系别工科试验班 班级电光5班 姓名 3长恒硫 第

组别座号: 63

日期:5月19日,星期五下午 力、热学实验报告、石车撞

预习部分

目的要求人用对心碰撞特例检验动量守恒定律

了解 计量守恒和动能守恒的条件 熟练使用气垫导轨及数字毫数计 仪器用具:气垫导车九及附件,数字毫秒计,物理天干,游标卡尺

原理: 动量守恒定律: m, U, + m_U_ = m, V, + m_V_

① m1=m2=m, 以2=0下的双十心碰撞

完全单性碰撞 $V_1 = 0$ 误 $E_1 = \frac{|P_2 - P_1|}{|P_1|} = \frac{|m_2 \circ S_2 \circ S_1|}{|m_1 \circ S_1 \circ S_2 \circ S_1|} - 1$ 完全 $V_1 = V_2 = V = \frac{|U_1|}{|V_2|} = \frac{|m_1 \circ S_2 \circ S_1|}{|m_1 \circ S_1 \circ S_2 \circ S_1|} - 1$ 是 $F_1' = \frac{|R' - P_1'|}{|P_1'|} = \frac{|(1 + \frac{|m_1|}{|m_1|}) \circ S_2 \circ S_1|}{|S_1 \circ S_2 \circ S_1|} - 1$

E' = | [| + m2 (ot/)2-1|

Ex = 2(1+ m2) (ot/)2-11

日 3年登报子

X=Asin (Not + fo)

T = 27 / MHNO KITK2

实验部分 实验步骤

1. 翘用电子天子测量两滑块质量,m1=130.7 g,m=130.6g,差为0.1g。 2. 动态注调平导轨:先大政将导轨调至水平,再用一滑块以一定初速度 通过,记录两次遮光时间,多次重复,直至老值小于0.5 ms (实验中 约 lms, O.Sms太难把握)

3. 测量实际遮光长度

得到 ~ 51 = ~ 52 = ~ 5 Cm 4. 进行完全弹性和完全非3单性碰撞实验各三次。滑块一种放逐度与动态调平时相近,滑块工在6进量前按住以保持静止

字绘数据

m1= 130.79, m= = 130.69 051 = 052 = 051 = 5.000 cm

次次		完全弹性				完全非多单性			
数		在前		碰后		石连前		石並后	
i	#ty	u/m/5	oty	V/m/s	sty ms	u'/mls	15 TI	1 v'/m/s	
1	85.50	0.53430	3633	0.57917	69.57	0.71870	45:13		
2	4.14	0.77733	65.16	0.76617	60.34	0,32/33	122.70	040750	
3	14.70	0.66934	76.63	0.65249	63.33	0.72590	B8 29	0.36 156	

取第25且数据

$$\frac{1}{2} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{2} \underbrace$$

系别	班级	姓名	第3 页
完全非净性: ?	= 0		
Eı	$'= (1+\frac{m_2}{m_1}) ^{\frac{1}{2}}$	ti/ t = -1 = 1 C +	130.7) 60.34 -1
E2		$\frac{t_1}{t_0}^2 - 1 = C +$	130.4)(60.24)-11
Ea	= 12(1+ mi) (otil) = 2(1+ 130.6) (60,34) -1
在误差允许的范息	○ 0.0 6933 到: 内 石车 播前	后动是中间	
误差分析: 怎整垫考查匙			有微小差距
1. 多线不受外力或所调平气垫导车机械	受合外力或合外力 小摩擦	远小于内方	
2.将滑块二的档列	气性调反问 t.a.t.k.n.l.未度 在	碰撞的无初	速度释放
4. 都稍远些,保障	石主撞过程发生后	5,滑块速度和	金元末
思考殿	(.1 -		
1. 碰撞前后被动角	187个巨, e=1 = m, v, +m=v=	0	
1. M. U. + ± M.	U2= ±m1V1	+ ± m, V, 0	±₩ (m, m) И/
$ \begin{array}{ccc} & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow $	- m 解得 (V	m1+m2	t= + (m2-m1)U2
/.V2-V1 = MIT	M ₂ = U1- (及3年) V ₂ =	UL= 0 (Tix)	
0- 12-11	1741 -1		# 在送ばし /面 ∓ と+
3. 使速度在同一级过 算功量	质心的且线上,	地工生后 的 还区	BIETH SX I / IX I F
实验中滑块等高,不	在撞处 为单簧或粘	पृष्ठ	

4. 完全弹性碰撞:速度大个不变,反向相离运动 完全非弹性碰撞:停在原处 非弹性碰撞:速度大小减小,反向相离运动 。无漏骨块质量近似相等 气垫导轨:调节至无摩擦,状态 使用数字毫秒计测量,遮 光时长