ENG1005: Lecture 21

Lex Gallon

May 8, 2020

Contents

Parametric surfaces - continu		
Examples	 	
Level surface		
Examples	 	
Limits and continuity		
Definition	 	
Our notation for balls		
Partial derivatives §9.6.2		
Partial derivatives §9.6.2 Definition	 	
Partial derivatives §9.6.2 Definition	 	
Partial derivatives §9.6.2 Definition	 	
Partial derivatives §9.6.2 Definition	 	
Remarks	 	

Video link

Click here for a recording of the lecture.

Parametric surfaces - continued

Examples

$$\begin{array}{l} \text{(a)} \ \ f(x,y) = \sqrt{1-x^2-y^2}, \ x^2+y^2 \leq 1. \\ \text{The graph of } f \ \text{is the (unit) hemisphere.} \\ S = \{(x,y,\sqrt{1-x^2-y^2}) \mid x^2+y^2 \leq 1\}. \end{array}$$

(b) $\mathbf{r}(\theta, z) = (\cos \theta, \sin \theta, z), \quad 0 \le \theta \le 2\pi, -\infty < z < \infty.$ This is a cylinder centred on the z-axis. Is this a graph?

Level surface

Given a function of 3 variable f(x, y,), we can define a surface

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\}$$

This type of surface is known as a level surface (note however that there can be some degenerate cases).

Examples

- (a) Let f(x, y, z) = x + 2y + 3z 1. Then f(x, y, z) = 0 defines a plane in \mathbb{R}^3 .
- (b) Let $f(x, y, z) = x^2 + y^2 + z^2$. Then $f(x, y, z) = 1 \Leftrightarrow x^2 + y^2 + z^2 = 1$ defines a unit sphere in \mathbb{R}^3 .
- (c) If g(x, y) is a function of 2 variables, then the graph of g(x, y) can be represented as a level surface by setting

$$f(x, y, z) = g(x, y) - z$$

because then

$$f(x, y, z) = 0 \Leftrightarrow z = g(x, y)$$

(d) Let $f(x,y) = x^2 + y^2 - 1$. Then

$$f(x,y) = 0 \Leftrightarrow x^2 + y^2 = 1$$

defines the unit circle in \mathbb{R}^2 .

Limits and continuity

Definition

Given a function $f(\mathbf{x})$ of n variables $(\mathbf{x} = (x_1, x_2, ..., x_n))$ that is defined for all \mathbf{x} satisfying $0 < |\mathbf{x} - \mathbf{p}| < R$, we say that the limit of $f(\mathbf{x})$ equals ℓ as \mathbf{x} goes to \mathbf{p} , denoted by

$$\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\ell$$

if for every $\epsilon > 0$, there exists a $\delta \in (0, R)$ such that $|f(\mathbf{x}) - \ell| < \epsilon$ whenever $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Moreover,

- (i) If $f(\mathbf{x})$ is defined for $\mathbf{x} = \mathbf{p}$ and $\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$, then we say that $f(\mathbf{x})$ is continuous at \mathbf{p} .
- (ii) If $D \subset \mathbb{R}^n$ and $f(\mathbf{x})$ is continuous at each $\mathbf{p} \in D$, then we say that $f(\mathbf{x})$ is continuous on D.

Our notation for balls

$$B_R(\mathbf{p}) = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x} - \mathbf{p}| < R \}$$

$$B_R^X(\mathbf{p}) = \{ \mathbf{x} \in \mathbb{R}^n \mid 0 < |\mathbf{x} - \mathbf{p}| < R \} \quad \text{(doesn't include center point)}$$

$$\overline{B}_R(\mathbf{p}) = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x} - \mathbf{p}| \le R \}$$

Note, B stands for 'ball', R stands for 'radius'.

Partial derivatives §9.6.2

Definition

The first partial derivatives of a two variable function f(x, y) with respect to the variables x and y at the point (a, b) are defined by

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

and similarly

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

Remarks

(i) If we define

$$h(x) = f(x, y), y$$
-fixed, $g(y) = f(x, y), x$ -fixed

then

$$\frac{\partial f}{\partial x}(x,y) = \frac{dh}{dx}(x)$$
 and $\frac{\partial f}{\partial y}(x,y) = \frac{dg}{dy}(y)$

(ii) There exist many notations for partial derivatives

$$\frac{\partial f}{\partial x}(a,b) = f_x(a,b) = \partial_x f(a,b) = D_1 f(a,b) = \partial_1 f(a,b)$$

Example

$$f(x,y) = \cos(x)\sin(y)$$

Compute

$$\frac{\partial f}{\partial x}(x,y)$$

Solution

Treating y as a constant, then

$$\frac{\partial}{\partial x}(\cos(x)\sin(y)) = \sin(y)\frac{d}{dx}(\cos(x)) = -\sin(y)\sin(x)$$

Therefore

$$\frac{\partial f}{\partial x}(x,y) = -\sin(y)\sin(x)$$

Example

Compute

$$\frac{\partial}{\partial x} \left(y^{yx^2} \right)$$

Solution

$$\frac{\partial}{\partial x} (y^{yx^2}) = \ln(y) a^{yx^2} \frac{\partial}{\partial x} (yx^2)$$
$$= \ln(y) a^{yx^2} y \frac{d}{dx} (x^2)$$
$$= 2 \ln(y) a^{yx^2} y$$

Successive differentiation §9.6.7

Given a function f(x, y), then are 4 partial derivatives of second order.

$$\frac{\partial^2 f}{\partial x^2} := \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \qquad \qquad \frac{\partial^2 f}{\partial x \partial y} := \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

$$\frac{\partial^2 f}{\partial y^2} := \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right), \qquad \qquad \frac{\partial^2 f}{\partial y \partial x} := \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$