1 Introduction

Traditional data bases where data are stored solely without any connection towards to themselves like many people would imagine are often not enough any more. In biological and (bio)medical researches data bases are often based on ontologies [1]. Ontologies (in the computer science field) can be viewed as formal representation of a certain domain of interest. In data base they are collection of relation between the entities in the data base and are formulated as a fragment of first-order logic (FOL). These fragments of FOL are represented as Description Logic (DL), which is a family of knowledge representation system. DL are mainly built of concepts, which correspond to unary relations in FOL, and relation between the concepts, which correspond to binary relations in FOL. For more complex (compound) concepts operators like \sqcap , \sqcup , \sqsubseteq , \exists and \forall , depending on the DL, are used. For example the statement "All Men and Women are Human" is formalize in DL as an axiom $Men \sqcup Women \sqsubseteq Human$ and in FOL as $\forall x. Men(x) \lor Women(x) \rightarrow$ Human(x). The statement "All Human, who has children, are parents" in DL can be formalized a $Human \sqcap \exists hasChildren. \top \sqsubseteq Parent$ and in FOL as $\forall x \exists y. Human(x) \land \exists y. Huma$ $hasChildren(x,y) \rightarrow Parent(x)$. Restriction with the operators \exists and \forall are called quantified restrictions. The second statement can also be formalized with a qualified restriction: $Human \cap \geq 1hasChildren. \cap \subseteq Parent$. Each quantified restriction can be transformed into a qualified restriction.

One big research field in DL is *Reasoning* which is the investigation of whether certain information can be concluded from the current data or not.

to be continued...

2 Preliminaries

Let C be a set of concept names and R a set of role names such that they are disjoint.

Definition 1 (QFBAPA). Let T be a set of symbols

- \bullet set terms over T are:
 - empty set \emptyset and universal set \mathcal{U}
 - every set symbol in T
 - if s, t are set terms then also $s \cap t$, $s \cup t$ and $s \cap t$
- \bullet set constraints over T are
 - $-s \subseteq t$ and $s \not\subseteq t$
 - -s = t and $s \neq t$

where s, t are set terms

- \bullet cardinality terms over T are:
 - every number $n \in \mathbb{N}$
 - -|s| if s is a set term

- if k, l are cardinality terms then also k + l and $n \cdot k, n \in \mathbb{N}$
- \bullet cardinality constraints over T are:
 - -k = l and $k \neq l$
 - $-k < l \text{ and } k \ge l$
 - $-k \le l$ and k > l
 - n dvd k and n $\neg dvd$ k

where k, l are cardinality terms and $n \in \mathbb{N}$

For readability we use \leq to address the comparison symbols =, \leq , \geq , <, >. The negation \nleq address the symbols \neq , >, <, \geq , \leq respectively.

Since $s \subseteq t$ can be expressed as the cardinality constraint $|s \cap t^{-}| \leq 0$ we will not consider any set constraints further in this work. In case we want to express x : succ(s = t), with s, t being set terms, we write instead $x : succ(|s \cap t^{-}| \leq 0) \cap succ(|s^{-} \cap t| \leq 0)$.

Definition 2 (ALCSCC). ALCSCC concepts are defined inductively:

- all concept names
- succ(c) if c is a cardinality constraint over \mathcal{ALCSCC} concepts and role names
- if C, D are concepts then:
 - $\neg C$
 - $-C \sqcup D$
 - $-C\sqcap D$

An ABox S in \mathcal{ALCSCC} is a finite set of assertions of the form x:C and (x,y):s, where C is a \mathcal{ALSCSS} concept, s a set term and x,y variables. The set Var(S) is the set of variables occurring in S.

Definition 3 (Interpretation). An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \pi_{\mathcal{I}})$ over an ABox S in \mathcal{ALCSCC} consists of a non-empty set $\Delta^{\mathcal{I}}$, an assignment $\pi_{\mathcal{I}}$ and a mapping $\cdot^{\mathcal{I}}$ which maps:

- ∅ to ∅^I
- \mathcal{U} to $\mathcal{U}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
- each variable $x \in Var(S)$ to $x^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- every concept names $A \in \mathbf{C}$ to $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
- every role name $r \in \mathbf{R}$ to $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, such that every element in $\Delta^{\mathcal{I}}$ has a finite number of successors.

