Question Number	Answer		Mark
15ai	Use of $F\Delta t = \Delta p$ and $p = mv$	(1)	2
	Or Use of $F = ma$ and $v = at$		
	$v = 42 \text{ m s}^{-1}$	(1)	
	Example of calculation		
	$109000 \text{ N} \times 2.9 \text{ s} = 7500 \text{ kg} \times v$		
	$v = 42 \text{ m s}^{-1}$		
15aii	Use of $E_k = \frac{1}{2} mv^2$ (ecf for v from part ai)	(1)	3
	Use of $\Delta E_{grav} = mg\Delta h$	(1)	
	It reaches the top of the tower as initial $E_k = 6.6 \times 10^6 \mathrm{J}$ is greater		
	than energy required, $\Delta E_{grav} = 6.0 \times 10^6 \mathrm{J}$		
	Or It reaches the top of the tower as it can reach a height of 90 m		
	which is greater than the required 81 m Or It reaches the top of the tower because 42 m s ⁻¹ is greater than the		
	required speed of 40 m s ⁻¹		
	Or It reaches the top of the tower because speed at top is 13 m s ⁻¹ so	(1)	
	it is still moving	(1)	
	(Do not award marks for use of equations of motion for uniform		
	acceleration)		
	Example of calculation		
	$E_k = \frac{7500 \text{kg} \times (42 \text{ ms}^{-1})^2}{2}$		
	$E_k = 6.6 \times 10^6 \mathrm{J}$		
	$\Delta E_{grav} = 7500 \text{ kg} \times 9.81 \text{ m s}^{-2} \times 81 \text{ m} = 6.0 \times 10^6 \text{ J}$		
	Zaligrav 7500 kg 75.01 mg 701 m 0.0 vito 3		
	Use of show that gives $E_k = 6.0 \times 10^6 \mathrm{J}$		
15b	There is a change in flux linkage of the magnetic field and the metal		5
	fin		
	Or	(1)	
	The fin cuts magnetic field/flux	(1)	
	This <u>induces</u> an <u>emf</u> (across the fin)	(1)	
	Current is produced in the fin (accept eddy current)	(1)	
	Force acts on the fin, as there is a current in a magnetic field		
	Or field due to current in fin interacts with field due to magnets to		
	cause force on fin	(1)	
	The force opposes the motion due to Lenz's law		
	Or Energy dissipated by current comes from (reduction in) kinetic	(1)	
	energy of vehicle		
	Total for question 15		10