Correction par pair

- A Q2 : avoir introduit le matériel : P, Q dans E_n puis λ , μ dans \mathbb{Z} puis avoir introduit n+1 coefficients dans \mathbb{Z} pour P et pour Q. Avoir introduit enfin un réel x et calculé $\lambda P(x) + \mu Q(x)$.
- B Q3-(a) : on contrôlera la première intégration par parties effectuée : est-elle correcte?
- C Q3-(b) : le « en déduire ». Il suffisait ici de multiplier l'égalité précédente par x^{2n-1} : voit-on clairement comment apparaissent les expressions $J_{n-1}(x)$ et $J_{n-2}(x)$?
- D Q4 : On vient de démontrer en Q3 une relation de récurrence d'ordre 2. Votre camarade a-t-il pensé à commencer une récurrence "double"?
- E Si oui, est-elle logiquement bien rédigée?

Problème. Une preuve de l'irrationalité de π .

Partie A. Préliminaires techniques.

- 1. <u>Un calcul de limite</u>.
 - (a) Puisque |x| < |x| + 1, l'entier $n_0 = |x| + 1$ convient.
 - (b) Soit n supérieur à n_0 . On a

$$\left| \frac{x^n}{n!} \right| = \prod_{k=1}^n \frac{|x|}{k} = \left(\prod_{k=1}^{n_0 - 1} \frac{|x|}{k} \right) \cdot \left(\prod_{k=n_0}^n \frac{|x|}{k} \right).$$

Or, pour $k \ge n$, on a $\frac{|x|}{k} \le \frac{|x|}{n_0}$.

En faisant un produit d'inégalités à membres positifs,

$$\prod_{k=n_0}^n \frac{|x|}{k} \leq \left(\frac{|x|}{n_0}\right)^{n-n_0+1} \quad n-n_0+1 : \text{nombre de facteurs dans le produit}.$$

Ceci amène

$$\left| \frac{x^n}{n!} \right| \le \left(\prod_{k=1}^{n_0 - 1} \frac{|x|}{k} \right) \cdot \left(\frac{|x|}{n_0} \right)^{n - n_0 + 1}.$$

(c) Posons $C = \left(\prod_{k=1}^{n_0-1} \frac{|x|}{k}\right)$ (constante indépendante de n) et $q = \frac{|x|}{n_0}$.

On a prouvé

$$\forall n \ge n_0 \quad \left| \frac{x^n}{n!} \right| \le Cq^{n-n_0+1}.$$

Or, |q| < 1: on a donc $q^n \to 0$.

Par encadrement, on a bien démontré que

$$\frac{x^n}{n!} \xrightarrow[n \to +\infty]{} 0$$

2. Fonctions polynomiales à coefficients entiers.

(a) Soit un couple de fonctions (P,Q) dans E_n^2 et $(\lambda,\mu) \in \mathbb{Z}^2$. Traduisons l'appartenance de P et Q à E_n :

$$\exists (a_0, \dots, a_n) \in \mathbb{Z}^{n+1} \quad \forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^n a_k x^k.$$

$$\exists (b_0, \dots, b_n) \in \mathbb{Z}^{n+1} \quad \forall x \in \mathbb{R} \quad Q(x) = \sum_{k=0}^n b_k x^k.$$

On peut alors calculer, pour $x \in \mathbb{R}$,

$$\lambda P(x) + \mu Q(x) = \lambda \sum_{k=0}^{n} a_k x^k + \mu \sum_{k=0}^{n} b_k x^k = \sum_{k=0}^{n} (\lambda a_k + \mu b_k) x^k.$$

Pour tout $k \in [0, n]$, $\lambda a_k + \mu b_k \in \mathbb{Z}$, l'ensemble \mathbb{Z} étant stable par somme et produit.

(b) La fonction P a été supposée dans E_n :

$$\exists (a_0, \dots, a_n) \in \mathbb{Z}^{n+1} \quad \forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^n a_k x^k.$$

En posant $a_{n+1} = 0$ (c'est un entier), on a $\forall x \in \mathbb{R}$ $P(x) = \sum_{k=0}^{n+1} a_k x^k$, ce qui montre que $P \in E_{n+1}$. Pour $x \in \mathbb{R}$, on a

$$Q(x) = xP(x) = \sum_{k=0}^{n} a_k x^{k+1} = \sum_{j=1}^{n+1} a_{j-1} x^j.$$

Posons $b_0 = 0$ et pour tout $k \in [1, n], b_k = a_{k-1}$.

