Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа <u>Р3110</u>	К работе допущен	Студент_	Балтабаев Дамир
<u>Темиржанович</u>			
Преподаватель	Коробков Максим Петр	ович	
Отцет прицат			

Рабочий протокол и отчет по лабораторной работе №3.12V

Опыт Милликена

Дата и время измерений: 03.03.2021, 14:23

1. Цель работы.

- Исследование движения заряженных капель в электрическом и гравитационном полях.
- Определение величины элементарного заряда.

2. Задачи, решаемые при выполнении работы.

Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.

Определение радиуса и заряда капель.

3. Объект исследования.

Капли масла.

4. Метод экспериментального исследования.

Многократные прямые измерения.

5. Рабочие формулы и исходные данные.

$$\begin{split} u_1 &= \frac{1}{6\pi\eta r} (qE + \frac{4}{3}\pi r^3(\rho_0 - \rho)g) & q = C_q \frac{(u_1 + u_2)\sqrt{u_1 - u_2}}{U} \\ u_2 &= \frac{1}{6\pi\eta r} (qE + \frac{4}{3}\pi r^3(\rho_0 - \rho)g) & C_q &= \frac{9}{2}\pi d\sqrt{\frac{\eta^3}{(\rho_0 - \rho)g}} \\ r &= C_r \sqrt{u_1 - u_2} & e_i &= \frac{q_i}{n} \\ C_r &= \frac{3}{2}\sqrt{\frac{\eta}{(\rho_0 - \rho)g}} & u_i &= \frac{S}{t_i} \end{split}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Линейная шкала	Измерительный	$[0; 1.6 \times 10^{-3}]$ (M)	$5,33 \times 10^{-5}$ (M)	
2	Секундомер	Цифровой	[0; 100](c)	0,005(c)	

7. Схема установки.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

Nº	U,B	<i>t</i> ₁ , <i>c</i>	t ₂ , c	v_1 , 10^{-5}	v_2 , 10^{-5}	r , 10^{-7} м	<i>q</i> , 10 ⁻¹⁹ Кл	n	<i>e</i> , 10 ⁻¹⁹ Кл
	•	1,	2,	м/с	м/с	,			,
1	106	13,93	21,02	7,65	5,07	3,5	4,3	2	2,15
2	113	21,17	34,92	5,04	3,05	3,07	2,25	1	1,25
3	120	13,48	21,31	7,91	5,00	3,71	4,09	2	1,01
4	125	11,28	36,45	9,45	2,92	5,57	5,64	3	1,88
5	130	13,86	31,64	7,69	3,37	4,53	3,94	2	1,97
6	139	9,56	15,29	11,15	6,97	4,45	5,94	3	1,01
7	148	7,51	29,64	14,19	3,60	7,09	8,72	5	1,74
8	152	12,86	58,17	8,29	1,83	5,54	3,77	2	1,14
9	160	9,88	38,73	10,79	2,75	6,18	5,35	3	1,78
10	169	7,78	28,39	13,70	3,75	6,87	7,26	4	1,82
11	176	7,56	19,43	14,10	5,49	6,39	7,28	4	1,82
12	184	11,28	38,60	9,45	2,76	5,63	3,83	2	1,92
13	191	10,83	22,87	9,84	4,66	4,96	3,85	2	1,21
14	209	10,53	41,91	10,12	2,54	6	3,72	2	1,86
15	218	15,53	38,13	6,86	2,80	4,39	1,99	1	1,99
16	230	9,41	17,91	11,33	5,95	5,05	3,88	2	1,94
17	239	7,53	18,47	14,16	5,77	6,31	5,38	3	1,79
18	248	14,39	37,48	7,41	2,84	4,65	1,97	1	1,97
19	260	14,14	48,44	7,54	2,20	5,03	1,93	1	1,93
20	276	8,93	55,46	11,94	1,92	6,9	3,54	2	1,77

Примеры расчетов (для многочисленных расчетов показан пример при t_1 и t_2):

$$v_i = \frac{S}{t_i}$$
 (формула для нахождения скорости) $\Delta y = 5,33 \cdot 10^{-5}$ м (по условию) $N = 20$ $S = 5,33*10^{-5}*20 = 106,6*10^{-5}$ (м) $v_1 = \frac{S}{t_1} = \frac{106,6*10^{-5}}{13,93} = 7,65*10^{-5}$ (м/с)

$$C_r = rac{3}{2} \sqrt{rac{\eta}{(
ho_0 -
ho)g}}$$
 (формула для нахождения константы C_r)

$$C_q = rac{9}{2}\pi d\sqrt{rac{\eta^3}{(
ho_0-
ho)g}}$$
 (формула для нахождения константы C_q)

