Scilab Textbook Companion for Electronics Devices and Circuits by G. S. N. Raju¹

Created by
Anshula Jain
B.Tech.
Electronics Engineering
A.B.E.S. Engineering College, Ghaziabad
College Teacher
None
Cross-Checked by
KVP Pradeep

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronics Devices and Circuits

Author: G. S. N. Raju

Publisher: I. K. International, New Delhi

Edition: 1

Year: 2006

ISBN: 81-89866-02-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes 4		
1	Common Electronic Materials and Properties	5	
2	Passive Component and DC Sources and Circuit Theorems and Basic Meters	18	
3	Electrodynamics and CRO	29	
4	Diode Characteristics and Applications	40	
5	Rectifier and DC Power Supplies	44	
6	Transistor Characteristics And Applications	54	
7	Transistor Biasing and Stabilization Techniques	64	
8	Analysis of transistor Amplifier using Hybrid Equivalent Circuit	73	
9	Field Effect Transistor	84	
10	Feedback Amplifier	91	
11	Power Amplifiers	98	
13	Oscillators	106	
14	Operational Amplifier and Applications	109	

List of Scilab Codes

Exa 1.1	Fusing current
Exa 1.2	Fusing current
Exa 1.3	Fusing Current
Exa 1.4	Resistance of wire
Exa 1.5	Resistance of Copper Wire
Exa 1.6	Resistance of Tungsten Wire
Exa 1.7	Force on Electron
Exa 1.8	Electric Field applied on Electron
Exa 1.9	Charge in Region
Exa 1.10	Force on Electorn
Exa 1.11	Force on Electron due to field
Exa 1.12	Donor atom concentration
Exa 1.13	Free electron concentration
Exa 1.14	Hole concentration
Exa 1.15	Resistivity of Intrinsic semiconductor
Exa 1.16	Mobility and conductivity
Exa 1.17	Carrier concentration
Exa 1.18	Trivalent Impurity
Exa 1.19	Pentavalent Impurity
Exa 1.20	carrier concentration and conductivity 16
Exa 1.21	Volt Equivalent Temperature
Exa 2.1	Capacitance of capacitor
Exa 2.2	Charge stored in Capacitor
Exa 2.3	Capacitance of capacitor
Exa 2.4	Charge stored in Capacitor
Exa 2.5	Charge stored and voltage across capacitor 19
Exa 2.6	Reactance of Capacitor
Exa 2.7	Reactance of Capacitor

Exa 2.8	Series Capacitance	21
Exa 2.9	Parallel Capacitance	21
Exa 2.10	Energy Stored in Capacitor	22
Exa 2.11		22
Exa 2.12	Rate of Current	22
Exa 2.13		23
Exa 2.14	Energy in Inductor	23
Exa 2.15		24
Exa 2.16		24
Exa 2.17		25
Exa 2.18	Parallel Inductance	25
Exa 2.19	Source Resistance	25
Exa 2.20		26
Exa 2.21		26
Exa 2.22		27
Exa 3.1		29
Exa 3.2	Force on electron	29
Exa 3.3		30
Exa 3.4	Force on electron	30
Exa 3.5		31
Exa 3.6		31
Exa 3.7	Frequeny of Signal	32
Exa 3.8		32
Exa 3.9		33
Exa 3.10	Deflection Sensitivity	33
Exa 3.11		34
Exa 3.12	Velocity of electron and kinetic energy	34
Exa 3.13	Deflection of electron beam	34
Exa 3.14	Deflection sensitivity	35
Exa 3.15		36
Exa 3.16	Phase difference using Lissajous pattern	37
Exa 3.17	Phase difference using Lissajous pattern	38
Exa 3.18	U 1	38
Exa 3.19	U 1	38
Exa 4.1	0 9 1	40
Exa 4.2		11
Exa 4.3		11
Exa 4.4		12

	6	
Exa 7.8	Operating point and stability factor of silicon transistor	69
Exa 7.7	Q point for self bias circuit	68 60
Exa 7.6	Q point for voltage divider base bias circuit	67
D 7.0	point	66
Exa 7.5	claculate base resistance to obtain optimum operatin	CC
Exa 7.4	Q point in fixed bias circuit	65
Exa 7.3	power dissipation of transistor	65
Exa 7.2	Thermal resistance of transistor	64
Exa 7.1	Emitter Resistance	64
Exa 6.13	Current gain in CE amplifier	63
Exa 6.12	peak to peak collector voltage and current	62
Exa 6.11	common base current gain	62
Exa 6.10	common emitter current gain	62
	ration	61
Exa 6.9	resistance and conductance calculation of CC configu-	
Exa 6.8	Base and current current	60
Exa 6.7	base current and transistor resistance	59
Exa 6.6	Current gain and base reistance	58
Exa 6.5	Base curre3nt and collector resistance	57
Exa 6.4	transistor current and resistance	56
Exa 6.3	Unknown Resistance in transistor	55
Exa 6.2	Transistor current and current gain	54
Exa 6.1	current gain	54
Exa 5.17	DC voltage and current and Resistance	52
Exa 5.16	Design pi section full wave filter	51
Exa 5.15	Ripple factor and DC current and load resistance	50
Exa 5.14	Ripple Voltage	50
Exa 5.13	Bridge Rectifier	49
Exa 5.12	Full wave rectification	49
Exa 5.11	Half wave rectification	48
Exa 5.6	Peak Inverse Voltage	48
	tion	46
Exa 5.5	Voltage and Current and Power and percentage regula-	
Exa 5.4	Power and Rectification Efficiency	46
Exa 5.3	Current and Voltage and Ripple Factor	45
Exa 5.2	DC and peak voltage	45
Exa 5.1	Current and ripple factor	44
Exa 4.5	Diffusion Capacitance	42

Exa 7.9	Operating point and stability factor of self bias circuit 7	0
Exa 7.10	Stability factor of self bias circuit	1
Exa 7.11	Thermal resistance of transistor	1
Exa 7.12	power dissipation of transistor	$^{\prime}2$
Exa 8.1		73
Exa 8.2		4
Exa 8.3	current and voltage gain	5
Exa 8.4	current and voltage gain and input and output resistance 7	6
Exa 8.5		8
Exa 8.6		8
Exa 8.7	current and voltage gain and input and output resistance 7	9
Exa 8.8		31
Exa 8.9	voltage gain of CE amplifier	31
Exa 8.10		32
Exa 8.11		32
Exa 9.1	Pinch off Voltage	34
Exa 9.2		35
Exa 9.3	pinch off voltage	35
Exa 9.4		86
Exa 9.5		37
Exa 9.6		37
Exa 9.7		8
Exa 9.8		8
Exa 9.9		39
Exa 9.10		39
Exa 10.1		1
Exa 10.2		1
Exa 10.3	Feedback with reduced distortion	92
Exa 10.4	Change in close loop gain	92
Exa 10.5		93
Exa 10.6)4
Exa 10.7)4
Exa 10.8		95
Exa 10.9		96
Exa 10.10	- · · · · · · · · · · · · · · · · · · ·	96
Exa 11.1		8
Exa 11.2	· · · · · · · · · · · · · · · · · · ·	9
Exa 11.3		9

Exa 11.4	Total Harmonic Distortion
Exa 11.5	Amplifier Efficiency
Exa 11.6	Efficiency
Exa 11.7	Turns Ratio
Exa 11.8	Amplifier Efficiency
Exa 11.9	Efficiency
Exa 11.10	Efficiency
Exa 11.11	Voltage Gain
Exa 11.12	Power Gain
Exa 11.13	Power Dissipated At Collector Junction 105
Exa 11.14	Power Efficiency
Exa 13.1	Feedback fraction to obtain sustained oscillator 106
Exa 13.2	Frequency of RC phase oscillator
Exa 13.3	Frequency of Wein Bridge oscillator
Exa 13.4	Feedback fractor and frequency of Colpitts oscillator . 107
Exa 14.1	Common Mode Rejection Ratio 109
Exa 14.2	Common Mode Rejection Ratio 109
Exa 14.3	Output Voltage Of Op amp Adder Circuit 110
Exa 14.4	Output Voltage Of Op amp Adder Circuit 110
Exa 14.7	Designing a close loop op amp

Chapter 1

Common Electronic Materials and Properties

Scilab code Exa 1.1 Fusing current

```
1 //Ex1.1
3 disp("I = K(d^1.5)") //formula used for fusing
     current
4 d=0.0031
5 disp("d = "+string(d)+"inches") //initializing
     values of diameter
6 I1=10244*(d^1.5);I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
7 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
8 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
9 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
10 disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
11 disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
```

Scilab code Exa 1.2 Fusing current

```
1 / Ex1.2
2 clc
3 disp("fusing current, I = K(d^1.5) Amp.")//formula
     used for fusing current
4 d=0.0201
5 disp("d = "+string(d)+"inches") //initializing value
      of diameter
6 I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
7 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
8 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
  disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
10 disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
     . ")
  disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
12
13
14 // note : calculation for fusing current of Iron is
     wrong.
```

Scilab code Exa 1.3 Fusing Current

```
1 //Ex1.3
2 clc
```

```
3 disp("fusing current, I = K(d^1.5) Amp.") //formula
     used for fusing current
4 disp("(a)")
5 d=0.0159
6 disp("d = "+string(d)+"inches") //initializing value
       of diameter
7 I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
8 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
  disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
10 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
11 disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
12 disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
13
14
15 disp("(b)")
16 d=0.0063
17 disp("d = "+string(d)+"inches") //initializing value
       of diameter
18 \quad I1=10244*(d^1.5); I2=7585*(d^1.5); \quad I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
19 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
20 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
21 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
22 disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
23 disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
     ")
```

```
24
25
26 disp("(c)")
27 d=0.0403
28 disp("d = "+string(d)+"inches") //initializing value
      of diameter
29 I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
30 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
31 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
32 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
  disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
  disp(" for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
35
36
37 disp("(d)")
38 d=0.0452
39 disp("d = "+string(d)+"inches") //initializing value
      of diameter
40 I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
     for fusing current
41 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
42 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2) +
     "Amp.")
43 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
44 disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
45 disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
     ")
```

```
46
47
48 disp("(e)")
49 d=0.0508
50 disp("d = "+string(d)+"inches") //initializing value
       of diameter
51 \quad I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
      for fusing current
52 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
  disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2)+
     "Amp.")
54 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
  disp(" for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
  disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
57
58
59 disp("(f)")
60 d=0.162
61 disp("d = "+string(d)+"inches") //initializing value
       of diameter
62 I1=10244*(d^1.5); I2=7585*(d^1.5); I3=5320*(d^1.5);
     I4=3148*(d^1.5); I5=1642*(d^1.5) // calculation
      for fusing current
63 disp("for Copper, I = 10244*(d^1.5) = "+string(I1)+"
     Amp. ")
64 disp("for Aluminum, I = 7585*(d^1.5) = "+string(I2) +
     "Amp.")
65 disp("for Silver, I = 5320*(d^1.5) = "+string(I3)+"
     Amp. ")
  disp("for Iron, I = 3148*(d^1.5) = "+string(I4)+"Amp
67 disp("for Tin, I = 1642*(d^1.5) = "+string(I5)+"Amp.
     ")
```

```
68
69
70
71 // note: in part (e) ... calculation for fusing current of silver is wrong.
72 // note: in part (f) ... calculation for fusing current of Iron is wrong.
```

Scilab code Exa 1.4 Resistance of wire

```
1  //Ex1.4
2  clc
3  A=0.5189*10^-6//wire cross sectional area
4  rho=1.725*10^-8//resistivity
5  l=100  //wire length
6  disp("A ="+string(A)+"merer square")
7  disp("rho ="+string(rho)+"ohm-m")
8  disp("l ="+string(1)+"m")
9  disp("R = rho*l/A = "+string(rho*l/A)+"ohm")  //resistance
```

Scilab code Exa 1.5 Resistance of Copper Wire

```
1 //Ex1.5
2 clc
3 A=0.2588*10^-6//wire cross-sectional area
4 rho=1.725*10^-8//resistivity
5 l=100 //wire length
6 disp("A ="+string(A)+"merer square")
7 disp("rho ="+string(rho)+"ohm-m")
8 disp("l ="+string(1)+"m")
9 disp("R = rho*l/A = "+string(rho*l/A)+"ohm") //resistance of wire
```

Scilab code Exa 1.6 Resistance of Tungsten Wire

```
1  //Ex1.6
2  clc
3  R1 = 14//resistance at temperature T1
4  alpha=0.005
5  T1=20; //initial temperature
6  T2=120  //final temperature
7  disp("R1 = "+string(R1)+ "ohm; alpha = "+string(alpha)+"; T1 = "+string(T1)+"degreeC; T2 = "+string(T2)+"degreeC")
8  disp("R2 = R1(1+(alpha*(T1-T2))) = "+string(R1*(1+(alpha*(T2-T1))))+"ohm") //resistance at temperature T2
```

Scilab code Exa 1.7 Force on Electron

```
1 //EX1.7
2 clc
3 Ex=3; Ey=4; Ez=2// electric field
4 e=1.6*10^-19 // electorn charge
5 disp("E = 3ax + 4ay + 2az k V/m")
6 disp("e = 1.6*10^-19 C")
7 disp("F=eE = "+string(Ex*e*1000)+"ax + "+string(Ey*e*1000)+"ay + "+string(Ez*e*1000)+"az N") // force
```

Scilab code Exa 1.8 Electric Field applied on Electron

```
1 //Ex1.8
```

```
2 clc
3 F=0.1*10^-12//force applied
4 e = 1.6*10^-19//electron charge
5 disp("F= "+string(F)+"N ; e = "+string(e)+"C")
6 disp("E = F/e ="+string(F/e)+"V/m")//electric field
```

Scilab code Exa 1.9 Charge in Region

```
1 //Ex1.9
2 clc
3 F = 3*(10^-12) //force applied
4 E = 5*(10^-6) //electric field
5 disp("F = "+string(F)+"N")
6 disp("E = "+string(E)+"V/m")
7 disp("Q= F/E = "+string(F/E)+"C") //chage
```

Scilab code Exa 1.10 Force on Electorn

```
1 //Ex1.10
2 clc
3 B = 2*10^-6 //magnetic flux density
4 V = 4*10^6 //electron velocity
5 e= 1.6*10^-19//elcetron charge
6 disp("B ="+string(B)+"ax wb/m.sq")
7 disp("V ="+string(V)+"az m/s")
8 disp("e = "+string(e)+ "C")
9 disp("F = e[VxB] ="+string(e*V*B)+"ay N")//force
```

