UV-VISIBLE SPECTROSCOPY

Student Name: Shlok Upadhyay Experiment date.: 26th August Student ID: 2023B2A71166G Group No.: 2B

chromium in Cr2O72—). This specific transition absorbs photons in the visible region of the electromagnetic spectrum, resulting in the observed color.

Franck–Condon Principle: This principle states that an electronic transition occurs on a timescale significantly faster than the nuclei can move. As a result, the molecular geometry remains essentially constant during the transition. The absorption bands observed in the spectrum are broadened because the electronic transition can occur from various vibrational energy levels within the ground electronic state to different vibrational levels in the excited electronic state, leading to a continuum of closely spaced absorption energies.

Isosbestic Point: This is a specific wavelength at which two or more chemical species have the exact same molar absorptivity. In a solution containing these species, the total absorbance at this wavelength remains constant, regardless of the relative concentrations of the components. Isosbestic points are particularly useful in studying chemical equilibria or reactions where one species is converted into another.

Colour wheel:

Apparatus	Beakers Cuvette Standard volumetric flasks Measuring cylinder Funnel Spectrophotometer
Chemicals required	Potassium permanganate Potassium dichromate Sulfuric acid (0.1 M) Distilled water
Procedure	 Step 1: Preparing a Permanganate Solution Accurately weigh out 8 mg of potassium permanganate (KMnO₄). Using a volumetric flask, dissolve this in enough distilled water to bring the final volume to exactly 100 mL. This will create a stock solution with a concentration of 5×10-4 M. Step 2: Preparing the Acid Solution Prepare 100 mL of 0.1 M sulfuric acid (H₂SO₄). This is done using a standard volumetric flask to ensure the correct concentration. This acid will be used to dissolve the next compound and to prepare the final mixtures.
	 Step 3: Preparing a Dichromate Solution Now, weigh out 3 mg of potassium dichromate (K₂Cr₂O₇). You will dissolve this solid in the 0.1 M H₂SO₄ solution you just prepared, bringing the final volume to 100 mL in a volumetric flask. This will result in a stock solution with a concentration of 1×10⁻⁴ M. Step 4: Creating the Mixtures Using the two stock solutions you've made, you will now prepare four different mixtures in separate 10 mL volumetric flasks. The total volume in each flask should be 10 mL. The specific volumes for each mixture are:
	Mixture 1: 8 mL of KMnO ₄ + 2 mL of K ₂ Cr ₂ O ₇ Mixture 2: 6 mL of KMnO ₄ + 4 mL of K ₂ Cr ₂ O ₇

Mixture 3: 4 mL of KMnO₄ + 6 mL of K₂Cr₂O₇ Mixture 4: 2 mL of KMnO₄ + 8 mL of K₂Cr₂O₇

Step 5: Measuring the Absorbance

Place each of the four mixtures into a cuvette and use a spectrophotometer to measure their absorption spectrum. The data from these measurements will be recorded and analyzed.

Calculations	We use this formula to calculate no. o	f moles of H ₂ SO ₄	
	M = % purity x s	pecific gravity x 1000	
	100 x Mol. Weight		
	Now, $ M_1 V_1 = M_2 V_2 $ $ V_1 = 0.1 \times 100/18.148 $		
	Vol of H2SO4 taken = 0.551 mL [KMnO4]= 5 x 10 ⁻⁴ M [K2Cr2O7]= 1 x 10 ⁻⁴ M	0.551 mL	
Observations	At, λ = 539 nm, experimental values		
	Absorbance of pure KMnO ₄ 1.2389		
	Absorbance of (8ml KMnO ₄ + 2ml K_2 Cr ₂ O ₇)	1.0002	
	Absorbance of (6ml KMnO $_4$ + 4ml K_2 Cr $_2$ O $_7$)	0.6510	
	Absorbance of (4ml KMnO ₄ + 6ml K ₂ Cr ₂ O ₇)	0.4459	
	Absorbance of (2ml KMnO ₄ + 8ml K ₂ Cr ₂ O ₇)	0.1318	
	Absorbance of pure K ₂ Cr ₂ O ₇	0.0185	

Molar absorptivity calculations, $\lambda = 539$ nm

For KMnO₄,

A = 1.2389, $C = 5 \times 10^{-4} M$

A= εcl

 $\varepsilon = A/cl = 2477.8 \text{ M}^{-1} \text{ cm}^{-1}$

For $K_2Cr_2O_{7}$, A=0.0185, $C=1 \times 10^{-4} M$ $\epsilon=A/Cl=185 M^{-1} cm^{-1}$

Theoretical Absorbance calculations at λ = 539 nm

Theoretical Absorbance calculations at $\lambda = 339$ filli		
8 ml KMnO ₄ + 2 ml K ₂ Cr ₂ O ₇	$A_{\text{total}} = (2477.8 \times 4 \times 10^{-4}) + (185 \times 2 \times 10^{-5})$ = 0.99112 + 0.00370 = 0.9948	
	$A_{total} = 0.9948$	
6 ml KMnO ₄ + 4 ml K ₂ Cr ₂ O ₇	$A_{\text{total}} = (2477.8 \times 3 \times 10^{-4}) + (185 \times 4 \times 10^{-5}) =$	
	0.74334 + 0.00740 = 0.7507	
	$A_{\text{total}} = 0.7507$	
4 ml KMnO ₄ + 6 ml K ₂ Cr ₂ O ₇	$A_{\text{total}} = (2477.8 \times 2 \times 10^{-4}) + (185 \times 6 \times 10^{-5}) =$	
	0.49556 + 0.01110 = 0.5067	
	$A_{\text{total}} = 0.5067$	
2 ml KMnO ₄ + 8 ml K ₂ Cr ₂ O ₇	$A_{\text{total}} = (2477.8 \times 1.0 \times 10^{-4}) + (185 \times 8.0 \times 10^{-5})$ = 0.24778 + 0.01480 = 0.2626	
	$A_{\text{total}} = 0.2626$	

