

LECTURE 18 of 42

Knowledge Representation Concluded: KE, CIKM, & Representing Events over Time Discussion: Structure Elicitation, Event Calculus

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Section 10.4 – 10.6, p. 341 – 353, Russell & Norvig 2nd edition IM: http://en.wikipedia.org/wiki/Information_management Event calculus: http://en.wikipedia.org/wiki/Event_calculus

Protégé-OWL tutorial: http://bit.ly/3rM1pB

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 18 OF 42

COMPUTING & INFORMATION SCIENCES

LECTURE OUTLINE

- Reading for Next Class: Sections 10.4 10.6 (p. 341 353), R&N 2e
- Last Class: Knowledge Engineering (KE), Protocol Analysis, Fluents
 - * Ontology engineering: defining classes/concepts, slots
 - * Concept elicitation techniques
 - **⇒** Unstructured
 - **⇒** Structured
 - ⇒ Protocol analysis
- Today: Event and Fluent Calculi, CIKM
 - * Representing time, events: from situation calculus to event, fluent calculi
 - * Knowledge acquisition (KA) and capture
 - * Computational information and knowledge management (CIKM)
- Coming Week: CIKM, Logical KR Concluded; Classical Planning

CONCEPTS/CLASSES: **REVIEW**

- "Concept" and "Class" are used synonymously
- Class: concept in the domain
 - * wines
 - * wineries
 - * red wines
- Collection of elements with similar properties
- Instances of classes
 - * Particular glass of California wine

Adapted from slides © 2005 N. Noy & S. Tu **Stanford Center for Biomedical Informatics Research** http://bmir.stanford.edu

Top level

Botton

© Wine

© © White wine

© © O'Nhite wine

© G Rosé wine

© Beaujolais

© Red Brugndy

© Red Zinfandel

© Ned Brugndy

© Medor

© Paulilac

© Margaux

© St Emillion

© Cabernet Franc

© Cabernet Fanc

© Cabernet Saving

© Pinot Noir

Chianti

Petite Syrah

level

SLOTS/ATTRIBUTES/RELATIONS: **REVIEW**

- Slots in class definition C
 - Describe attributes of instances of C
 - Describe relationships to other instances
 - e.g., each wine will have color, sugar content, producer, etc.
- Property constraints (facets): describe/limit possible values for slot

Slots & facets for Concept/Class Wine

Adapted from slides © 2005 N. Noy & S. Tu **Stanford Center for Biomedical Informatics Research** http://bmir.stanford.edu

CIS 530 / 730 ARTIFICIAL INTELLIGENCE

LECTURE 18 OF 42

ELICITATION METHODOLOGY: REVIEW

(based primarily on Gammack, 1987)

- Concept elicitation: methods (elicit concepts of domain, i.e. agreed-upon vocabulary)
- 2. Structure elicitation: card-sort method (elicit some structure for concepts)
- 3. Structure representation (formally represent structure in semantic network)
- 4. Transformation of representation (transform representation to be used for some desired purpose)

© 2001 G. Tecuci, George Mason University CS 785 Knowledge Acquisition and Problem-Solving http://lalab.gmu.edu/cs785/

Figures © 2003 S. Russell & P. Norvig. Reused with permission.

- **Event Calculus: Reasoning about Entities over Time, Space**
- Fluent Calculus: Variant of Situation Calculus
 - * Conditions (predicates) that can change over time
 - * Defaults
 - * (concatenation)

Preview: <u>C</u>OMPUTATIONAL <u>I</u>NFORMATION & <u>K</u>NOWLEDGE <u>M</u>ANAGEMENT

- Information Management
 - * Data acquisition: instrumentation, collection, polling, elicitation
 - * Data and information integration: combining multiple sources
 - ⇒ May be <u>heterogeneous</u> (different in quality, format, rate, etc.)
 - ⇒ Underlying formats, properties may correspond to different ontologies
 - ⇒ Ontology mappings (functions to convert between ontologies) needed
 - * Data transformation: preparation for reasoning, learning
 - ⇒ Preprocessing
 - ⇒ Cleaning
 - * Includes knowledge capture: assimilation from various sources
- Knowledge Management
 - * Term used most often in business administration, management science
 - * Related to IM, but capability and process-centered
 - * Focus on learning and KA, organization theory, decision theory
 - ⇒ Discussion, apprenticeship, forums, libraries, training/mentoring
 - ⇒ Modern theory: KBs, Expert Systems, Decision Support Systems

ARTIFICIAL INTELLIGENCE

LECTURE 18 OF 42

COMPUTING & INFORMATION SCIENCES

TERMINOLOGY

- Knowledge Engineering (KE): Process of KR Design, Acquisition
 - * Knowledge
 - ⇒ What agents possess (epistemology) that lets them reason
 - ⇒ Basis for rational cognition, action
 - ⇒ Knowledge gain (acquisition, learning): improvement in problem solving
 - * Knowledge level (vs. symbol level): level at which agents reason
 - * <u>Semantic network</u>: inheritance and membership/containment relationships
 - * Knowledge elicitation: KA/KE process from human domain experts
 - ⇒ Protocol analysis: preparing, conducting, interpreting interview
 - ⇒ Less formal methods: <u>subjective estimation</u> & <u>probabilities</u>
- Fluents: Conditions (Predicates) That Can Change over Time
 - * Classes, nominals (objects / class instances): spatial, temporal extent
- * Fluent calculus: situation calculus with defaults, (concatenation)
 Computational Information and Knowledge Management (CIKM)
 - * Data/info integration & transformation: collecting, preparing data
 - * Includes knowledge capture: assimilation from various sources

SUMMARY POINTS

- Last Class: Prolog in Brief, Description Logics, Ontologies
 - * Prolog examples
 - * Ontologies: formal languages for describing domains for KR
 - * KR as basis of learning and reasoning
 - * ALC, SHOIN, and Web Ontology Language (OWL)
- Today: More Ontology Design; Knowledge Engineering, Elicitation
 - * Concept elicitation techniques
 - **⇒** Unstructured
 - **⇒** Structured
 - ⇒ Protocol analysis
 - * Knowledge acquisition (KA); info and knowledge management defined
 - * Situation calculus revisited; time and event calculus, fluent calculus
- Next Class: More KE, Semantic Nets
 - * KA and knowledge capture: elicitation concluded (structure elicitation)
 - * Computational information and knowledge management (CIKM)
- Coming Week: Logical KR Concluded; Planning

OPMATIONS

ARTIFICIAL INTELLIGENCE

ECTURE 18 OF 42

COMPUTING & INFORMATION SCIENCES
KANSAS STATE I INVERSITY