Consider the following Python dictionary data and Python list labels:

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

1. Create a DataFrame birds from this dictionary data which has the index labels.

Out[1]:

	age	birds	priority	visits
а	3.5	Cranes	yes	2
b	4.0	Cranes	yes	4
С	1.5	plovers	no	3
d	NaN	spoonbills	yes	4
е	6.0	spoonbills	no	3
f	3.0	Cranes	no	4

	age	birds	priority	visits
g	5.5	plovers	no	2
h	NaN	Cranes	yes	2
i	8.0	spoonbills	no	3
j	4.0	spoonbills	no	2

2. Display a summary of the basic information about birds DataFrame and its data.

In [2]: birds.describe()

Out[2]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

3. Print the first 2 rows of the birds dataframe

In [3]: birds[0:2]

Out[3]:

	age	birds	priority	visits
а	3.5	Cranes	yes	2

	age	birds	priority	visits
b	4.0	Cranes	yes	4

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

In [4]: birds[['birds','age']]

Out[4]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [5]: print(birds['birds'].iloc[2], birds['age'].iloc[2],birds['visits'].iloc
[2])
    print(birds['birds'].iloc[3], birds['age'].iloc[3],birds['visits'].iloc
[3])
    print(birds['birds'].iloc[7], birds['age'].iloc[7],birds['visits'].iloc
[7])
```

plovers 1.5 3

```
spoonbills nan 4
Cranes nan 2
```

6. select the rows where the number of visits is less than 4

```
In [6]: birds[birds['visits']<4]</pre>
```

Out[6]:

	age	birds	priority	visits
а	3.5	Cranes	yes	2
С	1.5	plovers	no	3
е	6.0	spoonbills	no	3
g	5.5	plovers	no	2
h	NaN	Cranes	yes	2
i	8.0	spoonbills	no	3
j	4.0	spoonbills	no	2

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [7]: birds[['birds','visits']][birds['age'].isnull()]
```

Out[7]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

```
In [8]: birds[['birds','age']][(birds['birds']=='Cranes') & (birds['age']<4)]
Out[8]:</pre>
```

	birds	age
а	Cranes	3.5
f	Cranes	3.0

9. Select the rows the age is between 2 and 4(inclusive)

```
In [9]: birds['age'][(birds['age']<=4) & (birds['age']>=2)]
Out[9]: a    3.5
    b    4.0
    f    3.0
    j    4.0
    Name: age, dtype: float64
```

10. Find the total number of visits of the bird Cranes

11. Calculate the mean age for each different birds in dataframe.

```
In [11]: birds[['age']].mean()
Out[11]: age    4.4375
    dtype: float64
```

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

Out[12]:

	age	birds	priority	visits
0	3.5	Cranes	yes	2
1	4.0	Cranes	yes	4
2	1.5	plovers	no	3
3	NaN	spoonbills	yes	4
4	6.0	spoonbills	no	3
5	3.0	Cranes	no	4
6	5.5	plovers	no	2
7	NaN	Cranes	yes	2
8	8.0	spoonbills	no	3
9	4.0	spoonbills	no	2
10	4.0	Cranes	yes	2

In [13]: birds.drop([birds.index[10]]) #deleting index 10

Out[13]:

	age	birds	priority	visits
0	3.5	Cranes	yes	2
1	4.0	Cranes	yes	4

	age	birds	priority	visits
2	1.5	plovers	no	3
3	NaN	spoonbills	yes	4
4	6.0	spoonbills	no	3
5	3.0	Cranes	no	4
6	5.5	plovers	no	2
7	NaN	Cranes	yes	2
8	8.0	spoonbills	no	3
9	4.0	spoonbills	no	2

13. Find the number of each type of birds in dataframe (Counts)

```
In [13]: birds.groupby(birds['birds']).count()
```

Out[13]:

	age	birds	priority	visits
birds				
Cranes	4	5	5	5
plovers	2	2	2	2
spoonbills	3	4	4	4

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
spoonblits
    გ.ნ
                          no
                                    3
    6.0
         spoonbills
                                    3
                          no
                                    2
    5.5
            plovers
                          no
         spoonbills
                                    2
    4.0
                          no
                                    2
10
    4.0
             Cranes
                         yes
    4.0
             Cranes
                                    4
                         yes
    3.5
             Cranes
                                    2
                         yes
    3.0
             Cranes
                                    4
                          no
    1.5
            plovers
                                    3
                          no
             Cranes
                                    2
7
    NaN
                         yes
3
    NaN spoonbills
                         yes
                                    4
```

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

In [15]: birds.replace(['yes','no'],[1,0]) #x=priority

Out[15]:

	age	birds	priority	visits
0	3.5	Cranes	1	2
1	4.0	Cranes	1	4
2	1.5	plovers	0	3
3	NaN	spoonbills	1	4
4	6.0	spoonbills	0	3
5	3.0	Cranes	0	4
6	5.5	plovers	0	2
7	NaN	Cranes	1	2
8	8.0	spoonbills	0	3
9	4.0	spoonbills	0	2
10	4.0	Cranes	1	2

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

#deleti In [16]: birds.replace(['Cranes'],['trumpeters']) ng index 10 # x = birdsOut[16]: birds priority visits age 3.5 trumpeters yes 2 4.0 trumpeters yes 4 2 1.5 plovers 3 NaN spoonbills 4 yes 6.0 3 spoonbills no 3.0 4 trumpeters no 5.5 plovers 2 6 no NaN trumpeters yes 2 8.0 spoonbills 3 4.0 2 spoonbills no **10** 4.0 2 trumpeters yes