Estruturas de Dados

Victor Machado da Silva, MSc victor.silva@professores.ibmec.edu.br

Índice

- Apresentação do curso
- Algoritmos
- Complexidade de Algoritmos
- <u>Listas Lineares</u>
- Árvores
- Árvores Binárias de Busca
- Árvores Balanceadas
- Algoritmos de Ordenação
- Listas de Prioridades

Apresentação do curso

Apresentação do curso

- Contato: victor.silva@professores.ibmec.edu.br
- Grupo no Whatsapp: https://chat.whatsapp.com/IqnSl5PTiVBI1WNwMpXxSS
- Material: <u>www.victor0machado.github.io</u>

Apresentação do curso

Avaliação

- Proporção
 - AC (20%): atividades em sala
 - AP1 (40%): projeto + prova objetiva (sem consulta)
 - AP2 (40%): projeto + prova objetiva (sem consulta)
- Detalhes das entregas
 - Atividades da AC individuais ou em dupla
 - Projetos da AP1 e AP2 em grupos, mínimo 2 e máximo 3 pessoas

Algoritmos

Introdução

Um algoritmo é um processo sistemático para a resolução de um problema. O desenvolvimento de algoritmos é particularmente importante para problemas a serem solucionados em um computador, pela própria natureza do instrumento utilizado.

Um algoritmo computa uma saída, o resultado do problema, a partir de uma entrada, as informações inicialmente conhecidas e que permitem encontrar a solução do problema. Durante o processo de computação o algoritmo manipula dados, gerados a partir da sua entrada.

O estudo de estruturas de dados não pode ser desvinculado de seus aspectos algorítmicos. A escolha correta da estrutura adequada a cada caso depende diretamente do conhecimento de algoritmos para manipular a estrutura de maneira eficiente.

Apresentação dos algoritmos

As convenções seguintes serão utilizadas com respeito à linguagem:

- O início e o final de cada bloco são determinados por indentação, isto é, pela posição da margem esquerda. Se uma certa linha do algoritmo inicia um bloco, ele se estende até a última linha seguinte, cuja margem esquerda se localiza mais à direita do que a primeira do bloco;
- A declaração de atribuição é indicada pelo símbolo :=;
- As declarações seguintes são empregadas com significado semelhante ao usual:

```
se... então
se... senão
enquanto... faça
para... faça
pare
```

 Variáveis simples, vetores, matrizes e registro são considerados como tradicionalmente em linguagens de programação. Os elementos de vetores e matrizes são identificados por índices entre colchetes.

```
para i := 1, ..., |__n/2__|
  temp := S[i]
  S[i] := S[n - i + 1]
  S[n - i + 1] := temp
```


Aplicações

- Escreva os algoritmos, em pseudocódigo, para os problemas abaixo:
 - https://br.spoj.com/problems/TOMADA13/
 - https://br.spoj.com/problems/METEORO/
 - https://br.spoj.com/problems/JDESAF12/
 - https://br.spoj.com/problems/CARTAS14/
 - https://br.spoj.com/problems/ENCOTEL/

Recursividade

Um tipo especial de procedimento será utilizado, algumas vezes, ao longo do curso. É aquele que contém, em sua descrição, uma ou mais chamadas a si mesmo. Um procedimento dessa natureza é denominado **recursivo**.

Naturalmente, todo procedimento, recursivo ou não, deve possuir pelo menos uma chamada proveniente de um local exterior a ele. Essa chamada é denominada **externa**. Um procedimento não recursivo é, pois, aquele em que todas as chamadas são externas.

O exemplo clássico mais simples de recursividade é o cálculo do fatorial de um inteiro $n \ge 0$:

```
função fat(i)
   fat(i) := se i <= 1 então 1 senão i * fat(i - 1)

fat[0] := 1
para j := 1, ..., n faça
   fat[j] := j * fat[j - 1]</pre>
```


Aplicações

- Escreva os algoritmos, em pseudocódigo, para os problemas abaixo:
 - https://br.spoj.com/problems/F91/
 - https://br.spoj.com/problems/RUM09S/
 - https://br.spoj.com/problems/PARIDADE/

Recursividade

Um exemplo conhecido, onde a solução recursiva é comum e extremamente mais simples que a solução não-recursiva, é o do <u>Problema da Torre de Hanói</u>.

