1 Hydrodynamic stellar structure equations (non-local and time-dependent)

Below is a set of hydrodynamic stellar structure equations derived from RANS (viscosity explicitly neglected), where red terms are the ones used in classical approach:

$$\frac{\partial_r \overline{m}}{\partial r} = 4\pi r^2 \overline{\rho} + (4\pi r^3 / 3\widetilde{u}_r) \left[-\nabla_r f_\rho + (f_\rho / \overline{\rho}) \partial_r \overline{\rho} - \overline{\rho} \overline{d} - \partial_t \overline{\rho} \right]$$
(1)

$$\frac{\partial_r \overline{P}}{\overline{P}} = \overline{\rho} \widetilde{g} - \overline{\rho} \partial_t \widetilde{u}_r - \nabla_r \widetilde{R}_{rr} - \overline{G}_r^M - \overline{\rho} \widetilde{u}_r \partial_r \widetilde{u}_r$$
(2)

$$\frac{\partial_r \widetilde{L}}{\partial r} = 4\pi r^2 \overline{\rho} \widetilde{\epsilon}_{nuc} + 4\pi r^2 \left[-\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{Pd} - \widetilde{R}_{ir} \partial_r \widetilde{u}_i + W_b + \overline{\rho} \widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2 - \overline{\rho} \partial_t \widetilde{\epsilon}_t \right] + \widetilde{\epsilon}_t \partial_r 4\pi r^2 \overline{\rho} \widetilde{u}_r$$
(3)

$$\frac{\partial_r \overline{T}}{T} = (1/\overline{u}_r) \left[-\nabla_r f_T + (1 - \Gamma_3) \overline{T} \ \overline{d} + (2 - \Gamma_3) \overline{T'd'} + \epsilon_{nuc}/c_v + \nabla \cdot f_{th}/(\rho c_v) - \partial_t T \right]$$

$$\tag{4}$$

$$\frac{\partial_t \widetilde{X}_i}{\partial_t \widetilde{X}_i} = \frac{\widetilde{X}_i^{nuc}}{(1/\overline{\rho})} \nabla_r f_i - \widetilde{u}_r \partial_r \widetilde{X}_i$$
(5)

1.1 Continuity Equation

Derivation

Using full 3D hydrodynamic continuity equation, we derive its mean field counterpart in the following way:

$$\partial_{t}\rho + \nabla\rho\mathbf{u} = 0$$

$$\partial_{t}\overline{\rho} + \overline{u}_{r}\partial_{r}\overline{\rho} = -\nabla_{r}\overline{\rho'u'_{r}} - \overline{\rho}\overline{d}$$

$$\partial_{t}\overline{\rho} + \overline{u''}_{r}\partial_{r}\overline{\rho} + \widetilde{u}_{r}\partial_{r}\overline{\rho} = -\nabla_{r}\overline{\rho'u'_{r}} - \overline{\rho}\overline{d}$$

$$\partial_{t}\overline{\rho} + \widetilde{u}_{r}\partial_{r}\overline{\rho} = -\nabla_{r}\overline{\rho'u'_{r}} + (\overline{\rho'u'_{r}}/\overline{\rho})\partial_{r}\overline{\rho} - \overline{\rho}\overline{d}$$

$$\partial_{t}\overline{\rho} + \widetilde{u}_{r}\partial_{r}\overline{\rho} = -\nabla_{r}f_{\rho} + (f_{\rho}/\overline{\rho})\partial_{r}\overline{\rho} - \overline{\rho}\overline{d}$$

$$\widetilde{D}_{t}\overline{\rho} = -\nabla_{r}f_{\rho} + (f_{\rho}/\overline{\rho})\partial_{r}\overline{\rho} - \overline{\rho}\overline{d}$$

For the derivation, we used the following identities: $\overline{\rho u_r} = \overline{\rho' u_r'} + \overline{\rho u_r}$ and $\overline{u''}_r = \overline{u_r} - \widetilde{u_r}$ and $\overline{\rho} \overline{u''}_r = -f_\rho$ and $f_\rho = \overline{\rho' u_r'}$ (turbulent mass flux)

