Duality - Continued

Lecture 5

October 7, 2024

Recap From Last Time

We obtained the following primal-dual pair of problems:

$Primal\ (\mathscr{P})$			$Dual\ (\mathscr{D})$		
$minimize_x$	$c^\intercal x$		$maximize_p$	$p^{T}b$	
$(p_i ightarrow)$	$a_i^T \mathbf{x} \ge b_i,$	$i \in M_1$,		$p_i \ge 0$,	$i \in M_1$,
$(p_i ightarrow)$	$a_i^T \mathbf{x} \le b_i,$	$i \in M_2$,		$p_i \leq 0,$	$i \in M_2$,
$(p_i ightarrow)$	$a_i^{T} \mathbf{x} = b_i,$	$i \in M_3$,		p_i free,	$i \in M_3$,
	$x_j \geq 0$,	$j \in N_1$,	$(x_j ightarrow)$	$\mathbf{p}^{T}A_{j} \leq c_{j},$	$j \in N_1$,
	$x_j \leq 0$,	$j \in N_2$,	$(x_j ightarrow)$	$\mathbf{p}^{T}A_{j} \geq c_{j},$	$j \in N_2$,
	x_j free,	$j \in N_3$.	$(x_j ightarrow)$	$\mathbf{p}^{T}A_{j}=c_{j},$	$j \in N_3$.

Simple rules to help you derive duals quickly:

- a dual decision variable for every primal constraint (except variables signs)
 - if "=" constraint, dual variable is free
 - if (" \geq ", minimize) or (" \leq ", maximize), dual variable ≥ 0
 - if (" \geq ", maximize) or (" \leq ", minimize), dual variable ≤ 0
- for every decision variable in the primal, there is a constraint in the dual
 - signs for the constraint derived by reversing the above

Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S\cap U=\emptyset$ and S is bounded. Then, there exists a vector $c\in\mathbb{R}^n$ and $d\in\mathbb{R}$ such that $S\subset \{x\in\mathbb{R}^n:c^\intercal x< d\}$ and $U\subset \{x\in\mathbb{R}^n:c^\intercal x> d\}$.

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one bounded

Needed For Our Purposes

We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and x^* satisfies $x \notin P$, there exists a hyperplane that strictly separates x from P, i.e., $\exists c \neq 0$ such that $c^\intercal x^* < c^\intercal x \, \forall x \in P$.

Time for the second fundamental result in optimization!

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

Proof. "(a) \Rightarrow not (b)."

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

Proof. "(a) \Rightarrow not (b)."

- (a) implies $\exists x \geq 0 : Ax = b$.
- (b) implies $\exists p : p^T A \geq 0$.

But then $p^Tb = p^TAx \ge 0$, so (b) cannot hold.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax \, : \, x \geq 0\} = \{y \, : \, \exists \, x \geq 0 \, \text{such that} \, y = Ax\}.$$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- S is convex.
- To apply separating hyperplane theorem, need S closed!

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- S is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S}:=\{(x,y): x\geq 0,\, y=Ax\}$ on the y variables.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax \, : \, x \geq 0\} = \{y \, : \, \exists \, x \geq 0 \, \text{such that} \, y = Ax\}.$$

- S is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S}:=\{(x,y): x\geq 0, y=Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax \, : \, x \geq 0\} = \{y \, : \, \exists \, x \geq 0 \, \text{such that} \, y = Ax\}.$$

- S is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S}:=\{(x,y):x\geq 0,\,y=Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.
 - Every polyhedron is closed.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax \, : \, x \geq 0\} = \{y \, : \, \exists \, x \geq 0 \, \text{such that} \, y = Ax\}.$$

- S is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S}:=\{(x,y):x\geq 0,\,y=Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.
 - Every polyhedron is closed.
 - $\Rightarrow S$ is closed.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S:=\{Ax: x\geq 0\}=\{y:\exists\, x\geq 0\, \text{such that}\, y=Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists p : p^{\mathsf{T}}b < p^{\mathsf{T}}y, \forall y \in S$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $\bullet \ S:=\{Ax\,:\, x\geq 0\}=\{y\,:\, \exists\, x\geq 0\, \text{such that}\, y=Ax\} \text{ is convex and closed}.$
- Sep. Hyp. Thm. implies $\exists p : p^\intercal b < p^\intercal y, \forall y \in S$.
- $0 \in S \Rightarrow p^{\mathsf{T}}b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $\bullet \ S:=\{Ax\,:\, x\geq 0\}=\{y\,:\, \exists\, x\geq 0\, \text{such that}\, y=Ax\} \text{ is convex and closed}.$
- Sep. Hyp. Thm. implies $\exists p : p^{\mathsf{T}}b < p^{\mathsf{T}}y, \forall y \in S$.
- $0 \in S \Rightarrow p^{\mathsf{T}}b < 0$.
- Every column A_i of A satisfies $\lambda A_i \in S$ for every $\lambda > 0$, so

$$\frac{p^{\mathsf{T}}b}{\lambda} < p^{\mathsf{T}}A_i, \, \forall \lambda > 0$$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S:=\{Ax: x\geq 0\}=\{y:\exists\, x\geq 0\, \text{such that}\, y=Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists p : p^\intercal b < p^\intercal y, \forall y \in S$.
- $0 \in S \Rightarrow p^{\mathsf{T}}b < 0$.
- Every column A_i of A satisfies $\lambda A_i \in S$ for every $\lambda > 0$, so

$$\frac{p^{\mathsf{T}}b}{\lambda} < p^{\mathsf{T}}A_i, \, \forall \lambda > 0$$

• Limit $\lambda \to \infty$ implies $p^{\mathsf{T}} A_i \ge 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

We proved the **second fundamental result in optimization!**

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

We proved the second fundamental result in optimization!

This has some important implications:

• Suppose your primal problem (\mathscr{P}) was the standard-form LP:

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

We proved the second fundamental result in optimization!

This has some important implications:

• Suppose your primal problem (\mathscr{P}) was the standard-form LP:

$$(\mathscr{P}) \quad \text{minimize} \quad c^{\mathsf{T}}x \\ \text{subject to} \quad Ax = b \\ x > 0$$

• Farkas Lemma states that either (\mathcal{P}) is feasible or ...

