CG1111A: Engineering Principles & Practice I

Basics of Operational Amplifiers

Learning Outcomes

Understand:

- How op-amps operate
- The difference between inverting and non-inverting amplifiers
- How to adjust the amplification gains of inverting & non-inverting amplifiers
- How to analyze circuits containing op-amps
- The practical considerations of op-amp circuits

What is an "Operational Amplifier"?

 An "operational amplifier (op-amp)" is an integrated circuit that can amplify weak electric signals

Credit: Image from ablic.com

- It has two input signal terminals and one output signal terminal
- It amplifies and outputs the voltage difference between the two input terminals

Op-Amp Terminals

Op-Amp Equivalent Circuit

- A is the open-loop voltage gain
 - -It is very large, approaching infinity
- R_{in} is the input impedance (very large) &
 R_{out} is the output impedance (very small)
- To simplify analysis, we always assume infinite R_{in} and A, and zero R_{out}

What is an Op-amp IC Chip?

- Notch or polarity dot indicate the location of pin 1
- Quad and dual op-amp IC have 4 and 2 independent op-amps on the same chip sharing the same supplies (V_{S+} and V_{S-})

How to Read Its Datasheet?

		IVIIN: 3 V			3 V	MIN: ±1.5 V				
		- .	,	MAX:	30 V	√ MA	\ Χ: Ξ	£15 V		
					MIN	1	MAX	UNIT		
			LM358B, LM358BA, LM29LM2904BA	904B,	3		36			
Vs	Supply voltage, V _S = ([V+	·] – [V–])	LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V		3		30	V		
			LM2904		3		26			
PARAMETER			TEST CONDITIONS			TYP	MAX	UNIT		
INPUT IMPEDANCE										
Z _{ID}	Differential					10 0.1		MΩ pF		
OPEN-LOOP GAIN										
A _{OL}	Open-loop voltage gain	V_S = 15 V; V_O = 1 V to 11 V; R_L ≥ 10 k Ω , connected to (V–) $ T_A = -40^{\circ}C \text{ to } +85 $		70	140		V/mV			
	Open loop voltage gain			°C 35			V/mV			
Ro	Open-loop output resistance	f = 1 MHz, I _O = 0 A				300		Ω		

https://www.ti.com/lit/gpn/lm358

140 V/mV = 140000

Single supply: **Dual** supply:

MINI. 2 V

- Identify the key parameters, such as V_S (Supplies), A_{OI} (Gain), Z_{ID} (Input Impedance) and R_O (Output Impedance)
- Parameters are obtained with certain test conditions
- MIN, TYP, MAX specify either allowable range (e.g., V_s), or potential parameter fluctuations (e.g., A_{Ol})
- Unit is important for all engineering parameters

Typical Op-amp Parameters

Parameter	Variable	Typical Ranges	Ideal Values	
Voltage Gain	Α	10 ⁵ to 10 ⁸	∞	
Input Impedance	R _{in}	10^5 to 10^8 Ω	∞ Ω	
Output Impedance	R _{out}	A few tens to a few hundreds Ω	0 Ω	
Supply Voltage	V_{S+} or V_{cc} V_{S-} or V_{EE} or $-V_{cc}$	3 to 30 V -30 to 0 V	N/A N/A	

How to Analyze Op-amp Circuit?

Important Observations:

- No current flows into the op-amp, i.e., i_{-} and $i_{+} = 0$
- If A is large and v_{out} is finite

$$\Rightarrow v_{\rm id} \approx 0 \Rightarrow v_{+} \approx v_{-}$$

- ⇒ Virtual short
- Analysis is only applicable to closed-loop with -ve feedback

"Transfer Function" for Op-amp Circuit

$$v_{\rm id} = 0 - v_1$$
 and $v_{\rm out} = Av_{\rm id} = A(-v_1)$

$$\Rightarrow v_1 = -\frac{v_{\rm out}}{A}$$

$$\frac{v_{\text{in}} - v_1}{R_{\text{i}}} = \frac{v_1 - v_{\text{out}}}{R_{\text{f}}}$$
KCL:
$$i_- = 0 \implies i_1 = i_2$$

$$\Rightarrow \frac{v_{\text{in}} - \left(-\frac{v_{\text{out}}}{A}\right)}{R_{\text{i}}} = \frac{\left(-\frac{v_{\text{out}}}{A}\right) - v_{\text{out}}}{R_{\text{f}}}$$

$$\Rightarrow \frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}} \frac{1}{\frac{R_{\text{i}} + R_{\text{f}}}{AR_{\text{i}}} + 1} \approx -\frac{R_{\text{f}}}{R_{\text{i}}}$$

Transfer Function

<<1 ⇒ negligible even if A~10000 ∴ A → ∞ is a good approximation

Real Wire

$$V_A \longrightarrow V_B \Rightarrow V_A = V_B$$
 (Real short)

$$V_{C} \bullet \bullet V_{D} \Rightarrow V_{C} \approx V_{D}$$
 (Virtual short)

Op-amp Golden Rules

• Rule 1: In a closed loop with –ve feedback, the output attempts to do whatever is necessary to make the voltage difference between the inputs zero

- The voltage gain of a real op-amp is so high that a fraction of a mV difference between the V_+ & V_- inputs will achieve the desired finite output V_+
- -"Virtual short", i.e., V₊ ≈ V₋
- Rule 2: The inputs draw no current
 - The ideal op-amp has very large input impedance (R_{in}). Thus, the current drawn at the two input terminals ~0.

