Approximation in Value Space

Let's begin by writing the DP algorithm:

$$J_N(x_n) = g_N(x_N)$$

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} \left\{ \mathbb{E}_{w_k} \left[g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right] \right\}, \forall k \in \{0, ..., N-1\}$$

• Where we can compute a sub-optimal admissible policy by using an approximate cost-to-go function $\tilde{J}_{k+1}(x_{k+1})$:

$$\tilde{\mu}_k(x_k) \in \arg\min_{u_k \in U_k(x_k)} \left\{ \mathbb{E}_{w_k} \left[g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right] \right\}, \forall k \in \{0, ..., N-1\}$$

• $\tilde{J}_{k+1}(x_{k+1})$ is also called an **approximate value function**.

Monte-Carlo Tree Search (MCTS)

Approximation Architectures

- We will study how to generate approximation architectures to approximate $\tilde{J}_k(x_k)$ for any state k.
- The idea is simple: We would like to perform two tasks:
 - Extract features that "represent" the system states x_k
 - Use these features to provide approximate values for $\tilde{J}_m(x_m)$
- The simplest form of architecture is a **linear architecture**:

Example: scalar impulses

Features are like "impulses":

$$\phi_l(x) = \begin{cases} 1 & \text{if } x \in S_l \\ 0 & \text{if } x \notin S_l \end{cases}$$

• The features are also called the *basis functions*, since their linear combination can span the values of the approximate functions $\tilde{J}_k(x_k, r_k)$

- The AlphaGo AI software (Silver et al, 2016) uses handcrafted features, based on experience.
- The state x_k is the board position at the k'th turn, which is extremely complex to represent. Therefore, the following features $\phi(x_k)$ are used to represent the state:

Extended Data Table 2 | Input features for neural networks

Feature	# of planes	Description	
Stone colour	3	Player stone / opponent stone / empty	
Ones	1	A constant plane filled with 1	
Turns since	8	How many turns since a move was played	
Liberties	8	Number of liberties (empty adjacent points)	
Capture size	8	How many opponent stones would be captured	
Self-atari size	8	How many of own stones would be captured	
Liberties after move	8	Number of liberties after this move is played	
Ladder capture	1	Whether a move at this point is a successful ladder capture	
Ladder escape	1	Whether a move at this point is a successful ladder escape	
Sensibleness	1	Whether a move is legal and does not fill its own eyes	
Zeros	1	A constant plane filled with 0	
Player color	1	Whether current player is black	

Features are like binary ("one-hot") encodings of the board picture (a 19x19 image)

Feature planes used by the policy network (all but last feature) and value network (all features).

19x19 image of the board

Feature Encoding

Feature: "Position Color":

- 1. Black
- 2. White
- 3. Empty

19x19 binary matrices ("feature planes")

$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0	0	1	1	
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	$\frac{1}{0}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
Black				L	White			

$$egin{bmatrix} 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 \end{bmatrix}$$

Empty

Least-Squares Regression

Suppose we have at hand our features:

$$\phi_l(x_k), \forall l \in \{1, ..., m\}$$

- Now we need to *train* our linear model, that is we need to find the best configuration of the parameter vector $r = (r_1, ..., r_m)$ that best approximates the cost-to-go $J_k(x_k)$.
- Suppose we collect, via simulation, pairs of states and "future costs":

$$(x^s, J^s), \forall s \in \{1, ..., S\}$$

Then we can solve the following least-squares problem:

$$\min_{r} \left\{ \sum_{s=1}^{S} (r^{\top} \phi(x^{s}) - J^{s})^{2} \right\}$$

- Like we saw, in the timid-play/bold-play example, in AlphaGo, the "cost-to-go" is defined as the probability of winning the Go game given that the board position is x.
- For example we can collect pairs of board positions and the eventual outcome of the game associated with that position:

- Now, suppose that we would like to capture more "complex" behaviors:
 - We want the features ϕ to capture relationships and important aspects of the states (for example in Go: strong positions, strong attack openings, etc.
- Then we can augmented the approximation architecture as follows (we dropped the stage index k for simplicity):

• The training problem is still: $\min_{r,v} \big\{ \sum_{s=1}^{S} (r^{\top} \phi(x^s,v) - J^s)^2 \big\}$

• For example we would like to "string" together sequences of good board position to obtain features relative to a combination of moves (tactics):

- So the feature evaluated at x_k captures the relation between it and the past 3 board positions:
 - "heads-up" for convolutions!

Single-Layer Perceptron

• The simplest Neural Network is the Single-Layer Perceptron:

Training Neural Networks

• For a non-linear function σ we can write the training problem for the 1-layer Neural Network:

$$\min_{A,b,r} \left\{ \sum_{s=1}^{S} \left(\sum_{l=1}^{m} r_{l} \sigma((Ay(x^{s}) + b)_{l}) - J^{s} \right)^{2} \right\}$$

- Where we can add additional regularization as needed.
- However, the optimization now becomes more challenging, since the least-squares problems involve a non-linear function.

