SEQUENCE LISTING

<110> Wong, Justin Winter, Jill Lalehzadeh, Guita Warne, Robert

<120> Compositions and Methods of Therapy for Cancers Characterized by Expression of the Tumor-Associated Antigen MN/CA IX

<130> PP19155.002/035784/267827

<160> 10

1700

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1380

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1) ... (1380)

<400> 1

atg gct ccc ctg tgc ccc agc ccc tgg ctc cct ctg ttg atc ccg gcc 48
Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala
1 5 10 15

cct gct cca ggc ctc act gtg caa ctg ctg ctg tca ctg ctg ctt ctg 96
Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu Leu
20 25 30

atg cct gtc cat ccc cag agg ttg ccc cgg atg cag gag gat tcc ccc 144
Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro

ttg gga gga ggc tct tct ggg gaa gat gac cca ctg ggc gag gat 192 Leu Gly Gly Gly Ser Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp
50 60

ctg ccc agt gaa gag gat tca ccc aga gag gag gat cca ccc gga gag
Leu Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu

gag gat cta cct gga gag gat cta cct gga gag gat cta cct 288
Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro
85
90
95

gaa gtt aag cct aaa tca gaa gaa gag ggc tcc ctg aag tta gag gat 336 Glu Val Lys Pro Lys Ser Glu Glu Glu Gly Ser Leu Lys Leu Glu Asp 100 105

			_		gct Ala		 _			_		_		384
					gaa Glu									432
					ccc Pro 150									480
					atc Ile									528
_	_		_	_	ctc Leu	_				_	_			576
					aat Asn									624
					ctg Leu									672
					999 Gly 230									720
					ttc Phe									768
	_		_	_	gtt Val		 _	_		-				816
					ttt Phe									864
					tct Ser									912
					gga Gly 310									960
	_	_			caa Gln		 		_			_	_	1008

					tgg Trp											1056
					acc Thr											1104
					aac Asn											1152
			_		ttc Phe 390		_			_	_	_			_	1200
_			_	_	ctg Leu			_	_	_	_		_			1248
_	_	_			ctc Leu			_	_		_	_				1296
	_	_	_		cag Gln		_								_	1344
	_		-		gta Val	_				_	tag *					1380
<210	1 2															
)> 2 L> 45	59														
	2> PF															
<213	3> Ho	omo s	sapie	ens												
<400) > 2															
		Pro	Leu	Cys 5	Pro	Ser	Pro	Trp	Leu 10	Pro	Leu	Leu	Ile	Pro 15	Ala	
	Ala	Pro	-		Thr	Val	Gln			Leu	Ser	Leu			Leu	
Met	Pro	Val	20 His	Pro	Gln	Ara	Leu	25 Pro	Ara	Met	Gln	Glu	30 Asp	Ser	Pro	
	0	35				5			nr 9		~	45		~~_		

```
Gly Asp Pro Pro Trp Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe
        150
                                   155
Gln Ser Pro Val Asp Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala
                                   170
               165
Leu Arg Pro Leu Glu Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu
                              185
           180
Leu Arg Leu Arg Asn Asn Gly His Ser Val Gln Leu Thr Leu Pro Pro
                          200
                                              205
Gly Leu Glu Met Ala Leu Gly Pro Gly Arg Glu Tyr Arg Ala Leu Gln
                       215
                                           220
Leu His Leu His Trp Gly Ala Ala Gly Arg Pro Gly Ser Glu His Thr
                   230
                                       235
Val Glu Gly His Arg Phe Pro Ala Glu Ile His Val Val His Leu Ser
               245
                                   250
Thr Ala Phe Ala Arg Val Asp Glu Ala Leu Gly Arg Pro Gly Gly Leu
                               265
Ala Val Leu Ala Ala Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala
                          280
Tyr Glu Gln Leu Leu Ser Arg Leu Glu Glu Ile Ala Glu Glu Gly Ser
                       295
Glu Thr Gln Val Pro Gly Leu Asp Ile Ser Ala Leu Leu Pro Ser Asp
                                      315
                  310
Phe Ser Arg Tyr Phe Gln Tyr Glu Gly Ser Leu Thr Thr Pro Pro Cys
                                   330
               325
Ala Gln Gly Val Ile Trp Thr Val Phe Asn Gln Thr Val Met Leu Ser
                              345
           340
Ala Lys Gln Leu His Thr Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp
                          360
                                              365
Ser Arg Leu Gln Leu Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg
                       375
Val Ile Glu Ala Ser Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala
                   390
                                       395
Ala Glu Pro Val Gln Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu
Ala Leu Val Phe Gly Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu
                               425
Val Gln Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser
                           440
Tyr Arg Pro Ala Glu Val Ala Glu Thr Gly Ala
    450
                       455
<210> 3
<211> 540
<212> DNA
<213> Artificial Sequence
<220>
<223> Coding sequence for human CA IX proteoglycan
      domain construct
<221> CDS
```

