Gini Index Decision Tree

Spots	Stiff Neck	Diagnosis
Yes	Yes	Positive
Yes	No	Positive
No	Yes	Positive
Yes	Yes	Positive
Yes	Yes	Positive
Yes	Yes	Positive
No	Yes	Positive
No	Yes	Negative
Yes	No	Negative
Yes	No	Negative
No	No	Negative
Yes	Yes	Negative
No	No	Negative
No	No	Negative

Impurity =
$$1 - \sum_{i=1}^{c} P(x=i)^{2}$$

All calculations to 2dp

Parent Impurity =
$$1 - ((\frac{7}{14})^2 + (\frac{7}{14})^2) = 0.5$$

		Diagnosis	
		Positive Negative	
Headache	Yes (A1)	4	2
	No (A2)	3	5

		Diagnosis	
		Positive Negative	
Spots	Yes (B1)	5	2
	No (B2)	3	4

		Diagnosis	
		Positive Negative	
Stiff Neck	Yes (C1)	6	2
	No (C2)	1	5

$$A1 = 1 - ((\frac{4}{6})^2 + (\frac{2}{6})^2) = 0.44$$

 $Az = 1 - ((\frac{2}{8})^2 + (\frac{5}{8})^2) = 0.47$

$$B1 = 1 - ((\frac{5}{7})^2 + (\frac{7}{7})^2) = 0.41$$

$$C1 = 1 - \left(\left(\frac{6}{8} \right)^2 + \left(\frac{2}{8} \right)^2 \right) = 0.38$$

$$C2 = 1 \left(\left(\frac{1}{6} \right)^2 + \left(\frac{5}{6} \right)^2 \right) = 0.27$$

Stiff Neck has highest value so split on that.

Left Subtree

Headache	Spots	Diagnosis
Yes	Yes	Positive
Yes	No	Positive
No	Yes	Positive
Yes	Yes	Positive
No	Yes	Positive
Yes	No	Positive
No	No	Negative
No	Yes	Negative

Impurity =
$$1 - ((\frac{6}{8})^2 + (\frac{2}{8})^2 = 0.38$$

	Diagnosis	
	Positive Negative	
Yes (D1)	4	0
No (D2)	2	2
	(5.4)	Positive

D1 =
$$1 - ((\frac{4}{4})^2 + (\frac{2}{4})^2) = 0$$

D2 = $1 - ((\frac{2}{4})^2 + (\frac{2}{4})^2) = 0.5$
Gini (x, Headache) = $0.38 - \frac{4}{8}(0) - \frac{4}{8}(0.5) = 0.13$
E1 = $1 - ((\frac{4}{5})^2 + (\frac{1}{5})^2) = 0.32$
E2 = $1 - ((\frac{2}{3})^2 + (\frac{1}{3})^2) = 0.44$
Gini (x, Spots) = $0.38 - \frac{5}{8}(0.32) - \frac{3}{8}(0.44) = 0.015$

Headache is a higher value so split on that.

Right Subtree

Headache	Spots	Diagnosis
No	Yes	Positive
No	Yes	Negative
No	Yes	Negative
Yes	No	Negative
No	No	Negative
Yes	No	Negative

Impurity =
$$1 - ((\frac{1}{6})^2 + (\frac{5}{6})^2) = 0.28$$

		Diagnosis	
		Positive Negative	
Headache	Yes (F1)	0	2
	No (F2)	1	3

		Diagnosis	
		Positive Negativ	
Spots	Yes (G1)	1	2
	No (G2)	0	3

$$f1 = 1 - ((\frac{2}{5})^2 + (\frac{2}{5})^2) = 0$$

$$f2 = 1 - ((\frac{1}{4})^2 + (\frac{3}{4})^2) = 0.38$$
Gin: (x, Headache) = 0.28 - $\frac{2}{6}$ (3) - $\frac{4}{6}$ (0.38) = 0.03

G1 = 1 -
$$((\frac{1}{3})^2 + (\frac{2}{3})^2 = 0.44$$

G2 = 1 - $((\frac{2}{3})^2 + (\frac{2}{3})^2) = 0$
Grini (X, Spots) = $0.28 - \frac{2}{6}(0.44) - \frac{3}{6}(0) = 0.06$

Spots is higher, so split on spots

Left Left Subtree (Node Y)

- Node is pure, so it no longer needs to be split

Left Right Subtree (Node X)

		Diagnosis	
		Positive Negative	
Spots	Yes (I1)	2	1
	No (I2)	0	1

Only spots left to split on, so split the node on spots

Right Right subtree (Node B)

- Node is pure, so it no longer needs to be split

Right Left Subtree (Node A)

		Diagnosis	
		Positive	Negative
Headache	Yes (H1)	0	0
	No (H2)	1	2

Only headache left to split on, however splitting on this attribute makes no difference to data since all three cases of data will be on the no side, so this attribute does not need be branched on.

