Analysis I (Marciniak-Czochra)

Robin Heinemann

November 23, 2016

Contents

L	Link	eitung		3			
2	Mer	Mengen und Zahlen					
	2.1	Logisc	che Regeln und Zeichen	3			
		2.1.1	Quantoren	3			
		2.1.2	Hinreichend und Notwendig	3			
		2.1.3	Beweistypen	3			
		2.1.4	Summenzeichen und Produktzeichen	4			
	2.2	Menge	en	5			
		2.2.1	Definition	5			
		2.2.2	Mengenrelationen	5			
		2.2.3	Potenzmenge	6			
		2.2.4	Familien von Mengen	6			
		2.2.5	Rechenregeln	6			
		2.2.6	geordneter Tupel	7			
		2.2.7	Kartesisches Produkt	7			
		2.2.8	Äquivalenzrelation	7			
	2.3	Relati	onen und Abbildungen	8			
		2.3.1	Relationen	8			
		2.3.2	Graph der Abbildung	8			
		2.3.3	Umkehrabbildung	8			
		2.3.4	Komposition	9			
		2.3.5	Identitäts Abbildung	9			
		2.3.6	Homomorphe Abbildungen	9			
	2.4	Natür	liche Zahlen	9			
		2.4.1	Peanosche Axiomensystem der natürlichen Zahlen	9			
		2.4.2	Vollständige Induktion	10			
		2.4.3	Definition Körper	11			
	2.5	Abzäh	ılbarkeit	12			
		2.5.1	Abzählbarkeit von Mengen	12			

	2.6	Ordnung
		2.6.1 Definition
	2.7	Maximum und Minimum einer Menge
		2.7.1 Definition
		2.7.2 Bemerkung
	2.8	Schranken
		2.8.1 Bemerkung
		2.8.2 Beispiel
	2.9	Reelle Zahlen
		2.9.1 Vollständigkeitsaxiom (Archimedes)
		2.9.2 Axiomatischer Standpunkt
		2.9.3 Bemerkung
		2.9.4 Konstruktiver Standpunkt
		2.9.5 Definition 1.37
		2.9.6 Satz 1.38
		2.9.7 Satz 1.39
		2.9.8 Definition 1.40
		2.9.9 Lemma 1.41
		2.9.10 Definition 1.42
		2.9.11 Lemma 1.44
		2.9.12 Definition 1.45 Produktzeichen
		2.9.13 Satz 1.46
		2.9.14 Definition 1.47
		2.9.15 Lemma 1.48
		2.9.16 Satz 1.49
		2.9.17 Folgerung 1.50
		2.9.18 Lemma 1.51
		2.9.19 Lemma 1.52
		2.9.20 Lemma 1.53 (Bernoullische Ungleichung)
		2.9.21 Folgerung 1.54
		2.9.22 Satz 1.55 (Existenz der m-ten Wurzel)
		2.9.23 Lemma 1.56
2	Kon	nplexe Zahlen 24
J	3.1	Komplexer Zahlkörper
	9.1	3.1.1 Beweis
	3.2	Notation
	3.3	TODO Graphische Darstellung
	3.4	Bemerkung
	3.5	Korollar 1.59
	3.6	Fundamentalsatz der Algebra
	3.7	Betrag
	3.8	Konjugation
	J. O	11.011.jugavi011

4	Folg	en 2				
	4.1	Definition 2.1 Konverenz	26			
	4.2	Folgerung 2.2	27			
	4.3	Definition 2.3 Cauchy Folgen	27			
	4.4	Definition 2.4 Teilfolge	27			
	4.5	Rechenregeln für Grenzwerte von Folgen	31			
	4.6	Geometrische Folge	32			

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis1.php Klausurzulassung: 50% Klausur18.2.20179-12Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

```
\forall x für alle x

\exists x es gibt (mindestens) ein x

\exists!x es gibt genau ein x
```

2.1.2 Hinreichend und Notwendig

- $A \Rightarrow B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \Rightarrow \neg A$)
- $A \Leftrightarrow B$: A gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

Direkter Schluss $A \Rightarrow B$

Beispiel m gerade Zahl $\Rightarrow m^2$ gerade Zahl

1. Beweis mgerade $\Rightarrow \exists n \in \mathbb{N}$ sodas
s $m=2n \Rightarrow m^2=4n^2=2k,$ wobei $k=2n^2 \in \mathbb{N}\square$

Beweis der Transponerten (der Kontraposition) Zum Beweis $A \Rightarrow B$ zeigt man $\neg B \Rightarrow \neg A \ (A \Rightarrow B) \Leftrightarrow (\neg B) \Rightarrow (\neg A)$

Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\Rightarrow m$ gerade

1. Beweis Wir zeigen: m ist ungerade $\Rightarrow m^2$ ungerade

$$\exists n \in \mathbb{N}: m = 2n+1 \Rightarrow m^2 = (2n+1)^2 = 2k+1, k = 2n^2+2n \in \mathbb{N} \Rightarrow m^2 \text{ ungerade} \square$$

Indirekter Schluss (Beweis durch Wiederspruch) Man nimmt an, dass $A \Rightarrow B$ nicht gilt, das heißt $A \land \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C \Rightarrow \neg C$, also ein Wiederspruch

Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$

1. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q} : a^2 = 2$ Dann folgt: $\exists b, c \in \mathbb{Z}$ teilfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a = \frac{b}{c}$ Falls

$$a^2 = 2 \Rightarrow \left(\frac{b}{c}\right)^2 = 2 = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeigt)}$$

 $\Rightarrow \exists d \in \mathbb{N} \text{ sodass } b = 2d \Rightarrow b^2 = 4d^2$

Außerdem $b^2=2c^2\Rightarrow 2c^2=4d^2\Rightarrow c^2=2d^2\Rightarrow c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \square

2.1.4 Summenzeichen und Produktzeichen

Summenzeichen Wir definieren für m > 0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \ge m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogennante leere Summe)

Produktzeichen

$$\prod_{k=m}^n a_k := \begin{cases} a_m \cdot \ldots \cdot a_n & \text{falls } n \geq m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg cantor 1885) Unter einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \rightarrow \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

$$M = \{x \mid A(x)\} \rightarrow \text{ eine Menge } M \text{ für die } x \in M \Leftrightarrow A(x)$$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subseteq M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \Rightarrow x \in M)$$

,
zum Beispiel $\mathbb{N}\subseteq\mathbb{Z}$

 $A = B \Leftrightarrow \forall x : (x \in A \Leftrightarrow x \in B)$

 $A \subset M$ (strikte Teilmenge) $\Leftrightarrow A \subset M \land A \neq M$

 \emptyset : leere Menge $\not\exists x: x \in \emptyset$

. Wir setzen fest, dass \emptyset eine Teilmenge jeder Menge ist. Zum Beispiel

$${x \in \mathbb{R} : x^2 + 1 = 0}$$

• Durchschnitt

$$A \cap B := \{x \mid x \in A \land x \in B\}$$

• Vereinigung

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

• Differenz (auch Komplement von B in A)

$$A \setminus B := \{x \mid x \in A \land x \notin B\} := C_a B \text{ (auch } B^c)$$

2.2.3 Potenzmenge

Potenzmenge A

$$\mathcal{P}(A) := \{ B \mid B \subseteq A \}$$

Alle Teilmengen von A

Beispiel

$$\mathcal{P}(\{1,2\}) = \{\{1\},\{2\},\{1,2\},\emptyset\}$$

2.2.4 Familien von Mengen

Sei I eine Indexmenge, $I\subseteq \mathbb{N}, (A_i)_{i\in I}$ eine Familie von Mengen A

Durchschnitt von A

$$\cap_{i \in I} = \{ x \mid \forall_{i \in I} \ x \in A_i \}$$

Vereinigung

$$\cup_{i \in I} = \{x \mid \exists i \in I : x \in A_i\}$$

2.2.5 Rechenregeln

A, B, C, D seien Mengen

- $\emptyset \subseteq A$
- $A \subseteq A$

Reflexivität

• $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

Transitivität

• $A \cap B = B \cap A$ $A \cup B = B \cup A$

Kommutativität

• $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

Assoziativität

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Eigenschaften der Komplementbildung: Seien $A, B \subseteq D(C_D A) := D \setminus A$, dann gilt

$$C_D(C_DA) = A$$

$$C_D(A \cap B) = C_D A \cup C_D B$$

$$C_D(A \cup B) = C_D A \cap C_D B$$

- Beweis:

$$x \in C_D(A \cap B) \Leftrightarrow x \in D \land (x \notin (A \cap B)) \Leftrightarrow x \in D \land (x \notin A \lor x \notin B)$$
$$\Leftrightarrow (x \in D \land x \notin A) \lor (x \in D \land x \notin B)$$
$$\Leftrightarrow (x \in D \land A) \lor (x \in D \land B) \Leftrightarrow x \in D \land (A \cup B) \square$$

- Bemerkung: Komplement kann man auch mit A^c bezeichnen

2.2.6 geordneter Tupel

Sei x_1, x_2, \ldots, x_n (nicht notwendig verschiedene) Objekte. Ein geordneter n-Tupel

$$(x_1, x_2, \dots, x_n) = (y_1, \dots, y_n) \Leftrightarrow x_1 = y_1, \dots, x_n = y_n$$