What is Closed Loop with –ve Feedback?

- Closed loop: There is connection between output and input
- -ve feedback: The output is fed back to the input in such a way to reduce the output fluctuations

Inverting Amplifier

$$\frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}}$$

Derivation based on Golden Rules

$$v_1 = v_- \approx v_+ = 0$$
 [: Virtual Short]

$$\frac{v_{\rm in} - v_1}{R_{\rm i}} = \frac{v_1 - v_{\rm out}}{R_{\rm f}} \quad [\because \quad i_- \approx 0]$$

$$\Rightarrow \frac{v_{\text{in}}}{R_{\text{i}}} = \frac{-v_{\text{out}}}{R_{\text{f}}} \quad \Rightarrow \quad \frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}}$$

Non-Inverting Amplifier

$$\frac{v_{\text{out}}}{v_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{\text{i}}}$$

Derivation based on Golden Rules

$$v_{-} \approx v_{+} = v_{\rm in} \quad [\because \quad \text{Virtual Short}]$$

$$v_{-} = v_{\text{out}} \times \frac{R_{\text{i}}}{R_{\text{i}} + R_{\text{f}}} \approx v_{\text{in}} \quad [\because i_{-} \approx 0]$$

$$\Rightarrow \frac{v_{\text{out}}}{v_{\text{in}}} = \left(1 + \frac{R_{\text{f}}}{R_{\text{i}}}\right)$$

Significance of Ratio

$$\frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}}$$

If R_f and R_i varies by 5% each, the resulting gain could vary by as much as 10% from desired value!

How to overcome the above issue?

Use resistors from **same batch** (match very well)! For example, if the desired R_f/R_i ratio is 4, we use 5 identical resistors: R_f uses 4 resistors, and R_i uses 1 resistor. An accurate gain of 4 can be obtained! \Rightarrow Principle exploited in IC design

- Inverting and non-inverting amplifiers are also called feedback amplifiers
- One key characteristic is their gain dependency on resistance ratio
- This is desirable as accurate gain can be obtained despite component tolerance and temperature drift

Independent of Temperature Drift

$$\mathbf{R} = \mathbf{R}_{ref} \left[1 + \alpha (\mathbf{T} - \mathbf{T}_{ref}) \right]$$

Where,

R = Conductor resistance at temperature "T"

 \mathbf{R}_{ref} = Conductor resistance at reference temperature T_{ref} , usually 20°C, but sometimes 0°C.

Temperature coefficient of resistance for conductor material.

T = Conductor temperature in degrees Celcius.

 $T_{ref} = \frac{\text{Reference temperature that } \alpha \text{ is specified at for the conductor material}}{}$

$$\frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{R_{\text{f0}}[1 + \alpha(T - T_{\text{ref}})]}{R_{\text{i0}}[1 + \alpha(T - T_{\text{ref}})]} = -\frac{R_{\text{f0}}}{R_{\text{i0}}}$$

Resistors exhibit temperature variation. If resistor of same type with identical temperature coefficients are used, the resulting gain would not drift with temperature.

Significance of Feedback

Harold Stephen Black invented negative feedback amplifier in 1928

Permissible Resistor Range

- In practice, $i_{-} \ll i_{1}$, and we can assume $i_{-} \approx 0$
- However, if R_i is comparable to R_{in} , the current $i_- = \frac{v_1}{R_{in}}$ would be comparable to $i_1 = \frac{v_{in} v_1}{R_i}$ (and v_{in} could be comparable to v_1) and we cannot assume $i_- \approx 0$ in our analysis
- Also, if R_f is comparable to R_{out} , v_{out} would not be equal to Av_{id}
- Hence, R_i and R_f must be chosen to be $\gg R_{out}$, and $\ll R_{in}$
- Rule of thumb: R_i and R_f should be within $(10 \times R_{out}, 0.1 \times R_{in})$

Positive vs Negative Gain

- Negative gain does not mean loss
- Negative gain only means output is the inverted version of input (180° phase shift)
- Only when gain magnitude is less than 1, there is loss

Single Supply Vs Dual Supply

 An op-amp can be powered either by a Single Power Supply or a Dual Power Supply

Single Power Supply
$$(V_{cc} > V_{cc} - V_{ovh} \ge V_{out} \ge V_{ovh})$$

Dual Power Supply
$$(V_{\rm cc} > V_{\rm cc} - V_{\rm ovh} \ge V_{\rm out} \ge -V_{\rm cc} + V_{\rm ovh} > -V_{\rm cc})$$

THANK YOU