Network Models

Ufuk Bahçeci

v0.23.10.01

1/87

Network Models

MIT License

Copyright (c) 2023 Ufuk Bahçeci

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2/87

Network Models

Author

 Ufuk Bahçeci, Ph. D. (Industrial Engineering, University of Galatasaray)

3/87

Table of Contents

Introduction

② Graph Terminology

4/87

Definition

Graph

Given a list of locations, a graph is a structured representation of the locations and the relationships between them.

5/87

Network Flow

Definition

Network flow

Network flow is the sending of a certain amount of assets from one location to another on the graph.

6/87

Mathematical Programming

Definition

Mathematical programming

Mathematical programming is the optimization of problems formulated as minimization (or maximization) of an objective function subject to a set of constraints.

Combinatorial Optimization

Definition

Combinatorial optimization

Combinatorial optimization is a class of mathematical programming, where optimization is performed over a discrete set of feasible solutions.

8 / 87

Network Flow Problem

Definition

Network flow problem

Network flow problems are mathematical programming problems that can be converted into combinatorial optimization problems dealing with network flows.

9/87

Mathematical Optimization

Mathematical Optimization

- Linear programming
 - Simplex algorithm
 - Duality
- Decomposition methods
 - Dantzig-Wolfe (complicating constraints, column(extreme point) generation, duality gap between upper and lower bounds)
 - Benders (complicating variables, cut generation, duality gap between upper and lower bounds)
- Mixed-integer programming
 - Branch-and-bound (BaB)
 - ightharpoonup BaB + Cutting planes = Branch-and-cut
 - ► BaB + Column(variable for pricing, extreme point for decomposition) generation = Branch-and-price
 - ightharpoonup BaB + Cutting planes + Column generation = Branch-price-and-cut

Mathematical Optimization

Mathematical Optimization

- Constraint programming
 - Constraint propagation
 - Domain reduction
- Combinatorial optimization
 - Some problems are easy to solve
 - ★ Special fast algorithms
 - Some problems are hard to solve
 - ★ Mixed-integer programming
 - Heuristics

11/87

Motivations

Network Flow Problems

- Network flow problems
 - Combinatorial optimization
 - Wide application area in Operations Research
 - Special fast algorithms suitable for large problem instances
 - Network flow problem as an embedded subproblem

 Ufuk Bahçeci
 Network Models
 v0.23.10.01
 12 / 87

Graph Definition

Graph [1]

A graph G(V, E) consists of a set of vertices V and edges E. Edges are used to model the relationship between vertices.

Graph Definition

Graph [2]

A graph G(N, A) consists of a set of nodes N and arcs A. Arcs are used to model the relationship between nodes.

 Ufuk Bahçeci
 Network Models
 v0.23.10.01
 14 / 87

Definition

Subgraph

A graph G'(V', E') is a subgraph of G(V, E) if $V' \subset V$ and $E' \subset E$.

15/87

Example

The Euler's problem

 Is it possible to start from a vertex, move along all edges, traversing every edge only once, and finally return to the starting vertex?

17 / 87

Example

The Hamilton's problem

 Is it possible to start from a vertex, visit each of all vertices exactly once, and finally return to the starting vertex?

19/87

Directed edges, multiple edges and loops

- E_1 and E_2 are multiple edges
- E₃ is a loop
- E_4 is a directed edge
- $V_2(\text{tail})$ and $V_3(\text{head})$ are the endpoints of the edge(arc) E_4 .

Ufuk Bahceci Network Models v0.23.10.01

20 / 87

Graph types [1]

Туре	Edges	Multiple edges	Loops
Simple graph	Undirected	×	X
Multigraph	Undirected	✓	X
Pseudograph	Undirected	✓	/
Simple directed graph	Directed	×	X
Directed multigraph	Directed	✓	/
Mixed graph	Directed and undirected	✓	/

A multigraph

Definitions

Complete graph [1]

Complete graph is a simple graph where each pairs of distinct vertices are connected.

23 / 87

A complete graph

Definitions

Bipartite simple graph [1]

A simple graph G(V, E) is bipartite if $\exists V_1, V_2 : V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$ such that every edge in E connects a vertex in V_1 to a vertex in V_2 .

