Do any THREE problems.

1. For a) implies b): for any $f \in L^1(\mu)$, we have $\int |gf| = \int |g||f| \le M \int |f| < +\infty$ since $f \in L^1(\mu)$.

The reverse implication I feel is shady, but here was what I had so far:

We try a proof by contrapositive, so assume that there does not exist an M such that $|g| \leq M$ almost everywhere; that is, for every M the set $G_M = \{x \in X : |g(x)| \geq M\}$ has positive measure. Also by dominated convergence for sets we should have that as M goes to infinity, the measure of the sets G_M goes to zero (I am interpreting $g: X \to \mathbb{R}$ to mean that g does not take on $+\infty$), but I did not find this to be useful.

I formed a measurable partition of X via the sets $E_n = \{x \in X : n \leq |g|(x) \leq n+1\} = G_n \cap G_{n+1}^c$, so that $X = \bigcup_{n=0}^{\infty} E_n$. Some of the E_n may have measure zero; more importantly, there must be an infinite number of the E_n with nonzero measure, since otherwise there would be N large enough with $|g| \leq N$. It follows that $\mu(X) = \sum_{n=0}^{\infty} \mu(E_n)$ is still an infinite sum.

Observe that $\sum_{n=0}^{N-1} n \mathbf{1}_{E_n} + N \mathbf{1}_{G_N}$ for N finite is a simple function that is less than or equal to |g|. My idea was to define an $f \in L^1(\mu)$ such that the above simple function could be modified to become a simple function less than |gf| whose integral could be made arbitrarily large as N tends to $+\infty$ (which means the integral of |gf| is arbitrarily large and so gf is not in $L^1(\mu)$).

A function I had in mind was $f: X \to \mathbb{R}$ such that f takes on the value $\frac{1}{n^2\mu(E_n)}$ on E_n whenever $\mu(E_n) \neq 0$ and $n \geq 1$ and zero everywhere else. Then the integral of |f| = f would be equal to or at least bounded above by $\sum_{\substack{n \in \mathbb{Z}_+ \\ \mu(E_n) \neq 0}} \frac{1}{n^2\mu(E_n)} \mu(E_n) \leq \sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$, so that $f \in L^1(\mu)$. But then $\sum_{n=1}^{N-1} \frac{1}{n^2\mu(E_n)} \cdot n\mathbf{1}_{E_n} + \frac{1}{N^2\mu(G_N)} \cdot N\mathbf{1}_{G_N}$ is a simple function less than or equal to |gf| for all N, but its integral is bounded below by $\sum_{\substack{1 \leq n \leq N \\ \mu(E_n) \neq 0}} \frac{1}{n}$. As N is made arbitrarily large, this sum should diverge (or I hope it should), so $\int |gf|$ must also diverge. This should prove the contrapositive, but somehow I feel like something is wrong.

3. We check first that the function of two variables $g(x,t) = (1/2h)f(x-t)\mathbf{1}_{[-h,h]}(t)$ is in $L^1(\mathbb{R}^2)$. This function and its absolute value should be measurable if f(x-t) is measurable, but I am not sure how to show this directly. The function f(x-t) should still be measurable, and we proceed by showing that g(x,t) is absolutely integrable using Tonelli's theorem:

$$\begin{split} \int_{\mathbb{R}^2} |g(x,t)| \, \mathrm{d}A &= \frac{1}{2h} \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-t)| \mathbf{1}_{[-h,h]}(t) \, \mathrm{d}x \, \mathrm{d}t = \frac{1}{2h} \int_{\mathbb{R}} \mathbf{1}_{[-h,h]}(t) \int_{\mathbb{R}} |f(x-t)| \, \mathrm{d}x \, \mathrm{d}t \\ &= \frac{1}{2h} \int_{\mathbb{R}} \mathbf{1}_{[-h,h]}(t) \, \mathrm{d}t \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x = \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x < +\infty. \end{split}$$

