1 Historical Background

Theorem 1.1. $x^n + y^n = z^n$ has no solutions in \mathbb{Z} for n > 2.

Proof. Recall that the polynomial $f(z) = z^n + 1$ has the factorization,

$$f(z) = \prod_{i=0}^{n-1} (z + \zeta_n^i)$$

where $\zeta_n = e^{2\pi i/n}$ is a primitive n^{th} -root of unity. Thus,

$$x^{n} + y^{n} = \prod_{i=0}^{n-1} (x + \zeta_{n}^{i}y)$$

2 Number Fields

- 3 The Class Group
- 4 Cyclotomic Fields
- 5 The Case of Regular Primes
- 6 Elliptic Curves and Modularity
- 7 Wiles' proof