David Croft

Profiling Efficiency Optimization Profilers

O() notation
Simple algorithms
Good algorithms

Pocan

122COM: Profiling and Complexity

David Croft

Coventry University david.croft@coventry.ac.uk

2016

- 1 Profiling
 - Efficiency
 - Optimization
 - Profilers
- 2 O() notation
 - Simple algorithms
 - Good algorithms
 - Bad algorithms
- 3 Recap

Efficiency
Optimization

O() notatio Simple algorithm Good algorithm Bad algorithms

. D. When writing software think about it's efficiency.

- Time.
- Memory.

When writing software think about it's efficiency.

- Time.
- Memory.
- Time vs Memory.
 - Can you trade one for the other
 - I.e. data stored in RAM costs memory but saves time.
 - I.e. data stored on hard drive saves memory but costs time.

When writing software think about it's efficiency.

- Time.
- Memory.
- Time vs Memory.
 - Can you trade one for the other
 - I.e. data stored in RAM costs memory but saves time.
 - I.e. data stored on hard drive saves memory but costs time.
- Optimization makes software run faster/leaner/better.

Profiling

Efficiency

Optimization

Profilers

O() notatio Simple algorithm Good algorithm Bad algorithms

Recap

"Premature optimization is the root of all evil"

-Knuth

-Knuth

Optimization

"Premature optimization is the root of all evil"

-Knuth

For any large piece of code you should:

Write clear, easily understood code. Focus on getting the behaviour right, not on performance.

-Knuth

- Write clear, easily understood code. Focus on getting the behaviour right, not on performance.
- Test the performance.
 - It may be fine.

-Knuth

- Write clear, easily understood code. Focus on getting the behaviour right, not on performance.
- Test the performance.
 - It may be fine.
- Profile your code to get the baseline performance.
 - So that you know if you are making things better or worse.

-Knuth

- Write clear, easily understood code. Focus on getting the behaviour right, not on performance.
- Test the performance.
 - It may be fine.
- Profile your code to get the baseline performance.
 - So that you know if you are making things better or worse.
- Focus your efforts on the code that is consuming all the time.
 - E.g. small pieces of code that get called multiple times.

Profiling
Efficiency
Optimization

O() notatio
Simple algorithm
Good algorithms

Profiling is a method of analysing your code to identify the impact of the different functions/classes/sections etc.

Instrumentation profilers

- Add extra bits of code to track time/memory/function calls.
 - Can be done manually.
 - But automatic is better.
- Accurate.
 - But slows things down.

Statistical profilers

- Regularly checks the software state.
- Accurate-ish.
 - Based on statistical sampling.
 - Doesn't slow things down.

Optimiza Optimiza

O() notatio Simple algorithm Good algorithm Bad algorithms

Reca

In this example which function takes the most time?

fast_math_function() or slow_math_function()?

```
def fast_math_function(a, b):
    time.sleep(0.00001)
    return a + b
def slow_math_function(a, b):
    time.sleep(3)
    return a + b
def main():
    for i in range(int(1.0000)):
        slow_math_function(42, 69)
    for i in range(int(100000)):
        fast_math_function(42,69)
if __name__ == '__main__':
    sys.exit(main())
```

lec_functions.py

In this example which function takes the most time?

- fast_math_function() or slow_math_function()?
- Why don't we just profile it and find out?

```
def fast_math_function(a, b):
    time.sleep(0.00001)
    return a + b
def slow_math_function(a, b):
    time.sleep(3)
    return a + b
def main():
    for i in range(int(1.0000)):
         slow_math_function(42, 69)
    for i in range(int(100000)):
         fast_math_function(42,69)
if __name__ == '__main__':
     sys.exit(main())
lec functions.pv
```


O() notatio Simple algorith Good algorithm Bad algorithms

Reca

```
>> python3 -m cProfile lec_functions.py
     200007 function calls in 10.362 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
        0.000
                       10.362 10.362 lec_functions.py:1(<module>)
                0.000
        0.137  0.137  10.362  10.362 lec_functions.py:11(main)
        0.171
                               0.000 lec_functions.py:3(fast_math_function)
100000
                0.000 7.222
                0.000 3.003
                                3.003 lec_functions.py:7(slow_math_function)
        0.000
        0.000
                0.000
                       10.362
                               10.362 {built-in method exec}
        0.000
                0.000 0.000
                               0.000 {built-in method exit}
100001
       10.054
                0.000
                       10.054
                               0.000 {built-in method sleep}
        0.000
                0.000
                        0.000
                               0.000 {method 'disable' of '_lsprof.Profiler' obje
```

Things to note:

- Total time time spent in each function.
- Cumulative time time spent in each function AND the functions it calls.

O() notation

Reca

Profiling is very useful in determining the actual performance of your code.

