PhD meeting

Octavio A. Villarreal Magaña

Istituto Italiano di Tecnologia, Genova, Italy

March 28th, 2017

1 Done

- 2 Solution of anticipated event and approach to delayed event
- 3 Summer schools and workshops
- 4 Further work

- 1 Done
- 2 Solution of anticipated event and approach to delayed event
- 3 Summer schools and workshops
- 4 Further work

Anticipation of an event

Solved the problem of an anticipated event (90 %)

Worked on Introduction to Convex Optimization exam

• Studied Roy's course to give the exam this week

- 1 Done
- 2 Solution of anticipated event and approach to delayed event
- 3 Summer schools and workshops
- 4 Further work

Method to solve anticipated event

- Detect when a touchdown or lift-off occurs (just related to reference for now)
- Update list of current events [Shahbazi 2015]
- Compute next list events according to new state of current events

k	$g_1(k)$	$g_2(k)$	$g_3(k)$	$g_4(k)$	$I_1(k)$	$I_2(k)$	$I_3(k)$	$I_4(k)$
0	0	0	0	0	0	0	0	0
1	2.4 (2.3)	3.6	3.6	2.4,	1.4	2.6	2.6	1.4
2	4.8	6	6	4.8	3.8	5	5	3.8
3	7.2	8.4	8.4	7.2	6.2	7.4	7.4	6.2
4	9.6	10.8	10.8	9.6	8.6	9.8	9.8	8.6
5	12	13.2	13.2	12	11	12.2	12.2	11

Simulation parameters

• Simulated a slower convergence in the oscillator equations (i.e., lowered the gains $\alpha=0.05$ and $\beta=0.05$)

- Gait parameters:
 - $G = 1 \prec 2 \prec 3 \prec 4$
 - $D_f = 0.8$
 - $S_f = 1/3\frac{1}{5}$
 - $\bullet \ \Delta = [0.15, 0.15, 0.15, 0.15]$

Duty factor without feedback

Duty factor with feedback

Position and angular frequency of the legs without feedback

Position and angular frequency of the legs with feedbac

1 Done

- 2 Solution of anticipated event and approach to delayed event
- 3 Summer schools and workshops
- 4 Further work

 Numerical methods for optimal control problems (NUMOC) (Rome, Italy, June 19th-23rd)

 Machine Learning Crash Course (Genova, Italy, June 26th-30th)

 BMVA Computer Vision Summer School (Lincoln, UK, July 3rd-7th)

Approach delayed event

 Predict the new time of the delayed event based on sensor information and model [Shahbazi 2016]

 Use Model Predictive Control approach to ensure that the legs fulfill an specified schedule (not sure if this is the right way, main problem: disturbance model) [De Schutter 2001]

 On-off approach: wait until the leg reaches an event and update list of events

- 1 Done
- 2 Solution of anticipated event and approach to delayed event
- 3 Summer schools and workshops
- 4 Further work

Further work

• Use the proposed strategy in the current framework

Consider a delay in the occurrence of an event (prediction)

Give Roy's exam (this week)

Thank you. Questions or comments?