Feuille d'exercices nº 5 - Espace quotient - produit tensoriel

Définition 1. Soit E un **k**-espace vectoriel et $F \subseteq E$ un sous-espace vectoriel. On définit la relation $\sim_F \text{sur } E$:

$$x \sim_F y$$
 si et seulement si $x - y \in F$.

Les éléments de E/\sim_F sont les ensembles

$$v + F = \{v + f \mid f \in F\}, \quad v \in E.$$

On munit E/\sim_F d'une structure d'un **k**-espace vectoriel comme suit :

$$(v_1 + F) + (v_2 + F) = v_1 + v_2 + F, \quad \lambda(v + F) = \lambda v + F.$$

Cet espace vectoriel E/\sim_F s'appelle le quotient de E par F et se note E/F.

- 1. Soit E un **k**-espace vectoriel de dimension finie et $F \subseteq E$ un sous-espace vectoriel. Soit f_1, \ldots, f_k une base de F et $f_1, \ldots, f_k, g_1, \ldots, g_m$ une base de E.
 - (a) Montrer que $g_1 + F$, ..., $g_m + F$ est une base de E/F. En déduire la formule dim $E = \dim F + \dim(E/F)$.
 - (b) Soit $A \in \text{End}_{\mathbf{k}}(E)$ un endomorphisme qui fixe F (i.e. $Af \in F$ pour tout $f \in F$). Alors on peut définir les opérateurs $A|_F \in \text{End}_{\mathbf{k}}(F)$ et $A' \in \text{End}_{\mathbf{k}}(E/F)$ comme suit :

$$\mathcal{A}|_F f = Af, \quad f \in F,$$

 $\mathcal{A}'(e+F) = \mathcal{A}e + F, \quad e \in E.$

Montrer que \mathcal{A}' est bien défini (si e+F=e'+F, alors $\mathcal{A}'(e+F)=\mathcal{A}'(e'+F)$) et $\mathcal{A}'\in \operatorname{End}_{\mathbf{k}}(E/F)$.

- (c) Montrer que la matrice A de \mathcal{A} dans la base $f_1, \ldots, f_k, e_1, \ldots, e_m$ est triangulaire par bloc : $A = \begin{pmatrix} B & C \\ 0 & E \end{pmatrix}$. Trouver la matrice de $\mathcal{A}|_F$ dans la base f_1, \ldots, f_k et la matrice de \mathcal{A}' dans la base $e_1 + F, \ldots, e_m + F$.
- (d) Montrer que $\chi_{\mathcal{A}} = \chi_{\mathcal{A}|_F} \chi_{\mathcal{A}'}$. Montrer que $\mu_{\mathcal{A}|_F}$ et $\mu_{\mathcal{A}'}$ divisent $\mu_{\mathcal{A}}$. Montrer que $\mu_{\mathcal{A}}$ divisent $\mu_{\mathcal{A}}$.
- 2. Soit $P \in \mathbb{C}[x]$, deg P = d. On désigne par $\langle P \rangle$ l'idéal engendré par P:

$$\langle P \rangle = \{ QP \mid Q \in \mathbb{C}[x] \}.$$

- (a) Montrer qu'il existe un isomorphisme naturel de \mathbb{C} -espaces vectoriels $\mathbb{C}[x]/\langle P \rangle \to \mathbb{C}_{d-1}[x]$ (on dit qu'un morphisme est *naturel* s'il ne dépend pas du choix des bases).
- (b) On suppose que P est séparable (i.e. n'admet aucune racine multiple). Montrer qu'il existe un isomorphisme naturel de \mathbb{C} -algèbres $\mathbb{C}[x]/\langle P \rangle \to \mathbb{C}^d$ (multiplication dans \mathbb{C}^d est définie élément-par-élément).

Définition 2. Soit V, W deux **k**-espaces vectoriels. Le *produit tensoriel* de $V \otimes W$ est le quotient de l'espace vectoriel V * W dont la base consiste des paires $(v, w), v \in V, w \in W$, par le sous-espace F engendré par les éléments

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w),$$

$$(v, w_1 + w_2) - (v, w_1) - (v, w_2),$$

$$(av, w) - a(v, w),$$

$$(v, aw) - a(v, w),$$

où $v_1, v_2, v \in V, w_1, w_2, w_2 \in W$ et $a \in \mathbf{k}$. On désigne $v \otimes w = (v, w) + F$ et on appelle les éléments de cette forme tenseurs purs.

