Chapter #18

P-1

* a : Number of Addresses in the ISP block : $N = 2^{32-20} = 2^{12} = 4096$ or.

또한 8개의 organization과 각각 256개의 addresses를 가지고 있으므로

First Address는 16.12.64.0 / 20 이며, Last Address는 Unallocated Addresses가지

포함하여 16.12.79.255 / 20 입니다.

*b: Prefix Length for each organization = 32 - log_256 = 24 이므로.

Block	First Address	Last Address	n
1	16.12.64.0 / 24	16.12.64.255 / 24	24
2	16.12.65.0 / 24	16.12.65.255 / 24	24
3	16.12.66.0 / 24	16.12.66.255 / 24	24
4	16.12.67.0 / 24	16.12.67.255 / 24	24
ち	16.12.68.0 / 24	16.12.68.255 / 24	24
6	16.12.69.0 / 24	16.12.69.255 / 24	24
7	16.12.70.0 / 24	16.12.70.255 / 24	24
В	16.12.71.0 / 24	16.12.71.255 / 24	24
Unallocated	16.12.72.0 / 21	16.12.79.255 / 21	21

* c:[Forwarding Table]

Prefix	Interface	
00010000 00001100 01000000	m1	ml @
00010000 00001100 01000001	m2	
00010000 00001100 01000010	m3	
00010000 00001100 01000011	m4	
00010000 00001100 01000100	m5	<u>m5</u>
00010000 00001100 01000101	m6	<u>mo</u> <u>m6</u> ©
00010000 00001100 01000110	m7	m7 ⑦
00010000 00001100 01000111	mB	Discard (8)
00010000 00001100 01001	Discard	
Default	mD	

P-2 Total Number of Addresses = 2°8 = 256 olz.

그리고 4개의 Network가 있으므로 각 Network는 64개의 Address를 가집니다.

각각 (0 ~ 63), (64 ~ 127), (128 ~ 191), (192 ~ 255)를 가십니다.

Prefix Length for each group = 8 - log264 = 2 0 但至,

Block	Range in Binary	n	Prefix
D	00000000 ~ 00111111	2	DD
1	01000000 ~ 01111111	2	01
2	10000000 ~ 10111111	2	10
3	11000000 ~ 11111111	2	11

Ltorward	ding lable]		_		_
Prefix	Interface	/	mO	0/2	0~63
DD	mO		m1		= 64~127
01	m1		m2	- 	
10	m2			128/2	128~191
11	m 3		m3		7

P-3 * a : 00000000 00000000 00000000, Mask = 0.0.0.0

* b: 1111111 11111100 00000000 00000000, Mask = 255.252.0.0

* c: 11111111 11111111 11111111 11111100, Mask = 255.255.255.252

P-# DHCP에는 IP 주소를 요청할 때 호스트나 컴퓨터에 IP 주소를 할당할 수 있는 기능이 있습니다. DHCP 동적 호스트 구성 프로토콜은 클라이언트 서버 프로토콜이며, 이 프로토콜은 매우 효율적인 방식으로 IP 주소를 활용하여 효율성을 향상시킬 수 있습니다. DHCP는 요청을 수신하면 클라이언트에 주소를 할당합니다. organization에 호스트 수보다 작은 주소 Block이 할당되면 DHCP는 IP 주소가 필요한 호스트에 주소를 동적으로 할당하고, 호스트 작업이 완료된 후 IP 주소를 요청하는 다른 호스트에 주소를 할당합니다. 즉, 호스트가 인터넷에 액세스하려고 할 때마다 새 IP 주소가 생성됩니다.

P-5 N = 2^(32-n) 이므로.

* $a(n = 0): 2^{32-0} = 2^{32}$

 $*b(n = 14): 2^{32-14} = 2^{18}$

 $*c(n = 32): 2^{32-32} = 2^0 = 1$

P-6 Prefix Length = 32 - log2N 이므로.

- * a (N = 1): $32 \log_2 1 = 32 0 = 32$
- * $b (N = 1024) : 32 \log_2 1024 = 32 10 = 22$
- $*c(N = 2^32): 32 \log_2 2^32 = 32 32 = 0$

P-7 DHCP는 Host가 인터넷에 Access해야 할 경우 할당된 주소 중 하나를 동적으로 할당합니다.

NAT는 Host에게 Private Address를 영구적으로 할당하고, Host가 인터넷을 사용해야 할 경우

Private Address를 Global Address에 Mapping합니다.

P-B

- * a (130.35.54.12): 130 in 128 ~ 191 = Class B
- * b (200.36.2.3): 200 in 192 ~ 223 = Class C
- * c (245.24.2.8): 245 in 240 ~ 255 = Class E

P-9 N = 2^(32-16) = 2^16 이므로,

- * a : Number of Addresses in each subnet = $2^16 / 1024 = 2^16 / 2^10 = 2^6 = 64$
- * b : Subnet Prefix = $32 \log_{2} 64 = 32 6 = 26$
- * c (First Subnet): First Address = 130.56.0.0 / 26, Last Address = 130.56.0.63 / 26
- * d (Last Subnet): First Address = 130.56.255.192 / 26 , Last Address = 130.56.255.255 / 26

P-10 전체 Block을 0.0.0.0 / 0으로 나타낼 수 있으며 Class의 First Address는 0.0.0.0 입니다.

