Shashank Singh sss1@andrew.cmu.edu

21-373 Honors Algebraic Structures, Fall 2011

Assignment 10
Due: Tuesday, December 6

Exercise 64: Let $n \in \mathbb{N}$ with $n \geq 1$, and let $P = -1 + (x - 1)(x - 2) \dots (x - n)$. Suppose, for sake of contradiction, that P is reducible in $\mathbb{Z}[x]$; in particular, suppose that P = AB, for some non-constant $A, B \in \mathbb{Z}[x]$. Let k_1 be the degree of A, and let k_2 be the degree of B. Then, $\forall i \in \mathbb{N}$ with $1 \leq i \leq n$, AB(i) = P(i) = -1. The only integers whose product is (-1) are 1 and (-1); thus, $\forall i \in \mathbb{N}$, either A(i) = 1 and B(i) = -1, or A(i) = -1 and B(i) = 1. In either case, A(i) + B(i) = 0, so that (A + B) has at least n = 0. Thus, either A(i) = 0 is of degree A(i) = 0. Since A(i) = 0 is of that A(i) = 0 is the coefficient of A(i) = 0 is the coefficient of A(i) = 0 in A(i) = 0 is the coefficient of A(i) = 0 in A(i) = 0 in

Exercise 65: Let $n \ge 2$, and let $P = 1 + x + \ldots + x^{n-1}$. Then, $P = \frac{x^n - 1}{x - 1}$, so that the roots of P are precisely those n^{th} roots of unity which are not 1. Suppose p is composite. Then, by Lemma 34.12, since $P = \prod_{d|n} P$ is not irreducible.

Suppose, on the other hand, that n is prime. Then, as noted in Remark 34.13, $P = \Phi_n$, where Φ_n denotes the n^{th} . By Lemma 35.1, then, P is irreducible.

Exercise 66: i. Let $P_1 = x^4 - 2 = (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x - i\sqrt[4]{2})(x + i\sqrt[4]{2})$.

Since 2 divides 2 but not 1, and 2^2 does not divide 2, by Eisenstein's Criterion, P is irreducible. Let $E=\mathbb{Q}(\sqrt[4]{2})$, and let $F=E(i\sqrt[4]{2})$. Since any field containing $\sqrt[4]{2}$ contains $-\sqrt[4]{2}$, and any field containing $i\sqrt[4]{2}$ contains $-i\sqrt[4]{2}$, F is a splitting field extension for P_1 over $\mathbb{Q}[x]$. Since P is irreducible and monic, P is the minimal polynomial for $\sqrt[4]{2}$ over \mathbb{Q} , so that $[E:\mathbb{Q}]=4$. Since $i\sqrt[4]{2} \notin \mathbb{R}$ and $E\subseteq \mathbb{R}$, $i\sqrt[4]{2} \notin E$, so that $[F:E] \geq 2$. Furthermore, $x^2+(\sqrt[4]{2})^2\in E[x]$ is a degree 2 polynomial, so that $[F:E] \leq 2$, and thus [F:E]=2. Therefore, $[F:\mathbb{Q}]=[F:E][E:\mathbb{Q}]=8$.

ii. Let $P_2 = x^4 + 2 = (x - \sqrt[4]{-2})(x + \sqrt[4]{-2})(x - i\sqrt[4]{-2})(x + i\sqrt[4]{-2}).$

Let $F = \mathbb{Q}(\sqrt[4]{-2}, i\sqrt[4]{-2})$, and let $E = \mathbb{Q}(\sqrt[4]{2}, i\sqrt[4]{2})$, so that F is a splitting field extension for P_2 over $\mathbb{Q}[x]$. Since any field containing \mathbb{Q} contains $\sqrt[4]{-2}$ and $i\sqrt[4]{-2}$ if and only if it contains $\sqrt[4]{2}$ and $i\sqrt[4]{2}$, F = E, so that $[F : \mathbb{Q}] = [E : \mathbb{Q}]$. As shown in part i., $[E : \mathbb{Q}] = 8$, so that $[F : \mathbb{Q}] = 8$.

iii. Let ξ Let $P_3 = x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1) = (x - \sqrt[3]{-1})(x + \sqrt[3]{-2})(x - (-1)^{2/3})(x + (-1)^{2/3}$. Let $F = \mathbb{Q}(\sqrt[3]{-1})$. Then, clearly, $-\sqrt[3]{-2} \in F$, and $(\sqrt[3]{-1})^2 = (-1)^{2/3} \in F$, so that $-(-1)^{2/3} \in F$. Thus, F is a splitting field extension of \mathbb{Q} . Furthermore, $\sqrt[3]{-1}$ is a root of the degree 2 polynomial $x^2 - x + 1 \in \mathbb{Q}[x]$, so that $[F : \mathbb{Q}] \le 2$. Since $(-1)^{2/3} \in F$ and $(-1)^{2/3} \notin \mathbb{Q}$, $[F : \mathbb{Q}] \ge 2$, so that $[F : \mathbb{Q}] = 2$. ■

