Math 4341 (Topology)

Definition. Let (X, \mathcal{T}) be a topological space.

- **Definition**. Let (X, \mathcal{T}) be a topological space.
 - ▶ A collection $\mathcal{U} \subset \mathcal{T}$ of open sets of called an *open cover* of X if $X = \bigcup_{\mathcal{U} \in \mathcal{U}} \mathcal{U}$.

- **Definition**. Let (X, \mathcal{T}) be a topological space.
 - A collection $\mathcal{U} \subset \mathcal{T}$ of open sets of called an *open cover* of X if $X = \bigcup_{\mathcal{U} \in \mathcal{U}} \mathcal{U}$.
 - ▶ The space X is called *compact* if *every* open cover \mathcal{U} of X has a finite subcover, meaning that one can find finitely many open sets $U_1, \ldots, U_n \in \mathcal{U}$ so that $X = \bigcup_{i=1}^n U_i$.

- **Definition**. Let (X, \mathcal{T}) be a topological space.
 - A collection $\mathcal{U} \subset \mathcal{T}$ of open sets of called an *open cover* of X if $X = \bigcup_{\mathcal{U} \in \mathcal{U}} \mathcal{U}$.
 - ▶ The space X is called *compact* if *every* open cover \mathcal{U} of X has a finite subcover, meaning that one can find finitely many open sets $U_1, \ldots, U_n \in \mathcal{U}$ so that $X = \bigcup_{i=1}^n U_i$.
- ► **Example**. Every finite topological space is compact, since there are only finitely many open sets.

- **Definition**. Let (X, \mathcal{T}) be a topological space.
 - A collection $\mathcal{U} \subset \mathcal{T}$ of open sets of called an *open cover* of X if $X = \bigcup_{\mathcal{U} \in \mathcal{U}} \mathcal{U}$.
 - ▶ The space X is called *compact* if *every* open cover \mathcal{U} of X has a finite subcover, meaning that one can find finitely many open sets $U_1, \ldots, U_n \in \mathcal{U}$ so that $X = \bigcup_{i=1}^n U_i$.
- **Example**. Every finite topological space is compact, since there are only finitely many open sets.
- ▶ **Example**. The real line \mathbb{R} is not compact since the open cover \mathcal{U} consisting of open sets $U_n = (-n, n)$, $n \in \mathbb{N}$, does not have a finite subcover.

- **Definition**. Let (X, \mathcal{T}) be a topological space.
 - A collection $\mathcal{U} \subset \mathcal{T}$ of open sets of called an *open cover* of X if $X = \bigcup_{U \in \mathcal{U}} U$.
 - ▶ The space X is called *compact* if *every* open cover \mathcal{U} of X has a finite subcover, meaning that one can find finitely many open sets $U_1, \ldots, U_n \in \mathcal{U}$ so that $X = \bigcup_{i=1}^n U_i$.
- **Example**. Every finite topological space is compact, since there are only finitely many open sets.
- ▶ **Example**. The real line \mathbb{R} is not compact since the open cover \mathcal{U} consisting of open sets $U_n = (-n, n)$, $n \in \mathbb{N}$, does not have a finite subcover.
- **Example**. The half-open interval $(0,1] \subset \mathbb{R}$ is not compact since the open cover \mathcal{U} consisting of open sets $U_n = (\frac{1}{n},1]$, $n \in \mathbb{N}$, does not have a finite subcover.

▶ **Example**. The subspace $A = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact. Note that $U_n = \{1/n\}$ is an open set in the subspace topology, so $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is an open cover of A. Clearly, we can not find a finite subcover, since any finite subcover would cover only finitely many points of A.

- ▶ **Example**. The subspace $A = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact. Note that $U_n = \{1/n\}$ is an open set in the subspace topology, so $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is an open cover of A. Clearly, we can not find a finite subcover, since any finite subcover would cover only finitely many points of A.
- **Example**. Let $X = A \cup \{0\}$, where A is the set from the previous example. We claim that X is compact.

- ▶ **Example**. The subspace $A = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact. Note that $U_n = \{1/n\}$ is an open set in the subspace topology, so $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is an open cover of A. Clearly, we can not find a finite subcover, since any finite subcover would cover only finitely many points of A.
- **Example**. Let $X = A \cup \{0\}$, where A is the set from the previous example. We claim that X is compact.
 - Let \mathcal{U} be an arbitrary open cover of X. Then there is an open set $U \in \mathcal{U}$ so that $0 \in \mathcal{U}$. Note that U will contain the points 1/n for all large enough n, say all n > N for some N.

