FlexLogger Python Automation Example

With the FlexLogger Automation API, users can control a FlexLogger test session and analyze the resulting data with the same Python program.

Connect to FlexLogger and run a test

This example connects to an already-running FlexLogger project, so the **Automation server** preference must be enabled:

Read the resulting TDMS data file

There are several TDMS packages available on the Python Package Index (PyPI). This example uses npTDMS (docs) to access the test data as NumPy arrays.

```
import nptdms
import os
import pathlib
```

```
data_directory = pathlib.Path(os.getcwd()) / "FlexLogger-Project" / "data"
data_files = data_directory.glob("*")
latest_file_path = max(data_files, key=lambda p: p.stat().st_ctime)
if latest_file_path.suffix == ".tdms_index":
    latest_file_path = latest_file_path.with_suffix(".tdms")
print("Analyzing new TDMS file: {}".format(latest_file_path))
tdms_file = nptdms.TdmsFile.read(latest_file_path)
```

Analyzing new TDMS file: c:\sandbox\flexlogger-automation-example\FlexLogger-Project\data\LogFile_ 2021-02-23-09-45-28.tdms

Review the project's Test properties

FlexLogger allows users to log custom test properties to supplement the measurement data. The example project has three different properties:

following properties w	ill be stored on every logged TDMS file u	nder the test prop	erties group	
Property name	Property value		Prompt on start	
DUT	Rev3			
Location	Austin			
Test Station	PT-2			

DUT: Rev3; Location: Austin; Test station: PT-2

Were the measurements within the expected bounds?

This example uses a FlexLogger project with a configured NI-9215 input module:

2 ▼ 😩 NI 9215 (C Series Voltage Input Module)						
	CHANNEL NAME	LIVE VALUE	DETAILS			
AIO	Differential_Voltage_0	6.70369 V	Voltage, -10 / 10 V			
Al1	Differential_Voltage_1	5.70930 V	Voltage, -10 / 10 V			
AI2	Differential_Voltage_2	3.11485 V	Voltage, -10 / 10 V			
AI3	Differential_Voltage_3	3.79167 V	Voltage, -10 / 10 V			

Check the bounds using NumPy's min and max methods.

```
In [3]: channels = tdms_file["Log"].channels()
    voltage_max = 7
```

Differential_Voltage_0 went OUTSIDE the expected voltage range Differential_Voltage_1 stayed within the expected voltage range Differential_Voltage_2 stayed within the expected voltage range Differential_Voltage_3 stayed within the expected voltage range

Visualize the measurements

Plot the measurement data with Matplotlib - the most popular Python visualization library.

