04.1.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月18日

出 願 番 号 Application Number: 特願2004-078820

[ST. 10/C]:

[JP2004-078820]

出 願 人 Applicant(s): トヨタ自動車株式会社

特 Con Japa

2005年 2月 4日

特許庁長官 Commissioner, Japan Patent Office n 11

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 1040174 【提出日】 平成16年

【提出日】平成16年 3月18日【あて先】特許庁長官殿【国際特許分類】H01R 13/629

【発明者】

【住所又は居所】 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】 塚嶋 浩幸

【発明者】

【住所又は居所】 愛知県安城市藤井町高根10番地 アイシン・エイ・ダブリュ株

式会社内

【氏名】 竹内 孝昌

【発明者】

【住所又は居所】 三重県四日市市西末広町1番14号 株式会社オートネットワー

ク技術研究所内

【氏名】 近田 一元

【発明者】

【住所又は居所】 三重県四日市市西末広町1番14号 株式会社オートネットワー

ク技術研究所内

【氏名】 宮崎 正

【特許出願人】

【識別番号】 000003207

【住所又は居所】 愛知県豊田市トヨタ町1番地

【氏名又は名称】 トヨタ自動車株式会社

【代理人】

【識別番号】 100064746

【弁理士】

【氏名又は名称】 深見 久郎

【選任した代理人】

【識別番号】 100085132

【弁理士】

【氏名又は名称】 森田 俊雄

【選任した代理人】

【識別番号】 100112715

【弁理士】

【氏名又は名称】 松山 隆夫

【選任した代理人】

【識別番号】 100112852

【弁理士】

【氏名又は名称】 武藤 正 【先の出願に基づく優先権主張】

【出願番号】 特願2004- 4443 【出願日】 平成16年 1月 9日

【手数料の表示】

【予納台帳番号】 008693 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

ページ: 2/E

【物件名】 要約書 1 【包括委任状番号】 0209333

【請求項1】

車両に搭載された電気機器を収納する筐体における第1のコネクタと、予め定められた以上の力で挿入することにより前記第1のコネクタに嵌合する形状を有する第2のコネクタとを含むコネクタ接続構造であって、

前記第2のコネクタは、前記第1のコネクタの接点と接合して電気的に接続される接点を有し、

前記第2のコネクタには、作業者の挿入作業に伴う力を増加させる機構を一体に備える 、コネクタ接続構造。

【請求項2】

前記機構は、前記第2のコネクタと支点を介して接続された、棒状の挿入補助部材を含 み、

前記挿入補助部材は、一方端の位置を制限した状態で他方端に回転力を付与することにより、前記予め定められた以上の力を発現し、

前記筺体は、前記一方端の位置を制限するための制限手段を含む、請求項1に記載のコネクタ接続構造。

【請求項3】

前記挿入補助部材は、前記支点を中心として回転自在に支持される、請求項2に記載の コネクタ接続構造。

【請求項4】

前記第2のコネクタは、前記筐体の形状に沿って形成される、請求項1~3のいずれか に記載のコネクタ接続構造。

【請求項5】

前記第2のコネクタは、L字形状に形成される、請求項1~3のいずれかに記載のコネクタ接続構造。

【請求項6】

前記制限手段は、前記筐体に設けられ、前記一方端の位置に形成された突出部である、 請求項1~5のいずれかに記載のコネクタ接続構造。

【請求項7】

前記制限手段は、前記筐体に設けられ、前記一方端が挿入可能に形成された開口部である、請求項1~5のいずれかに記載のコネクタ接続構造。

【請求項8】

前記機構は、前記第2のコネクタにおいて、その一方端の位置が制限される棒状の挿入 補助部材を含み、

前記挿入補助部材は、前記第2のコネクタの挿入方向と予め定められた角度を有する溝が設けられ、

前記筐体には、前記溝に摺動可能な突出部が固定され、

前記挿入補助部材は、前記突出部が前記溝に沿って摺動することにより、前記予め定められた以上の力を発現する、請求項1に記載のコネクタの接続構造。

【請求項9】

前記挿入補助部材の他方端は、前記第2のコネクタが前記第1のコネクタに嵌合された 後に、前記筐体に固定される、請求項2~8のいずれかに記載のコネクタ接続構造。

【請求項10】

車両に搭載された電気機器を収納する筐体における第1のコネクタと、予め定められた以上の力で挿入することにより前記第1のコネクタに嵌合する形状を有する第2のコネクタと、前記第2のコネクタを前記第1のコネクタとを嵌合するための挿入補助機構と支点を介して接続された、棒状の挿入補助部材とを含むコネクタ接続構造であって、

前記挿入補助部材は、一方端の位置を制限した状態で他方端に回転力を付与することにより、前記第2のコネクタに対して前記予め定められた以上の力を発現し、

前記第2のコネクタは、前記第1のコネクタの接点と接合して電気的に接続される接点

を含み、

前記筐体は、前記一方端の位置を制限するための制限手段を含む、コネクタ接続構造。

【請求項11】

前記挿入補助部材は、前記挿入補助機構に回転自在に支持される、請求項10に記載の コネクタ接続構造。

【請求項12】

前記第2のコネクタは、前記筐体の形状に沿って形成される、請求項10または11に 記載のコネクタ接続構造。

【請求項13】

前記第2のコネクタは、L字形状に形成される、請求項10または11に記載のコネク タ接続構造。

【請求項14】

前記制限手段は、前記筐体に設けられ、前記一方端の位置に形成された突出部である、 請求項10~13のいずれかに記載のコネクタ接続構造。

【請求項15】

前記制限手段は、前記筐体に設けられ、前記一方端が挿入可能に形成された開口部であ る、請求項10~13のいずれかに記載のコネクタ接続構造。

【請求項16】

前記挿入補助機構は、前記一方端と接続される部材を有し、

前記制限手段は、前記筐体に設けられ、前記部材の位置を制限するように形成される突 出部である、請求項10~13のいずれかに記載のコネクタ接続構造。

【請求項17】

前記挿入補助機構は、前記一方端と接続される部材を有し、

前記制限手段は、前記筺体に設けられ、前記部材が挿入可能に形成される開口部である 、請求項10~13のいずれかに記載のコネクタ接続構造。

【書類名】明細書

【発明の名称】コネクタ接続構造

【技術分野】

[0001]

本発明は、コネクタ接続構造に関し、特に、コネクタの挿入荷重を低減させる構造に関 する。

【背景技術】

[0002]

従来、HV(Hybrid Vehicle)、EV(Electric Vehicle)、FCV(Fuel Cell Vehic le) 車両には、複数の電気機器が搭載される。たとえば、回転電機が搭載された車両にお いては、回転電機とインバータ等の各電気機器同士は、導線等のケーブルにより接続され る。このとき、電気機器に対して、導線等のケーブルを接続する際には、一般にコネクタ が用いられる。すなわち、ケーブル側と電気機器側には、互いに嵌合可能な形状を有する コネクタがそれぞれ設けられている。それぞれのコネクタは、オスコネクタ、メスコネク タとして電気的接続を行なうための接点を有する。そのため、オスコネクタとメスコネク タとを嵌合させることにより、それぞれの接点が接合して電気的に接続される。このとき 、オスコネクタとメスコネクタとの嵌合には、予め定められた以上の力を付与することに より嵌合できる。このようなコネクタ同士の嵌合は、たとえば、ボルトの締結により行な われる。以下の公報にボルトの締結によりコネクタの嵌合が行なわれる技術が開示されて いる。

