An introduction to the Bottleneck distance From optimal transport to the stability theorem

Gonzalo Ortega

Monday 13th 2025

Contents

Optimal transport

2 Wasserstein distance in persistence diagrams

3 Bottleneck distance for the stability theorem

Optimal transport

N. Papadakis, Optimal Transport for Image Processing, habilitation à diriger des recherches, Université de Bordeaux, Dec. 2015

Definition (Push-forward measure)

Let $T: X \to Y$ be a Borel map, and $\mu \in \mathcal{P}(X)$. Let $A \in Bar$. The *push-forward measure* $T_{\#}\mu \in \mathcal{P}(Y)$ is defined as

$$T_{\#}\mu(A) := \mu(T^{-1}(A)).$$

Definition (Transport map)

Given $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, a transport map from μ to ν is a Borel map $T: X \to Y$ that satisfies $T_{\#}\mu = \nu$.

Definition (Transport plan)

Let $\pi_X: (X \times Y) \to X$ and $\pi_Y: (X \times Y) \to Y$ such that for every $(x,y) \in (X,Y)$, $\pi_X(x,y) = x$ and $\pi_Y(x,y) = y$. A transport plan between μ and ν is a probability measure $\gamma \in \mathcal{P}(X \times Y)$ where

$$(\pi_X)_{\#}\gamma = \mu$$
 and $(\pi_Y)_{\#}\gamma = \nu$.

The set of all couplings between μ and ν is denoted $\Gamma(\mu, \nu)$.

Monge and Kantorovich transport problems

Definition (Transport problems)

Fix $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$ and consider a lower semicontinous map $c: X \times Y \to [0, \infty]$. Then

$$C_{M}(\mu,\nu) := \inf \left\{ \int_{X} c(x,T(x)) d\mu(x) : T_{\#}\mu = \nu \right\},$$

$$C_{K}(\mu,\nu) := \inf \left\{ \int_{X\times Y} c(x,y) d\gamma(x,y) : \gamma \in \Gamma(\mu,\nu) \right\}.$$

Definition (Probability measures with finite p-moment)

Let (X, d) be a locally compact and separable, metric space. Let $1 \le p < \infty$. The set of probability measures with finite p-moment is defined As

$$\mathcal{P}_p(X) := \left\{ \sigma \in \mathcal{P}(X) : \int_X d(x, x_0)^p d\mu(x) < \infty \text{ for some } x_0 \in X \right\}.$$

Definition (p-Wasserstein distance)

Given $u, v \in \mathcal{P}_p(X)$, the *p-Wasserstein distance* is defined as

$$W_p(u,v) := \left(\inf_{\gamma \in \Gamma(u,v)} \int_{X \times X} d(x,y)^p d\gamma(x,y)\right)^{\frac{1}{p}}.$$

Contents

Optimal transport

2 Wasserstein distance in persistence diagrams

3 Bottleneck distance for the stability theorem

Baic definitions

Definition (Persistence diagram)

Let I be a countable set. A persistence diagram is a function $D: I \to \mathbb{R}^2$.

Definition (Partial matching)

Let $D_1:I_1\to\mathbb{R}^2_<$ and $D_2:I_2\to\mathbb{R}^2_<$ be persistence diagrams. A partial matching between D_1 and D_2 is the triple (I_1', I_2', f) such that $f: I_1' \to I_2'$ is a bijection with $I_1' \subseteq I_1$ and $I_2' \subseteq I_2$.

Definition (Chebyshev distance)

Let $a, b \in \mathbb{R}^2$ with $a = (a_x, a_y)$ and $b = (b_x, b_y)$. The Chebyshev distance is defined as

$$d_{\infty}(a,b) := ||a-b||_{\infty} := \max\{|a_x - b_x|, |a_y - b_y|\}.$$

Definition (*p*-cost)

Let $D_1: I_1 \to \mathbb{R}^2_{<}$ and $D_2: I_2 \to \mathbb{R}^2_{<}$ be persistence diagrams. Let (I_1', I_2', f) be a partial matching between them. If $p < \infty$, the p-cost of f is defined as

$$\mathsf{cost}_{p}(f) := \bigg(\sum_{i \in I_1'} d_{\infty}(D_1(i), D_2(f(i)))^p + \sum_{i \in I_1 \setminus I_1'} d_{\infty}(D_1(i), \Delta)^p + \sum_{i \in I_2 \setminus I_2'} d_{\infty}(D_2(i), \Delta)^p\bigg)^{\frac{1}{p}}.$$

