Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 14 : Révisions

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Il n'y a pas de bonus, mais nous vous encourageons à faire les exercices et nous rendre dans nos casiers. Les exercices avec une étoile sont pour votre entraînement et ne seront pas corrigés.

Examen et révisions du premier semestre.

- 1. Soient a, b > 0 deux nombres positifs. Soit G(z) une fonction telle que G(z + a) = G(z) et G(z + ib) = G(z) pour tout $z \in \mathbb{C}$. Supposer que G(0) = 0 et G(a/2) = 1. Démontrer que G ne peut pas être analytique dans le rectangle $\{z \in \mathbb{C}, -a < \text{Re}(z) < a, -b < \text{Im}(z) < b\}$.
- 2. Calculer l'inégrale suivante

$$\int_{-\infty}^{\infty} \frac{x \sin(x)}{(x^2+1)(x^2+4)} dx.$$

3. Montrer les égalités suivantes :

(a)
$$\int_0^\infty \frac{\cos(ax)}{1+x^2} dx = \frac{\pi}{2} e^{-a}, \text{ pour } a \in \mathbb{R};$$

(b)
$$\int_0^\infty \frac{x^{m-1}}{1+x^n} dx = \frac{\pi/n}{\sin(\pi m/n)} \text{ pour } 0 < m < n \text{ en utilisant le chemin cidessous } :$$

(c)
$$\int_0^\infty \frac{\ln(x)}{(x+a)(x+b)} dx = \frac{\ln^2 a - \ln^2 b}{2(a-b)};$$

FIGURE 1. Chemin pour la question (b).

Un peu d'algèbre linéaire...

- 4. Soit L > 0. Posons $E = \mathcal{C}([0, L], \mathbb{C})$ l'espace des fonctions complexes continues sur l'intervalle [0, L].
 - (a) Montrer que E est un \mathbb{C} -espace vectoriel.
 - (b) Pour $f, g \in E$, on définit

$$\langle f, g \rangle := \int_0^L f(x) \overline{g(x)} dx.$$

Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E. On obtient alors $(E, \langle \cdot, \cdot \rangle)$ un espace hermitien.

(c) Rappeler l'inégalié de Cauchy-Schwarz.

Soit F un sous-espace vectoriel de E.

- (d) Expliquer pourquoi $(F, \langle \cdot, \cdot \rangle)$ est encore un espace hermitien.
- (e) On suppose que F est de dimension finie, admettant une base orthonormale $(f_i)_{1 \leq i \leq m}$. Donner une formule (faisant intervenir les f_i) pour $P_F(f)$, la projection orthogonale de f sur l'espace F.
- (f) Posons L=1 et $F=\mathrm{Vect}(1,x)$. Donner une base orthonormale de F. Minimiser la quantité suivante

$$\int_0^1 (\sin(\pi x) - a - bx)^2 dx$$

où $a, b \in \mathbb{R}$.

On suppose que E est de dimension $n \in \mathbb{N}$ et note $E^* = \mathcal{L}(E, \mathbb{C})$ l'espace des formes linéaires sur E.

- (g) Soit $(e_i)_{1 \leqslant i \leqslant n}$ une base de E. Donner une base de E^* . En déduire la dimension de E^*
- (h) Établir un isomorphisme entre E et E^* .
- (i) Calculer la dimension $\dim_{\mathbb{R}} E$ quand E est vu comme un \mathbb{R} -espace vectoriel.