Specification of E2 – a 128-bit Block Cipher

Nippon Telegraph and Telephone Corporation

June 14, 1998

Contents

1	Description of Algorithm		
	1.1	Notations and Conventions	2
	1.2	$Outline \dots \dots$	3
	1.3	Encryption	4
	1.4	Decryption	4
	1.5	Key Scheduling	6
2	Functions		
	2.1	IT-Function	7
	2.2	F-Function	7
	2.3	FT-Function	7
	2.4	BRL-Function	7
	2.5	S-Function	8
	2.6	s-box	8
	2.7	P-Function	9
	2.8	G-Function	11
	2.9	f-Function	12
	2.10	Binary Operator \otimes	12
	2.11	Binary Operator \oslash	12
	2.12	BP-Function	12
\mathbf{A}	Test	Data for $E2$	14

1 Description of Algorithm

1.1 Notations and Conventions

The following notations are used in this document.

- 1. Let **Z** denote the set of all integers.
- 2. Let A, B, and C be sets. Let $A \times B := \{(a,b) | a \in A, b \in B\}$ represent the Cartesian product of A and B. An element in $A \times B \times C$ is identified as follows: (a,b,c) = ((a,b),c) = (a,(b,c)). Moreover, let $A^1 := A$, and $A^n := A \times A^{n-1}$ for $n \geq 2$.
- 3. For an element $(a_{n-1}, a_{n-2}, \dots, a_0)$ of set A^n , let a_{n-1} be the left most element, and a_0 be the right most element.
- 4. Let \mathcal{K} be a field and $n \geq 1$. Let \mathcal{K}^n be the *n*-dimensional vector space over \mathcal{K} . For $a = (a_{n-1}, a_{n-2}, \ldots, a_0), b = (b_{n-1}, b_{n-2}, \ldots, b_0) \in \mathcal{K}^n$, and $\lambda \in \mathcal{K}$, the following equations hold.

$$a+b = (a_{n-1} + b_{n-1}, a_{n-2} + b_{n-2}, \dots, a_0 + b_0)$$

 $\lambda a = (\lambda a_{n-1}, \lambda a_{n-2}, \dots, \lambda a_0)$

- 5. When $\mathcal{K} = GF(2) = \{0, 1\}$, the Exclusive-Or operation, \oplus , is considered as the addition operation. Operation \oplus is called the XOR operation simply.
- 6. A row vector $r = (r_{n-1}, r_{n-2}, \dots, r_0)$ is identified with the column vector T_r .
- 7. Let **B** represent a vector space of 8-bit (byte¹) elements, that is, $\mathbf{B} := \mathrm{GF}(2)^8$.
- 8. Let **W** represent a vector space of 32-bit (word) elements, that is, $\mathbf{W} := \mathbf{B}^4$.
- 9. Let **H** represent a vector space of 64-bit (half block) elements, that is, $\mathbf{H} := \mathbf{B}^8$.
- 10. An element of the field $GF(2^8)$ is identified with a polynomial p(X) in GF(2)[X] whose degree is less than 8, where $GF(2^8)$ is isomorphic to GF(2)[X]/(r(X)) and $r(X) = X^8 + X^4 + X^3 + X + 1$ which is an irreducible polynomial in GF(2)[X]. Thus the complete set of representatives is $\{p(X) \mod r(X) \in GF(2^8) | \deg p(X) < 8\}$.

¹In this document, a byte means octet.

- 11. An element p(X) of the set GF(2)[X]/(r(X)) represented by $p(X) = \sum_{i=0}^{7} a_i X^i$ is identified with $(a_7, a_6, \ldots, a_0) \in \mathbf{B}$.
- 12. An element (a_7, a_6, \ldots, a_0) in the set **B**, where $a_i \in GF(2)$, is identified with

$$\sum_{i=0}^{7} \widetilde{a}_i 2^i \bmod 2^8 \mathbf{Z} \in \mathbf{Z}/2^8 \mathbf{Z},$$

where $a_i \in GF(2)$ (i = 0, 1, ..., 7) corresponds to $\tilde{a}_i \in \{0, 1\} \subset \mathbf{Z}$ in a canonical way, i.e., a_7 is the most significant (left most) bit and a_0 is the least significant (right most) bit.

