제조 빅데이터 전문가 과정

빅데이터 기반의 생산성 효율

(주)에스투비즈 대표컨설턴트 이 이 백

Content

03 제조 빅데이터 분석

04 품질 최적화

05 설비 예지보전 및 생산 최적화

06 제조산업에서의 딥런닝 활용

02 품질 최적화

품질 최적화

Process

Quality정보 수집

검사/측정

Exploration

Analytics

사후 조치

- 4M
 - 자재(material)
 - 설비(machine)
 - 작업(method)
 - 작업자(man)
- WIP History
- Production History
- FDCParameter

- CTQ Parameters
- 양품과 불량의 식별
- 자주검사
- Vision 측정 검사

- Chart
- Pareto
- 공정 능력
- SPC
- Real TimeMonitoring

- Root Cause Analytic
 - 비교자원간 유 의차 분석
- Prediction
- Forecasting

- Recipe 조정 을 위한 DoE
- 지능화 프로 젝트 추진
- Run To Run

품질 최적화

Quality

- Cost of Quality
- Quality : 설계, 부품, 제조, 설비의 요구기능과 성능의 완전성
- 품질관리 활동
 - 불량원인의 조기검출
 - 고객사에 위음성(false negative) 제품의 반출 예방
 - 고객 이슈의 공정 추적 및 원인 규명
- Analytics
 - Abnormal Detection SPC, Timeserise, PCA, Autoencoder
 - Root Cause Analysis : Decision Tree, Random Forest, Autoencoder
 - Image 분석 CNN
 - Clustering : PCA, Kmeans, TSNE
 - Prediction: Yield, Demand Forecasting
 - ML Support Vector Machine, Random Forest
 - DL MLP, CNN, RNN

Anomaly Detection

TYPES OF ANOMALIES

Anomalies can be classified as Point, Collective or Contextual.

- · Point Anomaly
- If an individual data instance can be considered as anomalous with respect to the rest of the data (e.g. purchase with large transaction value)
- Contextual Anomaly
- If a data instance is anomalous in a specific context, but not otherwise (anomaly if occur at certain time or certain region.
 e.g. large drop at middle of month in consumption)
- Collective Anomaly
- If a collection of related data instances is anomalous with respect to the entire data set, but not individual values (e.g. breaking rhythm in ECG)

Anomaly Detection

단변량

IQR

Boxplot = Box Whisker Plot

IQR = 3Q - 1Q

이상치 기준

- 상한 = 3Q + IQR*1.5
- 하한= 1Q IQR*1.5

■ Box Plot/IQR을 이용한 Parameter의 이상치 검토

Anomaly Detection

단변량

SPC

- 시간의 흐름에 따른 공정의 변화 식별
- 공정이 얼마나 안정적인지 불안정적인지 판단
 - Current ≒ History
- 기준 data: Historical data
- 목적에 따른 Control Chart 유형
 - X-bar chart
 - R chart
 - S chart
 - P chart
 - NP chart
 - C chart
 - U chart

SPC 유형	내용
Xbar	■ Sample Means ■ Parameter의 평균값
R	■ Parameter평균의 변동 범위
S	■ Parameter의 표준편차
Р	Portion of Nonconfirming불량율
NP	Number of nonconfirming Units불량수
С	Number of defectives per unitDefect 수
u	 Average number of defectives per unit 단위당 평균Defect 수

Anomaly Detection - 단변량 - SPC

Anomaly Detection

단변량

SPC

Xbar-S Chart of V

019 2/18/2019 2/26/2019 3/6/2019 3/18/2019 3/27/2019 4/4/2019 4/13/2019 4/23/2019 5/13/2019

