Chapitre 2

Second degré

1 Plusieurs formes pour un même polynôme

1.1 Fonction polynôme, forme développée

Définition

On appelle **fonction polynôme du second degré** toute fonction f définie sur **R** telle qu'on puisse écrire pour tout $x \in \mathbf{R}$:

$$f(x) = ax^2 + bx + c$$

où a, b, et c sont trois réels et $a \neq 0$. Cette écriture s'appelle la **forme développée** de f.

- $a \neq 0$, sinon f serait une fonction affine.
- On dit aussi que f est un **trinôme** du second degré.

Exemples

- f définie sur R par $f(x)=3x^2-7x+2$ est une fonction polynôme du second degré : $\mathcal{D}_f=$ R, $a=3, \quad b=-7$ et c=2.
- g définie sur **R** par $x\mapsto -7x^2+11x-5$ aussi : $\mathcal{D}_g=\mathbf{R}, \quad a=-7, \quad b=11$ et c=-5.
- h définie sur **R** par $h(x)=x^2+1$ également : $\mathcal{D}_h=\mathbf{R}$, a=1, b=0 et c=1.
- k définie sur **R** par $k(x) = x^3 (x+1)(x+2)(x+3)$ est une fonction polynôme du second degré. En effet, pour tout $x \in \mathbf{R}$,

$$k(x) = x^3 - (x+1)(x+2)(x+3)$$

$$= x^3 - (x^2 + 2x + x + 2)(x+3)$$

$$= x^3 - (x^2 + 3x + 2)(x+3)$$

$$= x^3 - [x^3 + 3x^2 + 2x + 3x^2 + 9x + 6]$$

$$= x^3 - [x^3 + 6x^2 + 11x + 6]$$

$$= x^3 - x^3 - 6x^2 - 11x - 6$$

$$= -6x^2 - 11x - 6$$

1.2 Forme factorisée

Définition

Soit f une fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

On dit que f peut s'écrire sous **forme factorisée** s'il est possible d'écrire, pour tout $x \in \mathbf{R}$:

$$f(x) = a(x - x_0)(x - x_1)$$

où x_0 et x_1 sont deux réels, éventuellement égaux.

Propriété

Cette forme n'existe pas toujours : il existe des fonctions polynôme de degré 2 qui n'admettent pas de forme factorisée.

Preuve

Exemples

- u définie sur **R** par $u(x)=3x^2-9x+6$ a pour forme factorisée : u(x)=3(x-1)(x-2). En effet, pour tout $x\in \mathbf{R}$,

$$3(x-1)(x-2) = 3(x^2 - 2x - x + 2)$$
$$= 3(x^2 - 3x + 2)$$
$$= 3x^2 - 9x + 6$$

- f définie sur **R** par $f(x)=x^2$ est écrite sous forme factorisée : pour tout $x \in \mathbf{R}$, f(x)=(x-0)(x-0).
- g définie sur R par $g(x)=x^2+1$ n'admet pas de forme factorisée : en effet pour tout $x\in \mathbf{R}, \quad g(x)\geqslant 1$ donc g ne s'annule pas sur \mathbf{R} .

1.3 Forme canonique

Définition

Soit f une fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

La forme canonique de f est l'écriture suivante pour tout $x \in \mathbf{R}$:

$$f(x) = a(x - \alpha)^2 + \beta$$

où α et β sont deux réels.

Exemples

• u définie sur **R** par $u(x) = x^2 + 1$ est écrite sous forme canonique. En effet, pour tout $x \in \mathbf{R}$,

$$u(x) = 1 \times (x - 0)^2 + 1$$

· v définie sur **R** par $v(x)=2x^2+4x-7$ a pour forme canonique $v(x)=2(x+1)^2-9$. En effet, pour tout $x\in \mathbf{R}$,

$$2(x+1)^{2} - 9 = 2(x^{2} + 2x + 1^{2}) - 9$$

$$= 2x^{2} + 4x + 2 - 9$$

$$= 2x^{2} + 4x - 7$$

$$= v(x)$$

Propriété

Tout polynôme de degré 2 s'écrit de manière unique sous forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$

Preuve

consequence

Soit f une fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

En écrivant la forme canonique de f : pour tout $x \in \mathbf{R}$,

$$f(x) = a(x - \alpha)^2 + \beta$$

On a

$$\alpha = -\frac{b}{2a}$$

et en posant $\Delta = b^2 - 4ac$ on a

$$\beta = -rac{\Delta}{4a}$$

et par ailleurs

$$\beta = f(\alpha)$$

Preuve

Définition

Le réel $\Delta=b^2-4ac$ est appelé le **discriminant** de la fonction f. Nous verrons plus tard que **le signe de** Δ est d'une grande importance pour résoudre des équations du second degré.

