REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

AD-A226 998

Public reporting burden for this collection of information is estimated to average the process including the time three viewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information, or including suggestions for reducing this burden, to Washington Headquariers Services, selectionary for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE	1. REPORT TYPE AND DATES COVERED	DATES COVERED		
·	1990, Sept 5	Technical Report #3	10/89-90		
UNCLASSIFIED: Synthesis of by an Ion-Ex	YS ₂	s. FUNDING NUMBERS NO0014-90WX24148			
AUTHOR(S)		NOUT!	, , , , , , , , , , , , , , , , , , , ,		
D. O. Kipp and T. A. Vander	ah				
PERFORMING ORGANIZATION NAME(S) AND ADDRES	8. PERFORM REPORT N	ING ORGANIZATION UMBER			
Naval Weapons Center N	Code 3850 r 55				
SPONSORING/MONITORING AGENCY NAME(S) AND A Office of Naval Research Chemistry Program 800 N. Quincy St. Arlington, CA 22217	DDRESS(ES)		ING/MONITORING REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
Accepted for publication in	Materials Research	ch Bulletin			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		126. DISTRIBUTI	***		
Mente (Jun 1990) e e e e e e e e e e e e e e e e e e	C ruse;	DE	TIC		
13. ABSTRACT (Maximum 200 words)			EP28 1990		
LiYS2 with the hex	agonal d-NaFeO2 s	tructure has been prepared	i from		

LiYS'2 with the hexagonal α -NaFeO2 structure has been prepared from isostructural NaYS2 by ion-exchange in a molten LiCl/KCl mixture at a relatively low temperature as compared to previous syntheses using high-temperature solid state reactions. The X-ray powder diffraction data from α -NaFeO2-type LiYS2 are reported in this paper. This ion-exchange can be completely reversed to form NaYS2 from LiYS2 using a molten NaI/KI mixture.

14. SUBJECT TERMS	ternary yttrium sulfides, low-temperature synthesis, /NORGANC CHEN molten salt ion exchange .						
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMETATION OF ABSTRACT				
Unclassified	Unclassified	Unclassified	Unlimited				

NSN 7540-01-280-6500

Standard Form 296 (Rev. 2-89) Presolved by ANSI Std. 230-18 280-102

OFFICE OF NAVAL RESEARCH

Grant or Contract N00014-90WX24148

R&T Code 4134046

Technical Report No. 3

Synthesis of α-NaFeO₂-Type LiYS₂ by an Ion-Exchange Reaction

bу

D. O. Kipp and T. A. Vanderah

Accepted for publication in Materials Research Bulletin

Chemistry Division Research Department Naval Weapons Center China Lake, CA 93555

July 1990

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

SYNTHESIS OF α-NaFeO₂-TYPE LiYS₂ BY AN ION-EXCHANGE REACTION

D. O. Kipp and T. A. Vanderah
Chemistry Division, Research Department
Naval Weapons Center, China Lake, CA 93555

Availability Codes

Availability Codes

Availability Codes

ABSTRACT

LiYS $_2$ with the hexagonal α -NaFeO $_2$ structure has been prepared from isostructural NaYS $_2$ by ion-exchange in a molten LiCl/KCI mixture at a relatively low temperature as compared to previous syntheses using high-temperature solid state reactions. The X-ray powder diffraction data from α -NaFeO $_2$ -type LiYS $_2$ are reported in this paper. This ion-exchange can be completely reversed to form NaYS $_2$ from LiYS $_2$ using a molten Nal/KI mixture.