[0003]

特許文献1(特開2002-75557号公報)は、シールド電線を相手側のシールド 壁と平行した方向に取り廻すことができ、かつ、小型化可能なシールドコネクタを開示す る。このシールドコネクタは、シールド電線の端末部を覆ったハウジングの内部に、シー ルド電線の芯線に圧着した端子金具の基端側を収容してなる。そして、シールドコネクタ は、相手側のシールド壁に形成した貫通孔に取り付けられる。そして、シールド電線のシ ールド層を、相手側のシールド壁に導通接続し、かつ、端子金具の先端側を相手側のシー ルド壁内に突入させた状態に保持する。シールドコネクタにおいて、端子金具は、芯線へ の圧着部から連続形成した平板部を曲げて、全体がL字状に形成される。そして、その端 子金具の基端側から先端寄り位置までを、絶縁部材に覆われる。ハウジングの内部には、 端子金具を覆った絶縁部材の外側を覆うシールド部材が設けられる。そのシールド部材の 一端は、シールド電線のシールド層に連続しまたは導通接続される。一方、他端は、ハウ ジングのうち相手側のシールド壁との当接部分に配される。

[0004]

特許文献1に開示されたシールドコネクタによると、シールドコネクタのハウジングを 、相手側のシールド壁に取り付けると、ハウジングの一端側では、シールド電線の芯線に 圧着した端子金具がシールド壁内に突入する。ハウジングの他端側では、シールド電線が 、相手側のシールド壁と平行して延びた状態になる。ここで、端子金具は、圧着部から延 びた平板部を直角曲げしてL字状に形成されているが、平板部は、シールド電線に比べて 小さな屈曲半径で屈曲させることができる。そのため、屈曲部分の小型化が図られ、ひい ては、シールドコネクタ全体の小型化が図られる。

[0005]

また、作業性を考慮して、挿入荷重を低減させたコネクタにおいては、たとえば、オス コネクタ側にレバーが設けられ、メスコネクタ側にアームが成型されるレバー式コネクタ がある。これにより、オスコネクタとメスコネクタの嵌合時にレバーをアームに引っ掛け て挿入荷重の低減を図る。以下の公報にレバー式コネクタの技術が開示されている。

[0006]

特許文献2(特開平7-106018号公報)は、簡単な構成でレバーがコネクタハウ ジングから外れるのを防止するレバー式コネクタを開示する。このレバー式コネクタは、 互いに結合されるコネクタのうちの一方のコネクタハウジングに、同コネクタハウジング を跨ぐようにしてコ字状のレバーを回動可能に設ける。そして、他方のコネクタハウジン グにこのレバーに形成されたカム部に係合するカム受け部を設け、レバーを往復回動させ ることにより、カム受け部を変位させて両コネクタの結合および離脱を行なわせる。レバ ー式コネクタは、一方のコネクタハウジングとレバーとのいずれか一方に突設したレバー 支持軸と、他方に形成されレバー支持軸が嵌合される軸受け孔部とを有する。レバー支持 軸もしくは軸受孔部のいずれか一方に径方向に突出する抜け止め部を形成する。他方に、 レバーの往復回動の間抜け止め部と係合しかつその一部が径方向に切り欠かれて抜け止め 部をレバーの離脱位置で挿入離脱可能とする係合面を設けている。

[0007]

特許文献2に開示されたレバー式コネクタによると、レバーをコネクタハウジングに取 り付けるときは、レバーを両コネクタの離脱位置に位置決めする。そして、レバー支持軸 もしくは軸受孔部のいずれか一方に形成された抜け止め部を、他方に設けた係合面の切り 欠かれた部分から挿入する。そして両コネクタを結合させるためにレバーを操作する場合 には、レバーを離脱位置から結合位置に向けて回動する。すると、両コネクタの結合に伴 ってレバーに作用する挿入荷重に対する操作力を受けてレバーが撓む。そして、レバー支 持軸と軸受孔部とを離反させる向きの作用力が働いても、抜け止め部が係合面と係合して レバー支持軸と軸受孔部とが離脱するのを防止する。

【特許文献1】特開2002-75557号公報

【特許文献2】特開平7-106018号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

しかしながら、たとえば、FR(Front engine Rear drive)のHV車両に回転電機を 搭載する場合、回転電機は、搭載スペースの小さい車両のセンタートンネル内に搭載する 必要がある。このとき、回転電機をセンタートンネル内に搭載した後に回転電機にケーブ ルを接続する場合、特許文献1において開示されたシールドコネクタのように、ボルトの 締結等によりコネクタの嵌合を行なうと、コネクタを連結する作業性が低下するという問 題があった。

[0009]

また、大型のFRのHV車両に回転電機を搭載する場合、回転電機の要求が高く、回転 電機自体が大型になるため、回転電機からのコネクタ等の張り出しを抑制する必要があっ た。すなわち、回転電機が大型になると、コネクタは高電圧に耐えるために大きな端子が 必要となる。そのため、コネクタの挿入荷重が非常に高くなるため、特許文献 2 において 開示されたレバー式コネクタのように、挿入荷重を低減する機構を設ける場合、コネクタ が非常に大型になる。したがって、回転電機の筐体からコネクタ等が張り出すため、その 分大きい搭載スペースが必要となるという問題があった。

[0010]

本発明は、上述したような課題を解決するためになされたものであって、その目的は、 簡易な構造の挿入荷重低減機構により嵌合される薄型のコネクタ接続構造を提供するもの である。

【課題を解決するための手段】

$[0\ 0\ 1\ 1]$

第1の発明に係るコネクタ接続構造は、車両に搭載された電気機器を収納する筐体にお ける第1のコネクタと、予め定められた以上の力で挿入することにより第1のコネクタに 嵌合する形状を有する第2のコネクタとを含むコネクタ接続構造である。第2のコネクタ は、第1のコネクタの接点と接合して電気的に接続される接点を有する。第2のコネクタ には、作業者の挿入作業に伴う力を増加させる機構を一体に備える。

[0012]

第1の発明によると、コネクタ接続構造は、車両に搭載された電気機器(たとえば、回 転電機)を収納する筐体に設けられた、第1のコネクタ (たとえば、メスコネクタ)と、

予め定められた以上の力で挿入することにより、メスコネクタに嵌合する形状を有する第 2のコネクタ (たとえば、オスコネクタ) とを含むコネクタ接続構造である。オスコネク タは、メスコネクタの接点と接合して電気的に接続される接点を有する。オスコネクタに は、作業者の挿入作業に伴う力を増加させる機構(たとえば、オスコネクタに回転自在に 支持されるレバー)を一体に備える。これにより、たとえば、筐体にレバーの一方端の位 置を制限する突出部を設けると、レバーは、一方端の位置を制限した状態で他方端に回転 力を付与することにより、予め定められた以上の力を発現する。オスコネクタにレバーを 設けて挿入作業に伴う力を増加させることにより、作業者が付与する挿入荷重は低減でき る。また、メスコネクタ側の、オスコネクタ側に設けられる機構に対応する構造を設ける 必要がなくなる。そして、オスコネクタ側のレバーにおいてもレバー構造のみに特化した 簡易的な構造でよい。そのため、両コネクタを嵌合したときにコネクタの大きさを嵌合方 向に薄くすることができる。さらに、狭い作業スペースにおけるコネクタの接続が可能と なる。このようにして、コネクタの筐体からの張り出しを抑制することができるため、狭 いスペースにおいても回転電機の搭載スペースを確保することができる。さらに、コネク タに設けられるレバー構造が小型でかつ簡易的にできるためコスト的に有利となる。した がって、簡易な構造の挿入荷重低減機構により嵌合される薄型のコネクタ接続構造を提供 することができる。

