

Version: 1.0

Release date: 13 January 2017

#### © 2016 - 2017 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.





# **Document Revision History**

| Revision | Date            | Description     |
|----------|-----------------|-----------------|
| 1.0      | 13 January 2017 | Initial release |



## **Table of Contents**

| 1. | Intro  | duction                                                                              | 6  |
|----|--------|--------------------------------------------------------------------------------------|----|
|    | 1.1.   | Overview                                                                             | 6  |
|    | 1.2.   | Features                                                                             |    |
| 2. | Pin As | ssignment and Description                                                            | 8  |
|    | 2.1.   | Pin assignment (top view)                                                            |    |
|    | 2.2.   | Pin descriptions                                                                     |    |
| 3. | Syste  | m Block Diagrams                                                                     |    |
|    | 3.1.   | Single-chip receiver architecture                                                    |    |
|    | 3.2.   | Functional block diagram (RF subsystem)                                              |    |
| 4. |        | Subsystem Features                                                                   |    |
| ٠. | 4.1.   | Low Noise Amplifier (LNA) and Mixer                                                  |    |
|    | 4.1.   | Voltage Controlled Oscillator (VCO) and synthesizer                                  |    |
|    | 4.2.   | Intermediate frequency (IF) channel select filter (CSF)                              |    |
|    | 4.4.   | Programmable Gain Amplifier (PGA)                                                    |    |
|    | 4.5.   | Analog-to-Digital Converter (ADC)                                                    |    |
| _  | _      |                                                                                      |    |
| 5. |        | ssor Subsystem Features                                                              |    |
|    | 5.1.   | ARM7EJ-S                                                                             |    |
|    | 5.2.   | Cache                                                                                | _  |
|    | 5.3.   | Boot ROM                                                                             | _  |
|    | 5.4.   | Battery backed-up memory                                                             |    |
|    | 5.5.   | Switching Mode Power Supply (SMPS)                                                   |    |
|    | 5.6.   | Timer function                                                                       |    |
|    | 5.7.   | General Purpose Input/Output (GPIO) in the RTC domain                                |    |
|    | 5.8.   | Low power detection                                                                  |    |
|    | 5.9.   | Clock module                                                                         |    |
|    |        | Reset controller                                                                     |    |
|    | 5.11.  | Serial interfaces                                                                    |    |
|    |        | 5.11.1. Universal Asynchronous Receiver/Transmitter (UART)                           |    |
|    |        | 5.11.2. Serial Peripheral Interface (SPI)                                            |    |
|    | F 43   | 5.11.3. Inter-Integrated Circuit (I2C)                                               |    |
|    |        | Interrupt control unit                                                               |    |
|    |        | EEPROM                                                                               |    |
|    |        | eFuse                                                                                |    |
|    |        | General-Purpose Input/Output (GPIO) unit                                             |    |
|    |        | PPS                                                                                  |    |
|    |        | External clock (ECLK)                                                                |    |
|    |        | SYNC                                                                                 |    |
|    |        | Power schemes                                                                        |    |
| 6. |        | ical Characteristics                                                                 |    |
| 0. | 6.1.   | DC characteristics                                                                   |    |
|    | 0.1.   | 6.1.1. Absolute maximum ratings                                                      |    |
|    |        | 6.1.2. Recommended operating conditions                                              |    |
|    |        | 6.1.3. General DC characteristics                                                    |    |
|    |        | 6.1.4. DC electrical characteristics for 2.8 volts operation                         |    |
|    |        | 6.1.5. DC electrical characteristics for 1.8 volts operation                         |    |
|    |        | 6.1.6. DC electrical characteristics for 1.8 volts operation (for TIMER and 32K_OUT) |    |
|    | 6.2.   | Analog related characteristics                                                       |    |
|    | 0.2.   | 6.2.1. SMPS DC characteristics                                                       |    |
|    |        | O.E.I. Shirt S De Characteristics                                                    | 22 |

# MEDIATEK

## MT3339 All-in-One GNSS Datasheet

|    |       | 6.2.2.    | TCXO LDO DC characteristics                    | 22 |
|----|-------|-----------|------------------------------------------------|----|
|    |       | 6.2.3.    | TCXO switch DC characteristics                 |    |
|    |       | 6.2.4.    | 1.2 volts core LDO DC characteristics          | 23 |
|    |       | 6.2.5.    | 1.2 volts RTC LDO DC characteristics           | 23 |
|    |       | 6.2.6.    | 32 kHz crystal oscillator (XOSC32)             | 23 |
|    | 6.3.  | RF relate | ed characteristics                             |    |
|    |       | 6.3.1.    | DC electrical characteristics for RF subsystem | 23 |
|    |       | 6.3.2.    | RX chain from LNA to PGA, before ADC           |    |
|    |       | 6.3.3.    | Receiver front-end part (LNA only)             | 24 |
|    |       | 6.3.4.    | Mixer and channel selection filter (CSF)       |    |
|    |       | 6.3.5.    | Programmable gain amplifier (PGA)              |    |
|    |       | 6.3.6.    | 2-bit and 4-bit quantizer (ADC)                | 25 |
|    |       | 6.3.7.    | Integrated synthesizer                         |    |
|    |       | 6.3.8.    | Crystal oscillator (XO)                        |    |
| 7. | Inter | face Char | acteristics                                    | 26 |
|    | 7.1.  | JTAG int  | terface timing                                 | 26 |
|    | 7.2.  |           | interface timing                               |    |
|    | 7.3.  |           | rface timing                                   |    |
|    | 7.4.  |           | rface timing                                   |    |
|    | 7.5.  |           | И I2C interface timing                         |    |
| 8. | Pack  | age Descr | ription                                        | 29 |
|    | 8.1.  | Orderin   | g information                                  | 29 |
|    | 8.2.  | Top mar   | rk                                             | 29 |
|    | 8.3.  | Package   | e dimensions                                   | 30 |





# **Lists of figures**

| Figure 3-1: MT3339 system block diagram                     | 11 |
|-------------------------------------------------------------|----|
| Figure 3-2: MT3339 RF functional block diagram              | 11 |
| Figure 5-1: RTC with internal RTC LDO application circuit 1 | 13 |
| Figure 5-2: RTC with internal RTC LDO application circuit 2 | 14 |
| Figure 5-3: Power on reset diagram                          | 15 |
| Figure 5-4: Power on/off reset behavior                     | 15 |
| Figure 5-5: Flow diagram of SYNC function                   | 17 |
| Figure 5-6: Power supply connection (low power)             | 18 |
| Figure 5-7: Power supply connection (low cost)              | 18 |
| Figure 5-8: Power supply connection (external LDO)          | 19 |
| Figure 5-9: Power on/off sequence for external LDO mode     | 19 |
| Figure 7-1: Timing diagram of JTAG interface                | 26 |
| Figure 7-2: Timing diagram of RS-232 interface              | 27 |
| Figure 7-3: Timing diagram of SPI interface                 | 27 |
| Figure 7-4: Timing diagram of HOST I2C interface            | 28 |
| Figure 7-5: Timing diagram of EEPROM I2C bus                | 28 |



### 1. Introduction

#### 1.1. Overview

MediaTek MT3339 is a high-performance single-chip GPS solution that includes CMOS RF, digital baseband, ARM7 CPU and an embedded flash (optional). It's able to achieve the industry's highest level of sensitivity, accuracy and Time-to-First-Fix (TTFF) with the lowest power consumption. Its small footprint lead-free package and minimal additional BOM requirements provide significant reductions in the design, manufacturing and testing resources required to create devices.

