

ESTD:2001

An Institute with a Difference

- It's a straight forward design technique that can be applied to a wide variety of problems
- Coin change problem
 - Let $A_n = \{a_1, a_2, a_3, ..., a_n\}$ be a finite set of distinct coin types (for example, $a_1 = 5p$, $a_2 = 10p$, $a_3 = 20p$, $a_4 = 25p$, $a_5 = 50p$ and so on.)
 - Assume each a_i is an integer and $a_1 > a_2 > a_3 \dots a_n$.
 - Each type is available in unlimited quantity.

- The coin-changing problem is to make up an exact amount C using a minimum

total number of coins.

- C is an integer >0.

- Lets take an example
 - X goes to a shop to buy an item worth 30p and hands over 1Rs.
 - What is the change expected by X? 70p
 - Probable set of coins given by shop keeper

```
■ A={10, 20, 20, 20}
```

- B={10, 10, 10, 10, 10, 10, 10}
- **■** C={5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}
- D={25,25,20}
- **■** E={50, 20}
- F= {50, 10, 10}
- What was the constraint?
 - The sum of the coins given by the shopkeeper =70p
- The subset that satisfies this constraint is called feasible solution
- The feasible solution that maximizes/minimizes the objective function is called an optimal solution

Greedy algorithms work in stages

- At each stage, a decision is made regarding whether a particular input is in an optimal solution.
- This is done by considering the inputs in an order determined by some selection procedure.
- If the inclusion of the next input into the partially constructed optimal
- Solution will result in an infeasible solution, then this input is not added to the partial solution, otherwise, it is added

Control Abstraction

```
Algorithm Greedy(a, n)
// a[1:n] contains the n inputs.
       solution:=0;// Initialize the solution.
       for i := 1 to n do
           x :=Select(a);
           if Feasible(solution, x) then
              solution:=Union (solution, x);
       return solution;
```


Knapsack problem

- Given n objects, with each object i having a positive weight w_i and the profit p_i
- A knapsack / bag with a capacity m
- If a fraction x_i , 0 < xi < 1, of object i is placed into the knapsack, then a profit of $p_i x_i$ is earned
- The objective is to find the set of objects which fills the knapsack and maximizes the total profit
- The total weight of the selected objects can be at most *m*

Formal definition of Knapsack problem

maximize
$$\sum_{1 \le i \le n} p_i X_i$$

subject to
$$\sum_{1 \le i \le n} W_i X_i \le m$$

and
$$0 \le x_i \le 1$$
, $1 \le i \le n$

xi = 1 when item i is selected and let xi = 0 when item i is not selected.

Example

Consider the following instance of the knapsack problem

n = 3, m= 20,
$$(p_1,p_2,p_3)=(25,24,15)$$
 and $(w_1,w_2,w_3)=(18,15,10)$.

Find all the feasible solutions and hence an optimal solution

First feasible solution

- Consider the objects according to their profit (descending order)
- -Object with largest profit is considered first and so on
- -Object 1 (highest profit) with weight 18 can be put into the knapsack in its entirety. So x1=1 and RemCap =2
- -Object 2 (second highest profit) with weight 15 is considered but cant be put into the bag in its entirety (RemCap<w2)
- Hence a fraction $\frac{2}{15}$ is put into the knapsack, $\frac{x^2=2}{15}$, RemCap = 0

-Remaining objects cant be put into the knapsack

$$\sum_{i=1 \text{ to } 3} w_i x_i = 18 \times 1 + 15 \times \frac{2}{15} + 0 = 20$$

$$\sum_{i=1 \text{ to } 3} p_i x_i = 25 \times 1 + 24 \times \frac{2}{15} + 0 = 28.2$$

