Premières propriétés

Exercice 1: Maths financières 101

Une banque propose un placement à 1,5% par an, c'est à dire que chaque année, la banque ajoute 1,5% de ce que contient votre compte à celui-ci. Vous investissez 100%, puis ne touchez plus à votre compte.

- 1. Combien d'argent avez-vous sur votre compte au bout d'un an? Au bout de deux ans? Après dix ans?
- 2. Modélisez cette suite. Reconnaissez-vous une suite connue?
- 3. Au bout de combien d'années aurez-vous 1000€ sur votre compte?

Exercice 2:

On définit une suite récurrente $(u_n)_{n\in\mathbb{N}}$ par la donnée de u_1 et la condition suivante :

$$\forall n \in \mathbb{N} \quad n \ge 1 \quad u_{n+1} = \frac{5u_n + 3}{u_n + 3}$$

- 1. On pose $v_n = \frac{u_n 3}{u_n + 1}$
 - (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique; en préciser la raison.
 - (b) Calculer v_n en fonction de u_1 et de n
- 2. Etudier la suite $(u_n)_{n\in\mathbb{N}}$ dans les cas suivants :

(a)
$$u_1 = 3$$

(b)
$$u_1 = -1$$

(c)
$$u_1 = 4$$

Exercice 3:

On considère le programme python suivant :

```
def Exercice():
x=1
y=10
while(x+y >5):
    y=2*x+y
    x=-2*x
```

Pour étudier le comportement de ce programme, et, en particulier savoir s'il ne boucle pas de manière infinie, on considère les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ dans lesquelles, les nombres x_n et y_n représentent l'état (ou les valeurs) des variables x et y à l'itération n. Ainsi, nous avons :

$$\begin{cases} x_0 = 1 \text{ et } y_0 = 10\\ x_{n+1} = -2x_n\\ y_{n+1} = 2x_n + y_n \end{cases}$$

1. Calculer x_1, y_1, x_2, y_2

2. Démontrer que $x_n = (-2)^n$

3. Démontrer que $y_n = 10 + \frac{2}{3} (1 - (-2)^n)$

4. Démontrer qu'il existe un rang n tel que

l'instruction

while (x+y>5)

soit fausse.

5. Que conclure quant à la terminaison du programme?

Testez ce programme en Python.

Limites

Exercice 4:

On considère la suite $(u_n)_{n\in\mathcal{N}}$ définie par :

$$\begin{cases} u_1 = \frac{1}{3} \\ u_{n+1} = \frac{n+1}{3n} u_n \end{cases}$$

1. Montrer que la suite de terme général $v_n = \frac{u_n}{n}$ est une suite géométrique

2. En déduire une formule explicite de u_n

3. Donner $\lim_{n\to+\infty} u_n$

Exercice 5:

Soit $(u_n)_{n\geq 0}$ une suite de rééls stritements positifs telle que $\forall n>1, \frac{u_n}{u_{n-1}}\leq \ell<1$. Montrer que la suite converge et que $\lim_{n\to\infty}u_n=0$

Exercice 6:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n=\frac{1}{2}\left(1+\frac{1}{n}\right)^2$

1. Quelle est limite de cette suite?

2. Justifier l'existence d'un entier N_0 , tel que si $n > N_0$, alors $\frac{1}{2} \leqslant u_n \leqslant \frac{49}{72}$

3. Calculer l'entier N_0

Exercice 7: * Somme des termes d'une suite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et telle que $u_0=a$.

Soit
$$n \in \mathbb{N}$$
, montrer $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = \frac{(n+1)(u_0 + u_n)}{2} = \frac{(n+1)(2a + nr)}{2}$

2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q où q est différent de 1 $(q\neq 1)$

Montrer
$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + \dots + u_n = \frac{u_0(1 - q^{n+1})}{1 - q}$$

Que dire dans le cas q = 1?

Exercice 8 : * Triangle de Pascal et automates cellulaires

On défini les coefficient binomiaux par les formule de récurrence

$$\binom{n}{k} := \begin{cases} 1 & n = 0, k = 0; \\ 0 & \text{if } n < 0 \text{ ou } k < 0 \text{ ou } k > n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{sinon } . \end{cases}$$

- 1. sur une grille, calculer $\binom{n}{k}$ pour $0 \le k, n \le 8$
- 2. sur une grille, colorier la case (n,k) en noir si $\binom{n}{k}$ est impair, en blanc sinon.
- 3. donner et démontrer une formule pour calculer la couleur c(n,k) de la case (n,k), et l'utiliser pour colorier la grille de taille 17×17

La limite de la forme obtenue s'appelle le triangle de Sierpiński