Scilab Textbook Companion for Basic Electronics Devices Circuits and Its Fundamentals by S. Kal¹

Created by
Mohd. Irfan
B.Tech
Electronics Engineering
UTU
College Teacher
NA
Cross-Checked by
Chaitanya

June 25, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electronics Devices Circuits and Its Fundamentals

Author: S. Kal

Publisher: Phi Learning, New Delhi

Edition: 1

Year: 2013

ISBN: 978-81-203-1952-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Semiconductor Materials And Junction Diode	7
3	Junction Diode and Their Applications	15
4	BJTs and FETs	24
5	Transistor Biasing and Small Signal Amplifiers	40
6	Feedback Amplifiers and Oscillations	49
7	Operational Amplifiers	57
8	Digital Logic and Combinational Circuits	63
12	Memory Systems	67

List of Scilab Codes

Exa 2.1	Electron and hole component of current density
Exa 2.2	Peak output voltage
Exa 2.3	Increase in forward current
Exa 2.4	Slope of the line
Exa 2.5	Maximum and minimum values of the instantaneous
	power
Exa 2.6	Load line
Exa 2.7	Value of Is
Exa 2.8	Reverse saturation current
Exa 3.1	Im Idc Irms and Ripple factor
Exa 3.2	Required PIV
Exa 3.3	Maximum and minimum value of zener diode current . 1'
Exa 3.4	Value of R
Exa 3.5	Designing of the circuit
Exa 3.6	Input and output waveform
Exa 3.7	Output dc voltage
Exa 3.8	Designing of a zener voltage regulator
Exa 3.9	Designing of a zener voltage regulator
Exa 3.10	Value of limiting resistance R1 and R2
Exa 4.1	DC load line
Exa 4.2	Value of RB RC and IC
Exa 4.3	NEw value of VCE
Exa 4.4	DC load line
Exa 4.5	Value of bita dc
Exa 4.7	Value of Beta dc
Exa 4.8	New operating point
Exa 4.9	Value of R1 and R2
Eva 4 10	DC load line

Exa 4.11	Base current	33
Exa 4.12	Emitter current	33
Exa 4.13	Base current and emitter current	34
Exa 4.14	Change in base current	35
Exa 4.15	Collector current	35
Exa 4.16	Alphadc and beta dc	36
Exa 4.17	Alphadc and emitter current	36
Exa 4.18	IC and IB	37
Exa 4.19	Base current	37
Exa 4.20	Emitter current	38
Exa 4.21	Base and emitter current	39
Exa 5.1	h parameters	40
Exa 5.2	h parameters	41
Exa 5.3	z parameter	41
Exa 5.4	External voltage gain	42
Exa 5.5	External current gain	43
Exa 5.6	Lower 3 dB frequency	43
Exa 5.7	Ai Av Ri Ais and Avs	44
Exa 5.8	Cut off frequency	45
Exa 5.9	Mid band voltage gain and input impedance	46
Exa 5.10	Value of rE Ai and Rin	47
Exa 6.1	New gain after feedback	49
Exa 6.2	Av of the basic amplifier	50
Exa 6.3	Value of RC	50
Exa 6.4	Reverse transmission factor	51
Exa 6.5	Output voltage and input voltage	52
Exa 6.6	Value of fLF	52
Exa 6.7	Wien bridge oscillation	53
Exa 6.8	Av of the basic amplifier	53
Exa 6.9	Value of vo by vs Ri and Ro	54
Exa 6.10	Voltage gain input resistance	55
Exa 7.1	Output voltage	57
Exa 7.6	Output voltage	58
Exa 7.8	Open loop voltage gain	58
Exa 7.9	Value of constant A1 and A2	59
Exa 7.10	CMRR in dB	60
Exa 7.12	Output voltage	61
Exa 7.13	Voltage gain and input resistance	61
	5	

Exa 8.1	Hexadecimal number 3BF ino binary	63
Exa 8.2	Convert octal into binary	64
Exa 8.3	Convert octal into hexadecimal number	64
Exa 8.4	Convert decimal into octal	64
Exa 8.9	Maximum permissible value of RB	65
Exa 12.1	Capacity of memory chip	67
Exa 12.2		67
Exa 12.3	Bits of storage and lines in address bus	68
Exa 12.4	Number of address line	69
Exa 12.5	Memory cell	69
Exa 12.6	Total number of memory cells	70

Chapter 2

Semiconductor Materials And Junction Diode

Scilab code Exa 2.1 Electron and hole component of current density

```
1 // Exa 2.1
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ n_i} = 1.5 * 10^10; // in /cc
8 p = n_i; // in /cc
9 n = n_i; // in /cc
10 miu_n = 1400; // in cm<sup>2</sup>/V-s
11 miu_p = 450; //in cm^2/V-s
12 q = 1.6 * 10^-19; // in C
13 E = 20; // in V/cm
14 a= 5;// cross section area of Si bar in cm<sup>2</sup>
15 sigma_n = n*q*miu_n;// in mho/cm
16 sigma_p = n*q*miu_p; // in mho/cm
17 // Electron current density
18 Jn = sigma_n*E; // in A
19 Jn= Jn*10^6; // in A /cm^2
```

```
disp(Jn,"Electron current density in A/cm^2 is");
// The hole current density
Jp = sigma_p*E;// in A/cm^2
Jp= Jp*10^6;// in A/cm^2
disp(Jp,"The hole current density in A/cm^2 is");
//The total current in the bar
total = (Jn+Jp)*a;// A/cm^2
disp(total,"The total current in the bar in A/cm^2 is");
format('e',8)
// The resistivity of the bar
nho = 1/(n_i*q*(miu_p+miu_n)*10^2);// in ohm—cm
disp(rho,"The resistivity of the bar in ohm—cm is");
```

Scilab code Exa 2.2 Peak output voltage

```
1 // Exa 2.2
2 format('v',5)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 V_F = 20; // in V
8 Vin = V_F; // in V
9 \ V_BE = 0.7; // in V
10 R1 = 500; //resistance in ohm
11 R2 = 10; // resistance in ohm
12 // Peak current though the diode
13 Ifpeak = (V_F-V_BE)/(R1+R2); // in A
14 Ifpeak = Ifpeak * 10^3; // in mA
15 disp(Ifpeak," The peak current through the diode in
     mA is");
16 R_L = 500; // in ohm
17 // Peak output voltage
18 Vpeakout = Ifpeak*10^-3*R_L; // in V
```

```
disp(Vpeakout, "The peak out voltage in V is");
// For ideal diode
Ifpeak = V_F/R_L; // in A
Ifpeak = Ifpeak * 10^3; // in mA
// The peak output voltage for ideal diode
Vpeakout = Ifpeak * 10^-3*R_L; // in V
Ifpeak, "The peak current for ideal diode in mA is");
Ifpeak output voltage for ideal diode in wall is ");
```

Scilab code Exa 2.3 Increase in forward current

```
1 // Exa 2.3
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 t = 27; // in C
8 t = t + 273; // in K
9 q= 1.6*10^-19; // electron charge in C
10 v = 200*10^{-3}; // in V
11 kt_by_q = 0.026; // in V
12 Io = 3*10^-7; // in A
13 // For large reverse bias I = Io*(\%e^(q*v/(k*t)))
14 I= Io*(%e^(v/kt_by_q)-1); // in A
15 I = round(I*10^6); // in A
16 disp(I,"The current flowing through the diode in
                                                      Α
       is");
17 Idaso = Io*2^7;// in A
18 // r_ac = dv/di = 1/(Io*(1/kTdividedq)*(%e^(v/(
     kTdividedq))));
19 r_ac = 1/( Io*(1/kt_by_q)*(%e^(v/(kt_by_q))) );
20 disp(r_ac, "The ac resistance in ohm is:");
```

```
21 kt_by_q = 0.032; // in V
22 I1 = Idaso * ((%e^(v/(kt_by_q))) - 1); // in A
23 I1 = I1 * 10^3; // in mA
24 delI = I1-(I*10^-3); // in mA
25 disp(delI, "The increase in forward current in mA is" );
```

Scilab code Exa 2.4 Slope of the line

```
1 // Exa 2.4
2 format('e',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 V = 30; //applied forward voltage in V
8 R_L = 3; //load resistance in k ohm
9 R_L = R_L * 10^3; // in ohm
10 Imax = V/R_L; // maximum diode current in A
11 Imax = Imax * 10^3; // in mA
12 slope = -1/R_L; // in mho
13 plot([V,0],[0,Imax]);
14 xlabel("V_F in volts");
15 ylabel("I_F in mA");
16 title("DC load line");
17 disp("DC load line shown in figure")
18 disp(slope, "The slope of the line in mho is");
19
20 // Note: There is calculation error to find the
      value of slope because -1/3 \text{ k} = -3.33*10^{\circ}-4 \text{ mho},
        not = -3.33*10^{-3} \text{ mho}
```

