

9. $\lim_{x \to 0} \frac{5^x - 3^x}{x} =$

Taller, Calculando límites con tablas y gráficas Cálculo 11°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:				Fecha:		
1–6 Complete la tabla de valores ha valor del límite	asta 5 lugares	decimal	es y use	ésta pai	ra estir	nar el
1. $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} =$	$\begin{array}{ c c c } \hline x & 3.9 \\ \hline f(x) & \end{array}$	3.99	3.999	4.001	4.01	4.1
$2. \lim_{x \to 2} \frac{x-2}{x^2 + x - 6} =$	$\begin{array}{ c c c c }\hline x & 1.9 \\\hline f(x) & \end{array}$	1.99	1.999	2.001	2.01	2.1
3. $\lim_{x \to 1} \frac{x - 1}{x^3 - 1}$	$\begin{array}{ c c c }\hline x & 0.9 \\\hline f(x) & \end{array}$	0.99	0.999	1.001	1.01	1.1
$4. \lim_{x \to 0} \frac{e^x - 1}{x} = $	$\begin{array}{c c} x & -0.1 \\ \hline f(x) & \end{array}$	-0.01	-0.001	0.001	0.01	0.1
$5. \lim_{x \to 0} \frac{\sin(x)}{x} =$	x $f(x)$	±1 ±	±0.5 ±0	0.1 ±0.	.05 ±	-0.01
$6. \lim_{x \to 0^+} x \ln(x) =$	$\begin{array}{ c c } \hline x & 0 \\ \hline f(x) & \end{array}$.1 0.01	0.001	0.000	1 0.0	0001
7–12 Use la tabla de valores para estimar el valor del límite. Luego use "geogebra" para graficar la función y confirmar sus resultados.						
7. $\lim_{x \to -4} \frac{x+4}{x^2 + 7x + 12} =$	10. $\lim_{x\to 0}$	$\frac{\sqrt{x+9}}{x}$	$\frac{-3}{-} =$			
$8. \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} =$	11. $\lim_{x \to 1} \left(\frac{1}{\ln(x)} - \frac{1}{x - 1} \right) =$					

13. Para la función f cuya gráfica se dá, determine el valor pedido si existe. Si no existe, explique por qué

$$d) \lim_{x \to 5} f(x) =$$

b)
$$\lim_{x \to 1^+} f(x) = e$$
 e) $f(5) =$

$$e) \ f(5) =$$

c)
$$\lim_{x \to 1} f(x) =$$

$$f) \ f(-1) =$$

14. Para la función f cuya gráfica se da, determine el valor pedido si existe. Si no existe, explique por qué.

$$a) \ \lim_{x\to 0} f(x) = \qquad \qquad d) \ \lim_{x\to 3} f(x) =$$

$$d$$
) $\lim_{x \to 3} f(x) =$

b)
$$\lim_{x \to 3^{-}} f(x) = e$$
 e) $f(3) = c$) $\lim_{x \to 3^{+}} f(x) = f$ $f(0) = f$

e)
$$f(3) =$$

c)
$$\lim_{x \to a} f(x) =$$

$$f(0) = 0$$

15. Para la función g cuya gráfica se da, determine el valor pedido, si existe. Si no existe, explique por qué.

- a) $\lim_{t\to 0^-} g(t) =$
- e) $\lim_{t \to 2^+} g(t) =$
- $b) \lim_{t\to 0^+} g(t) = f) \lim_{t\to 2} g(t) =$
- $c) \lim_{t \to 0} g(t) =$
- g) g(2) =
- $d) \lim_{t \to 2^-} g(t) =$
- $h) \lim_{t \to 4} g(t) =$
- 16. Determine el valor solicitado, si existe. Si no existe, explique por qué
 - $a) \lim_{x \to 3} f(x) =$
- $d) \lim_{x \to 2^-} f(x) =$
- $b) \lim_{x \to 1} f(x) =$
- $e) \lim_{x \to 2^+} f(x) =$
- c) $\lim_{x \to -3} f(x) =$
- $f) \lim_{x \to 2} f(x) =$