Цель урока

Изучить продвинутые инструменты для работы с ненормальными распределениями и структурировать знания об изученных ранее критериях.

Задачи урока

- ✓ Рассмотреть метод «бакетинг»
- Рассмотреть метод «бутстрап»
- Разобрать, на каких распределениях данных лучше работает каждый критерий
- Узнать, какой объём данных подавать для критерия
- Понять, какая метрика подходит под критерий
- Сравнить критерии

Пример, когда предыдущие способы не помогают и только бакетинг и бутстрап спасают

Такое распределение не получится так просто привести к нормальному. Мы убедились в этом на прошлой практике.

Бакетинг

Допущения: независимые наблюдения между и внутри бакетов.

Ограничения:

- необходимо минимум 2 500 юзеров в каждой группе
- обязателен user_id

Бакетинг

- Рассчитываем метрику по пользователям
- Разбиваем случайно пользователей на бакеты
- Рассчитываем агрегированное значение метрики для каждой это новая метрика

Бакетинг

- Если новая метрика имеет
 ненормальное распределение
 в каждой из групп,
 то повторяем шаги 2–4
- 5 Сравниваем средние значения новой метрики по группам t-тестом

Бакетинг: сколько бакетов брать?

- Слишком мало бакетов плохо. Тест на нормальность будет с маленькой мощностью
- Слишком много бакетов плохо. Меньше шанс получить нормальное распределение

Но чем больше бакетов, тем меньше информации теряется!

Бакетинг: сколько бакетов брать?

Алгоритм выбора количества бакетов:

- Оздаём много выборок, между которыми:
 - не должно быть значимой разницы
 - должна быть значимая разница
- 2 Проводим тесты с разным количеством бакетов
- Измеряем точность для каждого количества бакетов
- Выбираем оптимальное количество бакетов

Бутстрап

Допущения: независимые наблюдения между и внутри групп.

Ограничения: менее надёжный при тяжёлых или длинных хвостах распределения.

Бутстрап

- Рассчитываем наблюдаемое различие между группами А и Б
- Преобразовываем значения метрик в группах так, чтобы у них было одинаковое среднее
- Создаём случайные выборки из преобразованных метрик

- Считаем метрикуна каждой выборке
- Строим распределение метрики после бутстрапа для каждой группы
- 6 Сравниваем распределения

Бутстрап: кейс

Есть результаты тестирования методом «бутстрап» при разных α для каждой из групп.

Группа А: интервал 95 %: [0.7; 0.75]

Группа Б: интервал 99 %: [0.71; 0.79]

Различие не значимо?

Бутстрап: кейс

Есть результаты тестирования методом «бутстрап» при разных α для каждой из групп.

Группа А: интервал 95 %: [0.7; 0.75]

Группа Б: интервал 99 %: [0.71; 0.79]

Различие не значимо?

Ответ: сравнивать интервалы, соответствующие разным α , нет смысла.

Бутстрап: кейс

Теперь берём одинаковые α. Из интервалов видно, что конверсия в тестовой группе всё-таки больше.

Группа А: интервал 95 %: [0.7; 0.75]

Группа Б: интервал 95 %: [0.74; 0.77]

Релизим фичу?

Бутстрап: кейс

Теперь берём одинаковые α. Из интервалов видно, что конверсия в тестовой группе всё-таки больше.

Группа А: интервал 95 %: [0.7; 0.75]

Группа Б: интервал 95 %: [0.74; 0.77]

Релизим фичу?

Ответ: нет. Результаты не значимые, так как есть пересечение.

Карта статистических тестов гипотез

Когда и какие методы используем?

Итоги урока

- Мы познакомились ещё с парой современных методов, хорошо показывающих себя в работе с нестандартными распределениями в данных
- Разобрали основной набор критериев
- У Обсудили область применения каждого из них