Scilab code Exa 2.5 Maximum and minimum values of the instantaneous power

```
1 // Exa 2.5
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Vp = (4+0.2*\sin(\text{omega*t}))'; // in V
8 Ip= [4+0.3*\sin(\text{omega*t})]'; // \text{ in mA}
9 //The instantaneous power dissipated, P= Vp*Ip =
      [4+0.2*\sin d (wt)]*[4+0.3*\sin d (wt)]
10 // and putting, \sin^2(\text{omega*t}) = 1/2 - 1/2 * \cos(2 * \text{omega*t})
      t )
  P = [16.03 + 2 * sin(omega*t) - 0.03 * cos(2 * omega*t)] * 10^{-3}
      ';// in W
12 disp(P," The instantaneous power dissipated in the
      diode in W is : ")
13
  // Pmax occurs when omega*t=90, so
14 omega_t= 90; // in
15 Pmax = [16.03 + 2 * sind(omega_t) - 0.03 * cosd(2 * omega_t)]
      ]*10^-3; // in W
16 disp(Pmax," The maximum value of instantaneous power
      dissipated in W is: ")
17
  // Pmin occurs when omega*t=-90, so
18 \text{ omega_t = -90;} // in
19 Pmin = [16.03 + 2 * sind(omega_t) - 0.03 * cosd(2 * omega_t)]
      ]*10^-3; // in W
20 disp (Pmin, "The minimum value of instantaneous power
      dissipated in W is: ");
21 // The average power dissipated
22 Pav=(Pmax+Pmin)/2; // in W
23 disp(Pav,"The average power dissipated in the diode
      in W is : ")
```

Scilab code Exa 2.6 Load line

```
1 // Exa 2.6
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ R_L} = 50; // \text{ in ohm}
8 \ V = 10; // in \ V
9 R = 5; // in ohm
10 V_D = (V*R)/(R_L+R); // in V
11 R_D = (R_L*R)/(R_L+R); // in ohm
12 I_D = V_D/R_D; // in A
13 I_D = I_D * 10^3; // in mA
14 plot([V_D,0],[0,I_D])
15 xlabel("V_D in volts");
16 ylabel("I_D in mA");
17 title("DC load line");
18 disp("DC load line shown in figure")
19 slope = -1/R_D;
20 disp(slope, "The slope of the dc load line is: ");
```

Scilab code Exa 2.7 Value of Is

```
1 // Exa 2.7
2 format('e',8)
3 clc;
4 clear;
5 close;
6 // Given data
7 V_T= 26*10^-3; // in V
```

```
8 T = 300; // in K
9 V = 0.25; // in V
10 I= 10 * 10^-3; // in A
11 // I = I_S*((\%e^(V/(n*kTdividedq)))-1) = I_S*((\%e)
     (V/V_T) -1 ;
12 I_S = I/(%e^(V/V_T) - 1); // in A
13 disp(I_S,"The reverse saturate current in amp. is:
     ")
14 format('v',6)
15 // For 1 mA current
16 I = 1; // in mA
17 I = I*10^-3; // in A
18 V = (1/38.46)*log(I/I_S); // in V
19 disp(V, "The bias voltage needed for 1 mA in V is");
20 // For 100 mA current
21 I = 100; // in mA
22 I = I * 10^-3; // in A
23 V = (1/38.46)*log(I/I_S);//in V
24 disp(V,"The bias voltage needed for 100 mA in V is")
25
26 // Note: Answer in the book is not accurate.
```

Scilab code Exa 2.8 Reverse saturation current

```
1 // Exa 2.8
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 V_T= 25*10^-3; // in V
8 // I = Io*( (%e^(V/V_T))-1 );
9 I = 1; // in mA
10 I = I * 10^-3; // in A
```

```
11 V = 0.15; // in V
12 Io = I/( (%e^((1/V_T)*V))-1 );// in A
13 Io = Io * 10^6; // in A
14 disp(Io,"The reverse saturation current at room
     temperature in A is");
15 // Io doubles for every 10 C-rise in temperature.
     Thus at 40 C
16 Io_new= 4*Io; //new value of reverse saturation
     current in A
17 disp(Io_new,"The reverse saturation current at 40
       C in A is");
18 I = 100; // in mA
19 I = I * 10^-3; // in A
20 // I = Io*( (%e^((1/V_T)*V))-1);
21 V = (1/40)*log(I/(Io*10^-6));// in V
22 disp(V, "The forward bias voltage in V is");
```

Chapter 3

Junction Diode and Their Applications

Scilab code Exa 3.1 Im Idc Irms and Ripple factor

```
1 // Exa 3.1
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 // V = 50 * snid(omega*t);
8 \text{ Vm} = 50; // \text{ in V}
9 \text{ r_d} = 20; // \text{ in ohm}
10 R_L = 800; // in ohm
11 Im = Vm/(r_d+R_L); // in A
12 Im = Im * 10^3; // in mA
13 disp(Im, "The value of Im in mA is");
14 Idc = Im/\%pi; // in mA
15 disp(Idc, "The value of Idc in mA is");
16 Irms = Im/2; // in mA
17 disp(Irms, "The value of Irms in mA is");
18 // The ac power input
19 P_ac_input = (Irms*10^-3)^2*(r_d+R_L); // in W
```

```
20 disp(P_ac_input, "The ac power input in W is");
21 P_{dc_output} = (Idc*10^-3)^2*R_L; // in W
22 // The dc power output
23 disp(P_dc_output, "The dc power output in W is");
24 // The dc output voltage
V_{dc_out} = Idc*10^-3*R_L; // in V
26 disp(V_dc_out, "The dc output voltage in V is");
27 //The Efficiency of rectification, Eta = ((Idc^2*R_L)
     *100)/(Irms^2*(R_L+r_d)) = (8/\%pi) * ((R_L*100))
     /(R_L+r_d)
28 Eta = 8/\%pi^2 * ((R_L*100)/(R_L+r_d));// in \%
29 disp(Eta,"The Efficiency of rectification in % is");
30 ripplefactor = sqrt( (Irms/Idc)^2 -1 );
31 disp(ripplefactor, "The ripple factor is");
32
33 // Note: In the book, the calculation to evaluate
     the value of efficiency of rectification is wrong
```

Scilab code Exa 3.2 Required PIV

```
1 // Exa 3.2
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Vdc = 120; // in V
8 Vm = (%pi/2)*Vdc; // in V
9 disp(Vm, "The peak value of output voltage in V is");
10 Vpeak = 2*Vm; // in V
11 disp(Vpeak, "The peak value of voltage at transformer secondary in volts is:")
12 Vrms = Vpeak/sqrt(2); // in V
13 disp(Vrms, "The r.m.s. value of voltage at
```

```
transformer secondary in V is");
14 R_L = 250; // in k ohm
15 R_L = R_L * 10^3; // in ohm
16 Idc = Vdc/R_L;//in A
17 Idc= Idc*10^6; // in A
18 disp(Idc,"The average current delivered to load in
       A is");
19 Io = Idc/2; // in A
20 disp(Io,"The average current through each of the
      diode in A is");
21 // Peak current through each of the diode in A
22 \text{ I_peak} = \text{Vm/R_L}; // \text{ in A}
23 I_peak = I_peak*10^3; // in mA
24 disp(I_peak,"The peak current through each of the
      diode in mA is");
25 PIV = 2*Vm;//in V
26 disp(PIV,"The PIV required for each of the diode in
     V is");
```

Scilab code Exa 3.3 Maximum and minimum value of zener diode current

```
1 // Exa 3.3
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 V = 120; // in V
8 Vz = 50; // in V
9 R = 5; // in k ohm
10 R = R * 10^3; // in ohm
11 I = (V-Vz)/R; // in A
12 R1 = 10; // in k ohm
13 R1 = R1 * 10^3; // in ohm
14 I_L = Vz/R1; // in A
```

Scilab code Exa 3.4 Value of R

```
1 // Exa 3.4
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 R_L = 18; // in ohm
8 \text{ Vz} = 18; // \text{ in V}
9 \text{ V1} = 22; // \text{ in V}
10 V2 = 28; // \text{ in V}
11 // Minimum voltage across R,
12 V = V1 - Vz; // in V
13 Izmin = 200; // in mA
14 I_Lmax = Vz/R_L; // in A
15 I = I_Lmax+Izmin*10^-3; // in A
16 R = V/I; // in ohm
17 disp(R, "The value of R in ohm is:")
18 I1 = (V2-Vz)/R; ; // in A
19 // The maximum current through R
20 Izmax = I1 - 1; // in A
```

```
21 Izmax = Izmax * 10^3; // in mA
22 disp(Izmax, "The maximum current through R in mA is")
   ;
23 disp("Which is within the limit of Iz (max) provided
   .")
24 pd = Vz*Izmax*10^-3; // maximum power dissipated in W
25 disp(pd, "The maximum power dissipated in W is");
```

Scilab code Exa 3.5 Designing of the circuit

```
1 // Exa 3.5
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 V1 = 12; // in V
8 \text{ Vz} = 10; // \text{ in V}
9 V = V1 - Vz; // in V
10 I_Lmax = 10; // in mA
11 I_Zmin = 0.2; // in mA
12 I = I_Lmax+I_Zmin; // in mA
13 R = V/I; // in k ohm
14 Vz1 = 5; // in V
15 // The maximum current through R
16 Imax = Vz1/R; // in mA
17 disp(Imax, "The maximum current through R in mA is");
18 // The power rating of zener
19 power = Vz*Imax; // in mW
20 disp(power, "The power rating of zener in mW is");
```

