Quiz: Natural Language Processing & Word Embeddings

Congratulations! You passed! Go to next item Grade **Latest Submission** To pass 80% or received 100% Grade 100% higher 1. Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors could be 1/1 point 10000 dimensional, so as to capture the full range of variation and meaning in those words. False ○ True Expand The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.

2.	What is t-SNE?	1/1 point
	A linear transformation that allows us to solve analogies on word vectors	
	An open-source sequence modeling library	
	A supervised learning algorithm for learning word embeddings	
	A non-linear dimensionality reduction technique	
	∠ [¬] Expand	

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

1/1 point

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

False

True

✓ Correc

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1 / 1 point
	$e_{man} - e_{woman} pprox e_{aunt} - e_{uncle}$	
	$igsqcup e_{man} - e_{aunt} pprox e_{woman} - e_{uncle}$	
	\checkmark $e_{man} - e_{uncle} pprox e_{woman} - e_{aunt}$	
	✓ Correct The order of words is correct in this analogy.	
	$ ightharpoonup e_{man} - e_{woman} pprox e_{uncle} - e_{aunt}$	
	✓ Correct The order of words is correct in this analogy.	
	∠ [¬] Expand	
	Correct Great, you got all the right answers.	
	A be an embedding matrix, and let o_{4567} be a one-hot vector corresponding to word 4567. Then to get the bedding of word 4567, why don't we call $A*o_{4567}$ in Python?	1/1 point
	None of the answers are correct: calling the Python snippet as described above is fine.	
(This doesn't handle unknown words (<unk>).</unk>	
() The correct formula is $A^T st o_{4567}$	
(It is computationally wasteful.	
	∠ [¬] Expand	
(Correct Yes, the element-wise multiplication will be extremely inefficient.	

5.

When learning word embeddings, we pick a given word and try to predict its surrounding words or vice versa.	1/1 point
○ False	
True	
∠ [™] Expand	
 Correct Word embeddings are learned by picking a given word and trying to predict its surrounding words or vice versa. 	
7. True/False: In the word2vec algorithm, you estimate P(t / c), where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.	1 / 1 point
○ False	
True	
∠ ⁷ Expand	
Correct Yes, and are chosen from the training set to be nearby words.	

8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

1/1 point

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

 θ_t and e_c are both 500 dimensional vectors.

✓ Correct

- θ_t and e_c are both 10000 dimensional vectors.
- $\ensuremath{ \ensuremath{ \bigodot_t} }$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.

✓ Correct

 \square After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

∠⁷ Expand

- Correct Great, you got all the right answers.
- **9.** Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

1/1 point

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

True/False: θ_i and e_j should be initialized to 0 at the beginning of training.

- O True
- False

∠⁷ Expand

✓ Correct

 θ_i and e_j should be initialized randomly at the beginning of training.

10.	You have trained word embeddings using a text dataset of s_1 words. You are considering using these word
	embeddings for a language task, for which you have a separate labeled dataset of s_2 words. Keeping in mind that
	using word embeddings is a form of transfer learning, under which of these circumstances would you expect the
	word embeddings to be helpful?

1/1 point

⊘ Correct

 s_1 should transfer to s_2