- Unexpected bottlenecks.
- Problems in 3rd party libraries etc.
- Not so good at measuring how code will scale.
 - Change in response to different inputs.
- Algorithmic complexity.
- Certain algorithms are known to be better than other algorithms.

Used to describe complexity in terms of time and/or space.

- Commonly encountered examples...
 - O(1), $O(\log n)$, O(n), $O(n \log n)$, $O(n^2)$, $O(2^n)$ and O(n!)
- n refers to the size of the problem.
 - E.g. *n* values to be sorted.
 - **E**.g. *n* values to be searched.
- \circ O() notation describes the worst case scenario.
 - Usually, unless otherwise stated.
- \circ O() notation is discussed in detail next year.
 - Main idea is to capture the dominant term: the thing that is most important when the size of the input (n) gets big.

Linear complexity.

- n is directly proportional to time/space required
 - E.g. *n* doubles then time/space doubles.
- E.g. linear/sequential search.

- So the algorithm takes n + n + 1 + 1 = 2n + 2 operations.
 - BUT! We would say it has complexity O(n) as when n gets big the factor or 2 and addition of 2 become irrelevant.

Linear complexity.

- n is directly proportional to time/space required
 - E.g. *n* doubles then time/space doubles.
- E.g. linear/sequential search.

- So the algorithm takes n + n + 1 + 1 = 2n + 2 operations.
 - BUT! We would say it has complexity O(n) as when n gets big the factor or 2 and addition of 2 become irrelevant.

Linear complexity.

- n is directly proportional to time/space required
 - E.g. *n* doubles then time/space doubles.
- E.g. linear/sequential search.

- So the algorithm takes n + n + 1 + 1 = 2n + 2 operations.
 - BUT! We would say it has complexity O(n) as when n gets big the factor or 2 and addition of 2 become irrelevant.

Profiling Efficiency

O() notation
Simple algorithms
Good algorithms
Bad algorithms

ptimization rofilers

Linear complexity.

- n is directly proportional to time/space required
 - E.g. *n* doubles then time/space doubles.

a = [0, 1, 2, 3, 4, 5, 6, 7, 42]

■ E.g. linear/sequential search.

- So the algorithm takes n + n + 1 + 1 = 2n + 2 operations.
 - BUT! We would say it has complexity O(n) as when n gets big the factor or 2 and addition of 2 become irrelevant.

Linear complexity.

- *n* is directly proportional to time/space required
 - E.g. *n* doubles then time/space doubles.
- E.g. linear/sequential search.

print('Found it') (1)

break (1)

- So the algorithm takes n + n + 1 + 1 = 2n + 2 operations.
 - **BUT!** We would say it has complexity O(n) as when n gets big the factor or 2 and addition of 2 become irrelevant.

Constant complexity.

- n doesn't matter.
- Always takes same time/space.
- E.g. getting first item in an array.

```
a = [i for i in range(100)]
b = [ i for i in range(1000000) ]
print(a[0])
print(b[0])
```


Constant complexity.

- n doesn't matter.
- Always takes same time/space.
- E.g. getting first item in an array.

```
a = [i for i in range(100)]
b = [ i for i in range(1000000) ]
```


(1)

Constant complexity.

- n doesn't matter.
- Always takes same time/space.
- E.g. getting first item in an array.

Constant complexity.

- n doesn't matter.
- Always takes same time/space.
- E.g. getting first item in an array.

- A lot of simple sorting algorithms are $O(n^2)$.
- Nested for loops are common example.
- $O(n^3)$, $O(n^4)$, $O(n^m)$ etc. are all possible.
- Polynomial time.

```
print('The n times tables')

for i in range(n):
   for j in range(n):
     print(i*j)
```


- A lot of simple sorting algorithms are $O(n^2)$.
- Nested for loops are common example.
- $O(n^3)$, $O(n^4)$, $O(n^m)$ etc. are all possible.
- Polynomial time.

```
print('The n times tables') (1

for i in range(n):
   for j in range(n):
     print(i*j)
```


- A lot of simple sorting algorithms are $O(n^2)$.
- Nested for loops are common example.
- $O(n^3)$, $O(n^4)$, $O(n^m)$ etc. are all possible.
- Polynomial time.

```
print('The n times tables') (1)
for i in range(n):
   for j in range(n):
     print(i*j)
```


- A lot of simple sorting algorithms are $O(n^2)$.
- Nested for loops are common example.
- $O(n^3)$, $O(n^4)$, $O(n^m)$ etc. are all possible.
- Polynomial time.

```
print('The n times tables') (1)
```


Profiling Efficiency Optimization Profilers

O() notation Simple algorithms Good algorithms Bad algorithms

- A lot of simple sorting algorithms are $O(n^2)$.
- Nested for loops are common example.
- $O(n^3)$, $O(n^4)$, $O(n^m)$ etc. are all possible.
- Polynomial time.

