

Bất Biến

Người trình bày: Hirrus

- 1. Vấn đề khởi động
- 2. Các định luật bảo toàn
- 2.1 Năng lượng
- 3. Một vài ứng dụng
- 4. Bất biến trong một số bài toán khác

Bài toán khởi đông

Hình: Chuyển đông ban đầu

$$\sim \omega_0 = \frac{eB_0}{mR^n}$$

Hình: Nhiễu đông nhỏ

- $|\Delta \mathbf{v}| \ll \omega_0 R.$ $\mathbf{r}_{\text{max}} = R + \delta, \quad \delta \ll R.$

Lời giải

Từ định luật II Newton và định luật Lorentz:

$$m\mathbf{a} = e\mathbf{v} \times \mathbf{B}$$
.

Kết quả thu được:

$$\mathbf{a} = \begin{bmatrix} \ddot{r} - r\dot{\phi}^2 \\ r\ddot{\phi} + 2\dot{r}\dot{\phi} \\ \ddot{z} \end{bmatrix} = \frac{eB_0}{m} \begin{bmatrix} r^{1-n}\dot{\phi} \\ -r^{-n}\dot{r} \\ 0 \end{bmatrix}. \tag{1}$$

Lời giải

Chú ý rằng,

$$r\ddot{\phi} + 2\dot{r}\dot{\phi} = \frac{1}{r}\frac{d}{dt}(r^2\dot{\phi}).$$

Kết hợp với phương trình (1), và thu được

$$\frac{d}{dt}\left(r^2\dot{\phi} + \frac{1}{2-n}\frac{eB_0}{m}r^{2-n}\right) = 0.$$

Hay,

$$r^2\dot{\phi} + \frac{1}{2-n}\frac{eB_0}{m}r^{2-n} = const.$$
 (!)

Kết quả cuối cùng:

$$r = R + \delta \cos \left(\omega_0 \sqrt{1 - n}t + \frac{\pi}{2} \right). \tag{2}$$

- 1. Vấn đề khởi động
- 2. Các định luật bảo toàn
- 2.1 Năng lượng
- 3. Một vài ứng dụng
- 4. Bất biến trong một số bài toán khác

Các bài toán quen thuộc

$$\frac{d}{dt}\left(\frac{mv^2}{2}-mgy\right)=0.$$

$$\Delta\left(\frac{mv^2}{2}\right) - \int_{v_1}^{v_2} (-mg) dy = 0.$$

$$\frac{d}{dt}\left(\frac{mv^2}{2}+\frac{k(\Delta x)^2}{2}\right)=0.$$

$$\Delta\left(\frac{mv^2}{2}\right)-\int_{x_1}^{x_2}(-k\Delta x)dx=0.$$

Đông năng, công, và thế năng

- ▶ Đại lượng $K = \frac{mv^2}{2}$ được gọi là động năng.
- ▶ Đại lượng $A = \int_{q_1}^{q_2} F_q dq$ được gọi là công.
- ▶ Đại lượng $V(q) = -\int_{\mathcal{O}}^{q} F_q(q) dq$ được gọi là thế năng.

Đinh lý biến thiên đông năng:

$$\frac{dK}{dt} = \sum \mathbf{F} \cdot \mathbf{v}.$$

Nếu công của tất cả các lực tác dụng có thể được viết dưới dang một hàm thế năng V(q), thì cơ năng bảo toàn:

$$E = K + V = const.$$

Chú ý: Không phải công của moi lưc chỉ phu thuộc vào toa đô đều có thể viết dưới dạng thế năng.

xPhO Physics Club

- 1. Vấn đề khởi động
- 2. Các định luật bảo toàn
- 2.1 Năng lượng
- 3. Một vài ứng dụng
- 4. Bất biến trong một số bài toán khác

- 1. Vấn đề khởi động
- 2. Các định luật bảo toàn
- 2.1 Năng lượng
- 3. Một vài ứng dụng
- 4. Bất biến trong một số bài toán khác

Đơn cực từ

Xét sự chuyển động của một điện tích điểm q_e , khối lượng m trong từ trường của một đơn cực từ giả tưởng nằm yên tại gốc toạ độ:

$$\mathbf{B}=k\frac{q_m}{r^2}\hat{r}.$$

- Phương trình động lực học: $m\mathbf{a}=q_e(\mathbf{v}\times\mathbf{B})$.
- Công suất của lực từ bằng 0: $|\mathbf{v}| = const.$

Chứng minh được rằng, đại lượng

$$\mathbf{Q} = \mathbf{L} - kq_eq_m\hat{r}$$

là một hằng số chuyển động (bất biến).

Đơn cực từ

$$ightharpoonup \mathbf{Q} \cdot \hat{\phi} = mr^2 \dot{\theta} = 0 \implies \theta = const.$$

$$\mathbf{Q} \cdot \hat{r} = Q \cos \theta = -kq_e q_m \implies |\mathbf{Q}| = const.$$

$$r(\phi) = \frac{Q \sin \theta}{mv \cos((\phi - \phi_0) \sin \theta)}.$$

Tài liệu tham khảo l

