Baryon Transition Form Factors from Dynamical Coupled-Channel Analyses

HADRON2025 @ Osaka

Yu-Fei Wang

School of Nuclear Science and Technology, UCAS

31/03/2025

Table of Contents

Part I: Introduction

- ► Part I: Introduction
- ▶ Part II: Methodology
- ► Part III: Results & Discussions
- ▶ Part IV: Conclusion & Outlook

- Structures of matters → fundamental task of physics
- Structures of hadrons in resonance regions → extremely difficult
 - Not direct observables
 - Non-perturbative nature
 - Uncertainties of the hadron spectroscopy
- A bridge between the data and the structures?
 World data → ??? → Spectra → Indications of the structures
- The bridge here: Comprehensive models
 - \rightarrow the Jülich-Bonn/Jülich-Bonn-Washington Model for N^* and Δ
- This work \rightarrow electromagnetic transition form factors (TFFs) of the nucleon to N^* and Δ 's [Y.F. Wang et.~al. (Jülich-Bonn-Washington Collaboration), Phys. Rev. Lett. 133, 101901 (2024)]

Baryon Transition Form Factors

Part I: Introduction

Electromagnetic Probes

- ullet EM interactions o clean probes of structures
- $\gamma N \to {
 m states}$ coupling weakly to πN [Ireland, Pasyuk, Strakovsky, Prog. Part. Nucl. Phys. 111, 103752 (2020)]
- Electroproduction (γ^*N) ightarrow energy scale $\mathit{Q}^2 \equiv -\mathit{q}^2$
- ullet Transition form factors (TFFs) o "pictures of hadrons"
 - [Ramalho, Peña, Prog. Part. Nucl. Phys. 136, 104097 (2024)]
 - Lower Q^2 : meson clouds etc.
 - Higher Q^2 : the quark core
 - Related to quark transverse charge densities
 [Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

Towards the TFFs

- Predictions at quark level
 - Quark models & Dyson-Schwinger equations
 [Burkert, Roberts RMP 91, 011003 (2019)]
 [Eichmann et. al., Prog. Part. Nucl. Phys. 91, 1 (2016)]
 [Kai Xu's parallel talk on Friday]
 - Lattice QCD [Agadjanov et. al., NPB 886, 1199 (2014)]
- Extraction from data
 - Experimental facilities & data accumulation
 [Mokeev et. al.., PRC 93, 025206 (2016)]
 - Unitary isobar models → real valued, depending on BW parameters [Drechsel, Kamalov, Tiator, EPJA 34, 69 (2007)]
 [Tiator et. al., EPJST 198, 141 (2011)]
 - Dynamical models → complex TFFs at the poles [Kamano, Few Body Syst. 59, 24 (2018)]
 - & this work

Yu-Fei Wang (UCAS), HADRON2025 @ Osaka

Table of Contents

Part II: Methodology

- ► Part I: Introduction
- ► Part II: Methodology
- ▶ Part III: Results & Discussions
- ► Part IV: Conclusion & Outlook

The Jülich-Bonn Model

Part II: Methodology

A comprehensive coupled-channel model, fitting to a worldwide collection of data

Hadronic part ($\pi N \to \cdots$)

- Early origins \rightarrow studies of K^-N and $\pi\pi$ [Müller-Groeling et. al., NPA 513, 557 (1990)] [Lohse et. al., NPA 516, 513 (1990)][Pearce et. al., NPA 541, 663 (1992)]
- The πN elastic scatterings [Schütz et. al., PRC 51, 1374 (1995)] [Schütz et. al., PRC 49, 2671 (1994)]
- Extended to $\pi\pi N$ and ηN [Schütz et. al., PRC 57, 1464 (1998)] [Krehl et. al., PRC 62, 025207 (2000)] [Gasparyan et. al., PRC 68, 045207 (2003)]
- Extended to $K\Lambda$ and $K\Sigma$ [Döring et. al., NPA 851, 58 (2011)] [Rönchen et. al., EPJA 49, 44 (2013)]
- Extended to ωN [Wang et. al., PRD 106, 094031 (2022)]
- Analytical continuation for searching poles [Döring et. al., NPA 829, 170 (2009)]