The main features that help reduce device BOM are:

- Built-in Low Noise Amplifier (LNA) that eliminates the need for an external antenna.
- Built-in image-rejection mixer that removes the need for an external Surface Acoustic Wave (SAW) filter.
- Built-in automatic center frequency calibration bandpass filter that means an external filter is not required.
- Built-in power management that enables MT3337 to be easily integrated into your system without an
  extra voltage regulator. With both linear and highly efficient switching type regulators embedded,
  MT3337 supports direct battery connection and doesn't need an external low-dropout (LDO) regulator,
  which offers flexibility in circuit design.

In addition, 12 multi-tone active interference cancellers (ISSCC2011 award) offer you more flexibility in system design. The integrated PLL with Voltage Controlled Oscillator (VCO) provides excellent phase noise performance and fast locking time. A battery backed-up memory and a real-time clock are also provided to accelerate acquisition at the system restart.

MT3339 supports up to 210 PRN channels. With 66 search channels and 22 simultaneous tracking channels, MT3339 acquires and tracks satellites in the shortest time even at indoor signal levels. MT3339 supports various location and navigation applications, including autonomous GPS, SBAS ranging (WAAS, EGNOS, GAGAN, and MSAS), QZSS, DGPS (RTCM) and A-GPS.

MT3339 supports EASY™ (Embedded Assisted System) a Self-Generated Orbit Prediction feature. In comparison to EPO, Hot Still and A-GPS, it provides up to three days of GPS orbit prediction ability without any host CPU porting or internet connectivity.

The excellent low-power consumption characteristics of MT3339 (25 mW for acquisition and 18 mW for tracking) means that — without charging the specified battery — power sensitive devices, especially portable applications, will be able to offer device users longer operating times. Combined with advanced features including EASY<sup>TM</sup>, EPO<sup>TM</sup> and LOCUS<sup>TM</sup>, MT3339 provides always-on position with minimal average power consumption. These great features provide you with outstanding performance for portable applications, such as DSC, mobile phones, PMP and gaming devices.



#### 1.2. Features

- Specifications
  - 22 tracking and 66 acquisition-channel GPS receiver
  - o Supports up to 210 PRN channels
  - Supports GPS including QZSS, SBAS ranging
  - Supports WAAS/EGNOS/MSAS/GAGAN
  - 12 multi-tone active interference cancellers (ISSCC2011 award)
  - o RTCM ready
  - Indoor and outdoor multi-path detection and compensation
  - Supports FCC E911 compliance and A-GPS
  - Maximum fixed update rate up to 10 Hz
- Advanced software features
  - EPO<sup>TM</sup> orbit prediction
  - o EASY<sup>TM</sup> self-generated orbit prediction
  - Supports LOCUS<sup>TM</sup> logger function
- Reference oscillator
  - TCXO
    - Frequency: 16.368 MHz, 12.6 ~ 40.0 MHz
    - Frequency variation: ±2.0 ppm
  - o Crystal
    - Frequency: 26 MHz, 12.6 ~ 40.0 MHz
    - Frequency accuracy: ±10 ppm
- RF configuration
  - o 4-bit IF signal
  - SOC, integrated in single chip with CMOS process
- ARM7EJ-S CPU
  - o Up to 98 MHz processor clock
  - o Dynamic clock rate control
- Memory:
  - o 8Mbit internal flash
  - o External SPI serial flash of up to 128 Mbit
- Pulse-per-second (PPS) GPS time reference
  - Adjustable duty cycle
  - o Typical accuracy: ±10 ns
- Power scheme
  - Built-in 1.8 volts Switching Power Mode Supply (SMPS)
  - Direct lithium battery connection (2.8 ~ 4.3 volts)
  - Built-in 1.2 volts RTC LDO, 1.2 volts core LDO and 2.8 volts TCXO LDO
- Build-in reset controller
  - Does not need an external reset control IC
- Internal real-time clock (RTC)
  - 32.768 kHz ± 20 ppm crystal
  - $\circ \quad \text{Timer pin for external device on/off control} \\$
  - o 1.2 volts RTC clock output
  - Supports external pin to wake up MT3339
- Serial interfaces

- o 3 UARTs
- o SPI and I2C
- o GPIO interface (up to 16 pins)
- NMEA
  - NMEA 0183 standard V3.01 and backward compliance
  - o Supports 219 different datums
- Superior sensitivities
  - Acquisition: -148 dBm (cold) / -163 dBm (hot)
  - o Tracking: -165 dBm
- Ultra-low power consumption
  - o Acquisition: 25 mW
  - o Tracking: 18 mW
- Package
  - VFBGA: 4.3 mm x 4.3 mm, 57 balls, 0.5 mm pitch
- Slim hardware design
  - o Mimimun solution footprint of 52 mm<sup>2</sup>



# 2. Pin Assignment and Description

## 2.1. Pin assignment (top view)

|   | 1                 | 2                  | 3               | 4        | 5              | 6              | 7              | 8              |
|---|-------------------|--------------------|-----------------|----------|----------------|----------------|----------------|----------------|
| A | RFIN              | AVSS_HF            | EXT_R           | HRST_B   | DVDD_COR<br>E2 | SCS1_          | GIO11          | NC             |
| В | AVDD_RFC<br>ORE   | AVSS_VCO           | RFTEST          | XTEST    | DVDD_IO2       | GIO9           | RXO            | TX0            |
| С | AVDD_BGX<br>OTHLS | AVSS_LF            | NC              | EINTO    | EINT1          | GIO7           | EINT2          | RX2            |
| D | OSC               | AVSS28_TL<br>DO    | NC              | NC       | DVSS_IO2       | GIO10          | SCK1           | EINT3          |
| E | AVDD43_V<br>BAT   | AVDD28_C<br>LDO    | NC              | NC       | DVSS_COR<br>E  | GIO8           | DVSS_IO1       | DVDD_IO1       |
| F | VREF              | GND_MISC           | AVSS12_CL<br>DO | BUCK_FB  | DVDD_COR<br>E1 | DVDD_IO3       | TX2            | FSOURCE_<br>WR |
| G | AVDD28_T<br>LDO   | AVDD28_T<br>LDO_SW | PGND_SM<br>PS   | NC       | TIMER          | 32K_OUT        | GIO6           | RX1            |
| Н | AVDD12_C<br>LDO   | LXBK               | AVDD43_S<br>MPS | RTCCLK_O | RTCCLK         | AVDD43_R<br>TC | AVDD12_R<br>TC | TX1            |

