

Componente de Avaliação P3 (15%) de Arquitetura de Computadores

Ano letivo: 2024/2025

Data de entrega e discussão: 26-05-2025

1. Descrição do terceiro trabalho prático de avaliação: Parque de Estacionamento

Neste terceiro trabalho de avaliação, pretende-se que seja desenvolvido um programa em linguagem *assembly* e *C* para o microcontrolador 8051, capaz de realizar a gestão de um parque de estacionamento de automóveis.

Requisitos do sistema de gestão do parque de estacionamento:

Botão1: à entrada do parque de estacionamento existe um botão de pressão que recebe o pedido, por interrupção, de entrada no parque de estacionamento. Por defeito o nível lógico é '1'. Na transição descendente, de '1' para '0', ocorre uma interrupção com o pedido de entrada no parque de estacionamento.

Botão2: à saída do parque de estacionamento existe um botão de pressão que recebe o pedido, por interrupção, de saída do parque de estacionamento. Por defeito o nível lógico é '1'. Na transição descendente, de '1' para '0', ocorre uma interrupção com o pedido de saída do parque de estacionamento.

Barreira: o parque de estacionamento tem uma barreira, ligada a um servo motor, que fica levantada durante pelo menos 10 segundos sempre que um automóvel entra ou sai do parque de estacionamento.

Sensor: junto à barreira do parque de estacionamento existe um sensor ótico que deteta a passagem de um automóvel. Quando não existe a passagem de um automóvel na saída do sensor está o valor '1' lógico. Enquanto o automóvel passa pela barreira do parque de estacionamento bloqueia o feixe ótico e na saída do sensor está o valor '0' lógico.

Amarelo: a luz amarela fica intermitente, de um em um segundo, sempre que a barreira está levantada, para sinalizar que a barreira está aberta.

Verde: a luz verde é colocada à entrada do parque de estacionamento, indicando que há lugares no parque de estacionamento.

Vermelho: a luz vermelha, na entrada do parque de estacionamento, indica que o parque está completo.

\$1, \$2, \$3, \$4, \$5, \$6, \$7, \$8: sensores que detetam a presença de um automóvel no lugar de estacionamento do parque. O nível lógico '1' indica que o lugar está vago e o nível lógico '0' sinaliza o lugar ocupado.

L1, L2, L3, L4, L5, L6, L7, L8: luzes vermelhas que indicam, à entrada do parque de estacionamento, quais são os lugares de estacionamento ocupados.

Display: o display de 7 segmentos mostra o número de lugares disponíveis no parque de estacionamento. O parque de estacionamento tem uma lotação de 8 lugares. O display é atualizado pela contagem dos sensores, **S1** a **S8**, de presença dos automóveis no parque de estacionamento. A gama de valores que o display de 7 segmentos pode mostrar é entre o número 8 (parque vazio) e o número 0 (parque cheio).

Descrição das ligações do microcontrolador:

Na Figura 1 está representado o esquema das ligações do microcontrolador que realiza a gestão do parque de estacionamento.

Figura 1 – Esquema das ligações do microcontrolador.

Mapeamento dos pinos do microcontrolador:

Na Tabela 1 está representado o mapeamento dos pinos do microcontrolador.

Tabela 1 – Mapeamento dos pinos do microcontrolador.

	pines de interceontrolador.			
Objeto	Pino do microcontrolador			
Atuadores				
Verde	P1.0			
Vermelho	P1.1			
Amarelo	P1.2			
Barreira	P1.3			
Sensores				
Botão1	P3.2			
Botão2	P3.3			
Sensor	P1.4			
Display				
A	P2.0			
В	P2.1			
С	P2.2			
D	P2.3			
Sensores de presença e sinalização				
S1, L1	P0.0			
S2, L2	P0.1			
S3, L3	P0.2			
S4, L4	P0.3			
S5, L5	P0.4			
S6, L6	P0.5			
S7, L7	P0.6			
S8, L8	P0.7			

Tabela de verdade do display de 7 segmentos:

O display de 7 segmentos utilizado é de ânodo comum e é controlado por um descodificador BCD para display de 7 segmentos – SN74LS47. Na Tabela 2 está representada a tabela de verdade que relaciona o valor das entradas A, B, C e D do descodificador BCD para display de 7 segmentos e o valor em decimal correspondente que é mostrado no display de 7 segmentos.

Tabela 2 – Tabela de verdade para o display de 7 segmentos.

	Segme	entos		Valor
D	С	В	Α	Decimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8

Plano de trabalhos

O terceiro trabalho prático de avaliação da disciplina de Arquitetura de Computadores está dividido em três fases, nomeadamente:

- Especificação e desenho dos fluxogramas do sistema de gestão do parque de estacionamento;
 - Programação em linguagem assembly e C;
 - Implementação, testes e escrita do relatório.
 - Especificação e desenho dos fluxogramas
 - O Desenho dos fluxogramas do programa principal e das rotinas de interrupção.
 - Programação em linguagem assembly e C
 - o Estudo das linguagens para o microcontrolador 8051;
 - o Estudo da configuração e programação de interrupções do microcontrolador;
 - o Programação em linguagem assembly e C;
 - Simulação na aplicação Keil uVision do sistema de gestão do parque de estacionamento.
 - Implementação, testes e escrita do relatório
 - O Verificação experimental do sistema de gestão do parque de estacionamento;
 - Elaboração de um relatório com a descrição do trabalho realizado, num máximo de 5 páginas (sem contar com os anexos, capa e índice);
 - Capa com a identificação da disciplina, dos docentes e dos alunos;
 - Objetivos;
 - Descrição da solução e análise de resultados;
 - Conclusão;
 - Bibliografia;
 - Anexo A: fluxogramas;
 - Anexo B: código em linguagem *assembly* e *C*, comentado e organizado em funções/rotinas.

2. Avaliação e informações relevantes

O trabalho deve ser realizado individualmente ou em grupo de 2 alunos, tem um peso de 15% na nota final.

O relatório em PDF e os ficheiros com os programas deverão ser compactados num único ficheiro ZIP/RAR, que deverá ser enviado para o Gabinete de Apoio ao Estudante (<u>trabalhos@mail.uma.pt</u>) até às 24:00 do dia 26-05-2025. <u>No e-mail devem indicar:</u> o vosso nome e número de aluno, o nome da disciplina, a identificação do trabalho e o nome dos docentes.

A cópia do trabalho implica a reprovação no mesmo.

A discussão do trabalho (26-05-2025) é individual, sendo necessário mostrar o trabalho a funcionar, sem erros, no Keil uVision e no circuito disponibilizado no laboratório, em pelo menos uma das linguagens.

BOM TRABALHO!