Logika układów cyfrowych lab.

Prowadzący: Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 1 - 2017.10.10

> Jakub Dorda 235013 Marcin Kotas 235098

> > 13 października 2017 L^AT_EX

1. Wprowadzenie/cel ćwiczeń

Celem zadania było przećwiczenie metody Karnough na przykładzie tablicy prawdy podanej przez prowadzącego. Następnie należało przeprowadzić dwie minimalizację korzystając jedynie z bramek NAND lub NOR dla każdej minimalizacji. Z uzyskanych finalnie wzorów stworzono schematy ideowe układów logicznych. Poprawność przeprowadzonych obliczeń należało zweryfikować w praktyce z wykorzystaniem zestawu do prototypowania prostych układów logicznych.

2. Tabele i minimalizacje

Tabela 1: Tabela Prawdy

a	b	\mathbf{c}	d	у
0	0	0	0	0
0	0	0	1	0
0	0	1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Tabela 2: Tablica Karnaugh

ab cd	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	0	0
10	1	1	1	1

Minimalizacja dla bramek NAND:

$$y = \bar{a}b + a\bar{b} + b\bar{c} = b \cdot (\bar{a} + \bar{c}) + a \cdot \bar{b} = \overline{b \cdot (\bar{a} + \bar{c}) + a \cdot \bar{b}} = \overline{b \cdot (\bar{a} + \bar{c}) \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot (\bar{a} + \bar{c}) \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{c} \cdot \bar{a} \cdot \bar{b}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{c} \cdot \bar{c} \cdot \bar{c}} = \overline{b \cdot \overline{a} \cdot \bar{c} \cdot \bar{c}} = \overline{b} \cdot \overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} \cdot \overline{b} = \overline$$

Minimalizacja dla bramek NOR:

$$y = \bar{a}b + a\bar{b} + b\bar{c} = b \cdot (\bar{a} + \bar{c}) + a \cdot \bar{b} = \overline{\overline{b \cdot (\bar{a} + \bar{c})}} + \overline{\overline{a \cdot \bar{b}}} = \overline{\overline{\overline{b} + \overline{(\bar{a} + \bar{c})}} + \overline{\bar{a} \cdot \bar{b}}}$$

Użyte wzory:

$$\overline{a \cdot b} = \overline{a} + \overline{b} \tag{1}$$

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{2}$$

3. Schematy

Schemat 1. Układ na bramkach NAND

Schemat 2. Układ na bramkach NOR

4. Wnioski/podsumowanie

d xl

Podczas przeprowadzania praktycznej części ćwiczenia najważniejszą kwestią okazało się systematyczne zrealizowanie uprzednio stworzonego schematu, organizacja pracy oraz umiejętność debugowania układu. W celu sprawdzenie poprawności działania należało przeprowadzić testy dla wszystkich możliwych kombinacji wejść w tym przypadku $2^3=8$ (3 wejścia ponieważ stan d nie ma znaczenia dla końcowego wyniku)