This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

End of Result Set

Generate Collection Print

L1: Entry 1 of 1

File: DWPI

Dec 21, 1999

DERWENT-ACC-NO: 2000-111925

DERWENT-WEEK: 200010

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: High-chromium@ heat resistant steel manufacturing method to produce structural materials for high temperature machines - involves hot rolling steel slab of specified composition and performing predetermined heat treatment including reheating, cooling and tempering

PATENT-ASSIGNEE:

ASSIGNEE CODE NIPPON STEEL CORP YAWA

PRIORITY-DATA: 1998JP-0163761 (June 11, 1998)

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 JP 11350031 A
 December 21, 1999
 012
 C21D008/02

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

JP 11350031A June 11, 1998 1998JP-0163761

INT-CL (IPC): C21 D 8/02; C22 C 38/00; C22 C 38/22; C22 C 38/54

ABSTRACTED-PUB-NO: JP 11350031A

BASIC-ABSTRACT:

NOVELTY - A steel slab of specified composition is heated to 1000-1300 deg. C and hot rolled at 3-90% draft from 800-1250 deg. C to 700 deg. C. The product is cooled to below 300 deg. C, reheated to 1150-1300 deg. C and cooled at 1 deg. C/min to 1000-700 deg. C. The product is cooled at 0.1-50 deg. C to below 300 deg. C and then tempered above 600 deg. C below Ac1 temperature after maintaining at 1000-700 deg. C for 10-120 min.

DETAILED DESCRIPTION - The composition of the steel slab is set to contain 0.03-0.20% of C, 0.01-1.0% of Si, 0.10-2.0% of Mn, 0.001-0.1% of Al, 0.005-0.1% of N, 8-13% of Cr and one or two kinds from 0.5-2.5% of Mo and 0.5-4.0% of W, with remainder Fe and unavoidable impurities.

USE - For use as structural materials for high temperature machines.

ADVANTAGE - High Cr heat resistant steel of excellent toughness in addition to high strength and creep characteristics under external pulling effect can be manufactured with suitable alloying elements. The steel has a high industrial value as a structural material for manufacture of high temperature machines.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: HIGH CHROMIUM@ HEAT RESISTANCE STEEL MANUFACTURE METHOD PRODUCE STRUCTURE MATERIAL HIGH TEMPERATURE MACHINE HOT ROLL STEEL SLAB SPECIFIED COMPOSITION PERFORMANCE PREDETERMINED HEAT TREAT REHEAT COOLING TEMPER

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-350031

(43) Date of publication of application: 21.12.1999

(51)Int.CI.

8/02 C21D // C22C 38/00 C22C 38/22

C22C 38/54

(21) Application number: 10-163761

(71)Applicant:

NIPPON STEEL CORP

(22)Date of filing:

11.06.1998

(72)Inventor:

HASEGAWA TOSHINAGA

TOMITA YUKIO

(54) PRODUCTION OF HIGH CR HEAT RESISTANT STEEL EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND CREEP STRENGTH

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for simultaneously satisfying creep characteristics and toughness at the time of producing a high Cr heat resistant steel by normalizing or tempering treatment.

SOLUTION: A slab contg., by weight, 0.03 to 0.20%, C, 0.01 to 1.0% Si, 0.10 to 2.0% Mn, 0.002 to 0.1% Al, 0.005 to 0.1% N and 8 to 13% Cr, furthermore contg. one or two kinds of 0.5 to 2.0% Mo and 0.5 to 4.0% W, and the balance Fe with inevitable impurities is heated, hot rolling in which the cumulative draft is 30 to 90% is started in the temp. region of 800 to 1250°C and is finished at ≥700°C, and it is cooled to ≤300°C, is reheated at 1150 to 1300°C, is cooled to the temp. region of 1000 to 700°C at the cooling rate of ≥ 1°C/min, is held in the temp. region for 10 to 120 min, is thereafter cooled to ≤ 300°C at the cooling rate of 0.1 to 50°C/s and is moreover tempered at 600°C to less than the Acl transformation point.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-350031

(43)公開日 平成11年(1999)12月21日

(51) Int.CL.8		識別記号	FI			
C 2 1 D	8/02		C 2 1 D	8/02	D	
// C22C	38/00	302	C 2 2 C	38/00	3 0 2 Z	
	38/22			38/22		
	38/54			38/54		

審査請求 未請求 請求項の数5 OL (全 12 頁)

(21)出顧番号	特顧平 10-163761	(71)出顧人 000006655 新日本製鍵株式会社
(22)出顧日	平成10年(1998)6月11日	東京都千代田区大手町2丁目6番3号
		(72)発明者 長谷川 俊永 千葉県富津市新富20-1 新日本製鐵株式 会社技術開発本部内
		(72)発明者 冨田 幸男 千葉県富津市新富20-1 新日本製織株式 会社技術開発本部内
	•	(74)代理人 弁理士 田村 弘明 (外1名)

(54) 【発明の名称】 低温物性とクリープ強度に優れた高C r 耐熱網の製造方法

(57)【要約】

【課題】 高C r 耐熱鋼を焼きならし焼戻しあるいは焼 入焼戻し処理により製造するに際して、クリープ特性と 朝性とを同時に向上させる方法を提供する。

【解決手段】 重量%で、C:0.03~0.20%、Si: 0.01~1.0 %、M: 0.10~2.0%、Al:0.002~0.1%、N: 0.0 05~0.1%、Cr:8~13%を含有し、さらに、Mo:0.5~2.0%、W: 0.5~4.0%の1種または2種を含有し、残部Fe及び不可避不純物からなる鋼片を1000℃~1300℃に加熱し、累積圧下率が30%以上かつ90%以下の熱間圧延を800℃以上かつ1250℃以下の温度域で開始し、該熱間圧延を700℃以上の温度で終了し、300℃以下まで冷却の後、1150℃以上かつ1300℃以下の温度に再加熱し、1℃/分以上の冷却速度で1000℃~700℃の温度域に冷却し、該温度域で10分~120分保持した後、300℃以下まで 0.1℃/s~50℃/sの冷却速度で冷却し、さらに600℃以上かつA c 1 変態点未満の温度で焼戻すことを特徴とする低温制性とクリープ強度に優れた高Cr耐熱鋼の製造方法。

【特許請求の範囲】

【請求項1】 重量%で、

 $C : 0.03 \sim 0.20\%$

 $Si: 0.01\sim1.0\%$

 $Mn: 0.10\sim 2.0\%$

 $A1:0.002\sim0.1\%$

 $N : 0.005 \sim 0.1\%$

 $Cr: 8\sim 13\%$

を含有し、さらに、

 $Mo: 0.5\sim 2.0\%$

 $W : 0.5 \sim 4.0\%$

の1種または2種を含有し、残部Fe及び不可避不純物 からなる鋼片を1000℃~1300℃に加熱し、累積 圧下率が30%以上かつ90%以下の熱間圧延を800 ℃以上かつ1250℃以下の温度域で開始し、該熱間圧 延を700℃以上の温度で終了し、次いで300℃以下 まで冷却の後、1150℃以上かつ1300℃以下の温 度に再加熱し、1℃/分以上の冷却速度で1000℃~ 700℃の温度域に冷却し、該温度域で10分~120 分保持した後、300℃以下まで0.1℃/s~50℃ 20 クリープ強度に優れた高Cr耐熱鋼の製造方法。 /sの冷却速度で冷却し、さらに600℃以上かつA c 1変態点未満の温度で焼戻すことを特徴とする低温靭性 とクリープ強度に優れた高C r耐熱鋼の製造方法。

【請求項2】 重量%で、

 $C : 0.03 \sim 0.20\%$

 $Si: 0.01\sim 1.0\%$

 $Mn: 0.10\sim 2.0\%$

 $A1:0.002\sim0.1\%$

 $N : 0.005 \sim 0.1\%$

Cr:8~13%、

を含有し、さらに、

 $Mo: 0.5\sim 2.0\%$

 $W : 0.5 \sim 4.0\%$

の1種または2種を含有し、残部Fe及び不可避不純物 からなる鋼片を1000℃~1300℃に加熱し、累積 圧下率が30%以上かつ90%以下の熱間圧延を800 ℃以上かつ1250℃以下の温度域で開始し、該熱間圧 延を700℃以上の温度で終了し、300℃以下まで冷 却の後、1150℃以上かつ1300℃以下の温度に再 加熱し、1℃/分以上の冷却速度で900℃~850℃ 40 らしと称する場合もある)。 の温度域に冷却し、さらに該温度域から800℃~70 0℃まで0.1℃/分 \sim 2℃/分の冷却速度で冷却した 後、300℃以下まで0.1℃/s~50℃/sの冷却 速度で冷却し、さらに600℃以上かつAc1変態点未 満の温度で焼戻すことを特徴とする低温靭性とクリープ 強度に優れた高Cr耐熱鋼の製造方法。

