

Shirpur Education Society's R. C. PATEL INSTITUTE OF TECHNOLOGY, SHIRPUR

An Autonomous Institute (Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere) आर. सी. पटेल इन्स्टिट्यूट ऑफ टेक्नॉलॉजी, शिरपूर (स्वायत्त महाविद्यालय)

End Semester Examination (February 2022) Academic Year: 2021-2022

Max. Marks: 50 Duration: 02 Hr.

Class: S Y B Tech Semester: III

Course: Engineering Mathematics-III Course Code: BSCO3010T

Program: Computer Engineering

Instructions:

- (1) Solve ANY FIVE questions.
- (2) Read the questions carefully.
- (3) Assume suitable data wherever required, but justify it.
- (4) All questions carry equal marks.
- (5) Answer to each new question is to be started on a fresh page.
- (6) Figure to the right indicate full marks.
- (7) Draw the neat labelled diagrams wherever necessary.

Question No.		Max. Marks
Q1 (a)	Evaluate $\int_0^\infty \frac{\cos 6t - \cos 4t}{t} dt$	05
Q1 (b)	By Using Convolution theorem , Find $L^{-1}\left\{\frac{1}{s^2(s+1)^2}\right\}$	05
Q2	Find the Fourier Series for the periodic function $f(x) = \frac{(\pi - x)^2}{4}$ in the interval $(0,2\pi)$. Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$	10
Q3	Find the Fourier sine transform of $\frac{e^{-ax}}{x}$ and hence evaluate $\int_0^\infty tan^{-1} \frac{x}{a} \sin x dx$	10
Q4 (a)	Find $Z^{-1}\left[\frac{z^2}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}\right]$, if $\frac{1}{3} < z < \frac{1}{2}$	05
Q4 (b)	Find $Z\{f(k)\}$ if $f(k) = \frac{a^k}{k!}$, $k \ge 0$	05
Q5	Solve the differential equation by using Laplace transform $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t} sint , y(0) = 0, y'(0) = 1$	10
Q6 (a)	Show that if $0 < x < \pi$, $cos x = \frac{8}{\pi} \sum_{m=1}^{\infty} \frac{m}{(4m^2-1)} sin 2mx$	05
Q6 (b)	Using Parseval's identity prove that $\int_0^\infty \frac{x^2}{(x^2+1)^2} dx = \frac{\pi}{4}$	05

All the Best!