High-Performance Machine Learning Using Scikit-Learn

Qiyang Hu
UCLA Office of Advanced Research Computing
May 16th, 2025

Outline

- Learning Scikit-learn basics
 - High-level overview of scikit-learn libraries
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn-ish tools
 - Overview of performance issues in machine learning
 - General performance tips and tricks in scikit-learn
 - Making the computation faster
 - Processing large datasets

Outline

- Learning Scikit-learn basics
 - High-level overview of scikit-learn libraries
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn-ish tools
 - Overview of performance issues in machine learning
 - General performance tips and tricks in scikit-learn
 - Making the computation faster
 - Processing large datasets

Measures of Machine Learning Performance

Training Throughput

Number of training instances goes through the training processed in unit time

Prediction Latency

Time to make a single prediction taken by a deployed model

Prediction Throughput

Number of predictions made in unit time

Factors Affecting Machine Learning Performance

DATA

- Number of Instances
 - For training
 - For prediction
 - Upfront availability
- Features
 - Number of features
 - Importance of features
 - Feature representation

MODEL

- Algorithm complexity
 - Hyperparameters
 - Optimized libraries
 - Multi-core Parallelism
 - Out-of-core learning
- Data complexity
 - Feature selection
 - Feature extraction
 - Feature transformation
- For prediction:
 - Validation overhead
 - Model compression
 - Model reshaping

Outline

- Learning Scikit-learn basics
 - High-level overview of scikit-learn libraries
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn-ish tools
 - Overview of performance issues in machine learning
 - o General performance tips and tricks in scikit-learn
 - Making the computation faster
 - Processing large datasets

Basic performance tips for scikit-learn projects

Limiting working memory

from sklearn import config_context as cnftxt
with cnftxt(working_memory=128):
 pass

Model compression

clf = SGDRegressor(penalty='elasticnet', l1_ratio=0.25)
clf.fit(X_train, y_train).sparsify()
clf.predict(X_test)

Configuring for reduced validation overhead

export SKLEARN_ASSUME_FINITE="TRUE"

from sklearn import config_context as cnftxt
with cnftxt(assume_finite=True):
 pass

Scikit-Learn Tweaks & Tricks

Model reshaping

- Selecting only a portion of the available features to fit a model
- Needs to be performed manually

Prediction in bulk mode

Doing predictions many instances at the same time

囲

Outline

- Learning Scikit-learn basics
 - High-level overview of scikit-learn libraries
 - o Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn-ish tools
 - Overview of performance issues in machine learning
 - General performance tips and tricks in scikit-learn
 - Making the computation faster
 - Processing large datasets

Multicore Parallelism and Optimizations for Scikit-Learn

Joblib: lightweight pipelining tools in Python

- Speeding up long-running jobs:
 - Specific optimizations for Numpy arrays
 - Caching and lazy evaluation to avoid computing repeatedly
 - No need to change the code or control flow
 - O Various parallel backends: locky, multiprocessing, threading, dask, ray, ...
- Tight and powerful integration with Scikit-learn
 - Already used in some sklearn classes (ElasticNet, SGDClassifier, ...)
 - Simply tweak n_jobs: n_jobs=-1 to use all available cores
 - Typical tasks: cross-validation, grid search, multi-label prediction, ensemble learning
- Distributed Scikit-Learn using Dask as backend

```
from dask.distributed import Client
import joblib

client = Client(processes=False)  # create local cluster
# client = Client("scheduler-address:8786") # or connect to remote cluster

with joblib.parallel_backend('dask'):
    # Your scikit-learn code
```


bit.ly/hpskl_01

High-performance ML using accelerators

- Scikit-learn alone doesn't have support to GPU or TPU.
- Option 1: <u>RAPIDS</u> software libraries from nvidia
 - Exactly same APIs
 - Kernels rewritten by CUDA
 - > Numpy -> CuPy
 - pandas -> cuDF
 - scikit-learn -> cuML
 - networkx -> cuGraph
 - Dask + RAPIDS + blazingSQL,
 RAPIDS + Spark, xgboost, ...

CUML

Accelerated Machine Learning with a scikit-learn API

50+ GPU-Accelerated Algorithms & Growing

A100 GPU vs. AMD EPYC 7642 (96 logical cores) cuML 23.04, scikit-learn 1.2.2, umap-learn 0.5.3

High-performance ML using accelerators (cont'd)

- Option 2: using <u>scikit-learn-intelex</u>
 - Higher-level APIs to daal4py
 - Full conformance with all skearn apis/algos.
 - Acceleration without code change:
 - Intel CPU optimization patching

from sklearnex import patch_sklearn
patch_sklearn()

■ Intel CPU/GPU optimizations patching

from sklearnex import patch_sklearn, config_context
patch_sklearn()
with config_context(target_offload="gpu:0"):

o Installation:

pip install scikit-learn-intelex
pip install dpcpp-cpp-rt

Speedups of Intel® Extension for Scikit-learn over the original Scikit-learn (inference)

High-performance ML using accelerators (cont'd)

- Option 3: XGBoost (eXtreme Gradient Boosting)
- XGBOOST.

