第二章 数字系统

- 理解数字系统的概念
- 分清非位置化和位置化数字系统
- 描述十进制、二进制、八进制、十六进制系统
- 十进制、二进制、八进制、十六进制之间相互转换

2.1 数字系统

- 数字系统:
- 数码系统
- 如何使用独特的符号来表示一个数字
- 同一个数字,在不同的数字系统中的表示方法不同
- 分类
- 位置化系统
- 十进制、二进制、八进制、十六进制系统
- 非位置化系统
- 罗马数字,了解即可

2.1 位置化数字系统

特点:

数字中符号所占据的位置决定了其表示的值

 $N = \pm (RK-1...R2R1R0.R-1R-2...R-m)$

=±RK-1xbk-1... +R1xb1+R0xb0+R-1xb-1+R-2 xb-1 ...+R-m xb-m

R是符号集中的符号

b 是基数 (底)

数的表示:

i为权权值

$$N = \sum_{i=-1}^{k-1} Ri bi$$

整数部分权值为正,小数部分权值为负

例:十进制系统

10 是基数 (底)

位置是其权值

2, 3, 4是十进制系统中的符号

二进制系统

4种位置化数字系统

系统	英文表示	底	符号集	示例
二进制	B (Binary)	2	0,1	110B
八进制	Q (Ooctal)	8	0,1,2,3,4,5,6,7	110Q
十进制	D (Decimal)	10	0,1,2,3,4,5,6,7,8,9	110D
十六进制	H (Hexadecimal)	16	0,1,2,3,4,5,6,7, 8,9, A, B,C,D,E,F	110H

4种位置化数字系统

十进制((D)	二进制(B)	八进制(O)	十六进制(H)	
	0	0	0	0]
	1	1	1	1	
	2	_10	2	2	
MeL	3	11	3	3	
数	4	100	4	4	
£1	5	101	5	5	
符	6	110	6	6	
	7	111	7	7	
	8	1000	10	8	
	9	1001	11	9	
	10	1010	12	a	
	11	1011	13	b	
	12	1100	14	c	
	13	1101	15	d d	
基数10	14	│基数2 1110 │	基数8 16	基数16 e	
	15	1111	17	f	

进制转换: B--> D

例1:将二进制数0101101转换为十进数

进制转换: B-> D

例2:将二进制数10011转换为十进数

结果: 10011B =19

19

十进制

进制转换: B-> D

例3: 把二进制数 1001.101 转换成十进制数.

1001.101B
=
$$1 \times 23 + 0 \times 22 + 0 \times 21 + 1 \times 20$$

+ $1 \times 2 - 1 + 0 \times 2 - 2 + 1 \times 2 - 3$
= $8 + 1 + 0.5 + 0.125$
= $9.625D$

进制转换: D—>B, Q, H

- 分别转换
- · 整数部分:整数部分除以底,直至余数小于底
- · 小数部分: 小数部分乘以底,直至达到精度,
- 以D—>B为例讲解
- D—>Q, D—>H原理相同
- 例: 将47.625转换为二进制数

进制转换: D—>B

Result: 47D=101111B

47.625=101111.101B

十进制数小数转换二进制

十进制数转换成二进制 数到小数部分乘到什么 程度结束?

理论上都是要乘到没有小数为止。但是由于计算精度的限制,或者粗略计算时,满足所要求的精度就可以了。

进制转换: D—>B的整数转换

原理:

27	26	25	24	23	22	21	20
128	64	32	16	8	4	2	1

例:将35转换为二进制数

解: 35=32 + 2+1

35=100011B

进制转换: B, Q, H ---> D

数的转换: 按位展开求和.

整数部分权为正, 小数部分权为负

$$N = \sum_{i=-1}^{k-1} Ri bi$$

• 例: 110.110B, 110.110Q, 110.110H

转换为十进数

解:

110.110Q=1x82+1X81+0x80+1x8-1+1X8-2+0x8-3=72.14

实际演练

- 1. 100D=? B
- 2. 62=? B
- 3. 0.354D=? B
- 4. 试计算: 168.375D=? B
- 5. 技巧:
 - (1111 1111)B=? D
 - (1111 1101)B=?D
 - (1001 0001)B=? D

进制转换: B<--->H

二进制	十六进制	二进制	十六进制
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

 1 1 1 1
 1 1 0 0
 1 1 1 0
 0 1 0 0
 Hexadecimal

 F
 C
 E
 4

进制转换: B<--->H

例1: 将二进制数1100 1110 0010 转换为十六进制.

进制转换: B<--->H 整数转换

例2: 将二进制数 0011100010 转换为十六 进制.

从右向左,每4位一组,不够4位时,左边补0

进制转换: B<--->H 整数转换

例3:将十六进制 24CH转换为二进制数.

将每一位十六进制数按顺序转换为相应的二进 制数即可。

$$2$$
 4 C $H=0010\ 0100\ 1100B$ $=10\ 0100\ 1100B$

进制转换: B<-->H 实数转换

例1: 将二进制 **11000011.10101**转换为十 六进制数.

1100 0011. 1010 1000

C 3. A 8

1100 0011. 1010 1B=C3.A8H

补0原则:补0后不改变原数值的大小

整数部分: 从右向左, 4位一组, 不够4位时左边补0

小数部分:从左向右、4位一组、不够4位时右边补0

进制转换: B<—>H 实数转换

例2:将十六进制 8B.C4H 转换为二进制数

8 B.C 4 1000 1011. 1100 0100

8B.C4H = 10001011.110001B

实练

熟记:

- (FF)H=? D=?B
- (FFFF)H=? D= ?B

练习:

B09H = ? B

85C.EB2H =? B

101101100.010101B=?H

进制转换: B<--->Q

二进制	八进制	二进制	八进制
000	0	100	4
001	1	101	5
010	2	110	6
011	3	111	7

进制转换: B<-->Q 整数转换

例1:将二进制 1 0111 0010转换为八进制数

Solutio

n

从右向左,每3位一组,不够3位时,左边补0

进制转换: B<-->Q 整数转换

例2: 将八进制 24Q转换为进二制数

每位8进制数,按顺序写出其二进制数即可 2 4 Q= 010 100 B =10100B

进制转换: B<--->Q 实数转换

例1: 将二进制11110100.1110111 转换为八

进制数

补0原则:补0后不改变原数值的大小

以小数点为界、整数部分左边补0、小数部分右边补0

3 6 4 . 7 3 4

11110100.1110111B= 364.734Q

进制转换: B<-->Q 实数转换

例2:将八进制351.65Q转换为二进制数

3 5 1. 6 5 011 101 001. 110 101

 $351.65Q = 11\ 101\ 001.110\ 101B$

实 练

2.
$$C3H= ? Q = ? D$$

= 303Q = 195

- 4. $163.65Q=?H=2P_{3.D4H}=115.83$ 1323.44Q=2D3.9H
- 5. 011010011.1001B=? Q=?H