

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -278000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
         = 21400 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
                                                         = -339000 Nmm
         = 419000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -216000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 25000 N
Ν
                                                                                                                                    G
                                                                                                 = 200000 \text{ N/mm}^2
        = 489000 Nmm
                                                    = -399000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28800 N	M _×	= -254000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 383000 Nmm	M_{v}	= -463000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -377000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
Ν
         = 17200 N
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 393000 Nmm
                                                           = -507000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
J_{xx}
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -431000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 20600 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 479000 Nmm
                                                           = -390000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
J_{xx}
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -332000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                 = 76000 \text{ N/mm}^2
Ν
         = 24300 N
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 571000 Nmm
                                                            = -456000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{\mathsf{G}}
                                                                                                    σ
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -370000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                = 76000 \text{ N/mm}^2
Ν
         = 22600 N
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 342000 Nmm
                                                           = -460000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_G
                                                                                                                                                       \sigma_{\text{st.ven}}=
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
J_{xx}
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 \text{ N} \qquad \qquad M_x = -419000 \text{ Nmm} \qquad \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
          = 17900 N
                                                                                                                                                                   G
                                                                                                            \sigma_{a}
                                                                                                                       = 200000 \text{ N/mm}^2
          = 422000 Nmm
                                                                = -538000 Nmm
M₊
                                                                                                            Ε
                                                                                                            \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                            \tau(M_t) =
y_{\mathsf{G}}
                                                                                                            σ
                                                      α
                                                                                                            \sigma_{l}
                                                      \sigma(N) =
J_{xx}
                                                                                                            \sigma_{\text{II}}
                                                      \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -478000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 21400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 514000 Nmm
                                                         = -414000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25400 N	M _×	= 261000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 492000 Nmm	M_{v}^{λ}	= -347000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								03.06.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 309000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 29300 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 387000 Nmm
                                                         = -402000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 361000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 22800 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 458000 Nmm
                                                         = -460000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22700 N	M _×	= 501000 Nmm		$= 210 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 567000 Nmm	M_{v}	= -409000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M _y	y.	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{treso}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 388000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 26400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 661000 Nmm
                                                         = -472000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                               σ
                                               α
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 454000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 30400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 518000 Nmm
                                                         = -540000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_G
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 477000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                        = 76000 \text{ N/mm}^2
Ν
        = 20600 N
                                                                                                                                G
                                                                                              = 200000 \text{ N/mm}^2
        = 539000 Nmm
                                                   = -593000 Nmm
M₊
                                                                                     Ε
                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                \sigma_{\text{mises}} =
                                                                                     \tau(M_t) =
y_G
                                                                                     σ
                                                                                     \sigma_{l}
                                          \sigma(N) =
                                                                                     \sigma_{\text{II}}
                                          \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                         03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24100 N	M _×	= 553000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 631000 Nmm	M_{v}	= -449000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27800 N	M _x	= 431000 Nmm		$= 210 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 729000 Nmm	M_{v}^{λ}	= -516000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -119000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 18800 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 159000 Nmm
                                                            = -171000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -142000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 15000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 193000 Nmm
                                                            = -203000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -166000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 17900 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 231000 Nmm
                                                           = -162000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -156000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 15100 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 211000 Nmm
                                                         = -161000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 18400 N	M _x	= -187000 Nmm		= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 180000 Nmm	M_{v}	= -192000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -221000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 14800 N
                                                                                                                                                 G
                                                                                                         = 200000 \text{ N/mm}^2
         = 227000 Nmm
                                                         = -228000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -227000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 12900 N
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 177000 Nmm
                                                          = -144000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -179000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
         = 16000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 231000 Nmm
                                                          = -175000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -214000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 19400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 196000 Nmm
                                                         = -208000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -294000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                         = 76000 \text{ N/mm}^2
        = 17600 N
Ν
                                                                                                                                 G
                                                                                              = 200000 \text{ N/mm}^2
        = 368000 Nmm
                                                   = -475000 Nmm
M_t
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                      \tau(M_t) =
y_{G}
                                                                                      σ
                                           α
                                                                                      \sigma_{l}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                          03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -346000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 19900 N
Ν
                                                                                                                                    G
                                                                                                 = 200000 \text{ N/mm}^2
        = 430000 Nmm
                                                    = -352000 Nmm
M_t
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -275000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 22300 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 495000 Nmm
                                                           = -395000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = 320000 \text{ Nmm} \sigma_{a} = 210 \text{ N/mm}^{2}
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 26100 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 401000 Nmm
                                                     = -561000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_G
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                               03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19600 N	M _x	= 377000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 475000 Nmm	M_{v}	= -669000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{\text{st.}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		
_							

