Mathematical Statistics2 Tutoring5

Seung Bong Jung

Seoul National University

November 1, 2021

Rao-Blackwell Theorem

- Rao-Blackwell theorem: Let X_1,\ldots,X_n be a random sample from a population with pdf $f(\cdot;\theta)$, $\theta\in\Theta\subset\mathbb{R}^d$. Let Y=u(X) be a sufficient statistic. Then, for any estimator $\hat{\eta}(X)$ of $\eta=g(\theta)$ with finite second moment, $\hat{\eta}^*=E(\hat{\eta}(X)|Y)$ is a statistic with the properties that (1) $E_{\theta}(\hat{\eta}^*)=E_{\theta}(\hat{\eta})$, (2) $\mathrm{var}_{\theta}(\hat{\eta}^*)\leq\mathrm{var}_{\theta}(\hat{\eta})$, (3) $\mathrm{MSE}_{\theta}(\hat{\eta}^*)\leq\mathrm{MSE}_{\theta}(\hat{\eta})$.
- The Rao-Blackwell theorem tells that one may have a better estimator by conditioning on a sufficient statistic, n terms of MSE. By the theorem, if $\hat{\eta}$ is an unbiased estimator of η , then $\hat{\eta}^*$ is also an unbiased estimator but with a smaller variance.
- $\bullet \ \operatorname{Proof of the theorem:} \ \operatorname{var}(W) = E(\operatorname{var}(W|V)) + \operatorname{var}(E(W|V)).$

Example: Rao-Blackwellization

Let X_1,\dots,X_n $(n\geq 2)$ be a random sample from $U[0,\theta],\ \theta>0$. Take $\hat{\theta}=2\bar{X}$ as an unbiased estimator of θ . We know that $X_{(n)}$ is a sufficient statistic for $\theta>0$. By Rao-Blackwell theorem, $\hat{\theta}^*\equiv E(2\bar{X}|X_{(n)})$ is an UE of θ with variance less than or equal to that of $\hat{\theta}$. For $1\leq r\leq n-1$, we note that

$$\mathsf{pdf}_{X_{(r)}|X_{(n)}}(x|y) = \frac{(n-1)!}{(r-1)!(n-r-1)!} (\frac{x}{y})^{r-1} (1-\frac{x}{y})^{n-r-1} \frac{1}{y} I_{(0,y)}(x)$$

and that, recalling the pdf of $\operatorname{Beta}(r+1, n-r-1)$,

$$\int_0^y x \cdot \frac{(n-1)!}{(r-1)!(n-r-1)!} \left(\frac{x}{y}\right)^{r-1} (1-\frac{x}{y})^{n-r-1} \frac{1}{y} dx = (r/n)y.$$

Example: Rao-Blackwellization

Thus, we get

$$2E(\bar{X}|X_{(n)} = y) = 2n^{-1} \left(y + \sum_{r=1}^{n-1} E(X_{(r)}|X_{(n)} = y) \right)$$
$$= 2n^{-1} \left(y + \sum_{r=1}^{n-1} \frac{r}{n} \cdot y \right)$$
$$= \frac{n+1}{n} y.$$

Indeed,
$$\hat{\theta}^* = (n+1) X_{(n)}/n$$
 and

$$\begin{split} \operatorname{var}_{\theta}(\hat{\theta}^*) &= (\frac{n+1}{n})^2 \cdot \operatorname{var}_{\theta}(X_{(n)}) \\ &= \frac{1}{n(n+2)} \theta^2 < \frac{1}{3n} \theta^2 = \operatorname{var}_{\theta}(\hat{\theta}). \end{split}$$

Uniformly Minimum Variance Unbiased Estimator

We have seen that taking conditional expectation, on a sufficient statistic, of a given unbiased estimator always improves the estimator in terms of variance.