The set $r^{\mathcal{I}}(x)$ contains all elements y such that $(x,y) \in r^{\mathcal{I}}$ e.g. it contains all r-successors of x.

For compound concepts the mapping $\cdot^{\mathcal{I}}$ is extended inductively as follows

- $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\bot^{\mathcal{I}} = \emptyset^{\mathcal{I}}$
- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}, (C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$
- $(s \cap t)^{\mathcal{I}} := s^{\mathcal{I}} \cap t^{\mathcal{I}}, (s \cup t)^{\mathcal{I}} := s^{\mathcal{I}} \cup t^{\mathcal{I}}$
- $\bullet \ (s \urcorner)^{\mathcal{I}} := \mathcal{U}^{\mathcal{I}} \backslash s^{\mathcal{I}}$
- $\bullet |s|^{\mathcal{I}} := |s^{\mathcal{I}}|$
- $(k+l)^{\mathcal{I}} := (k^{\mathcal{I}} + l^{\mathcal{I}}), (n \cdot k)^{\mathcal{I}} := n \cdot k^{\mathcal{I}}$
- $succ(c)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \text{the mapping } \cdot^{\mathcal{I}_x} \text{ satisfies } c\}$

The mapping $\cdot^{\mathcal{I}_x}$ maps \emptyset to $\emptyset^{\mathcal{I}}$, \mathcal{U} to $\mathcal{U}^{\mathcal{I}_x} := \{\bigcup_{r \in \mathbf{R}} r^{\mathcal{I}}(x)\}$, every concept C occurring in c to $C^{\mathcal{I}_x} := C^{\mathcal{I}} \cap \mathcal{U}^{\mathcal{I}_x}$ and every role name r occurring in c to $r^{\mathcal{I}_x} := r^{\mathcal{I}}(x)$.

The mappings satisfies for the cardinality terms k, l

- $k \leqslant l \text{ iff } k^{\mathcal{I}} \leqslant l^{\mathcal{I}}$
- $n \, dvd \, l \, \text{iff} \, \exists m \in \mathbb{N} : n \cdot m = l^{\mathcal{I}}$

The assignment $\pi_{\mathcal{I}}: Var(S) \to \Delta^{\mathcal{I}}$ satisfies

- $x: C \text{ iff } \pi_{\mathcal{I}}(x) \in C^{\mathcal{I}}$
- $(x,y): s \text{ iff } (\pi_{\mathcal{I}}(x),\pi_{\mathcal{I}}(y)) \in s^{\mathcal{I}}$

 $\pi_{\mathcal{I}}$ satisfies an ABox S if $\pi_{\mathcal{I}}$ satisfies every assertion in S. If $\pi_{\mathcal{I}}$ satisfies S then \mathcal{I} is a model of S.

3 Tableau

A Tableau-algorithm consist of completion rules to decide satisfiability of a set of assertions. The rules are applied exhaustively on the set until none is applicable any more. One major characteristic of this algorithm is that it does not matter in which order the rules are applied. Another characteristic is that it works non-deterministically: In case we have disjunctions we can choose between the concepts in this disjunctions. If a choice ends in a *clash* then we track back to the point where we had to chose and take the other choice instead. If all choices ends in a clash then the ABox is unsatisfiable, otherwise it is satisfiable.

To maintain readability in this work we write $k \leq l$ instead of $l \geq k$ and k < l instead of l > k. Therefore $k \leq l$ can only represent $k \leq l$, k = l or k < l from now on.

To help the algorithm we want to avoid nested negation e.g. $\neg(\neg(\neg(A \cup B)))$. Hence we consider all concepts in negated normal form (NNF).

