

Aula 5 CÓDIGOS E DISPLAY DE 7 SEGMENTOS

Projeto de Ensino

Material didático para lógica digital I: circuitos combinacionais

Bolsista: Everaldina Guimarães Barbosa

Orientador: César Alberto Bravo Pariente

Sumário

CÓDIGOS	2. DISPLAY DE 7 SEGMENTOS
1.1. Introdução 3	
1.2. Código BCD 4	2.1. Tabela Verdade
1.2.1. BCD 8421 5	2.2. Mapa de Karnaugh 33
1.2.2. BCD 7421, 5211, 2421	2.3. Circuito combinacional 44
6	2.4. Simulação 45
1.3. Código Excesso 3 12	3. REFERÊNCIAS
1.4. Código Gray 14	BIBLIOGRÁFICAS 46
1.5. Código 2 entre 5 16	
1.6. Código Johnson 17	
1.7. Código 9876543210 18	
	1.2. Código BCD 4 1.2.1. BCD 8421 5 1.2.2. BCD 7421, 5211, 2421 6 1.3. Código Excesso 3 12 1.4. Código Gray 14 1.5. Código 2 entre 5 16 1.6. Código Johnson 17

Códigos – Introdução

- Na eletrônica digital há vários códigos para representar números em decimal, cada um tem suas vantagens em cenários específicos.
- Os mais conhecidos e os que serão abordados aqui são:

Códigos de 4 bits:

■Código BCD

Código Excesso 3

Código Gray

Códigos de 5 bits:

■Código 2 entre 5

Código Johnson

Códigos de 10 bits:

■Código 9876543210

Códigos – Código BCD

- A sigla BCD significa: "Binary Coded Decimal", e é uma codificação de decimal em binário.
- O código BCD mais utilizado é o BCD 8421, em que cada número (8421) significa uma potência de dois (2³, 2², 2¹, 2⁰), que pode ser usada na conversão para decimal, como exemplificado na "<u>Aula 01</u>".
- Além do BCD 8421, também existem vários outros tipos de código BCD, os principais sendo: BCD 7421, BCD 5211 e BCD 2421. A conversão de binário para decimal nesses códigos acontece de maneira análoga à conversão de BCD 8421 para decimal.
- A seguir as tabelas verdades dos códigos citados:

Códigos – Código BCD 8421

		BCD	8421	
DECIMAL	A	В	C	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

		BCD	7421			BCD 5211			BCD 2421			
DECIMAL	A	В	C	D	A	В	C	D	A	В	C	D
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	1	0	0	1	0
3	0	0	1	1	0	1	0	1	0	0	1	1
4	0	1	0	0	0	1	1	1	0	1	0	0
5	0	1	0	1	1	0	0	0	1	0	1	1
6	0	1	1	0	1	0	0	1	1	1	0	0
7	1	0	0	0	1	0	1	1	1	1	0	1
8	1	0	0	1	1	1	0	1	1	1	1	0
9	1	0	1	0	1	1	1	1	1	1	1	1

	BCD 7421			BCD 5211				BCD 2421				
DECIMAL	A	В	C	D	A	В	C	D	A	В	C	D
8	1	0	0	1	1	1	0	1	1	1	1	0

- Esses códigos têm representações diferentes da conversão usual.
- Por exemplo o número 8, que em binário e BCD 8421 equivale a 1000₂, tem representação 1001, 1101 e 1110 nos códigos BCD 7421, 5211 e 2421 respectivamente.

BCD 7421				BCD 5211				BCD 2421				
DECIMAL	A	В	C	D	A	В	C	D	A	В	C	D
8	1 × 7	0×4	0×2	1×1	1 × 5	1 × 2	0×1	1×1	1 × 2	1×4	1×2	0×1

- Esses códigos têm representações diferentes da conversão usual.
- Por exemplo o número 8, que em binário e BCD 8421 equivale a 1000₂, tem representação 1001, 1101 e 1110 nos códigos BCD 7421, 5211 e 2421 respectivamente.

BCD 7421				BCD 5211				BCD 2421				
DECIMAL	A	В	C	D	A	В	C	D	A	В	C	D
8	7	0	0	1	5	2	0	1	2	4	2	0

- Esses códigos têm representações diferentes da conversão usual.
- Por exemplo o número 8, que em binário e BCD 8421 equivale a 1000₂, tem representação 1001, 1101 e 1110 nos códigos BCD 7421, 5211 e 2421 respectivamente.

	BCD 7421				BCD 5211				BCD 2421			
DECIMAL	A	В	C	D	A	A B C D				В	C	D
8	7 + 1			5 + 2 + 1			2 + 4 + 2					

- Esses códigos têm representações diferentes da conversão usual.
- Por exemplo o número 8, que em binário e BCD 8421 equivale a 1000₂, tem representação 1001, 1101 e 1110 nos códigos BCD 7421, 5211 e 2421 respectivamente.

