PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

submitted by

PNT2022TMID25100

Kanagavalli.K - 210519205019

Angel Ozni.J - 210519205006

Preethi.C - 210519205036

Sneha.R - 210519205047

TABLE OF CONTENT

S NO	TITLE	PAGE NO
1	INTRODUCTION	
	1.1.Project Overview	4
	1.2.Purpose	
		4
		4
2	LITERATURE SURVEY	•
	2.1.Existing problem	5
	2.2.References	
	2.3.Problem Statement Definition	5
		5
		3
		7
3	IDEATION & PROPOSED SOLUTION	8
	3.1.Empathy Map Canvas	8
	3.2.Ideation & Brainstorming	9
	3.4.Proposed Solution	10
	3.5.Problem Solution fit	11
4	DECLUDENTALIA NALVOIO	10
4	REQUIREMENT ANALYSIS	12
	4.1.Functional requirement	12
	4.2.Non-Functional requirements	13
5	PROJECT DESIGN	14
	5.1.Data Flow Diagrams	14
	5.2. Solution & Technical Architecture	16
	5.3.User Stories	17
6	PROJECT PLANNING & SCHEDULING	19

	6.1.Sprint Planning & Estimation 6.2.Sprint Delivery Schedule	19 21
7	CODING & SOLUTIONING	22
8	TESTING 8.1.Test Cases 8.2.User Acceptance Testing	24 24 26
9	RESULTS 9.1.Performance Metric	28 28
10	ADVANTAGES & DISADVANTAGES 10.1.Advantages 10.2.Disadvantages	31 31 31
11	CONCLUSION	32
12	FUTURE SCOPE	33
13	APPENDIX Source Code	34 43 43
	GitHub & Project Demo Link	43

INTRODUCTION

1.1 PROJECT OVEREVIEW

Deep learning and machine learning plays a vital role in artificial intelligence and technologies. With the use of these deep learning and machine learning, human efforts can be reduced in recognizing, learning, predictions and in many more areas.

Handwritten Digit Recognition is the ability of computer systems to recognize handwritten digits from various sources, such as images, documents, among other examples. This project aims to let users take advantage of machine learning to reduce manual task in recognizing digits.

1.2.PURPOSE

Digit recognition systems are capable of recognizing the digits from different sources like emails, bank cheque, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on

LITERATURE SURVEY

2.1.EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2.REFERENCES

Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN) (2020)

Ahlawat, Savita and Choudhary, Amit and Nayyar, Anand and Singh, Saurabh and Yoon, Byungun
This paper's primary goal was to enhance handwritten digit recognition ability. To avoid difficult pre-processing, expensive feature extraction, and a complex ensemble (classifier combination) method of a standard recognition system, they examined different convolutional neural network variations. Their current work makes suggestions on the function of several hyper-parameters through thorough evaluation utilizing an MNIST dataset. They also confirmed that optimizing hyper-parameters is crucial for enhancing CNN architecture performance. With the Adam optimizer for the MNIST database, they were able to surpass many previously published results with a recognition rate of 99.89%. Through the trials, it is made two abundantly evident how the performance of handwritten digit recognition is affected by the number of convolutional layers in CNN architecture. According to the paper, evolutionary algorithms can be explored for optimizing convolutional filter kernel sizes, CNN learning parameters, and the quantity of layers and learning rates.

An Efficient And Improved Scheme For Handwritten Digit Recognition Based On Convolutional Neural Network (2019)

Ali, Saqib and Shaukat, Zeeshan and Azeem, Muhammad and Sakhawat, Zareen and Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neural network (CNN) that incorporates the Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time factor as well. The system is also tested by altering the number of CNN layers for additional accuracy verification. It is important to the CNN architecture consists of two convolutional layers, the first with 32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show that the proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Improved Handwritten Digit Recognition Using Quantum K-Nearest Neighbour Algorithm (2019)

Wang, Yuxiang and Wang, Ruijin and Li, Dongfen and Adu-Gyamfi, Daniel and Tian, Kaibin and Zhu, Yixin

The KNN classical machine learning technique is used in this research to enable quantum parallel computing and superposition. They used the KNN algorithm with quantum acceleration to enhance handwritten digit recognition. When dealing with more complicated and sizable handwritten digital data sets, their suggested method considerably lowered the computational time complexity of the traditional KNN algorithm. The paper offered a theoretical investigation of how quantum concepts can be applied to machine learning. Finally, they established a fundamental operational concept and procedure for machine learning with quantum acceleration.

