

Divisão e Conquista

Precisamos resolver um programa com uma entrada grande

DIVISÃO

Para facilitar a resolução do problema, quebramos a entrada em pedaços menores

Cada pedaço da entrada é então tratado separadamente

Ao final, os resultados parciais são combinados para gerar o resultado final procurado

Divisão e Conquista -Estratégia

A instância dada do problema é dividida em duas ou mais instância menores.

Cada instância menor é resolvida usando o próprio algoritmo que está sendo definido.

As soluções das instâncias menores são combinadas para produzir uma solução da instância original.

Divisão e Conquista

O problema da Torre de Hanói

Torre de Hanoi

Problema:

Levar os n discos do pino A para o pino C, usando B como auxílio, sem nunca colocar um disco sobre um disco menor e movendo um único disco por vez.

Torre de Hanoi com Divisão e Conquista

Quando o problema for grande:

- a) levar n-1 discos do pino A para a B,
- b) mover o último disco do pino A para a C e
- c) mover os n-1 discos do pino B para a C.

Mover I de A para C

Mover 2 de A para B

Mover I de C para B

Mover 3 de A para C

Mover I de B para A

Mover 2 de B para C Mover 1 de A para C

Problema resolvido com 7 movimentos!

Torre de Hanoi com Divisão e Conquista

Quando o problema for grande:

- a) levar n-1 discos do pino A para a B,
- b) mover o último disco do pino A para a C e
- c) mover os n-1 discos do pino B para a C.

TORRE DE HANOI - Formulação I

O problema pequeno é quando n = 1. Neste caso basta levar o disco de A para C.

```
Hanoi (n, ori, trab, dest):
    se n = 1:
        Levar topo de ori para dest
    senão:
        Hanoi (n-1, ori, dest, trab)
        Mover topo de ori para dest
Hanoi (n-1, trab, ori, dest)
```

TORRE DE HANOI - Formulação 2

O problema
pequeno é
quando n = 0.
Neste caso nada
precisa ser
feito.

```
Hanoi (n, ori, trab, dest):
    se n > 0:
        Hanoi (n-1, ori, dest, trab)
        Mover topo de ori para dest
        Hanoi (n-1, trab, ori, dest
```

```
Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2)
       Hanoi (n-1, ori, dest, trab)
(3)
       Mover topo de ori para dest
(4)
       Hanoi (n-1, trab, ori, dest);
Hanoi (3, A, B, C)
```



```
Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2) Hanoi (n-1, ori, dest, trab)
(3) Mover topo de ori para dest
(4) Hanoi (n-1, trab, ori, dest);
```


Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2) Hanoi (n-1, ori, dest, trab)
(3) Mover topo de ori para dest
(4) Hanoi (n-1, trab, ori, dest);

Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2) Hanoi (n, 1, ori, dest)

- (2) Hanoi (n-1, ori, dest, trab)
- (3) Mover topo de ori para dest
- (4) Hanoi (n-1, trab, ori, dest);

Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2) Hanoi (n-1, ori, dest, trab)
(3) Mover topo de ori para dest
(4) Hanoi (n-1, trab, ori, dest);

Hanoi (n, ori, trab, dest):
(1) se n > 0:
(2) Hanoi (n-1, ori, dest, trab)
(3) Mover topo de ori para dest
(4) Hanoi (n-1, trab, ori, dest);

TORRE DE HANOI - Recorrência

T(n) = número de movimentos para mover n discos

T(n) = 2*T(n-1) + 1T(0) = 0 ou T(1) = 1

Solução da recorrência: T(n) = 2ⁿ - 1 Exercício recomendado:

Provar, por indução, que a fórmula ao lado é verdadeira.

TORRE DE HANOI - Recorrência

T(n) = número de movimentos para mover n discos T(n) = 2ⁿ - 1

Então o algoritmo é ineficiente? Resposta:

Não. Prova-se que qualquer solução exige um número exponencial de passos. Então o problema é que é "ruim", não o algoritmo.

