Propriedades das Linguagens Regulares

Jerusa Marchi

Universidade Federal de Santa Catarina Departamento de Informática e Estatística

18 de Junho de 2020

Propriedades das Linguagens Regulares

- Propriedades de Fechamento
 - união
 - intersecção
 - complemento
 - estrela
 - concatenação
 - reverso
 - etc

Fechamento Sob a Operação de União

Teorema.

A classe de linguagens regulares é fechada sob a operação de união.

Ideia da Demonstração.

Sejam L_1 e L_2 linguagens regulares. Queremos demonstrar que $L_1 \cup L_2$ é regular. A ideia é criar dois autômatos finitos não determinísticos, N_1 e N_2 , para L_1 e L_2 e combiná-los em um novo autômato finito não determinístico, N.

A máquina N deve aceitar sua entrada se N_1 ou N_2 aceitarem a sua entrada. A nova máquina tem um novo estado inicial que ramifica para os estados iniciais das máquinas N_1 e N_2 com transições ε . Desta forma, a nova máquina, não deterministicamente, adivinha qual das duas máquinas aceita a entrada. Se alguma máquina aceita a entrada, N aceitará a entrada.

Fechamento Sob a Operação de União

Fechamento Sob a Operação de União

Demonstração.

Sejam $N_1 = (K_1, \Sigma, \delta_1, q_1, F_1)$ que reconhece L_1 e $N_2 = (K_2, \Sigma, \delta_2, q_2, F_2)$ que reconhece L_2 . Constrói-se $N = (K, \Sigma, \delta, q_0, F)$ para reconhecer $L_1 \cup L_2$, da seguinte forma:

- $K = \{q_0\} \cup K_1 \cup K_2$, onde q_0 é o estado inicial de N
- \bullet $F = F_1 \cup F_2$
- δ é da forma que para qualquer $g \in K$ e qualquer $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in \mathcal{K}_1 \ \delta_2(q,a) & q \in \mathcal{K}_2 \ \{q_1,q_2\} & q = q_0 \; \mathrm{e} \; a = arepsilon \ \phi & q = q_0 \; \mathrm{e} \; a
eq arepsilon \end{cases}$$

Fechamento Sob a Operação de Concatenação

Teorema.

A classe de linguagens regulares é fechada sob a operação de concatenação.

Ideia da Demonstração.

Sejam L_1 e L_2 linguagens regulares. Queremos demonstrar que $L_1 \circ L_2$ é regular. A ideia é criar dois autômatos finitos não determinísticos, N_1 e N_2 , para L_1 e L_2 e combiná-los em um novo autômato finito não determinístico, N.

Marque o estado inicial de N como sendo o estado inicial de N_1 . Os estados de aceitação de N_1 tem transições ε adicionais que, não deterministicamente, permite a ramificação para N_2 onde N_1 é um estado de aceitação, significando que ela encontrou uma parte da entrada que faz parte de L_1 . Os estados de aceitação de N são os estados de aceitação de N_2 , somente. Portanto, N aceita quando a entrada pode ser divididas em duas partes, onde a primeira parte é aceita por N_1 e a segunda parte por N_2 .

Fechamento Sob a Operação de Concatenação

Fechamento Sob a Operação de Concatenação

Demonstração.

Sendo $N_1=(K_1,\Sigma,\delta_1,q_1,F_1)$ que reconhece L_1 e $N_2=(K_2,\Sigma,\delta_2,q_2,F_2)$ que reconhece L_2 . Constrói-se $N=(K,\Sigma,\delta,q_1,F_2)$ para reconhecer $L_1\circ L_2$, da seguinte forma:

- $K = K_1 \cup K_2$.
- O estado q_1 é o mesmo estado inicial de N_1 .
- Os estados de aceitação F_2 são os mesmos estados de aceitação de N_2 .
- Defina δ da forma que para qualquer $q \in K$ e qualquer $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in K_1 \text{ e } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ e } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ e } a = \varepsilon \\ \delta_2(q,a) & q \in K2 \end{cases}$$

Fechamento Sob a Operação Estrela

Teorema.

A classe de linguagens regulares é fechada sob a operação estrela.

Ideia da Demonstração.

Tem-se a linguagem regular L_1 e queremos provar que L_1^* é regular. A ideia é modificar o autômato finito não determinístico N_1 para L_1 de forma que ele reconheça L_1^* . O autômato finito não determinístico resultante N aceitará a entrada, desde que ela possa ser quebrada em diversas partes e N_1 aceite cada uma delas.

Nós podemos construir N da mesma forma que N_1 , adicionando transições ε que retornam, dos estados de aceitação, para o estado inicial. Desta forma, quando o processamento chega ao final de uma parte da entrada que N_1 aceita, a máquina N tem a opção de pular de volta ao estado inicial para tentar ler outra parte da entrada que N_1 aceita. Adicionalmente, nós devemos modificar N para que ela aceite ε , que sempre é membro de L_1^* .

Fechamento Sob a Operação Estrela

Fechamento Sob a Operação Estrela

Demonstração.

Sendo $N_1 = (K_1, \Sigma, \delta_1, q_1, F_1)$ que reconhece L_1 . Construa $N = (K, \Sigma, \delta, q_0, F)$ para reconhecer L_1^* , da seguinte forma:

- $K = \{q_0\} \cup K_1$.
- O estado q_0 é o novo estado inicial.
- $F = F_1 \cup \{q_0\}.$
- Defina δ da forma que para qualquer $q \in K$ e qualquer $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in K_1 \text{ e } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ e } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ e } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ e } a = \varepsilon \\ \emptyset & q = q_0 \text{ e } a \neq \varepsilon \end{cases}$$