

Predicting with trees

Jeffrey Leek Johns Hopkins Bloomberg School of Public Health

Key ideas

- Iteratively split variables into groups
- · Evaluate "homogeneity" within each group
- · Split again if necessary

Pros:

- Easy to interpret
- · Better performance in nonlinear settings

Cons:

- · Without pruning/cross-validation can lead to overfitting
- Harder to estimate uncertainty
- Results may be variable

Example Tree

Decision Tree: The Obama-Clinton Divide

http://graphics8.nytimes.com/images/2008/04/16/us/0416-nat-subOBAMA.jpg

Basic algorithm

- 1. Start with all variables in one group
- 2. Find the variable/split that best separates the outcomes
- 3. Divide the data into two groups ("leaves") on that split ("node")
- 4. Within each split, find the best variable/split that separates the outcomes
- 5. Continue until the groups are too small or sufficiently "pure"

Measures of impurity

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \text{ in Leaf } m} \mathbb{1}(y_i = k)$$

Misclassification Error:

$$1 - \hat{p}_{mk(m)}$$
; $k(m) = \text{most}$; common; k

- 0 = perfect purity
- 0.5 = no purity

Gini index:

$$\sum_{k \neq k'} \hat{p}_{mk} \times \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) = 1 - \sum_{k=1}^{K} p_{mk}^2$$

- 0 = perfect purity
- 0.5 = no purity

Measures of impurity

Deviance/information gain:

$$-\sum_{k=1}^{K} \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

- 0 = perfect purity
- 1 = no purity

http://en.wikipedia.org/wiki/Decision_tree_learning

Measures of impurity

- Misclassification: 1/16 = 0.06
- **Gini:** $1 [(1/16)^2 + (15/16)^2] = 0.12$
- · Information:

$$-[1/16 \times log2(1/16) + 15/16 \times log2(15/16)] = 0.34 \qquad -[1/16 \times log2(1/16) + 15/16 \times log2(15/16)] = 1$$

- Misclassification: 8/16 = 0.5
- Gini: $1 [(8/16)^2 + (8/16)^2] = 0.5$
- · Information:

$$-[1/16 \times log2(1/16) + 15/16 \times log2(15/16)] = 1$$

Example: Iris Data

```
data(iris); library(ggplot2)
names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

table(iris$Species)

setosa versicolor virginica
50 50 50 50
```

Create training and test sets

```
[1] 45 5
```

Iris petal widths/sepal width

qplot(Petal.Width, Sepal.Width, colour=Species, data=training)

Iris petal widths/sepal width

```
library(caret)
modFit <- train(Species ~ .,method="rpart",data=training)
print(modFit$finalModel)</pre>
```

```
n= 105

node), split, n, loss, yval, (yprob)
     * denotes terminal node

1) root 105 70 setosa (0.3333 0.3333 0.3333)
     2) Petal.Length< 2.45 35 0 setosa (1.0000 0.0000 0.0000) *
     3) Petal.Length>=2.45 70 35 versicolor (0.0000 0.5000 0.5000)
     6) Petal.Length< 4.75 31 0 versicolor (0.0000 1.0000 0.0000) *
     7) Petal.Length>=4.75 39 4 virginica (0.0000 0.1026 0.8974) *
```

Plot tree

Classification Tree

Prettier plots

```
library(rattle)
fancyRpartPlot(modFit$finalModel)
```


Predicting new values

predict(modFit, newdata=testing)

```
[1] setosa
                                                                                setosa
                                                                                                                                       setosa
                                                                                                                                                                                              setosa
                                                                                                                                                                                                                                                    setosa
                                                                                                                                                                                                                                                                                                           setosa
                                                                                                                                                                                                                                                                                                                                                                   setosa
                                                                                                                                                                                                                                                                                                                                                                                                                         setosa
                                                                                                                                                                                                                                                                                                                                                                                                                        versicolor
      [9] setosa
                                                                                setosa
                                                                                                                                       setosa
                                                                                                                                                                                              setosa
                                                                                                                                                                                                                                                    setosa
                                                                                                                                                                                                                                                                                                           setosa
                                                                                                                                                                                                                                                                                                                                                                   setosa
 [17] versicolor versic
[25] virginica versicolor virginica versicolor versicolor versicolor virginica virginica
[33] virginica versicolor virginica virginica virginica virginica virginica virginica
[41] virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica
```

Notes and further resources

- Classification trees are non-linear models
 - They use interactions between variables
 - Data transformations may be less important (monotone transformations)
 - Trees can also be used for regression problems (continuous outcome)
- Note that there are multiple tree building options in R both in the caret package party, rpart and out of the caret package - tree
- Introduction to statistical learning
- Elements of Statistical Learning
- Classification and regression trees