港口运输问题

问题建模

对于这一问题,该公司所需要的配备船只数量包括三部分:

- **航线运行载货所需要的船只数量(***N*₁**)**: 实际上就是完成四条航线的航运任务所需要的船只数目,由每条航线的船只数和航程天数 共同决定。基本的原则是每天都要存在在航线上运行的船只。
- **港口之间周转所需要的船只数量(N_t)**:由于每个港口的出入船只数目不同,所以为了航线的正常运行需要在各个港口之间进行货物的调度(使用同型号船只)。这样能够使得在单位时间之内,每个港口的出入航班数目各自相等,达到平衡。这样实际上造成了一个产销平衡运输问题。
- 为维修等所需要的备用船只数量 (N_s) : 占总船只数目的 20%, 可以由其他两者计算得到。

首先计算航线运行载货所需要的船只数量,对某一航线,应有:

航线运行载货所需要的船只数量 = (航程天数 + 载货天数 + 卸货天数) × (每天的航班数)

航线	每天航班数	航程天数	航线载货要求船只数
1	3	17	$(17+1+1)\times 3=57$
2	2	3	$(3+1+1)\times 2=10$
3	1	7	$(7+1+1)\times 1=9$
4	1	13	(13+1+1) imes 1 = 15

计算得到:

$$N_l = 57 + 10 + 9 + 15 = 91$$

为了分析港口之间周转所需要的船只数量,我们要分析每天各个港口城市的出入船只量情况:

港口城市	进入船只数	离开船只数	出入船只差
Α	0	1	-1
В	1	2	-1
С	2	0	2
D	3	1	2
E	0	3	-3
F	1	0	1

基于此我们构建一个产销平衡的运输问题,问题数据如下:

	$B_1(A)$	$B_2(B)$	$B_3(E)$	产量
$A_1(C)$	2	3	5	2
$A_2(D)$	14	13	17	2
$A_3(F)$	7	8	3	1
销量	1	1	3	

- 每天的出入船只差值当作产销问题中的物资 (a_i,b_j) ,并根据其值的正/负把港口城市划分为产地 (A_i) /销售地 (B_i) 。
- 以 A_i 到 B_i 的航运天数作为运价 c_{ij}
- 以 A_i 到 B_i 每天需要的周转船只数作为运量 x_{ij}

则问题的数学模型如下:

$$\min z = \sum_{i=1}^3 \sum_{i=1}^3 c_{ij} x_{ij}$$

$$ext{s.t.} egin{aligned} \sum_{j=1}^3 x_{ij} &= a_i, & (i=1,2,3) \ \sum_{i=1}^3 x_{ij} &= b_j, & (j=1,2,3) \ x_{ij} &\geq 0, \end{aligned}$$

代码

```
MODEL:
sets:
row/1..3/:a;
arrange/1..3/:b;
link(row,arrange):c,x;
endsets
data:
a=2,2,1;
b=1,1,3;
c=2,3,5
 14,13,17
 7,8,3;
enddata
[OBJ] min=@sum(link(i,j):c(i,j)*x(i,j));
 @ for(row(i): @ sum(arrange(j):x(i,j)) = a(i);); \\
 @ for(arrange(j): @ sum(row(i):x(i,j)) = b(j);); \\
(for(link(i,j):x(i,j)>=0;);
END
```

结果

也即:

	$B_1(A)$	$B_2(B)$	$B_3(E)$	每天多余船只
$A_1(C)$	1	0	1	2
$A_2(D)$	0	1	1	2
$A_3(F)$	0	0	1	1
每天缺少船只	1	1	3	

从而

$$N_l = 91 \ N_t = 40 \ N_s = (N_l + N_t) imes 0.25 = 33 \ N = N_l + N_t + N_s = 164 \$$

即总共需要164只船