【請求項3】 鋼片が、さらに重量%で、

 $V : 0.05 \sim 0.50\%$

 $Nb: 0.01 \sim 0.20\%$

 $Ta: 0.02\sim 0.40\%$

 $Ti:0.005\sim0.10\%$

 $Zr:0.005\sim0.10\%$

の1種または2種以上を含有することを特徴とする請求 項1又は2に記載の低温靭性とクリープ強度に優れた高 Cr耐熱鋼の製造方法。

2

【讃求項4】 錮片が、さらに重量%で、

 $Ni: 0.05\sim3.0\%$

 $Cu: 0.05\sim 1.5\%$

 $Co: 0.05\sim 5.0\%$

10 B $: 0.0005 \sim 0.01\%$

> の1種または2種を含有することを特徴とする請求項1 ~3のいずれか1項に記載の低温靭性とクリープ強度に 優れた高C r 耐熱鋼の製造方法。

【請求項5】 鋼片が、さらに重量%で、

 $Mg: 0.0005\sim 0.01\%$

 $Ca: 0.0005 \sim 0.01\%$

REM: 0.005~0.10%

のうち1種または2種以上をさらに含有することを特徴 とする請求項1~4のいずれか1項に記載の低温靭性と

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高温機器用の構造 材料として、優れたクリープ強度と良好な低温報性とを 併せ持つ、Cr量が8~13%で、マルテンサイト~マ ルテンサイト+δフェライト組織を有する高Cr耐熱鋼 の製造方法に関するものである。

[0002]

【従来の技術】Cァを8~13%程度含む高Cァ耐熱鋼 30 は、熱間圧延の後、比較的高温の焼きならしまたは焼入 れれ処理により製造されることが一般的である。この耐 熱鋼はCr量が高いために、加速冷却あるいは水冷によ る焼入れによらずとも、放冷による焼きならしによって も十分焼きが入り、鋼材表面から中心部全体にマルテン サイト主体組織とすることが容易である。そのため、通 常焼きならし+焼戻しにより製造されることが一般的で ある(加速冷却あるいは水冷、放冷とも冶金的な効果が ほぼ同一であるため、以降、組織制御のための再加熱処 理を加速冷却あるいは水冷(焼入れ)、放冷とも焼きな

【0003】高温機器用の構造材料としての高Cr鋼は 高温強度及びクリープ強度の向上が要求されるため、従 来から、該特性の向上のための技術開発が種々行われて いる。高温強度、クリープ強度の向上のための技術とし ては、最近、焼きならし処理を省略して、熱間圧延まま で焼戻しを施す製造方法が、例えば、特開平5-331 544号公報などで開示されている。この焼きならし処 理を省略する製造方法は一般的にTMCPプロセスと呼 ばれ、熱間圧延や圧延後の冷却条件の工夫により、クリ 50 一プ特性と靱性の向上とを同時に達成できる優れた技術

である。しかしながら、このTMCPプロセスでは圧延 の効果を利用するために、圧延の負荷が大きくならざる を得ず、厚手材の製造に限界がある。また、熱間加工を 行うと圧延の効果が消滅する等、の問題もあり、用途に よっては焼きならし処理による製造方法が必須となる場 合も多い。

【0004】焼きならし+焼戻しによる場合のクリープ 強度向上については、焼きならし温度を高めれば、C r、Mo、W、さらにはNb、V等の析出物、炭窒化物 構成元素の焼きならし段階での固溶量が増加して、焼戻 10 し段階での析出強化量が増加することで短時間の高温強 度向上には有効である。ただし、クリープ特性のよう に、高温に長時間晒される場合には、焼戻しで生じる析 出物は微細なために不安定で、途中で析出物の粗大化が 生じ、クリープ強度向上には必ずしも有効でない。この 点はTMCPプロセスで製造した鋼にも共通した問題で ある。さらに、微細な析出物は低温靱性にも悪影響を及 ばす。即ち、高温強度とクリープ特性の両立、あるいは 高温強度、クリープ強度と靱性の両立は従来の製造方法 によっては非常に難しかった。

【0005】さらに、Crを8~13%程度を含む高C r耐熱鋼においては、焼きならし温度を過剰に高めると 平衡的にδフェライト相が出現するため、必ずしもクリ 一プ強度が向上するとは限らず、粗大なるフェライト相 のために、朝性の劣化が顕著となるため、従来は、焼き ならし温度については、1000℃~1100℃程度の 狭い温度範囲に限定されていた。例えば、特開平6-1 28640号公報に記載の発明のように、薄手材の製造 のために焼きならし温度を850℃~980℃の低温に による強化を一部犠牲にしていることになる。

【0006】また、耐酸化性等のためにCr量を高める と一層

るフェライトが生成しやすくなり、その場合に は、NiやCo等の高価なオーステナイト安定化元素を*

> $C : 0.03 \sim 0.20\%$ $Mn: 0.10\sim 2.0\%$

> $N : 0.005 \sim 0.1\%$

を含有し、さらに、

 $Mo: 0.5\sim 2.0\%$

からなる鋼片を1000℃~1300℃に加熱し、累積 圧下率が30%以上かつ90%以下の熱間圧延を800 ℃以上かつ1250℃以下の温度域で開始し、該熱間圧 延を700℃以上の温度で終了し、次いで300℃以下 まで冷却の後、1150℃以上かつ1300℃以下の温 度に再加熱し、1℃/分以上の冷却速度で1000℃~※

 $C : 0.03 \sim 0.20\%$

 $Mn: 0.10\sim 2.0\%$

 $N : 0.005 \sim 0.1\%$

*添加することが行われるが、このような対策は必然的な 製造コストの上昇や他の特性の劣化を招く可能性もあ る。

【0007】以上のように、従来の技術では、焼きなら し温度を高めてクリープ強度と靱性とを同時に確保する ことはできなかった。

[0008]

【発明が解決しようとする課題】上記のように、従来の 技術では再加熱焼入れ・焼戻しまたは焼きならし・焼戻 し処理において、高温強度、クリープ強度と靱性とを両 立させることが困難であるという問題があった。本発明 は添加元素を有効活用して、優れた高温強度、クリープ 強度と靱性とを両立できる、Cr量が8~13%で、マ ルテンサイト~マルテンサイト+δフェライト組織を有 する高Cr耐熱鋼の製造方法を提供するものである。

[0009]

【課題を解決するための手段】本発明者らは、主として 耐酸化性の観点から8~13%、程度のCrを含有し、 さらに、主として高温強度、クリープ強度の観点からM 20 o、Wの一方、あるいは両者を含有するマルテンサイト ~マルテンサイト+&フェライト組織を有する高Cr耐 熱鋼の高温強度、クリープ強度及び靱性とを同時に向上 させるための製造方法を、クリープ条件でも安定な析出 物の微細分散と、δフェライトの生成抑制の観点から検 討し、本発明に至った。

【0010】本発明の要件は、焼入れれまたは焼きなら しを行うに際して、先ず、元素の溶体化のための高温加 熱を行った後、該加熱温度よりも低い適切な温度域でさ らに保持するか、該温度域を適切な速度で冷却すること 限定する技術は開示されているが、この場合には折出物 30 によって、靱性とクリーブ強度に悪影響を及ぼするフェ ライトを抑制し、かつ、クリープ強度向上に有効なクリ ープ中でも安定な析出物の微細分散を図れることにあ る。その要旨とするところは以下の通りである。

【0011】(1) 重量%で、

 $Si:0.01\sim1.0\%$

 $A1:0.002\sim0.1\%$

Cr:8~13%

 $W : 0.5 \sim 4.0\%$

の1種または2種を含有し、残部Fe及び不可避不純物 40%700℃の温度域に冷却し、該温度域で10分~120 分保持した後、300℃以下まで0.1℃/s~50℃ /sの冷却速度で冷却し、さらに600℃以上かつA c 1変態点未満の温度で焼戻すことを特徴とする低温靭性 とクリープ強度に優れた高Cr耐熱鋼の製造方法。

【0012】(2) 重量%で、

 $Si:0.01\sim1.0\%$

 $A1:0.002\sim0.1\%$

Cr:8~13%

を含有し、さらに、

 $Mo: 0.5\sim 2.0\%$

の1種または2種を含有し、残部Fe及び不可避不純物 からなる鋼片を1000℃~1300℃に加熱し、累積 圧下率が30%以上かつ90%以下の熱間圧延を800 ℃以上かつ1250℃以下の温度域で開始し、該熱間圧 延を700℃以上の温度で終了し、次いで300℃以下 まで冷却の後、1150℃以上かつ1300℃以下の温 度に再加熱し、1℃/分以上の冷却速度で900℃~8*

> $V : 0.05 \sim 0.50\%$ $Ta: 0.02\sim 0.40\%$ $Zr:0.005\sim0.10\%$

の1種または2種以上を含有することを特徴とする前記 (1)又は(2)に記載の低温靭性とクリープ強度に優※

> $Ni: 0.05\sim3.0\%$ $Co: 0.05\sim 5.0\%$

の1種または2種を含有することを特徴とする前記

(1)、(2)又は(3)に記載の低温靭性とクリープ★

 $Mg: 0.0005\sim 0.01\%$

REM: 0. 005~0. 10%

のうち1種または2種以上をさらに含有することを特徴 20☆を見出した。 とする前記(1)、(2)、(3)又は(4)に記載の 低温靭性とクリープ強度に優れた高Cr耐熱鋼の製造方 法。

[0016]

【発明の実施の形態】以下、本発明についてさらに詳細 に説明する。本発明が目的とするところは、焼きならし 焼戻し処理 (焼入れ焼戻しも含む) により製造する場合 に、高温強度、クリープ強度向上に寄与する、炭窒化物 を主体とする微細析出物を高温・長時間のクリープ中に 的に有効活用するために、再加熱の溶体化を十分とする 高温の再加熱条件においても、高温強度、クリープ強 度、特に靱性に悪影響の顕著なるフェライトの生成を抑 制できるような製造方法を提供することにある。即ち、 化学組成を変更することなく、あるいは、高価な合金元 素量をむやみに高めることなく、最も良好なクリープ強 度と靱性のバランスを与える製造条件を提示することが 本発明の目的となる。

【0017】高温強度、特にクリープ強度を高める冶金 的手段の中で最も有効なものの一つに、析出物による析 40 出強化、分散強化がある。その効果を有効に発揮するた めには、析出物をクリープ中でも安定であることを前提 とした上で、極力高密度で微細分散させる必要がある。 通常、オーステナイト中で析出させるよりも、焼きなら しの冷却や焼戻し段階のフェライト温度域で析出させる 方が微細析出物を密に分散できるため、オーステナイト 中、即ち焼きならしの加熱段階では析出物を溶体化させ ることが析出物による強化のためには好ましいと考えら れている。しかしながら、本発明者らは、このような手

 $W : 0.5 \sim 4.0\%$

*50℃の温度域に冷却し、さらに該温度域から800℃ ~700℃まで0.1℃/分~2℃/分の冷却速度で冷 却した後、300℃以下まで0.1℃/s~50℃/s の冷却速度で冷却し、さらに600℃以上かつAc1変 態点未満の温度で焼戻すことを特徴とする低温靭性とク リープ強度に優れた高Cr耐熱鋼の製造方法。

【0013】(3) 鋼片が、さらに重量%で、

 $Nb: 0.01\sim 0.20\%$ $Ti: 0.005\sim 0.10\%$

※れた高Cr耐熱鋼の製造方法。

【0014】(4) 鋼片が、さらに重量%で、

 $Cu: 0.05\sim 1.5\%$

:0.0005~0.01%

★強度に優れた高C r耐熱鋼の製造方法。

【0015】(5) 鋼片が、さらに重量%で、

 $Ca: 0.0005\sim 0.01\%$

【0018】すなわち、第1点として、500℃~Ac 1変態点以下程度の温度域で長時間保持されると、焼き ならしの冷却や焼戻し段階で析出する微細析出物は必ず しも安定でなく、保持中に粗大化してクリープ特性に対 する有効性を減じること、第2の点として、高Cr系鋼 で、比較的Cr、Mo、W等のフェライト安定化元素含 有量の多い鋼では、析出物の溶体化のために焼きならし の温度を単純に高めると、
るフェライトが生成する場合 があり、δフェライトは強度、クリープ特性、靱性いず も粗大化しない安定なものとし、かつ、該析出物を極限 30 れも劣化させるため、そのような組成の鋼では焼きなら し温度を高めることは特性向上の手段として採用できな いことが判明した。

> 【0019】本発明者らは析出物による強化を最大限活 用することが、高価な合金元素量を節約でき、さらに成 分的な制約を最小限にでき、かつ安定にクリープ特性を 確保できる最も基本的な要件であるとの考えに基づき、 析出物形成元素の溶体化にための焼きならし温度の高温 化を前提とした上で、高温加熱における上記の問題を解 決して、優れたクリープ特性と靱性とを同時に達成でき る高Cr耐熱鋼の製造技術を探索した結果、安定な析出 物の高密度・微細分散とクリープ特性、靱性に有害なる フェライトの生成抑制を同時に図ることができる全く新 しい冶金的手段を見出し、本発明に至った。以下に、冶 金的手段の基本的要件を先ず説明する。

【0020】通常、一つの組成の鋼で、オーステナイト 中で析出物を析出させるためには焼きならしの加熱温度 を低くするが、この場合は、溶体化温度よりも低いた め、焼きならしの昇温中から加熱保持中に、すでに析出 している析出物やその他の介在物、粒界等を析出サイト 段による強化は以下の2点で必ずしも好ましくないこと☆50 として、徐々に析出するため、その数密度は焼きならし

6

の冷却や焼戻し段階のフェライト温度域で析出させる場 合に比べてはるかに小さくなり、さらに析出物の大半は この段階で析出しているため、その後の焼戻しでの微細 析出量も少ないため、析出強化量、分散強化量も小さ く、析出物が有効に利用されているとは言い難い。

【0021】一方、焼きならし温度を完全溶体化温度以 上とした後、放冷あるいは水冷し、さらに焼戻しを施す 製造方法による場合は、焼きならしの冷却が放冷程度の 比較的徐冷の場合は一部冷却中に析出する可能性がある が、大部分は焼戻し段階で析出する。この場合は過飽和 10 に固溶された状態で、比較的低温のフェライト温度域で 析出するために、析出物の分散は非常に微細かつ高密度 になる。しかし、この場合の析出物は非常に微細である ため、また一部のその形態と組成の故に、500℃~A c 1変態点の温度域で長時間保持されると粗大化が生じ 始め、また組成、構造、さらにマトリクスとの整合性に も変化が生じてくるため、転位の移動に対する障害物と しての有効性が低減する。従って、通常の引張試験のよ うな短時間強度の向上には有効であるが、短時間強度の 上昇量ほどにはクリープ強度の向上は図られず、その効 20 果に限度がある。

【0022】析出物を極限的にクリープ特性向上に有効 活用するためには、焼きならしの加熱温度を高めて析出 物形成元素を完全に溶体化させた上で、その後のプロセ スを工夫することによってオーステナイト中で微細・高 密度析出させる必要がある。そのための方法として、本 発明者らは加熱後、冷却中に、加熱温度よりも低く、析 出物形成元素が析出可能な温度で保持または、該温度域 を適切な速度で冷却させる方法を見出した。なお、本発 明法によってオーステナイト中で高密度に微細分散した 30 析出物の組成、形態は一様ではないが、最も典型的なも のはオーステナイト中で折出する故に、球状あるいは角 状の形態を有する炭窒化物である。さらに焼戻し段階で はオーステナイト中で形成された安定な該析出物を核と して、焼きならし段階でなまだ固溶していた元素により 同種または別種の炭窒化物が複雑な形態で析出すること で一層の強化が図られる。

【0023】また、該プロセスの組織的な変化を詳細に 調査、検討した結果、該プロセスによって、析出物の分 散制御に加えて、単純な高温焼きならしではるフェライ トの生成が不可避な場合でも、その生成を抑制あるいは 低減することが可能であり、その点でもクリープ強度向 上に有効で、さらにクリープ強度と靱性を同時に向上で きる極めて優れた手段であることを見いだした。

【0024】以上が本発明の原理的な要件であり、本発 明者らは該原理に基づいて、以下の二種類の具体的な手 段を発明した。すなわち、第一の手段は請求項1に記載 の「本発明を満足する化学組成範囲の鋼片を1000℃ ~1300℃に加熱し、累積圧下率が30%以上かつ9 0%以下の熱間圧延を800℃以上かつ1250℃以下 50 ど材質には好ましいが、90%超では効果が飽和すると

の温度域で開始し、700℃以上の温度で終了し、次い で300℃以下まで冷却の後、1150℃以上かつ13 00℃以下の温度に再加熱し、1℃/分以上の冷却速度 で1000℃~700℃の温度域に冷却し、該温度域で 10分~120分保持した後、300℃以下まで0.1 C/s~50C/sの冷却速度で冷却し、さらに、60 0℃以上、Ac1変態点未満の温度で焼き戻す」方法で ある。また、第二の手段は請求項2に記載の「本発明を 満足する化学組成範囲の鋼片を1000℃~1300℃ に加熱し、累積圧下率が30%以上かつ90%以下の熱 間圧延を800℃以上かつ1250℃以下の温度域で開 始し、700℃以上の温度で終了し、次いで300℃以 下まで冷却の後、1150℃以上かつ1300℃以下の 温度に再加熱し、1℃/分以上の冷却速度で900℃~ 850℃の温度域に冷却し、該温度域から800℃~7 00℃まで0.1℃/分~2℃/分の冷却速度で冷却し た後、300℃以下まで0.1℃/s~50℃/sの冷 却速度で冷却し、さらに、600℃以上、Ac1変態点 未満の温度で焼き戻す」方法である。

8

【0025】本発明は、その特性の発現の手段を焼きな らし (焼入れ)・焼戻し処理を基本としているが、該処 理の前に鋼材の形状を作り込むために鋼片に熱間圧延を 施す。その条件は、前記第一の手段、第二の手段ともに 共通で、鋼片を1000℃~1300℃に加熱し、累積 圧下率が30%以上かつ90%以下の熱間圧延を800 ℃以上かつ1250℃以下の温度域で開始し、700℃ 以上の温度で終了し、次いで300℃以下まで冷却す る。

【0026】鋼片の加熱温度を1000℃~1300℃ の範囲に限定するのは、加熱温度が1000℃未満であ ると、粗大な凝固組織の解消が不十分となって最終的な 鋼材における靱性を劣化させるためと、本発明が範囲と しているようなCrやMo、W等の析出物形成元素を多 く含む鋼においてはその溶体化が不十分となって、後の 焼きならし・焼戻し処理において強化に有効な析出物の 高密度・微細分散が図られないためであり、1300℃ 超では圧延後の組織が粗大化してやはり朝性劣化につな がるのと、加熱時に生成するるフェライトの量が多くな り、かつ粗大となるために、その後に本発明に従った熱 処理を施してもδフェライトの解消が困難となって、そ の点でも軟性確保に難点があるためである。

【0027】1000℃~1300℃で鋼片を加熱した 後、熱間圧延で鋼材形状を整えるが、圧延は、累積圧下 率が30%以上かつ90%以下の熱間圧延を800℃以 上かつ1250℃以下の温度域で開始し、700℃以上 の温度で終了する必要がある。累積圧下率が30%未満 では圧延の効果が十分でなく、凝固組織の解消やポロシ ティなどの欠陥の圧着も不十分となるため、累積圧下率 は30%以上とする必要がある。累積圧下率は大きいほ

ともに、圧延機に対する負荷の増大、圧延後の鋼材の板 厚に限度が生じる等の点から、実用上の上限として累積 圧下率は90%以下に限定する。

【0028】ただし、圧延の効果を十分発揮させるため には該累積圧下率をこの範囲に限定するだけでなく、圧 延温度域も適正化すべきである。本発明では実験結果に 基づいて、累積圧下率が30%以上かつ90%以下の熱 間圧延を800℃以上かつ1250℃以下の温度域で開 始し、700℃以上の温度で終了することとする。

【0029】圧延開始温度が800℃未満であると、鋼 材の変形抵抗が過大となって圧延機に過度の負荷をかけ る懸念があり、また、化学組成によっては圧延中に変態 を生じて機械的性質に好ましくない粗大組織を生じる可 能性が大となる。一方、1250℃超では圧延によるオ ーステナイトの再結晶による細粒化が十分働かない可能 性が大となる。以上の理由により、本発明においては、 圧延開始温度を800℃~1250℃の範囲に限定す る。

【0030】圧延開始温度を上記のように限定し、さら に、終了温度も限定する必要がある。すなわち、圧延終 20 了温度が700℃未満にならないようにする必要がある が、これは、開始温度を800℃以上に限定したのと同 様、終了温度が700℃未満であると、鋼材の変形抵抗 が過大となって圧延機に過度の負荷をかける懸念がある ためと、化学組成によっては圧延中に変態を生じて機械 的性質に好ましくない粗大組織を生じる可能性が大とな るためである。

【0031】1000℃~1300℃で鋼片を加熱した 後、累積圧下率が30%以上かつ90%以下の熱間圧延 を800℃以上かつ1250℃以下の温度域で開始し、 700℃以上の温度で終了することで、材質に好ましく ない欠陥や凝固組織を解消でき、また、圧延機に過大な 負荷をかけたり、圧延能率を損なうことなく、さらに、 後の熱処理での析出物での効果を最も効率的に利用でき るように十分な溶体化が達成されかつオーステナイト粒 径が微細なマルテンサイト主体組織として、焼きならし ・焼戻し後の材質向上に好ましい圧延材の組織を達成す ることが可能となる。

【0032】圧延後の冷却は、本発明範囲の化学組成を 有する鋼であれば、放冷でも加速冷却でも構わないが、 後の焼きならし、焼戻しにおける析出強化に悪影響を及 ぼす懸念を考慮すると、圧延後の冷却中に析出物が極端 に粗大化するような徐冷は避けるべきである。具体的に は圧延終了後から400℃までの平均冷却速度が5℃/ 分以上であれば全く問題ない。

【0033】なお、本発明における鋼片とは、上記熱間 圧延に供する前の比較的板厚の厚い鋼材全般を示してお り、溶解した鋼をそのまま凝固させたインゴット、連続 鋳造スラブ、ビレット、ブルーム等、及び、該インゴッ

10 理したもの、また予備的に熱間圧延により形状を整えた もの全てを含む。

【0034】以上が熱処理前の熱間圧延条件に関する限 定条件の理由であるが、次に、本発明の製造方法に関し て最も重要な要件である、焼きならしあるいは焼入れに 関して説明する。焼きならしあるいは焼入れに関して は、2通りの手段を提示しているが、個々に説明する。 【0035】まず、前記第一の手段では、本発明の圧延 方法に従って製造した圧延材を、1150℃以上かつ1 300℃以下の温度に再加熱し、1℃/分以上の冷却速 度で1000℃~700℃の温度域に冷却し、該温度域 で10分~120分保持した後、300℃以下まで0. 1℃/s~50℃/sの冷却速度で冷却することを特徴 としている。

【0036】再加熱温度を1150℃以上かつ1300 ℃以下に限定するのは、析出物形成元素の溶体化が第一 の目的で、再加熱温度が1150℃未満では、本発明の 化学組成範囲に含まれるMo、W、Nb、Ta、Ti、 Zr等の析出物形成元素の溶体化が不十分となるため、 好ましくない。溶体化には再加熱温度が高い方が当然好 ましいが、再加熱温度が高すぎると、オーステナイト粒 径が極端に粗大化したり、表面の酸化が顕著となって鋼 材の表面性状の劣化を招いたり、他の条件を本発明範囲 内としても粗大なるフェライトの抑制が十分にできなく なる等の問題が顕在化する。これらの問題が生ぜず、溶 体化が可能な範囲ということで、本発明では再加熱温度 を1150℃~1300℃の範囲とする。 なお、本発明 に従わない、通常の焼きならしや焼入れ工程で処理する 場合、8~13%、程度の高Cr鋼においては、特に靱 30 性に好ましくない粗大なるフェライトを抑制する必要性 から、再加熱温度はせいぜい1100℃以下とするのが 一般的であり、後述の再加熱後の本発明特有の条件があ って初めてこのような高温での再加熱が可能となる。 【0037】焼きならし、あるいは焼入れの再加熱温度 を1150℃以上かつ1300℃以下とした条件におい て、本発明が目的としている、クリープ条件下で安定な

【0038】再加熱後に1000℃~700℃の温度域 で10分~120分保持することによって、クリーフ。 強度向上に寄与する安定な析出物を高密度に分散させ、 かつ該温度域がオーステナイト安定域となる故に高温再 加熱で生じたるフェライトを再度オーステナイトに変態 させて、最終組織中のδフェライトの割合を機械的性質 の劣化につながらない程度まで低減することになるが、 再加熱温度から該温度域までの冷却が過度にゆっくりで ト、スラブ等をさらに偏折拡散、組織制御のために熱処 50 あると、冷却中にクリープ強度に有効でなく、靱性に悪

析出物を極限的に高密度に析出させるために、また合わ

せて、高温再加熱で生じるるフェライトを極力抑制する

ために、再加熱後、1℃/分以上の冷却速度で1000

℃~700℃の温度域に冷却し、該温度域で10分~1

20分保持する。

影響を及ぼす粗大な析出物が析出する恐れがあるため、 1000 \sim 700 \sim 0 \sim 0 0 \sim 0 \sim

【0039】保持条件を1000℃~700℃で10分 ~120分と限定するのは、保持温度が1000℃超で は析出物の析出量が少なく、また、δフェライトも平衡 的に残存する量が多いために、該保持を行う効果が十分 現れず、逆に700℃未満であると、保持時間によって は変態を生じてしまって強度低下を招く恐れがあり、ま た、クリープ強度に寄与する析出物の量は増加するもの 10 の、M23C6タイプを主とする炭化物やラーベス相が 粗大に析出して靱性を損なうようになる。従って、本発 明では該保持における保持温度を1000℃~700℃ に限定する。また、該保持温度における保持時間も限定 すべきで、10分未満では析出物が十分量析出できず、 逆に120分超であると、析出物の成長が生じて数密度 を減じてしまい、また、不要に長時間の保持は生産性を 阻害することもあるため、本発明では保持時間を10分 ~120分に限定する。

【0040】上記の理由により、オーステナイト中での 20 析出を適正化するために、1150℃以上かつ1300 ℃以下で再加熱後、1℃/分以上の冷却速度で1000 ℃~700℃の温度域に冷却し、該温度域で10分~1 20分保持するが、変態組織をクリープ強度や報性確保 に好ましい、マルテンサイト主体組織とするために30 0℃以下まで0.1℃/s~50℃/sの冷却速度で冷 却する必要がある。すなわち、マルテンサイト変態がほ は完了する300℃以下まで0.1℃/s以上の冷却速 度で冷却すれば、本発明の範囲内の化学組成の鋼では十 分マルテンサイト主体組織とすることが可能であるが、 O. 1℃/s未満であると場合によっては、靱性や強度 に悪影響を及ぼす粗大なベイナイトが生じる場合もある ため、確実に該ベイナイト変態を抑制してマルテンサイ ト変態を生じさせるためには0.1℃/s以上の冷却速 度を確保すべきである。

【0041】ただし、冷却速度が50℃/sを超えるような急冷は、組織制御にはほとんど効果がなく、むしろ 残留応力が大きくなったり、鋼板形状を悪化させる懸念 があるため、避けるべきである。従って、鋼材の板厚が 極端に厚くなく、放冷における冷却速度が0.1℃/s 40 以上となる場合には放冷でも十分であり(焼きなら

し)、厚手材において、放冷では該下限冷却速度を満足 できない場合には、水冷等の加速冷却による焼入れ処理 を施して、本発明で規定している冷却速度を達成させる 必要が生じる。

【0042】焼きならしあるいは焼入れに関する前記第二の手段は、本発明の圧延方法に従って製造した圧延材を、1150℃以上かつ1300℃以下の温度に再加熱し、1℃/分以上の冷却速度で900℃~850℃の温度域に冷却し、該温度域から800℃~700℃まで

12 0.1℃/分~2℃/分の冷却速度で冷却した後、30

0℃以下まで0. 1℃/s~50℃/sの冷却速度で冷却することを要旨とするものである。

【0043】クリープ強度に最適な析出物サイズ、形態、分布を達成し、8フェライトを抑制するための手段としては、前記第一の手段による方が確実であるが、この方法は一種の二段熱処理となるため、工業的に採用する場合には、炉の能力等で種々制約を生じる可能性がある。そこで、前記第二の手段は、二段熱処理によらずに、冷却パターンの工夫だけで本発明の目的とする、析

に、冷却パターンの工夫たけて本発明の目的とする、析 出物の制御、δフェライトの抑制を可能とする方法とし て発明したものである。

【0044】再加熱温度を1150℃以上かつ1300 で以下に限定するのは第一の手段と全く同じ理由である。再加熱後、900℃~850℃の温度域に1℃/分以上の速度で冷却するが、これは、第一の手段において、析出物とδフェライトの制御のための保持の前の冷却を1℃/分以上と限定したと同様、再加熱温度から該温度域までの冷却が1℃/分未満であると、冷却中にクリープ強度に有効でなく、報性に悪影響を及ばす祖大な析出物が析出する恐れがあるためである。

【0045】900℃~850℃の温度域まで1℃/分 以上の速度で冷却した後は、該温度域から800℃~7 00℃まで0.1℃/分~2℃/分の冷却速度で冷却す る必要がある。これは、第一の手段における析出物の制 御、δフェライトの抑制のための保持に相当する条件 で、保持のかわりに0.1 $^{\circ}$ $^{\circ}$ の制御冷却を900℃~850℃から開始して、800 ℃~700℃で終了することを特徴とする。0.1℃/ 分~2℃/分の冷却速度の制御冷却を900℃~850 ℃から開始して、800℃~700℃で終了することに より、クリープ強度に最適な析出物サイズ、形態、分布 と、
るフェライトを抑制とが達成されるが、該温度域の 冷却速度が0.1℃/分未満であると、析出物が粗大化 して分散密度も小さくなってクリープ強度向上効果が生 ぜず、逆に2℃/分を超えるほど速いと、該温度域での 析出が不十分となり、クリープ中でも安定な析出物の比 率が減少する上に、δフェライトの抑制も不十分となる ため、好ましくない。

40 【0046】また、0.1℃/分~2℃/分の冷却速度で冷却する温度域は、開始温度として900℃~850℃、終了温度として800℃~700℃とする必要がある。開始温度が900℃超であると、析出物が粗大化するため、好ましくなく、850℃未満であると、0.1℃/分~2℃/分の冷却速度で冷却する温度域がせまくなるために析出が十分に生じない恐れがある。従って、開始温度域は900℃~850℃に限定する。一方、終了温度が800℃超であると、やはり0.1℃/分~2℃/分の冷却速度で冷却する温度域がせまくなるために50 析出が十分に生じない恐れがあり、700℃未満である

14 であれば、各々加熱温度を変化させた焼戻し相当の熱処 理を何回繰り返しても構わない。

と、冷却速度が遅いために、高温で変態を生じてしまっ て強度低下を招く恐れがあり、また、クリープ強度に寄 与する析出物の量は増加するものの、M23C6タイプ を主とする炭化物やラーベス相が粗大に析出して靱性を 損なうようになる。従って、本発明では0.1℃/分~ 2℃/分の冷却速度での冷却の終了温度を800℃~7 00℃に限定する。

【0047】本発明の圧延方法に従って製造した圧延材 を、以上に述べた理由により、1150℃以上かつ13 00℃以下の温度に再加熱し、1℃/分以上の冷却速度 10 で900℃~850℃の温度域に冷却し、該温度域から 800℃~700℃まで0.1℃/分~2℃/分の冷却 速度で冷却した後の冷却は第一の手段と同じ理由によ り、300℃以下まで0.1℃/s~50℃/sの冷却 速度で冷却する。

【0048】なお、本発明においては、本発明の効果を 損なわない範囲であれば、熱間圧延工程と焼きならしあ るいは焼入処理の間に、水素割れの防止等の目的で、熱 処理を施すことは構わない。その場合に、本発明の効果 を損なわないためには、該中間熱処理の加熱温度を、後 20 の焼きならしあるいは焼入の再加熱温度を超えないよう にすることが必要であり、該加熱温度の条件を守れば、 その他の条件については限定しない。

【0049】以上で述べた、前記第一の手段あるいは第 二の手段による焼きならしあるいは焼入処理を施すこと で、本発明の目的とする、優れたクリープ強度と良好な 低温靱性とを併せ持つための基本的な組織要件を達成す ることが可能であるが、本発明の、Cr量が8~13 %、で、マルテンサイト~マルテンサイト+&フェライ いは放冷による焼きならしままでも、マルレンサイト変 態による内部応力や、固溶C、過剰な転位密度等のため に、強度は非常に高いものの、その分、靱性も顕著に劣 るため、強度の調整と朝性の確保のために、前記第一の 手段、第二の手段とも、600℃以上、Ac1変態点未 満の温度での焼戻し処理が必須である。これは、焼戻し 温度が600℃未満であると焼戻しの効果が十分でない ため靭性の回復が十分でなく、一方、A c 1変態点以上 であると、析出物が粗大化し、かつ加熱時に生じる逆変 態オーステナイトが朝性の非常に劣る高Cマルテンサイ トに再び変態するために、靭性、クリープ強度のいずれ も劣化するためである。

【0050】該焼戻しの冷却や保持条件については限定 する必要はないが、その効果を十分発揮させるために は、600℃以上、Ac1変態点未満の温度での焼戻し 保持時間は30分以上であることが好ましい。 また、焼 戻し処理は1回である必要はなく、例えば、焼入後の水 素割れを防止する等の目的を持った熱処理を繰り返すこ とは、加熱温度が600℃以上、Ac1変態点未満の範 囲に入っていれば全く構わない。即ち、本発明の範囲内 50 が生じる可能性もあり、好ましくない。一方、過剰な添

【0051】以上が、本発明の製造方法に関する要件の 限定理由であるが、Cr量が8~13%、で、マルテン サイト~マルテンサイト+8フェライト組織を有する高 Cr耐熱鋼において優れたクリープ強度と良好な低温靱 性とを同時に達成するためには、製造方法だけでなく、 化学組成に関しても下記に示す理由により各々限定が必 要である。

【0052】Cは、固溶強化元素としてまた炭化物を生 成し高温クリープ強度を向上させる。またるフェライト の生成を抑制し靭性を向上させる。本発明の方法に従え ば、高温加熱焼きならしにもかかわらず、δフェライト の生成抑制が可能であるが、本発明に従ってもるフェラ イト抑制にはCはO.03%以上必要である。一方O. 20%を超えるとるフェライト抑制効果が飽和する一 方、C自体の悪影響により靭性が劣化し、また、溶接性 も劣化するため、0.03%~0.20%に限定する。 特に溶接性、靭性確保に留意する場合はCの上限は0. 15%とすることが好ましい。

【0053】Siは、脱酸元素として必要であり、鋼の 健全性を確保するために、0.01%以上必要である。 一方1.0%を超えると靭性が低下するため、0.01 %~1.0%に限定する。

【0054】Mnは、脱酸剤として0.10%以上添加 する必要がある。一方、2.0%を超えるとMn偏析が 顕著になり朝性を低下させため、0.10%~2.0% に限定する。

【0055】A1は、脱酸元素として有効であるととも ト組織を有する高Cr耐熱鋼の場合には、焼入ままある 30 に、組織安定性、ボイドスエリングの抑制の点で有効な 元素である。0.002%未満では効果が明確でなく、 0.1%超では粗大な酸化物を形成して钢性を劣化させ るため、0.002~0.1%の範囲に限定する。

> 【0056】Nは、δフェライトの生成を抑制し靭性を 高め、且つTaN、VN等の微細な析出物を形成し高温 クリープ強度を高める。本発明の製造方法によればクリ ープ中も安定な析出物の微細多量分散が図られるため、 通常の焼きならし処理に比べればその含有量は低めでも 効果を発揮するが、それでも0.005%以上必要であ る。一方0.1%を超える添加は鋳造性、靭性を低下さ せるため、0.005~0.1%に限定する。

> 【0057】 Crは、耐熱鋼の具備すべき特性のうち、 高温強度特性とともに最も重要な高温での耐食性、耐酸 化性を向上させるために不可欠の元素である。高温での 耐食性、耐酸化性を向上のためにはCr量は多いほど好 ましいが、マルテンサイト主体組織とすることにより強 度、靱性確保するためには、Cr量を8~13%とする 必要がある。Cァ量が8%未満では耐酸化性が十分でな く、組織も不安定で、熱処理によっては顕著な報性劣化

加はδフェライトを生成し靭性を低下させるため、8~ 13%に限定する。

【0058】MoとWは、高温強度、クリーブ強度向上に最も有効であり、また、ほぼ同様の効果を有する元素である。Mo量については0.5%~2.0%、Wについては0.5%~4.0%の範囲が好ましい。Moについては、その添加量が0.5%未満では高温強度、クリーブ強度向上効果が発揮されず、2.0%超では租大な炭化物や金属間化合物を形成して朝性を著しく劣化させるため好ましくない。Wについては、Moと同様に高温である。クリーブ強度を著しく向上させるが、やはり、0.5%未満では効果が明瞭でなく、逆に添加量が4.0%を超えて過剰になると租大な炭化物、金属間化合物を生じて朝性を著しく低下させるため、0.5~4.0%に限定する。なお、MoとWとは、定性的な効果がほぼ同で、加算的であるため、MoとWのうちのどちらか1種でも、両方を添加しても効果を発揮することは可能である。一方

【0059】以上が、本発明の基本成分の限定理由であるが、クリープ強度向上及び報性向上の目的で、必要に 20 応じてV、Nb、Ta、Ti、Zrの1種または2種以上を含有させることができる。

【0060】Vは、固溶強化及び析出強化によって高温 クリープ強度を高める。その効果は0.05%以上で顕 著となるが、0.50%を超える添加はδフェライトの 生成による靭性低下を招き且つ溶接性を低下させるた め、0.05~0.50%に限定する。

【0061】Nbは、主として析出強化により高温クリープ強度を向上させる。また加熱ア粒径の微細化に有効に働き、母材朝性を向上させる。これらのためには0.01%以上必要である。一方0.20%を超えると高温クリープ強度が逆に低下し、且つ溶接性を低下させるため、0.01~0.20%に限定する。

【0062】Taも、析出強化により高温クリープ強度を向上させ、加熱 ア粒径の微細化に有効に働き、母材朝性を向上させる。これらのためには0.02%以上必要である。一方0.40%を超えると高温クリープ強度が逆に低下し、且つ溶接性を低下させるため、0.02~0.40%に限定する。

【0063】Tiも、析出強化により高温クリープ強度 40を向上させるが、特に加熱を粒径を顕著に微細化できるため、母材朝性の向上に有効である。これらのためには 0.005%以上必要である。一方0.10%を超えると粗大な酸化物あるいは炭窒化物を形成して朝性を劣化させるため、0.005~0.10%に限定する。

【0064】Zrも、Tiとほぼ同様の作用を有するが、その効果を発揮させるためには、0.005%以上必要であり、0.10%超ではやはり粗大な酸化物、析出物を形成して靱性の劣化が著しくなるため、含有量を0.005~0.10%に限定する。

16

【0065】さらに必要に応じて、変態組織の制御を通した強度、朝性向上を目的として、Ni、Cu、Co、Bの内の1種または2種以上を添加することが可能である。Niは、固溶朝化により朝性を向上させるとともに、マルテンサイト組織の安定形成、δフェライトの生成抑制効果により、強度及び朝性を向上させる。その効果を発揮させるためには0.05%以上必要であるが、3.0%を超えて含有させると、クリープ強度を低下させる傾向があるため、0.05~3.0%の範囲に限定する

【0066】Cuも、定性的にはNiとほぼ同様の効果を有し、そのためには0.05%以上の添加が必要である。一方、1.5%超では鋼片の高温割れ等の問題を生じるため、本発明においては上限を1.5%とする。【0067】Coも、Niと類似の効果を有し、δフェライトの抑制を通して靱性やクリーブ強度の向上に寄与する。そのためには、0.05%以上含む必要がある。一方、5%超では、その効果が飽和するのと、焼入性が低下してマルテンサイト相が不安定となって、逆に強度、靱性の劣化を招く場合があるため、本発明では、Coを添加する場合の含有量は0.05~5.0%の範囲に限定する。

【0068】Bは、微量の含有でも、粒界に偏析することで鋼の焼入性を高めることが可能な元素であり、変態 組織制御を通した強度、靱性の向上のために必要に応じ て添加が可能である。ただし、0.0005%未満では 十分な固溶量が確保できず、焼入性向上効果が明瞭でな く、逆に0.01%を超えると粗大な化合物を形成して 組織制御効果を失うと同時に化合物自体が破壊の起点と 30 なって靱性を著しく損なうため、0.0005~0.0 1%の範囲に限定する。

【0069】さらに、靱性、特に溶接維手靱性向上のために、必要に応じて、Mg、Ca、REMのうち、1種または2種以上添加することができる。

【0070】MgとCaとは、ほぼ同様の作用を有し、 微細な酸化物、硫化物を形成して、熱影響部のオーステナイト粒径を微細化し、酸素、硫黄を固定することにより、溶接性及び溶接椎手の靱性を向上できる。その効果を発揮させるためにはいずれも0.0005%以上必要であり、0.01%超では酸化物、硫化物が粗大となって、逆に靱性を劣化させるため、0.0005~0.01%に限定する。

【0071】REMも、定性的な効果はMg、Caとほば同様であるが、Mg、Caに比べて効果が弱いため、0.005%以上含有させる必要がある。一方、報性に悪影響を及ぼす租大介在物を形成させないための上限は0.10%となる。

[0072]

【実施例】表1に示す化学組成を有する鋼を用いて本発 50 明の効果を確認した。表1の内、鋼番1~13は本発明

17

の化学組成を有しており、鋼番14~18は比較例とし *【0073】

て本発明の化学組成範囲を外れているものである。 * 【表1】

K		L						\equiv	_					化丰	展	# (黄蓍94)								
丑	1						P			A		Cr	Mo	W	IV	Nb	; To	Ti	Zr	l Ni	Ou	Co	. В	Ma	Ca	REM
	_	1	0.10	0.24	0.4	19 :	0.006	0.0	DÌ	0.010	0.054	1 8.83	1	1.59	, 0.20	i i	0.096	i	i	i i		i	i	- "-		1
*	_2	Ľ	0.111	0.25	10.	<u> 10</u>	0.007	0.0	03	0.022	0.055	8.85		2.03	0.21	1	0.170	1	 	 	! -	_		$\overline{}$		
											0.054			2.00	0.21	0.08	0.155	$\overline{}$		1		<u> </u>	:			$\dot{-}$
											0.0500		0.86	1.98	0.21	0.086	1	 	i		†	 		<u> </u>	; 	!
兔	_ 5	Ŀ	0.09	0.26	: Q.4	5:	0.005	. 0.0	Ō١٠	0.015	0.057	B.96	0.97	2.00	0.20	0.090	Q174	!	i —	 	 		<u> </u>		:	
[0.0246			2.01	0.25	;	0.080	1	 	-		-				
l											0.0220			2.15	0.19	:	0.065	i 		•	1	 	0.0020			;
93 <u> </u>									06	0.013	0.0590	9.02	1.12		0.22	0.120	i	 		i -	i	-				
- 1							0.011			0.024	0.0256	8.55		1.99	0.19	:	0.078	0015	i	;─	i					
i							0.005			0.009	0.0005	11.23	0.96				•			0.52	-	_	0.0011			<u>, </u>
9	11	Ŀ	3.08	0.35	· 0.1	9	0.006	0,0	05	0.029	0.0255	11.56	0.85	1.54	0.12	3.058			0,020			1.53				
	12	Ŀ	1,15	0.10	0.2	5	0.003	0.0	02	0.007	0.0456	7.89		2.51	0.29		0.182	<u> </u>		1			0.0051	0.000\$		
\perp	13	C	110:	0.19	0.5	4	0.008	0.0	01	0.011	0.0223	9.14	0.95	1.89	0.19	0.080			0.015	0.25	0.27	101	0.0010		ADm.	00004
Ĺ			128				0.010		02	0.018	0.0558	8.54	0.89		0.25	1083		1						0,000.	- COU. 1	. 03446
<u>#</u>							1.006	0,0	33	0.020	0.0259	9.56	0.66							0.76	0.25					
Rį	16	C	1.00 - (0.10	0.4	5. (800.0	0.0	33	0.017	0.0088	12.25	1		0.03	0.080										
).15 : (2005	0.00		0.012	0.0289	9.03	2.53		_	0.088		!								
_ [18	C	1.10:	0.15	0.3	8 (2011	0.00	72	0.015	0.0442	8.69.	-	4.58	0.19		0.084	0.012		_					——-i	

【0074】表2、3、4は製造条件と製造された鋼板の機械的性質を示した結果である。機械的性質としては強度(室温及び600℃における0.2%、耐力と引張強さ(TS))、クリープ特性(650℃、100MPaで試験したときの破断時間)、靱性(シャルピー衝撃※

※試験の50%、破面遷移温度(vTrs))を求めた。 試験片はいずれも鋼板の板厚中心部から圧延方向に直角 な方向(C方向)に採取した。

18

[0075]

【表2】

						EE &	4				40404	
区分	試慮と・	網番	鋼片 厚 (mm)	類片 加強 と こ	王越始 愛 (C)	旺蓮 終了 温度 (°C)	累積 圧下 平 (%)	仕上 板厚 (mm)	圧延後 冷却条 件	圧延後 冷却速 度(℃ /s)	水冷時 圧延却停 止型度 (°C)	
	A 1	1	250	1150	1050	920	90	25	放冷	0.5	_	
	A2	2:	250	1150	1030	880	80	50	放冷	0.2	1	
	A3	3	150	1050	980	830	90	15	放冷	1.0		
	A4	4	250	1150	1060	900	90	25	放冷	0.5	-	
	A5	5	150	1200	1150	890	83	25	放冷	0.5	1	
本	A6	6	200	1150	1020	890	90	20	放冷	0.5	ı	
発	A7	7	180	1130	1050	850	83	30	放冷	0.4	ı	
明	A8	8	250	1250	1120	980	70	75	水冷	5.0	≦100°C	
銅	A9	(3)	200	1200	1160	850	75	50	放冷	0.2	1	
-	A10	10	250	1150	1020	940	90	25	放冷	0.5	-	
	A11	11	250	1250	1100	980	60	100	放冷	0.1	-	
	A12	12	220	1200	1080	830	77	50	放冷	0.2		
	A13	13	250	1270	1100	990	8	100	放冷	0.1	-	
	A14	ø	250	1250	1120	980	70	75	水冷	5.0	≤100°C	
	A15	ø	250	1260	1120	980	70	75	水冷	5.0	≦100°C	
	B 1	4	250	1150	1050	900	90	25	放冷	0.5	-	
	B2	5	150	1200	1150	890	83	25	放冷	0.5	_	
	B3	6	200	1150	1020	890	90	20	放冷	0.5	_	
	B4	7	180	1130	1050	850	83	30	放冷	0.4	ı	
比	B5	8	250	1250	1120	980	_70	75	水冷	5.0	≦100° C	
敷	В6	9	200	1200	1160	850	75	50	放冷	0.2		
銅	B7	14	200	1250	1100	1020	88	25	众	0.5		
	B8	15	200	1250	1080	960	88	25	放冷	0.5	_	
	B9	15	200	1250	1130	950	88	25	放冷	0.5	ł	
	<u>B10</u>	_	200	1250	1110	970	88	26	放冷	0.5		
	B11	18	200	1250	1080	900	88	25	政冷	0.5	_	

[0076]

_					1. 7											_			
1		1							まさならし	または	从	7.条件							
1_	.	ــ ا	1			無人					競処理条件のの条件								- A-FE
K		1	总是理条	加熱	保持ま	保持	保持運	5 5	美工作等		2023	解酶冷却地		制制净却球			表冷却。	2#	お中
13	No.	l	件(注1)	温度	での冷	温度	度での	冷却	冷却速(名		藍	(注2)まで	開始	冷草速		94.4n	冷却选	停止	建 (℃)
1	1	l	11 (22.1)	(5)	却速度	(3)	保持時	条件	皮	里度	(%)	の冷却速度		度	温度	冷却 条件	l Bat	温度	(6)
L	<u></u>	_			(℃/分)		同(分)		(℃/分)	e	3	(°C/ ())	(%)	(℃/\$)	Ç	3 CT+	(℃/分)	(°C)	
	A1	1	0	1200	30	900	30	校	30	≤ 100°C	ı	-	1	ı	1	_	-	_	760
L	A2	2	0	1	_	ı	•	li	_	ı	1200	12	B70	10	800	秘	1800	≤100° C	780
	A3	3	0	280	60	850	60	故池	60	¥im€		1	I	1	ı	ı	_		760
ı	<u>A4</u>	4	2)	-				ı	ļ	ı	1150	30	800	0.5	750	故冷	30	≤100°C	750
l	A5	5	0	1150	30	860	60	木冷	1800	≨10 5 C	ı		ŀ	1	ı	ı	_		780
*	A6	6		1250	30	800	30	故冷	30	¥10 €	I		1		1	ı			780
-	A7	7	(2)	_	_	_		1	-	t	1150	24	870	1.5	720	放冷	24	≤100°C	760
圇	AB	8	0	1230	12	880	_ 60	放冷		≤100 C	-	_	1	Į	1		_	_	760
31	A9	9	0	1200	12	800	15	放冷	12	≦:00€	ı				-		_	-	750
_	A10	10	8		-		-	1	_		1250	30	880	0.5	750	放冷	30	≰180°C	760
1	A11	11	(2)				1		-	1	1250	6	900	1.0	720	水冷	150	≾100°C	740
ı	A12	12	. 00	1180	12	860	8	政冷	30	≤100°C	1	1	1		ı	ı	-	_	760
ı	A13	13	(2)	-			ı	-			1200	6	870	0.5	800	放冷	6	≤100°C	760
	A14	8	(2)	-	_	_	-		ı	-	1250	12	900	2.0_	750	放冷	12	≤180°C	760
L	A15	8	0	1200	12	860	90	故冷	12	≤ HO/C	_	1	-	1	ĺ	ı	-		780
	B1		画常娘をならし	-	_	_		-	ı	-	1060	-	ļ		ı	放冷	30	≤180°C	760
	B2		西学館さならし						1	1	1150			-	<u> </u>	故冷	30	≥100°C	780
	B3		操物機さならし	_	-				•	ı	1250			-	I	放冷	30	≨1m/c	780
l	B4		通常検さならし	-	_		_	_	I	1	1050	1	ļ	-	1	放冷	24	≤100°C	76D
比	B5	8	0	1200	12	650	120	100	12	関	-	-		_			1	~	760
整	B6	9	2	_					1	_	1250	12	850	5.0	800	1	12	≤100°C	750
1	B7	14		1250	30	860	60	命	30	≤100°C	_	_	1		1		_	_	760
	B8	15		1250	30	860	60			ĭge	1	_	_	1	-	-	_		780
ı	B9	18	0	1250	30	850	60	的令	8	£19€C	1		-						760
l	B10	17	0	1250	30	850	60	節冷	30	∑100° C	-	_	_	-	1	1	_	_	780
Ш	B11	18	0	1250	30	800	60 #//#/b	放冷	30	≤100°C	1	_	-	_	_	_	_		780
												7-X-X-107							

(注1)①は調水項1に基く速中保持条件、②は調求項2に基く途中冷却制御条件 (注2)整条理条件②における制御冷却はとは900~850℃から0.1~2℃/分で冷却を開始し、 800~700℃で味冷却を終了する冷却のことを指す

[0077]

* *【表4】

区分	試験 No.	4	室里	2400	性質(C方			
					6001	/建度	クリープ	
- 1		番	0.2%耐力 (MPa)	TS (MPa)	0.2%耐力 (MPa)	TS (MPa)	破斯時間 (h)(注 3)	enTv (°C)
	A1	1	636	774	332	403	6030	-63
- [A2	2	739	845	346	421	6668	-50
	A3	3	690	819	373	448	8052	-66
	A4	4	653	842	352	428	14430	-45
i [Αō	5	658	850	354	441	12876	-51
本	A6	6	612	756	330	399	6006	-42
棄	A7	7	634	761	332	406	6240	-58
劅	A8	8	624	758	323	397	18488	-46
2	A9	9	628	762	334	410	6210	-71
-	A10	10	595	718	319	387	5934	-68
	A11	11	655	847	351	405	9916	-66
. [A12	12	641	753	331	409	16052	-57
. [A13	13	662	853	352	416	11758	-64
	A14	8	619	743	310	395	13196	-56
	A15	8	632	779	333	400	17524	-62
L	B1	4	_ 553 _	699	301	358	1894	-38
	B2	5	621	784	316	375	2015	21
ı	B3	- 5	562	698	299	339	915	-6
!	B4	7	525	641	285	321	685	-40
此	B5	8	584	726	298	355	2003	46
数	B6	9	500	732	305	380	1531	. 11
鋼	<u>B7</u>	14	624	<u>7</u> 55	320	391	6820	40
ļ	B8	15	582	689	307	388	1022	23
	B9	16	511	637	256	295	26	-3
1	B10	17	560	688	304	370	873	15
	B11	[18]	562	695	309 -ブ破断時	384	902	21

【0078】試験No. A1~A15は本発明により製造した鋼板であり、強度、クリープ特性、朝性とも比較鋼に比べて格段に優れていることが明らかである。特に、化学組成が本発明を満足している鋼について、製造方法で比較すると、本発明の方法による鋼板は比較例に上り製造した網板に比べて、ル学組成が同じでありたが、

※ら、強度、クリーブ特性、靱性のうちのいずれか、あるいは全てで顕著に向上しており、本発明の優位性が明白である。

に、化学組成が本発明を満足している鋼について、製造 【0079】比較例の試験No.B1からB11は本発 方法で比較すると、本発明の方法による鋼板は比較例に 明の要件を満足していないため、本発明鋼に比べて特性 より製造した鋼板に比べて、化学組成が同じでありなが※50 が劣るが、その理由を以下に述べる。試験No.B1 は、化学組成は本発明を満足しているが、通常の焼きな らし処理により製造しているため、同じ鋼片を用いて本 発明の方法により製造した鋼板(試験No. A4)に比 べて、特性が劣る。特にクリープ特性が顕著に劣る。

【0080】試験No. B2も、化学組成は本発明を満 足しているが、加熱温度のみを高め、冷却段階での適切 な保持や制御冷却処理を行わない通常パターンの焼きな らし処理により製造しているため、同じ鋼片を用いて本 発明の方法により製造した鋼板(試験No.A5)に比 べて、8フェライトの生成が顕著となり、また、析出物 10 含有されているために、特に靱性の劣化が著しい。 の適正制御もなされていないため、強度、クリープ強 度、靱性の特性全てが劣る。

【0081】試験No. B3も、試験No. B2と同 様、化学組成は本発明を満足しているが、加熱温度のみ を高め、冷却段階での適切な保持や制御冷却処理を行わ ない通常パターンの焼きならし処理により製造している ため、同じ鋼片を用いて本発明の方法により製造した鋼 板(試験No. A6)に比べて、δフェライトの生成が 顕著となり、また、析出物の適正制御もなされていない ため、強度、クリープ強度、靱性の特性全てが劣る。

【0082】試験No. B4は、試験No. B1と同 様、化学組成は本発明を満足しているが、通常の焼きな らし処理により製造しているため、同じ鋼片を用いて本 発明の方法により製造した鋼板(試験No. A7)に比 べて、強度、クリープ強度が劣る。

【0083】試験No. B5は、請求項1と同様の、焼 きならしの冷却中に保持を行う製造方法を採用としてい るが、保持温度が低すぎるため、保持中に粗大組織や粗 大折出物の生成を招いており、そのために特性の劣化が 著しい。

【0084】試験No. B6は、請求項2と同様の、焼 きならしの冷却中に折出物の適正分散のための徐冷処理 22

を施しているが、該制御冷却段階の冷却速度が過大であ るために、該制御冷却の期待された効果が発揮されてお らず、単に高温加熱の焼きならしと同様の処理となって しまっており、特性の改善が図られない。

【0085】試験No. B7~B11の鋼板は、化学組 成が本発明の範囲を逸脱しているために、製造方法は本 発明によっているにもかかわらず、良好な特性が得られ ていないものである。

【0086】すなわち、試験No. B7は、Cが過剰に

【0087】試験No. B8は、Siが過剰なために、 焼きならしの冷却中の保持を行っていものの、るフェラ イトの抑制が十分でなく、クリープ特性、靱性とも十分 でない。

【0088】試験No. B9は、Mo、Wの両方とも含 有されていないために、マトリクスの耐熱特性が十分で なく、製造方法の如何によらず、クリープ強度の向上が 図られない。

【0089】試験No. B10、B11は、逆にMoあ 20 るいはWが過剰に含有されているために、良好な特性が 得られない例である。

【0090】以上の実施例から、本発明法により製造し た鋼板は比較例に比べて全て優れた高温強度、クリープ 特性、靱性を有しており、本発明の効果は明白である。 [0091]

【発明の効果】以上に述べたように、本発明は、合金元 素や析出物の材質に及ぼす効果を最大限引き出すことに より、強度、クリープ特性だけでなく、朝性も優れた高 Cr耐熱鋼の製造を可能にするものであり、高温機器用 30 構造材料として非常に有用なものであり、産業上の価値 が極めて高い。