- 题目1
 - Assume we have following address binding table and value of registers:

Address	Value	Register	Value
0x100	0x10	%eax	0x10
0x110	0x11	%ebx	0x100
0x120	0x12		
••••			
0x190	0x19		
0x200	0x20		

- 题目1
 - Please fill in the table below

Operand	Value		
%ebx	0X/00		
\$0x150	0x150		
0x170	OXIT		
(%ebx)	0 X 1 0		
(%ebx,%eax)	6× 11		
0x30(%ebx)	0×13		
80(%ebx,%eax,2)	OXIT		

• 题目1

• Suppose registers and bound values will be reset as above after each instruction. Please fill in the table below: (Write all if there are more than one destinations and None if there is no destination)

Instruction	Destination	Value
addl %eax,%ebx	% ebx	OX/IO
subl %eax,(%ebx)	0 X 100	0
leal 0x50(%eax), %edx	%edx	0 × 60
movzbl %al, %ebx	%ebx	0×00000000
movsbl %bh, %ecx	% e ex	0X 0000000

• 题目1

• Assume the initial value of the flags is 0. Fill the table below

Instruction	OF	SF	ZF	CF
leal(%eax),%ebx	0	0	0	0
subl %ebx, %eax	O		0	
xorl %eax, %eax	0	0		0
test %eax, %ebx	0	0		0

• 题目2

- Translate the following assembly into C codes.
- You can name local variables represented by -12(%ebp), -8(%ebp)...or a,b,c... freely as you like.
- The beginning of C codes is given.

```
push
        %ebp
        %esp,%ebp
        $0x10, %esp
   movl $0x3,-0xc(%ebp)
   movl $0x2,-0x8(%ebp)
   movl $0x1,-0x4(%ebp)
   jmp
        .L1
.L2
        -0x4(%ebp),%eax
   movl
   movl %eax,-0x10(%ebp)
   movl -0x8(%ebp),%eax
   movl %eax,-0x4(%ebp)
        -0x10(%ebp),%eax
   movl
   addl %eax,-0x8(%ebp)
   addl $0x1,-0xc(\%ebp)
.L1
   cmpl $0x5,-0xc(%ebp)
       .L2
   jle
   movl -0x8(%ebp), %eax
   leave
   ret
```

```
int -0xc(%ebp) = 3; int i = 3;
int -0x8(%ebp) = 2; or int b = 2;
.....
```

```
int i = 3;
int b = 2;
int c = 1;
while (i <= 5)
    int d = c;
    c = b;
    b += d;
    i++;
return b;
```