1 Assumption and Theory

Symbol	Description	Value
G	Universal gravitational constant.	$6.67259 \times 10^{-11} \ m^3 kg^{-1}s^{-2}$
R_E	The distance from the sun to the earth.	$1.496\times10^{11}~\text{m}$
R_M	The distance from the sun to the Mars.	$2.2794 \times 10^{11} \; m$
M_S	The masse of the sun.	$1.9891 \times 10^{30} \text{ kg}$
M_E	The masse of the earth.	$5.965 \times 10^{24} \text{ kg}$
M_{M}	The masse of the Mars.	$6.4219 \times 10^{23} \text{ kg}$
m	Total mass (sail plus payload).	2000 kg
T_E	The period of revolution of earth.	$365 \text{days} \ (\simeq 3.1536 \times 10^7 \text{ s})$
T_{M}	The period of revolution of Mars.	687days ($\simeq 5.93568 \times 10^7 \text{ s}$)
ω_E	The angular velocity of revolution of earth.	$1.9924\times10^{-7}~rad/s$
ω_M	The angular velocity of revolution of Mars.	$1.0585\cdot 10^{-7}~rad/s$

Table 1: List of Constants