Giải tích hàm

TS. Bùi Xuân Diệu

Viện Toán Ứng dụng và Tin học, Đại học Bách Khoa Hà Nội

Chương 3: Độ đo và tích phân Lebesgue

 $lackbox{1}{}$ Độ đo trong $\mathbb R$

Hàm số đo được

3 Tích phân Lebesgue

Bài toán hình học Euclide

Đo m(E), ở đó $E \subset \mathbb{R}^n$ là một tập hợp bất kì.

Bài toán hình học Euclide

Đo m(E), ở đó $E \subset \mathbb{R}^n$ là một tập hợp bất kì.

i) Một chiều: Độ dài,

Bài toán hình học Euclide

Đo m(E), ở đó $E \subset \mathbb{R}^n$ là một tập hợp bất kì.

- i) Một chiều: Độ dài,
- ii) Hai chiều: Diện tích,

Bài toán hình học Euclide

Đo m(E), ở đó $E \subset \mathbb{R}^n$ là một tập hợp bất kì.

- i) Một chiều: Độ dài,
- ii) Hai chiều: Diện tích,
- iii) Ba chiều: Thể tích.

Bài toán hình học Euclide

Đo m(E), ở đó $E \subset \mathbb{R}^n$ là một tập hợp bất kì.

i) Một chiều: Độ dài,

ii) Hai chiều: Diện tích,

iii) Ba chiều: Thể tích.

Cách tiếp cận cổ điển

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 3 ,

Một số vấn đề gặp phải

i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \mathsf{Dạng} \ \mathsf{vô} \ \mathsf{định} \ \infty \cdot \mathsf{0}.$

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \mathsf{Dạng} \ \mathsf{vô} \ \mathsf{định} \ \infty \cdot \mathsf{0}.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \text{Dạng vô định } \infty \cdot 0.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.
- iii) Nghich Iý Banach Tarski.

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \text{Dạng vô định } \infty \cdot 0.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.
- iii) Nghịch lý Banach Tarski.

Bài toán đô đo

1) Thế nào là một tập hợp đo được?

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \mathsf{Dạng} \ \mathsf{vô} \ \mathsf{định} \ \infty \cdot \mathsf{0}.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.
- iii) Nghịch lý Banach Tarski.

Bài toán đô đo

- 1) Thế nào là một tập hợp đo được?
- 2) Nếu tập E đo được, độ đo của nó được định nghĩa như thế nào?

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 4

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \text{Dạng vô định } \infty \cdot 0.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.
- iii) Nghịch lý Banach Tarski.

Bài toán đô đo

- 1) Thế nào là một tập hợp đo được?
- 2) Nếu tập E đo được, độ đo của nó được định nghĩa như thế nào?
- 3) Những tính chất nào mà một độ đo cần thỏa mãn?

Một số vấn đề gặp phải

- i) Vật lý: $m(E) = \sum_{x \in E} m(\{x\}) \Rightarrow \mathsf{Dạng} \ \mathsf{vô} \ \mathsf{định} \ \infty \cdot \mathsf{0}.$
- ii) Hai tập hợp cùng lực lượng m([0,1]) = 1, m([0,2]) = 2.
- iii) Nghịch lý Banach Tarski.

Bài toán đô đo

- 1) Thế nào là một tập hợp đo được?
- 2) Nếu tập E đo được, độ đo của nó được định nghĩa như thế nào?
- 3) Những tính chất nào mà một độ đo cần thỏa mãn?
- 4) Các tập hợp thông thường có đo được hay không?

Độ đo Jordan ← Lời giải không duy nhất ⇒ Độ đo Lebesgue

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 4 / 4

Độ đo trong ${\mathbb R}$

1)
$$\Delta = [a, b] \Rightarrow m(\Delta) = b - a \Rightarrow m(\{a\}) = 0.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 5 / 48

Độ đo trong $\mathbb R$

- 1) $\Delta = [a, b] \Rightarrow m(\Delta) = b a \Rightarrow m(\{a\}) = 0.$
- 2) $m(\Delta_1 \cup \Delta_2) = m(\Delta_1) + m(\Delta_2)$ nếu $\Delta_1 \cap \Delta_2 = \emptyset$

Độ đo trong ${\mathbb R}$

- 1) $\Delta = [a, b] \Rightarrow m(\Delta) = b a \Rightarrow m(\{a\}) = 0.$
- 2) $m(\Delta_1 \cup \Delta_2) = m(\Delta_1) + m(\Delta_2)$ nếu $\Delta_1 \cap \Delta_2 = \emptyset$
- 3) $\Rightarrow m((a,b)) = m((a,b)) = m([a,b)) = b a$.

Độ đo trong $\mathbb R$

- 1) $\Delta = [a, b] \Rightarrow m(\Delta) = b a \Rightarrow m(\{a\}) = 0.$
- 2) $m(\Delta_1 \cup \Delta_2) = m(\Delta_1) + m(\Delta_2)$ nếu $\Delta_1 \cap \Delta_2 = \emptyset$
- 3) $\Rightarrow m((a,b)) = m((a,b)) = m([a,b)) = b a$.
- 4) $m(\mathbb{Q} \cap [0,1]) = \sum_{a \in \mathbb{Q} \cap [0,1]} m(\{a\}) = 0$?

Độ đo trong $\mathbb R$

- 1) $\Delta = [a, b] \Rightarrow m(\Delta) = b a \Rightarrow m(\{a\}) = 0$.
- 2) $m(\Delta_1 \cup \Delta_2) = m(\Delta_1) + m(\Delta_2)$ nếu $\Delta_1 \cap \Delta_2 = \emptyset$
- 3) $\Rightarrow m((a,b)) = m((a,b)) = m([a,b)) = b a$.
- 4) $m(\mathbb{Q} \cap [0,1]) = \sum_{a \in \mathbb{Q} \cap [0,1]} m(\{a\}) = 0$?
- 5) $m([0,1]) = \sum_{a \in [0,1]} m(\{a\}) = 0? \Rightarrow \text{Không được!!!}$

Độ đo trong $\mathbb R$

- 1) $\Delta = [a, b] \Rightarrow m(\Delta) = b a \Rightarrow m(\{a\}) = 0$.
- 2) $m(\Delta_1 \cup \Delta_2) = m(\Delta_1) + m(\Delta_2)$ nếu $\Delta_1 \cap \Delta_2 = \emptyset$
- 3) $\Rightarrow m((a,b)) = m((a,b)) = m([a,b)) = b a$.
- 4) $m(\mathbb{Q} \cap [0,1]) = \sum_{a \in \mathbb{Q} \cap [0,1]} m(\{a\}) = 0$?
- 5) $m([0,1]) = \sum_{a \in [0,1]} m(\{a\}) = 0? \Rightarrow \text{Không được!!!}$

Bài toán

Tìm một lớp tập \mathcal{M} trong \mathbb{R} sao cho $\mathcal{M} \ni A \mapsto m(A)$,

- a) $0 \leq m(A) \leq +\infty$,
- b) Mỗi $\Delta = [a, b] \in \mathcal{M}$ và $m(\Delta) = b a$,
- c) $A, B \in \mathcal{M}, A \cap B = \emptyset \Rightarrow m(A \cup B) = m(A) + m(B)$.

Định nghĩa

i) Khoảng trong \mathbb{R} : $I = [a, b], [a, b), (a, b], (a, b), ở đó <math>a \leq b$.

$$D\hat{\rho}$$
 dài $|I| = b - a$.

Định nghĩa

i) Khoảng trong \mathbb{R} : $I = [a, b], [a, b), (a, b], (a, b), ở đó <math>a \leq b$.

$$D\hat{o}$$
 dài $|I| = b - a$.

ii) Hình hộp trong \mathbb{R}^d : $B := I_1 \times \cdots \times I_d$

Thể tích
$$|B| = |I_1| \cdots |I_d|$$
.

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 6 / 48

Định nghĩa

i) Khoảng trong \mathbb{R} : $I = [a, b], [a, b), (a, b], (a, b), ở đó <math>a \leq b$.

Độ dài
$$|I| = b - a$$
.

ii) Hình hộp trong \mathbb{R}^d : $B := I_1 \times \cdots \times I_d$

Thể tích
$$|B| = |I_1| \cdots |I_d|$$
.

iii) Tập sơ cấp trong \mathbb{R}^d : $E=B_1\cup\cdots\cup B_k$ hợp của một số hữu hạn các hình hộp (không nhất thiết rời nhau \Rightarrow rời nhau)

$$m(E)=|B_1|+\cdots+|B_k|$$

không phụ thuộc vào cách chia E.