Definition 4 (Negation Normal Form). A \mathcal{ALCSCC} concept is in negation normal form (NNF) if the negation sign \neg appears only in front of a concept name or above a role name. Let C be a arbitrary \mathcal{ALCSCC} concept. With NNF(C) we denote the concept which is obtained by applying the rules below on C until none is applicable any more.

$$\bullet$$
 $\neg \top \rightarrow \bot$

$$\bullet$$
 $\neg \perp \rightarrow \top$

$$\bullet \neg \neg C \to C$$

$$\bullet \neg (C \sqcap D) \rightarrow \neg C \sqcup \neg D$$

$$\bullet \neg (C \sqcup D) \rightarrow \neg C \sqcap \neg D$$

•
$$C^{\neg} \rightarrow \neg C$$

$$\bullet \neg succ(c) \to succ(\neg c)$$

$$\bullet \ \neg (k \leqslant l) \to k \nleq l$$

•
$$\neg (k \nleq l) \rightarrow k \nleq l$$

•
$$\neg (n \ dvd \ k) \rightarrow n \ \neg dvd \ k$$

•
$$\neg (n \neg dvd \ k) \rightarrow n \ dvd \ k$$

•
$$(s \cap t)^{\neg} \to s^{\neg} \cup t^{\neg}$$

•
$$(s \cup t)^{\neg} \to s^{\neg} \cap t^{\neg}$$

•
$$(s^{\neg})^{\neg} \to s$$

The rule $C^{\neg} \to \neg C$ is necessary because C^{\neg} can be a result of s^{\neg} , where s is a set term. It can be transformed into $\neg C$: For every interpretation \mathcal{I} of S we have $(C^{\neg})^{\mathcal{I}} = \mathcal{U} \setminus C^{\mathcal{I}}$ and $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$. Since $\mathcal{U} \subseteq \Delta$ we can conclude that every element in $(C^{\neg})^{\mathcal{I}}$ is also in $(\neg C)^{\mathcal{I}}$.

Next we introduce *induced interpretation* with which we can count successors of variables after any rule application.

Definition 5 (Induced Interpretation). An interpretation $\mathcal{I}(S)$ can be induced from an ABox S by the following steps:

- for each variable $x \in Var(S)$ we introduce $x^{\mathcal{I}(S)}$ and add it to $\Delta^{\mathcal{I}(S)}$
- for each x:C such that C is a concept name we add $x^{\mathcal{I}(S)}$ to $C^{\mathcal{I}(S)}$
- for each (x,y):r such that r is a role name we add $(x^{\mathcal{I}(S)},y^{\mathcal{I}(S)})$ to $r^{\mathcal{I}(S)}$

Since we can now denote the number of successor of a variable x we can determine which assertion of the form x : succ(c) are violated.

Definition 6 (Violated assertion). Let S be a set of assertion, x be a variable, k be a cardinality term and $n \in \mathbb{N}$. An assertion is *violated* if

- $x : succ(k \leq n)$ and $k^{\mathcal{I}(S)_x} \nleq n$
- $x : succ(k \leq l)$ and $k^{\mathcal{I}(S)_x} \nleq l^{\mathcal{I}(S)_x}$
- $x : succ(n \operatorname{dvd} k)$ and $mod(k^{\mathcal{I}(S)_x}, n) \neq 0$

where $n \in \mathbb{N}$.

Like already mentioned an ABox is unsatisfiable if all choices ends in a clash. A clash in a ABox S implies that \bot can be derived from S.

Definition 7 (Clash). An ABox S contains a clash if

- $\{x : \bot\} \subseteq S$ or
- $\{x: A, x: \neg A\} \subseteq S$ or
- $\{(x,y):s,(x,y):s^{\neg}\}\subseteq S$ or
- $\{x: succ(c)\} \subseteq S$ violated and no more rules are applicable

Also important for the algorithm is to consider the *signs* of concept names and role names.

Definition 8 (Positive and Negative Sign). Let (x, y): s be an arbitrary assertion with $x, y \in Var(S)$ and s being a set term in NNF. A concept name C has a positive sign in s if no negation sign appears immediately in front of C. It has a negative sign otherwise. A role name r has a positive sign if no negation sign appears above it. It has a negative sign otherwise.

All concept names in **C** and role names in **R** have a positive sign.

3.1 Restrictions

Similar in [2] and [3], where a variable can be replaced by another variable, we can merge two variables during the Tableau-algorithm.

Definition 9 (Merge). Merging y_1 and y_2 results in one variable y: replace all occurrence of y_1 and y_2 with y.

