

Winning Space Race with Data Science

Blackson 16.08.2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Introduction

Background & Context

SpaceX aims to reduce launch costs by reusing Falcon 9 first-stage boosters. Understanding the drivers of **landing success** is crucial for planning, reliability, and cost efficiency.

Objective

Analyze historical launch data to identify factors that influence landing outcomes and **build a classifier** that predicts success vs. failure.

Data Sources

SpaceX REST API (launches, cores) and curated web data (e.g., Wikipedia) combined into a clean analytics table.

Scope

Exploratory analysis, interactive visuals (maps & dashboard), and supervised learning with multiple baseline models.

Contributions

Clear feature insights (payload, orbit, site, booster version, flight number) and an evaluated model for success prediction.

Data Collection - SpaceX API

- Access: Query SpaceX REST endpoints for launches/cores; specify filters (date range, site, outcome).
- Pagination & Rate-limits: Loop through pages; respect retry/backoff.
- Normalization: Flatten nested JSON (launch, core, payload) into tabular fields: flight_number, date, site, payload_mass_kg, orbit, booster_version, landing_outcome.
- Join Keys: Merge multi-endpoint data on flight_id / core_serial / rocket.id.
- **Validation**: Check nulls/types, enforce units (kg), deduplicate by flight_number + date.
- Output: Save cleaned table (CSV/Parquet) for EDA/SQL/modeling.

Data Collection - Scraping

- **Targets**: Structured tables on reputable sources (e.g., mission pages/Wikipedia) to enrich *orbit*, *payload*, *outcomes*.
- **Fetching**: Request HTML with a standard user agent; follow robots.txt; add polite delays.
- **Parsing**: Use pandas.read_html / BeautifulSoup to extract tables; select/rename relevant columns.
- **Cleaning**: Normalize date formats/timezones; convert payload to numeric kg; standardize orbit labels.
- **Labeling**: Map textual landing outcomes to a binary/class label (e.g., Success (drone ship) → Success).
- Reconciliation: Left-join scraped tables to API data by flight_number 7
 + date (+ site); resolve conflicts with simple rules (API preferred).

Data Wrangling

Standardize & Normalize

- Convert column names to snake_case; enforce types (dates → datetime, payload → kg).
- Unify categorical labels (orbit names, booster versions, launch sites).

Clean Missing & Duplicates

- Handle null payloads via rule-based fills (e.g., by orbit median) or drop if unresolvable.
- Deduplicate by (flight_number, date, site); keep the most complete record.

Outliers & Validations

- Flag/remove impossible payload values; validate date/timezones and unit consistency.
- Assert referential integrity across API vs. scraped tables.

Data Wrangling

Merging Sources

 Flatten nested JSON (launch/cores/payloads) and left-join with scraped tables on (flight_number + date [+ site]).

Feature Engineering

- Create landing_success (binary) from textual outcomes.
- Derive year, month, and orbit_group (e.g., LEO/GTO/Polar).
- Encode categories (site, orbit, booster_version) for modeling; add is_heavy_payload (≥4,000 kg).

Data Wrangling

Train/Test Readiness

 Split after all cleaning to avoid leakage; scale/encode only on train (fit→transform).

Export Artifacts

 Write final analytics table to CSV/Parquet for EDA, SQL, Folium/Dash, and modeling.

Flowchart Cue

Ingest → Normalize → Merge → Clean → Engineer Features →
 Validate →

Which plots and charts have been visualized?

- Scatter: Flight Number vs. Launch Site Why: reveal "learning-by-doing" effects at each site (later flights vs. early flights), spot site-specific clusters and outliers.
- Scatter: Payload Mass vs. Launch Site Why: compare payload distributions across sites; detect site specialization and payload-driven outcome patterns.
- Bar Chart: Success Rate by Orbit Type Why: assess how mission profile/energy (LEO, GTO, Polar, etc.) correlates with landing success.

Which plots and charts have been visualized?

- Scatter: Flight Number vs. Orbit Type Why: check improvement trends within each orbit family; identify experience effects by mission class.
- Scatter: Payload Mass vs. Orbit Type Why: examine interaction between payload and orbital energy; find "sweet-spot" payload ranges with higher success.
- Line Chart: Yearly Average Success Rate Why: visualize temporal trends and program improvements over time.

- Visual design choices (concise)
- Color-code points by landing outcome (success/failure); use shapes for site/orbit.
- Add light jitter/opacity to reduce overplotting; optional moving average line for trends.
- Include **error bars / CIs** on bars/lines where relevant to communicate uncertainty.

- What we looked for
- Non-linear patterns, clusters, and outliers tied to site, orbit, payload.
- Evidence of experience curves (higher success on later flights).
- Payload-orbit interaction effects that inform model features.

