

Pronóstico de series de tiempo y simulaciones en R

Clase 2: Características de las series de tiempo

Germán Eduardo González

Índice

Descomposición de series de tiempo

Tendencia, ciclo y estacionalidad

Criterios de información: AIC, BIC.

Distribuciones

Aplicación

Índice

Descomposición de series de tiempo

Tendencia, ciclo y estacionalidad

Criterios de información: AIC, BIC.

Distribuciones

Aplicación

Descomposición

Aditiva \rightarrow $y_t = T_t + S_t + C_t + \varepsilon_t$ Multiplicativa \rightarrow $y_t = T_t \times S_t \times C_t \times \varepsilon_t$

Donde:

- T Tendencia
- S Estacionalidad
- C Ciclo

¿Cuándo aditiva y cuando multiplicativa?

Aditiva: no varía en frecuencia y amplitud con el tiempo.

Multiplicativo: Patron estacional con crecimiento o decrecimiento en el tiempo.

Descomposición

¿Qué tipo de descomposición es la más adecuada para los ingresos netos de Amazon?

Descomposición

Descomposición de la serie

Índice

Descomposición de series de tiempo

Tendencia, ciclo y estacionalidad

Criterios de información: AIC, BIC.

Distribuciones

Aplicación

- La tendencia involucra la evolución de las variables que queremos modelar y pronosticar en el largo plazo
- La tendencia es un componente de baja frecuencia o poca volatilidad que evoluciona lentamente en alguna dirección.
- Algunas variables que afectan la tendencia de la serie de tiempo pueden ser: preferencias, tecnología, instituciones, demografía entre otros.
- Tendencia puede ser determinística o estocástica

7/28/21 11

7/28/21 12

Ciclo

- El ciclo corresponde a oscilaciones de corto plazo alrededor de una media o tendencia.
- Estas fluctuaciones usualmente se deben a condiciones económicas.
- No tienen una duración fija.

Ciclo

28/7/21 15

Filtro de Hodrick y Prescott: ciclo y tendencia.

Objetivo: Separar la tendencia y el ciclo.

Supuesto de que la serie original tiene las componentes de tendencia y ciclo, la serie suavizada es una estimación de la tendencia y la diferencia con la original es una estimación de la componente cíclica.

- Tratamiento de los datos: Logaritmo
- Ejemplo: $y_t = \ln(PIB)$
- $y_t = \tau_t + c_t$
- $c_t = y_t \tau_t$

Problema: no sirve para pronóstico debido a qué es el resultado de una minimización qué se ajusta en función de los datos.

Solución: Modelar el ciclo como proceso AR

$$\min_{ au} \left(\sum_{t=1}^{T} \left(y_t - au_t
ight)^2 + \lambda \sum_{t=2}^{T-1} \left[\left(au_{t+1} - au_t
ight) - \left(au_t - au_{t-1}
ight)
ight]^2
ight)$$

$$c_t = y_t - \tau_t \qquad \frac{\tau_{t+1} - \tau}{\tau_t} \qquad \frac{\tau_t - \tau_{t-1}}{\tau_{t-1}}$$

Si la tasa de crecimiento es cercana a cero, entonces

$$\text{Log } x_t - \text{Log } x_{t-1} \approx \frac{x_t - x_{t-1}}{x_{t-1}}$$

 λ es un parámetro de atenuación

Anual 100 Trimestral 1600 Mensual 14400

Cuadro: Valores sugeridos para λ .

7/28/21 17

 $\lambda = 0$

Hodrick-Prescott Filter of Colcap_month_log

Cyclical component (deviations from trend)

 $\lambda = 14400$

7/28/21 19

$$y_t = S_t + \epsilon_t$$

- El componente estacional corresponde a movimientos que ocurren periódicamente.
- Producida por factores vinculados a algún periodo de tiempo (por ejemplo tecnológicos, preferencias o instituciones) Estacionalidad determinística y estocástica

El componente estacional determinístico está dado por: Teniendo en cuenta que:

$$S_t = \sum_{i=1}^{S} \rho_i \, D_i$$

- s=4 si es trimestral
- s=12 si es mensual
- s=52 si es semanal

El componente estacional determinístico está dado por: Teniendo en cuenta que:

$$S_t = \sum_{i=1}^{S} \rho_i \, D_i$$

- ρ_i son conocidos como los factores estacionales
- Hacen un resumen del patrón estacional en el año
- En ausencia de estacionalidad, los ρ_i son iguales
- la variación determinística estacional es perfectamente predecible

Ciclo vs Estacionalidad

Ciclo: Picos máximos y mínimos en distintos períodos.

