TBA

Ke-Han Chen

Department of Applied Mathematics National Chiao Tung University

October 29th, 2018

Preliminaries

Theorem

If C is nonnegative square matrix, then the following (i)-(iii) hold.

- (i) The spectral radius $\rho(C)$ is an eigenvalue of C with a corresponding nonnogative right eigenvector and a corresponding nonnegative left eigenvector.
- (ii) If there exists a column vector v > 0, and a nongative number λ such that $Cv \le \lambda v$, then $\rho(C) \le \lambda$.
- (iii) If there exists a column vector $\mathbf{v} \geq 0, \mathbf{v} \neq 0$ and a nonnegative number λ such that $C\mathbf{v} \geq \lambda \mathbf{v}$, then $\rho(C) \leq \lambda$.

Preliminaries

The following theorem is from [].

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ii})$, P and Q be $n \times n$ matrices. Assume that

- (i) $PCQ \leq PC'Q$;
- (ii) there exist a nonnegative column vector $\mathbf{u} = (u_1, u_2, \dots, u_n)^T$ and a scalar $\lambda' \in \mathbb{R}$ such that λ' is an eigenvalue of C' with associated eigenvector Qu;
- (iii) there exist a nonnegative row vector $v^T = (v_1, v_2, \dots, v_n)$ and a scalar $\lambda \in \mathbb{R}$ such that λ is an eigenvalue of C with associated left eigenvector v^TP ; and
- (iv) $v^T PQu > 0$.

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

$$(PC'Q)_{ij} = (PCQ)_{ij}$$
 for $1 \le i, j \le n$ with $v_i \ne 0$ and $u_j \ne 0$.

Proof

Multiplying the nonnegative vector u in (ii) to the right of both terms of (i),

$$PCQu \le PC'Qu = \lambda'PQu.$$
 (1)

Multiplying the nonnegative left eigenvector v^T of C for λ in assumption (iii) to the left of all terms in (??), we have

$$\lambda v^T P Q u = v^T P C Q u \le v^T P C' Q u = \lambda' v^T P Q u. \tag{2}$$

Now delete the positive term $v^T PQu$ by assumption (iv) to obtain $\lambda \leq \lambda'$ and finish the proof of the first part.

Proof (Continue)

Assume that $\lambda=\lambda'$, so the inequality in (??) is an equality. Especially $(PCQu)_i=(PC'Qu)_i$ for any i with $v_i\neq 0$. Hence $(PCQ)_{ij}=(PC'Q)_{ij}$ for any i with $v_i\neq 0$ and any j with $u_j\neq 0$. Conversely, (??) implies

$$v^T PCQu = \sum_{i,j} v_i (PCQ)_{ij} u_j = \sum_{i,j} v_i (PC'Q)_{ij} u_j = v^T PC'Qu,$$

so
$$\lambda = \lambda'$$
 by (??).

Our Method

Throughout fix $k \in [n-1]$. Let E_{kn} denote the $n \times n$ binary matrix with a unique 1 appearing in the position k, n of E_{kn} . We will apply the previous theorem with P = I and

$$Q = I + E_{kn} = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & \ddots & & 1 \\ & & & 1 & \\ 0 & & & 1 \end{pmatrix}.$$

k-rooted vector

Definition

A column vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)^T$ is called *k-rooted* if $\mathbf{v}_j \geq 0$ for $1 \leq j \leq n$ and $\mathbf{v}_k \geq \mathbf{v}_n$.

The following Lemma is immediate from the above definition.

Lemma

vector rooted lemma If $u = (u_1, u_2, ..., u_n)^T$ and $v' = (v'_1, v'_2, ..., v'_n) := Qu = (u_1, ..., u_{k-1}, u_k + u_n, u_{k+1}, ..., u_n)^T$, then

- (i) $\sqrt{\ }$ is k-rooted if and only if u is nonnegative;
- (ii) $u_k > 0$ if and only if $v_k > v_n$.

Our first result

Theorem

Let $C = (c_{ij})$, $C' = (c'_{ij})$ be $n \times n$ matrices. Assume that

- (i) $C[-|n| \le C'[-|n|]$ and $c_{ik} + c_{in} \le c'_{ik} + c'_{in}$ for all $1 \le i \le n$;
- (ii) there exist a k-rooted vector $V = (V_1, V_2, \dots, V_n)^T$ and a scalar $\lambda' \in \mathbb{R}$ such that λ' is an eigenvalue of C' with associated eigenvector V;
- (iii) there exists a nonnegative vector $v^T = (v_1, v_2, ..., v_n)$ and a scalar $\lambda \in \mathbb{R}$ such that λ is an eigenvalue of C with associated left eigenvector v^T ;
- (iv) $v^T v' > 0$.