Control Charts in R. datascienceplus.com

How to make a matplotlib bar chart sharpsightlabs.com

15 Python and R Charts with In.. moderndata.plot.ly

All Charts - The Python Gr. python-graph-gallery.com

Python Data Visualization Libraries . mode.com

Minitab style control chart. stackoverflow.com

python-graph-gallery.com

Python Programming Tutorials pythonprogramming.net

Easier chart creation in Python . labs.spotify.com

Plotting - pandas 0.15.0. pandas.pydata.org

Control Charts in Six Sigma. greycampus.com

Easier chart creation in Python .. labs.spotify.com

Data Visualization with Bok. towardsdatascience.com

Matplotlib - The Python Graph G.. python-graph-gallery.com

matplotlib: python plotting omz-software.com

Control Chart with Scripted Rule Checks joshuaschultz.com

Python Plotting Basics - Towards Data .. towardsdatascience.com

Advanced plotting with Pandas - Geo .. geo-python.github.io

Anomaly Detection 다변량 비지도 학습 PCA

- 고차원 데이터를 정보의 손실을 최소화하며 저차원으로 변환하는 기법
- 데이터 차원(=변수)의 선형 결합을 통해 새로운 특징 차원(=주성분변수) 즉 주성분을 산출
 - 상관계수 또는 분산-공분산을 이용하여 원래변수를 선형결합하여 주성분 변수의 고유치(Eigen Value)와 고유벡터(Eigen Vector)를 산출
 - 결과적으로 주성분 변수간에는 상관성이 최대한 제거되게 함
- 주성분의 양이 많은 소수의 특징 차원이 본래 데이터 차원을 충분히 설명할 수 있으면 원래의 데이터 차원 대신 소수의 특징 차원으로 탐색 및 분석 모델링에 활용할 수 있음
- 탐색 주성분 특징변수 2~3개로 시각화
- 군집화 특징변수의 값이 비슷할수록 원래변수간 상관성이 은 경향을 보임
- 모델활용 회귀모형의 독립변수로 활용하여 다중공선성 회피
- PCA를 이용한 Anomaly Detection
 - 주성분 2 또는 3개로 산점도 그래프로 시각화하여 군집에서 떨어진 관찰치 탐색
 - 주성분값의 Timeseries 관찰
 - Mahalanobis의 접목

blog.twitter.com

subscription.packtpub.com

stackoverflow.com

semanticscholar.org

slideshare.net

Anomaly Detection

다변량

비지도 학습

KMEANS

- 군집분석의 한 종류
- K = 분할할 그룹의 수
 - [1...K] 개별 그룹내의 feature는 유사도가 높음
 - [1...K] 개별 그룹간의 feature는 유사도가 낮음
- Means
 - 각 K 그룹의 무게중심(centroid)
- Formula

$$\argmin_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = \argmin_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

- 집단을 분할하는 과정
 - [1...K] 개별 그룹간의 feature는 유사도가 낮음
 - 관찰치를 K개의 집합으로 나눔
 - 각그룹의 임의의 점을 K-Mean value로 선택
 - 관찰치들은 k-Mean을 중심점을 기준으로 Grouping
 - 더 좋은 그룹핑 기회가 있을 때까지 반복해서 k-Means값의 재 조정

Isolation Forests for Anomaly Detection . insidebigdata.com

k-means clustering - Wikipedia en.wikipedia.org

Clustering Based Unsuperv. towardsdatascience.com

Traffic Anomaly Detection Using. semanticscholar.org

Anomaly Detection Using K-Mea. anomaly.io

Anomaly detection in Twee. medium.com

Dis-)advantages of k-means clustering ... inovex.de

- 10	h. 1-	and a			-
4 10	SA	-	-0850	ref-	· congr
- 1	-		61	161	
= M	1				
- 4"	W	w	-ma	m	
	-		a project		
WW 100		ARCHIOL ST			

Anomaly Detection with Time Se.

Traffic Anomaly Detection semanticscholar.org

Azure Machine Learning Studio ... docs.microsoft.com

Why Use K-Means for Time Series Dat ... medium.com

	Penergold	Suntral	Helan	Name.	Son	Apr	Skip	Parch	Ticker.	Fore	Calds	Dekarte
9	Toher	Fotor	itrier.	telor	tile	frie	\$5ker	files	New	Silve	Title	time
1	folse	hite	take:	tibe	Nike	false	tibe	filte	Peter	libe	Tibe:	tirke -
	Tolse	False	Value	Tide	Silve	Value	Hilar	felor	Helive	Tibe	True	Distr
4	tida-	Mile	Make:	total	title	Nelse	Hite	Tobse	inne	title	libe-	how.
	Tolse	Tuber	Falor	life	Tabe	Tribe	tides	Table	Patric	Tible	Title:	Dalor

ashenweerathunga.wordpress.com

K-Means Clustering with scikit-learn ...

