TD2 Linear Classification: Bayes Optimal & Naive Bayes, Logistic Regression

0: Decision Boundary

- Suppose you are given the following classification task: Predict the target $Y \in \{0, 1\}$ given two real valued features $X_1, X_2 \in R$
- After some training, you learn the following decision rule: Predict Y = 1 iff $w_1X_1 + w_2X_2 + w_0 \ge 0$ and Y = 0 otherwise, where $w_1 = 2$, $w_2 = 6$, and $w_0 = 12$
- (a) Plot the decision boundary and label the region where we would predict Y = 1 and Y = 0
- (b) Suppose that we learned the above weights using logistic regression
- Using this model, what would be our prediction for $P(Y = 1 \mid X_1, X_2)$?
- Hint: You may want to use the sigmoid function $S(x) = 1/(1+e^{-x})$

- (a) We know that iff $2X_1 + 6X_2 + 12 \ge 0$ then Y = 1
- To draw this linear boundary, we need to find X₁ and X₂ given the decision rule
- We first search for X_1 when $X_2 = 0$:

$$2X_1 = -12 => X_1 = -6 \text{ and } X_2 = 0$$

• We now search for X_2 when $X_1 = 0$:

$$6X_2 = -12 => X_2 = -2$$
 and $X_1 = 0$

 For the above values, the decision boundary is depicted in the left Figure, where the green points will be predicted as Y = 1 and the blue ones as Y = 0

(b) Given that we learned the weights using logistic regression, we need to calculate the following conditional probability for any given X_1 and X_2 using the sigmoid function as follows:

$$P(Y = 1|X_1, X_2) = \frac{1}{1 + \exp\left(2 \frac{1}{X_1 + 6X_2 + 12}\right)}$$

• The above conditional probability will be our prediction

1: Bayes Optimal and Naïve Bayes Classifier

- Consider the following distributions used by a Naive Bayes classifier:
 - the joint probability distribution over 3 Boolean variables x_1 , x_2 , y given in Figure a
 - the marginal probabilities for this same distribution, given in Figures b, c, and d
- (a) What is the decision rule used by the Bayes optimal classifier?
- (b) Express $P_D(y=0 \mid x_1, x_2)$ in terms of $P_D(x_1, x_2, y=0)$ and $P_D(x_1, x_2, y=1)$
- (c) Write out an expression for the value of $P(y = 1 \mid x_1 = 1, x_2 = 0)$ predicted by the Bayes optimal classifier
- (d) Write out an expression for the value of $P(y = 1 \mid x_1 = 1, x_2 = 0)$ Table predicted by the naive Bayes classifier
- (e) Explain why the expressions you wrote for (c) and (d) are unequal

Hint: Recall that Joint Pr. = Conditional Pr. \times Marginal Pr.

10/2/2022

00 -		/
x_2	y	$p_{\mathcal{D}}(x_1, x_2, y)$
0	0	.15
0	1	.25
1	0	.05
1	1	.08
0	0	.1
0	1	.02
1	0	.2
1	1	.15
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

(a) Joint distribution

	$x_1 = 0$	$x_1 = 1$
y = 0	.4	.6
y = 1	.66	.34

Likelihood (b) $P_{\mathcal{D}}(x_1|y)$

5		$x_2 = 0$	$x_2 = 1$
	y = 0	.5	.5
	y = 1	.54	.46

(c) $P_{\mathcal{D}}(x_2|y)$

Prior

Tables

y	$P_{\mathcal{D}}(y)$	
y = 0	.5	
y = 1	.5	
(d) $p_{\mathcal{D}}(y)$		

V. Christoph

(a) if
$$P(y=1|x_1,x_2) > P(y=0|x_1,x_2)$$
 then $\hat{y}=1$, or else $\hat{y}=0$

(b)
$$P_{\mathcal{D}}(y=0|x_1,x_2) = \frac{P_{\mathcal{D}}(x_1,x_2,y=0)}{P_{\mathcal{D}}(x_1,x_2,y=0) + P_{\mathcal{D}}(x_1,x_2,y=1)}$$

(c)
$$P(y=1|x_1,x_2) = \frac{P_{\mathcal{D}}(x_1,x_2,y=1)}{P_{\mathcal{D}}(x_1,x_2,y=0) + P_{\mathcal{D}}(x_1,x_2,y=1)} = \frac{.02}{.1+.02}$$

(d)
$$P(y=1|x_1,x_2) = \frac{P(x_1,x_2,y=1)}{P(x_1,x_2,y=0) + P(x_1,x_2,y=1)}$$

$$= \frac{P_{\mathcal{D}}(y=1)P_{\mathcal{D}}(x_1|y=1)P_{\mathcal{D}}(x_2|y=1)}{P_{\mathcal{D}}(y=0)P_{\mathcal{D}}(x_1|y=0)P_{\mathcal{D}}(x_2|y=0) + P_{\mathcal{D}}(y=1)P_{\mathcal{D}}(x_1|y=1)P_{\mathcal{D}}(x_2|y=1)}$$

(e) Bayes optimal classifier does not have the assumption of conditional independence!

