DEVOIR À LA MAISON N°10

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

EXERCICE 1.

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

- 1. On suppose dans cette question que F et G admettent un supplémentaire commun dans E i.e. qu'il existe un sous-espace vectoriel H de E tel que $F \oplus H = G \oplus H = E$. Montrer que $\dim F = \dim G$.
 - On cherche maintenant à prouver la réciproque, c'est-à-dire que si dim F = dim G, alors F et G admettent un supplémentaire commun dans E.
- 2. Montrer que si F = G, alors F et G admettent un supplémentaire commun dans E.
- On suppose maintenant $F \neq G$ dans toute la fin de l'exercice.
 - **3.** On suppose dans cette question que F et G sont deux hyperplans de E.
 - **a.** Justifier l'existence de deux vecteurs $u \in F$ et $v \in G$ tels que $u \notin G$ et $v \notin F$.
 - **b.** On pose w = u + v. Montrer que $w \notin F \cup G$.
 - **c.** Montrer que H = vect(w) est un supplémentaire commun de F et G dans E.
 - **4.** Dans cette question, on suppose seulement $\dim F = \dim G$.
 - **a.** Justifier l'existence de deux sous-espaces vectoriels F' et G' de E tels que $(F \cap G) \oplus F' = F$ et $(F \cap G) \oplus G' = G$.
 - **b.** Montrer que dim $F' = \dim G' > 0$ et que $F' \cap G' = \{0_E\}$.
 - **c.** On pose $p = \dim F' = \dim G'$. Soient $(f_1, ..., f_p)$ et $(g_1, ..., g_p)$ des bases respectives de F' et G'. On pose $h_i = f_i + g_i$ pour $1 \le i \le p$. Montrer que la famille $(h_1, ..., h_p)$ est libre.
 - **d.** On pose $H' = \text{vect}(h_1, ..., h_p)$. Que vaut dim H'? Montrer que $H' \cap F = H' \cap G = \{0_E\}$.
 - **e.** En déduire que $F + G = F \oplus H' = G \oplus H'$.
 - **f.** Soit H" un supplémentaire de F+G dans E. Montrer que H' \cap H" = {0_E}.
 - g. On pose $H = H' \oplus H''$. Montrer que H est un supplémentaire commun de F et G dans E.

EXERCICE 2.

On note E l'ensemble des suites complexes, c'est-à-dire $E=\mathbb{C}^{\mathbb{N}}$. On admet que E est un \mathbb{C} -espace vectoriel. Pour $p\in\mathbb{N}^*$, on note F_p l'ensemble des suites complexes périodiques de période p. On pose enfin $j=e^{\frac{2i\pi}{3}}$.

- 1. Soit $p \in \mathbb{N}^*$. Montrer que \mathcal{F}_p est un sous-espace vectoriel de \mathcal{E} .
- **2.** Soit $p \in \mathbb{N}^*$. Pour $k \in [0, p-1]$, on note u^k la suite telle que

$$\forall n \in \mathbb{N}, \ u_n^k = \begin{cases} 1 & \text{si } n \equiv k[p] \\ 0 & \text{sinon} \end{cases}$$

Montrer que $(u^k)_{0 \le k \le p-1}$ est une base de F_p . En déduire la dimension de F_p .

3. Pour tout $n \in \mathbb{N}$, on pose

$$u_n = 1$$
 $v_n = j^n$ $w_n = \overline{j}^n$

Montrer que les suites u, v et w appartiennent à F_3 .

- **4.** Montrer que (u, v, w) est une base de F_3 .
- **5.** Soit $t \in E$ telle que pour tout $n \in \mathbb{N}$, t_n est le reste de la division euclidienne de n par 3. Montrer que $t \in F_3$.
- **6.** Déterminer les coordonnées de t dans la base (u, v, w).
- 7. Montrer que $F_3 \subset F_6$.
- **8.** Pour tout $n \in \mathbb{N}$, on pose

$$x_n = (-1)^n y_n = (-j)^n z_n = (-\overline{j})^n$$

et G = vect(x, y, z). Montrer que $G \subset F_6$.

- **9.** Montrer que la famille (x, y, z) est libre. En déduire la dimension de G.
- **10.** Montrer que $F_6 = F_3 \oplus G$.
- **11.** Montrer que (u, x) est une base de F_2 .
- **12.** On pose H = vect(v, w, y, z). Montrer que $F_6 = F_2 \oplus H$.