Importing libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading dataset

```
In [2]:
```

```
app_data=pd.read_csv("application_data.csv")
```

Analysis of the dataset

```
In [3]:
app data.shape
Out[3]:
(307511, 122)
In [4]:
#finding the columns that have null values more than 30%
nullcol=app data.isnull().sum()
nullcol=nullcol[nullcol.values>(0.3*len(nullcol))]
len(nullcol)
Out[4]:
64
In [5]:
#removing the 64 columns that have more than 30% of null values
nullcol=list(nullcol[nullcol.values>=0.3].index)
app data.drop(nullcol,axis=1,inplace=True)
```

In [6]:

```
#now checking the null values
app_data.isnull().sum()/len(app_data)*100
```

Out[6]:

SK_ID_CURR	0.000000	
TARGET	0.000000	
NAME_CONTRACT_TYPE	0.000000	
CODE_GENDER	0.000000	
FLAG_OWN_CAR	0.000000	
FLAG_OWN_REALTY	0.000000	
CNT_CHILDREN	0.000000	
AMT_INCOME_TOTAL	0.000000	
AMT_CREDIT	0.000000	
AMT_ANNUITY	0.003902	
NAME_INCOME_TYPE	0.000000	
NAME_EDUCATION_TYPE	0.000000	
NAME_FAMILY_STATUS	0.000000	
NAME_HOUSING_TYPE	0.000000	
REGION_POPULATION_RELATIVE	0.000000	
DAYS_BIRTH	0.000000	
DAYS_EMPLOYED	0.000000	
DAYS_REGISTRATION	0.000000	
DAYS_ID_PUBLISH	0.000000	
FLAG_MOBIL	0.000000	

TLAC EMD DUONE	0.000000		
FLAG_EMP_PHONE			
FLAG_WORK_PHONE	0.000000		
FLAG_CONT_MOBILE	0.000000		
FLAG_PHONE	0.000000		
FLAG_EMAIL	0.000000		
CNT_FAM_MEMBERS	0.000650		
REGION_RATING_CLIENT	0.000000		
REGION_RATING_CLIENT_W_CITY	0.000000		
WEEKDAY_APPR_PROCESS_START	0.000000		
HOUR_APPR_PROCESS_START	0.000000		
REG_REGION_NOT_LIVE_REGION	0.000000		
REG_REGION_NOT_WORK_REGION	0.000000		
LIVE_REGION_NOT_WORK_REGION	0.000000		
REG_CITY_NOT_LIVE_CITY	0.000000		
REG_CITY_NOT_WORK_CITY	0.000000		
LIVE_CITY_NOT_WORK_CITY	0.000000		
ORGANIZATION_TYPE	0.000000		
DAYS_LAST_PHONE_CHANGE	0.000325		
FLAG_DOCUMENT_2	0.000000		
FLAG_DOCUMENT_3	0.000000		
FLAG_DOCUMENT_4	0.000000		
FLAG_DOCUMENT_5	0.000000		
FLAG_DOCUMENT_6	0.000000		
FLAG DOCUMENT 7	0.000000		
FLAG_DOCUMENT_8	0.000000		
FLAG_DOCUMENT_9	0.000000		
FLAG_DOCUMENT_10	0.000000		
FLAG DOCUMENT 11	0.000000		
- ** -			

```
FLAG DOCUMENT 12
                               0.000000
FLAG DOCUMENT 13
                               0.000000
FLAG DOCUMENT 14
                               0.000000
FLAG DOCUMENT 15
                               0.000000
FLAG DOCUMENT 16
                               0.000000
FLAG DOCUMENT 17
                               0.000000
FLAG DOCUMENT 18
                               0.000000
FLAG DOCUMENT 19
                               0.000000
FLAG DOCUMENT 20
                               0.000000
FLAG DOCUMENT 21
                               0.000000
dtype: float64
```

we will impute the missing values in the AMT_ANNUITY column and fill the values using median