From there, let us now express gradient of mean density $\partial_r \overline{\rho}$. We get:

$$\partial_r \overline{\rho} = -(1/\widetilde{u}_r) \left(\nabla_r f_\rho + (f_\rho/\overline{\rho}) \partial_r \overline{\rho} - \overline{\rho} \overline{d} - \partial_t \overline{\rho} \right) \tag{6}$$

We want to derive hydrodynamic continuity equation into the form familiar from its classical form. Therefore, let us now find relation between $\partial_r \overline{\rho}$ and $\partial_r \overline{m}$ using total differentials of ρ and m. We know, that $\rho = \rho(r, t)$ and m = m(r, t) and:

$$d\rho = \partial_r \rho \ dr + \partial_t \rho \ dt$$
$$dm = \partial_r m \ dr + \partial_t m \ dt$$

Let us now transform the $d\rho$ equation to dm equation by multiplying it by volume $V = 4\pi r^3/3$ and few algebraic modifications:

$$Vd\rho = V\partial_r \rho \ dr + V\partial_t \rho \ dt$$

$$dm - \rho dV = V\partial_r \rho \ dr + V\partial_t \rho \ dt$$

$$dm - 4\pi r^2 \rho dr = V\partial_r \rho \ dr + V\partial_t \rho \ dt$$

$$dm = 4\pi r^2 \rho dr + V\partial_r \rho \ dr + V\partial_t \rho \ dt$$

$$dm = (4\pi r^2 \rho + V\partial_r \rho) dr + V\partial_t \rho \ dt$$

By comparing this result to $dm = \partial_r m \, dr + \partial_t m \, dt$ we get:

$$(4\pi r^2 \rho + V \partial_r \rho) dr + V \partial_t \rho dt = \partial_r m dr + \partial_t m dt$$

and

$$\partial_r m = V \partial_r \rho + 4\pi r^2 \rho \tag{7}$$

By space-time averaging and using equation 6 we get the desired form of the continuity equation for stellar evolution.

$$\partial_r \overline{m} = 4\pi r^2 \overline{\rho} + (4\pi r^3 / 3\widetilde{u}_r) \left(-\nabla_r f_\rho + (f_\rho / \overline{\rho}) \partial_r \overline{\rho} - \overline{\rho} \overline{d} - \partial_t \overline{\rho} \right) \tag{8}$$

$$\partial_r \overline{m} = \underbrace{4\pi r^2 \overline{\rho}}_{\text{density distribution}} + (4\pi r^3/3\widetilde{u}_r) \left(\underbrace{-\nabla_r f_\rho}_{\text{transport of turbulent density field}} + \underbrace{(f_\rho/\overline{\rho})\partial_r \overline{\rho}}_{\text{down-gradient density source/sink term}} - \underbrace{\overline{\rho} \overline{d}}_{\text{compressibility effects}} - \underbrace{\partial_t \overline{\rho}}_{\text{time-dependence}} \right)$$
 (9)

Figure 1: Hydrodynamic stellar structure continuity equation.

1.2 Momentum Equation

Derivation

We start from the RANS equation for X momentum and modify it into form familiar from classical stellar evolution theory.

$$\overline{\rho}\widetilde{D}_{t}\widetilde{u}_{r} = -\nabla_{r}\widetilde{R}_{rr} - \overline{G_{r}^{M}} - \partial_{r}\overline{P} + \overline{\rho}\widetilde{g}_{r}$$

$$\tag{10}$$

$$\overline{\rho}\partial_t \widetilde{u}_r + \overline{\rho}\widetilde{u}_r \partial_r \widetilde{u}_r = -\nabla_r \widetilde{R}_{rr} - \overline{G_r^M} - \partial_r \overline{P} + \overline{\rho}\widetilde{g}_r$$

