Chapter 5 Written Homework

Section 5.1 (p. 232): 4-8, 18-20, 37-40

- 4. Assuming a person invests \$2000 at 14% interest compounded annually, and A_n represents the amount at the end of n years, the recurrence relation for the sequence A_0 , A_1 ... is $A_n = (1.14)A_{n-1}$.
- 5. Assuming a person invests \$2000 at 14% interest compounded annually, and A_n represents the amount at the end of n years, the initial condition for the sequence A_0 , A_1 ... is \$2000.
- 6. Assuming a person invests \$2000 at 14% interest compounded annually, and A_n represents the amount at the end of n years, A₁ is equal to \$2280, A₂ is equal to \$2599.2, and A₃ is equal to \$2963.088.
- 7. Assuming a person invests \$2000 at 14% interest compounded annually, and A_n represents the amount at the end of n years, the explicit formula for A_n is equal to $(1.14)^n (2000)$.
- 18. With S_n denoting the number of n-bit strings that do not contain the pattern 000, the recurrence relation and initial conditions for the sequence $\{S_n\}$ is $S_n = S_{n-1} + S_{n-2} + S_{n-3}$ for n > 3, This is because if we begin with 1, the remaining (n-1)-bit strong will not contain 000 and neither will the n-bit string itself, leaving us to conclude that there are S_{n-1} such (n-1)-bit strings. If we begin with 0, there will be two cases to consider. If we begin with 01, the remaining (n-2) bit string does not contain 000, and neither will the n-bit string, leaving us to conclude that there are S_{n-2} such (n-2)-bit strings. Next, if we begin with 00, the third bit must be a 1 and if the remaining (n-3)-bit string does not contain 000, neither will the n-bit string itself, leading us to conclude that there are S_{n-3} such (n-3)-bit strings. Because theses cases are mutually exclusive and cover all n-bit strings not containing 000, we are able to end up with the resulting sequence.
- 19. Referring to the sequence S where S_n denotes the number of n-bit strings that do not contain the pattern 00, the recurrence relation and initial conditions for the sequence $\{S_n\}$ are $S_n = S_{n-1} + S_{n-2}$, with the initial conditions of $S_1 = 2$ and $S_2 = 3$. This is because there are S_{n-1} n-bit strings that begin 1 and do not contain the pattern 00 and there are S_{n-2} n-bit strings that begin 0 since the second bit must be 1 and do not contain the pattern 00.
- 20. Referring to the sequence S where S_n denotes the number of n-bit strings that do not contain the pattern 00, S_n denotes the Fibonacci sequence, albeit with different initial conditions. While the initial conditions of S_n are $S_1 = 2$ and $S_2 = 3$, the initial condition of the Fibonacci sequence are $F_0 = 1$, $F_1 = 1$.
- 37. Referring to Ackermann's function A(m, n), computing A(2, 2) and A(2, 3) would result in 7 and 9, respectively.
- 38. Referring to Ackermann's function A(m, n), the formula for A(1, n) = n + 2, for $n = 0, 1, \ldots$. This is because A(1, 0) = A(0, 1) = 2, A(2, 0) = A(1, 1) = A(0, A(1, 0)) = 1 + A(1, 0) = 3. Therefore, A(1, n) = A(0, A(1, n-1)) = 1 + A(1, n-1), and by recursion, A(1, n) = n + A(1, 0) = n + 2.

- 39. Referring to Ackermann's function A(m, n), the formula for A(2, n) = 3n + 2, for n = 0, 1, This is because A(2, n) = A(1, A(2, n-1)) = 2 + A(2, n-1), and by recursion, A(2, n) = 2n + (A(1, n-n)) = 2n + 3.
- 40. Referring to Ackermann's function A(m, n), I guess that the formula for A(3, n) would be $2^{n+3}-3$. This is because A(3, n) = A(2, A(3, n-1)) = 3 + 2A(3, n-1). Next, A(3, n) + 3 = 2(3 + A(3, n-1)), and by recursion, A(3, n) + 3 = 2^n (A(3, n-n) + 3) = 2^n (A(3, 0) + 3) = 2^n (A(2, 1) + 3) = 2^{n+3} , since A(2, 1) = 5.

