Guidelines - 2

Design and Analysis of Algorithm Laboratory (PC-CS493)

Students are advised to follow the guidelines to prepare Laboratory Copy for PC-CS493:

- 1. Lab Copy should be prepared in your own handwriting using A4 Sheets
- 2. Only one side of the A4 sheets will be in use
- 3. Use proper format (given below) to prepare the Lab Copy
- 4. File up the A4 sheets by properly filling top sheets (one per assignment) and index page
- 5. The terminologies like "Problem definition, Algorithm and others" must be written in the lab report along with associated descriptions

Assignment Number 7

Problem definition: *Implement* Matrix Chain problem to find the minimum number of scalar multiplication needed using proper algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write algorithm for Matrix Chain including parentheses algorithm using dynamic programming [Reference: Introduction to Algorithms by Cormen]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Matrix Chain using dynamic programming [Reference: Introduction to Algorithms by Cormen]

Assignment Number 8

Problem definition: *Implement* MST Problem using appropriate algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write Prims algorithm [Reference: Fundamentals of Computer Algorithms by Sahni]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Prims Algorithm [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Assignment Number 10

Problem definition: *Implement* Single Source Shortest Path problem using proper algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write Dijkstra's Algorithm [Reference: Introduction to Algorithms by Cormen]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Dijkstra's Algorithm [Reference: Cormen]

Assignment Number 12

Problem definition: *Implement* All Pair of Shortest Path problem using proper algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write Floyd Warshall Algorithm [Reference: Class Note/ Cormen]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Floyd Warshall Algorithm [Reference: Class Note/ Cormen]

Assignment Number 14

Problem definition: *Implement* N-Queens problem using proper algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write algorithm for N-Queens problem using backtracking [Reference: Fundamentals of Computer Algorithms by Sahni]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of N Queens Problem using backtracking method [Reference: Fundamentals of Computer Algorithms by Sahni]

Assignment Number 18

Problem definition: Suppose you have an Undirected Graph and your assignment is to traverse all vertices. *Apply* suitable algorithm for this traversal. Mention the Data Structure and Compiler used in your program. *Analyze the complexity* of your program in *terms of time and memory usage*.

Algorithm: Write DFS/ BFS algorithm [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of DFS/ BFS [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Important Dates

Group	Assignment Number	Date of Assignment	Date of Submission
	7	18/4/2022	25/4/2022
	8	25/4/2022	23/5/2022
A	10	23/5/2022	30/5/2022
	12	30/5/2022	6/6/2022
	14	6/6/2022	13/6/2022
	18	13/6/2022	17/6/2022

Home Assignments

Problem Definition	Date of Assignments	Date of Submission
Assignment No.: 09		
Implement MST Problem using Kruskal's algorithm.	25/4/2022	23/5/2022
Mention the Compiler used in your program. Analyze		
the complexity value of your algorithm		
Assignment No.: 11		
Implement Single Source Shortest Path problem,		
allowing negative edge weights, using proper algorithm	23/5/2022	30/5/2022
design technique. Mention the Compiler used in your		
program. Analyze the complexity value of your		
algorithm.		
Assignment No.: 13		
Implement TSP problem using proper algorithm design	30/5/2022	6/6/2022
technique. Mention the Compiler used in your program.	30/3/2022	0/0/2022
Analyze the complexity value of your algorithm.		
Assignment No.: 15		
Implement Graph Coloring problem using proper		
algorithm design technique. Mention the Compiler used	6/6/2022	13/6/2022
in your program. Analyze the complexity value of your		
algorithm.		
Assignment No.: 16		
Implement Hamiltonian problem. Mention the Compiler	6/6/2022	13/6/2022
used in your program. Analyze the complexity value of	0/0/2022	13/0/2022
your algorithm.		
Assignment No.: 17		
Implement 15-Puzzle problem. Mention the Compiler	13/6/2022	17/6/2022
used in your program. Analyze the complexity value of	15/0/2022	1770/2022
your algorithm.		

- 1. For the above list of home assignments, you have to follow the same guidelines which you have maintained for regular assignments.
- 2. You have to write: Problem definition, Algorithm, Program Code, Result and Discussion and Complexity Analysis for the home assignments also.
- 3. For Home assignments, use **separate Index Page**
- 4. All home assignments should be arranged **after regular assignments**, **i.e. at last.**
- 5. For home assignments, students may submit printed copies.