المملكة المغربية المعالية المعالية و المعالية البربية الوطنية و التعليم العالي و تكون الأطني العلمي المركز الوطني للتعويد و الإمتحانات

الإمتحات الوطنى الموحد لنيل شهادة البكالوريا الدورة الاستدراكية 2003

مادة الرياضيات مسلك العلوم الرياضية أو ب المعامل 10 مدة الأنجاز: أربع ساعات

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

التمرين الأول: (3,0 ن)

لدينا صندوقان U و V . الصندوق U يحتوي على 4 كرات حمراء و 4 كرات زرقاء. الصندوق V يحتوي على كرتين حمراوين و 4 كرات زرقاء.

نعتبر التجربة العشوائية التالية : " نسحب عشوائيا كرة من الصندوق U : إذا كانت حمراء نضعها في الصندوق V ثم نسحب عشوائيا كرة من الصندوق V . و إذا كانت زرقاء نضعها جانبا ثم نسحب عشوائيا كرة من الصندوق V " .

نعتبر الأحداث التالية:

- الكرة المسحوبة من U حمراء ". R_1
 - الكرة المسحوبة من U زرقاء ": B_1
 - الكرة المسحوبة من V حمراء " : R_2
- . " الكرة المسحوبة من V زرقاء : B_2
 - R_1 و R_1 احسب احتمال الحدثين R_1 و R_1
- محقق. B_1 أحسب احتمال B_2 علما أن R_1 محقق، و احتمال B_2 علما أن B_2 محقق.
 - $P(B_2) = \frac{13}{21}$: بين أن (3) يين أن
 - $P(R_2)$ استنتج 4 0,50

التمرين الثانى: (4,5 ن)

 $p=5\cos heta+3i\sin heta$: ونضع و نضع و $0\leq heta\leq2\pi$: ليكن heta عددا حقيقيا بحيث

 $(E): z^2-2pz+16=0$: نعتبر في ${\Bbb C}$ التالية :

- $p^2 (3\cos\theta + 5i\sin\theta)^2 = 16$: نحقق أن (أ) (أ) تحقق أن
- $|z_1| < |z_2|$ فوجد z_2 و z_2 حلي المعادلة (E) بحيث أوجد z_2 أوجد و z_1
- . $(\mathcal{O}, \vec{u}, \vec{v})$ المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر $(\mathcal{O}, \vec{u}, \vec{v})$

. Z_2 و Z_1 اللتين لحقاهما على التوالي هما M_2 و M_1

- بين أنه عندما يتغير العدد heta في $[0;2\pi]$ فإن النقطة M_1 تتغير على دائرة (\mathcal{C}) ينبغي تحديد معادلة لها.
- $[0; 2\pi[$ لتكن P منتصف القطعة $[M_1M_2]$. و لتكن P مجموعة النقط P عندما يتغير العدد P في المجال P في المجال P لتكن P بين أن P إهليلج بؤرتاه هما النقطتان P و P اللتان لحقاهما على التوالي هما P و P .

الأجوبة من اقتراح الأستاذ بدر الدين الفاتحى -

 $\left(\frac{b+4}{b-4}\right) = -\left(\frac{a+4}{a-4}\right) \iff (ab=16)$ لدينا : $\mathbb{C}\setminus\{4\}$ من a عددين عقديين a و a من a لدينا : $(\hat{1})$

$$\left(\overline{\overline{M_1F}};\overline{\overline{M_1F'}}\right) \equiv \pi + \left(\left(\overline{\overline{M_2F}};\overline{\overline{M_2F'}}\right)\right)[2\pi]$$
 : بين أن 0.50

 $3x\cos\theta + 5y\sin\theta = 15$: هي النقطة P هي النقطة (Γ) للمنحنى (T) للمنحنى (T) بين أن معادلة المماس

. (M_1M_2) بين أن : المماس (T) عمودي على المستقيم \bigcirc 0,50

التمرين الثالث: (3,0 ن)

 $M_{(a,b)}=egin{pmatrix} a & b\sqrt{2} \ h\sqrt{2} & a \end{pmatrix}$: كل زوج (a,b) من \mathbb{Z}^2 نعتبر المصفوفة

 $E=\left\{M_{(a,b)} \ / \ a^2-2b^2=1
ight\}$ في $\mathscr{M}_2(\mathbb{R})$ لتكن E مجموعة المصفوفات المعرفة بما يلي :

 $A \in E$: نضع $A = \begin{pmatrix} 3 & 2\sqrt{2} \\ 2\sqrt{2} & 3 \end{pmatrix}$: نضع (1) 0.25

. E و أن القانون imes تبادلي في E بين أن E جزء مستقر من $\mathcal{M}_2(\mathbb{R}), imes$ و أن القانون E تبادلي في

. \times بين أن جميع عناصر E تقبل مقلوبا في E بالنسبة لقانون التركيب الداخلي E بين أن جميع عناصر

بين أن (E, \times) زمرة تبادلية . \bigcirc

 $(\forall n \in \mathbb{N})$; $A^{n+1} = A^n \times A$ و $A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: نضع \mathfrak{J}

 $G = \{A^n \ / \ n \in \mathbb{N}\}$ نعتبر المجموعة

 $G \subset E$: نحقق أن 0.25

. E في imes النسبة لعملية imes في E النسبة لعملية imes النسبة لعملية imes في E النسبة لعملية imes

 $B=egin{pmatrix} 3 & -2\sqrt{2} \ -2\sqrt{2} & 3 \end{pmatrix}$: حيث $H=\{B^n \ / \ n \epsilon \mathbb{N}\}$: بين أن

