Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

МАШИННОЕ ОБУЧЕНИЕ

ЛАБОРАТОРНАЯ РАБОТА №3 «Реализация сверточной нейронной сети»

БГУИР 1-40 81 04

Магистрант: гр. 858641 Кукареко А.В. Проверил: Стержанов М. В.

ХОД РАБОТЫ

Данные.

В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая — около 19 тыс.

Задание.

- 1. Реализуйте нейронную сеть с двумя сверточными слоями, и одним полносвязным с нейронами с кусочно-линейной функцией активации. Какова точность построенное модели?
- 2. Замените один из сверточных слоев на слой, реализующий операцию пулинга (Pooling) с функцией максимума или среднего. Как это повлияло на точность классификатора?
- 3. Реализуйте классическую архитектуру сверточных сетей LeNet-5 (http://yann.lecun.com/exdb/lenet/).
- 4. Сравните максимальные точности моделей, построенных в лабораторных работах 1-3. Как можно объяснить полученные различия?

Результат выполнения:

1. Реализуйте нейронную сеть с двумя сверточными слоями, и одним полносвязным с нейронами с кусочно-линейной функцией активации. Какова точность построенное модели?

Для реализации нейронной сети была выбрана библиотека tensorflow 1.14.

В ходе выполнения лабораторной работы была построена простая сверточная. Архитектура сети в таблице 1.

Таблица 1 – Архитектура сети простой сверточной сети.

Слой	•	Размер	Фильтры	Ядро	Смещение	Активация
Входной	-	784	-	-	-	-
Reshape	-	28x28x1	-	-	-	-
1	Conv2d	28x28	18	4 x 4	1	ReLU
2	Conv2d	28x28	18	4 x 4	1	ReLU
Flatten	-	14112	-	-	-	-
3	FC	120	-	-	-	ReLU
Выходной	FC	10	-	-	-	Softmax

Тренировка нейросети была запущена со следующими параметрами:

- epochs − 35;
- batch size 128.

Рисунок 1 – график изменения ассигасу первой модели.

Рисунок 2 – график изменения loss первой модели.

На тестовой выборке модель показала следующий результат:

- loss 0.14903486;
- accuracy 0.95701283;
- время обучения: 24м. 53сек.

2. Замените один из сверточных слоев на слой, реализующий операцию пулинга (Pooling) с функцией максимума или среднего. Как это повлияло на точность классификатора?

Второй слой был заменен на слой poling. Новую архитектуру можно увидеть в таблице 2.

Таблица 2 – Архитектура сверточной сети с pooling слоем.

Слой	•	Размер	Фильтры	Ядро	Смещение	Активация
Входной	-	784	-	-	-	-
Reshape	-	28x28x1	-	-	-	-
1	Conv2d	14x14	18	4 x 4	2	ReLU
2	Max	14x14	18	3 x 3	1	-
	Pool					
Flatten	-	3528	-	-	-	-
3	FC	120	-	-	-	ReLU
Выходной	FC	10	-	-	-	Softmax

Тренировка нейросети была запущена со следующими параметрами:

- epochs 35;
- batch size 128.

Рисунок 3 – график изменения ассигасу второй модели.

Рисунок 4 – график изменения loss второй модели.

На тестовой выборке модель показала следующий результат:

- loss 0.16702183;
- accuracy 0.94966555;
- время обучения: 10м. 48сек.
- 3. Реализуйте классическую архитектуру сверточных сетей LeNet-5 (http://yann.lecun.com/exdb/lenet/).

Архитектура сети LeNet-5 представлена в таблице 3.

Таблица 3 – Архитектура сети LeNet-5.

Слой	*	Размер	Фильтры	Ядро	Смещение	Активация
Входной	-	784	-	-	_	-
1	Conv2d	28x28	6	5 x 5	1	tanh
2	Avg	14x14	6	2 x 2	2	-
	Pool					
3	Conv2d	10x10	16	5 x 5	1	tanh
4	Avg	5x5	16	2 x 2	2	-
	Pool					
5	Conv2d	1x1	120	5 x 5	1	tanh
6	FC	84	-	-	-	tanh
Выходной	FC	10	_	-	_	Softmax

Тренировка нейросети была запущена со следующими параметрами:

- epochs 35;
- batch size 128.

Рисунок 5 – график изменения accuracy LeNet-5 модели.

Рисунок 6 – график изменения loss LeNet-5 модели.

На тестовой выборке модель показала следующий результат:

- loss 0.1568142;
- accuracy 0.9539423;
- время обучения: 13м. 59сек.
- 4. Сравните максимальные точности моделей, построенных в лабораторных работах 1-3. Как можно объяснить полученные различия?

Сравнение моделей лабораторной работы 3.

Рисунок 10 – график сравнения метрик обучения моделей.

Рисунок 7 – график сравнения точности моделей первого эксперимента.

Все модели использующие сверточные слои получили 95% accuracy на тестовой выборке.

Сравнение моделей лабораторной работы 1-3 представлены в таблице 4.

Таблица 4 – Сравнение классификаторов из лабораторных работ 1-3.

Классификатор	Результат
Лог-регрессия	88.7%
Полносвязнная нейронная сеть	94.75%
Conv + Max pool + Dense	94.96%
LeNet-5	95.39%
Conv + Conv + Dense	95.7%

Из таблицы 4 видно, что наименьшая точность у классификатора построенного на «логистической регрессии». Применение полносвязанных нейронных сетей значительно увеличило точность классификатора, а наибольшая точность получилась у моделей использующих сверточные слои.

Вывод.

В ходе выполнения лабораторной работы я построил три модели изображений. слои классификации использующих сверточные ДЛЯ модели Построенные были обучены результат работы был И проанализирован и сравнен с другими классификаторами. Для набора notMnist сверточные нейронные сети оказались лучше чем полносвязанные и чем логрегрессия. Они дали больший ассuracy и обучились быстрее и за меньшее количество эпох. Связано это с тем, что сверточные нейронные сети больше подходят для работы с изображениями, нежели полносвязные.