Scilab code Exa 3.6 Input and output waveform

```
1 // Exa 3.6
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Vo= -6; // in V
                  (for Vi <= -6.6 V)
8 Vo= 8; // in V (for Vi>=8.8 V)
9 // Vi= 10000*i+100000*i or i= Vi/110000
                                                 ( i )
10 Vi = -6.6:0.1:8.8;
11 // \text{Vo} = 100000 * i
12 Vo= 100000*Vi/110000; // (substituting i from eq(
     i ) )
13 plot(Vi, Vo);
14 xlabel("Vi in volts")
15 ylabel("Vo in volts")
16 title("The overall transfer characteristics")
17 disp("The overall transfer characteristics shown in
      figure.")
```

Scilab code Exa 3.7 Output de voltage

```
1 // Exa 3.7
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Vm = 20; // in V
8 Idc = 100; // in mA
9 Idc = Idc * 10^-3; // in A
10 R_S = 5; // in ohm
11 R_F = 2; // in ohm
12 Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F); // in V
13 disp(Vdc, "The output dc voltage at dc load current)
```

```
of 100 mA in V is");
14 Idc = 200; // in mA
15 Idc = Idc * 10^-3; // in A
16 Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F); // in V
17 R_L = Vdc/Idc; // in ohm
18 // The percentage regulation
19 Per_reg = ((2*R_F+R_S)/R_L)*100; // in %
20 disp(Per_reg, "The percentage regulation for a full load dc current of 200 mA in % is");
21 Eta = round((8/(%pi^2)) * (R_L/(2*R_F+R_S+R_L)) * *100); // in %
22 disp(Eta, "The efficiency of the rectifier in % is");
```

Scilab code Exa 3.8 Designing of a zener voltage regulator

```
1 // Exa 3.8
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ Vz} = 20; // \text{ in V}
8 R_L = 1; // in k ohm
9 R_L = R_L * 10^3; // in ohm
10 I_L = Vz/R_L; // in A
11 V1 = 30; // in V
12 R_S = (V1-Vz)/I_L;// in ohm
13 V2 = 50; // in V
14 // The maximum current through Rs resistor,
15 I_S = (V2-Vz)/R_S; // in A
16 I_Smax = V1/R_S; // in A
17 I_Zmax = I_Smax-I_L; // in A
18 power = I_Zmax*Vz; // in W
19 disp(power, "The maximum power rating of the Zener
      diode in W is");
```

Scilab code Exa 3.9 Designing of a zener voltage regulator

```
1 // Exa 3.9
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \ Vz = 20; // in V
8 V1 = 30; // in V
9 \ V2 = 50; // in V
10 R_L = 2; // in k ohm
11 R_L = R_L * 10^3; // in ohm
12 I_L = Vz/R_L; // in A
13 I_ZK = 5*10^-3; // in mA
14 I_Smin = I_L+I_ZK; // in A
15 R_S = (V1-Vz)/I_Smin; // in ohm
16 I_Smax = (V2-Vz)/R_S; // in A
17 I_Zmax = I_Smax - (I_Smin + I_ZK); // in A
18 // The maximum power rating of the zener diode,
19 power = I_Zmax*Vz;// in W
20 disp(power,"The maximum power rating of the zener
      diode in W is");
```

Scilab code Exa 3.10 Value of limiting resistance R1 and R2

```
1 // Exa 3.10
2 format('v',6)
3 clc;
4 clear;
5 close;
```

```
6 // Given data
7 Vz1= 10; //voltage across zener diode, Z1 in V
8 Vz2= 5;// voltage across zener diode, Z2 in V
9 Iz1= 30*10^-3; // current through zener diode, Z1 in
10 Iz2= 15*10^-3; // current through zener diode, Z1 in
11 I_knee= 5*10^-3; //knee current of zener diode, Z1 in
12 R_L=500; //load resistance in ohm
13 R= 1*10^3; // in ohm
14 V_B = 25; // in V
15 // Current through RL,
16 I_RL= Vz2/R_L;// in A
17 // Current through R2,
18 I_R2 = Iz2 + Vz2/R_L; // in A
19 // Voltage across resistance R2,
20 V_R2 = Vz1 - Vz2; // in V
21 R2 = V_R2/I_R2; // in ohm
22 disp(R2, "The value of resistance R2 in ohm is:")
23 // Current through R1,
I_R1 = I_{Z1} + V_{Z1}/R + I_{R2}; //in A
25 // Voltage across R1,
26 \text{ V}_R1 = \text{V}_B - \text{V}_{z1}; // \text{ in } \text{V}
27 R1 = V_R1/I_R1; // in ohm
28 disp(R1, "The value of resistance R1 in ohm is:")
29 // Current through R1,
30 I_R1 = I_knee + Vz1/R + I_R2; // in mA
31 // Voltage across R1,
32 \text{ V}_R1 = I_R1*R1; // in volts
33 V_Bmin = Vz1 + V_R1; // in V
34 disp(V_Bmin, "The lowest power supply voltage in
      volts is: ")
```

Chapter 4

BJTs and FETs

Scilab code Exa 4.1 DC load line

```
1 // Exa 4.1
2 format('v',6)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 18; // \text{ in V}
8 V_BB = 6; // in V
9 \text{ Beta} = 75;
10 I_CO = 100; // in nA
11 I_CO = I_CO * 10^-9; // in A
12 R_C = 1; // in k ohm
13 R_C = R_C * 10^3; // in ohm
14 V_CE = 9; // in V
15 I_C = 9; // in mA
16 I_C = I_C * 10^-3; // in A
17 // I_C = Beta*I_B + (1+Beta)*I_CO;
18 I_B = (I_C-((1+Beta)*I_CO))/Beta; // in A
19 I_B = I_B * 10^3; // in mA
20 disp(I_B, "The value of I_B in mA is");
V_BE = 0.7; // in V assumed
```

```
22 R_B = (V_BB-V_BE)/(I_B*10^-3); // in ohm
23 R_B = R_B * 10^-3; // in k ohm
24 disp(R_B,"The value of R_B for Si transistor in k
      ohm is");
25 \text{ V_BE} = 0.3; // \text{ in V}
26 \text{ R}_B = (V_BB - V_BE)/(I_B*10^-3); // \text{ in ohm}
27 R_B = R_B * 10^- - 3; // in k ohm
28 disp(R_B,"The value of R_B for Ge transistor in k
      ohm is");
29 V_CEQ = V_CC - I_C * R_C; // in V
30 I_CQ = round(Beta*I_B); // in mA
31 I_C = V_CC/R_C; // in A
32 I_C = I_C * 10^3; // in mA
33 plot([V_CC,0],[0,I_C]);
34 xlabel("V_CC in volts ");
35 ylabel("I_C in mA")
36 title("DC load line")
37 disp("DC load line shown in figure")
38 disp("Q point : "+string(V_CEQ)+" volts, "+string(
      I_CQ) + mA
```

Scilab code Exa 4.2 Value of RB RC and IC

```
1 // Exa 4.2
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 V_BB = 15; // in V
8 V_CC = 15; // in V
9 I_CO = 0.1; // in A
10 I_CO = I_CO * 10^-6; // in A
11 Beta = 60;
12 I_B = 50; // in A
```

```
13 I_B = I_B * 10^-6; // in A
14 V_CE = 8; // in V
15 I_C = (Beta*I_B)+((1+Beta)*I_CO); // in A
16 I_C = round(I_C * 10^3); // in mA
17 disp("Part (i) : ")
18 disp(I_C, "The value of I_C in mA is");
19 R_C = (V_CC - V_CE)/(I_C*10^-3); // in ohm
20 R_C = R_C * 10^-3; // in k ohm
21 disp(R_C, "The value of R_C in k ohm is");
22 \text{ V}_BE = 0.3; // \text{ in V}
23 R_BGe = (V_BB-V_BE)/I_B; // in ohm
24 R_BGe = R_BGe * 10^-3; // in k ohm
25 disp(R_BGe, "The value of R_B for Ge in k ohm is");
26 \text{ V}_BE = 0.7; // in V
27 \text{ R_BSi} = (V_BB-V_BE)/I_B; // \text{ in ohm}
28 R_BSi = R_BSi * 10^-3; // in k ohm
29 disp(R_BSi, "The value of R_B for Si in k ohm is");
30 P_RC = ((I_C*10^-3)^2)*(7/3)*10^3; // in W
31 P_RC = P_RC * 10^3; // in mW
32 disp("Part (ii) : ")
33 disp(P_RC, "The power dissipations in RC in mW is");
34 // The power dissipations in the transistor
35 P_TRANS = V_CE*I_C; // in mW
36 disp(P_TRANS,"The power dissipations in the
      transistor in mW is");
37 disp("Part (iii): For RC= 1 k, V_CE increase,
      shifting the Q-point of right and I_C increase
      slightly")
```

Scilab code Exa 4.3 NEw value of VCE

```
1 // Exa 4.3
2 format('v',6)
3 clc;
4 clear;
```

```
5 close;
6 // Given data
7 V_CE = 9; // in V
8 R_C = 10; // in Mohm
9 R_C = R_C * 10^6; // in ohm
10 V = 10; // in V
11 I_CEO = (V - V_CE)/R_C; // in A
12 // When R_C is changed to 10 k ohm
13 R_C = 10; // in k ohm
14 R_C = R_C * 10^3; // in ohm
15 V_CE = (V - (I_CEO*R_C)); // in V
16 disp(V_CE, "The new value of V_CE in V is");
```

