ex P	aper	EC1: Which functional domain(s) does the study analyze and/or modify in relation to SW architecture changes? E.g. ADAS, IVI (in-Vehicle Infotainment), Powertrain, Chassis	EC2: Which system limitation(s) does the study identify as drivers for SW architecture changes? E.g. Busload, computing power, development costs, development time	EC3: Which specific technologies does the study identify as enablers or catalysts for changes in the SW architecture? E.g. High-Performance Computing in autmotive, Al & machine learning, electrification, Over-The-Air updates and continuous deployment, connectivity-V2X and 5G	ECA: How does the study technically address the integration of diverse software requirements (real-time, non-real-time, safety-critical, etc.) within a centralized automotive software architecture? E.g. virtualization via hypervisors, containerization	ECS: Which architectural patterns or design practices are proposed to systematically support mixed- criticality in centralized automotive software architectures? E.g. Mixed OS environments, Service-Oriented Architectures (SOA), mixed-criticality scheduling, safety island / redundant compute	Comment
	Development of vehicle domain controller based on ethernet	ADAS	Cross-domain communication and vehicular communication that led to backbone ethernet	Electrification, intelligence, network connection and sharing	-		General: Low textual quality but interesting PoC. Mi mixed-criticality focus. Technical: - Decentralized SW to unified SWA - From CAN to Ethernet - Gateway controller based on Ethernet - SOA -> Service provider and consumer Risk: - Time delay until services are available
ir	Contradiction of separation through virtualization and niter virtual machine communication in automotive ccenarios	IC & IVI	High number of ECUs> Increases weight, energy, space, costs for expensive hardware components, development and engineerings costs and time	Fully Digital Cluster Instruments (FPKs)	Virtualization via type-one/baremetall hypervisors, Virtual Machines (VMS), multi-core, Isolated communication channels for shared resources; access control mechanisms for VMs to write/access shared resources; communication data signing; data consistency check;	Multi-OS environment; Design patterns for VMs: Safety relevant parts are separated on VMs to not get compromised; Different OSs to benefit of applications specific to particular OSs Limiting hardware resources for a VM' Decoupling of development cycles - simplified updates; Architectural approaches - see figures: Clear separation approache- two or more OSs/VMs run without interconnections and dedicated I/Os; Layers of interconnections - various types of interconnections: undirectional, bi-, App to OS, OS to OS, App to App etc.; Minimalistic Approach - Shared memory partition for each VM, only owner is allowed to write, only trusted O is allowed to access -> no manipulation by other VMs, one way communication (fire and forget)	Consolidation of cluster instruments and IVI; Attention: inter-VM-communication weakens separation; Isolation interferes with the system's many interfact Third design as balanced mixture for real world automotive scenarios;
	Autonomy-driven Emerging Directions in Software- defined Vehicles	SDV (Software-Defined Vehicle) - All of the domains	Embedded HW and SW architectures as bottlenecks - e.g. computing power; Growing demand fo software - risk for real-time and FuSa; 2one-based: Delays between sensing and actuation; Service-oriented communication leads to uncertainties;> Pessimistic timing estimates and inefficient implementations'> Timing analysis challenges	Service-oriented communication - e.g. SOME/IP and DDS;	Containerization	SOAFEE SW architecture for SDV;	Focus of Paper: Digital Twin. Centralization introduces many challenges; Paper already starts from the zone-oriented E/E architecture as baseline; SOC/SDV shall improve update/upgrade capabilities Scalability due to easier ECU integration; SOC> Communication entities are loosely coupled DDS instead of SOME/IP to ensure real-time; Shift Left to enable shorter SW development cycles- Digital Twin; WCET analysis for processors architectures 'will likel never be fully resolved';
