Math 401: Recitation Notes

Tim Farkas

Fall 2021

28 Sept 2021

Def'n: Let $x \in \mathbb{R}$, and $\epsilon > 0$. Then a neighborhood of x is the set $N(x, \epsilon) = \{y \in \mathbb{R} : |y - x| < \epsilon$.

Def'n: If $S \subseteq \mathbb{R}$, then $x \in \mathbb{R}$ is an interior point of S if $\exists \epsilon > 0$, s.t. $N(x, \epsilon) \subseteq S$. A boundary point of S is $\forall \epsilon > 0$: $N(x, \epsilon) \cap S \neq \text{AND } N(x, \epsilon) \cap S^c \neq \emptyset$.

Def'n: Let $S \subseteq \mathbb{R}$, then S is

emphclosed if $bd(S) \subseteq S$

emphopen if $\mathrm{bd}(S) \subseteq S^c$

Thm: Let $S \subseteq \mathbb{R}$, then

S is open iff S = int(S).

Example: Prove that if $A \subseteq \mathbb{R}$, then $int(A) \subseteq A$.

Proof: Let $x \in \text{int}(A)$. Implies $\exists \epsilon > 0$ s.t. $N(x, \epsilon) \subseteq A$. Then $x \in N(x, \epsilon) \subseteq A$, thus $x \in A$.

Example: Prove that if $A \subseteq B$, then $int(A) \subseteq int(B)$.

Proof: Let $x \in A$. Then $\exists \epsilon > 0$ s.t. $N(x, \epsilon) \in A$. But then $x \in N(x, \epsilon) \subseteq A \subseteq B$. Hence $x \in B$.

Example: If a < b, prove that (a, b) is an open set.

Proof. We show that (a, b) = int((a, b)).

To show that $\operatorname{int}(a,b) \subset (a,b)$, take $x \in \operatorname{int}(a,b)$. Then if $\epsilon < \min(|b-x|,|a-x|)$. For the other direction, take $x \in (a,b)$ with ϵ as above, then $N(x,\epsilon) \subseteq (a,b)$, so $x \in \operatorname{int}((a,b))$.

Example: If a < b, prove that [a, b] is a closed set.

We show that $\operatorname{bd}([a,b]) \subseteq S$.

 $[a,b]^c = (-\infty,a) \cup (b,\infty)$. Each of $(-\infty,a)$ and (b,∞) are open, so [a,b] is closed.

Defn: open cover Defn: finite subcover Defn: $S \in \mathbb{R}$ is called *compact* if for *every* open cover of S there exists some finite subcover. Defn: x is an *limit point* of S if for every $\epsilon > 0$, $N(x, \epsilon)$ contains a point from S different from x.

Example: Let

$$S = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$$

Is S bounded? Yes, at 0 and 1. Is S closed? No, since 0 is a boundary point of S, but $0 \notin S$. Is S compact? No, since no finite subcover of S if U is scaled neighborhood of each point in S.

Example: Let

$$\bar{S} = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\} \cup 0$$

Is \bar{S} bounded? Yes Is S closed? Yes! Because boundary 0 is in \bar{S} . The neighborhood approal now will achieve a finite subcover if you choose a neighborhood around 0, there is some finite number of other neighborhoods that will cover the rest of set.

Example: Let

$$S = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$$

Profve that 0 is a limit point of S.

WTS: $\forall \epsilon > 0$ the $N(0, \epsilon)$ contains at least one pt from S different.

Given $\epsilon > 0, \exists N \text{ s.t. } \frac{1}{N} < \epsilon.$ So $\forall \epsilon > 0, \exists N \text{ s.t. } (-1/N, 1/N) \subseteq (-\epsilon, \epsilon).$ If $n \geq N$ then $1/n \leq 1/N$.

Proof. Let $\epsilon > 0$, then $\exists N \in \mathbb{N}$ s.t. $1/N < \epsilon$. Therefore $(-1/N, 1/N) \subseteq N(0, \epsilon)$. Now, let $n \ge N$, then $1/n \in S$ and $1/n \le 1/N$. Therefore $1/n \in N(0, \epsilon)$.

5 Oct 2021

Def'n: A sequence is a fxn from \mathbb{N} to \mathbb{R} . Instead of saysing $f: \mathbb{N} \to \mathbb{R}$, we say $a_n = \dots$

Def'n: We say $\lim_{n\to\infty} a_n = L$ if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. if $n \geq N$, then $|a_n - L| < \epsilon$

Thm. Supose $a, b \in \mathbb{R}$. Then a = b iff $\forall \epsilon > 0, |a - b| < \epsilon$.

