ST-6034 Multivariate Methods for Data Analysis

Assignment 1

Aditya Vikram Dash 120224162

Question 1:

(a) Given a real symmetric matrix M, i.e.

$$M = M^{T}$$

If M were to have complex eigenvalues, then we can write,

$$Mx = Mx$$

 $Mx^- = M^-x$

Under complex conjugation,

$$x^{T}Mx = x^{T}\lambda x = \lambda ||x||^{2} \qquad ..(i)$$

$$x^{T}Mx^{T} = x^{T}\lambda^{T}x = \lambda^{T}||x||^{2} \qquad ..(ii)$$

Since M is symmetric,

$$x^{-T}Mx = (Mx)^T x^- = x^T A^T x = x^T A x^-$$

Subtracting (ii) from (i), we get,

$$(\lambda^{-}-\lambda) | |x| |^{2}=0$$

Only way this is possible for a non-zero z is if,

$$\lambda = \lambda^{-}$$

Therefore, λ is real.

(b) library(Matrix) p=111

#Matrix of 'p' dimension with random normal entries
M = matrix(rnorm(p*p),ncol=p)
s.matrix=as.matrix(forceSymmetric(m))

#Calculating Eigen Values and Eigen Vectors of the Symmetric Matrix

eg = eigen(s.matrix)

lambda = diag(eg\$Values)

eg vec = eg\$vectors

#Inverse of matrix of eigen vectors
eg_vec_inverse = round(solve(eg_vec),4)

#Transpose of matrix of eigen vectors
eg_vec_transpose = round(t(eg_vec),4)

(c) ${\bf M}$ is symmetric. Therefore the minimum of ${\bf x}^T {\bf M} {\bf x}$ with $\|{\bf x}\|=1$ is the minimum eigenvalue of ${\bf M}$, which is equal to -1 because ${\bf M}$ is a reflection.

Question 4:

library(av)
library(magick)

View(allInfo)

(a)

```
av video images ("~/Desktop/waveclip.mp4", destdir =
(b)
    "~/Desktop/WaveClip Images", format = "jpg", fps = NULL)
    image read("~/Desktop/WaveClip Images/")
    files <- list.files("~/Desktop/WaveClip Images/", pattern =</pre>
    "*.jpg", full.names=TRUE)
    all im <- lapply(files, load.image("~/Desktop/WaveClip
    Images/")
    library(imagerExtra)
    library (magick)
    library(readbitmap)
    library(here)
    library(dplyr)
    library(terra)
    library(jpeg)
    setwd("~/Desktop/WaveClip Images/")
    image.files <- dir("~/Desktop/WaveClip Images/", pattern =</pre>
    "*.jpg", full.names = TRUE)
    output<-vector("list", length(image.files))</pre>
    #Get the list of all images
    allFiles = list.files(path = "~/Desktop/WaveClip Images/",
    pattern = ".jpg", full.names = T)
    #Get the dataframe with info
    allInfo = image info(image read(allFiles))
    #Attach the file names
    allInfo$fileName = list.files(path = "~/Desktop/WaveClip
    Images/", pattern = ".jpg")
    allInfo$fileName
    write.csv(allInfo, "allImageInfo.csv")
```

Question 3:

(a)
$$X_i \sim N_{60}(\mu, \Sigma)$$
 for $i = 1, 2, ..., 900$
 $\Rightarrow E[X_i] = \mu$ and $cov(X_i, X_i') = \Sigma$

Let $Y_1 = AX_1$ where A is of dimension (32 x 60)

Then,

 $E[Y_1] = E[AX_1] = A.E[X_1] = A \mu$ (dimension 32 x 1)

 $cov[Y_1, Y_1'] = cov[AX_1, (AX_1)'] = cov[AX_1, X_1'A'] = A\Sigma A'$

Comparison between Theoretical and Estimated Me

In the figure above "Comparison between Theoretical and Estimated Means", we can observe it is a perfect linear relationship. This is due to the usage of eigenvectors which maximize the variance.

