

Redes de Computadores

Camada de Rede

Prof. Everthon Valadão

Material baseado nos slides de:

Dorgival Guedes (UFMG) e Fábio Costa (UFG)

(última modificação: 26/10/2020)

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

Funções básicas da camada de rede:

Endereçamento

 identificação de cada máquina, independente de sua localização ou da tecnologia

Roteamento

 determinação de um caminho entre duas máquinas quaisquer da internet

- Conexão entre as redes é feita por roteadores
 - ° Equipamento com finalidade especial: interconexão
 - ° Deve ser capaz de lidar com diferentes tecnologias ("ponte")
- A rede virtual resultante deve oferecer os mesmos serviços em todos os seus pontos

Modelo de serviço da Internet

- Sem conexão (baseado em datagramas)
- Entrega segundo "melhor esforço" possível
 - ° faz o melhor que pode, mas não garante a entrega
- Serviço não confiável:
 - Pacotes podem ser perdidos
 - Pacotes podem ser entregues fora de ordem
 - ° Várias cópias de um pacote podem ser entregues
 - Pacotes podem ser atrasados por muito tempo

Endereçamento global dos nós

- Componente crítico da abstração fornecida pela Internet
- O IP é um endereço lógico, independente de endereços físicos como os usados em redes locais (MAC)
 - ° o IP pode mudar quando se muda de rede, o MAC sempre é o mesmo
- Ajuda a criar a ilusão de uma rede única e integrada
- Usuários, aplicações e protocolos de alto nível usam endereços lógicos (IP) para se comunicar

Endereço IPv4

Dividido em endereço de rede (prefixo) e endereço de máquina (sufixo)

Endereço IPv4: máscara de rede

Notação de ponto decimal

- 32 bits normalmente visualizados como quatro grupos de 1 byte (8 bits)
- Máscara identificada pelo seu comprimento ou como padrão de 1's

° Exemplos:

```
IP (binário)
                                                      Máscara
                                         (decimal)
10000001 00110100 00000110 00000000 -> 129.52.6.0
                                                      255.255.255.0
10000001 00110100 00000110 00000000 -> 129.52.6.0
                                                      /24
10000000 00001010 00000010 00000011 -> 128.10.2.3
                                                      255.255.0.0
                                                      /16
10000000 00001010 00000010 00000011 -> 128.10.2.3
                                                      /26
11000000 00000101 00110000 00000011 -> 192.5.48.3
00001010 00000010 00000000 00100101 -> 10.2.0.37
                                                      /20
10000000 10000000 11111111 00000000 -> 128.128.255.0
```


Endereços IPv4 "especiais"

- Alguns endereços são especiais e reservados:
 - ° Sufixo todo em zeros (*.0): endereço identifica uma subrede
 - ex.: 200.131.160.0 /24
 - ° Sufixo todo em uns (*.255): endereço de *broadcast* (envia o pacote a todas as máquinas daquela subrede)
 - ex.: 200.131.160.255 /24
 - Existem faixas especiais de IPv4 para redes privadas (RFC-1918), de uso apenas local pois não são publicamente roteadas na Internet global:
 - ex.:

```
° 10.0.0.0/8 de 10.0.0.0 até 10.255.255.255
° 172.16.0.0/12 de 172.16.0.0 até 172.31.255.255
° 192.168.0.0/16 de 192.168.0.0 até 192.168.255.255
```

→ OBS.: pacotes com destinatário nesses endereços não são roteados para fora da rede local, ou seja, não são "endereços válidos na Internet"!

Segmentação de rede (subredes)

- Cada número de rede tem sua máscara de rede
- A máscara permite definir se um endereço IP é local ou não

- Exemplos para a rede 131.108.0.0 /16
 - 131.108.1.1 está na mesma rede local que 131.108.1.2
 - mas 131.109.1.3 NÃO está na mesma rede que 131.108.1.4
 - 131.108.2.2 está na mesma rede local que 131.108.100.200
 - mas 130.108.100.200 NÃO está na mesma rede que 131.108.100.200

Segmentação de rede (subredes)

Uma entidade pode <u>subdividir sua faixa de endereços</u> IP entre sub-redes

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

- cada datagrama contém o endereço do destino
- cada interface tem seu endereço e sua máscara
- comportamento depende de <u>o endereço de destino estar na</u> mesma rede a que pertence a interface:

```
SE ( (end_destino & mascara) == (end_interface & mascara) )
envia datagrama diretamente ao host de destino, pois ele está na mesma rede local que o roteador
SENÃO
```

determina próximo passo para o pacote, de acordo com as redes as quais o roteador tem acesso

