PV204 Security Technologies 6th assignment – Part1 – Memory analysis Supervisor: Dr. Václav Lorenc Student: Pedro Gomes, 490830

User and Malware story

The first thing I did was to detect the type of the image that I had with the following command:

volatility -f homework-2019.vmem imageinfo

The output clearly showed it was an image of a windowsXP machine. After that I decided to see the processes that were launched, ordered in a tree, for that I issued the following command:

volatility -f homework-2019.vmem --profile WinXPSP2x86 pstree

which gave the following output:

Name	Pid	PPid	
0x825c85b0:System	4	0	
. 0x8217ada0:smss.exe	332	4	
0x823aac08:csrss.exe	424	<i>332</i>	
0x82255020:winlogon.exe	448	332	
0x824da358:services.exe	492	448	
0x82005550:svchost.exe	1288	492	
0x8242ad08:vmacthlp.exe	652	492	
0x81fdc9a8:svchost.exe	1424	492	
0x82045108:svchost.exe	788	492	
0x82346b20:wuauclt.exe	1836	788	T 7
0x822604d8:svchost.exe	664	492	X
0x8234e798:wmiprvse.exe	1920	664	
0x82223620:wmiprvse.exe	1748	664	
0x81fdb6a8:svchost.exe	1344	492	
0x824954b8:svchost.exe	828	492	
0x823a47f0:spoolsv.exe	1104	492	
0x82474da0:svchost.exe	856	492	
0x8250e020:svchost.exe	748	492	
0x820ebb20:alg.exe	400	492	
0x821f8da0:vmtoolsd.exe	1652	492	
0x81fff340:lsass.exe	504	448	
0x823624f8:explorer.exe	1220	1188	
. 0x8235e6b8:rundll32.exe	1472	1220	
. 0x820c0da0:iexplore.exe	2572	1220	
0x8233f020:iexplore.exe	2728	2572	
0x81e749c8:pepsico_interna	3144	2728	
0x8219e638:wordpad.exe	3160	3144	
. 0x8211b160:ctfmon.exe	1500	1220	
. 0x81fdd7d0:vmtoolsd.exe	1488	1220	

If we see the processes near X, I believe that the operating system is booting up. The process *smss.exe* is the first user-mode process started by the kernel[1] . I was a little bit suspicious about the fact that there are so many sychost.exe instances, but apparently it is not unusual[2]

At the beginning of Y, the explorer exe is launched, which is the process responsible for several things, including the windows interface, which is one of the few things being launched at the boot.

It seems to me that the user did not interact yet with his machine(since the boot), because the process rundll32.exe is automatically launched right after the explorer, without having some

program that triggers it. After some investigation[3] I concluded that rundll32.exe is a malicious process that allows remote access to some system, it can maybe be categorized as a RAT.

In order to install rundll32.exe some other program must have triggered it, and we cannot see it, because as it was already mentioned, the process that launches it is a reliable windows process explorer.exe. Perhaps, this means that rundll32.exe has already **gained persistence** somehow and it is being normally launched at startup.

Rundll32.exe launches internet explorer, and that internet explorer instance launches another one, for some reason that I cannot understand. We can also see that the 2nd internet explorer instance(PID: 2728) accesses some resource named: **"pepsico interna"**. This leaded me to check the IE history, using the following command:

volatility -f homework-2019.vmem --profile WinXPSP2x86 iehistory

The above command yielded the following output:

```
Volatility Foundation Volatility Framework 2.6
Process: 1220 explorer.exe
Cache type "DEST" at 0xc752d
Last modified: 2015-04-21 11:38:29 UTC+0000
Last accessed: 2015-04-21 18:38:30 UTC+0000
URL: IEUser@http://dior.ics.muni.cz/~valor/paypai
Title: Index of /~valor/paypai
Process: 1220 explorer.exe
Cache type "DEST" at 0xf683d
Last modified: 2015-04-21 11:38:33 UTC+0000
Last accessed: 2015-04-21 18:38:34 UTC+0000
URL: IEUser@http://dior.ics.muni.cz/~valor/paypai/pepsico international ltd.scr
****************
Process: 2728 iexplore.exe
Cache type "DEST" at 0x401b03d
Last modified: 2015-04-21 11:38:33 UTC+0000
Last accessed: 2015-04-21 18:38:34 UTC+0000
URL: IEUser@http://dior.ics.muni.cz/~valor/paypai/pepsico international ltd.scr
```

Illustration 1: Internet Explorer history of the image

We can clearly see that both internet explorer instances access some resource that has a file of the src format. Usually, src format stands for any kind of code. It could be C, C++, java, etc.

After accessing the link in a none windows operating system, I was surprised to see a message from the "hacker" Dr.Vaclav

As instructed, the MD5 of the malware: d39c524d789d0012efff2f24534cbd26, I confirmed it with:

```
peterpan@Hanibal:~/Downloads$ md5sum pepsico_international_ltd.scr.backup
d39c524d789d0012efff2f24534cbd26 pepsico_international_ltd.scr.backup
```

Illustration 2: MD5 confirmation of malware

It is also worth mentioning that the PID: 2728, which is the 2^{nd} internet explorer instance was also heavily interacting with some IP within Czech Republic(Prague), I inspected the connections of the OS with the following command:

volatility -f homework-2019.vmem --profile WinXPSP2x86 connscan

Which yielded:

• •

0x01fb9ab8	192.168.248.131:1063	185.17.119.36:80	2728
0x01fba008	192.168.248.131:1058	185.17.119.35:80	2728
0x020c0008	192.168.248.131:1055	185.17.119.39:80	2728
0x020c6008	192.168.248.131:1044	185.17.119.38:80	2728
0x020ca910	192.168.248.131:1045	185.17.119.38:80	2728
0x020caab0	192.168.248.131:1046	185.17.119.38:80	2728
0x020e3990	192.168.248.131:1049	185.17.119.38:80	2728
0x020e3ca0	192.168.248.131:1048	185.17.119.38:80	2728
0x0218a5b8	192.168.248.131:1051	185.17.119.39:80	2728
0x02223970	192.168.248.131:1054	185.17.119.39:80	2728

. . .

I tried to ping the domain and access it in port 80, but both were unsuccessful.

To sum up I would say that the user previously installed some program that contained the rundll32.exe file. The vulnerability that the latter provides allowed some attacked to download a src file, that was opened with wordpad. Fortunately, the file only had a nice message from Dr. Vaclav

References

[1]: https://en.wikipedia.org/wiki/Session_Manager_Subsystem, explanation about smss

[2]: Bleepin' Gumshoe,

https://www.bleepingcomputer.com/forums/t/125879/is-having-multiple-svchostexe-normal/, what is svchost.exe and what it does [3]:https://www.processlibrary.com/en/directory/files/rundll32/25747/, explanation of what rundll32.exe is.