TS. Bùi Xuân Diệu Giải tích hàm

Các tính chất của độ đo sơ cấp

1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,

Các tính chất của độ đo sơ cấp

- 1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,
- 2) Mọi khoảng Δ sơ cấp và $m(\Delta) = b a$.

Các tính chất của đô đo sơ cấp

- 1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,
- 2) Moi khoảng Δ sơ cấp và $m(\Delta) = b a$.
- 3) Hữu han công tính $m(E_1 \cup E_2) = m(E_1) + m(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 7 / 48

Các tính chất của đô đo sơ cấp

- 1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,
- 2) Moi khoảng Δ sơ cấp và $m(\Delta) = b a$.
- 3) Hữu hạn cộng tính $m(E_1 \cup E_2) = m(E_1) + m(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,
- 4) Bất biến đối với phép dịch chuyển m(E + x) = m(E).

Các tính chất của đô đo sơ cấp

- 1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,
- 2) Moi khoảng Δ sơ cấp và $m(\Delta) = b a$.
- 3) Hữu hạn cộng tính $m(E_1 \cup E_2) = m(E_1) + m(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,
- 4) Bất biến đối với phép dịch chuyển m(E + x) = m(E).
- 5) Đơn điệu tăng $m(E) \le m(F)$ nếu $E \subset F$.

Các tính chất của đô đo sơ cấp

- 1) Không âm $0 \le m(E)$ và $m(\emptyset) = 0$,
- 2) Moi khoảng Δ sơ cấp và $m(\Delta) = b a$.
- 3) Hữu hạn cộng tính $m(E_1 \cup E_2) = m(E_1) + m(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,
- 4) Bất biến đối với phép dịch chuyển m(E + x) = m(E).
- 5) Đơn điệu tăng $m(E) \le m(F)$ nếu $E \subset F$.
- 6) Đóng với các phép toán Boolean $E \cup F, E \cap F, E \setminus F, E \triangle F$.

Cho $\mathbb{R}^d \supset E$ bị chặn.

Cách giải quyết của Peano-Jordan

i) Độ đo ngoài

$$m^{*,J}(E) = \inf_{B\supset E,B \text{ là tập sơ cấp}} m(B)$$

Cho $\mathbb{R}^d \supset E$ bị chặn.

Cách giải quyết của Peano-Jordan

i) Độ đo ngoài

$$m^{*,J}(E) = \inf_{B\supset E,B \text{ là tâp sơ cấp}} m(B)$$

ii) Độ đo trong

$$m_{*,J}(E) = \sup_{A \subset E, A \text{ là tập sơ cấp}} m(A)$$

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 8 / 48

Cho $\mathbb{R}^d\supset E$ bị chặn.

Cách giải quyết của Peano-Jordan

i) Độ đo ngoài

$$m^{*,J}(E) = \inf_{B\supset E,B \text{ là tâp sơ cấp}} m(B)$$

ii) Độ đo trong

$$m_{*,J}(E) = \sup_{A \subset E,A \mid \hat{a} \text{ tâp sơ cấp}} m(A)$$

iii)
$$E$$
 đo được Jordan nếu $m^{*,J}(E)=m_{*,J}(E)=:m^J(E)$.

Kí hiệu ${\mathcal M}$ là lớp các tập đo được theo nghĩa Peano-Jordan.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 8 / 48

Độ đo Jordan - Peano

Hệ quả

Mọi tập sơ cấp E đều đo được Jordan và $m^{J}(E) = m(E)$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 9 / 48

Độ đo Jordan - Peano

Hệ quả

Mọi tập sơ cấp E đều đo được Jordan và $m^{J}(E) = m(E)$.

Bài tập (Characterisation of Jordan measurability)

Các mệnh đề sau là tương đương.

- i) E là đo được Jordan,
- ii) $\forall \epsilon > 0, \exists$ các tập sơ cấp $A \subset E \subset B$ sao cho m $(B \setminus A) < \epsilon$,
- iii) $\forall \epsilon > 0, \exists$ tập sơ cấp A sao cho $m^{*,J}(A \triangle E) < \epsilon$.

Các tính chất của đô đo Jordan

1) Không âm $0 \le m^J(E)$ và $m^J(\emptyset) = 0$,

Các tính chất của đô đo Jordan

- 1) Không âm $0 \le m^J(E)$ và $m^J(\emptyset) = 0$,
- 2) Moi khoảng $\Delta \in \mathcal{M}$ và $m^J(\Delta) = b a$.

Độ đo Peano - Jordan

Các tính chất của đô đo Jordan

- 1) Không âm $0 \le m^J(E)$ và $m^J(\emptyset) = 0$,
- 2) Moi khoảng $\Delta \in \mathcal{M}$ và $m^J(\Delta) = b a$.
- 3) Hữu han công tính $m^J(E_1 \cup E_2) = m^J(E_1) + m^J(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,

Độ đo Peano - Jordan

Các tính chất của đô đo Jordan

- 1) Không âm $0 \le m^J(E)$ và $m^J(\emptyset) = 0$,
- 2) Moi khoảng $\Delta \in \mathcal{M}$ và $m^J(\Delta) = b a$.
- 3) Hữu hạn cộng tính $m^J(E_1 \cup E_2) = m^J(E_1) + m^J(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,
- 4) Bất biến đối với phép dịch chuyển $m^{J}(E+x)=m^{J}(E)$,

Đô đo Peano - Jordan

Các tính chất của đô đo Jordan

- 1) Không âm $0 \le m^J(E)$ và $m^J(\emptyset) = 0$,
- 2) Moi khoảng $\Delta \in \mathcal{M}$ và $m^J(\Delta) = b a$.
- 3) Hữu han công tính $m^J(E_1 \cup E_2) = m^J(E_1) + m^J(E_2)$ nếu $E_1 \cap E_2 = \emptyset$,
- Bất biến đối với phép dịch chuyển $m^{J}(E+x)=m^{J}(E)$,
- 5) Đơn điều $m^J(E) < m^J(F)$ nếu $E \subset F$.
- 6) Đóng với các phép toán Boolean $E \cup F, E \cap F, E \setminus F, E \triangle F$.

Giải tích hàm I ♥ HUST 10 / 48

Một số tập hợp đo được Jordan

Cho $f:[a,b] \to \mathbb{R}$ là một hàm số liên tục.

Ví du (Môt số tập hợp đo được Jordan)

a)
$$A = \{(x, f(x)) | x \in [a, b]\} \subset \mathbb{R}^2, m^J(A) =$$

Một số tập hợp đo được Jordan

Cho $f:[a,b] \to \mathbb{R}$ là một hàm số liên tục.

Ví du (Môt số tập hợp đo được Jordan)

a)
$$A = \{(x, f(x)) | x \in [a, b]\} \subset \mathbb{R}^2, m^J(A) = 0,$$

b)
$$B = \{(x, y) | 0 \le y \le f(x), x \in [a, b]\} \subset \mathbb{R}^2, m^J(B) =$$

Một số tập hợp đo được Jordan

Cho $f:[a,b]\to\mathbb{R}$ là một hàm số liên tục.

Ví du (Môt số tập hợp đo được Jordan)

- a) $A = \{(x, f(x)) | x \in [a, b]\} \subset \mathbb{R}^2, m^J(A) = 0,$
- b) $B = \{(x,y)|0 \le y \le f(x), x \in [a,b]\} \subset \mathbb{R}^2, m^J(B) = \int_a^b f(x)dx$ (Riemann)
- c) Các hình cầu đóng và mở trong \mathbb{R}^d .
- d) Các hình đa giác trong \mathbb{R}^d .

Độ đo Jordan-Peano

Bài tập

Cho $E \subset \mathbb{R}^d$ là một tập bị chặn. Chứng minh rằng

- a) $\mu^{*,J}(E) = \mu^{*,J}(\overline{E})$,
- b) $\mu_{*,J}(E) = \mu_{*,J}(E^o)$,
- c) E là đo được Jordan $\Leftrightarrow \mu^{*,J}(\partial E) = 0$,
- d) $[0,1] \cap \mathbb{Q}$ và $[0,1] \setminus \mathbb{Q}$ không đo được Jordan.

Độ đo Jordan-Peano

Bài tập

Cho $E \subset \mathbb{R}^d$ là một tập bị chặn. Chứng minh rằng

- a) $\mu^{*,J}(E) = \mu^{*,J}(\overline{E})$,
- b) $\mu_{*,J}(E) = \mu_{*,J}(E^o)$,
- c) E là đo được Jordan $\Leftrightarrow \mu^{*,J}(\partial E) = 0$,
- d) $[0,1] \cap \mathbb{Q}$ và $[0,1] \setminus \mathbb{Q}$ không đo được Jordan.

