Machine Learning: Lesson 10

Support Vector Machines and Kernels

Benoît Frénay - Faculty of Computer Science

Outline of this Lesson

- maximum margin classifiers
- linear SVMs for separable data
- linear SVMs for non-separable data
- kernels and similarity measures
- kernelised SVMs for non-linear data
- going further with kernels

Maximum Margin Classifiers

Comparing Binary Classifiers in Terms of Margin

linear classifier =
$$\begin{cases} y_i = +1 & \text{if } \mathbf{w} \cdot \mathbf{x}_i + b = \sum_{j=1}^d w_i x_{ij} + b > 0 \\ y_i = -1 & \text{if } \mathbf{w} \cdot \mathbf{x}_i + b = \sum_{j=1}^d w_i x_{ij} + b < 0 \end{cases}$$

margin = (width of the) largest region that separates both classes perfectly

black class on
$$\mathbf{w} \cdot \mathbf{x} + b = 1$$

$$\mathbf{w} \cdot \left(\mathbf{x}_0 + \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = 1$$
 white class on $\mathbf{w} \cdot \mathbf{x} + b = -1$
$$\mathbf{w} \cdot \left(\mathbf{x}_0 - \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = -1$$
 margin is given by $\delta = \frac{2}{\|\mathbf{w}\|}$

http://en.wikipedia.org/wiki/Support_vector_machine

margin = (width of the) largest region that separates both classes perfectly

black class on
$$\mathbf{w} \cdot \mathbf{x} + b = 1$$

$$\mathbf{w} \cdot \left(\mathbf{x}_0 + \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = 1$$
 white class on $\mathbf{w} \cdot \mathbf{x} + b = -1$
$$\mathbf{w} \cdot \left(\mathbf{x}_0 - \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = -1$$
 margin is given by $\delta = \frac{2}{\|\mathbf{w}\|}$

http://en.wikipedia.org/wiki/Support_vector_machine

margin = (width of the) largest region that separates both classes perfectly

black class on
$$\mathbf{w} \cdot \mathbf{x} + b = 1$$

$$\mathbf{w} \cdot \left(\mathbf{x}_0 + \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = 1$$

white class on $\mathbf{w} \cdot \mathbf{x} + b = -1$

$$\mathbf{w}\cdot\left(\mathbf{x}_{0}-rac{\delta}{2}\hat{\mathbf{w}}
ight)+b=-1$$

margin is given by $\delta = \frac{2}{\|\mathbf{w}\|}$

http://en.wikipedia.org/wiki/Support_vector_machine

margin = (width of the) largest region that separates both classes perfectly

black class on
$$\mathbf{w} \cdot \mathbf{x} + b = 1$$

$$\mathbf{w} \cdot \left(\mathbf{x}_0 + \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = 1$$

white class on $\mathbf{w} \cdot \mathbf{x} + b = -1$

$$\mathbf{w} \cdot \left(\mathbf{x}_0 - \frac{\delta}{2} \hat{\mathbf{w}} \right) + b = -1$$

margin is given by $\delta = \frac{2}{\|\mathbf{w}\|}$

http://en.wikipedia.org/wiki/Support_vector_machine

The Maximum Margin Principle for Separable Data

best linear classifier = separates data perfectly with largest margin $\delta = \frac{2}{\|\mathbf{w}\|}$

http://en.wikipedia.org/wiki/Support_vector_machine

Linear SVMs

for Separable Data

Maximum margin linear classifier

for linearly separable data, maximising the margin is equivalent to

$$\max \ \delta = \tfrac{2}{\|\mathbf{w}\|}$$

s.t.
$$\mathbf{w} \cdot \mathbf{x}_i + b \ge +1$$
 for each instance s.t. $t_i = +1$ $\mathbf{w} \cdot \mathbf{x}_i + b \le -1$ for each instance s.t. $t_i = -1$

Primal form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to

min
$$\|\mathbf{w}\|$$

s.t. $t_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

Maximum margin linear classifier

for linearly separable data, maximising the margin is equivalent to

$$\max \ \delta = \tfrac{2}{\|\mathbf{w}\|}$$

s.t.
$$\mathbf{w} \cdot \mathbf{x}_i + b \ge +1$$
 for each instance s.t. $t_i = +1$ $\mathbf{w} \cdot \mathbf{x}_i + b \le -1$ for each instance s.t. $t_i = -1$

