# POVa - Road segmentation project

Tomáš Dubský <xdubsk08@stud.fit.vutbr.cz> Marek Mudroň <xmudro04@stud.fit.vutbr.cz> Filip Osvald <xosval04@stud.fit.vutbr.cz>

December 22, 2023

#### 1 Introduction

The goal of this project is to train, compare and study neural networks used for segmentation of roads in satellite images.

# 2 Datasets and their augmentation

We have used two datasets:

- DeepGlobe Road Extraction Dataset<sup>1</sup> contains 7334 pairs of images a satellite photo and a pixel-wise mask of roads. All images are in resolution of  $1024 \times 1024$  pixels.
- Massachusetts Roads Dataset<sup>2</sup> contains 1108 of such pairs in resolution  $1500 \times 1500$  pixels. To be able to combine the datasets, we have cropped the images to  $1024 \times 1024$  pixels.

For those experiments that did use augmentation, we used these augmentations:

• Random flip of the image (horizontal, vertical, or both).

<sup>&</sup>lt;sup>1</sup>Available at:

 $https://www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset \ ^2Available at: https://www.cs.toronto.edu/~vmnih/data$ 

- Gaussian blur of the image with  $5 \times 5$  kernel.
- Random change of hue, saturation and value of the image.

To suppress dependency on illumination, all satellite images, even those without the augmentation, were color normalized.

## 3 Neural network models and experiments with them

We have examined 5 models. The models use UNet as backbone and ResNet18 encoder. All models were trained in 5 epochs using Adam optimizer with learning rate 0.0003. Data for all models was divided in proportion: 75 % train set, 10 % validation set, and 15 % test set.

We have conducted the following experiments with the models:

- First, we tried to determine whether the number of encoder layers improves accuracy of the model. Thus, we have trained model 1 and 2 with different number of encoder layers.
- Then, we have assessed importance of transfer learning (usage of a pretrained model). We have done this by comparing model 2 and 3 which differ in usage on pre-trained encoder.
- Finally, we have assessed importance of data augmentation by comparing models 4 and 5 which differ only in the fact that 5 was trained on augmented data while the other not.

The following table summarizes the differences among the models:

| Model # | # encoder | Train     | Pretrained | Data aug- |
|---------|-----------|-----------|------------|-----------|
|         | layers    | dataset   | encoder    | mentation |
| 1       | 3         | combined  | no         | no        |
| 2       | 5         | combined  | no         | no        |
| 3       | 5         | combined  | yes        | no        |
| 4       | 5         | DeepGlobe | yes        | no        |
| 5       | 5         | DeepGlobe | yes        | yes       |

Figure 1 show a sample prediction of model 3.



**Figure 1:** A sample input satellite image, ground truth mask and a prediction of model 3. It can be seen that the model misses some segments or roads that are covered by nearby trees.

### 4 Results of the experiments

We have compared the models by comparing their accuracy. Accuracy was measured by intersection over union metric. These are the results:

- Increasing the number of encoder layers has slightly improved the accuracy.
- Using a pre-trained model also slightly improved the accuracy.
- However, model trained on augmented data showed very little improvement over model trained on the original data.

| Experiment          | Models            | IoU               | IoU Δ |
|---------------------|-------------------|-------------------|-------|
| More encoder layers | $1 \rightarrow 2$ | $0.449 \to 0.484$ | 0.035 |
| Pre-trained model   | $2 \rightarrow 3$ | $0.484 \to 0.526$ | 0.042 |
| Data augmentation   | $4 \rightarrow 5$ | $0.430 \to 0.439$ | 0.009 |

### 5 Conclusion

We have trained and compared several models of neural networks for road segmentation in satellite images. Usage of pre-trained model and more encoder layers has improved the model.

All source codes are publicly available at GitHub<sup>3</sup>

 $<sup>^3</sup>$  Available at:https://github.com/MarekMudron/road-segmentation