Test for Abelian Groups

Matt McCarthy

February 2016

Definition 1. Let S be a set. Then a binary operation on S is a map $*: S \times S \to S$.

Definition 2. Let G be a set and * be a binary operation on G. Then (G,*) is a *group* if and only if all of the following hold.

- 1. For each $a, b, c \in G$, (a * b) * c = a * (b * c).
- 2. There exists a $1 \in G$ such that for every $a \in G$ 1 * a = a * 1 = a.
- 3. For each $a \in G$ there exists a $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = 1$.

Definition 3. Let (G, \cdot) be a group. Then we say G is abelian if and only if for each $a, b \in G$ ab = ba.

Theorem 1. Suppose (G, \cdot) is a group such that there exists an $n \in \mathbb{N}$ where $(ab)^n = a^n b^n$, $(ab)^{n+1} = a^{n+1}b^{n+1}$, and $(ab)^{n+2} = a^{n+2}b^{n+2}$ for each $a, b \in G$. Then G is abelian.

Proof. Consider $a^{n+1}b^{n+1}$.

$$a^{n+1}b^{n+1} = (ab)^{n+1} = (ab)^n(ab) = a^nb^nab$$

If we multiply on the right by a^{-n} and the left by b^{-1} , we get

$$ab^n = b^n a$$
.

Consider $a^{n+2}b^{n+2}$.

$$a^{n+2}b^{n+2} = (ab)^{n+1} = (ab)^{n+1}(ab) = a^{n+1}b^{n+1}ab$$

Again, multiplying on the right $a^{-(n+1)}$ and on the right by b^{-1} yields,

$$ab^{n+1} = b^{n+1}a.$$

We now do some manipulation.

$$ab^{n+1} = b^{n+1}a$$
$$= b(b^n a)$$
$$= b(ab^n)$$

Multiplying on the right by b^{-n} yields,

$$ab = ba$$

and thus G is abelian.