

FCC / IC Test Report

FOR:

Danlaw Inc.

Model Name:

DL980

Product Description:

Cellular, GNSS, BT/WiFi OBDII dongle.

FCC ID: 2AD9I-DL980SW IC ID: 20087- DL980SW

Applied Rules and Standards:

47 CFR Part 15.247 (DTS) RSS-247 Issue 1 (DTS) & RSS-Gen Issue 5

REPORT #: EMC_ DANLA_058_18001_15.247_WLAN

DATE: 2019-04-15

A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

Date of Report 2019-04-15

FCC ID: 2AD9I-DL980SW IC ID: 20087- DL980SW

TABLE OF CONTENTS

1	AS	SSESSMENT	3
2	Al	DMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4
3	EC	QUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5	EUT SPECIFICATIONS EUT SAMPLE DETAILS SUPPORT EQUIPMENT TEST SAMPLE CONFIGURATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	6 6
4	SU	UBJECT OF INVESTIGATION	7
5	М	1EASUREMENT RESULTS SUMMARY	7
6	M	IEASUREMENT UNCERTAINTY	8
	6.1 6.2	ENVIRONMENTAL CONDITIONS DURING TESTING: Dates of Testing:	
7	M	IEASUREMENT PROCEDURES	9
	7.1 7.2	RADIATED MEASUREMENT	
8	TE	EST RESULT DATA	12
	8.1 8.2 8.3 8.4 8.5 8.6	DUTY CYCLE	19 46 57
9	TE	EST SETUP PHOTOS	109
10) TE	EST EQUIPMENT AND ANCILLARIES USED FOR TESTING	109
11	RF	EVISION HISTORY	110

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

1 **Assessment**

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

No deviations were ascertained.

Company	Description	Model #		
Danlaw Inc.	Cellular, GNSS, BT/WiFi OBDII dongle.	DL980SW		

Responsible for Testing Laboratory:

	04/45/0040	O a man li a m a a	Cindy Li	
_	04/15/2019	Compliance	(EMC Lab Manager)	
	Date	Section	Name	Signature

Responsible for the Report:

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

2 **Administrative Data**

Identification of the Testing Laboratory Issuing the EMC Test Report 2.1

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
EMC Lab Manager:	Cindy Li
Responsible Project Leader:	Trina Noor

Identification of the Client 2.2

Applicant's Name:	Danlaw Inc.
Street Address:	41131 Vincenti Ct
City/Zip Code:	Novi, MI 48375
Country:	USA

2.3 **Identification of the Manufacturer**

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code	Same as Cilent
Country	

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

3 **Equipment under Test (EUT)**

EUT Specifications

Model No:	DL980SW			
HW Version :	v1.0			
SW Version :	v1.0			
FCC-ID:	2AD9I-DL980SW			
IC-ID:	20087- DL980SW			
HVIN:	DL980SW			
PMN:	DL980			
Product Description:	Cellular, GNSS, BT/WiFi OBDII dongle.			
Frequency Range / number of channels:	Module name: Qualcomm QCA 9377 Chipset Nominal band: 2400 MHz – 2483.5 MHz; Center to center: 2412 MHz (ch 1) – 2462 MHz (ch 11), 11 channels			
Type(s) of Modulation:	BPSK, QPSK, 16-QAM, 64QAM			
Modes of Operation:	802.11b/g/n, 20MHz			
Antenna Information as declared:	PIFA -2.05 dBi			
Max. Average Output Power:	Conducted Power 16.52 dBm			
Power Supply/ Rated Operating Voltage Range:	Battery / Vmin: 9 VDC/ Vnom: 12 VDC / Vmax: 24 VDC			
Operating Temperature Range:	0 °C to +50 °C			
Other Radios included in the device:	 ★ WCDMA, LTE Module name: SW WP7603 Model number: WP7603 FCC/IC ID: N7NWP76C ❖ GPS, BLE Module name: Qualcomm QCA 9377 Chipset PIFA -2.05 dBi 			
Sample Revision:	□Prototype Unit; □Production Unit; ■Pre-Production			

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

EUT Sample details 3.2

EUT # IMEI Number		HW Version	SW Version	Notes/Comments		
1	357409080006549 v1.0		v1.0	Radiated Emissions		
2	357409080006838	v1.0	v1.0	Conducted RF		

