Partie 1

Graphes - Partie 2 : exercices sur les différentes implémentations

1.1 Liste

Un exemple simple présente ici un graphe créé à partir d'une liste de voisins : [[1, 2], [0, 2, 3], [0, 1, 3], [1, 2]]

FIGURE 1 – graphe créé à partir de la liste d'adjacence

La première sous-liste correspond aux liens que forme le sommet 0. Ici, c'est donc avec les sommets 1 et 2.

1.1.1 Interface avec des fonctions

1. Rappels : que retourne chacune des expressions logiques :

```
# expression a
j in [1,2]
# expression b
j = 1
j in [2,3]
# expression c
j = 1
L = [[1,2],[3,4]]
j in L[0]
# expression d
L = [[1,2],[3,4]]
j in L[1]
```

2. Ecrire une fonction <code>est_lie</code> qui prend 3 paramètres, L, i et j et qui retourne True si les sommets i et j sont liés. Exemple d'utilisation :

```
1 >>> L = [[1,2],[3,4]]
2 >>> est_lie(L,0,1)
3 True
```

3. Soit la liste L suivante : L = [[1,2],[3,4]] On souhaite ajouter la valeur 5 à la 2e sous-liste de L pour obtenir :

```
print(L)
[[1,2],[3,4,5]]
```

Quelle instruction python faut-il écrire?

4. Ecrire une fonction ajoute_lien qui prend en paramètres L, i et j, et qui ajoute j à la liste d'adjacence L à la sous-liste de rang i.

1.1.2 Interface en POO

La classe suivante permet d'implémenter ce graphe :

```
class GraphLS:
    def __init__(self, lst):
        self.lst = lst

def est_lie(self, i, j):
        return j in self.lst[i]

def ajoute_sommet(self,i,j):
    # a completer
...
```

La méthode de classe est_lie retourne True si les sommets i et j sont liés, c'est à dire, si j est dans la liste au rang i.

La méthode de classe ajoute_sommet sera décrite plus tard.

Ouestions:

- 1. Ecrire les instructions de construction de l'objet graphe à partir de la classe GraphLS. L'objet graphe implémente le graphe du schéma ci-dessus.
- 2. Ecrire l'instruction qui vérifie si les sommets 1 et 2 sont liés.
- 3. La méthode de classe ajoute_sommet prend 2 paramètres, i et j. Elle a pour rôle d'ajouter au sommet i un nouveau lien vers le sommet j. Compléter la méthode ajoute_sommet ci-dessus.
- 4. Ecrire l'instruction qui ajoute le lien 0 <-> 3.

1.2 Matrice d'adjacence

Cette liste L peut aussi être mise sous forme d'une matrice M :

```
M = [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
```

ce qui forme une matrice, en présentant les sous-listes l'une sous l'autre :

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Avec la premiere sous-liste [0, 1, 1, 0] le sommet 0 est lié aux sommets 1 et 2, ce qui est signifié par le 1 aux index 1 et 2.

FIGURE 2 – graphe correspondant à la matrice M

Cette représentation en matrice est particulièrement adaptée aux *graphes pondérés*. On remplace alors le *1* dans la matrice par le poids de l'arête.

Questions:

- 1. A partir de la matrice précédente : Dessiner un tableau avec pour lignes et colonnes les numeros des sommets du graphe, et pour valeurs
 - 0 (les sommets ne sont pas liés)
 - ou 1 (les sommets sont liés).
- 2. Ecrire une fonction qui vérifie si les sommets i et j sont directement liés.
- 3. Ecrire une fonction qui ajoute au sommet i un nouveau lien vers le sommet j. Puis l'instruction qui ajoute le lien 0 <-> 3.

1.3 Graphe pondéré

Les valeurs de la matrice indiquent le poids de chaque arête,lorsqu'elle existe. Ces poids peuvent représenter par exemple la distance en suivant le chemin repéré par l'arête. (cartographie)

$$\begin{pmatrix}
0 & 10 & 10 & 9 \\
10 & 0 & 5 & 10 \\
10 & 5 & 0 & 10 \\
9 & 10 & 10 & 0
\end{pmatrix}$$

- 1. Représenter le graphe pondéré dont la matrice d'adjacence est donnée ci-dessus.
- 2. Représenter le graphe pondéré et orienté pour la matrice suivante :

$$\begin{pmatrix}
0 & 0 & 0 & 9 \\
0 & 0 & 5 & 10 \\
0 & 5 & 0 & 10 \\
9 & 10 & 10 & 0
\end{pmatrix}$$

1.4 Matrice de distance entre sommets

Une matrice peut aussi indiquer la distance entre sommets, en suivant le plus court chemin dans le graphe. (le nombre d'arêtes empruntées).

Soit le reseau social ci-dessous. Supposons que la relation entre sommet est symétrique.

Figure 3 - graphe d'un reseau social

Et utilisons la matrice des distances au sommet pour indiquer le plus cours chemin d'un sommet à l'autre.

	A	В	С	D	E	F
A		2				
В						
C						
D						
E						
F						

FIGURE 4 – matrice des distances entre sommets

Ainsi, une fois la matrice établie, nous pouvons en déduire le **diamètre** de ce graphe (*plus grande longueur entre 2 sommets du graphe*).

