



# SEGUNDA FASE PROCESSO SELETIVO LABTRANS/UFSC PARA DESENVOLVEDOR BACK-END.

A segunda fase do processo seletivo consiste em construir uma estrutura backend utilizando Python e Sqlite para receber e manipular dados de um levantamento de uma rodovia extraídos utilizando visão computacional. Não é necessário criar interface gráfica, as funções podem ser executadas direto pelo console.

#### **Entrada**

A entrada do sistema será um arquivo .csv com resultados de múltiplos vídeos. A Tabela 1 mostra a estrutura do arquivo.csv, onde cada linha corresponde a um item detectado em determinado vídeo.

| name     | highway | UF | item             | latitude | longitude | exp_km_calc |
|----------|---------|----|------------------|----------|-----------|-------------|
| GH010080 | 282     | SC | Rocada           | YY       | XX        | 27.0        |
| GH039704 | 349     | BA | Trinca           | YY       | XX        | 938.0       |
| GH039704 | 349     | BA | Trinca           | YY       | XX        | 940.0       |
| GH010080 | 282     | SC | Placa            | YY       | XX        | 27.0        |
| GH010080 | 282     | SC | Rocada           | YY       | XX        | 28.0        |
| GH010080 | 282     | SC | Faixa<br>Central | YY       | xx        | 28.0        |
| GH010080 | 282     | SC | Faixa<br>Lateral | YY       | xx        | 28.0        |
| GH010080 | 282     | SC | Placa            | YY       | XX        | 30.0        |

Tal csv deve ser populado em uma tabela chamada **results**, a qual deverá possuir os mesmos campos do csv e também um **id** sequencial e único para cada resultado.

Obs.: Coordenadas em latitude e longitude em graus decimais (WGS84).

### Saída

A saída do sistema também será um arquivo.csv, entretanto com os itens agrupados por km e rodovia (highway) como mostra a Tabela 2, onde cada linha corresponde a um quilômetro da rodovia. Vale ressaltar que uma rodovia pode ser levantada por um ou mais





vídeos, portanto é necessário se atentar em juntar resultados de diferentes vídeos se necessário. Deverá ser exportado um csv para cada rodovia.

| highway | km    | buraco | remendo | trinca | placa | drenagem |
|---------|-------|--------|---------|--------|-------|----------|
| 116     | 469.0 | 0      | 0       | 1      | 4     | 6        |
| 116     | 470.0 | 2      | 2       | 2      | 6     | 6        |
| 116     | 471.0 | 3      | 0       | 2      | 4     | 6        |
| 116     | 472.0 | 0      | 0       | 0      | 4     | 6        |
| 116     | 473.0 | 2      | 0       | 2      | 5     | 6        |
| 116     | 474.0 | 3      | 2       | 2      | 4     | 6        |

- highway: Rodovia selecionada para exportação dos resultados <str>;
- km: Quilômetro correspondente, apenas uma linha por km <double>.
- buraco: Número de instâncias de buraco por km <int>;
- remendo: Número de instâncias de remendo por km <int>;
- trinca: Número de instâncias de trinca por km <int>;
- placa: Número de instâncias de placa por km <int>;
- drenagem: Número de instâncias de drenagem por km <int>.

## Dados disponibilizados:

- 4 levantamentos de rodovias, em um único arquivo.csv.
- pub\_202304A (SNV202304A), disponível em DNIT-Cloud

#### Prazo:

Uma semana (7 dias), a contar a partir do recebimento deste documento.

## Considerações:

Caso julgue necessário, é permitido o uso de quaisquer linguagens e bibliotecas adicionais para composição do programa desde que cumpra os requisitos obrigatórios;

#### Requisitos Obrigatórios:

☐ Utilizar Python com Peewee - Valor: 1,5pts;





| ☐ Utilizar <b>Sqlite</b> - <b>Valor: 1,5pts</b> ;                                           |
|---------------------------------------------------------------------------------------------|
| ☐ Criar tabela <i>results</i> no banco de dados - <b>Valor: 1,0pt</b> ;                     |
| Exportar resultados em um csv agrupados corretamente - Valor: 1,0 pt.                       |
| Requisitos Bônus:                                                                           |
| ☐ Criar uma API com Tornado, Django ou similar (Neste caso, tira a obrigatoriedade          |
| da utilização do <b>Peewee) - Valor: 2,0pt</b> ;                                            |
| Utilizar Postgres + PostGIS - Valor: 2,0pt; (Substitui o sqlite)                            |
| ☐ Criar tabelas auxiliares no banco de dados:                                               |
| ☐ Criar tabela <b>vídeos</b> com km Ini e Km Final de cada vídeo no banco de dados -        |
| Valor: 0.5pt;                                                                               |
| ☐ Criar tabela <i>rodovias</i> com km Ini e Km Final (de acordo com os km que foram         |
| levantados) de cada rodovia no banco de dados - Valor: 0.5pt;                               |
| Criar scripts de criação automática das tabelas (init.sql) - Valor: 0.5pt;                  |
| ☐ Criar tabelas do tipo <b>View</b> para auxiliar em querys - <b>Valor: 0.5pt;</b>          |
| ☐ Utilizar <b>Docker - Valor: 1.0pt</b> ;                                                   |
| Utilizar ElectronJs- Valor: 1.0pt;                                                          |
| ☐ Criar função para calcular o KM de determinado item - Valor: 1.0pt; para isso utilize     |
| a 'latitude' e 'longitude' e a camada do SNV202304A (a qual possui os traçados e            |
| quilômetros de referências de rodovias federais do Brasil), use a coluna                    |
| 'exp_km_calc' (valor inteiro do km calculado) como referência para validar seus             |
| resultados. (Dica: Utilize shapely.geometry.LineString().project(point,normalized=True))    |
| Permitir consulta do tipo qual Km de determinada rodovia possui maior incidência de         |
| determinado item - Valor: 1.0pt;                                                            |
| ☐ Criar interface gráfica com vueJs - Valor: 1.0pt;                                         |
| ☐ Utilize <b>OpenLayers</b> ou <b>Leaflet</b> para mostrar os dados levantados em um mapa - |
| Valor: 1.0pt                                                                                |

# Entrega:

• Vídeo: O vídeo deverá ser auto-explicativo, ou seja, mostrando todas as funcionalidades do sistema, cumprimento dos requisitos e funcionalidades bônus (se houver), vale ressaltar que as funcionalidades não mostradas no vídeo, por mais que funcionais, não serão consideradas na pontuação final. (Sugestão: Grave a própria tela





enquanto descreve as funcionalidades verbalmente e mostre a aplicação funcionando com diferentes vídeos e rodovias.)

- o Formato: Link do youtube (Não listado) ou Link para download.
- Código fonte (incluindo o banco de dados .db e os arquivos .csv de saída)
  - o Formato: Link do github ou gitlab ou Link para download de um arquivo zip.

# Avaliação:

- A pontuação final ocorrerá pela soma dos requisitos cumpridos e mostrados em vídeo;
- O não cumprimento de um requisito obrigatório acarretará em uma penalização correspondente ao valor do requisito em sua pontuação final;
- Mesmo n\u00e3o cumprindo os requisitos obrigat\u00f3rios o candidato poder\u00e1 pontuar sob os requisitos b\u00f3nus, tendo em vista a penaliza\u00e7\u00e3o descrita no item anterior;