Leçon 213. Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.

1. NOTATION. On considère le corps K des réels ou des complexes.

1. Espaces de Hilbert et théorème de projection

1.1. Les espaces préhilbertiens

- 2. DÉFINITION. Soit E un K-espace vectoriel. Un produit scalaire sur l'espace E est une application $\langle , \rangle \colon E \times E \longrightarrow \mathbf{K}$ vérifiant les points suivants :
 - pour tout $y \in E$, l'application $\langle \cdot, y \rangle$ est linéaire;
 - pour tous $x, y \in E$, on a $\langle x, y \rangle = \langle y, x \rangle$;
 - pour tout $x \in E$, on a $\langle x, x \rangle \in \mathbf{R}_+$;
 - pour tout $x \in E$, on a $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Le couple (E, \langle , \rangle) est un espace préhilbertien.

- 3. Exemple. Les espaces vectoriels suivants sont préhilbertiens :

 - \mathbf{R}^n avec $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ pour $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$; \mathbf{C}^n avec $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ pour $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$; $\mathbf{L}^2(I)$ avec $I \subset \mathbf{R}^d$ et $\langle f, g \rangle = \int_{\mathbf{R}^d} f(x) \overline{g}(x) \, \mathrm{d}x$;

 - $-\ell^2(\mathbf{N}, \mathbf{C})$ avec $\langle u, v \rangle = \sum_{n=0}^{+\infty} u_n \overline{v_n}$.
- 4. Proposition (inégalité de Cauchy-Schwarz). Soient (E, \langle , \rangle) un espace préhilbertien et $x, y \in E$ deux vecteurs. Alors

$$|\langle x, y \rangle|^2 \leqslant \langle x, x \rangle \langle y, y \rangle. \tag{1}$$

5. COROLLAIRE. Soit $(E,\langle\;,\;\rangle)$ un espace préhilbertien. Alors l'application

$$x \in E \longmapsto ||x|| := \langle x, x \rangle^{1/2} \in \mathbf{R}_+$$

est une norme sur E. On l'appelle la norme issue du produit scalaire.

- 6. Proposition. Soient (E, \langle , \rangle) un espace préhilbertien et $x, y \in E$ deux vecteurs. Alors l'inégalité (1) est une égalité si et seulement si la famille (x, y) est liée.
- 7. Proposition (inégalité du parallélogramme). Soient $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et $x, y \in E$ deux vecteurs. Alors

$$\left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 = \frac{1}{2} (\|x\|^2 + \|y\|^2).$$
 (2)

- 8. Remarque. Un espace vectoriel normé E vérifiant l'identité du parallélogramme (1) pour tous vecteurs $x, y \in E$ est préhilbertien.
- q. Théorème (Pythagore). Soient E un espace préhilbertien et $x,y \in E$ deux vecteurs orthogonaux. Alors

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

- 10. DÉFINITION. Un espace de Hilbert est un espace préhilbertien complet pour la norme issue du produit scalaire.
- 11. Exemple. Les exemples du point3 sont tous des espaces de Hilbert.
- 12. DÉFINITION. Soit E un espace préhilbertien. L'orthogonal d'une partie $A \subset E$ est

$$A^{\perp} := \{ x \in E \mid \forall a \in A, \ \langle x, a \rangle = 0 \}.$$

13. PROPOSITION. Soient E un espace préhilbertien et $A \subset E$ une partie. Alors

- l'ensemble A^{\perp} est un sous-espace vectoriel fermé de E:
- on a $A^{\perp} = \overline{A}^{\perp}$ et $A^{\perp} = (\operatorname{Vect} A)^{\perp}$.

1.2. Théorème de projection et conséquence

- 14. THÉORÈME (de projection). Soient E un espace de Hilbert et C une partie fermée non vide de E. Alors
 - pour tout $x \in E$, il existe un unique point $p_C(x) \in C$ tel que $||x p_C(x)|| =$ d(x,C):
 - l'application $p_C: E \longrightarrow C$ est 1-lipschitzienne;
 - pour tout $x \in E$, le point $p_C(x)$ est caractérisé par les relations

$$p_C(x) \in C$$
 et $\forall z \in C$, $\operatorname{Re}\langle z - p_C(x), z - x \rangle \leqslant 0$. (3)

- 15. REMARQUE. Le théorème reste vrai pour un espace préhilbertien E et une partie convexe complète C.
- 16. REMARQUE. Lorsque la partie C est un sous-espace vectoriel fermé F, la caractérisation (3) par les angles obtus se reformule $p_F(x) \in F$ et $x - p_F(x) \in F^{\perp}$. Cela permet de calculer, par exemple, la borne inférieure

$$\min_{a,b,c\in\mathbf{R}^3} \int_0^1 (x^3 + ax^2 + bx + c)^2 \, \mathrm{d}x.$$

- 17. CONTRE-EXEMPLE. Toutes les hypothèses sont nécessaires.
 - L'hypothèse hilbertienne est nécessaire : dans l'espace $(\mathscr{C}^0([0,1]), \| \|_{\infty})$, la distance d(1,C) avec $C := \{ f \in \mathcal{C}^0([0,1]) \mid 0 \leqslant f \leqslant 1, f(0) = 0 \}$ est réalisée par les fonctions 1 - f avec $f \in C$.
 - L'hypothèse de complétude est nécessaire. En prenant $E := \mathcal{C}^0([0,1]) \subset L^2([0,1])$ avec $C := (\mathbf{1}_{[0,1/2]})^{\perp}$ et $C_1 := C \cap E$, la distance $d(f_1, C_1)$ n'est pas atteinte pour toute fonction $f_1 \in E \setminus C_1$.
 - L'hypothèse de convexité est nécessaire. Dans l'espace R², l'origine admet une infinité de projetés sur la sphère unité $S^1 \subset \mathbb{R}^2$.
- 18. APPLICATION. Soient $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé et $\mathscr{G} \subset \mathscr{F}$ une sous-tribu. Pour une variable $X \in L^2(\mathscr{F})$, on note $\mathbf{E}[X \mid \mathscr{G}] := p_{L^2(\mathscr{G})}(X)$. Cette définition s'étend, par uniforme continuité, en une application $\mathbf{E}[\cdot \mid \mathscr{G}] : L^1(\mathscr{F}) \longrightarrow L^2(\mathscr{G})$.
- 19. COROLLAIRE (théorème du supplémentaire orthogonal). Soient E un espace de Hilbert et F un sous-espace vectoriel fermé de E. Alors $E = F \oplus F^{\perp}$.
- 20. CONTRE-EXEMPLE. L'hypothèse de complétude est nécessaire. On pose

$$H := \mathcal{C}^0([-1,1])$$
 et $F := \{ f \in H \mid f|_{[0,1]} = 0 \}.$

Alors $F^{\perp} = \{ f \in H \mid f|_{[-1,0]} = 0 \}$ et $F \oplus F^{\perp} \subset \{ f \in H \mid f(0) = 0 \} \neq H$.

- 21. COROLLAIRE. Un sous-espace vectoriel fermé d'un espace de Hilbert est dense si et seulement si son orthogonal est nul.
- 22. Contre-exemple. Sans l'hypothèse de complétude, on peut reprendre le deuxième point du contre-exemple 17 : le sous-espace vectoriel fermé C_1 n'est pas dense alors que son orthogonal est nul.

24. Théorème. Soit E un espace de Hilbert. Alors l'application $y \in E \longmapsto \langle \cdot, y \rangle \in E'$ est une isométrie surjective. En particulier, toute forme $\phi \in E'$ s'écrit sous la forme

$$\forall x \in E, \quad \phi(x) = \langle x, y \rangle$$

pour un unique vecteur $y \in E$.

25. APPLICATION (théorème faible de Radon-Nykodym). Soient (E, \mathscr{A}) un espace mesurable muni de deux mesures finies positives μ et ν telles que $\nu \leqslant \mu$. Alors il existe une fonction μ -presque partout positive $f \in L^1(\mu)$ telle que

$$\forall A \in \mathscr{A}, \quad \nu(a) = \int_A f \,\mathrm{d}\mu.$$

26. COROLLAIRE. Un espace de Hilbert est réflexif.

2. Bases hilbertiennes

27. NOTATION. On considère un espace de Hilbert H.

2.1. Des bases orthonormées totales

- 28. DÉFINITION. Une famille $(e_i)_{i\in I}$ de H est
 - orthogonale si $\langle e_i, e_j \rangle = 0$ pour tous $i, j \in I$ avec $i \neq j$;
 - normée si $||e_i|| = 1$ pour tout $i \in I$;
 - totale si le sous-espace vectoriel $Vect_{\mathbf{K}}(e_i)_{i\in I}$ est dense dans H.

Une base hilbertienne de H est une famille orthonormée totale de H.

