الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

وزارة التربية الوطنية

المدة: 03 سا و30 د

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأوّل

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

اليورانيوم عنصر كيميائي نشط إشعاعيا تم اكتشافه من طرف العالم الألماني (Martin Heinrich Klaproth) سنة 1789 رمز نواته $\frac{238}{92}U$ قُدر نصف العمر له بـ $t_{1/2} = 4,47 \times 10^9 ans$ منا العمر نواته العمر نصف العمر المبارك العمر العمر العمر المبارك العمر العم يخضع لسلسلة من التحولات التلقائية، نلخصها في المعادلة:

$$^{238}_{92}U \rightarrow ^{206}_{82}Pb + x\alpha + y\beta^{-}$$
 (*)

من الدول التي تملك احتياطات كبيرة منه والأكثر استغلالا له، كازاخستان، كندا، روسيا، تكون هذه المادة قابلة للإنتاج $^{235}_{92}U$ مناعيا إذا تجاوزت نِسبتها الكتلية 0.01% في الصخور، له نظير مُشِع آخر قليل التواجد في الطبيعة هو

اً خُذت عينة صخرية من منجم قديم لاستخراج اليورانيوم كتلتها 47kg تم قياس النشاط فيها فُوجد $-\mathbf{I}$

- 1) عرّف النشاط الإشعاعي التلقائي.
- 2) حدّد أنماط التفكك الموضحة في المعادلة (*) السابقة وطبيعة الجسيمات الصادرة.
 - yو x باستعمال قانونی الإنحفاظ، عین قیمة کل من x
 - لعينة الصخرية. $^{238}_{92}U$ احسب عدد أنوية
- 5) احسب نسبة اليورانيوم U_{92}^{238} في العينة الصخرية، هل المنجم قابل للاستغلال صناعيا؟ علل.

النظير $^{235}_{92}U$ يمكن استخلاصه عن طريق الطرد المركزي ويستخدم كوقود ذري في محركات الغواصات النووية -IIلإنتاج طاقة هائلة ناتجة عن تفاعل انشطاري يمكن نمذجته بالمعادلة التالية:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2{}^{1}_{0}n$$

- 1) احسب الطاقة المحررة من نواة اليورانيوم 235.
- m(g) عند كالغواصة استطاعة دفع محولة قدرها $P=25{ imes}10^6~watt$ عند كالغواصة استطاعة دفع محولة قدرها وأولاد كالغواصة الغواصة استطاعة دفع محولة قدرها وأولاد كالغواصة الغواصة الغو من اليورانيوم المخصب U^{235} خلال U يوما من الإبحار.

أ) ماهي الطاقة المحررة من انشطار الكتلة m السابقة التي تستهلكها الغواصة خلال هذه المدة، علما أن مردود هذا التحويل $\rho=85\%$?

 $\boldsymbol{\mu}$ احسب مقدار الكتلة m.

$$N_A=6.02\times 10^{23}~mol^{-1}$$
 ، $M(^{235}U)=235.04~g/mol$ ، $M(^{238}U)=238.05~g/mol$.
 $E_{\ell/A}(^{140}Xe)=8.290~Mev/nuc$ ، $E_{\ell/A}(^{235}U)=7.590~Mev/nuc$.
 $1Mev=1.6\times 10^{-13}J$ ، $1an=365~jours$ ، $1an=365~jours$

التمرين الثاني: (07 نقاط)

نحقّق الدارة الكهربائية الموضحة بالشكل-1 والتي تتألف من مولد ذي توتر ثابت E=6V، ناقل أومي مقاومته R، مكثفة غير مشحونة سعتها C، بادلة K ووشيعة ذاتيتها L مقاومتها مهملة.

باستعمال تجهيز التجريب المدعم بالحاسوب تمكنا من الحصول على المنحنى البياني i = f(t) الممثل لتغيرات شدة التيار المار في الدارة بدلالة الزمن أثناء عملية شحن المكثفة، الشكل-2.