Photo- & Electroproduction

- Photoproduction
 [Rönchen et. al., EPJA 50, 101 (2014)] [Rönchen et. al., EPJA 51, 70 (2015)] [Rönchen et. al., EPJA 54, 110 (2018)] [Rönchen et. al., EPJA 558, 229 (2022)]
- Electroproduction (Jülich-Bonn-Washington Model)

[Mai et. al., PRC 103, 065204 (2021)] [Mai et. al., PRC 106, 015201 (2022)] [Mai et. al., EPJA 59, 286 (2023)]

Formulations

Part II: Methodology

Hadron dynamics

Lippmann-Schwinger-like equation

$$T_{\mu\nu}(p'',p',z) = V_{\mu\nu}(p'',p',z) +$$

$$\textstyle\sum_{\kappa}\int_{0}^{\infty}p^{2}dpV_{\mu\kappa}(p^{\prime\prime},p,z)G_{\kappa}(p,z)T_{\kappa\nu}(p,p^{\prime},z)$$

- One-dimensional: time-ordered perturbation theory + JLS basis [Jacob & Wick, Annals Phys. 7, 404 (1959)]
- $T = T^P + T^{NP} \rightarrow$ s-channel vertices + t/u-channel exchanges etc.
- $V \rightarrow SU(3)$, ChEFT, CP...
- Effective three-body channels: $\rho N, \sigma N, \pi \Delta$

Photo- & electroproduction

Construction from Watson's final state theorem

$$M_{\mu\gamma^*}(Q^2) = V_{\mu\gamma^*}(Q^2) + \sum_{\kappa} \int p^2 dp T_{\mu\kappa} G_{\kappa} V_{\kappa\gamma^*}(Q^2)$$

- γ^* : the γ^*N channel for electroproduction
- Q^2 : photon virtuality
- ullet $V_{\kappa\gamma^*}
 ightarrow$ phenomenologically parameterized
- Further constraints: Siegert's theorem (gauge invariance), kinematics, etc.
- Photoproduction $\rightarrow Q^2 = 0$

The latest JBW results

- $\gamma^* p$ initial state
- Coupled-channel study of πN , ηN , and $K\Lambda$ [Mai et. al., EPJA 59, 286 (2023)]
- Based on the JüBo2017 solution [Rönchen et. al., EPJA 54, 110 (2018)]
- C.M. energy range $z \in [1.13, 1.8]$ GeV
- Virtuality $Q^2 \in [0, 8] \text{ GeV}^2$
- Orbital angular momentum $L \leq 3$

Database & errors

- Database [Mai et. al., EPJA 59, 286 (2023)]
 - 10⁵ data points vs 533 fit parameters
 - -5×10^4 from photoproduction/hadronic
- Four solutions \rightarrow fully explored parameter space
 - weighted vs unweighted χ^2
 - different local minima
- Fit → supercomputers

	$\chi^2_{ m dof}$	$\chi^2_{pp}(\pi^0 p)$	$\chi^2_{\rm pp}(\pi^+ n)$	$\chi^2_{pp}(\eta p)$	$\chi^2_{pp}(K^+\Lambda)$
FIT ₁	1.42	1.40	1.47	1.49	0.70
FIT ₂	1.35	1.38	1.35	1.40	0.58
	$\chi^2_{\mathrm{wt,dof}}$	$\chi^2_{pp}(\pi^0 p)$	$\chi^2_{\rm pp}(\pi^+ n)$	$\chi^2_{pp}(\eta p)$	$\chi^2_{\rm pp}(K^+\Lambda)$
FIT ₃	X _{wt,dof} 1.12	$\chi^{2}_{pp}(\pi^{0}p)$ 1.44	$\chi^{2}_{pp}(\pi^{+}n)$ 1.61	$\chi_{pp}^{2}(\eta p)$ 1.08	$\frac{\chi^2_{pp}(K^+\Lambda)}{0.33}$