Estacionalidad: Picos máximos y mínimos siguen un patrón.

Residuo

- El residuo se debe a fenómenos externos impredecibles de índole natural o económica.
- No tiene una forma definida.
- Sus movimientos son desiguales e impredecibles en el tiempo.

Residuo

Los residuos no son observables, pero puede estimar cómo

$$\varepsilon = y - \hat{y}$$

El error es todo lo que no captura el modelo y no puede ser explicado. El mundo ideal es que el residuo sea completamente estocástico y sea ruido blanco.

En el caso en el qué esto no se cumpla, quiere decir que existe una parte determinística en el error que se podría incorporar en el pronóstico.

Objetivo Pronóstico

- Para pronosticar una serie de tiempo con estacionalidad, tendencia y ciclo se debe parametrizar cada uno de los componentes de la descomposición y al final juntarlos para obtener el pronóstico en h-periodos adelante.
- ¿Pero qué métricas se deben utilizar para poder seleccionar acertadamente el mejor modelo que se ajusta la serie?

7/28/21 27

Índice

Descomposición de series de tiempo

Tendencia, ciclo y estacionalidad

Criterios de información: AIC, BIC.

Distribuciones

Aplicación

7/28/21 28

Motivación

- ¿Cuáles son las consecuencias de seleccionar únicamente el modelo con el R cuadrado más alto? ¿Hay una mejor manera?
- Los criterios de información se pueden utilizar en una amplia variedad de pronósticos. ¿Cómo seleccionar entre estos?
- Examinar todas las posibles combinaciones de K regresores y a partir de unos criterios (AIC, BIC) seleccionar la mejor combinación.

Motivación

- El R² ajusta dentro de la muestra. Seleccionar un modelo bajo este criterio no significa que se produzcan buenos pronósticos por fuera de muestra.
- Incluir más variables en un modelo de pronóstico no mejorará necesariamente su desempeño de pronóstico por fuera de la muestra, aunque si mejorará el "ajuste" del modelo en información histórica.

Motivación

- Se necesitan criterios de información que incorporen la información del pronóstico por fuera de la muestra.
- La mayoría de los criterios de selección se fundamentan en un modelo que incorpora el mínimo error cuadrático medio (MSE) del pronóstico h=1, por fuera de la muestra.
- Las diferencias entre los criterios de selección se deben principalmente a los grados de libertad que se utilizan para estimar un modelo.

Criterios de información

I. Criterio de información de Akaike (AIC)

$$AIC = -2InL + 2K$$

II. Criterio de información Schwarz (SIC)

$$SIC = -2InL + KInT$$

- L es la función de máxima verosimilitud de las observaciones
- k el número de parámetros independientes estimados dentro del modelo.
- La primera parte puede ser interpretado como una medida de bondad de ajuste, mientras el segundo término es una penalización creciente conforme aumenta el número de parámetros.

Criterios de información

- Este criterio no pretende identificar el modelo verdadero, sino el mejor modelo entre los modelos candidatos.
- Se escoge el candidato con menor valor.
- Casi siempre al examinar el AIC y el SIC, se selecciona el mismo modelo.

Criterios de información

- La literatura recomienda que en igualdad de condiciones se seleccione el modelo más parsimonioso indicado por el SIC.
- Muchos autores recomiendan usar el modelo más parsimonioso que selecciona el BIC en igualdad de circunstancias (Diebold, 1999, pág. 75).

Índice

Descomposición de series de tiempo

Tendencia, ciclo y estacionalidad

Criterios de información: AIC, BIC.

Distribuciones

Aplicación

Distribución de los datos

Media y varianza

Asimetria

curtosis

Distribución de los datos

Objetivo: Poder identificar desde qué tipo de distribución es generado los datos.

Pruebas de hipótesis para ajuste de distribución.

- Kolmogorov–Smirnov
- Jarque–Bera
- Shapiro–Wilk

Uso:

Objetivo: Evaluar la distribución de los errores

Kolmogorov-Smirnov

Objetivo: La prueba de Kolmogorov-Smirnov evalúa la concordancia existente entre la distribución de un conjunto de datos (muestra) y una distribución teórica especifica

Pregunta a responder: Provienen las observaciones de la muestra de alguna distribución hipotética

Hipótesis nula: Se distribuye como la de referencia.

Hipótesis alternativa: No se distribuye como la de referencia.

Jarque-Bera

Objetivo: probar si una muestra X1,X2... Xn proviene de una distribución normal mediante el estudio de la asimetría (s=0) y la curtosis (c= 3 normal)

Test de Jarque-Bera

$$JB = \frac{n-k+1}{6} \left(S^2 + \frac{1}{4} (C-3)^2 \right) \sim X^2 \text{ con } 2 \text{ gl}$$

S: Asimetría

C: Curtosis

N = observaciones

K = número de regresores

H₀: Los datos vienen de una distribución normal.

