

Prova 2 Maio  $21^{st}$ , 2024

Estudante: Jaider Torres RA: 241343

1. i) Defina rede e filtro.

**Definição:** Seja  $\Lambda$  um conjunto dirigido e X um conjunto (ou espaço topológico). Uma  $\mathit{rede}$  em X é uma função  $x:\Lambda \to X$  que envia  $\lambda \in \Lambda$  a  $x_\lambda \in X$ .

**Definição**: Seja X um conjunto (ou espacio topológico) e  $\mathcal{F} \subset \mathcal{P}(X)$ . Dizemos que  $\mathcal{F}$  é um filtro em X se:

a.  $\emptyset \not\in \mathcal{F}$ .

b. Dados  $A, B \in \mathcal{F}$ , então  $A \cap B \in \mathcal{F}$ .

c. Dados  $A \in \mathcal{F}$  e  $B \subset X$  tal que  $A \subset B$ , então  $B \in \mathcal{F}$ .

ii) Defina o que significa uma rede convergir a um ponto  $\xi \in X$  onde X é um espaço topológico.

Sejam X um espaço topológico e  $x:\Lambda\to X$  uma rede em X. Dizemos que x converge para um ponto  $\xi\in X$  se para cada  $U\in\mathcal{U}_{\mathcal{E}}$  existe  $\lambda_0\in\Lambda$  tal que  $x_\lambda\in U$  para todo  $\lambda\geq\lambda_0$ 

2. Mostre que se A e B são dois conjuntos fechados disjuntos em um compacto K Hausdorff, então existem abertos disjuntos contendo A e B respectivamente.

Seja  $y\in B$  qualquer. Como K es Hausdorff, para cada  $x\in A$  existem  $U_x\in \mathcal{U}_x$  e  $V_x\in \mathcal{U}_y$  tal que  $x\in U$ ,  $y\in V$  e  $U_x\cap V_x=\emptyset$ . Agora, como K é compacto e  $A\subset K$  é fechado, então A é compacto. Assim, dada a cobertura aberta  $\mathcal{L}=\{U_x:x\in A\}$  de A, existem  $x_1,\ldots,x_n\in X$  tal que  $\mathcal{L}'=\{U_{x_1},\ldots,U_{x_n}\}\subset \mathcal{L}$  é uma subcobertura finita. Considerando  $U=\bigcup_{i=1}^n U_{x_i}$  e  $V=\bigcap_{i=1}^n V_{x_i}$ , temos que  $y\in V$ ,  $A\subset U$  e  $U\cap V=\emptyset$ . Portanto, nós provamos que para cada  $y\in B$  existem  $V_y,U_y\in \tau_K$  disjuntos tal que  $y\in V_y$  e  $A\subset U_y$ , pois  $A\cap B=\emptyset$ .

Agora, como  $B\subset K$  é fechado e K é compacto, então B é compacto. Assim, já que  $\mathcal{L}_1=\{V_y:y\in B\}$  é cobertura aberta de B, existem  $y_1,\ldots,y_m\in Y$  tal que  $\mathcal{L}_1'=\{V_{y_1},\ldots,V_{y_m}\}\subset \mathcal{L}_1$  é uma subcobertura finita. Logo, considerando agora  $U=\bigcap_{i=1}^m U_{y_i}$  e  $V=\bigcup_{i=1}^m V_{y_i}$ , temos que  $U,V\in \tau_K$ ,  $B\subset V$ ,  $A\subset U$  e  $U\cap V=\emptyset$ .

a) Defina espaço localmente compacto.

**Definição:** Seja X um espaço topológico. Dizemos que X é localmente compacto si cada  $x \in X$  admite uma base de vizinhanças compactas.

b) Mostre que  $\mathbb Q$  não é localmente compacto com a topologia usual.