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22400 N	$M_{x} = 444000 \text{ Nn}$	$\sigma_{\rm a} = 210 \rm N/mm^2$	$G = 76000 \text{ N/mm}^2$
M_t	= 561000 Nmm	$M_v = -526000 \text{ N}$		
x_G	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_{o}	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	σ ₁ =	$r_v =$
J_xx	=	$\sigma(N) =$	σ _{II} =	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 306000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 25000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 578000 Nmm
                                                          = -514000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_G
                                                                                                σ
                                                α
                                                                                                \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = 363000 \text{ Nmm} \sigma_{a} = 210 \text{ N/mm}^{2}
                                                                                                                                              = 76000 \text{ N/mm}^2
Ν
        = 27700 N
                                                                                                                                      G
                                                                                                  = 200000 \text{ N/mm}^2
        = 453000 Nmm
                                                     = -616000 Nmm
M₊
                                                                                         Ε
                                                                                         \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M_t) =
y_{G}
                                                                                         σ
                                            α
                                                                                         \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                               03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 426000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 20800 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 534000 Nmm
                                                         = -730000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -278000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                         = 76000 \text{ N/mm}^2
        = 21400 N
Ν
                                                                                                                                 G
                                                                                              = 200000 \text{ N/mm}^2
                                                   = -339000 Nmm
        = 419000 Nmm
M₊
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                      \tau(M_t) =
y_{G}
                                                                                      σ
                                                                                      \sigma_{l}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                          03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -216000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 25000 N
Ν
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 489000 Nmm
                                                    = -399000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -254000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 28800 N
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 383000 Nmm
                                                    = -463000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -377000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 17200 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 393000 Nmm
                                                          = -507000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -431000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                 = 76000 \text{ N/mm}^2
         = 20600 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 479000 Nmm
                                                            = -390000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{\mathsf{G}}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
J_{xx}
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -332000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                = 76000 \text{ N/mm}^2
Ν
         = 24300 N
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 571000 Nmm
                                                            = -456000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{\mathsf{G}}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 
 0 N M_x = -370000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                   = 76000 \text{ N/mm}^2
Ν
          = 22600 N
                                                                                                                                                          G
                                                                                                      \sigma_{a}
                                                                                                                = 200000 \text{ N/mm}^2
          = 342000 Nmm
                                                             = -460000 Nmm
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                          \sigma_{\text{mises}} =
                                                                                                      \tau(M_t) =
y_G
                                                                                                                                                          \sigma_{\text{st.ven}}=
                                                                                                      σ
                                                   α
                                                                                                      \sigma_{\text{I}}
                                                   \sigma(N) =
J_{xx}
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 
 0 N M_x = -419000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                 = 76000 \text{ N/mm}^2
Ν
         = 17900 N
                                                                                                                                                        G
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
         = 422000 Nmm
                                                            = -538000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
J_{xx}
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -478000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 21400 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 514000 Nmm
                                                         = -414000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
J_{xx}
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25400 N	M _×	= 261000 Nmm	σ_{a}	= 210 N/mm ²	G	= 76000 1	N/mm ²
M_t	= 492000 Nmm	M_{v}^{λ}	= -347000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 309000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 29300 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 387000 Nmm
                                                         = -402000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 361000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 22800 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 458000 Nmm
                                                         = -460000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22700 N	M _×	= 501000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 567000 Nmm	M_{v}	= -409000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

· accitation rapprocessitate i attraction to tend tender tangen =										
Ν	= 26400 N	M_x	= 388000 Nmm	σ_{a}	= 210 N/mm ²	G	= 76000 N	√l/mm²		
M_t	= 661000 Nmm	M_{y}^{2}	= -472000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$					
x_{G}	=	J_{xy}	=	$\sigma(M_{y})$	y ′	σ_{mise}	es=			
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=			
Α	=	J_t	=	σ_{l}	=	r_v	=			
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=			
J_{yy}	=	σ(M	_x)=	σ_{treso}	_{ca} =					
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09										

