MATH-2205-A-ICA-3

Solve all the following problems.

- 1. If the mgf of random variable X is $M(t) = \frac{e^{2t}-1}{2t}$; $t \neq 0 \& M(0) = 1$, find the pmf, of X. Also, find P(0.5 < X < 1.2).
- 2. For which value of k the function $f(x) = \frac{x^2}{k}$; -1 < x < 1 is a *pmf*. If possible, fine the corresponding *mgf*.
- 3. Patients come at an emergency medical store at a mean rate of **120 per day**. Assuming that the number of patients **per hour** has a Poisson process, find the probability that **4** patients will arrive within **2pm to 3pm** of a particular day. What is the **standard deviation** of the arrivals of the patients?
- 4. Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5 < Y_6$ be the order statistics of **six** independent observations X_1 , X_2 , X_3 , X_4 , X_5 , X_6 each from the distribution with $pdf \ f(x) = \frac{1}{9}x^2$ defined in the interval 0 < x < 3. Find $P(Y_5 \le 2.25)$ and the pdf of the order statistics. Also, find the μ_5 .