

Unclassification of THIS PAGE (When Date Entered)

|                                                                                                                     | <del></del>                                |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| REPORT DOCUMENTATION PAGE                                                                                           | READ INSTRUCTIONS BEFORE COMPLETING FORM   |  |
|                                                                                                                     | . 3. RECIPIENT'S CATALOG NUMBER            |  |
| 18782.1-CH AD-A1176/9                                                                                               | N/A                                        |  |
| 4. TITLE (and Subtitle)                                                                                             | S. TYPE OF REPORT & PERIOD COVERED         |  |
| Spectroscopic Characterization of Electrophilic d <sup>4</sup> Methylene and Benzylidene Complexes of the Type Cp(C | Reprint                                    |  |
| 0) <sub>2</sub> (L)M CHR <sup>T</sup> (L = PPh <sub>2</sub> , PEt <sub>2</sub> ; M = Mo, W; R = H, Ph               | DERFORMING ORG. REPORT NUMBER              |  |
| Experimental Determination of Barriers to Rotation ab                                                               | but N/A                                    |  |
| 7. AUTHOR(s) the Tungsten-Methylene Multiple Bond                                                                   | CONTRACT OR GRANT NUMBER(+)                |  |
| Susan E. Kegley<br>M. Brookhart                                                                                     | DAAG29 79 D 1002                           |  |
| G. Ronald Husk                                                                                                      |                                            |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                         | 10. PROGRAM ELEMENT, PROJECT, TASK         |  |
| University of North Carolina                                                                                        | AREA & WORK UNIT NUMBERS                   |  |
| Chapel Hill, NC 27514                                                                                               |                                            |  |
|                                                                                                                     | N/A                                        |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                             | 12. REPORT DATE                            |  |
| U. S. Army Research Office P. O. Box 12211                                                                          | 1982                                       |  |
| Research Triangle Park, UC 27709                                                                                    | 3                                          |  |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)                                          | 15. SECURITY CLASS. (of this report)       |  |
|                                                                                                                     | Unclassified                               |  |
|                                                                                                                     | 154. DECLASSIFICATION/DOWNGRADING SCHEDULE |  |
|                                                                                                                     | SCHEDULE                                   |  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                         | DTIC                                       |  |
|                                                                                                                     |                                            |  |
| Submitted for announcement only.                                                                                    | VELECIE                                    |  |
|                                                                                                                     | JUL 27 1982                                |  |
|                                                                                                                     |                                            |  |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different for                                   | rom Report)                                |  |
|                                                                                                                     | B                                          |  |
|                                                                                                                     | •                                          |  |
|                                                                                                                     |                                            |  |
| 18. SUPPLEMENTARY NOTES                                                                                             |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number                                   | 17)                                        |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number                                    | ,                                          |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |
|                                                                                                                     |                                            |  |

DIE FILE COPY .

4D A 117619

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Reprinted from Organometallics, 1982, 1, 760. Copyright © 1982 by the American Chemical Society and reprinted by permission of the copyright owner.

Spectroscopic Characterization of Electrophilic d4 Methylene and Benzyildene Complexes of the Type  $Cp(CO)_2(L)M=CHR^+$  (L = PPh<sub>3</sub>, PEt<sub>3</sub>; M = Mo, W; R = H, Ph). Experimental Determination of Barriers to Rotation about the Tungsten-Methylene Multiple Bond<sup>1</sup>

## Susan E. Kegley and M. Brookhart\*

Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514

## G. Ronald Husk

U.S. Army Research Office Research Triangle Park, North Carolina 27709

Received December 8, 1981

Summary: The first spectrally characterized examples of nonheteratom-stabilized carbene complexes of the type  $Cp(CO)_2LM=CHR^+$  (L = PPh<sub>3</sub>, PEt<sub>3</sub>; M = Mo, W; R = H, Ph) are reported. The parent methylene complexes 2a  $(M = W, L = PPh_3)$  and 2b  $(M = W, L = PEt_3)$  and the benzylidene complex 2c (M = W, L = PPh<sub>3</sub>) are synthesized by hydride abstraction from the alkyl complexes  $Cp(L)(CO)_2WCH_2R$  (R = H, Ph) using  $Ph_3C^+AsF_6^-$ .

