Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Analysis 1

Module Code: MATH40002

Date: 04/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	
Q4	
Q5	
Q6	√

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

CID: 61738166 Module Code: MATH 40002 Question 6 Page 2

 $\max(d(r), g(r)) = \frac{f+g+(d-g)}{2}$. Since the sum of integrable dunctions is integrable and the absolute value of an integrable time.
is integrable => max(f, g) is also integrable.

f: [a, 67 -> IR - continuous which has a continuous derivative

on
$$(a,b)$$
. Then
$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

$$f(x) = \frac{1}{\sqrt{x+1}} , x \in [0; n]$$

$$L(d, p) = \sum_{i=0}^{n+1} m_i(x_{i+1} - x_i).$$

$$x_{i+1} - x_{i=1}$$
; $m_{i} = \inf_{x_{i} \neq 1} d(t) = d(x_{i+1}) = \frac{1}{\sqrt{x_{i+1} + 1}}$

$$L(J, p) = \sum_{i=0}^{N-1} dx_{i} \frac{1}{\sqrt{i+2}}$$

$$\frac{1}{\sqrt{i+2}}$$

$$L(I,P) = \sum_{i=0}^{n-1} 4 \cos \left(\frac{1}{1+2}\right)^{i}$$

$$U(d,p) = \sum_{i=0}^{k-1} M_i = \sum_{i=0}^{n-1} \frac{1}{J_{i+1}}$$

$$(iii) \begin{array}{l} u(d,p) = \sum\limits_{i=0}^{N-1} M_i = \sum\limits_{i=0}^{N-1} \frac{1}{J_{i+1}}. \\ we know \ U(l,p)_{-1} = \int_{0}^{N-1} \frac{1}{J_{x+1}} dx \quad \text{and} \quad E \setminus U(l,p)_{-1} \leq \int_{0}^{N-1} \frac{1}{J_{x+1}} dx \\ 0 \quad \left| U(l,p)_{-1} \int_{0}^{N-1} \frac{1}{J_{x+1}} dx \right| \leq 1. \end{array}$$

CID: 01738166 (UATH 40002 Gupstion 6 Page 3 = 1998

But
$$\int_{0}^{10^{6}-1} \frac{1}{\sqrt{x+1}} dx = 2\sqrt{x+1} \int_{0}^{10^{6}-1} = 1998$$

So $|U(1,p) - 1998| = 1$

(c) We know $h(x) := h(x) - g(x)$ is integrable on [0,1] and $h(x) = 0$ by $x \in \mathbb{R}$

Assume $\int_{0}^{1} h(x) dx = 0.0$

So there is a neglition $p = 0$ the interval [0,1] such that

So there is a partition Pot the interval [0,1] such that $|L(d,p)-a| \geq \frac{a}{2} = \sum L(d,p) > \frac{a}{2} > 0$.

But since the radional are dense, L(f,p) <0 as any subinterval of the partition will contribut at most 0 to the sum. #

Similarly it of hlx)dx =0 with U(1,p).

So $\int_0^1 h(x) dx = 0$. So

 $\int_{0}^{1} f(x) dx = \int_{0}^{1} g(x) dx$