SESSIONS 4

# Association

**Data Science Program** 



## **Association**

- 1) Association
- 2) Type of Association based on variable
- 3) How To Explore?
- 4) Exploring Association
  - Smoking status and 20 year survival in women
  - Education and crime rate
  - Death penalty and race



## **Relationship Between Two Events**

Two event often related to each other. For example:

- Air temperature and humidity
- Price and demand
- Fertilizer and plant height
- Weight and height
- Time and COVID-19 victim in daily

There are two types of relationship

- Association → correlation
- Causation → regression



## Response Variable and Explanatory Variable

When analyzing relationship between two variable usually we must first distinguish between **response variable** (y) and **explanatory variable** (x).

#### Response Variable:

Value in response variable depends on explanatory variable.

#### **Explanatory Variable:**

- Quantitative: how different value in explanatory relate to changes in response variable
- Qualitative: it is like grouping or aggregating. how is the comparison between group based on some aggregate function (mean, sum, count, percentage, etc)

**Causation**. If change in X cause change in Y, doesn't imply that change in Y cause change in X.



## Type of Cases Can happen in Association

Variable can be qualitative or quantitative. So, there are three possible cases:

- 1. Qualitative Vs Qualitative:
  - ex. gender and education
- 2. Quantitative Vs Qualitative:
  - ex. income and race, height and gender
- 3. Quantitative Vs Quantitative:
  - ex. air temperature and humidity, weight and height



## How to explore the relationship?

#### Qualitative vs Qualitative

- Graphical Summary: Barchart, Pie chart
- Numerical/Table Summary: Contingency table/cross tabulation, Odds ratio,
  Difference of proportion, Ratio of proportions, Chi-square Test.

#### Qualitative vs Quantitative

- Graphical Summary: Barplot
- Numerical/Table Summary: Aggregated table, Anova F-Test.

#### Quantitative vs Quantitative (we will focus on this)

- Graphical Summary: Scatterplot
- Numerical/Table Summary: Pearson Correlation or Spearman Correlation, Regression.



### Correlation

- Correlation is about association and association doesn't imply causation.
- Correlation doesn't differentiate
  response (x) variable and explanatory
  variable (y).
- Correlation only measure how strong relationship and the direction of relationship.

Correlation ranged by

-1 < r < 1

- Positive direction (+)
- Negative direction (-)
- The magnitude (absolute value)

0 - 0.3 : weak

0.3 - 0.7 : medium

0.7 - 1 : strong



## **Type of Numerical Relationship**



#### Linear:

 Use Pearson Correlation

Ex. height and weight



Non-Linear or Monotonic:

- quadratic
- qube

Use Spearman Correlation

Ex. daily case of COVID-19



Non Linear and Non-monotonic: Strongly not recommended to measured by Pearson or Spearman.

Ex. fertilizer dose and plant height



## **Pearson Correlation**

- 1. Both of the variable should be quantitative
- 2. Relationship between two variable should be linear
- 3. Parametric method

#### **Formula**

$$\rho_{X,Y} = \frac{E[(X-E[X])(Y-E[Y])]}{\sigma_X \sigma_Y}$$

#### **Linear Negative**



#### **Linear Positive**





## **Spearman Correlation**

- 1. Beside quantitative variable. it can be used to explore variable with ordinal scale.
- 2. Relationship between two variable should not be linear. It should be either positive monotonic or negative monotonic
- 3. Nonparametric version of Pearson

#### **Formula**

$$\rho_{rank_x}, \rho_{rank_y} = \frac{cov(rank_x, rank_y)}{\sigma_{rank_x}, \sigma_{rank_y}}$$

#### **Monotonic Positive**



#### **Monotonic Negative**





## Smoking Status and 20-year survival in Women

A survey of 1,314 women in the United Kingdom that asked each woman whether she was a smoker. Twenty years later, a follow-up survey observed whether each woman was dead or still alive

|        | Surviva |       |       |
|--------|---------|-------|-------|
| Smoker | Dead    | Alive | Total |
| Yes    | 139     | 443   | 582   |
| No     | 230     | 502   | 732   |
| Total  | 369     | 945   | 1,314 |

- 31 % non-smoker died and 24% smoker died
- Smoker has lower death rate



## Smoking Status and 20-year survival in Women

|        | Age Group       |       |                 |       |                 |       |                |       |
|--------|-----------------|-------|-----------------|-------|-----------------|-------|----------------|-------|
|        | 18–34 Survival? |       | 35–54 Survival? |       | 55–64 Survival? |       | 65 + Survival? |       |
| Smoker | Dead            | Alive | Dead            | Alive | Dead            | Alive | Dead           | Alive |
| Yes    | 5               | 174   | 41              | 198   | 51              | 64    | 42             | 7     |
| No     | 6               | 213   | 19              | 180   | 40              | 81    | 165            | 28    |

|            | Age Group |       |       |       |  |
|------------|-----------|-------|-------|-------|--|
| Smoker     | 18–34     | 35–54 | 55–64 | 65+   |  |
| Yes        | 2.8%      | 17.2% | 44.3% | 85.7% |  |
| No         | 2.7%      | 9.5%  | 33.1% | 85.5% |  |
| Difference | 0.1%      | 7.7%  | 11.2% | 0.2%  |  |

For instance, for smokers of age 18-34, from the first table the proportion who died was 5/(5 + 1742) = 0.028, or 2.8%

- Percentage of survival rate is vary for each age group
- Non-smoker always has lower death rate when age group taken into account
- The association very different than before



## Simpson's Paradox

Beware of the **Simpson's Paradox** when analyzing relationship : **Education and Crime Rate** 

#### **Education and Crime Rate**

| <b>Urban Counties</b> |            | Rural Counties |            |  |
|-----------------------|------------|----------------|------------|--|
| Education             | Crime Rate | Education      | Crime Rate |  |
| 70                    | 140        | 55             | 50         |  |
| 75                    | 120        | 58             | 40         |  |
| 80                    | 110        | 60             | 30         |  |
| 85                    | 105        | 65             | 25         |  |

## Let's Analyze this data:

- 1. Make The Dataframe In Python For Whole Dataset
- 2. Analyze Marginally
- 3. Analyze Partially



## Reference







### Reference

https://towardsdatascience.com/data-science-you-need-to-know-a-b-testing-f2f12aff619a

https://towardsdatascience.com/data-science-fundamentals-a-b-testing-cb371ceecc27

https://www.niagahoster.co.id/blog/ab-testing-adalah/

https://vwo.com/blog/ab-testing-examples/

https://www.scribbr.com/methodology/sampling-methods/