In [6]:

```
#filling missing values with median
value=app_data['AMT_ANNUITY'].median()
app_data.loc[app_data['AMT_ANNUITY'].isnull(),'AMT_ANNUITY']=value
```

In [7]:

```
#removing rows having null values >=30%
nullrow=app_data.isnull().sum(axis=1)
nullrow=list(nullrow[nullrow.values>=0.3*len(app_data)].index)
app_data.drop(nullrow,axis=0,inplace=True)
```

In [8]:

```
In [9]:
#finding columns with 'XNA' values
#for gender column
app_data[app_data['CODE_GENDER']=='XNA'].shape
Out[9]:
(4, 28)
In [10]:
#for organizational column
app_data[app_data['ORGANIZATION_TYPE']=='XNA'].shape
Out[10]:
(55374, 28)
```

```
In [11]:
```

```
#finding the number of males and females in the gender column
app data['CODE GENDER'].value counts()
Out[11]:
F
       202448
Μ
       105059
XNA
Name: CODE GENDER, dtype: int64
In [12]:
#since majority of the values are 'F' we can update the 'XNA' values to 'F'
app_data.loc[app_data['CODE_GENDER']=='XNA','CODE_GENDER']='F'
app data['CODE GENDER'].value counts()
Out[12]:
     202452
     105059
Name: CODE GENDER, dtype: int64
```

In [14]:

```
#finding the values in organization column
app_data['ORGANIZATION_TYPE'].value_counts()
```

Out[14]:

Business Entity Type 3	67992
XNA	55374
Self-employed	38412
Other	16683
Medicine	11193
Business Entity Type 2	10553
Government	10404
School	8893
Trade: type 7	7831
Kindergarten	6880
Construction	6721
Business Entity Type 1	5984
Transport: type 4	5398
Trade: type 3	3492
Industry: type 9	3368
<pre>Industry: type 3</pre>	3278
Security	3247
Housing	2958
Industry: type 11	2704
Military	2634
Bank	2507

Agriculture	2454
Police	2341
Transport: type 2	2204
Postal	2157
Security Ministries	1974
Trade: type 2	1900
Restaurant	1811
Services	1575
University	1327
Industry: type 7	1307
Transport: type 3	1187
Industry: type 1	1039
Hotel	966
Electricity	950
Industry: type 4	877
Trade: type 6	631
Industry: type 5	599
Insurance	597
Telecom	577
Emergency	560
Industry: type 2	458
Advertising	429
Realtor	396
Culture	379
Industry: type 12	369
Trade: type 1	348
Mobile	317
Legal Services	305

```
Cleaning
                            260
Transport: type 1
                            201
Industry: type 6
                            112
Industry: type 10
                            109
Religion
                             85
Industry: type 13
                             67
Trade: type 4
                             64
Trade: type 5
                             49
Industry: type 8
                             24
```

Name: ORGANIZATION TYPE, dtype: int64

In [13]:

```
#55374 rows have the 'XNA' values. therfore we will drop these rows
app_data=app_data.drop(app_data.loc[app_data['ORGANIZATION_TYPE']=='XNA'].index)
app_data[app_data['ORGANIZATION_TYPE']=='XNA'].shape
```

Out[13]:

(0, 28)

In [14]:

Out[14]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_(
0	100002	1	Cash loans	M	N	
1	100003	0	Cash loans	F	N	
2	100004	0	Revolving loans	М	Υ	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	M	N	

5 rows × 28 columns

←

Now we will create bins for continous variable category columns like 'AMT_INCOME_TOTAL' and 'AMT_CREDIT'

In [15]:

In [18]:

In [16]:

```
# Dividing the dataset into two dataset of target=1(client with payment difficulties) and
target0_app_data=app_data.loc[app_data["TARGET"]==0]
target1_app_data=app_data.loc[app_data["TARGET"]==1]
```

```
In [17]:
#calculating the imbalance percentage
round(len(target0_app_data)/len(target1_app_data),2)
Out[17]:
```