Proof: Suppose a=b, and let $\epsilon>0$. Then a-b=0. So $|a-b|=0<\epsilon$. Conversely, suppose $\forall \epsilon>0, \ |a-b|<\epsilon$. Then if a-b>0, then $\exists \epsilon$ s.t. $|a-b|\geq \epsilon$. Then if a-b<0, then $\exists \epsilon$ s.t. $|a-b|\geq \epsilon$.

Exercise: Suppose $a, b \in \mathbb{R}$. Prove that if $\forall \epsilon > 0, a \leq b + \epsilon$ then $a \leq b$.

Proof (by contrapositive): We show that a > b implies $\exists \epsilon > 0$ s.t. $a > b + \epsilon$.

If a>b, then a-b>0. Take $\epsilon=\frac{a-b}{2}$. Then $b+\epsilon=b+\frac{a-b}{2}$...

Exercise: Prove $\lim_{n\to\infty} \frac{1}{n} = 0$.

Proof: By Archimedian Property, $\exists N \in \mathbb{N} \text{ s.t. } \frac{1}{N} < \epsilon$. Then, if $n \geq N$ then $\frac{1}{n} \leq \frac{1}{N}$, and $\left|\frac{1}{n} - 0\right| = \left|\frac{1}{n}\right| \leq \frac{1}{N} < \epsilon$.

For proof by contradiction, negate definition of limit:

$$\exists \epsilon > 0, \forall N \in \mathbb{N}$$
we have $n \geq N$ and $|a_n - L| \geq \epsilon$

Exercise (Homework): Suppose $\lim a_n = L$. Define $b_n = a_{2n}$. Prove that $\lim b_n = L$.

Proof (by contradiction).

Suppose $\lim b_n \neq L$ and $\lim a_n = L$. Then $\exists \epsilon > 0$ s.t. $\forall N_1 \in \mathbb{N}$, if $n \geq N_1$ then $|b_n| \geq \epsilon$. But we also have $\exists N_2 \in \mathbb{N}$ s.t. if $n \geq N_2$ then $|a_n - L| < \epsilon$. Let $N* > \max\{N_1, N_2\}$ and suppose $n \geq N*$. Then 2n > n > N* and so $|a_{2n} - L| < \epsilon$, but this contradicts $|a_{2n} - L| = |b_n - L| < \epsilon$.

Alternate: Sine $\lim a_n = L$, we have $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if $n \geq N$ then $|a_n - L| < \epsilon$. Suppose $n \geq N$, then $2n \geq N$ and $|b_n - L| < \epsilon$. \square .

Exercise: Suppose $S \subseteq \mathbb{R}$ is non-empty and bounded above. Prove there is a sequence $\{a_n\}$ s.t. $\forall n \in \mathbb{N}$ we have $a_n \in S$ and $\lim a_n = \sup(S)$.

- 1. $\forall a \in S, a \leq \sup(S)$.
- 2. If $B < \sup(S)$, then B is not an upper bound, that is $\exists a \in S$ s.t. B < a.

For example, suppose $B = \sup(S) - \frac{1}{n}$. We know $\exists a_n \in S \text{ s.t. } \sup(S) - \frac{1}{n} < a_n \leq \sup(S)$. Since $\sup(S) + \frac{1}{n}$ is an upper bound. So $\sup(S) - \frac{1}{n} < a_n < \sup(S) + \frac{1}{n}$. Equivalently, $-\frac{1}{n} < a_n - \sup(S) < \frac{1}{n}$. Which is $|a_n - \sup(S)| < \frac{1}{n}$.

Formal proof:

Let $n \in \mathbb{N}$, then $\sup(S) - \frac{1}{n}$ is not an upper bound for S. Therefore, $\exists a_n \in S$ s.t. $\sup(S) - \frac{1}{n} < a_n$. But since $a_n \in S$, $a_n \leq \sup(S)$, and we always have $\sup(S) < \sup(S) + \frac{1}{n}$. Therefore, $|a_n - \sup(S)| < \frac{1}{n}$ for all $n \in \mathbb{N}$.

Now, let $\epsilon > 0$. Then by Achimedean Property, $\exists N \in \mathbb{N}$ s.t. $\frac{1}{N} < \epsilon$. So let $n \geq N$, then $|a_n - \sup(S)| < \frac{1}{n} \leq \frac{1}{N} < \epsilon$. \square .