The chemistry of d<sup>6</sup> electrophilic carbene complexes of the general type CpL<sub>1</sub>L<sub>2</sub>M=CRR' is rapidly developing, and a variety of both heteroatom and nonheteroatomstabilized species is now known. Several structures have



<sup>(1)</sup> This work was presented in part at the 181st National Meeting of the American Chemical Society, Atlanta, GA, April 1981, "Abstracts of Papers", American Chemical Society: Washington, DC, 1981; INORG

been examined crystallographically, while both structure and dynamics have been scrutinized spectroscopically and theoretically.3-6 The more electrophilic species exhibit high reactivity toward nucleophilic reagents.3c,4-8 contrast, relatively few electrophilic carbene complexes in the parallel d<sup>4</sup> series with general structure CpL<sub>3</sub>M=CRR' have been studied. Isolable or spectroscopically characterized examples include only heteroatom-stabilized complexes: for example,  $Cp(CO)_2(Ph_3M)M' = Cr(OR')$  (M = Sn, Ge; M' = Mo, W;  $R = CH_3$ ,  $C_6H_5$ ),  $C_9(CO)_2(PPh_3)$ -Mo=C(CH<sub>3</sub>)(OCH<sub>3</sub>)+,<sup>10</sup> Cp(CO)<sub>2</sub>LMo=CFR+ (L = CO, PPh<sub>3</sub>; R = F, C<sub>2</sub>F<sub>5</sub>),<sup>11</sup> Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)-Mo=CCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O+, 12 and Cp(CO)<sub>2</sub>W=C(NEt<sub>2</sub>)CH-(CH<sub>3</sub>)CO.<sup>13</sup> No nonheteratom-stabilized species have been well characterized.14

We describe here the facile synthesis and spectral characterization of the d<sup>4</sup> cationic methylene complexes in the series Cp(CO)<sub>2</sub>LM=CH<sub>2</sub>+ (L = PEt<sub>3</sub>, PPh<sub>3</sub>; M = Mo, W) and the benzylidene complex Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)-

(2) (a) Redhouse, A. D. J. Organomet. Chem. 1975, 99, C29. (b) Aleksandrov, G. G.; Antonova, A. B.; Kolobova, N. E.; Struchkov, Y. T. Koord. Khim. 1976, 2, 1684. (c) Shearer, H. M.; Sowerby, J. D. J. Chem. Soc., Dalton Trans. 1973, 2629. (d) Kreissl, F. R.; Stuckler, P.; Meineke, E. W. Chem. Ber. 1977, 110, 3040. (e) Jones, W. M.; Riley, P. E.; Davis, R. E.; Allison, N. T. J. Am. Chem. Soc. 1980, 102, 2458. (f) Fischer, E. O.; Friedrich, P.; Besl, G. J. Organomet. Chem. 1977, 139, C68.

(3) (a) Brookhart, M.; Nelson, G. O. J. Am. Chem. Soc. 1977, 99, 6099. (b) Brookhart, M.; Tucker, J. R.; Flood, T. C.; Jensen, J. Ibid. 1980, 102, 1203. (c) Brookhart, M.; Tucker, J. R.; Husk, G. R. Ibid. 1981, 103, 979. (d) Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Organomet. Chem. 1980, 193, C23,

(4) (a) Gladysz, J. A.; Wong, W. K.; Tam, W. J. Am. Chem. Soc. 1979, 101, 5440. (b) Gladysz, J. A.; Kiel, W. A.; Lin, G. Y. Ibid. 1980, 102, 3299.

(5) (a) Cutler, A. R. J. Am. Chem. Soc. 1979, 101, 604. (b) Cutler, A. R.; Bodnar, T.; LaCroce, S. J. *Ibid.* 1980, 102, 3292. (c) Cutler, A. R.; Bodnar, T.; Coman, G.; LaCroce, S. J.; Lambert, C.; Menard, K. *Ibid.* 1981, 103, 2471.

(6) Hoffman, R.; Schilling, B. E. R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585. (b) Hoffmann, R.; Faller, J. W.; Schilling, B. E. R. Ibid. 1979, 101, 592.

(7) Brookhart, M.; Humphrey, M. B.; Kratzer, H. J.; Nelson, G. O. J. Am. Chem. Soc. 1980, 102, 7802.

