

提高算法班

整除、质数、筛法、欧拉函数、最大公约数最小公倍数、裴蜀定理、费马小定理

Mas

整除

设 $a,b\in\mathbb{Z}$, $a\neq 0$

若 ∃ $q \in \mathbb{Z}$, 使得 b = aq 则称 b 可被 a 整除, 记作 $a \mid b$ 且 称 b 是 a 的倍数 也可称 a 是 b 的约数(因数)

b 不被 a 整除, 记作 $a \nmid b$

特殊地 0 是所有非 0 整数的倍数, 即 $m \mid 0 \ (m \neq 0)$

对于整数 $b \neq 0$, b 的约数只有限个

平凡约数/因数

又称显然约数

对于整数 $b \neq 0$ 、 ± 1 、 $\pm b \neq b$ 的显然约数

当 $b = \pm 1$ 时, b 只有两个显然约数

对于整数 $b \neq 0$, b 的其他约数称为真约数(真因数、非平凡约数、非平凡因数)

整除

整除的性质

- $a \mid b \iff -a \mid b \iff a \mid -b \iff |a| \mid |b|$
- $a \mid b \land b \mid c \implies a \mid c$
- $a \mid b \land a \mid c \Leftrightarrow \forall x, y \in \mathbb{Z}, a \mid (xb + yc)$
- $a \mid b \land b \mid a \Longrightarrow b = \pm a$

余数

设 a,b 为两个给定的整数 $a \neq 0$, d 是一个给定的整数

那么一定存在唯一的一对整数 q 和 r 满足

$$b = qa + r, d \le r < |a| + d$$

无论整数 d 取何值 r 统称为**余数**

一般情况下 d 取 0, 此时等式 $b = qa + r, 0 \le r < |a|$ 称为**带余数除法**

如无特别说明,余数总是指最小非负余数

余数的性质

- 整数 b 被正整数 a 除后, 余数一定是且仅是 $0 \sim a-1$ 这 a 个数中的一个
- 相邻的 *a* 个整数被正整数 *a* 除后, 恰好取到上述 *a* 个余数特别地, 一定有且仅有一个数被 *a* 整除

质数

设整数 $p \neq 0$, ± 1 若 p 除了显然约数外没有其他约数,则称 p 为素数(不可约数)

若整数 $a \neq 0$, ± 1 且 a 不是素数,则称 a 为合数 (p 和 -p 总是同为素数或同为合数)

若无特别说明,素数总是指正的素数

整数的因数是素数,则该素数称为该整数的素因数 (素约数)

小于或等于 n 的素数的个数, 用 $\pi(n)$ 表示

随着 n 的增大 n 有这样的近似结果 n n n

素数与合数的简单性质:

- 对于合数 a, 一定存在素数 $p \le \sqrt{a}$ 使得 $p \mid a$
- 素数有无穷多个
- 所有大于 3 的素数都可以表示为 $6n \pm 1 (n \in \mathbb{Z})$ 的形式 任何整数都能表示为 $6n, 6n \pm 1, 6n \pm 2, 6n \pm 3$,其中 $6n, 6n \pm 2, 6n \pm 3$ 显然不为质数($6n \pm 1$ 不都为质数)

质数

欧几里得《几何原本》片段:

欧几里得:"对于任何有限的素数列表,至少有一个素数不在这个列表中"

证明

若质数数量有限,设P为一有穷质数集,记

$$S = \prod_{i \in P} i$$

考虑数字S+1

若 S+1 为质数,说明存在不在 P 中的质数,与假设矛盾

若 S+1 不为质数,根据 **唯一分解定理** 必然存在质因子 $p \mid (S+1)$

若p ∈ P

则 $p \mid (S+1) \land p \mid S \Rightarrow p \mid 1$, 显然不可能存在这样的 p, 即 $p \notin P$

若 p ∉ P, 说明存在不在 P 中的质数, 与假设矛盾

命题得证

Eratosthenes 筛法

合数 一定可以写成 $p \times k$ 的形式, 其中 p 是素数 k 是倍数(k > 1)

对于每一个 $1 \sim n$ 内的素数 p, 枚举倍数 k(k > 1), 将 $p \times k$ 标记为合数

时间复杂度

$$O(\frac{n}{2} + \frac{n}{3} + \frac{n}{5} + \cdots) = O(n \log \log n)$$

一些优化

- 仅筛至 √n
- 对于素数 p, 只筛倍数 $x \ge p$ 的数 若 x < p, 则 x 中一定有比 p 小的素因子, $p \times x$ 会在前面筛选过程中被筛出
- 位级压缩

可使用 vector < bool > 或 bitset 实现按位压缩标记减少内存占用

Euler 筛法

算法需保证每个合数仅被 **最小质因子** 筛除,可保证每个合数仅被筛一次 从下到大枚举 $2 \sim n$ 中的每一个数 i

- 若 i 是素数则加入素数表 p 中
- 顺序遍历素数表 p,利用 i 和 p 中素数 p_j 筛除 $i \times p_j$ 当 $p_j \mid i$ 时跳出循环 (需先标记再跳出)

不重复

为确保仅被 **最小质因子** 筛除,仅需确保 p_j 为 $i \times p_j$ 中最小的质因子即 i 中不能包含小于 p_j 的质因子

若 $p_j \mid i$ 有 $i = p_j \times x \Rightarrow \forall k > j$, $i \times p_k = x \times p_j \times p_k$

