DIGITAL ELECTRONICS

SUBTRACTOR

Objectives

- Definition of Subtractor
- **■** Types of subtractor
- Explaining different subtractors with
 - > Truth table
 - Boolean Expression
 - > Logic circuit
- Parallel binary subtractor
- Applications

* What is Subtractor?

Subtractor is an electronic logic circuit for calculating the difference between two binary numbers which provides the difference and borrow as output.

* Types of Subtractor

- Half Subtractor
- > Full Subtractor

> Half subtractor

Half Subtractor is used for subtracting one single bit binary number from another single bit binary number.

It has two inputs; Minuend (A) and Subtrahend (B) and two outputs; Difference (D) and Borrow (B_{out}).

☐ Truth Table

Input		Output		
А	В	Difference (D)	Borrow (B _{out})	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

☐ Solving truth table using K-map

$$\begin{bmatrix} A & 0 & 1 \\ B & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

For Borrow Borrow $= \bar{A}.B$

For Difference Difference $= A \oplus B$

Boolean Expression

From the truth table and K-map, the Boolean

Expression can be derived as:

Difference (D) =
$$\bar{A}.B + A.\bar{B} = A \oplus B$$

Borrow (
$$B_{out}$$
)= $\bar{A}.B$

Logical Circuit

> fULL subtractor

A logic Circuit Which is used for subtracting three single bit binary numbers is known as Full Subtractor.

It has three inputs; Minuend (A), Subtrahend (B) and following Subtrahend (C) and two outputs; Difference (D) and Borrow (B_{out}).

☐ Truth Table

Input			Output	
А	В	С	D	B _(out)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

☐ Solving Truth Table using K-Map

☐ K-Map Minimization

From the Truth Table The Difference and Borrow will written as,

Difference=A'B'C+A'BC'+AB'C'+ABC Reducing it we got, Difference=A⊕B⊕C

Borrow=A'B'C+A'BC'+A'BC+ABC =A'B'C+A'BC'+A'BC+A'BC+A'BC+ABC =A'C(B'+B)+A'B(C'+C)+BC(A'+A) Borrow=A'C+A'B+BC

Boolean Expression

From the truth table and k-map minimization, the Boolean Expression can be derived as:

$$\mathbf{D} = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}$$

$$\mathbf{B}_{(\mathrm{out})} = \mathbf{BC} + (\mathbf{B} \oplus \mathbf{C}) \mathbf{A}$$

Logical Circuit

Diagram

* Applications

- To attenuate the radio/audio signal
- In amplifier to reduce sound distortion
- In arithmetic logic unit of processors
- Increment and decrement operators
- Calculate addresses

Any question?