3.3 **Support Equipment**

SE#	Туре	Model	Manufacturer	Serial Number
1	Power and USB Cable	-	-	-

Test Sample Configuration 3.4

EUT Set-up #	Combination of SE used for test set up	Comments
1	EUT#1+ SE#1	Special commands through command window used to configure the WLAN radio to low, mid and high channels at maximum output power(with TX power set at 15dBm) provided by the client that will not be available to the end user. For radiated measurements, the internal antenna was connected.
2	EUT#2+ SE#1	Special commands through command window used to configure the WLAN radio to low, mid and high channel at maximum output power (with TX power set at 15dBm) provided by the client that will not be available to the end user. For conducted measurements, the equipment was connected to 50 ohm RF port of the EUT.

Test Report #: EMC_DANLA-058-18001_15.247_WLAN FCC ID: 2AD9I-DL980SW

Date of Report 2019-04-15 IC ID: 20087- DL980SW

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on low, mid and high channels with the maximum output power (with TX power set at 15dBm) and the customer declared highest possible duty cycle. For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 of ISED Canada.

Testing procedures are based on 558074 D01 DTS Meas Guidance v04 – "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247" - April 5, 2017, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(a)(1) RSS-247 5.2(1)	Emission Bandwidth	Nominal	802.11 b/g/n				Complies
§15.247(e) RSS-247 5.2(2)	Power Spectral Density	Nominal	802.11 b/g/n				Complies
§15.247(b)(1) RSS-247 5.4(4)	Maximum Conducted Output Power and EIRP	Nominal	802.11 b/g/n	•			Complies
§15.247(d) RSS-247 5.5	Band edge compliance Unrestricted Band Edges	Nominal	802.11 b/g/n	•			Complies
§15.247; 15.209; 15.205 RSS-Gen 8.9; 8.10	Band edge compliance Restricted Band Edges	Nominal	802.11 b/g/n				Complies
§15.247(d); §15.209 RSS-Gen 6.13	TX Spurious emissions- Radiated	Nominal	802.11n_ HT20 MIMO				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	N/A		•		N/A²

Note1: NA= Not Applicable; NP= Not Performed. **Note2**: EUT is powered by 12VDC battery

FCC ID: 2AD9I-DL980SW 2019-04-15 Date of Report IC ID: 20087- DL980SW

6 **Measurement Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30 MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

Conducted measurement

150 kHz to 30 MHz ±0.7 dB (LISN)

RF conducted measurement $\pm 0.5 dB$

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

Environmental Conditions during Testing: 6.1

The following environmental conditions were maintained during the course of testing:

Ambient Temperature: 20-25° C

• Relative humidity: 40-60%

6.2 Dates of Testing:

01/31/2019 - 02/27/2019

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

7 <u>Measurement Procedures</u>

7.1 Radiated Measurement

The radiated measurement is performed according to ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop
 is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn
 antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup below 30MHz Measurements Height 1m Loop Measurement Antenna Chamber Ground plane EMI Receiver

Radiated Emissions Test Setup 30MHz-1GHz Measurements

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS ($dB\mu V/m$) = Measured Value on SA ($dB\mu V$)- Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency (MHz)		Measured SA (dBμV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)	
	1000	80.5	3.5	14	98.0	

7.2 RF Conducted Measurement Procedure

Testing procedures are based on 558074 D01 DTS Meas Guidance v04 – "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247" - April 5, 2017, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

- Connect the equipment as shown in the above diagram.
- Adjust the settings of the SA (Rohde-Schwarz Spectrum Analyzer) to connect the EUT at the required mode
 of test.
- Measurements are to be performed with the EUT set to the low, middle and high channels and for worst case modulation schemes.
- Calculate the conducted power by taking into account attenuation of the cable and the attenuator

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

8 **Test Result Data**

Duty cycle 8.1

Measurement according to FCC 558074 D01 DTS Meas Guidance v04 8.1.1

Spectrum Analyzer settings:

- Set the center frequency and of the instrument to the center frequency of the transmission
- Zero span
- Set RBW >= OBW if possible; otherwise, set RBW to the largest available value
- Detector = Peak or average