Expedição de datagramas

- A tabela de expedição controla o roteamento
 - ° mapeia endereços de rede para o próximo roteador
 - ° pode haver uma rota de saída padrão (gateway), na falta de uma rota específica

Problemas associados à expedição

- Cada rede pode ter limites diferentes para o tamanho máximo de pacotes
 - ° É preciso ser capaz de enviar pacotes grandes em qualquer rede
 - ° Consequência: fragmentação e remontagem de pacotes
- Em uma rede, a entrega de pacotes depende dos endereços de enlace (rede local)
 - ° É preciso associar endereços IP locais a endereços físicos
 - ° Protocolo ARP

Fragmentação de pacotes

- A camada de interface de rede (enlace/física), conforme o protocolo da tecnologia de acesso, especifica um tamanho máximo do pacote que pode ser nela enviado:
 - MTU (Maximum Transfer Unit)

Qual o tamanho ideal do datagrama neste caso?

Fragmentação e Remontagem

- Enlaces de rede têm MTU correspondente ao maior quadro que pode ser transportado pela camada de enlace:
 - Exemplos de tecnologias de enlace que possuem MTU diferentes

Ethernet: 1492 bytes

• FDDI: 4352 bytes

• Wi-Fi: 2304 – 7981 bytes

- Datagramas IP grandes demais devem ser divididos (fragmentados) pelos roteadores
 - um datagrama dá origem a vários datagramas
 - "remontagem" ocorre apenas no destino final
 - O cabeçalho do protocolo IP é usado para identificar e ordenar datagramas relacionados

Fragmentação: princípios básicos

- A informação do cabeçalho original é mantida
 - ° mantém o end.fonte, end.destino e nº de identificação do datagrama
 - ° ajusta o FLAG para 1 nos fragmentos e 0 no último
 - ° o deslocamento (OFFSET) determina a posição do fragmento no datagrama original
- Fragmenta apenas se for necessário (MTU < pacote)
 - ° tentar evitar fragmentação já no próprio nó de origem (como?)
 - ° nos intermediários é permitido re-fragmentar, se necessário
 - ° porém, a remontagem é feita só no nó de destino

OBS.: o IP não tenta recuperar fragmentos perdidos!

→ a camada de transporte é que deverá se preocupar com isso...

Remontagem de pacotes

- Processo inverso ao da fragmentação
 - ° responsável: computador destino
 - ° "culpado": roteadores intermediários
- O que ocorre se fragmentos s\u00e3o perdidos, chegam foram de ordem ou atrasados?
 - ° RX não tem como informar TX para re-enviar um fragmento pois TX *não conhece nada sobre a fragmentação*!
- Solução:
 - ° RX ao receber o primeiro fragmento inicializa um temporizador
 - Se todos os fragmentos não chegam antes do temporizador se esgotar então os fragmentos recebidos são descartados

Problemas associados à expedição

- Cada rede pode ter limites diferentes para o tamanho máximo de pacotes (MTU)
 - ° não podemos simplesmente estabelecer uma MTU global como a menor MTU
 - ° é preciso ser capaz de enviar pacotes grandes em qualquer rede
 - Razão de (in)eficiência = (Tamanho datagrama)/(Tamanho cabeçalho)
 - ° porém, o datagrama deveria ser tão grande quando possível?
 - Fragmentação e remontagem de pacotes: perda "parcial" é na verdade total
- Em uma rede, a entrega de pacotes ao destino final depende dos endereços físicos de enlace (rede local)
 - ° é preciso associar o endereço IP na rede local a um endereço físico

Como identificar o destino na rede física?

- A entrega local de pacotes (IP) na LAN depende dos endereços de enlace (MAC)
- Pacotes IP trazem endereços IP, mas para entregá-los a um destino na LAN é preciso conhecer o endereço físico!
 - ° endereço físico (MAC) não tem nada a ver com endereço IP
 - ° os programas usam endereço IP (end. lógico) pra se comunicar e as placas de rede usam o endereço MAC (end. físico)
- Em redes Ethernet, por ex., uma máquina só recebe um pacote se ele contém o **seu** endereço físico
 - é preciso "perguntar" às máquinas da rede qual é o endereço físico da máquina que se deseja alcançar
 - protocolo utiliza mensagens broadcast para que todas as máquinas participem do processo

Resolução de Endereços:

endereço lógico (IP) para físico (MAC)

- Protocolo ARP (Address Resolution Protocol)
 - ° protocolo da camada de **enlace**
 - ° traduz resolve o endereço lógico (IP) em físico (MAC)
 - ° gerencia cache de associações entre endereços IP e MAC
 - ° entradas são descartadas após 10 min. (aprox.) sem utilização
 - ° tabela é atualizada mesmo se a entrada já existe

resolução de endereço lógico (IP) em físico (MAC)