由于 $p_i < p_k$ 即 p_k 并非 $i \times p_k$ 最小质因子

所以当 $p_i \mid i$ 时不执行后续筛除,可保证合数仅被最小质因子筛除

break 仅排除 非最小质因子 搭配时的情况,并非所有 $p \mid i$ 时

这也是为什么 $p \mid i$ 时, 先标记再 break 的原因

借助该特性可同时求出 2~n中所有数最小质因子

不遗漏

对于 j < i 且 j 为合数 $j = p \times k$ 其中 p 为 j 的最小质因子显然 p < i 同时也有 k < i

所以j 将被p 与 k 搭配筛除, 既 $2 \sim i$ 的合数都被考虑

对于质数其显然不被标记,若遍历到i时未被标记则说明i为质数

不超过i的质数都已被加入质数表,既 $2 \sim i$ 的质数都被考虑

借助该特性,可在欧拉筛过程中进行顺序递推

综上欧拉筛不重不漏

时间复杂度 O(n)

#781、 Prime Distance

题目描述

给定两个整数 L,R

求闭区间 $\left[L,R
ight]$ 中相邻两个质数差值最小的数对与差值最大的数对

当存在多个时,输出靠前的素数对

输入格式

多组数据,每行两个数 L,R

输出格式

详见输出样例

样例输入

2 17

14 17

样例输出

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

对于一个合数 x, 必然有一个质因子在 $[2,\sqrt{x}]$ 范围内

不妨预处理出 $[2,\sqrt{n}]$ 范围内所有质数

对于每个在 $[2,\sqrt{n}]$ 范围内的质数 p

其在 [L,R] 范围内的最小倍数为

$$\max\left(2, \left\lceil \frac{L}{p} \right\rceil\right)$$

类似于埃氏筛处理出 [L,R] 范围内的质数即可

数据范围

对于全部数据, $1 \leq L < R < 2^{31}, R - L \leq 10^6$

算术基本定理 (Fundamental theorem of arithmetic)

又称唯一分解定理

若整数 $N \ge 2$, 那么 N 一定可以唯一表示为若干素数的乘积, 形如

$$N = p_1^{c_1} p_2^{c_2} \dots p_k^{c_k} \ (p_i \in \mathbb{P}, p_1 < p_2 < \dots < p_k, c_i \ge 0)$$

算术基本引理

又称欧几里得引理

若 $p \in \mathbb{P} \land p \mid ab$ 那么 $p \mid a$ 和 $p \mid b$ 至少有一个成立

算术基本引理是素数的本质属性,也是素数的真正定义

证明

假设 $p \nmid a$, 根据质数性质显然有 $p \perp a$ 即 (a,p) = 1

根据 **裴蜀定理** 存在 $x,y \in \mathbb{Z}$

算术基本引理

$$ax + py = 1$$

两边同乘 b 可得

$$abx + bpy = b$$

由于 $p \mid ab$ 根据整除的性质

 $p \mid abx$

即 $p \mid abx + bpy$ 即 $p \mid b$

同理可证 $p \nmid b$ 时 $p \mid a$

算术基本引理推论

若 p 为质数且 $p \mid \prod_{i=1}^n a_i$,那么至少存在一个 a_i 满足 $p \mid a_i$

不难通过数学归纳法证明

存在性证明

设存在不能分解成有限个质数的乘积的合数,则其中必有一个最小数,设其为 n

 $\exists a, b \in \mathbb{N}^+ \land 1 < a, b < n$ 满足 n = ab

- 若 *a*, *b* 都为质数 与假设矛盾
- 若 a,b 至少有一个是合数

因为 1 < a, b < n

所以该合数可被分解成有限个质数乘积

将乘积替换,可推出 n 可分解成有限个质数的乘积

与假设矛盾

存在性成立

算术基本定理

唯一性证明

设存在某些数,它们能分解为两种 根本不同 的质数乘积

将其中最小的数设为 n (小于 n 的数都能被唯一分解)

$$n = p_1 p_2 p_3 \cdots p_r = q_1 q_2 q_3 \cdots q_s$$

不妨假设 $p_1 < p_2 < p_3 < \dots < p_r$, $q_1 < q_2 < q_3 < \dots < q_r$ 且有 $1 < p_1 < q_1$

$$i \exists n' = n - p_1 q_2 q_3 \cdots q_s$$

将 $n = p_1 p_2 p_3 \cdots p_r$ 代入有

$$n' = p_1 p_2 p_3 \cdots p_r - p_1 q_2 q_3 \cdots q_s = p_1 (p_2 p_3 \cdots p_r - q_2 q_3 \cdots q_s)$$
 (1)

将 $n = q_1 q_2 q_3 \cdots q_s$ 代入有

$$n' = q_1 q_2 q_3 \cdots q_s - p_1 q_2 q_3 \cdots q_s = (q_1 - p_1) q_2 q_3 \cdots q_s$$

由于 $p_1 q_2 q_3 \cdots q_s > 0 \Rightarrow n' < n$ 即 n' 能被唯一分解

算术基本定理

由 (1) 可知 p_1 为 n' 因子,所以 $p_1 \mid (q_1-p_1)q_2q_3\cdots q_s$

又由于 $p_1 < q_2 < q_3 < \dots < q_r$ 且其都为质数

显然

$$p_1 \nmid q_2 q_3 \cdots q_s$$

根据 欧几里得引理 推论

此时必有

$$p_1 \mid (q_1 - p_1)$$

即

$$kp_1 = (q_1 - p_1) \Rightarrow (k+1)p_1 = q_1$$

此时表明 p_1 为 q_1 因子, 与 q_1 为质数矛盾

唯一性成立

算术基本定理

算术基本定理存在如下推论

N 的正约数的集合可以写作

$$p_1^{b_1} p_2^{b_2} \dots p_k^{b_k} (p_i \in \mathbb{P}, 0 \le b_i \le c_i)$$

N 的正约数个数为

$$(c_1 + 1) \times (c_2 + 1) \times \dots \times (c_k + 1) = \prod_{i=1}^{k} (c_i + 1)$$

