Matching – 1 point each question

1.
$$r = 4\cos(3\theta)$$

2.
$$r = 4 + 2\cos(\theta)$$

3.
$$r = 3\csc(\theta)$$

4.
$$r = 4\sin(3\theta)$$

5.
$$r = \theta/2$$

6.
$$r = 4\sin(\theta) + 4\cos(\theta)$$

7.
$$r = 1 - 3\sin(\theta)$$

8.
$$r^2 = 4\sin^2(\theta)$$

9.
$$r = 3 + 2\sin(\theta)$$

10.
$$r = 3 - 2\sin(\theta)$$

11.
$$r = 1 + 3\cos(\theta)$$

12.
$$r = 3\sec(\theta)$$

$Short\ Answer-2\ pts\ each$

Work must be shown for credit.

1. Convert the polar coordinate to rectangular coordinates: $(-2,2\pi/3)$

2. Convert the polar coordinate to rectangular coordinates: $(4,-\pi/2)$

3. Convert the rectangular coordinate to polar coordinates: $(15, 5\sqrt{3})$

4. Convert the rectangular coordinate to polar coordinates: (-12, -12)

4. _____

5. Convert the rectangular equation to polar: $x^2 + y^2 = 16$

6. Convert the rectangular equation to polar: 2xy = 1

7. Convert the polar equation to rectangular: $\theta=2\pi/3$

8. Convert the polar equation to rectangular: $r = \frac{2}{1 + \sin \theta}$

7. _____

8. ____

9. Find the intersection points of $r = 3\cos\theta$ and $r = \sqrt{3}\sin\theta$

9. _____

Free Response Section

Calculator Active

At time t, a particle moving in the xy-plane is at position (x(t),y(t)), where x(t) and y(t) are not explicitly given. For $t \ge 0$, $\frac{dx}{dt} = 4t + 1$ and $\frac{dy}{dt} = \sin\left(t^2\right)$. At time t = 0, x(0) = 0 and y(0) = -4.

1. Find the speed of the particle at time t=3

2. Find the acceleration vector of the particle at time t=3.

3. Find the slope of the line tangent to the path of the particle at time t=3.

4. Find the position of the particle at time t=3.

5. Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.