RONALD M. COOK Application No.: 09/591,185 Page 2

LISTING OF CLAIMS:

1	1-31. (Canceled)
1	32. (Currently Amended) A compound having a the formula which is
2	a member selected from the group:
3	$X - R - A - Q - (Y)_n$, $R - X - A - (Y)_n - Q$, $R - X - A - Q - (Y)_n$, and
4	$X - R - A - (Y)_n - Q$
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6	wherein,
7	NA is a nucleic acid chain comprising nucleic acid monomers selected
8	from the group consisting of natural nucleic acids, modified
9	nucleic acids and combinations thereof;
10	R ¹ , R ² , R ³ and R ⁴ are linker moieties independently selected from the
11	group consisting of substituted or unsubstituted alkyl and
12	substituted or unsubstituted heteroalky1;
13	Nu ¹ and Nu ² are members independently selected from the group
14	consisting of nucleotide residues and nucleoside residues;
15	R is a molecular energy transfer donor;
16	Q is a molecular energy acceptor; and
17	X and Y are the same or different and are non-nucleic acid stabilizing
18	moieties that interact to bring R and Q into operative proximity,
19	thereby enabling transfer of energy from R to Q; and
20	n is 0 or 1.
1	33. (Previously Presented) The compound according to claim 32,
2	wherein said molecular energy transfer donor is a fluorophore.

RONALD M. COOK Application No.: 09/591,185 Page 3

1	34. (Previously Presented) The compound according to claim 32,	
2	wherein Q is a fluorescence quencher.	
1	35. (Previously Presented) The compound according to claim 32,	
2	wherein X and Y are both hydrophobic moieties.	
1	36. (Previously Presented) The compound according to claim 35,	
2	wherein X and Y are members independently selected from the group consisting of	
3	saturated hydrocarbons, unsaturated hydrocarbons, steroids, fatty acids, fatty alcohols and	
4	hydrophobic peptides.	
1	37. (Previously Presented) The compound according to claim 32,	
2	wherein natural nucleic acids are members selected from the group consisting of	
3	deoxyribonucleotides, ribonucleotides and combinations thereof.	
1	38. (Previously Presented) The compound according to claim 37,	
2	wherein said modified nucleic acids are peptide nucleic acids.	
1	39. (Previously Presented) The compound according to claim 32,	
2	wherein said nucleic acid monomers are joined by linkages that are members	
3	independently selected from the group consisting of phosphodiesters and modified	
4	phosphodiesters.	
1	40. (Previously Presented) The compound according to claim 39,	
2	wherein said modified phosphodiesters are members selected from the group consisting	
3	of phosphorothioates and phosphoramidates.	
-	· · · · · · · · · · · · · · · · · · ·	
1	41. (Previously Presented) The compound according to claim 32,	
2	wherein said nucleic acid chain further comprises a hybridization enhancing moiety.	

RONALD M. COOK Application No.: 09/591,185 Page 4

1	42. (Previously Presented) The compound according to claim 41,	
2	wherein said hybridization enhancing moiety is a member selected from the group	
3	consisting of intercalating agents, minor groove binders and modified exocyclic bases.	
1	43. (Previously Presented) The compound according to claim 32,	
2	wherein X and Y are independently attached to members selected from the group	
3	consisting of a natural base of said nucleic acid chain, a modified base of said nucleic	
4	acid chain, a 3'-hydroxyl group of said nucleic acid chain, a 5'-hydroxyl group of said	
5	nucleic acid chain, a 2'-hydroxyl group of said nucleic acid chain, and a linkage joining	
6	nucleic acid groups in said nucleic acid chain.	
1	44. (Previously Presented) The compound according to claim 32,	
2	wherein said compound is immobilized on a solid surface.	
1	45. (Previously Presented) A method for amplifying a polynucleotide,	
2	wherein a compound according to claim 32 is a primer in said method, said method	
3	comprising:	
4	(a) hybridizing said primer to said polynucleotide; and	
5	(b) amplifying said polynucleotide.	
1	46. (Previously Presented) The method according to claim 45,	
2	wherein said amplifying is a member selected from the group consisting of polymerase	
3	chain reaction (PCR), nucleic acid sequence based amplification (NASBA), strand	
4	displacement amplification (SDA) and combinations thereof.	
1	47. (Previously Presented) A method for detecting or quantitating a	
2	nucleic acid, wherein the compound according to claim 32 is used as a probe, said	
3	method comprising:	
4	(a) hybridizing said compound to said nucleic acid; and	

