Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 1

Równania różniczkowe rzędu pierwszego o zmiennych rozdzielonych. Równania różniczkowe rzędu pierwszego rozwiązywane metodą podstawiania.

ZADANIA

1.1. Rozwiazać równania różniczkowe

a)
$$x^2 \frac{dy}{dx} = \sin \frac{1}{x}$$
,

b)
$$\frac{dy}{dx} = 2xy^2 - x^2 \frac{dy}{dx}$$

c)
$$x^2 \frac{dy}{dx} + y - a = 0$$

1.1. Rozwiązać równania różnicz
a)
$$x^2 \frac{dy}{dx} = \sin \frac{1}{x}$$
,
b) $\frac{dy}{dx} = 2xy^2 - x^2 \frac{dy}{dx}$,
c) $x^2 \frac{dy}{dx} + y - a = 0$,
d) $x\sqrt{1+y^2} + y\sqrt{1+x^2} \frac{dy}{dx} = 0$,
e) $x \frac{dy}{dx} + 1 = x^3 - \frac{dy}{dx}$,
f) $\sin x \sin y \frac{dy}{dx} = \cos x \cos y$,
g) $e^{-\frac{1}{x}}y^3 + x^2y^2 \frac{dy}{dx} = 0$,
h) $\frac{dy}{dx} = \frac{x}{y} \cdot \frac{1+x}{1+y}$,
i) $x(1+e^y) - e^y \frac{dy}{dx} = 0$,
j) $\frac{dy}{dx} = \frac{\tan y}{2}$

e)
$$x \frac{dy}{dx} + 1 = x^3 - \frac{dy}{dx}$$
,

f)
$$\sin x \sin y \frac{dy}{dx} = \cos x \cos y$$

g)
$$e^{-\frac{1}{x}}y^3 + x^2y^2\frac{dy}{dx} = 0$$

$$h) \frac{dy}{dx} = \frac{x}{y} \cdot \frac{1+x}{1+y},$$

i)
$$x(1+e^y) - e^y \frac{dy}{dx} = 0$$

j)
$$\frac{dy}{dx} = \frac{\operatorname{tg} y}{x}$$

1.2. Rozwiązać zagadnienia początkowe dla równań różniczkowych

a)
$$y' \sin x = y \ln y$$
, $y(\frac{\pi}{2}) = e$,

b)
$$x\sqrt{1-y^2}dx + y\sqrt{1-x^2}dy = 0$$
, $y(0) = 1$,

c)
$$y' = y^2(1+x^2)$$
, $y(0) = 2$,

d)
$$e^y(y'-1) = 1$$
, $y(0) = 0$,

1.3. Rozwiązać równania różniczkowe metodą przez podstawienie

a)
$$\frac{dy}{dx} = x + y + 3$$

a)
$$\frac{dy}{dx} = x + y + 3$$
,
b) $\frac{dy}{dx} = 3x - 2y + 1$,
c) $\frac{dy}{dx} = (x + y)^2$,

c)
$$\frac{dy}{dx} = (x+y)^2,$$

1.4. Rozwiązać równania jednorodne z warunkiem początkowym

a)
$$(y-2x)\frac{dy}{dx} = 2y + x$$
, $y(0) = 0$

a)
$$(y-2x)\frac{dy}{dx} = 2y + x$$
, $y(0) = 0$,
b) $(x^2 + y^2)dx = 2xydy$, $y(1) = \sqrt{2}$,
c) $y' = \frac{4y^2 - x^2}{2xy}$, $y(1) = 1$.

c)
$$y' = \frac{4y^2 - x^2}{2xy}$$
, $y(1) = 1$

ODPOWIEDZI

1.1. a) $y = \cos \frac{1}{x} + c$, b) $y = \frac{-1}{\ln(1+x^2)+C}$, c) $y = a + Ce^{\frac{1}{x}}$,

d) $\sqrt{1+x^2} + \sqrt{1+y^2} = C$, e) $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + x - 2\ln|x+1| + C$, $x \neq -1$, f) $\sin x \cos y = C$, g) $e^{-\frac{1}{x}} + \ln|y| = C$, h) $\frac{1}{2}y^2 + \frac{1}{3}y^2 = \frac{1}{2}x^2 + \frac{1}{3}x^3 + C$, i) $x^2 - 2\ln(1+e^y) = C$, j) $y = \arcsin(Cx)$.

1.2. a) $y = e^{\operatorname{tg} \frac{x}{2}}$, b) $y = \sqrt{1 - (1 - \sqrt{1 - x^2})^2}$, c) $y = \frac{-6}{6x + 2x^3 - 3}$, d) $y = \ln(2e^x - 1)$. **1.3.** a) $y = Ce^x - x - 4$, b) $y = \frac{1}{2}(3x + 1 + \frac{3 - e^{C - 2x}}{2})$, c) $y = -x + \operatorname{tg}(x + c)$.

1.4. a) $x^2 + 4xy - y^2 = 0$, b) $y = \sqrt{x(x+1)}, x > 0$, c) $y = x\sqrt{\frac{1+x^2}{2}}, x > 0$.