Mid2 – 2018 paper

tutorial

• 1. Consider a two dimensional (input-space with co-ordinates $(x_1, x_2)^t$) two class problem. Training set for +1 class is $\{X_1 = (0,1)^t, X_2 = (0,-1)^t, X_3 = (1,0)^t, X_4 = (-1,0)^t\}$; that for -1 class is $\{X_5 = (0,0)^t\}$. It is known that in the featurespace with co-ordinates $(x_1^2, x_2^2, \sqrt{2} x_1 x_2)$ the given problem is a linearly separable one. Can you apply perceptron learning with single sample correction (consider the training patterns in the order $X_1, X_2, ..., X_5$) in the feature-space and thus find a non-linear (quadratic) classifier in the input space. Let your initial solution be the Zero Vector (in the feature-space). Your final answer should be a classifier in the input space (quadratic equation in the input space) which you can show geometrically (pictorially) also (Show necessary intermediate steps}. [8 marks]

• This problem you can do.

• 2. For the question 1, with kernel $k(X_i, X_i) =$ $(X_i \cdot X_i)^2$ find the hard nonlinear SVM classifier. From the geometry of the problem, one can assume that Lagrange multipliers for all positive training examples are same, i.e., $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$. Draw the classifier in the input-space. Can you find the margin in the feature-space? [9 marks]

Class +1:

$$x1 = (0,1)$$
, $x2 = (0,-1)$, $x3 = (1,0)$, $x4 = (-1,0)$

Class -1:

X5 = (0,0).

Class +1:

$$x1 = (0,1)$$
, $x2 = (0,-1)$, $x3 = (1,0)$, $x4 = (-1,0)$

Class -1:

X5 = (0,0).

Kernel function : $k(X_i, X_j) = (X_i \cdot X_j)^2$.

Given lagrange multipliers : $\alpha 1 = \alpha 2 = \alpha 3 = \alpha 4 = \alpha$. The Lagrange for fifth co-ordinate be $\alpha 5$.

Wolf dual:

$$L(\alpha) = \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j. (X_i X_j)$$

(few students did without considering α5, this time we considered it)

$$L = \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j. K(X_i.X_j) \text{ (in feature space)}$$

Condition: $\sum_{i=1}^{5} \alpha_i \cdot y_i = 0 \&\& \alpha_i \ge 0$, i = 1,2,3,4,5

$$L = \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j. K(X_i.X_j) \text{ (in feature space)}$$

Condition: $\sum_{i=1}^{5} \alpha_i \cdot y_i = 0 \&\& \alpha_i \ge 0$, i = 1,2,3,4,5

Table 1:

$K(X_i,X_j)$	X ₁	X ₂	X ₃	X_4	X_5
X ₁	1	1	0	0	0
X_2	1	1	0	0	0
X_3	0	0	1	1	0
X_4	0	0	1	1	0
X ₅	0	0	0	0	0

Table 2:

	y ₁	y ₂	y ₃	y ₄	y 5
y ₁	1	1	1	1	-1
y ₂	1	1	1	1	-1
y 3	1	1	1	1	-1
y ₄	1	1	1	1	-1
y ₅	-1	-1	-1	-1	1

$$=\sum_{i=1}^{5} \alpha_i \cdot y_i = 0 = > (1^* \alpha + 1^* \alpha + 1^* \alpha + 1^* \alpha - 1^* \alpha_5) = 4\alpha - \alpha_5 = 0$$
. Therefore $\alpha_5 = 4\alpha$.

 $L(\alpha) = \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j. K(X_{i.} X_j) \text{ (in feature space)}$

 $4\alpha + 4\alpha - \frac{1}{2}(\alpha^2 * 1 * 1 + \alpha^2 * 1 * 1)$. Based on table 2. Ignoring the combination which results in 0.

$$L(\alpha) = \sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j. K(X_{i.} X_j) \text{ (in feature space)}$$

 $4\alpha + 4\alpha - \frac{1}{2}(\alpha^2 * 1 * 1 + \alpha^2 * 1 * 1)$. Based on table 2. Ignoring the combination which results in 0.