 $2^{64} - 1 = 18.446.744.073.709.551.615$

Divisão e Conquista

Exponenciação Rápida (Eficiência)

Exponenciação com expoente inteiro

Problema: Dados dois inteiros a e n, calcular aⁿ.

O problema pode ser resolvido com uma abordagem ingênua O(n), executando n multiplicações:

```
int Exp(int a, int n):
   p ← 1
   para i ← 1..n incl.:
    p ← p*a
   retornar p
```

Podemos fazer melhor?

Exponenciação com expoente inteiro

Algoritmo O(log₂ n):

Idéia: se tivermos calculado $p = a^{n/2}$, com mais uma multiplicação conseguimos calcular $p' = a^n$.

Basta fazer p' = p*p.

```
int Expr(int a, int n):
    se n=0:
        retornar 1
    senão se n mod 2 = 1:
        # se n for impar
        retornar Expr(a, n-1)*a
    senão
        p ← Expr(a, n/2)
        retornar p*p
```


Divisão e Conquista

Busca Binária

Problema

Dado um subarray de inteiros diferentes ordenados em ordem crescente e um inteiro, retornar "Sim" se aparece em "Não", caso contrário.

Busca binária

```
def busca binaria(A, p, r, z):
    if r >= p:
        meio = (r + p) // 2
        if A[meio] == z: # Se z está no meio
            return meio
        elif A[meio] > z:
            # Se z < meio, z pode estar a esq
            return busca binaria(A, p, meio - 1, z)
        else: #Caso contrário, z está à direita
            return busca binaria(A, meio + 1, r, z)
    else: #Elemento não está em A
        return -1
```

Complexidade: O(log n)

Divisão e Conquista

MergeSort

Recapitulando...

- Divida o problema em vários subproblemas
 - Subproblemas semelhantes de tamanho menor
- Conquiste os subproblemas
 - Resolva os subproblemas recursivamente
 - Tamanho do subproblema pequeno o suficiente ⇒ resolva os problemas de maneira direta
- Combine as soluções dos subproblemas
 - Obtenha a solução para o problema original

Abordagem do MergeSort

Para ordenar um array A[p..r]:

Divisão

– Divide a sequência de n elementos a ser ordenada em duas subsequências de n/2 elementos cada

Conquista

- Ordena as subsequências recursivamente usando o MergeSort
- Quando o tamanho das sequências é 1 não há mais nada a fazer

Combinação

- Mesclar as duas subsequências ordenadas

MergeSort

q = 4

Exemplo: n Potência de 2

Divisão

Exemplo: n Potência de 2

Conquista e Combinação

Exemplo: n não é potência de 2

Exemplo: n não é potência de 2

Conquista e Combinação

Merge (combinação)

- Entrada: Array A e índices p, q, r tal que p ≤ q < r
 - Subarrays A[p..q] e A[q+1..r] são ordenados
- Saída: Um único subarray ordenado A[p..r]

Merge

- Ideia para combinar os dois subarrays:
 - Temos duas pilhas de cartas ordenadas
 - Escolha a menor das duas cartas do topo
 - Remova-a e coloque-a na pilha de saída
 - Repita o processo até que uma pilha esteja vazia
 - Pegue a pilha restante e coloque-a virada para baixo na pilha de saída

Exemplo: MERGE(A, 9, 12, 16)

Exemplo: MERGE(A, 9, 12, 16)

Exemplo (cont.)

Exemplo (cont.)

Exemplo (cont.)

Pronto!

Merge

```
MERGE(A, p, q, r)
      Compute n_1 e n_2
      Copie o primeiro elemento de n, em L[1 . . n, + 1] e o
      próximo elemento de n_2 em R[1 . . n_2 + 1]
      L[n_1 + 1] \leftarrow \infty;
                           R[n_2 + 1] \leftarrow \infty
 3.
      i ← 1; j ← 1
5.
      para k - p até r faça
             se L[ i ] ≤ R[ j ] então
 6.
 7.
                    A[k] \leftarrow L[i]
                    i ← i + 1
             senão
10.
                    A[k] \leftarrow R[j]
11.
```


Tempo de execução do Merge (assuma o último loop)

- Inicialização (copiando em arrays temporários):
 - $-\Theta(n_1+n_2)=\Theta(n)$
- Adicionando os elementos ao array final:
 - n iterações, cada uma levando tempo constante $\Rightarrow \Theta(n)$
- Tempo total para realizar o merge:
 - $-\Theta(n)$

E agora? Como analisar a complexidade do MergeSort?

