

Table 14-9 LTE2500-FDD7 #1 Head

		14		2500-FDD7#1				
Ambient Ter	mperature:	22.5				Liquid Ter	mperature:	22.3
	ъ .	SAR	Meas	sured SAR [\	N/kg]	_	orted SAR [V	V/kg]
Mode	Device	measureme	21350	21100	20850	21350	21100	20850
	orientation	nt	М	М	М	М	М	М
		e-up	24.50	24.50	24.50		Scaling factor	
	Measured F	ower [dBm]	23.94	23.91	23.92	1.14	1.14	1.14
		1g SAR	0.263			0.30		
	Left Cheek	10g SAR	0.135			0.15		
L		Deviation	0.07			0.07		
		1g SAR	0.125			0.14		
20MHz	Left Tilt	10g SAR	0.057			0.06		
QPSK1RB		Deviation	-0.01			-0.01		
		1g SAR	0.284			0.32		
	Right Cheek	10g SAR	0.149			0.17		
		Deviation	0.07			0.07		
		1g SAR	0.135			0.15		
	Right Tilt	10g SAR	0.064			0.07		
		Deviation	0.07			0.07		
		SAR	Measured SAR [W/kg]			Repo	orted SAR [V	V/kg]
TRUE	Device	measureme	21350	21100	20850	21350	21100	20850
	orientation	nt	М	М	Н	М	М	Н
	Tun	e-up	23.50	23.50	23.50		Scaling factor	•
	Measured F	Power [dBm]	22.91	22.88	22.86	1.15	1.15	1.16
Г	6.0	1g SAR	0.201			0.23		
	Left Cheek	10g SAR	0.103			0.12		
		Deviation	-0.04			-0.04		
		1g SAR	0.097			0.11		
20MHz	Left Tilt	10g SAR	0.046			0.05		
QPSK50%		Deviation	0.09			0.09		
RB		1g SAR	0.218			0.25		
	Right Cheek	10g SAR	0.114			0.13		
	Right Cheek			l		0.02		
		Deviation	0.02			0.02		
		-	0.02			0.12		
-	Right Tilt	Deviation 1g SAR 10g SAR				17.17		

Table 14-10 LTE2500-FDD7 #1 Body

			LTE2	2500-FDD7 #1	Body			
Ambient Te	emperature:	22.5				Liquid Te	mperature:	22.3
	Davisa	SAR	Meas	sured SAR [W/kg]	Rep	oorted SAR [V	V/kg]
Mode	Device orientation	measureme	21350	21100	20850	21350	21100	20850
	Offeritation	nt	М	М	М	М	М	М
	Tun	e-up	24.50	24.50	24.50		Scaling factor	.**
	Measured F	Power [dBm]	23.94	23.91	23.92	1.14	1.14	1.14
		1g SAR	0.29			0.33		
	Front	10g SAR	0.148	*******************		0.17		
		Deviation	0.04			0.04		
	1100000000000	1g SAR	0.776	0.76	0.746	0.88	0.87	0.85
	Rear	10g SAR	0.366	0.365	0.358	0.42	0.42	0.41
20MHz		Deviation	0.09	0.11	0.09	0.09	0.11	0.09
QPSK1RB		1g SAR	0.056			0.06		
	Left edge	10g SAR	0.034			0.04		
		Deviation	-0.03			-0.03		
		1g SAR	0.061			0.07	_	
	Right edge	10g SAR	0.032			0.04		
		Deviation	0.06			0.06		
		1g SAR	0.729	0.714	0.732	0.83	0.82	0.84
	Bottom edge	10g SAR	0.343	0.336	0.342	0.39	0.38	0.39
		Deviation	0.04	0.04	0.06	0.04	0.04	0.06
	Device	SAR	Measured	01100	20050	Rep	orted SAR [V	V/kg]
Mode	orientation	measureme	21350	21100	20850	21350	21100	20850
	Orientation	nt	М	М	Н			
	Tun	e-up	23.50	23.50	23.50		Scaling factor	*
	Measured Power [dBm]		22.91	22.88	22.86	1.15	1.15	1.16
		1g SAR	0.191			0.22		
	Front	10g SAR	0.096			0.11		
		Deviation	0.03			0.03		
	100000000000000000000000000000000000000	1g SAR	0.573			0.66		
201411-	Rear	10g SAR	0.273			0.31	<u> </u>	
20MHz		Deviation	0.09			0.09		
QPSK50%		1g SAR	0.031			0.04		
RB	Left edge	10g SAR	0.019			0.02		
		Deviation	0.02			0.02		
	Dight odgo	1g SAR 10g SAR	0.038			0.04	-	
	Right edge	Deviation	0.04			0.04	 	
		1g SAR	0.583			0.67		
	Bottom edge	10g SAR	0.271			0.31	1	
	Dollom eage	Deviation	0.04			0.04	 	
		SAR		sured SAR	W/kg]	Rep	orted SAR [V	V/kg]
Mode	Device	measureme	12 32 22		100000000000000000000000000000000000000			THE SECRETARY
	orientation	nt	21350	21100	20850	21350	21100	20850
	Tun	e-up	23.50	23.50	23.50		Scaling factor	•
20MHz		ower [dBm]	22.81	22.79	22.75	1.17	1.18	1.19
		1g SAR	0.56			0.66		
QPSK100% RB	Dest						 	
QPSK100% RB	Rear	10g SAR	0.266			0.31		
		10g SAR Deviation				0.04		
RB		Deviation	0.04			0.04		
RB 20MHz	Rear	Deviation 1g SAR	0.04 0.602			0.04 0.71		
RB	Rear	Deviation	0.04			0.04		

