Детектирование объектов

Осокин Даниил, daniil.osokin@gmail.com Летняя школа 2016, Itseez/Intel/HHГУ Июль 2016

Что может рассказать изображение?

Детектирование объектов

1. Генерация гипотез

2. Проверка гипотез

Пешеход(

Вычитание фона

- 1. Задано изображение фона.
- 2. Вычтем фон из текущего кадра, отбросим пиксели с незначительной разницей.
- 3. Полученная маска содержит гипотезы.

Сегментация

Сегментация - процесс разделения изображения на несколько сегментов.

- 1. Пусть каждый пиксель отдельный сегмент.
- 2. Пока число сегментов > 2
 - а. Объединить похожие по цвету сегменты.
 - b. Объединить похожие по текстуре сегменты.
 - с. Объединить похожие по размеру сегменты.
 - d. Заполнить дырки в сегменте.

Скользящее окно

Окно фиксированного размера.

Пешеход - прямоугольник 64х128 пикселей

Полный перебор таких окон на исходном изображении и на всех 2. масштабах, вплоть до размера скользящего окна.

11

Классификация

 $\mathcal{X} = (x^1, x^2, ..., x^n) \in \mathbb{R}^n$ - вектор признаков объекта

 $\mathcal{Y} \in \{0, 1\}$ - класс, 0 - фон, 1 - объект

Классификатор
$$h_j(x) = \begin{cases} 1, & p^j x^j < p^j \theta^j & \theta^j - \text{порог} \\ 0, & \text{иначе} & p^j - \text{знак} \end{cases}$$

$$h_1$$
: $\theta^1 = 1.5$, $p^1 = 1$
 h_2 : $\theta^2 = 2.5$, $p^2 = -1$

Если классификатор классифицировал фон как объект, то это ложное срабатывание (false positive).

Классификация

 $\mathcal{X} = (x^1, x^2, ..., x^n) \in \mathbb{R}^n$ - вектор признаков объекта

 $\mathcal{Y} \in \{0, 1\}$ - класс, 0 - фон, 1 - объект

Классификатор
$$h_j(x) = \begin{cases} 1, & p^j x^j < p^j \theta^j & \theta^j - \text{порог} \\ 0, & \text{иначе} & p^j - \text{знак} \end{cases}$$

$$h_1$$
: $\theta^1 = 1.5$, $p^1 = 1$
 h_2 : $\theta^2 = 2.5$, $p^2 = -1$

Можно уменьшить ошибку классификации?

Сильный классификатор. Адаптивный бустинг (AdaBoost)

- Задана обучающая выборка: $(\mathcal{X}_1, \mathcal{Y}_1), ..., (\mathcal{X}_m, \mathcal{Y}_m)$, веса для каждого объекта $\mathbf{w}_{i} = \frac{1}{m}, \forall i \in \overline{1, m}$
- 2. Для t = 1 ... T
 - а. Для каждого j-го признака тренируется слабый классификатор $\mathbf{h}_{_{\mathbf{i}}}$, и вычисляется взвешенная ошибка классификации ε : \underline{m}
 - $\varepsilon_j = \sum_i w_i * |h_j(x_i) y_i|$ Выбирается h_{i} с наименьшей ошибкой arepsilon.
 - Веса обновляются:

$$w_i = w_i * \beta_t^{1-e_i}, \beta_t = \frac{\varepsilon}{1-\varepsilon}$$

 $e_i = 0$, если \mathcal{X}_i классифицировался корректно, 1 иначе.

- d. Веса нормализуются: $w_i = \frac{w_i}{\sum_{k=1}^{m} w_k}$
- Сильный классификатор: 3.

H(
$$\mathcal{X}$$
) =
$$\begin{cases} 1, & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t, \alpha_t = \log \frac{1}{\beta_t} \\ 0, & \text{иначе} \end{cases}$$

Каскадный классификатор

- Вычислять сильный классификатор (сумму тысяч слабых) для каждого положения скользящего окна (десятки тысяч) долго.
- Разделим задачу на более простые подзадачи: будем тренировать серию (каскад) классификаторов, компенсирующих ошибки друг друга.

• Зададим желаемый объем ложных срабатываний (false positive rate, FPR) и степень правильно классифицированных объектов (detection rate, DR) для каждого H_i.

15

Тренировка каскада

Исходная база изображений

Тренировочная выборка для первого классификатора: позитивы и негативы одинакового размера, негативы вырезаны случайно из исходной базы негативов.

- 1. Сформируем тренировочную базу, например для детектирования лиц выборка состоит из 10000 лиц и 10000 не лиц.
- 2. Тренируем сильный классификатор H₁ (*стадию*) до достижения заданных целей, обычно FPR 50%, DR 99.5%.

Тренировка каскада

Исходная база негативов

Тренировочная выборка для второго классификатора.

- 3. Запустим H₁ на негативах, сформируем новую выборку негативов для тренировки (*bootstrapping*). Если число найденных негативов меньше порога, то тренировка завершена, иначе переходим на шаг 2 (тренируем следующую стадию каскада).
- 4. Составляем из натренированных сильных классификаторов каскадный классификатор. (H₁) (H₂) (

Сравнение каскадного классификатора с монолитным (Viola & Jones, 2001)

При сравнимом качестве, каскад в ~10 раз быстрее.

Сможете найти лицо среди кофейных зерен?

Простые признаки

Как описать объект?

• Значения пикселей

 $\mathcal{X} = (50, 54, 52, 54, \dots, 186)$

Пешеход, 16х32 пикселей

Вектор признаков, 512х1 пикселей

• Градиент

Пешеход, 16х32 пикселей

 $\mathcal{X} = (0, 0, 38, 0, \dots, 0)$

Вектор признаков, 512х1 пикселей

Простые признаки

Как описать объект?

• Значения пикселей

$$\mathcal{X} = (50, 54, 52, 54, \dots, 186)$$

Пешеход, 16х32 пикселей

Вектор признаков, 512х1 пикселей

• Градиент

Пешеход, 16х32 пикселей

 $\mathcal{X} = (0, 0, 38, 0, \dots, 0)$

Вектор признаков, 512х1 пикселей

Чем один признак (feature) может быть лучше другого?

Haar-like признаки

Требование: признаки должны быстро вычисляться в любой точке изображения и при любом масштабе.

Для быстрого вычисления используется интегральное изображение:

$$ii(x,y) = \sum_{x' \leq x, y' \leq y} i(x',y'),$$

Интегральное изображение

$$ii(x,y) = \sum_{x' \le x, y' \le y} i(x', y'),$$

Сумма в: = (4 + 0) - (3 + 0) = 1 = (12 + 0) - (0 + 8) = 4

Гистограмма градиентов (HoG)

- 1. Вычислить горизонтальный, вертикальный градиенты в каждом пикселе изображения.
- 2. Найти магнитуду, ориентацию градиента.
- 3. Разделить изображение (64х128) на блоки 16х16 пикселей (всего 7 * 15 = 105 блоков), по 2х2 ячейки, каждая ячейка 8х8 пикселей.

4. Для каждой ячейки каждого блока построить гистограмму ориентации Блок 1 Блок 2

градиента.

- 1. Ядра градиентов
- 2. Магнитуда, угол

9Бинов

- 5. Поблочная нормализация.
- 6. Конкатенация всех гистограмм формирует вектор признаков

изображения.

Визуализация HoG

Зеленым отложено насколько сильным был градиент в конкретной ячейке в данном направлении.

HoG для детектирования пешеходов (Dalal & Triggs, 2005)

Navneet Dalal and Bill Triggs, INRIA, France

Вопросы