## 2.2. Pin descriptions

| Pin#                          | Symbol                                            | Туре             | Description                              |  |
|-------------------------------|---------------------------------------------------|------------------|------------------------------------------|--|
| System                        | interface (2 pins)                                |                  |                                          |  |
| A4                            | 4 HRST_B 2.8V LVTTL input System reset. Active le |                  | System reset. Active low                 |  |
| B4                            | XTEST                                             | 2.8V LVTTL input | Test mode. Must keep low in normal mode. |  |
| Peripheral interface (8 pins) |                                                   |                  |                                          |  |
| В7                            | RXO                                               | 2.8V, LVTTL I/O  | Serial input for UART 0                  |  |
| В8                            | TX0                                               | 2.8V, LVTTL I/O  | Serial output for UART 0                 |  |
|                               |                                                   | PPU, PPD, SMT    | Default: pull-up                         |  |
|                               |                                                   | 4mA, 8mA, 12mA,  | Default: 8mA driving                     |  |
|                               |                                                   | 16mA PDR         |                                          |  |
| G8                            | RX1                                               | 2.8V, LVTTL I/O  | Serial input for UART 1                  |  |
| Н8                            | TX1                                               | 2.8V, LVTTL I/O  | Serial output for UART 1                 |  |
| C8                            | RX2                                               | 2.8V, LVTTL I/O  | Serial input for UART 2                  |  |
| F7                            | TX2                                               | 2.8V, LVTTL I/O  | Serial output for UART 2                 |  |



| Pin#     | Symbol                      | Туре                                                             | Description                                                                                                                    |
|----------|-----------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| D7       | SCK1                        | 2.8V, LVTTL I/O                                                  | SPI clock output                                                                                                               |
| A6       | SCS1                        | 2.8V, LVTTL I/O                                                  | SPI slave selection 1                                                                                                          |
| Debuggi  | ing interface (6 pins)      | , , , , ,                                                        |                                                                                                                                |
| G7       | GI06                        | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| C6       | GI07                        | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| E6       | GI08                        | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| B6       | GI09                        | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| D6       | GIO10                       | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| A7       | GI011                       | 2.8V, LVTTL I/O                                                  | GPIO                                                                                                                           |
| Externa  | l system interface (4 pins) |                                                                  |                                                                                                                                |
| C4       | EINTO                       | 2.8V, LVTTL I/O                                                  | External interrupt 0                                                                                                           |
| C5       | EINT1                       | 2.8V, LVTTL I/O                                                  | External interrupt 1                                                                                                           |
| C7       | EINT2                       | 2.8V, LVTTL I/O                                                  | External interrupt 2                                                                                                           |
| D8       | EINT3                       | 2.8V, LVTTL I/O                                                  | External interrupt 3                                                                                                           |
| RTC inte | erface (6 pins)             |                                                                  |                                                                                                                                |
| H6       | AVDD43_RTC                  | Analog power                                                     | RTC LDO input                                                                                                                  |
| H7       | AVDD12_RTC                  | Analog power                                                     | RTC LDO output                                                                                                                 |
| H5       | RTCCLK                      | Analog input                                                     | RTC 32.768kHz XTAL input                                                                                                       |
| H4       | RTCCLK_O                    | Analog output                                                    | RTC 32.768kHz XTAL output                                                                                                      |
| G6       | 32K_OUT                     | 1.2V LVTTL I/O                                                   | RTC domain GPIO pin, can be programmed to 32KHz clock output, DR wake-up signal input, or low power detection indicator signal |
| G5       | TIMER                       | 1.2V LVTTL I/O<br>open drain, SMT<br>4mA, 8mA, 12mA,<br>16mA PDR | Wake up other devices from RTC. If this pin is not used, tie it to the ground.                                                 |
| RF & an  | alog                        |                                                                  |                                                                                                                                |
| B1       | AVDDRF_CORE                 | RF power                                                         | 1.8V supply for RF core circuits                                                                                               |
| A3       | EXT_R                       | Analog                                                           | External R connection for R calibration                                                                                        |
| В3       | RFTEST                      | Analog signal                                                    | RF testing signal                                                                                                              |
| B2       | AVSS_VCO                    | RF ground                                                        | GND pin for SX VCO                                                                                                             |
| C1       | AVDD_BGXOTHLS               | RF power                                                         | 1.8V supply for XTAL OSC, bandgap,<br>Thermal sensor and level shifter                                                         |
| C2       | AVSS_LF                     | RF ground                                                        | GND pin for low-frequency circuits                                                                                             |
| D1       | OSC                         | Analog signal                                                    | Input for crystal oscillator or TCXO                                                                                           |
| A2       | AVSS_HF                     | RF ground                                                        | GND pin for high-frequency circuits                                                                                            |
| A1       | RF_IN                       | RF signal                                                        | LNA RF Input pin                                                                                                               |
| F5       | DVDD_CORE1                  | Digital power                                                    | Digital 1.2V core power input                                                                                                  |
| A5       | DVDD_CORE2                  | Digital power                                                    | Digital 1.2V core power input                                                                                                  |
| E5       | DVSS_CORE                   | Digital ground                                                   | Digital 1.2V core ground                                                                                                       |
| E8       | DVDD_IO1                    | Digital power                                                    | Digital 1.8/2.8V IO power input                                                                                                |
| B5       | DVDD_IO2                    | Digital power                                                    | Digital 1.8/2.8V IO power input                                                                                                |
| E7       | DVSS_IO                     | Digital ground                                                   | Digital 1.8/2.8V IO ground                                                                                                     |



| Pin# | Symbol         | Туре           | Description                                                                                                |
|------|----------------|----------------|------------------------------------------------------------------------------------------------------------|
| F6   | DVDD_SF        | Digital power  | Digital 2.8V serial flash power input                                                                      |
| D5   | DVSS_SF        | Digital ground | Digital 2.8V serial flash ground                                                                           |
| F8   | FSOURCE_WR     | Digital power  | EFUSE 2.8V write power supply                                                                              |
| F1   | VREF           | Analog         | Bandgap output pin. Must add 1μF<br>decoupling cap on PCB.                                                 |
| F2   | GND_MISC       | Analog ground  | GND pin for buck controller                                                                                |
| D2   | AVSS28_TLDO    | Analog ground  | GND pin for TCXO LDO and start-up block                                                                    |
| E1   | AVDD43_VBAT    | Analog power   | TCXO LDO input pin. Always be powered by external source. UVLO will detect this PIN to check power status. |
| G2   | AVDD28_TLDO_SW | Analog power   | TCXO power switch output pin                                                                               |
| G1   | AVDD28_TLDO    | Analog power   | TCXO LDO output pin                                                                                        |
| E2   | AVDD28_CLDO    | Analog power   | Core LDO input pin. Always powered by external source or SMPS                                              |
| H1   | AVDD12_CLDO    | Analog power   | Core LDO output pin                                                                                        |
| F3   | AVSS12_CLDO    | Analog ground  | GND pin for core LDO                                                                                       |
| G3   | PGND_SMPS      | SMPS           | SMPS GND pin                                                                                               |
| H2   | LXBK           | SMPS           | SMPS output pin                                                                                            |
| Н3   | AVDD43_SMPS    | SMPS           | SMPS input pin.                                                                                            |
| F4   | BUCK_FB        | SMPS           | SMPS feedback pin                                                                                          |

#### Notes:

PPU = Programmable pull-up

PPD = Programmable pull-down

PSR = Programmable slew rate

PDR = Programmable driving



## 3. System Block Diagrams

## 3.1. Single-chip receiver architecture



Figure 3-1: MT3339 system block diagram

## 3.2. Functional block diagram (RF subsystem)



Figure 3-2: MT3339 RF functional block diagram



## 4. Radio Subsystem Features

## 4.1. Low Noise Amplifier (LNA) and Mixer

The MT3339 include an LNA that offers devices two antenna options:

- A GPS antenna connected directly to the internal LNA in high-gain mode, ideal for solutions without an external LNA.
- An external antenna and high gain external LNA connected to the internal LNA in low-gain mode, which offers high linearity. In this configuration, the external LNA gain ranging from 0 to 36 dB is recommended.

The mixer down converts the amplified L1 band (1575.42 MHz) signal to a 4.092 MHz differential IF signal. The current chip provides three configurations to choose from — high-gain LNA, mid-gain LNA and low-gain LNA. The high-gain LNA is used for low-cost solution without external LNA. The mid-gain LNA provides moderate noise figure. The low-gain LNA offers extremely low RF current consumption but the worst noise figure performance. The down-conversion mixer is a single-ended passive mixer with current mode interface between the mixer and complex channel select filter (CSF).

