Sejam $V = \mathbb{R}^2$, W e U sub-espaços de V, $\{(1,2)\}$ uma base de W e $\{(1,0)\}$ uma base de U, mostre que $V = W \oplus U$.

Resolução:

Seja $v \in V$, basta mostrar que existem únicos $w \in W$ e $u \in U$ tais que v = w + u.

Seja v=(a,b), teremos que $\begin{cases} \alpha+\beta=a\\ 2\alpha=b \end{cases}$, que admite solução única para $\alpha,\beta\in\mathbb{R}$, pois $\begin{vmatrix} 1 & 1\\ 2 & 0 \end{vmatrix} \neq 0$.

Quod Erat Demonstrandum.

Documento compilado em Wednesday 12th March, 2025, 21:56, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

