EECS 203: Discrete Mathematics Fall 2023

Discussion 4 Notes

1 Definitions

- Proof:
- Types of Proofs:
 - Direct Proof:
 - Proof by Contraposition:
 - Proof by Contradiction:
 - Proof by Cases:
- Disproof:
- Without Loss of Generality (WLOG):
- Unique:

Solution:

- Types of Proofs:
 - **Direct Proof:** Prove that a statement is true without using any more advanced proof techniques (e.g. contrapositive, contradiction, cases).
 - Direct Proof for $p \to q$: Prove that if the proposition p is true, then the other proposition q is true "directly". Start by assuming that p is true, then make some deductions and eventually arrive at the conclusion that q must be true.

$$p \rightarrow q$$

- **Proof by Contraposition:** Prove that "if p is true, then q is true" by proving that if q is false, then p is false (since these are logically equivalent).

$$\neg q \to \neg p$$

- **Proof by Contradiction:** Prove p is true by assuming $\neg p$, and arriving at a contradiction, i.e. a conclusion that we know is false.

When using a proof by contradiction to prove "if p is true then q is true", we assume that p is true and that q is false, and derive a contradiction. This shows us that if p is true, then q is true.

$$\neg(p \to q) \equiv (p \land \neg q) \to F \to \neg(p \land \neg q) \equiv (p \to q)$$

A simpler way to view this: Assume p is true and show that

$$\neg q \to F \to q$$

- Proof by Cases: Prove by considering all possibilities, or all categories of
 possibilities (i.e., cases), and showing that in each of those cases, the proposition you're trying to prove is true.
- **Disproof:** To disprove a statement means to prove the negation of that statement.

Disprove
$$P(x) \equiv \text{Prove } \neg P(x)$$

Note that if the statement you are trying to disprove is a for all statement, all you need to disprove it is a singular counterexample (since $\neg \forall x P(x) \equiv \exists x \neg P(x)$).

- Without loss of generality (WLOG): used when the same argument can be made for multiple cases, and there is some symmetry between variables.
- Unique: (exactly one) If we say something has a unique solution, we mean that there is a solution and that there is no other solution

2 Exercises

1. Contraposition vs Contradiction \star

Show that for all integers n, if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

Solution:

a) We will prove the contrapositive of the proposition, which is: "if n is odd, then $n^3 + 5$ is even".

Since n is odd, n can be written as 2k + 1, where k is some integer. Then,

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

So $n^3 + 5 = 2m$, where m is the integer $4k^3 + 6k^2 + 3k + 3$. Because $n^3 + 5$ is two times some integer, we can say that $n^3 + 5$ is even.

b) We will use a proof by contradiction. Let $n^3 + 5$ be odd. Seeking a contradiction, assume that n is odd. Since n is odd, it can be written as 2k + 1, where k is some integer. So

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

Since $n^3 + 5 = 2m$, for an integer m ($m = 4k^3 + 6k^2 + 3k + 3$), then $n^3 + 5$ is even. Since the premise was that $n^3 + 5$ is odd, this completes the contradiction. Therefore, our assumption that n is odd must be false, leading to the conclusion that n is even.

Note:

You can also start this proof by contradiction by assuming the negation of the entire "if ... then" statement. Here, this would entail starting with "Seeking contradiction, assume that $n^3 + 5$ is odd and n is odd." From here, the logic of finding a contradiction by showing that $n^3 + 5$ is even is almost identical.

2. Odd Proof III

Prove that for all integers a and b, if a divides b and a + b is odd, then a is odd.

Solution: Proof by Contradiction

• We are supposed to prove: $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$

- Seeking contradiction, assume the negation of the above statement: \neg [[a divides b $\land a + b$ is odd] $\rightarrow a$ is odd], which is (a divides b) \land (a + b is odd) \land (a is even).
- Since a is even, a = 2k for some integer k.
- Since a divides b we have $b = m \cdot a$.
- So, a+b becomes 2k+m(a)=2k+m(2k)=2(k+km)=2p, where p is an integer equal to k+km
- Thus a+b=2p and is even. However, we had originally assumed that a+b is odd. This leads to our **contradiction**.
- Hence the assumption in the second bullet point is false, and $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$

3. Proof Practice *

Prove or disprove that for all irrational numbers x and rational numbers y, 2x-y is irrational.