- ▶ **Example**. The subspace $A = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact. Note that $U_n = \{1/n\}$ is an open set in the subspace topology, so $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is an open cover of A. Clearly, we can not find a finite subcover, since any finite subcover would cover only finitely many points of A.
- **Example**. Let $X = A \cup \{0\}$, where A is the set from the previous example. We claim that X is compact.
 - Let \mathcal{U} be an arbitrary open cover of X. Then there is an open set $U \in \mathcal{U}$ so that $0 \in \mathcal{U}$. Note that U will contain the points 1/n for all large enough n, say all n > N for some N.
 - Since \mathcal{U} is an open cover, we can also find open sets $U_1, \ldots, U_N \in \mathcal{U}$ so that $1/k \in U_k$ for all $k = 1, \ldots, N$.

- ▶ **Example**. The subspace $A = \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is not compact. Note that $U_n = \{1/n\}$ is an open set in the subspace topology, so $\mathcal{U} = \{U_n \mid n \in \mathbb{N}\}$ is an open cover of A. Clearly, we can not find a finite subcover, since any finite subcover would cover only finitely many points of A.
- **Example**. Let $X = A \cup \{0\}$, where A is the set from the previous example. We claim that X is compact.
 - Let \mathcal{U} be an arbitrary open cover of X. Then there is an open set $U \in \mathcal{U}$ so that $0 \in \mathcal{U}$. Note that \mathcal{U} will contain the points 1/n for all large enough n, say all n > N for some N.
 - Since \mathcal{U} is an open cover, we can also find open sets $U_1, \ldots, U_N \in \mathcal{U}$ so that $1/k \in U_k$ for all $k = 1, \ldots, N$.
 - ▶ We now see that the collection $U, U_1, ..., U_N$ together form a finite subcover of X.

► **Theorem 6.1**. A closed subspace of a compact space is compact.

- ► **Theorem 6.1**. A closed subspace of a compact space is compact.
- ▶ *Proof.* Let A be a closed subset of a compact space X. To show that A is compact, let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of A. That is, every U_i is open in A in the subspace topology.

- ► **Theorem 6.1**. A closed subspace of a compact space is compact.
- ▶ *Proof.* Let A be a closed subset of a compact space X. To show that A is compact, let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of A. That is, every U_i is open in A in the subspace topology.
 - ▶ By definition, we can find for every $i \in I$ open subsets V_i of X so that $U_i = A \cap V_i$. Since the U_i cover A, it follows that the family $\mathcal{V} = \{V_i\}_{i \in I} \cup \{A^c\}$ is an open cover of X. Note that A^c is open since A is closed.

- ► **Theorem 6.1**. A closed subspace of a compact space is compact.
- ▶ *Proof.* Let A be a closed subset of a compact space X. To show that A is compact, let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of A. That is, every U_i is open in A in the subspace topology.
 - ▶ By definition, we can find for every $i \in I$ open subsets V_i of X so that $U_i = A \cap V_i$. Since the U_i cover A, it follows that the family $\mathcal{V} = \{V_i\}_{i \in I} \cup \{A^c\}$ is an open cover of X. Note that A^c is open since A is closed.
 - Since X is compact, there is a finite subcover $V_{i_1}, \ldots, V_{i_n} \in \mathcal{V}$ of X. Going back, we see that $V_{i_1} \cap A, \ldots, V_{i_n} \cap A \in \mathcal{U}$ form a finite subcover of A, which is what we wanted to prove.

► **Theorem 6.2**. A compact subspace of a Hausdorff space is closed.

Compactness¹

- ► **Theorem 6.2**. A compact subspace of a Hausdorff space is closed.
- ▶ *Proof.* Assume that X is a Hausdorff space, and let $A \subset X$ be compact. We want to show that A^c is open.

- ► **Theorem 6.2**. A compact subspace of a Hausdorff space is closed.
- ▶ *Proof.* Assume that X is a Hausdorff space, and let $A \subset X$ be compact. We want to show that A^c is open.
 - ▶ Take any $x_0 \in A^c$. For every point $y \in A$, we can find disjoint nbhds U_y and V_y of x_0 and y respectively, since X is Hausdorff.

- ▶ Theorem 6.2. A compact subspace of a Hausdorff space is closed.
- ▶ *Proof.* Assume that X is a Hausdorff space, and let $A \subset X$ be compact. We want to show that A^c is open.
 - ▶ Take any $x_0 \in A^c$. For every point $y \in A$, we can find disjoint nbhds U_y and V_y of x_0 and y respectively, since X is Hausdorff.
 - Now the collection $\{A \cap V_y\}_{y \in A}$ is an open cover of A and since A is compact, we can choose finitely many y_1, \ldots, y_n so that $\{A \cap V_{y_i}\}_{i=1,\ldots,n}$ is a finite subcover. In particular, $A \subset V_{y_1} \cup \cdots \cup V_{y_n}$.