25 / 87

Ufuk Bahçeci Network Models

A bipartite simple graph

Graph Definitions

Matching [1]

A matching M in a simple graph G(V, E) is a subset of E, i.e. $M \subseteq E$ such that $\forall m, m' \in M$, all the endpoints of m and m' are distinct vertices.

Maximal matching

The maximal matching of G is the matching with the largest |M|.

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

27 / 87

A simple graph

28 / 87

A maximal matching

Another maximal matching

Definitions

Adjacent vertices in an undirected graph

Two vertices are adjacent in an undirected graph G if they are endpoints of an edge in G.

31/87

Definitions

Adjacent vertices in a directed graph

In a directed graph G, the vertex v_1 is adjacent to the vertex v_2 if they are endpoints of a directed edge $E(v_1, v_2)$ in G.

32 / 87

Graph Definitions

An edge of an undirected graph G is incident with the vertices that are endpoints of this edge.

33 / 87

Graph Definitions

Degree of a vertex in an undirected graph [1]

The degree of a vertex v in an undirected graph G, deg(v) is equal to the number of edges incident with the vertex v, where a loop is equivalent to two edges.

(ㅁㅏㅓ큠ㅏㅓㅌㅏㅓㅌㅏ - ㅌ - 쒸٩)

34 / 87

Definitions

Given an undirected graph G(V, E)

$$\sum_{v \in V} deg(v) = 2|E|$$

35 / 87

Definitions

Degree of a vertex in a directed graph [1]

The indegree(outdegree) of a vertex v in a directed graph G, $deg^-(v)(deg^+(v))$ is equal to the number of edges with v as their terminal(initial) vertex.

36 / 87

Definitions

Given a directed graph G(V, E)

$$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = |E|$$

A mixed graph

Adjacency matrix

	v_1	v_2	v 3	v_4
V_1	0	2	0	1
V_2	2	0	2	1
V_3	0	2	0	1
V_4	0	1	0	1

Jfuk Bahçeci Network Models v0.23.10.01 39/87

A pseudograph

Incidence matrix

	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E_8
V_1	1	1	0	0	0	1	0	0
V_2	1	1	1	1	1	0	0	0
V_3	0	0	1	1	0	0	1	0
V_4	0	0	0	0	1	1	1	1

Graph Definitions

Isomorphism of graphs [1]

Two simple graphs G(V, E) and G'(V', E') are isomorphic if and only if there exists a permutation of V', denoted as V'^p , leading to $G'^p(V'^p, E')$, where G and G'^p have the same adjacency matrix.

| ロト 4 🗗 ト 4 분 ト 4 분 ト 9 오 연

42 / 87

Graph G(V, E)

Graph G'(V', E')

Definitions

Walk [2]

A walk is a series of vertices that are connected to each other by means of edges.

45 / 87

Definitions

Simple walk (trail) [1]

A simple walk (trail) is a walk that does not contain the same edge more than once.

46 / 87

Definitions

Directed walk [2]

A directed walk is a series of vertices that are connected to each other by means of edges in a way that respects the edge directions.

47 / 87

Definitions

Path [2], [1]

A path is a walk that visits each vertex in the walk only once. A path is also a trail.

48 / 87

Definitions

Directed path [2]

A directed path is a directed walk that visits each vertex in the directed walk only once.

49 / 87

Graph Definitions

Circuit [2], [1]

A circuit(closed walk) is a walk of length strictly positive that starts and ends at the same vertex. A simple circuit does not contain the same edge more than once.

50 / 87

Definitions

Cycle [2]

A cycle is a closed path.

51/87

Graph Definitions

Directed circuit

A directed circuit (closed directed walk) is a directed walk of length strictly positive that starts and ends at the same vertex. A simple directed circuit does not contain the same edge more than once.

52 / 87

Definitions

Directed cycle [2]

A directed cycle is a directed closed path.

53/87

Definitions

Connected [1]

An undirected graph G(V, E) is connected when a walk exists between each pair of vertices $v, v' \in V^2$ and $v \neq v'$.

54 / 87

Definitions

Connected [1]

An directed graph G(V, E) is strongly connected when a directed walk exists between each pair of vertices $v, v' \in V^2$ and $v \neq v'$. Let G'(V', E') be the underlying undirected graph. G is weakly connected if G' is connected.