Questions:

- 1. Compléter la matrice.
- 2. Puis déterminer le diamètre de ce graphe.
- 3. D'après cette matrice, quels sont les sommets qui sont directement liés entre eux?
- 4. Ecrire une fonction qui établit la liste de toutes les arêtes du graphe à partir de sa matrice M. Cette fonction devra retourner une liste de *tuples* : [(0,2),(1,2),...]. On nommera les sommets avec des entiers. 'A' -> 0, 'B' -> 1, ...

1.5 Graphe avec étiquette

1.5.1 Rappels

Soit le dictionnaire D suivant : D = {'a': ['b', 'c']}

- 1. Quelle instruction donne la liste des clés de D?
- 2. Que retourne l'instruction D['a']?
- 3. Que retourne l'instruction 'b' in D?
- 4. Que retourne l'instruction 'b' in D['a']?
- 5. Comment est modifié le dictionnaire D lorsque l'on execute : D['a'].append('d')?
- 6. Comment est modifié le dictionnaire D lorsque l'on execute : D['b'] = ['a', 'c']?

1.5.2 Implémentation

Pour implémenter le graphe, on utilisera un *dictionnaire* comme structure de données. Les clés étant les étiquettes des sommets, et les valeurs, la liste des sommets adjacents :

Figure 5 – graphe correspondant au dictionnaire D

Questions:

- 1. Représenter la matrice d'adjacence correspondante.
- 2. Ecrire une fonction qui vérifie si les sommets i et j sont liés. i et j sont des lettres parmi les clés et valeurs du graphe.
- 3. Ecrire une fonction qui ajoute au sommet i un nouveau lien vers le sommet j.

1.6 Liste de successeurs

Cette représentation est particulièrement adaptée aux graphes orientés.

1.6.1 Exemple

Figure 6 – graphe orienté

On peut représenter un graphe avec une liste chaînée des successeurs :

sommet => liste de sommets liés suivants :

- $0 \Rightarrow 1, 2$
- 1 => ...
- 2 => ...
- 3 => ...

Le sommet 0 aura alors 2 successeurs, les noeuds 1 et 2.

Question : Compléter la liste de successeurs

1.6.2 Implémenter avec une liste chainée non linéaire

Supposons que le degré maximum dans ce graphe vaut 3. On utilise les classes décrites ci-dessous :

```
class Sommet:
    def __init__(self,val,suiv1=None,suiv2=None,suiv3=None):
        self.val = val
        self.suiv1 = suiv1
        self.suiv2 = suiv2
        self.suiv3 = suiv3

class Graphe:
    def __init__(self):
        self.premier = None

def est_lie(self,j):
    # a completer
```

Questions:

- 1. Ecrire les instructions qui instancient chaque sommet du graphe en exemple ci-dessus. Renseigner les noms des sommets (attribut val), ainsi que chaque successeur (attribut suiv).
- 2. Ecrire l'instruction qui instancie le graphe.
- 3. Ecrire la méthode de classe qui vérifie si le sommet premier est lié au sommet successeur de valeur j.

Partie 2

Parie 2 - COURS : Implémentations d'un graphe

Plusieurs modes de représentation sont possibles pour stocker des graphes : matrices d'adjacence, listes des voisins, des successeurs ou des prédécesseurs.

Rappel : Un graphe est un ensemble de sommets liés entre eux par des arêtes. L'implémentation d'un graphe doit donc contenir l'information des sommets et des liens entre ces sommets.

L'interface doit proposer au minimum les fonctions :

- est_lie
- ajoute_sommet

Une première idée est d'utiliser une liste d'adjacence :

• la liste contient pour chaque sommet i une liste d'adjacence placée au rang i.

...voir activité 2

2.1 Liste et matrice d'adjacence, matrice de distance

Definition : Une matrice est un tableau sans étiquette, où les lignes et colonnes sont numérotées. Au croisement ligne-colonne, on place une information : exemple avec une notation mathematique, puis avec une implé en python

- 1 si les sommets sont liés
- x si les sommets sont liés et si le graphe est pondéré

Dans le cas d'un graphe orienté, la matrice n'est pas symétrique. On peut adopter la convention suivante : si M[i][j] = 1, alors il y a un arc de i vers j.

2.2 Graphe avec étiquette

On utilisera un *dictionnaire* comme structure de données. Les clés étant les étiquettes des sommets, et les valeurs, la liste des sommets adjacents :

Figure 7 – graphe correspondant au dictionnaire D

Question : Représenter la matrice d'adjacence équivalente.

2.3 Liste de successeurs

Cette représentation est particulièrement adaptée aux graphes orientés.

FIGURE 8 – graphe orienté

On peut représenter un graphe avec une liste chaînée des successeurs : sommet => liste de sommets liés suivants :

- $0 \Rightarrow 1, 2$
- 1 => ...
- 2 => ...
- 3 => ...

Le sommet 0 aura alors 2 successeurs, les noeuds 1 et 2.

Question : Compléter la liste de successeurs

Il sera alors necessaire d'établir aussi, pour chaque sommet, une liste de predecesseurs : sommet => liste de sommets liés précédents :

- 0 => None
- 1 => 0
- 2 => ...
- 3 => ...

Question : Compléter la liste de prédécesseurs