# Nested control structures

for iterating\_var in sequence:

for iterating\_var in sequence:

statements(s)

statements(s)

if test expression:
Body of if
elif test expression:
Body of elif
else:

Body of else

while expression:

while expression:

statement(s)

statement(s)

#### Nested if: to check number is zero, positive or negative

```
num = float(input("Enter a number: "))
if num >= 0:
    if num == 0:
        print("Zero")
    else:
        print("Positive number")
else:
    print("Negative number")
```

#### Finding biggest of three numbers

\_\_\_\_\_\_

### Example for nested if

```
gender=input('enter you gender [m/f]')
if gender=='m':
    age=int(input('enter your age: '))
    if age>21:
        print('eligible for marriage')
    else:
        print('not eligible for marriage')
elif gender=='f':
    age=int(input('enter your age: '))
    if age>18:
        print('eligible for marriage')
    else:
        print('not eligible for marriage')
```

#### Nested for statement

```
for j in range(1,11):
    print("hello")
```

```
for i in range(1,10+1):
    print(i)
    for j in range(1,10+1):
        print(j,end=" ")
    print()
```

```
for iterating_var in sequence:
    for iterating_var in sequence:
        statements(s)
```

```
for i in range(1,11):
    for j in range(1,11):
        print("hello")
```

### Write a program to generate multiplication table

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10  | 11  | 12  |
|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| 2  | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18  | 20  | 22  | 24  |
| 3  | 6  | 9  | 12 | 15 | 18 | 21 | 24 | 27  | 30  | 33  | 36  |
| 4  | 8  | 12 | 16 | 20 | 24 | 28 | 32 | 36  | 40  | 44  | 48  |
| 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45  | 50  | 55  | 60  |
| 6  | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54  | 60  | 66  | 72  |
| 7  | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63  | 70  | 77  | 84  |
| 8  | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72  | 80  | 88  | 96  |
| 9  | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81  | 90  | 99  | 108 |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90  | 100 | 110 | 120 |
| 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99  | 110 | 121 | 132 |
| 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

## Multiplication table

```
m=n=10
for i in range(1,m+1):
    for j in range(2,n+1):
        print(i*j,end="\t")
print()
```

```
for j in range(1,11):
print(2*j,end=" ")
```

```
i=2 3 4
for j in range(1,11):
    print(i*j,end=" ")
```

```
for i in range(1,11):
    for j in range(1,11):
        print(i*j,end="\t")
        print()
```

### Print the following pattern

$$1 = 1$$
 $1 + 2 = 3$ 
 $1 + 2 + 3 = 6$ 
 $1 + 2 + 3 + 4 = 10$ 
 $1 + 2 + 3 + 4 + 5 = 15$ 

### To print 1 + 2 + 3 + 4 = 10

```
n=4
sum=1
print(1,end="")
for i in range(2,n+1):
    sum=sum+i
    print('+',i,end="")
print("=",sum)
```

```
n=4
sum=0
for i in range(1,n+1):
    sum=sum+i
    print(i,"+",end=" ")
print("=",sum)
```

```
for n in range(1,m+1):
    sum=1
    print(1,end="")
    for i in range(2,n+1):
        sum=sum+i
        print("=",sum)

1=1
1+2+3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15

for i m range(2,n+1):
    sum=sum+i
    print("+',i,end="")

print("=",sum)
```

# Printing snake ladder

| 100 | 99 | 98 | 97   | 96   | 95 | 94  | 93  | 92 | 91 |
|-----|----|----|------|------|----|-----|-----|----|----|
| 81  | 82 | 1  | 84   | 85 ( | 86 | 87  | 88  | 89 | 90 |
| 80  | 79 | 78 | 77   | 76   | 16 | AM  | 73  | 72 | 1  |
| 61  | 62 | 63 | 64   | 65   | 66 | 67  | 68  |    | 40 |
| 60  | 59 |    | 51   | 56   | 55 | 54  | 53  | 52 | 51 |
| 0/  |    | 43 | 44   | 45   | 15 | 47  | 484 | 49 | 50 |
| 40  | 39 | 38 | 1000 | 36   | 35 | 34  | 33  | 32 | 31 |
| 21  | 22 | 1  | 24   | 25   | 26 | 3/6 | 78  | 29 | 30 |
| 20  | 19 | 18 | 17   | 16   | 15 | 14  | 1   | 28 | 11 |
| 1   | 2  | 3  | 4    | 5    | 6  | 7   | 8   | 9  | 10 |

# Printing snake ladder

| 100 | 99 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 91 |
|-----|----|----|----|----|----|----|----|----|----|
| 81  | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 80  | 79 | 78 | 77 | 76 | 75 | 74 | 73 | 72 | 71 |
| 61  | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 60  | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 |
| 41  | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 40  | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 |
| 21  | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 20  | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 |
| 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |

### snake ladder problem

```
# snake ladder problem
n = 100
for j in range(5):
  for i in range(n, n - 10, -1):
       print(i, end = " ")
  print()
  n = 20
 for i in range(n, n + 10):
       print(i + 1, end = " ")
  print()
```

# Generate all 3 digit palindrome numbers.

- 101
- 1 1 1
- 1 2 1
- 1 3 1
- 1 4 1
- 1 5 1
- 1 6 1
- 171
- 181
- 1 0 1
- 1 9 1
- 2 0 2
- 2 1 2
- 2 2 2
- 2 3 2
- 2 4 2
- 2 5 2
- 2 6 2
- - -
- 2 7 2
- 2 8 2

### Generate all 3 digit palindrome numbers.

## Pgm to print Fibonacci series up to n



third=first+second; assign sec to first assign third to sec

### Pgm to print Fibonacci series up to n

```
n=100
first=0
second=1
third=1
print(first,second,end=" ")
while(third<=n):
    print(third,end=" ")
    third=first+second
    first=second
    second=third</pre>
```

Use while wherever we have to

## Print the pattern

A
BCD
EFGHI
JKLMNOP
QRSTUVW XY

# Printing pattern

```
i=65
while(i<90):
    print(chr(i),end=" ")
    if i in (65,68,73,80):print()
    i=i+1</pre>
```

```
for i in range(65,91):
    print(chr(i),end=" ")
    if i in (65,68,73,80):print()
```