Data Analyst Nanodegree

Project 1: Explore Weather Trends

Explore Weather Trends

Summary

In this project, I made my analysis for local temperature and global temperature data and compared the temperature trends where I live (Riyadh) to overall global temperature trends with the moving average.

Project steps

These are the steps for my project:

• Extract the data from database (SQL)

I used the Udacity workspace to access the data from database, and used these SQL commands:

SELECT *

FROM city_list;

To get the cities and countries to make sure that my city exists.

After that, I used these SQL commands:

SELECT global_data.year, global_data.avg_temp **AS** global_avg_temp, city_data.avg_temp **AS** local_avg_temp

FROM global_data INNER JOIN city_data

ON global_data.year = city_data.year

WHERE city_data.city = 'Riyadh'

AND global_data.year **BETWEEN** 1843 **AND** 2013;

To get the local and global average temperature for each year and save it as a CSV file.

• Gathering data and calculate the moving average (MS Excel)

I opened the CSV file, then added two new columns "10-year MA (global)" and "10-year MA (local)" to calculate and apply the moving average on the data for 10 years with average formula **=AVERAGE(B2:B11)** for the global temp. and **=AVERAGE(C2:C11)** for the local temp. and so on for each year from 1852 until 2013 "this is the range of years that available data for my city".

1	year	global_avg_temp	local_avg_temp	10-year MA (global)	10-year MA (local)
2	1843	8.17	24.74		1000 1000
3	1844	7.65	15.45		
4	1845	7.85	20.82		
5	1846	8.55			
6	1847	8.09			
7	1848	7.98	24.56		
8	1849	7.98	24.8		
9	1850	7.9	24.34		
10	1851	8.18	25.03		
11	1852	8.1	24.85	8.045	23.07375
12	1853	8.04	24.93	8.032	23.0975
13	1854	8.21	24.72	8.088	24.25625
14	1855	8.11	24.92	8.114	24.76875
15	1856	8	24.57	8.059	24.74666667
16	1857	7.76	24.26	8.026	24.698
17	1858	8.1	25.01	8.038	24.743
18	1859	8.25	24.95	8.065	24.758
19	1860	7.96	24.94	8.071	24.818
20	1861	7.85	24.13	8.038	24.728
21	1862	7.56	23.77	7.984	24.62
22	1863	8.11	24.28	7.991	24.555
23	1864	7.98	25.03	7.968	24.586
24	1865	8.18	25.23	7.975	24.617
25	1866	8.29	24.92	8.004	24.652
26	1867	8.44	25.22	8.072	24.748
27	1868	8.25	25	8.087	24.747
28	1869	8.43	25.3	8.105	24.782
29	1870	8.2	25.02	8.129	24.79
30	1871	8.12	24.73	8.156	24.85
31	1872	8.19	24.87	8.219	24.96
32	1873	8.35	25.24	8.243	25.056
33		8.43	24.98		50000000
34	1875	7.86	24.43	8.256	24.971
35	1876	8.08	24.89	8.235	24.968
36		8.54	25.47		Tellusia visitado
	1878	1,000		1000000	

Create a line chart to visualize the data (MS Excel)

I created two new line charts, the first without the moving average and the other with the moving average.

Observations (Similarities and differences)

- From the line charts, it shows that the local moving average temperature for my city (Riyadh) is hotter compared with the global average temperature, based on the Celsius degrees.
- The global and local temperature average is consistent and tends to a few increase over time.
- The overall temperature trend is increasing with the passage of years, which indicates that it is possible that the temperature will be high in the future.
- The local temperature is very high compared with the global temperature average; this means that my city is classified as a hot temperature city in the world.