ASSIGNMENT 1: TEXT CLASSIFICATION

GNG5125 Data Science Applications

Spring-Summer 2022

Group 12

Yinruo Jiang (300274815) Rasheeq Mohammad (6849734) Shahin Mahmud (300274789)

Text Classification

- Assignment of a document to one or more categories
- Supervised machine learning task
- Applications: spam filtering, readability assessments, etc.
- Goal: classify the author given a set of texts belonging to the same genre and language
 - Science fiction
 - English

Texts

	Titles	Author	Year of Publication
1	Star Born	Andre Norton	1957
2	The Goddess of Atvatabar	William R. Bradshaw	1892
3	Twenty Thousand Leagues Under the Sea (slightly abridged)	Jules Verne	1872
4	A Princess of Mars	Edgar Rice Burroughs	1912
5	The Lost World	Arthur Conan Doyle	1912

a Princess of Mars

Data Preparation

Goal

Prepare data for feature engineering

Simplify Preprocess Tokenize Clean Sample

Simplify Text

- Used regex to find the start and end of the text to ignore copyright and license sections
 - o Decreases computational overhead

Normalize Accented Characters

- Leveraged the <u>unidecode</u> library to transform accented characters into their base forms
 - "Café" becomes "Cafe"
 - Dimensionality reduction

Expand Contractions

- Used the <u>contractions</u>
 library expand contractions
 - "You're" becomes "You are"
 - Dimensionality reduction
 - Distinct expansions are not always possible
 - Should "I'd" expand to "I had" or "I would"?
 - <u>pycontractions</u> is an alternative library
 - Employs Word Mover's Distance (WMD)

Common C	contractions	s in English
aren't - are not	l'm - l am	that's - that is
can't - cannot	I've - I have	there's - there is
didn't - did not	isn't - is not	we're - we are
don't - do not	let's - let us	what's - what is
he'll - he will	she'll - she will	you'll - you will

Tokenize Text

Tokenized the text into words

Clean Text

- Removed punctuation, numbers, special characters, etc.
- Converted text to lower case
- Removed stop words
- Performed lemmatization
 - Stemming is less resource-intensive
 - Opted for lemmatization since it is linguistically motivated, and we are dealing with a text classification problem

[9]	/	0.8s						Python
		Authors	Titles	Number of Words in Raw Text	Number of Words in Simplified Text	Number of Words in Preprocessed Text	Number of Words in Tokenized Text	Number of Words in Cleaned Text
	0	Andre Norton	Star Born	367551	348402	348660	71828	29333
	1	William R. Bradshaw	The Goddess of Atvatabar	582554	563280	563659	109510	47696
	2	Jules Verne	Twenty Thousand Leagues under the Sea (slightl	609064	589919	590361	123803	50111
	3	Edgar Rice Burroughs	A Princess of Mars	390249	371188	371227	75137	31870
	4	Arthur Conan Dovle	The Lost World	443413	424311	424852	89354	34862

Sample Text

- Create samples of 100 words from the start to the end of the text
- Select 200 random samples from the set of samples for each text

	Cleaned Samples	Author
0	delicately ready flee first hint suspected bel	Andre Nortor
1	explain could one make plain feeling sensible	Andre Nortor
2	stubbornly gray murmur wonstead went drone ach	Andre Nortor
3	seeming unconcern sssuri first intimation hunt	Andre Nortor
4	raf first reaction must still merman young str	Andre Nortor
995	must difficult one otherwise creature would co	Arthur Conan Doyle
996	face flashed back went south america solitary	Arthur Conan Doyle
997	page disappointing however contained nothing p	Arthur Conan Doyle
998	one indian group dragged forward edge cliff ki	Arthur Conan Doyle
999	day sat late mcardle news editor explaining wh	Arthur Conan Doyle
	rows × 2 columns	, a and Condition

Clean Text (Advanced)

Removed the most common words

Goal

Create features for modeling

- ☐ n-grams
 - Predict the occurrence of a word based on the occurrence of its n − 1 words
- ☐ Bag-of-words (BOW)
 - Describe the occurrence of words using fixed-length vectors
- ☐ Term frequency-inverse document frequency (TFIDF)
 - o Reflect how relevant a word is

n-grams

Most frequent bigrams in cleaned samples

n-grams

Most frequent bigrams in cleaned (advanced) samples

BOW & TFIDF

- o BOW
 - CountVectorizer
 - o Fit
 - o Transform
- o TFIDF
 - TfidfTransformer (use vector generated using CountVectorizer)
 - o Fit
 - o Transform

Number of splits = 10

Test size = 0.1

Random state = 0

Modeling & Analysis

Goal

Train and evaluate models for prediction Use pipelines to simplify process

Support Vector Machine

• Sets the best decision boundary between vectors that belong to the given text and those that do not

Decision Tree

• Builds a decision tree based on answers to yes-no questions

KNeighbor

• Implements classification based on voting by nearest k-neighbors

Random Forest

• Uses ensemble learning and decision trees

Multinomial Naïve Bayes

• Assumes the effect of a certain feature is independent from other ones

```
Vector Machine (SVM)
leaned Samples
= Pipeline([("bow", bow cln tr),
           ("tfidf", tfidf cln tr),
            ("clf", SGDClassifier(loss="hinge", penalty=
fleSplit(n_splits=n_splits, test_size=test_size, random_
pross_val_score(pipeline, labeled_texts_df["Cleaned Samp
amp type to avg acc["SVM + Cleaned Samples"] = scores.me
dvanced Cleaned Samples
= Pipeline([("bow", bow adv cln tr),
            ("tfidf", tfidf_adv_cln_tr),
            ("clf", SGDClassifier(loss="hinge", penalty=
fleSplit(n_splits=n_splits, test_size=test_size, random_
cross_val_score(pipeline, labeled_texts_df["Advanced Cle
amp type to avg acc["SVM + Advanced Cleaned Samples"] =
```

Pipelines

BOW + TFIDF + classifier

ShuffleSplit

cross val score

1	•	£3.13	
		Classifier + Sample Type	Average Accuracy
	0	SVM + Cleaned Samples	0.997
	1	SVM + Advanced Cleaned Samples	0.998
	2	DT + Cleaned Samples	0.838
	3	DT + Advanced Cleaned Samples	0.828
	4	KN + Cleaned Samples	0.974
	5	KN + Advanced Cleaned Samples	0.971
	6	RF + Cleaned Samples	0.971
	7	RF + Advanced Cleaned Samples	0.969
	8	NB + Cleaned Samples	0.983
	9	NB + Advanced Cleaned Samples	0.989

Prediction

Goal

Test model and perform error analysis

Champion models: Naïve Bayes and SVM

- Classification Report
- Confusion Matrix

NB + Cleaned Samples				
Predicti	ion Actual	Pred	icted Wrong	
877 Arthur Conan Doy	le Jules Verne	2	False	
NB + Advanced Cleaned	i Samples			
Prediction	Actual	Pred	icted Wrong	
70 Jules Verne Will	liam R. Bradshaw	ı	False	
NB + Cleaned Samples				
	precision r	recall	f1-score	support
Andre Norton	1.00	1.00	1.00	200
Arthur Conan Doyle	1.00	1.00	1.00	201
Edgar Rice Burroughs	1.00	1.00	1.00	200
Jules Verne	0.99	1.00	1.00	199
William R. Bradshaw	1.00	1.00	1.00	200
accuracy			1.00	1000
macro avg	1.00	1.00	1.00	1000
weighted avg	1.00	1.00	1.00	1000
NB + Advanced Cleaned	d Samples			
	precision r	ecall	f1-score	support
Andre Norton	1.00	1.00	1.00	200
Arthur Conan Doyle	1.00	1.00	1.00	200
Edgar Rice Burroughs	1.00	1.00	1.00	200

accuracy			1.00	1000
macro avg	1.00	1.00	1.00	1000
weighted avg	1.00	1.00	1.00	1000

Champion 1: Naïve Bayes

Report

Champion 1: Naïve Bayes

Confusion Matrix

SVM + Cleaned Samples

Empty DataFrame

Columns: [Prediction, Actual, Predicted Wrong]

Index: []

SVM + Advanced Cleaned Samples

weighted avg

SVM + Advanced Cleaned Samples						
Predictio	n A	ctual Pre	dicted Wror	ng		
308 Arthur Conan Doyl	e Andre No	orton	Fals	se		
SVM + Cleaned Samples						
	precision	recall	f1-score	support		
Andre Norton	1.00	1.00	1.00	200		
Arthur Conan Doyle	1.00	1.00	1.00	200		
Edgar Rice Burroughs	1.00	1.00	1.00	200		
Jules Verne	1.00	1.00	1.00	200		
William R. Bradshaw	1.00	1.00	1.00	200		
accuracy			1.00	1000		
macro avg	1.00	1.00	1.00	1000		
weighted avg	1.00	1.00	1.00	1000		
CVM + Advanced Cleaned	Comples					
SVM + Advanced Cleaned	•					
	precision	recall	f1-score	support		
Andre Norton	0.99	1.00	1.00	199		
Arthur Conan Doyle	1.00	1.00	1.00	201		
•••						
accuracy			1.00	1000		
macro avg	1.00	1.00	1.00	1000		

1.00

1.00

1.00

1000

Champion 2: SVM

Report

Champion 2: SVM

Confusion Matrix

Conclusion

- Champion classifiers: Naïve Bayes & SVM
- Advanced cleaning performed as well as "normal" cleaning
- Decision Tree classifier performed badly potentially due to a high-dimensional feature space
- Naïve Bayes classifier performed the best and was simple to use as well
- Will explore ways to analyze and account for bias in samples