Primal form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to

min
$$\|\mathbf{w}\|$$

s.t.
$$t_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$$

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

- in primal form: prediction $f(x) = w \cdot x + b = \sum_{j=1}^{d} w_j x_j + b$
 - the contribution of each **feature** is weighted by w
- in dual form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$
 - the contribution of each instance is weighted by α

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

in primal form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{d} w_j x_j + b$

- the contribution of each **feature** is weighted by w_i
- in dual form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$
 - ullet the contribution of each **instance** is weighted by lpha

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

in primal form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{d} w_j x_j + b$

• the contribution of each feature is weighted by w_i

in dual form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

• the contribution of each instance is weighted by α_i

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

in primal form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{d} w_j x_j + b$

• the contribution of each **feature** is weighted by w_i

in dual form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

ullet the contribution of each **instance** is weighted by lpha

Dual variables

primal form of linear SVMs can be rewritten with dual variables $\alpha_i \geq 0$ s.t.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i t_i \mathbf{x}_i$$
 where $\sum_{i=1}^{n} \alpha_i t_i = 0$

 α_i = "weight of instance \mathbf{x}_i in expression of \mathbf{w} " ($\times \pm 1$ if class $t_i = \pm 1$)

Primal variables vs. dual variables

in primal form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{d} w_j x_j + b$

- the contribution of each feature is weighted by w_i
- in dual form: prediction $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$
 - ullet the contribution of each **instance** is weighted by α_i

Support Vectors and Dual Variables

dual variable α_i is non-zero **only** for support vectors s.t. $t_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

$$\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

- convex objective function ⇒ no local minima, guaranteed convergence
- ullet very efficient solvers exist to find $lpha_i$ (e.g. LIBSVM and LIBLINEAR)
- ullet usually, many dual variables are zero (non-SVs) \Rightarrow sparse model
- bounds on the generalisation error of SVMs can be obtained

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

- ullet convex objective function \Rightarrow no local minima, guaranteed convergence
- ullet very efficient solvers exist to find $lpha_i$ (e.g. LIBSVM and LIBLINEAR)
- ullet usually, many dual variables are zero (non-SVs) \Rightarrow sparse model
- bounds on the generalisation error of SVMs can be obtained

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

- ullet convex objective function \Rightarrow no local minima, guaranteed convergence
- ullet very efficient solvers exist to find α_i (e.g. LIBSVM and LIBLINEAR)
- ullet usually, many dual variables are zero (non-SVs) \Rightarrow sparse model
- bounds on the generalisation error of SVMs can be obtained

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

- ullet convex objective function \Rightarrow no local minima, guaranteed convergence
- ullet very efficient solvers exist to find α_i (e.g. LIBSVM and LIBLINEAR)
- ullet usually, many dual variables are zero (non-SVs) \Rightarrow sparse model
- bounds on the generalisation error of SVMs can be obtained

Dual form of linear SVMs for separable data

for linearly separable data, maximising the margin is equivalent to solve

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $\alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

Solving the SVM problem

- \bullet convex objective function \Rightarrow no local minima, guaranteed convergence
- ullet very efficient solvers exist to find α_i (e.g. LIBSVM and LIBLINEAR)
- ullet usually, many dual variables are zero (non-SVs) \Rightarrow sparse model
- bounds on the generalisation error of SVMs can be obtained

More about Linear Support Vector Machines

bias term can be computed as

$$b = \frac{1}{n} \sum_{j=1}^{n} \left(t_i - \sum_{i=1}^{n} \alpha_i t_i \left(\mathbf{x}_i \cdot \mathbf{x}_j \right) \right)$$

these slides only give a "light" overview of SVM theory

- everything can be formally derived with Lagrangian approach
- many tutorials, see e.g. http://www.kernel-machines.org
- "A Tutorial on Support Vector Machines for Pattern Recognition"

excellent course about SVMs by Colin Campbell (in two parts)

• http://videolectures.net/epsrcws08_campbell_isvm

Linear SVMs

for Non-Separable Data

Primal form of linear SVMs for non-separable data

for linearly non-separable data, two opposite objectives are competing

- maximising the margin for better generalisation
- minimising the sum of slack variables to avoid errors

solution = compromise to achieve a large margin with not too large errors

Primal form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

min
$$\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_i$$

s.t. $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) > 1 - \xi_i$

Primal form of linear SVMs for non-separable data

for linearly non-separable data, two opposite objectives are competing

- maximising the margin for better generalisation
- minimising the sum of slack variables to avoid errors

solution = compromise to achieve a large margin with not too large errors

Primal form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

min
$$\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_i$$

s.t. $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) > 1 - \varepsilon_i$

