第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

教学计划: 4次课-12学时

第二章 一维随机变量及其分布

第一节 随机变量

- ➡随机变量的意义
 - 随机变量的定义
 - 随机变量的分类

一. 随机变量的意义

```
引例: 问题: 事件还有没有更方便的表示方法?
E_1: 将一枚硬币抛掷3次,观察H,T出现的情况。
S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
= \{ HHT, HTH, THH \} = \{ X = 2 \} P(A) = P\{X = 2 \}
= \{ HTT, THT, TTH, TTT \} = \{ X \le 1 \} P(B) = P\{ X \le 1 \}
随机变量: X — 一次试验中H出现的次数
     HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
 X(e)
      3
 注: ▶ 用随机变量的取值表示事件比样本点更方便。
```


一. 随机变量的意义

引例1:

 E_1 :将一枚硬币抛掷3次,观察H,T出现的情况。

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$A = \{ 在 - 次试验中 H 出现两次 \} = \{ X = 2 \} P(A) = P\{X = 2 \}$$

$$B = \{ \text{ 在一次试验中} H \text{ 出现的次数不超过一次 } \} = \{ X \leq 1 \}$$

随机变量: X — 一次试验中H出现的次数 $P(B) = P\{X \le 1\}$

 e
 HHHH,HHT,HTH,HTT,THH,TTT

 X(e)
 3
 2
 2
 1
 2
 1
 1
 0

注: ▶用随机变量的取值表示事件比样本点更方便。

▶将随机试验的结果数量化,从而将随机事件数量化,以便 更好地从数量上研究随机现象中的统计规律性。

一. 随机变量的意义

- 注: ▶用随机变量的取值表示事件比样本点更方便。
 - ▶将随机试验的结果数量化,从而将随机事件数量化,以 便更好地从数量上研究随机现象中的统计规律性。
 - ▶随机变量概念的产生是概率论发展史上的重大事件。 引入随机变量后,对随机现象统计规律的研究,就由 对事件及事件概率的研究扩展为对随机变量及其取值 概率的研究。

第二章 一维随机变量及其分布

第一节 随机变量

- ✓ 随机变量的意义
- **M**随机变量的定义
 - 随机变量的分类

二. 随机变量的定义

定义: 设随机试验E的样本空间 $S = \{e\}$,如果对于每一个 $e \in S$,都有一个实数 X(e) 与之对应,这样得到了一个 定义在S上的单值实值函数 X(e),称 X = X(e) 为随机变量。 X(e) 的所有可能取值的集合称为值域,记为 R_x

注:
$$X = X(e_i) = \begin{cases} x_i, & e_i$$
不是实数
$$e_i, & e_i$$
是实数

例如: E_2 : 记录120急救台一昼夜接到的呼叫次数。 $S = \{0, 1, 2, 3, \dots 100, \dots\}$ $X(e_i) = e_i$

X — —昼夜接到的呼叫次数 = $\{X > 10\}$

 $A = \{ -$ 昼夜接到的呼叫次数大于10次 $\} = \{ 11, 12, \dots 100, \dots \}$

注:

▶随机变量与普通函数的区别:

普通函数: 定义在实数轴上, 由定义域可知它取什么值.

随机变量: 1) 定义在样本空间上(样本空间的元素不一定是实数);

- 2) 由试验只能预知其取值范围,而在一次试验之前, 无法预知它取什么值;
- 3) 它取各个值有一定的概率.

▶随机变量的表示:

随机变量通常用大写字母表示: X,Y,Z

随机变量的取值通常用小写字母表示: x, y, z

第二章 一维随机变量及其分布

第一节 随机变量

- ✔ 随机变量的意义
- ✓ 随机变量的定义
- **随机变量的分类**

三. 随机变量的分类

已知100个产品中有5急数备,基**核**转**到协海的聚数**次, **X** 一 所取的**X**个产品中的次**的数**...**X**= $\{0\}$, $\{0\}$, $\{0\}$

离散型随机变量: 所有可能的取值可以一一列举。

例如: "取到次品的个数",

"收到的呼叫次数"等等.

