Language Technology

http://cs.lth.se/edan20/

Chapter 5, part 2: Word Sequences

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 7, 2020

Word Sequences

Words have specific contexts of use.

Pairs of words like *strong* and *tea* or *powerful* and *computer* are not random associations.

Psychological linguistics tells us that it is difficult to make a difference between *writer* and *rider* without context

A listener will discard the improbable *rider of books* and prefer *writer of books*

A language model is the statistical estimate of a word sequence.

Originally developed for speech recognition

The language model component enables to predict the next word given a sequence of previous words: the writer of books, novels, poetry, etc. and not the writer of hooks, nobles, poultry, . . .

N-Grams

The types are the distinct words of a text while the tokens are all the words or symbols.

The phrases from *Nineteen Eighty-Four*War is peace
Freedom is slavery

Ignorance is strength

have 9 tokens and 7 types.
Unigrams are single words
Bigrams are sequences of two words
Trigrams are sequences of three words

Trigrams

Word	Rank	More likely alternatives				
We	9	The This One Two A Three Please In				
need	7	are will the would also do				
to	1					
resolve	85	have know do				
all	9	the this these problems				
of	2	the				
the	1					
important	657	document question first				
issues	14	thing point to				
within	74	to of and in that				
the	1					
next	2	company				
two	5	page exhibit meeting day				
days	5	weeks years pages months				

Counting Bigrams With Unix Tools

- 1 tr -cs 'A-Za-z' '\n' < input_file > token_file
 Tokenize the input and create a file with the unigrams.
- tail +2 < token_file > next_token_file Create a second unigram file starting at the second word of the first tokenized file (+2).
- paste token_file next_token_file > bigrams Merge the lines (the tokens) pairwise. Each line of bigrams contains the words at index i and i+1 separated with a tabulation.
- And we count the bigrams as in the previous script.

Counting Bigrams in Python

```
bigrams = [tuple(words[inx:inx + 2])
           for inx in range(len(words) - 1)]
The rest of the count_bigrams function is nearly identical to
count_unigrams. As input, it uses the same list of words:
def count_bigrams(words):
    bigrams = [tuple(words[inx:inx + 2])
                for inx in range(len(words) - 1)]
    frequencies = {}
    for bigram in bigrams:
        if bigram in frequencies:
             frequencies[bigram] += 1
        else:
             frequencies[bigram] = 1
    return frequencies
```

Probabilistic Models of a Word Sequence

$$P(S) = P(w_1, ..., w_n),$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...P(w_n|w_1, ..., w_{n-1}),$
= $\prod_{i=1}^{n} P(w_i|w_1, ..., w_{i-1}).$

The probability P(It was a bright cold day in April) from Nineteen Eighty-Four corresponds to

It to begin the sentence, then was knowing that we have It before, then a knowing that we have It was before, and so on until the end of the sentence.

$$P(S) = P(It) \times P(was|It) \times P(a|It, was) \times P(bright|It, was, a) \times P(April|It, was, a, bright, ..., in).$$

Approximations

Bigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-1}),$$

Trigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1}).$$

Using a trigram language model, P(S) is approximated as:

$$P(S) \approx P(It) \times P(was|It) \times P(a|It, was) \times P(bright|was, a) \times ... \times P(April|day, in).$$

Maximum Likelihood Estimate

Bigrams:

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{\sum\limits_{w} C(w_{i-1}, w)} = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}.$$

Trigrams:

$$P_{MLE}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}.$$

Conditional Probabilities

A common mistake in computing the conditional probability $P(w_i|w_{i-1})$ is to use

$$\frac{C(w_{i-1}, w_i)}{\#bigrams}.$$

This is not correct. This formula corresponds to $P(w_{i-1}, w_i)$. The correct estimation is

$$P_{MLE}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{\sum\limits_{w} C(w_{i-1},w)} = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}.$$

Proof:

$$P(w_1, w_2) = P(w_1)P(w_2|w_1) = \frac{C(w_1)}{\#words} \times \frac{C(w_1, w_2)}{C(w_1)} = \frac{C(w_1, w_2)}{\#words}$$