Il est clair que $(b_0, \ldots, b_n) \in \mathbb{Z}^{n+1}$ et on a $\forall x \in \mathbb{R}$ $Q(x) = \sum_{k=1}^{n+1} b_k x^k$:

$$Q \in E_{n-1}$$

Partie B. Preuve de Cartwright.

3. (a) On fait une première intégration par partie en dérivant $u: t \mapsto (1-t^2)^n$. On a $u'(t) = -2t(1-t^2)^{n-1}$. On intègre $v': t \mapsto x^2 \cos(xt)$ en $v: t \mapsto x \sin(xt)$.

$$x^{2}I_{n}(x) = \int_{-1}^{1} (1 - t^{2})^{n} x^{2} \cos(xt) dt$$

$$= \underbrace{\left[(1 - t^{2})^{n} x \sin(xt) \right]_{-1}^{1}} - \int_{-1}^{1} n(-2t)(1 - t^{2})^{n-1} x \sin(xt) dt$$

$$= 2n \int_{-1}^{1} t(1 - t^{2})^{n-1} x \sin(xt) dt$$

Le crochet est nul car $(1-t^2)^n$ est nul pour $t=\pm 1$ puisque $n\geq 1$.

On fait une seconde IPP en dérivant $u: t \mapsto t(1-t^2)^{n-1}$. On a $u'(t) = (1-t^2)^{n-1} - 2t^2(n-1)(1-t^2)^{n-2}$. On intègre $v': t \mapsto x \sin(xt)$ en $v: t \mapsto -\cos(xt)$.

$$x^{2}I_{n}(x) = 2n \underbrace{\left[-t(1-t^{2})^{n-1}\cos(xt)\right]_{-1}^{1}}_{+2n\int_{-1}^{1}\left((1-t^{2})^{n-1}-2t^{2}(n-1)(1-t^{2})^{n-2}\right)\cos(xt)dt}_{+2n\int_{-1}^{1}(1-t^{2})^{n-1}\cos(xt)dt-4n(n-1)\int_{-1}^{1}t^{2}(1-t^{2})^{n-2}\cos(xt)dt$$

$$= 2n\int_{-1}^{1}(1-t^{2})^{n-1}\cos(xt)dt-4n(n-1)\int_{-1}^{1}t^{2}(1-t^{2})^{n-2}\cos(xt)dt$$

$$= 2nI_{n-1}(x)-4n(n-1)\int_{-1}^{1}t^{2}(1-t^{2})^{n-2}\cos(xt)dt$$

Le crochet est nul car $(1-t^2)^n$ est nul pour $t=\pm 1$ puisque $n-1 \ge 1$. En écrivant $t^2=1-(1-t^2)$, on a

$$-t^{2}(1-t^{2})^{n-2} = (1-t^{2})^{n-1} - (1-t^{2})^{n-2}.$$

On a donc

$$x^{2}I_{n}(x) = 2nI_{n-1}(x) + 4n(n-1)\left(I_{n-1}(x) - I_{n-2}(x)\right).$$

$$x^{2}I_{n}(x) = 2n(2n-1)I_{n-1}(x) - 4n(n-1)I_{n-2}(x)$$

(b) On multiplie l'égalité précédente par x^{2n-1} :

$$x^{2n+1}I_n(x) = 2n\underbrace{x^{2n-1}}_{x^{2(n-1)+1}}I_{n-1}(x) - 4n(n-1)\underbrace{x^{2n-1}}_{x^2 \cdot x^{2(n-2)+1}}I_{n-2}(x).$$

Ceci donne bien;

$$J_n(x) = 2n(2n-1)J_{n-1}(x) - 4n(n-1)x^2J_{n-2}(x)$$

4. On va utiliser la notation E_n de la partie A pour désigner l'ensemble des fonctions polynomiales de degré inférieur à en entier n donné et à coefficients entiers. Pour $n \in \mathbb{N}$, on note

$$\mathcal{A}_n: \ll \exists (P,Q) \in E_n^2 \quad \forall x \in \mathbb{R} \quad J_n(x) = n! \big(P_n(x) \sin(x) + Q_n(x) \cos(x) \big).$$

