## ПРАКТИЧЕСКОЕ ЗАНЯТИЕ. Разбор решения типового варианта задачи №7 Курсовой работы

Под транспортной сетью будем понимать орграф D = (V, X), где  $V = \{v_1, ..., v_n\}$ , с выделенными вершинами  $v_1, v_n$ , для которого выполняются условия:

- (T1) существует одна и только одна вершина  $v_1$ , называемая *источником*, такая, что  $D^{-1}(v_1) = \emptyset$  (т.е. ни одна дуга не заходит в вершину  $v_1$ );
- (T2) существует одна и только одна вершина  $v_n$ , называемая *стоком*, такая, что  $D(v_n) = \emptyset$  (т.е. ни одна дуга не исходит из вершины  $v_n$ );
- (Т3) каждой дуге  $x \in X$  поставлено в соответствие целое число  $c(x) \ge 0$ , называемое пропускной способностью этой дуги.

Вершины в транспортной сети, отличные от источника и стока, называются промежуточными.

Функция  $\varphi(x)$ , определенная на множестве X дуг транспортной сети D и принимающая неотрицательные целочисленные значения называется потоком в транспортной сети D, если:

- (П1) для любой дуги  $x \in X$  величина  $\varphi(x)$ , называемая потоком по дуге x, удовлетворяет условию  $0 \le \varphi(x) \le c(x)$ ;
- $(\Pi 2)$  для любой промежуточной вершины v сумма потоков по дугам, заходящим в v, равна сумме потоков по дугам, исходящим из v.

Bеличиной nотока  $\phi$  в транспортной сети D будем называть число  $\overline{\phi}$ , равное сумме потоков по дугам, исходящим из источника  $v_1$  (или, что то же самое, равное сумме потоков по дугам, заходящим в сток  $v_n$ ).

**Пример 9.1**. На рис. 9.1 приведен пример транспортной сети D = (V, X) (см. (a)), а также пример потока  $\varphi$  в этой сети (см. (б)); в этом примере  $\overline{\varphi} = 8 + 10 = 10 + 3 + 5 = 18$ . На рис. 9.1(а) пропускные способности дуг взяты в скобки. На рис. 9.1(б) около каждой дуги  $x \in X$  указан поток по этой дуге  $\varphi(x)$ . Проверьте выполнение условия (П2) для потока  $\varphi$ в транспортной сети D.



Рис. 9.1

Пусть  $\varphi$  – поток в транспортной сети D = (V, X). Дуга  $x \in X$  называется *насыщенной*, если поток по ней равен её пропускной способности, т.е., если  $\varphi(x) = c(x)$ . Поток  $\phi$  называется *полным*, если любой путь из источника в сток содержит по крайней мере одну насыщенную дугу. Поток  $\varphi$  с максимально допустимой величиной  $\overline{\varphi}$  называется максимальным.

Очевидно, что максимальный поток обязательно является полным. Обратное, вообще говоря, не верно (не всякий полный поток является максимальным). Тем не менее, полный поток можно рассматривать как некоторое приближение к максимальному. В связи с этим опишем алгоритм построения полного потока в транспортной сети D.

Алгоритм 9.1 (построения полного потока в транспортной сети D ) Шаг 1. Полагаем  $\forall x \in X \quad \varphi(x) = 0$  (т.е. начинаем с нулевого потока). Полагаем D' = D ( D' — вспомогательный орграф).

*Шаг 2.* Удаляем из D' дуги, являющиеся насыщенными при потоке  $\varphi$  в транспортной сети D.

*Шаг3*. Ищем в D' простую цепь  $\eta$  из  $v_1$  в  $v_n$ . Если такой цепи нет, то  $\varphi$  – искомый полный поток. В противном случае переходим к шагу 4.

*Шаг 4.* Увеличиваем поток  $\varphi(x)$  по каждой дуге x из  $\eta$  на одинаковую величину a>0 такую, что по крайней мере одна дуга из  $\eta$  оказывается насыщенной, а потоки по остальным дугам из  $\eta$  не превосходят их пропускных способностей. Переходим к шагу 2.