N 的正约数之和为

$$\left(1 + p_1 + p_1^2 + \dots + p_1^{c_1}\right) \times \left(1 + p_2 + p_2^2 + \dots + p_2^{c_2}\right) \times \dots \times \left(1 + p_k + p_k^2 + \dots + p_k^{c_k}\right) = \prod_{i=1}^k \sum_{j=0}^{c_i} p_i^j$$

#1696、阶乘分解

题目描述

给定整数 n

试把阶乘 n! 分解质因数

按照底数 p_i 、指数 c_i 的形式输出分解结果

输入格式

-个整数n

输出格式

n! 分解质因数后的结果,共若干行

每行一对 p_i, c_i ,表示含有 $p_i^{c_i}$ 项

按照 p_i 从小到大的顺序输出

数据范围

对于全部数据 $1 \leq n \leq 10^6$

n! 的质因子不超过 n

n! 中质数 p 的指数为1 $\sim n$ 中包含因子 p 的个数

$$\sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$$

筛出 $2 \sim n$ 质数 p_i

对所有 p_i 求次数

Legendre 公式

Legendre 公式 (**Legendre's formula**)

n! 中质因子 p 出现次数记为 $v_p(n!)$

将n做p进制分解 $(n = \sum_{i=0}^{k} \mathbf{d}_{i}p^{i})$

$$\diamondsuit S_p(n) = \sum_{i=0}^k \mathbf{d}_i$$

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \frac{n - S_p(n)}{p - 1}$$

证明

仅证第二个等号

$$\left[\frac{n}{p^j}\right] = \mathbf{d}_k p^{k-j} + \mathbf{d}_{k-1} p^{k-j-1} + \dots + \mathbf{d}_j$$

即 $\left\lfloor \frac{n}{p^j} \right\rfloor$ 表示截去 p 进制下 n 的最低 j 位的结果

那么

$$\begin{split} \sum_{i=1}^{\infty} \left| \frac{n}{p^i} \right| &= \left(\mathbf{d}_k p^{k-1} + \mathbf{d}_{k-1} p^{k-2} + \dots + \mathbf{d}_1 \right) + \left(\mathbf{d}_k p^{k-2} + \mathbf{d}_{k-1} p^{k-3} + \dots + \mathbf{d}_2 \right) + \dots + \left(\mathbf{d}_k p + \mathbf{d}_{k-1} \right) + \mathbf{d}_k \\ &= \left(\mathbf{d}_k \sum_{i=0}^{k-1} p^i \right) + \left(\mathbf{d}_{k-1} \sum_{i=0}^{k-2} p^i \right) + \dots + \mathbf{d}_2 (p+1) + \mathbf{d}_1 \\ &= \sum_{i=0}^{k} \left(\mathbf{d}_i \frac{p^i - 1}{p - 1} \right) = \frac{1}{p-1} \left(\left(\sum_{i=0}^{k} (\mathbf{d}_i p^i) \right) - \left(\sum_{i=0}^{k} \mathbf{d}_i \right) \right) \\ &= \frac{n - S_p(n)}{n-1} \end{split}$$

最大公约数

设 a,b 是不都为 0 的整数

c 为满足 c|a 且 c|b 的最大整数,则称 c 是 a,b 的**最大公约数**,记为 $\gcd(a,b)$ 或 (a,b)