For the Tableau-algorithm in this work a merging can only occur if an assertion x: $succ(k \leq l)$ is violated. The merging is only reasonable if it reduces k. Hence k must be of the form $n_1 \cdot |s_1| + \cdots + n_j \cdot |s_j|$. It can be reasonable if by merging l increases, for example $x : succ(1 \leq |r \cap t|)$ with $(x, y_1) : r$ and $(x, y_2) : t$. However the easiest solution is just to add an $r \cap t$ -successor.

By merging variables assertion may become violated. To ensure the termination of the algorithm we intuitively want to avoid violating any assertions especially when they are satisfied. However there are cases where a violation is unavoidable. We look at the following example:

Example 1.

$$S = \{x : succ(|t| + |A \cup B| \ge 4), \ x : succ(|A \cup B| \le 1)$$

$$y_1 : A, \ y_2 : B, \ (x, y_1) : t, \ (x, y_2) : t\}$$

We see that the assertion $x: succ(|A \cup B| \le 1)$ is violated and a solution is to merge y_1 and y_2 . This leads to $x: succ(|t|+|A \cup B| \ge 4)$ being violated. We can fix it by adding new successors. We can easily detect that adding a t-successor leads to a satisfied ABox. On the other hand a successor in $A \cup B$ leads to the initial state where $x: succ(|A \cup B| \le 1)$ is violated. This can lead us into a endless loop of adding and merging variables. Hence we introduce a notion of blocking. If we merged two variable y_1 and y_2 into y because of a violated assertion $x: succ(k \le l)$, $k = n_1 \cdot |s_1| + \cdots + n_j \cdot |s_j|$, then we want to block any introduction of an assertion of the form $(x, z): s_1 \cap \cdots \cap s_i, 1 \le i \le j$. This way we want to avoid a possible re-violation of $x: succ(k \le l)$ and possible unless loops of merging and introducing variables. In our example the set term $A \cup B$ is blocked by x after merging y_1 and y_2 to y which means that to satisfy $x: succ(|t|+|A \cup B| \ge 4)$ we can only add a t-successor.

Definition 10 (Blocking). Let $x : succ(k \leq l)$, $k = n_1 \cdot |s_1| + \cdots + n_j \cdot |s_j|$, be an assertion, which causes the merging of two successors y_1 and y_2 to y. Every set term $s_1 \cap \cdots \cap s_i$, $1 \leq i \leq j$ is *blocked* by x.

Also like in [2] and [3] we have to be safe when introducing new variables otherwise we may end in a endless loop or with a false output. In case of $x : succ(n \, dvd \, l)$ we do not have to consider any special cases because in worst case we have to add n successors, which are counted in $l^{\mathcal{I}(S)_x}$. The same goes for assertions with cardinality constraints of the form $x : succ(k \leq l)$, with k being a number e.g. it does not contain any set terms. For those cases we just increase l until the assertion is satisfied. However if k and l can both increase e.g. both contain set terms, we have to avoid cases where k increases faster then l. The increment depends on the set term u, which is not blocked by x, for which we want to introduce a new variable y and add (x, y) : u to S. To determine whether u is safe we count how often u "appears" in l and k. If it appears more often in l than in k then it is safe.

Definition 11 (Safe). Let $x : succ(k \leq l)$ be an assertion in S where $k = n_1 \cdot |s_1| + \cdots + n_i \cdot |s_i|$ and $l = m_1 \cdot |t_1| + \cdots + m_j \cdot |t_j|$, $i, j \in \mathbb{N}$. Let $u = t_1 \cap \cdots \cap t_o$ with $1 \leq o \leq j$. If $n_k(u) < n_l(u)$ and u is not blocked by x then u is called *safe regarding* $k \leq l$. The number $n_k(u)$ (and $n_l(u)$ respectively) is computed as followed:

Algorithm 1 Compute $n_k(u)$

```
n_k(u) := 0
k, cardinality term of the form n_1 \cdot |s_1| + \cdots + n_i \cdot |s_i|
u, set term of the form t_1 \cap \cdots \cap t_o
for each n' \cdot |s'_1 \cup \cdots \cup s'_p|, p \in \mathbb{N}, in k do

if \exists q, 1 \leq q \leq p : u = s'_q \cap t' then

n_k(u) := n_k(u) + n'
end if
end for
return n_k(u)
```

If k is a number e.g. it does not contain a set term, then all u are safe.

