RETURN THE TEST WITH YOUR ANSWERS!

- **1.** Evaluate the improper integral $\int_0^\infty e^{ct} dt$, where c is a constant.
 - A. For what values of c does the integral converge? What does the integral converge to?
 - B. For what values of c does the integral diverge?
- **2.** A. What does it mean for a function to be *piecewise continuous* over an interval?
 - B. Is the function graphed below a piecewise continuous function? Why or why not?

3. An integral transform $F(s) = \int_{\alpha}^{\beta} K(s,t) f(t) dt$ is

essentially a linear transformation in \mathbb{R}^2 .

- A. Using your knowledge from linear algebra, what is the name of the operator K(s,t) of the linear transformation?
- B. If the integral transform is a *Laplace transform*, then what does K(s,t) equal?
- **4.** Prove that the Laplace transform is a linear transform using your knowledge from linear algebra.
- 5. Find the Laplace transform of t^n , where n is a positive integer. Can you make a similar case if n is a negative integer? Explain why or why not.
- **6.** The *gamma function* is denoted by $\Gamma(p)$ and is defined by $\Gamma(p+1) = \int_0^\infty e^{-x} x^p dx$. As $x \to \infty$, the integral converges for all values of p. The integral can also be shown to converge at x=0 for p>-1 despite the fact that the integrand becomes unbounded as $x\to 0$. Answer the following questions about $\Gamma(p)$.

A. Show that if p > 0, $\Gamma(p+1) = p\Gamma(p)$.

B. Show that $\Gamma(n+1) = n!$ for a positive integer n.

In Questions 7-10, prove each of the functions f(t) shown have the Laplace transform $\Im[f(t)]$ in the table.

′ ,	1 0
f(t)	$F(s) = \Im[f(t)]$
sinh <i>at</i>	$\frac{a}{s^2-a^2}$
cosh <i>at</i>	$\frac{s}{s^2-a^2}$
$e^{at}\sin bt$	$\frac{b}{\left(s-a\right)^2+b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$

- 7. See table.
- 8. See table.
- **9.** See table.
- 10. See table.

- **11.** Using the Maclaurin series for $\sin t$, find the Laplace transform for $f(t) = \sin t$ by applying the transform term-by-term to the Maclaurin series expansion.
- **12.** Repeat Problem 11 for $f(t) = \cos t$.
- 13. Solve the differential equation $y'' + \omega^2 y = \cos 2t$ with initial conditions y(0) = 1 and y'(0) = 0 assuming that $\omega^2 \neq 4$.
- **14.** Using the fact that a Laplace transform is a linear transformation and your knowledge from linear algebra, prove that the inverse Laplace transform of $G(s) = \frac{1}{s^2 4s + 5}$ is $g(t) = \Im^{-1}[G(s)] = e^{2t} \sin t$.
- **15.** Find the inverse Laplace transform of $F(s) = \frac{2^{n+1}n!}{s^{n+1}}$.
- **16.** Find the Laplace transform of the Dirac delta function, which is defined by the conditions $\delta(t-t_0)=0; \quad t_0\neq 0 \text{ and } \int_{-\infty}^{\infty} \delta(t-t_0)dt=1.$ In other words, prove that $f(t_0)=\int_{-\infty}^{\infty} \delta(t-t_0)f(t)dt$.

Hint: You may have to use l'Hospital's rule as well as the Mean Value Theorem for integrals.

17. Suppose the *convolution* h(t) of two functions f and g is $h(t) = \int_0^t f(t-\tau)g(\tau)d\tau = \int_0^t f(\tau)g(t-\tau)d\tau$. In common notation, this is written h(t) = (f * g)(t).

A. Prove the commutative law, f * g = g * f.

B. Prove the distributive law, which is given by $f * (g_1 + g_2) = f * g_1 + f * g_2$.

C. Prove the associative law, which is given by (f * g) * h = f * (g * h).

D. Prove the zero product law, f * 0 = 0 * f = 0.

Notice that they are laws (theorems), not postulates.

- **18.** Find the inverse Laplace transform of $F(s) = \frac{G(s)}{s^2 + 1}$ using the convolution theorem.
- **19.** If $f(t) = t^m$ and $g(t) = t^n$, where m and n are positive integers, show that the convolution f * g is $f * g = t^{m+n+1} \int_0^1 u^m (1-u)^n du$.
- **20.** Use the convolution theorem to do the opposite of Problem 19: prove $\int_0^1 u^m (1-u)^n du = \frac{m! \, n!}{(m+n+1)!}$