Рассмотрим шарик, изготовленный из эластичной пленки. Пусть при недеформированной пленке радиус шарика равен r_0 . Тогда на длину

«экватора» приходится $n = \frac{2\pi r_0}{a}$ упругих пружинок, натяжения которых будут уравновешивать силы давления воздуха. При радиусе шарика r суммарная сила давления воздуха на полусферу

$$F = P\pi r^2 \tag{2}$$

будет уравновешена силами упругости

$$nk\Delta x = \frac{2\pi r_0}{a} k(\frac{r}{r_0} a - a) = 2\pi k(r - r_0),$$
 (3)

где учтено, что удлинение каждой пружинки может быть найдено из подобия $\Delta x = \frac{r}{r_0} a - a$.

Приравнивая эти силы, находим равновесное значение давления газа

$$P = 2k \frac{r - r_0}{r^2}. (4)$$

Возможен и другой подход к вычислению давления. При увеличении радиуса шара на малую величину Δr , газ совершит работу

$$A = P\Delta V = P4\pi r^2 \Delta r. (5)$$

Эта работа пойдет на увеличение потенциальной энергии пленки $\Delta U = U(r + \Delta r) - U(r)$. Воспользуемся формулой (1) для вычисления этой величины

$$\Delta U = k \cdot 4\pi \cdot 2(r - r_0) \Delta r, \qquad (6)$$

при выводе которой учтено, что площадь поверхности сферы $S = 4\pi r^2$. Приравняв выражения (5) и (6), получаем прежний результат (4).

10.5 Так как в процессе движения капли на нее действует сила вязкого трения, а масса капли мала, то можно считать движение капли равномерным. Скорость такого движения v_{θ} можно определить из условия равенства модулей силы тяжести и силы сопротивления

$$mg = \beta v_0, \qquad (1)$$

где β - некоторый постоянный для данной капли коэффициент. При движении капли вверх справедливо соотношение

$$q\frac{U_0}{h} - mg = \beta v_I. (2)$$

Исключая из этих уравнений неизвестный коэффициент β , получаем формулу для определения заряда капли

$$q = \frac{mgh}{U_0} \cdot (1 + \frac{v_1}{v_0}), \tag{3}$$

где $m = \frac{4}{3}\pi r^3 \rho$ - масса капли.

Для удобства дальнейших рассчетов, подставим численные значения постоянных величин, причем запишем $r=r_0\cdot 10^{-6}$, где r_0 - значение радиуса капли в микронах; $U_0=u_0\cdot 10^3$, где u_0 - значение напряжения в киловольтах. Так как в формулу (3) входит отношение скоростей, то нет необходимости переводить их размерности в систему единиц СИ. Таким образом получим рассчетную формулу

$$q = 0.747 \cdot 10^{-19} \cdot r_0^3 \left(1 + \frac{v_I}{v_0} \right). \tag{4}$$

Результаты расчетов представим в Таблице 2, дополнив ее необходимыми столбцами.

Таблина 2.

No	r, мкм	мм	U_{o} , κB	мм	q,	n	e,
		v_0 , \overline{c}		$v_1, \frac{c}{c}$	10 ⁻¹⁹ Кл		10^{-19}Кл
1	2	3	4	5	6	7	8
1	1,3	0,19	5,0	0,18	3,20	2	1,60
2	1,7	0,32	5,0	0,51	9,52	6	1,59
3	1,7	0.32	5,0	0,24	6,42	4	1,61
4	1,2	0,16	5,0	0,23	3,15	2	1,57
5	1,4	0,22	5,0	0,29	4,75	3	1,58
6	2,0	0,44	5,0	0,39	11,27	7	1,61
7	1,6	0,28	5,0	0,46	8,09	5	1,62
8	1,5	0,25	5,0	0,38	6,35	4	1,59
9	2,2	0,53	5,0	0,22	11,26	7	1,61
10	1,4	0,22	5,0	0,63	7,92	5	1,58

Можно заметить, что рассчитанные значения зарядов, приведенные в столбце 6, приблизительно кратны величине 1,6. Разделим величины зарядов на 1,6 и округлим полученное значение до целого числа n, равного числу избыточных электронов на капле (столбец 7). Затем разделим величину заряда капли на количество избыточных электронов и получим значение заряда электрона

(столбец 8). Далее необходимо традиционным образом провести усреднее полученных значений и оценку погрешности.

$$\overline{e} = \frac{\sum_{k} e_k}{n} \approx 1,60$$
, $\Delta e = 2\sqrt{\frac{\sum_{k} (e_k - \overline{e})^2}{n(n-1)}} \approx 0,01$.

Таким образом, полученное значение заряда электрона

$$e = (1.60 \pm 0.01) \cdot 10^{-19} \, \text{K}_{\text{A}}$$
.

Заметим, что в своих опытаз Р.Милликен получен несколько заниженное значение величины заряда электрона.