iv. Let $P_4 = (x^3 + 2)(x^3 - 2) = (x - \sqrt[3]{2})(x + \sqrt[3]{2})(x - \sqrt[3]{-2})(x + \sqrt[3]{-2})(x - (-1)^{2/3}\sqrt[3]{2})(x + (-1)^{2/3}\sqrt[3]{-2})$. Let $E = \mathbb{Q}(\sqrt[3]{2})$, and let $F = E((-1)^{2/3}\sqrt[3]{2})$, so that F is a splitting field extension for P_4 over \mathbb{Q} . Since $\sqrt[3]{2}$ is a root of the degree 3 polynomial $x^3 - 2 \in mathbbQ[x]$, $[E : \mathbb{Q}] = 3$. However, since $E \subseteq \mathbb{R}$, and $(-1)^{2/3}\sqrt[3]{2} \notin \mathbb{R}$, $(-1)^{2/3}\sqrt[3]{2} \notin E$, so that $[F : E] \ge 2$. However, $(-1)^{2/3}\sqrt[3]{2}$ is a root of the degree 2 polynomial $(x^2 + 2^{1/3}x + 2^{2/3}) \in E[x]$, so that $[F : E] \le 2$, and thus [F : E] = 2. Therefore, $[F : \mathbb{Q}] = [F : E][E : \mathbb{Q}] = 6$.

Exercise 67: Let E be a field. Let $S = E \setminus \{0, 1, -1\}$. Suppose $x \in E$, with $x^2 = 1$. Then, $x^2 + x = x + 1$, so that x(x + 1) = x + 1. Therefore, $x \in \{1, -1\}$. Thus, $\forall y \in S, y \neq n^{-1}$. As a consequence, $\prod_{y \in S} y = 1$, since each term in the product can be paired with its inverse in the product.

Thus, since $\prod_{x \in E} x = (1)(-1) \prod_{x \in S} x = -1$.

Exercise 68: Polynomials of degrees 2 and 3 in $\mathbb{Z}_3[x]$ are reducible if and only if they have roots in \mathbb{Z}_3 . Thus, the monic reducible polynomials of degree 2 in $\mathbb{Z}_3[x]$ can be counted by counting the number of ways of choosing the roots. In the case that the roots are distinct, there are $\binom{3}{2} = 3$ polynomials; otherwise, there are $\binom{3}{1} = 3$ polynomials, so that, of the $3^2 = 9$ monic degree 2 polynomials in $\mathbb{Z}_3[x]$, 6 are reducible, and 3 are irreducible.

Reducible polynomials of degree 3 in \mathbb{Z}_3 either have 3 roots in \mathbb{Z}_3 , or are the product of a linear and an irreducible quadratic polynomial in \mathbb{Z}_3 . In the first case, the polynomials can be counted by counting their roots. There is 1 polynomial with 3 distinct roots, there are 3*2=6 polynomials with 2 distinct roots, and there are $\binom{3}{1}=3$ polynomials with 1 distinct root, so that there are 10 such monic reducible degree 3 polynomials. In the second case, since there are 3 irreducible degree 2 polynomials and 3 linear polynomials, there are 3*3=9 such monic reducible degree 3 polynomials. Thus, of the $3^3=27$ monic degree 3 polynomials in $\mathbb{Z}_3[x]$, 19 are reducible and 8 are irreducible.

A degree 4 polynomial in $\mathbb{Z}_3[x]$ is reducible if and only if it is a product of two irreducible degree 2 polynomials, or it has exactly 1, 2, or 4 roots in \mathbb{Z}_3 . There are $3^2 = 9$ degree 4 polynomials which are products of two irreducible degree 2 polynomials. If a degree 4 polynomial in $\mathbb{Z}_3[x]$ has exactly one root in \mathbb{Z}_3 , it is the product of one linear and one irreducible degree 3 polynomial. Thus, there are 3*8=24 degree 4 polynomials with exactly one root in \mathbb{Z}_3 . If a degree 4 polynomial in $\mathbb{Z}_3[x]$ has exactly two roots in \mathbb{Z}_3 , it is the product of two linear and one irreducible degree 2 polynomial. Thus, there are $3*\binom{3}{2}=9$ degree 4 polynomials with exactly 1 root in \mathbb{Z}_3 . Lastly, there are 21 degree 4 polynomials in $\mathbb{Z}_3[x]$ with 4 roots in \mathbb{Z}_3 (0 with 4 distinct roots, 3*3=9 with 3 distinct roots, 3 with 2 distinct roots of the same multiplicity, 6 with 2 distinct roots of different multiplicity, and 3 with one distinct root).

Thus, there are 81 - (9 + 24 + 9 + 21) = 18 irreducible monic polynomials of degree 4 in \mathbb{Z}_3 .