[0013]

第2の発明に係るコネクタ接続構造においては、第1の発明の構成に加えて、機構は、 第2のコネクタと支点を介して接続された、棒状の挿入補助部材を含む。挿入補助部材は 、一方端の位置を制限した状態で他方端に回転力を付与することにより、予め定められた 以上の力を発現する。筐体は、一方端の位置を制限するための制限手段を含む。

[0014]

第2の発明によると、機構は、第2のコネクタ (たとえば、オスコネクタ) と支点を介 して接続された、棒状の挿入補助部材(たとえば、オスコネクタに回転自在に支持される レバー)を含む。レバーは、一方端の位置を制限した状態で他方端に回転力を付与するこ とにより、予め定められた以上の力を発現する。そして、筐体は、一方端の位置を制限す るための制限手段(たとえば、筐体に設けられた、一方端の位置に形成された突出部)を 含む。これにより、メスコネクタ側の、オスコネクタ側に設けられたレバーに対応する構 造を設ける必要がなくなる。また、オスコネクタ側のレバーにおいてもレバー構造のみに 特化した簡易的な構造でよい。そのため、両コネクタを嵌合したときにコネクタの大きさ を嵌合方向に薄くすることができる。さらに、狭い作業スペースにおけるコネクタの接続 が可能となる。また、筐体に突出部が一体化されていることにより、たとえば、メスコネ クタ側を筐体の奥に設けられたとしてもオスコネクタを嵌合させることができる。このよ うにして、コネクタの筐体からの張り出しを抑制することができるため、狭いスペースに おいても回転電機の搭載スペースを確保することができる。また、筐体は、たとえば、ア ルミダイキャスト等で形成される。そのため、突出部を一体化して設けることにより、強 度を確保することができる。さらに、コネクタに設けられるレバー構造が小型でかつ簡易 的にできるためコスト的に有利となる。したがって、簡易な構造の挿入荷重低減機構によ り嵌合される薄型のコネクタ接続構造を提供することができる。

[0015]

第3の発明に係るコネクタ接続構造においては、第2の発明の構成に加えて、挿入補助 部材は、支点を中心として回転自在に支持されるものである。

[0016]

第3の発明によると、挿入補助部材を第2のコネクタ(たとえば、オスコネクタ)に設けられる支点を中心として回転自在に支持されることにより、オスコネクタをレバー構造のみに特化した簡易的な構造とすることができる。そのため、オスコネクタと第1のコネクタ(たとえば、メスコネクタ)とを嵌合したときにコネクタの大きさを嵌合方向に薄くすることができる。さらに、狭い作業性スペースにおけるコネクタの接続が可能となる。そして、コネクタの筐体からの張り出しを抑制することができるため、狭いスペースにお

いても電気機器(たとえば、回転電機)の搭載スペースを確保することができる。

[0017]

第4の発明に係るコネクタ接続構造においては、第1~3のいずれかの発明の構成に加えて、第2のコネクタは、筐体の形状に沿って形成されるものである。

[0018]

第4の発明によると、第2のコネクタ(たとえば、オスコネクタ)を筐体の形状に沿って形成することにより、オスコネクタを第1のコネクタ(たとえば、メスコネクタ)側に嵌合したときに、コネクタの筐体からの張り出しを抑制することができる。そのため、狭いスペースにおいても電気機器(たとえば、回転電機)の搭載スペースを確保することができる。

[0019]

第5の発明に係るコネクタ接続構造においては、第1~3のいずれかの発明の構成に加えて、第2のコネクタは、L字形状に形成されるものである。

[0020]

第5の発明によると、第2のコネクタ(たとえば、オスコネクタ)をL字形状に形成することにより、オスコネクタを第1のコネクタ(たとえば、メスコネクタ)側に嵌合したときに、コネクタの筐体からの張り出しを抑制することができる。そのため、狭いスペースにおいても電気機器(たとえば、回転電機)の搭載スペースを確保することができる。

[0021]

第6の発明に係るコネクタ接続構造においては、第1~5のいずれかの発明の構成に加えて、制限手段は、筐体に設けられ、一方端の位置に形成された突出部である。

[0022]

第6の発明によると、制限手段として、挿入補助部材(たとえば、オスコネクタに回転自在に支持されるレバー)の一方端の位置に形成される突出部が筐体に設けられる。これにより、レバーの一方端の位置を制限した状態で突出部を支点として、他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。そのため、第1のコネクタ(たとえば、メスコネクタ)側にオスコネクタ側に設けられるレバーに対応する構造を設ける必要がなくなることにより、コネクタを嵌合方向に薄くすることができる。また、筐体は、たとえば、アルミダイキャスト等で形成される。そのため、突出部を筐体と一体化して設けることにより、突出部の強度を確保することができる。

[0023]

第7の発明に係るコネクタ接続構造においては、第 $1\sim5$ のいずれかの発明の構成に加えて、制限手段は、筐体に設けられ、一方端が挿入可能に形成された開口部である。

[0024]

第7の発明によると、制限手段として、挿入補助部材(たとえば、オスコネクタに回転自在に支持されるレバー)の一方端が挿入可能に形成された開口部が筐体に設けられる。これにより、レバーの一方端の位置を制限した状態で開口部を支点として、他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。そのため、第1のコネクタ(たとえば、メスコネクタ)側にオスコネクタ側に設けられるレバーに対応する構造を設ける必要がなくなることにより、コネクタを嵌合方向に薄くすることができる。また、筐体は、たとえば、アルミダイキャスト等で形成される。そのため、開口部を筐体と一体化して設けることにより、開口部の強度を確保することができる。

[0025]

第8の発明に係るコネクタ接続構造においては、第1の発明の構成に加えて、機構は、 第2のコネクタにおいて、一方端の位置を制限した状態の棒状の挿入補助部材を含む。挿 入補助部材は、第2のコネクタの挿入方向と予め定められた角度を有する溝が設けられる 。筐体には、溝に摺動可能な突出部が固定される。挿入補助部材は、突出部が溝に沿って 摺動することにより、予め定められた以上の力を発現する。

[0026]

第8の発明によると、機構は、第2のコネクタ(たとえば、オスコネクタ)において、 一方端の位置を制限した状態の棒状の挿入補助部材(たとえば、スライド機構)を含む。 スライド機構は、オスコネクタの挿入方向と予め定められた角度を有する溝が設けられる 。筐体には、溝に摺動可能な突出部が固定される。スライド機構は、突出部が溝に沿って 摺動することにより、予め定められた以上の力を発現する。これにより、第1のコネクタ (たとえば、メスコネクタ) 側の、オスコネクタ側に設けられたスライド機構に対応する 構造を設ける必要がなくなる。そのため、両コネクタを嵌合したときにコネクタの大きさ を嵌合方向に薄くすることができる。さらに、狭い作業スペースにおけるコネクタの接続 が可能となる。また、筐体に突出部が一体化されていることにより、たとえば、メスコネ クタ側を筐体の奥に設けられたとしてもオスコネクタを嵌合させることができる。このよ うにして、コネクタの筐体からの張り出しを抑制することができるため、狭いスペースに おいても回転電機の搭載スペースを確保することができる。また、筐体は、たとえば、ア ルミダイキャスト等で形成される。そのため、突出部を一体化して設けることにより、強 度を確保することができる。さらに、コネクタに設けられるスライド機構の構造が小型で かつ簡易的にできるためコスト的に有利となる。したがって、簡易な構造の挿入荷重低減 機構により嵌合される薄型のコネクタ接続構造を提供することができる。