(8) Helquist, P.; Kremer, K. A. M.; Kerber, R. C. J. Am. Chem. Soc

(9) Dean, W. K.; Graham, W. A. G. Inorg. Chem. 1977, 16, 1061. (10) Treichel, P. M.; Wagner, K. P. J. Organomet. Chem. 1975, 88, 199.

(11) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67. (12) Cotton, F. A.; Lukehart, C. M. J. Am. Unem. Soc. 1971, 93, 2672.

(13) Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1973, 906.

(14) (a) The methylene species Cp(CO)<sub>3</sub>Mo—CH<sub>2</sub><sup>+</sup> has been postulated as an intermediate in the acid-induced ionization of the α-ether colony to Ch<sub>2</sub>OCh<sub>3</sub> (Green M. L. H. Johnson, M. Whiteney, R. N. J. Chem. Soc. A 1967, 1508. (b) Similarly, Me<sub>3</sub>SiOSO<sub>2</sub>CF<sub>3</sub> reacts with Cp(CO)<sub>3</sub>W-CH<sub>2</sub>OCH<sub>3</sub> at low temperatures to precipitate Cp(CO)<sub>3</sub>W-CH2OSO2CF3 which reacts with a variety of nucleophiles (X-) to yield complexes of the type Cp(CO)<sub>3</sub>W-CH<sub>2</sub>X (Beck, W. A.; Schloter, K.; Ernst, H. Ninth International Conference on Organometallic Chemistry, Sept 1979, Dijon, France; Abstract No. C53). No spectroscopic data related to these methylene complexes have been reported.

Table 1. <sup>1</sup>H NMR Data for [Cp(CO),(L)M=CHR] Complexes in CD,Cl, a

| complex                                                                          | T, "C | δ(Cp)                                | $\delta(H_a, H_b)$                                                                                                               |
|----------------------------------------------------------------------------------|-------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| (Cp(CO),(PPh,)MoCH, 1'OSO,CF, (3)                                                | 90    | $5.84 (d, J_{P-H} = 1.2 \text{ Hz})$ | $H_a$ , $H_b$ 15.4 (d, $J_{P-H}$ = 12.5 Hz)                                                                                      |
| [Cp(CO) <sub>2</sub> (PPh <sub>3</sub> )WCH <sub>2</sub> ] AsF <sub>6</sub> (2a) | 110   | 5.93 (d, J <sub>P-H</sub> ca. 1 Hz)  | H <sub>a</sub> 14.2 (br)                                                                                                         |
|                                                                                  | 50    |                                      | $H_b$ 16.0 (d, $J_{P-H}$ = 24 Hz)<br>$H_a$ , $H_b$ 15.1 (d, $J_{P-H}$ = 16.2 Hz)                                                 |
| $[Cp(CO)_{i}(PEt_{j})WCH_{j}]^{*}AsF_{b}^{b}$ (2b)                               | 110   | 6.04 (d, J <sub>P-H</sub> ca. 1 Hz)  | $H_a = 13.9$ (aparent t, $J = ca. 7 Hz$ )                                                                                        |
|                                                                                  | 40    |                                      | $H_b^-$ 15.5 (dd, $J_{H-H} = 5 \text{ Hz}$ , $J_{P-H} = 24 \text{ Hz}$ )<br>$H_a$ , $H_b$ 14.8 (d, $J_{P-H} = 16.2 \text{ Hz}$ ) |
| $[Cp(CO)_{1}(PPh_{3})WCHPh]^{*}AsF_{6}^{-d}$ (2c)                                | + 20  | $5.97  (d, J_{P-H} = 1.6  Hz)$       | $H_a$ 14.1 (d, $J_{P-H}$ = 4.9 Hz)                                                                                               |

<sup>a</sup> NMR data for the carbene complexes were obtained at 250.13 MHz. Shifts are referenced to CHDCl, taken as 6 5.32. All aromatic resonances are observed in the b 7-8 range and, with the exception of 5, are overlapped by Ph<sub>2</sub>CH. b <sup>1</sup>H NMR (PEt<sub>3</sub>) b 1.8 (m, 6 H, PCH<sub>2</sub>CH<sub>3</sub>), 1.04 (m, 9 H, PCH<sub>2</sub>CH<sub>3</sub>). <sup>c</sup> The apparent triplet is a result of the near equivalence of  $J_{\rm P-H}$  and  $J_{\rm H-H}$ . Because of viscosity broadening, only approximate values were obtainable. d <sup>163</sup>W satellites can be observed for H<sub>a</sub>,  $J_{\rm W-H}$  = 6.9 Hz.

