# Differential Amplifiers: Implementation on ICs

Replacing  $R_{SS}$  and  $R_{D}$  with current-sources and active loads



# Resistor R<sub>ss</sub> provides source degeneration for a stable bias

Bias (Common Mode circuit )





- In discrete circuits, bias is similar to that of a CS amplifier (source degeneration with a source resistor).
- However  $R_{SS}$  does not affect the differential gain and , in fact, should be large to improve CMRR (no need for a by-pass capacitor!)

### Differential amplifier with current source active load

Q1 and Q2 are identical & $V_{G2}$  =  $V_{G1}$ 



#### Q3 and Q4 are identical

 Q3/Q4 act active load/ current source (similar to a CS amplifier).

#### Q5 is necessary

- o For signals, Q5 provides  $R_{SS}=r_{o5}$  necessary for reducing common-mode gain (a large  $R_{SS}=r_{o5}$  can be obtained without significant voltage drop across Q5).
- o Parameters of Q5 (i.e., W/L,  $V_G$ ) should be chosen such that  $I_{D3}$  =  $I_{D4}$  =  $0.5\ I_{D5}$  .
- Q5 eases the necessary precision in biasing Q1 and Q2 gates.

# Differential amplifier with

### **current source active load** – Bias



- > Q1 and Q2 are identical &  $V_{G2}$  =  $V_{G1}$  > Q3 and Q4 are identical > Parameters of Q5 (i.e., W/L,  $V_G$ ) are chosen such that  $I_{D3}$  =  $I_{D4}$  =  $0.5\ I_{D5}$

$$V_{GS1} = V_{GS2} \implies V_{OV1} = V_{OV2}$$
 $I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5I_{D5}$ 

# Differential amplifier with current source active load – Signal analysis



# Differential amplifier with current source active load – Signal analysis



#### **Differential Mode**

$$v_{o1,d} = -g_{m1}(r_{o1} || r_{o3}) (-0.5v_d) = 0.5g_{m1}(r_{o1} || r_{o3})v_d$$
  
$$v_{o2,d} = -v_{o1} = -0.5g_{m1}(r_{o1} || r_{o3})v_d$$

$$\frac{v_{o1,c}}{v_c} = -\frac{g_{m1}r_{o3}}{1 + 2g_{m1}r_{o5} + r_{o3}/r_{o1}}$$
$$v_{o1,c} = v_{o2,c}$$

# **Cascode differential** amplifier



Bias analysis is similar to the case of differential amplifier with current-source active load.

### Cascode differential amplifier – Signal analysis





## Cascode differential amplifier – Signal analysis

#### Differential Mode



$$v_{o1,d} \approx -\frac{g_{m1}g_{m3}g_{m5}r_{o1}r_{o3}r_{o5}r_{o7}}{g_{m3}r_{o1}r_{o3} + g_{m5}r_{o5}r_{o7}} \times (-0.5v_d)$$

$$= -g_{m1}(g_{m3}r_{o3}r_{o1} || g_{m5}r_{o5}r_{o7})(-0.5v_d)$$

$$v_{o2,d} = -v_{o1,d}$$

## Cascode differential amplifier – Signal analysis



For 
$$g_m r_o >> 1^*$$

$$v_{o2,c} = v_{o1,c} \approx -\frac{g_{m5} r_{o5} r_{o7}}{2r_{o9}} \times v_c$$

# Differential Amplifiers – Output Configurations

Typical implementation of differential amplifier circuits



### **Output Configurations of Differential Amplifiers**



### Differential Amplifiers with Differential Output

#### **Differential Output**



Not used often because the load floats (i.e., not attached to the ground

#### **Differential Mode**





## Differential Amplifiers with Differential Output

#### **Differential Mode**



# $v_{o1,d} = -g_m(r_o||R_D||R_L/2)(-0.5v_d)$ $v_{o2,d} = -v_{o1,d}$ $v_{od} = v_{o2,d} - v_{o1,d} = -2v_{o1,d} = -g_m(r_o||R_D||R_L/2)v_d$ $A_d = \frac{v_{od}}{v_d} = -g_m(r_o||R_D||R_L/2)$

#### **Differential Output**



$$v_o = A_c \cdot v_c + A_d \cdot v_d$$



$$\frac{v_{o1,c}}{v_c} = -\frac{g_m R_D}{1 + 2g_m R_{SS} + R_D / r_o}$$

$$v_{o2,c} = v_{o1,c}$$

$$v_{oc} = v_{o2,c} - v_{o1,c} = 0$$

$$A_c = \frac{v_{oc}}{v_c} = 0$$

$$CMRR = \frac{|A_d|}{|A_c|} = \infty$$

### **Differential Amplifiers with Two Outputs**

Two Separate Outputs ( $R_{L1} \approx R_{L2} = R_L$ ) (i.e., input to another difference amplifier)



**Note:** To use half circuit,  $(R_{L1} \approx R_{L2})$  or  $R_L$  should be large enough so that symmetry is preserved (i.e.  $R_{L1,2} >> R_o$ )







### **Differential Amplifiers with Two Outputs**

#### Differential Mode



$$\frac{v_{o1,d}}{-0.5v_d} = -g_m(r_o||R_D||R_{L1})$$

$$\frac{v_{o2,d}}{+0.5v_d} = -g_m(r_o||R_D||R_{L2})$$

#### Common Mode



$$\frac{v_{o1,c}}{v_c} = -\frac{g_m(R_D||R_{L1})}{1 + 2g_m R_{SS} + (R_D||R_{L1})/r_o}$$

$$\frac{v_{o2,c}}{v_c} = -\frac{g_m(R_D||R_{L2})}{1 + 2g_m R_{SS} + (R_D||R_{L2})/r_o}$$

**Note:** Each output has its own differential- and common-mode gains:  $v_{o1,d}$   $v_{o1,c}$ 

$$A_{1d} = \frac{v_{o1,d}}{v_d}, \quad A_{1c} = \frac{v_{o1,c}}{v_c}$$

$$v_{o1} = A_{1c} \cdot v_c + A_{1d} \cdot v_d$$

# Typical implementation of differential amplifiers with two outputs



# Differential Amplifiers with Single-ended Output

#### **Single-ended Output**



To use half circuit,  $R_L$  should be large enough such that symmetry is preserved (i.e.  $R_L >> R_o = R_D | | r_o |$ 

#### Differential Mode





# Differential Amplifiers with Single-ended Output

### $v_o = A_c \cdot v_c + A_d \cdot v_d$

#### **Single-ended Output**



To use half circuit,  $R_L$  Should be large so that symmetry is preserved (i.e.  $R_L >> R_o = R_D | | r_o$ )

#### **Differential Mode**



$$\begin{split} &\frac{v_{o2}}{0.5v_d} = -g_m(r_o ||R_D||R_L) \\ &v_{od} = v_{o2} = -0.5g_m(r_o ||R_D||R_L) v_d \\ &A_d = \frac{v_{od}}{v_d} = -0.5g_m(r_o ||R_D||R_L) \end{split}$$

#### **Common Mode**



$$A_{c} = \frac{v_{oc}}{v_{c}} = -\frac{g_{m}(R_{D} || R_{L})}{1 + 2g_{m}R_{SS} + (R_{D} || R_{L})/r_{o}}$$

Note:  $A_c \neq 0$  which means CMMR is NOT infinite.

# An implementation of differential amplifiers with an output (coupled to a CS amplifier)



### Active load for a single-ended output



Works fine but require biasing of Q3 and Q4 (i.e.,  $V_{G3}$ )



#### 'Popular" active load for single-ended output

- Q3/Q4 are NOT current sources and do not require biasing (i.e.,  $V_{G3}$ )
  Gets a similar gain and CMRR
  But, circuit is NOT symmetric (half-circuit
- does not work!)

# Active load for a single-ended output: Small signal equivalent



## Small-signal analysis of single-ended output



# Small-signal analysis of single-ended output – Differential Gain (1)



 $egin{aligned} r_{o4} &= r_{o3} ext{ and } g_{m4} = g_{m3} \ r_{o2} &= r_{o1} ext{ and } g_{m2} = g_{m1} \ v_{gs1} &= -0.5 v_d - v_5 \ v_{gs2} &= +0.5 v_d - v_5 \end{aligned}$ 

Node  $v_{g3}$ 

Node  $v_o$ 

Node  $v_5$ 

$$g_{m3}v_{g3} + g_{m1}(-0.5v_d - v_5) + \frac{v_{g3} - v_5}{r_{o1}} = 0$$

$$g_{m3}v_{g3} + \frac{v_o}{r_{o3}} + g_{m1}(+0.5v_d - v_5) + \frac{v_o - v_5}{r_{o1}} = 0$$

$$\frac{v_5}{r_{o5}} + \frac{v_5 - v_{g3}}{r_{o1}} + \frac{v_5 - v_o}{r_{o1}} - g_{m1}(-0.5v_d - v_5) - g_{m1}(+0.5v_d - v_5) = 0$$

# Small-signal analysis of single-ended output – Differential Gain (2)

#### Rearranging terms:

$$v_{g3}\left(g_{m3} + \frac{1}{r_{o1}}\right) + v_{5}\left(-g_{m1} - \frac{1}{r_{o1}}\right) = +0.5g_{m1}v_{d}$$

$$v_{g3}\left(g_{m3}\right) + v_{5}\left(-g_{m1} - \frac{1}{r_{o1}}\right) + v_{o}\left(\frac{1}{r_{o3}} + \frac{1}{r_{o1}}\right) = -0.5g_{m1}v_{d}$$

$$v_{g3}\left(-\frac{1}{r_{o1}}\right) + v_{5}\left(+2g_{m1} + \frac{2}{r_{o1}} + \frac{1}{r_{o5}}\right) + v_{o}\left(-\frac{1}{r_{o1}}\right) = 0$$

Dropping  $1/r_o$  terms compared with  $g_m$ 

$$v_{g3}(g_{m3}) + v_{5}(-g_{m1}) = +0.5g_{m1}v_{d}$$

$$v_{g3}(g_{m3}) + v_{5}(-g_{m1}) + v_{o}\left(\frac{1}{r_{o3}} + \frac{1}{r_{o1}}\right) = -0.5g_{m1}v_{d}$$

$$v_{g3}\left(-\frac{1}{r_{o1}}\right) + v_{5}(+2g_{m1}) + v_{o}\left(-\frac{1}{r_{o1}}\right) = 0$$



