MATH 3940-1 Numerical Analysis for Computer Scientists

Problem Set 4: Nonlinear Systems and Interpolation Polynomials

Note: You can use Octave or Matlab for the questions that says to use Matlab.

1. Consider the system of nonlinear equations

$$\begin{array}{rcl}
2x & + & 2y & = & 3 \\
3x^2 & + & 2y & = & 4
\end{array}$$

- (a) Find the exact solutions.
- (b) Perform 2 iterations of Jacobi method starting with the initial values $x_0 = 0$ and $y_0 = 0$.
- (c) Perform 2 iterations of Gauss-Seidel method starting with the initial values $x_0 = 0$ and $y_0 = 0$.
- (d) Use Matlab to perform 10 iterations of Jacobi method starting with $x_0 = 0$ and $y_0 = 0$, and tolerance 10^{-5} . Does it converge?
- (e) Use Matlab to perform 10 iterations of Gauss-Seidel method starting with $x_0 = 0$ and $y_0 = 0$, and tolerance 10^{-5} . Does it converge?
- (f) Do you expect Jacobi or Gauss Seidel method to converge starting with $x_0 = 0$ and $y_0 = 0$? Justify your answer using the conditions of convergence.
- 2. (a) Find the Taylor polynomial of degree 3 for $f(x) = \frac{1}{x+1}$ expanded about $x_0 = 0$.
 - (b) Does $f(x) = \frac{1}{x+1}$ have a Taylor polynomial expansion about $x_0 = -1$? Justify your answer.
- - (a) Use Matlab built in functions to find an interpolation polynomial of degree 5 for the data and to approximate the value at x = -1.5.
 - (b) Find Lagrange polynomial $P_2(x)$ using the nodes x_0, x_1 , and x_2 .
 - (c) Use Matlab to find Lagrange polynomial $P_2(x)$ using the nodes x_0, x_1 , and x_2 .
 - (d) Find divided difference table and Newton polynomial using all nodes in the above table.
 - (e) Use Matlab to find divided difference table and Newton polynomial using all nodes in the above table.
- 4. Let $f(x) = x + e^{-x}$. The nodes are $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$, and $x_3 = 1.5$.
 - (a) Use Matlab to find lagrange polynomial $P_3(x)$ using the above nodes.
 - (b) Use Matlab to find Newton polynomial $P_3(x)$ using the above nodes.
 - (c) Use the error formula to find a bound for the error for $P_3(1.2)$ and compare the bound to the actual error. (use the Lagrange or Newton polynomial $P_3(x)$ obtained from Matlab in part(a) or (b)).