Statistical Inference Course Project (Part 2)

BELMOUIDI Mohamed

28 December, 2024

Course Project

Basic Inferential Data Analysis

Instructions

- Load the ToothGrowth data and perform some basic exploratory data analyses
- Provide a basic summary of the data.
- Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. (Only use the techniques from class, even if there are other approaches worth considering.)
- State your conclusions and the assumptions needed for your conclusions.

Exploratory Data Analysis

First, we load the required packages and the dataset:

```
## Warning: 'tbl_df()' was deprecated in dplyr 1.0.0.
## i Please use 'tibble::as_tibble()' instead.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
```

We examine the structure and summarize the dataset:

```
## tibble [60 x 3] (S3: tbl df/tbl/data.frame)
## $ len : num [1:60] 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
  $ dose: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##
         len
                    supp
                             dose
##
  Min.
          : 4.20
                    OJ:30
                            0.5:20
  1st Qu.:13.07
                    VC:30
                            1 :20
## Median :19.25
                              :20
           :18.81
   Mean
## 3rd Qu.:25.27
   Max.
```

We observe the unique values of the dose variable:

[1] 0.5 1 2 ## Levels: 0.5 1 2

The dose variable contains three unique values (0.5, 1, 2). We convert it to a factor:

Teeth Length vs Dose Level by Supplement Type

Plots

Teeth Length vs Supplement Type by Dose Level

Hypothesis Tests

We conduct statistical tests to compare teeth growth by supplement type and dose levels.

Test by Dose Levels

•

```
##
## Welch Two Sample t-test
##
## data: len_a by dose_a
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means between group 0.5 and group 1 is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5 mean in group 1
## 10.605 19.735
```

##
Welch Two Sample t-test
##
data: len_b by dose_b
t = -11.799, df = 36.883, p-value = 4.398e-14
alternative hypothesis: true difference in means between group 0.5 and group 2 is not equal to 0
95 percent confidence interval:
-18.15617 -12.83383
sample estimates:
mean in group 0.5 mean in group 2
10.605 26.100

```
##
## Welch Two Sample t-test
##
## data: len_c by dose_c
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
## 19.735 26.100
```

Test by Supplement Type

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means between group OJ and group VC is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

Conclusions

Key Findings:

- 1. There is a statistically significant relationship between dose levels and teeth length (p-values < 0.05 in all dose comparisons).
- 2. No statistically significant difference exists between supplement types (p-value = 0.06).

Assumptions for Validity:

- Independence of samples: Random sampling or assignment.
- Normality of population distributions.

These assumptions are critical to ensure the validity of t-test results.