Problem 1. Verify explicitly that $\partial^2 = 0$.

Proof. Consider $[v_1, \ldots, v_n]$. Then

$$\partial^2([v_1, \dots, v_n]) = \sum_{j < i} (-1)^{i+j} [v_1, \dots, \hat{v_j}, \dots, \hat{v_i}, \dots, v_n] + \sum_{i < j} (-1)^{i+j-1} [v_1, \dots, \hat{v_i}, \dots, \hat{v_j}, \dots, v_n]$$

Then if we swap i, j for the first sum and pull out a negative we get

$$\partial^{2}([v_{1},\ldots,v_{n}]) = \sum_{j

$$= -\sum_{i< j}(-1)^{j+i-1}[v_{1},\ldots,\hat{v_{i}},\ldots,\hat{v_{j}},\ldots,v_{n}] + \sum_{i< j}(-1)^{i+j-1}[v_{1},\ldots,\hat{v_{i}},\ldots,\hat{v_{j}},\ldots,v_{n}]$$

$$= 0$$$$

Therefore $\partial^2 = 0$.

Problem 2. Compute the simplicial homology of the Klein bottle using the Δ -complex structure, with two simplices of dimension 2.

Proof. Lucas insert pretty picture hither.

First we'll list the images of all the various simplices.

$$\partial U = a + b - c$$

$$\partial L = a - b + c$$

$$\partial a = v - v$$

$$\partial b = v - v$$

$$\partial c = v - v$$

$$\partial v = 0$$

$$= 0$$

For $H_2(K) = \frac{\ker \partial}{\operatorname{Im} \partial}$ the image is trivial as there as there are no 3 simplices and the kernel is when $\partial (pU + qL) = (p+q)a + (p-q)b + (q-p)c$ is zero which only occurs if p = q = 0. Therefore $H_2(K) = 0$.

For $H_1(K)$ the kernel is the free abelian group on a, b, c and the image is generated by (a+b-c) and a-b+c. So our group is the abelian group generated by $\langle a, b, c | a+b=c, a+c=b \rangle$. We can simplify to remove c and get $\langle a, b | 2a \rangle$. Therefore $H_1(K) = \mathbb{Z} \oplus \mathbb{Z}_2$.

For $H_0(K)$ the image is trivial and the kernel is the whole space. Thus $H_0(K) = \mathbb{Z}$.

Problem 3. Show that if G is a finitely generated free abelian group and $H \subset G$ is a subgroup, then there is a basis g_1, \ldots, g_n for G and integers p_1, \ldots, p_k with $k \leq n$ such that each p_i divides p_{i+1} , and such that p_1g_1, \ldots, p_kg_k is a basis for H. We say that these bases for G and H are stacked. Conclude that

$$G/H \cong \mathbb{Z}_{p_1} \oplus \cdots \oplus \mathbb{Z}_{p_k} \oplus \mathbb{Z}^{n-k}$$

In particular, every finitely generated abelian group is a direct sub of cyclic groups. (Hint: You may find it helpful to use the fact that subgroups of free abelian groups are themselves free abelian.)

Problem 4. If $i: A \to X$ is the inclusion of a retract of X, show that $i_*: H_k(A) \to H_k(X)$ is a monomorphism onto a direct summand of $H_k(X)$. If A is deformation retract of X, show that i_* is an isomorphism. *Proof.* Let $i:A\to X$ be the inclusion and $r:X\to A$ the retract of X onto A. By definition $r \circ i = id_A$ which implies that the map induced on the homology $r_* \circ i_* = id_*$. Since i_* has a left inverse it must be injective. Therefore the map induced by the inclusion of a retract is injective. Now suppose that A is a deformation retract of X. Then r is homotopic to id_X . Then we have that $i \circ r$ is homotopic to id_X which means that i is a homotopy equivalence and as such induces an isomorphism on the homology (Hatcher 2.11) of A and X. **Problem 5.** Show that it is impossible to retract the n-ball B^n onto its n-1-sphere boundary $\partial B^n = S^{n-1}$. *Proof.* Since B^n is contractible $H_k(B^n) = 0$ for all k. If there existed a deformation retract of B^n onto S^1 this would imply that there exists an injective function from $H_{n-1}(S^{n-1})=\mathbb{Z}$ to the trivial group which is a contradiction. Therefore there is no deformation retract from B^n to S^{n-1} . **Problem 6.** Compute the simplicial homology of the Klein bottle using the Δ -complex structure, with two simplices of dimension 2, discussed in class.

Proof.