MAT354: Complex Analysis - Notes

Harsh Jaluka

December 10, 2022

Contents

1	Lecture 1			
2	Lecture 2	4		
3	Lecture 3			
	3.1 Definition: polynomials, zeroes, orders	4		
	3.2 Definition: rational functions	4		
	3.3 Definition: poles and their orders	4		
4	Lecture 4	4		
	4.1 Definition: holomorphic	4		
	4.2 Proposition: holomorphic \iff Cauchy-Riemann equations	5		
	4.3 Example: upper half plane to unit disk	5		
5	Lecture 5	6		
6	Lecture 6			
7	Lecture 7			
8	Lecture 8			
9	Lecture 9	6		
10	O Analytic functions	6		
	10.1 Definition: analytic	6		
	10.2 Proposition: primitive of an analytic function	6		
	10.3 Proposition: convergent power series defines analytic function	7		
	10.4 Proposition: Every analytic function is holomorphic	7		

	10.5	Proposition: zeroes of not identically zero analytic function are isolated	7
	10.6	Definition: meromorphic	7
11	Lect	cure 11	7
	11.1	Definition: integral of one-form over a curve	7
	11.2	Lemma: points in domain can be connected by piecewise C^1 curve	7
	11.3	Proposition: primitive of one-form	8
12	Lect	cure 12	8
	12.1	Cauchy's Theorem	8
	12.2	Corollary 1 (of Cauchy's theorem):	8
	12.3	Corollary 2 (of Cauchy's theorem): Generalisation of Cauchy's theorem $$	8
13	Lect	cure 13	8
	13.1	Definition: homotopic	8
	13.2	Theorem: invariance of integral of closed form under homotopy \dots	9
14	Lect	cure 14	9
	14.1	Lemma (for homotopy integral invariance theorem)	9
	14.2	Definition: simply connected	9
	14.3	Corollary: simply-connected	9
	14.4	Definition: winding number	9
	14.5	Theorem: Cauchy's Integral Formula	10
	14.6	Corollary (Cauchy's Integral Formula)	10
	14.7	Cauchy's Theorem (General)	10
	14.8	Morera's theorem	10
	14.9	Corollary: Morera's theorem	10

15 Lecture 15	11
15.1 Theorem: Holomorphic functions have convergent power series expansions	. 11
15.2 Corollary: Every holomorphic function is analytic	. 11
15.3 Definition: Cauchy's inequalities	. 11
15.4 Liouville's theorem	. 11
15.5 Fundamental Theorem of Algebra	. 11
15.6 Schwarz's Reflection Principle	. 11
16 Lecture 16	11
17 Lecture 17	11
17.1 Definition: isolated singularity	. 11
17.2 Theorem (Weierstrass)	. 12
17.3 Picard's Theorem	. 12
18 Lecture 18	12
19 Lecture 19	12

- 1 Lecture 1
- 2 Lecture 2
- 3 Lecture 3
- 3.1 Definition: polynomials, zeroes, orders

A function f(z) is a polynomial if

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$

= $a_n (z - c_1)^{k_1} \dots (z - c_n)^{k_n}$

The zeroes of the polynomial are the c_i 's and each zero is said to have an order equal to the corresponding k_i .

3.2 Definition: rational functions

A function R(z) is rational if

$$R(z) = \frac{P(z)}{Q(z)}$$

where P, Q are polynomials with no common factors.

3.3 Definition: poles and their orders

The poles of a rational function $R(z) = \frac{P(z)}{Q(z)}$ are precisely the zeroes of Q(z). The order of the pole is the order of the corresponding zero of Q(z).

4 Lecture 4

4.1 Definition: holomorphic

A function $f:\Omega\in\mathbb{C}\to\mathbb{C}$ where Ω open is said to be holomorphic at z if

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=c$$

for some $c \in \mathbb{C}$.

4.2 Proposition: holomorphic \iff Cauchy-Riemann equations

f(z) is holomorphic at z if and only if the partial derivatives with respect to x,y (z=x+iy) satisfy the Cauchy-Riemann equations

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$$

4.3 Example: upper half plane to unit disk

The fractional linear transformation

$$\frac{z-i}{z+i}$$

maps the upper half plane to the unit disk

- 5 Lecture 5
- 6 Lecture 6
- 7 Lecture 7
- 8 Lecture 8
- 9 Lecture 9

10 Analytic functions

10.1 Definition: analytic

f(z) analytic in open set Ω if it has a convergent power series representation at every point $z_0 \in \Omega$. In other words, for all $z_0 \in \Omega$, there exists a convergent power series

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

such that for all $|z - z_0| < r$ for some $r \le \text{radius}$ of convergence

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

10.2 Proposition: primitive of an analytic function

If f(z) has a convergent power series representation at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

then there is a convergent power series g(z) at z_0 such that g'(z) = f(z) in some disk $|z - z_0| < r$. Moreover, g(z) is given by

$$g(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}$$

has the same radius of convergence as f(z) and is uniquely determined up to a constant.

10.3 Proposition: convergent power series defines analytic function

If $f(z) = \sum a_n(z-z_0)^n$ is a convergent power series with radius of convergence R, then f(z) is analytic in the disk $|z-z_0| < R$.

10.4 Proposition: Every analytic function is holomorphic

10.5 Proposition: zeroes of not identically zero analytic function are isolated

If f analytic and not identically zero, then its zeroes are isolated. We say that $x \in X$ is an isolated point of X if x has a neighbbourhood whose intersection with X reduces to the point x.

10.6 Definition: meromorphic

A function f is meromorphic in an open set Ω if it is well-defined and analytic in the complement of a discrete set. Moreover, in a neighbourhood of any point in Ω , it can be expressed as the quotient of two analytic functions $\frac{f}{g}$ with g not identically zero.

