Fibonacci sequence Circuit

PC/CP220 Project Phase III

Kevin Yejoon Lee 210872060 Fall 2022

Logic Equation

The equations for the outputs

$$B_3 = a2 \ a1 \ \neg a0 + a2 \ a1 \ a0$$

 $B_2 = a2 \ \neg a1 \ a0 + a2 \ a1 \ a0$
 $B_1 = a2 \ \neg a1 \ \neg a0 + \neg a2 \ a1 \ a0$
 $B_0 = \neg a2 \ \neg a1 \ a0 + \neg a2 \ a1 \ \neg a0 + a2 \ \neg a1 \ \neg a0 + a2 \ \neg a1 \ a0$

Circuit Diagram

Diagram of fibonacci converter

The circuit was drawn using https://circuitverse.org/ as shown in the following figure. Unlike other circuits, the output returns a binary number that represents the output fibonacci number rather than a boolean value like the prime identifier circuit. The circuit serves its purpose in finding the corresponding fibonacci number as proven in sections later on.

Circuit Outputs TT

All the circuit outputs = the expected fibonacci number

a ₂	\mathbf{a}_1	\mathbf{a}_0	b ₃	b ₂	\mathbf{b}_1	\mathbf{b}_0
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	0	1

Therefore, the circuit serves its purpose in finding the corresponding fibonacci number.

Simulation Output

All the circuit outputs = the expected fibonacci number

Parts List

List of all parts required to make circuit

In addition to the CPLD (Complex Programing Logic Device) we require,

- • DIP switch, for input
- • Resistor array for the DIP switch; probably $1k\Omega$ or so.
- • four LED (could use debugger board but LED's could demonstrate one bit each as well)
- Resistor for the LED's; probably 510Ω or so each. (unless using debugger board)

Extra Proof for Circuit

There is a video with attached circuit demonstrating the working circuit outputs

END OF PROJECT PHASE 3

Check list attached below

PC/CP220 Project Phase III Checklist (3.01)

Α.	. General				
	1.	Professionally presented Neat, etc.			
	2.	Properly identified (eg. name, id)			
	3.	On time at beginning of lab with checklist			
	4.	Good grammar (eg. complete sentences where required)			
	5.	Correct spelling			
В.	Conten	t			
	1.	Circuit diagram is consistent with equations			
	2.	All cases are simulated with good explanations			
	3.	Circuit passes/fails simulation noted (matches truth table)			
	4.	All input/output parts have been listed (including resistors)			
	5.	All previous phases included (updated if necessary)			

Fibonacci sequence Circuit

PC/CP220 Project Phase II

Kevin Yejoon Lee 210872060 Fall 2022

Table of Contents

Fable of Contents	•••
ΓT containing only binary quantities	
K - maps	
Output b3	
Output b2	
Output b1	
Output b0	
Equation Testing/SOP	•••
Summary	
Project Phase II Checklist	
Description	
inputs	
Outputs	
dentical Output case	
Final Truth Table	
Project Phase I Checklist	

TT containing only binary quantities

Each bit to be broken down into a k-map

\mathbf{a}_2	\mathbf{a}_1	\mathbf{a}_0	b ₃	b ₂	b ₁	\mathbf{b}_0
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	0	1

 $A\overline{B} + AC + \overline{B}C + \overline{A}B\overline{C}$

SOP Formulas

Solutions to SOP

Outputs	Solution	SOP		
\mathbf{b}_3	AB			
		$AB\overline{C} + ABC$		
\mathbf{b}_2	AC	$A\overline{B}C+ABC$		
b ₁	$A\overline{B}\overline{C} + \overline{A}BC$	$A\overline{B}\overline{C} + \overline{A}BC$		
b ₀	$A\overline{B}+AC+\overline{B}C+\overline{A}B\overline{C}$	$\overline{A}\overline{B}C+\overline{A}B\overline{C}+A\overline{B}\overline{C}+A\overline{B}C+ABC$		

Equation Testing

Each output tested in maxima

b ₃	%i1) f:(a and b and not c) or (a and b and c); (%o1) a^b^¬cva^b^c
	(%i2) f, a=true, b=true; (%o2) true
	(%i3) f, a=true, b=true ,c=false; (%o3) true
	(%i4) f, a=true, b=false, c=true; (%o4) false
	(%i5) f, a=true, b=false, c=false;

```
(%o5) false

(%i6)
f, a=false, b=true, c=true;
(%o6) false

(%i7)
f, a=false, b=true, c=false;
(%o7) false

(%i8)
f, a=false, b=false, c=true;
(%o8) false

(%i9)
f, a=false, b=false, c=false;
(%o9) false
```

```
\mathbf{b_2}
               (%i1)
              f:(a and not b and c) or (a and b and c);
              (%o1) an-bncvanbnc
               (%i2)
              f, a=true, b=true, c=true;
              (%o2) true
              (%i3)
              f, a=true, b=true, c=false;
              (%o3) false
              (%i4)
              f, a=true, b=false,c=true;
              (%o4) true
              (%i5)
              f, a=true, b=false, c=false;
              (%o5) false
               (%i6)
              f, a=false, b=true,c=true;
              (%06) false
              (%i7)
              f, a=false, b=true,c=false;
              (%o7) false
               (%i8)
              f, a=false, b=false, c=true;
              (%08) false
              (%i9)
              f, a=false, b=false, c=false;
              (%o9) false
```

```
(%i1)
\mathbf{b_1}
               f:(a and not b and not c) or (not a and b and c);
               (%o1) andbncvanbnc
               (\%i2)
               f, a=true, b=true, c=true;
               (%o2) false
               (%i3)
               f, a=true, b=true, c=false;
               (%o3) false
               (%i4)
               f, a=true, b=false,c=true;
               (%o4) false
               (\%i5)
               f, a=true, b=false, c=false;
               (%o5) true
               (%i6)
               f, a=false, b=true, c=true;
               (%06) true
               (%i7)
               f, a=false, b=true ,c=false;
               (%o7) false
               (\%i8)
               f, a=false, b=false, c=true;
               (%o8) false
               (%i9)
               f, a=false, b=false, c=false;
               (%o9) false
               (%i1)
\mathbf{b}_0
               f:(not a and not b and c) or (not a and b and not c) or (a and not b and not c) or
               (a and not b and c) or (a and b and c);
               (%o1) ¬an¬bncv¬anbn¬cvan¬bn¬cvan¬bncvanbnc
               (\%i2)
```