- 3. (a) Soit U, V, W trois **k**-espaces vectoriels. Construire une bijection naturelle entre les applications bilinéaires $V \times W \to U$ est les applications linéaires $V \otimes W \to U$.
 - (b) Soit $\{v_i\}$ une base de V et $\{w_j\}$ une base de W. Montrer que $\{v_i \otimes w_j\}$ est une base de $V \otimes W$. En déduire $\dim(V \otimes W)$.
 - (c) Construire un isomorphisme naturel $V^* \otimes W \to \operatorname{Hom}_{\mathbf{k}}(V,W)$ dans le cas dim V, dim $W < \infty$.
- 4. Soit e_1 , e_2 , e_3 , e_4 la base canonique de \mathbb{R}^4 . Montrer que $e_1 \otimes e_2 + e_3 \otimes e_4$ n'est par un tenseur pur dans $\mathbb{R}^4 \otimes \mathbb{R}^4$.
- 5. Soit $A_1: V_1 \to W_1$, $A_2: V_2 \to W_2$ deux applications **k**-linéaires des espaces de dimension finie. On définit leur produit tensoriel $A_1 \otimes A_2: V_1 \otimes V_2 \to W_1 \otimes W_2$ sur les tenseurs purs comme suit :

$$(\mathcal{A}_1 \otimes \mathcal{A}_2)(v_1 \otimes v_2) = (\mathcal{A}_1 v_1) \otimes (\mathcal{A}_2 v_2),$$

et on étend la définition sur $V_1 \otimes V_2$ par linéarité. On peut vérifier que la définition est correcte.

- (a) Soient $\{e_i\}$, $\{f_j\}$, $\{h_i\}$, $\{g_j\}$ les bases de V_1 , W_1 , V_2 , W_2 ; A_1 la matrice de A_1 dans les bases $\{e_i\}$, $\{f_j\}$; A_2 la matrice de A_2 dans les bases $\{h_i\}$, $\{g_j\}$. Ecrire la matrice $A_1 \otimes A_2$ de $A_1 \otimes A_2$ dans les bases $\{e_i \otimes h_i\}$, $\{f_j \otimes g_j\}$. On appelle $A_1 \otimes A_2$ le produit de Kronecker des matrices A_1 et A_2 .
- (b) Soit $V_1 = W_1$, $V_2 = W_2$. Soient λ_1 , v_1 une valeur propre et un vecteur propre de \mathcal{A}_1 ; λ_2 , v_2 une valeur propre et un vecteur propre de \mathcal{A}_2 . Montrer que $\lambda_1\lambda_2$, $v_1 \otimes v_2$ sont une valeur propre et un vecteur propre de $\mathcal{A}_1 \otimes \mathcal{A}_2$.
- (c) Soit $\mathbf{k} = \mathbb{C}$, $V_1 = W_1$, $V_2 = W_2$, $\chi_{\mathcal{A}_1}(\zeta) = \prod_{i=1}^{n_1} (\lambda_i \zeta)$, $\chi_{\mathcal{A}_2}(\zeta) = \prod_{j=1}^{n_2} (\mu_j \zeta)$ (on autorise des racines multiples). Montrer que

$$\chi_{\mathcal{A}_1 \otimes \mathcal{A}_2}(\zeta) = \prod_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2}} (\lambda_i \mu_j - \zeta).$$

En déduire les expressions pour $\operatorname{tr}(\mathcal{A}_1 \otimes \mathcal{A}_2)$, $\operatorname{det}(\mathcal{A}_1 \otimes \mathcal{A}_2)$ et $\operatorname{rang}(\mathcal{A}_1 \otimes \mathcal{A}_2)$.

(d) Soit $V_1 = W_1$, $V_2 = W_2$. Soient λ_1 , v_1 une valeur propre et un vecteur propre de \mathcal{A}_1 ; λ_2 , v_2 une valeur propre et un vecteur propre de \mathcal{A}_2 . Montrer que $\lambda_1 \pm \lambda_2$, $v_1 \otimes v_2$ sont une valeur propre et un vecteur propre de

$$\mathcal{A}_1 \otimes \mathrm{id}_{V_2} \pm \mathrm{id}_{V_1} \otimes \mathcal{A}_2$$
.

Pour $\mathbf{k}=\mathbb{C}$ obtenir l'expression pour le polynôme caractéristique des opérateurs $\mathcal{A}_1\otimes \mathrm{id}_{V_2}\pm\mathrm{id}_{V_1}\otimes\mathcal{A}_2$.

- 6. On appelle $z \in \mathbb{C}$ un nombre algèbrique (resp. un entier algèbrique), si z est une racine d'un polynôme monique à coefficients dans \mathbb{Q} (resp. dans \mathbb{Z}). L'ensemble de nombres algèbriques est noté $\overline{\mathbb{Q}}$, l'ensemble d'entiers algèbriques est noté \mathbb{A} .
 - (a) Montrer que $z \in \mathbb{Z}$ est un nombre algèbrique (resp. un entier algèbrique) si est seulement si z est une valeur propre d'une matrice avec des éléments dans \mathbb{Q} (resp. dans \mathbb{Z}). (Indication: utiliser la matrice compagnon).
 - (b) Montrer que $\overline{\mathbb{Q}}$ est un corps et \mathbb{A} est un anneau.