Вычислим значения, подставив заданные параметры лабораторного стенда:

- 1. Ускорение свободного падения $g = 9.81 \text{ м/c}^2$
- 2. Плотность масла $\rho_o = 875,3 \ \kappa \epsilon / m^3$
- 3. Плотность воздуха $\rho = 1.29 \ \kappa \epsilon / m^3$
- 4. Вязкость воздуха $\eta = 1.81 \cdot 10^{-5} \ H \cdot c/m^2$
- 5. Расстояние между обкладками конденсатора d = 6 мм

$$C_r = \frac{3}{2} \sqrt{\frac{1,81 * 10^{-5}}{(875,3 - 1,29) * 9,81}} = 6,89 * 10^{-5} (\sqrt{M * c})$$

$$C_q = \frac{9}{2} \pi d \sqrt{\frac{\eta^3}{(\rho_0 - \rho)g}} = \frac{9}{2} * 3,14 * 0,006 \sqrt{\frac{(1,81 * 10^{-5})^3}{(875,3 - 1,29) * 9,81}} =$$

$$= 7,05 * 10^{-11} (\text{K}\Gamma * \sqrt{\frac{M}{c}})$$

$$r = C_r \sqrt{v_1 - v_2}$$
 (формула для нахождения радиуса капли) Подставляем в формулу значения v_1 и v_2 , также найденную ранее константу C_r : $r = 6.89 * 10^{-5} * \sqrt{(7.65 - 5.07) * 10^{-5}} = 3.5 * 10^{-7}$ (м)

$$q=C_qrac{(v_1+v_2)\sqrt{v_1-v_2}}{U}$$
 (формула для нахождения заряда)

Подставляем в формулу значения v_1, v_2 и U, также найденную ранее константу C_a :

$$q = 7,05 * 10^{-11} * \frac{(7,65 + 5,07) * 10^{-5} \sqrt{(7,65 - 5,07) * 10^{-5}}}{106} = 4,3 * 10^{-19} (Кл)$$

$$e_{i} = \frac{q_{i}}{n}$$
 (формула для нахождения элементарного заряда)

Подставим значения q и п (взятое из п.9):

$$e_1 = \frac{q_1}{n} = \frac{4.3}{2} = 2.15(10^{-19} \text{K}\pi)$$

9. График.

График зависимости заряда капли от ее радиуса.

10. Расчет погрешностей измерений (для прямых и косвенных измерений)

$$\langle e \rangle = rac{1}{N} \sum_{i=1}^N e_i$$
 (формула нахождения среднего значения элем. заряда) $N=20$ $\langle e \rangle = rac{1}{20} (2,15+\cdots+1,77) = 1,69 (10^{-19} \mathrm{K} \pi)$

$$\sigma_e = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (e_i - \langle e \rangle)^2}$$
 (формула нахождения среднекв. отклонения)
$$\sum_{i=1}^N (e_i - \langle e \rangle)^2 = (2,15-1,69)^2 + \dots + (1,77-1,69)^2 = 2,41 \, (10^{-19} \mathrm{K}л)$$

$$\sigma_e = \sqrt{\frac{1}{20*19}*0.31} = 0.08(10^{-19}$$
Кл)

11. Окончательные результаты.

Интервалы полученных значений радиусов капель и значений зарядов капель:

$$r \in [3,07;7,09] * 10^{-7} (м)$$

 $q \in [1,93;8,72] * 10^{-19} (Кл)$

Сравнение полученного оценочного значения элементарного заряда с табличным значением заряда электрона:

$$e_{\text{табл}} = 1,602 * 10^{-19} (Кл)$$

$$\varepsilon = \frac{\Delta_e}{e_{\text{табл}}} * 100\% = \frac{1,602 - 1,69}{1,602} * 100\% = 5,5\%$$

12. Выводы и анализ результатов работы.

В ходе данной лабораторной работы было исследовано движение заряженных капель в электрическом и гравитационных полях, а также определена величина элементарного заряда. Так как в ходе работы использовалась виртуальная установка, найденное оценочное значение относительно близко к табличному, в то время как при реальном снятии измерений, погрешность могла оказаться существенно больше. Полученное в ходе выполнения оценочное значение элементарного заряда оказалось меньше на 5,5%, связано это с округлением, а также с погрешностями при снятии измерений. Также, в данной лабораторной работе был установлен факт дискретности заряда, это прослеживается в графике.