LINEAR DISCRIMINANT ANALYSIS LDA

PREDICTING GROUP MEMBERSHIP

HERVÉ ABDI STA 201

WHAT IS LDA FOR?

- **→ Predict group membership from Variables**
- ► X: an / by J predictor matrix
- Y: an / by K 0/1 group matrix

Boys and Girls!

TAKE FOUR MEASURES ON EACH FACE

PREDICTORS: 4 VARIABLES (LENGTH IN PIXELS)

Gender	1	2	3	4
G1	180	156	330	450
G2	168	156	360	480
G3	168	156	360	510
B1	156	144	360	480
B2	210	150	366	480
В3	162	144	342	438

C =	174	151	353	473
Means				

WHAT DO WE WANT?

- **→** We want predict gender from the variables
- → So let **Y** being the "Gender" matrix (DV)

Subject	Girl	Boy
G1	1	0
G2	1	0
G3	1	0
B1	0	1
B2	0	1
B3	0	1

How to Do It?

- **→** Best prediction = Best separation between groups
- **→** Best prediction = largest *F* in ANOVA
- Recall: $F = MS_{\text{between}} / MS_{\text{within}}$
- $F = (SS_{\text{between}} / SS_{\text{within}}) * (N K) / (K 1)$
- \rightarrow (N-K)/(K-1) is fixed
- So largest F → max (SS_{between} / SS_{within})

IDEA: COMBINE THE PREDICTORS

- ◆ Create a new variable f with largest F
- ➡ In fact largest ratio SS_B / SS_W
- → f = Xq f is a linear combination of columns of X

IN CASE WE HAVE FORGOTTEN

→ SS_B = sum of squared deviations Between Groups

→ SS_W = sum of squared deviations Within Groups

HERE: FOR EXAMPLE. X IS TOTAL DEVIATION

Gender	1	2	3	4
G1	6	5	-23	-23
G2	-6	5	7	7
G3	-6	5	7	37
B1	-18	-7	7	7
B2	36	-1	13	7
B 3	-12	-7	-11	-35

Means

BASIC RELATION OF ANOVA

→ Total deviation = between group + Within groups

How to Get X_B THE BETWEEN GROUP DEVIATION?

START WITH X

FIRST STEP: COMPUTE THE GROUP MEANS

Gender	1	2	3	4
G1	6	5	-23	-23
G2	-6	5	7	7
G3	-6	5	7	37
B1	-18	-7	7	7
B2	36	-1	13	7
B 3	-12	-7	-11	-35

Group	1	2	3	4
G	-2	5	-3	7
В	2	-5	3	-7

SECOND STEP: CREATE BETWEEN XB

Gender	1	2	3	4
G1	-2	5	-3	7
G2	-2	5	-3	7
G3	-2	5	-3	7
B1	2	-5	3	-7
B2	2	-5	3	-7
B 3	2	-5	3	-7

Group	1	2	3	4
G	-2	5	-3	7
В	2	-5	3	-7

How to Get X_W THE WITHIN GROUP DEVIATION?

FIRST STEP: COMPUTE THE GROUP MEANS

Gender	1	2	3	4
G1	6	5	-23	-23
G2	-6	5	7	7
G3	-6	5	7	37
B1	-18	-7	7	7
B2	36	-1	13	7
B 3	-12	-7	-11	-35

Group	1	2	3	4
G	-2	5	-3	7
В	2	-5	3	-7

 X_{W}

SECOND STEP: SUBTRACT THE MEANS TO GET WITHIN X_W : $X-M_G$

Gender	1	2	3	4
G1	8	0	-20	-30
G2	-4	0	10	0
G3	-4	0	10	30
B1	-20	-2	4	14
B2	34	4	10	14
B 3	14	-2	-14	-28

Group	1	2	3	4
G	-2	5	-3	7
В	2	-5	3	-7

FUNDAMENTAL RELATIONS

- → Total deviation is Between + Within. X = X_B + X_W
- **→ Total Sum of Squares** SS_T is: X^TX
- **→** Between & Within Orthogonal: $X_B^T X_W = 0$
- → And So: SS_{Total} = SS_{Between} + SS_{Within}
- So: $SS_T = X^TX = (X_B + X_W)^T(X_B + X_W)$ = $X_B^T X_B + X_W^T X_W$

RECAP:
$$X = X_B + X_W$$

1	2	3	4
6	5	-23	-23
-6	5	7	7
-6	5	7	37
-18	-7	7	7
36	-1	13	7
-12	-7	-11	-35

1	2	3	4
-2	5	-3	7
-2	5	-3	7
-2	5	-3	7
2	-5	3	-7
2	-5	3	-7
2	-5	3	-7

1	2	3	4
8	0	-20	-30
-4	0	10	0
-4	0	10	30
-20	-2	4	14
34	4	10	14
14	-2	-14	-28

LET US SQUARE ALL THAT ...

"Now that desk looks better. Everything's squared away, yessir, squaaaaaared away."

