A very brief overview of the HMD and extensions, USMDB and USFDB

Magali Barbieri

magali@berkeley.edu

University of California, Berkeley, and French National Institute for Demographic Studies (INED)

Berkeley Formal Demography Workshop, 3 June 2025, Berkeley

Background on the HMD

Overall goal:

To provide detailed mortality and population data free of charge to all persons interested in the history of human longevity

• **75,000+** registered **users** :

Researchers, students

Journalists

Policy analysts

Corporations (insurance, reinsurance, pension funds, etc...)

Who is responsible for the HMD?

Three teams of researchers:

- UC Berkeley (Dept of Demography)
 led by Magali Barbieri, Co-Director
 (previously John Wimoth, Founding Director)
- Max Plank Institute for Demographic Research (MPIDR, in Rostock, Germany) led by Dmitri Jdanov, Co-Director (previously Vladimir Schkolnikov, Founding Director)
- French Institute for Demographic Studies (INED, in Paris, France)

What is in the HMD?

- Detailed historical data and supporting documentation for 41 national populations:
 - Death counts and estimated population exposures (personyears lived) at the finest detail possible
 - Original estimates of age-specific death rates and life tables in various formats (age x time)
- Computed using various forms of input data:
 - Death counts from national statistical offices
 - Birth counts
 - Census counts
 - Official population estimates

https://www.mortality.org

HOME PROJECT PEOPLE METHODS DATA RESEARCH LINKS

Human Mortality Database

Reliability and Accuracy Matter

The Human Mortality Database (HMD) is the world's leading scientific data resource on mortality in developed countries. The HMD provides detailed high-quality harmonized mortality and population estimates to researchers, students, journalists, policy analysts, and others interested in the human longevity. The HMD follows open data principles.

- Short-Term Mortality Fluctuations
- > Citing HMD
- > Research Team
- Acknowledgements

Data by country or area Australia Denmark Ireland Norway Switzerland Austria Estonia Israel Poland Taiwan U.K. Belarus Finland Italy Portugal Belgium Republic of Korea U.S.A. France Japan Bulgaria Latvia Russia Ukraine Germany Canada Greece Lithuania Slovakia Chile Hong Kong Slovenia Luxembourg Croatia Hungary Netherlands Czechia Iceland New Zealand Sweden

News

Netherlands, Spain and Taiwan revised and updated through 2021.

All News

HMD in zipped data files

To facilitate rapid downloads, the database has been organized into zipped data files.

Zipped Data Files

U.K.

United Kingdom Total Population

Warning: The data given here represent only the civilian population. During the period between prewar and post-war census (1939-50), population estimates exclude the military while death counts exclude military deaths that occurred abroad. For all other years, the period data in this series represent the total population. For details, please see the Background and Documentation.

The Other data series for this country

England & Wales Total Population

England & Wales Civilian Population

Scotland

Northern Ireland

> Background and documentation

- Data sources
- > All data in one zip file

Complete Data Series 👙 Explanatory notes

Available dates		Age interval × Year interval							
	1x1	1x5	1x10	5x1	5x5	5x10			
1922 - 2020	1-year								
1922 - 2020	1x1	1x5	1x10	5x1	5x5	5x10			
1922 - 2020	Lexis								
1922 - 2021	1-year			5-year					
1922 - 2020	1x1	1x5	1x10	5x1	5x5	5x10			
1922 - 2020	Lexis								
1922 - 2020	1x1	1x5	1x10	5x1	5x5	5x10			
1922 - 2020									
	1x1	1x5	1x10	5x1	5x5	5x10			
	1x1	1x5	1x10	5x1	5x5	5x10			
	1x1	1x5	1x10	5x1	5x5	5x10			
1922 - 2020	1-year	5-year	10-year						
1842 - 1990	1x1	1x5	1x10	5x1	5x5	5x10			
1842 - 1990	1x1	1x5	1x10	5x1	5x5	5x10			
	1922 - 2020 1922 - 2020 1922 - 2021 1922 - 2020 1922 - 2020 1922 - 2020 1922 - 2020 1922 - 2020	1922 - 2020	1922 - 2020	1922 - 2020	1922 - 2020	1922 - 2020			

