保险·银行·投资

基于Hive/ES 金融大数据指标系统

沈百军 2016年10月 @QCon

促进软件开发领域知识与创新的传播

关注InfoQ官方信息

及时获取QCon软件开发者 大会演讲视频信息

[北京站] 2016年12月2日-3日

咨询热线: 010-89880682

[北京站] 2017年4月16日-18日

咨询热线: 010-64738142

流动性不足

套利价值 大小 相关

低风险 携带 动量

保险连接

事件风险

产品

(股票/基金/债券)

客户

波动

承受能力

套利择时 性别 购买力

年龄 风险

质量

资产 相关

绝对收益

稳定性

可融资性

佣金

Why-目标要求

- ▶超级标签系统,标签可无限制扩展,所有标签可联合Filter
- ▶超级Cube, 可无限制扩展维度和度量值
- ▶**毫秒级别**的多维分析工具,用户体验好,查询快
- ▶**水平扩展**,必须是分布式,最好开源
- > 架构部署简单,维护成本低
- ▶支持Sql查询,入门快

其他系统比较

	ElasticSearch	Kylin	Spark	HBase	SSAS Cognos
聚合度量值 排序		X	\checkmark	X	√
维度&度量值扩展性	10W~50W	32个维度	10W	1维	有限个
条件明细筛 选		X		X	X
水平扩展型	√	V	V	√	X
易用性	√			√	X
性能和用户 体验	毫秒	毫秒	10~60s	毫秒	2~10s
高维聚合查 询	X			√	X
数据实时性	流式写入	流式写入	流式写入	流式写入	X

方案

Schema

系统介绍

什么是指标系统

条件筛选 & 多维统计分析

指标定义和维护

➤ 什么是指标系统 (3W)

WHO

• 对象:给谁打指标,必须有一个主题对象 (如客户、股票、视频等)

WHAT

• 给对象的各个属性,标签,度量值等

HOW

- 精准化营销
- 多维统计分析
- 千人千面

指标整体架构图

条件筛选和多维分析(Filter & Cube)

指标系统元数据定义

- 指标模型管理
- 指标管理
- 维度管理
- 其他辅助设置

开发实践 ---- 摸石头过河

		ı		
精准营销	宽表查询,ES方 案绝对无争议	发现ES的多维		
多维分析	研究kylin作为 cube引擎	分析能力非常强 确定ES作为 cube引擎	把最热的数据添 加到Redis,提	
千人千面	通过数据挖掘 分析用户标签, 添加到redis, 提供API	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	供在线API接口 Redis缓存	
W. 147 (c)	选型ES	多维分析		
数据统一	,			

系统技术架构

- ▶ 整体架构
- ▶ 指标元数据设计
 - 模型设计
 - 指标设计

指标系统方案架构

指标元数据设计---- 模型设计

指标元数据设计---- 模型维度设计

• 模型设计

指标元数据设计---- 指标设计

• 指标设计

- 扩展指标
 - Hive里面是Map字段
 - 设置维度后,每个渠道一个key
 - 存放在Map, ES是一个字段
- 添加指标时 可以选择多个字段

指标元数据设计----其他设置

- > 表达式指标
 - 用户可以根据自己的逻辑添加指标
- > 模板定义
 - 根据设计的查询分享给其他用户
- > 索引设置
 - 索引是有限资源
- ▶ 指标别名设置

ElasticSearch-Sql

多项聚合

Use group by (fieldName), (fieldName, fieldName) SELECT * FROM account GROUP BY (gender, state, age), (state), (age)

分区间聚合

put fieldName followed by your ranges SELECT COUNT(age) FROM bank GROUP BY range(age, 20,25,30,35,40)

地理查询

GEO_DISTANCE_RANGE(center,'1m','1km',100.5,0.50001)
GEO_DISTANCE(center,'1km',100.5,0.5)