. (E,\times) بين أن $G\cup H$ زمرة جزئية من 0.50

التمرين الرابع: (9,5 ن)

 $egin{align} g_n(x)=x+e^{-nx} \]$. ليكن $n \in \mathbb{N}^*$ نعتبر الدالة العددية g_n المعرفة على g_n المنحنى الممثل للدالة g_n في معلم متعامد ممنظم $(\mathcal{C}_n$) المنحنى الممثل للدالة g_n

. g_n أدرس تغيرات الدالة $(\hat{1})$

. n يتم تحديده بدلالة u_n يتم عند عدد عنيا عند بدلالة g_n بين أن بين أن بين أن عند عدد عدد عدد u_n

 $\lim_{x \to +\infty} g_n(x)$ و $\lim_{x \to +\infty} g_n(x)$: المسب أ أكسب أ أحسب

- رمضا<u>ن 2012 - الصفحة : 14</u>

لاجوية من اقتراح الاستاذ بدر الدين الفاتحي -

- (\mathscr{E}_n) حدد الفر عين اللانهائيين للمنحنى (\mathscr{E}_n)
- g_2 و g_1 الممثلين للدالتين (\mathcal{C}_2) و (\mathcal{C}_1) و الممثلين للدالتين (\mathcal{C}_2) و و (\mathcal{C}_1)
 - رسم في نفس المعلم المنحنيين (\mathscr{C}_1) و (\mathscr{C}_2) .

($\ln 2 \approx 0.7$: ونعطى $||\vec{i}|| = ||\vec{j}|| = 2 \, cm$)

- $I(x)=\int_0^x te^{-2t}\ dt$: التكامل يالأجزاء، أحسب بدلالة x التكامل مكاملة بالأجزاء، أحسب بدلالة أحسب بدلالة أعدى المكاملة بالأجزاء، أحسب بدلالة أعدى المكاملة بالمكاملة بالمكاملة
 - $[0, \ln 2]$ لتكن h_2 قصور الدالة g_2 على المجال Θ لتكن Θ لتكن 0,50

أحسب حجم مجسم الدوران الذي يولده دوران التمثيل المبياني لـ h_2 حول محور الأفاصيل.

 $v_n = g_n(u_n)$: نضع 5

بین أن المتتالیتین $(u_n)_{n\in\mathbb{N}^*}$ و $(u_n)_{n\in\mathbb{N}^*}$ متقاربتان و حدد نهایتیهما

- $f_n(x)=x+e^{nx}$: يعتبر الدالة العددية f_n المعرفة على $\mathbb R$ بما يلي : (II) و ليكن (Γ_n) منحنى الدالة f_n في معلم متعامد ممنظم مباشر (Γ_n) منحنى الدالة (Γ_n)
 - . f_n أدرس تغيرات الدالة الدالة أدرس تغيرات الدالة الد
 - $lpha_n$ اتقبل حلا وحيدا $f_n(x)=0$ استنتج أن المعادلة (2) وحيدا (2)
 - $\alpha_1 \epsilon$ $-\ln 2$; $\frac{-1}{2}$ ابین أن 3 نبین أن 3 نبین أن
 - و (e^x+lpha_1) و $(x-lpha_1)$ لهما نفس الإشارة. $(x-lpha_1)$
- $\varphi(x)=e^x-rac{1}{\sqrt{e}}x$: بما يلي $]-\infty$; $rac{-1}{2}$ الدالة العددية المعرفة على $]-\infty$; $rac{-1}{2}$ الدالة φ تناقصية على المجال $]-\infty$; $rac{-1}{2}$
 - $|e^x + \alpha_1| \le \frac{1}{\sqrt{a}}|x \alpha_1|$: ن استنتج أن : ن 0,50
 - $eta_{n+1} = -e^{eta_n}$: n نضع و لکل عدد صحیح طبیعی $eta_0 = rac{-1}{2}$: نضع (5)
- - بین أن المتتالیة $(eta_n)_{n\in\mathbb{N}}$ متقاربة و حدد نهایتها . $(eta_n)_{n\in\mathbb{N}}$

الأجوبة من اقتراح الاستاذ بدر الدين الفاتحى -

التمرين الثاني: (4,5 ن) -

$$\Delta' = p^2 - 16 = (3\cos\theta + 5i\sin\theta)^2$$
 : لدينا المعادلة (E) يقبل حلين في . (ابن المعادلة (E) يقبل حلين في

= 16

$$z_1 = p + (3\cos\theta + 5i\sin\theta) = 2e^{-i\theta}$$

$$z_2 = p - (3\cos\theta + 5i\sin\theta) = 8e^{i\theta}$$

 (\mathfrak{j}) ا . $[0;2\pi[$ يكن heta عنصرا من $[0;2\pi[$

$$aff(M_1) = 2e^{-i\theta} = x + iy$$
 : نضع

$$\Leftrightarrow$$
 2 cos($-\theta$) + 2*i* sin($-\theta$) = $x + iy$

$$\Leftrightarrow \begin{cases} 2\cos(\theta) = x \\ -2\sin(\theta) = y \end{cases}$$

$$\Rightarrow x^2 + y^2 = (2\cos(\theta))^2 + (-2\sin(\theta))^2$$
$$\Rightarrow x^2 + y^2 = 4(\cos^2\theta + \sin^2\theta)$$

