UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2019/1

Prova da área IIA

1 - 5	6	7	Total

Nome:				Cartão:	
Ponto extra:	()Wikipédia ()Apresentação	()Nenhum	Tópico:		

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

	_ Cartão	•	
Tópico:			
Identidades	:		
$\operatorname{sen}(x) = \frac{1}{2}$	$\frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$	
senh(x) =	$\frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j} b^j, \binom{n}{j} = \frac{n!}{j!(n-j)!}$			
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\operatorname{cos}(y) + \operatorname{sen}(y)\operatorname{cos}(x)$			
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$			

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

_				
	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$			
	$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$			
	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$			
	$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$			
	$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$			
$\operatorname{sen}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$				
	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$			
	$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$			
	$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$			
	$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$			
	$-1 < x < 1, m \neq 0, 1, 2, \dots$			

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int e^{\lambda x} \sin(w x) dx = \frac{e^{\lambda x} (\lambda \cos(w x) + w \sin(w x))}{\lambda^2 + w^2}$$

Tabela	de	transformadas	de	Laplace:

Tabel	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{s}$ $\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (1.0 ponto) Considere a função

$$f(t) = tu(t-1) + (1-t)u(t-4)$$

Assinale as alternativas que indicam respectivamente uma expressão para f'(t) e $\mathcal{L}\{f'(t)\}$.

() $\mathcal{L}\{f'(t)\} = \frac{e^{-s} + e^{-4s}}{s}$

()
$$\mathcal{L}{f'(t)} = \frac{e^{-s} + e^{-4s}}{s}$$

()
$$f'(t) = u(t-1) - u(t-4)$$

()
$$\mathcal{L}{f'(t)} = \frac{e^{-s} - e^{-4s}}{s}$$

()
$$f'(t) = u(t-1) - 3u(t-4)$$

()
$$f'(t) = u(t-1) - u(t-4) - 3\delta(t-4)$$

()
$$\mathcal{L}{f'(t)} = \frac{(1+s)e^{-s} + (s-1)e^{-4s}}{s}$$

()
$$f'(t) = \delta(t-1) + u(t-1) - u(t-4)$$

()
$$\mathcal{L}{f'(t)} = \frac{(1-s)e^{-s} + (-s-1)e^{-4s}}{s}$$

()
$$f'(t) = \delta(t-1) + u(t-1) - u(t-4) + \delta(t-4)$$

$$(x) f'(t) = \delta(t-1) + u(t-1) - u(t-4) - 3\delta(t-4) (x) \mathcal{L}\{f'(t)\} = \frac{(1+s)e^{-s} - (3s+1)e^{-4s}}{s}$$

()
$$\mathcal{L}{f'(t)} = \frac{(1-s)e^{-s} - (3s+1)e^{-4s}}{s}$$

• Questão 2 (1.0 ponto) Seja

$$F(s) = \frac{-s^2 + 2s - 1}{(s^2 + 1)(s + 1)}$$

Assinale as alternativas que indicam respectivamente uma expressão equivalente para F(s) e f(t) = $\mathcal{L}^{-1}\{F(s)\}.$

