Chapter 2: Solving systems using matrices Worksheet

- 1. Are each of the following statements true or false?
 - (a) $\begin{bmatrix} 2 & 8 & | & 6 \\ 2 & 3 & | & 2 \end{bmatrix}$ The systems of linear equations represented by the augmented matrices $\begin{bmatrix} 2 & 8 & | & 6 \\ 2 & 3 & | & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 4 & | & 3 \\ 0 & 1 & | & \frac{4}{5} \end{bmatrix}$ have the same set of solutions.
 - (b) If A is a 3×2 matrix, it's possible for the rank of A to be 3.
 - (c) A homogeneous system of 2 equations in 3 unknowns always has nontrivial solutions.
 - (d) If A is a 3×3 matrix with rank 2, then the homogeneous system with coefficient matrix given by A will have only the unique trivial solution.
- **2.** Perform row operations on each matrix to reduce it to a row echelon form. Afterwards, find the reduced row echelon form for the matrices. What is the rank of each?

(a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & -2 \\ 2 & 0 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 2 & 2 & 2 & -2 \\ 4 & -5 & -5 & 5 \\ 0 & -4 & -4 & 4 \end{bmatrix}$

3. Solve each system of equations by 1.) putting it into an augmented matrix and 2.) Using Gaussian Elimination to get the system into row-echelon form and 3.) Extracting the solutions. If a system has no solutions, explain why. If a system has multiple solutions, describe the family of solutions in terms of a free variable/parameter.

(a)
$$\begin{cases} 4x+y+3z &= 5\\ 2x-2z &= 4\\ 8x+y-z &= 9 \end{cases}$$
 (b)
$$\begin{cases} 4x+y+3z &= 5\\ 2x-2z &= 4\\ 8x+y-z &= 13 \end{cases}$$

- **4.** Find a nontrivial solution of the homogeneous system represented by the augmented matrices. If there is no nontrivial solution, explain why.
 - (a) $\begin{bmatrix} 1 & 4 & 2 & 0 \\ 5 & 2 & -1 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 5 & 0 & 0 \\ -3 & 3 & 1 & 0 \end{bmatrix}$
- **5.** Find the general solution and basic solutions to the homogeneous system represented by the augmented matrix $\begin{bmatrix} 1 & 1 & -1 & 5 & 0 \\ 2 & -1 & -14 & 1 & 0 \\ -3 & 1 & 19 & -3 & 0 \end{bmatrix}$
- **6.** Given the matrix $M=egin{bmatrix}1&0&-1\0&1&2\0&0&0\end{bmatrix}$, find two 3 imes3 (coefficient) matrices A_1 and A_2 ,

each with the above reduced row echelon form M, but $egin{bmatrix} A_1 & 1 \ -2 \ 3 \end{bmatrix}$ has no

solution, and $egin{bmatrix} & 1 \ & -2 \ & 3 \end{bmatrix}$ has infinitely many solutions.