Multimodal classification of birds Seed-grant proposal

Arnav Bhavsar Dileep A. D. Padmanabhan Rajan

Multimedia Analytics and Systems Lab School of Computing and Electrical Engineering

September 21, 2015

Overview

The objective
The acoustics
The image/video
The machine learning
The budget and other details

Figure: Slaty-headed parakeet. Pic by PPJ.

- Sensors: microphones, cameras
- Tasks: Species identification, species detection

- Develop algorithms for automatic analysis of avian biodiversity
- Combine information from acoustic and visual data streams
- Sensors: microphones, cameras
- Apply signal processing and machine-learning techniques to collected data
- Tasks: Species identification, species detection

- Develop algorithms for automatic analysis of avian biodiversity
- Combine information from acoustic and visual data streams
- Sensors: microphones, cameras
- Apply signal processing and machine-learning techniques to collected data
- Tasks: Species identification, species detection

- Develop algorithms for automatic analysis of avian biodiversity
- Combine information from acoustic and visual data streams
- Sensors: microphones, cameras
- Apply signal processing and machine-learning techniques to collected data
- Tasks: Species identification, species detection

- Develop algorithms for automatic analysis of avian biodiversity
- Combine information from acoustic and visual data streams
- Sensors: microphones, cameras
- Apply signal processing and machine-learning techniques to collected data
- Tasks: Species identification, species detection

- Develop algorithms for automatic analysis of avian biodiversity
- Combine information from acoustic and visual data streams
- Sensors: microphones, cameras
- Apply signal processing and machine-learning techniques to collected data
- Tasks: Species identification, species detection

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

- Birds provide crucial ecosystem services: pollination, seed dispersal, insectivory
- Avian diversity: good indicator of ecosystem health in a local area
- Automatic and semi-automatic sensing devices can be utilized
- Large volume of data captured by these devices
- Algorithms to analyse this data would be useful to ecologists
- Our campus location in the lower Himalays: sensitive ecosystem
- Proposed system can be used for long-term ecological monitoring

• Image/video:

Challenges at various levels

• Image/video:

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - 2. Conditioning the decisions from the classifiers for the representations from economics.
 - Bird indexing and retrieval

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
- Image/video:
- Machine-learning:

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
- Image/video:
- Machine-learning:

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - ► Complex visual environment visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - ► Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - ► Complex visual environment visual background clutters
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:

ADP (IIT Mandi)

- ► Fixed-length representations and varying-length representations
- Dynamic kernels for bird data from different modalities
- Fusion of modalities

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ► Background sounds (other animals, human-made sounds, river etc.)

• Image/video:

- Complex visual environment, visual background clutter
- Overlapping inter-class visual appearances, local variations
- Intra-class variations: robustness to changes in pose, motion, light conditions.

• Machine-learning:

- Fixed-length representations and varying-length representations
- Dynamic kernels for bird data from different modalities
- Fusion of modalities

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalitie

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.

• Machine-learning:

- ► Fixed-length representations and varying-length representations
- Dynamic kernels for bird data from different modalities
- Fusion of modalities
 - * Combining the representations from acoustic and image/video modes
 - Combining the decisions from the classifiers for the representations from acoustic and image/video modes
- ▶ Bird indexing and retrieval

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - ► Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - Combining the representations from acoustic and image/video modes
 Combining the decisions from the classifiers for the representations from acoustic and image/video modes
 - ► Bird indexing and retrieval

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - ► Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - * Combining the representations from acoustic and image/video modes
 - Combining the decisions from the classifiers for the representations from acoustic and image/video modes
 - Bird indexing and retrieval

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - ► Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - ★ Combining the representations from acoustic and image/video modes
 - * Combining the decisions from the classifiers for the representations from acoustic and image/video modes
 - Bird indexing and retrieval

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - ★ Combining the representations from acoustic and image/video modes
 - ★ Combining the decisions from the classifiers for the representations from acoustic and image/video modes

- Challenges at various levels
- Acoustics:
 - Complex acoustic environment where recordings are made
 - Overlapping vocalizations, intra-species call variability
 - ▶ Background sounds (other animals, human-made sounds, river etc.)
- Image/video:
 - Complex visual environment, visual background clutter
 - Overlapping inter-class visual appearances, local variations
 - Intra-class variations: robustness to changes in pose, motion, light conditions.
- Machine-learning:
 - ► Fixed-length representations and varying-length representations
 - Dynamic kernels for bird data from different modalities
 - Fusion of modalities
 - ★ Combining the representations from acoustic and image/video modes
 - ★ Combining the decisions from the classifiers for the representations from acoustic and image/video modes
 - Bird indexing and retrieval

