PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-058149

(43)Date of publication of application: 12.03.1988

(51)Int.CI.

GO1N 27/46 GO1N 27/30

(21)Application number: 61-202217

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

28.08.1986

(72)Inventor: MORIGAKI KENICHI

KOBAYASHI SHIGEO

(54) BIOSENSOR

(57)Abstract:

PURPOSE: To enable stable measurement, by providing a water absorbing high polymer layer on a measuring electrode and an counter electrode to form a stable liquid film layer.

CONSTITUTION: A conducting carbon paste is printed on an insulating substrate 8 consisting of polyethylene terephthalate by screen printing and then dried by heat to form an electrode system consisting of a measuring electrode 6 and a counter electrode 7 and a lead section. Then, an insulating paste is printed to obtain a fixed electrode area covering the electrode system partially and dried to form an insulation layer 5. A porous body 1 and a filter film 2 made of polycarbonate are held on holding frames 3 and 4. A water absorbing high polymer layer 9 is obtained by directly applying and drying an approx. 1% aqueous solution of carboxymethyl cellulose on an electrode, where the thickness after dry is about 2 μ . This enables the

formation of a stable gel liquid layer to wet an electrode surface sufficiently even with a small amount of a liquid, thereby assuring stable and accurate measurement.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

⑩日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A)

昭63-58149

@Int_CI_1

識別記号

庁内整理番号

匈公開 昭和63年(1988) 3月12日

G 01 N 27/46 27/30 M-7363-2G E-7363-2G

未請求 発明の数 1 (全4頁) 審査請求

❷発明の名称

バイオセンサ

②特 顧 昭61-202217

29HH 願 昭61(1986)8月28日

70発明 者 ⑦発 眀 者

森 垣 团 茂

大阪府門真市大字門真1006番地 松下電器產業株式会社內 大阪府門真市大字門真1006番地 松下電器產業株式会社内

②出 蹞 小 林

雄

松下電器産業株式会社

大阪府門真市大字門真1006番地

砂代 理

弁理士 中尾 敏男

外1名

2 ~- "

1、発明の名称

バイオセンサ

- 2、特許請求の範囲
 - (1) 少なくとも測定極と対極とからなる電極系を 備え、酵素と電子受容体と試料液の反応に際し この物質濃度変化を電気化学的に前記電極系で 検知し、前記試料液中の基質濃度を測定するパ イオセンサであって、前記電極系上に吸水性高 分子層を形成したことを特徴とするバイオセン サ。
- (2) 吸水性高分子層の厚さが、O.1~100 μで ある特許請求の範囲第1項記載のバイオセンサ。
- (3) 吸水性高分子が、デンプン系。カルポキシメ チルセルロース系、ゼラチン系。アクリル酸塩 来,ビニルブルコール来,ビニルピロリドン菜。 無水マレイン酸系からたる群のいずれかもしく はそれらの混合物である特許請求の範囲第1項記 載のバイオセンサ。
- (4) 吸水性高分子層の上に親水性の多孔体からな

る保液層を設けた特許請求の範囲第1項記載のバ イオセンサ。

3、発明の詳細な説明

産業上の利用分野

本発明は、種々の微量の生体試料中の特定成分 について、試料液を希釈することなく迅速かつ簡 易化定量することのできるパイオセンサに関する ものである。

従来の技術

従来、血液などの生体試料中の特定成分につい て、試料液の希釈や攪拌などの操作を行なうこと なく高精度に定量する方式としては、第3図に示 すようなバイオセンサが提案されている。このパ イオセンサは、絶縁基板15に白金などからなる 測定値11と対極12およびそれぞれのリード 13.14を埋設し、これらの電極系の露出部を 酸化還元酵素および電子受容体を含有する多孔体 16と測定妨害物質を沪別するための沪過膜10 で覆ったものである。試料液を多孔体16上へ滴 下すると、試料液化多孔体中の電子受容体が溶解 して試料液中の基質との間で酵素反応が進行し、電子受容体が還元される。反応が終了した試料液のうち、血液中の赤血球・白血球のような測定を妨害するような巨大タンパク等を形退膜10で炉退し、電子受容体、塩類などの低分子量のもののみを含む試料反応液を電極11・12上へ降下させる。電極上では前記の還元された電子受容体を電気化学的に酸化し、このとき得られた酸化電流値から、試料液中の基質避敗が求められるものであった。

発明が解決しようとする問題点

しかしこのような従来の構成では、センサとして一応使用できるが、電極上への試料反応液の降下が不均一になり、電極面が十分に濡れないため、気色が残留したり、電極面積が減少するという現象が生じ、測定値が不安定で、再現性が患かった。

本発明はこのような問題点を解決するもので、 測定極及び対極上に吸水性高分子層を設けること により、安定な液膜層を形成し、安定した制定を 可能とすることを目的とするものである。