Experimental values at λ = 315 nm

Absorbance of pure KMnO ₄	1.0412
Absorbance of (8ml KMnO ₄ + 2ml K ₂ Cr ₂ O ₇)	1.0396

Absorbance of (6ml KMnO ₄ + 4ml K ₂ Cr ₂ O ₇)	0.8797
Absorbance of (4ml KMnO ₄ + 6ml K ₂ Cr ₂ O ₇)	0.5125
Absorbance of (2ml KMnO ₄ + 8ml K ₂ Cr ₂ O ₇)	0.2815
Absorbance of pure K ₂ Cr ₂ O ₇	0.2114
Absorbance of pure K ₂ Cr ₂ O ₇	0.2114

Molar absorptivity calculation at λ = 315 nm

a) For KMnO4,

A = 1.0412, C = 5 x 10-4 M ϵ = A / Cl = 1.0412 / (5 x 10-4 M * 1 cm) = 2082.4 M-1cm-1 b) For K2Cr2O7, A= 0.2114, C = 1 x 10-4 M ϵ = A / Cl = 0.2114 / (1 x 10-4 M * 1 cm) = 2114 M-1cm-1

Theoretical Absorbance calculation for additivity at λ = 315 nm

8 ml KMnO ₄ + 2 ml K ₂ Cr ₂ O ₇	Atotal = (2082.4 x 4.0×10-4) + (2114 x 2.0×10-5) = 0.83296 + 0.04228 = 0.8752 Atotal = 0.8752
6 ml KMnO ₄ + 4 ml K ₂ Cr ₂ O ₇	Atotal = (2082.4 * 3.0 * 10-4) + (2114 * 4.0 * 10-5) = 0.62472 + 0.08456 = 0.7093 Atotal = 0.7093
4 ml KMnO ₄ + 6 ml K ₂ Cr ₂ O ₇	Atotal = (2082.4 * 2.0 * 10-4) + (2114 * 6.0 * 10-5) = 0.41648 + 0.12684 = 0.5433 Atotal = 0.5433

2 ml KMnO ₄ + 8 ml K ₂ Cr ₂ O ₇	Atotal = (2082.4 * 1.0 * 10-4) + (2114 * 8.0 * 10-5) = 0.20824 + 0.16912 = 0.3774 Atotal = 0.3774

Observations table

Table1: Observed values from graph

•	539 nm 💌	315 nm 💌
Pure KMnO4	1.2389	1.0412
8mL KMnO4 + 2mL K2Cr2O7	1.0002	1.0396
6 mL KMnO4 + 4 mL K2Cr2O7	0.651	0.8797
4 mL KMnO4 + 6 mL K2Cr2O7	0.4459	0.5125
2 mL KMnO4 + 8 mL K2Cr2O7	0.1318	0.2815
Pure K2Cr2O7	0.0185	0.2114

Table 2: Comparision of observed vs theoretical

S.No T	Vol of KMnO4 🕝	Vol of K2Cr2O7 🔻	Observed A 🔻	Calculated A	Observed A 💌	Calculated A
			539 nm	539 nm	315 nm	315 nm
1	0	10	0.0185	0.0185	0.2114	0.2114
2	2	8	0.1318	0.2626	0.2815	0.3774
3	4	6	0.4459	0.5607	0.5125	0.5433
4	6	4	0.651	0.7507	0.8797	0.7093
5	8	2	1.0002	0.9948	1.0396	0.8752
5	10	0	1.2389	1.2389	1.0412	1.0412

Table 3: Molar Absorptivity at 315 nm (KMnO₄)

Sr. No	Concentration	Absorbance	Molar absorptivity 315nm
1	0.0005	1.0412	
2	0.0004	0.83296	
3	0.0003	0.62472	2082.4
4	0.0002	0.41648	
5	0.0001	0.20824	

Table 4: Molar Absorptivity at 539 nm (KCr₂O₇)

			Molar
Sr. No	Concentration	Absorbance	Absorptivity
	·	*	539 nm
1	0.00002	0.0037	
2	0.00004	0.0074	
3	0.00006	0.0111	185
4	0.00008	0.0148	
5	0.0001	0.0185	

Results

1. ϵ Values for KMnO₄ for λ = 315 nm and λ = 539 nm were found to be

a.
$$\epsilon_{315} = 2082.4 \text{ M}^{-1} \text{ cm}^{-1}$$

b.
$$\epsilon_{539} = 2477.8 \text{ M}^{-1} \text{ cm}^{-1}$$

2. ϵ Values for $K_2Cr_2O_7$ for λ = 311 nm and λ = 536 nm were found to be

a.
$$\epsilon_{315} = 2114 \text{ M}^{-1} \text{ cm}^{-1}$$

b.
$$\epsilon_{539} = 185 \text{ M}^{-1} \text{ cm}^{-1}$$

Isobestic points:

X = 250.519, 281.979, 419.792

Precautions	 Be careful while handling KMnO₄ and K₂Cr₂O₇ since they are strong chemicals – avoid spilling or touching them directly. Make sure the cuvettes and glassware are clean, because even small smudges or dust can mess up the readings. Don't leave the solutions in direct sunlight, as they can break down and give wrong results.
References	 Atkins, P. & de Paula, J. (2018). Atkins' Physical Chemistry (11th ed.). Oxford University Press. Willard, H.H., Merritt, L.L., Dean, J.A., & Settle, F.A. (1988). Instrumental Methods of Analysis (7th ed.). Wadsworth Publishing.