■ Applications directes du cours

(Ex-SA5.1) Nombre d'oxydation

- 1) Déterminer le nombre d'oxydation de l'élément manganèse dans les espèces suivantes : MnO_4^- ; MnO_4^{2-} ; MnO_4^{3-} ; MnO_2 ; Mn_2O_3 ; $Mn(OH)_2$.
- **2)** Déterminer le nombre d'oxydation du carbone portant les groupes fonctionnels dans les espèces suivantes : l'éthane (CH_3CH_3) , l'éthanol (CH_3CH_2OH) , l'éthanol (CH_3CHO) et l'acide éthanoïque (CH_3COOH)

Rép : 1) VII; VI; V; IV; III; II;**2)**<math>-III; -I; I; III

Ex-SA5.2 Équilibrage de réactions et constante d'équilibre

Équilibrer les équations suivantes et calculer leurs constantes d'équilibre :

- 1) $Zn + I_2 \rightleftharpoons Zn^{2+} + I^{-}$
- 2) $Cr^{3+} + Cl_2 \rightleftharpoons Cr_2O_7^{2-} + Cl^{-}$

Données: $E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = 1,33 \ V$; $E^{\circ}(Cl_{2(\mathbf{g})}/Cl^{-}) = 1,36 \ V$; $E^{\circ}(Zn^{2+}/Zn) = -0,76 \ V$; $E^{\circ}(I_2/I^{-}) = 0,54 \ V$

Rép: 1) $Zn + I_2 \rightleftharpoons Zn^{2+} + 2I^-$ et $K^{\circ} = 1, 2.10^{44}$; 2) $2Cr^{3+} + 3Cl_2 + 7H_2O \rightleftharpoons Cr_2O_7^{2-} + 6Cl^- + 14H^+$ et $K^{\circ} = 1, 1.10^3$

(Ex-SA5.3) Équilibrage d'une réaction d'oxydoréduction

- 1) Écrire les demi-équation électroniques qui rendent compte de l'oxydation ménagée de l'éthanol en éthanal puis de l'éthanal en acide éthanoïque.
- 2) En milieu non acide, l'ion permanganate MnO_4^- est réduit en dioxyde de manganèse MnO_2 solide par les ions Fe^{2+} . Écrire l'équation bilan de la réaction.
- 3) Écrire les 1/2 équations électroniques du couple $Ni_2O_3/Ni(OH)_2$ en milieu basique.

Rép : 1) $CH_3CH_2OH + 2H_2O \rightleftharpoons CH_3CHO + 2e^- + 2H_3O^+$ et $CH_3CHO + 3H_2O \rightleftharpoons CH_3COOH + 2e^- + 2H_3O^+$; **2)** $MnO_4^- + 3Fe^{2+} + 2H_2O \rightleftharpoons 3Fe^{3+} + MnO_{2(s)} + 4OH^-$; **3)** $Ni_2O_3 + 2e^- + 3H_2O \rightleftharpoons 2Ni(OH)_2 + 2OH^-$

■ Potentiels

Ex-SA5.4) On donne $E^{\circ}(MnO_4^-/MnO_4^{2-})=0,56~V$ et $E^{\circ}(MnO_4^-/Mn^{2+})=1,51~V$. Calculer le potentiel standard du couple MnO_4^{2-}/Mn^{2+} .

Ex-SA5.5 Mélange fer-étain

On mélange $V_1 = 10,0 \ mL$ de solution de chlorure d'étain(II) à $0,100 \ mol.L^{-1}$ et $V_2 = 10,0 \ mL$ de solution de chlorure de fer(III) à $0,100 \ mol.L^{-1}$. On donne les potentiels standard des couples suivants : $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0,77 \ V$ et $E^{\circ}(Sn^{4+}/Sn^{2+}) = 0,15 \ V$.

- 1) Quelle est la composition finale du mélange?
- 2) En déduire le potentiel rédox des couples en solution (il s'agit du potentiel de la solution).

