Publication List

My full listing on INSPIRE-HEP is available here.
White Papers that I have contributed to are listed at the end of this document.

Publications and pre-prints

1. Dark Matter Mounds: towards a realistic description of dark matter overdensities around black holes

G. Bertone, A. R. A. C. Wierda, D. Gaggero, **B. J. Kavanagh**, M. Volonteri, N. Yoshida Submitted to PRL, arXiv:2404.08731

2. Sharpening the dark matter signature in gravitational waveforms II: Numerical simulations with the NbodyIMRI code

T. K. Karydas, **B. J. Kavanagh**, G. Bertone, P. Di Cintio, M. Pasquato Submitted to PRD, arXiv:2402.13762 Code available here (archived on Zenodo)

3. Sharpening the dark matter signature in gravitational waveforms I: Accretion and eccentricity evolution

T. K. Karydas, **B. J. Kavanagh**, G. Bertone Submitted to PRD, arXiv:2402.13053

 Phonon dynamics for light dark matter detection
 M. Raya-Moreno, B. J. Kavanagh, L. Fàbrega, R. Rurali Submitted to PRX, arXiv:2311.11930

- Statistics of magnification for extremely lensed high redshift stars
 J. M. Palencia, J. M. Diego, B. J. Kavanagh, J. Martinez
 Submitted to Astronomy & Astrophysics, arXiv:2307.09505
- Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M
 Arnquist et al. (DAMIC-M Collaboration, including B. J. Kavanagh)
 Phys. Rev. Lett. 132, 101006, arXiv:2307.07251
- Impact of dark matter spikes on the merger rates of Primordial Black Holes
 Jangra, B. J. Kavanagh, J. M. Diego
 JCAP 11 (2023) 069, arXiv:2304.05892
- 8. Tagging and localisation of ionizing events using NbSi transition edge phonon sensors for Dark Matter searches

EDELWEISS Collaboration and **B. J. Kavanagh** Phys. Rev. D 108, 022006, arXiv:2303.02067

9. Disks, spikes, and clouds: distinguishing environmental effects on BBH gravitational waveforms P. S. Cole, G. Bertone, A. Coogan, D. Gaggero, T. Karydas, **B. J. Kavanagh**, T. F. M. Spieksma, G. M. Tomaselli

Nature Astronomy 7, 943–950 (2023), arXiv:2211.01362

10. Measuring dark matter spikes around primordial black holes with Einstein Telescope and Cosmic Explorer

P. S. Cole, A. Coogan, **B. J. Kavanagh**, G. Bertone Phys. Rev. D 107, 083006 (2023), arXiv:2207.07576 Highlighted in **Nature Astronomy 7, 511 (2023)**

11. The Canfranc Axion Detection Experiment (CADEx): Search for axions at 90 GHz with Kinetic Inductance Detectors

B. Aja et al., including **B. J. Kavanagh** (CADEx collaboration) JCAP 11 (2022) 044, arXiv:2206.02980

12. Dancing in the dark: detecting a population of distant primordial black holes M. Martinelli, F. Scarcella, N. B. Hogg, **B. J. Kavanagh**, D. Gaggero, P. Fleury JCAP 08 (2022) 006, arXiv:2205.02639

 Complementarity of direct detection experiments in search of light Dark Matter J. R. Angevaare, G. Bertone, A. P. Colijn, M. P. Decowski, B. J. Kavanagh JCAP 10 (2022) 004, arXiv:2204.01580

 Godzilla, a monster lurks in the Sunburst galaxy
 J. M. Diego, M. Pascale, B. J. Kavanagh, P. Kelly, L. Dai, B. Frye, T. Broadhurst Astron. & Astrophys., 665 (2022) A134, arXiv:2203.08158
 Highlighted in Nature 610, 10 (2022)

15. Search for sub-GeV Dark Matter via Migdal effect with an EDELWEISS germanium detector with NbSi TES sensors

EDELWEISS Collaboration and **B. J. Kavanagh** Phys. Rev. D 106, 062004 (2022), arXiv:2203.03993

