1802 AUTOMATON

5.280 no_valley

DESCRIPTION LINKS AUTOMATON

Origin Derived from valley.

Constraint no_valley(VARIABLES)

Argument VARIABLES : collection(var-dvar)

 ${\bf Restrictions} \qquad \qquad |{\tt VARIABLES}| > 0$

Purpose

required(VARIABLES, var)

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a *valley* if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} > V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k < V_{k+1}$. The total number of valleys of the sequence of variables VARIABLES is equal to 0.

Example $(\langle 1, 1, 4, 8, 8, 2 \rangle)$

The no_valley constraint holds since the sequence $1\ 1\ 4\ 8\ 8\ 2$ does not contain any valley.

Figure 5.602: Illustration of the **Example** slot: a sequence of five variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 respectively fixed to values 1, 1, 4, 8, 8, 2 without any valley

 $\begin{array}{ll} \textbf{Typical} & | \mathtt{VARIABLES} | > 3 \\ & \mathtt{range}(\mathtt{VARIABLES.var}) > 1 \end{array}$

20031101 1803

Symmetries

- Items of VARIABLES can be reversed.
- ullet One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	50	295	1792	11088	69498	439791

Number of solutions for no_valley: domains 0..n

Solution density for no_valley

1804 AUTOMATON

Solution density for no_valley

See also

comparison swapped: no_peak.

generalisation: valley (introduce a variable counting the number of valleys).

implied by: decreasing, global_contiguity, increasing.

implies: all_equal_valley_min.

related: peak.

Keywords

characteristic of a constraint: automaton, automaton without counters, automaton with same input symbol, reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).

20031101 1805

Automaton

Figure 5.603 depicts the automaton associated with the no_valley constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

STATES SEMANTICS s: stationary/increasing mode $(\{< | = \}^*)$ t: decreasing mode $(\{< | = \}^*)$ $VAR_i = VAR_{i+1} \qquad VAR_i = VAR_{i+1}$ $VAR_i > VAR_{i+1} \qquad VAR_i > VAR_{i+1}$ $VAR_i < VAR_{i+1}$

Figure 5.603: Automaton of the no_valley constraint

Figure 5.604: Hypergraph of the reformulation corresponding to the automaton of the no_valley constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})