Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular Exam-2079, Ashad

Program: Diploma in Engineering All
Year/Part: I/I (2021 New Course)
Full Marks: 80
Pass Marks: 32

Subject: Engineering Mathematics I Time: 3 hrs

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

WWW.ariun00.com.np

Group'B'

Attempt All questions.

 $[7 \times (2+2) = 28]$

- 1. a) If $A = \{2, 3, 4, 5, 6, 7\}$, $B = \{4,5,6,7,8\}$ and $c = \{1,2,3,4,5\}$, find i) $(A \cup B) \cap C$ ii) $(A \cap B) \cup C$
 - b) Rewrite $|2x 1| \le 5$ without using absolute value sign.
- 2. a) Prove that: $sin(2sin^{-1}x) = 2x\sqrt{1-x^2}$.
 - b) In any $\triangle ABC$, show that. $c(a \cos B b \cos A) = a^2 b^2$
- 3. a) If $\frac{CosA}{a} = \frac{CosB}{b}$, prove that the triangle is an isosceles.
 - b) Evaluate: $\frac{Lt}{x \to 2} \frac{x^2 5x + 6}{x^2 x 2}$.
- 4. a) Find $\frac{dy}{dx}$; when $y = \frac{1}{\sqrt{ax^2 + bx + c}}$.
 - b) Find $\frac{dy}{dx}$ when $= cos (sin\sqrt{3x+5})$.
- 5. a) Integrate: $\int \left(\sqrt{x} \frac{1}{\sqrt{x}}\right) dx$.
 - b) The sum of an infinite G.S. is 15 and the first term is 3.Find the common ratio.
- 6. a) In how many ways can the letters of the word "MATHEMATICS" be arranged?
 - b) Find the seventh term in the expansion of $(3x^2 \frac{1}{2x})^{12}$.
- 7.a) Find the distance between the parallel lines 3x+4y-5=0 and 6x+8y+17=0.

b) Find the angle betⁿ two lines represented by

$$x^2 - 2xy \cot\theta - y^2 = 0.$$

Group 'B'

Attempt All questions.

 $[13 \times 4 = 52]$

8. If $\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$ prove that $x^x y^y z^z = 1$.

OR

Let $f: R \to R$, $g: R \to R$ which are defined by $f(x) = x^3 + 1$ and $g(x) = x^5$ respectively then find

- a) $f \circ g(x)$ b) $g \circ f(x)$ c) $f^{-1}(x)$
- 9. Solve: $tan^2x = secx + 1$.

OR

Solve: $sin^{-1} \frac{2a}{1+a^2} - cos^{-1} \frac{1-b^2}{1+b^2} = 2tan^{-1}x$.

10. If $a^4 + b^4 + c^4 = 2a^2(b^2 + c^2)$ prove that $A = 45^\circ$ or 135° .

OR

Solve the $\triangle ABC$, if $b = \sqrt{3}$, c = 1 and $A = 30^{\circ}$.

A function f(x) is defined as follows.

$$\int(x) = \begin{cases} 2x+1 & for \ x < 1 \\ 2 & for \ x = 1 \\ 3x & for \ x > 1 \end{cases}$$

Is the function continuous at x = 1? If not, how can it be made continuous at x = 1?

- 12. Find from first principle, the derivatives of \sqrt{tanx} or $\frac{1}{\sqrt{4-5x}}$.
- 13. Integrate (any one)

a)
$$\int \frac{dx}{x^2 \sqrt{9-x^2}}$$

a)
$$\int \frac{dx}{x^2\sqrt{9-x^2}}$$
 b) $\int \sec^3 x \, dx$

www.arjun00.com.np

- 14. Prove that the AM, GM and HM between any two unequal positive numbers satisfy the relation.
 - i) $(GM)^2 = AM \times HM$ ii) AM > GM > HM

OR

Find the sum to infinity $1 - 3x + 5x^2 - 7x^3 + \dots (|x| < 1)$.

- 15. From 6 gentleman and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done as to include at most two ladies?
- 16. Prove that: $\frac{1.2}{1!} + \frac{2.3}{2!} + \frac{3.4}{3!} + \cdots = 3e$.
- 17. Find the equations of the bisectors of the angles between the lines 4x - 3y + 1 = 0 and 12x - 5y + 7 = 0. Also show that bisectors are at right angle.
- 18. Find the separate equations represented by $2x^2 + xy 3y^2 + 9x + 26y 2xy 3y^2 + 3$ 35 = 0. Also find the angle between them.

OR

Prove that the straight lines joining the origin to the point of intersection of the line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are at right angles if $\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}$.

- 19. Find the equation of circle passing through the points (3,-2) and (-2, 0) whose centre lies on the line 2x - y = 3.
- 20. Find $\frac{dy}{dx}$ (any one)

i)
$$x^2 y^2 = tanxy$$
 ii) $x^y y^x = a$

www.arjun00.com.np Good Luck!