#### STA 235H - Model Selection II: Shrinkage

Fall 2021

McCombs School of Business, UT Austin

#### **Announcements**

#### Homework 4 is due on Thursday

- Please check out the notes for submissions on HW4.
- Check out answers on Canvas discussion board!
- I'll complement what we see in class with R code videos when needed.
  - Make sure all packages are installed and work.

#### **Prediction project**

## It's a competition!

- Teams of three or four, depending on your section (you should enter your team on Canvas if you haven't done so).
- You will have a **classification** and a **prediction** task.
  - Choose your best models (and compare them to <u>one</u> other method)
- Grade will be based on: data + models (including analysis) + accuracy ranking
- Get an <u>early start</u> (you can start downloading and getting the data ready now)
  - No extension for the final project.
  - There are many deadlines at the end of the semester.

#### Last week

- Introduction to prediction:
  - Bias vs. Variance, validation set approach, cross-validation.
- One method for model selection: stepwise subsetting:
  - We start with a null (full) model and add (subtract) one variable at a time. We choose the best one through CV.



#### Today: Continuing our journey

- Regularization and model selection: Shrinkage
  - Advantages of regularization over OLS
  - Ridge regression and Lasso regression
  - When is ridge regression better? When do we prefer lasso?



## Honey, I shrunk the coefficients!

#### What is shrinkage?

- Last class, we saw **stepwise procedure**: Subsetting model selection approach.
  - $\circ$  Select k out of p total predictors
- Shrinkage (a.k.a Regularization): Fitting a model with all p predictors, but introducing bias (i.e. shrinking coefficients towards 0) for improvement in variance.
  - Ridge regression
  - Lasso regression

# Let's build a ridge.

## Ridge Regression: An example

• Window-shoppers vs. High rollers

#### **Ordinary Least Squares**

• In an OLS: Minimize sum of squared-errors, i.e.  $\min_{\beta} \sum_{i=1}^{n} (\operatorname{spend}_{i} - \beta \operatorname{freq}_{i})^{2}$ 

#### What about fit?

• Does the OLS fit the testing data well?

## Ridge Regression

• Let's shrink the coefficients!: Ridge Regression

# Why does Ridge Regression reduce its slope compared to OLS?

#### Ridge Regression: What does it do?

- Ridge regression introduces bias to reduce variance in the testing data set.
- In a simple regression (i.e. one regressor/covariate):

$$\min_{eta} \sum_{i=1}^n \underbrace{(y_i - eta_0 - x_ieta_1)^2}_{OLS}$$

#### Ridge Regression: What does it do?

- Ridge regression introduces bias to reduce variance in the testing data set.
- In a simple regression (i.e. one regressor/covariate):

$$\min_{eta} \sum_{i=1}^n \underbrace{(y_i - eta_0 - x_ieta)^2}_{OLS} + \underbrace{oldsymbol{\lambda} \cdot eta_1^2}_{RidgePenalty}$$

•  $\lambda$  is the penalty factor  $\rightarrow$  indicates how much we want to shrink the coefficients.

## Back to the plots...

• Let's solve the minimization problem for ridge regression. What line do we choose?

#### For the OLS line

$$0 + \lambda \cdot (-16.25)^2 = 264.1\lambda$$



#### For the OLS line

$$0 + \lambda \cdot (-16.25)^2 = 264.1 \times 3 = 792.3$$



#### Now, for the ridge regression line

$$(3^2 + (-17)^2) + \lambda \cdot (-11.25)^2 = 298 + 126.6 \times 3 = 677.8$$



# But remember... we care about accuracy in the testing dataset!

#### RMSE on the testing dataset: OLS

$$RMSE = \sqrt{rac{1}{4}\sum_{i=1}^4( ext{spend}_i - (132.5 - 16.25 \cdot ext{freq}_i))^2} = 28.36$$

#### RMSE on the testing dataset: Ridge Regression

$$RMSE = \sqrt{rac{1}{4}\sum_{i=1}^{4}(\mathrm{spend}_i - (119.5 - 11.25 \cdot \mathrm{freq}_i))^2} = 12.13$$

#### Seems like these data points are cherry-picked...

- Yes! This is a stylized example to show what's happening in the background when we are running OLS and Ridge regression.
- How can we know whether OLS or Ridge Regression is better without running the risk of cherry-picking training and testing data?
- If the data is linear, OLS might be the right model:
  - Penalty term λ will most likely be 0.



**FIGURE 6.5.** Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of  $\lambda$  and  $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$ . The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

#### Ridge Regression in general

For regressions that include more than one regressor:

$$\min_{eta} \sum_{i=1}^n \underbrace{(y_i - \sum_{k=0}^p x_i eta_k)^2}_{OLS} + \underbrace{\lambda \cdot \sum_{k=1}^p eta_k^2}_{RidgePenalty}$$

• In our previous example, if we had two regressors, female and freq:

$$\min_{eta} \sum_{i=1}^n (\operatorname{spend}_i - eta_0 - eta_1 \operatorname{female}_i - eta_2 \operatorname{freq}_i)^2 + \lambda \cdot (eta_1^2 + eta_2^2)$$

• Because the ridge penalty includes the  $\beta$ 's coefficients, scale matters:

$$\circ$$
 Standardize coefficients to  $SD=1 o x'_{ij}=rac{x_{ij}}{\sqrt{rac{1}{n}(x_{ij}-ar{x}_j)^2}}$ 

#### Some jargon

• Ridge regression is also referred to as  $l_2$  regularization:

$$\circ$$
  $\left. l_2 ext{ norm} 
ightarrow \left| \left| eta 
ight| 
ight|_2 = \sqrt{\sum_{k=1}^p eta^2}$ 

- Some important notes:
  - $\circ ||\hat{\beta}_{\lambda}^{R}||_{2}$  will always decrease in  $\lambda$ .
  - $|\hat{\beta}_{\lambda}^{R}|_{2}/|\hat{\beta}|_{2}$  will always decrease in  $\lambda$ .

