Inhaltsverzeichnis

1	Kon	nplexe Zahlen	8
	1.1	Definition	8
	1.2	Veranschaulichung	8
	1.3	Rechenregeln in $\mathbb C$	8
	1.4	Definition Absolutbetrag	9
	1.5	Rechenreglen für den Absolutbetrag	10
	1.6	Darstellung durch Polarkoordinaten	11
	1.7	Additionstheoreme der Trigonometrie	12
	1.8	geometrische Interpretation der Multiplikation	12
	1.9	Bemerkung und Definition	13
	1.10	Satz: Komplexe Wurzeln	14
	1.11	Beispiel	14
	1.12	Bemerkung	15
2	Folg	gen und Reihen	15
	2.1	Definition	15
	2.2	Beispiel	15
	2.3	Definition	16
	2.4	Definition	16
	2.5	Beispiele	17
	2.6	Satz: Beschränktheit und Konvergenz	19
	2.7	Bemerkung	19
	2.8	Satz (Rechenregeln für konvergente Folgen)	19
	2.9	Satz: Kriterien für Nullfolgen	20
	2.10	Bemerkung	22
		Definition	22
	2.12	Satz: Landausymbole bei Polynomen	23
	2.13	Bemerkung	23
		Definition	24
		Beispiel	24
	2.16	Satz: Monotonie und Konvergenz	24

	2.17	Satz (Cauchy'sches Konvergenzkriterium)	25
	2.18	Definition	25
	2.19	Satz: Reihenkonvergenz	26
	2.20	Beispiele	27
	2.21	Satz (Leibniz-Kriterium)	29
	2.22	Satz (Majoranten-Kriterium)	29
	2.23	Beispiel	29
	2.24	Definition	30
	2.25	Korollar	30
	2.26	Satz: Wurzel- und Quotientenkriterium	30
	2.27	Bemerkung	32
	2.28	Beispiel	32
	2.29	Bemerkung	32
	2.30	Definition	32
	2.31	Satz: Konvergenz im Cauchy Produkt	33
3	Pote	enzreihen	33
		Definition	33
	3.2	Beispiel	33
	3.3	Satz	34
	3.4	Bemerkung	35
	3.5	Die Exponentialreihe	35
4	Fun	ktionen und Grenzwerte	38
	4.1	Definition	38
	4.2	Beispiel	
	4.3	Definition	41
	4.4	Beispiel	42
	4.5	Definition	43
	4.6	Beispiel	43
	4.7	Satz $(\varepsilon - \delta)$ -Kriterium	45
	4.8	Satz (Rechenregeln für Grenzwerte)	48
	4.9	Beispiel	48
	4 10	Bemerkung	48

	4.11 Beispiel	49
	4.12 Definition	49
	4.13 Beispiel	50
	4.14 Bemerkung	50
	4.15 Definition	50
	4.16 Satz: Grenzwerte gegen unendlich	51
	4.17 Beispiel	52
5	Stetigkeit	54
	5.1 Definition	54
	5.2 Satz	54
	5.3 Beispiel	54
	5.4 Satz (Rechenregeln für Stetigkeit)	56
	5.5 Satz: Hintereinanderausführung von stetigen Funktionen	56
	5.6 Beispiel	57
	5.7 Satz: Stetigkeit von Potenzreihen	57
	5.8 Korollar	57
	5.9 Satz (Nullstellensatz für stetige Funktionen)	57
	5.10 Korollar (Zwischenwertsatz)	58
	5.11 Satz (Min-Max-Theorem)	59
	5.12 Definition	59
	5.13 Satz: Injektive Funktionen nur bei Monotonie	59
	5.14 Satz (Stetigkeit der Umkehrfunktion)	60
	5.15 Korollar	61
	5.16 Satz: Exponentialfunktion und Logarithmus naturalis	61
	5.17 Satz: Wachstum des natürlichen Logarithmus'	62
	5.18 Definition	62
	5.19 Satz	63
	5.20 Bemerkung	63
	5.21 Definition	63
	5.22 Satz	63

6	Diff	erenzierbare Funktionen	64
	6.1	Definition	65
	6.2	Beispiel	65
	6.3	Satz	66
	6.4	Korollar	66
	6.5	Satz (Ableitungsregeln)	67
	6.6	Beispiel	67
	6.7	Satz	68
	6.8	Satz: Ableitungsregeln von cosinus und sinus	68
	6.9	Beispiel	69
	6.10	Satz: Potenzreihen und diverenzierbarkeit	70
	6.11	Korollar	70
	6.12	Satz (Ableitung der Umkehrfunktion)	70
	6.13	Bemerkung	71
	6.14	Satz	72
	6.15	Satz (logarithmische Abbildung)	72
	6.16	Beispiel	72
	6.17	Definition	72
	6.18	Satz	73
	6.19	Satz (Mittelwertsatz)	74
	6.20	Korollar	75
	6.21	Korollar	75
	6.22	Satz (Regeln von L'Hôpital)	75
	6.23	Beispiel	76
7	Das	bestimmte Integral	76
	7.1	Definition	77
	7.2	Definition	78
	7.3	Satz: Regelfunktionen	78
	7.4	Satz: Regelfunktion und Stetigkeit	79
	7.5	Beispiel	79
	7.6	Lemma	81
	7.7	Definition	82

	7.8	Beispiel	82
	7.9	Satz (Rechenregeln für Integrale)	83
	7.10	Beispiel	83
	7.11	Satz (Mittelwertsatz der Integralrechnung)	83
8	Der	Hauptsatz der Differential- und Integralrechnung	84
	8.1	Definition	84
	8.2	Definition	84
	8.3	Bemerkung	86
	8.4	Beispiel	86
	8.5	Satz	87
	8.6	Satz	87
	8.7	Definiton	89
	8.8	Satz (Hauptsatz der Differential- und Integralrechnung)	89
	8.9	Beispiele	90
	8.10	Beispiel	91
	8.11	Satz (Partielle Integration)	91
	8.12	Beispiele	92
	8.13	Satz (Integration durch Substitution)	93
	8.14	Satz	94
	8.15	Beispiel	94
9	Mat	rizen und lineare Gleichungssysteme	95
	9.1	Definition	95
	9.2	Definition	96
	9.3	Definition	97
	9.4	Beispiel	97
	9.5	Satz (Rechenregeln von Matrizen)	99
	9.6	Definition	100
	9.7	Definition	102
	9.8	Definition	102
	9.9	Bemerkung	102
	9.10	Algorithmus zur Transformation einer Matrix auf Zeilenstufenform mit	
		elementaren Zeilenumformungen	103

9.11	Beispiel	104
9.12	2 Gauß-Algorithmus	104
9.13	Beispiel	106
Abbi	ldungsverzeichnis	
1	Veranschaulichung Komplexe Zahlen	8
2	Absolutbetrag	10
3	Imaginäre Zahlen im Koordinatensystem durch Polarkoordinaten	11
4	Winkel im Bogenmaß	11
5	Multiplizieren komplexer Zahlen	13
6	Multiplikation mit i	13
7	Beschränktheit von Folgen	17
8	Beschränkte aber nicht konvergente Folge	18
9	Cauchy'sches Konvergenzkriterium	25
10	Monotonie	28
11	Konvergenzradien	34
12	Die Exponentialreihe	37
13	$f(x) = x^3 - 2x^2 - x + 2$	39
14	e^x	40
15	Bogenmaß	40
16	Sinus und Cosinus	41
17	Tangens und Kotangens	42
18	x^2	43
19	$x{+}1 \ \dots $	44
20	Abschnittsweise definierte Funktion	45
21	$\sin(\frac{1}{x})$	45
22	$x \cdot \sin(\frac{1}{x})$	46
23	geometrische Darstellung des ε – δ Kriteriums	46
24	Abschnittsweise definierte Funktion	47
25	Grenzwerte gegen einen Festen Wert	49
26	Funktionen $\lim_{x\to\infty} = \infty$	51

27	$sin(\frac{1}{x})$	52
28	$\frac{e^x}{x^n}$	53
29	Abschnittsweise definierte Funktion	55
30	Sinus und Cosinus am Einheitskreis	56
31	Zwischenwerte	58
32	Eine Funktion und ihre Umkehrfunktion	60
33	$\exp(x)$ und $\ln(x)$	61
34	Verschiedene Arten Exponentialfunktionen	62
35	Logithmen mit Basen > 1 und < 1	64
36	Steigung am Steigungsdreieck	64
37	Sekante an Funktion	66
38	Abschnittsweise definierte cosinus Funktion	69
39	Zwei Funktionen an der Winkelhalbierenden	71
40	Ableitung keine Hinreichende Bedingung für Minima/Maxima	73
41	Eine Funktion und ihrer Steigung an der Stelle c	74
42	Flächeninhalt unter einer Funktion f	77
43	Treppenfunktion	78
44	Treppenfunktion	79
45	Abschnittsweise stetige Funktion	80
46	Treppenfunktion (Untersumme) von x^2	80
47	Nicht integrierbare Funktion	81
48	Mittelwertsatz der Integralrechnung	84
49	Lokal Integrierbar von u bis v	85
50	Die Welt der Funktionen	88
51	Stammfunktionbildung	88
52	Integral Berechnung $x \cdot \cos(x)$	92
53	Matrix Multiplikation	98

1 Komplexe Zahlen

1.1 Definition

Menge der komplexen Zahlen $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$

Addition:
$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

Multiplikation: $(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i^1$

 $\mathbb{R} \subset \mathbb{C}$, $a \in \mathbb{R}$: $a + 0 \cdot i = a$. Rein imaginäre Zahlen: $b \cdot i$, $b \in \mathbb{R}$, (0 + bi) i imaginäre Einheit. $z = a + bi \in \mathbb{C}$. $a = \Re(z)$ Realteil von z (Re(z)). $b = \Im(z)$ Imaginärteil von z (Im(z)). $\bar{z} = a - bi$ (= a + (-b)i) Die zu z konjugiert komplexe Zahl.

1.2 Veranschaulichung

Abbildung 1: Addition entspricht Vektoraddition

1.3 Rechenregeln in ℂ

a) Es gelten alle Rechenregeln wie in \mathbb{R} . (z.B Kommutativität bzgl. +, \cdot : $z_1+z_2=z_2+z_1$ und $z_1\cdot z_2=z_2\cdot z_1$)

¹Ausmultiplizieren und $i^2 = -1$ beachten

Inversenbildung bzgl. ::

 $z = a + bi \neq 0$, d.h $a \neq 0$ oder $b \neq 0$:

$$z^{-1} = \frac{1}{z} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$
$$z \cdot z^{-1} = 1$$

Beispiel:
$$\frac{5-7i}{3+2i} = (5-7i) \cdot (3+2i)^{-1}$$

$$= (5-7i) \cdot (\frac{3}{13} - \frac{2}{13}i)$$

$$= (\frac{15}{13} - \frac{14}{13}) + (-\frac{10}{13} - \frac{21}{13})i$$

$$= \frac{1}{13} - \frac{31}{13}i$$

Speziell: $(bi)^{-1} = \frac{1}{bi} = -\frac{1}{b}i$ insbesondere: $\frac{1}{i} = -i$

1.4 Definition Absolutbetrag

a) Absolutbetrag von
$$z = a + bi \in \mathbb{C}$$
: $|z| = +\underbrace{\sqrt{a^2 + b^2}}_{\in \mathbb{R}, \geq 0}$

$$\boxed{a^2 + b^2 = z \cdot \bar{z}}$$

$$|z| = +\sqrt{z \cdot \bar{z}}$$

$$(a+bi)\cdot(a-bi) = (a^2+b^2)+0i = a^2+b^2$$

|z| = Abstand von z zu 0

= Länge des Vektors, der z entspricht

b) Abstand von $z_1, z_2 \in \mathbb{C}$:

Abbildung 2: Graphische Definition des Absolutbetrages

$$d(z_1, z_2) := |z_1 - z_2|$$

1.5 Rechenreglen für den Absolutbetrag

(a)
$$|z| = 0 \Leftrightarrow z = 0$$

(b)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

(c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$$

$$|-z| = |z|$$

1.6 Darstellung durch Polarkoordinaten

a) Jeder Punkt \neq (0,0) lässt sich durch seine Polarkoordinaten (r, φ) beschreiben: $-r \geq 0, r \in \mathbb{R}$

Abbildung 3: Polarkoordinaten

 $0 \le \varphi \le 2\pi$, wird gemessen von der positiven x-Achse entgegen des Uhrzeigersinnes

Abbildung 4: Umrechnung Grad zu Bogenmaß

Umfang: 2π

 φ in Grad $\underline{\underline{\underline{\mathcal{Y}}}}_{360}^{2\pi\cdot\varphi}$ im Bogenmaß

Für Punkte mit kartesischen Koordinaten \neq (0,0) werden als Polarkoordinate (r, φ) verwendet.

b) komplexe Zahl z = a + ib

$$r = |z| = +\sqrt{a^2 + b^2}$$

$$a = |z| \cdot \cos(\varphi)$$

$$b = |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot \cos(\varphi) + i \cdot |z| \cdot \sin(\varphi)$$

$$z = |z| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

Darstellung von z durch Polarkoordinate

Beispiel:

a)
$$z_1 = 2 \cdot (\cos(\frac{\pi}{4}) + i \cdot \sin(\frac{\pi}{4}))$$

= $2 \cdot (0, 5\sqrt{2} + i \cdot 0.5\sqrt{2})$

b)
$$z_2 = 2 + i$$

 $|z_2| = \sqrt{5}$
 $z_2 = \sqrt{5} \cdot (\frac{2}{\sqrt{5} + \frac{1}{\sqrt{5}}}i)$ Suche φ mit $0 \le 2\pi$ mit $\cos(\varphi) = \frac{2}{\sqrt{5}}$, $\sin(\frac{1}{\sqrt{5}}z_2 \approx \sqrt{5} \cdot (\cos(0, 46) + i \cdot \sin(0, 46))$

c) Die komplexen Zahlen von Betrag 1 entsprechen den Punkten auf Einheitskreis:

$$\cos(\varphi) + i\sin(\varphi), 0 \le \varphi \le 2\pi$$

1.7 Additionstheoreme der Trigonometrie

(a)
$$\sin(\varphi + \psi) = \sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi)$$

(b)
$$\cos(\varphi + \psi) = \cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\varphi) \cdot \sin(\psi)$$

1.8 geometrische Interpretation der Multiplikation

a)
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

 $z = |z| \cdot (\cos(\psi) + i \cdot \sin(\psi))$
 $w \cdot z = |w| \cdot |z| \cdot (\cos(\varphi) \cdot \cos(\psi) - \sin(\varphi) \cdot \sin(\psi)) + i(\sin(\varphi) \cdot \cos(\psi) + \cos(\varphi) \cdot \sin(\psi))$
 $w \cdot z = |w \cdot z| (\cos(\varphi + \psi) + i \cdot \sin(\varphi + \psi))$

b)
$$z = i, w = a + ib$$

 $i \cdot w = -b \cdot ia$

Abbildung 5: Multiplizieren komplexer Zahlen

Multiplikation mit i ∐Drehung um 90°

Abbildung 6: Multiplikation mit i

1.9 Bemerkung und Definition

Wir werden später die komplexe Exponentialfunktion einführen.

 e^z für alle $z \in \mathbb{C}$ e = Euler'sche Zahl $\approx 2,718718...$

$$e^{z_1} = cde^{z_2} = e^{z_1 + z_2}, e^{-z} = \frac{1}{e^z}$$

Es gilt: $t \in \mathbb{R}$: $e^{it} = \cos(t) + i \cdot \sin(t)$

Jede komplexe Zahl lässt sich schreiben $z=r\cdot e^{i\cdot \varphi}$, $r=|z|,\varphi$ Winkel

 $r \cdot (\cos(\varphi) + i\sin(\varphi))$ ist Polarform von z. z = a + bi ist kartesische Form von z. $\bullet(r,\varphi)$ Polarkoordinaten $|e^{i\varphi}| = +\sqrt{\cos^2(\varphi) + \sin^2(\varphi)} = 1$ $e^{i\varphi}, 0 \le \varphi \le 2\pi$, Punkte auf dem Einheitskreis. $e^{i\pi} = -1$ $e^{i\pi} + 1 = 0$ Euler'sche Gleichung

1.10 Satz

Sei
$$w = |w| \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) \in \mathbb{C}$$

a) Ist
$$m \in \mathbb{Z}$$
, so ist $w^m = |w|^m \cdot (\cos(m \cdot \varphi) + i \cdot \sin(m \cdot \varphi))$
 $(m < 0 : w^m = \frac{1}{w^{|m|}}), w \neq 0$

- b) Quadratwurzeln
- c) Ist $n \in \mathbb{N}$, $w \neq 0$, so gibt es genau n n-te Wurzeln von w: $\sqrt[n]{w} = + \sqrt[n]{|w|} \cdot (\cos(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n}) + i\sin(\frac{\varphi}{n} + \frac{2\pi \cdot k}{n})), n \in \mathbb{N}, k \in \{0, ..., n-1\}$

Beweis. a) richtig, wenn m = 0, 1

$$m \ge 2$$
. Folgt aus (\star)

$$m = -a$$
:

$$w^{-1} = \frac{1}{w} = \frac{1}{|w|^2 \cdot (\cos^2(\varphi) + i \cdot \sin^2(\varphi))} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$$

$$= \frac{1}{w} = \frac{1}{midw| \cdot \underbrace{(\cos^2(\varphi) + i \cdot \sin^2(\varphi))}_{=1}} \cdot |w| \cdot \cos(\varphi) - \sin(\varphi)$$

$$= \frac{1}{|w|} \cdot (\cos(-\varphi + i \cdot \sin(-\varphi)) = |w|^{-1} \cdot (\cos(-\varphi) + \sin(-\varphi))$$

1.11 Beispiel

Quadratwurzel aus i:

$$|i| = 1$$

Nach 1.10 b):
$$\sqrt{i} = \pm (\cos(\frac{\pi}{4} + i \cdot \sin(\frac{\pi}{4})))$$

= $\pm(\frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}i)$

1.12 Bemerkung

Nach 1.10 hat jedes Polynom

$$x^n - w \ (w \in \mathbb{C})$$

eine Nullstelle in \mathbb{C} (sogar n verschiedene wenn $w \neq 0$)

Es gilt sogar : Fundamentalsatz der Algebra

(C. F. Gauß 1777-1855)

Jedes Polynom $a_n x^n + ... + a_0$

mit irgendwelchen Koeffizienten: $a_n \dots a_0 \in \mathbb{C}$ hat Nullstelle in \mathbb{C}

2 Folgen und Reihen

2.1 Definition

Sei
$$k \in \mathbb{Z}$$
, $A_k := \{m \in \mathbb{Z} : m > k\}$

$$(k = 0 A_0 \in \mathbb{N}_0, k = 1, A_n \in \mathbb{N})$$

Abbildung $a: A \Rightarrow \mathbb{R}(\text{oder }\mathbb{C})$

$$m \Rightarrow a_n$$

heißt Folge reeller Zahlen

$$(a_k, a_{k-1}...)$$

Schreibweise:

 $(a_m)_{m>k}$ oder einfach (a_m)

 a_m heißt m-tes Glied der Folge, m Index

2.2 Beispiel

- b) $a_n = n$ für alle n > 1 (1,2,3,4,5,6,7,8,9,10,...)

2.3 Definition 2 Folgen und Reihen

c)
$$a_n = \frac{1}{n}$$

 $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$

d)
$$a_n \frac{(n+1)^2}{2^n}$$
 $(2, \frac{9}{4}, 2, \frac{25}{16}, ...)$

e)
$$a_n = (-1)^n$$

 $(-1, 1, -1, 1, -1, 1, ...)$

f)
$$a_n = \frac{1}{2}a_{n_1} = \frac{1}{a_{n-1}}$$
 für $n \ge 2$, $a_1 = 1$ $(1, \frac{3}{2}, \frac{17}{12}, ...)$

g)
$$a_n = \sum_{i=1}^n \frac{1}{i}$$

 $(1, \frac{3}{2}, \frac{11}{6}, ...)$

h)
$$a_n = \sum_{i=1}^n (-1)^i \cdot \frac{1}{i}$$

 $(-1, \frac{-1}{2}, -\frac{-5}{6}, \dots)$

2.3 Definition

Eine Folge $(a_n)_{n>k}$ heißt *beschränkt*, wenn die Menge der Folgenglieder beschränkt ist.

D.h. $\exists D > 0 : -D \le a_n \le D$ für alle n > k.