MATERIALS INDEX: Ternary sulfides, lithium, sodium, yttrium

Introduction

Currently, there is interest in the ionic conductivity (1,2) and infrared transmission (3) of compounds derived from the ALnS₂ (A = Li, Na, K; Ln = Y, rare earth) family. These compounds adopt two structures featuring six-fold cation coordination—the cubic NaCl and hexagonal α -NaFeO₂ structures—and one structure with eight-fold cation coordination derived from the cubic Th₃P₄ structure. The NaCl and α -NaFeO₂ structures are illustrated in Figure 1; in the former the two cation types are disordered while in the latter they are segregated on alternate (111) rock salt planes, thus lowering the symmetry to hexagonal. A structure field map compiled from previous reports (4-8) of single-phase compounds in the ALnS₂ system is shown in Figure 2 and was prepared using six-coordinate crystal radii (9). For certain members of the series with borderline cation radius ratio values, both six-coordinate structure types are known and are interrelated by an order-disorder transition (4). For the sodium and lithium series, the borderline radius ratio values that correlate with the presence of an order-disorder transition between the NaCl and the α -NaFeO₂ forms are 1.03-1.06 and 0.85-0.88 (r_A + r_L _n³⁺), respectively. In the potassium series, only the ordered α -NaFeO₂ structure is observed owing to the large size of K+ relative to that of the trivalent metal ions.

Six-coordinate structure types adopted by $ALnS_2$ compounds (A = Li, Na, K; Ln = Y, rare earth); (a) cubic NaCl structure with disordered cations and (b) hexagonal α -NaFeO₂ structure with cation types ordered on alternate (111) planes of the parent NaCl structure.

FIG. 2

Structure field map for Al nSo compounds (A = Li, Na, K; Ln = Y, rare earth) (4-8) using six-coordinate crystal radii (9).

In previous reports, the lithium compounds (LiLnS₂) have been synthesized by high-temperature (900°C) solid state reactions under flowing H₂S starting with Li₂CO₃ and Ln₂O₃ (5,7) or LiCl and LnCl₃ (8), or directly from the elements in evacuated silica ampules (4). These syntheses employ an excess of the alkali metal reagent which can be removed from the relatively stable ternary products with water.

LiYS₂ with the disordered NaCl structure was reported in 1965 (5). Recent work (4) has shown that ordered α -NaFeO₂-type LiYS₂ can also be prepared by carefully annealing the rock salt form.

The present work describes the facile preparation of LiYS₂ with the ordered α -NaFeO₂ structure at a relatively low temperature (500°C) using a molten salt ion-exchange procedure.

Experimental

NaYS₂ was prepared from Na₂S (Alfa, anhydrous) and Y₂S₃ (Cerac 99.9%) in the mol ratio 1.5:1, respectively (6). The reactants were ground in air with an agate mortar and pestle and reacted in a graphite crucible enclosed in an evacuated silica ampule at 950°C for 15 days. The product was ground, washed with distilled water to remove the excess sodium sulfide, rinsed with acetone, and dried in air.

lon-exchange reactions were performed in molten LiCl/KCl 46/54 wt % eutectic mixtures (m.p. = 355°C (10)). The NaYS₂ and a 50X (Li) molar excess of the chloride mixture were reacted in graphite crucibles enclosed in evacuated silica ampules. The chlorides were removed from the sulfide product by quickly washing with distilled water, followed by an acetone rinse and drying in air. Reverse-exchange reactions of the resulting LiYS₂ were performed with a 40X (Na) molar excess of a Nal/Kl 56/44 wt % eutectic mixture (m.p. = 583°C (11)) in a like manner.

X-ray powder diffraction patterns were obtained with a Scintag PAD V diffractometer using CuK α radiation. Unit cell parameters were obtained by a least-squares refinement program. Elemental analysis was carried out by Schwarzkopf Microanalytical Laboratory.

Results and Discussion

The X-ray powder diffraction data, given in Table 1, from the light-beige platelets of $NaYS_2$ were indexed on a hexagonal unit cell (a = 3.9635(3), c = 19.893(2) Å) in good agreement with literature values (4,6,7).