- 29. EXEMPLE. Voici des exemples de bases hilbertiennes.
 - La base canonique de \mathbb{R}^n en est une base hilbertienne.
 - La famille $(e_n)_{n\in\mathbb{N}}$ avec $e_n=(\delta_{n,m})_{m\in\mathbb{N}}$ est une base hilbertienne de $\ell^2(\mathbb{N},\mathbb{K})$.
 - L'espace $\mathscr{C}_{2\pi}^0(\mathbf{R}, \mathbf{C})$ des fonctions 2π -périodique de \mathbf{R} dans \mathbf{C} admet pour base hilbertienne $(e_n)_{n \in \mathbf{Z}}$ avec $e_n(x) = e^{inx}$.
- 30. Remarque. Le procédé d'orthonormalisation de Gram-Schmidt permet de construire des familles orthonormées de ${\cal H}.$

2.2. Propriétés des bases hilbertienne, théorème de Bessel-Perseval

31. PROPOSITION. Soit $(e_i)_{i \in I}$ une famille orthonormale finie de H et $x \in H$ un vecteur. Notons $F := \text{Vect}(e_i)_{i \in I}$. Alors

$$p_F(x) = \sum_{i \in I} \langle x, e_i \rangle e_i.$$

32. COROLLAIRE (inégalité de Bessel). Soient $(e_i)_{i\in I}$ une famille orthonormale de H et $x\in H$ un vecteur. Alors

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 \leqslant ||x||^2.$$

- 33. THÉORÈME (Perseval). Soient $(e_i)_{i \in I}$ une famille orthonormale de H. Alors les points suivants sont équivalents :
 - la famille $(e_i)_{i \in I}$ est une base hilbertienne de H;
 - pour tout $x \in H$, on a $||x||^2 = \sum_{i \in I} |\langle x, e_i \rangle|^2$;

- pour tous $x, y \in H$, on a $\langle x, y \rangle = \sum_{i \in I} \langle x, e_i \rangle \langle e_i, y \rangle$.
- 34. EXEMPLE. Avec la fonction continue 2π -périodique $x \mapsto 1 x^2/\pi^2$, la formule de Perseval donne

$$\zeta(4) = \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

35. THÉORÈME. Soient $(e_i)_{i\in I}$ une base hilbertienne de H et $x\in H$ un vecteur. Alors

$$x = \sum_{i \in I} \langle x, e_i \rangle e_i.$$

36. EXEMPLE (théorème de Féjer-Cesàro). La famille $(e_n)_{n\in\mathbb{N}}$ avec $e_n(x)=e^{inx}$ est une base hilbertienne de l'espace $L^2(\mathbf{T})$. En particulier, toute fonction $f\in L^2(\mathbf{T})$ peut se décomposer sous la forme

$$f = \sum_{n \in \mathbf{Z}} c_n(f) e_n$$
 avec $c_n(f) := \langle f, e_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$

où la convergence est au sens de la norme 2.

- 37. COROLLAIRE. Un espace de Hilbert de dimension infinie est séparable si et seulement s'il est isométrique à l'espace $\ell^2(\mathbf{N})$.
- 38. Théorème (existence de base hilbertienne).
 - Tout espace de Hilbert admet une base hilbertienne.
 - Tout espace de Hilbert séparable admet une base hilbertienne dénombrable.

2.3. Application: les polynômes orthogonaux

39. DÉFINITION. Soit I un intervalle de \mathbf{R} . Une fonction poids sur I est une fonction mesurable $\rho \colon I \longrightarrow \mathbf{R}_+^*$ telle que

$$\forall n \in \mathbf{N}, \qquad \int_{I} |x|^{n} \rho(x) \, \mathrm{d}x < +\infty.$$

L'ensemble $L^2(I,\rho)$ des fonctions de carré intégrable pour la mesure ρdx est muni du produit scalaire définit par l'égalité $\langle f,g\rangle=\int_I f\overline{g}\rho$. C'est un espace de Hilbert 40. REMARQUE. Par le procédé de Gram-Schmidt appliqué à la famille $(X^n)_{n\in\mathbb{N}}$, il existe une unique famille étagée orthogonale de polynômes unitaires, les polynômes orthogonaux.

41. THÉORÈME. Soit $\rho: I \longrightarrow \mathbf{R}_+^*$ une fonction poids et $\alpha > 0$ un réel vérifiant

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors la famille des polynômes orthogonaux est une base hilbertienne de $L^2(I, \rho)$.