$$\implies x^2 + y^2 = 4$$

$$\implies x^2 + y^2 = 2^2$$

. 2 ينتمي إلى الدائرة ($m{\mathscr{C}}$) التي مركزها $M_1 inom{x}{y}$ و شعاعها

 $[M_1M_2]$ هي منتصف القطعة P لدينا

$$\Leftrightarrow aff(P) = \frac{aff(M_1) + aff(M_2)}{2}$$
$$\Leftrightarrow aff(P) = \frac{2e^{-i\theta} + 8e^{i\theta}}{2}$$

$$\Leftrightarrow aff(P) = \frac{1}{2}$$

$$\Leftrightarrow aff(P) = (\cos\theta - i\sin\theta) + 4(\cos\theta + i\sin\theta)$$

$$\Leftrightarrow aff(P) = 5\cos\theta + 3i\sin\theta$$

$$\Leftrightarrow$$
 $aff(P) = p$

النموذج الأمثل لحل هذا التمرين هو استعمال شجرة الإحتمالات التالية:

$$P(R_1) = P(B_1) = \frac{4}{8} = \frac{1}{2}$$
 : لدينا حسب الشجرة

$$P_{B_1}(B_2) = \frac{P(B_1 \cap B_2)}{P(B_1)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

$$P_{R_1}(B_2) = \frac{P(R_1 \cap B_2)}{P(R_1)} = \frac{\frac{2}{7}}{\frac{1}{2}} = \frac{4}{7}$$

$$P(B_2) = P(R_1 \cap B_2) + P(B_1 \cap B_2)$$

$$= P(R_1) \times P_{R_1}(B_2) + P(B_1) \times P_{B_1}(B_2)$$

$$= \left(\frac{1}{2} \times \frac{4}{7}\right) + \left(\frac{1}{2} \times \frac{2}{3}\right) = \frac{13}{21}$$

الطريقة الأولى: استعمال تقنية الحدث المؤكد

$$P(B_2) + P(R_2) = 1$$

$$\Leftrightarrow P(R_2) = 1 - P(B_2)$$

$$\Leftrightarrow P(R_2) = 1 - \frac{13}{21} = \frac{8}{21}$$

الطريقة الثانية : (استعمال الشجرة)

$$P(R_2) = P(R_1 \cap R_2) + P(B_1 \cap R_2)$$

$$\Leftrightarrow \quad P(R_2) = P(R_1) \times P_{R_1}(R_2) + P(B_1) \times P_{B_1}(R_2)$$

$$\iff P(R_2) = \left(\frac{1}{2} \times \frac{3}{7}\right) + \left(\frac{1}{2} \times \frac{1}{3}\right) = \frac{8}{21}$$

من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 16

أجوبة الدورة الاستدراكية 2003

(4)■

(j)(**4**)∎

 $P(5\cos\theta:3\sin\theta)$

إذن معادلة المماس (T) للمنحنى (Γ) في النقطة P هي :

$$(T): \frac{5x\cos\theta}{5^2} + \frac{3y\sin\theta}{3^2} = 1$$

$$(T): 3x \cos\theta + 5y \sin\theta = 15$$

 $(T): 3x \cos\theta + 5y \sin\theta = 15$

$$(T): y = \left(\frac{-3\cos\theta}{5\sin\theta}\right)x + \left(\frac{3}{\sin\theta}\right)$$

$$\left(\frac{-3\cos\theta}{5\sin\theta}\right)$$
: إذن : ميل المستقيم (T) هو

لنحسب الآن m ميل المستقيم (M_1M_2) .

.
$$M_2 \begin{pmatrix} 8\cos\theta \\ 8\sin\theta \end{pmatrix}$$
 و $M_1 \begin{pmatrix} 2\cos\theta \\ -2\sin\theta \end{pmatrix}$: لينا

$$m=rac{8 \sin heta - (-2 \sin heta)}{8 \cos heta - 2 \cos heta} = \left(rac{5 \sin heta}{3 \cos heta}
ight)$$
 إذن :

$$-\left(rac{5 \sin heta}{3 \cos heta}
ight)$$
 هو $(M_1 M_2)$ المستقيم إذن ميل المستقيم

و بالتالى : (T) و (M_1M_2) متعامدان لأن جداء ميليهما يساوي (T) .

$$\left(\frac{-3\cos\theta}{5\sin\theta}\right) \times \left(\frac{5\sin\theta}{3\cos\theta}\right) = -1$$

 $A = \begin{pmatrix} 3 & 2\sqrt{2} \\ 2\sqrt{2} & 3 \end{pmatrix}$: نضع

 $3^2 - 2 \times 2^2 = 1$ دينا

 $A = M(3.2) \in E$

-(j)(2)■

E مصفوفتین من M(c,d) و M(a,b)

$$M(a,b) \times M(c,d) = \begin{pmatrix} a & b\sqrt{2} \\ b\sqrt{2} & a \end{pmatrix} \begin{pmatrix} c & d\sqrt{2} \\ d\sqrt{2} & c \end{pmatrix}$$
 الدينا :

$$\Leftrightarrow M(a,b) \times M(c,d) = \begin{pmatrix} ac + 2bd & (bc + ad)\sqrt{2} \\ (bc + ad)\sqrt{2} & ac + 2bd \end{pmatrix}$$

$$\Leftrightarrow M(a,b) \times M(c,d) = M(ac + 2bd ; ad + bc) (*)$$

) رمضان 2012

الصفحة: 17

$$p = x + iy$$
 : نضع

أجوبة الدورة الاستدراكية 2003

(€)(3)■

$$p = x + iy \qquad :$$

$$\Leftrightarrow \begin{cases} x = 5\cos(\theta) \\ y = 3\sin(\theta) \end{cases}$$

