

Introdução à Probabilidade e Estatística 2015/2016 - $2^{\rm o}$ Semestre

Ficha Nº 7: Intervalos de Confiança e Testes de Hipóteses

Resolução

- 1. O departamento de recursos humanos da empresa que pretende recrutar funcionários para uma nova área de negócio,...
 - (a) $H_0: \mu_X \le 115 \text{ vs} \quad H_1: \mu_X > 115.$

Podemos admitir a normalidade da classificação no teste dos homens através da interpretação do p-value do teste de Shapiro-Wilk (n < 50): p-value=0,425, logo não rejeitamos a hipótese $H_0: X \sim \mathcal{N}(\mu, \sigma)$ para 1% (5% ou 10%) de significância, uma vez que 0,01 (0,05 ou 0,1) $\not\geq$ 0,425.

 $t_{obs}=-4,314 \not> t_{14,0.99}=2,624$, logo não rejeitamos a hipótese nula para $\alpha=1\%$. Não existe evidência estatística que nos permita concluir que os candidatos do sexo masculino verificam o pressuposto.

- (b) p-value $\simeq 0.9995$.
- (c) [136, 002; 489, 814]
- (d) $H_0: \mu_X = \mu_Y \quad vs \quad H_1: \mu_X \neq \mu_Y$

Para além da normalidade da classificação no teste dos homens, podemos admitir a normalidade da classificação no teste das mulheres através da interpretação do p-value do teste de Shapiro-Wilk (n < 50): p-value=0,505, uma vez que não rejeitamos a hipótese $H_0: Y \sim \mathcal{N}(\mu, \sigma)$ para 1% (5% ou 10%) de significância, uma vez que 0,01 (0,05 ou 0,1) \ngeq 0,505.

Através da interpretação do teste de Levene ($H_0: \sigma_X^2 = \sigma_Y^2 vs H_0: \sigma_X^2 \neq \sigma_Y^2$), concluímos que não rejeitamos H_0 , uma vez que p-value=0,390 (> qualquer um dos níveis de significância usuais). Logo podemos assumir a igualdade das variâncias.

Como $|t_{obs}|=|\frac{-3.8}{6,175}|=0,615 \not> t_{28,0.995}=2,763$, não rejeitamos $H_0:\mu_X=\mu_Y$ para $\alpha=1\%$. Não existe evidência estatística que permita afirmar que as classificações médias no teste diferem significativamente entre sexos.

(Uma forma alternativa que nos permitia concluir o mesmo seria através do intervalo a 90% de confiança para a diferença de médias:

limite superior = $6,705 \Rightarrow \bar{x} - \bar{y} + \varepsilon = 6,705 \Rightarrow \varepsilon = 6,705 - (-3,8) = 10,505$. Logo

limite inferior = -3.8 - 10.505 = -14.305.

Como $0 \in IC_{90\%}(\mu_X - \mu_Y) =]-14,305;6,705[$, também irá pertencer ao $IC_{99\%}(\mu_X - \mu_Y)$, pelo que se chegaria à mesma conclusão a 1% de significância).

- 2. Um fabricante da indústria cerâmica pretende determinar se duas novas ligas...
 - (a) Podemos admitir a normalidade da temperatura máxima de resistência ao calor da liga premium nacional e da liga standard, uma vez que para o teste de Shapiro-Wilk (n < 50): $p-value_{premium\ nacional} = 0,129$ e $p-value_{standard} = 0,825$, logo não rejeitamos as hipóteses $H_0: X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$ e $H_0: X_3 \sim \mathcal{N}(\mu_3, \sigma_3)$ para 1% (5% ou 10%) de significância, uma vez que qualquer um dos $\alpha's$ usuais $\not\geq 0,129$ ou 0,825.

No caso da liga *premium* importada, já não podemos admitir a normalidade uma vez que p-value $_{premium\ importada} < 0,001$, o que conduz à rejeição de H_0 : $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$, pois qualquer um dos $\alpha's$ usuais $\geq p$ -value $_{premium\ importada}$.

- (b) $H_0: \mu_2 = 1535 \ vs$ $H_1: \mu_2 \neq 1535.$ $t_{obs} = 3,869 > t_{19,0.95} = 1,729$, logo rejeitamos a hipótese nula para $\alpha = 10\%$. Existe evidência estatística de que a temperatura média de resistência ao calor da liga premium nacional é significativamente diferente de 1535.
- (c) p-value $\simeq 0.001$.
- (d) (Atenção: Para a resolução desta alínea é necessário o valor da variância amostral da temperatura de resistência ao calor da liga standard que era apresentada neste exame numa primeira tabela que se pode encontrar no exercício 3 da Ficha n.º 1: $s_3^2 = 10,09^2$). Podemos dizer que $\sigma_3^2 \in]71,12;166,04[$ com 80% de confiança.
- (e) Através da interpretação do teste de Levene $(H_0: \sigma_2^2 = \sigma_3^2 \ vs \ H_0: \sigma_2^2 \neq \sigma_3^2)$, concluímos que não rejeitamos H_0 , uma vez que p-value=0,2 (> qualquer um dos níveis de significância usuais). Logo podemos assumir a igualdade das variâncias.