14.2 Full SAR

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	33.3	32.46	Left Cheek	0.191	0.253	0.23	0.31	-0.09	Fig A. 1
GSM850	251	848.8 MHz	30.5	30.08	Rear	0.174	0.234	0.19	0.26	-0.12	<u>Fig A. 2</u>
PCS1900	661	1880 MHz	30.3	30.04	Left Cheek	0.266	0.442	0.28	0.47	-0.09	Fig A. 3
PCS1900	512	1850.2 MHz	28	27.57	Rear	0.605	1.06	0.67	1.17	-0.14	Fig A. 4
WCDMA1900-BII	9400	1880 MHz	24	23.65	Left Cheek	0.43	0.721	0.47	0.78	0.04	Fig A. 5
WCDMA1900-BII	9400	1880 MHz	24	23.65	Rear	0.675	1.2	0.73	1.30	-0.04	Fig A. 6
WCDMA850-BV	4182	836.4 MHz	24	23.39	Left Cheek	0.219	0.291	0.25	0.33	0.09	<u>Fig A. 7</u>
WCDMA850-BV	4233	846.6 MHz	24	23.32	Rear	0.266	0.357	0.31	0.42	-0.04	<u>Fig A. 8</u>
LTE2500-FDD7	21350	2560 MHz	24.5	23.94	Right Cheek	0.149	0.284	0.17	0.32	0.07	Fig A.9
LTE2500-FDD7	21350	2560 MHz	24.5	23.94	Rear	0.366	0.776	0.42	0.88	0.09	Fig A. 10

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the <u>initial test position</u> procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Note3: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

WLAN2450 #1 Head Fast SAR **Ambient Temperature:** 22.5 Liquid Temperature: 22.3 Measured SAR [W/kg] Reported SAR [W/kg] **Device** SAR Rate 11 orientation measurement 1 2462 MHz 2437 MHz 2412 MHz Tune up 18.5 18.5 18.5 Scaling factor* Slot Average Power [dBm] 17.95 18.21 17.79 1.14 1.07 1.18 1g Fast SAR 0.537 0.57 Left Cheek 0.33 10g SAR 0.311 Deviation -0.07 -0.07 0.442 0.47 1g Fast SAR Left Tilt 802.11b 10g SAR 0.237 0.25 1Mbps Deviation 0.13 0.13 1g Fast SAR 1.1 1.15 1.04 1.25 1.23 1.22 Right Cheek 10g SAR 0.577 0.587 0.539 0.65 0.63 0.63 0.02 0.02 0.02 Deviation -0.010.02 -0.011g Fast SAR 0.739 0.79 Right Tilt 10g SAR 0.368 0.39 0.06 Deviation 0.06

Table 14-11 WLAN2450 #1 Head Fast SAR

Table 14-12 WLAN2450 #1 Head Full SAF

			WLAN2	450 #1 Head Fi	ull SAR				
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3	
	Davisa	CAD	Mea	sured SAR [V	V/kg]	Rep	orted SAR [V	N/kg]	
Rate	Device	SAR	11	6	1	44			
	orientation	measurement	2462 MHz	2437 MHz	2412 MHz	11	6	'	
	Tune up		18.5	18.5	18.5	Scaling factor*			
	Slot Average Power [dBm]		17.95	18.21	17.79	1.14	1.07	1.18	
	Right Cheek	1g Full SAR	1.07	1.08	1.02	1.21	1.15	1.20	
802.11b		10g SAR	0.56	0.565	0.527	0.64	0.60	0.62	
1Mbps		Deviation	0.02	-0.01	0.02	0.02	-0.01	0.02	
		1g Full SAR		0.661			0.71		
	Right Tilt	10g SAR		0.336			0.36		
		Deviation		0.06			0.06		

