



# A High Quality Wireless Video Streaming Module for Drones

Gaurav Duggal, Sudip Maitra, Benedict Isaac, Kumar Sai

#### **Overview**

- About Aerostream+
- Market Analysis
- Technical Details
  - System Design
  - Video Codec comparison
  - Spectrum Efficiency
  - Tackling High Mobility environments
  - Security
- Our competitors
- Finances
  - Product Development Costs
  - Timeline to profit
- Our business model





#### **About AeroStream+**

An end to end wireless high quality video transmission and reception solution targeted at the commercial drone industry

#### **Key Features**

- Supports 4K / 8K resolution
- Supports HDR (High Dynamic Range) video for low light photography
- Supports latest video codecs to efficiently use RF spectrum
- Long Range
- Resilient to High Mobility environments
- Geofencing based video obfuscation
- Encryption and Privacy Preservation





# **High Quality Video Applications I**



- Using a drone cuts the cost of windmill blade inspection by around 50% to \$750 \*
- Avoids redundant inspections of cell towers by personnels driving vehicles and climbing towers.

\*PWC Report "Clarity from above" 2020

# **High Quality Video Applications II**



## Cinematography

- Provide better views from multiple angles
- Drones are cheaper to fly than Helicopters
- Can film in small and concise spaces where helicopters can't reach (Eg: Between 2 buildings)
- Capture fast moving & adventurous shots
- Sochi Olympics 2018 was covered using drones







# **System Design**



# **Video Codec Comparison**

| Codec Standard  | License     | Publisher          | Year | Compression ratio | RF Bandwidth<br>(using rrc a = 0.3) |
|-----------------|-------------|--------------------|------|-------------------|-------------------------------------|
| H264/MPEG-4 AVC | Patented    | ISO, IEC,<br>ITU-T | 2003 | 200               | 13.5 MHz                            |
| H265/HEVC       | Patented    | ISO, IEC,<br>ITU-T | 2013 | 400               | 6.75 MHz                            |
| VP9             | Open-source | Google             | 2013 | 400               | 6.75 MHz                            |
| AV1             | Open-source | AOMedia            | 2018 | 540               | 5 MHz                               |

#### **RF Bandwidth Calculation**

| Field                                 | Value      |  |  |
|---------------------------------------|------------|--|--|
| Uncompressed bitrate                  | 12000 Mbps |  |  |
| Compression ratio                     | 540        |  |  |
| Compressed bitrate                    | 22 Mbps    |  |  |
| Modulation order                      | 64 QAM     |  |  |
| Symbol rate                           | 3.6 Msps   |  |  |
| RF bandwidth (using rrc and a = 0.36) | 5MHz       |  |  |

The compression ratio offered by AV1 is 2.7 times higher than H264 which leads to the RF bandwidth of 5 MHz and 13.5 MHz respectively

## **RF Spectrum Efficiency**



### Tackling high mobility environment challenges



For an expected Max Doppler of 1000 Hz at 5.8 GHz, the subcarrier spacing is chosen to be 10 Khz

## **Security Features**

- Geofencing
  - Drone controller interface
  - Automatic video obfuscation
- Encryption
  - Stream cipher (e.g., ChaCha20<sup>[9]</sup> or Simon<sup>[10]</sup>)
  - Trade-off: Lower resolution and fps
- Privacy
  - Videos are not locally stored
  - Stealing drone does not reveal user's videos



# **Market competition**

| Name                                     | Live Stream        | Codec           | Multiplexing<br>Technology | Range<br>(km) | Latency (ms) | Geofencing |
|------------------------------------------|--------------------|-----------------|----------------------------|---------------|--------------|------------|
| DJI Phantom 4<br>Pro v2.0 <sup>[5]</sup> | 1080p at 30<br>fps | H.265           | TDM                        | 10            | 170          | <b>✓</b>   |
| DJI Inspire 2 <sup>[5]</sup>             | 1080p at 30<br>fps | H.264           | TDM                        | 7             | 220          | <b>✓</b>   |
| PowerVision<br>Powereye <sup>[6]</sup>   | N/A                | H.264           | N/A                        | 5             | 300          | ×          |
| Autel EVO II <sup>[8]</sup>              | 1080p at 30<br>fps | H.264/<br>H.265 | N/A                        | 5.2           | 240          | <b>✓</b>   |
| HD Zero <sup>[17]</sup>                  | 720p at 60<br>fps  | ×               | OFDM                       | 7.3           | 25           | ×          |
| Our product                              | 4K at 60 fps       | AV1             | OFDM                       | ~10           | ~100         | <b>/</b> * |





#### **Personnel Cost**

Operations manager: \$110,000[3]

