Processamento digital de imagens

Agostinho Brito

Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte

2 de novembro de 2017

- Padrão: arranjo de descritores. Característica ↔ descritor.
- Classe de padrões: família de padrões que compartilham características comuns.
- Classes de padrões são indicadas como $\omega_1, \omega_2, \omega_3, \cdots, \omega_W$, onde W é o número de classes.
- Formas mais comuns de representação de padrões: vetores, strings e árvores.
- Formas mais comuns de classificação de padrões: estatísticas e por aprendizado de máquina.

Vetores

$$\mathbf{x}=\left[x_1,x_2,\cdots,x_n\right]^T$$

• Ex: discriminação de flores pelas dimensões de suas pétalas: $\mathbf{x} = [x_1, x_2]^T$.

- Classificador de distância mínima. Verificar a distância de um padrão para cada classe com base numa função de decisão.
- Se $d_i(\mathbf{x}) < d_j(\mathbf{x})$ $j = 1, 2, \dots, W$; $i \neq j$, diz-se que o padrão \mathbf{x} pertence à classe i.
- A média dos valores dos padrões da classe é dada por

$$\mathbf{m}_j = \frac{1}{N_j} \sum_{\mathbf{x} \in \omega_j} \mathbf{x}_j$$

A distância para a classe j é dada por

$$d_j(\mathbf{x}) = \|\mathbf{x} - \mathbf{m}_j\| = \mathbf{x}^T \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^T \mathbf{m}_j$$

Classificadores estatísticos ótimos

- A probabilidade de um padrão **x** vir da classe ω_i é denotada por $p(\omega_i/\mathbf{x})$.
- Se o classificador decide padrão \mathbf{x} pertence à classe ω_j quando, na verdade, ela pertence à classe ω_i , ocorre um erro, denotado por L_{ij}
- O risco condicional médio de atribuir um padrão à classe ω_j (para W classes) é dado por

$$r_j(\mathbf{x}) = \sum_{k=1}^W L_{kj} p(\omega_k/\mathbf{x})$$

• Como p(A/B) = p(A)p(B/A)/p(B),

$$r_j(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^W L_{kj} P(\omega_k) p(\mathbf{x}/\omega_k)$$

- $p(\mathbf{x}/\omega_k)$ é a função densidade de probabilidade da classe ω_k .
- $P(\omega_k)$ é a probabilidade de ocorrência de um indivíduo da classe ω_k .
- Como $1/p(\mathbf{x})$ é comum a todos os valores de $r_j(\mathbf{x})$, pode ser retirado da equação sem afetar a ordem de valores.

$$r_j(\mathbf{x}) = \sum_{k=1}^W L_{kj} p(\mathbf{x}/\omega_k)$$

- O classificador que minimiza a perda total média é chamado classificador de Bayes.
- Ao fator de perda pode ser dado, por exemplo, o valor ZERO, para uma decisão correta, e UM para uma decisão incorreta.
- A função de risco torna-se, portanto

$$r_j(\mathbf{x}) = p(\mathbf{x}) - p(\mathbf{x}/\omega_j)P(\omega_j)$$

• O classificador de Bayes atribui o padrão **x** à classe ω_i se, para todo $j \neq i$,

$$p(\mathbf{x}) - p(\mathbf{x}/\omega_i)P(\omega_i) < p(\mathbf{x}) - p(\mathbf{x}/\omega_j)P(\omega_j)$$

 $p(\mathbf{x}/\omega_i)P(\omega_i) > p(\mathbf{x}/\omega_j)P(\omega_j)$

Logo, as funções de decisão podem ser definidas como

$$d_j(\mathbf{x}) = p(\mathbf{x}/\omega_j)P(\omega_j)$$
 $j = 1, 2, \cdots, W$

Se as classes possuem chances iguais de ocorrer

$$d_i(\mathbf{x}) = p(\mathbf{x}/\omega_i) \quad j = 1, 2, \cdots, W$$

 Classificadores bayesianos para classes com distribuição gaussiana. Ex: caso unidimensional

$$p(x/\omega_j) = \frac{1}{\sqrt{2\pi}\sigma_j} e^{-\frac{x-m_j^2}{2\sigma_j^2}} P(\omega_j)$$

Caso n-dimensional

$$p(\mathbf{x}/\omega_j) = \frac{1}{(2\pi)^{n/2} |\mathbf{C}_j|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_j)^T \mathbf{C}_j^{-1} (\mathbf{x} - \mathbf{m}_j)}$$

onde

$$\mathbf{m}_{j} = \frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{j}} \mathbf{x}$$
 $\mathbf{C}_{x} = \frac{1}{N_{j}} \sum_{\mathbf{x} \in \omega_{j}} (\mathbf{x} \mathbf{x}^{T}) - \mathbf{m}_{j} \mathbf{m}_{j}^{T}$

A forma exponencial pode ser reduzida por logaritmo

$$d_j(\mathbf{x}) = \ln[p(\mathbf{x}/\omega_j)P(\omega_j)] = \ln p(\mathbf{x}/\omega_j) + \ln P(\omega_j)$$

Assim, a função de decisão torna-se

$$d_j(\mathbf{x}) = \ln P(\omega_j) - \frac{1}{2} \ln |\mathbf{C}_j| - \frac{1}{2} [(\mathbf{x} - \mathbf{m}_j)^T \mathbf{C}_j^{-1} (\mathbf{x} - \mathbf{m}_j)]$$

Exemplo de classificador

Valores das médias

$$\mathbf{m}_1 = \frac{1}{4}[\ 3 \ 1 \ 1 \]^T$$
 $\mathbf{m}_2 = \frac{1}{4}[\ 1 \ 3 \ 3 \]^T$

Matrizes de covariância

$$\mathbf{C}_1 = \mathbf{C}_2 = \frac{1}{16} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

Funções de decisão

$$d_1(\mathbf{x}) = 4x_1 - 1.5$$

 $d_2(\mathbf{x}) = -4x_1 + 8x_2 + 8x_3 - 5.5$

- Classificação de padrões por aprendizado de máquina.
- Tipos de métodos:
 - Não-supervisionado
 - Supervisionado

Aprendizado não-supervisionado - procedimento genérico

- \odot Seja H_u um conjunto de amostras não-rotuladas.
- ② Rotule H_u em H_t (amostras rotuladas) usando um critério qualquer.
- Projete um classificador com base nessa partição.
- 4 Aplique o classificador em H_u . Se a classificação for consistente com H_t , finalize o aprendizado.
- \odot Caso contrário, atualize H_t e repita o projeto do classificador conforme passo 3.

Algoritmo kNN: k vizinhos mais próximos

O padrão pertencerá à classe que tiver, dentre k vizinhos mais próximos desse padrão, a maior quantidade de representantes.

Neurônio artificial

Função de ativação sigmóide:

$$f(x) = \frac{1}{1 + e^{-\beta x}}$$

Aprendizado supervisionado

Redes de perceptrons de múltiplas camadas

