

## Normalisation and Denormalisation Strategies

#### **LEARN**

#### 1. What is Normalization?

Normalization is a systematic approach in database design used to organize data efficiently. It reduces data redundancy, eliminates undesirable characteristics like insertion, update, and deletion anomalies, and ensures logical and consistent data storage.

## **Objectives of Normalization:**

- Reduce redundancy in data storage.
- Improve data integrity.
- Simplify the structure of tables.
- Make databases more efficient and easier to maintain.

# 2. Normalization Forms (Detailed Explanation):

## First Normal Form (1NF)

A table is in 1NF if:

- All rows are unique.
- Each column contains atomic (indivisible) values.
- There are no repeating groups or arrays within a column.

## **Example:**

| Before 1NF | •               |   |
|------------|-----------------|---|
| StudentID  | Subjects        |   |
|            | -               | - |
| l 1        | I Maths Physics |   |



| Afte | vr 1 | N  | $\Box$ |
|------|------|----|--------|
| AILE | 31 T | IΝ | г.     |

| StudentID   Subject |           |  |  |  |
|---------------------|-----------|--|--|--|
|                     |           |  |  |  |
| 1                   | Maths     |  |  |  |
| I 1                 | l Physics |  |  |  |

# Second Normal Form (2NF)

A table is in 2NF if:

- It is already in 1NF.
- There are no partial dependencies, meaning every non-key attribute fully depends on the entire primary key.

## **Example:**

Before 2NF (with partial dependency):

| StudentID | CourseID | StudentName | CourseName |

|------|-----|
| 1 | C101 | John Doe | Maths |

After 2NF (removal of partial dependency):

- Students(StudentID, StudentName)
- Courses(CourseID, CourseName)
- Enrollment(StudentID, CourseID)

# Third Normal Form (3NF)

A table is in 3NF if:

- It is already in 2NF.
- No transitive dependency exists (non-primary attributes do not depend on other non-primary attributes).

### Example:



| Before 3NF | (with transitive                 | dependency):  |
|------------|----------------------------------|---------------|
|            | t v v i ci i ci a i i o i ci v c | acpenacine,,. |

#### After 3NF:

- Students(StudentID, StudentName, Department)
- Departments(Department, DepartmentHead)

#### 3. Denormalization

Denormalization is the intentional introduction of redundancy into a database to optimize query performance by reducing the need for complex joins.

### When to Consider Denormalization?

- Frequent join operations slow query performance.
- When read operations significantly outnumber write operations.
- When database efficiency and speed are prioritized over data redundancy.

# **Practical Example:**

An e-commerce platform may store frequently accessed customer information directly in the order table to avoid complex joins and improve query response time.

#### **PRACTISE**

## Task 1: Normalize a Given Table

Given:



| Order | CustomerN | CustomerAd | Prod  |
|-------|-----------|------------|-------|
| ID    | ame       | dress      | uct   |
| 101   | John Doe  | New York   | Lapto |
|       |           |            | р     |
| 102   | John Doe  | New York   | Mous  |
|       |           |            | е     |

Convert the above table into 3NF:

- Customers (CustomerID, CustomerName, CustomerAddress)
- Products(ProductID, Product)
- Orders(OrderID, CustomerID, ProductID)

## Task 2: Denormalization Exercise

Identify and justify a suitable scenario for denormalization within an online bookstore database:

Consider tables like Books, Authors, Categories, and Reviews.

# FAQ

- Q: Why is normalization critical for database management?
  - A: It eliminates redundancy, prevents anomalies, and simplifies maintenance.
- Q: What are potential disadvantages of excessive normalization?
  - A: It can lead to complex queries with many joins, potentially impacting performance.
- Q: In what situations is denormalization recommended?



- A: When quick read access and performance outweigh data redundancy concerns, particularly in reporting databases or data warehouses.
- **Q:** Is achieving 3NF always necessary?
  - A: It's commonly used, but sometimes 2NF or denormalization may be adequate depending on performance needs and complexity.