דו"ח מיני פרויקט ב

בסיסי נתונים

יולי, 2021 מכון לב, ירושלים

מגישים: ברוך באקשט ישראל רולניק

טבלאות:

טבלת חיסונים:

טבלה זו מציגה מידע על חיסונים לפי ערים וימים.

הנתונים נלקחים מאתר משרד הבריאות הישראלי המפורסמים בלינק הזה

תאריך	DATETIME	_date		
שם העיר (בעברית)	NCHAR (25)	CityName		
כמות המתחסנים במנה	INT	first_dose_0-19		
הראשונה בגילאים 0-19	INT			
כמות המתחסנים במנה	INT	first_dose_20-29		
הראשונה בגילאים 20-29	INT	11131_0056_20-23		
כמות המתחסנים במנה	INT	first_dose_30-39		
הראשונה בגילאים 30-39	INT	111.21_026_20-23		
כמות המתחסנים במנה	INT	first_dose_40-49		
הראשונה בגילאים 40-49	INT			
כמות המתחסנים במנה	INT	first dose 50-59		
הראשונה בגילאים 50-59	INT	first_dose_50-59		
כמות המתחסנים במנה	INT	first_dose_60-69		
הראשונה בגילאים 60-69	INT	1113C_0056_00-03		
כמות המתחסנים במנה	INT	first_dose_70-79		
הראשונה בגילאים 70-79	2.11			
כמות המתחסנים במנה	INT	first_dose_80-89		
הראשונה בגילאים 80-89	2.11	11125_0026_00-03		
כמות המתחסנים במנה	INT	first_dose_90+		
+90 הראשונה בגילאים	INI			
כמות המתחסנים במנה	INT	second_dose_0-19		
השנייה בגילאים 0-19	INI	secona_aose_a-1a		
כמות המתחסנים במנה	INT	second_dose_20-29		
השנייה בגילאים 20-29	ZIV1	Second_dose_ze-ze		
כמות המתחסנים במנה	INT	second_dose_30-39		
השנייה בגילאים 30-39	2111	3ccond_dose_50-55		
כמות המתחסנים במנה	INT	second_dose_40-49		
השנייה בגילאים 40-49	2111			

כמות המתחסנים במנה השנייה בגילאים 50-59	INT	second_dose_50-59
כמות המתחסנים במנה השנייה בגילאים 60-69	INT	second_dose_60-69
כמות המתחסנים במנה השנייה בגילאים 70-79	INT	second_dose_70-79
כמות המתחסנים במנה השנייה בגילאים 80-89	INT	second_dose_80-89
כמות המתחסנים במנה השנייה בגילאים 90+	INT	second_dose_90+

קטע הקוד ליצירת הטבלה:

```
CREATE TABLE [dbo].[vaccines_city] (
    [ date]
                        DATETIME
                                   NOT NULL,
    [CityName]
                        NCHAR (25) NOT NULL,
    [first dose 0-19]
                        INT
                                   NOT NULL,
    [first dose 20-29] INT
                                   NOT NULL,
    [first dose 30-39]
                       INT
                                   NOT NULL,
    [first dose 40-49]
                        INT
                                   NOT NULL,
    [first dose 50-59] INT
                                   NOT NULL,
    [first dose 60-69] INT
                                   NOT NULL,
    [first dose 70-79] INT
                                   NOT NULL,
    [first dose 80-89] INT
                                   NOT NULL,
    [first dose 90+]
                        INT
                                   NOT NULL,
    [second dose 0-19] INT
                                   NOT NULL,
    [second_dose_20-29] INT
                                   NOT NULL,
    [second_dose_30-39] INT
                                   NOT NULL,
    [second_dose_40-49] INT
                                   NOT NULL,
    [second_dose_50-59] INT
                                   NOT NULL,
    [second_dose_60-69] INT
                                   NOT NULL,
    [second_dose_70-79] INT
                                   NOT NULL,
                                   NOT NULL,
    [second_dose_80-89] INT
    [second_dose_90+]
                                   NOT NULL,
                        INT
    PRIMARY KEY CLUSTERED ([CityName] ASC, [_date] ASC)
);
```

טבלת בדיקות קורנה:

בטבלא זו כל שורה מייצגת בדיקת קורונה שנעשתה שישראל הנתונים נלקחים מאתר משרד הבריאות הישראלי המפורסמים בלינק <u>הזה</u>