随机 变量

非离散型随机变量: 所有可能的取值有无穷多个, 并且不能一一列举, 而是充满一个区间。

例如: "灯泡的寿命",

"测量误差"等等.

—— 连续型随机变量

第二章 一维随机变量及其分布

第一节 随机变量

- ✓ 随机变量的意义
- ✓ 随机变量的定义
- ✓ 随机变量的分类

第二章一维随机变量及其分布

第一节 随机变量 $P(A) = P\{X \le 1\}$ 第二节 离散型随机变量及其分布 第三节 随机变量的分布函数 第四节 连续型随机变量及其分布 第五节 随机变量函数的分布

第二章 一维随机变量及其分布

第二节 离散型随机变量及其分布

- **离**散型随机变量的分布律
 - 几种常见的离散型随机变量的分布

一. 离散型随机变量的分布律

引例 如图中所示,从中任取 3 个球,其中取到的白球数 X

是一个随机变量。

X 可能取的值是 0,1,2 离散型随机变量

X 取每个值的概率为:

$$P(X=0) = \frac{C_3^3}{C_5^3} = \frac{1}{10}$$

$$S = (X = 0) \bigcup (X = 1) \bigcup (X = 2)$$

$$1 = P(S) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$P(X=1) = \frac{C_2^1 C_3^2}{C_5^3} = \frac{6}{10}$$

$$P(X=2) = \frac{C_2^2 C_3^1}{C_5^3} = \frac{3}{10}$$

$$X = 0$$
 1 2
 $P_k = \frac{1}{10}$ $\frac{6}{10}$ $\frac{3}{10}$

离散型随机变量的分布律, 概率分布

1. 定义: 设离散型随机变量 X 所有可能的取值为有限个或可列无穷多个,如: x_k , $k = 0,1,2 \cdots$

则 称 $P(X = x_k) = p_k$ 为离散型随机变量X 的概率分布或 分布律.

注: 分布律可以列表给出:

X x_0 x_1 x_2 \cdots x_n \cdots p_k p_0 p_1 p_2 \cdots p_n \cdots

2. 分布律的性质

分布律图:

(1)
$$p_k \ge 0$$
, $k = 0, 1, 2 \cdots$

$$(2)\sum_{k=0}^{\infty}p_k=1$$

注: ➤ 一般, 求分布律时需验证这两条性质。若成立则称得上 是分布律, 否则说明分布律求错。

分布律可以列表给出:

$$X$$
 x_0 x_1 x_2 \cdots x_n \cdots P_k p_0 p_1 p_2 \cdots p_n \cdots

例1 一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,各信号灯工作相互独立,且红绿灯显示的时间相等。以 *X* 表示该汽车首次遇到红灯前已通过路口的个数,求: *X* 的分布律。

解: X 可取值 0, 1, 2, 3

设
$$A_i = \{\hat{\mathbf{x}}i \cap \mathbf{B} \cup \mathbf{B} \cup \mathbf{y}\}, i=1,2,3 \quad P(A_i) = 1/2$$
$$\overline{A_i} = \{\hat{\mathbf{x}}i \cap \mathbf{B} \cup \mathbf{B} \cup \mathbf{y}\}, i=1,2,3$$

则: $P(X=0) = P(A_1)=1/2$

X表示该汽车首次遇到 红灯前已通 过的路口的 个数

$$P(X = 1) = P(\overline{A}_1 A_2) = P(\overline{A}_1) P(A_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(X=2)=P(\overline{A}_{1}\overline{A}_{2}A_{3})=P(\overline{A}_{1})P(\overline{A}_{2})P(A_{3})=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{8}$$

