

MAT3007 · Homework 5

Due: 12:00 (noon, not midnight), March 22

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must submit your assignment in Blackboard.
- The homework must be written in English.
- Late submission will not be graded.
- Each student **must not copy** homework solutions from another student or from any other source.

Problem 1 (50pts). Consider the following linear program:

maximize
$$3x_1 + 4x_2 + 3x_3 + 6x_4$$

subject to $2x_1 + x_2 - x_3 + x_4 \ge 12$
 $x_1 + x_2 + x_3 + x_4 = 8$
 $-x_2 + 2x_3 + x_4 \le 10$
 $x_1, x_2, x_3, x_4 \ge 0$. (1)

After transforming the problem into standard form and apply Simplex method, we obtain the final tableau as follow:

В	0	2	9	0	3	0	36
1	1	0	-2	0	-1	0	4
4	0	1	3	1	1	0	4
6	0	$0 \\ 1 \\ -2$	-1	0	-1	1	6

- a) Derive the dual problem of the linear program (1) and calculate a dual solution based on complementarity conditions. Given that the optimal solution to the primal solution is unique, investigate whether the dual solution is unique.
- b) Do the optimal primal solution and the objective function value change if we
 - decrease the objective function coefficient for x_3 to 1?
 - increase the objective function coefficient for x_3 to 12?
 - decrease the objective function coefficient for x_1 to 1?
 - increase the objective function coefficient for x_1 to 7?
- e) Find the possible range for adjusting the coefficient 8 of the second constraint such that the current basis is kept optimal.

Problem 2 (50pts).

Consider the following linear program:

Denote $x = (x_1, x_2, x_3, x_4, s_1, s_2)$ as the decision variable to the standard form of the above problem, where s_1, s_2 are the slack variables corresponding to the second and third constraints. The following table gives the final simplex tableau when solving the standard form of the above problem:

В	1	0	$\frac{7}{2}$	0	0	$\frac{1}{2}$	$-\frac{3}{2}$
2	1	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	
4	-1	0	-2	1	0	-1	1
5	1	0	-1	0	1	-1	3

- a) In what range can we change the first objective coefficient $c_1 = 1$ so that the current optimal basis still remains optimal? If we change $c_1 = 1$ to $c_1 = 100$, what will be the new primal optimal solution and optimal value?
- b) In what range can we change the second objective coefficient $c_2 = 1$ so that the current optimal basis still remains optimal?
- c) In what range can we change the coefficient of the third constraint $b_3 = 1$ (the one appearing in the constraint $-x_1 2x_3 + x_4 \ge 1$) so that the current optimal basis still remains optimal?
- d) What will be the new optimal primal and dual solutions when we change $b_3 = 1$ to $b_3 = \frac{3}{2}$?