

Artificial Intelligence

The Best & Worst Uses of Al in Software Testing

Ingo Philipp

The New Paradigm

André Mendes

The Next **Digital Frontier**

McKinsey Institute

The Next **Disruptive Force**

_____ Bloomberg

The New Black

MIT Technology Review

The New **Electricity**

Andrew Ng

Nothing has moved as fast as artificial intelligence is moving right now in the enterprise

We'll be able to fully **backup** our brains. We'll be able to think in the cloud

We're going to put **gateways** to the cloud in our brains

By the late 2030s human thought will be predominantly **non-biological**

We will be uploading our minds to computers & become immortal by 2045

We'll be able to fully **backup** our brains. We'll be able to think in the cloud

We're going to put **gateways** to the cloud in our brains

By the late 2030s human thought will be predominantly **non-biological**

We will be uploading our minds to computers & become immortal by 2045

We are just a baby step away from eliminating the need for **human thinking** in software testing We'll be able to fully **backup** our brains. We'll be able to think in the cloud

We're going to put **gateways** to the cloud in our brains

By the late 2030s human thought will be predominantly **non-biological**

We will be uploading our minds to computers & become immortal by 2045

I won't sell you artificial intelligence in software testing in the way miracle weight loss programs or **anti-aging** face creams (with micro beads!) are being sold

I won't sell you artificial intelligence in software testing in the way miracle weight loss programs or **anti-aging** face creams (with micro beads!) are being sold

Artificial Intelligence

Viewed narrowly, there seem to be almost as many **definitions** of intelligence as the number of experts asked to define it

TECHNICAL REPORT

IDSIA-07-07

A Collection of Definitions of Intelligence

Shane Legg

IDSIA, Galleria 2, Manno-Lugano CH-6928, Switzerland* shane@idsia.ch www.idsia.ch/~shane

Marcus Hutter

IDSIA, Galleria 2, Manno-Lugano CH-6928, Switzerland*
RSISE/ANU/NICTA, Canberra, ACT, 0200, Australia
marcus@hutter1.net www.hutter1.net

15 June 2007

Abstract

This paper is a survey of a large number of informal definitions of "intelligence" that the authors have collected over the years. Naturally, compiling a complete list would be impossible as many definitions of intelligence are buried deep inside articles and books. Nevertheless, the 70-odd definitions presented here are, to the authors' knowledge, the largest and most well referenced collection there is.

Artificial Intelligence

Viewed narrowly, there seem to be almost as many **definitions** of intelligence as the number of experts asked to define it

TECHNICAL REPORT IDSIA-07-07

A Collection of Definitions of Intelligence

Shane Legg

IDSIA, Galleria 2, Manno-Lugano CH-6928, Switzerland* shane@idsia.ch www.idsia.ch/~shane

Marcus Hutter

IDSIA, Galleria 2, Manno-Lugano CH-6928, Switzerland*
RSISE/ANU/NICTA, Canberra, ACT, 0200, Australia
marcus@hutter1.net www.hutter1.net

15 June 2007

Abstract

This paper is a survey of a large number of informal definitions of "intelligence" that the authors have collected over the years. Naturally, compiling a complete list would be impossible as many definitions of intelligence are buried deep inside articles and books. Nevertheless, the 70-odd definitions presented here are, to the authors' knowledge, the largest and most well referenced collection there is.

Emotional Thinking	Critical Thinking	Problem Solving
Logical Thinking	Communication Perception	Modelling Planning
Abstraction Learning	Imagination Creativity	Memory Experience
Understanding Knowledge	Judgement Analysis	Environment Manipulation
Environment Adaptation	Strategic Goal Setting	Instinctive Judgement

Intelligence is what is measured by **intelligence tests**

Edwin Boring

- The Turing Test
- The Reverse Turing Test
- The Visual Turing Test
- The Lovelace Test
- The Lovelace 2.0 Test
- The Winograd Schema Challenge
- The Ex Machina Test
- The Tokyo Test
- The AIQ Test
- The DeepMind Test
- The Marcus Test
- The IKEA Challenge
- The NCC Test

Emotional Thinking	Critical Thinking	Problem Solving
Logical Thinking	Communication Perception	Modelling Planning
Abstraction Learning	Imagination Creativity	Memory Experience
Understanding Knowledge	Judgement Analysis	Environment Manipulation
Environment Adaptation	Strategic Goal Setting	Instinctive Judgement

Intelligence is what is measured by **intelligence tests**

Edwin Boring

Intelligence measures an agent's ability to achieve **goals** in a wide range of **environments**

Shane Legg

Artificial intelligence is **anything** machines can't yet do

Chris Bishop

Emotional	Critical	Problem
Thinking	Thinking	Solving
Logical Thinking	Communication Perception	Modelling Planning
Abstraction Learning	Imagination Creativity	Memory Experience
Understanding	Judgement	Environment
Knowledge	Analysis	Manipulation
Environment	Strategic	Instinctive
Adaptation	Goal Setting	Judgement

