MIXED EFFECTS MODEL FOR NORMALLY DISTRIBUTED DATA

Brian M. Brost

07 August 2015

Implementation

The file normal.mixed.sim.R simulates data according to the model statement presented below, and normal.mixed.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let $\mathbf{y} = (y_1, \dots, y_T)'$ be a vector of observations. Also let \mathbf{X} be a design matrix containing covariates for which inference is desired, and \mathbf{Z} be a design matrix containing some basis expansion. The vectors $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ are the corresponding 'fixed' and 'random' effects, respectively. Note that $\mathbf{Z}\boldsymbol{\alpha}$ models non-linear patterns or dependence non-parametrically.

$$\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha}, \sigma^2 \mathbf{I})$$
 $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\boldsymbol{\beta}}^2 \mathbf{I})$
 $\boldsymbol{\alpha} \sim \mathcal{N}(\boldsymbol{\mu}_{\alpha}, \sigma_{\alpha}^2 \mathbf{I})$
 $\boldsymbol{\mu}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mu_{\alpha}}^2 \mathbf{I})$
 $\sigma^2 \sim \mathrm{IG}(r_{\sigma}, q_{\sigma})$
 $\sigma_{\alpha}^2 \sim \mathrm{IG}(r_{\sigma_{\alpha}}, q_{\sigma_{\alpha}})$

Models of this type are typically fit using a large number of basis vectors, more than necessary to approximate non-linear trends or dependence. Regularization (e.g., a ridge penalty) is subsequently conducted to shrink the coefficients α toward 0 where appropriate. Therefore, the parameter σ_{α}^2 must be selected using cross-validation or some model selection criterion. Model-based estimation of σ_{α}^2 , i.e., $\sigma_{\alpha}^2 \sim \mathrm{IG}(r,q)$, results in a mixed effects model similar to that implemented by the function lme in the R package nlme.

Full conditional distributions

Fixed effects (β) :

$$\begin{split} [\boldsymbol{\beta}|\cdot] & \propto & [\mathbf{y}|\boldsymbol{\beta},\boldsymbol{\alpha},\sigma^2][\boldsymbol{\beta}] \\ & \propto & \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha},\sigma^2\mathbf{I})\mathcal{N}(\boldsymbol{\beta}|\mathbf{0},\sigma_{\boldsymbol{\beta}}^2\mathbf{I}) \\ & \propto & \exp\left\{-\frac{1}{2}\left(\mathbf{y} - (\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha})\right)'\left(\sigma^2\mathbf{I}\right)^{-1}\left(\mathbf{y} - (\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha})\right)\right\} \\ & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta} - \mathbf{0}\right)'\left(\sigma_{\boldsymbol{\beta}}^2\mathbf{I}\right)^{-1}\left(\boldsymbol{\beta} - \mathbf{0}\right)\right\} \\ & \propto & \exp\left\{-\frac{1}{2}\left((\mathbf{y} - \mathbf{Z}\boldsymbol{\alpha}) - \mathbf{X}\boldsymbol{\beta}\right)'\left(\sigma^2\mathbf{I}\right)^{-1}\left((\mathbf{y} - \mathbf{Z}\boldsymbol{\alpha}) - \mathbf{X}\boldsymbol{\beta}\right)\right\} \\ & \propto & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta} - \mathbf{0}\right)'\left(\sigma_{\boldsymbol{\beta}}^2\mathbf{I}\right)^{-1}\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{X}'\left(\sigma^2\mathbf{I}\right)^{-1}\mathbf{X}\boldsymbol{\beta}\right)\right\} \times \\ & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}'\left(\sigma_{\boldsymbol{\beta}}^2\mathbf{I}\right)^{-1}\boldsymbol{\beta}\right)\right\} \\ & \propto & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\beta}'\left(\sigma_{\boldsymbol{\beta}}^2\mathbf{I}\right)^{-1}\boldsymbol{\beta}\right)\right\} \\ & = & \mathcal{N}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1}) \end{split}$$

where
$$\mathbf{A} = \mathbf{X}' \left(\sigma^2 \mathbf{I}\right)^{-1} \mathbf{X} + \left(\sigma_{\beta}^2 \mathbf{I}\right)^{-1}$$
 and $\mathbf{b}' = (\mathbf{y} - \mathbf{Z}\alpha)' \left(\sigma^2 \mathbf{I}\right)^{-1} \mathbf{X}$.

Random effects (α) :

$$\begin{aligned} [\boldsymbol{\alpha}|\cdot] & \propto & [\mathbf{y}|\boldsymbol{\beta}, \boldsymbol{\alpha}, \sigma^2][\boldsymbol{\alpha}] \\ & \propto & \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha}, \sigma^2\mathbf{I})\mathcal{N}(\boldsymbol{\alpha}|\mathbf{0}, \sigma_{\alpha}^2\mathbf{I}) \\ & = & \mathcal{N}(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1}) \end{aligned}$$

where
$$\mathbf{A} = \mathbf{Z}' \left(\sigma^2 \mathbf{I}\right)^{-1} \mathbf{Z} + \left(\sigma_{\alpha}^2 \mathbf{I}\right)^{-1}$$
 and $\mathbf{b}' = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' \left(\sigma^2 \mathbf{I}\right)^{-1} \mathbf{Z} + \boldsymbol{\mu}_{\alpha} \left(\sigma_{\alpha}^2 \mathbf{I}\right)^{-1}$.