10.55

Univariate Analysis

In [22]:

```
#univariate analysis for target0 and plotting using loagrithmic scale
def uniplot(df,col,title,hue =None):

    temp = pd.Series(data = hue)
    fig, ax = plt.subplots()
    width = len(df[col].unique()) + 7 + 4*len(temp.unique())
    fig.set_size_inches(width , 8)
    plt.xticks(rotation=45)
    plt.yscale('log')
    plt.title(title)
    ax = sns.countplot(data = df, x= col, order=df[col].value_counts().index,hue = hue)
    plt.show()
```

In [23]:

uniplot(target0_app_data,col='AMT_INCOME_RANGE',title='Distribution of income range',hue='C

Insights:

1) Female count is more than male count 2) Income range between 100000-200000 has the highest number of credits 3) Count is considerably less beyond 400000

In [24]:

#plotting the graph for income type
uniplot(target0_app_data,col='NAME_INCOME_TYPE',title='Distribution of Income type',hue='CO

Distribution of Income type

Insights:

1) Working, Commercial associate and state servant have the highest credit count 2) females have more credit counts than males

In [25]:

#plotting graph for contract type
uniplot(target0_app_data,col='NAME_CONTRACT_TYPE',title='Distribution of contract type',hue

Insights:

1) Cash loans have more credits 2) Females received more loans

In [27]:

```
#plotting for organization type
plt.figure(figsize=(15,30))
plt.title("Organization type (target - 0)")

plt.xticks(rotation=90)
plt.xscale('log')

sns.countplot(data=target0_app_data,y='ORGANIZATION_TYPE',order=target0_app_data['ORGANIZAT
plt.show()
```

Organization type (target - 0)

Insights: Clients are mostly from 'Business entity Type 3', 'Self employed', 'Other', 'Medicine' and 'Government'

In [28]:

```
#plotting for income range(target1)
uniplot(target1_app_data,col='AMT_INCOME_RANGE',title='Income Range',hue='CODE_GENDER')
```


Insights:

1) Male credit counts are more than female 2) The income range 100000-200000 has highest number of credits

In [29]:

```
#plotting for income type
uniplot(target1_app_data,col='NAME_INCOME_TYPE',title='Income Type',hue='CODE_GENDER')
```

Income Type

Insights:

1) working, commercial associate and state servant have highest number of credits 2) females have more credit counts than males 3) the columns student, businessman and pensioner are not present hence we can conclude that they are not defaulters

In [30]:

```
#plotting for contract type
uniplot(target1_app_data,col='NAME_CONTRACT_TYPE',title='Contract Type',hue='CODE_GENDER')
```

Contract Type

Insights:

1) cash loans have the highest number of credits 2) females are given more loans

In [31]:

```
#plotting for oragnization type
plt.figure(figsize=(15,30))
plt.title("Organization type (target - 1)")

plt.xticks(rotation=90)
plt.xscale('log')

sns.countplot(data=target1_app_data,y='ORGANIZATION_TYPE',order=target1_app_data['ORGANIZAT
plt.show()
```

Organization type (target - 1)

Loan Case Study - Jupyter Notebook

Insight: Clients are mostly from 'Business entity Type 3', 'Self employed', 'Other'

In [33]:

```
#correlation between target 0 and target1
target0_corr=target0_app_data.iloc[0:,2:]
target1_corr=target1_app_data.iloc[0:,2:]

target0=target0_corr.corr(method='pearson')
target1=target1_corr.corr(method='pearson')
```

In [34]:

target0

Out[34]:

	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_
CNT_CHILDREN	1.000000	-0.009826	-0.018704	
AMT_INCOME_TOTAL	-0.009826	1.000000	0.326155	
AMT_CREDIT	-0.018704	0.326155	1.000000	
AMT_ANNUITY	-0.007612	0.400752	0.762103	
REGION_POPULATION_RELATIVE	-0.030352	0.169306	0.103876	
DAYS_BIRTH	0.242462	-0.045543	-0.152659	
DAYS_EMPLOYED	0.063036	-0.030102	-0.087500	
DAYS_REGISTRATION	0.162900	0.034508	-0.015180	
DAYS_ID_PUBLISH	-0.117746	-0.026462	-0.034914	
HOUR_APPR_PROCESS_START	-0.033031	0.055934	0.040390	
REG_REGION_NOT_LIVE_REGION	-0.023033	0.064868	0.020979	
REG_REGION_NOT_WORK_REGION	-0.016798	0.129765	0.050597	
LIVE_REGION_NOT_WORK_REGION	-0.006946	0.121288	0.052028	

