KHORHOC

RHÁM PHÁ

DÒNG SÔNG TRÔI KHUẤT ĐIA ĐÀNG

RIVEROUT OF EDEN

MỘT GÓC NHÌN THEO HOC THUYẾT DARWIN VỀ SỰ SỐNG

NHA XUAT BANTRE

DÒNG SÔNG TRÔI KHUẤT ĐỊA ĐÀNG RIVER OUT OF EDEN

MỘT GÓC NHÌN THEO HỌC THUYẾT DARWIN VỀ SỰ SỐNG

RICHARD DAWKINS

NGÔ TOÀN - MAI HIÊN dịch

NHÀ XUẤT BẢN TRỂ Đánh máy và làm ebook: Kestrel

Ebook miễn phí tại : www.Sachvui.Com

<u>TÁC GIẢ</u> <u>DỊCH GIẢ</u> LỜI MỞ ĐẦU CHƯƠNG 2 MỆ CHÂU PHI VÀ
CON CHÁU CỦA BÀ
CHƯƠNG 3 KIẾN THA LÂU ĐẦY
TỔ

CHƯƠNG 1 DÒNG SÔNG SỐ

<u>CHƯƠNG 4 HÀM THỎA DỤNG</u> <u>CỦA CHÚA</u>

<u>Cua Chua</u> <u>Chương 5 quả bom nhân bản</u>

TÁC GIẢ

Ebook miễn phí tại : www.Sachvui.Com

RICHARD DAWKINS, sinh năm

1941, nhà sinh vật học của Đại Hoc Oxford (Anh), là thành viên của Hiệp Hội Hoàng Gia và Hiệp Hội Văn Học Hoàng Gia Anh. Ông là người có công lớn nhất trong giới khoa hoc hiện đại trong việc mang thuyết tiến hóa đến cho công chúng toàn thế giới. Ông cũng từng là trưởng khoa "Khoa Học với Công Chúng" của Đai Học Oxford trong 13 năm liền với học hàm "Giáo Sư Simonyil" - hoc hàm cho những ai công chúng mà vẫn giữ được bản chất trung thực của khoa học. Richard Dawkins là tác giả của bộ sách đồ số gồm 11 cuốn, bao gồm

có công mang khoa học đến với

nhiều cuốn cực kì giá trị, mang tầm ảnh hưởng rông rãi không chỉ trong giới khoa học mà còn toàn bộ công chúng, kể cả giới nghệ thuật và tôn giáo. Một lý do khiến sách của ông vượt ra khỏi những cuốn sách khoa học thông thường và mang tầm ảnh hưởng rộng đến vậy là bởi vì sự thấu đáo và toàn diện mà những lập luận khoa học ông đưa ra, cũng như Charles Darwin từng chấn đông thế giới và vấp phải rất nhiều thử khoa học của Richard Dawkins cũng đưa tầm suy nghĩ của con người lêm một tầm vóc mới. Nhưng Richard Dawkins không chỉ

thách từ các giới, những lập luân

chinh phục người đọc bằng những lập luận khoa học, điều lớn nhất giúp sách ông trở nên phổ biến chính là sư kỳ thú chất chứa trong sách. Cách thức ông kể về hàng trăm ngàn hiện tương khoa học tư nhiên có thể làm hứng thú bất kỳ ai, từ các nhà khoa học lớn đến các bạn trẻ thích khám phá, hay kể cả những người đơn giản chỉ thích nghe chuyện lạ. Còn có rất nhiều

điều lý thú khác mà chúng ta có thể

nói chuyện và trình bày mà ông đem đến cho công chúng. Sự kết hợp giữa một nhà khoa học uyên bác và một nhà văn tài

ba, một nhà giáo dục công chúng

tìm thấy trong sách của ông, cũng như đưa vào các bài giảng, các buổi

lừng danh, khó có một từ ngữ nào đầy đủ để diễn tả hết các khía canh của con người này. Chúng ta chỉ có thể bắt đầu đơn giản bằng cách đọc sách của ông. Chúng tôi, những dịch giả, hy vọng góp phần bé nhỏ mang các kiến thức uyên bác cùng những câu chuyện kỳ thú ấy đến với độc giả Việt Nam.

. Năm 2009 là năm kỉ niệm lần thứ và kỉ niệm lần thứ 150 ngày công bố cuốn sách **Nguồn Gốc Các Loài**, cho nên tôi đặc biệt vui mừng được biết sự ra đời của ấn bản tiếng

Việt cuốn **Dòng Sông Trôi Khuất Địa Đàng**. Đây là cuốn sách ngắn

200 ngày sinh của Charles Darwin,

nhất của tôi, và theo khía cạnh nào đó nó là cuốn dễ đọc nhất. Tôi muốn nghĩ rằng Darwin cũng ưng ý với cuốn sách, và tôi rất hy vọng rằng cuốn sách sẽ đem lại niềm say mê cho độc giả Việt Nam cũng như tôi đã từng say mê viết ra nó vậy.

Oxford, Tháng Hai 2009 Richard Dawkins

DỊCH GIẢ

Ebook miễn phí tại : www.Sachvui.Com

NGÔ MINH TOÀN- sinh năm 1979, tốt nghiệp Đại Học Khoa Học Tự Nhiên TP Hồ Chí Minh và Tiến sĩ ngành Vật Lý Sinh Học tại Trieste - Italy. Toàn hiện là tu nghiệp sinh sau Tiến sĩ tại Đại học Maryl ADN - Hoa Kì và vẫn luôn gắn bó với Viện Vật Lý và Điện Tử - Hà Nội.

Ngô Minh Toàn được Báo Tuối Trẻ ngày 15/11/2006 giới thiệu như một tấm gương tri thức vượt khó. Đối với anh, giúp mọi người gần hơn, hiểu hơn về khoa học và đem khoa

TRẦN THỊ MAI HIÊN - sinh năm 1981, tốt nghiệp Đại học Ngoại Thương Thành phố Hồ Chí Minh và thạc sĩ ngành Quản trị kinh doanh tại Italy, hiện đang là Trợ lí Nghiên cứu cho chương trình Giáo duc Sức

khỏe Cộng đồng cho người châu Á của Đai Học Maryl ADN và John

cho ước mơ trên.

Hopkins.

học đến với nhiều người hơn là một ước mơ lớn. Và việc đem các sách khoa học hấp dẫn đến với độc giả Việt Nam là một hành đông cụ thể

Nhóm dịch giả Ngô Toàn - Mai Hiên, với năng lực và sự hăng hái của tuổi trẻ, hứa hẹn sẽ tiếp

tục đem đến cho độc giả những cuốn sách khoa học giá trị.

Tưởng nhớ Henry Colyear Dawkins (1921-1992)

Học giả của trường St.John, Oxford Một bậc thầy về nghệ thuật làm cho mọi chuyện rõ ràng

LỜI MỞ ĐẦU

Hein

Tự Nhiên, phải chẳng, là tên chuna

Của hàng tỉ tá hàng tỉ tá hàng tỉ tá

Những hạt chất chơi trò ú tim vô cùng

Của những hòn bi-da hòn bi-da hòn bi-da

Piet

Piet Hein đã từng hoa ra thế giới

đến khi sư va cham rôn ràng giữa những hòn bi-da nguyên tử tạo ra một vật thể mang tính chất dường như bé nhỏ, thì một điều gì đó mạnh mẽ vĩ đại bỗng xảy ra trong vũ tru. Tính chất đó chính là khả năng tư nhân bản; nghĩa là, vật thể đó có khả năng dùng nguyên liệu từ môi trường xung quanh để tao ra các bản sao chính xác của mình, và thỉnh thoảng, bao gồm cả những bản sao với những lỗi vô cùng nhỏ. Sau sư kiên phi thường này, ở bất kì nơi đâu trong vũ trụ, sự chọn lọc Darwin diễn ra, và rồi thì một tác

vật lý nguyên thủy kinh điển trong những vần thơ như thế. Nhưng chỉ

mà trên hành tinh này, chúng ta gọi đó là sự sống. Chưa bao giờ nhiều dữ kiên đến thế lai được giải thích bởi ít giả thiết đến vậy. Thuyết Darwin không chỉ đơn thuần tao ra môt sức manh kiến giải dồi dào. Tính hiệu quả của nó còn mang một vẻ tao nhã, một vẻ đẹp thi vị vượt hẳn những truyền thuyết được nhắc đến nhiều nhất về khởi nguyên của thế giới. Một trong nhứng mục đích khi tôi viết cuốn này là đề cao giá tri truyền cảm của tri thức hiên đai về sư sống Darwin. Bản thân hình ảnh Eva Ti Thể còn giàu chất thơ hơn cả nhân vật truyền thuyết cùng

phẩm nghệ thuật ngoạn mục ra đời,

tên với bà. Nét đặc biệt của sư sống, theo lời David Hume, "quyến rũ đến mức ai đã từng suy ngẫm về nó đều phải đem lòng ngưỡng mô", chính là chi tiết phức hợp mà các cơ cấu của sư sống – các cơ cấu mà Charles Darwin đã gọi là "các cơ quan với

độ hoàn thiên và tinh vi tốt bâc" đáp ứng được mục đích cụ thể và thể hiện rõ ra ngoài. Một đặc tính nữa của sư sống trên Trái đất này gây ấn tượng mạnh mẽ cho chúng ta đó chính là sư đa dang dồi dào của chúng: tương tự như khi ước lương số lương các loài, người ta thấy có khoảng hàng chục triệu độc giả rằng "cách để kiếm sống" đồng nghĩa với "cách để truyền đi văn bản mã hóa kiểu ADN tới tương lai". "Dòng sông" của tôi là dòng sông ADN, trôi đi và rẽ nhánh ra trong thời gian địa chất. Ở đây, phép hình tương về những đôi bờ dốc đứng cản trở trò chơi gien các loài lai trở thành một hình tương hữu ích đến bất ngờ.^[1] Dù theo cách này hay cách khác, tất cả các cuốn sách của tôi đều được cống hiến để giải thích và

khám phá sức mạnh gần như không giới han của nguyên lý Darwin – sức

cách khác nhau để kiếm sống. Một mục đích nữa của tôi là thuyết phục

hệ quả mới. Dòng sông trôi khuất địa đàng tiếp tục sứ mênh này và còn nâng đến một cực điểm mang tính ngoài Trái đất. Đó là việc ảnh hưởng ngược lai có thể này sinh khi các nhân bản tử tham gia vào trò chơi, mà đến nay vẫn là trò khiêm tốn của các hòn bi-da nguyên tử. Trong quá trình viết cuốn sách này, tôi nhân được sư giúp đỡ, đông viên, góp ý và cả lời phê bình mang

tính xây dựng dưới nhiều hình thức khác nhau từ Michael Birkett, John Brockman, Steve Davies, Daniel

mạnh bùng lên bất cứ khi nào và bất cứ nơi đâu đủ thời gian cho sự tư nhân bản nguyên thủy mở ra một

Lippincott, Jerry Lyons, và đặc biệt là vợ tôi, Lalla Ward, cũng là người đã thực hiện các hình minh hoa. Thính thoảng có một vài đoan văn tôi trích từ các bài báo đã công bố. Các đoan của chương 1 về kỹ thuật số và analog được dựa vào bài báo của tôi trên The Spectator số ra ngày 11 tháng 06 năm 1994. Phần chương 3 mô tả lai công trình của Dan Nilsson và Susanne Pelger về sư tiến hóa của mắt được trích lai một phần từ bài báo News ADN Views của tôi đã được đặng trên Nature ngày 21 tháng 04 năm 1994. Tôi xin cảm ơn các nhà biên tập của

Dennett, John Krebs, Sara

tâm đến bài báo một cách sâu sắc. Cuối cùng, tôi xin cảm ơn John Brockman và Anthony Cheetham vì lời mời tham gia vào The Science

Maters Series.

Oxford, 1994

hai tạp chí trên, những người quan

CHƯƠNG 1 DÒNG SÔNG SỐ

Mỗi dân tộc đều có những truyền

thuyết thần thoại về tổ tiên của mình, những truyền thuyết ấy dần dà được đưa vào hệ thống tín ngưỡng tôn giáo. Người ta tôn kính, thờ phương tổ tiên của mình. Những bậc tổ tiên tôn kinh đó lại cũng đã từng thờ phương tôn kính tổ tiên của ho. Bởi vì người thực sự nắm giữ chiếc chìa khóa để hiểu được sư sống chính là tổ tiên ruột thit của chúng ta, chứ chẳng phải những vi

đông số đó đều chết trước khi trưởng thành. Trong phần thiểu số sống sót và sinh sản, có một thiểu số ít ỏi hơn sẽ có con cháu tồn tại qua hàng ngàn thế hệ sau đó. Phần thiểu số nhỏ xíu của phần thiểu số này, những bậc tiền bối ưu tú, là tất cả những gì mà thế hệ tương lai sẽ gọi là tổ tiên. Tổ tiên thì hiếm, con cháu thì khắp nơi. Moi sinh vật đã từng sống - từng cá thể động vật và thực vật, mọi vi khuẩn và nấm mốc, từ những thứ bò ngổn ngang cho đến tất cả những ai đang đọc cuốn sách này -

thượng để siêu nhiên nào cả. Có rất nhiều sinh vật sinh ra, nhưng phần

có thể nhìn lai tổ tiên mình và tuyên bố một cách đầy tư hào rằng: Chẳng ai trong số các tổ tiên của chúng tôi đã chết lúc còn non cả. Tất cả họ đều đạt đến độ trưởng thành, và mỗi người trong số họ đều đã đủ sức tìm được ít nhất một ban tình khác giới và giao phối thành công [2]. Chẳng ai trong số các tổ tiên của chúng ta bị ha quo bởi kẻ thù, hay do virus, hay do sẩy chân bên bờ đá, trước khi sinh ra ít nhất một em bé chào đời. Hàng ngàn những người cùng sinh thời với tổ tiên chúng ta đã không thành công, nhưng tổ tiên của chúng ta thì không hề thất bại. Những điều ấy

mà ta vẫn có thể rút ra được rất nhiều điều: bao nhiêu điều la lùng khó đoán, bấy nhiều lời giải thích bấy nhiêu điều kinh ngạc. Tất cả những điều ấy sẽ là chủ đề của cuốn sách này. Bởi tất cả các sinh vật thừa hưởng gien từ tổ tiên mình, chứ không phải từ những sinh vật không thành công cùng thời với tổ tiên, nên tất cả các sinh vật có khuynh hướng sở hữu những gien thành

quả thực quá đỗi hiển nhiên, vậy

thanh cong cung thơi với to tiên, nên tất cả các sinh vật có khuynh hướng sở hữu những gien thành công. Chúng ta có những điều kiện để trở thành những tổ tiên – và điều đó nghĩa là tồn tại và sinh sản. Đó là lí do vì sao sinh vật luôn có

cỗ máy hoàn chỉnh – tức là một cơ thể hoạt động một cách tích cực như thể đang nỗ lực để trở thành một tổ tiên. Đó là lí do vì sao chúng ta yêu cuộc sống, thích tình ái và yêu trẻ con. Chính bởi tất cả chúng ta, không loại trừ một ai, đều thừa hưởng gien từ một dòng dõi liên tục gồm các tổ tiên thành công. Thế giới trở nên chiếm đầy những sinh vật sở hữu tiềm năng trở thành các tổ tiên. Điều đó, nói gọn lại trong môt câu, chính là học thuyết Darwin. Tất nhiên, Darwin nói nhiều hơn thế, và ngày nay chúng ta còn

khuynh hướng thừa hưởng gien mang lai tiềm năng xây dưng một có thể nói thêm nhiều thứ nữa, và đó là lí do vì sao cuốn sách không dừng lại ở đây. Ta có thể hiểu nhầm đoạn văn

trên theo một cách rất tư nhiên nhưng cũng rất nguy hai. Chúng ta sẽ bị hút vào suy nghĩ rằng, khi các tổ tiên làm được những điều thành công thì gien mà ho truyền cho con cái là gien đã được nâng cấp từ gien mà họ nhận được từ cha me mình. Đặc điểm thành công ấy được khắc vào trong gien, và đó là lí do vì sao hâu duê của ho bay lươn, bơi lôi và ve vãn thất tài tình. Sai, hoàn toàn sai! Gien không cải thiện trong

quá trình sử dung, chúng chỉ được

một vài lỗi ngẫu nhiên cực kì hiếm. Không phải thành công đã tao ra những gien tốt. Chính những gien tốt mới tao ra thành công. Chẳng có điều qì một cá nhân làm được trong đời mình lại ảnh hưởng đến gien. Những cá nhân ấy được sinh ra với gien tốt và có khuynh hướng lớn lên để trở thành một tổ tiên thành công; do đó các gien tốt có khuynh hướng được truyền cho tương lai nhiều hơn các gien xấu. Mỗi thế hệ là một cái lọc, hay một cái sàng: những gien tốt có khuynh hướng lot qua sàng để đi đến thế hệ kế tiếp; gien xấu có khuynh

truyền đi, không thay đối ngoại trừ

chết yểu hoặc không sinh sản được. Gien xấu cũng có thể vượt qua được cái sàng đến được một hay hai thế hệ, có thể bởi chúng may mắn ở cùng cơ thể với gien tốt. Nhưng may mắn thì chưa đủ để vượt qua

được hàng ngàn cái sàng nối tiếp nhau, cái này dưới cái kia. Sau hàng

hướng dừng lai trên những cơ thể bi

ngàn thế hệ nối tiếp nhau phần lớn những gien vượt qua được là những gien tốt.

Tôi đã nói rằng những gien tồn tại qua các thế hệ là những gien thành công trong việc tào ra các tổ

tiên. Điều này là sự thật, nhưng có một ngoại lê rành rành mà tội phải lẫn. Một số cá thể bị vô sinh vĩnh viễn, nhưng dường như chúng được thiết kế để hỗ trơ sư truyền gien của mình đến các thế hệ tương lai. Kiến thợ, ong thợ và mối thơ vốn vô sinh. Chúng làm việc không phải để trở thành tổ tiên, mà để những ho hàng có khả năng sinh sản, thường là anh chi em ruôt của chúng, trở thành các tổ tiên. Có hai điểm cần phải hiểu ở đây. Thứ nhất, trong bất kì loài đông vật nào, anh chi em ruôt luôn có xác suất cao để có cùng một gien. Thứ hai, chính là môi trường, chứ không phải gien, sẽ quyết định việc một cá thể, con mối

giải thích trước khi nó gây ra nhầm

trong những điều kiên môi trường nhất đinh, và thành các con sinh sản trong các điều kiên khác. Những con sinh sản truyền đi những bản sao giống hệt các gien nằm trong người con thơ, và điều này đã khiến các con thơ hết lòng giúp đỡ chúng làm cái việc truyền đi ấy. Những con thơ làm việc cần cù dưới ảnh hưởng của các gien mang bản tương đương của chúng cũng nằm trong cơ thể của các con sinh sản. Những bản sao gien đó trong con

chẳng hạn, sẽ trở thành con sinh sản hay con thợ vô sinh. Mọi con mối đều mang gien có thể biến chúng thành các chú thơ vô sinh

thợ đang cố gắng để hỗ trợ chính các phiên bản sinh sản của chúng lọt qua cái sàng chuyển thế hê. Nguyên lý này cũng đúng cho kiến và ong, chỉ khác là mối thơ có thể là đực hoặc cái, trong khi kiến thợ và ong thơ đều là cái. Ở một hình thức lỏng lẻo hơn, điều này cũng đúng cho một số loài chim, động vật có vú và một số loài động vật khác mà trong chúng ít nhiều có sư chăm sóc con nhỏ từ phía anh hoặc chi ruột. Tóm gon lai, gien có thể luồn lách để lọt qua sàng, không chỉ bằng cách hỗ trơ chính cơ thể của mình trở thành tổ tiên mà còn bằng cách hỗ trơ cơ thể họ hàng mình trở thành tổ tiên nữa.

Dòng sông trong tựa đề cuốn sách này chính là dòng sông ADN, nó chảy qua thời gian chứ không

phải không gian. Đó là dòng sông thông tin, không phải dòng sông của xương thịt hay cơ bắp: một dòng sông mang những chỉ dẫn ngắn gọn cho việc xây dựng cơ thể, chứ không phải dòng sông mang chính các cơ thể. Thông tin đó truyền qua các cơ thể, tác động lên

chính các cơ thể. Thông tin đó truyền qua các cơ thể, tác động lên các cơ thể mà không hề bị các cơ thể tác động ngược trở lại trên hành trình mà nó đi qua. Dòng sông này không chỉ không hề bị ảnh hưởng bởi kinh nghiệm và thành quả của

còn không bị ảnh hưởng bởi một nguồn tạp nhiễm tiềm ẩn đầy quyền năng: tình dục. Trong mỗi tế bào của bạn, một

chuỗi cơ thể mà nó chảy qua. Nó

nửa gien của me kề vai sát cánh với một nửa gien của bố. Các gien từ bố và mẹ phối hợp với nhau mật thiết để tao nên con người ban, tinh tế và không thể bị chia nhỏ. Nhưng chính bản thân các gien lai không trôn lẫn với nhau. Chỉ có hiệu ứng của chúng mới trôn lẫn với nhau mà thôi. Bản thân các gien mang sự đồng nhất toàn vẹn như một phiến đá, khi đến lúc phải chuyển sang thế hệ tiếp theo, một gien sẽ truyền Các gien từ bố và mẹ không trộn lẫn với nhau; chúng kết hợp một cách độc lập. Mỗi gien của bạn đều đến hoặc từ bố hoặc từ mẹ. Nó cũng đến từ một và chỉ một trong

sang cơ thể đứa con hoặc không.

bốn ông bà nội ngoại; từ một, và chỉ một, trong số tám ông bà cố nội ngoại; và cứ như thế.

Tôi vừa đề cập đến hình ảnh dòng

sông gien, chúng ta cũng có thể nói tương tự về hình ảnh một nhóm bạn cùng diễu hành qua dòng thời gian. Tất cả các gien trong một quần thể sinh sản, về lâu dài, là các bạn đồng hành của nhau. Nhưng

xét trong ngắn han, chúng nằm

cùng cơ thể đó. Gien có thể tồn tại qua năm tháng với điều kiên chúng giỏi trong việc xây dưng nên những cơ thể thích hợp cho việc sống và sinh sản theo cách riêng của loài đó. Nhưng còn nhiều hơn thế nữa. Để tồn tại giỏi, một gien phải hợp tác tốt với các gien khác cùng loài chung một dòng sông. Đế tồn tại được lâu dài, gien phải là những ban đồng hành hợp ý với nhau. Chúng phải hoạt động tốt trong tập thể, hay là dưa trên tập thể, gồm các gien khác trong cùng một dòng sông. Gien của một loài khác nằm

trong các cơ thể sinh vật và tạm thời gần gũi hơn với các gien trong không cần phải "hòa thuận" với nhau, tất nhiên, bởi vì chúng không cùng chia sẻ một cơ thể chung nào cả.

trong một dòng sông khác. Chúng

Đặc điểm phân định một loài và mọi thành viên của chúng có cùng dòng gien chảy qua, và các gien trong loài đó sẵn sàng làm bạn đồng hành tốt của nhau. Một loài mới xuất hiện khi một loài hiện tại

mới xuất hiện khi một loài hiện tại chia ra làm hai. Dòng sông gien đó rẽ nhánh qua thời gian. Đứng từ phía các gien mà nói, sự hình thành các loài, sự khởi đầu các loài mới, chính là một "lời chia tay dài lâu". Sau một giai đoạn ngắn bị phân

hai con đường riêng, cho đến khi một trong chúng khô han đị. Luôn luôn nằm giữa hai bờ, nước sông được trôn đi trôn lai bởi sư tái kết hợp qua sinh sản hữu tính. Nhưng nước trong dòng này không bao giờ tràn khỏi bờ để xâm nhiễm dòng sông kia. Sau khi một loài phân chia ra, hai tập hợp gien không còn là ban đồng hành của nhau nữa. Chúng không còn gặp nhau trong cùng các cơ thể và chúng không còn nhất thiết phải phù hợp với nhau nữa. Giữa chúng sẽ không còn sư giao phối - ở đây chính xác là sư giao phối giữa các cỗ xe tam thời

cách, hai dòng sông mãi mãi đi theo

của chúng, tức là các cơ thể.

Tại sao một loài lại phân chia?

Điều gì tạo bước khởi đầu cho lời chia tay lâu dài giữa các gien? Điều gì đã làm cho một dòng sông phân

nhánh làm hai và tách khỏi nhau, không bao giờ gặp lai nữa? Người ta

vẫn đang tranh cãi về chi tiết, nhưng không ai nghi ngờ rằng yếu tố quan trọng nhất là sự chia cắt đia lý ngẫu nhiên. Dòng sông gien chảy trong thời gian, nhưng sư tái kết hợp giữa các gien xảy ra trong các cơ thể bằng xương bằng thit, mà các cơ thể sinh vật lại chiếm cứ một địa điểm nào đó trong không gian. Môt con sóc xám Bắc Mỹ có

thể sinh sản cùng một con sóc xám nước Anh, nếu chúng gặp được nhau. Nhưng chuyên đó khó xảy ra. Tưa như dòng sông gien sóc xám ở Bắc Mỹ bi tách biệt khỏi dòng sông gien sóc xám ở nước Anh bởi một đai dương rông ba ngàn dăm vây. Thành ra, hai tập hợp gien không còn đồng hành với nhau nữa, mặc dù có lẽ chúng vẫn còn có khả năng làm ban đồng hành tốt của nhau nếu như có chút cơ hôi. Chúng đã nói lời chia tay, mặc dù đó không phải là lời chia tay không rút lại được. Nhưng sau khoảng vài ngàn năm chia cắt nữa, rất có thể đến lúc đó hai dòng sông đã dat trôi quá xa

nhau, chúng cũng không còn có khả năng trao đổi gien cho nhau được nữa. "Dạt trôi" ở đây không có nghĩa là trong không gian mà là "dạt xa" trong độ tương hợp với nhau.

Chắc chắn đó cũng là nguyên nhân tiềm ẩn khiến sóc xám và sóc đỏ tách rời nhau trước đây. Bây giờ

đến mức cho dù các chú sóc gặp

chúng không thể lai giống với nhau. Mặc dù sống cùng nhau ở vài vùng của Châu Âu, chúng gặp nhau, chắc cũng choảng nhau trong mấy vụ tranh giành hạt dẻ, nhưng chúng không thể giao phối để sinh ra những đứa con có khả năng sinh

nghĩa là gien của chúng không còn có thể hợp tác với nhau trong cùng cơ thể được nữa. Rất nhiều thế hê trước, tổ tiên của sóc xám và tổ tiên của sóc đỏ là cùng chung một loài. Nhưng chúng bị chia cắt về mặt địa lý – có thể do một dãy núi, hay do sông suối, và cuối cùng là do Đai Tây Dương. Và rồi các tâp hợp gien của chúng lớn lên trong sư riêng rẽ. Sự chia cắt địa lý đã sinh ra sự thiếu tương hợp. Bạn đồng hành hợp nhau trở nên kém ăn ý (nếu đem đi tranh tài trong cuộc thi phối ngẫu). Bạn đồng hành vốn kém ăn

sản được. Hai dòng sông gien của chúng đã dat khỏi nhau quá xa,

ý lai còn trở nên kém hợp nữa, cho đến khi chúng không còn là ban đồng hành nữa. Lời chia tay đó là lần cuối. Hai dòng sông bị chia tách ra và được dư đoán là sẽ còn tách ra càng ngày càng xa. Kịch bản tương tư cũng là nền tảng cho sư chia cắt xa xưa hơn, ví dụ giữa tố tiên của chúng ta và tổ tiên của loài voi. Hay là giữa tổ tiên của loài đã điểu (mà cũng là tổ tiên của chúng ta) với tổ tiên của loài bò cạp. Ngày nay, có khoảng ba mươi triệu nhánh của dòng sông ADN, đây là ước lương về số loài sinh vật trên Trái đất. Người ta cũng ước đoán rằng các loài hiện đang sống đã từng tồn tại. Cũng có nghĩa là tính toàn bô, đã có khoảng ba tỷ nhánh của dòng sông ADN. Ngày nay, ba mươi triệu nhánh sông đã tách rời một cách không thể thay đổi. Rất nhiều trong số đó đã được định đoạt là sẽ bị khô cạn vào hư không, vì hầu hết các loài sẽ trở nên tuyêt chủng. Nếu ban ngược dòng ba mươi triệu nhánh sông này về quá khứ, bạn sẽ thấy rằng, từng cặp từng cặp một hợp lại với nhau. Nhánh sông gien người nhập lai với nhánh sông gien tinh tinh gần như cùng một lúc với nhánh sông gọrilla, khoảng bảy triệu năm trước. Trở lai

chiếm một phần trăm của các loài

sông gien của loài khỉ dã nhân Châu Phi nhập lai với nhánh của đười ươi. Xa hơn nữa, chúng ta có nhánh sông gien của vươn nhập vào một nhánh sông khác vốn sau này xuôi theo dòng đã tách ra thành các loài vươn (gibbon) và vượn mực (siamang)[3]. Khi chúng ta tiếp tục ngược dòng quá khứ, nhánh sông gien của chúng ta nhập lai với các nhánh sông mà sau này rẽ ra thành nhánh khỉ Cưu Thế giới, khỉ Tân Thế giới, và vươn cáo (lemurs) của Madagascar. Rồi xa hơn nữa, nhánh chúng ta nhập vào với những nhánh dẫn đến những nhóm chủ yếu trong

thêm một vài triệu năm nữa, nhánh

mèo, loài dơi và voi. Sau đó, chúng ta sẽ gặp dòng sông dẫn đến rất nhiều loài bò sát, chim, đông vât lưỡng cư, cá và các loài không xương sống. Bây giờ, có một điều quan trong ta phải thận trọng về hình tương dòng sông gien. Khi nói tới phân nhánh sông dẫn tới tất cả các loài

lớp thú: các loài găm nhấm, các loài

thú – thay vì nhánh sông dẫn tới chẳng han loài sóc đỏ - ta dễ bi lôi cuốn vào việc tưởng tượng ra một hình ảnh vĩ đai, vào cỡ sông Mississippi hay Missouri. Xét cho cùng, nhánh sông cho ra lớp thú đã phân chia ra hết lần này đến lần

lớp thú – từ loài chuốt chù nhỏ choắt (pigmy shrew) đến voi khổng lồ, từ loài chuột chũi dưới đất cho đến những con khỉ trên cây. Nhánh thú của dòng sông có nhiệm vụ làm nguồn nước cho hàng ngàn con nước quan trọng, làm sao nó khác được một dòng chảy vĩ đại cuộn réo ầm ầm? Những hình ảnh này là một sai lầm lớn. Khi các tổ tiên của tất cả loài thú hiên đai tách rời từ những tổ tiên không phải là thú, sư kiện cũng chẳng mạnh mẽ dữ dôi hơn bất kỳ một sư phân chia loài nào khác. Nếu có một nhà tư nhiên học nào tình cờ có mặt lúc đó, sư

khác, cho đến khi nó tao ra toàn bô

nó là mấy, như sự khác nhau giữa sóc đỏ và sóc xám. Chỉ với kiến thức hâu nghiệm 4, chúng ta mới xem tổ tiên của loài thú là thú. Vào thời kì đó, nó chắc cũng chỉ là một loài bò sát giống thú nữa, chẳng đáng kể gì so với vài chục loài (cỡ đó) có mũi ăn sâu bọ làm mồi cho khủng long mà thôi. Sư phân chia trước đó giữa tổ tiên các đại nhóm động vật như động

kiện này cũng chẳng mảy may làm ông để ý. Nhánh mới của dòng sông gien mới đầu chỉ là một dòng chảy nhỏ giọt, chứa một loài vật nhỏ xíu sống về đêm không khác những người anh em không phải thú của xác, côn trùng, giun đốt, giun dẹt, sứa và nhiều nhóm khác... cũng kém kich tính như vây. Khi nhánh sông dẫn tới các loài thân mềm (và các loài khác) lìa xa nhánh sông dẫn tới đông vật xương sống (và các loài khác), hai quần thể của các loài sinh vât (có lẽ là giống giun) chắc đã trông giống nhau đến mức chúng có thể giao phối với nhau. Lý do duy nhất khiến chúng đã không làm vây là bởi chúng bỗng nhiên bi tách biệt bởi rào cản địa lý, có thể là một vat đất khô chia rẽ mặt nước vốn liền nhau trước đó. Lúc đó không ai có thể biết được rằng một

vật có xương sống, thân mềm, giáp

thì thành động vật xương sống. Chỉ biết rằng hai dòng sông ADN lúc đó chỉ là những con lạch nhỏ hầu như chẳng tách rời là mấy, và hai nhóm

quần thể đang ở trên đường sinh ra loài thân mềm và quần thể còn lai

sinh vật thì hầu như chẳng hề phân biệt.

Các nhà động vật học đều biết điều này, nhưng đôi khi họ quên khuấy đi suy ngẫm về hai nhóm

động vật thực sự lớn, như là thân mềm và xương sống. Họ cứ bị cám dỗ vào ý nghĩ rằng sự phân chia giữa các nhóm lớn phải là một sự kiện dữ dội lắm. Lý do khiến cho các nhà động vật học mắc sai lầm

niềm tin sùng kính rằng mỗi sự phân chia lớn trong giới đông vật đều được trang bị một thứ gì đó độc nhất vô nhi, thường được gọi bằng một từ tiếng Đức là Bauplan. Mặc dù từ này chỉ có nghĩa là "bản thiết kế", nó đã trở thành một từ chuyên môn được công nhận, và tôi sẽ biến nó thành tiếng Anh, mặc dù (tôi hơi sốc khi biết rằng) nó chưa được đưa vào ấn bản hiên thời của bô Từ điển tiếng Anh Oxford. (Bởi tôi không khoái từ này như các đồng nghiệp của tôi, nên phải công nhận rằng tôi có chút ít "frisson of Schadenfreude" (sư sung sướng trên đau khổ của

như vây là do ho được lớn lên trong

người khác) khi thấy nó vắng mặt trong từ điển; hai từ mươn này (frisson và schadenfreude, ND) đều có trong cuốn từ điển Oxford, cho nên chắc không ai có ý kiến gì cho viêc dùng từ nước ngoài đâu). Theo nghĩa chuyên môn của nó, bauplan thường được dịch là "bản thiết kế nền tảng của cơ thể". Chính việc sử dung từ "nền tảng" (hay việc sính dùng tiếng Đức để tỏ vẻ thâm túy) đã làm hỏng ý nghĩa. Nó có thể khiến các nhà động vật học mắc những sai lầm nghiêm trọng. Ví du, có một nhà động vật học có ý kiến rằng sư tiến hóa trong kỷ Cambri (nằm trong giữa khoảng sáu một dạng tiến hóa hoàn toàn khác so với quá trình ở những thời kỳ sau này. Lập luận của ông là ngày nay chỉ xuất hiện thêm loài mới, trong khi ở kỷ Cambri các nhóm lớn xuất hiên, như là thân mềm và giáp xác. Nhầm to! Ngay cả các sinh vật khác nhau về căn bản như là thân mềm và giáp xác mới đầu cũng chỉ là những quần thể cách nhau về mặt địa lý của cùng một loài mà thôi. Có lúc chúng còn có thể lai với nhau nếu tình cờ gặp nhau nữa kìa, nhưng chúng đã không gặp nhau. Sau hàng triệu năm với những sư

trăm triệu năm và năm trăm triệu năm về trước) chắc chắn phải là đặc tính mà chúng ta, với kiến thức hâu nghiêm của ngành đông vật hiên đai, mới nhân thấy đó là các đặc tính của thân mềm và giáp xác mà thôi. Các đặc điểm đó được đề cao lên với một tên gọi rất long trong là "bản thiết kế nền tảng của cơ thể" hay là "bauplan". Nhưng thực tế các bauplan chính của giới động vật đã phân chia từ những nguồn gốc chung qua những bước bé nhỏ và châm rãi. Phải công nhân rằng người ta vẫn

tiến hóa riêng rẽ, chúng có những

Phải công nhận rằng người ta vẫn còn mâu thuẫn về việc: tiến hóa có mức độ từ từ hay là "nhảy cóc" đến mức nào. Nhưng không có ai, tôi nói một bước. Tác giả mà tội trích dẫn đã phát biểu điều trên vào năm 1958. Rất ít nhà động vật học ngày nay lại chủ động đi theo vết xe của ông, nhưng đôi khi họ lại làm như vây mà không hề nhân ra, khi phát biểu cứ như thể là các nhóm động vật chủ yếu đã xuất hiện một cách tư phát, như là nữ thần Athena xuất hiện từ trong đầu của thần Zeus^[5] thay vì là phân ra từ một quần thể mẹ do sự phân cách địa lý ngẫu nhiên nào đó [6]

thực sự là không một ai, lại nghĩ rằng tiến hóa đã nhảy cóc đến mức tao ra cả một bauplan mới chỉ trong chứng tỏ rằng các lớp đông vật lớn gần với nhau hơn rất nhiều so với chúng ta vẫn thường nghĩ. Ban có thể xem bộ mã gien là một từ điển mà trong đó sáu mươi tư từ của một ngôn ngữ (sáu mươi tư bộ ba có thể kết hợp ra từ một bảng chữ cái bốn ký tự A, T, C và G) được ánh xa lên hai mươi mốt từ của một ngôn ngữ khác (hai mươi axít amin công với một dấu chấm câu). Xác suất ngẫu nhiên để có được hai lần cùng một ánh xạ 64:21 là nhỏ hơn môt phần triệu triệu triệu triệu triệu. Thế mà bộ mã gien thực sư lại giống hệt ở mọi đông vật, thực

Ngành sinh học phân tử đã luôn

nghiên cứu. Các sinh vật sinh sống trên Trái đất chắc chắn đã phải bắt nguồn từ một tổ tiên duy nhất. Không ai tranh cãi điều đó, nhưng rồi những sư tương tư đến mức sửng sốt, ví dụ như giữa côn trùng và động vật xương sống, đang ngày càng được tìm thấy khi người ta xem xét không chỉ bô mã đó mà cả các chuỗi ADN cu thể. Có một cơ chế gien khá tinh vi phức tạp đóng vai trò tao ra bản thiết kế cơ thể có đốt của các loại côn trùng. Một cơ chế gien có đặc điểm tương tư đến mức thần kỳ cũng được tìm thấy ở lớp thú. Xét về mặt phân tử, mọi

vât và vi khuấn đã từng được

với nhau và thậm chí là cả với thực vật nữa. Ta phải đi tới vi khuẩn mới tìm được người họ hàng xa của mình, và ngay cả đến mức đó chính bô mã gien cũng giống hệt với bô mã của chúng ta. Lý do mà người ta có thể làm những phép tính chính xác đến vây trên bô mã gien, mà không phải trên giải phẫu học của các bauplan, chính là do bô mã gien sử dụng kỹ thuật số một cách nghiêm ngặt, và các con số là những thứ mà ban có thể đếm một cách chính xác. Dòng sông gien là một dòng sống số, và bây giờ tôi phải giải thích thuật ngữ kỹ thuật

động vật là những họ hàng khá gần

này có nghĩa gì. Các kỹ sư phân biệt rõ hai loại mã: bô mã kỹ thuật số và bô mã analog. Máy hát đĩa, máy cát-xét gần đây là điện thoại – sử dụng bộ mã analog, sóng dao đông liên tục do áp suất không khí (âm thanh) được chuyển thành sóng dao đông tương ứng của điện áp trong một đường dây điện. Một máy hát đĩa cũng hoat đông theo cách tương tư: các đường rãnh khiến cho đầu đọc rung đông, và chuyển đông của đầu đoc được chuyển thành các dao động trong điện áp. Ở đầu kia các sóng điện áp này được biến đổi trở

lai, bởi một màng dao động trong

áp suất không khí tương ứng, và bạn có thể nghe được. Bộ mã rất đơn giản và trực tiếp: dao động điện trong đường dây tỷ lệ với dao động trong áp suất không khí. Mọi điện áp nằm giữa những mức giới han nào đó có thể truyền qua

tai nghe của điện thoại hay là cái loa của máy hát đĩa, thành các sóng

chúng là quan trọng.

Trong điện thoại kỹ thuật số, chỉ có hai hoặc là một số lượng rời rạc như 8 hay 256 mức điện áp khả dĩ truyền qua mạch điện. Thông tin

không nằm trong chính các mức điện áp mà ở sự bố trí các mức

đường dây, và sự chênh lệch giữa

biến Mã xung (Pulse Code Modulation). Điện áp thực tế tại moi thời điểm hiếm khi bằng chính xác bất kỳ một con số nào trong số qiá trị quy ước (chẳng hạn 8 giá trị), nhưng thiết bị nhận sẽ làm tròn nó đến mức điện áp thiết kế gần nhất, để cho những gì xuất hiện ở đầu kia của đường dây trở nên chính xác ngay cả khi quá trình truyền doc đường đi bị kém chất lương. Vấn đề của ta chỉ là đặt các mức điện áp riêng rẽ này đủ xa nhau sao cho các thăng giáng ngẫu nhiên sẽ không bao giờ khiến thiết bị nhân diễn dich sai thành một mức khác. Đây

riêng rẽ đó. Đây được gọi là sư Điều

thống mã kỹ thuật số, mà đây cũng chính là lý do vì sao mà các hê thống âm thanh hình ảnh – và công nghê thông tin nói chung – càng ngày càng phát triển theo hướng kỹ thuật số. Dĩ nhiên máy tính dùng mã kỹ thuật số trong mọi việc. Để cho tiên lợi thì đây là một mã nhị phân – có nghĩa là chỉ có hai mức điện áp riệng rẽ thay vì 8 hay 256. Ngay cả trong một điện thoại kỹ thuật số, âm thanh đi vào ống nói và đi ra khỏi tai nghe thực ra vẫn là các rung động analog của áp suất không khí. Chỉ có thông tin chuyển từ bô chuyển đổi này sang bô

là một đặc điểm tuyệt vời của hệ

chuyển đổi khác mới là kỹ thuật số. Thế thì ta cần xây dựng một loại mã nào đó để chuyển các giá tri analog, theo từng micro giây một, thành các xung rời rạc - các con số mã hóa kỹ thuật số. Khi ban thề thốt với người yêu qua điện thoai, mọi lời nũng niu hay nghen ngào, mọi hơi thở nồng nàn, từng âm sắc của giọng nói đều được truyền đi qua hệ thống dây chỉ hoàn toàn dưới dang các con số. Ban có thể xúc đông đến rơi nước mắt bởi các con số - miễn là chúng được mã hóa và giải mã đủ nhanh. Các hệ thống chuyển mã điện tử hiện đại nhanh đến mức thời gian truyền có thể cờ vua có thể chia thời gian của mình cho 20 trận đấu khác nhau theo một vòng. Bằng cách này, hàng ngàn cuộc điện đàm có thể được xếp vào trong cùng một đường điện thoại, làm cho chúng cứ như là đồng thời nhưng lại tách biết nhau về mặt điện tử mà không ảnh hưởng lẫn nhau. Rất nhiều trong số các đường truyền tín hiệu hiện nay không còn là đường dây mà là các chùm sóng radio, hoặc là các đường truyền trực tiếp từ đỉnh đồi này sang đỉnh đồi khác, hay từ vê tinh này sang vê tinh kia. Mỗi một

được chia thành từng khoảng xen kẽ giống như kiểu một kiên tướng sự tách biệt điện tử tài tình này, nó là hàng ngàn con sông số chia sẻ nhau hai bờ theo một nghĩa tượng trưng nào đó – những con sóc đỏ và sóc xám, chúng cùng chia nhau một

đường truyền tín hiệu là một dòng sông khổng lồ các con số. Nhưng do

sóc xám, chúng cùng chia nhau một cái cây nhưng không bao giờ hòa trộn gien với nhau.

Trở lại với thế giới của các kỹ sư, nhược điểm của các tín hiệu analog không đáng kể nếu như chúng

không dang ke neu như chung không bị sao chép lặp đi lặp lại quá nhiều lần. Một đoạn ghi băng có thể có chút tiếng gió mà ta không nhận ra, trừ khi ta khuếch đại âm thanh. Nhưng khi ta khuếch đại, ngoài việc

cuộn băng khác, rồi lai sao cuôn mới ra một cuốn băng khác nữa và cứ lặp lại như thế, sau một trăm "thế hê", những gì còn lai chỉ là tiếng ù ù kinh khủng. Thời điện thoại còn dùng mã analog, người ta cũng gặp khó khăn tương tư. Mọi tín hiệu điện thoại đều bị suy yếu dần đi khi truyền qua đường dây dài, thế là cần phải tăng cường lên hay là tái khuếch đại – sau mỗi chiều dài khoảng cỡ một trăm dăm. Mỗi quá trình khuếch đại đều làm

phóng lớn âm thanh chính và cả tiếng rè đó, ta cũng đồng thời tạo ra những tiếng ồn khác. Do vậy, nếu ta sao cuôn băng này ra một thanh càng ngày càng xấu đi... Nhưng khoan đã, ngay cả các tín hiệu số cũng phải cần đến sư khuếch đai ấy chứ. À, nhưng lý do mà ta đã thấy, khuếch đai không tao ra sai số nào cả đối với các tín hiêu số: mọi thứ có thể được thiết kế sao cho thông tin được truyền đi một cách hoàn hảo, không cần biết đến bao nhiều tram khuếch đai tham gia vào quá trình truyền tín hiệu, tiếng ồn không tăng lên ngay cả khi tín hiệu truyền qua hàng trăm hàng ngàn dặm. Hồi tôi còn là một cậu bé, mẹ tôi giải thích cho tôi hiểu rằng các tế

tăng tiếng ồn lên, cho nên âm

thoại của cơ thể. Nhưng chúng là analog hay kỹ thuật số? Câu trả lời là chúng là một hỗn hợp thú vi của cả hai loai. Một tế bào thần kinh không giống như một sơi dây điện. Nó là một cái ống mỏng và dài, dọc theo đó sóng thay đổi về mặt hóa hoc, giống như một ngòi pháo cháy xèo xèo – ngoai trừ là, không giống như ngòi pháo, tế bào thần kinh đó nhanh chóng hồi phục và lai cháy xèo xèo sau môt quãng nghỉ ngắn. Biên độ tuyệt đối của sóng - nhiệt đô của ngòi pháo – có thể thăng giáng khi nó chay doc qua các tế bào, nhưng điều này không quan

bào thần kinh là các đường dây điện

xung hóa học hay là không có mà thôi, giống như hai mức điện áp riêng rẽ trong một điện thoại số. Ở mức đô này, hệ thần kinh là kỹ thuật số. Nhưng các xung thần kinh không bi ép thành các byte: chúng không phân thành các con số mã hóa rời rac. Thay vì thế, cường đô của thông tin (đô lớn của âm thanh, đô sáng của ánh sáng, thậm chí có thể là cường đô của cảm giác) được mã hóa thành nhịp độ của các xung. Giới kỹ sư gọi điều này là sư Điều Biến Tần Số Xung (Pulse Frequency Modulation), và ho thường dùng nó

trọng. Quy luật mã hóa không để tâm đến điều đó. Nó chỉ để ý là có trước khi sự Điều Biến Mã Xung được chọn sử dụng. Nhịp xung là một đại lượng analog, nhưng chính xác các xung

lại là kỹ thuật số: chúng hoặc có hoặc không, chứ không nằm ở giữa. Nhờ vậy, hệ thần kinh cũng có những lợi điểm như một hệ thống kỹ thuật số thông thường. Với

nguyên tắc hoạt động này của hệ thần kinh, ta cũng có hệ thống tương đương với hệ thống khuếch đại, nhưng không phải sau mỗi một trăm dặm mà là sau mỗi milimet –

có tám trăm trạm khuếch đại giữa tủy sống và đầu ngón tay. Nếu độ lớn tuyệt đối của xung thần kinh –

trong, thì thông tin chắc đã bị méo mó đi đến mức không thể nhân ra được nữa khi chạy qua một chiều dài cánh tay người, nói gì đến cả cái cổ dài của con hươu cao cổ. Mỗi giai đoạn trong quá trình khuếch đai đều tạo ra thêm sai số ngẫu nhiên, giống như khi ta sao một cuộn bằng từ một cuộn băng khác thành một chuỗi tám trăm lần. Hay là khi ta photocopy một tờ photocopy từ môt tờ photocopy khác. Sau tám trăm "thế hê" bản photocopy như vây, tất cả còn lai chỉ là một trang giấy xám xit mưc. Sư mã hóa bằng số cho ta giải pháp duy nhất cho bài

hay là sóng thuốc pháo – là quan

tự nhiên đã chọn nó một cách thích đáng. Điều này cũng đúng cho gien. Francis Crick và James Watson, hai nhà khám phá của cấu trúc

toán của hệ thần kinh, và chọn lọc

phân tử của gien, theo tôi, phải được tôn vinh qua hàng nhiều thế kỷ như là Aristotle và Plato vậy. Họ đã được trao giải Nobel "ngành sinh lý và y học" là xác đáng nhưng như vậy vẫn còn chưa đủ. "Cuộc cách mang liên tục" (thuật ngữ này bản

thân nó đã có mâu thuẫn [7]), không chỉ y học mà toàn bộ những hiểu biết của chúng ta về sự sống, sẽ còn tiếp tục được cách mạng thêm nhiều lần, hết lần này qua lần thay đổi trong tư duy mà hai con người trẻ tuổi đã khởi xướng năm 1953. Gien, và các bệnh về gien, chỉ là đỉnh của tảng băng trôi. Điều thực sự mang tính cách mạng trong ngành sinh học phân tử trong kỷ nguyên hâu Watson-Crick đó chính

khác như là kết quả trực tiếp của sự

nguyên hậu Watson-Crick đó chính là ở chỗ nó đã trở thành kỹ thuật số.