Handwritten Digit Recognition Using Machine And Deep Learning Algorithms (2021)

Pashine, Samay and Dixit, Ritik and Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. To determine which model was the most accurate, they compared them based on their properties. Support vector machines are among the simplest classifiers, making them faster than other algorithms and providing the highest training accuracy rate in this situation. However, due to their simplicity, SVMs cannot categorize complicated and ambiguous images as accurately as MLP and CNN algorithms can. In their research, they discovered that CNN produced the most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective 4solution for all types of prediction issues, including those using picture data. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the configuration of the algorithm is pointless due to the limitation of a certain model, and they discovered that beyond a certain number of epochs, the model begins over-fitting the dataset and provides biased predictions.

2.3. PROBLEM STATEMENT DEFINITION

For years, the traffic department has been combating traffic law violators. These offenders endanger not only their own lives, but also the lives of other individuals. Punishing these offenders is critical to ensuring that others do not become like them. Identification of these offenders is next to impossible because it is impossible for the average individual to write the license plate of a reckless driver. Therefore, the goal of this project is to help the traffic department identify these offenders and reduce traffic violations as a result.

IDEATION AND PROPOSED SOLUTION

3.1. Empathy Map Canvas

3.2 IDEATION & BRAINSTORMING

3.3.PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement	A Novel Method for Handwritten Digit Recognition System
2	Idea / Solution Description	The proposed solution is to classify the digits which is in handwritten format by using CNNbased model and this model can be trained by using MNIST database which contains 60,000training samples and 10,000 test samples.
3	Novelty / Uniqueness	To classify the image datasets by using CNN, which provides efficient solution compare to other methods. Here ANN algorithm is used for voice recognition which helps blind people
4	Social Impact / Customer Satisfaction	Users no need to use external dependencies or devices to recognize the digits, this process can be done through our mobile phones.
5	Business Model	Input module

		 Image processing module Feature extraction module Data set training module
		 Analysis module
6	Scalability of the Solution	The accuracy of the result for the training dataset is 99.98%, and 99.40% with 50%noise by using MNIST. Even we can improve this model to achieve the better results by training different types of datasets

3.4.PROBLEM SOLUTION FIT

Define CS,fit into CC	1. CUSTOMER SEGMENT(S) One who wants to extract digits from handwritten text images	6. CUSTOMER CONSTRAINTS Unclear image will not give accurate results.	5. AVAILABLE SOLUTIONS Traditional systems of handwriting recognition have relied on handcrafted feature and a large amount of prior knowledge.
Focus on J&P, tap into BE, understand RC	2. JOBS-TO-BE-DONE / PROBLEMS People can struggle to read others' handwriting. The handwritten digits are not always of the same size, width, orientation as they differ from writing of person to person, so the general problem would be while classifying the digits.	9. PROBLEM ROOT CAUSE The issue is that there's a wide range of handwriting - good and bad. This makes it tricky for programmers to provide enough examples of how every character might look.	7. BEHAVIOUR Customers must try with clear image and neat handwriting to get accuracy in digits
Identify strong TR & EM	3. TRIGGERS When there is need for recognition of handwritten digits 4. EMOTIONS: BEFORE / AFTER frustration, exhausted > curious, satisfied	10. YOUR SOLUTION It uses Artificial Neural Network to recognize them. Neural Network is used to train and identify written digits. After training and testing, the accuracy rate reached 99%. This accuracy rate is very high.	8. CHANNELS of BEHAVIOUR 8.1 ONLINE Extract online channels from behaviour block 8.2 OFFLINE Extract offline channels from different handwriting styles

REQUIREMENT ANALYSIS

4.1.FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution

FR.NO	FUNCTIONAL	SUB REQUIREMENTS
	REQUIREMENTS	
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Upload image	Image upload via files
		Image upload via folders
		Image upload via drive
		Image upload via web
		Image upload via scan/camera
FR-4	Spelling support	Identifies handwriting of different styles and
		fonts Spelling check
FR-5	Translation	Handwritten digits from the image are
		extracted. Conversion of handwritten digits
		into machine readable form
FR-6	Log out	Log out / sign out.

