ΑI

and models of IA Inspired Nature

1

Naturalezahaconducidodesde

Artificial intelligence

espectacularessimulaciones.

the

diseñándosedesdeentoncesun computa

tested.

bioinspirados deinspiracióscientists

propiaNaturalezalaqueseconvierteenfu

aquelenelqueesla

engineers: and

from

emprendieronotrocamino

eficaciayutilidad

3

Artificial intelligence

computes imulacion de estos procesos no ibaa provide

good ones

results

Artificial intelligence

in

а

that

"bioinspiration" dependent

Artificial intelligence

somewhat of orientaciónyelusoquesehaga

dela

Algorithms based in RedeistedigenatesArtificiales, Algoritmos basados en Colonias de Hormigas,from Swarms,

Artificial intelligence

del	live	rs
uc.		. J

Artificial intelligence typical

electrical impulses along an axon fiber cleaving at thou

neuron collects signals from other neuron human brain consists of miles

information

ramifications

Artificial intelligence

is transmitted from a neuron to another and will be pr

reach the dendrites of other neuron

Artificial intelligence

ideas:

be

from located active; or

Hebb

concept

set

in

: the (synapses).

the

connections the from connections be

in

neurons It represents

1949

neurons is strengthened if both are activated.

between two

simultaneously

in fundamental

two neurons

Dartmouth IA. Here the first simul publishes a

theory

of neural adaptation
and patterns inspired
by this theory,
Adaline (Adaptive
Linear Neuron) and
Madaline (Multiple Adaline). These models were used in numeron

critique of		of the		
		from		
a serious		learn ing roepti	ron	
			ptical	
1969)) made				
			identi្ងីខ្ញុំ	Kulto
	Papert		14011169	ruits
		delta,be		1962)
		they ext	ended	
		to use continuo	us signals inp	out and output. published
		allowed	binary	
		4.		the
		to		

Perceptron, revealing serfels limitations. This work created serious doub

brain-state	-in Sal-koans (கி.6 ,B).
1984) continues the work of A	Anderson and develops competitive
	Ritz
how	&
	I
model	Jomnes
	1984) continues the work of A

(Nononen

from solves the problems posed by Minsky and Paper.
In this decade, the reviva illustrative East group on highlights which the mechanisms algorithm and retrieval of memory.

backpropagation, storage

remarkable

(Hinton

1986) and BAM models (Kos

are

& from

Sejnowski is

decade

They

de will be	design a network must establish: Structure of	
Will be		
units		

sigmoidal activation radial
basis functions
basis fullctions

orga	anized in layers
•	
so t	hat the output of a layer constitutes the input of th

They have some type of feedback.

RNR ELMAN

Hopfield, SOM, Elman RECURRING SECOND

Network

Artificial intelligence

computinged

manysimplepro**tessiatjenalfeness**)peratir

at

(1988,

elementsornodes

parallelwhosefunctionisdeterminedby: AFCEA

Processor

Artificial intelligence

That

massivelyparallel andmakingitavailableforuse. you

propensity for storing an period with the state of the st

Natural

knowledge.

Artificial intelligence

used

throughalearningprocess. bythenetwork

to

store

the

They

(neurons)

are "

machines

»compuestasdegrancantidado

Numerical

Artificial intelligence

_	.1 . 1 .		-I
C	വല്ല	rmına	MANNAr'
J	acic	111111111	dopor:

Artificial intelligence

a

RNA

lt

twenty

are many types of models for

Artificial intelligence

Artificial intelligence

for the topology there are a

Neuronas Biológicas	Neuronas Artificiales	
Neuronas	Unidades de proceso	
Conexiones sinápticas	Conexiones ponderadas	
Efectividad de las sinápsis	Peso de las conexiones	
Efecto excitatorio o inhibitorio de una conexión	Signo del peso de una conexión	
Efecto combinado de las sinápsis	Función de propagación o de red	
Activación -> tasa de disparo	Función de activación -> Salida	

informacióncontenidaenunatabla

Artificial intelligence

(X, Y) of paresdeentradasalida.

RNA

Artificial intelligence

is

Multilayer

encapsulates a function

Artificial intelligence

$$y = F(x) \times ER ** Ni;$$

and ER ** No.

Unperceptronpuede

"learn", adjusting pesosdelasconexiones, cua

can "learn",

Artificial intelligence

ajust and olos pesos delas

connections,

cualquierrelacióndeentradasalida y = F (x)

Parecidoalanterior

Artificial intelligence

biológicadelos modelos perotomacomopremisalapl

approaches of

seintentadesarrollar modelo

lascapacidadescognitivasdeestosmod

Genetic al

Artificial intelligence but

selecciónsonlosdoshechosqueprovocanelcambio

unaseriedehechosobservados / te

enlaNaturalezaylageneracióndenuevasespecies.

Artificial intelligence

comounfluido,

yquelos "fluid" delosdos padressemezclabane

Artificial intelligence

was

Gregor Mendel in the mid-nineteen

relacionóambasteorías,

Artificial intelligence

Flemming

demostrandoquelos

he described

genesdeMendeleranlosqueprope

chromosomes.