Rép: 1) $[Fe^{2+}] = 0.05 \ mol.L^{-1}$; $[Sn^{2+}] = [Sn^{4+}] = 0.025 \ mol.L^{-1}$; $[Fe^{3+}] = 2.3.10^{-12} \ mol.L^{-1}$; 2) $E = 0.15 \ V$

Ex-SA5.6) Pouvoir oxydant du permanganate

L'ion permanganate MnO_4^- est utilisé en tant qu'oxydant puissant.

- 1) Écrire l'expression du potentiel du couple MnO_4^-/Mn^{2+} ; la réarranger pour faire apparaître le pH.
- **2)** Tracer le diagramme de prédominance des espèces MnO_4^- et Mn^{2+} à pH=0, puis à pH=14.
- 3) Déterminer alors si l'ion permanganate peut oxyder les ions iodure I^- à pH=0 et à pH=14.
- 4) Conclure sur l'évolution du pouvoir oxydant du permanganate en fonction du pH.

Données : $E^{\circ}(MnO_4^-/Mn^{2+}) = 1,51 \ V \ ; E^{\circ}(I_2/I^-) = 0,62 \ V$

Rép : 1) $E = E^{\circ} - 0.096.pH + \log \frac{[MnO_{4}^{-1}]}{[Mn^{2+}]}$; **3)** possible à pH = 0, très défavorable à pH = 14

■ Piles

Ex-SA5.7) On considère deux compartiments ① et ② de volume V_1 et V_2 . La pile est constituée de deux électrodes : ① $[Cu \mid Cu^{2+}(C) \parallel Fe^{2+}(C), Fe^{3+}(C) \mid Pt]$ ② avec : $C = 0, 1 \ mol.L^{-1}$

- 1) Déterminer le potentiel d'électrode de chacune des électrodes; en déduire la polarité de la pile et sa f.e.m. initiale.
- 2) Ecrire l'équation-bilan de la réaction de fonctionnement de cette pile et calculer la constante de réaction correspondante.
- 3) Une solution de nitrate d'ammonium assure la jonction électrique entre les deux demi-piles. Analyser les déplacements des porteurs de charges à l'intérieur de la pile, sans oublier le pont, au cours de son fonctionnement.
- 4) Les métaux étant présents en excès dans chacune des demi-piles, déterminer la composition de chaque compartiment de la pile lorsqu'elle ne débite plus et la quantité d'électricité qu'elle a globalement débité pour :
- **4.a)** $V_1 = V_2 = 25 \ mL$
- **4.b)** $V_1 = 25 \ mL \ \text{et} \ V_2 = 10 \ mL$

Données : $E^{\circ}(Cu^{2+}/Cu) = 0.34 \ V \text{ et } E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77 \ V.$

Rép : 1) $E_1 = 0.31 \ V$; $E_2 = 0.77 \ V$; $E_1 < E_2 \ donc ①$ est l'anode (borne \bigcirc) et ② la cathode (borne \bigcirc); $f.e.m. = E_+ - E_- = 0.00 \ double = 0.00 \ double$ $E_2 - E_1 = 0,46 \ V; \ \textbf{2)} \ K^{\circ} = 3,8.10^{14}; \ \textbf{4.a)} \ [Fe^{2+}] = 0,2 \ mol.L^{-1}; \ [Cu^{2+}] = 0,15 \ mol.L^{-1}; \ [Fe^{3+}] = 4.10^{-9} \ mol.L^{-1}; \ Q = 240 \ C; \ \textbf{4.b)} \ [Fe^{2+}] = 0,2 \ mol.L^{-1}; \ [Cu^{2+}] = 0,12 \ mol.L^{-1}; \ [Fe^{3+}] = 3,6.10^{-9} \ mol.L^{-1}; \ Q = 96,5 \ C$

[Ex-SA5.8] Pile à combustible [ENSTIM 2000]

1) Compréhension de la pile :

①
$$[Pt \mid H_{2(g)}(1 \ bar) \mid H_2O_{(l)}, \ KOH(1 \ mol.L^{-1}) \mid O_{2(g)}(1 \ bar) \mid Pt]$$
 ②

