ISYE 3133 Project 2

Rohan Bhagat

October 13 2023

Non-Decision Variables

k = # of shifts needing to be staffed

n = # of job types.

s=# of consecutive shifts worked that constitute a workday.

 $p_{1,j} =$ the amount an employee of type j is paid to work a regular workday comprising s shifts, $0 \le j \le n$

 $p_{2,j} =$ the amount an employee of type j is paid to work an overtime shift, $0 \le j \le n$

 $r_{i,j}$ = the number of employees of type j that must be working during shift i in order to meet staffing requirements, $0 \le i \le k$, $0 \le j \le n$

Decision Variables:

 $x_{1,i,j}$ = the number of employees of type j hired to begin work in shift i and work a regular workday comprised of s shifts (no overtime), 0 <= i < k, 0 <= j < n

 $x_{2,i,j}$ = the number of employees of type j hired to begin work in shift i and work a regular workday comprised of s shifts and an additional overtime shift, $0 \le i \le k$, $0 \le j \le n$

Objective Function:

$$\min\{\sum_{j=0}^{n-1}\sum_{i=0}^{k-1}(x_{1,i,j})*(p_{1,j})+(x_{2,i,j})*(p_{1,j}+p_{2,j})\}$$

Constraints:

$$\sum_{t=i-s+1}^{i} x_{1,(t)mod(k),j} + \sum_{t=i-s}^{i} x_{2,(t)mod(k),j} >= r_{i,j}, \forall i,j$$

Implementation Notes

Gurobi Implementation will make use of matrices A and B, containing all $x_{1,i,j}$ and $x_{2,i,j}$ to simplify the LP. A and B are defined as follows:

 $A_{(kxn)} = A$ zero-indexed $k \times n$ matrix where the element $A_{i,j}$ represents the # of employees of type j beginning work in shift i and working 0 overtime shifts, $0 < i \le k, 0 < j \le n$

 $B_{(kxn)}=$ A k x n matrix where the element A_{ij} represents the # of employees of type j-1 beginning work in shift i-1 and working exactly 1 overtime shifts, $0 < i \le k, 0 < j \le n$