The Whittle-Levinson-Durbin Recursion

R. J. Kinnear

June 21, 2019

Abstract

A brief overview of the Levinson-Durbin recursion for estimating autoregressive time series models is given. Whittle's generalized (multivariate) version is also expounded upon. We are essentially summarizing content from [1], [2], [3].

It will be seen that the algorithm itself provides deep insights into the structure of autoregressive time series models, and provides an indispensable algorithm in practice.

Contents

1	introduction1.1 Yule-Walker Equations	1 2 3
2	The Recursions 2.1 The Levinson-Durbin Recursion	3
	Efficient Model Order Selection	6
	ouble check results for σ_k^2	

1 introduction

Suppose we have a process $x(t) \in \mathbb{R}^n$ generated by the all-pole model

$$\sum_{\tau=0}^{p} A(\tau)x(t-\tau) = v_t, \tag{1}$$

where $B(0) = I_n$ and v_t is a temporally uncorrelated driving sequence with $\mathbb{E}[v_t] = 0$. This is closely connected to fitting VAR(p) time series models

$$\widehat{x}(t) = \sum_{\tau=1}^{p} B(\tau)x(t-\tau), \tag{2}$$

where one can estimate A and then simply drop A(0) = I and take B = -A.

If we observe only x(t), how do we determine $A(\tau)$? An answer is provided by the Levinson-Durbin recursion. This algorithm is extremely efficient as it allows one to fit a sequence of VAR(p) models for every $p=1,\ldots,p_{\max}$ all for the cost of inverting a single toeplitz (or block-toeplitz) matrix. This implies that there is effectively no additional cost for performing model selection (i.e. choosing p) over and above what it costs to fit a single $VAR(p_{\max})$ model.

1.1 Yule-Walker Equations

The Levinson-Durbin recursion is essentially an efficient procedure for solving the Yule-Walker equations in one dimension, and Whittle's generalization extends to the multi-variate case. The Yule-Walker equations are simply

$$\sum_{\tau=0}^{p} A(\tau)R(s-\tau) = \delta_s \Sigma_v; s = 0, 1, \dots, p,$$
(3)

which describes the relationship between the coefficients A of Equation (2) and the covariance sequence $R(\tau) = \mathbb{E}[x(t)x(t-\tau)^{\mathsf{T}}]$. They can be derived easily by taking the model (2) and multiplying it on the right by $x(t-\tau)^{\mathsf{T}}$ and computing the expectation.

There is a close relationship between the Yule-Walker equations and Toeplitz matrices: If one is to write out equation 3 in a large matrix format, the resulting system is a toeplitz (or block-toeplitz in the multivariate case) system¹

$$\mathbf{R}\mathbf{A} = e_1 \otimes \Sigma_v,\tag{4}$$

where $\mathbf{A} = [I \ A(1)^\mathsf{T} \ \cdots \ A(p)^\mathsf{T}]^\mathsf{T}$ and \mathbf{R} is a (symmetric) block-toeplitz matrix consisting of blocks² $[\mathbf{R}]_{s\tau} = R(s-\tau)^\mathsf{T}$, and $e_1 \otimes \Sigma_v = [\Sigma_v \ 0 \ \cdots \ 0]$. It is critical to notice that the variables in this equation are $A(1), \ldots, A(p)$ and Σ_v , so it is not written in the usual "Ax = b" format, but is still a linear equation. In the unidimensional case we can write

$$Ra = \sigma_v e_1, \tag{5}$$

where R is a bona-fide toeplitz matrix.

¹The symbol ⊗ indicates the Kronecker product

²One must keep careful track of transposes.

1.2 Estimating Covariances

Given a finite sample of data $\{x(t)\}_{t=1}^T$, we can treat this as an infinitely extended sequence $\widetilde{x}(t)$ where $\widetilde{x}(t)=0$ for $t\leq 0$ or t>T (i.e. a rectangularly windowed sequence) and then estimate the covariance via

$$\widehat{R}(\tau) = \frac{1}{T} \sum_{t=\tau+1}^{p} x(t)x(t-\tau)^{\mathsf{T}}.$$
(6)

It is critical to use this particular covariance estimator in order to ensure that $R(\tau)$ is a positive (semi-)definite sequence, that is, the Toeplitz matrix \mathbf{R} satisfies $\mathbf{R} \succeq 0$.