- **1.a)** Dessiner la pile
- 1.b) Préciser sur ce schéma sa polarité et le sens de déplacement des électrons.
- 1.c) Noter sur le schéma la cathode, l'anode et leurs définitions. Calculer le potentiel de chaque électrode.
- **1.d)** Quel type de conduction a-t-on dans la potasse?
- 2) Étude de la pile :
- 2.a) Écrire les deux demi réactions ayant lieu aux deux électrodes dans le milieu électrolytique contenant la potasse.
- **2.b)** Déterminer la formule de la force électromotrice de cette pile pour des pressions en dihydrogène et dioxygène de 1 bar.
- 2.c) Pour une pile de 10 kW, calculer la charge débitée en une heure. En déduire la consommation en $g.h^{-1}$ en dihydrogène, puis en dioxygène.

Données : Nombre d'Avogadro : $\mathcal{N}_a=6,02.10^{23}\ mol^{-1}$; charge élémentaire : $e=1,6.10^{-19}\ C$; masses molaires : $M_{H_2} = 2 \ g.mol^{-1}$; $M_{O_2} = 32 \ g.mol^{-1}$; potentiel standard de $O_{2(g)}/H_2O_{(l)}$: $E^{\circ} = 1,23 \ V \ \text{à} \ pH = 0$

Rép : 1) Cathode : $E_{+} = 0.39 V$; anode : $E_{-} = -84 V$; **2)** $f.e.m = E_{+} - V_{-} = 1,23 V$; i = 8130 A; $Q = 2,93.10^{7} C$; $D(O_2) = 2,4 \text{ kg.h}^{-1} \text{ et } D(H_2) = 0,3 \text{ kg.h}^{-1}$].

(**Ex-SA5.9**) À $25^{\circ}C$, on réalise la pile suivante :

$$(-)\ Pt\ |\ H_2,\ 1\ bar\ |\ HCl,\ 10^{-2}\ mol.L^{-1}\ |\ Hg_2Cl_{2\downarrow}\ |\ Hg_{(l)}\ (+)$$

- 1) On mesure E = 510 mV. En déduire le potentiel normal E^0 du couple $Hg_2Cl_{2\downarrow}/Hg_{(l)}$.
- 2) Écrire la réaction qui se produit lorsque cette pile débite.

Ex-SA5.10) Soit la pile suivante :

$$(-) Pt \mid H_2, \ 1 \ bar \mid NaOH, c \mid HgO_{(s)} \mid Hg_{(l)} \ (+)$$

- 1) Écrire les réactions qui se produisent aux électrodes et la réaction globale.
- 2) Montrer que la f.e.m. de cette pile est indépendante de c.

(Ex-SA5.11) Soit la pile suivante : $Ag \mid Ag^+$ à 10^{-4} $mol.L^{-1} \mid Ag^+$ à 0,1 $mol.L^{-1} \mid Ag$

- 1) Calculer le potentiel de chaque électrode et en déduire la polarité des électrodes.
- 2) Calculer la f.e.m. de la pile.
- 3) Quel est le bilan de matière lorsque la pile débite? Calculer la valeur de $[Ag^+]$ à l'équilibre.

■ Exercices supplémentaires

Ex-SA5.12) On observe la réaction rédox $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$. Quelles sont les deux couples rédox mis en jeu? Déterminer les nombres d'oxydation des différents atomes.

(**Ex-SA5.13**) En milieu basique, une solution violette de d'ions permanganate MnO_4^- est transformée en une solution verte d'ions manganate MnO_4^{2-} . Que s'est-il passé? Quels sont les couples rédox mis en jeu?

Ex-SA5.14) En milieu basique, le chrome(III), sous forme de $Cr(OH)_4^-$, est oxydé par l'eau oxygénée H_2O_2 en une espèce bleue de formule CrO_5^{2-} (le nombre maximal d'oxydation du chrome étant de VI). Interpréter cette réaction.

