

Scikit-learn GaussianNB 和 MultinomialNB

GaussianNB 介紹

- > 貝式分類器乃是根據貝氏定理(Bayes' theorem)為基礎,用以判斷未知類別的資料應該最接近哪一個類別。
- > sklearn.naive_bayes.GaussianNB為貝氏分類器演算法的 實作之一,假設特徵的先驗機率為**常態分佈**,主要使用於 **連續形資料**。

GaussianNB 參數說明

> class sklearn.naive_bayes.GaussianNB(priors=None, var_smoothing=1e-09)

- > GaussianNB 類別常用參數
 - Priors
 - var_smoothing

GaussianNB 參數說明

- > priors: array-like, shape (n_classes,) 類別的先驗機率。如果指定,則先驗機率不會隨著資料調整。
- > var_smoothing: float, optional (default=1e-9) 在估計變異數的時候,為了追求估計的穩定性,將所有特徵的變異數中最大的變異數,以某個比例添加到估計的變異數中。這個比例,由var_smoothing參數控制。

MultinomialNB 介紹

> sklearn.naive_bayes.MultinomialNB也是貝氏分類器演算法的實作之一,假設特徵的先驗機率為**多項式分佈**,主要使用於**離散形資料**。

MultinomialNB 參數說明

> class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)

- > MultinomialNB 類別常用參數
 - alpha
 - fit_prior
 - class_prior

MultinomialNB 參數說明

> alpha: float, optional (default=1.0)

其實就是添加拉普拉斯(Laplas)平滑,即為上述公式中的λ,如果這個參數設置為0,就是不添加平滑。

- > fit_prior : boolean, optional (default=True)
 - 布林參數,表示是否要考慮先驗機率。
 - 如果是false,則所有的樣本類別輸出都有相同的類別 先驗機率,否則可以自己用第三個參數class_prior輸入 先驗機率,或者不輸入第三個參數class_prior,讓
 MultinomialNB自行從訓練集樣本來計算先驗機率。

MultinomialNB 參數說明

> class_prior : array-like, size (n_classes,), optional
 (default=None)

• 類別的先驗機率

GaussianNB 函式說明

- > GaussianNB 常用函式
 - fit
 - predict
 - score

訓練 (fit)

- > 指令: fit(self, X, y[, sample_weight])
- >參數
 - x:訓練輸入樣本
 - y:目標值(分類中的類標籤)
- >回傳:訓練後的GaussianNB物件
- ➤說明:根據訓練集 (x · y) 建立一個Gaussian Naive Bayes
- > 範例程式

from sklearn.naive_bayes import GaussianNB gaussianNB = GaussianNB() gaussianNB.fit(X_train, y_train)

預測 (predict)

- > 指令: predict(self, X)
- >參數
 - x:輸入樣本
- >回傳:預測的類別
- > 範例程式

from sklearn.naive_bayes import GaussianNB gaussianNB = GaussianNB() gaussianNB.fit(X_train, y_train) predictions = gaussianNB.predict(x_test)

評分 (score)

- > 指令: score(self, X, y[, sample_weight])
- >參數
 - x:測試樣本
 - y:測試樣本的正確答案
- >回傳:測試樣本的平均準確度
- > 範例程式

from sklearn.naive_bayes import GaussianNB gaussianNB = GaussianNB() gaussianNB.fit(X_train, y_train) accuracy = gaussianNB.score(x_test, y_test)

程式範例 (IRIS)

> 程式碼

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn import datasets
# 載入資料
iris = datasets.load iris()
X = iris.data[:, :2] # 只取前兩種特徵
Y = iris.target
# 建立 Gaussian Naive Bayes
gaussianNB = GaussianNB()
# 進行訓練
gaussianNB.fit(X, Y)
# 繪製座標軸
x_{min}, x_{max} = X[:, 0].min() - .5, X[:, 0].max() + .5
y_{min}, y_{max} = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # 單位間隔
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
```


程式範例 (IRIS)

> 程式碼

```
# 進行預測
Z = gaussianNB.predict(np.c_[xx.ravel(), yy.ravel()])
# 繪製預測結果
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
```


程式範例 (IRIS)

機器學習實務

> 輸出結果