Relembrando os passos para análise da complexidade de algoritmos

Identificar operações primitivas

Identificar a quantidade de vezes que cada uma dessas primitivas é executada

Somar essas execuções

Quais são as operações primitivas?

Retorno de métodos

Atribuição

Acesso à variáveis e posições arbitrárias de um array

Análise de algoritmos recursivos

Ao seguir os passos anteriores chegamos a uma função que descreve o tempo de execução do algoritmo.

Estamos interessados na ordem de crescimento dessa função, mais do que nos seus termos detalhados.

Deste modo, podemos aplicar as seguintes diretrizes para identificar a classe de complexidade das funções:

- Eliminar constantes;
- Eliminar expoentes de menor magnitude.

```
Exemplo:

f(n)=70n+32n+231

f(n)=\Theta(n)
```

Análise de algoritmos recursivos - FAT

Número de chamadas recursivas: n Complexidade do procedimento em cada chamada: O(1)

Complexidade do FAT recursivo: O(n)

```
inteiro FAT(n);
  se n < 2:
    retornar 1
  senão:
    retornar n*FAT(n-1)</pre>
```


Análise de algoritmos recursivos - FIB

Número de chamadas recursivas:

```
T(n)
```

```
T(O) = 1; T(1) = 1;

T(n) = 1 + T(n-1) + T(n-2);
```

Complexidade do procedimento: O(1)

Complexidade do FIB recursivo: ?

```
inteiro FIB(n):
    se   n < 2:
        retornar n
    senão:
        retornar FIB(n-1)+FIB(n-2)</pre>
```

Análise de algoritmos recursivos - FIB(5)

Pergunta: Afinal qual o problema da recursão?

Resposta: A mesma chamada é feita inúmeras vezes (milhares, para valores médios de n), para realizar o mesmo cálculo.

[IME-UERJ] Algoritmos e Estruturas de Dados II - 2023/2

Qual é o problema?

Em algoritmos recursivos a aplicação dos passos anteriores não é direta, pois um algoritmo recursivo é definido em termos dele mesmo.

```
inteiro FAT(n);
  se n < 2:
    retornar 1
  senão:
    retornar n*FAT(n-1)</pre>
```

Qual é o problema?

Em algoritmos recursivos a aplicação dos passos anteriores não é direta, pois um algoritmo recursivo é definido em termos dele mesmo.

```
inteiro FAT(n);
  se n < 2:
    retornar 1
  senão:
    retornar n*FAT(n-1)</pre>
```

Vamos aplicar os passos anteriores

Qual é o problema?

Em algoritmos recursivos a aplicação dos passos anteriores não é direta, pois um algoritmo recursivo é definido em termos dele mesmo.

Relação de recorrência

Relação de recorrência é uma equação ou inequação que descreve uma função em termos dela mesma considerando entradas menores.

A função que descreve o tempo de execução de um algoritmo recursivo é dada por sua relação de recorrência.

A relação de recorrência que descreve o algoritmo de cálculo do fatorial: simplificando temos:

Ou seja, o custo de calcular fatorial(n) é o custo de calcular fatorial(n-1) somado às primitivas que são executadas a cada passo da recursão que, nesse caso, representam 1.

Desafio

"

Resolver a relação de recorrência correspondente ao algoritmo para determinar o seu tempo de execução.

Árvore de recursão

Método iterativo

A ideia para resolver uma relação de recorrência é simular a sua execução através de uma árvore, onde os nós representam a entrada e as arestas representam a chamada recursiva.