Nhờ Watson và Crick, chúng ta biết rằng gien, trong cấu trúc nội tại tí họn của chúng, chính là những sợi

biết rằng gien, trong cấu trúc nội tại tí hon của chúng, chính là những sợi dây dài chứa toàn thông tin số. Hơn nữa, nó thực sự là kỹ thuật số theo nghĩa đầy đủ và mạnh của máy vi tính, chứ không phải theo nghĩa yếu

như trong hệ thần kinh. Mã gien không phải là mã nhi phân như trong máy tính, cũng không phải một mã tám mức như trong một số hệ thống điện thoại, mà là mã tứ phân với bốn ký tự. Thật thần kỳ là ngôn ngữ máy móc của gien rất giống với máy tính. Ngoại trừ những thuật ngữ khác nhau, nội dung tạp chí sinh học phân tử thâm chí chẳng khác gì tạp chí máy tính cả. Cuộc cách mang số ở trong chính lõi của sự sống này đã ra một đòn cuối cùng chí mang đối với thuyết sức sống – niềm tin cho rằng vật chất sống khác biệt sâu sắc với vật chất không sống. Cho mãi đến năm

có điều gì đó huyền bí về nguyên sinh chất. Không còn nữa rồi. Ngay cả những nhà triết học đã từng được kinh qua quan điểm của thuyết cơ giới về sự sống cũng không dám hy vong rằng sẽ có ngày

1953, người ta còn có thể tin rằng

những giấc mơ dữ dội nhất của họ cũng được thỏa mãn một cách hoàn toàn đến vậy.

Nếu như kỹ thuật mới tăng tốc lên một chút so với kỹ thuật hiện đại, thì kịch bản khoa học viễn

đại, thì kịch bản khoa học viễn tưởng sau đây hoàn toàn có thể trở thành hiện thực. Giáo sư Jim Crickson bị bắt cóc bởi một thế lực ma quỷ xa lạ nào đó và bị ép phải khí sinh học của chúng. Để cứu nhân loai, ông nhất thiết phải trao đổi một số thông tin tuyệt mật với thế giới bên ngoài, nhưng ông không được sử dụng mọi kênh thông tin thông thường. Ngoại trừ môt kênh. Mã ADN bao gồm sáu mươi tư đơn vị mã bộ ba, vừa đủ cho toàn bô bảng chữ cái tiếng Anh qồm chữ hoa và chữ thường, thêm mười con số, khoảng trắng và dấu chấm câu. Giáo sư Crickson lấy một loại virus cúm cực kỳ nguy hại ra từ phòng thí nghiệm, rồi tiến hành thiết kế vào trong hệ thống gien của nó toàn bộ thông điệp mà ông

làm việc trong phòng thí nghiệm vũ

muốn gửi ra thế giới bên ngoài, gồm những câu văn được viết tron vẹn bằng tiếng Anh. Ông cứ lặp đi lăp lai thông điệp này trên hệ gien đó rồi thêm vào một chuỗi chìa khóa dễ nhân biết, chẳng han như mười số nguyên tố đầu tiên. Rồi ông tư gây nhiễm cho mình và hắt hơi trong một căn phòng đầy ắp người. Có một làn sóng cúm quét qua cả thế giới, và rồi những phòng thí nghiệm y học ở thế giới xa xôi kia bắt đầu làm việc với chuỗi gien này, với sứ mênh tao ra một loại vaccine. Chẳng bao lâu người ta nhận thấy rằng có một kiểu mẫu la lùng được lặp đi lặp lai trên gien đó, phát được, thế là người này nảy ra ý định tạo ra một kỹ thuật đọc mã. Kể từ đó chẳng bao lâu người ta có thể đọc toàn bộ văn bản tiếng Anh của giáo sư Crickson, vốn đã được hắt hơi vòng quanh thế giới.

Vốn là một hệ thống phổ quát của

rồi bỗng một người nào đó nhận thấy chuỗi số nguyên tố - vốn không thể xuất hiện một cách tư

toàn bộ sự sống trên hành tinh này, hệ thống gien của chúng ta mang tính kỹ thuật số từ trong cốt lõi. Ta có thể mã hóa, chính xác đến từng chữ một, toàn bộ cuốn Kinh Tân ước vào phần chỉ chứa những đoạn ADN "tạp nham" của hệ gien người.

ADN tap nham có nghĩa là ADN không được cơ thể dùng theo cách thông thường. Mỗi tế bào trong cơ thể ban chứa một lượng tương đương với 46 cuôn băng dữ liêu khổng lồ, và chúng nhả ra những ký tư kỹ thuật số thông qua vô số những đầu loc làm việc đồng thời với nhau. Trong mỗi tế bào, những cuộn băng này - tức là các nhiễm sắc thể - chứa đưng cùng một thông tin, nhưng các đầu đọc trong các loai tế bào khác nhau loc ra những phần khác nhau của cơ sở dữ liêu, để phục vụ cho những mục đích chuyên biêt của chúng. Đó là lý do tai sao các tế bào cơ khác với các tế hồn đưa đẩy nào, cũng không có một loại chất thạch nguyên sinh kỳ bí, đập lên đập xuống phập phồng nào cả. Sự sống chỉ bao gồm hàng byte hàng byte dữ liệu số mà thôi.

Gien chính là thông tin, thông tin

bào gan. Chẳng có sinh lực do linh

thuần túy - thông tin mà có thể được mã hóa, tái mã hóa, và giải mã mà không có sư suy giảm hay thay đổi nào trong ý nghĩa. Thông tin thuần túy thì có thể được sao chép và, do nó là thông tin số, độ trung thực của việc sao chép là cực kỳ tốt. Các ký tư ADN được sao chép ở một mức độ chính xác có thể

các kỹ sư hiện đại. Chúng được sao chép xuôi theo các thế hệ, với vừa đủ những sai sót thỉnh thoảng xảy ra để tạo nên những biến di. Trong số những biến di này, những tổ hợp mã hóa, vốn đã chiếm đa số trong môi trường, hiển nhiên và một cách tư động sẽ là những tổ hợp, mà khi được giải mã và tuân theo quy luật trong cơ thể, sẽ khiến cho cơ thể đó có những bước đi tích cực để bảo tồn và truyền đi chính những thông điệp ADN đó. Chúng ta – và cũng có nghĩa là toàn bộ sinh vật - là các cỗ máy sinh tồn được lập trình để truyền đi cơ sở dữ liệu kỹ thuật số

thách thức mọi nỗ lực cao nhất của

hiểu là nói về sự sống sót và tồn tại của những sinh vật ở mức độ mã thuần túy và mang tính kỹ thuật số.

Giờ đây, sau khi đã hiểu vấn đề với kiến thức hậu nghiệm, ta thấy không thể có cách nào khác cho bài toán gien này. Ta cũng có thể tưởng tượng ra một hệ thống gien

mà đã thực hiện chính việc lập trình đó. Học thuyết Darwin bây giờ được

ta thấy những gì xảy ra đối với thông tin dạng analog khi nó được sao chép lại qua nhiều thế hệ liên tiếp nhau. Đó chính là một dạng Tam sao Thất bản [8]. Hệ thống

điện thoại dùng khuếch đại, các

hoat động theo kiểu analog. Nhưng

tích lũy, đến nỗi việc sao chép không thể thực hiện được nữa sau một số thể hệ nhất định. Ngược lại, gien có thể tư sao chép đến mười triệu thế hệ mà chẳng mấy khi bi suy giảm chút nào. Thuyết Darwin là hợp lý bởi vì – ngoại trừ những đột biến đơn lẻ, vốn được chon loc tư nhiên hoặc là quét sạch đi hoặc là bảo tồn lại - quá trình sao chép đó thật hoàn hảo. Chỉ có hệ thống qien kỹ thuật số mới có khả năng duy trì được cơ chế Darwin qua

băng ghi từ, các bản photocopy của các bản photocopy – các tín hiệu analog thật quá mỏng manh trước nguy cơ của sự suy giảm mang tính địa chất. Một ngàn chín trăm năm ba, năm của chuỗi xoắn kép, người ta sẽ coi nó không chỉ là dấu chấm hết cho quan điểm thần bí mê muôi về sư sống; mà những người theo hoc thuyết Darwin sẽ còn xem nó như là năm mà chủ thể nghiên cứu của ho trở thành kỹ thuật số. Hùng vĩ chảy qua thời gian địa chất và chia ra làm ba tỷ nhánh, dòng sông thuần chất thông tin kỹ thuật số ấy quả là một hình ảnh mạnh mẽ. Nhưng ở nơi đâu nó để lai thông tin của sư sống? Nơi đâu nó để lại cơ thể, tay rồi chân, con mắt rồi bô não rồi chùm ria, lá rồi

hàng thiên niên kỷ của thời gian

cành rồi rễ? Nơi đâu nó để lại cho chúng ta và các phần cơ thể của ta? Có phải chúng ta – động vật, thực vật, động vật nguyên sinh, nấm và vi khuẩn – chỉ là những đôi bờ mà qua đó các con lạch kỹ thuật số chảy qua? Vâng, ở một khía canh nào đó. Nhưng như tôi đã ngu ý trước đây, thực ra còn có nhiều hơn thế nữa. Gien không chỉ tạo ra các bản sao của chính chúng, là những thứ sẽ chảy xuôi theo các thế hê. Chúng thực sự nằm trong các cơ thể sống, và chúng ảnh hưởng lên hình dáng và hành vi của chuỗi cơ thể sống liên tiếp nhau mà chúng cư ngu. Cơ thể cũng quan trong nữa.

gấu Bắc Cưc không chỉ là đôi bờ của con lạch số nhỏ. Nó cũng là một cỗ máy với mức độ phức tạp của một con gấu. Toàn bộ gien của cả một quần cư gấu Bắc Cực là một tập hợp những bạn đồng hành hợp với nhau, chen chúc nhau vươt qua thời gian. Nhưng chúng không đồng hành với toàn bộ thành viên của tập thể trong suốt thời gian của chúng mà thay đối tác nôi trong tập thế gien đó. Tập thể gien được định nghĩa là một tập hợp những gien có tiềm năng gặp bất cứ một gien nào khác trong chính tập thể đó (chứ không phải là thành viên khác trong

Chẳng han cơ thể của một con

trên thế giới). Các cuộc hội ngô luôn luôn xảy ra bên trong một tế bào của một cơ thể gấu. Và cơ thể đó không phải là một cái thùng bị động chứa đưng ADN. Đầu tiên, chỉ nói đến số lương tế bào (mỗi tế bào là một tập hợp đầy đủ của bô gien) cũng đủ làm ta chóng mặt khi tưởng tượng: khoảng chín trăm triệu triệu trong một con

số ba mươi triệu tập thể gien khác

gấu đực lớn. Nếu ta xâu các tế bào của một con gấu trắng vào một chuỗi thì chuỗi này hoàn toàn có thể kéo dài từ đây đến tận Mặt trăng rồi quay lai. Các tế bào này được chia ra khoảng mấy trăm loại

vật có vú: tế bào cơ, tế bào thần kinh, xương, da và những loại khác nữa. Toàn bộ các tế bào này đều chứa những chỉ dẫn của gien để làm ra bất kì một loại nào. Chỉ những gien phù hợp với đoan mô ta cần mới được bật lên. Đó là lý do vì sao các tế bào của các mô khác nhau lai khác nhau về hình dang và kích thước. Thú vị hơn, các gien được bật lên trên các tế bào của một loại nhất định nào đó lại làm cho các tế bào đó phát triển mô của chúng thành những hình dạng cụ thế. Xương không phải là những khối

khác nhau, cơ bản cũng chính là mấy trăm loại tế bào cho mọi đông

xương cán rỗng, xương đầu tròn và xương hốc, xương sống và xương gai. Các tế bào được lập trình, bởi các gien nằm trong chúng đã được bất lên, để hành đông cứ như thể chúng biết mình ở vị trí nào trong mối quan hệ với những tế bào lân cận. Điều này chính là cách mà chúng xây dựng nên các mô của mình thành hình như dái tại và van tim, thủy tinh thể của mắt và các cơ vòng. Sự tinh vi phức tạp của một con vật như con gấu trắng là đa tầng

không hình thù làm từ những mô cứng và chắc. Mỗi xương đều có một hình dáng đặc trưng, như các cơ quan với những hình dạng thích hợp, như gan, thân hay xương. Mỗi cơ quan lai là một tòa biết thư tao dựng ra từ các mô nhất đinh, mà các viên gach xây nên chúng lại là các tế bào, thường theo kiểu xếp nhiều lớp hay nhiều tấm nhưng cũng thường cả theo hình khối nữa. Ở một mức độ nhỏ hơn nhiều, mỗi tế bào lại có một cấu trúc bên trong rất tinh vi phức tạp gồm các màng được gấp nếp. Những màng này cùng với nước ở giữa chúng chính là hiện trường mà hàng loạt các loại phản ứng hóa học phức tạp xảy ra. Một nhà máy hóa

lớp. Cơ thể là một tập hợp phức tạp

học của ICI hay Union Carbide [10] có thể có mấy trăm phản ứng hóa hoc khác nhau diễn ra. Những phản ứng này sẽ được giữ riêng rẽ với nhau bởi các thành ống nghiệm và các thứ tương tự. Một tế bào cũng có thể có một số lượng tương tự các phản ứng hóa học diễn ra một cách đồng thời bên trong nó. Ở một mức đô nào đó, các màng tế bào cũng giống như các bình thủy tinh trong phòng thí nghiệm, nhưng sự tương tư là không nhiều lắm bởi hai lý do. Thứ nhất, mặc dù có rất nhiều phản ứng hóa học diễn ra giữa các màng, một số khá nhiều trong đó xảy ra ngay trên chất liệu của màng. Thứ hơn để giữ cho các phản ứng riêng rẽ với nhau. Mỗi phản ứng được xúc tác bởi một enzym chuyên biệt của nó.

Một enzym là một phân tử rất lớn mà hình dang ba chiều của nó làm

hai, có một phương thức hiệu quả

tăng tốc đô của một loại phản ứng nhất định do nó có bề mặt thuận lợi cho phản ứng đó. Bởi vì đặc điểm quan trong của các phân tử sinh học chính là hình dang ba chiều của nó, chúng ta có thể xem enzym như một cỗ máy lớn, được lắp ghép một cách khéo léo để tạo ra một dòng sản phẩm các phân tử với một hình dang nhất định. Vì thế, bất cứ một trăm loai phản ứng riêng biệt diễn ra bên trong nó một cách đồng thời và tách biết với nhau trên bề mặt của các enzym khác nhau. Phản ứng hóa học nào sẽ xảy ra trong một tế bào được quyết định bởi một loại enzym có mặt với số lương lớn. Mỗi phân tử enzym, bao gồm cả hình dang quan trong hết thảy của nó, được lắp ghép dưới sư ảnh hưởng mang tính quyết định của một loại gien nào đó. Cu thể hơn, chuỗi xác định của hàng trăm ký tự mã hóa của gien đó quyết định chuỗi axít amin của phân tử enzym thông qua một tập hợp quy tắc mà ta đã biết

tế bào nào cũng có thể có hàng

môt chuỗi axít amin, và bất kì một chuỗi axít amin nào trong các cơ thể sống cũng tư đông cuôn lai thành một hình dang ba chiều dặc trưng và duy nhất, như một cái nơ, mà trong đó các phần tử của chuỗi tao ra các liên kết đan chéo nhau với các phân tử khác của chuỗi. Cấu trúc ba chiều chính xác của cái nơ được quyết định bởi chuỗi một chiều các axít amin, và do đó được quyết đinh bởi chuỗi một chiều các ký tư mã trong gien. Và như vây, các phản ứng hóa học xảy ra trong tế bào được quyết định bởi gien mà nó được bật lên.

rõ (mã gien). Mỗi phân tử enzym là

cần phải bất lên trong một tế bào nhất định? Câu trả lời là các chất hóa học đã có mặt trong tế bào. Có yếu tố của nghịch lý "con gà và quả trứng [11]," ở đây, nhưng không phải là không giải quyết được. Lời giải của nghịch lý này thật sự rất đơn giản về nguyên tắc, mặc dù phức tap về mặt chi tiết. Đó chính là nguyên lý mà các kỹ sư máy tính gọi là kỹ thuật khởi tải^[12]. Vào những năm 1960 khi tôi mới đầu dùng máy tính, moi chương trình phải tải vào máy thông qua các băng giấy (các máy tính Mỹ thời kỳ

Thế cái gì quyết định gien nào

đó thường dùng bìa đục lỗ, nhưng nguyên tắc cũng vây). Trước khi có thể tải vào một cuộn băng lớn chứa một chương trình nghiệm chỉnh, người ta phải tải vào một một chương trình nhỏ hơn gọi là trình khởi tải. Trình khởi tải chính là một chương trình để làm một việc: bảo cho máy tính biết làm sao để tải băng giấy vào. Nhưng đây mới chính là nghịch lý "con gà - quả trưng": bản thân trình khởi tải được tải vào như thế nào? Ở máy tính hiên đai, phần tương đương với trình khởi tải được làm sẵn thành mach vào trong máy tính. Nhưng ở những thời kỳ mới đầu của máy tính

định sẵn trông rất nghi thức. Chuỗi này báo cho máy tính biết làm sao để đọc phần đầu tiên của cuôn khởi tải. Rồi phần đầu tiên này lai hướng dẫn một chút cho máy tính biết làm sao để đọc phần thứ hai, và cứ như vậy. Vào lúc mà cả cuồn khởi tải được nuốt hết vào, máy tính đã biết làm sao để đọc toàn bộ băng giấy chương trình, và có nghĩa là nó đã trở thành một máy tính có thể hoat động được. Khi một phôi thai bắt đầu hình thành, một tế bào duy nhất (trứng đã thu tinh) phân chia ra làm đôi;

ấy, người ta phải bắt đầu bằng cách bật những cầu dao theo một kiểu rồi lai phân đôi để thành tám, và cứ như vây. Chỉ mất khoảng ít chục thế hệ là có thể tạo ra số lương tế bào lên đến hàng chục tỉ, thật ghê gớm thay sức manh của sư phân chia theo hàm mũ. Nhưng, nếu như tất cả chỉ có bấy nhiều thôi, hàng chuc tỉ tế bào đó sẽ giống nhau hết thảy. Làm sao thực tế chúng lại phân biệt nhau ra thành tế bào gan, tế bào thận,tế bào cơ và nhiều thứ khác, mỗi cái lại có những gien khác nhau được bật lên và những enzym khác nhau hoạt động? Tương tư như kỹ thuật khởi tải, nguyên tắc hoạt động như sau. Mặc dù quả trứng

mỗi cái lai phân đôi để thành bốn;

đã có sư phân cực trong nguyên liệu hóa học bên trong nó. Nó có phần trên phần dưới, và trong nhiều trường hợp, phần trước và phần sau (và có cả bên phải và bên trái) nữa. Các sự phân cực này thể hiện ra dưới dạng phân bố của các chất hóa học. Sư tập trung của những chất hóa học nào đó liên tục tặng lên khi ta đi từ trước ra sau, hay là từ trên xuống dưới. Những sự phân bố mào đầu này khá đơn giản, nhưng đủ để tạo nên giai đoạn đầu tiên của quá trình khởi tải. Khi quả trứng phân chia ra, chẳng han ba mươi hai tế bào - tức là sau

nhìn như một quả cầu, thực ra nó

năm lần phân chia – một số trong ba mươi hai tế bào đó sẽ có các chất hóa học thuộc bên trên nhiều hơn mức trung bình, cái khác lai có nhiều các chất thuộc bên dưới nhiều hơn mức trung bình. Các tế bào cũng không cân nhau xét về khía canh các chất thuộc về phân bố trước - sau. Những khác biệt này đủ để khiến cho các tổ hợp gien khác nhau được bật lên ở các tế bào khác nhau. Cho nên các tổ hợp khác nhau của các enzym sẽ có mặt trong tế bào nằm ở các phần khác nhau của phôi. Rồi chính sự khác biệt này lai khiến cho các tổ hợp gien khác nữa được bật lên ở các tế bào trở nên càng ngày càng khác nhau, thay vì vẫn ở tình trạng giống hệt tế bào đầu tiên. Sư phân ly ở tế bào này rất khác

với sự phân kỳ giữa các loài mà ta

bào khác nhau. Thế là các dòng tế

đã nói trước đây. Những sự phân ly tế bào được lập trình sẵn và có thể dự đoán chi tiết được, trong khi sự phân kỳ của các loài là các kết quả ngẫu nhiên do địa lý địa hình và không thể đoán trước được. Hơn

nữa, khi các loài phân kì nhau, chính các gien cũng phân kì, cái tôi đã gọi vui là "lời tạm biệt dài lâu". Khi các dòng tế bào nội trong phôi phân ly, mỗi phân nhánh đều nhận

nhau nhận được các chất hóa học khác nhau mà sẽ bật các tổ hợp gien khác nhau lên, và một số gien sẽ hoạt động để bật hay tắt các

được cùng một hệ bao gồm tất cả các gien. Nhưng các tế bào khác

gien khác. Và thế là sự khởi tải cứ tiếp diễn, cho đến khi chúng ta có toàn bộ nguồn cung cấp của các loại tế bào khác nhau.

Một phôi thai đang phát triển không chỉ tạo ra hàng trăm loại tế

không chỉ tạo ra hàng trắm loại tế bào khác nhau, và hình dạng bên trong và bên ngoài nó cũng thay đổi rất tài tình và sôi động. Sôi động nhất là quá trình được biết đến với tên gọi "sư hình thành phôi da".

Wolpert đã mạnh dạn phát biểu rằng, "Không phải lúc chào đời, lúc chết, hay lúc kết hôn, mà lúc hình thành phôi da mới là thời điểm quan trong nhất trong đời người". Khi hình thành phôi da, một quả bóng rỗng làm từ các tế bào lõm mang vào từ một phía để biến thành một cái cốc với một lớp lót bên trong, về bản chất thì mọi phôi thai trong toàn bô giới đông vật đều trải qua quá trình hình thành phôi da này. Đó là nền tảng đồng nhất cho tính đa dạng của phôi thai. Ở đây sư hình thành phôi da chỉ là môt ví du - môt ví du đặc biệt ấn

Nhà phôi thai học xuất sắc Lewis

ngừng nghỉ tạo ra những tác phẩm xếp giấy origami từ toàn bộ những nền tảng tế bào mà chúng ta thấy trong sự phát triển của phôi.

Vào thời điểm kết thúc cuộc trình

tương – của những vân đông không

diễn origami lão luyên này; sau hàng loat những thao tác gấp vào, đẩy ra, thổi phồng lên và làm duỗi các lớp tế bào; sau rất nhiều sự tăng trưởng nhịp nhàng và sôi đông của các phần phôi trong đó phần này tăng trưởng nhanh hơn phần khác; sau sư phân kì thành hàng trăm loại tế bào chuyên biệt về mặt hóa học và lý học; khi tổng số tế bào đat đến mức hàng chục tỷ, sản cũng chưa phải là cuối cùng, bởi vì toàn bộ sư lớn lên của cơ thể - cũng lai với một số phần lớn nhanh hơn các phần khác – biến sự trưởng thành ra sư lão hóa, cũng nên được xem là một sự mở rộng của chính quá trình phát triển phôi: quá trình hoàn toàn phôi thai - cả cuốc đời chỉ là một cái phôi mà thôi. Moi cá thể đều khác nhau nhờ sự định hướng khác biệt ở các chi tiết trong quá trình hoàn toàn phôi thai. Một lớp tế bào lớn thêm một chút trước khi tự gấp lại, và kết quả là -Cái gì đây nhỉ? - một cái mũi

phẩm cuối cùng là một em bé sơ sinh. À không, ngay cả em bé đó

cứu mạng ta vì chúng khiến ta không thể nhập ngũ được; hay một kiểu xương vai khiến ta trở nên giỏi ném lao (hay là lưu đan, hay là bóng cricket, tùy hoàn cảnh mỗi người). Đôi khi, một sự thay đối trong miếng origami các lớp tế bào lai đưa đến một hậu quả bị thảm, chẳng han em bé sinh ra chỉ với phần gốc cách tay mà không có bàn tay. Những khác biệt không được thể hiện rõ ra ở hình dang miếng origami lớp tế bào mà chỉ đơn thuần về mặt hóa học cũng có hâu quả trầm trọng không kém: không

khoằm chứ không phải mũi thẳng; một đôi bàn chân bẹt, thể là chúng luyến ái, dị ứng với đậu phộng, hay cho đến việc nghĩ rằng vị trái xoài thật kinh tởm và có mùi nhựa thông. Sư phát triển phôi thai là một quá

trình phức tạp về mặt vật lý và hóa học. Một thay đổi nhỏ tại bất cứ

tiêu hóa sữa được, thích đồng tính

thời điểm nào trong quá trình đó có thể để lại hậu quả ghê gớm sau này. Điều này cũng không đến nỗi ngạc nhiên, nếu ta nhớ lại quá trình khởi tải nặng nề đến như thế nào. Nhiều điều xảy ra trong quá trình này là do môi trường, ví dụ do thiếu ô-xy hay do uống thuốc giảm đau.

Nhưng nhiều sư khác biết nữa là do

riêng rẽ mà các gien tương tác với nhau, tương tác với môi trường. Phải nói rằng một quá trình tinh vi phức tạp, nhiều màu sắc biến ảo, được khởi tải qua nhiều bước liên hệ chẳng chịt đan chéo lẫn nhau như sư phát triển phôi thai thật mạnh mẽ và nhạy cảm trong môi trường. Manh mẽ ở chỗ nó có thể đấu tranh với những biến dang tiềm tàng và những bất lợi lấn át, để tạo ra một em bé trên đời; nhưng đồng thời nó cũng rất nhạy với những biến dạng ở chỗ không có hai cá thể nào, ngay cả song sinh cùng trứng, tuyêt đối giống hệt nhau trong mọi

gien gây ra – không phải các gien

đặc điểm.

Và bây giờ điểm mấu chốt mà tôi muốn nói. Trong pham vi sự khác

biệt giữa các cá thể do gien (phạm vi có thể rông, có thể hẹp), chon loc

tư nhiên có thể sẽ ưu tiên những thay đổi ngẫu nhiên này trong miếng origami phôi mà lại không ưu tiên những cái khác. Trong pham vi mà cách tay ném của ban là do gien quyết định, chọn lọc tư nhiên có thể ưu tiên nó hoặc không. Có nghĩa là nếu khả năng ném giỏi tao ra một tác đông, cho dù nhỏ đến đâu, lên khả năng sống sót cho đến khi con cái của một cá thể, những gien quyết định khả năng ném giỏi ấy sẽ trong việc truyền sang thế hệ tiếp theo. Tất nhiên bất kì một cá thể nào cũng có thể chết vì những lý do không liên quan gì đến khả năng ném của mình. Nhưng một gien mà sự có mặt của nó có khả năng làm cho các cá thể giỏi hơn trong việc ném, so với khi không có nó, cả tốt lẫn xấu trong nhiều thế hê. Chỉ xét riêng cho gien này, về mặt trung bình mọi nguyên nhân có thể dẫn đến cái chết khác đều có ảnh hưởng như nhau khi tác đông lên cơ thể sinh vật. Từ quan điểm của gien, chỉ có một viễn cảnh lâu dài của một dòng sông ADN chảy xuối theo

có cơ hội tương ứng để thắng lợi

ngụ tạm thời của gien, nơi mà chúng có thể gặp những gien đồng hành khác vốn khiến cho chúng có thể thành công nhưng cũng có khi thất bai.

các thế hê. Các cơ thể chỉ là chỗ cư

Về lâu dài, dòng sông đó sẽ chứa đầy những gien mà đã rất giỏi tồn tại nhờ những lý do như: hơi tăng tiến thêm khả năng ném lao, hơi tăng tiến thêm khả năng có thể nếm được chất độc, hay là bất cứ

thứ gì khác. Tính trung bình, khả năng tồn tại của gien kém yếu hơn – bởi vì chẳng hạn chúng có khuynh hướng gây ra chứng loạn thị trong chuỗi cơ thể mà chúng cư ngụ, vì

thế những cá thể này trở nên kém thành công trong việc phóng lao; hay là chúng làm cho chuỗi cơ thể đó kém hấp dẫn nên không thể chon được ban đời – những gien đó sẽ có khuynh hướng biến mất khỏi dòng sông gien. Nói chung lai, nhớ lại điểm mà chúng ta đã nói trước đây: những gien đó sống sót trong dòng sông sẽ là những gien giỏi sống sót trong môi trường trung bình của loài, nhưng có lẽ phần quan trọng nhất của môi trường trung bình này lại chính là những gien khác trong loài; những gien có khả năng chia sẻ cùng một cơ thể với gien giỏi này; những gien bơi

qua thời gian địa chất trong cùng dòng sông với gien đó.

CHƯƠNG 2 MỆ CHÂU PHI VÀ CON CHÁU CỦA BÀ

Người ta cho rằng sẽ là thông minh khi nói khoa hoc chẳng hơn gì một truyền thuyết hiện đại. Người Do Thái có Adam và Eva, người Xume có Marduk và Gilgamesh, người Hy Lạp có thần Zeus và những vị thần Hy Lạp, người Nauy lai có Valhalla. Nhiều người được coi là khôn ngoan nói rằng: "tiến hóa" có gì hơn một truyền thuyết hiên đại, tương đương với các chúa trời và các anh hùng trong truyền dở hơn, không đúng hơn cũng chẳng sai hơn? Có một loại triết học rất hợp thời gọi là thuyết tương đối văn hóa, ở dang cực đoan, nó cho rằng khoa học chẳng có gì gần với chân lý hơn so với những truyền thuyết dân gian: khoa học chẳng qua chỉ là một dang truyền thuyết được một bô tộc hiện đại Tây phương ưa chuộng mà thôi. Một lần no tôi bi một đồng nghiệp nhân chủng học khích, khiến tôi phải đưa ra ý kiến thật rõ ràng: Giả du có một bộ tộc nào đó tin rằng Mặt trăng chỉ là một quả bầu cũ kĩ được tung lên trời cao, rồi treo lợ lưng quá tầm ngọn

thuyết, không hay hơn cũng không

bằng một phần tư trái đất - là chẳng hề đúng hơn so với "quả bầu" của bộ tộc đó chăng? "Có", nhà nhân chủng học nói. "Chúng ta chỉ được lớn lên trong văn hóa vốn nhìn nhân thế giới theo cách khoa học. Còn những người của bộ tộc đó lớn lên để nhìn nhân thế giới theo một cách khác. Chẳng có cách nào đúng hơn cách nào cả". Hãy chỉ cho tôi một nhà tương đối văn hóa học ở đô cao ba mươi ngàn bô^[13] rồi tôi sẽ chỉ ngay cho bạn

cây. Bạn có thực sự tin rằng chân lý khoa học của chúng ta – rằng Mặt trăng nằm cách Trái Đất một phần tư triệu dăm và có đướng kính được chế tạo ra dựa theo những nguyên lý khoa học thì hoạt động được. Nó có thể bay trên trời, và nó có thể chở ban đến chỗ này chỗ kia ban muốn. Máy bay làm theo kiểu bô tộc hay truyền thuyết, như máy bay hình nôm thần linh mang mọi thứ đến cho ta trong rừng nhiệt đới hay là những chiếc cánh bằng sáp ong của Icarus, thì không [14]. Nếu ban bay đến một hội thảo quốc tế của những nhà nhân chủng học hay phê bình văn học, điều khiến ban chắc chắn đến được, điều khiến ban không lao nhào xuống - chính là do các kỹ sư được đào tạo theo khoa

thấy một tay đạo đức giả. Máy bay

phép toán. Khoa hoc Tây phương, dưa trên quan sát chắc chắn rằng Mặt trăng quay quanh Trái đất ở một phần tư triệu dăm, sử dụng các máy tính và tên lửa thiết kế theo kiểu Tây phương, đã đưa được con người lên Mặt trăng. Khoa học bộ tôc, với niềm tin rằng Mặt trặng chỉ cao quá tầm ngọn cây, sẽ chẳng bao giờ chạm được vào đó ngoài những giấc mơ. Hiếm khi nào tôi giảng bài cho công chúng mà lại không có khán giả nào đó tư nhiên đứng lên đưa ra ý thưởng từa tưa như người đồng nghiệp nhân chủng học của tôi vừa

học Tây phương đã tính đúng các

chủng tộc gì cả. Điều còn gây được nhiều cái gất đầu thán phục hơn nữa là: "Nguyên tắc căn bản: niềm tin của anh vào sư tiến hóa cuối cùng cũng chỉ là đức tin, và do đó nó cũng chẳng còn gì tốt hơn niềm tin của ai đó vào Vườn Địa Đàng cả". Moi bô tôc đều có những truyền thuyết khởi nguyên – đó là câu chuyên của họ để giải thích về vũ trụ, sự sống và loài người. Về một khía cạnh nào đó, khoa học đúng là

rồi, cũng gợi lên những cái gật đầu trầm trồ tán thưởng. Chắc chắn là những người đồng tình đó thấy hay, rất đô lương và không phân biệt ít nhất là dành cho giới trí thức trong xã hội hiện đại chúng ta. Khoa hoc thâm chí có thể được mô tả như một tôn giáo; không đùa đâu, tôi đã kể một trường hợp nhỏ trong khoa học có thể trở thành chủ đề thích hợp cho các lớp học tôn giáo [15]. (Ở Anh, giáo dục tôn giáo là một phần bắt buộc của chương trình ở trường, không bi cấm như ở Mỹ vì sơ xúc pham đến những người theo tôn giáo xung khắc khác). Khoa học cũng như tôn giáo tuyên bố rằng chúng trả lời được những câu hỏi sâu xa về nguồn gốc, về bản chất sự sống, và về vũ trụ.

cũng tao ra một điều tương đương,

mà thôi. Niềm tin khoa học được xác nhận bằng những căn cứ, và chúng mang đến kết quả. Truyền thuyết và đức tin tôn giáo thì không mang đến kết quả đó và cũng

Nhưng sự giống nhau chỉ dừng ở đó

không thể.

Trong tất cả các truyền thuyết khởi nguyên, chuyện của người Do Thái về Vườn Địa Đàng thâm nhập khắp văn hóa của chúng ta đến nỗi nó truyền lại tên cho một lý thuyết

khoa học quan trọng về tổ tiên của chúng ta, lý thuyết về "Eva Châu Phi". Tôi giành chương này để nói về Eva Châu Phi, một phần là do nó sẽ cho phép tôi phát triển sự tương do tôi muốn tương phản bà, vốn là một giả định khoa học, với người phu nữ huyền thoai của Vườn Đia Đàng. Nếu tôi thành công, bạn sẽ thấy chân lý hấp dẫn hơn, thâm chí có thể còn rất gợi về mặt văn chương hơn, so với truyền thuyết. Chúng ta sẽ bắt đầu với một bài tập lý lẽ đơn thuần với giấy và bút chì. Nguyên do của nó sẽ trở nên rõ ràng ngay thôi. Ban có bố me (hai người), bốn ông bà nôi ngoại, tám ông bà cố nôi ngoại và cứ như vậy. Cứ mỗi thế hệ số lương tổ tiên lại tăng lên gấp đôi. Trở lai q thế hệ thì số lương tổ

đồng với dòng sông ADN, và cũng

nó g lần: 2 mũ g. Nhưng khi vừa mới tính xong, chúng ta sẽ nhận ra ngay rằng không thể như vây được. Để thấy điều này chúng ta chỉ cần quay lai một chút – ví du, đến thời của chúa Jesus, gần đúng hai ngàn năm trước. Nếu chúng ta giả dụ một cách không chặt chẽ lắm, rằng có bốn thế hệ trong mỗi thế kỷ - nghĩa là người ta sinh con cái ở tuổi hai mươi lăm – hai ngàn năm có nghĩa chỉ là gần tám mươi thế hê. Con số thưc tế chắc là lớn hơn thế (nhiều phu nữ sinh con khi còn rất trẻ, điều này đúng đến mãi gần đây), nhưng ở đây ta chỉ nói nhanh thôi và kết

tiên của ban là số 2 nhân với chính

một số và theo sau là 24 số không. Bạn có tới một triệu triệu triệu triệu triệu tổ tiên, cùng thời với chúa Jesus, và tôi cũng vậy. Nhưng tổng dân số vào lúc đó chỉ là một phần tỉ nhỏ hơn so với con số mà ta vừa mới tính ra.

quả không phụ thuộc những tiểu tiết đó. Hai nhân với chính nó 80 lần là một con số lớn kinh khủng,

đó, nhưng ở đâu nhỉ? Chúng ta đã làm phép tính đúng. Điều duy nhất ta làm sai là giả thuyết nhân đôi ở mỗi thế hệ. Thực tế ta đã quên rằng anh em họ có thể lấy nhau. Tôi đã giả thuyết là chúng ta có

Hiển nhiên là ta đã làm sai ở đâu

nếu con của hai anh em ho một đời lấy nhau thì ho chỉ có sáu ông bà cố mà thôi. Bởi vì ông bà nôi ngoại chung của hai anh em ho này là ông bà cố của con ho theo hai cách khác nhau. "Thế thì đã sao nào?", chắc bạn sẽ hỏi vậy. Người ta thỉnh thoảng lấy anh em ho của mình (Vơ của Charles Darwin, Emma Wedgwood là chi em ho môt đời của ông), nhưng chắc chuyên này không phổ biến tới mức tao ra một sư khác biệt đáng kể nào chứ? Có đấy, bởi vì "anh em họ" đối với tính toán của chúng ta bao gồm anh em họ hai đời, năm đời, sáu đời, và

tám ông bà cố nội ngoại. Nhưng

em ho đến mức xa như vây, mọi hôn nhân đều là hôn nhân giữa hai anh em ho. Thình thoảng ban nghe ai đó khoe rằng mình là bà con xa với Nữ hoàng, nhưng họ chỉ khoa trương vậy thôi, vì tất cả chúng ta đều là bà con xa của Nữ hoàng, và của bất cứ người nào khác, theo rất nhiều con đường mà không bao giờ ta có thể lần ra hết được. Đối với hoàng tộc hay quý tộc, điều đặc biệt duy nhất là họ có thể lần ra một cách rõ ràng. Như vị Bá tước Homenthwa mười bốn đã từng nói khi bị đối thủ chính trị chế giễu về tước vi của mình, "tôi cho rằng ông

nhiều đời nữa. Khi mà ta tính anh

ông Wilson thứ mười bốn". [16]

Kết quả cuối cùng là: chúng ta là anh em bà con gần hơn rất nhiều so với bình thường mà ta có thể nhận thấy, và chúng ta lại có ít tổ tiên hơn nhiều so với phép tính đơn giản vừa rồi. Một lần, để xem một sinh

viên lý luân thế nào, tôi bảo cô ấy

Wilson, nghĩ cho cùng, thì cũng là

thử đoán bằng kinh nghiệm xem tổ tiên gần nhất của cô ấy và tôi sống cách đây bao lâu. Nhìn tôi một cách nghiêm nghị, không chút chần chừ, cô đáp bằng một giọng nói chậm rãi thôn quê, "Tận thời kỳ của khỉ giống người". Đúng là một phỏng đoán dễ hiểu, nhưng nó sai tới khoảng

sư tách biệt được đo bằng hàng triệu năm. Sư thật là tổ tiên chung gần nhất của chúng tôi rất có thể đã sống không nhiều hơn vài thế kỷ trước, chắc là muôn hơn rất nhiều so với thời kỳ của William the Conqueror [17]. Hơn nữa, chúng tôi chắc chắn còn là họ hàng với nhau đồng thời theo nhiều cách khác nhau. Mô hình tổ tông với hình ảnh một

10.000 phần trăm. Thế có nghĩa là

Mô hình tổ tông với hình ảnh một cái cây phân nhánh ra mãi mãi, hết lần này đến lần khác, đã dẫn tới một tính toán sai lầm và phóng đại số tổ tiên lên. Lật ngược lại, và cũng sai lầm y hệt vậy, đó là mô

trung bình có hai con, bốn cháu, tám chắt và cứ như vậy đến mãi con số không tưởng là hàng ngàn tỷ hâu duê chỉ qua vài thế kỷ. Mô hình tổ tông và con cháu đúng với thực tế hơn chính là mô hình dòng gien được giới thiệu ở chương trước. Giữa đôi bờ của nó, gien là những dòng chảy liên tục theo thời gian. Các dòng chảy tách ra rồi nhập lai khi các gien đan chéo qua lai xuôi theo dòng sông chảy qua thời gian. Thỉnh thoảng, ta lại múc một thùng nước đầy tại chỗ nào đó dọc theo dòng. Từng đôi phân tử chắc chắn đã cùng đồng hành trước đây trong

hình cây của con cháu. Một người

giờ đây sẽ còn đồng hành thêm nữa. Chúng đã từng cách xa nhau nhiều trong quá khứ, và chúng cũng sẽ rất tách biệt trong tương lai. Rất khó để lần ra những điểm gặp nhau, nhưng về mặt toán học chúng ta có thể chắc chắn rằng sư gặp nhau phải xảy ra – chắc chắn rằng hai gien đang gặp nhau tại một điểm nào đó, chúng không phải đi đâu xa dọc theo một trong hai hướng dòng sông cho đến khi chúng lai cham nhau lần nữa. Ban có thể không biết mình là bà con của chồng hay vơ mình, nhưng về mặt thống kê mà nói, ban chẳng

suốt quá trình chảy xuôi theo dòng,

phải đi ngược lai quá xa để tìm được điểm khác nhau giữa hai dòng dõi. Nhìn theo hướng ngược lai, về phía tương lai, ta thấy hiển nhiên rằng ta sẽ chia sẻ hậu duệ con cùng với chồng hoặc vợ ta. Suy nghĩ này mới thật hấp dẫn đây. Sắp tới nếu ban có mặt trong đám động – trong phòng hòa nhac hay sân bóng đá chẳng hạn - hãy nhìn quanh khán giả và suy ngẫm điều này: nếu ban có con cháu trong tương lai xa xôi, chắc chắn có người trong cùng buổi hòa nhạc hôm nay bạn sẽ bắt tay làm đồng tổ tiên của lớp hâu duê đó. Những người cùng là ông bà nôi ngoai thường biết rõ ho là đồng tổ

tiên, và điều này cho họ một cảm qiác gần gũi thân thuộc với nhau, cho dù có sống hợp với nhau hay không. Họ có thể nhìn nhau và nói, "À, tôi không ưa ổng lắm, nhưng ADN của ổng đã trộn lẫn với của tôi trong đứa cháu chung này rồi. Chúng tôi có thể sẽ có cùng hâu duê trong tương lai nữa, rất lâu sau khi chúng tôi đều đã ra đi. Cho nên chắc chắn là chúng tôi phải thấy thân thuộc rồi". Nhưng ý của tôi là, nếu bạn có phúc có con cháu trong tương lai xa, sẽ có ai đó xa la tuyệt đối với ban trong phòng hòa nhac sẽ là đồng tổ tiên với bạn. Ban có thể quan sát trong hội trường và

hay phu nữ, có thiên mênh chia sẻ hâu duê mai sau và ai sẽ không. Cho dù ban là bất kỳ ai, màu da nào và giới tính nào đi nữa, ban và tôi rất rất có thể sẽ là đồng tổ tiên. ADN của bạn có thể có định mênh sẽ hòa trộn với ADN của tôi. Xin chào trân trong! Bây giờ giả sử chúng ta đi ngược thời gian bằng một cỗ máy, chẳng han đến một đám động trong Đấu trường La Mã, hay xa hơn, một phiên chợ Ba Tư, hay thậm chí còn xa hơn nữa. Hãy nhìn quanh đám

đông, giống như ta đã tưởng tượng ra đối với đám đông khán giả thính

suy diễn ra xem những ai, đàn ông

quá cố từ rất lâu đó thành hai và chỉ hai phân loai mà thôi: những người là tổ tiên của ta và những người không phải. Điều này cũng khá hiển nhiên, nhưng bây giờ ta mới đi đến một sự thật rất đáng chú ý. Nếu cỗ máy thời gian có thể mang bạn về đủ sâu trong thời gian, bạn có thể chia những người bạn gặp ra thành những người là tổ tiên của mọi con người sống vào năm 1995^[18] và những người không là tổ tiên của ai sống vào năm 1995. Không ai ở trung gian cả. Bất cứ ai mà bạn gặp khi vừa

phòng hiện đại của ta. Hãy để ý rằng ta có thể chia những người đã hoặc là một trong số các tổ tiên của toàn bộ con người đang sống, hoặc chẳng là tổ tiên của ai cả. Đây là một ý nghĩ như hút chúng

ta vào, và nghe có vẻ rất xa xôi trừu tương, nhưng ta có thể chứng

bước chân ra khỏi cỗ máy thời gian

minh một cách vô cùng dễ dàng. Ta chỉ cần di chuyển cỗ máy thời gian tưởng tương ngược về một thời điểm lâu đến mức khó tưởng nào đó: ví du như ba trăm năm mươi triêu năm trước, khi mà tổ tiên ta còn là những con cá có vây giống chân và có phổi, trồi lên từ mặt nước và trở thành động vật lưỡng cư. Nếu một con cá nào đó là tổ không đúng như vậy, thì suy ra dòng dõi dẫn đến bạn và dòng dõi dẫn đến tôi đã tiến hóa một cách độc lập, không bao giờ liên quan gì đến nhau, từ cá lên lưỡng cư, lên bò sát, động vật có vú, đến linh trưởng rồi họ người. nhưng cuối cùng, trên thực tế chúng ta tương tư nhau đến mức có thể nói chuyện với nhau, thâm chí là nếu chúng ta thuộc hai giới khác nhau, có thể giao phối với nhau nữa (như vậy suy ra "ông cá" chắc chắn phải là tổ tiên chung. ND). Điều gì đúng với ban và tôi thì

tiên của tôi, chắc chắn không có cách chi mà nó lại không phải là tổ tiên của ban. Nếu mà "ông cá" cũng đúng cho bất kì hai con người nào.

Chúng ta vừa chứng minh rằng

nếu du hành ngược về thời gian đủ xa vào quá khứ, bất kỳ người nào mà ta gặp chắc chắn phải là tổ tiên của nhau, hoặc là toàn bộ chúng ta, hoặc không ai cả. Nhưng bao lâu thì gọi là đủ lâu? Rõ ràng là ta không cần phải đi ngược đến thời kỳ cá có vây giống chân — như trong

phép phản chứng nói trên – nhưng chúng ta phải đi ngược thời gian bao lâu để gặp tổ tiên của toàn bộ con người đang sống vào năm 1995? Đó là một câu hỏi khó hơn rất nhiều và nó chính là câu hỏi mà

không thể trả lời được bằng giấy và bút chì. Chúng ta cần thông tin thực tế, những đo đạc từ thế giới với những dữ kiện nhất định.

Sir Ronald Fisher [19], nhà di

tôi chuyển đến sau này. Câu hỏi này

truyền học và toán học tài ba người Anh, người có thể được xem là người nối nghiệp vĩ đại nhất thế kỷ 20 của Darwin, cũng như cha đẻ của môn thống kê học hiện đại, đã phát biểu điều sau đây vào năm 1930:

Chỉ có địa lý và những rào cản khác ngăn trở sự giao phối giữa các chủng tộc lại với

nhau... vốn đã ngăn chăn toàn bộ loài người có cùng một dòng dõi tổ tiên duy nhất, ngoại trừ trong mấy ngàn năm qua. Tổ tông của toàn bộ thành viên trong một nước chỉ còn khác biệt chút ít khi tính xa hơn cách đây 500 năm; và ở 2000 năm trước, sư khác biệt duy nhất còn tồn tại là giữa các chủng tộc riêng biệt theo như ngành dân tôc học; những chủng tộc này... có thể thực ra là cực kì cổ xưa; nhưng điều này có thể xảy ra chỉ khi trong thời gian dài sự khuếch tán của các dòng máu giữa các nhóm khác nhau

Bằng ngôn ngữ tương tự như hình ảnh dòng sông của chúng ta, Fisher đã dùng dữ kiện rằng gien của moi thành viên trong tất cả chủng tộc thống nhất về mặt địa lý đều đang chảy cùng một con sông. Nhưng khi nói đến những con số cu thể của ông - năm trăm năm, hai ngàn năm, mức đô cổ xưa của sư chia tách các nhóm chủng tộc khác nhau - Fisher chắc hẳn đã có những ước đoán có cơ sở. Những dữ kiên cần

tách các nhóm chúng tộc khác nhau

– Fisher chắc hẳn đã có những ước
đoán có cơ sở. Những dữ kiện cần
thiết chưa có vào thời của ông. Bây
giờ cùng với cuộc cách mạng sinh
học phân tử, chúng ta có đầy ứ dữ

kiện ra đó [21]. Chính sinh học phân tử đã cho ta mẹ Eva châu Phi đầy quyền năng.