Puisqu'on dispose d'une relation de récurrence d'ordre 2 sur les J_n , on va faire une récurrence double :

• On calcule, pour $x \in \mathbb{R}$:

$$J_0(x) = x^{2 \cdot 0 + 1} \int_{-1}^{1} (1 - t^2)^0 \cos(xt) dt = [\sin(xt)]_{-1}^{1} = 2\sin(x).$$

$$J_1(x) = x^{2 \cdot 1 + 1} \int_{-1}^{1} (1 - t^2)^1 \cos(xt) dt$$

$$= \frac{1}{1} \left[\frac{(1 - t^2)x^2 \sin(xt)}{1 - 1} \right]_{-1}^{1} - \int_{-1}^{1} (-2t)x^2 \sin(xt) dt$$

$$= \frac{1}{1} \left[-2tx \cos(xt) \right]_{-1}^{1} - \int_{-1}^{1} 2(-x \cos(xt)) dt$$

$$= -4x \cos(x) + 2 \int_{-1}^{1} x \cos(xt) dt$$

$$= -4x \cos(x) + 2 [\sin(xt)]_{-1}^{1}$$

$$= 4 \sin(x) - 4x \cos(x)$$

Les propriétés \mathcal{A}_0 et \mathcal{A}_1 sont donc vraies : il suffit de poser

$$P_0: x \mapsto 2; \quad Q_0: x \mapsto 0; \quad P_1: x \mapsto 4; \quad Q_1: x \mapsto -4x.$$

Les fonctions P_0 et Q_0 sont bien dans E_0 , et les fonctions P_1 et Q_1 dans E_1 .

• Soit $n \geq 2$. Supposons que \mathcal{A}_{n-1} et \mathcal{A}_{n-2} sont vraies. Montrons \mathcal{A}_n . Par hypothèse, il existe (P_{n-1}, Q_{n-1}) dans E_{n-1}^2 et (P_{n-2}, Q_{n-2}) dans E_{n-2}^2 tels que

$$\forall x \in \mathbb{R} \quad J_{n-1}(x) = (n-1)! \left(P_{n-1}(x) \sin x + Q_{n-1}(x) \cos x \right).$$

$$\forall x \in \mathbb{R} \quad J_{n-2}(x) = (n-2)! \left(P_{n-2}(x) \sin x + Q_{n-2}(x) \cos x \right).$$

Utilisons la relation de récurrence pour exprimer J_n : pour $x \in \mathbb{R}$,

$$J_n(x) = 2n(2n-1)J_{n-1}(x) - 4n(n-1)x^2J_{n-2}(x)$$

$$= 2n(2n-1)(n-1)! (P_{n-1}(x)\sin x + Q_{n-1}(x)\cos x)$$

$$- 4n(n-1)x^2(n-2)! (P_{n-2}(x)\sin x + Q_{n-2}(x)\cos x)$$

$$= n! (2(2n-1)P_{n-1}(x) - 4x^2P_{n-2}(x))\sin x$$

$$+ n! (2(2n-1)Q_{n-1}(x) - 4x^2Q_{n-2}(x))\cos x$$

$$= n! (P_n(x)\sin x + Q_n(x)\cos x)$$

en posant

$$P_n: x \mapsto 2(2n-1)P_{n-1}(x) - 4x^2P_{n-2}(x),$$

$$Q_n: x \mapsto 2(2n-1)Q_{n-1}(x) - 4x^2Q_{n-2}(x).$$

Il reste à vérifier que P_n et Q_n sont tous deux dans E_n .

Puisque $P_{n-1} \in E_{n-1}$, on a aussi $P_{n-1} \in E_n$ (question 2-(b)). La même question donne que $x \mapsto x P_{n-2}(x)$ appartient à E_{n-1} puis que $x \mapsto x^2 P_{n-2}(x)$ appartient à E_n . Puisque P_n est une combinaison linéaire (à scalaires entiers) de deux polynômes de E_n , c'est aussi un polynôme de E_n d'après 2-(a) : $P_n \in E_n$.