<222> (1)...(540)

	0 > 3														
	gct Ala														48
	gct Ala														96
_	cct Pro	_			_		_			_	_	 -			144
	gga Gly 50														192
_	ccc Pro	_	_		_			-			_		_		240
	gat Asp														288
	gtt Val														336
	cct Pro														384
_	cat His 130		_	_	_			_	_	-					432
_	gtc Val		_	-					_	_	_	 _		_	480
	gga Gly				_	_	_				-				528
	gga Gly	_	tag *												540

<210> 4

<211> 179

<212> PRT

<213> Artifical Sequence

<220>

<223> Polypeptide encoded by coding sequence for human CA IX proteoglycan domain construct

```
<400> 4
Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala
                                   10
Leu Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu
Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro
                            40
Leu Gly Gly Ger Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp
Leu Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu
                                        75
Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro
                85
Glu Val Lys Pro Lys Ser Glu Glu Glu Gly Ser Leu Lys Leu Glu Asp
                                105
Leu Pro Thr Val Glu Ala Pro Gly Asp Pro Gln Glu Pro Gln Asn Asn
                                                125
                            120
Ala His Arg Ser Ser Ser Ile Leu Ala Leu Val Phe Gly Leu Leu Phe
                                            140
                        135
Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg Gln His Arg
                                        155
                    150
Arg Gly Thr Lys Gly Gly Val Ser Tyr Arg Pro Ala Glu Val Ala Glu
                                    170
Thr Gly Ala
```

<210> 5

<211> 1089

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding sequence for human CA IX carbonic anhydrase domain construct

<221> CDS

<222> (1) ... (1089)

<400> 5

atg gct ccc ctg tgc ccc agc ccc tgg ctc cct ctg ttg atc ccg gcc 48

Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala

1 5 10 15

cct gct cca ggc ctc act gtg caa ctg ctg ctg tca ctg ctg ctt ctg
Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu Leu
20 25 30

atg cct gtc cat ccc ggg gat gac cag agt cat tgg cgc tat gga ggc 144
Met Pro Val His Pro Gly Asp Asp Gln Ser His Trp Arg Tyr Gly Gly
35 40 45