2 The Recursions

2.1 The Levinson-Durbin Recursion

We will first write down the Levinson-Durbin recursion, which is the unidimensional method for solving equation 3. We will consider the "API" for this Algorithm as taking as input a sequence of p+1 covariance estimates $(r(0), r(1), \ldots, r(p))$ for a unidimensional (n=1) time series x(t), and returning p+1 variance estimates $\sigma_0^2, \sigma_1^2, \ldots, \sigma_p^2$, as well as a sequence $\mathbf{b}_0, \mathbf{b}_1, \ldots, \mathbf{b}_p$ where $\mathbf{b}_k \in \mathbb{R}^k$ provides coefficients for an AR(k) model of order k, where the estimated mean squared error of this model is given by σ_k^2

$$\widehat{x}_k(t) = \sum_{\tau=1}^k b_k(\tau) x(t-\tau),$$

$$\sigma_k^2 = \frac{1}{T} \sum_{t=1}^T (x(t) - \widehat{x}_k(t))^2$$

$$= \mathbb{E}(x(t) - \widehat{x}_k(t))^2 + O\left(\frac{1}{\sqrt{T}}\right).$$
(7)

The algorithm is also applicable when $x(t) \in \mathbb{C}^n$, therefore in Algorithm 1 * indicates complex conjugate. It is important to keep in mind that $r(-\tau) = r(\tau)^*$

2.1.1 Properties

The algorithm runs in $O(p^2)$ time (whereas standard matrix inversion requires $O(p^3)$ time). As well there are a number of remarkable properties associated to Algorithm 1:

- 1. $|b_k(k)| \leq 1$ if and only if $r(0), \ldots, r(k)$ is positive semi-definite for $k = 1, \ldots, p$
- 2. $\sigma_k^2 \geq 0$ if and only if $r(0), \ldots, r(k)$ is positive semi-definite for $k = 1, \ldots, p$
- 3. The AR(k) model obtained from \mathbf{b}_k is stable

Double check results for σ_k^2

Algorithm 1: Levinson-Durbin Recursion

```
input : Covariance Sequence r(0),\ldots,r(p) output : AR coefficients \mathbf{b}_1,\ldots,\mathbf{b}_p and error estimates \sigma_0^2,\ldots,\sigma_p^2 initialize: a_0(0)=1 \sigma_0^2=r(0)

1 for k=0,\ldots,p-1 do

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 for \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

7 \sigma_0^2=r(0)

8 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

8 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

8 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^2=r(0)

5 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

6 \sigma_0^2=r(0)

9 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

1 for \sigma_0^2=r(0)

2 \sigma_0^2=r(0)

3 \sigma_0^2=r(0)

4 \sigma_0^
```

2.2 Whittle's Generalization

Whittle [3] generalized Algorithm 1 to the multivariate case. This generalization is non-trivial and requires both a *forwards* set of coefficients $A(\tau)$, but also a *backwards* set of coefficients $\bar{A}(\tau)$ corresponding to the anti-causal system

$$\sum_{\tau=0}^{p} \bar{A}(\tau)x(t+\tau) = \bar{v}_t. \tag{8}$$

The most direct reason that the Levinson-Durbin recursion does not immediately generalize is simply because matrix multiplication is not commutative.

