

## 16.7: Standard Molar Entropies

Because the entropy of a substance depends on the amount of substance, the pressure, and the temperature, it is convenient to describe the entropy of a substance in terms of  $S_m$ °, its **standard molar entropy**, i.e., as the entropy of 1 mol of substance at the standard pressure of 1 atm (101.3 kPa) and given temperature. Values of the standard molar entropies of various substances at 298 K (25°C) are given in the table. A table like this can be used in much the same way as a table of standard enthalpies of formation in order to find the entropy change  $\Delta S_m$ ° for a reaction occurring at standard pressure and at 298 K.

Table 16.7.1 The Standard Molar Entropies of Selected Substances at 298.15 K (25°C)

| Compound                         | $S_m^o$ /J K <sup>-1</sup> mol <sup>-1</sup> | Compound                       | $S_m^o$ /J $K^{-1}$ mol <sup>-1</sup> |
|----------------------------------|----------------------------------------------|--------------------------------|---------------------------------------|
| Solids                           |                                              | Diatomic Gases                 |                                       |
| C (diamond)                      | 2.377                                        |                                |                                       |
| C (graphite)                     | 5.74                                         | H <sub>2</sub>                 | 130.7                                 |
| Si                               | 18.8                                         | $D_2$                          | 145.0                                 |
| Ge                               | 31.1                                         | HCl                            | 186.9                                 |
| Sn (gray)                        | 44.1                                         | HBr                            | 198.7                                 |
| Pb                               | 64.8                                         | HI                             | 206.6                                 |
| Li                               | 29.1                                         | $N_2$                          | 191.6                                 |
| Na                               | 51.2                                         | O <sub>2</sub>                 | 205.1                                 |
| K                                | 64.2                                         | F <sub>2</sub>                 | 202.8                                 |
| Rb                               | 69.5                                         | $Cl_2$                         | 223.1                                 |
| Cs                               | 85.2                                         | Br <sub>2</sub>                | 245.5                                 |
| NaF                              | 51.5                                         | $I_2$                          | 260.7                                 |
| MgO                              | 26.9                                         | CO                             | 197.7                                 |
| AlN                              | 20.2                                         | Triatomic Gases                |                                       |
| NaCl                             | 72.1                                         | H <sub>2</sub> O               | 188.8                                 |
| KCl                              | 82.6                                         | NO <sub>2</sub>                | 240.1                                 |
| Mg                               | 32.7                                         | H <sub>2</sub> S               | 205.8                                 |
| Ag                               | 42.6                                         | CO <sub>2</sub>                | 213.7                                 |
| $I_2$                            | 116.1                                        | SO <sub>2</sub>                | 248.2                                 |
| $MgH_2$                          | 31.1                                         | N <sub>2</sub> O               | 219.9                                 |
| $AgN_3$                          | 99.2                                         | O <sub>3</sub>                 | 238.9                                 |
| Liquids                          |                                              | Polyatomic Gases( > 3)         |                                       |
| Hg                               | 76.0                                         | CH <sub>4</sub>                | 186.3                                 |
| Br <sub>2</sub>                  | 152.2                                        | C <sub>2</sub> H <sub>6</sub>  | 229.6                                 |
| H <sub>2</sub> O                 | 69.9                                         | C <sub>3</sub> H <sub>8</sub>  | 269.9                                 |
| H <sub>2</sub> O <sub>2</sub>    | 109.6                                        | C <sub>4</sub> H <sub>10</sub> | 310.2                                 |
| CH <sub>3</sub> OH               | 126.8                                        | C <sub>5</sub> H <sub>12</sub> | 348.9                                 |
| C <sub>2</sub> H <sub>5</sub> OH | 160.7                                        | C <sub>2</sub> H <sub>4</sub>  | 219.6                                 |
| $C_6H_6$                         | 172.8                                        | $N_2O_4$                       | 304.3                                 |
| BCl <sub>3</sub>                 | 206.3                                        | $B_2H_6$                       | 232.0                                 |



| Monatomic Gases |       | BF <sub>3</sub> | 254.0 |
|-----------------|-------|-----------------|-------|
| Не              | 126.0 | NH <sub>3</sub> | 192.5 |
| Ne              | 146.2 |                 |       |
| Ar              | 154.8 |                 |       |
| Kr              | 164.0 |                 |       |
| Xe              | 169.6 |                 |       |

This page titled 16.7: Standard Molar Entropies is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.