On montre de même que $Q_n \in E_n$. Ceci achève de prouver A_n .

• Le principe de récurrence donne que pour tout $n \in \mathbb{N}$, \mathcal{A}_n est vraie

- 5. Supposons que π est rationnel. Soient deux entiers a et b tels que $\frac{\pi}{2} = \frac{a}{b}$.
 - (a) Pour démontrer que cette suite tend vers 0, on commence par majorer sa valeur absolue : pour $n \in \mathbb{N}$,

$$\left| \frac{a^{2n+1}}{n!} I_n\left(\frac{\pi}{2}\right) \right| \leq \frac{|a|^{2n+1}}{n!} \cdot \left| I_n\left(\frac{\pi}{2}\right) \right|.$$

En appliquant l'inégalité triangulaire, on a

$$\left| I_n \left(\frac{\pi}{2} \right) \right| \le \int_{-1}^1 (1 - t^2)^n |\cos(xt)| dt \le \int_{-1}^1 1 dt \le 2.$$

De plus, d'après la question 1,

$$\frac{|a|^{2n+1}}{n!} = |a| \cdot \frac{(a^2)^n}{n!} \underset{n \to +\infty}{\longrightarrow} 0.$$

Par comparaison, $\boxed{\frac{a^{2n+1}}{n!}I_n\left(\frac{\pi}{2}\right)\underset{n\to+\infty}{\longrightarrow}0}$

(b) On a

$$I_n\left(\frac{\pi}{2}\right) = \int_{-1}^{1} (1 - t^2)^n \cos(\frac{\pi}{2}t) dt.$$

La fonction $u_n: t \mapsto (1-t^2)^n \cos(\frac{\pi}{2}t)$ est continue, positive et non nulle. Son intégrale sur [-1,1] est donc non nulle : l'aire sous la courbe est strictement positive (on aura un argument rigoureux en fin d'année).

$$I_n\left(\frac{\pi}{2}\right) \neq 0$$

(c) Soit $n \in \mathbb{N}$. Puisque P_n est une fonction polynomiale de degré inférieur à n et à coefficients entiers, il existe $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}$ tels que

$$\forall x \in \mathbb{R} \quad P_n(x) = \sum_{k=0}^n a_k x^k.$$

On a donc,

$$b^{2n+1}P_n\left(\frac{\pi}{2}\right) = b^{2n+1}P_n\left(\frac{a}{b}\right) = b^{2n+1}\sum_{k=0}^n a_k \left(\frac{a}{b}\right)^k = \sum_{k=0}^n a_k a^k b^{2n+1-k}.$$

Ceci est un entier relatif car $\mathbb Z$ est stable par somme et produit :

$$b^{2n+1}P_n\left(\frac{\pi}{2}\right) \in \mathbb{Z}$$

(d) On a d'une part,

$$J_n\left(\frac{\pi}{2}\right) = \left(\frac{a}{b}\right)^{2n+1} I_n\left(\frac{\pi}{2}\right).$$

D'autre part,

$$J_n\left(\frac{\pi}{2}\right) = n! \left(P_n\left(\frac{\pi}{2}\right) \cdot 1 + Q_n\left(\frac{\pi}{2}\right) \cdot 0\right) = n! P_n\left(\frac{\pi}{2}\right).$$

En égalisant les deux expressions, on obtient $\left(\frac{a}{b}\right)^{2n+1} I_n\left(\frac{\pi}{2}\right) = n! P_n\left(\frac{\pi}{2}\right)$

et donc
$$\left| \frac{a^{2n+1}}{n!} I_n\left(\frac{\pi}{2}\right) \right| = \left| b^{2n+1} P_n\left(\frac{\pi}{2}\right) \right|.$$

Puisque le membre de droite est un entier positif et non nul d'après b) et c), il est supérieur à 1. On a donc

$$\left| \frac{a^{2n+1}}{n!} I_n\left(\frac{\pi}{2}\right) \right| \ge 1.$$

Ceci est absurde car a) nous dit que la suite qu'on vient de minorer par 1 tend vers 0.