gac Asp	ccg Pro 50	ccc Pro	tgg Trp	ccc Pro	cgg Arg	gtg Val 55	tcc Ser	cca Pro	gcc Ala	tgc Cys	gcg Ala 60	ggc Gly	cgc Arg	ttc Phe	cag Gln	192
tcc Ser 65	ccg Pro	gtg Val	gat Asp	atc Ile	cgc Arg 70	ccc Pro	cag Gln	ctc Leu	gcc Ala	gcc Ala 75	ttc Phe	tgc Cys	ccg Pro	gcc Ala	ctg Leu 80	240
cgc Arg	ccc Pro	ctg Leu	gaa Glu	ctc Leu 85	ctg Leu	ggc Gly	ttc Phe	cag Gln	ctc Leu 90	ccg Pro	ccg Pro	ctc Leu	cca Pro	gaa Glu 95	ctg Leu	288
cgc Arg	ctg Leu	cgc Arg	aac Asn 100	aat Asn	ggc Gly	cac His	agt Ser	gtg Val 105	caa Gln	ctg Leu	acc Thr	ctg Leu	cct Pro 110	cct Pro	gly aaa	336
cta Leu	gag Glu	atg Met 115	gct Ala	ctg Leu	ggt Gly	ccc Pro	ggg Gly 120	cgg Arg	gag Glu	tac Tyr	cgg Arg	gct Ala 125	ctg Leu	cag Gln	ctg Leu	384
cat His	ctg Leu 130	cac His	tgg Trp	ggg Gly	gct Ala	gca Ala 135	ggt Gly	cgt Arg	ccg Pro	ggc Gly	tcg Ser 140	gag Glu	cac His	act Thr	gtg Val	432
gaa Glu 145	ggc Gly	cac His	cgt Arg	ttc Phe	cct Pro 150	gcc Ala	gag Glu	atc Ile	cac His	gtg Val 155	gtt Val	cac His	ctc Leu	agc Ser	acc Thr 160	480
gcc Ala	ttt Phe	gcc Ala	aga Arg	gtt Val 165	gac Asp	gag Glu	gcc Ala	ttg Leu	999 Gly 170	cgc Arg	ccg Pro	gga Gly	ggc Gly	ctg Leu 175	gcc Ala	528
gtg Val	ttg Leu	gcc Ala	gcc Ala 180	ttt Phe	ctg Leu	gag Glu	gag Glu	ggc Gly 185	ccg Pro	gaa Glu	gaa Glu	aac Asn	agt Ser 190	gcc Ala	tat Tyr	576
gag Glu	cag Gln	ttg Leu 195	ctg Leu	tct Ser	cgc Arg	ttg Leu	gaa Glu 200	gaa Glu	atc Ile	gct Ala	gag Glu	gaa Glu 205	ggc Gly	tca Ser	gag Glu	624
act Thr	cag Gln 210	gtc Val	cca Pro	gga Gly	ctg Leu	gac Asp 215	ata Ile	tct Ser	gca Ala	ctc Leu	ctg Leu 220	ccc Pro	tct Ser	gac Asp	ttc Phe	672
agc Ser 225	Arg	tac Tyr	ttc Phe	caa Gln	tat Tyr 230	gag Glu	Gly	tct Ser	ctg Leu	act Thr 235	aca Thr	ccg Pro	ccc Pro	tgt Cys	gcc Ala 240	720
cag Gln	ggt Gly	gtc Val	atc Ile	tgg Trp 245	act Thr	gtg Val	ttt Phe	aac Asn	cag Gln 250	aca Thr	gtg Val	atg Met	ctg Leu	agt Ser 255	gct Ala	768
aag Lys	cag Gln	ctc Leu	cac His 260	Thr	ctc Leu	tct Ser	gac Asp	acc Thr 265	Leu	tgg Trp	gga Gly	cct Pro	ggt Gly 270	gac Asp	tct Ser	816