imparison between Theoretical and Estimated cova

In the figure above "Comparison between Theoretical and Estimated Covariance" we can observe a positive correlation between the Estimated and Theoretical Covariance values.

```
library (MASS)
load("~/Desktop/HWK2.RData")
N <- 900
P <- 60
V mu <- as.matrix(data$V mu)</pre>
M Sigma <- as.matrix(data$M Sigma)</pre>
B <- data$B
X <- mvrnorm(n = N, V mu = data$V mu, M Sigma = data$M Sigma)
Xbar <- colMeans(X)</pre>
Shat <- cov(X)
Y <- NULL
for (i in 1:N) {
  Y <- cbind(Y, B %*% X[i,])
Ybar <- rowMeans(Y)
V mu Y <- B %*% V mu
M SigmaY <- B %*% M Sigma %*% t(B)</pre>
Shat Y <- B %*% Shat %*% t(B)
plot(x = V mu Y, y = Ybar, type = 'p', main = "Comparison between")
Theoretical and Estimated Means", xlab = 'Theoretical Mean', ylab =
'Estimated Mean', cex = 1, pch = 16)
matplot(x = M_SigmaY, y = Shat_Y, type = 'p', main = "Comparison")
between Theoretical and Estimated covariance", xlab = 'Theoretical
Covariance', ylab = 'Estimated Covariance', pch = c(15,16), cex = 0.5)
```

Mahalanobis Distance Distribution

Leave-one-out Distance Distribution


```
Z <- numeric(N)
Z_hat <- numeric(N)
for (i in 1:N) {
        Z[i] <- t(X[i,] - V_mu) %*% solve(M_Sigma) %*% (X[i,] -
V_mu)
        Z_hat[i] <- t(X[i,-i] - V_mu[-i]) %*% solve(M_Sigma)[-i,-i]
%*% (X[i,-i] - V_mu[-i])
}
hist(Z, prob = TRUE, main = 'Mahalanobis Distance
Distribution')
lines(density(Z), col = 'orange', lwd = 2)
x <- rchisq(N, df = P)
curve(dchisq(x, df = P), col = 'green', add = TRUE, lwd = 2)</pre>
```

```
legend(x = 'topright', legend = c('Theoretical Density',
'Estimated Density'), col = c('green', 'orange'), pch = 16)

hist(Z_hat, prob = TRUE, main = 'Leave-one-out Distance
Distribution')
    lines(density(Z_hat), col = 'orange', lwd = 2)
    curve(dchisq(x, df = P), col = 'green', add = TRUE, lwd = 2)
    legend(x = 'topright', legend = c('Theoretical Density',
'Estimated Density'), col = c('green', 'orange'), pch = 16)
```

