Simetría. Grupos puntuales

Asigne a cada una de las siguientes moléculas su grupo puntual.

a.
$$O = C = C = C = O$$
 (linear)

$$D_{\infty h}$$

- Es lineal.
- Tiene un centro de inversión.

b. HF

$$C_{\infty_{\mathcal{V}}}$$

- Es lineal.
- No tiene centro de inversión.

c. IF₇

$$D_{5h}$$

- No es lineal.
- Tiene un C_5 solamente por lo tanto no tiene mas de dos C_n con $n \ge 3$.

- Tiene un C_5 .
- ullet Si tiene ejes C_2 perpendiculares al eje principal.
- Si tiene un plano de reflexión σ_h .

$\textbf{d. XeO}_2\textbf{F}_2$

 C_{2h}

- No es lineal.
- No tiene $C_n \operatorname{con} n \geq 3$.
- Tiene C_2 .
- ullet No tiene C_2 perpendiculares al eje principal.
- Tiene plano σ_h .

e. TeCl₄

 C_{2h}

- No es lineal.
- No tiene $C_n \operatorname{con} n \geq 3$.
- Tiene C_2 .
- ullet No tiene C_2 perpendiculares al eje principal.
- Tiene plano σ_h .

 C_{s}

- No es lineal.
- No tiene $C_n \operatorname{con} n \geq 3$.
- No tiene C_2 perpendiculares al eje principal.
- Tiene un plano de reflexión que pasa por los tres átomos.

g. trans-dicloroetileno

 C_{2h}

- No es lineal.
- No tiene ejes de rotación C_n con $n \ge 3$.
- ullet Tiene un C_2 sobre el eje que sale del plano.
- No tiene C_2 perpendiculares al eje principal.
- Tiene un plano de reflexion horizontal σ_h .

h. Ciclopropano

 D_{3h}

- No es lineal.
- No tiene mas de dos rotaciones C_n con $n \ge 3$.
- Tiene un C_3 .

- Si tiene rotaciones C_2 perpendiculares al eje principal.
- Tiene un plano de reflexión horizontal σ_h .

i. Ciclopropeno

 C_2

- No es lineal.
- No tiene mas de dos rotaciones C_n con $n \ge 3$.
- Tiene un C_2 .
- No tiene rotaciones C_2 perpendiculares al eje principal.
- No tiene plano de reflexión horizontal σh .
- No tiene planos de reflexión verticales.
- No es S_{2n} con n=2.

j. Aziridina

 C_s

- No es lineal.
- No tiene mas de dos rotaciones C_n con $n \ge 3$.
- No tiene C_2 .
- Tiene un plano de reflexión vertical.

k. $Cr_2(CO)_{10}^{2-}$

 C_{4v}

- No es lineal.
- No tiene mas de dos rotaciones C_n con $n \ge 3$.
- No tiene C_2 perpendiculares al eje principal.
- No tiene plano de reflexión horizontal.
- Tiene cuatro planos verticales de reflexión.

I. $\mathrm{HCr}_2(\mathbf{CO})_{10}^-$

 D_{4h}

- No es lineal.
- Solo tiene un C_4 .
- Tiene dos C_2 perpendiculares al C_4 .
- Tiene un plano de reflexión horizontal σ_h .

m.
$$Pt_2Cl_6^{2-}$$

 D_{2h}

- No es lineal.
- No tiene rotaciones C_n con $n \ge 3$.
- ullet Tiene C_2 perpendiculares al eje principal.
- Tiene un plano de reflexión horizontal σ_h .

n. Fósforo blanco, P₄

 T_d

- No es lineal.
- Tiene cuatro C_3 .
- No tiene punto de inversión.

o. Cubano, C_8H_8

 O_h

- No es lineal.
- Tiene más de dos rotaciones C_n con $n \ge 3$.
- Tiene centro de inversión.
- No tiene C_5 .

p. Tetrafluorocubano

 D_2

- No es lineal.
- No tiene $C_n \operatorname{con} n \geq 3$.
- Tiene C_2 .
- ullet Tiene C_2 perpendiculares al principal.
- No tiene un plano de reflexión horizontal σ_h .
- No tiene planos de reflexión diedral.