										cct Pro						864
										agc Ser						912
		_	_	_			_	_	_	gct Ala 315		_			_	960
										agc Ser						1008
_	_	_		_		_				aaa Lys						1056
_		_		_	gcc Ala				_	tag *						1089
	.> 36 !> PI		lcial	l Sec	gueno	ce										
<220 <223	> Pc		ptic	le er	ncode	ed by		_	_	ience onsti		c hun	nan			
<223 <400	> Po CF > 6	A IX	eptio cark	de er oonid	ncode c anh	ed by	ase d	lomai	in co		ruct			Pro 15	Ala	
<223 <400 Met 1	> Po CA > 6 Ala	A IX	eptic cark	de er conic Cys 5	ncode anh Pro	ed by nydra Ser	ese d	lomai Trp	Leu	onsti	Leu	Leu	Ile	15		
<223 <400 Met 1 Pro	> Po CA > 6 Ala Ala	Pro	eptic cark Leu Gly 20	de er conic Cys 5 Leu	ncode anh Pro Thr	ed by nydra Ser Val	Pro Gln	Trp Leu 25	Leu 10 Leu	Pro	Leu Ser	Leu Leu	Ile Leu 30	15 Leu	Leu	
<223 <400 Met 1 Pro Met	> Po CA > 6 Ala Ala Pro	Pro Pro Val	carl Leu Gly 20	de er conic Cys 5 Leu Pro	Pro Thr	ed by nydra Ser Val Asp	Pro Gln Asp	Trp Leu 25 Gln	Leu 10 Leu Ser	Pro Leu	Leu Ser Trp	Leu Leu Arg 45	Ile Leu 30 Tyr	15 Leu Gly	Leu Gly	
<223 <400 Met 1 Pro Met Asp	> Po CA > 6 Ala Ala Pro Pro 50	Pro Pro Val 35 Pro	eptic cark Leu Gly 20 His	de er coonic Cys 5 Leu Pro	ncode and Pro Thr Gly Arg	ed by nydra Ser Val Asp Val 55	Pro Gln Asp 40 Ser	Trp Leu 25 Gln Pro	Leu 10 Leu Ser	Pro Leu His	Leu Ser Trp Ala	Leu Leu Arg 45 Gly	Ile Leu 30 Tyr Arg	15 Leu Gly Phe	Leu Gly Gln	
<223 <400 Met 1 Pro Met Asp Ser 65	> Po CA > 6 Ala Ala Pro Pro 50 Pro	Pro Pro Val 35 Pro Val	eptic cark Leu Gly 20 His Trp	Cys 5 Leu Pro Pro	Pro Thr Gly Arg Arg	ed by nydra Ser Val Asp Val 55 Pro	Pro Gln Asp 40 Ser	Trp Leu 25 Gln Pro	Leu 10 Leu Ser Ala	Pro Leu His Cys	Leu Ser Trp Ala 60 Phe	Leu Leu Arg 45 Gly Cys	Ile Leu 30 Tyr Arg	15 Leu Gly Phe Ala	Leu Gly Gln Leu 80	
<223 <400 Met 1 Pro Met Asp Ser 65 Arg	> Po CA > 6 Ala Ala Pro Pro 50 Pro	Pro Pro Val 35 Pro Val Leu	eptic cark Leu Gly 20 His Trp Asp	Cys 5 Leu Pro Pro Ile Leu 85	Pro Thr Gly Arg Arg To Leu	ed by nydra Ser Val Asp Val 55 Pro	Pro Gln Asp 40 Ser Gln Phe	Trp Leu 25 Gln Pro Leu Gln	Leu 10 Leu Ser Ala Ala Leu 90	Pro Leu His Cys Ala	Leu Ser Trp Ala 60 Phe	Leu Leu Arg 45 Gly Cys Leu	Ile Leu 30 Tyr Arg Pro	15 Leu Gly Phe Ala Glu 95	Leu Gly Gln Leu 80 Leu	
<223 <400 Met 1 Pro Met Asp Ser 65 Arg	> Po CA > 6 Ala Ala Pro Pro Pro Pro	Pro Pro Val 35 Pro Val Leu Arg	Leu Gly 20 His Trp Asp Glu Asn	Cys 5 Leu Pro Pro Ile Leu 85 Asn	Pro Thr Gly Arg Arg Control Co	ed by nydra Ser Val Asp Val 55 Pro Gly	Pro Gln Asp 40 Ser Gln Phe	Trp Leu 25 Gln Pro Leu Gln Val 105	Leu 10 Leu Ser Ala Ala Leu 90 Gln	Pro Leu His Cys Ala 75 Pro	Leu Ser Trp Ala 60 Phe Pro	Leu Leu Arg 45 Gly Cys Leu Leu	Ile Leu 30 Tyr Arg Pro Pro	15 Leu Gly Phe Ala Glu 95 Pro	Leu Gly Gln Leu 80 Leu	
<223 <400 Met 1 Pro Met Asp Ser 65 Arg Arg Leu	> Po CA > 6 Ala Ala Pro Pro Pro Pro Leu Glu	Pro Pro Val 35 Pro Val Leu Arg Met 115	Leu Gly 20 His Trp Asp Glu Asn 100 Ala	Cys 5 Leu Pro Pro Ile Leu 85 Asn	Pro Thr Gly Arg Arg Color Colo	ed by nydra Ser Val Asp Val 55 Pro Gly His Pro	Pro Gln Asp 40 Ser Gln Phe Ser Gly 120	Trp Leu 25 Gln Pro Leu Gln Val 105 Arg	Leu 10 Leu Ser Ala Ala Leu 90 Gln	Pro Leu His Cys Ala 75 Pro Leu	Leu Ser Trp Ala 60 Phe Pro Thr	Leu Leu Arg 45 Gly Cys Leu Leu Ala 125	Ile Leu 30 Tyr Arg Pro Pro 110 Leu	15 Leu Gly Phe Ala Glu 95 Pro Gln	Leu Gly Gln Leu 80 Leu Gly	
<223 <400 Met 1 Pro Met Asp Ser 65 Arg Arg Leu His	> Po CA > 6 Ala Ala Pro Pro Pro Leu Glu Leu 130	Pro Pro Val 35 Pro Val Leu Arg Met 115 His	Leu Gly 20 His Trp Asp Glu Asn 100 Ala	Cys 5 Leu Pro Ile Leu 85 Asn Leu Gly	Pro Thr Gly Arg To Leu Gly Gly	ed by hydra Ser Val Asp Val Fro Gly His Pro Ala 135	Pro Gln Asp 40 Ser Gln Phe Ser Gly 120 Gly	Trp Leu 25 Gln Pro Leu Gln Val 105 Arg	Leu 10 Leu Ser Ala Ala Leu 90 Gln Glu Pro	Pro Leu His Cys Ala 75 Pro Leu Tyr	Leu Ser Trp Ala 60 Phe Pro Thr Arg Ser 140	Leu Arg 45 Gly Cys Leu Leu Ala 125 Glu	Ile Leu 30 Tyr Arg Pro Pro 110 Leu His	15 Leu Gly Phe Ala Glu 95 Pro Gln Thr	Leu Gly Gln Leu 80 Leu Gly Leu Val	

```
Val Leu Ala Ala Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala Tyr
            180
                                185
Glu Gln Leu Leu Ser Arg Leu Glu Glu Ile Ala Glu Glu Gly Ser Glu
                            200
Thr Gln Val Pro Gly Leu Asp Ile Ser Ala Leu Leu Pro Ser Asp Phe
                        215
                                             220
Ser Arg Tyr Phe Gln Tyr Glu Gly Ser Leu Thr Thr Pro Pro Cys Ala
                                        235
                    230
Gln Gly Val Ile Trp Thr Val Phe Asn Gln Thr Val Met Leu Ser Ala
                245
                                    250
Lys Gln Leu His Thr Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp Ser
                                265
                                                     270
Arg Leu Gln Leu Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg Val
                            280
                                                285
Ile Glu Ala Ser Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala Ala
                        295
                                             300
Glu Pro Val Gln Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu Ala
                    310
Leu Val Phe Gly Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val
                                    330
                325
Gln Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser Tyr
                                345
            340
Arg Pro Ala Glu Val Ala Glu Thr Gly Ala
        355
                            360
<210> 7
<211> 978
<212> DNA
<213> Artificial Sequence
<220>
<223> Coding sequence for glu-tagged human CA IX
      carbonic anhydrase domain construct
<221> CDS
<222> (1)...(978)
atg gct ccc ctg tgc ccc agc ccc tgg ctc cct ctg ttg atc ccg gcc
                                                                   48
Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala
cct gct cca ggc ctc act gtg caa ctg ctg ctg tca ctg ctt ctg
                                                                   96
Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu Leu
             20
atg cct gtc cat ccc cag agg ttg ccc cgg atg cag gag gct agc gaa
Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Ala Ser Glu
                              40
                                                  45
         35
tac atg cca atg gaa caa gaa ccc cag aat aat gcc cac agg gac aaa
                                                                   192
Tyr Met Pro Met Glu Gln Glu Pro Gln Asn Asn Ala His Arg Asp Lys
     50
                         55
```