- ▶ Theorem 6.2. A compact subspace of a Hausdorff space is closed.
- ▶ *Proof.* Assume that X is a Hausdorff space, and let $A \subset X$ be compact. We want to show that A^c is open.
 - ▶ Take any $x_0 \in A^c$. For every point $y \in A$, we can find disjoint nbhds U_y and V_y of x_0 and y respectively, since X is Hausdorff.
 - Now the collection $\{A \cap V_y\}_{y \in A}$ is an open cover of A and since A is compact, we can choose finitely many y_1, \ldots, y_n so that $\{A \cap V_{y_i}\}_{i=1,\ldots,n}$ is a finite subcover. In particular, $A \subset V_{y_1} \cup \cdots \cup V_{y_n}$.
 - Let $U^{x_0} = U_{y_1} \cap \cdots \cap U_{y_n}$. Then U^{x_0} is open and $U^{x_0} \subset A^c$: if $z \in U^{x_0}$, then $z \in V^c_{y_i}$, so $z \in (V_{y_1} \cup \cdots \cup V_{y_n})^c \subset A^c$.

▶ **Theorem 6.3**. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.

- ▶ Theorem 6.3. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $U = \{U_i\}_{i \in I}$ be an open cover of f(X).

- ▶ **Theorem 6.3**. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of f(X).
 - ▶ Define $V_i = f^{-1}(U_i)$. Then $\{V_i\}_{i \in I}$ is an open cover of X which has a finite subcover $\{V_{i_1}, \ldots, V_{i_n}\}$, since X is compact.

- ▶ **Theorem 6.3**. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of f(X).
 - ▶ Define $V_i = f^{-1}(U_i)$. Then $\{V_i\}_{i \in I}$ is an open cover of X which has a finite subcover $\{V_{i_1}, \ldots, V_{i_n}\}$, since X is compact.
 - Now clearly, the corresponding collection $\{U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of f(X).

- ▶ **Theorem 6.3**. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of f(X).
 - ▶ Define $V_i = f^{-1}(U_i)$. Then $\{V_i\}_{i \in I}$ is an open cover of X which has a finite subcover $\{V_{i_1}, \ldots, V_{i_n}\}$, since X is compact.
 - Now clearly, the corresponding collection $\{U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of f(X).
- Assume now that Y is Hausdorff and f is bijective. We have to show that f^{-1} is continuous.

- ▶ **Theorem 6.3**. Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $U = \{U_i\}_{i \in I}$ be an open cover of f(X).
 - ▶ Define $V_i = f^{-1}(U_i)$. Then $\{V_i\}_{i \in I}$ is an open cover of X which has a finite subcover $\{V_{i_1}, \ldots, V_{i_n}\}$, since X is compact.
 - Now clearly, the corresponding collection $\{U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of f(X).
- Assume now that Y is Hausdorff and f is bijective. We have to show that f^{-1} is continuous.
 - Let $U \subset X$ be open. Since U^c is a closed subspace of a compact space X, it is compact by Theorem 6.1.

- Theorem 6.3. Suppose f: X → Y be a continuous map and X is compact. Then the image f(X) ⊂ Y is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- ▶ *Proof.* Let $U = \{U_i\}_{i \in I}$ be an open cover of f(X).
 - ▶ Define $V_i = f^{-1}(U_i)$. Then $\{V_i\}_{i \in I}$ is an open cover of X which has a finite subcover $\{V_{i_1}, \ldots, V_{i_n}\}$, since X is compact.
 - Now clearly, the corresponding collection $\{U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of f(X).
- Assume now that Y is Hausdorff and f is bijective. We have to show that f^{-1} is continuous.
 - Let $U \subset X$ be open. Since U^c is a closed subspace of a compact space X, it is compact by Theorem 6.1.
 - ▶ By the first part of the theorem, $f(U)^c = f(U^c)$ is also compact. By Theorem 6.2, this implies that $f(U)^c$ is closed. Hence f(U) is open.

▶ The Tube Lemma. Let X and Y be topological spaces where Y is compact. If N is an open set of $X \times Y$ which contains $\{x_0\} \times Y$ for some $x_0 \in X$, then N contains a "tube" $M \times Y$, where $M \subset X$ is a neighbourhood of x_0 .

