Inverse Numerator Relationship Matrix

Peter von Rohr

16 November 2018

Structure of A^{-1}

▶ Look at a simple example of A and A^{-1}

Table 1: Pedigree Used To Compute Inverse Numerator Relationship Matrix

Calf	Sire	Dam
1	NA	NA
2	NA	NA
3	NA	NA
4	1	2
5	3	2

Numerator Relationship Matrix A

$$A = \begin{bmatrix} 1.0000 & 0.0000 & 0.0000 & 0.5000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 & 0.5000 & 0.5000 \\ 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.5000 \\ 0.5000 & 0.5000 & 0.0000 & 1.0000 & 0.2500 \\ 0.0000 & 0.5000 & 0.5000 & 0.2500 & 1.0000 \end{bmatrix}$$
(1)

Inverse Numerator Relationship Matrix A^{-1}

$$A^{-1} = \begin{bmatrix} 1.5000 & 0.5000 & 0.0000 & -1.0000 & 0.0000 \\ 0.5000 & 2.0000 & 0.5000 & -1.0000 & -1.0000 \\ 0.0000 & 0.5000 & 1.5000 & 0.0000 & -1.0000 \\ -1.0000 & -1.0000 & 0.0000 & 2.0000 & 0.0000 \\ 0.0000 & -1.0000 & -1.0000 & 0.0000 & 2.0000 \end{bmatrix}$$

Conclusions

- $ightharpoonup A^{-1}$ has simpler structure than A itself
- Non-zero elements only at positions of parent-progeny and parent-mate positions
- ▶ Parent-mate positions are positive, parent-progeny are negative

Henderson's Rules

▶ Based on LDL-decomposition of *A*

$$A = L * D * L^T$$

where L Lower triangular matrix D Diagonal matrix

- ► Why?
 - ▶ matrices *L* and *D* can be inverted directly, we 'll see how . . .
 - construct $A^{-1} = (L^T)^{-1} * D^{-1} * L^{-1}$

Example

$$L = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.5 & 0.5 & 0.0 & 1.0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \end{bmatrix}$$

 \rightarrow Verify that $A = L * D * L^T$

Decomposition of True Breeding Value

▶ True breeding value (a_i) of animal i

$$a_i = \frac{1}{2}a_s + \frac{1}{2}a_d + m_i$$

Do that for all animals in pedigree

Decomposition for Example

$$a_{1} = m_{1}$$

$$a_{2} = m_{2}$$

$$a_{3} = m_{3}$$

$$a_{4} = \frac{1}{2}a_{1} + \frac{1}{2}a_{2} + m_{4}$$

$$a_{5} = \frac{1}{2}a_{3} + \frac{1}{2}a_{2} + m_{5}$$

Matrix Vector Notation

- Define vectors a and m as
- Coefficients of a_s and a_d into matrix P

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}, m = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \end{bmatrix}, P = \begin{bmatrix} 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.5 & 0.0 & 0.0 \end{bmatrix}$$

Result: Decomposition of true breeding values

$$a = P \cdot a + m$$

Decomposition of Variance

▶ Analogous decomposition of $var(a_i)$

$$var(a_i) = var(1/2a_s + 1/2a_d + m_i)$$

= $var(1/2a_s) + var(1/2a_d) + \frac{1}{2} * cov(a_s, a_d) + var(m_i)$
= $1/4var(a_s) + 1/4var(a_d) + \frac{1}{2} * cov(a_s, a_d) + var(m_i)$

From the definition of A

$$var(a_i) = (1 + F_i)\sigma_a^2$$

 $var(a_s) = (1 + F_s)\sigma_a^2$
 $var(a_d) = (1 + F_d)\sigma_a^2$
 $cov(a_s, a_d) = (A)_{sd}\sigma_a^2 = 2F_i\sigma_a^2$

Variance of Mendelian Sampling Terms

- \blacktriangleright What is $var(m_i)$?
- ▶ Solve equation for $var(a_i)$ for $var(m_i)$

$$var(m_i) = var(a_i) - 1/4var(a_s) - 1/4var(a_d) - 2 * cov(a_s, a_d)$$

▶ Insert definitions from *A*

$$var(m_i) = (1 + F_i)\sigma_a^2 - 1/4(1 + F_s)\sigma_a^2 - 1/4(1 + F_d)\sigma_a^2 - \frac{1}{2} * 2 * F_i\sigma_a^2$$
$$= \left(\frac{1}{2} - \frac{1}{4}(F_s + F_d)\right)\sigma_a^2$$