Why Use K-Means for Time Series Data ... influxdata.com

Anomaly Detection

다변량

비지도 학습

Autoencoder

Deep Autoencoders using Tensorflow towardsdatascience.com

Deep Autoencoders using Tensorflow towardsdatascience.com

Fraud Detection Using Autoencoders in .

Autoencoders - Introduction and towardsdatascience.com

color images in Tensorflow fra.

TensorFlow 2.0 - Abien Fred Agarap . medium.com

Autoencoder loss is not decreasing (and ... stackoverflow.com

	Label	reconstruction_e	
count	910.000000	910.000000	
mean 0.026374		0.009409	
std	0.160332	0.019738	
min	0.000000	0.000156	
25%	0.000000	0.001822	
50%	0.000000	0.004485	
75%	0.000000	0.009801	
max	1.000000	0.154782	

Neural Networks for Anomaly (... blog.goodaudience.com

Credit Card Fraud Detection using . medium.com

Fraud Detection Using Autoencoders in ... datascience.com

Autoencoder in TensorFlow .

Credit Card Fraud Detection using .. medium.com

TensorFlow Autoencoder: Deep Learning . guru99.com

gertjanvandenburg.com

Simple MNIST Autoencoder in Tensor. gertjanvandenburg.com

Fraud Detection Using Autoencoders in .. datascience.com

Autoencoders - Introduction and towardsdatascience.com

Building Autoencoders in Keras blog.keras.io

Denoising autoencoder in subscription.packtpub.com

유의차 분석

Category by Category

Cross-Tabulation

- Cross-Tabulation = Contingency Table
- Chi-square test : 변수의 독립성 검정(independence of variables)
 - chi-square statistic : 기대값과 관찰값의 차이가 클수록 Chi-square통계량의 값이 커집
 - p-value : chi-square statistic의 유의 확률
 - degree of freedom : 자유도(그래프의 df) , 범주의 수 1
- Category by Category
 - 설비별 Good/NG 빈도 차이
 - 전고정A 설비와 자공정B 설비의 Lot 진행수 차이
- Analytics
 - One-Way Chi-square Test
 - N-Way Chi-square Test

유의차 분석

Category by Category

Cross-Tabulation

- scipy.stats.chi2_contingency
 - parameters
 - observedarray_like
 - The contingency table. The table contains the observed frequencies (i.e. number of occurrences) in each category. In the two-dimensional case, the table is often described as an "R x C table".
 - correctionbool, optional
 - If True, and the degrees of freedom is 1, apply Yates' correction for continuity. The effect of the correction is to adjust each observed value by 0.5 towards the corresponding expected value.
 - lambda_float or str, optional.
 - By default, the statistic computed in this test is Pearson's chi-squared statistic [2]. lambda_ allows a statistic from the Cressie-Read power divergence family [3] to be used instead. See power_divergence for details.
 - Returns
 - chi2float : The test statistic.
 - pfloat : The p-value of the test
 - dofint : egrees of freedom
 - expectedndarray, same shape as observed: The expected frequencies, based on the marginal sums of the table.

유의차 분석

Category by Category

Cross-Tabulation

Chi-Square를 이용한 품질 유의차 분석

- 서로 다른 Line 또는 설비를 통과한 Lot내 Good/NG 빈도 산출
- Cross-Table(=Contengency Table) Formatting
- Chi-square Test를 이용한 설비 유의차 분석