16. Cosmology and direct detection of the Dark Axion Portal

J. Cortabitarte Gutiérrez, **B. J. Kavanagh**, N. Castelló-Mor, F. J. Casas, J. M. Diego, E. Martínez-González, R. Vilar Cortabitarte Submitted to PRD, arXiv:2112.11387

Code available here (archived on Zenodo)

Scattering searches for dark matter in subhalos: neutron stars, cosmic rays, and old rocks
 J. Bramante, B. J. Kavanagh, N. Raj
 Phys. Rev. Lett. 128, 231801 (2022), arXiv:2109.04582

18. Measuring the dark matter environments of black hole binaries with gravitational waves A. Coogan, G. Bertone, D. Gaggero, B. J. Kavanagh, D. A. Nichols Phys. Rev. D 105, 043009 (2022), arXiv:2108.04154 Code available here Featured on NewScientist.nl

The Effect of Mission Duration on LISA Science Objectives
 P. Amaro-Seoane et al.
 Gen. Relativ. Gravit. 54, 3 (2022), arXiv:2107.09665

20. Transient Radio Signatures from Neutron Star Encounters with QCD Axion Miniclusters T. D. P. Edwards, B. J. Kavanagh, L. Visinelli, C. Weniger Phys. Rev. Lett. 127, 131103 (2021), arXiv:2011.05378 Code available here (archived on Zenodo) Featured in the blog Ça Se Passe Là-Haut

 Stellar Disruption of Axion Miniclusters in the Milky Way
 B. J. Kavanagh, T. D. P. Edwards, L. Visinelli, C. Weniger Phys. Rev. D 104, 063038 (2021), arXiv:2011.05377
 Code available here (archived on Zenodo)

22. Integral X-ray constraints on sub-GeV Dark Matter M. Cirelli, N. Fornengo, **B. J. Kavanagh**, E. Pinetti Phys. Rev. D 103, 063022 (2021), arXiv:2007.11493

Primordial Black Holes as a dark matter candidate
 A. M. Green, B. J. Kavanagh
 J. Phys. G 48 (2021) 4, 043001, arXiv:2007.10722
 Code and constraints available here

24. Measuring the local Dark Matter density in the laboratory

B. J. Kavanagh, T. Emken, R. Catena Phys. Rev. D 104, 083023 (2021), arXiv:2004.01621 Code available here (archived on Zenodo) and here

25. Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform

B. J. Kavanagh, D. A. Nichols, G. Bertone, D. Gaggero Phys. Rev. D 102, 083006 (2020), arXiv:2002.12811 Code available here (archived on Zenodo), movies available here

26. Impact of substructure on local dark matter searches
A. Ibarra, B. J. Kavanagh, A. Rappelt

JCAP 12 (2019) 013, arXiv:1908.00747

27. Gravitational wave probes of dark matter: challenges and opportunities

G. Bertone, D. Croon, M. A. Amin, K. K. Boddy, B. J. Kavanagh, K. J. Mack, P. Natarajan,

T. Opferkuch, K. Schutz, V. Takhistov, C. Weniger, T.-T. Yu

SciPost Phys. Core 3, 007 (2020), arXiv:1907.10610

White paper on Dark Matter and Gravitational Waves

28. Paleo-Detectors for Galactic Supernova Neutrinos

S. Baum, T. D. P. Edwards, **B. J. Kavanagh**, P. Stengel, A. K. Drukier, K. Freese, M. Górski, C. Weniger

Phys. Rev. D 101, 103017 (2020), arXiv:1906.05800

Code available here (archived on Zenodo)

29. Discovery prospects of dwarf spheroidal galaxies for indirect dark matter searches

S. Ando, B. J. Kavanagh, O. Macias, et al.

JCAP 10 (2019) 040, arXiv:1905.07128

Completed as part of the ITFA Amsterdam bachelors' workshop (Jan 2019)

 $30.\ A\ Unique\ Multi-Messenger\ Signal\ of\ QCD\ Axion\ Dark\ Matter$

T. D. P. Edwards, M. Chianese, B. J. Kavanagh, S. M. Nissanke, C. Weniger

Phys. Rev. Lett. 124, 161101 (2020), arXiv:1905.04686

Featured in University of Amsterdam News

31. Primordial Black Holes as Silver Bullets for New Physics at the Weak Scale

G. Bertone, A. Coogan, D. Gaggero, B. J. Kavanagh, C. Weniger

Phys. Rev. D 100, 123013 (2019), arXiv:1905.01238

Code available here (archived on Zenodo)

32. Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground EDELWEISS Collaboration and **B. J. Kavanagh**

Phys. Rev. D 99, 082003 (2019), arXiv:1901.03588

33. Digging for Dark Matter: Spectral Analysis and Discovery Potential of Paleo-Detectors

T. D. P. Edwards, **B. J. Kavanagh**, C. Weniger, S. Baum, A. K. Drukier, K. Freese, M. Górski, P. Stengel

Phys. Rev. D 99, 043541 (2019), arXiv:1811.10549

Code available here and here (archived on Zenodo)

34. Faint Light from Dark Matter: Classifying and Constraining Dark Matter-Photon Effective Operators

B. J. Kavanagh, P. Panci, R. Ziegler

J. High Energ. Phys. (2019) 2019: 89, arXiv:1810.00033

35. Statistical challenges in the search for dark matter

S. Algeri et al. (Editors: T. D. P. Edwards, **B. J. Kavanagh**, P. Scott, A. Vincent) arXiv:1807.09273

36. Bracketing the impact of astrophysical uncertainties on local dark matter searches

A. Ibarra, B. J. Kavanagh, A. Rappelt

JCAP 12 (2018) 018, arXiv:1806.08714

37. Black Holes' Dark Dress: On the merger rate of a subdominant population of primordial black holes

B. J. Kavanagh, D. Gaggero, G. Bertone

Phys. Rev. D 98, 023536 (2018), arXiv:1805.09034

Code available here (archived on Zenodo), movies available here

38. Dark Matter Model or Mass, but Not Both: Assessing Near-Future Direct Searches with Benchmark-free Forecasting

T. D. P. Edwards, B. J. Kavanagh, C. Weniger

Phys. Rev. Lett. 121, 181101 (2018), arXiv:1805.04117

Code available here and here

Featured in University of Amsterdam News

39. Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering

J. Billard, J. Johnston, B. J. Kavanagh

JCAP 11 (2018) 016, arXiv:1805.01798

Illustrative code available here (archived on Zenodo)

40. Precision constraints on radiative neutrino decay with CMB spectral distortion

J. L. Aalberts, S. Ando, W. M. Borg, E. Broeils, J. Broeils, S. Broeils, **B. J. Kavanagh**, G. Leguijt, M. Reemst, D. R. van Arneman, H. Vu

Phys. Rev. D 98, 023001 (2018), arXiv:1803.00588

Completed as part of the ITFA Amsterdam bachelors' workshop (Jan 2018)

