

# Инструменты аналитика данных для решения прикладных задач





#### •Продуктовая аналитика.

Нужна, чтобы улучшать продукт. Продуктовая аналитика собирает данные, которые помогают изучать поведение пользователей во время их взаимодействия с продуктом. Например, производителю важно знать, как часто пользуются его продуктом, какие проблемы при этом возникают, какую пользу от использования получает клиент.

Продуктовая аналитика: пошаговая инструкция по сбору и визуализации данных



#### •Маркетинговая аналитика.

Нужна, чтобы оценивать эффективность маркетинговых и рекламных кампаний. Такая аналитика собирает данные из рекламных каналов и CRM. С её помощью определяют, с какой рекламной кампании пришёл пользователь, купил продукт или нет, сделал это сразу или через какое-то время и т. д. Работа с данными маркетинговой аналитики помогает понять, почему пользователи покупают или не покупают продукт, какой бюджет нужен для рекламной кампании, что нужно изменить на сайте, в работе отдела продаж или логистике.



### •BI-аналитика (Business Intelligence-аналитика).

Нужна, чтобы собирать, хранить, анализировать, обрабатывать и наглядно представлять все данные, которые есть в компании. BI-аналитика помогает собирать данные из разных источников, разрабатывать и подтверждать гипотезы, моделировать возможные решения. Компании, которые используют ВІ-аналитику, могут анализировать операционные расходы, прогнозировать доходы, сегментировать целевую аудиторию по разным признакам и т. д.





Для сбора и хранения данных. В любой компании есть своя база данных. В одной это могут быть таблицы Excel, в другой — серьёзные решения типа Oracle или MySQL, Postgre. Задача этих инструментов бизнес-анализа — хранить большие объёмы данных и быстро извлекать их.



Для анализа данных. Чтобы собранные данные не лежали мёртвым грузом, а работали, их нужно доставать из базы данных и анализировать по определённым критериям с помощью различных программ. Один из самых популярных инструментов для аналитики данных — Jupyter Notebook.



Для визуализации данных. Информацию, которую получили после анализа данных, нужно представить в удобном и понятном виде. Чтобы создавать наглядные графики и отчёты, используют программы и сервисы для визуализации. К простым относятся Power Point или Miro. Более сложные инструменты работы с аналитикой — Tableau, Power BI.



Для прогнозирования данных. Такие инструменты нужны, чтобы на основании прошлого опыта компании могли принимать успешные решения в будущем, создавать модели поведения клиентов, составлять прогнозы ежедневного спроса определённой группы товаров и т. д. Чтобы создавать достоверные прогнозы, специалисты используют ключевые инструменты аналитиков: языки программирования Python, R и другие.



# Какими инструментами должен владеть аналитик данных

## Какими инструментами должен владеть аналитик данных



- Основные инструменты аналитика помогают ему собирать, обрабатывать, анализировать и интерпретировать данные.
- ▶ Несмотря на большое количество сервисов и программного обеспечения, на практике специалист использует в работе 3–4 ключевых инструмента. Их выбор зависит не только от знаний и опыта аналитика, но и от того, с чем уже работает компания.





### В обычной, «строковой» СУБД, данные хранятся в таком порядке:

| а  | WatchID     | JavaEnable | Title              | GoodEvent | EventTime           |
|----|-------------|------------|--------------------|-----------|---------------------|
| #0 | 89354350662 | 1          | Investor Relations | 1         | 2016-05-18 05:19:20 |
| #1 | 90329509958 | 0          | Contact us         | 1         | 2016-05-18 08:10:20 |
| #2 | 89953706054 | 1          | Mission            | 1         | 2016-05-18 07:38:00 |
| #N |             |            |                    |           |                     |

То есть, значения, относящиеся к одной строке, физически хранятся рядом.

Примеры строковых СУБД: MySQL, Postgres, MS SQL Server.



# В столбцовых СУБД, данные хранятся в таком порядке:

| Строка:     | #0                  | #1                  | #2                  | #N |
|-------------|---------------------|---------------------|---------------------|----|
| WatchID:    | 89354350662         | 90329509958         | 89953706054         |    |
| JavaEnable: | 1                   | 0                   | 1                   |    |
| Title:      | Investor Relations  | Contact us          | Mission             |    |
| GoodEvent:  | 1                   | 1                   | 1                   |    |
| EventTime:  | 2016-05-18 05:19:20 | 2016-05-18 08:10:20 | 2016-05-18 07:38:00 |    |

В примерах изображён только порядок расположения данных. То есть, значения из разных столбцов хранятся отдельно, а данные одного столбца - вместе.