8.1.2 Measurement result

Plot #	Mode	Data Rate	Duty Cycle	Duty Cycle Correction Factor (dB)	
1	802.11b	1Mbps	98.87%	0.05	
2	802.11b	11Mbps	90.66%	0.43	
3	802.11g	6Mbps	93.76%	0.28	
4	802.11g	54Mbps	69.51%	1.58	
5	802.11n_HT20	MCS0	94.96%	0.22	
6	802.11n_HT20	MCS8	91.86%	0.37	

Date: 27.FEB.2019 19:21:36

Plot #2 Low channel / 2412 MHz Modulation/Packet Type: 802.11b 11 Mbps RBW 20 MHz Marker 1 [T1] * VBW 30 MHz 10.54 dBm 873.397436 µs Ref 33.1 dBm *Att 15 dB SWT 2.5 ms 30 Offset .43 dB 1.205929 ms A SGL 1 PK .82 dB 128 ms -10--20 3DB --30--60 Center 2.412 GHz 250 μs/

 Test Report #:
 EMC_DANLA-058-18001_15.247_WLAN
 FCC ID: 2AD9I-DL980SW

 Date of Report
 2019-04-15
 IC ID: 20087- DL980SW

		Plot #3		
id channel / 2437 MHz	Modulation/Packet Ty	pe: 802.11g 6 Mbp	S	
		RBW 20 MHz *VBW 30 MHz	Delta 3 [T1] 0.08 dB	
Ref 33.1 dBm	*Att 15 dB	SWT 5 ms	2.208333 ms	_
_ ₃₀ Offset 13.1 d	В		Marker 1 [T1]	4
	1	2	21.53 dBm	
-20		the formation of	1.298077 ms	A SGL
PK *			0.83 dB	
RWR			2.070513 ms	LVL
-10				
-0-				4
-10				
-20				3DB
-30				
40	t.	l l		
-50				_
-60				
				J
Center 2.437 GHz	500) µs/		
te: 30.JAN.2019 14:18:	44			

8.2 Maximum Conducted Output Power

8.2.1 Measurement according to FCC 558074 D01 DTS Meas Guidance v04

Spectrum Analyzer settings:

- Measure the duty cycle, x, of the transmitter output signal.
- Set span to at least 1.5 \(\text{OBW}. \)
- Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- Set VBW ≥ 3

 RBW.
- Number of points in sweep ≥ 2 □ span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- Sweep time = auto.
- Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- Allow the sweep to "free run". RBW ≥ DTS bandwidth
- Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- Compute power by integrating the spectrum across the OBW of the signal using the instrument's band
 power measurement function with band limits set equal to the OBW band edges. If the instrument does not
 have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW
 extending across the entire OBW of the spectrum.
- Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on-and off-times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

8.2.2 Limits:

Maximum Peak Output Power:

• FCC §15.247 (b)(1): 1 W

IC RSS-247: 1 W

8.2.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Single Antenna Gain	
22° C	2	802.11b/g/n	12VDC	-2.05dBi	

