GIF Generation Project

By Rishi, Tri, and Ronel

Objective

Why GIF?

- Creating customized GIFs manually is time-consuming and requires artistic skills for many people.
- The Automated GIF generation can democratize creative content production and provide a valuable tool for marketing, social media, and entertainment industries for any person.
- It also introduces a more unique way to express yourself in a customizable way.

Background

Primary Dataset: https://github.com/ali-vilab/VGen/tree/main/data

- Consists of a bunch of videos and pictures
- Converts the images to RGB

Additional Data:

Open Source Images

Models / Methodology

- AnimateDiffPipeline:
 Realistic_Vision_V5.1_noVAE/animatediff-motion-adapter-v1-5-2
- I2VGenXLPipeline
- runwayml/stable-diffusion-v1-5
- animatediff-motion-adapter-v1-5-2

Approach

- Utilize diffusion models for generating animated content, specifically focusing on adapting and fine-tuning existing models to handle conditional inputs effectively.
- Employ conditional input strategies, such as text prompts, to guide the generation process, ensuring the resulting GIFs align with the user's specified themes or styles.
- Post Processing: Convert Raw Image output into GIF format

GIF generation: AnimateDiffPipeline

Prompt A: "A sunrise on waves merging with a cascading waterfall in a
forest, serene atmosphere, ethereal, high-quality, detailed"
Prompt B: "Waves merging with a cascading waterfall in a forest at
night, ethereal, high-quality, detailed, seamless loop"

quidance = 5

guidance = 8

quidance = 12

Prompt B Prompt A Prompt B

"Flawed" GIF generation: I2V-GenXL Pipeline

Prompt:

"A couple kissing the library"

Prompt:

"The earth rotating with the glare of the sun changing. The International Space Station is orbiting in the background."

Prompt:

"Cartoon Beach with rolling waves."

"Better" GIF generation: I2V-GenXL Pipeline

Prompt:

"The Sunset happens behind the mountains"

Prompt: "Night falls behind

the cabin"

Prompt:

"People walking into Disneyland"

Result

- Depending on the prompt, we got different results of images
- Different levels of guidance scale produced different results.
- A lower guidance scale less fine-tuned, as we increase scale, we fine tune the model.
- The smaller the num inference step, the quality of video decreases. Saw that 50 is a good number.

Conclusion

- Prompt Engineering
 - Small, General, Action Prompts Work Best
 - "Night falls behind the cabin"
 - "The Sunset <u>happens</u> behind the mountain"
- num inference step = 50
- guidance_scale = 9.0
- Possible relationship between model size and maximum prompt length / detail

Limitations

- Generated people (facial expressions, etc.) are not perfect
- Need a prompt appropriate to the model size
- Object continuity across frames is imperfect
- Object recognition from text prompt is imperfect/unreliable

Prompt: "A Fish Jumping out of
 the pond and creating a
 rippling splash."

Prompt: "Man Walking
 toward the beach and
getting splashed by the
 waves"

Further studies

- Taking an existing video, and modifying that video
- Fine-tuning models for object detection
- Objective evaluation metrics / method development
- Better Conditioning on prompts