12 Oct 2021

Defn: A sequence (a_n) converges to L if $\forall \epsilon, \exists N \in \mathbb{N}, \text{ s.t. } \forall n \in \mathbb{N}, n > N \Rightarrow |a_n - L| < \epsilon$.

Defn: A sequence (a_n) is Cauchy if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n, m \in \mathbb{N}$, $m, n \geq N \Rightarrow |a_m - a_n| < \epsilon$.

Thm. A sequence converges iff it is Cauchy.

Corrolary: A sequence is not Cauchy if $\exists \epsilon > 0$ s.t. $\forall N \in \mathbb{N}, \exists m, n \in \mathbb{N}, m, n \geq N \Rightarrow |a_m - a_n| \geq \epsilon$.

Example: Let $a_n = sin(\frac{n\pi}{2})$, prove that (a_n) does not converge. $(a_n) = \{1, 0, -1, 0, 1...\}$. So even terms are 0, and odd terms alternate between -1 and 1.

Take $\epsilon = \frac{1}{2}$ and $N \in \mathbb{N}$. Then $2N + 1, 2N \ge N$ and $\sin\left(2N\frac{\pi}{2}\right) = 0$ and $\sin\left((2N+1)\frac{\pi}{2}\right)$ is 1 or -1. In either case $|a_{2N+1} - a_{2N}| = 1 \ge \frac{1}{2} = \epsilon$, so (a_n) is not Cauchy.

Example: Let $a_n = 1 + (-1)^n$. Prove (a_n) is not Cauchy.

Let $\epsilon = 1$ and $N \in \mathbb{N}$. Then $2N, 2N + 1 \ge N$, and $1 + (-1)^{2N} = 2$ and $1 + (-1)^{2N+1} = 0$. Then $|a_{2N} - a_{2N+1}| = 2 > 1 = \epsilon$. Hence, (a_n) is not Cauchy.

Thm. If a sequence converges, then it is bounded.

Thm. If a sequence is bounded and monotone, then it converges.

Example: Let $a_1 = 2$ and $a_{n+1} = \frac{1}{5}(a_n + 7)$. Show (a_n) converges with the bounded monotone theorem.

Scratch: $a_n = \{2, 9/2...\}$. Solve for limit: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{L+7}{5} \Rightarrow L = \frac{7}{2} < 2$.

Proof. $a_1 \leq 2$. Assume $a_k \leq 2$ for some k > 1. Then $a_{k+1} = \frac{a_k+7}{5} \leq \frac{9}{5} \leq 2$. So $a_n \leq 2$ by induction.

Next, see that $a_1 = 2 > a_2 = \frac{9}{5}$. Now suppose $a_k > a_{k+1}$. Then $a_{k+1} = \frac{a_{k+7}}{5} \ge \frac{a_{k+1}+7}{5} = a_{k+2}$, hence (a_n) is monotone decreasing.

Example: Let $a_1 = 5$ and $a_{n+1} = \sqrt{4a_n + 1}$. Prove a_n converges.

HW Problem 4: $a_1 = 1$ and

$$a_n = \begin{cases} \sqrt{a_{n-1}} & \text{for } n \text{ odd} \\ a_{n-1} + 1 & \text{for } n \text{ even} \end{cases}$$

Show bounded: Let $b_n = a_{2n-1}$, then $b_1 = a_1 = 1$, and $b_n = a_{2n-1}$, and $b_{n+1} = ... = \sqrt{b_n + 1}$.

Use induction to show that both subsequences are bounded and monotone. also show for $c_n = a_{2n} = a_{2n-1} + 1 = b_n + 1$. Since $0 \le b_n \le 2$, we have $1 \le c_n \le 3$. So $0 \le a_n \le 3$.

26 Oct 2021

Defn: Let $D \subseteq R$, $c \in D$, and $f: D \to \mathbb{R}$. Then f is continuous at c if $\forall \epsilon > 0$, $\exists \delta > 0$, s.t. $\forall x \in \mathbb{R}$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \epsilon$.

Ex. Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Prove that f is continuous at c = 2.

Let ϵ be arbitrary, and find δ such that $|x-c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.

If
$$|x-2| < 1$$
 then $|x-2+2+2| \le |x-2| + |2+2| \le 1+4 = 5$.

So PF

Let $\epsilon > 0$ and $\delta = \min\{1, \epsilon/5\}$. Then if $|x - 2| < \delta$, then $|x + 2| \le |x - 2| + |2 + 2| = 5$, and $|f(x) - f(2)| = |x - 2| |x + 2| \le 5\delta < \epsilon$.

Ex. Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$. Prove that f is continuous at c = 2.