

AD-787 059

**AEROMECHANICAL ANALYSIS OF A TOW
TARGET SYSTEM INSTALLED ON THE A-4
AIRPLANE**

D. W. Carroll

**Naval Air Development Center
Warminster, Pennsylvania**

4 September 1974

DISTRIBUTED BY:

**National Technical Information Service
U. S. DEPARTMENT OF COMMERCE**

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AD 787 059

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NADC-74150-30	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) AEROMECHANICAL ANALYSIS OF A TOW TARGET SYSTEM INSTALLED ON THE A-4 AIRPLANE		5. TYPE OF REPORT & PERIOD COVERED Phase Report
7. AUTHOR(s) D. W. Carroll		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Vehicle Technology Department (Code 30) Naval Air Development Center Warminster, Pennsylvania 18974		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AIRTASK NO. A5355351-0014- 4535000001
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Department of the Navy Washington, D. C. 20360		12. REPORT DATE 4 Sept 1974
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 168
16. DISTRIBUTION STATEMENT (of this Report)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		18. DECLASSIFICATION/DOWNGRADING SCHEDULE
19. SUPPLEMENTARY NOTES		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) Fleet Training Aero 7A Rack Tow Targets External Store Tow Reels A-4 Aircraft		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The tow target system installation, analyzed in this report is intended for towing large towed targets for air-to-air and surface-to-air weapon training firing exercises. The system will also provide for the towing of smaller towed targets at towline lengths exceeding 6 miles. The analysis indicates that the installation is adequate, structurally, for target towing missions which are within the capability of the A-4 airplane. Flight test of the system is recommended to determine suitability for service use.		

DD FORM 1473 JAH 73

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

UNCLASSIFIED

1. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

168

NADC-74150-30

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Department responsible for the report. For example: Report No. NADC-73015-40 indicates the fifteenth Center report for the year 1973, and prepared by the Crew Systems Department. The numerical codes are as follows:

CODE	OFFICE OR DEPARTMENT
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Program and Financial Management Department
03	Anti-Submarine Warfare Program Office
04	Remote Sensors Program Office
05	Ship and Air Systems Integration Program Office
06	Tactical Air Warfare Office
10	Naval Air Facility, Warminster
20	Aero Electronic Technology Department
30	Air Vehicle Technology Department
40	Crew Systems Department
50	Systems Analysis and Engineering Department
60	Naval Navigation Laboratory
81	Administrative and Technical Services Department
85	Computer Services Department

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

ACCESSION FOR	
RTIS	Print Section <input checked="" type="checkbox"/>
DVC	Building <input type="checkbox"/>
UNARMED	<input type="checkbox"/>
JOC/INSTRUCTION	
BY	
DISTRIBUTION/AVAILABILITY CODES	
Dist.	Avail. and/or Critical

APPROVED BY:

P. D. STOGIS
Commander, USN
Deputy Director, AVTD

DATE: 4 Sept 1974

SUMMARY

This report provides the results of an aeromechanical analysis of the flight worthiness of a tow target system installation for the A-4 airplane.

The tow target system consists of a modified RMU-8/A reel-launcher installed on the centerline Aero 7A bomb rack, controlled by a panel mounted in the left hand console in the cockpit (forward cockpit of "T" models of the A-4), 0.182 inch-diameter 3 x 7 cable towline (10,800 feet stored on the reel-launcher spool) and a large profile fighter tow target such as the "FIGAT". This system configuration, which is analyzed herein is considered the "worst case" among configurations which would include long towlines, air-launched and other drag launched towed targets and the new RMK-19/A47U-3 reel-launcher.

The system installation is structurally sensitive to yaw and to side load factor; however, the installation is considered adequate for target towing missions which are within the capability of the A-4 airplane. Mission capability is dependent upon the installed engine.

A-4s with J65-W-20 or J52-P-6 engines will be limited to towing maneuvers less than 2G. A-4s with the J52-P-8 or higher thrust engines can provide towing maneuvers to 3G. These limitations are imposed as a result of target tracking and towline geometry characteristics during low airspeed, high G turns and do not reflect a structural problem.

The following recommendations are advanced:

1. Due to yaw and side load sensitivity, it is recommended that rolling pullouts, abrupt control displacement and yawed flight be prohibited.
2. It is recommended that flight test of the system be conducted with the guidance provided in this report, to determine suitability for service use.

T A B L E O F C O N T E N T S

	<u>Page No.</u>
SUMMARY	1
LIST OF FIGURES	3
INTRODUCTION.	5
DISCUSSION.	5
CONCLUSIONS	7
REFERENCES.	8
APPENDIX A.	A-1
APPENDIX B.	B-1
APPENDIX C.	C-1
APPENDIX D.	D-1

L I S T O F F I G U R E S

<u>Figure No.</u>	<u>Title</u>	<u>Page No.</u>
1	Modified RMU-8/A Installed on TA-4J Airplane.	6

Preceding page blank

INTRODUCTION

Under reference (a) the NAVAIRDEVcen was tasked to develop a prototype large diameter power unit and a semi-automatic control system for the RMU-8/A reel-launcher. This development was successfully completed and tested on A-4 and F-4 airplanes as reported in reference (1).

The analysis generated for the purpose of prototype tests on the A-4 was not, however, adequate to justify tests for service suitability. This report provides the analysis considered necessary to justify service suitability tests.

DISCUSSION

The tow target system installation, as shown in figure 1, consists of a RMU-8/A (modified with a 30 inch diameter power unit and semi-automatic control system) installed on the centerline Aero 7A bomb rack of the A-4 airplane. A control panel is installed in the left hand cockpit console (forward cockpit of "T" models of the A-4). The reel-launcher spool is loaded with 10,800 feet of 0.182 inch-diameter 3 x 7 cable towline which is used to tow a large drag launched target such as the "FIGAT". Very long stepped diameter towlines may be loaded in the reel-launcher spool for operation with air launched targets which provide sufficient ground clearance for take-off and landing.

The analysis which was performed is provided in Appendix A. Supporting investigation and analysis of the Aero 7A centerline rack is provided in Appendix B and an analysis of the bolt reactions at the rack-airplane interface is provided in Appendix C.

The flight worthiness of the system is constrained by A-4 engine performance, the sway brace strength of the Aero 7A rack and the airplane structure supporting the store suspension system.

For a tow target mission with the "FIGAT", excess thrust of 2,000-3,000 pounds is required with wing tanks and the reel-launcher installed. The availability of excess thrust must coincide with a minimum airspeed required to maintain target and towline tracking in a maneuver. In addition, clearance between the towline and the reel-launcher pod surfaces must be maintained. These tracking and geometry requirements are exclusive of structural considerations.

High sway brace loads result from airplane yaw and side load factor due to rolling pull-out maneuvers. For the Aero 7A rack, the store yaw angle also increases with yawing moment due to yaw shift of the store in the suspension hooks. For the reel-launcher installation, the worst combination occurs when the reel-launcher spool is full and there is no target installed. Store weight, center of gravity position and center of pressure position maximize sway brace load for this case.

In view of the sensitivity to side load factor and yaw, restriction of the maneuverability of the airplane is considered appropriate. All applicable

Preceding page blank

NADC-74150-30

Figure 1. Modified RMU-8/A Installed on TA-4J
Airplane.

recommended flight limitations and system rigging data are provided in Appendix D. Reel-launcher operating instructions are provided in reference (b). It is to be noted, however, that structural damage to the installation is unlikely even if these restrictions are not strictly adhered to; and, the restrictions do not constrain the tow target mission.

The analysis specifically addresses the towing of large drag launched targets. The configuration of the system can be readily altered for the launch, towing and recovery of towed targets which fit within the ground clearance envelope. The effect of this change on the analysis is to reduce sway brace reactions and bolt side loads due to the rearward shift of store center of gravity and center of pressure (target attached at reel-launcher tow point). Towing loads are also reduced due to the use of lower strength towline. Due to lower weight and a center of gravity position further aft, the RMK-19/A47U-3 reel-launcher would also produce lower loads on suspension components.

C O N C L U S I O N S

The tow target system analysis indicates that, although the system installation is sensitive to yaw and side load, the installation is adequate for towing large drag launched targets under take-off flight and landing conditions appropriate to shore based towing missions, including field arrests.

Ferry flight limitations are common to all A-4s. Towing missions are limited by airplane engine performance. A-4s with J65-W-20 or J52-P-6 engines will be limited to towing maneuvers less than 2G. A-4s with the J52-P-8 or higher thrust engines can provide maneuvers to 3G. Towing restrictions result from target tracking and towline geometry characteristics.

It is recommended that flight test of the system installation be conducted within the recommended limits provided in Appendix D in order to determine suitability for service use.

R E F E R E N C E S

- (a) AIRTASK A5355351-0014-4535000001.
- (b) D. W. Carroll, R. Rohrman, F. X. Doyle, "Prototype Development of a Power Unit and Control System for a Towing Reel and Target Launcher," NADC Report No. NADC-73086-30, 2 Aug 1973.

A P P E N D I X A

TOW TARGET SYSTEM ANALYSIS

APPENDIX A

I. INTRODUCTION

This Appendix provides the detailed analysis performed to appraise the flight worthiness of a tow target system installed on the Navy A-4 airplane. The system consists of a modified RMU-8/A reel-launcher, 0.182 inch - diameter 3 x 7 steel cable towline and a large profile fighter type target such as the "FIGAT." The reel-launcher is installed on the centerline mounted AERO 7A bomb rack of the A-4.

The analysis examines the following aspects of the installation.

- A. A-4 Performance Data
- B. Profile Fighter Target (FIGAT) Data
- C. A-4 Performance Estimation
- D. Towing Loads for Continuous Turns
- E. Maneuvering Formulas (Appropriate for examination of loads and load factors in the airspace or on flight axes)
- F. Reel-launcher Store Characteristics
- G. Reel-Launcher Aero Loads
- H. Suspension System (Under ferry flight, field arrestment and towing conditions)

II ANALYSIS OF TARGET SYSTEMA AIR PERFORMANCE DATA1. TOWING CONFIGURATION

2 700 C.G. RAMS ENGINES

TOWK-13/JETV-9, SP REAR-LINE OR FORWARD ONE

2. DATA SOURCE

SEE NADC-73017-30 (A-4E) & NADC-73072-30 (A-6C)
 FOR EXCESS THRUST AVAILABLE A-4 WITH J52-P-6
 & J65-W-10 ENGINES
 AND 2000 LBS FOR J52-P-6 ENGINED A-4s

3. TEST DATA

NADC NA-6C CONFIGURED AS ABOVE FOR
 TOWLINE TEST - TO GW = 21,700 LBS

PRIMARY LINE { Δ TENSION = 1200-1500 LBS.
 \circ TENSION = 700-1000 LBS

FIGURE A-1 TOWING TEST RESULTS - NADC NA-6C

B. PROFILE FIGHTER TARGET (FMGT) DATA

$$\alpha = \tan^{-1} [0.328 + (96.097 N_g / g)]$$

$$T_0 = [4.3942 / \cos \alpha]$$

FOR TARGET + TOWLINE DRAG ESTIMATES, SEE
FIGURE A-2

C. A-6 TOWING SYSTEM PERFORMANCE ESTIMATION

DATA PROVIDED ON FIGURE A-3 CONSIDERING
ENGINE DIFFERENCES ONLY

TOWLINE LENGTH (L) 1000 FT, 2000 FT, 6000 FT,
10,000 FT, $N_g = 1$

THRUST WITH W-20 & P-G ENGINE MARGINAL
FOR MANEUVER AT 20,000 FT. ALTITUDE

D. TOWING LOADS FOR CONTINUOUS TURNS**1. DATA SOURCE**

ORBITING PROGRAM DEVELOPED FROM
TACAMO,- NADC-AM-6849, FOR NSTTS
SAMPLE IN-PUT, OUT-PUT PAGES A-73 THROUGH A-81.
DATA IN CYLINDRICAL CO-ORDINATES.

SEE MANEUVERING FORMULAS, PAGE A-8, FOR
CALCULATION OF INPUT DATA AND CONVERSION
TO ROLLED FLIGHT AXIS.

2. OUT-PUT DATA

SEE FIGURE A-4 FOR TOWING LOADS

SEE TABLE A-1 FOR DATA SUMMARY

N_g & V ARE TARGET N_g & TRUE AIRSPEED (KNOTS)

FIGURE 2 TENSILE STRESS AT TENSILE STRAIN (σ_e)
PROJET FIGHTER POWERED TARGET (F.P.T.)

CONFIGURATION

2: 300 GAL WING TANKS
 ROLLER-SCHUTZ ON &
 ENGINES: KAP-W-20 (W-20)
 U52-P-6 (P-6)
 U52-P-8 (P-8)

DRAG INCREMENT MANEUVER

N₁ = 1 0 LBS
 N₂ = 2 600 LBS
 N₃ = 3 800 LBS

FIGURE A-3 A-4 TOWING SYSTEM PERFORMANCE ESTIMATE - PROFACE FIGHTER TARGET (FIGAT)

E. MANEUVERING FORMULAS1. TURN RADIUS (KNTAS & N_g INPUT)

$$r_g = V^2 / g \tan \phi = 0.0887 (\text{KNTAS})^2 / (N_g \cdot 1)^{0.5}$$

2. PULL-UP RADIUS (KNTAS & N_g INPUT)

$$r_g = V^2 / g (N_g - 1) = 0.0887 (\text{KNTAS})^2 / (N_g - 1)$$

3. AIRSPEED (KNTAS) - N_g & r INPUT

$$(\text{KNTAS}) = 3.3583 [r (N_g - 1)^{0.5}]^{0.5}$$

4. TOWLINE LOADS ON LAUNCHER (DATA FROM ORBITING PROGRAM)

P = TOWLINE LOAD VECTOR LENGTH

ΔL = LAST LENGTH INCREMENT OF TOWLINE AT TOWPLANE

Δr = EQUIVALENT RADIAL INCREMENT

Δg = EQUIVALENT ALTITUDE INCREMENT

x, y, z ARE ROLLED FLIGHT AXES WITH $(0, 0, 0)$
AT REEL-LAUNCHER TOW POINT - POSITIVE
FORCES ACTING AFT, DOWN & INTO TOW

$$P_x = \cos [\cos^{-1}(\frac{1}{N_g}) - \tan^{-1}(\frac{\Delta r}{\Delta g})] (\Delta r^2 + \Delta g^2)^{0.5}$$

$$P_y = \sin [\cos^{-1}(\frac{1}{N_g}) - \tan^{-1}(\frac{\Delta r}{\Delta g})] (\Delta r^2 + \Delta g^2)^{0.5}$$

$$RP_{xy} = \Delta L \cos [\sin^{-1}(\frac{P_z}{P})]$$

$$P_z = \cos [\sin^{-1}(\frac{P_x}{RP_{xy}})] RP_{xy}$$

P = FRACTION OF TOWLINE LOAD EQUIVALENT TO
VECTOR LENGTH

T_m = TOWLINE TENSION AT TOWPLANE

$$P = P/\Delta L$$

F = FORCE APPLIED BY TOWLINE

$$F = P T_m$$

**FIGURE A-4 TOWING LOANS SUMMARY
PROFILE FIGHTER TARGET (FIGAT) & 0.182 3X7 CABLE**

TABLE A-3

TANUS LOADS SUMMARY - 120MM FLUKE TARGET (ENCLAR)

INPUT DATA - existing program

M.L.T.	ANNUAL	MEG	CO.	TAS	NG	R	L	T ₀	P ₀₁	P ₀₂	P ₀₃	N ₀₁	N ₀₂
10,000	0.7	0.0125	1.64	447	3	6.224	2000	3340	.4587	.4297	.3669	3.12	466
1	0.6	0.0150	1.51	384	3	4.622	-1	2241	.1748	.0442	.9232	3.19	411
2.5	0.0170	1.60	319	3	3190	-	-	2475	.2097	.0530	.9763	3.33	358
0.7	0.0138	1.62	447	2	10225	-	-	2936	.1366	.0366	1.0000	2.04	458
0.6	0.0150	1.51	384	1	7548	-	-	2365	.1812	.0339	.9828	2.05	377
1	0.5	0.0170	1.60	319	1	5209	1	178	.1209	.0376	.9801	2.09	338
10,000	1.4	0.0210	1.30	256	-	3355	1000	6003	.2632	.0539	.9631	2.17	285
20,000	1.7	0.0155	1.64	430	-	9465	2000	1669	.0846	.0666	.9965	2.04	446
20,000	0.6	0.0155	1.51	369	-	6970	1	921	.1760	.0716	.9945	2.07	390
10,000	0.5	0.0170	1.60	307	2	485	-	1647	.1860	.0819	.9960	2.15	337
10,000	0.6	0.0155	1.51	384	3	1622	-	2986	.0079	.0821	.9761	3.22	415
1	0.5	0.0170	1.60	319	3	3790	-	5598	.0400	.1210	.9918	3.35	361
0.6	0.5	1.51	384	2	3795	-	-	2491	.0675	.0766	.9971	2.06	400
0.5	1	1.60	319	1	3795	1	-	2000	.2019	.0417	.0916	2.11	341
0.6	0.5	1.51	384	1	3000	-	-	0961	.0961	.1271	.9919	1.99	380
1	0.5	0.5	1.60	319	1	3000	-	1851	.1463	.1699	.9760	1.91	300
10,000	0.5	0.5	1.60	319	1	10,000	1519	1212	.1662	.9818	1.65	241	

Note: sign of P₀₁ opposite of MIL-A-8551

F. REEL-LAUNCHER STORE CHARACTERISTICS

1. DATA SOURCES

a. ACTUAL WT & BALANCE RAK-2/H (S/N 022)

SEE FIGURE A-5

b. ACTUAL WT. REPORT (TMC-0538-36-1)

RAK-19/A6TU-3 (FA-3)

SEE FIGURE A-6 FOR DIFFERENCE DATA

2. MOMENT OF INERTIA ESTIMATES FOR RAK-19A (S/N 022)

$$\begin{aligned} I_{xx} &= W' \dot{z}^2 + \Delta w_z^2 - w_z^2 + I'_{xx} \\ &= (809.8)(1.6)^2 + (56.2)(-1.5)^2 - (866)(1.4)^2 \\ &\quad + 35401 \\ &= 35903.48 \cdot \text{lb} \cdot \text{in}^2 - 0.8636,000 \text{lb} \cdot \text{in}^2 (k = 6.5) \end{aligned}$$

$$\begin{aligned} I_{yy} &= W' \dot{x}^2 + \Delta w_x^2 - w_x^2 + w' \dot{z}^2 + \Delta w_z^2 \\ &\quad - w_z^2 + I'_{yy} \\ &= (809.8)(62.3)^2 + (56.2)(8.4)^2 - (866)(58.8)^2 \\ &\quad + (809.8)(1.6)^2 + (56.2)(-1.5)^2 - (866)(1.4)^2 \\ &\quad + 821919 \\ &= 975,306 \text{ lb} \cdot \text{in}^2 - 0.86926,000 \text{ lb} \cdot \text{in}^2 (k = 33.6) \end{aligned}$$

$$\begin{aligned} I_{zz} &= W' \dot{x}^2 + \Delta w_x^2 - w_x^2 + I'_{zz} \\ &= (809.8)(62.3)^2 + (56.2)(8.4)^2 - (866)(58.8)^2 \\ &\quad + 816512 \\ &= 969,403 \text{ lb} \cdot \text{in}^2 - 0.86970,000 \text{ lb} \cdot \text{in}^2 (k = 33.7) \end{aligned}$$

SEE FIGURE A-7 FOR EQUIVALENT STORE DATA
APPLICABLE TO A-4 AERO-7A INSTALLATION

3. MOMENT OF INERTIA ESTIMATES FOR VARIABLE TOWLINE SPool LOADING

SEE TABLE A-II

FIGURE A-5 DIMENSIONAL DRAWING OF WEIGHT & BALANCE DATA
SPN-8/A SPN-022

FIGURE A-3 DIFFERENCE DATA - RMM-10/117U-3 & RMM-8A

FIGURE A-7 RHM-8/A, RHM-19/147W-3 EQUIVALENT STORE DATA

11	11	11
11	11	11

A/C TYPE	A-4	REEL TYPE	REEL-S/A
RACK TYPE	ABCO TA	REEL S/A	022
DIMENSIONAL DATA			
FWD LUG	65.8	0	13.5
ART LUG	95.8	0	13.5
FWD BRACE	70.8	±4.5	11.4
ART BRACE	90.8	±4.5	11.4
TOW PT	123.6	0	-3.6
C.G. NO REMAINING	58.8	0	0

卷之三

C. G. AND ROMA

TABLE A-II

DNU-8/4 3/11 022 weight, C.G. & moments of inertia w/ 0.182 3x7 state

ITEM	WEIGHT	H	WEIGHT	ΔI_x^2	ΔI_y^2	ΔI_z^2	ΔI_x	ΔI_y	ΔI_z	W	ΣwI	ΣwI_x	ΣwI_y	ΣwI_z	ΣwI_{xy}	ΣwI_{xz}	ΣwI_{yz}
Steel	966	58.8	50921	299403	36,000	972,000	92,000	866	90911	588	299444	24,000	972,000	866	1477	1477	1477
Platform	703	73.2	51460	326841	46,976	142099	1569	102381	65.3	669350	92,376	46,976	142099	1569	1477	1477	1477
Aluminum	573	41/44.5	3070272	11831	115015	1439	9246	64.6	599311	7172,831	1,443,239	1,443,239	1,443,239	1,443,239	1,443,239	1,443,239	1,443,239
Aluminum	313	↓	22912	1677730	4804	61998	61998	1179	73833	62.7	163975	40,846	163975	40,846	163975	40,846	163975
Aluminum	52	73.2	3807	278629	524	10163	918	9128	59.7	3222693	36,924	36,924	36,924	36,924	36,924	36,924	36,924

$$g = 986 \text{ cm/sec}^2$$

Total moment of inertia ($I_x^2 - I_y^2$)

$$\Delta I_y = \frac{\pi d^4}{32} \left[\frac{12d^2 + 10^3}{4\pi^2} + 18 \right]$$

$$\Delta I_y = \frac{\pi}{4} \left[\frac{12d^2 + 10^3}{4\pi^2} + 2796 \right]$$

Primer axis ($I_x^2 - I_y^2$)

$$I_{xy} = \Sigma A I_x$$

$$I_{xy} = \Sigma a x^2 - \Sigma x^2 + \Sigma A L_y$$

$$I_{xy} = \Sigma a y^2 - \Sigma y^2 + \Sigma A L_y$$

$$\Sigma A I_y = 2A I_y - 6000$$

G. REEL-LAUNCHED AERO LOADS1. DATA SOURCE

TMK 0590-13-1

DATA IS CORRECTED FOR

- a. 30 IN-DIA PWR. UNIT
- b. CALCULATION ERRORS
- c. PYLON DRAG
- d. PWR UNIT C_{Na} & C_{Nb}

2. AERODYNAMIC DERIVATIVES - DRAG

$$C_{D_{\text{TOTAL}}} = C_{D_0} + C_{D_p} + (\alpha^2 + \beta^2) + C_{D_{\text{BLF}}}$$

$$C_{D_0} = 0.105, 0.4 \leq M \leq 0.9$$

$$C_{D_{\text{BLF}}} = 0.0307$$

C_{D_p} = PYLON DRAG COEFFICIENT

$$= C_{P_{\text{cross}}} \frac{A_{\text{cross}}}{A_{\text{ref}}}$$

$$A_{\text{REF}} = 2.18 \text{ in}^2$$

$$A_{\text{cross}} = (6.5)(9) + (2)(3)(3) = 76.5 \text{ in}^2$$

LMAX O.L.E. L5.5 PADS

$$C_{P_{\text{cross}}} = 5.3 \frac{t/c}{(M-1)} \cdot \frac{(5.3)(6.5)}{(12)(1.5-1)} = 0.191$$

$$C_{D_p} = \frac{(0.191)(76.5)}{(2.18)(144)} = 0.0466$$

$$C_{D_{\text{TOTAL}}} = 0.1823 + (\alpha^2 + \beta^2), 0.4 \leq M \leq 0.9$$

NOTE - OTHER ESTIMATE 0.1556 FOR BMU-8/A
WITH 26"-D UNIT BASED ON F-4 DRAG COUNTS

3. AERODYNAMIC DERIVATIVES - NORMAL FORCE

CONSIDER $C_{Lx} \cdot C_{Nx} \cdot C_{Na} = C_{Nx}(B)$
POD ONLY

$$C_{Nx}(B)_{POD} = 2.00$$

PWR UNIT ONLY

(REF. TMC 5-1236)

Φ = TORQUE, $'$ = α

A_{BLADE} = EFFECTIVE BLADE AREA

$$r_{cp} = T.C. \text{ TUBE RADIUS, } ' = 10.16/12$$

$C_{L\text{BLADE}}$ = BLADE LIFT COEFFICIENT

$C_{cp,PW}$ = CENTER OF PRESSURE FOR PWR. UNIT = 10.35 IN.

$$Q = C_c Q_{\text{RADIALS}} r_{c,p} = 2 Q_c \bar{r} D^3$$

Q_c : TORQUE COEFFICIENT (NADC-73086-30)

$$D^3 = (39/12)^3 = 15.625 \text{ FT}^3$$

F_T : FORCE APPLIED AT RADIUS $r_{c,p}$

$$F_T = \frac{2 Q_c \bar{r} D^3}{r_{c,p}} = 36.91 Q_c \bar{r}$$

F_N : NORMAL FORCE APPLIED AT $r_{c,p,pu}$

$$F_N = F_T [2 + \frac{(4)(0.707)}{\bar{r}}] = 22.28 Q_c \bar{r}$$

SEE FIGURE A-B FOR PLOTTED DATA

$$C_{M2(\beta)} = 1.59, 0 < \alpha(\beta) \leq 0.05$$

$$= 1.64 - 2.26 \alpha(\beta), 0.05 < \alpha(\beta) \leq 0.25$$

NOTE - $C_{M2(\beta)}_{pu}$ NOT CONSIDERED IN ANY
PREVIOUS ANALYSIS

4. AERODYNAMIC DERIVATIVES - PITCH & YAW MOMENTS

POD ONLY

$$C_{M_{POD}} = C_{M2(\beta)}_{POD} = \{k_m \cdot k_{cp,POD}\} C_{M2(\beta)}_{pu} \alpha(\beta)$$

$$k_{cp,POD} = 155.75$$

$$k_m = \bar{r}_{cp}/155.75$$

$$k_{cp,POD} = 0.12 (\% \cdot k_{cp,POD})$$

$$k_{cp,POD} = 0.12 (155.75) = 18.69$$

PWR UNIT

$$C_{M_{PWR}} = C_{M2(\beta)}_{PWR} = \{k_m \cdot k_{cp,PWR}\} C_{M2(\beta)}_{pu} \alpha(\beta)$$

$$k_{cp,PWR} = 10.39$$

Ref: NADC-7308C-30

FIGURE A-8 NORMAL FORCE COEFFICIENTS FOR 70W-77A TANK UNIT

5. AERODYNAMIC DERIVATIVES - SUMMARY

SEE FIGURE A-9

APPROPRIATE FOR HEAVY DUTY REEL-LAUNCHER
(RML-19/AIRLOAD & RLU-3/A w/30MM OPAF UNIT)6. FLIGHT CONDITIONS FOR AIRLOADS - A-4 TOW CONFIG.

a. FEEDY - 0.8M @ S.L., 530KN(CAS)

$$q = 975 \text{ ft/lb'}$$

$$\alpha_{\text{ref}} = 0^\circ, +5^\circ \quad (2^\circ \text{ TYPICAL FOR A-4})$$

$$\beta_{\text{ref}} = \pm 2^\circ$$

b. TOWING - 0.65M @ S.L., 430KN(CAS)

$$q = 640 \text{ ft/lb'}$$

$$\alpha_{\text{ref}} = 0^\circ, +3^\circ \quad (4^\circ \text{ TYPICAL FOR A-4})$$

$$\beta_{\text{ref}} = \pm 3^\circ$$

7. STORE AIRLOAD CONDITIONS

SEE TABLE A-III

F1
$$q = 975 \text{ ft/lb'}$$

$$\alpha_s = -0.052 \text{ RADIANS}$$

$$\beta_s = -0.038 \text{ RADIANS}$$

F2
$$q = 975 \text{ ft/lb'}$$

$$\alpha_s = +0.035 \text{ RADIANS}$$

$$\beta_s = -0.035 \text{ RADIANS}$$

T1
$$q = 640 \text{ ft/lb'}$$

$$\alpha_s = -0.052 \text{ RADIANS}$$

$$\beta_s = -0.052 \text{ RADIANS}$$

T2
$$q = 640 \text{ ft/lb'}$$

$$\alpha_s = +0.087 \text{ RADIANS}$$

$$\beta_s = -0.052 \text{ RADIANS}$$

ALTERNATE CONDITIONS INCLUDE YAW SHIFT
IN RACK - SEE TABLE A-III

$$\tan' 0.53/15 = 2.0$$

$$\beta_s = -0.070 \text{ (T1A \& T2A)}$$

$$\beta_s = -0.087 \text{ (T1A \& T2A)}$$

FIGURE A-9 AERODYNAMIC DERIVATIVES SUMMARY
HEAVY-DUTY REEL-LAUNCHER
 $0.4 \leq M \leq 0.9$

TABLE A-III

RNU-S/A 3/V 022-22 & 1976. (NED 7A) - AIRCOADS $\beta_3 = 2^\circ$

Station	F1	F2	T1	T2	ANAL	F1	F2	T1	T2	Mixed	ANAL	F1	F2	T1	T2	ANAL	F1	F2	T1	T2	Mixed	ANAL	F1	F2	T1	T2	Mixed
E	975	975	640	640		974	974	593	262	269																	
α_s	-0.052	0.035	-0.052	0.087		-0.052	-0.052	261	-255	419																	
β_3	0.035	0.035	0.032	0.022		0.034	0.034	261	-255	255																	
γ_{air}	-0.229	0.229	0.293	0.293		-0.229	-0.229	13262	13262	20244																	
$\gamma_{\text{air}}(r)$	0.353	0.353	0.348	0.348		0.353	0.353	13262	13262	13262																	
C_{45}	0.186	0.185	0.188	0.193		0.185	0.185	0.188	0.193																		
C_{45s}	0.104	0.070	0.104	0.124		0.104	0.104	0.104	0.124																		
C_{45p0}	0.079	0.053	0.079	0.126		0.079	0.079	0.079	0.126																		
C_{45s}	0.070	0.070	0.104	0.104		0.070	0.070	0.104	0.104																		
C_{45p0}	0.053	0.053	0.079	0.079		0.053	0.053	0.079	0.079																		
C_{45s}	-0.021	0.021	0.031	0.031		-0.021	-0.021	0.031	0.031																		
C_{45p0}	0.019	0.019	-0.024	-0.024		0.019	0.019	-0.024	-0.024																		

TABLE A-TR

EMI-S/A 911 022 - PA & INSTL. (NEDO 7A) - ALLARD, D. S. -

Param	Freq1 (Hz)	Tuning	Wavelength (m Hz)	Tuning
Cavo	E/A F2A	TIA T2A	cav	F1A F2A
g	975 975	C40 C40	A12	A04 400
d ₁₃	- 0.052	0.035	0.052	0.087
A ₃	- 0.070	0.070	0.087	0.087
H ₁₀	- 0.419	0.419	0.295	0.295
C ₁₃	- 0.190	0.188	0.193	0.197
C ₁₄	- 0.104	0.070	0.104	0.174
C ₁₅	-	0.070	0.053	-
C ₁₆	- 0.110	0.110	0.114	0.124
C ₁₇	- 0.103	0.103	0.103	0.126
C ₁₈	- 0.081	0.081	0.081	0.091
C ₁₉	- 0.028	0.019	0.028	0.044
C ₂₀	- 0.036	0.036	0.044	0.044

B. STORE AIRLOADS - DUE TO TOWLINE FORCES

SOLUTION FOR LOADS APPLIED PARALLEL & NORMAL TO AIRPLANE AXES OR EQUIVALENT STORE AXES (ROLLED, PITCHED & YAWED IN AIRSPACE) - DATA ON FIGURE R-6 IS ROLLED ONLY

SIGN CONVENTION PER MIL-A-8591

$$TP_x = F_x \cos \alpha_{AC} \cos \beta_{AC} + F_y \sin \alpha_{AC} \cos \beta_{AC} - F_z \sin \beta_{AC}$$

$$TP_y = F_y \cos \beta_{AC} + F_z \sin \beta_{AC}$$

$$TP_z = -F_z \cos \alpha_{AC} + F_x \sin \alpha_{AC}$$

H. SUSPENSION SYSTEM

1. DATA SOURCE

LOADS PROGRAM DEVELOPED FOR FUEL TANKS.
 SIMPLE IN-PUT, OUT-PUT PGS A-207 THROUGH A-97.
 CALCULATES MIL-A-8591 (D OR E VERSION).
 WHEN $M_x = 0$, $SQ = 1.0$, METHOD IS MIL-A-8591D.