1.4 Bilan

Nom	Expression	Commentaires		
forme développée	$f(x) = ax^2 + bx + c$	Existe toujours. On aboutit à cette forme en développant les deux autres.		
forme factorisée	$f(x) = a(x - x_0)(x - x_1)$	N'existe pas si f ne s'annule pas dans R .		
forme canonique	$f(x) = a(x - \alpha)^2 + \beta$	Existe toujours.		

2 Intérêts des deux premières formes

2.1 Intérêt de la forme développée

On peut l'utiliser pour vérifier que deux fonctions sont égales, en développant une des deux (ou les deux) et en comparant les formes développées.

Exemple

Montrer que k et l définies sur **R** par k(x) = 5(x+2)(x-4) et $l(x) = 5(x-1)^2 - 45$ sont la même fonction.

Méthode:

Pour tout $x \in \mathbf{R}$:

d'une part,

d'autre part,

$$k(x) = 5(x+2)(x-4)$$

$$= 5[x^2 - 4x + 2x - 8]$$

$$= 5[x^2 - 2x - 8]$$

$$= 5x^2 - 10x - 40$$

$$l(x) = 5(x-1)^2 - 45$$

$$= 5(x^2 - 2x + 1) - 45$$

$$= 5x^2 - 10x + 5 - 45$$

$$= 5x^2 - 10x - 40$$

Donc pour tout $x \in \mathbb{R}$, k(x) = l(x), les deux fonctions sont donc égales.

2.2 Intérêt de la forme factorisée

La forme factorisée est très utile pour résoudre l'équation f(x) = 0, ou une inéquation du type f(x) > 0.

Exemple 1

f est définie sur R par f(x) = -7(x-2)(x+4). Résoudre f(x) = 0

$$\begin{split} f(x) &= 0 & \Leftrightarrow & -7(x-2)(x+4) = 0 \\ & \Leftrightarrow & (x-2)(x+4) = 0 \qquad \text{c'est une \'equation produit nul.} \\ & \Leftrightarrow & x-2 = 0 \qquad \text{ou} \qquad x+4 = 0 \\ & \Leftrightarrow & x = 2 \qquad \text{ou} \qquad x = -4 \end{split}$$

0 admet 2 et -4 pour antécédents par f.

Exemple 2

Résoudre f(x) > 0

Avec un tableau de signes :

x	$-\infty$		-4		2		$+\infty$
x-2		_		_	0	+	
x+4		_	0	+		+	
(x-2)(x+4)		+	0	_	0	+	
-7(x-2)(x+4)		_	0	+	0	_	

$$S =]-4$$
; 2[

3 Intérêts de la forme canonique

C'est la forme la plus intéressante. Elle permet de :

- Donner le tableau de variation de la fonction.
- Tracer la courbe représentative de la fonction rapidement.
- Résoudre les équations du type f(x) = k ou les inéquations du type f(x) > k.

3.1 Deux propriétés

Propriété 1

Soit f une fonction polynôme de degré 2 sous forme canonique : pour tout $x \in \mathbf{R}$, $f(x) = a(x - \alpha)^2 + \beta$.

- $\operatorname{Si} a > 0$ alors on a :

x	$-\infty$	α	$+\infty$
f		\searrow_{β}	

- $\operatorname{Si} a < 0$ alors on a :

x	$-\infty$	$\alpha + \infty$
f		β

Preuve

Si a > 0:

On décompose la fonction :

x	$-\infty$	α	$+\infty$
Variations de $x\mapsto x-\alpha$		0	
Variations de $x \mapsto (x - \alpha)^2$		0	
Variations de $x \mapsto a(x-\alpha)^2$		0	,
Variations de $x \mapsto a(x-\alpha)^2 + \beta$		<u>β</u>	

Si a < 0: On procède de la même manière.

Propriété 2

Avec les notations précédentes,

- C_f , la courbe représentative de f dans un repère orthogonal, est une parabole de sommet $S(\alpha; \beta)$.

Elle admet pour **axe de symétrie** la droite d'équation $x = \alpha$.

- Si a>0 alors
 - f admet un **minimum** pour $x = \alpha$, celui-ci vaut $f(\alpha)$, c'est-à-dire β .
 - On dit que \mathcal{C}_f est «tournée vers le haut ».
- Si a < 0 alors
 - f admet un **maximum** pour $x = \alpha$, celui-ci vaut $f(\alpha)$, c'est-à-dire β .
 - On dit que \mathcal{C}_f est «tournée vers le bas» .