Input Data 🔅 Explanatory notes

	Available dates	Data	Lexis map
Births	-	∄ txt	
Births by month	Various	∄ txt	
Deaths	-	≘ txt	⊕ html
Population size		⊕ txt	⊕ html

United Kingdom, Life tables (period 1x1), Total Last modified: 27 May 2022; Methods Protocol: v6 (2017)

Year	Age	mx	qx	ax	1×	dx	Lx	Tx	ex
1922	0	0.08150	0.07713	0.31	100000	7713	94643	5702262	57.02
1922	1	0.02613	0.02579	0.50	92287	2380	91096	5607619	60.76
1922	2	0.01257	0.01249	0.50	89906	1123	89345	5516523	61.36
1922	3	0.00620	0.00618	0.50	88784	549	88509	5427178	61.13
1922	4	0.00437	0.00436	0.50	88235	384	88043	5338669	60.51
1922	5	0.00382	0.00381	0.50	87850	335	87683	5250626	59.77
1922	6	0.00306	0.00305	0.50	87515	267	87382	5162943	58.99
1922	7	0.00248	0.00247	0.50	87248	216	87140	5075561	58.17
1922	8	0.00206	0.00206	0.50	87033	179	86943	4988421	57.32
1922	9	0.00185	0.00185	0.50	86853	161	86773	4901478	56.43
1922	10	0.00178	0.00177	0.50	86693	154	86616	4814705	55.54
1922	11	0.00169	0.00169	0.50	86539	146	86466	4728089	54.64
1922	12	0.00173	0.00173	0.50	86392	149	86318	4641624	53.73
1922	13	0.00183	0.00183	0.50	86243	158	86164	4555306	52.82
1922	14	0.00206	0.00206	0.50	86085	177	85997	4469142	51.92
1922	15	0.00219	0.00219	0.50	85908	188	85814	4383145	51.02
1922	16	0.00253	0.00253	0.50	85720	217	85612	4297331	50.13
1922	17	0.00274	0.00273	0.50	85504	234	85387	4211719	49.26
1922	18	0.00295	0.00294	0.50	85270	251	85145	4126332	48.39
1922	19	0.00321	0.00320	0.50	85019	272	84883	4041187	47.53
1922	20	0.00343	0.00343	0.50	84747	290	84602	3956304	46.68
1922	21	0.00342	0.00342	0.50	84456	289	84312	3871703	45.84
1922	22	0.00360	0.00359	0.50	84168	302	84017	3787390	45.00
1922	23	0.00357	0.00356	0.50	83866	299	83716	3703374	44.16
1922	24	0.00385	0.00384	0.50	83567	321	83406	3619658	43.31
1922	25	0.00371	0.00371	0.50	83246	308	83091	3536252	42.48
1922	26	0.00380	0.00379	0.50	82937	314	82780	3453160	41.64
1922	27	0.00398	0.00397	0.50	82623	328	82459	3370380	40.79
1922	28	0.00414	0.00413	0.50	82294	340	82124	3287922	39.95
1922	29	0.00420	0.00419	0.50	81954	343	81783	3205797	39.12
1922	30	0.00416	0.00415	0.50	81611	339	81442	3124015	38.28
1922	31	0.00427	0.00426	0.50	81273	346	81099	3042573	37.44
1922	32	0.00464	0.00463	0.50	80926	374	80739	2961473	36.59
1922	33	0.00474	0.00473	0.50	80552	381	80362	2880734	35.76
1922	34	0.00502	0.00501	0.50	80171	401	79971	2800372	34.93
1922	35	0 00515	a aa511	a 5a	79770	410	79565	2720402	3/1 1/0

Guiding principles

- Comparability
 - Over time (from 1751 to 2024)
 - Across countries (41 mostly high-income)
- Accessibility (free and relatively painless)
- Flexibility (estimates in multiple formats)
- Reproducibility (all input data included, full documentation provided)
- Quality control (procedures to identify and correct errors in data or calculations)

HMD series by country and time period

HMD series by country and time period

HMD series by country and time period

Geographic location of HMD countries

HMD Methods

Full HMD Methods Protocol available online at: http://www.mortality.org/Public/Docs/MethodsProtocol.pdf

