实验二十八: RLC 串联电路的暂态过程

朱寅杰 1600017721

2018年4月6日

28.1 RC 串联电路的瞬态过程

将一个电阻箱 R 与一个 $C=0.2\,\mu\mathrm{F}$ 的电容串联在一起,加上一个方波脉冲信号,观察电容和电阻上的电压信号 U_R 与 U_C 。

电阻 R	时间常量计算值 RC/µs	U_R 半衰期 μs	时间常量µs	U_C 半衰期 μs	时间常量µs
200Ω	40	26.20	37.80	42.13	
$2\mathrm{k}\Omega$	400	276.0	398.2	286.0	412.6
$20\mathrm{k}\Omega$	4000	3140	4530	2860	4126

28.2 RL 串联电路的瞬态过程

将一个电阻箱 R 与一个 $L=10\,\mathrm{m}$ 的电感串联在一起,加上一个方波脉冲信号,观察电容和电阻上的电压信号 U_R 与 U_C 。电感的内阻用万用表测出为22.76 Ω ,计算电路时间常数时一并计入总电阻值。

电阻 R	时间常量计算值 $(R+R_L)/L/\mu s$	U _R 半衰期μs	时间常量µs	U_L 半衰期 μs	时间常量μs
20Ω	233.9	154.0	222.2	136.0	196.2
200Ω	44.89	31.80	45.88	30.00	43.28

28.3 RLC 串联电路瞬态过程的观察

将一个电阻 R、一个电感 $L=10\,\mathrm{m}$ (含22.76 Ω 内阻)、一个电容 $C=0.2\,\mathrm{uF}$ 串联起来。

首先电阻 R 设为零,观察 U_C 的瞬态过程,函数图形类似阻尼振动,振幅随时间衰减。从屏幕上读出振动的周期为276.0 μ s,前八个峰的 U_C 分别为

	0	1	2	3	4	5	6	7
电压峰值 U_n/mV	1660	1120	752	508	336	224	143	89.6
$\ln U_n$	7.415	7.021	6.623	6.230	5.817	5.412	4.963	4.495

对 ln U_n 做最小二乘拟合,得到斜率为 $-0.413\,96\pm0.005\,12$,相关系数为 $0.999\,54$ 。由此计算出时间常量为 $276.0\,\mu$ s÷ $0.414\pm0.005=(666\pm8)\,\mu$ s。 与理论计算值 $2L/R_L=879\,\mu$ s 相比偏小。阻尼振荡的角频率为 $2\pi\div276.0\,\mu$ s = $22\,765/s$,与理论值 $\frac{\sqrt{1-R^2C/4L}}{\sqrt{LC}}=22\,332/s$ 相比偏大。

缓慢调大电阻箱 R,使瞬态过程的阻尼振动周期越来越大。当振荡越过平衡位置后不再返回穿过平衡位置时,认为进入了临界衰减。此时电阻箱读数可确定到为 $(327\pm10)\Omega$ 左右,相当于电路中电阻为 $(350\pm10)\Omega$ 左右。对比理论计算结果 $2\sqrt{L/C}=447\Omega$ 偏小。

28.4 思考题

由于电路中除了电感内阻之外,信号源等也有内阻,因此电路中实际的电阻值会大于估计时所用的电感内 阻,导致衰减的时间常数明显偏小。

如果要做一个延时开关的话,可以使用一个时间常数很大(分钟量级)的 RC 电路,拨动一次开关相当于改 变一次电平,然后把电阻上的电压信号经过处理(比如拉一个高电平则通低电平则短的数字逻辑门)以后转换出 去控制(比如)电灯。拨动开关时电阻上会出现一个缓慢衰减的电压信号,可达到想要的延时调节效果。

这次实验几乎是普物实验中示波器使用最繁琐的一次了,要在上面完成极其大量的电压和时间间隔测量,并 记录图线:可是所使用的数字存储示波器却是较为老旧的一批。建议可以把声速驻波等几个实验室的示波器和这 个实验室对换过来,那几个实验在示波器上的操作量小不少,所使用的示波器也比较新,功能更强大,使用起来 也更为智能, 甚至可以直接导出屏幕图像到 U 盘。物尽其用也能给同学们带来更大的便利嘛。

(a) RC 串联时 U_R 的瞬态变化。黄线为输入脉 冲信号, 余下分别为接入200 Ω、2k、20k 的电阻 时的瞬态图线。可以看出电阻越大信号衰减越快。

(c) RL 串联时 U_R 的瞬态变化。黄线为输入脉 冲信号, 余下分别为接入 20Ω 、 200Ω 的电阻时的 瞬态图线。可以看出电阻越大信号衰减越快。

(e) 不接入电阻箱时的串联 RLC 中 U_C 瞬态图 线。

400 Ω电阻时的串联 RLC 中 U_C 的瞬态图线。

(b) RC 串联时 U_C 的瞬态变化。黄线为输入脉 冲信号, 余下分别为接入200 Ω、2k、20k 的电阻 时的瞬态图线。可以看出电阻越大信号衰减越快。

(d) RL 串联时 U_L 的瞬态变化。黄线为输入脉 冲信号, 余下分别为接入 20Ω 、 200Ω 的电阻时的 瞬态图线。可以看出电阻越大信号衰减越快。

(f) 2 信号按衰减由快至慢分别为接入 20k、2k、 (g) 串联 RLC 电路,电阻箱调节至临界衰减状态 时的 U_C 瞬态图线。