2.4 Definition

Eine Folge $(a_n)_{n\geq k}$ heißt *konvergent* gegen $\varepsilon\in\mathbb{R}$ (konvergent gegen ε), falls gilt:

$$\forall \varepsilon > 0 \exists n(\varepsilon) \in \mathbb{N} \forall n \geq n(\varepsilon) : \mid a_n - c \mid < \varepsilon$$

 $c = \lim_{n \to \infty} a_n$ (oder einfach $c = \lim a_n$)

c heißt *Grenzwert* (oder Limes) der Folge (a_n)

(Grenzwert hängt nicht von endlich vielen Anfangsgliedern ab (der Folge))

2 Folgen und Reihen 2.5 Beispiele

Abbildung 7: Beschränktheit von Folgen

Eine Folge die gegen 0 konvertiert, heißt Nullfolge

2.5 Beispiele

a) $r \in \mathbb{R}$: $a_n = r$ für alle $n \ge 1$

$$(r, r, \ldots)$$

$$\lim_{n\to\infty} = r$$

$$|a_n - r| = 0$$
 für alle n

Für jedes $\varepsilon > 0$ kann man $n(\varepsilon) = 1$ wählen

b) $a_n = n$ für alle $n \ge 1$

Folge ist nicht beschränkt, konvergiert nicht.

c) $a_n = \frac{1}{n}$ für alle $n \ge 1$

$$(a_n)$$
 ist Nullfolge.

Sei $\varepsilon > 0$ beliebig. Suche Index $n(\varepsilon)$ mit $|a_n - o| < \varepsilon$ für alle $n \ge n(\varepsilon)$

D.s. es muss gelten.

$$\frac{1}{n} < \varepsilon$$
 für alle $n \ge n(\varepsilon)$

Ich brauche :
$$\frac{1}{n(\varepsilon)} < \varepsilon$$

Ich brauche
$$n(\varepsilon) > \frac{1}{\varepsilon}$$

Aus Mathe I folgt, dass solch ein $n(\varepsilon)$ existiert.

z.B
$$n(\varepsilon) - \lceil \frac{1}{2} \rceil + 1 > \frac{1}{\varepsilon}$$

2.5 Beispiele 2 FOLGEN UND REIHEN

$$|a_n - 0| < \frac{1}{n} < \varepsilon$$
 für alle $n \ge n(\varepsilon)$

d)
$$a_n = \frac{3n^2 + 1}{n^2 + n + 1}$$
 für lle $n \ge 1$

Behauptung:
$$\lim_{n\to\infty} a_n = 3$$

 $|a-3| = \left| \frac{3n^2+1}{n^2+n+1} - 3 \right| = \left| \frac{3n^2+1-3(n^2+n+1)}{n^2+n+1} \right|$
 $= \left| \frac{-3n-2}{n^2+n+1} \right| = \frac{3n+2}{n^2+n+1}$
Sei $\varepsilon > 0$. Benötigt wird $n(\varepsilon) \in \mathbb{N}$ mit $\frac{3n+2}{n^2+n+1} < \varepsilon$ für alle $n > n(\varepsilon)$.

$$\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$$

 $\frac{3n+2}{n^2+n+1} \le \frac{5n}{n^2} = \frac{5}{n}$ Wähle $n(\varepsilon)$ so, dass $n(\varepsilon) > \frac{5}{\varepsilon}$

Dann gilt für alle $n \ge n(\varepsilon)$.

$$|a_n - 3| = \frac{3n+2}{n^2+n+1} \le \frac{5}{n} \le \frac{5}{n(\varepsilon)} < \frac{5\varepsilon}{5} = \varepsilon$$

Für alle $n \ge n(\varepsilon)$

e) $a_n = (-1)^n$ beschränkte Folge $-1 \le a \le 1$ konvergiert nicht. Sei $c \in \mathbb{R}$ beliebig, Wähle $\varepsilon = \frac{1}{2}$

Abbildung 8: $(-1)^n$ ist beschränkt aber konvergiert nicht

$$2 = \left| a_n - a_{n+1} \right| \le \left| a_n - c \right| + \left| c - a_{n+1} \right| < \frac{1}{2} + \frac{1}{2} = 1 \ \not z$$

2.6 Satz

Jede konvergente Folge ist beschränkt. (Umkehrung nicht: 2.5e))

Beweis. Sei $c = \lim a_n$, wähle $\varepsilon = 1$, Es existiert $n(1) \in \mathbb{N}$ mit $|a_n - c| < 1$ für alle $n \ge n(1)$ Dann ist $|a_n| = |a_n - c + c| \le |a_n - c| + |c| < 1 + |c|$ für alle $n \ge n(1)$ $M = \max\{|a_k|, |a_{k+1}|, \dots, |a_{n(1)-1}|, 1 + |c|\}$ Dann: $|a_n| \le M$ für alle $n \ge k$ $-M \le a_n \le M$

2.7 Bemerkung

- a) $(a_n)_{n\geq 1}$ Nullfolge $\Leftrightarrow (|a_n|)_{n\geq 1}$ Nullfolge $(|a_n-0|=|a_n|-||a_n|-0|)$
- b) $\lim_{n\to\infty} a_n = c \Leftrightarrow (a_n c)_{n\geq k}$ ist Nullfolge $\Leftrightarrow (|a_n c|)_{n\geq k}$ ist Nullfolge

2.8 Satz (Rechenregeln für konvergente Folgen)

Seien $(a_n)_{n\geq k}$ und $(b_n)_{n\geq k}$ konvergente Folgen, $\lim a_n=c$, $\lim b_n=d$.

- a) $\lim |a_n| = |c|$
- b) $\lim(a_n \pm b_n) = c \pm d$
- c) $\lim(a_n \cdot b_n) = c \cdot d$ insbesondere $\lim(r \cdot b_N) = r \cdot \lim b_n = r \cdot d$ für jedes $r \in \mathbb{R}$.
- d) Ist $b_n \neq 0$ für alle $n \geq k$ und ist $d \neq 0$, so $\lim \left(\frac{a_n}{k_n}\right) = \frac{c}{d}$
- e) Ist (b_n) Nullfolge, $b_n \neq 0$ für alle $n \geq k$, so konvergiert $(\frac{1}{b_n} nicht!)$.
- f) Existiert $m \ge k$ mit $a_n \le b_n$ für alle $n \ge m$, so ist $c \le d$.
- g) Ist $(c_n)_{n \ge k}$ Folge und existiert $m \ge k$ mit $0 \le c_n \le a_n$ für alle $n \ge m$ und ist (a_n) eine Nullfolge, so ist auch (c_n) eine Nullfolge.

h) Ist $(c_n)_{n\geq l}$ beschränkte Folge und ist $(a_n)_{n\geq k}$ Nullfolge, so ist auch $(c_n\cdot a_n)_{n\geq k}$ Nullfolge.

 c_n muss nicht konvergieren!

Beweis. Exemplarisch:

- b) Sei $\varepsilon > 0$. Dann existiert $n_1(\frac{\varepsilon}{2})$ und $n_2(\frac{\varepsilon}{2})$ und $|a_n c| < \frac{\varepsilon}{2}$ für alle $n \ge n_1(\frac{\varepsilon}{2})$ $|b_n d| < \frac{\varepsilon}{2}$ für alle $n \ge n_2(\frac{\varepsilon}{2})$ Suche $n(\varepsilon) = max(n_1(\frac{\varepsilon}{2}, n_2(\frac{\varepsilon}{2}))$ Dann gilt für alle $n > n(\varepsilon)$: $|a_n + b_n (c + d)| = |(a_n c) + (b_n d)| \le |a_n c| + |b_n d| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- f) Angenommen c > d. Setze $\delta = c d > 0$ Es existiert $\tilde{m} \ge m$ mit $|c - a_n| < \frac{\delta}{2}$ und $|b_n - d| < \frac{\delta}{2}$ für alle $n \ge \tilde{m}$. Für diese n gilt: $0 < \delta \le \delta + b_n - a_n = c - d + b_n - a_n \ge 0$ nach Voraussetzung $= |c - a_n - d + b_n| \le |c - a_n| + |d - b_n|$ $\le \frac{\delta}{2} + \frac{\delta}{2} = \delta \cancel{4}$

2.9 Satz

- a) $0 \le q \le 1$ Dann ist $(q^n)_{n \ge 1}$ Nullfolge
- b) Ist $m \in \mathbb{N}$, so ist $((\frac{1}{n^m})_{n \ge 1}$ Nullfolge.
- c) Sei $0 \le q < 1, m \in \mathbb{N}$ Dann ist $(n^m \cdot q^n)_{n \ge 1}$ Nullfolge
- d) Ist r > 1, $m \in \mathbb{N}$, so ist $(\frac{n^m}{r^n})_{r \ge 1}$ eine Nullfolge)
- e) $P(x) = a_m \cdot x^m + \dots a_0, a_i \in \mathbb{R}, a_m \neq 0$ $Q(x) = b_e \cdot x^e + \dots b_0, b_i \in \mathbb{R}, b_e \neq 0$ Sei $Q(n) \neq 0$ für alle $n \geq k$.

- Ist m > e, so ist $\frac{P(n)}{O(n)}$ nicht konvergent
- Ist m = e, so ist $\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \frac{a_m}{b_e} = \frac{a_m}{b_m}$
- Ist m < l, so ist $\left(\frac{P(n)}{O(n)}\right)$ ein Nullfolge
- a) Sei $0 \le q \le 1$ Dann ist $(q^n)_{n \ge 1}$ eine Nullfolge

Beweis. a) Richtig für q > 0. Sei jetzt q > 0.

Sei $\varepsilon > 0$. Mathe I: Es gibt ein $n(\varepsilon) \in \mathbb{N}$ mit $q^{n(\varepsilon)} < \varepsilon$.

Für alle $n \ge n(\varepsilon)$ gilt: $|q^n - o| = q^n < q^{n(\varepsilon)} < \varepsilon$.

- b) 2.5c): $\frac{1}{n} \underset{n \ge 1}{\text{Nullfolge Beh. folgt mit 2.8.c)}}$
- c) Richtig für q = 0. Sei jetzt q > 0.

$$\frac{1}{q} = 1 + t, t > 0.$$

$$\frac{1}{q} - 1 + t, t > 0.$$

$$(t+1)^n = 1 + nt + \frac{n(n+1)}{2}t^2 > \frac{n(n-1)}{2}t^2 \text{ für alle } n \ge 2$$

$$q^n = \frac{1}{(1+t)^n} < \frac{2}{n(n-1)t^2}$$

$$0 \le n \cdot q^n < \frac{2}{(n-1)t^2} \iff \text{Nullfolge 2.5e}, 2.8e$$
Nach 2.8c) int $(n-q^n)$

$$q^n = \frac{1}{(1+t)^n} < \frac{2}{n(n-1)t^2}$$

$$0 \le n \cdot q^n < \frac{2}{(n-1)t^2} \Leftarrow \text{Nullfolge 2.5e}, 2.8e$$

Nach 2.8g) ist $(n \cdot q^n)_{n \ge q}$ Nullfolge, also auch $(n \cdot q^n)_{n \ge 1}$.

2. Fall: m > 1.

Setze
$$0 < q' = \sqrt[m]{q} \in \mathbb{R}$$

$$n^{m} \cdot q^{n} = n^{m} \cdot (q')^{n})^{m})^{n}$$
$$= (n \cdot (q')^{n})^{m})^{n} = 1 \text{anwenden}$$

$$(n^m + q^n)_{n \ge 1}$$
 Nullfolge noch Fall $m = 1$ und 2.8e)

d) Folgt aus c) und $q = \frac{1}{r}$

e) Ist
$$m \le l$$
, so ist $\frac{P(n)}{Q(n)} = \frac{n^m (a_m + a_{m-1} \cdot \frac{1}{n} + \dots + a_1 \cdot \frac{1}{n^{m-1}} + a_0 \cdot \frac{1}{n^m})}{n^l (b_l + b_{l-1} \cdot \frac{1}{n} + \dots + b_1 \cdot \frac{1}{n^{l-1}} + b_0 \cdot \frac{1}{n^l})} = \frac{1}{n^{l-m}} \cdot \frac{I}{II}$

$$(I) \longrightarrow a_m, (II) \longrightarrow b_l \frac{(I)}{(II)} \Rightarrow \frac{a_m}{b_l}$$

$$n < l, \frac{1}{n^{l-m}} \text{ Nullfolge}$$

$$\frac{P(n)}{Q(n)} \Rightarrow 0 \cdot \frac{a_m}{b_l}$$

$$m > l:$$

Beh. folgt aus Fall m < l und 2.8e).

2.10 Bemerkung

Betrachte Bijektionsverfahren, die Zahl $x \in \mathbb{R}$ bestimmt.

$$a_0 \le a_1 \le a_2 \le \dots$$
 $b_0 \ge b_1 \ge b_2 \ge \dots$
 $a_n \le x \le b_n$
 $0 < b_n - a_n = \frac{b_0 - a_0}{2^n}$
 $0 \le |x - a_n| \le b_n - a_n = \frac{b_0 - a_n}{2} \iff \text{Nullfolge (2.9b)}$
 $2.8e)(|x - a_n|) \text{ Nullfolge.}$

2.7e): $\lim_{n\to\infty} a_n = x$

Analog: $\lim_{n\to\infty} b_n = x$

2.9 d) e) sind Beispiele für asymptotischen Vergleich von Folgen

2.11 Definition

a) Eine Folge $(a_n)_{n\geq k}$ heißt *strikt positiv*, falls $a_n>0$ für alle $n\geq k$. Sei im Folgenden $(a_n)_{n\geq k}$ eine strikt positive Folge.

c)
$$O(a_n) = \{(b_n)_{n \geq k} : (\frac{b_n}{a_n} \text{ist Nullfolge}\}$$

 $(b_n) \in o(a_n)$ heißt Folge (a_n) wächst wesentlich schneller als die Folge (b_n) . Klar: $o(a_n) \in O(a_n)$
 $O, o(\text{ "groß Oh"}, \text{ "klein Oh"})$
 $Landau$ -Symbole

z.B
$$(n^2) \in o(n^3)$$

 $(n^2 + n + 1) \in O(n^2)$ $n^2 + n + 1 \le 3n^2$
 $(n^2) \in O(n^2 + n + 1)$ $n^2 \le n^2 + n + 1$

O(1) = Menge der beschränkten Folgen

o(1) = Menge aller Nullfolgen

Häufig gewählte Schreibweise:

$$n^{2} = o(n^{2}) \operatorname{statt}(n^{2}) \in o(n^{3})$$
eig. falsch!
$$n^{2} + n + 1 = O(n^{2}) \operatorname{statt}(n^{2} + n + 1)$$

2.12 Satz

Sei
$$P(x) = a_m \cdot x^m + ... + a_1 \cdot x + a_0, m \ge 0, a_m \ne 0.$$

- a) $(P(n)) \in o(n!)$ für alle l > m und $(P(n)) \in O(n')$ für alle $l \ge m$.
- b) ist r > 1, so ist $(P(n)) \in o(r^n)$. $[(r^n)$ wächst deutlich schneller als (P(n))]

Beweis. a) folgt aus 2.9e).m = l (2.6)b) folgt aus 2.9d) und 2.8 b)c)

2.13 Bemerkung

Algorithmus:

Sei t_n = maximale Anzahl von Reihenschritten des Algorithmus' bei Input der Länge n (binär codiert).

Worst-Case-Komplexität:

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mit $(t_n) \in O(n^l)$. (gutartig)

Algorithmus hat polynomielle Zeitkomplexität, falls ein $l \in \mathbb{N}$ existiert mindestens exponentielle Zeitkomplexität, falls r > 1 exestiert mit $(r^n) \in O(b_n)$ (*bösartig*)

2.14 Definition 2 Folgen und Reihen

2.14 Definition

a) Eine Folge $(a_n)_{n\geq k}$ heißt monoton wachsend (steigend), wenn $a_n\leq a_{n+1}$ für alle $n\geq k$. Sie heißt steng monoton wachsend (steigend), wenn $a_n< a_{n+1}$ für alle $n\geq k$

b) $(a_n)_{n\geq k}$ heißt monoton fallend, falls $a\geq a_{n+1}$ für alle $n\geq k$

2.15 Beispiel

- a) $a_n = 1$ für alle $n > 1(a_n)$ ist monoton steigend und monoton fallend.
- b) $a_n = \frac{1}{n}$ für alle $n \ge 1$. (a_n) streng monoton fallend.
- c) $a_n = \sqrt{n}$ (positive Wuzel) $(a_n)n \ge 1$ streng monoton steigend.
- d) $a_n = 1 \frac{1}{n}, n \ge 1$ $(a_n)_{n \ge 1}$ streng monoton steigend.
- e) $a_n = (-1)^n$, $n \ge 1$ (a_n) ist weder monoton steigend noch monoton fallend.

2.16 Satz

- a) Ist $(a_n)_{n \ge k}$ monoton steigend und nach oben beschränkt (d.h es existiert $D \in \mathbb{R}$ mit $a_n \le D$ für alle $n \ge k$), so konvergiert $(a_n)'$ und $\lim_{n \to \infty} a_n = \sup\{a_n : n \ge k\}$
- b) $(a_n)_{n\geq k}$ monoton fallend und nach unten beschränkt, so konvergiert $(a_n)_{n\geq k}$ und $\lim_{n\to\infty}a_n=\inf\{a_n:n\geq k\}.$

```
Beweis. a) c\sup\{a_n:n\geq k\}. \text{ existiert (Mathe I). Zeige:} \lim_{a_n}=c. Sei \varepsilon>0. Dann existiert n(\varepsilon) mit c-\varepsilon< a_{n(\varepsilon)}\leq c Denn sonst a_n\leq c-\varepsilon für alle n\geq k und c-\varepsilon wäre obere Schranke für \{a_n:n\geq k\} Widerspruch dazu, dass c kleinste obere Schranke. Für alle n\geq n(\varepsilon) c-\varepsilon\leq a_{n(\varepsilon)}\leq a_n\leq c
```

$$|a_n - c| < \varepsilon$$
 für alle $n \ge n(\varepsilon)$.
b) analog

2.17 Satz (Cauchy'sches Konvergenzkriterium)

(Cauchy, 1789 - 1859)

Sei $(a_n)_{n \ge k}$ eine Folge. Dann sind äquivalent:

- (1) $(a_n)_{n \ge k}$ konvergent
- (2) $\forall \varepsilon > 0 \exists N M(\varepsilon) \forall n, m \ge N : |a_n a_m| < \varepsilon$ (Cauchyfolge) Grenzwert muss nicht bekannt sein!

Abbildung 9: Cauchy'sches Konvergenzkriterium

2.18 Definition

a) Sei $(a_i)_{i\geq k}$ eine Folge, $s_n\sum_{i=k}^n a_i, n\geq k$ (Partialsummen der Folge) Dann heißt $(s_n)_{n\geq k}$ eine *unendliche Reihe* $(k-1:a_1,a_1+a_2,a_1+a_2+a_2,\ldots)$ Schreibweise: $\sum_{i=k}^{\infty}a_i$

b) Ist die Folge $(s_n)_{n \ge k}$ konvergent mit $\lim_{n \to \infty} s_n = c$,

so schreibt man
$$\sum_{i=k}^{\infty} a_i = c$$
. Reihe *konvergiert*.

Wenn (s_n) nicht konvergiert, so heißt die Reihe $\sum_{i=1}^{\infty} a_i$ divergent.

(Zwei Bedeutungen von $\sum_{i=1}^{\infty} a_i$:

- Folge der Partialsummen
- Grenzwert von (s_n) , falls dieser existiert

$$\sum_{i=k}^{\infty} a_i = \sum_{n=k}^{\infty} a_n = (s_m)_{m \ge k}$$

2.19 Satz

- a) Ist die Reihe $\sum_{i=1}^{\infty} a_i$ konvergent, so ist $(a_i)_{i \geq k}$ eine Nullfolge.
- b) Ist die Folge der Partialsummen $s_n = \sum_{i=k}^{\infty} a_i$ beschränkt und ist $a_i \ge 0$ für alle i, so ist $\sum_{i=1}^{\infty} a_i$ konvergent.

Sei
$$\sum_{i=k}^{\infty} a_i = c$$
.

Sei $\varepsilon > 0$ Dann existiert $n(\frac{\varepsilon}{2}) \ge k$ mit $|\sum_{i=k}^{\infty} 2a_i - c| < \frac{\varepsilon}{2}$ für alle $n \ge n(\frac{\varepsilon}{2})$ Dann gilt $|a_{n+1} - o| = |a_n + 1| = |\sum_{i=k}^{n+1} a_i + \sum_{i=k}^n a_i| =$

Dann gilt
$$|a_{n+1} - o| = |a_n + 1| = |\sum_{i=k}^{n+1} a_i + \sum_{i=k}^{n} a_i| =$$

$$\left|\sum_{i=k}^{n+1} a_i + c - \sum_{i=k}^n a_i + c\right| \le \left|\sum_{i=k}^{n+1} a_i + c\right| + \left|\sum_{i=k}^n a_i - c\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
(a.) ist Nullfolge

b) folgt aus 2.16 a), denn (s_n) ist monoton steigend

2.20 **Beispiele**

a) Sei $q \in \mathbb{R}$.

Ist
$$q \neq 1$$
, so ist $\sum_{i=k}^{n} q^{i} = \frac{q^{n+1}-1}{q-1}$

$$\left[\left(\sum_{i=k}^{n} q^{i} \right) \cdot (q-1) \right]$$
Sei $|q| < 1$, d.h $-1 < q < 1$.

Sei
$$|q| < 1$$
, d.h $-1 < q < 1$.