Scilab code Exa 1.11 Force on Electron due to field

```
1 / Ex1.11
2 clc
3 Hx = 1*10^-3 //magnetic field in x-axis
4 Hy = 2*10^-3 //magnetic field in y-axis
5 V = (4*10^6) //electron velocity
6 micro_not=(4*%pi*(10^-7)) //permitivity in vaccum
7 e=1.6*10^-19 //charge of electorn
8 disp("H = "+string(Hx)+" ax + "+string(Hy)+" ay A/m")
9 disp("V = "+string(V) + "ay m/s")
10 Bx = micro_not*Hx; By = micro_not*Hy //magnetic flux
       density
11 disp("B = micro_not*H = "+string(Bx)+"ax + "+string(
      By) + "ay wb/m.sq")
12 \operatorname{disp}("F = e[VxB] = "+ \operatorname{string}(e*V*Bx) + "az N") // force
      on electron due to field
13
14
15 // note : there is a misprint in the textbook for
      the above problem
```

Scilab code Exa 1.12 Donor atom concentration

```
1 //Ex1.12
2 clc
3 n = 5*10^22//number of atoms in silicon/cm_cube
4 donors = 10^-7 //donor atoms
5 disp("n = "+string(n)+" /cm.cube")
6 disp("donors = "+string(donors))
7 disp("ND = "+string(n*donors)+" /cm.cube") //donor atom concentration
```

Scilab code Exa 1.13 Free electron concentration

```
1 //Ex1.13
2 clc
3 ND =5*10^16//donor atom concentration
4 disp("n = "+string(ND)+"/cm.cube") //free electrons
```

Scilab code Exa 1.14 Hole concentration

```
1 //Ex1.14
2 clc
3 ni = 1.5*10^10 //intrinsic concentration
4 ND = 5*10^16 //donor atom concentration
5 disp("ni ="+string(ni)+"/cm.cube")
6 disp("ND = "+string(ND)+" /cm.cube")
7 disp("p = (ni^2)/ND = "+string((ni^2)/ND)+"atom/cm.cube") //hole concentration
```

Scilab code Exa 1.15 Resistivity of Intrinsic semiconductor

```
1  //Ex1.15
2  clc
3  ni = 1.52*10^10 //intrinsic concentration
4  e=1.6*10^-19 //charge of electron
5  micro_n = 1350; micro_p = 480 // charge mobility
6  disp("e = "+string(e)+"C")
7  disp("ni = pi ="+string(ni)+"/cm.cube")
8  disp("micro_n = "+string(micro_n)+"cm.sq/V-s")
9  disp("micro_p = "+string(micro_p)+"cm.sq/V-s")
10  disp("sigma = e(micro_n*ni + micro_p*pi) = "+string(eximicro_n*ni + micro_p*pi) + "conductivity
11  disp("rho = 1/sigma ="+string(1/(e*(micro_n*ni + micro_p*ni)))+"ohm-cm") // resistivity
```

Scilab code Exa 1.16 Mobility and conductivity

```
1 / Ex1.16
2 clc
3 ni = 2.5*(10^13) //intrinsic concentration
4 donor = 10^--7 //donor atoms
5 \text{ ND} = 4.41*(10^22)*(10^-7) //donor atom concentration
6 e = 1.6*(10^-19) //electron charge
7 micro_n = 3800; micro_p = 1800 / \text{charge mobility}
8 disp("ni ="+string(ni)+" /cm.cube")
9 disp("donor = "+string(donor))
10 disp("n = ND ="+string(ND)+" /cm.cube")
11 \operatorname{disp}("p = (ni^2)/ND = "+string((ni^2)/ND)+" / cm. cube
      ") //hole concentration
12 disp("micro_n = 3800 \text{ cm.sq/V-s}; micro_p = 1800 \text{ cm.sq}]
      /V-s")
13 sigma = ni*e*(micro_n+micro_p) //conductivity
14 disp("sigma = ni*e(micro_n + micro_p) = "+string(
      sigma) + "mho/cm")
```

Scilab code Exa 1.17 Carrier concentration

Scilab code Exa 1.18 Trivalent Impurity

```
1 //Ex1.18
2 clc
3 micro_p = 1800 //hole mobility
4 rho_p = 1 //resistivity
5 e = 1.6*10^-19 //electorn charge
6 disp("micro_p ="+string(micro_p)+" cm.sq/V-s")
7 disp("rho_p = "+string(rho_p)+"ohm-cm")
8 disp("e = "+string(e)+"C")
9 disp("pp = 1/(e*micro_p*rho_p) = "+string(1/(e*micro_p*rho_p))+" holes/cm.cube") //number of trivalent impurity
```

Scilab code Exa 1.19 Pentavalent Impurity

```
1 //Ex1.19
2 clc
3 micro_n = 1300 //eletron mobility
4 rho_n = 2 //resistivity
5 e = 1.6*10^-19 //electron charge
6 disp("micro_n ="+string(micro_n)+" cm.sq/V-s")
7 disp("rho_n = "+string(rho_n)+"ohm-cm")
8 disp("e"+string(e)+"C")
9 disp("nn = 1/(e*micro_n*rho_n) = "+string(1/(e*micro_n*rho_n))+" e/cm.cube") //number of pentavalent impurity
```

Scilab code Exa 1.20 carrier concentration and conductivity

```
1 / Ex1.20
2 clc
3 EGo = 1.1 //energy band gap
4 micro_n = 0.13 //electron mobility
5 \text{ micro_p} = 0.05 // \text{hole mobility}
6 N = 3*10^25 //atom concentration
7 K = 1.38*10^-23 //Boltzmann constant
8 T = 300 //room temperature
9 e=1.6*10^-19//electron charge
10 \operatorname{disp}("EGo = "+string(EGo) + "eV = "+string(EGo*e) + "J")
11 \operatorname{disp}("\operatorname{micro_n} = "+\operatorname{string}(\operatorname{micro_n}) + "\operatorname{m.sq/V-s"})
12 \operatorname{disp}("\operatorname{micro_p} = "+\operatorname{string}(\operatorname{micro_p}) + "\operatorname{m.sq}/\operatorname{V-s"})
13 \operatorname{disp}("N = "+\operatorname{string}(N) + "/m. \operatorname{cube}")
14 disp("T = "+string(T)+"degree_K")
15 disp("K = "+string(K) + "J/K")
16 disp("ni = N*exp(-(EGo/(2*T*K))) = "+string(N*exp(-(EGo/(2*T*K))))
       EGo*e/(2*T*K)))+"/m.cube")//intrinsic
       concentration
17 ni = N*exp(-(EGo*e/(2*T*K)))
18 disp("sigma = ni*e(micro_n+micro_p) = "+string(ni*e
       *(micro_n+micro_p))+"mho/m") //conductivity
```

Scilab code Exa 1.21 Volt Equivalent Temperature

Chapter 2

Passive Component and DC Sources and Circuit Theorems and Basic Meters

Scilab code Exa 2.1 Capacitance of capacitor

```
1  //Ex2_1
2  clc
3  Q = 2*10^-6; V = 10
4  disp("Q = "+string(Q)+"C")// charge
5  disp("V = "+string(V)+"V") // voltage
6  disp("C = Q/V = "+string(Q/V)+"F")// calculation for capacitance
```

Scilab code Exa 2.2 Charge stored in Capacitor

```
1 //Ex2_2
2 clc
3 C= 10*10^-6
4 V = 10
```

```
5 disp("C ="+string(C)+"F")//capacitance
6 disp("V = "+string(V)+"V")//voltage
7 disp("Q = C*V = "+string(C*V)+"C")//calculation for charge
```

Scilab code Exa 2.3 Capacitance of capacitor

```
1  //Ex2_3
2  clc
3  Q = 5*10^-12
4  V = 50
5  disp("Q = "+string(Q)+"C")//charge
6  disp("V = "+string(V)+"V")//voltage
7  disp("C = Q/V = "+string(Q/V)+"F")//calculation for capacitance
```

Scilab code Exa 2.4 Charge stored in Capacitor

```
1  //Ex2_4
2  clc
3  I = 10*10^-6
4  t= 10
5  disp("I = "+string(I)+"A")//current
6  disp("t = "+string(t)+"seconds")//time
7  disp("Q = I*t = "+string(I*t)+"C")//calculation for charge
```

Scilab code Exa 2.5 Charge stored and voltage across capacitor

```
1 / Ex2_{-5}
```

```
2 clc
3 C = 2.0*10^-6
4 t= 2
5 I = 10*10^-6
6 Q = I*t
7 disp("C = "+string(C)+"F")//capacitance
8 disp("t = "+string(t)+"seconds")//time
9 disp("I = "+string(I)+"A")//current
10 disp("Q = I*t = "+string(Q)+"C")//calculation for charge
11 disp("V = Q/C = "+string(Q/C)+"V")//calculation for voltage
```

Scilab code Exa 2.6 Reactance of Capacitor

```
1 //Ex2_6
2 clc
3 C = 12* 10^ -6
4 f = 1.0*10^3
5 Xc = 1/(2*%pi*f*C)
6 disp("C = "+string(C)+"F")//capacitance
7 disp("at... f = "+string(f)+"Hz")//frequency
8 disp("Xc = 1/(2*pi*f*C) = "+string(1/(2*%pi*f*C))+" ohm")//calculation for capacitive reactance
```

Scilab code Exa 2.7 Reactance of Capacitor

```
1 //Ex2_7
2 clc
3 C = 0.2*10^-6
4 f1 = 1.0*10^3
5 f2 = 50
6 disp("C = "+string(C)+"F")//capacitance
```

```
7 disp("at... f = "+string(f1)+"Hz")//frequency
8 disp("Xc = 1/(2*pi*f*C) = "+string(1/(2*%pi*f1*C))+"
      ohm")//calculation for capacitive reactance
9 disp("at... f = "+string(f2)+"Hz")//frequency
10 disp("Xc = 1/(2*pi*f*C) = "+string(1/(2*%pi*f2*C))+"
      ohm")//calculation for capacitive reactance
```

Scilab code Exa 2.8 Series Capacitance

Scilab code Exa 2.9 Parallel Capacitance

```
1 //Ex2_9
2 clc
3 C1 = 0.2*10^-12
4 C2 = 0.6*10^-12
5 C3 = 1.0*10^-12
6 disp("C1 = "+string(C1)+"F")//capacitance
7 disp("C2 = "+string(C2)+"F")//capacitance
8 disp("C3 = "+string(C3)+"F")//capacitance
9 disp("CT = C1+C2+C3 = "+string(C1+C2+C3)+"F")//parallel capacitance
```

Scilab code Exa 2.10 Energy Stored in Capacitor

```
1 //Ex2_10
2 clc
3 C = 10*10^-6
4 V = 100
5 W = C*(V^2)/2
6 disp("C = "+string(C)+"F")//capacitance
7 disp("V = "+string(V)+"V")//voltage
8 disp("W = C*(V^2)/2 = "+string(W)+" Joules")//calculating for energy stored
```

Scilab code Exa 2.11 Instantanous Current in capacitor

Scilab code Exa 2.12 Rate of Current

Scilab code Exa 2.13 Inductance Value

```
1 //Ex2_13
2 clc
3 r = 5.0//rate of current change
4 vL = 50//induced voltage
5 L = vL/(r)
6 disp("diL/dt = "+string(r)+"A/s")//rate of current change
7 disp("vL = "+string(vL)+"V")
8 disp("vL = L*(diL/dt)")
9 disp("L = vL/(diL/dt) = "+string(L)+" Henry")// calculation for inductane
```

Scilab code Exa 2.14 Energy in Inductor

```
1 //Ex2_14
2 clc
```

Scilab code Exa 2.15 Coupling Coefficient

```
1 //Ex2_15
2 clc
3 flux1 = 100*10^-6
4 flux2 = 50*10^-6
5 flux12 = flux1 - flux2
6 disp("flux1 = "+string(flux1)+"Wb")//flux of coil 1
7 disp("flux2 = "+string(flux2)+"Wb")//flux of coil 2
8 disp("K = flux linkage between coil 1 and coil 2/
    flux of coil 1")//coefficient of coupling
9 disp(" = "+string(flux12/flux1))
```

Scilab code Exa 2.16 Mutual Inductance

```
1 //Ex2_16
2 clc
3 L1 = 100*10^-3
4 L2 = 50*10^-3
5 K = 0.3
6 M = K*(L1*L2)^0.5
7 disp("L1 = "+string(L1)+"H")//inductance of coil 1
8 disp("L2 = "+string(L2)+"H")//inductance of coil 2
9 disp("K = "+string(K))//coefficient of coupling
10 disp("M = K*(L1*L2)^0.5")
11 disp("M = "+string(M)+"H")//mutual inductance
```

Scilab code Exa 2.17 Series Inductance

```
1 //Ex2_17
2 clc
3 L1 = 10*10^-3
4 L2 = 15*10^-3
5 LT = L1 + L2
6 disp("L1 = "+string(L1)+"H")//inductance of coil 1
7 disp("L2 = "+string(L2)+"H")//inductance of coil 2
8 disp("LT = L1+L2 = "+string(LT)+"H")//series inductance
```

Scilab code Exa 2.18 Parallel Inductance

Scilab code Exa 2.19 Source Resistance

```
1 //Ex2_19
2 clc
```

Scilab code Exa 2.20 Series Voltage

```
1 //Ex2_20
2 clc
3 V = 2.5
4 disp("V1 = V2 = V3 = V4 = "+string(V)+"V")//four
    batteries of equal voltage connected in series
5 disp("VT = V1+V2+V3+V4 = "+string(V+V+V+V)+"V")//
    resultant voltage(series voltage)
```

Scilab code Exa 2.21 Net Voltage

```
1  //Ex2_20
2  clc
3  V = 2
4  disp("V1 = V2 = V3 = V4 = "+string(V)+"V")//four
        batteries of equal voltage connected in series
5  disp("VT = V1 = V2 = V3 = V4 = "+string(V)+"V")//
        parallel voltage
```

Scilab code Exa 2.22 Thevenin Equivalent Circuit

```
1 / Ex2_2
2 clc
3 //considering the fig. 2.17 given in the question
4 R1 = 1
5 R2 = 3
6 R3 = 2
7 V = 20
8 disp("R1 ="+string(R1)+"ohm")//value of resitance R1
9 disp("R2 ="+string(R2)+"ohm")//value of resitance R2
10 disp("R3 ="+string(R3)+"ohm")//value of resitance R3
     (across A and B terminals,
11
                                //across which thevenin
                                   equivalate circuit is
                                   need to determine)
12 disp("V ="+string(V)+"V")//value of D.C. voltage
     applied
13
14 //TO FIND THEVENIN'S RESISTANCE (RTH) ,...
15 //CONSIDERING FIG 2.17
16 // WE REMOVE THE RESISTANCE (R1) ACROSS LOAD
     TERMINAL AB I.E.
17 //AND ALSO WE SHORT THE VOLTAGE SOURCE
18 //NOW ACCORDING TO MODIFIED CIRCUIT
19
20 disp("1/RTH = 1/R3 + 1/R2 = "+string(1/((1/R3)+(1/R2))
     )))+"ohm")/R1 and R2 are in parallel
21
22 //TO FIND THEVENIN VOLTAGE (VTH) ,...
23 //CONSIDERING FIG 2.17
24 / WE DISCONNECT LOAD RESISTANCE (R1) AND MADE
     TERMINAL AB OPEN CIRCUIT
25 //ACCORDING TO MODIFIED CIRCUIT
26
27 //applying KVL in the loop, to find the amount of
     current flowing in circuit
28 //taking current as 'I' amperes
```