מפתח	INT	ld
תאריך	DATETIME	_date
1 עבור תוצאה חיובית	INT	result
-1 עבוד תוצאה שלילית		

קטע הקוד ליצירת הטבלה:

שאילתות:

שאילתא עם פרמטר result השאילתא מחזירה טבלא עם עמודה עבור יום ועמודה עבור כמות @result שאילתא עם פרמטר התוצאות לאותו היום בהתאם לפרמטר aresult (חיובי \ שלילי).

```
select count(*) count_res , _date
from tests
where [result] = @result
group by _date
order by _date
```

שאילתא המחזירה טבלא עם עמודה עבור יום ועמודה עבור כמות התוצאות החיוביות לאותו היום, בטבלא יהיה רק שורה 1 התואמת לתאריך האחרון הקיים בבסיס הנתונים.

```
select count(*) count_res , _date
from tests
where [result] = 1 AND _date = (select max(_date) from tests)
group by _date
order by _date
```

שאילתא המחזירה טבלא עם עמודה עבור תאריך, עומדה עבור כמות האנשים שהתחסנו במנה השניה באותו תאריך. הראשונה באותו תאריך ועומדה עבור כמות האנשים שהתחסנו במנה השניה באותו תאריך.

```
select _date, A.f_0_19 + A.f_20_29 + A.f_30_39 + A.f_40_49 + A.f_50_59 + A.f_60_69
+ A.f_70_79 + A.f_80_89 + A.f_90 as sum_f,
                 A.s_0_19 + A.s_20_29 + A.s_30_39 + A.s_40_49 + A.s_50_59 +
A.s_60_69 + A.s_70_79 + A.s_80_89 + A.s_90 as sum_s
from (select _date, sum([first_dose_0-19]) as f_0_19,
                            sum([first_dose_20-29]) as f_20_29,
                            sum([first_dose_30-39]) as f_30_39,
                            sum([first_dose_40-49]) as f_40_49,
                            sum([first_dose_50-59]) as f_50_59,
                            sum([first_dose_60-69]) as f_60_69,
                            sum([first_dose_70-79]) as f_70_79,
                            sum([first_dose_80-89]) as f_80_89,
                            sum([first_dose_90+]) as f_90,
                            sum([second_dose_0-19]) as s_0_19,
                            sum([second_dose_20-29]) as s_20_29,
                            sum([second_dose_30-39]) as s_30_39,
                            sum([second_dose_40-49]) as s_40_49,
                            sum([second_dose_50-59]) as s_50_59,
                            sum([second_dose_60-69]) as s_60_69,
                            sum([second dose 70-79]) as s 70 79,
                            sum([second_dose_80-89]) as s_80_89,
                            sum([second_dose_90+]) as s_90
from vaccines city
group by _date) as A
order by date
```

שאילתא עם פרמטר city_name@city_name@e מחזירה טבלא עם עמודה עבור תאריך, עומדה עבור כמות האנשים האנשים שהתחסנו במנה הראשונה באותו תאריך בעיר city_name@city_name@city_name@city_name.

```
select date, A.f 0 19 + A.f 20_29 + A.f_30_39 + A.f_40_49 + A.f_50_59 + A.f_60_69
+ A.f 70 79 + A.f 80 89 + A.f 90 as sum f,
                 A.s 0 19 + A.s 20 29 + A.s 30 39 + A.s 40 49 + A.s 50 59 +
A.s 60 69 + A.s 70 79 + A.s 80 89 + A.s 90 as sum s
from (select date, sum([first dose 0-19]) as f 0 19,
                            sum([first dose 20-29]) as f 20 29,
                            sum([first dose 30-39]) as f 30 39,
                            sum([first dose 40-49]) as f 40 49,
                            sum([first dose 50-59]) as f 50 59,
                            sum([first_dose_60-69]) as f_60_69,
                            sum([first_dose_70-79]) as f_70_79,
                            sum([first_dose_80-89]) as f_80_89,
                            sum([first dose 90+]) as f 90,
                            sum([second_dose_0-19]) as s_0_19,
                            sum([second_dose_20-29]) as s_20_29,
                            sum([second_dose_30-39]) as s_30_39,
                            sum([second_dose_40-49]) as s_40_49,
                            sum([second_dose_50-59]) as s_50_59,
                            sum([second_dose_60-69]) as s_60_69,
                            sum([second_dose_70-79]) as s_70_79,
                            sum([second_dose_80-89]) as s_80_89,
                            sum([second_dose_90+]) as s_90
from vaccines_city
where CityName = N'@city_name'
group by _date) as A
order by _date
```

שאילתא המוסיפה שורה לטבלת החיסונים ע"י הפרמטרים.

