

LEARNING PROGRESS REVIEW

Week 9

Entropy Team

DAFTAR ISI

1. P

Introduction to Data Visualization

Pengenalan tentang visualisasi data

2.

Intermediate Visualization

Visualisasi data menggunakan Matplotlib

INTRODUCTION TO DATA VISUALIZATION

Pengenalan tentang visualisasi data

Visualisasi Data

- Visualisasi data yaitu representasi data dalam bentuk grafis
- Visualisasi data merupakan gabungan dari sains dan seni

Pentingnya Visualisasi Data

- Dapat memperkuat pesan yang ingin disampaikan
- Dapat memberikan pemahaman yang lebih baik
- Dapat membantu menganalisis sebuah keputusan
- Dapat menunjukkan perspektif yang berbeda

Contoh Perbedaan Perspektif

	X1	Y1	X2	Y2
	10.00	8.04	10.00	9.14
	8.00	6.95	8.00	8.14
	13.00	7.58	13.00	8.74
	9.00	8.81	9.00	8.77
	11.00	8.33	11.00	9.26
	14.00	9.96	14.00	8.10
	6.00	7.24	6.00	6.13
	4.00	4.26	4.00	3.10
	12.00	10.84	12.00	9.13
	7.00	4.82	7.00	7.26
	5.00	5.68	5.00	4.74
nean	9.00	7.50	9.00	7.50
tdev	3.32	2.03	3.32	2.03

- Nilai rata-rata dan standar deviasi dari data pertama (X1, Y1) dan data kedua (X2, Y2) bernilai sama untuk masing-masing sumbunya
- Visualisasi dapat menunjukkan perspektif yang berbeda terkait data tersebut

Tujuan Utama

- Untuk menemukan hubungan dalam data
- Untuk analisis data
- Lebih untuk diri sendiri atau tim data
- Tidak perlu terlalu estetik

- Untuk mengomunikasikan hubungan dalam data
- Untuk menyajikan data
- Lebih untuk tim bisnis atau orang awam
- Dibuat lebih estetik

Visualisasi yang Efektif

- Tentukan tujuan dari visualisasi
- Tentukan metrics yang penting untuk ditampilkan, jangan semua data ditampilkan
- Pilih representasi visual yang tepat

Visualisasi Distribusi

Digunakan untuk melihat **sebaran data**

Visualisasi Hubungan

Digunakan untuk melihat **hubungan antardata**

Scatter Plot

Heatmap

Bubble Chart

Density (2D)

Visualisasi Perbandingan

Digunakan untuk melihat **perbedaan atau persamaan** antarkategori

Spider/Radar

Wordcloud

Stem

Visualisasi Proporsi

Digunakan untuk melihat hubungan antara "bagian" dengan "keseluruhan"

Visualisasi Perubahan

Digunakan untuk melihat **perubahan atau** *trend* dalam suatu periode waktu

Line Chart

Area Chart

Stacked Area Chart

INTERMEDIATE VISUALIZATION

Visualisasi data menggunakan Matplotlib

Matplotlib

Matplotlib adalah *library* yang lengkap untuk membuat **visualisasi statis**, **animasi**, dan **interaktif** dengan Python

Anatomi dari Figure

Secara garis besar:

- Figure merupakan kanvas kosong dengan ukuran tertentu
- Axes merupakan bagian dari figure yang berfungsi sebagai tempat meletakkan chart
- Beberapa axes dapat diletakkan dalam satu figure

Subplot

Fig	ure
Subplot 1	Subplot 2
Subplot 3	Subplot 4

- Subplot digunakan untuk membuat layout
- Layout tersebut digunakan untuk meletakkan beberapa plot (axes) dalam satu figure

```
syntax fig, ax = plt.subplots(nrows, ncols)

# fig = figure object

# ax = list of axes objects

# nrows = number of rows

# ncols = number of columns
```


Legend

 Legend digunakan untuk memberi label pada data yang ditampilkan dalam plot

Annotation

 Annotation digunakan untuk memberi catatan atau keterangan di dalam plot

```
syntax ax.annotate(text, xy)

# text = the text of the annotation
# xy = the point (x, y) to annotate
```


Line Plot

- Digunakan untuk melihat perubahan atau trend
- Digunakan untuk membandingkan perubahan seiring waktu

```
syntax ax.plot(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
```


Scatter Plot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat korelasi antarvariabel

```
syntax ax.scatter(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
```


Vertical Bar Plot

- Digunakan untuk melihat perbandingan dari beberapa kategori
- Digunakan untuk melihat ranking

```
syntax ax.bar(x, height)

# x = the horizontal (X-axis) coordinates of the data points
# height = the height of the bars (Y-axis)
```


Horizontal Bar Plot

- Digunakan untuk melihat perbandingan dari beberapa kategori
- Digunakan untuk melihat ranking

```
syntax ax.barh(y, width)

# y = the vertical (Y-axis) coordinates of the data points
# width = the width of the bars (X-axis)
```


Pie Chart

- Digunakan untuk melihat proporsi dari setiap kategori terhadap keseluruhan data
- Hindari menggunakan pie chart jika ukuran tiap bagiannya mirip

```
syntax ax.pie(x)

# x = the wedges size (proportion)
```


Stacked Area Plot

- Digunakan untuk melihat perubahan atau trend
- Digunakan untuk membandingkan perubahan dan proporsi seiring waktu

```
syntax ax.stackplot(x, y)

# x = the horizontal (X-axis) coordinates of the data points (N,)

# y = the vertical (Y-axis) unstacked data (M,N)
```


Histogram

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat apakah data terdistribusi secara normal atau tidak

```
syntax ax.hist(x, bins)

# x = the input data
# bins = the number of bins or the bin edges
```


Boxplot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat apakah ada outlier pada data

```
syntax ax.boxplot(x)

# x = the input data
```


Violin Plot

- Violin plot merupakan gabungan dari boxplot dan density plot (KDE)
- Digunakan untuk melihat sebaran data

```
syntax ax.violinplot(dataset)

# dataset = the input data
```


THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**