## 4.2. Voltage Controlled Oscillator (VCO) and synthesizer

The frequency synthesizer includes a crystal oscillator, VCO, divider, phase frequency detector (PFD), charge pump (CP) and loop filter, which are all integrated on the MT3339 chip. The VCO is auto-calibrated to its required sub-band when the chip is powered on. The synthesizer has two topologies — integer-N and fractional-N, selectable through the baseband control. Integer-N synthesizer only supports 16.368 MHz. Other clock modes in a range from 12.6 MHz up to 40 MHz are supported by fractional-N synthesizer, together with a sigma-delta modulator (SDM) and multi-modulus divider (MMD).

#### 4.3. Intermediate frequency (IF) channel select filter (CSF)

The downconverted IF signal passes through a bandpass CSF. Centered at 4.092 MHz, the filter rejects out-of-band (10 MHz) interferences by more than 20 dB and has a passband ripple of less than 0.5 dB. The current-mode mixer and filter together provide a 32 dB passband gain to improve the noise figure.

#### 4.4. Programmable Gain Amplifier (PGA)

The PGA has approximately 40 dB of gain control range with approximately 1.6 dB per step. The maximum gain is around 40 dB. High-pass filter (HPF) circuits are implemented among PGAs to remove DC offset quickly.

## 4.5. Analog-to-Digital Converter (ADC)

The differential IF signal is quantized by a 4-bit ADC. The sampling clock can be provided from TCXO oscillator or using local oscillator with frequency divided by 96.



## 5. Processor Subsystem Features

#### 5.1. **ARM7EJ-S**

The ARM7EJ-S processor provides flexibility necessary to build Java-enabled, real-time embedded devices requiring small size, low-power and high performance. It builds on the features and benefits of the established ARM7TDMI core and is delivered in synthesizable form. ARM7EJ-S is supported by a wide variety of development tools and can run at speeds up to 98 MHz.

ARM7EJ-S includes a JTAG interface that provides a standard development and debugging interface. The interface can connect to a variety of off-the-shelf emulators. The emulators can provide single-step, trap and access to all the internal registers of the processor subsystem.

#### 5.2. Cache

MT3339 provides a cache to speed up program execution and reduce external flash access times. It supports up to 64 Kbits cache buffer and can be used as internal memory when it is not used fully.

#### 5.3. Boot ROM

The embedded boot ROM provides a function of loading a set of user code through a serial interface into SRAM. The serial interface (UART/SPI/I2C) is determined by strap control.

### 5.4. Battery backed-up memory

MT3339 provides very low leakage (about 5  $\mu$ A in the backup mode) battery backed-up memory, which contains all the necessary GPS information for quick start-up and a small amount of user configuration variables. There is a built-in 1.2 volts LDO for RTC domain and it can be bypassed while an external LDO is applied. The RTC LDO is a voltage regulator having very low quiescent current and typical quiescent current less than 2.5  $\mu$ A. The small ceramic capacitor can be used as the output capacitor and the stable operation region ranges from very light load (~=0) to about 3 mA. The RTC LDO application circuits are shown in Figure 5-1 and Figure 5-2.



Figure 5-1: RTC with internal RTC LDO application circuit 1



Figure 5-2: RTC with internal RTC LDO application circuit 2

### 5.5. Switching Mode Power Supply (SMPS)

A built-in SMPS provides 1.8 volts power supply for the digital 1.2 volts Core Low-Dropout (CLDO) regulator and RF input power. In the active mode, the SMPS is operated in automatic pulse width modulation (PWM) mode. In low power mode, the SMPS operates with reduced switching frequency in the PFM mode. The recommended L/C value is 4.7  $\mu$ H / 10  $\mu$ F.

#### 5.6. Timer function

The timer function supports a time tick generation of 31.25 ms resolution. With the 24-bit counter, the period of timer is from 31.25 ms to 524,287 s. The "PAD\_TIMER" pin outputs 1'b0 signal during the timer period and becomes an input pin after timeout. The power control function for the system can be executed by connecting this pin to an external LDO controller and adding an external pull-high circuit.

#### 5.7. General Purpose Input/Output (GPIO) in the RTC domain

The "32K\_OUT" pin in the RTC domain can output 32.768 kHz clock. This can be used to support low clock rate operation mode for applications or peripherals that need an external clock source. This pin can be programmed to be the input pin to receive a wake-up signal from an external accelerator sensor IC, when MT3339 is in the low-power mode.

#### 5.8. Low power detection

A low power detection circuit is implemented. Whenever the independent power source (AVDD12\_RTC) voltage becomes low, the low power detection circuit will provide an indicator signal at pin 32K\_OUT (output high in normal condition and low in low-power condition).

#### 5.9. Clock module

The clock module generates all internal clocks required by processor, correlator, internal memory, bus interface and so on. The referenced input clock is generated from the RF subsystem.

#### 5.10. Reset controller

The built-in reset controller generates reset signals for processor subsystem. It provides power-on reset feature and hardware trapping function. The power-on reset level is at  $2.7 \pm 0.1$  volts. The software reset function for different circuit blocks are is also included.

In Figure 5-4, the voltage drop time  $T_{drop\_vbat}$  and  $T_{drop\_cldo}$  depends on the capacitance connection of their power net. However,  $T_{drop\_vbat} > T_{drop\_cldo}$  should be guaranteed for the correct reset operation during power off sequence. It's strongly recommended using external LDOs without output discharged function or ensure  $T_{drop\_vbat}$  is greater than 100 ms.



Figure 5-3: Power on reset diagram



Figure 5-4: Power on/off reset behavior

#### 5.11. Serial interfaces

MT3339 supports three serial interfaces, UART, SPI and I2C. The active serial interface type is determined by strap pins.

#### 5.11.1. Universal Asynchronous Receiver/Transmitter (UART)

MT3339 has three full duplex serial ports that can be used for serial data communication. A UART converts bytes of data to and from asynchronous start-stop bit streams represented as binary electrical impulses.

UART communication functions provided include: UART data transmission/receive and NMEA sentences input/output. In general, UART0 is used for NMEA output and PMTK command input, while UART1 is RTCM input. You can adjust the UART2 port as desired. The receiver (RX) and transmitter (TX) side of every port contains a 16-byte FIFO, but only UART0 has 256 bytes of URAM. The bit rates are selectable and range from 4.8 to 921.6 kbps. UART provides signal or message outputs.



#### 5.11.2. Serial Peripheral Interface (SPI)

The serial peripheral interface port manages the communication between digital baseband and external devices. MT3339 supports both master and slave modes. In the master mode, oonly 4 bytes of register can be transferred. In slave mode 4-byte-register mode or URAM mode is available. In the URAM mode, the transmit and receive data size is 256 bytes. The clock phase and clock polarity are selectable. MT3339 supports manual or automatic indicator for data transfer in the slave mode.

#### 5.11.3. Inter-Integrated Circuit (I2C)

The I2C interface is mainly connected to external devices. MT3339 supports multi-master and slave modes. Both modes have 256-byte URAM mode and 8-byte FIFO mode for transmitting and receiving data. The multi-master mode supports 7-bit and 10-bit address modes up to 400 Kb/s fast mode and 3.4 Mb/s high-speed mode. In addition, MT3339 supports manual or automatic indicator for data transfer in the slave mode. Device addresses in the slave mode are programmable and support fast mode and high-speed mode data transmission and reception.