$$gcd(a, b) = gcd(b, a)$$

$$\gcd(a,b) = \gcd(-a,b)$$

$$\gcd(a,b) = \gcd(|a|,|b|)$$

$$\gcd(a,b) = \gcd(a,ka+b)$$

$$d \mid a \land d \mid b \iff d \mid gcd(a, b)$$

$$gcd(a, 0) = a$$

$$gcd(a, ka) = a$$

$$\gcd(an,bn) = n\gcd(a,b)$$

若 gcd(a,b) = 1, 称 a,b 互质, 记为 $a \perp b$

上述性质证明见: https://oj.shiyancang.cn/Public/127.html

尝试证明

若
$$a \perp b$$
, $gcd(ab, k) = gcd(a, k) \times gcd(a, k)$

欧几里得算法

辗转相除法/欧几里得算法(Euclidean algorithm)算法核心为

$$\gcd(a,b) = \gcd(b, a \bmod b)$$

证明

不妨设
$$a > b$$

若
$$b \mid a$$
,那么 $b = (a,b)$

若 b
$$\nmid a$$
, 即 $a = bq + r$, 其中 $0 \le r < b$

设
$$a = bk + c$$
 . 显然 $c = a \mod b = a - bk$

设
$$d \mid a, d \mid b$$
,那么 $\frac{c}{d} = \frac{a}{d} - \frac{b}{d}k$

$$\frac{a}{d}$$
、 $\frac{b}{d}$ 为整数 $\Longrightarrow \frac{c}{d}$ 也为整数,即 d | c

对于所有 a,b 的公约数,它也是 $b,a \mod b$ 的公约数

在计算过程中若出现 b=0

欧几里得算法

那么上一步为 $a \mod b = 0$, 本层的 a 即为所求 当 a < b 时

$$gcd(a, b) = gcd(b, a \mod b) = gcd(b, a)$$

时间复杂度

- a < b 此时 gcd(a,b) = gcd(b,a)
- $a \ge b$

此时
$$gcd(a, b) = gcd(b, a \mod b)$$

a mod b 将使得 a 至少折半

当
$$b \leq \frac{a}{2}$$
 时显然成立

当
$$b > \frac{a}{2}$$
 时 $\left| \frac{a}{b} \right| = 0$

欧几里得算法

$$\Rightarrow a \bmod b = a - b < a - \frac{a}{2} = \frac{a}{2}$$

即该过程至多发生 $O(\log a)$ 次

而 a < b 发生后 $a \ge b$ 一定会发生

因此 a < b 发生次数一定 不多于 $a \ge b$ 发生次数

综上时间复杂度 $O(\log \max(a,b))$

当求解 斐波那契数列 相邻两项的最大公约数,会使该算法达到最坏复杂度

另一形式证明与最坏情况分析见 https://oj.shiyancang.cn/Public/309.html

题目描述

给你两个正整数数组 a_1, a_2, \cdots, a_n 和 b_1, b_2, \cdots, b_m

请你求出 $a_1+b_i, a_2+b_i, \cdots, a_n+b_i$ 的最大公约数

输入格式

第一行输入两个正整数 n, m

第二行输入 n 个正整数 a_i

第三行输入 m 个正整数 b_i

输出格式

输出 加 个数

第 i 行输出 $\gcd(a_1+b_i,a_2+b_i,\cdots,a_n+b_i)$

数据规模

对于 30% 的数据 $1 \leq n, m$, $a_i, b_j \leq 1000$

对于 100% 的数据 $1 \leq n, m \leq 2 imes 10^5, 1 \leq a_i, b_i \leq 10^{18}$

输入样例

4 4 1 25 121 169 1 2 7 23

输出样例

更相减损术

$$\forall a, b \in \mathbb{N}, (a, b) = (b, a - b) = (a, a - b)$$

$$\forall a, b \in \mathbb{N}, (2a, 2b) = 2(a, b)$$

对于后者根据最大公约数的定义显然成立

对于a 与 b 任意公约数 d

 $d \mid a, d \mid b \Rightarrow d \mid a - b$ 即 d 也是 b = a - b的一个公约数

同理可证 a,b-a 的情况

推广到多个数

$$(a_1, a_2, a_3, a_4, \dots, a_n)$$

= $(a_1, a_2 - a_1, a_3 - a_2, \dots, a_n - a_{n-1})$

#2737、加值GCD

要求
$$(a_1 + b_j, a_2 + b_j, \dots, a_n + b_j)$$

根据结论有

$$(a_1 + b_j, a_2 + b_j, \dots, a_n + b_j)$$

$$= (a_1 + b_j, a_2 + b_j - a_1 - b_j, \dots, a_n + b_j - a_{n-1} - b_j)$$

$$= (a_1 + b_j, a_2 - a_1, \dots, a_n - a_{n-1})$$

记 $(a_2 - a_1, \dots, a_{n-1})$ 的值为 x

对于每一个 b_j , 答案为 $(x, a_1 + b_j)$

为了避免出现负数,可将数组升序排序

最小公倍数

a 和 b 最小的正公倍数为 a 和 b 的**最小公倍数**,记作 lcm(a,b) 或 [a,b]

根据唯一分解定理

$$a = p_1^{k_{a_1}} p_2^{k_{a_2}} \cdots p_s^{k_{a_s}}, b = p_1^{k_{b_1}} p_2^{k_{b_2}} \cdots p_s^{k_{b_s}}$$

对于 a 和 b 根据定义

$$\gcd(a,b) = p_1^{\min(k_{a_1},k_{b_1})} p_2^{\min(k_{a_2},k_{b_2})} \cdots p_s^{\min(k_{a_s},k_{b_s})}$$

$$lcm(a,b) = p_1^{\max(k_{a_1},k_{b_1})} p_2^{\max(k_{a_2},k_{b_2})} \cdots p_s^{\max(k_{a_s},k_{b_s})}$$

由于 $k_a + k_b = \max(k_a, k_b) + \min(k_a, k_b)$

即

$$(a,b)[a,b] = ab$$

#511、除法游戏

题目描述

小 A 和小 B 是一对好朋友,他们的爱好是研究数字

学过除法之后,他们就发明了一个新游戏:

两人各说一个数字分别为 a 和 b , 如果 a 能包含 b 的所有质数因子,那么 A 就获胜

但是当数字太大的时候,两个朋友的脑算速度就有点跟不上了

现在,请你写个程序,来判断胜负吧:

输入两个正整数、表示 a 和 b

如果 a 包含了 b 的所有质数因子,则输出 Yes ,否则输出 No

输入格式

输入两个正整数 a 和 b , 中间用一个空格隔开

输出格式

如果 a 包含了 b 的所有质数因子,则输出 Yes ,否则输出 No

数据规模

对于全部的数据 $2 \leq a,b \leq 10^{18}$

当(a,b)=1时显然不满足条件

当不满足条件时 设

$$a = p_1^{k_{a_1}} p_2^{k_{a_2}} \cdots p_s^{k_{a_s}}$$
 , $b = p_1^{k_{b_1}} p_2^{k_{b_2}} \cdots p_s^{k_{b_s}} q$

据定义 $(a,b) = p_1^{\min(k_{a_1},k_{b_1})} p_2^{\min(k_{a_2},k_{b_2})} \cdots p_s^{\min(k_{a_s},k_{b_s})}$

即 (a,b) 中包含 a,b 的公共因子

b 除以 (a,b) 仅会将 a,b 公共质因子指数减少

不断让 b 除以 (a,b), 直到 (a,b) = 1时停下

此时所有公共因子指数已变为 0

最后 b 就为 q

若不为1说明不满足条件

裴蜀定理(Bézout's lemma)是一个关于最大公约数的定理

若 $a,b \in \mathbb{N}$ 且 a,b 不同时为 0, 存在 $x,y \in \mathbb{Z}$ 满足

$$ax + by = (a, b)$$

上述结论等价于

$$ax + by = 1 \Leftrightarrow (a, b) = 1$$

ax + by = 1 等价于

$$ax \equiv 1 \pmod{b}$$

即 (a,b) = 1 模 b 意义下必然存在整数意义的 a^{-1}

推论

- ax + by = c 有解的充要条件为 $(a,b) \mid c$ 证明见 P46
- ax + by = c 有解时必然有无穷多个整数解

证明

设 $a,b \in \mathbb{N}$ 且 $a \neq 0$,构造集合

$$S = \{ax + by : x, y \in \mathbb{Z}, ax + by > 0\}$$

容易发现 $S \subseteq \mathbb{N}^+$ 且 S 非空(若 a > 0 则 $a \in S$; 若 a < 0 则 $-a \in S$)

