Códigos skew Reed-Solomon y teorema de Artin-Wedderburn efectivo

José Manuel Muñoz Fuentes 21 de junio de 2019

Códigos skew Reed-Solomon

Comunicación

Códigos

Se considera un cuerpo finito F, el espacio vectorial de dimensión n que genera, F^n , y una distancia o métrica en F^n .

Definición

Un **código** es un subconjunto C de F^n .

Si la distancia entre una palabra $w \in \mathcal{C}$ y la palabra con errores $w + e \in F^n$ es pequeña, reconstruimos w como el elemento de \mathcal{C} más cercano a w + e.

Códigos lineales y cíclicos

Para que sea eficiente encontrar el elemento más cercano en \mathcal{C} , conviene que \mathcal{C} tenga cierta estructura algebraica.

Definición

Un **código lineal** es un código que es subespacio vectorial de F^n .

Definición

Un código cíclico es un código lineal cerrado para la operación

$$(c_0, c_1, \ldots, c_{n-1}) \mapsto (c_{n-1}, c_0, \ldots, c_{n-2})$$

Códigos cíclicos como ideales

Las palabras en un código cíclico se pueden ver como elementos en el anillo de ideales principales

$$\mathcal{R} = \frac{F[x]}{\langle x^n - 1 \rangle}$$

mediante la correspondencia

$$\left(c_0,\,c_1,\,c_2,\,\dots\right)\mapsto c_0+c_1x+c_2x^2+\dots+\langle x^n-1\rangle$$

Así, los códigos cíclicos se corresponden con los ideales de \mathcal{R} , que por ser principales están generados por un elemento.

Códigos Reed-Solomon

Definición

Un **código BCH** es un ideal de \mathcal{R} generado por el mcm de los polinomios mínimos en F[x] de $\alpha^b, \, \alpha^{b+1}, \, \ldots, \, \alpha^{b+2t}$ para algún α raíz primitiva de x^n-1 y algunos $b,t\in\mathbb{N}$.

Definición

Un **código Reed-Solomon** es un código BCH en el caso n = |F| - 1.

Códigos Reed-Solomon

Como $x^{|F|-1}-1$ descompone en F, un código Reed-Solomon es un ideal de $\mathcal R$ generado por

$$g(x) = \prod_{i=1}^{2t} \left(x - \alpha^{b+i} \right)$$

con $\alpha \in F$ y $b, t \in \mathbb{N}$.

Dada una palabra $w \in \mathcal{C}$, todos los elementos de F^n a una distancia de Hamming de t o menos respecto de w tienen por palabra más cercana w. Es decir, los códigos Reed-Solomon permiten corregir t errores.

Codificación Reed-Solomon

Dado un mensaje representado como un elemento de F^k con k=n-2t, se dispone como un polinomio y se multiplica por g(x), teniendo así una palabra de $\mathcal{C}=\mathcal{R}g(x)$.

Algunos algoritmos de decodificación:

- · Peterson-Gorenstein-Zierler
- Berlekamp-Massey
- Sugiyama
- · Sudan-Guruswami

Polinomios skew

Ahora consideramos un automorfismo $\sigma: F \mapsto F$

Definición

El anillo de **polinomios skew** $R = F[x; \sigma]$ es el conjunto de polinomios de F[x] con la suma habitual y el producto

$$xa = \sigma(a)x$$

No es un anillo conmutativo (si $\sigma \neq id$), pero si σ es de orden μ , entonces $x^{\mu}-1$ es central y se tiene un anillo cociente

$$\mathcal{R} = \frac{R}{R(x^{\mu} - 1)}$$

Códigos skew Reed-Solomon

Definición

Un **código skew cíclico** es un ideal izquierda de \mathcal{R} .

Definición

Un **código skew Reed-Solomon** es un código skew cíclico generado por el mcm a la izquierda de

$$X - \sigma^b(\beta), \ X - \sigma^{b+1}(\beta), \ \ldots, \ X - \sigma^{b+2t}(\beta)$$

donde $\beta = \frac{\sigma(\alpha)}{\alpha}$ para algún $\alpha \in F$ cuyos conjugados sean una base normal de F y algunos $b, t \in \mathbb{N}$.

Teorema de Artin-Wedderburn efectivo

Teorema de Artin-Wedderburn

Teorema (Artin-Wedderburn)

Todo anillo semisimple es isomorfo a algún producto

$$M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r)$$

con Di anillos de división.

En particular, si K es un cuerpo finito:

Teorema (Artin-Wedderburn, álgebras de dimensión finita)

Toda K-álgebra semisimple de dimensión finita es isomorfa a un producto

$$M_{n_1}(E_1) \times \cdots \times M_{n_r}(E_r)$$

con E_i cuerpo extensión de K.

Corolario

Corolario

Si K es un cuerpo finito, toda K-álgebra simple A de dimensión finita con centro Z(A) es isomorfa a $M_n(Z(A))$.

