First Name:	Last Name:	Student ID:
i ii st i vairie.	Last Name.	Judaciii ib.

Rational Functions (1)

1. State the domain of each function, then determine the equation of any vertical asymptotes and/or coordinates of any holes in the graph of the function.

a.
$$f(x) = \frac{2x}{x-3}$$

b.
$$f(x) = \frac{2x^2 + x}{x^2 - 5x + 6}$$

c.
$$f(x) = \frac{3x^2 - 21x}{6x^2 - 39x - 21}$$

a.
$$f(x) = \frac{2x}{x-3}$$
b.
$$f(x) = \frac{2x^2 + x}{x^2 - 5x + 6}$$
c.
$$f(x) = \frac{3x^2 - 21x}{6x^2 - 39x - 21}$$
d.
$$f(x) = \frac{x^3 + x}{6x^3 + x^2 - x}$$

- **2.** Determine, with support, an equation for a rational function of the form $y = \frac{g(x)}{h(x)}$ that satisfies the given conditions.
- a. Vertical asymptotes of x=-1 and x=3
- b. A hole at (1/3,-2) and a vertical asymptote of x=1

3. Determine an equation for the rational function shown in the graph below.

- 4. a. Under what conditions does a rational function have an oblique asymptote?
- b. Explain how to determine the equation of the oblique asymptote of a rational function that satisfies the conditions in part a).
- c. Which of these functions has an oblique asymptote? Determine the equation of the oblique asymptote, if it exists.

i.y=
$$\frac{x^2}{x+3}$$

ii.y= $\frac{3x}{x^2+1}$
iii.y= $\frac{x^2+4x+5}{x^2-4}$
iv.y= $\frac{2x^2-3x+5}{x-4}$
v.y= $\frac{x^3-1}{x^2-1}$

- **5.** By identifying asymptotes and intercepts, match the equation of each function to the most appropriate graph. Justify your choice.
- a. $y = \frac{1}{x^2 + x 6}$
- b. $y = \frac{x}{x^2 + x 6}$
- c. $y = \frac{x^2}{x^2 + x 6}$

6. Complete the comparison table below. Use this information, along with additional points, to sketch the graph of each function.

Function	a.	b.
	$y = \frac{x+1}{x^2 + 2x - 3}$	$y = \frac{x-1}{x^2 + 2x - 3}$
Domain		

Advanced Functions Class 5 Homework

Vertical Asymptote(s) and/or Points of Discontinuity	
Horizontal Asymptote(s)	
<i>x</i> -intercepts	
y-intercepts	
Symmetry (Even/Odd)	

Advanced Functions Class 5 Homework

7. For the following functions

- Identify all asymptotes, points of discontinuity and intercepts.
- Discuss the behaviour of the graph of the function near its asymptotes.
- Based on your findings from parts a) and b), along with additional points, sketch a graph of the function.

a.
$$g(x) = \frac{x^2 + 3x - 8}{x + 2}$$
:

b)
$$y = \frac{x^3 - 1}{x^2 + 2x}$$

Advanced Functions Class 5 Homework

- **8.** The function $f(x) = \frac{2x^2 + ax + b}{5x^2 26x + b}$, where a and b are real numbers, has a point of discontinuity (hole) when x=6.
- a. Determine the values of a and b.
- b. Determine the location of the hole, the *x* and *y*-intercepts, and the equations of the asymptotes of the function.