Table II. 13C NMR of [Cp(CO),(L)W=CHR]\*AsF, Complexes in CD,Cl, a

| complex                        | δ( <b>C</b> p)                       | δ(carbene)                               | δ(CO)                                   |
|--------------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|
| [Cp(CO),(PPh,)WCH,]*AsF, (2a)  | 99.7 (s)                             | 303.6 (br)                               | 207.6 (d, $J_{P-C} = 21.5 \text{ Hz}$ ) |
| [Cp(CO),(PEt,)WCH,]*AsF, (2b)  | 98.5 (s)                             | 296.8 (br)                               | 206.4 (d, $J_{P-C} = 21.4 \text{ Hz}$ ) |
| [Cp(CO),(PPh,)WCHPh]*AsF, (2c) | 99.7 (d, $J_{C-H} = 183 \text{ Hz})$ | 299.8 (br, d, J <sub>C-H</sub> = 138 Hz) | 214.1 (d, $J_{P-C} = 16.8 \text{ Hz}$ ) |

<sup>a</sup> Proton noise-decoupled spectra were obtained at 62.89 MHz. Shifts referenced to CD.Cl., at 53.8 ppm. All aromatic resonances were observed in the  $\delta$  125-150 range and are overlapped by Ph<sub>2</sub>C-H.  $\delta$  13C NMR (PEt<sub>3</sub>):  $\delta$  19.4 (d,  $J_{P-C}$  = 30.5 Hz, PCH<sub>2</sub>CH<sub>3</sub>), 8.1 (d,  $J_{P-C}$  = 5.4 Hz, PCH<sub>2</sub>CH<sub>3</sub>).  $\epsilon$  Coupled spectrum obtained.

W=CHPh<sup>+</sup>. <sup>15</sup> Treatment of the readily prepared tungsten alkyl complexes 1a-c16 with 1 equiv of trityl hexa-

fluoroarsenate in methylene chloride at -50 °C leads to quantitative generation of the cationic alkylidene species 2a-c.<sup>17</sup> The <sup>13</sup>C and <sup>1</sup>H NMR data for these complexes are summarized in Tables I and II. The characteristic low-field <sup>1</sup>H resonances for the hydrogen(s) attached directly to the carbene carbon, and <sup>13</sup>C resonances of the carbene carbon atom are clearly indicative of the carbene structure. These shift values compare closely with those for analogous electrophilic d<sup>6</sup> complexes.<sup>3-4</sup>

The molybdenum methylene complex, Cp(CO)2-(PPh<sub>3</sub>)Mo=CH<sub>2</sub>+, 3, is generated by the reaction of ether precursors  $Cp(CO)_2(PPh_3)Mo-CH_2OR$ , 4 (R = CH<sub>3</sub>, CH<sub>2</sub>Ph,  $COC(CH_3)_3$ , <sup>14b,18b,18</sup> with  $(CH_3)_3SiOSO_2CF_3$  at -90

°C in CD<sub>2</sub>Cl<sub>2</sub>. Quantative generation of 3 is difficult and samples of 3 are normally contaminated with small amounts of the heteroatom carbene, 5, and the methyl complex, 6, due to hydride transfer from 4 to 319 (see Scheme I). Indeed, when trityl hexafluoroarsenate is added dropwise to solutions of 4 in CD<sub>2</sub>Cl<sub>2</sub> (-90 °C), no methylene complex can be detected. Instead complexes 5 and 6 are generated in equimolar amounts. A similar reaction has been observed between Cp(NO)(PPh<sub>3</sub>)Re-CH<sub>2</sub>OCH<sub>3</sub> and Cp(NO)(PPh<sub>3</sub>)Re=CH<sub>2</sub>+.4a

Complex 3 decomposes rapidly above -70 °C by disproportionation to Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo(C<sub>2</sub>H<sub>4</sub>)<sup>+</sup> and Cp-(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo<sup>+</sup>, the latter presumed to be stabilized by coordination to a solvent molecule or the triflate counterion.<sup>20b</sup> The same mode of decomposition is observed for the tungsten methylene complexes above -20 °C  $(t_{1/2}(-20 \text{ °C}) \text{ ca. 2 h}).^{20}$  In contrast, the tungsten benzylidene complex 2c is stable in CD2Cl2 solution at room temperature in a sealed tube for long periods of time. At 50 °C, decomposition occurs with  $t_{1/2}$  ca. 15 h, but no decomposition products could be characterized. The benzylidene complex can be isolated as an air-stable green hexafluoroarsenate salt in nearly quantitative yield by precipitation from a CH<sub>2</sub>Cl<sub>2</sub> solution with hexane at 0 °C.

