911 Calls Final Project

I will be analyzing some 911 call data from Kaggle. The data contains the following fields:

- lat : String variable, Latitude
- · Ing: String variable, Longitude
- · desc: String variable, Description of the Emergency Call
- · zip: String variable, Zipcode
- title: String variable, Title
- timeStamp: String variable, YYYY-MM-DD HH:MM:SS
- twp: String variable, Township
- · addr: String variable, Address
- e: String variable, Dummy variable (always 1)

df.head(3)

Out[28]:

0 40.297876

1 40.258061

lat

Ing

75.581294

75.264680

```
Data and Setup
In [24]:
import numpy as np
import pandas as pd
In [25]:
import matplotlib.pyplot as plt
import seaborn as sns
sns.set style('whitegrid')
%matplotlib inline
In [26]:
df = pd.read csv('911.csv')
In [27]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99492 entries, 0 to 99491
Data columns (total 9 columns):
            99492 non-null float64
lat.
            99492 non-null float64
desc
            99492 non-null object
             86637 non-null float64
zip
title
             99492 non-null object
           99492 non-null object
timeStamp
             99449 non-null object
t.wp
addr
             98973 non-null object
             99492 non-null int64
dtypes: float64(3), int64(1), object(5)
memory usage: 6.8+ MB
In [28]:
```

desc

REINDEER CT & DEAD END; NEW

BRIAR PATH & WHITEMARSH LN;

HANOVER; Station ...

HATFIELD TOWNSHIP...

zip

19525 0

19446.0

title

EMS: BACK

PAINS/INJURY

EMS: DIABETIC

EMERGENCY

timeStamp

2015-12-10

2015-12-10

17:40:00

17:40:00

twp

NEW

HANOVER

HATFIELD

TOWNSHIP

addr e

REINDEER CT &

DEAD END BRIAR PATH &

WHITEMARSH

	lat	Ing	desc	zip	title	timeStamp	twp	addr	е
2	40.121182	75.351975	12-10 @ 14:39:21-St	19401.0	ODOR/LEAK	2015-12-10 17:40:00	NORRISTOWN	HAWS AVE	1

Basic Questions

```
In [29]:
df['zip'].value_counts().head(5)
Out[29]:
        6979
19401.0
         6643
4854
19464.0
19403.0
        4748
19446.0
19406.0
         3174
Name: zip, dtype: int64
In [30]:
df['twp'].value_counts().head(5)
Out[30]:
LOWER MERION
               8443
ABINGTON
               5977
              5890
NORRISTOWN
UPPER MERION
             5227
CHELTENHAM
              4575
Name: twp, dtype: int64
In [31]:
df['title'].nunique()
Out[31]:
110
Creating new features
In [32]:
df['Reason'] = df['title'].apply(lambda title: title.split(':')[0])
In [33]:
df['Reason'].value_counts()
Out[33]:
EMS
         48877
        35695
Traffic
          14920
Fire
Name: Reason, dtype: int64
In [34]:
sns.countplot(x='Reason',data=df,palette='viridis')
Out[34]:
<matplotlib.axes._subplots.AxesSubplot at 0x121757b70>
  50000
```


In [35]:

```
type(df['timeStamp'].iloc[0])
```

Out[35]:

str

In [36]:

```
df['timeStamp'] = pd.to_datetime(df['timeStamp'])
```

In [37]:

```
df['Hour'] = df['timeStamp'].apply(lambda time: time.hour)
df['Month'] = df['timeStamp'].apply(lambda time: time.month)
df['Day of Week'] = df['timeStamp'].apply(lambda time: time.dayofweek)
```

In [38]:

```
dmap = {0:'Mon',1:'Tue',2:'Wed',3:'Thu',4:'Fri',5:'Sat',6:'Sun'}
```

In [39]:

```
df['Day of Week'] = df['Day of Week'].map(dmap)
```

In [40]:

```
sns.countplot(x='Day of Week',data=df,hue='Reason',palette='viridis')
# To relocate the legend
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
```

Out[40]:

<matplotlib.legend.Legend at 0x121762710>

In [41]:

```
sns.countplot(x='Month',data=df,hue='Reason',palette='viridis')
# To relocate the legend
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
```

Out[41]:

<matplotlib.legend.Legend at 0x11fa7ad68>

In [43]:

```
byMonth = df.groupby('Month').count()
byMonth.head()
```

Out[43]:

	lat	Ing	desc	zip	title	timeStamp	twp	addr	е	Reason	Hour	Day of Week
Month												
1	13205	13205	13205	11527	13205	13205	13203	13096	13205	13205	13205	13205
2	11467	11467	11467	9930	11467	11467	11465	11396	11467	11467	11467	11467
3	11101	11101	11101	9755	11101	11101	11092	11059	11101	11101	11101	11101
4	11326	11326	11326	9895	11326	11326	11323	11283	11326	11326	11326	11326
5	11423	11423	11423	9946	11423	11423	11420	11378	11423	11423	11423	11423

In [44]:

```
byMonth['twp'].plot()
```

Out[44]:

<matplotlib.axes._subplots.AxesSubplot at 0x11fa06630>

In [45]:

```
sns.lmplot(x='Month',y='twp',data=byMonth.reset_index())
```

Out[45]:

<seaborn.axisgrid.FacetGrid at 0x11bf002b0>

In [46]:

```
df['Date']=df['timeStamp'].apply(lambda t: t.date())
```

In [47]:

```
df.groupby('Date').count()['twp'].plot()
plt.tight_layout()
```


In [48]:

```
df[df['Reason']=='Traffic'].groupby('Date').count()['twp'].plot()
plt.title('Traffic')
plt.tight_layout()
```



```
Jan 2016 Feb 2016 Mar 2016 Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016

Date
```

In [49]:

```
df[df['Reason']=='Fire'].groupby('Date').count()['twp'].plot()
plt.title('Fire')
plt.tight_layout()
```


In [50]:

```
df[df['Reason']=='EMS'].groupby('Date').count()['twp'].plot()
plt.title('EMS')
plt.tight_layout()
```


In [51]:

```
dayHour = df.groupby(by=['Day of Week','Hour']).count()['Reason'].unstack()
dayHour.head()
```

Out[51]:

Hour 0 1 2 3 4 5 6 7 8 9 ... 14 15 16 17 18 19 20 21 22 23

Day of Week

Fri 275 235 191 175 201 194 372 598 742 752 ... 932 980 1039 980 820 696 667 559 514 474

Fri	275	235	191	175	201	194	372	598	742	752	•••	932	980	1039	980	820	696	667	559	514	474
Mon	282	221	201	194	204	267	397	653	819	786		869	913	989	997	885	746	613	497	472	325
Sat	375	301	263	260	224	231	257	391	459	640		789	796	848	757	778	696	628	572	506	467
·	202	200	202	000	040	040	200	400	400	000		004	004	000	744	070	^	F07	404	445	220

```
Sun 383 3Ub 286 268 242 240 3U0 4U2 483 620 ... 684 691 663 714 670 655 537 461 415 33U Hour 0 1 2 3 4 5 6 7 8 9 ... 14 15 16 17 18 19 20 21 22 23

Thu 278 202 233 159 182 203 362 570 777 828 ... 876 969 935 1013 810 698 617 553 424 354

Day of Week
```

In [52]:

5 rows × 24 columns

```
plt.figure(figsize=(12,6))
sns.heatmap(dayHour,cmap='viridis')
```

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x12305acf8>

In [53]:

sns.clustermap(dayHour,cmap='viridis')

Out[53]:

<seaborn.matrix.ClusterGrid at 0x103276748>

In [54]:

```
dayMonth = df.groupby(by=['Day of Week','Month']).count()['Reason'].unstack()
dayMonth.head()
```

Out[54]:

Month	1	2	3	4	5	6	7	8	12	
Day of Week										
Fri	1970	1581	1525	1958	1730	1649	2045	1310	1065	
Mon	1727	1964	1535	1598	1779	1617	1692	1511	1257	
Sat	2291	1441	1266	1734	1444	1388	1695	1099	978	
Sun	1960	1229	1102	1488	1424	1333	1672	1021	907	
Thu	1584	1596	1900	1601	1590	2065	1646	1230	1266	

In [55]:

```
plt.figure(figsize=(12,6))
sns.heatmap(dayMonth,cmap='viridis')
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x11bcabf98>

In [56]:

```
sns.clustermap(dayMonth,cmap='viridis')
```

Out[56]:

<seaborn.matrix.ClusterGrid at 0x120341e80>