	Methods Protocol for the Human Mortality Database J.R. Wilmoth, K. Andreev, D. Jdanov, D.A. Glei and T. Riffe with the assistance of C. Boe, Bubenheim, D. Philipov, V. Shkolnikov, P. Vachon, C. Winant, M. Barbieri ¹	М					
Table of Contents							
1	Introduction	-					
2	General principles						
	2.1 Notation and terminology for age and time						
	2.2 Lexis diagram						
	2.3 Standard configurations of age and time	- 7					
	2.4 Female / Male / Total	8					
	2.5 Periods and cohorts	- 8					
	2.6 Adjustments to raw data	- 5					
	2.7 Format of data files	9					
3	Steps for computing mortality rates and life tables	1					
4	Common adjustments to raw data	10					
	4.1 Distributing deaths of unknown age	11					
	4.2 Splitting 1×1 death counts into Lexis triangles	15					
	4.3 Splitting 5×1 death counts into 1×1 data	14					
	4.4 Splitting death counts in open age intervals into Lexis triangles	14					
5	Population estimates (January 1 st)	13					
	5.1 Linear interpolation	13					
	5.2 Intercensal survival methods 5.2.1 Specific example	13					
	5.2.2 Generalizing the method	19					
	5.2.3 Pre- and postcensal survival method	23					
	5.2.4 Intercensal survival with census data in n-vear age groups	2					
	5.3 Extinct cohorts methods	2					
	5.4 Survivor ratio	26					
6	Death rates	25					
	6.1 Period death rates	29					
	6.2 Cohort death rates	31					
	6.3 Death rates for multi-annual time intervals	33					
7	Life tables	34					
	7.1 Period life tables	34					
	7.2 Cohort life tables	38					
	7.2.1 Multi-year cohorts	39					
	7.2.2 Almost-extinct cohorts	40					
	7.3 Abridged life tables	4					

	Last Revised: November 27, 2017 (Version	16)
Appe	ndices	43
A Lin	near model for splitting 1×1 death counts	44
в Со	omputational methods for fitting cubic splines	50
B.:		50
В.:	2 Splitting period-cohort data covering multiple cohorts	51
с м	ethod for splitting deaths in an open age interval	53
C.:	Correction for Unusual Fluctuations in Deaths	54
C.:	2 Correction for Cohort Size	56
D Ac	ljustments for changes in population coverage	58
	1 Birth counts used in splitting 1x1 deaths	58
	2 Extinct cohort methods	60
	3 Intercensal survival methods	61
	4 Linear interpolation	64
	5 Period death rates around the time of a territorial change	64 65
	6 Cohort mortality estimates around the time of a territorial change	65
D.	Other changes in population coverage	0.0
	omputing death rates and probabilities of death	66
	Uniform distributions of births and deaths	66
15.7	Period death rates and probabilities E.2.1 Period death rates and probabilities under uniformity	67 68
	E.2.1 Period death rates and probabilities under uniform distributions of birth-	0.7
	days and deaths	68
	E.2.3 Special case of uniform distributions of birthdays and deaths	72
E.:	3 Cohort death rates and probabilities	72
F Sp	ecial methods used for selected populations	74
List	of Figures	
1	Example of a Lexis Diagram	6
2	Illustration of Lexis triangles	7
3a	Intercensal survival method: existing cohorts (example)	16
36	Intercensal survival method: new cohorts (example)	19
4a 4b	Intercensal survival method: pre-existing cohorts (in general)	20
40 4c	Intercensal survival method: intant conorts (in general)	23
5	Pre- and post-censal survival method	24
6	Methods used for population estimates	26
7	Illustration of extinction rule (with $l=5$ and $x=\omega-1$)	27

2 -

Additional information in

Int. J. Epidemiol. Advance Access published June 23, 2015

International Journal of Epidemiology, 2015, 1–8 doi: 10.1093/ije/dyv105 Data Resource Profile

Data Resource Profile

Data Resource Profile: The Human Mortality Database (HMD)