Chapter 3

Electrodynamics and CRO

Scilab code Exa 3.1 Force on electron

```
1 //Ex3_1
2 clc
3 E = 20*10^3
4 e = -(1.6*10^-19)
5 F = e*E
6 disp("E = "+string(E)+"ax V/m")//initializing
        electic field
7 disp("e = "+string(e)+"C")//intializing electron
        charge
8 disp("F = eE = "+string(F)+"ax N")// calculation for
        force on electron due to electric field
9
10 // NOTE: answer provided in the textbook is wrong
        Correct answer is , -3.2*10^16ax N
```

Scilab code Exa 3.2 Force on electron

```
1 / Ex3_2
```

```
2 clc
3 E = 50*10^3
4 e = -1.6*10^-19
5 N = 10^6
6 F = N*e*E
7 disp("E = "+string(E)+"az V/m")//value of Electric field applied
8 disp("e = "+string(e)+"C")//value of eletron charge
9 disp("N = "+string(N))//total number of charge
10 disp("F = NeE = "+string(F)+"az N")//force on electron
```

Scilab code Exa 3.3 Force on electron

Scilab code Exa 3.4 Force on electron

```
1 //Ex3_4
2 clc
3 Bx = 40*10^-6
4 By = 10*10^-6
5 N = 10^6
```

```
6 e = -1.6*10^-19
7 v = 8*10^6
8 disp("B = "+string(Bx)+"ax + "+string(By)+"ay Wb/m-sq")//magnetic field
9 disp("N = "+string(N))//number of electrons
10 disp("e = "+string(e)+"C")//electron charge
11 disp("v = "+string(v)+"ax m/s")//velocity of electron
12 disp("F = Q(VxB) = "+string(e*N*v*By)+" az N")//force on electron
13 //as we are taking curl of V and B,.. thus Vx X Bx = 0
14 //force will be only due to V x By.
```

Scilab code Exa 3.5 Current density

```
1 //Ex3_5
2 clc
3 e = -1.6*10^-19
4 n = 10^6
5 v = 5*10^6
6 J = n*e*v
7 disp("e = "+string(e)+"C")//charge of electrons
8 disp("n = "+string(n)+" /m-cube")//electron density
9 disp("v = "+string(v)+"m/s")//electron velocity
10 disp("J = nev = "+string(abs(J))+"A/m-sq")//current density
```

Scilab code Exa 3.6 Current density

```
1 //Ex3<sub>6</sub>
2 clc
3 v = 2*10^7
```

```
4 e = -1.6*10^-19
5 n = 10^8
6 J = n*e*v
7 disp("v = "+string(v)+"m/s")//velocity of electron
8 disp("e = "+string(e)+"C")//electron charge
9 disp("n = "+string(n)+" /m-cube")//electron density
10 disp("J = nev = "+string(abs(J))+"A/m-sq")//current density
11
12 //note: formula for current density in the solution in the textbook is misprinted
13 // also the answer is provide in the textbook for above problem is misprinted.
```

Scilab code Exa 3.7 Frequeny of Signal

```
1 //Ex3_7
2 clc
3 l = 4//cycle length
4 t = 10*10^-6//scale setting
5 T = l*t//time period for full cycle
6 disp("T = "+string(T)+" s")
7 disp("Frequency = 1/T = "+string(1/T)+"Hz")//
frequency of the signal
```

Scilab code Exa 3.8 RMS voltage

```
5 Vrms = Vm/(2^.5)//root mean square value of voltage 6 disp("Vm = "+string(Vm)+"V") 7 disp("Vrms = Vm/(2^.5) = "+string(Vrms)+"V")
```

Scilab code Exa 3.9 Current in 100 ohm resistance

```
1 //Ex3_9
2 clc
3 V = 4.5*10^-3//applied dc voltage
4 r = 100// given resistance
5 I = V/r//flow of current
6 disp("DC voltage = "+string(V)+"V")
7 disp("The current in 100 ohm = "+string(I)+"A")
```

Scilab code Exa 3.10 Deflection Sensitivity

Scilab code Exa 3.11 force on current element

Scilab code Exa 3.12 Velocity of electron and kinetic energy

```
1 / Ex3_12
2 clc
3 disp("v = (2*e*Va/m)^.5")//formula used to calculate
      velocity of electrons
4 e = -1.6*10^-19
5 m = 9.1*10^-31
6 \text{ Va} = 3.0*10^3
7 disp("e = "+string(e)+"C")//electron charge
8 disp("m = "+string(m)+"Kg")//mass of electron
9 disp("Va = "+string(Va)+"V")//potential difference =
      anode voltage
10 v = abs((2*e*Va/m))^{.5}
11 disp("v = "+string(v)+"m/s")
12 W = e*Va//kinetic energy
13 disp("W = e*Va = "+string(W)+"joules")//Kinetic
     energy
```

Scilab code Exa 3.13 Deflection of electron beam

```
1 / Ex3_13
2 clc
3 e = -1.6*10^-19
4 m = 9.1*10^-31
5 \text{ Va} = 400
6 v = (abs(2*e*Va/m))^{.5}
7 disp("e = "+string(e)+"C")//electron charge
8 disp("m = "+string(m)+"Kg")//mass of electron
9 disp("Va = "+string(Va)+"V")//anode voltage
10 disp("v = (2*e*Va/m)^{.5} = "+string(v)+"m/s")//
      formula used to calculate velocity of electrons
11 //as electron traces a circular path, radius of
      circular path
12 \text{ H} = 47.75
13 micro_not = 4*\%pi*10^-7
14 B = H*micro_not
15 disp("B = "+string(B) + "Wb/m-sq")
16 r = (v/(e/m)/B)
17 disp("r = (v/(e/m))/B = "+string(r)+"m")
18
19 // NOTE: Question is incompletely solved in the
      textbook
```

Scilab code Exa 3.14 Deflection sensitivity

```
1 //Ex3_14
2 clc
3 l = 22
4 d = 1.5
5 Va = 625
6 e = 1.6*10^-19
7 m = 9.1*10^-31
8 disp("l = "+string(l)+"cm")//distance from location of magnetic field
9 disp("d = "+string(d)+"cm")//length over which
```

```
magnetic field is present

10 disp("Va = "+string(Va)+"V")//voltage applied to anode

11 disp("e = "+string(e)+"C")//electron charge
12 disp("m = "+string(m)+"Kg")//mass of electron
13 SH = 1*10^-2*d*10^-2*(e/(2*m*Va))^.5
14 disp("SH = D/B = 1*d*(e/(2*m*Va))^.5 = "+string(SH)+"m/tesla")//magnetic deflection sensitivity in terms of meter and tesla
15 // as B = micro_not*H
16 micro_not = 4*%pi*10^-7
17 disp("SH = D/H = micro_not*1*d*(e/(2*m*Va))^.5 = "+string(SH*micro_not)+"m-sq/Amp.")//magnetic deflection sensitivity in terms of meter and amperes
```

Scilab code Exa 3.15 Electric field and velocity and deflection sensitivity

```
1 / Ex3_15
2 clc
3 \text{ Vd} = 50
4 d = 1
5 disp("(a)")
6 disp("Vd = "+string(Vd)+"V")//voltage applied to
      deflection plates
7 disp("d = "+string(d)+"cm")//plate separation
8 E = Vd/d/10^-2
9 disp("E = Vd/d = "+string(E)+"V/m")//electric field
      produced
10
11 disp("(b)")
12 e = -1.6*10^-19
13 \text{ m} = 9.1*10^{-31}
14 \ Va = 500
15 v = abs((2*e*Va/m))^{.5}
```

```
16 disp("v = (2*e*Va/m)^.5")// formula for Velocity OF
      Electron
17 disp("e = "+string(e)+"C")//electron charge
18 disp("m = "+string(m)+"Kg")//mass of electron
19 \operatorname{disp}("Va = "+\operatorname{string}(Va) + "V") // \operatorname{voltage} applied at
20 disp("v = "+string(v)+"m/s")
21
22 disp("(c)")
23 \quad 1 = 2
24 L = 30
25 \text{ Va} = 500
26 \text{ SE} = 1*L/2/Va/d*10
27 disp("l = "+string(1)+"cm")//length of deflection
      plate
28 disp("L = "+string(L)+"cm")//distance between plates
       and screen
29 disp("d = "+string(d)+"cm")//plate separation
30 disp("Va = "+string(Va)+"V")//anode voltage
31 disp("SE = (1*L)/(2*Va*d) = "+string(SE)+"mm/volts")
      // Electrostatic deflection sensitivity
```

Scilab code Exa 3.16 Phase difference using Lissajous pattern

```
//Ex3_16
clc
//considering Lissajous pattern given in question
y1 = 0
y2 = 5
phi = asind(y1/y2)
disp("y1 = "+string(y1)+"cm")//minor axis
disp("y2 = "+string(y2)+"cm")//major axis
disp("phi = sin-1(y1/y2) = "+string(phi)+"degree")//
phase difference
```

Scilab code Exa 3.17 Phase difference using Lissajous pattern

```
//Ex3_17
clc
//considering Lissajous pattern given in question
y1 = 4
y2 = 5
phi = asind(y1/y2)
disp("y1 = "+string(y1)+"unit")//minor axis
disp("y2 = "+string(y2)+"unit")//major axis
disp("phi = sin-1(y1/y2) = "+string(phi)+"degree")//
phase difference
```

Scilab code Exa 3.18 Phase difference using Lissajous pattern

```
//Ex3_16
clc
//considering Lissajous pattern given in question
y1 = 4
y2 = 4
phi = asind(y1/y2)
disp("y1 = "+string(y1)+"cm")//minor axis
disp("y2 = "+string(y2)+"cm")//major axis
disp("phi = sin-1(y1/y2) = "+string(phi)+"degree")//
phase difference
```

Scilab code Exa 3.19 Phase difference using Lissajous pattern

```
1 / Ex3_16
```

Chapter 4

Diode Characteristics and Applications

Scilab code Exa 4.1 Current in silicon diode

```
1 / Ex4_1
 2 clc
 3 \text{ Irs} = 0.2*10^-6
4 \text{ Vf} = 0.1
5 \text{ VT} = 26*10^{-3}
 6 \text{ eta} = 1//\text{for germanium}
7 I = Irs*(exp(Vf/eta/VT)-1)
8 disp("Irs = "+string(Irs)+"A")//reverse saturation
9 disp("Vf = "+string(Vf)+"V")//applied voltage
10 disp("VT = "+string(VT)+"V")//voltage at room
       temperature
11 disp("eta = "+string(eta))
12 \operatorname{disp}("I = \operatorname{Irs} *(\exp(\operatorname{Vf}/\operatorname{eta}/\operatorname{VT}) - 1)") // \operatorname{current} \operatorname{at room}
       temperature
13 disp("I = "+string(I)+"A")
14
15 //current in silicon:
16 eta = 2//for silicon
```

```
17 disp("eta = "+string(eta))
18 I = Irs*(exp(Vf/eta/VT)-1)
19 disp("I = "+string(I)+"A")
20
21
22
23
24 // note: incomplete solution in textbook for above question.
```

Scilab code Exa 4.2 Voltage in silicon diode

Scilab code Exa 4.3 Dynamic resistance of diode

```
1  //Ex4_3
2  clc
3  If = 3*10^-3//forward current
4  eta = 1//for germanium
```

```
5 T = 300//room temperature
6 VT = T/11600//voltage at room temperature
7 disp("If = "+string(If)+"A")
8 disp("eta = "+string(eta))
9 disp("T = "+string(T)+"degreeK")
10 disp("VT = "+string(VT)+"V")
11 Rdf = (eta*VT/If)//dynamic resistance at room temprature
12 disp("Rdf = (eta*VT/If) = "+string(Rdf)+"ohm")
```

Scilab code Exa 4.4 Transition Capacitance

```
1 / Ex4_4
2 clc
3 A = 4*10^-6
4 W = 1.5*10^-6
5 apsilent_r = 16//for germanium
6 apsilent_not = 8.85*10^-12//permitivity in vaccum
7 disp("A = "+string(A)+"m_sq")//cross sectional are
8 disp("W = "+string(W)+"m")//width of depletion layer
9 disp("apsient_r = "+string(apsilent_r))//relative
      permittivity
10 \operatorname{disp}(\text{"CT} = \operatorname{apsilent*A/W"}) / / \operatorname{transition} \operatorname{capacitance}
11 disp(" = "+string(apsilent_r*apsilent_not*A/W)+"F"
12
13
14 // note: units given in textbook in the solution for
       cross sectional area and width are misprinted.
```

Scilab code Exa 4.5 Diffusion Capacitance

```
1 / Ex4_5
```

Chapter 5

Rectifier and DC Power Supplies

Scilab code Exa 5.1 Current and ripple factor

```
1 / Ex5_{-}
2 clc
3 \text{ Vm} = 24
4 RL = 1.8*10^3
5 \text{ Im} = \text{Vm/RL}
6 \text{ Irms} = \text{Im}/2
7 Idc = Im/(\%pi)
8 r = ((Irms/Idc)^2 - 1)^.5
9 disp("Vm = "+string(Vm)+"V")//applied voltage to
      half wave rectifier
10 disp("RL = "+string(RL)+"ohm")//load resistance
11 disp("Im = Vm/RL = "+string(Im)+"A")//peak current
12 disp("Irms = Im/2 = "+string(Irms)+"A")//rms current
13 disp("Idc = Im/pi = "+string(Idc)+"A")//D.C. current
14 disp("r ((Irms/Idc)^2 - 1)^.5 = "+string(r))//ripple
       factor
```

Scilab code Exa 5.2 DC and peak voltage

```
1 / Ex5_2
2 clc
3 \text{ Vm} = 18
5 //in half wave circuit
6 \text{ Vdc} = \text{Vm/\%pi}
7 \text{ PIV} = \text{Vm}
8 disp("Vm = "+string(Vm)+"V")//peak voltage to
      rectifier
9 disp("Vdc = Vm/pi = "+string(Vdc)+"V")//D.C. voltage
10 disp("PIV = Vm = "+string(PIV)+"V")//peak inverse
      voltage
11
12 //in full wave circuit
13 Vdc = (2*Vm/\%pi)
14 \text{ PIV} = 2*Vm
15 \operatorname{disp}("Vdc = 2*Vm/pi = "+string(Vdc)+"V")/D.C.
      voltage
16 disp("PIV = 2*Vm = "+string(PIV)+"V")//peak inverse
      voltage for center trapped
17
18 //in full wave Bridge rectifier
19 disp("PIV = Vm = "+string(Vm)+"V")//peak inverse
      voltage
```