Beachte:

$$\{x_1, \dots, x_n\} = \{y_i, \dots, y_n\} \iff x_1 = y_1, \dots, x_n = y_n$$

2.2.7 Kartesisches Produkt

Seien

$$A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_j \in A_j \in \mathbb{N}, j \le n\}$$

Beispiel

•

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$$

• \mathbb{R}^n n-dimensionaler Raum von reellen Zahlen

2.2.8 Äquivalenzrelation

Eine Äquivalenzrelation auf eine Menge A ist eine Beziehung zwischen ihren Elementen (Bezeichnung: $a \sim b$), sodass

• Für jede zwei $a,b \in A$ gilt entweder $a \sim b \vee a \not\sim b$

• $a \sim a$ Reflexivität

• $a \sim b \Rightarrow b \sim a$ Symmetrie

• $a \sim b, b \sim c \Rightarrow a \sim c$ Transitivität

Mit Hilfe einer Äquivalenzrelation lassen sich die Elemente einer Menge in sogenannte Äquivalenzklassen einordnen: $[a]:\{b\in A\mid b\sim a\}$

2.3 Relationen und Abbildungen

2.3.1 Relationen

Unter einer **Relation** verstehen wir eine Teilmenge $R \subseteq X \times Y$ wobei X, Y Mengen sind. Für $x \in X$ definieren wir, das **Bild** von x unter R

$$R(X) := \{ y \in Y \mid (x, y) \in R \}$$

und *Definitionsbereiche von R (bezüglich X)

$$D(R) := \{x \in X \mid R(x) \neq \emptyset\}$$

2.3.2 Graph der Abbildung

 $R \subseteq X \times Y$ heißt Graph der Abbildung (Funktion)

$$f: X \to Y \Leftrightarrow D(R) = X, \forall x \in X : R(x) = \{f(x)\}\$$

also enthält R(x) genau ein Element.

X heißt Definitionsbereich von f

Y heißt Werte- oder Bildbereich von f (Bild)

 $x \in X$ heißt Argument

 $f(x) \in Y$ heißt Wert von f an der Stelle x

Beispiel $f: \mathbb{R} \to \mathbb{R}, x \to x^2$ dann ist der Graph von $f = \{(x, y) \in \mathbb{R}^2, y = x^2\}$

Bemerkung

$$M^*(x) = \{(x, y) \in \mathbb{R}^2; x = y^2\} = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = \sqrt{x} \lor y = -\sqrt{x}\}$$

Ist kein Graph einer Funktion $\mathbb{R} \to \mathbb{R}$, denn $M^*(x) = \{\sqrt{x}, -\sqrt{x}, x \geq 0\}$ f heißt

- surjektiv, wenn gilt f(X) = Y
- injectiv, $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- bijektiv, wenn f surjektiv und injectiv ist

2.3.3 Umkehrabbildung

Sei die Abbildung $f:X\to Y$ bijektiv. Dann definieren wir die Umkehrabbildung $f^{-1}:Y\to X$ durch $y\to x\in X$, eindeutig bestimmt durch y=f(x)

Bemerkung

$$(x,y) \in \text{Graph } f \Leftrightarrow (y,x) \in \text{Graph } f^{-1}$$

2.3.4 Komposition

Seien $f: X \to Y, g: Y \to Z$ Abbildungen. Die Komposition von g und f

$$g \circ f: X \to Z$$
 ist durch $x \to g(f(x))$ definiert

2.3.5 Identitäts Abbildung

Für jede Menge X definieren wir die identische Abbildung

$$I_d(A) = I_A : A \to A$$
, durch $x \to x$

Beispiel

•

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = S^1$$

$$S^{n-1} := \{(x_1 \dots x_n) \in \mathbb{R}^n; \sum_{i=1}^n x_i^2 = 1\}$$

(n-1) dimensionale sphere in \mathbb{R}^n

• Seien X,Y Mengen, $M\subseteq X\times Y, f:M\to X$ f heißt Projektion, f surjektiv

$$f\left(M\right) = \left\{x \mid \exists y \in Y : (x, y) \in M\right\} = X$$

2.3.6 Homomorphe Abbildungen

Existieren auf Mengen X und Y mit gewissen Operationen \oplus_x bzw. \oplus_y (zum Beispiel Addition, Ordungsrelation), ho heißt die Abbildung $f: X \to Y$ homomorph (strukturerhaltend), wenn gilt $\forall x_1, x_2 \in Xf(x_1 \oplus_x x_2) = f(x_1) \oplus_y f(x_2)$ Eine bijektive Homomorphie heißt Isomorphisumus, beziehungsweise $X \approx Y$ (äquivalent, isomorph)

2.4 Natürliche Zahlen

$$\mathbb{N} = \{1, 2, 3, \ldots\}, \ \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

2.4.1 Peanosche Axiomensystem der natürlichen Zahlen

- 1. Die Zahl 1 ist eine natürliche Zahl $1 \in \mathbb{N}$
- 2. Zu jeder natürlichen Zahl n, gibt es genau einen "Nachfolger" n' (=: n+1)
- 3. Die Zahl 1 ist kein Nachfolger einer natürlichen Zahl
- 4. $n' = m' \Rightarrow n = m$
- 5. Enthält eine Teilmenge $M\subseteq \mathbb{N}$ die Zahl 1 und von jedem $n\in m$ auch den Nachfolger n' ist $M=\mathbb{N}$

Bemerkung:

Mit Hilfe der Axiome lassen sich auf \mathbb{N} Addition (+), Multiplikation (·) und Ordung (\leq) einführen. Wir definieren:

 $1'=2,2'=3,\ldots n+1:=m'$ n+m':=(n+m)'; $n\cdot m':=nm+n$ Man kann zeigen, dass jede Menge, welche die Peano Axiome erfüllt isomorph bezüglich Multiplikation und Addition zu $\mathbb N$ ist Wir definieren $n< m \Leftrightarrow \exists x\in \mathbb N: x+m=m$

2.4.2 Vollständige Induktion

Induktionsprinzip Es seien die folgende Schritte vollzogen:

- 1. Induktionsverankerung (Induktionsanfang): Die Aussage A(1) gilt
- 2. Induktionsschluss: Ist für ein $n \in \mathbb{N}$ A(n) gültig, so folgt auch die Gültigkeit von A(n+1)

Dann sind alle Aussagen A(n), $n \in \mathbb{N}$ gültig.

Beweis: Wir definieren die Tailmenge $M\subseteq \mathbb{N},\ M:=\{n\in \mathbb{N}\mid A(N) \text{ ist gültig}\}$ Die Induktionsverankerung besagt, dass $1\in M$ und die Induktionsannahme $n\in M\Rightarrow n+1\in M$. Folglich ist nach dem 5. Axiom von Peano $M=\mathbb{N}$

Beispiel 1 Zu Beweisen:

$$\forall n \in \mathbb{N} \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

Beweis

- 1. Induktionsverankerung: $1^2 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3$
- 2. Annahme: A(n) gültig für $n \in \mathbb{N}$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ Zu zeigen $A(n+1): 1^2 + \ldots + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$ $1^2 + \ldots + n^2 + (n+1)^2 = \frac{1}{2}n(n+1)(2n+1) + (n+1)^2 = (n+1)\left(\frac{1}{3}n^2 + \frac{1}{6}n + n + 1\right)$ $= \frac{1}{6}(n+1)\left(2n^2 + 7n + 6\right) = \frac{1}{6}(n+1)(2n+3)(n+2)\square$

Beispiel 2 Definition von Potenzen

$$x^0 := 1$$

$$\forall \, n \in \mathbb{N} x^n := x^{n-1} x$$

(iterative (rekursive) Definition)

Auf \mathbb{N} sind diese elementaren Operationene erklärt:

- Addition a + b
- Multiplikation $a \cdot b$
- (unter gewissen Vorraussetzungen):
 - Subtraktion a b
 - Division $\frac{a}{b}$

 $\mathbb N$ ist bezüglich "-" oder "/" nicht vollständig, das heißt n+x=mist nicht lösbar in $\mathbb N$ Erweiterungen:

- Ganze Zahlen $\mathbb{Z} := \{0; \pm, n \in \mathbb{N}\}$ Negative Zahl (-n) ist definiert duch n + (-n) = 0
- Rationale Zahlen \mathbb{Q} (bx = y)

Man sagt, dass $(\mathbb{Q}, +, \cdot)$ einen Körper bildet.