- 1) أعد رسم دارة الشحن موضحا عليها الجهة الاصطلاحية للتيار الكهربائي وبيّن بسهم التوتر الكهربائي بين طرفي كل عنصر كهربائي.
 - باستعمال قانون جمع التوترات اكتب المعادلة التفاضلية للشحنة q بدلالة الزمن.
 - . p و d . جد عبارة كل من A و d . $q(t) = A(1-e^{-bt})$. جد عبارة كل من A
 - . i(t) جد عبارة شدة التيار
 - . R باستعمال البيان: أ) احسب مقاومة الناقل الأومي

$$C=2\mu F$$
 بيّن أنَّ سعة المكثفة ب

(2). بعد إتمام عملية الشحن، وفي اللحظة t=0 نغيّر البادلة إلى الوضع (6).

$$\frac{d^2u_C}{dt^2} + \frac{1}{L.C}u_C = 0$$
 : بيّن أنّ المعادلة التفاضلية للتوتر بين طرفي المكثفة تعطى بالعبارة: (أ

ب) من المنحنيات الآتية، أيها يوافق حل هذه المعادلة مع التعليل.

- ج) بالاعتماد على المنحنى المختار احسب ذاتية الوشيعة L.
- د) احسب قيمة الطاقة المخزنة في المكثفة من أجل البادلة في الوضع (2) عند اللحظتين:

دور الاهتزاز .
$$t = \frac{T}{4}s$$
 ، $t = 0s$

هـ) فسر التغير الحادث في هذه الطاقة.

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

تهدف هذه الدراسة إلى كيفية تحسين مردود تفاعل، من أجل ذلك:

مع $0,02\ mol$ من الماء في درجة حرارة مناسبة $CH_3COOC_3H_7$ (A) من الماء في درجة حرارة مناسبة -I وبإضافة قطرات من حمض الكبريت المركز .

يُنمذج هذا التحول بمعادلة كيميائية من الشكل:

$$CH_3COOC_3H_7(l) + H_2O(l) = CH_3COOH(l) + C_3H_7OH(l)$$
.....(1)
(A)

- 1) ما الفائدة من إضافة قطرات من حمض الكبريت المركز؟
 - . (A) حدّد الوظيفة الكيميائية للمركب (2
 - 3) بماذا يسمى هذا التفاعل؟
 - (C) حدّد الوظيفة الكيميائية للمركب (4
 - 5) أنجز جدولا لتقدم التفاعل.
- المابق المابق إلى حالة التوازن، نضيف له بالتدريج محلولا من هيدروكسيد —II بعد مدة زمنية كافية يصل فيها التفاعل السابق إلى حالة التوازن، نضيف له بالتدريج محلولا من المابق مناسب (فينول $Na^+(aq),OH^-(aq)$) بوجود كاشف ملون مناسب فينول الصوديوم ($Na^+(aq),OH^-(aq)$) من أجل معايرة الحمض المتشكل في التفاعل السابق.

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا 2017

نلاحظ أن لون المزيج يتغير عند إضافة حجم من محلول هيدروكسيد الصوديوم قدره $V_B=20\ mL$ نوقف عندها عملية المعايرة اللونية.

- 1) ارسم التجهيز التجريبي لعملية المعايرة اللونية موضحا عليه البيانات الكافية.
 - 2) اكتب معادلة تفاعل المعايرة الحادث.
 - 3) احسب كمية مادة الحمض المتشكل عند توازن التفاعل (1).
 - 4) احسب مردود التفاعل السابق(1) واستنتج صنف الكحول الناتج.
- 5) أعط التركيب المولي للمزيج السابق عند التوازن ثم احسب ثابت التوازن K له.
 - (C) ، (A) سَمّ المركبين ((A)

III - بعد عملية المعايرة نسخن المزيج من جديد مدة كافية فنلاحظ زوال اللون الذي ظهر عند التكافؤ السابق (يصبح المزيج شفافا).

- 1) فسر ما حدث في المزيج.
- 2) هل تتوقع زيادة أو نقصان في مردود التفاعل السابق؟ علّل، ماذا تستنتج؟

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

نحقق الدارة الكهربائية الممثلة في (الشكل -1-) باستعمال العناصر الكهربائية التالية:

- .E مولد للتوتر الكهربائي مثالي قوته المحركة الكهربائية
- $R_1 = R_2 = R$ ناقلان أوميان مقاومتيهما R_2 ، R_1 حيث -
 - مكثفة فارغة سعتها C.
 - L وشيعة صافية ذاتيتها
 - بادلة *K*

- وبيّن بسهم التوتر الكهربائي بين طرفي كل عنصر كهرىائي.