Scilab code Exa 4.4 DC load line

```
1 // Exa 4.4
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 20; // \text{ in V}
8 \text{ V\_BB} = 10; // \text{ in V}
9 V_BE = 0.7; // in V
10 V_{CEsat} = 0.3; // in V
11 R_B = 47; // in k ohm
12 R_B = R_B * 10^3; // in ohm
13 R_C = 1; // in k ohm
14 R_C = R_C * 10^3; // in ohm
15 I_C = V_CC/R_C; // in A
16 I_C = I_C * 10^3; // in mA
17 plot([V_CC,0],[0,I_C]);
18 xlabel("V_CE in volts");
19 ylabel("I_C in mA");
20 title("DC load line")
```

```
21 I_BQ = (V_BB-V_BE)/R_B; // in A
22 \text{ Beta} = 80;
23 I_CQ = Beta*I_BQ*10^3; // in mA
V_{CEQ} = V_{CC} - (I_{CQ}*10^{-3}*R_{C}); // in V
25 disp("DC load line shown in figure")
26 disp("Q points : "+string(V_CEQ)+" volts, "+string(
      I_CQ) + mA
27 I_Csat = (V_CC-V_CEsat)/R_C;//in A
28 I_B = I_Csat/Beta; // in A
29 \text{ V}_BE = 0.7; // \text{ in } V
30 R_B = (V_BB - V_BE)/I_B; // in ohm
31 disp(R_B*10^-3, "The value of R_B in k ohm is");
32 R_C = 500; // in ohm
33 V_CE = V_CC - (I_Csat*R_C); // in V
34 disp(V_CE, "The value of V_CE in volts is:")
35 disp("The transistor will come out of saturation and
       enter the active region of the transistors.");
```

Scilab code Exa 4.5 Value of bita dc

```
1  // Exa 4.5
2  format('v',6)
3  clc;
4  clear;
5  close;
6  // Given data
7  Beta_dc = 80;
8  V_CC = 25; // in V
9  V_BE = 0.7; // in V
10  R_B = 180; // in k ohm
11  R_B = R_B * 10^3; // in ohm
12  R_E = 200; // in ohm
13  R_C = 820; // in ohm
14  I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E)); // in A
15  I_C = Beta_dc*I_B; // in A
```

```
16 \ V_CG = V_CC - (I_C*R_C); // in V
17 disp(V_CG, "The voltage between collector and ground
                        in volts is : ")
18 V_{CEsat} = 0.3; // in V
19 / V_{CC} - V_{CEsat} = I_{Csat} * R_{C} + I_{Csat} / Beta_dc * (
                        Beta_dc+1)*R_E;
20 I_C = (V_CC - V_CEsat)/(R_C + R_E); // in A
21 / I_B = V_CC - ((I_E * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_CC + ((I_C * R_E) + V
                        R_E)+V_BE)/R_B;
22 I_B = (V_CC - I_C * R_E + V_BE) / R_B; // in A
23 Beta_dc = I_C/I_B;
24 disp(Beta_dc,"The value of Beta_dc on which
                         transistor is saturate is");
25
26 // Note: There is some difference between the value
                        of Beta_dc in the book and coding output because
                        the correct values of I_C and I_B are 24.215 mA
                        and 0.1158
```

Scilab code Exa 4.7 Value of Beta dc

```
1 // Exa 4.7
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Beta_dc = 80;
8 V_CC = 25; // in V
9 V_BE = 0.7; // in V
10 R_B = 180; // in k ohm
11 R_B = R_B * 10^3; // in ohm
12 R_E = 200; // in ohm
13 R_C = 820; // in ohm
14 I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E)); // in A
```

```
15 I_C = Beta_dc*I_B; // in A
16 V_{CG} = V_{CC} - (I_{C*R_C}); // in V
17 disp(V_CG, "The voltage between collector and ground
                       in volts is : ")
18 V_{CEsat} = 0.3; // in V
19 // V_{CC} - V_{CEsat} = I_{Csat} * R_{C} + I_{Csat} / Beta_{dc} * (
                        Beta_dc+1)*R_E;
20 I_C = (V_CC - V_CEsat)/(R_C + R_E); // in A
21 / I_B = V_CC - ((I_E * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_BE) / R_B = V_CC - ((I_C * R_E) + V_CC + ((I_C * R_E) + V
                       R_E)+V_BE)/R_B;
22 I_B = (V_CC-I_C*R_E+V_BE)/R_B; // in A
23 Beta_dc = I_C/I_B;
24 disp(Beta_dc,"The value of Beta_dc on which
                         transistor is saturate is");
25
         // Note: There is some difference between the value
                        of Beta_dc in the book and coding output because
                        the correct values of I_C and I_B are 24.215 mA
                       and 0.1158
```

Scilab code Exa 4.8 New operating point

```
1  // Exa 4.8
2  format('v',6)
3  clc;
4  clear;
5  close;
6  // Given data
7  V_CE = 8; // in V
8  I_C = 1; // in mA
9  I_C = I_C * 10^-3; // in A
10  V_CC = 12; // in V
11  Beta = 100;
12  R_C = (V_CC-V_CE)/I_C; // in ohm
13  I_B = I_C/Beta; // in A
```

```
14  V_BE = 0.3; // in V
15  R_B = ((V_CC-(I_C*R_C))-V_BE)/I_B; // in ohm
16  // For Beta= 50;
17  V_CE= 9.6; // in V
18  I_C= 0.6; // in mA
19  R_C= R_C*10^-3; // in k ohm
20  R_B= R_B*10^-3; // in k ohm
21  disp(R_C, "The value of R_C in k ohm is");
22  disp(R_B, "The value of R_B in k ohm is");
23  disp("New Q point : "+string(V_CE)+" volts, "+string (I_C)+" mA")
```

Scilab code Exa 4.9 Value of R1 and R2

```
1 // Exa 4.9
2 format('v',6)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 V_BE = 0.7;
8 \text{ bita} = 100;
9 \text{ V_CC} = 20; // \text{ in V}
10 R_E = 1 * 10^3; // in ohm
11 V_{CEQ} = 10; // in V
12 I_CQ = 2* 10^-3; // in A
13 S_ICO = 10;
14 I_BQ = I_CQ/bita; // in A
15 // R_B = R1*R2/(R1+R2)
                                    ( i )
16 // V_B = R2*V_CC/(R1+R2) (ii)
17 R_B = (S_{ICO-1}) * R_E; // in ohm
18 // V_{CC} = I_{CQ} * R_{C} + V_{CEQ} + (1 + bita) * I_{C} / bita * R_{E}
19 R_C = (V_CC - V_CEQ - I_CQ * R_E) / I_CQ; // in ohm
20 I_B = I_CQ/bita; // in A
21 V_B = I_B*R_B+V_BE+(1+bita)*R_E*I_B;// in V
```

```
22 // From eq (i) and (ii)
23 R2= (V_B*R_B+R_B*(V_CC-V_B))/(V_CC-V_B); // in ohm
24 R1= R2*R_B/(R2-R_B); // in ohm
25 R1= R1*10^-3; // in k ohm
26 R2= R2*10^-3; // in k ohm
27 disp(R1, "The value of R1 in k ohm is:")
28 disp(R2, "The value of R2 in k ohm is:")
```

Scilab code Exa 4.10 DC load line

```
1 // Exa 4.10
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ V_CC} = 18; // \text{ in V}
8 \text{ V\_BB} = 6; // \text{ in V}
9 \text{ Beta} = 75;
10 I_C0 = 100; // in nA
11 I_CO = I_CO * 10^-9; // in A
12 R_C = 1; // in k ohm
13 R_C = R_C * 10^3; // in ohm
14 V_{CE} = 9; // in V
15 I_C = 9; // in mA
16 I_C = I_C * 10^-3; // in A
17 // I_C = Beta*I_B + (1+Beta)*I_CO;
18 I_B = (I_C - ((1+Beta)*I_C0))/Beta; // in A
19 I_B = I_B * 10^3; // in mA
20 disp(I_B, "The value of I_B in mA is");
V_BE = 0.7; // in V_{assumed}
22 R_B = (V_BB-V_BE)/(I_B*10^-3); // in ohm
23 R_B = R_B * 10^-3; // in k ohm
24 disp(R_B,"The value of R_B for Si transistor in k
      ohm is");
```

```
25 \text{ V}_BE = 0.3; // in V
26 R_B = (V_BB-V_BE)/(I_B*10^-3); // in ohm
27 R_B = R_B * 10^- - 3; // in k ohm
28 disp(R_B,"The value of R_B for Ge transistor in k
     ohm is");
29 V_CEQ = V_CC - I_C * R_C; // in V
30 I_CQ= round(Beta*I_B); // in mA
31 I_C = V_CC/R_C; // in A
32 I_C = I_C * 10^3; // in mA
33 plot([V_CC,0],[0,I_C]);
34 xlabel("V_CC in volts ");
35 ylabel("I_C in mA")
36 title("DC load line")
37 disp("DC load line shown in figure")
38 disp("Q point : "+string(V_CEQ)+" volts, "+string(
      I_CQ) + mA
```

Scilab code Exa 4.11 Base current

```
1 // Exa 4.11
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 alpha = 0.9;
8 I_E = 1; // mA
9 I_C = alpha * I_E; // in mA
10 // The base current,
11 I_B = I_E - I_C; // in mA
12 disp(I_B, "The value of base current in mA is");
```

