Chapitre 13 : Caractère local des fonctions : limite et continuité en un point

I - Définitions et premières propriétés

Définition du contexte de cette section et des propriétés vraies au voisinage d'un point.

- 1) Limites finies
- 2) Limites infinies
- 3) Continuité
- 4) Prolongement par continuité
- 5) Limites et continuité à droite et à gauche
- 6) Caractère local de la limite et de la continuité
- II Limites et ordre
- 1) Les théorèmes généraux
- 2) Limites des fonctions monotones
- III Opérations sur les limites
- 1) Opérations algébriques sur les limites finies
- 2) Opérations sur les limites infinies
- 3) Composition des limites
- 4) Application à la continuité

Continuité des fonctions usuelles (polynômes, rationnelles, puissance, ln, exp, trigonométriques)

IV - Relations de comparaison

- 1) Fonctions équivalentes au voisinage d'un point
- 2) Propriétés des équivalents
- 3) Comparaisons usuelles
- a) Polynômes et fonctions rationnelles
- b) Puissances entre elles
- c) Puissances et logarithme
- d) Puissances et exponentielle
- 4) Equivalents usuels
- 5) Equivalents et composition

Mises en garde

V - Quelques exemples de calculs de limites

Annexe:

Comparaisons classiques (preuve des résultats sur les croissances comparées, et inégalités classiques sur les fonctions usuelles)

Critère séquentiel des limites (Application à la non existence de limite)

Exemples de compétences attendues

- Maîtriser les formules de croissances comparées. Connaître les équivalents usuels, les propriétés de exp, ln et $x \mapsto x^{\alpha}$ ($\alpha \in \mathbb{R}$).
- 2 Savoir ce que signifie qu'une fonction est continue en un point a et savoir montrer qu'une fonction est continue en a.
- 3 Savoir déterminer si une fonction est prolongeable par continuité en un point et, après prolongement, si elle est dérivable en ce point, voire de classe C^1 au voisinage de ce point.
- Savoir utiliser les équivalents (et notamment les équivalents usuels) au service des calculs de limites.

Questions de cours possibles :

- Démontrer $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ puis, si $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}^*_+$, $\lim_{x \to +\infty} \left(\frac{x^{\alpha}}{e^{\beta x}}\right) = 0$.
- Montrer $1 \cos x \sim_{x \to 0} \frac{x^2}{2}$.
- Donner les équivalents usuels et indiquer comment ils se démontrent.