

Introduction to

Algorithm Design and Analysis

[10] Union-Find

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the Last Class

- Hashing
 - o Basic idea
- Collision handling for hashing
 - o Closed address
 - o Open address
- Amortized analysis
 - o Array doubling
 - Stack operations
 - o Binary counter

Union-Find

• Dynamic Equivalence Relation

- o Examples
- o Definitions
- o Brute force implementations

Disjoint Set

- o Straightforward Union-Find
- Weighted Union + Straightforward Find
- Weighted Union + Path-compressing Find

Minimum Spanning Tree

- Kruskal's algorithm, greedy strategy:
 - o Select one edge
 - With the minimum weight
 - Not in the tree
 - o Evaluate this edge
 - This edge will **NOT** result in a cycle
- Critical issue:
 - o How to know "NO CYCLE"?

Maze Generation

Select a wall to pull down randomly

If *i* and *j* are in same *equivalence class*, then select another wall to pull down.

Otherwise, joint the two classes into one.

The maze is complete when the inlet and outlet are in one equivalence class.

Black Pixels

- Maximum black pixel component
 - \circ Let α be the size of the component
- Color one pixel black
 - o How α changes?
 - o How to choose the pixel, to accelerate the change in α

Jigsaw Puzzle

- Multiple pieces may be glued together
- From "one player" to "two players"
 - Each group can only be moved in a mutual exclusive way
 - How to decide the relation of "in the same group"

Dynamic Equivalence Relations

Equivalence

- o Reflexive, symmetric, transitive
- o Equivalent classes forming a partition

• Dynamic equivalence relation

- o Changing in the process of computation
- o **IS** instruction: *yes* or *no* (in the same equivalence class)
- MAKE instruction: combining two equivalent classes, by relating two unrelated elements, and influencing the results of subsequent IS instructions.
- o Starting as equality relation

Implementation: How to Measure

- The number of basic operations for processing a sequence of *m* MAKE and/or Is instructions on a set *S* with *n* elements.
- An Example: *S*={1,2,3,4,5}

```
o 0. [create] {{1}, {2}, {3}, {4}, {5}}
```

```
o 1. IS 2≡4? No
```

o 2. **IS** 3≡5? No

 \circ 3. **MAKE** 3=5. {{1}, {2}, {3,5}, {4}}

 \circ 4. MAKE 2=5. {{1}, {2,3,5}, {4}}

o 5. **IS** 2≡3? Yes

o 6. MAKE 4=1. $\{\{1,4\}, \{2,3,5\}\}$

o 7. **IS** 2≡4? No

Union-Find based Implementation

The maze problem

- o Randomly delete a wall and union two cells
- Loop until you find the inlet and outlet are in one equivalent class

The Kruskal algorithm

- o Find whether u and v are in the same equivalent class
- o If not, add the edge and union the two nodes

The black pixels problem

- o Find black pixel groups
- o How the union of black pixel groups increases α

Implementation: Choices

• Matrix (relation matrix)

- o Space in $\Theta(n^2)$, and worst-case cost in O(mn) (mainly for row copying for MAKE)
- Array (for equivalence class ID)
 - o Space in $\Theta(n)$, and worst-case cost in O(mn) (mainly for search and change for MAKE)

Forest of rooted trees

- A collection of disjoint sets, supporting *Union* and Find operations
- o Not necessary to traverse all the elements in one set

Union-Find ADT

- Constructor: Union-Find create(int n)
 - o sets=create(*n*) refers to a newly created group of sets {1}, {2}, ..., {*n*} (*n* singletons)
- Access Function: int find(UnionFind sets, e)
 - o find(sets, *e*)=<*e*>
- Manipulation Procedures
 - o **void** makeSet(UnionFind sets, **int** *e*)
 - o **void** union(UnionFind sets, **int** *s*, **int** *t*)

Using Rooted Tree

- IS $s_i \equiv s_i$:
 - o t=find(s_i);
 - o $u = find(s_i)$;
 - \circ (t==u)?
- MAKE $s_i \equiv s_j$:
 - o t=find(s_i);
 - o $u = find(s_i);$
 - o union(t,u);

implementation by inTree

Union-Find Program

- A union-find program of length *m*
 - o is (a *create*(*n*) operation followed by) a sequence of *m* union and/or find operations in any order
- A union-find program is considered an input
 - o The object on which the analysis is conducted
- The measure: number of accesses to the *parent*
 - o assignments: for union operations
 - o lookups: for find operations

link operation

Worst-case Analysis for Union-Find Program

- Assuming each lookup/assignment take O(1).
- Each makeSet or union does one assignment, and each find does d+1 lookups, where d is the depth of the node.

