In the name of god

Microwave Lab Project Designing a Branch Line coupler

Group 1

Spring 2024

a) Calculating the width and the length of each section

b) Results before optimizing (simulation is in the schematic environment)

freq, GHz

m1 freq=2.000GHz phase(S(2,1))=41.208

m2 freq=2.000GHz phase(S(3,1))=-48.779

Results after optimizing (simulation is in schematic environment)

Eqn eq1=phase(S(2,1))-phase(S(3,1))

m3 freq=2.000GHz eq1=89.997

c) Before optimizing (EM simulation)

- By tuning the length of 50 ohms and 35 ohms lines, we can get a phase difference of approximately 90 degrees.
- To shift the central frequency, we can tune the length of 50 ohms and 35 ohms lines.
- To decrease return loss and to increase the isolation between ports 1 and 4, we can tune the widths of the lines.

Results after optimizing (EM simulation)

Eqn eq1=phase(S(2,1))-phase(S(3,1))

For frequencies higher than 5 GHz, it is not convenient to use this connection.

-15 db bandwidth: 1.8GHz- 2.2GHz≈0.4GHz

Results after adding the pins

