

Voltage and Current Sources

- &Understand the characteristics of voltage and current sources
- &Understand the principle of source conversion
- &Operate voltage sources and current sources in series and parallel combination and find equivalent circuit.

Constant Voltage Source

E - the constant emf

R_s - the source internal resistance

Constant Voltage Source

Representation of voltage source

(a) Voltage source

(b)Other symbol

Constant Voltage Source

By KVL, $E = I R_s + V_T = I R_s + I R_I$

Constant Current Source

 I_s = constant current, independent of the load

 R_s = internal resistance

I = load current

Constant Current Source

Assume that a resistor R_L is connected across the terminals A & B such that $V_T = I R_L$ and $I = I_s \times [R_s / (R_s + R_L)]$ (current divider)

$$I_s = E / R_s$$

$$I_s = 10/20 = 0.5 A$$

$$I_s = 10/20 = 0.5 A$$

$$E = I_s R_s$$

$$E = 2 \times 15 = 30 \text{ V}$$

$$E = 2 \times 15 = 30 \text{ V}$$

Tutorial 1, Question 1

Constant current source

$$I = 12 \text{ A}, R_s = 2 \Omega \text{ and } R_L = 6 \Omega$$

 $I_L = 12 \text{ x}[2 / (2+6)] = 3 \text{ A} \text{ and}$
 $V_L = 3 \text{ x} 6 = 18 \text{ V}$

Tutorial 1, Question 1

$$E = I \times R_s = 12 \times 2 = 24 \text{ V}$$

$$I = 12 \text{ A}, R_s = 2 \Omega \text{ and } R_L = 6 \Omega$$

Tutorial 1, Question 1

Constant voltage source

$$E = I \times R_s = 12 \times 2 = 24 \text{ V}$$
 $I_L = 24 / (2 + 6) = 3 \text{ A} \text{ and}$
 $V_L = 3 \times 6 = 18 \text{ V}$
Circuit

Constant current source

I = 12 A,
$$R_s = 2 \Omega$$
 and $R_L = 6 \Omega$
I = 12 x 2/ (2 + 6) = 3 A and
V = 3 x 6 = 18 V
Circuit Theory & Analysis

Series-aiding voltage sources

Series-opposing voltage sources

Voltage sources in parallel

- Parallel operation of voltage sources with different voltages not possible.
- Parallel operation of identical voltage sources for higher output current.

Current sources in series

Series operation of different current sources are not practical

Current sources in parallel

Current sources in parallel

- When two voltage sources are in parallel or when a voltage source is in parallel with a current source.
 - Always first convert the voltage source to its equivalent current sources with appropriate current direction.

Procedure for finding the equivalent current source or voltage source

- *Identify the type of parallel connection as either*
 - **▶** Parallel aiding current sources or
 - ▲ Parallel opposing current sources.
- Simplify the circuit to find the single equivalent current source with appropriate current direction.

Procedure for finding the equivalent current source or voltage source

- When two current sources are in series or when a current source is in series with a voltage source.
 - Always first convert the current source to its equivalent voltage sources with appropriate voltage direction.

Procedure for finding the equivalent current source or voltage source

- *Identify the type of series*connection as either
 - ▲ Series aiding voltage sources or
 - ▲ Series opposing voltage sources.
- Simplify the circuit to find the single equivalent voltage source with appropriate voltage direction.

Example 1.2

Simplify the above into an equivalent current source

Example 1.2

Convert the parallel 4A, 8Ω into series voltage source of 4 x 8 = 32 volts with 8Ω as the series resistor

Now combine the 32V and 8 Ω with the 40V and 4 Ω to form a total of 72V and 12 Ω series circuit

The 72V, 12Ω and 60V, 3Ω must both be converted into current sources before they can be combined

Now combine the 6A, 12Ω with the 20A, 3Ω into one single current source with a parallel resistor equals to $12//3 = 2.4\Omega$

To combine these two current sources, both must first be converted into voltage sources.

Now these two voltage sources can be combined to form a voltage source of 30.6 V & 3.4 Ω

This can be the answer if an equivalent voltage source is required.

This is the final required equivalent current source

...next topic

Mesh/Loop Analysis

Nurturing Curious Minds, Producing Passionate Engineers

Lee M L

Office: T12A522 School of EEE

Tel: 6879-0657