AERO TA STRENGTH DATA DEVELOPED BY
 W. BOLLINGER (APPENDIX B).

2. AERO TA CHARACTERISTICS & LIMIT LOADS

CHARACTERISTICS -

SIDE LOAD REACTED BY SWAY BRACE.
 YAWING MOMENT REACTED BY
 SWAY BRACES UNTIL M_y IS SUFFICIENT
 TO SLIDE STORE - DEFLECTION
 REQUIRED IS EQUIVALENT TO R FOR
 $M_y = 65017$
 R IS REACTED BY RACK FRAME
 AND IS NOT CRITICAL
 R_y IS SHARED BY TWO DOORS

LIMIT LOADS -

$R_{x\text{MAX}} = \text{NOT CRITICAL}$

$R_{y\text{MAX}} = 0(58 \cdot 1.00) - \text{EXPECTED}$
 $M_{y\text{MAX}} < 65017$

$R_{y\text{MAX}} = 37,000, M_{y\text{MAX}} < 65017$

$\bar{R}_{MAX} = 19,192 / 1.5 \text{ (MORE PLS FIG. A-7)}$
 $= 10,128$

APPROACH -

DEFINE LIMIT LOAD FACTOR
 ENVELOPES FOR $R_{MAX} \leq 10,128$
 WITHOUT & WITH YAW SHIFT

3. LOADING CONDITION FLIGHT - FERRY $S_0 = 1.00$

CRITICAL LOADING CASES - SEE FIGURES A-4 OF A-11

FOR CONTRIBUTION OF COMPONENT LOADS,
USE LOADS PROGRAM - PGS A-49 THROUGH A-55

$$\bar{R}_R^t(N_x) = -(3750/8)N_x = -468.75N_x$$

$$\bar{R}_R^t(N_y) = -(8187/1.5)N_y = -5391.33N_y$$

$$\bar{R}_R^t(N_z) = (4115/4.0)N_z = 1028.75N_z$$

$$\bar{R}_R^t(\ddot{\theta}) = (794/12)\ddot{\theta} = 66.17\ddot{\theta}$$

$$\bar{R}_R^t(\ddot{\psi}) = -(2508/6)\ddot{\psi} = -418\ddot{\psi}$$

F-1 AIRLOADS EQUIVALENT TO LOAD FACTORS

$$AN_x = 393/1569 = 0.252$$

$$AN_y = -261/1569 = -0.166$$

$$AN_z = -389/1569 = -0.248$$

$$A\ddot{\theta} = (-19532)(386)/(1188667) = -6.343$$

$$A\ddot{\psi} = (-19242)(386)/(1188667) = -4.322$$

$$\bar{R}_R^t(F_1) = (-5391.33)(-0.166) + (-418)(-4.322) = 2102$$

F-2 AIRLOADS EQUIVALENT TO LOAD FACTORS

$$AN_x = 393/1569 = 0.251$$

$$AN_y = -0.166$$

$$AN_z = 0.166$$

$$A\ddot{\theta} = (13242)(386)/(1188667) = 4.300$$

$$A\ddot{\psi} = -4.322$$

$$(-468.75)(0.251) + (1028.75)(0.166) + (66.17)(4.300)$$

$$= 338 \text{ (kg PLANE LOAD)}$$

$$\bar{R}_R^t(F_2) = 338 + 2702 = 3040$$

FIGURE A-10 VERTICAL CONING CASE - SUNY BRANCHES

A-28

FIGURE A-11 CRITICAL COORDINATES CASE
TWO LEGS OF SUNNY BRACES

$$(-468.75)(0.252) + (1028.75)(-0.248) + (66.17)(-6.383) \\ = -793 \text{ (N}_y\text{ MAX LOAD FOR F1)}$$

ENVELOPE ESTIMATE - NO VARY SHEET
F1 & F2 ANGLEADS

ESTIMATE R_R^F (F1)

$$R_R^F = -468.75 N_x - 5391.33 N_y + 1028.75 N_z \\ + 66.17 \ddot{\theta} - 418.4\dot{\phi} - 793 + 2702$$

$$\bar{R}_R^F = -5391.33 N_y - 418.4\dot{\phi} + 2702 \\ - 7.08 N_x + 15.55 N_z + \ddot{\theta} - 11.9850$$

ESTIMATE \bar{R}_R^F (F2)

$$R_R^F = -468.75 N_x - 5391.33 N_y + 1028.75 N_z \\ + 66.17 \ddot{\theta} - 418.4\dot{\phi} + 338 + 2702$$

$$\bar{R}_R^F = -5391.33 N_y - 418.4\dot{\phi} + 2702 \\ - 7.08 N_x + 15.55 N_z + \ddot{\theta} + 5.11 \leq 0$$

CORNER PTS $R_R^F = R_{MAX} \leq 10128$

AT $N_y = 4$ (F2 CRITICAL)

$$N_y = -1.5, \ddot{\theta} = 4.0, \dot{\phi} = -2$$

$$-5391.33 N_y = 10,128 - 8959 N_y = -0.22$$

AT $N_y = 0$

$$N_y = 10128 - 4844 / 1028.75 = 5.14$$

N_y max, N_y min (F2 CRITICAL)

$$N_y = -1.5, \ddot{\theta} = 4.0, \dot{\phi} = -2$$

$$N_y = [7.08)(-1.5) - 4 - 5.11] / 15.55 \\ = -1.27$$

$$N_y = 10128 - 3530 / -5391.33$$

$$N_y = -1.22$$

FIA AIRLOADS EQUIVALENT TO LOAD FACTORS

$$AN_x = 404/1569 = 0.258$$

$$AN_y = -517/1569 = -0.330$$

$$AN_z = -0.248$$

$$AS = -6.343$$

$$A\dot{\psi} = (-25022)(306)/(1102667) = -0.428$$

$$\bar{F}_{z(FIA)}^t = (5391.33)(-0.330) + (-418)(-0.248) = 5302$$

$$(-468.75)(0.258) + (1028.75)(-0.248) + (6.17)(-6.343) \\ = -796 \text{ (kg plane load for FIA)}$$

F2A AIRLOADS EQUIVALENT TO LOAD FACTORS

$$AN_x = 400/1569 = 0.255$$

$$AN_y = -0.330$$

$$AN_z = 0.166$$

$$AS = 4.700$$

$$A\dot{\psi} = -0.428$$

$$(-468.75)(0.255) + (1028.75)(0.166) + (6.17)(4.700)$$

$$= 336 \text{ (kg plane load for F2A)}$$

$$\bar{F}_{z(F2A)}^t = 336 + 5302 = 5638$$

ENVELOPE ESTIMATE - WITH YAW SHIRTFIA & F2A AIRLOADSCORNER PTS

$$N_x = 10128 - 11893/5391.33 = 0.33, N_y = 4.0,$$

$$N_z = -1.5, \dot{\phi} = 4.0, \dot{\psi} = -2 \text{ (F2A)}$$

$$N_x = 10128 - 7772/1028.75 = 2.28, N_y = 0,$$

$$N_z = -1.5, \dot{\phi} = 4.0, \dot{\psi} = -2 \text{ (F2A)}$$

$$N_y = [(7.08)(-1.5) - 4 - 5.08]/15.55 = -1.27$$

$$N_z = 10128 - 6474/5391.33 = -0.678$$

LOADS TEST - SEE PGS A-46 THROUGH A-47

 $N_{g_{min}}$, $N_{g_{max}}$ (FLU CRITICAL)BY LOADS TEST - $N_y = 1.5$; $N_y = -0.7$; $\theta = -4.0$
 $\phi = -2.0$; $N_y = -3.0, -4.0, -5.0, -6.0$

SEE PGS A-48 THROUGH A-49

$$a + bN_y = c$$

$$a - 3b = 16121$$

$$a - 6b = 20906$$

$$b = (20906 - 16121)/3 = -1595$$

$$a = 16121 - (-1595)(3) = 11336$$

$$N_{g_{min}} = (R_y^t - 11336)/-1595$$

$$R_y^t = 37000 \quad N_{g_{min}} = -16.09$$

LOADS TEST - SEE PG. A-50.

4. FERRY FLIGHT ENVELOPE - SEE FIGURE A-12 (SLOP 1.00)

FIGURE A-12 FERRY FLIGHT ENVELOPE - A-4 A/C
& EACH MOUNT, MU-8/A (S/N 022)
LIMIT LOADS AT 0.84 @ S.L.

5. SWAY BRACE LIMIT REQUIRED FOR MIL-A-8731
COMPLIANCE FOR FERRY FLIGHT (3G = 1.00)

$$N_y = -1.5; N_g = 1.00; \ddot{\phi} = 4.00 \quad \ddot{\psi} = -2.00$$

$$\bar{R}_R^b \cdot R_{max} = 11833.2(-1.5)(-5391.33) = 19,920$$

6. LUG LIMIT REQUIRED FOR MIL-A-8731
COMPLIANCE FOR FERRY FLIGHT (3G = 1.00)

$$R_g^b = R_{gmax} = 11833.2 - 1599 N_g$$

$$N_g = 1.5; N_y = -1.5; \ddot{\phi} = -0.7; \ddot{\psi} = -4.00 \quad \ddot{\psi} = -2.00$$

$$R_g^b = R_{gmax} = 25213$$

7. LOADING CONDITION - ARREST (PHOTO ONLY, 3G = 1.00)

REDUCED PITCH & YAW ACCELERATION

$$N_g = \pm 2.0; \ddot{\phi} = \pm 6; \ddot{\psi} = \pm 3; \bar{R}_{max} = 10,123$$

$R_{gmax} = 37,000$, R_{gmax} NOT CRITICAL

NO AIRLOAD; $\ddot{\phi} = 6; \ddot{\psi} = 3$

$$\begin{aligned} \bar{R}_{max} \cdot \bar{R}_R^b &= 5391.33 N_g + 1256, \\ &- 7.08 N_g + 15.55 N_y + 6 \leq 0 \end{aligned}$$

$$N_g = \pm 8874 / 5391.33 = \pm 1.646$$

$$\begin{aligned} \bar{R}_{max} \cdot \bar{R}_R^b &= 468.75 N_g + 1028.75 N_y + 1651, \\ N_g = 0, -7.08 N_g + 15.55 N_y + 6 &\geq 0 \end{aligned}$$

$$N_g = (8874 - 1028.75 N_y) / 468.75$$

N_g	-2	0	2
$N_g N_y = 1.646$	-3.59	0.85	5.24
$N_g N_y = 0$	-23.32	-18.93	-14.54

LOADS TEST PG A-51 & A-52.

B. FIELD ARRANGEMENT ENVELOPE - SEE PG A-15 (SP-100)

9. LOADING CONDITION - FLIGHT - TOW

EQUIVALENT LIMIT TOW @ 10,000 FT.

$$q = 640 \text{ lb/ft}^2$$

$$M = 0.78$$

$$TAS = 500 \text{ KNOTS}$$

A/C IN LEFT TURN $N_g = 3$

$$r = 7840 \quad \pi C_f = 0.0132$$

$$t_{\text{ref}} = 2000$$

$$C_d = 1.66$$

SEE PG A-53 FOR ORBITING PROGRAM OUTPUT
PROBING FIGHTER (FIGAT) $\neq 0.182$ IN-DIA TOWLINE

$$T_M = 4065 \text{ LOS}$$

$$N_g' = 1 / \cos [1.243 \times 360 / 2\pi] = 3.11$$

$$r' = 8196$$

$$V' = 520 \text{ KNTAS}$$

$$\Delta h = 100$$

$$\Delta r = 2$$

$$\Delta g = G \quad \Delta r^2 + \Delta z^2 = 40$$

$$P_g = 5.06$$

$$P_g' = 3.79$$

$$RP_{g,g}' = 99.93$$

$$P_k' = 99.80$$

$$P_k = 0.998 \quad F_x = 4057$$

$$P_j = 0.038 \quad F_y = 195$$

$$P_j' = 0.051 \quad F_j' = -208$$

(MM A-8591)

} TARGET CONDITIONS

FIGURE A-19 FIELD ARRANGEMENT SURVEYOR - RE A/C
& BACK MOUNT RHM-3/H 3/H 022
LIMIT ACCORDS w/ 022 - LCMR at 1/180310Z.

A/C NOSE UP & YAWED RIGHT

$$\alpha_{AC} = 8^\circ, \beta_{AC} = -5^\circ, \beta_s = -5^\circ$$

$$TP_x = 4049$$

$$TP_y = -58$$

$$TP_z = 379$$

$$TM_x = (-58)(-3.6) = 209$$

$$TM_y = (379)(64.6 - 125.6) + (4049)(-3.6) = -35758$$

$$TM_z = (-58)(64.6 - 125.6) = 3,422$$

LOADS PROGRAM

$$MX = 209$$

$$ALOADX = 4049 + 275 = 4324$$

$$ALOADY = -58 - 619 = -677$$

$$ALOADZ = 352 + 619 = 778$$

$$XMM = -35758 + 20,664 = -15114$$

$$XMN = 3422 - 20644 = -17222$$

$$N_g = -3$$

SEE WORST CASE PG A-54A/C NOSE UP & YAWED LEFT

$$\alpha_{AC} = 8^\circ, \beta_{AC} = 3^\circ, \beta_s = 5^\circ$$

$$TP_x = 4033$$

$$ALOADX = 4308$$

$$TP_y = 368$$

$$ALOADY = 787$$

$$TP_z = 359$$

$$ALOADZ = 778$$

$$TM_x = -1325$$

$$MX = -1325$$

$$TM_y = -35700$$

$$XMM = -15096$$

$$TM_z = -21712$$

$$XMN = -1068$$

$$N_g = -3$$

SEE WORST CASE PG A-55

A/C LEVEL & YAWED RIGHT

$$\alpha_{A/C} = 0^\circ, \beta_{A/C} = 3^\circ, \beta_3 = 5^\circ$$

$T P_x = 4060$	$A LOAD X = 4327$
$T P_y = -78$	$A LOAD Y = -477$
$T P_z = -208$	$A LOAD Z = -463$
$T M_x = 209$	$M X = 209$
$T M_y = -2344$	$X MM = -15165$
$T M_z = 3422$	$X MN = -17222$
	$N g = -3$

SEE WORST CASE AS A-56

A/C LEVEL & YAWED LEFT

$$\alpha_{A/C} = 0^\circ, \beta_{A/C} = 3^\circ, \beta_3 = 5^\circ$$

$T P_x = 4064$	$A LOAD X = 4313$
$T P_y = 368$	$A LOAD Y = 787$
$T P_z = -208$	$A LOAD Z = -463$
$T M_x = -1325$	$M X = -1325$
$T M_y = -2286$	$X MM = -15107$
$T M_z = -21712$	$X MN = -1068$
	$N g = -3$

SEE WORST CASE AS A-57

STORE LEVEL & NO YAW

$$\alpha_{A/C} = 3^\circ, \beta_{A/C} = 0^\circ, \beta_3 = AP_x = 255$$

$T P_x = 4063$	$A LOAD X = 4318$
$T P_y = 155$	$A LOAD Y = 155$
$T P_z = 5$	$A LOAD Z = 5$
$T M_x = -558$	$M X = -558$
$T M_y = -14922$	$X MM = -14922$
$T M_z = -9145$	$X MN = -9145$

SEE WORST CASE PG A-58

10. CRITICAL LOADING CONDITION - FLIGHT - TOW

SEE FIGURE A-16

11. LOADING CONDITION - FLIGHT - TOW

(LESS THAN LIMIT AIRSPEED - TOWLINE FAILURE)

COMPONENT LOADS & LOAD CONTRIBUTION
(SEE TABLE II AND PGS A-59 THROUGH A-71)

A/C LEVEL & NO YAW

DATA FROM TABLE A-1

$$\bar{R}_R^t(u_y) + \bar{R}_R^t(u_x) + \bar{R}_R^t(\delta) + \bar{R}_R^t(A\dot{u}_y) + \bar{R}_R^t(A\dot{u}_x) \leq 0$$

$$\bar{R}_R^t = \bar{R}_R^t(u_y) + \bar{R}_R^t(\dot{\psi}) + \bar{R}_R^t(A\dot{u}_y) + \bar{R}_R^t(A\dot{u}_x) + \bar{R}_R^t(Au_y)$$

$$A\dot{u}_y = 0 = Au_y, \bar{R}_R^t(\text{Towline failure}), u_y = 0 = \dot{\psi} (\bar{R}_R^t(tu))$$

$$TP_y = (6000)(py)$$

$$TM_x = (-3.6)(TP_y)$$

$$TM_y = (4.0 - 123.6)(TP_y)$$

l = 1000 FT

$$py(MIL) = 0.0559$$

$$TP_y = 335.4$$

$$TM_x = -1207.44$$

$$TM_y = -19553.82$$

$$Au_y = 0.214$$

$$Au_y = TM_x = M_x$$

$$A\dot{\psi} = -6.382$$

$$\begin{aligned} \bar{R}_R^t(tu) &= (-5391.33)(0.214) + (-418)(-6.382) + (-1207.44)(0.853) \\ &= 1202.41 \end{aligned}$$

SEE TABLE I FOR SUMMARY

FIGURE A-11 TOW FLIGHT CONFIGURATIONS
A/C LEVEL OF YAWED WING

Note. Tow cables transposed
to C.G.

TABLE II

CONTRIBUTION OF COMPONENT LOADS U.S. TOWLINE LENGTH FOR \bar{B}_A^2 (Paw)

I	2000	2000	6000	10000	X Factor	I	1000	2000	6000	10,000
H.C.G.	65.3	64.6	62.7	59.7						
H.Y.	-48.75	-430.	-352.25	-274.25	1/4					
H.Y.	-539.55	-543.55	-4520.	-3894.67	1/4					
H.Y.	1026.75	965.	838.75	712.25	1/3					
$\ddot{\Theta}$	66.17	-4.75	60.42	55.5	5					
$\ddot{\Theta}$	-4.08.	-106.62	-381.5	-350.	4					
M.L.	0.258	0.265	0.284	0.314	1/2					
A.H.Y.	1/156.9	1/163.9	1/117.9	1/91.8	1/64.17					
A.U.Y.	1/156.9	1/153.9	1/113.9	1/91.8	1/71.7					
A.N.Y.	1/156.9	1/143.9	1/107.9	1/91.8	1/71.7					
A.O.	1/308.0	1/301.	1/281.2	1/253.1	1/244.17					
A.Y.	1/306.4	1/299.2	1/279.7	1/252.5	1/243.17					
A.M.F.	1	1	1	1	1					

MIDSHIP CRANE 12 TONNING 6000 FT WITH
STRAFE FAULTURE IN 26 DEG TURN AT
HEAD 0.5 (272 KNOTS), 10,000 FT ALT.

$\rho = 255 \text{ PSF}$ (TABLE A-1 FOR CARB MATO)

USE T1 CONDITIONS (TABLE A-III) ADJUSTED
FOR CG, ρ GZ.7 ($\chi_{\text{air}}(\rho) = 0.403$)

$$\chi_{\text{air}} \cdot \chi_{\text{cp}} (\text{stroke}, \rho) = 0.295 + (0.415 - 0.403) = 0.307$$

$$\chi_{\text{air}} \cdot \chi_{\text{cp}} (\text{PV}, \rho) = 0.348 + (0.415 - 0.403) = 0.360$$

$$C_D = 0.188$$

$$C_{M_x} \cdot C_{M_y} = -0.106 + (-0.079) = -0.185$$

$$C_{M_x} \cdot C_{M_y} = [(-0.106)(0.307) + (-0.079)(0.360)] = -0.060$$

$$AP_g = 105$$

$$AP_g \cdot AP_g = -102$$

$$AP_g \cdot AP_{gy} = -5195$$

A/C LEVEL & YAWED RIGHT

$$\alpha_{AC} = 0^\circ, \beta_{AC} = -3^\circ, \beta_3 = -6^\circ$$

$$TR_g = [(6000)(0.9760)(\cos 0^\circ)(\cos -3^\circ) - (6000)(0.1363) \\ [(\sin 0^\circ)(\cos -3^\circ) - (6000)(0.1622)(\sin -3^\circ)]]$$

$$= 5901$$

$$TR_g = [(6000)(0.1622)(\cos -3^\circ) + (6000)(0.9760)(\sin -3^\circ)] \\ = 712$$

$$TM_g = [(6000)(0.1363)(\cos 0^\circ) + (6000)(0.9760)(\sin 0^\circ)] \\ = 818$$

$$TM_{gy} = (818)(62.7 \cdot 123.6) + (5901)(-3.6) = -71060$$

$$TM_{gy} = (712)(62.7 \cdot 123.6) = -13361$$

$$TM_{gy} = (712)(-3.6) = -2563$$

TOTAL AIRLOAD

$$\text{ALOADX} = 5901 + 105 = 6006$$

$$\text{ALOADY} = 712 - 102 = 610$$

$$\text{ALOADZ} = 818 - 102 = 716$$

$$MX = -2963$$

$$XFM = -71060 - 5195 = -76255$$

$$XMN = -49361 - 5195 = -48596$$

$$N_x = 1.5, N_y = -0.7, N_z = -2.0, \ddot{\theta} = -4.0, \ddot{\psi} = -2.0$$

LOADS TEST - SEE PAGE A-72

12 REACTIONS AT RACK MOUNTING BOLTS

SEE APPENDIX C

Comments 2007

PROGRAM LOADING
 PRO=RAM LOADING (INPUT, OUTPUT, TAPE, OUTPUT)
 REAL MT, MZ, MX
 READ 1001,FL,AL,FSD,ASA
 WRITE(16,39)

5 C CALCULATIONS OF MOMENT ARMS

C CG=65.3
 XLAA=AL-CG
 XLF=CG-FL
 XLUA=ASG-CG
 XLSF=CG-FSB
 DEJA=21.5957.295
 LUAJ FAIORS TIMES MT OR MOMENT OF INERTIA

10 C

Sd=1.00
 E1=3.
 CX=1.68
 M=1.40
 K=12.
 Mf=3.
 Xf=11.64667./366.
 XZ=11.62667./366.
 dT=1569.

20 C

25 C

ALOAUX=0.0
 ALOAY=0.0
 ALUAUZ=0.0
 XMM=0.0
 XNN=0.0

30 C

A-43

LOAD ANALYSIS MIL-A-6591 E		LOADING POINTS		LOAD FACTORS		LOADING CONDITION INERTIA		LOADING POINTS		LOAD FACTORS		LOADING CONDITION INERTIA	
LUG		FORWARD	AFT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
(2)	J.	6979.											
(7)	J.	0.											
(K)	J.	-1252.											

AFT SWAY BRACE
 FORWARD SWAY BRACE

FORWARD SWAY BRACE
 FORWARD SWAY BRACE

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION INERTIA LOAD FACTORS $\frac{W}{W}$ $\frac{WY}{W}$ $\frac{WZ}{W}$ $\frac{\Theta Y}{W}$ $\frac{\Theta Z}{W}$

LOADING POINTS

		AFT SWAY BRACE	
LUG		LEFT	RIGHT
(Z)	0.	1391.	4115.
(Y)	0.	0.	0.
(X)	0.	0.	0.

LOADING CONDITION INERTIA LOAD FACTORS $\frac{W}{W}$ $\frac{WY}{W}$ $\frac{WZ}{W}$ $\frac{\Theta Y}{W}$ $\frac{\Theta Z}{W}$

LOADING POINTS

		AFT SWAY BRACE	
LUG		LEFT	RIGHT
(Z)	6622.	2639.	0.
(Y)	0.	0.	0.
(X)	0.	0.	0.

LOAD ANALYSIS MIL-A-6991 E

LOADING CONDITION: INERTIA		LOAD FACTORS		M	WY	WZ	THETA	PSI
LUG	FORWARD AFT	FORWARD SWAY BRACE		0.00	0.00	12.00	0.00	
(2)	0.	147.0.	LEFT	794.	794.	0.	0.	
(Y)	0.	0.	RIGHT					
(X)	0.	0.						

LOADING CONDITION: INERTIA		LOAD FACTORS		M	WY	WZ	THETA	PSI
LUG	FORWARD AFT	FORWARD SWAY BRACE		0.00	0.00	0.00	0.00	-6.00
(1)	2333.	2333.	LEFT	0.	2500.	2500.	0.	
(Y)	0.	0.	RIGHT					
(X)	0.	0.						

PROGRAM LOGIC (INPUT, OUTPUT, TAPE6=OUT) CRC 6600 RTN V3.0-F75 OPT=1 06/06/74 00,97.59. PAGE 1

PROGRAM	LOGIC	
		PROGRAM LOGIC (INPUT, OUTPUT, TAPE6=OUT)
5	C	RFL M1, M2, X 2517 1901, FL, AL, PC, ASB WITE(6,90)
		CALCULATIONS OF MOMENT ARMS
10	C	CG=65.7 XLA=AL-MC XLF=MC-FL YLGA=AL-CG YLAF=FL-CG MFA=21.5/57.296 LMA FACTORS TIMES WT OR MOMENT OF INERTIA
15	C	S=1.00 F1=9. CX=1.40 CY=1.20 CZ=12.3 QX=0. YY=11.98667./386. X2=11.42667./386. VT=1569.
20	C	
25	C	
30	C	ALDANZ=900. ALDANZ=-517. QLDANZ=261. VQD=132.2. VMH=-2K22. 10 QRAJ 1052,A,B,C,D,E,L DX=4*TR+ALDANZ DY=4*W+ALDANZ DZ=4*WT+ALDANZ QY=D*WT*XMH QZ=D*WT*XMH IFIL.NE.0.GRN TO 601
35	C	
40	C	TRIAL LUG REACTIONS
45	C	A=4*QH/51 VFR=(L07*(R+H)-MX)*XLGA+S0*M2*ARM)/(ARM*(YLGF*XLGA)+TAN(PETAT)) VQD=(P0*(R+Q)-4X)*XLGF-S0*M7*ARM)/(ARM*(YLGF*XLGA)+TAN(PETAT)) VRF=S0*S(VNE) VSA=AAC(VRA) D07=2*P0*(Q+C0)-P7*XLGA-NY+VRF*(XLAF+XLG)-VRA*(XLAF+XLG)/(XLAF+XLG) DAB=(NY-PY)*(B+C1)-P2*XLFXVRA*(XLAF+XLG)-VBF*(YLAF+XLG)/(XLAF+XLG)
50	C	TESTING FOO CASE TO BE USED
55	C	TF(RFP7,GE,0,0,IND,RA,P7,LT,0,0) GO TO 21 TF(LRF7,GE,0,0,IND,RA,P7,LT,0,0) GO TO 27 TC(LRF7,LT,0,0,IND,IP2,GE,0,J) GO TO 34 TF(LRF7,LT,0,0,IND,RA,P2,LT,0,0) GO TO 49

LOAD ANALYSIS MTL-A-0591 E

LOADING CONDITION FLIGHT-FERRY

LOADING POINTS

LUG	FORWARD AFT
(12)	0. 6493.
(17)	0. 0.
(X)	0. -1953.

LOAD FACTORS

NX	NY	NZ	THETA	PSI
-1.50	0.00	2.00	0.00	-2.00

FORWARD SWAY BRACE

AFT SWAY SPACE

LEFT	RIGHT
117.	5274.

AFT SWAY SPACE

LEFT RIGHT

4767.

LOAD ANALYSIS MTL-A-0591 F

LOADING POINTS

LOADING CONDITION FLIGHT-FERRY

LOAD FACTORS

NX	NY	NZ	THETA	PSI
-1.50	-0.70	-1.30	0.00	-2.00

FORWARD SWAY BRACE

AFT SWAY SPACE

LEFT	RIGHT
0.	9978.

AFT SWAY SPACE

LEFT RIGHT

LUG	FORWARD AFT
(12)	8552. 7594.
(17)	0. 0.
(X)	-1953. 0.

TEST CASE 1

PROGRAM	LADING	CUC BASE PTN VJ.8-PAGE OPT1	WWE/7s	00.0.5.55.	PAGE
PROGRAM LOADING (INPUT, OUTPUT, TAPE INPUT/OUTPUT)					
REAL MW, MZ, MX					
READ 1001,FL,AL,FSd,ASd					
WRITE 10,99					
CALCULATIONS OF MOMENT ARMS					
5	C	CG=05.3			
		XLA=AL-JG			
		XLF=CG-FL			
		XLDJA=ASd-GG			
		ALdFGC-FSB			
		BETA=21.5/57.296			
		LOAD FACTORS TIMES MT FOR MOMENT OF INERTIA			
10	C	S8=1.00			
		E1=0.			
		CG=1.60			
		M=1.20			
		R=12.3			
		MIX=0.			
		XV=1.144667./3866.			
		XZ=11.22667./3866.			
		MT=1569.			
15	C	ALOAD=404.			
		ALOADZ=517.			
		ALADU=-389.			
		XMM=-95.32.			
		XMN=-256.22.			
		10 DRAJ 1102-A.H.C.D.F.L			
20	C	LOADING CONDITION FLIGHT>FERRY			
25	C	LOAD FACTORS			
30	C	LOADING POINTS			
35	C	LUG			
		FORWARD AFT			
(2)	29906.	3364.			
(Y)	0.	0.			
(X)	2757.	0.			
AFT STAY BRACE					
		FORWARD STAY BRACE			
		LEFT RIGHT			
		LEFT			
		RIGHT			
		5571.			
		0.			