优化和填坑

- ➤ ElasticSearch优化和填坑
 - ElasticSearch优化点
 - 填坑大行动
- > 核心计算调度

ElasticSearch原理

- ✓ 时间复杂度: O(N) ->O(logN)-> O(1)
- ✓ 文档(Document) 单词(Word) 倒排索引(Inverted Index)
- ✓ Bool filter & And/Or/Not filters(Bitset & non-bitset)
- ✓ Filter execution order
- ✓ Instance & Shard

	doc1	doc2	doc3	doc4	doc5	doc6	doc7	doc8
gender-男		V		√		V		
Level-高净值	V	V	V		\checkmark	\checkmark	\checkmark	√

bitset - and		V						

ElasticSearch--blukload

11万字段,两万个索引字段,每天要7点前导入es,核心将ORCFile里的数据导入ES

虽然ES可以自动创建mapping,但创建的效率非常低,所以希望能一次性的把mapping创建

ElasticSearch优化—IO优化

- ▶ 一台机子多个实例, 硬盘裸盘
- ▶ 多硬盘提高IO,实例之间硬盘不共享
- ➤ SHARD个数等于硬盘个数,最大化利用硬盘IO

ElasticSearch优化—IO优化

- ▶ 一台机子多个实例, 硬盘为裸盘
- ▶ 多硬盘提高IO,实例之间硬盘不共享
- ➤ SHARD个数等于硬盘个数,最大化利用硬盘IO

ElasticSearch优化—IO优化

- ➤ Bulkload 的瓶颈在IO
 - 购买32块SSD硬盘和96块普通一盘比较 (以下数据为1000w记录,11万字段,1w索引,索引500G)

	32块SSD硬盘	96块普通硬盘
Import time	80分钟	90分钟
Merge time	20分钟	30分钟
Hard Disk Load	40%	80%

- ▶ 结论:时间上面没有明显提高,但load提高一倍
 - 进一步优化方法,购买更多SSD硬盘
 - 增加机器数量
 - 减少索引个数,优化索引

ElasticSearch优化

- ➤ 尝试G1 GC,提高吞吐能力
- > 一台机子多个实例
- ➤ 多硬盘提高IO,实例之间硬盘不共享
- ➤ SHARD个数等于硬盘个数,最大化利用硬盘IO
- ➤ bootstrap.mlockall设置true,防止swap
- ➤ 使用bulk load, 加大threadpool.bulk.queue_size=1024 避免数据丢失
 - ➤ Map=90
- Index settings disable _all
- ➤ 使用index alias代替index name

填坑: ElasticSearch TopN—慎用terms size

ElasticSearch terms size聚合的时候,如果维度基数大于size,聚合结果求 TopN可能是近似值

shard A	shard B	shard C
A 30	B 12	E 15
B 25	C 10	B 10
C 4	D 8	D 8
D 3	E 7	C 6
E 2	A 2	A 1

	shard A	shard B	shard C
₹top3	A 30	B 12	E 15
	B 25	C 10	B 10
	C 4	D 8	D 8

В	4/
Α	30
D	16

正确结果:

В	47	
Α	33	
Е	24	

结论:

• terms size & shard size 必须超过维度元素个数

填坑:禁止高维组合查询 & distinct 不精确

- > 高维查询
 - 当高维组合查询时, es的heap & load 就会增高, 会拒绝服务
 - 高维在业务应用中其实不多,无业务含义,应该禁用(kylin 对高维支持 很好)
- ➤ Distinct 使用 Hyper loglog 算法,有一定误差

社区贡献

▶原因:

如果terms字段为null值, group by无法进行统计显示

➤ ElasticSearch-sql: pull-267

对terms聚合添加missing和order by功能

未来发展

- ➤ 优化ElasticSearch bulkload, 缩短导入时间
- ▶ 对象记录唯一性的缺陷,支持多记录和跨索引的Join
- ▶ 指标系统抽象化,可以任何对象;目前是客户指标系统
- ➤ 能够和多维分析UI工具打通
- > 支持实时数据查询和分析
- > 有望推向社区,开源

核心计算调度 (主题外补充)

核心计算调度----sql dependent

- ➤ 平安95% 的job使用 sql 表示
- ➤ Sql 语义分析Job 依赖

A: select f1 from table1

B: select f2 from table2

C: select a.f1 + b.f2 from a join b

中国平安 PING AN

保险·银行·投资

谢谢