 Test Report #:
 EMC_DANLA-058-18001_15.247_WLAN
 FCC ID: 2AD9I-DL980SW

 Date of Report
 2019-04-15
 IC ID: 20087- DL980SW

8.2.4 Measurement result:

Attenuation of cable and attenuator (already taken into account): 13.1 dB

Plot #	Mode	Date Rate	Channel	Measured conducted powered(dBm)	Corrected by DCCF(dBm)	EIRP (dBm)	Limit (dBm)	Result
1			1	21.09	21.14	19.09	30 / 36 (EIRP)	Pass
2	000 445	1Mbps	6	22.76	22.81	20.76	30 / 36 (EIRP)	Pass
3			11	20.89	20.94	18.89	30 / 36 (EIRP)	Pass
4	802.11b	11Mbps	1	23.90	24.33	22.28	30 / 36 (EIRP)	Pass
5]		6	26.09	26.52	24.47	30 / 36 (EIRP)	Pass
6]		11	23.88	24.31	22.26	30 / 36 (EIRP)	Pass
7			1	25.03	25.31	23.26	30 / 36 (EIRP)	Pass
8		6Mbps	6	26.79	27.07	25.02	30 / 36 (EIRP)	Pass
9	000.11-		11	25.14	25.42	23.37	30 / 36 (EIRP)	Pass
10	- 802.11g - 5	54Mbps	1	26.46	28.04	25.99	30 / 36 (EIRP)	Pass
11			6	27.61	29.19	27.14	30 / 36 (EIRP)	Pass
12			11	26.13	27.71	25.66	30 / 36 (EIRP)	Pass
13		MCS0	1	25.20	25.42	23.37	30 / 36 (EIRP)	Pass
14			6	26.79	27.01	24.96	30 / 36 (EIRP)	Pass
15	802.11n_HT20		11	25.01	25.23	23.18	30 / 36 (EIRP)	Pass
16			1	25.05	25.42	23.37	30 / 36 (EIRP)	Pass
17			6	26.83	27.20	25.15	30 / 36 (EIRP)	Pass
18]		11	25.02	25.39	23.34	30 / 36 (EIRP)	Pass

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

Plot #	Mode	Date Rate	Channel	Measured Average conducted powered(dBm)	Corrected by DCCF(dBm)	EIRP (dBm)	Limit (dBm)	Result
19	802.11b	1Mbps	6	16.52	16.57	14.52	30 / 36 (EIRP)	Pass
20	802.11b	11Mbps	6	16.44	16.87	14.82	30 / 36 (EIRP)	Pass
21	802.11g	6Mbps	6	15.49	15.77	13.72	30 / 36 (EIRP)	Pass
22	802.11g	54Mbps	6	14.46	16.04	13.99	30 / 36 (EIRP)	Pass
23	802.11n_HT20	MCS0	6	15.35	15.57	13.52	30 / 36 (EIRP)	Pass
24	802.11n_HT20	MCS8	6	15.26	15.63	13.58	30 / 36 (EIRP)	Pass

8.3 Power Spectral Density

8.3.1 Measurement according to FCC 558074 D01 DTS Meas Guidance v04

Spectrum Analyzer settings for Peak PSD method:

- Set analyzer center frequency to DTS channel center frequency
- Set the span to 1.5 x DTS bandwidth
- Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz
- Set the VBW ≥ 3 x RBW
- Detector = Peak
- Sweep time = Auto couple
- Trace mode = Max hold
- Allow trace to fully stabilize
- Use the peak marker function to determine the maximum amplitude level within the RBW
- If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat

8.3.2 Limits:

FCC§15.247(e) & RSS-247 5.2(2)

• For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Single Antenna Gain
23° C	2	802.11b/g/n	12 VDC	-2.05dBi

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

Measurement result: 8.3.4

Attenuation of cable and attenuator (already taken into account): 13.1 dB

Plot #	Mode	Data Rate	channel	Maximum Power Spectral Density (dBm/3 kHz)	PSD Adjusted for Antenna Gain (dBm/3 kHz)	Limit (dBm / 3 kHz)	Result
1			1	-7.75	-9.8	8	Pass
2	802.11b	1Mpbs	6	-6.67	-8.72	8	Pass
3			11	-11.24	-13.29	8	Pass
4			1	-9.17	-11.22	8	Pass
5	802.11g	6Mpbs	6	-9.77	-11.82	8	Pass
6			11	-10.85	-12.9	8	Pass
7			1	-10.68	-12.73	8	Pass
8	802.11n_HT20	MCS0	6	-9.08	-11.13	8	Pass
9			11	-11.56	-13.61	8	Pass

8.3.5 Measurement Plots:

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

FCC ID: 2AD9I-DL980SW 2019-04-15 IC ID: 20087- DL980SW Date of Report

Plot #3 Modulation/Packet Type: 802.11b 1Mbps High channel *RBW 3 kHz Marker 1 [T1] *VBW 10 kHz -11.24 dBm Ref 12 dBm *Att 25 dB SWT 3.4 s 2.462865385 GHz A 1 PK MAXH 3DB Center 2.462 GHz 3 MHz/ Span 30 MHz Date: 31.JAN.2019 14:13:39

