

Betas for Selected Components of NAICS: Household Appliance Manufaturing

FIG. 3

416

 $Beta_i = Beta_I(I-\omega_i)$

 $\omega_i = l - (OP_i/OP_I)^*(\sigma_i/\sigma_I)$

where:

Beta I = aggregate industry Beta

 $ullet OP_i = average$ growth index in operating profits for bizownerHQ sector

ullet OPI = average growth index in operating profits for aggregate sector

•(σ_i/σ_I) = ratio of standard deviation of operating profit growth index

of bizowner HQ sector to standard deviation of its aggregate sector

$$ATWACC = W_{Id} * R_{bI} * (I - T) + W_{sd} * R_{bs} * (I - T) + W_{cs} * R_{cs} + W_{ps} * R_{ps}$$

where.

•W ld, W sd, W cs, W ps = percentage of capital structure financed with long – term debt, short – term debt, common stock, preferred stock respectively

• Rbl, Rbs, Rcs, R_{ps} =cost of long – term debt, short – term debt, common stock,

preferred stock respectively

•T=combined marginal federal and state income tax rate

$$V = V_{ops} + V_{nops} + V_{tax} - exempt + V_{ec} ds$$

$$MVMCE = V - BV debt - BV ps - BV ol$$

where:

- V = value of the firm
- $V_{ops} = value of firm operations$
- $V_{nops} = value of firm non operating cash flows$
- $V \tan \exp pt = value \ of \tan exempt interest$
- Vec & s = value of excess cash & securities
- ullet MVMCE = market value of minority interest in common equity
- BV debt = book value of debt
- $BV_{ps} = book$ value of preferred stock
- \bullet BV of = book value other liabilities

Representative Studies That Attempt to Measure the Liquidity Discount

Author(s)	Peer Reviewed Average	Average	Reported Dispersion	Type of Study
	Study	Discount		
William Silber	Yes	35%;	14% for large creditworthy companies; 50% for	Restricted stock
			small firms with negative earnings	study
Michael Hertzel	Yes	Not	.2%-43.7%	Private Equity Study
and Richard Smith ²		Reported		
John Emory ³	Yes	47%	Not Specified	Pre-IPO Study
John Koeplin et.al.	Yes	20.39%	Depending on the multiple used, discount varied	Identified all private
			from 0% discount based on sales revenue	firm purchases from
			to 28.26% using the ratio of Enterprise Value to	1984 to 1998
			EBIT	
Willamette	No	40.1%	Wide dispersion from a premium to a maximum	Pre-IPO Study
Associates ⁵			discount of 99%	

FIG. 7

William L. Silber, "Discounts on Restricted Stock: "The Impact of Illiquidity on Stock Prices", Financial Analyst Journal, July-August 1991, pp. 60 -64.

² Michael Hertzel and Richard L. Smith, "Market Discounts and Shareholder Gains for Placing Equity Privately", loumal of Finance, June 1993, pp. 459-485.

³ John D. Emory, "The Value of Marketability as Illustrated in Initial Public Offerings of Common Stock- February 1992 through July 1993", Business Valuation Review, March 1994, pp 3-7.

4 John Koeplin, Atulya Sarin and Alan C. Shapiro, "The Private Company Discount", Journal of Applied Corporate Finance, Volume 12 Number 4, Winter 2000, pp 94-101.

Sleven D. Garber and Jeffrey A. Herbst, "Discounts for Lack of Marketability- Empirical Evidence Related to Pre-IPO Pricing", Chapter 4, The Handbook of Advanced Business Valuation, 81-96.

Firm Asset Size

9/16

Year	# of	Historical Control
	Transactions	Premiums: Median Values, %
1998	512	30.1
1997	487	27.5
1996	381	27.3
1995	324	29.2
1994	260	35
1993	173	33
1992	142	34.7
1991	137	29.4
1990	175	32
1989	303	29

$$RR_t = E(R_t) + AR_t \tag{1}$$

$$E(R_t) = R_{ff} + Beta^* (R_{mf} - R_{ff})$$
 (2)

$$E(AR_t) = B1 * CP_{capital} + B2 * CP_{synergy}$$
 (2a)

where.