2.4.3 Definition Körper

 \mathbb{K} sei eine Menge auf der Addition und Multiplikation sei. \mathbb{K} heißt ein Körper, wenn die folgende Axiome erfüllt sind:

• Addition: $(\mathbb{K}, +)$ ist eine kummutative Gruppe, das heißt $\forall a, b, c \in \mathbb{K}$:

1.
$$(a+b) + c = a + (b+c)$$

Assoziativität

2.
$$a + b = b + a$$

Kommutativität

3.
$$\exists ! 0 \in \mathbb{K} : a + 0 = a$$

Existenz des Nullelement

4.
$$\exists x \in \mathbb{K} : a + x = 0$$

Existstenz des Nagativen

• Multiplikation: $(\mathbb{K} \setminus \{0\}, \cdot)$ ist eine kommutative Gruppte, das heißt $\forall a, b, c \in \mathbb{K}$

1.
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Assozativität

$$2. \ a \cdot b = b \cdot a$$

Kummutativität

3.
$$\exists ! 1 \in \mathbb{K} : a \cdot 1 = a$$

Existenz des Einselement

4. Für
$$a \neq 0, \exists ! y \in \mathbb{K} : a \cdot y = 1$$

Inverse

• Verträglichkeit

1.
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Distributivität

Satz $(\mathbb{Q}, +, \cdot)$ ist ein Körper. Definieren auf \mathbb{Q} eine Ordnung " \leq " duch

$$x \le y \Leftrightarrow \exists m \in \mathbb{N}_0, n \in \mathbb{N} : y - x = \frac{m}{n}$$

dann ist auch diese Ordnung mit der Addition und Multiplikation in \mathbb{Q} in folgendem Sinne verträglich (Axiom M0):

- $a \le b \Rightarrow a + c \le b + c$
- $0 < a \land 0 < b \Rightarrow 0 < a \cdot b$

Bemerkung

$$\{a \in \mathbb{Q} : a = \frac{r}{s}, r \in \mathbb{N}_0, s \in \mathbb{N}\} =: \mathbb{Q}_+ (\mathbb{Q}_{\geq 0})$$

2.5 Abzählbarkeit

2.5.1 Abzählbarkeit von Mengen

Sei A eine Menge

- A heißt endlich mit |A| = n Elementen ist äquivalent zu

$$|A| = \begin{cases} A = \emptyset & n = 0\\ \exists f : A \to \{1, \dots, n\} & f \text{ bijektiv}, n < \infty \end{cases}$$

• A heißt abzählbar unendlich genau dann wenn

$$\exists f: A \to \mathbb{N} \text{ bijektiv}$$

- A heißt überabzählbar genau dann wenn: A ist weder endlich oder abzählbar unendlich

Beispiel \mathbb{Z} ist abzählbar unendlich

Beweis Die Abbildung $f: \mathbb{Z} \to \mathbb{N}$

$$z \mapsto \begin{cases} 2z & z \ge 0\\ -2z - 1 & x < 0 \end{cases}$$

- Surjektivität: zu zeigen f (Z) = N
 Offenbar f (Z) ⊆ N. Wir zeigen N ⊆ f (Z). Sei n ∈ N, finde z ∈ Z mit f (z) = n.
 Man unterscheide:
 - -n gerade \rightarrow Wähle $z=\frac{n}{2}$
 - n ungerade $\rightarrow z = -\frac{n+1}{2}$
- Injektivität: Sei $z_1, z_2 \in \mathbb{Z}$ und $f(z_1) = f(z_2)$ ohne Beschränkung der Allgemeinheit $z_1 \leq z_2$. Entweder $z_1, z_2 \geq 0$ oder $z_1, z_2 < 0$, denn sonst währe $f(z_1)$ ungerade und $f(z_1)$ gerade **Wiederspruch**. Falls

$$-z_1, z - 2 \ge 0 \Rightarrow 2z_1 = f(z_1) = f(z_2) = 2z_2 \Rightarrow z_1 = z_2$$
$$-z_1, z - 2 < 0 \Rightarrow -2z_1 - 1 = f(z_1) = f(z_2) = -2z_2 - 1 \Rightarrow z_1 = z_2$$

Beispiel

- $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ abzählbar unendlich
- \mathbb{Q} abzählbar unendlich
- $\bullet~\mathbb{R}$ überabzählbar

Abzählbarkeit von $\mathbb{N} \times \mathbb{N}$

$$(1,1) \to (1,2) \to (2,1) \to (2,2) \to (1,3) \to (2,3) \to (3,2) \to (3,1)$$

Korollar 1.30 M_1, M_2, \dots, M_n abzählbar $\Rightarrow M_1 \times \dots \times M_n$ abzählbar.

Beweis Durch vollständige Induktion $M_1 \times (M_2 \times \ldots \times M_n) \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{N}$

Satz Die Menge aller Folgen $f:\mathbb{N}\to\{0,1\}$ ist überabzählbar. (Zum Beispiel: $1,0,0,0,\ldots,1,\ldots,0,\ldots$)

k-te Stelle

Beweis M ist unendlich, denn die Folgen $f_k:0,,\ldots,0,1,0,\ldots$ sind parrweise verschieden. Angenommen M wäre abzählbar. Sei f_1,f_2,\ldots eine Abzählung mit $f_k=(z_{knn\in\mathbb{N}}).$

 $f: 0010 \text{ Man setze } f = (z_n)_{n \in \mathbb{N}} \text{ mit}$

$$z_n := \begin{cases} 1 & z_{nn} = 0 \\ 0 & z_{nn} = 1 \end{cases}$$

Dann $f \in M$, aber $f \neq f_k \, \forall \, k \in \mathbb{N}$. Also ist M nicht abzählbar. ("Cantorsche Diagonalverfahren").

2.6 Ordnung

2.6.1 Definition

Sei A eine Menge. Relation $R\subseteq A\times A$ heißt Teilordnung (Halbordnung) auf A, wenn $\forall\,y,x,z\in A$ gilt:

1.
$$x \le x$$
 (Reflexivität)

2.
$$x \le y \land y \le x \Rightarrow x = y$$
 (Symmetrie)

3.
$$x \le y \land y \le z \Rightarrow x \le z$$
 (Transitivität)

Wenn außerdem noch $\forall x, y \in A$ gilt:

4.
$$x \le y \lor y \le x$$
 (Vergleichbarkeit je zweier Elemente)

so heißt R (totale) Ordung auf A. $\$(A,\le)$ heißt teilweise beziehungsweise (total) geordnete Menge.

Beispiel

- 1. (\mathbb{Q}, \leq) mit der üblichen Ordnung ist eine total geordnete Menge
- 2. Wir definieren auf der Potenzmenge $\mathcal{P}(A)$ einer Menge A eine Teilordnung " \leq ":

$$B \le C \Leftrightarrow B \subseteq C \,\forall \, B, C \in \mathcal{P}(A)$$

Beweis: 1. - 3. sind trivial, 4. geht nicht (keine Totalordung). Wähle $B, C \in \mathcal{P}(a), B, C \neq \emptyset, B \cap C = \emptyset$. Dann gilt weder $B \subseteq C$ noch $C \subseteq B$

3. Sei $F:=\{f\mid f:A\to\mathbb{R}\}$ für eine Menge $A\subseteq\mathbb{R}$. Wir definieren $f\leq g\Leftrightarrow \forall\,x\in A:f\left(x\right)\leq g\left(x\right)$

(1.) - (3.) trivial, 4. gilt nicht. Falls A mehr als ein Element hat, gibt es eine Funktion, die nicht miteinander verglichen werden können.

2.7 Maximum und Minimum einer Menge

2.7.1 Definition

Sei (A, \leq) eine teilweise geordnete Menge, $a \in A$ Maximum:

$$a = \max A \Leftrightarrow \forall x \in A : x \le a$$

Minimum:

$$a = \max A \Leftrightarrow \forall x \in A : a \le x$$

2.7.2 Bemerkung

Durch die Aussagen ist a eindeutig bestimmt, denn seien:

$$a_1, a_2 \in A : \forall \, x \in A \begin{cases} x \leq a_1 \\ x \leq a_2 \end{cases} \Rightarrow \begin{cases} a_2 \leq a_1 \\ a_1 \leq a_2 \end{cases} \xrightarrow{\text{Symmetrie}} a_1 = a_2$$

2.8 Schranken

Sei (A, \leq) eine (total geordnete) Menge, $B \subseteq A$

- 1. $S \in A$ heißt obere Schranke zu $B \Leftrightarrow \forall x \in B : x \leq S$ $S \in A$ heißt untere Schranke zu $B \Leftrightarrow \forall x \in B : S \leq x$
- 2. $\bar{S}(B) := \{ S \in A \mid S \text{ S ist untere Schranke zu } B \}$ $\underline{S}(B) := \{ S \in A \mid S \text{ S ist obere Schranke zu } B \}$
- 3. Existiert $g := \min \underline{S}(B)$ beziehungsweise $g := \max \overline{S}$ so sagen wir: $g = \sup B$ (kleinste obere Schranke, <u>supremum</u>, obere "Grenze" von B in A) $g = \inf B$ (größte obere Schranke, infimum, untere "Grenze" von B in A)

2.8.1 Bemerkung

1. Existiert max $B = \bar{b}$, so folt sup $B = \bar{b}$, denn $\bar{b} \in S(B)$ nach Definition.

$$s \in S(B) \Rightarrow \bar{b} < s, \text{ da } \bar{b} \in B$$

Ebeso gilt: $\exists \min B = \underline{b} \Rightarrow \inf B = \underline{b}$

2.8.2 Beispiel

- 1. $B = \{\frac{1}{n} \mid n \in \mathbb{N}\}, A = \mathbb{R}, (1, \frac{1}{2}, \ldots)$
 - Es gilt $1 \in B, \forall n \in \mathbb{N}$ gilt $\frac{1}{n} \leq 1$, daher folgt $\max B = \sup B = 1$
 - Sei $s \leq 0$, dann gilt $\forall n \in \mathbb{N} : s \leq \frac{1}{n}$, also $s \in \bar{S}(B)$ Sei $s > 0 \Rightarrow s > \frac{1}{n} \Leftrightarrow n > \frac{1}{s}$, also $s \notin \bar{S}(B)$ Es folgt $\bar{S}(B) = \{x \in \mathbb{R} \mid s \leq 0\}$ insbesondere $0 \in \bar{S}(B)$ Ferner gilt $\forall s \in \bar{S}(B) : s \leq 0 \Rightarrow 0 = \max \bar{S}(B) = \inf B$
- 2. $A = \mathbb{Q}, B = \{x \in \mathbb{Q} : 0 \le x \land x^2 \le 2\}$. Es gilt $0 = \min B = \inf B$, aber $\sup B$ existiert nicht in \mathbb{Q}

2.9 Reelle Zahlen

 $x^2=2$ hat keine Lösungen in \mathbb{Q} . Allerdings können wir $\sqrt{2}$ "beliebig gut" durch $y\in\mathbb{Q}$ approximieren, das heißt $\forall\,\varepsilon>0\exists y\in\mathbb{Q}:2-\varepsilon\leq y^2\leq 2+\varepsilon$ Das motiviert die folgende Vorstellung:

- 1. Q ist "unvollständig"
- 2. \mathbb{Q} ist "dicht" in \mathbb{R}

2.9.1 Vollständigkeitsaxiom (Archimedes)

Jede nach oben (unten) beschränkte Teilmenge hat ein Supremum oder Infimum.