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 454000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
         = 30400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 518000 Nmm
                                                         = -540000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_G
                                                                                               σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 477000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                         = 76000 \text{ N/mm}^2
Ν
        = 20600 N
                                                                                                                                 G
                                                                                              = 200000 \text{ N/mm}^2
        = 539000 Nmm
                                                   = -593000 Nmm
M₊
                                                                                     Ε
                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                     \tau(M_t) =
y_{G}
                                                                                     σ
                                                                                     \sigma_{l}
                                           \sigma(N) =
                                                                                     \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                          03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24100 N	M _x	= 553000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 631000 Nmm	M_{v}^{γ}	= -449000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_{v}	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27800 N	M _×	= 431000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 729000 Nmm	M_{v}	= -516000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -119000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 18800 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 159000 Nmm
                                                            = -171000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

03.06.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -142000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 15000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 193000 Nmm
                                                            = -203000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

03.06.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -166000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 17900 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 231000 Nmm
                                                           = -162000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

03.06.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -156000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 15100 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 211000 Nmm
                                                         = -161000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -187000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
Ν
         = 18400 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 180000 Nmm
                                                           = -192000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -221000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 14800 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 227000 Nmm
                                                         = -228000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -227000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 12900 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 177000 Nmm
                                                          = -144000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16000 N	M _x	= -179000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 231000 Nmm	M_{v}^{λ}	= -175000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -214000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 19400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 196000 Nmm
                                                         = -208000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -294000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                           = 76000 \text{ N/mm}^2
        = 17600 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 368000 Nmm
                                                    = -475000 Nmm
M_t
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                           α
                                                                                       \sigma_{\text{I}}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                            03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -346000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 19900 N
Ν
                                                                                                                                    G
                                                                                                 = 200000 \text{ N/mm}^2
        = 430000 Nmm
                                                    = -352000 Nmm
M_t
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -275000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 22300 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 495000 Nmm
                                                           = -395000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		P P . 00			o			•
Ν	= 26100 N	M_{x}	= 320000 Nmm	σ_{a}	= 210 N/mm ²	G	= 76000 N	√mm²
M_t	= 401000 Nmm	M_{v}	= -561000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y <i>'</i>	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M ₂	_x)=	σ_{tres}	ca=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19600 N	M _×	= 377000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 475000 Nmm	M_{v}	= -669000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 444000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
        = 22400 N
                                                                                                                                  G
                                                                                               = 200000 \text{ N/mm}^2
        = 561000 Nmm
                                                    = -526000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_G
                                                                                       σ
                                           α
                                                                                       \sigma_{\text{I}}
J_{xx}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                            03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 306000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
        = 25000 N
                                                                                                                                  G
                                                                                              = 200000 \text{ N/mm}^2
        = 578000 Nmm
                                                   = -514000 Nmm
M₊
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                      \tau(M_t) =
y_G
                                                                                      σ
                                           α
                                                                                      \sigma_{\text{I}}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                           03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = 363000 \text{ Nmm} \sigma_{a} = 210 \text{ N/mm}^{2}
                                                                                                                                                                = 76000 \text{ N/mm}^2
Ν
         = 27700 N
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 453000 Nmm
                                                            = -616000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 426000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 20800 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 534000 Nmm
                                                         = -730000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -278000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                         = 76000 \text{ N/mm}^2
        = 21400 N
Ν
                                                                                                                                 G
                                                                                              = 200000 \text{ N/mm}^2
                                                   = -339000 Nmm
        = 419000 Nmm
M₊
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                      \tau(M_t) =
y_{G}
                                                                                      σ
                                                                                      \sigma_{l}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                          03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -216000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 25000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 489000 Nmm
                                                    = -399000 Nmm
M_t
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -254000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 28800 N
                                                                                                                                    G
                                                                                                 = 200000 \text{ N/mm}^2
        = 383000 Nmm
                                                    = -463000 Nmm
M_t
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{\mathsf{G}}
                                                                                        σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                              03.06.09
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -377000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 17200 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 393000 Nmm
                                                         = -507000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -431000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 20600 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 479000 Nmm
                                                           = -390000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -332000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                 = 76000 \text{ N/mm}^2
Ν
         = 24300 N
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 571000 Nmm
                                                            = -456000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{\mathsf{G}}
                                                                                                    σ
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -370000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                   = 76000 \text{ N/mm}^2
Ν
          = 22600 N
                                                                                                                                                         G
                                                                                                     \sigma_{a}
                                                                                                               = 200000 \text{ N/mm}^2
          = 342000 Nmm
                                                            = -460000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_G
                                                                                                                                                         \sigma_{\text{st.ven}}=
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
J_{xx}
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 \text{ N} \qquad \qquad M_x = -419000 \text{ Nmm} \qquad \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
          = 17900 N
                                                                                                                                                                   G
                                                                                                            \sigma_{a}
                                                                                                                       = 200000 \text{ N/mm}^2
          = 422000 Nmm
                                                                = -538000 Nmm
M₊
                                                                                                            Ε
                                                                                                            \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                            \tau(M_t) =
y_{\mathsf{G}}
                                                                                                            σ
                                                      α
                                                                                                            \sigma_{l}
                                                      \sigma(N) =
J_{xx}
                                                                                                            \sigma_{\text{II}}
                                                      \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -478000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 21400 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 514000 Nmm
                                                         = -414000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
J_{xx}
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25400 N	M _x	= 261000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 492000 Nmm	M_{v}^{λ}	= -347000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{\text{st.v}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 309000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 29300 N
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 387000 Nmm
                                                         = -402000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 361000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
        = 22800 N
                                                                                                                                 G
                                                                                              = 200000 \text{ N/mm}^2
        = 458000 Nmm
                                                   = -460000 Nmm
M₊
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                      \tau(M_t) =
y_{G}
                                                                                      \sigma_{l}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                          03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	· acontain or rapprocentation and amount at the terror tangen in any									
Ν	= 22700 N	M_x	= 501000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 N	√l/mm²		
M_t	= 567000 Nmm	M_{y}^{2}	= -409000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$					
x_{G}	=	J_{xy}	=	$\sigma(M_{y})$,,	σ_{mise}	es=			
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =			
u_o	=	J_v	=	σ	=	θ_{t}	=			
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=			
Α	=	J_t	=	σ_{I}	=	r_{v}	=			
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=			
J_{yy}	=	σ(M ₂	_x)=	σ_{tres}	_{ca} =					
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09										

