¢	.65000	. 94946	02345	02736	61527	.00079	.11631	130
137	26.21935	11.39355	08196	.75000	.94946	01762	.00145	-00361	00005	00666	137
130	26.66495	11.39355	05033	.05000	.9.9.6	01082	.03575	. 61995	00142	17319	130
130	20. (3330	11.39355	02551	.92500	.94946	00546	.00930	.01941	00139	17520	139
140	29.26597	11.39355	C0891	.97300	. 54 54 6	00191	.10926	.03048	00214	28244	140

TOTAL COFFFICIENTS

ON THE WING

REFA.	144.0000	REF .	12.0000	REFC.	6.1250
REF 10	20.0000	REF 2-	0.0000		
MACH-	. 60000				
AL PHA.	4.00000				
CN.	.23499				
C.A.	06717				
Cr.	03226				
CL.	.23491				
CD-	.00923				
BC P.	3.40257				

TOTAL COEFFICIENTS

ON THE COMPLETE CONFIGURATION

REFA.	144.0000	REFR-	12.0000	REFC.	6.1230
REFI.	20.0000	REFI-	0.0000		
PACHO	.60000				
ALPH A.	4.00000				
CN.	.25341				
CA-	00322				
CH+	. 63165				
CL.	.253C2				
CD.	.01447				
BCP-	3.14040				

SECTION COEFFICIENTS ON THE VING

SECTION COEFFICIENTS

						CM INE	a Inc				
DEL T.	2.0000	REFL.	6.1290	nt.	15.3746						
MACH-	.0000										
AL PHA.	4.00000										
CN-	-27608					****					
	00420					DELT-	2. 4000	REFL.	6. 1250	nt.	22.000
C.P.	.12510										
cı.	.27770					MACH	. 60000				
CD-	.01521					ALPHA.	4.00000				
BC Pe	2.01523					CM-	. 28304				
						CA-	01060				
						C#•	10027				
						cr.	. 28 309				
DE LT.	2.4000	REFL.	0.1250	BLE .	17.7040	CD-	.00917				
			******			BCP.	3.97343				
MACH.	.60000										
ALPHA.	4.00000										
CN+	. 29257										
Ca-	60849					DELT-	1.2000	REFL.	4.1230	are.	24.7306
C#+	.02 *31										
CL.	. 29245					MACH-	.60000				
CD.	.01194					ALFHA.	4.00000				
BC P.	3.16455					CN-	. 20153				
						ca.	01174				
						Cm-	16541				
						cr.	. 20106				
DELT.	2.4000	PEFL.	4.1250	H.E.	20.2526	CD-	.00235				
			******			9C P*	4.17041				
MACH.	.60000										
ALPHA.	4.00000										
CN+	. 25850										
CA.	C0987										
CH.	00511										
cı.	. 25846					CPSTAG -	1.09327 (. 11834	-1.29434 CP	VAC	3.96025
CD.	.01098										
1CP-	3.55042					SOLVE, TI	ME -1217.6540	0			

SECIN A NEW CONFIGURATION

THE PLOT CONTROL CARD IRAGE IS.

PLOT. WATERNI MO-1 .. 70-1.1

*****	*0	**	**	**	CAL. POS
1	1.00000000	1.00000000000	1.00000000000	1.000000000000	
2	1.0000000 .00	1.0000000 -00	1.0000006.00	1.00000000	0.
,	1.00000000000	1.0000000 .00	1.0000006.00	1.0000306.00	0.
•	1.0000006 +00	1.0000006-00	1.0000006.00	1.00000006.30	0.
•	1.000000000000	1.0000000 +00	1.00000000	1.0200006.00	0.
	1.0000000 +00	1.000000F .00	1.0000006.00	1.00000000	0.
7	1.000000000	1.000000E +00	1.000000000	1.0C0LCuf +00	0.
•	1.0000000 .00	1. COCCOCF +00	1.00000000	1.0000006.00	0.
•	1.0000000 .00	1.0000000000	1.0000000000	1.0000000 .00	0.
10	1.0000000000	1.0000000 +00	1.0000000 .00	1.0000006.00	0.
11	1.0000000 +00	1.0000001 -00	1.0000001-00	1.6600008 +00	0.
12	1.0000006.00	1 -0000006 -00	1.0000000 +00	1.0000000 .00	0.
13	1.000000000	1.0000006 -03	1.00000011-00	1.00000000000	0.