► True, for both parents *s* and *d* of animal *i* are known

Unknown Parents

Only parent s of animal i is known

$$egin{aligned} a_i &= rac{1}{2} a_s + m_i \ var(m_i) &= \left(1 - rac{1}{4} (1 + F_s)
ight) \sigma_a^2 \ &= \left(rac{3}{4} - rac{1}{4} F_s
ight) \sigma_a^2 \end{aligned}$$

Both parents are unknown

$$a_i = m_i$$
 $var(m_i) = \sigma_a^2$

Recursive Decomposition

ightharpoonup True breeding values of s and d can be decomposed into

$$a_{s} = \frac{1}{2}a_{ss} + \frac{1}{2}a_{ds} + m_{s}$$

$$a_{d} = \frac{1}{2}a_{sd} + \frac{1}{2}a_{dd} + m_{d}$$

where ss sire of s ds dam of s sd sire of d dd dam of d

Example

▶ Add animal 6 with parents 4 and 5 to our example pedigree

Calf	Sire	Dam
1	NA	NA
2	NA	NA
3	NA	NA
4	1	2
5	3	2
6	4	5

First Step Of Decomposition

$$a_{1} = m_{1}$$

$$a_{2} = m_{2}$$

$$a_{3} = m_{3}$$

$$a_{4} = \frac{1}{2}a_{1} + \frac{1}{2}a_{2} + m_{4}$$

$$a_{5} = \frac{1}{2}a_{3} + \frac{1}{2}a_{2} + m_{5}$$

$$a_{6} = \frac{1}{2}a_{4} + \frac{1}{2}a_{5} + m_{6}$$

Decompose Parents

$$a_{1} = m_{1}$$

$$a_{2} = m_{2}$$

$$a_{3} = m_{3}$$

$$a_{4} = \frac{1}{2}m_{1} + \frac{1}{2}m_{2} + m_{4}$$

$$a_{5} = \frac{1}{2}m_{3} + \frac{1}{2}m_{2} + m_{5}$$

$$a_{6} = \frac{1}{2}\left(\frac{1}{2}(a_{1} + a_{2}) + m_{4}\right) + \frac{1}{2}\left(\frac{1}{2}(a_{3} + a_{2}) + m_{5}\right) + m_{6}$$

$$= \frac{1}{4}(a_{1} + a_{2}) + \frac{1}{2}m_{4} + \frac{1}{4}(a_{3} + a_{2}) + \frac{1}{2}m_{5} + m_{6}$$

Decompose Grand Parents

Only animal 6 has true breeding values for grand parents

$$a_6 = \frac{1}{4}(a_1 + a_2) + \frac{1}{2}m_4 + \frac{1}{4}(a_3 + a_2) + \frac{1}{2}m_5 + m_6$$

$$= \frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{1}{4}m_3 + \frac{1}{4}m_2 + \frac{1}{2}m_4 + \frac{1}{2}m_5 + m_6$$

$$= \frac{1}{4}m_1 + \frac{1}{2}m_2 + \frac{1}{4}m_3 + \frac{1}{2}m_4 + \frac{1}{2}m_5 + m_6$$

Summary

$$a_{1} = m_{1}$$

$$a_{2} = m_{2}$$

$$a_{3} = m_{3}$$

$$a_{4} = \frac{1}{2}m_{1} + \frac{1}{2}m_{2} + m_{4}$$

$$a_{5} = \frac{1}{2}m_{3} + \frac{1}{2}m_{2} + m_{5}$$

$$a_{6} = \frac{1}{4}m_{1} + \frac{1}{2}m_{2} + \frac{1}{4}m_{3} + \frac{1}{2}m_{4} + \frac{1}{2}m_{5} + m_{6}$$

Matrix-Vector Notation

▶ Use vectors a and m again

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix}, \ m = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \end{bmatrix}, \ L = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 \\ 0.50 & 0.50 & 0.50 & 0.00 & 1.00 & 0.00 \\ 0.00 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 & 0.50 \\ 0.25 & 0.50 & 0.25 & 0.50 & 0.50 & 0.50 & 1.00 \end{bmatrix}$$

Result of recursive decomposition of a_i

$$a = L \cdot m$$

Variance From Recursive Decomposition

$$var(a) = var(L \cdot m)$$

= $L \cdot var(m) \cdot L^{T}$

where var(m) is the variance-covariance matrix of all components in vector m.

- ▶ covariances of components m_i , $cov(m_i, m_i) = 0$ for $i \neq j$
- var(m_i) computed as shown before

Result

• variance-covariance matrix var(m) can be written as $D*\sigma_a^2$ where D is diagnoal

$$\rightarrow A = L \cdot D \cdot L^T$$