• $RR_f = \exp ost \ control \ premium: percent \ change \ in \ t \ arget$

firm share price on date of takeover announcement

- ullet AR $_t$ = abnormal return on takeover announcement date
- $E(AR_t) = \exp ected \ value \ of \ AR_t \ prior \ to \ announcement \ date$
- $E(R_l) = \exp ected daily target firm rate of return$

on takeover announcement date

- $ullet CP_{capital} = control$ premium due to reduction in costof capital
- •CP synergy=control premium due to synergy value created by acquirer
- ullet B1, B2=relative importance of CP capital & CP synergy respectively
- •R $f_{\rm f}$ = expected daily rate of return on 1 year Treasury Bill

on takeover announcement date

• Beta = measure of target firm's systematic risk

• $R_{mt} = \exp ected$ daily rate of return on a diversified portfolio

of assets on takeover announcement date

The expected value of the control premium is the defined as:

$$E(AR)_t = [P_{aa} - P_{ba}]/P_{ba}$$
 (3)

$$P_{ba}=CF_b/R_b;$$
 CF is constant level of cash flow before announcement

$$P_{aa} = CF_b / R_b - \Psi$$
 (5)

$$E(AR)_t = \Psi' Rb - \Psi$$

$$AR_t = E(AR)_t + \varepsilon_t; E(\varepsilon_t) = 0$$

9

$$AR_l = E(AR)_f + \varepsilon_l$$
; $E(\varepsilon_t) = 0$

13/16

$$E(R_{ndt}) = R_{ft} + Beta_{nd} * (R_{mt} - R_{ft})$$
 (8)

$$E(R_{dt}) = R_{ft} + Beta_{nd} * (R_{mt} - R_{ft}) * [I + (D/E) * (I - T)]$$
 (9)

where:

- D/E = debt to equity ratio for target firm
- T = combined federal and state marginal

tax rate on target frim's business income

Control Premium Values Vary with R and g

FIG. 14

	0.02	0.025	0.03	0.035	0.04	0.045
Cost of Capital	78					
0.1	25.00%	25.00% 33.33% 42.86%		53.85% 66.67%	66.67%	81.82%
0.11	22.22%	29.41%	37.50%	46.67%	57.14%	69.23%
0.12	20.00%	26.32%	33.33%	20.00% 26.32% 33.33% 41.18% 50.00% 60.00%	50.00%	60.00%
0.13	18.18%	23.81%	30.00%	36.84% 44.44%	44.44%	52.94%
0.14	16.67%		21.74% 27.27%	33.33% 40.00% 47.37%	40.00%	47.37%
0.15	15.38%	15.38% 20.00% 25.00%	25.00%	30.43%	36.36% 42.86%	42.86%
0.2	11.11%	14.29%	17.65%	21.21%	25.00%	29.03%
0.25	8.70%		13.64%	11.11% 13.64% 16.28% 19.05% 21.95%	19.05%	21.95%
0.3	7.14%		11.11%	9.09% 11.11% 13.21%	15.38%	17.65%
0.4	5.26%	%19.9	8.11%	9.59%	11.11%	12.68%
0.5	4.17%	\$26%	6.38%	7.53%	8.70%	9.89%

FIG. 15

16/16

$$1+\%OP_i = (1+\%REV_i)*(1+\%OPM_i)$$

REV_i =
$$\sum_{i=1}^{n} industry_i + \sum_{j=1}^{k} fd_{ij}$$

$$(1+\%OPM_i) = f_i(x_k)$$

where:

- ullet $l+\%OP_i=$ growth index of operating profits for industry l
- $(1+\% REV_i) = growth index of revenue for industry i$
- $(1+\%0PM_i) = growth index of operating profit margin for industy i$
 - industry i = sales of industry i output to other industries
- ullet fd $_{ij}$ = sales of industry i to categories j of final demand; e.g.consumption, investment
- $f_i(x_k) = \text{variables}, x_k$, that drive changes in industy i's operating profit margin