Improving Boundary Condition Stability in PHASTA

1 Introduction

2 Initial Outline of PHASTA

PHASTA begins execution at main, located in phSolver/[in]compressible, depending on which branch is desired. This function initializes MPI, and then calls phasta, located in /phSolver/common. Here, inputs are read and computed in input, and then the solver is run by calling proces, a Fortran routine. Within proces, gendat generates geometry and BC data.

main

- initialize MPI
- □ phasta
 - initialize PETSc
 - set input data paths
 - input populate data structures with problem set-up and solver parameters
 - o readnblk read and blocks data
 - read numstart.dat and finds appropriate restart .dat files
 - ▶ read geometry from Posix or SyncIO files using phio readheader
 - calculate maximum number of boundary element nodes
 - ▶ initialize constants like ndof, ndofBC, ndiBCB, and ndBCB
 - genblk reads and blocks connectivity
 - ▶ read BC mapping array into nBC
 - ► read temporary boundary condition code into iBCtmp
 - ► read BC data into BCinp
 - ▶ read periodic BC data into iperread
 - ▶ genbkb generate boundary element blocks and traces for gather/scatter operations
 - read restart data into diffusive flux vector qold, primitive variables uold, and accelerations acold
 - echo global information
 - o assert valid input constants (e.g. icoord, navier, iexec) defined in common.h
 - echo solver and integration information
 - o genint generate integration information
 - estimate number of nonzero globals
 - compute fluid thermodynamic properties
 - proces generate problem data and calls the solution driver
 - o gendat generate geometry and BC data
 - ▶ getshp generate the interior nodal mapping
 - ▶ geniBC generate boundary condition codes

Initial Outline of PHASTA 2 / 2

- ► genBC generate the essential boundary conditions
- ▶ work with Dirichlet-to-Neumann BCs (?)
- ► genshpb generate boundary element shape functions
- ▶ genini generate ICs and initialize time-varying BCs
- o setper and perprep store inverse of sum of one and number of slaves in recount
- o LES-specific routines keeplhsG and setrls called as needed
- o initStats allocate arrays to store flow statistics
- o RANS-specific routine initTurb
- o cardiovascular-specific routine initSponge
- o adjust BCs to interpolate from file inlet .dat, if it exists
- o set up eddy-viscosity ramp specific to NGC/Duct case
- o itrdrv
- finalize PETSc
- □ finalize MPI

Numerical solution of the unsteady Navier-Stokes equations occurs within itrdrv, outlined below.

- **■** itrdrv
- gendat
 - geniBC reads and generates boundary conditios (iBC array)
 - genBC reads and generates the essential boundary conditions (BC array)