$$\tag{11}$$

$$\partial_r \overline{P} = \overline{\rho} \widetilde{g}_r - \overline{\rho} \partial_t \widetilde{u}_r - \nabla_r \widetilde{R}_{rr} - \overline{G}_r^M - \overline{\rho} \widetilde{u}_r \partial_r \widetilde{u}_r$$
(12)

$$\partial_r \overline{P} = \underbrace{\overline{\rho} \widetilde{g}_r}_{\text{gravity}} - \underbrace{\overline{\rho} \partial_t \widetilde{u}_r}_{\text{acceleration due to expansion}} - \underbrace{\nabla_r \widetilde{R}_{rr}}_{\text{transport of turbulent velocity field}} - \underbrace{\overline{G}_r^M}_{\text{centrifugal forces}} - \underbrace{\overline{\rho} \widetilde{u}_r \partial_r \widetilde{u}_r}_{\text{advection due to expansion}}$$

$$(13)$$

Figure 2: Hydrodynamic stellar structure momentum equation.

1.3 Luminosity Equation

$$\overline{\rho}\widetilde{D}_{t}\widetilde{\epsilon}_{t} = -\nabla_{r}(f_{i} + f_{th} + f_{K} + f_{p}) - \overline{P} \ \overline{d} - \widetilde{R}_{ir}\partial_{r}\widetilde{u}_{r} + W_{b} + \overline{\rho}\widetilde{\epsilon}_{nuc} + \overline{\rho}\widetilde{D}_{t}\widetilde{u}_{i}\widetilde{u}_{i}/2$$

$$\tag{14}$$

$$\overline{\rho}\partial_t \widetilde{\epsilon}_t + \overline{\rho}\widetilde{u}_r \partial_r \widetilde{\epsilon}_t = -\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{P} \ \overline{d} - \widetilde{R}_{ir} \partial_r \widetilde{u}_r + W_b + \overline{\rho}\widetilde{\epsilon}_{nuc} + \overline{\rho}\widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2$$

$$\tag{15}$$

$$4\pi r^2 \overline{\rho} \partial_t \widetilde{\epsilon}_t + 4\pi r^2 \overline{\rho} \widetilde{u}_r \partial_r \widetilde{\epsilon}_t = 4\pi r^2 \left[-\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{P} \ \overline{d} - \widetilde{R}_{ir} \partial_r \widetilde{u}_r + W_b + \overline{\rho} \widetilde{\epsilon}_{nuc} + \overline{\rho} \widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2 \right]$$

$$\tag{16}$$

$$4\pi r^2 \overline{\rho} \partial_t \widetilde{\epsilon}_t + \underbrace{\partial_r 4\pi r^2 \overline{\rho} \widetilde{u}_r \widetilde{\epsilon}_t}_{\widetilde{\epsilon}_t} - \widetilde{\epsilon}_t \partial_r 4\pi r^2 \overline{\rho} \widetilde{u}_r = 4\pi r^2 \left[-\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{P} \ \overline{d} - \widetilde{R}_{ir} \partial_r \widetilde{u}_r + W_b + \overline{\rho} \widetilde{\epsilon}_{nuc} + \overline{\rho} \widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2 \right]$$

$$(17)$$

$$\partial_r \widetilde{L} = 4\pi r^2 \left[-\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{P} \ \overline{d} - \widetilde{R}_{ir} \partial_r \widetilde{u}_r + W_b + \overline{\rho} \widetilde{\epsilon}_{nuc} + \overline{\rho} \widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2 - \overline{\rho} \partial_t \widetilde{\epsilon}_t \right] + \widetilde{\epsilon}_t \partial_r 4\pi r^2 \overline{\rho} \widetilde{u}_r$$
(18)

