	Test n° 5	(durée : 30 mn)
NOM:	 	

Questions de cours

a) Soient (X, d_X) un espace métrique et $(x_n)_{n \in \mathbb{N}}$ une suite de points de XQuand dit-on que la suite $(x_n)_{n \in \mathbb{N}}$ est une suite de Cauchy?

b) Soit (X, d_X) un espace métrique. Quand dit-on que l'espace métrique (X, d_X) est séparable?

Exercices

1) Soit $f:[0,+\infty[\to\mathbb{R}$ l'application définie par

$$\forall x \in [0, +\infty[$$
 $f(x) = \frac{1}{3}(x + \ln(1+x)).$

 $\forall x \in [0,+\infty[\qquad f(x) = \frac{1}{3}(x+\ln(1+x)).$ Montrer que la suite $(x_n)_{n \in \mathbb{N}}$ définie par $x_0 = 1$ et pour tout n entier naturel $x_{n+1} = f(x_n)$ est convergente (on pourra penser au théorème du point fixe de Banach).

2)	Soient (X, d_X) et (Λ, d_{Λ}) deux espaces métriques. Soit $f: X \times \Lambda \to X$ une application of	continue
	On suppose que (X, d_X) est complet et qu'il existe $K \in [0, 1[$ tel que	

$$\forall x, y \in X \quad \forall \lambda \in \Lambda \quad d_X(f(x, \lambda), f(y, \lambda)) \le K d_X(x, y).$$

a) Montrer que pour tout $\lambda \in \Lambda$ l'application $x \mapsto f(x, \lambda)$ a un unique point fixe dans X, noté a_{λ} .

b) Question subsidiaire (hors barème).

Montrer que l'application de Λ dans X définie par $\lambda \mapsto a_\lambda$ est continue.

Indication : on pourra remarquer que

 $d_X(a_\lambda,a_\mu) \leq d_X(f(a_\lambda,\lambda),f(a_\mu,\lambda)) + d_X(f(a_\mu,\lambda),a_\mu) \leq K\,d_X(a_\lambda,a_\mu) + d_X(f(a_\mu,\lambda),a_\mu).$