Árvore de recursão

Exemplo: Fatorial

O custo total é a soma dos custos de cada nível, ou seja, a soma dos custos de cada passo da recursão

Custo total = 5

Árvore de recursão

Exemplo: Fatorial

Queremos definir o tempo de execução do algoritmo em função de uma entrada de tamanho n.

- Para calcular a função que define o tempo de execução desse algoritmo, precisamos somar os custos de cada nível
- Somaremos o valor 1 uma quantidade de vezes representada por h+1, onde h é a altura da árvore e o +1 é o custo da última execução (if n<2)

Custo total = 1*(n-1)+1

h é o comprimento do maior caminho da raiz a uma das folhas

Passos para análise de algoritmos recursivos

Estabelecer a relação de recorrência Expandir a árvore de execução baseado na relação de recorrência

Determinar a altura h máxima da árvore

Somar o custo de cada nível de execução

Somar o custo total (soma do custo de todos os níveis)

Voltando ao Mergesort

```
MergeSort(A, p, r)
  if p < r
     then q \leftarrow [(p + r)/2]
       MERGE-SORT (A, p, q)
       MERGE-SORT(A, q + 1, r)
       MERGE(A, p, q, r)
Chamada inicial: MERGE-SORT (A, 1, n)
```

Voltando ao Mergesort

Primeira etapa: Identificar a relação de recorrência

```
MergeSort(A, p, r)
  if p < r
     then q \leftarrow [(p + r)/2]
       MERGE-SORT(A, p, q)
       MERGE-SORT(A, q + 1, r)
       MERGE (A, p, q, r)
Chamada inicial: MERGE-SORT (A, 1, n)
```

Voltando ao Mergesort

Primeira etapa: Identificar a relação de recorrência

$$T(n/2)$$

$$T(n/2)$$

$$\theta(n)$$

$$T(n) = (T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
simplificando
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

nos e Estruturas de Dados II - 2023/2

 $\theta(1)$

 $\theta(1)$

Exemplo: Mergesort

Árvore de recursão

Custo total = $n \log n$

E se determinar a complexidade com a árvore de recursão for muito trabalhoso?

Permite identificar a classe de complexidade de um algoritmo aplicando apenas algumas operações matemáticas e comparando ordem de complexidade de funções.

Como funciona?

O primeiro ponto a ser observado é que a relação de recorrência precisa ter determinadas propriedades.

Vamos analisar essas propriedades:

$$T(n) = a * T\left(\frac{n}{b}\right) + f(n)$$

Sendo a >= 1, b >1 e f(n) não negativa.

a representa o número de chamadas recursivas (quantidade de subproblemas b representa em quanto a entrada é diminuída a cada chamada recursiva f(n) representa o curso parcial de cada etapa da recursão

É uma maneira direta de resolver relações de recorrência.

O Teorema Mestre estabelece que:

(1) Se
$$f(n) < n^{\log_b a}$$
, então $T(n) = \theta(n^{\log_b a})$.

(2) Se
$$f(n) = n^{\log_b a}$$
, então $T(n) = \theta(f(n) * \log n)$.

(3) Se
$$f(n) > n^{\log_b a}$$
, então $T(n) = \theta(f(n))$.

Desse modo, se a relação de recorrência obedecer às restrições a>=1, b>1 e f(n) não negativa, basta aplicarmos o teorema.

Exemplo

$$T(n) = 9T\left(\frac{n}{2}\right) + 1000 * n^2$$

$$a = 9;$$

$$b = 2$$
:

$$f(n) = 1000 * n^2$$
.

