DAFTAR ISI

LE	EMBA	AR PEN	NGESAHAN	iii
LF	EMBA	AR PEF	RNYATAAN	iv
KA	ATA I	PENGA	ANTAR	vi
Αŀ	BSTR	AK		vii
AŁ	BSTR	ACT		viii
DA	AFTA	R ISI		ix
DA	AFTA	R GAN	MBAR	xii
D A	AFTA	R TAB	EL	xiii
1	PEN	DAHU		1
	1.1		Belakang Masalah	
	1.2	Rumus	san Masalah	 . 3
	1.3	Batasa	ın Masalah	 . 3
	1.4	Tujuar	n Penelitian	 . 3
	1.5	Manfa	at Penelitian	 . 4
II	KAJ	IAN P	USTAKA	5
	2.1	Penger	rtian Klasifikasi Objek	 . 5
	2.2		Iones Object Detection Framework	
			Features	
		2.2.2		
		2.2.3		
		2.2.4		
Ш	ME	rodoi	LOGI PENELITIAN	10
	3.1	Tahapa	an Penelitian	 . 10
	3.2		Sistem	
	3.3		ng Strong Classifier	
		3.3.1	Input Dataset Pelatihan	
		3.3.2	Pembuatan <i>Haar like Features</i>	
		3.3.3	Pembuatan Decision Tree	
		3.3.4	Boosting	
		3.3.5	Pembuatan Attentional Cascade	
	3.4		rio Eksperimen dan Validasi	
	5.7	3.4.1	Pre-processing	
				 - 1

		3.4.2	Klasit	fikas	i.						•	٠			٠							٠			٠			18
		3.4.3	Anota	ısi .		• •				٠	•	٠		•	٠	٠		٠	 •	٠	•	٠	٠	•	٠	٠		19
IV	HAS	IL DA	N PEN	IBA	HA	SA	N																					20
	4.1	Trainin	ig Stroi	ng C	las	sific	er .					•			•							٠			•			20
		4.1.1	Input	Gan	ıba	r da	an l	abe	lin	g	9.	٠									•		•					20
		4.1.2	Gene	rate .	Нас	ar-l	like	Fee	atu	re	S			•	•					٠			٠		•		٠	21
		4.1.3	Calcu																									22
		4.1.4	Creat	e De	cis	ion	Tre	e fo	or e	ea	ch	F	ec	ıtı	ıre	?												26
		4.1.5	Boost	ing .				2000 2 9 5 (8					٠		•00			•0			÷.		*	1.0	•			33
		4.1.6	Train	ing (Cas	caa	le .					÷			•										•	•		38
	4.2	Validas	si																									40
		4.2.1	Valida	asi T	es I	Lap	ang	gan				٠																43
	4.3	Analisa	a Hasil								٠	•0	٠	•	•00	٠		•0	 •		(.	. •0	٠		. 90	٠		44
\mathbf{v}	KES	IMPUI	AN D	AN	SA	RA	N																					45
12	5.1	Kesim								٠			٠										٠			٠	0.57	45
	5.2	Saran .																										45
DA	AFTA.	R PUST	ГАКА																									47
A	Sour	ce Code	?																									48
В	Tabe	el data <i>t</i>	rainin	g																								49
C	Tabe	el pengo	lahan	data	a ga	aml	bar	val	lid	as	i																	52
D	Gam	ıbar Pel	latihar	Tes	La	apa	nga	an																				60
E	Tabe	el pengo	lahan	data	a ga	aml	bar	val	lid	as	i t	es	l	ap	aı	ng	a	n										62
DA	FTA	R RIW	AVAT	нп	UP																							63

DAFTAR GAMBAR

Gambar 2.1	Beberapa <i>Haar-like features</i> yang digunakan framework Viola-Jones	6
Gambar 2.2	Workflow dari Attentional Cascade	8
Gambar 3.1	Diagram alir untuk algoritma pelatihan klasifikasi objek	10
Gambar 3.2	Diagram alir untuk algoritma klasifikasi objek	10
Gambar 3.3	Contoh gambar Abudefduf, Amphiprion, Chaetodon dan contoh gambar-gambar negatif	11
Gambar 3.4	sub-window setiap kelas ikan yang akan dipelajari oleh classifier	13
Gambar 3.5	Sebuah fitur dua persegi panjang menghadap ke kiri, lokasi x = 12 piksel, lokasi y = 10 piksel, dengan ukuran 12 x 12 piksel.	13
Gambar 3.6	Gambaran fitur-fitur yang akan digunakan	14
Gambar 3.7	Contoh sebuah <i>decision tree</i> dengan kelas 0, 1, 2 dan 3	14
Gambar 3.8	titik awal sliding window (kotak hijau) dan titik akhir (kotak	
	kuning)	19
Gambar 3.9	Anotasi gambar ikan yang sudah diklasifikasi	19
Gambar 4.1	Gambar-gambar yang akan dipakai untuk training	20
Gambar 4.2	source code: read gambar, labelisasi, pengubahan ke	
	greyscale, dan memastikan ukuran gambar 350 x 200 piksel .	20
Gambar 4.3	source code: labelisasi gambar sesuai dengan foldernya	21
Gambar 4.4	source code: load gambar-gambar dari folder yang	21
C	bersangkutan dan menggabungkannya	21
Gambar 4.5	source code: sebuah data dalam features memiliki semua	
	informasi yang diperlukan untuk melakukan perhitungan nilai sebuah fitur. Tipe-tipe fitur akan menentukan rumus	
	perhitungan fitur tersebut	22
Gambar 4.6	source code: write_csv() mengambil semua gambar,	
	label, fitur dan mengkalkulasi semua fitur untuk ketiga	
	sub-window	23
Gambar 4.7	source code: class Dataset	24
Gambar 4.8	source code: offset ini di-inisalisasi untuk setiap kelas	
	Dataset sehingga bisa diakses langsung oleh fungsi	
	Find_Feature_Value	25
Gambar 4.9	source code: offset ini di-inisalisasi untuk setiap kelas	
	Dataset sehingga bisa diakses langsung oleh fungsi	~
	Find_Feature_Value()	26

Gambar 4.10	source code: data training, data testing dan data validation	
	disimpan kedalam array X_train, Y_train,	
	X_test, Y_test, X_valid, Y_valid. Yang lalu	
	disimpan kedalam splits	27
Gambar 4.11	source code: get data dan readcsv yang digunakan oleh split	
	data	27
Gambar 4.12	source code: build_all_tree untuk membuat semua	
	decision tree untuk setiap fitur	28
Gambar 4.13	source code: class node digunakan untuk menyimpan	
	informasi cabang dan threshold pada node decision tree	28
Gambar 4.14	source code: class digunakan untuk menyimpan tinggi	
	maksimal dan minimal split pada decision tree. Semua data	
	lainnya disimpan pada node	29
Gambar 4.15	source code: fungsi utama dari class DecisionTreeClassifier.	29
	source code: fungsi get_best_split	30
	source code: fungsi split hanya bertugas membagi node	
	berdasarkan threshold yang sudah ditemukan	30
Gambar 4.18	source code: information_gain() mencari data	
	dengan menghitung gini atau entropy	31
Gambar 4.19	source code: perhitungan entrophy	31
	source code: perhitungan gini	31
	source code: fungsi untuk mencari mayoritas kelas pada leaf	
	node	31
Gambar 4.22	source code: fungsi fit () adalah fungsi yang dipanggil	
	untuk mulai membangun decision tree setelah dibuat	32
Gambar 4.23	source code: Predict() digunakan untuk melakukan	
	prediksi dengan decision tree yang sudah dibuat	32
Gambar 4.24	source code: penyimpanan decision tree kedalam pickle	33
	source code: training_strong_classifier	34
	source code: inisialisasi bobot gambar sebelum/emphBoosting	35
	source code: pengurutan weak classifier berdasarkan akurasi	35
	source code: pencarian nilai bobot boosting menggunakan	
	<pre>fungsi start_boosting()</pre>	36
Gambar 4.29	source code: klasifikasi yang dilakukan setelah setiap iterasi	
	boosting	37
Gambar 4.30	source code: bentuk class PickleTreeFinal	37
	source code: bentuk class Cascade	38
	source code: fungsi untuk mengisi stages pada Cascade	39
	source code: class CascadeStage	39
	source code: pelatihan stage dalam Cascade	39
	source code: fungsi penyimpanan Cascade ke pickle dengan	
	menggunakan fungsi dump_to_pickle lagi	40
Gambar 4.36	Gambaran <i>cascade</i> window 1 (kiri) dan cara kerjanya	40

Gambar 4.37	source code: predict.py untuk melakukan klasifikasi	
	sebenarnya (bagian 1)	1
Gambar 4.38	source code: predict.py untuk melakukan klasifikasi	
	sebenarnya (bagian 2)	2
Gambar 4.39	Ketiga kelas ikan	2
Gambar 4.40	Ketiga ikan yang akan diklasifikasi 4	3
Gambar 4.41	Gambar tes Amphiprion23. Kotak merah menunjukan	
	ekspektasi klasifikasi yang benar untuk kelas Amphiprion,	
	karena offset diletakan disitu. Kotak hijau menunjukan	
	lokasi klasifikasi yang dilakukan sliding window ketika	
	mengklasifikasi gambar Amphiprion23 4	4

DAFTAR TABEL

Tabel 4.1	Hasil boosting pada ketiga window	38
Tabel 2.1	Gambar-gambar yang digunakan untuk training	49
Tabel 3.1	Hasil prediksi menggunakan cascade dan sliding window	52
Tabel 4.1	Gambar-gambar yang digunakan untuk training tes lapangan	60
Tabel 5.1	Hasil prediksi menggunakan cascade dan sliding window	62