## Teoría de Circuitos

Departamento de Ingeniería Eléctrica Escuela Superior de Ingeniería Universidad de Sevilla

## Boletín de Problemas 8: POTENCIA EN CORRIENTE ALTERNA SINUSOIDAL

**Problema 1.** Para el circuito de la figura, determinar la lecturas del voltímetro V, y del amperímetro A2. Datos carga: 414 W,  $\cos \varphi = 0.72$  inductivo ; Conjunto carga + condensador:  $\cos \varphi = 0.9$  inductivo, A1=2 A.



Solución: V = 230 V; A2 = 2.5 A

**Problema 2.** Determinar la resistencia y reactancia de una carga que consume 10 kVA con un factor de potencia de 0,8 en retraso cuando se conecta a una tensión de 200 V eficaces.

Solución:  $R = 3.2 \Omega$ ;  $X = 2.4 \Omega$ 

**Problema 3.** Una instalación con un motor que absorbe una potencia activa P=1 kW, posee un banco de condensadores para compensación de reactiva, se sabe que el factor de potencia del conjunto es 0,95 en retraso y que si se desconecta el banco de condensadores pasa a 0,90. Determinar la potencia reactiva absorbida por el motor. Solución: Q=484,322 var

**Problema 4.** El factor de potencia de la fuente de tensión es de 0.8 inductivo y su potencia vale 100 VA. Determinar R y  $X_c$ , sabiendo que la lectura del voltímetro es de 6 V y que  $X_l = 0.3$   $\Omega$ .



Solución:  $R = 0.8 \Omega$ ;  $X_c = 0.6 \Omega$ 

**Problema 5.** En el circuito de la figura los dos amperímetros marcan lo mismo y el voltímetro marca 10 V. Hallar lo que marca el vatímetro y la potencia compleja que cede la fuente, sabiendo que los dos amperímetros marcan 7 A y  $\mathcal{U}_g = 10 \angle \varphi$  V.



Solución:  $W = 35\sqrt{2} \text{ W}$ ;  $S = 70\sqrt{2}\angle 0$ 

**Problema 6.** Hallar la lectura del amperímetro A y del voltímetro  $V_2$  sabiendo que la lectura de  $V_1$  es 4 V, y que el factor de potencia de la zona punteada es  $\frac{\sqrt{2}}{2}$ .



Solución:  $A = \sqrt{5} A$ ;  $V_2 = 4 V$ 

**Problema 7.** Una fuente real de tensión tiene como impedancia interna una bobina real de  $100 \Omega$  y 10 mH de inductancia. Determinar el valor de la impedancia que recibirá la máxima potencia y el valor de dicha potencia, una vez alcanzado el régimen permanente, en los siguientes casos: a) La fuente es de 10 V en continua; b) La fuente es sinusoidal de 10 V eficaces a frecuencia de 100 rad/s.

*Solución:* a)  $R = 100 \Omega$ ; P = 0.25 W; b)  $Z = 100 - j \Omega$ ; P = 0.25 W

**Problema 8.** El circuito de la figura se encuentra en régimen permanente sinusoidal. Sabiendo que la fuente cede 10W determinar: a) El valor de R; b) El valor eficaz de la fuente de tensión  $V_g$ . Datos:  $X_L=2\,\Omega$ ,  $X_C=1\,\Omega$ ,  $|\mathcal{I}|=1\,\Lambda$ .



Solución: $R = \frac{40}{9} \Omega$ ;  $V_g = 6.74 \text{ V}$ 

**Problema 9.** En el circuito de la figura, consistente en una fuente real de tensión y una carga RC, están dadas las condiciones para que la resistencia absorba la máxima potencia posible. Sabiendo que  $\mathcal{U}_g=10\angle0^\circ$  V y la impedancia interna  $\mathcal{Z}_g$  vale 3+j  $\Omega$ , determinar: a) Potencia reactiva consumida por la carga. b) Caída de tensión en la carga.



*Solución:* Q = -100/36 var;  $V_c = 5,27$  V.