The solution vector
$$(x_{1,}x_{2,}x_{3}) = (1, \frac{2}{15}, 0)$$

Second feasible solution

- Consider the objects according to their weights (increasing order)
- Object with smallest weight is considered first and so on
- Object 3 (smallest weight) with weight 10 can be put into the knapsack in its entirety . So x3=1 and RemCap = 10
- Object 2 (second smallest weight) with weight 15 is considered but cant be put into the bag in its entirety (RemCap<w2)
- Hence a fraction 10/15, i.e. 2/3 is put into the knapsack, x2=2/3, RemCap =0
- Remaining objects cant be put into the knapsack

$$\sum_{i=1 \text{ to } 3} w_i x_i = 0 + 15 \times \frac{2}{3} + 10 \times 1 = 20$$

$$\sum_{i=1 \text{ to } 3} p_i x_i = 0 + 24 \times \frac{2}{3} + 15 \times 1 = 31$$

The solution vector
$$(x_1, x_2, x_3) = (0, 2/3, 1)$$

Third feasible solution

- Consider the objects according to the ratio p_i/p_i (decreasing order)
- $-\frac{p_1}{w_1} = 1.38$ $\frac{p_2}{w_2} = 1.6$ $\frac{p_3}{w_3} \cdot 1.5$
- Object with highest ratio is considered first and so on
- Object 2 (highest ratio) with weight 15 can be put into the knapsack in its entirety. So x2=1 and RemCap =5
- Object 3 (second highest ratio) with weight 10 is considered but cant be put into the bag in its entirety (RemCap<w3)
- Hence a fraction 5/10, i.e. 1/2 is put into the knapsack, x3=1/2, RemCap =0
- Remaining objects cant be put into the knapsack

$$\sum_{i=1 \text{ to } 3} w_i x_i = 0 + 15 \times 1 + 10 \times \frac{1}{2} = 20$$

$$\sum_{i=1 \text{ to } 3} p_i x_i = 0 + 24 \times 1 + 15 \times \frac{1}{2} = 31.5$$

The solution vector
$$(x_1, x_2, x_3) = (0, 1, \frac{1}{2})$$

- **■** First feasible solution =28.2
- Second feasible solution =31
- Third feasible solution =31.5
- Since the objective function is to maximize the profit, the optimal solution is
 - -Profit =31.5
 - -The solution vector $(x_1, x_2, x_3) = (0, 1, \frac{1}{2})$

Homework

Consider the following instance of the knapsack problems.

- Find all the feasible solutions and hence an optimal solution n = 3, m = 20, $(p_1, p_2, p_3) = (30, 21, 18)$ and $(w_1, w_2, w_3) = (18, 15, 10)$.
- Find all the feasible solutions and hence an optimal solution N=7, m=15, pi=(10,5,15,7,6,18,3) and wi=(2,3,5,7,1,4,1)


```
ALGORITHM Greedy_Knapsack(m,n)
for(i = 1 \text{ to } n) do x[i] = 0.0
u=m
for(i = 1 \text{ to } n) do
   if( w[ i ]>u ) then break
   x[i] = 1.0
   u=u-w[i]
if(i \le n) then
x[i] = u/w[i]
```

Introduction to Graphs

- \blacksquare A graph G = (V, E)
 - -V = set of vertices
 - -E = set of edges = subset of $V \times V$
 - Thus $|E| = O(|V|^2)$

Vertices: {1, 2, 3, 4}

Edges: {(1, 2), (2, 3), (1, 3), (4, 3)}

■ Directed / undirected:

- -In an undirected graph:
 - Edge (u,v) ∈ E implies edge (v,u) ∈ E
 - Road networks between cities
- -In a directed graph:
 - Edge (u,v): u→v does not imply v→u
 - Street networks in downtown
- -Degree of vertex v:
 - The number of edges adjacency to v
 - **■** For directed graph, there are in-degree and out-degree

Directed

Undirected

- Weighted / unweighted:
 - -In a weighted graph, each edge or vertex has an associated weight (numerical value)
 - E.g., a road map: edges might be weighted w/ distance

Connected / disconnected:

- A connected graph has a path from every vertex to every other
- A directed graph is strongly connected if there is a directed path between any two vertices

Connected but not strongly connected

■ Dense / sparse:

- -Graphs are sparse when the number of edges is linear to the number of vertices
 - |E| ∈ O(|V|)
- -Graphs are dense when the number of edges is quadratic to the number of vertices
 - $\blacksquare |E| \in O(|V|^2)$
- Most graphs of interest are sparse
- -If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- Assume V = {1, 2, ..., n}
- An adjacency matrix represents the graph as a n x n matrix A:

```
-A[i, j] = 1 if edge (i, j) \in E
= 0 if edge (i, j) \notin E
```

