Контрольная работа по дисциплине

"Основы электротехники и электроники систем управления" по теме "Переходные процессы, цепи переменного тока"

Вариант 1.

1. Рассчитать ток $i_2(t)$ после замыкания ключа, если $R_1=R_3=500$ Ом, $R_2=1000$ Ом, C=0.1 мк Φ , E=20 В. Смоделировать работу цепи в системе scilab, собрав схему, а также полученную функцию $i_2(t)$.

2. Найти закон изменения напряжения u(t) в схеме, если R=5 Ом, $X_c=6$ Ом, $i(t)=1.5\sin(wt+30^\circ)$

3. Вычислить комплексное сопротивление цепи, если $R_1=5~{\rm Om},~R_2=10~{\rm Om}, X_L=8~{\rm Om},~X_c=2~{\rm Om}.$ Построить векторную диаграмму.

4. Цепь, показанная на рисунке, находится в режиме резонанса. Вычислить R_1 , если $X_c=50$ Ом, $X_L=50$ Ом.

Вариант 2.

1. Рассчитать ток $i_2(t)$ после замыкания ключа, если $R_1=2000$ Ом, $R_2=3000$ Ом, C=0.1 мк Φ , E=5 В. Смоделировать работу цепи в системе scilab, собрав схему, а также полученную функцию $i_2(t)$.

- 2. Вычислить активную, реактивную и полную мощности цепи, если $i(t)=15\sin(wt+30^\circ), u=80\sin(wt+15^\circ).$
- 3. Вычислить комплексное сопротивление цепи, если R=4 Ом, $X_c=6$ Ом, $X_{L_1}=8$ Ом, $X_{L_2}=10$ Ом. Построить векторную диаграмму.

4. Цепь, показанная на рисунке, находится в режиме резонанса. Вычислить x_L , если R=20 Ом, $X_c=40$ Ом.