Training the Model

The model is trained on a part of the corpus: the **training set** It is tested on a different part: the **test set**

The vocabulary can be derived from the corpus, for instance the 20,000 most frequent words, or from a lexicon

It can be closed or open

A closed vocabulary does not accept any new word

An open vocabulary maps the new words, either in the training or test sets, to a specific symbol, <UNK>

Probability of a Sentence: Unigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

Wį	$C(w_i)$	#words	$P_{MLE}(w_i)$
<g>></g>	7072	_	
a	2482	108140	0.023
good	53	108140	0.00049
deal	5	108140	$4.62 \ 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
literature	7	108140	$6.47 \ 10^{-5}$
of	3310	108140	0.031
the	6248	108140	0.058
past	99	108140	0.00092
was	2211	108140	0.020
indeed	17	108140	0.00016
already	64	108140	0.00059
being	80	108140	0.00074
transformed	1	108140	$9.25 \ 10^{-6}$
in	1759	108140	0.016
this	264	108140	0.0024
way	122	108140	0.0011
	7072	108140	< □0.065□

Probability of a Sentence: Bigrams

<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>

w_{i-1} , w_i	$C(w_{i-1}, w_i)$	$C(w_{i-1})$	$P_{MLE}(w_i w_{i-1})$
<s> a</s>	133	7072	0.019
a good	14	2482	0.006
good deal	0	53	0.0
deal of	1	5	0.2
of the	742	3310	0.224
the literature	1	6248	0.0002
literature of	3	7	0.429
of the	742	3310	0.224
the past	70	6248	0.011
past was	4	99	0.040
was indeed	0	2211	0.0
indeed already	0	17	0.0
already being	0	64	0.0
being transformed	0	80	0.0
transformed in	0	1	0.0
in this	14	1759	0.008
this way	3	264	0.011
way	18	122	0.148

Sparse Data

Methods:

Given a vocabulary of 20,000 types, the potential number of bigrams is $20,000^2 = 400,000,000$ With trigrams $20,000^3 = 8,000,000,000,000$

- Laplace: add one to all counts
- Linear interpolation:

$$P_{DelInterpolation}(w_n|w_{n-2},w_{n-1}) = \lambda_1 P_{MLE}(w_n|w_{n-2}w_{n-1}) + \lambda_2 P_{MLE}(w_n|w_{n-1}) + \lambda_3 P_{MLE}(w_n)$$

- Good-Turing: The discount factor is variable and depends on the number of times a n-gram has occurred in the corpus.
- Back-off

Laplace's Rule

$$P_{Laplace}(w_{i+1}|w_i) = \frac{C(w_i, w_{i+1}) + 1}{\sum\limits_{w} (C(w_i, w) + 1)} = \frac{C(w_i, w_{i+1}) + 1}{C(w_i) + Card(V)},$$

w_i, w_{i+1}	$C(w_i, w_{i+1}) + 1$	$C(w_i) + Card(V)$	$P_{Lap}(w_{i+1} w_i)$
<s> a</s>	133 + 1	7072 + 8635	0.0085
a good	14 + 1	2482 + 8635	0.0013
good deal	0 + 1	53 + 8635	0.00012
deal of	1 + 1	5 + 8635	0.00023
of the	742 + 1	3310 + 8635	0.062
the literature	1 + 1	6248 + 8635	0.00013
literature of	3 + 1	7 + 8635	0.00046
of the	742 + 1	3310 + 8635	0.062
the past	70 + 1	6248 + 8635	0.0048
past was	4 + 1	99 + 8635	0.00057
was indeed	0 + 1	2211 + 8635	0.000092
indeed already	0 + 1	17 + 8635	0.00012
already being	0 + 1	64 + 8635	0.00011
being transformed	0 + 1	80 + 8635	0.00011
transformed in	0 + 1	1 + 8635	0.00012
in this	14 + 1	1759 + 8635	0.0014
this way	3 + 1	264 + 8635	0.00045
way	18 + 1	122 + 8635	0.0022

Good-Turing

Laplace's rule shifts an enormous mass of probability to very unlikely bigrams. Good—Turing's estimation is more effective Let's denote N_c the number of n-grams that occurred exactly c times in the corpus.