Final Gini Decision Tree

Chi Squared Decision Tree

s
:
;
:

formula to get this squared result:

$$2^2 = \sum_{i=1}^{c} \sum_{j=1}^{c} \frac{(0ij - eij)^2}{eij}$$

values inside bradcets mean (expected values)

Headache

	Positive	Negative	Total
Yes	$4(6*(\frac{7}{14})=3)$	$2(6*\left(\frac{7}{14}\right)=3)$	6
No	$3(8*\left(\frac{7}{14}\right)=4)$	$5(8*\left(\frac{7}{14}\right)=4)$	8
Total	7	7	14
Probability	7/14	7/14	

Headache
$$x^2 = \frac{(4-3)^2}{3} + \frac{(2-3)^2}{3} + \frac{(3-4)^2}{4} + \frac{(5-4)^2}{4}$$

$$= 1.17$$

Spots

	Positive	Negative	Total
Yes	$5(7*(\frac{8}{14})=4)$	$2(7*\left(\frac{6}{14}\right)=3)$	7
No	$3(7*\left(\frac{8}{14}\right)=4)$	$4(7*\left(\frac{6}{14}\right)=3)$	7
Total	8	6	14
Probability	8/14	6/14	

Spots
$$3c^2 = \frac{(5-4)^2}{4} + \frac{(2-3)^2}{3} + \frac{(3-4)^2}{4} + \frac{(4-3)^2}{3} = 1.17$$

Stiff Neck

	Positive	Negative	Total
Yes	$6(8*(\frac{7}{14})=4)$	$2(8*\left(\frac{7}{14}\right)=4)$	8
No	$1(6*\left(\frac{7}{14}\right)=3)$	$5(6*\left(\frac{7}{14}\right)=3)$	6
Total	7	7	14
Probability	7/14	7/14	

Stiff neck
$$x^2 = \frac{(6-4)^2}{4} + \frac{(z-4)^2}{4} + \frac{(1-3)^2}{3} + \frac{(s-3)^2}{3} = \frac{4.67}{3}$$

Split of Stiff neck sinces it's the highest.

Left Subtree

Headache	Spots	Diagnosis
Yes	Yes	Positive
Yes	No	Positive
No	Yes	Positive
Yes	Yes	Positive
No	Yes	Positive
Yes	No	Positive
No	No	Negative
No	Yes	Negative

Headache

	<u> </u>					
	Positive	Negative	Total			
Yes	$4(4*(\frac{6}{8})=3)$	$0(4*\left(\frac{2}{8}\right)=1)$	4			
No	$2(4*\left(\frac{6}{8}\right)=3)$	$2(4*\left(\frac{2}{8}\right)=1)$	4			
Total	6	2	8			
Probability	6/8	2/8				

Headache
$$x^2 = \frac{(4-5)^2}{3} + \frac{(0-1)^2}{1} + \frac{(2-3)^2}{3} + \frac{(2-1)^2}{1} = \frac{2.67}{1}$$

Spots

<u> </u>					
	Positive	Negative	Total		
Yes	$4(5*(\frac{6}{8})=3.75)$	$1(5*\left(\frac{2}{8}\right) = 1.25)$	5		
No	$2(3*\left(\frac{6}{8}\right)=2.25)$	$1(3*\left(\frac{2}{8}\right)=0.75)$	3		
Total	6	2	8		
Probability	6/8	2/8			

Spots
$$x^2 = \frac{(4-3.75)^2}{3.75} + \frac{(1-1.25)^2}{1.25} + \frac{(2-2.25)^2}{2.25} + \frac{(1-0.75)^2}{0.75}$$

= $\frac{0.17}{2}$

headache is higher, split left subtree on it.

Right Subtree

Spots	Diagnosis
Yes	Positive
Yes	Negative
Yes	Negative
No	Negative
No	Negative
No	Negative
	Yes Yes Yes No

Headache

	<u> </u>	<u> </u>	
	Positive	Negative	Total
Yes	$0(2*(\frac{1}{6})=1/3)$	$2(2*\left(\frac{5}{6}\right)=5/3)$	2
No	$1(4*\left(\frac{1}{6}\right)=2/3)$	$3(4*\left(\frac{5}{6}\right) = 10/3)$	4
Total	1	5	6
Probability	1/6	5/6	

Headache
$$\alpha^2 = \frac{(0-\frac{1}{3})^2}{\frac{1}{3}} + \frac{(2-\frac{5}{3})^2}{\frac{5}{3}} + \frac{(1-\frac{2}{3})^2}{\frac{2}{3}} + \frac{(3-\frac{10}{3})^2}{\frac{10}{3}}$$

$$= 0.6$$

Spots

	<u> </u>		
	Positive	Negative	Total
Yes	$1(3*(\frac{1}{6}) = 0.5)$	$2(3*\left(\frac{5}{6}\right)=2.5)$	3
No	$0(3*\left(\frac{1}{6}\right) = 0.5)$	$3(3*\left(\frac{5}{6}\right)=2.5)$	3
Total	1	5	6
Probability	1/6	5/6	

Spots
$$x^2 = \frac{(1-0.5)^2}{0.5} + \frac{(2-2.5)^2}{2.5} + \frac{(0-0.5)^2}{0.5} + \frac{(3-2.5)^2}{2.5}$$

$$= 1.2$$

Spots is greater, split right subtree on it.

Left Left Subtree (Node Y)

- Node is pure, so it no longer needs to be split

Left Right Subtree (Node X)

- Only spots left to split on, so split the node on spots

<u>Spots</u>					
	Positive	Negative	Total		
Yes	2	1	3		
No	0	1	1		
Total	2	2	4		
Probability	2/4	2/4			

Right Right subtree (Node B)

- Node is pure, so it no longer needs to be split

Right Left Subtree (Node A)

- Only left to split on headache, however splitting on this attribute makes no difference to data since all three cases of data will be on the no side, so this attribute does not need be branched on.

	Н	e	<u>a</u>	d	<u>a</u>	С	h	<u>e</u>
--	---	---	----------	---	----------	---	---	----------

	Positive	Negative	Total
Yes	0	0	0
No	1	2	3
Total	1	2	3
Probability	1/3	2/3	

Final Chi squared decision tree

