Introduction to Fourier transform and signal analysis

Zong-han, Xie icbm0926@gmail.com

January 7, 2015

License of this document

Introduction to Fourier transform and signal analysis by Zong-han, Xie (icbm0926@gmail.com) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform

References

Orthogonal condition

 Any two vectors a, b satisfying following condition are mutually orthogonal.

$$\mathbf{a}^* \cdot \mathbf{b} = 0 \tag{1}$$

• Any two functions a(x), b(x) satisfying the following condition are mutually orthogonal.

$$\int a^*(x) \cdot b(x) dx = 0 \tag{2}$$

• * means complex conjugate.

Complete and orthogonal basis

 cos nx and sin mx are mutually orthogonal in which n and m are integers.

$$\int_{-\pi}^{\pi} \cos nx \cdot \sin mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cdot \cos mx dx = \pi \delta_{nm}$$

$$\int_{-\pi}^{\pi} \sin nx \cdot \sin mx dx = \pi \delta_{nm}$$
(3)

• δ_{nm} is Dirac-delta symbol. It means $\delta_{nn}=1$ and $\delta_{nm}=0$ when $n\neq m$.

Fourier series

Since $\cos nx$ and $\sin mx$ are mutually orthogonal, we can expand an arbitrary periodic function f(x) by them. we shall have a series expansion of f(x) which has 2π period.

$$f(x) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$
(4)

Fourier series

If f(x) has L period instead of 2π , x is replaced with $\pi x/L$.

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \frac{2k\pi x}{L} + b_k \sin \frac{2k\pi x}{L} \right)$$

$$a_0 = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) dx$$

$$a_k = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \cos \frac{2k\pi x}{L} dx, k = 1, 2, ...$$

$$b_k = \frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \sin \frac{2k\pi x}{L} dx, k = 1, 2, ...$$
 (5)

Fourier series of step function

f(x) is a periodic function with 2π period and it's defined as follows.

$$f(x) = 0, -\pi < x < 0$$

 $f(x) = h, 0 < x < \pi$ (6)

Fourier series expansion of f(x) is

$$f(x) = \frac{h}{2} + \frac{2h}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right)$$
 (7)

f(x) is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of 1/n.

Fourier series of step function

Fourier series of triangular function

f(x) is a periodic function with 2π period and it's defined as follows.

$$f(x) = -x, -\pi < x < 0$$

 $f(x) = x, 0 < x < \pi$ (8)

Fourier series expansion of f(x) is

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1,3,5...} \left(\frac{\cos nx}{n^2} \right)$$
 (9)

f(x) is continuous and its derivative is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of $1/n^2$.

Fourier series of triangular function

Fourier series of full wave rectifier

f(t) is a periodic function with 2π period and it's defined as follows.

$$f(t) = -\sin \omega t, -\pi < t < 0$$

$$f(t) = \sin \omega t, 0 < t < \pi$$
(10)

Fourier series expansion of f(x) is

$$f(t) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=2,4,6...} \left(\frac{\cos n\omega t}{n^2 - 1} \right)$$
 (11)

f(x) is continuous and its derivative is piecewise continuous within the periodic region. Fourier series of f(x) converges at speed of $1/n^2$.

Fourier series of full wave rectifier

Complex Fourier series

Using Euler's formula, Eq. 4 becomes

$$f(x) = a_0 + \sum_{k=1}^{\infty} \left(\frac{a_k - ib_k}{2} e^{ikx} + \frac{a_k + ib_k}{2} e^{-ikx} \right)$$

Let $c_0 \equiv a_0$, $c_k \equiv rac{a_k - i b_k}{2}$ and $c_{-k} \equiv rac{a_k + i b_k}{2}$, we have

$$f(x) = \sum_{m=-\infty}^{\infty} c_m e^{imx}$$

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-imx} dx$$
 (12)

 e^{imx} and e^{inx} are also mutually orthogonal provided $n \neq m$ and it forms a complete set. Therfore, it can be used as orthogonal basis.