Scilab code Exa 5.3 Current and Voltage and Ripple Factor

```
1 //Ex5_3
2 clc
3 Vm = 12
4 RL = 1.5*10^3
5 Im = Vm/RL
6 Irms = Im/(2^.5)
```

```
7   Idc = (2*Im/%pi)
8   r =(((Irms/Idc)^2)-1)^.5
9   disp("Vm = "+string(Vm)+"V")//peak voltage to full
        rectifier
10   disp("Im = Vm/RL = "+string(Im)+"A")//peak current
11   disp("Irms = Im/(2^0.5) = "+string(Irms)+"A")//rms
        current
12   disp("Idc = (2*Im/pi) = "+string(Idc)+"A")//D.C.
        current
13   disp("r = (((Irms/Idc)^2)-1)^0.5 = "+string(r))//
        ripple factor
```

Scilab code Exa 5.4 Power and Rectification Efficiency

```
1 / Ex5_4
2 clc
3 \text{ Idc} = 10*10^{-3}
4 \text{ Irms} = 14*10^{-3}
5 \text{ RL} = 1*10^3
6 \text{ Pdc} = (Idc^2)*RL
7 \text{ Pac} = (Irms^2)*RL
8 disp("Idc = "+string(Idc)+"A")//D.C. current
9 disp("Irms = "+string(Irms)+"A")//rms current
10 disp("RL = "+string(RL)+"ohm")//load resistance
11 disp("Pdc = (Idc^2)*RL = "+string(Pdc)+"W")/D.C.
       power
12 \operatorname{disp}(\operatorname{Pac} = (\operatorname{Irms}^2) * RL = \operatorname{"+string}(\operatorname{Pac}) + \operatorname{"W"}) / / A.C.
       power
13 disp("eta_r = Pdc/Pac = "+string(Pdc/Pac*100)+"%")//
       Rectification efficiency
```

Scilab code Exa 5.5 Voltage and Current and Power and percentage regulation

```
1 / Ex5_{5}
2 clc
3 \text{ disp}("v = 12 \sin(wt)")
4 \text{ Vm} = 12
5 \text{ RL} = 1*10^3
6 \text{ Rf} = 10
7 \text{ Im} = \text{Vm/(RL+Rf)}
8 Idc = Im/%pi
9 \text{ Vdc} = \text{Idc*RL}
10 \text{ Irms} = \text{Im}/2
11 Pi = (Irms^2)*(RL+Rf)
12 \text{ VNL} = \text{Vm}/\text{%pi}
13 \text{ VL} = Idc*RL
14 Regulation = (VNL - VL)/VL
15 disp("Vm = "+string(Vm)+"V")//amplitude of applied
16 disp("RL = "+string(RL)+"ohm")//load resistance
17 disp("Rf = "+string(Rf)+"ohm")//forward resistance
18 disp("Im = Vm/(RL+Rf) = "+string(Im)+"A")//peak
       current
19 \operatorname{disp}(\operatorname{Idc} = \operatorname{Im}/\operatorname{pi} = \operatorname{"+string}(\operatorname{Idc}) + \operatorname{"A"})/\operatorname{D.C.} current
20 \operatorname{disp}("Vdc = \operatorname{Idc}*RL = "+\operatorname{string}(Vdc)+"V")/D.C,
       voltage
21 disp("Pi = (Irms^2)*(RL+Rf)")
22 disp("Irms = Im/2 = "+string(Irms)+"A")//rms current
23 disp("Pi = "+string(Pi)+"W")//input power
24 disp("%Regulation = (VNL - VL)/VL")
25 disp("VNL = Vm/pi = "+string(VNL)+"V")//non load
       voltage
26 disp("VL = Idc*RL = "+string(VL)+"")/load voltage
27 disp("%Regulation = "+string(Regulation*100)+"%")//
       percentage regulation
28
29
          NOTE: THE POWER CALCULATED IN THE TEXTBOOK IS
30
   //
      WRONG.
```

Scilab code Exa 5.6 Peak Inverse Voltage

```
1 / Ex5_6
2 clc
3 \text{ Vdc} = 15
4 disp("Vdc = "+string(Vdc)+"V")//applied D.C. voltage
5 // Half Wave Rectifier
6 \text{ Vm} = \text{\%pi*Vdc}
7 \text{ PIV} = \text{Vm}
8 disp("Vm = Vdc*pi = "+string(Vm)+"V")//D.C. voltage
      for half wave rectifier
9 disp("PIV = Vm = "+string(PIV)+"V")//peak inverse
      voltage for half wave rectifier
10 //Full Wave Rectifier
11 \text{ Vm} = \text{\%pi*Vdc/2}
12 \text{ PIV} = 2*Vm
disp("Vm = Vdc*pi/2 = "+string(Vm)+"V")/D.C.
      voltage for full wave rectifier
14 disp("PIV = 2*Vm = "+string(PIV)+"V")//peak inverse
      voltage for full wave rectifier
15 //Bridge Rectifier
16 \text{ Vm} = \text{\%pi*Vdc/2}
17 \text{ PIV} = \text{Vm}
18 disp("Vm = Vdc*pi/2 = "+string(Vm)+"V")/D.C.
      voltage for bridge rectifier
19 disp("PIV = Vm = "+string(PIV)+"V")//peak inverse
      voltage for bridge rectifier
```

Scilab code Exa 5.11 Half wave rectification

```
1 //Ex5_11
2 clc
```

Scilab code Exa 5.12 Full wave rectification

Scilab code Exa 5.13 Bridge Rectifier

```
10 disp("PIV = "+string(PIV)+"V")//peak inverse voltage
11
12
13 // note : value calculated for Vrms in the textbook
    is wrong.
```

Scilab code Exa 5.14 Ripple Voltage

Scilab code Exa 5.15 Ripple factor and DC current and load resistance

```
1 //Ex5_15
2 clc
3 C = 600*10^-6
4 T = 20*10^-3
5 Vr = 1.2
6 Vdc = 9
7 Vac = Vr/(2*(3^.5))
8 r = Vac/Vdc
9 Idc = (Vr*C)/(T/2)
10 RL = Vdc/Idc
11 disp("C = "+string(C)+"F")// rectifier capacitance
```

```
disp("T = "+string(T)+"s")//time
disp("Vr = "+string(Vr)+"V")//ripple voltage
disp("Vdc = "+string(Vdc)+"V")//D.C. voltage
disp("Vac = "+string(Vac)+"V")//A.C. voltage
disp("r = "+string(r))//ripple factor
disp("Idc = "+string(Idc)+"A")//D.C. current
disp("RL = "+string(RL)+"ohm")//load resistance
```

Scilab code Exa 5.16 Design pi section full wave filter

```
1 / Ex5_16
2 clc
3 L = 1// assuming inductance
4 f = 50//operating frequency
5 \text{ XL} = 2*\%pi*f*L//inductance}
6 RL = 100//assuming load resistance
7 r = .01//ripple factor
9 //let, capacitances C1 = C2 = C
10 // that implies XC1 = XC2 = XC
11 disp("XL = 2*\%pi*f*L = "+string(XL)+"ohm")
12 \operatorname{disp}("r = "+\operatorname{string}(r))
13 XC = ((r*8*XL*RL)/(2^{.5}))^{.5}//capacitive resistance
14 disp("XC = ((r*8*XL*RL)/(2^{.5}))^{.5} = "+string(XC)+"
      ohm")
15 disp("XC = 1/wC = 1/(2*pi*f*C) = "+string(XC))
16 C = 1/(2*\%pi*f*XC)//capacitance
17 disp("C = 1/(2*pi*f*XC) = "+string(C)+"F")
18 // thus, design parameters are :
19 disp("design parameters:")
20 disp("C1 = C2 = "+string(C) + "F")
21 disp("RL = "+string(RL)+"ohm")
22 \operatorname{disp}("L = "+\operatorname{string}(L) + "H")
23
24
```

25 // Note: the calculations done in the textbook for the given problem is wrong.

Scilab code Exa 5.17 DC voltage and current and Resistance

```
1 / Ex5_17
2 clc
3 f = 50
4 disp("vi = 16 sin(wt)")
5 \text{ Vdc} = 16
6 \text{ RL} = 100
7 C1 = 2*10^{-3}
8 C2 = 2*10^-3
9 L = 1.0
10 \text{ Idc} = \text{Vdc/RL}
11 XC1 = 1/(2*\%pi*f*C1)
12 \text{ XC2} = 1/(2*\%pi*f*C2)
13 \text{ XL} = 2*\%pi*f*L
14 r = ((2^{.5})*XC1*XC2)/(8*XL*RL)
15 disp("L = "+string(L)+"H")//inductance
16 \operatorname{disp}(\text{"C1} = \text{"+string(C1)+"F"})//\operatorname{capacitance} 1
17 \operatorname{disp}(\text{"C2} = \text{"+string(C2)+"F"})//\operatorname{capacitance} 2
18 disp("RL = "+string(RL)+"ohm")//load resistance
19 disp("f = "+string(f)+"Hz")//operating frequency
20 \operatorname{disp}("Vdc = "+string(Vdc)+"V")//d.c. \operatorname{voltage}
21 \operatorname{disp}(\operatorname{Idc} = \operatorname{Vdc}/\operatorname{RL} = \operatorname{"+string}(\operatorname{Idc}) + \operatorname{"A"})//\operatorname{d.c.}
       current
22 disp("XL = 2*\%pi*f*L = "+string(XL)+"ohm")//
       inductive resistance
23 disp("XC1 = 1/(2*\%pi*f*C1) = "+string(XC1)+"ohm")//
       capacitive resistance due to capacitance 1
   disp("XC2 = 1/(2*\%pi*f*C2) = "+string(XC2)+"ohm")//
       capacitive resistance due to capacitance 2
25 disp("r = ((2^{.5})*XC1*XC2)/(8*XL*RL) = "+string(r))
       //ripple factor
```

Chapter 6

Transistor Characteristics And Applications

Scilab code Exa 6.1 current gain

```
1 //Ex6_1
2 clc
3 IB = 40*10^-6
4 IC = 3*10^-3
5 beta = IC/IB
6 alpha = beta/(1+beta)
7 disp("IB = "+string(IB)+"A")//base current
8 disp("IC = "+string(IC)+"A")//collector current
9 disp("beta = IC/IB = "+string(beta))//current gain
    in CE configuration
10 disp("alpha = beta/(1+beta) = "+string(alpha))//
    current gain in CB configuration
```

Scilab code Exa 6.2 Transistor current and current gain

```
1 / Ex6_2
```

Scilab code Exa 6.3 Unknown Resistance in transistor

```
1 / Ex6_3
2 clc
3 \text{ alpha} = 0.98
4 \text{ VBE} = 0.7
5 	ext{ IE} = -2*10^-3
6 \text{ Re} = 100
7 \text{ RL} = 3.3*10^3
8 disp("alpha = "+string(alpha))//current gain
9 disp("VBE = "+string(VBE)+"V")//voltage across base-
       emitter
10 disp("IE = "+string(IE)+"A")//emitter current
11 disp("Re = "+string(Re)+"ohm")//emitter resistance
12 disp("RL = "+string(RL)+"ohm")//load resistance
13 //now according to circuit given for the question in
        the textbook
14 \text{ IC} = -\text{alpha} * \text{IE}
15 \operatorname{disp}("IC = -\operatorname{alpha*IE} = "+\operatorname{string}(IC) + "A") // \operatorname{collector}
```

```
current
16 	ext{ IB} = -IC - IE
17 disp("IB = -IC - IE = "+string(IB) + "A")//base
      current
18 VBN = VBE+(abs(IE)*Re)
19 disp("VBN = VBE + (IE * Re) = " + string(VBN) + "V") //
      voltage across base and ground(N)
20 //ASSUMING... value for R1 = 30*10^3 ohm
21 R1 = 30*10^3
22 \operatorname{disp}("R1 = "+\operatorname{string}(R1) + "\operatorname{ohm}") / / \operatorname{resistancfe} R1 as
      given in circuit
23 I = VBN/R1
24 disp("I = VBN/R1 = "+string(I)+"A")/current across
      resistance R1
25 //ASSUMING... VCC = 9V
26 VCC = 9//\text{collector voltage}
27 disp("VCC = "+string(VCC)+"V")
28 \quad VCN = VCC - (RL*(IC+I+IB))
29 disp("VCN = VCC - RL*(IC+I+IB)) = "+string(VCN)+"V")
      //voltage across collector and ground(N)
30 // according to the given diagram for the question
      in the textbook, unknown resistance is,
31 R = (VCN - VBN)/(I+IB)
32 disp("R = (VCN - VBN)/(I+IB) = "+string(R)+"ohm")//
      unknown resistance
```

Scilab code Exa 6.4 transistor current and resistance

```
1 //Ex6_4

2 clc

3 RC = 2.3*10^3

4 Re = 1*10^3

5 VCC = 12

6 VCE = 5

7 VBE = 0.7
```

```
8 \text{ beta} = 50
9 disp("RC = "+string(RC)+"ohm")//collector resistance
10 disp("Re = "+string(Re)+"ohm")//emitter resistance
11 disp("VCC = "+string(VCC)+"V")//supply voltage
12 disp("VCE = "+string(VCE)+"V")//voltage across
      collector and emitter
13 disp("VBE = "+string(VBE)+"V")//voltage across base
      and emitter
14 disp("beta = "+string(beta))//current gain
15 // according to the given circuit, we have
16 	ext{ IB} = (VCC - VCE)/((beta+1)*[RC+Re])
17 \operatorname{disp}("IB = (VCC - VCE) / ((beta+1)*[RC+Re]) = "+string"
      (IB)+"A")//base current
18 IC = beta*IB
19 disp("IC = "+string(IC)+"A")//collector current
20 //from the circuit we have,
21 \text{ Rt} = (VCE-VBE)/IB
22 disp("Rt = (VCE - VBE)/IB = "+string(Rt)+"ohm")//
      resistance Rt as given in circuit
```

Scilab code Exa 6.5 Base curre3nt and collector resistance

```
1  //Ex6.5
2  clc
3  VBB = 1
4  VCC = 12
5  IC = 12*10^-3
6  VCE = 4
7  beta = 80
8  VBE = 0.7
9  disp("VBB = "+string(VBB)+"V")//base supply voltage
10  disp("VCC = "+string(VCC)+"V")// collector supply voltage
11  disp("IC = "+string(IC)+"A")// collector current
12  disp("VCE = "+string(VCE)+"V")// voltage across
```

