Probabilidad

Jessica Nathaly Pulzara Mora jessica.pulzara@udea.edu.co

Departamento de ingeniería de sistemas

Probabilidad clásica

Sea ε un experimento y S un espacio muestral asociado con ε . Sea A un evento de S. La probabilidad de ocurrencia del evento A, denotada P(A), se define como:

$$P(A) = \frac{n(A)}{n(S)}$$

donde n(A) es el número de elementos de A (casos favorables a A) y n(S) es el número de elemetos del espacio muestral S (total de casos posibles).

Sea el experimento aleatorio lanzar un dado al aire, el espacio muestral de este experimento está dado por:

$$S = \{1, 2, 3, 4, 5, 6\}$$

Calculemos la probabilidad del evento E: que salga dos en la cara superior del dado, esto es:

$$P(E) = \frac{1}{6} = 0.16667$$

Sea el experimento aleatorio lanzar un dado al aire, el espacio muestral de este experimento está dado por:

$$S = \{1, 2, 3, 4, 5, 6\}$$

Calculemos la probabilidad del evento A: que salga un número par en la cara superior del dado, esto es:

$$A = \{2, 4, 6\}$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{n(\{2, 4, 6\})}{n(S)} = \frac{3}{6} = 0.5$$

Sea ε un experimento y S un espacio muestral, el objetivo de la probabilidad es asignar a cada elemento de A, un número P(A), llamado la probabilidad del evento A, el cual dará una medida precisa de la oportunidad de que A ocurra. Todas las asignaciones deberán satisfacer los siguientes axiomas (propiedades básicas) de probabilidad:

Axiomas

Axiomas de probabilidad

• Para cualquier evento A en el espacio muestral S,

$$0 \le P(A) \le 1$$

- P(S) = 1
- Si A_1, A_2, A_3, \ldots es un conjunto de eventos mutuamente excluyentes, es decir, $A_i \cap A_j = \phi$ para todo $i \neq j$, entonces

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i)$$

Propiedades

Con base en los axiomas anteriores y haciendo uso de las principales propiedades presentes en la teoría de conjuntos, se presentan las siguientes reglas operativas:

- $P(\emptyset) = 0$, donde \emptyset es el evento nulo.
- Para cualquier evento A, P(A') = 1 P(A).
- Para cualquier evento $A, P(A) \leq 1$.

Regla de la adición

Para dos eventos cualesquiera A y B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Si A y B son mutuamente excluyentes, entonces

$$P(A \cup B) = P(A) + P(B)$$

Para tres eventos A, B y C se tiene

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C)$$

Si A, B y C son mutuamente excluyentes, entonces

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

Probabilidad de la diferencia

Para dos eventos cualesquiera A y B,

$$P(A - B) = P(A \cap B^{c}) = P(A) - P(A \cap B)$$

Aplicando leyes de De Morgan

•
$$P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B)$$

•
$$P(A^c \cup B^c) = P((A \cap B)^c) = 1 - P(A \cap B)$$

Sean A y B eventos tales que $P(A \cup B) = 0.7$ y P(B) = 0.2. Determinar P(A) de tal manera que los eventos A y B sean mutuamente excluyentes.

Sean A y B dos eventos, con P(A) = 1/2 y $P(B^c) = 1/4$. ¿Pueden ser los eventos A y B mutuamente excluyentes?

La siguiente tabla presenta la historia de 940 obleas de un proceso de fabricación de semi-conductores. Se elije al azar una oblea. Sea A: el evento en que la oblea tenga altos niveles de contaminación y B: el evento en que la oblea está en el centro de instrumentación electrónica.

centro de instrumentación electrónica

		No	Si	Total
Contaminación	No	514	68	582
alta	Si	112	246	358
	Total	626	314	940

centro de instrumentación electrónica

		No	Si	Total
Contaminación	No	514	68	582
alta	Si	112	246	358
	Total	626	314	940

- Calcular la probabilidad de que la oblea tenga altos niveles de contaminación.
- Calcular la probabilidad del evento B: la oblea está en el centro de instrumentación electrónica.

centro de instrumentación electrónica

		No	Si	Total
Contaminación	No	514	68	582
alta	Si	112	246	358
	Total	626	314	940

- Calcular la probabilidad de que el producto tenga altos niveles de contaminación y está en el centro de instrumentación electrónica.
- Calcular la probabilidad de que el producto tenga altos niveles de contaminación o está en el centro de instrumentación electrónica.

Un total del 35% de los estudiantes de una universidad están inscritos en un curso de inglés, el 7% en un curso de alemán y el 2% en inglés y alemán.

- ¿Qué porcentaje de estudiantes están inscritos en cursos de inglés pero no de alemán?
- ¿Qué porcentaje no están inscritos ni en inglés ni en alemán?

Espacio muestral no equiprobable

Ejemplo

Un dado se carga de tal manera que un número par tiene el doble de posibilidad de salir que un número impar. Se lanza este dado y se observa el número obtenido. Calcular la probabilidad de obtener al menos 3 puntos.

Ejercicio

Dos alumnos se distribuyen al azar en 3 computadoras numeradas con 1, 2 y 3 respectivamente. Si ambos pueden estar en una misma computadora, pero ninguno en dos computadoras a la vez.

- Determine los elementos del espacio muestral.
- Calcular la probabilidad de que la computadora 3 no se ocupe.