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

We proved the second fundamental result in optimization!

This has some important implications:

• Suppose your primal problem (\mathcal{P}) was the standard-form LP:

$$(\mathscr{P}) \quad \text{minimize} \quad c^{\mathsf{T}}x \\ \text{subject to} \quad Ax = b \\ x > 0$$

• Farkas Lemma states that either (\mathscr{P}) is feasible or there exists p (satisfying $p^{\mathsf{T}}A \leq c^{\mathsf{T}}$) that is a **certificate of infeasibility**!

(W.L.O.G.) Consider the following primal-dual pair:

- (\mathscr{P}) minimize $c^{\mathsf{T}}x$ (\mathscr{D}) maximize $p^{\mathsf{T}}b$ subject to $Ax \ge b$ subject to $p^{\mathsf{T}}A = c^T, \quad p > 0.$

(W.L.O.G.) Consider the following primal-dual pair:

- (\mathscr{P}) minimize $c^{\mathsf{T}}x$ (\mathscr{D}) maximize $p^{\mathsf{T}}b$
- subject to $Ax \ge b$ subject to $p^{\mathsf{T}}A = c^T, \quad p > 0.$

Theorem (**Strong Duality**)

If (\mathcal{P}) has an optimal solution, so does (\mathcal{D}) , and their optimal values are equal.

 $\label{eq:continuous} (\mathscr{P}) \ \ \text{minimize} \ c^\intercal x \qquad \qquad (\mathscr{D}) \ \ \text{maximize} \ p^\intercal b$ subject to $p^\intercal A = c^T, \ \ p \geq 0.$

Proof.

- Assume (\mathscr{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution p such that $p^{\mathsf{T}}b = c^{\mathsf{T}}x^*$

Proof.

- Assume (\mathscr{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution p such that $p^{\mathsf{T}}b = c^{\mathsf{T}}x^*$
- Let $\mathcal{F} = \{i \mid a_i^\mathsf{T} x^* = b_i\}$ be indices of active constraints at x^*
- Show that c can be written as conic combination of constraints $\{a_i : i \in \mathcal{F}\}$

$$(\mathscr{P}) \ \, \text{minimize} \,\, c^{\intercal}x \qquad \qquad (\mathscr{D}) \ \, \text{maximize} \,\, p^{\intercal}b \\ \text{subject to} \,\, Ax \geq b \qquad \qquad \text{subject to} \,\, p^{\intercal}A = c^T, \quad p \geq 0.$$

Proof.

- Assume (\mathscr{P}) has optimal solution x^*
- Will prove that (\mathcal{D}) admits feasible solution p such that $p^{\mathsf{T}}b = c^{\mathsf{T}}x^*$
- Let $\mathcal{F} = \{i \mid a_i^\mathsf{T} x^* = b_i\}$ be indices of active constraints at x^*
- Show that c can be written as conic combination of constraints $\{a_i : i \in \mathcal{F}\}$

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \geq 0, \, \forall \, i \in \mathcal{F} \ \, \Rightarrow \ \, c^{\mathsf{T}} d \geq 0.$$

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

ullet For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $-a_i^{\mathsf{T}}(x^* + \epsilon d) > b_i, \forall i \in \mathcal{F}$
 - $\neg \ a_i^{\mathsf{T}}(x^* + \epsilon d) \geq b_i, \forall i \notin \mathcal{F} \text{ holds because } a_i^{\mathsf{T}}x^* > b_i \, \forall i \notin \mathcal{F}$

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

• For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ

$$-a_i^{\mathsf{T}}(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$$

$$-a_i^\intercal(x^* + \epsilon d) \ge b_i, \forall i \notin \mathcal{F} \text{ holds because } a_i^\intercal x^* > b_i \, \forall i \notin \mathcal{F}$$

• $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^* + \epsilon d) < c^{\mathsf{T}}x^*$ would contradict x^* optimal

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

• For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ

$$- a_i^{\mathsf{T}}(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$$

$$\neg \ a_i^{\mathsf{T}}(x^* + \epsilon d) \geq b_i, \forall i \notin \mathcal{F} \text{ holds because } a_i^{\mathsf{T}}x^* > b_i \, \forall i \notin \mathcal{F}$$

• $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^* + \epsilon d) < c^{\mathsf{T}}x^*$ would contradict x^* optimal

• So
$$\nexists d: a_i^\mathsf{T} d \ge 0, \, \forall \, i \in \mathcal{F}, \, c^\mathsf{T} d < 0$$

Strong Duality

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $a_i^{\mathsf{T}}(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$
 - $\neg \ a_i^\mathsf{T}(x^* + \epsilon d) \geq b_i, \forall i \notin \mathcal{F} \text{ holds because } a_i^\mathsf{T}x^* > b_i \, \forall i \notin \mathcal{F}$
- $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^* + \epsilon d) < c^{\mathsf{T}}x^*$ would contradict x^* optimal
- So $\nexists d: a_i^{\mathsf{T}} d \geq 0, \forall i \in \mathcal{F}, c^{\mathsf{T}} d < 0$
- Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

$$\exists \{p_i\}_{i \in \mathcal{F}} : p_i \ge 0, \ c = \sum_{i \in \mathcal{F}} p_i a_i$$

Strong Duality

$$\begin{array}{ll} (\mathscr{P}) \ \ \text{minimize} \ c^{\mathsf{T}}x & \\ & (\mathscr{D}) \ \ \text{maximize} \ p^{\mathsf{T}}b \\ & \text{subject to} \ Ax \geq b & \\ & \text{subject to} \ p^{\mathsf{T}}A = c^T, \ \ p \geq 0. \end{array}$$

Proof.