Recursividade

A solução do problema é descrita a seguir. Para n>1, o pino-trabalho deve ser utilizado como área de armazenamento temporário. O raciocínio utilizado para resolver o problema é semelhante ao de uma prova matemática por indução. Suponha que se saiba como resolver o problema até n-1 discos, n>1, de forma recursiva. A extensão para n discos pode ser obtida pela realização dos seguintes passos:

- Resolver o problema da Torre de Hanói para os n-1 discos do topo do pino-origem A, supondo que o pino-destino seja C e o trabalho seja B;
- Mover o n-ésimo pino (maior de todos) de A para B;
- Resolver o problema da Torre de Hanói para os n-1 discos localizados no pino C, suposto origem, considerando os pinos A e B como trabalho e destino, respectivamente.

```
procedimento hanoi(n, A, B, C)
se n > 0 então
   hanoi(n - 1, A, C, B)
   mover o disco do topo de A para B
   hanoi(n - 1, C, B, A)
```


Complexidade de algoritmos

Introdução

Conforme já mencionado, uma característica muito importante de qualquer algoritmo é o seu tempo de execução. Naturalmente, é possível determiná-lo através de métodos empíricos, isto é, obter o tempo de execução através da execução propriamente dita do algoritmo, considerando-se entradas diversas.

Ao contrário do método empírico, o método analítico visa aferir o tempo de execução de forma independente do computador utilizado, da linguagem e dos compiladores empregados e das condições locais de processamento.

Introdução

As seguintes simplificações serão introduzidas para o modelo proposto:

- Suponha que a quantidade de dados a serem manipulados pelo algoritmo seja suficientemente grande. Somente o comportamento assintótico será avaliado.
- Não serão consideradas constantes aditivas ou multiplicativas na expressão matemática obtida.
 Isto é, a expressão matemática obtida será válida, a menos de tais constantes.

O processo de execução de um algoritmo pode ser dividido em etapas elementares, denominadas passos. Cada passo consiste na execução de um número fixo de operações básicas cujos tempos de execução são considerados constantes.

São considerados passos:

- Operações aritméticas, relacionais e lógicas
- Atribuições
- Acesso a elementos em vetores e matrizes
- Acesso a campos de uma estrutura (struct)
- Obtenção do endereço de uma variável (incluindo declarações de variáveis)
- Alteração/obtenção de conteúdo através de ponteiros
- Retorno de valores
- Instruções de alocação de memória
- Chamada de procedimento, função, método, etc.


```
func main() int {
    x, y, media float64

    x = 1
    y = 2

    media = (x + y) / 2

    return 0
}
```

```
func main() int {
    x := 1
    y := 2

    media := (x + y) / 2

    return 0
}
```

```
func main() int {
    media float64

media = (1 + 2) / 2

return 0
}
```



```
func main() int {
     x, y, media float64

     x = 1
     y = 2

     media = (x + y) / 2

     return 0
}
```

```
func main() int {
    x := 1
    y := 2

    media := (x + y) / 2

    return 0
}
```

```
func main() int {
    media float64

media = (1 + 2) / 2

return 0
}
```

9

9

Nem sempre mudar ou melhorar o código vai causar diferenças de desempenho no algoritmo! Algumas podem simplesmente atrapalhar a legibilidade ou até provocar defeitos no software.

Prática: https://br.spoj.com/problems/JBUSCA12/

- Submeta um programa ao JBUSCA12 do SPOJ e avalie o tempo de execução
- Traga algumas melhorias para o programa e submeta novamente
- As melhorias reduziram o tempo de execução?

