Lessons for the Masses from the Trenches of Co-dfns

Aaron W. Hsu, Dyalog 2019 Elsinore, DK

Co-dfns, why care?

Impossible

63MB

Software Design

T-Shirt

```
AABEFGLM NOPVZ
A O 1 2 3 4 5 6 7 8 9 10 11
tt \leftarrow \{ \Box \leftarrow 'C' \diamond ((d t k n) exp sym) \leftarrow \omega \diamond I \leftarrow \{ (\subset \omega) \Box \alpha \} 
  r \leftarrow I@\{t[\omega] \neq 3\} \stackrel{\sim}{*} \equiv \stackrel{\sim}{p} \rightarrow 2\{p[\omega] \leftarrow \alpha[\alpha_{\underline{\iota}}\omega]\} \neq r \circ c \equiv d \rightarrow p \leftarrow \iota \neq d
                                                                                                                                                                           A PV
  p, \leftarrow n[i] \leftarrow (\not\equiv p) + \iota \not\equiv i \leftarrow \underline{\iota}(t=3) \land p \not= \iota \not\equiv p \diamond t k n r, \leftarrow 3 1 0(r[i]) \rho \stackrel{\sim}{\sim} \stackrel{}{=} i
                                                                                                                                                                           A LF
  p r I<sup>~</sup>←⊂n[i]@i⊢ι≢p ◊ t k(¬@i~)←10 1
  i \leftarrow (\underline{\iota}(\neg t \in 3 + ) \land t[p] = 3), \{\omega \neq \sim 2 \mid \iota \neq \omega\} \underline{\iota}t[p] = 4 \diamond p t k n r \neq \sim \leftarrow 2@i \vdash 1p \sim \neq p
                                                                                                                                                                           A WX
  pri I \sim \leftarrow c_j \leftarrow (+ + m) - 1 \diamond n \leftarrow j \quad I@(0 \leq \vdash) n \diamond p[i] \leftarrow j \leftarrow i - 1
  k[j] \leftarrow -(k[r[j]] = 0) \lor 0@({ \Rightarrow \phi\omega} = p[j]) \vdash t[j] = 1 \Leftrightarrow t[j] \leftarrow 2
  p[i] \leftarrow p[x \leftarrow 1 + i \leftarrow \{\omega \neq \sim 2 \mid i \neq \omega\} \underline{i} t[p] = 4] \diamond t[i,x] \leftarrow t[x,i] \diamond k[i,x] \leftarrow k[x,i]
                                                                                                                                                                           A LG
  n[x] \leftarrow n[i] \diamond p \leftarrow ((x,i)@(i,x) \vdash i \neq p)[p]
  n[p/~(t[p]=2) \land k[p]=3]+\leftarrow 1
                                                                                                                                                                           A CI
  p[i] \leftarrow p[x \leftarrow p \ I@\{\sim t[p[\omega]] \in 3 \ 4\} \stackrel{\checkmark}{=} i \leftarrow \underline{\iota} t \in 4, (\iota 3), 8 + \iota 3] \diamond j \leftarrow (\phi i)[\Delta \phi x]
                                                                                                                                                                           A LX
  p t k n r{\alpha[\omega]@i\rightarrowa}\leftarrowcj \diamond p\leftarrow(i@j\rightarrowı\neqp)[p]
  A SL
  d \leftarrow (\neq p) \uparrow d \diamond d[i \leftarrow t = 3] \leftarrow 0 \diamond \leftarrow \{z \rightarrow d[i] + \leftarrow \omega \neq z \leftarrow r[\omega]\} \stackrel{*}{=} i \diamond f \leftarrow d[0] \geqslant e], 1
                                                                                                                                                                           A FR
  xn \leftarrow n \neq \sim (t=1) \land k[r]=0
                                                                                                                                                                            A XN
  v \leftarrow i(t=10) \land n < ^-4 \Leftrightarrow x \leftarrow n[y \leftarrow v,b] \Leftrightarrow n[b] \leftarrow s[eirn] \Leftrightarrow i \leftarrow (\neq x) \rho c \leftarrow \neq e
                                                                                                                                                                           A AV
  f s \leftarrow (f s I = i) \rightarrow @y = 1 \rho \neq r \diamond p t k n f s r d xn sym}
```

4,695,803++ 4,384,445 --

6,000

400+

Good enough is the enemy of the future.

Simplicity is not optional, nor complexity required.

Speed is not a luxury.

Manage your memory.

Pointers are the refined sugar of programming.

Prefer parallelism, serialize only at great need.

Value the human, command the machine.

Embrace suffering in ascetical programming.

Competency trumps safety.

Beauty and Truth are intimately connected.

Thank you.