NOTATION: R denotes the set of all real numbers with the usual metric and topology.

- Let M be a real n × n matrix with all diagonal entries equal to τ and all non-diagonal entries equal to s. Compute the determinant of M.
- Let F[X] be the polynomial ring over a field F. Prove that the rings
 F[X]/⟨X²⟩ and F[X]/⟨X²-1⟩ are isomorphic if and only if the characteristic of F is 2.
- Let C be a subset of R endowed with the subspace topology. If every continuous real-valued function on C is bounded, then prove that C is compact.
- Let A = (a_{ij}) be a nonzero real n × n matrix such that a_{ij} = 0 for i ≥ j.
 If ∑^k_{i=0} c_iAⁱ = 0 for some c_i ∈ ℝ, then prove that c₀ = c₁ = 0. Here Aⁱ is the i-th power of A.
- 5. Let $g: \mathbb{R} \to \mathbb{R}$ be the function given by

$$g(x) = \begin{cases} x \sin(\frac{1}{x}), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Prove that g(x) has a local maximum and a local minimum in the interval $(-\frac{1}{m}, \frac{1}{m})$ for any positive integer m.

 Fix an integer n ≥ 1. Suppose that n is divisible by distinct natural numbers k₁, k₂, k₃ such that

$$gcd(k_1, k_2) = gcd(k_2, k_3) = gcd(k_3, k_1) = 1.$$

Pick a random natural number j uniformly from the set $\{1, 2, 3, \dots, n\}$. Let A_d be the event that j is divisible by d. Prove that the events A_{k_1} , A_{k_2} , A_{k_3} are mutually independent.

- 7. Let $f : [0,1] \to [0,\infty)$ be a function. Assume that there exists $M \ge 0$ such that $\sum_{i=1}^k f(x_i) \le M$ for all $k \ge 1$ and for all $x_1, \dots, x_k \in [0,1]$. Show that the set $\{x \mid f(x) \ne 0\}$ is countable.
- Let G be a group having exactly three subgroups. Prove that G is cyclic of order p² for some prime p.