Como o host A determina endereço físico (hardware) do host B?

resolução de endereço lógico (IP) em físico (MAC)

é 192.168.1.101 (host B)?

resolução de endereço lógico (IP) em físico (MAC)

Protocolo de enlace (ex.: Ethernet)

realiza a entrega do quadro com o endereço físico (MAC)

É possível consultar endereços MAC dos computadores vizinhos (na sua rede local) com o comando

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

Protocolos auxiliares na operação da rede

Gerência de configuração

- ° cada máquina deve receber informações básicas para operar
 - endereço e rota padrão (caminho de saída dos dados)
- ° isso pode ser feito
 - manualmente, portanto propenso a enganos e conflitos
 - automaticamente, através do protocolo DCHP (camada de aplicação)

Notificação de erros e controle

- problemas na operação da rede podem ser notificados
- o protocolo de controle geral deve ser reconhecido: ICMP (camada de rede)

Transporte de pacotes sobre outras redes

- ° em alguns casos, os pacotes de uma rede devem passar sobre uma rede intermediária sem serem processados
- ° criam-se "túneis" onde pacotes entram e só aparecem em outro ponto
- princípio de redes virtuais (VPNs)

Qual a informação mínima para uma máquina operar na rede?

- Quem sou eu?
 - ° Endereço IP e máscara de subrede
- Pra onde vou?
 - ° Caminho default de saída dos pacotes destinados a outras redes
- Cadê os outros?
 - ° Processo de descobrimento de endereços de outras máquinas

- Permite que um hospedeiro obtenha um endereço IP automaticamente
- Extremamente útil para estações móveis (ex.: notebooks, smartphones)
 - ° se conectam a diferentes redes a cada nova localização
 - ° muitos usuários em trânsito, endereços utilizados por tempo limitado
- Também é muito útil para ISPs, ex.: tem 2.000 clientes mas só 400 online

- O IP recebido através de DHCP é "emprestado" por um intervalo de tempo definido (*leasing*), devendo portanto ser renovado
 - ° o hospedeiro pode receber um IP temporário diferente cada vez que se conectar à rede!
 - ° é possível "amarrar" a oferta do endereço IP ao MAC, de maneira que o hospedeiro sempre receba o mesmo endereço.
- O DHCP permite que o hospedeiro descubra informações adicionais:
 - ° Máscara de subrede;
 - Endereço do primeiro roteador (default gateway);
 - Endereço do servidor DNS local

Protocolos auxiliares na operação da rede

Gerência de configuração

- ° cada máquina deve receber informações básicas para operar
 - endereço e rota padrão (caminho de saída dos dados)
- isso pode ser feito
 - manualmente, portanto propenso a enganos e conflitos
 - automaticamente, através do protocolo DCHP (camada de aplicação)

Notificação de erros e controle

- ° problemas na operação da rede podem ser notificados
- ° protocolo de controle geral deve ser reconhecido: ICMP (camada de **rede**)

Transporte de pacotes sobre outras redes

- ° em alguns casos, os pacotes de uma rede devem passar sobre uma rede intermediária sem serem processados
- ° criam-se "túneis" onde pacotes entram e só aparecem em outro ponto
- princípio de redes virtuais (VPNs)

Internet Control Message Protocol (ICMP)

- Troca de mensagens entre elementos da rede IP para controle da transmissão e roteamento
 - Controle de fluxo (source quench)
 - Notificação de falhas (ex.: destino inalcansável, checksum, remontagem)
 - Redirecionamento de rotas
 - Requisição de informações (ping)

Protocolos auxiliares na operação da rede

Gerência de configuração

- cada máquina deve receber informações básicas para operar
 - endereço e rota padrão (caminho de saída dos dados)
- isso pode ser feito
 - manualmente, portanto propenso a enganos e conflitos
 - automaticamente, através do protocolo DCHP (camada de aplicação)

Notificação de erros e controle

- problemas na operação da rede podem ser notificados
- oprotocolo de controle geral deve ser reconhecido: ICMP (camada de **rede**)

Transporte de pacotes sobre outras redes

- em alguns casos, os pacotes de uma rede devem passar sobre uma rede intermediária (ex.: rede insegura, outra tecnologia)
- ° criam-se "túneis" onde pacotes entram e só aparecem em outro ponto
- ° princípio de redes virtuais (VPNs)

Redes virtuais (VPNs)

