Sprawozdanie ze struktur danych i złożoności obliczeniowej, projekt 1

Jakub Klawon

Grupa poniedziałek godzina 15 TP

Spis treści

1	Wstęp	1
2	Tablica dynamiczna	2
	2.1 Opis	. 2
	2.2 Pomiary	. 2
	2.3 Wykresy	
	2.4 Wnioski	
3		5
3	Lista dwukierunkowa	_
	3.1 Opis	
	3.2 Pomiary	
	3.3 Wykresy	
	3.4 Wnioski	. 9
4	Kopiec	10
	4.1 Opis	. 10
	4.2 Pomiary	
	4.3 Wykresy	
	4.4 Wnioski	
5	Drzewo czerwono-czarne	12
	5.1 Opis	. 12
	5.2 Pomiary	. 12
	5.3 Wykresy	. 12
	5.4 Wnioski	

1 Wstęp

Poniższe sprawozdanie dotyczy projektu ze struktur danych i złożoności obliczeniowej. Przedstawia efekty obiektowej implementacji tablicy dynamicznej, listy dwukierunkowej, kopca oraz drzewa czerwono-czarnego. Na każdej strukturze wykonane zostały pomiary czasu wykonywania ich funkcji. Wyniki pomiarów czasów podane są w nanosekundach (10^{-9}) . Każda operacja została przywołana 300 razy za każdym razem tworząc nowy zestaw losowych liczb w wielkości zestawów 1000, 2000, 5000, 10000, 20000, 30000 oraz 50000. Dla każdej wielkości przedstawiono 15 wyników, z których obliczona została średnia arytmetyczna. Wykresy stworzone z wartości na osi y wskazują na czas wykonania [w sekundach] a oś x pokazuje wielkość zestawu.

2 Tablica dynamiczna

2.1 Opis

Tablica dynamiczna tworzona jest w momencie uruchomienia programu. W każdym momencie można usunąć ją z pamięci, dzięki czemu efektywniej wykorzystuje zasoby pamięciowe. Funkcje zaimplementowane do tej struktury to: dodawanie na początek, koniec oraz w dowolnym miejscu (w tym przypadku jest to część bliższa końca, ale nie sam koniec, gdyż program analizuje podany indeks i przywołuje funkcję "na początek"i "na koniec"), usuwanie z początku, końca i w dowolnym miejscu oraz wyszukiwanie liczby. Operacje wykonywane w ramach tablicy dynamicznej powinny teoretycznie mieć złożoność O(n).

2.2 Pomiary

Ilość elementów	Dodawanie koniec	Usuwanie koniec	Dodawanie początek	Usuwanie początek
1000	149,67	168,20	143,72	102,83
2000	148,04	255,41	187,74	145,30
5000	335,06	454,70	426,97	321,27
10000	592,03	615,71	838,39	602,81
20000	1513,69	1554,65	2022,096	1650,95
30000	2440,93	2470,29	2954,86	2491,64
50000	4314,61	4379.87	4504,27	4402,94

Ilość elementów	Dodawanie indeks	Usuwanie indeks	Wyszukiwanie
1000	114,76	109,27	205,93
2000	175,81	375,20	186,42
5000	470,46	424,40	880,78
10000	862,56	740,40	1696,29
20000	2002,63	1777,69	3354,12
30000	2949,51	2719,87	4873,70
50000	4593,28	4555,10	8059,64

Rysunek 1: Dodawanie na początek w liście

Rysunek 2: Usuwanie z początku w liście

Rysunek 3: Usuwanie z końca w liście

Rysunek 4: Dodawanie na końcu w liście

Rysunek 5: Dodawanie w dowolne miejsce w liście

Rysunek 6: Usuwanie z dowolnego miejsca w liście

Rysunek 7: Wyszukiwanie w liście

Analizując wyniki pomiarów można zauważyć, że we wszystkich funkcjach złożoność obliczeniowa wynosi O(n). Operacje na tablicy dynamicznej zajmują całkiem dużo czasu w porównaniu do innych struktur. W przypadku wyszukiwania jest znacznie wydajniejsza niż lista dwukierunkowa.

3 Lista dwukierunkowa

3.1 Opis

Lista dwukierunkowa jest zbiorem elementów o trzech atrybutach: dana liczbowa, wskaźnik na poprzednika i wskaźnik na następnika. Dzięki temu niektóre operacje wykonuje się znacznie szybciej. W przypadku, kiedy potrzebujemy dostać się do danego indeksu, możemy zacząć od końca albo od początku co jest dużym plusem w porównaniu do listy jednokierunkowej. Lista pochłania jednak duże

zasoby pamięciowe w porównaniu do tablicy. Operacje dodawania/usuwania z początku lub końca mają w teorii złożoność O(1) natomiast wyszukiwanie oraz wstawianie/usuwanie w dowolnym miejscu O(n).