2.9.2 Axiomatischer Standpunkt

Es gibt eine Menge \mathbb{R} (genannt Menge der reellen Zahlen) mit Addition, Multiplikation, Ordung, die die Definition eines Körper und das Vollständigkeitsaxiom erfüllt und $(\mathbb{R}, +, \cdot)$ mit " \leq " eine Ordung bildet.

2.9.3 Bemerkung

1. Bis auf Isomorphie gibt es höchstens ein solches \mathbb{R} , das heißt \mathbb{R} ein weiteres System der reellen Zahlen ist, dann \exists bijektive Abbildung $f: \mathbb{R} \to \mathbb{R}$ die bezüglich Additoin, Multiplikation, Ordung eine Homomorphie ist.

$$\forall x, y \in \mathbb{R} :$$

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x) f(y)$$

$$x \le y \Rightarrow f(x) \le f(y)$$

2. \mathbb{N} (und damit auch \mathbb{Z}, \mathbb{Q}) lassen sich durch injektive Homomorphismus $g : \mathbb{N} \to \mathbb{R}$ in \mathbb{R} einbetten

$$g\left(\tilde{0}_{\in\mathbb{N}}\right) = 0_{\in\mathbb{R}}$$
$$g\left(\tilde{n}_{\in\mathbb{N}} + 1\right) = g\left(n_{\in\mathbb{R}}\right) + 1$$
$$g\left(1_{\in\mathbb{N}}\right) = 1_{\in\mathbb{R}}$$

2.9.4 Konstruktiver Standpunkt

Wir können \mathbb{R} ausgehend von \mathbb{Q} konstruieren.

$$\mathbb{R} := \{ A \subseteq \mathbb{Q} \begin{cases} A \neq \emptyset \\ x \in A, y \le x \Rightarrow y \in A \\ \forall x \in A \exists y \in A, x < y \end{cases}$$

Mehtode der Cauchy-Folgen Jede reelle Zahl wird charaktierisiert als "Grenzwert" eine Klasser äquivalenter "Cauchy Folgen" aus \mathbb{Q} (später)

2.9.5 Definition 1.37

•

$$x \in \mathbb{R} \text{ heißt } \begin{cases} \text{positiv} & 0 < x \\ \text{nichtnegativ} & 0 \leq x \\ \text{negativ} & x < 0 \\ \text{nichtpositiv} & x \geq 0 \end{cases}$$

- Die Betragsfunktion $|\cdot|:\mathbb{R}\to\mathbb{R}$ wird definiert durch $|x|=\max\{x,-x\}=\begin{cases}x&x\geq0\\-x&x<0\end{cases}$
- Die Vorzeichen- oder Signumfunktion

$$sgn: \mathbb{R} \to \mathbb{R}, sgn x = \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$$

2.9.6 Satz 1.38

- 1. |xy| = |x||y|
- $2. \ |x+y| \leq |x| + |y|$

Beweis:

$$|x+y|^{2} = (x+y)^{2} = x^{2} + 2xy + y^{2} = |x|^{2} + 2xy + |y|^{2}$$

$$\leq |x|^{2} + 2|xy| + |y|^{2} = |x|^{2} + 2|x||y| + |y^{2}|$$

$$= (|x| + |y|)^{2} \Rightarrow |x+y| \leq ||x| + |y|| = |x| + |y|$$

$$\square$$

$$(1)$$

3.
$$|x+y| = |x| + |y| \Leftrightarrow xy > 0$$

2.9.7 Satz 1.39

1. $||x| - |y|| \le |x - y|$ Beweis:

$$|x| = |x - y + y| < |x - y| + |y| \Rightarrow |x| - |y| < |x - y| \tag{3}$$

$$|y| = |y - x + x| \le |y - x| + |x| \Rightarrow |y| - |x| \le |x - y|$$
 (4)

$$||x| - |y|| = \max\{|x| - |y|, |y| - |x|\} \le |x - y|$$

2.

$$|x - y| \le \varepsilon \Leftrightarrow \begin{cases} x - \varepsilon \le y \le x + \varepsilon \\ y - \varepsilon \le x \le y + \varepsilon \end{cases}$$

Beweis:

$$|x - y| = \max\{x - y, y - x\} \le \varepsilon \Leftrightarrow \begin{cases} x - y \le \varepsilon \\ y - x \le \varepsilon \end{cases} \Leftrightarrow \begin{cases} x \le y + \varepsilon \\ y - x \le \varepsilon \end{cases} \Leftrightarrow y - \varepsilon \le x \le y + \varepsilon$$
(5)

Vertausche
$$x$$
 und $y \Rightarrow x - \varepsilon \le x + \varepsilon$

2.9.8 Definition 1.40

Sei $a, b \in \mathbb{R}, a \leq b$

• $[a,b] := \{x \in \mathbb{R} : a < x < b\}$ abgeschlossenes Intervall

• $(a,b) := \{x \in \mathbb{R} : a < x < b\} =]a,b[$ offenes Intervall

• $[a,b) := \{x \in \mathbb{R} : a \le x \le b\}$ rechts-halboffenes Intervall

• $(a, b] := \{x \in \mathbb{R} : a < x < b\}$ links-halboffenes Intervall

• $\varepsilon > 0, I_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon) = \{ y \in \mathbb{R} : |x - y| < \varepsilon = B_{\varepsilon}(x) \text{ (Kugel)} \}$

2.9.9 Lemma 1.41

Es gilt $y \in I_{\varepsilon}(x) \Rightarrow \exists \delta > 0 : I_{\delta}(y) \subseteq I_{\varepsilon}(x)$

Beweis Sei $y \in I_{\varepsilon}(x) \Rightarrow |x-y| < \varepsilon \Leftrightarrow \varepsilon - |x-y| > 0$ Wähle $0 < \delta < \varepsilon - |x-y|$. Es ist nun zu zeigen $I_{\delta}(y) \subseteq I_{\varepsilon}(x)$, das heißt $z \in I_{\delta}(y) \Rightarrow z \in I_{\varepsilon}(x)$. Es gilt

$$z \in I_{\delta}(y) \Rightarrow |z - y| < \delta \tag{6}$$

$$\Rightarrow |z - x| = |z - y + y - x| \le |z - y| + |y - x| \le \delta + |x - y| < \varepsilon$$

$$\Rightarrow z \in I_{\varepsilon}(x)$$

$$(6)$$

$$\Rightarrow |z - x| = |z - y + y - x| \le |z - y| + |y - x| \le \delta + |x - y| < \varepsilon$$

$$(7)$$

2.9.10 Definition 1.42

A, B seien geordnete Mengen, $f: A \to B$ heißt:

• monoton
$$\begin{cases} \text{wachsed} & x \leq y \Rightarrow f(x) \leq f(y) \\ \text{fallend} & x \leq y \Rightarrow f(x) \leq f(y) \end{cases}$$

• monoton
$$\begin{cases} \text{wachsed} & x \leq y \Rightarrow f\left(x\right) \leq f\left(y\right) \\ \text{fallend} & x \leq y \Rightarrow f\left(x\right) \leq f\left(y\right) \end{cases}$$
• streng monoton
$$\begin{cases} \text{wachsend} & x < y \Rightarrow f\left(x\right) < f\left(y\right) \\ \text{fallend} & x < y \Rightarrow f\left(x\right) > f\left(y\right) \end{cases}$$

Beispiel 1.43 $\mathbb{R}_+ \setminus \{0\} \to \mathbb{R}_+ \setminus \{0\}, x \mapsto x^n \text{ ist streng monoton wachsend } \forall n \in \mathbb{N}$

Beweis Induktion + Axiom M0

2.9.11 Lemma 1.44

Sei $M, N \subseteq \mathbb{R}, f: M \to N$ streng monoton und bijektiv. Dann ist f^{-1} streng monoton.

