Sakarya Üniversitesi Bilgisayar Mühendisliği

Güz 2019 BSM213 Elektronik Devreler ve Laboratuvarı

Ara Sınav

Kitapçık Türü: A

1 – 8. sorular aşağıdaki devre kullanılarak cevaplandırılacaktır

- 1. i_2 'nin çevre akımları cinsinden karşılığı aşağıdakilerden hangisidir?
 - a) I_{c1}
- b) I_{ç2}- I_{ç1}
- c) Iç2
- d) $I_{c1}-I_{c2}$
- e) $I_{c1} + I_{c2}$
- İkinci temel çevre denklemi aşağıdakilerden hangisidir?
 - a) $V_2-V_6-V_3=0$
- b) $-V_6+V_3+V_2=0$
- c) V_2 - I_6 - V_3 =0
- d) $-I_5-V_1+V_3=0$
- e) $I_1-I_2-I_3=0$
- 3. Aşağıdakilerden hangisi doğrudur?
 - a) V_{d1} - V_{d3} =10
- b) $V_2 V_6 = 0$
- c) $I_{c3}=I_{c2}$
- d) $2I_{c1} = -3I_{c2}$
- e) $V_4 + V_1 = V_2$
- Bağımlı akım kaynağı üzerindeki gerilim aşağıdakilerden hangisidir?
 - a) 5V
- b) 20V
- c) -10V
- d) 10V
- e) 25V
- R₂ direncinin ani gücü aşağıdakilerden hangisidir?
 - 20W
- b) 100W
- c) 375W
- d) 25W
- e) 125W
- i_1 akımının değeri aşağıdakilerden hangisidir?
 - a. 15A
- b) 10A
- c) 25A
- d) 5A
- e) -5A
- 7. Bağımsız gerilim kaynağı üzerindeki gerilim hakkında aşağıdakilerden hangisi söylenemez?
 - I. $V_{d3} V_{d1}$
 - II. -2V₂
 - III. -70V
 - a) Yalnız I
- b) I ve III
- c) II ve III

- d) I ve II
- e) I, II ve III
- 8. 2 numaralı düğüm gerilimi aşağıdakilerden hangisidir?
 - a) 25V
- b) 75V
- c) 5V

- d) 10V
- e) 20V

9. Aşağıdaki devre için V_i=5V ise V₀ aşağıdakilerden hangisidir (Diyot Silisyum)?

- a) 0V
- b) 5V
- c) 3.7V d) 2V
- **10.** Aşağıdaki devre için V_0 = -3V ise V_i aşağıdakilerden hangisidir (Diyot Silisyum)?

- a) 0V
- b) 7.3V
- c) -8.7V d) 8.7V
- e)-7.3 V
- **11.** Aşağıdaki devrenin girişine şekilde verilen V_i işareti uygulandığında Voçıkış grafiği hangisi olur (Diyot ideal)?

b)

d)

12. Aşağıdaki devrenin girişine şekilde verilen V_i işareti uygulandığında Voçıkış grafiği hangisi olur (Diyot ideal)?

e) Hiçbiri

13. Aşağıdaki devre için V_0 aşağıdakilerden hangisidir (Diyot Silisyum)?

b)

a) 0V

b) 3.8V c) 3.1V d) 4.2V

e) 0.7V

14-16. sorular şekil 1'e göre cevaplandırılacaktır ve devrenin işareti girişine $v_i(t) = 6\sin \omega t$ uygulanmaktadır.

$$R_{\mathrm{yii}k}=6\,k\Omega$$
 , $R_{\mathrm{3}}=2\,k\Omega$ (Diyotlar idealdir)

- 14. Aşağıdakilerden hangisi doğrudur?
 - Pozitif alternansta D_1 iletimde D_2 ve D_4 kesimdedir.
 - Pozitif alternansta D_1 ve D_4 iletimde D_2 kesimdedir.
 - Pozitif alternansta D_2 iletimde D_1 ve D_4 kesimdedir.
 - Negatif alternansta D_4 ve D_2 iletimde D_1 kesimdedir.
 - Negatif alternansta D_4 ve D_1 iletimde D_2 kesimdedir.
- **15.** T/2-T aralığında V_0 çıkış grafiğinin maksimum değeri kaç volt olur?
 - a) 6V b) 4.5V c) 5.5V d) 3V e) 3.5V
- 16. D₂ diyotunun PIV değeri aşağıdakilerden hangisidir?
 - a) 6V b) 4.5V c) 5.5V d) 3V

17-19. sorular Şekil 2'ye göre cevaplandırılacaktır. Vi sabit RL değişkendir.

Sekil 2

- 17. Aşağıdakilerden hangisi doğrudur?
 - I_{RL} sabittir. a)
 - V_{RL} değişkendir.
 - V_{RS} değişkendir.
 - IRS sabittir. d)
 - Hiçbiri e)
- 18. Çıkış gerilimini 20V'da sabit tutabilmek için R_L'nin minimum değeri kaç olmalıdır?
 - a) $1k\Omega$ b) $2k\Omega$ c) 500Ω d) 300Ω e) 250Ω
- 19. Çıkış gerilimini 20V'da sabit tutabilmek için R_L 'nin maksimum değeri kaç olmalıdır?
 - a) $1k\Omega$ b) $2k\Omega$ c) 500Ω d) $3k\Omega$ e) 250Ω
- **20.** Aşağıdaki işaretin V_{dc} değeri ağağıdakilerden hangisi ile hesaplanır?

a)
$$V_{dc} = \frac{1}{\pi} \left[\int_0^{\pi} 8 \sin \omega t d(\omega t) + \int_0^{\pi} 4 \sin \omega t d(\omega t) \right] = \frac{8}{\pi}$$

b)
$$V_{dc} = \frac{1}{2\pi} \left[\int_0^{\pi} 8\cos\omega t d(\omega t) + \int_{\pi}^{2\pi} 4\cos\omega t d(\omega t) \right] = 0$$

c)
$$V_{dc} = \frac{1}{\pi} \left[\int_0^{\pi} 8\sin\omega t d(\omega t) - \int_{\pi}^{2\pi} 4\sin\omega t d(\omega t) \right] = \frac{24}{\pi}$$

d)
$$V_{dc} = \frac{1}{2\pi} \left[\int_0^{\pi} 8\sin\omega t d(\omega t) + \int_{\pi}^{2\pi} 4\sin\omega t d(\omega t) \right] = \frac{4}{\pi}$$

e)
$$V_{dc} = \frac{1}{2\pi} \left[\int_0^{\pi} 8\sin\omega t d(\omega t) - \int_{\pi}^{2\pi} 4\sin\omega t d(\omega t) \right] = \frac{12}{\pi}$$