10/2/2022

1: Bayes Optimal and Naive Bayes Classifier

- (f) Suppose you have a dataset involving five random variables: x_1 , x_2 , x_3 , x_4 and y
 - Variables x_i and x_j are conditionally independent given y, for all i and j except for the pair x_3 and x_4 , which are not conditionally independent
 - Therefore, you can't quite use Naive Bayes unless you extend it to handle the dependence between x_3 and x_4
- Write down the decision rule you would use in place of the Naive Bayes rule, to correctly model this data set
 - Hint: try rederiving the Naive Bayes decision rule but avoiding the conditional independence assumption for x_3 and x_4

(f)
$$P_{\mathcal{D}}(y=1)P_{\mathcal{D}}(x_1|y=1)P_{\mathcal{D}}(x_2|y=1)P_{\mathcal{D}}(x_3,x_4|y=1)$$

 $P_{\mathcal{D}}(y=0)P_{\mathcal{D}}(x_1|y=0)P_{\mathcal{D}}(x_2|y=0)P_{\mathcal{D}}(x_3,x_4|y=0)$

• If this quality is larger than 1 then $y^2 = 1$, or else $y^2 = 0$

1: Bayes Optimal and Naive Bayes Classifier

(g) Suppose you know for fact that x_1 , x_2 , y are independent random variables In this case is it possible for any other classifier (e.g., a decision tree) to do better than a naive Bayes classifier?

Hint: The dataset is irrelevant for this question

- (g) The independency of x_1 , x_2 , y does not imply that they are independent within each class
 - in other words, they are not necessarily independent when conditioned on y
- Therefore, naive Bayes classifier may not be able to model the function well, while a decision tree might
- For example, $y = x_1 XOR x_2$, is an example where x_1 , x_2 , might be independent variables, but a naive Bayes classifier will not model the function well since for a particular class (say, y = 0), x_1 and x_2 , are dependent

2: Estimating Naïve Bayes Parameters

 Suppose you have the following training set with three Boolean inputs x, y and z, and a Boolean output U and you should predict U using a NB classifier

(a) After NB learning	g is completed what would be the pre	dicted
probability $P(U = 0)$	x = 0, y = 1, z = 0)?	

(b) Using the probabilities obtained during the NB classifier
training, what would be the predicted probability $P(U = 0 \mid x = 0)$

\mathbf{x}	\mathbf{y}	\mathbf{Z}	U
1	0	0	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0	1	1
0	1	0	1
1	1	0	1

(a) The training of the NB is depicted in the following Tables

Frequency Tables for the Three Variables

Variable \mathbf{x}			
U = 0 U = 1			
X = 0	2	2	
X = 1	1	2	

Variable ${f y}$		
U = 0 U = 1		
Y = 0	2	2
Y = 1	1	2

Variable z			
U = 0 U = 1			
Z = 0	1	3	
Z = 1	2	1	

Likelihood Tables for the Three Variables

Variable \mathbf{X}			
U = 0 U = 1			
X = 0	2/3	2/4	
X = 1	1/3	2/4	

Variable ${f Y}$		
U = 0 U = 1		
Y = 0	2/3	2/4
Y = 1	1/3	2/4

Variable Z		
	U = 0	U = 1
Z = 0	1/3	3/4
Z = 1	2/4	1/4

- (a) We calculate the prior probabilities by marginalizing for each sub-table of the Frequency Table for the columns U = 0 and column U = 1
 - As a result, P(U = 0) = 3/7 and P(U = 1) = 4/7
- Then we calculate the following probability $P(U = 0 \mid x = 0, y = 1, z = 0)$:

$$P(U=0|x=0,y=1,z=0) = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=0)}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=u_{j})}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=u_{j})}{\sum_{j} (P(U=u_{j}) * \prod_{i} P(X_{i}|U=u_{j}))} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=u_{j})}{\sum_{j} P(X_{i}|U=u_{j})} = \frac{P(U=0) * \prod_{i} P(X_{i}|U=u_{j})}{\sum_{j} P(U=0)} = \frac{P(U=0) * \prod_{i} P(U=0)}{\sum_{j} P(U=0)} = \frac{P(U=0)}{\sum_{j} P$$