根据自然数的良序公理,必然存在最小元素 $d \in S$

假设 d ł a , 根据带余数除法性质存在

$$a = kd + r (r, k \in \mathbb{Z}, 0 < r < d)$$

带入 d = ax + by, 整理得

$$r = a(1 - kx) + b(-ky)$$

显然 $r \in S$ 又由于 r < d 与 d 为最小元素矛盾

所以dla

同理可证 $d \mid b$ 即 d 为 a,b 公约数

对于 a,b 任意公约数 $d' \neq d$, 根据整除性质有

$$d' \mid a \wedge d' \wedge b \Rightarrow d' \mid ax + by$$

而 d 为 S 中元素(也为 ax + by 形式), 那么 $d' \mid d$

根据整除性质 $d' \mid d \Rightarrow d' \leq d$ 又由于 $d' \neq d$

所以 d' < d

由于 d 为 S 中最小元素

所以 *d'* ∉ S

即不存在整数 x, y 满足 d' = ax + by

综上存在唯一公约数 d 满足 d = ax + by 有整数解

且 d 为所有公约数最大

得证

ax + by = c 有解的**充要条件**为 $(a,b) \mid c$

对 ax + by = (a, b) 将 x, y 同时扩大 $\frac{c}{(a, b)}$ 倍即可证明充分性

考虑其必要性

若存在 ax + by = c 且 $(a,b) \nmid c$ 那么

$$\frac{a}{(a,b)}x + \frac{b}{(a,b)}y = \frac{c}{(a,b)}$$

其中 $\frac{a}{(a,b)}$, $\frac{b}{(a,b)}$ $y \in \mathbb{Z}$ 而 $\frac{c}{(a,b)} \notin \mathbb{Z}$ 显然矛盾

这意味这 裴蜀定理逆定理 也成立,即

若 $a,b \in \mathbb{N}$ 且 a,b 不同时为 0, 存在 $x,y \in \mathbb{Z}$ 满足 ax + by = d 同时有 $d \mid a$ 且 $d \mid b$

那么
$$(a,b) = d$$

题目描述

给定一个包含 n 个元素的整数序列 A , 记作 A_1,A_2,A_3,\ldots,A_n

求另一个包含 n 个元素的待定整数序列 X ,记 $S = \sum\limits_{i=1}^n A_i imes X_i$,使得 S > 0 且 S 尽可能的小

当只有两项时,根据裴蜀定理答案为 (A_1,A_2)

裴蜀定理可扩展到多项

答案为 $(A_1, A_2, A_3, \cdots, A_n)$

输入格式

第一行一个整数 n ,表示序列元素个数。 第二行 n 个整数,表示序列 A 。

输出格式

—行—个整数,表示 S>0 的前提下 S 的最小值。

输入样例

2

4059 -1782

输出样例

99

说明

对于 100% 的数据, $1 \leq n \leq 20, |A_i| \leq 10^5$,且 A 序列不全为 0 。

欧拉函数

欧拉函数 (Euler's totient function), 即 $\varphi(n)$ 表示小于等于 n 与 n 互质的数的个数

如
$$\varphi(1) = 1$$
, $\varphi(8) = 4$

当 n 是质数的时候, 显然有 $\varphi(n) = n - 1$

欧拉函数是 积性函数

函数 f 为积性函数, 若 (a,b) = 1 有 f(nm) = f(n)f(m)

若 (n,m) = 1 有 $\varphi(nm) = \varphi(n)\varphi(m)$

当 n 为奇数时 $\varphi(2n) = \varphi(n)$

若 $n = p^k (p \in \mathbb{P})$,那么 $\varphi(n) = p^k - p^{k-1}$

对于 $1 \sim p^k$ 的所有整数中,除 p^{k-1} 个 p 的倍数外其它数都与 p^k 互质

故

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1} \times (p-1)$$

欧拉函数

若
$$(n,m) = 1$$
 有 $\varphi(nm) = \varphi(n)\varphi(m)$

证明

构造包含 1~ nm 范围内整数的矩阵

 $\varphi(nm)$ 即为矩阵内与 n,m 互质数的个数

$$\begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ n+1 & n+2 & n+3 & \cdots & 2n \\ 2n+1 & 2n+2 & 2n+3 & \cdots & 3n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (m-1)n+1 & (m-1)n+2 & (m-1)n+3 & \cdots & mn \end{bmatrix}$$

每列都 mod n 同余

根据最大公约数性质有 (n,i) = (n,i+kn)

那么 (i,n) = 1 则 (i + kn, n) = 1

考虑第一行,其中有 $\varphi(n)$ 个元素与 n 互质,那么共有 $\varphi(n)$ 列且列内的数都与 n 互质

欧拉函数

同一列中的元素为 $r, r + n, r + 2n, \dots, r + (m-1)n$ 共 m 个元素

有 $\{0,1,2,\dots,m-1\}$ 与 $\{r,r+n,r+2n,\dots,r+(m-1)n\}$ ——对应

若不然则存在 $0 \le i < j < m$ 且 $r + in \equiv r + jn \pmod{m} \Rightarrow in \equiv jn \pmod{m}$