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

Test Report #: FCC ID: 2AD9I-DL980SW EMC_DANLA-058-18001_15.247_WLAN

2019-04-15 Date of Report IC ID: 20087- DL980SW

Plot #6 Modulation/Packet Type: 802.11g 6Mbps High channel *RBW 3 kHz Marker 1 [T1] *VBW 10 kHz -10.85 dBm Ref 12 dBm *Att 25 dB SWT 3.4 s 2.463634615 GHz A 1 PK MAXH " Herritalia Lander Charles Center 2.462 GHz 3 MHz/ Span 30 MHz Date: 31.JAN.2019 14:13:06

8.4 Band Edge Compliance

8.4.1 Measurement according to FCC 558074 D01 DTS Meas Guidance v04

Spectrum Analyzer settings for band edge:

- Set the center frequency and span to encompass frequency range to be measured
- RBW = 100 kHz
- VBW ≥ 3 x RBW
- Sweep Time: Auto couple
- Detector = Peak
- Trace = Max hold
- Allow trace to fully stabilize
- Use the peak marker function to determine the maximum amplitude level
- Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge

8.4.2 Limits non restricted band:

FCC§15.247 (d)

• In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 5/5

• In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB.

Spectrum Analyzer settings for restricted band:

Peak measurements are made using a peak detector and RBW=1 MHz

8.4.3 Limits restricted band §15.247/15.209/15.205 and RSS-Gen 8.9/8.10

• *PEAK LIMIT= 74 dB μ V/m @3m =-21.23 dBm

- *AVG LIMIT= 54 dBµV/m @3m =-41.23 dBm
- Start frequency & stop frequency according to frequency range specified in the restricted band table in FCC section 15.205 & RSS-Gen 8.10
- Measurements with a peak detector were used to show compliance to average limits, thus showing compliance to both peak and average limits.
- (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

8.4.4 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Single Antenna Gain
22° C	2	802.11b/g/n	12 VDC	-2.05dBi

8.4.5 Measurement result:

Plot #	EUT operating mode	Band Edge	Frequency (MHz)	Band Edge Delta (dBc)	Limit (dBc)	Result
1	802.11b	Lower, Non-restricted	2396.07	-50.71	20	Pass
2	802.11g	Lower, Non-restricted	2399.96	-37.94	20	Pass
3	802.11n_HT20	Lower, Non-restricted	2399.94	-37.02	20	Pass

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

Plot #	EUT operating mode	Band Edge	Frequency (MHz)	Measured Peak Value (dBm)	Corrected by duty cycle	Corrected by Antenna Gain (dBm)	Limit (dBm)	Result
4	802.11b	Lower Restricted peak	2389.10	-42.64	NA	-44.69	-21.23 Peak	Pass
5	802.11b	Lower Restricted Average	2389.10	-49.09	-49.04	-51.09	-41.23 AVG	Pass
6	802.11g	Lower Restricted peak	2388.72	-35.91	NA	-37.96	-21.23 Peak	Pass
7	802.11g	Lower Restricted Average	2390.00	-48.07	-47.79	-49.84	-41.23 AVG	Pass
8	802.11n_HT20	Lower Restricted peak	2388.72	-35.91	NA	-37.96	-21.23 Peak	Pass
9	802.11n_HT20	Lower Restricted Average	2389.87	-47.81	-47.59	-49.64	-41.23 AVG	Pass
10	802.11b	Upper Restricted peak	2483.95	-44.71	NA	-46.76	-21.23 Peak	Pass
11	802.11b	Upper Restricted Average	2483.85	-55.46	-55.41	-57.46	-41.23 AVG	Pass
12	802.11g	Upper Restricted peak	2483.58	-33.52	NA	-35.57	-21.23 Peak	Pass
13	802.11g	Upper Restricted Average	2483.50	-46.38	-46.10	-48.15	-41.23 AVG	Pass
14	802.11n_HT20	Upper Restricted peak	2483.50	-32.90	NA	-34.95	-21.23 Peak	Pass
15	802.11n_HT20	Upper Restricted Average	2483.50	-46.47	-46.25	-48.30	-41.23 AVG	Pass

The value of above table shows worst case of each mode.