For weighted graph

```
-A[i, j] = w_{ij} if edge (i, j) \in E
= 0 if edge (i, j) \notin E
```

For undirected graph

-Matrix is symmetric: A[i, j] = A[j, i]

Graphs: Adjacency Matrix

Example:

Α	1	2	3	4
1				
2				
3			??	
4				

Graphs: Adjacency Matrix

■ Example

Undirected graph

Α	1	2	3	4
1	0	1	1	999
2	1	0	1	0
3	1	1	0	1
4	999	0	1	0

Graphs: Adjacency Matrix

■ Example

Weighted graph

Α	1	2	3	4
1	0	5	6	999
2	5	0	9	0
3	6	9	0	4
4	99	0	4	0
	9			

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- **Example:**

```
-Adj[1] = {2,3}
-Adj[2] = {3}
-Adj[3] = {}
-Adj[4] = {3}
```

Variation: can also keep a list of edges coming into vertex

Adjacency list

How much storage does the adjacency list require?
A: O(V+E)

Undirected graph

Α	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

Weighted graph

Α	1	2	3	4
1	0	5	6	0
2	5	0	9	0
3	6	9	0	4
4	0	0	4	0

Trade of between two representations

	Adj Matrix	Adj List
test $(u, v) \in E$	Θ(1)	O(n)
Degree(u)	Θ(n)	O(n)
Memory	Θ(n²)	Θ(n+m)
Edge insertion	Θ(1)	Θ(1)
Edge deletion	Θ(1)	O(n)
Graph traversal	Θ(n²)	Θ(n+m)

Both representations are very useful and have different properties, although adjacency lists are probably better for more problems

Problems

■ Given a set of cities, how to construct minimum length of highways to connect the cities so that there are paths between every two cities?

Definition

- Let G = (V, E) be an undirected connected graph.
- A subgraph t = (V, E') of G is a spanning tree of G iff t is a tree

Spanning Trees

- A **spanning tree** of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains all the vertices of the graph.
- For a weighted graph, a *minimum spanning tree* is its spanning tree of the smallest weight, where the *weight* of a tree is defined as the sum of the weights on all its edges.
- The *minimum spanning tree problem* is the problem of finding a minimum spanning tree for a given weighted connected graph.

Prims Algorithm

- A greedy method to obtain a minimum-cost spanning tree builds this tree edge by edge.
- The next edge to include is chosen according to some optimization criterion.
- The simplest such criterion is to choose an edge that results in a minimum increase in the sum of the costs of the edges so far included

Prims Algorithm – Illustration

Tree Vertices - { r, a, b, c, d, e } - vertices that re part of the spanning tree Fringe vertices - { h, g, f } - vertices not in the tree but adjacent to at least one vertex that is in the tree

Unseen vertices – { i } – vertices not yet affected by the algorithm

Prims Algorithm - Problem

Find the minimum cost spanning tree for the following graph

Solution

Prims Algorithm – Problem

Find the minimum cost spanning tree for the following graph

Prims Algorithm- Example

Prims Algorithm - Problem Home work

Find the minimum cost spanning tree for the following graph

Prims Algorithm - Problem Home work - solution

Prims Algorithm


```
ALGORITHM
                 Prim(G)
     //Prim's algorithm for constructing a minimum spanning tree
     //Input: A weighted connected graph G = \langle V, E \rangle
     //Output: E_T, the set of edges composing a minimum spanning tree of G
     V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
     E_T \leftarrow \varnothing
     for i \leftarrow 1 to |V| - 1 do
         find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
         such that v is in V_T and u is in V - V_T
         V_T \leftarrow V_T \cup \{u^*\}
         E_T \leftarrow E_T \cup \{e^*\}
     return E_T
```


