Introduction to Theory of Computation

Chapter 2

February 5, 2018

 $\{w : w \text{ contains the string } 101 \text{ but not the string } 111\}$ Start with the basics:

 $\{w : w \text{ contains the string } 101 \text{ but not the string } 111\}$ Start with the basics:

We know we can reject forever in state 111, but we cannot accept forever in state 101 because we still have to make sure we don't get a 111 later on.

 $\{w : w \text{ contains the string } 101 \text{ but not the string } 111\}$

Now we just have to fill in the missing arcs.

 $\{w : w \text{ contains the string } 101 \text{ but not the string } 111\}$

Find a DFA: 101 but not 111, part 2

 $\{w: w \text{ contains the string } 101 \text{ but not the string } 111\}$ Let's do the same thing by starting with the two base languages, and forming the intersection.

Find a DFA: 101 but not 111, part 2

 $\{w: w \text{ contains the string } 101 \text{ but not the string } 111\}$ Let's do the same thing by starting with the two base languages, and forming the intersection.

Find a DFA: 101 but not 111, part 2

 $\{w : w \text{ contains the string } 101 \text{ but not the string } 111\}$

Converting NFA to RE

Add new start and accept states

Eliminate q_2

Eliminate q_1

Eliminate q_0

