# Chapitre 5



# Suites arithmétiques

### **Evaluation formative**

Le projet d'aménagement de la place d'un village prévoit la disposition ci-contre :

- une partie centrale avec une statue au centre.
- quatre parties latérales où un arbre sera plantée.



La partie centrale de la place est un carré de 75,50 m de côté.

Elle sera pavée de dalles de pierre, rectangulaires, de dimension 100 cm x 50 cm.

On cherche combien il faudra de dalles pour paver la partie centrale de la place.

#### Partie 1 : Nombre de rangs du pavage de la partie centrale de la place

Le pavage de la partie centrale est réalisée comme indiqué sur le schéma suivant :



**Dessinez** la fin du pavage du <u>rang 2</u> et celui du <u>rang 3</u>





2. Compléter le tableau ci-dessous :

| Rang n | Nombre de dalles | Longueur du rang n<br>(cm) | Largeur du rang n<br>(cm) |
|--------|------------------|----------------------------|---------------------------|
| 1      | 7                | 250                        | 200                       |
| 2      |                  |                            |                           |
| 3      |                  |                            |                           |

La suite  $(U_n)$  correspond à la longueur (en cm) du rang n du pavage.

Soit  $U_1 = 250$ ;  $U_2 = 350$ ;  $U_3 = 450$ ; ...



3. **Expliquer** pourquoi la suite est <u>arithmétiq</u>ue.



$$U_{n+1} = U_n + I$$



Indiquer le premier terme et la raison de la suite arithmétique.

.....



5. **Compléter** le tableau suivant pour les 10 premiers termes de la suite  $(U_n)$ :

| Rang <i>n</i>           | 1   | 2   | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------------------|-----|-----|-----|---|---|---|---|---|---|----|
| Suite (U <sub>n</sub> ) | 250 | 350 | 450 |   |   |   |   |   |   |    |



6. Représenter graphiquement la suite arithmétique  $(U_n)$  pour n appartenant à l'intervalle  $[\mathbf{1} \; ; \; \mathbf{100}]$ 





7. Déterminer graphiquement le rang de pavage correspondant à une de 7550 cm.

.....

# Partie 2 : Nombre de rangs du pavage de la partie centrale de la place

La suite (V<sub>n</sub>) correspond au nombre de dalles par rang du pavage

 $V_1 = 7$ ;  $V_2 = 11$ ;  $V_3 = 15$ ; ...



8. **Proposer** une relation entre  $V_{n+1}$  et  $V_n$ 



9. **Indiquer** la <u>nature</u> de la suite.



10. **Indiquer** le <u>premier terme</u> et la <u>raison</u> de la suite.



11. Calculer V<sub>74</sub>



$$V_n = V_1 + (n-1) \times r$$



12. **Calculer** la <u>somme</u> des 74 premiers termes de la suite V<sub>n.</sub>



$$S_n = \frac{n}{2} \times (V_1 + V_n)$$



13. **Conclure** en donnant le <u>nombre de dalles</u> nécessaires pour paver la partie centrale de la place.