CHAPTER 09

Chapter Contents

Part I: Binary Search Tree

Part II: Priority Queue & Heaps

Part III: Heapsort

Part I: Binary Search Tree

Binary Search Trees (BSTs)

- A search tree is a tree whose elements are organized to facilitate finding a particular element when needed
- A binary search tree is a binary tree that, for each node n
 - the left subtree of n contains elements less than the element stored in n
 - $lue{}$ the right **subtree** of *n* contains elements greater than or equal to the element stored in *n*

Binary Search Trees (BSTs)

Implementation of BST

Linked Implementation: Use nodes of the form

and maintain a pointer to the root.

Traversing BST

```
void inorder(Node r)
                            //yields ordered sequence
{ if (r != null)
    {inorder(r.left); // Left
    visit(r.data); // Root
     inorder(r.right); // Right
void preorder(Node r)
{ if (r != null)
    { visit(r.data); // Root
    preorder(r.left); // Left
      preorder(r.right); // Right
   }
void postorder(Node r)
{ if (r != null)
    {postorder(r.left); // Left
    postorder(r.right); // Right
    visit (r.data); // Root
```

Binary Search Trees (BSTs)

- To determine if a particular value exists in a tree
 - start at the root
 - compare target to element at current node
 - move left from current node if target is less than element in the current node
 - move right from current node if target is greater than element in the current node
- We eventually find the target or encounter the end of a path (target is not found)

Searching in BST

- 1. Set pointer locPtr = root.
- 2. Repeat the following:

If locPtr is null

Return False

If Value < locPtr.Data

locPtr = locPtr.Left

Else if Value > locPtr.Data

locPtr = locPtr.Right

Else

Return True

Search time: $O(\log_2 n)$ if tree is balanced.

Binary Search Trees (BSTs)

- The particular shape of a binary search tree depends on the order in which the elements are added to the tree
- The shape may also be dependent on any additional processing performed on the tree to reshape it
- Binary search trees can hold any type of data, so long as we have a way to determine relative ordering

Adding an Element to a BST

- Process of adding an element is similar to finding an element
- New elements are added as leaf nodes
- Start at the root, follow path dictated by existing elements until you find no child in the desired direction
- Add the new element

Adding an Element to a BST

Next to add: 77 24 82 97 58 17 40

Removing an Element from a BST

- Removing a target in a BST is not as simple as that for linear data structures
- After removing the element, the resulting tree must still be valid
- Three distinct situations must be considered when removing an element
 - The node to remove is a leaf
 - The node to remove has one child
 - The node to remove has two children

Removing an Element from a BST

Removing an Element from a BST

- Dealing with the situations
 - Node is a leaf: it can simply be deleted
 - Node has one child: the deleted node is replaced by the child
 - Node has two children: an appropriate node is found lower in the tree and used to replace the node:
 - Either selecting the largest element in the left subtree.
 - Or selecting the smallest element in the right subtree.

After the Root Node is Removed

Complexity

- Logarithmic, depends on the shape of the tree
 O(log₂ N)
- In the worst case O(N) comparisons

Advantages of BST

- Simple
- Efficient
- Dynamic

- One of the most fundamental algorithms in CS
- □ The method of choice in many applications

Disadvantages of BST

- The shape of the tree depends on the order of insertions, and it can be degenerated. (Becomes a Linked List)
- When inserting or searching for an element, the key of each visited node has to be compared with the key of the element to be inserted/found.

Improvements of BST

Keeping the tree balanced:

- AVL trees (Adelson Velskii and Landis)
- Balance condition: left and right subtrees of each node can differ by at most one level.
- It can be proved that if this condition is observed the depth of the tree is O(log₂N).

Part II: Priority Queue & Heaps

Priority Queue ADT

The data in a priority queue is (conceptually) a queue of elements

- The "queue" can be thought of as sorted with the largest in front, and the smallest at the end
 - Its physical form, however, may differ from this conceptual view considerably

Priority Queue ADT Operations

- enqueue, an operation to add an element to the queue
- dequeue, an operation to take the largest element from the queue
- an operation to determine whether or not the queue is empty

an operation to empty out the queue

Priority Queue Implementation

 Priority Queue could be implemented in different ways.

One way is to use vectors.

Another way is to use Binary Heap.

■ What's a Heap?

Heaps

A heap is a complete binary tree in which the value of each node is greater than or equal to the values of its children (if any)

Technically, this is called a maxheap

In a minheap, the value of each node is less than or equal to the values of its children

Heaps (cont.)

 The element stored in each node of a heap can be an object

When we talk about the value of a node, we are really talking about some data member of the object that we want to prioritize

 For example, in employee objects, we may want to prioritize age or salary

Implementations

- Binary heap
- Better than BST because it does not support links.
- Insert: O(log₂N)
- Find minimum O(log₂N)
- Deleting the minimal element takes a constant time, however after that the heap structure has to be adjusted, and this requires O(log₂N) time.

Binary Heap

- Heap-Structure Property:
- Complete Binary Tree Each node has two children, except for the last two levels.
- The nodes at the last level do not have children. New nodes are inserted at the last level from left to right.
- Heap-Order Property:
- Each node has a higher priority than its children

Binary Heap

Next node to be inserted - right child of the yellow node

Basic Operations

□ Build the heap

□ Insert a node – Percolate Up

□ Delete a node – Percolate Down

Build Heap - O(N)

 Given an array of elements to be inserted in the heap,

 treat the array as a heap with order property violated,

 and then do operations to fix the order property.

Example

Example (cont)

After processing height 1

Example (cont)

Example (cont)

Percolate Up – Insert a Node

 A hole is created at the bottom of the tree, in the next available position.

Percolate Up

Percolate Up

Percolate Up

Complexity of insertion: O(log₂N)

Percolate Down - Delete a Node

Percolate Down – the wrong way

Percolate Down – the wrong way

The empty hole violates the heap-structure property

Last element - 20. The hole at the root.

We try to insert 20 in the hole by percolating the hole down

Complexity of deletion: O(logN)

Example of a Heap

Example of a Heap (cont.)

Example of a Heap (cont.)

Dequeue

- \square Dequeuing the object with the greatest value appears to be a $\Theta(1)$ operation
- However, after removing the object, we must turn the resultant structure into a heap again, for the next dequeue
- Fortunately, it only takes O(log₂n) time to turn the structure back into a heap again (which is why dequeue in a heap is a O(log₂n) operation

Heapify

- The process of swapping downwards to form a new heap is called heapifying
- When, we heapify, it is important that the rest of the structure is a heap, except for the root node that we are starting off with; otherwise, a new heap won't be formed
- A loop is used for heapifying; the number of times through the loop is always lg n or less, which gives the O(lg n) complexity
- Each time we swap downwards, the number of nodes we can travel to is reduced by approximately half

Part III: Heapsort

Heapsort

- Consider a priority queue with n items implemented by means of a heap
- The space used is O(n)
- Methods enqueue and removeMax take O(log n) time
- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time
- The resulting algorithm is called heap-sort

Heapsort

- Build a binary heap of N elements
 - -O(N) time

- Then perform N deleteMax operations
 - -log(N) time per **deleteMax**

• Total complexity $O(N \log N)$

Questions

