15. Multilineare Abbildungen und Tensorprodukte

15.1. Bilinearformen

Definition: Seien V, W K-VRme. Eine Abbildung $P: V \times W \to K$ heißt (Vektorraum-)Paarung, falls P in jedem Argument linear ist, d.h. wenn für jedes feste $w_o \in W$

$$P(\cdot, w_0): V \to K, v \mapsto P(v, w_0)$$

und für jedes feste $v_0 \in V$

$$P(v_0,\cdot):W\to K,w\mapsto P(v_0,w)$$

eine lineare Abbildung, also Linearform ist.

Im Fall V = W heißt P eine **Bilinearform** auf V.

Eine Paarung P heißt **nicht ausgeartet**, wenn für jedes $w_0 \in W$ und für jedes $v_0 \in V$ die Abbildung $P(\cdot, w_0)$ bzw. $P(v_0, \cdot)$ nicht die Nullabbildung ist.

Bemerkung: Die Menge $\mathcal{P}(V, W)$ aller Paarungen von V und W ist ein Untervektorraum des $K\text{-VRms Abb}(V \times W, K)$ aller Abbildungen von $V \times W$ nach K.

Beispiel: Auf dem Dualraum $W := V^* (= \text{Hom}(V, K))$ ist die nicht ausgeartete Paarung

$$P: V \times V^* \to K, (v, f) \mapsto f(v)$$

eine Bilinearform.

Für eine Paarung $P: V \times W \to K$ setzen wir $\rho_w(v) := P(v, w)$ und erhalten so Linearformen $\rho_w \in V^*$ für alle $w \in W$.

Satz 6:

- (1) Die Abbildung $\rho: W \to V^*, w \mapsto \rho_w$ ist ein Homomorphismus von K-VRmen.
- (2) Die Zuordnung $\eta: P \mapsto \rho$ ist ein Isomorphismus, es gilt:

$$\mathcal{P}(V,W) \stackrel{\sim}{\to} \operatorname{Hom}(W,V^*)$$

Beweis: (1) Es gilt für alle $\alpha \in K, w_1, w_2 \in W$:

$$\rho_{\alpha w_1 + w_2} = (v \mapsto P(v, \alpha w_1 + w_2))
= (v \mapsto \alpha P(v, w_1) + P(v, w_2))
= \alpha((v \mapsto P(v, w_1)) + (v \mapsto P(v, w_2)))
= \alpha \rho_{w_1} + \rho_{w_2}$$

(2) Homomorphie selbst nachrechnen! Die Umkehrabbildung ist:

$$\operatorname{Hom}(W, V^*) \to \mathcal{P}(V, W), \rho \mapsto P := ((v, w) \mapsto (\rho(w))(v))$$

Erinnere: Lineare Abbildungen sind bereits durch ihre Wirkung auf einer Basis eindeutig bestimmt. Dieses Prinzip gilt auch für Paarungen.

Bemerkung: Seien V, W K-VRme mit jeweiliger Basis $B := \{b_1, \ldots, b_m\} \subseteq V, C := \{c_1, \ldots, c_n\} \subseteq W$, so ist eine Paarung P auf $V \times W$ Bereits durch ihre Einschränkung auf $B \times C$ festgelegt.

Für $v := \sum_{i=1}^{m} \alpha_i b_i, w := \sum_{j=1}^{n} \beta_j c_j$ gilt:

$$P(v, w) = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j \cdot P(b_i, c_j)$$

Jede Abbildung $P': B \times C \to K$ definiert über diese Gleichung eine Paarung $P': V \times W \to K$. Diese heißt bilineare Fortsetzung.

Definition: Die Matrix $D_{BC}(P) := (P(b_i, c_j)) \in K^{m \times n}$ heißt **Fundamentalmatrix** der Paarung P bzgl. der Basen B und C. Mit den Kkordinatenvektoren:

$$D_B(v) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{pmatrix}$$
 und $D_C(w) = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$

gilt nach obiger Gleichung:

$$P(v, w) = D_B(v)^T \cdot D_{BC}(P) \cdot D_C(w)$$

Satz 7:

Eine Paarung P endlichdimensionaler K-VRme V, W mit Basen B, C ist genau dann nicht ausgeartet, wenn die Dimensionen von V und W gleich und $D_{BC}(P)$ invertierbar ist.