• UMVUE: An estimator $\hat{\eta}$ of $\eta = g(\theta)$ is called the uniformly minimum variance unbiased estimator if it itself is unbiased and $\text{var}_{\theta}(\hat{\eta}) \leq \text{var}_{\theta}(\tilde{\eta})$ for all $\theta \in \Theta$ and for any unbiased estimator $\tilde{\eta}$ of η .

Complete Statistic

Let X_1, \ldots, X_n be a random sample from a population with p.d.f. $f(\cdot; \theta)$, $\theta \in \Theta \subset \mathbb{R}^d$. The following notion of completeness facilitates the derivation of UMVUE.

• Complete statistic for $\theta \in \Theta$: A statistic Y = u(X) is called a complete statistic for $\theta \in \Theta$ and $\{\mathsf{pdf}_Y(\cdot;\theta): \theta \in \Theta\}$ is called a complete family of distributions if

$$E_{\theta}\phi(Y)=0$$
 for all $\theta\in\Theta$ implies $P_{\theta}(\phi(Y)=0)=1$ for all $\theta\in\Theta$.

- A complete statistic Y is complete in sense that any non-constant function of Y has a non-constant expected value (as a function of θ).
- Complete sufficient statistic: A statistic is called a complete sufficient statistic (CSS) for $\theta \in \Theta$ if it is sufficient and complete for $\theta \in \Theta$.

Rao-Blackwell-Lehmann-Scheffe Theorem

Let X_1, \ldots, X_n be a random sample from a population with pdf $f(\cdot; \theta)$, $\theta \in \Theta \subset \mathbb{R}^d$. Let Y = u(X) be a CSS for $\theta \in \Theta$. Assume that there exists an unbiased estimator with finite variance.

- For any unbiased estimator $\hat{\eta}_0$ of $\eta=g(\theta)$ with finite variance, $\hat{\eta}=E(\hat{\eta}_0|Y)$ is the UMVUE
- Any function of Y, say $\phi(Y)$, is the UMVUE if it is unbiased.

Methods of Finding UMVUE

- Method 1: Rao-Blackwellization with a CSS
 - (1) Find a CSS Y = u(X).
 - (2) Find an easy UE $\hat{\eta}_0$.
 - (3) compute the conditional expectation $E(\hat{\eta}_0|Y)$.
- Method 2: Trial and error
 - (1) Find a CSS Y=u(X). 2) Solve $E_{\theta}\phi(Y)\stackrel{\theta}{\equiv}g(\theta)$ with respect to ϕ , or try some $\phi(Y)$ and check unbiasedness.

CSS and UMVUE: Uniform $[-\theta, \theta]$ Model

- Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from Uniform $[-\theta, \theta]$, $\theta > 0$.
- In this model, $Y = \max_{1 \le i \le n} |X_i|$ is a CSS and $\hat{\eta} = (n+1)/n \cdot Y$ is the UMVUE of θ .

Ancillary Statistic

- Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from a population with pdf $f(\cdot; \theta), \ \theta \in \Theta \subset \mathbb{R}^d$.
- Ancillary statistic: A statistic Z=v(X) is called an ancillary statistic for $\theta \in \Theta$ if $P_{\theta}(Z \in A)$ does not depend on $\theta \in \Theta$ for all A.
- Basu's Theorem (Independence of CSS and AS): If Y=u(X) is a CSS and Z=v(X) is an AS for $\theta\in\Theta$, then Y and Z are independent under P_{θ} for all $\theta\in\Theta$.

Ancillary Statistic: Examples

• $N(\theta,1)$, $\theta \in \mathbb{R}$:

$$(X_1 - \bar{X}, \dots, X_n - \bar{X}) \stackrel{d}{\equiv} (Z_1 - \bar{Z}, \dots, Z_n - \bar{Z})$$

for Z_i being i.i.d. from N(0,1).

• $\mathsf{Exp}(\theta,1), \ \theta \in \mathbb{R}$:

$$(X_1 - X_{(1)}, \dots, X_n - X_{(n)}) \stackrel{d}{\equiv} (Z_1 - Z_{(1)}, \dots, Z_n - Z_{(n)})$$

for Z_i being i.i.d. from Exp(0,1).