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION FLIGHT>FERRY

LOAD FACTORS

	MX	MY	MZ	T-DETA	PSI
	-1.00	-0.70	-3.00	-0.00	-2.00

LOADING POINTS

LUG

FORWARD AFT

(2) 16121.	3442.
(V)	0.
(X)	2757.

FORWARD SWAY BRACE

LEFT RIGHT

(2)	9976.
(V)	0.

AFT SWAY BRACE

LEFT RIGHT

(2)	5571.
(V)	0.

LUG

FORWARD AFT

(2) 17116.	3416.
(V)	0.
(X)	2757.

FORWARD SWAY BRACE

LEFT RIGHT

(2)	9976.
(V)	0.

AFT SWAY BRACE

LEFT RIGHT

(2)	5571.
(V)	0.

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION FLIGHT>FERRY

LOAD FACTORS

	MX	MY	MZ	T-DETA	PSI
	-1.00	-0.70	-4.00	-0.00	-2.00

LOADING POINTS

LUG

FORWARD AFT

(2) 19311.	3390.
(V)	0.
(X)	2757.

FORWARD SWAY BRACE

LEFT RIGHT

(2)	9976.
(V)	0.

AFT SWAY BRACE

LEFT RIGHT

(2)	5571.
(V)	0.

PROGRAM LINE#
 QNCPPAW LONG INPUT,OUTPUT,TAPES&OUTUT
 REAL XY M7.4X
 DATA 1001,FL,AL,FSQ,ARQ
 VOTER(6,99)

5 F CALCULATIONS OF MOMENT ARMS

F655.3
 YLABL=RC
 XLFSG=FL
 YLG=150.0C
 YLNFT=1.05E
 PCT=21.5/57.266
 LOAD FACTORS TIMES WT OR MOMENT OF INERTIA

10 C S9=1.00
 F1=0.
 RV=1.60
 W=1.29
 N=12.
 QX=0.
 YY=169667./386.
 YZ=162657./386.
 WT=1569.

20 C ALNAX=404.
 ALNAY=-517.
 ALNAT=-389.
 YWE=-19532.
 YWN=-25422.

10 2EAD 1002,A,B,R,O,E,L
 DX=A*W+ALNAX
 NY=ALNAY
 NZ=ALNAT

25 C

30 C

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION FLIGHT>FERRY

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

LOAD ANALYSIS MIL-A-8591 E

LOAD POINTS

LOAD FACTORS

HX HY HZ HETL PSI

1.50 -0.70 -0.30 -2.00

LOADING POINTS

</

ACROSS - 66 RET.

PROGRAM	LODNC	5688 FTN V3.0-PJ36 OPT=1	06/08/70	09.47.10.	PAGE
	PROGRAM LOONG (INPUT,OUTPUT,(APPEALPUT))				
5	C C	REAL MY,MZ,MX READ 1001,FL,AL,FSd,ASd WRITE(6,99)			
	C C	CALCULATIONS OF MOMENT ARMS			
10	C	CG=62.8 XLAL=M-L-JG XLFBG=F-L XLdA=LSd-UG XLdF=CG-FSd BETA=21.5/57.296			
15	C	LOAD FACTORS TIMES WT OR MOMENT OF INERTIA			
	C	Sy=1.00 S1=0. Cx=1.68 M=1.29 R=12.3 XF=1.08e67./396. XZ=1.082307./396. WT=1569.			
20	C				
25	C	AL0AUX=0.0 AL0AY=0.0 AL0AZ=0.0 MX=0. XHN=0. XMN=3.0 RCA0 1J02,A,B,C,D,E,L P1=SAH1+AL0AUX P2=dMT+AL0AUY P3=CNT+AL0AZ2 MF=0 XY+XHN MZ=EE XZ+XMN IF(L,NL,0160 TO 691			
30	C				
35	C				
40	C	TRIAL LJG REACTIONS			
45	C	ARM=H-M-E1 VdE=(IPY*(LxD)-MX)*(XLdA+M2*ARM)/(ARM*(XLdF+XLBA)*TAN(BETA)) VdD=(IPY*(Lx+H)-MX)*(XLdF-Sd*M2*ARM)/(ARM*(XLdF+XLBA)*TAN(BETA)) VdF=ABSI(VdE) dA=ABSI(dB) RFP=(PA*(Lx+C1)-PZ*XLAM-HV*VdF)-(XLdA*XLdF)-VdA*(XLBA-AL2))/(XLdA*XLdF) RAPZ=(MY-PX*(RxC1)-PZ*ALF*Vd1)-(XLdF*(XLBA)-VdF*(XLdF-XLF))/(XLdA*XLdF)			
50	C	TESTING FOR CASE TO BE USED			
55	C	IF(LRPZ.GE.0.0,ANJ,KAPZ,G.E.0.0) GO TO 21 IF(LRPZ.GE.0.0,ANJ,KAPZ,T.0.0) GO TO 27 IF(LRPZ.LT.0.0,ANJ,KAPZ,U.0.0) GO TO 34 IF(LRPZ.LT.0.0,ANJ,KAPZ,U.0.0) GO TO 49			

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION ARREST NO TGT

LOAD FACTORS

LOADING POINTS

LUG	FORWARD AFT	
(Z)	4554.	2668.
(Y)	0.	0.
(X)	5136.	0.

FORWARD STAY BRACE	AFT STAY BRACE
LEFT	RIGHT
1.	0.50.

LEFT	RIGHT
2734.	0.

MX	MY	MZ	THETA	PSI
2.00	-1.30	2.00	6.00	-3.00

LOADING CONDITION ARREST NO TGT

LOAD FACTORS

LOADING POINTS

LUG	FORWARD AFT	
(Z)	0.	9780.
(Y)	0.	0.
(X)	0.	-12552.

FORWARD STAY BRACE	AFT STAY BRACE
LEFT	RIGHT
4021.	0012.

LEFT	RIGHT
1043.	0.

MX	MY	MZ	THETA	PSI
-0.00	-0.50	2.00	6.00	-3.00

<more data cards>

PAGE 1

CJC 6000 F1M V1.0-PAGE OPT=1 05/16/74 10:43:19.

PROGRAM OUTPUT

PROGRAM OUTPUT
 (ONLINE STEADY STATE WINGFIGURE)---TOPPLANE IN LEFT TURN
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 10010
 10011
 10012
 10013
 10014
 10015
 10016
 10017
 10018
 10019
 10020
 10021
 10022
 10023
 10024
 10025
 10026
 10027
 10028
 10029
 10030
 10031
 10032
 10033
 10034
 10035
 10036
 10037
 10038
 10039
 10040
 10041
 10042
 10043
 10044
 10045
 10046
 10047
 10048
 10049
 10050
 10051
 10052
 10053
 10054
 10055
 10056
 10057
 10058
 10059
 10060
 10061
 10062
 10063
 10064
 10065
 10066
 10067
 10068
 10069
 10070
 10071
 10072
 10073
 10074
 10075
 10076
 10077
 10078
 10079
 10080
 10081
 10082
 10083
 10084
 10085
 10086
 10087
 10088
 10089
 10090
 10091
 10092
 10093
 10094
 10095
 10096
 10097
 10098
 10099
 100100
 100101
 100102
 100103
 100104
 100105
 100106
 100107
 100108
 100109
 100110
 100111
 100112
 100113
 100114
 100115
 100116
 100117
 100118
 100119
 100120
 100121
 100122
 100123
 100124
 100125
 100126
 100127
 100128
 100129
 100130
 100131
 100132
 100133
 100134
 100135
 100136
 100137
 100138
 100139
 100140
 100141
 100142
 100143
 100144
 100145
 100146
 100147
 100148
 100149
 100150
 100151
 100152
 100153
 100154
 100155
 100156
 100157
 100158
 100159
 100160
 100161
 100162
 100163
 100164
 100165
 100166
 100167
 100168
 100169
 100170
 100171
 100172
 100173
 100174
 100175
 100176
 100177
 100178
 100179
 100180
 100181
 100182
 100183
 100184
 100185
 100186
 100187
 100188
 100189
 100190
 100191
 100192
 100193
 100194
 100195
 100196
 100197
 100198
 100199
 100100
 100101
 100102
 100103
 100104
 100105
 100106
 100107
 100108
 100109
 100110
 100111
 100112
 100113
 100114
 100115
 100116
 100117
 100118
 100119
 100120
 100121
 100122
 100123
 100124
 100125
 100126
 100127
 100128
 100129
 100130
 100131
 100132
 100133
 100134
 100135
 100136
 100137
 100138
 100139
 100140
 100141
 100142
 100143
 100144
 100145
 100146
 100147
 100148
 100149
 100150
 100151
 100152
 100153
 100154
 100155
 100156
 100157
 100158
 100159
 100160
 100161
 100162
 100163
 100164
 100165
 100166
 100167
 100168
 100169
 100170
 100171
 100172
 100173
 100174
 100175
 100176
 100177
 100178
 100179
 100180
 100181
 100182
 100183
 100184
 100185
 100186
 100187
 100188
 100189
 100190
 100191
 100192
 100193
 100194
 100195
 100196
 100197
 100198
 100199
 100100
 100101
 100102
 100103
 100104
 100105
 100106
 100107
 100108
 100109
 100110
 100111
 100112
 100113
 100114
 100115
 100116
 100117
 100118
 100119
 100120
 100121
 100122
 100123
 100124
 100125
 100126
 100127
 100128
 100129
 100130
 100131
 100132
 100133
 100134
 100135
 100136
 100137
 100138
 100139
 100140
 100141
 100142
 100143
 100144
 100145
 100146
 100147
 100148
 100149
 100150
 100151
 100152
 100153
 100154
 100155
 100156
 100157
 100158
 100159
 100160
 100161
 100162
 100163
 100164
 100165
 100166
 100167
 100168
 100169
 100170
 100171
 100172
 100173
 100174
 100175
 100176
 100177
 100178
 100179
 100180
 100181
 100182
 100183
 100184
 100185
 100186
 100187
 100188
 100189
 100190
 100191
 100192
 100193
 100194
 100195
 100196
 100197
 100198
 100199
 100100
 100101
 100102
 100103
 100104
 100105
 100106
 100107
 100108
 100109
 100110
 100111
 100112
 100113
 100114
 100115
 100116
 100117
 100118
 100119
 100120
 100121
 100122
 100123
 100124
 100125
 100126
 100127
 100128
 100129
 100130

LOAD ANALYSIS MIL-A-88591 E
MIL-A-88591 E

PROGRAM	LOAD	LOADING CONDITION		LOAD FACTORS		LOADING POINTS		FORWARD SWAY RACE		AFT SWAY RACE	
		FLIGHT	TOW	MX	MV	N2	THETA	LEFT	RIGHT	LEFT	RIGHT
5	C			1.58	-.78	-3.80	-4.80	0.6150.	0.	0.	0.
10	C										
15	C										
20	C										
25	C										
30	C										

AFT SWAY BRACE

CDC: 6400 FTN V1.0--0936 OPT01 06/09/76 09:36:36 PAGE 1

PROGRAM LINFOR: AEGEAN LOADS (INPUT, OUTPUT, TAPE&OUTPUT)
 REAL MV, MZ, MX
 READ 1001,PL,AL,FSB,ASA
 WRITE(6,99)

5 C CALCULATIONS OF MOMENT ARMS

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

LOADING CONDITION SLIGHT TOW

LOADING POINTS

FORWARD SWAY BRACE

116 LEFT

FORWARD AFT

(2) 13923. 0.

141 102. -4.

(X) 6466. D.

P/C cover of Yawed Arms

PROGRAM LOADS

COC V3.0-P336 OPT=1

86/04/74 11:49:12. PAGE 1

PROGRAM LOADNG (INPUT, OUT>UT, TAPES=OUTPUT)
 READ MV, HZ, MX
 READ 1801,FL, AL, FSS, ASB
 WRITE(6,99)

CALCULATIONS OF MOMENT ARMS

```

CG=61.6
XLA=AL-CG
ELF=CG-FL
AL3=ASD-CG
4LBFCG-FSB
3ETA21.5/57.296
LOAD FACTORS TIMES MT OR MOMENT OF INERTIA
SG=1.00
1=0.
CX=0.60
1=1.20
2=1.23
AV=31.023133./3866.
XZ=1.563133./3866.
JY=31339.
```

```

4LOADX=6329.
4LOADY=-477.
4LOADZ=-463.
1X=299.
XMH=15165.
XMM=172222.
18 READ 1002-A.R.C.D.E.
19
```

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION FLIGHT-TON

LOAD POINTS

	LUC	FORWARD	AFT	FORWARD SWAY BRACE	AFT SWAY BRACE
(Z)	16104.	657.	0.	0.	0.
(Y)	-16.	1.	0528.	4435.	0.
(X)	6687.	0.			

LOAD ANALYSIS MIL-A-8591 E

A/C CENTER OF GRAVITY

PROGRAM LOADING COORDINATES OF LOADING POINTS

CGC 6640 FTM 03.0-33 SEP 06/06/74 000.00.00.

CGC 6640 FTM 03.0-33 SEP 06/06/74 000.00.00.

CALCULATIONS OF MOMENT ARMS

CG=54.6
XLA=54.6
YLA=54.6
ZLA=54.6
XLB=54.6
YLB=54.6
ZLB=54.6
XLC=54.6
YLC=54.6
ZLC=54.6

LOAD FACTORS TIMES WT OR MOMENT OF INERTIA

CG=1.00
F1=0.
F2=1.60
F3=1.20
F4=1.20
F5=1.20
F6=1.20
F7=1.56313./3866.
F8=1.56313./3866.
F9=1.56313.

ALOADX=6313.
ALOADY=747.
ALOADZ=-463.
WX=-1125.
WY=-15107.
WZ=-3866.
DEAD 1002.A.B.C.D.E.F.I
DXA=WT*ALOADX
DY=WT*ALOADY
DZ=WT*ALOADZ
WY=DXA*WX
WZ=DXA*DZ

LOADING CONDITION FLIGHT TO W

LOADING POINTS

LOAD FACTORS

MX NY NZ PWT

1.50 .70 -3.00 2.00

FORWARD SWAY STAB

LEFT RIGHT

761. 343.

AFT SWAY SPACE

LEFT RIGHT

7436. 0.

UP AND DOWN

UP DOWN

0. 0.

LUG FORWARD AFT

UP DOWN

0. -4.

LUG FORWARD AFT

UP DOWN

0. 0.

LOAD ANALYSIS MTL-A-6991 E

FORTRAN SOURCE CODE FOR THE ANALYSIS OF THE MIL-A-8591 E AIRCRAFT SWAY AND LOAD CONDITIONS

SWAY CONTROL OF AIRCRAFT

```

PROGRAM L074F.      CXC 6688 FTM V3.0 - P316 MPT-1 66/80/74 89.45.18. 0102 1
      SUBROUTINE L074F
      REAL MV,M2,MX
      REAL 1801,PL,AL,PSB,ASB
      URTTE(M,94)

      5   C   CALCULATIONS OF MOMENT AONS
      C
      C:G=66.6
      XLA=SL-M2
      YLF=PL-FL
      YLA=AL-M2-MX
      YLF=PL-FSA
      AL=21.5/57.296
      LOAD FACTOR TIMES WT OR MOMENT OF INERTIA
      15  C
      S0=1.00
      Z1=0.
      YX=-.60
      YR=1.20
      Z1=.3
      YY=1562313./716.
      YZ=156313./716.
      YT=1639.
      C
      20
      C
      25  C
      AL00X=.334.
      AL00Y=.155.
      AL00T=.5.
      YM4=-1.6027.
      YM5=-.9145.
      YX=-.558.
      C
      30
      C
      35
      C
      40
      C
      45
      C
      50
      C
      55
      C
      60
      C
      65
      C
      70
      C
      75
      C
      80
      C
      85
      C
      90
      C
      95
      C
      100
      C
      105
      C
      110
      C
      115
      C
      120
      C
      125
      C
      130
      C
      135
      C
      140
      C
      145
      C
      150
      C
      155
      C
      160
      C
      165
      C
      170
      C
      175
      C
      180
      C
      185
      C
      190
      C
      195
      C
      200
      C
      205
      C
      210
      C
      215
      C
      220
      C
      225
      C
      230
      C
      235
      C
      240
      C
      245
      C
      250
      C
      255
      C
      260
      C
      265
      C
      270
      C
      275
      C
      280
      C
      285
      C
      290
      C
      295
      C
      300
      C
      305
      C
      310
      C
      315
      C
      320
      C
      325
      C
      330
      C
      335
      C
      340
      C
      345
      C
      350
      C
      355
      C
      360
      C
      365
      C
      370
      C
      375
      C
      380
      C
      385
      C
      390
      C
      395
      C
      400
      C
      405
      C
      410
      C
      415
      C
      420
      C
      425
      C
      430
      C
      435
      C
      440
      C
      445
      C
      450
      C
      455
      C
      460
      C
      465
      C
      470
      C
      475
      C
      480
      C
      485
      C
      490
      C
      495
      C
      500
      C
      505
      C
      510
      C
      515
      C
      520
      C
      525
      C
      530
      C
      535
      C
      540
      C
      545
      C
      550
      C
      555
      C
      560
      C
      565
      C
      570
      C
      575
      C
      580
      C
      585
      C
      590
      C
      595
      C
      600
      C
      605
      C
      610
      C
      615
      C
      620
      C
      625
      C
      630
      C
      635
      C
      640
      C
      645
      C
      650
      C
      655
      C
      660
      C
      665
      C
      670
      C
      675
      C
      680
      C
      685
      C
      690
      C
      695
      C
      700
      C
      705
      C
      710
      C
      715
      C
      720
      C
      725
      C
      730
      C
      735
      C
      740
      C
      745
      C
      750
      C
      755
      C
      760
      C
      765
      C
      770
      C
      775
      C
      780
      C
      785
      C
      790
      C
      795
      C
      800
      C
      805
      C
      810
      C
      815
      C
      820
      C
      825
      C
      830
      C
      835
      C
      840
      C
      845
      C
      850
      C
      855
      C
      860
      C
      865
      C
      870
      C
      875
      C
      880
      C
      885
      C
      890
      C
      895
      C
      900
      C
      905
      C
      910
      C
      915
      C
      920
      C
      925
      C
      930
      C
      935
      C
      940
      C
      945
      C
      950
      C
      955
      C
      960
      C
      965
      C
      970
      C
      975
      C
      980
      C
      985
      C
      990
      C
      995
      C
      1000
      C
      1005
      C
      1010
      C
      1015
      C
      1020
      C
      1025
      C
      1030
      C
      1035
      C
      1040
      C
      1045
      C
      1050
      C
      1055
      C
      1060
      C
      1065
      C
      1070
      C
      1075
      C
      1080
      C
      1085
      C
      1090
      C
      1095
      C
      1100
      C
      1105
      C
      1110
      C
      1115
      C
      1120
      C
      1125
      C
      1130
      C
      1135
      C
      1140
      C
      1145
      C
      1150
      C
      1155
      C
      1160
      C
      1165
      C
      1170
      C
      1175
      C
      1180
      C
      1185
      C
      1190
      C
      1195
      C
      1200
      C
      1205
      C
      1210
      C
      1215
      C
      1220
      C
      1225
      C
      1230
      C
      1235
      C
      1240
      C
      1245
      C
      1250
      C
      1255
      C
      1260
      C
      1265
      C
      1270
      C
      1275
      C
      1280
      C
      1285
      C
      1290
      C
      1295
      C
      1300
      C
      1305
      C
      1310
      C
      1315
      C
      1320
      C
      1325
      C
      1330
      C
      1335
      C
      1340
      C
      1345
      C
      1350
      C
      1355
      C
      1360
      C
      1365
      C
      1370
      C
      1375
      C
      1380
      C
      1385
      C
      1390
      C
      1395
      C
      1400
      C
      1405
      C
      1410
      C
      1415
      C
      1420
      C
      1425
      C
      1430
      C
      1435
      C
      1440
      C
      1445
      C
      1450
      C
      1455
      C
      1460
      C
      1465
      C
      1470
      C
      1475
      C
      1480
      C
      1485
      C
      1490
      C
      1495
      C
      1500
      C
      1505
      C
      1510
      C
      1515
      C
      1520
      C
      1525
      C
      1530
      C
      1535
      C
      1540
      C
      1545
      C
      1550
      C
      1555
      C
      1560
      C
      1565
      C
      1570
      C
      1575
      C
      1580
      C
      1585
      C
      1590
      C
      1595
      C
      1600
      C
      1605
      C
      1610
      C
      1615
      C
      1620
      C
      1625
      C
      1630
      C
      1635
      C
      1640
      C
      1645
      C
      1650
      C
      1655
      C
      1660
      C
      1665
      C
      1670
      C
      1675
      C
      1680
      C
      1685
      C
      1690
      C
      1695
      C
      1700
      C
      1705
      C
      1710
      C
      1715
      C
      1720
      C
      1725
      C
      1730
      C
      1735
      C
      1740
      C
      1745
      C
      1750
      C
      1755
      C
      1760
      C
      1765
      C
      1770
      C
      1775
      C
      1780
      C
      1785
      C
      1790
      C
      1795
      C
      1800
      C
      1805
      C
      1810
      C
      1815
      C
      1820
      C
      1825
      C
      1830
      C
      1835
      C
      1840
      C
      1845
      C
      1850
      C
      1855
      C
      1860
      C
      1865
      C
      1870
      C
      1875
      C
      1880
      C
      1885
      C
      1890
      C
      1895
      C
      1900
      C
      1905
      C
      1910
      C
      1915
      C
      1920
      C
      1925
      C
      1930
      C
      1935
      C
      1940
      C
      1945
      C
      1950
      C
      1955
      C
      1960
      C
      1965
      C
      1970
      C
      1975
      C
      1980
      C
      1985
      C
      1990
      C
      1995
      C
      2000
      C
      2005
      C
      2010
      C
      2015
      C
      2020
      C
      2025
      C
      2030
      C
      2035
      C
      2040
      C
      2045
      C
      2050
      C
      2055
      C
      2060
      C
      2065
      C
      2070
      C
      2075
      C
      2080
      C
      2085
      C
      2090
      C
      2095
      C
      2100
      C
      2105
      C
      2110
      C
      2115
      C
      2120
      C
      2125
      C
      2130
      C
      2135
      C
      2140
      C
      2145
      C
      2150
      C
      2155
      C
      2160
      C
      2165
      C
      2170
      C
      2175
      C
      2180
      C
      2185
      C
      2190
      C
      2195
      C
      2200
      C
      2205
      C
      2210
      C
      2215
      C
      2220
      C
      2225
      C
      2230
      C
      2235
      C
      2240
      C
      2245
      C
      2250
      C
      2255
      C
      2260
      C
      2265
      C
      2270
      C
      2275
      C
      2280
      C
      2285
      C
      2290
      C
      2295
      C
      2300
      C
      2305
      C
      2310
      C
      2315
      C
      2320
      C
      2325
      C
      2330
      C
      2335
      C
      2340
      C
      2345
      C
      2350
      C
      2355
      C
      2360
      C
      2365
      C
      2370
      C
      2375
      C
      2380
      C
      2385
      C
      2390
      C
      2395
      C
      2400
      C
      2405
      C
      2410
      C
      2415
      C
      2420
      C
      2425
      C
      2430
      C
      2435
      C
      2440
      C
      2445
      C
      2450
      C
      2455
      C
      2460
      C
      2465
      C
      2470
      C
      2475
      C
      2480
      C
      2485
      C
      2490
      C
      2495
      C
      2500
      C
      2505
      C
      2510
      C
      2515
      C
      2520
      C
      2525
      C
      2530
      C
      2535
      C
      2540
      C
      2545
      C
      2550
      C
      2555
      C
      2560
      C
      2565
      C
      2570
      C
      2575
      C
      2580
      C
      2585
      C
      2590
      C
      2595
      C
      2600
      C
      2605
      C
      2610
      C
      2615
      C
      2620
      C
      2625
      C
      2630
      C
      2635
      C
      2640
      C
      2645
      C
      2650
      C
      2655
      C
      2660
      C
      2665
      C
      2670
      C
      2675
      C
      2680
      C
      2685
      C
      2690
      C
      2695
      C
      2700
      C
      2705
      C
      2710
      C
      2715
      C
      2720
      C
      2725
      C
      2730
      C
      2735
      C
      2740
      C
      2745
      C
      2750
      C
      2755
      C
      2760
      C
      2765
      C
      2770
      C
      2775
      C
      2780
      C
      2785
      C
      2790
      C
      2795
      C
      2800
      C
      2805
      C
      2810
      C
      2815
      C
      2820
      C
      2825
      C
      2830
      C
      2835
      C
      2840
      C
      2845
      C
      2850
      C
      2855
      C
      2860
      C
      2865
      C
      2870
      C
      2875
      C
      2880
      C
      2885
      C
      2890
      C
      2895
      C
      2900
      C
      2905
      C
      2910
      C
      2915
      C
      2920
      C
      2925
      C
      2930
      C
      2935
      C
      2940
      C
      2945
      C
      2950
      C
      2955
      C
      2960
      C
      2965
      C
      2970
      C
      2975
      C
      2980
      C
      2985
      C
      2990
      C
      2995
      C
      3000
      C
      3005
      C
      3010
      C
      3015
      C
      3020
      C
      3025
      C
      3030
      C
      3035
      C
      3040
      C
      3045
      C
      3050
      C
      3055
      C
      3060
      C
      3065
      C
      3070
      C
      3075
      C
      3080
      C
      3085
      C
      3090
      C
      3095
      C
      3100
      C
      3105
      C
      3110
      C
      3115
      C
      3120
      C
      3125
      C
      3130
      C
      3135
      C
      3140
      C
      3145
      C
      3150
      C
      3155
      C
      3160
      C
      3165
      C
      3170
      C
      3175
      C
      3180
      C
      3185
      C
      3190
      C
      3195
      C
      3200
      C
      3205
      C
      3210
      C
      3215
      C
      3220
      C
      3225
      C
      3230
      C
      3235
      C
      3240
      C
      3245
      C
      3250
      C
      3255
      C
      3260
      C
      3265
      C
      3270
      C
      3275
      C
      3280
      C
      3285
      C
      3290
      C
      3295
      C
      3300
      C
      3305
      C
      3310
      C
      3315
      C
      3320
      C
      3325
      C
      3330
      C
      3335
      C
      3340
      C
      3345
      C
      3350
      C
      3355
      C
      3360
      C
      3365
      C
      3370
      C
      3375
      C
      3380
      C
      3385
      C
      3390
      C
      3395
      C
      3400
      C
      3405
      C
      3410
      C
      3415
      C
      3420
      C
      3425
      C
      3430
      C
      3435
      C
      3440
      C
      3445
      C
      3450
      C
      3455
      C
      3460
      C
      3465
      C
      3470
      C
      3475
      C
      3480
      C
      3485
      C
      3490
      C
      3495
      C
      3500
      C
      3505
      C
      3510
      C
      3515
      C
      3520
      C
      3525
      C
      3530
      C
      3535
      C
      3540
      C
      3545
      C
      3550
      C
      3555
      C
      3560
      C
      3565
      C
      3570
      C
      3575
      C
      3580
      C
      3585
      C
      3590
      C
      3595
      C
      3600
      C
      3605
      C
      3610
      C
      3615
      C
      3620
      C
      3625
      C
      3630
      C
      3635
      C
      3640
      C
      3645
      C
      3650
      C
      3655
      C
      3660
      C
      3665
      C
      3670
      C
      3675
      C
      3680
      C
      3685
      C
      3690
      C
      3695
      C
      3700
      C
      3705
      C
      3710
      C
      3715
      C
      3720
      C
      3725
      C
      3730
      C
      3735
      C
      3740
      C
      3745
      C
      3750
      C
      3755
      C
      3760
      C
      3765
      C
      3770
      C
      3775
      C
      3780
      C
      3785
      C
      3790
      C
      3795
      C
      3800
      C
      3805
      C
      3810
      C
      3815
      C
      3820
      C
      3825
      C
      3830
      C
      3835
      C
      3840
      C
      3845
      C
      3850
      C
      3855
      C
      3860
      C
      3865
      C
      3870
      C
      3875
      C
      3880
      C
      3885
      C
      3890
      C
      3895
      C
      3900
      C
      3905
      C
      3910
      C
      3915
      C
      3920
      C
      3925
      C
      3930
      C
      3935
      C
      3940
      C
      3945
      C
      3950
      C
      3955
      C
      3960
      C
      3965
      C
      3970
      C
      3975
      C
      3980
      C
      3985
      C
      3990
      C
      3995
      C
      4000
      C
      4005
      C
      4010
      C
      4015
      C
      4020
      C
      4025
      C
      4030
      C
      4035
      C
      4040
      C
      4045
      C
      4050
      C
      4055
      C
      4060
      C
      4065
      C
      4070
      C
      4075
      C
      4080
      C
      4085
      C
      4090
      C
      4095
      C
      4100
      C
      4105
      C
      4110
      C
      4115
      C
      4120
      C
      4125
      C
      4130
      C
      4135
      C
      4140
      C
      4145
      C
      4150
      C
      4155
      C
      4160
      C
      4165
      C
      4170
      C
      4175
      C
      4180
      C
      4185
      C
      4190
      C
      4195
      C
      4200
      C
      4205
      C
      4210
      C
      4215
      C
      4220
      C
      4225
      C
      4230
      C
      4235
      C
      4240
      C
      4245
      C
      4250
      C
      4255
      C
      4260
      C
      4265
      C
      4270
      C
      4275
      C
      4280
      C
      4285
      C
      4290
      C
      4295
      C
      4300
      C
      4305
      C
      4310
      C
      4315
      C
      4320
      C
      4325
      C
      4330
      C
      4335
      C
      4340
      C
      4345
      C
      4350
      C
      4355
      C
      4360
      C
      4365
      C
      4370
      C
      4375
      C
      4380
      C
      4385
      C
      4390
      C
      4395
      C
      4400
      C
      4405
      C
      4410
      C
      4415
      C
      4420
      C
      4425
      C
      4430
      C
      4435
      C
      4440
      C
      4445
      C
      4450
      C
      4455
      C
      4460
      C
      4465
      C
      4470
      C
      4475
      C
      4480
      C
      4485
      C
      4490
      C
      4495
      C
      4500
      C
      4505
      C
      4510
      C
      4515
      C
      4520
      C
      4525
      C
      4530
      C
      4535
      C
      4540
      C
      4545
      C
      4550
      C
      4555
      C
      4560
      C
      4565
      C
      4570
      C
      4575
      C
      4580
      C
      4585
      C
      4590
      C
      4595
      C
      4600
      C
      4605
      C
      4610
      C
      4615
      C
      4620
      C
      4625
      C
      4630
      C
      4635
      C
      4640
      C
      4645
      C
      4650
      C
      4655
      C
      4660
      C
      4665
      C
      4670
      C
      4675
      C
      4680
      C
      4685
      C
      4690
      C
      4695
      C
      4700
      C
      4705
      C
      4710
      C
      4715
      C
      4720
      C
      4725
      C
      4730
      C
      4735
      C
      4740
      C
      4745
      C
      4750
      C
      4755
      C
      4760
      C
      4765
      C
      4770
      C
      4775
      C
      4780
      C
      4785
      C
      4790
      C
      4795
      C
      4800
      C
      4805
      C
      4810
      C
      4815
      C
      4820
      C
      4825
      C
      4830
      C
      4835
      C
      4840
      C
      4845
      C
      4850
      C
      4855
      C
      4860
      C
      4865
      C
      4870
      C
      4875
      C
      4880
      C
      4885
      C
      4890
      C
      4895
      C
      4900
      C
      4905
      C
      4910
      C
      4915
      C
      4920
      C
      4925
      C
      4930
      C
      4935
      C
      4940
      C
      4945
      C
      4950
      C
      4955
      C
      4960
      C
      4965
      C
      4970
      C
      4975
      C
      4980
      C
      4985
      C
      4990
      C
      4995
      C
      5000
      C
      5005
      C
      5010
      C
      5015
      C
      5020
      C
      5025
      C
      5030
      C
      5035
      C
      5040
      C
      5045
      C
      5050
      C
      5055
      C
      5060
      C
      5065
      C
      5070
      C
      5075
      C
      5080
      C
      5085
      C
      5090
      C
      5095
      C
      5100
      C
      5105
      C
      5110
      C
      5115
      C
      5120
      C
      5125
      C
      5130
      C
      5135
      C
      5140
      C
      5145
      C
      5150
      C
      5155
      C
      5160
      C
      5165
      C
      5170
      C
      5175
      C
      5180
      C
      5185
      C
      5190
      C
      5195
      C
      5200
      C
      5205
      C
      5210
      C
      5215
      C
      5220
      C
      5225
      C
      5230
      C
      5235
      C
      5240
      C
      5245
      C
      5250
      C
      5255
      C
      5260
      C
      5265
      C
      5270
      C
      5275
      C
      5280
      C
      5285
      C
      5290
      C
      5295
      C
      5300
      C
      5305
      C
      5310
      C
      5315
      C
      5320
      C
      5325
      C
      5330
      C
      5335
      C
      5340
      C
      5345
      C
      5350
      C
      5355
      C
      5360
      C
      5365
      C
      5370
      C
      5375
      C
      5380
      C
      5385
      C
      5390
      C
      5395
      C
      5400
      C
      5405
      C
      5410
      C
      5415
      C
      5420
      C
      5425
      C
      5430
      C
      5435
      C
      5440
      C
      5445
      C
      5450
      C
      5455
      C
      5460
      C
     
```


PROGRAM LOGGING SUC 6688 FTM v3.0-P366 OPTn1 06/04/76 14.52.11. PAGE 1

PROGRAM LOGGING (INPUT,OUTPUT,TAPES&JJPJT)

REAL MT, MZ, MX
READ 1001,FL,AL,FS,ASJ
WRITE(6,99)

CALCULATIONS OF MOMENT ARMS

CG=64.6
AL=AL-JG
ALF=LG-FL
ALB=ASB-CG
ALdF=CG-FSB
DETA=21.5/57.296
LOAD FACTORS TIMES WT OR MOMENT OF INERTIA

SIG=1.00
CJ=0.
CA=1.60
H=1.20
R=12.3
X1=1162.515./386.
X2=1153.315./386.
WT=14.59.