• To solve this Equation, we need to calculate the probabilities:

$$P(U=0) * P(x=0, y=1, z=0 | U=0) = P(U=0) * P(x=0 | U=0) * P(y=1 | U=0) * P(z=0 | U=0)$$

$$= \frac{3}{7} * \frac{2}{3} * \frac{1}{3} * \frac{1}{3} = \frac{2}{63} = 0.031$$

and

$$P(U=1)*P(x=0,y=1,z=0|U=1) = P(U=1)*P(x=0|U=1)*P(y=1|U=1)*P(z=0|U=1)$$

$$= \frac{4}{7}*\frac{2}{4}*\frac{2}{4}*\frac{3}{4} = \frac{3}{28} = 0.107$$

(a) Then we reformulate the equation for $P(U = 0 \mid x = 0, y = 1, z = 0)$ as follows:

$$P(U=0|x=0,y=1,z=0) = \frac{P(U=0)*P(x=0,y=1,z=0|U=0)}{P(U=0)*P(x=0,y=1,z=0|U=0)+P(U=1)*P(x=0,y=1,z=0|U=1)} = \frac{0.031}{0.031+0.107} = 0.225$$

- (b) We would like to find the probability $P(U = 0 \mid x = 0)$
- In that case given that we have the value of x = 0 we can calculate the probability as:

$$P(U=0|x=0) = \frac{P(U=0) * P(x=0|U=0)}{P(U=0) * P(x=0|U=0) + P(U=1) * P(x=0|U=1)} = \frac{\frac{3}{7} * \frac{2}{3}}{\frac{3}{7} * \frac{2}{3} + \frac{4}{7} * \frac{2}{4}} = \frac{1}{2} = 0.5$$

10/2/2022

3: Logistic Regression

- We consider here a discriminative approach for solving the classification problem illustrated in the next Figure
 - A 2-D labeled training set, where `+' corresponds to class y=1 and `O' corresponds to class y = 0
- (a) We attempt to solve the binary classification task depicted in next Figure with the simple linear logistic regression model

$$P(y=1|\vec{x},\vec{w}) = g(w_0 + w_1x_1 + w_2x_2) = \frac{1}{1 + exp(-w_0 - w_1x_1 - w_2x_2)}$$

3: Logistic Regression

- Notice that the training data can be separated with zero training error with a linear separator (see L₁)
- Consider training regularized linear logistic regression models where we try to maximize for very large C

$$\sum_{i=1}^{n} \log \left(P(y_i | x_i, w_0, w_1, w_2) \right) - Cw_j^2$$

- The regularization penalties used in penalized conditional loglikelihood estimation are -Cw²_j, where j = {0, 1, 2}
 - In other words, only one of the parameters is regularized in each case

The points can be separated by L₁ (solid line) Possible other decision boundaries are shown by

3: Logistic Regression

(a) Given the training data of the next Figure, how does the training error change with regularization of each parameter w_i?

$$\sum_{i=1}^{n} \log \left(P(y_i | x_i, w_0, w_1, w_2) \right) - Cw_j^2$$

 State whether the training error increases or stays the same (zero) for each w_i for very large C

- i) By regularizing w₂
- Increases
- When we regularize w₂, the resulting boundary can rely less and less on the value of x₂ and therefore becomes more vertical
 - For very large C, the training error increases as there is no good linear vertical separator of the training data
- ii) By regularizing W₁
- Remains the same
- When we regularize w_1 , the resulting boundary can rely less and less on the value of x_1 and therefore becomes more horizontal
 - For very large C, the training data can be separated with zero training error with a horizontal linear separator
- iii) By regularizing wo
- Increases
- When we regularize w_0 , then the boundary will eventually go through the origin (bias term set to zero)
 - Based on the figure, we can not find a linear boundary through the origin with zero error: the best weھn get is one error! V. Christophides 18

3:Logistic Regression

(b) If we change the form of regularization to L1-norm (absolute value) and regularize w_1 and w_2 only (but not w_0), we get the following penalized log-likelihood

$$\sum \log P(y_i|x_i, w_0, w_1, w_2) - C(|w_1| + |w_2|)$$

Consider again the same dataset and the same linear logistic regression model

$$P(y = 1 | \vec{x}, \vec{w}) = g(w_0 + w_1 x_1 + w_2 x_2)$$

- i) As we increase the regularization parameter C which of the following scenarios do you expect to observe?
 - 1. First w₁ will become 0, then w₂
 - 2. First w₂ will become 0, then w₁
 - 3. w_1 and w_2 will become zero simultaneously
 - 4. None of the weights will become exactly zero, only smaller as C increases

 Choose only one and briefly explain your choice

(b)