Примеры столбцовых СУБД: Vertica, Paraccel (Actian Matrix, Amazon Redshift), Sybase IQ, Exasol, Infobright, InfiniDB, MonetDB (VectorWise, Actian Vector), LucidDB, SAP HANA, Google Dremel, Google PowerDrill, Druid, kdb+



### Сценарий работы с данными - это то,

- какие производятся запросы, как часто и в каком соотношении;
- сколько читается данных на запросы каждого вида строк, столбцов, байт;
- как соотносятся чтения и обновления данных;
- какой рабочий размер данных и насколько локально он используется;
- используются ли транзакции и с какой изолированностью;
- какие требования к дублированию данных и логической целостности;
- требования к задержкам на выполнение и пропускной способности запросов каждого вида.

### Ключевые особенности OLAP сценария работы мглу

- подавляющее большинство запросов на чтение;
- данные обновляются достаточно большими пачками (> 1000 строк), а не по одной строке, или не обновляются вообще;
- данные добавляются в БД, но не изменяются;
- при чтении, вынимается достаточно большое количество строк из БД, но только небольшое подмножество столбцов;
- таблицы являются «широкими», то есть, содержат большое количество столбцов;
- запросы идут сравнительно редко (обычно не более сотни в секунду на сервер);
- при выполнении простых запросов, допустимы задержки в районе 50 мс;
- значения в столбцах достаточно мелкие числа и небольшие строки (пример 60 байт на URL);
- требуется высокая пропускная способность при обработке одного запроса (до миллиардов строк в секунду на один сервер);
- транзакции отсутствуют;
- низкие требования к консистентности данных;
- в запросе одна большая таблица, все таблицы кроме одной маленькие;
- результат выполнения запроса существенно меньше исходных данных то есть, данные фильтруются или агрегируются; результат выполнения помещается в оперативку на одном сервере.



- OLAP сценарий работы существенно отличается от других распространённых сценариев работы (например, OLTP или Key-Value сценариев работы).
- Не имеет никакого смысла пытаться использовать OLTP или Key-Value БД для обработки аналитических запросов, если вы хотите получить приличную производительность.

# Причины, по которым столбцовые СУБД лучше подходят для OLAP сценария

# московский городской университет МГПУ

#### Строковые СУБД



# Причины, по которым столбцовые СУБД лучше подходят для OLAP сценария

# МОСКОВСКИЙ ГОРОДСКОЙ УНИВЕРСИТЕТ МГПУ

#### Столбцовые СУБД





# Практическая реализация инструментов аналитики

(продуктовая аналитика)

#### •ПРИМЕР Продуктовая аналитика.

NPS — это метрика, которая показывает, как клиенты относятся к вашей компании. Индекс потребительской лояльности определяет:

•готовность пользователей рекомендовать ваш продукт;

•какая вероятность, что они купят у вас повторно.

Работать с метрикой просто: компания проводит NPS опрос после покупки клиентом продукта или услуги — уточняет, всем ли он доволен. Дальше анализирует результаты, делает выводы и ищет направления для улучшений.



#### •ПРИМЕР Продуктовая аналитика.

Изначально в NPS опроснике был единственный вопрос:

## «Насколько вы готовы рекомендовать наш продукт/услугу коллегам и друзьям?»

Его предлагал создатель концепции NPS Фред Райхельд из компании Satmetrix и Bain&Company в 2003 году. В ответе была шкала от 0 до 10 баллов. Сейчас пул вопросов может быть шире, но идея та же — пользователь участвует в простом и быстром опросе.



### •ПРИМЕР Продуктовая аналитика.



ВРЯД ЛИ ПОРЕКОМЕНДУЮТ С БОЛЬШОЙ ВЕРОЯТНОСТЬЮ ПОРЕКОМЕНДУЮТ

#### Практическая работа 1



### СПАСИБО ЗА ВНИМАНИЕ