

Einphasentransformator

4. Januar

Emily Antosch Florian Tietjen Karl Döring

In halts verzeichn is

A	bildungsverzeichnis		2
Ta	pellenverzeichnis		2
1	Einführung		3
2	Messung der Wicklungswiderstände beider Seiten		4
3	Leerlaufversuch am Transformator 3.1 Messung I_{10} und P_{10}		4 5 6 7
4	Kurzschlussversuch 4.1 Messung der Kurzschlussspannung und der Kurzschlussleistung		9 9
5	Belastungsversuch 5.1 Messung der Spannung, des Stroms und der Leistung mit Wirklast		0.0
6	Auswertung 6.1 Bestimmung der Ersatzimpendanzen R_{Fe} und X_{1h} 6.2 Bestimmung der Ersatzimpedanzen R_k und X_k 6.3 Ermittlung des Wirkungsgrads für den Nennpunkt	1	
7	Konklusion	1	3
A	obildungsverzeichnis		
${f T}$	Ersatzschaltbild eines Transformators Aufbau des Leerlaufversuchs Die beiden Funktionen $I_{10} = f(U_{10})$ und $P_{10} = f(U_{10}^2)$ Der Stromverlauf am Transformator bei voller und halber Nennspannung Einschaltverhalten am Transformator bei positiver Halbwelle, $\alpha = 0^{\circ}$ Zündwin und 50 Perioden Einschaltverhalten am Transformator bei positiver Halbwelle, $\alpha \in \{45^{\circ}, 90^{\circ}\}$ und Perioden Beispielhafte Bilder vom Oszilloskop Aufbau des Belastungsversuchs Die Spannung $U_2 = f(I_2)$ als Funktion des Stromes		
	Strom und Leistung in Abhängigkeit von der Spannung U_{10}		4 9 0

1 Einführung

Dieser Laborbericht zum dritten Praktikum in Grundlagen der Energietechnik befasst sich mit den Eigenschaften von Transformatoren im Kontext der Energietechnik. Dabei wird ein Einphasentransformator untersucht und die Parameter des Ersatzschaltbildes ermittelt.

Im Allgemeinen nutzt man Transformatoren zur Änderung des Spannungspegels von Wechselspannungen. Die Änderung der Spannung von der Primärseite zur Sekundärseite ist dabei direkt proportional zum Übersetzungsverhältnis. Dieses wird durch die Menge an Wicklungen um einen gemeinsamen Eisenkern bestimmt. Dieser führt zu einer Verbesserung der Induktion, was zu einem besseren Wirkungsfaktor führt. Über die Eigenschaft von elektrischen Strömen in Leitern Magnetfelder zu erzeugen wird von der Primärseite eine Spannung in der Sekundärseite induziert, welche dem vorher genannten Übersetzungsverhältnis entspricht.

Um bestimmte physikalische Prozesse, die zu Verlusten bei der Transformation der Spannung entstehen, besser im elektrotechnischen Kontext beschreiben zu können, wird ein allgemeines Ersatzschaltbild verwendet. Dabei beziehen sich die verschiedenen Größen auf die Primärseite. Alle Bauteile mit einer 1 im Index sind auf der Primärseite, alle Bauteile mit einer 2 sind hingegen auf der Sekundärseite.

Abbildung 1: Ersatzschaltbild eines Transformators

Die Messungen an unserem Transformator werden maßgeblich von seinen Kenndaten beeinflusst, die vom Typenschild im Labor abgelesen werden. Auf der Primärseite sind $U_N = 380V$ und $I_N = 9, 5A$ und auf der Sekundärseite $U_N' = 220V$ und $I_N' = 16A$ Nennbetrieb. Mit diesen Angaben kann man nun durch bestimmte Messungen die Parameter des ESB Stück für Stück bestimmen. Zu bemerken ist, dass dieses Gerät ziemlich alt ist, weshalb die Kenndaten nicht mehr den heutigen Netzbedingungen genügt.