**Problema 10.** Sabiendo que el factor de potencia de la zona enmarcada es igual a  $\frac{\sqrt{3}}{2}$ , su resistencia vale  $4\sqrt{3}\Omega$  y que  $\mathcal{U}_R = 4\angle 0^o$  V, determinar:  $\mathcal{I}_1$ ,  $\mathcal{I}_2$  y la potencia reactiva cedida por la fuente.



Solución:  $\mathcal{I}_1=2{,}08\angle{106,}1^\circ$  A;  $\mathcal{I}_2=2{,}31\angle{120^\circ}$  A;  $Q_g=-9{,}33$  var

**Problema 11.** Determinar la potencia compleja cedida por la fuente. Datos:  $V_g=2$  V,  $R_1=1\Omega$ ,  $R_2=\frac{1}{2}\Omega$ ,  $X_L=\frac{1}{2}\Omega$  y  $X_C=1\Omega$ .



Solución: S = 6 + 2j VA

Problema 12. La impedancia  $\mathcal Z$  absorbe la máxima potencia media posible del circuito A. Sabiendo que  $\mathcal Z=R-\sqrt{3}j$   $\Omega$  determinar la lectura del amperímetro y del voltímetro. Datos:  $U_g=5$  V.



*Solución:* A = 2,89 A; V = 5,77 V

**Problema 13.** Determinar las lecturas del amperímetro y del vatímetro del circuito de la figura. Datos:  $R=1~\Omega$ ,  $X_C=1~\Omega$  y  $\mathcal{U}_q=1\angle 0^o$  V.



*Solución:* A = 0.41 A; W = 1.71 W

**Problema 14.** Calcular la potencia activa, reactiva y el factor de potencia del conjunto de las tres cargas siguientes.  $Z_1$  es resistiva pura y consume 300 W,  $Z_2$  consume 300 VA con factor de potencia 0,8 inductivo y  $Z_3$  consume 100 VA con factor de potencia 0,8 capacitivo.

*Solución:* P=620 W; Q=120 var;  $\cos\varphi=0.9817$  inductivo

**Problema 15.** Determinar la potencia activa y reactiva cedida por la fuente, sabiendo que el factor de potencia de la zona enmarcada es igual a  $\frac{\sqrt{3}}{2}$ . Datos:  $\mathcal{U}_g = 2\angle 60^o$  V,  $X_L = 1\Omega$  y  $X_C = 1\Omega$ .



Solución:  $P = \sqrt{3}$  W; Q = 3 var

**Problema 16.** Se tiene dos motores monofásicos que se conectan en paralelo a una fuente de tensión de 50 Hz y 380 V eficaces. Se decide compensar el factor de potencia de cada motor de forma individual, hasta alcanzar un valor de 0,9 para cada uno de ellos. Determinar: a) el valor del condensador a conectar en paralelo con el motor 1; b) la intensidad total demandada a la red antes y después de la compensación. Datos: Motor 1: 800 W, FP= 0,8 inductivo; Motor 2: 600 W, FP= 0,6 inductivo.

*Solución:* a)  $C = 4,685 \mu \text{F}$ ; b) sin compensación: I = 5,21 A; con compensación: I = 4,09 A

**Problema 17.** Tres condensadores iguales, de 9 mF cada uno, se conectan en serie al secundario de un transformador de relación de transformación 2:1. Determinar la capacidad equivalente vista desde el primario del transformador.



Solución:  $C_e = 3/4 \text{ mF}$ 

**Problema 18.** Dos bobinas acopladas, con inductancias  $L_1 = 4$ ,  $L_2 = 2$  H y M = 2 H, se conectan al secundario de un transformador de relación de transformación 20:2, como se indica en la figura. Determinar la inductancia equivalente vista desde el primario del transformador.



Solución:  $L_e = 40 \text{ H}$ 

**Problema 19.** En el circuito de la figura,  $R_1=3$  k $\Omega$ ,  $R_2=6$  k $\Omega$ ,  $N_1=200$  y  $N_2=100$ . Determinar el equivalente Thévenin entre los terminales A y B.



Solución:  $v_{ca}(t) = \frac{4}{3} v_g(t) - 4000 i_g(t)$ ,  $R_e = 8 \text{ k}\Omega$