EXAMEN ANÁLISIS NUMÉRIGO

03 DE DICIEMBRE DE 2008 (PRACTICO)

1) Considere la sucesión

$$x_{n+1} = (x_n^2 - 3(1-a)x_n + 2)/3a$$

donde a es una constante a determinar.

- (1) Demuestre que si la sucesión converge, lo hace a una de las raíces de la ecuación $f(x) = x^2 3x + 2 = 0$.
- (2) Para cada una de las raíces de f(x), encuentre un intervalo de valores para la constante a tal que la succsión converge a dicha raíz.
- (3) Para cada raíz encuentre un valor de a tal que la sucesión converge en forma cuadrática.
- (4) Encuentre un intervalo de valores de a tal que la sucesión no converge a ninguna de las dos raíces.
- 2) Sea f una función cuatro veces derivable y sean $x_1 < x_2 < x_3 < x_4$ números reales. Sea S el spline cúbico natural que interpola a f en los puntos x_i , i = 1...4.

Sea P un polinomio de grado tres que interpola a f en los puntos x_i , i = 1...4 y que además satisface $P''(x_1) = P''(x_4) = 0$.

¿Se cumple necesariamente que para todo $x \in [x_1, x_4]$, P(x) = S(x)? Justifique su respuesta.

3) Aproximar la función $f(x) = e^x$ con un polinomio de grado 2, en el intervalo [0,1] considerando el espacio de las funciones continuas en [0,1] equipado con el producto interno

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$

4) Sea p un polinomio de grado menor o igual que n-1 que interpola a la función $f(x) = \cos(x)$ en cualquier conjunto de n nodos en el intervalo $[-\pi/4, \pi/4]$. Demostrar que:

$$\frac{|p(x) - f(x)|}{|f(x)|} \le \frac{2^{n+1}}{\sqrt{2}n!}.$$

5) Ejercicio para libres:

Sean T y M las aproximaciones a $\int_a^b f(x)dx$ dadas por la regla del trapecio y la regla del punto medio correspondientes a la partición $p = \{a = x_0 < \dots < x_n = b\}$. Sea τ la partición del intervalo [a,b] que se obtiene al agregar a p los puntos medios de los intervalos $[x_i,x_{i+1}], i=0,\dots,n-1$. Sea S la aproximación de $\int_a^b f(x)dx$ asociada a la partición τ por la regla de Simpson. Mostrar que $S = \frac{1}{3}T + \frac{2}{3}M$.

Ejercicios teóricos (Los alumnos regu ares deben hacer 2 problemas y los alumnos libres deben hacer los 3 problemas):

T1) a) Enunciar y demostrar el teorema de existencia de un punto fijo.

- b) Enunciar y demostrar el teorema de convergencia de la sucesión generada por el método de punto fijo $(x_{n+1} = \varphi(x_n))$.
- T2) Enunciar y demostrar el teorema del error en el polinomio interpolante.
- T3) Deducir la regla del punto medio compuesta dando las expresiones de la fórmula y su error.