Scilab code Exa 4.12 Emitter current

```
1  // Exa 4.12
2  format('v',5)
3  clc;
4  clear;
5  close;
6  // Given data
7  bita = 50;
8  I_B= 20; // in  A
9  I_B=I_B*10^-6; // in  A
10  I_C= bita*I_B; // in  A
11  // The emitter current,
12  I_E= I_C+I_B; // in  A
13  I_E = I_E * 10^3; // in  mA
14  disp(I_E,"The Emitter current in mA is");
```

Scilab code Exa 4.13 Base current and emitter current

```
1 // Exa 4.13
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ beta_dc} = 90;
8 // The base current,
9 I_C = 15; // in mA
10 I_C = I_C * 10^-3; // in A
11 I_B = I_C/beta_dc; // in A
12 I_B = I_B * 10^6; // in
13 disp(I_B, "The base current in A is");
14 I_B = I_B * 10^-6; // in A
15 // The emitter current,
16 I_E = I_C + I_B; // in A
17 I_E = I_E * 10^3; // in mA
18 disp(I_E, "The Emitter current in mA is");
```

```
19 alpha_dc = beta_dc/(1+beta_dc);
20 disp(alpha_dc, "The value of alpha_dc is");
```

Scilab code Exa 4.14 Change in base current

```
1  // Exa 4.14
2  format('v',5)
3  clc;
4  clear;
5  close;
6  // Given data
7  del_ic = 1.8; // in mA
8  del_ie = 1.89; // in mA
9  alpha = del_ic / del_ie;
10  bita = alpha/(1 - alpha);
11  // Change in base current,
12  del_ib = del_ic/bita; // in mA
13  del_ib = del_ib * 10^3; // in A
14  disp(del_ib, "The change in I_B in A is");
```

Scilab code Exa 4.15 Collector current

```
1 //Exa 4.15
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // Given data
7 bita = 100;
8 I_CBO = 4; // in A
9 I_B = 40; // in A
10 // The collector current,
11 I_C = (bita * I_B) + ((1+bita) * I_CBO); // in A
```

```
12 I_C = I_C * 10^-3; // in msA
13 disp(I_C, "The collector current in mA is");
```

Scilab code Exa 4.16 Alphadc and beta dc

```
1 //Exa 4.16
2 format('v',7)
3 clc;
4 clear;
5 close;
6 //Given data
7 I_CEo = 21; // in A
8 I_CBO = 1.1; // in A
9 // Value of beta_dc
10 beta_dc = round((I_CEo/I_CBO) - 1);
11 disp(beta_dc," Value of beta_dc is");
12 // The value of alpha_dc
13 alpha_dc = beta_dc/(1 + beta_dc);
14 disp(alpha_dc," The value of alpha_dc is");
```

Scilab code Exa 4.17 Alphadc and emitter current

```
1 // Exa 4.17
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // Given data
7 I_CBO = 3; // in A
8 I_CBO = I_CBO*10^-3; // in mA
9 I_C = 15; // in mA
10 // But it is given that I_C = 99.5% of I_E, SO
11 I_E = I_C/99.5*100; // in mA
```

```
12 alpha_dc= I_C/I_E;
13 disp(alpha_dc, "The value of alpha_dc is : ")
14 disp(I_E, "The value of I_E in mA is : ")
```

Scilab code Exa 4.18 IC and IB

```
1 //Exa 4.18
2 format('v',5)
3 clc;
4 clear;
5 close;
6 //Given data
7 \text{ alpha_dc} = 0.99;
8 I_CBO = 10; // in
9 I_CBO= I_CBO*10^-6; // in A
10 I_E = 10; // in mA
11 I_E = I_E * 10^-3; // in A
12 // The collector current,
13 I_C = (alpha_dc * I_E) + I_CBO; // in A
14 I_C=I_C*10^3; // in mA
15 disp(I_C, "The value of I_C in mA is");
16 I_C=I_C*10^-3; // in A
17 // The base current,
18 I_B = I_E - I_C; // in A
19 I_B = I_B * 10^6; // in A
20 disp(I_B, "The value of I_B in A is");
```

Scilab code Exa 4.19 Base current

```
1 // Exa 4.19
2 format('v',5)
3 clc;
4 clear;
```

```
5 close;
6 format('v',9)
7 // Given data
8 alpha_dc = 0.99;
9 I_C = 6; // in mA
10 I_C = I_C * 10^-3; // in A
11 I_C BO = 15; // in A
12 I_C BO = I_C BO * 10^-6; // in A
13 // The emitter current,
14 I_E = (I_C - I_C BO) / alpha_dc; // in A
15 // The base current,
16 I_B = I_E - I_C; // in A
17 I_B = I_B * 10^6; // in A
18 I_B = round(I_B)
19 disp(I_B, "The value of I_B in A is");
```

Scilab code Exa 4.20 Emitter current

```
1 / Exa 4.20
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ alpha_dc} = 0.98;
8 I_CBO = 12; // in A
9 I_CBO = I_CBO * 10^-6; // in A
10 I_B = 120; // in A
11 I_B = I_B * 10^-6; // in A
12 beta_dc = alpha_dc/(1-alpha_dc);
13 // The emitter current,
I_{4} I_{E} = ((1 + beta_dc) * I_{B}) + ((1 + beta_dc) * I_{CBO})
      ); // in A
15 I_E = I_E * 10^3; // in mA
16 disp(I_E, "The value of I_E in mA is");
```

Scilab code Exa 4.21 Base and emitter current

```
1 // Exa 4.21
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ beta_dc} = 90;
8 // The base current,
9 I_C = 15; // in mA
10 I_C = I_C * 10^-3; // in A
11 I_B = I_C/beta_dc; // in A
12 I_B=I_B*10^6; // in A
13 disp(I_B, "The base current in A is");
14 I_B=I_B*10^-6; // in A
15 // The emitter current,
16 I_E = I_C + I_B; // in A
17 I_E = I_E * 10^3; // in mA
18 disp(I_E, "The Emitter current in mA is");
19 alpha_dc = beta_dc/(1+beta_dc);
20 disp(alpha_dc, "The value of alpha_dc is");
21
22 // Note: There is printing mistake in the book in
      this example.
```

Chapter 5

Transistor Biasing and Small Signal Amplifiers

Scilab code Exa 5.1 h parameters

```
1 // Exa 5.1
2 format('v',6)
3 clc;
4 clear;
5 close;
6 R1= 10; // in ohm
7 \text{ R2} = 20; // \text{ in ohm}
8 R3=30; // in ohm
9 v2 = 50; // in V
10 v1= 20; // in V
11 i1= -2.5; // in V
12 i2= 1; // in A
13 h11= R1+(R2*R3/(R2+R3)); // in ohm
14 // h-parameters
15 disp("h-parameters : ")
16 disp(h11,"The value of h11 in ohm is: ")
17 // From vi = h11*i1+h12*V1 and i2 = h21*i1+h22*v2
18 \text{ h12} = v1/v2;
19 disp(h12, "The value of h12 is:")
```

```
20 h21= i2/i1;
21 disp(h21,"The value of h21 is:")
22 h22= i2/v2;// in mho
23 disp(h22,"The value of h22 in mho is:")
```

Scilab code Exa 5.2 h parameters

```
1 // Exa 5.2
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ R1} = 30; // \text{ in ohm}
8 R2 = 40; // in ohm
9 R3 = 60; // in ohm
10 R4 = 40; // in ohm
11 R5 = 70; // in ohm
12 h11 = (R1+(R2*R5/(R2+R5))); // in ohm
13 disp(h11, "The numericals values of h11 in ohm is");
14 \text{ h}12 = \text{R2} \times \text{R4} / (\text{R4} + \text{R5}) \times 1 / (\text{R3} + \text{R4} \times \text{R5} / (\text{R4} + \text{R5}))
15 disp(h12, "The numericals values of h12 is");
16 \text{ h21} = -\text{R4*R2/(R5+R2)*1/(R3+R5*R2/(R5+R2))}
17 disp(h21, "The numericals values of h21 is");
18 \text{ h}22 = 1/(R3+(R2*R5/(R2+R5)))
19 disp(h22, "The numericals values of h22 in mho is");
20
21 // Note: In the book the calculated value of h11 i.
       e 30+(40 \mid \mid 70) = 53 is wrong. correct value is
       55.45 so the answer in the book is wrong.
```

Scilab code Exa 5.3 z parameter

```
1 // Exa 5.3
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 R1 = 30; // in ohm
8 R2 = 40; // in ohm
9 R3 = 60; // in ohm
10 R4 = 40; // in ohm
11 R5 = 70; // in ohm
12 // z-parameters
13 z11 = R1 + (R2 * (R1 + R2) / (R2 + (R1 + R2)))
14 disp(z11, "The value of z11 in ohm is: ");
15 z22 = R3 + R4 * R5 / (R4 + R5);
16 disp(z22, "The value of z22 is: ");
17 z12 = R2*R4/(R1+R2+R4);
18 disp(z12, "The value of z12 is : ");
19 z21 = R2*R4/(R1+R2+R4);
20 disp(z21, "The value of z21 in mho is: ");
```

