Guía 4

4.1 Sea X una variable aleatoria discreta a valores $\left\{\frac{k}{8}: k=0,1,\ldots,8\right\}$ confunción de probabilidad $p_X(x)=\frac{2}{9}x$. Hallar y graficar:

- (a) la función de probabilidad de Y = 2X 1,
- (b) la función de probabilidad de $Y = 128X^2$,
- (c) la función de probabilidad de $Y = -64X^2 + 64X + 2$,
- (d) la función de probabilidad de $Y = 64X^2 96X + 128$.

4.2 \bigcirc [ver Ejercicio **2.5**] Sea X una variable aleatoria con distribución Poisson de media 2. Hallar la función de probabilidad de $Y = |\text{sen}(\frac{1}{2}\pi X)|$.

 $\mathbf{4.3}$ Sea X una variable aleatoria continua con función densidad

$$f_X(x) = \frac{12x}{\pi^2 (e^x + 1)} \mathbf{1} \{x > 0\}.$$

Hallar y graficar:

- (a) la densidad de $Y = aX + b \ (a \neq 0, b \in \mathbb{R}),$
- (b) la densidad de $Y = -X^3$,
- (c) la densidad de $Y = X + X^{-1}$
- (d) la densidad de $Y = X^2 3X$.

4.4 La fase ϕ de un generador eléctrico es una variable aleatoria con distribución uniforme sobre el intervalo $(-\pi, \pi)$.

(a) Hallar la función de densidad del factor de potencia del generador $C=\cos\phi$ (recordar que $\arccos(x)'=-1/\sqrt{1-x^2}$).

(**b**) Calcular P(|C| < 0.5).

4.5 Todas las mañanas Lucas llega a la estación del subte entre las 7:05 y las 7:50, con distribución uniforme en dicho intervalo. El subte llega a la estación cada quince minutos comenzando a las 6:00. Hallar la función densidad del tiempo que tiene que esperar Lucas hasta subirse al subte.

4.6 Un voltaje aleatorio V_1 –medido en voltios– con distribución uniforme sobre el intervalo [180, 220] pasa por un limitador no lineal de la forma

$$g(v_1) = \frac{v_1 - 190}{20} \mathbf{1} \{190 \le v_1 \le 210\} + \mathbf{1} \{210 < v_1\}.$$

Hallar la función de distribución del voltaje de salida $V_2 = g(V_1)$.

4.7 La duración de una llamada telefónica es una variable aleatoria con distribución exponencial de media 8 minutos. Si se factura un pulso cada dos minutos o fracción, hallar la función de probabilidad de la cantidad de pulsos facturados por la llamada.

 $\bf 4.8~Sean~X~e~Y~dos~variables~aleatorias~con función de probabilidad conjunta dada por la siguiente tabla$

(Por ejemplo, $\mathbf{P}(X=-2,Y=2)=1/8$ y $\mathbf{P}(X=1,Y=-2)=0$.) Hallar la función de probabilidad conjunta de U y V cuando

- (a) $U = X \ y \ V = X + Y$.
- (b) $U = \min(X, Y)$ y $V = \max(X, Y)$.
- (c) $U = X^2 + Y^2 \text{ v } V = Y/X$.
- **4.9** Sean X e Y dos variables aleatorias con función densidad conjunta $f_{X,Y}(x,y)$. Hallar la expresión de la densidad conjunta de U y V cuando
- (a) $(U, V) = A(X, Y)^t + B$, donde $A \in \mathbb{R}^{2 \times 2}$ es una matriz inversible y $B \in \mathbb{R}^2$.
- (b) $\textcircled{P}(U,V) = (\min(X,Y), \max(X,Y)).$
- (c) $(U, V) = (X^2 + Y^2, Y/X).$
- **4.10** Sean Z_1 y Z_2 dos variables aleatorias normales estandar independientes.
- (a) Hallar la densidad conjunta y las densidades marginales de U y V, cuando
 - 1. $U = Z_1 + Z_2 \text{ y } V = Z_1 Z_2.$

$$(U,V) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}, \qquad \theta \in (0,2\pi).$$

- 3. $U = Z_1^2 + Z_2^2$ y $V = Z_2/Z_1$.
- (b) En cada uno de los casos del inciso anterior U y V son independientes?
- (c) Calcular $\mathbf{P}(Z_1^2 + Z_2^2 > 4)$ y $\mathbf{P}(Z_2 > \sqrt{3}Z_1)$.
- **4.11** Sean X_1 y X_2 dos variables aleatorias independientes con distribución uniforme sobre el intervalo [0,2]. Sean $U = \min(X_1, X_2)$ y $V = \max(X_1, X_2)$.
- (a) Hallar la densidad conjunta de U y V.
- (b) Hallar la densidad de W = V U.
- (c) Calcular P(U > 1/2, V < 3/2) y P(V > 1 + U).
- **4.12** Sea (X,Y) un vector aleatorio con distribución uniforme sobre la región $\Lambda = \{(x,y): 1 \le x+y \le 3, -1 \le x-y \le 1\}$. Sea $J = \mathbf{1}\{X < Y\}$. ¿Es J independiente de X+Y?