Complex Fourier series

If f(x) has T period instead of 2π , x is replaced with $2\pi x/T$.

$$f(x) = \sum_{m=-\infty}^{\infty} c_m e^{i\frac{2\pi mx}{T}}$$

$$c_m = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-i\frac{2\pi mx}{T}} dx, m = 0, 1, 2...$$
(13)

Fourier transform

from Eq. 13, we define variables $k\equiv\frac{2\pi m}{T}$, $\hat{f}(k)\equiv\frac{c_mT}{\sqrt{2\pi}}$ and $\triangle k\equiv\frac{2\pi(m+1)}{T}-\frac{2\pi m}{T}=\frac{2\pi}{T}$. We can have

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} \hat{f}(k) e^{ikx} \triangle k$$

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) e^{-ikx} dx$$

Fourier transform

Let $T \longrightarrow \infty$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$$
 (14)

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$
 (15)

Eq.15 is the Fourier transform of f(x) and Eq.14 is the inverse Fourier transform of $\hat{f}(k)$.

Properties of Fourier transform

- f(x), g(x) and h(x) are functions and their Fourier transforms are $\hat{f}(k)$, $\hat{g}(k)$ and $\hat{h}(k)$. a, b x_0 and k_0 are real numbers.
 - Linearity: If h(x) = af(x) + bg(x), then Fourier transform of h(x) equals to $\hat{h}(k) = a\hat{f}(k) + b\hat{g}(k)$.
 - Translation: If $h(x) = f(x x_0)$, then $\hat{h}(k) = \hat{f}(k)e^{-ikx_0}$
 - Modulation: If $h(x) = e^{ik_0x}f(x)$, then $\hat{h}(k) = \hat{f}(k k_0)$
 - Scaling: If h(x) = f(ax), then $\hat{h}(k) = \frac{1}{a}\hat{f}(\frac{k}{a})$
 - Conjugation: If $h(x) = f^*(x)$, then $\hat{h}(k) = \hat{f}^*(-k)$. With this property, one can know that if f(x) is real and then $\hat{f}^*(-k) = \hat{f}(k)$. One can also find that if f(x) is real and then $|\hat{f}(k)| = |\hat{f}(-k)|$.

Properties of Fourier transform

- If f(x) is even, then $\hat{f}(-k) = \hat{f}(k)$.
- If f(x) is odd, then $\hat{f}(-k) = -\hat{f}(k)$.
- If f(x) is real and even, then $\hat{f}(k)$ is real and even.
- If f(x) is real and odd, then $\hat{f}(k)$ is imaginary and odd.
- If f(x) is imaginary and even, then $\hat{f}(k)$ is imaginary and even.
- If f(x) is imaginary and odd, then $\hat{f}(k)$ is real and odd.

Dirac delta function

Dirac delta function is a generalized function defined as the following equation.

$$f(0) = \int_{-\infty}^{\infty} f(x)\delta(x)dx$$
$$\int_{-\infty}^{\infty} \delta(x)dx = 1$$
 (16)

The Dirac delta function can be loosely thought as a function which equals to infinite at x = 0 and to zero else where.

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

Dirac delta function

From Eq.15 and Eq.14

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(k') e^{ik'x} dk' e^{-ikx} dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(k') e^{i(k'-k)x} dx dk'$$

Comparing to "Dirac delta function", we have

$$\hat{f}(k) = \int_{-\infty}^{\infty} \hat{f}(k')\delta(k'-k)dk'$$

$$\delta(k'-k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(k'-k)x}dx$$
(17)

Eq.17 doesn't converge by itself, it is only well defined as part of an integrand.