 N_0 is the number of unseen n-grams, N_1 the number of n-grams seen once, N_2 the number of n-grams seen twice The frequency of n-grams occurring c times is re-estimated as:

$$c* = (c+1)\frac{E(N_{c+1})}{E(N_c)},$$

Unseen n-grams: $c* = \frac{N_1}{N_0}$ and N-grams seen once: $c* = \frac{2N_2}{N_1}$.

Good-Turing for *Nineteen eighty-four*

Nineteen eighty-four contains 37,365 unique bigrams and 5,820 bigram seen twice.

Its vocabulary of 8,635 words generates $86352^2 = 74.563.225$ bigrams whose 74.513.701 are unseen.

New counts:

• Unseen bigrams:
$$\frac{37,365}{74,513,701} = 0.0005$$
.
• Unique bigrams: $2 \times \frac{5820}{37,365} = 0.31$.

• Unique bigrams:
$$2 \times \frac{5820}{37.365} = 0.31$$
.

Etc.

74,513,701 37,365	0.0005	5	719	3.91
37 365	0.01			0.01
51,505	0.31	6	468	4.94
5,820	1.09	7	330	6.06
2,111	2.02	8	250	6 44
1,067	3.37	9	179	8 93
	2,111	2,111 2.02	2,111 2.02 8 1,067 3.37 9	2,111 2.02 8 250

Backoff

If there is no bigram, then use unigrams:

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} \tilde{P}(w_i|w_{i-1}), & \text{if } C(w_{i-1},w_i) \neq 0, \\ \alpha P(w_i), & \text{otherwise.} \end{cases}$$

$$P_{\mathsf{Backoff}}(w_i|w_{i-1}) = \begin{cases} P_{\mathsf{MLE}}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i)}{C(w_{i-1})}, & \text{if } C(w_{i-1},w_i) \neq 0, \\ P_{\mathsf{MLE}}(w_i) = \frac{C(w_i)}{\# \mathsf{words}}, & \text{otherwise.} \end{cases}$$

Backoff: Example

w_{i-1} , w_i	$C(w_{i-1}, w_i)$		$C(w_i)$	$P_{Backoff}(w_i w_{i-1})$
<g>></g>			7072	-
<s> a</s>	133		2482	0.019
a good	14		53	0.006
good deal	0	backoff	5	$4.62 \ 10^{-5}$
deal of	1		3310	0.2
of the	742		6248	0.224
the literature	1		7	0.00016
literature of	3		3310	0.429
of the	742		6248	0.224
the past	70		99	0.011
past was	4		2211	0.040
was indeed	0	backoff	17	0.00016
indeed already	0	backoff	64	0.00059
already being	0	backoff	80	0.00074
being transformed	0	backoff	1	$9.25 \ 10^{-6}$
transformed in	0	backoff	1759	0.016
in this	14		264	0.008
this way	3		122	0.011
way	18		7072	0.148

The figures we obtain are not probabilities. We can use the Good-Turing technique to discount the bigrams and then scale the unigram probabilities. This is the Katz backoff.

Quality of a Language Model (I)

The quality of a language model corresponds to its accuracy in predicting word sequences: $P(w_1, ..., w_n)$: The higher, the better.

We derive the model (the statistics) from a training set and evaluate this quality on a long unseen sequence sequence: The test set.

With the n-gram approximations, we have:

$$P(w_1, ..., w_n) = \prod_{i=1}^n P(w_i)$$
 Unigrams
$$P(w_1, ..., w_n) = P(w_1) \prod_{i=2}^n P(w_i | w_{i-1})$$
 Bigrams

$$P(w_1,...,w_n) = P(w_1)P(w_2|w_1)\prod_{i=3}^n P(w_i|w_{i-2},w_{i-1})$$
 Trigrams

etc.

Quality of a Language Model (II)

The probability value will depend on the length of the sequence. We take the geometric mean instead to standardize across different lengths:

$$\sqrt[n]{\prod_{i=1}^{n} P(w_i)}$$
 Unigrams $\sqrt[n]{P(w_1) \prod_{i=2}^{n} P(w_i|w_{i-1})}$ Bigrams ...

