Distributional Semantics meets Multi Label Learning

Vivek Gupta (1,2), Rahul Wadbude (3), Nagarajan Natarajan (2), Harish Karnick (3), Prateek Jain (2) and Piyush Rai(3)

Microsoft® Research

(1) School of Computing, University of Utah, (2) Microsoft Research Lab, India, (3) Indian Institute of Technology, Kanpur

Extreme Multi-Label Learning

- Learning with millions of labels
- Learning with heavy tail distribution of labels
- Learning with missing labels
- Learning to promote diverse recommendations

Methods for Extreme Learning

- Tree based : split examples by labels
- Embedding based : embed labels or examples
- One-vs-all: one classifier per label

Method	Accuracy	Scalable	Predict	Model	Theory
			Cost	Size	
1-vs-All	©	②	②	②	©
Embedding	©	\odot	©	\odot	©
Tree	©	\odot	©	(3)	©

Distributional Semantics

- Each word (w) or sentence (s) is represented using a vector $\vec{v} \in \mathbb{R}^d$
- Semantically similar words or sentences occur closer in the vector space

• Various methods word2vec (SGNS, CBOW) and Doc2vec (PV-DM, PV- DBOW) by Mikolov et al.

SLEEC: Embedding based Algorithm

SGNS meets Label Embedding

- $\mathbb{S}^i = \{j; j \in NN_i\}_{j=1}^K$, here NN_i denote nearest neighbour of y_i
- $K_{ij} = cos(z_i, z_j) = \frac{z_i \cdot z_j}{\|z_i\| \|z_j\|}$, where z_i, z_j label embedding of y_i, y_j
- $z_i = Vx_i$, where $V \in \mathbb{R}^{l \times D}$

Optimization Objective

$$P_i(j \in S^i) = \sigma(\gamma K_{ij})$$

$$\mathbb{J}_i = \sum_{j \in S_i} \log(P_i(j \in S^i)) + \sum_{k \notin S_i}^K \log(P_i(k \notin S^i))$$

$$\mathbb{J}_i = \sum_{j \in S_i} \log(\sigma(\gamma K_{ij})) + \sum_{k \notin S_i}^K \log(\sigma(-\gamma K_{ik}))$$

Optimization by Matrix Factorization

Theorem (levy et. al. 2014): SGNS objective is equivalent to weighted matrix factorization of SPPMI (shifted PMI) matrix

$$PMI_{ij}(M) = log \left(\frac{M_{ij} * |M|}{\sum_{k} M_{(i,k)} * \sum_{k} M_{(k,j)}} \right)$$
$$SPPMI_{ij}(M) = \max(PMI_{ij}(M) - log(k), 0)$$

Here, PMI(M) is point wise mutual information matrix, |M| represent sum of all element in matrix M

ExMLDS Algorithm

- Multi-iter SVP algorithm replaced with single step SVD on SPPMI
- Regression and Prediction algorithm are exactly same to the SLEEC
- ExMLDS is 10x faster than the SLEEC with similar performance

Incorporating Label Correlation

- Learn embedding of labels as well as instances jointly
- Overall Idea: think of labels as individual words, whereas instances as a sentence
- PV-DBoW maximize similarity between embedded sentence and words of the sentence.
- Can incorporate auxiliary label-label correlation information

Joint Learning of Embedding and Regressor

$$\nabla_{V} \mathbb{J}_{i} = \gamma \sum_{j \in S_{i}} \sigma(-\gamma K_{ij}) \nabla_{V} K_{ij} - \gamma \sum_{k \notin S_{i}} \sigma(\gamma K_{ik}) \nabla_{V} K_{ik}$$

$$\nabla_{V} K_{ij} = -ab^{3} c z_{i}(x_{i})^{T} - abc^{3} z_{j}(x_{j})^{T} + bc(z_{i} x_{j}^{T} + z_{j} x_{i}^{T})$$

$$a = z_{i}^{T} z_{j}, b = \frac{1}{\|z_{i}\|}, c = \frac{1}{\|z_{j}\|}$$

Experiments

- We compared our method with several state of art extreme classification algorithms on several datasets
- We used the two most popular metrics Prec@k and nDCG@k for evaluation

Results: ExMLDS1 training time

Method	Bibtex	Delicious	Eurlex	Media	Delicious
				mill	200K
ExMLDS1	23	259	580.9	1200	1937
ExMLDS2	143.19	781.94	880.64	12000	13000
$\mathbf{S}_{\mathbf{L}\mathbf{E}\mathbf{C}}$	313	1351	4660	8912	10000

Results: Missing 80% Labels

	Dataset	Prec@k	ExMLDS3	SLEEC	LEML	LEML-IMC
Bibtex		P@1	48.51	30.5	35.98	41.23
	P@3	28.43	14.9	21.02	25.25	
	P@5	20.7	9.81	15.50	18.56	
Eurlex		P@1	60.28	51.4	26.22	39.24
	Eurlex	P@3	44.87	37.64	22.94	32.66
		P@5	35.31	29.62	19.02	26.54
rcv1v2		P@1	81.67	41.8	64.83	73.68
	P@3	$\boldsymbol{52.82}$	17.48	42.56	48.56	
	P@5	37.74	10.63	31.68	34.82	

Results: Joint Learning

Dataset	Prec@k	ExMLDS4	AnnexML	SLEEC
	P@1	47.70	46.66	47.85
Delicious-200K	P@3	41.22	40.79	42.21
	P@5	37.98	37.64	39.43
	P@1	62.27	63.86	58.39
Wikipedia-500K	P@3	41.43	42.69	37.88
	P@5	31.42	32.37	28.21
	P@1	41.47	42.08	35.05
Amazon-670K	P@3	36.35	36.65	31.25
	P@5	32.43	32.76	28.56

References

For dataset details refer to Extreme Classification Repository by Manik Varma (https://goo.gl/3LvVa6)