$$p^2-(3cos\theta+5i\ sin\theta)^2=16$$
: (أ $($

$$\Leftrightarrow (x+iy)^2 - \left(\frac{3x}{5} + \frac{5i}{3}y\right)^2 = 16$$

$$\iff \frac{16}{25}x^2 + \frac{16}{9}y^2 = 16$$

$$\iff \frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$$

 $[0;2\pi[$ المجال عندما يتغير العدد θ في المجال

O فإن النقطة P تتغير على الإهليلج (Γ) الذي مركزه

.
$$B^{'}(0,-3)$$
 و رؤوسه : $A(5,0)$ و $A^{'}(-5,0)$ و $A(5,0)$

.
$$F'(-4,0)$$
 و بؤرتاه : $F(4,0)$ و بؤرتاه

$$(c^2 = a^2 - b^2 = 25 - 9 \implies c = 4$$
 : ڏن)

 $\left(\frac{b+4}{b-4}\right) = -\left(\frac{a+4}{a-4}\right)$ بحیث: $\mathbb{C}\setminus\{4\}$ منصرین من a

$$\Leftrightarrow (b+4)(4-a) = (b-4)(a+4)$$

$$\Leftrightarrow$$
 2ab = 32

$$\Leftrightarrow ab = 16$$

. $z_2=8e^{i heta}
eq 4$ و $z_1=2e^{-i heta}
eq 4$

$$z_1 z_2 = 16 e^{i\theta} e^{-i\theta} = 16$$
 : إذن

.
$$\left(\frac{z_2+4}{z_2-4}\right)=-\left(\frac{z_1+4}{z_1-4}\right)$$
 : (j) (3) و منه حسب

$$\left(\frac{z_2+4}{z_2-4}\right) = -\left(\frac{z_1+4}{z_1-4}\right)$$
 : ننطلق من الكتابة

$$\iff \left(\frac{4-z_1}{-4-z_1}\right) = -\left(\frac{4-z_2}{-4-z_2}\right)$$

$$\iff \left(\frac{z_F - z_1}{z_{F'} - z_1}\right) = -\left(\frac{z_F - z_2}{z_{F'} - z_2}\right)$$

$$\iff arg\left(\frac{z_F - z_1}{z_{F'} - z_1}\right) \equiv \pi + arg\left(\frac{z_F - z_2}{z_{F'} - z_2}\right)$$

$$\iff \overline{\left(\overline{\overline{M_1F}}; \overline{M_1F'}\right) \equiv \pi + \left(\overline{\overline{M_2F}}; \overline{M_2F'}\right) [2\pi]}$$

من إعداد الأستاذ بدر الدين الفاتحى: (

·(i)(3)■

M(a,-b) وهو M(a,b) يقبل مماثلا و هو توصلنا كذلك إلى أن كل عنصر نستنتج إذن أن (E, \times) زمرة.

و بما أن \times تبادلي في E

فإن (E,\times) زمرة تبادلية.

G عنصرا من \times

 $(\exists m \in \mathbb{N})$; $X = A^m$: إذن

 $(\forall n \in \mathbb{N})$; $A^n \in E$ نرید أن نبر هن علی أن

 $A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = M(1,0) \in E$: n = 0 لدينا من أجل

 $(\forall n \in \mathbb{N})$; $A^n \in E$: نفترض أن

 $A \in E$ و $A^n \in E$: لدينا

 $A^n \times A \in E$ إذن

E لأن imes قانون داخلي في

 $A^{n+1} \in E$: إذن

 $(\forall n \epsilon \mathbb{N})$; $A^n \in E$: و بالتالي

 $X = A^m \in E$: و منه

 $G \subset E$: خلاصة القول

 $(A^n)^{-1}=B^n$: للإجابة على هذا السؤال يكفي أن نبين أن $(A^0)^{-1}=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}^{-1}=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}=B^0$. Let n=0 من أجل n=0

 $(\forall n \in \mathbb{N})$; $(A^n)^{-1} = B^n$: نفترض أن

 $(A^{n+1})^{-1} = (A^n \times A)^{-1}$ $= A^{-1} \times (A^n)^{-1}$ $= B \times B^n$ $-R^{n+1}$

 $(\forall n \in \mathbb{N})$; $(A^n)^{-1} = B^n$: و بالنالى

لنبر هن في البداية على الخاصية (#) التالية:

 $(\sharp) \mid \forall (m,n) \in \mathbb{N}^2 \; ; \; A^m \times B^n \in G \cup H$

لیکن m و n عددین صحیحین طبیعیین

نفصل هنا بين حالتين أساسيتين:

 $m \geq n$ الحالة الأولى: إذا كان

(€)(3) ■

 $A^m \times B^n = A^{m-n} \times (A \times B)^n$ $=A^{m-n}\times I$ $|=A^{m-n} \in G \subset G \cup H$

الصفحة: 18

و لدينا : $(ac + 2bd)^2 - 2(bc + ad)^2$ $= (ac)^2 + 4(bd)^2 - 2(bc)^2 - 2(ad)^2$ $= c^{2} \underbrace{(a^{2} - 2b^{2})}_{1} + 2d^{2} \underbrace{(2b^{2} - a^{2})}_{-1}$ = 1

 $M(ac + 2bd; bc + ad) \in E$: إذن

و بالتالي : E جزء مستقر من $(\mathcal{M}_2(\mathbb{R}), \times)$.