- ▶ The Tube Lemma. Let X and Y be topological spaces where Y is compact. If N is an open set of $X \times Y$ which contains $\{x_0\} \times Y$ for some $x_0 \in X$, then N contains a "tube" $M \times Y$, where $M \subset X$ is a neighbourhood of x_0 .
- ▶ *Proof.* Since N is open, for any $y \in Y$ we can choose an open neighbourhood $U_y \times V_y \subset N$ of (x_0, y) .

- ▶ The Tube Lemma. Let X and Y be topological spaces where Y is compact. If N is an open set of $X \times Y$ which contains $\{x_0\} \times Y$ for some $x_0 \in X$, then N contains a "tube" $M \times Y$, where $M \subset X$ is a neighbourhood of x_0 .
- ▶ *Proof.* Since N is open, for any $y \in Y$ we can choose an open neighbourhood $U_y \times V_y \subset N$ of (x_0, y) .
- Since $\{U_y \times V_y\}_{y \in Y}$ is an open cover of the compact set $\{x_0\} \times Y$, we can find $y_1, \ldots, y_n \in Y$ such that $\{U_{y_1} \times V_{y_1}, \ldots, U_{y_n} \times V_{y_n}\}$ covers $\{x_0\} \times Y$.

- ▶ The Tube Lemma. Let X and Y be topological spaces where Y is compact. If N is an open set of $X \times Y$ which contains $\{x_0\} \times Y$ for some $x_0 \in X$, then N contains a "tube" $M \times Y$, where $M \subset X$ is a neighbourhood of x_0 .
- ▶ *Proof.* Since N is open, for any $y \in Y$ we can choose an open neighbourhood $U_y \times V_y \subset N$ of (x_0, y) .
- Since $\{U_y \times V_y\}_{y \in Y}$ is an open cover of the compact set $\{x_0\} \times Y$, we can find $y_1, \ldots, y_n \in Y$ such that $\{U_{y_1} \times V_{y_1}, \ldots, U_{y_n} \times V_{y_n}\}$ covers $\{x_0\} \times Y$.
- Let $W = \bigcap_{i=1}^n U_{y_i}$. Then W is open, and is a non-empty neighbourhood of x_0 . Moreover

$$W \times Y = W \times (V_{y_1} \cup \cdots \cup V_{y_n}) \subset N.$$

▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.

- ▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- ▶ *Proof.* (⇒) Use Theorem 6.3 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.

- ▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- ▶ *Proof.* (⇒) Use Theorem 6.3 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) It suffices to show that a product $X \times Y$ of two compact spaces is compact. Let \mathcal{U} be an open cover of $X \times Y$. For every $x \in X$ the space $\{x\} \times Y$ is compact, so we can find a finite collection $\{U_1^x, \cdots, U_n^x\} \subset \mathcal{U}$ that covers $\{x\} \times Y$.

- ▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- ▶ *Proof.* (⇒) Use Theorem 6.3 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) It suffices to show that a product $X \times Y$ of two compact spaces is compact. Let \mathcal{U} be an open cover of $X \times Y$. For every $x \in X$ the space $\{x\} \times Y$ is compact, so we can find a finite collection $\{U_1^x, \dots, U_n^x\} \subset \mathcal{U}$ that covers $\{x\} \times Y$.
- Let $N_x = \bigcup_{i=1}^n U_i^x$. Then by the tube lemma, there is a neighbourhood W_x of x so that $W_x \times Y \subset N_x$.

- ▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- ▶ *Proof.* (⇒) Use Theorem 6.3 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) It suffices to show that a product $X \times Y$ of two compact spaces is compact. Let \mathcal{U} be an open cover of $X \times Y$. For every $x \in X$ the space $\{x\} \times Y$ is compact, so we can find a finite collection $\{U_1^x, \dots, U_n^x\} \subset \mathcal{U}$ that covers $\{x\} \times Y$.
- Let $N_x = \bigcup_{i=1}^n U_i^x$. Then by the tube lemma, there is a neighbourhood W_x of x so that $W_x \times Y \subset N_x$.
- ▶ $\{W_x \mid x \in X\}$ is an open cover of the compact set X, so we can find $x_1, \ldots, x_m \in X$ such that $\{W_{x_1}, \ldots, W_{x_m}\}$ covers X

