M20580 L.A. and D.E. Tutorial Worksheet 2 Sections 1.1–1.3

1. (a) Find the general solution of the system of linear equations

$$x_1 - 2x_2 + 3x_4 = 1 \Rightarrow x_1 = 1 + 2x_2 - 3x_4$$

 $x_3 - x_4 = -1 \Rightarrow x_3 = -1 + x_4$

General solution:
$$\begin{cases} X_1 = 1 + 2x_2 - 3x_4 \\ X_2 \text{ is free} \\ X_3 = -1 + x_4 \\ X_4 \text{ is free} \end{cases}$$

(b) If the linear system above has infinitely many solutions, give two solutions to the system.

one polution: let
$$x_0 = 0$$
, $x_4 = 0$, then $x_1 = 1$ and $x_3 = -1$ $(1,0,-1,0)$ is a polution

Another solution: let
$$X_2 = 1$$
, $X_4 = 0$, then $X_1 = 3$, $X_3 = -1$

$$(3, 1, -1, 0)$$
 is a solution

Date: 01/25/2018

2. Recall: Given a collection of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is a new vector of the form

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$
, for some scalars $c_1, c_2 \dots, c_p$

Suppose

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 7 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$

(a) Give an example of a linear combination of $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3.$

We can do
$$\vec{\nabla}_1 - \vec{\nabla}_2 + 2\vec{\nabla}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ 3 \end{bmatrix}$$

(b) Determine whether the vector $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ can be written as a linear combination of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . If yes, find scalars a_1 , a_2 , a_3 such that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{w}$.

We want to know if there exist a, a, a, a such that

$$a_1\vec{v_1} + \alpha_2\vec{v_2} + \alpha_3\vec{v_3} = \vec{w}$$
 or $a_1\begin{bmatrix} 1\\2\\0 \end{bmatrix} + \alpha_2\begin{bmatrix} 4\\7\\1 \end{bmatrix} + \alpha_3\begin{bmatrix} 0\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\3\\5 \end{bmatrix}$ (1)

Lit's try to find a, a, a, a, :

$$\begin{bmatrix} 1 & 4 & 0 & | & 2 \\ 2 & 7 & 0 & | & 3 \\ 0 & 1 & 2 & | & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 0 & | & 2 \\ 0 & 7 & 0 & | & 7 \\ 0 & 1 & 2 & | & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 0 & | & 2 \\ 0 & 7 & 0 & | & 0 & | & 7 \\ 0 & 1 & 0 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 2 & | & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

So, the vector equation (2) has a solution, namely $a_1 = -2$, $\alpha_2 = 1$, $\alpha_3 = 2$. Thus, \vec{w} can be written as a linear combination of \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , where

$$\overrightarrow{W} = -2\overrightarrow{V_1} + \overrightarrow{V_2} + 2\overrightarrow{V_3}.$$

3. Fill in the blanks

Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is the set of $\underline{\mathbf{ul}}$ linear combinations of the vectors $\underline{\mathbf{v}_1}, \dots, \underline{\mathbf{v}_p}$.

Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 3 \\ 8 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$.

(a) Give examples of two vectors that are in the set $Span\{v_1, v_2, v_3\}$.

We need to come up with a linear combinations of $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ = $\begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} -4 \\ 3 \\ 8 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \\ 2 \end{bmatrix}$

Also, since $\vec{\nabla}_1 = 1 \cdot \vec{\nabla}_1 + 0 \cdot \vec{\nabla}_2 + 0 \cdot \vec{\nabla}_3$, $\vec{\nabla}_1$ is a linear combination of $\vec{\nabla}_1$, $\vec{\nabla}_2$, $\vec{\nabla}_3$, $\vec{\nabla}_3$, is in Span $(\vec{\nabla}_1, \vec{\nabla}_2, \vec{\nabla}_3, \vec{\nabla}_3,$

Infitely many
(c) Determine whether the vector $\mathbf{w} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$ is in $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

We want to know if \vec{w} can be written as a linear combination \vec{g} \vec{v} , \vec{v} , \vec{v} , i.e. We want to find solution to the associated to the augmented meeting

Thus, \vec{v} can't be written as a linear combination of $\vec{v}_1, \vec{v}_2, \vec{v}_3$ i.e. \vec{v} is not in the span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$

4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$. Find the value of h such that $\mathbf{w} = \begin{bmatrix} 4 \\ 3 \\ h \\ 0 \end{bmatrix}$ is a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

We want to determine hough that the vector equation $a_1\vec{v}_1^2 + a_3\vec{v}_2^2 + a_3\vec{v}_3 = \vec{v}$ is consistent.

use matrix tool.

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 3 & 0 & | & 3 \\ -1 & 1 & 1 & | & & \\ 2 & -2 & 2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 0 & | & | & \\ 0 & 3 & 1 & | & & \\ 0 & 4 & 2 & | & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 0 & | & | & \\ 0 & 0 & 2 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 0 & | & | & \\ 0 & 0 & 2 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 0 & | & | & \\ 0 & 0 & 2 & | & -2 \end{bmatrix}$$

$$\begin{array}{c|cccc}
1 & 2 & 0 & | & 4 \\
0 & 1 & 0 & | & 1 \\
0 & 0 & 1 & | & | & 1 \\
\hline
0 & 0 & 0 & -2h-4
\end{array}$$

of in order for the vector equation above to have det blag a solution (unsistent), we must have

Condusion: when h=-2, \vec{w} is a linear combination of \vec{v}_1 , \vec{v}_2 , \vec{v}_3