שאילתא המוסיפה שורה לטבלת בדיקות הקורנה ע"י הפרמטרים.

```
IF NOT EXISTS (SELECT * FROM [tests] WHERE [Id] = @ID)
INSERT INTO [tests] (Id, _date, result)
Values (@ID , '@date' , @result)
```

שאילתא המחזירה את כל שמות הערים בישראל בעזרת טבלאת החיסונים.

```
select CityName
from vaccines_city
group by CityName
```

שאילתא שמחזירה טבלא המתאימה לכל יום את כמות תוצאות הבדיקות החיוביות, את כמות תוצאות הבדיקות השליליות, את כמות הבדיקות שנעשו באותו היום, את מספר אנשים המחוסנים במנה השניה.

```
select CityName
from vaccines_city
group by CityNameSELECT positives_table._date _date,
              positives_table.count_positives count_positives,
              negatives_table.count_negatives count_negatives,
              vaccinse.sum_f sum_f,
              vaccinse.sum s sum s
FROM (SELECT _date, count(*) count_positives
              FROM tests
              WHERE result = 1
              group by _date) as positives table
INNER JOIN (SELECT date, count(*) count negatives
                     FROM tests
                     WHERE result = -1
                     group by _date) as negatives_table
ON positives_table._date = negatives_table._date
INNER JOIN (select date,
              A.f 0 19 + A.f 20 29 + A.f 30 39 + A.f 40 49 + A.f 50 59 + A.f 60 69
+ A.f 70 79 + A.f 80 89 + A.f 90 as sum f,
              A.s_0_19 + A.s_20_29 + A.s_30_39 + A.s_40_49 + A.s_50_59 + A.s_60_69
+ A.s_70_79 + A.s_80_89 + A.s_90 as sum_s
                     from (select _date, sum([first_dose_0-19]) as f_0_19,
                            sum([first_dose_20-29]) as f_20_29,
                            sum([first_dose_30-39]) as f_30_39,
                            sum([first_dose_40-49]) as f_40_49,
                            sum([first_dose_50-59]) as f_50_59,
                            sum([first_dose_60-69]) as f_60_69,
                            sum([first_dose_70-79]) as f_70_79,
                            sum([first_dose_80-89]) as f_80_89,
                            sum([first_dose_90+]) as f_90,
                            sum([second_dose_0-19]) as s_0_19,
                            sum([second_dose_20-29]) as s_20_29,
                            sum([second_dose_30-39]) as s_30_39,
                            sum([second_dose_40-49]) as s_40_49,
                            sum([second_dose_50-59]) as s_50_59,
                            sum([second_dose_60-69]) as s_60_69,
                            sum([second_dose_70-79]) as s_70_79,
                            sum([second_dose_80-89]) as s_80_89,
                            sum([second_dose_90+]) as s_90
                            from vaccines city
                            group by _date) as A
              ) as vaccinse
ON vaccinse. date = positives table. date
```

:תוצאת השאילתא

	_date	count_positives	count_negatives	sum_f	sum_s
61	2021-02-18 00:00:00.000	3608	47781	3740942	2541954
62	2021-02-19 00:00:00.000	4058	57913	3777034	2575870
63	2021-02-20 00:00:00.000	1394	17799	3806631	2602393
64	2021-02-21 00:00:00.000	3404	45895	3878494	2672469
65	2021-02-22 00:00:00.000	5096	63413	3955914	2744529
66	2021-02-23 00:00:00.000	4738	66092	4025993	2807096
67	2021-02-24 00:00:00.000	4670	69242	4081537	2862573
68	2021-02-25 00:00:00.000	4067	65070	4127985	2919132
69	2021-02-26 00:00:00.000	4008	60945	4151355	2947483
70	2021-02-27 00:00:00.000	1554	22312	4168811	2967029
71	2021-02-28 00:00:00.000	3363	50147	4204814	3016170
72	2021-03-01 00:00:00.000	5152	83059	4245599	3071090
73	2021-03-02 00:00:00.000	4617	84714	4282450	3126436
74	2021-03-03 00:00:00.000	4937	87364	4320048	3186248
75	2021-03-04 00:00:00.000	3913	84807	4355648	3256275
76	2021-03-05 00:00:00.000	4058	95626	4371268	3292857
77	2021-03-06 00:00:00.000	2154	38277	4381319	3316987
78	2021-03-07 00:00:00.000	2543	58788	4409656	3382755
79	2021-03-08 00:00:00.000	4033	89633	4434272	3448836
80	2021-03-09 00:00:00.000	3365	85696	4458223	3517750