[0027]

第9の発明に係るコネクタ接続構造においては、第2~8のいずれかの発明の構成に加えて、挿入補助部材の他方端は、第2のコネクタが第1のコネクタに嵌合された後に、筐体に固定される。

[0028]

第9の発明によると、挿入補助部材の他方端は、第2のコネクタ(たとえば、オスコネクタ)が第1のコネクタ(たとえば、メスコネクタ)に嵌合された後に、筐体に固定される。たとえば、挿入補助部材の他方端を、オスコネクタあるいはオスコネクタに接続されるケーブルの位置を制限するような形状に形成する。挿入補助部材の他方端は筐体に固定されるため、挿入補助部材をクランプとしての機能させることができる。挿入補助部材をクランプと兼用させることにより、部品点数を削減することができる。また、クランプを取り付ける作業工数を削減することができる。すなわち、コストの低減が図れる。

[0029]

第10の発明に係るコネクタ接続構造は、車両に搭載された電気機器を収納する筐体における第1のコネクタと、予め定められた以上の力で挿入することにより第1のコネクタに嵌合する形状を有する第2のコネクタと、第2のコネクタを第1のコネクタとを嵌合するための挿入補助機構と支点を介して接続された、棒状の挿入補助部材とを含むコネクタ接続構造である。挿入補助部材は、一方端の位置を制限した状態で他方端に回転力を付与することにより、第2のコネクタに対して予め定められた以上の力を発現する。第2のコネクタは、第1のコネクタの接点と接合して電気的に接続される接点を含む。筐体は、一方端の位置を制限するための制限手段を含む。

[0030]

第10の発明によると、コネクタ接続構造は、車両に搭載された電気機器(たとえば、回転電機)を収納する筐体における第1のコネクタ(たとえば、メスコネクタ)と、予め定められた以上の力で挿入することによりメスコネクタに嵌合する形状を有する第2のコネクタ(たとえば、オスコネクタ)と、オスコネクタをメスコネクタとを嵌合するための挿入補助機構(たとえば、挿入冶具)と支点を介して接続された、棒状の挿入補助部材(たとえば、挿入冶具)と支点を介して接続された、棒状の挿入補助部材(たとえば、挿入補助機構に回転自在に支持されるレバー)を含むコネクタ接続構造である。レバーは、一方端の位置を制限した状態で他方端に回転力を付与することにより、オスコネクタに対して予め定められた以上の力を発現する。オスコネクタは、メスコネクタの接点と接合して電気的に接続される接点を含む。筐体は、一方端の位置を制限するための制限手段(たとえば、筐体に設けられた、一方端の位置に形成された突出部)を含む。これにより、挿入冶具を用いてオスコネクタ側とメスコネクタ側とを嵌合するため、オスコ

ネクタ側およびメスコネクタ側に対してレバー構造を設ける必要がなくなる。そのため、両コネクタを嵌合したときにコネクタの大きさを嵌合方向に薄くすることができる。さらに、製造コストの低減が図れる。また、筐体に突出部が一体化されていることにより、たとえば、メスコネクタ側を筐体の奥に設けられたとしてもオスコネクタを嵌合させることができる。このようにして、コネクタの筐体からの張り出しを抑制することができるため、狭いスペースにおいても回転電機の搭載スペースを確保することができる。また、筐体は、たとえば、アルミダイキャスト等で形成される。そのため、突出部を一体化して設けることにより、強度を確保することができる。したがって、簡易な構造の挿入荷重低減機構により嵌合される薄型のコネクタ接続構造を提供することができる。

[0031]

第11の発明に係るコネクタ接続構造においては、第10の発明の構成に加えて、挿入補助部材は、挿入補助機構に回転自在に支持されるものである。

[0032]

第11の発明によると、挿入補助部材は、挿入補助機構(たとえば、挿入冶具)に回転自在に支持されることにより、第2のコネクタ(たとえば、オスコネクタ)に対してレバー構造を不要とすることができる。そのため、両コネクタを嵌合したときにコネクタの大きさを嵌合方向に薄くすることができる。さらに、製造コストの低減が図れる。そして、コネクタの筐体からの張り出しを抑制することができるため、狭いスペースにおいても電気機器(たとえば、回転電機)の搭載スペースを確保することができる。

[0033]

第12の発明に係るコネクタ接続構造においては、第10または11の発明の構成に加えて、第2のコネクタは、筐体の形状に沿って形成されるものである。

[0034]

第12の発明によると、第2のコネクタ(たとえば、オスコネクタ)を筐体の形状に沿って形成することにより、オスコネクタを第1のコネクタ(たとえば、メスコネクタ)側に嵌合したときに、コネクタの筐体からの張り出しを抑制することができる。そのため、狭いスペースにおいても電気機器(たとえば、回転電機)の搭載スペースを確保することができる。

[0035]

第13の発明に係るコネクタ接続構造においては、第10または11の発明の構成に加えて、第2のコネクタは、L字形状に形成されるものである。

[0036]

第13の発明によると、第2のコネクタ(たとえば、オスコネクタ)をL字形状に形成することにより、オスコネクタを第1のコネクタ(たとえば、メスコネクタ)側に嵌合したときに、コネクタの筐体からの張り出しを抑制することができる。そのため、狭いスペースにおいても電気機器(たとえば、回転電機)の搭載スペースを確保することができる

[0037]

第14の発明に係るコネクタ接続構造においては、第10~13のいずれかの発明の構成に加えて、制限手段は、筐体に設けられ、一方端の位置に形成された突出部である。

[0038]

第14の発明によると、制限手段として、挿入補助部材(たとえば、挿入冶具に回転自在に支持されるレバー)の一方端の位置に形成される突出部が筐体に設けられる。これにより、レバーの一方端の位置を制限した状態で突出部を支点として、他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。そのため、第1のコネクタ(たとえば、メスコネクタ)側およびオスコネクタ側にレバー構造を設ける必要がなくなるため、コネクタを嵌合方向に薄くすることができる。また、筐体は、たとえば、アルミダイキャスト等で形成される。そのため、突出部を筐体と一体化して設けることにより、突出部の強度を確保することができる。

[0039]

第15の発明に係るコネクタ接続構造においては、第10~13のいずれかの発明の構成に加えて、制限手段は、筐体に設けられ、一方端が挿入可能に形成された開口部である

[0040]

第15の発明によると、制限手段として、挿入補助部材(たとえば、挿入冶具に回転自在に支持されるレバー)の一方端が挿入可能に形成された開口部が筐体に設けられる。これにより、レバーの一方端の位置を制限した状態で開口部を支点として、他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。そのため、第1のコネクタ(たとえば、メスコネクタ)側およびオスコネクタ側にレバー構造を設ける必要がなくなるため、コネクタを嵌合方向に薄くすることができる。また、筐体は、たとえば、アルミダイキャスト等で形成される。そのため、開口部を筐体と一体化して設けることにより、開口部の強度を確保することができる。