Sabe-se relativamente ao intervalo a 99% de confiança para a diferença de médias:

limite superior = 33,04816 $\Rightarrow \bar{x_2} - \bar{x_3} + \varepsilon = 33,04816 \Rightarrow \varepsilon = 33,04816 - 25,42954 = 7,61862$. Logo

limite inferior = 25,42954 - 7,61862 = 17,81092.

Como 0 não está contido no $IC_{99\%}(\mu_2 - \mu_3) =]17,81092;33,04816[$, podemos concluir que a temperatura média de resistência ao calor da liga premium nacional é significativamente diferente da temperatura média de resistência ao calor da liga standard, para 1% de significância.

- 3. Foram retiradas 25 peças da produção diária de uma máquina...
 - (a) [4.805; 5.595[;]4.730; 5.670[;]4.582; 5.818[

- (b) [4.789; 5.611[;]4.705; 5.695[;]4.529; 5.871[
- 4. Pretende-se analisar os salários, por sexo, do pessoal...
 - (a) [2571.86; 2640.98]
 - (b) A = 469; B = 1098; C = -225.69960
- 5. Registou-se o comprimento, em metros, dos saltos de 10 atletas portugueses do sexo masculino em provas de triplo salto em pista coberta...
 - (a) $1 \alpha = 0.9652$.
 - (b)]0.0244; 0.3315[.
 - (c) Dado que t = -1.2511, logo menor do que 1.383, não se rejeita a hipótese nula para uma significância de 10%.
- 6. O Serviço Nacional de Saúde (SNS) afirma que a proporção de asmáticos numa certa população masculina é inferior a 10%.
 - (a) $H_0: p \leq 0, 1$ vs $H_1: p > 0, 1$. Como $z_{Obs} = 2,593$ existe evidência suficiente nos resultados para afirmar (ao nível de significância de 5%) que a proporção de asmáticos numa certa população masculina é superior a 10%. Pelo que o médico deve avisar o SNS de que a sua estimativa não está correcta.
 - (b) p-value = 0.0048
 - (c) Potência de teste = 0.9515
 - (d) IC a 95% para a proporção : [0, 1048; 0, 2052].
- 7. Foram efectuados estudos em Lisboa com o objectivo de determinar a concentração de monóxido de carbono (CO) perto de vias rápidas.
 - (a) Como $\chi^2_{obs}=20.9$ não se rejeita H_0 para $\alpha=1\%.$
 - (b)]98.473; 102.527[.
 - (c) $n \ge 1174$.
- 8. Certa linha de fabrico está programada de modo a produzir uma percentagem de artigos defeituosos não superior a 3%.
 - (a) $H_0: p \le 0.03$ vs $H_1: p > 0.03$

$$z_{Obs} = \sqrt{50} \frac{0,04 - 0,03}{\sqrt{0,03 * (1 - 0,03)}} = 0,4145$$

Não se rejeita a hipótese nula, considerando um nível de significância de 5%. Ou seja, não existe evidência estatística suficiente para afirmar que o processo se encontrava fora de controlo, pelo que o encarregado agiu mal.

- (b) p value = P(Z > 0, 4145) = 0,3409.
- (c) $P(\text{Rejeitar}H_0|H_0\text{falsa}) = P(\overline{P} > 0,0697|p_0 = 0,035) = 0,0901.$

$$P(\text{Rejeitar} H_0 | H_0 \text{falsa}) = P(\overline{P} > 0,0697 | p_0 = 0,1) = 0,7611.$$

- 9. A poluição atmosférica é medida em dois locais distintos, um no centro de uma pequena cidade (Y) e outro numa zona rural, 15Km mais a sul, (X)...
 - (a)] -0.4992 2.206 * 0.51658; -0.4992 + 2.206 * 0.51658[=] 1.6389; 0.64027[. Existe evidência estatística suficiente para afirmar (com uma significância de 3%) que, em média, a poluição atmosférica é igual nos dois locais.
 - (b)]1,7879;6.0861[
- Dois laboratórios (A e B) avaliam a quantidade de cloro de amostras de água recolhidas à mesma hora de cada dia.
 - (a) Pelo 1º output não se rejeita (para um nível se significância de 5%) a hipótese nula da normalidade das população, quer para o Laboratório A (p-value=0.176) quer para o B (p-value=0.147). De igual modo, não se rejeita a hipótese nula de igualdade de variância pelo teste de Levene (p-value=0.952).

$$]-0,5482;0,4966[.$$

(b)
$$H_0: \mu_A = \mu_B \quad vs \quad H_1: \mu_A \neq \mu_B$$

Como p-value=0.916 não se rejeita H_0 para qualquer $\alpha=1\%$.