5 ~- 2

必要な厚さの薄膜を電極上に直接形成することが できるという利点がある。

作用

この構成により、酵素と電子受容体と試料液と が反応した反応液が電極上へ降下し、電極上の吸 水性高分子層に吸収されて、電極上に密接し、電 極面を十分に覆ったゲル層が安定に形成されるた め、電極の濡れの不均一性や気泡の残留等は解消 でき、安定な電気化学的測定ができる。

実施例

以下、本発明の一実施例について説明する。

パイオセンサの一例として、グルコースセンサ について説明する。第1図は、グルコースセンサ の一実施例を示したもので、センサの構造の断面 図である。ポリエチレンテレフタレートからなる 絶談性基板Bにスクリーン印刷により、導電性カーボンペーストを印刷し、加熱乾燥することにより、測定板6、対極7からなる電極系と、図面では図示していないがリード部とを形成する。次に 電極系を部分的に優い、一定の電極而精が得られ

問題点を解決するための手段

この問題点を解決するために、本発明は少なくとも測定極と対極とからなる電極系上に電極面を十分に覆う吸水性高分子層を設けたものである。 これにより、酵素と電子受容体と試料液の反応が 終了した反応液を、前記吸水性高分子層が吸収し、 電極上にゲル化した均一な反応液液膜層が形成され、安定な測定を行なりものである。

水を吸収してゲル化する高分子として、 天然高 分子類では、 デンプン系 , セルロース系 , アルギン酸系 , ガム類 , タンパク質系 などがあり、 合成 高分子類では、 ビニル系 , アクリル酸系 , 無水マレイン酸系 , 水性ウレタン系 , ポリ電解質系など 種々あるが、 特に、 デンプン系 , カルポキシメチルセルロース系 , ゼラチン系 , アクリル酸塩系 , ビニルアルコール系 , ビニルピロリドン系 , マレイン酸系のものが好ましい。 これらは、 単独または混合物、 共重合体であっても良い。 これので、 あ高分子は容易に水溶液とすることができるので、 適当な濃度の水溶液を塗布、乾燥することにり、

6 ×-9

るように、絶縁性ペーストを前記同様に印刷、乾燥して絶縁層5を形成する。多孔体1とポリカーポネイト製で孔径14の戸過膜2は、保持枠3・4に保持されている。前記多孔体1は、酸化還元 酵素であるグルコースオキシターゼ100mと電子受容体としてフェリシアン化カリウム150mをもり、破骸衝液(pH5.6)1 配に溶解した被をセルロース紙に含浸、乾燥して作製したものである。9は本発明による吸水性高分子層であり、カルポキシメチルセルロースの15水溶液を電像上に直接強布、乾燥して得たもので、乾燥後の膜厚は2μである。

上記構成のグルコースセンサの多孔体1へ試料 液としてグルコース水溶液を滴下し、2分後に御 定極6の電位をアノード方向へ0-2 V / 砂の速度 で揺引した。滴下されたグルコースは、多孔体1 に担持されたグルコースオキシダーゼの作用で、 フェリシアン化カリウムと反応してフェロシアン 化カリウムを生成する。この反応の終了した試料 反応液が逆過級2を透過し、吸水性高分子層9に 吸収されて、電極上に密接しかつ電極面積を完全 に覆ったフェロシアン化カリウムを含む吸水性高 分子による水溶性ゲル層 9 が形成される。上記の アノード方向への掃引により、生成したフェロシ アン化カリウムがフェリシアン化カリウムに電気 化学的に酸化され、酸化電流のピークが得られる。 この酸化ピーク電流値は試料中のグルコース濃度 に対応している。

第2図に、この酸化ピーク電流値とグルコース 濃度との関係を示した。図中 A は、本発明のカル ボキシメチルセルロース薄膜層を設けた場合で、 B は従来例の薄膜層を設けない場合である。各グ ルコース濃度でそれぞれら回測定した平均値とパ ラッキの幅を示している。 A は良い直線性を示し、 各グルコース濃度でのパラッキも小さいが、従来 例のB ではパラッキが非常に大きく、一部で異常 に小さい電流値を示した。このように電流値が小 さい場合に電極上の状態を調べると、電極上の濡 れが悪く、電極の一部分しか漏れていない場合か、 または電極上及び電極間に気泡が残留している場

9 ~-9

さらに、血液を試料液として前記グルコースセンサで測定した場合にも、安定した値が得られた。そして図面では図示していないが、炉過膜2と吸水性高分子層9の間に、セルロース、レーヨン等の親水性多孔体の薄片を保液層として介在させた方が、試料液の沪過速度がより早くなり、炉液の吸水性高分子層への吸収も迅速、均一に行なうことができた。