• First, we show that for any vector d, the following implication holds:

$$a_i^{\mathsf{T}} d \ge 0, \, \forall \, i \in \mathcal{F} \quad \Rightarrow \quad c^{\mathsf{T}} d \ge 0.$$

- For any such d, we claim that $x^* + \epsilon d \in P$ for small ϵ
 - $a_i^{\mathsf{T}}(x^* + \epsilon d) \ge b_i, \forall i \in \mathcal{F}$
 - $\neg \ a_i^{\mathsf{T}}(x^* + \epsilon d) \ge b_i, \forall i \notin \mathcal{F} \text{ holds because } a_i^{\mathsf{T}}x^* > b_i \, \forall i \notin \mathcal{F}$
- $c^{\mathsf{T}}d \geq 0$ because otherwise $c^{\mathsf{T}}(x^* + \epsilon d) < c^{\mathsf{T}}x^*$ would contradict x^* optimal
- So $\nexists d: a_i^{\mathsf{T}} d \geq 0, \forall i \in \mathcal{F}, c^{\mathsf{T}} d < 0$
- Farkas Lemma : alternative (b) is not true, so alternative (a) must be true:

$$\exists \{p_i\}_{i \in \mathcal{F}} : p_i \ge 0, \ c = \sum_{i \in \mathcal{F}} p_i a_i$$

- Let $p_i = 0$ for $i \notin \mathcal{F} \Rightarrow \exists p$ feasible for (\mathcal{D})
- $p^{\mathsf{T}}b = \sum_{i \in \mathcal{F}} p_i b_i = \sum_{i \in \mathcal{F}} p_i a_i^{\mathsf{T}} x^* = c^{\mathsf{T}} x^*$

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

Implications

Strong duality leaves only a few possibilities for a primal-dual pair:

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	?	?	?
	Unbounded	?	?	?
	Infeasible	?	?	?

		Dual		
		Finite Optimum	Unbounded	Infeasible
Primal	Finite Optimum	Possible	Impossible	Impossible
	Unbounded	Impossible	Impossible	Possible
	Infeasible	Impossible	Possible	?

Example

Is this primal feasible? What is its dual?

minimize
$$x_1+2x_2$$
 subject to $x_1+x_2=1$
$$2x_1+2x_2=3.$$

Example

Is this primal feasible? What is its dual?

minimize
$$x_1+2x_2$$
 subject to $x_1+x_2=1$
$$2x_1+2x_2=3.$$

Application in Robust Optimization

• We have LP with constraints $Ax \leq b$. One of the constraints is:

$$a^{\mathsf{T}}x \le b,$$
 (1)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}}x \le b, \, \forall \, a \in \mathcal{A}$$
 (2)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

Application in Robust Optimization

• We have LP with constraints $Ax \leq b$. One of the constraints is:

$$a^{\mathsf{T}}x \le b,$$
 (1)

where a satisfies $a \in \mathcal{A}$ and \mathcal{A} is polyhedral

• We seek decisions x that are **robustly feasible**, i.e.,

$$a^{\mathsf{T}}x \le b, \, \forall \, a \in \mathcal{A}$$
 (2)

Infinitely many constraints: "semi-infinite" LP. Any ideas?

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{3}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

Polynomially-Sized CVaR Representation

- Recall homework: ensure CVaR of portfolio payoff exceeds a lower limit
- CVaR was defined as the average over the k-smallest values (for suitable integer k)
- If payoffs in the scenarios are v_1, v_2, \dots, v_n , the key constraint is:

$$\sum_{i=1}^{k} v_{[i]} \ge b,\tag{3}$$

where $v_{[1]} \leq v_{[2]} \leq \cdots \leq v_{[n]}$ is the sorted vector of payoffs.

- Can write one constraint for each vector in $\{0,1\}^n$ with exactly k values of 1.
- How to formulate with a polynomial number of variables and constraints?

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (P) are given by:

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x > 0 \qquad p^{\mathsf{T}} A < c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (4a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (4b)

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x > 0 \qquad p^{\mathsf{T}} A < c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P})$$
: $x_B := A_B^{-1}b \ge 0$ (4a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (4b)

• (\mathscr{D}) : same basis B can also be used to determine a **dual vector** p:

$$p^{\mathsf{T}}A_i = c_i, \, \forall \, i \in B \quad \Rightarrow \quad p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \, \forall \, i \in B.$$

- The dual objective value of p is exactly:

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (4a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (4b)

• (\mathcal{D}) : same basis B can also be used to determine a dual vector p:

$$p^{\mathsf{T}}A_i = c_i, \, \forall \, i \in B \quad \Rightarrow \quad p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \, \forall \, i \in B.$$

- The dual objective value of p is exactly: $p^{\mathsf{T}}b = c_B^{\mathsf{T}}A_B^{-1}b = c^{\mathsf{T}}x$

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (4a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (4b)

• (\mathcal{D}) : same basis B can also be used to determine a dual vector p:

$$p^{\mathsf{T}}A_i = c_i, \, \forall \, i \in B \quad \Rightarrow \quad p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \, \forall \, i \in B.$$

- The dual objective value of p is exactly: $p^{\mathsf{T}}b = c_B^{\mathsf{T}}A_B^{-1}b = c^{\mathsf{T}}x$
- p is feasible in the dual if and only if:

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

- (\mathscr{P}) achieves optimality at a basic feasible solution x:
 - If $B \subseteq \{1,\ldots,n\}$ is a basis, the b.f.s. is: $x = [x_B,0], \quad x_B = A_B^{-1}b.$
 - Simplex algorithm: feasibility and optimality for (\mathscr{P}) are given by:

Feasibility-
$$(\mathscr{P}): x_B := A_B^{-1}b \ge 0$$
 (4a)

Optimality-
$$(\mathscr{P}): c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$$
 (4b)

• (\mathcal{D}) : same basis B can also be used to determine a dual vector p:

$$p^{\mathsf{T}}A_i = c_i, \, \forall \, i \in B \quad \Rightarrow \quad p^{\mathsf{T}} = c_B^{\mathsf{T}}A_B^{-1}, \, \forall \, i \in B.$$

- The dual objective value of p is exactly: $p^{\mathsf{T}}b = c_B^{\mathsf{T}}A_B^{-1}b = c^{\mathsf{T}}x$
- p is feasible in the dual if and only if:

Feasibility-
$$(\mathcal{D})$$
: $c^{\mathsf{T}} - p^{\mathsf{T}} A \ge 0 \Leftrightarrow c^{\mathsf{T}} - c_B^{\mathsf{T}} A_B^{-1} A \ge 0$ (5)

Primal optimality \Leftrightarrow Dual feasibility

Simplex terminates when finding a dual-feasible solution!

