PC 2 - Probability distributions

Exercise 1

(Uniform distribution). Let X be a random variable with uniform distribution on [0,1]. We define $Y = \min(X, 1-X)$ and $Z = \max(X, 1-X)$. Determine the distributions of Y and Z. Compute $\mathbb{E}[YZ]$.

Exercise 2

One says that $X \in (0, +\infty)$ follows the log-normal distribution if $\log(X) \sim \mathcal{N}(0, 1)$. What is the density of X?

Exercise 3

Consider a random variable X having exponential distribution with parameter 1. Let a>0 be a positive real number.

- 1. Compute the cumulative distribution function of $Y = \min(X, a)$. Plot the function.
- 2. What can you say about the existence of a density for the distribution of Y?
- 3. Compute $\mathbb{E}[Y]$. Hint: Use $Y = X \mathbb{1}_{X < a} + a \mathbb{1}_{X > a}$.

Exercise 4

Let V be a random variable with uniform distribution on $[0, \pi/2]$. Define the random variable $W = \sin(V)$.

- 1. Determine the distributions of W.
- 2. How does the distribution of W change when V has uniform distribution on $[0,\pi]$?

Exercise 5

(Cauchy distribution). Let X be a random variable with Cauchy distribution whose density is given by $f(x) = (\pi (1 + x^2))^{-1}$. Determine the distribution of 1/X using a change of variables.

Exercise 6

* Let p > 0 and an integer n such that n > p. Consider random variables Y_n such that nY_n has a geometric distribution $\text{Geo}\left(\frac{p}{n}\right)$ with parameter $\frac{p}{n}$. Show that the characteristic function of Y_n tends to the characteristic function of an exponentially distributed random variable with parameter p.

Exercise 7

Let $\alpha > 1$ be fixed. Consider the random variable X with density given by

$$f(x) = c_{\alpha} x^{-\alpha} \mathbb{1}_{x > 1}$$

1. Determine the constant c_{α} .

2. For which values of p we have X belongs to L^p ?

Exercise 8

Let X and Y be two independent random variables such that X (resp. Y) has geometric distribution with parameter p (resp. q).

- 1. Compute $\mathbb{P}(X > n)$ for any $n \in \mathbb{N}$.
- 2. What is the distribution of the random variable $Z = \min(X, Y)$?

Exercise 9

Assume that $X \sim \mathcal{N}(\mu, \sigma^2)$.

- 1. Show that $Y=(X-\mu)/\sigma$ has standard normal distribution $\mathcal{N}(0,1)$.
- 2. Compute $\mathbb{E}[|Y|]$ and $\mathbb{E}\left[Y^{2019}\right]$.