2 3	$a_1 a_2 = a_1$,	九 (16 4) 对线性方程组 $\begin{cases} x_1 + a_2x_2 + a_2^2x_3 = a_2^3, \\ 1, \xi_0 = a_1 \text{ 两两不等,问方程组是否有解,为什} \end{cases}$	$d_1^2x_3=d_3^3$	$a_1^2x_3=a_4^3$.	么? (2) 岩 $a_1=a_3=b$, $a_2=a_4=-b$ $(b\neq 0)$, 且已知方程的两个解 矣 ₁ = $(1,1,-1)^T$, 矣 ₂ = $(-1,1,1)^T$, 试给出方	
[v 1]	を矩阵 $A=\begin{vmatrix} a & b \end{vmatrix}$ 的两个特征值都是 A ,目 $b \neq 0$,证明: 矩 $C=\begin{vmatrix} b & 0 \end{vmatrix}$ 満足	$\begin{bmatrix} c & d \end{bmatrix}$		$ (x_1 + a_4x_2 + a_4^2x_3 = a_4^3. $	$\langle \mathcal{L}_{?}(2) $	程组的通解
	六,(10分) 若2阶3		2	v = 0F. 0	-	

七、(8 分)若二次型
$$f(x_1,x_2,...,x_n)=X^TAX$$
 (式中 $X=(x_1,x_2,...,x_n)^T$), 适合 $|A|<0$. 求证:必存在向量 $\alpha=(a_1,a_2,...,a_n)^T$,使 $f(a_1,a_2,...,a_n)=\alpha^TA\alpha<0$.

 $|\xi^2 + \eta^2 - 2\zeta^2 = 1$, 求a、b的值及正交矩阵Q.

八、(8 B)岩 $n \times r$ 矩阵A的秩为r,其r个列向量为某一齐次线性方程组的一个基础解系,B为r阶可逆方阵,证明 AB的r个列向量也是该齐次线性方程组一个基础解系。