Comparando $1000*n^2$ com $n^{\log_b a}$, temos que $1000*n^2 < n^3$. Portanto, aplicando o caso 1 do Teorema Mestre, podemos afirmar que $T(n) = \Theta(n^{\log_b a})$ e, portanto,

$$T(n) = \theta(n^3)$$

Exemplo

$$T(n) = 2T\left(\frac{n}{2}\right) + 10 * n$$

$$a = 2;$$

$$b = 2;$$

$$f(n) = 10 * n.$$

Comparando 10*n com $n^{\log_b a}$ temos que 10*n=n, pois comparamos a ordem de grandeza das funções e, quando fazemos isso, as constantes não importam. Portanto, aplicando o caso 2 do Teorema Mestre, podemos afirmar que

$$T(n) = \theta(n\log_2 n)$$

Exemplo

$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

$$a = 2;$$

$$b = 2;$$

$$f(n)=n^2.$$

Comparando n^2 com $n^{\log_b a}$ temos que $n^2 > n$. Portanto, aplicando o caso 3 do

Teorema Mestre, podemos afirmar que $T(n) = \theta(f(n))$ e, portanto,

$$T(n) = \theta(n^2)$$

Resumo da análise de algoritmos de divisão e conquista

- A recorrência é baseada nos três passos do paradigma:
 - T(n) tempo de execução em um problema de tamanho n
 - Divide o problema em a subproblemas, cada um de tamanho n/b: leva D(n)
 - Conquista (resolve) os subproblemas aT(n/b)
 - Combina as soluções C(n)

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(n/b) + D(n) + C(n) \text{ caso contrário} \end{cases}$$

Tempo de Execução do MergeSort

Divisão:

computa q como a média de p e r: D(n) = Θ(1)

Conquista:

Recursivamente resolve 2 subproblemas, cada um com tamanho n/2 ⇒
 2T (n/2)

Combinação:

- MERGE em um subarray de n elementos leva tempo $\Theta(n) \Rightarrow C(n) = \Theta(n)$

$$\begin{cases}
\Theta(1) & \text{se n = 1} \\
2T(n/2) + \Theta(n) & \text{se n > 1}
\end{cases}$$

MergeSort - Solução da Recorrência

$$T(n) = \begin{cases} c & \text{se } n = 1 \\ 2T(n/2) + cn & \text{se } n > 1 \end{cases}$$

Usando o Teorema Mestre

Compara n com f(n) = cnCaso 2: $T(n) = \Theta(n \log n)$

Divisão e Conquista

Quicksort

(Eficiência no caso médio)

Quicksort

Utiliza a estratégia de divisão e conquista.

É muito rápido em média, mesmo sendo lento no pior caso

O passo da divisão é parte crítica do algoritmo, nele o vetor A[p...r] é particionado devolvendo um índice q tal que A[p...q-1] A[q] < A[q+1...r].

O elemento x = A[q] é chamado de pivô.

Quicksort

A idéia recursiva básica é a seguinte:

a) Se o vetor tiver 0 ou 1 elementos ("problema infantil"), nada deve ser feito.

b) Senão, fazer uma partição no vetor, através de trocas, baseada em um pivô q, tal que os elementos da partição esquerda sejam ≤ q, e os da direita, > q.

c) Depois ordenar, de forma independente, as partições obtidas. Todo o vetor estará, então, ordenado.

Este é um importante método de ordenação, inventado por Hoare, em 1962.

Mergesort

1. Ordenar separadamente cada metade do vetor.

2. Fazer merge das duas metades ordenadas.

Quicksort

2. Ordenar separadamente cada uma das duas partições.

Quicksort: Escolha do pivô

- A escolha do pivô é importante para o bom desempenho do algoritmo. Opções:
 - Primeiro elemento do vetor;
 - Último elemento do vetor;
 - Elemento do meio do vetor;
 - Escolha aleatória de um elemento do vetor.

```
Invariantes:
no começo de cada
iteração do loop para,
A[p ..i] ≤ x,
A[i+1..j-1] > x,
A[r] = x
```

Consumo de tempo: (n) onde n := r - p.

```
Particione (A,p,r)

x ← A[r] %x é o "pivô"

i ← p-1

para j ← p até r - 1 faça

se A[j] ≤ x então

i ← i + 1

A[i] ↔ A[j]

A[i+1] ↔ A[r]

retorne i + 1
```

O vetor A[p...r] é particionado devolvendo um índice q tal que A[p...q-1] A[q] < A[q+1...r].

O pivô será o último elemento do vetor

Fazendo A[i+1] ↔ **A[r]**

22 40	34	42	47	56
-------	----	----	----	----

Quicksort

```
QuickSort(A,p,r)
se p < r então
  q \leftarrow Particione(A, p, r)
  QuickSort(A,p,q - 1)
  QuickSort (A, q + 1, r)
Quicksort (A, 1, n)
```

Complexidade do Quicksort

```
\begin{aligned} &\text{QuickSort}(A,p,r)\\ &\text{se p} < r \text{ ent} \widetilde{ao}\\ &q \leftarrow \text{Particione}(A,p,r)\\ &\text{QuickSort}(A,p,q-1)\\ &\text{QuickSort}(A,q+1,r) \end{aligned} \qquad \begin{array}{l} &\Theta(1)\\ &\Theta(n)\\ &T(k)\\ &T(n-k-1)\\ &=T(k)+T(n-k-1)+\Theta(n+1) \end{array}
```

```
Melhor caso (vetor ordenado):

T(n) = 2T(n/2) + n+2 = O(n log n) (= Mergesort)
```

Pior caso da Partição

- Quando acontece?
 - Uma região tem 1 elemento e a outra tem n - 1 elementos
 - Maior desbalanceamento possível
- Recorrência: q=1

$$T(n) = T(1) + T(n - 1) + n,$$

 $T(1) = \Theta(1)$

T(n) = T(n - 1) + n
=
$$n + (\sum_{k=1}^{n} k) - 1 = \theta(n) + \theta(n^2) = \theta(n^2)$$

Melhor caso da Partição

- Quando acontece?
 - O particionamento produz duas regiões de tamanho n/2
- Recorrência: q=n/2

```
T(n) = 2T(n/2) + \Theta(n)
```

 $T(n) = \Theta(n \log n)$

(Pelo Teorema Mestre)

Análise da Ordenação pelo Quicksort

Complexidade:

Pior caso: O(n²)

Melhor caso = caso médio: O(n log n)

Estabilidade (manutenção da ordem relativa de chaves iguais):

Algoritmo não estável

Memória adicional:

Pilha para recursão

Usos especiais:

Melhor algoritmo de ordenação em geral

Divisão e Conquista

Cálculo de Combinações (Oportunidade)

Cálculo de Combinações

Problema:

Às vezes tem-se problemas numéricos em certos cálculos, como no cálculo de combinações, se usar a fórmula padrão.

Comb(n,p) = n!/(p!(n-p)!)

Por exemplo, o cálculo de Comb(50, 3) pode levar a um estouro numérico, se a função Comb() usar inteiros com 32 ou 64 bits.

Cálculo de Combinações

A versão recursiva para o cálculo de Comb(n, p) pode evitar o problema.

Versão I. Reescreve-se a função como uma recorrência:

```
Comb(n, p) = n, se p = 1
Comb(n, p) = Comb(n-1, p-1)*n/p, se p > 1,
```

```
pois Comb(n, p) = n!/(p!(n-p)!)
= (n-1)!n / ((p-1)!p (n-1-(p-1))!)
= [(n-1)! / ((p-1)!(n-1-(p-1))!] * n/p
= Comb(n-1, p-1) * n/p
```

Cálculo de Combinações

Define-se a recorrência:

```
Comb(n, p) = n, se p = 1
Comb(n, p) = Comb(n-1, p-1)*n/p.
```

```
Comb(n, p):
    se p = 1
        retornar n
    senão:
        retornar Comb(n-1, p-1)*n/p
```

Exemplo: Comb(50, 3).

50	3	1176*50/3 = 19600
49	2	48*49/2 = 1176
48	1	48

Divisão e Conquista

Torneio

(Simetria e Adaptação)

Divisão e Conquista

Máximo e Mínimo

(Etapa intermediária)

Máximo e Mínimo

Problema: Dado um conjunto de números S= {s₁, s₂,... s_n}, determinar simultaneamente o menor e o maior elemento do conjunto.

Solução ingênua

Encontrar o mínimo e o máximo, separadamente.

```
Minimo:Maximo:\min \leftarrow 1\max \leftarrow 1para i \leftarrow 2..npara i \leftarrow 2..nse V[i] < V[min]se V[i] > V[max]\min \leftarrow i\max \leftarrow i
```

Faz 2(n-1) comparações.

Máximo e Mínimo

Problema: Dado um conjunto de números S= {s₁, s₂,... s_n}, determinar simultaneamente o menor e o maior elemento do conjunto.

É possível encontrar os elementos procurados fazendo menos que 2(n-1) comparações?

R: Sim, usando divisão e conquista.

Se n = 1, o elemento s_1 é simultaneamente o menor e o maior elemento, sem precisar comparar; Senão se n = 2, com uma comparação se descobre qual dos dois elementos é menor e qual o maior; Senão, encontrar (a_1, b_1) , mínimo e máximo da primeira metade, (a_2, b_2) , mínimo e máximo da segunda metade e retornar $(min(a_1, a_2), max(b_1, b_2))$.

Máximo e Mínimo - Enfoque Recursivo

```
Maxmin(int e, int d):
   se e = d:
       retornar (s[e], s[e])
   senão
       se d = e+1:
           se s[e] < s[d]:
              retornar (s[e], s[d])
           senão:
        retornar (s[d], s[e])
       senão:
    m \leftarrow [(e+d)/2]
     (a_1, b_1) \leftarrow MaxMin(e, m)
     (a_2, b_2) \leftarrow MaxMin(m+1, d)
     retornar (min(a_1, a_2), max(b_1, b_2))
```

Máximo e Mínimo - Exemplo

Máximo e Mínimo - Comparações do exemplo

1	2	3	4	5	6	7	8	9	10
75	3	120	81	29	192	45	8	156	17

Algoritmos e Estruturas de Dados II – IME/UERJ – 2023/2

Máximo e Mínimo

É possível encontrar os números procurados fazendo menos que 2(n-1) comparações?

Sim, prova-se que o mínimo de comparações possível é 3n/2-2, que é o resultado com divisão e conquista.

Máximo e Mínimo - Enfoque Não Recursivo

O processo de divisão e conquista permite observar que a comparação inicial feita nas folhas entre dois elementos classifica cada elemento como ou candidato a mínimo ou máximo.

Pode-se, então, criar o seguinte algoritmo interativo:

- a) inicialmente varre-se o vetor, comparando os elementos 2 a 2, classificando um deles como candidato a mínimo e o outro como candidato a máximo.
- b) Depois obtém-se mínimo e máximo de forma independente, em cada grupo de candidatos.

A divisão e conquista é, então, uma etapa intermediária para a obtenção de um algoritmo interativo eficiente.

Máximo e Mínimo - Enfoque Não Recursivo

```
Maxmin(int n):
    vmin \leftarrow V[n]; vmax \leftarrow V[n];
    para i \leftarrow 1..[n/2] incl.:
         se V[2i-1] < V[2i]:
                vmin \leftarrow min(V[2i-1], vmin)
                vmax \leftarrow max(V[2i], vmax)
         senão:
                vmin ← min(V[2i], vmin)
                vmax \leftarrow max(V[2i-1], vmax)
    retornar (vmin, vmax)
```

Número de comparaçõe s:

O algoritmo faz 3[n/2] comparações, praticamente o valor ótimo.

Divisão e Conquista

Técnicas Complementares

(Memorização)

MEMORIZAÇÃO - Fibonacci

```
Fib(n) = i, se i ≤l
Fib(n) = Fib(n-1) + Fib(n-2), se n > l
```

```
inteiro Fib(n):
    se   n < 2:
        retornar  n
    senão
        se T[n] = -1:
        T[n] ← Fib(n-1) + Fib (n-2)
        retornar T[n]

T[*] ← -1
Fib(n)</pre>
```

Solução interativa:

```
Fib():

T[0] \leftarrow 0;

T[1] \leftarrow 1;

para i \leftarrow 2...n incl.:

T[i] \leftarrow T[i-1] + T[i-2]
```

MEMORIZAÇÃO

Técnica para fugir da complexidade exponencial, pelo tabelamento de soluções intermediárias.