()
$$F(s) = \frac{s-1}{s^2+1} - \frac{2}{s+1}$$

()
$$F(s) = \frac{-s+1}{s^2+1} - \frac{3}{s+1}$$

()
$$f(t) = \cos(t) - \sin(t) - 2e^{-t}$$

$$r(s) = \frac{1}{s^2 + 1} - \frac{1}{s + 1}$$

()
$$f(t) = \cos(t) - \sin(t) - 3e^{-t}$$

()
$$F(s) = \frac{-s-1}{s^2+1} - \frac{2}{s+1}$$

()
$$f(t) = -\cos(t) + \sin(t) - 2e^{-t}$$

$$(x) F(s) = \frac{s+1}{s^2+1} - \frac{2}{s+1}$$

()
$$f(t) = \cos(t) + \sin(t) - 3e^{-t}$$

()
$$F(s) = \frac{s+1}{s^2+1} - \frac{3}{s+1}$$

$$(x) f(t) = \cos(t) + \sin(t) - 2e^{-t}$$

• Questão 3 (1.0 ponto) Um objeto de massa m = 4Kg está inicialmente em repouso (x'(0) = 0)na posição x(0) = 0. A colisão com uma marreta no instante t = 1 faz sua velocidade subir instantaneamente para 1 m/s. Depois da colisão, o objeto desacelera devido à um atrito viscoso proporcional à sua velovidade com constante de proporcionalidade $\gamma = 1 \text{ Kg/s}$. Assinale as alternativas que indicam respectivamente um modelo matemático para a posição x(t) e a solução x(t).

()
$$4x''(t) + x(t) = 4\delta(t-1)$$

$$(x) x(t) = 4u(t-1)(1-e^{\frac{1-t}{4}})$$

()
$$x''(t) + 4x'(t) = 4\delta(t-1)$$

()
$$x(t) = 4u(t-1)(e^{-\frac{t}{4}})$$

$$(x) 4x''(t) + x'(t) = 4\delta(t-1)$$

()
$$x(t) = 2u(t-1)(2-e^{-\frac{t}{4}})$$

()
$$4x''(t) + x'(t) + x(t) = 4\delta(t-1)$$

()
$$x(t) = 4u(t-1)(1-e^{-\frac{t}{4}})$$

()
$$x''(t) + 4x(t) = 4\delta(t-1)$$

()
$$x(t) = 4u(t-1)(e^{\frac{1-t}{4}})$$

- \bullet Questão 4 (1.0 ponto) Assinale as alternativas que indicam as transformadas inversas das funções $F(s) = \ln\left(\frac{s^2 - 4}{s^2}\right)$ e G(s) = F'(s) respectivamente.
 - $() \frac{1}{t} (1 \operatorname{senh}(2t))$
- () $2 \left(\text{senh}(2t) 1 \right)$
- () $\frac{2\gamma + \ln(s^2 + 4)}{t}$ () $-2\gamma + \ln(s^2 + 4)$

- $() \frac{20\cosh(2t) + 4t \operatorname{senh}(2t)}{t^2}$
- $(\) \frac{2\gamma \ln(s^2 + 4)}{t}$

- Questão 5 (1.0 ponto) Dada a equação $f'''(t) = \int_0^t f(\tau)d\tau$, com as condições iniciais f(0) = f'(0)e f''(0) = 1, assinale as alternativas que indicam respectivamente $F(s) = \mathcal{L}\{f(t)\}\$ e f(t).

 - () $F(s) = \frac{s}{s^4 + 1}$ () $f(t) = \operatorname{senh}\left(\frac{\sqrt{2}}{2}t\right) \operatorname{sen}\left(\frac{\sqrt{2}}{2}t\right)$

 - () $F(s) = \frac{s}{s^4 1 + s}$ () $f(t) = \frac{1}{2} \left(\operatorname{senh}(t) \operatorname{sen}(t) \right)$
 - $(x) F(s) = \frac{s}{s^4 1}$
- () $f(t) = \cosh\left(\frac{\sqrt{2}}{2}t\right)\cos\left(\frac{\sqrt{2}}{2}t\right)$
- $(\)\ F(s) = \frac{1}{s^3 s}$
- $(x) f(t) = \frac{1}{2} (\cosh(t) \cos(t))$
- $(\) F(s) = \frac{1}{s^4 1}$
- () Nenhuma das anteriores

• Questão 6 (2.5 ponto) A temperatura em um forno industrial evolui no tempo conforme o seguinte modelo simplificado:

$$\begin{cases} v'(t) = -6(v(t) - T_a) + q(t) \\ q(t) = 4 \int_0^t (T_f - v(\tau)) d\tau - v'(t) \\ v(0) = 20 \end{cases}$$

onde v(t) representa a temperatura medida no forno, $T_a = 20^{\circ}$ C é temperatura ambiente, $T_f = 50^{\circ}$ C é temperatura de controle, q(t) é a potência de aquecimento. Use as técnicas das transformadas de Laplace para resolver o problema acima mostrando os passos do desenvolvimento claramente.