The acoustics (cont'd)

- Processing of human speech: techniques can be adapted for birdcalls
- Production mechanisms are different, but have similarities (eg. formant structure)
- Existing techniques include:
 - spectral representations ¹,
 - Mel frequency cepstra²,
 - ► hidden Markov models ³,
 - sparse representations ⁴

ADP (IIT Mandi) Seed-grant proposal September 21, 2015 6 / 18

¹H. Tyagi et. al., "Automatic identification of bird calls using spectral ensemble average voice prints", Proc. EUSIPCO, 2006

²M. Graciarena et. al., "Acoustic front-end optimization for bird species recognition", Proc. ICASSR 2010

 $^{^3}$ M. Graciarena et.al., "Bird species recognition combining acoustic and sequence modeling", Proc. ICASSP, 2011

⁴L. N. Tan et. al. "Evaluation of a sparse representation-based classifier for bird phrase classification", Proc. Interspeech, 2012

The acoustics (cont'd)

- Processing of human speech: techniques can be adapted for birdcalls
- Production mechanisms are different, but have similarities (eg. formant structure)
- Existing techniques include:
 - spectral representations ¹
 - Mel frequency cepstra²,
 - ▶ hidden Markov models ³.
 - sparse representations ⁴

¹H. Tyagi et. al., "Automatic identification of bird calls using spectral ensemble average voice prints", Proc. EUSIPCO, 2006

²M. Graciarena et. al., "Acoustic front-end optimization for bird species recognition", Proc. ICASSR 2010

 $^{^3}$ M. Graciarena et.al., "Bird species recognition combining acoustic and sequence modeling", Proc. ICASSP, 2011

⁴L. N. Tan et. al. "Evaluation of a sparse representation-based classifier for bird phrase classification", Proc. Interspeech, 2012

- Processing of human speech: techniques can be adapted for birdcalls
- Production mechanisms are different, but have similarities (eg. formant structure)
- Existing techniques include:
 - spectral representations ¹
 - Mei frequency cepstra -,
 - ▶ hidden Markov models ³
 - sparse representations ⁴

¹H. Tyagi et. al., "Automatic identification of bird calls using spectral ensemble average voice prints", Proc. EUSIPCO, 2006

²M. Graciarena et. al., "Acoustic front-end optimization for bird species recognition", Proc. ICASSR 2010

 $^{^3}$ M. Graciarena et.al., "Bird species recognition combining acoustic and sequence modeling", Proc. ICASSP, 2011

⁴L. N. Tan et. al. "Evaluation of a sparse representation-based classifier for bird phrase classification", Proc. Interspeech, 2012

- Processing of human speech: techniques can be adapted for birdcalls
- Production mechanisms are different, but have similarities (eg. formant structure)
- Existing techniques include:
 - spectral representations ¹,
 - ► Mel frequency cepstra ²,
 - hidden Markov models³,
 - sparse representations ⁴

¹H. Tyagi et. al., "Automatic identification of bird calls using spectral ensemble average voice prints", Proc. EUSIPCO, 2006

 $^{^2}$ M. Graciarena et. al., "Acoustic front-end optimization for bird species recognition", Proc. ICASSP, 2010

 $^{^3}$ M. Graciarena et.al., "Bird species recognition combining acoustic and sequence modeling", Proc. ICASSP, 2011

⁴L. N. Tan et. al. "Evaluation of a sparse representation-based classifier for bird phrase classification", Proc. Interspeech, 2012

- Research focus: subspace representations
- A recording can be represented as a fixed-length vector x
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

- Research focus: subspace representations
- A recording can be represented as a fixed-length vector **x**
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

- Research focus: subspace representations
- A recording can be represented as a fixed-length vector **x**
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

- Research focus: subspace representations
- A recording can be represented as a fixed-length vector x
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

- Research focus: subspace representations
- A recording can be represented as a fixed-length vector x
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

- Research focus: subspace representations
- ullet A recording can be represented as a fixed-length vector ${f x}$
- Can be used for various applications, for eg. removing background sounds before classification:
 - Project x into a subspace of background sounds, and remove this component from x
- Fixed-length representations: utilized in kernel functions for support vector machines (SVMs)