- Joseph Kruskal developed an algorithm Kruskal's Algorithm to find an optimal solution to minimum spanning tree problem when he was a second year graduate student
 - Prim's algorithm grew the minimum spanning tree by including nearest vertex to the vertices already in the tree
 - In Prim's algorithm, the subgraphs were always connected in the intermediate stages
- The Kruskal's algorithm begins by sorting the edges in increasing order of their weights
- Starting with the empty subgraph, it scans this sorted list, adding the next edge on the list to the current subgraph if such an inclusion does not create a cycle and simply skipping the edge otherwise

Kruskal's Algorithm - Problem

Find the minimum cost spanning tree for the following graph

Total cost of the minimum spanning tree= 15

Kruskal's Algorithm - Problem

■ Find the minimum cost spanning tree for the following graph

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Total cost of the minimum spanning tree= 53


```
ALGORITHM Kruskal(G)
     //Kruskal's algorithm for constructing a minimum spanning tree
     //Input: A weighted connected graph G = \langle V, E \rangle
     //Output: E_T, the set of edges composing a minimum spanning tree of G
     sort E in nondecreasing order of the edge weights w(e_{i_1}) \le \cdots \le w(e_{i_{|E|}})
     E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size
                                       //initialize the number of processed edges
     k \leftarrow 0
     while ecounter < |V| - 1 do
         k \leftarrow k + 1
         if E_T \cup \{e_{i_k}\} is acyclic
               E_T \leftarrow E_T \cup \{e_{i_k}\}; \quad ecounter \leftarrow ecounter + 1
     return E_T
```


The implementation catch

- Kruskal's approach gives away an impression of being very easy to implement. It is really so?
- Each time / iteration the algorithm should check whether adding the next edge to the edges already selected creates a cycle?
- Remember a cycle is created iff the new edge connects two vertices which are already connected by a path

The implementation catch

- New cycle is created if and only if the two vertices belong to the same connected component
- Each connected component of a subgraph generated by Kruskal's algorithm is a tree because it has no cycles.

Dept. of CS

The implementation catch

- Consider the algorithm's operations as a progression through a series of forests containing all the vertices of a given graph and some of its edges.
- The initial forest consists of |V| trivial trees, each comprising a single vertex of the graph.
- The final forest consists of a single tree, which is a minimum spanning tree of the graph.
- On each iteration, the algorithm takes
 - the next edge (u, v) from the sorted list of the graph's edges,
 - finds the trees containing the vertices u and v, and,
 - if these trees are not the same, unites them in a larger tree by adding the edge (u, v).

Differences between Prim's and Kruskal's

PRIM'S ALGORITHM	KRUSKAL'S ALGORITHM
It starts to build the Minimum Spanning Tree from any vertex in the graph.	It starts to build the Minimum Spanning Tree from the vertex carrying minimum weight in the graph.
It traverses one node more than one time to get the minimum distance.	It traverses one node only once.
Prim's algorithm has a time complexity of O(V^2), V being the number of vertices.	Kruskal's algorithm's time complexity is O(logV), V being the number of vertices.
Prim's algorithm gives connected component as well as it works only on connected graph.	Kruskal's algorithm can generate forest(disconnected components) at any instant as well as it can work on disconnected components
Prim's algorithm runs faster in	Kruskal's algorithm runs faster

in sparse graphs.

A <u>graph</u> in which the number of <u>edges</u> is much less than the possible number of edges

A <u>graph</u> in which the number of <u>edges</u> is close to the possible number of edges.

dense graphs.

- The sequencing of jobs (for execution) on a single processor with deadline constraints is called as Job Sequencing with Deadlines.
- Problem statement

Given,

- set of *n* jobs
- a deadline associated with each job $i, d_i \geq 0$
- profit associated with each job i , $p_i > 0$
 - •For any job i the profit p_i is earned iff the job is completed by its deadline
 - •To complete a job, one has to process the job on a machine for one unit of time
 - Only one machine is available for processing job

Obtain the sequence of jobs that yields optimal solution (max profit)

What is the feasible solution?

- A feasible solution for this problem is a subset J of jobs such that each Job in this subset can be completed by its deadline
- The value of a feasible solution J is the sum of the profits of the jobs in J, or $\sum_{i \in I} p_i$
- An optimal solution is a feasible solution with maximum value.