2 Messung der Wicklungswiderstände beider Seiten

Zunächst werden die Wicklungswiderstände beider Seiten gemessen, indem ein Ohmmeter an die jeweiligen Klemmen des Transformators angeschloßen wird. Die Werte ergeben sich zu:

$$R_1 = 0,55\Omega$$
 $R_2 = 0,3\Omega$

3 Leerlaufversuch am Transformator

Beim Leerlaufversuch am Transformator werden verschiedene Messungen vorgenommen, indem auf der Sekundärseite des Transformators keine Last zugeschaltetet wird, sodass die Klemmen offen sind. Es wird lediglich ein Voltmeter zur Spannungsmessung angelegt.

Abbildung 2: Aufbau des Leerlaufversuchs

3.1 Messung I_{10} und P_{10}

U_{10}	I_{10}	P_{10}
22V	95,4mA	980mW
44V	145,6mA	3,56W
66V	193mA	7,03A
88V	249mA	11,36W
110V	323mA	16,86W
132V	418mA	22,8W
154V	559,8mA	30,15W
176V	797mA	39,5W
198V	1,12A	52,02W
220V	1,61A	71,2W
242V	2,24A	99,2W

Tabelle 1: Strom und Leistung in Abhängigkeit von der Spannung U_{10}

In der Tabelle sind die Messdaten der Messreihe zu sehen. Ein Anstieg der Spannung ist direkt mit einem Anstieg des Stroms und damit auch der Leistung verbunden.

Im Anschluss stellen werden die beiden Werte als Funktion der Spannung U_{10} dar:

Abbildung 3: Die beiden Funktionen $I_{10} = f(U_{10})$ und $P_{10} = f(U_{10}^2)$

Es ist erkenntlich, dass der Strom mit ansteigender Spannung ebenfalls stärker ansteigt. Dies folgt aus der Eigenschaft des Eisenkerns bei hohen Spannungen in die Sättigung zu gehen. Dieser Effekt führt zu besonders hohen Strömen auf der Einspeiseseite (3.3). Die Leistung als Funktion der quadrierten Spannung ist ziemlich linear, was der Gleichung $P = \frac{U^2}{R}$ entspricht.

3.2 Bestimmung des Spannungsverhätnisses

Im Nennpunkt für $U_{1N}=220V$ werden beide Seiten des Transformators gemessen. Die Primärseite weißt dabei eine Spannung von $U_2=359V$ auf, wodurch man mit

$$\ddot{\mathbf{u}} = \frac{U_2}{U_{1N}} = \frac{359V}{220V} = 1.6318$$

einen Spannungsübertragungsverhältnis berechnen kann. Die Differenz zur theoretischen Übertragung

$$\ddot{\mathbf{u}} = \frac{U_{2N}}{U_{1N}} = \frac{380V}{220V} = 1.727$$

liegt bei $\Delta\ddot{\mathrm{u}}=1.727-1.6318=0.0952$, was sich über die Herstellungsdifferenzen der Transformatoren erklären lässt. Gleichzeitig ist zu bemerken, dass der im Labor verwendete Transformator schon relativ alt ist, wodurch möglicherweise bereits Schäden an der Wicklungen entstanden sein könnten.

3.3 Stromverlauf im Nennpunkt

Im nächsten Schritt wird der Stromverlauf bei Nennspannung und bei halber Nennspannung mithilfe einer Stromzange am Oszilloskop betrachtet:

Abbildung 4: Der Stromverlauf am Transformator bei voller und halber Nennspannung

Es fällt ziemlich deutlich auf, dass bei dem Anlegen der vollen Nennspannung eine vollständige Hystereschleife im Eisenkern des Transformators passiert und der Kern schließlich in die Sättigung geht. Bei halber Nennspannung ist der Effekt auch vorhanden jedoch weitaus weniger deutlich als bei voller Nennspannung. Anhand dieses Beispiels lässt sich die Eigenschaft des Transformators, die sich aus dem Aufbau und Wirkungsweise des Eisenkerns ergibt, gut ableiten. Je nach Umpolung der Magnetfeldkennlinien entsteht eine mehr oder weniger deutliche Hystereschleife im Verlauf des Stroms auf der anderen Seite.

3.4 Einschaltmoment der Primärseite

Mithilfe eines Schaltwinkelstellers betrachtet man nun den Einschaltvorgang auf der Primärseite des Transformators. Dabei können wir unseren Schaltwinkelsteller auf einen bestimmten Winkel, eine Dauer in Perioden und die positive oder negative Halbwelle einstellen. Bei einer positiven Halbwelle, welche für diese Oszillogramme gewählt wurde, schlägt der Transformator bei voller Umpolung der Magnetfeldkennlinien für die eingestellten Perioden um. Die folgenden drei Bilder sind jeweils für 0° , 45° , 90° und 50 Perioden.