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

$$(\mathscr{P}) \min c^{\mathsf{T}} x$$
 $(\mathscr{D}) \max p^{\mathsf{T}} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\mathsf{T}} A \le c^{\mathsf{T}}$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

$$(\mathscr{P}) \mbox{ min } c^\intercal x$$

$$(\mathscr{D}) \mbox{ max } p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathscr{P}) or (\mathscr{D}) ?
- Suppose we have x^* , p^* and must solve a **larger** problem. *Any ideas?*

$$(\mathscr{P}) \mbox{ min } c^\intercal x$$

$$(\mathscr{D}) \mbox{ max } p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

Primal simplex

- maintain a basic feasible solution
- basis $B \subset \{1, \ldots, n\}$
- stopping criterion: dual feasibility

Dual simplex

- maintain a dual feasible solution
- stopping criterion: primal feasibility
- different from primal simplex: works with an LP with inequalities

- How to choose (\mathscr{P}) or (\mathscr{D}) ?
- Suppose we have x^* , p^* and must solve a **larger** problem. *Any ideas?*
- Modern solvers include primal and dual simplex and allow concurrent runs

Dual Variables As Marginal Costs

$$(\mathscr{P}) \ \min \ c^\intercal x$$

$$(\mathscr{D}) \ \max \ p^\intercal b$$

$$Ax = b, \ \ x \geq 0 \qquad \qquad p^\intercal A \leq c^\intercal$$

- Solved the LP and obtained x^* and p^*
- Want to show that p^* is gradient of the optimal cost with respect to b ("almost everywhere")
- Related to sensitivity analysis
 How do the optimal value and solution depend on problem data A, b, c?

$$(\mathscr{P}) \min c^{\intercal} x$$
 $(\mathscr{D}) \max p^{\intercal} b$
$$Ax = b, \quad x \ge 0 \qquad p^{\intercal} A \le c^{\intercal}$$

- Let $P(b) := \{x : Ax = b, x \ge 0\}$ and F(b) denote the optimal cost
- Assume that dual is feasible: $\{p:p^{\mathsf{T}}A\leq c^{\mathsf{T}}\}\neq\emptyset$, so $F(b)>-\infty$
- ullet Want to show that F(b) is **piecewise linear and convex**

Convex and Concave Functions

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** if X is a convex set and

$$f\left(\lambda x + (1-\lambda)y\right) \le \lambda f(x) + (1-\lambda)f(y), \quad \forall x,y \in X \text{ and } \lambda \in [0,1]. \tag{6}$$

A function is **concave** if -f is convex.

Convex and Concave Functions

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** if X is a convex set and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0, 1].$$
 (6)

A function is **concave** if -f is convex.

Equivalent definition in terms of epigraph:

$$epi(f) = \{(x,t) \in X \times \mathbb{R} : t \ge f(x)\}$$
(7)

Convex and Concave Functions

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is **convex** if X is a convex set and

$$f\left(\lambda x + (1-\lambda)y\right) \le \lambda f(x) + (1-\lambda)f(y), \quad \forall x, y \in X \text{ and } \lambda \in [0,1]. \tag{6}$$

A function is **concave** if -f is convex.

Equivalent definition in terms of epigraph:

$$epi(f) = \{(x,t) \in X \times \mathbb{R} : t \ge f(x)\}$$
(7)

f is convex if and only if epi(f) is a convex set.

$$F(b) := \min \left\{ c^{\mathsf{T}} x : Ax = b, \ x \ge 0 \right\} \equiv \max \left\{ p^{\mathsf{T}} b \, : \, p^{\mathsf{T}} A \le c^{\mathsf{T}} \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b: P(b)\neq\emptyset\}.$

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \ge 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \le c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

- Let $b_1, b_2 \in S$, $\lambda \in [0, 1]$, and $b := \lambda b_1 + (1 \lambda)b_2$. Must prove that $b \in S$.
- Let $x_i \in \operatorname{argmax}\{c^{\mathsf{T}}x : x \geq 0, Ax = b_i\}$ and $x_{\lambda} := \lambda x_1 + (1 \lambda)x_2$.
- Note that:

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

- Let $b_1, b_2 \in S$, $\lambda \in [0, 1]$, and $b := \lambda b_1 + (1 \lambda)b_2$. Must prove that $b \in S$.
- Let $x_i \in \operatorname{argmax}\{c^{\mathsf{T}}x : x \geq 0, Ax = b_i\}$ and $x_{\lambda} := \lambda x_1 + (1 \lambda)x_2$.
- Note that:

$$x_{\lambda} \geq 0$$
 and $Ax_{\lambda} = A(\lambda x_1 + (1 - \lambda)x_2) = \lambda b_1 + (1 - \lambda)b_2 := b$,

Global Dependency On \boldsymbol{b}

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \ge 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \le c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

- Let $b_1, b_2 \in S$, $\lambda \in [0, 1]$, and $b := \lambda b_1 + (1 \lambda)b_2$. Must prove that $b \in S$.
- Let $x_i \in \operatorname{argmax}\{c^{\mathsf{T}}x : x \geq 0, Ax = b_i\}$ and $x_{\lambda} := \lambda x_1 + (1 \lambda)x_2$.
- Note that:

$$x_{\lambda} \geq 0$$
 and $Ax_{\lambda} = A(\lambda x_1 + (1 - \lambda)x_2) = \lambda b_1 + (1 - \lambda)b_2 := b$,

$$\Rightarrow x_{\lambda} \in P(b) \Rightarrow b \in S \Rightarrow S \text{ is convex.}$$

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S := \{b : P(b) \neq \emptyset\}$.

Proof. Because (\mathcal{D}) feasible $\Rightarrow F(b) > -\infty$.

$$F(b) := \min \big\{ c^\intercal x : Ax = b, \ x \geq 0 \big\} \equiv \max \big\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \big\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S:=\{b:P(b)\neq\emptyset\}.$

Proof. Because (\mathscr{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \forall b \in S$

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S := \{b : P(b) \neq \emptyset\}$.

Proof. Because (\mathscr{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \forall b \in S$

How to complete proof that F(b) is convex?

