DELD

Electronics Engineering Department

P – Type Semiconductor

Germanium doped with Boron (Trivalent Impurity)

N – Type Semiconductor

Germanium doped with Antimony (Pentavalent Impurity)

PN Junction

Depletion Layer

Depletion Layer

- \Box The excess electrons in the N- Region cross the junction and combine with the excess holes in the P region.
- □ N- Region looses electrons and becomes positively charged
- ☐ P Region looses holes and becomes negatively charged
- ☐ At some point this migration stops (Concentration becomes same)
- \Box Any additional electrons from N side are repelled by the negative charge of the P Region
- ☐ Similarly, additional holes from the P side are repelled by the positive charge of the N –Region

Depletion Layer Cont...

- ☐ This results in a thin layer on both the sides at the junction which contains only immobile charge carriers. This is known as depletion layer. Range is in micrometers
- ☐ Width depends on doping
- ☐ Heavily doped less width and vice-versa
- \Box Electrons in the N region have to climb the potential hill in order to reach the P Region. This potential is known as Potential Barrier.
- ☐ Ge 0.3 volts, Silicon 0.7 volts

Forward Bias

- □ Positive terminal of the battery is connected to p-region and negative terminal is connected to n-region
- ☐ Width of depletion layer decreases
- ☐ Current flows in the forward direction and diode acts as a short circuit

Forward Characteristics

Diode Equation

$$I_D = I_S(e^{V_D/nV_T} - 1)$$

- □ Is Reverse Saturation Current
- ☐ Vd is the applied Forward Biased voltage
- □ n − Ideality Factor (if not mentioned, assume as 1)
- □ Vt Thermal voltage (25 milli volts at room temperature: 27 degrees/300 degree K)

Reverse Bias

- \Box Positive terminal of the battery is connected to N side and Negative terminal of the battery is connected to P Side
- ☐ The free electrons and the free holes are attracted back towards both the battery terminals
- ☐ The charge carriers move away from the depletion layer
- ☐ Width of depletion layer increases
- ☐ No current flows and the diode acts as an open circuit

Breakdown Voltage

- ☐ Go on increasing the reverse bias. At certain voltage, The current increases at a very rapid rate in a direction opposite to that of the positive voltage region.
- ☐ The reverse-bias potential that results in this dramatic change in characteristics is called the **Breakdown Voltage**.

Diode Characteristics

Equivalent Circuits

Ideal Diode

Diode will behave as short circuit as soon as the voltage across it becomes greater than zero

Practical Diode

We must overcome the potential barrier of 0.7 volts (silicon) for a diode to make it forward bias

Ideal vs. Actual Characteristics

Diode as a Rectifier

- ☐ Diode behaves as a switch
- ☐ Forward Biased Closed Switch, connects AC Supply to load
- ☐ Reverse Biased Open Switch, disconnects AC with load

Concept Check...

Identify whether the diode/diodes is/are forward or reverse biased?

Diode as a Clipper (Series)

Clipping a portion of an input signal without distorting the remaining part of the waveform

Diode as a Clipper (Parallel)

Concept Check...

Solution

To Be Continued...