- Hence we need to resort to iterative methods to solve the above problem:
 - Stochastic Gradient Descent
 - Variable-Scaling Methods(ex: AdaGrad)

Stochastic Gradient Descent

• Let $\theta = (A, b, r)$ and define:

$$f(x^s, J^s, \theta) = \left(\sum_{l=1}^m r_l \sigma((Ay(x^s) + b)_l) - J^s\right)^2$$

Then the problem becomes:

$$\min_{\theta} \left\{ \sum_{s=1}^{S} f(x^{s}, J^{s}, \theta) \right\} = \min_{\theta} F(\theta)$$

• The basic idea is to treat the above problem as a "sample-average" approximation of the expectation over the distribution of the samples pairs:

$$(x^{s}, J^{s}), \forall s \in \{1, ..., S\}$$

Stochastic Gradient Descent

 Then we can approximate the gradient of the objective function by the gradient of a single sample instead:

$$\nabla_{\theta} F(\theta) \approx \nabla_{\theta} f(x^s, J^s, \theta)$$

• And given some initial configuration θ^0 , we can define the iterative scheme:

$$\theta^{t+1} = \theta^t - \alpha_t \nabla_\theta J(x^s, J^s, \theta^s)$$

- Where we select which sample to use uniformly at random.
- The basic Stochastic Gradient Descent can be enhanced in a myriad of ways, but for our purposes it will suffice to stop here.

Deep Neural Networks (DNN)

- In order to capture complex behavior, using a single extremely large layer is not good in practice:
 - We may not be able to capture temporal dependencies well
 - Difficulties to create a "hierarchy" of features
 - Gradients will contain many components and not possible to "break" it down in small pieces to facilitate computation
- So the alternative is to use many (but smaller) layers, leading to a Deep (long) sequence of layers.
- This gives us flexibility in designing each layer and tailor the architecture to the needs of the application.
- Example: AlphaGo uses networks with more than 17 layers.

Deep Neural Networks (DNN)

- The training of DNN's, in essence, is the same as the single-layer perceptron: We use Stochastic Gradients or it's variants/extensions.
- However, we can exploit the sequential layering to break the computation of the gradients:
 - Applying the chain-rule in a smart way.
 - We can see that a DNN is a sequence of mappings, which maps the state x to it's value function $\tilde{J}(x)$.
 - The sequence of mappings is done via an alternation of linear mappings and nonlinear mappings

$$\begin{cases} x \to L_i x \text{ for every linear layer i} \\ x \to \Sigma_i x \text{ for every non-linear layer i} \end{cases}$$

We can then represent the entire approximation architecture with m layers as:

$$L_{m+1}\Sigma_m L_m \cdots \Sigma_1 L_1 y(x)$$

- Where θ is the collection of all parameters across all layers.
- Then the non-linear least-squares becomes:

$$\min_{\theta} \left\{ \sum_{s=1}^{S} \left(L_{m+1} \Sigma_m L_m \cdots \Sigma_1 L_1 y(x^s) - J^s \right)^2 \right\} = \min_{\theta} \left\{ \sum_{s=1}^{S} E_s(L_1, \Sigma_1, ..., L_{m+1}) \right\}$$

• Where $E_S(L_1, ..., L_{m+1})$ is the error function of sample s:

• For each sample s, applying the chain rule we compute the partial derivative of $L_k(i,j)$, the ij'th component of the matrix L_k :

$$\frac{\partial E(L_1, ..., L_{m+1})}{\partial L_k(i, j)} = -e^{\top} L_{m+1} \bar{\Sigma}_{m+1} L_m \cdots L_{k+1} \bar{\Sigma}_k I_{ij} \Sigma_{k-1} L_{k-1} \cdots \Sigma_1 L_1 y(x^s)$$

Where:

$$e = J^s - F(L_1, ..., L_{m+1})y(x^s) \qquad \bar{\Sigma}_n(z_n) = \begin{bmatrix} \frac{\partial \sigma_n}{\partial z}(z_n^1) & 0 & \cdots & 0\\ 0 & \frac{\partial \sigma_n}{\partial z}(z_n^2) & \cdots & 0\\ \vdots & 0 & \ddots & 0\\ 0 & 0 & \cdots & \frac{\partial \sigma_n}{\partial z}(z_n^p) \end{bmatrix}$$

 $I_{ij} = \text{matrix}$ with all components equal to 0, except the ij'th component, which is equal to 1

- All derivatives can be obtained by an efficient forward-backward pass as follows:
- (1) Proceed forward by sequentially computing the output of each linear layer:

$$L_1x, L_2\Sigma_1L_1y(x^s), \ldots, L_{m+1}\Sigma_mL_m\cdots\Sigma_1L_1y(x^s)$$

Evaluate the error vector $e = J^s - F(L_1, ..., L_{m+1}, x^s)$. Evaluate the partial derivatives matrices $\overline{\Sigma}_i$ evaluated at the above points.

