ПРОТОКОЛ № 4

Проведения испытаний программного алгоритма по распознаванию движения в видеозаписях

г. Саранск 11 ноября 2024 г.

1 Рабочая группа

Рабочая группа в составе: Макаров О. С. – аспирант 4-го года очной формы обучения Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

2 Данные об испытании

2.1 Цель испытаний

Цель испытаний – определить количественные характеристики работы программного обеспечения.

2.2 Объект испытаний

Программное обеспечение, разработанное по алгоритму KDE (Kernel Density Estimation) для распознавания движения в видеозаписях. Источник алгоритма: https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf

2.1 Предмет испытаний

Количественные характеристики работы программного обеспечения, определяющие эффективность программного алгоритма, а именно: показатели точности и потребления вычислительных ресурсов. Количественные показатели точности распознавания:

- 1) Процент корректных распознаваний (РСС)
- 2) Чувствительность (Rcl)
- 3) Точность (Ргс)
- **4)** F-балл

Подробнее показатели точности с методиками их расчета представлены в Приложении А.

Количественные показатели потребляемых вычислительных ресурсов:

- 1) Количество потребляемой памяти
- 2) Количество кадров, обрабатываемых в секунду (FPS)

2.3 Ход испытаний

2.3.1 Используемое оборудование и среда испытаний

Все испытания проводились на персональном компьютере со следующими характеристиками:

- 1) Центральный процессор: Intel Core 2 Duo E7500, 2 x 2.93 ГГц
- 2) Оперативная память: 4 GB, DDR3
- 3) Видеопроцессор: NVIDIA GEFORCE 9600 GT
- 4) Жесткий диск: 512GB, HDD
- 5) Операционная система Windows 7 Home Premium

2.3.2 Перечень входных данных

Программное обеспечение запускалось для десяти видеозаписей пяти различных категорий из коллекции Change Detection 2014, указанных в таблице 1. Оригинальный источник данных: https://www.kaggle.com/datasets/maamri95/cdnet2014. Каждая видеозапись этого набора содержит входные кадры, которые подаются на вход алгоритма (подпапка /input) и

вручную сегментированные ожидаемые маски распознавания, приближенные к реальности (подпапка /groundtruth).

Таблица 1 – Видеозаписи для проведения испытаний

№	Видеозапись	Разрешение	Количество	Категория	Путь до видеокадров
			кадров		
1	PETS 2006	720 x 576	1200	PETS 2006	baseline\PETS2006
2	pedestrians	360 x 240	1099	Обычные	baseline\pedestrians
				видеозаписи	
3	office	360 x 240	2050	Обычные	baseline\office
				видеозаписи	
4	highway	320 x 240	1700	Обычные	baseline\highway
				видеозаписи	
5	fall	720 x 480	4000	Динамический	dynamicBackground\fall
				фон	
6	canoe	320 x 240	1189	Динамический	dynamicBackground\canoe
				фон	
7	tramstop	432 x 288	3200	Прерывистое	intermittentObjectMotion\tramstop
				движение	
				объектов	
8	sofa	320 x 240	2750	Прерывистое	intermittentObjectMotion\sofa
				движение	
				объектов	
9	bungalows	360 x 240	1700	Тень	shadow\bungalows
10	cubicle	352 x 240	7400	Тень	shadow\cubicle

2.3.3 Замечания

Для достижения объективных результатов программное обеспечение для каждой видеозаписи запускалось 5 раз. Отказов, сбоев и аварийных ситуаций в ходе проведения испытаний не возникло. Корректировка параметров испытуемого алгоритма в ходе испытаний не вносилась.

3 Результаты испытаний

В таблицах 2 и 3 продемонстрированы показатели эффективности программного обеспечения, установленные в ходе проведения испытаний. Данные в таблице 2 для каждой видеозаписи усреднены по количеству запусков.

Таблица 2 – Результаты испытаний показателей точности

№	TP	TN	FP	FN	Prc	Rcl	PCC	F-балл
1	22212791	460732010	7253006	7466193	0,75	0,75	97,0%	0,75
2	2422176	90754462	831871	945091	0,74	0,72	98,1%	0,73
3	4200901	168774491	2073502	2071106	0,67	0,67	97,7%	0,67
4	4933745	121754498	1289131	2582626	0,79	0,66	97,0%	0,72
5	53528886	1258855319	36602257	33413538	0,59	0,62	94,9%	0,60
6	3518403	83481241	2216958	2098598	0,61	0,63	95,3%	0,62
7	14858107	367993614	7495903	7783576	0,66	0,66	96,2%	0,66
8	5474862	199228415	3205750	3290973	0,63	0,62	96,9%	0,63
9	5580218	135622136	2249590	3428056	0,71	0,62	96,1%	0,66
10	20084448	579067480	12195204	13804868	0,62	0,59	95,8%	0,61
Среднее		·			0,68	0,65	96,5%	0,67

Таблица 3 – Результаты испытаний показателей потребления вычислительных ресурсов

№	Память, сред. (МБ)	FPS , мин. (c)	FPS, макс. (c)	FPS, средн. (c)
1	350	46,7	48,4	47,0
2	67	60,0	61,2	60,4
3	81	62,3	67,4	65,1
4	78	69,4	73,9	71,8
5	292	50,9	52,5	51,2

6	85	66,2	75,4	71,2
7	113	53,0	59,4	55,4
8	92	71,6	75,1	74,3
9	74	65,4	69,7	66,6
10	82	66,2	70,2	68,4

Инженер-испытатель:	
Макаров О. С.	ONau
-	(подпись)

Приложение А

Показатели точности распознавания

Количество истинно отрицательных пикселей (TN) – количество пикселей в кадре, правильно классифицированных как пиксели фоновой модели.

Количество истинно положительных пикселей (TP) – количество пикселей в кадре, правильно классифицированных как пиксели объектов переднего плана.

Количество ложно положительных пикселей (FP) — количество пикселей в кадре, неправильно классифицированных как пиксели объектов переднего плана, на самом деле являющихся фоновыми пикселями;

Количество ложно отрицательных пикселей (FN) — количество пикселей в кадре, неправильно классифицированных как фоновые пиксели, на самом деле являющихся пикселями объектов переднего плана;

Процент правильных классификаций (PCC) – показатель, определяющий общую долю правильных классификаций:

$$PCC = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Чувствительность (Rcl) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей объектов переднего плана:

$$Rcl = \frac{TP}{TP + FN}$$

Точность (Prc) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей, классифицированных алгоритмом как пиксели объектов переднего плана:

$$Prc = \frac{TP}{TP + FP}$$

F-балл – это среднее гармоническое взвешенное показателей чувствительности и точности:

$$F = \frac{2 \cdot Pr \cdot Rcl}{Pr + Rcl}$$