Beweis Wir betrachten den Fall f streng monoton wachsend. Seien $y_1, y_2 \in N$, $y_1 < y_2 \in N$ $y_2, x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2).$

Behauptung
$$x_1 < x_2$$
 (sonst wäre $x_1 \ge x_2$).
Falls $x_1 > x_2 \xrightarrow{\text{streng monoton}} f(x_2) > f(x_2)$ Widerspruch zu $y_1 < y_2$
Falls $x_1 = x_2 \Rightarrow y_1 = y_2$ Widerspruch zur Annahme $y_1 < y_2$

2.9.12 Definition 1.45 Produktzeichen

Für $a \in \mathbb{R}, n \in \mathbb{N}$ definieren wir $a^n := \prod_{j=1}^n a$ und für $a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}$ $a^{-n} := \frac{1}{a^n}$.

2.9.13 Satz 1.46

Es gilt $\forall a, b \in \mathbb{R}$ (beziehungsweise $\mathbb{R} \setminus \{0\}$), $n, m \in \mathbb{N}_0$ (beziehungsweise \mathbb{Z})

1.
$$a^n a^m = a^{n+m}$$

2.
$$(a^n)^m = a^{n m}$$
\$

$$3. (ab)^m = a^m b^m$$

Beweis Zunächst f+r $n, m \in \mathbb{N}_0$ durch Indukton nach n, dann für $n, m \in \mathbb{Z}$ (mit Hilfe der Definition von a^{-n})

2.9.14 Definition 1.47

Sei $n, k \in \mathbb{N}_0$

$$\binom{n}{k} := \prod_{j=1}^{k} \frac{n-j+1}{j}$$

2.9.15 Lemma 1.48

Sei $k, n \in \mathbb{N}_0$

1.
$$\binom{n}{k} = 0$$
 für $k > n$
 $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$ für $k \le n$

2.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 für $1 \le k \le n$

2.9.16 Satz 1.49

 $\forall n \in \mathbb{N}_0, \forall x, y \in \mathbb{R} \text{ gilt}$

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Beweis Induktion:

- Induktionsanfang: $n = 0, (x + y)^0 = 1, \binom{0}{j} x^0 y^0 = 1$ nach Definition
- Induktions schritt $n \to n+1$:

$$(x+y)^{n+1} = (x+y)(x+y)^n$$

mit der Induktionsvoraussetzung

$$= (x+y) \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \sum_{j=0}^{n} \binom{n}{j} x^{n-j+1} y^{j} + \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j+1}$$

$$= \binom{n}{0} x^{n+1} + \sum_{j=1}^{n} \binom{n}{j} x^{n+1-j} y^{j} + \sum_{i=1}^{n} \binom{n}{i-1} x^{n-i+1} y^{i} + \binom{n}{n} y^{n+1}$$

$$= x^{n+1} + \sum_{j=1}^{n} \underbrace{\binom{n}{j} + \binom{n}{j-1}}_{\binom{n+1}{j} \text{nach Lemma 1.48}} x^{n+1-j} y^{j} + y^{n+1}$$

$$= \sum_{j=0}^{n+1} \binom{n+1}{j} x^{n+1-j} y^{j}$$

2.9.17 Folgerung 1.50

1.
$$\sum_{j=0}^{n} \binom{n}{j} = 2^n$$

2.
$$\sum_{j=0}^{n} \binom{n}{j} (-1)^j = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Beweis: Setze in Binomische Formel x = 1, y = 1 beziehungsweise y = -1

2.9.18 Lemma 1.51

Sei $m \in R$ nach oben (beziehungsweise nach unten) beschränkt Dann gilt

1.
$$s = \sup M \Leftrightarrow \forall \varepsilon > 0 \exists x \in M : s - \varepsilon < x (\geq s)$$

2.
$$l = \inf M \Leftrightarrow \forall \varepsilon > 0 \exists x \in M : (l <) x < l + \varepsilon$$

Beweis Wir beweisen 1.

 $s \neq \sup M \Leftrightarrow s$ ist nicht die kleinste obere Schranke von $m \Leftrightarrow$ es gibt eine kleinere obere Schranke $s' = s - \varepsilon$ von $M \Leftrightarrow$ nicht $\forall \varepsilon > 0 \exists x \in M : x > s - \varepsilon$

2.9.19 Lemma 1.52

 \mathbb{N} ist unbeschränkt in \mathbb{R}

Beweis sonst $\exists x = \sup \mathbb{N}$ (nach Vollständigkeits Axiom), x kleinste obere Schranke $\xrightarrow{[[\text{Lemma 1.51}]]} \varepsilon = \frac{1}{2} \exists m_o \in \mathbb{N} : x - \frac{1}{2} < m_0 \Rightarrow m_0 + 1 \in \mathbb{N}, m_0 + 1 > x + \frac{1}{2} > x \Rightarrow x$ inst nicht die obere Schranke von \mathbb{N}

2.9.20 Lemma 1.53 (Bernoullische Ungleichung)

$$\forall x \in [-1, \infty), n \in \mathbb{N}_0 : (1+x)^n \ge 1 + nx$$

Beweis Beweis durch Induktion:

- IA: n = 0 klar
- IS:

$$n \to n+1: (1+x)^{n+1} = (1+x)^n (1+x)$$
 (8)

$$\geq (1+nx)(1+x) = 1 + nx^2 + (n+1)x \tag{9}$$

$$\geq 1 + (n+1) x da x^2 \geq 0$$

2.9.21 Folgerung 1.54

- 1. Sei $y \in (1, \infty)$. Dann gilt $\forall c > 0 \exists n_0 \in \mathbb{N}, \forall n \geq n_0 y^n \in (c, \infty)$ ("Konvergenz" von y^n gegen 0)
- 2. Sei $y \in (-1,1)$. Dann gilt $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : y^n \in I_{\varepsilon}(0)$ ("Konvergenz" y^n gegen 0)

Beweis

1. Für x = y - 1 > 0 gilt dann nach 2.9.20

$$\underbrace{(1+x)^n}_{y} \ge 1 + nx \Rightarrow y^n > nx$$

Nach 2.9.19 existiert für c > 0 ein $n_0 \in \mathbb{N}$ mit $n_0 > \frac{c}{x} \Rightarrow$

$$\forall n \ge n_0 : y^n > nx \ge n_0 x \ge \frac{c}{x} x = c \Rightarrow \forall n \ge n_0 : y^n \in (c, \infty)$$

2. Für
$$x = \frac{1}{|y|} > 1 \xrightarrow{\text{nach } [[1541]] \text{ mit } c = \frac{1}{\varepsilon}}$$

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \,\forall \, n \ge n_0 : x^n > \frac{1}{\varepsilon}$$

$$\Rightarrow \frac{1}{|y^n|} > \frac{1}{\varepsilon} \Rightarrow |y^n| < \varepsilon \square$$

2.9.22 Satz 1.55 (Existenz der m-ten Wurzel)

$$\forall m \in \mathbb{N}, a \in [a, \infty) \text{ gilt } \exists ! x \in [0, \infty) : x^m = a$$

Beweis (Skizze 1, 2) Wir geben ein Iterationsverfahren

$$p_3(x) = m$$

 $a_3x^3 + a_2x^2 + a_1x + a_0, a_3 > 0$

Ohne Beschränkung der Allgemeinheit $a>0, m\geq 2, x$ muss die Gleichung $x^m-a=0$ lösen, das heißt Nullstelle der Funktion $f:[0,\infty)\to\mathbb{R}, x\mapsto x^m-a$ suchen. Diese approximieren wir nach dem **Newton Verfahren** x_0 sodass $x_0^m-a\geq 0$

$$x_{n} - x_{n+1} = \frac{f(x_{n})}{f'(x_{n})} \Leftarrow \frac{f(x_{n})}{x_{n} - x_{n+1}} = f'(x_{n})$$

$$x_{n+1} := \underbrace{x_{n} - \frac{f(x_{n})}{f'(x_{n})}}_{F(x_{n})} = x_{n} - \frac{x_{n}^{m} - a}{mx_{n}^{m-1}}$$

$$= x_{n} \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_{n}^{m}}\right)\right)$$

Hoffnung: $x_n \to x^*$

Skizze 3

Sei $x_0^m > a$. Wir zeigen

- 1. $x_n > 0$
- $2. x_n^m \ge a$
- 3. $x_{n+1} \le x_n$

Beweis:

- 1. Induktion
- 2. Induktion
 - $n = 0, x_0^m \ge \Rightarrow x_0 > 0$, da $a > 0, x_0 \ge 0$

• $n \rightarrow n+1$

$$x_n > 0, x_n^m \ge a \Rightarrow x_{n+1} = x_n \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) \ge 0$$

weil

$$x_{n+1}^n = \underbrace{x_n^m}_{>0} \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right)^m \underbrace{\geq}_{\text{Bernoulli}} x_n^m \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) = 0$$

$$\Rightarrow x_{n+1} > 0$$
, da $a > 0$

3. Nach 2:

$$x_n^m \ge a \Rightarrow 0 \le 1 - \frac{1}{m} \left(1 - \frac{1}{x_n^m} \right) \le 1$$

Nach 1:

$$x_m > 0 \Rightarrow x_{n+1} = x_n \left(1 - \frac{1}{m} \left(1 - \frac{a}{x_n^m} \right) \right) < x_n$$