This says that it is only safe to add a variable if l increases faster then k. We also loose a bit the property of a Tableau-algorithm that rules can be applied in any order: In case we add (x, y) : s to our ABox and s is a (still finite) chain of disjunction and conjunction, we want to add the assertions of y before any other rule application so that all n(x, k, S), for which |s| occurs in k, also count y. This is important because we want to know the correct number of successors at any time so we can avoid any violation of assertions.

3.2 Algorithm

For the Tableau-algorithm we define the properties of the following notations:

- Conjunction binds stronger than disjunction: $s \cup t \cap u = s \cup (t \cap u)$
- if k, l are cardinality terms then k = l replaces $k \leq l$ and $k \geq l$

Definition 12 (Tableau). Let S be a set of assertions in simplified NNF.

- 1. \sqcap -rule: S contains $x:C_1\sqcap C_2$ but not both $x:C_1$ and $x:C_2$ $\to S:=S\cup\{x:C_1,x:C_2\}$
- 2. \sqcup -rule: S contains $x:C_1\sqcup C_2$ but neither $x:C_1$ nor $x:C_2$ $\to S:=S\cup\{x:C_1\}$ or $S:=S\cup\{x:C_2\}$
- 3. choose-rule: S contains
 - $x : succ(k \leq l)$
 - $(x,y): k', k = n \cdot |k' \cup u_1| + m \cdot |k' \cap u_2| + u_3, n, m \in \mathbb{N}_0, u_1, u_2, u_3$ are set terms
 - but not (x, y) : k
 - \rightarrow either $S := S \cup \{(x,y) : k\}$ or $S := S \cup \{(x,y) : k^{\neg}\}$. Then jump to rule 9
- 4. choose-a-role-rule: S contains (x,y): s but for any $r \in \mathbf{R}$: $(x,y): r \notin S$ \rightarrow choose $r \in \mathbf{R}$, such that $(x,y): r \not\in S$. $S := S \cup \{(x,y): r\}$. Then jump to rule 9
- 5. divide-rule: S contains $x : succ(n \, dvd \, l), \, l = n_1 \cdot |s_1| + \cdots + n_i \cdot |s_i| + \cdots + n_j \cdot |s_j|$, which is violated
 - \rightarrow introduce a new variable y, choose $s=s_1\cap\cdots\cap s_i,\ 1\leq i\leq j$ and $S:=S\cup\{(x,y):s\}$. Then jump to rule 9
- 6. \leq -rule: S contains
 - $x : succ(k \leq l)$, which is violated
 - there set term $s := |s_1 \cap \cdots \cap s_i|, l = n_1 \cdot |s_1| + \cdots + n_i \cdot |s_i| + \cdots + n_j \cdot |s_j|$, which is safe regarding $k \leq l$

```
\rightarrow S := S \cup \{(x,y) : s\}. Then jump to rule 9
```

- 7. merge-rule: S contains
 - $x : succ(k \leq l)$, which is violated
 - $(x, y_1): s_1$ and $(x, y_2): s_2$, such that $y_1 \neq y_2$ and $k = n \cdot |s_1 \cup s_2| + u$, where u is a cardinality term
 - \rightarrow merge y_1 and y_2
- 8. \leq 0-rule: S contains
 - $x : succ(|s_1 \cap \cdots \cap s_i| \leq 0)$
 - $(x,y): s_1, \ldots, (x:y): s_i, 1 \le i < j$
 - but not $(x, y) : s_{i+1}, \ldots, (x, y) : s_i$
 - \rightarrow choose $n \in \{i+1,\ldots,j\}$, extend $S := S \cup \{(x,y): s_n^{\neg}\}$ and then jump to rule 9
- 9. set.term-rule (Repeat until inapplicable): In S is (x,y):s and
 - a) $s = s_1 \cap s_2$ but $\{(x, y) : s_1, (x, y) : s_2\} \not\subseteq S$ $\to S := S \cup \{(x, y) : s_1, (x, y) : s_2\}$
 - b) $s = s_1 \cup s_2$ and neither $\{(x, y) : s_1\} \subseteq S$ nor $S\{(x, y) : s_2\} \subset S$ \rightarrow either $S := S \cup \{(x, y) : s_1\}$ or $S := S \cup \{(x, y) : s_2\}$
 - c) s = C and $y : C \notin S$, where C is an \mathcal{ALCSCC} concepts $\to S := S \cup \{y : C\}$

Definition 13 (Derived Set). A derived set is an ABox S' where rule 9 is not applicable.

In order words a derived set is an ABox on which we applied a rule completely e.g. one of rule 1-8 and if necessary rule 9 to assign y all assertion it has.

We now explain the rules of the Tableau-algorithm and their intention, if not already mention in Section 2.1.

The first rule decompose the conjunction and the second rule adds non-deterministically the right assertion.

The *choose*-rule is important because we need to know of every successor what kind of role successors they are and in which concepts they are. We use n(x, k, S) to count the successors of x in k which is important for detecting and avoiding violations of assertions. Now there might be a successor y which satisfies only some part of k in the given S such that n(x, k, S) does not count y:

Example 2.

$$S = \{x : succ(|r \cap s| > 1), (x, y) : r\}$$

However there might be an interpretation \mathcal{I}' where y is also a s-successor of x and hence $n(x,k,S) \neq n_{\mathcal{I}'}(x,k,S)$. However the Tableau-algorithm should be able to construct every model of S, if S is consistent. Therefore this rule adds non-deterministically either

 $(x,y): s \text{ or } (x,y): s^{\neg} \text{ which are the only two possibilities.}$

The *choose-a-role*-rule is necessary because for a assertion x : succ(c) we might have no role name with a positive sign in c. Which means we know x must have some successors but we can not decide which role-successor it is. As example we have

Example 3.

$$\mathbf{R} = \{r, s\}$$
$$S = \{x : succ(|r^{\neg}| \ge 1)\}$$

It states that x have at least one successor which is not a r-successor. Since \mathbf{R} only contains r and s we know that the successors must be s-successors. First we apply rule 6 to actually add a successor. Therefore y is introduced and $(x,y):r^{-}$ is added to S. Now no more rules are applicable except for the choose-a-role-rule. With that rule we can pick either r or s. We can not pick r because r^{-} occurs in the assertion. Therefore we have to pick s. Another more simple but not so significant example is

Example 4.

$$\mathbf{R} = \{r, s\}$$
$$S = \{x : succ(|A| \ge 1)\}$$

We know that x must have a successor in A but we still need to assign a role. In this case we can choose between r and s.

The divide-rule is straightforward: We choose one set term $s = s_1 \cap \cdots \cap s_i$ such that $l = n_1 \cdot |s_1| + \cdots + n_i \cdot |s_i| + \cdots + n_j \cdot |s_j|$ and introduce a new variable y and add (x, y) : s to S. For any $x : succ(n \, dvd \, l)$ we know that the chain of this rule application is finite because in worst case we have to introduce n new variables with the same set term.

The reason and idea of the \leq -rule is written in Section 3.1.

The same goes for the *merge*-rule.

The ≤ 0 -rule deal with an assertion with a set constraint $s_1 \subseteq s_2$, which is written here as cardinality constraint $|s_1 \cap s_2^-| \leq 0$. Those cardinality constraint can not be dealt with the other rules. In case the left side has at least three set term e.g. $|s_1 \cap s_2 \cap s_3|$ we have can have multiple possible solutions e.g. $(x,y):s_1 \cap s_2 \cap s_3^-$, $(x,y):s_1 \cap s_2^- \cap s_3^-$ and $(x,y):s_1 \cap s_2^- \cap s_3^-$. Hence we let the algorithm choose and backtrack if needed. The set.term-rules are applied immediately after a new assertions (x,y):s is added to S. The reason for that is, that we want to add all needed assertions for y and hence update all $k^{\mathcal{I}(S)_x}$ correctly. We know that the number of this application is finite because an ABox is finite and hence the number of concept names and role names occurring in this ABox is also finite. Since the constraints are in NNF set terms can never be infinite and hence this rule applies only a finite times.

References

[1] R. Hoehndorf, P. N. Schofield, and G. V. Gkoutos. The role of ontologies in biological and biomedical research: a functional perspective. *Brief. Bioinform*, page 1069–1080, 2015.

- [2] B. Hollunder and F. Baader. Qualifying Number Restrictions Concept Languages. Technical report, Research Report RR-91-03, 1991.
- [3] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, 2001.