Seja  $x\in\mathbb{Q}$ . Por contradição, suponha que  $\mathbb{Q}$  é localmente compacto. Então para cada  $x\in\mathbb{Q}$  temos uma base de vizinhanças compactas  $\mathcal{B}_x$ . Seja  $K\in\mathcal{B}_x$  e  $\varepsilon\in\mathbb{R}^+$  tal que  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]\subset K$ . Além disso, sejam  $\alpha\in[x-\varepsilon,x+\varepsilon]-\mathbb{Q}$  e  $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$  tal que  $x_n\to\alpha$ . Então  $(x_n)_{n\in\mathbb{N}}$  é uma sequencia de pontos em  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$  tal que  $\alpha\in[x-\varepsilon,x+\varepsilon]-\mathbb{Q}$  é seu único ponto limite e portanto ela não pode ter subsequencias covergentes em  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$ . Logo,  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$  não é compacto. Mas pela topologia de subespaço de  $\mathbb{Q}$ ,  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$  é fechado, e como  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]\subset K$ , temos também que  $\mathbb{Q}\cap[x-\varepsilon,x+\varepsilon]$  é compacto, pois  $K\subset\mathbb{Q}$  é compacto, uma contradição. Portanto,  $\mathbb{Q}\hookrightarrow\mathbb{R}$  não é localmente compacto.

## 4. V o F.

a) Se X é um espaço métrico compacto, então X é separável.

**V** Seja  $\varepsilon \in \mathbb{R}^+$ . Note que  $\mathcal{U}_\varepsilon = \{B_\varepsilon(x) : x \in X\}$  é uma cobertura aberta de X. Como X é compacto, exitem  $P_\varepsilon = \{x_1, \dots, x_{n_\varepsilon}\} \in X$  tal que  $\mathcal{U}'_\varepsilon = \{B_\varepsilon(x_i) : i = 1, \dots, n_\varepsilon\}$  é uma subcobertura finita.

Então para cada  $\varepsilon \in \left(\frac{1}{n}\right)_{n \in \mathbb{N}}$  temos a subcobertura finita  $U'_{\varepsilon}$ . Considere

$$\bigcup_{\varepsilon \in \left(\frac{1}{n}\right)_{n \in \mathbb{N}}} P_{\varepsilon}.$$

Esta é uma união enumerável de conjuntos finitos e portanto é enumerável, e é denso pois

1

$$\bigcup_{\substack{\varepsilon \in \left(\frac{1}{n}\right)_{n \in \mathbb{N}} \\ x_i \in P_{\varepsilon}}} B_{\varepsilon}(x_i) = \bigcup_{\substack{\varepsilon \in \left(\frac{1}{n}\right)_{n \in \mathbb{N}} \\ x_i \in P_{\varepsilon}}} \overline{B_{\varepsilon}(x_i)}$$

$$= X.$$

b) Se X é compacto, então X é separável.

F Seja  $(Y, au_d)$  um espaço topológico, onde Y é um conjunto não enumerável e  $t_d$  é a topologia discreta em Y. Seja  $x \not\in Y$  e considere o espaço  $X = Y \cup \{x\}$  com a topologia  $au = au_d \cup \{X\}$ . Então X é um espaço topológico compacto não separável pois todos os pontos de Y são isolados em X, i.e., X não contém um subconjunto enumerável e denso. Este contraexemplo prova a fealdade da afirmação.

Contraexemplo adicional (interessante) Seja  $C_n=\{(x,y)\in\mathbb{R}^2:x^2+y^2=n^2\}$ , para n=1,2. Sejam  $X=C_1\cup C_2$ ,  $f:C_1\to C_2$  o homomorfismo radial (i.e., envia  $(x,y)\mapsto 2(x,y)$ , etc), e defina  $O(x,n)\subset C_1$  o arco de longitude  $\frac{1}{n}$  centrado no ponto x, para todo  $x\in C_1$  e  $n\in\mathbb{N}$ . Considere a coleção dos conjuntos da forma  $B(x,n)=O(x,n)\cup f(O(x,n)-\{x\})\subset X$ . Note que esta coleção é uma base para uma topologia na cual todos os pontos de  $C_2$  são isolados.