- د) بيّن أن $E(1-e^{-rac{t}{RC}})$ هو حل للمعادلة التفاضلية.
- 2) نضع الآن البادلة في الوضع (2) في لحظة نعتبرها مبدأ للأزمنة.
 - $i\left(t
 ight)$ جد المعادلة التفاضلية التي تحققها شدة التيار
- $i(t)=Ae^{-rac{R}{L}t}+B$: حل المعادلة التفاضلية السابقة هو من الشكل (ب حيث A و B ثابتين. جد عبارة كل منهما.
- 3) بواسطة برمجية خاصة تمكنا من الحصول على البيانين (a) و (b) الممثلين في (الشكل -2-). أحدهما يوافق البادلة في الوضع (1) والآخر يوافق البادلة في الوضع (2).

الشكل _1_

- أ) أرفق كل منحنى بالوضع المناسب للبادلة مع التعليل.
- $\cdot L, C, R, E$: باستعمال البيانين جد قيم المقادير التالية

التمرين الثاني: (07 نقاط)

ندخل في اللحظة t=0 كتلة قدرها m=2g من المغنزيوم في بيشر يحتوي على 50mL من محلول حمض ندخل في اللحظة t=0 كتلة قدرها t=0 كتلة قدرها t=0 كلور الهيدروجين t=0 الكيميائي الكيميائي t=0 الكيميائي t=0 الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي t=0 الكيميائي الكيميائي الكيميائي t=0 الكيميائي الكيميائي الكيميائي t=0 الكيميائي الكيمائي الكيميائي الكي

- المشاركتين في (Ox/Red) اكتب المعادلتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين للأكسدة والإرجاع ثم استنتج الثنائيتين الإلكترونيتين الإلكترونيتين المشاركتين في هذا التحول الكيميائي.
 - pH إن قياس الـ pH للمحلول الناتج في لحظات مختلفة أعطى النتائج المدونة في الجدول التالي:

و ي . و ي	•	_		ي	Ċ	-5	1	<u> </u>
t (min)	0	2	4	6	8	10	12	14
pН	2,00	2,12	2,27	2,44	2,66	2,95	3,41	4,36
$[H_3O^+] \times 10^{-3} mol / L$								
$[Mg^{2+}] \times 10^{-3} mol / L$								

- أ) أنجِز جدول التقدم للتفاعل المنمذج للتحول الكيميائي الحادث.
 - ب) بيّن أن المغنزبوم موجود بالزبادة في المحلول.

 Mg^{2+} بيّن أن التركيز المولي للشوارد Mg^{2+} يعطى في كل لحظة بالعلاقة التالية:

. ثم أكمل الجدول أعلاه.
$$Mg^{2+}$$
 $(t) = \frac{1}{2} (10^{-2} - [H_3 O^+](t))$

$$\llbracket H_3O^+
right
ceil = g\left(t
ight)$$
 ارسم في نفس المعلم البيان (1) الموافق لـ $\llbracket Mg^{2+}
ceil = f\left(t
ight)$ الموافق لـ (1) الموافق الم

- t=2min في اللحظة Mg^{2+} باستعمال البيان (1) احسب السرعة الحجمية لتشكل شوارد المغنزيوم H_3O^+ عند نفس اللحظة.
 - و) تأكد من قيمة السرعة الحجمية لاختفاء شوارد الهيدرونيوم H_3O^+ باستعمال المنحنى (2).
 - $t_{1/2}$ عرّف زمن نصف التفاعل -3
 - ب) احسب التركيز المولي لكل من شوارد الهيدرونيوم وشوارد المغنزيوم في اللحظة $t=t_{1/2}$ ثم استتج قيمة $t=t_{1/2}$ بيانيا.

 $M\left(Mg\right) = 24~g~/mol$ تعطى: الكتلة المولية الذرية للمغنزيوم

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

خلال حصة الأعمال المخبرية كلّف الأستاذ ثلاث مجموعات من التلاميذ بدراسة حركة سقوط كرية في الهواء كتلتها m وحجمها V انطلاقا من السكون في اللحظة t=0 حيث طلب منهم تمثيل القوى المؤثرة على الكرية في لحظة t>0 عرضت كل مجموعة عملها فكانت النتائج كالتالي:

3	2	1	المجموعة
	$\oint_{\bullet} \overrightarrow{f}$	$\overrightarrow{\Pi}$	التمثيل المنجز
\overrightarrow{p}	\overrightarrow{p}	\overrightarrow{p}	التمثيل المذجر

حيث $\overline{\Pi}$ دافعة أرخميدس و \overline{f} قوة الاحتكاك مع الهواء.

- 1) بعد المناقشة تم رفض تمثيل إحدى المجموعات الثلاث.
 - أ) حدّد التمثيل المرفوض مع التعليل.
- ب) اكتب المعادلة التفاضلية للسرعة لكلا الحالتين المتبقيتين.
- جارة a_0 تسارع الكرية في اللحظة t=0 لكل من الحالتين المتبقيتين.

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا 2017

2) لتحديد التمثيل المناسب أُجريت تجربة لقياس قيم السرعة في لحظات مختلفة، النتائج المتحصل عليها سمحت برسم المنحنى الموضح في (الشكل-3).

مستعينا بالمنحنى حدد قيمة التسارع الابتدائي a_0 في اللحظة t=0 ثم استنج التمثيل الصحيح مع التعليل.

- v_{lim} عيّن قيمة السرعة الحدية (3
- V_{lim} جد عبارة السرعة الحدية

بدلالة : g ، k ، m و V حجم الكرية ، ثم احسب قيمة الثابت k .

5) احسب شدة محصلة القوى المطبقة على الكرية في اللحظة t=1,5s بطريقتين مختلفتين.

m=2.6g المعطيات : عبارة قوة الاحتكاك من الشكل $g=9.80~m.s^{-2}$ ، f=kv كتلة الكرية $V=3.6\times 10^{-4}m^3$ حجم الكرية ، $\rho_{air}=1.3kg.m^{-3}$ الكتلة الحجمية للهواء

انتهى الموضوع الثاني

العلامة		/ 1 Ext - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول (13 نقطة)
0,5		<u>التمرين الأول</u> :(06 نقاط)
0,0	0,5	-1-1 النشاط الإشعاعي التلقائي: هو تحول طبيعي تلقائي وعشوائي في الأنوية غير المستقرة لتعطي
		أنوية أكثر استقرار بإصدار جسيمات β، α.
		2- أنماط التحولات الموضحة في المعادلة:
01	0,5	$\binom{4}{2}He$)، وهو عبارة عن أنوية الهيليوم (α) تحول ألفا
	0,5	$({ \begin{array}{c} 0 \\ -1 \end{array}} e \)$ ، وهو عبارة عن إلكترونات (β^-)
	0,25	$^{238}_{92}U \rightarrow ^{206}_{82}\mathrm{Pd} + x_2^4He + y_{-1}^0e$ (*) د تحدید قیمتي کل من x و y ادینا -3
0,5	0,25	238 = 206 + 4x ، $92 = 82 + 2x - y$ حسب قانونا الإنحفاظ فإن
		y = 6 , $x = 8$ each
		$N = \frac{A}{\lambda} = \frac{t_{1/2}}{\ln 2}.A$ ومنه $A = \lambda.N$ العينة: لدينا $A = \lambda.N$
0,5	0,25	$N = \frac{4.47 \times 10^9 \times 365 \times 24 \times 3600}{\ln 2} \times 2.35 \times 10^5 = 4.78 \times 10^{22} noyeaux$
	0,25	ln 2
	0,25	$\frac{N}{N_A} = \frac{m}{M}$ نسبة اليورانيوم (238) في العينة الصخرية: لدينا كتلة اليورانيوم في العينة -5
1,25		
_,	0,75	$p = \frac{m}{m_0} \times 100 = \frac{18.9}{47000} \times 100 = 0.04\% \text{ومنه} m = \frac{N.M}{N_A} = \frac{4.78 \times 10^{22} \times 238.05}{6.02 \times 10^{23}} = 18.9 \text{ g}$
	0,25	$p{>}0.01\%$ نعم المنجم مازال قابل للاستغلال لأن
0.5	0,25	$E_{lib} = egin{array}{c} E_l(initial) - E_l(final) & L_l(final) & $
0,5	0,25	$E = 7.590 \times 235 - (8.290 \times 140 + 8.593 \times 94) = 184.7 Mev$ نجد:
	0,25	$E_T = P \times t \times 100/85$ الطاقة المستهلكة الكلية خلال شهر: لدينا -2
	0,5	$E_{\scriptscriptstyle T} = 25.10^6.30.24.3600 \times 100 / 85 = 7.62 \times 10^{13} \ jouls = 4.76 \times 10^{26} \ Mev$ ومنه
		ب) حساب مقدار الكتلة m :
1,75	0,5	$N = \frac{4.76 \times 10^{26}}{184.7} = 2.57 \times 10^{24} noyeaux$ ومنه $N = \frac{E_T}{E_{lib}}$ عدد الأنوية المستهلكة خلال شهر $N = \frac{E_T}{E_{lib}}$
	0,5	$m = \frac{N.M}{N_A} = \frac{2.57 \times 10^{24} \times 235.04}{6.02.10^{23}} = 1003 \ g$ ومنه الكتلة المستهلكة

العلامة		/ + E+1 +1\ T + >+1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
01	0,25	$\stackrel{E}{\longrightarrow}$ $\stackrel{u_R}{\longleftarrow}$ (07 نقاط) التمرين الثاني: (07
	0,25	$ \begin{array}{c c} & \downarrow \\ & \downarrow \\$
	0,25	u_{C} u_{C
	0,25	
	0,25	المعادلة التفاضلية للشحنة q :
0,75	0,25	$i=rac{dq}{dt}$ حيث $R.i+rac{1}{C}q=E$ ومنه $u_R+u_C=E$
	0,25	$\frac{dq}{dt} + \frac{1}{R.C}q - \frac{E}{R} = 0$ نجد
	0,25	بالمطابقة نجد خبارة b ، A : نشتق الحل نجد $\frac{dq}{dt} = Abe^{-bt}$
0,75		$Abe^{-bt} + \frac{A}{R.C} - \frac{A}{R.C}e^{-bt} = \frac{E}{R}$
	0,25	
	0,25	$\left(\begin{array}{cccc} b=rac{1}{ au} & A=Q_{ ext{max}} \end{array} ight) b=rac{1}{R.C} , A=E.C$ نخلص إلى
0,25	0,25	$i\left(t ight)=rac{E}{R}e^{-rac{t}{RC}}$ عبارة شدة التيار : لدينا $i=rac{dq}{dt}$ بالاشتقاق نجد -4
	0,25	$u_R=R.i=E$ ومنه $\mathbf{u_C}=0$ عند اللحظة $t=0$ عند اللحظة أ $t=0$
01	0,25	$R = \frac{E}{i_0} = \frac{6}{4.8 \times 10^{-3}} = 1250 \ \Omega$ نجف
	0,25	ب) إثبات قيمة سعة المكثفة: من المماس عند $t=0$ نجد $ au=R.C$ من البيان
	0,25	$C = \frac{\tau}{R} = \frac{2.5 \times 10^{-3}}{1250} = 2\mu F$
	0,25	ومنه $u_C + L \frac{di}{dt} = 0$ حيث $u_C + u_L = 0$ المعادلة التفاضلية: لدينا $u_C + u_L = 0$
	0,25	$\frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$ بالاشتقاق والتعويض نجد $i = \frac{dq}{dt} = C\frac{du_C}{dt}$
	0,25	dt^2 $L.C$ dt dt dt dt dt dt dt dt
	0,25	ب) المتحتى الموافق لكل المعادلة النفاصلية هو السكل -4 التعليل: المعادلة التفاضلية حلها جيبي والوشيعة مثالية (لا تحتوي مقاومة داخلية) حيث لا
03,25	0, 5	التعليل. المعادلة العاصلية كلها جيبي والوسيعة مدانية (لا تحلوي معاومة داخلية) كيت لا تستهلك الطاقة ومنه لا يحدث تخامد في الاهتزازات (ثبات في السعة)
	0,25	حساب ذاتية الوشيعة: تعطى عبارة الدور الذاتي بالعلاقة: $T_0 = 2\pi\sqrt{L.C}$
	0,25	$L = \frac{{T_0}^2}{(2\pi)^2 \times C} = 0.1 H$ ومن المنحنى البياني $T_0 = 2.8 \times 10^{-3} s$ بالمطابقة نجد
		$(2\pi)^2 imes C$
•	•	

العلامة		/ + Ext			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
	0,25	$E(C)=rac{1}{2}C.u_C^2$: د) حساب الطاقة المخزنة في المكثفة			
	0,25	$E(C) = 3.6 \times 10^{-5}$ joules غند $t = 0s$ غند			
	0,25	$E(C) = 0$ joules نجد $t = \frac{T}{4}s$ عند			
		4			
	0,5	 ه) التفسير : خلال ربع الدور يتناقص التوتر بين طرفي المكثفة من قيمته الأعظمية (6V) إلى الصفر بسب انتقال الطاقة من المكثفة إلى الوشيعة دون ضياع. 			
		الجزء الثاني:(07 نقاط)			
		. صبي (وقت) <u>التمرين التجريبي</u> : (07 نقاط)			
0,25	0,25	ي بريع النفائدة من إضافة قطرات من حمض الكبريت هو تسريع التفاعل -1 -1			
0,25	0,25	2− تحديد الوظيفة الكيميائية لـ(<mark>A):</mark> وظيفة أسترية			
0,25	0,25	3- يسمى التفاعل إماهة أستر.			
0,25	0,25	4− تحديد الوظيفة الكيميائية لـ(C): وظيفة كحولية.			
		5- جدول التقدم:			
	0,75	$CH_3COOC_3H_7(I) + H_2O(I) = CH_3COOH(I) +$			
		$C_3H_7OH(I)$			
0,75		n (mol) التقدم الحالة الله المالة الله المالة الله الله الله الله الله الله الله ا			
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
		0.02-			
		X_f $0.02-X_f$ X_f X_f X_f			
		1-II- رسم التجهيز التجريبي للمعايرة:			
		1: حامل			
		2: سحاحة مدرجة تحتوي على المحلول الأساسي			
0,5	0,5	3: بيشر يحتوي على المحلول الحمضي			
		4: مخلاط مغناطیسي			
0,5	0,5	$CH_3COOH(l) + OH^{-}(aq) = CH_3COO^{-}(aq) + H_2O(l)$			

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	
0,5	0,25 0,25	$n_A=C_B.V_{BE}$ ومنه $n_A=0.08\ mol$ ومنه $n_A=0.08\ mol$
0,75	0,5 0,25	$ ho = \frac{n_f}{n_0} \times 100 = \frac{0.008}{0.02} \times 100 = 40\%$ حساب مردود التفاعل: لدينا $ ho = 40\%$ حساب مردود الإماهة $ ho = 40\%$ والمزيج الابتدائي متساوي المولات فإن الكحول ثانوي
1,5	0,25 0,25 0,25 0,25 0,5	تركيب المزيج بالمول عند التوازن:
0,5	0,25 0,25	C ، A تسمية المركبين C ، A : المركب C : بروبان C - أول المركب C : إيثانوات C - مثيل أيثيل
0,5	0,25 0,25	III-1- تفسير ما يحدث: يتغير لون المزيج من الأحمر البنفسجي إلى عديم اللون بسبب انزياح تفاعل الإماهة من جديد نحو نقطة توازن جديدة يتشكل عندها كمية جديدة من الحمض تجعل الوسط حامضي فيكون عديم اللون بوجود كاشف الفينول فتالين.
0,5	0,25	2- نتوقع زيادة في مردود التفاعل بسبب زيادة كمية الحمض والكحول ونقصان الأستر والماء. نستنتج أن إضافة قاعدة قوية إلى تفاعل الأماهة يؤدي إلى زيادة مردودها.

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول(13 نقطة)
		التمرين الأول: (06 نقاط)
		-1
	0,25	أ- الظاهرة الكهربائية : شحن المكثفة
		i
		ct uc
1 75		
1,75	0,75	R ↑ ↑ IIR
	·	UR UR
	0,5	
		$\frac{dU_c}{dt} + \frac{1}{RC}U_c = \frac{E}{RC}$ ج) المعادلة التفاضلية:
	0,25	هو حل للمعادلة التفاضلية $u_c(t)=E(\ 1-\ e^{-(t/RC)}$ (ع
		2- أ- المعادلة التفاضلية التي تحققها شدة التيار:
	0,5	$\frac{di(t)}{dt} + \frac{R}{L}i(t) = \frac{E}{L}$
		$ar \;\; L \;\; L$ P ب $-$ ایجاد عبارة کل من: P و
	0.25	$i(t) = Ae^{-\frac{R}{L}t} + B$
	0,25	$\frac{di(t)}{dt} = -\frac{AR}{L}e^{-\frac{R}{L}t}$
1,5		
		$-\frac{AR}{L}e^{-\frac{R}{L}t} + \frac{R}{L}(Ae^{-\frac{R}{L}t} + B) = \frac{E}{L}$
	0,25	$\frac{RB}{L} = \frac{E}{L} \Longrightarrow B = \frac{E}{R}$
	0,25	— — -
	0,25	R
		$i(0) = A + B = 0 \Rightarrow A = -\frac{E}{R}$

العلامة		/ +124 . • +1\ T 1
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)
		3- أ) ارفاق كل منحنى بالوضع المناسب للبادلة شدة التيار في الوشيعة تتزايد مع مرور الزمن بينما
	0,5	في المكثفة تتناقص و بالتالي البيان(a) يوافق البادلة في الوضع (2) و البيان (b) يوافق البادلة في
		$u_c(t)$ و هو $u_c(t)$
		E,R,C,L ب $-$ قيم المقادير
	0,25	من البيان $u_{cmax} = E = 6 \ V : (b)$ من البيان $u_{cmax} = E = 6 \ V : (b)$
	0,25	$R = \frac{E}{I_{\text{max}}}$ من البيان (a):
2,75	0,25	$R = 500\Omega$
	0,25	من البيان (b): $ au_b=10$ ms
	0,25	$C = \frac{\tau_b}{R}$
	0,25	$C = 2 \times 10^{-5} F$
	0,25	$\tau_a = 1ms$
	0,25	$ au_a = \frac{L}{R}$ هن البيان (a) :
	0,25	L = 500mH = 0.5H
	0,25	التمرين الثاني: (07 نقاط)
1	0,25	$Mg = Mg^{2+} + 2e^{-}$ المعادلتين النصفيتين -1
_	0,25	$2H_3O^+ + 2e^- = H_2 + 2H_2O$ $Mg^{2+}/Mg)$, (H_3O^+/H_2) -
	0,25	العاليين - (۱۱۱ع /۱۱۱ع) , (۱۱۱ع /۱۱۱ع) - العاليين -
		$n_0(Mg) = (m/M) = (2/24) = 8,33.10^{-2} mol$
		$n_0(H_3O^+) = (C_0.V) = (10^{-2}.50.10^{-3}) = 5.10^{-4} mol$ $ Mg + 2H_3O^+ = Mg^{2+} + H_2$
		$+2H_2O$
		كميات المادة (mol) التقدم الحالة
	0,75	بوفرة 0 8,33. 10-2 5 10-4 0 حالة ابتدائية
		يوفرة x 8,33. 10 ⁻² - 5.10 ⁻⁴ -2x(t) x(t) x(t) يوفرة
C		بوفرة x_{max} x_{max} x_{max} x_{max} x_{max} x_{max} x_{max}
	0.25	ب- نبين ان المغنيزيوم موجود بالزيادة نعين المتفاعل المحد
	0,25	$8,33.10^{-2} - x_{max} = 0$ $x_{max} = 8,33.10^{-2} mol$ إذا كان معدن المغنزيوم هو المتفاعل المحد $x_{max} = 0$ $x_{max} = 0$ $x_{max} = 2.510^{-4} mol$ أو شوارد الهيدرونيوم هي المتفاعل المحد
	0,25	ومنه شوارد الهيدرونيوم هي المعناعل محد وعليه المغنيزيوم موجود بالزيادة
L	L	ولمت شوارك الهيدرونيوم مصد فرسية المستريرم المرجرة جاريات

العلامة				
مجموع	مجزأة	عناصر الإجابـة (الموضوع الثاني)		
		$x(t)=(5.10^{-4})/2$ - $n(H_3O^+)/2$ من جدول التقدم Mg^{2+} $=$ $(x(t)/V)$		
	0,75	$[Mg^{2+}] = 0.5 \; (10^{-2} - [\; H_3O^+] \;\;)$ و منه		
		اكمال الجدول t(min) 0 2 4 6 8 10 12 14		
	1	t(min) 0 2 4 6 8 10 12 14 PH 2,00 2,12 2,2 2,44 2,66 2,95 3,41 4,36		
	1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
		$[Mg^{2+}](mol/l)10^{-3} 0,00 \qquad 1,2 2,3 3,18 3,91 4,44 4,8 4,98$		
		$[Mg^{2+}]=f(t)$ $[H_3O^+]=g(t)$ د– رسم البیانین $J_3O^+=g(t)$ د– رسم البیانین المحا $J_3O^+=g(t)$		
5	0,5	Mg ²⁺		
	0,25	$v_{ u}(Mg^{2+}) = (d[Mg^{2+}]/dt) = 0,54.10^{-3} mol.l^{-1}.min^{-1}$ و تقبل القيم القريبة)		
	0,23	H_3O^+ السرعة الحجمية M_3O^+ السرعة الحجمية M_3O^+		
		ومنه [Mg^{2+} J = $0.5~(10^{-2}$ - $[~H_3O^+]$)		
	0,25	($d[Mg^{2+}]/dt$)= $d(0.5 (10^2 - [H_3O^+])/dt$)=-0.5 $d[H_3O^+]/dt$)		
	0,25	$v_{\nu}(H_3O^+) = 2.v_{\nu}(Mg^{2+}) = 2.\ 0.54.10^{-3} = 1.08.10^{-3} \text{mol.l}^{-1}.\text{min}^{-1}$		
		و – التأكد من قيمة $v_{\nu}(H_3O^+)$ برسم المماس للمنحنى $g(t)=[H_3O^+]=g(t)$ نجد		
	0,25	$v_{\nu}(H_3O^+) = -d[H_3O^+]/dt = 1.08 \ 10^{-3} \ mol.L^{-1}.min^{-1}$		

العلامة		/ *****
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	3 – أ تعريف زمن نصف التفاعل
		x_f هو المدة اللازمة لبلوغ قيمة التقدم $x(t)$ نصف قيمته النهائية $t_{1/2}$
1	0,25	$0,0005 - \frac{2x_{max}}{3}$
		$[H_3O^+](t_{1/2}) = \frac{0.0005 - \frac{2x_{max}}{2}}{V} = 5. 10^{-3} \text{ mol/L}$
	0,25	$[Mg^{2+}](t_{1/2}) = \frac{x_{max}}{2V} = 2.5 \ 10^{-3} \ mol/L$
	0,25	$t_{1/2}=4.4min$ بیانیا نجد $t_{1/2}=4.4min$
		الجزء الثاني(07 نقطة)
		التمرين التجريبي: (07 نقاط)
	0,5	1 – أ – التمثيل (3) لأن موجهة نحو الأسفل .
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G$: بتطبيق القانون الثاني لنيوتن في معلم غاليلي بالحالة (1) بتطبيق القانون الثاني لنيوتن في معلم
	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \implies \vec{P} + \vec{\pi} + \vec{f} = m\vec{a}$
		بالإسقاط على محور الحركة نجد : dv
	0,25	$P - \pi - f = ma \Rightarrow mg - \rho vg - f = m \frac{dv}{dt}$
03	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g(1 - \frac{\rho V}{m})$
03	0,25	$\sum \vec{F}_{ext} = m\vec{a}_G \Rightarrow \vec{P} + \vec{f} = m\vec{a}$: (2) الحالة
	0,25	$\frac{dv}{dt} + \frac{k}{m}v = g$
	0.5	v=0 يكون $t=0$ عند $t=0$
	0,5	$a_0 = g(1 - \frac{\rho v}{m})$: (1) الحالة
		$a_0 = g$: (2) الحالة (2)
01	0,5	$a_0 = 8 m/s^2$ $t=0$ عند . 2
0.05	0,5	. التمثيل (1) هو الموافق $a_0 < g \Leftarrow$
0,25	0,25	$V_L=6\ m/s$: من المنحنى dv
		$rac{dv}{dt} = 0$ يكون $v = v_L$ - عندما $v = v_L : -4$
01	0,5	$\Rightarrow g(1 - \frac{\rho V}{m}) = \frac{k}{m} v_L \Rightarrow v_{L=} \frac{mg}{k} \left(1 - \frac{\rho V}{m} \right)$
	0,25	$k=rac{mg}{v_L} (I-rac{ ho v}{m})$ قيمة ثابت الإحتكاك k : قيمة
	0,25	$k = 3,48.10^{-3} \ kg/s$ تطبیق عددي: $k = 3,48.10^{-3} \ kg/s$

العلامة		()1°11
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	t- شدة محصلة القوى المطبقة على الكرية في اللحظة t
	0,25	$F{=}ma$:طريقة $a{=}\Delta v/\Delta t$
	0,25	$a = 1.07 \text{m/s}^2$
1,75	0,25	$F=2.8.10^{-3}N$
	0,25	$\overrightarrow{\Sigma}F_{ext} = m a$:2
	0,25	بالاسقاط على Oz بالاسقاط على على على على على المستاط على على المستاط على المستاط على المستاط على المستاط على ا
	0,25	$F = p - f - \pi \rightarrow F = mg - kv - \rho_{air} \cdot Vg \rightarrow F = 2.8 \cdot 10^{-3} N$