a) (1.25) Calcule as transformadas de Laplace $V(s) = \mathcal{L}\{v(t)\}\$ e $Q(s) = \mathcal{L}\{q(t)\}\$ e preencha os retângulos abaixo:

$$V(s) =$$

$$Q(s) =$$

$$v(t) =$$

$$q(t) =$$

Item a: Tomando transformada de Laplace, temos:

$$\begin{cases} sV(s) - 20 = -6\left(V(s) - \frac{20}{s}\right) + Q(s) \\ Q(s) = \frac{4}{s}\left(\frac{50}{s} - V(s)\right) - (sV(s) - 20) \end{cases}$$

Simplicamos e obtemos:

$$\begin{cases} (s+6) V(s) = 20 + \frac{120}{s} + Q(s) \\ Q(s) = 20 + \frac{200}{s^2} - V(s) \left(\frac{4}{s} + s\right) \end{cases}$$

Substituímos a segunda equação na primeira para obter:

$$\left(2s + 6 + \frac{4}{s}\right)V(s) = 40 + \frac{120}{s} + \frac{200}{s^2}$$

isto é:

$$(s^2 + 3s + 2) V(s) = 20s + 60 + \frac{100}{s}$$

assim:

$$V(s) = \frac{20s}{(s+1)(s+2)} + \frac{60}{(s+1)(s+2)} + \frac{100}{s(s+1)(s+2)}$$

Sabemos que:

$$\mathcal{L}^{-1} \left\{ \frac{s}{(s+1)(s+2)} \right\} = 2e^{-2t} - e^{-t}$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{(s+1)(s+2)} \right\} = -e^{-2t} + e^{-t}$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s(s+1)(s+2)} \right\} = \int_0^t \left(-e^{-2\tau} + e^{-\tau} \right) d\tau \quad \operatorname{prop}(5)$$

$$= \frac{1}{2} + \frac{1}{2}e^{-2t} - e^{-t}$$

assim:

$$v(t) = 50 - 60e^{-t} + 30e^{-2t}$$

Alternativamente, pode-se simplificar $V(s) = \frac{30}{s+2} + \frac{50}{s} - \frac{60}{s+1}$

E, finalmente:

$$Q(s) = 20 + \frac{200}{s^2} - sV(s) (4 + s^2)$$

$$= 60 \frac{s+6}{s(s+1)(s+2)}$$

$$= \frac{60}{(s+1)(s+2)} + \frac{360}{s(s+1)(s+2)}$$

Usando as transformadas inversas acima, temos:

$$q(t) = 180 - 300 e^{-t} + 120 e^{-2t}$$

• Questão 7 (2.5 pontos) Considere a função $F(s) = G(s) \frac{1}{1 - e^{-3s}} \text{ com } G(s) = \frac{e^{-2s}}{s^2 + 5s + 6}$.

a) (1.25 ponto) Calcule $\mathcal{L}^{-1}\{G(s)\}$.

b) (1.25 ponto) Calcule $\mathcal{L}^{-1}\{F(s)\}$.

item a: Como $G(s) = \frac{e^{-2s}}{(s+2)(s+3)}$ e $\mathcal{L}^{-1}\{\frac{1}{(s+2)(s+3)}\} = e^{-2t} - e^{-3t}$, temos que:

$$\mathcal{L}^{-1}\{G(s)\} = u(t-1)\left(e^{4-2t} - e^{6-3t}\right)$$

item b: Como $\frac{1}{1 - e^{-3s}} = \sum_{k=0}^{\infty} e^{-3ks}$, temos

$$F(s) = \frac{1}{(s+2)(s+3)} \sum_{k=0}^{\infty} e^{-(2+3ks)}$$

Portanto:

$$\mathcal{L}^{-1}{F(s)} = \sum_{k=0}^{\infty} u(t - (2+3k)) \left(e^{-2(t-(2+3k))} - e^{-3(t-(2+3k))}\right)$$