بالإستعانة بالعلاقة (*) لدينا:

 $M(a,b) \times M(c,d) = M(ac + 2bd; ad + bc)$ = M(ca + 2db ; cb + da) $= M(c,d) \times M(a,b)$

E في E بنادلي في E

(ب)(2)∎

(হ)(2) ■

E مصفوفة من M(a,b)

 $\left(M(a,b)\right)^{-1} = \frac{1}{\det M(a,b)} \left(\begin{array}{cc} a & -b\sqrt{2} \\ b\sqrt{2} & a \end{array}\right)$: لدينا $=\frac{1}{(a^2-2b^2)}\binom{a}{-b\sqrt{2}}\binom{a}{a}$ $= \begin{pmatrix} a & -b\sqrt{2} \\ -b\sqrt{2} & a \end{pmatrix} = M(a, -b) \in E$

M(a,-b) هو المصفوفة M(a,b) هو بالتالي : مقلوب كل مصفوفة

 $(M(a,b))^{-1}=M(a,-b)$: بتعبیر آخر

لدينا حسب الأسئلة السابقة ·

 $\mathscr{M}_2(\mathbb{R}), imes$ فانون تركيب داخلي في المجموعة E لأن E جزء مستقر من imes

 $\mathcal{M}_2(\mathbb{R})$ و بما أن \times تجميعي في

. E فإن \times تجميعي كذلك في

و بما أن المصفوفة M(1,0) ه ي العنصر المحايد لـ imes في M(1,0)

E في \times في العنصر المحايد لـ في I=M(1,0)

و ذلك لأن العنصر المحايد إن وجد فإنه يكون دائما وحيدا.

أجوبة الدورة الاستدراكية 2003 من إعداد الأستاذ بدر الدين الفاتحى: () رمضان 2012

$$A^m \times B^n \in G \cup H$$
 : إذن

$m \leq n$ الحالة الثانية : إذا كان

$$A^m \times B^n = (A \times B)^m \times B^{n-m}$$
 الدينا $= I \times B^{n-m}$ $= B^{n-m} \in H \subset G \cup H$

$$A^m \times B^n \in G \cup H$$
 : إذن

$$(\#)$$
 $\forall (m,n) \in \mathbb{N}^2$; $A^m imes B^n \in G \cup H$: و بالتالي $(\#)$

نستغل إذن هذه الخاصية الثمينة للإجابة على السؤال (ج):

 $(G,H) \subset E^2$: من الواضح أن $G \cup H$ جزء غير فارغ من E لأن نتكن X و Y مصفوفتين من $G \cup H$ و نفصل بين أربع حالات أساسية : $Y \in G$ و $X \in G$ الحالة الأولى: إذا كان

$$\exists (m,n) \in \mathbb{N}^2 \; ; \; X=A^n$$
 و $Y=A^m$: إذن $X \times Y^{-1} = A^n \times (A^m)^{-1}$ و منه $X \times Y^{-1} = A^n \times B^m$:

. (#) و ذلك حسب خاصيتنا الثمينة $A^n \times B^m \in G \cup H$: إذن $X \times Y^{-1} \in G \cup H$: و منه

$Y \in H$ و $X \in H$ الحالة الثانية : إذا كان

$$\exists (m,n) \in \mathbb{N}^2 \; ; \; X=B^n$$
 دن: $Y=B^m$ دن: $X \times Y^{-1} = B^n \times (B^m)^{-1}$ و منه: $X \times Y^{-1} = B^n \times A^m$ اي:

. (#) و ذلك حسب خاصيتنا الثمينة
$$B^n \times A^m \in G \cup H$$
 : و منه و منه $X \times Y^{-1} \in G \cup H$

$Y \in H$ و $X \in G$ الحالة الثالثة : إذا كان

$$\exists (m,n) \in \mathbb{N}^2$$
 ; $X=A^n$ و $Y=B^m$: إذن
$$X \times Y^{-1} = A^n \times (B^m)^{-1}$$
 و منه :

$$X\times Y^{-1}=A^n\times A^m=A^{m+n}\;\epsilon\;G\;\subset G\cup H\quad :\dot{\mathcal{G}}$$

$$\left[X imes Y^{-1}\;\epsilon\;G\;\cup\,H
ight]$$
 : و منه

$: Y \in G$ و $X \in H$ الحالة الرابعة : إذا كان

خلاصة القول: نلاحظ أنه في جميع هذه الحالات الأربع نجد:

$$(\forall X, Y \in G \cup H)$$
 ; $X \times Y^{-1} \in G \cup H$

و بالتالى: $G \cup H$ زمرة جزئية من $G \cup H$.

التمرين الرابع: (9,5 <u>ن)</u> ■(1)(أ)

(+)(1)■

 $g_n(x) = x + e^{-nx}$: لدينا

 \mathbb{R} إذن q_n قابلة للإشتقاق على .

لأنها مجموع دالتين اعتياديتين قابلتين للإشتقاق على ١٨ . $g_n'(x) = 1 - ne^{-nx} = e^{-nx}(e^{nx} - n)$: و لدينا $(\forall x \in \mathbb{R})$, $(\forall n \in \mathbb{N})$; $e^{-nx} > 0$: بما أن $(e^{nx}-n)$ فإن إشارة $g_n'(x)$ متعلقة فقط بإشارة $g_n^{'}(x)=0$: فإن $x=rac{\ln n}{n}$ إذا كان إذا كان g_n يعني $g_n'(x)>0$: إذا كان $x>rac{\ln n}{n}$ تزايدية إذا كان g_n يعني $g_n'(x) < 0$: إذا كان $x < \frac{\ln n}{n}$ تناقصية

