

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra 8, Fevereiro 2022 Exame Época Recurso Duração: 2:00h

Nom	e:	Nº Estudante:			
Obs	Não são permitidos me calculadoras. Qualquer tentativa de intervenientes. Respostas na folha de pr	eios electrón fraude con	fuma página A4 de apontamentos) nicos (computador, telemóveis, etc.), excepto nduzirá à anulação da prova para <u>todos</u> os s erradas subtraem cotação.		
função	dere que X é uma variável esto o linear dessa variável. ue a(s) opção(ões) verdadeira(s) H(X) < 2 bits/símb.)	provável com 16 estados possíveis e que $f(X)$ é uma $f(X) \ge H(f(X))$		
	\square H(X f(X)) = H(X) bits/sín	nb. □ Ne	enhuma das anteriores		
Nas c	ondições da alínea a) observa-s $\square H(X,f(X)) = H(X) + H(f(X))$		$\square \ H(X f(X))=H(f(X))$		
	\square H(X,f(X)) \leq 4 bits/símb.	composto	☐ Nenhuma das anteriores		
Liga o e=emp esulta	de Honra", em que o alfabeto de pate, d=derrota). Assuma que	e resultados p todas as equip pendentes. Se	Iltados de 10 jogos da equipa de futebol da AAC na possíveis em cada jogo é $A = \{v, e, d\}$ ($v = vitória$, pas do campeonato são equiparáveis e que os eja Y = "total de pontos da AAC nos 10 jogos" pontos).		
a) N	Jestas condições observa-se que	e I(X;Y) é igu	al a:		
	□ 0 □ H(X)		☐ H(Y) ☐ Nenhuma das anteriores		
o) N	las condições da alínea a) obser	va-se que H(X Y) é igual a:		
	$\Box H(X,Y)$ $\Box H(X)-H(Y)$		☐ H(X) ☐ Nenhuma das anteriores		
e) N	las condições da alínea a) obser	va-se que H(Y X) é igual a:		
	□ H(Y) □ H(X,Y)		□ 0 □ Nenhuma das anteriores		

3 –	Considere uma fonte de informação descrita pelo alfabeto $A=\{A, B, C, D, E, F, G, H, I, J, K\}$. Pretende-se codificar a fonte usando uma árvore de Huffman adaptativa.				
	a) O código pré-acordado para o símbolo G é:				
	□ 0101 □ 010	□ 011 □ 0011			
	b) Indique o bitstream resultante da codificaç	ão da seguinte mensagem: GGFHGF			
	□ 10010010100011001 □ 10010001010111000101	☐ 10010010100011101 ☐ Nenhum dos anteriores			
4 –	Assinale as afirmações verdadeiras e falsas:				
	A utilização de preditores na codificação de imagens tem como objetivo diminuir a redundância das cores da imagem				
	Na codificação GIF, o dicionário é inicializado com um número de entradas igual ao dobro do número de cores na paleta de cores da imagem.				
	A utilização do método Burrows Wheeler reduz a entropia da fonte de informação.				
	A utilização do método Move to Front tem o objetivo de aumentar a redundância da fonte de informação.				
	A codificação BZip2 combina vários métodos, entre eles o Burrows Wheeler, RLE, Move to Front e Delta encoding.				
	No deflate a unidade a codificar é a informação contida em menos de 8 bits.				
	No deflate a codificação LZ77 implica sempre o envio de 3 valores.				
	No GIF o LZW pode fazer reset ao dicionário.				
	No RLE assume-se que os símbolos são dependentes.				
	O objectivo do Move-to-Front é tornar a fonte mais dependente.				
	Regra geral o RLE e o Burrows Wheeler estão associados.				
	O Move-to-Front tende a aumentar a entropia.				
	Contextos grandes no método PPM aumenta a probabilidade de se obter sequências grandes de ESC				
	Na codificação GIF, o dicionário duplica de tamanho sempre que enche, até um máximo de 4098 entradas.				
	Nos métodos de codificação com preditores, a informação codificada é a diferença entre o resultado da predição e a informação real.				
	As funções de hashing não permitem ser usadas em	funções de autenticação.			
	As funções de hashing garantem sempre a produçã distintos.	o de saídas (outputs) distintas para entradas (inputs)			
	Numa assinatura digital a propriedade de não repúdio é obtida por recurso à chave privada.				
П	O Cipher Block Chain está sujeito a ataques de Meet-in-the-middle				

	Num esquema de cifi máxima temos que te							rantir segurança
	Assumindo que $H(z)=325$ bits, em que z é a chave e y representa a cifra, então garante-se segredo perfeito se $H(x) \le 125$ bits, sendo x a mensagem.							
	Seja X a mensagem a ser encriptada com a chave Z e seja Y a respetiva cifra. Assumindo que o número de símbolos nos alfabetos de entrada e de saída são iguais, pretende-se que $H(X)=H(Y Z)$.							
5 – 0	5 – Considere uma fonte de informação com alfabeto A={0,1,2}. Seja X a variável estocástica correspondente ao símbolo e Y a variável estocástica correspondente ao símbolo anterior numa cadeia de símbolos. Assuma que a distribuição conjunta P(X,Y) é a que se apresenta na tabela seguinte:							
			P(X,Y)	X=0	X=1	X=2		
			Y=0	1/9	2/9	0		
		-	Y=1	0	0	1/9		
		Ĺ	Y=2	1/3	2/9	0		
c)	É possível afirmar-se			que permite o		Com		
		1.4921	bits/símb.	□ Nenhuma	a das anter	riores		
d)	Aplicando um código			ficar X, é po □ 1.3921 b		antir-se q	ue o pior de	sempenho será:
		1.5921	bits/símb.	□ Nenhuma	a das anter	riores		
e)	Na pior das hipóteses um código aritmético dimensionado para a transmissão de agrupamentos de símbolos terá um desempenho de: \$\Begin{align*} \Pi \tau \tau \tau \tau \tau \tau \tau \tau				pamentos de 10			
		1.5921	bits/símb.	□ Nenhuma	a das anter	riores		
f)	Considere a sequence			ão da seque	encia usan	do um a	lgoritmo ari	tmético poderá
		nissão do seguinte código:		□ 0.1756				
		0.5000		□ Nenhuma	a das anter	riores		
6 - Num sistema iCloud para armazenamento distribuído de informação em que um ficheiro é armazenado de forma distribuída por diversos servidores (cada um somente com uma fracção do ficheiro inicial), determine qual deverá ser a informação mútua ideal entre o ficheiro original e o ficheiro recuperado do sistema.								

7 -	Considere uma fonte de informação pertencente ao dicionário S={1,2,3,4,5}. a) Assumindo que os símbolos são todos equiprováveis, indique a sequência de bits resultante da codificação da sequencia "1233554424" usando um código artimético		
ı		inteiro.	

agr	9 - No trabalho 1, foi implementada uma solução de codificação de fontes de informação usando agrupamento de 2 símbolos contíguos. Qual o impacto (positivo e negativo) desta solução, em comparação com a codificação de Huffman de símbolos individuais.				