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

Theorem

F(b) is a convex and piece-wise linear function of b on $S := \{b : P(b) \neq \emptyset\}$.

Proof. Because (\mathscr{D}) feasible $\Rightarrow F(b) > -\infty$.

• If p^1, p^2, \dots, p^r are the extreme points of the dual feasible set, then: $F(b) = \max_{i=1,\dots,r} b^{\mathsf{T}} p^i, \forall b \in S$

How to complete proof that F(b) is convex?

Global Dependency On \boldsymbol{b} - Implications

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \ge 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \le c^\intercal \right\}$$

- At any $b = \bar{b}$ where F(b) is differentiable, p^* is the gradient of F(b)
- ullet p_i^* acts as a **marginal cost** or **shadow price** for the i-th constraint r.h.s. b_i
- ullet p_i allows estimating **exact change in** F(b) **in a range around** $ar{b}$
- Modern solvers give direct access to p_i^* and the range Gurobipy: for constraint \mathbf{c} , the attribute $\mathbf{c}.\mathbf{Pi}$ is p_i^* and the range is from $\mathbf{c}.\mathbf{SARHSLow}$ to $\mathbf{c}.\mathbf{SARHSLow}$

Global Dependency On \boldsymbol{b} - Implications

$$F(b) := \min \left\{ c^\intercal x : Ax = b, \ x \geq 0 \right\} \equiv \max \left\{ p^\intercal b \, : \, p^\intercal A \leq c^\intercal \right\}$$

- At b where F(b) is not differentiable, several p^i are optimal
- ullet All such p^i are valid **subgradients** of F(b)

Global Dependency On \boldsymbol{b} - Implications

$$F(b) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

- At b where F(b) is not differentiable, several p^i are optimal
- ullet All such p^i are valid **subgradients** of F(b)

Definition (Subgradient.)

F convex, defined on (convex) set S. A vector p is a **subgradient** of F at $\bar{b} \in S$ if

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$

Theorem

Suppose $F(b):=\min\{c^\intercal x:Ax=b,\ x\geq 0\}\equiv\max\{p^\intercal b:p^\intercal A\leq c^\intercal\}>-\infty.$ Then p is optimal for the dual **if and only if** it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

Theorem

Suppose $F(b) := \min \{ c^\intercal x : Ax = b, \ x \geq 0 \} \equiv \max \{ p^\intercal b : p^\intercal A \leq c^\intercal \} > -\infty.$ Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$

Theorem

Suppose $F(b) := \min \{ c^\intercal x : Ax = b, \ x \geq 0 \} \equiv \max \{ p^\intercal b : p^\intercal A \leq c^\intercal \} > -\infty.$ Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$
- Consider arbitrary $b \in S$
- For any feasible solution $x \in P(b)$, weak duality yields $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$
- This implies $p^{\mathsf{T}}b \leq F(b)$

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. First show that any dual optimal p is a valid subgradient.

- ullet Suppose that p is optimal for the dual
- Strong duality implies $p^{\mathsf{T}}\bar{b} = F(\bar{b})$
- Consider arbitrary $b \in S$
- For any feasible solution $x \in P(b)$, weak duality yields $p^{\mathsf{T}}b \leq c^{\mathsf{T}}x$
- This implies $p^{\mathsf{T}}b \leq F(b)$
- But then, $p^{\mathsf{T}}b p^{\mathsf{T}}\bar{b} \leq F(b) F(\bar{b})$

We conclude that p is a subgradient of F at \bar{b}

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
 (8)

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
(8)

• Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
(8)

- Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.
- By (8), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \le F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \le c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
(8)

- Pick some $x \geq 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \leq c^{\mathsf{T}}x$.
- By (8), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \le F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \le c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?
- ullet This implies that p is dual-feasible
- With x=0, we obtain $F(\bar{b}) \leq p^{\mathsf{T}}\bar{b}$

Theorem

Suppose $F(b) := \min\{c^\intercal x : Ax = b, \ x \ge 0\} \equiv \max\{p^\intercal b : p^\intercal A \le c^\intercal\} > -\infty$. Then p is optimal for the dual if and only if it is a subgradient of F at \bar{b} .

Proof. For the reverse direction, let p be a subgradient of F at \bar{b} , that is,

$$F(\bar{b}) + p^{\mathsf{T}}(b - \bar{b}) \le F(b), \quad \forall b \in S.$$
(8)

- Pick some $x \ge 0$ and let b = Ax, which implies $x \in P(b)$ and $F(b) \le c^{\mathsf{T}}x$.
- By (8), we have: $p^{\mathsf{T}}Ax = p^{\mathsf{T}}b \leq F(b) F(\bar{b}) + p^{\mathsf{T}}\bar{b} \leq c^{\mathsf{T}}x F(\bar{b}) + p^{\mathsf{T}}\bar{b}$.
- Because this is true for any $x \ge 0$, we must have $p^{\mathsf{T}}A \le c^{\mathsf{T}}$. Why?
- ullet This implies that p is dual-feasible
- With x=0, we obtain $F(\bar{b}) \leq p^{\mathsf{T}}\bar{b}$
- Using weak duality, every dual-feasible q satisfies $q^{\rm T}\bar{b} \le F(\bar{b}) \le p^{\rm T}\bar{b}$

We conclude that p is optimal.

Global Dependency On $\it c$

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Global Dependency On $\it c$

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Proof. Analogous ideas applied to the dual - omitted.

Global Dependency On $\it c$

Let
$$G(c) := \min\{c^{\mathsf{T}}x : Ax = b, \ x \ge 0\} \equiv \max\{p^{\mathsf{T}}b : p^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$

Theorem

For an LP in standard form,

- 1. The set $T := \{c : G(c) > -\infty\}$ is convex.
- 2. G(c) is a **concave** function of c on the set T.
- 3. If for some c the LP has a **unique** optimal solution x^* , then G is linear in the vicinity of c and its gradient is x^* .

Proof. Analogous ideas applied to the dual - omitted.