8 / 18

- Fine-grained classification (of birds): Relatively recent research area (≥ 2010)
- Detection, segmentation and tracking of birds (relatively unexplored): adapting general object detection, segmentation and tracking methods
- Learning visual guidance: inverse problem to classification
 ⇒ Given the classes, find the discriminative features
- Sound source localization (active area in general domains): challenges for birds: less visual motion, background sounds

- Fine-grained classification (of birds): Relatively recent research area (≥ 2010)
- Detection, segmentation and tracking of birds (relatively unexplored):
 adapting general object detection, segmentation and tracking methods
- Learning visual guidance: inverse problem to classification
 ⇒ Given the classes, find the discriminative features
- Sound source localization (active area in general domains): challenges for birds: less visual motion, background sounds

- Fine-grained classification (of birds): Relatively recent research area (≥ 2010)
- Detection, segmentation and tracking of birds (relatively unexplored): adapting general object detection, segmentation and tracking methods
- Learning visual guidance: inverse problem to classification
 ⇒ Given the classes, find the discriminative features
- Sound source localization (active area in general domains): challenges for birds: less visual motion, background sounds

- Fine-grained classification (of birds): Relatively recent research area (≥ 2010)
- Detection, segmentation and tracking of birds (relatively unexplored):
 adapting general object detection, segmentation and tracking methods
- Learning visual guidance: inverse problem to classification
 ⇒ Given the classes, find the discriminative features
- Sound source localization (active area in general domains): challenges for birds: less visual motion, background sounds

8 / 18

- Fine-grained classification (of birds): Relatively recent research area (≥ 2010)
- Detection, segmentation and tracking of birds (relatively unexplored):
 adapting general object detection, segmentation and tracking methods
- Learning visual guidance: inverse problem to classification
 ⇒ Given the classes, find the discriminative features
- Sound source localization (active area in general domains): challenges for birds: less visual motion, background sounds

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013
- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013.
- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

9 / 18

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - ► T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013.

- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - ► T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013.

- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - ► T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013.

- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

- Fine-grained classification
 - P. Welinder et. al., "Caltech-UCSD Birds 200", CNS-TR-2010-001. 2010.
 - T. Berg and P. Belhumeur, "POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation", CVPR 2013.
 - B. Yao et. al., "A codebook-free and annotation-free approach for fine-grained image categorization", CVPR 2012.
 - L. Xie et. al., "Hierarchical part matching for fine-grained visual categorization", ICCV 2013.

- Visual guidance: T. Berg and P. Belhumeur, "How do you tell a blackbird from a crow?", ICCV 2013.
- Detection: D. Song and Y. Xu, "A monocular vision-based low false negative filter for assisting the search for rare bird species using a probable observation data set-based EKF method", IEEE Trans. Image Processing, 2010.

- Features and frameworks:
 - Patch-based features
 - ▶ Body-part features: appearance and geometric relationships
 - ► Feature learning: deep neural networks, discriminative features
- Frameworks:
 - Sparse representation
 - Markov random fields
 - Hierarchical classification
- Systems:
 - Dataset collection
 - Audio-video systems for monitoring
 - ► On-board algorithms: detection, tracking

- Features and frameworks:
 - Patch-based features
 - Body-part features: appearance and geometric relationships
 - ► Feature learning: deep neural networks, discriminative features
- Frameworks:
 - Sparse representation
 - Markov random fields
 - Hierarchical classification
- Systems:
 - Dataset collection
 - Audio-video systems for monitoring
 - ► On-board algorithms: detection, tracking

- Features and frameworks:
 - Patch-based features
 - Body-part features: appearance and geometric relationships
 - ▶ Feature learning: deep neural networks, discriminative features
- Frameworks:
 - Sparse representation
 - Markov random fields
 - Hierarchical classification
- Systems:
 - Dataset collection
 - Audio-video systems for monitoring
 - On-board algorithms: detection, tracking

- Features and frameworks:
 - Patch-based features
 - Body-part features: appearance and geometric relationships
 - ▶ Feature learning: deep neural networks, discriminative features
- Frameworks:
 - Sparse representation
 - Markov random fields
 - Hierarchical classification
- Systems:
 - Dataset collection
 - Audio-video systems for monitoring
 - On-board algorithms: detection, tracking