Dòng sông số không phải là cách hình tượng duy nhất đã được dùng đến. Chúng ta hoàn toàn có thể so sánh ADN của mỗi người với một quyển Kinh Thánh gia đình. ADN là

một đoan văn bản rất dài được viết bằng bảng chữ cái bốn ký tư như chúng ta đã thấy trong chương trước. Các chữ cái đã được sao chép vô cùng tỉ mỉ từ các tổ tiên của chúng ta, và chỉ từ các tổ tiên của chúng ta mà thôi, với một sư chính xác ghê gớm, ngay cả khi đó là từ một tổ tiên rất xa xội. Bằng cách

trong những con người khác nhau, chắc chắn chúng ta có thể tái dựng lai mối tương quan ho hàng của ho và rồi tính ra được một người tổ tiên chung. Những người bà con xa mà ADN của họ đã phân ly ra lâu hơn – ví dụ như người thổ dân Nauy và người Australia – chắc phải khác nhau bởi một số lượng từ ngữ rất lớn. Các học giả đã làm những phép tính toán kiểu này đối với rất nhiều phiên bản tài liêu thánh kinh. Xui xẻo thay, trong trường hợp bô "sách" ADN này lai xuất hiện một cái dằm khó chiu. Tình duc. Tình duc là một cơn ác mộng với

sao chép các đoan văn bản lưu trữ

để lai các tài liêu của tổ tiên một cách nguyên ven, ngoại trừ chút sai sót không tránh khỏi, tình dục can thiệp và phá hủy mọi chứng cứ một cách lì lơm và thô bao. Không một ai, dù lớ ngớ tới cỡ nào, lại từng phá hoại một tác phẩm tinh vi như tình duc đã làm hỏng kho lưu trữ ADN. Trong sự lưu truyền kinh thánh, chẳng có thứ gì có thể so sánh được với sư phá hoại đó. Phải thừa nhận là, khi một học giả cố gắng lần theo nguồn gốc, nói ví du như của như Kinh Ca Solomon (Kinh Cưu Ước) chẳng han, người này sẽ hiểu rằng mọi chuyên không đẹp

tay lưu trữ "văn thư" ADN. Thay vì

quặc, cho thấy rõ nó thực sư là phân mảnh của một số bài thơ khác nhau được nối liền với nhau, chỉ một số ít trong đó là các đoạn thơ tình. Nó có nhiều lỗi – hay còn gọi là biến dị - đặc biệt là trong phần dich. "Mang cho chúng con những con cáo, những con cáo nhỏ đã phá hết những cây nho", thực ra đó là một lỗi dịch, thế nhưng vì chúng đã được lặp đi lặp lại cả đời, nên chúng lại mang một nét đặc trưng đáng nhớ. Nhưng thất tình chẳng thể nào khớp chúng lại với bản gốc là "Bắt cho chúng con những con dơi ăn

như mơ tí nào. Bài Kinh Ca có nhiều đoan được chắp nối một cách kỳ

hoa quả, những con dơi nhỏ...":

O' kìa, mùa đông đã xa, mưa
đã tàn và lui đi mất. Chim sẽ
hót, hoa lại nở rộn ràng trần
thế; còn tiếng rùa sẽ vang vọng

khắp nhân gian.

Đoạn thơ tuyệt đẹp, làm ta mê mẩn đến mức tôi nghi mình sẽ làm hỏng nó nếu giải thích ra rằng, một lần nữa, cũng có một biến dị rành rành ra đấy. Chèn lại chữ "bồ câu" vào sau chữ "rùa", như các bản dịch hiện đại đã làm, mới là chính xác

hiện đại đã làm, mới là chính xác nhưng lại rất nặng nề, ta sẽ nghe nhịp điệu hỏng hết cả (trở thành "...còn tiếng rùa, tiếng bồ câu sẽ vang vọng khắp nhân gian" ND). sót nhỏ không thể tránh khỏi mà ta thường thấy khi các tài liêu không phải được in ra thành hàng ngàn bản từ trong đĩa máy tính có đô trung thực cao, mà lại được sao đi chép lai bởi những nhà sao chép bằng xương bằng thịt, qua những cuôn giấy cói khan hiếm và dễ hỏng.

Đây là những lỗi rất nhỏ, những sơ

Bây giờ ta hãy để tình dục xen vào bức tranh này. (Không, theo nghĩa tôi muốn nói thôi, chứ không phải tình dục xen vào bài Kinh Ca). Tình dục, theo cái nghĩa tôi nói, chẳng qua là: chon ngẫu nhiên những đoạn nhỏ từ một cuốn sách,

xong trôn lẫn những đoan đó với một nửa được giật từ một cuốn khác. Thật khó tin - thậm chí nghe có vẻ phá hoai nữa – nhưng đây chính xác là những gì xảy ra khi một tế bào sinh dục hình thành. Ví dụ, khi một người đàn ông tạo ra một tế bào tinh trùng, các nhiễm sắc thể anh thừa hưởng từ bố cặp đôi với các nhiễm sắc thể anh thừa hưởng từ me, cùng những đoạn lớn của chúng thay đổi vi trí. Nhiễm sắc thể của một đứa trẻ là một mớ bòng bong đã bi xáo trôn lên tới mức không thể khôi phục lại như cũ từ những nhiễm sắc thể của ông bà

giật chúng ra để có được nửa cuốn,

có thể là từng từ một, có thể tồn tai qua các thể hê. Nhưng các chương, trang, thậm chí là đoạn văn bi xé ra rồi kết hợp với nhau một cách không thương tiếc đến mức chúng hầu như vô dụng trong việc dùng để lần lại lịch sử. Ở đâu có liên quan đến lịch sử tổ tông, tình dục là một trở ngại vô cùng lớn. Chúng ta có thể hình dung kho lưu trữ ADN để tái dưng lịch sử bất cứ khi nào tình dục hoàn toàn nằm ngoài bức tranh. Tôi có thể tìm ra

được hai ví du quan trong. Một là

nội ngoại và những tổ tiên xa hơn khác. Ở những tài liệu có thể trở thành đồ cổ này, từng chữ cái, và

me Eva châu Phi, và tôi sẽ nói về bà sau. Trường hợp kia là sự tái dựng lai lich sử của tổ tông xa xôi hơn rất nhiều – khi ta xem xét mối quan hê giữa các loài chứ không phải nôi bô trong một loài. Như chúng ta đã thấy ở chương trước, những sư trôn lẫn do tình dục chỉ xảy ra nôi trong một loài. Khi một loài mẹ đẻ ra hai loài con, dòng sông gien rẽ ra hai nhánh. Sau khi chúng đã phân ly ra trong một thời gian đủ dài, sự trộn lân do tình dục nội trong mỗi nhánh sông, thay vì là một vật cản với nhà lưu trữ gien học, lại thực sự giúp cho việc tái dựng lai nguồn gốc và quan hê ho hàng giữa các loài với

dung bởi vì một cách tư động nó có khuynh hướng đảm bảo rằng mỗi cá thể là một mẫu khá đầy đủ của toàn bộ gien của một loài. Từ dòng sông đã được khuấy đều lên, không quan trong thùng nước nào ban múc ra vì nó sẽ là đại diện của nước trong dòng sông đó. [22] Thực tế, con người đã rất thành công trong việc so sánh văn bản

ADN, so sánh từng chữ từng chữ một, từ đại diện của nhiều loài để

nhau. Chỉ đối với quan hệ họ hàng nội trong một loài, tình dục mới làm lộn xộn các dấu hiệu đi mà thôi. Ở đâu liên quan đến mối quan hệ họ hàng giữa các loài, tình dục lai hữu các sự rẽ nhánh. Đó là nhờ khái niệm, dù vẫn chưa được thống nhất, đó là "đồng hồ phân tử", trong đó giả thiết rằng các đột biến ở bất cứ vùng nào trên chuỗi văn bản gien xảy ra với một tốc độ cố định trên mỗi triệu năm. Chúng ta sẽ quay lại với giả thiết đồng hồ phân tử này thôi.

xây dựng phả hệ các loài. Thậm chí theo một trường phái có ảnh hưởng lớn, ta có thể tính được niên đai của

ta dùng để mô tả một protein với tên gọi cytochrome c dài 339 kí tự. Mười hai kí tự thay đổi là cách biệt của cytochrome c của người với của

"Đoạn văn" trong gien của chúng

chúng ta. Sư thay đổi chỉ một kí tư là khoảng cách giữa con người với khỉ (người ho hàng khá gần của chúng ta), một kí tự thay đổi tách rời ngưa với lừa (ho hàng gần của nhau) và ba kí tư làm cách rời ngưa với lơn (họ hàng hơi xa nhau hơn môt chút). Bốn mươi lăm kí tư thay đổi làm cách biệt người với nấm men rươu và cũng chừng ấy kí tư làm tách biệt lợn với men. Tất nhiên ta không hề ngạc nhiên khi hai con số này giống nhau, bởi vì khi ta ngược dòng sông dẫn tới con người, nó sẽ nhập lai dòng sông dẫn tới lợn sớm hơn rất nhiều khi

ngưa, người ho hàng khá xa của

nhập lại với men. Tuy nhiên, có một chút dễ dãi trong các con số này. Số kí tư thay đổi ở cytochrome c làm tách biệt ngưa với men không phải là bốn mươi lăm mà là bốn mươi sáu. Điều này không có nghĩa là lợn có ho hàng gần với men hơn ngưa với men. Một cách chính xác, chúng có liên quan với men như nhau, cũng như tất cả động vật có xương sống - và thực chất là toàn bộ động vật. Có lẽ một sư thay đổi phụ thêm đã len vào trong dòng dõi từ thời tổ tiên chung của ngưa với lơn (vốn cũng không xa) dẫn tới ngựa ngày nay. Nói chung, ý tưởng sư khác

dòng sông chung của người và lơn

biệt các cặp loài sinh vật là rất gần với hình ảnh cấu trúc phân nhánh của cây tiến hóa. Như đã nói, lý thuyết đồng hồ

biêt số kí tư của cytochrome c tách

phân tử phát biểu rằng tốc đô thay đổi của một văn bản trong mỗi triệu năm là hầu như cố định. Trong số bốn mươi sáu kí tư cytochrome c thay đổi phân hóa từ sinh vật tổ tiên chung của ngựa và men dẫn đến các loài ngưa hiện đai, vả một nửa còn lại xảy ra trong quá trình tiến hóa từ sinh vật tổ tiên chung đó dẫn đến các loài men hiện đại (hiển nhiên là, hai con đường tiến hóa đã phải mất cùng một số tỉ đầu, giả định này cũng đáng ngạc nhiên. Bởi vì ta đoán là "vi" tổ tiên chung đó chắc phải giống men hơn là giống ngưa chứ (vây mà nó lai cách men và ngựa cùng 23 kí tự. ND). Lời giải thích dưa trên một giả định đang ngày càng được chấp nhân rông rãi do nhà gien học xuất chúng người Nhật Motoo Kimura đưa ra, rằng phần lớn của văn bản có thể tự do thay đổi mà không làm ảnh hưởng ý nghĩa của văn bản. Một ví dụ rất hay là việc thay đổi kiểu chữ trong câu sau đây. "Ngựa là một động vật có vú". "Men là môt dang nấm". Ý nghĩa những

năm như nhau để hình thành). Mới

theo một phông khác nhau. Hàng triệu năm trôi qua, đồng hồ phân tử tích tắc trôi đi giống như những thay đổi phông chữ vô nghĩa đó. Những thay đổi dưới ảnh hưởng của chon loc tư nhiên cho ra sư khác nhau giữa ngưa và men – tức là nghĩa của các câu văn – chỉ là phần nổi của tảng băng trôi. Một số phân tử có tốc độ đồng hồ nhanh hơn những phân tử khác. Cytochrome c tiến hóa khá châm: khoảng một chữ cái trong mỗi hai mươi lăm triệu năm. Điều này chắc

là do: sư quan trong sống còn của

câu này nghe rất trơn tru và rõ ràng, mặc dù mỗi chữ đều được in

cytochrome c đối với sư tồn tai của sinh vật phụ thuộc rất lớn vào hình dang chi tiết của nó. Hầu hết những thay đổi của các phân tử mà hình dang của chúng mang tầm quyết định như vậy thường không được chọn lọc tự nhiên châm chước. Những protein khác, như những fibrinopeptide, mặc dù chúng cũng quan trong, nhưng chúng mang nhiều hình dang tương tư nhau và đều hoat đông tốt như nhau. Các fibrinopeptide thường "dùng" trong việc động máu, và ta có thể thay đổi hầu hết các chi tiết của nó đi mà không làm thay đổi khả năng làm đông của nó. Tốc đô đôt biến

trong mỗi sáu trăm ngàn năm, lớn hơn bốn mươi lần so với tốc độ của cytochrome c. Vì vây, fibrinopeptide không hữu ích trong việc tái dưng lai nguồn gốc tổ tiên cổ xưa, mặc dù chúng lại có ích trong việc tái dựng lại nguồn gốc tổ tiên gần đây hơn. Có hàng trăm loại protein, mỗi cái đều thay đổi theo tốc đô riêng của nó và đều có thể được độc lập sử dụng để tái dựng cây gia phả. Chúng đều cho ra các cây gia phả rất tương tự nhau - có nghĩa rằng đó là một bằng chứng rất xác thực cho thấy thuyết tiến hóa là đúng, nếu như người ta cần đến bằng

trong các protein này là khoảng một

chứng.

Chúng ta bàn luận vấn đề này trên cơ sở rằng sự trộn lẫn do tình dục làm lộn xộn bản ghi chép về lịch sử. Chúng ta phân biệt rõ hai cách mà trong đó ta có thể thoát khỏi tác động của tình dục. Chúng ta mới chỉ giải quyết được một

trong hai, dựa theo dữ kiên rằng tình duc không làm trồn lẫn gien giữa hai loài. Điều này mở ra khả năng sử dụng các chuỗi ADN để tái dựng nguồn gốc cổ xưa, từ thời tổ tiên của ta vẫn chưa thành hình người. Nhưng chúng ta đã đồng ý rằng, nếu đi ngược thời gian lâu đến vậy, thì tất cả con người chúng ta Chúng ta đã đặt ra ý định xem tổ tiên chung gần nhất của mọi con người đã sống cách đây bao lâu. Để tìm ra được điều đó, chúng ta phải quay sang với một loại bằng chứng khác từ ADN. Và đây là khi mà Eva châu Phi xuất hiện trong câu chuyên

dứt khoát đều có nguồn gốc từ cùng một cá thể sinh vật duy nhất.

của chúng ta.

Eva châu Phi có khi còn được gọi là Eva Ti Thể. Ti Thể là các cấu trúc hình bầu dục tí hon, tập hợp thành từng đàn vào cỡ vài ngàn trong mỗi tế bào của chúng ta. Chúng cơ bản là rỗng ruột, nhưng có cấu trúc trong rất tinh vi phức tạp với nhiều

màng ngăn. Diện tích của các tấm màng này lớn hơn rất nhiều so với ta đoán khi nhìn từ bên ngoài, và nó có một mục đích sử dụng nhất định. Các tấm màng là các dây chuyền sản xuất của một nhà máy hóa chất, hay chính xác hơn là một tram cung cấp năng lương. Trên các màng là một dây chuyền phản ứng hóa hoc được điều khiển khéo léo một phản ứng dây chuyển có nhiều giai đoan hơn bất cứ một nhà máy hóa chất nhân tao nào. Kết quả là năng lượng từ các phân tử thức ăn được giải phóng ra, được điều khiển và lưu trữ dưới dang có thể tái sử dụng, ở bất cứ nơi nào cần thiết

trong cơ thể. Nếu không có các ti thể, chúng ta sẽ chết chỉ trong một giây. Đó là những thứ mà ti thể làm,

thế nhưng ta dẫn dắt tới đây để

xem chúng xuất hiện từ đầu thì hơn. Trong lịch sử tiến hóa cổ đại, chúng khởi đầu là những con vi khuẩn. Đây là một lý thuyết nổi trội do nữ giáo sư đáng kính Lynn Margulis của trường đại học Massachusetts tại Amherst đề ra. Lý thuyết bắt nguồn từ các giả thiết ngoài lề, rồi được công chúng quan tầm miễn cưỡng, cho đến thắng lợi ngày nay là được chấp nhận gần

như phổ quát. Hai tỉ năm trước, tổ

sống tư do. Cùng với những vi khuẩn khác, chúng tiến vào cư ngu trong các tế bào lớn. Tập đoàn vi khuẩn ("nhân sơ") này trở thành các tế bào lớn ("nhân chuẩn") mà chúng ta gọi là tế bào con người. Mỗi chúng ta đều là một tập đoàn hàng trăm triệu triệu tế bào nhân chuẩn sống phụ thuộc lẫn nhau. Mỗi tế bào đó lại là một tập đoàn hàng ngàn các vi khuẩn được "thuần hóa" một cách chuyển biệt, hoàn toàn bao gon trong tế bào mà ở đó chúng cũng nhân lên như các vi khuẩn khác. Người ta tính rằng nếu toàn bộ tị thể của một người duy

tiên xa xôi của ti thể là các vi khuẩn

nối đầu kia, chúng có thể ôm tron Trái đất không chỉ một lần mà là hai ngàn lần. Một cá thể động vật hay thực vật là một tập đoàn khổng lồ các tập đoàn nhỏ xíu được xếp theo nhiều tầng lớp, tương tác với nhau như một cánh rừng mưa nhiệt đới. Chính rừng mưa nhiệt đới lai là một tập đoàn sống động của hàng chục triệu loài sinh vật, mỗi cá thể của một loài lại là một tập đoàn các tập đoàn vị khuẩn đã thuần hóa. Khi cho rằng tế bào là một khu vườn khép kín của các vi khuẩn, thuyết của Tiến sĩ Margulis không chỉ đưa ra một lý thuyết truyền cảm

nhất được đặt canh nhau đầu này

chuyện Vườn Địa Đàng; mà nó còn vượt trội hơn bởi nó gần như chắc chắn là đúng. Giống như hầu hết các nhà sinh

học, bây giờ tôi giả định lý thuyết Margulis là đúng. Trong chương này

hơn, hứng thú say mê hơn, bay bổng hơn rất nhiều so với câu

tôi đề cập đến chuyện đó cũng chỉ để nói một ý đặc biệt: các ti thể cũng có ADN riêng , và chúng chỉ có một nhiễm sắc thể dạng vòng duy nhất, tương tự trong các vi

khuẩn khác. Và bây giờ, điểm mấu chốt mà tôi muốn dẫn đến là đây. ADN ti thể không tham gia vào bất cứ quá trình trộn lẫn do tình dục

nào: không trôn với ADN nhân tế bào mà cũng không trộn với ADN của các ti thể khác. Cũng giống như rất nhiều vi khuẩn khác, ti thể sinh sản bằng cách phân đôi. Khi một ti thể phân ra làm hai ti thể con, mỗi ti thể con nhân được một bản sao y hệt với bản gốc - ngoại trừ những đột biến. Bây giờ từ quan điểm của môt nhà khoa học nghiên cứu dòng dõi lâu đời, ban sẽ thấy được vẻ đẹp của điều này. Chúng ta đã thấy rằng ở đâu có văn bản ADN thông thường, cứ mỗi thế hê, tình dục lại làm xáo trôn hết các dấu vết, làm lẫn lôn hết các phần từ dòng bố và dòng me. May mắn thay ta có ADN ti thế là một kẻ bao giờ cũng độc thân. Chúng ta nhận được ti thể của

mình chỉ từ mẹ mà thôi. Tinh trùng quá nhỏ nên chỉ có thể chứa một số ít ti thể: vừa đủ cung cấp năng

lượng cho phần đuôi để chúng bơi đến trứng, và rồi, khi đầu tinh trùng được hấp thu vào trứng lúc thu tinh, những thi thể này bi bỏ đi cùng với cái đuôi. Trứng lớn hơn đầu tinh trùng nhiều lần, phần bên trong cực lớn choán đầy chất lỏng và chứa một cụm lớn ti thể. Cụm ti thể này là những hat giống đầu tiên cho đứa trẻ. Vậy nên dù bạn là nam hay nữ, các ti thể của ban đều xuất phát truyền cho. Không có cái nào từ bố, không có cái nào từ ông nôi hay ông ngoai, mà cũng chẳng có cái nào từ bà nôi. Ti thể tao thành môt bản ghi chép độc lập của quá khứ, không bị trôn lẫn với ADN nhân tế bào, vốn có thể bắt nguồn một cách như nhau từ mỗi một người trong số bốn ông bà nội ngoại, mỗi người trong số tám ông bà cố nôi ngoại và cứ như vậy ngược về tổ tiên.

từ một nhóm tị thể ban đầu do me

cứ như vậy ngược về tổ tiến.

ADN ti thể tuy không làm lẫn các thứ khác, chúng cũng không được miễn khỏi sự đột biến, vốn là những lỗi sao chép ngẫu nhiên. Thực tế, nó đột biến ở một tốc độ còn cao

bởi vì (cũng giống như trường hợp của các vi khuẩn) nó thiếu những bô máy tinh vi phức tạp để kiểm tra lỗi mà các tế bào của chúng ta đã tiến hóa ra trong suốt nhiều niên kỉ. sẽ có một ít khác biệt giữa ADN của bạn và của tôi, số lượng khác biệt cho ta một ước lương về thời điểm tổ tiên của chúng ta đã phân nhánh ra trong quá khứ. Không phải mọi tổ tiên, mà chỉ những tổ tiên theo dòng nữ nữ nữ... mà thôi. Nếu me ban là người thuần bản xứ châu Đai Dương, hay thuần Trung Hoa, hay là người Kung San 24 của vùng

hơn so với ADN "của chúng ta" (nghĩa là ADN nhân tế bào người),

Kalahari, chắc chắn có rất nhiều khác biệt giữa ADN ti thể của ban và của tôi. Không quan trong cha ban là ai: ông ấy có thể là một hầu tước người Anh, hay một thủ lĩnh người da đỏ, những khác biệt đó vẫn là vậy thôi. Nó cũng không hề phụ thuộc vào bất kì, bất kì một ông tổ (đàn ông) nào của ban. Vì vậy ta có một bản "Kinh Di Bản do ti thể tạo ra, được trao lai cho chúng ta cùng với bản "Kinh Thánh" chính của dòng họ, nhưng

nó có một giá trị rất lớn vì nó chỉ đi theo dòng me mà thôi. Đây không phải là vấn đề phân biết giới tính; vì nếu như nó chỉ đi theo dòng bố thì thế hệ trước sau như một chỉ qua một giới tính. Giống như tên họ được truyền xuôi theo các thế hê chỉ theo dòng bố, nhiễm sắc thể Y về mặt lý thuyết cũng có giá trị như vậy, nhưng nó chứa quá ít thông tin để trở nên hữu dụng [26]. Bản "Kinh Di Bản" ti thể rất lý tưởng trong viêc xác định niên đại của tổ tiên nôi trong một loài. ADN ti thể đã được một nhóm

qiá tri của nó vẫn cao như thế. Giá trị của nó nằm ở sự nguyên vẹn, hay là ở chỗ nó không bị cắt ra rồi nhập lại ở mỗi thế hệ. Những gì một nhà nghiên cứu dòng dõi theo ADN cần đến chính là sư truyền qua các

nghiên cứu công tác với Allan Wilson quá cố ở Berkeley, California ứng dung. Trong những năm 1980, Wilson và cộng sư lấy mẫu các chuỗi ADN ti thể từ 135 phu nữ đang sống trên khắp thế giới – thổ dân Australia, người Tân Ghinê, thổ dân châu Mỹ, châu Âu, Trung Quốc và đại diên của rất nhiều người từ châu Phi^[27]. Họ xem xét các chữ cái tách biệt tách rời các phu nữ với nhau. Ho đưa các con số này vào máy tính và yêu cầu nó dưng nên một cây phả hệ tiết kiệm nhất mà nó có thể tính được. "Tiết kiêm" ở đây có nghĩa là cố gắng loại bỏ càng nhiều càng tốt những trùng

hợp ngẫu nhiên. Để tôi giải thích chuyện này một chút. Hãy nhớ lại luận bàn của ta trước đây về ngưa, lơn và men, và phép

phân tích các chuỗi ký tự của

cytochrome c. Bạn sẽ nhớ rằng ngựa khác với lợn chỉ ở ba ký tự như vậy, lợn khác với men ở bốn mươi lăm ký tự, còn ngựa khác với men ở bốn mươi sáu ký tự. Chúng ta đi đến ý kiến rằng, vì mặt lý

thuyết, vì ngựa và lợn nối với nhau thông qua một tổ tiên chung sống khá gần đây, chúng phải cách men một khoảng giống hệt nhau. Sự khác nhau giữa bốn mươi lăm và bốn mươi sáu chỉ là một di thường

ở trong thế giới lý tưởng mới không có. Có thể nó được tạo ra do một đột biến thêm vào trên con đường dân tới ngựa, hoặc cũng có thể là một đột biến làm quay ngược lại cái đã có trước đây trên con đường dẫn đến lơn. Nhưng trên thực tế, dù nghe rất phi lý, ta cũng có thể nói lơn thật sư gần với men hơn là gần với ngưa. Về mặt lý thuyết, lơn và ngưa đã tiến hóa đến mức rất gần giống nhau (văn bản cytochrome c của chúng chỉ khác nhau có ba chữ cái, còn cơ thể của chúng thì gần như giống hệt nhau theo mô hình đông

dê gặp, tức là một thứ gì đó mà chỉ

lớn. Lý do mà chúng ta không tin vào điều này là sư giống nhau giữa lơn và ngưa lớn hơn rất nhiều so với sư giống nhau của lơn và men. Phải thừa nhận rằng có một chữ cái ADN duy nhất làm cho lợn có vẻ gần với men hơn là ngưa gần với men, nhưng điều này chỉ là chỉ là một khả năng nhỏ bé so với hàng triệu cách giống khác. Cho nên lập luân này chính là một sự tính toán tiết kiệm. Nếu chúng ta giả định lợn gần với ngưa, chúng ta chỉ phải chấp nhân một sự trùng hợp ngẫu nhiên. Nếu chúng ta vẫn cố đưa giả thiết lơn gần với men, chúng ta phải chấp

vật có vú) chỉ do một sư tình cờ cực

thực tế những sự trùng hợp ngẫu nhiên đã xảy ra một cách độc lập nhau. Trong trường hợp ngưa, lơn và

nhận một sự chắp nối cực kỳ phi

men, "lập luận tiết kiệm" là quá rõ ràng tới mức không còn chút gì đó nghi ngờ. Nhưng đối với ADN ti thể của các chủng người khác nhau, những sự tương đồng chẳng bao giờ rõ ràng đến mức lấn át tất cả như thế. Ta vẫn có thể dùng "lập luận

thế. Ta vân có thể dùng "lập luận tiết kiệm" ở đây, nhưng chỉ là những lập luận nhẹ mang tính định lượng và có tính chất lấn át hẳn những thứ khác. Về mặt lý thuyết, công việc mà máy tính phải làm là

như sau. Nó phải tao ra một danh sách tất cả những cây phả hệ khả dĩ này và chon ra cây tiết kiệm nhất có nghĩa là cây làm tối thiểu số lương những sư trùng hợp ngẫu nhiên. Chúng ta phải chấp nhân rằng, ngay cả cây tốt nhất cũng buôc ta phải chấp nhân một số ít ngâu nhiên, giống như chúng ta buộc phải chấp nhân điều là men qần với lơn hơn là gần với ngựa do môt ký tư ADN khác biệt. Nhưng về mặt lý thuyết, chí ít – máy tính phải có khả năng làm được điều đó một cách dễ dàng và thông báo với chúng ta cây nào trong rất nhiều cây khả dĩ là tiết kiệm nhất, cây chứa ít những sự trùng hợp ngẫu nhiên nhất. Đó chỉ là về mặt lý thuyết thôi. Trong thực tế, có một cái dằm

vướng víu ở đây. Số lượng những cây khả dĩ lớn hơn những gì bạn, hay tôi, hay bất kỳ nhà toán học nào có thể tưởng tượng ra. Đối với ngựa, lợn và men, chỉ có ba cây khả

dĩ. Cây chính xác dễ thấy là [[lợn ngựa]men], trong đó lợn và ngựa được nhóm với nhau ở trong hai dấu ngoặc trong cùng và men nằm trong "nhóm ngoài" không liên quan. Hai cây mang tính lý thuyết

còn lại là [[lợn men]ngựa] và [[ngưa men]lơn]. Nếu ta thêm vào

 số lương cây tăng lên tới mười lăm. Tôi sẽ không liệt kê ra cả mười lăm, mà chỉ có cây chính xác (tiết kiêm nhất): [[[lợn ngựa]mực]men]. Thêm một lần nữa, lợn và ngựa vốn là họ hàng gần của nhau được đặt gần nhau thoải mái trong dấu ngoặc trong cùng. Kế tiếp mưc sẽ tham gia vào nhóm này, vì tổ tiên chung của nó với nhánh ngưa và lơn sống gần đây hơn so với tổ tiên chung của men với nhánh ngựa và lơn. Bất kì một cây nào trong số mười bốn cây còn lai – ví du như [[[lơn mực][ngựa men]] – chắc chắn là ít tiết kiêm hơn. Nếu lơn

môt sinh vật thứ tư – ví du như mưc

mực và ngựa thực sự là một họ hàng gần hơn với men, thì việc cực kỳ khó xảy ra là lợn và ngựa một cách độc lập nhau đã tiến hóa ra

thực sư là một họ hàng gần hơn với

hàng vô kể các sự tương đồng nhau như ta thấy trên thực tế. Nếu ba sinh vật tạo ra được ba cây, bốn sinh vật tạo ra được mười lăm cây, vậy một trăm ba mươi lăm phu nữ tao ra được bao nhiêu cây?

Trả lời: đó là một con số lớn khủng khiếp, lớn đến nỗi ta chẳng màng tới việc viết nó ra nữa. Ngay cả với nếu một máy tính lớn nhất và mạnh nhất trên thế giới làm chuyện này, thì đến ngày tân thế nó cũng chưa

gọt dũa ra được một miếng ra hình thù. Tuy nhiên, bài toán không đến

nỗi vô vọng. Chúng ta đã quen với

việc "thuần phục" những con số khổng lồ bằng các kỹ thuật lấy mẫu thông minh. Chúng ta không thể đếm hết số lương côn trùng trong vùng Lòng Chảo Amazon, nhưng chúng ta có thể ước lượng số đó bằng cách lấu mẫu trên những khoảng nhỏ ngẫu nhiên và giả định những khoảng này có thể đại diện cho toàn bộ Lòng Chảo. Máy tính của ta không thể xét hết các cây liên kết 135 phụ nữ với nhau, nhưng nó có thể lấy ra những mẫu ngẫu khả dĩ. Khi rút ra một mẫu từ con số hàng triệu tỷ các cây khả dĩ, nếu ta thấy rằng các cây thuộc hàng tiết kiệm nhất của mẫu có những đặc điểm chung nào đó, ta có thể kết luân rằng có thể cây tiết kiệm nhất cũng có những đặc điểm này. Và người ta đã làm như vây. Tất nhiên. Thế nhưng cách nào tốt nhất để làm việc này thì lại chẳng hiển nhiên lắm. Giống như các nhà côn trùng học không nhất trí với nhau về cách lấy mẫu nào để mang tính đại diện nhất cho rừng nhiệt đới Brazil, các nhà nghiên cứu dòng dõi dưa trên ADN cũng đã dùng nhiều

nhiên từ tập hợp toàn bộ những cây

cách lấy mẫu khác nhau. Xui xẻo là kết quả không phải lúc nào cũng thống nhất. Dù sao đi nữa cũng đáng để trình bày kết luân của nhóm Berkeley. Ho có được kết quả này do phân tích ADN ti thể của con người. Kết luân này cực kỳ lý thú và làm chúng ta phấn chấn hẳn lên. Theo ho, cây phả hệ tiết kiệm nhất có gốc chắc chắn nằm ở châu Phi. Điều này có nghĩa là: nhiều người châu Phi liên hê xa nhau hơn bất kỳ ai trên thế giới ngoài châu Phi. Toàn bộ phần thế giới còn lại này những người châu Âu, châu Mỹ bản xứ, thổ dân châu Đai dương, Trung Quốc, Tân Ghi-nê, Inuit và tất cả -

gần nhau. Một số người châu Phi thuộc vào nhóm này. Nhưng nhiều người châu Phi khác thì không. Theo phép phân tích này, cây phả hê tiết kiệm nhất trông như sau: [môt số người châu Phi [những người châu Phi khác [thêm những người châu Phi khác [lai thêm những người châu Phi khác và mọi người khác]]]. Vì thế ho kết luân là bà tổ mẫu vĩ đại của tất cả chúng ta đã sống ở châu Phi: "Eva châu Phi". Như tôi đã nói, kết luân này vẫn còn đang được tranh cãi. Những nhóm khác lại kết luận rằng có những cây phả hệ khác có đô tiết kiệm tương

tao thành một nhóm có họ hàng

châu Phi. Họ cũng nói sở dĩ nhóm Berkeley nhận được kết quả này một phần là do cách thức mà máy tính của họ xem xét các cây khả dĩ. Hiển nhiên, ta không thể để trật tự xem xét ảnh hưởng đến kết quả. Chắc chắn các chuyên gia đều muốn "đặt cược" vào chuyện Eva Ti Thể là người châu Phi, chỉ có điều họ

đương có nhánh lớn nhất nằm ngoài

không chắc chắn lắm^[28].

Kết luận thứ hai của nhóm
Berkeley thì ít gây tranh cãi hơn. Dù
Eva Ti Thể có ở đâu đi nữa, ho vẫn

ước tính được bà đã sống vào lúc nào. Người ta đã biết ADN ti thể tiến hóa nhanh chậm đến độ nào; vì

các điểm phân nhánh tai đó hợp nhất toàn bộ phụ nữ của loài người - hay chính là ngày sinh của Eva Ti Thể - là khoảng giữa một trăm năm mươi ngàn năm cho đến một phần tư triệu năm trước. Dù Eva Ti Thể có là người châu Phi hay không, điều rất quan trong là chúng ta phải tránh nhầm lẫn với việc tổ tiên chúng ta, không tranh cãi gì nữa, đã đi ra từ châu Phi. Eva Ti Thể là một tổ tiên gần đây của toàn bộ con người hiện đại. Bà là thành viên của loài Homo sapiens. Chúng ta cũng đã tìm thấy hóa thach ho người sớm hơn rất nhiều,

thế có thể ước lương niên đai của

ngay tai châu Phi. Các hóa thach tổ tiên xa hơn cả Homo erectus, như Homo habilis và rất nhiều loài khác trong chi Australopithecus [29] (bao hồm một loài mới được phát hiện có niên đai hơn bốn triệu năm tuổi), chỉ được phát hiện ở châu Phi mà thôi. Nên nếu chúng ta là con cháu của những người tha hương di cư từ châu Phi trong vòng một phần tư triệu năm gần đây, thì đó chắn chắn là nhóm người tha hương châu Phi thứ hai. Có một cuộc di cư sớm hay, có lẽ là khoảng một triệu rưỡi năm về trước, khi mà Homo erectus lang bat ra khỏi châu Phi để timg đến

Homo erectus, ở ngoài cũng như

Châu Á. Lý thuyết về Eva châu Phi không phát biểu rằng những người châu Á sớm sủa này không tồn tai, mà chỉ nói rằng họ không để lại con cháu còn sống sót nào. Cho dù xem xét thế nào đi nữa, nếu quay lại hai triệu năm trước chúng ta đều là người châu Phi. Lý thuyết Eva châu Phi phát biểu thêm rằng, chúng ta, những người đang sống đều là châu Phi cả, nếu ta chỉ quay lại có một vài trăm ngàn năm. Về mặt lý thuyết, nếu có thêm các bằng chứng khoa học mới, ta cũng có thể truy toàn bộ các ADN ti thể hiện đai về một tổ mẫu không phải ở châu

những vùng đất của Trung Đông và

Phi (ví dụ như "Eva châu Á"), trong khi đó thì ta vẫn phải công nhận rằng những tổ tiên xa xôi hơn của chúng ta chỉ ở châu Phi mà thôi.

Bây giờ, hãy tam giả đinh là

nhóm Berkeley đúng và xem xét những hàm ý và cả những gì không

phải là hàm ý của kết luận đó. Biệt hiệu "Eva" không may lai có những hệ quả không mong muốn. Có những người quá thích thú, vôi cho rằng bà chắc chắn lúc đó phải là một người phụ nữ đơn độc, là người phu nữ duy nhất trên Trái đất, điểm xuất phát của mọi nguồn gien, hay thậm chí còn cho rằng đây là minh chứng của kinh Cựu Ước. Không đúng, hoàn toàn nhầm. Phát biểu khoa học thất sư ở đây không có ý nói bà là người phu nữ duy nhất trên Trái đất lúc đó, thậm chí không phải là dân số lúc đó rất ít. Những người cùng thời với bà, cả hai giới, cũng có thể có nhiều con cháu, có thể có nhiều con cháu còn sống cho tới ngày nay. Nhưng mọi bản sao ti thể của ho đều đã mất hết cả, bởi vì con đường nối họ với chúng ta đã đi qua những người đàn ông. Cùng một cách này, một cái tên-ho nào đó (tên-họ gắn liền với nhiễm sắc thể Y và chỉ di truyền theo dòng nam, đối lập giống như một hình ảnh qua gương của ti thể) có thể

mất dần đi cho đến hết, nhưng không có nghĩa là những người mang ho đó (cho dù giờ đã mất cả rồi) không có con cháu. Ho có thể có rất nhiều thông tin qua nhiều con đường khác với con đường truyền theo dòng nam. Phát biểu chính xác chỉ là: Eva ti thể là người phu nữ gần đây nhất mà chúng ta có thể nói rằng toàn bộ những con người hiện đại là con cháu của bà theo dòng hoàn toàn phu nữ. Chắc chắn phải có một người phu nữ như thế. Vấn đề còn lai là ở chỗ bà đã sống ở chỗ này hay là chỗ kia, vào lúc này hay lúc khác mà thôi. Điều bà thực sư đã sống, ở một nơi nào đó và

vào một lúc nào đó, là hoàn toàn chắc chắn. Điều hiểu nhầm thứ hai – phổ biến hơn, mà theo tôi biết ngay cà

những nhà khoa học hàng đầu trong lĩnh vực ADN ti thể cũng mắc phải, đó chính là niềm tin rằng Eva ti thể là tổ tiên chung gần nhất của chúng ta. Điều này là do sư nhầm lẫn giữa hai khái niêm "tổ tiên chung gần nhất" và "tổ tiên chung gần nhất theo dòng chỉ có phụ nữ". Eva Ti Thể là tổ tiên chung gần nhất của chúng ta theo dòng chỉ có phu nữ, nhưng có cực kì nhiều cách khác để làm con cháu của tổ tiên nào đó

theo dòng khác. Hàng triệu cách.

số tổ tiên (tam thời quên đi sư phức tap của việc họ hàng lấy nhau, vốn là tiêu điểm của lập luận trước đây). Ban có tới tám ông bà cố nôi ngoại, nhưng chỉ có một trong số ho là theo dòng nữ. Ban có mười sáu ông bà sơ nội ngoại, nhưng chỉ có một trong số họ là theo dòng nữ. Ngay cả khi tính đến việc họ hàng lấy nhau làm giảm số lương tổ tiên, thì viêc có rất nhiều, nhiều, nhiều cách hơn để làm một tổ tiên nói chung so với tổ tiên theo dòng nữ vẫn là đúng. Khi chúng ta ngược dòng sông gien về tới tổ tông xa xôi, hẳn phải có nhiều Adam và Eva

Hãy trở lai với tính toán của ta về

dòng dõi, mà ta có thể nói rằng mọi con người sống vào năm 1995 là con cháu của bà hay ông. Eva Ti Thể chỉ là một trong số họ. Không có một lý do gì để ta nghĩ rằng, trong số tất cả những Adam và Eva này, Eva ti thể là gần đây nhất cả. Ngược lại là đẳng khác. Bà được xác định theo một cách đặc biệt: chúng ta được bắt nguồn từ bà thông qua một con đường đặc biệt qua dòng sông đời người. Số các con đường có thể có canh con đường chỉ độc phụ nữ là nhiều tới mức, về mặt toán học rất khó có khả năng để Eva Ti Thể là người sống gần đây

những người là điểm hôi tu của các

nhất trong số rất nhiều các Adam và Eva này. Nó đặc biệt giữa những con đường theo một cách (đó là chỉ truyền theo dòng nữ). Sẽ là một sư trùng hợp ngẫu nhiên thần kì nếu nó cũng là đặc biệt trong số các con đường theo một cách khác (theo cách gần đây nhất). Môt điểm khá thú vi đó là tổ tiên chung gần nhất của chúng ta có khả năng là một Adam hơn là một Eva. Thường thì có nhiều gia đình với vơ lớn vơ bé hơn là có nhiều gia đình với chồng lớn chồng lớn chồng bé, bởi vì đàn ông về thực tế có khả năng sinh học để có tới hàng trăm, thâm chí là hàng ngàn con. Sách hơn một ngàn con của Moulay Ishmael Khát Máu. (Moulay Ishmael cũng rất có thể được các nhà nữ quyền chọn là một biểu tượng của kẻ vũ phu. Người ta kể rằng, cách cưỡi ngưa của hắn là rút kiếm ra rồi nhảy lên yên, cùng lúc đó, để giục ngưa chay mà không mất thời gian, hắn ta chém phăng đầu người hầu đang cầm cương. Nghe thất khó tin, nhưng những đồn đai này, công với tiếng tăm của hắn là đã tư tay giết mười ngàn người, có lẽ ta cũng hình dung sơ sơ những "đặc điểm" khiến người ta chú ý đến. Phu nữ, ngay cả trong điều kiên lý tưởng nhất, cũng

Những Kỉ Lục Guinness ghi kỉ lục

con. So với đàn ông, phụ nữ có khuynh hướng có số con vào cỡ trung bình hơn. Một số ít đàn ông có số lương con cái nhiều đến kì quặc, và điều này có nghĩa là có nhiều đàn ông khác chẳng có đứa con nào. Như vậy, nếu ai đó không có được con, thì người đó có nhiều khả năng là đàn ông hơn là phu nữ. Và nếu ai đó có đầy đàn hậu thế một cách mất cân đối và không cân bằng, người đó có nhiều khả năng cũng là một đàn ông. Cho nên, ta thấy tổ tiên chung gần nhất của toàn bộ loài người có nhiều khả năng là một Adam hơn là một Eva.

không thể sinh nhiều hơn vài chục

năng là tổ tiên của người Ma-rốc hiên đai, Moulay Ishmael Khát Máu hay một phụ nữ nào đó trong tam cung luc diên đáng tiếc của ông ta? Chúng ta có thể đi đến những kết luân sau đây: Đầu tiên, nhất thiết phải từng tồn tai một người phụ nữ, mà chúng ta có thể gọi là Eva Ti Thể, người là tổ tiên gần nhất của toàn bộ loài người hiện đại theo dòng chỉ độc phụ nữ. Ta cũng chắc chắn rằng đã từng tồn tại một người, không biết giới tính nào, mà chúng ta có thể gọi là Hội Tổ, người

là tổ tiên chung gần nhất của con người hiện đai theo bất cứ con

Như ví du đặc biệt trên, ai sẽ có khả

Eva Ti Thể và Hôi Tổ có thể là một nhưng xác suất này cực kì nhỏ đến mức có thể bỏ qua. Thứ tư, khả năng mà Hôi Tổ là một người đàn ông thay vì một phu nữ là có phần nhỉnh hơn. Thứ năm, Eva Ti Thể rất có thể đã sống cách đây ít hơn một phần tư triệu năm. Thứ sáu, chưa có sư thống nhất về nơi mà Eva Ti Thể đã sống, trong số những học giả am hiểu, người ta vẫn có phần nghiêng về châu Phi hơn. Chỉ có kết luân thứ năm và thứ sáu mới cần đến việc xem xét kỹ các dữ kiên khoa hoc. Bốn kết luân đầu có thể được rút ra bằng những tính toán

đường nào. Mặc dù về mặt lý thuyết

thông thường.

Nhưng tôi đã nói tổ tiên nắm giữ chìa khóa để hiểu về chính sự sống.
Câu chuyện về Eva châu Phi chỉ là

logic đơn giản với những kiến thức

một tiểu vũ trụ nhỏ hẹp của con người, nằm trong một vũ trụ lớn hơn tới mức không thể sánh được của một thiên sử thi cổ đại. Chúng ta một lần nữa phải viện đến hình tương dòng sông gien, dòng sông

chảy ra từ Địa Đàng [30]. Nhưng chúng ta sẽ ngược dòng của nó đến một thời gian cổ xưa hơn rất nhiều so với thời gian của Eva Truyền Thuyết (của kinh thánh) vốn chỉ dài mấy ngàn năm và Eva châu Phi vốn

năm.

dài hàng trăm ngàn năm. Dòng sông ADN đã chảy qua những tổ tiên của ta theo một dòng liền mach kéo dài không ngắn hơn ba tỉ

CHƯƠNG 3 KIẾN THA LÂU ĐẦY TỔ

Thuyết chúa sáng tạo mang vẻ

quyến rũ cổ điển, và lý do cũng dễ hiểu. Chẳng phải là do người ta, ít ra là những người tôi gặp tư nguyên tin vào Kinh Thánh hay các truyền thuyết khởi nguyên khác. Mà chính ho ngô ra vẻ đẹp tinh tế của thế giới sống, thế nên ho kết luân rằng "hiển nhiên" thế giới phải được sáng tạo ra (thì mới đẹp được đến thể. ND). Những nhà theo thuyết (chúa) sáng tao, những người thừa nhân rằng thuyết tiến hóa của Darwin cho ta điều gì đó thay thế thuyết

phản đối phức tạp. Họ phủ nhân khả năng tồn tại của các dạng tiến hóa trung gian. Ho nói: "A chắc hẳn phải được thiết kế ra bởi Đấng Tạo Hóa, bởi vì một nửa của A không cách chi mà hoat đông được. Tất cả moi phần của A chắc chắn là phải được rấp lai đồng thời; chúng ta không thể nào tiến hóa lên dần dần được".. Để tôi kể ra đây một ví du. Một ngày kia, khi tôi bắt đầu viết chương này, tôi bỗng nhân được một lá thư do một mục sư người Mỹ gởi. Trước đó ông là vô thần, nhưng rồi ông đổi niềm tin sau khi đọc một bài báo trên National Geographic

kinh thánh, thường đưa ra một lời

(Tạp chí Địa lý). Một đoạn trích lá thư như sau: Bài báo này nói về sư thích

nghi với môi trường đến mức kinh ngac của hoa phong lan nhằm phát tán thành công. Khi đoc nó, tôi bi lôi cuốn đặc biệt bởi thủ thuật của một loài mà lôi kéo được cả sự hợp tác của con ong bắp cầy đưc. Rõ ràng là bộng hoa có hình dáng rất giống với con ong bắp cầy cái, bao gồm một khe hở ngay chỗ cho con đực chạm vào phấn hoa khi giao phối với bông hoa. Khi con ong bay sang bông hoa khác, quá trình lặp lại và nhờ đó sư thu phần chéo được thực hiên. Điều khiến bông hoa lập tức hấp dẫn ngay con ong đực chính là do nó tiết ra pheromone [chất hóa học chuyên biệt được các loài côn trùng hay sử dụng để hấp dẫn giới tính] giống hệt với con ong bắp cày cái. Tò mò, tôi xem xét kỹ bức hình minh họa vài phút, Rồi vô cùng sửng sốt, tôi nhân ra rằng để cho thủ thuật sinh sản đó có thể hoat đông được, cho dù chỉ là chút ít, nó phải hoàn hảo ngay từ lần đầu tiên. Không có bước trung gian nào có thể làm tiền thân cho được,

bởi vì nếu bông hoa phong lan không nhìn giống hay ngửi giống một con ong cái, và không có một khe hở thích hợp cho việc giao phối, trong đó phấn hoa nằm hoàn toàn trong tầm với của cơ quan sinh sản của ong đực, thủ thuật này chắc chắn hoàn toàn thất bại.

Tôi sẽ không bao giờ quên được cái cảm giác nôn nao tràn ngập trong người lúc ấy, bởi vì trong vòng một phút tội chợt nhân ra rằng một dang Chúa sáng tao nào đó chắc chắn phải tồn tai, và phải đang có một mối liên hệ với các quá trình mà nhờ đó mọi thứ trở nên tồn tại

thoại cổ lỗ sĩ, mà là một cái gì có thật. Và, dù miễn cưỡng, tôi thấy ngay rằng mình cần phải cất công tìm hiểu thêm về vị Chúa này. Tất nhiên, người ta đến với niềm

trên đời. Nói tóm lại, Chúa Sáng Tạo không phải là một chuyên thần

tin tôn giáo qua những con đường khác nhau, nhưng chắc chắn nhiều người đã trải nghiệm những điều tương tư như trên, điều đã làm thay đổi cuộc đời của vi mục sư ấy (mà theo phép lich sự, tôi sẽ giữ kín danh tính). Ho đã thấy, đã đọc được, các kỳ công của tư nhiên. Rồi thông thường, điều này mang đến cho họ cảm giác đầy kinh ngạc, thích thú và thán phục, đến nỗi trở nên sùng kính. Cu thể hơn, giống như vi mục sư, họ xác định rằng hiên tương tư nhiên đặc biệt đó cũng như mang nhên, hay đôi mắt, hay đôi cách của chim ó, hay bất cứ thứ gì khác – không thể nào tiến hóa dần dần qua giai đoan, bởi vì dạng trung gian, hoàn thiên môt phần, không thể làm được bất cứ việc gì cả. Mục đích của chương này là đánh đổ lập luận rằng những thiết kế chuyên biệt tinh vị phức tạp đó phải hoàn hảo mới có thể hoat đông được. Tôi cũng xin nói thêm rằng phong lan là một trong những ví du ưa dùng của Charles Darwin,

lý tiến hóa dần dần nhờ chon loc tư nhiên" qiải thích được việc "Các thiết kế chuyên biệt giúp cho phong lan được thu tinh bởi côn trùng". Điểm mấu chốt trong lập luận của vi muc sư nằm ở sư quả quyết rằng "để cho thủ thuật sinh sản đó có thể hoat đông được, dù là chút ít nào đó, nó phải hoàn hảo ngay từ lần đầu tiên. Không một bước nhỏ trung gian nào có thể tồn tại được". Lý lẽ này cũng áp dung cho sư tiến hóa của con mắt như trong một ví dụ mà người ta hay dùng, và tôi sẽ trở

lai ví du đó ở phần sau của chương.

và ông đã dành trọn một quyển sách để trình bày cách thức "nguyên

quyết, và điều đó luôn gây ấn tương cho tôi mỗi khi nghe những lập luận kiểu này. Tôi muốn hỏi vi mục sư rằng, làm sao ban có thể chắc chắn rằng phong lan giả dạng ong (hay là con mắt, hay bất cứ thứ gì khác) không thể hoạt đông được trừ khi mọi phần của nó đều hoàn hảo và ở đúng chỗ? Thực sự, bạn đã bao giờ nghĩ lại vấn đề dù chỉ trong thoáng chốc? Ban có thực sự biết những điều cơ bản về phong lan, hay ong bắp cày, hay là con mắt mà ong đưc sử dụng để nhìn ong cái hay là phong lan không? Điều gì làm cho ban manh dan quả quyết rằng ong

Người nói bao giờ cũng tư tin quả

giả dạng của phong lan phải hoàn hảo trong mọi khía cạnh thì mới hiệu quả?