Essentially single-phase LiYS₂ with the α -NaFeO₂ structure was obtained, as described above, by ion-exchange of NaYS₂ at 500°C for 24 hours; elemental analysis indicated that at least 97% of the Na had been exchanged. The LiYS₂ produced in this manner is very similar in color and morphology to the NaYS₂. The X-ray powder diffraction data, given in Table 1, were indexed on a hexagonal unit cell (a = 3.9033(7), c = 18.522(5) Å) in good agreement with that reported for α -NaFeO₂-type LiYS₂ (4).

In contrast, heating the NaYS₂/LiCl/KCl reaction mixture at 370°C for 3 hours produced no reaction; only the starting material NaYS₂ was observed by X-ray powder diffraction. Reaction times of 4 and 8 hours at 500°C resulted in incomplete ion-exchange; mixtures of NaYS₂ and LiYS₂ were observed by X-ray powder diffraction. No shifts in unit cell parameters, arising from possible mixing of Na and Li in one phase, were observed in any of these samples.

The NaYS₂-Li⁺ ion-exchange reaction is reversible: NaYS₂ was obtained from the α -NaFeO₂-type LiYS₂ by ion-exchange in a Nal/KI mixture, as described above, at 595°C for 16 hours. The unit cell obtained by refinement of the X-ray powder diffraction data indicated

single-phase NaYS₂. This reversibility is surprising in consideration of the larger ionic size of Na⁺ versus Li⁺ and the larger unit cell volume of NaYS₂ versus LiYS₂ (270.64 vs. 244.39 $Å^3$). In the present study, the larger K⁺ ion was not found to exchange into these compounds to form KYS₂.

TABLE 1 Indexed X-Ray Powder Diffraction Data.

			NaYS ₂						LiYS ₂			
h	k	l	d _{obs}	d _{calc}		h	k	L	dobs	deale	1	
0	0	3	6.67	6.6311	100	0	0	3	6.21	6.1741	100	
1	0	1	3.387	3.3825	9	1	0	1	3.329	3.3254	20	
0	0	6	3.321	3.3156	10	0	1	2	3.181	3.1754	3	
0	1	2	3.250	3.2447	7	0	0	6	3.095	3.0871	3	
1	0	4	2.828	2.8250	49	1	0	4	2.732	2.7303	58	
0	1	5	2.601	2.5990	4	0	1	5	2.499	2.4970	16	
0	0	9	2.212	2.2104	2	1	0	7	2.0845	2.0836	9	
1	0	7	2.1896	2.1890	8	0	0	9	2.0592	2.0580	9	
0	1	8	2.0142	2.0138	21	1	1	0	1.9525	1.9516	15	
1	1	0	1.9826	1.9818	7	0	1	8	1.9108	1.9102	25	
1	1	3	1.8994	1.8988	5	1	1	3	1.8616	1.8609	8	
1	0	10	1.7216	1.7212	2	0	2	1	1.6848	1.6832	3	
0	2	1	1.7101	1.7099	1	0	2	4	1.5866	1.5877	10	
1	1	6	1.7014	1.7010	1	0	0	12	1.5436	1.5435	8	
0	0	12	1.6583	1.6578	16	0	1	11	1.5066	1.5072	3	
0	2	4	1.6228	1.6224	12	0	2	7	1.4239	1.4244	3	
0	1	11	1.6001	1.6000	5		1	9	1.4160	1.4161	3 5 2	
2	0	5	1.5761	1.5759	1	2	0	8	1.3649	1.3651	5	
1	1	9	1.4758	1.4755	1	1 1	0	13	1.3127	1.3129		
0 2	2 0	7 8	1.4694 1.4128	1.4691	2	2 0	1	1 14	1.2742	1.2746	2	
0	0	15	1.3260	1.4125 1.3262	4			12	1.2320 1.2102	1.2320 1.2107	4 7	
0	1	14	1.3126	1.3129	3 1	3	1		1.1271	1.1268	2	
2	1	1	1.2943	1.2946	1		0 2	0 8	1.1183	1.1186	3	
1	1	12	1.2712	1.2715	6	11 '	~	0	1.1103	1.1100	3	
	1	4	1.2551	1.2554	3							
2 2	Ö	11	1.2447	1.2449	1	11 +	Hexagonal, R3m					
1	2	5	1.2332	1.2334	1	Ш.			33(7) Å			
2	1	7	1.1800	1.1802	1]]			22(5) Å			
1	Ö	16	1.1689	1.1690	3	11	U	10.01	(0) /(
1	2	8	1.1501	1.1502	2	11						
3	0	ō	1.1441	1.1442	2	11						
	Ö	18	1.1051	1.1052	1							
1	1	15	1.1020									
	Hexagonal, R3m											
1	a = 3.9635(3) Å					11						
			.893(2) Å			H						

