Calcul vectoriel

1 Coordonnées d'un vecteur

1.1 Définition

Dans le plan muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j})$, les coordonnées d'un vecteur \overrightarrow{u} sont les coordonnées de l'unique point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

On écrit $\overrightarrow{u}(x;y)$ pour dire que les coordonnées du vecteur \overrightarrow{u} sont (x;y).

Dans l'espace muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ les coordonnées d'un vecteur \overrightarrow{u} sont les coordonnées de l'unique point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

On écrit $\overrightarrow{u}(x;y;z)$ pour dire que les coordonnées du vecteur \overrightarrow{u} sont (x;y;z).

A partir d'ici, on se place dans l'espace. Tout peut être ramené au plan si l'on supprime la troisième coordonnées ou si on la remplace par 0.

1.2 Interprétation

Le vecteur \overrightarrow{OM} nous donne la position du point M. Si x, y, z sont des fonctions de la variable treprésentant le temps, le vecteur $\overrightarrow{OM}(t)$ nous donne la position du point M à l'instant t. Les fonctions x(t), y(t) et z(t) sont les équations paramétriques de la courbe représentant le déplacement du point M au cours du temps. Dans ce cas le vecteur OM'(t), de coordonnées (x'(t); y'(t); z'(t)) est le vecteur vitesse et le vecteur $\overrightarrow{OM}''(t)$, de coordonnées (x''(t); y''(t); z''(t)) est le vecteur accélération.

1.3 Propriété

Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées dans le repère choisi.

1.4 Coordonnées du vecteur \overrightarrow{AB}

Si les points $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ sont donnés; alors le vecteur \overrightarrow{AB} a pour coordonnées : $(x_B - x_A; y_B - y_A; z_B - z_A)$.

Addition de vecteurs 2

Coordonnées 2.1

Dans un repère, on donne les vecteurs $\overrightarrow{u}(x;y;z)$ et $\overrightarrow{v}(x';y';z')$; alors le vecteur $\overrightarrow{u}+\overrightarrow{v}$ a pour coordonnées (x + x'; y + y'; z + z').

2.2 Propriétés

Si \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} sont trois vecteurs alors:

- $\begin{array}{ll} \bullet & \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u} \\ \bullet & \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u} \\ \bullet & (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) \end{array}$

2.3 Soustraction

2.3.1 Définition

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs alors :

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$$

où $-\stackrel{\rightarrow}{v}$ est l'opposé de $\stackrel{\rightarrow}{v}$

2.3.2 Méthode

Chaque fois que l'on rencontre une soustraction, on la remplace par l'addition corrrepondante.

Exemple:
$$\overrightarrow{AB} - \overrightarrow{DC} - \overrightarrow{CB} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

3 Multiplication d'un vecteur par un réel

3.1 Produit d'un vecteur par un nombre réel

3.1.1 Définition

 λ est un réel et \overrightarrow{u} un vecteur de coordonnées (a;b;c) dans un repère.

Le vecteur $\lambda \overrightarrow{u}$ est le vecteur de coordonnées $(\lambda a; \lambda b; \lambda c)$ dans le même repère.

 $\lambda \stackrel{\rightarrow}{u}$ est indépendant du repère choisi.

3.1.2 Propriétés

Si A et B sont tels que $\overrightarrow{u} = \overrightarrow{AB}$, et C tel que $\lambda \overrightarrow{u} = \overrightarrow{AC}$ alors A, B, C sont alignés.

- si $\lambda = 0$ alors C = A,
- si $\lambda = 1$ alors C = B,
- si $0 \le \lambda \le 1$ alors $C \in [AB]$
- si $\lambda > 0$ alors $AC = \lambda AB$ et \overrightarrow{AB} et \overrightarrow{AC} sont de même sens,
- si $\lambda < 0$ alors $AC = -\lambda AB$ et AB et AC sont de sens contraire.