									gac Asp				240
									tcc Ser				288
_	_		_	_	_	_	_	_	cgc Arg		_	_	336
-		-					-		cgc Arg 125	-	_		384
									cta Leu				432
									cat His				480
									gaa Glu				528
									gcc Ala				576
									gtg Val 205				624
									gag Glu				672
									cta Leu				720
									gag Glu				768
									cca Pro				816
									gtt Val 285				864

ctt ttt gct gtc acc agc gtc gcg ttc ctt gtg cag atg aga agg cag 912 Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg Gln 295 290 960 cac aga agg gga acc aaa ggg ggt gtg agc tac cgc cca gca gag gta His Arg Arg Gly Thr Lys Gly Gly Val Ser Tyr Arg Pro Ala Glu Val 315 310 978 gcc gag act gga gcc tag Ala Glu Thr Gly Ala * 325 <210> 8 <211> 325 <212> PRT <213> Artificial Sequence <220> <223> Polypeptide encoded by coding sequence for glu-tagged human CA IX carbonic anhydrase domain construct Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala 10 Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu 20 25 Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Ala Ser Glu Tyr Met Pro Met Glu Gln Glu Pro Gln Asn Asn Ala His Arg Asp Lys Glu Gly Asp Asp Gln Ser His Trp Arg Tyr Gly Gly Asp Pro Pro Trp Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe Gln Ser Pro Val Asp 90 Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala Leu Arg Pro Leu Glu 105 Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu Leu Arg Leu Arg Asn 120 125 Asn Gly His Ser Val Gln Leu Thr Leu Pro Pro Gly Leu Glu Met Ala 135 140 Leu Gly Pro Gly Arg Glu Tyr Arg Ala Leu Gln Leu His Leu His Trp 150 155 Gly Ala Ala Gly Arg Pro Gly Ser Glu His Thr Val Glu Gly His Arg 170 Phe Pro Ala Glu Ile His Val Val His Leu Ser Thr Ala Phe Ala Arg 185 Val Asp Glu Ala Leu Gly Arg Pro Gly Gly Leu Ala Val Leu Ala Ala 200 Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala Tyr Glu Leu His Thr 215 220 Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp Ser Arg Leu Gln Leu Asn 230 235 Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg Val Ile Glu Ala Ser Phe

