Conducting Polymers

Conducting Molecules

Electrical conduction is the movement of electrically charged particles through a transmission medium

Electrical Conduction

Electrical conduction of a material can be calculated by

$$\mathbf{J} = \sigma \mathbf{E} \rightarrow \mathbf{E} = \rho \mathbf{J}$$

$$R = \rho \frac{l}{a}; \ \sigma = \frac{1}{\rho}$$

n – Charge carrier concentration
 μ – charge carrier mobility
 e – charge of the carrier

 $\sigma = ne\mu$

Classification of materials based on conductivity

Application of conducting polymers

- Organic polymers are normally insulators
- It can be presumed that conducting polymers must have an unusual structure
- Polymers with conjugated π -electron (i.e. system have C=C conjugated bonds) backbones display unusual electronic properties

Application

Conducting polymers are highly useful in

- Solar cell application
- Gas sensors
- Chemical sensors
- Organic Light Emitting Diodes (OLEDs)

Conducting Polymers

Nobel Prize in Chemistry 2000

"For the Discovery and Development of Conductive Polymers"

Alan Heeger
University of California
at Santa Barbara

Hideki Shirakawa University of Tsukuba

Alan MacDiarmid
University of
Pennsylvania

Polymers

- Traditional plastic : Polyethylene

$$\left(\text{CH}_2 - \text{CH}_2 \right)_n$$

"Always insulator"

Combination of properties

Conducting Polymer

- The polymeric material which possess electrical conductivity are called conducting polymer
 - e.g. Polyacetylene, Polyaniline & Polypyrrole.

- Intrinsically Conducting Polymer
- Doped Conducting Polymer
- Extrinsically Conducting Polymer

Conducting Polymer

c-PA: 10⁻⁷ Sm⁻¹

t-PA: 10⁻³ Sm⁻¹

Conduction -> alternate single and double bond

Module – 7 Polymers 4

Factors affecting the conductivity of the polymer

- 1) Density of charge carriers
- 2) Their mobility
- 3) The direction
- 4) Presence of doping materials (additives that facilitate the polymer conductivity)
- 5) Temperature

Doping with Iodine

Doping with Na (n type)

Doping in elemental semiconductor and conducting polymer

Differences between doping in elemental semiconductor and conducting polymer

- Significant doping levels (until 10 mole %)
- There is a charge transfer between the incorporated dopant atom and the polymer chain
 - → the lattice is partially oxidized or reduced

Module – 7 Polymers

Conducting Polymers

- Resin or polymer filled with conductive elements such as carbon black, metallic fibers, metal oxides
- Polymer acts as binder to hold the conducting elements together in the solid entity.
- These polymers possess reasonably good bulk conductivity

Advantages:

- 1. Low cost
- 2. Light in weight, mechanically durable and strong
- 3. Easily processable in different forms, shapes and sizes

Application of Conducting Polymers

Gas Sensors based on conducting polymers

- This type of sensors can measure the change in the resistance of an electrically active sensitive material
- Compared with standard electrochemical sensors, polymer-based sensors do not require liquid electrolyte to work properly.

Module – 7 Polymers