Agora, dada uma cobertura aberta  $\{A_{\alpha}\}$  de X, pela topologia definida em X, este também é uma cobertura aberta de  $C_1$ , e como  $C_1 \subset X$  tem a mesma topologia que  $C_1 \subset \mathbb{R}^2$ , temos que  $C_1 \subset \mathbb{R}^2$  é compacto. Logo existe uma subcobertura aberta  $\{A_{\alpha_1},\ldots,A_{\alpha_n}\}$  de  $C_1$ . Pela naturaleza de as vizinhanças abertas da topologia definida em X,  $X-\{A_{\alpha_1}\cup\cdots\cup A_{\alpha_1n}\}$  consiste de uma coleção finita de pontos. Adicionando vizinhanças abertas para esta quantidade finita de pontos, temos uma subcobertura finita de  $\{A_{\alpha}\}$ . Logo, X é compacto.

Mas, como todos os pontos de  $C_2$  são isolados, X não pode ser separável.

5. Sejam A e B dois subespaços conexos do espaço topológico X tais que  $A \cap \overline{B} \neq \emptyset$ . Prove que  $A \cup B$  é conexo.

Por contradição, suponha que  $A\cup B$  não é conexo. Sejam  $U,V\in \tau_X$  não vazios disjuntos tal que  $A\cup B\subseteq U\cup V$  e  $(A\cup B)\cap U\neq\emptyset$  e  $(A\cup B)\cap V\neq\emptyset$ . Como  $A\subset U\cup V,U$  e V são abertos, temos que  $A\cap U\neq\emptyset$  ou  $A\cap V\neq\emptyset$ . Mas, se  $A\cap U\neq\emptyset$  e  $A\cap V\neq\emptyset$ , então  $(A\cap U)\cap (A\cap V)=A$  é uma cisão não trivial de A, o que contradiz a conexidade de A. Logo, ou  $A\cap U\neq\emptyset$  ou  $A\cap V\neq\emptyset$ . Sem perdida de geralidade, suponha que  $A\cap U\neq\emptyset$ . Analogamente, vamos obter que ou  $B\cap U\neq\emptyset$  ou  $B\cap V\neq\emptyset$ . Se  $B\cap V=\emptyset$ , então  $(A\cup B)\cap V=(A\cap V)\cup (B\cap V)=\emptyset$  e portanto  $V=\emptyset$ . Logo, devemos ter que  $B\cap V\neq\emptyset$ .

Assim, temos que  $A\subset U$  e  $B\subseteq V$ . Sejam  $U_1=U\cap (A\cup B)$  e  $V_1=V\cap (A\cup B)$ . Note que  $U_1\cap V_1=\emptyset$  já que  $U\cap V=\emptyset$ . Seja  $p\in A\cap \overline{B}$ . Então U é uma vizinhança de p e portanto  $U\cap B\neq \emptyset$ . No entanto, como  $B\subset V$ , segue que  $U\cap B\subset V$ , e assim  $U_1\cap V_1\neq \emptyset$ , uma contradição.

6. (V ou F) Seja  $F_i\subset\mathbb{S}^2$  um conjunto enumerável e denso em  $\mathbb{S}^2$  para todo  $i\in\mathbb{N}$ . Então o conjunto  $\prod_{i\in\mathbb{N}}\left(\mathbb{S}^2-F_i\right)$  é um conjunto conexo com a topologia produto.

V Sejam  $i\in\mathbb{N}$  fixo e  $x\in F_i$ . Seja  $\varphi:\mathbb{S}^2-\{x\}\to\mathbb{R}^2$  a projeção estereográfica. Note que  $\varphi(F_i-\{x\})\subset\mathbb{R}^2$  é um subconjunto enumerável e denso de  $\mathbb{R}^2$ . É bem sabido que  $\mathbb{R}^2-\varphi(F_i-\{x\})$  é conexo por caminhos. Como em espaços localmente euclidianos (feito em aula) a conexidade por caminhos implica a conexidade, temos que  $\mathbb{R}^2-\varphi(F_i-\{x\})$  é conexo. Esto é válido para cada  $i\in\mathbb{N}$ . Também, pela conexidade ser um invariante topológico, temos que  $\mathbb{S}^2-F_i$  é conexo e conexo por caminhos. Vamos a usar esse fato para provar que

$$X = \prod_{i \in \mathbb{N}} \left( \mathbb{S}^2 - F_i \right)$$

é conexo.