Now apply Fubini's theorem to obtain the following chains of inequalities:

$$\left| \int_{\mathbb{R}^2} \frac{1}{2h} f(x-t) \mathbf{1}_{[-h,h]}(t) \, \mathrm{d}A \right| = \left| \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{2h} f(x-t) \mathbf{1}_{[-h,h]}(t) \, \mathrm{d}t \, \mathrm{d}x \right|$$

$$\leq \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \frac{1}{2h} f(x-t) \mathbf{1}_{[-h,h]}(t) \, \mathrm{d}t \right| \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(t) \, \mathrm{d}t \right| \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} \left| f_h(x) \right| \, \mathrm{d}x$$

and

$$\int_{\mathbb{R}} \left| \int_{\mathbb{R}} \frac{1}{2h} f(x-t) \mathbf{1}_{[-h,h]}(t) \, dt \right| dx \le \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{2h} |f(x-t)| \mathbf{1}_{[-h,h]}(t) \, dt \, dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{2h} |f(x-t)| \mathbf{1}_{[-h,h]}(t) \, dx \, dt$$

$$= \int_{\mathbb{R}} |f(x)| \, dx$$

by the above. It follows that $\int_{\mathbb{R}} |f_h(x)| dx \leq \int_{\mathbb{R}} |f(x)| dx$.

- 4. In the background let $X = X_+ \cup X_-$ be the Hahn decomposition of X (so that in the Jordan decomposition of ν , ν_+ is a measure on X_+ and ν_- is a measure on X_- and they are mutually singular)
 - (a) We show inequalities in both ways.

Let E be measurable. Then $|\nu(E)| = |\nu_+(E) - \nu_-(E)| \le |\nu_+(E)| + |\nu_-(E)| = \nu_+(E) + \nu_-(E) = |\nu|(E)$. Then for any finite partition $\{E_j\}_{j=1}^n$ of E, we have $\sum_{j=1}^n |\nu(E_j)| \le \sum_{j=1}^n |\nu|(E_j) = |\nu|(E)$, where the last equality was due to additivity as the E_j form a partition of E. It follows that

$$|\nu|(E) \ge \sup \left\{ \sum_{j=1}^n |\nu(E_j)| \colon E_1, \dots, E_n \text{ form a partition for } E \right\}.$$

For the other inequality we show that $|\nu|(E)$ is an element of the set we are taking the supremum over: Consider the partition of E into the sets $E \cap X_+$ and $E \cap X_-$ (since $X = X_+ \cup X_-$). Then since ν_+, ν_- are mutually singular measures, we have

$$|\nu(E \cap X_{+})| + |\nu(E \cap X_{-})| = |\nu_{+}(E \cap X_{+})| + |\nu_{-}(E \cap X_{-})|$$

$$= \nu_{+}(E \cap X_{+}) + \nu_{-}(E \cap X_{-})$$

$$= \nu_{+}(E \cap X_{+}) + \nu_{+}(E \cap X_{-}) + \nu_{-}(E \cap X_{-}) + \nu_{-}(E \cap X_{+})$$

$$= \nu_{+}(E) + \nu_{-}(E)$$

$$= |\nu|(E).$$

Thus the reverse inequality is obtained, so we have equality.

(b) Define $|f|_{X_+}$ to be the function on X that is 0 on X_- and is |f| on X_+ ; define $|f|_{X_-}$ similarly to be the function which is 0 on X_+ and is |f| on X_- . It follows that $|f| = |f|_{X_+} + |f|_{X_-}$. Then we have

$$\left| \int f \, \mathrm{d}\nu \right| = \left| \int f \, \mathrm{d}\nu_{+} - \int f \, \mathrm{d}\nu_{-} \right| \tag{1}$$

$$\leq \int |f| \, \mathrm{d}\nu_+ + \int |f| \, \mathrm{d}\nu_- \tag{2}$$

$$= \int |f|_{X_{+}} \, \mathrm{d}|\nu| + \int |f|_{X_{-}} \, \mathrm{d}|\nu| \tag{3}$$

$$= \int |f|_{X_{+}} + |f|_{X_{-}} \,\mathrm{d}|\nu| \tag{4}$$

$$= \int |f| \, \mathrm{d}|\nu| \,. \tag{5}$$

The equality in (3) is justified since $|\nu| = \nu_+ + \nu_-$, and any simple unsigned function less than or equal to $|f|_{X_+}$ (resp. $|f|_{X_-}$) must be zero on X_- (resp. X_+). Every simple function of this form may also be viewed as (by restriction) a simple function on X_+ (resp. X_-) less than or equal to $|f|_{X_+}$ (resp. $|f|_{X_-}$). Hence equality (3) follows.