Hubert Błonowski, 333181

grupa 2a, środa 16:15, projekt 1, zadanie 35

Obliczanie całek

$$\iint\limits_{D} f(x,y)dxdy \text{ na obszarze } D = \{(x,y) \in R^2 : |x| + |y| \le 1\}$$

przez transformację na kwadrat $[-1,1] \times [-1,1]$ i zastosowanie złożonych 3-punktowych kwadratur Gaussa-Legendre'a za względu na każdą zmienną

Opis zastosowanej metody numerycznej

Alby obliczyć całkę na obszarze $D = \{(x,y) : |x| + |y| \le 1\}$ zmieniamy obszar całkowania z D na kwadrat $[-1,1] \times [-1,1]$ za pomocą podstawienia:

$$x = \frac{u - v}{2}, \qquad y = \frac{u + v}{2}$$

$$\iint_{D} f(x, y) dx dy = \iint_{[-1,1] \times [-1,1]} f\left(\frac{u - v}{2}, \frac{u + v}{2}\right) \cdot |J(u, v)| \ du dv$$

$$|J(u, v)| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial x}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

Po takiej transformacji wszystkie punkty z prostej x=y trafiają na oś OX, a punkty z prostej x=-y, na oś OY. Można myśleć o tym przekształceniu jak o rotacji o 45 stopni oraz odpowiedniej skali.

Opis zastosowanej metody numerycznej

Następnie kwadrat $[-1,1] \times [-1,1]$ dzielimy na mniejsze prostokąty. Wzdłuż osi OX dzielimy na n_1 podprzedziałów, a wzdłuż osi OY na n_2 podprzedziałów, aby na każdym podobszarze $[a,b] \times [c,d]$ zastosować 3-punktową kwadraturę Gaussa-Legendre'a.

$$S(f) = \frac{(b-a)(d-c)}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} \omega_i \cdot \omega_j \cdot f(\frac{b-a}{2}x_i + \frac{a+b}{2}, \frac{d-c}{2}x_j + \frac{d+c}{2})$$

gdzie ω_i oraz x_i to i-ty współczynnik i węzeł 3 punktowej kwadratury Gaussa-Legendre'a na przedziale [-1,1].

Opis zastosowanej metody numerycznej

Właściwości użytej metody

3-punktowa kwadratura Gaussa-Legendre'a zapewnia nam rząd równy 6. Zatem dla dowolnego wielomianu stopnia mniejszego niż 6, kwadratura zapewnia dokładny wynik, nawet bez stosowania jej złożonego wariantu. W przypadku wielomianów dwóch zmiennych suma stopni x-owego oraz y-owego wyrazu musi być mniejsza lub równa 5, tzn. kwadratura będzie dokładna dla wielomianów takich jak x^5 , x^3y^2 , xy^4 ale nie dla x^3y^3 .

Należy zauważyć, że użyta transformacja funkcji nie zmieni stopnia wielomianu.

$$f(x,y) = x^5$$

$$f\left(\frac{u-v}{2}, \frac{u+v}{2}\right) = \left(\frac{u-v}{2}\right)^5 = 2^{-5}(u^5 - 5u^4v + 10u^3v^2 - 10u^2v^3 + 5uv^4 - v^5)$$

Dodatkowo dla kwadratury Gaussa o rzędzie równym 6, błąd kwadratury maleje z szybkością $O(h^6)$, gdzie h to rozmiar podprzedziałów złożonej kwadratury.

Test poprawności programu

Pierwszy test polegał na porównaniu wyników uzyskanych przez metodę zaimplementowaną w zadaniu, z wynikami uzyskanymi przez analityczne obliczenie całki. Potwierdza on, że wyniki zwracane przez program są poprawne

Funkcja	$n_1 = n_2 = 10$	$n_1 = n_2 = 20$	Oczekiwany wynik	
f(x,y)=1	2.000000000000001	1.99999999999980	2.0	
$f(x,y) = x^2 + y^2$	0.66666666666666	0.66666666666666	$\frac{2}{3} = 0.6(6)$	
$f(x,y) = \mathbf{x} + \mathbf{y} $	1.332431798395234	1.333107949598808	$\frac{4}{3} = 1.3(3)$	
$f(x,y) = \sin(x^2 \cdot y)$	0.066444874190238	0.066557029179663	$\frac{1}{15} = 0.06(6)$	
$f(x,y) = -\exp(x+y)$	-2.350402387213087	-2.350402387286426	$\frac{1}{e} - e = -2.350402387287$	
$f(x,y) = \sin(x) \cdot \cos(y)$	0.000000000000000	-0.000000000000000	0.0	

Wyniki przedstawione z dokładnością do 15 liczb po przecinku.