**Разбор типового варианта.** (а) Используя алгоритм 9.1, построить полный поток в транспортной сети из примера 9.1.

**Решение.** Начинаем с нулевого потока  $\varphi_0$ . Каждой новой цепи из  $v_1$  в  $v_n = v_5$  будем ставить в соответствие ее очередной номер, т.е. будем обозначать эти цепи через  $\eta_1$ ,  $\eta_2$  и т.д. Соответственно, после нахождения цепи  $\eta_1$  поток  $\varphi_0$  изменится на поток  $\varphi_1$  (см. шаг 4 алгоритма 9.1). После нахождения цепи  $\eta_2$  поток  $\varphi_1$  изменится на  $\varphi_2$  и т.д. Числа, на которые увеличиваем потоки по дугам из  $\eta_i$  обозначаем через  $a_i$ . Насыщенные дуги при изображении транспортной сети D с очередным потоком  $\varphi_i$  помечаем символом  $\times$ . На рис. 9.2 приведены изображения орграфа D с потоком  $\varphi_0$ , а также вспомогательного орграфа D', который на этом этапе совпадает с D.



Рис. 9.2

Выделяем в D' простую цепь  $\eta_1 = v_1 v_2 v_4 v_5$  из  $v_1$  в  $v_5$ . Увеличиваем поток  $\varphi(x)$  по каждой дуге x из  $\eta_1$  на одинаковую величину  $a_1 = 9$  до насыщения дуг  $(v_1, v_2)$ ,  $(v_2, v_4)$ , при этом поток по дуге  $(v_4, v_5)$  не превышает ее пропускной способности. В результате поток  $\varphi_0$  меняется на поток  $\varphi_1$ , а из орграфа D' удаляются дуги  $(v_1, v_2)$ ,  $(v_2, v_4)$ . На рис. 9.3 приведены изображения орграфа D с потоком  $\varphi_1$ , а также соответствующего этому потоку вспомогательного орграфа D'.



Рис. 9.3

Выделяем в D' простую цепь  $\eta_2 = v_1 v_3 v_5$  из  $v_1$  в  $v_5$ . Увеличиваем поток  $\varphi(x)$  по каждой дуге x из  $\eta_2$  на одинаковую величину  $a_2 = 7$  до насыщения дуги  $(v_3, v_5)$ , при этом поток по дуге  $(v_1, v_3)$  не превышает ее пропускной способности. В результате поток  $\varphi_1$  меняется на поток  $\varphi_2$ , а из орграфа D' удаляется дуга  $(v_3, v_5)$ . На рис. 9.4 приведены изображения орграфа D с потоком  $\varphi_2$ , а также соответствующего этому потоку вспомогательного орграфа D'.



Рис. 9.4

Выделяем в D' простую цепь  $\eta_3 = v_1 v_3 v_4 v_5$  из  $v_1$  в  $v_5$ . Увеличиваем поток  $\varphi(x)$  по каждой дуге x из  $\eta_3$  на одинаковую величину  $a_3 = 3$  до насыщения дуги  $(v_4, v_5)$ , при этом потоки по дугам  $(v_1, v_3)$ ,  $(v_3, v_4)$  не превышают их пропускных способностей. В результате поток  $\varphi_2$  меняется на поток  $\varphi_3$ , а из орграфа D' удаляется дуга  $(v_4, v_5)$ . На рис. 9.5 приведены изображения орграфа D с потоком  $\varphi_3$ , а также соответствующего этому потоку вспомогательного орграфа D'.



Рис. 9.5

Мы видим, что для орграфа D', соответствующего потоку  $\varphi_3$ , не существует пути из источника в сток, а следовательно,  $\varphi_3$  – полный поток.

Как мы увидим далее, полученный полный поток  $\varphi_3$  не является максимальным. Для того, чтобы иметь возможность увеличивать полный поток до максимального нам понадобится новое понятие.

**Орграф приращений.** Введем для транспортной сети D = (V, X) и потока  $\varphi$  в этой сети *орграф приращений*  $I(D, \varphi) = (V, \widetilde{X})$ . Для любой дуги  $x = (v, w) \in X$  обозначим x' = (w, v). Для каждой дуги  $x \in X$  выполняется: (a)  $x \in \widetilde{X} \Leftrightarrow \varphi(x) < c(x)$ ; (б)  $x' \in \widetilde{X} \Leftrightarrow \varphi(x) > 0$ .

**Замечание 9.2.** В дальнейшем мы будем искать в орграфе приращений простые цепи из  $v_1$  в  $v_n$ . Поэтому в нем можно не учитывать дуги, заходящие в  $v_1$ , а также исходящие из  $v_n$ . Будем орграф приращений без указанных дуг называть модифицированным.

**Разбор типового варианта** (продолжение). (б) Построить орграф приращений  $I(D, \varphi_3)$ .

**Решение.** На рис. 9.6 приведено изображение орграфа  $I(D, \varphi_3)$ , а на рис. 9.7 – изображение модифицированного орграфа  $I(D, \varphi_3)$ .



