Movimiento Browniano

Ejercicios entregables - Semana 2

Lucio Santi lsanti@dc.uba.ar

23 de abril de 2017

Ejercicio. Sea (X_n, \mathcal{F}_n) una martingala. Considerar $\mathcal{U}_n = \sigma(X_1, \dots, X_n)$. Probar que (X_n, \mathcal{U}_n) es una martingala.

Resolución. Veamos que $(X_n, \mathcal{U}_n)_{n \geq 1}$ satisface las tres propiedades que debe poseer para ser una martingala.

- X_n debe ser \mathcal{U}_n -medible Por definición de $\mathcal{U}_n = \sigma(X_1, \dots, X_n)$ se tiene que \mathcal{U}_n es la menor σ -álgebra para la que X_1, \dots, X_n son medibles. En particular, X_n es \mathcal{U}_n -medible.
- $E[|X_n|] < \infty$ Esto sigue inmediatamente por ser (X_n, \mathcal{F}_n) una martingala.
- $\bullet E[X_{n+1} | \mathcal{U}_n] = X_n$

En primer lugar, observemos que $\mathcal{U}_n \subseteq \mathcal{F}_n$. Sabemos que X_1, \ldots, X_n son \mathcal{F}_n -medibles por ser cada X_i , $1 \le i \le n$, \mathcal{F}_i -medible y ser $(\mathcal{F}_n)_{n\ge 1}$ una filtración (i.e., $\mathcal{F}_i \subseteq \mathcal{F}_n$). Además, como ya se dijo, \mathcal{U}_n es la menor σ -álgebra para la que X_1, \ldots, X_n son medibles, de manera que $\mathcal{U}_n \subseteq \mathcal{F}_n$, que es lo que se pretendía observar. Luego,

$$E\left[X_{n+1} \mid \mathcal{U}_{n}\right] \stackrel{\text{(Torres)}}{=} E\left[E\left[X_{n+1} \mid \mathcal{F}_{n}\right] \mid \mathcal{U}_{n}\right]$$

$$\stackrel{((X_{n},\mathcal{F}_{n}) \text{ martingala})}{=} E\left[X_{n} \mid \mathcal{U}_{n}\right]$$

$$\stackrel{(X_{n} \mathcal{U}_{n}-\text{medible})}{=} X_{n}$$

Ejercicio. Sea $(X_n, \mathcal{F}_n)_{n\geq 1}$ una martingala e $\{Y_n\}_{n\geq 1}$ un proceso tal que $|Y_n|\leq C_n$ e Y_n es \mathcal{F}_{n-1} -medible. Sea $X_0=0$ y consideremos

$$M_n = \sum_{k=1}^{n} Y_k (X_k - X_{k-1})$$

Probar que (M_n, \mathcal{F}_n) es una martingala.

Resolución.

Ejercicio. Sea $B = (B(t), t \ge 0)$ un movimiento browniano unidimensional. Probar que es una martingala.

Resolución. Dado $t \ge 0$, sea $\mathcal{F}_t = \sigma\left(B(s), s \le t\right) ((\mathcal{F}_t)_{t \ge 0}$ es, pues, la filtración natural de B). Veremos entonces que B es una \mathcal{F}_t -martingala probando que satisface las tres propiedades enunciadas en la definición:

- B(t) es \mathcal{F}_t -medible Esto es trivialmente cierto siendo $(\mathcal{F}_t)_{t\geq 0}$ la filtración natural de B.
- E $[|B(t)|] < \infty$ Sea $B(0) = x \in \mathbb{R}$. Siendo $(B(t) - B(0)) \sim N(0,t)$ tenemos que $B(t) = (B(t) - B(0)) + x \sim N(x,t)$

Luego, |B(t)| tiene una distribución normal doblada, de manera que $\mathrm{E}\left[|B(t)|\right]<\infty$ por ser $\mathrm{E}\left[B(t)\right]=x<\infty$.

■ $E[B(t) | \mathcal{F}_s] = B(s)$, con 0 < s < tDado 0 < s < t,

$$\begin{array}{lll} \operatorname{E}\left[B(t) \mid \mathcal{F}_{s}\right] & = & \operatorname{E}\left[B(t) - B(s) + B(s) \mid \mathcal{F}_{s}\right] \\ & \stackrel{(\operatorname{Linealidad de } E[\cdot|\cdot])}{=} & \operatorname{E}\left[B(t) - B(s) \mid \mathcal{F}_{s}\right] + \operatorname{E}\left[B(s) \mid \mathcal{F}_{s}\right] \\ & \stackrel{(B(s) \ \mathcal{F}_{s} - \text{medible})}{=} & \operatorname{E}\left[B(t) - B(s) \mid \mathcal{F}_{s}\right] + B(s) \\ & \stackrel{(\star)}{=} & \operatorname{E}\left[B(t) - B(s)\right] + B(s) \\ & \stackrel{(B(t) - B(s) \ \sim}{=} & N(0, t - s)) \\ & = & B(s) \end{array}$$

en donde (\star) vale por independencia de la variable aleatoria (B(t) - B(s)) y la σ -álgebra \mathcal{F}_s , que a su vez se desprende de la independencia entre B(t) - B(s) y B(r), $0 \le r \le s$ (esto último como consecuencia de la propiedad de incrementos independientes de B).