Скалярные функции векторного аргумента Линейная форма

Числовая функция $f(\mathbf{x})$ векторного аргумента \mathbf{x} , принадлежащего линейному пространству L, называется линейной формой, если она обладает следующими свойствами:

- 1) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ для любых векторов **x** и **y** из *L*;
- 2) $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ для любого вектора \mathbf{x} из L и числа λ .

Замечание. Обычно свойства 1) и 2) записывают в компактном виде:

$$f(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda f(\mathbf{x}) + \mu f(\mathbf{y})$$
 для любых векторов \mathbf{x} и \mathbf{y} из L и чисел λ и μ .

Билинейная форма

Числовая функция двух векторных аргументов $A(\mathbf{x}, \mathbf{y})$ из линейного пространства L называется билинейной формой, если она обладает следующими свойствами:

- 1) A(x+y,z) = A(x,z) + A(y,z) для любых векторов x, y и z из L;
- 2) $A(\lambda \mathbf{x}, \mathbf{y}) = \lambda A(\mathbf{x}, \mathbf{y})$ для любых векторов \mathbf{x} и \mathbf{y} из L и числа λ ;
- 3) $A(\mathbf{x}, \mathbf{y} + \mathbf{z}) = A(\mathbf{x}, \mathbf{y}) + A(\mathbf{x}, \mathbf{z})$ для любых векторов \mathbf{x} , \mathbf{y} и \mathbf{z} из L;
- 4) $A(\mathbf{x}, \lambda \mathbf{y}) = \lambda A(\mathbf{x}, \mathbf{y})$ для любых векторов \mathbf{x} и \mathbf{y} из L и числа λ .

Таким образом, билинейная форма является линейной формой по одному аргументу при фиксированном значении другого аргумента.

Квадратичная форма

Если в билинейной форме $A(\mathbf{x}, \mathbf{y})$ вектор \mathbf{y} заменить на вектор \mathbf{x} , то получившаяся числовая функция $A(\mathbf{x}, \mathbf{x})$ называется квадратичной формой.

Замечание 1. Билинейная форма называется *симметричной*, если для любых векторов \mathbf{x} и \mathbf{y} имеет место равенство $A(\mathbf{x}, \mathbf{y}) = A(\mathbf{y}, \mathbf{x})$.

Замечание 2. Квадратичная форма может порождаться разными билинейными формами. Действительно, пусть $A(\mathbf{x}, \mathbf{y})$ – произвольная билинейная форма. Нетрудно убедиться, что

$$\widetilde{A}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} [A(\mathbf{x}, \mathbf{y}) + A(\mathbf{y}, \mathbf{x})]$$

является симметричной билинейной формой, а порождаемая ей квадратичная форма имеет вид

$$\widetilde{A}(\mathbf{x}, \mathbf{x}) = \frac{1}{2} [A(\mathbf{x}, \mathbf{x}) + A(\mathbf{x}, \mathbf{x})] = A(\mathbf{x}, \mathbf{x}),$$

т.е. совпадает с квадратичной формой порождаемой исходной формой $A(\mathbf{x},\mathbf{y})$.

Замечание 3. Из предыдущего замечания следует, что зная вид квадратичной формы, в общем случае нельзя восстановить породившую её билинейную форму, кроме случая, когда известно, что порождающая билинейная форма была симметричной. Действительно,

18.05.2018 23:34:57 стр. 1 из 4

пусть известно, что породившая квадратичную форму $A(\mathbf{x},\mathbf{x})$ билинейная форма $A(\mathbf{x},\mathbf{y})$ является симметричной, тогда

$$A(x + y, x + y) = A(x, x) + 2A(x, y) + A(y, y)$$
,

откуда получаем, что

$$A(\mathbf{x}, \mathbf{y}) = \frac{1}{2} [A(\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) - A(\mathbf{x}, \mathbf{x}) - A(\mathbf{y}, \mathbf{y})],$$

т.е. билинейная форма $A(\mathbf{x}, \mathbf{y})$ однозначно определяется по значениям порождённой ею квадратичной формы $A(\mathbf{x}, \mathbf{x})$.

