

How to Turn Your

Knowledge Graph Embeddings

into Generative Models

Lorenzo Loconte

University of Edinburgh, UK loreloc.github.io

Nicola Di Mauro University of Bari, Italy **Robert Peharz** TU Graz, Austria Antonio Vergari University of Edinburgh, UK

Outline

- 1 A family of generative models of triples in KGs based on KGEs and probabilistic circuits
- 2 Reliable link prediction with logical constraints
 ensuring trustworthiness w.r.t. background knowledge
- 3 *Efficiency and experimental results* train for hours rather than days, yet be competitive

Outline

- 1 A family of generative models of triples in KGs based on KGEs and probabilistic circuits
- 2 Reliable link prediction with logical constraints
 ensuring trustworthiness w.r.t. background knowledge
- 3 *Efficiency and experimental results* train for hours rather than days, yet be competitive

Knowledge graphs

Guo et al., "A Survey on Knowledge Graph-Based Recommender Systems", 2020

Pan et al., "Unifying Large Language Models and Knowledge Graphs: A Roadmap", 2023


```
\begin{split} &\langle loxoprofen, treats, pain \rangle \\ &\langle ibuprofen, treats, pain \rangle \\ &\vdots \\ &\langle COX2, regulates, P-prostacyclin \rangle \\ &\langle ibuprofen, interacts, COX2 \rangle \end{split}
```



```
\begin{split} &\langle \mathsf{loxoprofen}, \mathsf{treats}, \mathsf{pain} \rangle \\ &\langle \mathsf{ibuprofen}, \mathsf{treats}, \mathsf{pain} \rangle \\ &\vdots \\ &\langle \mathsf{COX2}, \mathsf{regulates}, \mathsf{P-prostacyclin} \rangle \\ &\langle \mathsf{ibuprofen}, \mathsf{interacts}, \mathsf{COX2} \rangle \end{split}
```

Q: (loxoprofen, interacts, ?)

KGE models

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction

Théo Trouillon, Johannes Welbl. +2 authors Guillaume Bouchard • Published in International Conference on... 19 June 2016 •

2,142 Citations

Highly Influential Citations (1)

576

KGE models

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction

2,142 Citations

Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard · Published in International Conference on... 19 June 2016 ·

Highly Influential Citations (1)

576

$$\phi_{\mathsf{ComplEx}}(s,r,o) := f(\mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o) \in \mathbb{R} \qquad \mathbf{e}_s,\mathbf{w}_r,\mathbf{e}_o \in \mathbb{C}^d$$

KGE models

Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction Théo Troullion, Johannes Welbl. +2 authors Guillaume Bouchard · Published in International Conference on... 19 June 2016 ·

2,142 Citations

Highly Influential Citations 1

57€

"Real-valued scores are difficult to interpret and compare"

Scores have different orders of magnitude...

We would like *triples probabilities* instead!

Solutions! (1/3)

Generative models of triples (GeKCs)

calibrated probabilistic predictions by modelling p(S,R,O) sampling of new triples (more later!)

From KGE models ...

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018
Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011
Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

From KGE models to circuits ...

Lacroix, Usunier, and Obozinski, "Canonical Tensor Decomposition for Knowledge Base Completion", 2018
Nickel, Tresp, and Kriegel, "A Three-Way Model for Collective Learning on Multi-Relational Data", 2011
Balazevic, Allen, and Hospedales, "TuckER: Tensor Factorization for Knowledge Graph Completion", 2019

Canonical Polyadic (CP) KGE as a circuit

$$\phi(s, r, o) = \sum_{i=1}^{R} e_{si}^{(S)} w_{ri} e_{oi}^{(O)}$$

Canonical Polyadic (CP) KGE as a circuit

$$\phi(s, r, o) = \sum_{i=1}^{R} e_{si}^{(S)} w_{ri} e_{oi}^{(O)}$$

Canonical Polyadic (CP) KGE as a circuit

$$|\phi(s,r,o)| = \sum_{i=1}^{R} \frac{e_{si}^{(S)} |w_{ri}|}{e_{oi}^{(O)}}$$

$$\mathbf{E}^{(S)} = \begin{bmatrix} 0.1 & 1.2 \\ 3.5 & -0.2 \\ -0.1 & 0.2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 2.5 & 0.0 \\ -3.4 & -0.5 \\ -0.1 & 2.2 \end{bmatrix}$$

$$\mathbf{E}^{(O)} = \begin{bmatrix} -2.3 & 1.0 \\ 0.8 & -2.4 \\ 0.7 & 1.5 \end{bmatrix}$$

$$\phi_{\text{CP}}(s, r, o) = \sum_{i=1}^{R} e_{si}^{(S)} w_{ri} e_{oi}^{(O)}$$

$$\mathbf{E}^{(S)} = \begin{bmatrix} 0.1 & 1.2 \\ 3.5 & -0.2 \\ -0.1 & 0.2 \end{bmatrix}$$

$$\mathbf{W} = \begin{vmatrix} 2.5 & 0.0 \\ -3.4 & -0.5 \\ -0.1 & 2.2 \end{vmatrix}$$

$$\mathbf{E}^{(O)} = \begin{bmatrix} -2.3 & 1.0\\ 0.8 & -2.4\\ 0.7 & 1.5 \end{bmatrix}$$

s = loxoprofen r = interacts o = phosp-acid

 $\phi_{\sf CP}({\sf loxoprofen, interacts, phosp-acid})$

$$\mathbf{E}^{(S)} = \begin{bmatrix} 0.1 & 1.2 \\ 3.5 & -0.2 \\ -0.1 & 0.2 \end{bmatrix}$$

$$\mathbf{W} = \begin{vmatrix} 2.5 & 0.0 \\ -3.4 & -0.5 \\ -0.1 & 2.2 \end{vmatrix}$$

$$\mathbf{E}^{(O)} = \begin{bmatrix} -2.3 & 1.0\\ 0.8 & -2.4\\ 0.7 & 1.5 \end{bmatrix}$$

 $\phi_{CP}(loxoprofen, interacts, phosp-acid)$

$$\mathbf{E}^{(S)} = \begin{vmatrix} 0.1 & 1.2 \\ 3.5 & -0.2 \\ -0.1 & 0.2 \end{vmatrix}$$

$$\mathbf{W} = \begin{bmatrix} 2.5 & 0.0 \\ -3.4 & -0.5 \\ -0.1 & 2.2 \end{bmatrix}$$

$$\mathbf{E}^{(O)} = \begin{bmatrix} -2.3 & 1.0 \\ 0.8 & -2.4 \\ 0.7 & 1.5 \end{bmatrix}$$

 ϕ_{CP} (loxoprofen, interacts, phosp-acid)

$$= \sum_{i=1}^{R} \frac{e_{\mathsf{loxoprofen},i}^{(S)} \quad w_{\mathsf{interacts},i}}{e_{\mathsf{phosp-acid},i}^{(O)}}$$

From KGE models to circuits ...

From scores $\phi(s,r,o)$ to triple probabilities p(s,r,o)

1. Ensure $\phi(s,r,o)\geq 0$, $p(s,r,o)=rac{1}{Z}\cdot\phi(s,r,o)$

Enforce *non-negative embeddings*

⇒ Less accurate on link prediction ...

Square score functions (unrestricted embeddings)

⇒ Competitive on link prediction!

Squared circuits

$$p(\mathbf{x}) = \frac{1}{Z} \, \phi^2(\mathbf{x}) = \frac{1}{Z} \, \phi(\mathbf{x}) \cdot \phi(\mathbf{x}), \qquad \phi(\mathbf{x}) \in \mathbb{R}$$
 where parameters and input functions can be **negative**

Squared circuits

$$p(\mathbf{x}) = \frac{1}{Z} \phi^2(\mathbf{x}) = \frac{1}{Z} \phi(\mathbf{x}) \cdot \phi(\mathbf{x}), \quad \phi(\mathbf{x}) \in \mathbb{R}$$

Tractable product

- 1. Ensure $\phi(s,r,o)\geq 0$, $p(s,r,o)=rac{1}{Z}\cdot\phi(s,r,o)$
- 2. Computation of $Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \phi(s, r, o)$

$$Z = \sum_{s \in \mathcal{E}, \ r \in \mathcal{R}, \ o \in \mathcal{E}} \phi_{\mathsf{CP}^*}(s, r, o)$$

The summation over triples computing $Z\dots$

$$Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \sum_{i=1}^{d} e_{si}^{(S)} w_{ri} e_{oi}^{(O)}$$

The summation over triples computing $Z\dots$

$$Z = \sum_{i=1}^{d} \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} e_{si}^{(S)} w_{ri} e_{oi}^{(O)}$$

... can be pushed (smoothness)

$$Z = \sum_{i=1}^{d} \left(\sum_{s \in \mathcal{E}} e_{si}^{(S)} \right) \times \left(\sum_{r \in \mathcal{R}} w_{ri} \right) \times \left(\sum_{o \in \mathcal{E}} e_{oi}^{(O)} \right)$$

... and broken down (decomposability) ...

... thus requiring linear time w.r.t. $|\mathcal{E}|$

Outline

- 1 A family of generative models of triples in KGs based on KGEs and probabilistic circuits
- 2 Reliable link prediction with logical constraints
 ensuring trustworthiness w.r.t. background knowledge
- 3 *Efficiency and experimental results* train for hours rather than days, yet be competitive

"KGE models predictions violate even simple logical constraints"

 \mathbf{Q} : $\langle \mathsf{loxoprofen}, \mathsf{interacts}, ? \rangle$

 $A: \langle loxoprofen, interacts, phosp-acid \rangle$

ComplEx predicts a triple violating a constraint!

Solutions! (2/3)

- Generative models for KGs (GeKCs) calibrated probabilistic predictions by modelling p(S,R,O) sampling of new triples (more later!)
- Integrate constraints with guarantees
 such as the domain schema

Functions

Proteins

 \mathbf{Q} : $\langle \mathsf{loxoprofen}, \mathsf{interacts}, ? \rangle$

 $A: \langle loxoprofen, interacts, COX2 \rangle$

"interacts" can only hold between drugs and proteins

p(loxoprofen, interacts, phosp-acid) = 0p(loxoprofen, interacts, COX2) > 0

GeKCs for logical constraints

 p_K (loxoprofen, interacts, **phosp-acid**) = 0

GeKCs for logical constraints

 p_K (loxoprofen, interacts, **phosp-acid**) = 0

GeKCs for logical constraints

Outline

- 1 A family of generative models of triples in KGs based on KGEs and probabilistic circuits
- 2 Reliable link prediction with logical constraints
 ensuring trustworthiness w.r.t. background knowledge
- 3 Efficiency and experimental results
 train for hours rather than days, yet be competitive

"Training on relatively large knowledge graphs is expensive"

Some benchmarks...

Solutions! (3/3)

- Generative models for KGs (GeKCs) calibrated probabilistic predictions by modelling p(S,R,O) sampling of new triples (more later!)
- Il Integrate constraints with guarantees
 such as the domain schema
- Scale to KGs with millions of entities and triples
 using probabilistic training objectives

Speed-up training on large KGs

Speed-up training on large KGs

Learning ...

... by discriminative objectives (pseudo-log-likelihood)

$$\mathcal{L}_{\text{PLL}} := \sum_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r,o) + w_r \log p(r \mid s,o) + w_o \log p(o \mid s,r)$$

Learning ...

... by discriminative objectives (pseudo-log-likelihood)

$$\mathcal{L}_{\text{PLL}} := \sum_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r,o) + w_r \log p(r \mid s,o) + w_o \log p(o \mid s,r)$$

... by maximum-log-likelihood estimation

$$\mathcal{L}_{\text{MLE}} := \sum_{(s,r,o) \in \mathcal{D}} \log p(s,r,o) = -|\mathcal{D}| \frac{\log \mathbf{Z}}{\log \mathbf{Z}} + \sum_{(s,r,o) \in \mathcal{D}} \log \phi_{\text{pc}}(s,r,o)$$

(faster, as marginalization require a single circuit evaluation)

Mean Reciprocal Rank (MRR) ↑

Model	FB15k-237	WN18RR	ogbl-biokg
СР	0.310	0.105	0.831
$CP^{\scriptscriptstyle +}$	0.237	0.027	0.496
CP^2	0.315	0.104	0.848
ComplEx	0.342	0.471	0.829
ComplEx ⁺	0.214	0.030	0.503
ComplEx ²	0.334	0.420	0.858

Mean Reciprocal Rank (MRR) ↑

Model	FB15k-237	WN18RR	ogbl-biokg
СР	0.310	0.105	0.831
$CP^{\scriptscriptstyle +}$	0.237	0.027	0.496
CP^2	0.315	0.104	0.848
ComplEx	0.342	0.471	0.829
ComplEx ⁺	0.214	0.030	0.503
ComplEx ²	0.334	0.420	0.858

GeKCs are competitive with KGE models ...

Mean Reciprocal Rank (MRR) ↑

Model	FB15k-237	WN18RR	ogbl-biokg
СР	0.310	0.105	0.831
$CP^{\scriptscriptstyle +}$	0.237	0.027	0.496
CP^2	0.315	0.104	0.848
ComplEx	0.342	0.471	0.829
$ComplEx^{\scriptscriptstyle{+}}$	0.214	0.030	0.503
ComplEx ²	0.334	0.420	0.858

... and achieve the best results on ogbl-biokg

Sampling triples

Kernel triple distance to measure their quality

Sampling triples

Kernel triple distance to measure their quality

Empirical KTD ↓

Model	FB15	FB15k-237		WN18RR		ogbl-biokg	
Uniform	0.5	589	0.766		1.822		
	PLL	MLE	PLL	MLE	PLL	MLE	
ComplEx ²	0.326	0.102	0.338	0.278	0.104	0.034	

Takeaways

A generative perspective of KGE models (GeKCs)

II Reliable predictions with logical constraints

III Speed-up training and reduce costs

Takeaways

Questions?

A generative perspective of KGE models (GeKCs)

II Reliable predictions with logical constraints

III Speed-up training and reduce costs

More link prediction benchmarks

Mean Reciprocal Rank (MRR) ↑

Model	FB15	FB15k-237		WN18RR		ogbl-biokg	
	PLL	MLE	PLL	MLE	PLL	MLE	
СР	0.310	_	0.105	_	0.831	_	
CP ⁺	0.237	0.230	0.027	0.026	0.496	0.501	
CP ²	0.315	0.282	0.104	0.091	0.848	0.829	
ComplEx	0.342	_	0.471	_	0.829	_	
ComplEx ⁺	0.214	0.205	0.030	0.029	0.503	0.516	
ComplEx ²	0.334	0.300	0.420	0.391	0.858	0.840	

Instantiate GeKCs from KGE models

(as a way to initialize the parameters)

Mean Reciprocal Rank (MRR) ↑

Model	FB15k-237		WN18RR		ogbl-biokg	
	PLL	MLE	PLL	MLE	PLL	MLE
ComplEx	0.344	_	0.470	_	0.829	_
ComplEx ² ComplEx ² *	0.333 0.342	0.301 0.340	0.416 0.462	0.390 0.463	0.859 0.859	0.839 0.828

Scores are mostly non-negative

(thus squaring them has little effect on the rankings)

Semantic consistency scores

Sem@1 scores ↑

Model	Embedding size						
	10	50	200	1000			
ComplEx	99.68	99.90	99.93	99.94			
ComplEx ²	82.50	94.22	99.30	99.50			
D-ComplEx ²	100.00	100.00	100.00	100.00			