General

• Artificial Intelligence •

Emotional	Critical	Problem
Thinking	Thinking	Solving
Logical Thinking	Communication Perception	Modelling Planning
Abstraction Learning	Imagination Creativity	Memory Experience
Understanding	Judgement	Environment
Knowledge	Analysis	Manipulation
Environment	Strategic	Instinctive
Adaptation	Goal Setting	Judgement

General

Artificial Intelligence

A machine with the ability to apply intelligence to **any problem**

Narrow

• Artificial Intelligence •

Narrow

• Artificial Intelligence •

Narrow

• Artificial Intelligence •

Narrow

• Artificial Intelligence •

Our **highest priority** is satisfying our customers

...except when it's hard

...or unprofitable

...or when we're busy

Narrow

• Artificial Intelligence •

5400+ Responses; 720+ Customers

Narrow

• Artificial Intelligence •

		Approach	Research	Use
	Test Strategy Optimization	Rule-Based System	No	Worst
	Automated Test Design	Learning System	No	Worst
	Redundancy Prevention	Rule-Based System	Yes	Best
•	Risk Coverage Optimization	Rule-Based System	Yes	Best
Ex	Automated xploratory Testing	Learning System	Yes	Worst
•	Resilient Automation	Learning System	Yes	Best
	False-Positive Detection	Rule-Based System	Yes	Best
	Automated Defect Diagnosis	Rule-Based System	No	Worst
	User Experience Analysis	Learning System	Yes	Worst
	Portfolio Inspection	Rule-Based System	Yes	Best

Narrow

• Artificial Intelligence •

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al uses production data to **prioritize** features, to define what to test, what to automate, and even what to build

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al interprets requirements
(e.g. user stories) and generates
the minimal number of test cases
from the **requirements** to
maximize risk coverage

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al eliminates and prevents **redundancies** in test case portfolios to achieve the same results in terms of business risk coverage but with less effort

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al interacts with the application, builds a model of it, discovers relevant functionality, reveals defects, and extracts test cases to reduce test effort

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al reduces the effort required for results analysis by indicating whether a failed test case actually detected a **defect** in the application, or just broke due to **technical issues** with the test case itself

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al proposes potential reasons that caused a test case to fail to help development reduce the time it takes to analyze the **root cause** of a defect

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al monitors and interprets **user emotions** during exploratory testing and links its findings back to the related application component to increase the precision of UX analysis

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Al tracks flaky test cases, unused test cases, test cases not linked to requirements, untested requirements, etc. to indicate **weak spots** in test portfolios

		Approach	Research	Use
	Test Strategy Optimization	Rule-Based System	No	Worst
	Automated Test Design	Learning System	No	Worst
	Redundancy Prevention	Rule-Based System	Yes	Best
•	Risk Coverage Optimization	Rule-Based System	Yes	Best
E	Automated Exploratory Testing	Learning System	Yes	Worst
•	Resilient Automation	Learning System	Yes	Best
	False-Positive Detection	Rule-Based System	Yes	Best
	Automated Defect Diagnosis	Rule-Based System	No	Worst
	User Experience Analysis	Learning System	Yes	Worst
	Portfolio Inspection	Rule-Based System	Yes	Best

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	★ LearningSystem	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	★ Learning System	Yes	Worst
Resilient Automation	★ LearningSystem	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	★ Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	↓ Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	★ Learning System	Yes	Worst
Resilient Automation	Learning ★ System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	★ Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

How to teach a machine doing exploratory testing?

Worst Uses

Best Uses

How to make test automation more robust against changes?

If you can define concrete steps to get to a solution, don't use machine learning

Valu

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Explicit Design

Explicit programming; fixed knowledge; no learning capabilities; fake and rigid intelligence

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

We do have **16 hours**. What's the best possible we can achieve?

We do have **16 hours**. What's the best possible we can achieve?

We do have **16 hours**. What's the best possible we can achieve?

We do have 6 hours and 5 testers. What's the best possible we can achieve?

We want at least 60% **risk coverage**. What does it cost?

Explicit Design

The science of getting computers to act by being **explicitly** programmed

We want at least 60% **risk coverage**. What does it cost?