X表示该汽车首次遇到红灯前已通过的路口的个数

设 $A_i = \{ \hat{\mathbf{x}} \hat{\mathbf{i}} \cap \mathbf{B} \cup \mathbf{B} \cup \mathbf{b} \}, i=1,2,3$

$$P(X=3) = P(\overline{A}_1 \overline{A}_2 \overline{A}_3) = P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

于是得其分布律为:

X	0	1	2	3	3
P_k	$\frac{1}{2}$	1 4	1 8	1 8	$\sum_{i=0} P(X=i) = 1$

概率分布图:

于是得其分布律为:

3. 分布律的作用

例2 某加油站代营出租汽车业务,每出租一辆汽车可从出租公司得到 30元. 因代营业务,每天要多付给职工服务费 600元。设每天出租汽车数 *X* 是一个随机变量,它的分布律如下:

\boldsymbol{X}	10	20	30	40	
P_k	0.15	0.25	0.45	0.15	

求: 因代营业务得到的收入大于当天的额外支出的概率。

分析: 所求概率为

$$P{30X > 600} = P{X > 20}$$

注意到: X 10 20 30 40 P_k 0.15 0.25 0.45 0.15

所以得:
$$P\{X > 20\} = P\{X = 30\} + P\{X = 40\} = 0.45 + 0.15 = 0.6$$

 $\{X > 20\} = \{X = 30\} \cup \{X = 40\}$

因此,加油站因代营业务得到的收入大于支出的概率为 0.6。

离散型随机变量分布律的作用:

计算事件的概率

分布律 —— 算概率

第二章 一维随机变量及其分布

第二节 离散型随机变量及其分布

- ✓ 离散型随机变量的分布律
- 一九种常见的离散型随机变量的分布
 - (0-1)分布
 - 二项分布
 - 泊松分布

离散型随机问题

二. 几种常见的离散型随机变量的分布

1. (0-1)分布

若随机变量X只取0与1两个值,它的分布律为:

$$P(X = k) = p^{k} (1-p)^{(1-k)}, k = 0, 1 0$$

则称 X 服从 (0-1)分布,记为: $X \sim (0,1)$

列表:
$$X \mid 0 \mid 1$$
 $P_k \mid 1-p \mid p$

注: (0-1)分布的概率模型应用很广,比如:

「检查产品的质量(正品与次品) 有奖债券是否中奖(中与不中) 对婴儿性别进行登记(男与女) 高射炮射击敌机(中与不中).

例3 已知某射手的命中率为0.8.

求:射击一次击中目标次数X的分布律.

解: 分布律为: $\frac{X}{P_k}$ 0 1 $X \sim (0,1)$

第二章 一维随机变量及其分布

第二节 离散型随机变量及其分布

- ✔ 离散型随机变量的分布律
 - 几种常见的离散型随机变量的分布
 - ✔ (0-1)分布
 - 二项分布
 - 泊松分布

二项分布

- (1) 贝努利概型
 - *n*次相互独立试验
 - 贝努利概型
- (2) 二项分布
 - 二项分布的性质
 - 二项分布的应用

2. 二项分布

(1) 贝努利概型

 1^{0} n 次相互独立试验: 重复进行n次试验,若各次试验的结果 互不影响,即每次试验结果出现的概率都不受其它各次 试验结果的影响,则称这n次试验是相互独立的。

2^0 贝努利概型:

 $oxed{1}$ 设随机试验 E 只有两种可能的结果: $\left\{egin{array}{c} oxed{x} & ox$

且在一次试验中 A 发生的概率为: P(A)=p (0

 $\binom{2}{n}$ 将试验 E 独立地重复n次,则称这样的 n 次重复独立试验为 n 重贝努利试验.

2^0 贝努利概型:

设随机试验 E 只有两种可能的结果: $\left\{\begin{array}{l} 事件 A 发生 & P(A)=p \\ \hline 事件 A 没发生 \end{array}\right.$

将试验 E 独立地重复n次,则称这样的 n 次重复独立试验为 n 重贝努利试验.

