Announcement

Programming assignment 6 due at 11:59pm on Jan. 8

Project

- Project final presentation
 - Time
 - 7pm, Jan. 16 (Thu)
 - 7pm, Jan. 17 (Fri)
 - Each group has < 7 minutes for presentation
 - Schedule: TBA

- Project submission
 - Report
 - Due: 11:59pm, Jan. 17
 - Submission link at BB => Project => Project Report Submission
 - Format: PDF, academic paper,
 - no page requirement
 - Each group only needs to submit once
 - Source code
 - In a .zip file
 - Do not include external libraries

Project

Grading

- Relevance to this course
- Substance, soundness
- Quality of the report and presentation

Usage of external code and tools

- At the end of your final presentation and report
- List the external resources (e.g., code, lib, tools) that you use
- We will check your code
- Explain how/why you use them

CS181: Artificial Intelligence

Final review

Kan Ren

Fall 2024

Final exam

- Time
 - 10:30 12:30am on Jan. 8 (Wed)
- Location
 - 教学中心301
- Format
 - Closed-book. You can bring an A4-size cheat sheet and nothing else
 - 10 multiple-choice questions; 4 problems
- Grade
 - 25% of the total grade
- 计算器 🗸
- 涂卡笔
- Some previous final exam paper is available at: Blackboard menu → Previous Exams

Final review

Disclaimer

- Topics covered in this review may not appear in the exam.
- Topics not covered in this review may appear in the exam.

Probabilistic temporal models

- Markov models
 - Markov assumption, Transition model
- Hidden Markov models
 - Transition model (states) + emission model (evidence)
 - Filtering: $P(X_t|e_{1:t})$
 - Forward algorithm
 - Most likely explanation: $\underset{x_{1:t}}{\operatorname{max}} P(x_{1:t}|e_{1:t})$
 - Viterbi algorithm
- Dynamic Bayes networks
- Approximate inference by particle filtering
 - Propagate forward → Weight → Resample

Markov decision processes

- Markov Decision Process
 - States S, Actions A, Transitions P(S'|S,A), Rewards R(S,A,S')
- Quantities:
 - Policy, Utility, Values, Q-Values
- Solve MDP
 - Bellman equation
 - Value iteration
 - Policy iteration
 - Policy evaluation + policy improvement

Reinforcement learning

- Reinforcement learning
 - MDP without knowing T and R
 - Offline planning vs. online learning
- Model-based learning
- Model-free learning
 - Policy evaluation: Temporal Difference Learning
 - Exponential moving average
 - Computing Q-values/policy: Q-Learning
- Exploration vs. Exploitation
 - Random exploration, exploration function
- Approximate Q-Learning
 - Feature-based representation of states

Supervised machine learning

- To learn an unknown target function f from the labeled examples
- Classification (f with discrete output value)
 - Naïve Bayes
 - Empirical rate, maximum likelihood estimation
 - Generalization and overfitting, smoothing, tuning
 - Perceptron, logistic regression, neural networks
 - Gradient ascent / descent
- Regression (f with continuous output value)
 - Linear regression, minimizing summed squared error, regularization

Unsupervised machine learning

- K-means
 - Clustering
 - Iteration:
 - Assign each data instance to the closest center
 - Assign each center to the average of its assigned data points
- Expectation-Maximization
 - Learning Mixture of Gaussians
 - Iteration:
 - E-step: Compute label distribution of each data point
 - M-step: Update each Gaussian based on its (proportionately) assigned points

Large language models

- Autoregressive models
- Word embedding
- Attention mechanism
 - Query, key, value
 - Self-attention
 - Causal mask
- Self-supervised learning
 - Multi-class classification on sequence data
- Decoding strategy
 - Beam search

Good luck!