FINAL EXAM PRACTICE PROBLEMS MATH H54, FALL 2021

(1) Let $\{\vec{v}_1,\ldots,\vec{v}_n\}$ be a linearly independent set of vectors in a real vector space V. Prove that

$$\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \vec{v}_1\}$$

is linearly independent if and only if n is odd (not divisible by 2).

- (2) Let A be a real $n \times n$ matrix. Prove that there exists a real $n \times n$ matrix B such that BA = 0 (the zero matrix) and $\operatorname{rank}(A) + \operatorname{rank}(B) = n$. (Hint: First show that there exists an invertible matrix P such that PA is the reduced echelon form of A.) (Hint: Then find a square matrix C such that C(PA) = 0 and $\operatorname{rank}(A) + \operatorname{rank}(C) = n$. Such C should not be hard to construct, using the fact that PA is of reduced echelon form.) (Hint: Finally, show that B = CP has the desired properties.)
- (3) Let V be a finite dimensional real inner product space, and let $W\subseteq V$ be a subspace.
 - (a) Define $T_W \colon V \to W$ to be the orthogonal projection onto W. Prove that for any $\vec{v}_1, \vec{v}_2 \in V$, one has $\langle \vec{v}_1, T_W(\vec{v}_2) \rangle = \langle T_W(\vec{v}_1), \vec{v}_2 \rangle$.
 - (b) Conversely, suppose $T\colon V\to V$ is a linear transformation such that $T^2=T$ and $\langle \vec{v}_1,T(\vec{v}_2)\rangle=\langle T(\vec{v}_1),\vec{v}_2\rangle$ holds for any $\vec{v}_1,\vec{v}_2\in V$. Prove that T is the orthogonal projection onto its image $\mathrm{Im}(T)$. (Note: $T^2=T\circ T$ denotes the composition of T with itself.) (Hint: Plug in $\vec{v}_1=T(\vec{v})$ for any $\vec{v}\in V$, and use the condition $T^2=T$.)
- (4) Let W_1 and W_2 be two subspaces of an n-dimensional real vector space V, satisfying $\dim(W_1) + \dim(W_2) = n$. Prove that there exists a linear transformation $T: V \to V$ such that

$$Ker(T) = W_1$$
 and $Im(T) = W_2$.

(Hint: Let $\{\vec{v}_1,\ldots,\vec{v}_k\}$ be a basis of W_1 . To construct the transformation T, you might want to use the fact that $\{\vec{v}_1,\ldots,\vec{v}_k\}$ can be extended to a basis $\{\vec{v}_1,\ldots,\vec{v}_k,\ldots,\vec{v}_n\}$ of V.)

- (5) Let A be an $n \times n$ matrix. Consider the linear transformation $T : \operatorname{Mat}_{n \times n}(\mathbb{R}) \to \operatorname{Mat}_{n \times n}(\mathbb{R})$ on the n^2 -dimensional vector space $\operatorname{Mat}_{n \times n}(\mathbb{R})$ defined by T(B) = AB. Express $\det(T)$ in terms of $\det(A)$.
- (6) Let A be a square matrix with columns given by unit vectors. Prove that $|\det(A)| \le 1$. When does the equality hold?
- (7) Let V be a finite-dimensional vector space, and let $T: V \to V$ be a diagonalizable linear transformation. Suppose $W \subseteq V$ is a subspace satisfying $T(W) \subseteq W$. Prove that the restriction $T|_W: W \to W$ also is diagonalizable.

(8) Consider a sequence of linear transformations between finite-dimensional vector spaces

$$\{0\} \xrightarrow{T_0} V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_n \xrightarrow{T_n} \{0\}$$

Assume that $\operatorname{Im}(T_{i-1}) = \operatorname{Ker}(T_i)$ for all $1 \leq i \leq n$. What is the value of

$$\dim(V_1) - \dim(V_2) + \dim(V_3) - \dots + (-1)^n \dim(V_n)$$
?

- (9) Let A be a real $n \times n$ matrix. Prove that the following two statements are equivalent:
 - (a) $A^2 = A$;
 - (b) $\operatorname{rank}(A) + \operatorname{rank}(\mathbb{I}_n A) = n$.
- (10) Let $\{\vec{v}_1,\ldots,\vec{v}_k\}$ be an orthonormal set in a finite-dimensional inner product space V. Suppose that for any $\vec{v} \in V$ we have

$$||\vec{v}||^2 = \langle \vec{v}_1, \vec{v} \rangle^2 + \dots + \langle \vec{v}_k, \vec{v} \rangle^2.$$

Prove that $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a basis of V.

- (11) Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Suppose that $\mathbb{I}_m AB$ is invertible. Prove that $\mathbb{I}_n BA$ also is invertible.
- (12) Let W_1 and W_2 be subspaces of a vectors space V. Consider the union

$$W_1 \cup W_2 := \{x \in V : x \in W_1 \text{ or } x \in W_2\}.$$

Prove that if $W_1 \cup W_2$ is a subspace of V, then we must have $W_1 \subseteq W_2$ or $W_2 \subset W_1$.

(13) Let $T: V \to V$ be a linear transformation on a (possibly infinite-dimensional) vector space V. Suppose that every subspace of V is invariant under V, i.e. $T(W) \subseteq W$ for any subspace $W \subseteq V$. Prove that T is a scalar multiple of the identity transformation.