 $X \longrightarrow n$ 次独立试验中A发生的次数, 求: X 的概率分布.

例4 设生男孩的概率为p, 生女孩的概率**为**q=1-p,

X 一 随机抽查的4个婴儿中男孩的个数

求: X 的概率分布.

4重贝努利概型

生男孩的概率为p, 设 A_{i} = {第i个婴儿是男孩}

X — 随机抽查的4个婴儿中男孩的个数 X 可能的**取值 0, 1, 2, 3, 4.**

$$P(X=0) = P(\overline{A}_1 \overline{A}_2 \overline{A}_3 \overline{A}_4) = P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_3) P(\overline{A}_4)$$

生男孩的概率为p, 设 A_{i} = {第i个婴儿是男孩}

X — 随机抽查的4个婴儿中男孩的个数 X 可能的取值 0, 1, 2, 3, 4.

生男孩的概率为p, 设 A_i = {第i个婴儿是男孩}

X — 随机抽查的4个婴儿中男孩的个数X 可能的取值 0, 1, 2, 3, 4.

$$X$$
的概率分布: $P\{X=k\}=C_4^k p^k (1-p)^{4-k}, \quad k=0,1,2,3,4$

X—随机抽查的4个婴儿中男孩的个数 4重贝努利概型 X 可能的取值 0, 1, 2, 3, 4. 生男孩的概率为p

$$X$$
的概率分布是: $P\{X=k\}=C_4^kp^k(1-p)^{4-k}, \quad k=0,1,2,3,4$

推广:将该分布律推广到n重贝努利概型

X - m 次独立试验中A发生的次数, P(A) = p X 可能的取值 0, 1, 2, 3, ..., n.

则X的概率分布是:

$$P{X = k} = C_n^k p^k (1-p)^{n-k}, k = 0,1,2,\dots,n$$

(2) 二项分布

若用 X 表示 n 重贝努利概型中事件A 发生的次数, P(A) = p 它的分布律为:

$$P(X=k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,2,\dots,n$$

则称 X 服从参数为 n,p ($0) 的二项分布。记为: <math>X \sim B(n,p)$

注: ightarrow 显然它满足: $P(X=k) \ge 0$

$$\sum_{k=0}^{n} C_{n}^{k} p^{k} (1-p)^{n-k} = (p+q)^{n} = 1$$

- P(X = k)是 $(p+q)^n$ 的二项式展开式中的第k项,因此称为二项分布的分布律。
- \rightarrow 当 n=1 时,二项分布即为(0-1)分布。

二项分布 $X \sim B(n, p)$ 的性质:

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

$$P(X = 0) = C_{10}^{0} 0.7^{0} 0.3^{10}$$

$$P(X = 1) = C_{10}^{1} 0.7^{1} 0.3^{9}$$

$$P(X = 2) = C_{10}^{2} 0.7^{2} 0.3^{8}$$

$$\vdots$$

$$P(X = 7) = C_{10}^{7} 0.7^{7} 0.3^{3}$$

$$\vdots$$

$$P(X = 10) = C_{10}^{10} 0.7^{10} 0.3^{0}$$

$$P(X = k) = C_{10}^{k} 0.7^{k} 0.3^{10-k}$$
$$k = 0, 1, 2, \dots, 10$$

$X \longrightarrow 10$ 次独立试验中A发生的次数, $P(A) = 0.7, X \sim B(10,0.7)$

对于固定n 及p,当k增加时,概率P(X=k) 先是随之增加直至达到最大值,随后单调减少.

二项分布的应用:

3重贝努利概型

例5 已知100个产品中有5个次品,现从中<mark>有放回地取3次</mark>,每 次任取1个,求:在所取的3个产品中恰有2个次品的概率.

解: 因为这是有放回地取3次,因此这3次试验的条件完全相同

且独立,它是3重贝努里试验.

