

ARTICLE

https://doi.org/10.1038/s41467-019-14234-7

OPEN

Strain-controlled power devices as inspired by human reflex

Shuo Zhang^{1,2,7}, Bei Ma^{3,7}, Xingyu Zhou^{1,2,7}, Qilin Hua ^{1,2*}, Jian Gong⁴, Ting Liu^{1,2}, Xiao Cui^{1,2}, Jiyuan Zhu^{1,2}, Wenbin Guo^{1,2}, Liang Jing^{1,2}, Weiguo Hu^{1,2,5*} & Zhong Lin Wang ^{1,2,5,6*}

Bioinspired electronics are rapidly promoting advances in artificial intelligence. Emerging AI applications, e.g., autopilot and robotics, increasingly spur the development of power devices with new forms. Here, we present a strain-controlled power device that can directly modulate the output power responses to external strain at a rapid speed, as inspired by human reflex. By using the cantilever-structured AIGaN/AIN/GaN-based high electron mobility transistor, the device can control significant output power modulation $(2.30-2.72\times10^3\,\mathrm{W\,cm^{-2}})$ with weak mechanical stimuli (0–16 mN) at a gate bias of 1 V. We further demonstrate the acceleration-feedback-controlled power application, and prove that the output power can be effectively adjusted at real-time in response to acceleration changes, i.e., ΔP of 72.78–132.89 W cm⁻² at an acceleration of 1–5 G at a supply voltage of 15 V. Looking forward, the device will have great significance in a wide range of AI applications, including autopilot, robotics, and human-machine interfaces.

1

¹CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China. ² School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. ³ Graduate School of Electrical and Electronic Engineering, Chiba University, Chiba 263-8522, Japan. ⁴ Estuarine and Coastal Environment Research Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China. ⁵ Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China. ⁶ School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA. ⁷These authors contributed equally: Shuo Zhang, Bei Ma, Xingyu Zhou. *email: huaqilin@binn.cas.cn; huweiguo@binn.cas.cn; zhong.wang@mse.gatech.edu