- ▶ **Theorem 6.4**. Let $X_1, ..., X_n$ be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- ▶ *Proof.* (⇒) Use Theorem 6.3 and the fact that the projection $\pi_i: X_1 \times \cdots \times X_n \to X_i$ is continuous.
- ▶ (\Leftarrow) It suffices to show that a product $X \times Y$ of two compact spaces is compact. Let \mathcal{U} be an open cover of $X \times Y$. For every $x \in X$ the space $\{x\} \times Y$ is compact, so we can find a finite collection $\{U_1^x, \cdots, U_n^x\} \subset \mathcal{U}$ that covers $\{x\} \times Y$.
- Let $N_x = \bigcup_{i=1}^n U_i^x$. Then by the tube lemma, there is a neighbourhood W_x of x so that $W_x \times Y \subset N_x$.
- ▶ $\{W_x \mid x \in X\}$ is an open cover of the compact set X, so we can find $x_1, \ldots, x_m \in X$ such that $\{W_{x_1}, \ldots, W_{x_m}\}$ covers X
- ▶ We claim that $\{U_i^{x_j} \mid i = 1, ..., n, j = 1, ..., m\} \subset \mathcal{U}$ covers $X \times Y$. To see this, let $(x, y) \in X \times Y$. Then there exists $j \in \{1, ..., m\}$ such that $x \in W_{x_j}$. Since $(x, y) \in N_{x_j}$, there exists $i \in \{1, ..., n\}$ so that $(x, y) \in U_i^{x_j}$.

▶ **Definition**. A collection of subsets $\mathcal{C} \subset \mathcal{P}(X)$ of a set X is said to have the *finite intersection property* (FIP) if for every finite subcollection $\{C_1, \ldots, C_n\} \subset \mathcal{C}$ we have $\bigcap_{i=1}^n C_i \neq \emptyset$.

- ▶ **Definition**. A collection of subsets $\mathcal{C} \subset \mathcal{P}(X)$ of a set X is said to have the *finite intersection property* (FIP) if for every finite subcollection $\{C_1, \ldots, C_n\} \subset \mathcal{C}$ we have $\bigcap_{i=1}^n C_i \neq \emptyset$.
- ▶ **Proposition 6.5**. A topological space X is compact if and only if any collection \mathcal{C} of closed subsets of X with the finite intersection property satisfies $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.

- ▶ **Definition**. A collection of subsets $\mathcal{C} \subset \mathcal{P}(X)$ of a set X is said to have the *finite intersection property* (FIP) if for every finite subcollection $\{C_1, \ldots, C_n\} \subset \mathcal{C}$ we have $\bigcap_{i=1}^n C_i \neq \emptyset$.
- ▶ **Proposition 6.5**. A topological space X is compact if and only if any collection \mathcal{C} of closed subsets of X with the finite intersection property satisfies $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- ▶ (⇒) Suppose X is compact. Let \mathcal{C} be any collection of closed subsets of X with the FIP. We want to show $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.

- ▶ **Definition**. A collection of subsets $\mathcal{C} \subset \mathcal{P}(X)$ of a set X is said to have the *finite intersection property* (FIP) if for every finite subcollection $\{C_1, \ldots, C_n\} \subset \mathcal{C}$ we have $\bigcap_{i=1}^n C_i \neq \emptyset$.
- ▶ **Proposition 6.5**. A topological space X is compact if and only if any collection \mathcal{C} of closed subsets of X with the finite intersection property satisfies $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- ▶ (⇒) Suppose X is compact. Let \mathcal{C} be any collection of closed subsets of X with the FIP. We want to show $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- Assume $\bigcap_{C \in \mathcal{C}} C = \emptyset$. Then $\bigcup_{C \in \mathcal{C}} (X \setminus C) = X$, so $\{X \setminus C\}_{C \in \mathcal{C}}$ is an open cover of X. Since X is compact, there exist $C_1, \dots, C_n \in \mathcal{C}$ such that $\bigcup_{i=1}^n (X \setminus C_i) = X$. This implies that $\bigcap_{i=1}^n C_i = \emptyset$, which contradicts the FIP of \mathcal{C} .

- ▶ **Definition**. A collection of subsets $\mathcal{C} \subset \mathcal{P}(X)$ of a set X is said to have the *finite intersection property* (FIP) if for every finite subcollection $\{C_1, \ldots, C_n\} \subset \mathcal{C}$ we have $\bigcap_{i=1}^n C_i \neq \emptyset$.
- ▶ **Proposition 6.5**. A topological space X is compact if and only if any collection \mathcal{C} of closed subsets of X with the finite intersection property satisfies $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- ▶ (⇒) Suppose X is compact. Let \mathcal{C} be any collection of closed subsets of X with the FIP. We want to show $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- Assume $\bigcap_{C \in \mathcal{C}} C = \emptyset$. Then $\bigcup_{C \in \mathcal{C}} (X \setminus C) = X$, so $\{X \setminus C\}_{C \in \mathcal{C}}$ is an open cover of X. Since X is compact, there exist $C_1, \dots, C_n \in \mathcal{C}$ such that $\bigcup_{i=1}^n (X \setminus C_i) = X$. This implies that $\bigcap_{i=1}^n C_i = \emptyset$, which contradicts the FIP of \mathcal{C} .
- ► (⇐) is similar.

