

■ CS286 AI for Science and Engineering

Lecture 11: Special Topics of Deep Learning

Jie Zheng (郑杰)

PhD, Associate Professor

School of Information Science and Technology (SIST), ShanghaiTech University Fall, 2020

- Generative Adversarial Networks (GANs)
- Reinforcement Learning
- Graph Neural Networks (GNNs)

Generative Adversarial Networks (GANs)

Generative modeling

Given training data, generate new samples from the same distribution

Objectives:

- 1. Learn $p_{model}(x)$ that approximates $p_{data}(x)$
- 2. Sample new x from $p_{model}(x)$

Taxonomy of generative models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Ffjord

Generative Adversarial Networks (GANs)

立志成才报图谷民

- Use a neural network, called generator, to generate data
- Use another neural network, called discriminator, to determine if the data is real or fake

Cost functions of adversarial learning

• Let D denote the discriminator's predicted probability of being real data

Discriminator:

- Try to distinguish between real and fake images
- Cost function: cross-entropy loss for the task of classifying real vs. fake images:

$$\mathcal{J}_D = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[-\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}}[-\log(1 - D(G(\mathbf{z})))]$$

Generator:

- Try to fool the discriminator by generating real-looking images
- Cost function (one possible version) is the opposite of the discriminator's:

$$\mathcal{J}_G = -\mathcal{J}_D$$

= const + $\mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$

Two-player game

- Minimax formulation:
 - The generator and discriminator are playing a zero-sum game against each other
 - Train jointly in a minimax game:

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real data x penerated fake data G(z)

Learning procedure

Updating the discriminator

Learning procedure

Updating the generator

Training GANs

Training GANs

- In general, training a GAN is tricky and unstable
- Since GANs were introduced in 2014, there have been hundreds of papers introducing various architectures and training methods
- GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
- Many tricks:
 - S. Chintala, How to train a GAN, ICCV 2017 tutorial
 - https://github.com/soumith/ganhacks

Interpretable vector arithmetic

Glasses man

No glasses man

No glasses woman

Radford et al, **ICLR 2016**

Reinforcement Learning

Reinforcement learning (RL)

- A new class of problems: Reward-based
 - E.g. autonomous driving
 - What is my next move?
 - Reaching the destination with minimum cost

Reinforcement learning (RL)

- Common theme: control problems where
 - Your actions beget rewards
 - Win a Go game
 - Make money by investing
 - Get home sooner
 - But not deterministically
 - A world out there that is not predictable
- From experience of belated/delayed rewards, you must learn to act rationally

RL problem setting

- An agent operates in an environment
- The agent takes actions that
 - affect the environment
 - change in a somewhat unpredictable way
 - affect the agent's situation
- The agent also receives rewards
 - which may be apparent immediately
 - or not apparent for a very long time

Problem to solve:

How must the agent behave to maximize its rewards?

Markov Decision Process (MDP)

- Markov assumption:
 - All relevant information is encapsulated in the current state
 - i.e. the policy, reward, and transitions are all independent of past states given the current state
- Assume a fully observable environment, i.e. the state can be observed directly

Formal definition of MDP

A Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \mathbf{S} is a finite set of states
- \blacksquare A is a finite set of actions
- \mathbf{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$
- $\blacksquare \mathcal{R}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0,1]$.

Formal definition of MDP

- At time step t = 0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t = 0 until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(\cdot | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(\cdot | s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}
- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π^* that maximizes cumulative discounted reward: $\sum_{t>0} \gamma^t r_t$

A simple MDP: Grid World

- Set a negative "reward" for each transition
- Objective: reach one of terminal states (greyed out) in the least number of actions

*		
		*

*	‡	-	ţ
1	+	•	*
1	+	1	1

Random Policy

Optimal Policy

- right
- left
- 3. up
- down

Problems in MDP

- Planning: Given a complete MDP as input, compute a policy with optimal expected return
 - Goal: maximize the expected return, $R = E_{p(\tau)}[r(\tau)]$
 - The expectation is over both the environment's dynamics and the policy, but we only have control over the policy

- Learning: Given samples of trajectories of an unknown MDP,
 - Prediction: estimate the expected return given a policy
 - Control: find the optimal policy that maximizes the expected return

Value function and Q-value function

- Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...
- How good is a state?

The **value function** at state *s* is the expected cumulative reward from following the policy from state *s*:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

How good is a state-action pair?

The Q-value function at state s and action a is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman equation

• The optimal Q-value function Q^* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

• Q^* satisfies the following **Bellman equation**:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

- **Intuition**: If the optimal state-action values for the next time-step $Q^*(s',a')$ are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$
- The optimal policy $\pi^* = \operatorname{argmax}_a Q^*(s, a)$

Value Iteration algorithm

- Value Iteration algorithm uses the Bellman equation for an iterative update $Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') | s, a\right]$
 - Q_i will converge to Q^* as $i \to \infty$
- Problem: Not scalable
 - Must compute Q(s, a) for every (state, action) pair
 - Often computationally infeasible to compute for the entire state space
- Solution: Use a function approximator to estimate Q(s, a), e.g. a neural network
- But Q-values are more useful, as they give us optimal policies
 - An iterative algorithm similar to the value iteration algorithm was found by Bellman, which is called Q-Value Iteration algorithm

上海科技大学 ShanghaiTech University

Q-learning: Use a function approximator to estimate the action-value function

- Learn Q(s, a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate
 - Incorporate the new estimate into a running average
- If the function approximator is a deep neural network, then it is called deep Q-learning