Table 14-13 WLAN2450 #1 Body Fast SAR

			WLAN2	450 #1 Body Fa	st SAR				
Ambient Te	emperature:	22.5				Liquid Te	mperature:	22.3	
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]			
Rate	orientation	measurement	11	6	1	11	6	4	
	Offeritation	measurement	2462 MHz	2437 MHz	2412 MHz	-		•	
	Tur	ne up	18.5	18.5	18.5		Scaling factor		
	Slot Average	Power [dBm]	17.95	18.21	17.79	1.14	1.07	1.18	
	Front	1g Fast SAR		0.292			0.31		
		10g SAR		0.156			0.17		
		Deviation		-0.12			-0.12		
	Rear	1g Fast SAR		0.202			0.22		
802.11b		10g SAR		0.107			0.11		
1Mbps		Deviation		0.05			0.05		
		1g Fast SAR		0.0726			0.08		
	Top edge	10g SAR		0.0369			0.04		
		Deviation		0.07			0.07		
		1g Fast SAR		0.0185			0.02		
	Left edge	10g SAR		0.0103			0.01		
		Deviation		0.13			0.13		

Table 14-14 WLAN2450 #1 Body Full SAR

			WLAN2	450 #1 Body Fu	ıll SAR				
Ambient Te	emperature:	22.5		Liquid Ter	22.3				
	Device	SAR measurement	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]			
Rate	orientation		11	6	1	11	6	1	
			2462 MHz	2437 MHz	2412 MHz	-	8	'	
	Tune up		18.5	18.5	18.5		*		
802.11b	Slot Average	Slot Average Power [dBm]		18.21	17.79	1.14	1.07	1.18	
002.110		1g Full SAR		0.297			0.32		
1Mbpc	ı	Ig Full SAR		0.237			0.02		
1Mbps	Front	10g SAR		0.162			0.17		

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequ	ency	Test Position	Actual duty	maximum duty	Reported	Scaled reported	Figure				
MHz	Ch.	163CF OSIGOTI	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)	rigure				
2462 MHz	11	Right Cheek	100.00%	100%	1.21	1.21	Fig A.11				

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequ	iency	Test Position	Actual duty factor	maximum duty	Reported SAR(1g)(W/kg)	Scaled reported SAR(1g)(W/kg)	Figure				
MHz	Ch.		lactor	iacioi	OAR(19)(VV/R9)	OAR(19)(VVRg)					
2437 MHz	6	Front	100.00%	100%	0.32	0.32	Fig A.12				

SAR is not required for OFDM because the 802.11b adjusted SAR $\, \leqslant \,$ 1.2 W/kg.

Picture 14.1 Duty factor plot CH6

Picture 14.2 Duty factor plot CH11

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Freq	Test Poisition Original SAF (W/kg)		First Repeated SAR(W/kg)	The Ratio
PCS1900	CH512	850.2 MH	Rear	1.06	1.04	1.02
WCDMA1900-BII	CH9400	1880 MHz	Rear	1.2	1.18	1.02
WLAN2450	11	2462 MHz	Right Cheek	1.07	1.05	1.02

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	weasurement on	CCIta	inty for 1401	mai oan i	CSIS	(00011	1112	, OI 12,		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system				_					
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	80
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	ì			•		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
		-	Phant	tom and set-u	p	•	•	•	•	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

19

20

(target) Liquid

(meas.)

Liquid

conductivity

permittivity

A

В

2.06

5.0

(Combined standard uncertainty	u' _c =	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257
_	anded uncertainty fidence interval of	i	$u_e = 2u_c$					19.1	18.9	
16.2	Measurement U	ncerta	ainty for No	ormal SAR	Tests	(3~6	GHz)	I.	ı	
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	1					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞

1.32

1.7

0.89

1.4

43

 ∞

 $\sqrt{3}$

1

 $\sqrt{3}$

N

R

0.64 0.43

0.43

0.49

0.64

0.6

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.4	21.1	

<u> 16.3</u>	Measurement Un	certa	inty for Fas	t SAR Test	s (30	0MHz	:~3Gŀ	lz)		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample related	1					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
_	inded uncertainty fidence interval of	$u_e = 2u_c$						20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
			value	Distribution		1g	10g	Unc.	Unc.	of		
								(1g)	(10g)	freedo		
										m		
Mea	Measurement system											
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	8		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞		
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8		
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8		
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8		
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8		
			Test	sample related	l							
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71		

©Copyright. All rights reserved by CTTL.

