Introdução à Inteligência Artificial

João Paulo Aires

Índice

- $01 \longrightarrow Recap$
- 02 --> Introdução ao Aprendizado Supervisionado
- 03 --- Aprendizado Baseado em Instâncias (e Distâncias)
- 04 --- Algoritmos Baseados em Instâncias

01 →

Recap

Paradigmas de AM

- O treinamento de um sistema de aprendizado pode ser:
 - Supervisionado
 - Semi-Supervisionado
 - Self-Supervisionado
 - Não Supervisionado
 - Por Reforço

Projetando um Sistema de Aprendizado

Dados

Tipos de Atributos

- Nominal (qualitativo, categórico)
 - Ex.: cor, profissão, tipo sanguíneo
- Ordinal (qualitativo, categórico)
 - Ex: qualidade (ruim, médio, bom), dias da semana
- Intervalar (quantitativo, numérico)
 - Ex: data, temperatura em Célcius
- Racional (quantitativo, numérico)
 - Ex: peso, tamanho, idade, temperatura em Kelvin

Pré-Processamento de Dados

Conversão de Valores Nominais

- Codificação 1-de-n (one-hot encoding)
 - Um atributo binário associado a cada valor nominal
 - Exemplo:
 - Codificar {amarelo, vermelho, verde, azul laranja, branco}
 - 100000 amarelo
 - 010000 vermelho
 - 001000 verde
 - 000100 azul
 - 000010 laranja
 - 000001 branco

02 →

Introdução ao Aprendizado Supervisionado

(definição informal)

- Dada uma coleção de dados detalhados (neste caso 5 exemplos de Esperança e 5 de Gafanhoto), decida a qual tipo de inseto o exemplo não rotulado abaixo pertence:
- Obs: **Esperança** = tipo de gafanhoto-verde

Esperança ou Gafanhoto?

Gafanhoto

Para qualquer domínio de interesse podemos medir características

Podemos armazenar as características em

datasets

O problema de classificação agora pode ser expresso da seguinte forma:

 Dada uma base de treino (Base), preveja o rótulo da classe dos exemplos ainda não vistos

ID do inseto	Comp. do abd.	Comp. das ant.	Classe
1	2.7	5.5	G
2	8.0	9.1	E
3	0.9	4.7	G
4	1.1	3.1	G
5	5.4	8.5	E
6	2.9	1.9	G
7	6.1	6.6	Е
8	0.5	1.0	G

Podemos armazenar as características em

datasets

O problema de classificação agora pode ser expresso da seguinte forma:

- Dada uma base de treino (Base), preveja o rótulo da classe dos exemplos ainda não vistos
- Exemplo n\u00e3o visto

9	5.1	7.0	????
	0.1	7.0	100

ID do inseto	Comp. do abd.	Comp. das ant.	Classe
1	2.7	5.5	G
2	8.0	9.1	E
3	0.9	4.7	G
4	1.1	3.1	G
5	5.4	8.5	E
6	2.9	1.9	G
7	6.1	6.6	Е
8	0.5	1.0	G

Exemplo não visto antes =

11

5.1 7.0

???????

- Podemos "projetar" o exemplo não visto antes dentro do mesmo espaço que os dados de treino.
- Acabamos de abstrair os detalhes do nosso problema particular. Será muito mais fácil falar de pontos no espaço.

Esperança

Gafanhoto

Definindo classificação formalmente:

$$\mathbf{x}^{(i)} = \left[x_j^{(i)}\right]_{i=1}^m \in X^m$$

$$Y = \{y_1, \dots, y_k\}$$

$$D = \left\{ \mathbf{x}^{(i)}, f\left(\mathbf{x}^{(i)}\right) \right\}_{i=1}^{N}$$

$$\hat{f} = X^m \to Y$$

Esperança

Gafanhoto

- Funciona exatamente como a classificação, mas atributo meta é contínuo em vez de discreto;
- Também pode ser visto sob a ótica de aproximação de funções
 - Descobrir a função que mapeia os atributos preditivos em um valor real
 - Em geral, busca-se minimizar uma função de custo
 - Erro quadrático médio, etc

Overfitting

Underfitting

Formalizando Regressão

$$x^{(i)} = [x_j^{(i)}]_{j=1}^m \in X^m$$
$$f(x^{(i)}) \in \mathbb{R}$$
$$D = \{x^{(i)}, f(x^{(i)})\}_{i=1}^N$$

Descobrir \hat{f} que aproxima f minimizando uma função de erro ${m e}$

03 →

Aprendizado Baseado em Instâncias (e Distâncias)

Instance-based Learning

- Paradigma baseado em instâncias
 - Ou em "memória" (memory-based learning)
- Não constrói um modelo preditivo
 - Aprendizado preguiçoso (lazy)
 - Só olha dados de treino quando precisa classificar um objeto novo
 - Tem como premissa:
 - Instâncias similares pertencem à mesma classe! (classificação)
 - Instâncias similares têm valores (contínuos) semelhantes de atributo alvo (regressão)

Instance-based Learning

 Ideia básica: se caminha como um pato, faz "quack" como um pato e parece um pato, então, provavelmente é um pato!

O que é Similaridade?

O que é Similaridade?

É difícil definir **similaridade** mas... "Sabemos quando vemos"

Como descobrir o real sentido de similaridade é uma questão filosófica, vamos partir para uma abordagem mais pragmática.

Similaridade X Dissimilaridade

- Similaridade
 - Medida que indica nível de semelhança entre dois objetos
 - Quanto mais semelhantes, maior o seu valor
 - Geralmente valor \in [0, 1]
- Dissimilaridade
 - Medida que indica o quanto dois objetos são diferentes
 - Quanto mais diferentes, maior o seu valor
 - Geralmente valor \in [0, d_{max}] ou [0, + ∞]
- Medidas de similaridade e dissimilaridade são chamadas genericamente de "medidas de proximidade"

Proximidade

- Podemos analisar o nível de (dis)similaridade entre instâncias conforme a proximidade delas no espaço de instâncias
- Para tanto, precisamos definir uma medida de distância!

Definição:

Sejam x₁ e x₂ dois objetos do universo de possíveis objetos. A distância (dissimilaridade) entre x₁ e x₂ é um número real denotado por d(x₁, x₂)

Definição:

- Quando olhamos dentro de uma destas caixas pretas, observamos uma função aplicável a duas variáveis. Tais funções podem ser muito simples ou muito complexas.
- Em qualquer caso, é natual perguntarmos: que propriedades tais funções têm?

- Que propriedades são desejáveis a uma medida de distância?
 - \circ D(A, B) = D(B, A) Simetria
 - D(A, A) = 0
 Constância da auto-similaridade
 - D(A, B) = 0 ⇔ A = B Positividade (separação)
 - $D(A, C) \le D(A, B) + D(B, C) Designaldade triangular$

- Que propriedades são desejáveis a uma medida de distância?
 - \circ D(A, B) = D(B, A) Simetria
 - Do contrário, poderíamos afirmar: "Ana parece com Bia, mas
 Bia não parece com Ana"

- Que propriedades são desejáveis a uma medida de distância?
 - \circ D(A, B) = D(B, A) Simetria
 - Do contrário, poderíamos afirmar: "Ana parece com Bia, mas
 Bia não parece com Ana"
 - D(A, A) = 0 Constância da auto-similaridade
 - Do contrário, poderíamos afirmar : "Ana parece mais com Bia do que com ela mesma"

- Que propriedades são desejáveis a uma medida de distância?
 - \circ D(A, B) = D(B, A) Simetria
 - Do contrário, poderíamos afirmar: "Ana parece com Bia, mas Bia não parece com Ana"
 - D(A, A) = 0 Constância da auto-similaridade
 - Do contrário, poderíamos afirmar : "Ana parece mais com Bia do que com ela mesma"
 - D(A, B) = 0 ⇔ A = B Positividade (separação)
 - Do contrário, existirão objetos diferentes que você será incapaz de distinguir!

- Que propriedades são desejáveis a uma medida de distância?
 - \circ D(A, B) = D(B, A) Simetria
 - Do contrário, poderíamos afirmar: "Ana parece com Bia, mas
 Bia não parece com Ana"
 - D(A, A) = 0 Constância da auto-similaridade
 - Do contrário, poderíamos afirmar : "Ana parece mais com Bia do que com ela mesma"
 - D(A, B) = 0 ⇔ A = B Positividade (separação)
 - Do contrário, existirão objetos diferentes que você será incapaz de distinguir!
 - \circ D(A, C) ≤ D(A, B) + D(B, C) Designaldade triangular
 - Do contrário, poderíamos dizer: "Ana parece com Bia e Bia parece com Carla, mas Ana não parece com Carla"

Escolhendo uma medida de (dis)similaridade

"A escolha da medida de (dis)similaridade é importante para aplicações, e a melhor escolha é frequentemente obtida via uma combinação de experiência, habilidade, conhecimento e sorte."

Gan, G., Ma, C., Wu, J. **Data Clustering: Theory, Algorithms, and Applications.** SIAM Series on Statistics and Applied Probability, 2007.

Medidas de (Dis)similaridade:

- Espaço de Atributos Contínuo
- Espaço de Atributos Discreto
- Espaço de Atributos Misto

- Nosso foco será nas medidas mais amplamente utilizadas na prática
 - o Literatura sobre o assunto é vasta! **Pesquise!**

Definindo Medidas de Distância

Medidas de (Dis)similaridade:

- Atributos Contínuo
 - Distância Euclidiana

$$d^{E}(x^{(i)}, x^{(j)}) = ||x^{(i)} - x^{(j)}||_{2} = \sqrt{\sum_{k=1}^{m} (x_{k}^{(i)} - x_{k}^{(j)})^{2}}$$

Definindo Medidas de Distância

Medidas de (Dis)similaridade:

- Atributos Contínuo
 - Distância Euclidiana

$$d^{E}(x^{(i)}, x^{(j)}) = ||x^{(i)} - x^{(j)}||_{2} = \sqrt{\sum_{k=1}^{m} (x_{k}^{(i)} - x_{k}^{(j)})^{2}}$$

- **Métrica** (satisfaz as 4 propriedades vistas anteriormente)
- Visualização geométrica é uma hiper-esfera
- Implementações computacionais eficientes não computam raiz (operação monotônica)
- Atributos com maiores valores e variâncias tendem a dominar os demais...

Distância Euclidiana no Plano

Generalizando a Distância Euclidiana

- Atributos Contínuo
 - Distância de Minkowski

$$d^{p}(x^{(i)}, x^{(j)}) = ||x^{(i)} - x^{(j)}||_{p} = (\sum_{k=1}^{m} |x_{k}^{(i)} - x_{k}^{(j)}|^{p})^{1/p}$$

- Para p = 2: Distância **Euclidiana**
- Para p = 1: Distância de **Manhattan** (city block)
- Para p → ∞: Distância Suprema

$$d^{\infty}(x^{(i)}, x^{(j)}) = ||x^{(i)} - x^{(j)}||_{\infty} = \max_{1 \le k \le m} |x_k^{(i)} - x_k^{(j)}|$$

Generalizando a Distância Euclidiana

Distância de Minkowski Normalizada

$$d^{\infty}(x^{(i)}, x^{(j)}) = \frac{(\sum_{k=1}^{m} \delta_{ijk} | x_k^{(i)} - x_k^{(j)} |^p)^{1/p}}{\sum_{k=1}^{m} \delta_{ijk}}$$

- $\Box_{iik} = 0$ se $x_k^{(i)}$ ou $x_k^{(j)}$ forem ausentes
- $\Box_{iik} = 1$ se $x_k^{(i)}$ e $x_k^{(j)}$ forem conhecidos

- Permite cálculos na presença de valores ausentes
- Alternativa à **imputação** de valores

Exercício

 Calcule a distância Euclidiana normalizada entre todos os pares de instâncias abaixo:

X	x ₁	X ₂	X ₃	X ₄
x ⁽¹⁾	2	-1	???	0
x ⁽²⁾	7	0	-4	8
x ⁽³⁾	???	3	5	2
x ⁽⁴⁾	???	10	???	5

Cosseno

- Apropriado para atributos assimétricos
 - Muito utilizada em mineração de textos
 - Alta dimensionalidade e esparsidade
 - Muitos atributos, poucos não-nulos

$$cos(x^{(i)}, x^{(j)}) = \frac{x^{(i)T}x^{(j)}}{||x^{(i)}||||x^{(j)}||}$$

Cosseno

- Apropriado para atributos assimétricos
 - Muito utilizada em mineração de textos
 - Alta dimensionalidade e esparsidade
 - Muitos atributos, poucos não-nulos

de nulos
$$T_x(j)$$

$$cos(x^{(i)}, x^{(j)}) = \frac{x^{(i)T}x^{(j)}}{||x^{(i)}||||x^{(j)}||}$$

- Noção alternativa
 - Sejam d₁ e d₂ vetores de valores assimétricos:
 - $\mathbf{cos}(\mathbf{d}_1, \mathbf{d}_2) = (\mathbf{d}_1 \cdot \mathbf{d}_2) / ||\mathbf{d}_1|| ||\mathbf{d}_2||$
 - : produto interno
 - ||d||: tamanho do vetor d (norma)
- Mede o cosseno do ângulo entre os respectivos vetores!

Cosseno

Mede o cosseno do ângulo entre os respectivos vetores!

Exemplo (Numérico)

• Considere as instâncias $x_1 e x_2$ abaixo:

$$\mathbf{x}^{(1)} = [3\ 2\ 0\ 5\ 6\ 0\ 0\ 0\ 2\ 0\ 0]^{\mathsf{T}}$$

$$\mathbf{x}^{(2)} = [\mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{2}]^{\mathsf{T}}$$

Exemplo (Numérico)

• Considere as instâncias $x_1 e x_2$ abaixo:

$$\begin{aligned} \mathbf{x}^{(1)} &= [3\ 2\ 0\ 5\ 6\ 0\ 0\ 0\ 2\ 0\ 0]^{\mathsf{T}} \\ \mathbf{x}^{(2)} &= [1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 2]^{\mathsf{T}} \\ \mathbf{x}^{(1)\mathsf{T}} \,\mathbf{x}^{(2)} &= (3\ x\ 1)\ +\ (2\ x\ 0)\ +\ (0\ x\ 0)\ +\ (5\ x\ 0)\ +\ (6\ x\ 0)\ +\ 3\mathbf{x}(0\ x\ 0)\ +\ (2\ x\ 1)\ +\ (0\ x\ 0)\ +\ (0\ x\ 2)\ =\ 5 \\ ||\mathbf{x}_1|| &= \sqrt{3^2\ +\ 2^2\ +\ 0^2\ +\ 5^2\ +\ 0^2\ +\ 0^2\ +\ 0^2\ +\ 2^2\ +\ 0^2\ +$$

Exercício

• Calcular a **dissimilaridade** entre $x^{(1)}$ e $x^{(2)}$ usando a medida de similaridade cosseno:

$$x^{(1)} = [100410030]^T$$

$$x^{(2)} = [050231040]^T$$

04 →

Algoritmos Baseados em Instâncias

k-Nearest Neighbors

- k-vizinhos mais próximos
- Utiliza as k instâncias mais próximas (similares) para prever o atributo meta de uma instância ainda não vista

k-Nearest Neighbors

- Necessita de 3 coisas:
 - Base de treinamento
 - Medida de (dis)similaridade
 - Valor de k (número de vizinhos)

k-Nearest Neighbors

- Para classificar uma instância não-vista:
 - Calcule a (dis)similaridade para todas as instâncias de treino
 - Obtenha as k instâncias de treino mais similares (próximas)
 - Classifique a instância não
 vista na classe da maioria dos k
 vizinhos

k-NN com k = 1

k-Nearest Neighbors

se o exemplo mais próximo ao exemplo

desconhecido é da classe Esperança

então

classe é Esperança

senão

classe é Gafanhoto

- Esperança
- Gafanhoto

Aumentar o valor de k!

Sobre a escolha de k:

- Valor muito pequeno;
 - Função de discriminação muito flexível
 - Porém, sensível a ruído
 - Classificação pode ser instável!
 - Overfitting!!!!
- Valor muito grande;
 - Robusto a ruído
 - o Porém, vizinhança tende a ser heterogênea
 - Privilegia classe majoritária
 - Reduz flexibilidade da função discriminação
 - Underfitting!

Atenção 1!

Atributo \mathbf{x}_1 em centímetros. Atributo \mathbf{x}_2 em reais. Objeto mais próximo do rosa desconhecido é vermelho

Atributo \mathbf{x}_1 em milímetros. Atributo \mathbf{x}_2 em reais. Objeto mais próximo do rosa desconhecido é azul

K-NN

Atenção 1!

