Příklady k MMID

Příklad číslo jedna:

Identifikujte model prvního řádu $F(z^{-1}) = \frac{b_1 z^{-1}}{1 + a_1 z^{-1}}$, pomocí klasické metody nejmenších čtverců:

k	0	1	2	3	4	5
u	1	1	1	1	1	1
y	0	0,1	0,3	0,6	1	1

Řešte bez pomocí kalkulačky a MATLABU!

Návod:

- 1) sestavte vektor a matice Y a Φ .
- 2) řešte rovnici: $\theta = (\Phi^T \Phi)^{-1} * \Phi^T Y$
- 3) sestavte model (diskrétní přenos)

Poznámky: Dejte pozor na znaménka v matici Φ . Dejte pozor na pořadí parametrů ve výsledném vektoru θ .

Diferenční rovnice popisující diskrétní systém prvního řádu:

$$y(k) = b_0 u(k-1) - a_0 y(k-1)$$

Přibližné výsledky:

$$a_0 = -\frac{6}{7}, b_0 = \frac{9}{35}$$

- Ve výpočtu $\Phi^T\Phi$ zaokrouhlete odnotu 1,46 na 1,5
- Ve výpočtu $\Phi^T Y$ zaokrouhlete hodnotu -1,81 na -1,8
- Pro výpočet $(\Phi^T \Phi)^{-1}$ a $(\Phi^T \Phi)^{-1} * \Phi^T Y$ používejte zlomky!!

Příklad číslo dvě:

Identifikujte model prvního řádu $F(z^{-1})=\frac{b_1z^{-1}}{1+a_1z^{-1}}$, pomocí metody nejmenších čtverců s pomocnými proměnnými se zpožděným pozorováním.

k	0	1	2	3	4	5	6
u	1	1	1	1	1	1	1
y	0	0,1	0,3	Х	1	1	1

X značí výpadek měření. Zpoždění d uvažujte jako d=1.

Pro dílčí výpočty použijte kalkulačku/MATLAB. MATLAB nepoužívejte pro maticové násobení a řešení rovnic. Jen pro kontrolu výpočtů. Zaokrouhlujte podle uvážení.

Návod:

- 1) sestavte vektor Y, matici Φ a matici Z včetně výpadku měření. Napište je tak, ať jsou jednotlivé řádky jednotlivých matic a vektoru zarovnané
- 2) Proveďte "chytré škrkání" a znovu sepište vektor a matice.
- 3) Řešte rovnici $\theta = (Z^T \Phi)^{-1} Z^T Y$
- 4) Sestavte model (diskrétní přenos)

Poznámky: Dejte pozor na znaménka v maticích Φ a Z. Dejte pozor na pořadí parametrů ve výsledném vektoru Θ . Dejte pozor při sestavování vektoru a matic na "od jaké hodnoty se mají sestavit". Nezapomínejte že máte ještě zpoždění d navíc. Návod jak sestavit matici Z je v přednáškách MMID: $\underline{\text{odkaz}}$.

Diferenční rovnice popisující diskrétní systém prvního řádu:

$$y(k) = b_0 u(k-1) - a_0 y(k-1)$$

Přibližné výsledky:

$$a_0 = -0.67, b_0 = 0.22$$

Příklad číslo tři:

Identifikujte model prvního řádu $F(z^{-1})=\frac{b_1z^{-1}}{1+a_1z^{-1}}$, pomocí metody nejmenších čtverců s pomocnými proměnnými s dodatečným modelem

k	0	1	2	3	4	5
и	1	1	1	1	1	1
у	0	0,1	0,3	Χ	1	1
y_m				_		

Pro dílčí výpočty použijte kalkulačku/MATLAB. MATLAB nepoužívejte pro maticové násobení a řešení rovnic. Jen pro kontrolu výpočtů. Zaokrouhlujte podle uvážení.

X značí výpadek měření.

Návod:

Pro tuto metodu je nutné nejprve sestavit model pomocí nějaké jiné identifikační metody. Proto nejprve vytvořte model na základě klasické metody nejmenších čtverců:

- 1) Sestavte vektor Y a matici Φ včetně výpadku měření. Napište je tak, ať jsou jednotlivé řádky jednotlivých matic a vektoru zarovnané.
- 2) Proveďte "chytré škrkání" a znovu sepište vektor a matice.
- 3) řešte rovnici: $\theta_{\mathrm{m}} = (\Phi^T \Phi)^{-1} * \Phi^T Y$
- 4) sestavte model (diskrétní přenos)

nyní je třeba "naměřit výstup y_m " tohoto modelu.

- 1) Použijte diferenční rovnici popisující diskrétní systém prvního řádu doplněnou o předběžně identifikované parametry z vektoru θ_m .
- 2) Určete hodnoty $y_m(k)$ pro k = 0 $a ilde{z}$ 5.
- 3) Pro k < 0 uvažujte hodnoty u(k) a $y_m(k)$ rovny **nule**. Pro $k \ge 0$ uvažujte hodnoty u(k) rovny **jedné**.
- 4) Připište si získané hodnoty y_m do tabulky

Nyní když jsou k dispozici původní hodnoty z tabulky u(k), y(k) a nové hodnoty $y_m(k)$ lze postupovat:

- 1) sestavte vektor Y, matici Φ a matici Z z tabulky včetně výpadku měření. Napište je tak, ať jsou jednotlivé řádky jednotlivých matic a vektoru zarovnané.
- 2) Proveďte "chytré škrkání" a znovu sepište vektor a matice.
- 3) Řešte rovnici $\theta = (Z^T \Phi)^{-1} Z^T Y$
- 4) Sestavte model (diskrétní přenos)

Poznámky: Dejte pozor na znaménka v maticích Φ a Z. Dejte pozor na pořadí parametrů parametrů ve výsledném vektoru Θ . Neplést y a y_m . Návod jak sestavit matici Z je v přednáškách MMID: $\underline{\text{odkaz}}$.

Diferenční rovnice popisující diskrétní systém prvního řádu:

$$y(k) = b_0 u(k-1) - a_0 y(k-1)$$

Přibližné výsledky:

$$a_0 = -0.73, b_0 = 0.13$$