Abbildung 5: Einschaltverhalten am Transformator bei positiver Halbwelle, $\alpha=0^\circ$ Zündwinkel und 50 Perioden

Bei einem Einschaltwinkel von 0° entstehen augenscheinlich die höchsten Einschaltströme. Dies lässt sich dadurch erläutern, dass der Kern nach dem Ausschalten vormagnetisiert ist. Beim Einschalten des Transformators zur Zeit der positiven Halbwelle und bei einem Winkel von 0° wird der Eisenkern zum schlechtesten Zeitpunkt ummagnetisiert, welches die höchste Energie bzw. die höchsten Ströme verursacht. Diesen Effekt nennt man auch Rush-Effekt.

Abbildung 6: Einschaltverhalten am Transformator bei positiver Halbwelle, $\alpha \in \{45^{\circ}, 90^{\circ}\}$ und 50 Perioden

Bei einem Erhöhen des Winkels verringert sich der Einschaltstrom deutlich. Da durch ein späteres Einschalten in der positiven Halbwelle ein kleiner Effektivwert der Spannung verwendet wird, läuft der Transformator deutlich langsamer und leichter an. Der Rush-Effekt sorgt, ohne Einschaltwinkelsteller, für extrem hohe Einschaltströme die das Netz belasten können. Typischerweise wird

daher ein solcher Winkelsteller auf einen Winkel von z.B. 45° gestellt. Diese Vorkehrung sorgt für geringere Einschaltströme und einen sanften Anlauf, der keine Belastung für das Netz darstellt.

4 Kurzschlussversuch

Beim Kurzschlussversuch wird nun von der Primärseite vom Stelltransformator eingespeißt und die Sekundärseite kurzgeschlossen. Dabei wird sowohl $U_k = f(I_k)$ und $P_k = f(I_k)$ aufgezeichnet.

4.1 Messung der Kurzschlussspannung und der Kurzschlussleistung

Die Messreihe ergibt folgende Werte:

T	T T	D
I_k	U_k	P_k
11,4A	15,78V	145W
10,4A	14,5V	122,7W
9,4A	13, 1V	98,5W
8,4A	11,76V	78,9W
7,4A	10,38V	61,52W
6,4A	8,97V	45,9W
5,4A	7,58V	37,76W
4,4A	6,17V	21,73W
3,4A	4,76V	12,936W
2,4A	3,4V	7W
1,4A	1,9V	2,02W
0,4A	0,56V	0,178W

Tabelle 2: Messreihe Kurzschlussversuch

Im Anschluss wird nun die Spannung $U_k = f(I_k)$ als Funktion des Stromes und die Leistung $P_k = f(I_k^2)$ als Funktion des quadrierten Stromes aufgetragen:

(a) Oszilloskopbild zur Messung 3.1 für den Winkel 24, 2° kel 96, 2° kel 96, 2°

Abbildung 7: Beispielhafte Bilder vom Oszilloskop

Beide Funktionen haben ziemlich deutlich einen linearen Zusammenhang, wobei die Kurzschlussspannung linear mit dem Kurzschlussstrom steigt, während die Kurzschlussleistung linear mit dem Quadrat des Kurzschlusstroms wächst. Dies entspricht also einem quadratischen Zusammenhang mit dem einfachen Kurzschlussstrom. Dies folgt aus den bekannten Formeln

$$U_k = Z \cdot I_k$$
 und $P_k = I_k^2 \cdot R$

4.2 Bestimmung des Stromübersetzungverhältnis

Das Stromübersetzungverhältnis Ibe
i $I_k \approx I_n$ lautet dann

$$I = \frac{I_k}{I'} = \frac{9,4A}{15A} = 0.6266$$

5 Belastungsversuch

Beim Belastungsversuch wird auf der Sekundärseite des Transformators ein Potentiometer mit hoher Leistungsbelastbarkeit zugeschaltet und dann die Spannung $U_2 = f(I_2)$ als Funktion des Stromes gemessen. Die Bedingungen sind $U_1 = U_{1n} = konst.$ und $I_2 \approx 1, 2 \cdot I_n$.