Example on-field system components

- Data acquisition (audio): rugged, field-deployable recorders e.g. Song Meter SM3 recorder from Wildlife Acoustics Inc, USA.
- Data acquisition (video): Network cameras e.g. Panasonic WV-SP302
- Processing: Raspberry Pi, Beagle Bone

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Bird call identification using fixed-length and varying-length acoustic features
- Bird classification from images and videos
- Bird call indexing and retrieval
- Bird image and video indexing and retrieval
- Combining different modalities for classification, indexing and retrieval tasks

- Classification of birds using SVMs from bird calls and bird images & videos
- The representations for bird call are either fixed-length representation or varying-length representation
- Varying-length representation are either sets of local feature vectors or sequences of local feature vectors
- Dynamic kernel based SVMs for varying-length representation

- Classification of birds using SVMs from bird calls and bird images & videos
- The representations for bird call are either fixed-length representation or varying-length representation
- Varying-length representation are either sets of local feature vectors or sequences of local feature vectors
- Dynamic kernel based SVMs for varying-length representation

- Classification of birds using SVMs from bird calls and bird images & videos
- The representations for bird call are either fixed-length representation or varying-length representation
- Varying-length representation are either sets of local feature vectors or sequences of local feature vectors
- Dynamic kernel based SVMs for varying-length representation

- Classification of birds using SVMs from bird calls and bird images & videos
- The representations for bird call are either fixed-length representation or varying-length representation
- Varying-length representation are either sets of local feature vectors or sequences of local feature vectors
- Dynamic kernel based SVMs for varying-length representation

- Classification of birds using SVMs from bird calls and bird images & videos
- The representations for bird call are either fixed-length representation or varying-length representation
- Varying-length representation are either sets of local feature vectors or sequences of local feature vectors
- Dynamic kernel based SVMs for varying-length representation

- Some of the dynamic kernels are:
 - ► GMM-based intermediate matching kernel ⁵,
 - ► HMM-based intermediate matching kernel ⁶,
 - ► Histogram intersection kernel ⁷,
 - Spacial pyramid match kernel ⁸

ADP (IIT Mandi) Seed-grant proposal September 21, 2015 14 / 18

⁵A. D. Dileep et. al., "GMM-Based intermediate matching kernel for classification of varying length patterns of long duration speech using SVMs," in IEEE TNNLS, Aug. 2014

⁶A. D. Dileep et. al., "HMM-based intermediate matching kernel for classification of sequential patterns of speech using SVMs," in IEEE TASLP, Dec. 2013

⁷J. C. van Gemert et. al., "Visual word ambiguity," IEEE TPAMI, July 2010

⁸S. Lazebnik et. al., "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proceedings of CVPR 2006, June 2006

- Some of the dynamic kernels are:
 - ► GMM-based intermediate matching kernel ⁵,
 - ► HMM-based intermediate matching kernel ⁶,
 - ► Histogram intersection kernel ⁷,
 - Spacial pyramid match kernel ⁸

ADP (IIT Mandi) Seed-grant proposal September 21, 2015 14 / 18

⁵A. D. Dileep et. al., "GMM-Based intermediate matching kernel for classification of varying length patterns of long duration speech using SVMs," in IEEE TNNLS, Aug. 2014

⁶A. D. Dileep et. al., "HMM-based intermediate matching kernel for classification of sequential patterns of speech using SVMs," in IEEE TASLP, Dec. 2013

 $^{^7\}mathrm{J.}$ C. van Gemert et. al., "Visual word ambiguity," IEEE TPAMI, July 2010

⁸S. Lazebnik et. al., "Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories," in Proceedings of CVPR 2006, June 2006

The machine learning: bird indexing and retrieval

- Matching and retrieval of birds using bird calls and bird images & videos
 - Query-by-example (QBE) based retrieval⁹
 - Query-by-semantics (QBS) based retrieval¹⁰
 - Query-by-semantic example (QBSE) based retrieval¹¹
- Matching and retrieval of birds using kernel methods¹²

ADP (IIT Mandi) Seed-grant proposal September 21, 2015 15 / 18

⁹A. Marakakis et. al., "Probabilistic relevance feedback approach for content-based image retrieval based on Gaussian mixture models," in IET Image Processing, Feb. 2009

 $^{^{10}}$ G. Carneiro et. al., "Supervised learning of semantic classes for image annotation and retrieval," in IEEE TPAMI. March 2007

 $^{^{11}}$ N. Rasiwasia et. al., "Bridging the gap: Query by semantic example," in IEEE Transactions on Multimedia, Aug. 2009

¹²T. Veena, "Image classification, matching and annotation using kernel methods for content based image retrieval for scene images," Ph.D. Thesis, Dept. of CSE, IIT Madras, June 2014.