3.1.3 Calculs

$$\lambda \overrightarrow{u} = \overrightarrow{0} \iff \lambda = 0 \text{ ou } \overrightarrow{u} = 0$$

$$(-1) \overrightarrow{u} = -\overrightarrow{u}$$

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$$

$$\lambda(\overrightarrow{u} + \overrightarrow{v}) = \lambda \overrightarrow{u} + \lambda \overrightarrow{v}$$

$$(\lambda + \lambda') \overrightarrow{u} = \lambda \overrightarrow{u} + \lambda' \overrightarrow{u}$$

$$(\lambda \lambda') \overrightarrow{u} = \lambda(\lambda' \overrightarrow{u})$$

3.2 Vecteurs colinéaires

3.2.1 Définition

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} non nuls sont colinéaires s'il existe un réel λ tel que $\overrightarrow{v} = \lambda \overrightarrow{u}$. Leurs coordonnées sont donc proportionnelles.

Le vecteur nul $\overrightarrow{0}$ est colinéaire à tous les vecteurs.

3.2.2 Propriétés

$$ABC$$
 alignés \iff \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires

les doites (AB) et (CD) sont parallèles \iff \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires

$$I$$
 est le milieu de $[AB]$ \iff $\overrightarrow{AB} = 2$ \overrightarrow{AI}

Barycentre

4.1 Définition

Soient A et B deux points quelconques, a et b deux réels tels que $a+b\neq 0$. Le barycentre des points A et B affectés respectivement des coefficients a et b est l'unique point G tel que :

$$a \overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0}$$

On note G barycentre de (A, a) et (B, b). On peut alors écrire : (A, a)(B, b) = (G, a + b).

Propriétés 4.2

- Le point G vérifie : $\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$
- Quel que soit le point $M: \overrightarrow{MG} = \frac{1}{a+b} \left(a \overrightarrow{MA} + b \overrightarrow{MB} \right)$
- Les coordonnées de G sont données par : $x_G = \frac{ax_a + bx_b}{a+b}$ et $y_G = \frac{ay_a + by_b}{a+b}$
- Si a = b, G est le milieu de [AB].
- Si G est le barycentre de (A, a) et (B, b) alors G est le barycentre de (A, ka) et (B, kb) pour $k \neq 0$.

4.3 Généralisation

On peut étendre la définition et les propriétés à n points du plan ou de l'espace : G est le barycentre de $(A_1, a_1), (A_2, a_2), \ldots, (A_n, a_n)$, avec $\sum_{i=1}^n a_i \neq 0$, si

$$\sum_{i=1}^{n} a_i \overrightarrow{GA}_i = \overrightarrow{0}$$

Par exemple pour trois points distincts A, B et C, le barycentre G de (A, a), (B, b) et (C, c) avec $a+b+c \neq a$ 0 est défini par :

$$\overrightarrow{MG} = \frac{1}{a+b+c} \left(a \overrightarrow{MA} + b \overrightarrow{MB} + c \overrightarrow{MC} \right)$$

On peut alors écrire (G, a + b + c) = (A, a)(B, b)(C, c)

Et si G est le barycentre de (A, a), (B, b) et (C, c) alors G est le barycentre de (A, a) et (H, b + c)où H est le barycentre de (B,b) et (C,c)

3

Application 4.4

Le centre de gravité ou centre d'inertie d'un système de points matériels est le barycentre de ces points affectés de leurs masses respectives.

Produit scalaire 5

5.1 Définition

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan ou de l'espace.

Si
$$\overrightarrow{u} = \overrightarrow{0}$$
 ou $\overrightarrow{v} = \overrightarrow{0}$, on pose $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. On lit " \overrightarrow{u} scalaire \overrightarrow{v} ".

Si
$$\overrightarrow{u} \neq \overrightarrow{0}$$
 et $\overrightarrow{v} \neq \overrightarrow{0}$, on pose $\overrightarrow{OM} = \overrightarrow{u}$ et $\overrightarrow{ON} = \overrightarrow{v}$;

alors
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{OM} \cdot \overrightarrow{ON} = \overrightarrow{OM} \cdot \overrightarrow{OH} = OM \times ON \cos \theta = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \cos \theta$$

où H est le projeté orthogonal de N sur la droite orientée (OM) et θ est l'angle $(\overrightarrow{u}, \overrightarrow{v})$.