H_a: Los datos no vienen de una distribución normal.

Shapiro-Wilk

Objetivo: probar si una muestra X1,X2... Xn proviene de una distribución normal

Test de Shapiro Wilk

•
$$W = \frac{\sum_{i=1}^{N} (a_i * x_{(i)})^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2)}$$

•
$$a = \frac{m^T * V^{-1}}{C}$$
, $C = m^T * V^{-1} * V^{-1} * m^T$

- m^T son los valores esperados de la distribución
- V es la matriz de varianza-covarianza

H₀: Los datos vienen de una distribución normal.

Ha: Los datos no vienen de una distribución normal.

7/28/21 40

Aplicación de distribuciones en finanzas

Riesgo de mercado

Referido a la posibilidad de que las entidades incurran en pérdidas asociadas a la disminución del valor de sus portafolios, las caídas del valor de las carteras colectivas o fondos que administran, por efecto de cambios en el precio de los instrumentos financieros en los cuales se mantienen posiciones dentro o fuera del balance. (SFC, 2007)

Valor en Riesgo (VaR)

- VaR es el percentil de la distribución de probabilidad al término del horizonte de gestión, en T + h; distribución que hoy (en T) desconocemos.
- El VaR corresponde a la máxima pérdida posible en el $\alpha \times 100\%$ de los mejores escenarios, o de forma equivalente a la mínima pérdida posible en el $(1-\alpha) \times 100\%$ de las pérdidas más grandes.
- **Objetivo**: El administrador de riesgo tiene la idea de que la pérdida en su inversión no excederá el **VaR** con probabilidad α.

VaR condicional (CVaR)

CVaR: promedio de las pérdidas que superan el VaR.

$$ES_{\alpha}(X) = E[X \mid X \ge VaR_{\alpha}(X)]$$

$$ES_{\alpha}(X) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_{\beta}(X) d\beta$$

 \triangleright Si L ~ N(μ,σ),

$$ES_{\alpha}(L) = \mu + \frac{\sigma}{1-\alpha} \phi(\Phi^{-1}(\alpha))$$

donde Φ es la distribución (acumulada) de una variable normal estándar, y ϕ es su densidad

7/28/21 43

Interpretación: Valor en Riesgo (VaR)

El analista de la empresa ACME calculo un VaR al 5% a un mes. Encontró que VaR al 5% a un mes es de 10 millones de pesos. ¿Cuál es la interpretación de este valor?

Resultado: Significa que existe un 5% de probabilidad de perder en un mes 10 millones de pesos, y un 95% de que la perdida sea menor a 10 millones.

Metodología

- Histórica (no paramétrica):
 - Distribución de pérdidas
- Simulación (paramétrica):
 - Normal: $L_t \sim N(\mu, \sigma^2)$ (i. i. d)
 - ARMA
 - Volatilidad:
 - EWMA
 - Garch

7/28/21 45

Ejercicio 3: Calculo VaR Histórico

¿Qué se necesita?

- Portafolio de inversión.
- Precios observados. (Diarios)
- Fecha de valoración.
- Nivel de confianza.
- Número de días de historia que se quieren usar para calcular el VaR.

Ejercicio 3: Calculo VaR Histórico

Utilizando el siguiente portafolio:

Empresa	Acciones
Bancolombia	10000
Celsia	5000
Cemargos	5000
Cemex	3000
Corficol	3000
Exito	10000
Grupo Argos	3000
Avianca	4000
Ecopetrol	20000
Nutresa	6000

Encuentre el VaR histórico a un día para las 10 acciones del portafolio. Utilice como fecha de análisis el 9 de octubre del 2019. Utilice un nivel de significancia $\alpha = 5\%$.

Mapa de ruta – VaR portafolio

- Paso 1: Cargar precios históricos de las acciones. (Historia.xlsx)
- Paso 2: Cargar portafolio de acciones (Portafolio.xlsx)
- Paso 3: Valor portafolio > Histórico Precios x Nocional de cada acción
- Paso 4: Sumar sobre las filas para obtener el valor total de portafolio en cada periodo.
- Paso 5: Distribución de los retornos sobre el valor total del portafolio.
- Paso 5: Calcular Var 5% porcentual: percentil -> distribución histórica de cada acción.
- Paso 6: Calcular Var 5% niveles.

Resultados - Portafolio

Gracias

matemáticas aplicadas