#### 5.12. Interrupt control unit

The interrupt control unit manages all internal and external sources of interrupts, which include timer, watchdog, all interfaces (UART, I2C and SPI) and external user interrupt pins. These interrupt sources can be used as wake-up events when the chipset is in low power mode.

#### 5.13. Flash

An external SPI serial flash of up to 128 Mb is supported. A MediaTek Flash Tool is provided for downloading firmware into the internal flash (8 Mbit).

#### **5.14. EEPROM**

An external I2C interface EEPROM of up to 1 Mb is supported with a dedicated I2C EEPROM interface to read and write data into EEPROM.

## 5.15. eFuse

eFuse is one of the One-Time-Programming (OTP) memories. The internal eFuse supports up to 128 bits for user configuration.

## 5.16. General-Purpose Input/Output (GPIO) unit

MT3339 supports a variety of peripherals through up to 16 GPIO programmable ports. The unit manages all GPIO lines and supports a simple control interface. GPIO provides signal or message outputs.

#### 5.17. PPS

The PPS signal is provided through designated output pin for external applications. In addition to its limit of being active every second, it's possible to set up the duration, frequency and active high/low by programming user-defined settings.

#### 5.18. External clock (ECLK)

An external clock signal can be applied to MT3339 using the ECLK pin and is used to obtain the relation between the external clock and GPS local clock.



With precise external clock input, the clock drift of the GPS local clock can be correctly estimated. Using this information, the Doppler search range is narrowed down. The technology is beneficial because it speeds up the satellite acquisition process. Particularly in the cold start case, due to limited priori information about the satellites' location and local clock uncertainty, a receiver will execute a search in full frequency range. Consequently, a longer acquisition time is expected. However, the ECLK technology is able to reduce the frequency uncertainty so that the search process will be completed in a shorter time. Efficient acquisition and lower power consumption are achieved with ECLK technology.

#### 5.19. SYNC

SYNC is a timestamp signal input pin for introducing an external timing to the GPS receiver. It's used to obtain the relation between the external timing and the GPS receiver local timing, from which the GPS time of week (TOW) can be correctly estimated.

This technology is beneficial for time to first fix (TTFF), particularly in weak signal environments. In hot start, with priori information about the GPS receiver's location and satellite ephemeris data, the GPS receiver uses the correct GPS TOW to accurately predict the signal code chip/phase. As a result, the code search range can be narrowed down and a fast TTFF is achieved.



Figure 5-5: Flow diagram of SYNC function

#### 5.20. Power schemes

This section introduces the power schemes along with other power and voltage assignments — low power (Figure 5-6), low cost (Figure 5-7) and external PMU (Figure 5-8).

- Internal SMPS is used as the source power of the internal RF/BB LDO. It is also used as 1.8 volts I/O power. The internal SMPS can switch to the LDO mode to supply power to each of the about block
- External LDO or VBAT can be used as the main power. The minimum/maximum input voltage of AVDD43 VBAT and AVDD43 SMPS is 2.8/4.3 volts.
- The power-on reset voltage threshold of AVDD43\_VBAT is 2.7 ± 0.1 volts. The maximum TLDO drop out voltage at half load (25 mA) is 0.25 volts. If one external LDO is used to provide power to MT3339, the 3.3 volts external LDO will be recommended after taking TLDO drop-out into consideration.
- The power efficiency in SMPS mode will be better than that in the internal LDO mode.
- I/O supports 1.8 and 2.8 volts. The power comes from SMPS output for 1.8 volts application or TLDO output (AVDD28\_TLDO) for 2.8 volts application.
- The power for internal flash comes from AVDD28\_TLDO.
- TCXO power is from AVDD28\_TLDO\_SW with an internal MUX to select 2.8 volts from AVDD28\_TLDO
  or 1.8 volts from AVDD28\_CLDO by setting up power-on strap.



- RTC LDO input power comes from AVDD28\_TLDO and uses coin battery as the backup battery. A
  Schottky diode is usually used to avoid leakage from coin battery to TLDO.
- In Figure 5-8, if 2.8V TCXO is used, AVDD28\_CLDO should be open for low power operation.



Figure 5-6: Power supply connection (low power)



Figure 5-7: Power supply connection (low cost)



Figure 5-8: Power supply connection (external LDO)



Figure 5-9: Power on/off sequence for external LDO mode



## 6. Electrical Characteristics

## **6.1.** DC characteristics

## 6.1.1. Absolute maximum ratings

| Symbol           | Parameter                             | Rating      | Unit |
|------------------|---------------------------------------|-------------|------|
| AVDD43_SMPS      | SMPS power supply                     | -0.3 ~ 4.3  | V    |
| AVDD43_VBAT      | 2.8 volts TLDO power supply           | -0.3 ~ 4.3  | V    |
| AVDD28_CLDO      | 1.2 volts CLDO power supply           | -0.3 ~ 3.08 | V    |
| DVDD_SF          | Embedded flash power supply           | -0.3 ~ 3.6  | V    |
| DVDD_IO1         | IO 2.8/1.8 volts power supply         | -0.3 ~ 3.6  | V    |
| DVDD_IO2         |                                       |             |      |
| DVDD_CORE1       | Baseband 1.2 volts power supply       | -0.3 ~ 1.32 | V    |
| DVDD_CORE2       |                                       |             |      |
| AVDD43_RTC       | RTC 1.2 volts LDO power supply        | -0.3 ~ 4.3  | V    |
| AVDD_RFCORE      | 1.8 volts supply for RF core circuits | -0.3 ~ 3.08 | V    |
| AVDD_BGXOTHLS    |                                       | -0.3 ~ 3.08 | V    |
| T <sub>STG</sub> | Storage temperature                   | -50 ~ +125  | °C   |
| T <sub>A</sub>   | Operating temperature                 | -45 ~ +85   | °C   |

## **6.1.2.** Recommended operating conditions

| Symbol                   | Parameter                                            | Min. | Тур. | Max. | Unit |
|--------------------------|------------------------------------------------------|------|------|------|------|
| AVDD43_SMPS              | SMPS power supply                                    | 2.8  | 3.3  | 4.3  | V    |
| AVDD43_VBAT              | 2.8 volts TLDO power supply                          | 2.8  | 3.3  | 4.3  | V    |
| DVDD_CORE1<br>DVDD_CORE2 | 1.2 volts baseband core power                        | 1.08 | 1.2  | 1.32 | V    |
| DVDD_IO1                 | 2.8 volts digital I/O power                          | 2.52 | 2.8  | 3.08 | V    |
| DVDD_IO2                 | 1.8 volts digital I/O power                          | 1.62 | 1.8  | 1.98 | V    |
| DVDD_SF                  | Embedded flash power supply                          | 2.7  | 2.8  | 3.6  | V    |
| AVDD_RFCORE              | 1.2 volts supply for RF core circuits in bypass mode | 1.16 | 1.2  | 1.26 | V    |
|                          | 1.8 volts supply for RF core circuits in LDO mode    | 1.62 | 1.8  | 3.08 | V    |
| AVDD_BGXOTHLS            |                                                      | 1.62 | 1.8  | 3.08 | V    |
| T <sub>A</sub>           | Operating temperature                                | -40  | 25   | 85   | °C   |
| T <sub>j</sub>           | Commercial junction operating temperature            | 0    | 25   | 115  | °C   |
|                          | Industry junction operating temperature              | -40  | 25   | 125  | °C   |



