ADAGRAD optimizer

Sample (i')	n; a	y,a
	0.2	3.4
ą	0.4	3.8
3	0.6	4.2
4	0.8	4.6

ded to me

Step 6:
$$\Delta m = -n$$
 $\sqrt{G_{mt} E} = -0.1 \times (-0.84)$
 $\Delta m = 0.099$

$$\Delta_{c} = -\frac{\eta}{\sqrt{g_{c} + \epsilon}} g_{c} = \frac{-0.1}{\sqrt{12.64 + 10^{-\epsilon}}} \times (-4.2)$$

Step 7:
$$m+Dm = 1+0.099$$
 $m=1099$
 $C=0.0901$

Step 8: Sample = Sample + 1 = $1+1=2$

Step 9: y (Sample > ns)

 $2>2$
 $yake \rightarrow go \text{ to Step } (y)$

Step 4: $g_m = -[3.8-(1099)(0.4)+0.901](0.4)$
 $g_m = -1.70456$
 $g_c = -[3.8-(1.099)(0.4)+0.901]$
 $g_c = -4.2614$

Step 5: $G_m = G_m + (9m)^2$
 $G_m = 0.9056 + (-1.70456)^2$
 $G_m = 3.6111$

Step 6: $Sm = -n$
 $G_m + E$
 $G_m + E$
 $G_m = 0.0896$

Step 7:
$$m = m+0m = 1.099 + 0.0896$$

 $m = 1.1886$
 $C = C+0C = -0.901 + 0.07122$

C=-0.82978

Step 8: Sample = 2+1=3

Step 9: if (Sample 7 ns)

Step 10: itr = itr+ 1 = 1+1= 2

Step 11: if (itr > epoch)
2>2
false -> step 3

Step 3: Sample = 1

Step 4: 9m = - [3.4-(1.1886) (0.2) + 0.82978], (0.2)

9m=-0.798412

9c = - [3.4-(1.1886) (0.2)+0.82978)

90 = - 3.99206

Step 5: Gm = Gmt (9m)2, Gc = Gct (9c)2

9m= 3.611+ (-0.79841)29c= 35.799+ (-3.99206)2

Gm=4.2484

Gc = 51.7355

Step 6:
$$Dm = \frac{-n}{\sqrt{g_m + \varepsilon}} g_m = \frac{-0.1}{\sqrt{4.2484a+10^{-8}}} (-0.7984)$$

$$Dm = 0.0387$$

$$DC = \frac{-n}{\sqrt{6c^{+}E}}g_{C} = \frac{-0.1}{\sqrt{51.7355+10^{-8}}}(-3.99206)$$

OC = 0.0555

Step 7: m= m+ Dm = 1.1886+0.0387

m=1.2273

C= C+ DC = -0.82978+0.0555

C= - 0.77428.

Stepa

Step 4: 9m = - [3.8-(0.4)+0.77428] 0.4

9m=-1.633

2

9c = - [3.8 - (1.227) (0-4)+0 77428)

90 = -4.083

Step 5: Gm = 4.2484+ (-1.6)2= 6.91

Gc = 51.7355+ (-408)2=68.3819

Step 6:
$$\Delta m = -0.1$$
 $\sqrt{6.91+10^{-8}}$
 (-1.633)
 $\Delta m = 0.0621$
 $\Delta C = -0.1$
 $\sqrt{38.87+10^{-8}}$
 $\Delta C = 0.0491$

Step 7: $m = m+Dm = 1.22+0.06 = 1.2894$
 $C = c+DC = -0.77+0.049 = -0.72518$

Step 8: Sample = Sample + 1
 $= 2+1$
 $= 3$
Step 9: y (Sample > n_s)
 $3>2$
Step 10: x tr = x tr + x = x + x = x .

3>2

C=-0.72518

Step 12: m=1.2894