3.2 Pomiary

Ilość elementów	Dodawanie koniec	Usuwanie koniec	Dodawanie początek	Usuwanie początek
1000	16,51	17,09	16,11	17,75
2000	16,24	16,54	16,02	17,01
5000	16,73	16,94	16,63	17,43
10000	16,57	17,36	16,45	17,48
20000	17,36	18,70	17,41	17,91
30000	15,73	17,22	19,87	17,56
50000	14,75	16,15	25,34	14,44

Ilość elementów	Dodawanie indeks	Usuwanie indeks	Wyszukiwanie
1000	510,92	466,38	493,63
2000	1229,64	947,39	1007,81
5000	3606,33	2400,89	2564,76
10000	6946,97	6451,82	6566,15
20000	14295,33	13520,10	13692,81
30000	20127,58	19217,8	19709,34
50000	34026,41	32052,16	32250,35

Rysunek 8: Dodawanie na początek w liście

Rysunek 9: Usuwanie z początku w liście

Rysunek 10: Usuwanie z końca w liście

Rysunek 11: Dodawanie na końcu w liście

Rysunek 12: Dodawanie w dowolne miejsce w liście

Rysunek 13: Usuwanie z dowolnego miejsca w liście

Rysunek 14: Wyszukiwanie w liście

Operacje dodawania i usuwania w liście są bardzo efektywne ze złożonością O(1). W porównaniu do tablicy, potrzebują znacznie mniej czasu. W przypadku, kiedy potrzebne jest wyszukiwanie, lista jest niemal 4 razy mniej efektywna i rośnie liniowo. Można więc wywnioskować, że lista jest dobrą strukturą, kiedy często zachodzi potrzeba dodawania/usuwania elementów, podczas gdy przy wyszukiwaniu lepiej sprawuje się tablica.

4 Kopiec

4.1 Opis

Kopiec maksymalny jest strukturą danych będącą kompletnym drzewem binarnym. Wszystkie poziomy za wyjątkiem ostatniego są zapełnione, natomiast ostatni poziom jest zapełniany od lewej do prawej. W kopcu zaimplementowano metody dodawania, usuwania korzenia oraz wyszukiwania elementu. Kopiec jest zapisany w postaci tablicy dynamicznej. Metoda wyszukiwania polega na sprawdzeniu kopca od lewej do prawej strony. Operacje dodawania i odejmowania w teorii mają złożoność $O(\log n)$. Wyszukiwanie w najgorszym przypadku ma złożoność O(n).

4.2 Pomiary

Ilość elementów	Dodawanie	Usuwanie	Wyszukiwanie
1000	239,0444667	372,5778667	683,5554667
2000	331,6000667	517,4888667	1264,755333
5000	815,0666	979,4448667	3958,912
10000	4350,377333	5013,822	11953,66867
20000	7007,977333	8554,754667	13021,24
50000	6893,133333	7902,378667	32688,80667

Rysunek 15: Dodawanie w kopcu

Rysunek 16: Usuwanie w kopcu

Rysunek 17: Wyszukiwanie w kopcu

Operacje wykonywane na kopcu zabierają bardzo dużo czasu i wszystkie mają liniową złożoność. Jako, że dane kopca są przechowywane przez tablicę dynamiczną, dodawanie i usuwanie wymagają relokacji przy każdym przywołaniu. Pomimo implementacji specjalnego algorytmu do wyszukiwania, ta operacja w kopcu jest nadal bardzo czasochłonna. Kopiec wydaje się świetną strukturą do wyznaczania maksymalnego/minimalnego elementu. Analizując funkcję stworzoną na wykresie, wnioskuję, że wyniki pomiarów pokrywają się z teorią.

5 Drzewo czerwono-czarne

5.1 Opis

Drzewo czerwono czarne jest odmianą samoorganizujących się drzew BST. W liściach drzewa nie przechowuje się danych, ale wartości NULL. Są to tzw. strażnicy. Założenia drzewa sprawiają, że jego wysokość nie przekroczy dwukrotnej wartości wysokości minimalnej. Dokonywane jest to przez kolorowanie węzłów na czerwono lub czarno i stosowanie po każdej operacji wstawiania lub usuwania odpowiedniej procedury równoważącej drzewo. Pomiary czasu wykonywania operacji dodawania, usuwania i wyszukiwania w drzewie w teorii powinny wynosić $O(\log n)$. Pomiary zostały wykonane dla większej ilości elementów niż w innych strukturach, gdyż nie dawały one wiarygodnych wyników. Liczby znajdujące się w badanych zestawach miały wartości między 1 a 1000000. Wyszukiwany element był zawsze największym elementem w drzewie.

5.2 Pomiary

Ilość elementów	Dodawanie	Usuwanie	Wyszukiwanie
1000	52,20222	47,48396667	33,85867333
2000	45,99822	28,85576667	30,97998667
5000	48,21999333	31,10999333	52,32644
10000	40,35022	42,20066	56,40466667
20000	27,11512	50,62978667	59,55844667
30000	28,20622	53,04978667	63,752
50000	32,24244	71,59356	67,62956
100000	28,33776667	83,15335333	71,92976667
200000	36,44954667	131,9905333	79,88822

Rysunek 18: Usuwanie w drzewie czerwono-czarnym

Rysunek 19: Wyszukiwanie najmniejszego elementu w drzewie czerwono-czarnym

Rysunek 20: Dodawanie w drzewie czerwono-czarnym

Operacje zaimplementowane w drzewie czerwono-czarnym zajmują bardzo mało czasu. Dodawanie prezentuje wynik O(1), usuwanie O(n) a wyszukiwanie $O(\log n)$. Wyniki nie do końca pokrywają się z teorią, prawdopodobnie wynika to ze zbyt małej ilości pomiarów. Jednakże ograniczenie pamięci w sprzęcie używanym do przeprowadzania testów nie pozwoliło mi na przeprowadzenie dodatkowych pomiarów. Różnice czasu są na tyle małe, że setki tysięcy elementów to nadal za mało, żeby uzyskać wiarygodny rezultat.