

InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment

Project Page:

https://jaydenlyh.github.io/InPO-project-page/ Yunhong Lu, Qichao Wang, Hengyuan Cao, Xierui Wang, Xiaoyin Xu, Min Zhang

Motivation:

• Efficiency: How to Mitigate the Impact of Long-Chain Markov Processes in Diffusion Models Alignment?

DPO	Diffusion-DPO	DDIM-InPO			
$p(x_0 c)$	$p(x_0 c)$	$p(x_0 c)$			
LLM	Denoiser $)\times T$	Denoiser			
† c prompt	$ \begin{array}{c} \uparrow \\ c \\ \hline c \\ prompt \\ noise \end{array} $	$ \begin{array}{c} \uparrow \\ c \\ x_t\\ prompt latent \end{array} $			

Solution:

• **Step-1**: Diffusion Model Reparameterization for One-Step Generation.

$$x_0(t) = \frac{x_t}{\sqrt{\bar{\alpha}_t}} - \frac{\sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \epsilon_{\theta}^t(x_t)$$

• Step-2: Finding Appropriate Latent Variables x_t at any timestep t via DDIM Inversion.

$$x_{t} = \sqrt{\frac{\alpha_{t}}{\alpha_{t+1}}} x_{t+1} + (\sqrt{\frac{1 - \alpha_{t}}{\alpha_{t}}} - \sqrt{\frac{1 - \alpha_{t+1}}{\alpha_{t+1}}}) \epsilon_{\theta}^{t+1} (x_{t+1})$$

• Step-3: Joint Distribution DPO Training Framework.

$$\mathcal{L}(\theta) := -\mathbb{E}_{t,(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l, \boldsymbol{c}) \sim \mathcal{D}} \log \sigma$$

$$\left(\beta \mathbb{E}_{\boldsymbol{x}_t^w \sim p_{\theta}^{\boldsymbol{c}}(\boldsymbol{x}_t^w | \boldsymbol{x}_0^w)} \left[\log \frac{p_{\theta}^{\boldsymbol{c}}(\boldsymbol{x}_0^w, \boldsymbol{x}_t^w)}{p_{\text{ref}}^{\boldsymbol{c}}(\boldsymbol{x}_0^w, \boldsymbol{x}_t^w)} - \log \frac{p_{\theta}^{\boldsymbol{c}}(\boldsymbol{x}_0^l, \boldsymbol{x}_t^l)}{p_{\text{ref}}^{\boldsymbol{c}}(\boldsymbol{x}_0^l, \boldsymbol{x}_t^l)} \right] \right)$$

DDIM-InPO Framework:

Perceptual Superiority:

Experiments:

Win-rate Comparison with Baselines

Model	Baselines	Win-rate (HPDv2)			Win-rate (Parti-Prompts)				
		Aesthetic	PickScore	HPS	CLIP	Aesthetic	PickScore	HPS	CLIP
InPO-SDXL	vs. Base-SDXL	56.37	79.25	85.38	53.37	61.70	72.89	78.31	50.55
	vs. SFT-SDXL	66.66	88.31	89.91	59.00	69.70	88.54	88.91	56.99
	vs. DPO-SDXL	55.87	59.28	65.81	46.91	57.17	56.92	60.11	42.28
InPO-SD1.5	vs. Base-SD1.5	80.19	85.84	90.22	66.44	74.63	73.16	81.86	61.89
	vs. SFT-SD1.5	56.63	66.84	58.91	57.87	52.27	62.50	58.03	57.54
	vs. DPO-SD1.5	70.50	74.94	84.06	61.09	68.01	63.54	75.31	57.54
	vs. KTO-SD1.5	59.81	67.41	60.94	60.03	59.01	62.25	58.76	57.60

Conclusion:

Advantages of Fine-Tuning Data-Dependent Latent Variables in Pre-Trained Diffusion Models:

- Preservation of Pre-Trained Knowledge
- Targeted Performance Improvement
- Optimized Computational Efficiency
- Interpretability and Parametric Control
- Cross-Domain Broader Applicability

Future Work: Targeted fine-tuning of specific latent variables (via controlled noise injection) may establish a universal paradigm for future post-training adaptation.