▶ **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.

- **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.
- ▶ **Theorem 6.6**. If *X* is first countable, then compactness of *X* implies sequential compactness.

- ▶ **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.
- ► **Theorem 6.6**. If *X* is first countable, then compactness of *X* implies sequential compactness.
- ▶ *Proof.* Assume that X is first countable and compact. Let $\{x_n\}$ be any sequence. We claim that $\exists x_0 \in X$ s.t. for any nbhd U of x_0 there are infinitely many n so that $x_n \in U$.

- ▶ **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.
- ► **Theorem 6.6**. If *X* is first countable, then compactness of *X* implies sequential compactness.
- ▶ *Proof.* Assume that X is first countable and compact. Let $\{x_n\}$ be any sequence. We claim that $\exists x_0 \in X$ s.t. for any nbhd U of x_0 there are infinitely many n so that $x_n \in U$.
 - Suppose that no x has the property. That is, for every $x \in X$ there is a nbhd U_x of x so that only finitely many x_n are in U_x .

- ▶ **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.
- ► **Theorem 6.6**. If *X* is first countable, then compactness of *X* implies sequential compactness.
- ▶ *Proof.* Assume that X is first countable and compact. Let $\{x_n\}$ be any sequence. We claim that $\exists x_0 \in X$ s.t. for any nbhd U of x_0 there are infinitely many n so that $x_n \in U$.
 - Suppose that no x has the property. That is, for every $x \in X$ there is a nbhd U_x of x so that only finitely many x_n are in U_x .
 - ▶ The collection $\{U_x \mid x \in X\}$ is a cover of X, so by compactness we get finitely many points $y_1, \ldots, y_n \in X$ so that U_{y_1}, \ldots, U_{y_n} cover X.

- ▶ **Definition**. A topological space is called *sequentially compact* if every sequence in it has a convergent subsequence.
- ► **Theorem 6.6**. If *X* is first countable, then compactness of *X* implies sequential compactness.
- ▶ *Proof.* Assume that X is first countable and compact. Let $\{x_n\}$ be any sequence. We claim that $\exists x_0 \in X$ s.t. for any nbhd U of x_0 there are infinitely many n so that $x_n \in U$.
 - Suppose that no x has the property. That is, for every $x \in X$ there is a nbhd U_x of x so that only finitely many x_n are in U_x .
 - ▶ The collection $\{U_x \mid x \in X\}$ is a cover of X, so by compactness we get finitely many points $y_1, \ldots, y_n \in X$ so that U_{y_1}, \ldots, U_{y_n} cover X.
 - ▶ This is impossible since at least one of the U_{y_i} must contain infinitely many of the x_n .

Let $\{B_i\}_{i=1}^n$ be a countable basis at x and let $U_k = \bigcap_{i=1}^k B_i$. Then $x_n \in U_k$ for infinitely many n, so in particular we can choose $x_{n_k} \in U_k$ for some increasing sequence n_k .

- Let $\{B_i\}_{i=1}^n$ be a countable basis at x and let $U_k = \bigcap_{i=1}^k B_i$. Then $x_n \in U_k$ for infinitely many n, so in particular we can choose $x_{n_k} \in U_k$ for some increasing sequence n_k .
- ▶ We claim that $\{x_{n_k}\}$ converges to x. For any nbhd U there is $N \in \mathbb{N}$ so that $B_N \subset U$. It follows that for all k with $n_k > N$,

$$x_{n_k} \in U_{n_k} \subset U_N \subset B_N \subset U,$$

which says that $x_{n_k} \to x$.

- Let $\{B_i\}_{i=1}^n$ be a countable basis at x and let $U_k = \bigcap_{i=1}^k B_i$. Then $x_n \in U_k$ for infinitely many n, so in particular we can choose $x_{n_k} \in U_k$ for some increasing sequence n_k .
- ▶ We claim that $\{x_{n_k}\}$ converges to x. For any nbhd U there is $N \in \mathbb{N}$ so that $B_N \subset U$. It follows that for all k with $n_k > N$,

$$x_{n_k} \in U_{n_k} \subset U_N \subset B_N \subset U,$$

which says that $x_{n_k} \to x$.

▶ Fact. If X is a metric space with the metric topology, then compactness and sequential compactness of X are equivalent.

▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a,b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a,b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

We want to show that $b \in M$.

▶ Step 1. We claim that sup M = b.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a,b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- ▶ Step 1. We claim that sup M = b.
 - Let $m = \sup M$. Assume that m < b. Since $m \in [a, b)$, there is a $j \in I$ with $m \in U_j$. Since U_j is open, there is $\epsilon > 0$ such that $(m \epsilon, m + \epsilon) \subset U_j$ and $m \epsilon \in M$.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a, b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- Step 1. We claim that sup M = b.
 - Let $m = \sup M$. Assume that m < b. Since $m \in [a, b)$, there is a $j \in I$ with $m \in U_j$. Since U_j is open, there is $\epsilon > 0$ such that $(m \epsilon, m + \epsilon) \subset U_j$ and $m \epsilon \in M$.
 - Since $m \epsilon \in M$, the interval $[a, m \epsilon]$ is covered by finitely many U_i . By adding U_j to this collection, we see $[a, m + \epsilon/2]$ is covered by finitely many U_i . That is, $m + \epsilon/2 \in M$, which contradicts the fact that $m = \sup M$.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a, b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- ▶ Step 1. We claim that sup M = b.
 - Let $m = \sup M$. Assume that m < b. Since $m \in [a, b)$, there is a $j \in I$ with $m \in U_j$. Since U_j is open, there is $\epsilon > 0$ such that $(m \epsilon, m + \epsilon) \subset U_j$ and $m \epsilon \in M$.
 - Since $m \epsilon \in M$, the interval $[a, m \epsilon]$ is covered by finitely many U_i . By adding U_j to this collection, we see $[a, m + \epsilon/2]$ is covered by finitely many U_i . That is, $m + \epsilon/2 \in M$, which contradicts the fact that $m = \sup M$.
- ▶ Step 2. We claim that $b \in M$.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a,b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- ▶ Step 1. We claim that sup M = b.
 - Let $m = \sup M$. Assume that m < b. Since $m \in [a, b)$, there is a $j \in I$ with $m \in U_j$. Since U_j is open, there is $\epsilon > 0$ such that $(m \epsilon, m + \epsilon) \subset U_j$ and $m \epsilon \in M$.
 - Since $m \epsilon \in M$, the interval $[a, m \epsilon]$ is covered by finitely many U_i . By adding U_j to this collection, we see $[a, m + \epsilon/2]$ is covered by finitely many U_i . That is, $m + \epsilon/2 \in M$, which contradicts the fact that $m = \sup M$.
- ▶ Step 2. We claim that $b \in M$.
 - ▶ $\exists k \in I$ with $b \in U_k$. Since U_k is open and $b = \sup M$, there is $\epsilon' > 0$ such that $(b \epsilon', b] \subset U_k$ and $b \epsilon' \in M$.

- ▶ **Theorem 6.7**. A closed interval $[a, b] \subset \mathbb{R}$ is compact.
- ▶ *Proof.* Let $\{U_i\}_{i\in I}$ be an open cover of [a, b]. Consider the set

$$M = \{x \in [a, b] \mid [a, x] \text{ is covered by finitely many } U_i\}.$$

- ▶ Step 1. We claim that sup M = b.
 - Let $m = \sup M$. Assume that m < b. Since $m \in [a, b)$, there is a $j \in I$ with $m \in U_j$. Since U_j is open, there is $\epsilon > 0$ such that $(m \epsilon, m + \epsilon) \subset U_j$ and $m \epsilon \in M$.
 - Since $m \epsilon \in M$, the interval $[a, m \epsilon]$ is covered by finitely many U_i . By adding U_j to this collection, we see $[a, m + \epsilon/2]$ is covered by finitely many U_i . That is, $m + \epsilon/2 \in M$, which contradicts the fact that $m = \sup M$.
- ▶ Step 2. We claim that $b \in M$.
 - ▶ $\exists k \in I$ with $b \in U_k$. Since U_k is open and $b = \sup M$, there is $\epsilon' > 0$ such that $(b \epsilon', b] \subset U_k$ and $b \epsilon' \in M$.
 - Since $b \epsilon' \in M$, the interval $[a, b \epsilon']$ is covered by finitely many U_i . By adding U_k to this collection, we see [a, b] is covered by finitely many U_i .

▶ **Definition**. A subset $A \subset \mathbb{R}^n$ is called *bounded* if $\exists K > 0$ such that $A \subset [-K, K]^n$.