Appendix C

PLOTTING OUTPUT

NACA RM L51F07 TRANSONIC WING-BODY DEFINITION

NECA TRANSPILL WING-BODY PRINCIPLE

No.

.

*2 e. c. o. c. c. c. o. c. 10.cm

NACA TRANSCRIC MINS-BODY PRIORIES

* * 0. C. C. C. C. C. G. 10.081

MPCA DR LSIFOT TRANSDUIC MINE SOOT DEFINITION

Y OUT NO. 20. C. C. C. C. C. 10.00"

MPCA SH ESIFOT PRRESONIC WING BOOT DEFINITION

2 Out 90. 30. 30. 0. c. c. c. c. 12-00"

LEIGHD FUSHAGE PRESSURE PLOTS

MICH NO. : . SOCCE RUPLA : 4.09000

O X = 1.33333 O X = 3.53425 O X = 5.53452 O X = 5.53452 O X = 12.61046 O X = 13.94573 O X = 15.63622 O X = 15.63622 O X = 15.63632 O X = 17.67515 O X = 19.30559

FESTIVE PRESSORE PLOTS

4.00000 s .00 HOR

O X = 20.72176 G X = 22.21076 Ø X = 23.3092 Ø X = 36.47592 Ø X = 30.31382 Ø X = 94.45933 G X = 31.5222

LESCHO HING PRESSURE PLOTS OFFER SUPPLICE

FREH NO. 1 .80000 R.PHE 1 9-00000

O T = 2.5878) O T = 4.78095 O T = 7.17895 A T = 9.57647 E T = 11.37955

LESCHO MING PRESSURE PLOTS LONER SURPRICE

RPCH NO. + -\$0220 8,744 : 4-00000

O 7 : 2.99789 O 7 : 9-78585 O 7 : 7-17795 A 7 : 3.57647 B 7 : 11.37955

1. Report No. NASA CR-3228	2. Government Access	ion No.	3. Reci	pient's Catalog No	
Terrori Cit. Cours	DODATION OF DIOTTING	CADADII ITV	6.0	- P	
4. Tritle and Subtritle THE INCOR INTO THE "UNIFIED SUBSO	PURATION OF PLUTTING MIC SUPERSONIC AFRON	NAMIC ANALYSIS	S. Report Date IS May 1980		
PROGRAM." VERSION B	MIC SUPERSONIC MENOD	MANIE MINE 1313	6. Perti	orming Organization Code	
Thousan, Teneron o					
7. Author(s)			8. Peri	orming Organization Report No.	
Octavio A. Winter					
			10. Work	k Unit No.	
9. Performing Organization Name and a		5	05-31-43-03		
Computer Sciences Corpo	ration		11 Cont	tract or Grant No	
Hampton, Virginia			NAS1-14900		
			13. Typ	e of Report and Period Covered	
12 Sponsoring Agency Name and Addr		Contractor Report			
National Aeronautics a	ion	1973 - 1980 14. Sponsoring Agency Code			
Washington, DC 20546		14 Sponsoring Agency Code			
15. Supplementary Notes					
Langley Technical Monit	or: Charles H. Fox-	Jr.			
Topical Report	thur ies in 10A,				
Topical Nepole					
to the BOO version. The fits computational option. This report description which were also modifies used by the program, the This information is presented by the program of the fits information.	bes the revised inputed, and their associate revised output date	lity, and the ov t; the plotting ted subroutines; a; and the progr	verlay overla the a	structure. y programs, uxiliary files rlay structure.	
7 Key Words (Suggested by Author(s) Computer program	Unclassified - Unlimited Subject Category 02				
9 Security Classif (of this report)	20 Security Classif. (of this p	21. No. of	Pages	22 Price*	
Unclassified	Unclassified	138		\$7.25	
OUC 192211160	Auctassitien	1 130		31.63	

July 29, 1981