Solution: Proof by Contradiction

We prove the statement via proof by contradiction. Let x be an arbitrary irrational number. Let y be an arbitrary rational number such that $y = \frac{a}{b}$ with a and b as integers and $b \neq 0$. For the sake of contradiction, we assume that 2x - y is rational, which means that $2x - \frac{a}{b}$ is rational. Then we can write $2x - \frac{a}{b} = \frac{p}{q}$ for some integers p and q with $q \neq 0$. This gives $2x = \frac{p}{q} + \frac{a}{b} = \frac{pb+aq}{bq}$, so $x = \frac{pb+aq}{2bq}$. Note that both the numerator and the denominator are integers, and that $2bq \neq 0$ since b and q were both nonzero. Therefore, x is, by definition, a rational number, which is a contradiction since x was assumed to be irrational. Hence, it must be that the sum of a rational number and an irrational number is irrational.

4. Polynomial Proof *

Prove that there does not exist a rational number x satisfying the equation $x^3 + x + 1 = 0$. **Hint:** Use the fact that 0 is an even number.

You can use the following lemmas without proving:

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even

- Odd + Even = Odd
- Odd + Odd = Even
- Even + Even = Even

Solution:

Suppose there is. Let a solution be $\frac{a}{b}$, with a, b in reduced form.

Then we know that $\frac{a^3}{b^3} + \frac{a}{b} + 1 = 0 \iff a^3 + ab^2 + b^3 = 0.$

Since the RHS is even, LHS should be even as well.

Case 1: a, b both odd.

Then we have LHS = odd + odd \times odd + odd = odd.

Case 2: a is odd, b is even.

Then we have LHS = odd + even + even = odd.

Case 3: a is even, b is odd.

(note that WLOG does not apply here since a, b are not symmetric; there is a term ab^2).

Then we have LHS = even + even + odd = odd.

Case 4: a, b are both even.

This cannot occur since a, b is in reduced form.

Each case results in LHS being odd which is a contradiction if LHS = 0. Thus we have proved by contradiction that the equation $x^3 + x + 1$ has no solution in \mathbb{Q} .

5. Prime Proof \star

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a positive integer ≥ 2 such that p and 1 are the only positive integers that divide p.

Solution: We can consider two cases: either p is even, or it is odd.

- Case 1: Consider the even primes, which is just p=2. $p^2+11=15$, and $15=5\cdot 3$ is composite.
- Case 2: Now we consider the odd primes, or any prime greater than 2. Since p is odd, we have p = 2k + 1 for some integer k > 1. Then

$$p^{2} + 11 = (2k+1)^{2} + 11 = 4k^{2} + 4k + 12 = 2(2k^{2} + 2k + 6).$$

Hence, p^2+11 can be factored into 2 and $2k^2+2k+6$, therefore p^2+11 is composite.

We have exhausted all non-overlapping cases and proved that for all primes $p, p^2 + 11$ is composite.

6. Rational Proof *

- 1. Prove or disprove: For all nonzero rational numbers x and y, x^y is rational
- 2. Prove or disprove: For all nonzero integers x and y, x^y is rational

Solution:

- 1. This is false. Let x=2 and $y=\frac{1}{2}$. Then $x^y=\sqrt{2}$ which is irrational.
- 2. This is true. We prove this by cases. Case 1: y > 0 Then x^y is x multiplied by itself y times and thus x^y is an integer. As we know all integers are rational, x^y must be rational. Case 2: y < 0 Then $x^y = \frac{1}{x^{-y}}$. As y < 0, -y > 0 so x^{-y} is an integer. As both 1 is an integer, and x^{-y} is an integer, we know $\frac{1}{x^{-y}}$ is rational.

7. Proving the Triangle Inequality

Prove the triangle inequality, which states that for all real numbers x and y, we have $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

Solution: This is a proof by cases. There are 4 cases to consider:

- \bullet x and y are both nonnegative
- \bullet x and y are both negative
- $x \ge 0, y < 0, x \ge -y$
- x > 0, y < 0, x < -y

Since x and y play symmetric roles (you can switch the values of x and y without impacting the validity of the triangle inequality), we can assume without loss of generality (WLOG) for the last two cases that $x \ge 0$ and y < 0.

- Case 1: If x and y are both nonnegative, then |x| + |y| = x + y = |x + y|.
- Case 2: If x and y are both negative, then |x| + |y| = (-x) + (-y) = -(x+y) = |x+y|.
- Case 3: If $x \ge 0$ and y < 0 and $x + y \ge 0$, then |x| + |y| = x + (-y) is some number greater than x. |x + y| is some positive number less than x since y is negative. Thus, $|x| + |y| \ge x \ge |x + y|$.

• Case 4: If $x \ge 0$ and y < 0 and x + y < 0, then |x| + |y| = x + (-y) is some number greater than -y. |x + y| = -(x + y) = (-x) + (-y) which is some positive number less than or equal to -y, since -x is nonpositive. Thus, we have $|x| + |y| \ge -y \ge |x + y|$.

We have now proved for all cases that the triangle inequality is valid. This example is purposely lengthy to show in full detail a proof by cases.