May 12th

exterior - antisymmi

Thro Given v.s. V, Suppose $\{\vec{v}_{\alpha}, \vec{w}_{\alpha}\}$ $\{\vec{v}_{\alpha}, \vec{w}_{\alpha}\}$ are two sets of vectors in V. (Isask)

If $\{\vec{v}_{\alpha}, \vec{w}_{\alpha}\}$ to linearly indep set, and

If $\{\overline{v}_{\alpha}, w_{\alpha}\}$ is linearly indep set, and $\sum v_{\alpha} \wedge w_{\alpha} = \sum v_{\alpha}' \wedge w_{\alpha}'$ Iter $\{v_{\alpha}', w_{\alpha}'\}$ is L.I. $\{v_{\alpha}', w_{\alpha}'\}$ are $\lim_{n \to \infty} combo's \quad \text{of} \quad (v_{\alpha}, w_{\alpha})$

ox of Horn

Force field $F_x(x_3y_3z) dx + F_y(x_3y_3z) dy + F_z(x_3y_3z) dz$ $F(x_3y_3z) = F_x \vec{e_1} + F_y \vec{e_2} + F_z \vec{e_3}$ $d\vec{l} = dx \vec{e_1} + dy \vec{e_2} + dz \vec{e_3}$

 $\Rightarrow \int \vec{f} \cdot d\vec{l} = W_{12}$ $c \quad \text{Toke Horm} \quad \text{, in depens on } dx, dy, dk \quad \text{must extist}$ $u_1 = u_1(w_1, \dots, w_n)$

Real veloc. is ten vect.

innersion const at everywhere in manifold.

recall diffeomorphism

Jos all charts manfoldist sop structure

Δ1,2-1,ω_ν

coopersty also

coopersy