- What we queried & why
- Launch site inventory Identify unique launch sites for downstream grouping.
 - SELECT DISTINCT launch_site FROM launches;
- Prefix filter (CCA%) Quick sanity-check of site naming & sample listing.
 SELECT * FROM launches WHERE launch_site LIKE 'CCA%' LIMIT 5;
- Total payload for NASA Quantify customer-specific lift capacity.
 SELECT SUM(payload_mass_kg) FROM launches WHERE customer LIKE '%NASA%';

- What we queried & why
- Avg payload of F9 v1.1 Compare payload capability across booster versions.
 - SELECT AVG(payload_mass_kg) FROM launches WHERE booster_version='F9 v1.1';
- First successful ground landing Establish program milestone and timeline anchor.
 - SELECT MIN(date) FROM launches WHERE landing_outcome='Success (ground pad)';

- Successful drone-ship landings (4,000–6,000 kg) Examine success under medium/heavy loads.
 SELECT booster, payload_mass_kg FROM launches WHERE landing_outcome='Success (drone ship)' AND payload_mass_kg BETWEEN 4000 AND 6000;
- Success vs. failure counts Baseline class balance for modeling.
 SELECT mission_outcome, COUNT(*) FROM launches GROUP BY mission_outcome;
- **Boosters with max payload** Spot hardware outliers and best performers.
 - SELECT booster, MAX(payload_mass_kg) AS max_payload FROM launches GROUP BY booster ORDER BY max_payload DESC LIMIT 1;

- 2015 drone-ship failures (with versions & sites) Year-specific failure context.
 - SELECT date, booster_version, launch_site FROM launches WHERE landing_outcome='Failure (drone ship)' AND strftime('%Y', date)='2015';
- Rank landing outcomes (2010-06-04 → 2017-03-20) Outcome frequencies over a fixed window.
 - SELECT landing_outcome, COUNT(*) AS cnt FROM launches WHERE date BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY landing_outcome ORDER BY cnt DESC;

- SQL let us **slice by site/orbit/version**, **aggregate payloads**, and **time-box** trends rapidly.
- Results guided which **features** mattered most (payload, orbit, site, booster version) and informed **class imbalance** handling for modeling.

- Base Map & Tiles (folium.Map, e.g., "CartoDB positron", "Stamen Terrain") Why: Neutral basemap for clear overlays; terrain helps interpret coastal/road proximities.
- Launch Site Markers (folium.Marker / folium.Icon(color=...)) Why: Pin each site's exact location; color-coded icons make sites scannable at a glance.

Why: Encode two variables on one object (payload size + outcome) to reveal patterns near sites.

Marker Clustering (folium.plugins.MarkerCluster)

Why: De-clutter dense areas and keep the map responsive; expand clusters to inspect individual launches.

Outcome Layers / Feature Groups
 (folium.FeatureGroup(name="Success"), etc.) + LayerControl

Why: Toggle subsets (success/failure/by site or orbit) to compare spatial distributions interactively.

• Proximity Rings (folium.Circle) at fixed radii (e.g., 5/10/20 km) around a chosen site

Why: Visualize neighborhood scale when discussing recovery logistics or safety envelopes.

- Distance Lines (folium.PolyLine) from site → nearest coastline/highway/rail + labeled distance
- Why: Make "proximity" quantitative; reinforces accessibility and recovery constraints.
- Heatmap (optional) (folium.plugins.HeatMap on successful landings)
- Why: Show density hotspots of successes; complements discrete markers.
- • GeoJSON/Choropleth (optional) (folium.GeoJson, folium.Choropleth)
- Why: Add contextual boundaries (e.g., countries/regions) or aggregate counts by region.

- Interactive Aids: MousePosition, MeasureControl, MiniMap, FullScreen
- Why: Easier exploration, quick measuring, and orientation during live demo.
- Popups & Tooltips (folium.Popup, folium.Tooltip) with key fields
- (flight_number, date, payload, orbit, booster_version, landing_outcome)
- Why: Immediate details without leaving the map; supports Q&A during the presentation.
- Custom Legend (HTML overlay)
- Why: Decodes color mapping (outcome) and circle radius (payload) for the audience.

Build a Dashboard with Plotly Dash - 1

- Pie Launch Success Count (All Sites)
 Why: Gives a quick, high-level view of which sites contribute the most successful landings.
- Pie Site with Highest Success Ratio Why: Focuses attention on the best-performing site (by % success), controlling for different launch volumes.
- Scatter Payload vs. Launch Outcome (with Range Slider) Why: Explores how payload mass relates to binary landing outcome; slider reveals ranges where success is more/less likely across sites/boosters.

Build a Dashboard with Plotly Dash - 2

Interactions

- Site selector to filter pies and scatter.
- Payload Range Slider to isolate payload bands and see how success patterns change.
- **Hover tooltips** (orbit, booster version, flight number) for fast context during Q&A.