Abbildung 8: Aufbau des Belastungsversuchs

5.1 Messung der Spannung, des Stroms und der Leistung mit Wirklast

In der folgenden Tabelle sind die Daten der Messung des Transformators beim Zuschalten einer Wirklast aufgezeigt. Es ist ein deutlicher Anstieg des Stroms und Leistung bei kleinen Wirklasten im Vergleich zu verhältnismäßig großen Wirklasten zu vermerken. Um die Strombelastbarkeit des Stromkreises nicht zu überladen, rechnen wir:

$$R_{min} = \frac{U_N}{I_N \cdot 1, 2} = \frac{220V}{19, 2A} = 11,45\Omega$$

R_2	I_2	U_2	P_N
90Ω	230V	2,55A	688, 2W
78Ω	232V	2,9A	780W
66Ω	231, 2V	3,4A	899W
54Ω	230V	4,2A	1,08kW
42Ω	230V	5,4A	1,33kW
36Ω	230V	6,3A	1,56kW
30Ω	230V	7,5A	1,818kW
24Ω	227, 4V	9,4A	2,289kW
18Ω	226,6V	12,4A	3,025kW
12Ω	224, 1V	18,6A	4,488kW

Tabelle 3: Messreihe des Belastungsversuch

Wie in den Aufgaben davor wird die Spannung $U_2 = f(I_2)$ als Funktion des Stroms gezeichnet:

Abbildung 9: Die Spannung $U_2 = f(I_2)$ als Funktion des Stromes

Durch das Nachregeln des Stelltransformators sind einige Sprünge und Ungleichheiten in der Linearität der Abbildung entstanden. Trotzdessen lässt sich gut ablesen, dass der Strom zunimmt, wenn der Lastwiderstand R und die Spannung U_2 sinken. Es besteht ein beinahe linearer Zusammenhang zwischen Strom und Spannung aus der Formel $I = \frac{U}{R}$.

6 Auswertung

Im Folgenden werden die Ergebnisse der Messungen dahingehend ausgewertet, das Modell zur Beschreibung eines Transformators, das ESB des Einphasentransformators, mit Parametern zu befüllen.

6.1 Bestimmung der Ersatzimpendanzen R_{Fe} und X_{1h}

Aus dem Leerlaufversuch können nun die Ersatzimpendanzen R_{Fe} und X_{1h} bestimmt werden. Zunächst wird der Eisenwirkwiderstand R_{Fe} bestimmt. Dieser wird allein von der Wirkleistung erzeugt, daher ergibt sich im Nennpunkt:

$$R_{Fe} = \frac{U_{10}^2}{P_{10}} = \frac{(220V)^2}{71,2W} = 679.77\Omega$$

Um nun die die magnetische Hauptreaktanz X_{1h} zu berechnen, betracheten wir das ESB und rechnen dann:

$$X_{1h} = \frac{U_{10}}{I_{\mu}} = \frac{U_{10}}{\sqrt{I_{10}^2 - I_{Fe}^2}} = \frac{U_{10}}{\sqrt{I_{10}^2 - \left(\frac{U_{1N}}{R_{Fe}}\right)^2}} = \frac{220V}{\sqrt{1.61A^2 - 0.323A^2}} = \frac{220V}{1.5771A} = 139,5\Omega$$

6.2 Bestimmung der Ersatzimpedanzen R_k und X_k

Aus dem Kurzschlussversuch können nun im Anschluss die beiden Impendanzen R_k und X_k bestimmt werden. Zunächst wird der Kurzschlusswiderstand R_k im Nennbetrieb bestimmt über:

$$R_k = \frac{P_k}{I_k^2} = \frac{98,5W}{(9,4A)^2} = 1,11\Omega$$

Als nächstes kann nun auch die Kurzschlussreaktanz über

$$X_k = \sqrt{Z_k^2 - R_k^2} = \sqrt{\left(\frac{U_k}{I_k}\right)^2 - R_k^2} = \sqrt{\left(\frac{13.1V}{9.4A}\right)^2 - (1,11\Omega)^2} = 0.8426\Omega$$

berechnet werden.