Question 2:

```
#Correlation
cr function=cor(dat)
D = scale(dat,center=T,scale=T)
n = nrow(dat)
CoR = cr form = (1/n)*(t(D)%*%D)*(n/(n-1))
diag(cr form)
diag(cr function)
#Covariance by Function
cv function = var(dat)
X = as.matrix(dat); x bar = as.matrix(apply(dat,MARGIN=2,mean));
n = nrow(dat)
# covariance by matrix-formula
CoV = cv form = ((1/n) * (t(X) % * %X) -
t(rbind(apply(X,2,mean)))%*%rbind(apply(X,2,mean)))*(n/(n-1))
diag(cv function)
diag(cv form)
   (a)
        #Eigen Decompostion of matrices
        e cr = eigen(CoR); ecv = eigen(CoV)
        e val.cr = e cr$values; e vec.cr = e cr$vectors
        e val.cv = ecv$values; evec.cv = ecv$vectors
        e val.cr.norm = (e val.cr)/max(e val.cr)
        e val.cv.norm = (e val.cv)/max(e val.cv)
        ?scale
        x=c(1:12)
        par(mfrow=c(1,1))
        par(font.axis=2, font.lab=2, bg="white", font.main=2, las=1)
        #Matplot
        matplot(x,cbind(e val.cr.norm,e val.cv.norm),
                col=c("blue", "orange"), type="l", lwd=4,
                main="Eigen CR vs. Eigen CV",
                ylab="CoR-CoV EigenValues")
        legend("topright", legend=c("CoR", "CoV"),
               col=c("blue", "orange"), lty=1, lwd=4)
```



```
names=c("EV 1","EV 2","EV 3","EV 4","EV 5","EV 6","EV 7","EV
                    (b)
                                                          8")
                                                     par(mfrow=c(3,3))
                                                     plot(e val.cr,pch=20,cex=1.2,ylab="Eigen Values")
                                                      for (j in 1:8) {
                                                                   plot(e_vec.cr[,j],pch=20,cex=1.2,ylab=names[j])
                                                     par(mfrow=c(3,3))
                                                      plot(e_val.cv,pch=20,cex=1.2,ylab="Eigen_Values")
                                                      for(j in 1:8){
                                                                   plot(evec.cv[,j],pch=20,cex=1.2,ylab=names[j])
                                                       }
Eigen_Values
                                                                                                                                                                                                                                                                                                                                                                                                                     2, 0.6 =
≥ 0.2 =
                                                                                                                                                            o.6 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0.2 =
                                                                                5<sub>1</sub>-0.10
                                                                               _____
                                                                                      -0.30
                            2
                                        6
                                                 10
                                                                                                                                                                                                   6
                                                                                                                                                                                                                10
                                                                                                                                                                                                                                                                                                                                                                                                                                                              6
0.2

∾₁ 0.0

≥ -0.2

-0.4
                                                                                                                                                                                                                                                                                                                                       A 0.6 ☐
                                                                                       0.6
                                     Index
                                                                                                                                                                                                                                                                                                                                                                                                                                                            Index
                                                                                                                   Index
                                                                                                                                                                                                 Index
                                                                                                                                                                                                                                                                                                Index
```

10

6 10

```
(c)
     dat = USJudgeRatings
     D = scale(dat, scale=T, center=T)
     n = nrow(dat)
     cor.mat = (1/n) * (t(D) % * %D) * (n/(n-1))
     dim(cor.mat) # sq. matrix
     #Spectral Decomposition of Correlation Matrix
     e = eigen(cor.mat)
     G = e$vectors
     D = e$values
     D = diag(D)
     e = eigen(cor.mat)
     R = (G% * %D% * %t (G))
     #Design Matrix
     des mat = model.matrix(\sim G[,1:4])[,-1]
     sds = apply(dat,MARGIN=2,sd)
     means = apply(dat,MARGIN=2,mean)
     y1 = numeric(12)
     for(j in 1:12)
       y1[j] = (dat[,j]-means[j])/sds[j]
     colnames(des_mat) = c("pred_1", "pred 2", "pred 3", "pred 4")
     1 mo 1 = lm(y1\sim.,data = data.frame(des mat))
     b1 = coef(1 mo 1)[-1]
     des mat2 = model.matrix(\sim t(G)[,1:4])[,-1]
     colnames(des mat2) = c("pred 1", "pred 2", "pred 3", "pred 4")
     y2=numeric(12)
     for(j in 1:12)
       y2[j] = (dat[,j]-means[j])/sds[j]
     1 mo 2 = lm(y2\sim., data=data.frame(des mat2))
     b2 = coef(1 mo 2)[-1]
     par(mfrow=c(1,1))
     x = seq(1:4)
     plot(x=x,y=b1,col="orange",cex=2,pch=20,ylab="Coefficients",
     main="Coefficients Comparison")
     points(b2, col="green", pch=20, cex=2)
     points(y2,col="blue",pch=20,cex=2)
     legend("bottomright", legend=c("G-coefs", "G'-coefs", "G'-
     yi's"),col=c("orange", "green", "blue")
             ,pch=20)
```