PCB designer: \$92,000<sup>[1]</sup>

• Embedded System Engineer: \$90,000 [1]

• Chip designer: \$81,000<sup>[2]</sup>

#### One time cost

- IP licensing (agency)
- Prototype fabrication (MPW service provider)<sup>[4]</sup>



| Type of cost                | Amount (USD) |  |  |
|-----------------------------|--------------|--|--|
| Payroll per annum           | 373,000      |  |  |
| IP Core purchase cost       | 250,000      |  |  |
| Chip fabrication            | 300,000      |  |  |
| Manufacturing cost          | 500,000      |  |  |
| Marketing (reach: 600,000+) | 20,000       |  |  |
| Equipment cost              | 100,000      |  |  |
| Operating cost              | 50,000       |  |  |



#### **Timeline**

| Time Frame | Goals                                                  | Associated Cost (USD)                                                                                                                      | Total Cost<br>(USD) | Revenue<br>(USD)                                 | Net Profit<br>(USD) |
|------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|---------------------|
| Year 1     | Chip<br>fabrication                                    | Payroll (373,000) IP Core (250,000) Fabrication (300,000)                                                                                  | 923,000             | 0                                                | 0                   |
| Year 2     | Prototype Testing & certification Production and Sales | Payroll (373,000) Manufacturing (500,000) Equipment cost (100,000) Operating Cost (50,000) Marketing cost (20,000) = Total (1.043 Million) | 2.14<br>Million     | 349/unit<br>x10,000 units<br>= \$3.49<br>Million | 1.35 million        |

Total cost / unit = \$ 214

Proposed selling price / unit = \$ 349

#### **Our Business Plan**



- Direct to consumer
- Partnership











• Profit margin: 38.6%

Initial funding: \$800K for 13% stake in the company



- Initial Public Offering (IPO)
- Asset acquisition

#### Conclusion

- AeroStream+ is a high quality video streaming module for drones
- Features: 4K/8K at 60 fps with HDR, spectral efficiency, resilient, secure
- Aerostream+ is a uniquely placed product in a fast growing market
- Profitable in 2 years
- Asking for initial funding of \$800K at 13% stake



#### Sources

- 1. <a href="https://www.zippia.com">https://www.zippia.com</a>
- 2. <a href="https://www.glassdoor.com/Salaries/chip-designer-salary-SRCH">https://www.glassdoor.com/Salaries/chip-designer-salary-SRCH</a> KO0,13.htm
- 3. <a href="https://www.salary.com/research/salary/benchmark/operations-manager-salary">https://www.salary.com/research/salary/benchmark/operations-manager-salary</a>
- 4. <a href="https://europractice-ic.com/schedules-prices-2022/">https://europractice-ic.com/schedules-prices-2022/</a>
- 5. <a href="https://www.dji.com/">https://www.dji.com/</a>
- 6. <a href="https://www.powervision.me/en/product/powereye">https://www.powervision.me/en/product/powereye</a>
- 7. <a href="https://us.yuneec.com/typhoon-h-plus/">https://us.yuneec.com/typhoon-h-plus/</a>
- 8. <a href="https://auteldrones.com/pages/evo-ii-collections">https://auteldrones.com/pages/evo-ii-collections</a>
- 9. <a href="https://eprint.iacr.org/2013/404.pdf">https://eprint.iacr.org/2013/404.pdf</a>
- 10. <a href="https://datatracker.ietf.org/doc/html/rfc8439">https://datatracker.ietf.org/doc/html/rfc8439</a>
- 11. <u>Multi codec Video encoder as an IP Allegro AL-E215 https://www.allegrodvt.com/video-ip-compliance-streams/video-silicon-ip-cores/ip-encoder-av1-4k30-e215/</u>
- 12. OFDM modulator https://www.design-reuse.com/sip/ofdm-modem-ip-10997/
- 13. RF transceiver Analog Devices AD 9364
- 14. https://www.allegrodvt.com/video-ip-compliance-streams/video-silicon-ip-cores/ip-decoder-multi-formats-8k-d310/
- 15. <a href="https://www.design-reuse.com/sip/ofdm-modem-ip-10997/">https://www.design-reuse.com/sip/ofdm-modem-ip-10997/</a>
- 16. https://oscarliang.com/fpv-channels/
- 17. <a href="https://www.hd-zero.com/">https://www.hd-zero.com/</a>
- 18. <a href="https://ece.uwaterloo.ca/~z70wang/publications/iciar19">https://ece.uwaterloo.ca/~z70wang/publications/iciar19</a> encoderCompare.pdfb1
- 19. https://www.researchandmarkets.com/reports/5390437