Seja  $a \in X$  fixo. Seja  $S_{ax} \subset X$  um conjunto conexo contendo  $a, x \in X$ . Seja  $S = \{x \in X : \text{existe } S_{ax}\}$ . Note aue

$$S = \bigcup_{x \in S} S_{ax} \quad \mathbf{e} \quad a \in \bigcap_{x \in S} S_{ax}.$$

Agora, dados  $S\subset A\cup B$ , onde  $A,B\subset X$  são mutuamente disjuntos, então  $S_{ax}\subset A$  ou  $S_{ax}\subset B$  para cada  $x\in X$ , pois  $S_{ax}$  é conexo para cada  $x\in X$ . Lembre que  $a\in \bigcap_{x\in S}S_{ax}$ . Se  $a\in A$  então  $S_{ax}\subset A$  para cada  $x\in X$  e portanto  $B=\emptyset$ . Analogamente, se  $a\in B$  então  $A=\emptyset$ . Esto implica que S é conexo.

Para provar que X é conexo, vamos a provar que  $\overline{S}=X$  (o que é equivalente já que S é conexo). Seja  $b\in X$  e

$$U = \bigcap_{k=1}^{n} \pi_{i_k}^{-1}(U_{i_k}) \ni b$$

um aberto básico, com  $U_{i_k}$  aberto em  $\mathbb{S}^2-F_{i_k}$  para cada  $k=1,\ldots,n$ . Para cada  $k=1,\ldots,n$ , seja

$$T_k = \left\{x \in X: x_{i_j} = b_{i_j} \text{ se } j < k, x_{i_j} = a_{i_j} \text{ se } j > k, x_i = a_i \text{ se } i \neq i_1, \ldots, i_n \text{ e } x_{i_k} \in \mathbb{S}^2 - F_{i_k} \text{ \'e arbitr\'ario}\right\},$$

onde  $a_{ij}$  e  $b_{ij}$  são as componentes de  $a\in S$  e  $b\in S$ , respectivamente. Temos que  $T_k$  é homeomorfo a  $X_{ik}$  e portanto é conexo. Além disso,  $T_k\cap T_{k+1}\neq\emptyset$  para  $k=1,\ldots,n-1$ . Assim, por esta razão e o argumento usado anteriormente,  $T=\bigcup_{k=1}^n T_k$  é conexo. Como  $a\in T_1\subset S$ , temos que  $T\subset S$ . Por outro lado,

$$S \cap U \supset T \cap U \supset T_n \cap U \neq \emptyset$$
.

Esto prova que  $b \in \overline{S}$ , e portanto  $X = \overline{S}$ .

7. Considere o espaço produto  $\{0,1,2\}^{\mathbb{N}}$ . A quantidade de topologias distintas de forma a tornar este espaço produto compacto é enumerável.

**F** Considere a topologia produto em  $\{0,1,2\}^{\mathbb{N}}$ . Pelo Teorema de Tychonoff, este espaço vai ser compacto se e só se cada  $\{0,1,2\}$  é compacto com a sua topologia. Agora,  $\{0,1,2\}$  tem 29 topologias diferentes e 9 delas não equivalente. Sejam  $\tau_1,\ldots,\tau_9$  essas topologias não equivalentes em  $\{0,1,2\}$ .

Identificando  $\{0,1,2\}^{\mathbb{N}}\cong\prod_{i\in\mathbb{N}}\{0,1,2\}=\{0,1,2\}\times\{0,1,2\}\times\cdots$ , fixando a topologia  $T_i$  no primeiro membro do produto, temos 9 topologias diferentes o segundo membro. Fixando a topologia  $\tau_i$  no segundo membro, temos 9 topologias diferentes na terceiro membro do produto, e continuando de esta forma obtemos vamos obter  $9^{|\mathbb{N}|}$  espaços não equivalentes, e portanto uma quantidade não enumerável de topologias que tornar  $\{0,1,2\}^{\mathbb{N}}$ .