基于 Transformer 的神经机器翻译

一、 实验目的

- 1. 本实验旨在介绍基于 Transformer 的神经机器翻译任务;
- 2. 掌握使用深度学习框架搭建基于 Transformer 机器翻译模型。

二、 实验要求

- 1. 利用 Python 语言和深度学习框架(本实验指导书以 Pytorch 为例)构造简单的机器翻译模型,以实现英语和汉语的相互转换。
- 2. 评估指标 BLEU4(Bilingual Evaluation Understudy 4) 大于 14。(参考文献:https://dl.acm.org/doi/10.3115/1073083.1073135
- 3. 如果选择做此实验作业,按规定时间在课程网站提交实验报告、代码以及 PPT。

三、 实验原理

1、 模型结构 (举例)

采用基于 Transformers 的 seq2seq 模型,包括编解码两大部分,如下图,编码部分是由若干个相同的编码器组成,解码部分也是由相同个数的解码器组成,与编码器不同的是,每一个解码器都会接受最后一个编码器的输出。

2、 模型输入

模型输入为单个文本序列或一对文本序列(例如, [源文,译文])。"序列"可以是连续的

任意跨度的文本,而不是实际语言意义上的句子,即可以是单个句子,也可以是两个句子组合在一起。通过把给定标记对应的标记嵌入、句子嵌入和位置嵌入求和来构造其输入表示,下图给出了 BERT 模型输入序列的可视化表示,引自《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》。

(请注意:本部分仅用 BERT 模型介绍输入文本预处理的过程,BERT 模型是一个嵌入模型,只包含文本编码部分,不包含解码部分,不适用于生成式任务)

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

模型输入包含以下细节:

- 1) BERT 支持的序列长度最长可达 512 个 token(token 是指分词而不是单词,例如"I love nature language processing."可以被分词成"I", "love", "nature", "language", "process", "-ing", ".",具体的分规则由模型本身的词表决定)。
- 2)每个序列的第一个标记始终会被添加为特殊分类嵌入([CLS])。该特殊标记对应的最终隐藏状态(即 Transformer 的输出)被用作分类任务中该序列的总表示,末尾会被添加一个 [SEP]截止符,如果在一个 batch 中有的句子比较短,则需要添加占位符[PAD]。假设 1)中的句子分别为"I love you."和"I love nature language processing.",设定序列长度统一为 10,那么经过分词后的序列表示如下:

"[CLS]", "I", "love", "you", ".", "[SEP]", "[PAD]", "I", "love", "nature", "language", "process", "-ing", ".", "[PAD]", "[PAD]",

- 3) 句子对被打包在一起形成一个单独的序列,可以用两种方法区分这些句子:方法一,我们用一个特殊标记([SEP])将它们分开;方法二,我们给第一个句子的每个标记添加一个可训练的句子 A 嵌入,给第二个句子的每个标记添加一个可训练的句子 B 嵌入。
- 4) 对于单句输入, 我们只使用句子 A 嵌入。

3、 机器翻译模型预训练任务

机器翻译类模型通常采用自回归的方式来做预训练。通过自回归训练,模型会一个词一个词地生成目标语言句子,每生成一个词时都会把前面生成的词作为输入,去预测目标序列的后一个词,通过这种循环迭代的方式,模型最终可以学习出语言间的复杂对应关系。

4、 模型输出

当输入序列的隐状态向量在模型内部传递时,其维度为[bs,seq_length,hidden_dim],其中 bs 表示当前训练或推理的批大小,也就是 batch_size,seq_length 表示模型当前处理过程中句子序列的长度,也就是序列中 token 的个数,如 2a 中 BERT 最大支持 512,hidden_dim 表示序列中的每个 token 对应的隐状态维度,一般基本模型为 768,较大的模型为 1024,大语言模型(如 LLaMA)为 4096。可以取出最后一层解码器输出的隐状态向量为整个模型的输出,经过自回归预测头(自回归预测头通常是一个前向神经网络,其输入输出维度为[hidden_dim,vocab_size],vocab_size 指的是词表长度,旨在将输出的隐状态通过自回归预测头,再经过 softmax 的归一化,得到最有可能出现的单词,作为当前词的预测)后送入到 3. 中损失函数进行训练;如果为推理阶段,同样需要经过自回归预测头,通过计算词表中每个词的概率得到当前词的输出。