#### 6.1.3. General DC characteristics

| Symbol          | Parameter                 | Condition          | Min. | Max. | Unit |
|-----------------|---------------------------|--------------------|------|------|------|
| I <sub>IL</sub> | Input low current         | No pull-up or down | -1   | 1    | μΑ   |
| I <sub>IH</sub> | Input high current        | No pull-up or down | -1   | 1    | μΑ   |
| l <sub>OZ</sub> | Tri-state leakage current |                    | -10  | 10   | μΑ   |

## 6.1.4. DC electrical characteristics for 2.8 volts operation

| Symbol          | Parameter                                        | Condition                        | Min. | Max.           | Unit |
|-----------------|--------------------------------------------------|----------------------------------|------|----------------|------|
| $V_{IL}$        | Input lower voltage                              | LVTTL                            | -0.3 | 0.8            | V    |
| $V_{IH}$        | Input high voltage                               |                                  | 2.0  | 3.6            | V    |
| $V_{T-}$        | Schmitt trigger negative going threshold voltage | LVTTL                            | 0.8  | 1.6            | V    |
| $V_{T+}$        | Schmitt trigger positive going threshold voltage |                                  | 1.6  | 2.0            | V    |
| $V_{OL}$        | Output low voltage                               | I <sub>OL</sub>   = 1.6 to 14 mA | -0.3 | 0.4            | V    |
| V <sub>OH</sub> | Output high voltage                              | I <sub>OH</sub>   = 1.6 to 14 mA | 2.4  | VDD28<br>+ 0.3 | V    |
| R <sub>PU</sub> | Input pull-up resistance                         | PU = high, PD = low              | 40   | 190            | kΩ   |
| $R_{PD}$        | Input pull-down resistance                       | PU = low, PD = high              | 40   | 190            | kΩ   |

## 6.1.5. DC electrical characteristics for 1.8 volts operation

| Symbol           | Parameter                                        | Condition                        | Min.  | Max.            | Unit |
|------------------|--------------------------------------------------|----------------------------------|-------|-----------------|------|
| V <sub>IL</sub>  | Input lower voltage                              | LVTTL                            | -0.18 | 0.4             | V    |
| $V_{IH}$         | Input high voltage                               |                                  | 1.5   | 1.98            | V    |
| V <sub>T</sub> - | Schmitt trigger negative going threshold voltage | LVTTL                            | 0.44  | 0.88            | V    |
| $V_{T+}$         | Schmitt trigger positive going threshold voltage |                                  | 0.88  | 1.1             | V    |
| $V_{OL}$         | Output low voltage                               | I <sub>OL</sub>   = 1.6 to 14 mA | -0.18 | 0.4             | V    |
| V <sub>OH</sub>  | Output high voltage                              | I <sub>OH</sub>   = 1.6 to 14 mA | 1.4   | VDD18<br>+ 0.18 | V    |
| $R_{PU}$         | Input pull-up resistance                         | PU = high, PD = low              | 40    | 190             | kΩ   |
| $R_{PD}$         | Input pull-down resistance                       | PU = low, PD = high              | 40    | 190             | kΩ   |

## 6.1.6. DC electrical characteristics for 1.2 volts operation (for TIMER and 32K\_OUT)

| Symbol          | Parameter                                        | Condition | Min. | Max. | Unit |
|-----------------|--------------------------------------------------|-----------|------|------|------|
| $V_{IL}$        | Input lower voltage                              | LVTTL     | -0.3 | 0.54 | V    |
| $V_{IH}$        | Input high voltage                               |           | 0.66 | 3.6  | V    |
| $V_{T-}$        | Schmitt trigger negative going threshold voltage | LVTTL     | 0.24 | 0.46 | V    |
| V <sub>T+</sub> | Schmitt trigger positive going threshold voltage |           | 0.64 | 0.9  | V    |



| Symbol          | Parameter                  | Condition                  | Min. | Max. | Unit |
|-----------------|----------------------------|----------------------------|------|------|------|
| $V_{OL}$        | Output low voltage         | I <sub>OL</sub>   = 0.9 mA |      | 0.42 | V    |
| V <sub>OH</sub> | Output high voltage        | I <sub>OH</sub>   = 0.9 mA | 0.78 |      | V    |
| R <sub>PU</sub> | Input pull-up resistance   | PU = high, PD = low        | 130  | 560  | kΩ   |
| R <sub>PD</sub> | Input pull-down resistance | PU = low, PD = high        | 130  | 560  | kΩ   |

## 6.2. Analog related characteristics

#### **6.2.1.** SMPS DC characteristics

| Symbol           | Parameter                    | Min. | Тур. | Max. | Unit | Note                 |
|------------------|------------------------------|------|------|------|------|----------------------|
| AVDD43_SMPS      | SMPS input supply voltage    | 2.8  | 3.3  | 4.3  | V    |                      |
| LXBK             | SMPS output                  | 1.71 | 1.8  | 1.95 | V    |                      |
| I <sub>max</sub> | SMPS current limit           | 100  |      |      | mA   |                      |
| I <sub>cc</sub>  | For normal operation current |      | 20   | 70   | mA   |                      |
| ΔV_PWM           | Ripple of PWM mode           |      |      | 40   | mV   | With L=4.7μH, C=10μF |
| ΔV_PFM           | Ripple of PFM mode           |      |      | 90   | mV   | With L=4.7μH, C=10vF |
| Iq               | Quiescent current            |      | 50   |      | μΑ   |                      |

#### **6.2.2.** TCXO LDO DC characteristics

| Symbol           | Parameter                     | Min. | Тур. | Max. | Unit | Note                                       |
|------------------|-------------------------------|------|------|------|------|--------------------------------------------|
| AVDD43_VBAT      | TCXO LDO input supply voltage | 2.8  | 3.3  | 4.3  | ٧    | Will change to bypass mode under 3.1 volts |
| AVDD28_TLDO      | TCXO LDO output               | 2.7  | 2.8  | 2.9  | V    |                                            |
| I <sub>max</sub> | TCXO LDO current limit        | 50   |      |      | mA   |                                            |
| I <sub>cc</sub>  | For normal operation current  |      | 1    | 30   | mA   | Not include external devices               |
|                  | PSRR-30 KHz                   |      | 40   |      | dB   | Co = 1 uF, ESR = 0.05,<br>Iload = 25 mA    |
|                  | Load regulation               |      | 10   |      | mV   |                                            |
| Iq               | Quiescent current             |      | 50   |      | μΑ   |                                            |

#### **6.2.3.** TCXO switch DC characteristics

| Symbol             | Parameter                                                           | Min. | Тур. | Max. | Unit | Note |
|--------------------|---------------------------------------------------------------------|------|------|------|------|------|
| AVDD28_TLDO_S<br>W | TCXO switch output voltage<br>at TCXO switch input =<br>AVDD28_TLDO | 2.66 | 2.8  | 2.9  | V    |      |
| AVDD28_TLDO_S<br>W | TCXO switch output voltage<br>at TCXO switch input =<br>AVDD28_CLDO | 1.71 | 1.8  | 1.89 | V    |      |
| I <sub>max</sub>   | TCXO SWITCH current limit                                           | 2    |      |      | mA   |      |



#### 6.2.4. 1.2 volts core LDO DC characteristics

| Symbol           | Parameter                          | Min. | Тур. | Max. | Unit | Note |
|------------------|------------------------------------|------|------|------|------|------|
| AVDD28_CLDO      | 1.2 volts LDO input supply voltage | 1.62 | 1.8  | 3.08 | ٧    |      |
| AVDD12_CLDO      | 1.2 volts LDO output               | 1.1  | 1.2  | 1.3  | V    |      |
| I <sub>max</sub> | 1.2 volts LDO current limit        | 100  |      |      | mA   |      |
| I <sub>cc</sub>  | For normal core operation current  |      | 15   | 85   | mA   |      |
|                  | Load regulation                    |      | 10   |      | mV   |      |
| Iq               | Quiescent current                  |      | 20   |      | μΑ   |      |

