Unrestricted and Context-Sensitive Grammars

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Languages

Set inclusions described by the Chomsky hierarchy

Languages

Languages: hierarchy

Class	Grammars	Languages	Automaton
Type-0	Unrestricted	Recursively Enumerable (Turing- Recognizable or Turing-Acceptable)	Turing Machine
	Unrestricted	Recursive (Turing- Decidable)	Turing Machine
Type-1	Context-Sensitive	Context-Sensitive	Linear-Bounded
Type-2	Context-Free	Context-Free	Pushdown
Type-3	Regular	Regular	Finite

Recursive Languages

- ► Recursive languages are also called **decidable**
- ► Turing-decidable language is also a synonym of "recursive language"
- ► Require that the Turing machine halts in all cases

Recursively Enumerable Languages

- ► The <u>class</u> of <u>decision problems</u> for which a "yes" answer can be verified by a <u>Turing machine</u> in a finite amount of time
- ▶ If the answer is "no", the machine might never halt
- ► Recursively Enumerable Languages are also called as Turing recognizable languages (or Turing acceptable languages)

Unrestricted Grammars

Unrestricted Grammars

- An unrestricted grammar is a 4-tuple $G = (V, \Sigma, S, P)$, where V and Σ are disjoint sets of variables and terminals, respectively
- S is an element of V called the start symbol
- ▶ P is a set of productions of the form $\alpha \to \beta$ where α , $\beta \in (V \cup \Sigma)^*$ and α contains at least one variable

Every recursively enumerable language can be implemented by an unrestricted grammar

Example 1

$$L = \{a^{2^k} \mid k \in \mathcal{N}\}$$

- $\triangleright S \rightarrow LaR$
- ightharpoonup L
 ightharpoonup LD
- ▶ $Da \rightarrow aaD$
- $\triangleright DR \rightarrow R$
- 3 ←1 <
- $R \rightarrow \epsilon$

Sequence of derivations for aaaa:

 $S \Rightarrow LaR \Rightarrow LDaR \Rightarrow LaaDR \Rightarrow LaaR \Rightarrow LDaaR \Rightarrow LaaDaR \Rightarrow LaaaaDR \Rightarrow LaaaaR \Rightarrow aaaaR \Rightarrow aaaa$

Context-Sensitive Grammars (CSGs)

Context-Sensitive Grammars (CSG)

- A context-sensitive grammar (CSG) is an unrestricted grammar in which
 - ▶ no production is length-decreasing. In other words, every production is of the form $\alpha \rightarrow \theta$, where $|\theta| \ge |\alpha|$.
- ► A language is a context-sensitive language (CSL) if it can be implemented by a context-sensitive grammar

- CSGs can be implemented using a Linear Bounded Automaton (LBA)
 - restricted form of <u>Turing machine</u>

Example 2

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

Example 2

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

- \triangleright S \rightarrow SABC | ABC
- $\triangleright BA \rightarrow AB$
- $\triangleright CA \rightarrow AC$
- \triangleright CB \rightarrow BC
- $A \rightarrow a$
- $\triangleright aA \rightarrow aa$
- $\triangleright aB \rightarrow ab$
- ► $bB \rightarrow bb$
- $\triangleright bC \rightarrow bc$
- $\triangleright cC \rightarrow cc$

Summary

► The Chomsky hierarchy

Туре	Languages (Grammars)	Form of Productions in Grammar	Accepting Device
3	Regular	$A \to aB, A \to \Lambda$ $(A, B \in V, a \in \Sigma)$	Finite automaton
2	Context-free	$A \to \alpha$ $(A \in V, \alpha \in (V \cup \Sigma)^*)$	Pushdown automaton
1	Context-sensitive	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*, \beta \ge \alpha ,$ α contains a variable)	Linear-bounded automaton
0	Recursively enumerable (unrestricted)	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*,$ α contains a variable)	Turing machine

Summary

- ➤ **Recursively enumerable languages** are the ones that can be accepted by Turing machines (also called Turing-acceptable languages)
- ► **Recursive Languages** are those that can be *decided* by Turing machines (also called Turing-decidable languages)

► A language *L* is *recursively enumerable* if there is a TM that accepts *L*, and *L* is *recursive* if there is a TM that decides *L*

Credits

- Most material from:
 - ▶ John C. Martin, *Introduction to Languages* and the Theory of Computation, McGraw-Hill Higher Education, 4th Ed. (2010).

Introduction to Languages and the Theory of Computation

