Digital Integrated Circuit Lecture 8 MOS Transistor Theory

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of Previous Lecture

Lecture 7

- Nonideal IV
 - Mobility degradation due to the vertical electric field
 - Velocity saturation

2.4 Nonideal IV

2.4. Nonideal IV (7)

- Velocity saturation
 - Saturation velocity (Canali model)
 - Electrons: 1.07 X 10⁷ cm/sec
 - -Holes: 8.37 X 10⁶ cm/sec
 - A simple model

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Fig. 2.15

2.4. Nonideal IV (8)

• When the electric field is lower than E_c ,

$$E = \frac{I_d}{\mu_n C_{OX} W(V_g - V_t - V_c) - \frac{I_d}{E_c}} = \frac{dV_c}{dx}$$

- (Note that the sign is not correct but understood.)
- -Then, the integration gives

$$LI_{d} = \int_{V_{S}}^{V_{d}} \left[\mu_{n} C_{OX} W (V_{g} - V_{t} - V_{c}) - \frac{I_{d}}{E_{c}} \right] dV_{c}$$

$$= \mu_{n} C_{OX} W \left[(V_{g} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right] - \frac{I_{d}}{E_{c}} V_{ds}$$

2.4. Nonideal IV (9)

Drain current with the velocity saturation

$$I_{d} = \frac{1}{L + \frac{V_{ds}}{E_{c}}} \mu_{n} C_{OX} W \left[(V_{g} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

-With
$$V_c = E_c L$$
,
$$I_d = \frac{1}{1 + \frac{V_{ds}}{V_c}} \mu_n C_{OX} \frac{W}{L} \left[(V_g - V_t) V_{ds} - \frac{1}{2} V_{ds}^2 \right]$$

- The factor, $\frac{1}{1 + \frac{V_{ds}}{V_C}}$, describes the velocity saturation.
- -Then, when do we have the saturation?

2.4. Nonideal IV (10)

- Condition for saturation, $E=E_c \otimes x=L$
 - -In this case, $V_d = V_{dsat}$ and $I_d = I_{dsat}$

$$E_c = \frac{I_{dsat}}{\mu_n C_{OX} W(V_g - V_t - V_{dsat}) - \frac{I_{dsat}}{E_c}}$$

- The saturation current becomes

$$I_{dsat} = \frac{1}{2} \mu_n C_{OX} W (V_g - V_t - V_{dsat}) E_c$$

– What is V_{dsat} ?

2.4. Nonideal IV (11)

Equating two expressions,

$$I_{dsat} = \frac{1}{2} \mu_n C_{OX} W (V_g - V_t - V_{dsat}) E_c$$

$$I_{dsat} = \frac{1}{1 + \frac{V_{dsat}}{V_c}} \mu_n C_{OX} \frac{W}{L} \left[(V_g - V_t) V_{dsat} - \frac{1}{2} V_{dsat}^2 \right]$$

– With the gate overdrive voltage, $V_{GT} \equiv V_g - V_t$, we can find

$$V_{dsat} = \frac{V_{GT}V_c}{V_{GT} + V_c}$$

$$I_{dsat} = C_{OX}W \frac{V_{GT}^2}{V_{GT} + V_c}v_{sat}$$

-Two extreme cases, $V_{GT} \ll V_c$ and $V_{GT} \gg V_c$

Homework#2

- Due: AM08:00, September 26
- Problem#1
 - Compare three modes for the velocity saturation:
 - -1) The one studied in this lecture. (For this model, E_c is 22 kV/cm)

$$-2) v = \frac{\mu_{eff}E}{\sqrt{1+\left(\frac{E}{E_c}\right)^2}}$$

- $-2) v = \frac{\mu_{eff}E}{\sqrt{1 + \left(\frac{E}{E_c}\right)^2}}$ $-3) v = \frac{\mu_{eff}E}{1 + \frac{E}{E_c}} \text{ for any } E \text{ value}$
 - Draw the velocity-field graph in the semi-logarithmic scale. μ_{eff} is 710 cm²/V sec. E_c is 11 kV/cm for 2) and 3). The electric field varies from 100 V/cm to 100 kV/cm.

Homework#2

• Problem#2

- Draw the output characteristics of an NMOSFET, by using two IV models. Compare them.
- -1) Long-channel IV
- -2) The one studied in this lecture.
- Parameters are: W is 100 μm. L is 1 μm. t_{ox} is 25 nm. The effective mobility is assumed to be a constant of 500 cm²/V sec, for simplicity. E_c is 11 kV/cm. Consider five values of V_{GT} : 0.5 V, 1.0 V, 1.5 V, 2.0 V, and 2.5 V. Increase the drain voltage up to 3.0 V.

