right © 2019 by Boston Consulting Group. All rights reserve

logitSVD

Combines the advantages of classic logit models with the SVD approach for building product recommendation systems

Predicts the probability to buy a product or to rate the product e.g. with a certain number of stars

Strong predictive power with a minimal number of parameter to avoid overfitting

Avoids cold start problem through the use of user features

Selection of features is supported by a feature importance measure (Wald test)

Highly transparent model with interpretable parameters

Building separate models for each product is a special case of logitSVD

ight © 2019 by Boston Consulting Group. All rights rese

A feature based SVD for binary user-item-matrices

Definition¹

Let $R \in \{0,1,NaN\}^{n_u \times n_i}$ be a binary matrix with entries 0, 1 or missing value for n_u users and n_i items and let n_f features $X \in \mathbb{R}^{n_u \times n_f}$ for each user u be given. The probability $p_{u,i} = P(r_{u,i} = 1)$ that $r_{u,i} = 1$ can then be approximated by the binary logit SVD:

$$S = X E Q$$
, $p_{u,i} = l(s_{u,i}) = \frac{1}{1 + e^{-s_{u,i}}}$

with parameter matrices $E \in \mathbb{R}^{n_f \times n_d}$ and $Q \in \mathbb{R}^{n_d \times n_i}$. n_d is a design parameter, which can be interpreted as the number of estimated models.

Newton's method boosted maximum likelihood parameter estimation for binary user-item-matrices

Maximum likelihood

The parameter matrixes E and Q are estimated such the log-likelihood to observe $R \in \{0,1,NaN\}^{n_u \times n_i}$ is maximized

$$\log L(E, Q) = \sum_{u \le n_u, i \le n_i, r_{u,i} \ne NaN} \left[r_{u,i} \log \left(l(s_{u,i}) \right) + (1 - r_{u,i}) \log \left(1 - l(s_{u,i}) \right) \right]$$

with $S = X E Q \in \mathbb{R}^{n_u \times n_i}$ and $l(x) = \frac{1}{1 + e^{-x}}$.

Note that only known product usages, i.e. $r_{u,i} \neq NaN$, are considered in the likelihood.

Full Newton's and alternating Newton's method

The logitVD package offers two options for solving the non-linear likelihood optimization problem:

- ullet straight Newton's method with line search to simultaneously calculate E and Q and
- alternating Newton's methods with line search to iteratively optimize E with fixed Q and subsequently optimize Q with fixed E

For most problems the alternating approach is quicker and more stable. It can be shown that each of the alternating optimization problems (i.e. for E with fixed Q and Q with fixed E) is convex with s.p.d. Hessian.

right © 2019 by Boston Consulting Group. All rights reserv

A feature based SVD for user-item-matrices with several ordered classes

Definition¹

Let $R \in \{0,1,...,n_k,NaN\}^{n_u \times n_i}$ be the user-item-matrix describing the rating given by user u to item i. The ratings $0 \le r_{u,i} \le n_k$ are assumed to be ordered, i.e. all ratings $r_{u,i}$ with $r_{u,i} < r_{v,j}$ are better/worse than the ratings $r_{v,j}$. The probability $p_{u,i}^{(< k)} = P(r_{u,i} < k)$ that the rating $r_{u,i}$ is smaller than k can then be approximated by the feature based SVD:

$$S = X E Q,$$
 $p_{u,i}^{(< k)} = l(s_{u,i} - t_k) = \frac{1}{1 + e^{-s_{u,i} - t_k}}$

with parameter matrices $E \in \mathbb{R}^{n_f \times n_d}$ and $Q \in \mathbb{R}^{n_d \times n_i}$ and intercepts $t_k \in \mathbb{R}$ for $1 \le k \le n_k$ and $t_0 = -\infty$, $t_{n_k+1} = \infty$. The probability $p_{u,i}^{(k)}$ that item i is rated k by user u rating $r_{u,i}$ is then $p_{u,i}^{(k)} = P(r_{u,i} = k) = p_{u,i}^{(< k+1)} - p_{u,i}^{(< k)}$

Illustration

Newton's method boosted maximum likelihood parameter estimation for ordered target classes

Maximum likelihood

The parameter matrixes E, Q and the intercepts t are estimated such the log-likelihood to observe $R \in \{0,1,...,n_k,NaN\}^{n_u \times n_i}$ is maximized

$$\log L(E, Q, t) = \sum_{k \le n_k} \left\{ \sum_{u \le n_u, i \le n_i, r_{u,i} = k} \left[\log \left(l(s_{u,i} + t_{k+1}) \right) - \log \left(l(s_{u,i} + t_k) \right) \right] \right\}$$

with $S = X E Q \in \mathbb{R}^{n_u \times n_i}$ and $l(x) = \frac{1}{1 + e^{-x}}$.

Note that only known product usages, i.e. $r_{u,i} \neq NaN$, are considered in the likelihood.

Two different alternating Newton's method

The logitSVD package offers two options for solving the non-linear likelihood optimization problem:

- an alternating Newton's method with line search to iteratively optimize simultaneously t and E for fixed Q and then t and Q for fixed E
- An alternating Newton's methods with line search to iteratively optimize all 3 elements separately, i.e. first E with fixed t and Q, then t for fixed E and Q, and subsequently Q with fixed t and E.

For most problems, both approaches are successful. Typically, the first approach is quicker but less stable, i.e. one of the Hessians might not be positive definite.

logitSVD is implemented in a Python package (1/2)

Function call

```
P, C, Z, E, Q, t, z_score, p_value = logitSVD(X, R, depth, la, E = None, Q = None, t=None, method ="alternating", tol = 1e-4, maxit = 20, tolNewton = None, maxitNewton = 100, verbose = "warn")
```

Parameter

```
X
       : ndarray[nuser,nfeature], user feature vectors
       : ndarray[nuser, nitem], user-item-matrix (target)
depth
      : int, model parameter, depth of the embeddings = number of different models
       : float, regularization paramter
1 a
       : ndarray[nfeature,depth], initial solution for the feature weights (embeddings)
       : ndarray[depth, nitem], initial solution for the item embeddings (model combination parameter)
       : ndarray[max(R)], initial solution for intercepts (only for multinomial case)
method: string, binary: alternating [alter], fullNewton [full], alter full, i.e. first alter, then
                        full Newton
            multinomial: alternating2 [alter2], 2 alternating steps 1. Q,t and 2. E,t
                         alternating3 [alter3], 3 alternating steps 1. Q, 2. t, 3. E
      : float, alternating methods stop if the reduction of the log-likelihood is smaller than tol
tol
maxit : int, maximum number of iterations of the alternating methods
tolNewton: float, Newton's method stops if the 2-norm of the gradient becomes smaller than tolNewton
maxitNewton: int, maximum number of iterations of Newton's method
verbose: string, ("none" | "warn" | "all"), print warnings and convergence progress. Default is "warn"
```

logitSVD is implemented in a Python package (2/2)

Function call

```
P, C, Z, E, Q, t, z_score, p_value = logitSVD(X, R, depth, la, E = None, Q = None, t=None, method ="alternating", tol = le-4, maxit = 20, tolNewton = None, maxitNewton = 100, verbose = "warn")
```

Output