COMP 301 Analysis of Algorithms, Fall 2022

Instructor: Zafer Aydın

HW 4

Submit your answers to Canvas for the problems given below.

1.

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	\boldsymbol{A}	\boldsymbol{B}	0	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}					
b .	n^k	c^n					
<i>c</i> .	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

- 2. Consider a modification to merge sort in which n/k sublists of length k are sorted using insertion sort and then merged using the standard merging mechanism (i.e. you only do insertion sort at one level of recursion tree), where k is a value to be determined.
- (a) Show that the insertion sort can sort the n/k sublists each of length k in $\Theta(nk)$ worst-case time.
- (b) Show that the n/k sublists can be merged in $\Theta(n \lg(n/k))$ worst-case time
- (c) Given that the modified algorithm runs in $\Theta(nk + n \lg(n/k))$ worst-case time, what is the largest value of k as a function of n and in Θ -notation for which the modified algorithm has the same running time as merge sort in Θ -notation?
- (d) How should we choose k in practice? Hint: consider the list lengths for which insertion sort is better than merge sort, which is a range of integers to choose from. Then consider which of these values is the best option to start with when combined with merge sort.
- 3. Show that if f(n) and g(n) are monotonically increasing functions, then so is the function f(g(n)), and if f(n) and g(n) are in addition nonnegative, then f(n)g(n) is monotonically increasing.