- 1. Draw the skeletal structures for each of the following:
 - a) 2-chloro-3-hexyne

b) 2,4,5-triethyl-1-octyne

c) Cyclobutyne

- 2. Name the following:
- PC: BUT anel sub: 3- yne

d.
$$HOCH_2CH_2C \equiv CH$$
 $3 - \beta v + \gamma n - [-0]$

P. 6

- e. CH3CH=CHCH=CHCH=CH2 7 6 5 4 3 2 1 1,3,5-Hertatione
- f. CH3CH=CCH2CHCH2OH 2, 4-d: metny(-4-Hexen-1-ol

3. Name the following:

4. Why does 1-pentyne have a higher boiling point than 1-pentene?

5. What ketones are formed from the acid-catalyzed hydration of 3-heptyne?

Hio , + H, 0 : ō-)†

6. Knowing this:

relative stabilities of carbocations

What is the major product of the following reactions?

a.
$$HC \equiv CCH_3 \xrightarrow{HBr}$$

d.
$$HC = CCH_3$$
 excess Br_2

e.
$$CH_3C = CCH_3$$
 \xrightarrow{excess} \xrightarrow{HBr}

c.
$$CH_3C \equiv CCH_3$$
 $\xrightarrow{Br_2}$ CH_3Cl_2

DHC=CCH₃
$$\frac{ex. BV_2}{cH_2cl_2}$$
 HCCCH₃

BY BY

BY BY

CH₃C = CCH₃ $\frac{ex. HBV}{cH_2cl_2}$ CH₃ CCCH₃

BY BY

CH₃C = CCH₃ $\frac{ex. HBV}{cH_2cl_2}$ CH₃ CCCH₃

BY BY

CH₃C = CCH₃ $\frac{ex. HBV}{cH_2cl_3}$ CH₃C CCCH₃

CH₃C = CCH₂CH₃ $\frac{ex. HBV}{cH_3cl_3}$ CH₃C CCCH₃

CH₃C = CCH₃ $\frac{ex. HBV}{cH_2cl_3}$ AND

CH₃C = CCH₃ $\frac{ex. HBV}{cH_2cl_3}$ AND

7. What are the products of the following reactions?

a.
$$\longrightarrow$$
 + H₂ $\stackrel{\text{Pd/C}}{\longrightarrow}$

$$\frac{1. R_2BH/THF}{2. HO^-, H_2O_2, H_2O}$$

$$-H_2 \xrightarrow{\text{Lindlar} \atop \text{catalyst}}$$

c.
$$=$$
 $\frac{N}{NH_3}$

An J

$$\bigwedge_{0}$$