Or

$$\partial_r \widetilde{L} = 4\pi r^2 \overline{\rho} \widetilde{\epsilon}_{nuc} + 4\pi r^2 \left[-\nabla_r (f_i + f_{th} + f_K + f_p) - \overline{P} \ \overline{d} - \widetilde{R}_{ir} \partial_r \widetilde{u}_r + W_b + \overline{\rho} \widetilde{D}_t \widetilde{u}_i \widetilde{u}_i / 2 - \overline{\rho} \partial_t \widetilde{\epsilon}_t \right] + \widetilde{\epsilon}_t \partial_r 4\pi r^2 \overline{\rho} \widetilde{u}_r$$

$$\tag{19}$$

Some term description:

$$\partial_{r}\widetilde{L} = \underbrace{4\pi r^{2}\overline{\rho}\widetilde{\epsilon}_{nuc}}_{\text{nuclear}} + 4\pi r^{2} \left[\underbrace{-\nabla_{r}(f_{i} + f_{K} + f_{p} + f_{th})}_{\text{transport of internal energy, kinetic energy, pressure and heat due to conduction and radiation} - \underbrace{\overline{P}\ \overline{d}}_{\text{compressibility}} - \underbrace{\widetilde{R}_{ir}\partial_{r}\widetilde{u}_{r}}_{\text{down-gradient source/sink term}} + \underbrace{W_{b}}_{\text{buoyancy work}} + \underbrace{\overline{\rho}\widetilde{D}_{t}\widetilde{u}_{i}\widetilde{u}_{i}/2 - \overline{\rho}\partial_{t}\widetilde{\epsilon}_{t}}_{\text{time-dependence}} + \widetilde{\epsilon}_{t}\partial_{r}4\pi r^{2}\overline{\rho}\widetilde{u}_{r}}_{\text{compressibility}} \right]$$

$$(20)$$

Figure 3: Hydrodynamic stellar structure luminosity equation.

1.4 Temperature Equation

Derivation

We start from the RANS equation for temperature evolution. At the end, there will be no resemblance to the temperature equation of the classical stellar evolution theory.

$$\overline{D}_{t}\overline{T} = -\nabla_{r}f_{T} + (1 - \Gamma_{3})\overline{T} \ \overline{d} + (2 - \Gamma_{3})\overline{T'd'} + \overline{(\nabla \cdot f_{th})/\rho c_{v}} + \overline{\epsilon_{\text{nuc}}/c_{v}}$$

$$\partial_{t}\overline{T} + \overline{u}_{r}\partial_{r}\overline{T} = -\nabla_{r}f_{T} + (1 - \Gamma_{3})\overline{T} \ \overline{d} + (2 - \Gamma_{3})\overline{T'd'} + \overline{(\nabla \cdot f_{th})/\rho c_{v}} + \overline{\epsilon_{\text{nuc}}/c_{v}}$$

$$\overline{u}_{r}\partial_{r}\overline{T} = -\nabla_{r}f_{T} + (1 - \Gamma_{3})\overline{T} \ \overline{d} + (2 - \Gamma_{3})\overline{T'd'} + \overline{(\nabla \cdot f_{th})/\rho c_{v}} + \overline{\epsilon_{\text{nuc}}/c_{v}} - \partial_{t}\overline{T}$$

$$\partial_r \overline{T} = -\left(1/\overline{u}_r\right) \left(\nabla_r f_T + (1-\Gamma_3)\overline{T}\ \overline{d} + (2-\Gamma_3)\overline{T'd'} + \overline{(\nabla \cdot f_{th})/\rho c_v} + \overline{\epsilon_{\text{nuc}}/c_v} - \partial_t \overline{T}\right)$$

$$\partial_{r}\overline{T} = -(1/\overline{u}_{r})(\underbrace{\nabla_{r}f_{T}}_{\text{transport of turbulent temperature field}} + \underbrace{(1-\Gamma_{3})\overline{T}\ \overline{d} + (2-\Gamma_{3})\overline{T'd'}}_{\text{compressibility effects}} + \underbrace{(\overline{\nabla \cdot f_{th}})/\rho c_{v}}_{\text{source/sink term due to thermal transport}} + \underbrace{\overline{\epsilon_{\text{nuc}}/c_{v}}}_{\text{source/sink due to nuclear burning}} - \underbrace{\partial_{t}\overline{T}}_{\text{time-dependence}}$$

$$(21)$$

Figure 4: Hydrodynamic stellar structure temperature equation.

