Chương 2. Đường đi ngắn nhất

- 2.1 Biểu diễn đồ thị bằng ma trận:
- 2.1.1 Biểu diễn bằng ma trận kề:
- 2.1.1.1 Định nghĩa: Cho G=(V, E), tập các đỉnh V={0, ..., n-1} . Ma trận kề A của G là ma trận vuông, cấp n có a_{ii} được định nghĩa:
 - a_{ij} số cạnh liên thuộc với đỉnh i và đỉnh j. i chỉ số hàng, j chỉ số cột.

Ví dụ: Ma trận kề A được lập như bảng sau:

- a_{ij} số cạnh liên thuộc với đỉnh i và đỉnh j.
- > i chỉ số hàng, j chỉ số cột.

 $a_{22} = 1$ (đỉnh 2 có 1 cạnh liên thuộc với d)

a_{ii} số cạnh liên thuộc với đỉnh i và đỉnh j

	0	1	2	3
0				
1				
2				
3				

• Ma trận kề của G có hướng:
a_{ii} là số cạnh hướng từ đỉnh i đến đỉnh j.

a_{ij} là số cạnh hướng từ đỉnh i đến đỉnh j

	0	1	2	3
0				
1				
2				
3				

2.1.2 Biểu diễn bằng ma trận liên thuộc:

2.1.2.1 Định nghĩa : Cho G=(V, E), có $V=\{0, 1,...,n-1\}$ và $E=\{e_i: i=0,..., m-1\}$. **Ma trận liên thuộc A** là ma trận có a_{ii} được định nghĩa:

 $a_{ij} = 1$ nếu e_j *liên thuộc* với đỉnh i và $a_{ij} = 0$ nếu ngược lại.

Nếu G có hướng thì

 $a_{ij} = 1$, nếu e_j hướng ra từ đỉnh i và $a_{ij} = -1$ nếu e_i hướng vào đỉnh i.

→ Vòng ở đỉnh i được xem là *hướng ra từ* đỉnh i.

 \rightarrow $a_{ij} = 0$, nếu e_i không liên kết với đỉnh i.

Ví dụ: Ma trận liên kết A được lập như bảng sau:

	e_0	e_1	e_2	e_3	e_4
	а	b	С	d	e
0					
1					
2					
3					

 $a_{ij} = 1$ nếu e_j *liên thuộc* với đỉnh i và $a_{ij} = 0$ nếu ngược lại Ma trận liên thuộc của G có hướng :

 $a_{ij} = 1$, nếu e_j hướng ra từ đỉnh i và $a_{ij} = -1$ nếu e_j hướng vào đỉnh i

	a	b	С	d	е
0	1	0	0	0	1
1	-1	-1	1	0	-1
2	0	1	-1	1	0
3	0	0	0	0	0

a_{1e} = -1 (cạnh hướng đỉnh 1)

2.1.3 Biểu diễn bằng ma trận trọng số:

2.1.3.1 Định nghĩa:

- Đồ thị G=(V, E) có hướng, V = {0, 1, 2, . ., n-1}, có trọng số, không cạnh song song cùng hướng, không vòng. Ma trận trọng số W được định nghĩa:

$$-W = (w_{ij}) = \begin{cases} 0 & \text{n\'eu i=j,} \\ \text{trọng số của cạnh có hướng (i, j)} \in E \\ \infty & \text{n\'eu i} \neq j \ và (i, j) \not\in E. \end{cases}$$

Ma trận trọng số của G có hướng :

2.2 Đường đi ngắn nhất:

2.2.1 Định nghĩa:

Cho G=(V, E), có trọng số, có hướng.

- Trọng số của một đường đi từ đỉnh v đến w là tổng trọng số các cạnh của đường đi đó.
- Đường đi ngắn nhất giữa 2 đỉnh v, w là đường đi trọng số bé nhất.

Qui tắc tính với ∞:

- 1) Với mọi $a \in \mathbb{R}$, $a < \infty \Rightarrow a + \infty = \infty$
- 2) $\infty + \infty = \infty$
- 3) $\infty = \infty$ (phép so sánh)
- 4) Với mọi $a \in \mathbb{R}$ không phải là ∞ thì $a < \infty$ (phép so sánh)
- ➤ Trong cài đặt chương trình, ∞ có thể được thay thế bởi bất ký hiệu nào miễn là ký hiệu đó thỏa 4 tính chất trên.

2.3 Thuật toán Dijkstra:

2.3.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số, không cạnh song song cùng hướng, không vòng.
- $W = (w_{ij})$, $w_{ij} \ge 0$ hoặc $w_{ij} = \infty$.
- Thuật toán tìm đường đi ngắn nhất từ đỉnh s đến tất cả các đỉnh.
- Giả sử có đường đi từ s đến tất cả các đỉnh.

