ECON 7343 - Homework 5

Due Friday, Oct. 6th

- 1. Consider a Ramsey model with depreciation of δ , population growth of n, a time discount rate of β and production function of $y = k^{1/2}$. Solve for the steady state level of consumption per capita in terms of the three parameters.
- 2. Consider two Ramsey economies which are the same in every respect except for their time discount rates, β . People in country A discount the future more than those in country B (i.e. $\beta^A < \beta^B$). Assume both countries start off at the same initial capital stock, k_0 , which is below both of their steady states. Which country will have higher initial consumption? Is it possible for the two countries stable arms to cross?
- 3. A Ramsey model with population growth of n is in steady state. There is an unanticipated increase in n. Draw graphs of how $\ln c_t$, $\ln k_t$, and r_{t+1} change over time in response to the change in population growth.
- 4. This problem involves a decentralized Ramsey model. Individuals have utility of $V = \sum_{t=0}^{\infty} \beta^t u(c_t)$ and dynamic budget constraint of $a_{t+1} = (1+r_t)a_t + w_t + x_t c_t$. Individuals take the time path of w_t, x_t and r_t as given. They will try to optimize lifetime utility by selecting a consumption path given their initial assets a_0 .

Firms operate production technologies of $y_t = f(k_t)$, which are in per-worker terms. Firms are profit-maximizing, taking the wage rate w_t and rental cost of capital, R_t , as given. There is no population growth.

The financial sector is not perfectly competitive. The financial sector collects a percentage, ϕ , of the total savings in the economy as their profits. These profits are returned as dividends back to the individual members of the economy in equal shares, meaning that $x_t = \phi k_t$. However, individuals do not take into account how x_t is determined when they make their optimization. They take x_t as given.

- A. Write down the Euler equation for the economy. That is, using what you know from above, write down the Euler equation showing how c_{t+1} and c_t are related to the value of k_{t+1} .
- B. Write down the economy-wide budget constraint. That is, the equation relating k_{t+1} to k_t and c_t .
- C. What is the steady state value of k in this economy?
- D. There is an unexpected, permanent shock upwards to ϕ . Draw diagrams showing how c_t , R_t , and r_t respond to the shock.
- E. What value of ϕ would make the steady-state level of k equal to the Golden Rule level of k^{GR} ? Briefly explain the intuition behind this answer.
- 5. Take a Ramsey model in which the budget constraint is $k_{t+1} = f(k_t) + (1 \delta)k_t (1 + \tau)c_t$, where τ functions like a consumption tax. The economy starts in steady state in period zero. Draw a graph of $\ln c_t$ for each of the following four cases:

- In period 5, there is a surprise increase in τ , and this increase is permanent
- In period 5, there is a surprise increase in τ , and this increase will only last until period 10
- In period 0, it is announced that in period 5 there will be a permanent increase in τ
- In period 0, it is announced that in period 5 there will be a 50% chance that τ will increase
- 6. In an OLG model, the government taxes each young person a fixed amount T. The government invests this tax, paying the person back $(1 + r_{t+1})T$ when they are old. Set up and solve an OLG model incorporating this. Show how this "fully funded" social security system changes the steady state outcome for capital per worker.
- 7. Individuals live for two periods. They earn labor income of w_t in the first period of their life, and consume in both periods. Their utility function is $U = (1 \beta) \ln c_1 + \beta \ln c_2$, and they take the interest rate of r as exogenous to their consumption decision.
 - (a) What is the optimal amount of savings (s_t) done by an individual?

Production in this economy uses both physical and human capital. The production function is $y_t = k_t^{\alpha} h_t^{1-\alpha}$. The wages of a young person are thus $w_t = (1-\alpha)k_t^{\alpha} h_t^{1-\alpha}$.

There is a tax on savings at the rate of τ . The proceeds of this tax are used to finance the accumulation of human capital. There is no population growth. Physical capital accumulates as $k_{t+1} = (1 - \tau_{t+1})s_t$. Human capital accumulates as $h_{t+1} = x + \tau_{t+1}s_t$. The value x is an amount of exogenously given human capital (basic skills) that is always present.

- (b) Derive an expression for y_{t+1} as a function of y_t .
- (c) What tax rate, τ_{t+1}^* , maximizes y_{t+1} ? Draw a graph relating the optimal tax rate to the level of y_t , making sure to indicate the optimal tax as y_t goes to zero and the optimal tax as y_t goes to infinity.
- (d) Assume that in this economy, the tax rate is always optimal. That is, $\tau_{t+1} = \tau_{t+1}^*$ in every period. Does the economy have a steady state growth rate or a steady state level of income?
- (e) Now assume that taxes are set forever at $\tau_{t+1} = 0$ for every period. Does the economy have a steady state growth rate or a steady state level of income?