9

3.2 Tracer la courbe représentative d'une fonction polynôme du second degré

Exemple 1

Soit h la fonction définie sur R par $h(x)=\frac{1}{2}(x-3)^2-2$. Soit (O ; I ; J) un repère orthonormé du plan.

$$-a = \frac{1}{2}, \quad \alpha = 3, \quad \beta = -2.$$

- h est strictement décroissante sur $]-\infty$; 3] et strictement croissante sur $[3; +\infty[$.
- h présente un minimum pour x=3, il vaut -2.
- \mathcal{C}_h est une parabole «tournée vers le haut », de sommet $S\left(3\;;\;-2\right)$ et d'axe de symétrie x=3.
- Pour compléter le tracé de la courbe, on calcule par exemple h(5)=0 et h(6)=2,5 et on complète par symétrie.

Exemple 2

Soit p la fonction définie sur **R** par $p(x) = -(x+2)^2 + 5$. Soit (O; I; J) un repère **orthogonal** du plan.

$$\text{- }a=-1\text{, }\quad \alpha=-2\text{, }\quad \beta=5.$$

- p est strictement croissante sur $]-\infty$; -2] et strictement décroissante sur [-2; $+\infty$ [.
- p présente un maximum pour x=-2, il vaut 5.
- \mathcal{C}_p est une parabole «tournée vers le bas », de sommet $S\left(-2\;;\;5\right)$ et d'axe de symétrie x=-2.
- Pour compléter le tracé de la courbe, on calcule par exemple p(-3)=4 et p(-4)=1 et on complète par symétrie.

3.3 Résolutions d'équations et d'inéquations avec la forme canonique

Il est bon de savoir appliquer les méthodes des exemples suivants mais nous allons voir une méthode plus pratique au IV.

Exemple 1

Reprenons la fonction du deuxième exemple et résolvons p(x) = 1:

$$p(x) = 1 \quad \Leftrightarrow \quad -(x+2)^2 + 5 = 4$$

$$\Leftrightarrow \quad -(x+2)^2 = -1$$

$$\Leftrightarrow \quad (x+2)^2 = 1$$

$$\Leftrightarrow \quad x+2 = 1 \quad \text{ou} \quad x+2 = -1$$

$$\Leftrightarrow \quad x = -1 \quad \text{ou} \quad x = -3$$

$$S = \{ -1; -3 \}.$$

Exemple 2

Reprenons la fonction du premier exemple et résolvons h(x) > 3:

$$h(x) > 3 \quad \Leftrightarrow \quad \frac{1}{2}(x-3)^2 - 2 > 3$$

$$\Leftrightarrow \quad \frac{1}{2}(x-3)^2 > 5$$

$$\Leftrightarrow \quad (x-3)^2 > 10$$

$$\Leftrightarrow \quad x - 3 < -\sqrt{10} \quad \text{ou} \quad x - 3 > \sqrt{10}$$

$$\Leftrightarrow \quad x < 3 - \sqrt{10} \quad \text{ou} \quad x > 3 + \sqrt{10}$$

$$S =]-\infty ; 3 - \sqrt{10}[\cup]3 + \sqrt{10}; +\infty[.$$

4 Utilisation du discriminant

4.1 Pour déterminer la forme factorisée si elle existe

Propriété

Soit f une fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

En écrivant la forme canonique de f, pour tout $x \in \mathbf{R}$ on a

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$

avec, rappelons-le, $\Delta = b^2 - 4ac$.

- Si $\Delta < 0$ alors f ne peut s'écrire sous forme factorisée.
- Si $\Delta=0$ alors on pose $m{x_0}=-rac{m{b}}{2m{a}}$, la forme factorisée de f est alors : pour tout $x\in {\sf R}$,

$$f(x) = a(x - x_0)^2$$

– Si $\Delta>0$ alors on pose $x_1=\dfrac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\dfrac{-b+\sqrt{\Delta}}{2a}$, la forme factorisée de f est alors : pour tout $x\in \mathsf{R}$,

$$f(x) = a(x - x_1)(x - x_2)$$

Preuve

Exemples

- Soit f définie sur **R** par $f(x) = 3x^2 - 9x + 6$. On calcule le discriminant de f:

$$\Delta = (-9)^2 - 4 \times 3 \times 6$$

= 81 - 72
= 9

Ce discriminant est positif et $\sqrt{\Delta}=3$. Calculons x_1 et x_2 :

$$x_1=rac{9-3}{2 imes 3}$$
 donc $x_1=1$ et $x_2=rac{9+3}{2 imes 3}$ donc $x_1=2.$

Par suite, la forme factorisée de f est alors : pour tout $x \in \mathbf{R}$,

$$f(x) = 3(x-1)(x-2)$$

Ce qu'on peut vérifier en développant.

