Analysis 1 – Tutorium 6 robin.mader@campus.lmu.de 11.12.2020

Aufgabe 1 (Dichtheit). Erinnerung: Eine Menge $M \subseteq U$ einer Menge $U \subseteq \mathbb{R}$ heißt dicht in U, falls $U \subseteq \overline{M}$. Anders gesagt: Alle Punkte in U sind Berührpunkte von M.

- 1. Zeige: Seien $A, B, C \subseteq \mathbb{R}$ Teilmengen. Angenommen, $A \subseteq B$ ist dicht in B und $B \subseteq C$ ist dicht in C. Zeige: A ist dicht in C.
 - 2. Es sei $f: \mathbb{R} \to \mathbb{R}$ stetig, d.h.

$$\forall x \in \mathbb{R} \forall \varepsilon > 0 \exists \delta > 0 \forall y \in \mathbb{R} : y \in U_{\delta}(x) \implies f(y) \in U_{\varepsilon}(f(x)).$$

Angenommen, f ist surjektiv. Es sei $M \subseteq \mathbb{R}$ dicht in \mathbb{R} . Zeige, dass auch f(M) dicht in \mathbb{R} ist.

Aufgabe 2 (Limes inferior). Sei $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. Zeige:

$$\liminf_{n \to \infty} a_n = \sup_{m \in \mathbb{N}_0} \inf_{n > m} a_n.$$

Aufgabe 3. Später zeigen wir:

1. Die Exponentialfunktion ist folgenstetig:

$$\forall (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \forall x \in \mathbb{R} : x_n \xrightarrow{n \to \infty} x \implies \exp(x_n) \xrightarrow{n \to \infty} \exp(x).$$

2. Die Exponentialfunktion wächst schneller als jede Potenz:

$$\forall a \in \mathbb{C} \forall k \in \mathbb{N}_0 : |a| < 1 \implies n^k a^n \xrightarrow{n \to \infty} 0.$$

Nun zu einer Aufgabe aus der Probeklausur zur Analysis einer Variablen des Wintersemesters 2012/2013:

- (a) Formuliere den Satz der dominierten Konvergenz für Reihen.
- (b) Zeige die Existenz von

$$x = \lim_{k \to \infty} \sum_{n=1}^{\infty} \exp\left(-n + \frac{k}{n}e^{-\frac{k}{n}}\right).$$

Hinweis: Verwende 1. und 2.

Aufgabe 4 (Stetigkeit). Es seien $M, N, L \subseteq \mathbb{C}$ und $x \in M$. Angenommen, $f: M \to N$ ist stetig in x und $g: N \to L$ ist stetig in f(x).

Zeige: $g \circ f : M \to L$ ist stetig in x. Verwende hierbei die ε - δ -Definition der Stetigkeit in einem Punkt.

Aufgabe 5 (Partielle Summation, Aktivierungselement 3.26). Gegeben Folgen $(a_n)_{n\in\mathbb{N}_0}$, $(b_n)_{n\in\mathbb{N}_0}\in\mathbb{R}^{\mathbb{N}_0}$, zeige:

$$\forall n \in \mathbb{N}_0 : \sum_{k=1}^n a_k (b_k - b_{k-1}) = a_n b_n - a_0 b_0 - \sum_{k=0}^{n-1} (a_{k+1} - a_k) b_k.$$

Aufgabe 6 (Mehr Reihen). (a) Aktivierungselement 3.28: Bestimme den Konvergenzradius von $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n!}}$. (b) Aktivierungselement 3.29 (Binomialreihe): Zeige, dass die Reihe $\sum_{n=0}^{\infty} \binom{a}{n} x^n$ für alle $x \in \mathbb{C}$ mit |x| < 1 und $a \in \mathbb{R}$ konvergiert.