Scilab code Exa 6.6 Current gain and base reistance

```
1 / Ex6_{-6}
2 clc
3 VCC = 9
4 \text{ VBB} = 3
5 \text{ IC} = 2*10^{-3}
6 \text{ beta} = 50
7 \text{ VBE} = 0.7
8 \text{ VCE} = 4
9 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
10 disp("VBB = "+string(VBB)+"V")//base supply voltage
11 disp("IC = "+string(IC)+"A")//collector current
12 disp("beta = "+string(beta))//current gain
13 disp("VBE = "+string(VBE)+"V")//voltage across base
      and emitter
14 disp("VCE = "+string(VCE)+"V")//voltage across
      collector and emitter
15 IB = IC/beta
16 disp("IB = IC/beta = "+string(IB)+"A")//base current
17 RB = (VBB - VBE)/IB
18 \operatorname{disp}("RB = (VBB - VBE)/IB = "+string(RB)+"ohm")//
      base resistance according to the given in circuit
19
```

```
20
21 // note: misprint in the question, author is asking
    for IB instead of beta, as beta is already
    provided.
22 // note: calculation done in the textbook for the
    problem is wrong.
```

Scilab code Exa 6.7 base current and transistor resistance

```
1 / Ex6_7
2 clc
3 VCC = 12
4 \text{ VBB} = 3
5 \text{ IC} = 12*10^{-3}
6 \text{ VCE} = 5.5
7 \text{ beta} = 100
8 \text{ VBE} = 0.7
9 \text{ Re} = 50
10 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
11 disp("VBB = "+string(VBB)+"V")//base supply voltage
12 disp("IC = "+string(IC)+"A")//collector current
13 disp("VCE = "+string(VCE)+"V")//voltage across
      collector and emitter
14 disp("beta = "+string(beta))//current gain
15 disp("VBE = "+string(VBE)+"V")//voltage across base
      and emitter
16 disp("Re = "+string(Re)+"ohm")//emitter resistance
17 IB = IC/beta
18 disp("IB = IC/beta = "+string(IB)+"A")//base current
19 //from base-emitter circuit;
20 IE = IC+IB
21 \text{ Rb} = (VBB - VBE - (IE*Re))/IB
22 \operatorname{disp}("Rb = (VBB - VBE - IE*Re)/IB = "*string(Rb)+"
      ohm")//base resistance
```

```
//from collector-emitter circuit, we have
Rc = (VCC - VCE - (IE*Re))/(IC)

disp("Rc = (VCC - VCE - (IE*Re))/IC = "+string(Rc)+"
        ohm")//collector resistance

//NOTE : in textbook the notation used for base and emitter resistance in fig. and in calculation are different

// note : calculation perform in the textbook is wrong for the above problem
```

Scilab code Exa 6.8 Base and current current

```
1 / Ex6_8
2 clc
3 \text{ VBB} = 10
4 RB = 500*10^3
5 \text{ VCC} = 15
6 \text{ RC} = 1.2*10^3
7 \text{ beta} = 100
8 disp("beta = "+string(beta))//current gain
9 disp("VBB = "+string(VBB)+"V")//base supply voltage
10 disp("RB = "+string(RB)+"ohm")//resistance across
      base terminal
11 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
12 disp("RC = "+string(RC)+"ohm")//resistance across
      collector terminal
13 IB = VBB/RB
14 disp("IB = VBB/RB = "+string(IB)+"A")//base current
15 IC = beta*IB
```

Scilab code Exa 6.9 resistance and conductance calculation of CC configuration

```
1 / Ex6_{-9}
2 clc
3 \text{ ic} = 2*10^{-3}
4 ie = ic// as base current is negligble
5 \text{ VT} = 25*10^{-3}
6 \text{ re} = VT/ie
7 \text{ gm} = ie/VT
8 disp("ic = "+string(ic)+"A")//collector current
9 disp("ie = "+string(ie)+"A")//emitter current with
      negligble base current
10 disp("VT = "+string(VT)+"V")//voltage at room
      temperature
11 disp("re = VT/ie = "+string(re)+"ohm")//emitter
      resistance
12 disp("gm = ie/VT = "+string(gm)+"mho")//conductance
13 rc = 100*10^3//\text{slope} of output characteristics
14 disp("rc = "+string(rc)+"ohm")
15 hoe = 1/rc
16 disp("hoe = 1/rc = "+string(hoe)+"Mho")//output
      conductance
```

Scilab code Exa 6.10 common emitter current gain

```
1 //Ex6_10
2 clc
3 ic = 2.5*10^-3
4 ib = 50*10^-6
5 disp("ib = "+string(ib)+"A")//base current
6 disp("ic = "+string(ic)+"A")//collector current
7 beta = ic/ib
8 disp("beta = ic/ib = "+string(beta))//current gain
```

Scilab code Exa 6.11 common base current gain

```
1 //Ex6_11
2 clc
3 ic = 3*10^-3
4 ib = 3.08*10^-3
5 disp("ib = "+string(ib)+"A")//base current
6 disp("ic = "+string(ic)+"A")//collector current
7 alpha = ic/ib
8 disp("alpha = ie/ib = ic/ib = "+string(alpha))//current gain, assuming ie = ic
```

Scilab code Exa 6.12 peak to peak collector voltage and current

Scilab code Exa 6.13 Current gain in CE amplifier

Chapter 7

Transistor Biasing and Stabilization Techniques

Scilab code Exa 7.1 Emitter Resistance

```
1 //Ex7_1
2 clc
3 Ie = 6.0*10^-3
4 Ve = 1.1
5 Re = Ve/Ie
6 disp("Ie = "+string(Ie)+"A")//current flowing in emitter resistance
7 disp("Ve = "+string(Ve)+"V")//voltage drop across emitter resistance
8 disp("Re = "+string(Re)+"ohm")//emitter resistance
```

Scilab code Exa 7.2 Thermal resistance of transistor

```
1 // Ex7_2

2 clc

3 TA = 30
```

```
4 TJ = 48
5 PD = 4
6 TR = (TJ - TA)/PD
7 disp("TA = "+string(TA)+"degreeC")//ambient
    temperature at which transistor is operated
8 disp("TJ = "+string(TJ)+"degreeC")//junction
    temperature
9 disp("PD = "+string(PD)+"W")//dissipated power
10 disp("TR = (TJ - TA)/PD = "+string(TR)+"degreeC/W")
    //termal resistance
```

Scilab code Exa 7.3 power dissipation of transistor

Scilab code Exa 7.4 Q point in fixed bias circuit

```
1 //Ex7_4
2 clc
3 RC = 4*10^3
```

```
4 RB = 1.2*10^6
5 \text{ VCC} = 9
6 \text{ VBE} = .2
7 \text{ beta} = 80
8 disp("RC = "+string(RC)+"ohm")//collector resistance
9 disp("RB = "+string(RB)+"ohm")//base resistance
10 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
11 disp("VBE = "+string(VBE)+"V")//voltage across base
      and emittter
12 disp("beta = "+string(beta))//current gain
13 	ext{ IB} = (VCC - VBE)/RB
14 \operatorname{disp}("IB = (VCC - VBE)/RB = "+string(IB)+"A")//base
      current
15 IC = beta*IB
16 disp("IC = beta*IB = "+string(IC)+"A")//collector
      current
17 VCE = VCC - (IC*RC)
18 disp("VCE = VCC - (IC*RC) = "+string(VCE)+"V")//
      collector - emitter voltage
19 disp("The Q-point is ("+string(VCE)+"V, "+string(IC)+
      "A)")//Q-point in fixed bias circuit
```

Scilab code Exa 7.5 claculate base resistance to obtain optimum operatin point

```
1 //Ex7_5
2 clc
3 VBE = 0.6
4 beta = 100
5 disp("beta = "+string(beta))//current gain
6 disp("VBE = "+string(VBE)+"V")//voltage across base and emitter
7 //according to given circuit;
8 VCC = 12
```

Scilab code Exa 7.6 Q point for voltage divider base bias circuit

```
1 / Ex7_{-6}
2 clc
3 RC = 2*10^3
4 \text{ beta} = 100
5 \text{ VCC} = 9
6 \text{ RB} = 500*10^3
7 \text{ VBE} = 0.6
8 disp("RC = "+string(RC)+"ohm")//collector resistance
9 disp("beta = "+string(beta))//current gain
10 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
11 disp("RB = "+string(RB)+"ohm")//base resistance
12 disp("VBE = "+string(VBE)+"V")//base-emitter voltage
13 	ext{ IB} = (VCC - VBE)/RB
14 disp("IB = (VCC - VBE)/RB = "+string(IB)+"Amp")//
      base current
```

```
15   IC = beta*IB
16   disp("IC = beta*IB = "+string(IC)+"A")//collector
        current
17   VCE = VCC - IC*RC
18   disp("VCE = VCC - IC*RC = "+string(VCE)+"V")//
        collector -emitter voltage
19   disp("operating point is("+string(VCE)+"V, "+string(IC)+"A)")
```

Scilab code Exa 7.7 Q point for self bias circuit

```
1 / Ex7_{-}7
2 clc
3 VCC = 12
4 RB = 300*10^3
5 \text{ RC} = 1.5*10^3
6 \text{ Re} = 2*10^3
7 \text{ beta} = 100
8 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
9 disp("RB = "+string(RB)+"ohm")//base resistance
10 disp("RC = "+string(RC)+"ohm")//collector resistance
11 disp("Re = "+string(Re)+"ohm")//emitter resistance
12 disp("beta = "+string(beta))//current gain
13 IB = VCC/(RB + beta*Re)
14 \operatorname{disp}("IB = VCC/(RB + \operatorname{beta*Re}) = "+string(IB) + "A") //
      base current
15 IC = beta*IB
16 disp("IC = beta*IB = "+string(IC)+"A")//collector
      current
17 	ext{ IE} = 	ext{IB} + 	ext{IC}
18 disp("IE = IB + IC = "+string(IE)+"A")//emitter
      current
19 VCE = VCC - IC*RC - IE*Re
20 disp("VCE = VCC - IC*RC - IE*Re = "+string(VCE)+"V")
```

```
// collector -emitter voltage
21 disp("quiescent point is("+string(VCE)+"V, "+string(IC)+"A)")
```

Scilab code Exa 7.8 Operating point and stability factor of silicon transistor

```
1 // Ex7_8
2 clc
3 VCC = 9
4 RC = 3*10^3
5 RB = 500*10^3
6 \text{ beta} = 100
7 \text{ VBE} = 0.7
8 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
9 disp("RC = "+string(RC)+"ohm")//collector resistance
10 disp("RB = "+string(RB)+"ohm")//base resistance
11 disp("beta = "+string(beta))//current gain
12 disp("VBE = "+string(VBE)+"V")//emitter-base voltage
13 //for a Fixed Bais Circuit;
14 	ext{ IB} = (VCC - VBE)/RB
15 \operatorname{disp}("IB = (VCC - VBE)/RB = "+string(IB)+"A")//base
       current
16 \text{ IC} = \text{beta*IB}
17 disp("IC = beta*IB = "+string(IC)+"A")//collector
      current
18 \text{ VCE} = \text{VCC} - \text{IC*RC}
19 disp("VCE = VCC - IC*RC = "+string(VCE)+"V")//
      collector -emitter voltage
20 disp("operating point is("+string(VCE)+"V, "+string(
      IC) + "A)")
21 S = 1 + beta
22 disp("S = 1 + beta = "+string(S))//stability factor
23
```

```
24
25 // NOTE: in the textbook author has taken beta =
100 for calculation
26 // but has mention beta = 50 in Question
27 // I am working with beta = 100.
```

Scilab code Exa 7.9 Operating point and stability factor of self bias circuit

```
1 / Ex7_9
2 clc
3 R1 = 80*10^3
4 R2 = 25*10^3
5 \text{ Re} = 2*10^3
6 \text{ Rc} = 2*10^3
7 \text{ beta} = 100
8 \text{ VCC} = 12
9 \text{ VBE} = 0.7
10 disp("R1 = "+string(R1)+"ohm")
11 disp("R2 = "+string(R2) + "ohm")
12 disp("Re = "+string(Re)+"ohm")//emitter resistance
13 disp("Rc = "+string(Rc)+"ohm")//collector resistance
14 disp("beta = "+string(beta))//current gain
15 disp("VCC = "+string(VCC)+"V")//collector supply
      voltage
16 disp("VBE = "+string(VBE)+"V")//base-emitter voltage
17 \text{ Rb} = R1*R2/(R1+R2)
18 disp("Rb = R1*R2/(R1+R2) = "+string(Rb)+"ohm")//base
       resistance
19 VB = VCC*(R2/(R1+R2))
20 disp("VB = VCC(R2/(R1+R2)) = "+string(VB)+"V")//base
       voltage
21 IB = (VB - VBE)/(Rb*(1+((1+beta)*(Re/Rb))))
22 disp("IB = (VB - VBE)/(Rb*(1+((1+beta)*(Re/Rb)))")")
23 disp(" = "+string(IB)+"A")//base current
```

Scilab code Exa 7.10 Stability factor of self bias circuit

```
1 //Ex7_10
2 clc
3 delta_IC = 0.01*10^-3
4 delta_beta = 5
5 disp("delta_IC = "+string(delta_IC)+"A")//change of collector current
6 disp("delta_beta = "+string(delta_beta)+"A")//change in current gain
7 disp("S''' = delta_IC/delta_beta = "+string(delta_IC/delta_beta))//stability
```

Scilab code Exa 7.11 Thermal resistance of transistor

```
1 // Ex7_11

2 clc

3 TA = 30
```

```
4 TJ = 48
5 PD = 4
6 TR = (TJ - TA)/PD
7 disp("TA = "+string(TA)+"degreeC")//ambient
    temperature at which transistor is operated
8 disp("TJ = "+string(TJ)+"degreeC")//junction
    temperature
9 disp("PD = "+string(PD)+"W")//dissipated power
10 disp("TR = (TJ - TA)/PD = "+string(TR)+"degreeC/W")
    //termal resistance
```

Scilab code Exa 7.12 power dissipation of transistor

```
1 //Ex7.12
2 clc
3 TA = 28
4 TJ = 50
5 TR = 10
6 PD = (TJ - TA)/TR
7 disp("TA = "+string(TA)+"degreeC")//ambient
    temperature at which transistor is operated
8 disp("TJ = "+string(TJ)+"degreeC")//junction
    temperature
9 disp("TR = "+string(TR)+"degreeC/W")//termal
    resistance
10 disp("PD = (TJ - TA)/TR = "+string(PD)+"W")//
    dissipated power
```