Design choices

- Consistent color map per site across figures.
- Percent labels on the ratio pie for comparability.
- Slight layout padding and clear titles for screenshot readability.

Build — Data & Baselines

- Target: landing_success (0/1).
- Features: payload_kg, orbit, launch_site, booster_version, flight_number, year (and derived groupings).
- Split: stratified train/test to preserve class balance; random seed fixed for reproducibility.
- Pipeline: preprocessing inside sklearn pipeline (scaler for numeric, one-hot for categoricals) to avoid leakage.
- Models tried: Logistic Regression, SVM, KNN, Decision Tree (baseline settings).

Evaluation

- Cross-validation: Stratified k-fold; compare mean CV accuracy (primary) and F1/ROC-AUC (secondary) across models.
- Diagnostics: confusion matrix to see error types; learning/validation curves to check variance/bias.
- Hold-out test: final check on unseen data after model selection.

Improve — How we got better

- Hyperparameter tuning: Grid/Random search per model
- o LR: C, penalty
- o SVM: kernel, C, gamma
- o KNN: n_neighbors, distance metric
- o Tree: max_depth, min_samples_split, min_samples_leaf
- Class handling: stratification; consider class weights or sampling if imbalance.
- Features: simplify/cluster orbit labels, drop leaky/collinear fields, add interaction terms if justified.
- Calibration: Platt or isotonic if probability quality matters.
- Thresholding: choose decision threshold by F1 or PR trade-off (if costs are asymmetric).

- Select Best-performing model
- Ranking: choose model with highest mean CV accuracy; use F1/ROC-AUC as tie-breakers.
- Lock-in: retrain best model on full training data with tuned params; report test metrics.
- **Artifacts:** save pipeline + params; record seeds, versions, and data hash for reproducibility.
- (Fill-in on slide): Best model: with % (F1=<...>, ROC-AUC=<...>).

- Visuals to include
- Classification Accuracy (bar chart) side-by-side accuracies for LR/SVM/KNN/Tree; highlight the top model.
- Confusion Matrix (best model) annotate major error types and their implications.
- Flowchart cue (one line)
- Data → Split (Stratified) → Pipeline (Encode/Scale) → CV
 Compare → Tune → Select Best → Test Eval → Save & Calibrate

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

- CCAFS LC-40
- VAFB SLC-4E
- KSC LC-39A
- CCAFS SLC-40

Launch Site Names Begin with 'CCA'

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG	_ Orbit	Customer	Mission_Outcome	e Landing_Outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Average Payload Mass by F9 v1.1

• 2534.666666666665

First Successful Ground Landing Date

• 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

• Failure (in flight): 1

• Success: 98

• Success: 1

Success (payload status unclear): 1

Boosters Carried Maximum Payload

C	id	name	type	notnull	dflt_value	pk
0		Date	TEXT	0	None	0
1		Time (UTC)	TEXT	0	None	0
2		Booster_Version	TEXT	0	None	0
3		Launch_Site	TEXT	0	None	0
4		Payload	TEXT	0	None	0
5		PAYLOAD_MASSKG_	INT	0	None	0
6		Orbit	TEXT	0	None	0
7		Customer	TEXT	0	None	0
8		Mission_Outcome	TEXT	0	None	0
9)	Landing_Outcome	TEXT	0	None	0

2015 Launch Records

```
SUBSTR(Date,6,2) Landing_Outcome Booster_Version Launch_Site

01 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
Landing_Outcome COUNT(*)

Controlled (ocean) 5

Failure (drone ship) 5

Failure (parachute) 2

No attempt 21

Precluded (drone ship) 1

Success (drone ship) 14

Success (ground pad) 9

Uncontrolled (ocean) 2
```


Classification Accuracy

• Logistic Regression: 0.83

• SVM: 0.83

• Decision Tree: 0.83

• kNN: 0.83

Confusion Matrix

Confusion Matrix

Conclusions

Key Drivers Identified: Landing success is most influenced by payload mass, orbit type, launch site, and booster version; later flights show experience effects.

Operational Trend: Year-over-year success rates improved steadily, reflecting process and hardware maturation.

Predictive Capability: The best-performing classification model (after tuning) achieves strong accuracy with balanced errors, enabling pre-launch risk estimation.

Actionable Insight: Operating within specific payload bands and orbit profiles can increase success likelihood; site-level practices can be benchmarked from the top-performing site(s).

Data Quality & Reproducibility: Combining API and curated web tables, with rigorous wrangling, produced a clean, auditable analytics dataset.

Limitations & Next Steps: Address residual class imbalance, enrich with weather/trajectory features, and deploy a calibrated probability model for decision thresholds.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

