The Demography of Kinship (3) Extensions of the kinship model

Diego Alburez Gutiérrez†

[†]Kinship Inequalities Research Group, Max Planck Institute for Demographic Research

European Doctoral School of Demography 2023-24 23 May 2024

MAX PLANCK INSTITUTE
FOR DEMOGRAPHIC
RESEARCH
FORSCHLING

Agenda

1. Time-variance

2. Two-sex models

3. Other extensions

Recap

- What is the general form of the (time-invariant) kinship models?
- What are the different 'model specifications' that we discussed yesterday?

Typology of kinship models

No	time	sex	state	reference
1 2 3 4	invariant variant invariant invariant	female two	age age	

Time-variance

Typology of kinship models

No	time	sex	state	reference
1	invariant	female	age	
2	variant	female	age	1
3	invariant	two	age	
4	invariant	female	multiple	

¹Caswell, H., & Song, X. (2021). The formal demography of kinship. III. kinship dynamics with time-varying demographic rates. *Demographic Research*, 45, 517–546

Time-variant kinship models

- 1 Demographic rates change over time
- 2 Past demographic change \rightarrow contemporary kinship structures
- 3 E.g., mortality crises, baby booms
- 4 Estimates by age, period, and cohort

Recap: Time-invariant, one-sex model

The models are of the general form:

$$\underbrace{\mathbf{k}(x+1)}_{\text{age structure of kin at Focal's age }x+1} = \underbrace{\mathbf{U}\,\mathbf{k}(x)}_{\text{ageing and survival}} + \underbrace{\left\{\begin{array}{c} \mathbf{0} \\ \mathbf{F}\,\mathbf{k}^*(x) \end{array}\right.}_{\text{new kin members added to the population}}$$

where:

- ▶ **U** a matrix with survival probabilities in the subdiagonal
- ▶ **F** a matrix with fertility rates in the first row

Time-variant, one-sex model

The models are of the general form:

$$\underbrace{\mathbf{k}(x+1,t+1)}_{\text{age structure of kin at Focal's age } x+1 \\ \text{and time } t+1 } = \underbrace{\mathbf{U_t}\,\mathbf{k}(x,t)}_{\text{ageing and survival of existing kin}} + \underbrace{\left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{F_t}\,\mathbf{k}^*(x,t) \end{array} \right.}_{\text{new kin members added to the population}}$$

where:

- U_t a matrix with time-variant survival probabilities in the subdiagonal
- F_t a matrix with time-variant fertility rates in the first row

Boundary conditions

Boundary conditions. The figure contains ages from 0 to ω and times from 0 to T. The boundary conditions correspond to k(x,0) for all x from 0 to ω and k(0,t) for all t from 0 to T

Boundary conditions

ightharpoonup specify the complete age vector at time t=0

$$k(x,0)$$
 $x = 0,...,\omega$.

Specify the initial vector at each time

$$\mathbf{k}(0,t)$$
 $t = 0,...,\omega$.

Daughters

Daughters (a) are the result of the reproduction of Focal:

$$\underbrace{\mathbf{a}(x+1,t+1)}_{\text{age structure of daughters at Focal's age }x+1} = \underbrace{\mathbf{U_t}\,\mathbf{a}(x,t)}_{\text{ageing and survival of existing daughters}} + \underbrace{\mathbf{F_t}\,\mathbf{e_x}}_{\text{new daughters (subsidy)}}$$
(1)
$$a(0) = \mathbf{0}.$$

where:

- U_t is a matrix with time-variant survival probabilities in the subdiagonal
- F_t is a matrix with time-variant fertility rates in the first row
- ightharpoonup $\mathbf{F_t} \mathbf{e}_{\times}$ is the subsidy vector
- $ightharpoonup e_x$ is the unit vector for age x
- ightharpoonup a(0) is the distribution of daughters at Focal's birth

Mothers

The population of mothers (d) of Focal consists of at most a single individual:

$$\underbrace{\mathbf{d}(x+1,t+1)}_{\text{age structure of mothers at Focal's age } x+1} = \underbrace{\mathbf{U_t} \, \mathbf{d}(x,t)}_{\text{ageing and survival of existing mothers}} + \underbrace{\mathbf{0}.}_{\text{new mothers (subsidy)}}$$
(2)

$$d(0,t+1)=\pi(t).$$

where:

- $lackbox{b}(0,t+1)$ is the distribution of mothers at Focal's birth
- \blacktriangleright $\pi(t)$ is the distribution of ages of mothers in the population

Age, period, and cohort in kinship models

The period, cohort, and age dimensions of kinship development, within the age×time domain shown in Figure 2

Period results for numbers of daughters and granddaughters in Sweden

Cohort results for numbers of daughters and granddaughters in Sweden

Age results for numbers of daughters and granddaughters in Sweden

Discuss

- What is the difference between the expected number of daughters calculated using (i) a time-invariant model, and (ii) the period dimension of the time-variant model?
- What is the difference between the period and cohort results of the time-variant model?
- 3 How do the time-variant models deal with missing demographic data before a certain year (e.g., the UN only reports data starting in 1950)?

Break

Two-sex models

Typology of kinship models

No	time	sex	state	reference
1	invariant	female	age	
2	variant	female	age	
3	invariant	two	age	2
4	invariant	female	multiple	

21 / 37

 $^{^2}$ Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. $Demographic\ Research,\ 47, 359-396$

Why do we need two-sex models?

- 1 Differential survival and reproduction for women and men
- 2 These differences are not stable: change over time
- **3** More pronounced in some settings
- 4 Estimate male and female kin for male and female Focals

Two-sex model (descendants)

$$\tilde{\mathbf{a}} = \begin{pmatrix} \mathbf{a'}_1 \\ \mathbf{a'}_2 \end{pmatrix}$$

where

- ã is a block-structured matrix of the expected number of living offspring
- $ightharpoonup a'_1$ is the expected number of living sons
- ightharpoonup $\mathbf{a'}_2$ is the expected number of living daughters

Offspring (sons and daughters)

Children $(\tilde{\mathbf{a}})$ are the result of the reproduction of Focal:

$$\underbrace{\tilde{\mathbf{a}}(x+1)}_{\text{age structure of offspring at Focal's age } = \underbrace{\tilde{\mathbf{U}}\,\tilde{\mathbf{a}}(x)}_{\text{ageing and survival of existing offspring}} + \underbrace{\tilde{\mathbf{F}}\,\tilde{\phi}(x)}_{\text{new offspring (subsidy)}}$$
(3)

$$\tilde{a}(0)=\mathbf{0}.$$

where:

- $ightharpoonup ilde{\mathbf{U}}$ is a block-structured matrix of survival probabilities
- $ightharpoonup \tilde{\mathbf{F}}$ is a block-structured matrix of fertility rates
- ightharpoonup $\tilde{\mathbf{F}}\,\tilde{\phi}(x)$ is the subsidy vector
- $ightharpoonup ilde{\phi}(x)$ is the state vector of a Focal of specified sex
- $ightharpoonup ilde{a}(0)$ is the distribution of offspring at Focal's birth

Blocks-structured input matrices

For mortality:

$$\tilde{\mathbf{U}} = \begin{pmatrix} \mathbf{U}_f & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_m \end{pmatrix}$$

For fertility:

$$\tilde{\mathbf{F}} = \begin{pmatrix} \bar{\alpha} \mathbf{F}_f & \bar{\alpha} \mathbf{F}_m \\ \alpha \mathbf{F}_f & \bar{\alpha} \mathbf{F}_m \end{pmatrix}$$

where

- $lackbox{U}_f$ is a matrix with female survival probabilities in the subdiagonal
- ightharpoonup \mathbf{F}_f is a matrix with female fertility rates in the first row
- ightharpoonup lpha is the proportion males among offspring
- ightharpoonup $\bar{\alpha}$ is $1-\alpha$

Parents

The population of parents $(\tilde{\mathbf{d}})$ of Focal consists of at most a single individual:

$$\underbrace{\tilde{\mathbf{d}}(x+1)}_{\text{age structure of mothers at Focal's age }x+1} = \underbrace{\tilde{\mathbf{U}}\,\tilde{\mathbf{d}}(x)}_{\text{ageing and survival mew mothers (subsidy)}} + \underbrace{\mathbf{0}.}_{\text{new mothers (subsidy)}} \tag{4}$$

$$\tilde{d}(0) = \tilde{\pi}.$$

where:

- $\tilde{b}(0)$ is the distribution of parents at Focal's birth
- \blacktriangleright $\tilde{\pi}$ is the distribution of ages of parents in the population

Two-sex kin estimation

Data requirements

```
\mathbf{U}_{\mathrm{f}},\,\mathbf{U}_{\mathrm{m}}= female and male survival matrices \mathbf{F}_{\mathrm{f}},\,\mathbf{F}_{\mathrm{m}}= female and male fertility matrices m{\pi}_{\mathrm{f}},\,m{\pi}_{\mathrm{m}}= distribution of ages at maternity and paternity \alpha= proportion males among offspring \bar{\alpha}=1-\alpha
```

Male and female fertility

Figure 5: The observed (circles) and interpolated (lines) age-specific fertility rates for Senegal (2013), Haiti (2010), and France (2012). Based on data from Schoumaker (2019).

Approximations for two-sex kinship models

- Androgynous fertility
 - ightharpoonup Assume that $\mathbf{F}_m = \mathbf{F}_f$
- Q GKP factors
 - Run one-sex model and multiply resulting kinship structure by a 'GKP factor'
 - daughters × 2, granddaughters × 4, great-granddaughters × 8, mothers × 2, grandmothers × 4, great-grandmothers × 8, sisters × 2, nieces × 4, aunts × 4, and cousins × 8

Expected number of female and male kin in three countries

Discuss

- Why do we need the 'androgynous' and 'GKP factor' approximations for two-sex kinship models?
- Which of the two do you think is better? Can you think of other possible 'approximations'?

Other extensions

Typology of kinship models

No	time	sex	state	reference
1	invariant	female	age	
2	variant	female	age	
3	invariant	two	age	
4	invariant	female	multiple	3

³Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. *Demographic Research*, 42,□1097⊕1146 → 4 ≥ →

Multistate kinship models

Kin loss by cause of death⁴

Estimated Number of Youth Affected by Parental Death Due to Drug Poisoning

⁴Schlüter, B.-S., Alburez-Gutierrez, D., Bibbins-Domingo, K., Alexander, M. J., & Kiang, M. V. (2024). Youth Experiencing Parental Death Due to Drug Poisoning and Firearm Violence in the US, 1999-2020. *JAMA*. https://doi.org/10.1001/jama.2024.8391

Discuss

- 1 Do you see any application of the kinship models to your own work?
- 2 Which model specification would be more appropriate for this?