Primal form of linear SVMs for non-separable data

for linearly non-separable data, two opposite objectives are competing

- maximising the margin for better generalisation
- minimising the sum of slack variables to avoid errors

solution = compromise to achieve a large margin with not too large errors

Primal form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

min
$$\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_i$$

s.t. $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

Primal form of linear SVMs for non-separable data

for linearly non-separable data, two opposite objectives are competing

- maximising the margin for better generalisation
- minimising the sum of slack variables to avoid errors

solution = compromise to achieve a large margin with not too large errors

Primal form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

min
$$\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_i$$

s.t. $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

Primal form of linear SVMs for non-separable data

for linearly non-separable data, two opposite objectives are competing

- maximising the margin for better generalisation
- minimising the sum of slack variables to avoid errors

solution = compromise to achieve a large margin with not too large errors

Primal form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

min
$$\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_i$$

s.t. $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) > 1 - \xi_i$

where *C* determines the compromise between model complexity (large $\|\mathbf{w}\|$ = complex model) and prediction errors (large $\sum_{i=1}^{n} \xi_i$ = error-prone)

Dual form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

the **only difference** with the separable case is the set of constraints $\alpha_i \leq C$

Dual form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

the **only difference** with the separable case is the set of constraints $\alpha_i \leq C$

- most low-dimensional datasets are linearly non-separable
- if $d \gg n$, the regularisation constant C allows avoiding overfitting
- ullet SVM implementations support penalties $\sum_{i=1}^n \xi_i$ and $\sum_{i=1}^n \xi_i^i$

Dual form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

the **only difference** with the separable case is the set of constraints $\alpha_i \leq C$

- most low-dimensional datasets are linearly non-separable
- if $d \gg n$, the regularisation constant C allows avoiding overfitting
- SVM implementations support penalties $\sum_{i=1}^{n} \xi_{i}$ and $\sum_{i=1}^{n} \xi_{i}^{2}$

Dual form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

the **only difference** with the separable case is the set of constraints $\alpha_i \leq C$

- most low-dimensional datasets are linearly non-separable
- if $d \gg n$, the regularisation constant C allows avoiding overfitting
- SVM implementations support penalties $\sum_{i=1}^n \xi_i$ and $\sum_{i=1}^n \xi_i^2$

Dual form of linear SVMs for non-separable data

for linearly non-separable data, the solution is given by

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

the **only difference** with the separable case is the set of constraints $\alpha_i \leq C$

- most low-dimensional datasets are linearly non-separable
- if $d \gg n$, the regularisation constant C allows avoiding overfitting
- SVM implementations support penalties $\sum_{i=1}^{n} \xi_i$ and $\sum_{i=1}^{n} \xi_i^2$

Kernels and Similarity Measures

Dot products in SVM formulation

instances only appear through dot products in SVM dual

$$\begin{aligned} & \max \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \left(\mathbf{x}_i \cdot \mathbf{x}_j \right) \\ & \text{s.t.} \quad C \geq \alpha_i \geq 0 \quad \text{and} \quad \sum_{i=1}^{n} \alpha_i t_i = 0 \end{aligned}$$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

From dot products to kernels

dot product $\mathbf{x}_i \cdot \mathbf{x}_j = \text{similarity between } \mathbf{x}_i \text{ and } \mathbf{x}_j$

Dot products in SVM formulation

instances only appear through dot products in SVM dual

max
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

From dot products to kernels

dot product $x_i \cdot x_j = \text{similarity between } x_i \text{ and } x_j$

- can we use other similarity measures to go non-linear ?
- can we define similarity measures for non-numerical data ?

Dot products in SVM formulation

instances only appear through dot products in SVM dual

$$\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$
s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

From dot products to kernels

dot product $x_i \cdot x_j = \text{similarity between } x_i \text{ and } x_j$

- can we use other similarity measures to go non-linear ?
- can we define similarity measures for non-numerical data?

Dot products in SVM formulation

instances only appear through dot products in SVM dual

$$\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$
s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

From dot products to kernels

dot product $x_i \cdot x_j$ = similarity between x_i and x_j

- can we use other similarity measures to go non-linear ?
- can we define similarity measures for non-numerical data ?

Dot products in SVM formulation

instances only appear through dot products in SVM dual

$$\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$
s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i (\mathbf{x}_i \cdot \mathbf{x}) + b$

From dot products to kernels

dot product $x_i \cdot x_j$ = similarity between x_i and x_j

- can we use other similarity measures to go non-linear ?
- can we define similarity measures for non-numerical data?