ALOAUX=0.
ALOAUY=0.0
ALOAUZ=0.0
KMM=0.0
XMM=0.0
PX=A*WT+ALOAUX
PY=B*WT+ALOAUY
PZ=C*WT+ALOAUZ
HY=0. XY=KMM
MZ=C*XZ*XMM
IF(L.Ne.0) GO TO 691

TRIAL LUG REACTIONS

AKH=R+H-EL
VdE=(PY*(R+H)-MX)*(XLB+5*MT+GM)/(AKH*(XLBF+XLBA)+TAN(BETA))
VdU=(PR*(R+H)-MX)*(XLG-3*H+AKH)/(AKH*(XLUF+XLBA)+TAN(BETA))
VdF=ABS(VdE)
VdA=ABS(VdU)
RFPZ=(PA*(R+CX))-PZ*(XLB-MY+8*H)/(XLBA-XLA))/((XLBA-XLA)/((XLBA-XLF))
MAPZ=(MR-P*(XCX))-PZ*(ALF+WT)*(XLFA-XLA))/((XLFA-XLF))
TESTING FOR CASE 10 BE USED

IF(RFPZ.GE.0.0.ANU.RAP.LT.0.0) GO TO 21
IF(RFPZ.GE.0.0.ANU.RAP.LT.0.0) GO TO 27
IF(RFPZ.LT.0.0.ANU.RAP.GE.0.0) GO TO 38
IF(RFPZ.LT.0.0.ANU.RAP.LT.0.0) GO TO 49

A-60

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION INERTIA

LOAD FACTORS NV HZ THETA PSI

LUG	FORWARD	AFT	LOAD POINTS
(Z)	0.	0481.	FWD SHAY BRACE
(Y)	0.	0.	LEFT
(X)	0.	-11512.	RIGHT

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION INERTIA

LOAD FACTORS NV HZ THETA PSI

LUG	FORWARD	AFT	LOAD POINTS
(Z)	6265.	2612.	FWD SHAY BRACE
(Y)	0.	0.	LEFT
(X)	0.	0.	RIGHT

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION INERTIA

LOAD FACTORS NV HZ THETA PSI

LUG	FORWARD	AFT	LOAD POINTS
(Z)	0.	1427.	FWD SHAY BRACE
(Y)	0.	0.	LEFT
(X)	0.	0.	RIGHT

LOAD ANALYSIS MIL-A-6591 E

LOADING CONDITION INERTIA

		LOADING POINTS		MX	MY	MZ	INERTIA	PSI
LUG		FORWARD	AFT	0.00	0.00	0.00	12.00	0.00
		FORWARD SWAY BRACE					AFT SWAY BRACE	
		LEFT	RIGHT				LEFT	RIGHT
(2)	2.	1.665.						
(17)	3.	0.						
(18)	0.	0.						

LOADING CONDITION INERTIA

		LOADING POINTS		MX	MY	MZ	INERTIA	PSI
LUG		FORWARD	AFT	0.00	0.00	0.00	12.00	0.00
		FORWARD SWAY BRACE					AFT SWAY BRACE	
		LEFT	RIGHT				LEFT	RIGHT
(2)	2281.	2281.						
(17)	3.	0.	0.					
(18)	0.	0.						

LOAD ANALYSIS MIL-A-6591 C

		LOADING POINTS		MX	MY	MZ	INERTIA	PSI
LUG		FORWARD	AFT	0.00	0.00	0.00	0.00	0.00
		FORWARD SWAY BRACE					AFT SWAY BRACE	
		LEFT	RIGHT				LEFT	RIGHT
(2)	2452.							
(17)	0.	0.	0.					
(18)	0.	0.						

21

PROGRAM	LOONG		COO 6610 FTM VJ.0-PAGE OPT=1	06/09/70	15.11.26.	PAGE 1
PROGRAM LUONG (INPUT,OUTPUT,INPUT=OUTPUT)						
REAL M1,M2,M4						
HEAD 1001,FL,AL,FS0,A3d						
WRITE(6,33)						
5	C	CALCULATIONS OF MOMENT ARMS				
	C	CG=64.6				
	C	XLA=AL-CG				
	C	ALF=CG-FL				
	C	XLA=ASB-CG				
	C	XLd=CG-FSB				
	C	BETA=21.5/57.296				
	C	LOAD FACTORS TIMES WT OR MOMENT OF INERTIA				
10	C	S3=1.00				
	C	E1=0.				
	C	Gx=.68				
	C	H=1.20				
	C	R=12.3				
	C	XY=11.02313./346.				
	C	XZ=11.02313./346.				
	C	WT=1e39.				
20	C					
25	C	ALUAUX=0.0				
	C	ALOUY=0.0				
	C	ALOODZ=0.0				
	C	MX=10.0.				
	C	XMM=0.0				
	C	XMN=0.0				
30	C					
-313 ANALYSIS MIL-A-6591 E						
LOADING CONDITION ROLL ONLY			LOAD FACTORS	NX	M1	N2
				0.00	0.00	0.00
						PSI
						0.00
LOADING POINTS						
FORWARD SAIL BRACE						
LUS	AFT	LEFT	RIGHT	LEFT	RIGHT	
FORWARD	AFT	-271	0.			
(2)	215.	90.	0.	265.	0.	
(Y)	-77.	3.				
(X)	0.	0.				

LOAD ANALYSIS MTL-A-8591 E

LOADING CONDITION INERTIA

LUG	FORWARD AFT	LOAD FACTORS
M1	M2	M3
(12)	0.	5244.
(14)	0.	0.
(X1)	0.	-9432.

LOADING CONDITION INERTIA

LUG	FORWARD AFT	LOAD FACTORS
M1	M2	M3
(12)	5560.	2567.
(14)	0.	0.
(X1)	0.	0.

LOAD ANALYSIS MTL-A-8591 E

LUG	FORWARD SWAY BRACE	LOAD FACTORS
M1	M2	M3
(12)	RIGHT	0.
(14)	LEFT	0.
(X1)	RIGHT	0.

LUG	AFT SWAY BRACE	LOAD FACTORS
M1	M2	M3
(12)	RIGHT	0.
(14)	LEFT	0.
(X1)	RIGHT	0.

LUG	AFT SWAY SPACE	LOAD POINTS
M1	M2	M3
(12)	RIGHT	0.
(14)	LEFT	0.
(X1)	RIGHT	0.

LUG	AFT SWAY SPACE	LOAD POINTS
M1	M2	M3
(12)	RIGHT	0.
(14)	LEFT	0.
(X1)	RIGHT	0.

LOAD ANALYSIS MTL-A-8591 F

LOADING CONDITION INERTIA

LUG	FORWARD	AFT
(7)	0.	1350.
(Y)	0.	0.
(X)	0.	0.

LOADING POINTS

FORWARD SWAY SPACE	AFT SWAY SPACE
LEFT	RIGHT
725.	729.

LOAD FACTORS

	W _X	W _Y	W _Z	THETA	Psi
	0.00	0.00	0.00	12.00	0.00

LOADING CONDITION INERTIA

LUG	FORWARD	AFT
(7)	2130.	2130.
(Y)	0.	0.
(X)	0.	0.

LOAD FACTORS

FORWARD SWAY SPACE	AFT SWAY SPACE
LEFT	RIGHT
0.	2269.

	W _X	W _Y	W _Z	THETA	Psi
	0.00	0.00	0.00	-0.00	-0.00

LOAD ANALYSIS MIL-A-8991

26

PROGRAM	LOAN#	COC 6600 STM 93.8-936 OPT-1	06/06/74	04/21/51.	04/21/51.
PROGRAM LOAN# INPUT, OUTPUT, REPORTS					
2001 47-47, 47, EAN 1001, FL, AL, FSA, ASA NET(14,99)					
C C CALCULATIONS OF MORTGAGE AMTS					
RG=59.7					
VLA=AL-CG					
VLF=FL-CG					
VLA=ALG-CG					
YLD=FL-CG-CS					
AF7A=21.5157*296					
LOAN FACTORS TIMES MT OR MONTH OF INVESTIA					
S=1.00					
F1=0.					
A(X=1.60					
Y=1.20					
Z=1.2.3					
YT=905268./196.					
VZ=990246./196.					
UT=914.					
C C					
ALNANX=0.9					
ALNANY=0.9					
ALNANZ=0.0					
4X=0.					
YNY=0.0					
ZNY=0.0					
10 EAN 1002.A.a.r.D.E.L					
PKA=WT.ALNANX					
SY=SYWT.ALNANX					
SZ=SZWT.ALNANZ					
TY=TYWT.ALNANZ					
NY=NYWT.ALNANZ					
1STL.NE.DIGC TO 691					
C C					
*RIAL LUG REACTIONS					
1P=PAH-EI					
VAF=(1P*(R+H)-H*VXLNA+SGBH7*QPH)/(VAF*(VLF*VLA)+TAN(CPTAV))					
VAF=(VAF*(R+H)-H*VXLNA+SGBH7*QPH)/(VAF*(VLF*VLA)+TAN(CPTAV))					
VAF=ABS(VAF)					
VBA=ABS(VBA)					
CP7=(P7*(D+TX)-P7*XLA-H*VAF*(VLA+VLF))-VFA*(VLA-XLA))/((VLA+VLF)					
CP2=(W-PX*(R+CA)-P2*XLA-H*VAF*(VLF+VQA)-(VFA*(VLA-XLA))/((VLA+VLF))					
TESTING FOR CASE TO BE USED					
IF(PF7, GE, J, AND, RAP2, GE, 0, 0) GO TO 21					
IF(PF7, GE, J, 0, AND, RAP2, LT, 0, 0) GO TO 22					
IF(PF2, LT, J, 0, AND, RAP2, GE, 0, 0) GO TO 34					
*IF(PF2, LT, J, 0, AND, RAP2, LT, 0, 0) GO TO 49					

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION INERTIA		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD	AFT	-0.90	0.00	0.00	0.00	0.00
(1)	0.	4843.						
(1)	0.	0.						
(1)	0.	-7944.						

LOADING CONDITION INERTIA

LOADING POINTS		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD SWAY BRACE	AFT SWAY BRACE	-0.90	0.00	0.00	0.00	0.00
(1)	0.	RIGHT	LEFT					
(1)	0.	2194.	2194.					

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION INERTIA		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD	AFT	-0.90	0.00	0.00	0.00	0.00
(1)	0.	4853.	2923.					
(1)	0.	0.	0.					
(1)	0.	0.	0.					

LOADING CONDITION INERTIA

LOADING POINTS		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD SWAY BRACE	AFT SWAY BRACE	-0.90	0.00	0.00	0.00	0.00
(1)	0.	RIGHT	LEFT					
(1)	0.	2085.	2085.					

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION INERTIA		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD	AFT	-0.90	0.00	0.00	0.00	0.00
(1)	0.	1670.						
(1)	0.	0.						
(1)	0.	0.						

LOAD ANALYSIS MIL-A-8591 F

LOADING CONDITION INERTIA		LOAD FACTORS		NX	NY	NZ	THETA	PsiY
LUG		FORWARD SWAY BRACE	AFT SWAY BRACE	-0.90	0.00	0.00	0.00	0.00
(1)	0.	2649.	2649.					

LOAD ANALYSIS MIL-A-8591 F

LOADING CONDITION INERTIA

LUG	FORWARD	AFT	
(Z)	0.	1239.	
(Y)	0.	0.	
(X)	0.	0.	

LOADING CONDITION INERTIA

LUG	FORWARD	AFT	
(Z)	0.	666.	
(Y)	0.	0.	
(X)	0.	0.	

LOAD ANALYSIS MIL-A-8591 E

LOADING CONDITION INERTIA

LUG	FORWARD	AFT	
(Z)	1954.	1954.	
(Y)	0.	0.	
(X)	0.	0.	

LOADING CONDITION INERTIA

LUG	FORWARD	AFT	
(Z)	0.	0.	
(Y)	0.	0.	
(X)	0.	0.	

PROGRAM LOADING INPUT, OUTPUT, TYPE=OUTPUT
 2E AL NY, 42, NY
 2EAN 1881, FS, AL, FSB, ASR
 40TR(6,99)

PROCESS	LOAD	FOR 6688 CTN VS.9-P336 NPT=1 86/06774 19.24.76.
6	C	PROGRAM LOADING INPUT, OUTPUT, TYPE=OUTPUT
6	C	CALCULATIONS OF HYDRAULIC ARMS
10	C	CG=99.7 XLS=AL-FG YLF=FG+FL XLF=AS=AFG YLF=FG-FSA MTA=21.5/57.295
15	C	LOAD FACTORS TIMES WT OR MOMENT OF INERTIA
20	C	\$911.00 El=0. Cr=1.60 U=1.20 n=32.3 Y=996249./765. Y=993248./735. U=918.
25	C	4L00Mx=0.0 ALNAY=0.0 ALNAT=0.0 YX=000. XM=0.0 YHN=1.0 PEND 1802,A,B,C,D,E,1 EXANT=AL00M n=32.3
30	C	

LOAD ANALYSIS WTL-A-08991 E

LOADING CONDITION: EQUAL ONLY

LOAD POINTS

LUG	FORWARD SWAY BRACE
FORWARD	LEFT
(Z)	261.
(Y)	-89.
(X)	0.

LOAD FACTORS	MX	MY	MZ	THETA	ROT
0.98	0.00	0.00	0.00	0.00	0.
112.	0.	0.	0.	0.	0.

AFT SWAY BRACE

PROGRAM ORBITING INPUT.OUTPUT
TOMLINE STEADY STATE CONFIGURATION---TOMPLANE IN LEFT TURN

```

      COC 6600 RTW NJ.0-PJAS OPT=1 05/18/74 10:49:37. PAGE 1
      PROGRAM ORBITING INPUT.OUTPUT
      TOMLINE STEADY STATE CONFIGURATION---TOMPLANE IN LEFT TURN
      C V = TOMPLANE TRUE AIRSPEED , KNOTS
      C RPL = TOMPLANE TURN RADIUS, MALL CEMTR, LEFT TURN, FT
      S
      C ZPL = TOMPLANE ALTITUDE FT
      C AMG = TARGET WEIGHT , LB.
      C ABSC = TARGET BASE AREA , SQ FT
      C GUROG = TARGET GRAVITY COEFFICIENT
      C ANUG = TOMLINE WEIGHT, LB/FT
      C D = TOMLINE DIAMETER, FT
      C AL = TOMLINE LENGTH , FT
      C PACF = TOMLINE SKIN FRICTION COEFFICIENT
      C GU = TOMLINE DRAG COEFFICIENT
      C AGC = DISTANCE FROM TOPOINT TO TARGET CENTER OF GRAVITY, FT
      C XCP = DISTANCE FROM TOPOINT TO TARGET CENTER OF PRESSURE , FT
      15   C ZCL = DISTANCE FROM TOPOINT TO TARGET CENTERLINE, FT
      C THETA = TOMLINE TRAIL ANGLE AT TARGET, XZ PLANE, RADIANS
      C PHI = TARGET BANK ANGLE, RADIAN
      C CONSTANT
      C = J2+17 SP1 = 3.1616
      XCG = 0.750 3XCP = 4.500 SICG = 1.500
      28
      1199 ITLK = 1
      READ 1001, V, RPL, ZPL, RZO, ZZO
      IF (V = 9999.1) 1200, J40, J40
      1200 PRINT 1101,V, RPL, ZPL, RZO, ZZO
      READ 1100,C, AMG, AASE, CUDR0;
      PRINT 1101, AMG, AASE, CUDR0;
      READ 1100, AMG, U, AL, DUS, PICF, CO
      PRINT 1101, AMG, U, AL, DUS, PICF, CO
      IF (CD = 0.19 1193, 1199, 1400
      38
      1400 K = 1
      5 ITER = 1
      1501 22 = ZZD SRZ = RZO SI = 1 SIS = 2.0 SOMEGA = V01.69/RPL-SI = 1
      35   AMOL = 0.002378+1i - 0.0006815*ZL/1000.1000.256
      OMEGA = OMEGA 3.0 = 0.3 STM2 = 0.0
      COSJ = 0.5*KHO*XZ*WZ*WME*SQ*ABASE*CUDR0
      A = RZ*OMCGSQ/C
      PMI = ATAN(A)
      ANZ = 1./COS(PHI)
      A = ZCL/XCP
      B = XCG/XCP
      C = 1.-B
      D = ANG+C*ANZ/COSJ
      G = A+B
      THETA = ATAN(C)
      TJKOG = COSQ/COS(THETA)
      12030FORMA (1M ,31, 4MPH1, E12.4, 5X, 6NTMETHA, E12.4, 5X,
      16HTDRUG=E12.4)
      50
      TRPZ = TJKOG*SINTHETAB*COSPHI
      T2PZ = TJKOG*SINTHETAB*COSPHI
      TRTHPZ = TJKOG*SINTHETAB
      660  T2 = Sqrt(TRPZ*TRPZ+TRTHPZ*TRTHPZ+T2PZ*T2PZ)
      APZ = TRPZ/T2 *TRHPZ = TRHPZ/(T2*TRPZ) SIPZ = T2PZ/T2
      55
      RTMPZ = TRHPZ/T2
      65
      66
      67
      82
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
      100
      101
      102
      103
      104
      105
      106
      107
      108
      109
      110
      111
      112
      113
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      182
      183
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      296
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      354
      355
      356
      357
      358
      359
      360
      361
      362
      363
      364
      365
      366
      367
      368
      369
      370
      371
      372
      373
      374
      375
      376
      377
      378
      379
      380
      381
      382
      383
      384
      385
      386
      387
      388
      389
      390
      391
      392
      393
      394
      395
      396
      397
      398
      399
      400
      401
      402
      403
      404
      405
      406
      407
      408
      409
      410
      411
      412
      413
      414
      415
      416
      417
      418
      419
      420
      421
      422
      423
      424
      425
      426
      427
      428
      429
      430
      431
      432
      433
      434
      435
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451
      452
      453
      454
      455
      456
      457
      458
      459
      460
      461
      462
      463
      464
      465
      466
      467
      468
      469
      470
      471
      472
      473
      474
      475
      476
      477
      478
      479
      480
      481
      482
      483
      484
      485
      486
      487
      488
      489
      490
      491
      492
      493
      494
      495
      496
      497
      498
      499
      500
      501
      502
      503
      504
      505
      506
      507
      508
      509
      510
      511
      512
      513
      514
      515
      516
      517
      518
      519
      520
      521
      522
      523
      524
      525
      526
      527
      528
      529
      530
      531
      532
      533
      534
      535
      536
      537
      538
      539
      540
      541
      542
      543
      544
      545
      546
      547
      548
      549
      550
      551
      552
      553
      554
      555
      556
      557
      558
      559
      560
      561
      562
      563
      564
      565
      566
      567
      568
      569
      570
      571
      572
      573
      574
      575
      576
      577
      578
      579
      580
      581
      582
      583
      584
      585
      586
      587
      588
      589
      590
      591
      592
      593
      594
      595
      596
      597
      598
      599
      600
      601
      602
      603
      604
      605
      606
      607
      608
      609
      610
      611
      612
      613
      614
      615
      616
      617
      618
      619
      620
      621
      622
      623
      624
      625
      626
      627
      628
      629
      630
      631
      632
      633
      634
      635
      636
      637
      638
      639
      640
      641
      642
      643
      644
      645
      646
      647
      648
      649
      650
      651
      652
      653
      654
      655
      656
      657
      658
      659
      660
      661
      662
      663
      664
      665
      666
      667
      668
      669
      670
      671
      672
      673
      674
      675
      676
      677
      678
      679
      680
      681
      682
      683
      684
      685
      686
      687
      688
      689
      690
      691
      692
      693
      694
      695
      696
      697
      698
      699
      700
      701
      702
      703
      704
      705
      706
      707
      708
      709
      710
      711
      712
      713
      714
      715
      716
      717
      718
      719
      720
      721
      722
      723
      724
      725
      726
      727
      728
      729
      730
      731
      732
      733
      734
      735
      736
      737
      738
      739
      740
      741
      742
      743
      744
      745
      746
      747
      748
      749
      750
      751
      752
      753
      754
      755
      756
      757
      758
      759
      760
      761
      762
      763
      764
      765
      766
      767
      768
      769
      770
      771
      772
      773
      774
      775
      776
      777
      778
      779
      780
      781
      782
      783
      784
      785
      786
      787
      788
      789
      790
      791
      792
      793
      794
      795
      796
      797
      798
      799
      800
      801
      802
      803
      804
      805
      806
      807
      808
      809
      810
      811
      812
      813
      814
      815
      816
      817
      818
      819
      820
      821
      822
      823
      824
      825
      826
      827
      828
      829
      830
      831
      832
      833
      834
      835
      836
      837
      838
      839
      840
      841
      842
      843
      844
      845
      846
      847
      848
      849
      850
      851
      852
      853
      854
      855
      856
      857
      858
      859
      860
      861
      862
      863
      864
      865
      866
      867
      868
      869
      870
      871
      872
      873
      874
      875
      876
      877
      878
      879
      880
      881
      882
      883
      884
      885
      886
      887
      888
      889
      890
      891
      892
      893
      894
      895
      896
      897
      898
      899
      900
      901
      902
      903
      904
      905
      906
      907
      908
      909
      910
      911
      912
      913
      914
      915
      916
      917
      918
      919
      920
      921
      922
      923
      924
      925
      926
      927
      928
      929
      930
      931
      932
      933
      934
      935
      936
      937
      938
      939
      940
      941
      942
      943
      944
      945
      946
      947
      948
      949
      950
      951
      952
      953
      954
      955
      956
      957
      958
      959
      960
      961
      962
      963
      964
      965
      966
      967
      968
      969
      970
      971
      972
      973
      974
      975
      976
      977
      978
      979
      980
      981
      982
      983
      984
      985
      986
      987
      988
      989
      990
      991
      992
      993
      994
      995
      996
      997
      998
      999
      1000
      1001
      1002
      1003
      1004
      1005
      1006
      1007
      1008
      1009
      1010
      1011
      1012
      1013
      1014
      1015
      1016
      1017
      1018
      1019
      1020
      1021
      1022
      1023
      1024
      1025
      1026
      1027
      1028
      1029
      1030
      1031
      1032
      1033
      1034
      1035
      1036
      1037
      1038
      1039
      1040
      1041
      1042
      1043
      1044
      1045
      1046
      1047
      1048
      1049
      1050
      1051
      1052
      1053
      1054
      1055
      1056
      1057
      1058
      1059
      1060
      1061
      1062
      1063
      1064
      1065
      1066
      1067
      1068
      1069
      1070
      1071
      1072
      1073
      1074
      1075
      1076
      1077
      1078
      1079
      1080
      1081
      1082
      1083
      1084
      1085
      1086
      1087
      1088
      1089
      1090
      1091
      1092
      1093
      1094
      1095
      1096
      1097
      1098
      1099
      1100
      1101
      1102
      1103
      1104
      1105
      1106
      1107
      1108
      1109
      1110
      1111
      1112
      1113
      1114
      1115
      1116
      1117
      1118
      1119
      1120
      1121
      1122
      1123
      1124
      1125
      1126
      1127
      1128
      1129
      1130
      1131
      1132
      1133
      1134
      1135
      1136
      1137
      1138
      1139
      1140
      1141
      1142
      1143
      1144
      1145
      1146
      1147
      1148
      1149
      1150
      1151
      1152
      1153
      1154
      1155
      1156
      1157
      1158
      1159
      1160
      1161
      1162
      1163
      1164
      1165
      1166
      1167
      1168
      1169
      1170
      1171
      1172
      1173
      1174
      1175
      1176
      1177
      1178
      1179
      1180
      1181
      1182
      1183
      1184
      1185
      1186
      1187
      1188
      1189
      1190
      1191
      1192
      1193
      1194
      1195
      1196
      1197
      1198
      1199
      1200
      1201
      1202
      1203
      1204
      1205
      1206
      1207
      1208
      1209
      1210
      1211
      1212
      1213
      1214
      1215
      1216
      1217
      1218
      1219
      1220
      1221
      1222
      1223
      1224
      1225
      1226
      1227
      1228
      1229
      1230
      1231
      1232
      1233
      1234
      1235
      1236
      1237
      1238
      1239
      1240
      1241
      1242
      1243
      1244
      1245
      1246
      1247
      1248
      1249
      1250
      1251
      1252
      1253
      1254
      1255
      1256
      1257
      1258
      1259
      1260
      1261
      1262
      1263
      1264
      1265
      1266
      1267
      1268
      1269
      1270
      1271
      1272
      1273
      1274
      1275
      1276
      1277
      1278
      1279
      1280
      1281
      1282
      1283
      1284
      1285
      1286
      1287
      1288
      1289
      1290
      1291
      1292
      1293
      1294
      1295
      1296
      1297
      1298
      1299
      1300
      1301
      1302
      1303
      1304
      1305
      1306
      1307
      1308
      1309
      1310
      1311
      1312
      1313
      1314
      1315
      1316
      1317
      1318
      1319
      1320
      1321
      1322
      1323
      1324
      1325
      1326
      1327
      1328
      1329
      1330
      1331
      1332
      1333
      1334
      1335
      1336
      1337
      1338
      1339
      1340
      1341
      1342
      1343
      1344
      1345
      1346
      1347
      1348
      1349
      1350
      1351
      1352
      1353
      1354
      1355
      1356
      1357
      1358
      1359
      1360
      1361
      1362
      1363
      1364
      1365
      1366
      1367
      1368
      1369
      1370
      1371
      1372
      1373
      1374
      1375
      1376
      1377
      1378
      1379
      1380
      1381
      1382
      1383
      1384
      1385
      1386
      1387
      1388
      1389
      1390
      1391
      1392
      1393
      1394
      1395
      1396
      1397
      1398
      1399
      1400
      1401
      1402
      1403
      1404
      1405
      1406
      1407
      1408
      1409
      1410
      1411
      1412
      1413
      1414
      1415
      1416
      1417
      1418
      1419
      1420
      1421
      1422
      1423
      1424
      1425
      1426
      1427
      1428
      1429
      1430
      1431
      1432
      1433
      1434
      1435
      1436
      1437
      1438
      1439
      1440
      1441
      1442
      1443
      1444
      1445
      1446
      1447
      1448
      1449
      1450
      1451
      1452
      1453
      1454
      1455
      1456
      1457
      1458
      1459
      1460
      1461
      1462
      1463
      1464
      1465
      1466
      1467
      1468
      1469
      1470
      1471
      1472
      1473
      1474
      1475
      1476
      1477
      1478
      1479
      1480
      1481
      1482
      1483
      1484
      1485
      1486
      1487
      1488
      1489
      1490
      1491
      1492
      1493
      1494
      1495
      1496
      1497
      1498
      1499
      1500
      1501
      1502
      1503
      1504
      1505
      1506
      1507
      1508
      1509
      1510
      1511
      1512
      1513
      1514
      1515
      1516
      1517
      1518
      1519
      1520
      1521
      1522
      1523
      1524
      1525
      1526
      1527
      1528
      1529
      1530
      1531
      1532
      1533
      1534
      1535
      1536
      1537
      1538
      1539
      1540
      1541
      1542
      1543
      1544
      1545
      1546
      1547
      1548
      1549
      1550
      1551
      1552
      1553
      1554
      1555
      1556
      1557
      1558
      1559
      1560
      1561
      1562
      1563
      1564
      1565
      1566
      1567
      1568
      1569
      1570
      1571
      1572
      1573
      1574
      1575
      1576
      1577
      1578
      1579
      1580
      1581
      1582
      1583
      1584
      1585
      1586
      1587
      1588
      1589
      1590
      1591
      1592
      1593
      1594
      1595
      1596
      1597
      1598
      1599
      1600
      1601
      1602
      1603
      1604
      1605
      1606
      1607
      1608
      1609
      1610
      1611
      1612
      1613
      1614
      1615
      1616
      1617
      1618
      1619
      1620
      1621
      1622
      1623
      1624
      1625
      1626
      1627
      1628
      1629
      1630
      1631
      1632
      1633
      1634
      1635
     
```


PROGRAM ORIGINATING CDC 6600 FTM VJ.0-PJ36 OPT01 05/10/76 10-69-37.

```

10 2HQP, 18X, 2M2P, 9X, 4HATNP
2 FORMAT (0E12.6)
4 FORMAT (13M MOT CUNVER(E))
1000 FORMAT (1M1, 14M1N CONVER(E))
1001 FORMAT (5C12.6)
1100 FORMAT (1M1, 0MV(KNUT)*,112.6,2X,4HRPL*,E12.6,2X,4HPLM,E12.6,2X,
14KZU,E12.6,2X,4HPLM,E12.4)
1802 FORMAT (5X, JE12.4)
1102 FORMAT (1M1, 4HANU*,112.6,2X,3MADSL*,E12.6,2X,7MCQHAGC*,E12.6)
1003 FORMAT (5X, 4C12.6, 1X, 2E9.2)
1103 FORMAT (1M1, 2MA1U*,112.6,2X,2M0*,E12.6,2X,3MHA*,E12.6,2X,0MUDSe,
1612.6,2X,5HP(LCF*,E12.6,0,2A,3M2J*,E12.6)
1301 FORMAT (1M1, 2X, 3HRLP, 9X, 5MRJAOC, 7X, JM2PL, 9X, SM2R06, 7X,
1302 SEP, 9X, 1M1, 1X, 4HPLP, 8X, 4H2PPL, 8X, 4HTMPL)
1301 FORMAT (9E12.6)
190 PRINT 2, *, H1, 21, 1M1, 11, RPL1, RPL1, RIMPI
GO TO 1, J1, 203, 1193.0,K
200 IF (4D5((212ZPL)/2PL)-d,0,0)1202, 210
202 W1 TU (23.7, 240) K
203 IF (4ABS(1-PL1)-2UN0.1) 206, 216
204 IF (4ABS((1-K1-RPL1)/RPL1)-4.00)1 206, 220
205 GO TO (240, C00), K
210 K = 1
211 Z = 24U +0.6*(ZPL-21)
212
135
220 GO TO (540, 515), K
510 JRZU = 0.1B*(RPL - R1)
50 TO 500
515 IF (4ABS(1-RSTORE(RPL))- 0.002) 516, 516, 520
516 JRZU = J-2*(RPL - R1)
520 JRZU = (RPL-R1)*ORZU*0.0*(R1-RSTORE)
525 IF (4ABS((URZU- 150.) 528, 529, 525
526 JRZU = 150.*JRZU*(ADSLURZU)
50 TO 508
528 IF (4ABS(1-URZU)- 5. ) 527, 529, 568
529 URZU = 5. *ORZU/AB(1CH20)
568 KZU = R1W + URZU
K = C
570 ASTURE = R1
571
150
572 TO 5
540 PRINT 1400
540 GO TO 1193
248 K = 3
155
PRINT 1301
PRINT 1102, AMG, ABAGE, CUORG
PRINT 1103, AMUG, D, AL, ODS, PICF, CD
PRINT 1203, PHI, THETA, TORO;
GO TO 5
140 STOP
END

```

CDC 6600 RTN VJ.0-P336 OPT=1 09/16/74 10:40:37. PAGE

PROGRAM	DISPLAYING	DIAGNOSTIC
CARD NO.	SEVERITY	

40 - 1 - 22 CO 49 TOTAL RECORD LENGTH IS GREATER THAN 137 CHARACTERS. IT MAY EXCEED THE I/O DEVICE CAPACITY.