[0041]

第16の発明に係るコネクタ接続構造においては、第 $10\sim13$ のいずれかの発明の構成に加えて、挿入補助機構は、一方端と接続される部材を有する。制限手段は、筐体に設けられ、部材の位置を制限するように形成される突出部である。

[0042]

第16の発明によると、挿入補助機構(たとえば、挿入冶具)は、挿入補助部材(たとてば、挿入補助機構に回転自在に設けられるレバー)の一方端と接続される部材を有する。制限手段として、この部材の位置を制限するように形成される突出部が筐体に設けられる。これにより、突出部により位置を制限された部材との接続部を支点として、レバーの他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。

[0043]

第17の発明に係るコネクタ接続構造においては、第10~13のいずれかの発明の構成に加えて、挿入補助機構は、前記一方端と接続される部材を有する。制限手段は、筐体に設けられ、部材が挿入可能に形成される開口部である。

[0044]

第17の発明によると、挿入補助機構(たとえば、挿入冶具)は、挿入補助部材(たとえば、挿入補助機構に回転自在に設けられるレバー)の一方端と接続される部材を有する。制限手段として、この部材を挿入可能に形成される開口部が筐体に設けられる。これにより、開口部により位置を制限された部材との接続部を支点として、レバーの他方端に回転力を付与することにより、第2のコネクタ(たとえば、オスコネクタ)に対して予め定められた以上の力を発現させることができる。

【発明を実施するための最良の形態】

[0045]

以下、図面を参照しつつ、本発明の実施の形態に係るコネクタ接続構造について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。

[0046]

また、本実施の形態に係るコネクタ接続構造については、回転電機とインバータとを接続するケーブルと、回転電機とを接続するコネクタを一例として説明する。

[0047]

<第1の実施の形態>

図1に示すように、本実施の形態に係る回転電機(図示せず)を収納する筐体100は 、コネクタ挿入口106と、突出部102、104とから構成される。

[0048]

回転電機とケープルとは、ケーブルの端部に設けられるオスコネクタが、コネクタ挿入

口106に設けられる回転電機と接続されたメスコネクタと嵌合することにより、それぞれのコネクタの内部に有する接点が接合して電気的に接続される。このとき、コネクタ挿入口106に嵌合されるオスコネクタには、嵌合方向に予め定められた以上の力を加える必要がある。そのため、たとえば、大きな端子を有するコネクタを嵌合させるための挿入荷重は、非常に高くなるため、作業性が悪い。そこで、コネクタには、作業者の挿入作業に伴う力を増加させる機構を一体に備える。挿入作業に伴う力を増加させることにより、コネクタを嵌合させるために予め定められた以上の力を加える際に、作業者が付与する手入荷重は低減できる。コネクタには、このように作業者が付与する挿入荷重を低減さる挿入荷重低減機構が設けられる。挿入荷重低減機構は、たとえば、てこの原理を応用したレバー機構である。本実施の形態に係るコネクタ接続構造は、このレバー機構の構造を有する。レバー構造は、筐体100に設けられた突出部102、104を利用して、オスコネクタとメスコネクタとを嵌合する。以下、図2および図3に示す回転電機を収納する筐体100の断面図を用いて、本実施の形態に係るコネクタ接続構造について詳細に説明する。

[0049]

図2に示すように、本実施の形態に係る回転電機の筐体100には、固定子鉄心112 とコイル110とから構成される回転電機の固定子と、軸受部114、122と、突出部 102と、メスコネクタ108と、端子台固定部材120と、ボルト118と、結線部材 116とを収納する。

[0050]

固定子鉄心112は、中空の円筒形状を有する。固定子鉄心112は、複数のスロットを有している。スロットには、コイル110が巻着されている。そして、固定子鉄心112は、筐体100に対して、たとえば、ボルト等により締結されて固定される。そして、図示しない回転電機の回転子のシャフトが軸受部114、122に回転自在に支持される

[0051]

コネクタ挿入口106には、メスコネクタ108の端子台が外周方向から筐体100に挿入されている。そして、筐体100の回転軸と平行な方向から端子台固定部材120が筐体100に挿入されている。挿入された端子台固定部材120は、ボルト118により締結されて固定される。メスコネクタ108の端子台が固定されるため、メスコネクタ108の端子台が固定されるため、メスコネクタ108の端子台には、図示しない電気的経路が配策されている。そして、メスコネクタ108の端子台の電気的経路は、コイル110と結線されている結線部材116と電気的に接続されている。また、メスコネクタ108は、オスコネクタ200と嵌合する形状を有する。そのため、オスコネクタ108は、オスコネクタ200に接続されると、オスコネクタ200側の接点204と接合される。このようにして、ケーブルと回転電機とがコネクタを介して電気的に接続される。なお、オスコネクタのコネクタ形状およびメスコネクタのコネクタ形状点的に接続されるものではないが、本実施の形態において、たとえば、オスコネクタは凹形状を有し、メスコネクタは凸形状を有する。

[0052]

また、オスコネクタ200は、嵌合時に筐体100に沿った形状に形成される。そのため、オスコネクタをメスコネクタ側に嵌合したときに、回転電機の径方向に対するケーブルの張り出し、あるいは、コネクタの筐体からの張り出しを抑制することができる。そのため、狭いスペースにおいても回転電機の搭載スペースを確保することができる。または、オスコネクタ200は、L字形状に形成されても同様の効果を有する。

[0053]

このとき、オスコネクタ200とメスコネクタ108との嵌合時においては、オスコネクタ200をメスコネクタ108に組み付けた後に、オスコネクタ200に回転自在に設けられたレバー202の一方端を筐体100に設けられた突出部102に引っ掛ける。そして、レバー202の一方端の位置が制限された状態で、他方端に回転力を付与すること

により、突出部102を支点として、オスコネクタ200に対して予め定められた以上の力を発現できる。そのため、メスコネクタ108にオスコネクタ200が挿入されて嵌合できる。

[0054]

図3を参照して、オスコネクタ200をメスコネクタ108に挿入する経過を具体的に説明すると、メスコネクタ108に対してオスコネクタ200を組み付けると、図3(A)に示すような状態となる。このとき、オスコネクタ200に回転自在に支持されるように設けられたレバー202の一方端を突出部102に引っ掛ける。そして、レバー202の一方端を突出部102に引っ掛ける。そして、レバー202の他方端に対して回転力を付与する。このとき、オスコネクタ200に対して予められた以上の力が発現する。そして、そのまま、レバー202を回転が止まる位置までのちれた以上の力が発現する。そして、そのまま、レバー202を回転が止まる位置までいた以上の力が発現する。そして、そのまま、レバー202を回転が止まるで置までのたりですることにより、図3(B)に示すような状態となる。すなわち、オスコネクタ200をメスコネクタ108に挿入する回転力は、てこの原理により、オスコネクタ200をメスコネクタ108に挿入することにより、オスコネクタ200を挿入することができる。また、メスコネクタ108の接点124は、オスコネクタ204の接点204と接合されて電気的に接続された状態となる。

[0055]