The nonequivalence of the methylene hydrogens in the tungsten complexes 2a,b confirms that the methylene

(15) An X-ray crystallographic study of a neutral d4 benzylidene com-

(15) An X-ray crystallographic study of a neutral d<sup>4</sup> benzylidene complex  $Cp_2W$ =CHPh has recently been reported (Caulton, K. G.; Marsella, J. A.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1981, 103, 5596.). (16) (a) <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $Cp(CO)_2(PPh_3)W$ -CH<sub>3</sub>,  $\delta$  0.50 (d,  $J_{P-H}$  = 2.4 Hz, 3 H,  $CH_3$ ), 4.79 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph);  $Cp(CO)_2(PEt_3)W$ -CH<sub>3</sub>,  $\delta$  0.37 (d,  $J_{P-H}$  = 2.6 Hz, 3 H,  $CH_3$ ), 1.04 (m, 9 H,  $PCH_2CH_3$ ), 1.8 (m, 6 H,  $PCH_2CH_3$ ), 4.95 (d,  $J_{P-H}$  = 1.5 Hz, 5 H, Cp);  $Cp(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CH_2Ph$ ), 4.76 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp);  $Cp(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CH_2Ph$ ), 4.76 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp);  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CH_2Ph$ ), 4.76 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp);  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz, 2 H,  $CP(CO)_2(PPh_3)W$ -CH<sub>2</sub>Ph,  $\delta$  3.06 (d,  $J_{P-H}$  = 2.8 Hz,  $\delta$  4.7 (d) 4.8 (d) 4.9 (d) precursors were determined to be the trans isomers by the observation of a single <sup>13</sup>C resonance in each case, indicating equivalence of the carbonyls. (c) la-c were prepared by reaction of Cp(CO)<sub>2</sub>LW with methyl iodide or benzyl chloride.

(17) (a) Complex 2a can also be generated by dropwise addition of Ph<sub>3</sub>C<sup>+</sup>AsF<sub>6</sub> in CD<sub>2</sub>Cl<sub>2</sub> to the  $\alpha$ -ether Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)W-CH<sub>2</sub>OCH<sub>2</sub>Ph in CD<sub>2</sub>Cl<sub>2</sub> at -78 °C. (b) The generation of 2c was carried out at 0 °C.

CD<sub>2</sub>Cl<sub>2</sub> at -78 °C. (b) The generation of 2c was carried out at 0 °C. (18) <sup>1</sup>H NMR (CDCl<sub>3</sub>): Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo-CH<sub>2</sub>OCH<sub>3</sub>,  $\delta$  3.37 (s, 3 H, CH<sub>3</sub>), 4.75 (d,  $J_{P-H}$  = 3.6 Hz, 2H, CH<sub>2</sub>), 4.85 (d,  $J_{P-H}$  = 1.6 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph); Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo-CH<sub>2</sub>OCH<sub>2</sub>Ph,  $\delta$  4.54 (d,  $J_{P-H}$  = 3.7 Hz, 2 H, W-CH<sub>2</sub>), 4.83 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp), 5.29 (s, 2 H, CH<sub>2</sub>Ph), 7-8 (m, 20 H, Ph); Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo-CH<sub>2</sub>OCOC(CH<sub>3</sub>)<sub>3</sub>,  $\delta$  1.21 (s, 9 H, t-Bu), 4.87 (d,  $J_{P-H}$  = 1.8 Hz, 5 H, Cp), 5.55 (d,  $J_{P-H}$  = 3.8 Hz, 2 H, CH<sub>2</sub>), 7-8 (m, 15 H, Ph).