Summary

The equations for the outputs are

$$B_3 = a2 \ a1 \ \neg a0 + a2 \ a1 \ a0$$

 $B_2 = a2 \ \neg a1 \ a0 + a2 \ a1 \ a0$
 $B_1 = a2 \ \neg a1 \ \neg a0 + \neg a2 \ a1 \ a0$
 $B_0 = \neg a2 \ \neg a1 \ a0 + \neg a2 \ a1 \ \neg a0 + a2 \ \neg a1 \ a0 + a2 \ a1 \ a0$

```
f, a=true, b=true,c=true;
(%o2) true
(%i3)
f, a=true, b=true, c=false;
(%o3) false
(%i4)
f, a=true, b=false,c=true;
(%o4) true
(%i5)
f, a=true, b=false, c=false;
(%o5) true
(%i6)
f, a=false, b=true,c=true;
(%06) false
(%i7)
f, a=false, b=true,c=false;
(%o7) true
(%i8)
f, a=false, b=false, c=true;
(%o8) true
(%i9)
f, a=false, b=false, c=false;
(%o9) false
```

PC/CP220 Project Phase II Checklist (3.01)

Α.	General				
	1.	Professionally presented Neat, etc.			
	2.	Properly identified (eg. name, id)			
	3.	On time at beginning of lab with checklist			
	4.	Good grammar (eg. complete sentences where required)			
	5.	Correct spelling			
В.	Conten	t			
	1.	All outputs analyzed (truth table)			
	2.	Karnaugh maps (or equations) match truth table			
	3.	Equations tested (Maple, Maxima, etc.)			
	4.	Summary statement (all equations pass all tests)			
	5.	Previous phase included (updated if necessary)			

Fibonacci sequence Circuit

PC/CP220 Project Phase I

Kevin Yejoon Lee 210872060 Fall 2022

Description

They are specific numbers that we see in nature all the time, sometimes called *nature's code*. Together they are called the Fibonacci sequence.

The idea is simple: the next number is equal to the last two numbers in the sequence. If you look in nature these numbers appear everywhere. Bananas will contain three seed sections, apples five, in fact, chances are that no matter the plant you are looking at it will have 3,5,8,13 ~ pedals or seeds sections. (pine cones, snail shells, broccoli, pineapples, etc)

In nature these numbers represent the most efficient way to pack as many seeds as possible.

Inputs

The **Fibonacci sequence Circuit** will have 3 inputs, a_0 to a_2 which represent the binary representation of the number to be indexed from the fibonacci sequence. The input representing 1 will represent the first number in the sequence. The maximum decimal number these bits can represent is 7.

Outputs

The **Fibonacci sequence Circuit** will have 4 outputs b_0 to b_3 which represent the binary presentation of the number outputted at that index, the index of 3 will give an output of 2 according to the sequence. The maximum decimal number these bits can represent is 15.

Identical Output case

Table below shows two cases where output is identical

Input Decimal	$\mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_0$	Output	$\mathbf{b}_3\mathbf{b}_2\mathbf{b}_1\mathbf{b}_0$
1	001	1	0001
2	010	1	0001

Final Truth Table

Table below gives a summary of the circuit's behavior.

Input Decimal	$a_2 a_1 a_0$	Output	$\mathbf{b}_3\mathbf{b}_2\mathbf{b}_1\mathbf{b}_0$
0	000	0	0000
1	001	1	0001
2	010	1	0001
3	011	2	0010
4	100	3	0011
5	101	5	0101
6	110	8	1000
7	111	13	1101

PC/CP220 Project Phase I Checklist (3.01)

Α.	A. General				
	1.	Professionally presented Neat, etc.			
	2.	Properly identified (eg. name, id)			
	3.	On time at beginning of lab with checklist			
	4.	Good grammar (eg. complete sentences where required)			
	5.	Correct spelling			
B. Content					
D .	1.	Sufficient background			
		(ie. problem circuit is to solve)			
	2.	Inputs are specified (eg. A_0, A_1, A_2, A_3 - binary)			
	3.	Outputs are specified (eg. L_1, S_1, L_2, S_2 , etc dashes/dots)			
	4.	Error conditions and responses to them are specified (or stated that none exist)			
	5.	Ambiguous possibilities have been eliminated (ie. don't care conditions) (or stated that none exist)			