#C שאילתות בשפת

שאילתא המקבלת שתי מילונים first ו second המכילים נתונים אודות כמות המתחסנים במנה הראשונה והשניה (בהתאם) לפי ימים (ערכי המפתח), השאילתא מחזירה מילון חדש המכיל את ההפרש בין מספר המתחסנים במנה השנייה למנה הראשונה (עקב דרישות UI).

```
(from f in first
join s in second on f.Key equals s.Key
```

```
select new { key = f.Key, val = f.Value - s.Value })
.ToDictionary(t => t.key, t => t.val);
```

שאילתא המקבלת מילון Data המכיל נתונים אודות כמות מתחסנים (במנה כלשהית) לפי ימים (ערכי number_of_days המפתח), השאילתא מחזירה מילון חדש המכיל רק את

```
(from d in data
where d.Key >= data.Keys.Last().AddDays(-number_of_days)
select new { key = d.Key, val = d.Value })
.ToDictionary(t => t.key, t => t.val);
```

שאילתא המקבלת שתי מילונים second_by_day ו first_by_day המכילים נתונים אודות כמות המתחסנים במנה הראשונה והשנייה (בהתאם) לפי ימים (ערכי המפתח), וממזירה מילון שערכי המפתחות שלו הם תאריכים וערכי המטרה הם מערך מסוג int בגודל 2 כאשר הערך הראשון הוא כמות המתחסנים בנמה הראשונה שנוספו באותו יום והערך השני עבוד החיסון השני.

שאילתא המקבלת מילון Data המכיל נתונים אודות כמות מתחסנים (במנה כלשהית) לפי ימים (ערכי day). המפתח) ויום מסוים day, השאילתא מחזירה את כמות המתחסנים ביום שלפני

```
(from d in days
where d.Key == day.AddDays(-1)
select d.Value).ToList().Sum();
```

שאילתא המקבלת שתי מילונים המכילים נתונים אודות כמות הבדיקות החיוביות והשליליות (בהתאם) לפי ימים (ערכי המפתח), השאילתא מחזירה מילון חדש כך שהמפתחות שלו הם תאריכים וערכי המטרה הם מספר הבדיקות הכולל שנעשו באותו היום (כמות התוצאות החיוביות + השליליות).

שאילתא המקבלת שתי מילונים המכילים נתונים אודות כמות הבדיקות החיוביות והשליליות (בהתאם) לפי ימים (ערכי המפתח), השאילתא מחזירה מילון חדש כך שהמפתחות שלו הם תאריכים וערכי המטרה הם אחוז הבדיקות החיוביות שהתקבלו באותו.

פיתוח אפליקציה יישומית:

עבור תצוגת בסיס הנתונים יצרנו אפליקציית WPF המממשת את מודל שלושת השכבות. בנוסף נעשה שימוש ב material design לשיפור חווית ה UX.

מחלקת החיסונים: 🧳

להלן המסך הראשי של מחלקת החיסונים, במסך זה יש מידע על:

• מספר הכולל של המחוסנים במנה הראשונה של החיסון לקורונה.

- מספר הכולל של המחוסנים במנה השנייה של החיסון לקורונה.
 - גרף מחוסנים במנה ראשונה/שניה לפי יום.
- . גרף עמודות המייצג עבור כל יום את כמות האנשים שהתחסנו במנה הראשונה/השנייה.
 - . גרף מחוסנים במנה ראשונה/שניה לפי יום ולפי עיר.

מחלקת בדיקות קורונה: 🖥

להלן המסך הראשי של מחלקת בדיקות הקורונה, במסך זה יש מידע על:

- מספר המאומתים החדשים אתמול.
- גרף המציג את כמות המאומתים לפי יום.
- גרף המציג את אחוז המאומתים מכלל בדיקות הקורונה לפי יום.
 - גרף המציג את כמות הבדיקות שנעשו ליום.