8.4.6 Measurement Plots:

Test Report #: FCC ID: 2AD9I-DL980SW EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN FCC ID: 2AD9I-DL980SW

Plot #5 Low channel / 2412 MHz Modulation/Packet Type: 802.11b 1Mbps Avg *RBW 1 MHz Marker 1 [T1] *VBW 3 MHz -49.09 dBm Ref 27 dBm 2.389102564 GHz *Att 10 dB SWT 2.5 ms 13.1 dB Offset A 1 RM AVG LVL -20**-**100 of 100 6DB -30--60-Start 2.31 GHz 8 MHz/ Stop 2.39 GHz Date: 31.JAN.2019 13:33:05

 Test Report #:
 EMC_DANLA-058-18001_15.247_WLAN
 FCC ID: 2AD9I-DL980SW

 Date of Report
 2019-04-15
 IC ID: 20087- DL980SW

ow channel / 2412 MHz	Modulation/Pack	et Type: 802.11n_HT	20 MCS0 Avg	
Ref 27 dBm	*Att 10 dB	*RBW 1 MHz *VBW 3 MHz SWT 2.5 ms	Marker 1 [T1] -47.81 dBm 2.389871795 GHz	
Offset 13.1 d	IB I]
-20				A
BM *				
RM * -10				LVL
-0-				100
-10				
-20				1
SWP 100 of	100			6DB
40 D1 -41.23 c	lBm -			
-50				1
60				
-70				-
Start 2.31 GHz	8	MHz/	Stop 2.39 GHz	
te: 31.JAN.2019 13:33:	:58			

8.5 Emission Bandwidth 6 dB and 99% Occupied Bandwidth

8.5.1 Measurement according to FCC 558074 D01 DTS Meas Guidance v04

Spectrum Analyzer settings:

- Set RBW = 100 kHz
- Set the video bandwidth (VBW) ≥ 3 x RBW
- Detector = Peak
- Trace mode = Max hold
- Sweep = Auto couple
- Allow the trace to stabilize
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two
 outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the
 maximum level measured in the fundamental emission.

8.5.2 Limits:

FCC §15.247(a)(1) and RSS-247 5.2(1)

• Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.5.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
22° C	2	802.11 b/g/n	12 VDC

Test Report #: EMC_DANLA-058-18001_15.247_WLAN FCC ID: 2AD9I-DL980SW

Date of Report 2019-04-15 IC ID: 20087- DL980SW

Measurement result: 8.5.4

Plot #	Mode	Channel	6 dB Emissions Bandwidth (MHz)	Limit (MHz)	Result
1	802.11b	1	6.81	> 0.5	Pass
2	802.11b	6	6.33	> 0.5	Pass
3	802.11b	11	5.53	> 0.5	Pass
4	802.11g	1	15.30	> 0.5	Pass
5	802.11g	6	15.46	> 0.5	Pass
6	802.11g	11	11.62	> 0.5	Pass
7	802.11n_HT20	1	15.54	> 0.5	Pass
8	802.11n_HT20	6	16.21	> 0.5	Pass
9	802.11n_HT20	11	15.14	> 0.5	Pass

Plot #	Mode	Channel	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result
10	802.11b	1	12.90	> 0.5	Pass
11	802.11b	6	13.46	> 0.5	Pass
12	802.11b	11	12.66	> 0.5	Pass
13	802.11g	1	16.58	> 0.5	Pass
14	802.11g	6	17.07	> 0.5	Pass
15	802.11g	11	16.51	> 0.5	Pass
16	802.11n_HT20	1	17.31	> 0.5	Pass
17	802.11n_HT20	6	17.62	> 0.5	Pass
18	802.11n_HT20	11	17.23	> 0.5	Pass