PAGE 6

CDC 6600 RTN V1.0-PJL6 OPT=1 09/18/74 10:48:27.

PROGRAM	STATEMENT LABELS	OVERRIDES	DEF. LINES	REFERENCES
	A 660	INACTIVE	53	
	5131 1000	FMT	114	151
	5145 1001	FMT	115	24
	5150 1002	FMT	118	26
	5160 1003	FMT	120	24
	5167 1101	FMT	116	155
	5152 1102	FMT	119	27
	5163 1103	FMT	121	29
	4068 1199		22	157
	9 1200	INACTIVE	25	24
	5106 1205	FMT	48	158
	5172 1401	FMT	123	154
	5206 1511	NO REFS	125	
	9 1400	INACTIVE	31	40
	8 1501	INACTIVE	34	2033
STATISTICS				
	PROGRAM LENGTH	13448	724	
	BUFFER LENGTH	40448	2084	

NADC-74150-30

```

CORE MAP 18-48-58. NORMAL CONTROL
---TIME--LOAD MODE ---L1---L2---TYPE---USER---CALL---CALC---FMA LOAD---1 MA .DAO---DAK COMM-LENGTH-
FMA LOAD 054171 FMA TABLES 051145 ---LABEL0---COMMON---ADDRESS-
PROGRAM---ADURE55-

```

REFERENCES

NADC-74150-30

ACROSS:
BSPRNU: 013573
AUVIN: 013731

PASSIF: 013727

MVUDU: 014072

ATSCAR: 014103

INPUTS: 003645

-----UNSATISFIELD EXTERNALS-----

VICMOTI=	.4*70E+03	RPL=	.6264E+04	ZPL=	.1000E+05	A2D=	.6264E+04	Z2D=	.9000E+04
ANU=	.5000E+03	ABAE=	.9672E+02	CDRUC=	.4500E+01				
ANUE=	.0500E+01	U=	.1517E-01	AL=	.1000E+04	UJS=	.1000E+03	PICF=	.1300E-01
S	X	Z	TH			T	RP		RTMP
0.									
0.	.0004E+04	.3649E+04	0.	.2953E+04		.6306E+00		.2227E+00	.7435E+00
S	X	Z	TH			T	RP		RTMP
0.	.1000E+04	.9922E+04	.1548E+00	.3196E+04		.1301E+00		.0151E-01	.9001E+00
S	X	Z	TH			T	RP		RTMP
0.									
0.	.6211E+04	.9800E+04	0.	.2598E+04		.6294E+00		.2205E+00	.7452E+00
S	X	Z	TH			T	RP		RTMP
0.	.6060E+04	.6017E+04	.9920E+04	.1529E+00		.1302E+00		.8006E-01	.9002E+00
S	X	Z	TH			T	RP		RTMP
0.	.0450E+04	.0450E+04	.9800E+04	0.	.3139E+04		.0252E+04		.2141E+00
S	X	Z	TH			T	RP		RTMP
0.	.1000E+04	.6105E+04	.9917E+04	.1495E+00		.1303E+04		.7009E-01	.9004E+00
S	X	Z	TH			T	RP		RTMP
0.									
0.	.6517E+04	.3500E+04	0.	.3157E+04		.6230E+00		.4417E+00	.7526E+00
S	X	Z	TH			T	RP		RTMP
0.	.1000E+04	.6124E+04	.9913E+04	.1462E+00		.1303E+04		.7711E-01	.9005E+00
S	X	Z	TH			T	RP		RTMP
0.	.6540E+04	.6540E+04	.9800E+04	0.	.3177E+04		.6229E+00		.2107E+00
S	X	Z	TH			T	RP		RTMP
0.	.1000E+04	.6249E+04	.9915E+04	.1677E+00		.1303E+04		.7672E-01	.9005E+00

REFERENCES

***** NOTICE *****
ALL USERS

OPERATING SYSTEM CHANGE TO VERSION AL

VERSION AL OF THE SCOPE 3-3 OPERATING SYSTEM WILL BE INSTALLED
MONDAY MAY 13 1974. VERSION AL MAKES MANDATORY MANY OF THE
CONTROL CARDS PARAMETERS WHICH WERE OPTIONAL UNDER VERSION AK.
IN PARTICULAR THE FOLLOWING FEATURES WILL EFFECT THE USER.

1. DEFAULT MAP PARAMETER CHANGED FROM "ON" TO "PART".

2. USER ECS ON THE A MACHINE - 14500008.

3. USER ECS ON THE B MACHINE - 1170008.

4. PK PARAMETER IS REQUIRED ON JOB CARD OF JOBS USING PACKS.
THE PK PARAMETER CONTAINS THE NO. OF PRIVATE PACKS USED BY

THE JOB. A PACK .03 WILL NOT BE RUN EXPRESS.

EXAMPLE - JOBNAM.E.CS50000,T200,M11,Pk2.

5. THE "DISPOSE" CARD, WHEN USED TO ROUTE THE FILE "OUTPUT"
TO A SITE OTHER THAN THE ORIGINATION SITE, WILL RETURN
A COPY OF THE FILE TO THE ORIGINATION SITE.

6. RING STATUS MUST BE SPECIFIED ON "LABEL" CARDS USING THE
"S" PARAMETER.

EXAMPLE - LABEL,TAPE1,,0,SRING,..,

OR
LABEL,TAPE1,,0,SRING,..,

7. VOLUME SERIAL NUMBER (VSN) AND RING STATUS MUST BE SPECIFIED
ON REQUEST CARDS.

EXAMPLE - REQUEST,LFN,M11. (J523/RING)

OR
REQUEST,LFN,M11. (XJ2576/RING)

THE VSN AND RING STATUS MUST BE CLOSING IN PARENTHESES
BUT CAN BE PLACED ANYWHERE FOLLOWING THE PERIOD ON THE
REQUEST CARD.

8. A MAXIMUM FILE LENGTH WHICH CAN BE SPECIFIED ON THE JOB
CARD IS DEFINED.

MACHINE A - 300000
MACHINE D - 1200000 (TEMPORARILY LOGGED DUE TO QADERI)

9. USER IS PREVENTED FROM GAINING MORE MEMORY THAN IS
SPECIFIED ON THE JOB CARD. AFL AND MEM WILL ABORT THE
JOB WHEN MORE THAN THE JOB CARD FIELD LENGTH IS REQUESTED.

10. OPERATIONS ARE PREVENTED FROM RERUNNING JOBS WHICH HAVE
PRIVATE PACKS ATTACHED TO THEM. THIS PROTECTS THE INTEGRITY
OF THE PRIVATE PACK.

- 11. A NEW PARAMETER HAS BEEN ADDED TO THE REQUEST CARD "MR" (NO
RELOCATE). IT SHOULD BE USED WHEN ATTEMPTING TO READ A TAPE WHICH IS
KNOWN TO BE MAJORILY RELOCATED. WHEN ENCOUNTERING PARITY ERRORS
ON THE TAPE THE SYSTEM WILL MAKE NO FURTHER ATTEMPT TO READ THE BAD
BLOCKS. DATA WILL BE OBLITERATED AS READ AND PARITY ERROR STATUS
RETURNED TO THE PKURR.A. A DAYFILE MESSAGE WILL BE ISSUED FOR EACH
PARITY ERROR.

05/10/74 NADC REAL TIME SIS VER A&B 0 04/26/74
 10-40-35 NSITSSZ
 10-40-35 NSITSSZ, F30.
 10-40-35 CHARGE, V1201, CARROLL R2012.
 10-40-36, FT NILR)
 10-40-37-00.
 10-41-01-NFL 14290
 10-41-01-01-PP 003.450
 10-41-01-01-PP 011.600
 10-41-01-01-10 003.930
 10-41-01-01-10 UP
 10-41-01-01-MASS STORAGE 000151 PRU
 10-41-01-01-01-PP 3.620 SEC.
 10-41-01-01-01-PP 11.945 SEC.
 10-41-01-01-10 .940 SEC.
 10-41-01-01-50C 79.000 SEC.
 NSITSSZ //END OF LIST //END EST102

PROGRAM LOONG
 235-6630 RTN VJU-P330 OPE1 WLT776 URT776 PHG 1

PROGRAM LOONG (INPUT, OUTPUT, TAPES=0) INPUT
 REAL M1, M2, M4
 READ 1001,FL,ML,FS0,ASA
 WRITE (9,99)

5 C CALCULATIONS OF MOMENT ARGS

C CG=62.7
 XLA=AL-3C
 XLF=CG-E,
 XLA=AS3-CG
 XLF=CG-FSD
 DETA=21.5/57.236
 LUAN FACTORS TIMES WID OR MOMENT OF INERTIA

15 C Sd=1.00
 E1z0.
 CX=1.60
 Mz1.28
 R=1.2.3
 XY=10.85596./386.
 XZ=10.79390./386.
 WT=1179.

20 C

25 C ALOAOX\$006.
 ALOAU\$618.
 ALUA02=216.
 MX=-2563.
 XMH=-73255.
 XHA=-46590.

30 C 10 READ 3002,A,B,C,D,E,L
 PX=M1*ALOADX
 PY=B*M1*ALOADY
 P2=C*M1*ALOA02
 MY=D*X1*XMH
 MZ=E*X2*XMN
 IF(L.NE.0)GO TO 691

35 C

40 C TRIAL LJG REACTIONS

C ARM=R+M-E1
 VBE=(P1*(R+M)-MX)*ALDA+S8*42*ARM)/TAN((Q*ETA))
 VDF=AB5(VdE)
 VBA=AB5(Vdg)
 RF2=(P1*(R+M)-(P1*(R+C))-P2*ALF+M5*(XLA*XLF))/VBF*(XLB-XLF)
 HAPZ=(M1*PX*(R+C))-P2*ALF+M1*(XLF*X3A)-VBF*(XLB-XLF)/VBF*(XLB-XLF)

45 C TESTING FOR CASE TO BE USED

C IF(RFPZ.GE.0.0.ANU.HAPZ.JE.0.0) GO TO 21
 IF(IFRPZ.GE.0.0.ANU.RAPZ.LT.0.0) GO TO 27
 IF(IFRPZ.LT.0.0.ANU.RAPZ.GE.0.0) GO TO 39
 IF(IFRPZ.LT.0.0.ANU.KAPZ.LT.0.0) GO TO 49

50 C

PROGRAM — LOADING

202 6601774 VJ-S-P316 OPT-1 1611176 11.12.28.

PAGE 2

C — LOADING CONDITIONS CASE 1

C 21 RFZ=RFZ
RAZ=RAD₂
IF(RFZ<0.7*RAZ) GO TO 34
RAA=PA
RKF=0.0
GO TO 35
RKF=PX
CONTINUE
RFZ=(IPY*E1-MX1*XLA-(1.0-S3)*M2*AR0)/(XLFXLA)*ARM)
RFA=(IPY*E1-MX1*XLF+(1.0-S3)*M2*ARH)/(XLFXLA)*ARM)
IF(IVDEI 6,8,8
RFMAX=0.0
QBFMIN=vdf/COS1(BETA)
GO TO 9
WDFMIN=vdf/COS1(BETA)
RBFMIN=0.0
IF(IVDEI 12,14,14
RDAMAK=0.
RDAM1=vba/COS1(BETA)
GO TO 33
RDAMAK=vba/COS1(BETA)
RDAMIN=0.
GO TO 69

C — LOADING CONDITIONS CASE 2A

C 65 27 RFZ=(PY*(R+CX)-PZ*XLBA-MY*(R-CX))/(XLBA*XLBF)/(XLFXLB)
RAZ=0.0
RKF=PX
RAA=PA
RFY=(IPY*E1-MX1*XLA-(1.0-S3)*M2*AR0)/(XLFXLA)*ARM)
RFA=(IPY*E1-MX1*XLF+(1.0-S3)*M2*ARH)/(XLFXLA)*ARM)
IF(IVBEI 70,72,72
RDFMIN=vdf/COS1(BETA)
RFMAX=0.0
GO TO 73
RDFMAX=vdf/COS1(BETA)
RBFMIN=vba/COS1(BETA)
RDAMAK=0.
RDAM1=vba/COS1(BETA)
RDAMIN=0.
GO TO 63
RDAMAK=(PZ*XLFP*(R+CX)-MY*(R-CX))/(XLFXLB)/(12.*COS1(BETA)*(XLFXLB))
RDAM1=(PZ*XLFP*(R+CX)-MY*(R-CX))/(XLFXLB)/(12.*COS1(BETA)*(XLFXLB))
RDAMIN=(PZ*XLFP*(R+CX)-MY*(R-CX))/(XLFXLB)/(12.*COS1(BETA)*(XLFXLB))
GO TO 69

C — LOADING CONDITION 2B

C 105 36 RFZ=0.0
GO TO 63

NADC-74150-30

PROGRAM LUDING
 TSL=RBF41INRUMAX
 TLL=RFLZ+RAZ
 GO TO 30
 691 GON'INJE
 99 FORMAT(1H1)
 1001 FORMAT(1F10.2)
 1002 FORMAT(1F10.1,110)
 280 FORMAT(51X,27H LOAD ANALYSIS MIL-A-8591 E.,//)
 201 FORMAT(31X,29MX NV THEIA PSI)
 204 FORMAT(34X,30H LOADING CONDITION FLIGHT,104 +30X,12M LOAD FACTOR
 15*X,5F7.2,/)
 205 FORMAT(50X,16H LOADING POINTS,/,/
 206 FORMAT(12X,3MLUQ,38A,17H=04103 54AY BRACE,14H AFT SWAY BRACE,/,/
 207 FORMAT(5X, FURMA RD , AFT , 32X, LEFT
 1*LEFT RIGHT ,/)
 208 FORMAT(2X,3MLD),F7.0,24,F7.0,20X,F7.0,7X,F7.0,19X,F7.0,7X,F7.0,/,/
 214 FORMAT(2X,3MLV),F7.0,24,F7.0,20X,F7.0,7X,F7.0,19X,F7.0,7X,F7.0,/,/
 215 FORMAT(2X,3MLAD),F7.0,24,F7.0,7X,F7.0,/,/
 END

PROGRAM LIBRARY
SYMBOLIC REFERENCE MAP

ENTRY POINTS
4051 LOONS

VARIABLES SN TYPE RELOCATION

S151	A	REAL	S123	A-C	REAL
S160	ALDAJ1	REAL	S165	A-DAJY	REAL
S161	ALDAJ2	REAL	S162	A-IN	REAL
S125	ASB	REAL	S152	B	REAL
S153	BETA.	REAL	S153	C	REAL
S126	CG	REAL	S136	C-E	REAL
S154	D	REAL	S155	E	REAL
S155	E1	REAL	S122	F	REAL
S124	FSB	REAL	S137	H	REAL
S150	L	INTEGER	S121	H	REAL
S117	MT	REAL	S120	H-Z	REAL
S157	PX	REAL	S160	P-Y	REAL
S161	PZ	REAL	S140	R	REAL
S120	RAPZ	REAL	S172	RAZ	REAL
S201	RBMAX	REAL	S202	RSAMIN	REAL
S177	RGFMAX	REAL	S120	RSFMIN	REAL
S176	RFA	REAL	S127	RFPZ	REAL
S175	RFY	REAL	S171	R-GZ	REAL
S173	RXA	REAL	S176	RKF	REAL
S134	SB	REAL	S105	TLL	REAL
S204	TSL	REAL	S203	TSR	REAL
S166	VBA	REAL	S166	V-B	REAL
S163	VBE	REAL	S165	VBF	REAL
S143	WT	REAL	S127	K-A	REAL
S131	XLB4	REAL	S132	XLB-F	REAL
S130	XLF	REAL	S147	X-N	REAL
S150	XMN	REAL	S161	X-T	REAL
S142	X2	REAL			

FILE NAMES MODE 2022 OUTPUT 2022 TAPES FMT

EXTERNALS 0 INPUT FMT FAN REAL LIBRARY

INLINE FUNCTIONS TYPE ARGS 1 LIBRARY

INLINE ABS REAL 1 INTRIN

STATEMENT LABELS	INACTIVE	4313	6	INACTIVE	4316	9
0	6	0	12	-	4326	16
4125	10	4330	27	-	4271	33
4263	21	4636	36	-	4595	69
4273	34	0	70	INACTIVE	4363	72
4672	09	0	74	INACTIVE	4413	76
4366	73	4510	90	-	4533	61
0	76	4541	84	-	0	86
0	62	4605	86	-	0	90
4620	87					

PROGRAM LOUNG
 STATEMENT LABELS
 6651 92 FMT
 5010 281 FMT
 5831 286 FMT
 5857 214 FMT
 6776 3881 FMT
 6774 99 FMT
 5015 264 FMT
 5860 287 FMT
 5864 215 FMT
 5868 1832 FMT
 5883 200 FMT
 5895 275 FMT
 5898 208 FMT
 6772 691

STATISTICS
 PROGRAM LENGTH 11628 610
 BUFFER LENGTH 40448 2084

CORE MAP 11.12.52. JOURNAL CONTROL
 ----TIME----LOAD MODE ---L1---L2-----USER----TYPE----CALL----
 FMA LOADER 843170 FMATABLES B41250
 -PROGRAM---ADDRESS--TABLED--COMMON---ADDRESS--
 LOONG 800100
 GETBA 815306
 SYSTEMS 815325
 IMPJTC 806337
 KODES 806473
 KRAKER 810187
 OUTPC6 811634
 SINCS 811730
 TANE 812085
 S108 812101
 -----UNSATISFIED EXTERNALS-----
 REFERENCES

-010 ANALYSIS MIL-A-5591 E

LOADING CONDITION FLIGHT FORM

LOADING POINTS

LUG	FORWARD	AFT	LEFT	RIGHT	LEFT	RIGHT	AFT SWAY BRACE	LEFT SWAY BRACE
(Z)	15286.	222.	0.	7.85.	7.85.	0.		
(Y)	209.	-20.						
(X)	777.	0.						

06/11/76 NADC REAL TIME SYS VER-A/C7 U 05789775
 11.12.21.1.LOONG70
 11.12.22.1.LOONG.CM20480.710.
 11.12.22.CHARGE.VT1201.CARROLL X2012.
 11.12.28.FIN.
 11.12.42.160.
 11.12.53.MEMFL 13700
 11.12.53.2P 003.000
 11.12.53.PP 016.004
 11.12.53.10 008.050
 11.12.54.ENJ LOUNG
 11.12.56.MASS STORAGE 000120 PRJ
 11.12.56.CP 3.905 SEC.
 11.12.56.PP 16.217 SEC.
 11.12.56.10 .054 SEC.
 11.12.56.SEC. 30.000 SEC.
 LOUNG70 //END OF LIST //// 55162

NADC-74150-30

A P P E N D I X B

AERO 7A BOMB RACK ANALYSIS

A P P E N D I X B

This Appendix provides the results of investigation and analysis to define the strength envelope of the AERO-7A Bomb Ejector Rack.

Preceding page blank

B-3

NADC-74150-30

DOUGLAS AIRCRAFT CO
AERO 7A BOMB EJECTOR
RACK - STRENGTH ENVELOPE

WILLIAM J BOLLINGER
William J. Bollinger

5 JUNE, 1974

AERO 7A POMS EXTERIOR RACK ON THE A4 AIRCRAFT
STRENGTH SUMMARY

THIS REPORT ESTABLISHES THE STRENGTH ENVELOPE OF THE AERO 7A RACK BY INITIALLY CONVERTING THE MANUFACTURERS (DOUGLAS AIRCRAFT CO) STORE LOAD FACTORS INTO HOOK AND SWAY BRACE REACTION FOR COMPARISON WITH NAVAIRDEVCON TEST RESULTS AND THE RACK SPECIFICATION TEST REQUIREMENTS. A METHOD IS SUBSEQUENTLY DERIVED BY STRESS ANALYSIS AND INTERPRETATION OF TEST DATA FOR MODIFYING THE DOUGLAS RECOMMENDATIONS TO MORE REALISTIC VALUES. THE ANALYSIS CONTAINED IN THIS REPORT IS SUMMARIZED AS FOLLOWS.

PAGE	CONTENT
1-2	CORELATION BETWEEN STORE DIAMETER & SWAY BRACE RIGID, C.
3-9	CONVERSION OF DOUGLAS STRENGTH ENVELOPE TO EQUIVALENT HOOK AND BRACE LOADS
10-11	COMPARISON OF DOUGLAS STRENGTH ENVELOPE WITH TEST DATA
12-12a	ESTABLISHES SWAY BRACE STRENGTH LIMITS
13-20	ESTABLISHES 30 INCH SUSPENSION HOOK STRENGTH LIMIT
21-26	ESTABLISHES YAWING MOMENT DISTRIBUTION BETWEEN BRACE AND HOOK SIDE LOAD REACTION
26-27	CONCLUSIONS REGARDING STRENGTH LIMITS OF THE RACK WHEN SUPPORTING SMALL AND LARGE DIAMETER STORES (T65 & T63)
28-30	RHU-8 TOW REEL RACK STRENGTH LIMITS
31	REFERENCES
32	RELATED AERO 7A RACK IN-SERVICE FAILURES
33	COMPATIBLE STORES CARRIED ON THE A4 CENTER LINE STATION AND ASSOCIATED AIRCRAFT PERFORMANCE LIMITATIONS AS SPECIFIED IN THE A4 TECHNICAL MANUAL
34-35	CHECKING TEST DATA
30	RHU-8 TOW REEL - 7A RACK STRENGTH LIMITS AND RECOMMENDATIONS

(1)

SWAY BRACE ANGLES - REF MAWHINNEY DERIVATION

- a = DISTANCE FROM BRACE PIVOT
 TO ELLIPTIC PIVOT PLATE (REF)
 b = RADIUS OF STORE PILOT
 DISTANCE ON BAMBLE
 TO ELLIPTIC PIVOT
 c = RADIUS OF STORE
 FULL VERTICAL
 DISTANCE TO
 BRACE PIVOT

$$a = 4.985$$

$$b = R + .250$$

$$c = R + C = R + 1.125$$

14" LUGS

$$\cos B = 1 - \frac{12.042}{R^2 + 1.375R + .2812}$$

30" LUGS

$$R + C = R + 1.50 + .05 = 1.55$$

STORE SURFACE TO BRACE PIVOT DISTANCE

MIL-A-8591D FIG-3 (30" LUG-2000" WEIGHT CLASS - STORE SURFACE
 TO HOOK CONTACT POINT = $1.350 + 1.250 \tan 7^\circ \pm 5^\circ$

$$1.350 + 1.250 \tan 12^\circ = 1.350 + .256 = 1.606.$$

$$1.350 + 1.250 \tan 2^\circ = 1.350 + 0.44 = 1.394$$

$$\text{AVERAGE} = 1.350 + (.256 + 0.44) \frac{1}{2} = 1.50.$$

$$a^2 = b^2 + C^2 - 2bc \cos B$$

$$a = 4.985 \text{ (REF)}$$

$$b = R + .250 \text{ (REF)}$$

$$C = R + 1.50 + .053 = R + 1.55 \quad .063 = \text{HOOK SWING DISTANCE TO ELLIPTIC PIVOT (REF)}$$

$$4.985^2 = (R + .250)^2 + (R + 1.55)^2 - 2(R + .250)(R + 1.55) \cos B$$

$$24.850 = 2R^2 + 3.62R + 2.495 - (2R^2 + 3.62R + .78) \cos B$$

$$23.134 = 2R^2 + 3.62R + .78 - (2R^2 + 3.62R + .78) \cos B$$

$$\cos B = 1 - \frac{23.134}{2R^2 + 3.62R + .78} = 1 - \frac{11.567}{R^2 + 1.81R + .39}.$$

SWAY BRACE ANGLES

(REF) DOUGLAS AIRCRAFT CO - STANDARD AIRCRAFT ARMAMENT
 CHARACTERISTICS - BOMB RACK EJECTOR - 4 HOOK-7A - 3000 LB
 DATED 1 JULY 1955

(REF E-1) UPDATED NOV 1960 (TELECON JESS LOCKHART-Douglas 5/1/74)

T63 STORE 30.5" DIA (14 INCH SUSPENSION) $R = 15.25$

$$\cos \beta = 1 - \frac{12.042}{R^2 + 1.375R + .2812} \quad W = 1700 \quad C = 1.125$$

$$\cos \beta = 1 - \frac{12.042}{15.25^2 + 1.375 \times 15.25 + .2812}$$

$$\cos \beta = 1 - .04745 = .95255 \approx .95257$$

$$\beta = 17^\circ 43' \quad \tan \beta = .31946 \quad \sin \beta = .30431$$

T65 STORE 14.5" DIA (30 INCH SUSPENSION) $R = 7.25$

$$\cos \beta = 1 - \frac{11.567}{R^2 + 1.81R + .39} \quad W = 3575 \quad C = 1.56$$

$$\cos \beta = 1 - .17507 = .82493 \approx .82495$$

$$\beta = 34^\circ 25' \quad \tan \beta = .68514 \quad \sin \beta = .56521$$

T63 STORE

$$x = R \sin \beta = 15.25 \times .30431 = 4.64$$

$$y = R \cos \beta = 15.25 \times .95257 = 14.527$$

T65 STORE

$$x = 7.25 \times .56521 = 4.10$$

$$y = 7.25 \times .82495 = 5.98$$

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN
ON DOUGLAS STRENGTH ENVELOPE - REP

R = SINGLE HOOK LOAD
 R' = SINGLE BRACE LOAD
 G = MIDPOINT BETWEEN HOOKS
 r = STORE = RADIUS + c

$$\begin{aligned} \sum F_x &= 2R - 2\bar{R} \cos B - P_y = 0 \\ \sum M_R &= y \cdot 2\bar{R} \cos B + (r-y) 2\bar{R} \sin B - r P_y = 0 \} 2\bar{R} \cos B = y P_y \\ \rightarrow \sum F_H &= P_y - 2\bar{R} \sin B = 0 \end{aligned}$$

T63 STORE 30.5 DIA 1700 LBS 14 INCH SUSPENSION
① $m_y = 38.5 \quad m_y = 0 \quad m_H = 0 \quad M_z = 100,000 \text{ in}^4 \quad B = 17^\circ 43'$
FOR THE 30.5" DIA STORE - ASSUME THAT THE BRACES ARE
INEFFECTIVE IN YAW AND THAT ALL OF THE YAWING MOMENT
IS REACTED AS SIDE LOAD ON THE HOOKS OR FRAME

$$\bar{R} = 0$$

$$R = 19.25 \times 1700 = \underline{32,725}$$

$$\begin{aligned} \textcircled{2} \quad m_y &= 17.5 \quad m_y = 6.8 \quad m_H = 0 \quad M_z = 100,000 \text{ in}^4 \text{ (HOOKS OR FRAME)} \\ 2\bar{R} \cos B &= y P_y \\ 2 \times 4.64 \bar{R} \cos B &= 14.527 \times 6.8 \\ \bar{R} \cos B &= 10.644 \\ \bar{R} &= \frac{10.644}{\cos 17^\circ 43'} = \frac{10.644}{.95257} = 11.174 \end{aligned}$$

$$\begin{aligned} 2R &= 2\bar{R} \cos B + P_y \\ 2R &= 2 \times 10.644 + 17.5 = 38.788 \\ R &= 19.394 \times 1700 = \underline{32970} \\ \bar{R}_{max} &= 11.174 \times 1700 = \underline{18995.8} \end{aligned}$$

(4)

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN
ON DOUGLAS STRENGTH ENVELOPE - REF (a) AERO 7A RACK
STRENGTH CHARACTERISTICS.

$$\textcircled{3} \quad m_y = 0 \quad m_y = 6.8 \quad m_y = 0 \quad M_z = 100,000 \text{ IN}^{\text{*}} \text{ (HOOKS OR FRAME)}$$

$$\overline{R} \cos \beta = 10.644$$

$$\overline{R}'_{\text{hook}} = 11.174 \times 1700 = 18995.8^{\text{*}}$$

$$2R = 2 \times 10.644 + 0$$

$$R = 10.644 \times 1700 = 18099.8$$

T65 STORE 14.5" Dia 3575 LBS 30 INCH SUSPENSION

$$\textcircled{4} \quad m_y = 20.75 \quad m_y = 0 \quad m_y = 0 \quad M_y = 100,000 \text{ IN}^{\text{*}} \text{ (HOOKS OR FRAME)}$$

$$\beta = 31^{\circ} 4'$$

ASSUME THE HOOK LOAD CAN BE DERIVED SIMILARLY TO THE T63 STORE CASE IN WHICH NO YAWING MOMENT WAS REACTED BY THE BRACES AND CONSEQUENTLY THE HOOK LOAD WAS COMPUTED FROM THE MAXIMUM VERTICAL LOAD. THE SUM OF THE HOOK LOADS UNDER THE T63 STORE CASE ADD UP TO $(2 \times 32,970 = 65,940)$ WHICH IS ABOUT EQUAL TO THE VALUE SPECIFIED AS THE YIELD LOAD UNDER THE OVERLOAD TEST IN MIL-R-22622 (AERO 7A RACK SPEC-ITEM 4.5.2). THIS VALUE CAN BE APPROXIMATELY DERIVED BY MULTIPLYING THE HOOK ULTIMATE LOAD BY FOUR (TWO HOOKS PER STATION) AND DIVIDING BY 1.5 AND MULTIPLYING BY 1.15 (SEE ITEM 4.4.3 OF SPEC).

$$18 \text{ INCH HOOK} = 20,000 \times 4 \times \frac{1.15}{1.5} = 61,333 \approx 65,000$$

$$30 \text{ INCH HOOK} = 25,000 \times 4 \times \frac{1.15}{1.5} = 76,666 \approx 74,000$$

THIS CONCLUSION INDICATES THAT DOUGLAS CONSIDERED THE MAXIMUM ALLOWABLE HOOK LOAD AS HALF OF THE VALUE SPECIFIED FOR THE OVERLOAD TEST OR ABOUT 32,500² ON THE 14 INCH HOOKS. IT CAN ALSO BE CONCLUDED BY ANALOGY THAT THE VALUE SPECIFIED IN THE SPEC FOR THE 30 INCH HOOK UNDER THE OVERLOAD TEST IS ALSO A LIMIT ($74,000/2 = 37,000^{\text{*}}$). FOR THE ZERO SIDE, ZERO DRAG CASE ON THE T65 STORE, THE HOOK REACTION TO MAXIMUM DOWN LOAD IS $20.75/2 \times 3575 = 37,232^{\text{*}}$ THIS RESULT AGAIN ILLUSTRATES THAT DOUGLAS DID NOT CONSIDER ANY OF THE YAWING MOMENT TO BE REACTED BY THE BRACES, EVEN IN THE SMALL DIA STORE, BECAUSE THE VERTICAL COMPONENT OF THE BRACE LOAD WOULD HAVE TO ADD TO THE HOOK LOAD TO MAINTAIN EQUILIBRIUM IN WHICH CASE THE HOOK ALLOWABLE WOULD BE EXCEEDED.