- ullet use ϕ to map data in a high-dimensional feature space
- compute the dot product in the feature space
- kernel function is defined as $k(x, y) = \langle \phi(x), \phi(y) \rangle$

- ullet use ϕ to map data in a high-dimensional feature space
- compute the dot product in the feature space
- kernel function is defined as $k(x, y) = \langle \phi(x), \phi(y) \rangle$

- ullet use ϕ to map data in a high-dimensional feature space
- compute the dot product in the feature space
- kernel function is defined as $k(x, y) = \langle \phi(x), \phi(y) \rangle$

- use ϕ to map data in a high-dimensional feature space
- compute the dot product in the feature space
- kernel function is defined as $k(x, y) = \langle \phi(x), \phi(y) \rangle$

Kernels: the Similarity Measure Interpretation

From dot products to kernels

in practice, the RBF kernel is very often used

$$k(x,z) = \exp(-\gamma ||x-z||^2) \in [0,1]$$

and can be interpreted as a similarity measure between x and z

Kernels for non-numerical data

kernels can be used to compare DNA sequences, graphs, images...

- kernels are symmetric, i.e. k(x,z) = k(z,x)
- kernels can be combined (sum, product, etc.)

the Gram matrix K s.t. $k_{ij} = k(\mathbf{x}_i, \mathbf{x}_i)$ should be positive semi-definite

Kernels: the Similarity Measure Interpretation

From dot products to kernels

in practice, the RBF kernel is very often used

$$k(x, z) = \exp(-\gamma ||x - z||^2) \in [0, 1]$$

and can be interpreted as a similarity measure between x and z

Kernels for non-numerical data

kernels can be used to compare DNA sequences, graphs, images...

- kernels are symmetric, i.e. k(x, z) = k(z, x)
- kernels can be combined (sum, product, etc.)

the Gram matrix K s.t. $k_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ should be positive semi-definite

Kernelised SVMs for Non-Linear Data

Kernelised SVM Formulation

Dual form of kernelised SVMs for non-separable data

for non-linearly non-separable data, the solution is given by

$$\max \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k (\mathbf{x}_i, \mathbf{x}_j)$$

s.t. $C \ge \alpha_i \ge 0$ and $\sum_{i=1}^{n} \alpha_i t_i = 0$

and to make predictions with $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = \sum_{i=1}^{n} \alpha_i t_i k(\mathbf{x}_i, \mathbf{x}) + b$

Kernel parameters

SVM complexity also depends on the kernel parameter, e.g. for RBF kernel

$$k(x, z) = \exp(-\gamma ||x - z||^2) \in [0, 1]$$

- small parameter $\gamma =$ focus on large structures
- large parameter $\gamma =$ focus on small details

Experimental Settings

Dataset

- artificial problem "Two Moons" (sklearn.datasets.make_moons)
- n = 30 (inc. 3 mislabelled) with non-linear support vector machine
 - meta-parameter C: regularisation constant (simple \leftrightarrow complex)
 - $\bullet \ \ \mathsf{meta}\text{-}\mathsf{parameter}\ \gamma \mathsf{:}\ \mathsf{scale}\ \mathsf{at}\ \mathsf{which}\ \mathsf{we}\ \mathsf{"look"}\ \mathsf{at}\ \mathsf{data}\ \mathsf{(small}\ \leftrightarrow \mathsf{large)}$

Results with 10-fold Cross-Validation

Results with Suboptimal Meta-parameter Choices

Going Further with Kernels

Can we Use Kernels Only with SVMs?

Short answer

any method where instances appear through dot products can be kernelised

More details

many methods have been kernelised (non-exhaustive list):

- linear regression
- logistic regression
- principal component analysis
- clustering techniques

warning: complexity must be controlled by regularisation techniques

Softwares for Kernel Machines

LIBSVM

supports kernels, most frequently used implementation, many wrappers

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

LIBLINEAR

very efficient implementation of linear SVMs, much faster, many wrappers

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

scikit-learn

provides an interface to LIBSVM from Python

- http://scikit-learn.org/stable/modules/svm.html
- http://scikit-learn.org/stable/modules/generated/ sklearn.svm.SVC.html

Outline of this Lesson

- maximum margin classifiers
- linear SVMs for separable data
- linear SVMs for non-separable data
- kernels and similarity measures
- kernelised SVMs for non-linear data
- going further with kernels

References

many tutorials, see e.g. http://www.kernel-machines.org