Scilab code Exa 5.4 External voltage gain

```
1 // Exa 5.4
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Avint = 100;
8 Ri = 1; // in k ohm
9 Ro = 200; // in ohm
10 Ro = Ro * 10^-3; // in k ohm
11 R_S = 50; // in ohm
12 R_S = R_S * 10^-3; // in k ohm
```

```
13  R_L = 2; // in k ohm
14  // Avext = V_L/V_S = Avint*(Ri/(RiR_S))*(R_L/(R_L+Ro));
15  Avext = Avint*(Ri/(Ri+R_S))*(R_L/(R_L+Ro));
16  disp(Avext, "The external voltage gain is");
```

Scilab code Exa 5.5 External current gain

Scilab code Exa 5.6 Lower 3 dB frequency

```
1 // Exa 5.6
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
```

```
7  // Vo = -R_L*Io = ( (-R_L*Rc)/(Rc+R_L+(1/SC)) )*h_fe
    *Ib;
8  R_C = 4; // in k ohm
9  R_L = 2; // in k ohm
10  R = R_C+R_L; // in k ohm
11  R= R*10^3; // in ohm
12  C_L = 10; // in F
13  C_L = C_L * 10^-6; // in F
14  // Vo/Ib =Aos/(S+(1/R*C_L));
15  f_L = 1/(2*%pi*R*C_L); // in Hz
16  disp(f_L,"The lower 3-dB frequency in Hz is");
```

Scilab code Exa 5.7 Ai Av Ri Ais and Avs

```
1 // Exa 5.7
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // GIven data
7 R_L= 10*10^3; // in ohm
8 \text{ h_ie} = 1.1; // \text{ in k ohm}
9 \text{ h_ie} = \text{h_ie} * 10^3; // in ohm
10 h_re = 2.5*10^-4;
11 h_fe = 50;
12 h_oe = 24; // in A /V
13 h_oe = h_oe * 10^-6; // in A/V
14 R_S = 1; // in k ohm
15 R_S = R_S * 10^3; // in
16 Rc = 10; // in k ohm
17 Rc = Rc * 10^3; // in ohm
18 Ai = round(-h_fe/(1+(h_oe*R_L)));
19 disp(Ai, "The value of Ai is");
20 Ri = h_ie+(h_re*Ai*R_L); // in ohm
21 Ri= Ri*10^-3; // k ohm
```

```
disp(Ri, "The value of Ri in k ohm is");
Ri= Ri*10^3; // ohm
Av = (Ai*R_L)/Ri;
disp(Av, "The value of Av is");
Avs = (Av*Ri)/(Ri+R_S);
disp(Avs, "The value of Avs is");
Ais = (Ai*R_S)/(Ri+R_S);
disp(Ais, "The value of Ais is");
```

Scilab code Exa 5.8 Cut off frequency

```
1 // Exa 5.8
2 format('v',5)
3 clc;
4 clear:
5 close;
6 // Given data
7 I_C = 1 ; // in A
8 bita= 200;
9 \text{ h_fe} = \text{bita};
10 R_C = 5*10^3; // in ohm
11 R_E = 2*10^3; // in ohm
12 R_S = 600; // in ohm
13 R_L = 600; // in ohm
14 C1=10*10^-6; // in F
15 C2 = C1; // in F
16 f_L= 20; // in Hz (lower cut-off frequency)
17 // R1 | R2 = 6; // in k ohm
18 r_e = 25/I_C; // in ohm
19 h_i = bita*r_e; // in ohm
20 // R_B = R1 | R2 = 6; // in k ohm
21 R_B = 6*10^3; // in ohm
22 \text{ r_i} = 5*10^3; // \text{ in ohm}
23 Ri = (R_B*r_i)/(R_B+r_i); // in ohm
24 // The cut off frequency due to C1
```

Scilab code Exa 5.9 Mid band voltage gain and input impedance

```
1 // Exa 5.9
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ h_fe} = 100;
8 \text{ h_ie} = 1; // \text{ in k ohm}
9 \text{ h_ie} = \text{h_ie} * 10^3; // in ohm
10 vo_by_I = -100*10^3; // in ohm
11 vi_by_I = 1100+101*0.1*10^3; // in ohm
12 Av= vo_by_I/vi_by_I;
13 Av = round(Av);
14 Av= abs(Av);
15 disp(Av, "The mid-band voltage gain is");
16 / Ri = Vi / Ii;
17 Ri= vi_by_I; // in ohm
18 Ri = Ri *10^-3; // in k ohm
19 disp(Ri, "The input impedance in k ohm is");
```

Scilab code Exa 5.10 Value of rE Ai and Rin

```
1 // Exa 5.10
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 V = 5.7; // in V
8 V_BE = 0.7; // in V
9 R1 = 10 * 10^3; // in ohm
10 R2 = 100 * 10^3; // in ohm
11 I_BQ = (V-V_BE)/(R1+R2); // in A
12 I_BQ = I_BQ * 10^3; // in mA
13 I_EQ = 100*I_BQ; // in mA
14 R1= 2; // in k ohm
15 R_L= 100*10^-3; // in k ohm
16 disp(I_EQ, "The value of I_EQ in mA is");
17 \ V_T = 0.026; // in V assumed
18 \text{ r_E} = V_T/(I_EQ*10^-3); // \text{ in ohm}
19 disp(r_E, "The value of r_E in ohm is");
20 \text{ Beta} = 100;
21 h_fe= Beta;
22 \text{ r_pi} = \text{Beta*r_E;} // \text{ in ohm}
23 disp(r_pi, "The value of r_pi in ohm is : ")
24 ib= poly(0, 'ib');
25 \text{ vb_by_ib= } 0.572+101*1; // in k ohm
26 \text{ Ri} = 10; // \text{ in k ohm}
27 i1_by_ib= vb_by_ib/Ri;
28 \text{ is\_by\_ib= } 1+i1\_by\_ib;
29 \text{ iL_by_ib= -h_fe*R1/(R1+R_L)};
30 // Ai = iL/is = iL_by_ib/is_by_ib;
31 Ai = iL_by_ib/is_by_ib;
32 Rin= vb_by_ib/is_by_ib; // in k ohm
```

```
33 disp(Ai, "The value of Ai is: ")
34 disp(Rin, "The value of Rin in k ohm is: ")
```

Chapter 6

Feedback Amplifiers and Oscillations

Scilab code Exa 6.1 New gain after feedback

```
1 // Exa 6.1
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 BWf = 5; // in MHz
8 BWf = BWf * 10^6; // in Hz
9 \text{ Av} = 100;
10 BW = 500; // in kHz
11 BW = BW * 10^3; // in Hz
12 // BWf = (1+(B*Av))*BW;
13 B = ((BWf/BW)-1)/Av;
14 disp(B, "The amount of negative feed back is");
15 Avf = Av/(1+(Av*B));
16 disp(Avf, "The new gain after negative feed back is")
```

Scilab code Exa 6.2 Av of the basic amplifier

```
1 // Exa 6.2
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ h11} = 2; // \text{ in k ohm}
8 \text{ h11} = \text{h11} * \text{10^3}; // \text{ in ohm}
9 \text{ h12} = 0;
10 \text{ h21} = 80;
11 h22= 1*10^-3;// in mho
12 R_L= 10*10^3; // in ohm
13 B= 10/100;
14 Ri= 2; // in k ohm
15 R_Ldesh = (R_L*1/h22)/(R_L+1/h22); // in ohm
16 \text{ Av= } h21*R\_Ldesh/h11;
17 disp(Av, "Part (a): The value of Av of the basic
      amplifier is: ")
18 D= 1 + Av *B;
19 disp(D,"The value of densitivity factor is: ")
20 Avf = Av/(1+B*Av);
21 disp(Avf, "The value of Avf is: ")
22 Rif = (1+Av*B)*Ri; // in k ohm
23 disp(Rif,"The value of Rif in k ohm is: ")
```

Scilab code Exa 6.3 Value of RC

```
1 // Exa 6.3
2 format('e',8)
3 clc;
```

```
4 clear;
5 close;
6 // Given data
7 f_{osc} = 6.5; // in kHz
8 \text{ f_osc} = \text{f_osc} * 10^3; // \text{ in Hz}
9 // f_{osc} = 1/(2*\%pi*sqrt(6)*RC);
10 RC = 1/(2*\%pi*sqrt(6)*f_osc); // in sec
11 disp(RC, "The value of RC in sec is:")
12 format('v',5)
13 // Possible selection of R and C may be
14 R= 1; // in k ohm
15 C= RC/R; // in mF
16 C= C*10^3; // in F
17 disp("The posible selection of R and C: ")
18 disp("(a): "+string(R)+" k and "+string(C)+"
      )
19 format('v',6)
20 R= 10; // in k ohm
21 C= RC/R; // in mF
22 C = C*10^3; // in
                    \mathbf{F}
23 disp("The posible selection of R and C:")
24 disp("(a): "+string(R)+" k and "+string(C)+"
      )
```

Scilab code Exa 6.4 Reverse transmission factor

```
1 // Exa 6.4
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 A= 1000;
8 dA= 100;
9 dAbyAf= 0.1/100;
```

```
10 // dAf/Af = 1/|1+B*A| * dA/A or
11 B= (dA-dAbyAf*A)/(dAbyAf*A^2)
12 disp(B, "The reverse transmission factor of the feedback networks used is: ");
13 Af = A/(1+(B*A));
14 disp(Af, "The gain with feed back is");
```