- Organizações podem ter políticas de segurança/acesso definidas em termos de suas redes "privativas"
- Na prática, partes de cada organização podem estar em pontos diferentes da Internet
- VPN: Virtual Private Network

Redes virtuais (VPNs)

- São túneis de criptografia entre pontos autorizados
 - ° criados através da Internet (rede pública) e/ou redes privadas
 - ° visam a transferência de informações de modo seguro, entre redes corporativas ou usuários remotos.
- A segurança é a primeira e mais importante função da VPN
 - dados privados serão transmitidos pela Internet (meio inseguro)
 - ° não se deve permitir que sejam modificados ou interceptados
 - oferecem recursos de autenticação e criptografia (ex.: extensão <u>IPSec</u>)
- Outra função é a conexão entre corporações ("Extranets") através da Internet
 - ° ex.: conectar filiais distantes de uma empresa
 - ° redução de custos, pois elimina a necessidade de links dedicados
 - ° simplifica a operacionalização da WAN: a conexão LAN-Internet-LAN fica parcialmente a cargo dos provedores de acesso.
- Mais informações: http://www.rnp.br/newsgen/9811/vpn.html

Exemplos de VPN

Acesso Remoto (via Internet)

rede virtual privada entre o usuário remoto e o servidor de VPN corporativo através da Internet.

Conexão de LANs (via Internet)

substitui as conexões entre LANs através de circuitos dedicados de longa distância

Nitual Private Network Rede Corporativa Rede Invisível

Conexão de PCs (via INTRAnet)

redes locais departamentais são implementadas fisicamente separadas da LAN corporativa (dados confidenciais)

Redes virtuais e túneis (tunelamento)

- As VPNs baseiam-se na tecnologia de tunelamento cuja existência é anterior a elas.
 - ° mas antes de encapsular o pacote que será transportado, seu conteúdo é criptografado
- Pacote IP pode trafegar dentro de um outro pacote IP
 - ° máquina origem (na rede 1) gera pacote como se estivesse na rede 2
 - ° roteador empacota-o dentro de outro pacote IP e envia para a rede 2
 - ° na rede 2, pacote original é desempacotado no servidor da VPN e segue normalmente
 - ° para todos os efeitos, máquina origem parece estar na rede 2

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

Diferença de Repasse x Roteamento

° Repasse: selecionar um porto de saída baseado no endereço de destino e na tabela de rotas

SE ((end_destino & mascara) == (end_interface & mascara))
envia datagrama diretamente ao host de destino
SENÃO
determina próximo passo (roteador) pela tabela de rotas

- Diferença de Repasse x Roteamento
 - ° Roteamento: processo de construção da tabela de rotas
 - ° É como os roteadores passam a conhecer as "redes vizinhas"

Roteamento

- Diferença de Repasse x Roteamento
 - ° Roteamento: processo de construção da tabela de rotas
 - ° Para isso, a rede deve ser vista como um grafo:

- ° Problema: encontrar o caminho de menor custo entre nós do grafo
- ° Fatores relevantes: estáticos (topologia) e dinâmicos (carga)

Determinação de rotas

- Responsabilidade de cada entidade ligada à rede: Sistema Autônomo (AS: <u>Autonomous System</u>)
 - ° um AS corresponde a um domínio administrativo
 - ° recebe do órgão regulador um nº exclusivo de 16 bits
 - tem controle absoluto sobre caminhos internos
 - ° exemplos: universidades, empresas, ISPs, backbones
- Hierarquia de propagação de rotas em dois níveis
 - protocolo interior (IGP, interior gateway protocol), cada AS pode escolher o seu (ex.: RIP, OSPF)
 - ° protocolo **exterior** (BGP, *exterior gateway protocol*), todo AS deve utilizar esse protocolo padrão (<u>comum a toda a Internet</u>) para comunicar suas rotas aos demais

Protocolos <u>interiores</u> populares (intra-AS)

- RIP: Protocolo de Informação de Roteamento
 - ° desenvolvido para a rede da Xerox (1988) e distribuído com o Unix
 - compara matematicamente rotas para identificar o melhor trajeto
 - baseado na <u>contagem de roteadores</u> (hop-count)
- OSPF: Menor Rota Livre Primeiro
 - ° criado (<u>1991</u>) para substituir o protocolo RIP
 - padrão Internet mais recente, <u>é o mais utilizado atualmente</u>
 - cada nó constrói uma visão da topologia da rede e descobre sozinho qual é a melhor rota
 - → **BÔNUS:** permite <u>balanceamento de carga</u> e suporta <u>autenticação</u> de roteadores

