Przykład.

- w punktach 3 i 7 jest minimum lokalne właściwe
- w punkcie 5 jest maksimum lokalne właściwe
- w punktach $x \in [8, 11]$ jest maksimum lokalne niewłaściwe
- wartość największa i najmniejsza nie istnieją

Twierdzenie (warunek konieczny istnienia ekstremum lokalnego).

Jeśli funkcja f określona w $U(x_0)$ jest różniczkowalna w x_0 oraz ma w x_0 ekstremum, to $f'(x_0) = 0$.

Definicja.

Niech f będzie określona w przedziale⁴ P oraz $x_0 \in P$. Punkt x_0 nazywamy punktem krytycznym $\Leftrightarrow f'(x_0) = 0$ lub $f'(x_0)$ nie istnieje.

Twierdzenie (warunek wystarczający istnienia ekstremum lokalnego).

Niech f będzie określona w $U(x_0)$, ciągła w x_0 , różniczkowalna w $S(x_0)$ oraz niech x_0 będzie punktem krytycznym. Wtedy:

- Jeśli f'(x) > 0 dla $x \in S_{-}(x_0)$ i $f'(x_0) < 0$ dla $x \in S_{+}(x_0)$, to f ma maksimum lokalne właściwe w x_0 .
- Jeśli f'(x) < 0 dla $x \in S_{-}(x_0)$ i $f'(x_0) > 0$ dla $x \in S_{+}(x_0)$, to f ma minimum lokalne właściwe w x_0 .
- Jeśli f'(x) > 0 dla $x \in S(x_0)$ lub $f'(x_0) < 0$ dla $x \in S(x_0)$, to f nie ma ekstremum lokalnego w x_0 .

Schemat wyznaczania ekstremów lokalnych

- 1) Wyznaczamy zbiór punktów krytycznych.
- 2) Badamy gdzie pochodna jest dodatnia, a gdzie ujemna.
- 3) a) w punktach krytycznych, w których pochodna istnieje badamy, czy zmienia ona znak jeśli tak, to jest ekstremum; jeśli nie, to nie ma ekstremum,
 - b) w punktach krytycznych, w których pochodna nie istnieje badamy ciągłość i zmianę znaku pochodnej
 jeśli oba warunki są spełnione, to jest ekstremum.⁵

 $^{^4\}mathrm{Przedział}$ może być zarówno domknięty, jak i otwarty, z jednej lub obu stron.

⁵Warto zwrócić uwagę, że schemat nie obejmuje wszystkich przypadków. Jeśli któryś z dwóch warunków w podpunkcie b) nie jest spełniony, to musimy zbadań funkcję w otoczeniu punktu krytycznego "ręcznie".