 \mathbb{R} لدينا الدالة g_n متصلة على

. $\left|-\infty\right|$; $\frac{\ln n}{n}$ و تناقصية على $\frac{\ln n}{n}$; + ∞ على الم

 $\frac{\ln n}{n}$ و تتعدم في

إذن g_n تقبل قيمة دنوية عند $u_n = \frac{\ln n}{n}$ و هذه القيمة هي $g_n(u_n) = \frac{1+\ln n}{n}$

الصفحة: 19

x = 0 الحالة الأولى: إذا كان

$$g_1(x)=g_2(x)$$
 و منه $(1-e^{-x})=0$: فإن

(0,1) إذن (\mathscr{C}_1) و (\mathscr{C}_2) يتقاطعان في النقطة

x > 0 الحالة الثانية : إذا كان

$$g_1(x) > g_2(x)$$
 و منه $(1 - e^{-x}) > 0$: فإن

 (\mathscr{C}_2) ا يوجد فوق (\mathscr{C}_1) يوجد

x < 0 الحالة الثالثة: إذا كان

:
$$g_1(x) < g_2(x)$$
 و منه $(1 - e^{-x}) < 0$: فإن

 (\mathscr{C}_2) إذن (\mathscr{C}_1) يوجد أسفل

<u>خلاصة :</u>

x	-∞	0	+∞
$g_1(x) - g_2(x)$	ı	ф	+
الوضع النسبي $ ext{\mathbb{E}_2}$ و $ ext{\mathbb{E}_2}$	(\mathscr{C}_2) فوق (\mathscr{C}_1)	$(\mathcal{C}_2)(\mathcal{C}_1)$ يتقاطعان في $(0,1)$	(\mathscr{C}_1) فوق (\mathscr{C}_2)

$$I(x) = \int_0^x \underbrace{t}_u \underbrace{e^{-2t}}_{v'} dt$$

$$\Leftrightarrow I(x) = \left[\frac{-te^{-2t}}{2} \right]_0^x + \frac{1}{2} \int_0^x e^{-2t} dt$$

$$\Leftrightarrow I(x) = \left[\frac{-te^{-2t}}{2} \right]_0^x + \frac{1}{2} \left[\frac{-e^{-2t}}{2} \right]_0^x$$

$$\Leftrightarrow I(x) = \frac{-xe^{-2x}}{2} + \frac{1}{2} \left(\frac{-e^{-2x}}{2} + \frac{1}{2} \right)$$

الصفحة · 20

$$\lim_{x \to -\infty} g_n(x) = \lim_{x \to -\infty} (x + e^{-nx})$$

$$= \lim_{x \to -\infty} x \left(1 + \frac{n}{nxe^{nx}} \right)$$

$$= (-\infty) \left(1 + \frac{n}{0^-} \right)$$

$$= (-\infty)(-\infty)$$

$$= (+\infty)$$

$$\lim_{x \to +\infty} g_n(x) = \lim_{x \to +\infty} (x + e^{-nx})$$

$$= \lim_{x \to +\infty} x \left(1 + \frac{n}{nxe^{nx}} \right)$$

$$= (+\infty) \left(1 + \frac{n}{(+\infty)} \right)$$

$$= (+\infty)(1)$$

$$= (+\infty)$$

 $\lim_{x \to +\infty} g_n(x) = +\infty$: لدينا

$$\lim_{x \to +\infty} \frac{g_n(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{n}{nxe^{nx}} \right) :$$

$$= \left(1 + \frac{n}{+\infty} \right)$$

$$= 1$$

$$\lim_{x \to +\infty} (g_n(x) - 1x) = \lim_{x \to +\infty} e^{-nx} = 0$$
 و لدينا :

. $(+\infty)$ بجوار (\mathcal{C}_n) بجوار مائل له y=x مقارب مائل اله بجوار

$$\lim_{x \to -\infty} g_n(x) = +\infty$$
 : و لدينا من جهة أخرى

$$\lim_{x \to -\infty} \frac{g_n(x)}{x} = \lim_{x \to -\infty} \left(1 + \frac{n}{nxe^{nx}} \right) = (-\infty)$$

إذن : (المنافر عا شلجميا في اتجاه محور الأراتيب.

—(į)(**3**)■

(ب)(2)∎

 (\mathscr{C}_2) و (\mathscr{C}_1) لدر اسة الوضع النسبي للمنحنيين

$$g_1(x) - g_2(x)$$
 : ندرس إشارة الفرق

$$g_1(x) - g_2(x) = (x + e^{-x}) - (x + e^{-2x})$$
 : Let $e^{-x} - e^{-2x}$ $= e^{-x} (1 - e^{-x})$

كية 2003 من إعداد الأستاذ بدر الدين الفاتحي: (

أجوبة الدورة الاستدراكية 2003

(2)(II) ■

: f_n لدينا حسب جدول تغيرات الدالة

 \mathbb{R} دالة متصلة و تزايدية قطعا على f_n إذن f_n تقابل من \mathbb{R} نحو \mathbb{R} .

 f_n بالتقابل $lpha_n$ عدد حقيقي فإنه يقبل سابقا و احدا م

$$\exists ! \; lpha_n \; \epsilon \; \mathbb{R} \; \; ; \; \; f_n(lpha_n) = 0 \;
brace$$
بتعبير آخر :

_(j)(3)(II)■

 \mathbb{R} بما أن f_n تقابل من

 $f_n(I)$ فإن f_n تقابل من أي مجال I من \mathbb{R} نحو صورته : n=1 المجال n=1 و نقول من أجل n=1