	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_
REG_CITY_NOT_LIVE_CITY	-0.001566	-0.004264	-0.037527	
REG_CITY_NOT_WORK_CITY	0.010369	-0.020260	-0.038517	•
LIVE_CITY_NOT_WORK_CITY	0.018414	-0.011238	-0.014834	
4				•

In [35]:

target1

Out[35]:

	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	ΑN
CNT_CHILDREN	1.000000	0.001872	-0.002074	
AMT_INCOME_TOTAL	0.001872	1.000000	0.036484	
AMT_CREDIT	-0.002074	0.036484	1.000000	
AMT_ANNUITY	0.015653	0.043358	0.748708	
REGION_POPULATION_RELATIVE	-0.032019	0.008476	0.069220	
DAYS_BIRTH	0.176563	-0.007822	-0.189512	
DAYS_EMPLOYED	0.032627	-0.000039	-0.106003	
DAYS_REGISTRATION	0.126411	-0.003959	-0.033250	
DAYS_ID_PUBLISH	-0.089861	-0.008858	-0.062405	
HOUR_APPR_PROCESS_START	-0.038923	0.012520	0.029054	
REG_REGION_NOT_LIVE_REGION	-0.032465	0.006951	0.020083	
REG_REGION_NOT_WORK_REGION	-0.039498	0.013245	0.035695	
LIVE_REGION_NOT_WORK_REGION	-0.028031	0.012287	0.035966	

	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AΝ	
REG_CITY_NOT_LIVE_CITY	-0.019278	-0.003664	-0.035325		
REG_CITY_NOT_WORK_CITY	-0.000876	-0.006886	-0.041392		
LIVE_CITY_NOT_WORK_CITY	0.016332	-0.004401	-0.017875		_
4				-	

In [36]:

```
#plotting the above correlation
def target_corr(df1,title):
    plt.figure(figsize=(15, 10))
    sns.heatmap(df1,annot=False)

plt.title(title)
    plt.yticks(rotation=0)
    plt.show()
```

In [37]:

target_corr(df1=target0,title='Correlation for target 0')

Insights:

1) Credit amount is inversely proportional to the number of children a client has 2) Credit amount is inversely proportional to the date of birth 3) Income amount is inversely proportional to the number of children a client has

₹

In [38]:

target_corr(df1=target1,title='Correlation for target 1')

Insights:

1) The client's whose permanent address that does not match work address have less number of children 2) The client's whose permanent address that does not match contact address have less number of children

Bivariate Analysis for variables

₹

In [57]:

```
#for target0
#plotting credit amount
plt.figure(figsize=(15,10))
plt.xticks(rotation=45)
sns.boxplot(data =target0_app_data, x='NAME_EDUCATION_TYPE',y='AMT_CREDIT', hue ='NAME_FAMI
plt.title('Credit amount v/s Education Status')
plt.show()
```

Credit amount v/s Education Status

Insight: Family status like 'civil marriage', 'married' and 'separated' of Academic degree education have higher number of credits. Family status of 'marriage', 'single' and 'civil marriage' with higher education has more number of outliers

In [58]:

```
#plotting income amount
plt.figure(figsize=(15,10))
plt.xticks(rotation=45)
plt.yscale('log')
sns.boxplot(data =target0_app_data, x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL', hue ='NAM
plt.title('Income amount v/s Education Status')
plt.show()
```