- A specialized ML algorithm & library
 - Processing very big tabular data
 - High accuracy prediction results
 - Very fast!
 - Using 2nd order Taylor approx.
 - Support GPU acceleration
 - Support distributed computation
- Gold standard for tabular data modeling
 - 70% of winning solutions in Kaggle
 - Widely used in industry
- Siblings within the GBDT family
 - LightGBM: Histogram-based splitting, leaf-wise growth
 - CatBoost: Native categorical feature handling

ACCELERATED XGBOOST

"XGBoost is All You Need" - Bojan Tunguz, 4x Kaggle Grandmaster

XGBoost >>> from xgboost import XGBClassifier CPU >>> clf = XGBClassifier() >>> clf.fit(x, v) XGBoost >>> from xgboost import XGBClassifier >>> clf = **GPU** XGBClassifier(tree_method="gpu_hist") >>> clf.fit(x, y) Up to 20x Speedups

One line of code change to unlock up to 20x speedups with GPUs

Scalable to the world's largest datasets with Dask and PySpark

Built-in SHAP support for model explainability

Deployable with Triton for lighting-fast inference in production

RAPIDS helps maintain the XGBoost project

bit.ly/hpskl_02

Outline

- Learning Scikit-learn basics
 - High-level overview of scikit-learn libraries
 - Practical usage of scikit-learn
 - Deep learning and scikit-learn
 - Scikit-learn extension libraries
- High-performance machine learning using scikit-learn-ish tools
 - Overview of performance issues in machine learning
 - General performance tips and tricks in scikit-learn
 - Making the computation faster
 - Processing large datasets

Training on Large Datasets

(where data is available upfront for processing)

- Challenges for large datasets
 - Most scikit-learn estimators works for in-memory arrays
 - Needs different dataframes
 - Needs to implement different algorithms
- Dask for Machine Learning
 - Using dask array, dask dataframe
- Machine Learning with vaex.ml
 - Wrappers to scikit-learn, xgboost, LightGBM and CatBoost.
 - Predictive models not implemented yet.
 - Implemented standard data transformers and KMeans algorithms
 - Using Vaex dataframe

bit.ly/hpskl_03

Data in Out-of-core Learning

- Batch vs. Streaming
 - Batch: stored on disk or database, available upfront for processing
 - Streaming: all data streams at different time points, not all available upfront.
- Streaming plays a pivotal role in big data processing
 - Streaming architectures: Lambda vs. Kappa
 - Streaming technologies: Kafka, Flink, Storm, Cloud-based solutions on AWS, GCP, Azure
- Training-Serving Skew
 - Performance difference between training+testing and production
 - Possible causes:
 - Sourcing data from different pipelines for training and prediction
 - Processed in an ad-hoc manner with many short cuts
 - A feedback loop between your model and your algorithm.
 - Solution: to process both training and prediction data as part of the same pipeline

Out-of-core learning using scikit-learn

- Feature extraction for a subset of data
 - Stateful feature extractor to build a "hash table":
 - Must know the complete feature set known in advance
 - In-memory mapping from the string tokens to the feature indices
 - Stateless feature extractor using hashing tricks:
 - Preprocessing vectorizers having no 'fit'
 - It creates reduced dimensionality hashes of data
- Incremental learning algorithm
 - Learning without seeing all instances at once
 - Scikit-learn supports through partial_fit API
 - Classifiers: Naive Bayes, Perceptron, SGD, Passive-aggressive classifiers
 - Regressors: SGD, Perceptron, Passive-aggressive regressors
 - Clustering: Mini-batch K-means, Birch
 - Feature extraction: Dictionary learning, PCA, Latent Dirichlet Allocation
 - Preprocessing: Standard, MinMax, MaxAbs scalars
 - Mini-batch sizes may or may not influence results.

Out-Of-Core Scikit-Learn Demo

- Classification of text documents
 - Using Reuters-21578 benchmark dataset:
 - multi-class (90), multi-label
 - 7769 training documents and 3019 testing documents
 - provided by the UCI ML repository
 - Binary classification between the "acq" class and all the others
 - "acq" was chosen as it is more or less evenly distributed in the Reuters # files

Scikit-learn

- Data streaming with batches
- Create the vectorizer
- Classifiers with partial_fit

class name

1: earn

2: acq

3: money-fx

nr of documents

test

1087

719

train

: 2877

: 1650

: 538

mean number of

104.4

150.1

219.0

words in train set

bit.ly/hpskl_04

Key Takeaways

- Learning Scikit-learn means:
 - Understanding the machine learning workflows
 - Learning its API conventions
 - Familiarizing its documentations
 - Inspecting the example codes
 - Considering the scikit-learn extensive libraries
- Making scikit-learn more productive means:
 - Making sure everything work fine without performance optimization
 - Carefully profiling the code to address the performance bottleneck
 - Using Joblib with n_jobs
 - Trying RAPIDS, XGBoost if you can.

Post-workshop Survey