中国农业大学

2022~2023 学年秋季学期 (2022.12)

高等数学 ℂ (上) 课程考试试题

题号	_	1	111	四	五	六	七	八	总分
得分									

(注意:本试卷共有八道大题,满分100分,考试时间100分钟)

- 一、单项选择题(本题共有5道小题,每小题3分,满分15分)
- 1. 方程 $x^3 3x + 1 = 0$ 在(0,1)内的实根的个数为().
- (B) 2; (C) 1;
- 2. 设 f(x) 有连续的导数, f(a) = 0, $f'(a) \neq 0$, $F(x) = \int_{a}^{x} (x t) f(t) dt$, 且当 $x \to a$ 时, F'(x)与 $(x-a)^k$ 是同阶无穷小,则k等于(

- (B) 2; (C) 3; (D) 4.
- 3. 设函数 f(x) 在 x = 0 的某个邻域内二阶可导, f'(0) = 0, $\lim_{x \to 0} \frac{f'(x)}{\sin x} = -\frac{1}{2}$, 则 ()。

 - (A) f(0)一定是 f(x) 的一个最大值; (B) f(0)一定是 f(x) 的一个最小值;

 - (C) f(0) 一定是 f(x) 的一个极大值; (D) f(0) 一定是 f(x) 的一个极小值.
- 4. xOz 坐标面上的直线 x=z-2 绕 Oz 轴旋转而成的曲面方程是 ().
 - (A) $x^2 + y^2 = z 2$;
- **(B)** $z^2 = x^2 + y^2 + 2$:
- (C) $(z-2)^2 = x^2 + y^2$; (D) $(x+2)^2 = z^2 + y^2$.
- 5. $\exists \exists a = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos^4 x dx$, $b = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + \cos^4 x) dx$, $c = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin x \cos^4 x) dx$, $dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin x \cos^4 x) dx$, $dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin x \cos^4 x) dx$

- (A) b < c < a; (B) a < c < b; (C) b < a < c; (D) c < a < b.

考生诚信承诺

- 1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行。
- 2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信。

学院:	班级:	学号:	_姓名:

二、填空题(本题共有5道小题,每小题3分,满分15分)

1.
$$\lim_{x \to \infty} (\frac{3+x}{2+x})^{3x} =$$
______.

2. 设函数
$$f(x) = \sin \frac{x}{2} + \cos 2x$$
,则 $f^{(28)}(\pi)$ _____.

3. 已知曲线的方程为
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$
, 则其在 $t = \frac{\pi}{2}$ 处的切线方程为______.

4. 若
$$\int_0^{+\infty} \frac{a}{1+x^2} dx = \pi$$
,则 $a =$ ______.

5. 已知向量
$$\vec{a}$$
 和 \vec{b} 的模分别为 $|\vec{a}| = 2$, $|\vec{b}| = \sqrt{3}$, 且 $\vec{a} \cdot \vec{b} = 2$, 则 $|\vec{a} \times \vec{b}| = 2$.

三、求解下列各题(本题共有6道小题,每小题5分,满分30分)

1. 设
$$y = e^{3x} \sin x$$
, 求 y' 和 y'' .

2. 计算
$$\lim_{x \to 1^+} \frac{\sqrt{x} - 1 + \sqrt{x} - 1}{\sqrt{x^2 - 1}}$$
.

3. 计算
$$\lim_{x\to 0} \frac{\sqrt[3]{1+2x^2}-1}{\tan x \ln(1+x)}$$
.

4. 计算
$$\int \frac{x+1}{x^2+x-2} dx.$$

5. 计算
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+2^x} dx$$
.

6. 设
$$y = y(x)$$
 由方程 $e^{x-y} - x \sin y = 1$ 确定,求 dy.

四、(本题满分8分)

讨论函数
$$f(x) = \begin{cases} \frac{x(x+4)}{\sin(\pi x)}, & x < 0, x \neq -n \\ \frac{\sin x}{x^2 - 1}, & x \geq 0, x \neq 1 \end{cases}$$
 的连续性,若有间断点,判别其类型.

五、(本题满分 8 分) 讨论函数 $y=xe^{\frac{1}{x^2}}$ 的性质(单调区间、凹凸区间、极值、渐近线).

六、(本題满分 8 分) 设平面图形 \mathbf{D} 由 $y=2x-x^2$, y=0, y=x 所围成,求:

- (1) D的面积;
- (2) D 绕 y 轴旋转一周所得旋转体的体积.
- 七、(本题满分6分)

求过点 P (2, 1, -3) 与平面 x+y+z-10=0 平行且与直线 $\begin{cases} x+2y-z-5=0\\ z-10=0 \end{cases}$ 垂直的直线 方程.

八、证明下列各题(本题共有2道小题,每小题5分,满分10分)

- 1. 证明: $\pm 0 < x < 1$ 时, $\frac{1+x}{1-x} > e^{2x}$.
- 2. 设 f(x) 在[0,1]连续,在(0,1)可导,且 $f(1) = 2\int_0^{\frac{1}{2}} x f(x) dx$,证明在(0,1)内至少存在一点 ξ ,使 $\xi f'(\xi) + f(\xi) = 0$.