- ▶ **Definition**. A subset $A \subset \mathbb{R}^n$ is called *bounded* if $\exists K > 0$ such that $A \subset [-K, K]^n$.
- ▶ **Theorem 6.8**. (Heine–Borel theorem) A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.

- ▶ **Definition**. A subset $A \subset \mathbb{R}^n$ is called *bounded* if $\exists K > 0$ such that $A \subset [-K, K]^n$.
- ▶ **Theorem 6.8**. (Heine–Borel theorem) A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.
- ▶ *Proof.* (⇒) If A is compact, then A is closed by Theorem 6.2. If A is unbounded, choose $x_k \in A$ with $d(x_k, 0) > k \ \forall k \in \mathbb{N}$.

- ▶ **Definition**. A subset $A \subset \mathbb{R}^n$ is called *bounded* if $\exists K > 0$ such that $A \subset [-K, K]^n$.
- ▶ **Theorem 6.8**. (Heine–Borel theorem) A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.
- ▶ *Proof.* (⇒) If A is compact, then A is closed by Theorem 6.2. If A is unbounded, choose $x_k \in A$ with $d(x_k, 0) > k \ \forall k \in \mathbb{N}$.
 - ▶ The collection $U_k = A \cap B(0, k)$, $k \in \mathbb{N}$, is an open cover of A. But for all $k \in \mathbb{N}$ we see that $x_k \notin U_k$, so $\{U_k\}$ has no finite subcover, contradicting compactness.

- ▶ **Definition**. A subset $A \subset \mathbb{R}^n$ is called *bounded* if $\exists K > 0$ such that $A \subset [-K, K]^n$.
- ▶ **Theorem 6.8**. (Heine–Borel theorem) A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.
- ▶ *Proof.* (⇒) If A is compact, then A is closed by Theorem 6.2. If A is unbounded, choose $x_k \in A$ with $d(x_k, 0) > k \ \forall k \in \mathbb{N}$.
 - ▶ The collection $U_k = A \cap B(0, k)$, $k \in \mathbb{N}$, is an open cover of A. But for all $k \in \mathbb{N}$ we see that $x_k \notin U_k$, so $\{U_k\}$ has no finite subcover, contradicting compactness.
- ▶ (\Leftarrow) If A is closed and bounded, $\exists K > 0$ s.t. $A \subset [-K, K]^n$. [-K, K] is compact by Theorem 6.7, so $[-K, K]^n$ is compact by Theorem 6.4. Thus A is compact by Theorem 6.1.

▶ Corollary 6.9. If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.

- ▶ Corollary 6.9. If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.
- ▶ *Proof.* By Theorem 6.3 f(X) is compact, so by the Heine–Borel theorem f(X) is closed and bounded. Thus $\sup f(X) < \infty$ and $\sup f(X) \in f(X)$. Similarly for inf.

- ▶ Corollary 6.9. If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.
- ▶ *Proof.* By Theorem 6.3 f(X) is compact, so by the Heine–Borel theorem f(X) is closed and bounded. Thus $\sup f(X) < \infty$ and $\sup f(X) \in f(X)$. Similarly for inf.
- **Corollary 6.10**. The *n*-sphere S^n is compact.

- ▶ Corollary 6.9. If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.
- ▶ *Proof.* By Theorem 6.3 f(X) is compact, so by the Heine–Borel theorem f(X) is closed and bounded. Thus $\sup f(X) < \infty$ and $\sup f(X) \in f(X)$. Similarly for inf.
- **Corollary 6.10**. The *n*-sphere S^n is compact.
- ▶ *Proof.* Clearly, S^n is bounded. Note that S^n is the preimage of a closed set $\{1\}$ under the norm map $\|\cdot\|$: $\mathbb{R}^{n+1} \to \mathbb{R}$, which is continuous. Thus S^n is closed, and therefore compact by the Heine–Borel theorem.

- ▶ Corollary 6.9. If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.
- ▶ *Proof.* By Theorem 6.3 f(X) is compact, so by the Heine–Borel theorem f(X) is closed and bounded. Thus $\sup f(X) < \infty$ and $\sup f(X) \in f(X)$. Similarly for inf.
- **Corollary 6.10**. The *n*-sphere S^n is compact.
- ▶ Proof. Clearly, S^n is bounded. Note that S^n is the preimage of a closed set $\{1\}$ under the norm map $\|\cdot\|$: $\mathbb{R}^{n+1} \to \mathbb{R}$, which is continuous. Thus S^n is closed, and therefore compact by the Heine–Borel theorem.
- ▶ **Theorem 6.11**. (Bolzano–Weierstrass) A set $A \subset \mathbb{R}^n$ is sequentially compact if and only if it is closed and bounded.