No. I18Z61343-SEM02 Page 51 of 156

16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5		
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞		
	Phantom and set-up											
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8		
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞		
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43		
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞		
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521		
Combined standard uncertainty $u_{c}' = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$						13.5	13.4	257				
Expanded uncertainty (confidence interval of $u_e = 95 \%$)		$u_e = 2u_c$					27.0	26.8				

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
02	Power meter	NRVD	102083	Nevember 01, 2017	One year	
03	Power sensor	NRV-Z5	100542	November 01, 2017	One year	
04	Signal Generator	E4438C	MY49071430	January 2,2018	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 23, 2018	One year	
07	BTS	CMW500	149646	October 31, 2017	One year	
08	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
09	DAE	SPEAG DAE4	1525	October 2, 2017	One year	
10	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	Three years	
11	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	Three years	
12	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	Three years	
13	Dipole Validation Kit	SPEAG D2600V2	1012	July 21, 2017	Three years	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM850 CH251 Left Cheek

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon r = 41.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.278 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.059 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.253 W/kg; SAR(10 g) = 0.191 W/kg

Maximum value of SAR (measured) = 0.277 W/kg

Fig A.1

GSM850 CH251 Rear

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: body 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.983 \text{ mho/m}$; $\epsilon r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.17 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.174 W/kg

Maximum value of SAR (measured) = 0.26 W/kg

Fig A.2

PCS1900 CH661 Left Cheek

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.381 \text{ mho/m}$; $\epsilon r = 39.39$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.535 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.096 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.703 W/kg

SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.266 W/kg

Maximum value of SAR (measured) = 0.582 W/kg

Fig A.3

PCS1900 CH512 Rear

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.465 \text{ mho/m}$; $\epsilon r = 53.97$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.4 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.12 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.605 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

Fig A.4

WCDMA1900-BII CH9400 Left Cheek

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.381 \text{ mho/m}$; $\epsilon r = 39.39$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.869 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.26 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.43 W/kg

Maximum value of SAR (measured) = 0.981 W/kg

Fig A.5

WCDMA1900-BII CH9400 Rear

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.494 \text{ mho/m}$; $\epsilon r = 53.93$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.55 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.58 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.675 W/kg

Maximum value of SAR (measured) = 1.47 W/kg

Fig A.6

WCDMA850-BV CH4182 Left Cheek

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: head 835 MHz

Medium parameters used: f = 836.4 MHz; $\sigma = 0.907 \text{ mho/m}$; $\epsilon r = 41.52$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 836.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.323 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.49 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.291 W/kg; SAR(10 g) = 0.219 W/kg

Maximum value of SAR (measured) = 0.32 W/kg

Fig A.7

WCDMA850-BV CH4233 Rear

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: body 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.981 \text{ mho/m}$; $\epsilon r = 55.11$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.393 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.05 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.457 W/kg

SAR(1 g) = 0.357 W/kg; SAR(10 g) = 0.266 W/kg

Maximum value of SAR (measured) = 0.395 W/kg

Fig A.8

LTE2500-FDD7 CH21350 Right Cheek

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: head 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.904 \text{ mho/m}$; $\epsilon r = 38.68$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.76,7.76,7.76)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.104 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.646 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.284 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.102 W/kg

Fig A.9

LTE2500-FDD7 CH21350 Rear

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: body 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.137 \text{ mho/m}$; $\epsilon r = 51.69$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.84,7.84,7.84)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.961 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.165 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.366 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

Fig A.10

WLAN2450 CH11 Right Cheek

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: head 2450 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.808 \text{ mho/m}$; $\epsilon r = 38.64$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 1.5 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.76 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.56 W/kg

Maximum value of SAR (measured) = 1.34 W/kg

Fig A.11

WLAN2450 CH6 Front

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: body 2450 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.927$ mho/m; $\epsilon r = 53.15$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.09,8.09,8.09)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.378 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.569 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.517 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.162 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

Fig A.12

Fig.A.1- 1 Z-Scan at power reference point (GSM850)

Fig.A.1- 2 Z-Scan at power reference point (GSM850)

Fig.A.1- 3 Z-Scan at power reference point (PCS1900)

Fig.A.1- 4 Z-Scan at power reference point (PCS1900)

Fig.A.1- 5 Z-Scan at power reference point (W1900)

Fig.A.1- 6 Z-Scan at power reference point (W1900)

Fig.A.1- 7 Z-Scan at power reference point (W850)

Fig.A.1-8 Z-Scan at power reference point (W850)

Fig.A.1- 9 Z-Scan at power reference point (LTE band7)

Fig.A.1- 10 Z-Scan at power reference point (LTE band7)