Explicit Design

The science of getting computers to act by being **explicitly** programmed

Before we've had rules and data that led to answers, now we have answers and data the lead to rules

Linda Liukas

Explicit Design

The science of getting computers to act by being **explicitly** programmed

Machine Learning

Human Learning

The science of getting people to test without being **explicitly** told to do so

Machine Learning

The science of getting computers to act without being **explicitly** programmed

© Ingo **Philipp** © Andrew **Ng**

	Approach	Research	Use
Test Strategy Optimization	Rule-Based System	No	Worst
Automated Test Design	Learning System	No	Worst
Redundancy Prevention	Rule-Based System	Yes	Best
Risk Coverage Optimization	Rule-Based System	Yes	Best
Automated Exploratory Testing	Learning System	Yes	Worst
Resilient Automation	Learning System	Yes	Best
False-Positive Detection	Rule-Based System	Yes	Best
Automated Defect Diagnosis	Rule-Based System	No	Worst
User Experience Analysis	Learning System	Yes	Worst
Portfolio Inspection	Rule-Based System	Yes	Best

Machine Learning

Low-Code UI Automation

« Model-Based Test Automation »

No-Code UI Automation

« Model-Free Test Automation »

Machine Learning

Application « User's Perspective »

Machine Learning

Application « User's Perspective »

	■ Representation		
		ActionPoint	"{X=-1249,5, Y=866}"
		Adapter	Tricentis.Automation
🗱 Vehicle Data		AssociatedLabel	<no associated="" label=""></no>
al Make		Context	HtmlDocumentAdapter
I Wake		ControlArea	"{X=-1298,Y=845,Wi
Engine Performance [kW]		DefaultName	Next »
		Enabled	True
al Year of Construction	<u> </u>	Focused	False
Number of Coats	ᆜ	Id	nextenterinsurantdata
■ Number of Seats	<u> </u>	InteractiveElement	True
 Fuel		IsSteerable Label	True Next »
E 1 dei		Technical	Tricentis, Automation
al List Price [\$]	-	Visible	True
		VisualSelectionPriority	Default
al License Plate Number	4	Technical	
Usage		All	Ordered Values, Cou
al Annual Mileage		attributes_class	next button
Annual Mileage		attributes_id	nextenterinsurantdata
OK Next		attributes_name	Next (Enter Insurant
		attributes_type	button
👫 Insurant Data		Children	Ordered Values, Cou
# Product Data		ClassName	next button
		CurrentStyle	Tricentis.Automation
		Disabled	False
Incurance Cum [¢]		Document	Tricentis.Automation
Insurance Sum [\$]		EntryPoint Id	Tricentis.Automation
Payment Option	V	InnerHtml	Next »
	-	InnerText	Next »
OK Next	$\overline{}$	OuterHtml	" <button id="" nexte<="" th=""></button>
Oueta Dataila	$\overline{\Box}$	OuterText	Next »
!! Quote Details		ParentNode	Tricentis.Automation
		ShadowRoot	Tricentis.Automation
	/	Tag	BUTTON
		Tid.	

Model

« Machine's Perspective »

Application « User's Perspective »

	4	Representation	
		ActionPoint	"{X=-1249,5, Y=866}"
		Adapter	${\it Tricentis.} Automation$
🐩 Vehicle Data		AssociatedLabel	<no associated="" label=""></no>
ai Make		Context	HtmlDocumentAdapter
[II] IVIANC		ControlArea	"{X=-1298,Y=845,Wi
Engine Performance [kW]		DefaultName	Next »
	Щ.	Enabled	True
Year of Construction		Focused	False
Number of Coats		Id	nextenterinsurantdata
■ Number of Seats		InteractiveElement	True
▼ Fuel	\perp	IsSteerable Label	True
E raci	-	Technical	Next » Tricentis, Automation
al List Price [\$]	-	Visible	True
		VisualSelectionPriority	Default
License Plate Number	4	Technical	Deradic
Usage		All	Ordered Values, Cou
al Annual Mileage		attributes_class	next button
Armuar Mileage		attributes_id	nextenterinsurantdata
OK Next		attributes_name	Next (Enter Insurant
		attributes_type	button
👫 Insurant Data		Children	Ordered Values, Cou
Product Data		ClassName	next button
	Щ_	CurrentStyle	Tricentis.Automation
≚ Start Date	Щ_	Disabled	False
C [4]	Щ.	Document	Tricentis.Automation
Insurance Sum [\$]		EntryPoint	Tricentis.Automation
	✓	Id InnerHtml	nextenterinsurantdata
<u></u> гауттепс Орион		InnerHtmi	Next »
OK Next		OuterHtml	" <button id="" nexte<="" th=""></button>
		OuterText	Next »
🗱 Quote Details		ParentNode	Tricentis. Automation
	\Box	ShadowRoot	Tricentis.Automation
	_	Tag	BUTTON
		-u	

Model

« Machine's Perspective »

Test Case

« Tester's Perspective »

Model

« Machine's Perspective »

Business

« Test & Test Data Logic »

Technical

« Automation Logic »

Business

« Test & Test Data Logic »

Technical

« Automation Logic »

Business

« Test & Test Data Logic »

Technical

« Automation Logic »