RECAP:
$$X = X_B + X_W$$

1	2	3	4
6	5	-23	-23
-6	5	7	7
-6	5	7	37
-18	-7	7	7
36	-1	13	7
-12	-7	-11	-35

1	2	3	4
-2	5	-3	7
-2	5	-3	7
-2	5	-3	7
2	-5	3	-7
2	-5	3	-7
2	-5	3	-7

1	2	3	4
8	0	-20	-30
-4	0	10	0
-4	0	10	30
-20	-2	4	14
34	4	10	14
14	-2	-14	-28

SQUARED AWAY: X XB XW

36+36+36 = (4+4+4) + (64+16+16) = 12 + 96 = 108

MAGIC OF THE SQUARES

$$SS_{\text{Total}} = SS_{\text{Between}} + SS_{\text{Within}}$$

$$\begin{bmatrix} 1872 & 174 & 966 & 3270 \end{bmatrix} \neq \begin{bmatrix} 24 & 150 & 54 & 294 \end{bmatrix} + \begin{bmatrix} 1848 & 24 & 912 & 2976 \end{bmatrix}$$

THE "SMALL F'S"

$$F = \frac{SS_{\text{Between}}}{SS_{\text{Within}}} \times \frac{N - K}{K - 1}$$

$$\frac{K-1}{N-K}F = \frac{SS_{\text{Between}}}{SS_{\text{Within}}}$$

$$4 \times [0.0130 \quad 6.2500) \quad 0.0592 \quad 0.0988]$$

IDEA: COMBINE THE PREDICTORS

Create a new variable f with largest F

→ In fact largest ratio SS_B / SS_W

→ f = Xq. So f is a linear combination of columns of X

EIGENMAGIC

$$\left(\mathbf{X}_{\mathbf{W}}^{\top}\mathbf{X}_{\mathbf{W}}\right)^{-1}\left(\mathbf{X}_{\mathbf{B}}^{\top}\mathbf{X}_{\mathbf{B}}\right) =$$

$$\begin{bmatrix} 1284.00 & -3210.00 & 1926.00 & -4494.00 \\ -12167.56 & 30418.90 & -18251.34 & 42586.46 \\ 524.56 & -1311.40 & 786.84 & -1835.96 \\ -17.24 & 43.10 & -25.86 & 60.34 \end{bmatrix}$$

WE NEED SOME (EIGEN) MAGIC

0.1048

-0.9936

0.0428

-0.0014

and $\lambda \approx 32550$

THE MEANS

DISCRIMINANT SCORES FOR THE MEANS

$$\mathbf{F}_{\mathbf{G}} = \mathbf{G} \times \mathbf{q}$$

$$= \begin{bmatrix} -2 & 5 & -3 & 7 \\ 2 & -5 & 3 & -7 \end{bmatrix} \begin{bmatrix} .105 \\ -.994 \\ .043 \\ -.001 \end{bmatrix}$$

$$= \begin{bmatrix} -5.32 \\ 5.32 \end{bmatrix}$$

THE OBSERVATIONS

$$\mathbf{F}_{\mathbf{X}} = \mathbf{X} \times \mathbf{q} =$$

 -5.29^{-} -5.315.355.36 5.32 5.27

A PICTURE

PLOT MEANS & OBSERVATIONS

A PICTURE

PLOT MEANS & OBSERVATIONS

CONFUSION MATRIX

HOW TO CLASSIFY? NEAREST MEAN

	Girls	Boys
Classified as	3	0
Girls		
Classified as	0	3
Boys		

6 out of 6: Perfect But

Not Surpring

FOUR VARIABLES & SIX OBSERVATIONS

THE REAL TEST

LEARNING & TESTING SETS

PREDICTORS: 4 VARIABLES (LENGTH IN MM)

Gender	1	2	3	4
B1	180	126	318	366
B2	162	162	342	276
B 3	150	150	330	384
G1	120	120	330	360
G2	168	96	300	354
G3	168	96	300	354

Old Face	174	151	353	473
Means				

IMPORTANT: CENTER WITH THE OLD MEANS

$$\mathbf{X}_{sup} = \begin{bmatrix} 6 & -25 & -35 & -107 \\ -12 & 11 & -11 & -197 \\ -24 & -1 & -23 & -89 \\ -54 & -31 & -23 & -113 \\ -6 & -55 & -53 & -119 \\ -6 & -55 & -53 & -119 \end{bmatrix}$$

F_{SUP}

$$\mathbf{F}_{\sup} = \mathbf{X}_{\sup} \mathbf{q} =$$

$$-24.1196$$

$$-24.3126$$

$$-51.9143$$
 -51.9143

$$-51.9143$$

A PICTURE

PLOT MEANS & OBSERVATIONS

B1

B2

B3

G1

B2

G2

G3

G3 G2 **B1**

G1

B3

Girls

Boys

CONFUSION MATRIX

HOW TO CLASSIFY? NEAREST MEAN

	Girls	Boys
Classified as	3	1
Girls		
Classified as	0	2
Boys		

5 out of 6. Not Perfect! (But better than I thought, though)

WHEN K > 2

No Problem:

GET K-1 DISCRIMINANT FUNCTIONS

GET 2D (OR MORE) DISCRIMINANT MAPS

BOOTSTRAP?

MEAN CONFIDENCE INTERVALS?

No Problem: Use Bootstrap

IS THE EARTH ROUND?

NULL HYPOTHESIS TESTING

No Problem: Use Permutation Tests

ALTERNATIVELY: USE BOOTSTRAP

CONCLUDING

TIME TO WRAP IT UP