Solution P6 – Derivation of the Cosmological Constant from Θ Field Geometry

Field Equations in the Presence of Θ Vacuum Energy

From the UBT framework, the total energy-momentum tensor contains a vacuum component due to the structure of the $\Theta(q,\tau)$ field:

$$T_{\mu\nu}^{(\Theta)} = T_{\mu\nu}^{(\text{matter})} - \rho_{\text{vac}} g_{\mu\nu}$$

Einstein's field equations read:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}^{(\Theta)}$$

Substituting:

$$G_{\mu\nu} = 8\pi G \left(T_{\mu\nu}^{(\text{matter})} - \rho_{\text{vac}} g_{\mu\nu} \right) \Rightarrow G_{\mu\nu} + 8\pi G \rho_{\text{vac}} g_{\mu\nu} = 8\pi G T_{\mu\nu}^{(\text{matter})}$$

Comparing with the standard form:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}^{(\text{matter})}$$

We identify:

$$\Lambda = 8\pi G \rho_{\rm vac}$$

Conclusion

The cosmological constant arises naturally from the vacuum tension of the Θ field. This reinterpretation avoids the fine-tuning problem of QFT and aligns with observations, provided ρ_{vac} is determined from the geometry/topology of Θ .