Además, n queda determinado por las dimensiones de A y Z(A).

Estos resultados acotan las posibles estructuras de las *K*-álgebras semisimples, pero no dan un isomorfismo explícito.

Estructura del anillo $R = F[x; \sigma]$

Siendo σ un automorfismo de F de orden μ , se tiene el subcuerpo $K = F^{\sigma}$.

Proposición

El centro de $R = F[x; \sigma]$ es $K[x^{\mu}]$ y todos sus ideales biláteros son los de la forma $Rq(x^{\mu})x^k$ con $q(x^{\mu}) \in K[x^{\mu}]$ y $k \in \mathbb{N}$.

Por ello, para cada $p(x)=q(x^\mu)x^k$ tenemos la K-álgebra cociente de dimensión finita

 $\mathcal{R} = \frac{R}{Rp(x)}$

Proposición

 \mathcal{R} es semisimple si y solo si $k \le 1$ y $q(x^{\mu})$ es libre de cuadrados en $K[x^{\mu}]$.

Estructura del anillo $R = F[x; \sigma]$

Así, si $\mathcal{R}=\frac{R}{Rp(x)}$ es semisimple, $p(x)=q(x^{\mu})$ o $p(x)=q(x^{\mu})x$ donde $q(x^{\mu})=\prod_i q_i(x^{\mu})$.

• Si $p(x) = \prod_i q_i(x^{\mu})$ entonces

$$\mathcal{R}\cong\bigoplus_{i}\frac{R}{Rp_{i}(x^{\mu})}\cong\bigoplus_{i}\mathcal{R}_{i}$$

• Si $p(x) = q(x^{\mu})x$, entonces

$$\mathcal{R} \cong \frac{R}{Rx} \bigoplus \frac{R}{Rq(x^{\mu})} \cong \mathcal{R}_{o} \bigoplus \mathcal{R}' \cong F \bigoplus \mathcal{R}'$$

y \mathcal{R}' descompone como en el caso anterior.

Cada \mathcal{R}_i es simple y, por dimensión y por cómo es el centro de \mathcal{R}_i , isomorfo a $M_{\mu}(K(\beta_i))$ con β_i raíz de $q_i(y)$ (tomando $y = x^{\mu}$).

Construcción del isomorfismo

Para dar un isomorfismo basta con dar un homomorfismo

$$\varphi: R \mapsto \bigoplus_{i} M_{i}$$

de núcleo Rp(x), y para ello solo hay que dar la imagen de x y de un $\alpha \in F$ tal que $F = K(\alpha)$ de forma que:

- $p(\varphi(x)) = 0$ y $p'(\varphi(x)) \neq 0$ para p'(x) divisor propio de p(x)
- $m(\varphi(\alpha)) = 0$ con m el polinomio mínimo de α en K[x]
- $\varphi(\mathbf{x})\varphi(\alpha) = \varphi(\sigma(\alpha))\varphi(\mathbf{x})$

 φ^{-1} se puede construir planteando un sistema de ecuaciones a partir de las imágenes por φ de elementos de R.

Caso $\chi^{\mu}-1$

Si
$$p(x) = x^{\mu} - 1$$
, definimos:

$$\varphi(\mathbf{X}) = \mathsf{M}_{\mathsf{B}}(\sigma), \qquad \varphi(\alpha) = \mathsf{M}_{\mathsf{B}}(\lambda_{\alpha})$$

donde $M_B : End_K(F) \cong End_K(K^{\mu}) \to M_{\mu}(K)$ para alguna base B y siendo λ_{α} el producto por α en F.

Se observa que este caso se presenta en los códigos skew Reed-Solomon.

Bases polinómica y normal

Para cada base B considerada tenemos un isomorfismo distinto.

Con la base $B = \{1, \alpha, \alpha^2, \dots, \alpha^{\mu-1}\}$ obtenemos directamente $\varphi(\alpha)$ como la matriz compañera del polinomio mínimo de α .

Si $B = \{\alpha, \sigma(\alpha), \sigma^2(\alpha), \ldots, \sigma^{\mu-1}(\alpha)\}$ es una base, entonces $\varphi(x)$ es la matriz compañera de $x^{\mu} - 1$, que es una matriz de permutación.

Caso irreducible general

Un caso más general se da cuando $\mathcal{R}=R/Rp(x)$ con $p(x)=q(x^\mu)\in K[x^\mu]$ irreducible. En el caso anterior teníamos q(y)=y-1. Tomamos β raíz de q(y).

Los elementos de $M_{\mu}(K)$ se pueden ver dentro de $M_{\mu}(K(\beta))$, que es isomorfo a \mathcal{R} .

Volviendo a tomar $\varphi(\alpha) = M_B(\lambda_\alpha)$ y $\varphi(x) = M_B(\sigma)$ se tienen las condiciones

- $m(\varphi(\alpha)) = 0$ con m el polinomio mínimo de α en K[x]
- $\varphi(\mathbf{x})\varphi(\alpha) = \varphi(\sigma(\alpha))\varphi(\mathbf{x})$

Pero $p(\varphi(x)) \neq 0$ (de hecho φ vuelve a tener el núcleo $R(x^{\mu}-1)$, que no es el que buscamos).

