3.	$x_1 = [1, 1] y_1 = 1$
	$\alpha_2 = \begin{bmatrix} 1 & -1 \end{bmatrix} \forall b = -1$
	a) what does the mean surface prear book like?
	V
	The essor function is the mean squared essor which can be watter
	as:
	E= 1 [y-\(\frac{1}{2}\)(\widetilde{\chi}\)\(\sigma\) = 0 is the total co-ordinates of a prince of i=1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =1 =
	$E = \frac{1}{2} \left[y - \omega_1 x_1 - \omega_2 x_2 \right]^2$
	Differentating wat W, W2, W12, W2, W12, W1 W2 & W2W1
	for the entires in Hessian matrix, we get
	$\underline{\partial E} = \left[y - \omega_1 x_1 - \omega_2 x_2 \right] \cdot (-x_1)$
	$\partial \omega_{i}$
	$\frac{\partial E}{\partial \omega_1^2} = \frac{\partial}{\partial \omega_1} \left[-\frac{y}{x_1} + \frac{\omega_1}{x_1^2} + \frac{\omega_2}{x_1} + \frac{\omega_2}{x_1} \right] = \frac{x_1^2}{x_1^2}$
	$\partial E = \infty, x_2$
	$\partial \omega_1 \partial \omega_2$
1 - 121	
	$\frac{\partial E}{\partial \omega_2} = \left[y - \omega_1 x_1 - \omega_2 x_2 \right] \left(-3c_2 \right)$
1.	$\frac{\partial E}{\partial \omega_2^2} = \frac{\partial \left(-y x_2 + \omega_1 x_1 x_2 + \omega_2 x_2^2\right)}{\partial \omega_2} = x_2^2$
	$\frac{\partial E}{\partial \omega_2 \partial \omega_1} = \frac{x_1 x_2}{x_2}$
	Hessian matrix = DE DE for 2 variables Dw, Dw, Dw2
	∂E ∂E $\partial \omega_2 \partial \omega_1$
	$= \left[x, \frac{2}{x}, x_2 \right]$
1.	x_1x_2 x_2^2
	Scanned by CamScanner