• Gamma(α, β), $\beta > 0$ with α known:

$$\left(\frac{X_1}{\sum_{i=1}^{n+1} X_i}, \cdots, \frac{X_n}{\sum_{i=1}^{n+1} X_i}\right) \stackrel{d}{=} \left(\frac{Z_1}{\sum_{i=1}^{n+1} Z_i}, \cdots, \frac{Z_n}{\sum_{i=1}^{n+1} Z_i}\right)$$

for Z_i being i.i.d. from $Gamma(\alpha, 1)$.

Ancillary Statistic: Examples

- Uniform $(0,\theta)$, $\theta>0$: $X_{(n)}/X_{(1)}\stackrel{d}{\equiv} Z_{(n)}/Z_{(1)}$ for Z_i being i.i.d. from Uniform(0,1).
- $N(\mu, \sigma^2)$, $(\mu \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$:

$$\left(\frac{X_1 - \bar{X}}{S_X}, \cdots, \frac{X_n - \bar{X}}{S_X}\right) \stackrel{d}{=} \left(\frac{Z_1 - \bar{Z}}{S_Z}, \cdots, \frac{Z_n - \bar{Z}}{S_Z}\right)$$

for Z_i being i.i.d. from N(0,1), where $S_X^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$ and $S_Z^2 = \sum_{i=1}^n (Z_i - \bar{Z})^2/(n-1)$.

• $\mathsf{Exp}(\mu, \sigma)$, $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+$:

$$\frac{X_1 - X_{(1)}}{\sum_{i=1}^n (X_i - X_{(1)})} \stackrel{d}{=} \frac{Z_1 - Z_{(1)}}{\sum_{i=1}^n (Z_i - Z_{(1)})}$$

for Z_i being i.i.d. from Exp(0,1).

Basu's Theorem: Examples

- Let X_1, \ldots, X_n be a random sample from $\operatorname{Exp}(\mu, \sigma), \ \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+$. Then, $X_{(1)}$ and $\sum_{i=1}^n (X_i X_{(1)})$ are independent.
- Ket X_1, \ldots, X_{n+1} be a random sample from Gamma (α, β) , $\alpha > 0, \beta > 0$. Then, $\sum_{i=1}^{n+1} X_i$ is independent of

$$Z \equiv \left(\frac{X_1}{\sum_{i=1}^{n+1} X_i}, \cdots, \frac{X_n}{\sum_{i=1}^{n+1} X_i}\right).$$

Exponential Family

A family of distributions $\{f(\cdot;\theta):\theta\in\Theta\}$ for $\Theta\subset\mathbb{R}^d$ is called exponential family if

(1) the support of the density $f(\cdot;\theta)$ does not depend on $\theta\in\Theta$. (2) the density has the following form:

$$f(x;\theta) = \exp(\eta(\theta)^t T(x) - B(\theta)) \cdot h(x)$$

for some known functions $\eta=(\eta_1,\ldots,\eta_k)^t$, $T=(T_1,\ldots,T_k)^t$, B and h. An exponential family is called k-parameter regular exponential family if (3) $\eta(\Theta)\equiv\{\eta(\theta):\theta\in\Theta\}\subset\mathbb{R}^k$ contains a k-dimensional open rectangle.

Random Sample from Exponential Family

Let X_1,\ldots,X_n be a random sample from an exponential family of pdf's $f(\cdot;\theta),\ \theta\in\Theta$ with $f(x;\theta)=\exp(\eta(\theta)^tT(x)-B(\theta))\cdot h(x)$, where $\eta(\theta)$ is a k-vector. Let $\mathcal X$ denote the common support of $f(\cdot;\theta)$. Then, (1) the joint densities of (X_1,\ldots,X_n) also form an exponential family with $\mathcal X^n$ as the common support and

$$\prod_{i=1}^{n} f(x_i; \theta) = \exp(\eta(\theta)^t \sum_{i=1}^{n} T(x_i) - nB(\theta)) \cdot \prod_{i=1}^{n} h(x_i)$$

as the joint density;

(2) If $\eta(\Theta)$ contains a k-dimensional open rectangle, then $Y = \sum_{i=1}^{n} T(X_i)$ is a CSS for $\theta \in \Theta$.