7 - 7	(observed - expected)
$\chi Z = Z$	expected

기대확률

구분	설비 A	설비 B	계
OK	0.3	0.3	0.6
NG	0.2	0.2	$\frac{1}{2}$
계	0.5	0.5	_Χ_

74 1		ш	м
\sim	┌┖	п	\simeq

구분	설비 A	설비 B	계			
OK	30	30	60			
NG	20	20	40			
_계	50	50	100			

Case A

Case B

검사내역			
구분	설비 A	설비 B	계
OK	25	35	60
ν̈́Ĵ	25	15	40
XZ =	50	50	100

Case C

검사내역

구분	설비 A	설비 B	계
OK	10	50	60
NG	゚゚゙゙゙゙゙゚゚゚ゔ゚゠	0	40
계	_χ∠ =	_50	100

기대빈도

구분	설비 A	설비 B	계
OK	30	30	60
NG	20	20	40
계	50	50	100

실질빈도 - 기대빈도

구분	설비 A	설비 B
OK	0	0
NG	0	0

Cell-Chisquare

	설비 A	설비 B
OK	0	0
NG	0	0

실질빈도 - 기대빈도

구분	설비 A	설비 B
OK	-5	5
NG	5	-5

Cell-Chisquare

	설비 A	설비 B
OK	0.8	0.8
NG	1.25	1.25

실질반도 - 기대반도

구분	설비 A	설비 B
OK	-20	20
NG	20	-20

Cell-Chisquare

	설비 A	설비 B
OK	13.3	13.3
NG	20	20

유의차 분석

Category by Category

Cross-Tabulation

chi squared test on a normalized ... stats.stackexchange.com

Python Linear Regression | Chi-Squar.. data-flair.training

Terms selection with chi-square glowingpython.blogspot.com

식슨

Statistics: Pearson's chi-squared test ... medium.com

Chi-Square Goodness of Fit Test stat yale edu

Statistical Power and Power Analy...
machinelearningmastery.com

Statistical Data Distributions machinelearningmastery.com

Chi-Square Test - Beginners Tutorial ... spss-tutorials.com

Chi Square Feature Selection in Python .. insightsbot.com

Python Linear Regression | Chi-Squa. data-flair.training

Modeling Data and Curve Fitting .. cars9.uchicago.edu

prediction limits in scatter . stackoverflow.com

Chi-Square Goodness of F.. stat.yale.edu

Chi-Square Test - Beginners Tutorial ... spss-tutorials.com

scipy.optimize.curve_fit — SciPy v0....
docs.scipy.org

Chi-Square Tests with Die Roll Data ...
towardsdatascience.com

Python Linear Regression | Chi-... data-flair.training

Python Linear Regression | Chi-Square .. data-flair training

Data Analysis - Chi-squared test for ... learntech.uwe.ac.uk

case B

04. 품질 최적화

유의차 분석

Parameter by Category

ANOVA

case A

Parameter 간 유의차 분석

- 서로 다른 Line, 설비 또는 설비Parameter를 통과한 Lot 추적
- Line/설비를 통과한 Lot의 Defect Type별 Good/Bad 판정 및 불량율 산출
- 불량율 유의차 판별

Lot 공정 투입

lot 1-A

lot 2-A

lot 3-A

유의차 분석

Parameter by Category

ANOVA

집단간 측정값의 분산을 고려한 평균 의 차이 분석

- 집단 : 공정, 장비, 레시피, 작 업자등
- 측정 : 온도, 압력, 두께 등
- 예
 - 동일 역할 장비간의 재공 상 태 분석

- statsmodels.stats.anova.anova_lm
 - Anova table for one or more fitted linear models.
- Parameters
 - argsfitted linear model results instance
 - One or more fitted linear models
 - scalefloat
 - Estimate of variance, If None, will be estimated from the largest model. Default is None.
 - teststr {"F", "Chisq", "Cp"} or None
 - Test statistics to provide. Default is "F".
 - typstr or int {"I","II","III"} or {1,2,3}
 - The type of Anova test to perform. See notes.
 - robust{None, "hc0", "hc1", "hc2", "hc3"}
 - Use heteroscedasticity-corrected coefficient covariance matrix. If robust covariance is desired, it is recommended to use hc3.

유의차 분석

Parameter by Category

ANOVA

집단간 측정값의 분산을 고려한 평균의 차이 분석

- 집단 : 공정, 장비, 레시피, 작업자등
- 측정 : 온도, 압력, 두께등
- 예
 - 동일 역할 장비간의 재공 상태 분석

Returns

- anovaDataFrame
- When args is a single model, return is DataFrame with column
 - sum_sqfloat64 : Sum of squares for model terms.
 - dffloat64 : Degrees of freedom for model terms.
 - Ffloat64: F statistic value for significance of adding model terms.
 - PR(>F)float64: P-value for significance of adding model terms.
- When args is multiple models, return is DataFrame with columns:
 - df_residfloat64 : Degrees of freedom of residuals in models.
 - ssrfloat64 : Sum of squares of residuals in models.
 - df_difffloat64 : Degrees of freedom difference from previous model in args
 - ss_dfffloat64 : Difference in ssr from previous model in args
 - Ffloat64 : F statistic comparing to previous model in args
 - PR(>F): float64: P-value for significance comparing to previous model in args

유의차 분석

Parameter by Category

ANOVA

ANOVA Mode(Case 1) - Treatment에 따른 Parameter값의 차이

df sum_sq mean_sq F PR(>F)
C(treatment) 2.0 15515.766414 7757.883207 3.711336 0.043589
Residual 19.0 39716.097222 2090.320906 NaN NaN

ANOVA Model(Case 2) - Treatment, obser, fetu*observer(교호작용)에 따른 Parameter값의 차이

	3.0	324.008889 1.198611 0.562222	0.399537 0.093704	5.211353	1.051039e-27 6.497055e-03 3.295509e-01
Residual	24.0	1.840000	0.076667	NaN	NaN

유의차 분석

Parameter by Category

ANOVA

시각화 및 Parameter의 유의차

표현	신뢰수준	유의수준
***	99%	p<0.01
**	95%	p<0.05
*	90%	p<0.1

유의차 분석

Parameter by Category

ANOVA

■ ANOVA의 응용 : 시계열 구간별 유의차 검토

■ ANOVA의 응용 : Good/NG의 유의차 분석

유의차 분석

Parameter by Category

ANOVA

■ ANOVA의 응용 : 모델 결과와 병행하여 Boxplot의 이상치 검토

유의차 분석

Parameter by Category

ANOVA

Repeated measures ANOVA using Python .. youtube.com

2-way ANOVA in Python statsmodels stats.stackexchange.com

len	anbb	dese	
4.2	VC	0.5	
11.5	VC	0.5	
7.3	VC	0.5	
5.8	VC	0.5	
6.4	VC	0.5	
10.0	VC	0.5	
11.2	VC	0.5	
11.2	VC	0.5	
5.2	VC	0.5	
700 × 380	VC	0.5	

Anova in Python | plotly plot.ly

Anova Num DF Den DF F Value Pr > F cond 1.0000 59.0000 499.1549 0.0000		
Num DF Den DF F Value Pr > F cond 1.0000 59.0000 499.1549 0.0000		Anova
cond 1.0000 59.0000 499.1549 0.0000		
	Num Di	F Den DF F Value Pr > F
	cond 1.0000	0 59.0000 499.1549 0.0000

Repeated Measures ANOVA in Python using . marsja.se

two-way ANOVA with Python . marsia.se

marsja.se

anova-one pytolearn.csd.auth.gr

1 year 2 year 3 year

reneshbedre.github.io

ANOVA using Python | Renesh Bedre

One way ANOVA

Introductory

1 factor (task difficulty) with 3 levels

Advanced

> anova(lm Analysis o

Treatment

Age Treatment:

Residuals Signif. co

2-way ANOVA in Python statsmodels stats.stackexchange.com

		sReducti ance Tal	ion - Tred ble	tment * /	Age, data	TwoWay	Compar	isons)))	
Str		Reduction								
	DF	Sum Sq	Mean Sq	F value	Pr(>F)					
	2	18	9	9	0.001953	**				
	2	162	81	81	1e-09	***				
Aac	4	9	0 2	.250e-30	1.000000					
	18	18	1							
des			0.001 ***	2 0 01 11	** 0.05	. 0.1				
ues			0.001	0.01	0.00					

How to get the degree of freedom in anova jenniferdanos.com

high low -1.8 -4.1651 0.5651 False high placebo -2.8 -5.1651 -0.4349 True

low placebo -1.0 -3.3651 1.3651 False

Tests of Between-Subjects Effects

11.514

520.862

1116.000 840.138

Fiction Condition

80.706

67.557 11.514 74.709 12.733

10.776 11.917

Analysis of Variance (ANOVA) | Python . pythonfordatascience.org

Anova, Fitting Models To Data . youtube.com

Statistical Models in R: Day 1

asda.stat.ubc.ca

ANOVA using Python | Renesh Bedre reneshbedre.github.io

interactions_anova statsmodels.org

