IBM Data Science Capstone

Finding Similar Neighborhoods in Philadelphia

Problem

- How can I find a neighborhood in another city that is similar to a given neighborhood somewhere else?
 - If I have a successful business in Wilmington, DE and I want to expand to the much larger market of Philadelphia, PA, where should I look?
 - I like my current neighborhood, and I think it was a factor in the success of the business. Why not look for similar neighborhoods in Philadelphia?

Solution

- Use the Foursquare venue data to build a feature set around each neighborhood of Philadelphia.
- Build a 'profile' of the neighborhoods based on the frequency of the types of venues in the neighborhoods.
- Use the k-means algorithm to build a model that groups similar neighborhoods.
- Build a similar profile for the neighborhoods you want to emulate, and use the model to predict the cluster that is most similar.

Feature Data

- Below is an excerpt of the feature data for the neighborhoods
- The venue type columns have values that indicate the relative frequency of the venue type in the neighborhood.

ID	 Neighborhood	Theater	Courthouse	College Library	Parking	Church	Doctor's Office	Art Gallery	
1	Avenue of the Arts	0.01123	0.01123	0.01123	0.01123	0.01123	0.01123	0.00000	
2	Callowhill	0.00000	0.02222	0.00000	0.07777	0.01111	0.00000	0.07777	
3	Chinatown	0.00000	0.00000	0.01063	0.04255	0.01063	0.00000	0.01063	
4	Elfreth's Alley	0.00000	0.00000	0.00000	0.01136	0.00000	0.01136	0.18181	
5	French Quarter	0.00000	0.00000	0.00000	0.02173	0.00000	0.01087	0.02173	
6	Logan Square	0.01098	0.00000	0.00000	0.01098	0.00000	0.00000	0.06593	
7	Naval Square	0.02083	0.02083	0.00000	0.02083	0.01041	0.00000	0.03125	
8	Jewelers' Row	0.00000	0.00000	0.00000	0.00000	0.00000	0.01087	0.00000	
9	Market East	0.00000	0.00000	0.00000	0.01162	0.00000	0.00000	0.03488	
10	Old City	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.05555	

Unclustered Neighborhoods

- Neighborhoods are color coded by planning zone.
- They are grouped geographically.
- This is how one normally thinks of the city and its neighborhoods.

Clustered by Similarity

- The result of the k-means model (k=22), neighborhoods are color coded by cluster.
- Neighborhoods of the same color are in the same cluster, and are similar.

Locate the Desired Neighborhoods

- Philippine BBQ
 - 1700 Kirkwood Hwy,
 Wilmington, DE
 - Cluster #7 Violet
- De La Coeur (French Cafe)
 - 1836 Lovering Ave,
 Wilmington, DE
 - Cluster #17 Red orange
- Wang's Market
 - 276 E Main St, Newark, DE
 - Cluster #6 Neon Blue