8.5.5 Measurement Plots:

 Test Report #:
 EMC_DANLA-058-18001_15.247_WLAN
 FCC ID: 2AD9I-DL980SW

 Date of Report
 2019-04-15
 IC ID: 20087- DL980SW

ow cł	nannel						Mode: 80)2.11n_HT	20		
		"					00 kHz		2 [T1]	l	
						*VBW 3	00 kHz			5.43 dB	
	Ref 22	dBm		*Att 1	0 dB	SWT 2	0 ms	-	9.93589	7436 MHz	
į	-20 -0ff s	et 13.	1 dB					Marke	r 1 [T1	3	
										.84 dBm	
									2.414564	103 GHz	A
PK	-10				Laphyla	, Ť.,		Delta	3 [T1 .	.31 dB	
АХН				2	I A. Jan	بها لنا النا النا النا	/4z 3			359 MHz	
	-0			.tala	C May Aller		ala all				LVL
				l page .		4					
	-10										
							<i>f</i>				
							1	4.			
	20			ľ				Mild of			
			الكم .					VUI	fr.		
	-30		N.					+1	Miliati .		
			. Market					The villand	W. W.		3DB
	40	minimilalia	Ma						_	Walter Last	
	1 1 Militale 1	AVI. AR								"VIII	
	-50									-40/	
	30										
	60										
	-70										
						<u> </u>				50 MHz	l
	Conton	2.412 GF	I.e.		E 1	Mz/					

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

8.6 Radiated Transmitter Spurious Emissions and Restricted Bands

8.6.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate
 for the lowest, middle and highest channel in each frequency band of operation and for the highest gain
 antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation factor as follow: Conversion factor (CF) = 40 log (D/d) = 40 log (300m / 3m) = 80dB

8.6.2 Limits:

FCC §15.247

• In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

FCC §15.209 & RSS-Gen 8.9

• Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement Distance (m)	Field strength @ 3m (dBµV/m)
0.009-0.490	2400/F(kHz) /	300	-
0.490-1.705	24000/F(kHz) /	30	-
1.705–30.0	30 / (29.5)	30	-
30–88	100	3	40 dBμV/m
88–216	150	3	43.5 dBµV/m
216–960	200	3	46 dBµV/m
Above 960	500	3	54 dBµV/m

FCC §15.205 & RSS-Gen 8.10

• Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

*PEAK LIMIT= 74 dBµV/m

*AVG. LIMIT= 54 dBµV/m

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

8.6.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	802.11b	12 VDC

8.6.4 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 8.6.2	Pass
4-8	Mid	9 kHz – 26 GHz	See section 8.6.2	Pass
9-11	High	30 MHz – 18 GHz	See section 8.6.2	Pass

8.6.5 Measurement Plots:

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

Modulation: 802.11b Channel: Low 99% Duty Cycle

Final_Result

Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
4824.000000		37.39	54.00	16.61	100.0	1000.000	190.0	٧	62.0

(continuation of the "Final_Result" table from column 15 ...)

Frequency (MHz)	Corr. (dB)	Comment
4824.000000	-5.1	12:47:07 PM - 2/1/2019

FCC ID: 2AD9I-DL980SW 2019-04-15 Date of Report IC ID: 20087- DL980SW

al_Res		Plot #5 Ra odulation: 802.11b				33 70	Duty C	ycie	
	•.								
(BALL-)	MaxPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	C
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time (ms)	(kHz)	(cm)		(deg)	(
53.288716	22.98	40.00	17.02	200.0	120.000	159.0	V	192.0	
equency	he "Final_Res	ment	om columi 1	n 16)					
(MHz)	4:24:46 PM								
55.2007 10	4.24.40 FW	- 2/1/2013	J						
70 T									_
65+									
1									
60									
55								FCC	5
50									
45+									
13									
± 40 ↑									
Level in dBuV/m								11111144 114111	
30	*					اللد		A SERVICE OF THE SERV	
25				4444	len len	7[[PT**]	الساير	11*	
				ullejir Smillerikas					
20	77								
15									
10									-
5+									
0+ 30M	50	60 80	100M	Frequenc	200 300	400		800	⊣ 1G

FCC ID: 2AD9I-DL980SW IC ID: 20087- DL980SW 2019-04-15 Date of Report

Plot #7	Radiated	Emissions:	3-18 GHz
---------	----------	-------------------	----------

99% Duty Cycle Modulation: 802.11b Channel: Mid

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
4874.000000		40.27	54.00	13.73	100.0	1000.000	160.0	٧	158.0
7312.500000		36.83	54.00	17.17	100.0	1000.000	162.0	٧	15.0

(continuation of the "Final_Result" table from column 15 ...)