1.5 Composition Equation

Derivation

We start from the RANS equation for compostion and modify it into form familiar from classical stellar evolution theory.

$$\begin{split} \overline{\rho}\widetilde{D}_{t}\widetilde{X}_{\alpha} &= -\nabla_{r}f_{\alpha} + \overline{\rho}\widetilde{\dot{X}_{\alpha}^{nuc}} \\ \overline{\rho}\partial_{t}\widetilde{X}_{\alpha} + \overline{\rho}\widetilde{u}_{r}\partial_{r}\widetilde{X}_{\alpha} &= -\nabla_{r}f_{\alpha} + \overline{\rho}\widetilde{\dot{X}_{\alpha}^{nuc}} \\ \overline{\rho}\partial_{t}\widetilde{X}_{\alpha} &= -\nabla_{r}f_{\alpha} + \overline{\rho}\widetilde{\dot{X}_{\alpha}^{nuc}} - \overline{\rho}\widetilde{u}_{r}\partial_{r}\widetilde{X}_{\alpha} \\ \partial_{t}\widetilde{X}_{\alpha} &= \widetilde{\dot{X}}_{\alpha}^{nuc} - (1/\overline{\rho})\nabla_{r}f_{\alpha} - \widetilde{u}_{r}\partial_{r}\widetilde{X}_{\alpha} \end{split}$$

$$\partial_t \widetilde{X}_{\alpha} = \underbrace{\widetilde{X}_{\alpha}^{nuc}}_{\text{nuclear burning transport of turbulent composition field}} - \underbrace{\widetilde{u}_r \partial_r \widetilde{X}_{\alpha}}_{\text{advection due to expansion}}$$
(22)

Figure 5: Hydrodynamic stellar structure composition transport equation.

Figure 6: Hydrodynamic stellar structure composition transport equation.

Table 1: Definitions:

 $f_P = \overline{P'u'_r}$ acoustic flux

$$g_r \ \, \mathrm{radial \, gravitational \, acceleration} \\ M = \int \rho(r)V = \int \rho(r)dV = \int \rho(r)4\pi r^2 dr \ \, \mathrm{integrated \, mass} \\ S = \rho \epsilon_{\mathrm{nuc}}(q) \ \, \mathrm{nuclear \, energy \, production} \, \, (\mathrm{cooling \, function}) \\ \tau_{ij} = 2\mu S_{ij} \ \, \mathrm{viscous \, stress \, tensor} \, \, (\mu \ \, \mathrm{kinematic \, viscosity}) \\ S_{ij} = (1/2)(\partial_i u_j + \partial_j u_i) \ \, \mathrm{strain \, rate} \\ \widetilde{R}_{ij} = \overline{\rho} \overline{u_i''} \overline{u_j''} \, \, \mathrm{Reynolds \, stress \, tensor} \\ F_T = \chi \partial_r T \ \, \mathrm{heat \, flux} \\ \Gamma_1 = (d \, \ln P/d \, \ln \rho)|_s \\ \Gamma_2/(\Gamma_2 - 1) = (d \, \ln P/d \, \ln T)|_s \\ \Gamma_3 - 1 = (d \, \ln T/d \, \ln \rho)|_s \\ \widetilde{k}^r = (1/2) \overline{u_i''} \overline{u_j''} = (1/2) \widetilde{R}_{rr}/\overline{\rho} \ \, \mathrm{radial \, turbulent \, kinetic \, energy} \\ \widetilde{k}^\theta = (1/2) \overline{u_j''} \overline{u_j''} = (1/2) \widetilde{R}_{\theta\theta}/\overline{\rho} \ \, \mathrm{angular \, turbulent \, kinetic \, energy} \\ \widetilde{k}^\phi = (1/2) \overline{u_j''} \overline{u_j''} \underline{u_j''} \ \, \mathrm{turbulent \, kinetic \, energy} \\ \widetilde{k}^h = \widetilde{k}^\theta + \widetilde{k}^\phi \ \, \mathrm{horizontal \, turbulent \, kinetic \, energy \, flux} \\ f_k^r = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \underline{u_j''} \ \, \mathrm{radial \, turbulent \, kinetic \, energy \, flux} \\ f_k^\theta = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \underline{u_j''} \ \, \mathrm{angular \, turbulent \, kinetic \, energy \, flux} \\ f_k^\phi = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \underline{u_j''} \ \, \mathrm{angular \, turbulent \, kinetic \, energy \, flux} \\ f_k^\phi = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \underline{u_j''} \ \, \mathrm{angular \, turbulent \, kinetic \, energy \, flux} \\ f_k^\phi = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \ \, \mathrm{urbulent \, kinetic \, energy \, flux} \\ f_k^\phi = (1/2) \overline{\rho} \overline{u_j''} \overline{u_j''} \ \, \mathrm{urbulent \, kinetic \, energy \, flux} \\ f_k^\phi = \overline{\rho} \overline{u_j''} \ \, \mathrm{turbulent \, pressure \, dilatation} \\ W_b = \overline{\rho} \overline{u_j''} \ \, \mathrm{turbulent \, pressure \, dilatation} \\ W_b = \overline{\rho} \overline{u_j''} \ \, \mathrm{horizontal \, turbulent \, conductivity} \\$$