For $p = \infty$, the ∞ -cost of f is defined as

$$\mathsf{cost}_\infty(f) := \mathsf{max}\, \bigg\{ \sup_{i \in I_1'} d_\infty(D_1(i), D_2(f_i)), \sup_{i \in I_1 \setminus I_1'} d_\infty(D_1(i), \Delta), \sup_{i \in I_2 \setminus I_2'} d_\infty(D_2(i), \Delta) \bigg\}.$$

Bottleneck distance

Definition (p-Wasserstein distance)

Let D_1, D_2 be persistence diagrams. Let $1 \le p \le \infty$. Define

$$\tilde{\omega}_p(D_1, D_2) = \inf\{ \cos t_p(f) : f \text{ is a partial matching between } D_1 \text{ and } D_2 \}.$$

Let \emptyset denote the unique persistence diagram with empty indexing set. Let $(\mathsf{Dgm}_p, \omega_p)$ be the space of persistence diagrams D that satisfy $\tilde{\omega}_p(D,\emptyset) < \infty$ modulo the equivalence relation $D_1 \sim D_2$ if $\tilde{\omega}_p(D_1,D_2) = 0$. The metric ω_p is called the p-Wasserstein distance.

Definition (Bottleneck distance)

If $p = \infty$, the metric ω_{∞} is called the *bottleneck distance*.

Definition (Isometric embedding)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. An isometric embedding $\eta : (X, d_X) \to (Y, d_Y)$ is a mapping that satisfies

$$d_X(x_1,x_2) = d_Y(\eta(x_1),\eta(x_2))$$

for all $x_1, x_2 \in X$.

Definition (Ball in persistence diagrams)

Gonzalo Ortega

Let $1 \le p \le \infty$. Let $D_0 \in \mathsf{Dgm}_p$. The *ball* at the space of persistence diagrams is defined as $B_p(D_0, r) := \{D \in \mathsf{Dgm}_p : w_p(D, D_0) < r\}$.

Theorem (Isometric embeeding of metric spaces into persistance diagrams)

Let (X,d) be a separable, bounded metric space. Then there exists an isometric embedding to the space of persistence diagrams $\eta:(X,d)\to(\mathrm{Dgm}_\infty,\omega_\infty)$ such that $\eta(X)\subseteq B(\emptyset,\frac{3c}{c})\setminus B(\emptyset,c)$.

As (X, d) is bounded, we can let $c > \sup\{d(x, y) : x, y \in X\}$. As (X, d) is separable, we can take $\{x_k\}_{k=1}^{\infty}$, a countable, dense subset of (X, d). Consider

$$\eta: (X, d) o (\mathsf{Dgm}_{\infty}, \omega_{\infty}) \ x \mapsto \{(2c(k-1), 2ck + d(x, x_k))\}_{k=1}^{\infty}$$

Contents

Optimal transport

Wasserstein distance in persistence diagrams

3 Bottleneck distance for the stability theorem

One Bottleneck alternative definition

DEFINITION 6.17. For $\epsilon \geq 0$, an ϵ -matching between two multi-sets B and B' of intervals is a bijection $\rho: B_0 \to B'_0$ between a pair of multi-subsets $B_0 \subset B$ and $B'_0 \subset B'$ subject to the following constraints:

- (1) Every [s,t] in $(B-B_0) \cup (B'-B'_0)$ has length $t-s \le 2\epsilon$, and
- (2) If $\rho[s,t] = [s',t']$ for some [s,t] in B_0 , then $|s-s'| \le \epsilon \ge |t-t'|$.

DEFINITION 6.18. The **bottleneck distance** $d_{\text{Bot}}(B, B')$ between multi-sets of intervals B and B' is the infimum over all $\epsilon \geq 0$ for which there exists an ϵ -matching between them.

Bottleneck distance for the stability theorem

Theorem (Stability)

There is an isometry between a persistence module with the interleaving distance and its barcode with the bottleneck distance. This means that, given two persistence modules $V,\ W,$

$$d_{int}(V, W) = d_{bot}(Bar(V), Bar(W)).$$

Topological data analysis pipeline

But...

Where does the name Bottleneck come from? Who knows.