Weighted Union: to Get Shorter Trees

- Weighted union (wUnion)
 - o always have the tree with **fewer nodes** as subtree

To keep the *Union* valid, each *Union* operation is replaced by: $t=\operatorname{find}(i);$ $u=\operatorname{find}(j);$ union(t,u)

The order of (*t*,*u*) satisfying the requirement

Cost for the program: n+4(n-1)+2(m-n+1)

Upper Bound of Tree Height

• After any sequence of *Union* instructions, implemented by *wUnion*, any tree that has *k* nodes will have height at most \[logk \]

• Proof by induction on *k*:

- o base case: k=1, the height is 0.
- o by inductive hypothesis:
 - $h_1 \le \lfloor \lg k_1 \rfloor$, $h_2 \le \lfloor \lg k_2 \rfloor$
- o h=max(h1, h2+1), k=k1+k2
 - if $h=h_1$, $h \le \lfloor \lg k_1 \rfloor \le \lfloor \lg k \rfloor$
 - if $h=h_2+1$, note: $k_2 \le k/2$ so, $h_2+1 \le \lfloor \lg k_2 \rfloor + 1 \le \lfloor \lg k \rfloor$

Upper Bound for Union-Find Program

• A Union-Find program of size *m*, on a set of *n* elements, performs O(*n*+*m*log*n*) link operations in the worst case if *wUnion* and straight *find* are used

• Proof:

- o At most n-1 wUnion can be done, building a tree with height at most $\lfloor \log n \rfloor$,
- o Then, each *find* costs at most $\lfloor \log n \rfloor + 1$.
- Each wUnion costs in O(1), so, the upper bound on the cost of any combination of m wUnion/find operations is the cost of m find operations, that is $m(\lfloor \log n \rfloor + 1) \in O(n+m\log n)$

There do exist programs requiring $\Omega(n+(m-n)\log n)$ steps.

Path Compression

Challenges for the Analysis

Analysis: the Basic Idea

- cFind may be an expensive operation
 - o in the case that find(*i*) is executed and the node *i* has great depth.
- However, such *c*Find can be executed only for limited times
 - o Path compressions depends on previous unions
- So, amortized analysis applies

Co-Strength of wUnion and cFind

• $O((n+m)\log^*(n))$

- o Link operations for a *Union-Find* program of length *m* on a set of *n* elements is in the worst case.
- o Implemented with *wUnion* and *cFind*

What's $log^*(n)$?

o Define the function *H* as following:

$$\begin{cases}
H(0) = 1 \\
H(i) = 2^{H(i-1)} \text{ for } i > 0
\end{cases}$$

o Then, $\log^*(j)$ for $j \ge 1$ is defined as:

$$\log^*(j) = \min\{k \mid H(k) \ge j\}$$

Definitions with a *Union-*Find Program P

- Forest *F*: the forest constructed by the sequence of *union* instructions in *P*, assuming:
 - o wUnion is used;
 - o the *finds* in the *P* are ignored
- Height of a node v in any tree: the height of the subtree rooted at v
- Rank of v: the height of v in F

Note: *cFind* changes the height of a node, but the rank for any node is invariable.

Constraints on Ranks in F

- The upper bound of the number of nodes with rank r ($r \ge 0$) is $\frac{n}{2^r}$
 - o Remember that the height of the tree built by wUnion is at most $\lfloor \log n \rfloor$, which means the subtree of height r has at least 2^r nodes.
 - o The subtrees with root at rank *r* are disjoint.
- There are at most \[logn \] different ranks.
 - o There are altogether n elements in S, that is, n nodes in F.

Increasing Sequence of Ranks

- The ranks of the nodes on a path from a leaf to a root of a tree in *F* form a strictly increasing sequence.
- When a *cFind* operation changes the parent of a node, the new parent has higher rank than the old parent of that node.
 - o Note: the new parent was an ancestor of the previous parent.