Cuando p(x) tiene raíces

Si $b \in E = K(\beta)$ cumple que $p(b) = q(b^{\mu}) = 0$, entonces al tomar $\varphi(x) = bM_B(\sigma)$ se cumple la condición que falta manteniendo las otras, pues

$$p(b\mathsf{M}_\mathsf{B}(\sigma)) = q(b^\mu\mathsf{M}_\mathsf{B}(\sigma)^\mu) = q(b^\mu\mathsf{I}_\mu) = q(b^\mu) = \mathsf{O}$$

Si p(x) tiene raíces en E, se pueden encontrar algunas de ellas calculando las raíces μ -ésimas de β .

En algunos casos, β^{μ} también es raíz de q(x), por lo que β es raíz de $q(x^{\mu}) = p(x)$ y no hace falta computar raíces de ningún polinomio.

Cuando p(x) no tiene raíces

Si las raíces de p(x) no están en $E = K(\beta)$, hay que buscar una imagen de x de otra forma. Definimos

$$S = \{A \in M_{\mu}(E) : A M_{B}(\lambda_{\alpha}) - M_{B}(\lambda_{\sigma(\alpha)}) A = 0\}$$

S contiene a todos los elementos que, tomados como $\varphi(x)$, hacen que φ satisfaga las condiciones buscadas no relativas a su núcleo.

Proposición

S es un subespacio vectorial de $M_{\mu}(E)$ de dimensión μ con base

$$\{M_B(\lambda_{\alpha_1}\sigma), M_B(\lambda_{\alpha_2}\sigma), \ldots, M_B(\lambda_{\alpha_{\mu}}\sigma)\}$$

donde $\{\alpha_1, \ldots, \alpha_{\mu}\}$ es cualquier K-base de F.

Búsqueda en S

Si $A \in S$ satisface $A^{\mu} = b \cdot I_{\mu}$ con $b \in E$ cualquiera, entonces p(A) = 0 si y solo si q(b) = 0.

Conjetura

$$A^{\mu} = -(-1)^{\mu} |A| \cdot I_{\mu} \quad \forall A \in S$$

En particular, esta conjetura garantizaría que la potencia μ -ésima de todo elemento de S es una matriz escalar.

Búsqueda en S

Dado $A\in S$ no nulo, podemos explorar todos sus múltiplos a la vez. Como $A^\mu=a\cdot I_\mu$ para algún $a\in E$, si $b^\mu a$ es una raíz de q(x), entonces

$$p(bA) = q(b^{\mu}A^{\mu}) = q(b^{\mu}a) = 0$$

y podemos tomar $\varphi(x) = bA$.

Se puede comprobar si existe b comprobando si, para cada r raíz de q(x), r/a tiene alguna raíz μ -ésima en E; en tal caso, $b^{\mu}=r/a$ y por tanto $b^{\mu}a=r$.

Búsqueda en S

De esta forma, la búsqueda en S se reduce a la búsqueda en el espacio proyectivo

$$PG(\mu - 1, E) \cong \frac{S \setminus \{0\}}{\sim}$$

 $\mbox{con} \sim \mbox{la}$ relación de equivalencia que identifica los elementos proporcionales.

Si los valores de A^μ se distribuyen uniformemente en E^\times , uno de cada $\mathrm{mcd}(\mu,|E|-1) \leq \mu$ elementos de S nos permitirán encontrar una imagen de x con la que φ tiene el núcleo buscado.

Caso general

Cuando p(x) es un producto de polinomios centrales, se puede descomponer \mathcal{R} como suma directa de los \mathcal{R}_i , que dan lugar a los casos anteriores.

Para construir el isomorfismo inverso, en lugar de resolver un sistema, se puede resolver un sistema más pequeño en cada sumando y combinar los resultados usando los idempotentes centrales de \mathcal{R} .

Construcción de códigos skew RS

Recordemos que los códigos skew cíclicos se describen como ideales izquierda en $\mathcal{R}=R/R(x^{\mu}-1)$.

Como $\mathcal{R}\cong M_\mu(K)$ y $M_\mu(K)$ descompone como la suma de ideales izquierda columna

$$M = \bigoplus_{i} M_{\mu}(K)E_{i}$$

con E_i la matriz con un 1 en la posición i, i, computando

$$g_i(x) = \varphi^{-1}(E_i)$$

tenemos unos ideales izquierda $\mathcal{R}g_i(x)$. Calculando el mcd de varios de ellos obtenemos generadores de ideales con más elementos.

Cambiando de base, es decir, tomando $g_i(x) = \varphi^{-1}(A^{-1}E_iA)$ con A una matriz regular, obtenemos otros códigos distintos.