Section V.0

Observation V.0.1 Several properites of the real numbers (the one-dimensional Euclidean vectors \mathbb{R}^1) also work for two-dimensional Euclidean vectors (\mathbb{R}^2) and three-dimensional Euclidean vectors (\mathbb{R}^3), such as $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ and $1\mathbf{v} = \mathbf{v}$:

$$x + y = y + x \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$1x = x \qquad 1\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad 1\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Activity V.0.2 ($\sim 20 \text{ min}$) Consider each of the following properties of vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^1 (real numbers). Label each property as "VALID" if it also holds for Euclidean vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^2 , and "INVALID" if it does not.

1. Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

2. Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Addition identity.

There exists some \mathbf{z} where $\mathbf{v} + \mathbf{z} = \mathbf{v}$.

4. Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$.

5. Addition midpoint uniqueness.

If $\mathbf{u} \neq \mathbf{v}$, then $\frac{1}{2}(\mathbf{u}+\mathbf{v})$ is the only vector equally distant from \mathbf{u} and \mathbf{v} .

6. Scalar multiplication associativity.

$$a(b\mathbf{v}) = (ab)\mathbf{v}.$$

7. Scalar multiplication identity.

$$1\mathbf{v} = \mathbf{v}$$
.

8. Scalar multiplication relativity.

If $\mathbf{u} \neq \mathbf{z}$, there exists a scalar c satisfying $c\mathbf{u} = \mathbf{v}$.

9. Scalar distribution.

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

10. Vector distribution.

$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$$

Definition V.0.3 A vector space V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

• Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

• Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

• Addition identity.

There exists some \mathbf{z} where $\mathbf{v} + \mathbf{z} = \mathbf{v}$.

• Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$.

• Scalar multiplication associativity.

$$a(b\mathbf{v}) = (ab)\mathbf{v}.$$

 \bullet Scalar multiplication identity.

$$1\mathbf{v} = \mathbf{v}$$
.

• Scalar distribution.

$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}.$$

• Vector distribution.

$$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}.$$

Any **Euclidean vector space** \mathbb{R}^n satisfies all eight requirements regardless of the value of n, but we will also study other types of vector spaces.