Ex-SA5.15) une électrode d'argent $(E^{\circ}(Ag^{+}/Ag_{(s)}) = 0, 80 \ V)$ plonge dans une solution de $AgNO_{3}$ décimolaire. Calculer le potentiel E de cette électrode. La solution est diluée 1000 fois ; que devient le potentiel ?

Ex-SA5.16) calculer le potentiel d'une électrode à hydrogène dans les conditions suivantes : $\theta = 50^{\circ}C$, pH = 4 et $P(H_2) = 10 \ bar$.

Ex-SA5.17 Montrer que le cuivre ne réduit pas l'eau acidulée. Montrer par contre qu'il y a oxydation du cuivre si l'eau acidulée (on prendra pH = 0) contient du dioxygène. écrire la réaction ayant lieu. Le cuivre est-il oxydé en ion cuivre(I) ou en ion cuivre(I)?

Données : $E^{\circ}(O_2/H_2O) = 1,23 \ V$; $E^{\circ}(Cu^{2+}/Cu_{(s)}) = 0,34 \ V$ et $E^{\circ}(Cu^{+}/Cu_{(s)}) = 0,52 \ V$.

\blacksquare Influence de la solubilité et du pH

Ex-SA5.18) À une solution contenant $CuSO_4$ et NaCl telle que $[Cu^{2+}] = \frac{[Cl^-]}{2} = 0, 1 \ mol. L^{-1}$, on ajoute du cuivre en excès.

Montrer qu'il se produit la réaction $Cu_{(s)} + Cu^{2+} + 2Cl^{-} \longrightarrow 2CuCl_{\downarrow}$.

Calculer la constante K de cette réaction et en déduire l'état final.

Données : $pK_s(CuCl_{\downarrow}) = 7$; $E^{\circ}(Cu^{2+}/Cu_{(s)}) = 0,34 \ V$ et $E^{\circ}(Cu^{+}/Cu_{(s)}) = 0,52 \ V$.

Ex-SA5.19 On donne : $E^{\circ}(I_{2(s)}/I^{-}) = 0.53 \ V$; $E^{\circ}(I_{2(aq)}/I^{-}) = 0.62 \ V$ et $E^{\circ}(I_{3}^{-}/I^{-}) = 0.54 \ V$.

- 1) Calculer K pour la réaction : $I_{2(aq)} + I^- \leftrightarrows I_3^-$.
- 2) Calculer la solubilité du diiode dans une solution de KI à 0, 2 $mol.L^{-1}$.

[Ex-SA5.20] Comportement de l'éthanal dans l'eau [E3A]

L'éthanal est oxydable en acide éthanoïque et sa réduction conduit à l'éthanol.

- 1) Écrire les deux demi-équations redox relatives aux couples (1) ethanel/éthanol et (2) acide éthanoïque/éthanal.
- **2)** Pour un domaine de pH inférieur à 4,8, exprimer $E_1(pH)$ et $E_2(pH)$ relatifs aux deux couples à la température 298 K. On prendra, pour la frontière, des concentrations en espèces organiques égales à 0,10 $mol.L^{-1}$.

Données:

- Potentiels standards d'oxydoréduction à 298 $K: E_1^\circ(CH_3CHO/CH_3CH_2OH)=0,19~V$ et $E_2^\circ(CH_3COOH/CH_3CHO)=-0,10~V$
- On fera l'approximation suivante : $\frac{RT}{\mathcal{F}} \ln[X] = 0,059 \log[X]$.
- Constante d'acidité : $pK_a(CH_3COOH/CH_3COO^-) = 4, 8$.
- **3)** Pour un domaine de pH supérieur à 4,8, écrire la demi-équation redox relative au couple (2') CH_3COO^-/CH_3CHO dont le potentiel standard est $E_2^{'\circ}$. Déterminer $E_2^{'\circ}$.
- 4) Représenter le potentiel frontière de chaque couple en fonction du pH. Quelle conséquence peut-on déduire quant au solutions aqueuses d'éthanal?

