Statistics-III

Trishan Mondal

Assignment-4

§ Problem 1

If C is a generalized inverse of X'X prove the following.

- (a) C' is also a generalized inverse of X'X.
- (b) A symmetric generalized inverse of X'X exists.
- (c) CX' is a generalized inverse of X.
- (d) XCX' is unique.
- (e) XCX' is symmetric and idempotent.
- (f) Column spaces of XCX' and X are the same.

Solution.

(a) C is generalized inverse of X'X. So, $(X'X) \subset (X'X) = (X'X)$. Now take transpose of the both side in above equation. We will endup getting,

$$\left(X^{\prime}X\right) C^{\prime}\left(X^{\prime}X\right) =\left(X^{\prime}X\right)$$

So, C' is also a generalized inverse of (X'X). (X'X)

(b) X'X is symmetric matrix. Let, $\operatorname{Rank}(X'X) = p$. And X'X has order n. Let, $X'X = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$; B_{11} has $\operatorname{Rank} p$ and it's also $p \times p$ matrix. The generalized inverse of $(X'X)^-$;

$$\left(X'X\right)^- = \left(\begin{array}{cc} B_{11}^{-1} & 0 \\ 0 & 0 \end{array}\right).$$

Clearly it's Symmetric.

(c) At first of all notice that, $P_{\Omega} = XCX'$ is projection matrix on to $\mathcal{M}_{C}(X)$. Now notice that,

$$XCX'X = X$$

1

As, XCX' maps each column of X to itself. So, CX' is generalized inverse of X.

- (d) Let, $\Omega = \mathcal{M}_C(X)$, then $P\Omega$. defined by, $P_{\Omega} = XCX'$ is projection matrix of \mathbb{R}^n onto Ω . so, P_{Ω} is unique.
- (e) XCX' is projection matrix So it must be symmetric and idempotent.
- (f) XCX' is projection onto $\Omega = \mathcal{M}_C(X)$ so, $\mathcal{M}_C(XCX') = \mathcal{M}_C(X)$.

§ Problem 2

Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & -3 \\ 1 & 2 & 0 \end{pmatrix}$$
.

- (a) Find a generalized inverse $(A'A)^{-}$ of A'A.
- (b) Find a generalized inverse $(AA')^{-}$ of AA'.

Solution.

(a) Given
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & -3 \\ 1 & 2 & 0 \end{pmatrix}$$
 Now, $A'A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 2 & -3 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & -3 \\ 1 & 2 & 0 \end{pmatrix}$

$$= \begin{pmatrix} 7 & 6 & 8 \\ 6 & 10 & 2 \\ 8 & 2 & 14 \end{pmatrix}$$

Now, Rank (A'A) = 2. So, Let's take,

$$B_{11} = \left(\begin{array}{cc} 7 & 6 \\ 6 & 10 \end{array}\right)$$

The inverse of B_{11} will be,

$$B_{11}^{-1} = \frac{1}{34} \begin{pmatrix} 10 & -6 \\ 6 & 7 \end{pmatrix}.$$

$$So, \quad (A'A)^{-} = \begin{pmatrix} \frac{10}{34} & -\frac{6}{34} & 0 \\ \frac{6}{34} & \frac{7}{34} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(b) In this case,

$$AA' = \begin{pmatrix} 3 & 6 & -3 & 3 \\ 6 & 12 & -6 & 6 \\ -3 & -6 & 11 & 1 \\ 3 & 6 & 1 & 5 \end{pmatrix}.$$

For Real matrix we know, Rank (A'A) = Rank (AA'). So, Rank (AA') = 2. In this case $B_{11} = \begin{pmatrix} 3 & 6 \\ 6 & 12 \end{pmatrix}$ which has determinant 0. So, take, $B_{22} = \begin{pmatrix} 11 & 1 \\ 1 & 5 \end{pmatrix}$ so,

§ Problem 3

(a) For all matrices $A_{m\times n}$, is it true that if B is a g-inverse of A, then A is a g-inverse of B?

(b) Let $A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, where B is $r_1 \times s_1$ and C is $r_2 \times s_2$. Let B^- and C^- be any g-inverses of

B and C respectively. Show then that $G = \begin{pmatrix} B^- & 0 \\ 0 & C^- \end{pmatrix}$ is a generalized inverse of A. Must all g-inverses of A have the form G?

(c) Find a generalized inverse of $A = \begin{pmatrix} \mathbf{1}_3 \mathbf{1}_3' & 0 \\ 0 & 2\mathbf{1}_2 \mathbf{1}_2' \end{pmatrix}$, where $\mathbf{1}_k$ is the k-vector $(1, 1, \dots, 1)'$.

Solution.

(a) Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. In this case,

$$ABA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = A.$$

So, B is generalized inverse of A. But,

$$BAB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \neq B$$

So, this is example where B is g-inverse of A but rot of B.A is not g-inverse of B.

(b) Notice that,

$$AGA = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} B^{-} & 0 \\ 0 & C^{-} \end{pmatrix} \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$$
$$= \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} B^{-}B & 0 \\ 0 & C^{-}C \end{pmatrix}$$
$$= \begin{pmatrix} BB^{-}B & C \\ 0 & CC^{-}C \end{pmatrix}$$
$$= \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$$
$$= A.$$

So, G is generalized inverse of A. Now consider, $A = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$; $G = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$ is generalized inverse of A. So, It's not nessectry to A have all g-inverse in the given form.

(c)

$$A = \left(\begin{array}{cc} 1_3 1_3' & 0\\ 0 & 21_1 1_2' \end{array}\right)$$

Let, $B = 1_3 1_3'$ and $C = 21_2 1_2'$. Here,

$$B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Notice that, B has rank 1 . clearly,

$$B^{-} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

is g-inverse of B. Now, look at $C = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$. It's not hard to see that Rank(C) = 1. So, we can write C^- , g-inverse of C which can be express as,

$$C^{-} = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 0 \end{array}\right)$$

So, By the previous problem we Can say. A^- is g-inverse of A, where A^- is as following,

4