Pole searching

Part II: Methodology

- ullet Resonances o poles on the second Riemann sheet
- Analytical continuation \rightarrow contour deformation
- Pole position $z_r = M_r i\Gamma_r/2$

$$p_{\pm}$$
: singularities in ${\it G}=(z-{\it E}_1-{\it E}_2)^{-1}$

Transition form factors

Part II: Methodology

Origianl definition

[Ramalho, Peña, Prog. Part. Nucl. Phys. 136, 104097 (2024)]

$$egin{aligned} A_h &= \sqrt{rac{2\pilpha}{K}} \Big\langle R, h \Big| \epsilon_+ \cdot J \Big| N, h - 1 \Big
angle \ \mathcal{S}_{rac{1}{2}} &= rac{|\mathbf{q}|}{Q} \sqrt{rac{2\pilpha}{K}} \Big\langle R, rac{1}{2} \Big| \epsilon_0 \cdot J \Big| N, rac{1}{2} \Big
angle \end{aligned}$$

- A. S: helicity transition amplitudes
- h = 1/2, 3/2: the helicity
- α : fine structure constant
- $\epsilon(I)$: virtual photon polarization vector (current)
- q: 3-momentum of the virtual photon
- $M_R(m_N)$: mass of the excitation state R (nucleon)
- $K = (M_R^2 m_N^2)/(2M_R)$

At the pole

[Workman, Tiator, Sarantsev, PRC 87, 068201 (2013)]

$$H_h = C_I \sqrt{rac{p_{\pi N}}{\omega_0}} rac{2\pi (2J+1)z_p}{m_N \widetilde{R}} \widetilde{\mathcal{H}}_h$$

- *H* is either *A* or *S*
- C_I : isospin factor, $C_{1/2}=-\sqrt{3}$ and $C_{3/2}=\sqrt{2/3}$
- $p_{\pi N}$: πN c.m. momentum
- ω_0 : photon energy at $Q^2=0$
- $z_p = M_R i\Gamma_R/2$ the pole position
- \widetilde{R} , $\widetilde{\mathcal{H}}$: the residues of πN , $\gamma^* N$ channels
- Understanding: the |R
 angle o |R) Gamow state [Gamow, Zeitschrift für Physik 51, 204 (1928)]
- Complex-valued

- ► Part I: Introduction
- ► Part II: Methodology
- ► Part III: Results & Discussions
- ► Part IV: Conclusion & Outlook

Results of $\Delta(1232)$

- · Solid, dashed, dotted, dash-dotted curves: four fit solutions
- Dash-double-dotted curves: "L+P" extraction from MAID analyses [Workman, Tiator, Sarantsev, PRC 87, 068201 (2013)]
- Triangles: ANL-Osaka[Kamano, Few Body Syst. 59, 24 (2018)]

Results of $N^*(1440)$

- A zero crossing!!
- ρ_0 , ρ_T [Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

Summary of the results

Summary of the results

Summary of the results

Table of Contents

Part IV: Conclusion & Outlook

- ► Part I: Introduction
- ► Part II: Methodology
- ▶ Part III: Results & Discussions
- ► Part IV: Conclusion & Outlook

Conclusions

- The Jülich-Bonn(-Washington) Model
 - Comprehensive dynamical coupled-channel approaches
 - Data driven PWA \rightarrow resonance spectra
 - Connecting experimental observations to hadron structures!
- FM transition from factors of N^* and Δ 's
 - First time determined by multi-channel data
 - Defined at the poles
 - Realistic uncertainties
 - Outputs for twelve states

Outlook

- A extension of the model
 - energy range up to 1.95 GeV
 - TFFs of higher states
 - more outputs of the transition charge densities
- ωN photoproduction underway \rightarrow more modern data!
- Other studies of the structure
 - \rightarrow Weinberg's criterion & extension
 - study of the N^* and Δ states (already done!) [Wang et. al., PRC 109, 015202 (2024)]
 - study of the P_c states \rightarrow underway [Shen et. al., EPJC 84, 764 (2024)]
 - hyperons...

