CS-431 COMPUTER GRAPHICS

SINGLE LINE DRAWING

-AMAN RAJ (170101006)

MAYANK WADHWANI(170101038)

MOTIVATION

SNAPCHAT

SINGLE LINE

DRAWING

ARTISTIC STIPPLING

OUTLINE

- Convert an image into a single line drawing
- Two steps involved:
 - 1. Stippling
 - -> Replacing the image with tiny dots
 - 2. Line drawing
 - -> Connecting the dots obtained
 - -> Using straight lines
 - -> Using continuous bezier curves
 - -> Using piecewise bezier curves

Drawing

Drawing

STIPPLING

- IMPLEMENTED STIPPLING ON OUR OWN FROM SCRATCH
- REFERENCES -> WEIGHTED VORONOI STIPPLING
- https://www.cs.ubc.ca/labs/imager/tr/2002/s
 ecord2002b/secord.2002b.pdf

Weighted Voronoi Stippling

Adrian Secord*

Department of Computer Science

University of British Columbia, Vancouver, BC, Canada

Figure 1: Artist's posable figures with approximately 1000 stipples each

STIPPLING (CONT.)

(a) Voronoi diagram generated by the set of generators (large dots). Centroids of each Voronoi region are marked by the small dots.

(b) Centroidal Voronoi diagram

STIPPLING (CONT.)

$$\mathbf{C}_{i} = \frac{\int_{A} \mathbf{x} \rho(\mathbf{x}) dA}{\int_{A} \rho(\mathbf{x}) dA}$$

Algorithm 1 Lloyd's method

while generating points \mathbf{x}_i not converged to centroids do

Compute the Voronoi diagram of \mathbf{x}_i

Compute the centroids C_i using equation (1) Move each generating point x_i to its centroid C_i

end while

SOME NOTABLE OUTPUTS

• SHOW INITIAL OUTPUTS WITH 1000 STIPPLES WITH ZOOM.

SOME NOTABLE OUTPUTS (CONT.)

50000 stipples

10000 stipples

SOME NOTABLE OUTPUTS (CONT.)

THAT'S ALL FOR STIPPLING:)

LINE DRAWING

- Shape encoding technique
- Connecting dots obtained from stippling
- Used OpenGL in Python
- <u>Idea paper link</u> (Machine drawings)

PATH ALGORITHM

- Need a path/order to connect points
- Start with a random point
- Find k-nearest points
- Choose one out of them randomly and add it to the path
- Mark every visited/connected vertex
- Repeat
- Value of 'k'

TYPES OF LINE DRAWING

- Using straight lines
- Using continuous bezier curves
- Using piecewise bezier curves

STRAIGHT LINE DRAWING

- Connect adjacent points of path using straight lines
- Simply taking multiple points in between

STRAIGHT LINE DRAWING (CONT.)

CONTINUOUS BEZIER CURVES

- Used cubic bezier curves
- Used concept from Written Assignment
- At some point in path, next two control points are already determined
- p4 = 2 * p3 p2
- p5 = p1 + 4 * (p3 p2)

CONTINUOUS BEZIER CURVES

- ssues:
- High values of co-ordinates of control points
- Unnecessary long curves

CONTINUOUS BEZIER CURVES (CONT.)

Unsatisfactory results

PIECEWISE BEZIER CURVES

- Compromised a little with smoothness
- Multiple independent bezier curves
- Path points in groups of 4
- Missed points
- Missed continuity between multiple curves
- But, obtained a smooth looking result

PIECEWISE BEZIER CURVES (CONT.)

COMPARISION

Using Pyplot

```
_________ = modifier_ob.
mirror object to mirror
mirror_object
peration == "MIRROR_X":
mirror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
_operation == "MIRROR_Y"
__mod.use_x = False
"Irror_mod.use_y = True"
mirror_mod.use_z = False
 _operation == "MIRROR_Z":
 lrror_mod.use_x = False
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 election at the end -add
  ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modification
  irror ob.select = 0
  bpy.context.selected ob
  Mata.objects[one.name].sel
 int("please select exaction
  OPERATOR CLASSES ----
   vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
 Fror X"
 ext.active_object is not
```

CODE.!!

THANK YOU!