#### 6.2.5. 1.2 volts RTC LDO DC characteristics

| Symbol            | Parameter                        | Min. | Тур. | Max. | Unit | Note                                 |
|-------------------|----------------------------------|------|------|------|------|--------------------------------------|
| AVDD43_RTC        | RTC LDO input supply voltage     | 2    | 2.8  | 4.3  | V    |                                      |
| AVDD12_RTC        | RTC LDO output                   | 1.08 | 1.2  | 1.32 | V    |                                      |
| I <sub>max</sub>  | RTC LDO current limit            | 3    |      |      | mA   |                                      |
| I <sub>cc</sub>   | For normal RTC operation current |      |      | 2.7  | mA   |                                      |
| Iq                | Quiescent current                |      | 2    |      | μΑ   |                                      |
| I <sub>leak</sub> | Leakage current                  |      | 10   |      | μΑ   | Including LDO and RTC domain circuit |

## 6.2.6. 32 kHz crystal oscillator (XOSC32)

| Symbol     | Parameter           | Min. | Тур. | Max. | Unit | Note |
|------------|---------------------|------|------|------|------|------|
| AVDD12_RTC | Analog power supply | 1.08 |      | 1.32 | V    |      |
| Dcyc       | Duty cycle          |      | 50   |      | %    |      |

#### 6.3. RF related characteristics

## 6.3.1. DC electrical characteristics for RF subsystem

| Symbol                     | Parameter                                                   | Min. | Тур. | Max. | Unit |
|----------------------------|-------------------------------------------------------------|------|------|------|------|
| I <sub>cc</sub>            | Total supply current: High gain LNA                         |      | 13.5 | 14.8 | mA   |
|                            | Total supply current: Middle gain LNA                       |      | 8.5  | 9.4  |      |
|                            | Total supply current: Low gain LNA                          |      | 7.3  | 8    |      |
|                            | (Total supply current = RX + SX + LDO current)              |      |      |      |      |
| I <sub>cc</sub> (STAND-BY) | Only the PLL, oscillator and regulator are kept powered up. |      | 3.5  |      | mA   |
| I <sub>cc</sub> (DOZE)     | Only the oscillator and regulator are kept powered up.      |      | 0.6  |      | mA   |
| I <sub>cc</sub> (Off)      | Power-down state current                                    |      |      | 2    | μΑ   |



## 6.3.2. RX chain from LNA to PGA, before ADC

| Parameter             | Condition                            | Min. | Тур. | Max. | Unit |
|-----------------------|--------------------------------------|------|------|------|------|
| Noise figure          | SOC on: High gain LNA                |      | 2    | 2.5  | dB   |
|                       | SOC on: Mid gain LNA                 |      | 2.5  | 3    |      |
|                       | SOC on: Low gain LNA                 |      | 5.5  | 6    |      |
| Image rejection ratio |                                      |      | 30   |      | dB   |
| $V_{cc}$              |                                      | 1.16 | 1.2  | 1.26 | V    |
| Current consumption   | RX chain only                        |      | 5.5  |      | mA   |
|                       | (LNA, mixer, CSF, PGA, divider, ADC) |      |      |      |      |

## 6.3.3. Receiver front-end part (LNA only)

| Parameter          | Condition     | Min. | Тур.    | Max. | Unit |
|--------------------|---------------|------|---------|------|------|
| RF input frequency |               |      | 1.57542 |      | GHz  |
| LO frequency       |               |      | 1.57132 |      | GHz  |
| Input return loss  |               |      | -10     |      | dBm  |
| Voltage gain Av    | High gain LNA | 27.5 | 29      |      | dB   |
|                    | Mid gain LNA  | 25.5 | 27      |      |      |
|                    | Low gain LNA  | 16   | 18      |      |      |
| Noise figure       | High gain LNA |      | 1.5     | 2    | dB   |
|                    | Mid gain LNA  |      | 2       | 2.5  |      |
|                    | Low gain LNA  |      | 5       | 6    |      |

## 6.3.4. Mixer and channel selection filter (CSF)

| Parameter                              | Condition                                                                | Min. | Тур.                             | Max. | Unit |
|----------------------------------------|--------------------------------------------------------------------------|------|----------------------------------|------|------|
| Filter type                            | 3 <sup>rd</sup> -order butterworth polyphase bandpass (Note 1)           |      |                                  |      |      |
| Voltage                                | Supply voltage                                                           | 1.16 | 1.2                              | 1.26 | ٧    |
| BW <sub>3dB</sub>                      | 3dB bandwidth                                                            |      | 2.5/4                            |      | MHz  |
| Filter frequency<br>response (2.5M/4M) | Rejection band attenuation at f = 3 MHz f = 10 MHz f = 15 MHz f > 20 MHz |      | 23/12<br>54/45<br>65/54<br>72/60 |      | dB   |
| Voltage gain Av                        | High gain mixer + CSF<br>Low gain mixer + CSF                            |      | 32<br>20                         |      | dB   |

## 6.3.5. Programmable gain amplifier (PGA)

| Parameter        | Condition          | Min. | Тур.  | Max. | Unit |
|------------------|--------------------|------|-------|------|------|
| Supply voltage   | Supply voltage     | 1.16 | 1.2   | 1.26 | V    |
| Center frequency | Centre frequency   |      | 4.092 |      | MHz  |
| Voltage gain     | Voltage gain       | 0    |       | 40   | dB   |
| Gain step        | Gain step (5 bits) |      | 1.6   |      | dB   |



## 6.3.6. 2-bit and 4-bit quantizer (ADC)

| Parameter              | Condition                     | Min. | Тур.   | Max. | Unit |
|------------------------|-------------------------------|------|--------|------|------|
| Supply voltage         | Supply voltage                | 1.16 | 1.2    | 1.26 | V    |
| Input sampling clock   | Operating frequency           |      | 16.368 | 30   | MHz  |
| Input signal frequency | Input signal center frequency |      | 4.092  |      | MHz  |
| Resolution             |                               |      | 4      |      | Bits |

## 6.3.7. Integrated synthesizer

| Symbol             | Parameter                  | Min. | Тур.          | Max.    | Unit |
|--------------------|----------------------------|------|---------------|---------|------|
| Fosc               | VCO oscillation frequency  |      | 3,142.65<br>6 |         | MHz  |
| V                  | Tuning voltage range       | 0.2  |               | Vcc-0.2 | V    |
| DIV                | Programmable divider ratio | 32   |               | 127     |      |
| T <sub>start</sub> | Circuit start-up time      |      |               | 100     | μs   |

## 6.3.8. Crystal oscillator (XO)

| Symbol            | Parameter                  | Min. | Тур.   | Max. | Unit |
|-------------------|----------------------------|------|--------|------|------|
| F <sub>tcxo</sub> | TCXO oscillation frequency | 12.6 | 16.368 | 40   | MHz  |
| V <sub>tcxo</sub> | TCXO output swing          | 0.8  | 1.2    |      | Vpp  |



## 7. Interface Characteristics

## 7.1. JTAG interface timing

| Description                    | Symbol | Min.  | Max. | Unit | Note |
|--------------------------------|--------|-------|------|------|------|
| TDI input setup to rising TCK  | T1     | 0.35T | -    | ns   | 1    |
| TDI input hold from rising TCK | T2     | 0.15T | -    | ns   | 1    |
| TMS input setup to rising TCK  | T1     | 0.35T | -    | ns   | 1    |
| TMS input hold from rising TCK | T2     | 0.15T | -    | ns   | 1    |
| Rising TCK to TDO valid        | T3     | -     | 0.5T | ns   | 1    |
| TDO hold from rising TCK       | T4     | 0     | -    | ns   | 1    |

Note: The maximum frequency of JTAG clock cycle (TCK) is 50 MHz.



