Physics 182

Prelab 3: The Specific Heat of Aluminum

Print Name						
Section	Date	T	A			
Lab Partner				_		
1. An aluminum is immersed in ('equilibrium, the properly report error, both prope	70.16 ± 0.02) g temperature of the specific he	rams of water the water-alument of aluminu	at (22.3 ± 0.1) minum system)°C. After conn is (31.5± 0.1)	ning to therma)°C. Calculate	l and
Show formulas a	nd calculations	•				
2. Linearize the fo variable.	llowing equatio		be the depend $\frac{Z(\Delta T - b)}{m}$	lent variable and	d m to be the inc	lependent
Linearized equat	ion:					
Slope:						

Physics 182 Summer 2020