In practice, we use the log to compute the per word probability of a word sequence, the entropy rate:

$$H(L) = -\frac{1}{n}\log_2 P(w_1, ..., w_n).$$

Here the lower, the better

The figures are usually presented with the perplexity metric:

Mathematical Background

Entropy rate: $H_{rate} = -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 p(w_1,...,w_n)$. Cross entropy:

$$H(p,m) = -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 m(w_1,...,w_n).$$

We have:

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \sum_{w_1,...,w_n \in L} p(w_1,...,w_n) \log_2 m(w_1,...,w_n),$$

=
$$\lim_{n \to \infty} -\frac{1}{n} \log_2 m(w_1,...,w_n).$$

We compute the cross entropy on the complete word sequence of a test set, governed by p, using a bigram or trigram model, m, from set.

Other Statistical Formulas

• Mutual information (The strength of an association):

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

• T-score (The confidence of an association):

$$t(w_i, w_j) = \frac{mean(P(w_i, w_j)) - mean(P(w_i))mean(P(w_j))}{\sqrt{\sigma^2(P(w_i, w_j)) + \sigma^2(P(w_i)P(w_j))}}$$

$$\approx \frac{C(w_i, w_j) - \frac{1}{N}C(w_i)C(w_j)}{\sqrt{C(w_i, w_j)}}.$$

T-Scores with Word set

Word	Frequency	Bigram set + word	t-score
ир	134,882	5512	67.980
a	1,228,514	7296	35.839
to	1,375,856	7688	33.592
off	52,036	888	23.780
out	12,3831	1252	23.320

Source: Bank of English

Mutual Information with Word surgery

Word	Frequency	Bigram word + surgery	Mutual info
arthroscopic	3	3	11.822
pioneeing	3	3	11.822
reconstructive	14	11	11.474
refractive	6	4	11.237
rhinoplasty	5	3	11.085

Source: Bank of English

Mutual Information in Python

T-Scores in Python

Dimension Reduction

One-hot encoding of TFIDF encoding can produce very long vectors: Imagine a vocabulary one one million words per language with 100 languages.

A solution is to produce dense vectors also called word embeddings using a dimension reduction

This reduction is very close to principal component analysis or singular value decomposition

It can be automatically obtained through training or initialized with pretrained vectors

A Data Set: Salammbô

A corpus is a collection - a body - of texts.

Supervised Learning

Letter counts from Salammbô

Chapter	French		English	
	# characters	# A	# characters	# A
Chapter 1	36,961	2,503	35,680	2,217
Chapter 2	43,621	2,992	42,514	2,761
Chapter 3	15,694	1,042	15,162	990
Chapter 4	36,231	2,487	35,298	2,274
Chapter 5	29,945	2,014	29,800	1,865
Chapter 6	40,588	2,805	40,255	2,606
Chapter 7	75,255	5,062	74,532	4,805
Chapter 8	37,709	2,643	37,464	2,396
Chapter 9	30,899	2,126	31,030	1,993
Chapter 10	25,486	1,784	24,843	1,627
Chapter 11	37,497	2,641	36,172	2,375
Chapter 12	40,398	2,766	39,552	2,560
Chapter 13	74,105	5,047	72,545	4,597
Chapter 14	76,725	5,312	75,352	4,871
Chapter 15	18,317	1,215	18,031	1,119

Data set: https://github.com/pnugues/ilppp/tree/master programs/ch04/salammbo

Principal Component Analysis

We will use a small dataset to explain principal component analysis: The characters in *Salammbô*