Lớp các tập đo được theo nghĩa Peano-Jordan

Lớp ${\mathcal M}$ không chứa

- i) mọi tập mở và đóng trên \mathbb{R} ,
- ii) các tập không bị chặn,
- iii) $\mathbb{Q} \cap [0,1]$.

Độ đo Jordan-Peano

Các bước xây dựng độ đo Jordan

- 1) Định nghĩa hình hộp và thể tích của chúng |B|,
- 2) Định nghĩa tập sơ cấp (hợp của một số hữu hạn các hình hộp) và độ đo m(E) của chúng,
- 3) Định nghĩa độ đo Jordan ngoài $m^{*,J}(E)$ và độ đo trong $m_{*,J}(E)$ của một tập bị chặn E bất kì. Nếu

$$m^{*,J}(E) = m_{*,J}(E) =: m^J(E)$$

thì E là đo được Jordan.

Sáng kiến của Lebesgue

i) Định nghĩa độ đo ngoài của tập bị chặn A

$$m^{*,L}(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A \right\},$$

Sáng kiến của Lebesgue

i) Định nghĩa độ đo ngoài của tập bị chặn A

$$m^{*,L}(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A \right\},$$

ii) Mở rộng ra cho cả những tập không bị chặn.

Sáng kiến của Lebesgue

i) Định nghĩa <mark>độ đo ngoài</mark> của tập bị chặn A

$$m^{*,L}(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A \right\},$$

- ii) Mở rộng ra cho cả những tập không bị chặn.
- iii) Xây dựng được một lớp tập ${\mathcal L}$ trong ${\mathbb R}$ và độ đo m thỏa mãn
 - 1) $0 \leq m(A) \leq +\infty$,
 - 2) Mỗi đoạn $\Delta = [a, b] \in \mathcal{L}$ và $m(\Delta) = b a$,
 - 3') Nếu $A_i \in \mathcal{L}, i=1,2,\ldots$ đôi một rời nhau thì

$$m\left(\bigcup_{i=1}^{+\infty}A_i\right)=\sum_{i=1}^{+\infty}m(A_i) \text{ (tính chất } \sigma\text{-cộng tính)}.$$

Hai cách xây dựng độ đo Lebesgue

Thác triển độ đo

- 1) Xây dựng độ đo sơ cấp m trên đại số \mathcal{C} , lớp các tập sơ cấp của \mathbb{R} ,
- 2) Sử dụng Định lý Hahn về thác triển độ đo \Rightarrow độ đo ngoài

$$m^{*,L}(A) = \inf \left\{ \sum_{i=1}^{\infty} m(P_i) : \bigcup_{i=1}^{\infty} P_i \supset A, P_i \in \mathcal{C} \right\}$$

3) Sử dụng Đinh lý Carathéodory \Rightarrow Đô đo m trên σ -đai số \mathcal{L} .

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 15 / 48

Hai cách xây dựng độ đo Lebesgue

Thác triển độ đo

- 1) Xây dựng độ đo sơ cấp m trên đại số \mathcal{C} , lớp các tập sơ cấp của \mathbb{R} ,
- 2) Sử dụng Định lý Hahn về thác triển độ đo \Rightarrow độ đo ngoài

$$m^{*,L}(A) = \inf \left\{ \sum_{i=1}^{\infty} m(P_i) : \bigcup_{i=1}^{\infty} P_i \supset A, P_i \in \mathcal{C} \right\}$$

3) Sử dụng Định lý Carathéodory \Rightarrow Độ đo m trên σ -đại số \mathcal{L} .

Xây dựng trực quan thông qua các tập mở

i) $E \subset \mathbb{R}^d$ đo được Lebesgue nếu $\forall \epsilon > 0, \exists$ tập mở $U \supset E$:

$$m^{*,L}(U \setminus E) \leq \epsilon$$
.

ii) Nếu E đo được Lebesgue thì $m^L(E) := m^{*,L}(E)$: độ đo Lebesgue.

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 15 / 48

Độ đo Jordan ngoài vs Độ đo Lebesgue ngoài

$$m^{*,L}(E) \leq m^{*,J}(E)$$
.

i) $m^{*,J}(\mathbb{Q}) = +\infty$, $m^{*,J}(\mathbb{Q} \cap [-R,R]) = m^{*,J}([-R,R]) = 2R$. Tuy nhiên,

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 16 / 48

Độ đo Jordan ngoài vs Độ đo Lebesgue ngoài

$$m^{*,L}(E) \leq m^{*,J}(E).$$

- i) $m^{*,J}(\mathbb{Q}) = +\infty$, $m^{*,J}(\mathbb{Q} \cap [-R,R]) = m^{*,J}([-R,R]) = 2R$. Tuy nhiên,
- ii) $m^{*,L}$ (tập đếm được) = 0.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 16 / 48

Độ đo Jordan ngoài vs Độ đo Lebesgue ngoài

$$m^{*,L}(E) \leq m^{*,J}(E).$$

- i) $m^{*,J}(\mathbb{Q}) = +\infty$, $m^{*,J}(\mathbb{Q} \cap [-R,R]) = m^{*,J}([-R,R]) = 2R$. Tuy nhiên,
- ii) $m^{*,L}$ (tập đếm được) = 0.

Các tính chất của đô đo Lebesgue ngoài

- i) Đô đo của tập rỗng $m^{*,L}(\emptyset) = 0$,
- ii) Đơn điệu tăng $E \subset F \subset \mathbb{R}^d \Rightarrow m^{*,L}(E) \leq m^{*,L}(F)$,
- iii) σ -dưới cộng tính $m^{*,L}(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} m^{*,L}(E_n)$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 16 / 48

The outer measure axioms

- i) Độ đo của tập rỗng $m^*(\emptyset) = 0$,
- ii) Đơn điệu tăng: Nếu $E \subset F \subset \mathbb{R}^d$ thì $m^*(E) \leq m^*(F)$,
- iii) σ -dưới cộng tính: $m^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} m^*(E_n)$.

Chú ý

- i) Độ đo của tập rỗng, đơn điệu tăng và σ -dưới cộng tính \Rightarrow độ đo ngoài trên một tập X bất kì.
- ii) Mặt khác, độ đo Jordan ngoài không phải là một độ đo ngoài (dễ gây hiểu lầm).

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 17 / 48

Bổ đề (Outer measure of elementary sets)

E là một tập sơ cấp $\Rightarrow m^{*,L}(E) = m(E)$ (độ đo sơ cấp).

Hệ quả

$$m_{*,J}(E) \leq m^{*,L}(E) \leq m^{*,J}(E), \quad \forall E \in \mathbb{R}^d.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 18 / 48

Bổ đề (Outer measure of elementary sets)

E là một tập sơ cấp $\Rightarrow m^{*,L}(E) = m(E)$ (độ đo sơ cấp).

Hệ quả

$$m_{*,J}(E) \leq m^{*,L}(E) \leq m^{*,J}(E), \quad \forall E \in \mathbb{R}^d.$$

Bổ đề

Nếu $E = \bigcup_{n=1}^{\infty} B_n$ là hợp đếm được của các hình hộp hầu rời nhau thì

i)
$$m^{*,L}(E) = \sum_{n=1}^{\infty} |B_n|$$
.

Bổ đề (Outer measure of elementary sets)

E là một tập sơ cấp $\Rightarrow m^{*,L}(E) = m(E)$ (độ đo sơ cấp).

Hệ quả

$$m_{*,J}(E) \leq m^{*,L}(E) \leq m^{*,J}(E), \quad \forall E \in \mathbb{R}^d.$$

Bổ đề

Nếu $E = \bigcup_{n=1}^{\infty} B_n$ là hợp đếm được của các hình hộp hầu rời nhau thì

i)
$$m^{*,L}(E) = \sum_{n=1}^{\infty} |B_n|$$
.

ii) Hệ quả: $m^{*,L}(E) = m_{*,J}(E)$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 18 / 48

Không phải tập hợp nào cũng biểu diễn được dưới dạng hợp đếm được của các hình hộp hầu rời nhau, chẳng hạn như $\mathbb{R}\setminus\mathbb{Q}$. Tuy nhiên,

Bổ đề

Nếu $E \subset \mathbb{R}^d$ là một tập mở thì E có thể biểu diễn được dưới dạng hợp đếm được của các hình hôp hầu rời nhau.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 19 / 48

Không phải tập hợp nào cũng biểu diễn được dưới dạng hợp đếm được của các hình hộp hầu rời nhau, chẳng hạn như $\mathbb{R}\setminus\mathbb{Q}$. Tuy nhiên,

Bổ đề

Nếu $E \subset \mathbb{R}^d$ là một tập mở thì E có thể biểu diễn được dưới dạng hợp đếm được của các hình hộp hầu rời nhau.

