Chapter 9 Multicollinearity

남준우·허인 (2018), 제8장 Gujarati/Porter (2018), Chapter 10

- (1) Nature of Multicollinearity
- (2) Problems of Multicollineartiy
- (3) Detection of High Multicollinearity
- (4) Remedy of High Multicollinearity

► Related to ass. (d) No exact linear relationship among X variables.

(1) Nature of Multicollinearity

- ① <u>Perfect Collinearity</u>(완전공선성)
- There exists an exact linear relationship among all or several X's.
- ► There exists constants $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \neq 0$ such that $\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_k X_k = 0$ $(X_1 = 1)$.
 - $ightharpoonup \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \neq 0 \Leftrightarrow \text{Not all of them are zero simultaneously.}$

$$X_k = -\frac{1}{\lambda_k} (\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_{k-1} X_{k-1}) = a_1 X_1 + \dots + a_{k-1} X_{k-1}.$$

(Examples)

- (a) X_{2i} : annual income, X_{3i} : monthly income, $X_{2i} = 12X_{3i}$ for all i.
- (b) X_t : export, M_t :import, B_t : trade balance, $B_t = X_t M_t$ for all t.

② <u>High Multicollinearity</u>: Highly correlated but not perfectly.

 $X_{ki} = a_1 X_{1i} + \dots + a_{k-1} X_{k-1i} + v_i$, v_i : random error.

(Example)

<u> </u>		
X_2	X_3	X_3 *
10	50	52
15	75	75
18	90	97
24	120	129
30	150	152

$$\gamma_{23} = 1$$
, $\gamma_{23*} = 0.98$

(Examples)

- ① GDP vs. GNI
- ② 경상수지 vs. 무역수지
- ③ 근로소득 vs. 종합소득

(Notes)

- (a) If two variables move together in systematic way (GDP and GNP), we can not identify each variable's effect.
- (b) If two variables are highly correlated, then 'other variables are constant' are not well satisfied.

- (2) Problems of Multicollineartiy
- Perfect collinearity makes the coefficient indeterminate.

(Example)
$$y_i = b_1 + b_2 X_i + b_3 Z_i + e_i$$

$$b_2 = \frac{S_{Xy} S_Z^2 - S_{Zy} S_{XZ}}{S_X^2 S_Z^2 - S_{XZ}^2}. \quad \text{If } X_i = \lambda Z_i, \text{ then } b_2 = \frac{0}{0}.$$

(Example)
$$y_i = \beta_1 + \beta_2 X_i + \beta_3 Z_i + \varepsilon_i$$

If
$$X_i = \lambda Z_i$$
, then

$$y_i = \beta_1 + \beta_2 X_i + \beta_3 \lambda X_i + \varepsilon_i$$

= $\beta_1 + (\beta_2 + \beta_3 \lambda) X_i + \varepsilon_i$

So, LS of y on (1.X) yields $(\hat{\beta}_1, \widehat{\beta}_2 + \lambda \widehat{\beta}_3)$ not $(\hat{\beta}_1, \hat{\beta}_2)$.

2 Perfect collinearity makes the variance infinite.

(Example)
$$y_i = b_1 + b_2 X_i + b_3 Z_i + e_i$$

Since
$$V(b_2) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2 (1 - \gamma_{XZ}^2)}$$
, if $X_i = \lambda Z_i$, $(\gamma_{XZ}^2 = 1)$, $V(b_2) = \infty$.

- \bigcirc High multicollinearity \Rightarrow variance(or standard error) of the coefficient \uparrow
- Estimated coefficients are unstable to small changes in sample.
- High multicollinearity \Rightarrow t-ratio \downarrow , C.I. wider. \Rightarrow difficult to reject $H_0: \beta_i = 0$.
- ► In fact, X_j is an important variable($\beta_j \neq 0$), but high multicollinearity makes it as unimportant($\beta_j = 0$).

- 4 High R^2 , F-statistics but low t-ratio's.
- ► High multicollinearity do not provide enough information to estimate separate effects.
- ⑤ Accurate forecasting.

(3) <u>Detection of High Multicollinearity</u>

- ► The problem is the degree of multicollinearity not its existence.
- ① High R^2 but few significant t-ratio's.
- ② Pairwise correlation coefficients among X's.
- 3 R^2 from auxiliary regression: LS of X_i on other X's.
- $X_{ji} = a_1 + a_2 X_{2i} + \dots + a_{k-1} X_{ki} + v_i$, get R^2 .

- (4) Remedy of High Multicollinearity
- Drop one of the variables.
- 2) Transformation of the data.
- 3 Ridge regression
- 4 Principal component