Alguns algoritmos possuem um número variável de passos. Considere, por exemplo, um programa que calcule o n-ésimo número da série de Fibonacci:

```
func fibo(n int) int {
    penultimo, ultimo, proximo, i int
   i = 1
    penultimo = 1
    ultimo = 1
    for i < n {
        proximo = penultimo + ultimo
        penultimo = ultimo
        ultimo = proximo
        i++
    return penultimo
```

4

3

1...n

 $6 \longrightarrow (n-1) \text{ vezes!}$

1

$$8 + n + (n-1) * 6$$

 $7n + 2$

Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma **função do tamanho da entrada**.

```
func soma(v []int, n int) int {
    soma := 0

for i := 0; i < n; i++ {
    soma += v[i]

return soma

1

5+(n+1)+n*5

6n+6
```


Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma **função do tamanho da entrada**.

```
func conta() {
    i := 0

    for i < 30 {
        i++
}</pre>
```

0...30

$$2 + (30 + 1) + 30 * 2$$

93

Com base nesse exemplo, podemos dizer que o custo de execução de um algoritmo (em termos de números de passos) depende, principalmente, do tamanho da entrada dos dados.

Logo, é comum considerar o tempo de execução de um programa como uma função do

tamanho da entrada.

```
func busca(v []int, n int, k int) int {
    i := 0

    for i < n {
        if v[i] == k {
            return i
          }
        i++
    }

    return -1
}</pre>
```

```
2
0...n
2
```

A quantidade de vezes que o loop vai executar depende:

- Do tamanho do vetor
- Se k existe no vetor
- Da posição de k no vetor

Melhor caso: chave em $v[0] \rightarrow 6$

```
Pior caso: k não está no vetor \rightarrow 2 + (n + 1) + n * (2 + 2) + 1 5n + 4
```


Noção de complexidade:

- Seja A um algoritmo, $\{E_1, ..., E_m\}$, o conjunto de todas as entradas possíveis de A. Denote por t_i o número de passos efetuados por A, quando a entrada for E_i . Definem-se, com p_i sendo a probabilidade de ocorrência da entrada E_i :
 - Complexidade do pior caso: $\max_{E_{i \in E}} \{t_i\};$
 - Complexidade do melhor caso: $min_{E_{i \in E}}\{t_i\}$;
 - Complexidade do caso médio: $\sum_{1 \le i \le m} (p_i \times t_i)$.
- As complexidades têm por objetivo avaliar a eficiência de tempo ou espaço. A complexidade de tempo de pior caso corresponde ao número de passos que o algoritmo efetua no seu pior caso de execução, isto é, para a entrada mais desfavorável. De certa forma, a complexidade de pior caso é a mais importante das três mencionadas.

Exercício: Dada uma matriz n x n de valores inteiros, implemente uma função que localize um dado valor x. A função deve retornar VERDADEIRO se houver achado, e FALSO caso contrário.

Exercício: Dada uma matriz n x n de valores inteiros, implemente uma função que localize um dado valor x. A função deve retornar VERDADEIRO se houver achado, e FALSO caso contrário.

```
func busca(matriz [][]int, n, x int) int {
    i, j int
    i = 0
    for i < n {
        j = 0
        for j < n {
            if (matriz[i][j] == x) {
                 return true // achou
    return false // não achou
```

Qual o número de passos no melhor caso? E no pior caso?

Funções de tempo

As funções de tempo dos principais exemplos analisados anteriormente são:

Algoritmo	Função de tempo		
Média	f(n) = 9		
Fibonacci	f(n) = 7n + 2		
Somatório de vetor	f(n) = 6n + 6		
Busca em vetor	f(n) = 5n + 4		
Busca em matriz	$f(n) = 5n^2 + 5n + 5$		

Note que temos uma função constante, três funções lineares e uma função quadrática

Funções de tempo

Comparando o número de passos com base no valor n de entrada:

Valor de Entrada	Média de X e Y	N Fibonacci	Soma Vetor	Busca Vetor	Busca Matriz
Função	9	7n + 2	5n + 6	5n + 4	$5n^2 + 5n + 5$
1	9	9	11	9	15
2	9	16	16	14	35
4	9	30	26	24	105
8	9	58	46	44	365
16	9	114	86	84	1365
32	9	226	166	164	5285
64	9	450	326	324	20805
128	9	898	646	644	82565
256	9	1794	1286	1284	328965
512	9	3586	2566	2564	1313285
1024	9	7170	5126	5124	5248005
2048	9	14338	10246	10244	20981765
4096	9	28674	20486	20484	83906565
8192	9	57346	40966	40964	335585285
16384	9	114690	81926	81924	1342259205
32768	9	229378	163846	163844	5368872965
65536	9	458754	327686	327684	21475164165
131072	9	917506	655366	655364	85900001285
262144	9	1835010	1310726	1310724	3.43599E+11

A notação O

Quando se considera o número de passos efetuados por um algoritmo, podem-se desprezar constantes aditivas ou multiplicativas.

Por exemplo, um valor de número de passos igual a 3n será aproximado para n.

Além disso, como o interesse é restrito a valores assintóticos, termos de menor grau também podem ser desprezados. Assim, um valor de número de passos igual a $n^2 + n$ será aproximado para n^2 . O valor $6n^3 + 4n - 9$ será transformado em n^3 .

Torna-se útil, portanto, descrever operadores matemáticos que sejam capazes de representar situações como essas. A notação O será utilizada com essa finalidade.

A notação O

Sejam f, h funções reais positivas de variável inteira n. Diz-se que f é O(h), escrevendo-se f = O(h), quando existir uma constante c > 0 e um valor inteiro n_o , tal que:

$$n > n_o \Rightarrow f(n) \le c \times h(n)$$

Ou seja, a função h atua como um limite superior para valores assintóticos da função f. Em seguida são apresentados alguns exemplos da notação O.

$$f = n^{2} - 1 \Rightarrow f = O(n^{2})$$

$$f = n^{3} - 1 \Rightarrow f = O(n^{3})$$

$$f = 403 \Rightarrow f = O(1)$$

$$f = 5 + 2\log n + 3\log^{2} n \Rightarrow f = O(\log^{2} n)$$

A notação O

Propriedades da notação O

- f(n) = O(f(n))
- c.O(f(n)) = O(c.f(n)) = O(f(n)) (c = constante)
- O(f(n)) + O(f(n)) = O(f(n))
- O(O(f(n))) = O(f(n))
- $f1(n) \cdot O(f2(n)) = O(f1(n) \cdot f2(n))$
- $O(f1(n)) \cdot O(f2(n)) = O(f1(n) \cdot f2(n))$
 - Isto significa que a complexidade de um algoritmo com dois trechos aninhados, em que o segundo é repetidamente executado pelo primeiro, é dada como o produto da complexidade do trecho mais interno pela complexidade do trecho mais externo.
- O(f1(n)) + O(f2(n)) = O(max(f1(n), f2(n)))
 - Isto significa que a complexidade de um algoritmo com dois trechos em sequência com tempos de execução diferentes é dada como a complexidade do trecho de maior complexidade.

Aplicações

Escreva um algoritmo em pseudocódigo e implemente em Go os problemas abaixo:

- Dado um array de números inteiros positivos e um valor alvo, encontre um par de números no array cuja soma seja igual ao valor alvo. Se nenhum par for encontrado, retorne um valor (-1, -1) indicando que nenhum par foi encontrado.
- https://br.spoj.com/problems/POPULAR/
- Dado um array de números inteiros positivos, encontre o comprimento da maior subsequência crescente contígua. Uma subsequência crescente é uma sequência de elementos em que cada elemento subsequente é estritamente maior do que o anterior.

Desafios

Escreva um algoritmo em pseudocódigo e implemente em Go os problemas abaixo:

■ Dado um array de números inteiros positivos, considerado ordenado crescentemente, e um valor alvo, encontre um par de números no array cuja soma seja igual ao valor alvo. Se nenhum par for encontrado, retorne um valor (-1, -1) indicando que nenhum par foi encontrado. Resolva esse problema com um algoritmo cuja complexidade é O(n).

IBMEC.BR

- f)/IBMEC
- (in) IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

Ibmec