- i) 1. First w₁ will become 0, then w₂
- The data can be classified with zero training error and therefore also with high log-probability by looking at the value of x_2 alone, i.e., making $w_1 = 0$
 - Initially we might prefer to have a non-zero value for w₁ but it will go to zero rather quickly as we increase regularization
 - Note that we pay a regularization penalty for a non-zero value of w₁ and if it does not help classification why would we pay the penalty?
 - Also, the absolute value regularization ensures that w₁ will indeed go to exactly zero
- As C increases further, even w₂ will eventually become zero
 - We pay higher and higher cost for setting w₂ to a non-zero value
 - Eventually this cost overwhelms the gain from the log-probability of examples that we can achieve with a non-zero w₂

3:Logistic Regression

(b)

ii) Recall that the classification problem illustrated in the Figure is balanced: the number of examples from each class is the same

• For very large C, with the same L1-norm regularization for w_1 and w_2 as above, which value(s) do you expect w_0 to take? Explain briefly

Hint: You can give a range of values for w_0 if you deem necessary

iii) Assume now that we obtain more examples from the `+' class that corresponds to y=1 so our classification problem become unbalanced

• Again, for very large C, with the same L1-norm regularization for w_1 and w_2 as above, which value(s) do you expect w_0 to take? Explain briefly

Hint: You can give a range of values for w_0 if you deem necessary

- (b) For very large C, we argued that both w_1 and w_2 will go to zero
- ii) With balanced classes, the number of examples in each class is the same n and so we would like to predict each one with the same probability $P(y=1|\vec{x},\vec{w})=P(y=0|\vec{x},\vec{w})=0.5$.
- Note that when $w_1 = w_2 = 0$, the log-probability of examples becomes a finite value, which is equal to n log(0.5), i.e., w_0 =0 makes $P(y = 1|\vec{x}, \vec{w})$ =0.5.
- iii) With unbalanced classes, where the number of '+' examples are greater than that of 'o' examples, we want to have $P(y=1|\vec{x},\vec{w})>P(y=0|\vec{x},\vec{w})$
 - Hence, the value of \mathbf{w}_0 should be greater than zero which makes $P(y=1|\vec{x},\vec{w})>0.5$.

4: Multi-class Logistic Regression

 One way to extend logistic regression to multi-class (say K class labels) setting is to consider (K-1) sets of weight vectors and define

$$P(Y = y_k | X) \propto \exp(w_{k0} + \sum_{i=1}^d w_{ki} X_i) \text{ for } k = 1, \dots, K-1$$

- (a) What model does this imply for $P(Y = y_K \mid X)$?
- (b) What would be the classification rule in this case?
- (c) Draw a set of training data with three labels and the decision boundary resulting from a multi-class logistic regression
 - The boundary does not need to be quantitatively correct but should qualitatively depict how a typical boundary from multi-class logistic regression would look like

(a) Since all probabilities must sum to 1, we should have

$$P(Y = y_K | X) = 1 - \sum_{k=1}^{K-1} P(Y = y_k | X)$$

 Also, note that introducing another set of weights for this class will be redundant, just as in binary classification. We can define

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{k=1}^{K-1} \exp(w_{k_0} + \sum_{i=1}^{d} w_{k_i} X_i)}$$

and for k = 1, ..., K - 1

$$P(Y = y_k | X) = \frac{\exp(w_{k_0} + \sum_{i=1}^d w_{k_i} X_i)}{1 + \sum_{k=1}^{K-1} \exp(w_{k_0} + \sum_{i=1}^d w_{k_i} X_i)}$$

(b) The classification rule simply picks the label with highest probability:

$$y = y_{k^*}$$
 where $k^* = \arg \max_{k \in \{1,...,K\}} P(Y = y_k | X)$

- (c) The decision boundary between each pair of classes is linear and hence the overall decision boundary is piecewise linear
- Equivalently, since arg max_i exp(a_i) = arg max_i a_i and max of linear functions is piece-wise linear, the overall decision boundary is piece-wise linear

Multi Class Classification

https://satishgunjal.com/binary_lr

4 Bonus: Overfitting and Regularized Logistic Regression (20 pts)

• To prevent overfitting, we want the weights to be small. To achieve this, instead of maximum conditional likelihood estimation M(C)LE for logistic regression:

$$\max_{w_0, ..., w_d} \prod_{i=1}^n P(Y_i | X_i, w_0, ..., w_d)$$

• We can consider maximum conditional a posterior M(C)AP estimation:

$$\max_{w_0, \dots, w_d} \prod_{i=1} P(Y_i | X_i, w_0, \dots, w_d) P(w_0, \dots, w_d)$$

where $P(w_0,...,w_d)$ is a prior on the weights

 Assuming a standard Gaussian prior N(0, I) for the weight vector, derive the gradient ascent update rules for the weights