Dropping  $v_5/r_{o5}$  term implies that very little current flows into  $r_{o5}$  (can remove  $r_{o5}$  from the circuit as done in the textbook)

# Small-signal analysis of single-ended output – Differential Gain (3)

$$v_{g3}(g_{m3}) + v_{5}(-g_{m1}) = +0.5g_{m1}v_{d}$$

$$v_{g3}(g_{m3}) + v_{5}(-g_{m1}) + v_{o}\left(\frac{1}{r_{o3}} + \frac{1}{r_{o1}}\right) = -0.5g_{m1}v_{d}$$

$$v_{g3}\left(-\frac{1}{r_{o1}}\right) + v_{5}(+2g_{m1}) + v_{o}\left(-\frac{1}{r_{o1}}\right) = 0$$

Subtracting second equation from the first\*:

$$\frac{v_o}{r_{o1} \parallel r_{o3}} = -g_{m1}v_d \implies v_o = -g_{m1}(r_{o1} \parallel r_{o3})v_d \implies A_d = -g_{m1}(r_{o1} \parallel r_{o3})$$

Adding all three equations give:

$$2g_{m3}v_{g3} + \frac{v_o}{r_{o3}} = 0 \implies v_{g3} = -\frac{v_o}{2g_{m3}r_{o3}}$$

\* This is sloppy math as if subtract 2<sup>nd</sup> equation from first before dropping  $r_o$  terms, a  $v_{g3}$  term appears in the above equation. Fortunately, as  $v_{g3} << v_o$ , ignoring  $v_{g3}$  term is justified

### Small-signal analysis of single-ended output – **Common-mode Gain (1)**



 $r_{o4} = r_{o3}$  and  $g_{m4} = g_{m3}$  $r_{o2} = r_{o1}$  and  $g_{m2} = g_{m1}$  $v_{gs1} = -0.5v_d - v_5$  $v_{gs2} = +0.5v_d - v_5$ 

Node  $v_{g3}$ 

Node  $v_o$ 

Node  $v_5$ 

$$g_{m3}v_{g3} + g_{m1}(v_c - v_5) + \frac{v_{g3} - v_5}{r_{o1}} = 0$$

$$g_{m3}v_{g3} + \frac{v_o}{r_{o3}} + g_{m1}(v_c - v_5) + \frac{v_o - v_5}{r_{o1}} = 0$$

$$\frac{v_5}{r_{o5}} + \frac{v_5 - v_{g3}}{r_{o1}} + \frac{v_5 - v_o}{r_{o1}} - g_{m1}(v_c - v_5) - g_{m1}(v_c - v_5) = 0$$

# Small-signal analysis of single-ended output – Common-mode Gain (2)

$$g_{m3}v_{g3} + g_{m1}(v_c - v_5) + \frac{v_{g3} - v_5}{r_{o1}} = 0$$

$$g_{m3}v_{g3} + \frac{v_o}{r_{o3}} + g_{m1}(v_c - v_5) + \frac{v_o - v_5}{r_{o1}} = 0$$

$$\frac{v_5}{r_{o5}} + \frac{v_5 - v_{g3}}{r_{o1}} + \frac{v_5 - v_o}{r_{o1}} - g_{m1}(v_c - v_5) - g_{m1}(v_c - v_5) = 0$$

Subtracting second equation from the first and dropping  $1/r_o$  terms compared with  $g_m$ 

$$\frac{v_o}{r_{o1} \parallel r_{o3}} = 0 \implies A_c = 0 \implies \text{CMRR} = \infty$$

Solving equations without dropping  $1/r_o$  terms compared with  $g_m$ 

$$v_o = \frac{1}{2g_{m3}r_{o5}}v_c \implies A_c = \frac{1}{2g_{m3}r_{o5}} \implies \text{CMRR} = 2g_{m3}r_{o5}g_{m1}(r_{o1} \parallel r_{o3})$$

# Small-signal analysis of single-ended output – Output Resistance



Attach a source  $v_x$  to the output and calculate  $i_x$ )

Node 
$$v_x$$
  $g_{m3}v_{g3} + \frac{v_x}{r_{o3}} + g_{m1}(-v_5) + \frac{v_x - v_5}{r_{o1}} = i_x$ 

Node 
$$v_5 = \frac{v_5}{r_{o5}} + \frac{v_5 - v_{g3}}{r_{o1}} + \frac{v_5 - v_x}{r_{o1}} - g_{m1}(-v_5) - g_{m1}(-v_5) = 0$$

Subtracting second equation from the first and dropping  $1/r_o$  terms compared with  $g_m$ 

$$\frac{v_x}{r_{o1} \parallel r_{o3}} = i_x$$

$$R_o = \frac{v_x}{i_x} = r_{o1} \parallel r_{o3}$$

F. Najmabadi, ECE102, Fall 2012 (29/29)