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN ON DOUGLAS STRENGTH ENVELOPE REF (a).

TAB STORE

- ⑤ $m_y = 20.75 \text{ my-rd}$ $m_x = 0$ $M_y = 100,000 \text{ in}^2$ $\beta = 31^\circ 4'$
 IF ALL OF THE YAWING MOMENT WAS REACTED BY THE BRACES; THE FOLLOWING REACTIONS WOULD RESULT
- $$\bar{R}' \cos \beta = \frac{100,000}{20 \text{ TONS}} = 7300'' \text{ BRACE VERTICAL COMPONENT}$$

$$R = \frac{m_y + M_z}{2} + 7300 = \frac{20.75 + 3575}{2} + 7300 = 44,390$$

$$\bar{R} = 7300 / \cos \beta = 8350$$

THIS HOOK IS IN EXCESS OF THE HOOK ULT LOAD RECOMMENDED BY DOUGLASS BUT DOES FALL WITHIN THE SEC HOOK ULTIMATE LOAD ($25,000 \times 2 = 50,000''$ - MIL-R-22622 1181444)

- ⑥ $m_y = 11.5$ $m_y = 5.7$ $m_x = 0$ $M_z = 100,000$ (HOOKS OR FRAME)
- $$2 \times 4.10 \bar{R}' \cos \beta = 5.98 \times 5.7$$
- $$\bar{R}' \cos \beta = 4.16$$
- $$\bar{R}' = \frac{4.160}{\cos 34^\circ 25'} = \frac{4.160}{.82495} = 5.043$$

$$2R = 2\bar{R}' \cos \beta + P_y$$

$$R = 4.16 + 5.75 = 9.91$$

$$\bar{R} = 9.91 \times 3575 = 35428''$$

$$\bar{R} = 5.043 \times 3575 = 18,029''$$

- ④ $m_y = 0$ $m_y = 6.9$ $m_x = 0$ $M_z = 100,000$ (HOOKS OR FRAME)
- $$2 \times 4.10 \bar{R}' \cos \beta = 5.98 \times 6.9$$
- $$\bar{R}' \cos \beta = 5.03$$
- $$\bar{R}' = \frac{5.03}{.82495} = 6.10$$
- $$\bar{R}' = 6.10 \times 3575 = 21807$$

$$2R - 2 \times 5.03 = 0$$

$$R = 5.03$$

$$R = 5.03 \times 3575 = 17,982$$

$$2\bar{R}' \sin \beta = 2 \times 21807 \times .56521 = 24651 = 6.913575$$

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN ON
DOUGLAS STRENGTH ENVELOPE (REF) DRAG CURVES

I63 STORE $w = 1700 \text{ lb}$ $B = 17^{\circ}43'$ $n = 15.25$

- ⑥ $m_y = -32.5 \text{ m}_x = \pm 5 \text{ m}_y = 0 \text{ } M_2 = \pm 100,000 \text{ in}^{\text{in}} \text{ (HOOKS & FRAME)}$
USING MIL-A-8591D EQUATIONS $n_{tc} = n + 1.125$

$$\bar{Y}^P = 0 \quad \bar{Y}^A = 0$$

$$R_2^P = \frac{5 \times 1700 (15.25 + 1.125) + 32.5 \times 1700 \times 7}{14} = \frac{139187 + 386750}{14} = + 37566$$

$$R_2^A = \frac{-5 \times 1700 (15.25 + 1.125) + 32.5 \times 1700 \times 7}{14} = \frac{247563}{14} = + 17683$$

$$R_2^P = 37566 \quad R_2^A = 17683$$

$$\bar{R}_{max}^P = 0 \quad \bar{R}_{max}^A = 0$$

- ⑦ $m_y = -11.5 \text{ m}_y = +6.8 \text{ m}_x = \pm 5 \text{ m}_z = \pm 100,000 \text{ in}^{\text{in}} \text{ (HOOKS & FRAME)}$

$$\bar{Y}^P = \frac{6.8 \times 10}{\tan 17^{\circ}43' \times 20} = \frac{3.4}{31946} = + 10.64 \quad \bar{Y}^A = \frac{6.8 \times 10}{31946 \times 20} = + 10.64$$

$$R_2^P = \frac{+5 \times 1700 \times 16.375 + 11.5 \times 1700 \times 7 + 10.64 \times 1700 \times 17 - 10.64 \times 1700 \times 3}{14}$$

$$R_2^A = \frac{139187 + 136,850 + 307,496 - 54,264}{14} = \frac{529,268}{14} = + 37,804$$

$$R_2^P = \frac{-5 \times 1700 \times 16.375 + 11.5 \times 1700 \times 7 + 10.64 \times 1700 \times 17 - 10.64 \times 1700 \times 3}{14}$$

$$R_2^A = \frac{-139,187 + 136,850 + 307,496 - 54,264}{14} = \frac{250,895}{14} = + 17921$$

$$R_2^P = + 37,804 \quad R_2^A = + 17921$$

$$\bar{R}_{max}^P = \frac{+10.64}{\cos B} = \frac{10.64}{.95257} = 11.17$$

$$\bar{R}_{max}^P = \bar{R}_{max}^A = 11.17 \times 1700 = 18,989$$

(7)

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN ON
DOUGLAS STRENGTH ENVELOPE REF (6) DRAG CURVES

T.6.3 STORE

$$\textcircled{10} \quad m_x = 0 \quad m_y = 5.3 \quad m_z = 15 \quad M_2 = 100,000 \text{ (HOOKS & FRAME)}$$

$$\bar{Y}^F = \frac{5.3 \times 10}{\tan 17^\circ 43' \times 20} = \frac{2.65}{.31946} = -8.29 \quad \bar{Y}^C = \frac{5.3 \times 10}{.31946 \times 20} = +8.29$$

$$R_2^F = \frac{5(16.375) + 8.29 \times 17}{14} = \frac{8.29 \times 3}{14} = \frac{81.75 + 140.93 - 24.87}{14} = +14.129$$

$$R_2^C = \frac{-5(16.375) + 8.29 \times 17 - 8.29 \times 3}{14} = \frac{-81.75 + 140.93 - 24.87}{14} = -2.45$$

$$R_2^F = +14.129 \times 1700 = \underline{24,019} \quad R_2^C = 2.45 \times 1700 = 4165$$

$$\bar{R}_{max}^F = \bar{R}_{max}^C = \frac{8.29 \times 1700}{.95257} = \underline{14,794}$$

T.6.5 SIDE

$$\textcircled{11} \quad m_x = -17.5 \quad m_y = 0 \quad m_z = 15 \quad M_2 = 100,000 \text{ in}^4 \text{ (HOOKS OR FRAME)} \\ \beta = 31^\circ 41' \quad n = 7.25 \quad n_{TC} = 9.38 \quad w = 3575$$

$$\bar{Y}^F = 0 \quad \bar{Y}^C = 0$$

$$R_2^F = \frac{3575 \times 5 \times 8.81 + 3575 \times 17.5 \times 15}{30} = \frac{(44.15 + 362.5)3575}{30} = 36,530$$

$$R_2^C = \frac{-3575 \times 5 \times 8.81 + 3575 \times 17.5 \times 15}{30} = \frac{(213.6)3575}{30} = 26,032$$

$$\bar{R}_{max}^F = 0 \quad \bar{R}_{max}^C = 0$$

$$R_2^F = \underline{36,530} \quad R_2^C = 26,032$$

(8)

NADC-74150-30

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN
ON DOUGLAS STRENGTH ENVELOPE REF (a) DRAG CURVES

$$T-65 \text{ STORE} \quad R_{H+C} = 7.25 + 1.56 = 8.81$$

$$(1) m_x = -7.87 \quad m_y = 6.1 \quad m_H = \pm 5 \quad M_2 = 100,000 \text{ in}^4 \text{ (HOOKS & FRAME)}$$

$$\bar{V}^P = \frac{6.1 \times 10}{\tan 34^\circ 25' \times 20} = \frac{3.05}{68514} = 4.45 \quad \bar{Y}^a = \frac{6.1 \times 10}{68514 \times 20} = 4.45$$

$$R_2^{P'} = \frac{5 \times 8.81 \times 3575 + 7.87 \times 15 \times 3575 + 4.45 \times 25 \times 3575 - 4.45(-5) \times 3575}{30}$$

$$R_2^{P'} = \frac{157,479 + 422,028 + 397,719 + 79544}{30} = \frac{1,056,720}{30} = 35,225$$

$$R_2^{a'} = \frac{-5 \times 8.81 \times 3575 + 7.87 \times 15 \times 3575 + 4.45 \times 25 \times 3575 - 4.45(-5) \times 3575}{30}$$

$$R_2^{a'} = \frac{-157,479 + 422,028 + 397,719 + 79544}{30} = \frac{741,812}{30} = 24,727$$

$$\bar{R}_{non}^P = \bar{R}_{non}^a = \frac{4.45}{82495} = 5.39 \times 3.15 = 19,269 \quad R_2^P = 35,225 \quad R_2^a = 24,727$$

$$(2) m_x = -2.19 \quad m_y = 6.6 \quad m_H = \pm 5 \quad M_2 = 100,000 \text{ in}^4 \text{ (HOOKS & BRACES)}$$

$$\bar{V}^P = \frac{6.6 \times 10}{68514 \times 20} = 4.816 \quad \bar{Y}^a = 4.816$$

$$R_2^{P'} = \frac{5 \times 3575(8.81) + 2.19 \times 3575 \times 15 + 4.816 \times 3575 \times 25 - 4.816 \times 3575 \times (-5)}{30}$$

$$R_2^{P'} = \frac{157,479 + 117,425 + 420,450 + 560,86}{30} = \frac{1,291,453}{30} = + 26,381$$

$$R_2^{a'} = \frac{-157,479 + 117,425 + 420,450 + 860,86}{30} = \frac{476,475}{30} = + 15882$$

$$\bar{R}_{non}^P = \bar{R}_{non}^a = \frac{4.816}{82495} \times 3575 = 20,870$$

$$R_2^P = 26,381 \quad R_2^a = 15,882$$

CHECKING HOOK AND BRACE REACTIONS AT POINTS GIVEN ON
DOUGLAS STRENGTH ENVELOPE REF (C.) DRAG CURVES.

T-65. SICRE

(4) $m_{xg} = 0 \quad m_{yg} = 5.7 \quad m_{wg} = 55 \quad M_{zz} = 100,000 \text{ in}^3$ (HOOKS AND FRAME)

$$\bar{V}^p = \frac{5.7 \times 10}{68514 \times 20} = 4.16 \quad \bar{V}^a = 4.16$$

$$\bar{R}_2^A = \frac{5 \times 7.81 \times 2575 + 4.16 \times 25 \times 3575 - 4.16 \times (-7) \times 3575}{30}$$

$$\bar{R}_2^A = \frac{157,479 + 371,800 + 74,360}{30} = \frac{603,639}{30} = 20,121$$

$$\bar{R}_2^W = \frac{-157,479 + 371,800 + 74,360}{30} = \frac{287,681}{30} = 9,623$$

$$\bar{R}_{max}^A = \bar{R}_{max}^W = \frac{4.16}{82495} \times 3575 = 18,025$$

$$R_2^A = 20,121 \quad R_2^W = 9,623$$

HOOK & BRACE LOAD SUMMARY AS DERIVED FROM REF A

COND	m_{xg}	m_{yg}	m_{wg}	M_{zz}	T-63-STURE		T-65 STURE CRITICAL HOOK FORCE
					HOOK	BRACE	
1	-38.5	0	0	0	32,725	0	14" HOOK
2	-17.5	+6.8	0	0	32,970	18,996	14" HOOK
3	0	+6.8	0	0	18,095	18,996	BRACE
4	-20.75	0	0	0			37,020 0 30" HOOK
5	-20.75	0	0	100,000			44,590 8850 —
6	-11.5	+5.7	0	0			35,428 13,529 30" HOOK
7	0	+6.9	0	0			17,982 21,527 30" HOOK
8	-32.5	0	+5	0	37,566	0	14" HOOK
9	-11.5	+6.8	+5	0	37,024	18,959	14" HOOK
10	0	+5.3	+5	0	24,014	14,794	—
11	-17.5	0	+5	0			36,530 0 30" HOOK
12	-7.57	+6.1	+5	0			35,225 19,269 30" HOOK
13	-2.19	+6.6	+5	0			26,381 22,870 BRACE
14	0	+5.7	+5	0			20,121 16,225 —

(10)

CONCLUSIONS FROM CHECK OF DOUGLAS STRENGTH ENVELOPE (REF A)

DEFINITIONS FROM MIL-T-7743

LIMIT LOAD - THE MAXIMUM LOAD ANTICIPATED DURING NORMAL CONDITIONS OF OPERATION.

YIELD LOAD - $1.15 \times$ LIMIT LOAD. DEFORMATIONS REMAINING AFTER APPLICATION OF THE YIELD LOAD SHALL NOT ADVERSELY AFFECT EITHER THE AERODYNAMIC CHARACTERISTIC OR MECHANICAL OPERATION OF THE RACK.

ULTIMATE LOAD $1.50 \times$ LIMIT LOAD. FAILURE SHALL NOT OCCUR AT THIS LOAD LEVEL.

THE FOREGOING ANALYSIS OF THE DOUGLAS AERO TA BOMB RACK PRODUCED THE FOLLOWING ULTIMATE LOADS:

MAXIMUM BRACE LOAD = $21,807^*$

MAXIMUM 14" HOOK STATION LOAD = $37,804^*$

MAXIMUM 30" HOOK STATION LOAD = $37,090^*$

MAXIMUM YAWING MOMENT = 100,000 INCH-LBS.

Hooks - As a mean of checking these values, limiting hook station loads were derived from the Aero TA-Rack Spec (MIL-R-22622) over-load rack and ultimate hook tests. The overload test is conducted on randomly selected samples of production racks by applying the following specified down loads to the complete rack structure:

30 INCH HOOKS - $74,000^*$ (YIELD LOAD) = $37,000^*$ PER HOOK STATION.

14 INCH HOOKS = $65,000^*$ (YIELD LOAD) = $32,500^*$ PER HOOK STATION.

The hook ultimate load test is conducted by subjecting individual hooks to the following minimum down loads and continuing the test until the hook fails.

30 INCH HOOK = $25,000^*$ MINIMUM.

14 INCH HOOK = $20,000^*$ MINIMUM.

Each hook station on the Aero TA-Rack contains two hooks which open in opposing directions. The hook ultimate load test is conducted by applying the loads at approximately the tip of one of these hooks. During actual carriage of a store, the lug is so confined by the pack frame to assure nearly equal share of the total lug load between the hooks.

Deriving the ultimate hook station down strength from the over-load test, which is the most realistic,

Conclusions from Check of Douglas Strength Envelope Ref. 1

OF THE SPEC TESTS, PRODUCES THE FOLLOWING RESULTS.

$$30 \text{ INCH HOOK STATION} = 37000 \times \frac{4.5}{7.5} = 48,260^{\text{*}}$$

$$14 \text{ INCH HOOK STATION} = 32,500 \times \frac{4.5}{7.5} = 42,390^{\text{*}}$$

HOWEVER, SINCE THE HOOKS ARE ALSO SUBJECTED TO A SIDE LOAD WHICH IS NOT CONSIDERED IN THE SPEC TESTS, THE MORE CONSERVATIVE DOWN LOADS FROM THE DOUGLAS STRENGTH ENVELOPE WILL BE ACCEPTED AS 37,000^{*}.

BRACE LIMITS - THE BRACE LOADS DERIVED FROM THE DOUGLAS STRENGTH ENVELOPE ARE GREATLY IN EXCESS OF THOSE DEMONSTRATED BY NADC LABORATORY TESTING OF THE AERO TA RACK AS REPORTED IN NADC REPORT NADC-AM-6739 OF 30 NOV 1967 - "UPGRADING OF THE AERO TA EJECTOR BOMB RACK FOR THE AG-A AIRCRAFT". THESE TESTS WERE PLANNED TO SUBJECT THE SWAY BRACES TO FAILURE LOADS BY IMPOSING INCREASING INCREMENTS OF SIDE LOAD ON A MER BEAM CONFIGURATION. BRACE FAILURE OF THE UNMODIFIED RACK OCCURRED AT 8,500 LBS SIDE LOAD WHICH WAS RESOLVED BY ANALYSIS INTO A 7,438 LB SWAY BRACE RESULTANT REACTION. HOWEVER, THE ASSUMPTION USED IN CALCULATING THIS BRACE REACTION ($\frac{2}{3}$ OF THE SIDE LOAD REPORTED AT THE BRACES AND $\frac{1}{3}$ AT THE HOOKS) WAS FOUND TO BE CONSERVATIVE. CONSEQUENTLY, THE BRACE FAILURE LOAD WILL BE ADJUSTED IN THIS REPORT BY WHAT IS CONSIDERED TO BE A MORE REALISTIC ANALYSIS.

TEST SET-UP DIMENSIONS AND ANGLES WERE TAKEN FROM NOTES RECORDED BY CARL ACKER DURING THE TESTING INDICATED IN THE REPORT.

Conclusions from Check on Douglas Strength ENVELOPE

PINCH LIMITS

NADC TEST SET-UP - MER BEAM ON AN UNMODIFIED REINFORCED RCC
UNMODIFIED FRCC GEOMETRY

NADC REPORT # NACC-AH-6739(02)

BOTH BRACES
ACTING AS SHOWN

* NATZ FIX THESE
DIMENSIONS CHANGE
TO 6 9/16 & 4 7/16
RESPECTIVELY
 $\beta = 48^\circ$

$$\sum M_{\text{HOUSING SURFACE}} = 10.75P - \frac{4P}{\sin \beta} \times 6.562 \sin \beta = 0$$

$$x = 1.638$$

$$\sum F_H = kP + \lambda P - P = 0 \\ kP + 1.638P - P = 0 \quad \lambda = -0.638$$

$$\sum F_V \quad R - yP = R - \frac{4P}{\tan \beta} = 0 \quad R = 1.475P$$

$$R = \frac{4P}{\sin \beta} = \frac{1.638P}{0.74314} = 2.204P$$

$$R_{\text{PER BRACE}} = \frac{1}{2} \times 2.204P = 1.102P$$

AT THE FAILING SIDE LOAD = 8500*

$$R_{\text{PER BRACE}} = 1.102 \times 8500 = 9367^*$$

SINCE ULTIMATE LOAD IS DEFINED AT THE POINT JUST BEFORE FAILURE OCCURS, LET THE BRACE ULTIMATE LOAD = 9000*

(12a)

CONCLUSIONS FROM CHECK ON DOUGLAS STRENGTH ENVELOPE
BRACE LIMITS

RECALCULATING SWAY BRACE LOADS IN NADC REPORT NADC-14-6739
EQUATIONS FOR NATC FIX (LARGE DIA STORE)

$$\text{IN HORN ZENGING SURFACE} = 10.75P - \frac{4P}{\sin\theta} \times 6.3125 \sin\theta = 0$$

$$K = 1.703$$

$$\sum F_x = lP + 4P - P = 0$$

$$l = .703$$

$$\sum F_y = R - 4P = R - \frac{4P}{\tan\theta} = R - \frac{1.703P}{1.1106} = 0 \quad R = 1.533P$$

$$\bar{R} = \frac{4P}{\sin\theta} = \frac{1.703P}{.74314} = 2.292P$$

$$\bar{R}_{\text{PER BRACE}} = \frac{1}{2}\bar{R} = 1.146P$$

		UNMODIFIED RACK TABLE I-(RCF)		NATC FIX TABLE II-(REF)	
TOTAL SIDES LOAD	SWAY BRACE LOAD $\bar{R} = 1.146P$	DEFLECTION BRACE TO FRAME FWD END	SWAY FORCE LOAD $\bar{R} = 1.146P$	DEFLECTION BRACE TO FRAME FWD END	
0	0	0	0	0	
1000	1102	.012	1146	.018	
2000	2204	.043	2292	.057	
3000	3306	.075	3438	.084	DERIVED FROM CURVE FIG 6 NADC-AM = 1.739
4000	4408	.110	4584	.119	
5000	5510	.151	5730	.150	
6000	6612	.205	6876	.185	
7000	7714	.266	8022	.217	
8000	8816	.364	9168	.258	IN DEFLATION CONE
FAILURE \rightarrow 8500 NATC FIX FAILURE 14750	9367		10,214	.356	
		FAILURE \rightarrow 16,903			

FOR A LARGE DIAMETER STORE LET ULTIMATE BRACE LOAD = 16,500"

THE UNMODIFIED RACK REPRESENTS A SMALL DIAMETER STORE

THE NATC FIX REPRESENTS A LARGE DIAMETER STORE

FOR A SMALL DIAMETER STORE LET ULTIMATE BRACE LOAD = 9000"

AS CAN BE OBSERVED FROM THE DATA THE FAILURE

LOAD FOR THE NATC FIX REPRESENTING A LARGE DIA STORE

IS CONSIDERABLY LARGER THAN THE FAILURE LOAD FOR
THE SMALL DIAMETER STORE (UNMODIFIED RACK DATA)

(13)

CONCLUSIONS FROM CHECK ON DOUGLAS STRENGTH ENVELOPE HOOK SIDE LOAD LIMITS

THE BRACE LOADS COMPUTED FROM THE DOUGLAS STRENGTH ENVELOPE WERE OF SUCH HIGH MAGNITUDE, WITHOUT CONSIDERING YAWING MOMENT, THAT IT BECAME APPARENT THAT YAWING MOMENT WAS REACTED BY SIDE LOADS ON THE HOOKS. BECAUSE OF THE LACK OF CONFIDENCE ESTABLISHED IN THE DOUGLAS ANALYSIS DUE TO THE UNREALISTICALLY HIGH BRACE LOADS, THE QUESTION ARISES AS TO THE STRUCTURAL ADEQUACY OF THE HOOKS TO REACT THIS SIDE LOAD IN ADDITION TO THE HIGH SIDE LOAD ALREADY IMPOSED IN THE STRENGTH ENVELOPE. SINCE NO TEST DATA IS AVAILABLE TO DEMONSTRATE THAT THE HOOKS CAN WITHSTAND THE SIDE LOAD IMPOSED BY THE SPECIFIED 100,000 IN.-IN. OF YAWING MOMENT, STRESS ANALYSIS OF THE HOOK WILL BE USED TO APPROXIMATE HOOK CAPABILITY.

THE 1/4 INCH HOOKS ARE NOT CONSIDERED IN THIS ANALYSIS.

3/8 INCH HOOKS

ALL DIMENSIONS ARE APPROXIMATE - SCALED FROM HOOK
LOAD POSITION ON HOOK = .78 FROM PINT (MIL-R-22622) *

$$\sum M_{PINT} = P_1 - (633 + 093)R = 0 \quad (\text{SIDE VIEW})$$

$$P_1 = .726 R$$

$$.78 - 093 - 054 = .633$$

$$\sum F_x = P_1 - P_{2x} = 0$$

$$P_{2x} = P_1 = .726 R$$

$$\sum F_y = P_{2z} - R = 0$$

$$P_{2z} = R$$

$$\sum M_{MM} = (3/32 - 7/32)Ry - 3/4P_3 = 0$$

$$B=20 \quad P_3 = Ry \quad (\text{FRONT VIEW})$$

(14)

CONCLUSIONS FROM CHECK ON DOUGLAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS

CHECKING HOOK ULTIMATE STRENGTH AT CRITICAL
SECTION C-C (P13-REF) BASED ON SPEC MIL-R-22622
ULTIMATE LOAD TEST VALUES.

30" HOOKS 25,000 MINIMUM LOAD PER HOOK APPLIED
AT A POINT .78 FROM THE HOOK PIVOT.

$$\text{DISTANCE TO CENTROID OF SECTION FROM LOAD} = .78 - .093 = .687$$

$$M_{cc} = -687 \times 25000 = 17,175 \text{ (ULT)}$$

$$T = 25,000 \cos 30^\circ = 25000 \times .866 = 21,650$$

$$S = 25,000 \sin 30^\circ = 25000 \times .500 = 12,500$$

$$I_y = \frac{1}{12} b h^3 = \frac{1}{12} \times 750 \times .625^3 = .0152$$

$$f_{b\mu} = \frac{17,175 \times 3,125}{.0152} = 353,104$$

INTRODUCE A FOMR FACTOR OF 1.5 TO ACCOUNT
FOR REDISTRIBUTION OF BENDING STRESS DUE TO
ELASTICITY

$$f_{b\mu} = 353,104 \times \frac{1}{1.5} = 235,402$$

$$f_{z\mu} = \frac{21,650}{.750 \times .625} = 46,186 \quad f_{s\mu} = \frac{12,500}{.625 \times .750} = 26,666$$

$$f_{s\mu \text{ MAX}} = \sqrt{f_s^2 + (f_{s\mu}/2)^2} = \sqrt{26,666^2 + (235,402/2)^2} = 143,300$$

$$f_{\mu \text{ MAX}} = \frac{f_{b\mu}}{2} + f_{s\mu \text{ MAX}} = \frac{235,402}{2} + 143,300 = 284,094 \text{ psi}$$

RANDOMLY SELECTED PRODUCTION RACKS ARE
SUBJECTED TO THIS LOAD AND MOMENT, AND REQUIRED
TO SUSTAIN THEM AS A MINIMUM. OBVIOUSLY, HOWEVER,
THE COMPUTED STRESS IS IN EXCESS OF THE ULTIMATE
STRENGTH OF THE MATERIAL (180,000 psi). PRESUMING OF
THE HOOKS PRIOR TO TEST COULD CONCEIVABLY ACCOUNT
FOR THE DIFFERENCE; CONSEQUENTLY THESE COMPUTED
ULTIMATE STRESSES WILL BE USED AS REFERENCE STRESSES
IN EVALUATING HOOK STRENGTH.

