

Musculoskeletal modeling of the swimming salamander

Jonathan Grizou

Supervisors:
Konstantinos Karakasiliotis
Jeremie Knüsel

Professor : Auke Jan Ijspeert

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Motivation

Understanding the role of muscles during swimming

Questions

What is the simplest model able to reproduce:

- the kinematics of the animal
- the interaction between muscle stimulation and body dynamics

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Morphology

Muscles

Muscles

References: G.E.Loeb, C.Ghez, Principles of Neural Science, chapter 34

Muscles

Previous Works

Reference:

A combined neuronal and mechanical model of fish swimming O. Ekeberg 1993

Reference:

A connectionist central pattern generator for the aquatic and terrestrial gaits of simulated salamander

A. J. Ijspeert 2000

State of the art

Reference:

A combined neuronal and mechanical model of fish swimming O. Ekeberg 1993

Reference:

A connectionist central pattern generator for the aquatic and terrestrial gaits of simulated salamander

A. J. Ijspeert 2000

What is new and Why? BICROB

Non Linear Muscle Model → Force(Speed) relation

Robotic platform → Reality gap

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Constraints

Constraints

Constraints

Solutions

Solutions

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Method

Input : EMG Delvolvé

Parameters: Fmax, Lopt, Joint width

Fitness: Match the X-Ray avg kinematics

Reference:

Epaxial and Limb Muscle Activity During Swimming and Terrestrial Stepping in the Adult Newt I. DELVOLVE, B. TIAZA, J-M. CABELGUEN 1997

Setup

Parameters: Fmax, Lopt, Joint width

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Reference:

The Timing of Muscle Strain And Activation During Steady Swimming in a salamander K. D'AOUT et al.

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Improvements

Content

- Motivation
- Questions
- Modeling
- Robotics constraints and solutions
- Optimization
- Results
- Improvements
- Robot implementation and problems
- Future Works

Problem

/Users/jgrizou/Desktop/Final_presentation/images/Robot_test/Crazy_oscillation.m4v

Solutions

Decrease the time step:

- Initial \rightarrow 40 ms
- Delete CPG + unnecessary request → 15 ms
- Communication without acknowledge → 11 ms
- Broadcast protocol → 5-7 ms

/jgrizou/Desktop/Final_presentation/images/Robot_test/Salamander_passive_vertical.m4v

/jgrizou/Desktop/Final_presentation/images/Robot_test/Short_good_swim_low_freq.m4v

ers/jgrizou/Desktop/Final_presentation/images/Robot_test/Slamander_lowfreq_turn.m4v

Future Works

Tendons + Spring

EMG with coupled oscillators + feedback

Computation in each robotic segment

Thank you for your time

Any questions?