Human Territory

C Create Vehicle Insurance		
Enter Vehicle Data		
Make	Audi	Input
Engine Performance [kW]	200	Input
Year of Construction	{Year}	Input
■ Number of Seats	5	Input
F uel	Petrol	Input
List Price [\$]	35.000	Input
a License Plate Number	B-CD 123	Input
≚ Usage	Private	Input
al Annual Mileage	10.000	Input
OK Next	{CLICK}	Input
← Enter Insurant Data		
Start Date	01/03/2016	Input
Insurance Sum [\$]	7Mio	Input
Payment Option	Yearly	Input
OK Next	{CLICK}	Input
♥ Verify Quote Details		

Business

« Human Territory »

→ Human Territory

- **!!** Vehicle Data
- **a** Make
- a Engine Performance [kW]
- a Year of Construction
- Number of Seats
- **Y** Fuel
- a List Price [\$]
- a License Plate Number
- Usage
- **a** Annual Mileage
- **OK** Next
- **!!** Insurant Data
- **#** Product Data
 - Start Date
 - Insurance Sum [\$]
 - Payment Option
 - **OK** Next
- # Quote Details

Identify By **Properties**

Identify By Image

Identify By **Anchor**

Identify By
Index

Technical

« Human Territory »

a Make

a Engine Performance [kW]

Year of Construction

Number of Seats

Y Fuel

a List Price [\$]

a License Plate Number

■ Usage

Annual Mileage

OK Next

Enter Insurant Data

Enter Product Data

Start Date

Insurance Sum [\$]

Payment Option

OK Next

Verify Quote Details

Audi Input 200 Input {Year} Input 5 Input Petrol Input 35.000 Input B-CD 123 Input Private Input 10.000 Input {CLICK} Input 01/03/2016 Input 7Mio Input Yearly

{CLICK}

Input

Input

Business

« Human Territory »

→ Machine Territory

!! Vehicle Data

a Make

a Engine Performance [kW]

a Year of Construction

■ Number of Seats

Y Fuel

a List Price [\$]

al License Plate Number

Usage

a Annual Mileage

OK Next

Insurant Data

!! Product Data

Start Date

Insurance Sum [\$]

Payment Option

OK Next

!! Quote Details

Identify By **Properties**

Identify By **Image**

Identify By **Anchor**

Identify By Index

Technical

« Machine Territory »

Human Territory

Create Vehicle Insurance		
€ Enter Vehicle Data		
al Make	Audi	Input
Engine Performance [kW]	200	Input
Year of Construction	{Year}	Input
■ Number of Seats	5	Input
F uel	Petrol	Input
a List Price [\$]	35.000	Input
a License Plate Number	B-CD 123	Input
■ Usage	Private	Input
Annual Mileage	10.000	Input
OK Next	{CLICK}	Input
₹ Enter Insurant Data		
€ Enter Product Data		
Start Date	01/03/2016	Input
Insurance Sum [\$]	7Mio	Input
Payment Option	Yearly	Input
OK Next	{CLICK}	Input
♥ Verify Quote Details		

Business

« Human Territory »

VisualRecognition

Technical Recognition

Deep Convolutional Neural Network Deep Recurrent Neural Network

Automobile | Truck | Motorcycle | Camper Home → Automobile Insurance Enter Vehicle Data Enter Insurant Data Enter Product Data Select Price Opt Make Volkswagen Engine Performance [kW] 200 + Date of Manufacture 10/10/2007 Number of Seats 4 Fuel Type Petrol List Price [\$] 18000 W857463 License Plate Number 24500 Annual Mileage [mi] Next »

Visual Recognition Deep Convolutional Neural Network

Events & Webinars

Resources

Services

VisualRecognition

Deep Convolutional Neural Network

Deep Recurrent
Neural Network

Technical Recognition

Deep Convolutional Neural Network Deep Recurrent Neural Network

⋄ It's like BDD without writing automation.

Discovery Phase

Find Scenarios

Definition Phase

Design Scenarios

Automation Phase

Automate Scenarios

Intelligent computer systems aren't made of **magic**, they are made of logic

Linda Liukas

TRICENTIS • Be an Al realist, not just a blind Al enthusiast. The most important intelligence isn't artificial yet.

The number one testing tool is not the computer, it is still the **human brain**

Jerry Weinberg

TRICENTIS • Do not hype yourself up into thinking that AI can achieve anything and everything beyond that in testing.

Don't expect AI to solve all your problems soon, do something about **natural stupidity** in testing now

Ingo Philipp

Jesse

Why do you have a framed picture of your ceiling fan?

December 2 at 6:01 PM · Like · 🖒 3

Jesse

...

December 2 at 6:01 PM · Like

Jesse

I realize that is a mirror.

December 2 at 6:01 PM · Like

Questions

The show is **over**. It's your turn.