$\mathsf{MGF}/\mathsf{CGF}$ of T(X) in Exponential Family

Let X be a random variable having a pdf $f(\cdot,\eta),\,\eta\in\mathcal{N}\subset\mathbb{R}^k$. Assume $f(x;\eta)=\exp(\eta^tT(x)-A(\eta))\cdot h(x)$ and that $\mathcal N$ contains a k-dimensional open rectangle. Then,

(3) the cumulant generating function of T(X) is given by

$$\operatorname{cgf}_{T(X)}(u;\eta) \equiv \log E_{\eta} e^{u^{t}T(x)} = A(\eta + u) - A(\eta)$$

for all $\eta \in Int(\mathcal{N})$.

(4) the mean and variance of T(X) under P_{η} with $\eta \in \operatorname{Int}(\mathcal{N})$ are then given by

$$E_{\eta}T(X) = \dot{A}(\eta), \operatorname{var}_{\eta}(T(X)) = \ddot{A}(\eta).$$

MLE and Exponential Family

Let X be a random variable having a pdf $f(\cdot,\eta),\,\eta\in\mathcal{N}\subset\mathbb{R}^k$. Assume $f(x;\eta)=\exp(\eta^tT(x)-A(\eta))\cdot h(x)$ and that \mathcal{N} contains a k-dimensional open rectangle. Then,

(5) The log-likelihood is strictly concave, and the unique MLE of η is determined by the likelihood equation

$$n^{-1} \sum_{i=1}^{n} T(X_i) = \dot{A}(\eta),$$

provided that it has a solution $\hat{\eta} \in \mathcal{N}$.

Multinomial Experiments

Let
$$X_i = (X_{i,1}, \dots, X_{i,k-1})^t$$
 be i.i.d. Multinomial $(1, p)$, $p \equiv (p_1, \dots, p_{k-1})^t$, $p_j > 0, p_1 + \dots + p_{k-1} < 1$.

• Let $p_k = 1 - p_1 - \dots - p_{k-1}$. Then, the common density of X_i is given by

$$f(x;p) = \exp(x_1 \log(p_1/p_k) + \dots + x_{k-1} \log(p_{k-1}/p_k) + \log p_k),$$

so that the distributions of X_i form a (k-1)-parameter regular exponential family.

- $Y = \sum_{i=1}^{n} X_i = (\sum_{i=1}^{n} X_{i,1}, \dots, \sum_{i=1}^{n} X_{i,k-1})^t$ is a CSS for p.
- MLE of η : The MLE of $\eta \equiv (\log(p_1/p_k), \dots, \log(p_{k-1}/p_k))^t \stackrel{\text{let}}{=} h(p)$ solves the equation

$$Y/n = E_{\eta}X_1$$
, i.e., $Y/n = h^{-1}(\eta)$.

Thus, the MLE of η is given by $\hat{\eta} = h(Y/n)$.

Multinomial Experiments

- MLE of p: The MLE of p is then $\hat{p} = h^{-1}(\hat{\eta}) = Y/n$.
- UMVUE of p: Y/n is an UE of p and is a function of the CSS Y, so that $\hat{p} = Y/n$ is also the UMVUE of p.
- UMVUE of $\Sigma \equiv \mathrm{diag}(p) pp^t$: Here, an estimator $\hat{\Sigma}$ of Σ is called the UMVUE of Σ if $\mathrm{var}_p(\hat{\Sigma}^{\mathsf{UE}}) \mathrm{var}_p(\hat{\Sigma})$ is nonnegative definite for all $\hat{\Sigma}^{\mathsf{UE}}$ and for all p, with $\hat{\Sigma}$ and $\hat{\Sigma}^{\mathsf{UE}}$ being the vectorized versions. Note that