Hãy thử nhớ lại lần mới đây bạn nhìn nhầm ai đó do họ hơi giống người quen của mình mà xem. Ban

bắp cày thất khó bị lừa đến mức sư

đã ngả mũ chào một người la trên phố phải không? Ngôi sao điện ảnh hay có các diễn viên đóng thế những cảnh nguy hiểm như ngã ngựa hay nhảy qua vách đá. Diễn viên đóng thế và diễn viên thất chỉ giống nhau chút ít bề ngoài, nhưng trong những hành đông lướt qua nhanh như thế, điều đó cũng đủ để đánh lừa khán giả rồi. Có nhiều đàn ông bị kích thích đến mức ham muốn chỉ bởi hình chup trong tạp chí. Hình chup thì chẳng có gì ngoài mực in trên giấy. Nó cũng chỉ là hình phẳng chứ chẳng phải hình nổi ba chiều gì cả. Bức hình chỉ cao có vài inch mà thôi. Thâm chí cũng có thể chỉ là hình minh hoa thôi sơ với vài đường nét chứ chẳng cần nhìn giống thật. Thế mà nó vẫn có thể kích thích đàn ông tới mức cương cứng. Có lẽ hình ảnh thoáng qua của một con ong cái là những gì mà một con ong bắp cày đưc đang bay nhanh bắt được trước khi cố gắng giao phối với nó. Có lẽ ong đưc chỉ để ý được một vài tác nhân kích thích chủ yếu mà thôi.

Ta có thừa lý do để cho rằng ong thâm chí còn dễ bi lừa hơn cả

người. Cá gai thì chắc chắn là như thế, mà cá thì có bộ não lớn hơn và mắt tốt hơn ong bắp cày. Cá gai đực có bung đỏ, nên để thị uy, chúng doa dẫm không chỉ những con đực khác có bụng đỏ, mà cả những hình nộm thô sơ có "bung" đỏ nữa. Nhà nghiên cứu hành vi sinh vật đạt giải Nobel, Niko Tinbergen, đã kể một câu chuyên nổi tiếng như sau. Một ngày no, một chiếc xe chở thư màu đỏ chay ngang qua văn phòng ông, thế là

toàn bộ cá gai đưc đâm sầm vào

thành bể phía cửa sổ và đe doa cái xe một cách dữ dội. Cá gai cái đang mang trứng sẵn sàng sinh sản có cái bụng phồng lên một cách rõ rêt. Tinbergen thấy rằng, một hình nôm màu bạc cực kỳ thô sơ hình dang hơi dài, chỉ với một cái "bung" tròn lên và chẳng nhìn giống một con cá gai tí nào trong mắt chúng ta, đã có thể gợi lên hành vị, muốn giao phối của con đưc. Gần đây hơn, những thí nghiệm theo trường phái nghiên cứu do Tinbergen khởi xướng đã chứng tỏ rằng, một vật gọi là "quả bom sex" - môt vật hình quả lê hơi tròn, không dài và cũng không giống cá chút nào trong trí tưởng

hiệu quả hơn trong việc kích thích sư ham muốn của những con cá gai đực. "Quả bom sex" với cá gai đực là một ví du điển hình về một tác nhân kích thích bất thường - một tác nhân kích thích còn hiệu quả hơn cả vật thật. Ở một ví dụ khác, Tinbergen cung cấp một bức hình cho thấy một con chim ăn sò đang cố ấp một trái trứng cỡ trứng đà điếu. Chim có não lớn hơn và tinh mắt hơn cá - huống hồ là ong - thế mà chim ăn sò rõ ràng đã "nghĩ" rằng quả trứng cỡ trứng đà điểu đó là vật có thể ấp được. Mòng biển, ngỗng trời và các loài

tương (của con người) - thực tế còn

chim làm tổ dưới đất khác có những phản ứng hệt như nhau đối với mỗi quả trứng vừa lăn khỏi tổ của nó. Chúng vươn ra rồi lăn nó trở lại tổ bằng mỏ. Tinbergen và các sinh viên của ông đã chứng tỏ rằng mòng biển làm vậy không chỉ với trứng của chính nó mà cả đối với trứng gà hay thậm chí là các miếng gỗ có hình ống hay các lon coca ai đó vứt ra. Các con non nhao nhao tìm cách lấy thức ăn bằng cách xin bố me chúng; chúng mổ khẽ vào cái điểm đỏ ở mỏ bố me, kích thích con chim mẹ bón cho một ít cá. Tinbergen và cộng sự đã chứng tỏ rằng các hình nôm bìa giấy thô sơ trong việc tao ra hành động đòi ăn của những con non. Tất cả chỉ cần một cái điểm màu đỏ là đủ. Chắc nó cũng thấy rõ được cả người con chim me, nhưng phần còn lai đó chẳng có vẻ gì là quan trong cả. Thi lưc hạn chế này không chỉ có ở chim mòng biển non mà còn ở con trưởng thành nữa. Chúng ta thường rất dễ nhận ra mòng biển đầu đen

giống đầu chim me rất hiệu quả

trưởng thành do "cái mặt nạ" đen của chúng. Sinh viên của Tinbergen, Robert Mash, đã nghiên cứu kỹ tầm quan trong của điều này ở những con trưởng thành khác bằng cách sơn những cái đầu hình nôm bằng tơ điện trong một cái hộp sao cho Mash có thể điều khiển từ xa làm cho đầu nâng lên, hạ xuống và quay sang phải hay sang trái. Anh chôn cái hộp gần một tổ chim mòng biển rồi cẩn thân giấu cái đầu dưới cát. Rồi, ngày này qua ngày khác, anh đến ngồi trong cái chòi nguy trang để quan sát phản ứng của con mòng biển chủ nhân của chiếc tổ đối với cái đầu hình nôm khi nó được nâng lên hay quay bên này bên kia. Con chim đã phản ứng với cái đầu và những cử động giống như đó là một con mòng biển thật vây. Nhưng đó chỉ là mô hình gắn

qỗ rồi tất cả được gắn vào một mô-

ngoài những cái nâng lên ha xuống, quay sang bên này bên kia như một cái máy mà không giống ngoài thật chút nào. Đối với một con mòng biển màu đen, dường như một tên hàng xóm với bộ dạng đe doa chỉ nhiều hơn cái mặt đen lìa khỏi xác một chút ít. Cả cái mình, cánh hay bất cứ thứ gì khác có vẻ như chẳng còn cần thiết. Đế vào được cái chòi nguy trang, Mash, cũng như rất nhiều thế hê các nhà điểu học trước và sau anh

cho đến nay, đã khai thác vào điểm

trên một thanh gỗ, không có mình, không có chân, cánh hay đuôi, luôn im lặng và không có chuyển động gì biết từ lâu nay: chim không phải là các nhà toán học của tư nhiên. Hai người đi vào chòi canh, và chỉ có một người đi ra. Không có meo này, con chim sẽ rất cảnh giác với cái chòi, vì "biết" rằng ai đó đã bước vào trong đó. Nhưng nếu nó thấy một người đi ra, nó sẽ "giả định" rằng cả hai đều đã đi^[31]. Nếu như môt con chim không thể phân biệt được một hay hai người, chúng ta có cần phải quá ngạc nhiên khi một con ong bắp cày đưc có thể bị lừa bởi một bộng hoa phong lan mang dáng vẻ giống một con ong cái một cách không lấy gì làm hoàn hảo?

yếu của hệ thần kinh chim đã được

những người bảo vê con non một cách dữ dôi. Chúng cần phải bảo vê con cái khỏi những kẻ cướp như chồn hay chuột cống. Quy tắc nằm lòng mà một con gà tây mẹ dùng đế nhận ra những tên kẻ cướp là môt quy tắc kinh khủng: Trong phạm vi tổ của mình, hãy tấn công bất cứ thứ gì chuyển động, ngoại trừ thứ có thể tạo ra tiếng kêu như một con gà tây con. Điều này được nhà động vật học người Áo Wolfgang Schleidt phát hiện ra. Schleidt có một lần đã khiến một

Thêm một câu chuyện về chim nữa theo mạch suy nghĩ này, và là một bị kich. Những con gà tây me là chính nó một cách dã man. Lý do thất đơn giản ghệ gớm: con gà me bi điếc. Kẻ thù hay con săn mồi, theo như hệ thần kinh của gà tây, được định nghĩa là những vật thể chuyển động mà không tạo ra tiếng kêu của con non. Những con gà non đó, cho dù chúng nhìn giống (và thực sư là) những con gà tây non, và luôn tin tưởng chay về phía me để được che chở như những con gà tây non, lại có thể trở thành nạn nhân của chính định nghĩa han hẹp của mẹ nó về "con bắt mồi". Nó đang bảo vê con của nó bằng cách chống lai chính chúng, và rồi sát hai

con gà mẹ giết hết các con non của

tất cả.

Loài côn trùng cũng vang vọng một bị kịch như loài gà tây. Có

những tế bào giác quan trong râu (ăng-ten) của loài ông mật chỉ ngửi được một loại hóa chất duy nhất, axit aloeic. (Chúng cũng có những tế bào khác ngửi được các chất khác). Axit aloeic được giải phóng

ta từ xác chết đang thối rữa của con ong, và nó gây ra "hành động đưa tang" của bầy ong, tức là mang cái xác chết ra khỏi tổ. Nếu một nhà thí nghiệm bôi một giọt axit aloeic lên một con ong sống, sinh vật khốn khổ này sẽ bi lôi đi để ném ra ngoài

cùng với những con chết, trong khi

cố gắng vật lộn chống lại và hiển nhiên là tỏ ra còn sống. Não côn trùng nhỏ hơn rất nhiều so với não của gà tây hay của

người. Mắt côn trùng, ngay cả con mắt to phức hợp của chuồn chuồn, cũng chỉ có được một phần nhỏ đô chính xác của mắt người hay mắt chim mà thôi. Ngoài những điều này, người ta còn biết được rằng mắt côn trùng nhìn sư vật theo một cách hoàn toàn khác với cách mắt chúng ta nhìn. Nhà động vật học vĩ đai người Áo Karl von Frisch khi còn trẻ đã phát hiện ra rằng côn trùng mù đối với màu đỏ nhưng lai thấy được tia cực tím - như là một màu mù với "màu" này. Mắt côn trùng luôn luôn bân tâm để ý đến cái gọi là "ánh lập lòe", mà có vẻ như thay thế một phần cho cái chung ta gọi là "hình dạng", ít nhất là đối với môt con côn trùng đang bay nhanh. Người ta đã từng thấy bướm đưc "tán tỉnh" những chiếc lá lươn vòng rung xuống đất. Chúng ta thấy con bướm cái dưới dang một đội cánh lớn vỗ đập lên xuống. Một con bướm đực đang bay sẽ thấy nó, rồi tán tỉnh nó, dưới dang những "ánh lập lòe". Bạn có thể đánh lừa nó chỉ bằng một cái đèn chớp lên chớp xuống mà không cần phải chuyển

riêng của nó - trong khi chúng ta lai

động. Nếu như ban tao được nhịp lập lòe đúng, nó sẽ xem như đó là môt con bướm đang vỗ cánh. Các dải sọc, đối với chúng ta, chỉ là những hoa văn tĩnh. Nhưng đối với môt con côn trùng, khi nó bay nhanh qua, những dải sọc đó lại giống như những "ánh lập lòe" và cũng có thể làm giả được bằng một bóng đèn chớp đúng nhịp. Sư vật nhìn qua con mắt của côn trùng thật sư xa la với chúng ta đến mức những phát biểu dưa trên kinh nghiệm của chúng ta về độ "hoàn hảo" mà phong lan phải giống con ong cái chỉ là những suy đoán của con người mà thôi.

trong một thí nghiệm kinh điển, lần đầu tiên được thực hiện bởi nhà tư nhiên học vĩ đại người Pháp Jean-Henri Fabre và được lặp lại bởi rất nhiều người khác, bao ngồm những thành viên của trường phái Tinbergen. Ở một loài ong đào hang, con ong cái thường quay về tổ với con mồi đã bị đốt và làm cho tê liệt. Nó để con mồi ngoài tổ rồi chui vào trong, chắc là kiểm tra xem moi thứ có ổn không trước khi xuất hiện trở lại để kéo nó vào. Khi con ong đã chui vào tổ, nhà thí nghiệm di chuyển con mỗi ra xa một vài inch từ chỗ con ong đặt. Khi

Chính ong bắp cày là một chủ thể

con ong chui ra, nó phát hiện ngay sư khác la và nhanh chóng xác định lại vị trí con mồi. Rồi kéo con mồi lai gần cửa tổ. Chỉ mới có vài giây từ khi nó vào trong kiểm tra thôi. Chúng ta nghĩ rằng chẳng có lý do gì mà nó không thực hiện bước kế tiếp trong công việc của mình, đó là kéo con mồi vào trong tổ và thế là xong. Nhưng chương trình của nó đã được "vặn" về một giai đoạn trước đó. Rất nghiệm túc, nó đặt con mồi ở ngoài rồi chui vào trong tổ để kiểm tra lại một lần nữa. Nhà thí nghiệm có thể lập lai bốn mươi lần, đến khi nào cảm thấy chán. Con ong hành động như một cái

lai một giai đoạn trước đó và không "biết" rằng nó đã giặt đống quần áo đó bốn mươi lần không nghỉ chút nào. Nhà khoa học máy tính xuất chúng Dauglas Hofstadter tao ra một tính từ mới, "sphexish", để mô tả cơ chế tự động máy móc không cần suy nghĩ kiểu như vậy. (Sphex là tên của một loài chi đại diện của loài ong bắp cày đào hang). Vây thì, ít nhất trong một số khía canh, ong bắp cày rất dễ bị đánh lừa. Cơ chế đánh lừa do hoa phong lan thiết kế ra tất nhiên là một dang hoàn toàn khác. Tuy vậy, chúng ta phải rất cẩn thân trong việc dùng trực quan

máy giặt vừa bị văn núm cho quay

cái thủ thuật sinh sản đó hoạt động được cho dù là chút ít, nó phải hoàn hảo ngay từ lần đầu tiên". Có lẽ tôi thuyết phục bàn quá kỹ

rằng ong bắp cày rất dễ bị lừa.

con người mà kết luận rằng "để cho

Trong lòng bạn cũng ngấm ngầm một nghi ngờ ngược lại với suy nghĩ của người gửi thư cho tôi: Nếu thị lực của côn trùng kém đến vậy, và nếu ong dễ bị đánh lừa đến thế, tại sao phong lan lại phải mất công làm ra những bông hoa giống ong đến mức như vậy? À, thị lực của ong bắp cày không phải lúc nào

cũng kém. Có những tình huống chúng thấy rất rõ: khi chúng đang nghiên cứu kỹ vấn đề này trên ong bắp cày đào hang chuyên săn ong mât, có tên khoa hoc là Philanthus. Ong thường đợi cho con ong chui xuống hang. Trước khi nó xuất hiện lần nữa, Tinberlan nhanh chóng đặt những "vật làm mốc" ở gần cửa hang - ví du như một cái que và một quả thông. Rồi ông rút lui và đơi cho con ong bay ra. Khi ra ngoài, nó thường bay hai ba vòng quanh hang, như thể đang chup ảnh khu vực đó vào đầu, rồi bay đi kiếm mồi. Khi nó đi rồi, Tiberlen dịch chuyển cái que và quả thông đi một

định vị tổ của mình sau một chuyến đi săn dài chẳng han. Tinberlan đã

này chúng ta phải nể phục vì thi lực của nó. Có vẻ như thực sự nó đã "chụp ảnh tròn đầu" trong lúc bay vòng quanh tổ lúc đầu. Nó nhân ra được sư xắp xếp của cái que và quả thông đó. Tinberlan đã lặp lại thí nghiêm này nhiều lần với nhiều kiểu "vật làm mốc" khác như một vòng quả thông và cũng thu được những kết quả nhất quán như vây. Còn bây giờ là một thí nghiệm mà người học trò Gerard Baerends của

vài feet. Khi con ong quay về, nó bay quá cái hang rồi bổ nhào xuống đất, ngay giữa vị trí mới của cái que và quả thông. Thêm một lần nữa, con ong đã bi "đánh lừa", nhưng lần

tươmg phản một cách ấn tương với thí nghiêm "máy giặt" của Fabre. Loài ong đào hang trong thí nghiệm của Baerends, tên khoa học Ammophila campestris (cũng được Fabre nghiên cứu), rất là thường khi đóng vai trò là một "nhà cung cấp lương thực theo nhu cầu". Hầu hết ong đào hang cung cấp thức ăn cho tổ của nó và đẻ trứng, rồi nó bịt hang lại để cho ấu trùng tư ăn thức ăn đó. Ammophila thì khác. Giống như chim, nó thăm tổ hàng ngày để kiểm tra tình hình của ấu trùng, và cho thêm thức ăn nếu cần. Cũng chưa có gì đặc biệt. Nhưng mỗi con

Tinberlan đã thực hiện với kết quả

thường thăm hai ba tổ. Một tổ có một ấu trùng khá lớn gần nở; một tổ chứa ấu trùng nhỏ hơn, mới sinh; và một tổ nữa, có ấu trùng ở độ tuổi trung gian. Ba ấu trùng này theo tư nhiên có nhu cầu thức ăn khác nhau, và me chúng chăm sóc theo đúng nhu cầu đó. Qua môt chuỗi thí nghiệm vất vả, trong đó đánh tráo những gì chứa trong các tổ. Baerends đã chứng tỏ rằng con ong mẹ thực sự biết ghi nhớ nhu cầu thức ăn trong mỗi tổ. Điều này có vẻ rất khéo léo, nhưng theo Baerends, nó không còn khéo léo nữa khi một trường hợp bất ngờ xảy

Ammophila trong mỗi lần bay

ong mẹ bay một vòng kiểm tra những tổ ấu trùng của nó. Ong me cần đánh giá tình trang của mỗi tổ vào lúc bình minh, và điều này quyết định hành động cung cấp thức ăn của nó trong cả ngày. Nhưng Baerends đã đánh tráo những gì có trong tổ sau lần kiểm tra lúc bình minh của con ong me, nó không chuẩn bị để "đối phó" điều này. Kết quả là, dù Baerends đã tráo bao nhiêu lần tùy thích, nó vẫn không hề thay đổi chút gì trong hành đông cung cấp thức ăn. Điều này giống như nó bật thiết bị đánh giá tổ lên chỉ vào lúc kiểm tra buổi

ra. Đầu tiên, mỗi buổi sáng, con

sáng, rồi sau đó, toàn bộ thời gian trong ngày, chúng tắt đi để tiết kiệm điện. Mặt khác, câu chuyện này cũng

cho thấy rằng có một thiết bị tinh vi trong đầu con ong mẹ có thể dùng để đếm, đo đạc và thậm chí cả tính toán nữa. Cho nên, bây giờ ta dê dàng tin rằng, não của con ong thực sư chỉ bi lừa phỉnh bởi một sư tương đồng kỹ lưỡng đến mức chi tiết giữa phong lan và con cái. Đồng thời, câu chuyên của Baerends cũng cho thấy mức độ bị lừa có chọn lọc, mà điều này cũng liên quan chặt chẽ đến thí nghiêm "máy giặt", giúp ta tin rằng một sự tương đồng thô sơ giữa phong lan và ong cái cũng đủ rồi. Bài học mà chúng ta có thể rút ra là không bao giờ dùng phán xét của con người để đánh giá những vấn đề dang này. Không bao giờ nói rằng "tôi không bao giờ tin rằng cái này cái kia lai có thể tiến hóa thông qua những chon loc dần dần được", và cũng không bao giờ nên tin những lời nói đó. Tôi đã gán cho loai ảo tưởng sai lầm này một cái tên "Lý lẽ dựa trên ngờ vực cá nhân". Rất nhiều lần, nó đã mở màn cho những sai lầm tiếp theo. Lập luận mà tôi đang bẻ lại chính là phát biểu rằng: sư tiến hóa dần dà của cái này cái no không thể xảy "hiển nhiên" là phải hoàn hảo và đầy đủ nếu muốn hoat đông được. Cho đến nay, tôi đã nói rất nhiều về việc ong và các động vật khác có cách nhìn sự vật khác với cách nhìn của chúng ta, và trong mọi trường hợp ngay cả chúng cũng khó bi đánh lừa. Nhưng có một lập luận khác mà tôi muốn phát triển lên, thuyết phục hơn và tổng quát hơn nữa. Chúng ta hãy tạm dùng từ "dễ hỏng" (hay đúng hơn là "dẽ mất khả năng sử dụng") để mô tả một thiết bị mà phải hoàn hảo mới có thế hoạt động - chẳng hạn như bông hoa phong lan giả dạng ong

ra được, bởi vì cái này cái no đó

mà người ban thư của tôi nhắc đến ở trên. Tôi lại thấy rằng, quả tình rất khó nghĩ ra một thiết bị dễ hỏng nào theo đúng nghĩa trên. Một cái máy bay cũng không phải dễ hỏng. Cho dù chúng ta luôn luôn thấp thỏm mong rằng chiếc Boeing 747 mình đang bay là hoàn thiên với vô số các bộ phân đều hoạt động hoàn hảo, thực tế thì, một máy bay mất đi một thiết bị chủ yếu, như là một hoặc hai động cơ, vẫn có thể bay được. Một cái kính hiển vi cũng không phải dễ hỏng, bởi vì với một cái kính kém chất lượng cho hình ảnh mờ và thiếu ánh sáng, ban vẫn có thể thấy được những vật nhỏ, dù sao cũng khá hơn là khi không có kính. Một chiếc radio cũng không phải dễ hỏng; nó có thể thiếu hoàn thiên ở mặt nào đó, ví dụ âm thanh nhỏ, thiếu trung thực, méo mó, ban vẫn có thể hiểu được lời phát ra. Từ nãy đến giờ tôi nhìn chằm chằm ra ngoài cửa sổ mười phút, cố nghĩ ra một ví du thất hay về một thiết bị nhân tao dễ hỏng, và tôi chỉ nghĩ ra được một thứ duy nhất: cái cổng vòm kiểu La Mã. Cổng vòm dễ hỏng ở chỗ: khi hai nửa của nó được ghép lai với nhau, nó có đô chắc chắn và ổn định rất cao; nhưng trước khi hai nửa được ghép lại, không có nửa nào có thể đứng

tạo ra lực đỡ tạm thời cho đến khi cả cái cổng hoàn thiện; rồi sau đó ta gỡ đi và cái cổng đững yên ổn định trong một thời gian rất dài.

Tất nhiên, không có lý do gì trong công nghệ của con người lại không có một thiết bị dễ hỏng về mặt

được. Một cái cống vòm phải được xây dưng nhờ vào giá đỡ. Giá đỡ

nguyên lý. Các kỹ sư có thể tư do thiết kế ra trên bản vẽ những thiết bi mà nếu chỉ hoàn thành một phần, sẽ không bao giờ có thể hoat động. Tuy nhiên, thực tế thì ngay cả trong lĩnh vực kỹ thuật, chúng ta cũng rất khó khăn tìm được một thiết bị dễ hỏng đúng nghĩa. Tôi tin

này còn đúng hơn nữa. Chúng ta hãy thử xem xét một thiết bị được cho là dễ hỏng trong thế giới sư sống mà các nhà theo thuyết sáng tạo luôn lớn tiếng bảo vệ. Ví dụ về ong bắp cày và hoa phong lan chỉ là một trong các hiện tương giả dang thú vi trong tư nhiên. Một số lượng lớn đông vật và thực vật có lợi nhờ dáng vẻ tương tư với các vật thể khác, thường là các loài vật hay loài cây khác. Hầu như mọi khía canh của sư sống đây đó đều được hoàn thiên thêm hay bi lât đổ bởi chính sư giả dang: bắt mồi (hổ và báo gần như vô hình khi chúng rình mồi

rằng, đối với các thiết bị sống, điều

ở những nơi lốm đốm ánh nắng; cá cần câu trông gần giống như đáy biển nơi chúng nằm, và chúng du con mồi bằng cái "cần câu" dài của nó ở một đầu có miếng mồi giả dang môt con giun; con đom đóm "lừa tình" giả dang điệu nháy sáng của một loài khác, nhờ đó du được con đưc đến để bắt làm mồi; cá lon mây răng kiếm bắt chước một loài cá chuyên làm vệ sinh cho các loài cá lớn rồi ngoam lấy một ít vậy của "khách hàng" (một khi đã được phép đến gần để làm công tác); tránh bị ăn thịt (các con mồi, theo nhiều cách khác nhau, giả dang vỏ cây, nhành cây, lá xanh, lá rung,

khỏi vùng có con non (chim avocet mỏ cứng và nhiều loài chim làm tổ dưới đất giả thái đô và dáng đi của môt con chim gãy cánh); "nhờ" con khác ấp hộ trứng (trứng chim cúc-cu giống trứng của một loài khác mà nó ăn bám; con cái của một số loài cá nuôi con trong miêng có hình những cái trứng giả ở sườn chúng thu hút con đưc đến để ngâm trứng thật vào miệng và ấp). Trong tất cả các trường hợp, người ta luôn bị lừa và suy nghĩ rằng sự giả dạng chẳng có ý nghĩa

hoa, gai hồng, lá tảo biến, đá, phân chim và nhiều loài động vật có độc hay có noc); nhử con săn mồi ra Trong trường hợp đặc biệt giữa ong và phong lan, tôi đã nhấn mạnh vào sự không hoàn hảo trong giác quan của ong và nhiều nạn nhân khác của sự giả dạng. Trong mắt tôi, thực sự phong lan không quá giống với ong hay ruồi. Côn trùng giả dạng chiếc lá còn chính xác hơn

nhiều, theo mắt của tôi, có lẽ mắt tôi giống mắt của loài chim hay bắt

gì nếu như nó không hoàn hảo.

côn trùng đó làm mồi.

Nhưng trên một phương diện rộng hơn, ta sẽ sai khi nói rằng sự trá hình phải hoàn hảo mới có tác dụng. Ví dụ, cho dù mắt của con săn mồi tốt đến đâu đi nữa, môi

cũng hoàn hảo. Hơn nữa, hiển nhiên môi trường nhìn thay đổi một cách liên tục từ rất xấu đến rất tốt. Hãy thử nghĩ về một vật mà ban biết rất rõ, rõ đến mức không bao giờ có thể nhầm với thứ khác được. Hay là nghĩ về một người - ví du như là một người ban thân, yêu quý và quen thuộc đến mức ban không thể nhầm với ai khác. Nhưng bây giờ thử tưởng tương rằng người ấy đi về phía bạn từ phía rất xa. Đầu tiên sẽ có một khoảng cách lớn đến mức bạn chẳng nhìn thấy người ấy chút gì cả. Rồi lại có một khoảng cách gần đến mức bạn nhìn rõ từng

trường nhìn không phải lúc nào

đặc điểm, từng sơi lông mi, từng lô chân lông. Ở những khoảng cách trung gian, không hề có một sự thay đổi đột ngột nào. Khả năng nhân ra người đó tăng lên hay giảm xuống dần dần theo khoảng cách. Quy tắc bắn súng trường trong quân sự có nói rõ: "Ở hai trăm yard , mọi bộ phận cơ thể đều có thể nhân rõ. Ở ba trăm yard, đường viền trên khuôn mặt mờ đi. Ở bốn trăm yard, không thấy mặt nữa. Ở sáu trăm yard, đầu là một chấm còn mình là môt vêt. Rõ chưa?". Trong trường hợp người ban đi đến từ từ, đúng là bạn có thể tự nhiên nhận ra người ấy. Nhưng trong trường hợp này,

khoảng cách tạo ra một độ biến thiên trong xác suất của việc nhận ra này.

Có nghĩa là, khoảng cách tạo ra

đô biến thiên trong khả năng thấy của ta. Về cơ bản nó là một đại lương thay đổi từ từ. Ở bất kì một mức đô giống nhau nào giữa hình thật và hình giả dạng, dù là sự giống nhau đó là tuyết vời hay là hầu như không đạt tí nào, phải có một khoảng cách mà trong đó mắt của kẻ săn mồi bị lừa rõ ràng, và môt khoảng cách ngắn hơn, tại đó nó ít khả năng bị lừa hơn. Khi tiến hóa lên, sư giống nhau hoàn thiên hơn dần dần sẽ được chon lọc tư

tới hạn đến con săn mồi ngày càng ngắn hơn (có nghĩa là khả năng bi phát hiện nhỏ hơn). Ở đây tôi dùng "mắt của con săn mồi" thay cho "con mắt của bất cứ ai cần bị đánh lừa". Trong một số trường hợp nó sẽ là mắt của con mồi, mắt của cha me nuôi, mắt của con cá cái v.v... Tôi đã thử các hiệu ứng sau đây trong các bài giảng trước công chúng trẻ em. Đồng nghiệp của tôi,

nhiên ưu tiên, tức là khoảng cách

Tiến sĩ George McGavin, thuộc Viên bảo tàng đai học Oxford, giúp tôi tao một mô hình "vat đất" trên đó có rải mấy nhánh cây, lá khô và rêu. Ông còn dặt mấy chục con côn thuật. Một số con, chẳng han con bo màu xanh kim loai, có thể nhân ra ngay; những con khác, gồm những con bo hình que và bướm giả dạng lá được ngụy trang một cách rất khéo léo; vẫn còn những con khác, như là con gián màu nâu thì nằm giữa hai giới hạn này. Các em được mời lên và châm châm tiến gần bức tranh sinh đông này, tìm các con sâu bọ này và kêu lên mỗi khi thấy một con. Khi còn cách khá xa, các em không thể nhân ra con nào ngay cả những con dễ thấy nhất. Khi tiến lại gần, các em thấy các con dễ thấy trước, rồi những

trùng (đã chết) một cách rất nghệ

trung gian, và cuối cùng là những con được ngụy trang. Những con được ngụy trang khéo léo nhất đều không bị phát hiện ngay cả khi các em nhìn chằm chằm vào chúng ở khoảng cách rất gần, khi tôi chỉ ra thì các em há miêng kinh ngac.

con như là gián có đô nổi bật ở mức

Khoảng cách không phải là đô biến thiên duy nhất mà ta có thể dùng để lập luận như trên. Một yếu tố khác là ánh sáng. Trong đêm tối mit, hầu như chẳng nhìn được thứ gì, thì ngay cả một sư giống nhau sơ sài cũng có giá trị. Vào buổi giữa trưa, một sư giả dang chính xác đến từng chi tiết mới mong khỏi bị nhân dạng. Giữa hai thời điểm này, lúc rang động và lúc sẩm tối, hay trong một ngày trời u ám, trong sương mù hay dưới trời mưa, ta có được đô nhìn một cách thay đổi một cách liên tuc và trơn tru. Bởi vì bất kì mức độ giống nhau nào cũng tao ra sư khác biệt ở một điều kiện ánh sáng nhất định, thế nên một lần nữa, sư giống nhau với đô chính xác tăng dần lên sẽ được chọn lọc tự nhiên ưu tiên. Khi tiến hóa tiếp diễn, sư giống nhau được cải tiến một cách liên tục để tạo ra lợi thế trong việc sống sót, bởi vì cường độ ánh sáng tới han có thể bị đánh lừa cũng tăng lên.

phát từ góc nhìn. Một con côn trùng giả dang, cho dù giỏi hay tồi, cũng có lúc bi con săn mồi nhìn từ góc đô ngoài rìa mắt. Có lúc khác, chẳng may con săn mồi nhìn mồi nhìn nó trưc diên. Phải có một góc nhìn nằm ngoài rìa con mắt đến mức ngay cả sự giả dạng kém cỏi nhất cũng thoát khỏi bị phát hiện. Và cũng phải có một góc nhìn trực diện đến mức ngay cả sư giả dang cừ khôi nhất cũng không thoát khỏi nguy hiểm. Giữa hai góc nhìn này là một đô biến thiên liên tục. Ở bất lì một mức đô hoàn thiên nào của sư giả dang, phải có một góc nhìn tới han

Một sư biến thiên tương tư xuất

mọi sự khác biệt. Khi tiến hóa tiếp diễn lên, sự giống nhau có chất lượng tăng tiến dần lên sẽ được lợi thế hơn, bởi vì góc nhìn tới hạn đó dần dần dịch chuyển vào trong (có

mà tại đó chỉ cần một sự tiến bộ hay thoái bô nhỏ cũng đủ làm nên

dân dân dịch chuyển vào trong (có nghĩa là phải nhìn trực diện nữa thì mới phát hiện được).

Phẩm chất của mắt hay não của kẻ thù cũng có thể xem là một độ biến thiên nữa, và tôi đã gợi ý trong

kẻ thù cũng có thể xem là một độ biến thiên nữa, và tôi đã gợi ý trong một phần trước của chương này. Ở bất kỳ một mức độ giống nhau nào giữa hình ảnh mẫu thật và cái giả dạng, chắc sẽ có những con mắt bị đánh lừa và những con mắt khác

hơn cũng bị đánh lừa. Ý tôi không phải là kẻ thù cũng tiến hóa mắt của chúng cho tốt hơn song song với sư giả dang đang ngày càng tiến bô đó, mặc dù cũng có thể là như vây. Ý tôi là phải tồn tai ở đâu đó những con săn mồi với mắt tốt và con săn mỗi với mắt kém. Tất cả những con săn mồi này đều nguy hiểm. Một sự giả dạng tồi chỉ có thể lừa được những con mồi mắt kém. Một sư giả dang cừ hơn lừa được

không bị đánh lừa. Một lần nữa, khi tiến hóa tiếp diễn lên, những độ tương tự với chất lượng tăng tiến dần lên có lợi thế hơn, bởi vì ngày càng có kẻ thù với con mắt tinh vi hầu hết những con săn mồi. Và có một độ biến thiên liên tục giữa hai giới hạn này. Nói chuyện mắt tốt và mắt kém làm tôi nhớ đến một câu đố rất ưa

chuộng của các nhà theo thuyết chúa sáng tao. Một nửa con mắt thì dùng vào việc gì? Làm sao mà chon loc tư nhiên lai lưa chon một con mắt chưa hoàn hảo? Tôi đã xử lý câu hỏi này trước đây và đã trình bày ra một phổ biến thiên các con mắt, lấy từ những ví du có thật của rất nhiều ngành của giới động vật. Ở đây, tôi sẽ đưa con mắt vào bức tranh đô biến thiên lý thuyết mà tôi vừa đưa ra. Có một độ biến thiên

này tôi đang dùng mắt để nhận biết các chữ cái trên màn hình máy tính. Ta cần phải có con mắt tốt và tinh để làm việc này. Tôi đã đến đô tuổi mà không cách chi đọc được mà không có kính, tuy lúc này mới nhe đô thôi. Khi tôi già đi nữa, đô kính bác sĩ kê cho tôi sẽ cứ tăng đều đăn. Không có kính, tôi thấy dần dần càng ngày càng khó nhìn các chi tiết hơn. Ở đây ta lại có thêm một độ biến thiên nữa - đô biến thiên tuổi tác. Bất kì một người bình thường nào, ở đô tuổi nào đi nữa, cũng có

liên tục các công việc mà có thế phải cần đến con mắt. Vào ngay lúc

việc mà con người hoàn thành được, cho dù có thi lực kém hay gần như mù. Ban có thể chơin tennis với đôi mắt hơi mờ, vì quả banh tennis cũng khá lớn, và cho dù không nhìn thẳng, ta cũng có thể xác định được vi trí và sư chuyển động của nó. Mắt chuồn chuồn, dù kém theo tiêu chuấn của chúng ta, lại rất tinh theo tiêu chuẩn của côn trùng, và chuồn chuồn có thể vừa bay vừa săn mồi, một công việc khó tương đương với việc đánh tennis. Những con mắt kém hơn nhiều vẫn có thể dùng trong việc tránh khỏi va vào tường, tránh không bước đến bờ vực hay

thi lưc tốt hơn côn trùng. Có những

tránh không rơi xuống sông. Mắt kém hơn nữa có thể nhân ra một cái bóng hiện ra trên đầu, có thể là bóng mây cũng có thể là bóng con săn mồi. Và mắt mắt còn kém hơn thế nữa vẫn có thể dùng để phân biệt ngày với đêm, và nó có ích trong việc nhân biết được mùa sinh sản hay biết được khi nào phải đi ngủ, và nhiều việc khác nữa. Có một phổ liên tục các công việc mà con mắt có thể được dùng, mà trong đó ở bất kì một chất lượng mắt nào, từ cừ khôi đến tệ hại, phải có một mức độ công việc mà tại đó chỉ cần thi lưc được cải tiến lên tí chút cũng tao ra moi sư khác biệt. của con mắt, từ những dạng thô sơ nguyên thủy ban đầu, qua một phổ liên tục các dạng trung gian, đến một sự hoàn hảo mà chúng ta thấy ở một con chim ưng hay là ở một con người trẻ tuổi.

Cho nên ta chẳng khó khăn gì trong việc hiểu được sư tiến hóa dần dần

Cho nên câu hỏi của các nhà thuyết giáo sáng tao - "Môt nửa con mắt dùng vào việc gì?" - là một câu hỏi nhe kí, có thể trả lời dễ như chơi. Một con mắt là 1 phần trăm tốt hơn 49 phần trăm một con mắt, mà cái này lai 1 phần trăm tốt hơn 48 phần trăm một con mắt, sư khác biệt này là đáng kể. Một phát biểu

bố sung sau đây mang một sức nặng khá lớn: "Với tư cách là một nhà vật lý [33], tôi không thể tin rằng đã có đủ thời gian để một cơ quan phức tạp như là một con mắt có thể tiến hóa từ hư vô. Ban có thực sự nghĩ rằng đã có đủ thời gian cho việc đó không?" Cả hai câu hỏi đều bắt nguồn từ "Lý lẽ dưa trên ngờ vực cá nhân". Tuy vậy, độc giả vân cảm kích nếu có một câu trả lời, và tôi vẫn thường dưa vào đô lớn của thời gian địa chất. Nếu một bước chân biểu thị một thế kỷ, toàn bộ thời gian sau công nguyên được thu gon lai thành chiều dài sân chơi crickê (khoảng 22 mét, ND). Để đến

này, bạn phải đánh một cú bay từ New York cho đến tận San Francisco. Bây giờ ta thấy rằng tầm vóc vĩ

đại đến choáng người của thời gian địa chất dành cho sự tiến hóa này, chẳng qua giống như việc dùng một

được thời điểm khởi đầu của các động vật đa bào với cùng một tỉ lê

chiếc búa hơi công nghiệp để bóc một củ lạc. Một nghiên cứu mới đây của hai nhà khoa học Thụy Điển Dan Nilsson và Susanne Pelger cho thấy rằng, một phần nhỏ xíu đến khó tin của khoảng thời gian trên cũng là rất nhiều. À, nhưng mà, khi có người nói "con mắt" thì họ có ý

nhất chính nguyên lý "thiết kế" đã được "khám phá" ra, bao gồm mắt chỉ là một lỗ kim, mắt kiểu máy ảnh có tròng (thủy tinh thể), mắt đĩa phản xa (kiểu ăng-ten vệ tinh), và một số loại mắt phức hợp. Nilsson và Pelger đã tập trung vào dang mắt kiểu máy ảnh có tròng, như những con mắt được phát triển rất cao trong động vật có xương sống và bach tuôc. Làm sao để ược tính thời gian cần thiết cho một mức độ thay đổi qua

nói đến con mắt của loài có xương sống, nhưng mắt có khả năng tạo được ảnh và dùng được thì đã tiến hóa từ 40 đến 60 lần độc lập này, ít đơn vị để đo độ lớn của mỗi bước tiến hóa, rồi biểu diễn nó thành số phần trăm của trang thái đang có hiện thời. Nilsson và Pelger dùng số lương các bước thay đổi để tao được 1 phần trăm làm đơn vi đo sư thay đổi của các đại lượng giải phầu. Đây chỉ là một quy ước - như là calorie - là năng lượng cần thiết để thực hiện một công nào đó. Khi sư thay đổi chỉ ở một đại lượng, việc đo sư thay đổi là dễ nhất và ta có thể dùng đơn vị 1 phầm trăm. Ví dụ, chọn lọc tự nhiên thiên về phía những con chim thiên đường có đuôi dài ra không bao giờ ngừng,

tiến hóa? Chúng ta phải tìm một

có thể tiến hóa dài lên từ một mét cho tới một kilomet? Sư tăng lên 1 phần trăm chẳng gây được sư chú ý của một người bình thường. Tuy vậy, ta chỉ cần rất ít bước như vây, ít đến ngac nhiên, để làm cho đuôi dài ra đến một kilomet: ít hơn bảy trăm bước.

vây thì cần bao nhiêu bước để đuôi

Kéo dài đuôi từ một mét ra đến môt kilomet, tuy đúng là kỳ quặc, nhưng lai rất dễ tưởng tương. Nhưng làm sao mà ta có thể đặt sư tiến hóa của con mắt trên cùng một thang đo này? Vấn đề ở đây là trong trường hợp con mắt, có rất nhiều sư thay đổi xảy ra trong rất Pelger là xây dưng các mô hình của sư tiến hóa mắt trên máy tính để trả lời hai câu hỏi. Câu hỏi thứ nhất đại thể chính là câu hỏi mà chúng ta đã đặt ra hết lần này đến lần khác ở các phần trước đây, nhưng họ phát biểu lại một cách hệ thống hơn, bằng cách sử dụng máy tính: Có hay không một độ biến thiên đều đăn, từ một miếng da lên đến con mắt máy ảnh đầy đủ, mà sao cho mỗi bước trung gian lai là một sư cải thiên? (Không giống như con người, chọn lọc tự nhiên không thể đi xuống dốc - ngay cả khi có một

nhiều bộ phận một cách song song với nhau. Công việc của Nilsson và gọi). Thứ hai, chính là câu hỏi mà ta đã dùng để bắt đầu phần này, mất bao lâu để có được lượng thay đổi do tiến hóa cần thiết?

Trên máy tính, Nilsson và Pelger

cái đỉnh cao hơn bên kia đang mời

đã không mất công mô phỏng nguyên ký hoat đông bên trong của tế bào. Hô bắt đầu chuyến du hành của mình từ lúc có một tế bào nhay sáng duy nhất - ta gọi nó là quang tế bào. Trong tương lai, sẽ rất hay nếu ta thực hiện một mô phỏng máy tính nữa ở bên trong tế bào, để xem tế bào quang đầu tiên của sinh vật được sinh ra như thế nào qua những sửa đổi từng bước một

bạn phải xuất phát từ một điểm khác, còn ở đây Nilsson và Pelger đã xuất phát từ sau khi đã có quang tế bào. Ho làm việc ở cấp độ mô: cấp đô vật chất làm từ các tế bào chứ không phải từng tế bào riêng biệt. Da là một mô, một đoạn ruột cũng vây, cả cơ và gan nữa. Mô có thể thay đổi theo rất nhiều cách dưới những ảnh hưởng do đột biến ngẫu nhiên. Các mảng mô có thể trở nên rộng hơn hay hẹp hơn về diên tích. Chúng cũng có thể trở nên dày hơn hoặc mỏng hơn. Trong trường hợp mô trong suốt như là mô thủy tinh thể, chúng có thể thay

từ một tế bào bình thường. Nhưng

đối chiết suất (khả năng bẻ đường đi của ánh sáng) trong các phần cục bộ của mô. Vẻ đẹp của việc mô phỏng một

con mắt, so với việc mô phỏng những thứ khác ví du như chân của

một con báo, là ở chỗ chất lương của nó có thể đo được dễ dàng bằng các định luật quang học cơ bản. Con mắt được biểu diễn là một măt cắt hai chiều, và máy tính có thể dễ dàng tính được đô nét hình ảnh của nó ra một con số thực. Chắc là sẽ khó khăn hơn rất nhiều nếu ta muốn có một đại lượng số tương tư để đo độ hiệu quả của chân hoặc xương sống của một con một võng mạc phẳng, nằm trên một lớp sắc tố phẳng, bao quanh là một lớp trong suốt phẳng để bảo vệ. Lớp trong suốt được phép trải qua những biến đổi nhỏ ngẫu nhiên, với

báo. Nilsson và Pelger bắt đầu với

bắt buộc là mỗi cái thay đổi đều phải nhỏ và phải là một sự cải tiến từ cái đã có trước đó.

Kết quả có được thật nhanh chóng và dứt khoát. Khi hình dạng

của con mắt mô hình tự biến dạng trên màn hình máy tính, một quỹ đạo của sự sắc nét luôn luôn tăng xuất phát từ một hình phẳng ban đầu, một cách không hề do dự, dẫn tới một hình lõm cạn rồi cho tới hình

nên dày lên để lấp vào trong chiếc cốc và rồi phồng mặt ngoài của nó ra đều đăn để tao thành mặt cong. Rồi, tưa như một trò ảo thuật, một phần của lớp trong suốt này tập trung lai ở một vùng cục bộ hình cầu có chiết suất cao hơn. Không phải là cao hơn một cách đồng đều khắp trong vùng, mà có một đô biến thiên đều đăn trong chiết suất trong đó vùng hình cầu hoạt đông như một thấu kính biến chiết. Thấu kính biến chiết là một thứ xa la đối với các nhà chế tao thấu kính, nhưng chúng lai phổ biến trong mắt

một cái cốc có độ sâu luôn luôn tăng lên. Lớp trong suốt cũng trở

sinh vật. Con người làm ra thấu kính bằng cách mài kính thành một hình dang đặc biệt. Rồi làm kính phức, giống như các thấu kính phủ màu tím đắt tiền trong các camera hiên đại, bằng cách lắp nhiều kính lai với nhau, nhưng mỗi một trong số thấu kính đó được làm tự một loai thủy tinh đồng nhất trong toàn thể tích của nó. Ngược lai, một thấu kính biến chiết lai có chiết suất thay đổi đều nội trong mình của nó. Thông thường, nó có chiết suất cao hơn ở vùng trung tâm. Mắt cá có các thấu kính (thủy tinh thể) biến chiết. Từ lâu người ta đã biết rằng, đối với một thấu kính biến chiết, để Đại lượng này được gọi là tỉ lê Mattiessen. Mô hình máy tính của Nilsson và Pelger tiến đến chính xác tỉ lê này. Và bây giờ ta sẽ quay lai với câu hỏi rằng toàn bô những thay đổi tiến hóa này mất bao lâu để hoàn thành. Để trả lời, Nilsson và Pelger phải đưa ra một số giả định về gien trong các quần thể tư nhiên. Ho phải đưa vào mô hình của mình các giá tri hợp lý của các đại lượng như

là độ khả truyền (mức độ có thể di

truyền). Độ khả truyền [34] là một

đạt được độ quang sai nhỏ nhất ta cần phải đạt được một giá trị tối ưu giữa tiêu cư và bán kính thấu kính.

đo là xem xét mức độ "giống hệt nhau" của cặp song sinh cùng trứng so với cặp song sinh bình thường. Trong một nghiên cứu, người ta thấy rằng đô khả truyền của chiều dài ở chân đàn ông là 77 phần trăm. Độ khả dĩ 100 phần trăm nghĩa là ta có thể đo chân một người trong cặp song sinh cùng trứng để biết chính xác chiều dài chân người kia, mặc dù hai người được nuôi nấng riêng biệt nhau. Đô khả dĩ bằng 0 có nghĩa là chân của một cặp song sinh cùng trứng chẳng

thước đo cho ta biết di truyền có thể điều khiển các biến dị tới bao xa. Cách người ta rất hay dùng để Một số độ khả truyền khác đã đo được ở người là 95 phần trăm cho độ rộng của đầu, 85 phần trăm cho chiều cao khi ngồi, 80 phần trăm cho chiều dài cánh tay và 70 phần

hề giống nhau nhiều hơn so với chân của những người mà ta chọn ngẫu nhiên trong một công đồng.

cho chiều dài cánh tay và 79 phần trăm cho chiều cao khi đứng.

Người ta thường xuyên đo được các độ khả truyền cao hơn 50 phần trăm, và Nilsson và Pelger cảm thấy

an toàn khi đưa con số 50 phần trăm vào mô hình của họ. Đây là một giả định thận trọng, hay đúng hơn là "bi quan". So với một giả định gần thực tế hơn, ví dụ 70 phần

gian để con mắt tiến hóa tăng lên. Họ muốn sai số nằm ở chỗ ước đoán thời gian cao quá lên. Lý do bởi vì chúng ta nghi trực giác về những ước đoán nhỏ về thời gian

trăm, giả định bi quan này có khuynh hướng làm ước lương thời

những ước đoán nhó về thời gian cần thiết để tiến hóa một thứ phức tạp như là con mắt.

Cũng cùng một lý do đó, họ đã chọn các giá trị bi quan cho hệ số biến dị (nghĩa là mức độ biến đị

chọn các giá trị bi quan cho hệ số biến dị (nghĩa là mức độ biến đị thông thường trong một quần thể) và cường độ chọn lọc (mức độ lợi thế trong sống sót mà một thị lực được cải thiện có thể mang lại). Họ thậm chí còn giả định rằng thế hệ

chỉ một phần của con mắt và không cho phép những sự thay đổi đồng thời ở nhiều phần của mắt vốn sẽ tăng tốc đô tiến hóa lên rất nhiều. Nhưng ngay cả với những giả định thận trọng này, thời gian cần thiết để tiến hóa ra mắt cá từ da phẳng là rất nhỏ: ít hơn bốn trăm ngàn thế hê. Đối với các dang sinh vật nhỏ mà chúng ta đang bàn đến, ta có thể giả định mỗi thế hệ là một năm, nên có vẻ như là chỉ cần ít hơn một nửa triệu năm để tiến hóa lên một con mắt kiểu máy ảnh có chất lươna. Dưới ánh sáng mà Nilsson và

mới nào cũng khác thế hệ trước đó

lần một cách độc lập nhau trong giới đông vật. Đã có đủ thời gian cho nó tiến hóa một ngàn năm trăm lần từ con số không liên tục, chỉ nôi trong bất kỳ một giòng dõi nào. Khi giả định đô dài thời gian tiêu biểu của một thế hệ trong các loài đông vật nhỏ, ta thấy thời gian cần thiết cho sư tiến hóa của mắt hóa ra quá ngắn để các nhà địa chất có thể đo được, chứ chẳng phải là lớn kinh khủng tới mức khiến ta phải phóng đại niềm tin của mình lên. Nó chỉ là một cái nháy mắt trong thời gian

Pelger mang lại, không còn nghi ngờ gì, "con mắt" mà người ta nói đến đã tiến hóa ít nhất bốn mươi địa chất.