设X为所取的3个产品中的次品数,

则 $X \sim B$ (3, 0.05)

所求概率为:

$$P(X = 2)$$

= $C_3^2(0.05)^2(0.95) = 0.007125$

$$E \begin{cases} A$$
发生 $P(A)=p \\ A$ 没发生

E: 独立重复n次

X: n次中A的次数

 $X \sim B(n,p)$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

$$P(X = k) = C_3^k 0.05^k (0.95)^{3-k}$$

例5 已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求:在所取的3个产品中恰有2个次品的概率.

解: 设 X 为所取的3个产品中的次品数,则 $X \sim B$ (3, 0.05)

$$P(X = k) = C_3^k 0.05^k (0.95)^{3-k}$$

至少有2个次品的概率:

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$

= 0.0072

次品少于2个的概率:

$$P(X < 2) = P(X = 0) + P(X = 1)$$

= 0.9928

$$P(X = 0) = (0.95)^{3} = 0.8574$$

$$P(X = 1) = 3 \cdot 0.05 \cdot (0.95)^{2} = 0.1354$$

$$P(X = 2) = 3 \cdot 0.05^{2} \cdot 0.95 = 0.0071$$

$$P(X = 3) = 0.05^{3} = 0.0001$$

例6 若一年中参加人寿保险者里面 现有10000个人参加人寿保险。

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

 $C_{10000}^{k}(0.005)^{k}(0.995)^{10000-k}$

1万重贝努利概型

试求: 在未来一年中, 这些投保人中:

- (1)有10人死亡的概率;
- (2)死亡人数不超过10人的概率.

解: 这是贝努利概型

设X: 10000个投保人中死亡人数

则 $X \sim B(10000, 0.005)$

(1) 有10人死亡的概率为:

$$P(X = 10) = C_{10000}^{10} (0.005)^{10} (0.995)^{9990}$$

 $E \begin{cases} A$ 发生 $P(A)=p \\ A$ 没发生

E: 独立重复n次

X: n次中A的次数

 $X \sim B(n, p)$

近似计算

$X \sim B(10000, 0.005)$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

(2) 死亡人数不超过10人的概率是:

$$C_{10000}^{k}(0.005)^{k}(0.995)^{10000-k}$$

$$P(X \le 10) = P(X = 0) + P(X = 1) + \dots + P(X = 10)$$

$$= \sum_{k=0}^{10} C_{10000}^{k} (0.005)^{k} (0.995)^{10000-k}$$

$$= \sum_{k=0}^{10} C_{10000}^{k} (0.005)^{k} (0.995)^{10000-k}$$

近似计算:

- (1) 泊松定理---Ch2
- (2) 中心极限定理---Ch5

第二章 一维随机变量及其分布

第二节 离散型随机变量及其分布

- ✓ 离散型随机变量的分布律
 - 几种常见的离散型随机变量的分布
 - ✔ (0-1)分布
 - ✓ 二项分布
 - → 泊松分布

3. 泊松分布

若随机变量X的所有可能取值为: 0, 1, 2, ..., ...

而它的分布律为:

$$P(X=k)=rac{\lambda^k e^{-\lambda}}{k!}$$
, $k=0,1,2,\cdots$,其中 $\lambda>0$ 是常数,

则称 X 服从参数为 λ 的泊松分布, 记为 $X \sim P(\lambda)$

注: ▶泊松分布满足分布律的两个条件:

$$P(X=k) \ge 0, \quad \sum_{k=0}^{\infty} P(X=k) = 1$$

证明:
$$\sum_{k=0}^{+\infty} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \left[\sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} \right] = e^{-\lambda} \left[\sum_{k=0}^{+\infty} \frac{\lambda^k}{k!} \right] = 1$$

无穷级数

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

▶泊松分布 $X \sim P(\lambda)$ 的图形特点:

泊松分布表---P383附表3

X: 120急救台收 到的呼叫次数

$$X \sim P(\lambda = 12)$$

$$P(X=k) = \frac{12^k e^{-12}}{k!}$$

$$P(X=0)=e^{-12}$$

$$P(X=1)=12e^{-12}$$

$$P(X=2) = \frac{12^2 e^{-12}}{2!}$$

$$P(X=10) = \frac{12^{10}e^{-12}}{10!}$$

$$P(7 \le X \le 10) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)$$

$$F(x) = P(X \le x) = \sum_{k=0}^{x} \frac{\lambda^k e^{-\lambda}}{k!}$$

附表 3 泊松分布表 · 383 ·

附表 3 泊松分布表

$P(X \leqslant x) =$	$\sum_{k=0}^{x} \frac{\lambda^k e^{-\lambda}}{k!}$
----------------------	--

					λ				
x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.9048	0.8187	0.7408	0.6730	0.6065	0.5488	0.4966	0.4493	0.4066 0.7725
2	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442 0.9659	0.8088	0.7723
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865
5	AL PASS	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986 0.9998	0.9977 0.9997
6	The later	0 001	0810	3183 0.1	1,02 30981	0 883	1.0000	1.0000	1.0000

MALO	Gal Hass	10 1 8644	Las egac	104 100	λ	1.0 6841	O Face	Sel era	Call Le
x	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8		1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	9 996	10 228	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	9 1 805	10 221	150 3671	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	0 1 8 200	0 1880	0710	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	d d	to I say	P31	THE STA	1.0000	0.9999	0.9997	0.9992	0.9980
100									

3,50.0	A SERVICE STATE OF ST								
x	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
0	0.0041	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001
1	0.0266	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008
2	0.0884	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042
3	0.2017	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149
4	0.3575	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403
5	0.5289	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885
6	0.6860	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649
7	0.8095	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687
8	0.8944	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918
9	0.9462	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218
10	0.9747	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453
11	0.9890	0.9799	0.9661	0.9466	0.9208	0.8881	0.8487	0.8030	0.7520
12	0.9955	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364
13	0.9983	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981
14	0.9994	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400
15	0.9998	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665

P383附表3
$$P(X=k) = \frac{12^k e^{-12}}{k!}$$

· 384 ·

$$P(X \le x) = \sum_{k=0}^{x} \frac{\lambda^k e^{-\lambda}}{k!}$$

$$P(X \le x) = \sum_{k=0}^{x} \frac{12^{k} e^{-12}}{k!}$$

1		A A								
x	10.0	11.0	12.0	13.0	14.0	15.0				
0	0.0000	0.0000	0.0000	1						
1	0.0005	0.0002	0.0001	0.0000	0.0000	1 8				
2	0.0028	0.0012	0.0005	0.0002	0.0001	0.0000				
3	0.0103	0.0049	0.0023	0.0010	0.0005	0.0002				
4	0.0293	0.0151	0.0076	0.0037	0.0018	0.0009				
5	0.0671	0.0375	0.0203	0.0107	0.0055	0.0028				
6	0.1301	0.0786	0.0458	0.0259	0.0142	0.0076				
7	0.2202	0.1432	0.0895	0.0540	0.0316	0.0180				
8	0.3328	0.2320	0.1550	0.0998	0.0621	0.0374				
9	0.4579	0.3405	0.2424	0.1658	0.1094	0.0699				
10	0.5830	0.4599	0.3472	0.2517	0.1757	0,1185				
11	0.6968	0.5793	0.4616	0.3532	0.2600	0.1848				
12	0.7916	0.6887	0.5760	0.4631	0.3585	0.2676				
13	0.8645	0.7813	0.6815	0.5730	0.4644	0.3632				
14	0.9165	0.8540	0.7720	0.6751	0.5704	0.4657				
15	0.9513	0.9074	0.8444	0.7636	0.6694	0.5681				
16	0.9730	0.9441	0.8987	0.8355	0.7559	0.6641				
17	0.9857	0.9678	0.9370	0.8905	0.8272	0.7489				
18	0.9928	0.9823	0.9626	0.9302	0.8826	0.8195				
19	0.9965	0.9907	0.9787	0.9573	0.9235	0.8752				
20	0.9984	0.9953	0.9884	0.9750	0.9521	0.9170				
21	0.0003	0.9977	0.0001	0.0750	0.0021	0.0160				