Mean of the random effects (μ_{α}) :

$$\begin{split} [\boldsymbol{\mu}_{\alpha}|\cdot] & \propto & [\boldsymbol{\alpha}|\boldsymbol{\mu}_{\alpha},\sigma_{\alpha}^{2}][\boldsymbol{\mu}_{\alpha}] \\ & \propto & \mathcal{N}(\boldsymbol{\alpha}|\boldsymbol{\mu}_{\alpha},\sigma_{\alpha}^{2}\mathbf{I})\mathcal{N}(\boldsymbol{\mu}_{\alpha}|\mathbf{0},\sigma_{\mu_{\alpha}}^{2}\mathbf{I}) \\ & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\alpha}-\boldsymbol{\mu}_{\alpha}\right)'\left(\sigma_{\alpha}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\alpha}-\boldsymbol{\mu}_{\alpha}\right)\right\} \\ & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\alpha}-\mathbf{0}\right)'\left(\sigma_{\mu_{\alpha}}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\mu}_{\alpha}-\mathbf{0}\right)\right\} \\ & \exp\left\{-\frac{1}{2}\left(-2\boldsymbol{\alpha}'\left(\sigma_{\alpha}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\alpha}+\boldsymbol{\mu}'_{\alpha}\left(\sigma_{\alpha}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\alpha}\right)\right\} \times \\ & \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}'_{\alpha}\left(\sigma_{\mu_{\alpha}}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\alpha}\right)\right\} \\ & \exp\left\{-\frac{1}{2}\left(-2\left(\boldsymbol{\alpha}'\left(\sigma_{\alpha}^{2}\mathbf{I}\right)^{-1}\right)\boldsymbol{\mu}_{\alpha}+\boldsymbol{\mu}'_{\alpha}\left(\left(\sigma_{\alpha}^{2}\mathbf{I}\right)^{-1}+\left(\sigma_{\mu_{\alpha}}^{2}\mathbf{I}\right)^{-1}\right)\boldsymbol{\mu}_{\alpha}\right)\right\} \times \\ & = & \mathcal{N}(\mathbf{A}^{-1}\mathbf{b},\mathbf{A}^{-1}) \end{split}$$

where $\mathbf{A} = (\sigma_{\alpha}^2 \mathbf{I})^{-1} + (\sigma_{\mu_{\alpha}}^2 \mathbf{I})^{-1}$ and $\mathbf{b}' = \boldsymbol{\alpha}' (\sigma_{\alpha}^2 \mathbf{I})^{-1}$.

Observation error (σ^2) :

$$\begin{split} & [\sigma^2|\cdot] \quad \propto \quad [\mathbf{y}|\boldsymbol{\beta}, \boldsymbol{\alpha}, \sigma^2][\sigma^2] \\ & \propto \quad \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha}, \sigma^2\mathbf{I})\mathrm{IG}(r_{\sigma}, q_{\sigma}) \\ & \propto \quad |\sigma^2\mathbf{I}|^{-1/2} \exp\left\{-\frac{1}{2}\left((\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})'\left(\sigma^2\mathbf{I}\right)^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})\right)\right\} \times \\ & \quad \left(\sigma^2\right)^{-(q_{\sigma}+1)} \exp\left\{-\frac{1}{r\sigma_{\sigma}^2}\right\} \\ & \propto \quad \left(\sigma^2\right)^{-T/2} \exp\left\{-\frac{1}{2\sigma^2}\left((\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})\right)\right\} \\ & \quad \left(\sigma^2\right)^{-(q_{\sigma}+1)} \exp\left\{-\frac{1}{r_{\sigma}\sigma^2}\right\} \\ & \propto \quad \left(\sigma^2\right)^{-(T/2+q_{\sigma}+1)} \exp\left\{-\frac{1}{\sigma^2}\left(\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})}{2} + \frac{1}{r_{\sigma}}\right)\right\} \\ & = \quad \mathrm{IG}\left(\left(\frac{(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{Z}\boldsymbol{\alpha})}{2} + \frac{1}{r_{\sigma}}\right)^{-1}, \frac{T}{2} + q_{\sigma}\right) \end{split}$$

Variation in random effects (σ_{α}^2) :

$$\begin{split} [\sigma_{\alpha}^{2}|\cdot] & \propto & [\boldsymbol{\alpha}|\boldsymbol{\mu}_{\alpha}, \sigma_{\alpha}^{2}][\sigma_{\alpha}^{2}] \\ & \propto & \mathcal{N}(\boldsymbol{\alpha}|\boldsymbol{\mu}_{\alpha}, \sigma_{\alpha}^{2}\mathbf{I})\mathrm{IG}(r_{\sigma_{\alpha}}, q_{\sigma_{\alpha}}) \\ & = & \mathrm{IG}\left(\left(\frac{(\boldsymbol{\alpha}-\boldsymbol{\mu}_{\alpha})'(\boldsymbol{\alpha}-\boldsymbol{\mu}_{\alpha})}{2} + \frac{1}{r_{\sigma_{\alpha}}}\right)^{-1}, \frac{qZ}{2} + q_{\sigma_{\alpha}}\right), \end{split}$$

where qZ is the number of columns in ${\bf Z.}$