Kiến tha lâu đầy tổ. Một đặc điểm then chốt của tiến hóa là tính dần dà của nó. Điều này mang tính nguyên lý, tuy sư thất có thể thay

đổi chút ít. Một số giai đoạn tiến hóa cũng có thể có mà cũng có thể không xuất hiện đột ngột. Có thể có những giai đoan rời rac với những bược tiến hóa nhanh chóng, thâm chí là những đột biến vĩ mô đôt ngột - là những thay đổi lớn làm phân biệt hẳn con cái với cha me. Chắc chắn là đã có những sư tuyết chủng đột ngột - có lẽ là do thiên tai to lớn nào đó như sao chổi lao

vào Trái đất - và chúng để lai

được lấp đầy bởi những động vật đi sau phát triển một cách nhanh chóng, như trường hợp lớp thú đã thay thế cho khủng long. Trên thực tế, rất có thể rằng tiến hóa không phải luôn luôn mang tính dần dà. Nhưng nó buộc phải mang nguyên lý dần dà khi ta dùng nó để giải thích sự xuất hiện trên đời của các vật thể sống - vốn tinh vi phức tạp như thể được thiết kế ra, con mắt chẳng hạn. Bởi lẽ nếu không phải là dần dà, thì sẽ chẳng có một giá tri giải thích nào cả. Không có yếu tố dần dà trong những trường hợp này, chúng ta lại quay về với phép

những khoảng trống lớn mà sau đó

mầu nhiệm, mà phép mầu nhiệm thì vốn đồng nghĩa với việc không có lời giải thích nào cả. Lý do mà con mắt và loài phong

lan thụ phấn nhờ ong bắp cày tạo ấn tượng mạnh với chúng ta là do sư tiến hóa ấy ít khả năng xuất hiên. Khả năng chúng tư nhiên may mắn lắp ghép lại được như thế quá kì diêu đến mức không có thật trên đời. Việc tư tiến hóa dần dần qua các bước nhỏ, mỗi bước cũng mang tính may mắn, nhưng không quá may mắn, chính là lời giải để vươt

qua câu đố này. Còn nếu như nói tiến hóa không phải là dần dần, thì sẽ chẳng phải là lời giải cho câu đố, mà chẳng qua là một hình thức khác của câu đố trên mà thôi.
 Đôi khi, chúng ta chẳng thể nào đoán được các bước trung gian dần

dần nào đã diễn ra. Đó là thách thức cho trí tưởng tương của ta, nếu ta chịu, không nghĩ ra nổi thì đó là vấn đề của chúng ta chứ không phải của tư nhiên. Việc chúng ta không nghĩ ra được không phải là một bằng chứng để nói rằng chúng (từng bước trung gian) đã không xảy ra. Một trong những thách thức lớn nhất đối với trí tưởng tương trong việc đoán ra các bước trung

gian là trường hợp "ngôn ngữ múa" lừng danh của loài ong, từng được Frisch. Ở đây, sản phẩm cuối cùng của sự tiến hóa có vẻ tinh vi phức tạp, tài tình và vượt xa những gì chúng ta thường nghĩ về khả năng của côn trùng, đến mức thật khó để hình dung ra các bước trung gian.

Ong mật thường báo hiệu cho

phát hiện trong một công trình kinh điển làm nên tên tuổi của Karl von

nhau những khu vực có hoa bằng một điệu múa được mã hóa cẩn thận. Nếu như thức ăn rất gần với tổ, chúng thực hiện điệu "múa xoay vòng tròn". Điều này làm các con ong khác rất hào hứng, và chúng đổ xô đi tìm thức ăn trong vùng quanh tổ. Không có gì đặc biệt lắm. Nhưng

khi thực ăn ở xa tố hơn, những gì xảy ra mới vô cùng ấn tương. Những con ong phát hiện ra có thức ăn trình diễn một điệu tam gọi là "múa lắc lư", mà dáng điệu cũng như tốc đô múa nói cho con ong khác biết được phương hướng và khoảng cách từ tổ đến nguồn thức ăn. Điệu lắc lư này được con ong trình diễn bên trong tổ trên một mặt phẳng thẳng đứng của tảng ong. Trong tổ tối đen nên các con ong khác không thấy được điệu múa lắc lư trên. Chúng chỉ cảm nhân và nghe được nhờ tiếng vo ve nho nhỏ nhịp nhàng mà con ong múa đang tao ra. Điệu múa ấy có hình số 8,

Chính hướng của đường thẳng này cho biết hướng thức ăn thông qua, đây là một sự mã hóa khôn ngoan.

Đường thắng này không trực tiếp chỉ về hướng thức ăn. Không thể,

cùng với một đường thắng ở giữa.

bởi điệu múa được biểu diễn trên một mặt phẳng thẳng thẳng đứng, và hướng của bề mặt này cố định và không phụ thuộc vào nơi có thức ăn. Nguồn thức ăn đó phải được định vị theo chiều ngang. Bề mặt thẳng đứng đó giống như một bản đồ được ghim lên tường vây. Một

đường vẽ trên bản đồ đó không chỉ trực tiếp về một đích nào cả, nhưng bạn có thể đọc được hướng thông qua một quy ước bất kỳ nào đó. Để hiểu được quy ước mà các chú ong đã dùng, đầu tiên ta phải biết

rằng cũng giống như nhiều loài côn trùng khác, ong dùng mặt trời định hướng như một la bàn. Con người chúng ta cũng làm như vậy một cách gần đúng. Phương pháp này có hai nhược điểm. Thứ nhất, mặt trời thường bị mây che lấp. Ong giải quyết vấn đề này thông qua một giác quan mà chúng ta không có.

quyết vấn đề này thông qua một giác quan mà chúng ta không có. Cũng chính von Frisch đã khám phá ra rằng ong thấy được chiều phân cực của ánh sáng và điều này cho chúng biết được mặt trời đang ở đâu ngay cả khi mặt trời bị khuất.

trời đó là nó "dịch chuyển" qua bầu trời theo thời gian, ong giải quyết vấn đề này bằng một đồng hộ nội tai. Von Frisch đã tìm ra rằng, gần như không thể tin được, con ong múa khi ở trong tổ hằng giờ sau khi quay về từ vùng có thức ăn thường quay hướng của đường thẳng giữa vòng số tám một cách chầm châm, cứ như thể đường thẳng này là kim giờ của một đồng hồ hai mười bốn giờ vây. Chúng không thể thấy được mặt trời từ bên trong tổ, nhưng chúng chầm chậm quay hướng của bài múa để bắt kịp với sự chuyển đông của mặt trời mà chính các

Vấn đề thứ hai đối với la bàn mặt

cực kỳ lý thú đó là các loài ong ở nam bán cầu cũng làm y hệt thế nhưng hướng ngược lại, đúng như ta có thể đoán.

đồng hồ nôi tại mách bảo. Một điều

Bây giờ chúng ta sẽ nói đến mật mã của điệu múa này. Một vũ điệu theo phương thẳng đứng hướng lên báo hiệu rằng thức ăn ở cùng hướng với mặt trời. Vũ điệu theo phương thẳng đứng hướng xuống báo hiệu thức ăn ở hướng ngược lai. Các cấp độ trung gian báo hiệu những điều mà chúng ta có thể đoán được. 50

độ về phía bên trái của đường thẳng đứng báo hiệu hướng 50 đô về hướng bên trái của mặt trời không nằm ở mức thang chia đô này. Tại sao như thế? Bởi vì chúng ta có quy ước chia la bàn thành 360 đô, còn ong chia la bàn thành khoảng 8 đô (độ của ong). Thực ra đây gần như là cách mà chúng ta làm nếu không phải là những nhà định hướng chuyên nghiệp. Chúng ta chia la bàn thường dùng ra thành 8 góc: Bắc, Đông Bắc Đông, Đông Nam, Nam, Tây Nam, Tây và Tây Bắc. Vũ điệu ong cũng mã hóa khoảng cách đến nguồn thức ăn. Hay đúng hơn, rất nhiều khía cạnh của điệu

trong mặt phẳng nằm ngang. Tuy nhiên độ chính xác của điêu múa

đô đập cánh - liên quan mật thiết với khoảng cách của thức ăn, và một hay bất kỳ một tổ hợp của các khía canh này có thể được các chú ong dùng để đọc ra khoảng cách. Thức ăn càng gần, điệu múa càng nhanh. Một mẹo để nhớ được điều này là ban hãy nghĩ rằng con ong khi tìm thấy được thức ăn gần tổ thường sẽ hứng khởi và ít mệt hơn so với con ong đã phải bay một quãng đường xa mới tìm được thức ăn. Đây không chỉ là một quy tắc giúp dễ nhớ; nó còn cho ta một manh mối để biết được điệu múa đã tiến hóa lên như thế nào, như

múa - tốc độ quay, tốc độ lắc lư, tốc

chúng ta sẽ thấy sau đây.

Tóm lại, một con ong tìm thấy một nguồn thức ăn dồi dào. Nó quay về tổ, nặng trĩu mật và phấn hoa, giao kiện hàng cho những con ong thơ chuyển nhân hàng. Rồi nó

bắt đầu múa. Ở một nơi nào đó trên tảng ong thẳng đứng, không quan trong là nơi nào, nó hối hả chay vòng quanh theo hình số tám. Các con ong thơ khác tập trung quanh nó, cảm nhân và lắng nghe. Chúng đếm nhịp vỗ cánh, và có lẽ cả tốc độ quay vòng. Chúng đo góc của đường ở giữa, rồi xét vi trí tương đối của đường đó với đường thắng đứng, trong khi con ong múa đang

tối ra ánh mặt trời. Chúng quan sát vị trí mặt trời - không phải theo đô cao thẳng đứng mà theo hướng la bàn của nó trong mặt phẳng nằm ngang. Rồi chúng bay đi theo một đường thẳng, đường thẳng này có góc tương đối so với mặt trời bằng đúng góc đường giữa so với đường thẳng đứng trong điệu múa khi nãy trên mặt phẳng của tảng ong. Chúng cứ thế bay theo những gì đã biết, không phải đến một đoạn vô định mà là một khoảng cách tỷ lê (nghich) với (loga) vân tốc đập cánh của con ong khiệu vũ ban đầu.

lắc lư cái bụng của nó. Thế là chúng di chuyển đến cửa tổ và túa từ bóng mới tìm được thức ăn ở chỗ này, nó sẽ hướng điệu múa không phải theo hướng khác đó, mà theo hướng nó đã tính toán lại.

Câu chuyên về loài ong múa này

Thú vị thay, nếu như con ong đầu tiên phải bay theo một hướng khác

Câu chuyên về loài ong múa này thất khó tin, và một số người đã không còn tin nó. Tôi sẽ quay lại với những nghi ngờ này và sẽ nói về những thí nghiệm gần đây mà cuối cùng đã mang lai các bằng chứng khoa hoc trong chương tiếp theo. Trong chương này, tôi chỉ muốn thảo luân quá trình tiến hóa dần dần của điệu múa ong. Những giai đoạn trung gian của quá trình tiến hóa này đã hiển thị như thế nào, và chúng đã hoạt động ra sao khi điệu múa vẫn chưa hoàn thiện?

À, cách thức diễn tả câu hỏi chưa đước chính xác lắm. Không có sinh vật nào có thể sinh tồn mà lại ở

trong giai đoan "trung gian" hay là

"chưa hoàn thiên" cả. Các loài ong cổ xưa đã sinh tồn rất giỏi chỉ với các điệu múa mà với kiến thức giờ đây có được, chúng ta có thể diễn giải chúng là các giai đoạn trung gian trên con đường tiến tới điệu múa của loài ong hiện đại. Chúng đã sống một cuộc đời tron ven của một con ong và chẳng hề nghĩ rằng mình đang "trên con đường" đi đến điệu múa ong "hiện đại" của chúng ta cũng có thể chẳng phải là điệu múa tối ưu sau cùng mà nó có thể sẽ tiến hóa lên một cái gì đó ngoạn muc hơn nữa khi chúng ta và loài ong của chúng ta đều chìm sâu vào quá khứ. Nhưng dù sao đi nữa vẫn có một câu đố, đó là điệu múa ong hiên giờ đã tiến hóa thông qua những bước dần dần như thế nào. Những bước trung gian dần dần đó đã có kiểu dáng thế nào và chúng đã hoạt động ra sao? Chính von Frisch cũng đã chú tâm đến câu hỏi này, ông đã giải quyết bằng cách xem xét trong gia phả

điều gì đó "tốt đẹp hơn". Hơn nữa,

loài ong mật. Những loài ong này không phải là tổ tiên của loài ong mật bởi chúng sống cùng thời. Nhưng chúng có thể còn giữ lai một vài đặc điểm của tổ tiên. Ong mật là một loài côn trùng ôn đới, làm tổ trong những hốc cây hay hang đá. Họ hàng gần nhất của nó là những con ong nhiệt đới có thể làm tổ ngoài trời, treo tổ lên những chạc cây hay mỏm đá. Vì thế chúng có thể thấy được mặt trời khi đang múa, và không phải nhờ vào quy ước mà trong đó phương thẳng đứng "biểu thi" cho hướng mặt trời. Măt trời đã tư biểu thi nó.

loài ong, ở những ho hàng xa của

hàng nhiệt đới của ong mật, loài ong lùn Apis florea, múa trên mặt phẳng nằm ngang trên đỉnh của tảng ong. Đường thẳng của điệu múa chỉ trưc tiếp về hướng thức ăn. Chẳng cần phải dùng đến một quy ước bản đồ nào cả; việc chỉ hướng trực tiếp là quá đủ. Đây chắc chắn là một giai đoạn chuyển tiếp hợp lý trên con đường đi đến điệu múa của loài ong mật, nhưng chúng ta vẫn phải suy nghĩ về các giai đoan trung gian khác đi trước và các giai đoan theo sau. Cái gì có thể là tiền thân của điệu múa loài ong lùn này? Tại sao một con ong vừa mới tìm thấy

Một trong những người bà con ho

thức ăn lại chạy vòng quanh theo một hình số 8 có đường ở giữa chỉ về hướng thức ăn. Gơi ý trả lời nằm ở trình tư lúc sắp cất cánh. Von Frisch cho rằng trước khi điệu múa tiến hóa, một con ong vừa mới dỡ thức ăn xuống, đơn giản sẽ cất cánh theo cùng hướng bay trở lai về nguồn thức ăn đó. Để chuẩn bi cất cánh lên không trung, nó phải quay mặt về đúng hướng và có thể bước môt vài bước. Chon loc tư nhiên có khuynh hướng phóng đai hoặc kéo dài giai đoạn cất cánh nếu như nó khuyến khích các con ong khác bay theo. Có lẽ điệu múa là một dang lấy đà được lặp lại thành một trình dù có dùng điệu múa hay không, ong thường dùng một chiến thuật trưc tiếp hơn, đó là theo nhau đi đến nguồn thức ăn. Một điều nữa khiến ý kiến này nghe hợp lý là ở chỗ, con ong đang múa giương cánh ra chút ít như thể đang chuẩn bi bay, và nó rung cơ cánh, không quá manh để bay lên mà chỉ đủ để tao ra âm thanh vốn là một phần quan trong trong tín hiệu múa. Dê thấy rằng, một cách để kéo

tư. Điều này rất hợp lý, bởi vì cho

Dễ thấy rằng, một cách để kéo dài và phóng đại quá trình lấy đà chính là lặp lại nó. Lặp lại nghĩa là quay trở lại điểm xuất phát và bước đi vài bước theo hướng thức ăn. Có

đường chạy. Nếu trước sau nó đều chỉ quay sang phải hoặc sang trái, hướng lấy đà và hướng quay trở lại điểm xuất phát sẽ bị nhập nhằng, cách tốt nhất để khỏi có sự nhập nhằng là lần lượt quay trái rồi quay phải. Cho nên, chọn lọc tự nhiên đã chọn ra hình số 8.

hai cách để trở lại điểm xuất phát: nó có thể rẽ phải hay rẽ trái ở cuối

Nhưng mối liên hệ giữa khoảng cách nguồn thức ăn và tốc độ múa tiến hóa lên như thế nào? Nếu như tốc độ múa liên hệ thuận chiều với khoảng cách thức ăn, ta sẽ rất khó giải thích. Nhưng bạn nhớ lại rằng, thực tế nó là cách ngược lại: thức

Điều này ngay lập tức gơi ý cho chúng ta một con đường tiến hóa có thể có. Trước khi điệu múa tiến hóa hình thành, con ong chắc đã lặp lai việc lấy đà, nhưng không ở một tốc độ đặc biệt nào cả. Chắc lúc đó, tốc đô múa chỉ là tùy hứng. Ta thử nghĩ xem, nếu con ong mới bay về cách hàng dăm đường chất đầy mình với mật và phấn hoa, nó còn hứng thú chay thất nhanh vòng quanh tảng ong không? Không, chắc chắn là nó sẽ kiết sức ngay. Ngược lai, nếu như phát hiện ra một nguồn thức ăn dồi dào khá gần với tổ, sau chuyến bay ngắn trở về nhà, chắc chắn nó

ăn càng gần, điệu múa càng nhanh.

Cũng không khó để ta tưởng tương ra quá trình làm sao một mối liên hệ ngẫu nhiên ban đầu giữa khoảng cánh nguồn thức ăn và đô châm chap của điệu múa đã được lặp lại nhiều lần thành một dạng mã thông tin chính thức và đáng tin cây. Bây giờ là một giai đoạn trung gian thách thức sư tưởng tương nhiều nhất: làm sao điêu múa cổ đại mà trong đó đường thẳng chỉ trực tiếp về hướng thức ăn đã được chuyển thành điệu múa có góc của đường giữa so là góc giữa thức ăn đối với mặt trời? Sự chuyển đổi đó

chắc chắn một phần phải do bên

vân còn khỏe khoắn và xông xáo.

trong tố không thể thấy được ánh mặt trời, và một phần bởi khi múa trên mặt phẳng thẳng đứng, nó không thể chỉ trức tiếp về hướng thức ăn, trừ khi đó chính là thức ăn mà thôi. Nhưng điều đó chưa đủ để chứng tỏ rằng sư chuyển đỏi như thế là cân thiết. Chúng ta vẫn còn phải giải thích làm sao có thể đat được sư chuyển đổi khó khăn này thông qua một chuỗi các giai đoạn trung gian hợp lý. Gây go đây. May mắn, một cứu cánh xuất hiện nằm ngay trong một tính chất là thường của hệ thần kinh côn trùng. Người ta đã thực hiện thí

nghiêm sau đây trên một loạt các

thí nghiệm, chúng ta để một con bọ đi trên một tấm gỗ nằm ngang dưới một bóng điện. Điều đầu tiên mà ta có thể chứng tỏ là con côn trùng này biết dùng la bàn ánh sáng. Khi ta dịch chuyển bóng đèn, con côn trùng sẽ thay đổi hướng theo. Chẳng han nó đang đi về hướng 30⁰ so với bóng đèn, nó sẽ thay đổi hướng để duy trì góc 300 này so với vi trí mới của bóng đèn. Như vây ban có thể lái con bo đi theo hướng nào tùy thích bằng cách dùng bóng đèn như một bánh lái. Từ lâu nay người ta đã biết điều này ở côn trùng: chúng dùng Mặt trời (hay Mặt

loai côn trùng từ bo đến kiến. Trong

trăng, hoặc Sao) làm la bàn, và ban có thể dễ dàng lừa chúng bằng một bóng đèn. Tốt rồi. Bây giờ đến thí nghiệm rất thú vị, tắt bóng đèn đi và cùng lúc đó xoay cái bảng thành hướng thẳng đứng. Không hề nản chí, con bo vẫn tiếp tục bước đi. Tuyệt diệu thay, nó đã sửa hướng đi sao cho đường đi so với phường thẳng đứng bằng với đường đi so với bóng đèn trước đây: 300 trong ví du của chúng ta. Chẳng ai biết vì sao điều này xảy ra, nhưng nó vẫn xảy ra. Có vẻ như điều này phản ánh một tật ngẫu nhiên của hệ thống thần kinh côn trùng - một sư nhầm lẫn trong giác quan, một sư lực và thị giác, có lẽ giống như việc chúng ta nhìn thấy một chớp sáng khi bị đánh vào đầu. Dù thế nào đi nữa, đây có vẻ như là chiếc cầu nối cần thiết của sự tiến hóa trong điệu

"cham mach" giữa cảm giác trong

múa loài ong mật mà trong đó mặt trời được diễn giả theo phương thẳng đứng.

Thú vị thay, khi ta bật một bóng đèn trong tổ ong, những chú ong sẽ từ bỏ cảm giác về trong lưa đổ dùng

từ bỏ cảm giác về trọng lực để dùng hướng của bóng đèn đại diện cho hướng mặt trời. Người ta đã khai tác điều này, vốn được biết đến từ lâu, trong một thí nghiệm thuộc loại tài tình nhất, chính thí nghiệm đã

cho thấy điệu múa ong thực sự hữu dụng. Tôi sẽ trở lại điểm này ở chương sau. Còn bây giờ, chúng ta đã tìm thấy một chuỗi khả dĩ các bước trung gian dần dần mà thông qua đó điệu múa ong hiện đại có thể đã tiến hóa từ những bước giản đơn ban đầu. Câu chuyện tôi vừa kể ra dưa trên ý tưởng của Von Frisch có thể không phải là những gì thực sư xảy ra. Nhưng chắc chắn một điều tương tư như thế đã xảy ra. Tôi chỉ kể chuyện để trả lời cho chủ nghĩa hoài nghi tư nhiên - hay là lý lẽ dựa trên ngờ vực cá nhân - xuất hiên ở nhiều người khi họ phải đối diên với hiện tương tư nhiên thật sư ngờ vực sẽ nói: "tôi không thể tưởng tượng nổi một chuỗi các bước trung gian khả dĩ, do đó chẳng có cái nào cả, và hiện tượng đó xuất hiên là do phép màu mà có". Von Frisch đã đưa ra một chuỗi các bước trung gian khả dĩ. Cho dù các chuỗi đó cũng không hoàn toàn là sư thất, khả năng mà nó có thể là sự thật cũng đủ đập tan các lý lẽ dựa trên ngờ vực cá nhân rồi. Tất cả các ví du khác mà chúng ta đã xem xét qua, từ phong lan giả dạng ong, cho đến con mắt kiểu máy ảnh cũng đều như vậy cả. Những người theo trường phái

tinh vi hoặc tài tình. Những người

nghi ngờ thuyết tiến hóa từ từ của Darwin có thể tập hợp được không biết bao nhiều những trường hợp gây tò mò nhất và lôi cuốn của tư nhiên. Có lần người ta đã yêu cầu tôi giải thích sư tiến hóa dần dần của những loài sinh vật sinh sống ở trong rãnh sâu của Thái Bình Dương mà tai đó không có ánh sáng, còn áp suất của nước có thể vượt quá 1000 atmosphere. Có hắn cả một quần thể động vật sống chung quanh những mạch núi lửa nóng sâu giữa những khe nứt của Thái Bình Dương. Có cả những nguyên lý sinh hóa khác thường được những con vi khuẩn sử dụng bằng cách lấy núi lửa và trao đổi lưu huỳnh thay vì oxy. Quần thể các đông vật lớn hơn phụ thuộc hoàn toàn vào những con vi khuẩn tiêu thụ lưu huỳnh này, cũng giống như sự sống bình thường phụ thuộc vào cây xanh lấy năng lương từ Mặt trời vây. trao đổi lưu huỳnh này đều là họ hàng của các đông vật sống theo

nhiệt từ những dòng chảy nóng từ

Các động vật sống trong quần thể kiểu thông thường ở những nơi khác. Thế thì chúng đã tiến hóa lên như thế nào và đã trải qua những bước trung gian nào? Vâng, kiểu lập luân cũng chính xác như vây. Tất cả những gì chúng ta cần để giải thích ta đi sâu xuống biển. Một ngàn atmostphere là một áp suất khủng khiếp, nhưng nó cũng chỉ lớn hơn 999 atmostphere về mặt định lương, cái này cũng chỉ lớn hơn 998 như thế. Đáy biển tạo ra độ biến thiên về độ sâu, từ 0 feet qua tất cả các giá tri trung gian cho tới 33000 feet. Áp suất biến đổi một cách đều đăn từ 1 atmosrphere cho tới 1000 atmostphere. Cường độ ánh sánh biến đổi đều đăn từ ánh sãng ban ngày gần mặt nước cho đến bóng đêm hoàn toàn dưới đáy sâu, vốn chỉ được sáng lên phần nào nhờ

là có ít nhất một độ biến thiên tự nhiên, vốn chẳng thiếu gì khi chúng

hoi trong những cơ quan phát sáng của cá. Chẳng có một sư ngắt ngang đột ngột nào cả. Đối với bất kì một mức áp suất nào mà đã có sinh vật sinh sống., khi ta đi xuống sâu thêm một sải tay hay mỗi trường tối đi thêm 1 Lumen , luôn có một kiến trúc của loài động vật có thể tồn tại ở môi trường này mà chỉ khác chút ít so với những loài sinh vât đã có trước đó. Đối với bất kì ... nhưng mà chương này đã quá đủ rồi. Bạn đã biết phương pháp của tôi rồi đấy, Watson. Áp duna đi [36]

những cum khuẩn phát sáng hiếm

CHƯƠNG 4 HÀM THỎA DỤNG CỦA CHÚA

Người trao đổi thư với tôi ở

chương trước tìm thấy đức tin qua một loài ong. Charles Darwin đã mất đức tin với sư giúp đỡ của một loài khác. Darwin viết: "Tôi không thể nghĩ rằng, một đức Chúa nhân từ và quyền năng đến thế lai có thể tạo ra con tò vò với ý định để nó kiếm ăn ngay bên trong cơ thể một con sâu đang sống". Thực ra, sự mất dần đức tin của Darwin, mà ông đã làm nhẹ đi vì sợ làm phiền của mình, mang những nguyên nhân phức tạp hơn nhiều. Con tò vò trong ví du ông nói ở trên là một ví du điển hình. Thói quen rùng rợn mà ông đã nói đến cũng có trong ho hàng của loài tò vò là loài ong bắp cày đào hang mà chúng ta đã gặp ở chương trước. Một nàng ong bắp cày đào hang không chỉ đẻ trứng trong người một con sâu (hay châu chấu, hay một con ong mật) để ấu trùng của nó có sẵn thức ăn trên người của các con côn trùng kia, mà theo Fareb và những người khác, nó còn châm noc môt cách khéo léo vào hach của hệ thần kinh trung

lòng đến người vơ sùng đạo Emma

ương của con mồi để làm tê liệt mà không giết nó. Bằng cách này, thit được giữ tượi. Người ta không biết đây có phải là một chất gây mê hoàn toàn, hay một chất chỉ làm mất khả năng di chuyển của nan nhân hay không. Nếu như là cách thứ hai, con mỗi có thể cảm nhận được nó đang bị ăn từ bên trong nhưng không thể di chuyển bất kỳ cơ nào để chống lại cả. Điều này nghe có vẻ quá man rơ. Nhưng như chúng ta sẽ thấy sau đây, Thiên Nhiên chẳng bao giờ ác độc mà chỉ trung lập đến mức không xót thương. Đây là một trong những bài học khó khăn nhất mà con người

không thể chấp nhận rằng, có những thứ không tốt cũng chẳng xấu, không độc ác cũng chẳng nhân từ, mà chỉ đơn giản là sư trơ cứng trung lập, thờ ơ với mọi khổ đau và không có một mục đích gì cả. Là con người, chúng ta luôn có muc đích nào đó trong đầu. Chúng ta cảm thấy khó chiu khi nhìn thấy một sư việc nào đó mà không tư hỏi nó "để làm gì", có động cơ gì, hoặc

cần phải học. Vì vốn dĩ chúng ta

ta cảm thấy khó chịu khi nhìn thấy một sự việc nào đó mà không tự hỏi nó "để làm gì", có động cơ gì, hoặc mục đích nào đằng sau nó. Nỗi ám ảnh phải có một mục đích trở thành bệnh lý, được gọi là bệnh paranoia, tức là một mục đích xấu cho những vận đen xảy ra chỉ do ngẫu nhiên.

đại của một ảo tưởng rất phổ biến: đối diện với bất kỳ một sư vật hoặc sư việc nào đó, ta khó cưỡng lai được câu hỏi "tại sao" - tức là câu hỏi "dùng để làm qì?"

Nhưng đây chỉ là một dang phóng

Mong muốn thấy được mục đích ở moi nơi là một điệu tư nhiên trong loài đông vật sống giữa máy móc, công trình nghệ thuật, công cu và những đồ đạc nhân tạo khác; hơn nữa, đó là một loài sinh vật có ý thức bị chi phối bởi sở thích cá nhân. Môt cái xe hơi, môt cái khui

nắp hộp, một cái tuốc-nơ-vít, môt cái cào rơm, tất cả đều đảm bảo hợp lệ câu hỏi: "dùng để làm gì".

Các bậc tiền bối vô thần ngày xưa chắc đã có cùng câu hỏi như thế về sấm chớp, nhật thực, nguyệt thực, đá và các dòng nước. Ngày nay, chúng ta tư hào rằng mình đã giữ bỏ được thuyết tâm linh nguyên thủy đó. Nếu như chẳng may có một viên đã nằm giữa dòng được dùng làm chỗ đặt chân để bước sang sông, chúng ta chỉ xem nó là một lợi ích ngẫu nhiên chứ không hề có mục đích từ trước nào. Nhưng sự cám dỗ cũ đó vẫn quay lại như một sự báo thù khi bi kịch tấn công ta - thưc ra từ "tấn công" là một tiếng vong tâm linh: "trời ơi, tai sao căn bênh ung thư/trân đông

đất/cơn bão quái ác lai đánh vào con tôi?" Chính sự cám dỗ này cũng được gia thêm hương vi mỗi khi chủ đề bàn về nguồn gốc sư vật hay bàn về các định luật vật lý cơ bản, mà cực điểm của nó nằm trong câu hỏi trống rỗng về sự tồn tại: "Tại sao phải có thứ hơn là không có?" Tôi không thế nhớ có bao nhiêu lần trong các buổi diễn thuyết của tôi có người đứng lên và nói điều đai khái như sau: "Các nhà khoa học các ngài rất giỏi trong việc trả lời câu hỏi 'làm sao'. Nhưng ngài phải thừa nhận rằng ngài sẽ bất lực khi phải đối mặt với câu hỏi 'tại sao''' Hoàng tử Philip, công tước tôi, tiến sĩ Peter Atkins ở Winsor. Đằng sau câu hỏi luôn luôn có một ngầm ý rằng, bởi vì khoa học không thể trả lời câu hỏi "tại sao", phải co ngành khác nào đó đủ phẩm chất để trả lời câu hỏi này. Tất nhiên, điều này là boàn toàn phi logic

Edinburgh đã phát biểu điều này khi dư bài diễn thuyết của đông nghiệp

điều này là hoàn toàn phi logic.

Tôi e rằng tiến sĩ Atkins đã không quan tâm lắm đến "câu hỏi hoàng gia" đó. Sự thật đơn thuần là, đặt ra được một câu hỏi không có nghĩa là làm cho câu hỏi đó có nghĩa. Có rất nhiều thứ mà ta có thể đặt câu hỏi:

làm cho câu hỏi đó có nghĩa. Có rất nhiều thứ mà ta có thể đặt câu hỏi: "nó bao nhiêu độ" hay "nó màu gì". Nhưng ta không thể hỏi nhiệt độ

ghen tuông hay lời cầu nguyện. Tương tự như vậy, ta có thể đặt câu hỏi "tại sao" đối với cái chắn bìn xe đạp hay đối với con đập Kariba [37], nhưng ít nhất bạn cũng chẳng có quyền qì để cho rằng câu hỏi "Tai

hay màu sắc của những thứ như sư

sao" xứng đáng một câu trả lời khi chúng được đặt ra cho một hòn đá cuội, một sự rủi ro, núi Everest, hay là về vũ trụ. Câu hỏi có thể đơn giản là không thích hợp, cho dù nó có hay ho đi chăng nữa.

Nơi nào đó giữa một bên là cái

gạt nước và cái mở hộp, với bên kia là đá sỏi và vũ trụ tồn tại những sinh vật sống. Không giống như đá, chỗ nào của chúng dường như cũng có muc đích để hiên ra. Hầu như ai cũng rõ, đương nhiên cái vẻ của các cơ thể sống như có mục đích hiện rõ ra ngoài đã bao trùm lên "Luân Cứ về sư Thiết Kế", đã được các nhà thần học từ Aquinas sang William Paley cho đến các nhà thuyết "khoa hoc" (chúa) sáng tao hiện đại viên dẫn ra. Quá trình đích thực, vốn đã mang lai cho đôi cánh, con mắt, cái mỏ, bản năng làm tổ và bất kì cái gì khác của sự sống một ảo ảnh mạnh mẽ về sư thiết kế mang rõ mục

các cơ thể sống và các cơ quan của chúng ta là những vật thể mà bất kì

một cách tường tận. Đó chính là sự chon loc tư nhiên theo thuyết Darwin. Sư hiểu biết của chúng ta cuối cùng cũng đến từ khoảng một thế kỷ rưỡi trở lại đây, muộn màng đến ngac nhiên. Trước Darwin, ngay cả những trí thức đã từ bỏ câu hỏi "Tai sao" về đá, dòng nước và nhật thực vẫn ngầm chấp nhận câu hỏi "Tai sao" ở những nơi có liên quan đến sinh vật sống. Bây giờ chỉ những người thiếu kiến thức khoa học mới làm vây. Nhưng chữ "chỉ" này mang một sự thật không hề dễ chịu rằng chúng ta đang nói về đai đa số con người.

đích, bây giờ được chúng ta hiểu rõ

thuyết Darwin cũng đặt ra một dạng câu hỏi "tại sao" về các sự vật sống, nhưng họ làm vậy với một nghĩa đặc biệt mang tính hình tương. Tai sao chim lai hót và cánh đế làm gì? Những câu hỏi này được chấp nhân như là một dang câu hỏi cho tiện [38] của các nhà Darwin hiên đai và sẽ xứng đáng nhưng câu trả lời có nghĩa, thông qua sự chon lọc tự nhiên của loài chim thủy tổ. Áo ảnh về mục đích manh đến mức chính những nhà sinh học dùng giả định về "sự thiết kế tốt" làm một công cu làm việc của ho. Như chúng ta đã thấy ở chương trước, rất lâu

Thực ra, những người theo học

trước công trình điệu múa ong mở ra cả một kỷ nguyên của riêng mình, Karl von Frisch đã phát hiện ra rằng một số loài côn trùng có thi lực màu đầy đủ, ngược hẳn với quan điểm chính thống manh mẽ lúc bấy giờ. Ý tưởng về thí nghiêm mang tính guyết định của ông đã được khơi gợi từ một quan sát đơn giản rằng các loài hoa thu phấn nhờ ong đã rất tốn công sức để tao ra các chất màu. Nếu như ong mù màu thì tại sao các loài hoa lai phải làm điều này? Phép hình tượng về viêc có mục đích ở đây - hay chính xác hơn, sự giả định rằng chon loc kiểu Darwin đã can thiệp vào - được dùng để tao ra những suy luân rất có giá tri về thế giới sinh vật. Von Frisch sẽ hoàn toàn sai lầm nếu nói rằng "Hoa có màu, nên ong nhất định phải có thị lực màu". Nhưng ông đã đúng khi nói: "Hoa có màu, nên chí ít thì việc tôi nỗ lực thí nghiêm để kiểm chứng giả thiết ong có thị lực màu là cũng xứng đáng". Khi nghiên cứu vấn đề đến mức chi tiết, ông phát hiện ra rằng ong có thị lực màu rất tốt, nhưng phổ màu của chúng bị dịch đi tương đối so với phổ màu của chúng ta. Chúng không thấy ánh sáng đỏ (và vì màu vàng là màu kế tiếp, loài ong có thể đưa ra từ "hoàng ngoai" cho cái mà thể thấy những bước sáng ngắn hơn mà ta gọi là tia cực tím như một màu riêng biệt, mà đôi khi được gọi là màu tím ong.

Khi nhận ra ong nhìn được phần

ta goi là màu đỏ). Nhưng chúng có

cưc tím của phổ màu, Von Frisch một lần nữa đã có những lập luân dùng phép hình tượng về sự có muc đích. Ông tư hỏi: ong dùng giác quan cảm nhận tia cực tím để làm gì? Suy nghĩ của ông quay hẳn môt vòng trở về với hoa. Mặc dù không thể nhìn thấy tia cực tím, chúng ta có thể tạo ra những loại phim ảnh nhay với tia cực tím, và những kính loc trong suốt đối với tia cực tím

tia cực tím. Thực sự vui sướng ông nhìn thấy hoa văn gồm những đốm, những dải mà chưa từng được nhìn thấy bởi một đôi mắt người nào. Những bông hoa đối với ta chỉ có màu trắng và vàng, hóa ra lại được trang điểm bởi những hoa văn màu cực tím, vốn đóng vai trò như ánh đèn hiệu thắp sáng con đường dẫn tới mật hoa. Giả định rằng chắc hẳn phải có mục đích, một lần nữa có giá tri: nếu như hoa thực sư được "thiết kế" một cách kĩ lưỡng, chúng phải tận dụng việc ong có thể nhìn

nhưng lại chặn hết những ánh sáng "thấy được". Dựa trên suy luận này, Von Frisch đã chụp ảnh hoa bằng thấy được những bước sóng tím.

Khi Von Frisch đã về già, công trình nổi tiếng nhất của ông nghiên cứu điệu múa ong mà chúng ta thảo luận ở chương trước bị nghi ngờ bởi

một nhà sinh học người Mỹ tên là

Adrian Wenner. May thay, ông đã sống đủ lâu để thấy công trình cả mình được làm sáng tỏ bởi một nhà khoa hoc Mỹ khác, James L. Gould, hiện đang làm việc ở Princeton, thông qua một trong những thí nghiên có kết quả mỹ mãn nhất trong toàn bộ ngành sinh học. Tôi sẽ kể lại ngắn gọn câu chuyện này, bởi vì nó có ý nghĩa cho luận điểm của tôi về sức manh của giả thiết "cứ như được thiết kế".

Wenner và các cộng sự của mình đã không phủ nhận sự tồn tại của điệu múa ong. Họ thậm chí không

phủ nhận rằng nó chứa đựng những thông tin mà von Frisch đã phát hiện. Họ chỉ không công nhận rằng con ong khác đọc được điệu múa. Vâng, Wenner nói, đúng là hướng

của những đường giữa trong vũ điệu lắc lư so với phương thẳng đứng có liên quan đến hướng của thức ăn so với phương mặt trời. Nhưng không, những con ong khác không nhận được thông tin này từ điệu múa. Vâng, đúng là rất nhiều

thứ trong điệu múa có thể đọc ra

những con ong khác đọc thông tin này. Thậm chí chúng còn bỏ qua. Những người hoài nghi này nói: bằng chứng của von Frisch là sai lầm, và khi họ lặp lại thí nghiệm của ông với những đối chứng thích hợp (tức là tính đến những phương

pháp khác mà ong dùng để tìm đến được nguồn thức ăn), các kết quả

làm thông tin về khoảng cách đến nguồn thức ăn. Nhưng không có chứng cứ thuyết phục nào chứng tỏ

không còn ủng hộ giả thiết của Frisch nữa.

Và đây là chỗ mà Jim [39] Gould xuất hiện trong câu chuyện này với những thí nghiệm tài tình sắc sảo

tế đã được biết đến từ lâu về loài ong mật, mà ban sẽ nhớ lai từ chương trước. Mặc dù chúng thường múa trong bóng tối, và dùng đường thẳng đứng trên một mặt phẳng thẳng đứng làm ký hiệu hướng mặt trời trong một mặt phẳng nằm ngang, chúng có thể dễ dàng chuyển sang cách cổ xưa hơn nếu ta bật một ngọn đèn trong tố. Chúng sẽ quên trong lực đi và dùng bóng đèn để quy ước mặt trời, qua đó cho phép nó xác định hướng của điệu múa một cách trực tiếp. May thay, không có hiểu lầm nào khi vũ công chuyển sư trung thành của nó

của mình. Gould khai thác một thực

lòng trung thành của chúng theo cùng một cách, vì thế điệu múa ong cũng mang cùng một thông điệp: Những con ong khác cũng sẽ bay đi tìm thức ăn theo hướng đúng như ý của con ong vũ công sư.

Bây giờ là nước bài xuất sắc của

từ trọng lực sang bóng đèn. Những con ong đọc điệu múa cũng chuyển

Jim Gould. Ông phủ nhựa sen-lắc lên mắt của con ong vũ công để nó không thấy được bóng đèn nữa. Vì thế nó vẫn múa theo quy ước trọng lực chuẩn. Nhưng những con ong khác theo dõi điệu múa của nó, vì không bị bịt mắt, vẫn có thể thấy được bóng đèn. Chúng diễn giải

điệu múa như thế trọng lực đã được bãi bỏ và thay bằng quy ước bóng đèn. Chúng đo góc của điệu múa so với bóng đèn trong khi con vũ công lai hướng nó so với phương trong lưc (tức là phương thẳng đứng). Xét về mặt hiệu ứng, Gould đã bắt con ong vũ công phải nói dối về hướng thức ăn. Không phải nói dối theo nghĩa chung chung, mà nói dối theo cách mà Gould có thể điều khiển chính xác được. Tất nhiên, ông làm thí nghiệm không phải với duy nhất con ong bi bit mắt mà với một tập hợp thống kê các con ong và theo rất nhiều hướng khác nhau. Và ông đã thành công. Giả thiết ban đầu của von Frisch về ngôn ngữ múa đã được xác minh với một thắng lợi rực rỡ. Ý tôi chẳng phải kể chuyện này cho vui tai. Tôi muốn nói đến các

khía cạnh tích cực và tiêu cực về sự giả định của sự thiết kế tốt. Khi mới đọc các bài báo đặt nghi vấn của

Wenner và các cộng sư, một cách vô tư tôi nghĩ thật nực cười. Và điều này chẳng tốt chút nào, cho dù thực tế chúng ta thấy Wenner đã sai. Sư chủ quan của tôi chẳng qua là do dưa vào giả định "thiết kế tốt". Rốt cuốc thì Wenner chẳng phải phủ nhận sư tồn tại thực sư của điệu múa ong, cũng không phủ định rằng và khoảng cách đến nguồn thức ăn mà von Frisch đã phát biểu. Wenner chỉ đơn thuần phủ nhân các con ong khác đoc được thông tin này. Và điều này khó nghe cho tôi và các nhà sinh hoc Darwin khác. Điệu múa tinh vi đến thế, được tính toán đầy đủ, được điều chỉnh đến mức tinh xảo đến thế, nhằm mục đích rõ ràng là thông báo cho các con ong khác về khoảng cách và hướng của nguồn thức ăn. Theo quan điểm của chúng ta, sư điều chỉnh tỉ mỉ này chắc đã không thể có được ngoài sư chon loc tư nhiên. Ở một mức đô nào đó, chúng ta cũng đã mắc vào

nó chứa đưng thông tin về hướng

cùng một cái bẫy như những nhà theo thuyết sáng tao khi ho ngắm nhìn các kỳ quan của sư sống. Nhất định điệu múa phải tạo ra một điều qì đó có ích, và chắc là phải giúp các con ong khác tìm thức ăn. Hơn nữa, chính các đặc điểm của điệu múa đã được điều chỉnh tinh xảo mối quan hệ giữa góc và tốc đô với hướng và khoảng cách đến nguồn thức ăn - cũng phải tạo ra một cái gì đó có ích. Vì thế, theo quan điểm của chúng ta, Wenner chắc chắn là phải sai. Tôi đã tư tin đến mức, ngay cả nếu tôi đủ tài tình để nghĩ ra thí nghiêm bit mắt của Gould (mà chắc chắn là tôi không đủ tài Gould không chỉ đủ tài tình để nghĩ ra thí nghiệm đó mà còn cất công tiến hành, bởi vì ông không bị mờ mắt bởi giả định thiết kế tốt.

Tuy nhiên, chúng ta vẫn cần phải xem xét cho kỹ, bởi tôi nghĩ rằng Gould - cũng giống như Von Frisch trước ông trong thí nghiệm thị lực

rồi), tôi cũng chẳng màng đến việc

tiến hành nó.

màu - chắc đã có đủ giả định thiết kế tốt trong đầu để tin rằng thí nghiệm rực rỡ của ông phải có một xác xuất thành công đáng kể. Và như thế cần phải bỏ thời gian và công sức vào đó.

Bây giờ tôi muốn đưa ra hai thuật

ngữ kỹ thuật, "thiết kế ngược [40]," và "hàm thỏa dụng". Trong mục này tôi bị ảnh hưởng bởi cuốn sách tuyêt vời của Daniel Dennett, cuốn Ý tưởng nguy hiểm của Darwin. Thiết kế ngược là một kỹ thuật lập luân có kiểu như sau. Ban là một kỹ sư, đối diện với một vật nhân tạo mới tìm được và không hiểu gì về nó. Ban đặt giả thiết là nó được thiết kế cho một mục đích nào đó. Ban mổ xẻ và phân tích vật thể đó với ý định tìm ra xem nó được dùng để giải quyết vấn đề nào một cách thích hợp: "Nếu như tôi muốn chế tạo một cỗ máy để làm việc A nào đó, tôi có nên làm giống như thế

nên giải thích nó là một cỗ máy được thiết kế ra để làm việc B nào đó không?"

Thước lôga [41] mãi gần đây vẫn

này không nhỉ? Hay tốt hơn tôi có

là thứ thiết bị nhiệm mầu đáng trọng vọng của ngành kỹ sư. Thế mà đến thời điện tử này, nó cũng trở thành lạc hậu chẳng khác gì di vật thời Đồ Đồng. Một nhà khảo cổ học trong tương lai, khi tìm thấy

chiếc thước lôga và tìm hiểu xem chúng dùng để làm gì, và phát hiện rằng nó rất thuận tiện để ... kẻ đường thẳng hoặc để phết bơ lên bánh mì! Nhưng giả định nó dùng để kẻ đường thẳng hay phết bơ là

canh thẳng đơn thuần hoặc một con dao phết bơ sẽ không cần thêm mảnh trướt giữa thân để làm gì. Hơn nữa, nếu kiểm tra khoảng cách giữa các vach chia đô, nhà khảo cổ tương lai sẽ thấy chúng tuân theo tỷ lệ loga. Quả là một sư sắp đặt kỹ lưỡng đến mức không thể ngẫu nhiên mà có được. Nhà khảo cổ này sẽ phát hiện ra rằng, vào thời đại trước thời máy tính điện tử, dụng cụ này chắc là một meo tài tình để nhân chia nhanh chóng. Bí ẩn của chiếc thước trượt sẽ được khám phá vào quy tắc thiết kế ngược, sử dụng giả định rằng đó luôn là một thiết

không đúng giả định kinh tế. Một

kế thông minh và kinh tế. "Hàm thỏa dụng" không phải là một thuật ngữ của các kỹ sư, mà là của các nhà kinh tế. Nó có nghĩa là "cái được tối ưu hóa". Các nhà hoạch định kinh tế và nhà quản lý xã hôi khá giống với các kiến trúc sư và các kỹ sư ở chỗ ho luôn cố gắng tối ưu hóa một cái gì đó. Người theo thuyết thực lợi thì cố gắng để tối ưu hóa "niềm hạnh phúc lớn nhất cho nhiều người nhất" (thật tình, đây là một cụm từ nghe có vẻ thông minh và sâu sắc hơn thưc tế của nó). Với quan điểm này, những người theo thuyết thực lợi sẽ xem xét dành cho việc ổn định lâu

dài hay cho sư thỏa mãn ngắn han. Các nhà theo thuyết thực lợi khác nhau ở chỗ ho đo mức "thỏa mãn" bằng của cải, bằng sư thỏa mãn về công việc, sư đầy đủ về văn hóa hay về các quan hệ các nhân. Những người khác công khai tối ưu hóa hạnh phúc riêng của ho hơn cả sư thinh vương chung, và ho đề cao chủ nghĩa cá nhân bằng thứ triết học nói rằng "hạnh phúc chung sẽ được tối ưu khi mọi người tư chăm sóc lấy bản thân mình". Bằng cách quan sát hành vi cá nhân trong suốt cuộc đời của một người, ban sẽ có thể "thiết kế ngược" ra hàm thỏa dụng của họ. Nếu bạn thiết kế

ngược hành vi của một chính phủ, ban sẽ kết luân rằng những gì được tối ưu hóa chính là công việc và sư thinh vương của đất nước đó. Đối với một đất nước khác, hàm thỏa dung có thể là sư duy trì quyền lực của tổng thống, hay tài sản của một gia đình tri nào đó, hay là hâu cung vua chúa, sư ổn định của vùng Trung Đông, hay là bình ổn giá dầu. Vấn đề ở chỗ chúng ta có thể tưởng tượng ra nhiều hơn một hàm thỏa dung. Không phải lúc nào chúng ta cũng có thể thấy rõ ràng những gì mà các cá nhân, công ty hoặc các chính phủ đang cố gắng để tối ưu hóa. Nhưng chắc chắn họ đang cố

Bởi Homo sapiens là một loài luôn mang nặng trong đầu những mục đích. Nguyên lý này cũng áp dụng được ngay cả khi hàm thỏa dụng

gắng để tối ưu hóa một cái gì đó.

được ngay cả khi hàm thỏa dụng hóa ra là một tổng trung bình có hệ số hay là một hàm phức tạp có nhiều đối số.