Table 2: Definitions (continued):

$$\begin{split} f_I &= \overline{\rho_L^{\prime\prime}u_l^{\prime\prime}} & \text{ internal energy flux} & f_\alpha &= \overline{\rho X_\alpha^{\prime\prime}u_l^{\prime\prime}} X_\alpha \text{ flux} \\ f_s &= \overline{\rho s^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ entropy flux} & f_{jz} &= \overline{\rho j_z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ angular momentum flux} \\ f_T &= \overline{u_r^{\prime\prime}T^{\prime\prime}} & \text{ turbulent heat flux} & f_A &= \overline{\rho A^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_h &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ enthalpy flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ enthalpy flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ enthalpy flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ A (mean number of nucleons per isotope) flux} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ Numerical effect} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho Z^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ numerical effect} \\ f_{\tau} &= \overline{\rho h^{\prime\prime\prime}u_l^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ viscous flux} & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{\rho L^{\prime\prime\prime}u_l^{\prime\prime}u_l^{\prime\prime}} & \text{ radial flux of } f_Z & f_Z &= \overline{$$

Table 3: Definitions (continued):

$$\begin{array}{lll} \mathcal{G}_k^{\theta} = -(1/2)\overline{G_{Q_\theta}^{\theta}} & \overline{u_\theta''G_\phi^{\theta}} & \mathcal{N}_b \text{ numerical effect} \\ \mathcal{G}_k^{\phi} = -(1/2)\overline{G_{Q_\phi}^{\theta}} & \overline{u_\phi''G_\phi^{\theta}} & \mathcal{N}_{f1} = -\nabla_r(\overline{e_1''\tau_r'}) + \overline{u_r''\tau_{ij}\partial_i u_j} - \varepsilon_I \text{ numerical effect} \\ \mathcal{G}_k^{h} = +\mathcal{G}_k^{\theta} + \mathcal{G}_k^{\phi} & \mathcal{N}_{fh} = -\nabla_r(\overline{h''\tau_{rr}'}) + \overline{u_r''\tau_{ij}\partial_i u_j} - \overline{u_r''\nabla_i u_i\tau_{ji}} - \varepsilon_h \text{ numerical effect} \\ \mathcal{G}_a = +\overline{\rho'vG_\rho^{M}} & \mathcal{N}_{fs} = -\nabla_r(\overline{s''\tau_{rr}'}) + \overline{u_r''\tau_{ij}\partial_i u_j} - \overline{u_r''\nabla_i u_i\tau_{ji}} - \varepsilon_h \text{ numerical effect} \\ \mathcal{G}_I = -\overline{G_I^r} - \overline{\epsilon_I''G_\rho^{M}} & \mathcal{N}_{fs} = -\nabla_r(\overline{s''\tau_{rr}'}) - \varepsilon_A \text{ numerical effect} \\ \mathcal{G}_A = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{Z''\tau_{rr}'}) - \varepsilon_Z \text{ numerical effect} \\ \mathcal{G}_A = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{a_r''\tau_{rr}'}) - \varepsilon_Z \text{ numerical effect} \\ \mathcal{G}_Z = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{a_r''\tau_{rr}'}) - \varepsilon_{\alpha} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\alpha} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f1} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f1} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ numerical effect} \\ \mathcal{G}_B = -\overline{G_I^r} - \overline{A_r''G_\rho^{M}} & \mathcal{N}_{f2} = -\nabla_r(\overline{g_1''\tau_{rr}'}) - \varepsilon_{\beta} \text{ n$$