Для дальнейшего понадобится

**Теорема 9.1 (Форда – Фалкерсона).** Поток  $\varphi$  в транспортной сети D является максимальным тогда и только тогда, когда в орграфе приращений  $I(D,\varphi)$  вершина  $v_n$  (сток транспортной сети D) не достижима из  $v_1$  (источника транспортной сети D).

Используя теорему Форда — Фалкерсона, нетрудно описать алгоритм построения максимального потока в транспортной сети D.

## Алгоритм 9.2 (Форда – Фалкерсона)

*Шаг 1.* Пусть  $\varphi$  – любой поток в транспортной сети D (например, нулевой или полный). *Шаг 2.* Строим орграф приращений  $I(D,\varphi)$ .

*Шаг 3.* Если в  $I(D, \varphi)$  вершина  $v_n$  не достижима из вершины  $v_1$ , то  $\varphi$  – искомый максимальный поток. В противном случае ищем в  $I(D, \varphi)$  простую цепь  $\eta$  из  $v_1$  в  $v_n$ . Увеличиваем потоки по дугам цепи  $\eta$  на максимально допустимую величину (см. замечание 9.3) a > 0 и переходим к шагу 2.

**Замечание 9.3.** Если дуга x в цепи  $\eta$  имеет то же направление, что и в D, то можно увеличить поток по ней, не превышая ее пропускной способности, т.е. на величину, не превышающую  $c(x) - \varphi(x)$ . При этом по определению  $I(D,\varphi)$  в этом случае  $c(x) - \varphi(x) > 0$ . Если же дуга x' в  $\eta$  направлена противоположно соответствующей дуге x из D (см. определение  $I(D,\varphi)$ ), то можно увеличить поток по ней (и, соответственно,

уменьшить поток по дуге x) до обнуления потока по дуге x, т.е. на величину, не превышающую  $\varphi(x)$ . При этом по определению  $I(D,\varphi)$  в этом случае  $\varphi(x)>0$ . Таким образом, величина a>0, используемая на шаге 3 алгоритма 9.2, является минимальным значением среди величин  $\{c(x)-\varphi(x)\,|\,x\in X,x\in\eta\}\cup\{\varphi(x)\,|\,x\in X,x'\in\eta\}$ .

**Разбор типового варианта** (продолжение). (в) Используя алгоритм Форда — Фалкерсона, построить максимальный поток для сети D из примера 9.1.

**Решение.** Начинаем с ранее построенного полного потока  $\varphi_3$ . Выделяем в  $I(D,\varphi_3)$  простую цепь  $\eta_4 = v_1 v_3 v_4 v_2 v_5$  из  $v_1$  в  $v_5$ . Увеличиваем потоки по дугам из  $\eta_4$  на одинаковую величину, равную 2, до насыщения дуг  $(v_1,v_3)$ ,  $(v_3,v_4)$ . При этом поток по дуге  $(v_2,v_5)$  не превышает ее пропускной способности, а величина потока по дуге  $(v_2,v_4)$  уменьшается на 2 (см. замечание 9.3). В результате поток  $\varphi_3$  меняется на поток  $\varphi_4$ . На рис. 9.8 приведено изображение орграфа D с потоком  $\varphi_4$ . Далее строим орграф приращений  $I(D,\varphi_4)$  (см. изображение модифицированного орграфа приращений  $I(D,\varphi_4)$  на рис. 9.9). Поскольку в  $I(D,\varphi_4)$  вершина  $v_5$  не достижима из  $v_1$ , то согласно алгоритму Форда — Фалкерсона  $\varphi_4$  — искомый максимальный поток, при этом  $\overline{\varphi}_4$  = 21.



Замечание 9.4. Условие единственности источника (стока) не является ограничительным. Например, в случае двух источников  $v_1, v_2$ , удовлетворяющих условиям:  $D^{-1}(v_1) = \emptyset$ ,  $D^{-1}(v_2) = \emptyset$ , можно добавить к транспортной сети D новую вершину  $v_0$  и две дуги  $(v_0, v_1)$ ,  $(v_0, v_2)$ . При этом пропускной способностью дуги  $(v_0, v_1)$  (соответственно дуги  $(v_0, v_2)$ ) следует считать сумму пропускных способностей дуг, исходящих из  $v_1$  (исходящих из  $v_2$ ). В этом случае вершина  $v_0$  становится единственным  $(\phi u k m u b h b m)$  источником. Аналогично поступаем в случае большего числа источников или в случае нескольких стоков. Таким образом, приведенные алгоритмы можно использовать и для нахождения максимального потока в транспортных сетях с несколькими источниками и стоками. В этом случае величиной потока в транспортной сети является сумма величин потоков по дугам, исходящим из совокупности ее источников.