Chapter 8

Analysis of transistor Amplifier using Hybrid Equivalent Circuit

Scilab code Exa 8.1 Calculating h parameters

```
1 // Ex8_{-1}
2 clc
3 disp("(a)")
4 \text{ Vce=0}
5 \text{ Ic} = 2 * 10^{-3}
6 \text{ Ib} = 30 * 10^{-6}
7 Vbe=50*10^-3
8 disp("Vce = "+string(Vce)+"V")//collector-emitter
      voltage
9 disp("Ic = "+string(Ic)+"A")//collector current
10 disp("Ib = "+string(Ib)+"A")//base current
11 disp("Vbe = "+string(Vbe)+"V")//base-emitter voltage
12 hfe=Ic/Ib
13 disp("hfe = Ic/Ib = "+string(hfe))//current gain in
     CE amplifier
14 hie=Vbe/Ib
15 disp("hie = Vbe/Ib = "+string(hie)+"ohm")//input
```

```
impedance in CE amplifier
16 disp("(b)")
17 Ib=0
18 \text{ Vce}=1
19 Vbe=0.3*10^-3
20 \text{ Ic=0.1*10^--3}
21 disp("Vce = "+string(Vce)+"V")//collector-emitter
      voltage
22 disp("Ic = "+string(Ic)+"A")//collector current
23 disp("Ib = "+string(Ib)+"A")//base current
24 disp("Vbe = "+string(Vbe)+"V")//base-emitter voltage
25 \text{ hoe=Ic/Vce}
26 disp("hoe = Ic/Vce = "+string(hoe)+"mho")//output
      conductance in CE amplifier
27 hre=Vbe/Vce
28 disp("hre = Vbe/Vce = "+string(hre))//voltage gain
      in CE amplifier
29
30 // note: textbook answers has printing mistake,
      regaeding hre.
```

Scilab code Exa 8.2 current gain and input resistance

```
1 //Ex8_2
2 clc
3 RL = 8*10^3
4 hie=1.0*10^3
5 hre=2.5*10^-4
6 hfe=50
7 hoe=25*10^-6
8 disp("RL = "+string(RL)+"ohm")//load resistance
9 //h-parameters for CE transistor amplifier are as follows:
10 disp("hie = "+string(hie)+"ohm")//input resistance of CE transistor
```

```
11 disp("hre = "+string(hre))//voltage gain of CE
       transistor
12 disp("hfe = "+string(hfe))//current gain of CE
       transistor
13 disp("hoe = "+string(hoe)+"mho")//output conductance
        of CE transistor
14 //calculation for current gain:
15 Ai = -hfe/(1+(hoe*RL))
16 disp("Ai = -hfe/(1+(hoe*RL)) = "+string(Ai))
17 disp("Ai = "+string(abs(Ai)))
18 //calculation for input resistance:
19 Ri = hie+(hre*Ai*RL)
20 \operatorname{disp}("Ri = \operatorname{hie} + (\operatorname{hre} * \operatorname{Ai} * RL) = "+ \operatorname{string}(Ri) + "\operatorname{ohm}")
21
22 //note : answer in the textbook regarding above
      problem is not accuratly calculated.
```

Scilab code Exa 8.3 current and voltage gain

```
1 / Ex8_3
2 clc
3 \text{ RL} = 8*10^3
4 \text{ Rs} = 500
5 hie=1.0*10^3
6 hre=2.5*10^-4
7 \text{ hfe}=50
8 hoe=25*10^-6
9 disp("RL = "+string(RL)+"ohm")//load resistance
10 disp("Rs = "+string(Rs)+"ohm")//source resistance
11 //h-parameters for CE transistor amplifier are as
      follows:
12 disp("hie = "+string(hie)+"ohm")//input resistance
      of CE transistor
13 disp("hre = "+string(hre))//voltage gain of CE
      transistor
```

```
14 disp("hfe = "+string(hfe))//current gain of CE
       transistor
15 disp("hoe = "+string(hoe)+"mho")//output conductance
        of CE transistor
16
17 Ai = -hfe/(1+(hoe*RL))
18 disp("Ai = -hfe/(1+(hoe*RL)) = "+string(Ai))//
       calculation for current gain
19
20 \text{ Ri} = \text{hie+(hre*Ai*RL)}
21 \operatorname{disp}("Ri = \operatorname{hie} + (\operatorname{hre} * \operatorname{Ai} * \operatorname{RL}) = " + \operatorname{string}(Ri) + "\operatorname{ohm}") / /
       calculation for input resistance
22
23 Ais=(Ai*Rs)/(Ri+Rs)
24 disp("Ais = (Ai*Rs)/(Ri+Rs)= "+string(Ais))//current
        gain with source resistance
25
26 \text{ Avs} = \text{Ai}*\text{RL}/\text{Ri}
27 disp("Avs = Ai*RL/Ri = "+string(Avs))//voltage gain
       with source resistance
28
29 //note : in the textbook above problem has given two
        values for hie BUT no value for hfe ...
              thus assuming hie =50 as hfe =50, as given
      in the previous example 8_2
31
32 //note: answer in the textbook is not accuratly
       calculated.
```

Scilab code Exa 8.4 current and voltage gain and input and output resistance

```
1 //Ex8_4
2 clc
3 RL=5*10^3
```

```
4 Rs=1.2*10^3
5 \text{ hre} = 2.5 * 10^{-4}
6 hie=1.1*10^3
7 \text{ hfe} = 100
8 hoe=25*10^-6
9 disp("RL = "+string(RL)+"ohm")//load resistance
10 disp("Rs = "+string(Rs)+"ohm")//source resistance
11 //h-parameters for CE transistor amplifier are as
       follows:
12 disp("hie = "+string(hie)+"ohm")//input resistance
       of CE transistor
13 disp("hre = "+string(hre))//voltage gain of CE
       transistor
14 disp("hfe = "+string(hfe))//current gain of CE
       transistor
15 disp("hoe = "+string(hoe)+"mho")//output conductance
        of CE transistor
16 //calculation for current gain:
17 Ai = -hfe/(1+(hoe*RL))
18 disp("Ai = -hfe/(1+(hoe*RL)) = "+string(abs(Ai)))
19 //calculation for input resistance:
20 \text{ Ri} = \text{hie+(hre*Ai*RL)}
21 disp("Ri = hie+(hre*Ai*RL) = "+string(Ri)+"ohm")
22 //calculation for voltage gain:
23 \text{ Av} = \text{Ai}*\text{RL}/\text{Ri}
24 \operatorname{disp}("Av = \operatorname{Ai*RL}/\operatorname{Ri} = "+\operatorname{string}(Av))
25 //calculation for output resistance:
26 Go=hoe-((hre*hfe)/(hie+Rs))
27 \text{ Ro} = 1/\text{Go}
28 \text{ disp}("Ro = 1/Go")
29 \operatorname{disp}("Go = \operatorname{hoe} - ((\operatorname{hre} * \operatorname{hfe}) / (\operatorname{hie} + \operatorname{Rs})) = " + \operatorname{string}(Go) +"
30 \operatorname{disp}("Ro = "+\operatorname{string}(Ro) + "\operatorname{ohm}")
31
32 //note: in the textbook, above problem has given
       two values for "hfe" and no value for "hre"...
                thus assuming value for "hre = 2.5*10^-4"
33 //
       as taken in previous example 8_2
```

```
34 // and "hfe=100"
35
36 //note : in text LOAD RESISTANCE is noted as Rc in question, but RL in solution.
37 // I have work with Load Resistance with notification RL.
```

Scilab code Exa 8.5 Amplifier current gain

Scilab code Exa 8.6 voltage gain of CE amplifier

```
1 //Ex8_6
2 clc
3 hfb = -0.999
4 hib = 50
5 hob = 0.82*10^-6
6 hrb = 4*10^-6
7 RL = 22*10^3
8 disp("RL = "+string(RL)+"ohm")//load impedence
```

```
9 //h-parameters for CB transistor amplifier are as
     follows:
10 disp("hib = "+string(hib)+"ohm")//input resistance
      of CB transistor
11 disp("hrb = "+string(hrb))//voltage gain of CB
      transistor
12 disp("hfb = "+string(hfb))//current gain of CB
      transistor
13 disp("hob = "+string(hob)+"mho")//output conductance
      of CB transistor
14 Av = -(hfb*RL)/((RL*(hib*hob-hfb*hrb))+hib)
  disp("Av = -(hfb*RL)/((RL*(hib*hob-hfb*hrb))+hib) =
     "+string(Av))//voltage gain
16
17
  //note : answer provided in the textbook is not
18
     precised.
```

Scilab code Exa 8.7 current and voltage gain and input and output resistance

```
1 //Ex8.7
2 clc
3 RL = 1.2*10^3
4 //assuming Rs = RL as given in problem
5 Rs = RL
6 //assuming values for h-parameters
7 hie = 1.0*10^3
8 hre=2.5*10^-4
9 hfe = 50
10 hoe = 25*10^-6
11 disp("RL = "+string(RL)+"ohm")//load resistance
12 disp("Rs = RL = "+string(RL)+"ohm")//source
    resistance
13 //h-parameters for CE transistor amplifier are as
```

```
follows:
14 disp("hie = "+string(hie)+"ohm")//input resistance
      of CE transistor
15 disp("hre = "+string(hre))//voltage gain of CE
      transistor
16 disp("hfe = "+string(hfe))//current gain of CE
      transistor
17 disp("hoe = "+string(hoe)+"mho")//output conductance
       of CE transistor
18 //calculation for current gain:
19 Ai = -hfe/(1+(hoe*RL))
20 disp("Ai = -hfe/(1+(hoe*RL)) = "+string(Ai))
21 //calculation for input impedence:
22 Ri = hie+(hre*Ai*RL)
23 disp("Ri = hie+(hre*Ai*RL) = "+string(Ri)+"ohm")
24 //calculation for voltage gain:
25 \operatorname{disp}("Av = \operatorname{Ai*RL/Ri"})
26 \text{ Av} = \text{Ai}*\text{RL}/\text{Ri}
27 \text{ disp}(" = "+string(Av))
28 //calculation for output impedence:
29 Ro = 1/((hoe - (hfe*hre)/(hie+Rs)))
30 disp("Ro = 1/((hoe - (hfe*hre)/(hie+Rs)))")
31 disp(" = "+string(Ro)+"ohm")
32 //current gain with source impedence:
33 Ais=(Ai*Rs)/(Ri+Rs)
34 disp("Ais = (Ai*Rs)/(Ri+Rs) = "+string(Ais))
35 //voltage gain with source impedence:
36 \text{ Avs} = \text{Av*Ri}/(\text{Ri+Rs})
37 \operatorname{disp}("Avs = Av*Ri/(Ri+Rs) = "+string(Avs))
38
39
40
  // NOTE: calculation in the textbook for the above
      problem is wrong.
42 //
              while calculating Ri author has use "hie =
       1.2*10^3" instead of ASSUMED9 value i.e., "hie =
       1.0 * 10 ^ 3"
```

Scilab code Exa 8.8 load resistance of CE transistor

```
1 //Ex8_8
2 clc
3 Ai = -60
4 hfe = 100
5 hoe = 10*10^-6
6 disp("hfe = "+string(hfe))//forward current gain
7 disp("hoe = "+string(hoe)+"A/V")//output conductance
8 disp("Ai = "+string(Ai))//current gain
9 disp("But, ...
10 Ai = -hfe/(1+ hoe*RL)")
11 RL = -(1/hoe)*(1+(hfe/Ai))
12 disp("Thus,...
13 RL = -(1/hoe)*(1+(hfe/Ai)) = "+string(RL)+"ohm")//load resistance
```

Scilab code Exa 8.9 voltage gain of CE amplifier

```
1 //Ex8_9
2 clc
3 Ai = -60
4 Ri = 2.0*10^3
5 RL = 15*10^3
6 disp("Ai = "+string(Ai))//current gain
7 disp("Ri = "+string(Ri)+"ohm")//input resistance
8 disp("RL = "+string(RL)+"ohm")//load resistance
9 Av = Ai*RL/Ri
10 disp("Av = Ai*RL/Ri = "+string(Av))//voltage gain
11
12 //note : in textbook,
```

```
13 // author notify LOAD RESISTANCE as 'Rc' in
        question BUT 'RL' in solution.
14 // I have work with "load resistance notified
        as RL".
```

Scilab code Exa 8.10 current gain of CE amplifier

```
1 / Ex8_10
2 clc
3 \text{ Av} = -200
4 \text{ Ri} = 10*10^3
5 \text{ RL} = 3*10^3
6 \text{ Ai} = \text{Av*Ri/RL}
7 disp("Av = "+string(Av))//voltage gain
8 disp("Ri = "+string(Ri)+"ohm")//input resistance
9 disp("RL = "+string(RL)+"ohm")//load resistance
10 disp("Ai = Av*Ri/RL = "+string(Ai))//current gain
11
12 // note : there are mis-printring in the textbook
      for the above problem regading formula and
              answer in the textbook for above problem
13 //
      is wrong.
```

Scilab code Exa 8.11 Input resistance of CE amplifier

```
1  //Ex8_11
2  clc
3  Av = -250
4  Ai = -50
5  RL = 12*10^3
6  disp("Av = "+string(Av))//voltage gain
7  disp("Ai = "+string(Ai))//current gain
```

```
8 disp("RL = "+string(RL)+"ohm")//load resistance
9 Ri = Ai*RL/Av
10 disp("Ri = Ai*RL/Av = "+string(Ri)+"ohm")//input
    resistance
```

Chapter 9

Field Effect Transistor

Scilab code Exa 9.1 Pinch off Voltage

```
1 / Ex9_1
2 clc
3 h = 5*10^-4
                        //channel height in centimeters
4 a = (1/2) *h
                       //channel width in centimeters
                       //resistivity in ohm_cm
5 \text{ rho} = 10
6 \text{ sigma} = 1/\text{rho}
                       //conductivity in mho/cm
                          //mobility in cm_sq/Vs
7 \text{ micro_p} = 500
8 apsilent_r = 12 // relative permiability in F/cm of
       silicon
9 apsilent_not=8.854*10^-14 //permiability in vaccum
      in F/cm
10 disp("a = "+string(a)+"cm")
11 disp("sigma = "+string(sigma)+"mho/cm")
12 disp("micro_p = "+string(micro_p)+"cm-sq/Vs")
13 disp("apsilent_r = "+string(apsilent_r)+"F/cm")
14 Vp = (a^2)*sigma/(2*apsilent_r*apsilent_not*micro_p)
        // pinch off voltage for silicon p channel FET
15 \operatorname{disp}("Vp = (a^2) * \operatorname{sigma}/(2 * \operatorname{apsilent_r} * \operatorname{apsilent_not} *)
      micro_p)")
16 \operatorname{disp}("Vp = "+\operatorname{string}(Vp) + "V")
```

Scilab code Exa 9.2 Impedance and amplification factor

```
1 / Ex9_2
2 clc
3 //calculating for conductance:
4 delta_ID = (4*10^-3) - (2*10^-3) / change in drain
     current in amperes
5 delta_VGS = 3-2//chande in gate-source voltage in
     volts
6 disp("delta_ID = "+string(delta_ID)+"A")
7 disp("delta_VGS = "+string(delta_VGS)+"V")
8 gm = delta_ID/delta_VGS//condutance at VDS =
     constant
9 disp("gm = delta_ID/delta_VGS")
10 disp("gm = "+string(gm)+" mho")
11 //calculating for drain resistance:
12 delta_ID = (3.2-3)*10^-3/change in drain current in
      amperes
13 delta_VDS = (12-8)//change in voltage across drai
     and source
14 disp("delta_ID = "+string(delta_ID)+"A")
15 disp("delta_VDS = "+string(delta_VDS)+"V")
16 rd = delta_VDS/delta_ID
17 disp("rd = delta_VDS/delta_ID")
18 disp("rd = "+string(rd)+" ohm")
19 //calculating for micro:
20 micro = rd*gm//amplification factor
21 disp("micro = rd*gm")
22 disp("micro = "+string(micro))
```