Dann ist $\sum_{i=k}^{\infty} q^i = \frac{1}{1-q}$ (konvergiert)

$$s_n = \sum_{i=k}^n q^1 = \frac{q^{n+1}-1}{q-1}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1} = 1}{q - 1}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{q^{n+1} = 1}{q - 1}$$

$$(q^n) \text{ Nullfolge } (2.9_{a)} \text{ für } q \ge 0, 2.8_e) + 2.9_{a)} \text{ für } q < 0, q = -|q|)$$

Geometrische Reihe

Sei $|q| \ge 1$. Dann ist $\sum_{i=1}^{\infty} q^i$ divergent, da dann (q^i) keine Nullfolge (2.18_a)

b) $\sum_{i=k}^{\infty} \frac{1}{i} \text{ divergiert} \\ \underset{i=k}{harmonische Reihe} \\ \sum_{i=k}^{n} \frac{1}{n}$

$$\sum_{i=k}^{n} \frac{1}{n}$$

$$n = 2^{0} = 1 : s_{1} = 1$$

 $n = 2^{1} = 2 : s_{2} = 1 + \frac{1}{2}$

$$n = 2^1 = 2 : s_2 = 1 + \frac{1}{2}$$

...
$$n = 2^3 = 8$$
 : $s_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > s_7 > s_6 \dots$ Per Induktion zu beweisen!

c) $\sum_{i=0}^{\infty} \frac{1}{n^2}$ konvergiert.

Folge der Partialsummen ist monoton steigend.

2.16a) Zeige, dass die Folge der Partialsummen nach aber beschränkt ist.

$$s_{n} \leq s_{2^{n}-1} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4^{2}} + \frac{1}{5^{2}} + \frac{1}{6^{2}} + \frac{1}{7^{2}}\right) + \dots + \left(\frac{1}{(2^{n-1})^{2}} + \dots + \frac{1}{(2^{n-1})^{2}}\right)$$

$$\leq 1 + 2 \cdot \frac{2}{2^{2}} + 4 \cdot \frac{1}{4^{4}} + \dots + 2^{n-1} \cdot \frac{1}{(2^{n-1})^{2}}$$

$$\leq \sum_{i=0}^{\infty} \frac{1}{2^{i}} = \frac{1}{1 - \frac{1}{2}} = 2$$

2.16a) $\sum_{i=0}^{\infty} \frac{1}{2^i}$ Kgt., Grenzwert ≤ 2. (später: Grenzwert ist $\frac{\pi^2}{6}$)

Es gilt allgemeiner:

$$s \in \mathbb{N}, s \ge 2 \Rightarrow \sum_{i=0}^{\infty} \frac{1}{i^s}$$
 konvergiert.

All gemeiner: $s \in \mathbb{R}, s > 1 \Rightarrow \sum_{i=0}^{\infty} \frac{i}{i^2}$ konvergiert

d)
$$\sum_{i=0}^{\infty} (-1)^i \cdot \frac{1}{i}$$
 konvergiert: $s_{2n} = \underbrace{\left(-1 + \frac{1}{2}\right) + \left(-\frac{1}{3} + \frac{1}{4}\right) + \dots \left(-\frac{1}{2n-1} + \frac{1}{2n}\right)}_{<0}$ $s_{2n} \le s2(n+1)$ für alle $n \in \mathbb{N}$ (s_{2n}) ist monoton fallend. $s_{2n-1} = -1 + \underbrace{\left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{2n-2} - \frac{1}{2n-1}\right)}_{>0}$

 (s_{2n-1}) ist monoton wachsend

Ist k ungerade, so ist $s_k < s_l$: Wähle n so, dass $2n - a \ge k, 2n \ge l$

$$s_k \leq s_{2n-1} < s_{2n} \leq s_l$$

 $s_{2n} = s_{2n-1} + \frac{1}{2n}$

 $s_{2n} = s_{2n-1} + \frac{1}{2n}$ Abstand $s_{2n} - s_{2n-1} = \frac{1}{2n}$ geht gegen 0.

$$\sup \{s_{2n-1} : n \ge 1\}$$

$$\inf \{s_{2n} : n \ge 1\}$$

$$= \lim_{i \leftarrow \infty} (-1^{i}) \frac{1}{i} \in]-1, -\frac{1}{2}[\text{ (Es gilt } limes = -\ln 2)]$$

Bemerkung

Was bedeutet $0.\overline{8} = 0.888888888...$? (Dezimalsystem)

$$0.\overline{8} = \frac{8}{10} + \frac{8}{100} + \frac{8}{1000} + \dots = 8 \cdot \sum_{i=0}^{\infty} \frac{1}{10^{i}} = 8 \cdot (\frac{10}{9} - 1) = \frac{8}{9}$$

$$\sum_{i=0}^{\infty} \frac{1}{10^i} = \sum_{i=0}^{\infty} \left(\frac{1}{10}\right)^i = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

2.21 Satz (Leibniz-Kriterium)

Ist $(a_i)_{i\geq k}$ eine monoton fallende Nullfolge (insbesondere $a_i\geq 0$ falls $i\geq k$), so ist $\sum_{i=k}^{\infty} (-1)^i a_i$ konvergent.

2.22 Satz (Majoranten-Kriterium)

Seien $(a_i)_{i \ge k}$, $(b_i)_{i \ge k}$ Folgen, wobei $b_i \ge 0$ für alle $i \ge k$ und $|a_i| \le b_i$ für alle $i \ge k$. Dann gilt

Ist
$$\sum_{i=k}^{\infty} b_i$$
 konvergent, so auch $\sum_{i=k}^{\infty} a_i$ und $\sum_{i=k}^{\infty} |a_i|$. Für die Grenzwerte gilt: $|\sum_{i=k}^{\infty} a_i| \le \sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i$

Beweis. Konvergenz

von
$$\sum_{i=k}^{\infty} |a_i|$$
 folgt aus 2.16 a).

$$\sum_{i=k}^{\infty} |a_i| \le \sum_{i=k}^{\infty} b_i \text{ folgt aus 2.8 f).}$$
Sei $m > n$:

$$|\sum_{i=k}^{m} a_i - \sum_{i=k}^{n} b_i| = \sum_{i=n+1}^{m} a_i \le \sum_{i=n+1}^{m} |a_i| = |\sum_{i=k}^{m} |a_i| - \sum_{i=k}^{n} |a_i||$$

Mit Cauchy-Kriterium 2.17 folgt daher aus der Konvergenz von $\sum_{i=k}^{m} |a_i|$ auch die von

$$\sum_{i=k}^{\infty} a_i.$$

2.23 Beispiel

$$\begin{split} &\sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}} \\ &\sqrt{i} \leq i \text{ für alle } i \in \mathbb{N} \\ &\frac{1}{\sqrt{i}} \geq \frac{1}{i} \text{ für alle } i \in \mathbb{N} \\ &\text{Ang. } \sum_{i=1}^{\infty} \frac{1}{+\sqrt{i}} \text{ konvergiert.} \Rightarrow \sum_{i=1}^{\infty} \frac{1}{i} \text{ konvergiert. } \not \leq \\ &\text{Widerspruch zu 2.20 b)} \end{split}$$

2.24 Definition 2 Folgen und Reihen

$$a_i = (-1)^i \frac{1}{i}$$

2.20d): $\sum_{i=1}^{\infty} a_i$ konvergiert, aber $\sum_{i=1}^{\infty} |a_i|$ konvergiert nicht. (*)

2.24 Definition

 $\sum\limits_{i=k}^{\infty}a_{i}$ heißt *absolut konvergent*, falls $\sum\limits_{i=k}^{\infty}|a_{i}|$ konvergiert. (Falls alle $a_{i}\geq0$: Konvergent = absolut Konvergent)

2.25 Korollar

Ist $\sum_{i=k}^{\infty} a_i$ absolut konvergent, sp ist auch konvergiert. Die Umkehrung gilt im Allgemeinen nicht.

Beweis: 1.Behauptung 2.22 mit $b_i = |a_i|$ Umkehrung siehe (\star)

Bermerkung

Was bedeutet 0, a_1 , a_2 , a_3 , a_4 ...

$$a_{i} \in \{0...9\}$$
 (Dezimalsystem)
 $a_{1} \cdot \frac{1}{10} a_{2} \cdot \frac{1}{100} \dots a_{n} \cdot \frac{1}{10^{n}} \le 9 \cdot \frac{1}{10} 9 \cdot \frac{1}{100} \dots 9 \cdot \frac{1}{10^{n}}$
 $a_{i} \frac{1}{10} \le 9 \frac{1}{10}$

$$\sum_{i=k}^{\infty} 9 \frac{1}{10} = 9 \cdot \left(\frac{1}{1 - \frac{1}{10}} - 1\right) = 1 \Rightarrow \sum_{i=k}^{\infty} a_{i} \frac{1}{10} \text{ konvergient}$$

2.26 Satz

Sei
$$\sum_{i=k}^{\infty} a_i$$
 eine Reihe.

a) Wurzelkriterium

Existiert q < 1 und ein Index i_0 , so dass $\sqrt[i]{|a_i|} \le q$ für alle $i \ge i_0$. so konvergiert die Reihe $\sum_{i=k}^{\infty} a_i$ absolut.

Ist $\sqrt[i]{|a_i|} \ge 1$ für unendlich viele i so divergiert $\sum_{i=k}^{\infty} a_i$.

b) Quotientenkriterium

Existiert q > 1 und ein Index i_0 , so dass $\left| \frac{a_{i+1}}{a_i} \right| \le$ für alle $i \ge i_0$, so konvergiert $\sum_{i=k}^{\infty} a_i$ absolut.

Beweis.

a)
$$|a_i| \le q^i$$
 für alle $i \ge i_0$

$$\sum_{i=i_0}^{\infty} q^i \text{ konvergiert (2.20 a))}$$

$$\Rightarrow \sum_{i=i_0}^{\infty} |a_i|$$
 konvergiert

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert.

$$\sqrt[i]{|a_i|} \ge 1$$
 für unendlich viele i

$$\Rightarrow |a_i| \ge 1$$
 für unendlich viele i

$$\Rightarrow$$
 (a_i) sind keine Nullfolge

$$\Rightarrow \sum_{i=k}^{\infty} a_i$$
 divergiert.

$$\left|\frac{a_i}{a_{i0}}\right| = \left|\frac{a_i}{a_{i-1}}\right| \cdot \left|\frac{a_i}{a_{i-2}}\right| \cdot \dots \cdot \left|\frac{a_{i_{0+1}}}{a_{i0}}\right| \le q \cdot q \cdot \dots \le q^{i-i0} = \frac{q^i}{q^{i0}}$$

$$\uparrow \text{ Voraussetzing:}$$

$$|a_i| \leq \frac{|a_i 0|}{q^{i0}} \cdot q^i$$
 jeder dieser Quotienten ist $\leq q$

$$\sum_{i=i_0}^{\infty} c \cdot q^i \text{ konvergent}$$

$$\Rightarrow_{2.22} \sum_{i=i_0}^{\infty} |a_i| \text{ konvergiert.}$$

$$\Rightarrow \sum_{i=k}^{\infty} |a_i|$$
 konvergiert

Bemerkung 2.27

- a) Es reicht nicht in 2.26 nur vorauszusetzen, dass $\sqrt[i]{|a_i|} > 1$ für alle $i \ge i_o$ bzw. $\frac{a_{i+1}}{a_i} < 1$ für alle $i \ge i_0$.
 - z.B. harmonische Reihen : $\sum_{i=1}^{\infty} \frac{1}{i}$ divergiert.

Aber:
$$\sqrt[i]{\frac{1}{i}} > 1$$
 für alle i. $\frac{i}{i+1} < 1$ für alle i

b) Es gibt Beispiele von absolut konvergenten Reihen mit $\lfloor \frac{a_{i+1}}{a_i} \rfloor$ für unendlich viele i.

2.28 Beispiel

Sei $x \in \mathbb{R}$. Dann konvergiert $\sum_{i=0}^{\infty} \frac{x^i}{i!}$ absolut $(0^0 = 1, 0! = 1)$:

Quotientenkriterium:
$$|\frac{x^{i+1} \cdot i!}{(i+1)! \cdot x^i}| = |fracxi+1| = \frac{|x|}{i+1} \text{ W\"ahle } i_o \text{, so dass } i_0+1>2 \cdot |x|$$
 F¨ur alle $i \geq i_0$:
$$\frac{|x|}{(i+1)} \leq \frac{|x|}{(i_0+1)} < \frac{|x|}{2 \cdot |x|} = \frac{1}{2} = q.$$

2.29 Bemerkung

Gegeben seien zwei endliche Summen

$$\sum_{a_n}^k n = 0, \sum_{b_n}^l n = 0.$$

$$(\sum_{a_n}^k n = 0)(\sum_{b_n}^l n = 0) \quad (\bigstar)$$

Distributivgesetz: Multipliziere a_i mit jedem b_i und addiere diese Produkte.

$$\left(\bigstar\right) = \underbrace{a_0b_0}_{\text{Indexsumme 0}} + \underbrace{(a_0b_1 + a_1b_0)}_{\text{Indexsumme 2}} + \dots + \underbrace{a_kb_l}_{\text{Indexsumme k+l}}$$

2.30 Definition

Seien $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ unendliche Reihen.

Das Cauchy-Produkt(Faltungsprodukt) der beiden Reihen ist die Reihe $\sum_{i=0}^{\infty} c_n$, wobei

$$c_n = \sum_{i=0}^{\infty} a_i \cdot b_{n-1} = a_0 b_n + a b_{n-1} + \dots + a_n b_0$$

2.31 Satz

Sind $\sum_{i=0}^{\infty} a_n$, $\sum_{i=0}^{\infty} b_n$ absolut konvergent Reihen mit Grenzwert c, d, so ist das Cauchy Produkt auch absolut konvergent mit Grenzwert $c \cdot d$.

Beweis: [1]

3 Potenzreihen

3.1 Definition

Sei (b_n) eine reelle Zahlenfolge, $a \in \mathfrak{R}$

Dann heißt $\sum_{n=0}^{\infty} b_n \cdot (x-a)^n$ eine *Potenzreihe* (mit *Entwicklungspunkt* a)) Speziell: a=0

$$\sum_{n=0}^{\infty} b_n \cdot x^n$$

(Potenzreihe im engeren Sinne)

Hauptfolge: Für welche $x \in \mathbb{R}$ konv. die Potenzreihe (absolut)?

Suche für x = a

Dann Grenzwert b_0 (da $0^0 = 1$)

Ob Potenzreihe für andere x konvergiert, hängt von b_n ab!

3.2 Beispiel

- a) $\sum_{i=0}^{\infty} x^n (b_n = 1 \text{ für alle } n)$ geometrische Reihe, konvergiert für alle $x \in]-1,1[$
- b) $\sum_{i=0}^{\infty} 2^n \cdot x^n (b_n = 2^n) = \sum_{i=0}^{\infty} (2 \cdot x)^n$ konvergiert genau dann nach a), wenn |2x| < 1, d.h $|x| < \frac{1}{2}$ d.h. $x \in]-0.5, 0.5[$

3.3 Satz 3 POTENZREIHEN

c)
$$\sum_{i=0}^{\infty} \frac{x^{n}}{n!} (b_{n} = \frac{1}{n})$$
 konvergiert für alle $x, x \in]-\infty, \infty[=\mathbb{R}]$

3.3 Satz

Sei $\sum_{i=0}^{\infty} b_n \cdot x^n$ eine Potenzreihe (um 0). Dann gibt es $R \in \mathbb{R} \cup \{\infty\}$, $R \ge 0$, so dass gilt.

- 1. Für alle $x \in \mathbb{R}$ und |x| < R konvergiert Potenzreihe absolut (d.h. $\sum_{i=n}^{\infty} b_n \cdot x^n$ konvergiert, dann auch $\sum_{i=0}^{\infty} b_n \cdot x^n$) Falls $R = \infty$, so heißt das, dass Potenzreihe für alle $x \in \mathbb{R}$ absolut konvergiert.
- 2. Für alle $x \in \mathbb{R}$ mit |x| > R divergiert $\sum_{i=0}^{\infty} b_n \cdot x^n$ $\left(\lim_{n \to \infty} \sqrt[n]{|b_n|} = 0 \Rightarrow R = \infty\right)$ (Für |x| = R lassen sich keine allgemeine Aussagen

Abbildung 11: Konvergenzradien und ihre Aussagen

treffen).

R heißt der *Konvergenzradius* der Potenzreihe $\sum_{i=0}^{\infty} b_n \cdot x^n$

Konvergenzintervall $\langle -R, R \rangle$

besteht aus allen x für die $\sum_{i=0}^{\infty} b_n \cdot x^n$ konvergiert.

< kann [oder] bedeuten.

> kann | oder [bedeuten.

Beweis.
$$|x_1, x_2| \mathbb{R}, |x_1| \le |x_2|$$

Dann: Falls
$$\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$$
 konvergiert, so auch $\sum_{i=0}^{\infty} |b_n| \cdot |x_n|^n$ (2.22) \bigstar Falls $\sum b_n \cdot x_n$ für alle x absolut konvergiert, so setze $R = \infty$

Wenn nicht, so setze $R = \sup\{|x| : x \in \mathbb{R}, \sum_{i=0}^{\infty} |b_n| \cdot |x_n| \text{ konvergient}\} < \infty \text{ Nach } (\star) \text{ gilt:}$

3 Potenzreihen 3.4 Bemerkung

 $|x| < R \Rightarrow \sum b_n x^n$ konvergiert absolut.

Für |x| > R konvergiert $\sum b_n x^n$ nicht absolut.

Sie konvergiert sogar selbst nicht.

$$\sqrt[n]{|b_n| \cdot |x|^n} \le q < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow |x| \cdot \sqrt[n]{|b_n|} \le 1 < 1$$
 für alle $n \ge n_0$

$$\Leftrightarrow \lim_{n \to \infty} |x_n| \cdot \sqrt[n]{|b_n|} < 1$$

$$\uparrow \text{ (setze } \varepsilon = 1 - \lim_{n \to \infty} |x| \cdot \sqrt[n]{|b_n|} > 0)$$

$$\iff |x| < \frac{1}{\lim_{x \to \infty} \sqrt[n]{|b_n|}}$$

$$\exists n_0 \forall \, n \geq n_0 : s - \frac{\varepsilon}{2} < |x| \cdot \sqrt[n]{b_n} \leq s + \frac{\varepsilon}{2} =: q < 1$$

3.4 Bemerkung

Konvergenz von Potenzreihen der Form $\sum_{i=0}^{\infty} b_n \cdot (x-a)^n$:

gleichen Konvergenzradius R wie $\sum_{i=0}^{\infty} b_n \cdot x^n$

konvergiert absolut für |x-a| < R, d.h $x \in]a-R$, a+R[Divergiert für |x-a| > R.

Keine Aussage für |x-a|=R, d.h x=a-R oder x=a+R

Konvergenzintervall < a - R, a + R >

3.5 Die Exponentialreihe

a) Exponentialreihe

$$\sum_{i=0}^{\infty} \frac{x^n}{n!} (b_n = \frac{1}{n!})$$

2.28 Reihe konvergiert für alle $x \in \mathbb{R}$.

Setze für
$$x \in \mathbb{R}$$
: $\exp(x) := \sum_{i=0}^{\infty} \frac{x^i}{n!}$
Exponentialfunktion $\exp(0) = \frac{0^n}{0!} = 1$

b) Serien $x, y \in \mathbb{R}$ $\exp(x) \cdot \exp(y) = \lim_{x \to 0} 1$ Limes des Cauchy Produkts der beiden Reihen.

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \cdot \frac{y^{n-i}}{(n-i)!} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \frac{1}{n!} \cdot \frac{n!}{i! \cdot (n-i)!} \cdot x^{i} \cdot y^{n-i} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} \binom{n}{i} \cdot x \cdot y^{n-i} \right)$$

$$= \sum_{i=0}^{\infty} \frac{1}{n!} \cdot (x+y)^{n} = \exp(x+y)$$

$$= \exp(x+y) = \exp(x) \cdot \exp(y) \text{ für alle } x, y \in \mathbb{R}$$
Daraus folgt: $1 = \exp(0) = \exp(x+(-x)) = \exp(x) \cdot \exp(-x)$

$$= \exp(-x) = \frac{1}{\exp(x)} \text{ für alle } x \in \mathbb{R}$$
Für alle $x \ge 0 : \exp(x) > 0$. Dann auch wegen (\star)

$$= \exp(x) > 0 \text{ für alle } x \in \mathbb{R}$$

c)
$$\exp(1) = \sum_{i=0}^{\infty} \frac{1}{n!} = e$$

Euler'sche Zahl

Euler'sche Zanı m=2 $1+1+\frac{1}{2}=2,5$ Approximation e durch $\sum_{i=0}^{\infty} \frac{1}{n!} m=3$ $2,5+\frac{1}{6}=2,\bar{6}$...m=6 $\frac{326}{126}+\frac{1}{720}=2,7180\bar{5}$ Es ist: $e\approx 2,71828...$ (irrationale Zahl)

 $\sum_{i=0}^{\infty} \frac{1}{n!}$ konvergiert schnell

 $m \in \mathbb{N}$

Abbildung 12: Die Exponentialreihe

$$\exp(m) = \exp(1 + \dots + 1)$$

$$\exp(1)^m = e^m$$

$$e^0 = 1 \exp(-m) = \frac{1}{\exp(m)} = e^{-m}$$

$$n \neq 0, n \in \mathbb{N} :$$

$$e = \exp(1) = \exp(\frac{n}{n}) = \exp(\frac{1}{n}^n)$$

$$\exp(\frac{1}{n}) = + \sqrt[n]{e} = e^{\frac{1}{n}}$$

$$\exp(\frac{m}{n}) = e^{\frac{m}{n}}.$$

Für alle $x \in \mathbb{Q}$ stimmt $\exp(x)$ mit der 'normalen' Potenz e^x überein.

