Computación y Estructuras Discretas III

Andrés A. Aristizábal P. aaaristizabal@icesi.edu.co Ángela Villota apvillota@icesi.edu.co

Departamento de Computación y Sistemas Inteligentes

2024-2

Agenda del día

- Regular languages and Automata theory
 - Defining a Finite State Transducer
 - Regular Relations
 - Language of an FST
 - Exercises

Agenda del día

- Regular languages and Automata theory
 - Defining a Finite State Transducer
 - Regular Relations
 - Language of an FST
 - Exercises

What are Finite State Transducers?

Automata with output.

- Automata with output.
- Involves two alphabets Σ (input) and Γ (output).

- Automata with output.
- Involves two alphabets Σ (input) and Γ (output).
- Edges have the form u: v where $u \in \Sigma$ and $v \in \Gamma$ and mean replace u with v.

- Automata with output.
- Involves two alphabets Σ (input) and Γ (output).
- Edges have the form u: v where $u \in \Sigma$ and $v \in \Gamma$ and mean replace u with v.
- Finite transducers define not sets but relations between inputs and outputs.
- Automata can also be treated as transducers (that output exactly their input for the words accepted by automaton).

- Automata with output.
- Involves two alphabets Σ (input) and Γ (output).
- Edges have the form u: v where $u \in \Sigma$ and $v \in \Gamma$ and mean replace u with v.
- Finite transducers define not sets but relations between inputs and outputs.
- Automata can also be treated as transducers (that output exactly their input for the words accepted by automaton).
- We can treat finite transductions as sets of word pairs.

How can we define a Deterministic Finite State Transducer (FST)?

How can we define a Deterministic Finite State Transducer (FST)?

How can we define a Deterministic Finite State Transducer (FST)?

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- $\mathbf{2}$ Σ is the finite input alphabet.

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- $\mathbf{2}$ Σ is the finite input alphabet.
- Γ is the finite output alphabet.

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow Q$ is the transition function.

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow Q$ is the transition function.
- **5** ω : $Q × Σ ∪ {λ} → Γ$ is the output function.

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow Q$ is the transition function.
- **5** $ω : Q × Σ ∪ {λ} \longrightarrow Γ$ is the output function.
- $0 q_0 \in Q$ is the start state.

How can we define a Deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow Q$ is the transition function.
- **5** ω : $Q × Σ ∪ {λ} → Γ$ is the output function.
- $0 q_0 \in Q$ is the start state.
- $\emptyset \neq F \subseteq Q$ is the set of accepting states.

How can we define a Non-deterministic Finite State Transducer (FST)?

How can we define a Non-deterministic Finite State Transducer (FST)?

How can we define a Non-deterministic Finite State Transducer (FST)?

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- $\mathbf{2}$ Σ is the finite input alphabet.
- Γ is the finite output alphabet.

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow \mathcal{P}(Q)$ is the transition function.

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow \mathcal{P}(Q)$ is the transition function.
- **5** $\omega: Q \times \Sigma \cup \{\lambda\} \longrightarrow \Gamma \cup \{\lambda\}$ is the output function.

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow \mathcal{P}(Q)$ is the transition function.
- **5** $\omega : Q \times \Sigma \cup \{\lambda\} \longrightarrow \Gamma \cup \{\lambda\}$ is the output function.
- $\mathbf{0}$ $q_0 \in Q$ is the start state.

How can we define a Non-deterministic Finite State Transducer (FST)?

- Q is the finite set of states.
- 2 Σ is the finite input alphabet.
- Γ is the finite output alphabet.
- **4** $\delta: Q \times \Sigma \cup \{\lambda\} \longrightarrow \mathcal{P}(Q)$ is the transition function.
- **5** $\omega: Q \times \Sigma \cup \{\lambda\} \longrightarrow \Gamma \cup \{\lambda\}$ is the output function.
- $\mathbf{6}$ $q_0 \in Q$ is the start state.
- $\emptyset \neq F \subseteq Q$ is the set of accepting states.

What about this FST over the alphabet $\Sigma = \{a, b\}$?

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

a:a, b:b

The simplest transducer, the identity relation.

What about this FST over the alphabet $\Sigma = \{a, b\}$?

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

Adds a to the beginning.

What about this FST over the alphabet $\Sigma = \{a, b\}$?

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

What about this FST over the alphabet $\Sigma = \{a, b\}$?

Example

Removes final b if it is present and rejects other words.

What about this FST over the alphabet $\Sigma = \{a, b, c\}$?

What about this FST over the alphabet $\Sigma = \{a, b, c\}$?

Example

What about this FST over the alphabet $\Sigma = \{a, b, c\}$?

Example

What about FST's actions?

What about FST's actions?

 The action of a Finite State Transducer can be viewed as computing a relation between two sets.

What about this FST?

12/19

What about this FST?

12/19

What about this FST?

The bracketing machine. Every occurrence of ab is enclosed within brackets.

Agenda del día

- Regular languages and Automata theory
 - Defining a Finite State Transducer
 - Regular Relations
 - Language of an FST
 - Exercises

What is a relation?

What is a relation?

A relation over the sets A and B is a subset of the Cartesian product, $A \times B$.

Ex: Let $A = \{dog, cat, cow\}, B = \{seven, \pi, octopus\}.$

Then $R = \{(dog, seven), (cow, \pi), (cow, octopus)\}$ is a relation.

What is a relation?

A relation over the sets A and B is a subset of the Cartesian product, $A \times B$.

Ex: Let $A = \{dog, cat, cow\}, B = \{seven, \pi, octopus\}.$

Then $R = \{(dog, seven), (cow, \pi), (cow, octopus)\}$ is a relation.

What is a regular relation?

What is a relation?

A relation over the sets A and B is a subset of the Cartesian product, $A \times B$.

Ex: Let $A = \{dog, cat, cow\}, B = \{seven, \pi, octopus\}.$

Then $R = \{(dog, seven), (cow, \pi), (cow, octopus)\}$ is a relation.

What is a regular relation?

A regular (or rational) relation over the alphabets Σ , Γ is formed from a finite combination of the following rules:

- 2 Ø is a regular relation
- 3 If R, S are regular relations, then so are $R \cdot S$, $R \cup S$, and R^*

Agenda del día

- Regular languages and Automata theory
 - Defining a Finite State Transducer
 - Regular Relations
 - Language of an FST
 - Exercises

Language of an FST

What is the language of a FST?

Language of an FST

What is the language of a FST?

- The language L(T) of a non-deterministic FST $T = (Q, \Sigma, \Gamma, \delta, \omega, q_0, F)$ is defined using the extended transition and output functions δ^*, ω^* .
- $L(T) = \{(u, v) \mid \delta^*(q_0, u) \cap F \neq \emptyset \land v \in \omega^*(q_0, u)\}$

Agenda del día

- Regular languages and Automata theory
 - Defining a Finite State Transducer
 - Regular Relations
 - Language of an FST
 - Exercises