

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра ИУ5 «Системы обработки информации и управления»

Отчет по лабораторной работе №1 по дисциплине «Методы машинного обучения» по теме «Создание "истории о данных"»

Выполнил: студент группы № ИУ5-21М Торжков М.С. подпись, дата

Проверила: Балашов А.М. подпись, дата

Задание.

Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:

- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

```
from datetime import datetime
import pandas as pd
import seaborn as sns
# Enable inline plots
%matplotlib inline
# Set plot style
sns.set(style="ticks")
# Set plots formats to save high resolution PNG
from IPython.display import set_matplotlib_formats
set_matplotlib_formats("retina")
pd.set_option("display.width", 70)
data = pd.read_csv("/content/StudentsPerformance.csv")
data.dtypes

    gender

                                     object
     race/ethnicity
                                     object
                                     object
    parental level of education
     lunch
                                     object
    test preparation course
                                     object
    math score
                                      int64
    reading score
                                      int64
    writing score
dtype: object
                                      int64
```

data.head()

		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	W
	0	female	group B	bachelor's degree	standard	none	72	72	
	1	female	group C	some college	standard	completed	69	90	
:	2	female	group B	master's	standard	none	90	95	

data.shape

(1000, 8)

data.describe()

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

from sklearn.preprocessing import LabelEncoder

- Визуальное исследование датасета

Оценим распределение целевого признака — оценки по математике:

```
sns.distplot(data["math score"]);
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWawarnings.warn(msg, FutureWarning)

sns.boxplot(x=data['writing score'])

<matplotlib.axes. subplots.AxesSubplot at 0x7f624cfc4070>

sns.kdeplot(data=data, x="math score", hue="gender", cut=0, fill=True, common_norm=False, alpha=0.4)

<matplotlib.axes._subplots.AxesSubplot at 0x7f624d1bbb80>


```
import numpy as np
import matplotlib.pyplot as plt
FLIPPER_LENGTH = data["reading score"].values
BILL LENGTH = data["math score"].values
SPECIES = data["parental level of education"].values
SPECIES_ = np.unique(SPECIES)
COLORS = ["#1B9E77", "#D95F02", "#7570B3", "#000000"]
fig, ax = plt.subplots(figsize=(8,8))
for species, color in zip(SPECIES_, COLORS):
    idxs = np.where(SPECIES == species)
    # No legend will be generated if we don't pass label=species
   ax.scatter(
       FLIPPER_LENGTH[idxs], BILL_LENGTH[idxs], label=species,
        s=50, color=color, alpha=0.7
    )
ax.legend();
```


sns.kdeplot(data=data, x="math score", hue="parental level of education", cut=0, fill=True, common_norm=False, alpha=0.4)

<matplotlib.axes._subplots.AxesSubplot at 0x7f624d631880>

sns.pairplot(data)

Корреляции признаков

```
corr_matrix = data.corr()
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```


✓ 4 сек. выполнено в 00:27