Exemplo: Moedas

Dados m tipos de moedas e seus valores V[1]..V[m], determinar quantas maneiras distintas existem para um troco de valor n.

No Brasil, m = 6 e V = [1, 5, 10, 25, 50, 100].

Temos 4 maneiras distintas de dar um troco de 11 centavos:

T(p, n) = número de trocos distintos para n, usando as moedas de tipos 1 a p.

Recorrência para calcular T(p,n):

$$T(p, n) = 0$$
, se $n < 0$, ou $p=0$
 $T(p, 0) = 1$
 $T(p, n) = T(p, n - V[p]) + T(p-1, n)$, se $n > 0$

Explicação da recorrência:

T(p, n) = 0, se n < 0, ou p=0: não tem como dar um troco para valor negativo ou com tipo de moeda inexistente.

T(p, 0) = 1: a única maneira aqui é não dar troco algum.

T(p, n) = T(p, n - V[p]) + T(p-1, n), se n > 0: contamos dois casos: ou usa a moeda do tipo p ou não.

T(p, n) = número de trocos distintos para n, usando as moedas de tipos 1 a p.

$$T(p, n) = 0$$
, se $n < 0$, ou $p=0$

$$T(p, 0) = 1$$

$$T(p, n) = T(p, n - V[p]) + T(p-1, n), se n > 0$$

Temos 6 maneiras de dar um troco de 16 centavos:

$$T(3, 16) = T(3, 16-10) + T(2, 16) = 6$$

T(3, 16-10) = todas as maneiras de dar um troco de 16 que usam uma moeda de <math>10 = 2

= todas as maneiras de dar um troco de 16 que só usam moedas inferiores a 10 = 4 T(2, 16)

T(6, 16) = todas as maneiras de dar um troco de 16 centavos =
$$T(6, 16-100)+T(5,16-50)+T(4,16-25)+T(3,16-10)+T(2,16) =$$

$$+$$
 2 $+$ 4 $=$ 6

```
T(p, n) = número de trocos
distintos para n, usando as
moedas de tipos I a p.
T(p, n) = 0, se n < 0, ou p=0
T(p, 0) = 1;
T(p, n) = T(p, n - V[p]) + T(p-1, n)
```

MEMORIZAÇÃO - Moedas T(3,11)

SEM MEMORIZAÇÃO - Moedas T(3,20)

O que fazer?

Usar memorização que consiste em guardar resultados de sub-problemas resolvidos. Para o presente exemplo pode-se usar uma matriz 6 x n.

```
T(p, n) = 0, se n < 0 ou p = 0;

T(p, 0) = 1;

T(p, n) = T(p, n - V[p]) + T(p-1, n), se n > 0
```

```
T[*, *] \leftarrow -1 Moedas (m, n)
```

SEM MEMORIZAÇÃO - Moedas T(3,20)

(Sub-problemas resolvidos)

 $V = \{1, 5, 10, 25, 50, 100\}, n = 20$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	-1	-1	-1	-1	2	-1	-1	-1	-1	3	-1	-1	-1	-1	4	-1	-1	-1	-1	5
3	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	4	-1	-1	-1	-1	-1	-1	-1	-1	-1	9
4	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	9
5	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	9
6	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	9

$$T[6, 20] \leftarrow T[6, -80] + T[5, 20];$$

$$T[5, 20] \leftarrow T[5, -30] + T[4, 20];$$

$$T[4, 20] \leftarrow T[5, -5] + T[3, 20];$$

$$T[3, 20] \leftarrow T[3, 10] + T[2, 20];$$

$$T[3, 10] \leftarrow T[3, 0] + T[2, 10];$$

$$T[2, 10] \leftarrow T[2, 5] + T[1, 10];$$

$$T[2, 5] \leftarrow T[2, 0] + T[1, 5];$$

$$T[1, 5] \leftarrow T[1, 4] + T[0, 5];$$

Dúvidas?

lucila.bento [at] ime.uerj.br