このとき、突出部102、104は、筐体100のレバー202の一方端の位置に形成される。すなわち、レバー202の一方端を突出部102、104に引っ掛けることにより、オスコネクタ200とメスコネクタ108とを嵌合させる予め定められた以上の力を発現させることができる。ただし、突出部に特に限定されるものではない。たとえば、筐体100に、レバー202の一方端が挿入可能な開口部を設けてもよい。すなわち、レバー202の一方端を開口部に挿入して引っ掛けてもよい。

[0056]

以上のようにして、本実施の形態に係るコネクタ接続構造によると、コネクタ接続構造 は、車両に搭載された回転電機を収納する筐体に設けられたメスコネクタと、予め定めら れた以上の力で挿入することにより、メスコネクタに嵌合する形状を有するオスコネクタ とを含むコネクタ接続構造である。オスコネクタは、メスコネクタの接点と接合して電気 的に接続される接点と、オスコネクタと支点を介して接続された、棒状のオスコネクタに 回転自在に支持されるレバーとを含む。レバーは、一方端の位置を制限した状態で他方端 に回転力を付与することにより、予め定められた以上の力を発現する。そして、筐体は、 一方端の位置を制限するための筐体に設けられた、一方端の位置に形成された突出部を含 む。これにより、メスコネクタ側のオスコネクタ側に設けられたレバーに対応する構造を 設ける必要がなくなる。また、オスコネクタ側のレバーにおいてもレバー構造のみに特化 した簡易的な構造でよい。そのため、両コネクタを嵌合したときにコネクタの大きさを薄 くすることができる。さらに、狭い作業スペースにおけるコネクタの接続が可能となる。 また、筐体に突出部が一体化されていることにより、たとえば、メスコネクタ側を筐体の 奥に設けられたとしてもオスコネクタを嵌合させることができる。このようにして、コネ クタの筐体からの張り出しを抑制することができるため、狭いスペースにおいても回転電 機の搭載スペースを確保することができる。また、筐体は、たとえば、アルミダイキャス ト等で形成される。そのため、突出部を一体化して設けることにより、強度を確保するこ とができる。さらに、コネクタに設けられるレバー構造が小型でかつ簡易的にできるため コスト的に有利となる。したがって、簡易な構造の挿入荷重低減機構により嵌合される薄 型のコネクタ接続構造を提供することができる。

[0057]

<第2の実施の形態>

以下、第2の実施の形態に係るコネクタ接続構造について説明する。

[0058]

図4を参照して、本実施の形態に係るコネクタ接続構造は、前述の第1の実施の形態に

係る回転電機の構成における突出部102に代えて突出部300を含む点と、オスコネクタ200において、レバー202が不要となる点において異なる。これら以外の構成は、前述の第1の実施の形態と同じ構成である。それらについては同じ参照符号を付してある。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰り返さない。

[0059]

図4に示すように、筐体100におけるコネクタ挿入口106の周囲から突出部300が設けられる。本実施の形態において、オスコネクタ200とメスコネクタ108との嵌合は、挿入補助機構として挿入冶具(図示せず)を用いて突出部300を利用して行なわれる。

[0060]

図5を参照して、オスコネクタ200をメスコネクタ108に挿入する経過を具体的に説明すると、メスコネクタ108に対してオスコネクタ200を組み付けると、図5(A)に示すような状態となる。このとき、オスコネクタ200に接触するように挿入冶具350が設けられる。

[0061]

挿入冶具350は、オスコネクタ200に接触する挿入冶具部材304と、挿入冶具部材304に設けられ、挿入方向と平行な方向に移動可能な挿入冶具部材302と、筐体100に設けられた突出部300により挿入方向の移動を制限される挿入冶具部材306と、挿入冶具部材308に回転自在に支持されるように設けられ、挿入冶具部材302の端部と挿入冶具部材306とにそれぞれ接続されたレバー308とから構成される。

[0062]

この挿入冶具350において、挿入冶具部材306の端部が突出部300に対して、挿入方向に移動が制限されるように組み付けられる。このとき、レバー308の一方端は、挿入冶具部材306を介して移動が制限された状態となる。そして、挿入冶具部材302に対して、オスコネクタ200が挿入方向に力を加えると、レバー308の他方端に回転力が付与される。このとき、レバー308は、挿入冶具部材306に接続された一方端を支点として、予め定められた以上の力が発現する。そして、この予め定められた以上の力によりオスコネクタ200は、メスコネクタ108と嵌合する。そして、挿入冶具部材302が挿入冶具部材304と接する位置まで押し込むことにより、図5(B)に示すような状態となる。このとき、挿入冶具部材302を押し込む力は、てこの原理により、オスコネクタ200をメスコネクタ108に挿入する挿入荷重よりも低い力を加えることにり、オスコネクタ200をメスコネクタ108への嵌合が完了した後、取り除かれる。

100631

このとき、突出部300は、筐体100のレバー308の一方端が接続された挿入冶具部材306の位置に形成される。すなわち、挿入冶具部材306を突出部300に引っ掛けることにより、オスコネクタ200とメスコネクタ108とを嵌合させる予め定められた以上の力を発現させることができる。ただし、突出部に特に限定されるものではない。たとえば、筐体100に、挿入冶具部材306の端部が挿入可能な開口部を設けてもよい

[0064]

また、本実施の形態において、挿入冶具350の構造に特に限定されない。たとえば、 挿入冶具350に有するレバー構造におけるレバーの一方端を筐体に設けられた突出部あ るいは開口部に引っ掛けて、位置を制限することにより、突出部あるいは開口部を支点と して他方端に回転力を付与することにより、オスコネクタ200に対して予め定められた 以上の力を発現させることもできる。

[0065]

以上のようにして、本実施の形態に係るコネクタ接続構造によると、コネクタ接続構造は、車両に搭載された回転電機を収納する筐体に設けられたメスコネクタと、予め定めら

れた以上の力で挿入することによりメスコネクタに嵌合する形状を有するオスコネクタと 、オスコネクタをメスコネクタとを嵌合するための挿入冶具と支点を介して接続された、 棒状の挿入冶具に回転自在に支持されるレバーとを含むコネクタ接続構造である。レバー は、一方端の位置を制限した状態で他方端に回転力を付与することにより、オスコネクタ に対して予め定められた以上の力を発現する。オスコネクタは、メスコネクタの接点と接 合して電気的に接続される接点を含む。筐体は、一方端の位置を制限するための筐体に設 けられた、一方端の位置に形成された突出部を含む。これにより、挿入冶具を用いてオス コネクタ側とメスコネクタ側を嵌合するため、オスコネクタ側およびメスコネクタ側に対 してレバー構造を設ける必要がなくなる。そのため、両コネクタを嵌合したときにコネク タの大きさを嵌合方向に薄くすることができる。さらに、製造コストの低減が図れる。ま た、筐体に突出部が一体化されていることにより、たとえば、メスコネクタ側を筐体の奥 に設けられたとしてもオスコネクタを嵌合させることができる。このようにして、コネク タの筐体からの張り出しを抑制することができるため、狭いスペースにおいても回転電機 の搭載スペースを確保することができる。また、筐体は、たとえば、アルミダイキャスト 等で形成される。そのため、突出部を一体化して設けることにより、強度を確保すること ができる。したがって、簡易な構造の挿入荷重低減機構により嵌合される薄型のコネクタ 接続構造を提供することができる。

[0066]