BCD 7421				BCD 5211				BCD 2421				
DECIMAL	A	В	C	D	A	A B C D				В	C	D
8	8			8			8					

- Esses códigos têm representações diferentes da conversão usual.
- Por exemplo o número 8, que em binário e BCD 8421 equivale a 1000₂, tem representação 1001, 1101 e 1110 nos códigos BCD 7421, 5211 e 2421 respectivamente.

Códigos – Código Excesso 3

- O código Excesso 3 trata-se de uma conversão normal "decimal \rightarrow binário", em que após realizada é adicionado 3 ao resultado.
- Por exemplo:

$$0_{10} = 0000_2 \rightarrow 0000_2 + 0011_2 = 0011$$

 $1_{10} = 0001_2 \rightarrow 0001_2 + 0011_2 = 0100$
 $2_{10} = 0010_2 \rightarrow 0010_2 + 0011_2 = 0101$

- Esse código é utilizado em circuitos aritméticos.
- A seguir a tabela verdade do "Código Excesso 3":

Códigos – Código Excesso 3

		EXCE	SSO 3	
DECIMAL	A	В	C	D
0	0	0	1	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

Códigos – Código Gray

- O código Gray funciona de tal maneira que ao colocá-lo em um mapa de Karnaugh, as casas seguem uma ordem sequencial.
- Uma característica do código Gray é que há apenas um bit de diferença entre cada linha.
- A seguir a tabela verdade do código Gray:

BCI) 84	l21 (3	(
	_	0	1	3	2	$\overline{\overline{B}}$
	Ā	4	5	7	6	D
	^	12	13	15	14	B
	Α	8	9	11	10	\overline{B}
		D	I)	D	
Gray	y	Ō		(3	
	_	0	1	2	3	\overline{B}
	Ā	7	6	5	4	D
	Δ	8	9	10	11	В
	Α	15	14	13	12	B
		\overline{D}	Ι)	$\overline{\mathtt{D}}$	

Códigos – Código Gray

	Gray								
DECIMAL	A	В	C	D					
0	0	0	0	0					
1	0	0	0	1					
2	0	0	1	1					
3	0	0	1	0					
4	0	1	1	0					
5	0	1	1	1					
6	0	1	0	1					
7	0	1	0	0					

		Gr	ay	
DECIMAL	A	В	C	D
8	1	1	0	0
9	1	1	0	1
10	1	1	1	1
11	1	1	1	0
12	1	0	1	0
13	1	0	1	1
14	1	0	0	1
15	1	0	0	0

Códigos – Código 2 entre 5

		2	ENTRE	E 5	AC 1
DECIMAL	A	В	C	D	E
0	0	0	0	1	1
1	0	0	1	0	1
2	0	0	1	1	0
3	0	1	0	0	1
4	0	1	0	1	0
5	0	1	1	0	0
6	1	0	0	0	1
7	1	0	0	1	0
8	1	0	1	0	0
9	1	1	0	0	0

- No código 2 entre 5 sempre há dois bits iguais a 1 em cada caso.
- Essa característica pode ser notada na tabela verdade do Código 2 entre 5 ao lado.

Códigos – Código Johnson

		2]	ENTRE	2 5	
DECIMAL	A	В	C	D	E
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	1
3	0	0	1	1	1
4	0	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0
7	1	1	1	0	0
8	1	1	0	0	0
9	1	0	0	0	0

- Esse código é utilizado no contador de Jonhson.
- Ao lado a tabela verdade do Código Johnson.

Códigos – Código 9876543210

- Esse código apresenta 10 bits e sempre há apenas uma saída verdadeira em cada caso.
- O código 9876543210 era utilizado na época dos computadores de válvulas eletrônicas. Isso significava que a saída verdadeira da tabela verdade era a que acendia a válvula.
- A seguir a tabela verdade do Código 9876543210:

Códigos – Código 9876543210

DECIMAL	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	1	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0
6	0	0	0	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0	0	0	0

Display de 7 segmentos

- Um display de 7 segmentos possibilita visualizar símbolos, como letras ou números.
- Displays LED podem ser catodo comum, que usa nível 1 para acender os segmentos, ou anodo comum, que usa nível 0.
- Ao lado uma representação de um display de 7 segmentos com cada segmento rotulado.
- A seguir será demonstrado o projeto de display de 7 segmentos catodo comum, para números de 0 a 9.

- Primeiramente, cada número que pode ser representado no display é analisado individualmente em relação aos segmentos ativos naquele caso. Por exemplo, o número 8 (representado ao lado) tem todos os segmentos (a, b, c, d, e, f e g) ativos.
- Em seguida, os resultados são dispostos ao lado dos seus equivalente em código BCD 8421.
- Logo, para o número 8, as saídas obtidas estariam relacionadas a linha 1000.

Caso	Binário	Displa	Saídas							
0 0000	0000	a f	b	a	b	c	d	e	f	g
U	0000	e d	С	1	1	1	1	1	1	0

Caso	Binário	Display Saídas							
1	0001	b	a	b	С	d	e	f	g
1	0001	c	0	1	1	0	0	0	0

Caso	Binário	Display	Saídas							
2 0010	0010	a g b	a	b	С	d	e	f	g	
2	0010	e	1	1	0	1	1	0	1	

Caso	Binário	Display	lay Saídas							
3	0011	a g b	a	b	С	d	e	f	g	
3	0011	d	1	1	1	1	0	0	1	

Caso	Binário	Display	Saídas							
4	0100	f g b	a	b	С	d	e	f	g	
4	0100	c	0	1	1	0	0	1	1	

Caso	Binário	Display	Saídas						
5	0101	a f g	a	b	c	d	e	f	g
3	0101	d	1	0	1	1	0	1	1

Caso	Binário	Display	Saídas						
6	6 0110	a f g	a	b	С	d	e	f	g
O	0110	e c	1	0	1	1	1	1	1

Caso	Binário	Display	Saídas							
	Λ111	a b	a	b	С	d	e	f	g	
/	0111	c	1	1	1	0	0	0	0	

Caso	Binário	Display	Saídas							
O	8 1000	a b	a	b	С	d	e	f	g	
ð	1000	e c	1	1	1	1	1	1	1	

Caso	Binário	Display	ay Saídas						
9	1001	a b	a	b	С	d	e	f	g
	1001	c	1	1	1	1	0	1	1

	BCD	8421				Display	de 7 seş	gmento	S	
A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

- Agora os segmentos serão analisados individualmente como saídas para as entradas ABCD do código BCD 8421.
- Esse código possui 4 entradas e, o mapa de Karnaugh para esse número de variáveis tem 16 casas, porém estamos representando apenas 10 dígitos.
- Portanto, os casos que não estão explícitos na tabela verdades serão representados por um X, já que não são relevantes para o resultado final. Eles são selecionados nos agrupamentos de forma circunstancial, normalmente para se obter um agrupamento maior.

- Por exemplo, no mapa abaixo é possível fazer agrupamentos, com mais de uma casa, de 4 formas distintas.
- O preferível nessa situação seria o mapa 4, pois tem o maior agrupamento possível.

	Display 7 segmentos			
A	В	C	D	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

$$a = A + C + \overline{BD} + BD$$

	Display 7 segmentos			
A	В	C	D	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

$$a = A + C + (B \odot D)$$

	Display 7 segmentos			
A	В	C	D	b
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

$$b = \overline{B} + \overline{C}\overline{D} + CD$$

	Display 7 segmentos			
A	В	C	D	b
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

$$b = \overline{B} + (C \odot D)$$

	BCD 8421				
A	В	C	D	c	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	1	

$$c = B + \overline{C} + D$$

	BCD 8421				
A	В	C	D	d	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	1	

$$d = A + \overline{B}\overline{D} + C\overline{D} + \overline{B}C + B\overline{C}D$$

	Display 7 segmentos			
A	В	C	D	e
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0

$$e = C\overline{D} + \overline{B}\overline{D}$$

	Display 7 segmentos			
A	В	C	D	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1

$$f = A + \overline{C}\overline{D} + B\overline{D} + B\overline{C}$$

	Display 7 segmentos			
A	В	C	D	g
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1

$$g = A + B\overline{C} + \overline{B}C + C\overline{D}$$

Display de 7 segmentos — Circuito combinacional

- $a = A + C + (B \odot D)$
- $b = \overline{B} + (C \odot D)$
- $c = B + \overline{C} + D$
- $d = A + \overline{BD} + C\overline{D} + \overline{BC} + B\overline{CD}$
- $e = C\overline{D} + \overline{B}\overline{D}$
- $f = A + \overline{C}\overline{D} + B\overline{D} + B\overline{C}$
- $g = A + B\overline{C} + \overline{B}C + C\overline{D}$

Display de 7 segmentos – Simulação

•
$$a = A + C + (B \odot D)$$

•
$$b = \overline{B} + (C \odot D)$$

•
$$c = B + \overline{C} + D$$

•
$$d = A + \overline{BD} + C\overline{D} + \overline{BC} + B\overline{CD}$$

•
$$e = C\overline{D} + \overline{B}\overline{D}$$

•
$$f = A + \overline{C}\overline{D} + B\overline{D} + B\overline{C}$$

•
$$g = A + B\overline{C} + \overline{B}C + C\overline{D}$$

• Disponível em:

https://circuitverse.org/users/166835/projects/display-7-segmentos-4d143591-9d09-4a9f-9aac-f86165228e3f

Referências Bibliográficas

- IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de Eletrônica Digital. 40. ed. São Paulo: Érica, 2008.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo, SP: Pearson, 2018. E-book.
- NELSON, Victor P. et al. Digital logic circuit analysis and design. 1. ed. Englewood Cliffs: Prentice-Hall, 1995.