Computer Vision 2

Carina Roldán, Eloy Zerbatto

OBJETIVO: Identificar carreteras y redes de calles en imágenes satelitales

CONJUNTO DE DATOS

Entrenamiento

- 6226 imágenes RGB
- Tamaño: 1024 x 1024
- Resolución espacial: 50 cm x pixel

Validación
1243 imágenes

Test1101 imágenes
(sin máscara)

https://www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset Fuente: DigitalGlobe (https://www.digitalglobe.com)

EDA - Imágenes de muestra y sus máscaras

EDA - Explorando la misma imágen a distintas escalas

EDA - Explorando máscaras resizeadas a 256x256

SOLUCIÓN PROPUESTA

Realizar una segmentación para identificar dos clases: "carretera" y "fondo"

MODELO A ENTRENAR

 Encoder/decoder con skip connections

• Inspirado en **U-NET**

MODELO A ENTRENAR

Encoder

```
bloques de dos conv2D
(Kernel 3x3) + LeakyRelu
skip connection
maxpool2D (poolsize = 2)
padding Same
```

MODELO A ENTRENAR

Decoder

Upsampling(Size = 2)

concatenación

bloques de dos conv2D (Kernel 3x3) + LeakyRelu

padding Same

MODELO A ENTRENAR


```
Total params: 492,081
Trainable params: 492,081
Non-trainable params: 0
```

input =
$$(256, 256, 3)$$

output =
$$(256, 256, 1)$$

ESTRATEGIA DE DISEÑO

- → Se tomó como inspiración U Net
- → Se reemplazaron las ConvTraspuestas por Upsampling+Conv2D (arquitectura más fácil de modificar para las pruebas)

Búsqueda de hiperparámetros

Combinación de cantidad de filtros, learning rate, tamaño de la imagen de entrada en iteraciones sobre unas pocas EPOCHS y sobre un set de datos reducido.

RESULTADOS PRELIMINARES

Predicciones luego de **100 epochs** (rápidas) del pre
entrenamiento:

• En el hist se ve que la pérdida (loss) aún puede seguir bajando.

RESULTADOS PRELIMINARES

 Se ve que no se resuelve el problema pero ya detecta zonas urbanas.

ESTRATEGIA DE DISEÑO (cont.)

Una vez que se decidió el tamaño de la red y de las entradas, se corrió un entrenamiento con un *learning rate* de **0.01** por **100** epoch con un set de datos pequeño.

Objetivo

- → verificar que el modelo tendía a aprender
- → buscar un conjunto de pesos iniciales (como un pre entrenamiento)

ESTRATEGIA DE DISEÑO (cont.)

- → Se realizó un entrenamiento tomando el estado anterior de los pesos, con un learning rate variable (haciendo uso de un scheduler).
- → Se inició en 0.001 durante unas pocas epochs y luego con 0.0001.

RESULTADOS DEL ENTRENAMIENTO FINAL

Predicciones luego de 100 epochs del entrenamiento:

 La tendencia en la gráfica nos indica que si continuamos entrenando el modelo, el mismo podría seguir mejorando.

Experimento A

* Total params: 119,329

```
* Trainable params: 119,329

* Non-trainable params: 0

* Input = (256,256,3)

* Output = (235,235,1)

*Entrenamiento*

* 20 EPOCH

* Arquitectura tipo encoder/decoder con skip connections. (Conv2D + Conv2DTranspose)

* Learning rate variable con decaimiento exponencial. (lr inicial: 0.001)

* Accuracy en test: 74%
```

Experimento B

```
* Total params: 1,902,913

* Trainable params: 1,902,913

* Non-trainable params: 0

* Input = (256,256,3)

* Output = (256,256,1)

*Entrenamiento*

* 20 EPOCH

* Arquitectura tipo encoder/decoder con skip connections. (Conv2D + Conv2DTranspose)

* Learning rate variable con decaimiento exponencial. (1r inicial: 0.001)

* Accuracy en test: 74%
```

Experimento C

* Total params: 492,081

```
* Trainable params: 492,081
* Non-trainable params: 0
* Input = (256,256,3)
* Output = (256,256,1)

*Entrenamiento*

* 20 EPOCH
* Arquitectura tipo encoder/decoder con skip connections. (Conv2D + Conv2DTranspose)
* Learning rate variable con decaimiento exponencial. (lr inicial: 0.001)
* Accuracy en test: 76%
```

Experimento D

* Total params: 476,257

```
* Trainable params: 476,257

* Non-trainable params: 0

* Input = (256,256,3)

* Output = (235,235,1)

*Entrenamiento*

* 50 EPOCH

* Arquitectura tipo encoder/decoder con skip connections. (Conv2D + Conv2DTranspose)

* Learning rate variable con decaimiento exponencial. (lr inicial: 0.001)

* Accuracy en test: 79%
```

RESULTADOS DE LOS EXPERIMENTOS

Experimento FINAL

* Accuracy en test: 92% en 100 epoch

```
* Total params: 476,257
* Trainable params: 476,257
* Non-trainable params: 0
* Input = (256, 256, 3)
* Output = (256, 256, 1)
* Arguitectura tipo encoder/decoder con skip connections. (Conv2D + Upsampling)
*Entrenamiento*
Primera parte del entrenamiento:
                                              Segunda parte del entrenamiento:
* 100 muestras
                                              * Pesos de la primera parte
* 5 EPOCH , lr = 0.001
                                              * +4200 muestras
* 95 EPOCH , lr = 0.0001
                                              * 5 EPOCH , lr = 0.001
                                              * 95 EPOCH , lr = 0.0001
```

RESULTADOS

CONCLUSIONES

- Se buscó diseñar una arquitectura custom que sea capaz de resolver la problemática de segmentación semántica de rutas.
- Para los datos de entrada se buscó un shape mínimo que no afecte el proceso de entrenamiento pero que a su vez permita implementar un modelo reducido.

CONCLUSIONES (CONT.)

- Se realizaron experimentos con distintas funciones de activación, estrategias de *learning rate* y variantes de la arquitectura inicial.
- Inicialmente, el resultado del entrenamiento no fue satisfactorio debido al fuerte desbalance de clases en los datos de entrada. Para salvar este problema y obtener mejores resultados se utilizaron clases con pesos.

CONCLUSIONES (CONT.)

Para la arquitectura elegida, la pérdida durante el entrenamiento muestra una tendencia a bajar.

Esto indicaría que es posible proseguir con el entrenamiento y así lograr una *accuracy* en test superior al **92%**, valor alcanzado hasta el momento.

¡Gracias!