Section 5.2 (p. 244): 14-18, 34-36

Chapter 5 Homework		
Section 5.2: Page 244, #14,15,16,17,18,34,35,36 H. $a_n = 2^n a_{n-1}$, $n > 0$ $a_0 = 1$		1 1 1 1 1
$q_1 = 2' \cdot 1 = 2'$		A III
$q_2 = 2^2 \cdot 2 = 2^3$ $q_3 = 2^3 \cdot 2^3 = 2^6$	160	
$q_{1} = 14.7^{\circ} = 7^{\circ}$ $n(n+1)$		
$a_5 = 2^5 \cdot 2^{10} = 2^{15}$ $a_6 = 2^6 \cdot 2^{15} = 2^{21}$	1 1 1 1	
B. $a_n = 6a_{n-1} - 8a_{n-2}$; $a_0 = 1$, $a_1 = 0$	1- n ₂ - (2)	
$r^{n-6}r^{n-1}+8r^{n-2}=0 \rightarrow r^{n-2}(r^{2}-6r+8)=0$ $(r-4)(r-2)=0 \rightarrow roots: r=2, r=4$	$\left(Q_n = 2^{n+1} - 4^n\right)$	(24)
16. $a_n = 7a_{n-1} - 10a_{n-2}$; $a_0 = 5$, $a_1 = 16$	$a_n = 2^{n+1}$	5 ⁿ
$r^{n-2}(r^27r+10) \rightarrow (r-2)(r-5)=0 \rightarrow roots$:	r=2,r=5	
17. an = 2an + 8an = 5 an = 4, a, =10	4=R+S	S=4-R
$r^{n}=2r^{n+1}+8r^{n-2}$ $r^{n-2}(r^{2}-2r-8) \rightarrow (r-4)(r+2)=0 \rightarrow roots: r$	10=4R-2S	10 = 4R-2(4-R) 10 = 4R-8+2R
	S=4-3	18= 6R, R=3
$a_n = 3(4)^n + 1(-2)^n$	S=1	
18. $2a_n = 7a_{n-1} - 3a_{n-2}; a_0 = a_1 = 1$ $2r^n = 7r^{n-1} - 3r^{n-2}$	$a_n = R(\frac{1}{2})^n + S$	3 ⁿ
$r^{n-2}(r^2-7r+3) \Rightarrow (2x-1)(x-3)=0 \Rightarrow mos: r=\frac{1}{2}$	$a_0=1=R+S$ $a_1=1=\pm R+3S$	$R = \frac{4}{5}$
(r+	$a_n = \frac{1}{5}(\frac{1}{5})^n + \frac{1}{5}(\frac{3}{5})^n$	
	$a_n = \frac{1}{5}(\frac{1}{2}^n + 3^n)$	1
	un 5(2 +3)	

34.	$\sqrt{a_n} = \sqrt{a_{n-1}} + 2\sqrt{a_{n-2}}$ $a_0 = a_1 = 1$	subshir	where $b_h = \sqrt{a_h}$		
	$b_n = b_{n-1} + 2b_{n-2} \rightarrow r^n = r^{n-1} + 2r^{n-2}$	2	bn = R(-1)"+ S	(2) ⁿ	
			1	8 9	
	$r^{n-2}(r^2-r-2)=0 \to (r-2)(r+1) \to 10015=r$	=-1, r=2	b0 = 1 = R+S	1= R+S	R=1-5
		MA E	b, = 1= -R+25	+ 1= -R+ZS	R=1-3
	h 1/1\n, 2/2\n	RINE		2=35	R= =
	$D_n = \frac{1}{3}(-1)^n + \frac{2}{3}(2)^n$			$\frac{z}{3} = 5$	
	$b_n = \frac{1}{3} ((-1)^n + 2(2)^n)$			14 1 4	
25.	$q_n = \sqrt{\frac{a_{n-2}}{a_{n-1}}}$ $q_0 = 8$, $q_1 = \frac{1}{2\sqrt{2}} = \frac{1}{\sqrt{8}}$	Subsh	nule b _n =1g an		
	$Q_n = \left(\frac{a_{n-2}}{a_{n-1}}\right)^{\frac{1}{2}}$				
	$\ln a_n = \frac{1}{2} (\ln a_{n-2} - \ln a_{n-1})$				
	$b_n = \frac{1}{2}(b_{n-2} - b_{n-1}) = b_n = \frac{1}{2}b_{n-2} - \frac{1}{2}$	bn-1 → r	$1 = \frac{1}{2} \int_{-\infty}^{\infty} n^{-2} - \frac{1}{2} \int_{-\infty}^{\infty} n^{-1}$		
	rn+ 1 rn-1 1 h-2 - 0 > rn-2 (r2+1 r	$-\frac{1}{2}$ = $0 \rightarrow$	2r2+r-1-0 > (2	0r-1)(r+1) > 100	りら: セ, r=-1
	$b_n = R(\frac{1}{2})^n + S(-1)^n$	- Pall	I we let	7 TO 1	
	InQ = D+S	In 8	S = R+S	S= In8-R	
	bo= ln8 \frac{1}{2}ln8 = \frac{1}{2}R - S	Iln8	= = R-S+	S=1n8-31n8	
	b2 = ln(8=) = -1/2 ln8		=3R	S= 3/118	
	$b_n = \frac{1}{3} n8(\frac{1}{2})^n + \frac{2}{3} n8(-1)^n$	±In8	*==R → = n8=R		
				The state of	
	$b_n = \frac{1}{3} n8 \left(\left(\frac{1}{2} \right)^n + 2 \left(-1 \right)^n \right)$		The state of the s		
36,	$a_{n}=-2na_{n-1}+3n(n-1)a_{n-2}; a_{0}=1 a_{1}=2$				
	$b_n = \frac{a_n}{n!}$ $b_n = -2b_{N-1} + 3b_{N-2}$			10	
	$a_n = n!b_n = \frac{n!}{4}(5-(3)^n)$				