Decoder 输入输出

四、实验所用工具以及数据集

本实验主要针对中英机器翻译,使用的数据库来自 NiuTrans 提供的开源中英平行语料库,包含中、英文各 10 万条,如下图所示。

组织	新建	打开 货	译
电脑 > OS (C:) > 用户 > my > 下载 > sample > sample-submission-version > TM-training-set			
△ 名称	~ 修改日期	类型	大小
Alignment.txt	7/7/2012 下午6:48	文本文档	13,428 KB
chinese.tree.txt	7/7/2012 下午6:48	文本文档	45,092 KB
chinese.txt	7/7/2012 下午6:48	文本文档	13,973 KB
english.tree.txt	7/7/2012 下午6:48	文本文档	55,528 KB
english.txt	7/7/2012 下午6:48	文本文档	18,285 KB
> OS (C:) > 用户 > my > 下载 > sample >	sample-submission-version >	Test-set	и+
] 名称	~ 修改日期	类型	大小
Niu.test.tree.txt	7/7/2012 下午6:48	文本文档	600 KB
Niu.test.txt	7/7/2012 下午6:48	文本文档	140 KB

下载地址: https://github.com/NiuTrans/NiuTrans.SMT/tree/master/sample-data
数据集包含五部分:

- 1) TM-training-set: TM 训练集是用于翻译模型训练的双语数据,一共提供了 199630 个句子 对作为样本。包含文件 chinese.txt, english.txt, chinese.tree.txt, english.tree.txt, Alignment.txt。
- 2) Dev-set: Dev 集是包含 1000 个中文句子对和每个中文句子一个参考的英文对应翻译,包含文件: Niu.dev.txt。
- 3) Test-set: 测试集是包含 1000 个单语句子的测试数据文件 Niu.test.txt。 reference-set: 验证集是测试集的对应的英文翻译供比较使用。包含文件,Niu.test.reference。 文件 Alignment.txt 是 chinese.txt,english.txt 中对应句子的单词对应翻译,例如:
- 文件"Alignment.txt"的第 105 行是"0-0 0-1 2-2 3-2 4-8 4-9 5-6 6-4 6-5 7-10"
- 文件"c.txt"的第 105 行是"爱尔兰 人 过去 用 马铃薯 作为 主食 ."
- 文件"e.txt"的第 105 行是"the irish used to live on a diet of potatoes."
- "0-1"是指中文中的"爱尔兰"与相应英语句子中的"irish"匹配。
- 本实验用到的数据集已经做好了中文分词,中文的数据样例如下:

北约 不少 飞机 不得不 携 返航 ,降低 了 军事 能力 的 使用 效能,增加 了 战 斗 成本每个词之间用空格分隔,标点符号也算作一个单词。相应的英文样例如下:

many nato planes had to return to base laden with munitions, thus lowering theefficiency of use of military power and increasing the costs of fighting 由于英语中每个单词之间都有空格并

且已经从大写转化成小写, 故不需要分词。

五、 实验步骤和方法(本部分仅供参考)

基于百度飞桨框架的实现可以参考: 基于 Transformer 的机器翻译 - 飞桨 AI Studio 星河社区 (baidu. com)

1. 数据集加载和处理

```
class Zh2EnDataLoader(BaseDataLoader):
   def __init__(self, src_filename, trg_filename, src_vocab, trg_vocab, batch_size, shuffle, logger):
        self.src_filename = src_filename
        self.trg_filename = trg_filename
        self.src_vocab = src_vocab
        self.trg_vocab = trg_vocab
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.logger = logger
        self.src_lines, self.trg_lines = self.__read_data()
   def __len__(self):
       return len(self.src_lines)
   def __getitem__(self, index):
        src_data = self.src_lines[index]
        trg_data = self.trg_lines[index]
        max_src_len = 0
        max_trg_len = 0
        src_batch_id = []
        trg_batch_id = []
        for src_tokens, trg_tokens in zip(src_data, trg_data):
            max_src_len = len(src_tokens) if len(src_tokens) > max_src_len else max_src_len
max_trg_len = len(trg_tokens) if len(trg_tokens) > max_trg_len else max_trg_len
            src_batch_id.append([self.src_vocab.word2id[word]
            if word in self.src_vocab.word2id else self.src_vocab.word2id['<unk>'] for word in src_tokens])
            trg_batch_id.append([self.trg_vocab.word2id[word]
            if word in self.trg_vocab.word2id else self.trg_vocab.word2id['<unk>'] for word in trg_tokens])
        src = torch.LongTensor(self.batch_size, max_src_len).fill_(self.src_vocab.word2id['<pad>'])
        trg = torch.LongTensor(self.batch_size, max_trg_len).fill_(self.trg_vocab.word2id['<pad>'])
        for i in range(self.batch_size):
            src[i, :len(src_batch_id[i])] = torch.LongTensor(src_batch_id[i])
trg[i, :len(trg_batch_id[i])] = torch.LongTensor(trg_batch_id[i])
```

```
def __read_data(self):
   self.logger.debug("-----")
   with open(self.src_filename, 'r', encoding='utf-8') as f:
       src_lines = np.array(f.readlines())
   with open(self.trg_filename, 'r', encoding='utf-8') as f:
      trg_lines = np.array(f.readlines())
   assert len(src_lines) == len(trg_lines)
   if self.shuffle:
       idx = np.random.permutation(len(src_lines))
       src_lines = src_lines[idx]
       trg_lines = trg_lines[idx]
   self.logger.debug("{} and {} has data {}".
   format(self.src filename, self.trg filename, len(src lines)))
   return self.__preprocess_data(src_lines, trg_lines)
def __preprocess_data(self, src_lines, trg_lines):
   self.logger.debug("-----")
   src_lines = [['<sos>'] + line.strip().split('\t') + ['<eos>'] for line in src_lines]
   trg_lines = [['<sos>'] + line.strip().split('\t') + ['<eos>'] for line in trg_lines]
   src_lines = [src_lines[i:i+self.batch_size] for i in range(0, len(src_lines), self.batch_size)]
   trg_lines = [trg_lines[i:i+self.batch_size] for i in range(0, len(trg_lines), self.batch_size)]
   return src_lines, trg_lines
```

