Package 'kimfilter'

March 8, 2024

```
Title Kim Filter
Version 1.0.3
Date 2024-03-01
Description 'Rcpp' implementation of the multivariate Kim filter, which com-
       bines the Kalman and Hamilton filters for state probability inference.
       The filter is designed for state space models and can handle missing values and exoge-
       nous data in the observation and state equations.
       Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switch-
       ing: Classical and Gibbs-Sampling Approaches with Applica-
       tions" <a href="http://econ.korea.ac.kr/cjkim/doi:10.7551/mitpress/6444.001.0001">http://econ.korea.ac.kr/cjkim/doi:10.7551/mitpress/6444.001.0001</a> <a href="http://econ.korea.ac.kr/cjkim/doi:10.7551/mitpress/6444.001.0001">http://econ.korea.ac.kr/cjkim/doi:10.7551/mitpress/6444.001.0001</a>
       //econ.korea.ac.kr/~{}cjkim/>.
License GPL (>= 2)
Imports Rcpp (>= 1.0.9)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Suggests data.table (>= 1.14.2), maxLik (>= 1.5-2), ggplot2 (>=
       3.3.6), gridExtra (>= 2.3), knitr, rmarkdown, testthat
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation yes
Author Alex Hubbard [aut, cre]
Maintainer Alex Hubbard <hubbard.alex@gmail.com>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2024-03-08 05:10:02 UTC
```

Type Package

gen_inv

R topics documented:

 contains
 2

 gen_inv
 2

 kim_filter
 3

 kim_filter_cpp
 5

 Rginv
 6

 self_rbind
 6

 ss_prob
 7

 sw_dcf
 7

Index 9

contains

Check if list contains a name

Description

Check if list contains a name

Usage

```
contains(s, L)
```

Arguments

s a string name
L a list object

Value

boolean

gen_inv

Generalized matrix inverse

Description

Generalized matrix inverse

Usage

gen_inv(m)

Arguments

m

matrix

kim_filter 3

Value

matrix inverse of m

Description

Kim Filter

Usage

```
kim_filter(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
```

Arguments

ssm

list describing the state space model, must include names $B0 - N_b \times 1 \times n_s$ tate array of matrices, initial guess for the unobserved components $P0 - N_b \times N_b \times n_s$ tate array of matrices, initial guess for the covariance matrix of the unobserved components $Dm - N_b \times 1 \times n_s$ tate array of matrices, constant matrix for the state equation $Am - N_y \times 1 \times n_s$ tate array of matrices, constant matrix for the observation equation $Fm - N_b \times p_s \times n_s$ tate array of matrices, state transition matrix $Am - A_b \times n_s$ array of matrices, state error covariance matrix $Am - A_b \times n_s$ array of matrices, state error covariance matrix $Am - A_s \times n_s$ array of matrices, state error covariance matrix $Am - A_s \times n_s$ array of matrices, coefficient matrix for the observation exogenous data beta $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices, coefficient matrix for the state exogenous data $Am - A_s \times n_s$ are array of matrices.