- ullet The optimal primal solution x^* is a shadow price for the dual constraints
- ullet x^* remains optimal for a range of change in each objective coefficient c_j
- Modern solvers also allow obtaining the range directly Gurobipy: attributes SAObjLow and SAObjUp for each decision variable

These ideas carry over directly to primals in general form:

$$\begin{split} F(b,c) := \min_{\pmb{x}} & c^{\mathsf{T}} \pmb{x} & \max_{\pmb{p}} & \pmb{p}^{\mathsf{T}} b \\ & a_i^{\mathsf{T}} \pmb{x} \geq b_i, \quad i \in M_1, \\ & a_i^{\mathsf{T}} \pmb{x} \leq b_i, \quad i \in M_2, \\ & a_i^{\mathsf{T}} \pmb{x} = b_i, \quad i \in M_3, \\ & x_j \geq 0, \quad j \in N_1, \\ & x_j \leq 0, \quad j \in N_2, \\ & x_j \text{ free}, \quad j \in N_3. \end{split} \qquad \begin{array}{l} \pmb{p}^{\mathsf{T}} b \\ p_i \geq 0, \quad i \in M_1, \\ p_i \leq 0, \quad i \in M_2, \\ p_i \text{ free}, \quad i \in M_3, \\ p^{\mathsf{T}} A_j \leq c_j, \quad j \in N_1, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_3. \end{array}$$

These ideas carry over directly to **primals in general form**:

```
\begin{split} F(b,c) := \min_{\pmb{x}} & c^{\mathsf{T}} \pmb{x} & \max_{\pmb{p}} & \pmb{p}^{\mathsf{T}} b \\ & a_i^{\mathsf{T}} \pmb{x} \geq b_i, \quad i \in M_1, \\ & a_i^{\mathsf{T}} \pmb{x} \leq b_i, \quad i \in M_2, \\ & a_i^{\mathsf{T}} \pmb{x} = b_i, \quad i \in M_3, \\ & x_j \geq 0, \quad j \in N_1, \\ & x_j \leq 0, \quad j \in N_2, \\ & x_j \text{ free}, \quad j \in N_3. \end{split} \qquad \begin{array}{l} \mathbf{p}^{\mathsf{T}} b \\ \mathbf{p}_i \geq 0, \quad i \in M_1, \\ p_i \leq 0, \quad i \in M_2, \\ p_i \text{ free}, \quad i \in M_3, \\ p^{\mathsf{T}} A_j \leq c_j, \quad j \in N_1, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_2, \\ p^{\mathsf{T}} A_j \geq c_j, \quad j \in N_3. \end{array}
```

- ullet F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in c
- p^* are subgradients for F(b,c) with respect to b
- ullet x^* are subgradients for -F(b,c) with respect to c

These ideas carry over directly to **primals in general form**:

$$\begin{split} F(b,c) := \min_{\pmb{x}} & c^\intercal \pmb{x} & \max_{\pmb{p}} & \pmb{p}^\intercal b \\ & a_i^\intercal \pmb{x} \ge b_i, \quad i \in M_1, \\ & a_i^\intercal \pmb{x} \le b_i, \quad i \in M_2, \\ & a_i^\intercal \pmb{x} = b_i, \quad i \in M_3, \\ & \pmb{x_j} \ge 0, \quad j \in N_1, \\ & \pmb{x_j} \le 0, \quad j \in N_2, \\ & \pmb{x_j} \text{ free}, \quad j \in N_3. \end{split} \qquad \begin{array}{l} \pmb{p}^\intercal b \\ & p_i \ge 0, \quad i \in M_1, \\ & p_i \le 0, \quad i \in M_2, \\ & p_i \text{ free}, \quad i \in M_3, \\ & p^\intercal A_j \le c_j, \quad j \in N_1, \\ & p^\intercal A_j \ge c_j, \quad j \in N_2, \\ & p^\intercal A_j \ge c_j, \quad j \in N_2, \\ & p^\intercal A_j = c_j, \quad j \in N_2, \\ & p^\intercal A_j = c_j, \quad j \in N_3. \end{array}$$

- ullet F(b,c) is piece-wise linear, convex in b and piece-wise linear, concave in c
- p^* are subgradients for F(b,c) with respect to b
- ullet x^* are subgradients for -F(b,c) with respect to c
- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq, \geq)
 - the signs of the shadow prices

- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!
- What is the sign of the shadow price for a ...
 - < constraint in a minimization problem ?
 - ≥ constraint in a minimization problem ?
 - < constraint in a maximization problem ?</p>
 - < constraint in a maximization problem ?
- What is the dependency of the optimal objective on the r.h.s. of a ...
 - < constraint in a minimization problem ?
 - > constraint in a minimization problem ?
 - < constraint in a maximization problem ?</pre>
 - \leq constraint in a maximization problem ?

- There is a direct connection between:
 - the optimization problem (max/min)
 - the constraint type (\leq , \geq)
 - the signs of the shadow prices
- Given two of these, can figure out the third one!

Sometimes, we just want to characterize the optimal solutions

$$\begin{array}{llll} \min_{\boldsymbol{x}} & c^\intercal \boldsymbol{x} & \max_{\boldsymbol{p}} & \boldsymbol{p}^\intercal \boldsymbol{b} \\ & a_i^\intercal \boldsymbol{x} \geq b_i, & i \in M_1, & p_i \geq 0, & i \in M_1, \\ & a_i^\intercal \boldsymbol{x} \leq b_i, & i \in M_2, & p_i \leq 0, & i \in M_2, \\ & a_i^\intercal \boldsymbol{x} = b_i, & i \in M_3, & p_i \text{ free}, & i \in M_3, \\ & \boldsymbol{x_j} \geq 0, & j \in N_1, & \boldsymbol{p^\intercal} \boldsymbol{A_j} \leq c_j, & j \in N_1, \\ & \boldsymbol{x_j} \leq 0, & j \in N_2, & \boldsymbol{p^\intercal} \boldsymbol{A_j} \geq c_j, & j \in N_2, \\ & \boldsymbol{x_j} \text{ free}, & j \in N_3. & \boldsymbol{p^\intercal} \boldsymbol{A_j} = c_j, & j \in N_3. \end{array}$$

Sometimes, we just want to characterize the optimal solutions

Theorem (Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \, \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \, \forall j.$$

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \, \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \, \forall j.$$

Theorem (General Complementary Slackness)

Let x and p be feasible solutions for (\mathscr{P}) and (\mathscr{D}) , respectively. Then x and p are optimal solutions for (\mathscr{P}) and (\mathscr{D}) if and only if:

$$p_i(a_i^{\mathsf{T}} x - b_i) = 0, \, \forall i$$
$$(c_j - p^{\mathsf{T}} A_j) x_j = 0, \, \forall j.$$

Theorem (Strict C.S. Standard-Form LPs)

Consider the following primal-dual pair of LPs:

$$(\mathscr{P}) \min c^\intercal x$$
 $(\mathscr{D}) \max p^\intercal b$
$$Ax = b, x \ge 0 \qquad p^\intercal A \le c^\intercal$$

If (\mathscr{P}) and (\mathscr{D}) are feasible, they admit optimal solutions x^* and p^* satisfying strict complementarity: $x_j^* > 0 \Leftrightarrow p^\intercal A_j = c_j$.