Chúng ta hãy thử quay lại với các

Chúng ta hãy thử quay lại với các cơ thể sống và thử tìm ra hàm thỏa dụng của chúng. Thường thì ta nghĩ có rất nhiều, nhưng hóa ra ta sẽ

dụng của chúng. Thường thì ta nghĩ có rất nhiều, nhưng hóa ra ta sẽ thấy tất cả cuối cùng đều giảm xuống thành một. Cách hay ho để làm cho việc này trở nên to chuyện là tưởng tượng là có một vị Thần Kỹ Sư nào đó đã tạo ra các cơ thể

sống. Rồi sau đó, thông qua thiết kế ngược, ta thử tìm hiểu xem vị Kỹ Sư này đang cố gắng tối ưu hóa điều gì: Hàm Thỏa Dụng của Chúa là gì? Con báo cheetah có đầy đủ các đặc điểm cho thấy nó đã được thiết kế tuyệt hỏa cho một mục đích nào đó, và để tìm ra hàm thỏa dung của nó bằng thiết kế ngược cũng không đến nỗi khó. Nó được thiết kế dễ dàng để giết các con linh dương. Từ nanh, vuốt, mắt, mũi, cơ chân, xương sống cho tới não của báo cheetah đúng chính xác là những gì chúng ta mong đợi: mục đích của Chúa Trời khi thiết kế ra báo cheetah là để cực đại hóa số linh phép thiết kế ngược ở con linh dương, ta cũng thấy những dấu vết ấn tương không kém: chúng được thiết kế cho mục đích hoàn toàn ngược lại: sự sống sót của linh dương và sư chết đói của báo cheetah. Cứ như thể cheetah được thiết kế bởi một vị thần, còn linh dương lại được thiết kế bởi một vi thần đối thủ vây. Ngược lai, nếu chỉ có duy nhất một Đấng Tạo Hóa làm ra cả hổ và cừu, cheetah và linh dương, thì Ngài đang chơi trò gì đây? Phải chẳng Ngài là một người khát máu thích chiêm ngưỡng những môn thể thao đẫm máu? Có

dương bị chết. Ngược lại, nếu làm

dân số thú rừng châu Phi? Hay chẳng nhẽ Ngài đang dùng cực đại hóa fan hâm mô cho chương trình David Attenborough ? Đây là những hàm thỏa dụng dễ thấy và hoàn toàn thực tế. Tất nhiên, sư thật thì chúng đều vớ vẩn cả. Bây giờ chúng ta đã hiểu chi thiết Hàm Thỏa Dụng duy nhất của sự sống, và nó chẳng có chút gì giống với những cái ở trên. Chương 1 đã giúp cho độc giả nhìn nhân rằng hàm thỏa dung chân chính của sự sống, điều được cực đai hóa trong thế giới tư nhiên,

chính là sự tồn tại của ADN. Nhưng

phải ngài đang tránh sư quá tải của

khóa kỹ trong các cơ thể sống và nó phải tranh thủ tối đa đòn bẩy quyền lực mà nó có được. Các chuỗi ADN trong cơ thể các con cheetah cực đại hóa sư tồn tại của chúng bằng cách khiến cho các cơ thể đó giết những con linh dương. Còn những chuỗi biết mình nằm trong cơ thế con linh dương lai cực đai hóa sư tồn tại của mình bằng cách cố gắng làm điều ngược lại. Vây là sư tồn tại của ADN mới chính là cái được cực đại hóa trong cả hai trường hợp. Trong chương này, tôi sẽ làm một số phép thiết kế ngược trên một số ví dụ thường gặp và cho thấy rằng

ADN không trôi nổi tư do; nó được

mọi thứ đều trở nên sáng tỏ khi ta giả định rằng sự sống còn của ADN chính là những gì được cực đại hóa. Tỷ lê giới tính - tức là tỷ lê số con

đực và cái - trong các quần thể tự nhiên thông thường là 50:50. Điều này không có ý nghĩa về mặt kinh tế trong rất nhiều loài mà trong đó thiểu số con đực có độc quyền về số lượng "thê thiếp": hệ thống "tam

cung lục diện". Trong quần thể voi biển được nghiên cứu kỹ, 4 phần trăm con đực thực hiện với 88 phần trăm tổng số cuộc giao phối. Ta không phải bận tâm rằng, Hàm Thỏa Dụng của Chúa trong trường hợp này có vẻ không công bằng với

mắn. Hơn nữa, một vi thần có đầu óc kinh tế một chút chắc chắn sẽ nhận ra ngày rằng 96 phần trăm con đưc kém may mắn đó đang tiêu thu mất một nửa thức ăn của cả quần thể (thực tế là hơn một nửa, vì voi biển đưc lớn hơn voi biển cái rất nhiều). Các con đưc độc thân dư thừa đó chẳng làm gì ngoài việc ngồi chờ, để khi cơ hội tới, chúng sẽ chiếm một chỗ trong số 4 phần trăm những anh chàng chủ hâu cung may mắn kia. Lý do nào lý giải sư tồn tại của bầy độc thân lớn quá đáng đó? Bất kì một hàm thỏa dung nào, chỉ cần chú ý một chút tới hiệu

những con đưc đa số kém may

sẽ dẹp bỏ những con độc thân này đi, chỉ cho sinh ra vừa đủ con đực để thụ tinh những con cái mà thôi. Thêm một lần nừa, sự dị thường bề ngoài này có thể được giải thích một cách đơn giản và đẹp mắt một

khi bạn hiểu được Hàm Thỏa Dụng kiểu Darwin: cực đại hóa sự tồn tại

quả kinh tế của cả quần thể, điều

của ADN.

Sau đây, tôi sẽ đi vào ví dụ tỷ lệ giới tính chi tiết hơn, bởi vì hàm thỏa dụng của nó phù hộ cho phép nghiên cứu kinh tế một cách chuẩn

xác. Charles Darwin thừa nhận thất bại rằng: "Trước đây tôi cứ nghĩ rằng, nếu như có một khuynh bây giờ tôi thấy toàn bộ vấn đề phức tạp đến mức... thôi, tốt hơn hết là dành lời giải cho thế hệ tương lai". Và một lần nữa, trong thế hệ tương lai của Darwin, chính Sir Ronald Fisher vĩ đại đã đứng lên. Fisher đã lập luận như sau:

hướng tạo ra hai giới tính có số lượng bằng nhau để tạo thuận lợi cho cả loài, thì ta cứ dùng chọn lọc tư nhiên là giải thích được. Nhưng

Mọi cá thể sinh ra đều có duy nhất một mẹ và một bố. Cho nên tổng mức độ sinh sản thành công (tức là số con cái) của toàn bộ con đực bằng mức độ thành công các cá thể cái. Tôi không có ý nói mỗi cá thể đực và cái, bởi vì có những cá thể rõ ràng thành công hơn những cá thể khác. Tôi đang nói về tổng cộng của cả giống

đưc so với tổng công của cả giống cái. Bây giờ, ta chia toàn bộ hậu thế ra thành các cá thể đưc và cái riêng biệt - không phải chia đều, mà chỉ chia ra. Miếng bánh sinh sản dùng cho toàn bô số cá thể đưc sẽ bằng với miếng bánh sinh sản dùng chia cho số cá thể cái. Cho nên, chẳng han có nhiều con đực hơn con cái trong quần thể, lát bánh trung bình của mỗi con đực phải nhỏ hơn lát bánh trung bình của mỗi con cái. Suy ra: mức đô thành công sinh sản trung bình (có nghĩa là số lương con cháu trong kỳ vong) của một con đưc so với mức đô thành công sinh sản trung bình của một con cái được quyết định chỉ bằng tỷ số giữa con đưc và con cái. Trung bình, một thành viên bên giới tính chiếm thiểu số sẽ có mức sinh sản thành công lớn hơn một thành công của bên giới tính chiếm đa số. Chỉ khi chỉ số giới tính là cân bằng, không giới tính nào là thiểu số, thì cả hai giới mới được hưởng mức đô thành công sinh sản bằng nhau, tính trung bình trên

mỗi cá thể. Nhưng vì sao lai cần phải bằng nhau ở đây? Những phần sau đây sẽ giúp ta hiểu rõ hơn. Còn bây giờ ta thấy, kết luân đơn giản đến tuyết vời được suy ra tư một phép logic đơn giản. Nó không phụ thuộc vào dữ kiên quan sát thực tế nào cả, ngoai trừ dữ kiên nền tảng rằng mọi đứa trẻ sinh ra đều có một bố và một me.

thụ thai, cho nên chúng ta có thể giả định rằng một cá thể chẳng có chút quyền lưc nào để quyết định giới tính của mình. Cùng với Fisher, chúng ta sẽ giả định rằng bố hoặc

Giới tính thường được xác định khi

me có quyền xác định giới tính cho con mình. Tất nhiên "quyền" ở đây không phải là thứ quyền lực được sử dung một cách tính toán có ý thức. Nhưng chẳng han người me có chất trong âm đạo hơi khắc nghiệt đối với các tinh trùng tao ra con trai nhưng lai không vấn đề gì đối với các tinh trùng tạo ra con gái. Môt người bố có thể có khuynh hướng gien sản xuất ra tinh trùng tạo con gái nhiều hơn con trai. Bây giờ, bỏ qua chuyên thực tế phải làm sao, hãy thử tưởng tương chính mình là một người bố hoặc me đạng cố gằng quyết định xem nên có con trai hay gái. Ở đây, ta không nói chuyên quyết định bằng ý thức mà là sự chọn lọc gien ảnh hưởng lên giới tính của con cái. Nếu ban đang cố gắng để tối đa

thiên hướng tư nhiên tao ra các hóa

ban nên có con trai hay con gái đây? Chúng ta đã thấy rằng ban nên có một đứa con thuộc giới tính nào nằm bên phía thiểu số của quần thể. Bằng cách này, con của ban sẽ có được hoạt động sinh sản lớn hơn mức trung bình và ban sẽ có nhiều cháu chắt. Nếu như không có giới tính nào là thiếu số hay đa số - nói cách khác, nếu tỉ lệ giới tính đã là 50:50 - ban không có lợi gì trong việc chon giới tính cả. Trai hay gái cũng không thành vấn đề. Do đó, tỉ lê giới tính 50:50 được xem là ổn định về mặt tiến hóa. "Ôn định tiến hóa" là một thuật ngữ

hóa số lương con cháu của mình,

khi tỉ số giới tính khác 50:50 thì sư thiên vi trong việc chon giới tính mới có giá tri. Đối với câu hỏi tai sao các cá thể lại cố gắng cực đại hóa số lương cháu chắt của mình, cái này dường như chúng ta chẳng cần thắc mắc. Những gien mà chúng ta sẽ thấy trên đời này chắc chắn là các gien khiến các cá thể tối đa hóa số lương cháu chắt. Những đông vật mà chúng ta nghiên cứu đã thừa hưởng những gien của những tổ tiên thành công đi trược. Ta dễ bị rơi vào bẫy khi phát biểu lý thuyết của Fisher rằng 50:50 là tỉ

được một nhà tiến hóa người Anh vĩ đai John Maynard Smith đưa ra. Chỉ cho một đứa con là đưc nếu như con đưc là thiểu số trong quần thể, là cái nếu như con cái là thiểu số. Nếu không có giới tính nào là thiểu số, thì chẳng có điều gì là tối ưu cả: một cá thể bố hoặc me được thiết kế kỹ lưỡng sẽ hoàn toàn trung lập đối với việc nên có một đứa con trai hay một đứa con gái. Năm mươinăm mươi được cho là tỉ số ổn định tiến hóa bởi vì chon loc tư nhiên không ủng hô một khuynh hướng nào đi chệch khỏi nó, và nếu có bất kỳ sư đi chệch nào, chon loc tư nhiên sẽ ủng hô một khuynh hướng

số giới tính "tối ưu", điều này hoàn toàn khôn chính xác. Giới tính tối ưu

để khôi phục lại sự cân bằng.

Hơn nữa, Fisher nhận thấy rằng,
một cách nghiêm ngặt thì số lượng
đưc cái ở mức 50:50 không phải do

chon loc tư nhiên thiết lập, mà do điều ông gọi là "công lao cha me". Công lao cha me là tất cả số lương thức ăn vất vả kiếm được để rót vào miêng một đứa bé, cung toàn bộ thời gian và năng lượng bỏ ra để chăm sóc nó, lẽ ra có thể dùng làm viêc khác, ví du chăm sóc một đứa bé nữa. Ví dụ, ta giả sử rằng cha me trong một loài hải cấu no trung bình bỏ ra gấp hai lần thời gian và năng lương để nuôi một đứa con trai so với một đứa con gái. Hải cẩu

đực đồ sộ so với hải cẩu cái đến nỗi ta dễ tin điều này là sư thật (mặc dù không hẳn là chính xác). Chúng ta hãy xem điều này có ý nghĩa gì. Bây giờ, cha mẹ phải lựa chọn, không phải là "tôi có nên có một đứa con trai hay một đứa con gái đây", mà là "tôi nên có một đứa con trai hay hai đứa con gái đây. Bởi vì số thức ăn và các thứ khác cần đủ để nuôi một đứa con trai, ban có thể dùng để nuôi hai đứa con gái. Tỷ số giới tính ổn định tiến hóa, đo theo số lương các cá thể, sẽ là 2 cái cho mỗi 1 đưc. Nhưng đo theo số lượng công lao cha me (thay vì số lượng các cá thể), tỷ số ổn định về

mặt tiến hóa vẫn là 50:50 (50% công lao động cho con trai trên 50% công lao đông cho con gái. ND). Lý thuyết của Fisher chung quy là một sư cân bằng công lao cho hai giới. Như ta thấy trên thực tế, điều này hóa ra chẳng khác nào sự cân bằng số lượng của hai giới. Như tôi đã nói, ngay cả với hải cấu, có vẻ như công sức cha me cho con trai chẳng khác biệt là mấy so với con gái. Sư mất cân bằng lớn ở hải cẩu xảy ra sau khi công lao cha me đã hết, tức là từ khi con non tư sống được một mình mà không cần đến cha mẹ nữa. Nên quyết định mà cha mẹ đối diện vẫn là: "Tôi có có thể lớn hơn rất nhiều so với tổng chi phí cho một con cái lớn lên đến trưởng thành, nếu như phụ phí này không phải do người quyết định (cha hoặc mẹ) gánh chịu thì cũng không có ý nghĩa gì theo lý thuyết của Fisher.

nên có một con trai hay một con gái đây?" Mặc dù tổng chi phí để lớn lên đến trưởng thành của một con đực

bằng hóa công sức vẫn đúng trong trường hợp một giới có tỉ lệ chết cao hơn giới kia. Giả dụ, những con đực sơ sinh dễ tử vong hơn con cái. Nếu tỉ lệ giới tính lúc thụ thai chính xác là 50:50, số lương con cái lớn

Quy tắc của Fisher về việc cân

lượng con đực lớn đến tuổi trưởng thành. Vì thế, các con đưc sẽ thuộc giới thiểu số, và chúng ta sẽ máy móc cho rằng chon loc tư nhiên sẽ tạo ưu thế cho những cha me chuyên tạo ra con trai. Fisher cũng nghĩ như vây, nhưng chỉ đến một thời điểm nhất định - và đó là một giới han được xác định cụ thể. Ông không kì vong rằng cha me sẽ thu thai một lương dư thừa con trai đủ làm cân bằng tỉ lệ tử vong sơ sinh và dẫn đến sư cân bằng trong quần thể. Không, tỉ lệ giới tính lúc thụ thai đúng là có thiên về con đưc hơn, nhưng chỉ đến một thời điểm

đến tuổi trưởng thành sẽ vượt xa số

mà tống công sức cho con trai bằng với tổng công sức cho con gái. Một lần nữa, cách dễ nhất để hiểu

Một lần nữa, cách dễ nhất để hiểu vấn đề này là ban hãy tư đặt mình vào vị trí cha mẹ phải quyết định và tự hỏi mình "Tôi nên có con gái để nó dễ sống sót hơn hay có con trai tuy nó có thể sẽ chết yểu?" Quyết định muốn có cháu thông qua con trai sẽ dẫn đến khả năng ban sẽ phải bỏ thêm nguồn lưc vào những đứa con trai dôi ra để thay thế những đứa có thể bị chết đi. Bạn có thể tưởng tượng mỗi đứa con trai sống sót như đang gánh thêm phần những người anh em đã mất. Nó

đang gánh theo nghĩa rằng: quyết

những đứa bé trai bị chết. Quy luật nền tảng của Fisher vẫn đúng. Tổng lượng vật chất và năng lượng đầu tư vào những đứa con trai (bao gồm việc nuôi những đứa bé trai sơ sinh cho đến lúc chúng chết đi) sẽ bằng với tổng lượng đó đầu tư vào những đứa con gái.

định đi theo đường con trai đến cháu chắt khiến cha mẹ mất thêm một phần công sức bị phí pham trên

Chuyện gì xảy ra nếu thay vì tỷ lệ bé trai sơ sinh chết cao hơn, ta có tỉ lệ đàn ông chết cao hơn sau khi đã dùng hết công lao cha mẹ? Điều này thực tế hơn, bởi vì con đực trưởng thành hay đánh nhau và bị

thương. Chính trường hợp này dân đến việc con cái dư thừa ra trong số con đưc cái sinh sản được. Vì thế, bề ngoài có vẻ như cha me nào tập trung chuyên sinh ra con trai thì có lợi hơn, do tận dụng được lợi thế của con đực trong quần thể sinh sản. Tuy nhiên, nghĩ kỹ hơn một chút, ban sẽ nhân ra đấy là một lập luận sai lầm. Quyết định mà cha mẹ phải đưa ra là như sau: "Tôi có nên có một con trai, mà rất có khả năng nó bị chết trong một trân đánh nhau sau khi tôi đã nuôi nấng nó trưởng thành, nhưng nếu nó sống sót, nó sẽ cho tôi nhiều cháu chắt hơn? Hay là tôi nên có một đứa con lượng cháu ở mức trung bình?" Số lượng cháu mà bạn có thể mong đợi thông qua một đứa con gái. Và chi phí để tạo ra một đứa con trai vẫn là chi phí nuôi nấng bảo vệ nó cho đến ngày nó rời tổ ấm. Việc nó có thể bị chết chẳng bao lâu sau khi rời tổ không làm thay đổi phép tính

gái, mà chắc chắn nó sẽ cho tôi số

đến ngày nó rời tô âm. Việc nó có thể bị chết chẳng bao lâu sau khi rời tổ không làm thay đổi phép tính này.

Trong toàn bộ lập luận này, Fisher đã giả định rằng "người ra quyết định là cha mẹ" Kết quả tính toán sẽ thay đổi nếu đó là một

quyết định là cha mẹ" Kết quả tính toán sẽ thay đổi nếu đó là một người khác. Giả dụ, một cá thể nào đó có thể ảnh hưởng đến chính giới tính của mình. Một lần nữa tôi

phương diện "có chủ tâm" (mà chỉ theo phương diên tư nhiên thông qua di truyền - ND). Tôi đang hình dung rằng gien có thể chuyển một cá thể thành con đực hay cái phụ thuộc vào tín hiệu môi trường. Theo quy ước lâu nay của chúng ta, để ngắn gọn tôi sẽ dùng từ "sự lựa chọn có tính toán" của một cá thể ở đây là sự lựa chọn có tính toán về giới tính của chính nó. Nếu những loài thú theo chế độ "tam giác lục diện" như loài hải cẩu voi được trao quyền lựa chọn này, hiệu quả sẽ rất dữ dôi. Các cá thể sẽ vô cùng khao khát làm con đưc để được thành bá

không có ý nói "ảnh hưởng" theo

sẽ mong muốn trở thành con cái thay vì một con đưc độc thân. Tỷ lê giới tính trong quần thể sẽ nghiêng về nữ rất manh. Thật không may cho loài hải cẩu voi, chúng không thể xem xét lại giới tính của mình vốn đã được xác định lúc thu thai. Nhưng một số loài khác lại có thể. Những con cá hàng chài đưc (wrasse) đầu xanh vốn rất lớn và có màu sắc săc sỡ, chúng nắm giữ tam cung luc diên gồm những con cái có màu sắc mờ nhat. Có những con cái lớn trội hơn và chúng thống trị những con khác. Nếu một con đưc

chủ hậu cung, nhưng nếu chúng thất bai trong việc lập hậu thì chúng Thay vì bỏ phí cuốc đời chờ đơi dưới dang những con đưc độc thân chờ môt con đực thống trị hâu cung mất đi. Chúng trải cuốc đời thành những con cái hữu ích. Hệ thống tỷ lệ giới tính của con cá hàng chài đầu xanh là một hệ thống rất hiểm, trong đó hàm thỏa dung của Chúa trung với những gì mà các nhà kinh tế xã hôi học xem là khôn ngoan. Như vây, ta vừa xem xét hai tình huống: bố me cá thể đưa ra quyết

chết, vị trí của nó sẽ bị con cái lớn nhất chiếm giữ và nó sẽ nhanh chóng biến thành con đực với màu sắc sặc sỡ. Những con cá này giành được thứ tốt nhất từ cả hai giới.

định. Những ai khác có thể quyết định nữa đây. Trong những loài côn trùng sống theo bầy, quyết đinh đầu tư phần lớn được những con đưc vô sinh thực hiện. Những con thơ này thông thường là những người chi (cũng có thể là anh, trong trường hợp của mối) của con non đang được nuôi nấng. Trong số những loài côn trùng quen thuôc, ta có những con ong mật. Những nhà nuôi ong đang đọc cuốn sách này có thể đã nhận ra rằng tỷ lệ giới tính trong tổ có vẻ như không tuần theo những tính toán của Fisher. Điều chú ý đầu tiên là không nên tính

định và chính cá thể đưa ra quyết

những con thơ là những con cái. Về mặt giải phẫu chúng là cái, những chúng không sinh đẻ, cho nên tỷ lê giới tính được điều hòa theo như lý thuyết của Fisher là tỷ lệ giữa những con ong đực với những con ong chúa mới được "đúc" ra từ tổ. Trong trường hợp ong và kiến mà tôi đã thảo luận trong cuốn Gien Ích Kỷ nên không lặp lại ở đây, có những lý do về mặt kỹ thuật để ta nghĩ rằng tỷ lệ giới tính là 3:1 nghiêng về phía các con cái. Nhưng thưc tế khác xa như vây, như bất cứ người nuôi ong nào cũng biết tỷ lê giới tính nghiêng về phía con đưc rất nhiều. Một tổ ong sum suê chỉ có thể tạo ra nửa tá con ong chúa trong một mùa nhưng tạo ra hàng trăm, thậm chí hàng ngàn con ong đực.

Chuyên gì đang xảy ra thế nhỉ?

Trong lý thuyết tiến hóa hiện đại, chúng ta nợ câu trả lời của W.D.

Hamilton, hiện đang theo học ở đại học Oxford. Câu trả lời rất sáng tỏ và tao thành chuẩn mực cho toàn bô lý thuyết bắt nguồn từ Fisher về tỷ lê giới tính. Chìa khóa cho câu đố tỷ lê giới tính của ong nằm ở hiện tương chia tổ rất đặc biệt. Về nhiều mặt, tổ ong giống như một cá thể duy nhất. Nó lớn lên đến độ trưởng thành, sinh để rồi chết đi. Sản phẩm ong con. Vào đỉnh điểm của mùa hè, khi một tổ ong đã trở nên rất phát triển, nó quẳng ra một đàn ong nhỏ. Việc tao ra những đàn ong con ở tổ ong là tương đương với sư sinh đẻ ở một cá thể sinh vất thông thường. Nếu tổ ong là một nhà máy, các đàn nhỏ kia là sản phẩm cuối cùng và chúng sẽ mang theo những gien quý của cả tập đoàn. Một bầy ong con bao gồm một con ong chúa và mấy ngàn con ong thơ. Chúng rời tổ ong me theo một khối duy nhất và tụm lại thành một đám dày đặc treo trên một nhành cây hay một mỏm đá. Đây là điểm đóng

sinh sản của một tổ ong là một đàn

Nội trong vài ngày, chúng tìm ra một cái hang hoặc một hốc cây (hoặc bị bắt bởi một người nuôi ong, cũng là người đã nuôi đàn ong mẹ, rồi cho vào một tổ mới chuyện này hiện đại và thực tế

hơn.)

quân tạm thời của chúng trong khi chúng xây dựng một ngôi nhà mới.

thịnh là cho ra những bầy ong con. Bước đầu tiên trong việc này là tạo ra một ong chúa mới. Thông thường, một nửa tá ong chúa mới được tạo và chỉ có một con được xác định sẽ sống sót. Con đầu tiên nở ra đốt những con khác cho đến

Công việc của một tổ ong phồn

chỉ để phòng hờ mà thôi). Những con ong chúa xét về gien là hoàn toàn giống như những con ong thợ, những chúng được nuôi trong một ngăn đặc biệt treo bên dưới tảng ong và được bón loại thức ăn giàu dưỡng chất dành cho ong chúa. Thức ăn bao gồm sữa ong chúa, chất mà nhà văn Dame Barbara Cartl ADN lãng man cho rằng cuộc đời và phong cách nữ hoàng của mình là do nó mà có. Những con ong thơ được nuôi trong những ô nhỏ hơn, chính là những ô sau này dùng đựng mật. Ong đực xét về gien là khác hẳn. Chúng sinh ra từ

chết. (Chắc là lương ong chúa dôi ra

quả trứng thành một con ong đưc hay một con ong cái (ong chúa hoặc ong thơ) là do con ong chúa quyết định. Con ong chúa chỉ giao phối trong một lần "bay giao phối" duy nhất, vào lúc bắt đầu trưởng thành, rồi lưu trữ tinh trùng cho toàn bô cuộc đời của nó. Khi trứng đi xuống ống dân trứng, nó có thể giải phóng hoặc không giải phóng ra từ kho một bao kiện tinh trùng nhỏ để thu tinh. Vì vây, con ong chúa hoàn toàn điều khiển tỷ lệ giới tính ở trứng. Tuy nhiên, sau đó những con ong thơ có vẻ như có toàn bộ quyền

những chính không được thụ tinh. Đáng chú ý thay, việc chuyển một lực bởi chúng có thể điều khiển được nguồn thức ăn cho ấu trùng. Ví du chúng có thể bỏ đói những con ấu trùng đưc nếu con ong chúa đẻ ra quá nhiều (theo quan điểm của chúng). Và trên hết, các con ong thợ có quyền chuyển một trứng cái (trứng đã được thu tinh) thành một ong thợ hay ong chúa, bởi vì việc này phu thuộc hoàn toàn vào viêc nuôi, đặc biệt là thức ăn. Bây giờ chúng ta hãy trở lai vấn đề tỷ lê giới tính và tìm hiểu vấn đề mà các con ong thơ phải đối diện. Như chúng ta vừa thấy, không

giống như con ong chúa, chúng không chọn lựa việc tạo ra các con các em trai (con ong đưc) hay là các em gái (những con ong chúa trẻ). Và bây giờ trở lai với câu đố của chúng ta. Bởi vì tỷ lê giới tính thực tế có vẻ nghiêng hoàn toàn về phía con đưc, và nó có vẻ không hợp lý theo quan điểm của Fisher. Chúng ta hãy xem xét kỹ quyết định mà các con ong thơ phải đưa ra. Tôi cho rằng đó là sư lưa chon giữa em trai và em gái. Nhưng đơi đã. Quyết định nuôi một em trai chỉ là quyết đinh khiến cho tổ chức chi ra thức ăn và những thứ khác để nuôi một ong đực. Nhưng quyết định tạo ra một ong chúa mới sẽ khiến cả tổ bỏ

trai hay con gái mà là việc tao ra

mà thôi. Bởi quyết định nuôi một ong chúa mới tương đương với quyết định nuôi một bầy ong con (tức là bao gồm cả ong chúa và ong thợ. ND). Nuôi một ong chúa chỉ tốn không đáng kể lương mật ong chúa và các thức ăn khác. Chi phí chủ yếu để tao ra hàng ngàn các con ong thơ sẽ ra đi cùng con ong chúa đó. Điều này chắc chắn là lời giải đích thực về sự nghiêng về phía con đực vốn trông có vẻ khác thường trong tỷ lệ giới tính. Đây chính là một ví du đỉnh điểm cho những gì tôi đã

ra nhiều hơn những gì cần thiết đế nuôi chính cơ thể một con ong chúa nói rằng lương công sức phải bỏ ra trên con đực và con cái phải bằng nhau, chứ không phải số lương dân số của các cá thể đực và cái. Công sức bỏ ra nuôi một con ong chúa sẽ làm tốn một công sức to lớn các con ong thơ sẽ ra đi cùng với ong chúa. Giống như quần thể hải cẩu mà chúng ta giả dụ ở trên, một giới nuôi tốn gấp hai lần so với giới còn lai và kết quả là giới đó chỉ đông bằng một nửa giới kia. Trong trường hợp của ong, một ong chúa tốn gấp hàng trăm hay thâm chí hàng ngàn lần một con ong đực, bởi vì nó mang trên lưng của mình chi

nói trước đây. Quy tắc của Fisher

cần thiết cho bầy ong con. Vì thế, ong chúa sẽ hàng trăm lần ít hơn ong đực. Nhưng chưa hết, vẫn còn môt cái "noc ong" trong câu chuyên gây tò mò này: thật kỳ lạ, khi bầy ong con dời đi, nó lại mang theo con ong chúa cũ, không phải con ong chúa mới. Tuy vậy, các phép tính kinh tế vẫn giữ nguyên. Quyết định tạo ra một ong chúa mới vẫn dẫn đến kinh phí cho bầy ong con cần thiết để hộ tống cho ong chúa cũ đến nhà mới của nó. Để gói gọn lại lý thuyết về tỷ lệ giới tính, chúng ta quay lai câu đố về hậu cung khởi đầu của ta: sự sắp

phí của toàn bộ ong thơ phu thêm

các ong đưc độc thân, vốn tiêu tốn aần một nửa (thâm chí hơn một nửa) thức ăn của toàn bộ quần thể, mà không baao giờ sinh để cũng chẳng làm gì có ích cả. Rõ ràng sư thinh vương cho cả quần thể không được tối đa hóa ở đây. Điều gì thế này nhỉ? Một lần nữa thử đặt mình vào vi thế người ra quyết định - ví du như một người me đang cố gắng "quyết định" xem nên có một con trai hay con gái để tối đa hóa số cháu chắt. Với một suy nghĩ máy móc, con hải cẩu sắp làm mẹ này sẽ hỏi "tôi có nên có một con trai mà rốt cuốc nó sẽ trở thành độc

đặt hoang phí cho ra một bầy lớn

nào, hay một đứa con gái mà rồi nó sẽ ở trong một hậu cung nào đó và cho tôi một số lượng cháu đáng nể". Câu trả lời thích hợp cho con hải cấu sắp làm me này là: "nhưng nếu ban có một con trai, nó có thể tạo ra một hậu cung, và trong trường hợp đó nó sẽ cho ra số cháu lớn hơn rất nhiều so với một đứa con gái". Để đơn giản, giả sử rằng mọi con cái đều sinh ra một lượng con trung bình, và rằng chín trong số 10 con đưc chẳng bao giờ sinh đẻ, trong khi một trong mười con đực đó làm chủ toàn bộ con cái. Nếu bạn có một con gái, bạn có thể vững tin

thân và chẳng cho tôi đứa cháu

bình. Nếu như ban có một con trai, ban có 90% xác xuất là không có đứa cháu nào cả, nhưng có 10% cơ hôi để có 10 lần nhiều hơn số lương cháu trung bình. Vậy, số lượng cháu trung bình mà bạn vẫn có thể có thông qua một đứa con trai vẫn bằng số lượng cháu trung bình thông qua những đứa con gái. Chon loc tư nhiên vẫn ưu tiên tỷ lê 50:50 cho giới tính, cho dù hiệu quả kinh tế của cả loài trông có vẻ thảm hại do một số lương con đưc dư thừa. Vây là quy luật của Fisher vẫn đúng. Tôi vừa diễn tả toàn bộ những lập luân này theo dang "những quyết

môt số lượng cháu vào hàng trung

định" của các cá thể đông vật. Nhưng nói rõ lai, đó chỉ là cách nói cho dễ hiểu. Điều thực sự diễn ra là: những gien nào đó có khả năng làm tối đa hóa lương con cháu sẽ trở nên động đúc trong tập hợp gien. Theo dòng thời gian, thế giới của chúng ta sẽ chiếm đầy các gien thành công. Bởi vì, làm sao một gien có thể đi qua nhiều thế hệ thành công mà lai không phải việc thông qua việc gây ảnh hưởng lên quyết định của các cá thể để tối đa hóa số lương cháu chắt của mình? Lý thuyết về tỷ lê giới tính của Fisher nói cho chúng ta biết việc tối đa hóa ấy diễn ra như thế nào, và hóa nền kinh tế của loài hoặc của quần thể. Có một hàm thỏa dụng ở đây, nhưng nó khác xa với hàm thỏa dụng mà nảy sinh từ cái đầu kinh tế của loài người.

Sự lãng phí của nền kinh tế có hậu cung được tóm tắt như sau: các con đực, thay vì cống hiến mình cho

nó khác hoàn toàn với việc tối đa

những công việc có ích, lãng phí năng lượng và sức lực của chúng vào những công việc đấu tranh phù phiếm chống lại nhau. Điều này đúng, ngay cả khi chúng ta định nghĩa "tính hữu dụng" theo thuyết Darwin, khi nói về việc nuôi nấng con cái. Nếu các con đực dùng năng

nhau vào những việc hữu ích, toàn bộ loài sẽ nuôi được nhiều con cháu hơn tốn ít công sức hơn và tiêu thụ ít thức ăn hơn.

lực mà chúng phí phạm để đánh

Một chuyển gia lao động sẽ nhìn thế giới loài hải cẩu voi đầy kinh ngạc. Ta có sự so sánh tương đương như nhau: một xưởng làm việc cần 10 người đàn ông để vân hành, vì xưởng chỉ có 10 máy tiên. Thay vì đơn giản thuế 10 người, ban quản lý quyết định thuê 100 người. Mỗi ngày toàn bộ 100 người có mặt và lĩnh lương, xong họ quay ra đánh đấm nhau để chiếm được 10 cái

máy tiên đó. Ho vẫn chế ra được

không nhiền hơn so với khi 10 người làm ra, thâm chí còn ít hơn bởi 100 người đó bân đánh nhau và các máy tiên không được dùng hiệu quả. Theo chuyên gia nghiên cứu lao động đó thì không còn nghi ngờ gì: 90% lao đông là dư thừa, ta phải thông báo rõ và cho nghỉ việc ngay. Không chỉ trong những lần canh tranh sức manh các con đưc lãng phí sức lực của chúng - "lãng phí" ở đây là theo quan điểm của nhà kinh tế học con người hay từ chuyên gia

nghiên cứu lao động. Trong rất nhiều loài còn có thi sắc đẹp nữa. Điều này tạo ra một hàm thỏa dụng

sản phẩm từ các máy tiện đó nhưng

thức cho dù nó không có ý nghĩa kinh tế trực tiếp: vẻ đẹp thẩm mỹ. Điều này rõ ràng nhất ở các loài chim như gà gô hay loài bồ câu áo dài. Môt cái "lek" (hay là "sới tình") là một khoảnh đất thường được các con chim trống dùng để diễu hành trước các con mái. Các con mái đến xem sới tình và xem một số con trống trình diễn điệu bộ trước khi lựa chọn cho mình một con và giao phối với nó. Các con trống trong những loài có tập tục xới tình như thế thường có những trang trí rất kỳ quái, mà chúng phô ra cùng với những chuyển động kiểu cúi chào

nữa mà con người chúng ta thưởng

thanh lạ tai cũng nổi bật không kém. Tất nhiên, chữ "kỳ quái" là một nhân xét có tình chủ quan; chắc là những con gà gô trống khôn ngoan đứng đắn, với những điệu nhảy mạnh mẽ đi kèm những âm thanh rôn ràng của gà trống, trông không có vẻ gì là kỳ quái đối với các con mái cùng loài, và đó chính là những gì quan trong nhất. Trong một số trường hợp, ý niệm về sắc đẹp của các con gà mái lai trùng với ý niệm về sắc đẹp của chúng ta, và kết quả là chúng ta có con công hay con chim thiên đường. Những điệu hát của chim sơn ca,

và nhảy nhót, thêm vào những âm

sắc cầu vồng của con cá vùng đá ngầm nhiệt đới đều được cực đại hóa cho vẻ đẹp thẩm mỹ, nhưng nó không phải là - hay chỉ là trùng hợp ngẫu nhiên với - vẻ đẹp mà con người thích thú. Đây chỉ là một sản phẩm phu nhưng cũng là một phần thưởng nếu nó trở nên ngoạn mục đối với ta. Các gien làm cho các con đưc trở nên hấp dẫn hơn so với các con cái tư động trôi đi dọc dòng sông đến tương lai. Chỉ còn một hàm thỏa dụng duy nhất giải thích cho những vẻ đẹp này, cũng chính là thứ giải thích cho tỷ kê giới tính ở loài hải cẩu voi, loài báo cheetah và

đuôi chim trĩ, ánh đèn đom đóm và

đua có vẻ thất phù phiếm chống lai nhau, chim cúc-cu và chấy rân, mắt và tai và khí quản, các con kiến thợ vô sinh và các con kiến chúa siêu mắn đẻ. Hàm thỏa dụng phổ quát vĩ đại, đại lượng đã được cực đại hóa hết mình trong mọi ngóc ngách, trong moi trường hợp của thế giới sinh vật, là sư sống còn của ADN có vai trò chính tạo ra đặc điểm mà chúng ta đang cố gắng giải thích. Những con công mang những đồ trang trí nặng nề vướng víu đến mức cản trở chúng làm những việc hữu ích ngay cả khi chúng cảm thấy sẵn sàng - thực tế nhìn chung thì

loài linh dương chay những cuộc

cả. Những loài chim biết hót bỏ rất nhiều thời gian và năng lương để hót. Điều này chắc chắn đẩy chúng đến tình trạng nguy hiểm, không chỉ vì nó lôi kéo sư chú ý của kẻ thù, mà là bởi vì chúng rút cạn năng lượng và thời gian để nạp đầy lại năng lương cho mình. Có một sinh viên ngành sinh học kể rằng con chim hồng tước trống của anh thực sư đã hót cho đến chết. Bất kỳ hàm thỏa dung nào khi nghĩ về lợi ích lâu dài của loài, ngay cả sự sống còn lâu dài của con trống cụ thể này, sẽ cắt giảm việc hát, trình diễn điệu bô và việc đánh nhau giữa các con đưc.

đúng là chúng chẳng làm gì hữu ích

của ADN, những ADN vốn chẳng có một ích lợi gì hơn là làm cho các con trống đẹp ra trước con mái. Sắc đep tư thân không phải là một phẩm chất tuyệt đối. Nhưng một cách tất yếu, nếu một số gien nào đó thực sự trao cho con đực bất kỳ phẩm chất nào mà các con cái cùng loài thấy khao khát, những gien đó dù muốn dù không chắc chắn sẽ tồn tai. Tại sao các cây trong rừng lại cao đến vậy? Chỉ đơn giản là để vượt

lên đầu những cây khác mà thôi.

Nhưng cái được cực đại hóa ở đây chính là sự sống còn của ADN. Không gì có thể cản trở sư bùng nổ

Một hàm thỏa dụng dễ thấy đó là giả sử chúng đều thấp cả. Chúng sẽ nhân được một lượng ánh sáng mặt trời như nhau với một công sức ít hơn rất nhiều so với khi phải xây dựng ra những thân trụ lớn. Nhưng nếu như chúng đều thấp cả, chọn loc tư nhiên không thể nào không ưu tiên một vài cá thể biến di làm cho cao nhỉnh hơn một chút. Thế là tiền đấu giá đã lên, mọi người cứ phải hùa theo như thế. Không gì có thể ngăn chăn toàn bô trò chơi leo thang mãi cho đến lúc tất cả mọi cây đều cao một cách lãng phí và lố bịch. Nó lãng phí và lố bịch chỉ theo quan điểm của một nhà hoach định kinh tế có lý trí suy nghĩ theo kiểu lối cực đại hóa mức đô hiệu quả. Nhưng ta sẽ thấy mọi cái đều hợp lý khi hiểu được hàm thỏa dụng chân chính của nó - các gien được cực đại hóa sự tồn tại của chính chúng. Những điều tương tư như thế vốn đầy nhan nhản. Trong một buổi tiệc bạn phải hét thất lớn, lý do là bởi vì mọi người khác cũng nói to hết cỡ. Nếu tất cả moi người đat thỏa thuân là chỉ nói thì thầm thôi, họ vẫn sẽ nghe được rõ như thế mà tốn ít công sức và năng lương hơn nhiều. Nhưng thỏa thuân đó chẳng bao giờ đat được, trừ phi ho ở dưới tầm giám sát. Ai

đó luôn luôn có thể làm hỏng nó bằng cách nói lớn lên một chút một cách ích kỷ, và rồi từng ngươi từng người một đều phải làm theo như vậy nếu như muốn người khác nghe mình. Sư ổn định đạt được chỉ khi mọi người đều hét lớn hết mức có thể, và mức này lớn hơn rất nhiều so với mức cần thiết theo quan điểm có lý trí. Hết lần này đến lần khác, những sư kiềm chế mang tính hợp tác luôn luôn bị phá ngang bởi chính sự mất ổn định nội tại của nó. Hàm Thỏa Dung của Chúa hiếm khi trở thành điều thiên lớn lao nhất cho một số lượng người lớn nhất. Hàm Thỏa Dung của Chúa bộc lô rõ nguồn gốc của nó qua sư xáo trôn thiếu tính hợp tác chỉ vì những lợi ích vi kỷ.

Nhân loại có một khuynh hướng dễ chiu khi giả định rằng sư thinh vương là thinh vượng cho cả nhóm, rằng "tốt" nghĩa là tốt đẹp cho cả xã hội, sư thinh vương tương lai của cả loài hoặc thâm chí cả hệ sinh thái. Hàm Thỏa Dung của Chúa, khi được dẫn ra từ những suy ngẫm bằng thuyết chon loc tư nhiên ở mức đô chi tiết, buồn thay lai không hợp với cách nhìn không tưởng như vây. Tất nhiên, có những lần khi

gien cực đại hóa phúc lơi ích kỷ của chúng ở cấp đô gien, bằng cách lập kỷ, hay thậm chí là tư hy sinh bởi các cơ thể sống ở cấp đô của nó. Nhưng phúc lợi của cả nhóm luôn luôn là một hệ quả tình cờ không phải là nguyên nhân cơ bản. Đây là ý nghĩa của "loài gien ích kỷ". Chúng ta hãy xen xét môt khía canh nữa của Hàm Thỏa Dung của Chúa thông qua một ví dụ sau đây. Nhà tâm ký học theo trường phái Darwin Nicholas Humphrey đã tưởng tương ra một câu chuyên cho ta thấy rất rõ về Henry Ford. "Người ta kể rằng" Ford, cha đẻ của công nghê sản xuất hiệu quả, một lần đã giao nhiêm vu tiến hành một cuộc

trình những sư hợp tác không ích

khảo sát xe hơi trong nghĩa địa của Mỹ để tìm thử xem có những bộ phận của xe Ford Mẫu T mà không bao giờ hư hỏng không. Các nhà khảo sát của ông quay về và báo cáo đủ loại hỏng hóc: truc, phanh, pis-tông - tất cả mọi cái đều rất có khả năng bị hỏng. Nhưng họ chú ý đến một ngoại lệ nổi bật, những chốt cái của những xe phế liêu luôn luôn có thể dùng được rất nhiều năm nữa. Bằng logic thẳng thừng, Ford kết luân rằng chốt cái của Mẫu T là quá tốt so với bộ phân thật sư của chúng, và ra lệnh rằng trong tương lai nó phải được chế tao theo môt tiêu chuẩn kém hơn.

Cũng giống như tôi, ban có thế hơi mơ hồ một chút về chốt cái nhưng điều này không quan trong. Nó là một thứ gì đó mà các xe động cơ cần đến, và sự nhẫn tâm của Ford đã hoàn toàn hợp logic. Một giải pháp khác chắc chắn sẽ cải tạo toàn bộ những bộ phân khác của cái xe để nâng nó lên tiêu chuẩn của chốt cái. Nhưng như thế thì không còn là Mẫu T nữa mà là một chiếc Rolls Royce, và không phải là mục đích của công việc này. Rolls Royce là một chiếc xe hơi rất đáng nế, Mẫu T cũng vậy nhưng với một giá khác. Ở đây bí quyết là đảm bảo rằng hoặc toàn bộ xe hơi được xây chuẩn của Mẫu T. Nếu bạn làm ra môt chiếc xe lai, với một bộ phân thuộc chất lượng của Mẫu T và một số bô phân khác thuộc chất lượng của một chiếc Rolls Royce, ban sẽ có một thứ tồi tê nhất cho cả hai mô hình. Bởi vì chiếc xe bị quẳng đi khi mà bộ phân yếu nhất hỏng đi, và số tiền bỏ vào những bô phân có chất lương cao mà chẳng có thời gian để hao mòn chỉ đơn thuần là lãng phí. Bài học của Ford thậm chí còn đúng đắn hơn rất nhiều ở cơ thể sống, bởi vì các bộ phân của xe hơi

dựng theo tiêu chuẩn của Rolls Royce hoặc là toàn bộ theo tiêu trong một chừng mực nào đó có thể thay thế bằng phu tùng được.Khỉ và vươn chuyên kiếm sống trên cây và luôn luôn có nguy cơ bị ngã gãy xương. Giả sử chúng được giao nhiêm vu khảo sát các xác khỉ để đếm tần số bị gãy ở mỗi xương trong yếu của cơ thể. Giả du ta phát hiện ra rằng mỗi xương đều bị gãy lần này hay lần khác, với một ngoại lê: xương mác (xương chay song song với xương ống chân) chưa bao giờ bị phát hiện bị gãy ở bất kì con khỉ nào. Yêu cầu ngay tức khắc của Henry Ford sẽ là thiết kế lai xương mác để cho nó có chất lương xấu hơn, và điều này cũng chính xác là

phải làm. Các cá thể mang đột biến với một xương mác kém chất lương hơn - các cá thể đột biến mà các quy luật tăng trưởng của nó khiến cho lương can-xi quý hiếm không tập trung nhiều cho xương mác nữa - có thể sử dụng lượng chất tiết kiệm được này để làm dày các xương khác và đạt được tính lý tưởng là làm cho mọi xương đều có xác xuất gãy như nhau (đồng đều chất lượng). Hoặc các cá thể đột biến có thể dùng lương can-xi tiết kiêm được để làm ra nhiều sữa hơn và nuôi nhiều con hơn. Chất tao xương hoàn toàn có thể lấy khỏi

những gì mà chon loc tư nhiên cần

ở đó nó có khả năng bị gãy bằng với xương có độ chắc chắn kề nó. Giải pháp kia - giải pháp "Rolls Royce" nâng chất lượng của các bộ phận khác lên ngang bằng với xương mác

xương mác, ít nhất cho đến lúc mà

- khó đạt được hơn.

Tuy nhiên, việc tính toán không hoàn toàn đơn giản như vậy, bởi vì có những xương quan trọng hơn những xương khác. Tôi đoán là một con khỉ nhện dễ sống sót với cái

những xương khác. Tôi đoán là một con khỉ nhện dễ sống sót với cái xương gót bị gãy hơn là một cái xương cánh tay bị gãy. Cho nên chúng ta không nên nghĩ một cách đơn giản là chọn lọc tự nhiên sẽ làm cho mọi xương đều dễ gãy như

chúng ta thu được từ giai thoại về Henry Ford là hoàn toàn đúng đắn. Có khả năng mà trong đó một bộ phân nào đó của một sinh vật là quá tốt, và chúng ta có thể kỳ vong rằng chon loc tư nhiên sẽ ưu tiên sư làm giảm chất lượng bộ phận này đi đến mức độ cân bằng với chất lượng của các bộ phận khác trong cơ thể. Chính xác hơn, chon lọc tư nhiên sẽ ưu tiên sự san bằng chất lương theo cả hai hướng lên và xuống, cho đến khi một sư cân bằng thích hợp đạt được ở tất cả các phần của cơ thể. Đặc biệt, chúng ta dễ hiểu được

nhau. Nhưng bài học chủ yếu mà

điều này khi sư cân bằng đat được giữa hai khía canh riêng biệt của sư sống: sư sống còn của con công trống đối lại với vẻ đẹp của con công mái là một ví dụ. Thuyết Darwin cho ta biết rằng sư sống còn chỉ là phương tiên cuối cùng của sư phát tán gien, nhưng nó không cấm chúng ta phân cơ thể ra thành những bộ phân có liên quan đến sư sinh sản như là dương vật. Hay là những bộ phận mà chỉ có nhiêm vu để đấu tranh với các đối thủ như là sừng (hươu), đối lai với những bô phân mà sư quan trong của chúng không phụ thuộc vào sự tồn tại của các cá thể đối thủ như là chân tay

trùng tao ra sư phân cách rõ rêt giữa các giai đoan phát triển khác nhau một cách căn bản trong suốt cuộc đời của chúng. Những con sâu có nhiệm vụ góp nhặt thức ăn và lớn lên. Những con bướm, cũng giống như những bông hoa mà chúng viếng thăm, có nhiệm vụ sinh sản. Chúng không tăng trưởng lên, và chúng hút mật hoa chỉ để đốt ngay sau đó giống như xăng máy bay vây. Khi một con bướm sinh sản thành công, nó phát tán ra những gien không chỉ thích hợp tạo ra một con bướm bay giỏi và tìm kiếm ban tình giỏi, mà cả cho việc tạo ra một

hay dương vật. Rất nhiều loài côn

trước đây. Con phù du kiếm ăn và lớn lên dưới hình dang như những con nhông dưới nước với thời gian có thể lên đến ba năm. Rồi chúng nổi lên mặt nước dưới hình dang những con trưởng thành biết bay mà chỉ có thể sống được vào cổ mấy giờ. Rất nhiều trong số chúng bi cá ăn, nhưng ngay cả khi không bi ăn chúng cũng sẽ chết chẳng bao lâu sau đó vì chúng không thể ăn được mà thậm chí còn không có ruột nữa (Henry Ford chắc chắn là mê chúng lắm^[43]). Nhiệm vụ của chúng là bay cho đến khi tìm được một ban tình. Rồi, sau khi đã truyền

con sâu ăn giỏi như nó đã từng

gien của mình đi được - bao gồm cả gien tao ra môt con nhông nước hiệu quả có khả năng sống và kiếm ăn dưới nước ba năm - chúng sẽ chết. Con phù du giống như một cái cây mất gần cả đời để lớn lên, rồi nở hoa trong duy nhất một ngày rưc rỡ nào đó rồi chết. Con phù du trưởng thành là bông hoa chỉ nở trong một quãng ngắn ở cuối môt cuốc đời và vào lúc bắt đầu một cuộc đời mới.

