

CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1 7. (currently amended) The method according to claim [[5]]1, wherein when
2 a parent network type is mapped to a policy contained in one of the policy
3 documents, a child network type of the parent network type inherits the policy.

1 8. (previously presented) The method according to claim 7, wherein when the
2 child network type is mapped to a policy contained in one of the policy
3 documents that is in conflict with the policy inherited from the parent, the
4 policy mapped to the child takes precedence over the policy inherited from the
5 parent.

1 9. (currently amended) The method according to claim [[5]]1, wherein an
2 instance of one of the network types is mapped to one or more physical
3 network segments and wherein the network type includes a set of data fields
4 for defining the physical network segments.

1 10. (previously presented) The method according to claim 6, wherein at least
2 one of the network types is an abstract type without an instance mapped to a
3 physical network segment.

1 11. (currently amended) The method according to claim [[5]]1, wherein each
2 network type further comprises a data field for identifying a human
3 administrator.

1 12. (currently amended) The method according to claim [[5]]1, wherein each
2 network type further comprises a data field for providing a human readable
3 description of the network type.

1 13. (original) The method according to claim 1, wherein the network security
2 policies are representative of restrictions to be placed on one or more of the
3 network roles in the registry data structure.

1 14. (original) The method according to claim 1, wherein the policy
2 documents are in extensible markup language (XML).

1 15. (original) The method according to claim 1, wherein the document
2 transformation algorithm is specific to a network entity utilized for
3 implementing one or more of the security policies contained in the policy
4 documents.

1 16. (original) The method according to claim 15, wherein the document
2 transformation algorithm includes style sheet language for transformation
3 (XSLT) controlled by a script.

1 17. (original) The method according to claim 16, wherein the script is
2 specific to a network entity.

1 18. (original) The method according to claim 16, further comprising a step of
2 selecting the script from among a plurality of scripts, each being specific to a
3 different network entity.

1 19. (original) The method according to claim 16, wherein the device-specific
2 configuration documents are in plain text format.

1 20. (currently amended) A apparatus for configuring a network security
2 system, comprising:

3 a. a registry data structure including a plurality-hierarchy of
4 network types, each network type being stored within a document in the
5 registry and including a network role definition and a set of fields defining
6 segments of a network, the network role being representative of a set of
7 applications to be supported by the network;

8 b. security policy documents mapped to the registry data
9 structure, each security policy document being in a standard document format
10 language and being representative of restrictions to be placed on a network
11 type in the registry data structure; and

12 c. a document transformation algorithm for transforming the
13 documents in the registry and the policy documents into device-specific
14 configuration documents stored in machine-readable form.