Замечание 4. Из двух предыдущих замечаний следует, что без потери общности можно считать, что всякая квадратичная форма порождается симметричной билинейной формой.

Примеры

- 1. В произвольном линейном пространстве L числовая функция $f(\mathbf{x}) \equiv 0$ для любого вектора \mathbf{x} является линейной формой.
- 2. В произвольном линейном пространстве L числовая функция $A(\mathbf{x}, \mathbf{y}) \equiv 0$ для любых векторов \mathbf{x} и \mathbf{y} является билинейной формой.
- 3. Всякая линейная форма $f(\mathbf{x})$ является линейным отображением линейного пространства L на множество вещественных чисел R.
- 4. В векторных пространствах V_2 или V_3 числовая функция $f(\mathbf{x}) = (\mathbf{a}, \mathbf{x})$ скалярное произведение вектора \mathbf{x} на фиксированный вектор \mathbf{a} , является линейной формой.
- 5. В векторных пространствах V_2 или V_3 числовая функция $A(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y})$ скалярное произведение векторов \mathbf{x} и \mathbf{y} , является билинейной формой.
- 6. В произвольном линейном пространстве числовая функция $A(\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}) = \|\mathbf{x}\|^2$ является квадратичной формой.
- 7. В пространстве R_n функция $A(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}} \mathbf{y}$ является билинейной формой.
- 8. В пространстве квадратных матриц размера $n \times n$ числовая функция $f(\mathbf{x}) = tr(\mathbf{x})$ является линейной формой.
- 9. В пространстве непрерывных на отрезке [a,b] функций интеграл

$$f(\mathbf{x}) = \int_{a}^{b} \mathbf{x}(t)dt$$

является линейной формой.

10. В пространстве непрерывных на отрезке [a,b] функций интеграл

$$A(\mathbf{x}, \mathbf{y}) = \int_{a}^{b} \mathbf{x}(t) \mathbf{y}(t) dt$$

является билинейной формой.

Координатная (матричная) форма записи функций векторного аргумента

Пусть в линейном пространстве L выбран базис $\{\mathbf{e}\} = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ и пусть в этом базисе векторы \mathbf{x} и \mathbf{y} имеют координаты: $\mathbf{x} = \{\xi_1, \xi_2, ..., \xi_n\}$ и $\mathbf{y} = \{\eta_1, \eta_2, ..., \eta_n\}$, т.е.

18.05.2018 23:34:57 стр. 2 из 4

$$\mathbf{x} = \xi_1 \mathbf{e}_1 + \xi_2 \mathbf{e}_2 + \dots + \xi_n \mathbf{e}_n = \sum_{j=1}^n \xi_j \mathbf{e}_j \quad \text{if} \quad \mathbf{y} = \eta_1 \mathbf{e}_1 + \eta_2 \mathbf{e}_2 + \dots + \eta_n \mathbf{e}_n = \sum_{j=1}^n \eta_j \mathbf{e}_j.$$

Обозначим через ξ и η координатные столбцы векторов x и y соответственно, т.е.

$$oldsymbol{\xi} = egin{bmatrix} oldsymbol{\xi}_1 \ oldsymbol{\xi}_2 \ dots \ oldsymbol{\xi}_n \end{bmatrix}, \quad oldsymbol{\eta} = egin{bmatrix} oldsymbol{\eta}_1 \ oldsymbol{\eta}_2 \ dots \ oldsymbol{\eta}_n \end{bmatrix}.$$

Заменяя в линейной форме $f(\mathbf{x})$ вектор \mathbf{x} его разложением по базису, получим

$$f(\mathbf{x}) = f\left(\sum_{j=1}^{n} \xi_{j} \mathbf{e}_{j}\right) = \sum_{j=1}^{n} \xi_{j} f(\mathbf{e}_{j}) = \sum_{j=1}^{n} \varphi_{j} \xi_{j} = \varphi \xi,$$

где $\varphi = [\varphi_1 \ \varphi_2 \ \cdots \ \varphi_n]$ – вектор-строка коэффициентов линейной формы, элементы которой $\varphi_j = f(\mathbf{e}_j)$ представляют собой значения линейной формы на базисных векторах.