- **4.13** Un objeto se produce en una línea de montaje mediante dos procesos consecutivos que se realizan en tiempos independientes distribuidos uniformemente entre 5 y 10 minutos.
- (a) Hallar la función densidad del tiempo en que se produce el objeto.
- (b) Calcular la probabilidad de que el objeto se produzca en menos de 16 minutos.
- **4.14** Sean X_1 y X_2 dos variables aleatorias independientes con distribuciones exponenciales de intensidades λ_1 y λ_2 , respectivamente. Sean $U = \min(X_1, X_2)$, $V = \max(X_1, X_2)$, W = V U y $J = \mathbf{1}\{U = X_1\} + 2\mathbf{1}\{U = X_2\}$,
- (a) Hallar la densidad de U.
- (b) Hallar la función de probabilidad de J.
- (\mathbf{c}) Hallar la densidad de W.
- (d) Mostrar que U y J son independientes.
- (e) Mostrar que U y W son independientes.
- **4.15** Juan y Pedro han conseguido trabajo en una central telefónica. Juan atiende una línea en que los tiempos entre llamadas consecutivas son exponenciales independientes de intensidad 5 por hora, y Pedro una línea en que los tiempos entre llamadas consecutivas son exponenciales independientes de intensidad 10 por hora. Ambos son fanáticos del ajedrez, y deciden arriesgar su empleo jugando entre llamada y llamada. Se ponen de acuerdo en dejar sin atender las llamadas que suceden antes de los 5 minutos desde que iniciaron el juego o desde la última vez que lo interrumpieron para atender. Inician la partida a las 10.
- (a) ¿Cuál es la probabilidad de que la primer llamada después de las 10 que de sin atender?
- (b) ¿Cuál es la probabilidad de que la primer llamada después de las 10 sea en la línea de Juan?
- (c) ¿Cuál es la probabilidad de que la primer llamada después de las 10 quede sin atender sabiendo que fue en la línea de Juan?
- (\mathbf{d}) ¿Cuál es la probabilidad de que la primer llamada después de las 10 fuera en la línea de Juan sabiendo que fue atendida?
- **4.16** Sean X e Y variables aleatorias independientes con distribución común exponencial de intensidad $\lambda > 0$. Sean U = X + Y y $V = \frac{X}{X+Y}$.
- (a) Hallar la densidad conjunta y las densidades marginales de U y V.
- (b) U y V son independientes?
- **4.17** Sean U_1 y U_2 variables aleatorias independientes con distribución U(0,1). Considerar el cambio de variables: $(Z_1, Z_2) = (R \cos \Theta, R \sin \Theta)$, donde $R = \sqrt{-2 \log(U_1)}$ y $\Theta = 2\pi U_2$.
- (a) Hallar las densidades de R y Θ .
- (b) Hallar la densidad conjunta de Z_1 y Z_2 .

- (\mathbf{d}) im Utilizar el cambio de variables para simular 10000 valores de la distribución N(0,1).
- (\mathbf{e}) $\stackrel{\blacksquare}{=}$ Usando los valores obtenidos en el inciso anterior estimar el valor de la integral