4.2.Non-functional Requirements:

Following are the non-functional requirements of the proposed solution

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The proposed system gives good
		results for images that contain
		handwritten text written indifferent
		styles, different size and alignment
		with varying background
NFR-2	Security	Only authorized people can access the
		system data and modify the database.
NFR-3	Reliability	The Database is frequently updated
		with handwriting of different styles
		and size and will rollback when any
		update fails.
NFR-4	Performance	The proposed system is advantageous
		as it uses fewer features to train the
		neural network, which results in faster
		convergence
NFR-5	Availability	The system functionality and services
		are available for use with all
		operations
NFR-6	Scalability	The website traffic limit must be
		scalable enough to support 2 lakhs
		users at a time

PROJECT DESIGN

5.1.DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows with in a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

DFD Level-0

The DFD Level-0 consists of two external entities, the UI and the Output, along with a process, representing the CNN for Digit Recognition .Output is obtained after processing.

DFD Level-1

The DFD Level-1 consists of 2 external entities, the GUI and the Output, along with five process blocks and 2 data stores MNIST data and the Input image store, representing the internal workings of theCNN for Digit Recognition System. Process block imports MNIST data from library. Process block imports the image and process it and sends it to block where regression model is built. It sends objects with probabilities to CNN

where weights are updated and multiple layers are built. Block trains and evaluates the model to generate output.

DFD Level-2

The DFD Level-2 for import data(figure 4) consists of two external data and one entity UI along with three process blocks, representing the three functionalities of the CNN for Digit RecognitionSystem. It imports data from MNIST data store and stores on the system.

5.2.Technical Architecture for Handwritten Digit Recognition System:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1	User Interface	User interacts with the	HTML,CSS,JavaScript
		application using a web app	Angular Js/ React Js etc
2	Application Logic	Login to access the	Java / Python
		application	
3	Database	Data Type, Configurations	MySQL, NoSQL, etc
		etc	
4	Cloud Database	D-+-1 0i 01	IBM DB2, IBM Cloudant
		Database Service on Cloud	etc.
5	File Storage	Storage of user files of	IBM Block Storage or
		handwritten image	OtherStorage Service or
			Local Filesystem
6	Machine learning	Machine learning model is	Object Recognition Model,
	model	used to identify the	etc.
		handwritten image uploaded	
		by users	
7	Infrastructure	Application Deployment on	Local, Cloud Foundry,
	(Server / Cloud)	Local System / Al Local	Kubernetes, etc
		Server Configuration Al	
		Server Configuration	

5.3.USER STORIES

S	User Type	Functional	User	User Story / Task	Acceptance	Priority	Release
NO		Requireme	Story		criteria		
		nt (Epic)	Number				
1	Customer	Registration	USN-1	As a user, I can register	I can access my	High	Sprint-1
	(Mobile			for the application by	account		
	user)			entering my email,	/dashboard		
				password, and			
				confirming my			
				password.			
2			USN-2	As a user, I will receive	I can receive	High	Sprint-2
				confirmation email	confirmation		
				once I have registered	email and click		
				for the application	confirm		
3			USN-3	As a user, I can register	I can register	Medium	Sprint-2
				for the application	and access the		
				through gmail or	dashboard with		
				facebook	Facebook Login		
4		Login	USN-4	user, I can log into the	I can login to	High	Sprint-1
				application by	the application		
				entering			
5		Dashboard	USN-5	Go to dashboard and	I can read	Low	Sprint-1
				refer the content about	instructions		
				our	also and the		
					home page is		
					user-friendly.		
6		Upload	USN-6	As a user, I can able to	As a user, I can	High	Sprint-3
		image		input the images of	able to input the		
				digital documents	images of		
					digital		
					documents to		
					the application		
7		Predict	USN-7	As a user I can able to	I can access the	High	Sprint-3

				get the recognised digit	recognized		
				as output from the	digits from		
				images of digital	digital		
				documents or images	document or		
					images		
8			USN-8	As a user, I will train	I can able to	Medium	Sprint-4
				and test the input to	train and test		
				get the maximum	the application		
				accuracy of output.	until it gets		
					maximum		
					accuracy of the		
					result.		
9	Customer	Login	USN-9	As a user, I can use the	I can access my	Medium	Sprint-4
	(Web			application by entering	account		
	user)			my email password			
10	Customer	Dashboard	USN-10	upload the image	Recognize and	High	Sprint-1
	Care				get the output		
	Executive						
11	Administr	Security	USN-11	upload the features	checking the	Medium	Sprint-1
	ator				security		