- 11. Um investigador pretende estudar a capacidade de concentração dos alunos do ensino universitário antes e depois do almoço.
 - (a) Como o p-value é igual 0.127não se rejeita a hipótese de normalidade da diferença dos dados.

$$]-0,7524;3,5524[$$

- (b) Como 0 ∈] − 0,7524; 3,5524[não se rejeita (para uma significância de 2%) a hipótese nula. Ou seja, não existe evidência suficiente nos resultados para afirmar que existe diferença entre a capacidade média de concentração antes e depois do almoço.
- (c) Como $\chi^2_{Obs} = 14,092$ não se rejeita (para uma significância de 5%) a hipótese nula. Ou seja, não existe evidência suficiente nos resultados para afirmar que a variabilidade da capacidade de concentração antes do almoço é diferente de 10.
- (d) p-value=0.238
- (e) Como $t_{Obs} = \frac{\overline{x} k}{3,957} \sqrt{10}$ então rejeita-se H_0 se $\frac{\overline{x} k}{3,957} \sqrt{10} > 1,833$. Donde se retira que $\overline{x} > k + 1,833 \frac{3,957}{\sqrt{10}}$. Então, $k + 1,833 \frac{3,957}{\sqrt{10}} = 56 \Rightarrow k = 53,706$.

- 12. A uma eleição concorrem três candidatos A, B e C.
 - (a) [0,4130; 0,5730].
 - (b) $z_{obs} = -0.816 > -1.645$ não se rejeita H_0 , com uma confiança de 95%.
 - (c) p-value=0,2061.
 - (d) Se $n_i = 23$.
- 14. Suponha que o teor de nicotina de duas marcas de cigarros foi analisado...
 - (a) Como $z_{obs} > 2,326$ rejeita-se H_0 , pelo que existe forte evidência estatística para afirmar, com uma confiança de 99%, que o teor médio de nicotina da marca A é superior ao da marca B.
 - (b) p-value $\simeq 0$
 - (c) Potência do teste= $P(\overline{X} > 2,5713|\mu_1 = 2,1) + P(\overline{X} < 2,4287|\mu_1 = 2,1) \simeq 1$, para uma confiança de 95%.
- 15. Para comparar a resistência ao esforço físico de duas populações, A e B...
 - (a) $\overline{y} = 15,882 \text{ e } s_V = 3,343.$
 - (b)]14,0557;17,7083[.
 - (c) $1 \alpha = 0.98$.
- 16. Com o objectivo de estudar algumas características dos jogadores de futebol que participam no Campeonato Europeu de Futebol de 2008...
 - (a) Pelo 1º output não se rejeita (para um nível se significância de 5%) a hipótese nula da normalidade das população, quer para Altura dos jogadores Checos (p-value=0.574) quer para a Altura dos jogadores Gregos (p-value=0.376). De igual modo, não se rejeita a hipótese nula de igualdade de variância pelo teste de Levene (p-value=0.317).
 -] 7.3374; 3.3374[.
 - (b) 5.3374.
 - (c) Não se rejeita (para uma significância de 5%) a hipótese nula. Ou seja, não existe evidência suficiente nos resultados para afirmar que existe diferença entre as alturas médias dos jogadores.
 - (d) Não existe evidência suficiente nos resultados para (com $\alpha = 5\%$) afirmar que a altura média dos jogadores checos é superior a 175cm.
 - (e) p-value=0.0375. Conclusão?
 - (f) $\overline{x} = 179.34$.
 - (g) Não existe evidência suficiente nos resultados para afirmar (com $\alpha=1\%$) que a variância das alturas dos jogadores checos é superior à variância das alturas dos jogadores gregos.

- 17. De 72 jogadores inquiridos, 36 jogam em equipas estrangeiras, 34 em equipas do país de origem e 2 não têm equipa.
 - A notícia é verdadeira. Existe evidência estatística que permite concordar com a notícia, ao nível de significância de 5%.
- 18. Foi levado a cabo um estudo para averiguar se a ausência às aulas durante o semestre de Inverno é maior num centro urbano do norte ou do sul.
 - (a) [0.0114; 0.1602]
 - (b) Rejeitamos H_0 , ao nível de significância de 1%. Existe uma forte evidência estatística de que no Inverno se falta mais às aulas na região do Norte.
 - (c) 0.0012
 - (d) 0.97
- 19. Tome-se o seguinte exemplo, relativo a dois tipos de geradores (I e II)...
 - (a) Não existe evidência estatística suficiente (para um $\alpha = 1\%$) para afirmar que o valor esperado da produção de energia eléctrica é diferente nos dois geradores.
 - (b) p-value $\simeq 1$. Conclusão?
 - (c) Não existe evidência estatística suficiente (para um $\alpha=5\%$) afirma que o desvio padrão da produção de energia eléctrica através do gerador II é diferente de 4KW/h.
 - (d)]0.5077; 3.5989[.

(Dulce Gomes e Patrícia Filipe, IPE 2014/2015)