Problem H. Circle of Polygon

Time limit 1000 ms **Mem limit** 262144 kB **OS** Windows

A **circumscribed circle** of a polygon is the circle that passes through all the vertices of that polygon.

Let's assume we have a **regular** polygon, we want to find the area of the circumscribed circle around this polygon. Given the number of vertices and the side length of the polygon, can you find the circle's area?

Input

The only line contains 2 integers , $V(3 \le V \le 359)$ the number of vertices of the polygon and $S(1 \le S \le 10^9)$

Output

Find the area of the resulting circumscribed circle. Your answer will be considered correct if its absolute or relative error does not exceed 10^{-6} .

must PREP for ECPC Aug 10, 2023

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if $\frac{|a-b|}{max(1,b)} \leq 10^{-6}$.

Sample 1

Input	Output
8 2	21.452136491

Note

The octagon in the picture illustrates the first example.