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26400 N	M _×	= 388000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 661000 Nmm	M_{v}^{λ}	= -472000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 30400 N	M _x	= 454000 Nmm	σ_{a}	= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 518000 Nmm	M_{v}	= -540000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = 477000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
        = 20600 N
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 539000 Nmm
                                                    = -593000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{\text{I}}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09
                                                                                                                                                            03.06.09
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24100 N	M _×	= 553000 Nmm	σ_{a}	$= 210 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 631000 Nmm	M_{v}	= -449000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27800 N	M _x	= 431000 Nmm		$= 210 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 729000 Nmm	M_{v}	= -516000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.v}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -119000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 18800 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 159000 Nmm
                                                            = -171000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -142000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 15000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 193000 Nmm
                                                            = -203000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     \sigma_{l}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -166000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 17900 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 231000 Nmm
                                                           = -162000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{\mathsf{G}}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -156000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
         = 15100 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 211000 Nmm
                                                          = -161000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 18400 N	M _x	= -187000 Nmm		= 210 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 180000 Nmm	M_{v}	= -192000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	, () =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -221000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 14800 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 227000 Nmm
                                                         = -228000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -227000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 12900 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 177000 Nmm
                                                          = -144000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -179000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
         = 16000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 231000 Nmm
                                                           = -175000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{\mathsf{G}}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -214000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
         = 19400 N
Ν
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 196000 Nmm
                                                         = -208000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_x = -294000 \text{ Nmm} \sigma_a = 210 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
         = 17600 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 368000 Nmm
                                                          = -475000 Nmm
M_t
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.24.05.09