

☐ Chapter: Spectrum Analysis of Captured IQ Data

1. What Are We Doing?

We are building the **spectrum analyzer component** of our FM receiver project.

- Goal: Convert raw IQ samples → FFT → spectrum plot.
- Place in MVC:
 - Model: Handles IQ data & DSP (FFT, normalization).
 - View: Spectrum visualization (Matplotlib/PyQtGraph).
 - Controller: Orchestrates reading & plotting.

This exercise is the *foundation* for later modules (FM demod, waterfall, real-time display).

2. Why Are We Doing It?

- To see frequency content of signals around our tuned frequency (e.g., FM @ 104.8 MHz).
- Spectrum plots show where the power is in frequency domain.
- Without spectrum view, you are "blind" you have IQ data but no way to tell if you captured noise, FM, or Wi-Fi.
- Engineers use this to debug antennas, SDR settings, interference.

3. How Are We Doing It? (Step-by-Step DSP Flow)

Step	Action		Why	MVC Placement
1. Read	Load .bin file	e into	Raw SDR data	<pre>src/model/file reader.py</pre>
Binary IQ	numpy array		is interleaved	or community in the condition of the con

Step	Action	Why	MVC Placement
Data		8-bit unsigned samples (I,Q,I,Q,).	
2. Normalize Samples	(raw - 127.5)/127.5 → range [-1,+1]	Converts byte values to proper complex samples	<pre>src/model/utils.py</pre>
3. Convert to Complex	I + jQ form	DSP requires complex notation for FFT & demod	<pre>src/model/file_reader.py</pre>
4. Apply Window (Hanning)	Multiply samples before FFT	Reduces spectral leakage (sharp cutoffs create spurious tones)	<pre>src/model/dsp_core.py</pre>
5. FFT & Shift	Compute np.fft.fft then np.fft.fftshift	FFT → spectrum; shift → center DC at 0 Hz	<pre>src/model/dsp_core.py</pre>
6. Convert to dB Scale	`20*log10(FFT)`
7. Plot Spectrum	Frequency vs Power	Visual check of captured FM station	<pre>src/view/spectrum_plot.py</pre>

4. Mini-Tasks (Hands-On)

Task 1 — Inspect Raw Data

```
import numpy as np

raw = np.fromfile("data/raw/Prac_FM_104_8MHz_20250820.bin", dtype=np.uint8)
print(raw[:20])
```

☐ See the raw numbers (0–255). Confirm interleaved structure.

Task 2 — Build Complex Signal

```
iq = (raw[0::2] - 127.5)/127.5 + 1j*(raw[1::2] - 127.5)/127.5
print(iq[:5])
```

☐ Check first 5 complex samples. Do you see floats ~-1...+1?

Task 3 — FFT on Small Block

```
N = 2048
fft data = np.fft.fftshift(np.fft.fft(iq[:N]))
spectrum = 20*np.log10(np.abs(fft_data))
```

☐ Plot it with Matplotlib, check frequency axis.

Task 4 — Full Spectrum Plotter (MVP Module)

```
Write src/view/spectrum_plot.py that:
```

- Reads IQ via file_reader
- Calls dsp_core.fft_block()
- Plots frequency vs power

5. Summary

- You now understand the **why** behind each DSP step.
- Each step has a place in MVC project.
- Small tasks → build confidence → later scale to real-time streaming & waterfall.