<第3の実施の形態>

以下、第3の実施の形態に係るコネクタ接続構造について説明する。

[0067]

本実施の形態に係るコネクタ接続構造は、上述の第1の実施の形態に係るコネクタ接続構造の構成と比較して、オスコネクタ200の構成および筐体100に設けられる突出部102,104に代えて突出部102,104と位置および形状の異なる突出部426,428を含む点以外同じ構成である。それらについては同じ参照符号を付してある。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰り返さない。

[0068]

図6および図7に示すように、本実施の形態に係るオスコネクタ400は、シールドシェル402と、スライド機構404と、コネクタ部442と、ケーブル434,436,438とを含む。

[0069]

シールドシェル402は、接点部を覆うように形成される。シールドシェル402の接点部側には、ボルトを通すための座面420、418が設けられる。また、シールシェル402には、コネクタ部442が設けられる。コネクタ部442は、筐体100に設けられるコネクタ挿入口106から挿入される。コネクタ部442は、メスコネクタ108と嵌合可能な形状に形成される。

[0070]

スライド機構404は、互いに平行になるように設けられる部材(1)406および部材(2)408と、部材(1)406および部材(2)408を接続する部材(3)410および部材(4)412とから構成される。

[0071]

部材 (1) 406および部材 (2) 408は、シールドシェル402を、シールドシェル402の幅方向に挟むようにして設けられる。部材 (1) 406および部材 (2) 408の一方端には、予め定められた長さの溝444がそれぞれ設けられる。そして、ピン422, 424は、シールドシェル402において幅方向外側に向くように設けられる。スライド機構404は、ピン422, 424が溝444に沿って摺動するように設けられる。これにより、スライド機構404は、シールドシェル402に対して溝444の長さの分だけ摺動可能となる。そして、部材 (1) 406および部材 (2) 408のそれぞれの一方端は、部材 (3) 410により接続される。

[0072]

部材 (1) 406 および部材 (2) 408 の他方端には、ボルトを通すための座面 414 は、416 がそれぞれ設けられる。座面 414 は、オスコネクタ 400 とメスコネクタ 108 とが嵌合した後に、筐体 100 に設けられる突出部 440 に設けられる座面と当接するように形成される。部材 (4)412 は、部材 (1)406 および部材 (2)408 の他方端をシールドシェル 402 を跨ぐようにして接続される。

[0073]

また、部材(1) 406 および部材(2) 408 には、オスコネクタ 400 の挿入方向と予め定められた角度を有する溝 446 がそれぞれ設けられる。溝 446 は、オスコネクタ 400 の挿入方向に開口部を有する。一方、筐体 100 におけるコネクタ挿入口 106 の周囲には、突出部 426, 428 が設けられる。突出部 426, 428 の先端部には、互いに対向するようにピン 430, 432 が設けられる。

[0074]

本実施の形態において、オスコネクタ400とメスコネクタ108との嵌合は、挿入補助部材としてスライド機構404を用いて行なわれる。すなわち、図8に示すように、溝446の開口部から溝446に沿って、突出部426,428に設けられるピン430,432を摺動させることにより嵌合が行なわれる。

[0075]

このとき、部材(3)410をオスコネクタ400の挿入方向に垂直な方向でかつ、溝444の長手方向に力を加えることにより、スライド機構404には、オスコネクタ4000挿入方向に予め定められた以上の力が発現する。

[0076]

すなわち、部材(3) 4 1 0 に力を加えると、スライド機構 4 0 4 は、ピン 4 3 0, 4 3 2 が溝 4 4 6 に沿って摺動する方向に動く。スライド機構 4 0 4 は、ピン 4 2 2, 4 2 4 により、オスコネクタ 4 0 0 の挿入方向における位置が制限される。このとき、部材(3) 4 1 0 が力点となり、ピン 4 3 0, 4 3 2 が支点となり、ピン 4 2 2, 4 2 4 が作用点となる。そのため、てこの原理により、シールドシェル 4 0 2 には挿入方向の力が働く。その結果、オスコネクタ 4 0 0 には、オスコネクタ 4 0 0 とメスコネクタ 1 0 8 とが嵌合する予め定められた以上の力が発現する。

[0077]

オスコネクタ400とメスコネクタ108とが嵌合した後、シールドシェル402は、 座面414,416,418,420にボルトを通して筐体100に設けられる座面に締 結することにより筐体100に固定できる。

[0078]

このとき、部材(1) 406 および部材(2) 408 の他方端に設けられる座面 414, 416 は、筐体 100 に設けられる突出部 440 の座面に当接する。そのため、ボルトを通して、部材(1) 406 および部材(2) 408 の他方端を筐体 100 に締結することにより、スライド機構 404 によりシールドシェル 402 の位置を制限することができる。すなわち、スライド機構 404 をオスコネクタ 400 のクランプとして機能を持たせることができる。たとえば、部材(1) 406 および部材(2) 408 の他方端を筐体 100 に固定すると、部材(4) 412 がシールドシェル 402 を筐体 100 に押し付ける方向に内力が生じるように部材(4) 412 を設ける。これにより、シールドシェル 402 のケーブル側の位置を制限することができる。なお、部材(4) 412 は、ケーブル 402 のケーブル側の位置を制限することができる。なお、部材(4) 412 は、ケーブル 402 の 403 の位置を制限するように設けてもよい。

[0079]

以上のようにして、本実施の形態に係るコネクタ接続構造によると、機構は、オスコネクタにおいて、一方端の位置を制限した状態のスライド機構を含む。スライド機構は、オスコネクタの挿入方向と予め定められた角度を有する溝が設けられる。筐体には、溝に摺動可能な突出部が固定される。スライド機構は、突出部が溝に沿って摺動することにより、予め定められた以上の力を発現する。これにより、メスコネクタ側の、オスコネクタ側

に設けられたスライド機構に対応する構造を設ける必要がなくなる。そのため、両コネク タを嵌合したときにコネクタの大きさを嵌合方向に薄くすることができる。さらに、狭い 作業スペースにおけるコネクタの接続が可能となる。また、筐体に突出部が一体化されて いることにより、たとえば、メスコネクタ側を筐体の奥に設けられたとしてもオスコネク 夕を嵌合させることができる。

[0080]

このようにして、コネクタの筐体からの張り出しを抑制することができるため、狭いス ペースにおいても回転電機の搭載スペースを確保することができる。また、筐体は、たと えば、アルミダイキャスト等で形成される。そのため、突出部を一体化して設けることに より、強度を確保することができる。さらに、コネクタに設けられるレバー構造が小型で かつ簡易的にできるためコスト的に有利となる。したがって、簡易な構造の挿入荷重低減 機構により嵌合される薄型のコネクタ接続構造を提供することができる。

[0081]

また、スライド機構の他方端は、オスコネクタがメスコネクタに嵌合された後に、筺体 に固定される。スライド機構の他方端を、オスコネクタあるいはオスコネクタに接続され るケーブルの位置を制限するような形状に形成する。スライド機構の他方端は筐体に固定 されるため、スライド機構をクランプとしての機能させることができる。スライド機構を クランプと兼用させることにより、部品点数を削減することができる。また、クランプを 取り付ける作業工数を削減することができる。すなわち、コストの低減が図れる。

[0082]

<第4の実施の形態>

以下、第4の実施の形態に係るコネクタ接続構造について説明する。

[0083]