Wegen 1 ist $M = \{x_n : n \in \mathbb{N}_0\}$ nach unten beschränkt \Rightarrow

$$x := \inf M$$
 existient

Wir wollen zeigen, dass $x^m = a$. Es gilt

$$x \le x_{n+1} = \left(1 - \frac{1}{m}\right) x_n + \frac{1}{m} \frac{a}{x_n^{m-1}}$$

$$\le \left(1 - \frac{1}{m}\right) x_n + \frac{a}{m} \sup\left\{\frac{1}{x_n^{m-1} \mid x \in \mathbb{N}_0}\right\}$$

4. Es gilt nach nach 2

$$a \le \inf\{x_n^m \mid n \in \mathbb{N}_0\} = (\inf\{x_n \mid n \in \mathbb{N}_0\})^m = x^m$$

und damit x > 0

Ferner gilt

$$y = \sup \{ \frac{1}{x_n^{m-1}} \mid n \in \mathbb{N}_0 \} = \inf \{ x_n^{m-1} \mid x \in \mathbb{N}_0 \}^{-1}$$

mit 2.9.23

$$= \left(\frac{1}{\inf\{x_n \mid n \in \mathbb{N}_0\}}\right)^{m-1} = \frac{1}{x^{m-1}} \Rightarrow ay \le \frac{a}{x^{m-1}}$$

5. Von oben wissen wir, dass $x \leq ay$

$$\Rightarrow x \le ay \le \frac{a}{x^{m-1}} \Rightarrow x^m \le a$$

Aus 4 und 5 folgt $x^m = a$

2.9.23 Lemma 1.56

1. Seien für $n \in \mathbb{N}_0 : y_n > 0$ und $\inf\{x_n \mid x \in \mathbb{N}_0\} > 0$ Dann gilt

$$\sup\{\frac{1}{y_n} \mid n \in \mathbb{N}_0\} = \frac{1}{\inf\{y_n \mid n \in \mathbb{N}_0\}}$$

2. Seien für $n \in \mathbb{N}_0, y_n > 0, k \in \mathbb{N}_0$. Dann gilt:

$$\inf\{y_n^k \mid n \in \mathbb{N}_0\} = (\inf\{y_n \mid n \in \mathbb{N}_0\})^k$$

(ohne Beweis)

3 Komplexe Zahlen

Motivation: $x^2 + 1 = 0$ nicht lösbar in \mathbb{R}

Wir betracheten die Menge der Paare $\{x,y\} = \mathbb{R} \times \mathbb{R}$ auf denen die Addition und Multiplikation wie folgt definiert ist:

- (KA) $\{x_1, y_1\} + \{x_2, y_2\} = \{x_1 + x_2, y_2 + y_2\}$
- (KM) $\{x_1, y_1\} \cdot \{x_2, y_2\} = \{x_1x_2 y_1y_2, x_1y_2 + x_2y_1\}$

3.1 Komplexer Zahlkörper

- 1. Die Menge der Paare $z = \{x, y\} \in \mathbb{R} \times \mathbb{R}$ mit Addition 3 und Multiplikation 3 bildet den Körper \mathbb{C} der **komplexen Zahlen** mit den neutralen Elementn $\{0, 0\}$ und $\{1, 0\}$
- 2. Die Gleichung $z^2 + \{1, 0\} = \{0, 0\}$ hat in \mathbb{C} zwei Lösungen, welche mit $i := \{0, \pm 1\}$ bezeichnet werden
- 3. Der Körper $\mathbb R$ ist mit der Abbildung $x\in\mathbb R:x\mapsto\{x,0\}\in\mathbb C$ isomorph zu einem Unterkörper von $\mathbb C$

3.1.1 Beweis

1. Die Gültigkeit des Kommutativitäts-, Assoziativs-, und Distributibitätsgesetzes verifiziert man durch Nachrechenen.

Neutrale Elemente: Wir lösen die Gleichung $a+z=\{0,0\}$ für beliebige gegebene $a\in\mathbb{C}, a=\{a_1,a_2\}$

$$\Rightarrow z = \{-a_1, -a_2\}$$

$$a \cdot z = \{1, 0\}$$

$$z = \frac{1}{a} := \{\frac{a_1}{a_1^2 + a_2^2}, -\frac{a_2}{a_1^2 + a_2^2}\}, \text{ weil } a \cdot \frac{1}{a}$$
weil $a = \{a_1 \frac{a_1}{a_1^2 + a_2^2} + \frac{a_2^2}{a_1^2 + a_2^2}, \frac{a_1 a_2}{a_1^2 + a_2^2} - \frac{a_2 a_1}{a_1^2 + a_2^2}\}$

2. $i := \{0, 1\}$ hat die Eigenschaft

$$1 + i^2 = \{1, 0\} + \{0^2 - 1^2, 0\} = \{0, 0\} \Rightarrow 1 + i^2 = 0$$

$$\ddot{\mathbf{A}}\mathbf{h}\mathbf{n}\mathbf{lich}\ 1 + (-i)^2 = 0$$

3. Die Zuordnung $x \in \mathbb{R} : x \mapsto \{x,0\} \in \mathbb{C}$ bildet \mathbb{R} bijektiv auf eine Untermenge von \mathbb{C} ab, welche bezüglich der komplexen Addition und Multiplikation wieder ein Körper ist

3.2 Notation

$$z = \{x, y\} =: x + iy, \ x, y \in \mathbb{R}$$

- x ist Realteil $x = \Re z$
- y ist Imaginärteil $x = \Im z$

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = \underbrace{x_1 + x_2}_{\Re(z_1 + z_2)} + i\underbrace{(y_1 + y_2)}_{\Im(z_1 + z_2)}$$

$$z_{1}z_{2} = (x_{1} + iy_{1})(x_{1} + iy_{2}) = x_{1}x_{2} + iy_{1}x_{2} + iy_{2}x_{1} + (iy_{1})(iy_{2}) = \underbrace{x_{1}x_{2} - y_{1}y_{2}}_{\Re(z_{1}z_{2})} + i\underbrace{(x_{1}y_{2} + y_{1}x_{2})}_{\Im(z_{1},z_{2})}$$

3.3 TODO Graphische Darstellung

3.4 Bemerkung

Die reellen Zahlen sind durch $\Im z = 0$ charakterisiert.

$$z_1 = z_2 \Rightarrow x_1 + iy_i = x_2 + iy_2 \Leftrightarrow x_1 = x_2, y_1 = y_2$$

3.5 Korollar 1.59

Jede quadratische Gleichung

$$z^2 + pz + q = 0$$
, $p, q \in \mathbb{R}$

besitzt in $\mathbb C$ genau zwei Lösungen

$$z_{1,2} = \begin{cases} -\frac{1}{2} \pm \frac{1}{2}\sqrt{p^2 - 4q} & p^2 \ge 4q \\ -\frac{1}{2} \pm i\frac{1}{2}\sqrt{|p^2 - 4q|} & p^2 - 4q < 0 \end{cases}$$

3.6 Fundamentalsatz der Algebra

Jede algebraische Gleichung der Form

$$z^n + \sum_{i=0}^{n-1} a_i z^i = 0$$

hat in \mathbb{C} mindestens eine Lösung. Beweis \rightarrow Funktionstheorie

3.7 Betrag

Für komplese Zahlen lässt sich ein Absolutbetrag definieren

$$r = |z| = \sqrt{x^2 + y^2}$$

Damit:

$$x = r \cos \alpha y = r \sin \alpha z = x + iy = r (\cos \alpha + i \sin \alpha)$$
 (10)

3.8 Konjugation

Zu einem $z = x + iy \in \mathbb{C}$ definieren wir eine konjugierte komplexe Zahl

$$\bar{z} = x - \imath y \in \mathbb{C}$$

Dann gilt

$$|z|^2 = x^2 + y^2 = z\bar{z}$$

Aus der Definition:

- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\overline{z_1 * z_2} = \overline{z_1} * \overline{z_2}$
- $x = \frac{z+\bar{z}}{2}$
- $y = \frac{z-\bar{z}}{2a}$

4 Folgen

Eine Folge von reellen Zahlen wird gegeben durch eine Abbildung

$$\mathbb{N}_0 \to \mathbb{R}, n \mapsto x_n$$

Wir bezeichnen die Folge auch mit $(x_n)_{n\in\mathbb{N}_0}$

Topologische Struktur auf Mengen.