- Soit f définie sur **R** par $f(x) = -4x^2 + x - 3$

$$\Delta = 1^{2} - 4 \times (-4) \times (-3)$$

$$= 1 - 48$$

$$= -47$$

Ce discriminant étant négatif, f n'admet pas de forme factorisée dans R.

- Soit f définie sur **R** par $f(x) = 4x^2 + 4x + 1$.

$$\Delta = 4^2 - 4 \times 4 \times 1 = 16 - 16 = 0.$$

Ce discriminant est nul, on calcule $x_0=\frac{-4}{2\times 4}$, c'est-à-dire $x_0=-\frac{1}{2}$ et la forme factorisée de

f est alors : pour tout $x \in \mathsf{R}$, $f(x) = 4\left(x + rac{1}{2}
ight)^2$

4.2 Pour déterminer les solutions de $ax^2 + bx + c = 0$

Propriété

On considère l'équation

$$ax^2 + bx + c = 0 \qquad (a \neq 0)$$

On appelle discriminant de l'équation le réel $\Delta=b^2-4ac$.

- Si $\Delta < 0$ alors l'équation n'admet pas de solutions réelles.
- Si $\Delta=0$ alors l'équation admet pour unique solution $m{x_0}=-rac{m{b}}{2m{a}}.$

– Si $\Delta>0$ alors l'équation admet 2 solutions réelles :

$$x_1 = rac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = rac{-b + \sqrt{\Delta}}{2a}$

Preuve

Remarque

L'équation précédente s'écrit

$$f(x) = 0$$

où f est la fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

Une solution éventuelle de l'équation f(x) = 0 s'appelle une racine de f.

Exemple 1

On considère l'équation $5x^2-2x+1=0$. Son discriminant est $\Delta=(-2)^2-4\times 5\times 1$, c'est à dire -16. Il est négatif, cette équation n'admet pas de solution réelle.

Exemple 2

On considère l'équation $-9x^2+6x-1=0$. Son discriminant est $\Delta=6^2-4\times(-9)\times(-1)$, c'est à dire 0. Cette équation a donc pour solution $\frac{-6}{2\times9}$, c'est à dire $-\frac{1}{3}$.

Exemple 3

On considère l'équation $2x^2 - 6x + 4 = 0$.

Son discriminant est $\Delta = (-6)^2 - 4 \times 2 \times 4$, c'est à dire 4.

Cette équation admet donc deux solutions :

$$x_1=rac{6-\sqrt{4}}{2 imes 2}$$
, c'est à dire $x_1=1$, et $x_2=rac{6+\sqrt{4}}{2 imes 2}$, c'est à dire $x_2=2$.

4.3 Pour déterminer le signe d'une expression du second degré

Propriété

Soit f une fonction polynôme de degré 2, définie pour tout $x \in \mathbf{R}$ par

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

- Si $\Delta < 0$ alors pour tout $x \in \mathbf{R}$, f(x) est du signe de a.
- Si $\Delta=0$ alors en appelant x_0 l'unique racine de f, $f(x_0)=0$ et pour tout $x\neq x_0$, f(x) est du signe de a
- Si $\Delta>0$ alors en appelant x_1 la plus petite racine de f et x_2 l'autre :
 - pour tout $x\in]-\infty\ ;\ x_1[\ \cup\]x_2\ ;\ +\infty[$, f(x) est du signe de a.
 - $-f(x_1) = f(x_2) = 0$
 - pour tout $x \in \]x_1\ ;\ x_2[$, f(x) est du signe opposé à celui de a.

Preuve

Exemple

Résoudre dans **R** l'inéquation $3x^2 + x - 14 \leqslant 0$.

Sans être explicite, on étudie le signe de la fonction f définie sur R par $f(x)=3x^2+x-14$. Le discriminant du trinôme est $1^2+4\times 3\times 14=169=13^2$, donc ce trinôme s'annule pour

$$x_1 = \frac{-1-13}{2\times 3} = -\frac{7}{3}$$
 et pour $x_2 = \frac{-1+13}{2\times 3} = 2$.

a est strictement positif car vaut 3. On en conclut que

– pour tout
$$x\in]-\infty\ ;\ x_1[\ \cup\]x_2\ ;\ +\infty[$$
, $3x^2+x-14>0.$

– pour tout
$$x\in\left[-rac{7}{3}\,;\,2
ight]$$
 , $3x^2+x-14\leqslant 0.$