=== 章末問題

1. 厚さ d の誘電体板で、比誘電率 ε が板の面に垂直にとった x 座標の関数で、d>x>0 で $\varepsilon(x)=1+ax^2$ で変化している.この誘電体板に外部から x 方向に電界 $E_{\rm ex}$ を加える.誘電体内の電束密度 D(x),電界 E(x),反電界 $E_{\rm d}(x)$,および分極 P(x) を求めよ.

{ 答
$$D(x) = \varepsilon_0 E_{\text{ex}}, \quad E(x) = E_{\text{ex}}/(1 + ax^2),$$
 以下略 }

- 2. 比誘電率 2.0 の誘電体をはさんだ平行平板コンデンサーに $\pm\omega$ の電荷密度の電荷を与えた. 誘電体内部の電東密度と電界の大きさを求めよ. ただし, $\omega=N_{\rm gas}\times 10^{-9}~{\rm C/m^2}$ とする.
- 3. (a) 図 10.7(a) のように平行平板コンデンサーの極板間に、半分だけ比誘電率 ε の誘電体がはさんである。誘電体内と真空部分の電東密度の大きさをそれぞれ D_1 , D_2 とするとき、 D_1 と D_2 の比はいくらか。ただし、 $\varepsilon = N_{\varphi_{\overline{a}}}$ とし、電気力線はすべて極板に垂直とせよ。
 - (b) 図 10.7(b) の誘電体中と真空中の電界をそれぞれ E_1 , E_2 とする. E_1/E_2 を求めよ. ただし、誘電体の $\bar{\epsilon}=N_{\rm PH}$ である.
 - (a) では境界条件 (10.20) を, (b) では境界条件 (10.21) を用いること. (コンデンサーの並列、直列の公式を直接用いないこと.)

誘電体	
	誘電体
)	(b)

図 10.7: