# CREDIT CARD APPROVAL PREDICTION

Team: Lainey Li, Chris Lin, Amy Wang, Olivia Wang, JiaWei Zhang



# By leveraging ML, banks can improve quality and efficiency of credit card approval processes

#### **Business Problem**

- 1. Challenge: Balancing between correct approvals and risk avoidance
- 2. The evolving financial landscape:

  Digital finance and unpredictability
- 3.Ensuring fairness, transparency, and compliance in decisions

# Adding Business Value through Analytics

- 1.Emphasis on data science & ML's role in credit decisioning
- 2.Transforming traditional evaluation methods
- 3. Adapting to changing economic conditions & ensuring compliance

#### **Use Scenario in Analytics**

- 1. Harnessing diverse applicant data for deeper insights
- 2.Predictive analytics for informed credit decisions

# Good applicants are defined as those who pay off dues within 30 days, cut-off point that achieves balance between risk and profits

#### **Existing target variable**

- C: paid off that month
- 0: 1-29 days past due

- 1: 30-59 days past due
- 2: 60-89 days overdue
- 3: 90-119 days overdue
- 4: 120-149 days overdue
- 5: Overdue or bad debts for more than 150 days
- X: No loan for the month

# Undersampling imbalance data brings about 3 benefits

#### Sampling result



## **Exploratory data analysis**





# 4 categories of variables can help determine whether to approve or reject credit card applicants



# 4 steps of processing are performed to ensure data quality



- Duplicated IDs were dropped from the application record dataframe
- Unnecessary columns were dropped, including occupation type (missing values) and flag mobile (single value)
- The application record and credit record datasets were merged on the unique ID column to get a consolidated dataset
- A new feature, AGE, was engineered from the DAYS\_BIRTH column
- Days employed were adjusted to represent only positive values, with unemployed days set to 0
- Encoding was done for categorical features to convert them into numerical values 0/1

## **Data Modeling**

- Type of Model: Classification
- Data Mining Algorithms
  - Logistic Regression
  - K-Nearest Neighbors (KNN)
  - Decision Tree

#### F1 score with Cross Validation

| Model    |      | Logistic<br>Regression | Decision<br>Tree |
|----------|------|------------------------|------------------|
| F1 Score | 0.77 | 0.42                   | 0.83             |

#### **Imbalanced Classes**

F1 addresses skewed datasets where accuracy can mislead

#### **Cost of Errors**

False Positives:
Potential losses from unpaid credit

False Negatives: Lost revenue opportunities

# Balancing Precision & Recall

Ensures neither metric is sacrificed for the other

#### **Comparative Evaluation**

Single,
comprehensive
metric for model
tweaking &
comparison

## **Decision Tree outperformed**

#### **TUNING**

Utilize a grid search for hyperparameter tuning for Decision Tree, with nested cross validation

- 5 folds in the inner and outer loop
- F-1 scoring metric
- Decision Tree Nested CV F1 score: 0.81 +/-0.002
- An AUC of 0.82 suggests that the Decision Tree classifier is quite effective, but not perfect, in distinguishing between the two classes



**KEY TAKEAWAY**: ROC and AUC provide an overall assessment of a classifier's performance across various thresholds, while F1 score gives a single metric that balances precision and recall. They are complementary evaluation measures that can be used to assess the effectiveness of a ML model.

## Potential issues need to be addressed before implementation

#### **Issues to Consider**

Periodic re-training to maintain relevance

Management of false positives and negatives

#### **Ethical Considerations**

Avoidance of bias against specific applicant groups

Upholding applicants' data privacy

The model can be integrated into the bank's loan application system to predict and flag potential high-risk applications in real-time

#### Risks and Mitigation:

False Positives: Review and adjust threshold values periodically

Model Outdatedness: Regular retraining and validation with fresh data

Data Breaches: Employ data encryption and robust access controls