Python을 활용한 데이터 분석 강의

Numpy & Pandas

Numpy & Pandas

● Numpy와 Pandas는 수치분석 및 데이터 분석을 위한 쉬운 도구를 제공

train = train	= pd.rea	d_csv('	titanio	c_train.csv')												
train				rain = pd.read_csv('titanic_train.csv')												
rain																
Pas	ssengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked				
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S				
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С				
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s				
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s				
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S				
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q				
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S				
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	s				
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	s				

Numpy

- Numpy는 Numerical Python의 약자로, 수치연산기능을 제공
- Numpy는 자체적인 array를 제공 list와 비슷하지만 보다 다양한 연산 메소드를 가지고 있으며 하나의 array에는 같은 type의 데이터만 담을 수 있다는 점에서 차이

```
import numpy as np
array1 = np.array([1, 2, 3]) # 1차원 array를 만든다.
                            # (3,) 이라고 출력. 요소가 3인 1차원 array를 의미함
print(arrayl.shape)
print(array1)
# 특정 요소에 접근하기 위해서는 list와 같이 인덱스를 사용한다.
print(array1[0], array1[2])
array1[1] = 10
print(array1)
array2 = np.array([[1,2,3],[4,5,6]]) # 2차원 array를 만든다.
print(array2.shape)
                                  # (2, 3) 이라고 출력. (row, column)
print(array2)
print(array2[0, 0], array2[0, 1], array2[1, 0]) # Prints "1 2 4"
(3,)
[1 2 3]
1 3
[ 1 10 3]
(2, 3)
[[1 2 3]
[4 5 6]]
1 2 4
```


Numpy

```
import numpy as np

a = np.zeros((2,3)) # 2F zero로 채워진 2x3 array를 생성
print(a)

b = np.ones((1,2)) # 2F 1로 채워진 1x2 array를 생성
print(b)

c = np.random.random((2,2)) # 랜돔 넘버로 채워진 2x2 array를 생성
print(c)

[[0. 0. 0.]
[0. 0. 0.]
[1. 1.]]
[[0.72852896 0.39863978]
[0.02971612 0.78768585]]
```


Numpy

```
import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)
print(x)
print(x)
print(y)

print(x + y)
print(np.add(x, y))

print(x - y)
print(np.subtract(x, y))

print(x * y)
print(np.multiply(x, y))

print(x / y)
print(np.divide(x, y))

print(np.sqrt(x))
```

```
[[1. 2.]
[3. 4.]]
[[5. 6.]
[7. 8.]]
[[ 6. 8.]
[10. 12.]]
[[ 6. 8.]
[10. 12.]]
[[-4. -4.]
[-4. -4.]
[[-4. -4.]
[-4. -4.]]
[[ 5. 12.]
[21. 32.]]
[[ 5. 12.]
 [21. 32.]]
             0.333333333
[[0.2
 [0.42857143 0.5
[[0.2
             0.333333331
 [0.42857143 0.5
             1.41421356]
[[1.
 [1.73205081 2.
```


Pandas

● Pandas는 numpy를 기반으로 개발된 자료구조

```
import pandas as pd
import numpy as np

Pandas는 read_csv()라는 CSV 파일을 읽어주는 함수를 제공한다.

(참고) Excel 파일을 읽는 함수도 제공한다. ExcelFile(), read_excel()

• df = pd.ExcelFile("dummydata.xlsx")

• df = pd.read_excel(open('your_xls_xlsx_filename','rb'), sheetname='Sheet 1')

data = pd.read_csv("data/weather_year.csv")
```

- 자료구조
 - Series : 객체를 담을 수 있는 1차원 배열
 - DataFrame : 스프레드시트의 표 같은 형식으로 여러 column으로 구성