$$L(\alpha) = 8\alpha - \frac{1}{2}(8 * \alpha^2)$$

$$\frac{\partial L}{\partial \alpha} = 0 = > 8 - 8\alpha = 0 = > \alpha = 1$$

From question: $\alpha_{1=} \alpha_{2=} \alpha_{3=} \alpha_{4=} \alpha$ = 1 . $\alpha_{5=} 4\alpha$ = 4

b = y_j - $\sum_{i=1}^{5} \alpha_i y_i \cdot (X_i \cdot X_j)$. j can be selected any value from 1 to 5. Let j = 1

b = 1 - (1*1*1+1*1*1) (* Based on table 2, for 1 only 1 and 2 give non zero values).

B = 1-2 = -1.

Classifier:

$$g(x) = \sum_{i=1}^{5} \alpha_i y_i . K(X_i . X_j) + b = 0$$
$$= \alpha * \sum_{i=1}^{5} y_i . K(X_i . X) - 1 = 0$$

Computing $K(X_i, X)$: I = 1,2,3,4,5. x1 = (0,1), x2 = (0,-1), x3 = (1,0), x4 = (-1,0), x5 = (0,0)

$$K(X_1.X) = ([0,1] [x1 \ x2]^T)^2 = x2^2$$
.

$$K(X_2.X) = ([0,-1][x1 x2]^T)^2 = (-x2)^2 = x2^2$$

$$K(X_3.X) = ([1,0] [x1 \ x2]^T)^2 = x1^2$$

$$K(X_4.X) = ([1,0] [x1 \ x2]^T)^2 = x1^2$$

$$K(X_5.X) = ([0,0] [x1 x2]^T)^2 = 0$$

$$g(x) = 1 * (1*x2^2+1*x2^2+1*x1^2+1*x1^2+0)-1 = 0$$

$$g(x) = 1 * (1* x2^{2}+1* x2^{2}+1* x1^{2}+1* x1^{2}+0)-1 = 0$$

$$= x2^{2}+ x2^{2}+ x1^{2}+ x1^{2}-1 = 0$$

$$= 2 x2^{2}+ 2 x1^{2}=1$$

$$x2^{2}+ x1^{2}=\frac{1}{2}.$$

Feature space co-ordinates = $(x_1^2, x_2^2, \sqrt{2} x_1 x_2)$.

Normal	Feature Space
Space $X = (x1,x2)$	$X = (x_1^2, x_2^2, \sqrt{2} x_1 x_2)$
X1 = (0,1)	X1 = (0,1,0)
X2 = (0, -1)	X2 = (0,1,0)
X3 = (1,0)	X3 = (1,0,0)
X4 = (-1,0)	X4 = (1,0,0)
X5 = (0,0)	X5 = (0,0,0)

W in feature space:

$$W = \sum_{i=1}^{5} \alpha_{i}. y_{i}. \Theta(X_{i}. X_{j}) = 1 * 1 * (0,1,0)^{T} + 1 * 1 * (0,1,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T}$$

Feature space co-ordinates = $(x_1^2, x_2^2, \sqrt{2} x_1 x_2)$.

Normal	Feature Space
Space $X = (x1,x2)$	$X = (x_1^2, x_2^2, \sqrt{2} x_1 x_2)$
X1 = (0,1)	X1 = (0,1,0)
X2 = (0, -1)	X2 = (0,1,0)
X3 = (1,0)	X3 = (1,0,0)
X4 = (-1,0)	X4 = (1,0,0)
X5 = (0,0)	X5 = (0,0,0)

W in feature space:

$$W = \sum_{i=1}^{5} \alpha_{i}. y_{i}. \Theta(X_{i}. X_{j}) = 1 * 1 * (0,1,0)^{T} + 1 * 1 * (0,1,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T} + 1 * 1 * (1,0,0)^{T}$$

$$= (0,1,0)^{T} + (0,1,0)^{T} + (1,0,0)^{T} + (1,0,0)^{T} = (2\ 2\ 0)^{T}$$

Margin =
$$2 / ||W|| = 2 / \sqrt{4+4} = 2 / 2\sqrt{2} = 1 / \sqrt{2}$$