Scilab code Exa 9.3 pinch off voltage

```
1 / Ex9_3
2 clc
3 \operatorname{disp}("Vp = (a^2) * \operatorname{sigma}/(2 * \operatorname{apsilent} * \operatorname{micro_p})")//
      piunch off voltage
4 h = 2*10^-4
                      //channel height in centimeters
5 a = h/2
                  //channel width in centimeters
6 \text{ rho} = 1
                     //resistivity in ohm_cm
                     //conductivity in mho/cm
7 \text{ sigma} = 1/\text{rho}
8 \text{ micro_p} = 1800
                         //mobility in cm_sq/Vs
9 apsilent_r = 16 //relative permiability in F/cm of
      germanium
10 apsilent_not=8.854*10^-14 //permiability in vaccum
      in F/cm
11 disp("a = "+string(a)+"cm")
12 disp("rho = "+string(rho)+"ohm-cm")
13 disp("sigma = "+string(sigma)+"mho/cm")
14 disp("micro = "+string(micro_p)+"cm_sq/Vs")
15 disp("apsilent_r = "+string(apsilent_r)+"F/cm")
16 disp("apsilent_not = "+string(apsilent_not)+"F/cm")
17 Vp = (a^2)*sigma/(2*apsilent_r*apsilent_not*micro_p)
       // pinch off voltage for germanium p_channel FET
18 disp("Vp = "+string(Vp)+"V")
```

Scilab code Exa 9.4 Conductance and Resistance

Scilab code Exa 9.5 Resistance

```
1 //Ex9_5
2 clc
3 VGS = 4// voltage applied to gate terminal
4 IG = 2*10^-9//current flowing in gate
5 RGS = VGS/IG
6 disp("VGs = "+string(VGS)+"V")
7 disp("IG = "+string(IG)+"A")
8 disp("RGS = VGS/IG = "+string(RGS)+"ohm")//
    resistance brtween gate and source
```

Scilab code Exa 9.6 Voltage

Scilab code Exa 9.7 Amplification Factor

```
1 / Ex9_{-7}
2 clc
3 //parameters of JFET 1:
4 \text{ rd1} = 20*10^3//\text{resistance}
5 \text{ gm1} = 3*10^-3/\text{conductance}
6 disp("rd1 = "+string(rd1)+"ohm")
7 disp("gm1 = "+string(gm1)+"mho")
8 //parameters of JFET 2:
9 rd2 = 40*10^3//\text{resistance}
10 gm2 = 4*10^-3//conductance
11 \operatorname{disp}(\operatorname{rd}2 = \operatorname{restring}(\operatorname{rd}2) + \operatorname{ohm})
12 disp("gm2 = "+string(gm2)+"mho")
13 //the given JFETs are connected in parallel manner
14 micro = [(rd1*rd2*gm1)+(rd1*rd2*gm2)]/(rd1+rd2)
15 disp("micro = (rd1*rd2*gm1)+(rd1*rd2*gm2)/(rd1+rd2)
      = "+string(micro))//amplification factor
```

Scilab code Exa 9.8 Current and Voltage

```
1 //Ex9_8
2 clc
3 //according to the given figure in the textbook for problem 8 in chapter 9:
4 VGS = -2//voltage across gate and source
5 IDSS = 6*10^-3//maximum drain current
6 Vp = -6//pinch-off voltage
7 disp("IDSS = "+string(IDSS)+"A")
8 disp("Vp = "+string(Vp)+"V")
9 disp("VGS = "+string(VGS)+"V")
10 ID = IDSS*(1-(VGS/Vp))^2
11 disp("ID = IDSS*(1-(VGS/Vp))^2 = "+string(ID)+"A")//drainm current
12 Rd = 2*10^3//drain resistance
```

Scilab code Exa 9.9 Drain Voltage and Current

```
//Ex9_9
clc
Vp = -4//pinch off voltage
VGS = -1.5//gate source voltage
VDS_minimum = VGS - Vp//minimum VDS for Pinch Off voltage
disp("Vp = "+string(Vp)+"V")
disp("VGS = "+string(VGS)+"V")
disp("VDS_minimum = VGS - Vp = "+string(VDS_minimum) +"V")
IDSS = 6*10^-3//maximum drain current
ID = IDSS*(1-(VGS/Vp))^2//drain current at VGS = 0V
disp("IDSS = "+string(IDSS)+"A")
disp("IDSS = "+string(IDSS)+"A")
disp("ID = IDSS*(1-(VGS/Vp))^2 = "+string(ID)+"A")
```

Scilab code Exa 9.10 Drain Current and Voltage

```
1 //Ex9_10
2 clc
3 VGS = -2//voltage across gate and source
4 IDSS = 8*10^-3//maximum drain current
5 Vp = -6//pinch-off voltage
6 disp("IDSS = "+string(IDSS)+"A")
7 disp("Vp = "+string(Vp)+"V")
```

Chapter 10

Feedback Amplifier

Scilab code Exa 10.1 Close loop gain

```
1 //Ex10_1
2 clc
3 Av = 80//voltage gain
4 beta = 0.001//feedback ratio
5 disp("Av = "+string(Av))
6 disp("beta = "+string(beta))
7 Avf = Av/(1+beta*Av)//gain with negative feedback
8 disp("Avf = Av/(1+beta*Av) = "+string(Avf))
```

Scilab code Exa 10.2 Close loop gain and bandwidth

```
1 //Ex10_2
2 clc
3 Av = 50//voltage gain
4 beta = 0.01//feedback ratio
5 BW = 100*10^3//bandwidth
6 disp("Av = "+string(Av))
7 disp("beta = "+string(beta))
```

```
8 disp("Bandwidth = "+string(BW)+"Hz")
9 Avf = Av/(1+beta*Av)//gain with negative feedback
10 disp("Avf = Av/(1+beta*Av) = "+string(Avf))
11 BWf = BW*(1+beta*Av)//bandwidth with negative feedback
12 disp("(B.W)f = "+string(BWf)+"Hz")
13
14
15 // note : using variable "BW" instad of "B.W" ... as , if using B.W the software takes it as a function.
16 // similarly using "BWf" instead of (B.W)f.
```

Scilab code Exa 10.3 Feedback with reduced distortion

```
1 //Ex10_3
2 clc
3 Av = 200// voltage gain
4 D = 0.05// harmonic distortion in amplifier
5 Df = 0.02//final reduced distortion
6 beta = (D/Df-1)/Av//feedback gain
7 disp("Av = "+string(Av))
8 disp("D = "+string(D))
9 disp("Df = "+string(Df))
10 disp("beta = (D/Df - 1)/Av = "+string(beta))
11 disp("beta = "+string(beta*100)+"%")
```

Scilab code Exa 10.4 Change in close loop gain

```
1 // Ex10_4
2 clc
3 Av1 = 100//initial voltage gain
4 beta = 0.001//feedback ratio
```

```
5 \text{ disp}(\text{"Av1} = \text{"+string(Av1)})
6 disp("beta = "+string(beta))
7 Af1 = Av1/(1+beta*Av1)//initial gain with negative
       feedback
8 disp("Af1 = Av1/(1+beta*Av1) = "+string(Af1))
10 \text{ Av2} = 150 // \text{final voltage gain}
11 beta = 0.001//\text{feedback ratio}
12 \operatorname{disp}(\operatorname{"Av2} = \operatorname{"+string}(\operatorname{Av2}))
13 disp("beta = "+string(beta))
14 Af2 = Av2/(1+beta*Av2)//final gain with negative
       feedback
15 disp("Af2 = Av2/(1+beta*Av2) = "+string(Af2))
16
17 change_in_gain = Af2 - Af1//required change in gain
18 disp("change in gain required = Af2 - Af1 = "+string
       (change_in_gain))
19 delta_Avf = change_in_gain/Af1
20 \operatorname{disp}(\operatorname{delta_Avf} = \operatorname{Af2-Af1}/\operatorname{Af1} = \operatorname{"+string}(\operatorname{delta_Avf}) +
       "%")
```

Scilab code Exa 10.5 Open loop gain and feedback ratio

```
1 //Ex10_5
2 clc
3 Av = 40//voltage gain in decibles
4 disp("Av = "+string(Av)+"dB")
5 Av = 10^(Av/20)//voltage gain in V/V
6 disp("Av = "+string(Av))
7 Avf = 20//voltage gain with negative feedback in decibles
8 disp("Avf = "+string(Avf)+"dB")
9 Avf = 10^(Avf/20)//voltage gain with negative feedback in V/V
10 disp("Avf = "+string(Avf))
```

```
11 beta = ((Av/Avf)-1)/Av//feedback ratio
12 disp("beta = (Av/Avf - 1)/Av = "+string(beta))
13
14
15
16 // note: solution in the textbook for the above problem is wrong.
```

Scilab code Exa 10.6 Close loop and bandwidth

```
1 / Ex10_6
2 clc
3 \text{ Av} = 100 // \text{voltage gain}
4 beta = 0.05//feedback ratio
5 BW = 400*10^3 //bandwidth
6 disp("Av = "+string(Av))
7 disp("beta = "+string(beta))
8 disp("B.W. = "+string(BW) + "Hz")
9 Af = Av/(1+beta*Av)//gain with negative feedback
10 disp("Af = Av/(1+beta*Av) = "+string(Af))
11 BWf = BW*(1+beta*Av)//bandwidth with negative
      feedback
12 \operatorname{disp}("(B.W) f = "+\operatorname{string}(BWf) + "Hz")
13
14
15 // note : using variable "BW" instad of "B.W" ... as
      , if using B.W the software takes it as a
      function.
16 // similarly using "BWf" instead of (B.W) f.
```

Scilab code Exa 10.7 Voltage gain and feedback ratio

```
1 / Ex10_{-7}
```

```
2 clc
3 \text{ Po} = 100//\text{output power}
4 RL = 10//load resistance
5 \text{ disp}("Po = "+string(Po)+"W")
6 disp("RL = "+string(RL)+"ohm")
7 vo = (RL*Po)^0.5//output voltage
8 vi = 2//input voltage
9 disp("vo = (Rl*Po)^0.5 = "+string(vo)+"V")
10 \operatorname{disp}("vi = "+\operatorname{string}(vi)+"V")
11 Av = vo/vi//voltage gain
12 \operatorname{disp}("Av = vo/vi = "+string(Av))
13 D = 0.04// harmonic distortion in amplifier
14 Df = 0.0002//distortion after feedback
15 beta = (D/Df-1)/Av//feedback gain
16 disp("D = "+string(D))
17 disp("Df = "+string(Df))
18 disp("beta = (D/Df - 1)/Av = "+string(beta))
```

Scilab code Exa 10.8 Feedback ratio

```
1 //Ex10_8
2 clc
3 BW = 500*10^3//bandwidth
4 A = 200//gain of amplifier
5 BWf = 2*10^6//bandwidth with negative feedback
6 disp("B.W = "+string(BW)+"HZ")
7 disp("A = "+string(A))
8 disp("(B.W)f = "+string(BWf)+"Hz")
9 beta = ((BWf/BW)-1)/A//feedback ratio
10 disp("beta = ((B.W)f/B.W - 1)/A = "+string(beta))
11 disp("beta = "+string(beta*100)+"%")
12
13 // note : using variable "BW" instad of "B.W" ... as
    , if using B.W the software takes it as a
    function.
```

Scilab code Exa 10.9 Gain and 3dB frequency

```
1 / Ex10_{-9}
2 clc
3 A = 150//gain of amplifier
4 beta = 0.05//feedback ratio
5 \text{ disp}(\text{"A} = \text{"+string}(A))
6 disp("beta = "+string(beta))
7 Af = A/(1+beta*A)//gain with negative feedback
8 disp("Af = A/(1+beta*A) = "+string(Af))
9 fL = 20*10^3/lower 3dB frequency
10 \text{ fU} = 160*10^3/\text{upper } 3dB \text{ frequency}
11 disp("fL = "+string(fL) + "Hz")
12 disp("fU = "+string(fU)+"Hz")
13 fLf = fL/(1+beta*A)//lower 3dB gain with negative
      feedback
14 disp("fLf = fL/(1+beta*A) = "+string(fLf)+"Hz")
15 fUf = fU*(1+beta*A)//upper 3dB gain with negative
      feedback
16 disp("fUf = fU*(1+beta*A) = "+string(fUf)+"Hz")
```

Scilab code Exa 10.10 Voltage and input and output resistance

```
//Ex10_10
clc
//parameters of emitter follower circuit:
hie = 1.1*10^3//input resistance
hfe = 80//current gain
hoe = 2*10^-5//output conductance
Re = 2.2*10^3//emitter resistance
disp("hie = "+string(hie)+"ohm")
```

```
9 disp("hfe = "+string(hfe))
10 disp("hoe = "+string(hoe)+"mho")
11 disp("Re = "+string(Re)+"ohm")
12 gm = hfe/hie
13 Rif = hie*(1+gm*Re)//input resistance with feedback
14 disp("Rif = hie*(1+gm*Re) = "+string(Rif)+"ohm")
15 Rof = hie/(1+hfe)//output resistance with feedback
16 disp("Rof = hie/(1+hfe) = "+string(Rof)+"ohm")
17 Avf = gm*Re/(1+gm*Re)//voltage gain with negative feedback
18 disp("Avf = gm*Re/(1+gm*Re) = "+string(Avf))
```

Chapter 11

Power Amplifiers

Scilab code Exa 11.1 Efficiency

```
1 / Ex11_1
2 clc
3 \text{ VCC} = 20//\text{collector voltage}
4 RL = 12//load resistance
5 disp("VCC = "+string(VCC)+"V")
6 disp("RL = "+string(RL)+"ohm")
7 Pi_dc = (VCC^2)/(2*RL)/input power
8 disp("Pi(dc) = (VCC^2)/(2*RL) = "+string(Pi_dc)+"W")
9 Po_ac = (VCC^2)/(8*RL)//output power
10 \operatorname{disp}("Po_ac = (VCC^2)/(8*RL) = "+string(Po_ac)+"W")
11 eta = Po_ac/Pi_dc//efficiency
12 \operatorname{disp}("eta = Po_{ac}/Pi_{dc} = "+string(eta*100)+"%")
13
14
15 // note : has modifed variables:
16 //
              using Po_ac instead of Po(ac)
17 //
              and Pi_dc instead of Pi(dc).
18
19 // note: there is a misprinting in the above problem
       given in the textbook
20 //
             author want to ask for efficiency instead
```

Scilab code Exa 11.2 Power Losses

```
1 / Ex11_2
2 clc
3 \text{ Po\_ac} = 64//\text{output power}
4 eta = 0.3//efficiency
5 Pi_dc = Po_ac/eta//input power
6 disp("Po_ac = "+string(Po_ac)+"W")
7 disp("eta = "+string(eta))
8 disp("Pi_dc = Po_ac/eta = "+string(Pi_dc)+"W")
9 power_losses = Pi_dc - Po_ac//power losses
10 disp("Power losses = Pi_dc - Po_ac = "+string(
     power_losses)+"W")
11
12 // note : has modifed variables:
13 //
             using Po_ac instead of Po(ac)
             and Pi_dc instead of Pi(dc).
14 //
```

Scilab code Exa 11.3 Second Harmonic Distortion

```
1 //Ex11_3
2 clc
3 VCEmax = 18// highest value for collector emitter
    voltage
4 VCEmin = 2// lowest value for collector emitter
    voltage
5 VQ = 9//operating point voltage
6 disp("VCEmin = "+string(VCEmin)+"V")
7 disp("VCEmax = "+string(VCEmax)+"V")
8 disp("VQ = "+string(VQ)+"V")
```

Scilab code Exa 11.4 Total Harmonic Distortion

```
1 / Ex11_4
2 clc
3 //according to the given eqution for output current,
       we have:
4 I1 = 5.0
5 I2 = 0.9
6 	 13 = 0.6
7 I4 = 0.3
8 	ext{ I5} = 0.01
9 D2 = I2/I1// second harmonic distortion
10 D3 = I3/I1//third harmonic distortion
11 D4 = I4/I1//fourth harmonic distortion
12 D5 = \frac{15}{I1} / \frac{fifth harmonic distortion}{III}
13 disp("I1 = "+string(I1)+"A")
14 disp("I2 = "+string(I2)+"A")
15 disp("I3 = "+string(I3)+"A")
16 disp("I4 = "+string(I4)+"A")
17 \text{ disp}("I5 = "+string(I5)+"A")
18 disp("D2 = I2/I1 = "+string(D2))
19 disp("D3 = I3/I1 = "+string(D3))
20 disp("D4 = I4/I1 = "+string(D4))
21 disp("D5 = I5/I1 = "+string(D5))
22 D = [(D2^2) + (D3^2) + (D4^2) + (D5^2)]^{(1/2)} / total
      harmonic distortion
```

```
23 disp("D = [(D2^2)+(D3^2)+(D4^2)+(D5^2)]^(1/2) = "+string(D*100)+"%")
```

Scilab code Exa 11.5 Amplifier Efficiency

```
1 / Ex11_{5}
2 clc
3 \text{ VCC} = 9//\text{collector voltage}
4 Vp = 5//output peak voltage
5 VQ = VCC//operating point
6 VCEmax = VQ + Vp// maximum value of collector
      emitter voltage
7 VCEmin = VQ - Vp// minimum value of collector
      emitter voltage
8 disp("VCC = "+string(VCC)+"V")
9 \operatorname{disp}("Vp = "+\operatorname{string}(Vp) + "V")
10 disp("VQ = VCC = "+string(VQ)+"V")
11 disp("VCEmax = VQ + Vp = "+string(VCEmax)+"V")
12 disp("VCEmin = VQ - Vp = "+string(VCEmin)+"V")
13 eta = 50*[(VCEmax - VCEmin)/(VCEmax + VCEmin)]//
      amplifier efficiency
14 disp("eta = 50*[(VCEmax - VCEmin)/(VCEmax + VCEmin)]
       = "+string(eta)+"%")
```

Scilab code Exa 11.6 Efficiency

```
1 //Ex11_6
2 clc
3 VCC = 20//collector voltage
4 RL = 10//load resistance
5 disp("VCC = "+string(VCC)+"V")
6 disp("RL = "+string(RL)+"ohm")
7 Pi_dc = (VCC^2)/(RL)//input power
```

```
8 disp("Pi(dc) = (VCC^2)/(RL) = "+string(Pi_dc)+"W")
9 Po_ac = (VCC^2)/(2*RL)//output power
10 disp("Po_ac = (VCC^2)/(2*RL) = "+string(Po_ac)+"W")
11 eta = Po_ac/Pi_dc//efficiency
12 disp("eta = Po_ac/Pi_dc = "+string(eta*100)+"%")
13
14
15 // note : has modifed variables:
16 // using Po_ac instead of Po(ac)
17 // and Pi_dc instead of Pi(dc).
```

Scilab code Exa 11.7 Turns Ratio

```
1 //Ex11_7
2 clc
3 RL = 3.6*10^3//output impedence of power amplifier
4 RL_dash = 4//resistance of speaker
5 n = (RL/RL_dash)^.5//turns ratio
6 disp("RL = "+string(RL)+"ohm")
7 disp("RL_dash = "+string(RL_dash)+"ohm")
8 disp("n = RL/RL_dash = "+string(n))
9 disp("turn ratio = "+string((numer(n)))+": "+string(denom(n)))
```

Scilab code Exa 11.8 Amplifier Efficiency

```
1 //Ex11_8
2 clc
3 VCC = 15//collector voltage
4 Vp = 12//output peak voltage
5 disp("VCC = "+string(VCC)+"V")
6 disp("Vp = "+string(Vp)+"V")
7 eta = 78.5*(Vp/VCC)//amplifier efficiency
```

```
8 disp("eta = 78.5*(Vp/VCC) = "+string(eta)+"%")
```

Scilab code Exa 11.9 Efficiency

```
1 / Ex11_9
2 clc
3 \text{ VCC} = 25//\text{collector voltage}
4 Vi = 9//inout rms voltage
5 \text{ RL} = 10//\text{load resistnce}
6 Vi_peak = 1.414*Vi//input peak voltage
7 Vo = Vi_peak//output peak voltage
8 Po_ac = (Vo^2)/(2*RL)/output power
9 Io = Vo/RL//output current
10 IC = (2/\%pi)*Io//collector current
11 Pi_dc = VCC*IC//input power
12 eta = Po_ac/Pi_dc//efficiency
13 disp("VCC = "+string(VCC)+"V")
14 disp("Vi = "+string(Vi)+"V")
15 disp("RL = "+string(RL)+"ohm")
16 \operatorname{disp}("Vi_{peak} = (2^2)Vi = "+string(Vi_{peak})+"V")
17 disp("Vo = Vi_peak = "+string(Vo)+"V")
18 disp("Po_ac = (Vo^2)/(2*RL) = "+string(Po_ac)+"W")
19 \operatorname{disp}("Io = Vo/RL = "+string(Io) + "A")
20 disp("IC = (2/\%pi)*Io = "+string(IC)+"A")
21 \operatorname{disp}("\operatorname{Pi_dc} = \operatorname{VCC*IC} = "+\operatorname{string}(\operatorname{Pi_dc}) + "W")
22 \operatorname{disp}("eta = Po_{ac}/Pi_{dc} = "+string(eta*100)+"%")
```

Scilab code Exa 11.10 Efficiency

```
1 //Ex11_10
2 clc
3 VCC = 18//collector voltage
4 Vp = 15//output peak voltage
```

```
5 RL = 12//load resistnce
6 disp("VCC = "+string(VCC)+"V")
7 disp("Vp = "+string(Vp)+"V")
8 disp("RL = "+string(RL)+"ohm")
9 Ip = Vp/RL//output peak current
10 Idc = (2/%pi)*Ip//input direct current
11 disp("Ip = Vp/RL = "+string(Ip)+"A")
12 disp("Idc = (2/%pi)*Ip = "+string(Idc)+"A")
13 Pi_dc = VCC*Idc//input power
14 disp("Pi_dc = VCC*Idc = "+string(Pi_dc)+"W")
15 Po_ac = (Vp^2)/(2*RL)//output power
16 disp("Po_ac = (Vp^2)/(2*RL) = "+string(Po_ac)+"W")
17 eta = Po_ac/Pi_dc//efficiency
18 disp("eta = Po_ac/Pi_dc = "+string(eta*100)+"%")
```

Scilab code Exa 11.11 Voltage Gain

```
1 //Ex11_11
2 clc
3 Vop_p = 7//peak to peap output voltage
4 Vip_p = 100*10^-3//peak to peap input voltage
5 Av = Vop_p/Vip_p
6 disp("Av = output voltage/input voltage")
7 disp(" = "+string(Av))//voltage gain
```

Scilab code Exa 11.12 Power Gain

```
1  //Ex11_12
2  clc
3  Ai = 50//current gain
4  Av = 70//voltage gain
5  disp("Ai = "+string(Ai))
6  disp("Av = "+string(Av))
```

```
7 Ap = Ai*Av//power gain
8 disp("Ap = Ai*Av = "+string(Ap))
```

Scilab code Exa 11.13 Power Dissipated At Collector Junction

```
1 //Ex11_13
2 clc
3 vc = 9//collector voltage
4 ic = 3*10^-3//collector current
5 Pd = vc*ic//power dissipated at collector junction
6 disp("vc = "+string(vc)+"V")
7 disp("ic = "+string(ic)+"A")
8 disp("Pd = vc*ic = "+string(Pd)+"W")
```

Scilab code Exa 11.14 Power Efficiency

```
//Ex11_14
clc
Pac = 3.2*10^-3//output power
Pd = 27*10^-3//power dissipated collector junction
P_eta = Pac/Pd//power efficiency
disp("Pac = "+string(Pac)+"W")
disp("Pd = "+string(Pd)+"W")
disp("P_eta = Pac/Pd = "+string(P_eta*100)+"%")
```

Chapter 13

Oscillators

Scilab code Exa 13.1 Feedback fraction to obtain sustained oscillator

```
1 //Ex13_1
2 clc
3 A = 100//amplification gain
4 A_Beta = 1//for sustain oscillation
5 Beta = A_Beta/A//feeback ratio
6 disp("A = "+string(A))
7 disp("A_Beta = "+string(A_Beta))
8 disp("Beta = "+string(Beta))
```

Scilab code Exa 13.2 Frequency of RC phase oscillator

Scilab code Exa 13.3 Frequency of Wein Bridge oscillator

```
1 //Ex13_3
2 clc
3 Rf = 1.5*10^6//feeback resistance
4 Cf = 1*10^-9//capacitance across feedback
5 f0 = 1/(2*%pi*Rf*Cf)//frequency of oscillation
6 disp("Rf = "+string(Rf)+"ohm")
7 disp("Cf = "+string(Cf)+"F")
8 disp("f0 = 1/(2*pi*Rf*Cf) = "+string(f0)+"Hz")
```

Scilab code Exa 13.4 Feedback fractor and frequency of Colpitts oscillator

```
1 //Ex13_4
2 clc
3 C1 = 1*10^-9//capacitance of capacitor 1
4 C2 = 10*10^-9//capacitance of capacitor 2
5 L = 110*10^-6//inductance of inductor
6 beta = C1/C2//feedback factor
7 f0 = ((C1+C2)/(C1*C2*L))^.5/(2*%pi)//operating frequency
8 disp("C1 = "+string(C1)+"F")
9 disp("C2 = "+string(C2)+"F")
10 disp("L = "+string(L)+"H")
11 disp("beta = "+string(beta))
```

```
12 disp("f0 = ((C1+C2)/(C1*C2*L))^{.5}/(2*pi) = "+string(f0)+"Hz")

13
14 //note : unit given for inductance "L" is wrong in the textook for the above question.
```

Chapter 14

Operational Amplifier and Applications

Scilab code Exa 14.1 Common Mode Rejection Ratio

Scilab code Exa 14.2 Common Mode Rejection Ratio

```
\begin{array}{ccc} 1 & //\operatorname{Ex} 14 \_2 \\ 2 & \operatorname{clc} \end{array}
```

```
3 CMRR_dB = 100//Common Mode Rejection Ratio in
          decibles
4 CMRR = 10^(100/20)//CMRR as a ratio
5 disp("CMRR = "+string(CMRR_dB)+"dB")
6 disp("CMRR = 10^(100/20) = "+string(CMRR))
```

Scilab code Exa 14.3 Output Voltage Of Op amp Adder Circuit

```
1 / Ex14_3
2 clc
3 Rf = 10*10^3 //feedback resistance
4 R1 = 10*10^3 / resistance 1
5 R2 = 2*10^3/resistance 2
6 v1 = 10//input voltage across resistance 1
7 v2 = 4//input voltage across resistance 2
8 //note: according to the given fig. in the textbook
     for the question we have:
10 vo = -Rf*((v1/R1)+(v2/R2))/output voltage of adder
     circuit
11 disp("Rf = "+string(Rf)+"ohm")
12 disp("R1 = "+string(R1)+"ohm")
13 disp("R2 = "+string(R2)+"ohm")
14 disp("v1 = "+string(v1)+"V")
15 disp("v2 = "+string(v2)+"V")
16 disp("vo = -Rf*((v1/R1)+(v2/R2)) = "+string(vo)+"V")
```

Scilab code Exa 14.4 Output Voltage Of Op amp Adder Circuit

```
1 //Ex14_4
2 clc
3 Rf = 1*10^3//feedback resistance
4 R1 = 1*10^3//resistance 1
```

```
5 R2 = 1*10^3//resistance 2
  6 R3 = 1*10^3//resistance 3
   7 \text{ v1} = 2//\text{input voltage } 1
  8 \text{ v2} = 1//\text{input voltage } 2
   9 \text{ v3} = 3//\text{input voltage } 3
10 vo = -Rf*((v1/R1)+(v2/R2)+(v3/R3))/output voltage
                             of adder circuit
11 disp("Rf = "+string(Rf)+"ohm")
12 disp("R1 = "+string(R1)+"ohm")
13 disp("R2 = "+string(R2)+"ohm")
14 disp("R3 = "+string(R3)+"ohm")
15 disp("v1 = "+string(v1)+"V")
16 disp("v2 = "+string(v2)+"V")
17 \text{ disp}("v3 = "+string(v3)+"V")
18 disp("vo = -Rf*((v1/R1)+(v2/R2)+(v3/R3)) = "+string("vo = -Rf*((v1/R1)+(v2/R2)+(v3/R3))) = "+string("vo = -Rf*((v1/R1)+(v3/R3))) = "+string("vo = -Rf*((v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v1/R1)+(v
                            vo)+"V")
```

Scilab code Exa 14.7 Designing a close loop op amp

```
1 //Ex14_7
2 clc
3 Af = -20//closed loop gain of op—amp
4 R = 10*10^3//output resistance
5 Rf = -Af*R//feedback resistance
6 disp("Af = "+string(Af))
7 disp("R = "+string(R)+"ohm")
8 disp("Rf = -Af/R = "+string(Rf)+"ohm")
```