Atributo \mathbf{x}_1 em centímetros. Atributo \mathbf{x}_2 em reais. Objeto mais próximo do rosa desconhecido é vermelho

Atributo \mathbf{x}_1 em milímetros. Atributo \mathbf{x}_2 em reais. Objeto mais próximo do rosa desconhecido é azul

Solução? Normalizar os dados! Possibilidades:

 $z_i = (x_i - x_{min})/(x_{max} - x_{min}) \rightarrow \text{dados entre 0 e 1 (re-escalar)}$ $z_i = (x_i - \mu_x)/\sigma(x) \rightarrow \text{dados com média zero e desvio padrão 1 (padronizar)}$

Atenção 2!

Já vimos que a escolha da medida de (dis) similaridade mais apropriada depende:

- 1. do(s) tipo(s) dos atributos;
- 2. do domínio de aplicação! Conheça seus dados!

Atenção 2!

Já vimos que a escolha da medida de (dis) similaridade mais apropriada depende:

- 1. do(s) tipo(s) dos atributos;
- 2. do domínio de aplicação! Conheça seus dados!

Exemplo de escolha inapropriada:

- Euclidiana para atributos binários assimétricos

K-NN

Atenção 3!

Na versão básica do algoritmo, a indicação de calsse de cada vizinho possui o mesmo peso

- 1 voto por vizinho mais próximo.

Isso torna o algoritmo sensível à escolha de k

Uma alternativa para reduzir esta sensibilidade e permitir, assim, o aumento de k (aumentando a robustez a ruído) é ponderar cada voto pela respectiva distância

$$\hat{f}(\mathbf{x}^{(t)}) = \underset{y_j}{\operatorname{argmax}} \sum_{\left(\mathbf{x}^{(i)}, f(\mathbf{x}^{(i)})\right) \in NN} w_i \times I\left(y_j = f(\mathbf{x}^{(i)})\right) \qquad w_i = \frac{1}{d(\mathbf{x}^{(t)}, \mathbf{x}^{(i)})^2} \qquad I\left(y_j = f(\mathbf{x}^{(i)})\right) = \begin{cases} 1 & \text{se } y_j = f(\mathbf{x}^{(i)}) \\ 0 & \text{se } y_j \neq f(\mathbf{x}^{(i)}) \end{cases}$$

Atenção 4!

k-NN é um classificador lazy

- Não constrói modelo e atrasa a discriminação até a chegada dos dados não vistos
- Isso torna a classificação de novos objetos custosa computacionalmente!
 - Precisa calcular as distâncias de cada objeto a ser classificado para todos os objetos de treino
 - Possível solução?
 - Estruturas de dados eficientes!
 - KD-Tree

k-NN para Regressão

Adaptação é trivial:

$$\hat{f}(\mathbf{x}^{(t)}) = \frac{\sum_{\left(\mathbf{x}^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \in NN} w_i \times f(\mathbf{x}^{(i)})}{\sum_i w_i}$$

$$w_i = \frac{1}{d(\mathbf{x}^{(t)}, \mathbf{x}^{(i)})^2}$$

k-NN: Sumário

- Características sensíveis ao projeto:
 - Escolha de k
 - Escolha da medida de (dis) similaridade
- Pode ter poder de classificação elevado
 - Função de discriminação muito flexível para k pequeno
- Incrivelmente simples de implementar!
 - Tarefa para casa: implemente o k-NN!

k-NN: Exercício

- Descubra a classe do exemplo desconhecido com k=1 e com k=3.
- Utilize a distância Euclidiana e outras duas medidas de sua preferência. Compare os resultados.

Х	У	Classe
5	9	
7	9	
8	9	
9	8	
5	7	
7	7	
8	7	
7	6	
9	6	
9	4	
6	2	
2	5	0
4	4	0
1	3	
2	3	ŏ
3	3	0
6	3	0
3	2	0
1	1	0
x 5 7 8 9 5 7 9 6 2 4 1 2 3 6 3 1 4 8 9	y 9 9 9 8 7 7 7 7 6 6 4 2 5 4 3 3 3 3 2 1 1	00000
8	1	0
9	1	0
5	2	?