Brute force approach

Solve the following instance of job sequencing problem

Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

	feasible solution	processing sequence	value	
1.	(1, 2)	2, 1	110	
2.	(1, 3)	1, 3 or 3, 1	115	
3.	(1, 4)	4, 1	127	
4.	(2, 3)	2, 3	25	
5.	(3, 4)	4, 3	42	
6.	(1)	1	100	
7.	(2)	2	10	
8.	(3)	3	15	
9.	(4)	4	27	

Greedy Approach

- Sort all the given jobs in decreasing order of their profit.
- Check the value of maximum deadline.
- Draw a Gantt chart where maximum time on Gantt chart is the value of maximum deadline.
- Select the jobs one by one.
- Put the job on Gantt chart as far as possible from 0 ensuring that the job gets completed before its deadline.

■ Solve the following instance of job sequencing with deadline

problem.

Jobs	J1	J2	J3	J 4	J5	J6
Deadlines	5	3	3	2	4	2
Profits	200	180	190	300	120	100

Solution

- Sort all the given jobs in decreasing order of their profit.

Jobs	J4	J1	J3	J2	J5	J6
Deadlines	2	5	3	3	4	2
Profits	300	200	190	180	120	100

- Value of maximum deadline = 5.
- So, draw a Gantt chart with maximum time on Gantt chart = 5 units as shown below

- Select the jobs as per the ordered profits and place them in the chart accordingly
- Select J4 (d4=2)

■ Select J1 (d1=5)

■ Select J3 (d3=3)

■ Select J2 (d2=3)

■ Select J5 (d5=4)

- The left over job is J6 whose deadline is 2.
- All the slots before deadline 2 are already occupied.
- Thus, job J6 can not be completed.
- Hence the optimal sequence of jobs are <J2, J4, J3, J5, J1>
- The profit earned by this sequence is 990 units

Solve the following instance of job sequencing problem

Let
$$n = 4$$
, $(p1,p2,p3,p4) = (100,10,15,27)$, $(d1,d2,d3,d4) = (2,1,2,1)$

Solution?

Situation

- How will you compactly store a data file of 100000 characters?
- The file consists of only 6 different characters
- Their occurrences (frequencies) are as follows

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

 Designing a binary character code (in which each character is represented by a unique binary string, which we call a Codeword) is one among multiple solutions

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

■ Fixed length code (e.g. ASCII)

- -3 bits to represent 6 characters
- -a = 000, b = 001, . . . , f = 101.
- -This method requires 300,000 bits to code the entire file
- -Can you do better ?

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Variable length code (Morse code)

- -assign frequent characters short codewords and infrequent characters long codewords
- -This code requires (45.1+13.3+12.3+16.3+9.4+5.4).1,000= 224,000 bits
- When compared to fixed length code, the variable length code saved the storage by 25%

Prefix codes

A code is called a prefix (free) code if no codeword is a prefix of another one. (typically of variable length)

Example

A: 00
B: 010
C: 011
D: 10
E: 11
Prefix code

A: 00
B: 010
C: 001 # 011 -> 001
D: 10
E: 11

Not a Prefix code

{3, 11, 22} ← Prefix code

{1, 12, 13} ← Not a Prefix code

Prefix codes

- Life is easy with prefix code
- Let [1, 2, 33, 34, 50, 61] be the codewords
- Let the sequence of number received be 1611333425012
- Decoding?

1 61 1 33 34 2 50 1 2

- https://gist.github.com/joepie91/26579e2f73ad903144dd5d75e2f03d83
- https://leimao.github.io/blog/Huffman-Coding/

David Huffman invented a greedy algorithm to

"Construct a tree that would assign shorter bit strings to high-frequency symbols and longer ones to low-frequency symbols"

- He invented this when he was a graduate student at MIT
- The two major steps in Huffman algorithm are
 - Building a Huffman Tree from the input characters.
 - Assigning code to the characters by traversing the Huffman Tree.

