學習分析工具實務應用 20241112

指導教授 周克行博士

Educational: Finance PHD

Current Job: Postdoctoral Researcher

Experience:

2023: Al education with Google Bard

2023: Carbon Blockchain for agriculture plan, presentation for president

2021:The 14th崇越 Paper Awards, Invited to meet the President at the

Presidential Palace on 2021/12/23

SSCI paper:

Ke-Hsin Chou, Min-Yuh Day*, and Chien-Liang Chiu, "Do Bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?" *International Review of Economics and Finance*, Volume 88, November 2023, pp. 365-385. [SSCI] [Impact Factor@2024: 7.2, Q1, (26/111 = 23.4%, Business, Finance); (69/380 = 18.1%, Economics)][Taiwan Ministry of Science and Technology Finance: Level A-Journal]

Kao, Yu-Sheng, Min-Yuh Day, and **Ke-Hsin Chou*.** "A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag." *The North American Journal of Economics and Finance* 72 (2024): 102159. [SSCI] [Impact Factor@2022: 3.6, Q2, (40/111 = 36%, Business, Finance); (100/380 = 26.3%, Economics)]

Chiu, Chien-Liang, and **Ke-Hsin Chou***. "The soft commodities multiple bubbles tests: evidence from the New York Futures Markets." **Applied Economics Letters** (2020): 1-6.

TA

科技系大四

簡珮軒

修過的教育大數據學 系級 擔任過TA的課 姓名 email 程課 企管 學習分析工具實務應 112-2學習分析工具實務 21211256asd0810@gmail.c 李俊融 大四 用 應用 om 教育 大數據程式設計 40900101eshirley@gmail.co 黄羿寧 無 大四 教育大數據專題製作 \mathbf{m}

助教(111-2)

peggygirl0202@gmail.com

matplotlib 是 Python 的一個**第三方函式庫**,是相當重要且受歡迎的資料視覺化函式庫,matplotlib 可以根據數據資料,繪製直方圖、元餅圖、折線圖...等各種圖表,也能和其他 Python 的資料處理函式庫 (NumPy、Pandas...等) 互相搭配,進行更複雜的視覺圖表繪製。

matplotlib 支援的圖表類型

安裝 matplotlib 函式庫

!pip install matplotlib

import matplotlib

要使用 matplotlib 必須先 import matplotlib 模組。 透過 matplotlib 繪製圖表時,大部分的情況會使用 pyplot 模組,通常會將其獨立 命名為 plt。

import matplotlib.pyplot as plt

簡單感受一下 matplotlib

- import matplotlib.pyplot as plt
- import numpy as np
- x = np.linspace(0, 10, 100) #產生 0~10 總共 100 連續數字
- y = 4 + 2 * np.sin(2 * x) #使用 NumPy 的廣播方式,產生 sin 數值的陣列 y
- fig, ax = plt.subplots()
- ax.plot(x, y, linewidth=2.0) # 繪製折線圖
- ax.set(xlim=(0, 8), xticks=np.arange(1, 8), # 設定座標軸
- ylim=(0, 8), yticks=np.arange(1, 8))
- plt.show() #顯示圖表

改變圖片顯示的尺寸

import matplotlib.pyplot as plt import matplotlib.image as img import os image = img.imread('aa.jpg') plt.figure(figsize=(10,10)) #改變圖表尺寸 plt.imshow(image) plt.show()

3D 圖表

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(6,6))

ax = plt.subplot(projection='3d') # 設定為 3D 圖表

x = range(5)

y = [1,5,8,4,6]

ax.plot(x,y)

plt.show()

折線圖

import matplotlib.pyplot as plt

```
x = [1,2,3,4,5]
# 畫出顏色紅色、圓形錨點、虛線、粗細 2、資料點大小 6 的線條
#plt.plot(x,color='r', marker='o', linewidth=2, markersize=6)
plt.plot(x)
plt.show()
```

參數說明

参數	說明
X	必填,第一組數據(x軸)。
у	第二組數據 (y軸)。
color	線條或資料點的顏色(除了十六進位色碼,也可填入顏色代碼,例如r、g、b、m、c、y等,參考:color列表)。
marker	資料點樣式,預設無資料點(資料點樣式代碼 為.、,、o、v等,參考: <u>markers 列表</u>)。
linewidth	線條粗細,預設 2。
markersize	資料點大小,預設 6。

用DataFrame

```
import numpy as np
import pandas as pd
dates = pd.date_range("20130101", periods=100)
df = pd.DataFrame(np.random.randn(100, 4), index=dates, columns=list("ABCD"))
df
```

作業練習1

import matplotlib.pyplot as plt

```
x = #請問這裡要怎麼改?
# 畫出顏色紅色、圓形錨點、虛線、粗細 2、資料點大小 6 的線條
plt.plot(x,color='r', marker='o', linewidth=2, markersize=6)
#plt.plot(x)
plt.show()
```

長條圖

```
import matplotlib.pyplot as plt
x = [1,2,3,4,5]
h = [10,20,30,40,50]
color = ['r','b','g','y','m'] # 顏色數據
label = ['a','b','c','d','e'] # 標籤數據
plt.bar(x,h,color=color,tick_label=label,width=0.5) # 加入顏色、標籤
和寬度參數
plt.show()
```

圓餅圖

import matplotlib.pyplot as plt
x = [1,2,3,4,5]
plt.pie(x, radius=1.5, labels=x)
plt.show()

3D 柱狀長條圖

```
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6,6))
ax = plt.subplot(projection='3d')
x = [2,4,6,8,10]
y = 10
z = 1
ax.bar3d(x,y,z,dx=1,dy=1,dz=[1,2,3,4,5])
plt.show()
```