Frequency	Corr.	Comment
(MHz)	(dB)	
4874.000000	-5.3	6:52:39 PM - 1/31/2019
7312.500000	-0.6	6:55:18 PM - 1/31/2019

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

FCC ID: 2AD9I-DL980SW IC ID: 20087- DL980SW Date of Report 2019-04-15

ulation: 802.11b			Channel: High			99%	99% Duty Cycle		
requency (MHz)	MaxPeak (dBµV/m)		Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimu (deg)
1671.00000	0	37.66	54.00	16.35	200.0	1000.000	250.0	Н	241
ntinuation of	the "Final_Re	sult" table fro		15)					
Frequency (MHz)	Corr. (dB)	Comme							
1671.00000	0 34.4 4	:21:24 PM - 1/3	31/2019						
440									
110									
†							V		
100						2.463000000 101.805 dB	OGHz uV/m		
						101.000 45	M***		
90+									
Ī									
80 +									
\ \rightarrow \rightarrow \rightarrow \ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \ \rightarrow							74	l dBuV	<u>per m</u>
Level in dBµV/m									
vel:									
의 60+									
007						Lark	الوبالأ		(HEI) Y
†	1	- Ir	مالايدان .	Au Mada	المساورة والمساورة			+-G⊡U-¥-	per m
50	والمرافع والمالية			holis a miss an	A PARTY NAMED IN COLUMN TO THE PARTY NAMED IN				
	malls of season			*			يمسها المرس	~_ /	
40+				-					
	Milanneradia		_	•					
30+ 10	<u> </u>				2	 G			—– 3G
			F	requency		_			J.
1									

FCC ID: 2AD9I-DL980SW Date of Report 2019-04-15 IC ID: 20087- DL980SW

> Plot #11 Radiated Emissions: 3-18 GHz Modulation: 802.11b Channel: High 99% Duty Cycle Final Result Frequency (MHz) Margin Azimuth Average Limit Meas. Bandwidth Height (dBµV/m) (dBµV/m) (dBµV/m) (dB) Time (kHz) (cm) (deg) 4924.000000 38.25 54.00 15.75 100.0 1000.000 323.0 V 11.0 (continuation of the "Final_Result" table from column 15 ...) Frequency (MHz) 4924.000000 Comment Corr. (dB) -5.1 1:01:49 PM - 2/1/2019 90-85 80-74 dBuV per m 75 70-65 Level in dBµV/m 60 54 dBuV per n 55 50 45 40 35 30-25 20-3G 5G 6 8 9 10G 18G Frequency in Hz

FCC ID: 2AD9I-DL980SW

Test Report #: EMC_DANLA-058-18001_15.247_WLAN

Date of Report 2019-04-15 IC ID: 20087- DL980SW

9 Test setup photos

Setup photos are included in supporting file name: "EMC_DANLA_058_18001_15.247_Setup_Photos.pdf"

10 Test Equipment and Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
PASSIVE LOOP	ETS.LINDGREN	6512	00164698	3 YEARS	08/08/2017
BILOG ANTENNA	TESEO	CBL 6141B	41106	3 YEARS	11/01/2017
HORN ANTENNA	ETS.LINDGREN	3115	00035114	3 YEARS	07/31/2017
HORN ANTENNA	ETS.LINDGREN	3117	0167061	3 YEARS	08/08/2017
HORN ANTENNA	ETS.LINDGREN	3116C	00166821	3 YEARS	09/24/2017
SIGNAL ANALYZER	R&S	FSU26	200065	2 YEARS	07/03/2017
SIGNAL ANALAYZER	R&S	FSV 40	101022	3 YEARS	07/05/2017
TEST RECEIVER	R&S	ESU.EMI	100256	3 YEARS	01/31/2018
COMPACT DIGITAL BAROMETER	CONTROL COMPANY	35519-055	91119547	2 YEARS	06/20/2017
THRMOMETER HUMIDIY	DICKSON	TM320	16253639	3 YEARS	11/02/2017

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

 Test Report #:
 EMC_DANLA-058-18001_15.247_WLAN
 FCC ID: 2AD9I-DL980SW

 Date of Report
 2019-04-15
 IC ID: 20087- DL980SW

11 Revision History

Date	Report Name	Changes to report	Report prepared by	
2019/04/15	EMC_DANLA_058_18001_15.247_WLAN	Initial version	Yuchan Lu	