A Function Growing Extremely Slowly

• Function *H*:

$$\begin{cases}
H(0)=1 & 2 \\
H(i+1)=2^{H(i)} & 2
\end{cases}$$
that is: $H(k)=2$

Note:

H grows extremely fast: $H(4)=2^{16}=65536$ $H(5)=2^{65536}$

Function Log-star

log*(*j*) is defined as the least *i* such that:

$$H(i) \ge j$$
 for $j > 0$

Log-star grows extremely slowly

$$\lim_{n\to\infty}\frac{\log^*(n)}{\log^{(p)}n}=0$$

p is any fixed nonnegative constant

For any $x: 2^{16} \le x \le 2^{65536} - 1$, $\log^*(x) = 5$!

Grouping Nodes by Ranks

- Node $v \in s_i$ ($i \ge 0$) iff. $\log^*(1+\text{rank of } v)=i$
 - o which means that: if node v is in group i, then $r_v \le H(i)-1$, but not in group with smaller labels
- So,
 - o Group 0: all nodes with rank 0
 - o Group 1: all nodes with rank 1
 - o Group 2: all nodes with rank 2 or 3
 - o Group 3: all nodes with its rank in [4,15]
 - o Group 4: all nodes with its rank in [16, 65535]
 - oGroup 5: all nodes with its rank in [65536, ???]

Group 5 exists only when *n* is

at least 265536. What is that?

Very Few Groups

• Node $v \in S_i$ ($i \ge 0$) iff.

$$\log^*(1+\text{rank of }v)=i$$

- Upper bound of the number of distinct node groups is log*(n+1)
 - o The rank of any node in F is at most $\lfloor \log n \rfloor$, so the largest group index is $\log^*(1+\lfloor \log n \rfloor)=\log^*(\lceil \log n+1 \rceil)=\log^*(n+1)-1$

Amortized Cost of Union-Find

Amortized Equation Recalled

amortized cost = actual cost + accounting cost

- The operations to be considered:
 - o n makeSets
 - o *m* union & find (with at most *n*-1 unions)

One Execution of $cFind(\mathbf{w}_0)$

Amortizing Scheme for wUnion-cFind

makeSet

- o Accounting cost is $4\log^*(n+1)$
- \circ So, the amortized cost is 1+4log*(n+1)

wUnion

- o Accounting cost is 0
- o So the amortized cost is 1

cFind

- o Accounting cost is describes as in the previous page.
- o Amortized cost $\leq 2k-2((k-1)-(\log^*(n+1)-1))=2\log^*(n+1)$ (Compare with the worst case cost of *cFind*, $2\log n$)

Number of withdrawal

Validation of the Amortizing Scheme

- We must be assure that the sum of the accounting costs is never negative.
- The sum of the negative charges, incurred by *cFind*, does not exceed $4n\log^*(n+1)$
 - We prove this by showing that at most $2n\log^*(n+1)$ withdrawals on nodes occur during all the executions of *c*Find.

Key Idea in the Derivation

- For any node, the number of withdrawal will be less than the number of different ranks in the group it belongs to
 - o When a *cFind* changes the parent of a node, the new parent is always has higher rank than the old parent.
 - Once a node is assigned a new parent in a higher group, no more negative amortized cost will incurred for it again.
- The number of different ranks is limited within a group.

Derivation

Bounding the number of withdrawals

The number of withdrawals from all $w \in S$ is:

a loose upper bound of ranks in a group

$$\sum_{i=0}^{\log^*(n+1)-1} (H(i))$$
 (number of nodes in group i)

The number of nodes in group i is at most:

$$\sum_{r=H(i-1)}^{H(i)-1} \frac{n}{2^r} \le \frac{n}{2^{H(i-1)}} \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{2n}{2^{H(i-1)}} = \frac{2n}{H(i)}$$

So,

$$\sum_{i=0}^{\log^*(n+1)-1} H(i) \frac{2n}{H(i)} = 2n \log^*(n+1)$$

Conclusion

- The number of link operations done by a *Union-Find* program implemented with *wUnion* and *cFind*, of length *m* on a set of *n* elements is in $O((n+m)log^*(n))$ in the worst case.
 - o Note: since the sum of accounting cost is never negative, the actual cost is always not less than amortized cost. The upper bound of amortized cost is: $(n+m)(1+4\log^*(n+1))$

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