2. 模型构建

包含 encoder 和 decoder ,需要分别构建:

```
class Encoder(BaseModel):
   def __init__(self, vocab_size, h_dim, pf_dim, n_heads, n_layers, dropout, device, max_seq_len=200):
       super().__init__()
       self.n_layers = n_layers
       self.h_dim = h_dim
       self.device = device
       self.word_embeddings = WordEmbeddings(vocab_size, h_dim)
       self.pe = PositionEmbeddings(max_seq_len, h_dim)
       self.layers = nn.ModuleList()
       for i in range(n_layers):
           self.layers.append(EncoderLayer(h_dim, n_heads, pf_dim, dropout, device))
       self.dropout = nn.Dropout(dropout)
       self.scale = torch.sqrt(torch.FloatTensor([h_dim])).to(device)
   def forward(self, src, src_mask):
       output = self.word_embeddings(src) * self.scale
       src_len = src.shape[1]
       pos = torch.arange(0, src_len).unsqueeze(0).repeat(src.shape[0], 1).to(self.device)
       output = self.dropout(output + self.pe(pos))
       for i in range(self.n_layers):
           output = self.layers[i](output, src_mask)
       return output
```

Encoder 中包含了若干个 Encoderlayer,构建如下:

```
class EncoderLayer(BaseModel):
    def __init__(self, h_dim, n_heads, pf_dim, dropout, device):
        super().__init__()
        self.attention = MultiHeadAttentionLayer(h_dim, n_heads, dropout, device)
        self.attention_layer_norm = nn.LayerNorm(h_dim)
        self.ff_layer_norm = nn.LayerNorm(h_dim)
        self.positionwise_feedforward = PositionwiseFeedforwardLayer(h_dim, pf_dim, dropout)

        self.attention_dropout = nn.Dropout(dropout)
        self.ff_dropout = nn.Dropout(dropout)

        def forward(self, src, src_mask):
        att_output = self.attention(src, src, src, src_mask)
# res
        output = self.attention_layer_norm(src + self.attention_dropout(att_output))

        ff_output = self.positionwise_feedforward(output)
# res
        output = self.ff_layer_norm(output + self.ff_dropout(ff_output))

        return output
```

以下是 decoder:

```
class Decoder(BaseModel):
   def __init__(self, vocab_size, h_dim, pf_dim, n_heads, n_layers, dropout, device, max_seq_len=200):
        super().__init__()
        self.n layers = n layers
        self.h_dim = h_dim
        self.device = device
        self.word_embeddings = WordEmbeddings(vocab_size, h_dim)
        self.pe = PositionEmbeddings(max_seq_len, h_dim)
        self.layers = nn.ModuleList()
        self.dropout = nn.Dropout(dropout)
        self.scale = torch.sqrt(torch.FloatTensor([h_dim])).to(device)
        for i in range(n_layers):
            self.layers.append(DecoderLayer(h_dim, pf_dim, n_heads, dropout, device))
   def forward(self, target, encoder_output, src_mask, target_mask):
        output = self.word_embeddings(target) * self.scale
        tar_len = target.shape[1]
        pos = torch.arange(\emptyset, tar\_len).unsqueeze(\emptyset).repeat(target.shape[\emptyset], 1).to(self.device)
        for i in range(self.n_layers):
            output = self.layers[i](output, encoder_output, src_mask, target_mask)
        return output
```

```
lass DecoderLayer(BaseModel):
  def __init__(self, h_dim, pf_dim, n_heads, dropout, device):
      super().__init__()
      self.self_attention = MultiHeadAttentionLayer(h_dim, n_heads, dropout, device)
      self.attention = MultiHeadAttentionLayer(h_dim, n_heads, dropout, device)
      self.positionwise_feedforward = PositionwiseFeedforwardLayer(h_dim, pf_dim, dropout)
      self.self_attention_layer_norm = nn.LayerNorm(h_dim)
      self.attention_layer_norm = nn.LayerNorm(h_dim)
      self.ff_layer_norm = nn.LayerNorm(h_dim)
      self.self_attention_dropout = nn.Dropout(dropout)
      self.attention_dropout = nn.Dropout(dropout)
      self.ff_dropout = nn.Dropout(dropout)
  def forward(self, target, encoder_output, src_mask, target_mask):
      self_attention_output = self.self_attention(target, target, target, target_mask)
      output = self.self_attention_layer_norm(target + self.self_attention_dropout(self_attention_output)
      attention_output = self.attention(output, encoder_output, encoder_output, src_mask)
      output = self.attention_layer_norm(output + self.attention_dropout(attention_output))
      ff_output = self.positionwise_feedforward(output)
      output = self.ff_layer_norm(ff_output + self.ff_dropout(ff_output))
      return output
```