Ch.	.9.	'Ъ'	- 101	-d-	'e'	- 4	'a'	'h'	- 7	- 7	'k'		'm'	'n'	'0'	'p'	'a'	- 4	31	- 10	101	V.	'w'	- '8'	·V	'z'	- 'a'	'8'
01 fr	2503	365	857	1151	4312	264	349	295	1945	65	- 4	1946	726	1896	1372	789	248	1948	2996	1938	1792	414	0	129	94	20	128	36
02 fr	2992	391	1006	1388	4993	319	360	350	2345	81	6	2128	823	2308	1560	977	281	2376	3454	2411	2069	499	0	175	89	23	136	50
03 fr	1042	152	326	489	1785	136	122	126	784	41	7	816	397	778	612	315	102	792	1174	856	707	147	0	42	31	7	39	9
04 fr	2487	303	864	1137	4158	314	331	287	2028	57	3	1796	722	1958	1318	773	274	2000	2792	2031	1734	422	0	138	81	27	110	43
05 fr	2014	268	645	949	3394	223	215	242	1617	67	3	1513	651	1547	1053	672	166	1601	2192	1736	1396	315	1	83	67	18	90	67
06 fr	2805	368	910	1266	4535	332	384	378	2219	97	3	1900	841	2179	1569	868	285	2205	3065	2293	1895	453	0	151	80	39	131	42
07 fr	5062	706	1770	2398	8512	623	622	620	4018	126	19	3726	1596	3851	2823	1532	468	4015	5634	4116	3518	844	0	272	148	71	246	50
08 fr	2643	325	869	1085	4229	307	317	359	2102	85	4	1857	811	2041	1367	833	239	2132	2814	2134	1788	437	0	135	64	30	130	43
09 fr	2126	289	771	920	3599	278	289	279	1805	52	6	1499	619	1711	1130	651	187	1719	2404	1763	1448	348	0	119	58	20	90	24
10 fr	1784	249	546	805	3002	179	202	215	1319	60	5	1462	598	1246	922	557	172	1242	1769	1423	1191	270	0	65	61	11	73	18
11 fr	2641	381	817	1078	4306	263	277	330	1985	114	0	1886	900	1966	1356	763	230	1912	2564	2218	1737	425	0	114	61	25	101	40
12_fr	2766	373	935	1237	4618	329	350	349	2273	65	2	1955	812	2285	1419	865	272	2276	3131	2274	1923	455	0	149	98	37	129	33
13 fr	5047	725	1730	2273	8678	648	566	642	3940	140	22	3746	1597	3984	2736	1550	425	4081	5599	4387	3480	767	0	288	119	41	209	55
14 fr	5312	689	1754	2149	8870	628	630	673	4278	143	2	3780	1610	4255	2713	1599	512	4271	5770	4467	3697	914	0	283	145	41	224	75
15_fr	1215	173	402	582	2195	150	134	148	969	27	- 6	950	387	906	697	417	103	985	1395	1037	893	206	0	63	36	3	48	20
01_en	2217	451	729	1316	3967	596	662	2060	1823	22	200	1204	656	1851	1897	525	19	1764	1942	2547	704	258	653	29	401	18	0	0
02_en	2761	551	777	1548	4543	685	769	2530	2163	13	284	1319	829	2218	2237	606	21	2019	2411	3083	861	295	769	37	475	31	0	0
03 en	990	183	271	557	1570	279	253	875	783	4	82	520	333	816	828	194	13	711	864	1048	298	94	254	8	145	15	0	0
04 en	2274	454	736	1315	3814	595	559	1978	1835	22	198	1073	690	1771	1865	514	33	1726	1918	2704	745	245	663	60	467	19	0	0
05_en	1865	400	553	1135	3210	515	525	1693	1482	7	153	949	571	1468	1586	517	17	1357	1646	2178	663	194	568	26	330	33	0	0
06_en	2606	518	797	1509	4237	687	669	2254	2097	26	216	1239	763	2174	2231	613	25	1931	2192	2955	899	277	733	49	464	37	0	0
07_en	4805	913	1521	2681	7834	1366	1163	4379	3838	42	416	2434	1461	3816	4091	1040	39	3674	4060	5369	1552	465	1332	74	843	52	0	0
08_en	2396	431	702	1416	4014	621	624	2171	2011	24	216	1152	748	2085	1947	527	33	1915	1966	2765	789	266	695	65	379	24	0	0
09_en	1993	408	653	1096	3373	575	517	1766	1648	16	146	861	629	1728	1698	442	20	1561	1626	2442	683	208	560	25	328	18	0	0
10_en	1627	359	451	933	2690	477	409	1475	1196	7	131	789	506	1266	1369	325	23	1211	1344	1759	502	181	410	31	255	20	0	0
11_en	2375	437	643	1364	3790	610	644	2217	1830	16	217	1122	799	1833	1948	486	23	1720	1945	2424	767	246	632	20	457	39	0	0
12_en	2560	489	757	1566	4331	677	650	2348	2033	28	234	1102	746	2125	2105	581	32	1939	2152	3046	750	278	721	35	418	40	0	0
13 en	4597	987	1462	2689	7963	1254	1201	4278	3634	39	432	2281	1493	3774	3911	1099	49	3577	3894	5540	1379	437	1374	77	673	49	0	0
14 en 15 en	4871 1119	948 229	1439 335	2799 683	8179 1994	1335 323	1140 281	4534 1108	3829 912	36 9	427 112	2218 579	1534 351	4053 924	3989 1004	1019 305	36	3689 863	3946	5858 1330	1490 310	539 108	1377 330	90	856 150	49	0	0
15 en	1119	229	335	683	1994	323	281	1108	912	У	112	5/9	351	924	1004	305	9	803	997	1330	310	108	330	14	150	9	U	U