250

245

Pro Ala Gly Val Asp Ser Ser Pro Arg Ala Ala Glu Pro Val Gln Leu 260 265 Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu Ala Leu Val Phe Gly Leu 280 Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg Gln 295 His Arq Arq Gly Thr Lys Gly Gly Val Ser Tyr Arg Pro Ala Glu Val 315 Ala Glu Thr Gly Ala <210> 9 <211> 978 <212> DNA <213> Artificial Sequence <220> <223> Coding sequence for glu-tagged mutant human CA IX carbonic anhydrase domain construct <221> CDS <222> (1)...(978) <400> 9 atg get eec etg tge eec age eec tgg etc eet etg ttg atc eeg gee Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala cct gct cca ggc ctc act gtg caa ctg ctg tca ctg ctg ctt ctg Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu 20 atg cct gtc cat ccc cag agg ttg ccc cgg atg cag gag gct agc gaa Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Ala Ser Glu 35 40 tac atg cca atg gaa caa gaa ccc cag aat aat gcc cac agg gac aaa 192 Tyr Met Pro Met Glu Gln Glu Pro Gln Asn Asn Ala His Arg Asp Lys 55 gaa ggg gat gac cag agt cat tgg cgc tat gga ggc gac ccg ccc tgg Glu Gly Asp Asp Gln Ser His Trp Arg Tyr Gly Gly Asp Pro Pro Trp 70 ccc egg gtg tcc cca gcc tgc gcg ggc cgc ttc cag tcc ccg gtg gat Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe Gln Ser Pro Val Asp ate ege eec eag ete gee gee tte tge eeg gee etg ege eec etg gaa Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala Leu Arg Pro Leu Glu 100 105 110 ctc ctg ggc ttc cag ctc ccg ctc cca gaa ctg cgc ctg cgc aac Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu Leu Arg Leu Arg Asn 115 120

aat go Asn Gl	ly His														432
ctg gg Leu Gl 145	-						_	_	_	_		_	_		480
Gly Al															528
ttc co	_					-			_		_		_	_	576
gtt ga Val As		Ala													624
ttt ct Phe Le 21	eu Glu														672
ctc to Leu Se 225								_				_	_		720
ttc co		-	_		_			_				_			768
cct go Pro Al															816
aat to Asn Se	_	_	_	_					_	_	_				864
ctt tt Leu Ph 29	e Ala														912
cac ag His Ar 305															960
gcc ga Ala Gl				tag *											978

<210> 10

<211> 325

<212> PRT

<213> Artificial Sequence

<220>

<223> Polypeptide encoded by coding sequence for glu-tagged mutant human CA IX carbonic anhydrase domain construct

<400> 10 Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Ile Pro Ala 10 Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Ser Leu Leu Leu Leu 25 Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Ala Ser Glu 40 Tyr Met Pro Met Glu Gln Glu Pro Gln Asn Asn Ala His Arg Asp Lys Glu Gly Asp Asp Gln Ser His Trp Arg Tyr Gly Gly Asp Pro Pro Trp 75 Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe Gln Ser Pro Val Asp 90 Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala Leu Arg Pro Leu Glu 105 Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu Leu Arg Leu Arg Asn 120 125 Asn Gly His Ser Val Gln Leu Thr Leu Pro Pro Gly Leu Glu Met Ala 135 Leu Gly Pro Gly Arg Glu Tyr Arg Ala Leu Gln Leu Gln Leu Gln Trp 150 155 Gly Ala Ala Gly Arg Pro Gly Ser Glu His Thr Val Glu Gly His Arg 170 Phe Pro Ala Glu Ile Gln Val Val His Leu Ser Thr Ala Phe Ala Arg 185 Val Asp Glu Ala Leu Gly Arg Pro Gly Gly Leu Ala Val Leu Ala Ala 200 Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala Tyr Glu Leu His Thr 215 220 Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp Ser Arg Leu Gln Leu Asn 230 235 Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg Val Ile Glu Ala Ser Phe 250 245 Pro Ala Gly Val Asp Ser Ser Pro Arg Ala Ala Glu Pro Val Gln Leu 265 270 Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu Ala Leu Val Phe Gly Leu 280 275 285 Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg Gln 295 His Arg Arg Gly Thr Lys Gly Gly Val Ser Tyr Arg Pro Ala Glu Val 310 315 Ala Glu Thr Gly Ala