MAS439 Lecture 14 Coordinate Ring

November 23rd

Where we are:

We've seen that the maps V and I are inverse to each other and set up 1:1 correspondences between certain types of ideals in $R = k[x_1, \ldots, x_n]$ and certain types of subsets of \mathbb{A}^n_k .

What's next?

The correspondence above holds for ideals of $k[x_1, ..., x_n]$, which is a very special example of a k-algebra. We'd like a geometric way to study the ideals of other rings.

We've seen that any finitely generated reduced k-algebra S, we have $S \cong k[x_1, \ldots, x_n]/I$ for some n and radical ideal I.

Today we will see that we can view $S = k[x_1, ..., x_n]/I$ as functions on the algebraic subset V(I): we will call S the coordinate ring of V(I), and that ideals of S will be related to the geometry of V(I).

Tomorrow, we will study maps between different algebraic subsets, and how they relate to maps between their coordinate rings.

The Coordinate ring

Definition

Let $X \subset \mathbb{A}^n_k$ be an algebraic subset. The *coordinate ring* k[X] of X is defined to be the quotient ring

$$k[X] = k[x_1, \ldots, x_n]/I(X)$$

Since I(X) is always radical, the coordinate ring k[X] is always reduced.

Since $k[x_1, ..., x_n]$ is a k-algebra, so is k[X].

How is k[X] related to X?

Polynomial Functions

We can view the polynomial ring $R = k[x_1, ..., x_n]$ as a subring of the space of all functions from \mathbb{A}^n_k to k.

If $X \subset \mathbb{A}^n_k$, then we can also view a polynomial as a function on X.

Definition

Let $X \subset \mathbb{A}_k^n$ be algebraic. We call a function $f: X \to k$ polynomial if there is a polynomial $g \in R = k[x_1, \dots, x_n]$ so that f(x) = g(x) for all $x \in X$.

Let $\operatorname{Fun}_{\operatorname{poly}}(X)$ denote the set of all polynomial functions on X.

Claim:

 $\operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{poly}}}(X)$ is a k-algebra

The coordinate ring is the polynomial functions

Lemma

Let $X \subset \mathbb{A}^n_k$ algebraic. Then

$$k[X] := k[x_1, \dots, x_n] / I(X) \cong \mathit{Fun}_{poly}(X)$$

Proof.

- ▶ The restriction map Res : $R = k[x_1, ..., x_n] \rightarrow \operatorname{Fun}_{\operatorname{poly}}(X)$ is a homomorphism, and is surjective by definition.
- ▶ A polynomial $f \in R$ is in the kernel of Res is equivalent to f(x) = 0 for all $x \in X$; that is, that $f(x) \in I(X)$.
- ► The first isomorphism theorem then says that $\operatorname{Fun}_{\operatorname{poly}}(X) \cong R/I(X)$, as desired.

Geometry and the Ideals of K(X)

Since K(X) = R/I(X), the second isomorphism theorem says that ideals in K(X) are in 1-1 correspondence with ideals of R containing I(X).

Since I is inclusion reversing, we see that radical ideals of K(X) are in 1-1 correspondence with algebraic subsets of \mathbb{A}^n_k contained in X.

Example:

Find all the radical/prime/maximal ideals of $R = k[x, y]/(x^2y + xy^2 - xy)$.

Technique:

We'd like to use the previous slide and relate the ideals to of R to the geometry of $V(x^2y+xy^2-xy)$, but to do this, we must first check that (x^2y+xy^2-xy) is radical.

This is not hard as $(x^2y + xy^2 - xy)$ is principal and k[x, y] is a unique factorisation domain...