Bổ đề (Outer regularity)

Cho $E \subset \mathbb{R}^d$ là một tập hợp bất kì. Khi đó,

$$m^{*,L}(E) = \inf_{E \subset U, U \mid \hat{a} \text{ tâp } m^{\hat{\sigma}}} m^{*,L}(U).$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 19 / 48

Tính đo được Lebesgue

Ví dụ

Các tập hợp sau đây là đo được Lebesgue.

- 1) Các tập hợp mở,
- 2) Các tập hợp đóng,
- 3) Các tập hợp có độ đo Lebesgue ngoài bằng 0,
- 4) Tập hợp rỗng,
- 5) $R^d \setminus E$, nếu E là đo được Lebesgue,
- 6) $\cup_{n=1}^{\infty} E_n$, nếu E_1, E_2, \ldots là họ đếm được các tập đo được Lebesgue,
- 7) $\cap_{n=1}^{\infty} E_n$, nếu E_1, E_2, \ldots là họ đếm được các tập đo được Lebesgue.

Tính đo được Lebesgue

Bổ đề (Criteria for measurability)

Cho $E \subset \mathbb{R}^d$. Các mệnh đề sau là tương đương.

- 1) E là đo được Lebesgue,
- 2) $\forall \epsilon > 0, \exists$ tập mở $U \supset E$ sao cho $m^{*,L}(U \setminus E) \leq \epsilon$,
- 3) $\forall \epsilon > 0, \exists$ tập mở U sao cho $m^{*,L}(U \triangle E) \leq \epsilon$,
- 4) $\forall \epsilon > 0, \exists$ tập đóng $F \subset E$ sao cho $m^{*,L}(E \setminus F) \leq \epsilon$,
- 5) $\forall \epsilon > 0, \exists$ tập đóng F sao cho $m^{*,L}(E \triangle F) \leq \epsilon$,
- 6) $\forall \epsilon > 0, \exists$ tập đo được Lebesgue E_{ϵ} sao cho $m^{*,L}(E \triangle E_{\epsilon}) \leq \epsilon$.

Tính đo được Lebesgue

Bổ đề (Criteria for measurability)

Cho $E \subset \mathbb{R}^d$. Các mệnh đề sau là tương đương.

- 1) E là đo được Lebesgue,
- 2) $\forall \epsilon > 0, \exists \text{ tập mở } U \supset E \text{ sao cho } m^{*,L}(U \setminus E) \leq \epsilon$,
- 3) $\forall \epsilon > 0, \exists$ tập mở U sao cho $m^{*,L}(U \triangle E) \leq \epsilon$,
- 4) $\forall \epsilon > 0, \exists$ tập đóng $F \subset E$ sao cho $m^{*,L}(E \setminus F) \leq \epsilon$,
- 5) $\forall \epsilon > 0, \exists$ tập đóng F sao cho $m^{*,L}(E \triangle F) \leq \epsilon$,
- 6) $\forall \epsilon > 0, \exists$ tập đo được Lebesgue E_{ϵ} sao cho $m^{*,L}(E \triangle E_{\epsilon}) \leq \epsilon$.

Bài tập

Chứng minh rằng

- a) E đo được Jordan \Rightarrow đo được Lebesgue, $m^{J}(E) = m^{L}(E)$.
- b) tập Cantor là một tập hợp compact, không đếm được, và có độ đo Lebesgue bằng không.

Độ đo Lebesgue

Các tính chất của độ đo Lebesgue

- i) Độ đo của tập rỗng $m(\emptyset) = 0$,
- ii) Đơn điệu tăng Nếu $E \subset F \in \mathcal{L}$ thì $m(E) \leq m(F)$,
- iii) σ -cộng tính $m^*(\bigcup_{n=1}^\infty E_n) = \sum_{n=1}^\infty m(E_n)$ nếu $E_1, E_2, \ldots \in \mathcal{L}$ là đôi một rời nhau.

Chú ý

Các tính chất Độ đo của tập rỗng, đơn điệu tăng và σ -cộng tính kể trên được dùng để định nghĩa độ đo trên một σ -đại số của một tập X bất kì.

Bài tập (Carathéodory criterion)

Cho $E \subset \mathbb{R}^d$. Các mệnh đề sau là tương đương

- i) E là đo được Lebesgue,
- ii) Với mọi tập sơ cấp A, $m(A) = m^{*,L}(A \cap E) + m^{*,L}(A \setminus E)$,
- iii) Với mọi hình hộp B, $m(B) = m^{*,L}(B \cap E) + m^{*,L}(B \setminus E)$.

Bài tập (Inner measure)

Cho $E \subset \mathbb{R}^d$ là một tập bị chặn và $E \subset A$, ở đó A là một tập sơ cấp.

$$m_{*,L}(E) := m(A) - m^{*,L}(A \setminus E).$$

Khi đó,

- i) $m_{*,L}(E)$ không phụ thuộc vào cách chọn tập sơ cấp A (well-defined),
- ii) $m_{*,L}(E) \leq m^{*,L}(E)$ và dấu bằng xảy ra $\Leftrightarrow E$ là đo được Lebesgue.

TS. Bùi Xuân Diệu Giải tích hàm I ♥ HUST 23 / 48

Định nghĩa

Cho X là một tập hợp bất kì và \mathcal{A} là một σ -đại số trên X. Một ánh xạ $\mu: \mathcal{A} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ được gọi là một độ đo nếu

- a) $\mu(A) \geq 0, \forall A \in \mathcal{A}$,
- b) $\mu(\emptyset) = 0$,
- c) μ là σ -cộng tính.

Định nghĩa

Cho X là một tập hợp bất kì và \mathcal{A} là một σ -đại số trên X. Một ánh xạ $\mu: \mathcal{A} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ được gọi là một độ đo nếu

- a) $\mu(A) \geq 0, \forall A \in \mathcal{A}$,
- b) $\mu(\emptyset) = 0$,
- c) μ là σ -cộng tính.

Ví dụ

i) Độ đo hằng số $\mu(A)=0, \forall A\in\mathcal{A}$,

Định nghĩa

Cho X là một tập hợp bất kì và \mathcal{A} là một σ -đại số trên X. Một ánh xạ $\mu:\mathcal{A}\to\overline{\mathbb{R}}=\mathbb{R}\cup\{+\infty\}$ được gọi là một độ đo nếu

- a) $\mu(A) \geq 0, \forall A \in \mathcal{A}$,
- b) $\mu(\emptyset) = 0$,
- c) μ là σ -cộng tính.

Ví du

- i) Độ đo hằng số $\mu(A)=0, \forall A\in\mathcal{A}$,
- ii) Độ đo Dirac tại điểm x_0 trên $\mathcal{P}(X): \mu(A) = \begin{cases} 1, & \text{nếu } x_0 \in A, \\ 0, & \text{nếu } x_0 \notin A. \end{cases}$

Định nghĩa

Cho X là một tập hợp bất kì và \mathcal{A} là một σ -đại số trên X. Một ánh xạ $\mu: \mathcal{A} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ được gọi là một độ đo nếu

- a) $\mu(A) \geq 0, \forall A \in \mathcal{A}$,
- b) $\mu(\emptyset) = 0$,
- c) μ là σ -cộng tính.

Ví du

- i) Độ đo hằng số $\mu(A)=0, \forall A\in\mathcal{A}$,
- ii) Độ đo Dirac tại điểm x_0 trên $\mathcal{P}(X): \mu(A) = \begin{cases} 1, & \text{nếu } x_0 \in A, \\ 0, & \text{nếu } x_0 \notin A. \end{cases}$
- iii) Độ đo đếm trên $\mathcal{P}(X)$: $\mu(A) = \begin{cases} |A|, & \text{n\'eu } |A| < +\infty, \\ +\infty, & \text{n\'eu } |A| = +\infty. \end{cases}$

Định nghĩa

Độ đo μ trên X được gọi là

i) hữu hạn, nếu $\mu(X) < +\infty$,

Định nghĩa

Độ đo μ trên X được gọi là

- i) hữu hạn, nếu $\mu(X) < +\infty$,
- ii) σ -hữu hạn, nếu

$$X = \bigcup_{i=1}^{\infty} X_i, \quad X_i \in \mathcal{A}, \quad \mu(X_i) < +\infty.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 25 / 48

Định nghĩa

Độ đo μ trên X được gọi là

- i) hữu hạn, nếu $\mu(X) < +\infty$,
- ii) σ -hữu hạn, nếu

$$X = \bigcup_{i=1}^{\infty} X_i, \quad X_i \in \mathcal{A}, \quad \mu(X_i) < +\infty.$$

Các tính chất của đô đo

1) μ là cộng tính,

Định nghĩa

Độ đo μ trên X được gọi là

- i) hữu hạn, nếu $\mu(X) < +\infty$,
- ii) σ -hữu hạn, nếu

$$X = \bigcup_{i=1}^{\infty} X_i, \quad X_i \in \mathcal{A}, \quad \mu(X_i) < +\infty.$$

Các tính chất của đô đo

- 1) μ là cộng tính,
- 2) μ là đơn điệu tăng, nghĩa là $A \subset B \Rightarrow \mu(A) \leq \mu(B)$,

Độ đo trên một đại số tập hợp

Định nghĩa

Độ đo μ trên X được gọi là

- i) hữu hạn, nếu $\mu(X) < +\infty$,
- ii) σ -hữu han, nếu

$$X = \bigcup_{i=1}^{\infty} X_i, \quad X_i \in \mathcal{A}, \quad \mu(X_i) < +\infty.$$

Các tính chất của đô đo

- 1) μ là cộng tính,
- 2) μ là đơn điệu tăng, nghĩa là $A \subset B \Rightarrow \mu(A) \leq \mu(B)$,
- 3) Nếu $A \subset B$ và $\mu(A) < +\infty$ thì $\mu(B \setminus A) = \mu(B) \mu(A)$.

Độ đo trên một đại số tập hợp

Định nghĩa

Độ đo μ trên X được gọi là

- i) hữu hạn, nếu $\mu(X) < +\infty$,
- ii) σ-hữu han, nếu

$$X = \bigcup_{i=1}^{\infty} X_i, \quad X_i \in \mathcal{A}, \quad \mu(X_i) < +\infty.$$

Các tính chất của đô đo

- 1) μ là cộng tính,
- 2) μ là đơn điệu tăng, nghĩa là $A \subset B \Rightarrow \mu(A) \leq \mu(B)$,
- 3) Nếu $A \subset B$ và $\mu(A) < +\infty$ thì $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 4) $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

Các tính chất của độ đo

Định lý (Upward monotone convergence)

Nếu $\{A_n\}\subset \mathcal{A}$ là một dãy các tập hợp thỏa mãn

i)
$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$
 và

$$ii) \ A = \bigcup_{i=1}^{\infty} A_i$$

$$\Rightarrow \mu(A) = \lim_{n \to +\infty} \mu(A_n).$$

Các tính chất của độ đo

Định lý (Upward monotone convergence)

Nếu $\{A_n\}\subset \mathcal{A}$ là một dãy các tập hợp thỏa mãn

i)
$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$
 và

$$ii) \ A = \bigcup_{i=1}^{\infty} A_i$$

$$\Rightarrow \mu(A) = \lim_{n \to +\infty} \mu(A_n).$$

Đinh lý (Downward monotone convergence)

Nếu $\{A_n\}\subset \mathcal{A}$ là một dãy các tập hợp thỏa mãn

i)
$$A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$
,

ii) tồn tại n
$$_0$$
 sao cho $\mu(A_{n_0})<+\infty$ và

$$iii) \ A = \bigcap_{i=1}^{\infty} A_i$$

$$\Rightarrow \mu(A) = \lim_{n \to +\infty} \mu(A_n).$$

TS. Bùi Xuân Diệu Giải tích

I ♥ HUST

Định nghĩa (Độ đo ngoài)

Một ánh xạ $\mu^*:\mathcal{P}(X) \to \overline{\mathbb{R}}$ được gọi là một độ đo ngoài nếu

- i) $\mu^*(A) \geq 0$ với mọi $A \subset X$,
- ii) $\mu^*(\emptyset) = 0$,
- iii) Nếu $A \subset \bigcup_{i=1}^{\infty} A_i$ thì $\mu^*(A) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$.

Định nghĩa (Độ đo ngoài)

Một ánh xạ $\mu^*:\mathcal{P}(X) \to \overline{\mathbb{R}}$ được gọi là một độ đo ngoài nếu

- i) $\mu^*(A) \geq 0$ với mọi $A \subset X$,
- ii) $\mu^*(\emptyset) = 0$,
- iii) Nếu $A \subset \bigcup\limits_{i=1}^{\infty} A_i$ thì $\mu^*(A) \leq \sum\limits_{i=1}^{\infty} \mu^*(A_i)$.

Độ đo ngoài vs Độ đo

- 1) Độ đo ngoài xác định trên $\mathcal{P}(X)$, chỉ đòi hỏi σ -dưới cộng tính.
- 2) Độ đo ngoài là hàm tập đơn điệu tăng, nếu $A\subset B$ thì $\mu^*(A)\leq \mu^*(B)$.
- 3) Mọi độ đo trên $\mathcal{P}(X)$ cũng là độ đo ngoài.
- 4) Độ đo ngoài + cộng tính = độ đo trên $\mathcal{P}(X)$.

Định nghĩa

Cho μ^* là một độ đo ngoài trên X. Tập $A\subset X$ được gọi là μ^* - đo được nếu

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset X.$$

Nói cách khác, A cắt mọi tập hợp thành hai thành phần một cách cộng tính.

Định nghĩa

Cho μ^* là một độ đo ngoài trên X. Tập $A\subset X$ được gọi là μ^* - đo được nếu

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset X.$$

Nói cách khác, A cắt mọi tập hợp thành hai thành phần một cách cộng tính.

Định lý (Carathéodory)

Cho μ^* là một độ đo ngoài trên X và $\mathcal L$ là tập tất cả các tập μ^* đo được. Khi đó

- 1) \mathcal{L} là một σ -đại số.
- 2) $\mu = \mu^*|_{\mathcal{L}}$ là một độ đo trên \mathcal{L} .

Độ đo μ được gọi là độ đo cảm sinh bởi độ đo μ^* .

Đinh lý Hahn về thác triển đô đo

Cho μ là một độ đo trên một đại số $\mathcal C$ những tập con của X. Nếu ta đặt

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(P_i) : \bigcup_{i=1}^{\infty} P_i \supset A, P_i \in \mathcal{C} \right\}$$

thì μ^* là một độ đo ngoài và $\mu^*(A)=\mu(A)$ với mọi $A\in\mathcal{C}$, đồng thời, mọi tập thuộc σ -đại số sinh bởi $\mathcal C$ đều là μ^* đo được.

Đô đo trên ${\mathbb R}$

Quy trình thác triển độ đo

Độ đo trên đại số $\mathcal{C} \Rightarrow$ Độ đo ngoài (Hahn) \Rightarrow Độ đo trên σ -đại số \mathcal{M} .

Độ đo trên $\mathbb R$

Quy trình thác triển độ đo

Độ đo trên đại số $\mathcal{C}\Rightarrow$ Độ đo ngoài (Hahn) \Rightarrow Độ đo trên σ -đại số \mathcal{M} .

Thác triển đô đo trên $\mathbb R$

i) Các gian hay các khoảng trên \mathbb{R} :

$$(a,b), [a,b], [a,b), (a,b], (-\infty,a), (-\infty,a], (a,+\infty), [a,+\infty), (-\infty,+\infty)$$

ii)

$$\mathcal{C} = \left\{ P : P = \bigcup_{i=1}^{n} \Delta_i, \Delta_i \cap \Delta_j = \emptyset \ (i \neq j) \right\}$$

iii) $\mathcal C$ là một đại số và định nghĩa $\mu(P)=\sum\limits_{i=1}^n |\Delta_i|$ là một độ đo trên $\mathcal C$.

Độ đo trên ${\mathbb R}$

Xác định độ đo ngoài trên ${\mathbb R}$

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A, \Delta_i \in \mathcal{C} \right\}. \tag{1}$$

Độ đo trên ${\mathbb R}$

X ác định độ đo ngoài trên \mathbb{R}

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A, \Delta_i \in \mathcal{C} \right\}. \tag{1}$$

Bổ đề

Hàm tập μ^* xác định bởi công thức (1) là một độ đo ngoài trên \mathbb{R} .

Độ đo trên $\mathbb R$

Xác định độ đo ngoài trên ${\mathbb R}$

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{+\infty} |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A, \Delta_i \in \mathcal{C} \right\}. \tag{1}$$

Bổ đề

Hàm tập μ^* xác định bởi công thức (1) là một độ đo ngoài trên $\mathbb R$.