Q-learning properties

- Q-learning converges to optimal policy, even if you are acting suboptimally
 - It is called off-policy learning, as the policy being trained is not necessarily the one being executed

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough, but not decrease it too quickly
- In the limit, it doesn't matter how you select actions

Graph Neural Networks (GNNs)

Outline of a survey on GNNs

- Background of GNN
- Categorization and frameworks
- Overview of GNN models
 - Recurrent Graph Neural Networks
 - Convolutional Graph Neural Networks
 - Graph Autoencoders
 - Spatial–Temporal Graph Neural Networks
- Applications
- Challenges and future directions

Modern deep learning

- Data are typically represented in Euclidean space
- Designed for simple sequences or grids

Motivation for GNNs

- Lots of data are represented in the form of graphs
 - E-commerce: interactions between users and products
 - Chemistry: molecules are modeled as graphs, and their bioactivities need to be identified for drug discovery
 - Citation network: articles are linked to each other via citation

- Properties of data:
 - Graphs can be irregular
 - The assumption that instances are independent of each other no longer holds

Graph Neural Networks (GNNs)

- Graph Neural Networks (GNNs) are deep learning-based methods that operate on graph domain
 - "They capture the dependence of graphs via message passing between the nodes of graphs" (Jie Zhou et al., arXiv, 2019)
- Categorization:
 - Recurrent GNNs (RecGNNs)
 - Convolutional GNNs (ConvGNNs)
 - Graph Autoencoders (GAEs)
 - Spatial-Temporal GNNs (STGNNs)

- Input:
 - Graph structure
 - Node content information

- Output (depending on different graph analytics tasks):
 - Node level: node regression and node classification
 - Edge level: edge classification and link prediction
 - Graph level: graph classification

Recurrent GNNs (RecGNNs)

 Aim: To learn node representations with recurrent neural network architectures

• **Assumption**: A node in a graph constantly exchange information (or message) with its neighbors, until a stable equilibrium is reached

Impact:

- Most pioneering works on GNNs
- RecGNNs inspired later research on ConvGNNs, which inherited the idea of message passing

Convolutional GNNs (ConvGNNs)

ConvGNN for node classification

ConvGNN for graph classification

- Main idea: Generalize the operation of convolution from grid data to graph data
 - Generate a node v' s representation by aggregating its own features X_v and its neighbors' features X_u
 - Different from RecGNNs, it stacks multiple graph convolutional layers to extract high-level node representations

Two types of ConvGNNs

- Spectral-based: Define graph convolutions by introducing filters from the perspective of graph signal processing
 - Consider graph convolution as removing noises from graph signals
- Spatial-based: Define graph convolutions by information propagation (an idea inherited from RecGNNs)
 - Images can be considered as a special form of a graph with each pixel representing a node
 - Each pixel is directly connected to its nearby pixels
 - A filter is applied to a 3×3 patch by taking the weighted average of pixel values of the central node and its neighbors across each channel

Graph Autoencoders (GAEs)

A GAE for network embedding

- Main idea: Encode nodes/graphs into a latent vector space, and reconstruct graph data from the encoded information
- Applications:
 - Network embedding: GAEs learn latent node representations through reconstructing graph structural information, e.g. adjacency matrix
 - Graph generation: GAEs learn graph generative distributions

Spatial-Temporal GNNs (STGNNs)

STGNN for spatial—temporal graph forecasting

- Aim: To model the dynamic node inputs while assuming interdependency between connected nodes
 - Capture spatial and temporal dependencies of a graph simultaneously
- Applications:
 - Learn hidden patterns from spatial-temporal graphs in applications, e.g. traffic speed forecasting, human action recognition

Some applications of GNNs

- Computer Vision: scene graph generation, point clouds classification, and human action recognition
- Natural Language Processing (NLP): text classification (utilizing the interrelations of documents or words to infer document labels)
- Recommender Systems: take products and users as node, and formulate recommendation as a "link prediction" problem
- Chemistry: To study the graph structures of molecules / compounds
- Others:
 - Drug discovery
 - Brain science
 - Knowledge graph

Challenges and future directions of GNNs

- Model depth: performance of ConvGNN drops with the number of layers
- How to balance scalability and graph integrity (or completeness)?
- How to handle heterogeneous graphs, which have different types of nodes and edges, or different forms of nodes and edge inputs, e.g. images and text?
- Dynamicity: Graphs are dynamic in that nodes or edges may appear or disappear, and inputs may change over time
 - STGNNs can partially address the dynamicity of graphs
 - Future: To find new graph convolutions that can adapt to the dynamicity of graphs

- In this lecture we learned basics of:
 - Generative Adversarial Networks (GANs)
 - Reinforcement learning (RL)
 - Graph Neural Networks (GNNs)
- Some are new (GANs), and some are old (RL), but they are all very popular recently
 - However, many challenges remain to be addressed
 - These techniques are under intensive development

References:

- Chapters 17 and 18 of Aurélien Géron's book "Hands-On Machine Learning with SciKit-Learn, Keras & TensorFlow" (2019)
- Z. Wu et al. "A Comprehensive Survey on Graph Neural Networks", IEEE Transactions on Neural Networks and Learning Systems, 2020
- Jie Zhou et al. "Graph Neural Networks: A Review of Methods and Applications", arXiv, 2019