以下是前向 MLP 模型的定义,

```
v class PositionwiseFeedforwardLayer(BaseModel):
    def __init__(self, h_dim, pf_dim, dropout):
        super().__init__()

        self.fc_1 = nn.Linear(h_dim, pf_dim)
        self.fc_2 = nn.Linear(pf_dim, h_dim)
        self.dropout = nn.Dropout(dropout)

def forward(self, inputs):
    inputs = torch.relu(self.fc_1(inputs))
    inputs = self.dropout(inputs)
    inputs = self.fc_2(inputs)

return inputs
```

最后是将 encoder 和 decoder 合并到一起,

这样便完成了网络的构建。

3. 训练和测试

```
def _train_epoch(self, epoch):
    self.model.train()
    total loss = 0
    for idx, (src, trg) in enumerate(self.data_loader):
       src = src.to(self.device)
       trg = trg.to(self.device)
        src_mask = make_src_mask(src, self.data_loader.src_vocab, self.device)
        trg_mask = make_trg_mask(trg[:,:-1], self.data_loader.trg_vocab, self.device)
       self.optimizer.zero_grad()
       output = self.model(src, trg[:,:-1], src_mask, trg_mask)
       output_dim = output.shape[-1]
       output = output.contiguous().view(-1, output_dim)
       trg = trg[:,1:].contiguous().view(-1)
        loss = self.criterion(output, trg)
       loss.backward()
       torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)
        self.optimizer.step()
        total_loss += loss.item()
        if idx % self.log_step == 0:
            self.logger.info('Train Epoch: {}, {}/{} ({:.0f}%), Loss: {:.6f}'.format(epoch,
                        len(self.data_loader),
                        idx * 100 / len(self.data loader),
                        loss.item()
```

以上为模型训练部分代码:

```
def _valid_epoch(self):
    self.model.eval()
   val_loss = 0
   pred = []
    labels = []
    with torch.no_grad():
        for idx, (src, trg) in enumerate(self.valid_data_loader):
            src = src.to(self.device)
            trg = trg.to(self.device)
            src_mask = make_src_mask(src, self.valid_data_loader.src_vocab, self.device)
            trg_mask = make_trg_mask(trg[:,:-1], self.data_loader.trg_vocab, self.device)
           output = self.model(src, trg[:,:-1], src_mask, trg_mask)
           output = F.log_softmax(output, dim=-1)
            output dim = output.shape[-1]
            output = output.contiguous().view(-1, output_dim)
            trg = trg[:,1:].contiguous().view(-1)
            val_loss += self.criterion(output, trg)
   return val_loss / len(self.valid_data_loader)
```

以上为模型验证相关代码;

```
def translate_sentence(sentence, model, device, zh_vocab, en_vocab, zh_tokenizer, max_len = 100):
    model.eval()
    tokens = zh_tokenizer.tokenizer(sentence)
    tokens = ['<sos>'] + tokens + ['<eos>']
    print(tokens)
    tokens = [zh_vocab.word2id[word] for word in tokens]
    src_tensor = torch.LongTensor(tokens).unsqueeze(0).to(device)
    src_mask = make_src_mask(src_tensor, zh_vocab, device)
    with torch.no_grad():
        enc_src = model.encoder(src_tensor, src_mask)
    trg = [en vocab.word2id['<sos>']]
    for i in range(max_len):
        trg_tensor = torch.LongTensor(trg).unsqueeze(0).to(device)
        trg_mask = make_trg_mask(trg_tensor, en_vocab, device)
        with torch.no_grad():
            output = model.decoder(trg_tensor, enc_src, src_mask, trg_mask)
            output = model.fc(output)
        pred_token = output.argmax(2)[:,-1].item()
        trg.append(pred_token)
        if pred_token == en_vocab.word2id['<eos>']:
    trg_tokens = [en_vocab.id2word[idx] for idx in trg]
    return trg tokens
```

以上为模型测试相关代码,同学们可以使用测试代码查看翻译效果。