Profiling Efficiency Optimization

O() notation
Simple algorithms
Good algorithms

Recap

- Bit more complicated.
- Binary search.

Profiling
Efficiency
Optimization
Profilers

O() notation Simple algorithms Good algorithms Bad algorithms

Recar

- Bit more complicated.
- Binary search.

$$\begin{array}{c}
B \\
A \\
C
\end{array}$$

Profiling
Efficiency
Optimization

O() notation
Simple algorithm
Good algorithms
Rad algorithms

Recar

- Bit more complicated.
- Binary search.

Profiling Efficiency Optimization Profilers

O() notation
Simple algorithms
Good algorithms
Bad algorithms

Recar

- Bit more complicated.
- Binary search.

$$\begin{array}{c}
B \\
A \\
C
\end{array}$$

$$n = 3 \\
O(\log n) = 1.58 \Rightarrow 1$$

 $O(\log n)$

Logarithmic complexity.

- Bit more complicated.
- Binary search.

$$\begin{array}{c}
B \\
A \\
C \\
n = 3 \\
O(\log n) = 1.58 \Rightarrow 1
\end{array}$$

$$n = 7$$

$$O() = 2.81 \Rightarrow 2$$

 $O(\log n)$ cont.

 $O(\log n)$ complexity.

- Increases very slowly.
- $\log_2(100)$ is only 6.
- $\log_2(1000000000000)$ (trillion) is only 39.

$O(n \log n)$

Loglinear complexity.

- Looks more difficult than it is.
- $O(n \log n)$ means, do $O(\log n)$ n times.
- E.g. binary search for *n* items.
 - Binary search is $O(\log n)$.
 - Doing n binary searches.
 - So $O(n \log n)$.
- Lots of good sorting algorithms are $O(n \log n)$.

Profiling Efficiency Optimization

O() notatio Simple algorithm Good algorithm Bad algorithms

Reca

Exponential complexity.

- Very, very bad.
- Each additional value doubles the time/space.
- Doesn't scale.
- $O(3^n)$, $O(4^n)$ etc. are all possible.

Factorial complexity.

- Just awful.
- Every possible combination of *n* items.
- Brute force travelling salesman is O(n!).
- Totally impractical even for small values of *n*.

Profiling
Efficiency
Optimization
Profilers

O() notation
Simple algorithm
Good algorithms
Bad algorithms

Factorial complexity.

- Just awful.
- Every possible combination of *n* items.
- Brute force travelling salesman is O(n!).
- Totally impractical even for small values of *n*.

Reca

Different O() == wildly different complexity.

Best	O(1)
	$O(\log n)$
\uparrow	O(n)
\downarrow	$O(n \log n)$
	$O(n^2)$
	$O(2^n)$
Worst	O(n!)
	. ,

n		
2	10	100
1	1	1
1	3	6
2	10	100
2	33	664
4	100	10000
4	1024	1.27 · 10 ³⁰
2	3628800	9.33 · 10 ¹⁵⁷

David Croft

Profiling
Efficiency
Optimization

O() notation
Simple algorithm
Good algorithms
Bad algorithms

Recap

20

25

30

0

5

10

15

n

Complexity vs. Time

David Croft

Profiling Efficiency Optimization Profilers

O() notatio Simple algorithm Good algorithm Bad algorithms

Recar

Complexity isn't the same as efficiency.

- A good $O(n^2)$ implementation can be better than a bad O(n).
 - For a while.
- Eventually, as n increases, O(n) will always outperform $O(n^2)$ etc.

def n2_sum(sequence):

Complexity isn't the same as efficiency.

- A good $O(n^2)$ implementation can be better than a bad O(n).
 - For a while.
- Eventually, as n increases, O(n) will always outperform $O(n^2)$ etc.

```
def n_sum(sequence):
   total = 0
   for i in range(len(sequence)):
      total += sequence[i]
      time.sleep(0.001)
   return total
```

lec_fast_slow_functions.py

O() notation
Simple algorithm
Good algorithms
Bad algorithms

Recap

David Croft

Profiling

Optimization Profilers

O() notation

Simple algorithms
Good algorithms
Bad algorithms

Recap

Quiz

O() notatio Simple algorithm Good algorithm Bad algorithms

Recap

Profiling help determines the actual performance of your code.

- Statistical profilers.
 - Accurate-ish
- Instrumental profilers.
 - Insert additional instructions.
 - Accurate but slows things down.

O() describes algorithm complexity.

- Time/space.
- How your code should scale.
 - L

ots of real world issues can mess it up.

- Memory limits etc.
- $O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!)$
- $\bullet \geq O(2^n)$ means exponential.
- \bullet < $O(n^2)$ means polynomial.

David Croft

rofiling

Optimization Profilers

O() notation

Simple algorithms Good algorithms Bad algorithms

Recap

The End