Magali Barbieri, 1,2* John R Wilmoth, 1,3 Vladimir M Shkolnikov, 4,5 Dana Glei, Domantas Jasilionis, Dmitri Jdanov, 4,5 Carl Boe, Timothy Riffe, Pavel Grigoriev and Celeste Winant

¹Department of Demography, University of California, Berkeley, CA, USA, ²French Institute for Demographic Studies, Paris, France, ³Population Division, United Nations, Department of Economic and Social Affairs, New York, NY, USA, ⁴Max Planck Institute for Demographic Research, Rostock, Germany, ⁵New Economic School, Moscow, Russia and ⁶Georgetown University, Washington, DC, USA

^{*}Corresponding author. Department of Demography, University of California, 2232 Piedmont Avenue, Berkeley CA 94720-2120, USA. E-mail: magali@demog.berkeley.edu usa.mortality.org

HMD-associated projects

- The Human Cause of death Data series (HCD)
- The Short-Term Mortality Fluctuation Database (STMF)
- The Lifetable Database
- Subnational Mortality Databases (USMDB, CHMD, JHMP, AHMD...)

The United States Mortality DataBase USMDB @ usa.mortality.org

U.S. State/County Mortality Database

- Uses restricted data from the US vital statistics system
- HMD-like mortality series with same basic principles (comparability, [accessibility], flexibility, quality control)
- Except for reproducibility due to privacy issues (no public access to the raw mortality data)
- Back to 1941 (State) or 1982 (counties)
- Updated every year
- Main issue: large random fluctuations => small numerators and denominators (state COD, counties...); require additional methodological developments.

A Flexible Bayesian Model for Estimating Subnational Mortality

Monica Alexander¹ · Emilio Zagheni² · Magali Barbieri^{1,3}

© Population Association of America 2017

Abstract Reliable subnational mortality estimates are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations among which the stochastic variation in death counts is relatively high, and thus the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and are smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when it is applied both to simulated data that mimic U.S. counties and to real data for French départements. The model estimates have direct applications to the study of subregional health patterns and disparities.

 $\textbf{Keywords} \quad \text{Mortality} \cdot \text{Subnational estimation} \cdot \text{Bayesian hierarchical model} \cdot \text{Principal components} \cdot \text{France}$

Introduction

To effectively study health disparities within a country, one must obtain reliable subnational mortality estimates to quantify geographic differences accurately. There

Monica Alexander monicaalexander@berkeley.edu

DEMOGRAPHIC RESEARCH

VOLUME 52, ARTICLE 3, PAGES 71-110 PUBLISHED 10 JANUARY 2025

http://www.demographic-research.org/Volumes/Vol52/3/ DOI: 10.4054/DemRes.2025.52.3

Research Article

Jointly estimating subnational mortality for multiple populations

Ameer Dharamshi

Monica Alexander

Celeste Winant

Magali Barbieri

© 2025 Dharamshi, Alexander, Winant & Barbieri.

Published online: 10 October 2017

Department of Demography, University of California, Berkeley, 2232 Piedmont Avenue, Berkeley, CA 94720-2120, USA

Department of Sociology, University of Washington, Seattle, 211 Savery Hall, Box 353340, Seattle, WA 98195-3340, USA

Institut National d'Études Démographiques, 133 Boulevard Dabout, 75020 Paris Cedex, France

The United States Fertility Database (USFDB) Monitoring and Understanding Change in Local Fertility Patterns

PI: Magali Barbieri (UCB), Co-PI: Alison Gemmill (Johns Hopkins)
Other team members:
Celeste Winant (UCB) and Emma Lonstrup (UCB)
Ameer Dharamshi (UW) and Monica Alexander (Toronto)
Carl Schmertmann (Florida State)

Goals

- Overall purpose: to facilitate research into the contextual factors driving the recent US fertility decline
- Specific purpose: construct an open-access database of fertility indicators for US geographies
 - Since 1941 for states, US Census regions and divisions
 - Since 1982 for counties

Filling a gap

- Longer time series to understand why fertility remained high in the US compared to other high-income countries and why it started declining in 2008
- Finer geographic level than the state (NCHS) as preliminary research in the US and in Europe demonstrated the role of area-level social, economic, cultural and policy characteristics
- Larger range of indicators than simply the period TFR or ASFRs to evaluate the role of postponement and changes in family sizes, including childlessness