由于 (m,n) = 1 则 n^{-1} 必然存在, 同乘逆元则有 $i \equiv j \pmod{m}$, 矛盾

即每一列中都有 $\varphi(m)$ 个元素与 m 互质

 $\varphi(n)$ 列中的每一列都有 $\varphi(m)$ 个交点处的数都与 n, m 互质

这样的交点有 $\varphi(n) \times \varphi(m)$ 个, 即

$$\varphi(nm) = \varphi(n)\varphi(m)$$

命题得证

欧拉函数

设

$$n = \prod_{i=1}^{s} p_i^{c_i} (c_i \in \mathbb{N}^+, p_i \in \mathbb{P})$$

有

$$\varphi(n) = n \prod_{i=1}^{s} \frac{p_i - 1}{p_i}$$

由唯一分解定理与欧拉函数的积性

$$\varphi(n) = \prod_{i=1}^{s} \varphi\left(p_i^{k_i}\right) = \prod_{i=1}^{s} \left(p_i^{k_i-1}(p_i-1)\right)$$

$$= \prod_{i=1}^{s} \left(p_i^{k_i}(1-\frac{1}{p_i})\right) = \prod_{i=1}^{s} \left(p_i^{k_i}(\frac{p_i-1}{p_i})\right)$$

$$= n \prod_{i=1}^{s} \frac{p_i-1}{p_i}$$

#2397、最简分数

题目描述

求分子分母都不超过 n 且为真分数的最简分数有多少个

最简分数:分子分母互质的分数为最简分数

输入格式

输入一行,输入一个整数 n

输出格式

输出一行,为所求的答案

样例输入

2

样例输出

数据规模

对于 10% 的数据 $1 \leq n \leq 1000$

对于 40% 的数据 $1 \leq n \leq 500000$

对于 100% 的数据 $1 \leq n \leq 10000000$

容易发现答案为

$$\sum_{i=2}^{n} \varphi(i)$$

对每个数分解质因数无法通过

考虑使用朴素埃氏筛优化

当枚举的数 p 为质数时 2p, 3p, 4p, ...为合数

对于每一个 2p, 3p, 4p, ... 乘上 $\frac{p-1}{p}$ 即可

时间复杂度 $O(n \log \log n)$

#2397、最简分数

在欧拉筛过程中

当 i 为质数时 $\varphi(i) = i - 1$

• 若 $p_j \mid i$

i 的所有质因子其中必然包含了 p_i

$$\varphi(i \times p_j) = i \times p_j \times \prod_{i=1}^{s} \frac{p_k - 1}{p_k} = p_j \times \varphi(i)$$

• 若 *p_j* ∤ *i*

 p_i 为质数 $(p_i, i) = 1$ 根据积性函数性质

$$\varphi(i \times p_j) = \varphi(p_j) \times \varphi(i) = (p_j - 1) \times \varphi(i)$$

#2397、最简分数

进一步的还存在如下性质

记 gcd(x,y) = d

$$\varphi(x \times y) = \frac{\varphi(x) \times \varphi(y) \times d}{\varphi(d)}$$

证明

记 $P = \{p_1, p_2, \dots, p_n\}$ 为 x 的质因子集合

 $Q = \{q_1, q_2, \dots, q_m\}$ 为 y 的质因子集合

记 $A = P \cap Q$ (A 为公共质因子集, 其也为 d 的质因子集), $B = P \cup Q$ (B 为 $x \times y$ 质因子集)

$$\varphi(x \times y) = x \times y \times \prod_{b \in B} \frac{b-1}{b}$$

$$= x \times y \times \frac{\left(\prod_{p \in P} \frac{p-1}{p}\right) \times \left(\prod_{q \in Q} \frac{q-1}{q}\right)}{\prod_{a \in A} \frac{a-1}{a}}$$

$$= \frac{x \times \left(\prod_{p \in P} \frac{p-1}{p}\right) \times y \times \left(\prod_{q \in Q} \frac{q-1}{q}\right) \times d}{\left(\prod_{a \in A} \frac{a-1}{a}\right) \times d}$$
$$= \frac{\varphi(x) \times \varphi(y) \times d}{\varphi(d)}$$

命题得证

#2738、可见的点

题目描述

在一个平面直角坐标系的第一象限内 如果一个点 (x,y) 与原点 (0,0) 的连线中没有通过其他任何点 则称该点在原点处是可见的

如点 (4,2) 就是不可见的,因为它与原点的连线会通过点 (2,1)

部分可见点与原点的连线如下图所示:

编写一个程序,计算给定整数 N 的情况下,满足 $0 \leq x,y \leq N$ 的可见点 x,y) 的数量

可见点不包括原点

输入格式

第一行包含整数 C 表示共有 C 组测试数据

每组测试数据占一行,包含一个整数 N

输出格式

数据范围

每组测试数据的输出占据一行

对于 20% 的数据 $1 \leq n, T \leq 100$ 对于 100% 的数据 $1 \leq T \leq 10000, 1 \leq N \leq 10^6$ 输出可见点的数量

光源位于 (0,0)

所有点与光源之间直线解析式为

$$y = kx$$

若一个点 (x', y') 被同一直线上 (x_0, y_0) 点遮挡 有

$$\frac{y_0}{x_0} = \frac{y'}{x'} = k (x' > x_0, y' > y_0)$$

显然 $(x_0, y_0) = 1$, $(x', y') \neq 1$

若点对满足(x,y)=1都可见

容易想到 $O(T n^2 \log n)$ 枚举

#2738、可见的点

- 当 x = y 时 互质点个数仅有一个
- 当 x > y 时 互质点的个数为 $\varphi(x)$
- 当 x < y 时 互质点的个数为 $\varphi(y)$