Con cá hồi di cư xuôi theo dòng sông mà nó sinh ra, rồi trải qua phần lớn cuộc đời mình kiếm ăn và lớn lên ngoài biển. Khi nó lớn đến đô trưởng thành một lần nữa, chắc

chắn là bằng khướu giác, nó tìm được cửa sông quê hương của nó. Thông qua một chuyển hành trình hùng tráng trứ danh, con cá hồi bơi ngược dòng sông, nhảy qua nhiều thác ghềnh, tìm đường về nhà tới đầu nguồn con nước nơi nó đã chào đời trước đây. Ở đó nó đẻ trứng và một chu trình mới lai bắt đầu. Ở điểm này, có một sự khác biệt đặc trưng giữa cá hồi Đai Tây Dương và cá hồi Thái Bình Dương. Cá hồi Đai Tây Dương, sau khi đẻ trứng có thể quay trở lại biển và có cơ may để lặp lại chu trình lần thứ hai. Cá hồi Thái Bình Dương chết đi sau khi đẻ trứng một số ngày.

một con phù du nhưng không có sư phân chia rõ ràng về mặt giải phẫu giữa thời kỳ nhông và thời kỳ trưởng thành trong cuộc đời. Nỗ lực bơi ngược dòng là lớn đến mức nó không thể đủ sức làm được hai lần. Thế nên chon loc tư nhiên ưu tiên những cá thể mà có thể dồn hết mọi gram sinh lực của nó vào một lần sinh sản tựa như một "vu nổ lớn" (big bang). Moi tài nguyên còn sót lai sau khi đã sinh sản là lãng phí - tương đương với cái chốt thiết kế quá tốt của Henry Ford. Con cá hồi Thái Bình Dương đã tiến hóa về phía xén got hết sư sống còn sau

Con cá hồi Thái Bình Dương như

sinh sản của chúng cho tới mức gần zero, còn tài nguyên có được thì chuyển hết sang cho trứng và tinh trùng. Còn cá hồi Đai Tây Dương lai được kéo theo một con đường khác. Có lẽ bởi những dòng sông mà chúng phải cưỡi lên thường ngắn hơn và bắt nguồn từ những đồi núi ít dữ dôi hơn, những cá thể giữ lai được một lượng tài nguyên để lặp lai một chu trình sinh sản nữa đôi khi cũng tốt. Cái giá mà những con cá hồi Đai Tây Dương này phải trả là chúng không thể dồn quá nhiều vào trứng của mình. Có một sư đánh đổi giữa tuổi thọ và mức độ sinh sản, và các loài cá hồi khác nhau đã chon cho mình những trang thái cân bằng khác nhau. Điểm đặc biệt về chu trình vòng đời của cá hồi là ở chỗ chuyến hành trình di cư kì vĩ vắt kiệt sức lực của chúng tạo ra một sư không liên tục. Không có một sự liên tục đơn giản nào giữa một mùa sinh sản và hai mùa. Để có được lần sau chúng cũng phải cắt đi rất nhiều mức độ hiệu quả của lần trước. Cá hồi Thái Bình Dương đã tiến hóa về phía tân lực một cách dứt khoát cho mùa sinh sản thứ nhất, với kết quả là một cá thể đặc trưng của loài dứt khoát chết đi sau một nỗ lực phi thường duy nhất để đẻ trứng của nó.

Kiểu đánh đối tương tự cũng ghi dấu lên mọi cuộc đời, nhưng thường thì ít khi ghê gớm như vây. Sư chết của chính chúng ta có lẽ được lập trình ra theo một nghĩa nào đó tương tư như sư chết của cá hồi, nhưng theo một cách ít thẳng thừng và rõ ràng như vây. Ta không nghi ngờ gì việc một nhà theo thuyết cải thiên giống có thể lai ra một giống người sống lâu đến tột bậc. Cách làm là chon ra và lai giống thành những cá thể có thể dùng hết tài nguyên bản thân cho chính cơ thể của mình chứ không phải cho con cái: ví dụ các cá thể có xương được gia cố lên một cách quy mô đến

mức khó gãy nhưng lại có quá ít can-xi còn lai để tao ra sữa. Việc sống lâu thêm một chút cũng khá dễ thực hiện, nếu ban chăm chút mình kỹ và để cho con cái mình phải chiu thiệt. Nhà cải thiên giống có thể làm việc chăm chút và khai thác sư đánh đổi nói trên theo hướng kéo dài tuổi thọ. Nhưng Tự Nhiên sẽ không chăm bằm theo cách này, bởi vì gien nào bủn xỉn và keo kiết với thế hệ sau sẽ không thể xuyên tới tương lại được. Hàm Thỏa Dụng của Tư Nhiên không bao giờ đánh giá cao tuổi thọ vì chính giá tri của nó, mà chính là vì giá tri của sư sinh sản trong

tương lai. Bất kì một sinh vật nào, giống chúng ta hơn là giống cá hồi Thái Bình Dương, khi sinh sản nhiều lần, đều đối diên với sư đánh đổi giữa đứa con (hay lứa con) hiện tại và những đứa con tương lai. Một con thỏ nếu dành hết năng lương và tài nguyên của mình cho lứa con đầu tiên chắc chắn sẽ có được một lứa con tuyết vời. Nhưng nó sẽ chẳng có gì còn lại để đi tiếp đến lứa thứ hai. Những gien giữ lai được một chút gì dư trữ sẽ có khuynh hướng lan rộng ra trong quần thể thỏ, được mang theo trong cơ thể của những lứa con thứ hai và thứ ba. Nhưng ta lại không thấy chính thể cá hồi Thái Bình Dương, bởi vì sự gián đoán giữa một mùa sinh sản và hai mùa là lớn khủng khiếp.

loai gien này trải rông ra trong quần

Khi chúng ta lớn lên, khả năng chết đi, sau khi giảm dần vào lúc mới đầu rồi ổn định trong một thời gian, sẽ đi lên theo một con dốc dài. Điều gì nằm sau sự tăng lên theo một con dốc dài của khả năng chết đi này? Về cơ bản thì nó vẫn cùng nguyên lý với cá hồi Thái Bình

Dương, nhưng dàn trải ra trong một thời gian dài thay vì tập trung lại thành một quãng ngắn đột ngột - một cái chết tập thể - sau một sự sinh sản tập thể. Nguyên lý tiến hóa

người nhân giải Nobel, nhà khoa hoc y khoa, Sir Peter Medawar, khám phá ra vào đầu những năm 1950, rồi sau đó có rất nhiều sư chỉnh lý từ ý tưởng ban đầu nhờ các nhà khoa hoc theo thuyết Darwin lỗi lac G.C William và W.D Hamilton. Luân cứ cốt lõi như sau: Đầu tiên, như chúng ta thấy ở chương 1, mọi hiệu ứng do gien gây ra đều thông thường được bật lên trong môt

của sư già đi lần đầu tiên được

như chúng ta thấy ở chương 1, mọi hiệu ứng do gien gây ra đều thông thường được bật lên trong một khoảng thời gian nhất định nào đó trong cuộc đời của sinh vật. Rất nhiều gien được bật lên trong giai đoạn phôi ban đầu, nhưng nhiều

gien khác - như là gien gây bênh múa giật (hay bệnh múa Huntington) - căn bệnh đã gây nên cái chết thảm hai cho nhà thơ dân gian kiêm ca sĩ Woody Guthrie không được bật lên cho đến tuổi trung niên. Thứ hai, chi tiết của một hiệu ứng do gien, bao gồm cả thời điểm cho nó được bật lên, có thể thay đổi được bởi các gien khác. Môt người mang gien bênh múa giất có thể chết vì bệnh này, nhưng việc người này chết vào lúc bốn mươi hay bốn mươi lăm tuổi (như Woody Guthrie) có thể bị ảnh hưởng bởi các gien khác. Như vây bằng sư chon loc các "gien điều

gien nào đó có thể hoặc được làm trì hoãn lại hoặc được làm xảy ra sớm hơn trong thời gian tiến hóa. Môt gien như là gien gây bênh

múa giật, được bật lên ở lưa tuổi từ

chỉnh", thời gian hoat đông của một

bốn mươi đến năm lăm, có rất nhiều khả năng để được truyền cho thế hê sau trước khi nó làm cho cơ thể mang nó chết đi. Ngược lai, nếu nó được bật lên ở khoảng tuổi hai mươi, nó sẽ được truyền đi chỉ bởi những người đã sinh sản khá trẻ, và do đó nó sẽ bị chọn lọc tư nhiên chống lại rất mạnh (tức là càng ngày càng có ít người mang gien này.ND). Nếu được bật lên ở tuổi

qiờ được truyền đi. Chọn lọc tự nhiên sẽ ưu tiên những gien điều chỉnh nào có hiệu ứng làm châm tuổi mà ở đó gien bênh múa giất được bật lên. Theo như lý thuyết của Medawar hay William, điều này chính là lý do vì sao gien này bình thường không được bật lên cho đến tuổi trung niên. Vào một thời gian xa xưa nào đó, chắc nó hoàn toàn có thể là một gien chín muồi vào lúc trẻ, nhưng chon lọc tư nhiên lại thiên về phía làm châm hiệu ứng chết người của nó cho đến tuổi trung niên. Dĩ nhiên là vẫn còn một áp lực tiến hóa nhe nào đó đẩy nó

lên mười, nó hầu như sẽ không bao

là yếu bởi vì có rất ít nạn nhân chết đi trước khi sinh con cái và truyền gien này đi. Gien gây bênh múa qiât là một ví

lên đến tuổi già, nhưng áp lực này

dụ rất rõ ràng về gien gây chết người. Còn rất nhiều gien khác tuy không phải tự chúng là gây chết nhưng lại có hiệu ứng làm tăng khả năng chết do một nguyên nhân khác, và được gọi là gien gây chết

thứ cấp. Một lần nữa, thời điểm bật lên của chúng cũng có thể bị ảnh hưởng bởi các gien điều chỉnh và do đó được làm chậm lại hay tăng nhanh lên bởi chọn lọc tự nhiên. Medawar nhận thấy rằng sự yếu đi gien gây chết và các gien gây chết thứ cấp. Các hiệu ứng này đã được đẩy lùi càng ngày càng lâu hơn trong chu trình cuốc đời, và việc chúng có thể lọt qua chiếc lưới sinh

của tuổi già có thể là biểu hiện của sư tích lũy các hiệu ứng của các

sản tới các thế hệ tương lai chỉ đơn thuần là do chúng hoat đông trễ mà thôi. Sự phát triển mà G.C William, vị "lão trương" của những nhà theo

thuyết Darwin người Mỹ, đưa vào câu chuyên năm 1950 là một kết quả quan trọng. Nó đưa ta trở lại vấn đề đánh đổi về mặt kinh tế. Để hiểu nó, đầu tiên chúng ta phải đưa thiết. Một gien thường có nhiều hơn một hiệu ứng, thường trên những phần cơ thể rất phân biệt ở vẻ bề ngoài. Hiện tương gọi là "đa tác đông" (pleiotropy) này không chỉ là một thực tế, mà còn là một thứ mà chúng ta thấy rất dễ xảy ra khi biết rằng gien thường gây hiệu ứng lên sư phát triển phôi và sư phát triển này là một quá trình rất phức tạp. Như vậy, mọi đột biến nào cũng có nhiều khả năng sẽ có không phải là một mà là một số hiệu ứng. Dù một trong một số các hiệu ứng của nó có thể có lợi, có rất ít khả năng để nhiều hơn một hiệu ứng là co lơi.

ra một số thông tin cơ bản cần

Điều này đơn giản chỉ do hầu hết các hiệu ứng do đột biến đều xấu. Ngoài việc đây là một thực thế, ta cũng hoàn toàn có thể hiểu là về nguyên tắc nó rất dễ xảy ra: nếu ta có một cơ cấu làm việc hết sức tinh vi phức tạp - như một cái radio chẳng hạn - sẽ có rất nhiều cách hơn để làm cho nó trở nên tồi đi so với số cách để làm cho nó tốt hơn. Bất cứ khi nào chon loc tư nhiên ưu tiên một gien do hiệu ứng của nó lên sinh vật lúc còn trẻ - chẳng han như đô hấp dẫn tình dục của môt con đực lúc trẻ trai - đều có

khả năng có mặt trái của nó: chẳng han như một bệnh nào đó vào lúc trung niên hay lúc về già. Về mặt lý thuyết, các hiệu ứng theo tuổi tác cũng có thể là theo cách ngược lai, nhưng theo như logic của Medawar, chon loc tư nhiên hầu như sẽ không ưu tiên (gien gây) bênh tât ở tuổi trẻ chỉ bởi vì hiệu ứng có lợi của chính gien đó vào lúc tuổi già. Hơn nữa, ở đây chúng ta lại có thể để ý đến vấn đề về gien điều chỉnh. Mỗi một trong các hiệu ứng của một gien, những hiệu ứng xấu và tốt của nó, có thể có thời gian bật lên của nó thay đổi trong quá trình tiến hóa. Theo nguyên lý Medawar, các hiệu ứng có lơi đều có khuynh hướng chuyển lên thời kỳ đầu của

cuộc đời, trong khi các hiệu ứng có hai sẽ có khuynh hướng bị trì hoãn lai cho đến sau này. Hơn nữa, trong một số trường hợp sẽ có một sư đánh đổi trực tiếp giữa các hiệu ứng sớm và muôn. Điều này đã được nói tới trong bàn luận của ta về cá hồi. Nếu một sinh vật có nguồn tài nguyên hữu han để dùng, ví du như vào việc trở nên khỏe mạnh về thể chất hơn là có khả năng nhảy thoát khỏi nguy hiểm, mọi "sở thích" dùng các tài nguyên đó sớm sẽ được ưu tiên hơn so với "sở thích" dùng chúng về sau. Những cá thể dùng muôn hơn đều có khả năng chết do các nguyên nhân khác trước khi có cơ hội để dùng các tài nguyên đó. Nếu diễn giải luân điểm tổng quát của Medawar theo một kiểu ngược từ sau ra trước dùng ngôn ngữ mà ta đã giới thiêu trong Chương 1, thì moi người đều bắt nguồn từ một dòng dõi liên tục các tổ tiên mà tất cả họ đều trải qua thời trẻ tuổi và rất nhiều trong số ho đã không quá già vào lúc sinh con. Cho nên chúng ta có khuynh hướng thừa hưởng tất cả những phẩm chất của một con người trẻ, nhưng không nhất thiết là tất cả những phẩm chất của một người già. Chúng ta có khuynh hướng thừa hưởng những gien làm cho chúng ta chết chỉ rất lâu sau khi những gien làm cho chúng ta chết chẳng bao lâu sai khi chúng ta sinh ra. Trở lai với phần mở đầu bị quan

của chương này ta thấy, khi hàm

chúng ta sinh ra, mà không phải

thỏa dung - cái mà được cực đại hóa - là sư tồn tai của ADN, nó sẽ không phải là một công thức cho ra hạnh phúc. Miễn làm sao cho ADN được truyền đi, còn việc ai hay cái gì bi thiệt hai trong quá trình đó là không quan trọng. Sẽ tốt hơn cho gien của con tò vò của Darwin khi con sâu vẫn còn sống, và do đó thịt vân còn tươi khi bị ăn, bất chấp mọi

sư đau đớn của con sâu. Gien chẳng

của ai cả, bởi vì chúng chẳng quan tâm đến thứ gì. Nếu (Đức Mẹ) Tự Nhiên mà nhân

từ, thì ít nhất bà sẽ làm giảm đi chút nào nỗi đau đó bằng cách gây mê những con sâu trước khi chúng

bao giờ quan tâm đến sư đau đớn

bi ăn sống từ bên trong. Nhưng Tư Nhiên không nhân từ cũng không ác độc. Bà cũng không chống lại sự đau đớn mà cũng không ủng hô nó. Tư Nhiên không để ý đến sư đau đớn theo bất cứ cách nào, ngoại trừ khi nó ảnh hưởng đến sự tồn tại của ADN. Ta có thể dễ dàng tưởng tương ra một gien, ví du như gien gây mê con linh dương trước khi nó cú táp. Một gien như thế có được ưu tiên bởi chon lọc tự nhiên không? Không, trừ khi hành đông an thần con linh dương làm tăng cơ hôi truyền sang các thế hệ tương lai của gien đó. Thật khó để ta nghĩ có thể nghĩ là điều này lai xảy ra, và thế là chúng ta có thể đoán là những con linh dương luôn hứng chiu những cơn đau kinh hoàng và nỗi sợ ghê gớm khi chúng bị săn đến chết - như hầu hết trong số chúng cuối cùng đều như vậy. Tổng lương đớn đau trong một năm trong thế giới tự nhiên vượt ra ngoài moi suy tư một cách nghiệm chỉnh của

sắp sửa hứng chiu nỗi đau của một

chúng ta.

Các nhà thần học đang phải bận tâm đến "vấn đề của cái ác" và cái liên quan là "vấn đề của sự đau đớn". Vào cái ngày tôi bắt đầu đặt

đều đưa tin một xe buýt chở đầy học sinh của trường Roman Catholic (Công Giáo La Mã) bị tai nạn dường như không vì một lý do nào cả, và kết quả là toàn bô người trên xe

bút viết đoan này, các báo chí Anh

đều chết. Và đó không phải là lần đầu tiên, các giáo sĩ bùng nổ trước câu hỏi về niềm tin mà phóng viên một tờ báo ở Luân Đôn (The Sunday Telegraph - Điện Báo Chủ Nhật) đặt ra thế này: "Làm sao có

thế tin vào Thương Đế đầy tình thương và quyền lực khi mà Người đã cho phép một thảm kịch như vậy xảy ra?" Bài báo tiếp tục với phần trích dẫn câu trả lời của một linh mục: "Câu trả lời đơn giản là chúng ta không biết tai sao lai phải có một Thương Đế, người đã để cho những điều tồi tê như thế xảy ra. Nhưng sư kinh hoàng của tại nan, đối với một người Công Giáo, xác nhân sư thât rằng ta đang sống trong một thế giới với những giá trị: tích cực và tiêu cưc. Nếu vũ tru chỉ toàn electron mà thôi, thì sẽ chẳng có vấn đề của cái ác hay đớn đau". Ngược lại, nếu như vũ tru chỉ toàn như là tai tan của chiếc xe buýt đó chính xác là những gì chúng ta có thể trông chờ, cùng với những vân may cũng vô nghĩa không kém. Môt vũ tru như thế sẽ chẳng có một mục đích xấu xa hay tốt đẹp gì cả. Ta sẽ không thấy ở nó một mục đích thuôc bất cứ kiểu gì. Trong một vũ tru của những động lực vật lý vô tri và của sự nhân bản gien, sẽ có ai đó chịu thiệt, những người khác sẽ gặp may, và ta không thể thấy một ý nghĩa hay một lý do nào trong đó cả, mà cũng chẳng có cái gọi là lẽ phải hay công bằng. Vũ tru mà ta

là electron và các anh chàng gien ích kỷ, những thảm kich vô nghĩa chất mà ta có thể trông chờ về mặt bản chất: không phải do ai thiết kế ra, không có mục đích, không xấu và không tốt, không có gì ngoài sư vô tri, sư dựng dựng tuyết đối. Như nhà thơ sầu A.E. Housman đã diễn tả: Hỡi Tư Nhiên, vô tâm, vô tri, ơi Tư Nhiên Không bao giờ biết cũng chẳng màng để tâm ADN không hiểu cũng không để tâm. ADN chỉ tồn tai. Và chúng ta múa theo điệu nhac của nó.

đang thấy đang có đúng những tính

CHƯƠNG 5 QUẢ BOM NHÂN BẢN

Hầu hết các vì sao - điến hình là

mặt trời của chúng ta - cháy sáng ổn định qua hàng tỷ năm. Vào những lúc cực kỳ hiếm hoi, ở một nơi nào đó trong thiên hà, một vì sao bỗng rực sáng rồi hóa thành một siêu sao mới [44] mà không hề có tín hiệu báo trước. Khoảng vài tuần, nó tăng đô sáng lên gấp hàng tỷ lần rồi lui dần đi thành một tàn dư tăm tối. Suốt những ngày ngắn ngủi trong vai siêu sao, nó phát ra năng lượng nhiều hơn tổng năng

hàng trăm triệu năm trước đó trong vai một ngôi sao bình thường. Nếu mặt trời của ta bỗng "vut thành siêu sao", toàn bộ hệ mặt trời sẽ bốc hơi ngay tức khắc. May thay điều này cực kì khó xảy ra. Trong thiên hà hàng trăm tỷ ngôi sao của chúng ta, chỉ có ba vụ nổ siêu sao mới từng được các nhà thiên văn ghi chép lai: năm 1054, 1572 và năm 1604. Đám Tinh Vân Con Cua là tàn tích của vu nổ năm 1054, ghi nhân bởi các nhà thiên văn Trung Hoa. (Khi tôi nói đến sự kiện "năm 1054" thì tất nhiên tin tức của nó đến được Trái Đất vào năm 1054, chứ bản thân sư

lương mà nó phát ra trong suốt

trước đó. Bề mặt sóng ánh sáng từ đó đến được chúng ta vào năm 1054). Từ năm 1604 lại đây, những vụ nổ như thế chỉ quan sát được ở các thiên hà khác.

Có một kiểu nổ khác mà các ngôi

kiên thì đã xảy ra sáu ngàn năm

sao có thể trải qua. Thay vì "vut thành siêu sao" nó "vut thành bom thông tin". Vụ nổ bắt đầu chậm hơn, mất nhiều thời gian hơn để hình thành, cham tới mức không thể so sánh được với vu nổ siêu sao. Chúng ta có thể gọi nó là một quả bom thông tin hay một quả bom nhân bản. Trong vài tỷ năm đầu hình thành, ta chỉ có thể phát hiện sát nó. Cuối cùng, những biểu hiện tinh tế của vu nổ bắt đầu rò rỉ ra ngoài đến những vùng xa xôi hơn trong không gian, và rồi nó có thể được phát hiện tư một khoảng cách xa hơn. Chúng ta không thể biết được kiểu nổ này sẽ kết thúc ra sao. Có thể cuối cùng nó cũng lui đi như một siêu sao, nhưng chúng ta không biết được nó sẽ lên đến mức nào. Có lẽ là đến một vụ sụp đổ dữ dôi. Hay có lẽ đến mức các vật thể phát ra một cách lặp đi lặp lai, di chuyển theo một quỹ đạo có điều khiển, thay vì một quỹ đạo kiểu đường đạn đơn giản, đi xa khỏi ngôi

ra một quả bom nhân bản khi ở gần

gian xa xôi hơn, ở đó nó lại gieo mầm mống bùng nổ lên các hệ ngôi sao khác. Lý do mà ta biết quá ít về quả

bom nhân bản trong vũ tru là bởi vì

sao ấy để đến những vùng không

chúng ta chỉ mới biết được một trường hợp, và một trường hợp thì không đủ để tống quát hóa nó lên. Trường hợp ấy vẫn còn đang tiếp diễn. Nó đã tiếp diễn được ba bốn tỷ năm rồi, và nó mới chỉ đạt đến ngưỡng tràn từ vùng xung quanh ngôi sao đó ra ngoài không gian. Ngôi sao đang nói là Sol, một ngôi

sao lùn vàng nằm gần phía rìa của thiên hà chúng ta, ở trong một cánh tay xoắn ốc. Chúng ta gọi nó là mặt trời. Vu nổ thực ra bắt nguồn từ một vệ tinh có quỹ đạo gần đó, nhưng năng lương dẫn đến vu nổ lai bắt nguồn từ toàn bộ mặt trời. Vệ tinh này, tất nhiên rồi, là Trái Đất. Còn vu nổ đã bốn tỷ năm nay, hay còn gọi là quả bom nhân bản, được gọi là sư sống. Chúng ta, những con người, là một biểu hiện cực kỳ quan trong của quả bom nhân bản, bởi vì chính vì thông qua chúng ta - qua bô não, qua nền văn minh biểu tương và công nghệ của chúng ta mà vu nổ này mới có thể đi đến giai đoạn tiếp theo và vang vọng ra không gian sâu thẳm.

Như tôi vừa nói, cho đến tân ngày nay quả bom nhân bản đó là quả bom duy nhất ta biết đến trong vũ tru này, nhưng điều này không có nghĩa là những vu nổ kiểu này hiếm hơn vu nổ siêu sao. Phải công nhân là siêu sao được phát hiện ba lần trong thiên hà của chúng ta, nhưng chính do khôi năng lượng khổng lồ phóng ra, siêu sao dễ được nhân thấy hơn rất nhiều từ xa. Trong khi đó, đến mãi tận vài thập kỷ trước, các làn sóng radio do con người tạo ra mới bắt đầu phát ra từ hành tinh này. Nếu không, vu nổ sư sống của chúng ta sẽ tiếp diễn mà cả những quan sát viên trên những hành tinh hiên được. Trước đó, có lẽ biểu hiên duy nhất của "quả bom sư sống" của chúng ta chỉ là Ran san hô Great Barrier [45]. Nố siêu sao là một vụ nổ khống lồ, bất ngờ và đường đột. Bất kỳ vu nổ nào cũng được khơi mào bởi một đai lương nào đó vươt quá ngưỡng giới hạn, rồi sau đó mọi thứ tăng lên đến mức không thể kiểm soát được, từ đó tạo ra kết quả lớn hơn rất nhiều so với sư kiên khơi mào đầu tiên. Sư kiên khơi mào của quả bom nhân bản là sư xuất hiện của các thực thế nhân bản. Lý do khiến

sư tư nhân bản có tiềm năng bùng

gần đây cũng không thế nào phát

nố, giống như mọi vụ nổ khác, chính là sự tăng trưởng theo hàm mũ vật chất càng nhiều cường độ càng lớn. Một khi đã có một vật thể tư nhân bản, chẳng bao lâu ta sẽ có hai. Rồi hai bản sao đó lại tạo ra những bản sao của chính nó, và chúng ta có bốn. Rồi tám, rồi mười sáu, rồi ba mươi hai, sáu mươi tư... Chỉ cần sau 30 thế hệ nhân đôi này ta đã có nhiều hơn một tỷ. Sau 50 thế hê, ta có một triệu tỉ. Và sao 200 thế hê, ta sẽ có 1 triệu triệu triêu triêu triêu triêu triêu triêu triêu. Đó là về mặt lý thuyết. Trong thực tế, nó không bao giờ vượt qua ngưỡng đó. Bởi đó là một con số sao chép, phải bị giới hạn lại rất lâu trước khi nó đạt đến 200 thế hệ nhân đôi một cách tự do.

Chúng ta không có bằng chứng về sư kiên nhân bản khởi đầu trên

hành tinh này. Chúng ta có thể suy ra rằng chắc chắn nó đã xảy ra, bởi vì những thành quả của nó đang ở

còn lớn hơn cả số nguyên tử trong vũ trụ. Quá trình bùng nổ của sư tư

đây, mà chúng ta là một phần trong đó. Chúng ta không biết chính xác điều gì dẫn tới việc khởi đầu của sự tự nhân bản, nhưng chúng ta có thể suy ra nó thuộc loại nào. Nó là một phản ứng hóa học.

Hóa học là một vở kịch đang diễn

tinh. Các diễn viên trong vở kịch này là các nguyên tử và các phân tử. Ngay cả những nguyên tử hiếm nhất cũng đông hơn những gì mà ta quen đo đếm. Issac Asimov tính toán rằng số lương phân tử của các nguyên tố hiếm astatine-215 trên toàn bộ vùng đất bắc và nam Mỹ, sâu xuống 10 dặm, là "chỉ có một ngàn tỉ". Đơn vi nền tảng của hóa học là những đối tác trao đổi với nhau để tạo ra một tập hợp các đơn vi lớn hơn: Phân tử. Không giống như các cá thể của một loài hay các cây đàn violon Strat 46, dù có động đúc bao nhiều đi nữa các phân

ra trên mọi ngôi sao và mọi hành

khiến một số phân tử trở nên đông đúc hơn là "thành công". Nhưng đấy chỉ là bị dụ dỗ mà thôi. Bởi vì, sự thành công, theo đúng nghĩa của từ này, là một tính chất chỉ xuất hiện ở giai đoạn sau này trong câu chuyện

tử cùng loại cũng luôn luôn giống hệt nhau. Các vũ điệu nguyên tử

của chúng ta.

Thế thì, sự kiện nào dẫn tới giới hạn trọng yếu để bắt đầu vụ nổ sự sống? Tôi đã nói rằng đó chính là sự xuất hiện của các thực thể tự nhân bản, một cách tương đương, chúng ta cũng có thể coi nó là sư khởi đầu

của hiện tượng di truyền - một quá trình mà ta có thể gắn mác "cha

nào con nấy". Đây không phải là điều các phân tử thể hiện ra theo cách thông thường. Các phân tử nước, mặc dù tập hợp thành những phần tử khổng lồ, chúng lại chẳng thể hiện điều gì giống sự di truyền cả. Quần thể các phân tử nước (H₂O) tăng lên khi hydro (H) cùng cháy với oxy (O). Quần thể các phân tử nước giảm xuống khi nước bị điện phân tách ra thành các bong bóng hydro và oxi. Nhưng mặc dù có sự vận động trong quần thể phân tử nước, ta vẫn chưa thấy có sư di truyền nào. Điều kiên tối thiểu cho sự di truyền sẽ là phải có ít nhất hai loại phân tử nước H₂O riêng biệt, cả

hai đều cho ra những bản sao của chính chúng. Thỉnh thoảng phân tử tồn tại dưới

dang hai loai đối xứng nhau như hình ảnh gương. Có hai loại phân tử đường glucose, cả hai đều có những nguyên tử giống hệt nhau được ghép lai với nhau giống như đồ chơi Lego, chúng giống hệt nhau, chỉ khác là chúng là hình ảnh gương của nhau. Các loại phân tử đường khác cũng vậy, và ngoài ra còn rất nhiều các phân tử khác nữa, bao gồm cả các phân tử quan trong bâc nhất: axit amin. Có lẽ ở đây có một cơ hôi nào đó cho sư "cha nào con nấy" - cho sư di truyền hóa học chăng? Các phân tử có chiều tay phải có thể đẻ ra các phân tử con chiều tay phải và các phân tử chiều tay trái có thể sinh ra các anh chàng chiều tay trái không? Trước hết, ta cần một số thông tin cơ sở về các phân tử đối xứng gương cái đã. Hiện tượng này đầu tiên được nhà khoa học vĩ đại người Pháp thế kỉ mười chín Louis Pasteur phát hiên ra khi ông xem xét cấu trúc tinh thể của tartrate, một loại muối của axit tartaric, vốn là một hợp chất quan trong trong rươu vang. Một tinh thần là một khối rắn, đủ lớn để có thể thấy bằng mắt thường (nhiều khi còn có thể xâu lai để đeo quanh

nguyên tử hay phân tử cùng loại xếp chồng lên nhau tao ra một thể rắn. Chúng không xếp chồng lên nhau vô trật tự mà theo những chuỗi hình học trật tư, như những anh lính diễu hành giống hệt nhau và theo một kỉ luật sắt. Các phân tử là một phần của tinh thể tạo ra một khuôn mẫu để các phân tử mới bên ngoài thêm vào. Những phân tử này xuất phát từ trong dung dịch và có thể lắp vừa khớp vào, nên toàn bô tinh thể lớn lên thành một mang lưới hình học rất rõ ràng. Vì thế nên các tinh thể mới có mặt hình vuông và tinh thể kim cương có dang tứ

cố nữa!). Nó được tạo thành từ các

mẫu nào đó đóng vai trò khuôn mẫu để tạo ra một hình khối khác giống như nó, chúng ta có ý niệm sơ khai về khả năng tự nhân bản.

diên (hình kim cương). Khi một hình

Bây giờ chúng ta quay trở lại với các tinh thể tartrate của Pasteur. Pasteur để ý rằng khi ông để dung dịch tartrate vào trong nước, hai loại tinh thể xuất hiện, giống hệt nhau ngoại trừ việc chúng là các hình ảnh gương của nhau. Rất công

hình ảnh gương của nhau. Rất công phu, ông phân hai loại tinh thể ra hai nhóm riêng rẽ nhau. Khi tái hòa tan chúng riêng rẽ, ông có được hai dung dịch khác nhau, hai loại tartrate trong dung dịch. Mặc dù hai

nhau. Chính điều này đã cho hai loai phân tử các tên quy ước của chúng: chiều tay trái và chiều tay phải, vì chúng quay ánh sáng phân cực theo hướng ngược và xuối kim đồng hồ. Như ban cũng có thể đoán được, khi hai dung dịch này lai được tinh thể hóa một lần nữa, mỗi một trong hai sẽ tao ra một tinh thể tinh khiết làm hình ảnh gương của tinh thể tạo ra bởi dung dịch kia. Các phân tử hình ảnh gương của nhau được phân biệt ở chỗ, giống

dung dịch này tương tự nhau ở hầu hết mọi khía cạnh, Pasteur nhận thấy rằng chúng quay ánh sáng phân cực theo hai hướng ngược cố gắng xoay chúng theo bất cứ hướng nào đi nữa, bạn cũng không thể nào khiến chúng trùng lên nhau được. Dung dịch ban đầu của Pasteur là một quần thể hỗn hợp hai loại phân tử, và mỗi loại luôn nhất nhất chỉ kết hợp với loại của chúng khi tinh thể hóa. Sư có mặt của hai (hay nhiều hơn) loại riệng biệt của một thực thể là điều kiện cần để có được sư di truyền đích thực, nhưng nó không đủ. Vì để có được sự di truyền đích thực, các tinh thể mỗi chiều phải phân đôi ra khi chúng đạt tới kích thước tới han và mỗi một nửa đóng vai trò khuôn

như giày trái và giày phải, cho dù

đủ (kích thước tới hạn đó). Dưới các điều kiên này chúng ta thực sự sẽ có một cộng đồng tăng trưởng của hai loai tinh thể đối nghịch nhau. Chúng ta thực sự có thể nói về "sự thành công" trong quần thể, bởi vì do cả hai loại đấu tranh với nhau để dành được cùng các nguyên tử cấu thành - một loại có thể trở nên đông hơn trước sự thiệt hại của loại kia, nhờ vào sư "giỏi" tao ra các bản sao của chính nó. Thật không may, đai đa số các phân tử đã biết không có được tính chất phi thường này của sư di truyền. Tôi nói "thật không may" bởi vì

mẫu để lớn thêm lên đến mức đầy

như sau. Khi các nhà hóa học cố gắng tạo ra các phân tử, ví dụ như toàn bô là chiều trái, ho thất sư muốn có thể "gây giống" chúng lên. Nhưng, mặc dù các phân tử các phân tử có thể đóng vai trò cái khuôn để tạo ra các phân tử khác, thường chúng lai tao ra hình ảnh qương của mình mà không tạo ra loai cùng chiều. Điều này gây rất nhiều khó khăn, bởi vì xuất phát với loại chiều trái ban sẽ thu được một hỗn hợp của các phân tử chiều trái và chiều phải với số lương như nhau. Các nhà hóa học làm việc trong lĩnh vực này vẫn đang cố gắng đánh lừa các phân tử để

chúng "đẻ" ra các phân tử con cùng loại. Nhưng đây là một mánh lừa rất khó thực hiện trọn vẹn. Trên thực tế, mặc dù có lẽ không

liên quan đến chiều phải hay chiều

trái, một kiểu đánh lừa như thế này đã được thực hiện tư nhiên và tư phát từ hàng tỷ năm trước, khi thế giới đang rất mới và vụ nổ hình thành sự sống và thông tin đang bắt đầu. Nhưng ta cần một cái gì đó nhiều hơn sư di truyền giản đơn để cho vu nổ có thể khởi đầu một cách chính thức được. Ngay cả khi một loai phân tử có sư di truyền đích thực giữa các dạng chiều trái và chiều phải, bất kì một sư canh tranh loai tay trái dành thắng lợi trong cuộc canh tranh, đó là lúc vấn đề kết thúc. Sẽ chẳng có thêm tiến trình nào nữa. Các phân tử lớn hơn có thể cho thấy tính phải trái ở các phần khác nhau trên mình của nó. Chẳng han, phân tử kháng sinh monensin có mười bảy tâm á xứng. Tại mỗi môt

trong số mười bảy tâm này, có một dạng tay trái và dạng tay phải. Hai nhân với chính nó 17 lần là 131072, và vì thế có 131072 dạng khác biệt của các phân tử này. Nếu cả

nào giữa chúng đều không tạo ra một hệ quả thú vị nào, vì rốt cuộc cũng chỉ có hai loai. Ví du, khi một

131072 dạng này có được tính chất của sư di truyền đích thực, với mỗi một dang chỉ giống với loại của chính nó, sẽ có một cuộc canh tranh khá phức tạp, và các thành viên thành công nhất của tập hợp 131072 phần tử này dần dần khẳng định mình thông qua những lần "điều tra dân số" liên tiếp. Nhưng ngay cả điều này cũng chỉ có một loại di truyền hạn hữu, bởi vì 131072, dù là một số lớn, vẫn là hữu hạn. Đế vụ bùng nổ sự sống xứng đáng với tên gọi của nó, di truyền là cần thiết nhưng ta cũng phải cần đến sự đa dạng kết thúc mở và không han định.

O vấn đề di truyền hình ảnh gương, chúng ta đã đi đến cuối con đường với monensin và không tiến thêm được nữa. Nhưng kiểu chiều phải đối lai với chiều trái không phải là kiểu tao khác biệt duy nhất mà có thể thích hợp với việc sao chép mang tính di truyền. Julius Rebek và các công sư của ông ở Viên Công Nghê Massachusetts (MIT) là các nhà hóa học đã đương đầu với những thử thách nghiêm túc trong việc tạo ra các phân tử tự nhân bản. Các biến thể mà ho sử dụng không phải là các hình ảnh gương của nhau. Rebek và các công sư lấy hai phân tử nhỏ - tên cụ thể không quan trong, nên ta cứ gọi chúng là A và B. Khi A và B được trôn với nhau trong dung dịch, chúng hợp lai để tao ra một hợp chất thứ ba gọi là - ban đoán được rồi - C. Mỗi một phân tử C hoat đông như một cái khuôn. Các phân tử A và B, vốn trôi nổi tư do trong dung dịch, tư động đi vào khuôn. Môt A và môt B phải chen vào khuôn theo đúng vi trí, và bằng cách đó chúng được sắp xếp môt cách chính xác để tao ra môt C mới, giống như cái trước. Các C này không dính lại với nhau để tạo ra tinh thể, mà tách rời nhau ra. Cả hai C bây giờ đều có thể làm khuôn để tạo ra các C mới, cho nên dân số của C tăng theo hàm mũ.

Theo như mô tả cho đến giờ, hệ thống này không cho thấy một sự di

truyền theo đúng nghĩa, nhưng cho thấy một khả năng tạo ra nó. Phân tử B tồn tại ở một số dạng, mỗi một trong số chúng kết hợp với phân tử A để tạo ra phiên bản C của riêng chúng. Nên ta có C₁, C₂, C₃ và vân vân. Mỗi một trong số các phiên

bản của phân tử C này lại hoạt động như một cái khuôn để tạo ra các C của riêng mình. Quần thể C do đó không thuần nhất. Hơn nữa, các loại khác nhau của C không hiệu quả như nhau để tạo ra các phân tử con. Cho nên ta có một sự cạnh

nhau của C trong công đồng các phân tử C. Hay hơn nữa, ta có thể tao ra "các đột biến tư phát" của phân tử C bằng bức xa tử ngoại. Loai đột biến này cho thấy nó có thể "tư sinh đẻ" khi cho ra các phân tử con chỉ giống như nó. Tuyệt vời thay, biến thể mới này vượt trôi loại cha me và nhanh chóng chiếm lĩnh thế giới trong ống nghiệm mà các loài tiền-sinh này tồn tại. Tổ hợp A/B/C không phải là tập hợp phân tử duy nhất có tính chất này. Ví du còn có D,E và F nữa, là một bộ ba tương đương. Nhóm của Rebek thâm chí còn có thể tạo ra các loại

tranh giữa các phiên bản đối nghịch

lai tự nhân bản giữa các tổ hợp A/B/C và D/E/F.

Các phân tử tư sao chép đích thực

mà ta biết trong tư nhiên - các axit

nucleic ADN và ARN - có một tiềm năng biến đổi phong phú hơn nhiều. Trong khi các nhân bản tử Rebek là một chuỗi (dây xích) với chỉ hai mối

nối (mắt xích), một phân tử ADN là

một chuỗi với độ dài không giới hạn; mỗi một trong số một hàng trăm mắt xích của chuỗi có thể là một trong bốn loại; và một đoạn ADN hoạt động như một khuôn mẫu để tạo ra phân tử ADN mới, mỗi

một trong số bốn loại đóng vai trò là một khuôn mẫu cho một loại nhất định khác nó trong bốn. Bốn đơn vi này, được gọi là cơ sở, là các hợp chất adenine, thymine, cytosine và quanine, theo quy ước được gọi tắt là A,T,C và G. A luôn luôn là khuôn của T, và ngược lai. Còn G luôn luôn làm khuôn cho C và ngược lai. Bất kì một trật tư nào của A,T,C và G đều có thể được và sẽ nhân đôi một cách trung thực. Hơn nữa, vì các chuỗi ADN có độ dài bất kì, chuỗi các biến thể có thể có trên thực tế là vô han. Đây là một công thức tiềm tàng cho một vụ nổ thông tin mà sư vang vong của nó cuối cùng có thể vượt khỏi hành tinh nhà để đến các vì sao.

thời gian bốn tỉ năm từ khi nó xuất hiện. Chỉ trong khoảng một triều năm trở lại đây một hệ thần kinh có khả năng phát minh ra công nghê sóng radio mới bắt đầu xuất hiện. Và chỉ trong vài thấp kỷ qua hệ thần kinh đó mới thực sự phát triển công nghệ sóng radio. Bây giờ, môt lớp vỏ những làn sóng radio giàu thông tin đang nở ra bên ngoài từ hành tinh đó với tốc đô ánh sáng. Tôi nói "giàu thông tin" để phân biêt với hàng bao nhiêu loại sóng

Những tiếng vang vọng của vụ nổ các nhân bản tử của hệ mặt trời chúng ta lâu nay vẫn chỉ giới hạn trên hành tinh nhà trong hầu hết

radio đã có từ trước đó và đang vang vong khắp vũ tru. Các ngôi sao bức xa ra các sóng với tần số radio và cả tần số mà ta gọi là ánh sáng khả kiến. Thậm chí còn có cả tiếng ồn tàn dư từ vu nổ lớn ban đầu mà đã khai sinh ra thời gian và vũ trụ. Nhưng sóng radio đó không mang những kiểu mẫu có ý nghĩa: nó không giàu thông tin. Một nhà thiên văn chuyển về tín hiệu radio trên một hành tinh quay quanh Proxima Centauri [47] cũng có thể thu nhận được cùng tiếng ồn do bức xa tàn dư như những nhà thiên văn của ta, nhưng cũng có thể nhân thấy một kiểu mẫu tinh vi phức tạp hơn rất nhiều trong các sóng radio phát ra từ hướng ngôi sao Sol.

Nhà thiên vặn này sẽ không nhận

dang kiểu mẫu thông tin ấy như một hốn hợp các chương trình tivi đã bốn năm tuổi (ngôi sao cách chúng ta bốn năm ánh sáng, ND), mà chắc lẽ sẽ nhân diên nó là một thứ có cấu trúc và giàu thông tin hơn nhiều so với tiếng ồn tàn dư thường gặp. Những nhà thiên văn của chòm sao Nhân Mã sẽ reo lên sung sướng và báo cáo rằng ngôi sao Sol đã bùng ra một vụ nổ về măt thông tin tương đương với vụ

nổ siêu sao (họ sẽ đoán, nhưng không lấy làm chắc chắn, nhưng cái đó bắt nguồn từ một hành tinh quay quanh sao Sol). Như chúng ta đã thấy, những quả

bom nhân bản đi theo một quá trình thời gian chậm hơn rất nhiều so với

các siêu sao. Quả bom nhân bản của chúng ta đã mất một số tỷ năm để đạt đến ngưỡng radio - thời điểm mà một phần thông tin về nó bắt đầu chảy tràn ra từ thế giới nhà và bắt đầu bao trùm những xung radio mang ý nghĩa lên các hệ thống và vì sao lân cân. Nếu vu nổ thông tin của chúng ta là điển hình, ta có thể đoán rằng các vụ nổ thông tin đều trải qua một loạt các ngưỡng tới han từ thấp đến cao. Ngưỡng radio khá trễ trên con đường hình thành của quả bom nhân bản. Trước những ngưỡng này, ít nhất là trên hành tinh này, có thể gọi là ngưỡng để có tế bào thần kinh. Còn trước đó thì có ngưỡng đa bào. Ngưỡng số một, ngưỡng mẹ của tất cả, chính là ngưỡng nhân bản tử, sư kiên khơi mào nào đã làm cho cả vu nổ trở nên khả dĩ. Điều gì quan trọng đến vậy ở những nhân bản tử? Làm sao mà sư xuất hiện ngẫu nhiên của một phân tử với tính chất dường như tẻ nhạt, là có thể làm một cái khuôn để tổng

hợp ra một phân tử khác giống như

và, trước đó, ngưỡng ngôn ngữ đến

nó có thể vượt xa ra khỏi giới han của các hành tinh? Như chúng ta vừa thấy, một phần sức manh của các nhân bản tử nằm ở sự tăng trưởng theo hàm mũ. Sự tăng trưởng theo hàm mũ này có một hình thái đặc biệt rõ ràng. Ta có thể thấy sơ tăng trưởng theo hàm mũ qua một ví du đơn giản gọi là thư chuôi. Bạn nhận được một bưu thiếp có ghi rằng: "Hãy sao bưu thiếp này ra làm sáu bản rồi gửi đi cho sáu người ban trong vòng một tuần. Nếu không làm điều này, bạn sẽ bi bùa mê rồi sẽ chết trong một

chính nó, lại là ngòi của vụ nổ mà những tiếng vang vong tôt cũng của tháng". Nếu là một người tỉnh táo ban sẽ vất lá thư đi ngay. Nhưng cũng có nhiều người không tỉnh táo; họ hơi bị lôi cuốn, hay cảm thấy sơ bởi lời đe doa nên gửi đi sáu bản sao đến những người khác. Nếu tính trung bình một phần ba số người nhân bưu thiếp này tuân theo lời hướng dẫn ghi trên đó, số lương bưu thiếp gửi đi sẽ nhân đôi mỗi tuần. Về mặt lý thuyết, điều này có nghĩa là số lượng bưu thiếp được gửi đi sau một năm sẽ là 2 mũ 52, tức là bốn triệu tỉ. Biển bưu thiếp ấy là đủ để nhận chìm mọi đàn ông, phu nữ và trẻ em trên thế giới này.

cơn đau kinh khủng trong vòng một

nguồn cung cấp, sư tăng trưởng theo hàm mũ luôn luôn dẫn đến những kết quả có số lượng lớn đến mức sửng sốt, trong một thời gian ngắn đến ngạc nhiên. Nhưng trên thực tế, các nguồn cung cấp có giới han, cả những nhân tố khác cũng làm giới hạn sự tăng trưởng đó. Như trong ví du trên của ta, người ta chắc sẽ bắt đầu đặt dấu hỏi và do dư khi lá thư chuỗi đó quay trở lai lần thứ hai. Trong cuốc canh tranh để có được nguồn cung cấp, các biến thể của các nhân bản tử, một cách ngẫu nhiên, trở nên hiệu quả hơn trong việc làm cho chúng

Một khi không chiu sư thiếu hut

hướng thay thế những đối thủ kém hiệu quả của chúng. Ở đây điều rất quan trong là chúng ta cần hiểu rằng không một thực thể nhân bản nào lại muốn làm cho mình được nhân lên một cách có ý thức. Nhưng một cách tất yếu, những nhân bản tử hiệu quả hơn luôn vượt qua các đối thủ mình về số lương để chiếm đầy thế giới này. Trong trường hợp thư chuỗi, trở nên hiệu quả hơn nghĩa là có những câu chữ thuyết phục hơn trên tấm thiệp. Thay vì lời nói đáng ngờ "nếu ban không làm theo những lời trên

được nhân ra. Những nhân bản tử hiệu quả hơn này sẽ có khuynh

một cơn đau đớn kinh khủng trong vòng một tháng", thông điệp có thể chuyển thành "Xin hãy làm ơn, tôi xin ban hãy cứu lấy linh hồn của ban và của tôi, đừng mạo hiểm: dù ban có chút nào nghi ngờ đi nữa, hãy tuân theo lời hướng dẫn và gửi lá thư đi tiếp đến sáu người nữa". Những "đôt biến" như vậy có thể xảy ra hết lần này đến lần khác, và kết quả cuối cùng sẽ là một quần thể không đồng nhất các thông điệp cùng lưu thông, tất cả đều bắt nguồn từ thông điệp gốc ban đầu nhưng khác về cách diễn lời chi tiết ở đô manh và tính chất của những

tấm thiệp này ban sẽ chết trong

lời van lơn. Các biến thể thành công hơn sẽ tăng lên về số lương trước sư thiệt thòi của các đối thủ kém thành công hơn. Ở đây thành công chỉ đơn thuần là đồng nghĩa với tần số lưu thông. "Thư St.Jude" là một ví du được biết đến rất nhiều cho sư thành công như thế; nó đã đi vòng quanh thế giới một số lần, chắc là tăng lên trong quá trình lưu thông đó. Khi tôi viết cuốn sách này, Tiến sĩ Oliver Goodenough, Đai học Vermont, đã chuyển cho tôi môt phiên bản sau đây và chúng tôi đã cùng viết một bài báo về nó, miêu tả nó là một "virus tinh thần" cho tap chí Nature:

"VỚI TÌNH THƯƠNG YÊU MỌI THỨ ĐỀU CÓ THỂ" (lá thư được giữ nguyên các lỗi chính tả. ND) Tờ giấy này được gửi đến bạn để được may mắn. Bản gốc là ở New England. Nó đã được gởi vòng quanh thế giới 9 lần. Sự May Mắn đã được gửi tới ban. Bạn sẽ nhận được vân may trong vòng 4 ngày sau khi nhân được lá thư này, chỉ chờ bạn tiếp tục gửi nó đi. Đây không phải trò đùa. Ban sẽ nhân được vân may trong lá thư. Đừng gửi tiền. Gởi những bản sao đến những người mà bạn cho là cần

niềm tin là vô giá. Đừng giữ lá thư này, nó phải rời khỏi tay bạn trong vòng 96 giờ. Một viên chức A.R.P Joe Elliott nhân được 40.000.000 đô. Geo. Welch mất vợ mình 5 ngày sau lá thư này. Ông ta đã không chiu gởi lá thư đi. Tuy nhiên trước cái chết của bà ông nhân được 75.000 đô. Làm ơn gởi các bản sao và ban sẽ thấy những gì xảy ra sau 4 ngày. Chuỗi thư đến từ Venezuela và được viết bởi Saul Anthony Degnas, một nhà truyền đạo từ N.Mỹ. Bởi vì bản đó phải quay

vân may. Đừng gởi tiền dzì

vòng trên thế giới. Ban phải sao ra 20 bản và gởi đến ban bè và các công sư sau một ít ngày bạn sẽ nhận được bất ngờ. Đây là tình yêu ngay cả khi ban không mê tín. Hãy ghi chú điều sau đây: Cantonare Dias nhận lá thư này năm 1903. Ông yêu cầu T. ký sao chép ra và gởi đi. Mấy ngày sau ông trúng số 20 triệu đô. Carl Dobbit, môt nhân viên văn phòng nhân được lá thư và quên rằng nó phải rời khỏi tay mình trong vòng 96 giờ. Ông ra mất việc. Sau khi tìm được lá thư ông ta sao ra và gởi đi 20. được công việc tốt hơn. Dolan Fairchild đã nhận được lá thư và không tin nên ném nó đi. Chín ngày sau ông ta chết. Năm 1987 một phu nữ trẻ ở cali nhân được lá thư. Nó đã mờ và hầu như không đọc được. Cô tư hứa là sẽ gõ lai lá thư và gửi nó đi, nhưng cổ để nó qua một bên để làm sau. Cô ta gặp phải vô số vấn đề, kể cả biết bao nhiêu rắc rối với chiếc xe hơi đắt tiền. Lá thư này đã không rời tay cô ấy trong vòng 96 giờ. Cô ấy cuối cùng gởi lai lá thư như đã hứa và cú một

Một ít ngày sau ông ta nhân

chiếc xe hơi mới. Nhớ không gởi tiền. Đừng bỏ qu cái này nó có tác dụng đấy. St. Jude

Lá thư nực cười trên có tất cả mọi dấu ấn cuả sư tiến hóa, qua một số

St. Juuk

lần đột biến. Có vô số lỗi chính tả và những điều vụng về, và người ta cũng biết là có nhiều phiên bản khác đang quay lòng vòng. Một số phiên bản khác biệt đáng kể cũng

được gởi cho tôi từ khắp thế giới khi bài báo của chúng tôi được công bố trên Nature. Ví dụ một trong những phiên bản này, "viên chức A. R. P" được viết thành "viên chức R.A.F". biết nó đã từng quay vòng nhiều lần trước khi họ bắt đầu theo dõi chính thức và nó thường bùng phát trở lại như bệnh dịch.

