39. Гипербола.

Геометрическое место точек в плоскости, разность расстояний от каждой из которых до двух точек той же плоскости F_1 и F_2 постоянна и равна 2a, называется **гиперболой**. Каноническое уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, где $b^2 = c^2 - a^2$.

Гипербола есть линия второго порядка.

Гипербола имеет 2 асимптоты: $y = \frac{b}{a}x$ и $y = -\frac{b}{a}x$

Форма гиперболы зависит от формулы асимптот , т.е. $\frac{b}{a}$, чем это число будет **меньше** , тем **меньше** угол между асимптотой и осью O_x и гипербола будет более **сжата**. Чем **больше** . $\frac{b}{a}$, тем угол будет **больше**, тем **круче** ветви гиперболы.

Гипербола называется равнобочной, если ее полуоси равны. (a=b).

Эксцентриситет – отношение расстояния между фокусами к величине действительной оси гиперболы:

$$\varepsilon = \frac{c}{a}$$

Так как для гиперболы с>а, то эксцентриситет гиперболы >1.

Эксцентриситет характеризует форму гиперболы: $\varepsilon = \sqrt{1 + \left(\frac{b}{a}\right)^2}$.

Директрисы – прямые $x = \pm \frac{a}{\varepsilon}$.

Фокальные радиусы: $r_1 = \sqrt{(x+c)^2 + y^2}$ и $r_2 = \sqrt{(x-c)^2 + y^2}$.

Если a
b , то гипербола называется сопряженной.

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$r_1=a+arepsilon y$$
 $r_2=-a+arepsilon y=0$

$$r_1 = -(a + \varepsilon y)$$
 $r_2 = -(-a + \varepsilon y) =>$ при у <0