Beweis: Der Beweis erfolgt durch Implikation in beiden Richtungen:

", <= " Sei dim $V = \dim W$ und $F := D_{BC}(P)$ invertierbar. Sei nun $w \neq 0 \in W$, dann ist $D_C(w) \neq 0$.

Daraus folgt, dass auch $F \cdot D_C(w)$ nicht null ist. O.B.d.A sei die *i*-te Koordinate ungleich null. Dann gilt:

$$P(b_i, w) = e_i^T \cdot F \cdot D_C(w) \neq 0$$

Insbesondere ist $P(\cdot, w) \neq 0$. Analog folgt $P(v, \cdot) \neq 0$ für alle $0 \neq v \in V$. Also ist P nicht ausgeartet.

" \Longrightarrow " Sei P nicht ausgeartet, dann ist insbesondere $\rho: W \to V^*, w \mapsto \rho_w = (v \mapsto P(v, w))$ injektiv. Daraus folgt:

$$\dim V = \dim V^* \ge \dim W$$

Analog gilt:

$$\dim W = \dim W^* \ge \dim V$$

Also haben V und W gleiche Dimension.

Annahme: F ist nicht invertierbar.

Dann existiert ein $D_C(w) \neq 0$, sodass $F \cdot D_C(w)$ gilt. Daraus folgt für alle $v \in V$:

Also ist $P(\cdot, w) = 0$, was einen Widerspruch zur nicht Ausgeartetheit von P darstellt.

Satz 8:

Seien B, \hat{B} Basen von V, C, \hat{C} Basen von W und P eine Paarung von V und W. Dann gilt:

$$D_{BC}(P) = D_{\hat{R}B}(\mathrm{id}_V)^T \cdot D_{\hat{R}\hat{C}}(P) \cdot D_{\hat{C}C}(\mathrm{id}_W)$$

Beweis: Für $(v, w) \in V \times W$ gilt:

$$\begin{split} P(v,w) &= D_{\hat{B}}(v)^T \cdot D_{\hat{B}\hat{C}}(P) \cdot D_{\hat{C}}(w) \\ &= (D_{\hat{B}B}(\mathrm{id}_V) \cdot D_B(v))^T \cdot D_{\hat{B}\hat{C}}(P) \cdot (D_{\hat{C}C}(\mathrm{id}_W) \cdot D_C(w)) \\ &= D_B(v)^T \cdot (D_{\hat{B}B}(\mathrm{id}_V)^T \cdot D_{\hat{B}\hat{C}}(P) \cdot D_{\hat{C}C}(\mathrm{id}_W)) \cdot D_C(w) \end{split}$$

Aber es gilt auch:

$$P(v, w) = D_B(v)^T \cdot D_{BC}(P) \cdot D_C(w)$$

Durch einsetzen aller Basispaare b_i, c_j folgt die Behauptung.

Bemerkung: Mit der Dualbasis $B^* = \{b_1^*, \dots, b_m^*\}$ von V^* zu B (erinnere: $b_k^*(b_i) = \delta_{ik}$) gilt für $\rho = \eta(P) : W \to V^*$:

$$\rho(c_j) = \sum_{i=1}^n P(b_i, c_j) \cdot b_i^*$$

D.h. $D_{B^*C}(\rho) = D_{BC}(P)$.

Beweis: Es gilt:

$$\rho(c_j) = P(\cdot, c_j)$$

$$= (b_i \mapsto P(b_i, c_j))$$

$$= \sum_{i=1}^n P(b_i, c_j) \cdot b_i^*$$

Beispiel: Sei $W = V^*$ und für alle $f \in V^*$ sei P(v, f) = f(v). Nehme nun die Dualbasis C = B* zur Basis B von V. Dann gilt:

$$P(b_i, b_k^*) = b_k^*(b_i) = \delta ik$$

Also ist $D_{BB}(P) = I_m$

Wir spezialisieren nun W = V.

Definition: Sei P eine Paarung von V und V.

(a) P heißt symmetrisch, falls für alle $v, w \in V$ gilt:

$$P(v, w) = P(w, v)$$

(b) Eine Basis $B = \{b_1, \dots, b_m\}$ heißt **Orthogonalbasis** (OGB) von V bezüglich P, wenn für alle $i \neq j$ gilt:

$$P(b_i, b_j) = 0$$

(c) Eine Basis $B = \{b_1, \ldots, b_m\}$ heißt **Orthonormalbasis** (ONB) von V bezüglich P, wenn B OGB ist und für alle $i \in \{1, \ldots, m\}$ gilt:

$$P(b_i, b_i) = 1$$

Bemerkung: Falls eine OGB B existiert, so ist die Fundamentalmatrix $D_{BB}(P)$ diagonal, insbesondere symmetrisch, also ist P symmetrisch.