表

$$P(X=10) = \sum_{k=0}^{10} \frac{12^k e^{-12}}{k!} - \sum_{k=0}^{9} \frac{12^k e^{-12}}{k!} = 0.3472 - 0.2424 = 0.1048$$

X: 120急救台收 到的呼叫次数

$$X \sim P(\lambda = 12)$$

$$P(X=k) = \frac{12^k e^{-12}}{k!}$$

作业12题需查表

泊松分布表 ---P383附表3

$$P(7 \le X \le 10) = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)$$

$$= \sum_{k=0}^{10} \frac{12^k e^{-12}}{k!} - \sum_{k=0}^{6} \frac{12^k e^{-12}}{k!}$$

$$= 0.3472 - 0.0458 = 0.3014$$
作业12题需查表

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad k = 0, 1, 2, \cdots$$

▶泊松分布 $X \sim P(\lambda)$ 的图形特点:

(法国数学家)

▶泊松分布的应用:

在实际中,许多随机现象都服从或近似服从泊松分布。

泊松分布应用举例:这些随机变量都服从或近似服从泊松分布.

120急救台 收到的呼叫 次数

一个售货 员接待的 顾客数

机场降落 的飞机数

一台纺纱机 的断头数

第二章 一维随机变量及其分布

第二节 离散型随机变量及其分布

- ✔ 离散型随机变量的分布律
 - 几种常见的离散型随机变量的分布
 - ✔ (0-1)分布
 - ✓ 二项分布
 - ✔ 泊松分布

小结	随机变量						
	离散型随机变量	概率模型适用范围					
	1) (0-1)分布	检查产品的质量(正品与次品)					
	$P(X=k) = p^{k} (1-p)^{1-k}$	有奖债券是否中奖(中与不中)					
	k = 0,1	对婴儿性别进行登记(男与女)					
重要分布	2) $B(n,p) \star$	20台独立工作的相同设备中同 一时刻发生故障的台数					
	$P(X = k) = C_n^k p^k (1-p)^{n-k}$	4个婴儿中男孩的个数					
	$k=0,1,2,\cdots,n$	3个产品中的次品数					
	D(4)	100台北台山东西山台市中山台北					
上述问题都具有相同的概率模型,但其中参数随问题不同							
而不同。可	而不同。可以根据抽样得到的大量随机数据,利用数理统						
计中的统计推断方法-Ch7参数估计得到这些参数的估计值。							

机场降洛的飞机致

小结

随机变量

离散型随机变量

4) 几何分布 G(p)

$$P(X = k) = p(1-p)^{k-1}$$
 $k = 1, 2, \cdots$

$$k = 1, 2, \cdots$$

其它概率分布 (书上未列出) 5) 对数分布 *L(p)*

$$P(X = k) = -\frac{(1-p)^k}{(\ln p)k}$$

$$k=1,2,\cdots$$

6) 超几何分布 H(n,M,N)

$$P(X=k) = \frac{C_{N-M}^{n-k}C_M^k}{C_N^n}$$

$$N, M, n$$
 为整数

$$0 \le M, n \le N$$

第二章一维随机变量及其分布

第一节 随机变量 第二节 离散型随机变量及其分布 第三节 随机变量的分布函数 第四节 连续型随机变量及其分布 第五节 随机变量函数的分布

作业

授课内容	习题二
	2(1),3分布律,6,7二项分布, 12,泊松分布
2.3 随机变量的分布函数	17(1)(2),19
2.4 连续型随机变量概率密度	20,21, 23,概率密度, 24指数分布,26,27,29正态分布
2.5 随机变量函数的分布	33离散, 34(1), 35(1)(2)(3)连续

