

CLAIMS

1. A method of reducing an n-order component of a radial run out (RRO) of a wheel rim having a pair of bead seats for tire beads, comprising

measuring a radial run out Y_1 of one of the bead seats around the wheel rim,

measuring a radial run out Y_2 of the other bead seat around the wheel rim,

finding an average Y of the radial run out Y_1 and radial run out Y_2 around the wheel rim,

obtaining the peak-to-peak amplitude of the n-order component as RRO value X ,

finding minimum position(s) at which the n-order component becomes minimum and determining deep position(s) P on the wheel rim corresponding to the minimum position(s),

determining the length L of a corrective tape as a value within a range of from 0.8 to 1.02 times a length L_0 ,

applying a corrective tape to one of or alternatively each of the bead seats at each said deep position P , wherein

the corrective tape is made of a synthetic resin and has a thickness t of from 0.1 to 0.5 mm, and

said length L_0 is defined by the following precision expression (1) or alternatively simplified expression (2)

$$(1) \quad L_0 = \frac{R}{\pi \times n} \times \arcsin\left(\frac{X}{t \times a \times 1.3}\right)$$

$$(2) \quad L_0 = \frac{100 \times R \times X}{360 \times t \times a \times n} \quad \text{where } 0 < \frac{L_0}{R} < 0.28$$

wherein

L_0 is a value in mm,

x is a value in mm,
 n is a positive integer of the order number of the n -order component,
 t is a value in mm,
 a is a multiplier which is 0.5 when the corrective tape is applied to one of the bead seats or 1.0 when the corrective tape is applied to both of the bead seats,
 R is the circumference in mm of the bead seat,
 π is the circle ratio (=3.14159---), and
the unit of the argument of arcsine is radian.

2. A method according to claim 1, wherein the order number of the n -order component is 1.
3. A method of improving radial run out (RRO) of a wheel rim having a pair of bead seats for tire beads, comprising
 - measuring a radial run out Y_1 of one of the bead seats around the wheel rim,
 - measuring a radial run out Y_2 of the other bead seat around the wheel rim,
 - finding an average Y of the radial run out Y_1 and radial run out Y_2 around the wheel rim,
 - analyzing the average Y around the wheel rim to find out an n -order component which is largest in the peak-to-peak amplitude,
 - obtaining the peak-to-peak amplitude of the n -order component as RRO value x ,
 - finding minimum position(s) at which the n -order component becomes minimum and determining deep position(s) P on the wheel

rim corresponding to the minimum position(s),

determining the length L of a corrective tape as a value within a range of from 0.8 to 1.02 times a length L_0 ,

applying a corrective tape to one of or alternatively each of the bead seats at each said deep position P , wherein

the corrective tape is made of a synthetic resin and has a thickness t of from 0.1 to 0.5 mm, and

said length L_0 is defined by the following precision expression (1) or alternatively simplified expression (2)

$$(1) \quad L_0 = \frac{R}{\pi \times n} \times \arcsin\left(\frac{X}{t \times a \times 1.3}\right)$$

$$(2) \quad L_0 = \frac{100 \times R \times X}{360 \times t \times a \times n} \quad \text{where } 0 < \frac{L_0}{R} < 0.28$$

wherein

L_0 is a value in mm,

X is a value in mm,

n is a positive integer of the order number of the n -order component,

t is a value in mm,

a is a multiplier which is 0.5 when the corrective tape is applied to one of the bead seats or 1.0 when the corrective tape is applied to both of the bead seats,

R is the circumference in mm of the bead seat,

π is the circle ratio ($=3.14159\dots$), and

the unit of the argument of arcsine is radian.