本実施の形態に係るコネクタ接続構造は、上述の第3の実施の形態に係るコネクタ接続 構造の構成と比較して、オスコネクタ400がスライド機構404に代えてレバー機構4 04を含む点と、筐体100に設けられる突出部426,428に代えて突出部426, 428と位置および形状の異なる突出部526,528を含む点以外同じ構成である。そ れらについては同じ参照符号を付してある。それらの機能も同じである。したがって、そ れらについての詳細な説明はここでは繰り返さない。

[0084]

図9および図10に示すように、本実施の形態に係るオスコネクタ500は、レバー機 構504を含む。レバー機構504は、互いに平行になるように設けられる部材(5)5 06および部材(6)508と、部材(5)506および部材(6)508に接続される 部材 (7) 512とから構成される。

[0085]

部材(5)506および部材(6)508は、シールドシェル402を、シールドシェ ル402の幅方向に挟むようにして設けられる。部材(5) 5 0 6 および部材(6) 5 0 8は、それぞれシールドシェル402に設けられるピン422, 424により回転自在に 支持される。そして、部材(5)506および部材(6)508の一方端には、ピン53 0,532がそれぞれ設けられる。

[0086]

また、部材(5)506および部材(6)508の他方端には、ボルトを通すための座 面514,516がそれぞれ設けられる。部材(7)512は、部材(5)506および 部材(6) 508の他方端をシールドシェル402を跨ぐようにして接続される。

[0087]

筐体100には、突出部526,528が設けられる。突出部526,528は、部材 (5) 506および部材(6) 508の一方端の位置を制限するように設けられる。たと えば、突出部526,528には、それぞれ溝が設けられる。そして、部材(5)506 および部材(6)508の一方端に設けられるピン530,532を溝に沿って摺動させ る。このとき、部材(5)506および部材(6)508の一方端は、オスコネクタ50 0 の挿入方向における位置が制限される。

[0088]

本実施の形態において、オスコネクタ500とメスコネクタ108との嵌合は、挿入補 助部材としてレバー機構504を用いて行なわれる。すなわち、図11に示すように、部 材 (5) 506および部材 (6) 508のピン530, 532を筐体100に設けられる 突出部526、528の溝に沿って摺動させる。このとき、部材(7)512にレバー機 構504がピン422,424を中心として回転するように回転力を付与する。部材(5) 506および部材(6) 508の一方端は、突出部526, 528の溝により位置が制 限されるため、てこの原理により、ピン422、424には、挿入方向に予め定められた 以上の力を発現する。

[0089]

オスコネクタ500とメスコネクタ108とが嵌合した後、シールドシェル402は、 座面514,516,418,420にボルトを通して筐体100に設けられる座面に締 結することにより筐体100に固定できる。

[0090]

このとき、部材(5) 5 0 6 および部材(6) 5 0 8 の他方端に設けられる座面 5 1 4 516は、筐体100に設けられる突出部440の座面と当接する。そのため、ボルト を通して、部材(5)506および部材(6)508の他方端を筐体100に締結するこ とにより、レバー機構504によりシールドシェル402の位置を制限することができる 。すなわち、レバー機構504をオスコネクタ500のクランプとして機能を持たせるこ とができる。たとえば、部材(5)506および部材(6)508の他方端を筐体100 に固定すると、部材(7) 5 1 2 がシールドシェル4 0 2 を筐体1 0 0 に押し付ける方向 に内力が生じるように部材(7)512を設ける。これにより、シールドシェル402の ケーブル側の位置を制限することができる。なお、部材(7)512は、ケーブル434 ,436,438の位置を制限するように設けてもよい。

[0091]

また、部材(7)512に平面部を有する形状にすることにより、回転作業時の作業性 が向上する。また、レバー機構504は、筐体に固定されるため、シールドの導通部とし て効果を有する。すなわち、ノイズの低減等が図れる。

[0092]

以上のようにして、本実施の形態に係るコネクタ接続構造によると、第1の実施の形態 に係るコネクタ接続構造が有する効果に加えて、レバー機構の他方端は、オスコネクタが メスコネクタに嵌合された後に、筐体に固定される。レバー機構の他方端を、オスコネク タあるいはオスコネクタに接続されるケーブルの位置を制限するような形状に形成する。 レバー機構の他方端は筐体に固定されるため、レバー機構をクランプとしての機能させる ことができる。レバー機構をクランプと兼用させることにより、部品点数を削減すること ができる。また、クランプを取り付ける作業工数を削減することができる。すなわち、コ ストの低減が図れる。

[0093]

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えら れるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され 、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図され る。

【図面の簡単な説明】

[0094]

- 【図1】第1の実施の形態に係る回転電機の筐体の外観を示す図である。
- 【図2】第1の実施の形態に係る回転電機の断面を示す図である。
- 【図3】第1の実施の形態に係る回転電機に接続したメスコネクタにオスコネクタを 組み付ける経過を示す図である。
- 【図4】第2の実施の形態に係る回転電機の断面を示す図である。

- 【図5】第2の実施の形態に係る回転電機に接続したメスコネクタにオスコネクタを 組み付ける経過を示す図である。
- 【図6】第3の実施の形態に係るコネクタ構造の外観を示す図である。
- 【図7】第3の実施の形態に係るコネクタ構造の側面を示す図である。
- 【図8】第3の実施の形態に係る筐体にオスコネクタを組み付ける経過を示す図であ
- 【図9】第4の実施の形態に係るコネクタ構造の外観を示す図である。
- 【図10】第4の実施の形態に係るコネクタ構造の側面を示す図である。
- 【図11】第4の実施の形態に係る筐体にオスコネクタを組み付ける経過を示す図で ある。

【符号の説明】

[0095]

100 筐体、102, 104, 300, 426, 428, 440, 526, 528 突出部、106 コネクタ挿入口、108 メスコネクタ、110 コイル、112 固 定子鉄心、114, 122 軸受部、116 結線部材、118 ボルト、120 端子 台固定部材、124,204 接点、200,400,500 オスコネクタ、202, 308 レバー、302,304,306 挿入冶具部材、350 挿入冶具、402 シールドシェル、404 スライド機構、406,408,410,412,506,5 08,512 部材、414,416,418,420,514,516 座面、422 , 424, 430, 432, 530, 532 ピン、434, 436, 438 ケーブル 、442 コネクタ部、444,446 溝、504 レバー機構。

【図3】

【図9】

【図11】

【書類名】要約書

【要約】

【課題】 薄型のコネクタ接続構造を提供する。

【解決手段】 コネクタ接続構造は、車両に搭載された回転電機を収納する筐体100に設けられたメスコネクタ108と、予め定められた以上の力で挿入することによりメスコネクタ108に嵌合する形状を有するオスコネクタ200とを含む。オスコネクタ200は、メスコネクタ108の接点124と接合して電気的に接続される接点204と、オスコネクタと支点を介して接続された、棒状のレバー202とを含む。レバー202は、一方端の位置を制限した状態で他方端に回転力を付与することにより、予め定められた以上の力を発現する。筐体100は、一方端の位置を制限するための突出部102を含む。

【選択図】 図2

特願2004-078820

出願人履歴情報

識別番号

[000003207]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

愛知県豊田市トヨタ町1番地

氏 名 トヨタ自動車株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000160

International filing date: 04 January 2005 (04.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-078820

Filing date: 18 March 2004 (18.03.2004)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

