

Topology analysis of polymer tube sections using μ CT images

Image Guided Therapy Lab 2019

Author: Reto Furrer

Supervisor: Adrian Zurbuchen, PhD

Master in Biomedical Engineering, University of Bern

September 12, 2019

Introduction

u •

What are limitations of current measurement methods?

Hypothesis

The shaft topology of a percutaneous transluminal coronary angioplasty catheter can be quantified accurately by using micro-computed tomography images.

Material and Methods

Image processing algorithm

© 2019, Reto Fu

Material and Methods

Image processing algorithm

b UNIVERSITÄT

Material and Methods

The following variables were evaluated:

- **1. Homogeneity of the topology** is the differences of the diameters on two perpendicular axes.
- Deviation from tube specifications. The specification limits of the inner- and outer diameter.
- **3. Topology differences between plain and necked tubes.** Comparison of the two tube samples.

Statistical analysis

The Wilcoxon-sign rank test was applied to analyse the differences. All analyses were performed using the software \mathbb{R} , and significance levels were set at p=0.05.

$u^{\scriptscriptstyle b}$

b UNIVERSITÄT

Results

1) Homogeneity of the topology

Results

b UNIVERSITÄT BERN

2) Deviation from tube specifications
Plain tubes

$u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Results

3) Topology differences between plain and necked tubes

$u^{^{\scriptscriptstyle b}}$

Discussion

- b UNIVERSITÄT BERN
- Algorithm to analyse the topology of polymer tubes was presented.
- > In an empiric study the differences of diameters in various directions were measured.
- > Statistical significant differences (p < 0.001) were shown for:
 - 1. Homogeneity of the topology
 - 2. Deviation from tube specifications
 - 3. Topology between plain and necked tubes
- We conclude that the presented algorithm is able to evaluate the topology of PTCA catheter tubes.

Thank you!

You can find the documentation on GitHub

https://github.com/refurrer/IGTLab_RetoFurrer_2019

Summary

b UNIVERSITÄT BERN

Background:

- > The catheter shaft topology is important for the rated burst pressure (RBP) of coronary catheters.
- > The topology must be quantified to control and optimise the RBP.

Material and Methods:

- > An image processing algorithm is proposed to evaluate:
 - (1) The homogeneity of the tube topology,
 - (2) Deviations from the specifications,
 - (3) Differences between plain and necked tubes.

Results:

> The evaluation showed statistically significant differences in all tests.

Discussion:

The presented algorithm is able to evaluate the topology of catheter tubes.