ESc201: Introduction to Electronics

Diodes

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

Diode

- Like resistors and capacitors, diodes are two terminal devices
 - The 2 terminals are called Anode and Cathode
- It conducts current in one direction only (from anode to cathode)

Diodes are nonlinear, two terminal, passive electrical devices I

Diodes only consume power

PN Junction Diode

Inside a PN junction at equilibrium (zero applied voltage), there is built-in voltage with N region being positive and P-region negative.

The built-in voltage (also called potential barrier) prevents electrons and holes to give rise to current.

Simplified Picture

Extrinsic Semiconductors

Adding small amounts of suitable impurity atom can drastically alter number of electrons and holes in a semiconductor!

Addition of a group V element impurity to Silicon should increase electrons while addition of group III element impurity should increase number of holes

Doping

N and P-type Semiconductors

N-type:
$$n > p$$

A Semiconductor such as Silicon doped with a donor impurity such as Phosphorous or Arsenic from group V of periodic table. The donor impurity donates an electron to conduction band thereby increasing their concentration

P-type:
$$p > n$$

A Semiconductor such as Silicon doped with a Acceptor impurity such as Boron from group III of periodic table. The acceptor impurity increases number of holes in valence band.

No. of silicon atoms per unit volume

$$\Box 4 \times 10^{22} \, cm^{-3}$$

Impurity concentration:

$$N_A = 10^{17} \, cm^{-3}$$

1 in 400,000 Silicon atoms is replaced by Boron

Very small amounts of impurity atoms can cause a drastic change in electrical property of a semiconductor.

PN Junction Diode

Inside a PN junction at equilibrium (zero applied voltage), there is built-in voltage with N region being positive and P-region negative.

The built-in voltage (also called potential barrier) prevents electrons and holes to give rise to current.

10

Forward and Reverse Bias

Forward Bias: P is biased at a higher voltage compared to N. It lowers the built-in potential and allows current to flow.

Reverse Bias: N is biased at a higher voltage compared to P. This increases built-in potential and very little current flows.

The p-n junction only conducts significant current in the forward-bias region.

Breakdown

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$i_D = I_S \times \left\{ \exp(\frac{v_d}{nV_T}) - 1 \right\}$$

I_s: Reverse Saturation Current i_d: diode current; v_d: applied voltage

$$V_T = kT/q \cong 26mV$$
 at $T = 300K$

n is called ideality factor and is equal to 1 for ideal diodes

Forward Bias

$$v_d >> V_T = 26mV$$

$$i_D = I_S \times \{\exp(\frac{v_d}{V_T}) - 1\}$$

$$i_D \cong I_S \times \exp(\frac{v_d}{V_T})$$

Reverse Bias

$$i_D = I_S \times \{\exp(\frac{v_d}{V_T}) - 1\}$$

$$v_d = -v_R$$

$$i_D = I_S \times \left\{ \exp(-\frac{v_R}{V_T}) - 1 \right\} \cong -I_S$$

$$|\nu_R| >> V_T$$

Example

At a temperature of $300~\rm K$, the diode current is i_D =0.1mA for v_D = 0.6 V. Let n = 1 and V_T = 26mV. Find the saturation current I_s . Then compute the diode current when v_D = 0.65V and at 0.7 V.

$$i_D = I_s \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right]$$

$$I_s = \frac{i_D}{\exp(v_D / n V_T) - 1}$$

$$= \frac{10^{-4}}{\exp(0.600 / 0.026) - 1}$$

$$= 9.502 \times 10^{-15} A$$

$$i_D = I_s \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right]$$

Then for $V_D = 0.650$ V, we have:

$$i_D = I_S \left[\exp(v_D / nV_T) - 1 \right] = 9.502 \times 10^{-15} \times \left[\exp(0.650 / 0.026) - 1 \right]$$