PROJECT PLANNING AND SCHEDULING

6.1.SPRINT PLANNING AND ESTIMATION

Sprint	FunctionalRequi rement	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection USN-1	USN-1	As a user, I can collect the dataset from various resources with different handwritings.	10	Low	Angel ozni J Sneha R
Sprint-1	Data Preprocessing	USN-2	As a user, I can load the dataset, handling the missing data, scaling and split data into train and test.	10	Medium	Angel ozni J Sneha R
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.	5	High	Kanagavalli K Preethi C Sneha R
Sprint-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	High	Kanagavalli K Preethi C Sneha R
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process.	2	Medium	Kanagavalli K Preethi C
Sprint-2	Train & test the model	USN-6	As a user, let us train our model with our image dataset.	6	Medium	Kanagavalli K Preethi C
Sprint-2	Save the model	USN-7	As a user, the model is saved and integrated with an android application or web application in order to predict something	2	Low	Preethi C

Sprint-3	Building UI	USN-8	As a user, I will upload the	5	High	Kanagavalli K
	Application		handwritten digit image to			Sneha R
			the application by clicking a			
			upload button.			
Sprint-3		USN-9	As a user, I can know the	5	Low	Sneha R
			details of the fundamental			
			usage of the application			
Sprint-3		USN-10	As a user, I can see the	5	Medium	Angel ozni J
			predicted / recognized digits			Sneha R
			in the application.			
Sprint-4	Train the model	USN-11	As a user, I train the model on	10	High	Sneha R
	on IBM		IBM and integrate			Kanagavalli K
			flask/Django with scoring			Preethi C
			end point.			
Sprint-4	Cloud	USN-12	As a user, I can access the	10	High	Angel ozni J
	Deployment		web application and make			Sneha R
			the use of the product from			
			anywhere.			

6.2.SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Complet ed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint 1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint 2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint 3	20	6 Days	07 Nov 2022	12 Nov 2022	20	07 Nov 2022
Sprint 4	20	6 Days	14 Nov 2022	12 Nov 2022	20	14 Nov 2022

CODING & SOLUTIONING

```
# Import necessary packages
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
```

```
def random_name_generator(n: int) -> str:
    """
    Generates a random file name.

Args:
    n (int): Length the of the file name.

Returns:
    str: The file name.
"""
    return ''.join(random.choices(string.ascii_uppercase + string.digits, k=n))
```

```
model=load_model(Path("./model/model.h5"))
img = Image.open(image).convert("L")
img_name = random_name_generator(10) + '.jpg'
if not os.path.exists(f"./static/data/"):
img.save(Path(f"./static/data/{img_name}"))
img = ImageOps.grayscale(img)
img = ImageOps.invert(img)
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr / 255.0
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
best = np.argmax(results, axis = 1)[0]
pred = list(map(lambda x: round(x*100, 2), results[0]))
others = list(zip(values, pred))
best = others.pop(best)
return best, others, img_name
```

8.1 TEST CASES

Test case	Feature	Component	Test scenario	Expected Result	Actual Result	Status
ID	Type					
HP_TC_001	UI	Home Page	Verify UI elements in the Home Page	The Home page must be displayed properly	Working as expected	PASS
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_003	Functional	Home Page	Check if user can upload their file	The input image should be uploaded to the application successfully	Working as expected	PASS
HP_TC_004	Functional	Home Page	Check if user cannot upload unsupported files	The application should not low user select a non image file	User can upload any file	FAIL
HP_TC_005	Functional	Home Page	Check if the page redirects to the result page once the input is given	The page should redirect to the results page	Working as expected	PASS
BE_TC_001	Functional	Backend	Check if all the routes are working properly	All the routes should properly work	Working as expected	PASS
	Functional	Model	Check if the	The model should	Working as	PASS

M_TC_001			model can handle various image sizes	rescale the image and predict the results	expected	
M_TC_002	Functional	Model	Check if the model predicts the digit	The model should predict the number	Working as expected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex input image	The model should predict the number in the complex image	The model fails to identify the digit since the model is not built to handle such data	FAIL
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL
RP_TC_003	UI	Result Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	PASS
RP_TC_004	UI	Result Page	Check if the other predictions are displayed properly	The other predictions should be displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING

8.2.2 TEST CASE ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total	Not		
	Cases	Tested	Fail	Pass
Client	10	0	3	7
Application				
Security	2	0	1	1
Performance	3	0	1	2
Exception	2	0	0	2
Reporting				

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

9.1.1 MODEL SUMMARY

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 64)	640
conv2d_1 (Conv2D)	(None, 24, 24, 32)	18464
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 10)	184330
Total params: 203,434		=======
Trainable params: 203,434		
Non-trainable params: 0		

9.1.2 ACCURACY

CONTENT	VALUE
Training Accuracy	99.14%
Training Loss	2.70%
Validation Accuracy	97.76%
Validation Loss	10.36%

9.1.3 CONFUSION MATRIX

9.1.4 CLASSIFICATION REPORT

	precision	recall	f1-score	support
9	1.00	0.97	0.98	980
1	0.99	0.99	0.99	1135
2	0.96	0.99	0.97	1032
3	0.97	1.00	0.98	1010
4	1.00	0.95	0.98	982
5	0.96	1.00	0.98	892
6	0.99	0.96	0.97	958
7	0.99	0.98	0.99	1028
8	0.99	0.99	0.99	974
9	0.97	0.99	0.98	1009
accuracy			0.98	10000
macro avg	0.98	0.98	0.98	10000
weighted avg	0.98	0.98	0.98	10000

9.1.5 APPLICATION TEST REPORT

Locus	Locust Test Report									
	During: 11/12/2022, 7:05:40 AM - 11/12/2022, 7:14:47 AM									
	Target Host: http://127.0.0.1:5000/ Script: locust.py									
Request	Statistics									
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RF	'S Failures/s	
GET		1043		13	4	290	1079	1.9	0.0	
GET	//predict	1005		39648	385	59814	2670	1.8	0.0	
	Aggregated	2048	0	19462	4	59814	1859	3.7	0.0	
Respons	se Time St	atistics								
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms	100%ile (ms)	
GET		10	11	13	15	19	22	62	290	
GET	//predict	44000	46000	47000	48000	50000	52000	55000	60000	
	Aggregated	36	36000	43000	45000	48000	50000	54000	60000	

CHAPTER 10 ADVANTAGES AND DISADVANTAGES

10.1.ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

CONCLUSION

This project demonstrated a web application that uses machine learning to recognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER 12 FUTURE SCOPE

This project is far from complete and there is numerous room for improvement. Some of the improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

MODEL CREATION

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.utils import np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32')
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32')
number_of_classes = 10
Y_train = np_utils.to_categorical(y_train, number_of_classes)
Y_test = np_utils.to_categorical(y_test, number_of_classes)
```

```
# Create the model
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(28, 28, 1), activation="relu"))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(FLatten())
model.add(Dense(number_of_classes, activation="softmax"))

model.compile(loss='categorical_crossentropy', optimizer="Adam", metrics=["accuracy"])

# Train the model
model.fit(X_train, Y_train, batch_size=32, epochs=5, validation_data=(X_test,Y_test))

# Evaluate the model
metrics = model.evaluate(X_test, Y_test, verbose=0)
print("Metrics (Test Loss & Test Accuracy): ")
print(metrics)

# Save the model
model.save("model.h5")
```

```
# Test the saved model
model=load_model("model.h5")

img = Image.open("sample.png").convert("L")
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
print(results)
```

FLASK APP

```
from flask import Flask,render_template,request
from recognizer import recognize

app=Flask(__name__)

@app.route('/')
def main():
    return render_template("home.html")

@app.route('/predict',methods=['POST'])
def predict():
    if request.method=='POST':
        image = request.files.get('photo', '')
        best, others, img_name = recognize(image)
        return render_template("predict.html", best=best, others=others, img_name=img_name)

if __name__=="__main__":
    app.run()
```

RECOGNIZER

```
# Import necessary packages
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
```

```
def random_name_generator(n: int) -> str:
    """
    Generates a random file name.

Args:
    n (int): Length the of the file name.