If  $\lambda$ =0, what is the value of  $I_2$  norm for the ridge regression over the  $I_2$  norm of OLS?

#### How do we choose $\lambda$ ?

**Cross-validation!** 

- 1) Choose a grid of  $\lambda$  values
  - The grid you choose will be context dependent (play around with it!)
- 2) Compute cross-validation error (e.g. RMSE) for each
- 3) Choose the smallest one.

#### λ vs RMSE?

#### λ vs RMSE? A zoom

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda_seq <- c(0,10^seq(-3, 3, length = 100))
ridge <- train(spend ~., data = train.data,
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", numl
            tuneGrid = expand.grid(alpha = 0,
                          lambda = lambda seq)
cv_lambda <- data.frame(lambda = ridge$results!</pre>
                         rmse = ridge$results$R/
```

• We will be using the caret package

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda seq <- c(0,10^seq(-3, 3, length = 100))
ridge <- train(spend ~., data = train.data,
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", num!
            tuneGrid = expand.grid(alpha = 0,
                          lambda = lambda seq)
cv_lambda <- data.frame(lambda = ridge$results:</pre>
                         rmse = ridge$results$R/
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda_seq <- c(0,10^seq(-3, 3, length = 100))
ridge <- train(spend ~., data = train.data,
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", num!
            tuneGrid = expand.grid(alpha = 0,
                          lambda = lambda seq)
cv lambda <- data.frame(lambda = ridge$results!</pre>
                         rmse = ridge$results$R/
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the  $\lambda$ 's that will be tested

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda_seq <- c(0,10^seq(-3, 3, length = 100))
ridge <- train(spend ~., data = train.data,
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", numl
            tuneGrid = expand.grid(alpha = 0,
                          lambda = lambda seq)
cv lambda <- data.frame(lambda = ridge$results!</pre>
                         rmse = ridge$results$R/
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the  $\lambda$ 's that will be tested
- The function we will use is train: Same as before
  - method="glmnet" means that it will run an elastic net.
  - alpha=0 means is a ridge regression
  - o lambda = lambda\_seq is not necessary (you can provide your own grid)

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda_seq <- c(0,10^seq(-3, 3, length = 100))
ridge <- train(spend ~., data = train.data,</pre>
            method = "glmnet",
            preProcess = "scale",
            trControl = trainControl("cv", num!
            tuneGrid = expand.grid(alpha = 0,
                          lambda = lambda seq)
cv_lambda <- data.frame(lambda = ridge$results:</pre>
                         rmse = ridge$results$R/
```

- We will be using the caret package
- We are doing cross-validation, so remember to set a seed!
- You need to create a grid for the  $\lambda$ 's that will be tested
- The function we will use is train: Same as before
- Important objects in CV:
  - $\circ$  results\$lambda: Vector of  $\lambda$  that was tested
  - $\circ$  results\$RMSE: RMSE for each  $\lambda$
  - $\circ$  bestTune\$lambda:  $\lambda$  that minimizes the error term.

#### OLS regression:

#### Ridge regression:

## Let's look at this in R!

## Throwing a lasso

#### Lasso regression

• Very similar to ridge regression, except it changes the penalty term:

$$\min_{eta} \sum_{i=1}^n \underbrace{(y_i - \sum_{k=0}^p x_i eta_k)^2 + \lambda \cdot \sum_{k=1}^p |eta_k|}_{OLS}$$

• In our previous example:

$$\min_{eta} \sum_{i=1}^n (\operatorname{spend}_i - eta_0 - eta_1 \operatorname{female}_i - eta_2 \operatorname{freq}_i)^2 + \lambda \cdot (|eta_1| + |eta_2|)$$

• Lasso regression is also called  $l_1$  regularization:

$$||\beta||_1 = \sum_{k=1}^p |\beta|$$

#### Ridge vs Lasso

Ridge

Final model will have p coefficients

Usually better with multicollinearity

Lasso

Can set coefficients = 0

Improves interpretability of model

Can be used for model selection

#### And how do we do Lasso in R?

```
library(caret)
set.seed(100)
data <- read.csv("https://raw.githubusercontent</pre>
lambda seq <-10^{\circ}seq(-3, 3, length = 100)
lasso <- train(spend ~., data = train.data,</pre>
             method = "glmnet",
             trControl = trainControl("cv", numl
             tuneGrid = expand.grid(alpha = 1,
                           lambda = lambda seq)
cvl_lambda <- data.frame(lambda = lasso$results</pre>
                           rmse = lasso$results$!
```

#### **Exactly the same!**

• ... But change alpha=1!!

#### And how do we do Lasso in R?

#### Ridge regression:

#### Lasso regression:

```
coef(lasso$finalModel, lasso$bestTune$lambda)
## 3 x 1 sparse Matrix of class "dgCMatrix"
$1
```

(Intercept) 117.032965

freq -3.296245

female .

#### Main takeway points

- You can shrink coefficients to introduce bias and decrease variance.
- Ridge and Lasso regression are similar:
  - Lasso can be used for model selection.
- Importance of understanding how to estimate the penalty coefficient.



#### References

- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 6.
- STDHA. (2018). "Penalized Regression Essentials: Ridge, Lasso & Elastic Net"