- 1. Create a leaf node for each character of the text.
- 2. Arrange all the nodes in increasing order of their frequency value.
- 3. Considering the first two nodes having minimum frequency,
 - a. Create a new internal node.
 - b. The frequency of this new node is the sum of frequency of those two nodes.
 - c. Make the first node as a left child and the other node as a right child of the newly created node.
- 4. Keep repeating Step-2 and Step-3 until all the nodes form a single tree.

https://www.gatevidyalay.com/huffman-coding-huffman-encoding/

Huffman coding - Problem

- A file contains the following characters with the frequencies as shown. If Huffman Coding is used for data compression, determine-
 - Huffman Code for each character
 - Average code length
 - Length of Huffman encoded message (in bits)

Characters	Frequencies
a	10
е	15
i	12
0	3
u	4
S	13
t	1

Construction of Huffman tree

Assign weight '0' to the left edges and weight '1' to the right edges of the

Huffman Tree

a = 111

e = 10

i = 00

o = 11001

u = 1101

s = 01

t = 11000

■ Construct the Huffman tree and hence obtain the codewords for the following population

Value A B C D E F Frequency 5 25 7 15 4 12							
Frequency 5 25 7 15 4 12	Value	Α	В	С	D	Е	F
7 15 7 12	Frequency	5	1 75	7	15	4	12

- Graphs can be used to model highway structure of a state/country.
- Vertices representing cities and edges representing the connecting roads
- The edges can be assigned weights which might represent distance/cost/time to drive across the cites
- If Mr. X wants to drive from point A to point B
- Following are the questions raised
- Is there a path from A to B?
- If there are multiple paths then which is the shortest path?

- Graphs can be used to model highway structure of a state/country.
- Vertices representing cities and edges representing the connecting roads
- The edges can be assigned weights which might represent distance/cost/time to drive across the cites
- If Mr. X wants to drive from point A to point B
- Following are the questions raised
 - Is there a path from A to B?
 - If there are multiple paths then which is the shortest path?

- **■** The problem statement
- Given a weighted connected graph G=(V, E) and a source vertex s, determine the shortest paths from s to all the remaining vertices.
- The single-source shortest-paths problem asks for a family of paths, each leading from the source to a different vertex in the graph, though some paths may, of course, have edges in common.
- Major applications
 - Transportation planning
 - Packet routing in Internet
 - Social networks
 - Speech recognition
 - Path finding video games

Dijkstra's Algorithm

- Best-known algorithm for the single-source shortest-paths problem
- This algorithm is applicable to undirected and directed graphs with nonnegative weights only
- Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of their distance from a given source
- First, it finds the shortest path from the source to a vertex nearest to it then to a second nearest, and so on
- In general, before its ith iteration commences, the algorithm has already identified the shortest paths to i 1 other vertices nearest to the source.

- Working of Dijkstra's algorithm
- **■** Fringe vertices?
 - The set of vertices adjacent to the vertices in Ti
- How to identify next nearest vertex? u*

- After identifying do the following
- Move u* from the fringe to the set of tree vertices.
- For each remaining fringe vertex u that is connected to u* by an edge of weight w(u*, u) such that du* + w(u*, u) < du, update the labels of u by u* and du* + w(u*, u), respectively.</p>

■ Find the shortest paths from the source vertex a to all other vertices

Adjacency Matrix

0	3	∞	7	∞
3	0	4	2	∞
∞	4	0	5	6
7	2	5	0	4
∞	∞	6	4	0

Solution

- Partially ordered data structure that is especially suitable for implementing priority queues
- A heap can be defined as a binary tree with keys assigned to its nodes, one key per node, provided these two conditions are met:
- The shape property
 - -The binary tree is essentially complete (or simply complete), i.e., all its levels are full except possibly the last level, where only some rightmost leaves may be missing.
- The parental dominance or heap property
 - -The key in each node is greater than or equal to the keys in its children. (This condition is considered automatically satisfied for all leaves.)

Note

- key values in a heap are ordered top down
- there is no left-to-right order in key values;

Properties of Heap

- There exists exactly one essentially complete binary tree with n nodes. Its height is equal to log₂n.
- The root of a heap always contains its largest element.
- A node of a heap considered with all its descendants is also a heap.
- A heap can be implemented as an array by recording its elements in the top down, left-to-right fashion
- It is convenient to store the heap's elements in positions 1 through n of such an array, leaving H[0] either unused

In an array representation of heaps

- -the parental node keys will be in the first $\lfloor n/2 \rfloor$ positions of the array, while the leaf keys will occupy the last $\lceil n/2 \rceil$ positions;
- -the children of a key in the array's parental position $i (1 \le i \le n/2)$ willbe in positions 2i and 2i + 1, and, correspondingly, the parent of a key in position $i (2 \le i \le n)$ will be in position $\lfloor i/2 \rfloor$

How to construct a heap for a given list of keys?