■ Domaines de prédominance et d'existence

D'après la méthode des diagrammes de prédominance et/ou d'existence :

- on calcule grâce aux conventions choisies le potentiel de la frontière des domaines
- lorsque $E > E_f$, il s'agit du domaine de l'oxydant
- lorsque $E < E_f,$ il s'agit du domaine du réducteur.

(Ex-SA5.21) $E^{\circ}(Cl_{2(aq)}/Cl^{-}) = 1,40 \ V$. Déterminer les diagrammes de prédominance avec les deux conventions. On prendra $C = 0,1 \ mol.L^{-1}$.

(Ex-SA5.22) Dismutation de l'eau oxygénée Le peroxyde d'hydrogène (eau oxygénée) appartient à deux couples rédox : $E^{\circ}(H_2O_2/H_2O) = 1,77 \ V \ (\text{noté } E_1^{\circ})$ et $E^{\circ}(O_2/H_2O_2) = 0,69 \ V \ (\text{noté } E_2^{\circ})$.

Déterminer les différents domaines de prédominance des composés oxygénés si $[H_2O_2]=0,1\ mol.L^{-1}$, à pH=4, le dioxygène étant dans son état standard.

Quelle conclusion peut-on en tirer? Si le peroxyde d'hydrogène n'est pas stable, écrire l'équation de sa réaction de dismutation et calculer la constante d'équilibre.

Rép: $2H_2O_2 \rightleftharpoons 2H_2O + O_2$ et $\log K^{\circ} = 36$

(**Ex-SA5.23**) Le tungstène admet plusieurs degrés d'oxydation. Pour le couple $WO_{2(s)}/W_{(s)}$, on a $E^{\circ} = -0$, 12 V. Comment définir les domaines de prédominance?

Ex-SA5.24) Au^{3+} donne avec les ions chlorure le complexe $AuCl_4^-$. Connaissant $E^{\circ}(AuCl_4^-/Au_{(s)}) = 1,00 \ V$, définir les domaines de prédominance si pCl = 1.

■ Courbes de dosage rédox

Ex-SA5.25) Pour déterminer la quantité de cuivre déposée sur une lame de verre, on plonge celle-ci dans $10 \ mL$ d'une solution aqueuse convenable et on ajoute à l'aide d'une burette du chlorure de fer III $(FeCl_3)$ à $0, 2 \ mol.L^{-1}$.

- 1) Écrire la réaction et calculer sa constante.
- 2) Étudier et tracer E = E(v), v étant le volume de solution oxydante ajoutée.

Données: la masse de cuivre déposée sur le verre correspond à 0,1 mmol; $E^{\circ}(Cu^{2+}/Cu_{(s)}) = 0,34 \ V(E_1^0)$ et $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0,77 \ V(E_2^0)$.

(**Ex-SA5.26**) On dose 10 mL d'un mélange d'ions Fe^{2+} $(0, 1 \ mol. L^{-1})$ et Sn^{2+} $(0, 1 \ mol. L^{-1})$ par l'oxydant Ce^{4+} à $0, 1 \ mol. L^{-1}$ contenu dans une burette.

Étudier et tracer E = E(v), v étant le volume de solution oxydante versée.

Données: $E^{\circ}(Sn^{4+}/Sn^{2+}) = 0,14 \ V \ (E_1^0)$; $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0,77 \ V \ (E_2^0)$, et $E^{\circ}(Ce^{4+}/Ce^{3+}) = 1,7 \ V \ (E_3^0)$.

(**Ex-SA5.27**) 10 mL d'une solution de $FeSO_4$ à 0,1 $mol.L^{-1}$, maintenue à pH=0, est titrée par une solution de chromate de potassium $K_2Cr_2O_7$ à 0,02 $mol.L^{-1}$.

Étudier et tracer E=E(x) avec $x=\frac{v}{v_e},\,v_e$ étant le volume à l'équivalence que l'on calculera. On calculera également les valeurs de E pour $x=0,5\,;\,0,99\,;\,1,00\,;\,1,01$ et 2.

Données : $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0,77 \ V$, noté E_1^0 ; et $E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = 1,33 \ V$, noté E_2^0 .