Satz 9:

Sei K ein Körper mit $1+1\neq 0$ und P eine symmetrische Bilinearform auf einem K-VRm V mit dim $V=:n<\infty$. Dann existiert eine OGB von V bzgl. P.

Beweis: Der beweis erfolgt durch vollständige Induktion nach der Dimension n.

Für n=1 ist die Behauptung offensichtlich wahr, nehmen wir also als Induktionsvoraussetzung an, dass sie für n-1 erfüllt sei.

Da für P=0 jede Basis Orthogonalbasis ist, lässt sich im Folgenden o.B.d.A annehmen, dass $P \neq 0$ ist. Also existieren $v, w \in V$ mit $P(v, w) \neq 0$, es gilt:

$$P(v + w, v + w) = P(v, v) + P(w, w) + P(v, w) + P(w, v)$$

= $P(v, v) + P(w, w) + 2P(v, w)$

Daraus folgt:

$$P(v, v) \neq 0 \lor P(w, w) \neq 0 \lor P(v + w, v + w) \neq 0$$

Also existiert ein $b_1 \in V$ mit $P(b_1, b_1) \neq 0$. Nun betrachte:

$$W := \{ v \in V \mid P(v, b_1) = 0 \}$$

= Kern $(P(\cdot, b_1))$

Nach Dimensionsformel ist dim W = n-1 und $V = K \cdot b_1 \oplus W$. Da die Einschränkung $P|_{W \times W}$ symmetrisch ist, existiert nach Induktionsvoraussetzung eine OGB $\{b_2, \ldots, b_n\}$ von W bzgl. $P|_{W \times W}$.

Da außerdem für alle $w \in W$ $P(w, b_1) = 0$ ist, ist $\{b_1, \dots, b_n\}$ OGB von V bzgl. P.

Bemerkung (Fourierformel): Die Basisdarstellung bzgl. einer ONB B lautet:

$$v = \sum_{b \in B} P(v, b) \cdot b$$

Beweis: Leichte Übung!

15.2. Multilineare Abbildungen

Veralgemeinere nun die Bilinearität und den Zielbereich.

Definition: Seien V_1, \ldots, V_n, W K-VRme und $M: V_1 \times \ldots \times V_n \to W$ eine Abbildung. M heißt (n-fach) multilinear, falls für jedes $i \in \{1, \ldots, n\}$ bei fester Wahl von $v_j \in V_j$ (für alle $j \neq i$) $M(v_1, \ldots, v_{i-1}, \cdot, v_{i+1}, \ldots, v_n): V_i \to W$ eine lineare Abbildubg ist.

Beispiel: Multilineare Abbildungen sind:

(1) Die Determinantenabbildung:

$$\det: K^n \times \ldots \times K^n \to K$$

(2) Die Skalarmultiplikation:

$$K \times V \to V, (\lambda, v) \mapsto \lambda \cdot v$$

(3) Die Matrizenmultiplikation:

$$K^{p\times q}\times K^{q\times r}\times K^{r\times s}\to K^{p\times s}, (A,B,C)\mapsto A\cdot B\cdot C$$

15.3. Tensorprodukte

Definition: Seien V, W K-VRme. Ein K-VRm T mit einer bilinearen Abbildung $\tau: V \times W \to T$ heißt ein **Tensorprodukt** von V und W, falls τ die folgende **universelle Abbildungseigenschaft** (UAE) erfüllt:

Zu jedem K-VRm U und jeder bilinearen Abbildung $\beta: V \times W \to U$ existiert genau eine lineare Abbildung $\Phi_{\beta}: T \to U$ derart, dass $\beta = \Phi_{\beta} \circ \tau$. Schreibe: $T =: V \otimes_K W, \tau(v, w) =: v \otimes w$

Bemerkung: (1) Falls T existiert, so hat man eine Bijektion:

$$\operatorname{Bil}(V \times W, U) \xrightarrow{\sim} \operatorname{Hom}(T, U), \beta \mapsto \Phi_{\beta}$$

(2) Sind $(T_1, \tau_1), (T_2, \tau_2)$ Tensorprodukte von V und W, so existiert genau ein Isomorphismus $\Phi: T_1 \to T_2$ mit $\tau_2 = \Phi \circ \tau_1$.