(19) <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo=CH(OCH<sub>3</sub>)\*OSO<sub>2</sub>CF<sub>3</sub>-,  $\delta$  4.58 (s, 3 H, OCH<sub>3</sub>), 5.56 (d,  $J_{P-H}$  = 1.2 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph), 12.10 (s, 1 H, carbene proton); Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo—CH<sub>3</sub>,  $\delta$  0.34 (d,  $J_{P-H}$  = 3.2 Hz, 3 H, CH<sub>3</sub>), 4.70 (d,  $J_{P-H}$  = 1.6 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph). (20) (a) The identity of the ethylene complexes Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo—CH<sub>3</sub> (CPC)<sub>2</sub>(PPh<sub>3</sub>)Mo—CH<sub>3</sub> (CPC)<sub>3</sub>(PPh<sub>3</sub>)Mo—CH<sub>3</sub> (CPC)<sub>4</sub>(PPh<sub>3</sub>)Mo—CH<sub>3</sub> (CPC)<sub>4</sub>(PPC)Mo—CH<sub>3</sub> (CPC)<sub>4</sub>(PPC)Mo—CH<sub>3</sub> (CPC)<sub>4</sub>(PPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub> (CPC)Mo—CH<sub>3</sub>

(20) (a) The identity of the ethylene complexes Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo-(C<sub>2</sub>H<sub>4</sub>)\*AsF<sub>6</sub><sup>-</sup> and Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)W(C<sub>2</sub>H<sub>4</sub>)\*AsF<sub>6</sub><sup>-</sup> was verified by independent synthesis from the reaction of Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo(C<sub>2</sub>H<sub>4</sub>)\*AsF<sub>6</sub><sup>-</sup>, δ 3.53 (d, J<sub>P-H</sub> = 1.8 Hz, 4 H, C<sub>2</sub>H<sub>4</sub>), 5.28 (d, J<sub>P-H</sub> = 1.5 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph); Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)W(C<sub>2</sub>H<sub>4</sub>)\*AsF<sub>6</sub><sup>-</sup>, δ 3.28 (d, J<sub>P-H</sub> = 2.4 Hz, 4 H, C<sub>2</sub>H<sub>4</sub>), 5.36 (d, J<sub>P-H</sub> = 2.0 Hz, 5 H, Cp), 7-8 (m, 15 H, Ph); Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)W(C<sub>2</sub>H<sub>4</sub>)\*AsF<sub>6</sub><sup>-</sup>, δ 1-2 (m, 15 H, PEt<sub>3</sub>), 3.02 (d, J<sub>P-H</sub> = 2.8 Hz, 4 H, C<sub>2</sub>H<sub>4</sub>), 5.36 (d, J<sub>P-H</sub> = 1.2 Hz, 5H, Cp). (b) Upon decomposition of 2a and 2b, Cp signals at δ 5.79 (2a) and δ 5.86 (2b) appear simultaneously with the Cp signals for the ethylene complexes Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)W(C<sub>2</sub>H<sub>4</sub>)\* or Cp(CO)<sub>2</sub>(PEt<sub>3</sub>)W(C<sub>2</sub>H<sub>4</sub>)\*. Similarly, in the decomposition of Cp-(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo-CH<sub>2</sub>\* a Cp signal at δ 5.65 appears together with the Cp signal for the ethylene complex Cp(CO)<sub>2</sub>(PPh<sub>3</sub>)Mo(C<sub>2</sub>H<sub>4</sub>)\*. In analogy with Beck's observation of Cp(CO)<sub>3</sub>M\* (M = Mo, W) coordinated to either BF<sub>4</sub>, PF<sub>6</sub>, or CH<sub>2</sub>Cl<sub>2</sub> (Beck, W. A.; Schloter, K. Z. Naturforsch. B. Anorg. Chem. Org. Chem. 1978, 33B, 1214), we assume these signals are due to solvent or counterion coordinated Cp(CO)<sub>2</sub>LM\*. are due to solvent or counterion coordinated Cp(CO)2LM+.





Figure 1. Variable-temperature 250-MHz <sup>1</sup>H NMR of Cp-(CO)<sub>2</sub>(PEt<sub>3</sub>)W=CH<sub>2</sub><sup>+</sup> in CD<sub>2</sub>Cl<sub>2</sub>.

moiety adopts the "upright" conformation with the H<sub>a</sub>-C-H<sub>b</sub> plane aligned with the W-P bond. Using extended Hückel calculations for the similar system Cp(CO)<sub>2</sub>-(PH<sub>3</sub>)Mo=CH<sub>2</sub>+, Hoffmann<sup>21</sup> has predicted such a ground-state conformation, with a calculated barrier to rotation around the Mo=C bond of 15 kcal/mol. The upright conformation is also that observed by X-ray crystallography for the structurally similar heteroatom carbenes, Cp(CO)<sub>2</sub>(Ph<sub>3</sub>M)M'=CR(OR'). The assignment of H<sub>a</sub> resonances to the synclinal hydrogen is based on the close comparison of the chemical shifts and <sup>31</sup>P-<sup>1</sup>H coupling constants to those in the benzylidene complex 2c. In 2c the aryl ring is assumed to be in the sterically less crowded anticlinal position. Thus the benzylidene hydrogen occupies the synclinal position.

