1. Export physical data from PostView (.xplt) file

1.1. Select physical property of an interest (e.g. x - stress)

1. Export physical data from PostView (.xplt) file

1.2. Export data file

1. Export physical data from PostView (.xplt) file

1.3. Save data file as an ASCII extension

1. Export physical data from PostView (.xplt) file

1.4. Save nodal coordinates, element connectivity, and values

1. Export physical data from PostView (.xplt) file

1.5. Save/Export the displacement data

2. Compile simulation data using "elementinfo.m"

2.1. Executing code

No inputs are needed as the functions requests data through browser windows

Command Window

$$f_{x} >> [ele] = elementinfo() +$$

The user may choose a variable name to identify the output structure within the MATLAB® workspace

2. Compile simulation data using "elementinfo.m"

2.2. Input name for output structure

2. Compile simulation data using "elementinfo.m"

2.3. Select all the data files needed and those of interest

2. Compile simulation data using "elementinfo.m"

2.4. Wait for data to be read

Data from each selected file is read in order

Messages in the command window indicate the current file and the simulation time/state

2. Compile simulation data using "elementinfo.m"

2.5. Wait for centroid calculation

Centroid calculation is an additional task that prolongs the read process

2. Compile simulation data using "elementinfo.m"

2.6. Identify output

3. Performing Objective Partitioning through "objPart.m"

3.1. Preparing input

3. Performing Objective Partitioning through "objPart.m"

3.1.1. Defining Partitions

3. Performing Objective Partitioning through "objPart.m"

3.1.2. Specifying Simulation States

3. Performing Objective Partitioning through "objPart.m"

3.1.3. Selecting Physics

3. Performing Objective Partitioning through "objPart.m"

3.1.4. Ratios

3. Performing Objective Partitioning through "objPart.m"

3.1.5. Warning!!

All sheets covered between sections **3.1.1.** and **3.1.4.** must have at least one input. Otherwise, the whole program wont work!!

3. Performing Objective Partitioning through "objPart.m"

3.2. Executing code

No inputs are needed as the functions requests data through browser windows

Command Window

 $f_{x} >> [ele, ops] = objPart(); \leftarrow$

The program modifies and outputs the structure array created by "elementinfo.m"

The variable "ops" contains the information that defines the objective partitions

3. Performing Objective Partitioning through "ObjPart.m"

3.3. Browse for data structure array "ele"

3. Performing Objective Partitioning through "ObjPart.m"

3.4. Browse for "objPart.xls"

3. Performing Objective Partitioning through "ObjPart.m"

3.5. Wait for optimizations to complete

Most of the computations in objective partitioning are associated with the relocation of the partitions on the basis of the deformation of the target mesh

3. Performing Objective Partitioning through "ObjPart.m"

3.5. Identify outputs