Aufgabe: Beweise die Existenz von Tensorprodukten.

Beispiel: (1) Sei $V := K^{n \times 1}, W := K^{m \times 1}, T := K^{n \times m}$ und die bilineare Abbildung:

$$\tau: K^n \times K^m \to T, (v, w) \mapsto v \cdot w^T$$

Für die Standardbasen $\{e_i\} \subseteq V, \{e_j'\} \subseteq W$ ist $\tau(e_i, e_j') = E_{ij}$ die Elementarmatrix. $D := \{E_{ij} \mid i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}$ ist Basis von T. Im folgenden wollen wir die UAE nachweisen. Sei dazu $\beta : V \times W \to U$ bilinear. Dann erhalten wir eine lineare Abbildung $\Phi : K^{n \times m} \to U$ für jede Vorgabe einer Abbildung $D \to U$ (vgl. lineare Fortsetzung). Insbesondere also auch für die Vorgabe:

$$\forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} : \Phi(E_{ij}) := \beta(e_i, e'_i)$$

Damit gilt dann:

$$\beta(v, w) = \beta \left(\sum_{i=1}^{n} \alpha_{i} e_{i}, \sum_{j=1}^{m} \gamma_{j} e'_{j} \right)$$

$$= \sum_{i,j} \alpha_{i} \gamma_{j} \cdot \beta(e_{i}, e'_{j})$$

$$= \sum_{i,j} \alpha_{i} \gamma_{j} \cdot \Phi(E_{ij})$$

$$= \Phi \left(\sum_{ij} \alpha_{i} \gamma_{j} \cdot E_{ij} \right)$$

$$= \Phi \left(\tau \left(\sum_{i=1}^{n} \alpha_{i} e_{i}, \sum_{j=1}^{m} \gamma_{j} e'_{j} \right) \right)$$

$$= \Phi(\tau(v, w)) = (\Phi \circ \tau)(v, w)$$

Wir haben also gezeigt, dass $\beta = \Phi \circ \tau$ gilt.

Falls für ein $\Phi': T \to U$ auch $\beta = \Phi' \circ \tau$ gilt, folgt insbesondere $\beta(e_i, e'_j) = \Phi'(\tau(e_i, e'_i))$ und damit:

$$\Phi'(E_{ij} = \beta(e_i, e'_j) = \Phi(\tau(e_i, e'_j)) = \Phi(E_{ij})$$

D.h. $\Phi|_D = \Phi'|_D$, also ist $\Phi = \Phi'$ eindeutig.

(2) Seien V, W beliebige VRme mit endlichen Dimensionen dim V = n, dim W = m. Die Existenz des Tensorproduktes folgt etwa durch Koordinatenisomorphismen und Beispiel (1) Für eine **koordinatenfreie Konstruktion** nehme $T := \text{Hom}(V^*, W)$ und

$$\tau: V \times W \to T, (v, w) \mapsto (V^* \to W, f \mapsto f(v) \cdot w)$$

Leichte Übung: (T,τ) ist Tensorprodukt von V,W und für Basen B,C von V,W gilt:

$$D := \{ b \otimes c \in T \mid b \in B, c \in C \}$$

ist Basis von $T = V \otimes_K W$.

Satz 10:

Sind V, W beliebige K-VRme, so existiert ein Tensorprodukt von V und W.

Beweis: Finde einen K-Vektorraum T und eine lineare Abbildung $\tau: V \times W \to T$ mit der universellen Abbildungseigenschaft. Dazu benutze den K-Vektorraum $F := Abb(V \times W, K)_0.$

 $V \times W$ Keine Abbildung mit endlichem $Supp(f) := \{(v, w) \mid f(v, w) \neq 0\}.$

 $B:=\{f_{(v,w)}\mid (v,w)\in V\times W\}$ ist eine Basis von F (da für beliebiges $f\in F$ gilt: $f(x,y) = \sum_{(v,w) \in \text{Supp}(f)} f(v,w) \cdot f_{(v,w)}$. Setze $\varphi : V \times W \to F$, $(v,w) \mapsto f_{(v,w)}$. Vorsicht: φ ist nicht bilinear!

