22-52-01 Q(a) untrained exercise f(x) = 120 x + (1-x)g(x) g(x) >80, x small ges = 50 +30 e 9(x) + 30 , x -> 1 (i) Q: fill the Table with 20 value of x optimum value for exercising (ii) Q: fitness -unc-(ion f*(x)) 0 to] (iii) Q: Difficulty of Find the optimen Q(b) categorize (i) share price -> predict (ii) odd size boxes -> de livery (iii) policy -> making (iv) Roster -> security guards

Solution (i)
$$\bigcirc$$
 minimize $f(x)$

$$f(x) = 120 \times f(1-x) g(x)$$

$$= 120 \times f(1-x) [50+30e^{-100x}]$$

9(x)	J(X)	
80	& D	
61-0364	61.6266	
54.0601	55.378	
51-4936	53.549	
50.5495	53-327	
50.2021	53.6920	
50.0743	54.2698	
	;	
50	120	
	80 61-0364 54.0601 51-4936 50.5495 50.2021 50.0743	80 61-0364 54.0601 51.4936 53.549 50.5495 50.5495 50.2021 50.0743 54.2698

$$f(x) = 120x + 50 - 50x + 30e^{-100x} - 30xe^{-100x}$$
$$= 70x + 50 + 30e^{-(00x)} - 30xe^{-100x}$$

$$f(x) = 70 - 3000e^{-1000x}$$

$$= -30\left[e^{-1000x} - 30\left[e^{-1000x}\right]\right]$$

$$= -1000x$$

$$= -10$$

x = 0.0373, f(x) = 13.3039about 3.7% of the day Since the are 24x60 = 1440 minutes in a day, the optimum per day of exercise is 0.0373 x 1440 = 53.712 mins/day (ii) We can use Max-min normalize Jmax = 120, fmin = 53.3 So $f(x) = \frac{120 - f(x)}{120 - 53.3} = \frac{120 - f(x)}{66.7}$ when f(x) = 53.3 (best), f(x) = 1when f(x) = 120 (worst) f(x) = 0

×	9(x)	J(X)	$\int_{0}^{\infty} f(x)$
0	80	₿ D	0.60
0.01	61-0364	61.6266	0.88
0.02	J4.0601	SS. 378	0.97
60.0	51-4936	53.549	0-997
0.0¢	50.5495	53.327	0-999
0.05	50.2021	53.6920	0.994
0.06	50.0743	54.2698	0.9854
:	÷	?	`
1	20	120	Ö

(iii) Solution

- D It isn't a particularly difficult problem
- 3 There is only one variable x6[0,1]
- 3) The function is smooth and unimodal
- 4 It can be solved by elementary um orical methods, such as bisection, Newton-Raphson, simple table search

Solution (b) O Question Type

(1) Black box model

(2) Search problem

(3) optimization us constraint satisfaction

(4) NP problen

(i) Black box moder

Reason: using historical data to

fore casting or prediction regression

(ii) constraint and optimization problem (cop)

Reason: must decide how to arrange

item to minimize wasted space or the

number of trucks

(iii) constraint and optimization problem (cop)

Reason: multiple objectives, constraints

(iv) constraint and optimization problem (cop)

Reason: minimize cost or maximizing

coverage.