容易发现 整个正方形上的点都是关于 y = x 对称

即答案为

$$1 + 2\sum_{i=1}^{n} \varphi(i)$$

同余

即 a,b 除以 m 所得的余数相等,记作 $a \equiv b \pmod{m}$,读作 $a \equiv a \pmod{m}$

若无特殊说明,模数总是正整数,余数为最小非负剩余

同余存在如下性质

若 $a \equiv b \pmod{m}$, 则 $m \mid (a - b)$

若 $a \equiv b \pmod{m}$ 且 $b \equiv c \pmod{m}$, 则 $a \equiv c \pmod{m}$

若 $a \equiv b \pmod{m}$ 且 $d \mid m$,则 $a \equiv b \pmod{d}$

若 $a \equiv b \pmod{m}$, 则 (a, m) = (b, m)

若 $a \equiv b \pmod{m}$, 对于整数 k 有

$$k + a \equiv k + b \pmod{m}$$

同余

若 $a \equiv b \pmod{m}$, 对于整数 k 有

$$ka \equiv kb \pmod{m}$$

若 $a \equiv b \pmod{m}$, 对于非零整数 k 有

$$ka \equiv kb \pmod{km}$$

若 $a \equiv b \pmod{m}$ 且 $c \equiv d \pmod{m}$

那么下面的模运算律成立:

$$a \pm c \equiv b \pm d \pmod{m}$$

 $a \times c \equiv b \times d \pmod{m}$

$$a^n \equiv b^n \pmod{m}$$

题目描述

给定一个长度为 n 的数列 a_1,a_2,\ldots,a_n

如果其中一段连续的子序列 $a_i, a_{i+1}, \ldots, a_j (i \leq j)$ 之和是 K 的倍数

我们就称这个区间 $\left[i,j\right]$ 是 K 倍区间

你能求出数列中总共有多少个 K 倍区间吗?

输入格式

第一行包含两个整数 n 和 k

以下 n 行每行包含一个整数 a_i

输出格式

输出—个整数.代表 k 倍区间的数目

数据规模

对于 20% 的数据 $1 \leq n \leq k \leq 100$

对于 60% 的数据 $1 \leq n \leq k \leq 10000$

对于 100% 的数据 $1 \leq n \leq k \leq 100000$

对于全部数据 $1 \leq a_i \leq 100000$

维护前缀和 sum_i

若

$$sum_i \equiv sum_j \pmod{k}$$

那么

$$(\operatorname{sum}_i - \operatorname{sum}_j) \mid k$$

维护所有的 $sum_i \mod k$

答案为

$$\sum_{i=0}^{k-1} \binom{\operatorname{cnt}_i}{2}$$

时间复杂度 O(n)

费马小定理

若 p 为素数且 (a,p) = 1 有

$$a^{p-1} \equiv 1 \pmod{p}$$

引理

构造序列 $A = \{1,2,3,\dots,p-1\}$, 存在如下性质

$$\prod_{i=1}^{p-1} A_i \equiv \prod_{i=1}^{p-1} (a \times A_i) \pmod{p}$$

当 $i \neq j$ 时根据质数性质显然有 $A_i \not\equiv A_j \pmod{p}$

由于 (a,p)=1, 根据 **裴蜀定理** 必然存在整数 I 满足 $a\times I\equiv 1 \pmod{p}$

若存在 $a \times A_i \equiv a \times A_i \pmod{p}$, 两边同乘 I 可得 $A_i \equiv A_i \pmod{p}$

与条件矛盾,即

$$a \times A_i \not\equiv a \times A_j \pmod{p}$$

费马小定理

综上 $A_i \times a$ 与 A_i 在模 p 意义下——对应

引理得证

证明

$$记 f = (p-1)!$$

$$a^{p-1} \times f \equiv f \pmod{p}$$

根据质数性质显然有 (f,p) = 1

根据 **裴蜀定理**, 必然存在整数 I 满足 $f \times I \equiv 1 \pmod{p}$

两边同乘I,可得

$$a^{p-1} \equiv 1 \pmod{p}$$

得证

乘法逆元

给定两个整数 a 和 p, 若存在整数 x 使得

$$ax \equiv 1 \pmod{p}$$

称 x 为 $a \mod p$ 的乘法逆元,记作 a^{-1}

当 $p \in \mathbb{P}$ 时,根据费马小定理

$$a \times x \equiv a \times a^{p-1} \pmod{p}$$

即

$$x \equiv a^{p-2} \pmod{p}$$

当 (a,p) = 1 时 a^{-1} 必然存在

根据裴蜀定理必然存在 ax + py = 1

上式等价于 $ax \equiv 1 \pmod{p}$

命题得证

乘法逆元

当 $(a,p) \neq 1$ 时 a^{-1} 必然不存在

此时
$$d = (a, p) > 1$$

那么
$$ax + py = 1$$
 可写为

$$\frac{ax}{d} + \frac{py}{d} = \frac{1}{d}$$

显然
$$\frac{ax}{d}$$
, $\frac{py}{d} \in \mathbb{Z}$ 而 $\frac{1}{d} \notin \mathbb{Z}$

命题得证

#1928、计算题

题目描述

这是一道简单的计算题

给定整数 A,N 求

$$(A-1)\times \sum_{i=0}^N A^i$$

答案可能很大,输出时对 100000007 取模

输入格式

一行两个正整数 A,N

输出格式

一个数表示计算结果

数据范围

对于 5% 的数据 $N \leq 100$

对于 15% 的数据 $N \leq 2 imes 10^9$

对于 100% 的数据 $2 \leq N \leq 10^{100000}, 2 \leq A \leq 2 imes 10^9$ 保证 $A \neq 1000000007$