T	Time-sensitive autonomous architectures	Autonomous	Complexity, computing power, safety/latency, busboad/bandwidth, flexibility, scalability, development effort, growing number of ECUs;	Autonomous driving, V2X, ethernet-based communication, Deep Learning	VTSN - Virtual TSN as virtual switch as one VM/VS; Jailhouse hypervisors to enable virtual machines; Jailhouse includes VSHMEM as VECT with permissions to ensure safety and security; Xen hypervisor with null scheduler to pin each virtual CPU to a physical CPU - one core for each virtual machine; Jailhouse outperformed Xen; TSN - Quality of Service; MSPSOC XIIInz Xyrqu UltraScale+ (A- and R-Cores + FPGA accelerator); VLAN to ensure FFI; TSN scheduler Cav (frame prio, idleSlope etc.) and Qbv- Qbv outperforms Qav; Linux (performance, detection) and Erika Enterprise v3 (actuation) as open-source AUTOSAR RTOS; ROS2: DDS, Quality of Service (QoS), highly scalable; Isolation of detection and actuation; Actuation in single-core VM> enhanced safety and predictability;	Virtualization with advantages related to 'security, cost, reliability, availability, and adaptability'; Paravirtualization (higher performance) vs. full virtualization (all HW emulated); 'time-sharing mechanisms for shared hardware resources'; Freedom from Interferences; Multi OS environment; Temporal and spatial isolation; Domain/Feature/Function isolation; Static partitioning, cells allow 'guaranteed resource	Reduction of costs by usage of hypervisors and full hardware ausnutzung; IRIS of multifreading - race conditions; DPU - Deep-Learning Processor Unit (DPU) on the FI VS slightly increases latency but reduces standard deviation and thereby stability;
D	An Enhanced Algorithm for Memory Systematic Faults, Detection in Multicore Architectures Suitable for Mixed- Critical Automotive Applications	ADAS/Autonomous	Computing power, functional safety	Multi-core, autonomous driving (as root cause for multi-core)	Spatial memory protection; Multi-layered-cache multi-core> Dedicated caches; SW algorithms to ensure memory data integrity; Multiple copies, double inverse redundant storage, CRC etc.	Stack-monitoring mechanisms;	Only one author - Risk of bias; Focus on FuSa challenges memory data integrity fruitit-core; 'Safety code execution cannot be corrupted by a no safety code; Spatial memory protection; 'double inverse redunds storage with majority voting and with error detectic codes;' -> Impact on CPU load etc.; CR Cetc. also for NVM data; Elaborates 2 algorithms: 1 for FuSa compliant NVM and 1 for FuSa compliant NVM write;

						1	
6	Software Architecture Modeling of AUTOSAR-Based, Multi-Core Mixed-Critical Electric Powertrain Controller	Powertrain	Increase in efficiency; increasing complexity of software implementations;	Electrification;	Balance of watchdog checkpoints;		Focus on model-driven programming; Non-functional requirements - performance parameters (e.g. CPU load vs. safety constraint); Electric powertrain as mixed ASIL criticality software; AUTOSAR - Emphasizes shift from ECU-centric to functionality-centric approach; Chap. 3.2: Electrification brings more SW complexity; Watchdog to ensure proper program execution by checkpoints and program flow graphs - logical and temporal; Attention: Too many checkpoints can lead to time overhead and thus compromise FuSa; Task comprises many functions called runnables; Bidirectional traceability required between RM and M/S;
7	Problems and their mitigation in system and software architecting	•	SW complexity;	•			Use of product lines to manage complexity; importance of architecture often neglected; Many referenced literature that empahsizes importance of architecture; Focus is on problems in software architecture development - No direct focus on technical solutions for mixed-criticality;
8	Design of Criticality-Aware Scheduling for Advanced Driver Assistance Systems	ADAS	Change of criticality level based on dynamic changes in environment	Autonomous driving	Different partitions for different criticality levels	Multi-core partitioned architecture, virtualization using hypervisors, from temporal and spatial isolation to mode changes> mode based dynamic core allocation	- Partitioning to meet the stringent certification requirements - Sharing/Integrating resources in multicore architectures> reduce power consumption, volume, weight, space, cost and the number of context switches
9	A Security Process for the Automotive Service-Oriented Software Architecture	Autonomous; Powertrain	Cyber-Security	Autonomous driving, electric driving		ASOA; task scheduling acc. to criticality;	ASOA uses DDS for a decentralized data transmission; Service-oriented - data-centric; Paper presents security for the ASOA framework; Centrally managed SW architecture based on fully decoupled services; Making maintenance and update of cyber-security simpler and less costly; DDS fully decentralized -> no need for central broker; Beacons are sent out periodically to discover each other in DDS; Quality of service to ensure e.g. hard latency requirements;
