Homework #6 of「類比積體電路導論」

作業繳交截止日期: Nov. 28, 2024 12:00 (上傳 E3 數位平台繳交)

本次作業共三大題, 6.1~6.3

請將作業轉成一個 PDF 檔案(file size 小於 10MB),檔名請使用「AIC_HW6_自己的學號」(例如: AIC_HW6_109700018),於作業繳交截止日期/時間前,上傳到指定的 E3 數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that $V_{DD}=3V$. The Dielectric constant of gate oxide is 3.9 and $E_0=8.854\times 10^{-12} F/m$.

NMOS Model			
LEVEL = 1 NSUB = 9e+14	VTO = 0.7 LD = 0.08e - 6	GAMMA = 0.45 $UO = 350$	PHI = 0.9 $LAMBDA = 0.1$
TOX = 9e - 9	PB = 0.06e - 6	CJ = 0.56e - 3	CJSW = 0.35e - 11
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e - 8
PMOS Model			
LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e + 14	LD = 0.09e - 6	UO = 100	LAMBDA = 0.2
TOX = 9e-9 MJ = 0.5	PB = 0.9 MJSW = 0.3	CJ = 0.94e - 3 CGDO = 0.3e - 9	CJSW = 0.32e-11 JS = 0.5e-8
1410 — 0.0	1110011 — 0.0	0.00 0	00 - 0.00

VTO: threshold voltage with zero V_{SB} (unit: V) GAMMA: body-effect coefficient (unit: V^{1/2})

PHI: $2\Phi_F$ (unit: V)

TOX: gate-oxide thickness (unit: m) NSUB: substrate doping (unit: cm⁻³) LD: source/drain side diffusion (unit: m) UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V^{-1})

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²) CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

6.1 Using feedback techniques, calculate the input and output impedances of each circuit at relatively low frequencies in Fig 1. Neglecting channel length modulation.

Fig. 1

- 6.2 In the circuit of Fig. 2, $(W/L)_{1-3} = 50/0.5$, $I_{D1} = |I_{D2}| = |I_{D3}| = 0.5$ mA, and $R_{S1} = R_F = R_{D2} = 2$ k Ω . Neglecting channel length modulation of M1 and if $\gamma = 0$.
 - (a) Determine the input bias voltage required to establish the above currents.
 - (b) Calculate the closed-loop voltage gain and output resistance.

Fig. 2

6.3 In the circuit of Fig. 3, assume that $\lambda=0$, $g_{m1,2}=10$ mS, $R_{1\text{-}3}=3$ k Ω , and $C_1=100$ pF. Neglecting channel length modulation and other capacitances, estimate the closed-loop voltage gain at very low and very high frequencies.

Fig. 3