 $\left[\frac{1}{2}-\ln 2\;;\; \frac{-1}{2}+e^{\frac{-1}{2}}\right]$ نحو صورته $\left[-\ln 2\;;\; \frac{-1}{2}\right]$ نقابل من f_1 و باستعمال القيم المقربة نحصل على :

 $\left[-\ln 2\,;\,rac{-1}{2}
ight[$ من $lpha_1$ من $lpha_2$ و بما أن $lpha_1$ الله يمتلك سابقا واحدا $lpha_1$ من $lpha_2$

 $\exists ! \; lpha_1 \; \epsilon \; \left] - \ln 2 \; ; \; rac{-1}{2} \left[\quad ; \quad f_1(lpha_1) = 0 \;
ight] \quad :$ يعني

-(+)(3)(II)■

 $\left[-lpha_1=e^{lpha_1}
ight]$: و منه $(lpha_1+e^{lpha_1})=0$. لاينا $f_1(lpha_1)=0$

 $(x-lpha_1)>0$ الحالة الأولى: إذا كان

 $e^x>e^{lpha_1}$ و منه $x>lpha_1$: فإن

 $\left[\; (e^x + lpha_1) > 0 \;
ight]$: يعني $e^x > -lpha_1$ إذن

 $(x-lpha_1)<0$ الحالة الثانية: إذا كان

 $e^x < e^{lpha_1}$ فإن $x < lpha_1$: فإن

 $(e^x+lpha_1)<0$: يعني $e^x<-lpha_1$ إذن

 $(e^x + \alpha_1)$ و $(x - \alpha_1)$ و نستنتج من هاتين الحالتين أن الكميتين ليشارة . لهما نفس الإشارة .

—(j)(4)(II) ■

 $\varphi(x) = e^x - \frac{1}{\sqrt{e}}x$: لدينا

 $\varphi'(x) = e^x - \frac{1}{\sqrt{e}}$: إذن

 $x \le \frac{-1}{2}$: من أجل

 $e^x \le e^{\frac{-1}{2}} = \frac{1}{\sqrt{e}}$: لدينا

 $e^x - \frac{1}{\sqrt{e}} \le 0$: و منه

 $\forall x \in \left] -\infty; \frac{-1}{2} \right] ; \varphi'(x) \leq 0 : \varphi'(x)$

 $\left[-\infty\,;\,rac{-1}{2}
ight]$ و بالتالي $\left[rac{-1}{2}
ight]$ دالـة تناقصيـة على المجال

) رمضان 2012

 $\iff \left[I(x) = \frac{-e^{-2x}}{4} (2x + 1 - e^{2x}) \right]$

 $\forall x \in [0; \ln 2]$; $h_2(x) = x + e^{-2x}$: لينا

 $[0; \ln 2]$: إذن h_2 متصلة على المجال

 $\forall x \in [0; \ln 2]$; $h_2(x) > 0$

 h_2 إذن حجم مجسم الدور إن الذي يولده دور إن التمثيل المبياني لـ

حول محور الأفاصيل هو:

$$V = \pi \int_0^{\ln 2} \left(h_2(x) \right)^2 dx$$

$$\iff V = \pi \int_0^{\ln 2} (x + e^{-2x})^2 dx$$

$$\Leftrightarrow V = \pi \int_0^{\ln 2} (x^2 + e^{-4x} + 2xe^{-2x}) dx$$

$$\iff V = \pi \left(\left[\frac{x^3}{3} \right]_0^{\ln 2} + \left[\frac{-e^{-4x}}{4} \right]_0^{\ln 2} + 2I(\ln 2) \right)$$

$$\iff V = \pi \left(\frac{(\ln 2)^3}{3} - \frac{\ln 2}{4} + \frac{39}{64} \right)$$

لدينا حسب نتيجة السؤال (1) (ب):

$$u_n = \frac{\ln n}{n}$$
 $\sigma_n = g_n(u_n) = \left(\frac{1 + \ln n}{n}\right)$

$$\lim_{n \to \infty} \left(\frac{\ln n}{n} \right) = 0$$
 و لدينا : $\lim_{n \to \infty} \left(\frac{1 + \ln n}{n} \right) = 0$: و لدينا

انن $(u_n)_{n\in\mathbb{N}}$ و $(v_n)_{n\in\mathbb{N}}$ متتاليتان متقاربتان و تؤولان معا إلى الصفر

—(1)(II)**■**

$$f_n(x) = x + e^{nx}$$
 : لدينا

$$f_n'(x) = 1 + ne^{nx} > 0$$
 إذن

: کما یلي خیرات الداله f_n کما یلي

x	-∞ +∞
$f_{n}^{'}(x)$	+
\int_{Ω}	-∞ +∞

J 7 2 J - 7

(+)(4)(II)**■**

. \mathbb{R} على على قابلة للإشتقاق على Exp

إذن نستطيع تطبيق مبرهنة التزايدات المنتهية على أي مجال من ١٨ . $x \in \left[-\infty; \frac{-1}{2}\right]$: نختار المجال الذي طرفاه α_1 و α_1 نختار

: محصور بین α_1 و محصور بین α_1 الخن یوجد

$$\frac{e^x - e^{\alpha_1}}{x - \alpha_1} = e^c \quad \Leftrightarrow \quad \frac{e^x + \alpha_1}{x - \alpha_1} = e^c$$