Thác triển đô đo ngoài thành đô đo trên $\mathbb R$

Theo Định lý Caratheodory, lớp $\mathcal L$ tất cả các tập $A\subset \mathbb R$ sao cho

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset \mathbb{R}$$

là một σ -đại số và hàm tập $\mu=\mu^*|_{\mathcal{L}}$ là một độ đo trên \mathcal{L} , gọi là độ đo Lebesgue.

Bổ đề

a)
$$\mu((a,b)) = \mu([a,b]) = \mu([a,b]) = \mu([a,b]) = b - a$$
,

Bổ đề

a)
$$\mu((a,b)) = \mu([a,b)) = \mu((a,b]) = \mu([a,b]) = b - a$$
,

b) $\mu(A) = 0$ với mọi tập A hữu hạn hoặc đếm được.

Bổ đề

- a) $\mu((a,b)) = \mu([a,b]) = \mu([a,b]) = \mu([a,b]) = b a$,
- b) $\mu(A) = 0$ với mọi tập A hữu hạn hoặc đếm được.
- c) Moi tập Borel đều L- đo được.

Bổ đề

- a) $\mu((a,b)) = \mu([a,b]) = \mu([a,b]) = b a$,
- b) $\mu(A) = 0$ với mọi tập A hữu hạn hoặc đếm được.
- c) Mọi tập Borel đều L- đo được.
- d) Đô đo Lebesgue là σ hữu han.

Bổ đề

- a) $\mu((a,b)) = \mu([a,b]) = \mu((a,b]) = \mu([a,b]) = b a$,
- b) $\mu(A) = 0$ với mọi tập A hữu hạn hoặc đếm được.
- c) Mọi tập Borel đều L- đo được.
- d) Độ đo Lebesgue là σ hữu hạn.
- e) Đô đo Lebesgue là một đô đo đủ.

Bổ đề

- a) $\mu((a,b)) = \mu([a,b]) = \mu([a,b]) = \mu([a,b]) = b a$,
- b) $\mu(A) = 0$ với mọi tập A hữu hạn hoặc đếm được.
- c) Mọi tập Borel đều L- đo được.
- d) Độ đo Lebesgue là σ hữu hạn.
- e) Độ đo Lebesgue là một độ đo đủ.

Đặc trưng của tập có độ đo không

 $\mu(A)=0\Leftrightarrow orall \epsilon>0, \exists$ hữu hạn hay đếm được các khoảng Δ_k sao cho

$$\bigcup_{k=1}^{\infty} \Delta_k \supset A \text{ và } \sum_{k=1}^{\infty} \mu(\Delta_k) < \epsilon.$$

Đặc trưng của một tập \mathcal{L} - đo được

Các điều kiện sau là tương đương

- i) A là \mathcal{L} đo được,
- ii) $\forall \epsilon > 0, \exists$ tập mở $G \supset A$ sao cho $\mu^*(G \setminus A) < \epsilon$,
- iii) $\forall \epsilon > 0, \exists$ tập đóng $F \subset A$ sao cho $\mu^*(A \setminus F) < \epsilon$.

Chương 3: Độ đo và tích phân Lebesgue

 \bigcirc Độ đo trong $\mathbb R$

- Hàm số đo được
- Tích phân Lebesgue

Đăt vấn đề

- i) Giải tích I: Cho $\{f_n(x)\}$ liên tục và $f(x) = \lim_{n \to \infty} f_n(x)$ f(x) chưa chắc đã liên tục.
- ii) Xây dựng một lớp hàm mới, rộng hơn lớp các hàm số liên tục, và đóng kín với các phép toán giải tích.

Đặt vấn đề

- i) Giải tích I: Cho $\{f_n(x)\}$ liên tục và $f(x) = \lim_{n \to \infty} f_n(x)$ f(x) chưa chắc đã liên tục.
- ii) Xây dựng một lớp hàm mới, rộng hơn lớp các hàm số liên tục, và đóng kín với các phép toán giải tích.

Nhận xét

Hàm số $f: X \to \mathbb{R}$ là liên tục $\Leftrightarrow f^{-1}((-\infty, a))$ mở, $\forall a \in \mathbb{R}$.

Đặt vấn đề

- i) Giải tích I: Cho $\{f_n(x)\}$ liên tục và $f(x) = \lim_{n \to \infty} f_n(x)$ f(x) chưa chắc đã liên tục.
- ii) Xây dựng một lớp hàm mới, rộng hơn lớp các hàm số liên tục, và đóng kín với các phép toán giải tích.

Nhận xét

Hàm số $f:X\to\mathbb{R}$ là liên tục $\Leftrightarrow f^{-1}((-\infty,a))$ mở, $\forall a\in\mathbb{R}$.

Định nghĩa

Cho bộ ba (X,\mathcal{F},μ) . Hàm số $f:X o\overline{\mathbb{R}}$ được gọi là đo được nếu

$$(\forall a \in \mathbb{R}), \{x \in X : f(x) < a\} \in \mathcal{F}$$

Chú ý

- i) $X = \mathbb{R}, \mathcal{F} = \mathcal{L} \Rightarrow f$ đo được theo nghĩa Lebesgue.
- ii) $X = \mathbb{R}, \mathcal{F} = \mathcal{B} \Rightarrow f$ đo được theo nghĩa Borel.

Chú ý

- i) $X = \mathbb{R}, \mathcal{F} = \mathcal{L} \Rightarrow f$ đo được theo nghĩa Lebesgue.
- ii) $X = \mathbb{R}, \mathcal{F} = \mathcal{B} \Rightarrow f$ do dược theo nghĩa Borel.

Các điều kiện tương đương

Điều kiên

$$(\forall a \in \mathbb{R}), \{x \in X : f(x) < a\} \in \mathcal{F} \tag{1}$$

có thể được thay thế bởi một trong các điều kiện sau

$$(\forall a \in \mathbb{R}), \{x \in X : f(x) > a\} \in \mathcal{F}$$
 (2)

$$(\forall a \in \mathbb{R}), \{x \in X : f(x) \le a\} \in \mathcal{F} \tag{3}$$

$$(\forall a \in \mathbb{R}), \{x \in A : f(x) \ge a\} \in \mathcal{F} \tag{4}$$

Các tính chất cơ bản của hàm số đo được

1) f(x) đo được $\Rightarrow \forall a \in \mathbb{R}, \{x \in X : f(x) = a\} \in \mathcal{F}.$

Các tính chất cơ bản của hàm số đo được

- 1) f(x) đo được $\Rightarrow \forall a \in \mathbb{R}, \{x \in X : f(x) = a\} \in \mathcal{F}.$
- 2) $f(x) = c, \forall x \in X$, là đo được.

Các tính chất cơ bản của hàm số đo được

- 1) f(x) đo được $\Rightarrow \forall a \in \mathbb{R}, \{x \in X : f(x) = a\} \in \mathcal{F}.$
- 2) $f(x) = c, \forall x \in X$, là đo được.
- 3) f(x) do dươc $\Rightarrow \forall k \in \mathbb{R}, kf(x)$ do dươc.

Các tính chất cơ bản của hàm số đo được

- 1) f(x) đo được $\Rightarrow \forall a \in \mathbb{R}, \{x \in X : f(x) = a\} \in \mathcal{F}.$
- 2) $f(x) = c, \forall x \in X$, là đo được.
- 3) f(x) đo được $\Rightarrow \forall k \in \mathbb{R}, kf(x)$ đo được.

Các phép toán trên hàm số đo được

1) f(x) đo được $\Rightarrow \forall \alpha > 0, |f(x)|^{\alpha}$ đo được.

Các tính chất cơ bản của hàm số đo được

- 1) f(x) đo được $\Rightarrow \forall a \in \mathbb{R}, \{x \in X : f(x) = a\} \in \mathcal{F}.$
- 2) $f(x) = c, \forall x \in X$, là đo được.
- 3) f(x) đo được $\Rightarrow \forall k \in \mathbb{R}, kf(x)$ đo được.

Các phép toán trên hàm số đo được

- 1) f(x) đo được $\Rightarrow \forall \alpha > 0, |f(x)|^{\alpha}$ đo được.
- 2) f(x) và g(x) đo được và hữu hạn thì

$$f \pm g, fg, \max\{f, g\}, \min\{f, g\}$$

đo được, và nếu $g(x) \neq 0 \ \forall x$ thì $\frac{1}{g}$ cũng đo được.

Các phép toán giải tích với hàm số đo được

Định lý

$$\{f_n(x)\}$$
 đo được thì

$$\sup_{n} f_{n}(x), \quad \inf_{n} f_{n}(x), \quad \overline{\lim}_{n \to \infty} f_{n}(x), \quad \underline{\lim}_{n \to \infty} f_{n}(x)$$

đo được. Nói riêng, $\lim_{n \to \infty} f_n(x)$, nếu tồn tại, cũng đo được.