$$\int_0^1 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

- **4.18** Sean X,Y dos variables aleatorias independientes uniformes sobre los conjuntos $\{1,2,\ldots,35,36\},$ $\{1,2,3,4\},$ respectivamente. Hallar la función de probabilidad de X+Y.
- **4.19** La cantidad L de langostas que arriban a la mesa de un asado tiene una distribución Poisson de media 2 y la cantidad M de moscas tiene una distribución Poisson de media 8. L y M son independientes.
- (a) Hallar la función de probabilidad de L + M.
- (b) Hallar la función de probabilidad de M|(L+M=10).
- (c) Calcular P(M > 2|L + M = 10).
- **4.20** Los lados de un rectángulo son variables aleatorias independientes con distribución uniforme sobre el intervalo (0,1).
- (a) Hallar la función densidad del área del rectángulo.
- (b) Calcular la probabilidad de que el área del rectángulo sea mayor que 1/4.
- **4.21** Sean X e Y dos variables aleatorias independientes con distribución uniforme sobre el intervalo (5,10).
- (a) Sea $U = \frac{X}{2} \mathbf{1} \{X \leq Y\} + 2Y \mathbf{1} \{X > Y\}$. Hallar la función densidad de U.
- (b) Sea $V = \mathbf{1}\{X + Y \leq 10\}$. Hallar la función de probabilidad de V.
- (c) Hallar la función de densidad de $X_1 + Y_1$ para $(X_1, Y_1) = (X, Y)|X Y| < 0$.
- (d) Hallar la función densidad de $W = (X 6)^2 + (Y 7)^2$ dado que W < 9/16.

Ejercicios Complementarios

4.22 La duración de ciertos componentes eléctricos tiene distribución exponencial de media 100 horas. Si los componentes se conectan en serie, la duración del circuito es la del componente de menor duración; mientras que si se conectan en paralelo, es la del de mayor duración. Dado el circuito de 5 componentes conectados según el esquema de la figura,

calcular la probabilidad de que el circuito dure más de 80 horas.

4.23 Los tiempos T_1, T_2 que demoran los cajeros 1 y 2 para atender a un cliente son variables aleatorias independientes exponenciales de media 5 minutos.

- (a) Hallar la función densidad de T_1/T_2 .
- (\mathbf{b}) Lucas y Monk llegan al banco y son atendidos por los cajeros 1 y 2, respectivamente. Calcular la probabilidad de que Lucas demore más del triple del tiempo que demora Monk.
- **4.24** Sean X e Y dos variables aleatorias independientes con distribución uniforme sobre el intervalo (0,1]. Sea $R=\sqrt{X^2+Y^2}$
- (a) Hallar la función de distribución de R.
- (b) Calcular P(R > 1/2).

4.25

- (a) Sean X e Y dos variables aleatorias independientes con funciones densidad $f_X(x) = 2x \mathbf{1}\{0 \le x \le 1\}$ y $f_Y(y) = (2-2y)\mathbf{1}\{0 \le y \le 1\}$. Hallar la función de distribución de la suma X + Y.
- (b) Sea U una variable aleatoria con distribución uniforme sobre el intervalo (0,1). Se definen $X=\sqrt{U}$ e $Y=1-\sqrt{U}$.
 - 1. Hallar las densidades de X e Y y la función de distribución de la suma X+Y.
 - 2. ¿Existe la densidad conjunta de X e Y?
- **4.26** Curly, Larry y Moe habían quedado en encontrarse a ensayar un cierto día a las 10 AM. Moe, llega al azar entre las 9:55 y 10:10. Larry es un poco más descuidado y arriba al azar entre las 10 y 10:15. Curly por su parte, aparece una cantidad de minutos T_C luego de las 10, con $f_{T_C}(t) = 2(t-5)/225$ 1 $\{5 < t < 20\}$. Si cada uno arriba en forma independiente y el ensayo no puede comenzar hasta que lleguen todos, hallar la función de densidad del tiempo de retraso del comienzo del ensayo.
- **4.27** Sea $(T_k)_{k\in\mathbb{N}}$ una sucesión de variables aleatorias exponenciales de intensidad $\lambda > 0$. Sea $(S_n)_{n\in\mathbb{N}}$ la sucesión de variables aleatorias definida por $S_n = \sum_{k=1}^n T_k$.
- (a) Hallar la densidad conjunta de S_1, S_2, \ldots, S_n
- (b) [ver Ejercicio 2.8] Hallar la densidad marginal de S_n .
- **4.28** $\stackrel{\downarrow}{\downarrow}$ [Fragmentación aleatoria.] Sea U_1, U_2, U_3, \ldots una sucesión de variables aleatorias independientes con distribuciones uniformes sobre el intervalo (0,1).
- (a) [ver Ejercicio 4.20 y Ejercicio 2.8] Hallar la función de distribución de $\varphi_n = \prod_{i=1}^n U_i$.
- (b) Calcular $\mathbf{P}(\varphi_4 \leq e^{-2})$.

(c) Hallar la expresión general de la sucesión $a_n = \mathbf{P}\left((\varphi_n)^{1/n} \leqslant e^{-1}\right)$ y calcular $\lim_{n\to\infty} a_n$.