Dann definiert man für beliebige $x \in R$:

$$e^x := \exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{n!}$$

In kürze: Definition a^x für a > 0, $x \in \mathbb{R}$

d) Bei komplexen Zahlen kam e^{it} ($i^2 = -1, t \in \mathbb{R}$) vor als Abkürzung für $\cos(t) + i\sin(t)$

Tatsächlich kann auch für jedes $z \in \mathbb{C}$ definieren $e^z = \sum_{i=0}^{\infty} \frac{z^n}{n!}$

Dabei: Konvergenz von Folgen/Reihen in $\mathbb C$ wie in $\mathbb R$ mit komplexem Absolutbetrag.

Man kann dann zeigen:

$$\sum_{i=0}^{\infty} \frac{z^n}{n!}$$
 konvergiert für alle $z \in \mathbb{C}$. Dass tatsächlich dann gilt:

$$e^{it} = \sum_{i=0}^{\infty} \frac{(it)^n}{n!} = \cos(t) + \sin(t)$$
. zeigen wir später

2.718...) Man kann zeigen.

$$e = \lim_{n \to \infty} \left(1 + \left(\frac{1}{n}\right)^n\right)$$

Bedeutung:

- Angelegtes Guthaben G wird in einem Jahr mit 100% verzinst. Guthaben am Ende eines Jahres 2G(=G(1+1)
- Angelegtes Geld wird jedes halbe Jahr mit 50% verzinst. Am Ende eines Jahres (mit Zinsenzinsen)

$$G(1+\frac{1}{2})(1+\frac{1}{2})=2,25G$$

n- mal pro Jahr mit $\frac{100}{n}$ % verzinsen. Am Ende desx Jahres $G(1+\frac{1}{n})^n$.

$$\lim_{n \to \infty} G(1 + \frac{1}{n})^n = e \cdot G \approx 2.718 \dots \cdot G \text{ (stetige Verzinsung)}$$

$$a\%$$
 statt $100\% \cdot Ge^{\frac{a}{100}}$

Reelle Funktionen und Grenzwerte von Funktionen

4.1 **Definition**

Reelle Funktionen fin einer Variable ist Abbildung

$$f: D \to \mathbb{R}$$
, wobei $D \subset \mathbb{R}$ ($D = Definitionsbereich$).

Typisch: $D = \mathbb{R}$, Intervall, Verschachtelung von Intervallen

4.2 Beispiel

a) Polynomfunktionen (ganzrationale Funktion, Polynome)

$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a_n \cdot x^n + \dots a_1 x + a_0 \\ f(x) = a_n \cdot x^n + \dots a_1 \cdot x + q \end{cases}$$

 $a_n \neq 0$: n = Grad (f) f = 0 (Nullfunktion), $\text{Grad}(f) = \infty$ Grad 0: konstante Funktionen $\neq 0$ Graph von f:

Abbildung 13: $f(x) = x^3 - 2x^2 - x + 2$

- b) $f,g:D\to R$ $(f\pm g)(x):=f(x)\pm g(x)$ für alle $x\in D$ Summe: Differenz, Produkt von f und g. Ist $g(x)\neq 0$ für $x\in D$, so Quotient. $\frac{f}{g}(x):=\frac{f(x)}{g(x)}$ für alle $x\in D$, Quotient von Polynomen = (gebrochen-)rationalen Funktionen |f|(x):=|f(x)| Betrag von f.
- c) Potenzreihe definiert Funktion auf ihrem Konvergenzintervall. $\sum_{n=0}^{\infty} n^{n}$

z.B:
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Fkt. $\mathbb{R} \to \mathbb{R}$

d) Hintereinanderausführung von Funktionen:

$$f: D_1 \to \mathbb{R}, g: D_2 \to \mathbb{R} f(D_1) \subset f(D_2), \text{ dann } g \circ f:$$

$$\begin{cases} D_1 \Rightarrow \mathbb{R} \\ x \to g(f(x)) \end{cases}$$

e)
$$f(x) = e^x$$
, $g(x) = x^2 + 1$
 $f, g : \mathbb{R} \to \mathbb{R}$
 $(g \circ f)(x) = g(e^x) = (e^x)^2 + 1 = e^2 x + 1$
 $(f \circ g)(x) = f(x^2 + 1) = e^{x^2 + 1}$

f) Trigonometrische Funktionen: Sinus- und Cosinusfunktion (vgl. \mathbb{C})

Abbildung 15: Bogenmaß

 $0 \ge x \ge 2\pi$ x = Bogenmaß von φ in Grad, so $x = \frac{\varphi}{360} \cdot \pi$ $\sin(x) = s, \cos(x) = c$ Für beliebig $x \in \mathbb{R}$: Periodische Fortsetzung, d.h. $x \in \mathbb{R}.x = x' + k \cdot 2\pi, k \in \mathbb{Z}, x' \in [0, 2\pi[$

$$\sin(x) := \sin(x')$$

$$\cos(x) := \cos(x')$$

$$|\cos(x)|, |\sin(x)| \le 1$$

Abbildung 16: sin(x) und cos(x)

$$\cos^{2}(x) + \sin^{2}(x) = 1$$

$$\cos(x) = \sin(x + \frac{\pi}{2})$$

$$\sin(x) = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}$$

$$\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$Tangens \ und \ Cotangens funktion$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \text{ für alle } x \in \mathbb{R} \text{ mit } \cos(x) \neq 0$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)} \text{ für alle } x \in \mathbb{R} \text{ mit } \sin(x) \neq 0$$

4.3 Definition

Sei $D \subset \mathbb{R}, c \in \mathbb{R}$ heißt Adharenzpunkt von D, falls es eine Folge $(a_n)_n, a_n \in D$, mit $\lim_{n \to \infty} a_n = c$ gibt.

 \bar{D} = Menge der Adharenzpunkte von D

= Abschluss von D

klar: $D \subset \bar{D}$.

 $d \in D$. konstante Folge $(a_n)_{n \ge 1}$ mit $a_n = d$. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} d = d$.

Abbildung 17: tan(x) and cot(x)

Also: $d \in \bar{D}$.

4.4 Beispiel:

a)
$$a, b \in \mathbb{R}, a > b, D =]a, b[$$

$$c \quad a \quad b$$

$$\bar{D} = [a,b]D \in \bar{D}$$

$$a \in \bar{D}$$

$$a_n = a + \frac{b-a}{n} \in D, n \ge 2$$

$$\lim_{n\to\infty}a_n=a$$

$$\lim_{n\to\infty} a_n = a$$
Also $[a,b] \subset \bar{D}$.

Ist $c \notin [a, b]$, etwa c < a, dann ist $|a_n - c| \ge a - c > 0$ für alle $a_n \in]a, b[$ Also: $\lim_{a_n} \ne c$

b) \mathscr{I} Intervall in $\mathbb{R}, x_1, \dots, x_r \in \mathscr{I}$,

$$D = \mathcal{I} \{x_1, \dots, x_r\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$\bar{D}=\bar{\mathcal{I}}=\left[a,b\right],$$

falls
$$\mathcal{I} = \langle a, b \rangle$$
.

c)
$$\mathbb{Q} \subset \mathbb{R}$$

$$\bar{\mathbb{Q}} = \mathbb{R}$$

4.5 Definition

$$f: D \rightarrow, c \in \bar{D}$$
.

 $d \in \mathbb{R}$ heißt *Grenzwert von* f(x) *für* x *gegen* $c,d = \lim_{x \to c}$, wenn für *jede* Folge $(a_n) \in D$, die gegen c konvergiert, die Bildfolge $(f(a_n))_n$ gegen d konvergiert.

4.6 Beispiel:

a) Sei $f(x) = b_k x^k + ... + b_1 x + b_0$, eine Polynomfunktion, $c \in \mathbb{R}$. Sei (a_n) Folge mit $\lim_{n \to \infty} a_n = c$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} b_k x^k + \dots + b_1 x + b_0$$

$$= b_k (\lim_{n \to \infty} a_n)^k + b_{k-1} \cdot (\lim_{n \to \infty} a_n)^{k-1} + \dots + b_0 \quad \text{Rechenregeln für Folgen, 2.8}$$

$$= b_k \cdot c^k + b_{k-1} \cdot c^{k-1} + \dots + b_1 \cdot c + b_0 = f(c).$$

Abbildung 18: x^2

b) Sei
$$f(x) = \frac{x^2 - 1}{x - 1}$$
, $D = R \setminus \{1\}$

Abbildung 19: x+1

$$\lim_{x \to 1} f(x) = ?$$
Sei (a_n) Folge mit $D = \mathbb{R} \setminus \{1\}$ mit $\lim_{n \to \infty} a_n = 1$

$$f(a_n) = a_n + 1$$

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (a_n + 1) = 1 + 1 + 2 \cdot \lim_{x \to 1} = 2.$$

c)
$$f(x) = \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x < 0 \end{cases} D = \mathbb{R}$$
$$\lim_{x \to 0} f(x)?$$
$$a_n = \frac{1}{n}. \lim_{n \to \infty} a_n = 0.$$
$$\lim_{x \to \infty} f(a_n) = \lim_{n \to \infty} 1 = 1$$
$$a_n = -\frac{1}{n}, \lim_{n \to \infty} a_n = 0$$
$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = 0.$$
$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} 0 = 0.$$
$$\lim_{x \to 0} \text{existiert nicht.}$$

d)
$$f(x) = \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\}$$
 $a_n = \frac{1}{n\pi}, f(a_n) = \sin(n\pi) = 0$
 $a'_n = \frac{1}{(2n + \frac{1}{2}\pi)} \to 0, f(a'n) = \sin(2\pi n + \frac{\pi}{2}) = 1$
 $\lim(a_n) = 0$
 $\lim(f(a_n)) = \lim 0 = 0\lim(f(a'_n)) = \lim 1 = 1$
 $\lim(f(x))_{x\to 0}$ existiert nicht

Abbildung 20: Abschnittsweise definierte Funktion

Abbildung 21: $\sin(\frac{1}{x})$

e)
$$f(x) = x \cdot \sin(\frac{1}{x}), D = \mathbb{R} \setminus \{0\} \lim_{x \to 0} f(x) = 0$$
 dann:
 $(a_n) \to 0, a_n \in \mathbb{R} \setminus \{0\}$
 $\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n \cdot \sin(\frac{1}{a_n}) = 0$

4.7 Satz $(\varepsilon - \delta)$ -Kriterium

 $f:D\to\mathbb{R},c\in\bar{D}.\ \mathrm{Dann}\ \mathrm{gilt:} \lim_{x\to c}f(x)=d \Leftrightarrow \forall\varepsilon>0\exists\delta\forall x\in D: |x-c|\leq\delta\to|f(x)-d|\leq\varepsilon$

Abbildung 22: $x \cdot \sin(\frac{1}{x})$

Abbildung 23: geometrische Darstellung des $\varepsilon - \delta$ Kriteriums

Beweis. →: Angenommen falsch.

Dass heißt $\exists \varepsilon > 0$, so dass für alle $\delta > 0$ (z.B $\delta = \frac{1}{n}$) ein $x_n \in D$ existiert mit $|x_n - c| \le \frac{1}{n}$ und $|f(x_n) - d| > \varepsilon$

 $\lim_{\substack{n\to\infty\\ n\to\infty}} x_n = c. \text{ Aber:}$ $\lim_{\substack{n\to\infty\\ \leftarrow: \text{ Sei } (a_n) \text{ Folge, } a_n \in D}} f(x_n) \neq d_{\zeta}$

 $\lim_{n\to\infty}a_n=c.$

Zu zeigen: $\lim_{n\to\infty} f(a_n) = d$, d.h $\forall \varepsilon > 0 \exists n(\varepsilon) \forall n \ge n(\varepsilon) : |f(a_n) - d| < \varepsilon$.

Sei $\varepsilon > 0$ beliebig, ex. d > 0:

(★)

Für alle $x \in D$ mit $|x - c| \le \delta$ gilt $|f(x) - d| < \varepsilon$.

Da
$$\lim_{n\to\infty} a_n = c$$
, existiert n_0 mit $|a_n - c| \ge \delta$ für alle $n \ge n_0$
Nach (\star) gilt: $|f(a_n) - d| < \varepsilon \forall n \ge n_0$.

Bemerkung

 $\lim_{x\to c} f(x) = d \Leftrightarrow \text{Für alle Folgen } (a_n), a_n \in D, \text{ mit } \lim_{n\to\infty} a_n = c \text{ gilt } \lim_{n\to\infty} f(a_n) = e \text{ Wenn}$ man zeigen will, dass $\lim_{x\to c} f(x)$ nicht existiert, gibt es 2 Möglichkeiten:

- Suche *eine bestimmte* Folge (a_n) , $\lim_{n\to\infty} a_n = c$, so dass $\lim_{x\to\infty} f(a_n)$ nicht existiert.
- Suche zwei Folgen (a_n) , (b_n) , $\lim_{x\to\infty} a_n = c$, $\lim_{x\to\infty} b_n = c$ und $\lim_{x\to\infty} f(a_n) \neq \lim_{x\to\infty} f(b_n)$

Abbildung 24: Abschnittsweise definierte Funktion

$$a_n = (-1)^n \cdot \frac{1}{n}$$

 $\lim_{n \to \infty} a_n = 0$
 $f(a_n) = (101010...)$
 $\lim_{n \to \infty} f(a_n)$ existiert nicht.
Oder:

$$a_n = \frac{1}{n} \lim_{n \to \infty} a_n = 0$$

$$b_n = -\frac{1}{n} \lim_{n \to \infty} b_n = 0$$
Aber:
$$\lim_{x \to \infty} f(a_n) \neq \lim_{x \to \infty} f(b_n)$$

4.8 Satz (Rechenregeln für Grenzwerte)

 $f, g, D \to \mathbb{R}, c \in \overline{D}$, Existieren die Grenzwerte auf der rechten Seite der folgenden Gleichungen, so auch die auf der linken (und es gilt Gleichheit)

a)
$$\lim_{x \to c} (f \pm / \cdot g) = \lim_{x \to c} f(x) \pm / \cdot \lim_{x \to c} g(x)$$
.

b) Ist $g(x) \neq 0$ für alle $x \in D$ und $\lim_{x \to c} g(x) \neq 0$, so

$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to c} \frac{f(x)}{\lim_{x \to c} g(x)}$$

c)
$$\lim_{x \to c} |f(x)| = \left| \lim_{x \to c} f(x) \right|$$

Beweis. Folgt aus den entsprechenden Regeln für Folgen.

4.9 Beispiel:

$$f(x) = \frac{x^3 + 3x + 1}{2x^2 + 1}, D = \mathbb{R}$$

$$\lim_{x \to 2} = \frac{\lim_{x \to 2} (x^3 + 3x + 1)}{\lim_{x \to 2} (2x^2 + 1)}$$

$$= \frac{4 + 6 + 1}{8 + 1} = \frac{11}{9}$$

4.10 Bemerkung

Rechts- und linksseitige Grenzwerte:

Rechtsseitiger Grenzwert:

$$\lim_{x\to c^+} f(x) = d \Rightarrow \forall (a_n)_n, a_n \in D, a_n \geq c \text{ und } \lim_{n\to\infty} a_n = c \text{ gilt: } \lim_{n\to\infty} f(a_n) = d. \text{ Analog: }$$
linksseitiger Grenzwert:
$$\lim_{x\to c^-} f(x) = d$$

$$(a_n \leq c).$$

Beispiel: 4.11

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases} D = \mathbb{R} \setminus \{0\}, c = 0 \in \bar{D}$$

 $\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = 0.$

 $\lim_{x \to 0} f(x) \text{ existiert nicht.}$

Falls $\lim_{x \to c^+}$ und $\lim_{x \to c^-}$ existieren und $\lim_{x \to c^-} f(x) = \lim_{x \to c^-} f(x$

so exisitiert $\lim_{x\to c} f(x) = d$. Grenzwert: $d \in \mathbb{R}$

Abbildung 25: Grenzwerte gegen einen Festen Wert

4.12 Definition

$$D = \langle b, \infty [, f : D \to \mathbb{R}$$
 (z.B $D = \mathbb{R}$)

f konvergiert gegen $d \in \mathbb{R}$ für x gegen unendlich,

 $\lim = d$, falls gilt: f(x)

 $\forall \varepsilon > 0 \exists M = M(\varepsilon) \forall x \ge M : |f(x) - d| < \varepsilon.$

(Analog: $\lim_{x \to -\infty} f(x) = d$)

4.13 Beispiel

a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$

Sei $\varepsilon > 0$. Wähle $M = \frac{1}{\varepsilon}$. Dann gilt für alle $x \ge M$: $|f(x)-0|=|\frac{1}{x}|\leq \frac{1}{m}=\varepsilon.$

P, Q Polynome vom Grad k bzw. l $l \ge k$

$$P(x) = a_k \cdot x^k + \dots, Q(x) = b_i \cdot x^i + \dots, a_k \neq 0, b_i \neq 0 \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} 0 & \text{für } l \geq k \\ \frac{a_k}{b_k} & \text{für } l = k \end{cases}$$
(Beweis wie für Folgen $\lim_{x \to \infty} \frac{P(n)}{Q(x)}$)

(Beweis wie für Folgen $\lim_{x\to\infty} \frac{P(n)}{Q(n)}$) $\lim_{x\to\infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0.5} = \frac{1}{2}$

$$\lim_{x \to \infty} \frac{7x^5 + 205x^3 + x^2 + 17}{14x^5 + 0.5} = \frac{1}{2}$$

4.14 Bemerkung

Die Rechenregeln aus 4.8 gelten auch für $x \to \infty / - \infty$

Definition 4.15

a) $f: D \to \mathbb{R}, c \in \bar{D}$

f geht gegen ∞ für x gegen c,

$$\lim_{x\to c} f(x) = \infty$$
, falls gilt:

$$\forall L > 0 \exists \delta > 0 \forall x \in D : |x - c| \le \delta \Rightarrow f(x) \ge L.$$

$$= \delta(L)$$

b) $\langle b, \infty[\supset D, f : D \to \mathbb{R}, f geht gegen \infty, f \ddot{u} r x gegen \infty : \lim_{x \to \infty} f(x) = \infty,$

falls gilt:

$$\forall L > 0 \exists M > 0 \forall x \in D, x \ge M, f(x) \ge L.$$

(Entsprechend:
$$\lim_{x \to c} f(x) = -\infty$$

Abbildung 26: Funktionen $\lim_{x\to\infty} = \infty$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

4.16 Satz

$$f: D \to \mathbb{R}$$
.

- a) Sei $c \in \bar{D}$, oder $c = \infty, -\infty$ falls $\lim_{x \to c} f(x) = \infty$ oder $-\infty$, so ist $\lim_{x \to c} \frac{1}{f(x)} = 0$.
- b) $c \in \bar{D} \supset \mathbb{R}$. Falls $\lim_{x \to c} f(x) = 0$ und falls s > 0existiert mit f(x) > 0 für alle $x \in [c - s, c + s], (f(x) < 0)$ dann ist $\lim_{x \to c} \frac{1}{f(x)} = \infty(-\infty)$

Abbildung 27: $sin(\frac{1}{x})$

c) Falls $\lim_{x\to\infty} = 0$ und falls T>0 existiert mit f(x)>0 $f.ax \ge T$, so (f(x)<0) ist $\lim_{x\to\infty}\frac{1}{f(x)}=\infty(-\infty)$ (Entsprechend für $\lim_{x\to-\infty}$)

4.17 Beispiel

a)
$$f(x) = \frac{1}{x}, D =]0, \infty[$$

$$\lim_{x \to 0} f(x) = \infty$$

•
$$f(x) = \frac{1}{x}, D =]-\infty, 0[$$

$$\lim_{x \to 0} f(x) = -\infty$$

•
$$f(x) = \frac{1}{x}, D =]0, \infty[$$

$$\lim_{x \to 0} f(x) = \infty$$

c)
$$P(x) = ak_x^k + ... + a_0$$
.

$$\lim_{x \to \infty} P(x) = \begin{cases} \infty, \text{falls} & a_k > 0 \\ -\infty, \text{falls} & a_k < 0 \end{cases}$$

$$\lim_{x \to -\infty} P(x) = \begin{cases} \infty, \text{falls} & a_k < 0 \text{ k ungerade oder } a_k < 0 \text{ k ungerade oder$$

d) P(x) wie in c) $Q(x) = b_l^l + \ldots + b_0$ $\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} \infty, & \text{falls } a_k \text{ und } b_k \text{ gleiche Vorzeichen} \\ -\infty, & \text{falls } a_k \text{ und } b_k \text{ verschiedene Vorzeichen} \end{cases}$

Abbildung 28: $\frac{e^x}{x^n}$

Sei
$$L \ge 0, x > 0$$
.
 $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} > \frac{x^{n+1}}{(n+1)!}$
 $\frac{e^x}{x^n} > \frac{x}{(n+1)!}$
Ist $x \ge (n+1)!L =: M$, so ist $\frac{e^x}{x^n} > L$.

f) $\lim_{x\to\infty} \frac{x^n}{e^x} = 0$. Folgt aus e) und 4.16a)

5 Stetigkeit

5.1 Definition

 $f: D \to \mathbb{R}$.

