Clustering Music

Unsupervised Learning Based on Spotify Audio Analysis Data

Context

- Brand new music streaming service
- No user data
- Just a library of songs
- Need some kind of recommendation method

How can we make song recommendations with only audio analysis data?

Roadmap

- The Data
 - Collection
 - Processing
- Clusters
 - Dimensionality Reduction
 - Model Selection
- Interpretation
 - Genre Density
 - Artist vs Song Similarity
- Conclusions
 - Limitations
 - Steps Forward

The Data

- >13,000 unique song ids
- >9,000 unique artist ids
- >2,000 different genres
- 90 initial analysis features
 - >4 hours of code runtime
- 10 high-level interpretation features
 - Not used in clustering

Collection

- Spotify Web API
- "Audio Features"
 - High level / processed
 - Acousticness, valence, energy, etc.
- "Audio Analysis"
 - Low level / technical
 - Pitch vectors, timbre vectors, amplitude, etc.

Timbre

Tuning fork

API documentation:

- Timbre is the quality of a musical note or sound that distinguishes different types of musical instruments, or voices.
- Timbre vectors are best used in comparison with each other.

Flute

Processing

Arrays of varying size

Mean Vectors and Covariance Matrix

1-D pairwise relationships

	t0	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11
t0	10.14	36.83	50.65	-8.09	17.62	5.72	22.24	-10.42	-3.97	2.05	-6.45	-6.08
t1	36.83	1370.81	-106.40	120.90	-34.64	141.26	-274.61	-111.97	-150.81	-231.02	-91.90	-128.78
t2	50.65	-106.40	1349.81	-304.23	440.80	276.44	413.22	193.22	48.77	133.59	39.66	-68.86
t3	-8.09	120.90	-304.23	1626.59	21.83	-261.82	-92.17	-189.71	17.59	-85.38	-120.68	49.10
t4	17.62	-34.64	440.80	21.83	577.18	101.91	296.31	36.00	104.40	-6.43	-17.55	40.36
t5	5.72	141.26	276.44	-261.82	101.91	753.81	83.90	46.25	44.91	-49.37	-82.69	-38.24
t6	22.24	-274.61	413.22	-92.17	296.31	83.90	521.36	50.49	50.34	35.21	20.03	88.28
t7	-10.42	-111.97	193.22	-189.71	36.00	46.25	50.49	444.23	29.09	-30.43	47.78	10.86
t8	-3.97	-150.81	48.77	17.59	104.40	44.91	50.34	29.09	252.71	-35.98	-29.72	17.71
t9	2.05	-231.02	133.59	-85.38	-6.43	-49.37	35.21	-30.43	-35.98	290.43	43.55	-1.98
t10	-6.45	-91.90	39.66	-120.68	-17.55	-82.69	20.03	47.78	-29.72	43.55	259.86	-2.74
t11	-6.08	-128.78	-68.86	49.10	40.36	-38.24	88.28	10.86	17.71	-1.98	-2.74	203.69

	382
t0-t0	10.14
t0-t1	36.83
t1-t1	1370.81
t0-t2	50.65
t1-t2	-106.4
t0-t11	-6.08
t1-t11	-128.78
t10-t11	-2.74
t11-t11	203.69
id	0VjljW4GIUZAMYd2vXMi3b

Clusters

Dimensionality Reduction

- Balanced multicollinearity
- PCA 2 components only 25% of variance
- UMAP Semi-Global approach

Colored by "acousticness"

Model Selection

K-Means before UMAP

DBSCAN after **UMAP**

• 1/4th of the data is 'noise'

Genre Density

Song Similarity

Intra-Artist Similarity

- Proximity implies similarity
- Cluster group can imply song type
- Not strong enough to individually classify song genre

Inter-Artist Similarity

- Average euclidean distance between songs
- Semi-reliable to recommend similar artists

Johann Sebastian Bach	
Wolfgang Amadeus Mozar	t

,	Johann Sebastian Bach	Frédéric Chopin	0.590009
	Johann Sebastian Bach	Claude Debussy	0.624649
,	Johann Sebastian Bach	Johannes Brahms	0.638501
,	Johann Sebastian Bach	Sergei Rachmaninoff	0.642546
	Johann Sebastian Bach	Franz Liszt	0.745888
107			
VVO	fgang Amadeus Mozart	Johann Sebastian Bach	0.769546
	lfgang Amadeus Mozart Johann Sebastian Bach	Johann Sebastian Bach Alan Menken	0.769546 1.348368
,			\$10.000
3	Johann Sebastian Bach	Alan Menken	1.348368
,	Johann Sebastian Bach Johann Sebastian Bach	Alan Menken Thomas Newman	1.348368 1.453399

Inter-Artist Similarity

• *Semi*-reliable

The Weeknd	Disturbed	1.511241
Soda Stereo	The Weeknd	1.518602
The Supremes	The Weeknd	1.521337
Oasis	The Weeknd	1.627206
The Weeknd	Nirvana	1.637972
The Weeknd	Major Lazer	4.464087
Ed Sheeran	The Weeknd	4.468542
Claude Debussy	The Weeknd	4.544884
Beyoncé	The Weeknd	4.640684
Frédéric Chopin	The Weeknd	4.662011
Zack Knight	The Weeknd	4.706075
Badshah	The Weeknd	4.708560
The Weeknd	Black Eyed Peas	4.861376
The Weeknd	DJ Khaled	5.048230
Juice WRLD	The Weeknd	5.060837
Burna Boy	The Weeknd	5.102860

Naive Recommendation Algorithm

- Filter songs by overall artist similarity
- 2. Find the closest proximity song to the one currently playing
- 3. Prioritize the artist that's closest overall

Ed Sheeran	Lewis Capaldi	2.044813
Ed Sheeran	Black Eyed Peas	2.071633
Ed Sheeran	Zack Knight	2.114143
Badshah	Ed Sheeran	2.227838
Ed Sheeran	Justin Bieber	2.285949
Justin Bieber	Lewis Capaldi	3.034368

Conclusions

- UMAP most helpful for interpretation
- Clustering out the noise gives us a strong base to start similarity comparison
- Proof of a naive recommendation based purely on audio analysis
- Need more data

Steps Forward

- Use this purely as a filtering method
- Begin clustering in higher dimensions
- Subset the music to get better artist similarity
- Find other ways of representing timbre over time

Questions?

Thank You!