Indicators (1)

- At the state level (1941-2023)
 - Period measures
 - Total birth count
 - Crude birth rate
 - Age-specific-fertility rates by single and five-year age group
 - Cumulative fertility rates
 - Total fertility rate
 - Gross reproduction rate
 - Tempo-adjusted total fertility rate
 - Mean age at birth
 - Parity-progression ratios

Indicators (2)

- At the state level (1941-2023)
 - Cohort measures (estimated from single-year ASFRs)
 - Age specific fertility rates
 - Completed (and incompleted) cohort fertility rate
 - Mean age at birth

Indicators (3)

- At the county level (1982-2023)
 - Period measures
 - Total birth count
 - Crude birth rate
 - Age-specific-fertility rates by five-year age group
 - Cumulative fertility rates
 - Total fertility rate
 - Gross reproduction rate
 - Tempo-adjusted total fertility rate
 - Mean age at birth
 - Cohort measures?

Data

1. Vital statistics data (1941/1982-2023)

 Birth counts by state/county, calendar year and maternal age (no information on mothers' year of birth)

2. Census Bureau population estimates/census data

- 1940, 1950, 1960 and 1970 population census => population exposures estimated using HMD methods
- Annual July 1st population estimates by state/county, sex and age for years since 1970

3. Current Population Surveys

Women by age and number of children ever born

Methods (1)

- At the state level =>
 - Classic demographic methods with some adjustments
 - To redistribute ASFRs from 5-year age groups to single-year of age for 1941-1967
 - To compute cohort-fertility from single-year of age period ASFRs
- At the County level =>
 - Statistical modelling using Bayesian inference necessary
 - => Large year-to-year random fluctuations and many zero-count cells due to small populations (median county-size = 25,000 people)

Methods (2)

- Overall approach for the Bayesian model: takes advantages of
 - The relative regularity in the fertility curve over ages
 - Relatively gradual changes in fertility behavior over time
 - The similarity in fertility patterns across geographically proximate areas
 - ⇒The model borrows information across
 - Ages
 - Time
 - Areas (states => Principal Component Analysis of the ASFRs)

Modeling Goals

- Aim to estimate the age-specific fertility rates for each county and year between 1982 and 2022
- We estimate five-year rates for reproductive life course [10-14, 15-19, ..., 45-49]
- We designed a statistical model that
 - Accounts for high stochasticity / zero birth counts in small areas
 - Models patterns over time (sharing of information over time, smoothing, forecasting)
 - Shares information across geographic space (smaller counties are partially informed by other counties that have geographic similarities)

Notation

- $B_{a,c,t}$ are the number of births to women in age group a, county c, year t
- $P_{a,c,t}$ is the population of women in age group a, county c, year t
- $F_{a,c,t} = \frac{B_{a,c,t}}{P_{a,c,t}}$ is the (observed) age-specific fertility rate in age group a, county c, year t
- Let $\lambda_{a,c,t}$ be the 'true' / latent set of age-specific fertility rates. This is the what we are interested in estimating.

Data model

- (Data model = the model that relates what we observe to what we are trying to estimate)
- We assume the observed rates $F_{a,c,t}$ are Normally distributed

$$F_{a,c,t} \sim N(\lambda_{a,c,t}, \sigma_{a,c,t}^2)$$

- Variance is adjusted to allow for multiple births
- (also investigating different forms, specifically the Poisson distribution on birth counts)

Model for latent rates λ

$$\lambda_{a,c,t} = \beta_{1,c,t} V_{1,a} + \beta_{2,c,t} V_{2,a} + \beta_{3,c,t} V_{3,a} + \beta_{4,c,t} V_{4,a} + \varepsilon_{a,c,t}$$

- The $V_{j,a}$ are 'principal components' that capture main patterns of variation in fertility rates over age
- These are derived from state-level fertility schedules

Principal components

Spatial-temporal model on PC coefficients

• The principal component coefficients $\beta_{j,c,t}$ are modeled as a combination of spatial and temporal effects:

