Claims:

- 1. (Currently amended) The compounds, —modified—lignin, lignin-cellulose resinous compounds, carbon dioxide, and carbohydrates,—and ethanol—produced from biomass by the process consisting of mixing, heating and reacting the components by the following steps:
 - (1) preparation of biomass:

 excess water is removed from the biomass and ground or chipped into small pieces and utilized in the amount of 100 parts by weight;
 - (2) add aqueous alkali metal hydroxide:

 aqueous solution of alkali metal hydroxide containing 20 to 40 parts by weight of
 alkali metal hydroxide is added and mixed with the biomass:
 - (3) converting biomass:
 the biomass is heated to about 140° C to evaporate water and break the ligin0cellulose bond then heating is continued while agitating until the biomass becomes a thick paste;
 - (4) dissolving converted biomass:
 water in the amount of 200 to 400 parts by weight is added and mixed with the
 converted biomass thereby dissolving most of the converted biomass, then filtering or
 decanted off the non-water soluble biomass;
 - (5) adjusting the pH:
 an acidic salt forming compound, carbon dioxide is added to the aqueous converted biomass solution until the pH is 3-7;
 - (6) separating the components;

the lignin-cellulose resinous products are skimmed from the top of the aqueous solution, the aqueous solution containing carbohydrates and salt is filter or decanted off the precipitated—modified—lignin;

(7) crystalizing carbohydrates:

the aqueous carbohydrates and salt solution is heated to evaporate water to concentrate the solution then the carbohydrates are crystalized and precipitate out then the aqueous salt solution is filtered or decanted off;

-(8) Fermentation:

-water is added to the carbohydrate crystals until a solution contains 15-40% -carbohydrate, fermenting yeast is added, and the carbohydrate are fermented to-produce ethanol and carbon dioxide;

-(9) recovering ethanol:-

-(10) (8) recausticing:

-- ethanol is separated from the water by evaporation or by membrane technology;

the aqueous solution containing the salts of step 7 is heated to evaporate excess water then placed in a furnace, with or without lignin, burned to remove organic waste material, then added to water, filtered, then reacted with and alkaline earth metal oxide, to produce alkali metal hydroxide for reuse and alkaline earth metal carbonate which precipitates;

- -(11)- (9) alkaline earth metal is heated in a lime kiln to produce alkali earth metal oxide for reuse and carbon dioxide is collected.
- 2. (Original) The compounds of claim 1 wherein the alkali metal hydroxide is sodium hydroxide.

- 3. (Original) The compound of claim 1 wherein the alkaline earth metal oxide is calcium oxide,
- 4. (Cancel) The compounds of claim 1 wherein the carbohydrates are crystalized out of the aqueous solution of step 4 of claim 1 then fermented by yeast into ethanol.
- 5. (Currently amended) The compounds of claim 1 wherein the carbohydrates are separated from the -modified- lignin and salt after step 6, by means of membrane technology -, then fermented by yeast into ethanol-.
- 6. (Currently amended) The process for production of the compounds, -modified- lignin, lignin-cellulose resinous compounds, carbon dioxide, and carbohydrates -and-ethanol- produced from biomass by the process consisting of mixing, heating, and reacting the components by the following steps:
 - (1) preparation of biomass:
 - excess water is removed from the biomass and ground or chipped into small pieces and utilized in the amount of 100 parts by weight;
 - (2) adding aqueous alkali metal hydroxide: aqueous solution of alkali metal hydroxide containing 25 to 50 parts by weight of alkali metal hydroxide is added and mixed with the biomass;
 - (3) converting biomass:
 - the biomass is heated to about 140° C to evaporate the water and break the lignincellulose bond then heating is continued while agitating and the biomass becomes a thick paste;
 - (4) dissolving converted biomass:

 water in the amount of 200 to 400 parts by weight is added and mixed with the

converted biomass thereby dissolving most of the converted biomass, then filtered or decanted off the non-water soluble biomass;

(5) adjusting the pH:

an acidic salt forming compound, <u>carbon dioxide</u>, is added to the aqueous converted biomass solution until the pH is 3-7;.

(6) separating the components:

the lignin-cellulose resinous products are skimmed from the top of the aqueous solution then the aqueous solution containing the carbohydrates and salt is filtered or decanted off the precipitated -modified lignin;

(7) crystalizing carbohydrates:

the aqueous carbohydrates and salt solution is heated to evaporate water to concentrate the solution, then the carbohydrates are precipitated out, and the aqueous salt solution is filtered or decanted off;

-(8)- fermentation-

-water is added to the carbohydrate crystals until a solution containing 15-40% -carbohydrates, fermenting yeast is added, and the carbohydrate are fermented to produce ethanol and earbon dioxide;

-(9) recovering ethanol:

ethanol is separated from the water by evaporation or by membrane technology;

-(10)₇ (8) recausticing:

the aqueous solution containing salts is heated to evaporate excess water then placed in a furnace, with or without lignin, burned to remove organic material, then added to water, filtered, then reacted with an alkaline earth metal oxide, to produce alkali metal hydroxide for reuse and alkaline earth metal salt which precipitates;

- (11) (9) alkaline earth metal oxide recovery:

 the alkaline earth metal salt is heated in a lime kiln to produce alkaline earth metal oxide and carbon dioxide for reuse.
- 7. (Original) The product, carbohydrates, as produced by the process of claim 7.
- 8. (Original) The process of claim 6 wherein the alkali metal hydroxide is sodium hydroxide.
- 9. (Original) The process of claim wherein the salt forming compound is carbon dioxide.
- 10. (Cancel) The product, ethanol, as produced by the process of claim 6.
- 11. (Currently modified) The product, -modified- lignin, as produced by the process of claim 6.
- 12. (Original) The product lignin-cellulose resinous products, as produced by the process of claim 6.
- 13. The carbohydrates produced from biomass by the process consisting of mixing, heating and reacting by the following steps:
 - (1) biomass is ground into small particles;
 - (2) aqueous sodium hydroxide is added to and mixed with the biomass;
 - (3) biomass is heated to remove excess water;
 - (4) biomass is heated to 140° to 200° C until the biomass swells and forms a thick fluid mass, carbon dioxide is given off and collected, thereby producing a mixture of hemicellulose, carbohydrates, -modified- sodium lignin, lignin-cellulose resinous products and sodium carbonate;
 - (5) water is added and mixed to form a concentrated aqueous solution

- (6) carbon dioxide is added and mixed with the aqueous solution to react with the sodium hydroxide to form sodium carbonate;
- (7) carbohydrates form crystals and the aqueous solution is filtered off thereby recovering the carbohydrates;
- (8) the aqueous solution containing the—modified- sodium lignin, lignin-cellulose resinous products and sodium carbonate is evaporated, and the solid materials are burned in a furnace, the water is added to recover the sodium carbonate;
- (9) lime oxide is added and reacted with the sodium carbonate to form sodium hydroxide and calcium carbonate which precipitates, and aqueous hydroxide is decanted off to be reused;
- (10) calcium carbonate is heated in a lime kiln to recover calcium oxide for reuse and the carbon dioxide is collected for reuse.
- 14. (Cancel) The carbohydrates of claim 13 wherein water is added in an amount to produce a solution containing 15 to 20 percent carbohydrates, then yeast is added to the solution to ferment the carbohydrates to form ethanol.
- 15. (Cancel) The product, ethanol, produced by the process of claim 14.

New Claim:

- 16. (New Claim) A process for the production of carbohydrates from biomass that does not contain lignin by the process consisting of mixing, heating and reacting by the following steps:
 - (1) biomass is ground into small particles;
 - (2) aqueous sodium hydroxide is added to and mixed with the biomass;
 - (3) biomass is heated to about 140 degrees C, remove excess water;
 - (4) biomass is heated to 140 to 200 degree C until the biomass become a thick paste;
 - (5) water is added and mixed to form an aqueous solution, then filtered to remove non-soluble materials;
 - (6) carbon dioxide is added and mixed with the aqueous solution to react the sodium hydroxide to form sodium carbonate;
 - (6) the aqueous solution is concentrated by evaporating off water then the carbohydrates form crystals and the aqueous solution is filtered or decanted off thereby recovering the carbohydrates;
 - (7) lime oxide is added and reacted with the aqueous solution of sodium carbonate to form sodium hydroxide and calcium carbonate which precipitates, and the aqueous sodium hydroxide is decanted off to be reused;
 - (8) calcium carbonate is heated in a lime kiln to recover calcium oxide for reuse and the carbon dioxide is collected for reuse.