: و بما أن $(e^x + \alpha_1)$ و $(e^x + \alpha_1)$ و بما أن

$$\Rightarrow \frac{|e^x + \alpha_1|}{|x - \alpha_1|} = e^c$$

$$\Leftrightarrow \left| |e^x + \alpha_1| = e^c |x - \alpha_1| \right| (*)$$

 $c<rac{-1}{2}$: إذن $c\in\left]-\infty$; $\frac{-1}{2}$ $e^c < rac{1}{\sqrt{e}}$: و منه و منه $|x-lpha_1|$ نحصل على :

$$(**) \quad e^{c}|x-\alpha_{1}| \leq \frac{1}{\sqrt{e}}|x-\alpha_{1}|$$

من النتيجتين (*) و (**) نستنتج أن :

$$\forall x \in \left] -\infty; \frac{-1}{2} \right] ; \quad |e^x + \alpha_1| \le \frac{1}{\sqrt{e}} |x - \alpha_1|$$

-(j)(**5**)(II)**■**

في البداية يجب أن نبر هن على أن:

$$(\forall n \epsilon \mathbb{N}) \ : \ \frac{-1}{\sqrt{e}} \le \beta_n \le \frac{-1}{2}$$

$$\frac{-1}{\sqrt{e}} \le \beta_0 = \frac{-1}{2} \le \frac{-1}{2}$$
 من أجل : $n = 0$ لدينا $n = 0$

$$(\forall n \in \mathbb{N})$$
 : $\frac{-1}{\sqrt{e}} \leq \beta_n \leq \frac{-1}{2}$: نفترض أن

$$e^{\frac{-1}{\sqrt{e}}} \le e^{eta_n} \le e^{\frac{-1}{2}}$$
 : إذن

$$\frac{-1}{\sqrt{e}} \le -e^{eta_n} \le -e^{\frac{-1}{\sqrt{e}}}$$
 و منه :

 $-e^{rac{-1}{\sqrt{e}}}pprox -0,54<rac{-1}{2}$: بالاستعانة بالآلة الحاسبة نجد

$$\frac{-1}{\sqrt{e}} \le -e^{\beta_n} \le \frac{-1}{2}$$
 : إذن

$$(\forall n \in \mathbb{N})$$
 : $\frac{-1}{\sqrt{e}} \le \beta_{n+1} \le \frac{-1}{2}$: زي

 $(\forall n \in \mathbb{N})$: $\frac{-1}{\sqrt{e}} \leq \beta_n \leq \frac{-1}{2}$: و بالتالي حسب مبدأ الترجع

$$(\star)$$
 $eta_n \leq rac{-1}{2}$: ما يهمنا في هذا التأطير هو الشق

لدينا حسب نتيجة السؤال (ب) :

 $\forall x \in \left[-\infty; \frac{-1}{2} \right] ; |e^x + \alpha_1| \le \frac{1}{\sqrt{\rho}} |x - \alpha_1|$

 (\star) نجد $]-\infty$; $\frac{-1}{2}$ المنتمي إلى $x=eta_n$: إذن من أجل

 $\left|e^{\beta_n} + \alpha_1\right| \leq \frac{1}{\sqrt{e}} \left|\beta_n - \alpha_1\right|$

 $\Leftrightarrow \left| -e^{\beta_n} - \alpha_1 \right| = \left| e^{\beta_n} + \alpha_1 \right| \le \frac{1}{\sqrt{\rho}} |\beta_n - \alpha_1|$

 $\left(\exists a = \frac{1}{\sqrt{e}} \in \mathbb{R}\right) |\beta_{n+1} - \alpha_1| \le a |\beta_n - \alpha_1|$ و بالتالي :

 $\Leftrightarrow |\beta_n - \alpha_1| \le \frac{1}{\sqrt{\rho}} |\beta_{n-1} - \alpha_1|$

 $(\forall n \in \mathbb{N}) \; ; \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| \; : \; |\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{-1}{2} - \alpha_1\right| = \left(\frac{1$

 $\Leftrightarrow (\forall n \in \mathbb{N}) ; |\beta_n - \alpha_1| \le \left(\frac{1}{\sqrt{\rho}}\right)^n \left|\frac{1}{2} + \alpha_1\right|$

 $\left| \frac{1}{2} + \alpha_1 \right| < \frac{1}{2}$: فإن $\alpha_1 < 0$ بما أن

(1111) $(\forall n \in \mathbb{N})$; $|\beta_n - \alpha_1| \leq \left(\frac{1}{\sqrt{e}}\right)^{n+1}$: و منه

نلاحظ أن : $\left(\frac{1}{\sqrt{a}}\right)^{n+1}$ متتالية هندسية أساسها العدد الموجب

 $\lim_{n \to \infty} \left(\frac{1}{\sqrt{2}}\right)^{n+1} = 0 \quad : \psi$

 $\lim_{n \to \infty} |eta_n - lpha_1| = 0$: نستنتج أن (1111) و منه حسب التأطير

 $\lim_{n \to \infty} \beta_n = \alpha_1$ اي :

 $\frac{1}{a l_a}$: 1 و الأصغر من

لدينا باستعمال النتيجة (777):

 $\leq \left(\frac{1}{\sqrt{\rho}}\right)^2 |\beta_{n-2} - \alpha_1|$

 $\leq \left(\frac{1}{\sqrt{\rho}}\right)^{3} |\beta_{n-3} - \alpha_1|$

 $\leq \left(\frac{1}{\sqrt{\rho}}\right)^n |\beta_0 - \alpha_1|$

 $\Leftrightarrow \left| |\beta_{n+1} - \alpha_1| \le \frac{1}{\sqrt{\rho}} |\beta_n - \alpha_1| \right| (777)$

الصفحة: 22

أجوبة الدورة الاستدراكية 2003 من إعداد الأستاذ بدر الدين الفاتحى: (