

Motivation

Social media has become a powerful communication platform, but comments vary widely in quality and intent. Efficiently scoring and understanding comment sentiment can help filter harmful content and highlight constructive contributions.

Results

The system successfully predicts sentiment scores with acceptable accuracy and demonstrates basic comment generation. Results include validation accuracy and example comment-score pairs generated by the model.

Literature

Socher et al., 2013: "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank"

Devlin et al., 2019: "BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding"

Radford et al., 2019: "Language Models are Few-Shot

Tokenizes comments (max length 128)
Converts scores to tensors
Handles padding and truncation
Returns batched input_ids, attention_mask,
scores

Training Loop Features:

AdamW optimizer (Ir=2e-5)
MSE loss function
Batch size: 4
5 epochs default
Device-agnostic (CPU/GPU)

Usage Components:

Tokenizer initialization
Model instantiation
Example data loading
Prediction pipeline
Score output formatting

Training and Evaluation

Loss Function: Use a suitable loss function like mean squared error (MSE) or mean absolute error (MAE) for regression. Optimization: Use an optimizer like Adam or SGD to update model parameters.

Evaluation Metrics: Evaluate the model's performance using metrics like RMSE, MAE, and correlation coefficient.

Predicted Results

Predicted score for 'You are so bad!': -0.14

Predicted score for 'This is OK.': 0.04

Predicted score for 'You are the best in the world!': 0.01