$$\hat{\Sigma}^{\mathsf{MLE}} = \mathsf{diag}(Y/n) - (Y/n)(Y/n)^t.$$

Computing the expected value of $\hat{\Sigma}^{\text{MLE}}$, we get

$$\begin{split} E_p(\hat{\Sigma}^{\mathsf{MLE}}) &= \mathsf{diag}(p) - \mathsf{var}_p(Y/n) - E_p(Y/n) E_p(Y/n)^t \\ &= \mathsf{diag}(p) - n^{-1} \Sigma - p p^t = (1 - 1/n) \Sigma. \end{split}$$

Thus, $\hat{\Sigma}^{\text{UMVUE}} = n/(n-1) \cdot \hat{\Sigma}^{\text{MLE}}$.

Multivariate Normal Population

Let $X_i = (X_{i,1}, \dots, X_{i,k})^t$ $(n \ge 2)$ be i.i.d. Normal $(\mu, \Sigma), \mu \in \mathbb{R}^k$ and Σ in the set of $k \times k$ positive definite matrices.

• With $\theta \equiv (\mu, \Sigma) \in \mathbb{R}^d$ for d = k + k(k+1)/2,

$$f(x;\theta) = |2\pi\Sigma|^{-1/2} \exp(-(x-\mu)^t \Sigma^{-1} (x-\mu)/2)$$

= \exp(-\text{tr}(\Sigma^{-1} x x^t)/2 + \mu^t \Sigma^{-1} x - \mu^t \Sigma^{-1} \mu/2 - 1/2 \log |2\pi\Sigma|).

- $Y = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i X_i^t)$ is a CSS for θ , where $\sum_{i=1}^n X_i X_i^t$ is understood to be a k(k+1)/2-vector.
- MLE of $\eta \equiv (\Sigma^{-1}\mu, \Sigma^{-1})$: It is the solution of

$$Y/n = E_{\eta}(X_1, X_1 X_1^t)$$
, i.e., $Y/n = (\mu, \Sigma + \mu \mu^t) \stackrel{\text{let}}{=} g(\mu, \Sigma)$.

Let
$$h(\mu, \Sigma) = (\Sigma^{-1}\mu, \Sigma^{-1})$$
. Then, $\hat{\eta}^{\mathsf{MLE}} = h \circ g^{-1}(Y/n)$.

Multivariate Normal Population

• MLE of μ and Σ : The MLE of $(\mu, \Sigma) = h^{-1}(\eta)$ is then

$$(\hat{\mu}^{\mathsf{MLE}}, \hat{\Sigma}^{\mathsf{MLE}}) = h^{-1} \circ h \circ g^{-1}(Y/n) = g^{-1}(Y/n).$$

By the definition of the function $g:\mathbb{R}^d o \mathbb{R}^d$, this means

$$n^{-1}\sum_{i=1}^n X_i = \hat{\mu}^{\mathsf{MLE}} \text{ and } n^{-1}\sum_{i=1}^n X_i X_i^t = \hat{\Sigma}^{\mathsf{MLE}} + \hat{\mu}^{\mathsf{MLE}} \hat{\mu}^{\mathsf{MLE}t}$$

so that $\hat{\mu}^{\text{MLE}} = \bar{X}$ and $\hat{\Sigma}^{\text{MLE}} = n^{-1} \sum_{i=1}^n (X_i - \bar{X}) (X_i - \bar{X})^t$.

• UMVUE of μ and Σ : Since $(\bar{X},(n-1)^{-1}\sum_{i=1}^n(X_i-\bar{X})(X_i-\bar{X})^t)$ is a 1-1 function of Y, it is also a CSS for (μ,Σ) . Since \bar{X} and $(n-1)^{-1}\sum_{i=1}^n(X_i-\bar{X})(X_i-\bar{X})^t$ are UEs of μ and Σ , respectively, they are the UMVUE of the respective parameters.