

(Группа)

Преподаватель

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ациональный исследовательский униве

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬ	ТЕТ «Информатика і	и системы управления»	
КАФЕДР	А «Компьютерные си	стемы и сети»	
НАПРАВ.	ЛЕНИЕ ПОДГОТОВИ	ΚИ «09.03.01 Информатика и вычи	слительная техника»
	OTYET		
		по лабораторной работе	№ 1
Названи	те: «Непрерывные,	дискретные и цифровые сигна	алы»
Дисцип.	л ина: «Основы тес	ории обработки цифровых сигн	Iалов»
		Ates	
Ступонт	UV6 62F	/ V ()	A F Молролов

(Подпись, дата)

(Подпись, дата)

(И. О. Фамилия)

A.A.Сотников (И. О. Фамилия)

Цель работы

Практическое исследование этапов аналого-цифрового преобразования сигналов с использованием современных средств имитационного моделирования. Сравнительный анализ аналогового, дискретного и цифрового сигналов. Приобретение практических навыков применения программных средств имитационного моделирования цифровых сигналов.

Задачи

- 1. Выполнить имитационное моделирование аналогового гармонического сигнала одной частоты, описываемого функцией $x(t) = \exp(-t) * \cos(2\pi t) + 1$ на временном интервале $t \in [t_{min}; t_{max}]$ с использованием символьных переменных;
- 2. Построить график функции, описывающей аналоговый сигнал;
- 3. Выполнить моделирование аналого-цифрового преобразования с частотой дискретизации fd и разрядностью b. Кодирование сигнала реализовать с помощью прямого, обратного или дополнительного кода;
- 4. Построить графики соответствующих функций для дискретного, квантованного и цифрового сигналов;
- 5. Оценить параметры шума квантования сигнала, построить гистограмму статистического распределения абсолютной погрешности квантования и сопоставить полученные результаты с теоретическими значениями

Решение

Код, представленный в листинге ??, описывает работу аналогово, дискретного, квантованного и цифрового сигналов.

Графики представлены на рисунке ??.

Листинг 1 – Исходный код программы

```
import matplotlib.pyplot as plt
  import numpy as np
2
3
  def f(t):
4
       return (np.exp(-t) * np.cos(2*np.pi*t) + 1)
5
6
7
  b = 17
  A = 1
9
  N=2^b
10
  q = 2 * A / (N - 1)
11
12
   def quantum(t):
13
       buffer = (np.exp(-t) * np.cos(2*np.pi*t) + 1)
14
15
16
       for i in range(buffer.size):
            out = 0
17
            while buffer[i] > q:
18
                out += q
19
                buffer[i] = buffer[i] - q
20
            buffer[i] = out
21
       return buffer
22
23
24
25
  |fd = 0.5|
26
  |start = 0.0
27
   stop = 5.0
29
  t1 = np.arange(start, stop, fd)
  t2 = np.arange(start, stop, fd / 100000)
31
32
```

```
33 plt.figure()
  plt.subplot(212)
  plt.plot(t2, f(t2), 'k')
35
36
37
38
  plt.figure()
  plt.subplot(212)
  plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
40
41
  plt.figure()
42
43 | plt.subplot (212)
   plt.plot(t1, f(t1), 'bo', t1, quantum(t1), 'k')
45
46 | plt.figure()
  plt.subplot(212)
  plt.plot(t2, f(t2), 'k', t1, f(t1), 'bo', t1, quantum(t1), 'k')
48
49
50 plt.figure()
  plt.subplot(212)
51
  plt.plot(t1, f(t1) - quantum(t1), 'bo', t1, f(t1) - quantum(t1),
      'k')
53
54
|x| = np.arange(start, stop)
  y = f(t1) - quantum(t1)
57
  fig, ax = plt.subplots()
58
59
60
   ax.bar(t1, f(t1) - quantum(t1))
61
62 ax.set_facecolor('seashell')
63 | fig.set_facecolor('floralwhite')
64 | fig.set_figwidth(12)
                            #
                               ширина Figure
65 | fig.set_figheight(6)
                            # высота Figure
66
67
68 | plt.show()
```


Рисунок 1 – Графики различноых сигналов

Вывод

В ходе выполнени лабораторной работы были изучены форматы сигналов, способы перехода от аналогового к дискретному сигналу, уровни квантования и частоты дискритизации.