Table 4: Definitions (continued):

$$\begin{split} \varepsilon_k^r &= \overline{\tau_{rr}'} \partial_r u_l''' + \overline{\tau_{r\theta}'(1/r) \partial_\theta u_l''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi u_l''} \\ \varepsilon_k^\theta &= \overline{\tau_{lr}'} \partial_r u_\theta''' + \overline{\tau_{l\theta}'(1/r) \partial_\theta u_\theta''} + \overline{\tau_{l\theta}'(1/r \sin \theta) \partial_\phi u_\theta''} \\ \varepsilon_k^\theta &= \overline{\tau_{lr}'} \partial_r u_\theta'' + \overline{\tau_{l\theta}'(1/r) \partial_\theta u_\theta''} + \overline{\tau_{l\theta}'(1/r \sin \theta) \partial_\phi u_\theta''} \\ \varepsilon_k^\theta &= \overline{\tau_{lr}'} \partial_r u_\theta'' + \overline{\tau_{l\theta}'(1/r) \partial_\theta u_\theta''} + \overline{\tau_{l\theta}'(1/r \sin \theta) \partial_\phi u_\theta''} \\ \varepsilon_k &= \varepsilon_k^r + \varepsilon_k^\theta + \varepsilon_k^\phi \\ \varepsilon_k^\theta &= \varepsilon_k^\theta + \varepsilon_k^\phi \\ \varepsilon_k &= \varepsilon_k^\theta + \varepsilon_k^\phi \\ \varepsilon_k &= \overline{\varepsilon_l''} \partial_r \varepsilon_l'' + \overline{\tau_{r\theta}'(1/r) \partial_\theta \varepsilon_l''} + \overline{\tau_{r\theta}'(1/r \sin \theta) \partial_\phi \varepsilon_l''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \varepsilon_l'' + \overline{\tau_{r\theta}'(1/r) \partial_\theta \varepsilon_l''} + \overline{\tau_{r\theta}'(1/r \sin \theta) \partial_\phi \varepsilon_l''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{X_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta X_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi X_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi X_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi X_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi X_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi X_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\theta}'(1/r) \partial_\theta Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\phi}'(1/r \sin \theta) \partial_\phi Z_\theta''} \\ \varepsilon_k &= \overline{\tau_{rr}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\phi}'} \partial_r \overline{Z_\theta''} + \overline{\tau_{r\phi}'} \partial_r \overline{Z_\theta''} - \overline{Z_\theta''} \overline{Z_\theta''} \overline{Z_\theta''} - \overline{Z_\theta''} \overline{Z_\theta''} \overline{Z_\theta''}$$

$$\nabla(.) = \nabla_r(.) + \nabla_{\theta}(.) + \nabla_{\phi}(.) = \frac{1}{r^2} \partial_r(r^2.) + \frac{1}{r \sin \theta} \partial_{\theta}(\sin \theta.) + \frac{1}{r \sin \theta} \partial_{\phi}(.)$$