Micro HW2

Michael B. Nattinger*

September 15, 2020

1 Question 1

1.1 Prove that if the production set $Y=\{(q,-z): f(z)\geq q\}\subset \mathbb{R}^{m+1}$ is convex, the production function f is concave.

Let $q_1 = f(z_1), q_2 = f(z_2)$. $(q_1, -z_1), (q_2, -z_2) \in Y$ by definition and by convexity $t(q_1, -z_1) + (1-t)(q_2, -z_2) \in Y, t \in (0, 1)$. By definition, $f(t(z_1) + (1-t)(z_2)) \ge tq_1 + (1-t)q_2 = tf(z_1) + (1-t)f(z_2)$ so f is concave.

1.2 Prove that if f is concave, the cost function is convex in q.

We can fix $w \in \mathbb{R}^k$ Let $q_1, q_2 \in \mathbb{R}$ Let z_1, z_2 be $\mathop{\arg\min}_{z:f(x) \geq q_1} w \cdot z$, $\mathop{\arg\min}_{z:f(x) \geq q_2} w \cdot z$.

By the concavity of f, for $t \in (0,1)$ we have $f(tz_1 + (1-t)z_2) \ge tf(z_1) + (1-t)f(z_2) \ge tq_1 + (1-t)q_2$. Therefore $tc(q_1, w) + (1-t)c(q_2, w) \le c(tq_1 + (1-t)q_2, w)$ because we can produce at least $tq_1 + (1-t)q_2$ goods by using $(t(z_1) + (1-t)(z_2))$ inputs.

^{*}I worked on this assignment with my study group: Alex von Hafften, Andrew Smith, Ryan Mather, and Tyler Welch. I have also discussed problem(s) with Emily Case, Sarah Bass, and Danny Edgel.

2 Question 2

2.1 Draw Y

The shaded area in the above figure is Y graphed in Matlab, for a sample value of B=1.

2.2 Solve the firm's profit maximization problem to find $\pi(p)$ and $Y^*(p)$.

The firm chooses production to maximize profit: $\max_{-y_1,y_2\in\mathbb{R}_+} p\cdot (y_1,y_2)' \text{ s.t. } y_2 \leq B(-y_1)^{2/3}.$ Since profits are strictly increasing in y_2 the profit maximizing firm will set $y_2=B(-y_1)^{2/3}$. We will also write $-y_1=z$. Our optimization problem thus becomes: $\max_{q\in\mathbb{R}_+} p\cdot (-q,Bq^{2/3})'.$ Taking the firm's first order conditions, we find that $0=\frac{d\pi(q)}{dq}=0$ $0\Rightarrow\frac{d}{dq}\left(-p_1q+p_2Bq^{2/3}\right)=0\Rightarrow -p_1+(2/3)p_2Bq^{-1/3}=0\Rightarrow q=\left(\frac{Bp_2}{(3/2)p_1}\right)^3.$ This production yields the maximum profits given p, which we can compute as: $\pi(p)=p_1\left(\frac{Bp_2}{(3/2)p_1}\right)^3+p_2B\left(\frac{Bp_2}{(3/2)p_1}\right)^2, \text{ since } Y^*(p)=\left(\left(\frac{Bp_2}{(3/2)p_1}\right)^3,B\left(\frac{Bp_2}{(3/2)p_1}\right)^2\right)'.$

2.3 Verify that $\pi(p)$ is homogeneous of degree 1, and y(p) is homogeneous of degree 0.

$$\pi(\lambda p) = \lambda p_1 \left(\frac{B\lambda p_2}{(3/2)\lambda p_1}\right)^3 + \lambda p_2 B \left(\frac{B\lambda p_2}{(3/2)\lambda p_1}\right)^2 = \lambda \left(p_1 \left(\frac{Bp_2}{(3/2)p_1}\right)^3 + p_2 B \left(\frac{Bp_2}{(3/2)p_1}\right)^2\right) = \lambda \pi(p)$$
 so $\pi(p)$ is homogeneous of degree 1.

so
$$\pi(p)$$
 is homogeneous of degree 1.
$$y(\lambda p) = \left(\left(\frac{B\lambda p_2}{(3/2)\lambda p_1} \right)^3, B\left(\frac{B\lambda p_2}{(3/2)\lambda p_1} \right)^2 \right)' = \left(\left(\frac{Bp_2}{(3/2)p_1} \right)^3, B\left(\frac{Bp_2}{(3/2)p_1} \right)^2 \right)' = y(p) \text{ so } y(p) \text{ is homogeneous of degree 0.}$$

2.4 Verify that $y_1(p) = \frac{\partial \pi}{\partial p_1}$ and $y_2(p) = \frac{\partial \pi}{\partial p_2}$.

$$\frac{\partial \pi}{\partial p_1} = \frac{\partial}{\partial p_1} \left(p_1 \left(\frac{Bp_2}{(3/2)p_1} \right)^3 + p_2 B \left(\frac{Bp_2}{(3/2)p_1} \right)^2 \right)
= \left(\frac{Bp_2}{(3/2)p_1} \right)^3 - 3p_1 \left(\frac{Bp_2}{(3/2)p_1} \right)^2 \left(\frac{Bp_2}{(3/2)p_1^2} \right) - 2p_2 B \left(\frac{Bp_2}{(3/2)p_1} \right) \left(\frac{Bp_2}{(3/2)p_1^2} \right)$$

3 Question 3