이로 인해 Block을 결정하는 비트가 없으면 Prefix 값은 0 입니다.

또한 Number of Addresses in block = 2~(32-n) 이므로.

Prefix 값이 0 이어야만 2^32 값이 나올 수 있습니다.

P-11

- * a (01110111 11110011 10000000 11011101): First Bit = 0 -> Class A
- * b (11101111 11000000 11110010 00011101): First Four Bits = 1110 -> Class D
- * c (11011111 10110000 00011111 01011110): First Three Bits = 110 -> Class C

- * Packet이 Router R2에 도착한다면, Prefix Length인 /26이 주소에 적용되어
 Network Address가 140.24.7.194 / 26이 되기 때문에 Packet은 Interface m1에 전송되고
 Organization 4로 전송되어 Router R1에 도달하지 않습니다.
- * Organization 1~3 중 하나가 해당 Packet을 보낼 수 있기 때문에 Packet은 Interface mD, m1, m2 중 하나에 도착할 수 있습니다. 이후에 Prefix Length로 /26이 주소에 적용되어 Network Address가 140.24.7.194 / 26이 되며, 해당 결과를 포함하는 Network Address / Mask가 없으므로 Packet은 Router R2로 전송됩니다.

P-13

- * a: 1111111 11100001 00000000 00000000 -> Mask (X)
- * b: 1111111 11000000 00000000 00000000 -> Mask (O)
- * c: 11111111 11111111 11111111 00000110 -> Mask (X)

* a : Number of Addresses in the ISP block : $N = 2^3 - 21 = 2^1 = 2048 \text{ or}$.

또한 각각 500개의 addresses를 가지는 2개의 organization, 각각 250개의 addresses를 가지는

2개의 organization, 각각 50개의 addresses를 가지는 3개의 organization을 가집니다.

First Address = 80.70.56.0 / 21 이며, Last Address = Unallocated Addresses까지

포함하여 80.70.63.255 / 21 입니다.

*b: Prefix Length for each organization = 32 - log_N 이므로.

Block	Size	First Address	Last Address	n
1	512	80.70.56.0 / 23	80.70.57.255 / 23	23
2	512	80.70.58.0 / 23	80.70.59.255 / 23	23
3	256	80.70.60.0 / 24	80.70.60.255 / 24	24
4	256	80.70.61.0 / 24	80.70.61.255 / 24	24
ち	64	80.70.62.0 / 26	80.70.62.63 / 26	26
6	64	80.70.62.64 / 26	80.70.62.127 / 26	26
7	64	80.70.62.128 / 26	80.70.62.191 / 26	26
Unused	320	80.70.62.192	80.70.63.255	

* c: [Forwarding Table]

Prefix	Interface				
01010000 01000110 0011100	m1				
01010000 01000110 0011101	m2			ml	_ @
01010000 01000110 00111100	m3				- @
01010000 01000110 00111101	m4			m3	- @
01010000 01000110 00111110	00 m5			m4 m5	- ⊕
01010000 01000110 00111110	01 m6	MO		m6	-G
01010000 01000110 00111110	10 m7			m7	− <i>©)</i> −⑦
01010000 01000110 00111110	11 Discard				9
01010000 01000110 00111111	Discard		Discard		
Default	mO				

* a : 2^16 = 65536

* b : 16^6 = 16777216

 $*c:8^4 = 4096$

P-16 Total Number of Addresses = 2^9 = 512 012,

각각 64, 192, 256개의 Address를 갖는 3개의 Network가 있으므로,

각각 (0 ~ 63), (64 ~ 255), (256 ~ 511)를 가십니다.

Prefix Length for each group = 9 - log2N 이므로.

Block	Range	Range in Binary	n	Prefix
D	0 ~ 63	000000000 ~ 000111111	3	DDD
1-1	64 ~ 127	001000000 ~ 001111111	3	001
1-2	128 ~ 255	010000000 ~ 011111111	2	01
2	256 ~ 511	100000000 ~ 111111111	1	1

[Forwarding Table]

P-17

* a: 10101010 00101000 00001011 -> 24 bits

* b: 01101110 00101000 111100 -> 22 bīts

* c: 01000110 00001110 00 -> 18 bits

P-18

* a: 11111111 11100000 00000000 000000000 \rightarrow n = 11

* b: 11111111 11110000 00000000 00000000 -> n = 12

* c: 11111111 11111111 11111111 10000000 -> n = 25

```
P-19
* a: 94.176.117.21
* b: 137.142.208.49
* c: 87.1.32.55.15
P-20
* a (14.12.72.8 / 24):
- First Address = 00001110 00001100 01001000 00000000 = 14.12.72.0 / 24
- Last Address = 00001110 00001100 01001000 11111111 = 14.12.72.255 / 24
* b (200.107.16.17 / 18):
- First Address = 11001000 01101011 00000000 00000000 = 200.107.0.0 / 18
- Last Address = 11001000 01101011 00111111 11111111 = 200.107.63.255 / 18
* c (70.110.19.17 / 16):
- First Address = 01000110 01101110 00000000 00000000 = 70.110.0.0 / 16
- Last Address = 01000110 01101110 11111111 11111111 = 70.110.255.255 / 16
```

P-21 Total Number of Addresses = 2^12 = 4096 이고.

