Notebook 1: Aide-mémoire

- 1. **État** d'un qubit
 - $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ avec $|\alpha|^2 + |\beta|^2 = 1$
 - Représenté par un vecteur dans un espace vectoriel complexe

- 2. Notation de **Dirac**
 - o Un **ket** $|\psi\rangle$ est un vecteur colonne et le **bra** $\langle\psi|$ associé est le vecteur ligne obtenu en prenant le conjugué complexe transposé du ket
- 3. Sphère de Bloch
 - **Représentation visuelle d'un qubit** comme un vecteur sur la sphère avec θ et ϕ comme coordonnées de l'état: $|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$
- 4. Les **portes** quantiques sont des **matrices unitaires** et agissent sur les qubits comme des **rotations** sur la sphère de Bloch
 - Un **circuit quantique** est une séquence de transformations unitaires (portes) appliquées à un état initial $|\psi_{\text{final}}\> > = U_n \cdots U_2 U_1 \, |\psi_{\text{initial}}\> >$
- 5. La **mesure** donne des **résultats probabilistes** basés sur l'état final

$$P(|0\rangle) = |\alpha|^2 = \alpha^* \alpha \text{ et } P(|1\rangle) = |\beta|^2 = \beta^* \beta$$

Un circuit quantique est composé de portes

Gate	Circuit Element	Matrix Representation	Action on Basis States
Hadamard Gate H	—[H]—	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$
Pauli-X Gate X	— <u>X</u> —	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$X 0\rangle = 1\rangle$ $X 1\rangle = 0\rangle$
Pauli-Y Gate Y	- <u>Y</u> -	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$
Pauli-Z Gate Z	- <u>Z</u> -	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$Z 0\rangle = 0\rangle$ $Z 1\rangle = - 1\rangle$
CNOT Gate	<u></u>	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$CNOT 00\rangle = 00\rangle$ $CNOT 01\rangle = 01\rangle$ $CNOT 10\rangle = 11\rangle$ $CNOT 11\rangle = 10\rangle$

Un circuit quantique doit retourner une mesure

(qml.state, qml.expval, qml.probs, qml.counts)

Circuit et 'device' sont liés avec un 'Qnode'