The algorithm will consume a sequence of covariance matrices $R(0), \ldots, R(p)$, and return a sequence $\mathbf{B}_1, \ldots, \mathbf{B}_p$ of VAR(k) model coefficients, where $\mathbf{B}_k = (B_k(1), \ldots, B_k(k))$ as well as a sequence $\Sigma_0, \ldots, \Sigma_p$ of error variance matrices where

$$\widehat{x}_k(t) = \sum_{\tau=1}^k B_k(\tau) x(t-\tau),$$

$$\Sigma_k = \frac{1}{T} \sum_{t=1}^T (x(t) - \widehat{x}_k(t)) (x(t) - \widehat{x}_k(t))^\mathsf{T}$$

$$= \mathbb{E}[(x(t) - \widehat{x}_k(t)) (x(t) - \widehat{x}_k(t))^\mathsf{T}] + O(\frac{1}{\sqrt{T}}).$$
(9)

Keeping in mind that $R(-\tau) = R(\tau)^{\mathsf{H}}$, we have

Algorithm 2: Whittle-Levinson-Durbin Recursion

```
: Covariance Sequence R(0), \ldots, R(p)
     input
     output: AR coefficients \mathbf{B}_1, \dots, \mathbf{B}_p and error estimates \Sigma_0, \dots, \Sigma_p
      initialize: A_0(0) = I, A_0(0) = I
                          \Sigma_0 = R(0), \bar{\Sigma}_0 = R(0)
 1 for k = 0, ..., p - 1 do
           \Gamma = \sum_{\tau=0}^{k} A_k(\tau) R(k-\tau+1)

\bar{\Gamma} = \sum_{\tau=0}^{k} \bar{A}_k(\tau) R(\tau-k-1)
           A_{k+1}(k+1)=-\Gamma\bar{\Sigma}_k^{-1} # Use 'cholesky' and 'cho_solve' to invert \bar{A}_{k+1}(k+1)=-\bar{\Gamma}\Sigma_k^{-1}
            A_{k+1}(0) = I, \bar{A}_{k+1}(0) = I
            for \tau = 1, \dots, k do
  7
             \begin{array}{|c|c|c|c|c|c|c|c|}\hline A_{k+1}(\tau) = A_k(\tau) + A_{k+1}(k+1)\bar{A}_k(k-\tau+1) \text{ \# Copy to next array}\\ \bar{A}_{k+1}(\tau) = \bar{A}_k(\tau) + \bar{A}_{k+1}(k+1)A_k(k-\tau+1) \end{array}
  9
           \Sigma_{k+1}=\Sigma_k+A_{k+1}(k+1)\bar{\Gamma} # Update the error variance \bar{\Sigma}_{k+1}=\bar{\Sigma}_k+\bar{A}_{k+1}(k+1)\Gamma
10
            \mathbf{B}_{k+1} = \big(-A_{k+1}(1), \dots, -A_{k+1}(k+1)\big) # Convert to VAR coefficients
12
           assert \sum_{\tau=0}^{k+1} A_{k+1}(\tau) R(s-\tau) = 0; for s=1,\ldots,k+1 # Verify assert \sum_{\tau=0}^{k+1} \bar{A}_{k+1}(\tau) R(\tau-s) = 0; for s=1,\ldots,k+1
13
15 return (\mathbf{B}_1,\ldots,\mathbf{B}_p), (\Sigma_0,\ldots,\Sigma_p)
```

3 Efficient Model Order Selection

Given a collection of data, there are a variety of methods to choose the filter order p. For example, the Bayesian Information Criteria (BIC) provides a "meta-optimization" objective which trades off between error reduction and model complexity. Choosing p by the BIC criterion dictates that we minimize over p the following:

$$BIC(p) = T \log \det \Sigma_p + n^2 p \log T. \tag{10}$$

This can be carried out by a simple direct search on each model order between 1 and some prescribed p_{max} . In practice it is sufficient to pick p_{max} ad-hoc or via some simple heuristic (e.g. plotting the sequence BIC(p) over p). Conveniently, the Levinson-Durbin algorithm provides to us the sequence of error matrices Σ_p all in one go, so choosing p by this criteria takes time equivalent to simply fitting a single $VAR(p_{\text{max}})$ model.

It must finally be pointed out that this is not a perfect strategy for model order selection, and is likely only useful when n is quite small; it is merely one that is efficiently facilitated by the LD algorithm. One can in principle make use of the same BIC criterion to further search for sparse matrices that provide a good fit for the data, but this becomes a much different problem.