The <sup>1</sup>H NMR spectra of both tungsten methylene complexes 2a and 2b are temperature dependent and allow

calculation of the barrier to rotation around the tungsten-carbon multiple bond (see Figure 1). As the temperature is raised above -110 °C, the two resonances for the nonequivalent methylene hydrogens begin to broaden. Coalescence for 2a occurs at -85 °C (250 MHz) and for 2b at -70 °C (250 MHz). Each spectrum sharpens to a doublet above -40 °C. Line-shape analysis yields free energies of activation,  $\Delta G^*$ , for bond rotation of  $8.3 \pm 0.1$ kcal/mol for 2a and  $9.0 \pm 0.1$  kcal/mol for 2b. The higher barrier for 2b is consistent with the better donor properties of Et<sub>3</sub>P relative to PPh<sub>3</sub>.

For the molybdenum methylene complex, 3, only e two-proton doublet ( $\delta$  15.4 ( $J_{P-H}$  = 12.5 Hz)) can be observed even at temperatures as low as -90 °C. The similarity of the chemical shift and  $J_{P-H}$  to those observed for the high-temperature averaged spectra of 2a ( $\delta$  15.1 ( $J_{P-H}$ = 16.2Hz)) and **2b** ( $\delta$  14.8  $J_{P-H}$  = 16.2Hz)) suggests that the molybdenum complex also adopts the upright conformation, but that the rotational barrier is quite low. With the use of the high-temperature approximation formula to obtain a minimum rate constant for the exchange, a conservative upper limit to the rotational barrier can be set at 6.7 kcal/mol. 22 The observed values of  $\Delta G^*_{\rm rot}$ for the Mo and W methylene complexes are somewhat lower than those of the Cp(diphos)Fe=CH2+ system  $(\Delta G^*_{rot} = 10.4 \text{ kcal/mol})^{3d}$  and considerably lower than the Cp(NO)(PPh<sub>3</sub>)Re=CH<sub>2</sub><sup>+</sup> system whose nonequivalent methylene signals remain sharp to 10 °C ( $\Delta G_{rot}^* \ge ca.$  15 kcal/mol).4a

The high electrophilicity of these complexes is substantiated by their observed reactivity with olefins. Transfer of the methylene moiety of 2a, 2b and 3 to styrene in CH<sub>2</sub>Cl<sub>2</sub> occurs within 10-15 min at -78 °C to produce phenylcyclopropane in > 50% yields. On the basis of these results, the readily generated and easily modified Cp(CO)<sub>2</sub>LM=CHR<sup>+</sup> systems appear to have potential as carbene-transfer reagents. Synthetic modifications of these complexes as well as reactions with other nucleophilic and unsaturated organic substrates are currently under investigation.

Acknowledgment. We are grateful to the Army Research Office and the University of North Carolina for support of this research. We thank Dr. David L. Harris for help with NMR spectral analysis and Dr. Derrick Tabor for synthetic advice.

<sup>(22)</sup> Line broadening of the methylene signal of 3 is ca. 8.8 Hz at half-height ( $\Delta W$ ) at -90 °C (broadening may be viscosity related). Assuming the chemical shift difference,  $\nu_A - \nu_X$ , in the static spectrum will be similar to that for the tungsten species 2a (458 Hz) and applying the high-temperature approximation  $k = (\nu_A - \nu_X)^2/2(\Delta W)$ , we can estimate the minimum rate constant for exchange at -90 °C as  $3.64 \times 10^4$  s<sup>-1</sup> ( $\Delta G_{\rm rot} \leq 6.7$  kcal/mol).



<sup>(21)</sup> Hoffman, R.; Kubáček, P.; Havlas, Z. Organometallics 1982, 1, 180.