Semaine 13 - Arithmétique des polynômes

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Écriture binaire et polynôme

Soit $P_n(x) = (1+X)(1+X^2)\dots(1+X^{2^n})$ avec $n \in \mathbb{N}$.

- 1 Donner la forme développée de P_n .
- **2** Montrer que tout entier $p \in \mathbb{N}$ s'écrit de manière unique comme la somme de puissance de deux.

Remarque : ce résultat permet de montrer de manière élégante, l'existence et l'unicité de l'écriture binaire des entiers.

2 Équations polynomiale(s) (1)

Résoudre dans k[X] les équations suivantes.

- 1 $Q^2 = XP^2 \text{ en } (P, Q).$
- $\mathbf{2} \quad P \circ P = P \text{ en } P.$
- 3 $P(X^2) = (X^2 + 1)P(X)$ en P

3 Équations polynomiale(s) (2)

Soit $P \in \mathbb{C}[X]$ tel que $P(X^2) = P(X)P(X-1)$ et P non nul.

- 1 Montrer que les racines de P sont de module 1.
 - **2** Déduire P.

4 Intégration et polynômes (1)

Soit [a,b] un intervalle non vide de \mathbb{R} . Soit $f \in \mathcal{C}([a,b])$. Soit $n \in \mathbb{N}$.

1 On suppose que $\forall k \in [0, n]$, $\int_a^b f(t)t^k dt = 0$. Montrer que f s'annule au moins n+1 fois.

Remarque : le théorème de Weierstrass permet de montrer une version limite de ce théorème à savoir : si $\forall P \in \mathbb{R}[X], \int_a^b f(x)P(x)\mathrm{d}x = 0$, alors f = 0.

5 Intégration et polynômes (2)

1 Trouver tous les polynômes de $\mathbb{R}[X]$ qui vérifient : $\forall k \in \mathbb{N}, \ \int_k^{k+1} P(x) \mathrm{d}x = k+1.$

6 Localisation des racines

Soit $P = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ un polynôme de $\mathbb{C}[X]$. Soit z une racine complexe de P.

1 Montrer que $|z| \le 1 + \max_{j \in \llbracket 0, n-1 \rrbracket} |a_j|$.

Remarque : cette majoration permet de réduire l'ensemble de recherche des racines du polynômes. D'autres techniques permettent d'affiner le domaine : règle de changement des signes de Descartes, suites de Sturm, disques de Gershgörin.

7 Le théorème de Gauss-Lucas

Soit $P \in \mathbb{C}[X]$.

1 Montrer que toute racine de P' est barycentre des racines de P.

8 Majoration des coefficients

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$.

- 1 Calculer $P(1) + P(\omega) + \cdots + P(\omega^n)$ avec ω une racine n+1-ème de l'unité.
- **2** En déduire que $\forall k \in [0, n], |a_k| \leq M \text{ avec } M = \sup_{z \in \mathbb{U}} (|P(z)|).$

9 Localité et polynômes

Soit f une fonction sur $\mathbb R$ localement polynômiale :

$$\forall x_0 \in \mathbb{R}, \ \exists (\epsilon, P_{x_0}) \in \mathbb{R}_+^* \times \mathbb{R}[X], \ \forall x \in]x_0 - \epsilon, x_0 + \epsilon[, \ f(x) = P(x)]$$

1 Montrer que f est un polynôme.

Remarque : on peut encore affaiblir les hypothèses (théorème de Balaguer-Corominas) :

$$\forall x \in \mathbb{R}, \exists n_x, f^{(n_x)}(x) = 0 \Leftrightarrow f \text{ est polynômiale.}$$

10 Trigonométrie et polynômes

1 Peut-on écrire la fonction cos comme un polynôme ?

11 Racines réelles de polynôme (1)

Soit $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}$.

1 Montrer que le polynôme $X^n + aX + b$ admet au plus trois racines réelles.

12 Racines réelles de polynômes (2)

1 Montrer que $P_n = ((1 - X^2)^n)^{(n)}$ est un polynôme de degré n dont les racines sont réelles, simples et appartiennent à [-1,1].

13 Condition nécessaire et suffisante de primalité

Soit A et B deux polynômes de k[X] non constants.

- 1 Montrer que les propositions suivantes sont équivalentes :
- \bullet A et B sont premiers entre eux.
- $\exists (U, V) \in k[X]^2$, AU + BV = 1 et $\deg(U) < \deg(B)$ et $\deg(V) < \deg(A)$.
- 2 Montrer que les propositions suivantes sont équivalentes :
- \bullet A et B ne sont pas premiers entre eux.
- $\bullet \ \exists (U,V) \in k[X]^2, \ AU+BV=0 \ \mathrm{et} \ \deg(U) < \deg(B) \ \mathrm{et} \ \deg(V) < \deg(A).$

14 Factorisation (1)

1 Factoriser dans $\mathbb{C}[X]$, $(X+i)^n - (X-i)^n$.

Remarque : on rappelle que $\frac{1-x^2}{1+x^2} = \cos(\theta)$ et $\frac{2x}{1+x^2} = \sin(\theta) \Leftrightarrow x = \tan(\frac{theta}{2})$.

15 Factorisation (2)

- **1** Factoriser dans $\mathbb{C}[X]$, $X^n + 2\cos(na)X + 1$.
- **2** Factoriser ce polynôme dans $\mathbb{R}[X]$.

16 Division euclidienne et polynôme

Soit $(n, m) \in \mathbb{N}^2$. Soit r le reste de la division euclidienne de n par m.

- 1 Donner le reste de la division euclidienne de X^n-1 par X^m-1 .
- 2 Montrer que $X^n 1 \wedge X^m 1 = X^{n \wedge m} 1$.