Scilab code Exa 6.5 Output voltage and input voltage

```
1 // Exa 6.5
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 Vout = 36; // in V
8 \text{ Vs} = 0.028; // \text{ in V}
9 B = 1.2/100;
10 A = Vout/Vs;
11 Af = A/(1+(B*A));
12 Vo = Af * Vs; // in V
13 disp(Vo, "The output voltage in V is");
14 // 1 + BA = 7 \text{ or}
15 BA= 6;
16 Af = A/(1+BA);
17 Vin = Vout/Af; // in V
18 disp(Vin, "The input voltage in V is");
```

Scilab code Exa 6.6 Value of fLF

```
1 // Exa 6.6
2 format('v',6)
3 clc;
```

Scilab code Exa 6.7 Wien bridge oscillation

Scilab code Exa 6.8 Av of the basic amplifier

```
1 // Exa 6.8
```

```
2 format('v',5)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ h11} = 2; // \text{ in k ohm}
8 \text{ h11} = \text{h11} * \text{10^3}; // \text{ in ohm}
9 h12 = 0;
10 \text{ h21} = 80;
11 h22= 1*10^-3; // in mho
12 R_L= 10*10^3; // in ohm
13 B = 10/100;
14 Ri= 2; // in k ohm
15 R_Ldesh = (R_L*1/h22)/(R_L+1/h22); // in ohm
16 Av = h21*R_Ldesh/h11;
17 disp(Av, "Part (a): The value of Av of the basic
      amplifier is: ")
18 D= 1 + Av * B;
19 disp(D,"The value of densitivity factor is: ")
20 Avf = Av/(1+B*Av);
21 disp(Avf,"The value of Avf is: ")
22 Rif = (1+Av*B)*Ri; // in k ohm
23 disp(Rif, "The value of Rif in k ohm is:")
```

Scilab code Exa 6.9 Value of vo by vs Ri and Ro

```
1 // Exa 6.9
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 h_ie = 1.5 * 10^3; // in ohm
8 h_fe = 100;
9 // R = R1 | | R2 = 20; // in k ohm
```

```
10 R = 20 * 10^3; // in ohm
11 R_E = 560; // in ohm
12 R_S = 600; // in ohm
13 Avf = (h_fe*R_E)/(h_ie+(h_fe*R_E));
14 \text{ VoByVs} = \text{Avf};
15 disp(VoByVs,"The value of midband voltage gain (vo/
      vs) is :");
16 Ri = h_ie + ((1+h_fe)*R_E); // in ohm
17 Ri= Ri*10^-3; // in k ohm
18 disp(Ri, "The value of input impedance (Ri) in k ohm
      is : ")
19 Ri= Ri*10^3; // in ohm
20 Ro = (R_S+h_ie)/(1+h_fe); // in ohm
21 disp(Ro,"The value of output impedance (Ro) in ohm
      is : ")
22 R_desh_i = (R*Ri)/(R+Ri); // in ohm
23 R_desh_i=R_desh_i*10^-3; // in k ohm
24 disp(R_desh_i, "The value of R''i in k ohm is");
25 // For load resistance of 10 k ohm
26 \text{ R_L} = 10; // \text{ in k ohm}
27 R_L = R_L * 10^3; // in ohm
28 R_desh_o = (Ro*R_L)/(Ro+R_L); // in ohm
29 disp(R_desh_o,"The value of R''o for load resistance
       of 10 k ohm in ohm is");
30 // For load resistance of 220 ohm
31 R_L = 220; // in ohm
32 R_desh_o = (Ro*R_L)/(Ro+R_L); // in ohm
33 disp(R_desh_o, "The value of R''o for load resistance
       of 220 ohm in ohm is");
34
35 // Note: There is a calculation mistake to evaluate
      the value of R_desh_i (R'i)
```

Scilab code Exa 6.10 Voltage gain input resistance

```
1 // Exa 6.10
  2 format('v',6)
  3 clc;
  4 clear;
  5 close;
  6 // Given data
  7 \text{ h_fe} = 50;
  8 \text{ h_ie} = 1.2; // \text{ in k ohm}
  9 \text{ h_ie} = \text{h_ie} * 10^3; // in ohm
10 R_C = 1; // in k ohm
11 R_C = R_C * 10^3; // in ohm
12 R_E = 200; // in ohm
13 R_B = 2; // in k ohm
14 R_B = R_B * 10^3; // in ohm
15 Av = (-h_fe*R_C)/h_ie;
16 disp(Av, "The voltage gain (Av) is");
17 Ri = (h_ie*R_B)/(h_ie+R_B); // in ohm
18 disp(Ri, "The input resistance (Ri) in ohm is");
19 // vi= vs (on neglecting Rs), hence i_E = i_B + h_f e^*
                  i_B = (1 + h_f e) * i_B
                                                                                                                                  (i)
20 // vo = -i_C *R_C = -h_f e *i_B *R_C
                                                                                                                                              (As i_{-}C =
                   h_fe*i_B)
        // From eq (i) : vi = i_B * h_i = +i_E * R_E = i_B * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E = i_E * (h_i = +(1 + i_E) + i_E * (h_
                  h_fe)*R_E)
                                                                                                                           (iii)
22 // i_L = i_B
                  (iv)
23 // Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));
24 \text{ Avf} = (-h_fe*R_C)/(h_ie+(1+h_fe)*R_E);
25 disp(Avf, "The voltage gain (Avf) is");
26 \text{ Rif} = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie +
                  ((1+h_fe)*R_E)); // in ohm
27 Rif = Rif *10^-3; // in k ohm
28 disp(Rif,"The input resistance (Rif) in k ohm is");
```

Chapter 7

Operational Amplifiers

Scilab code Exa 7.1 Output voltage

```
1 // Exa 7.1
2 format('v',6)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 Ac = 35; //common mode gain in dB
8 \text{ Ac} = 10^{(Ac/20)};
9 CMRR = 72; // in dB
10 CMRR = 10^(CMRR/20);
11 // CMRR = Ad/Ac
12 \text{ Ad} = \text{CMRR} * \text{Ac};
13 V1 = 0.16; // in mV
14 \text{ V2} = 0.18; // \text{ in mV}
15 // Common mode signal
16 Vc = 1/2*(V1+V2); // in mV
17 // Difference mode signal
18 Vd = V2-V1; // in mV
19 // The output voltage
20 Vo = Ac*Vc+Ad*Vd; // in mV
21 Vo= Vo*10^-3; // in V
```

Scilab code Exa 7.6 Output voltage

```
1 // Exa 7.6
2 format('v',5)
3 \text{ clc};
4 clear;
5 close;
6 // Given data
7 Ro = 10; // in k ohm
8 R1 = 10; // in k ohm
9 R2 = 2.2; // in k ohm
10 R3 = 3.3; // in k ohm
11 V1 = 6; // in V
12 V2 = -3; // in V
13 V3 = -0.75; // in V
14 // Output voltage,
15 Vo = -( ((Ro/R1)*V1) + ((Ro/R2)*V2) + ((Ro/R3)*V3))
      ; // in V
16 disp(Vo, "The value of Vo in V is");
```

Scilab code Exa 7.8 Open loop voltage gain

```
1  // Exa 7.8
2  format('v',7)
3  clc;
4  clear;
5  close;
6  // Given data
7  R = 100; // in k ohm
8  R = R * 10^3; // in ohm
9  C = 2; // in F
```

```
10 C = C * 10^-6; // in F
11 f = 10; // in kHz
12 f = f * 10^3; // in Hz
13 omega = 2*%pi*f;// in Krad
14 // The open loop voltage gain,
15 A = R*omega*C;
16 disp(A, "The open loop voltage gain is");
17 format('e',9)
18 //The feedback function, B is evaluated as, A_F = -R
     /Z_{-}C*(1/(1+(1/(A*B))));
19 B = 1/( sqrt( 1+((R*omega*C)^2) ) );
20 disp(B, "The feed back function is");
21 format('v',7)
22 //A_F = -R/Z_C*(1/(1+(1/(A*B))));
23 \text{ Av} = 10^3;
24 A_F = round(A*(1/(1+(1/(Av*B)))));
25 disp(A_F, "The overall gain is");
26
27 // Note: The open loop voltage gain in the book is
      not accurate.
```

Scilab code Exa 7.9 Value of constant A1 and A2

```
1 // Exa 7.9
2 format('v',7)
3 clc;
4 clear;
5 close;
6 // GIven data
7 R1 = 10; // in k ohm
8 R2 = 100; // in k ohm
9 R3 = 10.1; // in k ohm
10 R4 = 99; // in k ohm
11 // Vdaso = Vo2 = V2*(-R2/R1)
12 //Vdaso = Vo1 = V1*(R4/(R3+R4))*(1+(R2/R1))
```

```
13  //Vo = Vo1+Vo2 = (V1*(R4/(R3+R4))*(1+(R2/R1))) - (V2
     *(-R2/R1))
14  //Vo = (R2/R1) * (-V2 + (1+(R1/R2))/(1+(R3/R4))*
     V1 )
15  A1 = (1+(R1/R2))/(1+(R3/R4))*(R2/R1);// (on
     comparing vo= A1*V1+A2*V2)
16  disp(A1,"The value of A1 is");
17  A2 = -R2/R1;
18  disp(A2,"The value of A2 is");
```