The machine learning: bird indexing and retrieval

- Matching and retrieval of birds using bird calls and bird images & videos
 - Query-by-example (QBE) based retrieval⁹
 - Query-by-semantics (QBS) based retrieval¹⁰
 - Query-by-semantic example (QBSE) based retrieval¹¹

September 21, 2015 ADP (IIT Mandi) 15 / 18

⁹A. Marakakis et. al., "Probabilistic relevance feedback approach for content-based image retrieval based on Gaussian mixture models," in IET Image Processing, Feb. 2009

 $^{^{10}}$ G. Carneiro et. al., "Supervised learning of semantic classes for image annotation and retrieval," in IEEE TPAMI, March 2007

 $^{^{11}}$ N. Rasiwasia et. al., "Bridging the gap: Query by semantic example," in IEEE Transactions on Multimedia, Aug. 2009

The machine learning: bird indexing and retrieval

- Matching and retrieval of birds using bird calls and bird images & videos
 - Query-by-example (QBE) based retrieval⁹
 - Query-by-semantics (QBS) based retrieval¹⁰
 - Query-by-semantic example (QBSE) based retrieval¹¹
- Matching and retrieval of birds using kernel methods¹²

ADP (IIT Mandi) September 21, 2015 15 / 18

⁹A. Marakakis et. al., "Probabilistic relevance feedback approach for content-based image retrieval based on Gaussian mixture models," in IET Image Processing, Feb. 2009

¹⁰G. Carneiro et. al., "Supervised learning of semantic classes for image annotation and retrieval," in IEEE TPAMI, March 2007

 $^{^{11}}$ N. Rasiwasia et. al., "Bridging the gap: Query by semantic example," in IEEE Transactions on Multimedia, Aug. 2009

 $^{^{12}}$ T. Veena, "Image classification, matching and annotation using kernel methods for content based image retrieval for scene images," Ph.D. Thesis, Dept. of CSE, IIT Madras, June 2014.

The machine learning: multimodal classification and retrieval

- Classfication and retrieval of birds by combining the cues from bird calls and bird images & videos
 - Early fusion: Combining the acoustic, image and video features
 - ► Late fusion: Combining the decisions from the different classifiers built for bird calls, bird images and bird videos
- Feature selection and combining using multiple kernel learning

The machine learning: multimodal classification and retrieval

- Classification and retrieval of birds by combining the cues from bird calls and bird images & videos
 - ► Early fusion: Combining the acoustic, image and video features
 - ► Late fusion: Combining the decisions from the different classifiers built for bird calls, bird images and bird videos
- Feature selection and combining using multiple kernel learning

The machine learning: multimodal classification and retrieval

- Classification and retrieval of birds by combining the cues from bird calls and bird images & videos
 - ► Early fusion: Combining the acoustic, image and video features
 - ► Late fusion: Combining the decisions from the different classifiers built for bird calls, bird images and bird videos
- Feature selection and combining using multiple kernel learning

Budget and other details

17 / 18

Table: Projected expenses in lakhs INR.

Items	Year 1	Year 2	Year 3	Total
High-end computers (2)	3.0	3.0	0	6.0
Imaging and audio equipment	5.0	3.0	0	8.0
Desktop computers (6)	5.0	0	0	5.0
Contingency	0.5	0.5	1.0	2.0
Travel	0.5	0.5	1.0	2.0
Overall	15.0	8.0	2.0	23.0

Future plans: further funding

- Proposal to SERB:
 - Automatic analysis of avian acoustics.
 - ► In collaboration with IIT Madras, NCBS and CDAC.
 - Value: Rs 50 lakhs.
 - Ready for submission.
- **Proposal planned:** Camera and acoustic sensor networks for a local area (IIT Mandi campus)

Thank you for your attention.

Equipment budget

Table: Equipment budget in thousands INR.

Item	Unit cost Qty.		Total
Bioacoustic recorder	50	6	300
Network camera	30	5	150
Recorder accessories	15	8	120
DSLR camera and lens	100	1	100
Consumables	50	1	50
Processing hardware	8	5	40
Network access points	3	5	15
Total			775