3. Dualité dans les espaces de Hilbert

3.1. Adjoint d'un opérateur

42. DÉFINITION-PROPOSITION. L'adjoint d'un opérateur $T \in \mathscr{L}_{c}(H)$ est l'unique application $T^* \colon H \longrightarrow H$ vérifiant

$$\forall x, y \in H, \qquad \langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Cette dernière est linéaire continue.

44. EXEMPLE (opérateurs à noyau). Soit $K \in L^2([0,1] \times [0,1])$ une fonction. On définit l'opérateur continu

$$T_K \colon \mathrm{L}^2([0,1]) \longrightarrow \mathrm{L}^2([0,1])$$

de la manière suivante : pour toute fonction $f \in L^2([0,1])$ et presque tout $x \in [0,1]$, on pose

$$T_K f(x) = \int_0^1 K(x, y) f(y) \, \mathrm{d}y.$$

Alors $T_K^* = T_{K^*}$ avec $K^*(x,y) = \overline{K(y,x)}$. L'opérateur T est autoadjoint si $K = K^*$.

45. Exemple. Un projecteur orthogonal est autoadjoint.

46. Remarque. Pour $T \in \mathcal{L}_{c}(H)$, les opérations $T \circ T^{*}$ et $T^{*} \circ T$ sont autoadjoints.

47. PROPOSITION. L'application $T \in \mathcal{L}_c(H) \longmapsto T^* \in \mathcal{L}_c(H)$ est isométrie linéaire (ou antilinéaire) involutive et elle vérifie

$$\mathrm{Id}_{H}^{*} = \mathrm{Id}_{H} \qquad \text{et} \qquad (S \circ T)^{*} = T^{*} \circ S^{*}$$

48. Proposition. Soit $T \in \mathcal{L}_{c}(H)$ un opérateur. Alors

$$||T|| = ||T^*||$$
 et $||T \circ T^*|| = ||T^* \circ T|| = ||T||^2$.

49. Proposition. Soit $T \in \mathscr{L}_{\mathrm{c}}(H)$ un opérateur. Alors

$$(\operatorname{Ker} T^*)^{\perp} = \overline{\operatorname{Im} T}$$
 et $H = \operatorname{Ker} T^* \oplus_{\perp} \overline{\operatorname{Im} u}$.

3.2. Convergence faible et application

50. DÉFINITION. Soit H un espace de Hilbert. Une suite $(x_n)_{n \in \mathbb{N}}$ de H converge faiblement vers un vecteur $x \in H$ si

$$\forall y \in H, \qquad \langle x_n, y \rangle \longrightarrow \langle x, y \rangle.$$

Dans ce cas, un vecteur x vérifiant cette dernière relation est unique. On l'appelle la limite faible de la suite $(x_n)_{n\in\mathbb{N}}$.

51. EXEMPLE. Dans l'espace $\ell^2(\mathbf{N})$, la suite $(e_n)_{k \in \mathbf{N}}$ avec $e_n := (\delta_{n,k})_{n \in \mathbf{N}}$ converge faiblement vers la suite nulle.

52. REMARQUE. La convergence forte implique la convergence faible. Mais la réciproque est fausse comme le montre l'exemple précédent.

53. PROPOSITION. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de H qui converge faiblement vers un vecteur $x\in H$. Alors

$$\liminf_{n \to +\infty} ||x_n|| \geqslant ||x||.$$

De plus, les points suivants sont équivalents :

- la suite $(x_n)_{n \in \mathbb{N}}$ converge vers le vecteur x;
- $\lim \sup_{n \to +\infty} \|x_n\| \leqslant \|x\|;$
- $-\|x_n\| \longrightarrow \|x\|$

54. Proposition (compacité faible). Soit $(x_n)_{n \in \mathbb{N}}$ une suite bornée de H. Alors elle admet une sous-suite faiblement convergente.

55. Théorème. Soit $J\colon H\longrightarrow \mathbf{R}$ une fonction convexe, continue et coercive. Alors cette dernière atteint sa borne inférieure.

^[1] Vincent BECK, Jérôme MALICK et Gabriel PEYRÉ. Objectif Agrégation. 2e édition. H&K, 2005.

Zavier Gourdon. Analyse. 2^e édition. Ellipses, 2008.

^[3] Francis Hirsch et Gilles Lacombe. Éléments d'analyse fonctionnelle. Dunod, 2009.