Test poprawności programu

Drugi test polegał na sprawdzeniu czy zaimplementowana metoda jest kwadraturą rzędu 6.

	Błąd bezwzględny dla $n1, n2$				
Funkcja	n1, n2 = 1	n1, n2 = 2	n1, n2 = 3	n1, n2 = 10	
(x+1) + (y+1)	0.000000000000000	0.000000000000000	0.0000000000000001	0.0000000000000006	
$(x+1)^2 + (y+1)^2$	0.0000000000000001	0.0000000000000001	0.0000000000000001	0.0000000000000001	
$(x+1)^3 + (y+1)^3$	0.0000000000000001	0.000000000000000	0.00000000000000002	0.00000000000000002	
$(x+1)^4 + (y+1)^4$	0.000000000000000	0.0000000000000002	0.00000000000000002	0.0000000000000000	
$(x+1)^5 + (y+1)^5$	0.000000000000000	0.000000000000000	0.0000000000000004	0.0000000000000004	
$(x+1)^6 + (y+1)^6$	0.002857142857184	0.000044642857187	0.000003919263214	0.000000002857185	
$(x+1)^7 + (y+1)^7$	0.019999999999992	0.000312499999996	0.000027434842234	0.000000020000002	
$x^7 + y^7$	0.000000000000000	0.000000000000000	0.000000000000000	0.000000000000000	

Wyniki przedstawione z dokładnością do 15 liczb po przecinku.

Testy numeryczne

$$f(x,y) = x^8 + y^8,$$

$$f(x,y) = x^8 + y^8, \qquad \iint_D f(x,y) dy dx = \frac{4}{45}$$

$$f(x,y) = x^8 + y^8,$$

$$\iint_D f(x,y)dydx = \frac{4}{45}$$

$$f(x,y) = x^8 + y^8,$$

$$f(x,y) = |\mathbf{x}| + |\mathbf{y}|,$$

$$f(x,y) = |x| + |y|,$$

$$\iint_{D} f(x,y) dy dx = \frac{4}{3}$$

$$f(x,y) = |x| + |y|,$$

$$\iint_D f(x,y)dydx = \frac{4}{3}$$

$$f(x,y) = |x| + |y|, \qquad \iint_D f(x,y) dy dx = \frac{4}{3}$$

$$\int_{0.9}^{10^4} \int_{0.8}^{10^4} \int_{0.6}^{10^5} \int_{0.5}^{10^4} \int_{0.4}^{0.6} \int_{0.5}^{0.4} \int_{0.4}^{0.3} \int_{0.2}^{0.6} \int_{0.1}^{0.6} \int_{0.5}^{0.4} \int_{0.4}^{0.3} \int_{0.5}^{0.6} \int_{0.5}^{0.4} \int_{0.4}^{0.3} \int_{0.5}^{0.6} \int_{0.5}^{0.4} \int_{0.5}^{0.4} \int_{0.5}^{0.6} \int$$

Niestety błąd na poziomie błędu maszynowego jest nieosiągalny za pomocą użytego programu w rozsądnym czasie.

$$f(x,y) = |x| + |y|, \qquad \iint_D f(x,y) dy dx = \frac{4}{3}$$

$$\int_{0.9}^{10^2} \int_{0.8 \text{ o.} 7}^{0.6 \text{ o.} 5} \int_{0.4 \text{ o.} 3}^{0.5 \text{ o.} 4} \int_{0.3 \text{ o.} 2}^{0.5 \text{ o.} 4} \int_{0.5 \text{ o.} 5}^{0.5 \text{ o.} 4} \int_{0.3 \text{ o.} 2}^{0.5 \text{ o.} 4} \int_{0.5 \text{ o.} 5}^{0.5 \text{ o$$

Niestety błąd na poziomie błędu maszynowego jest nieosiągalny za pomocą użytego programu w rozsądnym czasie.

$$f_1(x,y) = \cos(10x), \qquad f_2(x,y) = |\cos(10x)|$$

 $f_1(x, y) = \cos(10x), \qquad f_2(x, y) = |\cos(10x)|$

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), dla(x,y) \in R^2 \setminus (0,0) \\ 0, dla(x,y) = (0,0) \end{cases}$$

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), dla(x,y) \in R^2 \setminus (0,0) \\ 0, dla(x,y) = (0,0) \end{cases}$$

Dziękuje za uwagę.