41. Earth-Scattering of super-heavy Dark Matter: updated constraints from detectors old and new

B. J. Kavanagh

Phys. Rev. D 97, 123013 (2018), arXiv:1712.04901

Code available here

42. Time-integrated directional detection of dark matter

C. A. J. O'Hare, **B. J. Kavanagh**, A. M. Green

Phys. Rev. D 96, 083011 (2017), arXiv:1708.02959

43. Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments

B. J. Kavanagh, F. S. Queiroz, W. Rodejohann, C. E. Yaguna

J. High Energ. Phys. (2017) 2017: 59, arXiv:1706.07819

Code available here

44. Probing Leptophilic Dark Sectors with Hadronic Processes

F. D'Eramo, B. J. Kavanagh, P. Panci

Phys. Lett. B 771 (2017) 339-348, arXiv:1702.00016

45. Signatures of Earth-scattering in the direct detection of Dark Matter

B. J. Kavanagh, R. Catena, C. Kouvaris

JCAP 01 (2017) 012, arXiv:1611.05453

Code available here

46. Reconstructing the three-dimensional local dark matter velocity distribution

B. J. Kavanagh, C. A. J. O'Hare

Phys. Rev. D 94, 123009 (2016), arXiv:1609.08630

47. You can hide but you have to run: direct detection with vector mediators

F. D'Eramo, B. J. Kavanagh, P. Panci

JHEP 08 (2016) 111, arXiv:1605.04917

Code available here

- 48. A review of the discovery reach of directional Dark Matter detection
 - F. Mayet, A. M. Green, J. B. R. Battat, J. Billard, N. Bozorgnia, G. B. Gelmini, P. Gondolo,
 - **B. J. Kavanagh**, S. K. Lee, D. Loomba J. Monroe, B. Morgan, C. A. J. O'Hare, A. H. G. Peter, N. S. Phan, S. E. Vahsen

Physics Reports 627 (2016) 1, arXiv:1602.03781

Highlighted in Physics Reports

49. Re-examining the significance of the 750 GeV diphoton excess at ATLAS

B. J. Kavanagh

arXiv pre-print (2016), arXiv:1601.07330

Featured on Syymmetries and Résonaances

50. New directional signatures from the non-relativistic effective field theory of dark matter

B. J. Kavanagh

Phys. Rev. D 92, 023513 (2015), arXiv:1505.07406

51. Discretising the velocity distribution for directional dark matter experiments

B. J. Kavanagh

JCAP 07 (2015) 019, arXiv:1502.04224

52. Probing WIMP particle physics and astrophysics with direct detection and neutrino telescope data **B. J. Kavanagh**, M. Fornasa, A. M. Green

Phys. Rev. D. 91, 103533 (2015), arXiv:1410.8051

53. Parametrizing the local dark matter speed distribution: a detailed analysis

B. J. Kavanagh

Phys. Rev. D 89, 085026 (2014), arXiv:1312.1852

54. WIMP physics with ensembles of direct-detection experiments

A. H. G. Peter, V. Gluscevic, A. M. Green, **B. J. Kavanagh**, S. K. Lee Phys. Dark Universe 5-6 (2014) 45-74, arXiv:1310.7039

55. Model independent determination of the dark matter mass from direct detection experiments

B. J. Kavanagh and A. M. Green

Phys. Rev. Lett. 111, 031302 (2013), arXiv:1303.6868

Featured in Phys.org

56. Improved determination of the WIMP mass from direct detection data

B. J. Kavanagh and A. M. Green

Phys. Rev. D 86, 065027 (2012), arXiv:1207.2039

White Papers

- The Lunar Gravitational-wave Antenna: Mission Studies and Science Case
 P. Ajith et al. (LGWA Collaboration, including B. J. Kavanagh)
 Submitted to JCAP, arXiv:2404.09181
- 2. Mineral Detection of Neutrinos and Dark Matter. A Whitepaper S. Baum et al. (including **B. J. Kavanagh**)

Phys. Dark Univ. 41 (2023) 101245, arXiv:2301.07118

3. New Horizons for Fundamental Physics with LISA

K. G. Arun at al. (including **B. J. Kavanagh**) Living Reviews in Relativity, 25, 4 (2022), arXiv:2205.01597

4. Dark Matter In Extreme Astrophysical Environments

M. Baryakhtar et al. (including **B. J. Kavanagh**)

White paper for the SNOWMASS 2022 Summer Study, arXiv:2203.07984

5. EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade

R. Alves Batista et al. (including **B. J. Kavanagh**, edited by G. Bertone & A. Riotto) White paper of the European Consortium for Astroparticle Theory (EuCAPT), arXiv:2110.10074

6. AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Y. A. El-Neaj et al.

EPJ Quantum Technology 7, 6 (2020), arXiv:1908.00802

Signed as a supporting author

7. Black holes, gravitational waves and fundamental physics: a roadmap

L. Barack at al. (**B. J. Kavanagh**, Section coordinator: "Primordial Black Holes and Dark Matter")

Class. Quantum Grav. 36 143001 (2019), arXiv:1806.05195

White Paper for the COST action "Gravitational Waves, Black Holes, and Fundamental Physics" Featured in Physics World