

SpaceNet: Make Free Space For Continual Learning

Elsevier Neurocomputing Journal

Ghada Sokar (PhD Student)

Eindhoven University of Technology, The Netherlands

g.a.z.n.sokar@tue.nl

Continual Learning

Class Incremental Learning

Continual Learning

Class Incremental Learning

Why does the network forget?

Why does the network forget?

- When the task arrives, it utilizes all the available capacity (network parameters)
- It does not account for previous tasks or leave space for future tasks

Does each task really need the full capacity?

Does each task really need the full capacity?

• Deep neural networks are often over parameterized

Does each task really need the full capacity?

- Deep neural networks are often over parameterized
- Direct training of *sparse networks* achieves the same performance of dense network (Mocanu et al., 2018 Nature communication [1])

Test accuracy% (top-5, top-1) of Resnet-50 trained on Imagenet [2] **top-5**

		Density level (# Parameters)
Adaptive	000	SET [1]
Sparse Training		Dynamic sparse [2]
Static Sparse NN	88	Static sparse

20% (7.3M)	10% (5.1M)	100% (25.6M
91.2	90.1	
92.4	90.5	92.4
		32.1
90.4	88.4	

20% (7.3M)	10% (5.1M)	100% (25.6M)
72.6	70.4	
73.3	71.6	74.9
		74.9
71.6	67.8	

top-1

Number of parameters can be reduced by 80~90% without degrading accuracy

^[2] Mostafa, Hesham, and Xin Wang. "Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization." International Conference on Machine Learning. PMLR, 2019.

^[1] Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 1-12.

How does the brain process information?

Neuroscience observations

- Neurons encode information in a sparse and distributed way (Attwell and Laughlin, 2001[1])
- The percentage of neurons active at the same time to be between 1% and 4% (Lennie, 2003[2])

The brain is so efficient even though the activity of neurons is highly sparse

[1] Attwell, D. and Laughlin, S. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–1145 [2] Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493–497.

SpaceNet: Make Free Space For Continual Learning

SpaceNet

Key Idea I

Allocate sparse connections for each task between the free neurons

SpaceNet

Key Idea II

Train each task using *adaptive sparse training* in which we *compact* the sparse connections in the most *important* neurons for that task

Produce sparse representation and Leave free space for future tasks

Results – Connections distribution

Split MNIST

Results – Performance

Split MNIST

Strategy	Method	Accuracy (%)
	EWC [1]	20.01
Regularization	SI [2]	19.99
	DGR [3]	90.79
Rehearsal	SpaceNet-Rehearsal	95.08
	SpaceNet (ours)	75.53
Architectural	Static-SparseNN	61.25

^[1] Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.

^[2] Zenke, Friedemann, Ben Poole, and Surya Ganguli. "Continual learning through synaptic intelligence." International Conference on Machine Learning. PMLR, 2017.

^[3] Shin, Hanul, et al. "Continual learning with deep generative replay." Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.

Results – Performance

Split MNIST

Strategy	Method	Accuracy (%)
	EWC	20.01 ± 0.01
Regularization	SI	19.99 ± 0.11
Rehearsal	DGR	90.79 ± 1.02
Architectural	DEN	56.95 ± 1.29
	SpaceNet (ours)	75.53 ± 1.82
	Static-SparseNN	61.25 ± 2.30

^[1] Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.

^[2] Zenke, Friedemann, Ben Poole, and Surya Ganguli. "Continual learning through synaptic intelligence." International Conference on Machine Learning. PMLR, 2017.

^[3] Shin, Hanul, et al. "Continual learning with deep generative replay." Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.

Results

• Cifar-10/100

Task 1 CIFAR 10 (All classes) Task 2 CIFAR 100 (Classes 1-10) Task 3 CIFAR 100 (Classes 11-20) Task 4 CIFAR 100 (Classes 21-30) Task 5 CIFAR 100 (Classes 31-40)

Task 6CIFAR 100
(Classes 41-50)

✓ Rehearsal-Free

✓ Rehearsal-Free

✓ Utilize the fixed capacity

- ✓ Rehearsal-Free
- ✓ Utilize the fixed capacity
- √ Task-agnostic inference

- ✓ Rehearsal-Free
- ✓ Utilize the fixed capacity
- √ Task-agnostic inference
- ✓ Train each task using sparse training
 - ✓ Sparse representations to reduce forgetting
 - ✓ Compact space for each task, leaving room for future tasks

Future work and open questions

How about a larger sequence of tasks?

Can we allow for positive backward transfer as well?

 Can we use some of the previously allocated connections instead of allocating new ones?

Thank You!

Questions?

Feel free to reach out!

g.a.z.n.sokar@tue.nl

SpaceNet: Make Free Space For Continual Learning

Decebal Mocanu^{1,2}

Mykola Pechenizkiy¹

¹ Eindhoven University of Technology, The Netherlands

² University of Twente, The Netherlands

Journal: Elsevier Neurocomputing Journal

Preprint: https://arxiv.org/pdf/2007.07617.pdf