10	Towards the deployment of a centralized ICT architecture in the automotive domain	Driving performance - Powertrain; Comfort - ?; passive and active safety - ?; drive-by-wire - ?;	increasing number of heterogeneous, distributed ECUs; increasing system complexity; Demand for computing power and data bandwidth; Heterogeneous networks; lack of fail-operational behavior; increasing demand for interconnection, complex system verification; limited flexibility;	Drive-by-wire; autonomous driving assistants; electrification;		Redundancy of centralized HPCs; Data-centric paradigm - Consideration of functional and non-functional requirements ensures that runtime system fuffilis QoS demands; Centralized fC architecture will pay off on the long run (lowered barrier for market entrance when standardized SW architecture etc., resource saving, faster development cycles, personalization);	Data-driven - Focus on data flows and processing instead of components; Electrification leads to disruptive change as a chance to
11	A Modular Five-Layered V-Shaped Architecture for Autonomous Vehicles	Autonomous	Safety, Comfort	Autonomous	-	Safety-critical partitions to be designed redundantly with self-diagnostic capability to hot-switch;	Discusses functional system architecture and not a software architecture as stated in the abstract - To be excluded?; Autonomous system must be self-aware and redundantly operable; Autonomous system must be able to self-diagnose;
12	Autonomous driving systems hardware and software architecture exploration: optimizing latency and cost, under safety constraints	Autonomous	Latency, safety, cost	Processor technology; computer vision; object recognition; deep learning; cross-domain dependencies;	Usage of multiple processors; ASIL related bundling of functionalities to dedicated uPs to not interfere; Mapping of similar SWCs onto same SoC partition;	Degeneration of tasks (ensure redundancy and fault- tolerance);	processing capacity of the processors influence how centralized the architecture can be' 'method to design autonomous driving systems for latency, cost, and safety'; Issue - Transfer of data between processors increases latency; High computing> high costs; One single up> Requires high computing power, high costs, low latency; Paper indicates the relatency of a centralized SW architecture and a centralized SoC architecture with different uP partitions;
13	MPSoC-Based Platform for FailOperational Control of an Automated Research Vehicle	Additionally, Control of the Control	Safety	, , , , , , , , , , , , , , , , , , , ,	RPU (real-time processing unit): RTOS for most safety and time critical application; API (application processing unit): Embedded Linux with PREEMPT_RT kernel; Redundant memory partitions;		Target: fail-operational, real-time ECU; 'safety-critical real-time control of a fully automated vehicle via a service-oriented architecture;
14	Modelling centralised automotive E/E software architectures	Autonomous;	Software complexity; scalability, robustness, maintainability;	Electrification, connectivity, autonomous, over-the-air updates, cloud computing, Al, Neural Networks, wireless protocols / 4G&SG, V2X	Multi-core; memory management; resource partitioning; private memory; private cache; manycore processors;	Redundancy, Spatial and temporal isolation to enable FFI; AUTOSAR Adaptive; SOA;	Study investigates automotive architectural languages; Rubus Component Model supports modeling of centralized SW architectures best; Focus more on E/E architecture in general instead of SW architecture in detail; Study emphasizes lack of standard/well-accepted SW architecture for various vehicle manufacturers; Distributed (fraditional) domain-centralized (in- development)> Vehicle-centralized (future)

15		ADAS, Powertrain, Battery Management System, Connectivity	Increasing complexity, increasing required CPU and memory resources, decreasing evolvability, safety and real-time, time-to-market, development costs, end product cost reduction. Hard real-time vs. soft real-time vs. no real-time (quality of service characteristics - SOME/IP or DDS) - Decreasing HW dependability.	Autonomous driving, electrification, connectivity	CBSPA: 7 layers / hierarchies of automotive software - Sensor/actuator types vs. process types - Hardware dependency on lower layers - Update frequency, computational complexity and agility on higher layers - Serveral combined OSs and platforms with hypervisor - Decouple software functions from hardware	SOA, microservices, software-defined vehicle, centralization/consolidation For FuSa focus: Redundancy, FuSa decomp -> Reduce development costs, timing and memory partitioning for FIF, real-time scheduling with timing partition for mixed ASIL tasks Good safety-related SW architecture: Higher number of lower or equal rated SWCs than C, low number of connections between FuSa related SWCs, low number of low-ASIL SWCs assessing high ASIL-SWCs Protected dual channel pattern vs. decomposed channel with centralized voter with monitor pattern	- From traditional V-Model only to V-Model/Agile - Zonal controllers should not include processing functions - Page 2, first two sentences: Is it meant that developers should focus on SWCs and SW architecture, not in features?