Convolution theory

Considering two functions f(x) and g(x) with their Fourier transform F(k) and G(k). We define an operation

$$f * g = \int_{-\infty}^{\infty} g(y)f(x - y)dy$$
 (18)

as the convolution of the two functions f(x) and g(x) over the interval $\{-\infty \sim \infty\}$. It satisfies the following relation:

$$f * g = \int_{-\infty}^{\infty} F(k)G(k)e^{ikx}dt$$
 (19)

Let h(x) be f * g and $\hat{h}(k)$ be the Fourier transform of h(x), we have

$$\hat{h}(k) = \sqrt{2\pi}F(k)G(k) \tag{20}$$

Parseval relation

$$\int_{-\infty}^{\infty} f(x)g(x)^* dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx} dk \frac{1}{\sqrt{2\pi}}$$
$$\int_{-\infty}^{\infty} G^*(k')e^{-ik'x} dk' dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)G^*(k')e^{i(k-k')x} dk dk'$$

By using Eq. 17, we have the Parseval's relation.

$$\int_{-\infty}^{\infty} f(x)g^*(x)dx = \int_{-\infty}^{\infty} F(k)G^*(k)dk$$
 (21)

Calculating inner product of two fuctions gets same result as the inner product of their Fourier transform.

Cross-correlation

Considering two functions f(x) and g(x) with their Fourier transform F(k) and G(k). We define cross-correlation as

$$(f \star g)(x) = \int_{-\infty}^{\infty} f^*(x+y)g(x)dy$$
 (22)

as the cross-correlation of the two functions f(x) and g(x) over the interval $\{-\infty \sim \infty\}$. It satisfies the following relation: Let h(x) be $f \star g$ and $\hat{h}(k)$ be the Fourier transform of h(x), we have

$$\hat{h}(k) = \sqrt{2\pi} F^*(k) G(k) \tag{23}$$

Autocorrelation is the cross-correlation of the signal with itself.

$$(f \star f)(x) = \int_{-\infty}^{\infty} f^*(x+y)f(x)dy$$
 (24)

Uncertainty principle

One important properties of Fourier transform is the uncertainty principle. It states that the more concentrated f(x) is, the more spread its Fourier transform $\hat{f}(k)$ is.

Without loss of generality, we consider f(x) as a normalized function which means $\int_{-\infty}^{\infty} |f(x)|^2 dx = 1$, we have uncertainty relation:

$$\left(\int_{-\infty}^{\infty} (x - x_0)^2 |f(x)|^2 dx\right) \left(\int_{-\infty}^{\infty} (k - k_0)^2 |\hat{f}(k)|^2 dk\right) \ge \frac{1}{16\pi^2} (25)$$

for any x_0 and $k_0 \in \mathbf{R}$. [3]

Fourier transform of a Gaussian pulse

$$f(x) = f_0 e^{\frac{-x^2}{2\sigma^2}} e^{ik_0 x}$$

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

$$= \frac{f_0}{1/\sigma^2} e^{\frac{-(k_0 - k)^2}{2/\sigma^2}}$$

$$|\hat{f}(k)|^2 \propto e^{\frac{-(k_0 - k)^2}{1/\sigma^2}}$$

Wider the f(x) spread, the more concentrated $\hat{f}(k)$ is.

Fourier transform of a Gaussian pulse

Signals with different width.

Fourier transform of a Gaussian pulse

The bandwidth of the signals are different as well.

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform
- 3 References

Nyquist critical frequency

Critical sampling of a sine wave is two sample points per cycle. This leads to *Nyquist critical frequency* f_c .

$$f_c = \frac{1}{2\Delta} \tag{26}$$

In above equation, Δ is the sampling interval.

Sampling theorem: If a continuos signal h(t) sampled with interval Δ happens to be bandwidth limited to frequencies smaller than f_c . h(t) is completely determined by its samples h_n . In fact, h(t) is given by

$$h(t) = \Delta \sum_{n=-\infty}^{\infty} h_n \frac{\sin[2\pi f_c(t-n\Delta)]}{\pi(t-n\Delta)}$$
 (27)

It's known as Whittaker - Shannon interpolation formula.

Discrete Fourier transform

Signal h(t) is sampled with N consecutive values and sampling interval Δ . We have $h_k \equiv h(t_k)$ and $t_k \equiv k * \Delta$, k = 0, 1, 2, ..., N - 1.