Scilab code Exa 7.10 CMRR in dB

```
1 // Exa 7.10
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 \text{ Ad} = 100000;
8 \text{ Ac} = 25;
9 \text{ CMRR} = Ad/Ac;
10 CMRR_indB= 20*log10 (CMRR); // in dB
11 disp(CMRR_indB, "Part (a): The value of CMRR in dB
      is");
12 format('e',8)
13 R2 = 100; // in k ohm
14 R1 = 10; // in k ohm
15 V_B = 0.18; // in mV
16 \text{ V}_A = 0.16; // \text{ in mV}
17 // The output from the amplifier,
18 Vo = ((R2/R1)*(V_B-V_A)*10^-3) + ((R2/R1)*V_B
      *10^-3*(1/CMRR)); // in V
19 disp(Vo, "Part (b): The output from the amplifier in
       V is");
20 \text{ V}_B = 2.00018; // in V
```

```
21  V_A = 2.00016; // in V
22  // The output from the amplifier,
23  Vo = ((R2/R1)*(V_B-V_A)) + ((R2/R1)*V_B*(1/CMRR)); //
        in V
24  disp(Vo, "Part (c) : The output from the amplifier in V is");
```

Scilab code Exa 7.12 Output voltage

```
1 // Exa 7.12
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 R1 = 10; // in k ohm
8 Rf = 30; // in k ohm
9 Vs = 4; // in V
10 V_A = 2; // in V
11 V_B = 2; // in V
12 I = (Vs-V_B)/(R1); // in mA
13 Vo = (-I*Rf)+V_B; // in V
14 // The output voltage,
15 disp(Vo, "The value of Vo in V is");
```

Scilab code Exa 7.13 Voltage gain and input resistance

```
1 // Exa 7.13
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
```

```
7 \text{ h_fe} = 50;
8 \text{ h_ie} = 1.2; // \text{ in k ohm}
9 \text{ h_ie} = \text{h_ie} * 10^3; // \text{ in ohm}
10 R_C = 1; // in k ohm
11 R_C = R_C * 10^3; // in ohm
12 R_E = 200; // in ohm
13 R_B = 2; // in k ohm
14 R_B = R_B * 10^3; // in ohm
15 Av = (-h_fe*R_C)/h_ie;
16 disp(Av, "The voltage gain (Av) is");
17 Ri = (h_ie*R_B)/(h_ie+R_B); // in ohm
18 disp(Ri, "The input resistance (Ri) in ohm is");
19 // vi= vs (on neglecting Rs), hence i_E= i_B+h_fe*
      i_B = (1 + h_f e) * i_B
                                              ( i )
20 // vo = -i_C *R_C = -h_f e *i_B *R_C
                                                  (As i_{-}C=
      h_fe * i_B)
  // From eq (i) : vi = i_B * h_i e + i_E * R_E = i_B * (h_i e + (1 + i_E) + i_E)
      h_fe)*R_E)
                                            (iii)
22 // i_L = i_B
      (iv)
23 // Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));
24 \text{ Avf} = (-h_fe*R_C)/(h_ie+(1+h_fe)*R_E);
25 disp(Avf, "The voltage gain (Avf) is");
26 \text{ Rif} = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie +
      ((1+h_fe)*R_E)); // in ohm
27 Rif = Rif *10^-3; // in k ohm
28 disp(Rif,"The input resistance (Rif) in k ohm is");
```

Chapter 8

Digital Logic and Combinational Circuits

Scilab code Exa 8.1 Hexadecimal number 3BF ino binary

```
1 // Exa 8.1
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 str= '3BF';// given number in hexadecimal to convert into binary
8 str_in_dec= hex2dec(str);// decimal equivalent
9 str_in_bin= dec2bin(str_in_dec);// binary equivalent
10 disp(str_in_bin,"The binary equivalent of 3BF is:")
11
12 // Note: The answer in the book is wrong because binary equivalent of B = 1011 and in the book they used 1101 which is wrong.
```

Scilab code Exa 8.2 Convert octal into binary

```
1 // Exa 8.2
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 str= '527'; // given number in octal to convert into binary
8 str_in_dec= oct2dec(str); // decimal equivalent
9 str_in_bin= dec2bin(str_in_dec); // binary equivalent
10 disp(str_in_bin, "The binary equivalent of 527 is:")
```

Scilab code Exa 8.3 Convert octal into hexadecimal number

```
1 // Exa 8.3
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 str= '256';// given number in octal to convert into hexadecimal
8 str_in_dec= oct2dec(str);// decimal equivalent
9 str_in_hex= dec2hex(str_in_dec);// hexadecimal equivalent
10 disp(str_in_hex,"The hexadecimal equivalent of 256 is:")
```

Scilab code Exa 8.4 Convert decimal into octal

```
1 // Exa 8.4
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 str= 450; // given number in decimal to convert into octal
8 str_in_oct= dec2oct(str); // octal equivalent
9 disp(str_in_oct, "The octal equivalent of 450 is : ")
```

Scilab code Exa 8.9 Maximum permissible value of RB

```
1 // Exa 8.9
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 R_C = 1; // in k ohm
8 \text{ V_CC} = 5; // \text{ in V}
9 V_{CEsat} = 0; // in V
10 V_BE=0.7;//in\ V
11 bita_min= 50;
12 bita_max = 100;
13 // For the transistor to go to saturation,
14 I_C = (V_CC - V_CEsat)/R_C; // in mA
15 bita = bita_min; // for driving the transistor into
      saturation
16 I_Bmin= I_C/bita;//minimum base current in mA
17 // So, (V_CC-V_BE)/R_B >= I_B or
18 R_B= (V_CC-V_BE)/I_Bmin; // in k ohm
19 disp(R_B,"The maximum permissible value of R_B in k
      ohm is : ")
20 // For actual calculation one may take V_CEsat= 0.3
```

Chapter 12

Memory Systems

Scilab code Exa 12.1 Capacity of memory chip

```
1 // Exa 12.1
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 RAMbit= 2*4; //K bit RAM IC chip
8 // The capacity of the memory chip,
9 Capacity = RAMbit*2^10; // in bits
10 disp(Capacity, "The capacity (or density) of the memory chip in bits is");
```

Scilab code Exa 12.2 Required address bits

```
1 // Exa 12.2
2 format('v',6)
3 clc;
4 clear;
```

```
5 close;
6 // Given data
7 // (a) For 1024 number of bits
8 No_of_bits = 1024; // bits
9 Req_add_bits = log(No_of_bits)/log(2);
10 disp(Req_add_bits,"Address bits required for a
      memory that has 1024 number of bits");
11
12 // (b) For 256 number of bits
13 No_of_bits = 256; // bits
14 Req_add_bits = log(No_of_bits)/log(2);
15 disp(Req_add_bits,"Address bits required for a
      memory that has 256 number of bits");
16
17 // (c) For 4098 number of bits
18 No_of_bits = 4096; // bits
19 // 2^12 = 4096, 2^13 = 8192, \text{ where } 4096 < 4098 < 8192 \text{ or}
      2^12 < 4098 < 2^13, hence
20 Req_add_bits = 13;
21 disp(Req_add_bits,"Address bits required for a
      memory that has 4098 number of bits");
22
23 // d) For 16384 number of bits
24 No_of_bits = 16384; // bits
25 Req_add_bits = log(No_of_bits)/log(2);
26 disp(Req_add_bits,"Address bits required for a
      memory that has 16384 number of bits");
```

Scilab code Exa 12.3 Bits of storage and lines in address bus

```
1 // Exa 12.3
2 format('v',6)
3 clc;
4 clear;
5 close;
```

```
6 // Given data
7 memory = 16; // in K
8 memory= memory*1024; // in bits
9 // Number of bits of storage,
10 Req_add_bits= log(memory)/log(2);
11 disp(Req_add_bits,"Number of bits of storage is: ")
12 disp(Req_add_bits,"Number of lines in address bus is: ")
```

Scilab code Exa 12.4 Number of address line

```
1 // Exa 12.4
2 format('v',6)
3 clc;
4 clear;
5 close;
6 // Given data
7 memory= 16; // in K
8 wordBit= 8;
9 // Number of address
10 N= log((memory/wordBit)*1024)/log(2);
11 disp(N,"The number of address lines is:")
```

Scilab code Exa 12.5 Memory cell

```
1  // Exa 12.5
2  format('v',8)
3  clc;
4  clear;
5  close;
6  // Given data
7  memory= 16; // in K
8  memory= memory*1024; // in bits
```

```
9 // Number of words
10 N1= memory;
11 disp(N1,"The number of words is : ")
12 N2= 32; // number of bits per word
13 disp(N2,"The number of bits per word is : ")
14 // Number of memory cell
15 N3= N2*memory;
16 disp(N3,"The number of memory cell is : ")
```

Scilab code Exa 12.6 Total number of memory cells

```
1 // Exa 12.6
2 format('v',9)
3 clc;
4 clear;
5 close;
6 // Given data
7 N1= 16; // address input
8 inputs= 4;
9 outputs= 4;
10 // Total number of memory cells
11 N2= 2^N1*2^inputs;
12 disp(N2," Total number of memory cells is:")
```