Заменяя в билинейной форме $A(\mathbf{x}, \mathbf{y})$ векторы \mathbf{x} и \mathbf{y} их разложениями по базису, получим

$$A(\mathbf{x}, \mathbf{y}) = A\left(\sum_{i=1}^{n} \xi_{i} \mathbf{e}_{i}, \sum_{j=1}^{n} \eta_{j} \mathbf{e}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi_{i} \eta_{j} A(\mathbf{e}_{i}, \mathbf{e}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi_{i} \eta_{j} a_{ij} = \boldsymbol{\xi}^{\mathrm{T}} \mathbf{A} \boldsymbol{\eta},$$

где $\mathbf{A} = \| \ a_{ij} \| -$ матрица коэффициентов билинейной формы, элементы которой $a_{ij} = A(\mathbf{e}_i, \mathbf{e}_j) -$ это значения билинейной формы на базисных векторах.

Замечание. Если билинейная форма $A(\mathbf{x}, \mathbf{y})$ – симметричная, т.е. $A(\mathbf{x}, \mathbf{y}) = A(\mathbf{y}, \mathbf{x})$ для любых векторов \mathbf{x} и \mathbf{y} , тогда $a_{ij} = A(\mathbf{e}_i, \mathbf{e}_j) = A(\mathbf{e}_j, \mathbf{e}_i) = a_{ji}$, т.е. $\mathbf{A}^\mathsf{T} = \mathbf{A}$. Таким образом, матрица симметричной билинейной формы является симметричной в любом базисе.

Преобразование матриц функций векторного аргумента при смене базиса

Пусть **S** — матрица перехода от старого базиса $\{e\}$ к новому базису $\{e'\}$ пространства L и **T** — матрица перехода от старого базиса $\{\tilde{e}\}$ к новому базису $\{\tilde{e}'\}$ пространства M. Пусть ξ и η — координатные столбцы векторов \mathbf{x} и \mathbf{y} в старом базисе $\{e\}$, а ξ' и η' — их координатные столбцы в новом базисе $\{e'\}$. Тогда имеют место следующие соотношения:

$$\xi = S\xi'\,,\quad \eta = S\eta'\,.$$

Заменяя в матричной записи линейной формы координатный столбец ξ на его выражение через координатный столбец ξ' , получим

$$f(\mathbf{x}) = \mathbf{\varphi} \mathbf{\xi} = \mathbf{\varphi} \mathbf{S} \mathbf{\xi}' = \mathbf{\varphi}' \mathbf{\xi}',$$

где $\mathbf{\phi'} = \mathbf{\phi S}$ — вектор-строка коэффициентов линейной формы $f(\mathbf{x})$ в новом базисе $\{\mathbf{e'}\}$.

18.05.2018 23:34:57 стр. 3 из 4

Заменяя в матричной записи билинейной формы координатные столбцы ξ и η на их выражения через координатные столбцы ξ' и η' , получим

$$A(\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi}^{\mathrm{T}} \mathbf{A} \boldsymbol{\eta} = \boldsymbol{\xi}'^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{A} \mathbf{S} \boldsymbol{\eta}' = \boldsymbol{\xi}'^{\mathrm{T}} \mathbf{A}' \boldsymbol{\eta}',$$

где $\mathbf{A}' = \mathbf{S}^{\mathsf{T}} \mathbf{A} \mathbf{S}$ – матрица билинейной формы $A(\mathbf{x}, \mathbf{y})$ в новом базисе $\{\mathbf{e}'\}$.

18.05.2018 23:34:57 стр. 4 из 4