作業練習2

讀把資料改成以下pandas產生的資料,畫出長條圖,圓餅圖,3D柱狀長條圖

import numpy as np
import pandas as pd
dates = pd.date_range("20130101", periods=100)
df = pd.DataFrame(np.random.randn(100, 4), index=dates, columns=list("ABCD"))

可以問ChatGPT 或 Google Gemini

上星期Al prompt 分享

萬用 prompt:

1.你是人類,我是ChatGPT 你即將要求我幫你寫一個 (任務),請問你會如何下命令給我

2. GPT生出的 prompt 在贴回去GPT

皮爾森相關係數(Pearson's correlation coefficient)

$$\rho = \frac{x \cdot x \cdot x}{x \cdot x}$$
 $\rho = \frac{x \cdot x \cdot x}{x \cdot x}$
 $\rho = \frac{x \cdot x \cdot x}{x \cdot x}$
 $\rho = \frac{x \cdot x \cdot x}{x \cdot x}$

共變異數(covariance):
$$cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y) \psi$$

變異數(variance):
$$\operatorname{var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_x)^2 + \mu_x$$

標準差(standard deviation): $std(x) = \sqrt{var(x)}$

它是兩個變量的共變異數與其標準差的乘積之比;因此, 它本質上是共變異數的歸一化度量,因此結果始終具有 介於-1和1之間的值。

假設有兩個變數(xi, yi), i=1,...,n,一般網路看到的相關係數的公式定義如下:

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2 \sum_{i=1}^{n} (y_i - \mu_y)^2}}$$

相關係數圖

import pandas as pd import seaborn as sns

import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
sns.set_style('darkgrid')
matplotlib.rcParams['font.size'] = 14
matplotlib.rcParams['figure.figsize'] = (9, 5)
matplotlib.rcParams['figure.facecolor'] = '#00000000'

Generate a correlation matrix for the selected columns corrMatrix = df.corr()

Plot the correlation matrix using a heatmap plt.figure(figsize=(10,10)) sns.heatmap(corrMatrix, annot=True) plt.show()

ANOVA (Analysis of Variance)變異數分析

ANOVA (Analysis of Variance) 檢定是一種統計方法,用於比較兩組或多組之間的均值,來檢查它們之間是否有顯著的差異。這種方法經常被用於檢測不同組別之間的影響是否顯著。通常,ANOVA被用來解答以下問題:

- 各組的均值是否相同?
- 各組之間的差異是否顯著大於組內變異?

```
import numpy as np
from scipy import stats
#三個班學生的成績
group1 = [85, 86, 88, 75, 78, 94]
group2 = [92, 94, 89, 96, 93, 95, 76, 50]
group3 = [78, 81, 79, 84, 77, 80]
#使用 scipy.stats.f_oneway 進行單因子 ANOVA 檢定
f statistic, p value = stats.f oneway(group1, group2, group3)
#輸出結果
print("F 統計量:", f_statistic)
print("p-value:", p value)
#解釋結果
alpha = 0.05 # 顯著性水平
if p value < alpha:
 print("拒絕原假設:不同組別之間的均值存在顯著差異。")
else:
 print("未能拒絕原假設:不同組別之間的均值沒有顯著差異。")
```

變異數分析會有什麼幫助?

- 為什麼這項分析很有用呢?
- 這是因為當您了解了每個自變量的均值與其他自變量有什麼不同時,您就可以開始研究並知道其中哪個自變量與您的因變量(如登陸頁面的點擊量)有關係,並且了解是什麼因素在驅動這個行為

用處

- ANOVA 檢定包含因變量和自變量。在 ANOVA 中,因變量 (Dependent Variable)是連續數據,通常是我們希望比較的測量 結果,而自變量(Independent Variable)是分類變量,用於將數 據分組(如不同治療方法或教育方式)。ANOVA 的目的是檢查這 些自變量是否對因變量的均值有顯著影響。
- 例如,假設我們有一個情境:我們想研究不同的教學方法對學生 考試成績的影響。這裡"學生考試成績"是因變量,而"教學方法"是自變量。

```
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
#創建數據集
data = {
  'Score': [85, 86, 88, 75, 78, 94, 92, 94, 89, 96, 93, 95, 78, 81,
79, 84, 77, 80],
  'Method': ['A', 'A', 'A', 'A', 'A', # 教學方法 A
        'B', 'B', 'B', 'B', 'B', # 教學方法 B
       'C', 'C', 'C', 'C', 'C', 'C'] # 教學方法 C
#將數據轉換為 DataFrame
df = pd.DataFrame(data)
#使用 statsmodels 中的 ols 方法進行單因子 ANOVA 分析
model = ols('Score ~ C(Method)', data=df).fit()
anova_table = sm.stats.anova_lm(model, typ=2)
#輸出 ANOVA 表
print(anova table)
```



```
sum_sq df F PR(>F)
C(Method) 552.111111 2.0 13.848941 0.000391
Residual 299.000000 15.0 NaN NaN
```

離均差平方和(SS) 自由度(DF)F (檢定)P (顯著)組間SSB (組間變異)DFB=K-1 (組別-1)MSB/MSW查表組內SSW (組內變異)DFW=(N-1)-(K-1)=N-KMSW全體SST (總變異)DFT=N-1 (樣本數-1)

自由度代表在計算某個統計量時可以自由變化的數據點的數量, ex: X1+X2+X3+1=10

一個正式的報告

1. 先把資料的圖畫出來

2. 在使用統計模型說明資料之間的關係

ANOVA

ANOVA - mood.gain

	Sum of Squares	df	Mean Square	F	р	η²
drug	3.45	2	1.73	18.61	0.00009	0.71
Residuals	1.39	15	0.09			