Table: Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Each chapter is modeled by a vector of characters.

Character Counts

Table: Character counts per chapter in French, left part, and English, right part

Each characters is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m = 30 and n = 40.

We can rewrite X as:

$$X = U \Sigma V^{\mathsf{T}}$$

where **U** is a matrix of dimensions $m \times m$, Σ , a diagonal matrix of dimensions $m \times n$, and **V**, a matrix of dimensions $n \times n$.

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

We keep the highest values and set the rest to zero.

Code Example

Jupyter Notebook 3.1-SVD

Word Embeddings

We can extend singular value decomposition from characters to words. The rows will represent the words in the corpus, and the columns, documents.

We can replace documents by a context of a few words to the left and to the right of the focus word: w_i .

A context C_j is then defined by a window of 2K words centered on the word:

$$W_{i-K}, W_{i-K+1}, ..., W_{i-1}, W_{i+1}, ..., W_{i+K-1}, W_{i+K},$$

where the context representation uses a bag of words.

We can even reduce the context to a single word to the left or to the right of w_i and use bigrams.

Word Embeddings

We store the word-context pairs (w_i, C_j) in a matrix.

Each matrix element measures the association strength between word w_i and context C_i , for instance mutual information.

Mutual information, often called pointwise mutual information (the strength of an association) is defined as:

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

D#\Words	C_1	C_2	<i>C</i> ₃	 Cn
w_1	$MI(w_1, C_1)$	$MI(w_1, C_2)$	$MI(w_1, C_3)$	 $MI(w_1, C_n)$
<i>W</i> ₂	$MI(w_2, C_1)$	$MI(w_2, C_2)$	$MI(w_2, C_3)$	 $MI(w_2, C_n)$
<i>W</i> 3	$MI(w_3, C_1)$	$MI(w_3, C_2)$	$MI(w_3, C_3)$	 $MI(w_3, C_n)$
		***	***	 a to
Wm	$MI(w_m, C_1)$	$MI(w_m, C_2)$	$MI(w_m, C_3)$	 M. (C)
				000

Word Embeddings

We compute the word embeddings with a singular value decomposition, where we truncate the matrix $\mathbf{U}\Sigma$ to 50, 100, 300, or 500 dimensions. The word embeddings are the rows of this matrix.

We usually measure the similarity between two embeddings ${\bf u}$ and ${\bf v}$ with the cosine similarity:

$$\mathsf{cos}(u,v) = \frac{u \cdot v}{||u|| \cdot ||v||},$$

ranging from -1 (most dissimilar) to 1 (most similar) or with the cosine distance ranging from 0 (closest) to 2 (most distant):

$$1 - \cos(\mathbf{u}, \mathbf{v}) = 1 - \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \cdot ||\mathbf{v}||}.$$

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

```
word2vec: https://github.com/tmikolov/word2vec
```

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

ELMo: https://allennlp.org/elmo

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just

download them

gensim is a Python library to create word embeddings from a continuous https://radimrehurek.com/gensim/index.html