• (2) Proceed backward sequentially calculating the terms:

$$2e^{\top}L_{m+1}\bar{\Sigma}_{m}L_{m}\cdots L_{k+1}\bar{\Sigma}_{k} \text{ for } k \in \{m,...,1\}$$

And substituting in:

$$\frac{\partial E(L_1, ..., L_{m+1})}{\partial L_k(i, j)} = -e^{\top} L_{m+1} \bar{\Sigma}_{m+1} L_m \cdots L_{k+1} \bar{\Sigma}_k I_{ij} \Sigma_{k-1} L_{k-1} \cdots \Sigma_1 L_1 y(x^s)$$

Using DNN's in DP Approximation

Now let's return to our approximate DP framework:

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} \left\{ \mathbb{E}_{w_k} \left[g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k, u_k, w_k)) \right] \right\}, \forall k \in \{0, ..., N-1\}$$

• Where $\tilde{J}_{k+1}(x_{k+1})$ is the approximate value function.

We will use the DNN formulation to provide this approximation.

• Note that if used this way, this is essentially a 1-step lookahead approximation, where the lookahead problem is given directly by the DNN.

- We will present here the finite horizon of the Fitted Value Iteration algorithm.
- In practice, it is not used much, as most practical problems are treated as Infinite-Horizon problems. However it will provide a basis of understanding as we move to the infinite horizon case (next lecture).

• In the finite horizon case, for each time period k, we will have one approximation architecture and it's associated parameter $\theta_k = (r_k, v_k)$.

• Or alternatively, you can think you have a single architecture, where the stage k enters as an input.

- In the finite horizon case, the algorithm proceeds (like always) backwards in time.
- First we start at stage N-1, and solve the following non-linear least-squares minimization:

$$\theta_{N-1}^* \in \arg\min_{\theta} \left\{ \sum_{s=1}^{S} \left(\tilde{J}_{N-1}(x_{N-1}^s, \theta_{N-1}) - \min_{u_{N-1} \in U_{N-1}(x_{N-1}^s)} \left\{ \mathbb{E}_{w_{N-1}} \left[g_{N-1}(x_{N-1}^s, u_{N-1}, w_{N-1}) + g_N(f_{N-1}(x_{N-1}^s, u_{N-1}, w_{N-1})) \right] \right\} \right)^2 \right\}$$

• Note that this long expression is *still* a (non-linear) regression problem. Note we can define:

$$J_{N-1}^s = \min_{u_{N-1} \in U_{N-1}(x_{N-1}^s)} \left\{ \mathbb{E}_{w_{N-1}} \left[g_{N-1}(x_{N-1}^s, u_{N-1}, w_{N-1}) + g_N(f_{N-1}(x_{N-1}^s, u_{N-1}, w_{N-1})) \right] \right\}$$

And we have equivalently:

$$\theta_{N-1}^* \in \arg\min_{\theta} \left\{ \sum_{s=1}^S \left(\tilde{J}_{N-1}(x_{N-1}^s, \theta_{N-1}) - J_{N-1}^s \right)^2 \right\}$$

Now, we proceed backwards in time:

$$\theta_k^* \in \arg\min_{\theta} \left\{ \sum_{s=1}^{S} \left(\tilde{J}_k(x_k^s, \theta_k) - \min_{u_k \in U_k(x_k^s)} \left\{ \mathbb{E}_{w_k} \left[g_k(x_k^s, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k^s, u_k, w_k), \theta_{k+1}^*) \right] \right\} \right)^2 \right\}$$

Where use the optimal architecture of the future stage to provide the cost-to-go values.

• Likewise, if we let:

$$J_k^s = \min_{u_k \in U_k(x_k^s)} \left\{ \mathbb{E}_{w_k} \left[g_k(x_k^s, u_k, w_k) + \tilde{J}_{k+1}(f_k(x_k^s, u_k, w_k), \theta_{k+1}^*) \right] \right\}$$

• We write the k'th step of the algorithm as the regression:

$$\theta_k^* \in \arg\min_{\theta} \left\{ \sum_{s=1}^S \left(\tilde{J}_k(x_k^s, \theta_k) - J_k^s \right)^2 \right\}$$

• The algorithm keeps going backwards until we compute θ_0^* at time period 0.

- A few notes are warranted.
- (1) We can use Simulation (e.g.: generating scenarios) for the disturbances $w'_k s$ at each step of the algorithm.
 - Thus, using sample average approximation (SAA) to compute the expecations.
- (2) At each period k The generated samples of states x_k^1, \dots, x_k^S need to "represent" the entire state-space.
 - We will study this notion of obtain a "rich" array of samples in the infinite horizon context.
- (3) The computation on N is large can be excessive, since we are training N different architectures.
 - By moving to the infinite horizon case, we will argue about using stationarity to provide a single DNN architecture that will be used for all time periods.