= 0.6841 mA

Similarly for
$$v_D = 0.700 \text{ V}$$
, $i_D = 4.681 \text{ mA}$

Notice the difference in current for 0.05 difference in v_D

Analysis using non-linear diode model is not easy

$$\Rightarrow V_O = nV_T \times \ln(\frac{I}{I_S} + 1) \quad (3)$$

$$\Rightarrow V_S = IR + nV_T \times \ln(\frac{I}{I_S} + 1) \quad (4)$$

19

Iterative Method:

$$V_S = IR + V_O \quad (1)$$

$$V_O = nV_T \times \ln(\frac{I}{I_S} + 1) \quad (3)$$

Assume

$$V_{o} = 0.6 \text{V}$$

Calculate

$$I = \frac{V_S - V_O}{R}$$

Re-calculate

$$V_O = nV_T \times \ln(I/I_S + 1)$$

Convergence:

$$i_D = I_S \times \{ \exp(\frac{V}{V_T}) - 1 \}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT/q \cong 26mV$$
at T = 300K

Assume
$$V_o$$

$$V_0 = 0.5$$

$$V_0 = 0.5$$
 $V_0 = 0.711$

$$V_{o} = 0.707$$

$$I = \frac{V_S - V_O}{R}$$

$$I = 1.5 \times 10^{-3} I = 1.289 \times 10^{-3} I = 1.293 \times 10^{-3}$$

$$V_O = nV_T \times \ln(I/I_S + 1)$$

$$V_0 = 0.711$$
 $V_0 = 0.707$

$$V_{\rm O} = 0.707$$

$$-V_0 = ?$$

$$i_D = I_S \times \left\{ \exp(\frac{V}{V_T}) - 1 \right\}$$

$$I_S = 2 \times 10^{-15} A$$

$$V_T = kT/q \cong 26mV \text{ at T} = 300K$$

Assume
$$V_o$$

$$V_0 = 1.0$$

$$V_0 = 0.7$$

$$V_{\rm O} = 1.0$$
 $V_{\rm O} = 0.7$ $V_{\rm O} = 0.707$

$$I = \frac{V_S - V_O}{R}$$
 $I = 1.0 \times 10^{-3}$ $I = 1.3 \times 10^{-3}$ $I = 1.293 \times 10^{-3}$

 $V_O = nV_T \times \ln(I/I_S + 1)$

$$I = 1.0 \times 10^{-3}$$

$$= 1.3 \times 10^{-3} I = 1.293$$

$$V_{\rm o} = 0.7$$
 $V_{\rm o} = 0.707$ $V_{\rm o} = 0.707$

$$V_{\rm O} = 0.707$$

$$V_{\rm O} = 0.707$$

CONVERGENCE to the same Result 22

Graphical Method: Method of Load Line

$$V_S = I \times R + V_O$$

$$\Rightarrow I = \frac{V_S - V_O}{R}$$

$$I = I_S \times \left\{ \exp(\frac{V_O}{nV_T}) - 1 \right\}$$

How about something that is simple & easy to work with

Role of simple model in design cycle

Accurate but complex Models

- •Analysis using a non-linear diode model is relatively difficult and time consuming.
- •It also does not give a symbolic expression that can provide insight and help in the design of the circuit.

Need SIMPLER and LINEAR Device Models

open circuit V_v is called cut-in or turn-on voltage and depends on nature of diode and range of current considered For most of our analysis, we will take $V_{\gamma} = 0.7V$ and $r_f \sim 10\Omega$

Even Simpler Diode Models

Diode Models

$$i_D = I_S \times \{\exp(\frac{v_d}{V_T}) - 1\}$$

Accuracy

Analysis using ideal diode model

$$I = \frac{10}{1k} = 10mA$$

Analysis with a constant voltage diode model

$$I = \frac{10 - 0.7}{1k} = 9.3mA$$

Analysis with a constant voltage plus resistor diode model

$$I = \frac{10 - 0.7}{1000 + 10} = 9.208 mA$$

Example

Find the current through the diode using ideal diode model

Is the diode forward biased? – Not Sure!!

Assume that it is forward biased ©

Carry out analysis and then check if current through the diode is in appropriate direction.

If not, diode is reverse biased and we carry out the analysis again!!

Example

Assume forward bias

$$-2mA + \frac{1}{5K} + i_D = 0$$

$i_D = 4mA$

Current is positive, so our assumption is correct 35

$$-2mA + \frac{-10}{5K} - i_D = 0$$

$$i_D = -4 \quad mA$$

This is not possible.

Therefore, our assumption is incorrect

Assume reverse bias