2.4. Nonideal IV (12)

- Threshold voltage (Body effect)
 - It is given by

$$V_t = \frac{\sqrt{2\epsilon_{si}qN_A}}{C_{ox}}\sqrt{\phi_s + V_{sb}} + V_{FB} + \phi_s \qquad \phi_s = 2v_T \log \frac{N_A}{n_i}$$

-At zero V_{sh} ,

$$V_{t0} = \gamma \sqrt{\phi_s + V_{sb}} + V_{FB} + \phi_s$$

-Therefore,

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

2.4. Nonideal IV (13)

- Leakage
 - -Subthreshold slope
 - Drain-induced barrier lowering
 - Gate-induced drain leakage

2.5 DC Transfer

2.5. DC transfer (1)

- A CMOS inverter
 - The transistor is a switch with an infinite off-resistance and a finite on-resistance.

Fig. 2.25

2.5. DC transfer (2)

- Important properties (Taken from Rabaey's book)
 - The HIGH and LOW output levels equal V_{DD} and GND, respectively.
 - -The logic levels are not dependent upon the relative device sizes, so that the transistors can be minimum size. (Ratioless)
 - A well-designed CMOS inverter has a low output impedance.
 - -The input resistance of the CMOS inverter is extremely high.
 - The absence of current flow between V_{DD} and GND means that the logic gate does not consume any static power.

2.5. DC transfer (3)

 We have five points. Identify the operational modes of transistors.

Fig. 2.26(c)

2.5. DC transfer (4)

- Input threshold, V_{inv} (or switching threshold)
 - -When $V_{in} = V_{out} = V_{inv}$
- β ($\frac{W}{L}\mu C_{OX}$) ratio
 - -HIGH-skewed, $\frac{\beta_p}{\beta_n} > 1$, stronger PMOS -LOW-skewed, $\frac{\beta_p}{\beta_n} < 1$, weaker PMOS

2.5. DC transfer (5)

- ullet Quantitative analysis for V_{inv}
 - Use the long-channel IV

$$I_{dn} = \frac{\beta_n}{2} (V_{inv} - V_{tn})^2$$
 and $I_{dp} = -\frac{\beta_p}{2} (V_{inv} - V_{DD} - V_{tp})^2$

- After manipulation, we have

$$V_{inv} = rac{V_{DD} + V_{tp} + V_{tn} \sqrt{rac{1}{r}}}{1 + \sqrt{rac{1}{r}}}$$

-(Here,
$$r = \frac{\beta_p}{\beta_n}$$
)

– For a special case with
$$r=1$$
, $V_{inv}=\frac{V_{DD}+V_{tn}+V_{tp}}{2}$

2.5. DC transfer (6)

- ullet Quantitative analysis for V_{inv} with velocity saturation
 - Use the following expressions:

$$I_{dn} = W_n C_{ox} v_{sat-n} (V_{inv} - V_{tn})$$

$$I_{dp} = -W_p C_{ox} v_{sat-p} (V_{inv} - V_{DD} - V_{tp})$$

- After manipulation, we have

$$V_{inv} = \frac{V_{DD} + V_{tp} + V_{tn} \frac{1}{r}}{1 + \frac{1}{r}}$$

$$-(\text{Here, } r = \frac{W_p v_{sat-p}}{W_n v_{sat-n}})$$

– For a special case with r=1, $V_{inv}=\frac{v_{DD}+v_{tn}+v_{tp}}{2}$

2.5. DC transfer (7)

- Compare them.
 - Let's draw $\frac{V_{inv}}{V_{DD}}$ as a function of r. Assume that $V_t = V_{tn} = -V_{tp}$.

2.5. DC transfer (8)

- Width ratio (Velocity-saturated inverter)
 - It is found that

$$r = \frac{W_{p}v_{sat-p}}{W_{n}v_{sat-n}} = \frac{V_{inv} - V_{tn}}{V_{DD} - V_{tp} - V_{inv}}$$

-The width ratio is given by

$$\frac{W_p}{W_n} = \frac{v_{sat-n}(V_{inv} - V_{tn})}{v_{sat-p}(V_{DD} - V_{tp} - V_{inv})}$$

Thank you!