(15)

CONCLUSIONS FROM CHECK ON DOUGLAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS

SIDE LOAD MOMENT & RMS

$$(N_f + y \tan 30) \cos 30 = -633$$

$$N_f^2 + y^2 = .75^2$$

$$.866 N_f + .5 y = -633$$

$$N_f + .577 y - .730 = 0$$

$$(.730 - .577 y)^2 + y^2 = .75^2$$

$$-.533 - .842 y + .333 y^2 + y^2 = .5625$$

$$1.333 y^2 - .842 y - 0.295 = 0$$

$$y^2 - 6316 y - 0.22 = 0$$

$$y = \frac{+6316 \pm \sqrt{3989 + 0.88}}{2} = \frac{6316 + 6975}{2} = 6647$$

$$x = .730 - .577 \times 6647 = -3465$$

CHECKING SECTION C-C FOR WORST HOOK LOAD P.G (RSF)T-65 STORE 30" HOOKS

HOOK DOWN LOAD PER STATION = 37090" (ULT) SINGLE HOOK DOWN LOAD = 18545"

HOOK SIDE LOAD PER STATION = STORE SWAYING MOMENT / HOOK SPACING
= 100,000/30 = 3333" (ULT) (DOUGLAS STRENGTH ENVELOPE)

SINGLE HOOK SIDE LOAD = 1666" (ULT)

PITCHING MOMENT ON SECTION C-C = $.633 \times 18545 = 11,735$ IN-# (ULT) = 1444TORSION ON SECTION C-C = $R_y \times x = 1666 \times -3465 = 577$ IN# (ULT)TRANSVERSE BENDING ON SECTION C-C = $R_y \times y = 1666 \times 6647 = 1107$ IN# (ULT)TENSION COMPONENT OF DOWN LOAD = $R_x \cos 30 = 18545 \times .866 = 16,055$ SHEAR COMPONENT OF DOWN LOAD = $R_x \sin 30 = 18545 \times .5 = 9272$ DFT = .625
WICH = .750TRANSVERSE
BENDING
1107 IN# (ULT)

R_x SIN 30 = 9272" (SHEAR)

LOADS & MOMENTS ON SECTION C-C

CONCLUSIONS FROM CHERK ON DOUGLAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS

$$f_{sh} = \frac{M_{12}C}{1.5L_{yy}} + \frac{M_{23}C}{1.5L_{xx}} + \frac{R \cos 30^\circ}{b h} \quad 1.5 = \text{FORM FACTOR}$$

RECTANGULAR SECTION

$$f_{sh} = \frac{\text{TORSION}}{b h^2} + \frac{R_y}{b h} + \frac{R \sin 30}{b h} \quad \text{REF. 9.17 - ADVANCED MECHANICS OF MATERIALS}$$

SEELEY-SMITH-2ND ED.

$$f_{sh} = \frac{11,738 \times .312}{\frac{1}{2} \times .75 \times 625^2 \times 1.5} + \frac{1107 \times .275}{\frac{1}{2} \times .625 \times .75} + \frac{16059}{.625 \times .75} = 160625 + 12575 + 16059$$

$$f_{sh} = \frac{3612}{0.152 \times 1.5} + \frac{415}{0.22 \times 1.5} + \frac{16059}{.46} = 160625 + 12575 + 34910$$

$$f_{sh} = 208,110$$

$$f_{sh} = \frac{577}{208 \times .75 \times 625^2} + \frac{1666}{.625 \times .75} + \frac{9272}{.625 \times .75} = \frac{577}{.061} + \frac{1666}{.46} = 9459 + 35778 = 33,237$$

$$f_{sh \text{ MAX}} = \sqrt{\frac{33.3 \times 10^3}{2} + \left(\frac{208 \times 10^3}{2}\right)^2} \cdot 10^3 \sqrt{109 + 10816} = 109,200 \text{ psi}$$

$$f_{sh \text{ MAX}} = \frac{208,110}{2} + 109,200 = 213,255$$

THE STRESSES INDICATE A REASONABLE MARGIN WHEN COMPARED TO THE REFERENCE STRESSES COMPUTED ON PAGE 14. HOWEVER, DUE TO THE UNCERTAINTY OF THE HOOK DIMENSIONS AND THE PELUCTANCE TO RELY ON THE TESTSTRESSES, WHICH IS REALLY INTENDED TO PREDICT FATIGUE LIFE, IT IS RECOMMENDED THAT THE HOOK LOADS BE LIMITED TO THOSE WITHIN THE ULTIMATE TENSILE AND SHEAR STRENGTHS OF THE MATERIAL. THIS CAN BE ACHIEVED BY DECREASING THE HOOK DOWNLOAD. THE BENDING STRENGTH IS MODIFIED BY A FORM FACTOR TO INTRODUCE THE TRAPEZOIDAL DISTRIBUTION OF STRESS WHICH IS ALLOWABLE BEYOND THE ELASTIC LIMIT.

$F_{sh} = 150,000 \text{ psi}$ $F_{sh} = 106,000$ Douglas fig #4430640 (REF).

(17)

NADC-74130-30

CONCLUSIONS FROM CHECK ON DOUGLAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS.

ASSUME HOOK DOWN LOAD PER STATION = 30,000" (ULT)

SINGLE HOOK DOWN LOAD = 15,000" (ULT)

HOOK SIDE LOAD PER STATION = 3533" (ULT)

SINGLE HOOK SIDE LOAD = 1666" (ULT)

$$\text{PITCHING MOMENT} = .633 \times 15000 = 9495$$

$$R \cos 30^\circ = 15000 \times 866 = 12990$$

$$R \sin 30^\circ = 15000 \times 500 = 7500$$

$$f_{bu} = \frac{9495 \times 312}{0.152 \times 1.5} + \frac{1107 \times 375}{0.22 \times 1.5} + \frac{12990}{46}$$

$$f_{bu} = 129,932 + 12575 + 28239 = 170,746 \text{ psi}$$

$$f_{su} = \frac{577}{0.61} + \frac{1666}{46} + \frac{7500}{46}$$

$$f_{su} = 9459 + 19926 = 29,385 \text{ psi}$$

$$f_{sh} = \sqrt{(29.4 \times 10^3)^2 + \left(\frac{171 \times 10^3}{2}\right)^2} = \sqrt{864 + 7310} = 90,410 \text{ psi}$$

$$f_{sh} = \frac{171,000}{2} + 90,410 = 175,910 \text{ psi}$$

$$M.S. = \frac{180}{175.9} - 1 = 4.02$$

SECTION A-A REF P-13

$$\text{PITCHING MOMENT} = R \left(\cdot 375 - \frac{115}{2} \right) = \cdot 3175 R$$

$$= \cdot 3175 \times 15000 = 476310" (\text{ULT})$$

$$\text{TRANSVERSE MOMENT} = \cdot 3175 \times R_T = \cdot 3175 \times 1666 = 529111" (\text{ULT})$$

TORQUE = 0

$$f_{bu} = \frac{476310 \times 2155}{12 \times 625 \times 437 \times 1.5} + \frac{529111 \times 3125}{12 \times 437 \times 625 \times 1.5}$$

$$f_{bu} = \frac{1040}{0.0435 \times 1.5} + \frac{165}{1.087 \times 1.5} = 159,386 + 12,359 = 171,745 \text{ psi (ULT)}$$

CONCLUSIONS FROM DUNIERS STRENGTH ENVELOPE
 HOOK-SIDE LOAD LIMITS
 SECTION A-A (CONT'D)

$$f_{sh} = \frac{15000 + 1666}{625 \times 437} = \frac{16666}{273} = 61047$$

$$f_{sh\max} = \sqrt{(61 \times 10^3)^2 + \left(\frac{172 \times 10^3}{2}\right)^2} = 10^3 \sqrt{3721 + 7396} = 10^3 \sqrt{11117} = 105,437 \text{ psi}$$

$$f_{m\max} = \frac{171,745}{2} + 105,437 = 191,309 \text{ psi}$$

$$MS = -\frac{180}{191} - 1 = -0.58$$

DECREASE DOWN LOAD TO 14000 PER HOOK

$$f_{bu} = \frac{3175 \times 14000 \times 2185}{60435 \times 1.5} + 12,359 = \frac{971.23}{.00653} + 12359$$

$$f_{bu} = 118,733 + 12,359 = 161,092$$

$$f_{sh} = \frac{14000 + 1666}{273} = \frac{15666}{273} = 57,384$$

$$f_{sh\max} = \sqrt{(57.4 \times 10^3)^2 + \left(\frac{161 \times 10^3}{2}\right)^2} = 10^3 \sqrt{3253 + 6480} = 98,650 \text{ psi}$$

$$f_{m\max} = \frac{161,092}{2} + 98,650 = 80,546 + 98,650 = 179,200$$

$$MS = \frac{180}{179.2} - 1 = +0.04$$

(19)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS REF D-13

SECTION - B-B

$$\text{PITCHING MOMENT} = .4375 P_i = .4375 \times .726 R \quad (\text{P13-RCP})$$

$$= .4375 \times .726 \times 14000 = 4446$$

$$f_{u4} = \frac{4446 \times .375}{2 \times \frac{1}{12} \times .161 \times .750^3 \times 1.5} = \frac{2223 \times .375}{0.566 \times 1.5} = 98,190 \quad \text{SECTION B-B}$$

$$f_{su} = \frac{10164}{2 \times .161 \times .750} = \frac{10164}{2415} = 42,086$$

$$f_{shar} = \sqrt[13]{(42.1)^2 + (119.1)^2} = \sqrt[13]{1772 + 2410} = 64,700$$

$$f_{m\max} = 49,100 + 64,700 = 113,800$$

$$M.S = \frac{180}{176} - 1 = +.578$$

SHARP RADIUS AT THE CORNER OF THIS SECTION
WILL PRODUCE STRESS CONCENTRATION BUT INFORMATION
AVAILABLE ONLY LOUGHLY APPROXIMATES THE CASE

STRESS CONCENTRATION DESIGN FACTORS - PETERSON
BAR WITH A SHOULDER FILLET IN BENDING FIG 60

$$\frac{r}{d} = \frac{0.3}{.161} = .186 \quad \frac{D}{d} = \frac{.750}{.161} = 4.6 \quad K_c = 1.55$$

$$f_{m\max} = 1.55 \times 113,800 = 176,390$$

$$M.S = \frac{180}{176} - 1 = +0.2$$

(2)

**CONCLUSIONS FROM DOWDAS STRENGTH ENVELOPE
HOOK SIDE LOAD LIMITS REF P13**

SECTION D-D

$$\text{PITCHING MOMENT} = 14000 \times (0.633 + 0.93) = 10,164 \text{ IN}^{\prime\prime}(\text{ULT})$$

$$\text{TRANSVERSE MOMENT} = 1566 \left(\frac{5}{32} - \frac{7}{32} \right) = 1250 \text{ IN}^{\prime\prime}(\text{ULT})$$

$$\text{TORQUE} = 1666 (0.633 + 0.93) = 1210 \text{ IN}^{\prime\prime} \text{ULT}$$

$$\text{TENSION COEFFICIENT OF DOWN LOAD} = R = 14,000$$

$$\text{SHEAR DUE TO SIDE LOAD} = P_T = 1666$$

SECTION D-D

$$f_{SU} = \frac{10,164 \times 5}{\frac{1}{2} \times 750 \left(1 - \frac{4375}{5625} \right) \times 1.5} + \frac{1250 \times 375}{\frac{1}{2} \times 5625 \times 750 \times 1.5} + \frac{14000}{75 \times 5625}$$

$$f_{SU} = \frac{10,164 \times 5}{0.573 \times 1.5} + \frac{1250 \times 375}{0.25 \times 1.5} + \frac{14000}{422}$$

$$f_{SU} = 5912.7 + 15625 + 33175 = 107,927$$

$$f_{SU} = \frac{1210}{205 \times 75 \times 625} + \frac{1666}{75 \times 5625}$$

$$f_{SU} = \frac{1210}{0.609} + \frac{1666}{422} = 19,868 + 3948 = 23,815$$

$$f_{SMAX} = 103 \sqrt{(23.8)^2 + (54)^2} = 103 \sqrt{566 + 2916} = 59,000 \text{ psi (ULT)}$$

$$f_{M4MAX} = 54,000 + 59,000 = 113,000$$

$$M_S = \frac{180}{715} - 1 = +.59$$

SECTION A-A**Pivot P11****P_1 = 5,052**

$$P_1 + R = 14,000 \quad P13FLF - P13FLF$$

$$P_3 = R_Y = 1666 \quad P13FLF - P13FLF$$

$$P_2 = 726R = 726 \times 14000 = 10164 - P13FLF$$

ASSUME P11 IS TIGHT FITTING IN HOOK PIVOT

HOLE AND RIGID IN HOOK FRAME SO THAT NO BENDING-EYING.

$$f_{SU} = \frac{\sqrt{(7000 + 1666)^2 + (5052)^2}}{1503} = \frac{\sqrt{(8666)^2 + (5052)^2}}{1503} = \frac{103 \sqrt{751 + 258}}{1503} = \frac{10,050}{1503}$$

$$f_{SU} = 66,866 \text{ psi} \quad M_S = \frac{106}{66.4} - 1 = +.58$$

(21)

Conclusions From Douglas Strength Envelope
Yawing Moment Distribution

This report has demonstrated that the Aero 70 rack loads specified in the Douglas strength envelope are greatly in excess of those which the rack can safely sustain. As indicated on page 4, Douglas evidently also assumed, in the derivation of the strength envelope, that the yawing moment was reacted by hook side load rather than by the sway braces. This assumption will be checked in the following analysis.

Assume that the store is subjected to yawing moment only, and that the store rotates in the horizontal plane to allow the lugs to just begin to bear against the sides of the hooks. For the store to achieve this position the sway braces must deflect sufficiently to allow the store to slip underneath them. The vertical deflection of the braces (ΔY) is derived as a function of the distance that the store rotates laterally (ΔX). Just at hook contact, ΔY is then converted into a resultant brace deflection and compared to the deflection recorded during testing to obtain the resultant brace load imparting the test deflection. This brace load which is acting at hook-lug contact is then assumed to be the limiting brace reaction to yawing moment while the remainder is reacted by hook side load.

The test data, extracted from NDR report # NDL-AM-6739 (TABLES I-II-BRACE TO GROUND, AFT END) is assumed to represent a load deflection curve for the brace-brace combination. The analysis does not consider rotation of the store due to side load.

(22)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE
YAWING MOMENT DISTRIBUTION
 DERIVING $\Delta x = f \Delta y$

x_2 & y_2 ARE THE COORDINATES OF THE BRACE RELATIVE TO THE STORE IN ITS ORIGINAL POSITION.

x_1 & y_1 ARE THE COORDINATES OF THE BRACE RELATIVE TO THE STORE

AFTER THE STORE SLIPS BEHIND THE BRACES DUE TO YAWING MOMENT.
 Δx = DISTANCE STORE MOVES HORIZONTALLY RELATIVE TO THE BRACE

Δy = DISTANCE BRACE MOVES VERTICALLY

$$x_1^2 + y_1^2 = R^2$$

$$\Delta y = y_1 - y_2$$

$$\Delta x = x_2 - x_1$$

$$y_1 = \sqrt{R^2 - x_1^2}$$

$$\Delta y = y_1 - y_2 = \sqrt{R^2 - x_1^2} - y_2$$

$$x_1 = x_2 - \Delta x$$

$$\Delta y = \sqrt{R^2 - (x_2 - \Delta x)^2} - y_2$$

(23)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE
YAWING MOMENT DISTRIBUTION

HORIZONTAL DIMENSION OF LUG HOOK OPENING MIL-A-8591D

FIG 2 & 3 1000 & 2000 " WEIGHT CLASSES

$$\begin{array}{lll} T65 \ 30" \text{ LUG} & 1.125 \pm .030 & \text{MAX} = 1.155 \quad \text{FIG 3} \\ T63 \ 14" \text{ LUG} & .72 \pm .030 & \text{MAX} = .75 \quad \text{FIG 2} \end{array}$$

HOOK WIDTH

$$T65 \ 30" \text{ HOOK} = .625$$

$$T63 \ 14" \text{ HOOK} = .500$$

Δx = CLEARANCE = LUG-DIMENSION - HOOK DIMENSION

$$T65 \ 30" = 1.155 - .625 = .530$$

$$T63 \ 14" = .750 - .500 = .250$$

T63 STORE 14" SUSPENSION $B = 17043'$ $R = 15.25"$

$$x_2 = R \sin B = 15.25 \times 30431 = 4.64 \quad P2-REF$$

$$y_2 = R \cos B = 15.25 \times 95257 = 14.527 \quad P2-REF$$

T65 STORE 30" SUSPENSION $B = 34^{\circ}26'$ $R = 7.25'$

$$x_2 = 7.25 \times 56521 = 4.10$$

$$y_2 = 7.25 \times 82495 = 5.98$$

T63 STORE

$$\Delta Y = \sqrt{R^2 - (x_2 - \Delta x)^2} - y_2 \quad P22-REF$$

$$\Delta Y = \sqrt{(15.25)^2 - (4.64 - .250)^2} - 14.527$$

$$\Delta Y = \sqrt{232.5 - 19.27} - 14.527$$

$$\Delta Y = \sqrt{213.23} - 14.527 = 14.602 - 14.527 = .0754$$

T65 STORE

$$\Delta Y = \sqrt{(7.25)^2 - (4.10 - .530)^2} - 5.98$$

$$\Delta Y = \sqrt{52.563 - 12.745} - 5.98$$

$$\Delta Y = \sqrt{39.818} - 5.98 = 6.31 - 5.98 = .33$$

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE

YAWING MOMENT DISTRIBUTION

CONVERTING THIS DEFLECTION TO A RESULTANT AT $\delta = 45^\circ$ FOR COMPARISON WITH TEST DATA.

$$\text{RESULTANT DEFLECTION OF BRACE} = \frac{\Delta Y}{\cos \delta}$$

$$\text{T63 STORE } \Delta B = \frac{0.754}{66.913} = .012$$

$$\text{T65 STORE } \Delta B = \frac{.33}{66.913} = .005$$

COMPARING THESE VALUES OF RESULTANT BRACE DEFLECTION WITH THOSE DERIVED ON P12A (NADC REPORT "NADC-AM-6739-PRELIS I & II-PDF") IDENTIFIES A SWAY BRACE LOAD. THIS IS THE LOAD REQUIRED TO DEFLECT THE BRACE STRUCTURE ALONE TO A DISTANCE ΔY WHICH IS LARGE ENOUGH TO ALLOW THE STORE TO SHIFT LATERALLY AND MAKE HOOK-LUG CONTACT. AFTER THIS OCCURS, THE BRACES ARE NO LONGER EFFECTIVE IN RESISTING YAWING MOMENT AND ALL OF THE YAWING MOMENT COMES OUT AS SIDE LOAD ON THE HOOKS. THE LOAD DEFLECTION CURVES IN TABLE I & III UNDER BRACE TO FRAME (FWD END) ARE USED AS A DEFINITION OF BRACE DEFLECTION.

THE YAWING MOMENT CAPACITY OF THE BRACES IS DICTATED BY THE REQUIREMENT FOR THE BRACES TO CLIMB AN INCLINE PRESENTED BY THE STORE AS IT ROTATES IN THE HORIZONTAL PLANE. REGARDLESS OF WHAT OTHER LOADS ARE APPLIED TO THE BRACES, THIS SAME REQUIREMENT IS PRESENTED TO THE BRACE AS ANY ATTEMPT IS MADE TO YAW THE STORE. FOR INSTANCE, IF THE BRACE IS LOADED BY STORE SIDE LOAD, IT WILL DEFLECT BUT WHEN AN ATTEMPT IS THEN MADE TO YAW THE STORE, IT MUST DEFLECT THE BRACES BY THE ADDITIONAL INCREMENT REQUIRED TO CLIMB THE STORE INCLINE. DOWN LOAD WOULD TEND TO RELIEVE THIS SITUATION, BUT IN THIS CASE THE RELIEF IS OFFERED BY THE DEFLECTION OF THE HOOKS WHICH ALLOW THE STORE SURFACE TO MOVE AWAY FROM THE BRACES. HOWEVER, SINCE THE HOOKS ARE MORE RIGID THAN THE BRACES, THIS EFFECT IS NOT AS SIGNIFICANT AS BRACE DEFLECTION. PANNING MOMENT CAN ALSO RELIEVE A BRACE AND FACILITATE SLIPAGE UNDER YAW BUT THIS ALSO DEMANDS DEFLECTION OF THE

(25)

Conclusions From Douglas Strength Envelope
YAWING MOMENT DISTRIBUTION

OF THE HOOK RIGID HOOKS. THE BOMB RACK STRUCTURE IS SUCH THAT YAWING MOMENT MOST EFFECTIVELY SURGES THE STORE UNDER THE BRACES. IF THE BRACE LOAD SUPPLIED BY YAWING MOMENT IS ONLY HIGH ENOUGH ON ONE BRACE TO ALLOW SLIPPAGE TO THE POINT WHERE THE HOOK WILL FEEL SIDE LOAD, THEN THE STORE WILL TEND TO PIVOT ABOUT THE BRACE WITH THE LEAST LOAD.

REFERRING TO PAGE 120

TG3 STORE 30.5" Dia 14" SUSPENSION

THE NACA FIX DATA (TABLE III) IS USED FOR COMPARATIVE PURPOSES AT .112 DEFLECTION

$$\frac{.112 - 0.84}{.119 - 0.84} (4584 - 3438) = \frac{0.28}{0.35} \times 11\% = 917 \quad \bar{R}_{4584} = 3438 + 917 = 4355$$

$$\frac{\bar{R}_{4584} \sin \beta_1}{R_{4584}} = \frac{4355 \times 6.312 \times .74314}{16.375 \times .30431} = 4099 \quad \left\{ \begin{array}{l} TP25a (REP) \\ P12 REP \\ P2 REP \end{array} \right.$$

TG5 STORE 14.5" Dia 30" SUSPENSION

THE UNMODIFIED Rack DATA (TRECI) IS USED FOR COMPARATIVE PURPOSES

AT .493 DEFLECTION

THIS DEFLECTION IS BEYOND THE FAILURE LIMIT OF THE BRACE

THE SIGNIFICANCE OF THIS RESULT IS THAT ON THE TG3 STORE (LARGE DIAMETER) THE BRACES WILL REACT A YAWING MOMENT = $.20 \times 4099 \sin \beta = .20 \times 4099 \times .30431 = 24947 \text{ IN}^2$ BEFORE THE STORE LOAD CONTACTS THE SIDES OF THE HOOKS. ON THE TG5 STORE (SMALL DIAMETER) THE BRACES WILL REACT YAWING MOMENT UNTIL A BRACE FAILURE OCCURS.

THIS CONCLUSION CONCURS WITH PREVIOUS EXPERIENCE AND WORK DONE ON OTHER RACKS IN WHICH LARGE DIAMETER STORES WERE PRONE TO SLIPPAGE UNDER YAWING MOMENT WHILE SMALL DIAMETER STORES WERE NOT. THIS IS ALSO APPARENT FROM THE BASIC BRACE GEOMETRY.

TRACTION OF YAWING MOMENT ON THE BRACES SHOULD ALLOW AN ADVANTAGE ON THE HOOK CONSTRUCTION (PIT CRITICAL SECTION) SINCE IT WAS REACHED THAT ALL OF THE YAWING MOMENT WAS REACTED BY SIDE LOAD ON THE HOOK. CHANGE NOTED IN CONCLUSIONS (P26)

(252)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE YAWING MOMENT DISTRIBUTION

A CORRECTION HAS TO BE MADE TO THE DATA EXTRACTED FROM NADC REPORT NADC-AM-6739 BECAUSE THE TESTS SPECIFIED WERE MADE ON A STORE HAVING A β ANGLE OF 45° . THE RESULTANT FORCE ACTING ON THE SWAY BRACE ADJUSTING BOLT, WHICH DETERMINES THE FAILURE POINT OF THE RACK, IS SIGNIFICANTLY INFLUENCED BY BOTH THE DIRECTION OF THE FORCE VECTOR ACTING ON THE SWAY BRACE AND THE STORE DIAMETER. THE INFLUENCE OF THE STORE DIAMETER CAUSES THE ADJUSTING BOLT TO FAIL AS A COLUMN WHEN IT IS ADJUSTED TO CONTACT A SMALL DIAMETER STORE OR FOR THE RACK FRAME TO FAIL IN SHEAR WHEN THE BOLT IS RETRACTED TO ACCOMMODATE A LARGE DIAMETER STORE. HOWEVER THE DATA ALSO HAS TO BE CORRECTED TO COMPENSATE FOR THE ANGLE AT WHICH THE FORCE VECTOR ACTS ON THE BRACE PAD. THIS ANGLE CHANGES THE MAGNITUDE OF THE REACTION AT THE ADJUSTING BOLT.

(26)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE
YAWING MOMENT DISTRIBUTION

THE LIMITING YAWING MOMENT DERIVED FOR THE LARGE DIAMETER WAS BASED ON A 14" SUSPENSION USING THE SMALLER LUG SPECIFIED IN MIL-A-8591D. CONSIDERING THE LARGE DIAMETER STORE WITH A 30" LUG RESULTS IN THE FOLLOWING LIMITATION.

TAB SIDE 30.5 DIR 30" SUSPENSION:

$$\Delta X = 1.155 - 625 = .530 \quad P23 (\text{REF})$$

$$\Delta Y = \sqrt{R^2 - (X_2 - \Delta X)^2} - Y_2 \quad P22 (\text{REF})$$

$$\Delta Y = \sqrt{15.25^2 - (4.64 - 530)^2} - 14.527 \quad P23 (\text{REF})$$

$$\Delta Y = \sqrt{232.5 - 16.89} - 14.527 = \sqrt{215.61} - 14.527$$

$$\Delta Y = 14.683 - 14.527 = .1566$$

$$\Delta B = \frac{.1566}{.66913} = .234$$

REFERRING TO THE NACA FIX DATA (TABLE II) FOR COMPARATIVE PURPOSES (P120 - REF)

$$\frac{.234}{.258} = \frac{.217}{.217} \quad (9168 - 8022) = \frac{0.7}{0.1} \times 1146 = 475 \quad \bar{R}_{45} = 8022 + 475 = 8497$$

$$\bar{R}_{17.43} = \frac{8497 \times 6.312 \times .74214}{16.375 \times .30431} = 7998 \quad P25a (\text{REF})$$

$$\text{LIMITING YAWING MOMENT} = 20 \times 7998 \times \sin 30^\circ = 159,760 \times .30431 = 48,616 \text{ IN}^4$$

CONCLUSIONS

30" SUSPENSION

LARGE DIAMETER STORE (TAB)

LIMITING SIDE YAWING MOMENT = 48,616 IN⁴ (ULT)

YAWING MOMENT REACTED BY HOOK SIDE LOAD = 51,384 (ULT)

HOOK DOWN LOAD = 14,000 lb (ULT) PER SINGLE HOOK WHEN YAWING
 = 28,000 lb (ULT) PER HOOK STATION

DECREASE IN SIDE LOAD SHOULD ALLOW APPROX 10% INCREASE
 IN DOWN LOAD (NOT CALCULATED)

$$\text{PLATE LOAD } (\bar{R}_{MAX}) = \frac{16.375 \times 6.312 \times .74214}{16.375 \times .30431} = 15532 \quad P122.8:54/REF$$

(67)

CONCLUSIONS FROM DOUGLAS STRENGTH ENVELOPE

CONCLUSIONS

3.0" SUSPENSION

SMALL DIAMETER STORE

LIMITING BRACE YAWING MOMENT = BRACES REACT ALL YAWING MOMENT TO FAILURE WITHOUT HOOK CONTACT

- HOOK DOWN LOAD = $18,500^{\prime\prime}$ PER SINGLE HOOK PII (REF)

$37,000^{\prime\prime}$ PER HOOK STATION

$$\text{BRACE LOAD } (\bar{R}_{MAX}) = \frac{4000 \times 6.5625 \times 34314}{8.81 \times .56521} = 8813^{\prime\prime} (\text{P121254RS})$$

14" SUSPENSION

LARGE DIA STORE

LIMITING BRACE YAWING MOMENT = $24,947^{\prime\prime}$ (ULT)

YAWING MOMENT TRANSFERRED BY HOOKS - NOT ANKLED

HOOK DOWN LOAD - NOT ANALYZED

BRACE LOAD (\bar{R}_{MAX}) = $15,532^{\prime\prime}$ (ULT)

SMALL DIA STORE

NOT ANALYZED

(28)

RHU-8 TOW REEL

THE PURPOSE OF THIS ANALYSIS IS TO DEFINE THE STRENGTH LIMITS OF THE REEL IN EJECTOR ENCLAVE RACK WHEN SUPPORTING AN RHU-8 TOW REEL. THE PRECEDING ANALYSIS HAS BEEN CONFINED TO THE T63 AND T65 STORES AS A MEANS OF EVALUATING THE DOUGLES STRENGTH ENVELOPE AND DEVELOPING A METHOD FOR ANALYZING RACK STRENGTH AS A FUNCTION OF STORE DIAMETER. THE FOLLOWING ANALYSIS APPLIES THAT METHOD TO THE RHU-8 TOW REEL.

RHU-8 TOW REEL CHARACTERISTICS

$$12.3 \text{ " RADIUS } \beta = 31.5^\circ \sin\beta = 36650 \cos\beta = 93042$$

$$C = 1.6 \quad \text{NO ECCENTRICITY}$$

$$L = 1.2$$

AFT LUG 65.8" FROM NOSE OF TOW REEL (STA 0)

AFT LUG 95.8" " " " "

$$CG(\text{EMPTY}) = 58.8" " " " "$$

$$CG(\text{LOADED}) = 65.3 \text{ FROM NOSE OF TOW REEL (STA 0)}$$

LOADING MOMENT DISTRIBUTION30" SUSPENSION

$$\Delta x = 1.155 - 6.25 = -5.30 \quad P_{23}(\text{REF})$$

$$X_2 = R \sin\beta = 12.3 \times 36650 = 4.508$$

$$Y_2 = R \cos\beta = 12.3 \times 93042 = 11.444$$

$$\Delta Y = \sqrt{R^2 - (x_2 - \Delta x)^2} - Y_2 \quad P_{22}(\text{REF})$$

$$\Delta Y = \sqrt{(12.3)^2 - (4.508 - 5.30)^2} - 11.444$$

$$\Delta Y = \sqrt{151.29 - 15.8^2} - 11.444 = \sqrt{135.47} - 11.444 = 11.64 - 11.44 = .20$$

$$AB = \frac{200}{356.258} = \frac{200}{66913} = .298$$

REFERRING TO THE NADC FIX DATA (TABLE II) FOR COMPARATIVE PURPOSES: P_{12a} (REF).

$$\frac{.298 - .256}{356.258} (10,314 - 9165) = \frac{0.42}{0.98} \times 1146 = 467$$

$$R_{\text{PER}} \text{ STRESS} = 9165 + 467 = 9635$$

$$\bar{R}_{\text{PER}} = \frac{9635 \times 6.312 \times 74214}{12.3 \sin\beta} = 8870 \quad P_{25a} (\text{REF})$$

(29)

RHU-S TOW PEEL

$$\text{LIMITING YAWING MOMENT} = 8870 \times 20 \times 36650 = 65017$$

$$\text{YAWING MOMENT REACTED BY HOOK SIDE LOAD} = 100,000 - 65017 = 34983$$

$$\text{SIDE LOAD PER HOOK STATION} = 34983 / 30 = 1166$$

$$\text{SIDE LOAD PER SINGLE HOOK} = 1166 / 2 = 583$$

HOOK STRENGTH - CRITICAL SECTION σ_{UTS} (REF)

$$\text{INCREASE DOWN LOAD TO } 15,000^{\text{*}} \text{ SIDE LOAD} = 583$$

$$f_{bh} = \frac{3175 \times 15000 \times 2185}{00435 \times 1.5} + \frac{3175 \times 583 \times 3135}{0089 \times 1.5}$$

$$f_{bh} = 159,387 + 4333 = 163,720$$

$$f_{sh} = \frac{15000 + 583}{273} = 57,080$$

$$f_{sh \text{ MAX}} = 10^3 \sqrt{(58)^2 + (82.0)^2} = 10^3 \sqrt{3364 + 6724} = 10^3 \sqrt{10088} = 100,500$$

$$f_{sh \text{ MAX}} = \frac{163,720}{2} + 100,500 = 182,360 \text{ psi}$$

$$MS = \frac{182}{182} - 1 = -0.11$$

USE DOWN LOAD = 14,500^{*} OR 39,000^{*} PER HOOK STATION.

IF THE APPLIED YAWING MOMENT IS LESS THAN THE
SPACE CAPACITY THEN THE HOOKS WILL NOT BE
SUBJECTED TO SIDE LOAD AND DOWN LOAD CAN BE
INCREASED TO THE VALUE SPECIFIED ON PAGE 11

DOWN LOAD FOR SINGLE HOOK = 18,500^{*} (ULT)

DOWN LOAD PER HOOK STATION = 37,000^{*} (ULT)

DRAG LOAD IN ALL CASES IS ASSUMED TO BE REACTED
BY BEARING OF THE LUG SURFACE AGAINST THE
BOMB RACK FRAME AND IS NOT CONSIDERED CRITICAL
ON THE RACK WITHIN THE LIMITS OF MIL-A-8591.

