Does polynomial interpolation converge?

L
$$^{\infty}$$
 space "converge" = $\max_{x} |f(x) - I_k(f)(x)| \xrightarrow{k} 0$

Interpolation of f with k nodes

	Equally spaced nodes	Chebyshev nodes
\mathcal{C}^0 functions		
\mathcal{C}^1 functions		
\mathcal{C}^∞ functions		

Why not?

Indeed, Berstein polynomials can approximate any continuous function!

...but they are too slow to be used in practice (and they do not interpolate the function on the nodes)

$$(q_1, \ldots, q_n)$$
 interpolation nodes; (x_1, \ldots, x_d) evaluation points

Lagrangian polynomials: $\ell_i(x) \stackrel{\text{def}}{=} \prod_{\substack{1 \leq j \leq n \\ j \neq i}} \frac{x - q_j}{q_i - q_j}$

$$I_n(f)(x) \stackrel{\text{def}}{=} \sum_{i=1}^n f(q_i)\ell_i(x)$$

 $I_n(f)$ can be evaluated on (x_1, \ldots, x_d) using a matrix product

$$\begin{pmatrix} \ell_1(x_1) & \dots & \ell_n(x_1) \\ \vdots & \ddots & \vdots \\ \ell_1(x_d) & & \ell_n(x_d) \end{pmatrix} \begin{pmatrix} f(q_1) \\ \vdots \\ f(q_n) \end{pmatrix} = \begin{pmatrix} I_n(f)(x_1) \\ \vdots \\ I_n(f)(x_d) \end{pmatrix}$$

Chebyshev nodes on [-1, 1]:

$$\cos\left(\frac{2i-1}{2n}\pi\right)$$
 for $i\in\{1,\ldots,n\}$

Berstein polynomial: $b_{i,n}(x) \stackrel{\text{def}}{=} \binom{n}{i} x^i (1-x)^{n-i}$

$$\begin{pmatrix} b_{0,n}(x_1) & \dots & b_{n,n}(x_1) \\ \vdots & \ddots & \vdots \\ b_{0,n}(x_d) & \dots & b_{n,n}(x_d) \end{pmatrix} \begin{pmatrix} f(0/n) \\ f(1/n) \\ \vdots \\ f(n/n) \end{pmatrix}$$

(WARNING: we are using n + 1 nodes!)