Representation of Polyhedra

Important consequence of duality: alternative representation of all polyhedra

Definition (Extreme rays of a polyhedron)

Consider a nonempty polyhedron $P = \{x \in \mathbb{R}^n : Ax \ge b\}$. Then:

- 1. $\mathcal{C} := \{d \in \mathbb{R}^n : Ad \ge 0\}$ is called the **recession cone** of P.
- 2. Any $d \in \mathcal{C}$ with $d \neq 0$ is called a **ray** of P.
- 3. Any ray d that satisfies $a_i^{\mathsf{T}}d=0$ for n-1 linearly independent a_i is called an extreme ray of P.

Representation of Polyhedra

Theorem (Resolution Theorem)

Let $P = \{x \in \mathbb{R}^n : Ax \ge b\}$ be a non-empty polyhedron, x^1, x^2, \dots, x^k be its extreme points, and w^1, w^2, \dots, w^r be its extreme rays. Then P = Q, where

$$Q := \left\{ \sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j : \lambda \ge 0, \ \theta \ge 0, \ e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof. Proving $Q \subseteq P$ is immediate. To prove $P \subseteq Q$, assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

Is (\mathscr{P}) feasible? Is (\mathscr{D}) feasible? What are the optimal values?

Representation of Polyhedra - cntd

$$P := \{ x \in \mathbb{R}^n : Ax \ge b \} = Q := \left\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathscr{P}) is infeasible because $z \notin Q$
- (\mathcal{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$

Representation of Polyhedra - cntd

$$P := \{ x \in \mathbb{R}^n : Ax \ge b \} = Q := \left\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \right\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathcal{P}) is infeasible because $z \notin Q$
- (\mathscr{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$
- (p,q) feasible $\Rightarrow p^{\mathsf{T}}z < -q \leq p^{\mathsf{T}}x_i$ for any $i=1,\ldots,k$ and $p^{\mathsf{T}}w_i \geq 0$
- With p as above, consider the LP $\min_x \{ p^{\mathsf{T}} x : Ax \geq b \}$

Representation of Polyhedra - cntd

$$P := \{x \in \mathbb{R}^n : Ax \ge b\} = Q := \bigg\{ \sum_{i=1}^k \lambda_i x^i + \sum_{j=1}^r \theta_j w^j : \lambda \ge 0, \theta \ge 0, e^{\mathsf{T}} \lambda = 1 \bigg\}.$$

Proof - cont'd. Assume $\exists z \in P$ with $z \notin Q$. Consider the following primal-dual pair:

$$(\mathscr{P}) \max_{\lambda \geq 0, \theta \geq 0} \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j \qquad (\mathscr{D}) \min_{p,q} p^{\mathsf{T}} z + q$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} x_i + q \geq 0, \quad i = 1, \dots, k,$$

$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z \qquad p^{\mathsf{T}} w_j \geq 0, \qquad j = 1, \dots, r,$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

- (\mathscr{P}) is infeasible because $z \notin Q$
- (\mathscr{D}) is feasible with p=q=0, so its optimal value is $-\infty \Rightarrow \exists (p,q): p^{\mathsf{T}}z+q<0$
- (p,q) feasible $\Rightarrow p^{\mathsf{T}}z < -q \leq p^{\mathsf{T}}x_i$ for any $i=1,\ldots,k$ and $p^{\mathsf{T}}w_i \geq 0$
- With p as above, consider the LP $\min_x \{p^{\mathsf{T}}x : Ax \geq b\}$
- If optimal cost finite, $\exists x^i$ optimal. But $z \in P$ and $p^\intercal z < p^\intercal x_i$ lead to \not
- If cost is $-\infty$, $\exists w^j: p^{\mathsf{T}}w^j < 0$, which is also a $\mbox{\em ξ}$

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i = 0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$
- Future period: prices are uncertain; there are m possible states of the world $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$, each occurring with positive probability, and prices are:
 - cash is riskless: $S_0^f = R = 1 + r$, where r is the risk-free rate of return
 - security i>1 will have price $S_i^f(\omega_j)$ in state of world ω_j

- Investment world with n+1 securities indexed by $i=0,\ldots,n$
- i=0 denotes cash; the other securities can be anything (stocks, derivatives, ...)
- We have two periods: current period c, future period f
- Current period: prices of securities are S_i^c for $i=1,\ldots,n$; cash: $S_0^c=1$
- Future period: prices are uncertain; there are m possible states of the world $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$, each occurring with positive probability, and prices are:
 - cash is riskless: $S_0^f = R = 1 + r$, where r is the risk-free rate of return
 - security i > 1 will have price $S_i^f(\omega_j)$ in state of world ω_j
- If we purchase x_i of each security i:
 - we incur immediate cost $\sum_{i=0}^{n} S_i^c x_i$
 - we have future cashflow $\sum_{i=0}^n S_i^f(\omega) \cdot x_i$ if state of world is $\omega \in \Omega$

Definition (Arbitrage)

An **arbitrage** is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

• a type-A arbitrage means $\exists x$ such that:

$$\sum_{i=0}^{n} S_{i}^{c} \cdot x_{i} < 0 \qquad \qquad \text{(positive initial cashflow)}$$

$$\sum_{i=0}^{n} S_{i}^{f}(\omega) \cdot x_{i} \geq 0, \ \forall \, \omega \in \Omega \qquad \text{(no risk of loss)}$$
 (9)

Definition (Arbitrage)

An arbitrage is a trading strategy that either has a positive initial cashflow and has no risk of a loss later (type A) or that requires no initial cash input, has no risk of loss, and has a positive probability of making profits in the future (type B).