Returns:
    str: The file name.
"""
    return ''.join(random.choices(string.ascii_uppercase + string.digits, k=n))
```

```
img = Image.open(image).convert("L")
img_name = random_name_generator(10) + '.jpg'
if not os.path.exists(f"./static/data/"):
img.save(Path(f"./static/data/{img_name}"))
img = ImageOps.grayscale(img)
img = ImageOps.invert(img)
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr / 255.0
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
best = np.argmax(results,axis = 1)[8]
others = list(zip(values, pred))
best = others.pop(best)
return best, others, img_name
```

HOME PAGE(HTML)

```
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Handwritten Digit Recognition</title>
<link rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static', filename='images/icon.svg')}}"</pre>
<link rel="stylesheet" href="{{url_for('static',filename='css/main.css')}}" />
<script src="https://unpkg.com/feather-icons"></script>
<script defer src="{{url_for('static',filename='js/script.js')}}"></script>
<div class="container">
    <div class="heading">
        <h1 class="heading_main">Handwritten Digit Recognizer</h1>
        <h2 class="heading_sub">Easily analyze and detect handwritten digits</h2>
    <div class="upload-container">
        <div class="form-wrapper">
            <form class="upload" action="/predict" method="post" enctype="multipart/form-data">
                <label id="label" for="upload-image"><i data-feather="file-plus"></i>Select File</label>
                <input type="file" name="photo" id="upload-image" hidden />
                <button type="submit" id="up_btn"></button>
            <img id="loading" src="{{url_for('static',filename='images/loading.gif')}}">
```

HOME PAGE(CSS)

```
@import url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");

* {
    padding: 0;
    margin: 0;
}

body {
    color: black;
    font-family: "Overpass", sans-serif;
}
```

```
background-color: white;
.heading .heading_main {
   color: rgb(90, 88, 88);
  box-shadow: 0 0 20px rgb(172, 170, 170);
width: 40rem;
   position: absolute;
```

```
height: -webkit-fit-content;
height: -moz-fit-content;
    background-color: rgb(114, 96, 182);
box-shadow: 8 Spx 18px rgb(146, 135, 247);
.form-wrapper .upload #up_btn {
   font-weight: 600;
color: white;
.form-wrapper .upload svg (
   padding-right: 8px;
murgin-bottom: -2px;
          width: 18rem;
          margin-top: 3.5rem;
margin-bottom: -Urem;
```

```
feather.replace(); // Load feather icons

form = document.querySelector('.upload')
loading = document.querySelector("#Loading")
select = document.querySelector("#upload-image");

select.addEventListener("change", (e) => {
    e.preventDefault();

   form.submit()
   form.style.visibility = "hidden";
   loading.style.display = 'flex';
});
```

PREDICT PAGE(HTML)

```
<title>Prediction | Handwritten Digit Recognition</title>
<link rel="stylesheet" href="{{url_for('static',filename='css/predict.css')}}" />
<link rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}"</pre>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<div class="container">
   <h1>Prediction</h1>
    <div class="result-wrapper">
        <div class="input-image-container">
            <img src="{{url_for('static',filename='data/')}}{{img_name}}" />
        <div class="result-container">
            <div class="value">{{best.0}}</div>
            <div class="accuracy">{{best.1}}%</div>
    <h1>Other Predictions</h1>
    <div class="other_predictions">
        {% for x in others %}
        <div class="value">
            <div class="accuracy">{{x.1}}%</div>
        {% endfor %}
```

```
@import url(*https://fonts.googleapis.com/css2?family=Overpass:mght@200;300;400;500;600;700;900&display=swap");
   font-family: "Overpass", sans-serif;
.result-wrapper {
   box-shadow: 0 0 10px rgb(126, 125, 125);
   padding: 1.5rem;
.result-wrapper .input-image-container,
.result-wrapper .result-container (
   width: 15rem;
   height: 15rem;
   border: 1px dashed black;
   background-color: rgb(209, 206, 206);
```

```
result-wrapper .input-image-container img {
.result-wrapper .result-container .value (
result-wrapper result-container accuracy (
  box-shadow: 8 8 7px rgb(158, 157, 157);
@media screen and (max-width: 700px) {
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-50412-1660907679

PROJECT DEMO

https://drive.google.com/file/d/1lifzt4NfWbwl7l9LcvzJBrcGWBoV3gL1/view?usp=share_link