The mechanism of these NaYS₂-LiYS₂ reactions is likely related to the ionic mobility associated with ionic conductivity (1,2); in the α -NaFeO₂ structure, the monovalent cations are segregated into planes (see Fig. 1b) comprising continuous potential pathways for diffusion. Other examples of bulk ion-exchange in solids with this structure include Ag⁺ for Li⁺ (12) and H⁺ for Li⁺ (13) in α -LiAlO₂ and H₃O⁺ for Na⁺ (14) in α -NaCrO₂.

Conclusions

An ion-exchange reaction has been used to prepare phase-pure α -NaFeO2-type LiYS2 from isostructural NaYS2. This represents an alternative low-temperature synthetic route to compounds prepared only with difficulty, or not at all, by conventional high-temperature solid state reactions. This reaction can be reversed, despite the larger size of the Na+ ion—a result consistent with the layered structures and ionic mobilities of the compounds. The present results demonstrate the applicability of this low-temperature method to ternary sulfide systems.

<u>Acknowledgments</u>

We thank C. K. Lowe-Ma for helpful discussions and R. E. McIntire for preparing the manuscript. This work was funded by the Office of Naval Research. D.O.K.'s postdoctoral fellowship was administered by the American Society for Engineering Education.

References

- 1. O. Abou Ghaloun, P. Chevalier, L. Trichet, and J. Rouxel, Rev. Chim. Min. 17, 368 (1980).
- 2. O. Abou Ghaloun, P. Chevalier, L. Trichet, and J. Rouxel, J. Solid State Chem. 32, 21 (1980).
- 3. P. E. D. Morgan and M. S. Koutsoutis, Mat. Res. Bull. 22, 617 (1987).
- 4. T. Ohtani, H. Honjo, and H. Wada, Mat. Res. Bull. 22, 829 (1987).
- 5. R. Ballestracci, Bull. Soc. Franc. Minér. Crist. 88, 207 (1965).
- 6. R. Ballestracci and E.-F. Bertaut, Bull. Soc. Franc. Miner. Crist. 87, 512 (1964).
- 7. M. Tromme, C. R. Acad. Sci. Ser. C. 273, 849 (1971).
- 8. M. Sato, G. Adachi, and J. Shiokawa, Mat. Res. Bull. 19, 1215 (1984).
- 9. R. D. Shannon, Acta Cryst. A32, 751 (1976).
- 10. E. M. Levin, C. R. Robbins, and H. F. McMurdie In Phase Diagrams for Ceramists; M. K. Reser Ed.; American Ceramic Society: Columbus, OH, 1964, p. 376.
- 11. E. M. Levin, C. R. Robbins, and H. R. McMurdie In Phase Diagrams for Ceramists; M. K. Reser Ed.; American Ceramic Society: Columbus, OH, 1969, p. 389.
- 12. W. Gessner, Z. anorg. allg. Chem. 352, 145 (1967).
- 13. K. R. Poeppelmeier and D. O. Kipp, Inorg. Chem. 27, 766 (1988).
- 14. W. A. England, J. B. Goodenough, and P. J. Wiseman, J. Solid State Chem. 49, 289 (1983).