- Abstände in \mathbb{R}^1 Betrag |x-y| $\xrightarrow{\text{Verallgemeinerung}}$ Norm / Metrik
- Umgebung in \mathbb{R}^1 ε -Intervall $\xrightarrow{\text{Verallgemeinerung}}$ Kugel Umgebung

Wir betrachten Folgen $\mathbb{N} \to \mathbb{R}, n \mapsto a_n \text{ (oder } \mathbb{C})$

4.1 Definition 2.1 Konverenz

Wir sagen, dass die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{K} (\mathbb{R} oder \mathbb{C}) gegen den Grenzwert (oder Limes) $a \in \mathbb{K}$ konvergiert

$$a_n \xrightarrow{n \to \infty} a \ \left(a = \lim_{n \to \infty} a_n \right)$$

wenn für beliebiges $\varepsilon > 0$ von einem $n_{\varepsilon} \in \mathbb{N}$ an gilt

$$|a_n - a| < \varepsilon, n \ge n_{\varepsilon}$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists n\varepsilon \in \mathbb{N} : \forall n \ge n_{\varepsilon} a_n \in I_{\varepsilon}(a)$$

4.2 Folgerung 2.2

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende beziehungsweise fallende Folge reeller Zahlen $M = \{a_n \mid n \in \mathbb{N}\}$ und sei nach oben beziehungsweise unten beschränkt. Dann gilt

$$a_n \to \sup M, a_n \to \inf M$$

Beweis \rightarrow Übungen

4.3 Definition 2.3 Cauchy Folgen

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge wenn:

$$\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} \ \forall n, m > n_{\varepsilon} : |a_n - a_m| < \varepsilon$$

(Cauchy Kriterium)

4.4 Definition 2.4 Teilfolge

Eine Teilfolge einer gegebenen Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Auswahl $(a_{n_k})_{k\in\mathbb{N}}$, wobei a_{n_k} auch die Glieder von $(a_n)_{n\in\mathbb{N}}$ sind

Beispiel 1 Beispiel 2.5.

$$a_n = \frac{1}{m}$$

ist eine Cauchy-Folge. Für ein $\varepsilon>0$ wählen wir n_ε so dass $n_\varepsilon>\frac{1}{\varepsilon}$. Für beliebiges $n\geq m>N$

$$|a_m - a_n| = \left|\frac{1}{m} - \frac{1}{n}\right| = \frac{n-m}{mn} \le \frac{n}{mn} = \frac{1}{m} < \frac{1}{n_{\varepsilon}} < \varepsilon \square$$

Satz 1 Jede Cauchy-Folge ist beschränkt.

Beweis. Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge. Angenommen, die Folge ist nicht beschränkt. Dann gibt es eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ mit

$$|a_{n_k}| \xrightarrow[k \to \infty]{} \infty$$

Aus dieser Teilfolge kann man eine weitere Teilfolge

$$\left(a_{n_{k_l}}\right)_{l\in\mathbb{N}}$$

extrahieren

$$|a_{n_{k_{i+1}}}| > 2|a_{n_{k_l}}| \quad l \in \mathbb{N}$$

Dann gilt

$$|a_{n_{k_{i+1}}} - a_{n_{k_l}}| \ge |a_{n_{k_{i+1}}}| - |a_{n_{k_l}}| > |a_{n_{k_l}}| \xrightarrow[k \to \infty]{} \infty$$

im Widerspruch zur Cauchy-Folgen Eigenschaft.

Satz 2 Jede konvergente Folge ist Cauchy-Folge.

Beweis.

$$a_n \xrightarrow[k \to \infty]{} a \Rightarrow \forall \, \varepsilon > 0 \exists n_\varepsilon \in \mathbb{N} \, \forall \, n \ge n_\varepsilon : |a - a_n| < \frac{\varepsilon}{2}$$

$$\Rightarrow \forall \, n, m \in n_\varepsilon : |a_n - a_m| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

Lemma 1. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} (\mathbb{R} oder \mathbb{C}) welche gegen $a\in\mathbb{K}$ und $\tilde{a}\in\mathbb{K}$ konvergiert. Dann ist $a=\tilde{a}$.

Beweis. Beweis durch Widerspruch. Falls $|a - \tilde{a}| > 0$, dann

$$\exists n_{\varepsilon} \in \mathbb{N} \,\forall \, n \ge n_{\varepsilon} \varepsilon = |a - \tilde{a}|, |a_n - a| < \frac{\varepsilon}{2}$$

und ein m_{ε} , sodass

$$|a_n - \tilde{a} < \frac{\varepsilon}{2}| \, \forall \, n \ge m_{\varepsilon}$$

Dann für $n \ge \max\{n_{\varepsilon}, m_{\varepsilon}\}$:

$$|a - \tilde{a}| \le |a - a_n| + |a_n - \tilde{a}| < \varepsilon$$

Widerspruch
$$\Rightarrow a = \tilde{a}$$

Bemerkung1. Die Mengen Abständen heißen *vollständig*, wenn jede Cauchy-Folge in Mkonvergiert

Definition 1 Häufungwert, Häufungspunkt. Ein $a \in \mathbb{K}$ heißt Häufungswert einer Folge $(a_n)_{n \in \mathbb{N}}$ in \mathbb{K} , wenn es zu beliebigen $\varepsilon > 0$ unendlich viele Folgenelemente a_n gibt mit $|a - a_n| < \varepsilon$

Ein $a \in \mathbb{K}$ heißt Häufungspunkt einer Teilmenge M von \mathbb{K} , wenn $\forall \varepsilon > 0$ existieren unendlich viele $x \in M$, sodass $|a - x| < \varepsilon$

Beispiel 2.

- 1. $a_n = (-1)^n, n \in \mathbb{N}$
 - divergente Folge
 - besitzt 2 Häufungswerte $a^{(1)} = 1, a^{(2)} = -1$
- 2. Wir nehmen $a_n \xrightarrow[n \to \infty]{} a, b_n \xrightarrow[n \to \infty]{} b$ und definieren eine neue Folge c_n sodass

$$c_{2n} := b_n, n \in \mathbb{N}$$
$$c_{2n+1} := a_n, n \in \mathbb{N}$$

 $(c_n)_{n\in\mathbb{N}}$ hat 2 Häufungswerte a und b

Bemerkung 2. Nach 1 hat die konvergente Folge 1 Haufungswert

Lemma 2 2.11. Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{K} und a ein Häufungswert von $(a_n)_{n\in\mathbb{N}}$, dann konvergiert $a_n \xrightarrow[n\to\infty]{} a$

Beweis. Sei $\varepsilon>0$ beliebig vorgegeben. Wir wählen $n_\varepsilon\in\mathbb{N}$ sodass

$$|a_n - a_m| < \frac{\varepsilon}{2} \, \forall \, n, m > n_{\varepsilon} \text{ (aus Cauchy-Folge)}$$

und $m_{\varepsilon} > n_{\varepsilon}$ mit

$$|a - a_{m_{\varepsilon}}| < \frac{\varepsilon}{2}$$
 (Häufungswert)

Dann folgt

$$\forall n > m_{\varepsilon} : |a - a_n| \le |a - a_{m_{\varepsilon}}| + |a_{m_{\varepsilon}} - a_n| < \varepsilon \Rightarrow a_n \xrightarrow[n \to \infty]{} a \qquad \Box$$

Satz 3. A abgeschlossen \Leftrightarrow (a Häufungspunkt von $A \Rightarrow a \in A$) A abgeschlossen in $M \Leftrightarrow M \setminus A =: CA$ offen

Beweis. (\Leftarrow) :

Sei jeder Häufungspunkt von A in A $x \in CA$ $(= \mathbb{R} \setminus A) \Rightarrow x$ kein Häufungspunkt von $A, x \notin A$

$$\Rightarrow \varepsilon : I_{\varepsilon}(x) \cap A = \emptyset \Rightarrow \exists \varepsilon > 0 : I_{\varepsilon} \subseteq CA$$

 $\Rightarrow CA$ offen $\Rightarrow A$ abgeschlossen (\Rightarrow) :

Sei A abgeschlossen, also CA offen, ist Häufungspunkt $x \notin A$ das heißt $x \in CA$, so gilt

$$\exists \varepsilon > 0 : I_{\varepsilon} \subseteq CA \Rightarrow I_{\varepsilon}(x) \cap A = \emptyset$$
 lightning

Widerspruch zur Definition von Häufungspunkt \Rightarrow jeder Häufungspunk von A ist in A

Lemma 3 2.14. Jede Folge $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}$ besitzt eine monotone Teilfolge

Beweis. Sei $B = \{n \in \mathbb{N} \mid \forall k \ge n, a_n \ge a_k\}$

• Fall 1: B unendlich. Wir zählen $B \subseteq \mathbb{N}$ monoton wachsed \

$$n_0 = \min B$$

$$n_{k+1} = \min\{n \in B, n > n_k\}$$

Dann ist die Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ von $(a_n)_{n\in\mathbb{N}}$ monoton fallend

• Fall 2: B ist endlich oder leer

$$\Rightarrow \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : n \notin B$$

das heißt

$$\exists k \leq n : a_n < a_k$$

Damit können wir definieren

$$n_{k+1} = \min\{k \ge n_k : a_{n_k} < a_k\}$$

und die Folge $(a_{n_k})_{k\in\mathbb{N}}$ ist monoton wachsed

Beispiel 3. 1. $a_n = (-1)^n \left(1 + \frac{1}{n+1}\right), \quad B = \{2n \mid n \in \mathbb{N}\} \text{ monoton fallend}$

2. $a_n = (-1)^n n, (a_{2k})_{k \in \mathbb{N}}$ ist monotone Teilfolge

Satz 4 Satz von Bolzano Weierstrass. Sei $A \subseteq \mathbb{R}$ (gilt in \mathbb{R}^n !) Folgende Aussagen sind äquivalent:

- 1. A ist beschränkt abgeschlossen
- 2. Jede Folge $(a_n)_{n\in\mathbb{N}}$ aus A hat einen Häufungswert in A
- 3. Jede Folge $(a_n)_{n\in\mathbb{N}}$ aus A hesitzt eine in A konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$

Beweis. Wir zeigen $3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 3$

 $3 \Rightarrow 2$:

Sei $(a_{n_k})_{k\in\mathbb{N}}$ konvergente Teilfolge von $(a_n)_{n\in\mathbb{N}}$ und $a=\lim_{k\to\infty}a_{n_k}$ a ist auch der Häufungswert der Folge $(a_n)_{n\in\mathbb{N}}$

 $2 \Rightarrow 1$:

1. Beschränktheit: Angenommen dies ist falsch. Dann

$$\exists (a_n)_{n \in \mathbb{N}} \in A : |a_n - a| \ge n \,\forall \, n \in \mathbb{N} \ (a \in A)$$

Nach Voraussetzungen hat jede diese Folge einen Häufungspunkt $x \in A$ und es gilt

$$|x-a| \ge |a_n-a| - |a_n-x| \ge n - |x-a_n|$$

Dabei gilt $|x - a_n| < 1$ für unendlich viele $n \in \mathbb{N}$ (aus Häufungswert)

$$\Rightarrow |x - a| \ge n - 1$$

Für unendlich viele $n \in \mathbb{N}$ 4

2. Abgeschlossenheit: Wir nutzen Satz 3 Zu zeigen: wenn a Häufungspunkt von $A\Rightarrow a\in A$ Für

$$I_{\frac{1}{n}}(a) = \{x \in \mathbb{R} \mid |x - a| < \frac{1}{n}\}$$

gilt

$$I_{\frac{1}{n}}(a) \cap A \neq \emptyset \Rightarrow \exists a_n \in A : |a_n - a| < \frac{1}{n}$$

Die Folge $(a_{n_k})_{k\in\mathbb{N}} \to a$, da $\frac{1}{n} \to 0$ Nach Voraussetzung hat $(a_n)_{n\in\mathbb{N}}$ einen Häufungswert $\tilde{a} \in A$. Wir zeigen $a = \tilde{a}$ Sei $\varepsilon > 0$ beliebig.

$$\exists n_{\varepsilon} \in \mathbb{N} : |a - a_{n}| < \frac{\varepsilon}{2} \, \forall \, n \ge n_{\varepsilon}$$

$$\exists m_{\varepsilon} \ge n_{\varepsilon} : |\tilde{a} - a_{m_{\varepsilon}}| < \frac{\varepsilon}{2}$$

$$\Rightarrow |a - \tilde{a}| \le |a - a_{m_{\varepsilon}}| + |a_{m_{\varepsilon}}| < \varepsilon$$

$$\Rightarrow |a - \tilde{a}| = 0$$

$$\Rightarrow \tilde{a} = a \in A$$
(Aus Häufungswert)

 $1 \Rightarrow 3$:

Sei nun $(a_n)_{n\in\mathbb{N}}$ eine Folge in A, $(a_{n_k})_{k\in\mathbb{N}}$ eine monotone Teilfolge (nach 3), (a_{n_k}) ist beschränkt, da A beschränkt ist $\Rightarrow (a_{n_k})$ ist konvergent (4.2) Wir müssen zeigen, dass

$$a = \lim_{n \to \infty} a_{n_k} \in A$$

Angenommen $a \not\in A \Rightarrow a \in \mathcal{C}A, \mathcal{C}A$ ist offen

$$\Rightarrow \exists I_{\varepsilon}(a) \subseteq \mathcal{C}A \Rightarrow I_{\varepsilon}(a) \cap A = \emptyset$$

Nun ist aber mit geeigneten $n_{\varepsilon} \in \mathbb{N}$

$$\forall n \ge n_{\varepsilon} : a_{n_k} \in I_{\varepsilon}(a) : a_{n_k} \in A \Rightarrow a_{n_k} \in I_{\varepsilon}(a) \cap A \qquad \Box$$

Bemerkung 3. • Erweiterung zu \mathbb{R}^n möglich

- Ein Raum heißt folgenkompakt, wenn jede beschränkte Folge eine konvergente Teilfolge hat
 - Nach B-W Satz ist $\mathbb{R}(\mathbb{R}^n)$ folgenkompakt
- In $\mathbb R$ alle Cauchy-Folgen konvergieren
 - Cauchy Folge in $\mathbb{R} \Rightarrow$ beschränkt und Wertemenge ist abgeschlossen $\xrightarrow{B-WSatz}$ $(a_n)_{n\in\mathbb{N}}$ hat einen Häufungswert in $A \stackrel{2}{\Rightarrow}$ konvergiert gegen $a \in A$

4.5 Rechenregeln für Grenzwerte von Folgen

Satz 5. Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in $\mathbb{K}(\mathbb{R} \ oder \mathbb{C})$

$$b_0 \neq 0 \,\forall \, n \in \mathbb{N}, \lim_{n \to \infty} b_n \neq 0$$

Dann gilt:

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2.
$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

3.
$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Satz 6 2.15. Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} . Dann gilt

1.
$$a_n \le b_n \, \forall \, n \in \mathbb{N} \Rightarrow \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

2.
$$|a_n| \le b_n \, \forall \, n \in \mathbb{N} \Rightarrow \left| \lim_{n \to \infty a_n} \right| \le \lim b_n$$

Beweis. 1. Sei $\varepsilon > 0$ vorgegeben

$$\exists n_{\varepsilon} : \forall n \ge n_{\varepsilon} : b_n \le \lim_{k \to \infty} b_n + \frac{\varepsilon}{2}$$

und

$$\begin{split} \lim_{k \to \infty} a_k & \leq a_n + \frac{\varepsilon}{2} \\ \Rightarrow \lim_{k \to \infty} a_k & \leq a_n + \frac{\varepsilon}{2} \leq b_n + \frac{\varepsilon}{2} \leq \lim_{k \to \infty} b_k + \varepsilon \, \forall \, \varepsilon > 0 \\ \Rightarrow \lim_{k \to \infty} a_k & \leq \lim_{k \to \infty} b_k \end{split}$$

2. Wir wählen $a_n = |a_n|$ und müssen noch zeigen

$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} |a_n| \tag{Übung}$$

4.6 Geometrische Folge

Die geometrische Folge ist definiert durch

$$a_n = cq^n$$

Lemma 4 2.16. $\forall q \in \mathbb{R}, |q| < 1$ konvergiert die geometrische Folge $a_n = cq^n$ gegen Null. Beweis. Sei $\varepsilon > 0$ gegeben. Nach Annahme ist $|q| < 1 \Rightarrow |q|^{-1} > 1$, somit $|q|^{-1} = 1 + x$ für ein x > 0.

Zu zeigen: $|cq^n - 0| < \varepsilon$ für genug große n, das heißt

$$c\left(\frac{1}{1+x}\right)^n < \varepsilon \Leftrightarrow \frac{c}{\varepsilon} < (1+x)^n$$

Das Archimedische Axiom garantiert die Existenz von $n_0 \in \mathbb{N}$:

$$n_0 > \frac{c}{x\varepsilon} - \frac{1}{x} = \frac{c - \varepsilon}{x\varepsilon}$$

$$\forall n \ge n_0 : \frac{c}{\varepsilon} = \left(\frac{c}{x\varepsilon} - \frac{1}{x}x + 1 < n_0x + 1 \le nx + 1\right)$$

daraus folgt aus der Bernoulli Ungleichung

$$\frac{c}{\varepsilon} < (1+x)^n \Rightarrow cq^n \to 0 \qquad \Box$$

Folgerung 1 2.17. Die geometrische Reihe

$$S_n = 1 + q + q^2 + \ldots + q^n = \sum_{i=0}^n q^i$$

konvergiert für |q| < 1 und $\lim_{n \to \infty} S_n = \frac{1}{1-q}$

Beweis.

zu Beweisen mit Induktion

$$(1-q)(1+q+q^{2}+\ldots+q^{n}) = 1+q^{n+1}$$

$$\Rightarrow S_{n} - \frac{1}{1-q} = \frac{1-q^{n+1}-1}{1-q} = -\frac{q^{n+1}}{1-q}$$

$$|S_{n} - \frac{1}{1-q}| = c|q|^{n} < \varepsilon \,\forall \, n \ge n_{\varepsilon}$$

$$c = \left| \frac{1}{1-q} \right|$$

$$s_n \to \frac{1}{1-a}$$

Beispiel 4 2.18.

1.
$$\lim_{n \to \infty} \frac{10^n}{n!} \le \lim_{n \to \infty} cq^n \text{ mit } |q| < 1$$

2.
$$a_n = \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) = \sqrt{n} \frac{n+1-1}{\sqrt{n+1} + \sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n+1}} + \sqrt{n} = \frac{1}{\sqrt{1+1_n}+1} \xrightarrow{n \to \infty} \frac{1}{2}$$

3.
$$a_n = \sqrt[m]{x}, x$$
 gegeben, $\xrightarrow{n \to \infty} 1$ Übungen

$$4. \ a_n = \sqrt[n]{m} \xrightarrow{n \to \infty} 1$$

5.
$$a_n = \sum_{i=0}^n \frac{1}{i!}$$

- $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend
- beschränkt: $a_n < 3 \,\forall \, n \in \mathbb{N}$
- \Rightarrow $(a_n)_{n\in\mathbb{N}}$ konvergiert, Limes ist sogennante Zahl e
- 6. $(a_n)_{n\in\mathbb{N}}$ rekursiev definiert: $a_0=0, a_1=1, a_n=a_{n-1}+a_{n-2}$ Fibonacci Folge