Fig.A.1- 11 Z-Scan at power reference point (Wifi2450)

Fig.A.1- 12 Z-Scan at power reference point (Wifi2450)

ANNEX B System Verification Results

835 MHz

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.906$ mho/m; $\varepsilon_r = 41.52$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 64.02 V/m; Power Drift = -0.05

Fast SAR: SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (interpolated) = 3.8 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =64.02 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 3.6 W/kg

0 dB = 3.6 W/kg = 5.56 dB W/kg

Fig.B.1 validation 835 MHz 250mW

Date: 6/17/2018

Electronics: DAE4 Sn1525 Medium: Body 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 55.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 59.12 V/m; Power Drift = -0.09

Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (interpolated) = 3.56 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =59.12 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.74 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dB W/kg

Fig.B.2 validation 835 MHz 250mW

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 39.37$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 106.13 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.21 W/kg

Maximum value of SAR (interpolated) = 14.63 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =106.13 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.05 W/kg

SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.28 W/kgMaximum value of SAR (measured) = 15.1 W/kg

0 dB = 15.1 W/kg = 11.79 dB W/kg

Fig.B.3 validation 1900 MHz 250mW

Date: 6/18/2018

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.513 \text{ mho/m}$; $\varepsilon_r = 53.91$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 102.83 V/m; Power Drift = 0.07

Fast SAR: SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.3 W/kg

Maximum value of SAR (interpolated) = 17.67 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =102.83 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.14 W/kg; SAR(10 g) = 5.38 W/kg

Maximum value of SAR (measured) = 14.16 W/kg

0 dB = 14.16 W/kg = 11.51 dB W/kg

Fig.B.4 validation 1900 MHz 250mW

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.797$ mho/m; $\varepsilon_r = 38.65$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.89,7.89,7.89)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 114.63 V/m; Power Drift = -0.08

Fast SAR: SAR(1 g) = 13.05 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (interpolated) = 21.64 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =114.63 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.89 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.28 W/kg

Maximum value of SAR (measured) = 21.45 W/kg

0 dB = 21.45 W/kg = 13.31 dB W/kg

Fig.B.5 validation 2450 MHz 250mW

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.939 \text{ mho/m}$; $\varepsilon_r = 53.13$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.09,8.09,8.09)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 104.23 V/m; Power Drift = 0.05

Fast SAR: SAR(1 g) = 12.45 W/kg; SAR(10 g) = 5.85 W/kg

Maximum value of SAR (interpolated) = 25.73 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =104.23 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 25.46 W/kg

SAR(1 g) = 12.43 W/kg; SAR(10 g) = 5.85 W/kg

Maximum value of SAR (measured) = 19.82 W/kg

0 dB = 19.82 W/kg = 12.97 dB W/kg

Fig.B.6 validation 2450 MHz 250mW

Date: 6/19/2018

Electronics: DAE4 Sn1525 Medium: Head 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.942 \text{ mho/m}$; $\varepsilon_r = 38.63$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.76,7.76,7.76)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 111.47 V/m; Power Drift = 0.06

Fast SAR: SAR(1 g) = 14.33 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (interpolated) = 24.84 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =111.47 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.96 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.47 W/kg

Maximum value of SAR (measured) = 25.43 W/kg

0 dB = 25.43 W/kg = 14.05 dB W/kg

Fig.B.7 validation 2600 MHz 250mW

Date: 8/1/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.908$ mho/m; $\varepsilon_r = 41.26$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 65.55 V/m; Power Drift = 0.03

Fast SAR: SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (interpolated) = 3.73 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =65.55 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.02 W/kg

SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 3.58 W/kg

0 dB = 3.58 W/kg = 5.54 dB W/kg

Fig.B.9 validation 835 MHz 250mW

Date: 8/1/2018

Electronics: DAE4 Sn1525 Medium: Body 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.961$ mho/m; $\varepsilon_r = 55.05$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 58.45 V/m; Power Drift = -0.03

Fast SAR: SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (interpolated) = 3.49 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =58.45 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

0 dB = 3.19 W/kg = 5.04 dB W/kg

Fig.B.10 validation 835 MHz 250mW

Date: 8/2/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.401 \text{ mho/m}$; $\varepsilon_r = 40.09$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 106.97 V/m; Power Drift = 0.04

Fast SAR: SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (interpolated) = 15.09 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value =106.97 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.59 W/kg

SAR(1 g) = 10.11 W/kg; SAR(10 g) = 5.25 W/kg

Maximum value of SAR (measured) = 15.08 W/kg

0 dB = 15.08 W/kg = 11.78 dB W/kg

Fig.B.11 validation 1900 MHz 250mW