2.3.2 Thuật toán:

```
void Dijkstra
                      while (T != Ø)
 for (v \in V)
                        Tim u \in T sao cho d[u] = min \{ d[z]: z \in T \}
                        T = T \setminus \{u\};
    d[v] = w[s,v];
                        for (v \in T) do
    Truoc[v] = s;
                          if (d[v] > d[u] + w[u,v]) then
                            d[v] = d[u] + w[u,v]; Truoc[v] = u;
 d[s] = 0;
 T = V \setminus \{s\};
                      /* Kết thúc while (T != Ø) */
                      } /* Kết thúc void Dijkstra */
```

$$S = 1$$

$$\begin{array}{c}
2 & 1 \\
\hline
1 & 4 \\
\hline
7 & 4 \\
\hline
5 & 4
\end{array}$$

	1	2	3	4	5
1	\bigcirc	1	00	00	7
2	00	00	1	4	8
3	00	00	œ	2	4
4	00	∞	1	00	∞
5	œ	œ	œ	4	œ

Т	d[2],	d[3], d[4],		d[5],
	Truoc[2]	Truoc[3]	Truoc[4]	Truoc[5]
2, 3, 4, 5	1, 1	∞, 1	∞, 1	7, 1
3, 4, 5		2, 2	5, 2	7, 1
4, 5			4, 3	6, 3
5				6, 3
Ø	1, 1	2, 2	4, 3	6, 3

2.4 Thuật toán Bellman-Ford:

Thuật toán tìm đường đi ngắn nhất từ s đến các đỉnh.

2.4.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số (ma trận W).
- Không có cạnh song song cùng hướng, không có vòng.

2.4.2 Thuật toán:

```
for (k = 1; k < n-1; k++) // n : số đỉnh
void Ford_Bellman()
                                for (v \in V \setminus \{s\})
  for (v \in V)
                                   for (u \in V)
                                      if (d[v] > d[u] + w[u,v])
       d[v] = w[s,v];
       Truoc[v] = s;
                                        d[v] = d[u] + w[u,v];
                                        Truoc[v] = u;
  d[s] = 0;
                             } /* Kết thúc Ford_Bellman()
```


$$S = 0$$
, $v = 4$, 3, 2, 1, $u=0$, 1, 2, 3, 4

k	d[1], Truoc[1]	d[2], Truoc[2]	d[3], Truoc[3]	d[4], Truoc[4]
	1, 0	∞, 0	∞, 0	3, 0
1	1, 0	4, 1	4, 1	3, 0
2	1, 0	4, 1	3, 4	-1, 2
3	1, 0	4, 1	3, 4	-1, 2
	1, 0	4, 1	3, 4	-1, 2

2.5 Thuật toán Floyd-Warshall:

2.5.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số. Không cạnh song song cùng hướng, không vòng, không chu trình âm.
- n : số đỉnh.
- $D^{(k)}$ = $(d_{ij}^{(k)})$. $D^{(n)}$ = $(d_{ij}^{(n)})$ là kết quả của đường đi ngắn nhất từ đỉnh i đến đỉnh j.

$$-P = (p_{ij}), p_{ij} = \begin{cases} -1 \ , \text{ n\'eu i=j hay } w_{ij} = \infty \\ \\ \text{i} \ , \text{n\'eu i} \neq \text{j v\'a } w_{ij} < \infty \end{cases}$$

```
2.5.2 Thuật toán:
Bước 1:
D^{(0)} = W, P^{(0)} = P
Bước 2:
  for (k = 1; k \le n; k++)
        for (i=1; i<=n; i++) {
              for (j=1; j<=n; j++){
                     If (d_{ii}^{(k-1)} > d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
                      \{d_{ii}^{(k)} = d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\}
                         p_{i}^{(k)} = p_{ki}^{(k-1)};
                      else { d_{ii}^{(k)} = d_{ii}^{(k-1)}; p_{ii}^{(k)} = p_{ii}^{(k-1)}}
              } End For i
       } End For i
  } End For k
```

```
Thuật toán in đường đi từ i đến j.
Print-Path(i, j)
  If (i==j) printf(i);
  Else If (P_{ii} == -1) printf("Khong co duong di i, j.")
       Else {
               Print-Path(i, P<sub>ii</sub>);
               printf(j);
```

Ví dụ:

$$k=1, 2, 3, 4.$$

D⁽⁰⁾:

	1	2	3	4
1	0	5	1	5
2	VC	0	VC	-1
3	VC	3	0	5
4	VC	VC	VC	0

D⁽¹⁾:

	1	2	3	4
1				
2				
3				
4				

P⁽⁰⁾:

	1	2	3	4
1	-1	1	1	1
2	-1	-1	-1	2
3	-1	3	-1	3
4	-1	-1	-1	-1

P⁽¹⁾:

	1	2	3	4
1				
2				
3				
4				

Bài tập:

Bài tập:

$$D^{(0)} = ?$$
, $P^{(0)} = ?$, $D^{(5)} = ?$, $P^{(5)} = ?$, **Print-Path**(3, 4) = ?.

$D^{(4)} =$	0	3	-1	4	-4
	3	0	-4	1	-1
	7	4	0	5	3
	2	-1	-5	0	-2
	8	5	1	6	0

-1	1	4	2	1
4	-1	4	2	1
4	3	-1	2	1
4	3	4	-1	1
4	3	4	5	-1

Bài giải:

Print-Path(3, 4) = ?.

$$D^{(5)} = \begin{bmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} -1 & 3 & 4 & 5 & 1 \\ 4 & -1 & 4 & 2 & 1 \\ 4 & 3 & -1 & 2 & 1 \\ 4 & 3 & 4 & -1 & 1 \\ 4 & 3 & 4 & 5 & -1 \end{bmatrix}$$

Tài liệu tham khảo:

- 1. Discrete Mathematics, Richard Johnsonbaugh
- 2. Algorithms, Thomas h. Cormen
- 3. Toán Rời Rạc Nâng Cao, Trần Ngọc Danh, ĐHQG TP HCM
- 4. Lý Thuyết Đồ Thị, Đặng Trường Sơn, Lê văn Vinh, ĐHSP Kỹ Thuật TP HCM