- a) f ist stetig an $c \in D$, fallse $\lim_{x \to c} f(x) = f(c)$.
- b) f heißt (absolut) stetig, falls f an allen $c \in D$ stetig ist.

5.2 Satz

$$f: D \to \mathbb{R}, c \in D$$
.

Existiert Konstante $\mathbf{K} > 0$ mit $|f(x) - f(c)| \le \mathbf{K} \cdot |x - c|$ für alle $x \in D$, dann ist f stetig in c.

Beweis.

Sei $\varepsilon > 0$.

Wähle
$$\delta = \frac{\varepsilon}{\mathbf{K}}$$
. Ist $|x - c| \le \delta$, so ist $|f(x) - f(c)| \le \mathbf{K} \cdot |x - c| \le \mathbf{K} \cdot \delta - \varepsilon$.
 $4.7 \lim_{x \to c} f(x) = f(c)$.

5.3 Beispiel

- a) Polynome sind auf ganz \mathbb{R} stetig
- b) $f(x) = \begin{cases} 0, \text{ falls} &, x \neq 0 \\ 1, \text{ falls} &, x = 0 \end{cases}$ f ist nicht steig in 0. $a_n = \frac{1}{n}, a_n \to 0$ $f(a_n) = 0$ $(f(f(a_n)) \to 0 \neq f(0)$

c)
$$f(x) = \begin{cases} 0, \text{falls} &, x > 0 \\ 1, \text{falls} &, x < 0 \end{cases}$$

5 Stetigkeit 5.3 Beispiel

Abbildung 29: Abschnittsweise definierte Funktion

f ist nicht stetig in 0. $\begin{array}{c} 4 \\ 2 \\ \hline -5-2 \\ -4 \end{array}$

d)
$$f(x) = \begin{cases} \sin(\frac{1}{x}), \text{ falls} &, x \neq 0 \\ 0, \text{ falls} &, x = 0 \end{cases}$$
 $x \neq 0$ $x \neq 0$

f ist nicht stetig in 0. 0.5

e)
$$f(x) = \begin{cases} x \cdot \sin(\frac{1}{x}), \text{ falls} &, x \neq 0 \\ 0, \text{ falls} &, x = 0 \end{cases}$$

$$x \cdot \sin(\frac{1}{x}) = 0 = f(0)$$

f ist stetig in 0. $\begin{array}{c|c}
 & 1 \\
 & 0.5 \\
 & -1 \\
 & -0.5.5 \\
 & -1
\end{array}$

f)
$$f(x) = \sin(x)$$

 $g(x) = \sin(x)$ Sind stetig auf \mathbb{R} : Fúr alle $x, c \in \mathbb{R}$ gilt: $|\sin(x) - \sin(c)| \le |x - c|$.
 $\sin(x)$ ist stetig auf \mathbb{R} (5.2, **K** =1)

Abbildung 30: Sinus und Cosinus am Einheitskreis

5.4 Satz (Rechenregeln für Stetigkeit)

 $f,g:D\to\mathbb{R},c\in D,$

sind f und g stetig in c, dann auch $f \pm / \cdot$ und |f|. Ist $g(x) \ne 0$ für alle $x \in D$, so ist auch $\frac{f}{g}$ stetig in c.

Beweis. Folgt aus 4.8

5.5 Satz

 $D, D' \subseteq \mathbb{R}, F: D \to \mathbb{R},$

 $g: D' \to \mathbb{R}$, $f(D) \subseteq D'$.. Ist f stetig in $c \in D$ und ist g stetig in $f(c) \in D'$, so ist $g \circ f$ stetig in c,

Beweis. $(a_n) \rightarrow c, a_n \in D$.

f stetig: $f(a_n) \rightarrow f(c)$

56

5 Stetigkeit 5.6 Beispiel

g stetig in f(c): $(g \circ f)(a_n)(a_n)(g \circ f)(c)$

5.6 Beispiel

a) $f(x) = \sin(\frac{1}{|x^2 - 1|})$, $D = \mathbb{R} \setminus \{1, -1\}$. f ist stetig auf D. Folgt aus 5.3_{a),f und 5.4,5.5}.

b)
$$f(x) = \begin{cases} x \cdot \sin(\frac{1}{x}) & \text{falls } x \neq 0 \\ 0 & \text{falls } x = 0 \end{cases}$$
 stetig auf \mathbb{R} , 5.3e) für $c = 0$ für $c \neq 0$. 5.3,5.4,5.5

c)
$$f(x) = \tan(x) \left(= \frac{\sin(x)}{\cos(x)}\right)$$

 $D = \mathbb{R} \setminus \left\{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\right\} f$ stetig auf D

5.7 Satz

Sei
$$f(x) = \sum_{i=0}^{\infty} a_i (x - a)^i$$

eine Potenzreihe mit Konvergenzradius R. Dann ist f stetig m]a-R[=:D $c\in D\lim_{x\to c}f(x)$

$$= \lim_{x \to c} f(x) \lim_{n \to \infty} \sum_{i=0}^{\infty} a_i (x - a)^i$$

$$\lim_{n \to \infty} \lim_{x \to c} \sum_{i=0}^{\infty} a_i (x - a)^i$$
 [3]

$$= \lim_{n \to \infty} \sum_{i=0}^{\infty} a_i (x - a)^i = f(c)$$

5.8 Korollar

 $f(x = \exp(x) = e^x \text{ ist stetig auf } \mathbb{R}$

5.9 Satz (Nullstellensatz für stetige Funktionen)

$$f: D \to \text{stetig}, [u, v] \subset D, u < v$$

Es gelte $f(v) \cdot f(v) < 0$
(d.h $f(u) > 0$, $f(v) > 0$, oder $f(u) > 0$, $f(v) < 0$) Dann existiert $w \in]u, v[$ mit $f(v) = 0$

Beweis. O.B.d.A., f(n) < 0 < f(v).

Bijektionsverfahren:

$$c$$
 $v = b$

Falls f(c) < 0, so a = c, sonst b = c. Liefert Folgen (a_n) , (b_n) und eindeutig bestimmte $w \in [u, v]$ mit $a_n \le a_{n+1} w \le b_{n+1} \le b_n$ für alle n

$$f(a_n) < 0$$

$$f(b_n) \ge 0$$

für alle n. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = wf$ ist stetig in $\mathbf{w} \Rightarrow \lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} f(b_n) = f(b_n) = f(b_n)$

$$f(a_n) < 0 \,\forall \, n \to \lim_{n \to \infty} f(a_n) \le 0.$$

$$f(b_n) \ge 0 \,\forall \, n \to \lim_{n \to \infty} f(b_n) \ge 0.$$

$$f(b_n) \ge 0 \,\forall \, n \to \lim_{n \to \infty} f(b_n) \ge 0.$$

$$\Rightarrow 0 = \lim(a_n) = \lim(b_n) = f(w).$$

5.10 Korollar (Zwischenwertsatz)

 $f: D \to \mathbb{R}$ stetig, $[u, v] \subseteq D$

Dann nimmt f in [u, v] jeden Wert zwischen f(u) und f(v) an (und evtl. weitere)

Abbildung 31: Zwischenwerte

Beweis. O.B.d.A f(u) < f(v)

Sei f(u) < b < f(w) b beliebig, aber dann fest.

Definiere g(x) = f(x) - b stetig g(u) = f(u) - bg(v) = f(v) - b5.9 (angewandt auf g): Ex. $w \in]u, v[$ mit g(w) = 0,d.h f(w) = b.

5.11 Satz (Min-Max-Theorem)

 $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ (Wichtig: *abgeschlossenes* Intervall)

Dann hat f ein Maximum und ein Minimum auf [a,b], d.h es existieren x_{min} , $x_{max} \in [a,b]$ mit $f(x_{max}) \leq f(x) \leq f(x_m ax)$ für alle $x \in [a,b]$ (Beweis mit Bisektionsverfahren, [4])

Zur Erinnerung

 $f:D\to D'$ bijektiv, dann existiert Umkehrfunktion $f^{-1}D'\to D$ mit $f\circ f^{-1}=id_{D'}$ und $f^{-1}\circ f=id_D$ zum Beispiel $f(x)=x^2$ $f:[0,\infty[\to[0,\infty[$ bijektiv $f^{-1}:[0,\infty[\to[0,\infty[$ $f^{-1}(x)=+\sqrt{x}$

5.12 Definition

 $f: D \to \mathbb{R}$ heißt (streng) monoton wachsend (oder steigend), falls gilt: Sind $x, y \in D, x < y$, so ist $f(x) \le f(y)(f(x) < f(y))$

Entsprechend: *streng monoton fallend. f* heißt (*streng) monoton*, dalls sie entweder (streng) monoton wachsend oder (steng) monoton fallend ist.

5.13 Satz

D Intervall (rechte linke Grenze) ∞ , $-\infty$ möglich), $fD \to \mathbb{R}$ stetig. Dann gilt: f ist injektiv auf $D \Leftrightarrow f$ ist streng monoton auf D.

Beweis. ← ✓

 \Rightarrow : Angenommen f ist nicht streng monoton auf D.

Dann existieren $x_1, x_2, x_3, x_4 \in D$. mit $x_1 < x_2$ und $f(x_1) < f(x_2)$ und $x_3 < x_4$ und $f(x_3) > f(x_4)$

 $(f(x_1) = f(x_2))$ bzw. $f(x_3) = f(x_4)$ nicht möglich, da f injektiv) Jetzt muss man Fallunterscheidungen machen.

z.B

$$x_1 < x_2 < x_3 < x_4, \ f(x_1) < f(x_3) < f(x_2)$$

5.14 Satz (Stetigkeit der Umkehrfunktion)

D Intervall, $f: D \to f(D) =: D'$

eine stetige, streng monotone (also bijektive) Funktion. Dann ist die Umkehrfunktion $f^{-1}D' \to D$ stetig.

Beweis: [5] f streng monoton wachsend (fallend) $\Rightarrow f-1$ streng monoton wachsend

Abbildung 32: Eine Funktion und ihre Umkehrfunktion

(fallend)

5 Stetigkeit 5.15 Korollar

5.15 Korollar

Ist
$$n \in \mathbb{N} \begin{cases} \text{gerade} \\ \text{ungerade} \end{cases}$$
, so

Ist
$$n \in \mathbb{N}$$
 $\begin{cases} \text{gerade} \\ \text{ungerade} \end{cases}$, so ungerade ist $f(x) = x^n$ stetig und bijektiv $\begin{cases} [0, \infty[\to [0, \infty[\\ \mathbb{R} \to \mathbb{R} \end{cases}]) \end{cases}$

Die Umkehrfunktion
$$f^{-1} = \sqrt[m]{x}$$
 ist stetig und bijektiv
$$\begin{cases} [0, \infty[\to [0, \infty[\\ \mathbb{R} \to \mathbb{R} \end{cases}] & \text{Nach 5.8 ist} \\ \exp(x) \text{ stetig auf } \mathbb{R}. \text{ Nach 3.5b) ist } \exp(x) > 0 \text{ für alle } x \in \mathbb{R}. \text{ Für } x > 0, \text{ so ist } \exp(x) = 1 + \\ x + \frac{x^2}{2} + \frac{x^2}{3!} + \dots \ge 1, \text{ Ist } x > y \text{ so ist } \exp(y) = \exp(x + (y - x)) = \exp(x) \cdot \exp(y - x) > \exp(x) \cdot \exp(y - x) = \exp(x) \cdot \exp(x) \cdot \exp(y - x) = \exp(x) \cdot \exp(x) \cdot \exp(x) = \exp(x) \cdot \exp(x) \cdot \exp(x) = \exp(x) = \exp(x) \cdot \exp(x) = \exp(x) = \exp(x) \cdot \exp(x) = \exp$$

5.16 Satz

 $\exp : \mathbb{R} \to]0, \infty[$ ist streng monoton wachsend und bijektiv. Die Umkehrfunktion heißt $\ln(x):]0, \infty[\to \mathbb{R}$ ist stetig und streng monoton wachsend und bijektiv.

Es gilt: $ln(x \cdot y) = ln(x) + ln(y)$ für alle x, y > 0, ln(1) = 0

Abbildung 33: $\exp(x)$ und $\ln(x)$

Beweis. exp streng monoton steigen s.V,

$$\lim_{x \to \infty} \exp(x) = \infty \tag{4.17e}$$

 $\lim_{x \to \infty} \exp(x) = \lim_{x \to \infty} \exp(-x) = \lim_{x \to \infty} \frac{1}{\exp(x)} = 0 \text{ Also: exp: } \mathbb{R} \to]0, \infty[\text{ bijektiv ln: }]0, \infty[\to \mathbb{R}, \text{ streng monoton wachsend, stetig, bijektiv } (5.14).$ $x, y > 0. \exists a, b \in \mathbb{R} \text{ mit } x \in \exp(a), y = \exp(b).$ $\ln(xy) = \ln(\exp(a) \cdot \exp(b)$ $= \ln(\exp(a+b)) = a+b$ $= \ln(x) + \ln(y)$

5.17 Satz

$$\lim_{x \to \infty} \frac{\ln(x)}{x^n} = 0 \text{ (für jedes } k \in \mathbb{N})$$
(D.h. $(\ln(n) \in o(n))$

Beweis.
$$x = \exp(y), x \le 1$$
, d.h $y \le 0$.
$$\frac{\ln(x)}{x^k} = \frac{y}{(\exp(y)^k)} \le \frac{y}{\exp(y)} \to 04.17e$$

5.18 Definition

Für a > 0 setze $a^x = \exp(x \cdot \ln(a)) \underbrace{(\exp(\ln(a)))}_{0} a \le e : e^x = \exp(x), a^x$, falls a > 0

Abbildung 34: Verschiedene Arten Exponentialfunktionen

62

5 Stetigkeit 5.19 Satz

5.19 Satz

Sei a > 0

a) $a^x : \mathbb{R} \to]0, \infty[$ ist streng monoton wachsend für alle a > 1 und streng monoton fallend für 0 < a < 1.

b)
$$a^x, a^y = a^{x+y}$$

 $(a^{x^y} = a^{xy})$ für alle $x, y \in \mathbb{R}$

c) Für $x = \frac{p}{q} \in Q(p \in \mathbb{Z}, q > 0)$ stimmt Def. von a^x entsprechend. 5.18 mit der der üblichen Definition $a^{\frac{p}{q}} = \sqrt[q]{a^p}$ überein.

Beweis. Folgt aus Definition mit 3.5

5.20 Bemerkung

Ist $x \in \mathbb{R}$ und (x_n) Folge mit $x_n \in \mathbb{Q}$, $\lim_{n \to \infty} x_n = x$, so $\lim_{n \to \infty} a^{x_n} = a^x$ (Stetigkeit) D.h a^x lässt sich durch $a^{x_n}, x_n \in \mathbb{Q}$, beliebig gut approximieren

5.21 Definition

Für a > 0, $a \ne 1$, heißt die Umkehrfunktion von a^x Logarithmus zur Basis a $\log_a(x)$ (a = 2, a = e, a = 10 wichtig) $\log_e(x) = \ln(x)$

5.22 Satz

Seien $a, b > 0, a \ne 1 \ne b, x, y > 0$

(a)
$$\log_a(x \cdot y) = \log(x) + \log(y)$$

(b)
$$\log_{a}(x^{y}) = y \cdot \log(x)$$

(c)
$$\log_a(x) = \log_a(b) \cdot \log_b(x)$$

(d) Sind a,b > 1, so
$$O(\log_a(n)) = O(\log_b(n))$$

Abbildung 35: Logithmen mit Basen > 1 und < 1

Beweis. a) wie 5.10 b) $a^{y \cdot \log_a(a^y)} = (a^{\log_a(x)})^y = x^y$ $\Rightarrow \log_a(x^y) = \log_a(a^{y \cdot \log_a(x)}) = y \cdot \log_a(x)$ c) $\log_a(x) = \log_a(b^{\log_a(x)}) \stackrel{b}{=} \log_b(x) \cdot \log_a(b)$ d) Folgt aus c), da $\log_a(b) > 0$

6 Differenzierbare Funktionen

Abbildung 36: Steigung am Steigungsdreieck

Sekante durch (c,f(c)), (x,f(x))

Steigung der Sekante:

$$x \neq c$$
: $\frac{f(x) - f(c)}{x - c} = s(x)$ definiert auf $\mathbb{R} \setminus \{c\}$
Differenzenquotient

Falls $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ existiert: Steigung der Tangente an Graph von f in (c,f(c))) (Änderungsrate von f in (c, f(c))

6.1 **Definition**

 \mathscr{I} Intervall, $f: \mathscr{I} \to \mathbb{R}$, $c \in \mathscr{I}$

a) f heßt differenzierbar (diffbar) an der Stelle c, falls $\lim_{x\to c}\frac{f(x)-f(c)}{x-c}$ existiert. Grenzwert heißt Ableitung oder Differential quotient von f an der Stelle c.

$$f'(c) = \left(\frac{df}{dx}(c)\right) \qquad \left[f'(c) = \lim_{n \to 0} \frac{f(c+h) - f(c)}{h}, \ h := x - c\right]$$

b) f heißt differenzierbar auf \mathcal{I} , falls f in jedem Punkt von \mathcal{I} differenzierbar ist.

$$f': \begin{cases} \mathscr{I} \to R \\ x \to f(x) \end{cases}$$

6.2 Beispiel

a) $f(x) = a \cdot x^n, n \in \mathbb{N} a \in \mathbb{R}$. $x \neq c : \frac{ax^n - ac^n}{x - c} = \frac{a(x - c)(x^{n - 1} ...)}{x - c}$ $\lim_{x \to c} \frac{ax^n - ac^n}{x - c} = \lim_{x \to c} \frac{a(x - c)(x^{n - 1} ...)}{x - c} = a \cdot n \cdot c^{n - 1} = f(x)$. $f'(x) = a \cdot n \cdot x^{n - 1}$ Gilt auch für n = 0. (f konstant auf f' = 0)

b)
$$f(x) = |x|$$

f ist diffbar in 0?

Zu zeigen $\lim_{x\to 0} \frac{|x|-0}{x-0}$ existiert nicht. Sei (a_n) Folge, $a_n < 0$, $\lim_{n\to \infty} a_n = 0$ (z.B $a_n = -\frac{1}{n}$)

$$\lim_{n \to \infty} \frac{|a_n|}{a_n} = -1$$

$$b_n > 0, \lim_{n \to \infty} b_n = 0 \text{(z.B } b_n = \frac{1}{n})$$

$$\lim_{n \to \infty} \frac{|b_n|}{b_n} = \lim_{n \to \infty} \frac{b_n}{b_n} = 1$$

$$f'(0) \text{ existiert nicht!}$$

6.3 Satz

 $f: \mathscr{I} \to \mathbb{R}$ in $c \in \mathscr{I}$ diffbar. Dann gilt für alle $x \in \mathscr{I}$: $f(x) = f(c) + f'(c) \cdot (x - c) + \mathscr{R}(x) \cdot (x - c)$, wobei $\mathscr{R}, \mathscr{I} \to \mathbb{R}$ stetig in c, $\lim \mathscr{R}(c) = 0$

wobei $\mathcal{R}, \mathcal{I} \to \mathbb{R}$ stetig in c, $\lim_{x \to c} \mathcal{R}(c) = 0$ D.h.: f lässt sich in der Nähe von c sehr gut durch eine lineare Funktion (d.h Graph

Abbildung 37: Sekante an Funktion

ist Gerade) approximieren.

6.4 Korollar

 $f: \mathcal{I} \to \mathbb{R}$ diffbar in $c \Rightarrow f$ ist steig in c. Beweis folgt aus 6.3

Beachte: Umkehrung von 6.4 gilt im Allgemeinen nicht. 6.2b).

Diffbare Funktionen sind stetig, aber sie haben keine Knicke im Graphen.

Satz (Ableitungsregeln) 6.5

 \mathcal{I} Intervall, $c \in \mathcal{I}$. Für a)-c) seien $f, g : \mathcal{I} \to \mathbb{R}$ diffbar in c

a) $\alpha, \beta \in \mathbb{R}$, so $\alpha f + \beta g$ diffbar in c,

$$(\alpha f + \beta g)'(c) = \alpha \cdot f'(c) + \beta \cdot g'(c)$$

b) (Produktregel) $f \cdot g$ diffbar in c,

$$(f \cdot g)'(c) = f(c) \cdot g'(c) + f'(c) \cdot g(c)$$

c) (Quotientenregel) Ist $g(x) \neq 0$ auf \mathcal{I} , so

$$\frac{f'}{g}(c) = \frac{f'(c) \cdot g(c) - f(c) \cdot g'(c)}{g(c)^2}$$

d) (Kettenregel) \mathcal{I}_1 Intervall, $f: \mathcal{I} \to \mathcal{I}_1$, diffbar in $c, g: \mathcal{I} \to \mathbb{R}$ diffbar in f(c), so $g \circ f$ diffbar in c, und

$$(g \circ f)' = g'(f(c)) \cdot f'(c)$$

Beweis. Nur b):
$$\lim_{x \to c} \frac{f(x) \cdot g(x) - f(c) \cdot g(c)}{x - c} = \lim_{x \to c} \frac{f(x)(g(x) - g(c)) + g(c)(f(x) - f(c))}{x - c} = \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{g(x) - g(c)}{x - c} + g(c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f(c)g'(c) + g(c)f'(c).$$

6.6 Beispiel

a)
$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0$$

 $f'(x) = a_n \cdot n \cdot x^{n-1} \cdot x^{n-2} + \dots + a_1$
6.5a) 6.2a)

b)
$$f(x) = \frac{1}{x^n} = x^{-n} (n \in \mathbb{N})$$

 $\mathscr{I} =]0, \infty[$
 $f'(x) = \frac{0 \cdot x^n - 1 \cdot x^{n-1}}{x^{2n}} = \frac{-n}{x^{n+1}} = (-n) \cdot x^{-n-1} \text{ gilt auch auf }] - \infty, 0[$
6.5c)

c)
$$h(x) = (x^2 + x + 1)^2$$

(6.5d): $f(x) = x^2 + x + 1$
 $g(x) = x^2$
 $h'(x) = 2 \cdot (x^2 + x + 1) \cdot (2x + 1)$

6.7 Satz

a)
$$\lim_{x \to 0} \frac{\sin(x)}{1}$$

b)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

Beweis.

a) Elementargeometrisch + Additionstheoreme 1.7 (Man zeig: $\cos(x) < \frac{\sin(x)}{x} < 1$ für $0 < x < \frac{\pi}{2}$

b)
$$\frac{1-\cos(x)}{x} = \frac{(1-\cos(x))}{x(1+\cos(x))} = \frac{1-\cos(x)}{x(1+\cos(x))} = \frac{\sin^2(x)}{x} \cdot \frac{x}{1+\cos(x)} \to 0$$

6.8 Satz

a)
$$f(x) = \sin(x)$$
, so $f'(x) = \cos(x)$

b)
$$f(x) = \cos(x)$$
, so $f'(x) = -\sin(x)$

c)
$$f(x) = \tan(x)$$
, so $f'(x) = 1 + \tan^2(x)$

Beweis. a),
$$c \in \mathbb{R}$$

 $\sin'(c) = \lim_{h \to 0} \frac{\sin(h+c) + \sin(c)}{h}$
 $\lim_{h \to 0} \frac{\sin(c) \cdot \cos(h) + \cos(c) \cdot \sin(h) - \sin(c)}{h}$

$$= \frac{\sin(c)\cdot\cos(h)-1}{h} + \lim_{h\to 0} \frac{\cos(c)\sin(h)}{h} = \sin(c)\cdot 0 + \cos(c)\cdot 1 = \cos(c) \text{ b) analog}$$
c) $f(x) = \frac{\sin(x)}{\cos(x)}$ Quotientenregel + a)b) + $\sin^2(x) + \cos^2(x) = 1$.

6.9 Beispiel

a)
$$f(x) = \begin{cases} 1 & \text{für } x < 0 \\ \cos(x) & \text{für } x > 0 \end{cases}$$

 $f \text{ ist diffbar für alle } x \neq 0$

Abbildung 38: Abschnittsweise definierte cosinus Funktion

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

$$\lim_{x \to 0^{+}} \frac{\cos(x) - 1}{x} = 0$$

$$\lim_{x \to 0^{-}} \frac{1 - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0 = f'(0)$$

b)
$$f(x) = \sin^2(x^3) = (\sin(x^3))^2$$

 $f'(x) = 2 \cdot \sin(x^3) \cdot (\sin(x^3))' = 6 \cdot \sin(x^3) \cdot \cos(x^3) \cdot x^2$

6.10 Satz

Im Inneren ihres Konvergenzintervalls definieren Potenzreihen eine Funktion

Sei
$$f(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$$

eine Potenzreihe um a mit Konvergenzradius **R** > 0.

Dann ist f in]a-R, a+R[diffbar und es gilt : $\sum_{k=1}^{\infty} k \cdot a_k \cdot (x-a)^{k-1} = f'(x)$. (gliedweise Ableitung)

(Beweis [7])

6.11 Korollar

$$(\exp(x))' = \exp(x)$$

Beweis.
$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 für alle $x \in \mathbb{R}$ $\left(\frac{x^k}{k!}\right) = \frac{k \cdot x^{k-1}}{k!} = \frac{x^{k-1}}{(k-1)!}$ $k = 1, \dots$

Beweis folgt.

Satz (Ableitung der Umkehrfunktion)

 $f: \mathcal{I} \to \mathcal{I}_1$ bijektiv, $\mathcal{I}, \mathcal{I}_1$ Intervall (linke und rechte Grenze darf nicht $-\infty/\infty$ sein) Sei f in $c \in \mathcal{I}$ diffbar und $f'(c) \neq 0$.

Dann ist $f': \mathcal{I}_1 \to \mathcal{I}$ in $f(c) \in \mathcal{I}_1$ diffbar, und es gilt: $(f^{-1})'(f(c)) = \frac{1}{f(c)}$

Ist f überall auf $\mathscr I$ diffbar und $f'(y) \neq 0$ für alle $y \in \mathscr I$, so ist f^{-1} auf $\mathscr I_1$ diffbar und es gilt:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

für alle $x \in \mathcal{I}$.

Beweisidee: f^{-1} diffbar an Stelle f(c), falls $f'(c) \neq 0$. Grund: Graph von f' = Graph von f gespiegelt an Winkelhalbierende s(x) = x.

$$(f^{-1} \circ f)(x) = x$$

Abbildung 39: Zwei Funktionen an der Winkelhalbierenden

Ableiten mit Kettenregel.

$$f^{-1}(f(x)) \cdot f'(x) = 1$$
. Beweis folgt.

6.13 Bemerkung

Bedingung $f'(c) \neq 0$ in 6.12 ist notwendig.

$$f: \begin{cases} \mathbb{R} \to R \\ x \to x^3 \end{cases} \text{ bijektiv}$$

$$f'(0) = 0.$$

$$f^{-1}(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$$

$$\lim_{x \to 0} \frac{x^{\frac{1}{3}} - 0}{x - 0} = \lim_{x \to 0} \frac{1}{x^{\frac{2}{3}}} = \infty$$

$$(f'(x) = 3x^2)$$

$$(f'(x) = 3x^2)$$

$$(f^{-1})'(0) \text{ existiert nicht. (jedenfalls nicht als reelle Zahl!)}$$

6.14 Satz

$$f(x)$$
 $f'(x)$

 a) a^x
 $(a \in \mathbb{R}, a > 0), x \in \mathbb{R}$
 $\ln(a) \cdot a^x$

 b) $\ln(x)$
 $\inf]0, \infty[$
 $\frac{1}{x}$

 c) $\log_{10}(x)$
 $(konst. a > 0, a \neq 1)$ auf $]0, \infty[$
 $\frac{1}{\ln(a) \cdot x}$

 d) $x \cdot (\ln(x) - 1)$
 $\inf]0, \infty[$
 $\ln(x)$

 e) $x^b \cdot (b \in \mathbb{R})$
 $\inf]0, \infty[$
 $b \cdot x^{b-1}$

Beweis. a)

$$f(x) = \exp(x \cdot \ln(a))$$

$$f'(x) = \exp(x \cdot \ln(a)) \cdot \ln(a) = a^x \cdot \ln(a)$$
Kettenregel

b)
$$\ln(x)' = \frac{1}{6.12} \frac{1}{\exp'(\ln(x))} = \frac{1}{x}$$

c) $\log'_a(x) = \frac{1}{\ln(a) \cdot a^{\log_a(x)}} = \frac{1}{\ln(a) \cdot x}$

6.15 Satz (logarithmische Abbildung)

$$f: \mathscr{I} \to]0, \infty[$$
 diffbar.

$$(\ln(f(x)))' = \frac{f'(x)}{f(x)}$$

Beweis: Kettenregel und 6.14b)

6.16 Beispiel

$$f(x) = e^{x} \cdot (\sin(x) + 2) \cdot x^{6} \text{ für } x \neq 0$$

$$\ln(f(x)) = x + \ln(\sin(x) + 2) + 6 \cdot \ln(x)$$

$$\ln(f(x))' = 1 + \frac{\cos(x)}{\sin(x)} + \frac{6}{x}$$

$$f'(x) = (1 + \frac{\cos(x)}{\sin(x) + 2} + \frac{6}{x}) \cdot e^{x} \cdot (\sin(x) + 2) \cdot x^{6}$$

6.17 Definition

 $f: D \to \mathbb{R}$ hat lokales Maximum

6.18 Satz

 $f: D \to \mathbb{R}$ diffbar.

Hat f in $c \in D$ lokales Minimum/Maximum, so f'(c) = 0

Beweis.

c lokale Max.stelle.

f'(c) existiert nach Voraussetzung.

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0.$$

$$f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0.$$

$$\Rightarrow f'(c) = 0.$$

$$\Rightarrow f'(c) = 0.$$

Vorsicht: f'(c) = 0 ist nicht hinreichend für lokale Maxima/Minima.

z.B
$$f(x) = x^3$$
 $f'(x) = 3x^2$ $f'(0) = 0$

f hat kein Maximum oder Minimum in 0

Globale Max/Min von f auf [a, b]:

Abbildung 40: Ableitung keine Hinreichende Bedingung für Minima/Maxima

- Bestimme $c \in]a, b[$ mit f'(c) = 0 Teste, ob lokale Max/Min.
- Teste Intervallgrenzen a und b.

6.19 Satz (Mittelwertsatz)

Speziell: $\mathcal{I} = [a, b], a < b, a, b \in \mathbb{R}$

 $f(a) = f(b) \Rightarrow f: \mathcal{I} \to \mathbb{R}$ stetig und diffbar auf]a, b[.

 $\exists c \in]a, b[$ mit Dann existiert $c \in]a, b[$ mit $f'(c) = \frac{f(b) - f(a)}{b - a}$

f'(c) = 0 Satz von

 $\int (c) - 0$ Satz ve

Rolle

Abbildung 41: Eine Funktion und ihrer Steigung an der Stelle c

Beweis. Setze $s(x) = f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - a)$

(Sekante durch (a, f(a)), (b, f(b))

Def. h(x) = f(x) - s(x). h(a) = h(b) = 0.

Zeige: $\exists c \in]a, b[$ mit h'(c) = 0.

Fertig, denn

$$h'(x) = f'(x) - s'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$
$$h'(c) = 0 \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

Ist h konstant, so kann man jedes $c \in]a, b[$ wählen. Also sei h nicht konstant. h ist stetig auf [a,b]. 5.11. h nimmt auf [a,b]] globales Max. und Min. an: $x_{max}, x_{min}, x_{max} \neq x_{min}$, da h nicht konstant h(a) = h(b) O.B.d.A

$$x_{max} \in]a, b[.6.18:h'(x_{max}) = 0$$

6.20 Korollar

 $\mathscr{I} = [a, b].a < b, f : I \to \mathbb{R}$ stetig, diffbar in]a, b[. (auch $\mathscr{I} = \mathbb{R}$ oder $[a, \infty],]-\infty, b]$ erlaubt)

- a) Ist f'(x) = 0 für alle $x \in]a, b[$, so ist f konstant auf [a, b],
- b) Ist $f'(x) \ge 0$ für alle $x \in]a, b[$, so ist f (streng) monoton wachsend auf \mathscr{I}
- c) Ist $f(x) \le 0$ für alle $x \in]a, b[$ so ist f (streng) monoton fallend auf \mathscr{I} .

Beweis.

Wähle u < v, $u, v \in [a, b]$ beliebig.

Wende 6.19 auf [u, v] an. $\exists c \in]u, v[$ mit

$$f'(c) = \frac{f(v) - f(u)}{v - u}$$

Daraus folgt im Fall

- a) f(v) = f(u)
- b) $f(v) \ge f(u)$
- c) $f(v) \le f(u)$

Bedingung für strenge Montonie nur hinreichend, nicht notwendig $f(x) = x^3$ streng monoton steigend f'(0) = 0

6.21 Korollar

 $\mathscr{I} = [a, b], a < b \text{ wie in 6.20.}$ $c \in]a, b[.f : \mathscr{I} \to \mathbb{R} \text{ sei stetig in } \mathscr{I}.$ $f \text{ auf } \mathscr{I}_0 =]a, b[\setminus \{c\} \text{ diffbar}$ Existiert $\lim_{x \to c} f'(x) \text{ auf } \mathscr{I}_0$, so existiert $f'(c) \text{ und } f'(c) = \lim_{x \to c} f'(x).$

6.22 Satz (Regeln von L'Hôpital)

- a) \mathscr{I} Intervall, $c \in \mathscr{I}$, $f,g : \mathscr{I} \setminus \{c\} \to \mathbb{R}$ diffbar. Es gelte g'(x) > 0 für alle $x \in \mathscr{I} \setminus \{c\}$ Oder : g'(x) > 0 für alle $x \in \mathscr{I} \setminus \{c\}$ Es gelte $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ oder \otimes
 - Existiert $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$, so ist $\lim_{x\to c} \frac{f(x)}{g(x)} = L$
- b) $f,g:[a,\infty[\to\mathbb{R} \text{ diffbar.}$ Es gelte g'(x)>0 für alle $x\in[a,\infty[$

oder
$$g'(x) < 0$$
 für alle $x \in [a, \infty[$ und $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ oder ∞
Existiert $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L$, so ist
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

6.23 Beispiel

a)
$$\lim_{x\to\infty} \frac{\ln(1+ax)}{x} = ?(a \in \mathbb{R})$$
 Zähler definiert für alle $x \in \mathbb{R}$ mit $1+ax > 0$ 6.22a): $\lim_{x\to0} \frac{\ln(1+ax)}{x}$ $\lim_{x\to0} \frac{\frac{a}{1+ax}}{1} = a$

b)
$$\lim_{x \cdot \ln(x)}$$

$$\lim_{x \to 0^+} -\frac{-\ln(x)}{\frac{1}{x}} = \lim_{6.22} \frac{\frac{1}{x}}{x \to 0^0} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} -x = 0$$

c)
$$\lim_{x \to 0} x^{x} = \lim_{x \to 0} \exp(x \cdot \ln(x))$$
$$= \exp_{\text{stetig}} \exp(\lim_{x \to 0} x \cdot \ln(x)) = \exp(0) = 1.$$
(Deshalb definiert man $0^{0} = 1$)

d)
$$\lim_{x \to \infty} = \frac{\ln(x)}{x} = \frac{1}{6.22}$$
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 1$$
$$\lim_{x \to \infty} = \frac{1}{x} = 0 \text{ (schon in 5.17)}$$

7 Das bestimmte Integral

Ziel: Bestimmung des Flächeninhalts zwischen Graph einer Funktion und x-Achse zwischen zwei Grenzen a und b (sofern möglich).

Abbildung 42: Flächeninhalt unter einer Funktion \boldsymbol{f}

7.1 Definition

a) $a,b\in\mathbb{R}, a< b.f:[a,b]\to\mathbb{R}$ heißt *Treppenfunktion*, falls es $a=a_0< a_1<\ldots< a_n=b$ gibt, so dass f auf jedem offenem Intervall $]a_i,a_{i+1}[/,,i=0\ldots,n-1]$, konstant ist. (Wert an den a_i beliebig.)

Abbildung 43: Treppenfunktion

b) f wie in a).

$$\int_{a}^{b} f dx = \int_{a}^{b} f(x) dx := \sum_{i=0}^{n-1} c_{i} (a_{i+1} - a_{i})$$

wobei $f(x) = c_i$ auf $]a_i, a_{i+1}[.$

Integral von f über [a, b] (Integral kann negativ sein)

7.2 Definition

 $a, b \in \mathbb{R}.a < b.$

 $f:[a,b] \to \mathbb{R}$ heißt Regelfunktion (oder integrierbare Funktion) \Leftrightarrow

 $\forall \varepsilon > 0 \exists$ Treppenfunktion $g : [a, b] \to \mathbb{R}$ (abh. von ε): $|f(x) - g(x)| \ge \varepsilon$ für alle $x \in [a, b]$. Bedeutung:

Gleichmäßige Approximierbarkeit durch Treppenfunktion.

7.3 Satz

 $\mathcal{I} = [a, b], a, b \in \mathbb{R}, a < b.$

a) Jede Regelfunktion f auf $\mathscr I$ ist beschränkt d.h. $\exists m, M \in \mathbb R : m \le f(x) \le M$ für alle $x \in [a,b]$.

b) Summe, Produkt und Betrag von Regelfunktionen ist wieder eine Regelfunktion

Beweisidee für a),b):

Man beweist 7.3 zunächst für Treppenfunktionen. Für b): Bestimme gemeinsame Verfeinerung der Intervallunterteilung der beiden Treppenfunktionen Dann auf Regelfunktionen übertragen.

7.4 Satz

Jede stetige Funktion auf [a, b] ist Regelfunktion Beweis: [8] 7.4 gilt auch für soge-

Abbildung 44: Treppenfunktion

nannte *stückweise stetige* Funktionen auf [a,b][a,b] ist Vereinigung *endlicher* Teilintervalle, auf denen Funktion stetig ist.

7.5 Beispiel

a)
$$f(x) = x^2$$
, $\mathscr{I} = [0, t]$
Definition für $x \in \mathbb{N}$ Treppenfunktion.
 $f_n : [0, t] \to \mathbb{R}$

Abbildung 45: Abschnittsweise stetige Funktion

Abbildung 46: Treppenfunktion (Untersumme) von \boldsymbol{x}^2

$$f_n(x) = \begin{cases} \left(\frac{it^2}{n}\right) & \text{falls } x \in \left[\frac{it}{n}, \frac{(i+1)t}{n}\right] \text{ für ein } i \in \{0, \dots, n-1\} \\ t^2 & \text{falls } x = t \end{cases}$$

$$x \in [0, t] : |f(x) - f_n(x)| = ?$$

$$x = t : |f(t) - f_n(x)| = 0.$$

$$0 \le x < t : \text{Dann } x \in \left[\frac{it}{n}, \frac{(i+1)t}{n}\right] \text{ für alle } i \in \{0, \dots, n-1\}.$$

$$|f(x) - f_n(x)| = |x^2 - \left(\frac{it}{n}\right)^2| \le \left(\frac{(i+1)t}{n}\right)^2 - \left(\frac{it}{n}\right)^2 = \frac{2it + t^2}{n^2} \le \frac{2t}{n} + \frac{t^2}{n^2} \xrightarrow[n \to \infty]{} 0$$

Abbildung 47: Nicht integrierbare Funktion

7.6 Lemma

f Regelfunktion auf [a, b]

a) $(f_n)_n$ Folge von Treppenfunktion, die *gleichmäßig* gegen f konvergiert, dass heißt es existiert Nullfolge $(a_n)_n$, $a \ge 0$, und $|f_n(x) - f(x)| \le a_n$ für alle $x \in [a, b]$. Dann konvergiert die Folge

$$\underbrace{\left(\int_{a}^{b} f_{n}(x)dx\right)_{n}}_{\in \mathbb{R}}$$

b) Sind $(f_n)_n$ und $(g_n)_n$ zwei Folgen von Treppenfunktionen die gegen f gleichmäßig konvergieren, so:

(WHK, 7.20)
$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b g_n(x) dx$$

7.7 **Definition**

 $f:[a,b]\to\mathbb{R}$ Regelfunktion, $(f_n)_n$ Folge von Treppenfunktionen, die gleichmäßif gegen f konvergiert (wie in 7.6 a).

Definition (bestimmtes) Integral:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Treppenfunktion:

$$\sum_{i=0}^{n-1} c_i(x_m - x_i)$$

$$a = x_0 \qquad b = x_n$$

$$a = x_i \qquad a = x_{i+1}$$

7.8 Beispiel

$$f(x) = x^2 \text{ auf } [0, t]$$

 f_n wie in 7.5.

$$\int_{a}^{b} f_{n}(x)dx = \sum_{i=0}^{n-1} \left(\frac{it}{n}\right)^{2} \cdot \frac{t}{n} = \sum_{i=0}^{n+1} i^{2} \cdot \frac{t^{2}}{n^{3}} = \frac{t^{3}}{n^{3}} \cdot \sum_{i=0}^{n-1} i^{2}$$

Per Induktion nach n kann man zeigen : $\sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6}$

Also:
$$\int_0^t f_n(x) dx = \frac{t^3}{n^3} \cdot \frac{(n-1)n(2n-1)}{6}$$

 $\lim_{n \to \infty} \int_0^t f_n(x) dx = \frac{t^3}{6} \cdot 2 = \frac{t^3}{3}$ Falls $t > 0 - \frac{t^3}{3}$

7.9 Satz (Rechenregeln für Integrale)

f, g Regelfunktionen auf [a, b].

(a)
$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
$$\int_{a}^{b} a \cdot f(x)dx = a \cdot \int_{a}^{b} f(x)dx$$

(b)
$$f(x) \le g(x)$$
 für alle $x \in [a, b] \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$

(c)
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Sei $m \le f(x) \le M$ für alle $x \in [a, b]$:

(d)
$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

(e)
$$a < c < b$$
, so $\int_a^c f(x)dx = \int_c^b f(x)dx$

7.10 Beispiel

$$a < b \cdot \int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}$$

$$(o < a < b :) 7.9e \int_{a}^{b} x^{2} dx = \int_{0}^{b} x^{2} dx - \int_{0}^{a} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3})$$
Analog für die Fälle $a \le 0 < b$ und $a < b \le 0$

7.11 Satz (Mittelwertsatz der Integralrechnung)

$$f:[a.b] \to \mathbb{R}$$
 stetig.

Dann existiert
$$c \in [a, b]$$
 mit $\int_{b}^{a} f(x)dx = f(c) \cdot (b - a)$

Beweis. f ist stetig nimmt also das Maximum von m an Stelle x_{min} und Maximum M an der Stelle x_{max} an. (5.11)

7.9d):
$$m(b-a) \le \int_{a}^{b} f(x)dx$$

 $f(x_{min}) = m \le \frac{1}{b-a} \cdot \int_{a}^{b} f(x)dx \le M = f(x_{max})$

Zwischenwertsatz für stetige Funktionen 5.10: $\exists c$ zwischen x_{min} und x_{max} (d.h $c \in$

Abbildung 48: Mittelwertsatz der Integralrechnung

[a, b]) mit
$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

8 Der Hauptsatz der Differential- und Integralrechnung

8.1 Definition

a) Sei [a, b] abgeschlossenes, beschränktes (d.h $a, b \in \mathbb{R}, a < b$) Intervall. $f:[a, b] \to \mathbb{R}$ integrierbar,

$$\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt$$

b)
$$\int_{a}^{a} f(t)dt = 0$$

8.2 Definition

Sei \mathscr{I} beliebiges Intervall ($-\infty$ bzw. ∞ als linke/rechte Grenze erlaubt).

7.8
$$x > 0$$

 $x > 0 \int_0^x t^2 dt = \frac{x^3}{3}$
 $\left(\frac{x^3}{3}\right)' = x^2$
Kein Zufall
 $x \le 0$
 $\int_0^x t^2 dt = -\int_x^0 = -(-\frac{x^3}{3}) = \frac{x^3}{3}$
 $\int_a^b t^2 = \frac{b^3}{3} - \frac{a^3}{3}$ gilt für alle $a, b \in \mathbb{R}$

a) $f: \mathscr{I} \to \mathbb{R}$ heißt *lokal integrierbar*,wenn f auf jedem ageschlossenem beschränktem Teilintervall [u,v] von \mathscr{I} integrierbar ist.

(Ist ${\mathcal I}$ selbst abgeschlossen und beschränkt, so "lokal integrierbar "= "integrier-

Abbildung 49: Lokal Integrierbar von u bis v

bar ")

b) $F: \mathscr{I} \to \mathbb{R}$ heißt *Stammfunktion* der lokal Integrierbaren Funktion $f: \mathscr{I} \to \mathbb{R}$, wenn gilt

$$\int_{a}^{V} f(t)dt = F(v) - F(u)$$

für alle $u, v \in \mathcal{I}$.

Eine Stammfunktion von f wird auch als *unbestimmtes Integral* von f bezeichnet $F = \int f(t)dt$

Bemerkung 8.3

Ist f lokal integrierbar auf \mathcal{I} , so gilt

$$\int_{u}^{v} f(t)dt + \int_{v}^{w} f(t)dt = \int_{u}^{w} f(t)dt$$

Folgt aus 7.9 + 8.1

für alle $u, v, w \in \mathcal{I}$ (nicht notwendig u < v < w)

8.4 Beispiel

a) $f(x) = x^2$ lokal integrierbar auf \mathbb{R} .

Stammfunktion von f. $F(x) = \frac{x^3}{3}$

$$F(x) = \frac{x^3}{3}$$

$$\int_{a}^{b} F(b) - F(a)$$

b)
$$f(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 & \text{für } x \ge 0 \end{cases}$$

Heaviside - Funktion

f ist lokal integrierbar auf \mathbb{R} –

Stammfunktion von *f*:

$$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ x & \text{für } x \ge 0 \end{cases} \xrightarrow{\begin{array}{c} 4 \\ 2 \\ -5 \\ -2 \end{array}} \xrightarrow{5}$$

Zeige: $\forall u, v \in \mathbb{R}$:

$$\int_{u}^{v} f(t)dt = F(v) - F(u)$$

$$(u < v < 0) \qquad \int_{u}^{v} f(t)dt = 0F(v) - F(u)$$

$$(u < 0 < v) \qquad \int_{u}^{v} f(t)dt = 0 = \int_{0}^{v} f(t)dt = 1 \cdot v = F(v) - F(u)$$

$$(0 < u < v) \qquad \int_{u}^{v} f(t)dt = 1 \cdot (v - u)F(v) - F(u)$$

$$(u \ge 0) \qquad \int_{u}^{v} f(t)dt = -(F(u) - F(v)) = F(v) - F(u)$$

8.5 Satz

Sei $\mathcal{I} \neq \emptyset$ Intervall, $f : \mathcal{I} \to \mathbb{R}$ lokal "Integrierbar"

- a) Ist *F* Stammfunktion von *f* , so auch G(x) = F(x) + c für jedes $c \in \mathbb{R}$.
- b) Sind *F* und *G* Stammfunktionen von *f* , so ist F(x) = G(x) + c für ein $c \in \mathbb{R}$
- c) Sei $x_0 \in \mathcal{I}$ beliebig, aber fest gewählt. Dann ist $F(x) = \int_{x_0}^x f(t) dt$ eine Stammfunktion von f.

(Beachte

$$\int_{x_0}^x f(t)dt = \int_{x_0'}^x f(t)dt + \int_{x_0'}^x f(t)dt$$

)

Beweis. a),b)

F Stammfunktion, $c \in \mathbb{R}G(x) = F(x) + c$ ist Stammfunktion von f:

$$G(v) - G(u) = F(v) = F(u) = \int_{u}^{v} f(t)dt$$

Umgekehrt: Seien F, G zwei Stammfunktionen von f. Sei $x_0 \in \mathcal{J}$ halte es fest.

$$G(x) - G(x_0) = \int_{x_0}^{x} f(t)dt = F(x) - F(x_0) \text{ für alle } x \in \mathcal{J}$$

$$G(x) = F(x) + \underbrace{G(x_0) - F(x_0)}_{=:c} \text{ für alle } x \in \mathcal{J} \text{ c) } u, v \in \mathcal{J}$$

$$F(v) - F(u) = \int_{x_0}^{v} f(t)dt = \int_{x_0}^{u} f(t)dt = + \int_{x_0}^{x_0} f(t)dt + \int_{x_0}^{v} f(t)dt = \int_{u}^{x_0} f(t)dt$$

8.6 Satz

Jede Stammfunktion einer lokal integrierbaren Funktion ist stetig.

Abbildung 50: Die Welt der Funktionen

Abbildung 51: Stammfunktionbildung

Beweis. $f: \mathcal{J} \to \mathbb{R}$ lokal integrierbar

 $x_0 \in \mathcal{J}$. Zeige: F ist stetig in x_0 (Stammfunktion von f).

Betrachte
$$f$$
 auf $[x_0 - 1, x_0 + 1] \cap \mathcal{J}$
Sei $|f(x)| \le M$ für alle $\in \mathcal{J}_0.(7.3a)$
 $|F(x) - F(x_0)| = |\int\limits_{x_0}^x f(t)dt| \underset{7.9c)}{\ge} \int\limits_{x_0}^x |f(t)dt| \underset{7.9d)}{\ge} M \cdot |x - x_0|$ für alle $x \in \mathcal{J}_0$.
 F stetig in x_0 nach 5.2

8.7 Definiton

 $f: \mathcal{J} \to \mathbb{R}$ heißt *stetig differenzierbar*, falls f differenzierbar ist und die Ableitung f' stetig ist.

[Beachte: Nicht jede differenzierbare Funktion ist stetig diffbar

Bsp:
$$f(x) = \begin{cases} x^2 \cdot \sin(\frac{1}{x}) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$

f' nicht stetig in 0

8.8 Satz (Hauptsatz der Differential- und Integralrechnung)

 \mathcal{J} beliebiges Intervall, $f: \mathcal{J} \to \mathbb{R}$.

a) Ist f stetig, so ist jede Stammfunktion F von f differejzierbar auf $\mathscr J$ und es gilt F'=f.

$$\left(\int f(t)dt\right)' = f$$

Dass heißt
$$F(x) = \int_{x_0}^{x} f(t)dt \Rightarrow F'(x) = f(x)$$

b) Ist f stetig diffbar auf \mathcal{J} , so ist f Stammfunktion von f', dass heißt.

(b)
$$\int_{x_0}^x f'(dt) = f + c$$

$$\forall u, v \in \mathcal{J}:$$

$$\int_{u}^{v} f'(t)dt = f(v) - f(u) = f(x)\Big|_{u}^{v}$$

$$\begin{array}{ccc}
\textcircled{f} & & & & & & \\
F' = f & & & & & \\
\end{array}$$

$$f'$$
 \longleftarrow ①stetig diffbar
$$F = \int f'(t)dt = f + c$$

Beweis. a) Sei $c \in \mathcal{J}$.

Zu zeigen: $\lim_{x \to c} \frac{F(x) - F(c)}{x - c} = f(c), x \neq c, x \in \mathcal{J}$: $\frac{F(x) - F(c)}{x - c} = \frac{1}{E \text{ St.fkt. von f}} \int_{c}^{x} f(t) dt$ Mittalian

$$\frac{F(x)-F(c)}{x-c} = \frac{1}{x-c} \int_{c}^{x} f(t) dt$$

Mittelwertsatz der Integralrechnung (7.11). Es existiert $\Theta(x)$ zwischen x und c mit

$$\int_{x}^{c} f(t)dt = f(\Theta(x)) \cdot (x - c)$$

$$\frac{F(x)-F(c)}{x-c} = \frac{1}{x-c} \cdot f(\Theta(x)) \cdot (x-c)$$

$$= f(\Theta(x)) \xrightarrow[\Theta(x)\to c]{} f(c), \text{ da } f \text{ stetig b) } f' \text{ ist stetig.}$$

Sei F eine Stammfunktion von f'. Nach a): F' = f'.

$$(F-f)'=0.$$

6.20a) F - f = c konstant, dass heißt F = f + c

Beispiele 8.9

Zu. 8.8a):

a)
$$g(x) = \int_1^x \underbrace{e^{t^2} \cdot (\sin(t) + \cos(\frac{t}{2})}_{\text{stetig}} dt \ 8.8a) : g'(x) = e^{x^2} \cdot (\sin(x) + \cos(\frac{x}{2}))$$

b)
$$g(x) = \int_0^{x^2} e^t \cdot \sin(t) dt$$

 $F(x) = \int_0^x e^t \cdot \sin(t) dt$
 $h(x) = x^2$
 $g = F(h(x)) = (F \circ h)(x)$
 $g'(x) = F'(h(x)) \cdot h'(x) = e^{x^2} \cdot \sin(x^2) \cdot 2x$

8.10 Beispiel

zu 8.8b)

a)
$$n \in \mathbb{N}_0$$
:
 $\int ax^n dx = a \cdot \frac{x^{n+1}}{n+1} + c \operatorname{denn}\left(a \frac{x^{n+1}}{n+1}\right)' = ax^n$
 $\operatorname{d.h}: \int_u^v a \cdot x^n dx = \frac{a}{n+1}(v^{n+1} - u^{n+1})$
 $\operatorname{Damit}: \int \sum_{i=0}^n a_i \cdot x^i = \sum_{i=0}^n a_i \frac{x^{i+1}}{(i+1)}$

b) $n \ge -2$, so

$$\int \frac{1}{x^n} dx = \frac{1}{n+1} \cdot \frac{1}{x^{1-n}} + c$$

c) Für
$$x > 0$$
 ist $\ln(x)' \frac{1}{x}$ (6.14b)
Also $\int \frac{1}{x} dx = \ln(x) + c$ auf $]0, \infty[$
Auf $]-\infty, 0[$ gilt $\int \frac{1}{x} dx = \ln(|x|) + c$

d)
$$\int \ln(x)dx = x \cdot \ln(x) - x + c \text{ auf }]0, \infty[$$
 (6.14d)

e)
$$\int e^x dx = e^x + c$$

f)
$$\int \sin(x)dx = -\cos(x) + c \int \cos(x)dx = \sin(x) + c$$

8.11 Satz (Partielle Integration)

Seien f und g stetig diffbare Funktionen auf Intervall \mathcal{J} . Dann:

$$fg'dx = f \cdot g - \int f' \cdot g dx$$

Für bestimmte Integrale heißt das:

$$\int_{u}^{v} f(x) \cdot g'(x) dx = \underbrace{f \cdot g}_{f(v) \cdot g(v) - f(u) \cdot g(u)} \left| - \int_{y}^{u} f'(x) g(x) dx \right|$$

Für alle $u, v \in \mathcal{J}$

Beweis. 8.8b)

$$(f \cdot g)' = f \cdot g' + f' \cdot g$$

$$\int (f \cdot g' + f' \cdot g) dx = f \cdot g + c$$

$$\int f \cdot g' + \int f' g \cdot g = f \cdot g$$

8.12 Beispiele

a)
$$\int \underbrace{x}_{f} \cdot \underbrace{\cos(x)}_{g'} dx = x \cdot \sin(x) - \int \sin(x) dx = x \cdot \sin(x) + \cos(x) + c$$

Abbildung 52:
$$\int_0^{\pi} x \cdot \cos(x) dx = 2$$

b)
$$\int \ln(x)dx = \int \underset{f'}{\underset{\uparrow}{\uparrow}} \ln(x)dx = x \cdot \ln(x) - \int x \cdot \frac{1}{x}dx = x \ln(x) - x + c$$
 (vgl. 8.10d)

c)
$$\int \cos^2(x) dx = \cos(x) \cdot \sin(x) + \int \sin(x) dx$$

$$\int \cos^2(x) dx = \cos(x) \cdot \sin(x) + \int 1 - \cos^2(x) dx$$

$$= \cos(x) \cdot \sin(x) + x - \int \cos^x(x) dx$$

$$\Rightarrow 2 \cdot \int \cos^2(x) dx = \cos(x) \cdot \sin(x) + x + c$$

$$(*)$$

Satz (Integration durch Substitution)

 \mathcal{I}, \mathcal{I} Intervalle $f: \mathcal{I} \to \mathcal{I}$ stetig diffbar, $g: \mathcal{I} \to \mathbb{R}$ stetig mit Stammfunktion G. Dann

$$\int g(f(x)) \cdot f'(x) dx = G(f(x)) + c$$

Für das bestimmte Integral heißt das:

$$\int_{u}^{v} g(f(x)) \cdot f'(x) dx = G(f(v)) - G(f(u)) = \int_{f(u)}^{f(v)} g(t) dt$$

für alle $u, v \in \mathcal{I}$

Beweis. $G \circ f$ diffbar: 8.8a)

Kettenregel:

$$(G \circ f)'(x) = G'(f(x)) - f'(x)$$

$$= \underbrace{g(f(x)) \cdot f'(x)}_{\text{stetig}}$$

Hauptsatz $G \circ f$ ist Stammfunktion von $g(f(x)) \cdot f'(x)$

Bemerkung: 8.13 kann in 2 Arten angewandt werden:

1.Art: Mann hat ein Integral der Form

$$\int g(f(x)) \cdot f'(x) dx$$

Berechne

$$\int g(t)dt = \int_{x_0}^{x} g(t)dt = G(x)$$
und ersetze
x durch f(x)

2.*Art*:

Man will $\int g(t)dt$ berechnen

Ersetze t durch f(x) (Substitution)

$$\left[\frac{dt}{dx} = f'(x) \to dt = f'(x)dx\right]$$

und dt durch f'(x)dx ersetzen.

$$\rightarrow \int g(f(x)) \cdot f'(x) dy$$

Hoffnung: ↑ ist einfacher zu berechnen.

Satz 8.14

f ist stetig diffbar auf \mathcal{I} , f stetig auf \mathcal{I} .

- a) Ist $f(x) \neq 0$ auf \mathscr{I} , so $\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + c$ dass heißt $\int_{a}^{b} \frac{f'(x)}{f(x)} = \ln(|f(b)|) - \ln(|f(a)|)$
- b) $\int_{a}^{b} g(x+c)dx = \int_{a+c}^{b+c} g(x)dx$ für alle c mit $a+c, b+c \in \mathscr{I}$.

c)
$$\int_{a}^{b} g(c \cdot x) dx = \frac{1}{c} \int_{a \cdot c}^{b \cdot c} g(x) dx \text{ für alle } c \neq 0 \text{ mit } a \cdot c, b \cdot c \in \mathscr{I}$$

Beweis. a) Setze $g(x) = \frac{1}{x}$.

Also: $G(x) = \ln(|x|) + c$ für alle $x \neq 0$.

8.13
$$\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + c$$
 b) Setze $f(x) = x + c$, 8.13

c) Setze $f(x) = x \cdot c, 8.13^2$

8.15 Beispiel

a)
$$\int \tan(x)dx = \int \frac{\sin(x)}{\cos(x)} = -\int \frac{-(\cos(x))'}{\cos(x)} dx = -\ln(|\cos(x)|) + c^3$$

b)
$$x \cdot \sin(x^2) dx = \frac{1}{2} \int 2x \sin(x^2) dx = \frac{1}{8.13} - \frac{1}{2} \cos(x^2) + c$$

c)
$$\int \frac{x}{x^2 + a^2} dx = \frac{1}{2} \int \frac{2x}{x^2 + a^2} dx = \ln(x^2 + a^2) + cauf \mathbb{R} (a \neq 0)$$

d)
$$\int_{-1}^{1} \sqrt{1-t^2} dt$$
 Fläche des Halbkreises vom Radius 1.

²Beachte f'(x) = c

³Gilt auf jedem Intervall $]k\pi + \frac{\pi}{2}, (k+1)\pi + \frac{\pi}{2}[$

Substitution
$$t = \sin(x)$$

$$\frac{dt}{dx} = \cos(x), dt = \cos(x)dx$$

$$\int_{-1=\sin(-\frac{\pi}{2})}^{1=\sin(\frac{\pi}{2})} \sqrt{1-t^2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin(x)^2} \cdot \cos(x)dx = \int \cos^2(x)dx = \int \cos^2(x)dx = \int \frac{\cos(x)\cdot\sin(x)}{2} = \frac{\frac{\pi}{2}}{2} - \left(\frac{\frac{\pi}{2}}{2}\right) - \left(\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}\right)$$

Lineare Algebra

lineare Gleichungssysteme Geometrie

9 Matrizen und lineare Gleichungssysteme

9.1 Definition

$$K=\mathbb{Q}$$
, \mathbb{R} , \mathbb{C}

a) Eine $m \times n$ Matrix A über k ist rechteckiges Schema.

$$\operatorname{Spalten} \downarrow A = \begin{cases} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{cases} \xrightarrow{\operatorname{Zeilen}}$$

mit m Zeilen und n Spalten, $a_{ij} \in K$.

(Bezeichnung der Indizes ist Standard! 1. Index : Zeile, 2. Index : Spalte) (m,n) heißt Typ der Matrix.

Schreibweise:

$$A = (a_{ij})_{\substack{i=1...m \ j=1...m}}, A = (a_{ij})$$

- b) $\mathcal{M}_{m,n}(K)$ =Menge aller $m \times n$ -Matrizen über K (quadratische Matrizen)
- c) $A = (a_{ij}) \in \mathcal{M}_{n,m}(K)$.. Definiere $A^t = (b_{ij}) \in M_{n,m}(k)$ mit $b_{ij} = a_{ij}$ für $i = 1 \dots m, j = 1 \dots n$

 A^{t} ist die zu A *transponierte* Matrix.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ a_{13} & a_{23} & \dots & a_{m3} \\ \vdots & \ddots & \ddots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

(Manchmal A^T statt A^t oder andere Schreibweise)

 $1 \times n$ -Matrix $(a_11, \dots 1_1n)$ Zeilenvektor

$$m \times 1$$
--Matrix Spaltenvektor $\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$

Alle
$$a_{ij} = 0$$
: $A = \begin{cases} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{cases} =: 0$ $Null matrix$ (vom Typ (m,n)) $n \times n$ -Matrix $E_n = \begin{cases} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{cases}$ $n \times n$ -Einheitsmatrix $E_n = (\delta_{ij})_{i,j=1...n}$ $\delta_{ij} = \begin{cases} 1 & \text{, falls } i = j, \\ 0 & \text{, falls } i \neq j \end{cases}$ $Kronecker Symbol$

9.2 Definition

 $A = (a_{ij}), B(b_{ij}) \in \mathcal{M}_{m,n}(K)$ (beide vom gleichen Typ!) $a \in K$.

a)
$$A + B := (a_{ij} + b_{ij})_{\substack{i=1...m \\ j=1...n}}$$

Summe von Matrizen

b)
$$a \cdot A = (a \cdot a_{ij})_{\substack{i=1...m \\ j=1...n}}$$
 (skalares) Vielfaches von A.