11 Lecture 11

11.1 Definition: integral of one-form over a curve

$$\int_{\gamma} \omega = \int_{a}^{b} F(t)dt$$

where $\omega = Pdx + Qdy$ (P, Q continuous functions on Ω) and F(t) = P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t).

11.2 Lemma: points in domain can be connected by piecewise C^1 curve

Any two points in a connected and open $\Omega \in \mathbb{R}^2$ can be connected by a piecewise C^1 curve.

11.3 Proposition: primitive of one-form

A one-form ω has a primitive if and only if $\int_{\gamma} w = 0$ for every piecewise C^1 closed curve γ .

12 Lecture 12

12.1 Cauchy's Theorem

If f(z) is a holomorphic in open $\Omega \in \mathbb{C}$, then f(z)dz is closed.

12.2 Corollary 1 (of Cauchy's theorem):

A holomorphic function in open $\Omega \in \mathbb{C}$ locally has a primitive which is holomorphic.

12.3 Corollary 2 (of Cauchy's theorem): Generalisation of Cauchy's theorem

In Cauchy's theorem, it is enough to assume that f is continuous in Ω and holomorphic outside a line parallel to the x-axis.

13 Lecture 13

13.1 Definition: homotopic

If $\gamma_0, \gamma_1 : [0,1] \to \Omega$ are two continuous closed curves with the same endpoints

$$\gamma_0(0) = \gamma_1(0), \quad \gamma_0(1) = \gamma_1(1)$$

then they are said to be homotopic in Ω with fixed endpoints if there is a continuous function $\gamma:I_s\times I_t\to\Omega$ such that

$$\gamma(0,t) = \gamma_0(t), \qquad \gamma(1,t) = \gamma_1(t)$$

$$\gamma(s,0) = \gamma_0(0) = \gamma_1(0), \qquad \gamma(s,1) = \gamma_0(1) = \gamma_1(1)$$

If γ_1 is constant, we say that the curves are homotopic as closed curves or that they are homotopic to a point.

13.2 Theorem: invariance of integral of closed form under homotopy

If ω is a closed differential form in Ω and $\gamma_0, \gamma_1 : [0,1] \to \Omega$ are continuous homotopic curves with fixed endpoints or as closed curves, then

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

14 Lecture 14

14.1 Lemma (for homotopy integral invariance theorem)

Let ω be a closed form in Ω and $\gamma:[a,b]\times[c,d]\to\Omega$ a continuous curve. Then, there is a continuous function $f:[a,b]\times[c,d]\to\mathbb{C}$ such that for every $(s_0,t_0)\in[a,b]\times[c,d]$, there is a primitive F of ω defined in a neighbourhood of $\gamma(s_0,t_0)$ such that $f(s,t)=F(\gamma(s,t))$ in some neighbourhood of (s_0,t_0) . Moreover, f is unique up to addition of a constant.

14.2 Definition: simply connected

 Ω is simply-connected if Ω is connected and any closed curve in Ω is null-homotopic.

14.3 Corollary: simply-connected

In simply-connected open sets, any closed form has a primitive.

14.4 Definition: winding number

The winding number of a closed curve γ with regards to any point $a \notin \gamma$ is defined as

$$w(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \in \mathbb{Z}$$

14.5 Theorem: Cauchy's Integral Formula

Let $\Omega \in \mathbb{C}$ open, $a \in C$, f(z) holomorphic in Ω and γ a closed curve in Ω not containing a, homotopic to a point in Ω . Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz = w(\gamma, a) f(a)$$

14.6 Corollary (Cauchy's Integral Formula)

If f(z) is holomorphic in some neighbourhood of a closed disk D and γ is the boundary of the disk (in positive sense), then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz = \begin{cases} f(a) & a \text{ in circle} \\ 0 & a \text{ not in circle} \end{cases}$$

14.7 Cauchy's Theorem (General)

Consider f(z) continuous in Ω . TFAE

- 1. f(z) is holomorphic in Ω
- 2. f(z)dz is closed
- 3. $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi z)} d\xi$ when $z \in$ interior of closed disk $D \in \Omega$ with oriented boundary γ .

14.8 Morera's theorem

If f(z)dz is closed then f(z) locally has a primitive g(z) which is holomorphic.

14.9 Corollary: Morera's theorem

Continuous function which is holomorphic except on a line is holomorphic everywhere.

15 Lecture 15

15.1 Theorem: Holomorphic functions have convergent power series expansions

A holomorphic function f(z) in a disk |z| < R has a convergent power series expansion in the disk.

- 15.2 Corollary: Every holomorphic function is analytic
- 15.3 Definition: Cauchy's inequalities

TODO

15.4 Liouville's theorem

A bounded holomorphic function in \mathbb{C} is constant.

15.5 Fundamental Theorem of Algebra

Every non-constant polynomial has at least one root.

15.6 Schwarz's Reflection Principle

TODO

16 Lecture 16

17 Lecture 17

17.1 Definition: isolated singularity

A holomorphic function f(z) in a punctured disk 0 < |z| < R, has an isolated singularity at 0 if f cannot be extended to be holomorphic in |z| < R.

The isolated singularity is a pole if there are only finitely many negative exponents in the Laurent series, and is an essential singularity if there are infinitely many such exponents.

17.2 Theorem (Weierstrass)

If 0 is an essential singularity of f then for any $\epsilon > 0$, $f(0 < |z| < \epsilon)$ is dense in \mathbb{C} .

17.3 Picard's Theorem

The holomorphic image of a punctured disk, $f(0<|z|<\epsilon)$ omits at most one value from $\mathbb C$

18 Lecture 18

19 Lecture 19