WatsonyCrickdescubrieron

Artificial intelligence

célulasdecadaespecieviviente

quelabasemoleculardelosgenesestáenel DNA ácid

númerofijoycaracterísticodecr

deMichiganenAnnArbor,

"discovers"

lateoría

genéticadelaselecciónnaturalyconcluyeq

evolucióneraunaformadeadaptaciónmás

tituladoTeoríadesistemasadaptativo

Dentrodeestecurso,

fuedondesecrearon algoritmosgené

90..0.0...

be

from

reproduce

evolution, there

offspring (sometimes commutation

have

They

a

algorithms

Artificial intelligence

genetic

They are

nethods: pusquedayoptimizaciónqueapl mismosmetodosdelaevolución sistemáticosparalaresol

elobjetivode

Max

 $F(x) x \in X$

paraunaciertafunciónobjetivo

•• Feature / Variable / Attribute particu

Artificial intelligence

41

•

110001011101

Genes (binary coding)

Chromosome

• • • •

Chromosome encoding a so

Set of solutions

1 1 0 0 0 1 0 1 1 1 0 1 Fitnes s= 6

0 1 1 1 1 0 0 1 0 1 1 0 Fitnes s= 4

Artificial intelligence

1 0 1 0 1 0 1 1 1 1 0 0 Fitnes s= 7

0 1 0 1 0 1 0 1 1 1 1 1 Fitnes s= 1

0 0 0 0 0 1 1 0 0 1 0 0 Fitnes s= 9

...

0 0 1 1 1 1 0 1 0 1 1 0 Fitnes s= 8

Fitness = 9 Fitness = 7

101100100100

hayunaprobabilidaddadaaprioridequeun

Fitness1 = 93 101101

Mutación. Uno omás genes de

individuopuedamutar. Asuvez, cuandounindividuomuta, ther

Artificial intelligence

Four. Five

evaluate initial population

generational

Selection

of Genetic / generational process

individuals parents

perosusericilieznacequeerargonithoseamasiach decomprender.

example A

Artificial intelligence

(x),

tormade

example A

Artificial intelligence

"chromosomes" lasposiblessolu

puedecodificarcon5bits (chromosome).

6individuos.

example A

tenemoscodificadalasolu

Artificial intelligence

degenerarlaesaleatoriamente.

debemosescogeruntamañode

launches "chopped" in

example A

(bits) tenemosla poblacióninicial.

Artificial intelligence

cromosomasde5genes

6

sisalecara anotamosun0yer

Artificial intelligence

Esteprocesoseconocecomoselec

(5)

Artificial intelligence

indicates

the

partner

aleatoriamenteenestecaso, acadaindividuo.

Artificial intelligence

is the average for this population is f me

the

I ellosharecibido

example A

Artificial intelligence

poblaciónquetenemoseslamos

doscopias,

mient rasque el segundo cae en el olvido.

deformasimilaralasele@ixample

Artificial intelligence

random

is formanparejasentrelosindividuosal

quenoesmásqueunnúmeroaleatorio entre1y4 (lalon

Artificial intelligence

ylosdosúltimosdelpadre.

padreylosdosúltimosdelamadre,

Artificial intelligence

mejoresqueantesdeestastransformaciones.

selecciónyelcrucetomandocor

example A

Artificial intelligence

inicialladelatabla3.

vecescomonúmerodeiteracionessedesee.

provide to

Artificial intelligence

solution.

a

razonablementebuena

explored.

algoritmonoconfirmaquelosea.As example

Artificial intelligence

aconsejablequedarseconlamejo

vectorde8posiciones,

Artificial intelligence

numeradasde0a7

Example

are many behaviors of social

dynamic

mechanisms by which a system has a

changes when parameters are changed

Artificial intelligence

space-time structures in a homog

(signals in the environment. sumergia)

Artificial intelligence

is

Artificial intelligence

fascinating

are one of the first models of

that animals almost blind, moving almost at random,

are based on the collective behavior

moves,

an

leaves an odoriferous signal dep

Artificial intelligence

isolated ant moves essentially random, but with the

choose the czar com greater proba

Artificial intelligence

all the ants go through a branch or half one and half the

Artificial intelligence

election mechanism on a fork.,

Artificial intelligence

ants

Artificial intelligence

puedanformularse

be

comoproblemasde

encompass caminomínimoenungrafo.

INTELIGENCIADEENJAMBRES.

in

change

of

discretely. The rule governing the transition of states in the ent

Automata, (AC), it is a formal model con cells, entities or agents,

elapses

а

instant

that time

assuming

to the

Next,

	to a set of rules common to all cells evolution.	
defined	may	
equal for	to be for	
	particular instant of time. set	
all		
	а	
	only	
	finite	
	state	n-dimensional regular
	from	
cells PLC. The n	cells neighborhood influences the status change.	

in

how

the

make

the

biological

the

cells

opposed

neighbors, so that an AC

а

be number of cells is finite, the edges. The cells have n**dimeigation**rs edges beyond the limits of the reticle.

considered

of the segment becomes a circle and a flat reticle s

of Life (JV), devised by John Co where

example of the automaton defining the "Game of Li the cells may be in a state of live (1) of

Cellular automaton "Game of Life".

from Turing machines curious. toward the JV from some initial configu from more states or $\begin{array}{c} \text{Universal} \\ \text{calculation}_{\text{S}} \end{array}$ equivalent parallel less the or

Snow that

Cel	lula	r Aı	ıtor	nata

in

parallel.

Briefly,

exhaustive work of Stephen Over the

Linear

quote

the