Um nun R_k mit dem in Messreihe 2 ermittelten Wicklungswiderständen zu vergleichen, wird R_2 auf die Primärseite transformiert durch:

$$R_2' = R_2 \cdot \ddot{\mathbf{u}}^2 = 0.3\Omega \cdot 1,6318^2 = 0,79\Omega$$

und dann:

$$R_k = R_1 + R'_2 = 0,55 + 0,7988 = 1,3488$$

Die Abweichung des gemessenen R_k und des aus der Wicklungswiderstandsmessung ermittelten R_k beträgt ca. 23%, was ziemlich beachtlich ist. Diese Abweichung lässt sich größtenteils auf Messungenauigkeiten und der Ungenauigkeit des Ohmmeters bei kleinen Messbereichen zurückführen.

6.3 Ermittlung des Wirkungsgrads für den Nennpunkt

Zuletzt wird der Wirkungsgrad mit verschiedenen Methoden bestimmt. Dabei wird sowohl der Belastungsversuch als auch die Ergebnisse der verschiedenen Versuche verwendet, um ein Ergebnis zu berechnen. Zunächst wird der Wirkungsgrad über direkte Messung berechnet:

$$\eta_{mess} = \frac{P_{ab}}{P_{zu}} = \frac{U_2 \cdot I_2}{P_1} = \frac{224, 1V \cdot 18.6A}{4,488kW} = 0,9286 \implies 92,68\%$$

Zum Vergleich wird nun der Wirkungsgrad über die Ergebnisse der anderen Versuche ermittelt:

$$\eta_{rech} = \frac{P_{ab}}{P_{zu}} = \frac{P_1 - P_{10} - P_k}{P_1} = \frac{4,488kW - 98,5W - 71,2W}{4,488kW} = 0,9621 \implies 96,21\%$$

Es ist eine Abweichung von ca. $\Delta \eta = \eta_{rech} - \eta_{mess} = 0,9621 - 0,9286 = 0.335$, also 3,35% zu erkennen. Dies lässt sich anhand von Messungenauigkeiten und auch Ungenauigkeiten in den Messgeräten erklären, die über die verschiedenen Versuche zum Einsatz kamen. Im Anschluss wird auch der Wirkungsgrad bei einer Temperatur von 75°C bestimmt.

Mithilfe der vorher bestimmten Werte $R_{k,20^{\circ}C} = 1,11\Omega$ und dem Temperaturkoeffizienten von Kuper $\alpha_{Cu} = 3,93 \cdot 10^{-3} K^{-1}$ kann nun der Widerstandswert bei 75°C bestimmt werden:

$$R_{k,75^{\circ}C} = R_{k,20^{\circ}C} \cdot (1 + \alpha_{Cu}\Delta\theta) = 1,11\Omega \cdot (1 + 3,93 \cdot 10^{-3}K^{-1} \cdot 55K) = 1,3499\Omega$$

Nun wird noch der Leistungsverlust für diese Erhöhung der Last berechnet:

$$\Delta P_k = I_k^2 \cdot (R_{k,75^{\circ}C} - R_{k,20^{\circ}C}) = 9.4^2 A^2 \cdot 0,2399\Omega = 21,197W$$

Damit kann nun der angepasste Wirkungsgrad berechnet werden:

$$\eta = \frac{P_N - P_{10} - P_k - \Delta P_k}{P_N} = \frac{4488W - 71, 2W - 98, 5W - 21, 197W}{4488W} = 0,957 \implies 95,7\%$$

Der Wirkungsgrad ist also, wie erwartet, geringer als der theoretische Wirkungsgrad ohne Berücksichtigung der Temperatur, da dadurch noch mehr Widerstand in den Spulen beim Übertragen der Energie entsteht.

7 Konklusion

Wir haben in diesem Praktikum sehr viele Eigenschaften des Einphasentransformators verinnerlichen können. Auch das Berechnen der wichtigen Eckdaten des Ersatzschaltbildes des Transformators konnte geübt werden. Das strukturierte Messen von Transformatoren wurde durchgeführt, weshalb man nun die Eigenarten kennengelernt hat. Auch das Nutzen von verschiedenen Analysemöglickeiten wie zum Beispiel das graphische Darstellen von Messdaten stellte sich als sehr sinnvoll heraus. Besonders interessant war das Verwenden des Stellwinkelstellers zur genauen Untersuchung des Einschaltverhaltens des Transformators.