5	(b) d	etecting a change in fluorescence of said compound, thereby
6	detecting or quantita	ting said nucleic acid.
1	48.	(Previously Presenteed) The method according to claim 47,

wherein said method comprises a member selected from the group consisting of 5'nuclease assay, rolling circle amplification and combinations thereof.

49. (Previously Presented) A kit for quantitating nucleic acid, said kit comprising a compound according to claim 32.

50. (Currently Amended) A compound having the formula:

2

1

2

1

$$D - R^{1} - Nu^{1} - R^{2} - O - P - O - NA - O - P - O - R^{3} - Nu^{2} - R^{4} - Q$$

$$CHOL \qquad CHOL \qquad CHOL$$

3

8

9

10

11

12

wherein,

CHOL is a cholesterol derivative;

R¹, R², R³ and R⁴ are linker moieties independently selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

Nu¹ and Nu² are members independently selected from the group consisting of nucleotide residues and nucleoside residues;

NA is a nucleic acid sequence;

D is a donor of light energy; and

Q is a quencher of light energy,

wherein each the CHOL moieties interacts with the other CHOL to bring

D and Q into operative proximity, thereby enabling transfer of

energy from D to Q.

1 51. (Previously Presented) The compound according to claim 50,

wherein R¹ and R² are independently selected and have structures according to the

3 formula:

4

5

2

6 wherein,

7 R¹¹ is a member selected from the group consisting of substituted or

8 unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

9 PEG is polyethylene glycol;

10 Y³ is an organic functional group adjoining said PEG to said CHOL.

1 52. (Previously Presented) The compound according to claim 51,

wherein said PEG has from about 2 to about 20 ethylene glycol subunits.

1 53. (Previously Presented) The compound according to claim 51 in

which R¹¹ is substituted or unsubstituted alkyl.

1 54. (Previously Presented) The compound according to claim 53,

wherein R^{11} is C_1 - C_6 substituted or unsubstituted alkyl.

1 55. (Previously Presented) The compound according to claim 51,

2 wherein Y³-CHOL has the structure:

9

1

2

16

1

2

3

1	56. (Previously Presented) The compound according to claim 50,
2	wherein Nu^1 and Nu^2 are nucleotides having an exocyclic amine group to which $-R^1-D$
3	and -R ⁴ Q are attached, respectively.

(Previously Presented) A compound having the formula: 57.

3 wherein,

4	NA is a nucleic acid sequence;
5	Nu ¹ and Nu ² are members independently selected from the group
6	consisting of nucleotide residues and nucleoside residues;
7	Y and Y are linking groups independently selected from the group
8	consisting of substituted or unsubstituted alkyl and substituted or
9	unsubstituted heteroalkyl;
10	R ⁵ and R ⁶ are linking groups independently selected from the group
11	consisting of substituted or unsubstituted alkyl and substituted or
12	unsubstituted heteroalkyl;
13	D is a donor of light energy; and
14	Q is a quencher of light energy,
15	wherein each CHOL interacts with the other CHOL to bring D and Q into

(Previously Presented) The compound according to claim 57, 58. wherein Y¹ and Y² are members independently selected from substituted or unsubstituted heteroalkyl.

operative proximity, thereby enabling transfer of energy from D to Q.

- 1 59. (Previously Presented) The compound according to claim 58,
- 2 wherein Y^1 and Y^2 are polyethylene glycol.
- 1 60. (Previously Presented) The compound according to claim 59,
- wherein said polyethylene glycol has from about 2 to about 20 ethylene glycol subunits.
- 1 61. (Previously Presented) The compound according to claim 57,
- 2 wherein Y^1 -CHOL and Y^2 -CHOL have the structure:

- 1 62. (Previously Presented) The compound according to claim 57,
- wherein Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R⁵-D
- 3 and $-R^6Q$ are attached, respectively.