- bottom-up heap construction
 - It initializes the essentially complete binary tree with n nodes by placing keys in the order given
 - then "heapifies" the tree
- top-down heap construction
 - Successive insertions of a new key into a previously constructed heap

Bottom-up heap construction

Example: construct a heap for the following list of numbers

Bottom-up heap construction

It initializes the essentially complete binary tree with n nodes by placing keys in the order given

Heapify

- Starting with the last parental node, the algorithm checks whether the parental dominance holds for the key in this node
- If it does not, the algorithm exchanges the node's key K with the larger key of its children and checks whether the parental dominance holds for K in its new position
- This process continues until the parental dominance for K is satisfied.
- After completing the "heapification" of the subtree rooted at the current parental node, the algorithm proceeds to do the same for the node's immediate predecessor
- The algorithm stops after this is done for the root of the tree.

Example: Construct a heap for the following list of numbers 2, 9, 7, 6, 5, 8.

construct a heap for the following list of numbers


```
ALGORITHM HeapBottomUp(H[1..n])
     //Constructs a heap from elements of a given array
     // by the bottom-up algorithm
     //Input: An array H[1..n] of orderable items
    //Output: A heap H[1..n]
     for i \leftarrow \lfloor n/2 \rfloor downto 1 do
         k \leftarrow i; \quad v \leftarrow H[k]
          heap \leftarrow \mathbf{false}
          while not heap and 2 * k \le n do
               j \leftarrow 2 * k
               if j < n //there are two children
                    if H[j] < H[j+1] \ j \leftarrow j+1
               if v \geq H[j]
                    heap \leftarrow true
               else H[k] \leftarrow H[j]; \quad k \leftarrow j
          H[k] \leftarrow v
```


- Top-down heap construction
 - -Successive insertions of a new key into a previously constructed heap
- How to insert a new key K into a heap?
 - -First, attach a new node with key K in it after the last leaf of the existing heap.
 - -Then shift K up to its appropriate place in the new heap as follows.
 - Compare K with its parent's key: if the latter is greater than or equal to K, stop (the structure is a heap);
 - Otherwise, swap these two keys and compare K with its new parent.
 - This swapping continues until K is not greater than its last parent or it reaches the root

- top-down heap construction
 - Successive insertions of a new key into a previously constructed heap

- How to delete an item form the heap?
- Special case- Deletion of root

Maximum Key Deletion from a heap

- **Step 1** Exchange the root's key with the last key *K* of the heap.
- **Step 2** Decrease the heap's size by 1.
- **Step 3** "Heapify" the smaller tree by sifting K down the tree exactly in the same way we did it in the bottom-up help construction algorithm. That is, verify the parental dominance for K: if it holds, we are done; if not, swap K with the larger of its children and repeat this operation until the parental dominance condition holds for K in its new position.

Steps illustrating the deletion of root element from the heap

Heap Sort

- An interesting sorting algorithm discovered by J. W. J. Williams
- This is a two-stage algorithm that works as follows.
 - Stage 1 (heap construction): Construct a heap for a given array.
 - Stage 2 (maximum deletions): Apply the root-deletion operation n − 1 times to the remaining heap.

Sort the following elements using heap sort

2, 9, 7, 6, 5, 8

Stage 1 (heap construction)

2 9 **7** 6 5 8

2 **9** 8 6 5 7

2 9 8 6 5 7

9 2 8 6 5 7

9 6 8 2 5 7

Stage 2 (maximum deletions)

9 6 8 2 5 7

7 6 8 2 5 I **9**

8 6 7 2 5

5 6 7 2 I **8**

7 6 5 2

2 6 5 I **7**

6 2 5

5 2 I **6**

5 2

2 | **5**

2

GREEDY METHOD