

ESTATÍSTICA

- REGRESSÃO LINEAR -

Profa. Claudia Turik de Oliveira

<u>Objetivo</u>

• A correlação linear mostra o *quanto* duas variáveis estão relacionadas.

• A regressão linear mostra *como* elas estão relacionadas.

• Estimar valores de uma variavel com base em valores conhecidos de outra variável.

- Deseja-se prever quanto tempo será necessário para executar uma determinada tarefa por uma pessoa, com base no tempo de treinamento.
- Um gerente deseja estimar as vendas semanais com base nas vendas das segundas e terças feiras.

Reta de regressão

- Após verificar se a correlação linear entre duas variáveis é significante, o próximo passo é determinar a equação da linha que melhor modela os dados (linha de regressão).
- Pode ser usada para prever o valor de *y* para um dado valor de *x*.

Reta de regressão

 Método dos mínimos quadrados: A reta para a qual a soma dos quadrados dos resíduos é um mínimo.

Equação de regressão estimada

$$\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}\mathbf{X}$$

- Interpretação de b (inclinação da reta):
 Para cada aumento de uma unidade em X, temos um aumento médio de b unidades em Y.
- Interpretação de a (intercepto):
 É o valor esperado de y quando x = 0 (caso x = 0 faça parte do suporte do problema).

Equação de regressão estimada

Os coeficientes a e b são calculados da seguinte maneira:

$$b = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sum (x - \overline{x})^2}$$

$$a = \bar{y} - b \cdot \bar{x}$$

Criminalidade e Analfabetismo

Considere duas variáveis observadas em 50 estados:

Y: taxa de criminalidade

X: taxa de analfabetismo

Criminalidade e Analfabetismo

a <u>reta ajustada</u> é: $\widehat{Y} = 2, 4 + 4, 3 . X$

Sendo: \hat{Y} : valor predito para a taxa de criminalidade

X: taxa de analfabetismo

Interpretação de b:

Para um aumento de uma unidade na taxa do analfabetismo (X), a taxa de criminalidade (Y) aumenta, em média, 4,3 unidades.

Expectativa de vida e Analfabetismo

Considere duas variáveis observadas em 50 estados:

Y: expectativa de vida

X: taxa de analfabetismo

• Expectativa de vida e Analfabetismo

a <u>reta ajustada</u> é: $\widehat{Y} = 72, 4 - 1, 3.X$

Sendo: \hat{Y} : valor predito para a expectativa de vida

X: taxa de analfabetismo

Interpretação de b:

Para um aumento de uma unidade na taxa do analfabetismo (X), a expectativa de vida (Y) diminui, em média, 1,3 anos.

• Consumo de cerveja e temperatura

a reta ajustada é:
$$\widehat{Y} = 217, 4 + 4, 7.X$$

Sendo: \hat{Y} : valor predito para o consumo de cerveja (litros por mil habitantes) X: temperatura (°C)

Interpretação de b:

Aumentando-se um grau de temperatura (X), o consumo de cerveja (Y) aumenta, em média, 4,74 litros por mil habitantes.

A equação de regressão para os dados sobre gastos com propaganda (em milhares de dólares) e vendas da empresa (em milhares de dólares) é: $\hat{y} = 104,061 + 50,729$. x

Use essa equação para prever as vendas *esperadas* da empresa para os seguintes gastos com propaganda:

- 1,5 mil dólares
- 1,8 mil dólares
- 2,5 mil dólares

• <u>1,5 mil dólares</u>

$$\hat{y} = 104,061 + 50,729x$$

 $\hat{y} = 104,061 + 50,729(1,5) \approx 180,155$

Quando os gastos com propaganda são de \$1500, as vendas da empresa são cerca de \$180,155.

1,8 mil dólares

$$\hat{y} = 104,061 + 50,729(1,8) \approx 195,373$$

Quando os gastos com propaganda são de \$1800, as vendas da empresa são cerca de \$195,373.

• 2,5 mil dólares

$$\hat{y} = 104,061 + 50,729(2,5) \approx 230,884$$

Quando os gastos com propaganda são de \$2500, as vendas da empresa são cerca de \$230,884.

Valores de previsão são significantes somente para valores x na (ou próximos à) faixa dos dados. Os valores x do conjunto original de dados variam de 1,4 a 2,6. Portanto, não seria apropriado usar a equação de regressão para prever as vendas da empresa por gastos com propaganda, tais como 0,5 (\$ 500) ou 5,0 (\$ 5.000).

X : tempo de estudo (em horas)

Y: nota da prova

Pares de observações (X, Y) para cada estudante

Tempo(X)	Nota(Y)		
3,0	4,5		
7,0	6,5		
2,0	3,7		
1,5	4,0		
12,0	9,3		

No exemplo 1:

Tempo (X)	Nota (Y)	(X - X)	$(Y - \overline{Y})$	(X-X)(Y-Y)	$(X - \bar{X})^2$
3,0	4,5	-2,1	-1,1	2,31	(-2,1) ²
7,0	6,5	1,9	0,9	1,71	$(1,9)^2$
2,0	3,7	-3,1	-1,9	5,89	$(-3,1)^2$
1,5	4,0	-3,6	-1,6	5,76	(-3,6) ²
12,0	9,3	6,9	3,7	25,53	$(6,9)^2$
25,5	28,0	0	0	41,2	78,2

$$\bar{X} = 5,1$$
 $\bar{Y} = 5,6$

$$b = \frac{\sum[(x - \bar{x})(y - \bar{y})]}{\sum(x - \bar{x})^2} \qquad b = \frac{41.2}{78.2} = 0.53$$

$$a = \bar{y} - b \cdot \bar{x}$$
 $a = 5.6 - (0.53 * 5.1) = 2.90$

Aumentando-se uma hora de estudo (X), a nota (Y) aumenta, em média, 0,53 pontos.