Figure 7-1: Timing diagram of JTAG interface

## 7.2. RS-232 interface timing

| Baudrate required (bps) | Programmed baudrate (bps) | Baudrate error (%) | Baudrate error (%) <sup>3</sup> |
|-------------------------|---------------------------|--------------------|---------------------------------|
| 4,800                   | 4,800.000                 | 0.0000             | 0.002                           |
| 9,600                   | 9,600.000                 | 0.0000             | 0.002                           |
| 14,400                  | 14,408.451                | 0.0587             | 0.0567                          |
| 19,200                  | 19,164.319                | 0.0587             | 0.0567                          |
| 38,400                  | 38,422.535                | 0.0587             | 0.0567                          |
| 57,600                  | 57,633.803                | 0.0587             | 0.0567                          |
| 115,200                 | 115,267.606               | 0.0587             | 0.0567                          |
| 230,400                 | 230,535.211               | 0.0587             | 0.0567                          |
| 460,800                 | 454,666.667               | -1.3310            | -1.3330                         |
| 921,600                 | 909,333.333               | -1.3310            | -1.3330                         |

#### Notes:

- 1. UART baud-rate settings with UART\_CLK frequency = 16.368 MHz (UART\_CLK uses the reference clock of the system).
- 2. The baudrate error is optimized. Each baudrate needs to adjust counter to obtain the optimized error.



3. Suppose TCXO is exactly at 16.368 MHz. If TCXO has 20 PPM, the error will raise slightly.



Figure 7-2: Timing diagram of RS-232 interface

## 7.3. SPI interface timing

| Description     | Symbol | Min.      | Max.      | Unit | Note |
|-----------------|--------|-----------|-----------|------|------|
| SCS# setup time | T1     | 0.5T      | -         | ns   | 1    |
| SCS# hold time  | T2     | 0.5T      | -         | ns   | 1    |
| SO setup time   | T3     | 0.5T – 3t | 0.5T - 2t | ns   | 1, 2 |
| SO hold time    | T4     | 0.5T + 2t | 0.5T + 3t | ns   | 1, 2 |
| SIN setup time  | T5     | 3t        | -         | ns   | 1, 2 |
| SIN hold time   | Т6     | 10        | -         | ns   | 1    |

#### Notes:

- 1. The condition of SPI clock cycle (T) is (SPI IPLLSPI IPLL/12) MHz ~ (rf clk/1,020) MHz.
- 2. It indicates the period of SPI controller clock, which is SPISPI\_IPLL clock or rf\_clk.



Figure 7-3: Timing diagram of SPI interface

## 7.4. I2C interface timing

| Symbol | Period                         |
|--------|--------------------------------|
| T1     | (MM_CNT_PHASE_VAL0+1)/TCXO_CLK |
| T2     | (MM_CNT_PHASE_VAL1+1)/TCXO_CLK |
| T3     | (MM_CNT_PHASE_VAL2+1)/TCXO_CLK |
| T4     | (MM CNT PHASE VAL3+1)/TCXO CLK |

Note: The condition of I2C clock cycle (I2C\_CLK) is (TCXO\_CLK/4) MHz  $\sim$  (TCXO\_CLK/(MM\_CNT+4)) MHz. The MM\_CNT is the sum of MM\_CNT\_PHASE\_VAL0, MM\_CNT\_PHASE\_VAL1, MM\_CNT\_PHASE\_VAL2 and MM\_CNT\_PHASE\_VAL3 in full speed mode.





Figure 7-4: Timing diagram of HOST I2C interface

## 7.5. EEPROM I2C interface timing



Figure 7-5: Timing diagram of EEPROM I2C bus



# 8. Package Description

## 8.1. Ordering information

| Order #  | Marking | Temp. range  | Package |
|----------|---------|--------------|---------|
| MT3339AV |         | -40 ~ +85 °C | VFBGA   |

## 8.2. Top mark

MTK ARM
3339AV
DDDDDD
LLLLLL
FFFFFF

A: 8M flash

V: VFBGA package
DDDDDDD: Date code
LLLLLL: U1 Lot number
FFFFFFF: U2 Lot number



## 8.3. Package dimensions



|        | [    | Dimension | in mm | Dir   | mension in | inch  |
|--------|------|-----------|-------|-------|------------|-------|
| Symbol | MIN  | NOM       | MAX   | MIN   | NOM        | MAX   |
| Α      |      |           | 1.00  |       |            | 0.039 |
| A1     | 0.16 | 0.21      | 0.26  | 0.006 | 0.008      | 0.010 |
| A2     | 0.69 | 0.74      | 0.79  | 0.027 | 0.029      | 0.031 |
| С      | 0.17 | 0.21      | 0.25  | 0.007 | 0.008      | 0.010 |
| D      | 4.20 | 4.30      | 4.40  | 0.165 | 0.169      | 0.173 |
| Е      | 4.20 | 4.30      | 4.40  | 0.165 | 0.169      | 0.173 |
| D1     |      | 3.50      |       |       | 0.138      |       |
| E1     |      | 3.50      |       |       | 0.138      |       |
| е      |      | 0.50      |       |       | 0.020      |       |
| b      | 0.25 | 0.30      | 0.35  | 0.010 | 0.012      | 0.014 |
| aaa    |      | 0.10      |       |       | 0.004      |       |
| bbb    |      | 0.10      |       | 0.004 |            |       |
| ddd    |      | 0.08      |       | 0.003 |            |       |
| eee    |      | 0.15      |       | 0.006 |            |       |
| fff    |      | 0.05      |       | 0.002 |            |       |
| MD/ME  |      | 8/8       |       |       | 8/8        |       |

#### NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- A DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. SPECIAL CHARACTERISTICS C CLASS: bbb, ddd
- THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.





#### **ESD CAUTION**

MT3339 is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT3339 is with built-in ESD protection circuitry, please handle with care to avoid permanent malfunction or performance degradation.

#### Use of the GPS Data and Services at the User's Own Risk

The GPS data and navigation services providers, system makers and integrated circuit manufactures ("Providers") hereby disclaim any and all guarantees, representations or warranties with respect to the Global Positioning System (GPS) data or the GPS services provided herein, either expressed or implied, including but not limited to, the effectiveness, completeness, accuracy, fitness for a particular purpose or the reliability of the GPS data or services.

The GPS data and services are not to be used for safety of life applications, or for any other application in which the accuracy or reliability of the GPS data or services could create a situation where personal injury or death may occur. Any use there with are at the user's own risk. The Providers specifically disclaims any and all liability, including without limitation, indirect, consequential and incidental damages, that may arise in any way from the use of or reliance on the GPS data or services, as well as claims or damages based on the contravention of patents, copyrights, mask work and/or other intellectual property rights.

No part of this document may be copied, distributed, utilized, and transmitted in any form or by any means without expressed authorization of all Providers. The GPS data and services are in part or in all subject to patent, copyright, trade secret and other intellectual property rights and protections worldwide.

MediaTek reserves the right to make change to specifications and product description without notice.