Các phép toán giải tích với hàm số đo được

Định lý

 $\{f_n(x)\}$ đo được thì

$$\sup_{n} f_{n}(x), \quad \inf_{n} f_{n}(x), \quad \overline{\lim}_{n \to \infty} f_{n}(x), \quad \underline{\lim}_{n \to \infty} f_{n}(x)$$

đo được. Nói riêng, $\lim_{n\to\infty} f_n(x)$, nếu tồn tại, cũng đo được.

Chú ý

- i) {đo được} đóng.
- ii) $\{lien tuc\} \subset \{do duoc\}.$
- iii) $\lim_{n\to\infty} f_n(x)$ đo được, nếu $f_n(x)$ liên tục.
- $\text{iv) Hàm số Dirichlet } f(x) = \begin{cases} 0, & \textit{n\'eu} \ x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1, & \textit{n\'eu} \ x \in \mathbb{Q}. \end{cases}$

Cấu trúc của hàm số đo được

Hàm đặc trưng

Cho
$$A\subset X$$
 bất kì, $1_A(x)= egin{cases} 0, & ext{nếu } x
ot\in A, \\ 1, & ext{nếu } x\in A. \end{cases}$

Cấu trúc của hàm số đo được

Hàm đặc trưng

Cho
$$A \subset X$$
 bất kì, $1_A(x) = \begin{cases} 0, & \text{nếu } x \not\in A, \\ 1, & \text{nếu } x \in A. \end{cases}$

Bổ đề

 $1_A(X)$ là đo được \Leftrightarrow A đo được $(A \in \mathcal{F})$.

Cấu trúc của hàm số đo được

Hàm đặc trưng

Cho
$$A \subset X$$
 bất kì, $1_A(x) = \begin{cases} 0, & \text{nếu } x \notin A, \\ 1, & \text{nếu } x \in A. \end{cases}$

Bổ đề

 $1_A(X)$ là đo được $\Leftrightarrow A$ đo được $(A \in \mathcal{F})$.

Cấu trúc của hàm đo được

- i) Hàm đơn giản $f_n(x) = \sum_{i=1}^n \alpha_i 1_{A_i}(x)$.
- ii) Mỗi hàm số đo được, không âm là giới hạn của một dãy tăng các hàm đơn giản.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 39 / 48

Cấu trúc của hàm số đo được

Hàm đặc trưng

Cho
$$A \subset X$$
 bất kì, $1_A(x) = \begin{cases} 0, & \text{nếu } x \notin A, \\ 1, & \text{nếu } x \in A. \end{cases}$

Bổ đề

 $1_A(X)$ là đo được \Leftrightarrow A đo được $(A \in \mathcal{F})$.

Cấu trúc của hàm đo được

- i) Hàm đơn giản $f_n(x) = \sum_{i=1}^n \alpha_i 1_{A_i}(x)$.
- ii) Mỗi hàm số đo được, không âm là giới hạn của một dãy tăng các hàm đơn giản.
- iii) Mỗi hàm số đo được là giới hạn của một dãy các hàm đơn giản.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 39 / 48

Cho $\{f_n\}$ là dãy các hàm số đo được, hữu hạn.

Hội tụ hầu khắp nơi

$$f_n \stackrel{h.k.n}{\rightarrow} f \Leftrightarrow \mu(\lbrace x : f_n(x) \not\rightarrow f(x)\rbrace) = 0.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 40 / 48

Cho $\{f_n\}$ là dãy các hàm số đo được, hữu hạn.

Hội tụ hầu khắp nơi

$$f_n \stackrel{h.k.n}{\to} f \Leftrightarrow \mu(\lbrace x : f_n(x) \not\to f(x)\rbrace) = 0.$$

Hội tụ theo độ đo

$$f_n \stackrel{\mu}{\to} f \Leftrightarrow \forall \epsilon > 0, \lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 40 / 48

Cho $\{f_n\}$ là dãy các hàm số đo được, hữu hạn.

Hội tụ hầu khắp nơi

$$f_n \stackrel{h.k.n}{\to} f \Leftrightarrow \mu(\lbrace x : f_n(x) \not\to f(x)\rbrace) = 0.$$

Hội tụ theo độ đo

$$f_n \stackrel{\mu}{\to} f \Leftrightarrow \forall \epsilon > 0, \lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0.$$

Các tính chất

1) $f_n \stackrel{\mu}{\to} f$ và $g \sim f \Rightarrow f_n \stackrel{\mu}{\to} g$.

Cho $\{f_n\}$ là dãy các hàm số đo được, hữu hạn.

Hội tụ hầu khắp nơi

$$f_n \stackrel{h.k.n}{\to} f \Leftrightarrow \mu(\{x : f_n(x) \not\to f(x)\}) = 0.$$

Hội tụ theo độ đo

$$f_n \stackrel{\mu}{\to} f \Leftrightarrow \forall \epsilon > 0, \lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0.$$

Các tính chất

- 1) $f_n \stackrel{\mu}{\to} f$ và $g \sim f \Rightarrow f_n \stackrel{\mu}{\to} g$.
- 2) $f_n \stackrel{\mu}{\to} f, f_n \stackrel{\mu}{\to} g \Rightarrow f \sim g$.

Cho $\{f_n\}$ là dãy các hàm số đo được, hữu hạn.

Hội tụ hầu khắp nơi

$$f_n \stackrel{h.k.n}{\rightarrow} f \Leftrightarrow \mu(\{x : f_n(x) \not\rightarrow f(x)\}) = 0.$$

Hội tụ theo độ đo

$$f_n \stackrel{\mu}{\to} f \Leftrightarrow \forall \epsilon > 0, \lim_{n \to \infty} \mu\left(\left\{x : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0.$$

Các tính chất

- 1) $f_n \stackrel{\mu}{\to} f$ và $g \sim f \Rightarrow f_n \stackrel{\mu}{\to} g$.
- 2) $f_n \stackrel{\mu}{\to} f, f_n \stackrel{\mu}{\to} g \Rightarrow f \sim g$.

3)
$$\begin{cases} f_n \overset{h.k.n}{\to} f, \\ \mu(X) < +\infty \end{cases} \Rightarrow f_n \overset{\mu}{\to} f.$$

4) $f_n \stackrel{\mu}{\to} f \Rightarrow \exists \{f_{n_k}\} \stackrel{h.k.n}{\to} f.$

Chương 3: Độ đo và tích phân Lebesgue

lacktriangle lacktriangl

- Hàm số đo được
- Tích phân Lebesgue

Tích phân các hàm đơn giản

Cho $(X, \mathcal{F}, \mu), A \in \mathcal{F}$ và

$$f(x) = \sum_{i=1}^n \alpha_i 1_{A_i}(x) \ge 0,$$

ở đó $A_i \in \mathcal{F}$ rời nhau, và $\bigcup_{i=1}^n A_i = A$.

Tích phân các hàm đơn giản

Cho $(X, \mathcal{F}, \mu), A \in \mathcal{F}$ và

$$f(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}(x) \geq 0,$$

ở đó $A_i \in \mathcal{F}$ rời nhau, và $igcup_{i=1}^n A_i = A.$ Định nghĩa

$$\int_A f(x)d\mu = \sum_{i=1}^n \alpha_i \mu(A_i).$$

Tích phân các hàm đơn giản

Cho $(X, \mathcal{F}, \mu), A \in \mathcal{F}$ và

$$f(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}(x) \geq 0,$$

ở đó $A_i \in \mathcal{F}$ rời nhau, và $igcup_{i=1}^n A_i = A.$ Định nghĩa

$$\int_{A} f(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i}).$$

Ví du

Cho f(x) là hàm số Dirichlet. Tính $\int\limits_{[0,1]} f(x) d\mu$.

Tích phân các hàm đơn giản

Nếu

$$f(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}(x) = \sum_{j=1}^{s} \beta_i 1_{B_j}(x).$$

thì
$$\sum_{i=1}^{n} \alpha_i \mu(A_i) = \sum_{i=1}^{s} \beta_i \mu(B_i)$$
.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 43 / 48

Tích phân các hàm đơn giản

Nếu

$$f(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}(x) = \sum_{j=1}^{s} \beta_i 1_{B_j}(x).$$

thì
$$\sum_{i=1}^{n} \alpha_i \mu(A_i) = \sum_{j=1}^{s} \beta_j \mu(B_i)$$
.