13. An element (b_3, b_2, b_1, b_0) in the set **W**, where $b_i \in \mathbf{B}$, is identified with

$$\sum_{i=0}^{3} \tilde{b}_i 2^{8i} \bmod 2^{32} \mathbf{Z} \in \mathbf{Z}/2^{32} \mathbf{Z},$$

where $b_i \in \mathbf{B}$ (i = 0, 1, 2, 3) corresponds to $\tilde{b}_i \in \{0, 1, \dots, 2^8 - 1\} \subset \mathbf{Z}$. The correspondence of b_i to \tilde{b}_i is defined in item 12.

1.2 Outline

Let

$$M$$
 be a plaintext $(M \in \mathbf{H}^2)$
 K be a secret-key $(K \in \mathbf{H}^2, \mathbf{H}^3 \text{ or } \mathbf{H}^4)$, and C be a ciphertext $(C \in \mathbf{H}^2)$.

The encryption algorithm E2 is defined as:

$$C = E(M, K)$$
$$M = D(C, K),$$

where E is the encryption function of E2, which is described in Section 1.3, and D is the decryption function of E2, which is described in Section 1.4. The following equations hold.

$$M = D(E(M, K), K)$$
$$C = E(D(C, K), K)$$

1.3 Encryption

The data randomizing part consists of an initial transformation IT, a 12-round Feistel cipher structure with F-Function, and a final transformation FT. The key scheduling part generates 16 subkeys $\{k_1, k_2, \ldots, k_{16}\}$ $(k_i \in \mathbf{B}^{16})$, from a secret-key K before encryption.

First, calculate

$$M' = IT(M, k_{13}, k_{14})$$

where M is a plaintext. Next, M' is separated into L_0 and R_0 of equal length, i.e., $M'=(L_0,R_0)$, where $L_0 \in \mathbf{H}$ and $R_0 \in \mathbf{H}$. Then, calculate the following from r=1 to 12.

$$R_r = L_{r-1} \oplus F(R_{r-1}, k_r)$$
$$L_r = R_{r-1}$$

Let C' be the concatenation of R_{12} and L_{12} , i.e., $C' = (R_{12}, L_{12})$.

Finally, calculate

$$C = FT(C', k_{16}, k_{15}).$$

The result C is a ciphertext.

The encryption is shown in Figure 1. IT-Function is described in Section 2.1, F-Function is described in Section 2.2, and FT-Function is described in Section 2.3.

1.4 Decryption

Similarly to encryption, the data randomizing part consists of an initial transformation IT, a 12-round Feistel structure with F-Function, and a final transformation FT. The key scheduling part generates 16 subkeys $\{k_1, k_2, \ldots, k_{16}\}$ $(k_i \in \mathbf{B}^{16})$, from a secret-key K before decryption.

First, calculate

$$C' = IT(C, k_{16}, k_{15})$$

where C is a ciphertext. Next, C' is separated into R_{12} and L_{12} of equal length, i.e., $C' = (R_{12}, L_{12})$ where $R_{12} \in \mathbf{H}$, $L_{12} \in \mathbf{H}$. Then, calculate the following from r = 12 down to 1.

$$L_{r-1} = R_r \oplus F(L_r, k_r)$$

$$R_{r-1} = L_r$$

Figure 1: Encryption and Decryption Procedures

Let M' be the concatenation of L_0 and R_0 , i.e., $M' = (L_0, R_0)$. Finally, calculate

$$M = FT(M', k_{13}, k_{14}).$$

The result M is a plaintext.

The decryption is shown in Figure 1. F-Function is described in Section 2.2, IT-Function is described in Section 2.1, and FT-Function is described in Section 2.3.

1.5 Key Scheduling

For secret-key $K = (K_1, K_2, K_3, K_4)$ $(K_i \in \mathbf{H}, i = 1, 2, 3, 4)$, which is given as input to $\mathbf{E}2$ (E or D), the subkeys $k_i \in \mathbf{B}^{16}$ (i = 1, 2, ..., 16) are generated as follows using G- and S-Functions defined later.

$$\begin{split} v_{-1} &= \mathsf{0123456789abcdef}_{\,(\mathrm{hex})} \\ (L_0, (Y_0, v_0)) &= G(K, v_{-1}) \\ (L_{i+1}, (Y_{i+1}, v_{i+1})) &= G(Y_i, v_i) \quad (i = 0, 1, 2, \dots, 7) \\ (l_{4i}, l_{4i+1}, l_{4i+2}, l_{4i+3}) &= L_{i+1} \quad (i = 0, 1, \dots, 7) \\ (t_i^{(0)}, t_i^{(1)}, \dots, t_i^{(7)}) &= l_i \quad (i = 0, 1, \dots, 31) \\ k_{i+1} &= (t_{0+(i \bmod 2)}^{(\lfloor i/2 \rfloor)}, t_{2+(i \bmod 2)}^{(\lfloor i/2 \rfloor)}, \dots, t_{30+(i \bmod 2)}^{(\lfloor i/2 \rfloor)}) \quad (i = 0, 1, \dots, 15) \end{split}$$

where $L_i, Y_i \in \mathbf{H}^4, l_i, v_i \in \mathbf{H}$, and $t_i^{(j)} \in \mathbf{B}$.

The procedure for generating subkeys is the same when the secret-key is 128-, 192-, or 256-bits. When the secret-key is 128-bits, constant values are set on K_3 and K_4 : $K_3 = S(S(S(v_{-1})))$, $K_4 = S(S(S(S(v_{-1}))))$, respectively. When the secret-key is 192-bits, a constant value is set on K_4 : $K_4 = S(S(S(S(v_{-1}))))$.

S-Function is described in Section 2.5, and G-Function is described in Section 2.8 and shown in Figure 3.

2 Functions

Let variables denoted by small letters, e.g., x, y, x_i, y_i , be elements of **B** or **W**, and variables denoted by capital letters, e.g., X, Y, be elements of **H** or \mathbf{H}^2 hereafter if not stated explicitly otherwise. Figures are represented as decimals without an explicit description.

2.1 IT-Function

IT-Function, which we call the initial transformation, is defined as follows:

$$IT: \mathbf{H}^2 \times \mathbf{H}^2 \times \mathbf{H}^2 \longrightarrow \mathbf{H}^2; \ (X, A, B) \longmapsto BP((X \oplus A) \otimes B)$$

The binary operator \otimes is described in Section 2.10, and BP-Function, which we call the byte permutation, is described in Section 2.12.

2.2 F-Function

F-Function is defined as follows:

$$F: \mathbf{H} \times \mathbf{H}^2 \longrightarrow \mathbf{H}$$
$$(X, (K^{(1)}, K^{(2)})) \longmapsto Y = BRL(S(P(S(X \oplus K^{(1)})) \oplus K^{(2)})).$$

F-Function is shown in Figure 2. S-Function is described in Section 2.5, P-Function is described in Section 2.7, and BRL-Function is described in Section 2.4.

2.3 FT-Function

FT-Function, which we call the final transformation, is defined as follows:

$$FT: \mathbf{H}^2 \times \mathbf{H}^2 \times \mathbf{H}^2 \longrightarrow \mathbf{H}^2; \ (X, A, B) \longmapsto (BP^{-1}(X) \oslash B) \oplus A$$

The binary operator \oslash is described in Section 2.11. BP- and BP^{-1} -Function are described in Section 2.12.

Note that FT-Function is the inverse of IT-Function, i.e.,

$$X = FT(IT(X, A, B), A, B).$$

2.4 BRL-Function

BRL-Function, which we call the byte rotate left function, is a part of F-Function and is defined as follows:

$$BRL: \mathbf{H} \longrightarrow \mathbf{H}; \ (b_1, b_2, b_3, \dots, b_8) \longmapsto (b_2, b_3, \dots, b_8, b_1).$$

BRL-Function is shown in Figure 2.

2.5 S-Function

S-Function is a part of F-Function, and is defined as follows using s-boxes:

$$S: \mathbf{H} \longrightarrow \mathbf{H}; (x_1, x_2, \dots, x_8) \longmapsto (s(x_1), s(x_2), \dots, s(x_8)).$$

s-box is described in Section 2.6.

2.6 *s*-box

The definition of s-box in S-Function is described as follows:

$$s: \mathbf{B} \longrightarrow \mathbf{B}; \ x \longmapsto \text{Affine}(\text{Power}(x, 127), 97, 225),$$

where

Power
$$(x, e) = x^e$$
 in $GF(2^8)$
Affine $(y, a, b) = ay + b \pmod{2^8 \mathbf{Z}}$.

The following canonical identification among <u>sets</u> is adopted here:

$$GF(2^8) = GF(2)[X]/(r(X)) = GF(2)^8 = \mathbf{Z}/2^8\mathbf{Z},$$
 (1)

where the first equality = is given in item 10 in Section 1.1, the second one is given in item 11, and the third one is given in item 12. The calculation result of Power-Function in $GF(2^8)$ is considered to be an element in $\mathbb{Z}/2^8\mathbb{Z}$, which is input to Affine-Function, as given in the above relation. The table expression of s-box is given as follows. This means that $s(0) = 225, s(1) = 66, \ldots, s(16) = 204, \ldots$, and s(255) = 42.

2.7 P-Function

P-Function is a part of F-Function, and is defined as follows using a matrix expression.

$$P: \mathbf{H} o \mathbf{H}; \left(egin{array}{c} z_1 \ z_2 \ dots \ z_8 \end{array}
ight) \longmapsto \left(egin{array}{c} z_1' \ z_2' \ dots \ z_8' \end{array}
ight) = P \left(egin{array}{c} z_1 \ z_2 \ dots \ z_8 \end{array}
ight)$$

where matrix P is given as follows:

$$P = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

We can calculate P-Function using Figure 2, for example.

Figure 2: *F*-Function

2.8 G-Function

G-Function is defined as follows:

$$G: \mathbf{H}^{4} \times \mathbf{H} \longrightarrow \mathbf{H}^{4} \times (\mathbf{H}^{4} \times \mathbf{H})$$

$$((X_{1}, X_{2}, X_{3}, X_{4}), U_{0}) \longmapsto ((U_{1}, U_{2}, U_{3}, U_{4}), ((Y_{1}, Y_{2}, Y_{3}, Y_{4}), V))$$
where
$$Y_{i} = f(X_{i}) \quad (i = 1, 2, 3, 4)$$

$$U_{i} = f(U_{i-1}) \oplus Y_{i} \quad (i = 1, 2, 3, 4)$$

$$V = U_{4}$$

G-Function is shown in Figure 3, and f-Function is described in Section 2.9.

Figure 3: G-Function

2.9 f-Function

f-Function is a part of G-Function, and is defined as follows:

$$f: \mathbf{H} \longrightarrow \mathbf{H}; \ X \longmapsto P(S(X)).$$

2.10 Binary Operator \otimes

The binary operator \otimes is defined as follows.

$$Y = X \otimes B \quad (X, Y, B \in \mathbf{H}^2)$$
where
$$(x_1, x_2, x_3, x_4) = X \quad (x_i \in \mathbf{W}, i = 1, 2, 3, 4)$$

$$(b_1, b_2, b_3, b_4) = B \quad (b_i \in \mathbf{W}, i = 1, 2, 3, 4)$$

$$y_i = x_i(b_i \vee 1) \mod 2^{32} \mathbf{Z} \quad (i = 1, 2, 3, 4)$$

$$Y = (y_1, y_2, y_3, y_4)$$

Let $\vee 1$ denote bitwise logical OR with $1 \in 2^{32}\mathbf{Z}$.

2.11 Binary Operator \oslash

The binary operator \oslash is defined as follows.

$$X = Y \oslash B \quad (X, Y, B \in \mathbf{H}^2)$$
 where
$$(y_1, y_2, y_3, y_4) = Y \quad (y_i \in \mathbf{W}, \ i = 1, 2, 3, 4)$$

$$(b_1, b_2, b_3, b_4) = B \quad (b_i \in \mathbf{W}, \ i = 1, 2, 3, 4)$$

$$x_i = y_i (b_i \lor 1)^{-1} \bmod 2^{32} \mathbf{Z} \quad (i = 1, 2, 3, 4)$$

$$X = (x_1, x_2, x_3, x_4)$$

Let $\vee 1$ denote bitwise logical OR with $1 \in 2^{32}\mathbf{Z}$.

2.12 BP-Function

BP-Function, which we call the byte permutation, is a part of IT- and FT-Function. It is defined as follows.

$$BP: \mathbf{W}^4 \longrightarrow \mathbf{W}^4$$

$$(x_1, x_2, x_3, x_4) \longmapsto (y_1, y_2, y_3, y_4)$$
 where
$$(x_i^{(1)}, x_i^{(2)}, x_i^{(3)}, x_i^{(4)}) = x_i \quad (x_i^{(j)} \in \mathbf{B}, \ i = 1, 2, 3, 4, \ j = 1, 2, 3, 4)$$

$$y_i = (x_i^{(1)}, x_{i+1}^{(2)}, x_{i+2}^{(3)}, x_{i+3}^{(4)}) \quad (i = 1, 2, 3, 4)$$

$$(x_{i+4}^{(j)} \text{ is identified with } x_i^{(j)}, \ i = 0, 1, 2, 3, \ j = 1, 2, 3, 4)$$

$$Y = (y_1, y_2, y_3, y_4)$$

We can calculate BP^{-1} as follows.

$$BP^{-1}: \mathbf{W}^{4} \longrightarrow \mathbf{W}^{4}$$

$$(y_{1}, y_{2}, y_{3}, y_{4}) \longmapsto (x_{1}, x_{2}, x_{3}, x_{4})$$
where
$$(y_{i}^{(1)}, y_{i}^{(2)}, y_{i}^{(3)}, y_{i}^{(4)}) = y_{i} \quad (y_{i}^{(j)} \in \mathbf{B}, \ i = 1, 2, 3, 4, \ j = 1, 2, 3, 4)$$

$$x_{i} = (y_{i}^{(1)}, y_{i-1}^{(2)}, y_{i-2}^{(3)}, y_{i-3}^{(4)}) \quad (i = 1, 2, 3, 4)$$

$$(y_{i-4}^{(j)} \text{ is identified with } y_{i}^{(j)}, \ i = 1, 2, 3, 4, \ j = 1, 2, 3, 4)$$

$$X = (x_{1}, x_{2}, x_{3}, x_{4})$$

BP-Function is shown in Figure 4.

Figure 4: *BP*-Function

A Test Data for E2

Sample data are shown in hexadecimal notation.

Case 1) The key length is 128-bits long

C = c2883490b9d9d5e5a03f216edb815fff

Case 2) The key length is 192-bits long

C = 882 f 80269 d 3 c 146 d 6 e b b 9 a d d c 4715 b 4 c

Case 3) The key length is 256-bits long

C = 5002 cb8cd878f26fbab9f52e6c96501e