Für die Bilinearität benötigen wir den Untervektorraum $R \leq F$, erzeugt von den "fehlenden Relationen".

$$f_{(\alpha v_1 + v_2, \beta w_1 + w_2)} - \alpha \beta f_{(v_1, w_1)} - \beta f_{(v_2, w_1)} - \alpha f_{(v_1, w_2)} - f_{(v_2, w_2)} \, \forall \alpha, \beta \in K, v_i \in V, w_i \in W$$

Bilde den Faktorraum $T:=\frac{F}{R}$ versehen mit der kanonischen Abbildung

$$\pi: F \to T, f \mapsto f + R =: [f]$$

Betrachte

$$\tau: V \times W \to T, (v, w) \mapsto \pi (\varphi(v, w)) = [f_{(v, w)}]$$

Nun gilt offenbar Bilinearität:

$$\left[f_{(\alpha v_1 + v_2, \beta w_1 + w_2)} \right] = \alpha \beta \left[f_{(v_1, w_1)} \right] + \beta \left[f_{v_2, w_1} \right] + \alpha \left[f_{(v_1, w_2)} \right] + \left[f_{(v_2, w_2)} \right]
 \tau(\alpha v_1 + v_2, \beta w_1 + w_2) = \alpha \beta \tau(v_1, w_1) + \beta \tau(v_2, w_1) + \alpha \tau(v_1, w_2) + \tau(v_2, w_2)$$

Nachweis der universellen Abbildungseigenschaft: Sei wieder $\beta: V \times W \to U$ bilinear gegeben. Da $F = \langle B \rangle = \langle \text{Bil}(\varphi) \rangle$ und π surjektiv sind, folgt $T = \langle \text{Bil}(\tau) \rangle$. Jede lineare Abbildung $\phi: T \to U$ ist eindeutig bestimmt durch $\phi|_{\text{Bil}(\tau)}$, also ist durch die Forderung $\beta = \phi \circ \tau \phi$ eindeutig bestimmt (falls existent).

Existenz von ϕ : Zunächst definiere die lineare Abbildung

$$\phi_F: F \to U$$

durch Vorgabe auf der Basis B.

$$\phi_F\left(f_{(v,w)}\right) := \beta(v,w)$$

Da β bilinear ist, folgt

$$\phi_F \left(f_{(\alpha v_1 + v_2, \beta w_1 + w_2)} - \alpha \beta f_{(v_1, w_1)} - \beta f_{(v_2, w_1)} - \alpha f_{(v_1, w_2)} - f_{(v_2, w_2)} \right) = 0$$

also $R \leq \operatorname{Kern} \phi_F$.

Mit dem Homomorphiesatz folgt: Es existiert eine lineare Abbildung $\phi: \frac{F}{R} = T \to U$ mit

$$\phi([f]) = \phi_F(f)$$

und

$$\phi\left(\tau(v,w)\right) = \phi\left(\left[\varphi(v,w)\right]\right) = \phi_F\left(f_{(v,w)}\right) = \beta(v,w)$$

Anwendung: Das Tensorprodukt wird zur Erweiterung des Skalarbereiches eines VRms genutzt. Sei V K-VRm, L ein Körper mit Teilkörper $K \leq L$. Insbesondere ist also L ein K-VRm (vgl. früher). Nach Satz 10 existiert das Tensorprodukt $L \otimes_K V =: V_L$ (K-VRm).

Im Folgenden wollen wir zeigen, dass V_L ein L-Vektorraum ist. Dazu fehlt die Skalarmultiplikation $L \times V_L \to V_L$, die wir mittels der UAE definieren. Für alle $l \in L$ ist:

$$\beta_l: L \times V \to V_L, (x, v) \mapsto lx \otimes v$$

bilinear, sodass $\beta_l(x, v) = \Phi_{\beta_l}(x \otimes v)$.

Nehme nun Φ_{β_l} als Skalarmultiplikation mit $l \in L$:

$$L \times V_L \to V_L, (l, u) \mapsto \Phi_{\beta_l}(u)$$

Leichte Übung: Dies erfüllt die Axiome für eine Skalarverknüpfung.

Bemerkung: V_L enthält V als K-Untervektorraum über die Einbettung:

$$V \to V_L, v \mapsto 1 \otimes v$$

Für eine Basis B von V ist das Bild $\{1 \otimes b \mid b \in B\} \subseteq V_L$ eine Basis des L-VRms V_L . Insbesondere ist

$$L \otimes_K K^n \stackrel{\sim}{=} L^n$$

eine Isomorphie von L-VRmen.