Backups

Details of the scattering equation

Backups

The Lippmann-Schwinger-like equation

$$T_{\mu
u}(p'',p',z)=V_{\mu
u}(p'',p',z)+\sum_{\kappa}\int_{0}^{\infty}p^{2}dpV_{\mu\kappa}(p'',p,z)G_{\kappa}(p,z)T_{\kappa
u}(p,p',z)$$

- Reaction channels $u \to \mu$ (after PW and isospin projection, JLS basis [Jacob & Wick, Annals Phys. 7, 404 (1959)], $J \le 9/2$)
- Intermediate channel: κ
- CM initial (final) momentum: p'(p''). CM energy: z
- Potential (kernel): V. Amplitude: $T \rightarrow \text{observables}$
- Propagator: G ($\pi\pi N$ channel: effective channels $\rho N, \sigma N, \pi \Delta$. E/ω energy of the baryon/meson.)

$$\mathcal{G}_{\kappa}(z,p) = \begin{cases} (z - E_{\kappa} - \omega_{\kappa} + i0^{+})^{-1} & \text{(if κ is a two-body channel) }, \\ \left[z - E_{\kappa} - \omega_{\kappa} - \Sigma_{\kappa}(z,p) + i0^{+}\right]^{-1} & \text{(if κ is an effective channel) }. \end{cases}$$

Details of the scattering equation

Backups

- Separating the amplitude \rightarrow with/without s-channel poles $T = T^P + T^{NP}$
- Reconstruction of the amplitude $\to T^{NP} = V^{NP} + \sum \int p^2 dp V^{NP} GT^{NP}$,

$$T^{p}_{\mu
u}(p'',p',z) = \sum_{i,j} \Gamma^{a}_{\mu,i}(p'') D_{ij}(z) \Gamma^{c}_{
u,j}(p'), (D^{-1})_{ij} = \delta_{ij}(z-m^{b}_{i}) - \Sigma_{ij}(z)$$

- $-\Gamma(\gamma)$: the dressed (bare) vertices (a annihilation, c creation)
- Σ : coupled-channel self-energy functions of the *s*-channel states

Details of the scattering equation

Backups

Potentials → field-theoretical construction

Parameters → determined by fits

The NP part

- Tree-level potentials
 - t-channel + u-channel + contact
 - Stemming from effective Lagrangians → SU(3) flavour symmetry, CP conservation, chiral symmetry
 - Established by time-ordered perturbation theory (TOPT) → stationary perturbation in Schrödinger picture
 - − TOPT+partial wave \rightarrow one-dimensional integral $\int p^2 dp$
 - Regulators for every vertex \rightarrow to make the integral converge: $F(q) \sim \left(\frac{\Lambda^2 m^2}{\Lambda^2 + q^2}\right)^n$ m: the mass of the exchanged particle. Λ : cut-off (fit parameter)
- Beyond tree-level → correlated two-pion exchanges [Schütz et. al., PRC 49, 2671 (1994)] [Schütz et. al., PRC 51, 1374 (1995)]

The P part

- Stemming from effective Lagrangians with CP conservation (tree-level bare vertices)
- ullet Phenomenological contact terms $o D \sim (1-\Sigma)^{-1}$ [Rönchen et. al., EPJA 51, 70 (2015)]
- Renormalization of the nucleon mass

Phenomenological parameterizations

Backups

- Details
 - Hadronic part: [Wang et. al., PRD 106, 094031 (2022)]
 - Photoproduction: [Rönchen, Döring, and Meißner, EPJA 54, 110 (2018)]
 - Electroproduction: [Mai et. al., EPJA 59, 286 (2023)]
- Transverse $\gamma^* N$ potentials:

$$V_{\gamma^*\mu} = \alpha_{\gamma^*\mu} + \sum_i \frac{\gamma_{\mu i}^c \gamma_{\gamma^* i}^c}{W - m_i^b} \,, \quad \alpha_{\gamma^*\mu} = \tilde{F}_\mu(Q^2) \alpha_{\gamma\mu} \,, \quad \gamma_{\gamma^* i}^c = \tilde{F}_i(Q^2) \gamma_{\gamma i}^c \,$$