Für Matrizen unterschiedlichen Typs ist keine Summe definiert.

Beispiel:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} B = \begin{pmatrix} -2 & 5 & 3 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

$$A + B = \begin{pmatrix} -1 & 7 & 6 \\ \frac{9}{2} & 5 & 6 \end{pmatrix}$$

$$A + B^{t} \text{ nicht definiert}$$

$$B^{t} = \begin{pmatrix} -2 & \frac{1}{2} \\ 5 & 0 \\ 3 & 0 \end{pmatrix}$$

$$A + A = 2A = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{pmatrix} \text{ Produkt:}$$

- Produkt von Matrizen gleichen Typs durch komponentenweise Multiplikation (kaum Anwendungen)
- wichtig ist Produkt von $m \times n$ -Matrizen mit $n \times p$ Matrizen:

9.3 Definition

$$m, n, p \in \mathbb{N}$$
.
 $A = (a_{ij}) \in \mathcal{M}_{m,n}(K)$
 $B = (b_{ij}) \in \mathcal{M}_{n,p}(K)$

Das *Produkt A* · B von A und B =
$$(d_{ik})_{\substack{i=...m\\k=1...p}}$$

mit $d_{ik} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + ... + a_{i}n \cdot b_{nk} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}$
 $(m \times n \text{ multiplizieren mit } n \times p \to m \times p)$

Beachte : Produkt von $m \times n$ - mit $r \times p$ -Matrix ist nicht definiert falls $n \neq r$

9.4 Beispiel

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}), B = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$$

 $A \cdot B = \begin{pmatrix} 5 & 6 & 0 \\ 0 & -1 & 0 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$
b) $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), B = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$

Abbildung 53: Matrix Multiplikation

B: p Reihen q Spalten

A: n Reihen p Spalten

 $C = A \times B : n$ Zeilen q Spalten

$$A \cdot B = \begin{pmatrix} 10 & 13 \\ 22 & 29 \end{pmatrix}, B \cdot A = \begin{pmatrix} 11 & 16 \\ 19 & 28 \end{pmatrix}, AB \neq BA!,$$
$$A^{2} = A \cdot A = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}1, 3(\mathbb{R}), B \in \mathcal{M}_{1,2}(\mathbb{R})$$
 wie in a)
 $A \cdot B = \begin{pmatrix} 5 & 6 & 0 \end{pmatrix}$
 $B \cdot A^t = B \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 3 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \in \mathcal{M}_{\infty,\ni}(\mathbb{R})$$

$$A \cdot B = (5) \in \mathcal{M}_1(\mathbb{R})(=\mathbb{R})$$

$$B \cdot A = \begin{pmatrix} 2 & 4 & 5 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$

e)
$$A \in \mathcal{M}_{m,n}(K)$$

 $E_m \cdot A = A$
 $A \cdot E_n = A \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 2 & 5 \end{pmatrix}$
 $A \in \mathcal{M}_n(K)$
 $E_n \cdot A = A \cdot E_n = A$.
 $a \cdot A = \begin{pmatrix} a & \cdots & 0 \\ \vdots & a & \vdots \\ 0 & \cdots & a \end{pmatrix} \cdot A$

Satz (Rechenregeln von Matrizen) 9.5

$$A, A_1, A_2 \in \mathcal{M}_{m,n}(K),$$

 $B, B_1, B_2 \in \mathcal{M}_{n,r}(K),$
 $C \in \mathcal{M}_{r,s}(K), a \in K.$

(a)
$$(A_1 + A_2) \cdot B = A_1 \cdot B + A_2 \cdot B$$

(b)
$$A \cdot (B_1 + B_2) = A \cdot B_1 + A \cdot B_2$$

(c)
$$(a \cdot A) \cdot B = A \cdot (aB) = a(A \cdot B)$$

(d)
$$\underbrace{(A \cdot B) \cdot C}_{m \times r} = \underbrace{A}_{m \times n} \underbrace{(B \cdot C)}_{n \times s}$$

$$\underbrace{m \times s}_{m \times s} = \underbrace{m \times s}_{m \times s}$$
(e)
$$(A \cdot B)^{t} = B^{t} \cdot A^{t}$$

(e)
$$(A \cdot B)^{t} = B^{t} \cdot A^{t}$$

Beweis. Nur d)
$$A = (a_i j)_{\substack{i=1...m \\ j=1...n}}$$

 $B = (b_i j)_{\substack{i=1...n \\ j=1...r}}$

$$C = (c_{i}j)_{k=1...r}$$

$$j=1...s$$

$$A \cdot B = (d_{ik})_{i=1...m}$$

$$k=1...r$$

$$d_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$$

$$B \cdot C = (e_{jl})_{j=1...n}$$

$$l=1...s$$

$$e_{jl} = \sum_{k=1}^{r} b_{ij}c_{jk}$$

$$(A \cdot B) \cdot C$$

Eintrag an der Stelle (i, l):

Entrag an der Stelle
$$(i, l)$$
:
$$\sum_{k=1}^{r} d_{ik} \cdot c_{kl} = \sum_{k=1}^{r} \left(\sum_{j=1}^{n} a_{ij} \cdot b_{jk}\right) \cdot c_{kl} = \sum_{k=1}^{r} \sum_{j=1}^{n} a_{ij} \cdot b_{jk} \cdot c_{kl}$$

$$A \cdot (B \cdot C) \text{ Eintrag an Stelle } (i, l):$$

$$\sum_{j=1}^{n} a_{ij} \cdot e_{jl} = \sum_{j=1}^{n} a_{ij} \cdot \left(\sum_{k=1}^{r} b_{ij} \cdot c_{kl}\right) = \sum_{j=1}^{n} \left(\sum_{k=1}^{r} a_{ij} b_{ij} \cdot c_{kl}\right) = \sum_{k=1}^{r} \sum_{j=1}^{n} a_{ij} b_{ij} \cdot c_{kl}$$

9.6 Definition

Allgemeine Form eines lineares Gleichungssystem (LGS) über K:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$
(*)
$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} + \dots + a_{mn}x_n = b_m$$
m Gleichungen, n unbekannte x_1, \dots, x_n

$$(n = 2||3: x, y||z)$$

Koeffizienten $a_{ij} \in K$, rechte Seite $b_1 \dots n_m \in K$ (fest).

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in M_n 1(K) = K^n$$

(Elemente der $K^n = K \times K ... \times K$ werden als Spalten geschrieben) heißt Lösung von (*) wenn $x_1 ... x_n$ sämtliche Gleichungen erfüllen.

Ist $b_1 = \dots b_m = 0$, so heißt (*) homogenes LGS, sonst inhomogenes LGS.

$$A = \begin{pmatrix} a_1 1 & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m,n}(K)$$

 $\textit{Koeffizientenmatrix} \text{ des LGS } b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathcal{M}_{m,1} = K^m \qquad \qquad \text{(rechte Seite)}$

(*), lässt sich schreiben in *Matrizenform*: $A \cdot x = b$:

$$\begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_n + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Sins $s_1, ..., s_n$ die Spaltenvektoren von A, d.h. $s_i = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix}$, so lässt sich (*) schreiben

als
$$x_1 \cdot s_1 + \dots + x_n \cdot s_n = b$$

$$\begin{pmatrix} x_1 a_{11} \\ \vdots \\ x_1 a_{m1} \end{pmatrix} + \dots + \begin{pmatrix} x_1 a_{mn} \\ \vdots \\ x_n a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Spaltenform des LGS Beachte: Homogenes LGS hat immer mindestens eine Lösung

$$x = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} Null-L\"{o}sung$$

(triviale Lösung)

- Fragen:
- (1) Wann hat LGS mindestens eine Lösung?
- (2) Wenn es Lösungen gibt, wie bestimmt man alle?

Antwort: Gauß Algorithmus (C.F.Gauß 1777-1855)

Lösungsmenge eines LGS ändert sich nicht bei :

- Addition der Vielfachen einer Gleichung zu einer anderen Gleichung
- Multiplikation einer Gleichung mit Zahl ≠ 0.
- Vertauschen zweier Gleichungen

Was passiert dann:

Aus Ax = b wird

$$A'x = b'$$

Die Menge der x, die ax = b erfüllen, stimmt mit der überein, die A'x = b' erfüllen. Ziel des Gauß Algorithmus: Mit obigen Umformungen einfache Form A' zu finden. Beispiel:

$$2x + 3y = 4$$

 $x + y = -2$
 $x + y = -2$
 $2x + 3y = 4$ (-2)fache 1.Gl. zu 2.Gl. addieren

$$x + y = -2$$

 $y = 8$ $y = 8$, $x + 8 = -2$ $x = -10$, eindeutige Lösung

9.7 Definition

Unter *elementaren Zeilenumformungen* an einer Matrix versteht man folgende Operationen:

- Addition des skalaren vielfachem einer Zeile zu anderen
- Multiplikation einer Zeile mit Zahl ≠ 0
- Vertauschen von zwei Zeilen

Analog: *Elementare Spaltenumformungen* (wird nicht für :GS benötigt — außer ggf. Spaltenvertauschung)

9.8 Definition

Ist Ax = b ein LGS, so nennt man $(A, b) \in \mathcal{M}_{m,n+1}(K)$ die *erweiterte Koeffizientenmatrix*. b als letzte Spalte an A anhängen.

9.9 Bemerkung

Führt man an (A, b) elementare Zeilenumformungen durch und erhält man dabei Matrix (A', b'), so ist $x \in k^n$ ist Lösung von $A \cdot x = b$ genau dann wenn x Lösung von A'x = b'.

Beispiel 9.6:

$$(A,b) = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 1 & -2 \end{pmatrix} \leadsto (A'b') = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 8 \end{pmatrix}$$

Kernstück des Gauß-Algorithmus:

Jede Matrix B lässt sich durch elementare Zeilenumformungen auf Zeilenstufenform

(Treppenform) bringen
$$\begin{pmatrix} \boxed{0} & \boxed{0} & \boxed{1} \\ \boxed{0} & \boxed{0} \\ \boxed{0} \\ \boxed{0} & \boxed{0} \\ \boxed{0} \\ \boxed{0} & \boxed{0} \\ \boxed{0$$

Beispiel:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & | 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & | 1 \end{pmatrix}$$

9.10 Gauß Algorithmus

Sei B eine (m, n)-Matrix über K, Ist B Nullmatrix, so fertig. Sei also im Folgenden B nicht Nullmatrix.

- (1) Suche erste Spalte j_1 , die nicht nur Nullen enthält.
- (2) Eventuell durch Zeilenvertauschung: Eintrag a am der Stelle (i, j_1) ist $\neq 0$
- (3) Multipliziere die 1.Zeile mit $\frac{1}{a}$, Jetzt: Eintrag 1 an der Stelle (i, j_1) .
- (4) Durch Addition geeigneter Vielfacher der ersten Zeilen zu den übrigen Zeilen alle Einträge in der Spalte j_1 unterhalb der ersten Zeile gleich 0 sind. Ab jetzt wird Zeile 1 nicht mehr benutzt. Sie bleibt unverändert.
- (5) Suche erste Spalte $j_2(>j_1)$, der unterhalb der ersten Zeile einen Eintrag $\neq 0$ enthält.
- (6) Wie in (2) imd (3) Eintrag 1 an Stelle $(2, j_2)$
- (7) Wie in (4) alle Einträge in Spalte j_2 unterhalb der 2. Zeile zu Null machen. Ab jetzt wird Zeile 2 nie mehr benutzt.

So fortfahrend erhält man Zeilenstufenform.

9.11 Beispiel

$$B = \begin{pmatrix} 0 & 0 & 6 & 1 \\ 0 & 2 & 2 & 3 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 1/3 \end{pmatrix} \xrightarrow{\text{Vert. 1Z./2.Z.}} \begin{pmatrix} 0 & 2 & -2 & 3 \\ 0 & 0 & 6 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 1/3 \end{pmatrix} \xrightarrow{\text{IZ.x·1/2}} \begin{pmatrix} 0 & 1 & -1 & 3/2 \\ 0 & 0 & 6 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 1/3 \end{pmatrix} \xrightarrow{\text{3Z.+(-3)·1.Z.}} B = \begin{pmatrix} 0 & 1 & -1 & 3/2 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 4 & -9/2 \\ 0 & 0 & 2 & 1/3 \end{pmatrix} \xrightarrow{\text{I/6·2. Z.}} \begin{pmatrix} 0 & 1 & -1 & 3/2 \\ 0 & 0 & 1 & 1/6 \\ 0 & 0 & 4 & -9/2 \\ 0 & 0 & 2 & 1/3 \end{pmatrix} \xrightarrow{\text{I/6·2. Z.}} \begin{pmatrix} 0 & 1 & -1 & 3/2 \\ 0 & 0 & 1 & 1/6 \\ 0 & 0 & 0 & -1/6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

9.12 Gauß-Algorithmus

Gegeben sei LGS $A \atop m \times nn \times 1 = b \atop m \times 1$

Wende Algorithmus 9.10 auf (A,b) an, bis man Matrix (\tilde{A}, b') erhält, so dem \tilde{A} Zeilenstufenform hat (letzte Spalte b' muss nicht mehr bearbeitet werden).

Man kann noch Spaltenvertauschung am \tilde{A} vornehmen,

Beachte: Vertauschung von Spalte i und k bedeutet vertauschung von x_i und x_k (Buch führen). Dann kann Matrix (A', b') erhalten werden wobei

$$(A',b') = \begin{pmatrix} 1 & a'_{12} & \dots & \dots & a'_{1n} & b'_1 \\ 0 & 1 & a'_{23} & \dots & \dots & a'_{2n} & b'_2 \\ 0 & 0 & 1 & \dots & \dots & a'_{3n} & b'_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 & b'_m \end{pmatrix}$$

Neues LGS A'x' = b

 $x = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$ entsteht aus x. durch Permutation der Einträge entsprechend der durchge-

führten Spaltenvertauschungen.

Lösungsmenge des LGS A'x' = b' ist leicht zu ermitteln:

(1) Ist r < m und einer der Einträge $b'_r + a$, b'_m ungleich 0 ist, so ist LGS nicht lösbar.

104

(2) Ist
$$r = m \begin{pmatrix} 1 & * & * & * & b'_1 \\ 0 & 1 & * & * & \vdots \\ 0 & 0 & 1 & * & \vdots \\ 0 & 0 & 0 & 1 & b'_m \end{pmatrix}$$
oder $r < m$ und $b'_{r+1} = \dots = b'_m = 0$

$$\begin{pmatrix} 1 & * & * & * & b'_1 \\ 0 & 1 & * & * & \vdots \\ 0 & 0 & 1 & * & \vdots \\ 0 & 0 & 0 & 0 & b'_m \end{pmatrix}$$

(betrachte dann nur die ersten r Gleichungen), so gibt es mindestens eine Lösung:

(2a)
$$r < n$$
:

Wähle x_{r+1}, \dots, x'_n beliebig uas K. Dann:

wathe
$$x_{r+1}, ..., x_n$$
 be $x'_r = b'_r - \sum_{j=r+1}^n a'_{rj} x'_j$

$$\vdots$$

$$x'_1 = b'_1 - \sum_{j=2}^n a'_{1j} x'_j$$

(rekursive Bestimmung der Lösungsmenge).

(2b)
$$r = n$$

$$\begin{pmatrix}
1 & * & \cdots & * & \vdots \\
0 & 1 & \cdots & * & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Dann sind x'_1, \ldots, x'_r eindeutig bestimmt.

$$x'_{n} = b'_{n}$$

$$x'_{n-1} = b'_{n-1} - a_{n-1}x'_{n}$$

$$\vdots = \vdots$$

$$x'_{1} = b'_{1} - \sum_{j=2}^{n} a'_{ij} \cdot x'_{j}$$

9.13 Beispiel

$$x_{1} + 2x_{2} - 3x_{3} = 5$$
a) $2x_{1} - x_{2} + 4x_{3} = 0$

$$x_{1} + x_{2} + 2x_{3} = 1$$

$$\begin{pmatrix} 1 & 2 & -3 & 5 \\ 2 & -1 & 4 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix} \xrightarrow{2Z + (-2) \cdot 1.Z \atop 3Z + (-1) \cdot 1.Z} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & -5 & 10 & -10 \\ 0 & -1 & 5 & -4 \end{pmatrix} \xrightarrow{-\frac{1}{5} \cdot 2.Z} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -2 & 2 \\ 0 & -1 & 5 & -4 \end{pmatrix}$$

$$\xrightarrow{3.Z + 2.Z} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{\frac{1}{3} \cdot 3.Z} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -\frac{2}{3} \end{pmatrix}$$

$$x_{3} = -\frac{2}{3}$$

$$x_{2} = 2 + 2x_{3} = 2 - \frac{4}{3} = \frac{2}{3}$$

$$x_{1} = 5 - \frac{4}{3} - 2 = \frac{5}{3} \text{ eindeutige Lösung: Lösungsmenge } \mathbb{L} = \left\{ \begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \\ \frac{5}{5} \end{pmatrix} \right\}$$

b)
$$x_1 + 2x_2 \quad x_3 + x_4 = 0$$

$$x_1 - x_2 + 2x_3 - x_4 = 6$$

$$\begin{pmatrix} 1 + 2 & 1 & +1 & 0 \\ 1 - 1 & +2 & -1 & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & +2 & 1 & +1 & 0 \\ 0 & 1 & -\frac{1}{3} & +\frac{2}{3} & -2 \end{pmatrix}$$
(Fall 2a)
$$x_4, x_3 \text{ frei wählbar}$$

$$x_2 = -2 + \frac{1}{3}x_3 - \frac{2}{3}x_4$$

$$x_1 = -2x_2 - x_3 - x_4$$

$$= -2 \cdot \left(-2 + \frac{1}{3}x_3 - \frac{2}{3}x_4\right) - x_3 - x_4$$

$$= 4 - \frac{5}{3} + \frac{1}{3}x_4$$

$$= 4 - \frac{5}{3}x_3 + \frac{1}{3}x_4$$

$$= 4 - \frac{5}{3}x_3 + \frac{1}{3}x_4$$

$$= 2x_3 - x_4$$

$$= 4 - \frac{5}{3}x_3 + \frac{1}{3}x_4$$

$$= 2x_3 - x_4$$

$$= 2x_4 - x_5 - x_5$$

$$= 2x_3 - x_4$$

$$=$$

$$x_1 + x_2 = 1$$
c) $2x_1 + x_2 = 2$

$$x_1 - x_2 = -1$$

$$\begin{pmatrix} 1 & +1 & 1 \\ 2 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & +1 & 1 \\ 0 & -1 & 0 \\ 0 & -2 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & +1 & 1 \\ 0 & - & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

LGS nicht lösbar (Fall 1)

$$x_2 = 0$$

$$x_1 = 1 - x_2 = 1$$

$$\mathbb{L} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \text{ (Fall 2b)}$$

e)
$$\begin{array}{ccccc} x_1 & -x_2 & +x_3 & = 1 \\ -2x_1 & +2x_2 & -2x_3 & = 3 \\ & \begin{pmatrix} 1 & -1 & 1 & = 1 \\ -2 & 2 & -2 & = 3 \end{pmatrix} & \longrightarrow & \begin{pmatrix} 1 & -1 & 1 & = 1 \\ 0 & 0 & 0 & = 5 \end{pmatrix}$$
LGS ist nicht lösbar

f)
$$x_1 + x_2 + x_3 = 0$$

 $x_1 + x_2 - 2x_3 = 1$
 $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -3 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} \end{pmatrix}$ Vert. 2./3.Sp. $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{3} \end{pmatrix}$
 x' 3 frei wählbar

$$x'_2 = -\frac{1}{3} - 0 \cdot x'_3 = -\frac{1}{3}$$

 $x'_1 = 9 - x'_2 - x'_3 = \frac{1}{3} - x'_3$

LITERATUR

 x_2 frei wählbar

$$x_{3} = -\frac{1}{3}$$

$$x_{1} = \frac{1}{3} - x_{2}$$

$$\mathbb{L} = \left\{ \begin{pmatrix} \frac{1}{3} - x_{2} \\ x_{2} \\ -\frac{1}{3} \end{pmatrix} : x_{2} \in K \right\}$$

g) LGS über ℂ

Literatur

- [1] Kreußler, Phister Satz 33.16
- [2] WHK 5.37
- [3] WHK 6.21
- [4] WHK 6.24
- [5] WHK 6.25
- [6] WHK 6.25
- [7] WHK 7.32
- [8] WHK 7.19