• a type-A arbitrage means $\exists x$ such that:

$$\sum_{i=0}^{n} S_{i}^{c} \cdot x_{i} < 0 \qquad \text{(positive initial cashflow)}$$

$$\sum_{i=0}^{n} S_{i}^{f}(\omega) \cdot x_{i} \geq 0, \ \forall \ \omega \in \Omega \qquad \text{(no risk of loss)}$$

• a type-B arbitrage means $\exists x$ such that:

$$\sum_{i=0}^n S_i^c \cdot x_i = 0 \qquad \qquad \text{(no initial cash input)}$$

$$\sum_{i=0}^n S_i^f(\omega) \cdot x_i \geq 0, \ \forall \ \omega \in \Omega \qquad \text{(no risk of loss)}$$
 (10)

$$\exists \omega \in \Omega : \sum_{i=1}^{n} S_{i}^{f}(\omega) \cdot x_{i} > 0,$$
 (positive probability of profit).

Definition (R.N.P.M.)

A risk-neutral probability measure on the set $\Omega=\{\omega_1,\omega_2,\ldots,\omega_m\}$ is a vector $p\in\mathbb{R}^m$ so that p>0 and $\sum_{j=1}^m p_j=1$ and for every security $S_i,i=0,\ldots,n$,

$$S_i^c = \frac{1}{R} \left(\sum_{j=1}^m p_j S_i^f(\omega_j) \right) = \frac{1}{R} \mathbb{E}_p[S_i^f].$$

- Above, $\mathbb{E}_p[S]$ is the expected value of the random variable S under the probability distribution $p := (p_1, p_2, \dots, p_m)$
- The definition states that the current price/value of every asset, S_i^c , exactly equals the discounted expected price/value in the future
- The expectation is taken with respect to the R.N.P.M.
- ullet Discounting is done at the risk-free interest rate R

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for $i = 0, \ldots, n$:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \ge 0, j = 1, \dots, m.$$
(11)

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for i = 0, ..., n:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \geq 0, j = 1, \dots, m.$$
(11)

- Type-A arbitrage: $\exists x : \sum S_i^0 x_i < 0$
- Constraints are homogeneous, so if $\exists x: \sum S_i^0 x_i < 0$, the objective is $-\infty$
- ullet x=0 is feasible, so the optimal objective value is ≤ 0
- No type-A arbitrage if and only if the optimal objective value of this LP is 0

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the following linear program with variables x_i , for $i = 0, \ldots, n$:

$$\min_{x} \sum_{i=0}^{n} S_{i}^{c} \cdot x_{i}$$
s.t.
$$\sum_{i=0}^{n} S_{i}^{f}(\omega_{j}) \cdot x_{i} \geq 0, j = 1, \dots, m.$$
(11)

- Type-A arbitrage: $\exists x : \sum S_i^0 x_i < 0$
- Constraints are homogeneous, so if $\exists x: \sum S_i^0 x_i < 0$, the objective is $-\infty$
- x=0 is feasible, so the optimal objective value is ≤ 0
- No type-A arbitrage if and only if the optimal objective value of this LP is 0
- Suppose no type-A arbitrage. Then, no type-B arbitrage if and only if all constraints are tight for all optimal solutions of (11): $\sum_{i=0}^n S_i^f(\omega_j) \cdot x_i^* = 0$, for $j = 1, \ldots, m$

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

• If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

- If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)
- No type-B arbitrage means $\sum_{i=0}^n S_i^f(\omega_j) \cdot x_i^* = 0$, for $j=1,\ldots,m$. Because dual is standard-form LP, Theorem 19 (strict complem. slack.) implies $\exists p^*: p^* > 0$.

Theorem (Asset Pricing Theorem)

A risk-neutral probability measure exists if and only if there is no arbitrage.

Proof. Consider the dual of this LP.

$$\max_{p} 0$$
s.t.
$$\sum_{j=1}^{m} p_{j} \cdot S_{i}^{f}(\omega_{j}) = S_{i}^{c}, i = 0, \dots, n,$$

$$p_{j} \geq 0.$$

- If no type-A arbitrage, optimal value in primal and dual must be 0, so dual has a feasible solution p^* (that is also optimal)
- No type-B arbitrage means $\sum_{i=0}^n S_i^f(\omega_j) \cdot x_i^* = 0$, for $j=1,\ldots,m$. Because dual is standard-form LP, Theorem 19 (strict complem. slack.) implies $\exists p^*: p^* > 0$.
- Dual constraint for i=0 implies $\sum_{j=1}^m p_j^* = \frac{1}{R}$, so taking $p^* \cdot R$ yields a RNPM.

The converse direction is proved in an identical manner.

 Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network

- Airline revenue management ("yield management"): setting **booking limits** to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f\in F$, we know the capacity of the aircraft c_f

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- ullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f\in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- \bullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- ullet For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

	- (/)	J 7-	9			0 0,
			Itinerary 1	Itinerary 2		Itinerary $\left I\right $
${\it Resource \ matrix} \ A:$		Flight leg 1	1	0		1
	A:	Flight leg 2	0	1		0
		:	•	•	:	:
		Flight leg $ F $	1	1		0

- Airline revenue management ("yield management"): setting booking limits to control how many tickets of each type are sold
- Airline is planning operations for a specific day in the future
- \bullet Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) I:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $\left I\right $
Resource matrix A :	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:	:	:	:	:
	Flight leg $ F $	1	1		0

Goal: decide how many itineraries of each type to sell to maximize revenue

• Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^\intercal x : Ax \le c, \ x \le d \right\}$$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- \bullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- Let x_i denote the number of itineraries of type i that the airline plans to sell, and let x be the vector with components x_i
- The problem can be formulated as follows:

$$\max_{x \in \mathbb{R}^I} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$ capture the constraints on plane capacity
- ullet $x \leq d$ states that the planned sales cannot exceed the demand
- In practice, an approach that includes all possible itineraries encounters challenges
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum price** to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost