The coordinates of three vertices of a rectangle are given. Plot the points and find the coordinates of the fourth vertex. Is the rectangle a square?

20. $O(0, 0), P(0, 5), O(\frac{?}{?}, \frac{?}{?}), R(2, 0)$ **21.** $A(2, 1), B(4, 1), C(4, 5), D(\frac{?}{?}, \frac{?}{?})$

22. O(0, 0), E(4, 0), F(4, 3), $G(\frac{?}{?}, \frac{?}{?})$ **23.** H(1, 3), I(4, 3), $J(\frac{?}{?}, \frac{?}{?})$, K(1, 6)

 \overline{RA} is an altitude of $\triangle SAT$. P and Q are midpoints of \overline{SA} and \overline{TA} . SR = 9, RT = 16, QT = 10, and PR = 7.5.

25. Find SA.

26. Find the perimeter of $\triangle PQR$.

27. Find the perimeter of $\triangle SAT$.

28. Given:
$$\Box ABZY$$
; $\overline{ZY} \cong \overline{BX}$; $\angle 1 \cong \angle 2$

Prove: ABZY is a rhombus.

29. Given: $\Box ABZY$; $\overline{AY} \cong \overline{BX}$

Prove: $\angle 1 \cong \angle 2$ and $\angle 1 \cong \angle 3$

Prove: $\triangle QSK$ is isosceles.

31. Given: Rectangle *QRST*;
□ *RKST*; □ *JQST*

Prove: $\overline{JT} \cong \overline{KS}$

- 33. Prove Theorem 5-14 for one diagonal of the rhombus. (Note that a proof for the other would be similar, step-by-step.)
- **34.** Prove: If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.
- **35.** Prove: If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.
- **36. a.** The bisectors of the angles of □ABCD intersect to form quad. WXYZ. What special kind of quadrilateral is WXYZ?
 - b. Prove your answer to part (a).
- **37.** Draw a rectangle and bisect its angles. The bisectors intersect to form what special kind of quadrilateral?

The coordinates of three vertices of a rhombus are given, not necessarily in order. Plot the points and find the coordinates of the fourth vertex. Measure the sides to check your answer.

38. $O(0, 0), L(5, 0), D(4, 3), V(\frac{?}{?}, \frac{?}{?})$ **39.** $O(0, 0), S(0, 10), E(6, 18), W(\frac{?}{?}, \frac{?}{?})$