$\dot{y} = t^3 y$

 $y(t) = Ce^t$

 $y(t) = Ce^{\frac{t^3}{3}}$

 $y(t) = Ce^{\frac{t^4}{4}}$

 $y(t) = Ce^{t^2}$

$$y' + 2xy = e^{-x^2}$$

 $t\dot{y} = y$

 $y(t) = Ct^2$

✓ Να επιλυθεί η δοσμένη διαφορική εξίσωση ώστε να ικανοποιεί τη *1/1 δοσμένη αρχική συνθήκη και να μελετηθεί το σταθερό σημείο ως προς την ευστάθειά του:

$$\dot{y} = 4y - 1, y(0) = 5$$

$$y(t)=rac{19}{4}e^{4t}+rac{1}{4}$$
Η λύση είναι αυτή που δίνεται 🗸

 και το σταθερό σημείο 1/4 είναι ασταθές.

$$y(t) = \frac{15}{4}e^{-4t} + \frac{1}{4}$$

Η λύση είναι αυτή που δίνεται και το σταθερό σημείο 1/4 είναι ευσταθές.

 $y(t) = \frac{5}{4}e^t + 1$

ευσταθές

Η λύση είναι αυτή που δίνεται και το σταθερό σημείο 1 είναι ευσταθές.

*1/1

 $\dot{y} - ty = 4t$

*1/1

 $\dot{y} = 4y - 8, y(0) = 8$

$$y(t) = 6e^{4t} + 2$$

 $y(t) = 4e^{-5t} + 5$