각각 512개의 Address를 갖는 8개의 Network가 있으므로.

각각 (0 ~ 511), (512 ~ 1023), ..., (3584 ~ 4095)를 가집니다.

Prefix Length for each group = 12 - log_512 = 3 이므로.

Block	Range	Range in Binary	n	Prefix
D	0 ~ 511	000000000000 ~ 000111111111	3	000
1	512 ~ 1023	001000000000 ~ 001111111111	3	001
2	1024 ~ 1535	010000000000 ~ 010111111111	3	010
3	1536 ~ 2047	011000000000 ~ 011111111111	3	011
4	2048 ~ 2559	100000000000 ~ 100111111111	3	100
ち	2560 ~ 3071	101000000000 ~ 101111111111	3	101
6	3072 ~ 3583	110000000000 ~ 110111111111	3	110
7	3584 ~ 4095	111000000000 ~ 111111111111	3	111

[Forwarding Table]

	<u> </u>				
Prefix	Interface				
DDD	mO	2048/3	m 1	mO	0/3
001	m1		m5		
010	m2	2560/3	m6	m2	512/3
011	m3	2.22.42			1024 /2
100	m4	3072/3		m3	1024/3
101	m5	3584/3		MO	1536/3
110	m6				
111	m7				

* a: 01101110 00001011 00000101 01011000

* b : 00001100 01001010 00010000 00010010

* c: 11001001 00011000 00101100 00100000

P-23

Block	Size	First Address	Last Address
а	2^(32-26) = 2^6	16.27.24.0 / 26	16.27.24.63 / 26
Ь	2^(32-26) = 2^6	16.27.24.64 / 26	16.27.24.127 / 26
С	2^(32-25) = 2^7	16.27.24.128 / 25	16.27.24.255 / 25

New Block은 256개의 Address를 가짐 -> n = 32 - log, 256 = 24 이므로,

* Original Blocks

* New Block

n:24

N:256

P-24

Organization	First Address	Last Address
Large organization	12.44.184.0 / 21	12.44.191.255 / 21
Medium organization	12.44.184.0 / 22	12.44.187.255 / 22
Small organization 1	12.44.188.0 / 23	12.44.189.255 / 23
Small organization 2	12.44.190.0 / 23	12.44.191.255 / 23

[Forwarding Table]

Network Address / Mask	Interface	
00001100 00101100 1011110	Small organization 1	
00001100 00101100 1011111	Small organization 2	
00001100 00101100 101110	Medium organization	

- * Destination Address가 12.44.185.0인 Packet이 도착했다고 가정한다면,
- Router는 먼저 처음 23비트를 추출하여 Table의 첫 번째 행과 일치하는지 확인합니다.
- 그 후 일치하지 않는다면 두 번째 행과 일치하는지 확인합니다. 두 번째 행과도 일치하지 않는다면
- 처음 22비트를 추출하여 마지막 행과 일치하는지 확인합니다. 마지막 행과 일치하므로
- Packet이 Medium organization의 Interface로 올바르게 전달됩니다.
- * Destination Address가 12.44.191.0인 Packet이 도착했다고 가정한다면,
- Router는 먼저 처음 23비트를 추출하여 Table의 첫 번째 행과 일치하는지 확인합니다.
- 그 후 일치하지 않는다면 두 번째 행과 일치하는지 확인합니다. 두 번째 행과 일치하므로
- Packet이 Small organization 2의 Interface로 올바르게 전달됩니다.
- * Destination Address가 12.44.189.0인 Packet이 도착했다고 가정한다면,
- Router는 먼저 처음 23비트를 추출하여 Table의 첫 번째 행과 일치하는지 확인합니다.
- 첫 번째 행과 일치하므로 Packet이 Small organization 1의 Interface로 올바르게 전달됩니다.

P-25

- * Router R2는 Mask /26를 주소(또는 가장 왼쪽에 있는 26비트를 추출)에 적용하여
- Network Address / Mask 140.24.7.0 / 26을 생성하며, 이는 Forwarding Table의
- 첫 번째 항목과 일치하지 않습니다.
- * Router R2는 Mask /24를 주소(또는 가장 왼쪽에 있는 24비트를 추출)에 적용하여
- Network Address / Mask 140.24.7.0 / 24를 생성하며, 이는 Forwarding Table의
- 두 번째 항목과 일치합니다. Packet은 Interface mD에서 라우터 R1로 전송됩니다.
- * Router R1은 Mask /26을 주소(또는 가장 왼쪽에 있는 26비트를 추출)에 적용하여
- Network Address / Mask 140.24.7.0 / 26을 생성하며, 이는 Forwarding Table의
- 첫 번째 항목과 일치합니다. Packet은 Interface mD에서 Organization 1로 전송됩니다.