EE-559 – Deep learning

5.4. L_2 and L_1 penalties

François Fleuret
https://fleuret.org/ee559/
Sat Nov 10 11:27:56 UTC 2018

We have motivated the use of a loss with a Bayesian formulation combining the probability of the data given the model and the probability of the model

$$\log \mu_W(w \mid \mathcal{D} = \mathbf{d}) = \log \mu_{\mathcal{D}}(\mathbf{d} \mid W = w) + \log \mu_W(w) - \log Z.$$

If μ_W is a Gaussian density with a covariance matrix proportional to the identity, the log-prior $\log \mu_W(w)$ results in a quadratic penalty

$$\lambda \|\mathbf{w}\|_2^2$$
.

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L_2 regularization, or "weight decay" in the artificial neural network community.

Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss alone.

Since the derivative of $||x||_2^2$ is zero at zero, the optimal will never move there if it was not already there.

François Fleuret

EE-559 – Deep learning / 5.4. L_2 and L_1 penalties

2 / 10

Convnet trained on MNIST with 1,000 samples and a L_2 penalty.

Error			<pre>output = model(train_input[b:b+batch_size])</pre>
λ	Train	Test	loss = criterion(output, train_target[b:b+batch_s
.000	0.000	0.064	
0.001	0.000	0.063	<pre>for p in model.parameters():</pre>
0.002	0.000	0.064	loss += lambda_12 * p.pow(2).sum()
0.004	0.005	0.065	• •
0.010	0.022	0.075	optimizer.zero_grad()
0.020	0.048	0.101	loss.backward()
		_	optimizer.step()

François Fleuret

 $\lambda = 0.010$

We can apply the exact same scheme with a Laplace prior

$$egin{align} \mu(w) &= rac{1}{(2b)^D} \exp\left(-rac{\|w\|_1}{b}
ight) \ &= rac{1}{(2b)^D} \exp\left(-rac{1}{b} \sum_{d=1}^D |w_d|
ight), \end{split}$$

which results in a penalty term of the form

$$\lambda \| \mathbf{w} \|_1$$
.

This is the L_1 regularization. As for the L_2 , this penalty is convex, and its sum with a convex functional is convex.

François Fleuret

EE-559 – Deep learning / 5.4. L_2 and L_1 penalties

4 / 10

An important property of the L_1 penalty is that, if \mathcal{L} is convex, and

$$w^* = \operatorname*{argmin}_{w} \mathscr{L}(w) + \lambda \|w\|_1$$

then

$$\forall d, \ \left| \frac{\partial \mathcal{L}}{\partial w_d}(w^*) \right| < \lambda \ \Rightarrow \ w_d^* = 0.$$

In practice it means that this penalty pushes some of the variables to zero, but contrary to the L_2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.

With the L_1 penalty, the update rule becomes

$$w_{t+1} = w_t - \eta g_t - \lambda \operatorname{sign}(w_t),$$

where sign is applied per-component. This is almost identical to

$$w'_t = w_t - \eta g_t$$

$$w_{t+1} = w'_t - \lambda \operatorname{sign}(w'_t).$$

This update may overshoot, and result in a component of w'_t strictly on one side of 0, while the same component in w_{t+1} is strictly on the other.

While this is not a problem in principle, since w_t will fluctuate around zero, it can be an issue if the zeroed weights are handled in a specific manner (e.g. sparse coding to reduce memory footprint or computation).

François Fleuret

EE-559 – Deep learning / 5.4. L_2 and L_1 penalties

6 / 10

The **proximal operator** takes care of preventing parameters from "crossing zero", by adapting λ when it is too large

$$w'_t = w_t - \eta g_t$$

 $w_{t+1} = w'_t - \min(\lambda, |w'_t|) \odot \operatorname{sign}(w'_t).$

where min is component-wise, and \odot is the Hadamard component-wise product.

Increasing the λ parameter moves the optimal closer to 0, and away from the optimal for the loss without penalty.

François Fleuret

EE-559 – Deep learning / 5.4. L_2 and L_1 penalties

8 / 10

Convnet trained on MNIST with 1,000 samples and a L_1 penalty.

	Error		
λ	Train	Test	
0.00000	0.000	0.064	
0.00001	0.000	0.063	
0.00002	0.000	0.067	
0.00005	0.004	0.068	
0.00010	0.087	0.128	
0.00020	0.057	0.101	
0.00050	0.496	0.516	

```
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
```

optimizer.zero_grad() loss.backward() optimizer.step()

with torch.no_grad():

for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))

Penalties on the weights may be useful when dealing with small models and small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still provide the little push needed to beat baselines.

François Fleuret

EE-559 – Deep learning / 5.4. L_2 and L_1 penalties

10 / 10