55 / 87

Definitions

Network [2]

A network is a graph where vertices and edges have associated properties in the form of numerical values.

56 / 87

Definitions

The length of a walk [1]

The length of a walk is equal to the sum of the weights of its edges.

57 / 87

Graph Definitions

The number of walks [1]

Let A be the adjacency matrix of a graph G(V, E), then the cell with index (i, j) of the matrix A^d is equal to the number of walks of length $d \in \mathbb{Z}^+$ from v_i to v_i , where $v_i, v_i \in V^2$.

58 / 87

Definitions

Euler walk and circuit [1]

A simple circuit traversing all edges of a graph G is an Euler circuit. Similarly, a simple walk traversing all edges of a graph G is an Euler walk.

<ロ > ←□ > ←□ > ← = → ← = → へへの

59 / 87

Can you find an Euler circuit in this multigraph?

Jfuk Bahçeci Network Models v0.23.10.01 60 / 87

Definitions

An Euler circuit exists..[1]

An Euler circuit exists in a connected multigraph G(V, E) with $|V| \ge 2$ if and only if $\forall v \in V$, $deg(v) \equiv 0 \pmod{2}$.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

61/87

Definitions

An Euler walk exists..[1]

An Euler walk but not an Euler circuit exists in a connected multigraph G(V,E) if and only if $\exists \, v', \, v'' \in V^2, \, v' \neq v'', \, deg(v') \equiv 1 \, (mod \, 2), \, deg(v'') \equiv 1 \, (mod \, 2), \, and \, \forall v \in V \setminus \{v', v''\}, \, deg(v) \equiv 0 \, (mod \, 2).$

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

 Ufuk Bahçeci
 Network Models
 v0.23.10.01
 62 / 87

Definitions

Chinese postman (route inspection) problem

Chinese postman problem looks for the shortest circuit traversing every edge of a connected multigraph at least once.

63 / 87

Definitions

Chinese postman problem

What if an Euler circuit exists in a connected multigraph?

64/87

Graph Definitions

Hamilton path and cycle [1]

A simple circuit visiting every vertex of a graph G exactly once is an Hamilton cycle. Similarly, a simple walk visiting every vertex of a graph G exactly once is an Hamilton path.

65 / 87

Can you find an Hamilton cycle in this multigraph?

Definitions (Dirac's theorem)

An Hamilton cycle exists..[1]

An Hamilton cycle exists in a graph G(V, E) if G is a simple graph with $|V| \ge 3$ and $\forall v \in V$, $deg(v) \ge \frac{|V|}{2}$.

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

67 / 87

Graph Definitions

Traveling salesman problem

Traveling salesman problem looks for the shortest circuit visiting every vertex of a connected graph exactly once.

68 / 87

Graph Definitions

Traveling salesman problem

What about the feasible solutions of a traveling salesman problem if it is defined on a connected simple graph with more than 3 vertices? Is this problem feasible?

69 / 87

Definitions

Tree [2]

A connected graph that contains no cycle is called tree.

70 / 87

A tree

Definitions

Forest [2]

A collection of trees is called forest.

72 / 87

A forest

Definitions

The number of edges in a tree

If the graph G(V, E) is a tree than |E| = |V| - 1

Definitions

Planar graph [1]

A planar graph can be drawn in two dimensions without any edges intersecting each other.

75 / 87

Planar representation of a planar graph

Non-planar representation of a planar graph

Definitions

Euler's formula [1]

A connected planar simple graph G(V, E) has |E| - |V| + 2 regions.

78 / 87

3(=5-4+2) regions of a planar graph

Map coloring example

80 / 87

Map coloring example I (5 colors)

Map coloring example II (4 colors)

Map coloring example III (4 colors)

Dual graph (III) (4 colors)

84 / 87

Definitions

The four color theorem [1]

The chromatic number (minimum number of colors) of a planar simple graph < 4.

85 / 87

Graph coloring example

References I

- [1] K. Rosen, *Discrete Mathematics and Its Applications*. McGraw-Hill, 2007.
- [2] R. Ahuja, T. Magnanti, and J. Orlin, *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, 1993.