ML Junior Practical Test - Report

Genetic Syndrome Classification with KNN

1. Methodology

1.1 Data Preprocessing

- Loading the file (.p): I started by reading the mini_gm_public_v0.1.p file, which contains a hierarchical dictionary with 320-dimension embeddings.
- Hierarchical Structure \rightarrow Flatten: I transformed the nested structure (syndromeId \rightarrow subjectId \rightarrow imageId \rightarrow embedding) into a DataFrame, where each row represents an image, containing the columns syndromeId, subjectId, imageId and embeddingVector. Checking missing data: I did a simple check to confirm there were no null values. As the console image shows, there was no missing data in syndromeId, subjectId, imageId or embeddingVector.

Figure: Distribution of missing data and general statistics in console:

```
Missing data in each column:

syndromeId 0

subjectId 0

imageId 0

embeddingVector 0 dtype:

int64

Total number of samples: 1116

Number of unique syndromes: 10

Samples per syndrome (min to max): 64 - 210 X shape: (1116, 320) | y shape: (1116,)
```

1.2 Exploratory Data Analysis (EDA)

• Class Distribution: I plotted a bar chart to see how many images exist for each syndrome. The following figure shows that syndromeId=300000034 has the highest number of images (~210), followed by 300000080, while others have fewer, like 700018215.

1.3 Visualization with t-SNE

• To better understand the separation between classes, I applied t-SNE reducing the embeddings (320D) to 2D. Each color represents a syndrome1d.

We noticed some more cohesive groups, but also areas where colors mix, which indicates that some syndromes might be more similar in the embedding space.

1.4 Classification with KNN

- Algorithm: I chose K-Nearest Neighbors, comparing two distance metrics: Euclidean and Cosine.
- Range of k: I evaluated k values from 1 to 15.
- 10-Fold Cross-Validation: I used stratified validation, ensuring each fold respected the class proportions.

Results of F1-Score for each k

Below are the resulting tables (printed in console with tabulate):

```
F1-scores (Euclidean)
+---+
| k | F1-Score |
|----|
| 1 | 0.6307
| 2 | 0.5875
| 3 | 0.6333
| 4 | 0.6580
| 5 | 0.6659
| 6 | 0.6734
| 7 | 0.6879
| 8 | 0.7030
1 9 1 0.7070
| 10 | 0.6980
| 11 | 0.7102
| 12 | 0.7070
| 13 | 0.7234
| 14 | 0.7323
| 15 | 0.7346
+---+
Best k (Euclid): 15
F1-scores (Cosine)
+---+
| k | F1-Score |
|----|
| 1 | 0.6755
| 2 | 0.6561
| 3 | 0.7148
| 4 | 0.7298
| 5 | 0.7559
| 6 | 0.7658
7 | 0.7794
| 8 | 0.7741
1 9 | 0.7703
| 10 | 0.7580
| 11 | 0.7568
| 12 | 0.7599
| 13 | 0.7620
| 14 | 0.7563
| 15 | 0.7660
+---+
Best k (Cosine): 7
```

Therefore, the **best k** for Euclidean is 15, while for Cosine it's 7.

2. Results

2.1 Detailed Metrics

For each distance measure, I also calculated statistics such as average F1 (meanF1), standard deviation of F1 (stdF1), Top-5 Accuracy (meanTop5) and AUC (meanAUC).

=:	== Detailed			==
 	Metric	Value	:	
i	meanF1	0.734	6	
	stdF1	0.039	5	
	meanTop5	0.967	7	
	meanAUC	0.950	4	
	stdAUC	0.010	3	
+		+	-+	
=== Detailed Stats (Cosine) === ++				
	Metric	Value	:	
		+	ı	
	meanF1			
	stdF1	•		
	meanTop5			
	meanAUC		- 1	
-	stdAUC	0.015	0	
+ -		+	· - +	

2.2 ROC Curves Comparison

To generate the ROC curves, I aggregated the probabilities from each fold (One-vs-Rest) and calculated the average TPR/FPR. I then plotted the Euclid (blue) and Cosine (red) curves on the same graph:

We can see that the red curve (Cosine) generally stays above the blue one (Euclid), although the final AUC is very similar (both \sim 0.95). This indicates that Cosine performed slightly better, but the difference wasn't huge in the average of the folds.

3. Analysis

1. Difference Between Metrics:

- ^o **Cosine** worked a bit better, possibly because the 320-dimension embeddings benefit more from the angle than from the magnitude of the vectors. Euclidean
- o needed a higher k (15) to stabilize.

2. Top-5 Accuracy:

o Both showed values above 0.96, indicating that the real syndrome usually appeared among the 5 most likely predictions from the model.

3. Class Distribution:

o Some syndromes had many more images than others (e.g., 210 vs. 64). This can impact the model's stability, but cross-validation helped mitigate this imbalance.

4. t-SNE Visualization:

o The graph showed moderate clusters, but various colors mixed together, explaining why the model doesn't reach 100% F1.

4. Challenges and Solutions

1. Hierarchical Structure

- ° *Challenge*: The dataset didn't come in a standard CSV format, but as a nested dictionary.
- O Solution: I implemented a flatten function, generating a DataFrame (one "record" per image).

2. Execution Time

- ° Challenge: Running cross-validation (k=1..15 and 10 folds) and t-SNE (320D \rightarrow 2D) can be time-consuming.
- O Solution: I limited t-SNE to sample only 1000 points and kept 10 folds as it's a reliable standard for validation.

3. Multiclass Evaluation

- ° *Challenge*: Plotting ROC curves in multiclass mode requires binarizing each class (One-vs-Rest).
- O Solution: I used functions with label_binarize and aggregated the TPR/FPR from each fold, creating an "average curve."

5. Recommendations

- 1. **Embedding Normalization**: Trying to normalize each vector to have norm 1 could further improve the Cosine distance performance.
- 2. **Test Other Classifiers**: Random Forest, SVM, or even a simple neural network might outperform KNN on larger datasets.
- 3. Class Balance: If possible, seek more images of syndromes with few samples, or use oversampling techniques.
- 4. **Deeper Hyperparameter Tuning**: Adjust weights for each class in KNN or expand the search for k, and use weights (e.g., weights='distance').
- 5. **Production Use**: If there are plans to put this model into operation, we could create a microservice (Flask/FastAPI) and monitor metrics on real data.

Conclusion

This project demonstrated a **complete pipeline** for syndrome classification from embeddings, covering:

- Loading and flattening of the hierarchical dataset;
- Exploratory data analysis (EDA) and visualization with t-SNE;
- Comparison of KNN using Euclidean vs. Cosine distances, varying k from 1 to
- 15; Evaluation with F1-Score, multiclass AUC, and Top-5 Accuracy; Generation
- of tables and graphs to better interpret the results.

Overall, KNN with **Cosine** distance and **k=7** achieved the best F1 score (approximately 0.78), while the Euclidean option needed k=15 to reach ~0.73. Nevertheless, both had AUC close to 0.95, indicating that the embeddings are expressive. In future work, I can try normalizing vectors, adding more data from underrepresented syndromes, and testing more advanced classifiers to further improve accuracy.