RHU-5 TOW REEL

BRACE LIMITING STRENGTH

$$\bar{R}_2 = \frac{\bar{R}_1 n_1 \sin \beta_1}{n_2 \sin \beta_2} \quad P25a (\text{REF})$$

$$\bar{R}_2 = \frac{16,500 \times 6.312 \times .74314}{13.9 \times .36650} = 15,192$$

CONCLUSION RHU-5 STORE (7A. RACK STRENGTH LIMITS)

- 1- LIMITING BRACE YAWING MOMENT = 65,017 IN.[#] (P29-REF)
ABOVE THIS VALUE THE HOOKS RESIST YAWING MOMENT
AS SIDE LOAD
- 2- HOOK DOWN LOAD
 - (a) YAWING MOMENT > 65,017 IN.[#] < 100,000 IN.[#]
HOOK DOWN LOAD PER STATION = 29,000 (ULT) (P29-REF)
 - (b) YAWING MOMENT ≤ 65,017 IN.[#]
HOOK DOWN LOAD PER STATION = 37,000[#] (P29-REF)
- 3- BRACE LOAD (\bar{R}) = 15,192 (ULT) (D.30-REF)
- 4- DRAG NOT CRITICAL (P29-REF)

RECOMMENDATIONS. IT IS RECOMMENDED THAT THE FOLLOWING INSPECTION OF THE RACKS TO RACK BE MADE BEFORE AND AFTER EACH FLIGHT

- 1- TIGHTEN THE SWIVY BRACE ADJUSTING BOLTS IN ACCORDANCE WITH THE PROCEDURE SPECIFIED IN THE NADIS MANUAL
- 2- INSPECT THE SWIVY BRACE ADJUSTING BOLTS FOR BRINELLING AT THE POINT WHERE IT CONTACTS THE FRAME
- 3- CHECK TO SEE THAT THE SWIVY BRACE ADJUSTING BOLT CAN BE ROTATED IN ITS MATTIC-THREADED
- 4- CHECK FOR BULGES OR CRACKS AT THE CUTBACK AND UPPER PORTIONS OF THE FRAME IN THE AREAS OF THE ADJUSTING BOLT INSTALLATIONS
- 5- IF THE ADJUSTING BOLT IS SEIZED OR THE FRAME BULGED OR CRACKED, THE RACK SHOULD BE REPLACED.

(31)

REFERENCES

7 MAY 1974

MR JESS LOCKHART MC CONNELL DOUGLAS AIRCRAFT CO
LONG BEACH CAL PHONE 1-213-593-4759

CALLED MR LOCKHART TO INQUIRE ABOUT THE AERO
1/4 EJECTOR ZONE PACK STRENGTH ENVELOPE. HE
RECD ME INFORMATION FROM A PUBLICATION ENTITLED
"STANDARD AIRCRAFT ARMAMENT CHARACTERISTICS (BOMB
PACK - 4 HOOK - AERO 7A - 3600 LB)" DATED NOV 1960.
THIS DATA EXACTLY CONCURRED WITH THE CURVES
PUBLISHED IN AN IDENTICAL PUBLICATION AVAILABLE
AT NADC BUT DATED 1 JULY 1955.

REFERENCES

- AF/TR-4 TACTICAL MANUAL (CONF) MKU12-01-40AV-1T
- AF/TM 11-1 FLIGHT MANUAL (AFM) NAVAIR-01-40AVM-1
- AIRBORNE PERSONNEL STORES LOADING MANUAL NAVARIC CI-40AV-75
- AIRCRAFT, BOMBS, FUZES AND ASSOCIATED EQUIPMENT NAVWEPS CP2216
- DOUGLAS AIRCRAFT CO STANDARD AIRCRAFT ARMAMENT CHARACTERISTICS
BOMB EJECTOR PACK - 4 HOOK - AERO 7A - 3600 LB
- NADC REPORT NADC-RM-6739 OF 30 NOV 1967 - "UPGRADING
OF THE AERO 7A EJECTOR BOMB RACK FOR THE AGA
AIRCRAFT"
- NADC REPORT NADC 72136-VT OF 31 DEC, 1972 - "DETERMINATION
OF THE LUG AND SWAY EXCE RECTIONS FOR THE MKU9/A
BOMB RACK"
- MIL-R-8591 - "AIRBORNE STORES AND ASSOCIATED
EQUIPMENT; GENERAL DESIGN CRITERIA FOR
- MIL-R-22622 (NEP) "RACK, BOMB EJECTOR AIRCRAFT;
AERO 7A SERIES"
- MIL-T-7743 "TESTING, STORE SUSPENSION EQUIPMENT,
GENERAL SPEC FOR"
- TRYTON T. BROWN INC CHURCH STREET, POMERICK N.Y.
TEST REPORT DTB02R73-1517 - "MODIFIED AERO 7A-1
BOMB EJECTOR RACK INVESTIGATION"
- NARF (NORFOLK VA) REPORT SERIAL NO 99-72 OF APRIL 72

RELATED AERO 70 RACK IN-SERVICE FAILURES

A NUMBER OF UNSATISFACTORY REPORTS HAVE BEEN FILED CONCERNING FAILURES OF THE AERO 70 RACK IN SERVICE. THE FOLLOWING DESCRIPTION OF A TYPICAL UR WAS TAKEN FROM NARF (NORFOLK VA) REPORT SERIAL NO 99-72 OF 7 APRIL 72.

" DURING AN ABRUPT FULL DEFLECTION RIGHT AILERON ROLL OF THE F8 AIRCRAFT AT 390 KIAS AND 15,000 FT MSL, BOTH THE PORT AND STARBOARD MER WITH 4 INERT MK20 (ROCKEYE II) STORES ON EACH MER SEPARATED FROM THE WING PYLONS (AERO 70 RACKS) WITH THE STARBOARD MER AND ORDNANCE STRIKING THE AIRCRAFT. THERE WAS NO INDICATION OF IMMINENT FAILURE DURING THE PREVIOUS ROLLS UTILIZING LESS THAN FULL DEFLECTION INPUTS."

"THE DAMAGE TO THE SWAY BRACE ADJUSTING SCREW P/N 66452850 OR 2444722, AND THE SWAY BRACE ADJUSTING SCREW BSC (FRAME) IS VERY SIMILAR TO DAMAGE IN PREVIOUS INCIDENTS WHICH WERE INVESTIGATED AT THIS FACILITY. FINDINGS OF PREVIOUS INVESTIGATIONS HAVE BEEN THAT THE AERO 70 WAS SUPPORTING AN ASYMMETRICALLY LOADED MER OR TER (THAT IS THE MER OR TER WAS LOADED HEAVIER ON ONE SIDE THAN ON THE OTHER) WHICH CAUSED A GRAVITATIONAL TORQUE TO BE TRANSFERRED FROM THE MER OR TER TO THE AERO 70, THROUGH THE HOOKS AND SPACES. CONCLUSIONS WERE THAT THIS TORQUE WHEN MAGNIFIED BY THE AIRCRAFT PULLING SEVERAL g'S WAS GREAT ENOUGH TO CAUSE COMPRESSIVE YIELD OF THE RACK HOUSING IN THE SWAY BRACE SCREW AREA; OR IN THE SWAY BRACE SCREW ITSELF."

THE CONCLUSIONS OF THE NARF REPORT WERE THAT THE FAILURE WAS INITIATED BECAUSE THE KAC520 SPACERS RECOMMENDED IN NADC REPORT NADC-RM-6739 WERE NOT INSTALLED REQUIRING EXTENSION OF THE SWAY BRACE ADJUSTING SCREWS TO CONTACT THE MER AS A SMALL JUMPER STORE. AS INDICATED IN THIS ANALYSIS THIS CONDITION SIGNIFICANTLY DEPLACES RACK STRENGTH. THE ASYMMETRIC LOADING (SIDE LOAD, ROLLING MOMENT, OFFSET LOAD L/RD) TO WHICH THE SPACES ARE MOST SENSITIVE COMPOUNDED THE SITUATION UNDER ABRUPT AIRCRAFT MANEUVERS.

COMPARATIVE STORES

THE FOLLOWING STORES WITH THE ASSOCIATED AIRCRAFT PERFORMANCE LIMITATIONS SPECIFIED IN THE R4 TACTICAL MANUAL (NAVAIR-01-4000-1T OF 1 AUG 1970) (CONFIDENTIAL) ARE LISTED HERE FOR COMPARISON WITH THE RMU-8 TOW REEL DIAMETER AND WEIGHT AS A FURTHER MEANS OF REEASING AIRCRAFT CAPABILITY.

THE AIRCRAFT LIMITATIONS, WHICH ARE CLASSIFIED AS CONFIDENTIAL, ARE NOT SPECIFIED SO THAT THIS REPORT CAN REMAIN UNCLASSIFIED

STORE	WEIGHT LBS	DIAMETER INCHES	RACK	AIRCRAFT STATION	TACTICAL MANUAL LIMITATION (REF)
RMU-8 TOW REEL MK84	1569 (LOADED)	24.6 (EQUIVALENT)	7A	CENTER LINE	
MK84	2020	18	7A	" "	PAGE 1-98
MK48	1057	22.8	7A	" "	" 1-106
MK4 GUN POD	1400	22.5	7A	" "	" 1-118
TER WITH 3 M117 DEMOLITION	2469		7A	CENTER LINE	PAGE 1-100

(34)

CHECKING NADC-SM-6729 DATA

THE β ANGLES MEASURED ON THE MER DURING THE TESTS CONDUCTED ON THE UNMODIFIED RACK AND THOSE CONDUCTED ON THE NATC FIX SHOULD HAVE VARIED SLIGHTLY. HOWEVER DUE TO THE DIFFICULTY IN PHYSICALLY MEASURING THIS ANGLE ON THE MER, THE DIFFERENCE IN β , AFTER INSERTING A 1.375 INCH SPACER FOR THE NATC FIX SET-UP, WAS NOT DETECTABLE. CONSEQUENTLY, THE β ANGLE IN BOTH CASES WAS RECORDED AS 45° . THE FOLLOWING ANALYSIS IS INTENDED TO CHECK THIS RESULT AND TO MEASURE ITS INFLUENCE ON THE CALCULATED RACK STRENGTH.

$$a^2 = b^2 + c^2 - 2bc \cos \beta$$

$$4.985^2 = b^2 + 6.562^2 - 2 \times 6.562 \times b \times .66913$$

$$24.850 = b^2 + 43.05 - 8.785$$

$$b^2 - 8.785 + 18.2 = 0$$

$$b = \sqrt{5^2 - 4ac}$$

$$b = \frac{8.785 \pm \sqrt{77.09 - 72.8}}{2} = \frac{8.785 \pm \sqrt{4.29}}{2}$$

$$b = \frac{8.785 \mp 2.07}{2} = 5.425 \text{ or } 3.355$$

UNMODIFIED RACK
MER BRACE GEOMETRY

$$\sin \alpha = \frac{b \sin \beta}{4.985} = \frac{5.425 \times \sin 45^\circ}{4.985} = 0.5713 \quad \alpha = 33^\circ 59'$$

ADDING A 1.375" SPACER TO THE b DIMENSION

$$b_1 = 5.425 + 1.375 = 6.8$$

$$\begin{aligned} 4.985^2 &= 6.8^2 + 6.312^2 - 2 \times 6.8 \times 6.312 \cos \beta \\ 24.850 &= 46.24 + 39.841 - 85.843 \cos \beta \\ -21.231 &= -85.843 \cos \beta \\ \cos \beta &= .71329 \quad \beta = 44^\circ 30' \end{aligned}$$

NATC FIX
MER BRACE GEOMETRY

$$\sin \alpha = \frac{6.8 \times .70091}{4.985} = .95611 \quad \alpha = 72^\circ 58'$$

CHECKING NADC-RM-6739 DATA

INFLUENCE OF β CHANGE ON RACK STRENGTH

$$\Delta B = \frac{200}{\cos B} = \frac{200}{.71329} = .281 \quad P28(\text{REF})$$

REFERRING TO THE NATC FIX DATA (TABLE III) FOR
COMPARATIVE PURPOSES. P-12Q (REF)

$$\frac{.281 - .256}{.356 - .258} f(10,314 - 9168) = \frac{.023}{.098} \times 1146 = 269$$

$$\bar{R}_{4403f} = \text{PER BRACE} = 9168 + 269 = 9436^*$$

$$\bar{R}_{21.50} = \frac{\bar{R}_{4403f} \sin B_1}{R_2 \sin \beta_2} = \frac{9436 \times 6.312 \times .70291}{13.9 \times -36650} = 8195^* \quad P252(\text{REF})$$

$$\text{LIMITING YAWING MOMENT} = 8195 \times 20 \times -36650 = 60070$$

BRACE LIMITING STRENGTH

$$\bar{R}_2 = \frac{16,500 \times 6.312 \times .70091}{13.9 \times 36650} = 14,330$$

PERCENTAGE CHANGE

$$\text{LIMITING YAWING MOMENT} = \frac{65017 - 60070}{65017} = 7.6\% \quad P29(\text{REF})$$

$$\text{LIMITING BRACE STRENGTH} = \frac{15,192 - 14,330}{15,192} = 5.6\% \quad P30(\text{REF})$$

SINCE THESE CHANGES ARE WITHIN THE EXPECTED ACCURACY OF THE TEST DATA, NO CHANGES WILL BE MADE TO THE CONCLUSIONS GIVEN ON P 30.

50170022

STANDARD AIRCRAFT ARMAMENT CHARACTERISTICS
BOMB EJECTOR RACK - 4-HOOK - AERO 7A - 3600 LB.

DOUGLAS AIRCRAFT COMPANY, INC., EL SEGUNDO DIVISION

JULY 1955

APPENDIX F OF THIS SHEET

GENERAL ARRANGEMENT

WIRING DIAGRAM

JULY 1955

AERO 7A EJECTOR RACK

DESCRIPTION	ACCOMMODATIONS
The Douglas Aero 7A 4-hook ejector rack combines in a single lightweight unit, a 14-inch 2-hook rack, a 30-inch 2-hook rack and an ejector. Low-drag sway braces are incorporated in the rack.	G. P. Bombs 100# thru 2000# Mark 80 Series Bombs - (streamlined) 250# thru 2000#
The ejector (telescoping piston type) is mounted 3½ inches off center aft for maximum tail-down moment. One Mk. 1 Mod. 2 cartridge and one Mk. 2 Mod. 0 cartridge, each with a separate firing circuit, are normally used, although two Mk. 2 Mod. 0 cartridges may be used for reduced force. The Mk. 2 Mod. 0 circuit is used for emergency jettison. Both cartridges are ignited by either circuit. A manual release is provided for ground operation or as required by specifications.	Practice Stores 163 T64 T65 T66 Rocket Launchers All launchers that can be carried on standard Navy 14- and 30-inch suspension systems with lugs in accordance with MIL-A-8691A (AER).
The individually self-latching hooks simplify the loading of stores. A removable adapter is available for double-hoisting of stores.	Torpedoes Mk. 13, Mk. 34, Mk. 41 Mines Mk. 25, Mk. 10 - 9, Mk. 36, YA-4A, XC-3A, Mk. 30
The four-bolt attachment makes the rack easily removable and interchangeable with either the Aero 61B 3-hook rack or the Aero 8A 3-hook ejector rack.	Special Equipment 150 Cal. Fuel Tank 300 Gal. Fuel Tank Spray Tanks Practice Bomb Containers Fragmentation Bombs Incendiary Bombs Depth Bombs Chemical Bombs
DEVELOPMENT	WEIGHTS
Designed and developed for the <u>A4D-1</u> airplane under Contracts NOa(s) 52-1011C, NOa(s) 53-381, NOa(s) 53-382, and NOa(s) 54-316. 25 experimental 4-hook ejectors have been built and distributed to different manufacturers. The rack is now in production for several different operational Naval and Air Force models with total quantities exceeding 2000.	Weights for a typical installation are as follows: 4-HOOK 2-HOOK BASIC RACK 49.0 37.0 FAIRING 12.5 12.5 ATTACHMENT PARTS 1.3 1.3 TOTAL INSTALLED WEIGHT 62.8 lbs. 50.8 lbs.

EJECTOR CHARACTERISTICS

ACCELERATION VS. TIME

NADC-74150-30

CHART BASED ON ONE MK.2 MOD.0
AND ONE MK.1 MOD.2 CARTRIDGE.

1 JULY 1955

AFC/CTA EFFECTOR PACK

AERODYNAMIC CHARACTERISTICS

DRA G RISE OF TYPICAL STORE
INSTALLATIONS

EFFECT OF PYLON HEIGHT ON
DRA G OF TYPICAL STORE
INSTALLATION

NADC-74150-30

PYLON HEIGHT - INCHES

NOTE: DATA BASED ON RACK HOUSED IN TYPICAL PYLON FAI 'NG.

1 JULY 1955

AERO 7A EJECTOR RACK

VERTICAL LOAD AT 20% SIDE LOAD DERIVED FROM MIL-R-22622
 BACK GULLWING 1/ST CONDITIONS
 71,400 - 30" HOOKS

65,000² = 14" HOOKS

STRENGTH CHARACTERISTICS

32,500 PER WORK

ULTIMATE STRENGTH ENVELOPES

STORE:
 WEIGHT:
 DIAMETER:
 MOMENT OF INERTIA:
 SUSPENSION:
 C.G.:

T63
 1700 LBS.
 30.5 INCHES
 1,800,000 (LB. IN.)²
 14-INCH
 MIDPOINT BETWEEN LUGS

NOTE: 100,000" YAWING MOMENT MAY BE
 COMBINED WITH ALL CONDITIONS

100% UNTIL LOAD
 BY 1/4 LUGS = C

NOTE: 100,000" YAWING MOMENT MAY BE
 COMBINED WITH ALL CONDITIONS

STORE:
 WEIGHT:
 DIAMETER:
 MOMENT OF INERTIA:
 SUSPENSION:
 C.G.:

T65
 3575 LBS.
 14.5 INCHES
 2,087,000 (LB. IN.)²
 30-INCH
 MIDPOINT BETWEEN LUGS

B-50

MADC-74150-30

1 JULY 1955
 ACV

1. FLOW 74150-30
 2. FLOW 74150-30
 3. FLOW 74150-30
 4. FLOW 74150-30
 5. FLOW 74150-30
 6. FLOW 74150-30
 7. FLOW 74150-30
 8. FLOW 74150-30
 9. FLOW 74150-30
 10. FLOW 74150-30
 11. FLOW 74150-30
 12. FLOW 74150-30
 13. FLOW 74150-30
 14. FLOW 74150-30
 15. FLOW 74150-30
 16. FLOW 74150-30
 17. FLOW 74150-30
 18. FLOW 74150-30
 19. FLOW 74150-30
 20. FLOW 74150-30
 21. FLOW 74150-30
 22. FLOW 74150-30
 23. FLOW 74150-30
 24. FLOW 74150-30
 25. FLOW 74150-30
 26. FLOW 74150-30
 27. FLOW 74150-30
 28. FLOW 74150-30
 29. FLOW 74150-30
 30. FLOW 74150-30
 31. FLOW 74150-30
 32. FLOW 74150-30
 33. FLOW 74150-30
 34. FLOW 74150-30
 35. FLOW 74150-30
 36. FLOW 74150-30
 37. FLOW 74150-30
 38. FLOW 74150-30
 39. FLOW 74150-30
 40. FLOW 74150-30
 41. FLOW 74150-30
 42. FLOW 74150-30
 43. FLOW 74150-30
 44. FLOW 74150-30
 45. FLOW 74150-30
 46. FLOW 74150-30
 47. FLOW 74150-30
 48. FLOW 74150-30
 49. FLOW 74150-30
 50. FLOW 74150-30
 51. FLOW 74150-30
 52. FLOW 74150-30
 53. FLOW 74150-30
 54. FLOW 74150-30
 55. FLOW 74150-30
 56. FLOW 74150-30
 57. FLOW 74150-30
 58. FLOW 74150-30
 59. FLOW 74150-30
 60. FLOW 74150-30
 61. FLOW 74150-30
 62. FLOW 74150-30
 63. FLOW 74150-30
 64. FLOW 74150-30
 65. FLOW 74150-30
 66. FLOW 74150-30
 67. FLOW 74150-30
 68. FLOW 74150-30
 69. FLOW 74150-30
 70. FLOW 74150-30
 71. FLOW 74150-30
 72. FLOW 74150-30
 73. FLOW 74150-30
 74. FLOW 74150-30
 75. FLOW 74150-30
 76. FLOW 74150-30
 77. FLOW 74150-30
 78. FLOW 74150-30
 79. FLOW 74150-30
 80. FLOW 74150-30
 81. FLOW 74150-30
 82. FLOW 74150-30
 83. FLOW 74150-30
 84. FLOW 74150-30
 85. FLOW 74150-30
 86. FLOW 74150-30
 87. FLOW 74150-30
 88. FLOW 74150-30
 89. FLOW 74150-30
 90. FLOW 74150-30
 91. FLOW 74150-30
 92. FLOW 74150-30
 93. FLOW 74150-30
 94. FLOW 74150-30
 95. FLOW 74150-30
 96. FLOW 74150-30
 97. FLOW 74150-30
 98. FLOW 74150-30
 99. FLOW 74150-30
 100. FLOW 74150-30

A P P E N D I X C

SUSPENSION SYSTEM BOLT REACTIONS

APPENDIX C

I. INTRODUCTION

This Appendix presents results of analysis of bolt reactions at the A-4 centerline fuselage surface due to the worst case store loadings obtained from Appendix A. The program utilized for this purpose was developed as a tool for the design of a hard-mount pylon for the MX-19/A47U-3 real-launcher by Carl Reitz. A copy of the author's comments regarding the analytical technique is provided on page C-9.

Preceding page blank

II ANALYSIS OF BOLT/STUD REACTIONS

A DEFINITIONS & ASSUMPTIONS

1. DEFINITIONS

SEE FIGURE C-1

SIGN CONVENTION PER MIL-A-8591

D = REACTION TO DRAG LOAD

S = REACTION TO SIDE LOAD

V = REACTION TO VERTICAL LOAD

Q = TOTAL SHEAR LOAD

2. SYMMETRY ASSUMPTIONS

$$\textcircled{1} \quad D_f \cdot D'_f = D_a \cdot D'_a$$

$$\textcircled{2} \quad S_f \cdot S'_f ; S_a \cdot S'_a$$

$$\textcircled{3} \quad V_x^i = (-1)^{i+1} \frac{z}{2x} P_x + (-1)^i \frac{z}{4y} P_y + \left[(-1)^i \left(\frac{1}{4} - \frac{x_{cg}}{2x} \right) - \frac{1}{4} \right] \rho_z \\ + (-1)^i \frac{M_x}{4y} + (-1)^i \frac{M_y}{4x}$$

WHERE: $i=1 \Rightarrow V_f \quad i=0 \Rightarrow V$
 $i=2 \Rightarrow V_a \quad i=1 \Rightarrow V'$

BOLTS #1 & #2 ARE PRIME
 BOLTS #3 & #4 ARE FWD

Preceding page blank

c-5

B ANALYSIS DATA & RESULTS

1. LOADS - SEE TABLE C-1

2. REACTIONS - SEE PAGE C-10

C. MS 20012-34 BOLT STRENGTH (MIL-S-7838)

ULTIMATE TENSILE STRENGTH • 63,200

ULTIMATE DOUBLE SHEAR STRENGTH • 33,900

FATIGUE LOADING - LOW TENSION LOAD • 2920

FATIGUE LOADING - HIGH TENSION LOAD • 29200

Figure 23 - Fuselage Bomb Ejector Rack

50

FIGURE C-1

Changed 15 March 1968

DATA SHEET
AND NOC - 3900/1
TABLE

13 June 1974

C. O. Boller

VIA

200
2000

Tow Seal Mounting Requirements; solution of

1. A FORTRAN computer program has been coded to compute the reactive forces associated with an airframe structure suspended from four (4) bolts. The program is intended to provide design data for the tow seal to aircraft mount being developed under NSRS (Naval Standard Tow Target System). Approximately forty (40) man-hours have been expended generating the subject program.
2. The seal to aircraft mount represents a statically indeterminate structure. Symmetry assumptions with respect to the bolt reactions permitted a statically determinate solution which is sufficient for preliminary design. An indeterminate analysis of the structure may be required after the configuration of the mount is known.
3. A memorandum describing the derivation and use of the subject program will be generated as time permits.

C. O. BOLLER

Copy on:
200
2000
(2000 OK)
C. Boller/act/6-13-74/EMRIS

FOUR BOLT REACTIONS FOR SUSPENDED LOADS
(STATISTICALLY DETERMINANT SUBJECT TO STABILITY ASSUMPTIONS)

LOAD CASE P(X) Ld →(Y) Ld P(Z) Ld 4((1)) IMld M(Y) IMld M(Z) IMld

1	2758.0	-1616.0	-24043.3	0.3	-31850.8	-31950.0
2	-12552.0	-762.0	-1133.0	0.3	14477.0	-9192.0
3	648.6	-1492.0	-4784.3	209.0	-27218.0	-43244.0
4	7775.0	-246.0	-1042.0	-2563.0	-87505.0	-54160.0

BOLTS LOCATED AT STORE STATION 70.500 ANG 300.000
BOLTS ARE 1.500 INCHES FROM FORE AFT CENTER LINE
CG OF STORE IS 21.993 INCHES BELOW BOLT PLANE

CENTER OF GRAVITY OF STORE IS AT STATION 35.330, XCG = -5.500
BOLT 1 ... FM,RIGHT
BOLT 2 ... FM,LEFT
BOLT 3 ... AFT,RIGHT
BOLT 4 ... AFT,LEFT

LOAD CASE BOLT 1 → Ld S - Ld J → -3 2 → Ld

1	1	-569.	1623.	2334.	1955.
1	2	-569.	1623.	17125.	1955.
1	3	-634.	-1024.	-10135.	1232.
1	4	-634.	-1024.	1532.	1632.
2	1	313.	730.	-12202.	3222.
2	2	313.	730.	2933.	3222.
2	3	313.	730.	4900.	3150.
2	4	313.	730.	10631.	3150.

CENTER OF GRAVITY OF STORE IS AT STATION 34.530, XCG = -6.200
BOLT 1 ... FM,RIGHT
BOLT 2 ... FM,LEFT
BOLT 3 ... AFT,RIGHT

LOAD CASE BOLT 1 → Ld S - Ld J → -3 2 → Ld

3	1	-1622.	1559.	1976.	2246.
3	2	-1622.	1559.	12769.	2246.
3	3	-1622.	-814.	-10339.	1613.
3	4	-1622.	-814.	416.	1613.

CENTER OF GRAVITY OF STORE IS AT STATION 32.713, XCG = -8.100
BOLT 1 ... FM,RIGHT
BOLT 2 ... FM,LEFT
BOLT 3 ... AFT,RIGHT

LOAD CASE BOLT 1 → Ld S - Ld J → -3 2 → Ld

4	1	-1946.	1502.	3402.	2659.
4	2	-1946.	1502.	681.	2459.
4	3	-1946.	-1597.	-7333.	2396.
4	4	-1946.	-1597.	-5531.	2396.

A P P E N D I X D

TOW TARGET SYSTEM FLIGHT TEST

INSTALLATION CHECK & TEST REQUIREMENTS

OPERATING LIMITATIONS

FLIGHT LIMITATIONS

AIRSPEED & ALTITUDE RESTRICTIONS

A P P E N D I X D

This Appendix provides aeromechanical data required to operate the tow target system on the A-4 airplane. The data provided herein is proposed for flight test purposes.

TOW TARGET SYSTEM FLIGHT TEST

TEST NO.

VC-2

FLIGHT TEST DATE	TIME	
TEST A/C TYPE	T44J	154327
CROSS A/C TYPE	ON	
TEST A/C PILOT	P10	
CROSS A/C PILOT		
BASE COMMUNICATIONS		
FIELD COMMUNICATIONS		
RADIO FREQUENCIES		

T.O. TIME	LAND TIME	
NOTES		

INSTALLATION CHECK & TEST REQUIREMENTS

TEST NO.	VC-2
MAT. IN ANGLE, DEGREES	45 + 0 - 2
MAT IN ANGLE, DEGREES	5 + 0 - 2
MAT OUT ANGLE, DEGREES	45 + 0 - 2
MAT OUT ANGLE, DEGREES	0 + 1 - 1
TARGET APPROX, MM	2000
AIR PRESSURE, PSI	2000
TOW TARGET SYSTEM CONFIGURATION	
TARGET, SH/PSX	FIGHT
TRANSLATE, SH/PSX	0.182 3X7
TRANSLATE	11/14 APRIL 72
RECEIVE, SH/PSX	022 KHM-S/A 301H-14A PWR UNIT SEMI-AUTO CONTROL
control, SH/PSX	DET-ORI PEX-64 MODIFIED FOR SEMI-AUTO CONTROL

NOTE - Targets listed on 17K-34 REQS
ONE HALF ACROSS POSITION

OPERATING LIMITATIONS

FLIGHT LIMITATIONS - To be attached to Harp Gemini Test	
TEST NO.	1/C-2

MAX. TOWLINE LENGTH, FT.	SEE NOTE 1.
MAX. TENSION	STRAINED
ARMED	TOWNE
RECOVERY	NOTES 2.
LAUNCHED	NOTES 2.
RECOVERING RATE	NOTES 2.
FT./MIN.	200 MAX. NOTE 3. 500 TO 100
FINAL	MIN.
ACCELERATION	500 MIN.
BEGN FINAL RECOVERY, FT.	500 MIN.

CAUTION

BOTH IN ANGLE AND OUT ANGLE EVENTS
MUST BE OUT, WITHOUT TARGET, TARGET,
STRAINED OR TOWNE, WITH BRAKE ON TO
PREVENT OVERLOAD OF POWER UNIT
DRIVE SHAFT.

NOTES

1. TO BE FILLED IN PARADE TO EACH
FLIGHT
MAX TOWLINE LENGTH = LENGTH ON SPool
MINUS 500 FEET
2. MAX. TENSION 0.182 3X7 = 4000
1 1/2" ARMED = 2800
3. SCHEDULED 500 AT 500 FEET
STRAINED DOWN TO 100 AT LESS
THAN 200 FEET STRAINED

TEST NO.	1/C-2
ARMED TOWLINE, TOWING LIMITS, FT. & N.	1/C-2
STRAINED	500 (Shear Tow)
LAUNCHED	X
LAUNCH OR ARMED	X
ARMED, CDS	300
RECOVER	450
FINAL	300
ACCELERATION	500
RECOVERY	0.5
LAUNCH	0.5
RECOVER	0.5
LAUNCH	15 1/2' D
RECOVERY	APX 15' D
STRAINED	60 (Shear Tow)
LAUNCH	30
RECOVERY	30
RECOUP	70 (1 < N < 3)*

NADC-74150-30

* SUBJECT TO ARMED RESTRICTION
AS ATTACHED. WITHOUT TARGET, ONLY <
ARMED CONTROL DEFLECTION OF YOUR POSITIONED

AIRSPEED & ALTITUDE RESTRICTIONS
FOR MANEUVERING FLIGHT-TOWING
PILOTLESS FIGHTER (FIGAT) TARGET