Ta có thể thấy rằng, thứ may

Lá thư St. Jude rất nổi tiếng đối với Bưu Điện Hoa Kỳ (USPS), họ cho

mắn cho những người tuân theo hay những tai họa cho những người bác bỏ được kể ra ở trong thư này chắc chắn không phải do chính nạn nhân hay người gặp may (nếu có) viết ra. Vận may đó không đến với người may mắn trước khi lá thư rời tay họ. Còn nạn nhân thì chẳng bao giờ gửi thư đi. Những chuyện này

chắc chỉ được bia ra - người ta cũng dễ dàng đoán ra từ sư vô lý trong nội dung của chúng. Đây chính là khía canh chính yếu cho thấy sư khác nhau giữa các thư chuỗi và các nhân bản tử tư nhiên đã khởi đầu vu bùng nổ sư sống. Các thư chuỗi đầu tiên được khai sinh ra bởi con người và những thay đổi trong cách diễn đạt xuất phát từ bộ não con người. Khi vụ nổ sự sống khởi đầu, không có một đầu óc nào, không có sự sáng tạo nào và cũng không có ý định nào cả. Chỉ có hóa học mà thôi. Tuy vây, một khi các chất hóa học tư nhân bản có cơ hội xuất hiên, sẽ có một khuynh hướng tư công hơn để tăng tần suất trên sự thiệt thòi của những biến thể kém thành công.

Cũng như trong trường hợp thư

chuỗi, sư thành công của các nhân

động để tạo ra các biến thể thành

bản tử hóa học chỉ đơn giản là đồng nghĩa với tần suất lưu thông. Những đó chỉ là định nghĩa, và gần như là một phép lặp thừa. Sự thành công gặt hái được là nhờ có sự cạnh tranh trong thực tế, và có sự cạnh tranh là một thứ gì đó cụ thể và chắc chắn. Nó có thể mang nhiều

tính chất, nhưng chắc chắn không phải là một phép lặp thừa. Một

thể biến đổi một cách vô hạn, ngay cả khi tính chất của chính các nhân bản tử có vẻ như đồng nhất một cách bất ngờ.

ADN đồng nhất đến mức nó hoàn toàn chỉ bao gồm những chuỗi biến

đổi của cùng bốn "ký tự" - A, T, C, D. Bằng phép so sánh như chúng ta

phân tử nhân bản tử thành công là một phân tử có được những gì cần thiết giúp nó nhân bản lên. Trong thực tế, những thứ cần thiết này có

đã thấy trong các chương trước đây, các phương tiện mà các chuỗi ADN sử dụng để làm cho chính chúng được nhân lên có thể đa dạng đến chóng mặt. Bao gồm việc xây dựng những quả tim hiệu quả hơn cho những con hà mã, những cẳng chân đàn hồi hơn cho những con bọ, những đôi cánh có dáng khí đông hơn cho những con chim én, những bong bóng nổi hơn cho cá. Mọi cơ quan và chi của đông vật; gốc, rễ, lá và hoa của thực vật; mọi con mắt và bộ não và trí thông minh; và ngay cả những nỗi sợ hãi, những niềm hy vong là các công cu mà các chuỗi ADN thành công dùng để đưa mình tới tương lai. Chính các công cu thì gần như đa dang một cách vô hạn, nhưng các công thức để xây dựng các công cụ, ngược lại, lai những phép hoán vị tiếp sau những phép hoán vị của A, T, C, G mà thôi.

Cũng có thể không phải lúc nào cũng vậy. Không có căn cứ cho thấy khi vụ nổ thông tin mới bắt đầu, các

đồng nhất đến mức kỳ quái. Chỉ là

mã hat giống đã được viết bằng ký tư ADN. Thực ra, toàn bộ nền công nghê thông tin với ADN và protein làm nền tảng là rất tinh vi phức tạp - hay là "high tech", như nhà hóa hoc Graham Cairns-Smith đã gọi đã đến mức bạn không thể tưởng tượng được rằng nó đã xuất hiện một cách tình cờ, mà không có một hệ thống tư nhân bản nào đó làm cũng có thể là thứ gì đó khác xa thế: một khả năng trở trêu, mà tôi đã bàn đến một cách chi tiết trong cuốn Tạo hóa vô tri 48, chính là đồ thuyết của Cairns-Smith (xem cuốn Bảy manh mối về sư sống của ông) nói rằng các tinh thể đất sét hữu cơ có thể là các nhân bản tử nguyên thủy. Mà cũng có thể chúng ta không bao giờ biết chắc được. Bây giờ, những gì chúng ta có thể làm là đoán ra một bảng niên đại

tiền thân. Hệ thống tiền thân đó có thể là ARN; hay có thể là một thức gì đó như là các phân tử tự nhân bản đơn giản của Julius Rebek; hay đâu trong vũ tru. Các chi tiết sẽ phu thuộc vào các điều kiên tại chỗ. Hê thống ADN/protein sẽ không thể hoat đông trong một thế giới với amoniac long lanh cóng, nhưng có lẽ một hệ thống gen và phội thai nào đó lại có thể. Dù sao đi nữa, đó cũng chỉ là những chi tiết mà tôi muốn bỏ qua, bởi vì tôi muốn tập trung vào các nguyên lý không phụ thuộc vào hành tinh. Bây giờ tôi sẽ điểm qua một cách có hệ thống hơn danh sách các ngưỡng tới hạn mà bất kì một quả bom nhân bản trên hành tinh nào cũng chắc sẽ phải trải

tổng quát của vụ nổ sự sống trên bất cứ hành tinh nào, bất cứ nơi thể không dễ xác định xem cái nào rất có thể là phổ quát, cái nào rất có thể là cục bộ địa phương, và chính câu hỏi này cũng đã thú vị rồi.

Ngưỡng tới hạn 1 chính là, tất nhiên rồi, Ngưỡng Nhân Bản Tử: sư

qua. Một số trong những ngưỡng này rất có thể thực sự là mạng tính phổ quát trong toàn vũ tru. Cũng có

xuất hiện kiểu hình của một hệ thống tự sao chép, trong đó có ít nhất một dạng sơ khởi ban đầu của sự biến dị di truyền, với những lỗi sao chép ngẫu nhiên thỉnh thoảng xuất hiện. Hệ quả của sự vượt Ngưỡng 1 là hành tinh sẽ có một

thể cạnh tranh nguồn cung cấp với nhau. Nguồn cung cấp sẽ hiếm hay trở nên hiếm một khi cuộc cạch tranh nóng lên. Một số phiên bản biến dị sẽ trở nên thành công trong việc giành được nguồn cung cấp

quần thể hỗn hợp, trong đó các biến

việc giành được nguồn cung cấp hiếm đó. Một số khác trở nên kém thành công hơn. Và bây giờ ta có dạng căn bản của sự chọn lọc tự nhiên.

Đầu tiên, sự thành công giữa các nhân bản tử - đối thủ của nhau - chỉ

nhân bản tử - đối thủ của nhau - chỉ đơn thuần ở tính chất trực tiếp của chúng - ví dụ, hình dạng của chúng phù hợp để làm khuôn mẫu đến

mức nào. Nhưng giờ đây, sau nhiều thế hệ tiến hóa, chúng chuyển lên Ngưỡng 2, Ngưỡng Kiểu Hình. Các nhân bản tử sống sót được không phải nhờ vào tính chất của riêng chúng mà nhờ vào các hiệu ứng lên một thứ khác, thứ này chúng ta gọi là kiểu hình. Trên hành tinh của chúng ta, kiểu hình dễ dạng được nhân thấy dưới dang những bô phận của cơ thể động và thực vật mà gen gây ảnh hưởng lên. Có nghĩa là toàn bộ mọi phần trên cơ thể. Hãy xem các kiểu hình như là những đòn bẩy quyền lực mà nhờ đó các nhân bản tử thành công có thể điều khiển được cách thức

quát hơn, kiểu hình có thể được định nghĩa là các sản phẩm của các nhân bản tử ảnh hưởng lên sư thành công của chính các nhân bản tử, nhưng tư các sản phẩm này thì không nhân bản. Ví du, một gen nào đó trong một loài ốc sên đảo Thái Bình Dương quyết định vỏ ốc xoắn chiều trái hay xoắn phải. Chính các phân tử ADN thì không có tính phải trái, nhưng sản phẩm kiểu hình thì có. Các vỏ ốc xoắn trái và xoắn phải có sự thành công khác nhau trong việc bảo vê con ốc. Bởi vì gen nằm trong vỏ ốc các ảnh hưởng lên hình dạng vỏ ốc, nên

chúng đi sang thế hệ kế tiếp. Tổng

vỏ ốc, vốn là các kiểu hình, không tự sinh ra các con ốc con. Mỗi một vỏ ốc đều được làm ra bởi ADN, và chính ADN thì đẻ ra ADN.

Các sản phẩm của ADN ảnh

hưởng lên kiểu hình của chúng (như là hướng xoắn của vỏ ốc) thông qua một chuỗi phức tạp các sư kiên

những gen nào tạo ra các vỏ ốc cứng hơn (thành công hơn) sẽ trở nên vượt trội về số lượng hơn so với gen tạo vỏ ốc kém thành công. Các

trung gian, tất cả đều được gộp vào dưới tiêu đề chung là "hệ phôi thai". Trên hành tinh chúng ta, mắt xích đầu tiên trong chuỗi này luôn luôn được xác định một cách chính xác, thông qua mã gen nổi tiếng, bằng trật tư của bốn loại ký tư trong ADN. Nhưng các chi tiết này chỉ có ý nghĩa cục bộ thôi. Tổng quát hơn, một hành tinh sẽ đến lúc chứa những nhân bản tử mà sản phẩm của chúng (kiểu hình) mang những hiệu ứng có lợi cho sư thành công của các nhân bản tử. Một khi Ngưỡng Kiểu Hình đã vượt qua, các nhân bản tử đã sống sót nhờ vào các tác nhân gián tiếp, hay là hệ quả của chúng lên thế giới bên ngoài. Trên hành tinh chúng ta, những hệ quả này giới han trên cơ

là sư tống hợp một phân tử protein

sót lâu dài của chúng, không bị giới han ở cơ thể "của" chính nhân bản tử. Gen có thể vươn ra ngoài các cơ thể và gây ảnh hưởng lên thế giới rông lớn bên ngoài, bao gồm cả các cơ thể khác nữa. Tôi không rõ Ngưỡng Kiểu Hình có tính phổ quát đến mức nào. Tôi nghi rằng nó sẽ phải vượt qua

thế mà gen cơ ngụ. Nhưng không nhất thiết lúc nào cũng vậy. Thuyết về Kiểu Hình Mở Rộng (mà tôi đã dành cả một cuốn sách với tiêu đề đó) phát biểu rằng đòn bẩy quyền lực thông qua kiểu hình, mà qua đó các nhân bản tử thiết kế ra sự sống

sư sống đã đi quá giai đoạn sơ khởi ban đầu. Tôi cho rằng điều nàv cũng đúng đối với ngưỡng tiếp theo trong danh sách của tôi. Đây là Ngưỡng 3, Ngưỡng Tập Thể Nhân Bản Tử, mà trên hành tinh nào khác nó có thể vươt qua hay cùng thời với Ngưỡng Kiểu Hình. Trong thời gian đầu, chắc nhân bản tử chắc là những thực thể tư thân trôi nổi bập bềnh, cùng với các nhân bản tử đối thủ không có gì bao bọc, ở đầu nguồn của dòng sông gen. Nhưng một đặc điểm của hệ thống công nghê thông tin ADN/protein hiện đại trên Trái Đất đã khiến không một

những hành tinh mà trên đó vu nố

đông được khi cách ly với gen khác. Thế giới hóa học mà trong đó một gen làm công việc của nó không phải là thế giới hóa học của môi trường bên ngoài không chút ảnh hưởng qì lên nó. Nói cho đúng ra, cái này tao ra một phông nền, nhưng nó là một phông nền khá xa xôi. Thế giới hóa học trực tiếp và cần thiết một cách sống còn mà nhân bản tử ADN sống sót đó, là một túi hóa chất nhỏ hơn và tập trung hơn rất nhiều - tế bào. Gọi tế bào là một túi hóa chất là gây nhầm lẫn, bởi vì rất nhiều tế bào đã ra công ra một cấu trúc bên trong

gen riêng rẽ nào đó có thể hoat

một hiệp hội hàng trăm gen, hay là hàng trăm ngàn gen ở các tế bào cao cấp. Mỗi gen đóng góp vào môi trường đó, và rồi chúng đều dưa vào nó để sống sót. Các gen làm việc theo tập thể. Chúng ta đã thấy điều này từ một góc nhìn hơi khác trona Chươna 1. Các hệ thống sao chép ADN tự

động đơn giản nhất trên hành tinh của chúng ta là tế bào vi khuẩn, và

gồm những các màng gấp mà trên đó, trong đó và giữa chúng các phản ứng hóa học tối quan trọng xảy ra. Thế giới vi mô hóa học, hay là tế bào, được xây dựng nên bởi bào vi khuẩn được gọi là tế bào nhân chuẩn. Tế bào của chúng ta, và của tất cả các đông vật, thực vật, nấm và động vật nguyên sinh là tế bào nhân chuẩn. Thông thường chúng có hàng chục hay hàng trăm ngàn gen, tất cả đều làm việc như một đôi ngũ. Như chúng ta đã thấy ở Chương 2, có vẻ như giờ đây người ta thấy rằng tế bào nhân chuẩn mực thực ra lai bắt đầu từ một đội ngũ gồm khoảng nửa tá tế bào vi khuẩn hợp lai với nhau. Nhưng đó là một dang cao cấp hơn

chúng cần đến ít nhất vài trăm gen để tạo ra các thành phần chúng cần. Những tế bào không phải tế đây. Tôi đàng nói rằng thực tế mọi gen làm việc trong môi trường hóa học được xây dựng bởi một hiệp hội các gen trong tế bào.

và không phải cái tôi đang nói ở

Khi đã nắm bắt được hình ảnh gen làm việc theo nhóm, chúng ta dễ bị cám dỗ vào việc nhảy lên một bước và giả định rằng sự chọn lọc theo thuyết Darwin ngày nay chọn lọc trong số những đội ngũ gen cạnh tranh nhau - rồi cho rằng chọn loc đã chuyển lên một cấp độ tổ

chức cao hơn. Hấp dẫn đấy, nhưng theo quan điểm của tôi thì sai một cách sâu sắc. Sẽ rõ ràng hơn khi nói ta đã gặp ở Chương 1, ở đó chúng ta đã thấy rằng những gen cùng nằm trong một nhánh của dòng sông số có khuynh hướng trở thành những "bạn đồng hành tốt" của nhau. Ngưỡng lớn kế tiếp phải vươt qua khi quả bom nhân bản đã thu lươm được xung lượng trên một hành tinh

rằng chọn lọc kiểu Darwin vẫn chọn giữa các gen canh tranh nhau, nhưng các gen được ưu tiên là các gen phát đạt lên trong sự có mặt của các gen khá, vốn cũng đồng thời được ưu tiên trong sư có mặt của nhau. Đây chính là điểm chúng

Ngưỡng 4. Mỗi một tế bào của sư sống, như đã thấy, là một biển các chất hóa học tí hon mà đội ngũ gen đắm mình trong đó. Mặc dù chứa toàn bộ đôi ngũ gen, nó được làm ra chỉ bởi một tập hợp nhỏ trong cả đội ngũ ấy. Rồi chính các tế bào lai phân đôi, mỗi nửa lại lớn lên đến kích thước đầy đủ. Khi điều này xảy ra, moi thành viên trong đôi gen được nhân đôi lên. Nếu hai tế bào này không hoàn toàn tách rời nhau ra à vẫn còn dính lại với nhau, những tòa nhà lớn có thể được tạo thành, với các tế bào đóng vai trò là các viên gach. Khả năng có thể tao

là Ngưỡng Đa Bào, và tôi gọi đây là

thể là rất quan trong ở những thế qiới khác với thế giới chúng ta. Khi Ngưỡng Đa Bào đã vươt qua, các kiểu hình có thể xuất hiện với hình dạng và chức năng mà ta chỉ có thể nhân biết được ở mức đô lớn hơn mức đô của một tế bào đơn nhất. Môt cái gạc nai hay một chiếc lá, một thủy tinh thể của mắt hay là vỏ của một con ốc sên - tất cả những hình dạng này được xây dựng nên bởi các tế bào, nhưng các tế bào không phải là phiên bản tí hon của hình dang cỡ lớn đó. Hay nói cách khác, các cơ quan đa bào không lớn lên theo cách như tinh thể. Ít nhất

ra các cấu trúc đa bào cũng rất có

lớn lên giống như những ngôi nhà hơn. Mà như ta thấy các ngôi nhà không phải có hình dang như một viên gach phóng lớn lên. Một bàn tay có một hình dạng đặc trưng, nhưng nó không được làm từ các tế bào có hình bàn tay. Lại cũng giống như các tòa nhà, các cơ quan đa bào đat được hình dang và kích thước đặc trưng của chúng là do các lớp tế bào (các viên gach) tuân theo những quy luật vốn quy định khi nào thì chấm dứt việc xây dựng lai. Theo một nghĩa nào đó, tế bào cũng phải biết chúng sẽ nằm ở vi trí tương đối nào so với các tế bào

trên hành tinh của chúng ta, chúng

khác. Các tế bào gan biểu hiện như thể chúng biết được rằng chúng là các tế bào gan và hơn nữa còn biết được chúng đang ở ngoài rìa của lá gan hay ở giữa. Làm sao chúng biết được như vậy là một câu hỏi khó trả lời, và đã có rất nhiều nghiên cứu. Các câu trả lời có được có lẽ chỉ đúng cho hành tinh của chúng ta và tôi sẽ không xem xét thêm ở đây nữa. Tôi cũng đã bàn đến một chút ở Chương 1. Cho dù chi tiết thế nào đi nữa, cách thực hiện những điều trên đã được hoàn thiên bởi cùng một quá trình tổng quát cho tất cả những quá trình hoàn thiên khác trong sư sống: sư sống sót của các hiệu ứng của chúng - trong trường hợp này là hiệu ứng lên hành vi của tế bào trong mối quan hệ của chúng với các tế bào lân cận.

gen thành công được xác định bởi

Ngưỡng lớn chủ yếu tiếp theo mà tôi muốn xem xét, vì tôi cho rằng nó cũng có ý nghĩa không chỉ riêng cho hành tinh của ta, đó là Ngưỡng Xử Lý Thông Tin Tốc Độ Cao. Trên hành tinh của ta, Ngưỡng 5 này đạt được bởi một lớp tế bào đặc biệt gọi

là nơ-ron thần kinh, hay là tế bào thần kinh, và chúng ta có thể gọi đại diện là Ngưỡng Hệ Thần Kinh theo như những gì xảy ra trên Trái

một hành tinh đi nữa, nó cũng rất quan trong, bởi vì bây giờ các hành đông xảy ra trên một thang thời gian ngắn hơn rất nhiều so với thang mà gen, cùng với đòn bẩy quyền lực bằng hóa học của chúng, thực hiện được một cách trực tiếp. Các con săn mồi có thể bật xa vì bữa tối, còn các con mồi có thể lẩn tránh vì mang sống, bằng cách dùng các thiết bị cơ bắp và thần kinh có thể hoạt động và phản ứng ở tốc độ nhanh khủng khiếp so với tốc đô của miếng origami phôi thai mà các gen đã lắp nên các thiết bi ban đầu. Tốc đô và thời gian phản

đất. Cho dù đat được thế nào trên

ứng tuyệt đối có thể khác rất nhiều trên các hành tinh khác. Nhưng trên bất cứ một hành tinh nào, ta lai vươt qua một ngưỡng quan trong nữa khi các thiết bị xây dựng nên bởi các nhân bản tử bắt đầu có được thời gian phản ứng nhanh hơn nhiều cấp đô so với những vân đông của bộ máy phôi thai của chính các nhân bản tử. Các thiết bị có nhất thiết phải giống như các vật thể mà chúng ta, trên hành tinh này, gọi là các tế bào nơ-ron và cơ bắp hay không thì không rõ. Nhưng trên hành tinh đó, khi điều gì đó tương đương với Ngưỡng Hệ Thần Kinh được vượt qua, các hệ quả quan trọng chắc chắn sẽ tiếp bước và quả bom nhân bản sẽ tiếp diễn trên chuyến hành trình hướng ra ngoài không gian của nó.

Trong số những hệ quả này có sự

tập trung lớn của các đơn vị xử lý dữ liệu – hay "bộ não" – có khả năng xử lý các kiểu hình dữ liệu phức tạp được thâu tóm bởi các "cơ quan cảm giác" và có khả năng lưu trữ thông tin của chúng trong "bộ nhớ". Một hệ quả phức tạp và kì bí

của việc vượt qua ngưỡng nơ-ron là sự nhận thức có ý thức, và tôi gọi đây là Ngưỡng 6, Ngưỡng Ý Thức. Chúng ta không biết điều này có tinh này hay không. Một số nhà triết học tin rằng nó gắn liền mật thiết với ngôn ngữ vốn đạt được chỉ một lần duy nhất, bởi loài khỉ đi trên hai chân Homo sapiens. Cho dù ý thức có cần đến ngôn ngữ hay không, chúng ta cũng nên xem rằng Ngưỡng Ngôn Ngữ cũng là một Ngưỡng chủ yếu, Ngưỡng 7, có thế nhất thiết mà cũng có thể không nhất thiết phải vươt qua trên một hành tinh bất kỳ. Các chi tiết của ngôn ngữ, ví du như có phải nó được truyền đi bằng âm thanh hay các môi trường vật lý khác hay không, là những chi tiết có ý nghĩa

thường xuyên đạt được trên hành

cục bộ của hành tinh.

một hệ thống mạng lưới mà thông qua đó các bộ não (như chúng được gọi trên hành tinh này) trao đổi thông tin đủ để cho phép phát triển công nghệ mang tính hợp tác. Bản thân công nghệ mang tính hợp tác, bắt đầu với sự phát triển ra các

công cụ đá và tiếp diễn qua các thời kì luyện kim, các xe cộ có bánh,

Từ quan điểm này, ngôn ngữ là

máy hơi nước và bây giờ là điện tử, cũng có rất nhiều thuộc tính của vụ nổ. Và như vậy sự khởi đầu của nó xứng đáng một tên gọi, Ngưỡng Công Nghệ Hợp Tác, hay Ngưỡng 8. hóa của loài người đã khơi mào một quả bom nhân bản hoàn toàn mới, với một loại mới các thực thể tư nhân bản – meme – như tôi đã gọi nó trong cuốn Gen Ích Kỷ - và chúng sinh sôi nảy nở rồi Darwin hóa trong dòng sông văn minh hóa. Hiện giờ cũng có thể có một quả bom meme vừa xảy ra, song song với quả bom gen mà trước đây đã tạo ra các điều kiện về não bộ hay văn hóa làm khả thi hóa sư khởi đầu đó. Nhưng đó lai là một chủ đề quá lớn đối với chương này. Tôi phải quay lai với chủ đề chính của vu nổ trên hành tinh và chú ý rằng

Thực ra, hoàn toàn có thế là văn

mang tính hợp tác đã đạt đến, rất có khả năng là ở đâu đó dọc theo con đường này, quyền năng tạo ra ảnh hưởng lên thế giới bên ngoài hành tinh nhà rồi sẽ đạt được. Ngưỡng 9, Ngưỡng Radio, đã được vươt qua và bây giờ nó đã trở nên hoàn toàn khả dĩ để các quan sát viên bên ngoài nhận thấy một hê sao vừa mới nổ ra dưới dạng một quả bom nhân bản. Điều mơ hồ đầu tiên mà các quan sát viên nhận được, như chúng ta vừa thấy, có thể là các làn sóng radio rò rỉ ra ngoài từ việc thông tin liên lac nổi trong hành tinh nhà. Sau

một khi giai đoạn của công nghệ

của quả bom nhân bản, với công nghê của mình, hướng ra các vì sao khác một cách có mục đích. Các bước đi ngập ngừng của chúng ta theo hướng này gồm việc chiếu những chùm sóng vào không gian với những thông điệp được đặc biệt dành cho các nền văn minh bên ngoài. Làm sao ban có thể làm ra các thông điệp cho các nền văn minh mà ban chẳng có một ý niệm nào về bản chất của ho cả? Hiển nhiên điều này là rất khó, và hoàn toàn có thể là các cố gắng của chúng ta cho tới nay đã bi hiểu sai.

đó, chính những nhân vật thừa tư

Hầu hết các chú ý cho đến nay đã được dồn vào việc thuyết phục các quan sát viên ngoài hành tinh rằng chúng ta thực sự tồn tại, thay vì gởi cho họ những thông điệp với nội dung đáng kể. Sứ mênh này cũng giống như sứ mênh mà Giáo Sư Crickson giả tưởng trong Chương 1 đã đối mặt. Ông đã sử dụng các số nguyên tố để làm mã ADN, và nguyên tắc song song dùng sóng radio là một cách dễ thấy để đánh dấu sư hiện diện của chúng ta đối với thế giới khác. Âm nhạc dường như có thể là một thông điệp quảng cáo tốt hơn về loài chúng ta, và ngay cả khi nếu khán giả không có

theo cách riêng của ho. Nhà khoa học và nhà văn nổi tiếng Lewis Thomas đã đề nghị rằng chúng ta phát nhac của Sebastian Bach, tất cả là Bach và không có gì ngoài Bach, mặc dù ông cũng sơ là nó có thể là một sư khoe khoang. Nhưng cũng tương tư, âm nhạc cũng có thể bi một trí tuệ khá ngoại lại nhầm với sự phát xạ có nhịp điệu của một ấn tinh (pulsar). Các ẩn tinh là các ngôi sao phát ra các xung sóng radio có nhịp điệu trong những khoảng một vài giây hoặc ngắn hơn. Khi một nhóm các nhà thiên văn radio Cambridge lần đầu tiên

tai, ho cũng có thể thưởng thức nó

thích tiết kiệm hơn ở đây là có một vì sao nhỏ quay cực nhanh và quét ra một chùm sóng radio vòng quanh giống như một cây đèn biển. Cho đến ngày nay, chúng ta vẫn chưa nhân được thông điệp thực sự nào từ bên ngoài hành tinh của mình. Sau sóng radio, bước duy nhất tiếp theo mà chúng ta đã hình dung

phát hiện ra chúng năm 1967, người ta đã rất hào hứng trong một thời gian ngắn khi thắc mắc liêu đó có phải là những tín hiệu mang thông điệp từ không gian hay không. Nhưng rồi chẳng bao lâu người ta nhận thấy rằng, cách giải

sự trong không gian: Ngưỡng 10, Ngưỡng Du Hành Không Gian. Các nhà văn khoa học viễn tưởng đã mơ về sự sinh sôi nảy nở trong không gian những tập đoàn con của con người, hay là của tác phẩm robot của họ. Các tập đoàn con này có thể được xem là các hạt giống, hay là tác nhân gây nhiễm, với các túi thông tin tư nhân bản mới – các túi mà sau đó chính chúng có thể mở rông một cách bùng nổ ra ngoài một lần nữa, theo dang những quả bom nhân bản vê tinh, phát đi cả gen và meme. Nếu viễn cảnh này

ra trong tiến trình hướng ra ngoài của vu nổ chính là sư du hành thực tưởng ra một Christopher Marlowe của tương lai khi quay lại với hình ảnh của dòng sông số: "Nhìn kìa, xem kìa, thật là những dòng chảy như thác lũ của sự sống từ trên trời cao kia!".

có bao giờ được hiện thực hóa, có lẽ cũng không đến nỗi quá bất kính khi

Cho đến nay hầu như chúng ta vẫn chưa đi được bước nào trong quá trình vượt ra ngoài. Chúng ta đã đến Mặt trăng. Nhưng sự tuyệt vời của thành quả này chỉ dừng ở chỗ, Mặt trăng, cho dù không phải là quả bầu đi nữa, cũng thật quá

gần và quá địa phương để có thể

coi đó là du hành, nếu nhìn từ quan điểm của những sinh vật ngoài hành tinh mà cuối cùng chúng ta có thể liên lac được. Chúng ta đã gửi đi một ít vỏ con nhộng vào không gian sâu thẳm, trên những quỹ đạo mà chúng ta không biết chúng sẽ kết thúc thế nào. Một trong những vỏ nhông này, là kết quả từ cảm hứng của nhà thiên văn có tầm nhìn xa trông rông người Mỹ tên Carl Sagan, mang theo một thông điệp được thiết kế để có thể giải mã bởi bất kì nền văn minh ngoài vũ tru nào nhận được nó. Thông điệp được tô điểm bằng một hình ảnh của loài đã tạo ra nó, hình ảnh của một người đàn ông và một người đàn bà khỏa thân.

Điều này mang chúng ta đi đủ một vòng, đến với những truyền thuyết xa xưa chúng ta đã bắt đầu.

Nhưng cặp đôi này không phải là Adam và Eva, và thông điệp khắc dưới dáng hình thanh nhã của họ là một thông điệp có giá tri đối với vu nổ sự sống của ta hơn hẳn bất cử thứ gì trong Sách Sáng Thế (Genesis). Được viết bằng một ngôn ngữ hình ảnh có thể hiểu được một cách phổ quát mà, tấm thẻ bài ghi ra Sách Sáng Chế của riêng nó trên hành tinh thứ ba của một ngôi sao dùng một thứ gì đó tốt hơn sư mê tín bộ lạc để ghi nhân nền văn minh đã tạo ra nó. Dọc theo vịnh không qian, ho đã biết rằng sẽ có, rất lâu Nhưng than ôi, cơ hội để con

mà toa đô của chúng trong thiên hà được ghi lai một cách chính xác. "Quốc (tế) như" của chúng ta còn được củng cố thêm bằng một vài biểu diễn hình tương các nguyên lý nền tảng của hóa học và toán học. Nếu những thực thể thông minh nào đó nhân được con nhông này, ho sẽ

trước đây, một vụ nổ sự sống mà đã đat đến cực điểm là nền văn minh ãν.

nhộng này xượt qua một quả bom nhân bản nào nữa trong vòng một parsec^[51] là nhỏ đến mức đau đớn. Một số nhà bình luân chỉ xem giá trị của nó là một thứ gây cảm hứng cho chúng ta ngay tai hành tinh nhà. Một bức hình của một người đàn ông và một người đàn bà khỏa thân, tay giơ lên theo một cử chỉ hòa bình thân thiên, được gửi đi một cách có ý thức ra ngoài trên một hành trình bất tân giữa các vì sao, thành quả xuất khẩu đầu tiên của tri thức của vu nổ sư sống của chúng ta - chắc chắn tư duy sâu thẳm của điều này có thể tao ra những hiệu ứng có lợi nào đó lên ý của ta; nó là một tiếng vang vọng nào đó của sự ảnh hưởng mang tinh thơ văn của bức tượng Newton ở Trinity College, Cambridge, lên ý thức có thể nói là khổng lồ của

William Wordsworth:

thức nhỏ bé han hẹp thông thường

Và từ trên gối, qua cửa sổ nhờ ánh sáng

Của vầng trăng hay các vì sao âu yếm, tôi chiêm ngưỡng Nhà nguyện nơi đứng bức tương

Của Newton với lăng kính và vẻ mặt lặng yên,

Như dấu ấn hoa cương vĩnh cửu của trí tuệ

Băng qua những đại dương Tư Duy xa lạ, một mình.

[1] Ý của đoạn văn là mô tả hai điểm đặc biệt của sự sống: sự tinh vi, hiệu quả hoàn thiện và sự đa dạng. (ND)

Nghiêm ngặt mà nói thì cũng có những ngoại lệ. Một vài loài động vật, như rệp vừng (aphids), sinh sản không cần giới tính. Các kì thuật như thụ tinh nhân tạo làm cho con người hiện đại có thể có con mà không cần giao hợp, và thậm chí là không cần đạt đến tuổi trường thành vì trứng của một bào thai bé gái có thể được lấy ra làm thụ tinh trong ống nghiệm. nhưng trong hầu hết các tình huống, sức manh

- của luận điểm tôi nói không hề giảm đi.
- Dạng thấp nhất của loài khỉ dạng người.
- [4] Nguyên văn là "hinsight" trái nghĩa với "foresight" là nhìn thấy trước trong tương lai (tiên tri, tiên liệu), hindsight là hiểu được những gì đã xảy ra trong quá khứ nhờ những kiến thức hiện đại. (ND)
- Theo Thần thoại Hy Lạp, Athena là con của thần Zeus với Metis. Zeus nuốt Athena vào bụng do sợ lời sấm truyền rằng con người này sẽ lật đổ mình. Nhưng sau đó Hephaestus chẻ trán của Zeus ra bằng rìu và Athena từ đó đã vọt ra với đầy đủ vũ khí, y phục do Metis chuẩn bị cho nàng trước khi sinh.
- Bạn đọc có thể cần nhớ những điều này khi đọc cuốn **Sự sống diệu kỳ (Wonderful Life)** của Stephen J.Gould, một cuốn sách rất đẹp về quần động vật kỷ Cambri.

Mâu thuẫn ở chỗ: nếu phát triển "liên tục" (đều đặn) thì không thể được coi là "cách mạng" (có bước nhảy vọt). (ND)

Nguyên bản: Chinese whisper, tức Lời thì thầm Trung Hoa.

[9]
Nguyên bản: aeon. Ý tác giả nói trải qua

những thời gian lớn, hàng triệu, hàng tỷ năm.

[10]

Hai công ty hóa chất lớn và lâu năm của

Anh và Mỹ.

[11]
Thực ra cái gọi là nghịch lý "con gà và quả trứng" trên thực tế không phải là một nghịch

lý. Lý do là vì tiến hóa, không tự nhiên sinh ra một con gà để đẻ ra quả trứng, cũng không có ngay một quả trứng để sinh ra một con gà. Con gà và quả trứng là sản phẩm của sự tiến hóa dần dần, từ bò sát mà lên, mà chính bò sát thì lai tiến hóa từ đông vật trước đó, cư như vậy

cho đến thời điểm đầu của sư sống, như chính

ngữ, để chỉ những sự việc liên quan qua lại nhân quả với nhau mà ta không thể hoặc khó xác định chính xác cái nào là nguyên nhân, cái nào là kết quả.

tác giả đã trình bày rất rõ trong chương này. Thành ra, nó chỉ mang ý nghĩa như một thành

Tiếng Anh là bootstrap.

[13] Bộ, hay là foot, số nhiều tiếng Anh là

có chiều dài trung bình vào cỡ 30cm, nên rất có thể người thời xưa đã lấy nó làm một đơn vị đo chiều dài. "Ba mươi ngàn bộ" là một cụm từ quen thuộc cho những ai thường đi máy bay và nghe cơ trưởng thông báo: "Máy bay của chúng ta đang bay qua địa phận XYZ ở độ cao ba mươi tư ngàn bô, tức là khoảng 11km, nhiệt đô bên

feet, 1 foot bằng khoảng 30cm. Foot có nghĩa gốc là bàn chân. Bàn chân người (phương Tây)

ngoài là -20⁰C...". (ND)

[14]

Đây không phải là lân đầu tiên tôi sử dụng lập luận theo kiểu đánh gục như thế này,

của họ theo văn hóa của chính mình. Bạn phải xem xét mỗi một tín ngưỡng của nền văn hóa đó trong bối cảnh của các tín ngưỡng khác của nền văn hóa đó. Tôi ngờ rằng dạng có ý nghĩa này của thuyết tương đối văn hóa là dạng nguyên thủy, và dạng mà tôi vừa phê bình chỉ là một dạng xuyên tạc một cách cực đoan của nó, mà thực sự báo động là nó đang rất phổ biến. Những nhà tương đối văn hóa chính tông phải

manh mẽ hơn nưa với việc phân biệt ho với

Báo The Spectator (London), ngày 06

[16] Wikon là tên họ như vậv ông Wikon nàv

những kẻ giả danh đó.

tháng 08 năm 1994.

và tôi phải nhấn mạnh rằng đây hoàn toàn chỉ dành cho những người nghĩ về quả bầu giống như đồng nghiệp của tôi ở trên. Nhưng thật trớ trêu, cũng có những người gọi là nha tương đối văn hóa trong khi quan niệm của họ là hoàn toàn khác và rất có ý nghĩa. Đối với họ, thuyết tương đối văn hóa chỉ có nghĩa là ta không thể hiểu một văn hóa nếu cố gắng diễn dải những tín ngưỡng

không chính thức mang họ Wilson, mà chỉ là bà con thứ mười bốn của một ông Wilson nào đó. Ý nói khôi hài. Điều ông Bá tước này bị chế giễu là: thứ mười bốn, chứ có phải thứ một gì đâu, ông chỉ là họ hàng xa vời mà thôi.

[17] Vào giữa thế kỷ 11.

[18] Năm tác giả viết cuốn sách này

[19] Cũng được đề cập trong cuốn Bảy nàng con gái của Eva cùng dịch giả, nhà xuất bản Trẻ 2008. (ND)

[20]

Đoạn văn được trích nguyên để cho thấy sự uyên bác đến mức đau đầu của Fisher. (ND)

[21]
Tác giả dùng từ embarrassment of riches – nghĩa đen là thừa mứa đến xấu hổ. (ND)

[22] Ý là: cho dù bạn giật ra đoạn nào từ

cuốn sách ADN, bạn cũng biết đoạn đó thuộc về cuốn sách nào nếu nó là một loài khác. (ND)

ADN của ti thể không giống ADN của người mà giống dạng của vi khuẩn, điều đó ủng hộ cho lý thuyết ti thể là một dạng vi khuẩn đã được "thuần hóa" sống trong cơ thể người và phục vụ cho việc tạo ra năng lượng. (ND)

Là một dan tộc sống ở vùng sa mạc Kalahari nằm trên ba nước Namibia, Botswana và Angola. (ND)

Tiếng Anh là Apocrypha, theo nghĩa gần đây vẫn được hiểu là "Kinh ngụy tác", là những bản kinh tồn tại không chính thống ít người biết đến mà đã được gán cho giá trị tiêu cực ("ngụy" tức là giả, là xấu). Tuy nhiên ở đây tác giả dùng từ này theo nghĩa gốc trong sáng của nó (tức chỉ nói là một di hàn song song không có hàm v

den ma da được gan cho gia trị tieu cực ("ngụy" tức là giả, là xấu). Tuy nhiên ở đây tác giả dùng từ này theo nghĩa gốc trong sáng của nó (tức chỉ nói là một dị bản song song, không có hàm ý xấu) mà tiếng Việt do ND hiểu thì chưa có từ tương đương. Vậy nên tạm dịch là "Kinh dị bản", tức là một di bản của kinh chính thống. (ND)

Bạn đọc có thể tìm hiểu thêm về việc nghiên cứu dòng dõi thông qua nhiễm sắc thể Y, ví dụ như trong cuốn Bảy nàng con gái của Eva của cùng dịch giả do NXB Trẻ phát hành năm 2008. (ND)

Dến những năm 2000, giáo sư Brian Sykes đã lấy được 6000 mẫu phục vụ cho nghiên cứu ADN ti thể.

Tác giả viết cuốn sách này vào đầu những năm 1990, lúc đó thế giới khoa học vẫn còn chưa ngã ngũ hẳn trong chuyện này. Ngày nay, với những máy tính hiện đại cộng thêm các dữ liệu của ADN ti thể lấy được trên thế giới lớn hơn rất nhiều so với con số 135 phụ nữ, người ta đã có thêm nhiều phân tích và chắc chắn rằng Eva Ti Thể chính là ở châu Phi. Độc giả có thể xem thêm ở cuốn Bảy nàng con gái của Eva của cùng dịch giả.

[29] Vượn người phương Nam.

Đây cũng là tựa đề của cuốn sách (River out of Eden), là câu trích từ Sách Sáng Thế (Kinh Cựu Ước). Tựa đề được chuyển thành Dòng sông trôi khuất địa đàng cho mượt mà và cũng đúng ý tác giả và nội dung sách là gợi lên một ý rời bỏ, từ bỏ (những gì không đúng). (ND)

[31] Một số tài liệu gần đây cho thấy một số loài chim thông minh hơn (như quạ) đã phân biệt được đến ba người. Nghĩa là nếu đi vào chòi canh là 5 người, đi ra 4 người thì chúng không phân biệt được. Nhưng chúng sẽ nhận ra ngay sự khác biệt nếu đó là 1,2 hay 3 người.

[32] 1 yard bằng 0,9144 mét.

Tôi hy vọng điều này không xúc phạm ai. Để củng cố điều tôi nói, tôi trích dẫn phát biểu sau đây từ tạp chí Khoa học và Niềm tin Thiên Chúa giáo, do nhà vật lý nổi tiếng, Đức Cha John

Chúa giáo, do nhà vật lý nổi tiếng, Đức Cha John Polkinghorne (1994, trang16): "Người như Richard Dawkins có thể trình bày thuyết phục cho dù là thô sơ đến đâu, về số bước cần thiết để dẫn ta từ một tế bào hơi nhạy sáng chút ít cho đến con mắt đầy đủ của côn trùng, và về số gần đúng các thế hệ cần có để các đột biến cần thiết có thể xảy ra".

[34]

Khả năng có thể di truyền được. (ND)

[35]

Kí hiệu 1m.

vấn đề làm sao những sự tích lũy dần sàng từ từ của những khác biệt nhỏ có thể tạo ra những phát triển vĩ mô, nhưng theo bản năng, một nhà khoa học vật lý rất muốn xem một ước lượng

[37] Đập thủy điện ở giữa Zambia và Zimbabwe, là một trong những đập lớn nhất thế giới với chiều cao 128m và chiều dài 579m.

Holmes với bác sĩ Watson.

[36] Câu nói nổi tiếng của thám tử Sherlock

[38]
Tức là đặt ra câu hỏi tại sao nhàm mục đích dựng tiên để cho lý giải khoa học, chứ

không phaih ỏi theo cách thần học bên trên.

[39] Tên thân mật, thay cho James.

[40] Cũng có thể gọi là "công nghệ đảo ngược".

[41]
Là thước có một miếng trượt trên đường rãnh ở giữa, có chia độ lôga để tính toán nhanh.

Tên đầy đủ Sir David Attenborough với rất nhiều huân huy chương cao quý của Hoàng gia Anh Quốc. Ông là một nhà tự nhiên học và là phát thanh viên truyền hình với sự nghiệp hơn 50 năm làm việc trong các chương trình lịch sử tự nhiên nước Anh. Công trình được biết đến nhiều nhất của ông là chuỗi phim tài liệu Sự sống cộng tác với Ban Lịch sử Tự nhiên đài BBC. (ND)

[43] Ý nói thiết kế của con phù du quá tối ưu, không lãng phí cái gì cả, đúng với cách thức mà Henry Ford muốn. Supernova: Tên gọi siêu tân tinh hay siêu sao mới xuất phát từ việc quan sát trong lịch sử những hiện tượng hiếm có, khi một ngôi sao đột ngột bùng sáng như thế vừ sinh ra. Dựa theo cường độ sáng chúng được ghi nhận là tân tinh hoặc siêu tân tinh. Tuy nhiên, bản chất của hiện tượng siêu tân tinh là điểm kết cục của một số loại sao của quá trình tiến hóa của chúng. (Theo Wikipedia).

Rạn san hô Great Barrier là hệ thống đá ngầm san hô lớn nhất thế giới, bao gồm khoảng chừng 3000 tảng đá ngầm riêng rẽ và 900 hòn đảo, kéo dài khoảng 2600 km, bao phủ một vùng có diện tích xấp xỉ 344400 km². Phần đá ngầm ở khu vực Biển San Hô, cách bờ biển Queensland về hướng đông bắc Australia.

Ran san hô Great Barrier có thể nhìn thấy

được từ ngoài không gian và được cho là đơn thế lớn nhất thế giới. Trong thực tế, nó được hình thành từ hàng triệu sinh vật nhỏ, là những polyp san hô. Rạn san hô Great Barrier cũng năm 1981. Đài CNN đã gọi nó là một trong bảy kỳ quan thiên nhiên của thế giới. Tổ chức Tín Quốc Queensland coi nó là biểu tượng của bang Queensland. (Wikipedia)

Là một loại đàn violon cho âm thanh tốt

nhất trên thế giới, chỉ do chính Antonio Stradivari người Ý chế tạo vào khoảng đầu thế kỷ 18. HIện nay, những cây đàn này trở nên cực kỳ

được công nhân là Di sản thiên nhiên thế giới vào

hiếm trên thế giới. Vì nghệ nhân giấu kín bí quyết làm đàn của mình, đã có rất nhiều cố gắng nghiên cứu để tái tạo loại đàn trứ danh này nhưng đến này vẫn chưa ai thành công. (ND)

[47]

Là ngôi sao trong vũ trụ gần chúng ta nhất, cách Trái Đất hơn 4 năm ánh sáng và nằm

[48] The Blind Watchmaker của cùng tác giả. (ND)

trong chòm sao Nhân Mã

[49] Christopher Marlowe (cuối thế kỷ 16) là

một nhà viết kịch, nhà thơ và dịch giả người Anh, nổi tiếng với thể thơ không vần.

Đầu mang khí cụ khoa học trên tên lửa vũ trụ, giống như con nhộng.

Dơn vị đo khoảng cách tinh tú trong không gian.

[52] Ở đây, "dấu ấn hoa cương" được dịch thoáng từ "the marble index" (là thước đo bằng đá, chắc chắn như đá). Ngoài ra nguyên bản với từ "index" có thể là một phép tu từ của tác giả: nó còn có ngầm ý là "refractive index", hay là "chiết xuất" (của khối lăng kính nổi tiếng của Newton. Chắc hẳn ai cũng nhớ thí nghiệm tách ánh sáng thường thành ra 7 màu đơn sắc của

Newton với một lặng kính).