上記実施例では、測定極と対極のみの二種電極 系について述べたが、参照極を加えた三電極方式 にすれば、より正確な測定が可能である。

また、電子受容体としては、上記実施例に用いたフェリシアン化カリウム以外にも、 p ーペンソキノン・フェナジンメトサルフェートなども使用できる。 さらに、上記実施例のセンサは酵素として、上記実施例のグルコースオキシダーゼ以外のアルコールオキシダーゼ、コレステロールオキシダーゼ、コレステロールセンサなどにも用いることができる。

発明の効果

合であることが分った。一方、吸水性高分子によるゲル層 9 を形成させた場合には、炉過された液量が少量であっても、電極上に安定で流動しにくい液層ができ、気泡の残留も見られず、電極面が完全に満れていることが分った。

本発明の吸水性高分子層は、乾燥状態のもとである一定の膜厚の範囲で有効に作用することが分り、高分子材料によってその範囲は少し異なる。例えば、上記カルボキシメチルセルロースの場合、O.5~50μの膜厚が適当であるが、アクリル酸塩系高分子のアクアキーブ105H(製鉄化学工業(株)製)の場合には、O.1~20μの範囲が選当である。種々検討した結果、安定なゲル層を形成するには、O.1~100μの範囲が好ましいことが分った。O.1μ以下の膜厚では、液層が流動しやすく安定なゲル層が得られず、また逆に100μよりも厚い膜厚では、試料液が数με~数十μεの酸量の場合、試料液の拡散が不十分でゲル化しない部分が生ずるために不適当であることが分った。

10 ~~ 9

以上のように本発明のパイオセンサは、電極系上に吸水性高分子層を設けることにより、少量の 被量でも十分に電極面を漏らす安定なゲル液層を 形成し、安定で正確な測定を可能にするという効 果が得られる。

4、図面の簡単な説明

第1図は本発明の一実施例であるバイオセンサ の断面図、第2図はバイオセンサの応答特性図、 第3図は従来のバイオセンサの断面図である。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

1 🖾

1 — 多孔体 2 — 才過膜

3.4 - 保持枠

5 一 枪标图

6 — 測定極 7 — 対極

8 -- 絶緣性基板

一吸水性高分子層

3 🔯

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第1区分 【発行日】平成5年(1993)6月22日

【公開番号】特開昭63-58149 【公開日】昭和63年(1988)3月12日 【年通号数】公開特許公報63-582 【出願番号】特願昭61-202217 【国際特許分類第5版】 GOIN 27/327

GOIN 21/32

[FI]

G01N 27/30 353 P 7235-2J

R 7235-2J

B 7235-2J

手統補正書

平成 4 年 3 月 4 日

特許庁長官殿

1 事件の表示

昭和 6 1 年 特 許 顕 第 202217 号

2 発明の名称

バイオセンサ

3 補正をする者

4 代 理 人 〒 571

作 所 大阪府門真市人字門真1006番地 松下電器 産業 株式会社内

氏 名 (7<u>242)</u> 弁理士 小銀治 明 (ほか 2名) **たまかにまめの**343-947 取的原産センター)

5 補正の対象

明細書の特許請求の範囲の概 明細書の発明の評細な説明の概

6、補正の内容

- (1) 明知書の特許請求の範囲の欄を別紙の通り補 下1.ます。
- ② 同第5頁第9行の「電気化学的測定ができる。」を「電気化学的測定ができる。さらには、センサへの振動に起因する応答電流の変動をも抑制できるなど、信頼性の高い測定ができるものである。」に補正します。
- (3) 同第8頁第5行の「いることが分った。」を「いることが分った。また、御定中にセンサを 振動させたところ従来例のBでは振動に対応し た応答電流の大きな変動が観測されたが、本発 明のAではほとんど認められないなど信頼性の 高い測定が可能であった。」に補正します。
- (4) 同第9頁第11行の「測定が可能である。」を「測定が可能である。また、濾過膜、保持棒、多孔体などの形状あるいはその有無についても上記実施例に制限されることはない。さらには、酵素や電子受容体の担持状態についても同様である。」に補正します。

2、特許請求の範囲

- (1) 少なくとも測定極と対極とからなる電極系を 備え、酵素と電子受容体と試料液の反応に際し での物質濃度変化を電気化学的に前記電極系で 検知し、前記試料被中の基質温度を測定するパ イオセンサであって、前記電極系上に吸水性高 分子層を形成したことを特徴とするパイオセン サ。
- ② 吸水性高分子層の厚さが、0.1~100 μ である特許請求の範囲第1項記載のパイオセン サ。
- ③ 吸水性高分子が、デンプン系,カルボキシメチルセルロース系,ゼラチン系,アクリル酸塩系,ビニルアルコール系,ビニルピロリドン系,無水マレイン酸系からなる群のいずれかもしくはそれらの混合物である特許請求の範囲第1項記載のパイオセンサ。
- (4) 吸水性高分子層の上に親水性の多孔体からなる保液層を設けた特許請求の範囲第1項記載のパイオセンサ。