16	Key Technology and Standardization Route for New_ Electronic and Electrical Architecture of Intelligent and Connected Vehicles	Connectivity, Autonomous; Powertrain; Chassis; IC & IVI;	communication; intelligence; computing performance;	Cloud/Edge computing; connectivity; autonomous driving; V2X;	Virtual Machines; Containers; multi-core;	SOA; BCEA (Brain Centralized Electronic and Electrical Architecture); AUTOSAR Adaptive; mixed OS environments;	In-vehicle Ethernet technologies need to be standardized;
17	BACE: A centralized platform computer based architecture for automotive applications	ADAS, autonomous, powertrain		Autonomous driving; electrification; After-market extendibility;	Time and space partitioning of applications;	between applications; IMA, ABINC -> Partitioning to segregate mixed-criticality applications; AUTOSAR also supports partitioning? SIMATIC?	Researchers predicted in 2013 shift from distributed to centralized; RACE platform with centralized platform computer same as avionics; Central HPC resulted in redundant power supply, com. infrastructure and controllers; Ring topology for ethernet so that no parallel redundant network is necessary; Cyclic safety relevant and acyclic non-safety relevant frames—IEEE 802.1 TSN;
18	E/E Architecture Synthesis: Challenges and Technologies		ECUs, wiring harness, communication bandwidth, cost, software variants; security;	ADAS and autonomous driving features; Al-based applications; deep and machine learning; gaming in IVI; edge and cloud computing; OTA updates; V2V; perception, mapping, planning;	Multi-core; SoCs; middleware; hypervisor; TSN; Type 1 hypervisor - 'direct control and access to hardware resources'; One core per partition to isolate resp. avoid FFI; Type 1 better than Type 2 with host OS; static versus dynamic task mapping;	Software-defined vehicle; Virtualization to integrate safety and non-safety;	Good summary on evolution of E/E architectures; Highlights challenge of integration of an increasing complexity consisting out of non-critical and safety- related partitions; Mapping SWC to hardware elements; Software integration and configuration;
19	HyFAR: A hypervisor-based fault tolerance approach for- heterogeneous automotive real-time systems			Autonomous; battery cooling; lane departure warning; cloud connectivity, user connectivity;	Virtual Machines via hypervisors; virtual address spaces; Type 1 (bare metal) versus Type 2 hypervisors - Type 2: If host 05 fails, hypervisor fails and all VMs; Full (HW emulation leads to overhead) versus Para Virtualization (highest level of FFI); Cache coloring, memory throttling or Arm's Memory Partitioning and Monitoring (MPAM); Type 1: Exclusive/static resource assignment / partitioning to virtual machines - Highest level of FFI; Type 1: Better performance and efficiency due to direct hardware resources access;	freedom from interference;	Fault tolerance - Instead of redundancy recover concept via existing other ECU - reduces freedom from interference in case of same HW/SW redundancy failures; AUTOSAR Classic monolithic structure -> Low updateability; SOA - less strict requirements for real-time and safety; SIG architecturecfor uC while SOA architecture for uP with HW support for virtual address spaces via MMU; Hypervisor is only booted when needed; SIG in SOA-ECU feasible while SOA in SIG-ECU challenging;
20	Architectural patterns for cross-domain personalised automotive functions	ADAS, Comfort, Chassis, Powertrain	Computing power; Design complexity;	Integration of machine learning for e.g. computer vision, automated driving, customer personalization			Does not answer EC4 and EC5; Focus is on architectural patterns and their pros/cons, how ML can support to realize personalized functions; Context Aware Systems - Adaptive and intelligent functions that consider customer behavior; Conway's Law - Technical SW/HW architecture of product folllows the organisational structure;
21	Time-of-flight 30 imaging for mixed-critical systems	ADAS, IC & IVI	Computing performance, RAM/Memory	Time-of-Flight 3D image processing	Multi-core; lock-step operation mode;	Redundant compute; mixed-criticality scheduling;	Major challenge for Time-of-Flight 3D image processing is limited amount of SRAM memory; SGoot - Development based on assumptions about the intended use later on; -> Safety Manual required; HW and SW architecture are not clearly separated resp. study discusses more the HW related side;