Income amount v/s Education Status

Insights: This plot has similar inferences as the one before

In [59]:

```
#for target1
#plotting for credit amount
plt.figure(figsize=(15,10))
plt.xticks(rotation=45)
sns.boxplot(data =target1_app_data, x='NAME_EDUCATION_TYPE',y='AMT_CREDIT', hue ='NAME_FAMI
plt.title('Credit Amount v/s Education Status')
plt.show()
```

Credit Amount v/s Education Status

In [61]:

```
#plotting for income amount
plt.figure(figsize=(15,10))
plt.xticks(rotation=45)
plt.yscale('log')
sns.boxplot(data =target1_app_data, x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL', hue ='NAM
plt.title('Income amount v/s Education Status')
plt.show()
```

Income amount v/s Education Status

Loading Previous Application dataset

```
In [62]:
```

```
prev_app=pd.read_csv('previous_application.csv')
```

```
In [63]:
#finding columns with more than 30% null values
nullcol1=prev app.isnull().sum()
nullcol1=nullcol1[nullcol1.values>(0.3*len(nullcol1))]
len(nullcol1)
Out[63]:
15
In [64]:
#removing those 15 columns
nullcol1 = list(nullcol1[nullcol1.values>=0.3].index)
prev app.drop(labels=nullcol1,axis=1,inplace=True)
In [66]:
prev_app.shape
Out[66]:
(1670214, 22)
```

```
In [67]:
```

```
prev app=prev app.drop(prev app[prev app['NAME CASH LOAN PURPOSE']=='XNA'].index)
prev app=prev app.drop(prev app[prev app['NAME CASH LOAN PURPOSE']=='XAP'].index)
In [68]:
prev app.shape
Out[68]:
(69635, 22)
In [74]:
#merging both the datasets
df=pd.merge(left=app data,right=prev app,how='inner',on='SK ID CURR',suffixes=' x' )
<ipython-input-74-e773199dd44b>:2: FutureWarning: Passing 'suffixes' as a <c</pre>
```

```
<ipython-input-74-e773199dd44b>:2: FutureWarning: Passing 'suffixes' as a <c
lass 'str'>, is not supported and may give unexpected results. Provide 'suff
ixes' as a tuple instead. In the future a 'TypeError' will be raised.
   df=pd.merge(left=app_data,right=prev_app,how='inner',on='SK_ID_CURR',suffi
xes='_x' )
```

#removing the columns with the values 'XNA' and 'XPA'

```
In [75]:
```

In [77]:

Univariate analysis

In [79]:

Contract Status

Loan Case Study - Jupyter Notebook

Insights:

1) Most of the loans were rejected due to repairs

In [80]:

Loan Purpose wrt TARGET

Insights: loans which have the purpose as 'repairs' end up having a delay in payment. Clients with purposes such as 'Buying a garage', 'Business development', 'Buying land', 'Buying a new car' and 'Education' have less difficulty in repaying the loan on time hence such loans can be approved

Bivariate Analysis

In [81]:

```
#for credit amount vs Loan purpose
plt.figure(figsize=(15,10))
plt.xticks(rotation=90)
plt.yscale('log')
sns.boxplot(data =df, x='NAME_CASH_LOAN_PURPOSE',hue='NAME_INCOME_TYPE',y='AMT_CREDIT_PREV'
plt.title('Prev Credit amount v/s Loan Purpose')
plt.show()
```

Prev Credit amount v/s Loan Purpose

Insights:

1) The credit amount of Loan purposes like 'Buying a home', 'Buying a land', 'Buying a new car' and 'Building a house' is higher. 2) Credit count is significantly high for income type of 'state servants'

In [83]:

```
#for prev credit amount vs housing type
plt.figure(figsize=(15,10))
plt.xticks(rotation=90)
sns.barplot(data =df, y='AMT_CREDIT_PREV',hue='TARGET',x='NAME_HOUSING_TYPE')
plt.title('Prev Credit amount v/s Housing type')
plt.show()
```

Prev Credit amount v/s Housing type

'office apartment' has higher credit wrt target0 and 'co-op apartment' has higher credit wrt to target1. Hence we can conclude that avoid giving loans for housing type='co-op apartment' as they have a delay in payment.

In []:		