- $\tilde{F} \rightarrow \text{Exponential} \times \text{polynomial} \times \text{Woods-Saxon FF} (1 + Q^2/(0.71\text{GeV}^2))^{-1}$
- $-\alpha_{\gamma\mu}, \gamma_{\gamma i} \to \text{Exponential} \times \text{polynomial}$
- Longitudinal γ^*N potentials \to constructed from transverse ones with constraints from Siegert's theorem [Siegert, PR 52, 787 (1937)]

$$\left. \frac{E_{l+}}{L_{l+}} \right|_{\mathrm{PT-}} = 1 \; , \quad \left. \frac{E_{l-}}{L_{l-}} \right|_{\mathrm{PT-}} = \frac{l}{1-l} \; (l
eq 1)$$

"PT-":
$$Q^2 = -(W - m_N)^2$$

• Kinematic constraints: Multipoles $M \to RM$ with R the Blatt-Weisskopf barrier-penetration factor

[J. Blatt, V. Weisskopf, Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952]

Transverse charge distributions: definition

Backups

[Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

- The light front frame:
 - Large momentum along $P=(p_{N^*}+p_N)/2$ (as z-axis) Light front component $v^{\pm}\equiv v^0\pm v^3$

 - Symmetric frame $q_{\gamma^*}^+=0$, the transverse component on xOy plane ${\bf q}_\perp^2=Q^2$
- The transverse charge density for the transition:

$$\rho(\mathbf{b}) \equiv \int \frac{d^2\mathbf{b}}{(2\pi)^2} \frac{1}{2P^+} e^{-i\mathbf{q}_{\perp} \cdot \mathbf{b}} \left\langle P^+, \frac{\mathbf{q}_{\perp}}{2}, \lambda_{N^*} \middle| J^+(0) \middle| P^+, -\frac{\mathbf{q}_{\perp}}{2}, \lambda_N \right\rangle$$

- $-\lambda$: helicity
- I+: quark charge current. "+" component
- **b**: 2D position on xOv plane
- The quark charge distribution that is responsible for the $N \to N^*$ transition
- Two independent densities
 - ρ_0 : unpolarized \rightarrow only depends on $|\mathbf{b}|$
 - ρ_T : polarized along x-axis, $|\lambda\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle + |-\frac{1}{2}\rangle \right)$

Transverse charge distributions: calculation Backups

[Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

• Helicity TFFs in terms of Pauli-Dirac TFFs

$$\begin{split} A_{1/2} &= \frac{eQ_{-}}{\sqrt{4Km_{N}M_{R}}} (F_{1} + F_{2}) \\ S_{1/2} &= \frac{eQ_{-}}{\sqrt{8Km_{N}M_{R}}} \frac{Q_{+}Q_{-}}{2M_{R}} \frac{M_{R} + m_{N}}{Q^{2}} \left[F_{1} - \frac{Q^{2}}{(m_{N} + M_{R})^{2}} F_{2} \right] \end{split}$$

with
$$Q_{\pm}=\sqrt{(M_R\pm m_N)^2+Q^2}$$

• Unpolarized (J_n : cylindrical Bessel function)

$$\rho_0(\mathbf{b}) = \int_0^{+\infty} \frac{dQ}{2\pi} Q J_0(|\mathbf{b}|Q) F_1(Q^2)$$

• Polarized ($\sin \phi = b_{\gamma}/|\mathbf{b}|$)

$$\rho_T(\mathbf{b}) = \rho_0(\mathbf{b}) + \sin\phi \int_0^{+\infty} \frac{dQ}{2\pi} \frac{Q^2}{m_N + M_R} J_1(|\mathbf{b}|Q) F_2(Q^2)$$