Các tính chất của tích phân các hàm đơn giản

i)
$$0 \le f \le g \Rightarrow \int_{\Lambda} f d\mu \le \int_{\Lambda} g d\mu$$
.

Tích phân các hàm đơn giản

Nếu

$$f(x) = \sum_{i=1}^{n} \alpha_i 1_{A_i}(x) = \sum_{j=1}^{s} \beta_i 1_{B_j}(x).$$

thì
$$\sum_{i=1}^{n} \alpha_i \mu(A_i) = \sum_{i=1}^{s} \beta_i \mu(B_i)$$
.

Các tính chất của tích phân các hàm đơn giản

- i) $0 \le f \le g \Rightarrow \int_{\Delta} f d\mu \le \int_{\Delta} g d\mu$.
- ii) $\{f_n\}, \{g_n\} \geq 0$ đơn điệu tăng, $\lim_{n \to \infty} f_n = \lim_{n \to \infty} g_n$ thì

$$\lim_{n\to\infty}\int_A f_n d\mu = \lim_{n\to\infty}\int_A g_n d\mu.$$

Tích phân một hàm đo được bất kì

i) $f(x) \ge 0$ trên $A \Rightarrow \exists$ dãy hàm đơn giản $\{f_n(x)\} \ge 0$, đơn điệu tăng và hội tụ tới f,

$$\int_{A} f(x) d\mu = \lim_{n \to \infty} \int_{A} f_n(x) d\mu$$

không phụ thuộc vào cách chọn dãy f_n .

Tích phân một hàm đo được bất kì

i) $f(x) \ge 0$ trên $A \Rightarrow \exists$ dãy hàm đơn giản $\{f_n(x)\} \ge 0$, đơn điệu tăng và hội tụ tới f,

$$\int_{A} f(x)d\mu = \lim_{n \to \infty} \int_{A} f_n(x)d\mu$$

không phụ thuộc vào cách chọn dãy f_n .

ii) f(x) có dấu bất kì $\Rightarrow f = f^+ - f^-$, với

$$f^+ = \max\{f, 0\} \ge 0, \quad f^- = \max\{-f, 0\} \ge 0$$

$$\int_A f(x)d\mu = \int_A f^+(x)d\mu - \int_A f^-(x)d\mu,$$

Nếu tích phân ấy hữu hạn thì ta nói f(x) khả tích.

Các tính chất cơ bản

1)
$$\int\limits_{\mathcal{A}} c d\mu =$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 45 / 48

Các tính chất cơ bản

1)
$$\int_A c d\mu = c\mu(A), \forall c \in \mathbb{R}.$$

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 45 / 48

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$ 2) $\int_A \alpha 1_B(x) d\mu =$

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu =$

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_{A} \alpha 1_{B}(x) d\mu = \alpha \mu(B \cap A).$
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$
- 4) $\mu(A)=0$ và f đo được thì $\int\limits_A f d\mu=0$.

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_{A} \alpha 1_{B}(x) d\mu = \alpha \mu(B \cap A).$
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$
- 4) $\mu(A)=0$ và f đo được thì $\int\limits_A f d\mu=0$.
- 5) $\mu(A) < +\infty$, f đo được và bị chặn trên A thì f khả tích trên A.

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$
- 4) $\mu(A)=0$ và f đo được thì $\int\limits_A f d\mu=0$.
- 5) $\mu(A) < +\infty$, f đo được và bị chặn trên A thì f khả tích trên A.
- 6) Cộng tính: Nếu $A \cap B = \emptyset$ thì $\int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$.

- 1) $\int_A cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$
- 4) $\mu(A)=0$ và f đo được thì $\int\limits_A f d\mu=0$.
- 5) $\mu(A) < +\infty$, f đo được và bị chặn trên A thì f khả tích trên A.
- 6) Cộng tính: Nếu $A \cap B = \emptyset$ thì $\int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$.
- 7) Bảo toàn thứ tự:

i)
$$f \sim g \Rightarrow \int\limits_A f d\mu = \int\limits_A g d\mu$$
, ii) $f \leq g$ (h.k.n) $\Rightarrow \int\limits_A f d\mu \leq \int\limits_A g d\mu$.

Các tính chất cơ bản

- 1) $\int_{A} cd\mu = c\mu(A), \forall c \in \mathbb{R}.$
- 2) $\int_A \alpha 1_B(x) d\mu = \alpha \mu(B \cap A)$.
- 3) $\int_{A} \sum_{i=1}^{n} \alpha_{i} 1_{B_{i}}(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(B_{i} \cap A).$
- 4) $\mu(A)=0$ và f đo được thì $\int\limits_A f d\mu=0$.
- 5) $\mu(A) < +\infty$, f đo được và bị chặn trên A thì f khả tích trên A.
- 6) Cộng tính: Nếu $A \cap B = \emptyset$ thì $\int\limits_{A \cup B} f d\mu = \int\limits_{A} f d\mu + \int\limits_{B} f d\mu$.
- 7) Bảo toàn thứ tự:

i)
$$f \sim g \Rightarrow \int\limits_A f d\mu = \int\limits_A g d\mu$$
, ii) $f \leq g$ (h.k.n) $\Rightarrow \int\limits_A f d\mu \leq \int\limits_A g d\mu$.

8) Tuyến tính: $\int_A (\alpha f + \beta g) d\mu = \alpha \int_A f d\mu + \beta \int_A g d\mu$.

Tính khả tích Lebesgue

1) f khả tích $\Leftrightarrow |f|$ khả tích, và $|\int\limits_A f| \leq \int\limits_A |f|$.

TS. Bùi Xuân Diệu Giải tích hàm I ♡ HUST 46 / 48

Tính khả tích Lebesgue

- 1) f khả tích $\Leftrightarrow |f|$ khả tích, và $|\int\limits_A f| \leq \int\limits_A |f|.$
- 2) $\begin{cases} |f| \leq g \text{ h.k.n trên } A, \\ g \text{ khả tích} \end{cases} \Rightarrow f \text{ khả tích.}$

Tính khả tích Lebesgue

- 1) f khả tích $\Leftrightarrow |f|$ khả tích, và $|\int\limits_A f| \leq \int\limits_A |f|.$
- 2) $\begin{cases} |f| \leq g \text{ h.k.n trên } A, \\ g \text{ khả tích} \end{cases} \Rightarrow f \text{ khả tích.}$
- 3) f, g khả tích $\Rightarrow f \pm g$ khả tích.

Tính khả tích Lebesgue

- 1) f khả tích $\Leftrightarrow |f|$ khả tích, và $|\int\limits_A f| \leq \int\limits_A |f|$.
- 2) $\begin{cases} |f| \leq g \text{ h.k.n trên } A, \\ g \text{ khả tích} \end{cases} \Rightarrow f \text{ khả tích.}$
- 3) f, g khả tích $\Rightarrow f \pm g$ khả tích.
- 4) f khả tích và g bi chăn $\Rightarrow fg$ khả tích.

Hội tụ đơn điệu Beppo Levi

 $\{f_n\}$ là dãy tăng các hàm đo được không âm hội tụ tới f trên A thì

$$\int\limits_A f d\mu = \lim_{n\to\infty} \int\limits_A f_n d\mu.$$

Hội tụ đơn điệu Beppo Levi

 $\{f_n\}$ là dãy tăng các hàm đo được không âm hội tụ tới f trên A thì

$$\int\limits_A f d\mu = \lim_{n\to\infty} \int\limits_A f_n d\mu.$$

Đinh lý hôi tu bi chăn Lebesgue

Cho $\{f_n\}$ là dãy các hàm đo được trên A thỏa mãn

- i) $|f_n(x)| \leq g(x), \forall n \geq 1, \forall x \in A$,
- ii) g khả tích trên A.
- iii) f_n hội tụ h.k.n hoặc theo độ đo μ tới f.

Khi đó f khả tích và

$$\int_{A} f d\mu = \lim_{n \to \infty} \int_{A} f_n d\mu.$$

Riemann vs Lebesgue

Đinh lý

Hàm số f khả tích Riemann trên [a,b] thì cũng khả tích Lebesgue trên đó, và

$$\int_{a}^{b} f(x)dx = \int_{[a,b]} fdm^{L}.$$

Riemann vs Lebesgue

Đinh lý

Hàm số f khả tích Riemann trên [a, b] thì cũng khả tích Lebesgue trên đó, và

$$\int_{a}^{b} f(x)dx = \int_{[a,b]} fdm^{L}.$$

Hê quả

Hàm $f:[a,b] \to \mathbb{R}$ là khả tích Riemann khi và chỉ khi f liên tục hầu khắp nơi trên [a, b].

Giải tích hàm I ♥ HUST 48 / 48