yt N x T matrix of data

Xo N_o x T matrix of exogenous observation data

Xs N_s x T matrix of exogenous state weight column matrix of weights, T x 1

smooth boolean indication whether to run the backwards smoother

Value

list of cubes and matrices output by the Kim filter

4 kim_filter

Examples

```
#Stock and Watson Markov switching dynamic common factor
library(kimfilter)
library(data.table)
data(sw_dcf)
data = sw_dcf[, colnames(sw_dcf) != "dcoinc", with = FALSE]
vars = colnames(data)[colnames(data) != "date"]
#Set up the state space model
ssm = list()
ssm[["Fm"]] = rbind(c(0.8760, -0.2171, 0, 0, 0, 0, 0, 0, 0, 0, 0),
                 c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
                 c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
                 c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
                 c(0, 0, 0, 0, 0.0364, -0.0008, 0, 0, 0, 0, 0, 0)
                 c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
                 c(0, 0, 0, 0, 0, 0, -0.2965, -0.0657, 0, 0, 0, 0),
                 c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
                 c(0, 0, 0, 0, 0, 0, 0, 0, -0.3959, -0.1903, 0, 0),
                 c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
                 c(0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2436, 0.1281),
                 c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0))
ssm[["Fm"]] = array(ssm[["Fm"]], dim = c(dim(ssm[["Fm"]]), 2))
ssm[["Dm"]] = matrix(c(-1.5700, rep(0, 11)), nrow = nrow(ssm[["Fm"]]), ncol = 1)
ssm[["Dm"]] = array(ssm[["Dm"]], dim = c(dim(ssm[["Dm"]]), 2))
ssm[["Dm"]][1,, 2] = 0.2802
ssm[["Qm"]] = diag(c(1, 0, 0, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0))
ssm[["Qm"]] = array(ssm[["Qm"]], dim = c(dim(ssm[["Qm"]]), 2))
ssm[["Hm"]] = rbind(c(0.0058, -0.0033, 0, 0, 1, 0, 0, 0, 0, 0, 0),
                 c(0.0011, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
                 c(0.0051, -0.0033, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
                 c(0.0012, -0.0005, 0.0001, 0.0002, 0, 0, 0, 0, 0, 0, 1, 0))
ssm[["Hm"]] = array(ssm[["Hm"]], dim = c(dim(ssm[["Hm"]]), 2))
ssm[["Am"]] = matrix(0, nrow = nrow(ssm[["Hm"]]), ncol = 1)
ssm[["Am"]] = array(ssm[["Am"]], dim = c(dim(ssm[["Am"]]), 2))
ssm[["Rm"]] = matrix(0, nrow = nrow(ssm[["Am"]]), ncol = nrow(ssm[["Am"]]))
ssm[["Rm"]] = array(ssm[["Rm"]], dim = c(dim(ssm[["Rm"]]), 2))
ssm[["B0"]] = matrix(c(rep(-4.60278, 4), 0, 0, 0, 0, 0, 0, 0, 0))
ssm[["B0"]] = array(ssm[["B0"]], dim = c(dim(ssm[["B0"]]), 2))
ssm[["B0"]][1:4,, 2] = rep(0.82146, 4)
ssm["P0"]] = rbind(c(2.1775, 1.5672, 0.9002, 0.4483, 0, 0, 0, 0, 0, 0, 0),
                    c(1.5672, 2.1775, 1.5672, 0.9002, 0, 0, 0, 0, 0, 0, 0, 0)
                    c(0.9002, 1.5672, 2.1775, 1.5672, 0, 0, 0, 0, 0, 0, 0, 0)
                    c(0.4483, 0.9002, 1.5672, 2.1775, 0, 0, 0, 0, 0, 0, 0, 0)
                    c(0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0, 0)
                    c(0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0),
                    c(0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0, 0, 0),
                    c(0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0, 0, 0),
                    c(0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0),
                    c(0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0),
                    c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001),
```

kim_filter_cpp 5

kim_filter_cpp

Kim Filter

Description

Kim Filter

Usage

```
kim_filter_cpp(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE)
```

Arguments

ssm

list describing the state space model, must include names B0 - N_b x 1 x n_state array of matrices, initial guess for the unobserved components P0 - N_b x N_b x n_state array of matrices, initial guess for the covariance matrix of the unobserved components Dm - N_b x 1 x n_state array of matrices, constant matrix for the state equation Am - N_y x 1 x n_state array of matrices, constant matrix for the observation equation Fm - N_b X p x n_state array of matrices, state transition matrix Hm - N_y x N_b x n_state array of matrices, observation matrix Qm - N_b x N_b x n_state array of matrices, state error covariance matrix Rm - N_y x N_y x n_state array of matrices, state error covariance matrix betaO - N_y x N_o x n_state array of matrices, coefficient matrix for the observation exogenous data betaS - N_b x N_s x n_state array of matrices, coefficient matrix for the state exogenous data Pm - n_state x n_state matrix, state transition probability matrix

yt N x T matrix of data

Xo N_o x T matrix of exogenous observation data

Xs N_s x T matrix of exogenous state weight column matrix of weights, T x 1

smooth boolean indication whether to run the backwards smoother

6 self_rbind

Value

list of cubes and matrices output by the Kim filter

Rginv

R's implementation of the Moore-Penrose pseudo matrix inverse

Description

R's implementation of the Moore-Penrose pseudo matrix inverse

Usage

Rginv(m)

Arguments

m

matrix

Value

matrix inverse of m

self_rbind

Matrix self rowbind

Description

Matrix self rowbind

Usage

```
self_rbind(mat, times)
```

Arguments

mat matrix times integer

Value

matrix

ss_prob 7

ss_prob

Steady State Probabilities

Description

```
Finds the steady state probabilities from a transition matrix mat = |p_11 p_21 ... p_m1| |p_12 p_22 ... p_m2| |... ... |p_1m p_2m ... p_mm| where the columns sum to 1
```

Usage

```
ss_prob(mat)
```

Arguments

mat

square SxS matrix of probabilities with column sums of 1. S represents the number of states

Value

matrix of dimensions Sx1 with steady state probabilities

Examples

sw_dcf

Stock and Watson Markov Switching Dynamic Common Factor Data Set

Description

Stock and Watson Markov Switching Dynamic Common Factor Data Set

Usage

```
data(sw_dcf)
```

8 sw_dcf

Format

data.table with columns DATE, VARIABLE, VALUE, and MATURITY The data is monthly frequency with variables ip (industrial production), gmyxpg (total personal income less transfer payments in 1987 dollars), mtq (total manufacturing and trade sales in 1987 dollars), lpnag (employees on non-agricultural payrolls), and dcoinc (the coincident economic indicator)

Source

Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~c/http://econ.korea.ac.kr/~c/jkim/).

Index