等比数列求和

$$\left(\sum_{i=0}^{N} A^i\right) = \frac{A^{N+1} - 1}{A - 1}$$

所求即为 $A^{N+1}-1$

费马小定理

$$a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^p \equiv a \pmod{p}$$

这意味着指数存在周期,周期为p-1

不难发现 (A,1000000007) = 1 且 1000000007 为质数

费马小定理降幂求解即可

性质1

$$\forall a, b, c \in \mathbb{Z}, \left[\frac{a}{bc}\right] = \left[\frac{\left[\frac{a}{b}\right]}{c}\right]$$

证明

$$\frac{a}{b} = \left\lfloor \frac{a}{b} \right\rfloor + r \left(0 \le r < 1 \right) \Longrightarrow \left\lfloor \frac{a}{b} \cdot \frac{1}{c} \right\rfloor = \left\lfloor \frac{1}{c} \cdot \left(\left\lfloor \frac{a}{b} \right\rfloor + r \right) \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{a}{b} \right\rfloor}{c} + \frac{r}{c} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{a}{b} \right\rfloor}{c} \right\rfloor$$

性质2

$$\forall n \in \mathbb{N}^+$$
, $\left| \left\{ \left| \frac{n}{d} \right| \mid d \in \mathbb{N}^+, d \le n \right\} \right| \le 2\sqrt{n}$

证明

对于
$$d \leq \sqrt{n}$$
 , $\left| \frac{n}{d} \right|$ 至多有 \sqrt{n} 种取值

对于
$$d \ge \sqrt{n}$$
 , $\left| \frac{n}{d} \right| < \sqrt{n}$ 至多有 \sqrt{n} 种取值

性质3

设
$$k = \left\lfloor \frac{n}{l} \right\rfloor$$
, 若有 $\left\lfloor \frac{n}{r} \right\rfloor = k$ 则满足 $l \le r \le n$ 的 r 最大为 $\left\lfloor \frac{n}{k} \right\rfloor$

证明

对于
$$l \le x \le r$$
 都有 $\left| \frac{n}{x} \right| = k$

$$n$$
 可被写为 $kx + q$ ($0 \le q < k$)

那么

$$kx \le n \Rightarrow x \le \left\lfloor \frac{n}{k} \right\rfloor$$

题目描述

定义 f(i) 为 i 的正约数个数

给出正整数 N 请你求出

$$\sum_{i=1}^N f(i)$$

输入格式

输入一个整数 N

输出格式

输出一个整数表示
$$\sum_{i=1}^N f(i)$$

数据规模

对于 10% 的数据 $1 \le N \le 10^5$

对于 30% 的数据 $1 \le N \le 2 imes 10^7$

对于 100% 的数据 $1 < N < 10^{15}$

f(i) 为积性函数,可在欧拉筛过程中求解

时间复杂度 O(N) 但无法通过本题

$$f(i) = \sum_{j=1}^{i} [j \mid i]$$

那么

$$\sum_{i=1}^{N} f(i) = \sum_{i=1}^{N} \sum_{j=1}^{i} [j \mid i]$$

约数仅可能在 $1 \sim N$ 间

约数 d 在 f(d), f(2d), … , $f\left(\left|\frac{N}{d}\right|\right)$ 中分别产生贡献 1

共有 $\left| \frac{N}{d} \right|$ 的贡献

#3825、 数论分块1

即

$$\sum_{i=1}^{N} f(i) = \sum_{d=1}^{N} \left\lfloor \frac{N}{d} \right\rfloor$$

记 $k = \left\lfloor \frac{N}{d} \right\rfloor$ 根据 **性质3**

l=k , $r=\left\lfloor \frac{N}{k} \right\rfloor$ 在 $l\leq d\leq r$ 范围内 $\left\lfloor \frac{N}{d} \right\rfloor$ 都为定值 k (将 $\left\lfloor \frac{N}{d} \right\rfloor$ 都为 k 的部分称为一个 **块**)

初始时令 l ← 1

每次令 $k \leftarrow \left| \frac{N}{d} \right|, r \leftarrow \left| \frac{N}{k} \right|$ 累加贡献 $k \times (r - l + 1)$

再令 l = r + 1,直到 l 超过 N

根据 **性质2** $\left|\frac{n}{d}\right|$ 仅有 $2\sqrt{N}$ 个取值,该过程时间复杂度 $O(\sqrt{N})$

#3826、 数论分块2

题目描述

定义 f(i) 为 i 的正约数之和

给出正整数 N 请你求出

$$\sum_{i=1}^N f(i)$$

输入格式

输入一个整数 N

输出格式

输出一个整数表示
$$\sum_{i=1}^N f(i)$$

数据规模

对于 10% 的数据 $1 \leq N \leq 10^5$

对于 30% 的数据 $1 \leq N \leq 2 imes 10^7$

对于 100% 的数据 $1 \leq N \leq 2 imes 10^9$

$$f(i) = \sum_{d \mid i} d$$

那么

$$\sum_{i=1}^{N} f(i) = \sum_{i=1}^{N} \sum_{d \mid i} d$$

约数仅可能在 $1 \sim N$ 间

约数 d 在 f(d), f(2d), … , $f\left(\left|\frac{N}{d}\right|\right)$ 中分别产生贡献 d

共有 $d \times \left| \frac{N}{d} \right|$ 的贡献

#3826、数论分块2

即

$$\sum_{i=1}^{N} f(i) = \sum_{d=1}^{N} \left(d \times \left\lfloor \frac{N}{d} \right\rfloor \right)$$

记 $k = \left\lfloor \frac{N}{d} \right\rfloor$ 根据 **性质3**

$$l = k, r = \left\lfloor \frac{N}{k} \right\rfloor$$
 在 $l \le d \le r$ 范围内 $\left\lfloor \frac{N}{d} \right\rfloor$ 都为定值 k

此时 d 遍历 $l\sim r$ 此部分贡献为等差数列

那么一个块的贡献为

$$\frac{(r-l+1)(l+r)}{2} \times k$$

谢谢观看