Then $\lambda \leq \lambda'$. Moreover, $\lambda = \lambda'$ if and only if

- (a) $c_{ik} + c_{in} = c'_{ik} + c'_{in}$ for $1 \le i \le n$ with $v_i \ne 0$ and $v'_n \ne 0$;
- (b) $c'_{ij}=c_{ij}$ for $1\leq i\leq n,\ 1\leq j\leq n-1$ with $v_i\neq 0$ and $v'_j>v'_n.$

k-rooted matrix

Definition ((k,n)-sum)

For a matrix $C'=(c'_{ij})$ of n columns, the (k,n)-sum vector of C' is the vector of the sum of the k-th and n-th columns of C', where $k \leq n-1$.

Definition (k-rooted matrix)

A matrix $C=(c'_{ij})$ is called k-rooted if its columns and its (k,n)-sum vector are all k-rooted except the last column of C.

Theorem

If C' is a k-rooted matrix, then $Q^{-1}C'Q$ is nonnegative, $\rho(C')$ is an eigenvalue of C', and C' has a k-rooted eigenvector V = Qu for $\rho(C')$, where u is a nonnegative eigenvector of $Q^{-1}C'Q$ for $\rho(C')$. Moreover, with $V = (V_1, V_2, \ldots, V_n)^T$, $r'_i = C'_{ik} + C'_{in}$ the following (i)-(ii) hold.

- (i) If C'(k|n) is positive, then \sqrt{n} is positive.
- (ii) If C'(k|n) is positive and $r'_i > r'_n$ for all $1 \le i \le n-1$, then $v'_j > v'_n$ for all $1 \le j \le n-1$.

Proof.

(i) suppose that C'[n|n) is positive and $V_n = 0$. Then

$$\sum_{j=1}^{n-1} c'_{nj} v'_j = \sum_{j=1}^n c'_{nj} v'_j = (C'v')_n = \rho(C') v'_n = 0.$$

Hence ν' is a zero vector since $c'_{nj} > 0$ for $j \le n-1$, a contradiction. So $\nu'_n > 0$ and $\nu' > 0$ since ν' is rooted. (ii) The assumptions imply that the matrix $Q^{-1}C'Q$ in (??) is irreducible. Hence ν is positive. By Lemma ??(ii), $\nu'_i > \nu'_n$ for

irreducible. Hence u is positive. By Lemma $\ref{lem:substitute}$ (ii), $v_j > v_n$ for $1 \leq j < n$.

background

- (i) $C'^*Qu = \lambda * Qu = Q * \lambda u$ times Q^{-1} to the left
- (ii) $Q^{-1}C'Q^*u = \lambda * u$

Here the λ is expected to be the spectral radius of C' so we wish that $Q^{-1}C'Q>0$, such that this condition $Q^{-1}C'Q>0$ allows that

- (i) C' is k-rooted $\Leftrightarrow Q^{-1}C'Q > 0$
- (ii) C' is k-rooted $\Rightarrow C'$ has a rooted eigenvector

Proof.

if C' is k-rooted, all columns and (k,n)-sum are rooted except the last one and then $c'_{kj}-c'_{nj}\geq 0$ and $c'_{ij}\geq 0$ for $i\neq k,i< n$, for $1\leq j\leq n-1$. So all columns except the last of $Q^{-1}C'Q$ is nonnegative.

Remark

$$Q^{-1} = I - E_{kn} = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & \ddots & & -1 \\ & & & 1 & \\ 0 & & & 1 \end{pmatrix}.$$

The matrix $Q^{-1}C'Q$ is

Proof.

C' is k-rooted also implies that (k,n)-sum vector is k-rooted, the last column of $Q^{-1}C'Q$ is nonnegative. conversely, if all the columns of $Q^{-1}C'Q$ are nonegative, C' is k-rooted.

second, C' is k-rooted implies that the two postulations of the lemma, C'(k|n) is positive and $r'_i > r'_n$ for all $1 \leq i \leq n-1$ also note that the conclusion of the lemma !!adapt it!! is v' is positive. and $v'_j > v'_n$ for all $1 \leq j \leq n-1$. ,that is, the eigenvector of C' is k-rooted.

application and some summantion

Theorem

maybe the form of Q, is able to generalize the condition of some matrices with same eigenvalues

or the choice of C' and Q might affect the spectral radius. the form of eigenvector transformed but the relation in reader's mind remain, so he or she doesn't comprehense the condition difference immediately.

 $\mathit{Q}^{-1}\mathit{C}'\mathit{Q} > 0 \Rightarrow \mathit{C}'$ has a rooted eigenvector

Theorem

Let C be an $n \times n$ nonnegative matrix. For $1 \le i \le n$ and $1 \le j \le n-1$, choose r_i' , c_{ij}' such that $c_{ij}' \ge c_{ij}$, $r_i' \ge c_{ik} + c_{in}$ and $c_{kj}' \ge c_{nj}' > 0$, and let $c_{in}' := r_i' - c_{ik}'$. Then the $n \times n$ matrix $C' = (c_{ij}')$ has a positive k-rooted eigenvector for $\rho(C')$ and $\rho(C) \le \rho(C')$.

Proof

Example

For the following 4×4 matrix

$$C = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$

we choose

$$C' = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

Then $\rho(C) \leq \rho(C')$ by previous theorem.

conclusion

Theorem