With N discrete input, we evidently can only output independent values no more than N. Therefore, we seek for frequencies with values

$$f_n \equiv \frac{n}{N\Delta}, n = -\frac{N}{2}, ..., \frac{N}{2}$$
 (28)

Discrete Fourier transform

Fourier transform of Signal h(t) is H(f). We have discrete Fourier transform H_n .

$$H(f_{n}) = \int_{-\infty}^{\infty} h(t)e^{-i2\pi f_{n}t}dt \approx \Delta \sum_{k=0}^{N-1} h_{k}e^{-i2\pi f_{n}t_{k}}$$

$$= \Delta \sum_{k=0}^{N-1} h_{k}e^{-i2\pi kn/N}$$

$$H_{n} \equiv \sum_{k=0}^{N-1} h_{k}e^{-i2\pi kn/N}$$
(29)

Inverse Fourier transform is

$$h_k \equiv \frac{1}{N} \sum_{n=0}^{N-1} H_n e^{i2\pi k n/N}$$
 (30)

Periodicity of discrete Fourier transform

From Eq.29, if we substitute n with n + N, we have $H_n = H_{n+N}$. Therefore, discrete Fourier transform has periodicity of N.

$$H_{n+N} = \sum_{k=0}^{N-1} h_k e^{-i2\pi k(n+N)/N}$$

$$= \sum_{k=0}^{N-1} h_k e^{-i2\pi k(n)/N} e^{-i2\pi kN/N}$$

$$= H_n$$
(31)

Critical frequency f_c corresponds to $\frac{1}{2\Delta}$. We can see that discrete Fourier transform has f_s period where $f_s = 1/\Delta = 2*f_c$ is the sampling frequency.

Aliasing

If we have a signal with its bandlimit larger than f_c , we have following spectrum due to periodicity of DFT.

Aliased frequency is $f - N * f_s$ where N is an integer.

Aliasing example: original signal

Let's say we have a sinusoidal signal of frequency 0.05. The sampling interval is 1. We have the signal

Aliasing example: spectrum of original signal

and we have its spectrum

Aliasing example: critical sampling of original signal

The critical sampling interval of the original signal is 10 which is half of the signal period.

Aliasing example: under sampling of original signal

If we sampled the original sinusiodal signal with period 12, aliasing happens.

Aliasing example: DFT of under sampled signal

 f_c of downsampled signal is $\frac{1}{2*12}$, aliased frequency is $f-2*f_c=-0.03333$ and it has symmetric spectrum due to real signal.

Aliasing example: two frequency signal

Let's say we have a signal containing two sinusoidal signal of frequency 0.05 and 0.0125. The sampling interval is 1. We have the signal

Aliasing example: spectrum of two frequency signal

and we have its spectrum

Aliasing example: downsampled two frequency signal

Doing same undersampling with interval 12.

Aliasing example: DFT of downsampled signal

We have the spectrum of downsampled signal.

Filtering

we want.

We now want to get one of the two frequency out of the signal. We will adapt a proper rectangular window to the spectrum. Assuming we have a filter function w(f) and a multi-frequency signal f(t), we simply do following steps to get the frequency band

$$\mathcal{F}^{-1}\{w(f)\mathcal{F}\{f(t)\}\}\tag{32}$$

Filtering example: filtering window and signal spectrum

Filtering example: filtered signal

Outline

- Continuous Fourier transform
- 2 Discrete Fourier transform
- 3 References

References

- Supplementary Notes of General Physics by Jyhpyng Wang, http:
 - //idv.sinica.edu.tw/jwang/SNGP/SNGP20090621.pdf
- http://en.wikipedia.org/wiki/Fourier_series
- http://en.wikipedia.org/wiki/Fourier_transform
- http://en.wikipedia.org/wiki/Aliasing
- http://en.wikipedia.org/wiki/Nyquist-Shannon_ sampling_theorem
- MATHEMATICAL METHODS FOR PHYSICISTS by George B. Arfken and Hans J. Weber. ISBN-13: 978-0120598762
- Numerical Recipes 3rd Edition: The Art of Scientific Computing by William H. Press (Author), Saul A. Teukolsky.

References

- Chapter 12 and 13 in http://www.nrbook.com/a/bookcpdf.php
- http://docs.scipy.org/doc/scipy-0.14.0/reference/fftpack.html
- http://docs.scipy.org/doc/scipy-0.14.0/reference/signal.html