Métricas usadas para o roteamento

- Métrica original da ARPANET
 - número de pacotes enfileirados em cada link ("engarrafamento")
 - ° MAS.... não considerava latência (atraso) nem banda
- Protocolos de roteamento simples (RIP)
 - ° contagem de saltos (links/roteadores) no caminho
- Novas métricas
 - atraso = tempo na fila + tempo de transmissão + latência
 - ° custo do link = atraso médio por algum período de tempo
 - ° sintonia fina: faixa de valores limitada, inclui utilização do link
- → em suma: escolher a "melhor" rota pode ser complicado, não há uma resposta trivial

Estrutura da Internet

BGP-4: Protocolo de Roteador de Borda

- Cada Sistema Autônomo (AS) tem:
 - ° um ou mais roteadores de borda (onde os pacotes saem da rede)
 - ° um "porta-voz" BGP, que anuncia:
 - redes locais internas ao AS
 - outras redes alcançáveis através dele
 - informações sobre caminhos conhecidos (tabela de rotas)
 - ° porta-voz pode também revogar caminhos previamente anunciados

Nosso objetivo:

- entender os princípios dos serviços da camada de rede:
 - Modelo de serviço
 - Endereçamento
 - Roteamento
 - IPv6

Tópicos abordados:

- Endereçamento (IPv4), máscaras e sub-redes
- Expedição de pacotes
- Protocolos auxiliares
- Roteamento interno (RIP, OSPF) e entre sistemas autônomos (BGP)
- Protocolo IPv6

IPv6: motivações

- Motivação básica para criar nova versão de IP: esgotamento dos endereços
 - As pressões por mais endereços haviam diminuído por um tempo com:
 - uso de firewalls, IP forwarding, NAT, etc.
 - Recentemente, ressurgiram pressões no sentido inverso
 - P2P, multimídia pessoa-a-pessoa (VoIP, vídeo)
- Motivação secundária: suportar novas aplicações, como vídeo sob demanda (VoD) e voz sobre IP (VoIP)
 - ° Cabeçalho inclui identificação de fluxo para roteadores com QoS
 - pacotes num fluxo (mesma origem e destino) devem ser tratados da mesma maneira
 - as vantagens relativas ao tratamento de novas aplicações podem justificar adoção

IPv6: características

- Endereços sem classes, com 128 bits
- Previsão para uso eficiente de multicast
- Suporte a serviços de tempo real
- O cabeçalho obrigatório foi "enxugado"
 - ° quão mais simples, mais rápido de processar!
- Adicionados novos campos do cabeçalho IPv6:
 - Rótulo do Fluxo: identifica datagramas do mesmo "fluxo" (pacotes de mesma origem/destino), para serem tratados da mesma maneira.
 - Classe de Tráfico (prioridade): permite definir prioridades diferenciadas para vários fluxos de informação
- Checksum: foi removido inteiramente para <u>reduzir o tempo de processamento</u> em cada roteador
 - ° as camadas de Transporte, de Rede e de Enlace fazem um checksum!

Transição do IPv4 para IPv6

- Nem todos os roteadores poderão ser atualizados simultaneamente
 - ° não haverá um "dia da vacinação universal"
 - ° até lá, a rede deverá operar com os dois tipos de datagramas simultaneamente presentes
- Duas abordagens propostas:
 - pilha de protocolos dupla: alguns roteadores, com pilhas de protocolos duais (IPv6 e IPv4), podem trocar pacotes nos dois formatos e traduzir de um formato para o outro
 - tunelamento: IPv6 transportado dentro de pacotes IPv4 entre roteadores
 IPv4

Abordagem "pilha dupla com tradução"

Abordagem de "tunelamento"

NDP: Protocolo de Descoberta de Vizinhos

- Usado com o IPv6, define cinco tipos de pacotes ICMPv6 que desempenham funções <u>semelhantes</u> ao ARP e ICMP do IPv4
- O protocolo NDP é responsável por:
 - autoconfiguração dos nós
 - descoberta de outros nós no enlace
 - determinação dos endereços físicos de outros nós
 - detecção de duplicação de endereços
 - ° descoberta de roteadores disponíveis
 - descoberta de servidores DNS
 - descoberta de endereços de prefixo (end. de rede)
 - ° identificação de indisponibilidade de um vizinho
 - ° manter informações de alcance sobre os caminhos para nós vizinhos

Saiba mais sobre o IPv6

- http://www.youtube.com/watch?v=-Uwjt32NvVA
- http://www.worldipv6launch.org/measurements/
- http://ipv6.br/
- http://www.google.com/intl/pt-BR/ipv6/
- http://pt.wikipedia.org/wiki/IPv6
- http://www.infowester.com/ipv6.php

