```
Jutorial - 4
Name: Simuan
lass Roll No: 57
Section: B
mi Roll No: 2014888
Mod T(m) = 3T(n/2) + n2
    T(n) = a T(n) + f(n)
    a= 3, b=2
    c = log_3 = 1.58
    n = n1.58
    f(n) = n2
    By case 3: f(n) >n°
               T(n) = O(f(f1)) = O(n2)
   T(n)= 4T (n/2)+n2
    T(n) = aT (n/b) +f(n) (npel on) + = (n) ]
     a = 4, b = 2
     C = log_2 4 = 2
                             5- T(m)= 16-T (n/4) +n
```

T(n) = 0 (n° log n) = 0 (n° logn)

n°= n²

 $f(n) = n^2$

By case 2: f(n) = n°

3.
$$T(n) = T(n/2) + 2^n$$

 $T(n) = a T(n/b) + f(n)$
 $a = 1, b = 2$
 $c = log_2 1 = 0$
 $n^c = n^c = 1, f(n) = 2^n$
By Case: $f(n) > n^c$
 $T(n) = 0 (f(n)) = 0 (2^n)$
4. $T(n) = a^n T(n/2) + n^n$
 $T(n) = a T(n/b) + f(n)$
 $a = 2^n, b = 2$
 $c = log_2 2^n = n$
 $n^c = n^n, f(n) = n^n$
 $f(n) = n^c$
 $T(n) = 0 (n^c log_n)$
 $T(n) = 0 (n^n log_n)$
5. $T(n) = 16 T(n/4) + n$
 $T(n) = a T(n/b) + f(n)$
 $a = 16, b = 4$
 $c = log_4 16 = 2$

n = n2, f(n)= n

$$f(n) \ge n^{c}$$

$$T(m) = 0 (n^{c})$$

$$T(n)^{2} \ge (n^{2})$$

$$T(m) = 2T(n/2) + n \log n$$

$$T(m) = a T(n/6) + f(n)$$

$$a = 2, b = 2$$

$$c = \log_{2} 2 = 1$$

$$n^{c} = n, f(n) = n \log n$$

$$f(n) \ge n^{c}$$

$$T(n) = 0 (f(n))$$

$$T(n) = 0 (n \log n)$$

$$a = 2, b = 2$$

$$c = \log_{2} 2 = 1$$

$$n^{c} = n^{c}, f(n) = n \log n$$

$$n^{c} > f(n)$$

$$T(n) = 0 (n \log n)$$

$$T(n) = 2T(n/2) + n / \log n$$

$$n^{c} > f(n)$$

$$T(n) = n^{c} > n^{c}$$

$$n' = n^{0.5}$$
, $f(n) = n^{0.51}$
 $f(n) > n'$
 $T(n) = O(f(n))$
 $T(n) = O(n^{0.51})$

9. $T(n) = a T(n/b) + f(n)$
 $a = 0.5$, $b = 2$
 $c = log_2 0.5 = -1$
 $n' = n' = 1/n$, $f(n) = 1/n$
 $f(n) = n'$
 $T(n) = O(n' log n)$
 $= O(log n/n)$

10. $T(n) = 16 T(n/4) + n!$
 $T(n) = a T(n/b) + f(n)$
 $a = 16$, $b = 4$
 $c = log_4 16 = 2$
 $n' = n^2$, $f(n) = n!$
 $f(n) > n'$
 $T(n) = O(f(n))$

T(n) = O(n!)

T(m) = 4T (m/2) + log n

$$a = 4$$
, $b = 2$
 $c = log_2 4 = 2$
 $n' = n^2$, $f(m) = log n$
 $f(n) < n^c$
 $T(n) = 0(n^c)$
 $T(n) = log n$
 $T(n) = aT(n/b) + f(n)$
 $a = n'^2$, $b = 2$, $f(n) = log n$
 $c = log_2 n'^2 = \frac{1}{2} log n$
 $n' = n^{\frac{1}{2} log n}$
 $f(n) < n^c$
 $f(n) < n^c$
 $T(n) = 3T(n/2) + n$
 $a = 3$, $b = 2$
 $c = log_2 3 = 1.58$
 $n^c = n^{1.58}$, $f(n) = n$
 $f(n) < n^c$
 $T(n) = 0(n^c)$

 $T(n) = O(n^{1.58})$

14.
$$T(m) = 3T(n/3) + sqrt(n)$$
 $a = 3, b = 3$
 $c = log_3 3 = 1$
 $n' = n' , f(n) = n'/2$
 $f(n) < n'$
 $T(n) = O(n')$
 $T(n) = O(n)$

15. $T(n) = 4T(n/2) + cn$
 $a = 4, b = 2$
 $c = log_2 4 = 2$
 $n' = n^2, f(n) = cn = n$
 $f(n) < n'$
 $T(n) = O(n')$
 $T(n) = O(n')$

$$T(m) = 3T(m/3) + m/2$$

$$a = 3, b = 3$$

$$c = \log_3 3 = 1$$

$$n' = n' \quad f(n) = m/2$$

$$f(n) < n'$$

$$T(n) = 0 \quad (n')$$

$$T(n) = 6T(n/3) + n^2 \log n$$

$$a = 6, b = 3$$

$$c = \log_3 6 = 1.63$$

$$n' = n'^{63}, f(n) = n^2 \log n$$

$$f(n) > n'$$

$$T(n) = 0 \quad (n' \log n)$$

$$T(n) = 0 \quad (n' \log n)$$

$$q \cdot T(n) = 4T(n/2) + n/\log n$$

$$a = 4, b = 2, c = \log_2 4 = 2$$

$$n' = n'', f(n) = n/\log n$$

$$f(n) < n'$$

 $T(m) = O(m^c) = O(m^2)$

20.
$$T(n) = 64 T(n/8) - n^2 \log n$$
 $a = 64$, $b = 8$, $c = \log_8 64 = 2$
 $n' = n^2$, $f(n) = -n^2 \log n = n^2 \log n^{-1}$
 $= n^2 \log 1/n$
 $f(n) > n^c$
 $T(n) = 0 (f(n)) = 0 (n^2 \log 1/n)$

21. $T(n) = 7 T(n/3) + n^2$
 $a = 7$, $b = 3$, $c = \log_3 7 = 1 - 77$
 $n' = n'' \neq 7$, $f(n) = n^2$
 $f(n) > n^c$
 $T(n) = 0 (f(n)) = 0 (n^2)$

22. $T(n) = T(n/2) + n (2 - \cos n)$
 $a = 1$, $b = 2$, $c = \log_2 1 = 0$
 $n' = n^0 = 1$, $f(n) = n (2 - \cos n)$
 $f(n) > n^c$
 $T(n) = 0 (f(n))$
 $T(n) = 0 (f(n))$