En repère orthonormé, si (x; y; z) et (x'; y'; z') sont les coordonnées respectives des vecteurs \overrightarrow{u} et \overrightarrow{v} , on a:

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$$
 et $||\overrightarrow{u}|| = \sqrt{x^2 + y^2 + z^2}$

5.2 **Propriétés**

$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

$$(k \overrightarrow{u}) \cdot \overrightarrow{v} = k(\overrightarrow{u} \cdot \overrightarrow{v})$$

$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = 0 \iff \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ orthogonaux}$$
On note:
$$\overrightarrow{u}^2 = \overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2$$

5.3 Applications

- Si α est l'angle $(\overrightarrow{u}, \overrightarrow{v})$ alors :

$$\cos \alpha = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel}$$

- Soit M un point soumis à une force \overrightarrow{F} , qui se déplace de A à B en suivant un mouvement rectiligne. Alors le travail W de la force \overrightarrow{F} entre A et B est :

$$W=\stackrel{\rightarrow}{F}\cdot \stackrel{\rightarrow}{AB}$$

Produit vectoriel 6

6.1 Définition

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace orienté.

Si \overrightarrow{u} et \overrightarrow{v} sont colinéaires, on pose $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$. On lit " \overrightarrow{u} vectoriel \overrightarrow{v} ". Si \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{w}$, le vecteur \overrightarrow{w} étant défini par les conditions suivantes : \overrightarrow{w} est orthogonal au plan $(\overrightarrow{u}, \overrightarrow{v})$,

 $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base directe,

$$||\overrightarrow{v}|| = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times |\sin(\overrightarrow{u}, \overrightarrow{v})|.$$

 $||\overrightarrow{w}||$ est aussi l'aire du parallélogramme formé par les vecteurs \overrightarrow{u} et \overrightarrow{v} .

6.2 Propriétés

$$\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$$

$$(k \overrightarrow{u}) \wedge \overrightarrow{v} = \overrightarrow{u} \wedge (k \overrightarrow{v}) = k(\overrightarrow{u} \wedge \overrightarrow{v})$$

$$\overrightarrow{u} \wedge (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \wedge \overrightarrow{v} + \overrightarrow{u} \wedge \overrightarrow{w}$$

Dans une base orthonormée directe, si (x:y:z) et (x';y';z') sont les coordonnées respectives des vecteurs \overrightarrow{u} et \overrightarrow{v} , alors $\overrightarrow{u} \wedge \overrightarrow{v}$ a pour coordonnées :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \land \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$

6.3 Application

– Si α est l'angle $(\overrightarrow{u}, \overrightarrow{v})$ alors :

$$\sin \alpha = \frac{\mid\mid \overrightarrow{u} \wedge \overrightarrow{v} \mid\mid}{\mid\mid \overrightarrow{u} \mid\mid \times \mid\mid \overrightarrow{v} \mid\mid}$$

– L'aire d'un triangle ABC est : $\frac{1}{2}AB \times AC \sin \widehat{A}$.

La norme du produit vectoriel est $||\overrightarrow{AB} \wedge \overrightarrow{AC}|| = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times |\sin(\overrightarrow{AB}, \overrightarrow{AC})| = AB \times AC \sin \widehat{A}$.

Par conséquent, l'aire du triangle ABC est donnée par : $\frac{1}{2}||\overrightarrow{AB}\wedge\overrightarrow{AC}||$.

Exercice : soit A(1;5;3), B(-1;0;4) et C(2;-3;5). Calculer l'aire du triangle ABC. La réponse est : $\frac{\sqrt{470}}{2}$.

- Le moment par rapport au point O d'une force \vec{F} appliquée en un point M est :

$$\overrightarrow{OM} \wedge \overrightarrow{F}$$

5