

Course: EICN2241 – Electronics Lab Faculty of Engineering, Cairo University

SBME Department – Academic Year 2024/2025

Team: 2 • Ziad Mohamed Hamed • Amat Al-Rahman Sayed Mohamed

Mostafa Hany Tawfik
Alaa Essam Abd Alazim

Mariam Hosny Abdel–Moneim

Introduction

Objective

- Construct and simulate a weighted summer circuit using an operational amplifier (TL084/LM324).
- Derive the transfer function and compare theoretical vs. practical results.

Key Properties

- 1. Fixed Gain Configuration
 - ∘ Identical resistors ($R_1 = R_2 = R_3 = 100 \text{ k}\Omega$) ensure equal weighting:
 - $\circ \ V_0 = \ (\ (R_3/R_1)V_1 + (R_3/R_2)V_2 \) = \ (V_1 + V_2)$
- 2. Infinite Loop Gain (A→∞)
 - Ideal op-amp assumption enables:
 - Virtual short circuit: V-≈V+(both inputs at equal potential)
 - Virtual ground: V-≈0 when V+is grounded
- 3. Negative Feedback
 - Forces the op-amp to operate linearly
 - Stabilizes gain despite open-loop variations

Methodology

Simulation Procedure (MATLAB/Simulink)

- 1. Launch Simulink Environment
 - Open MATLAB → Type simulink → Select Simscape Electrical library
- 2. Build the Circuit
 - Place TL084/LM324 op-amp from Simscape library
 - \circ Add three 100k Ω resistors (R₁, R₂, R₃):
 - Connect R₁ between V₁ and inverting input
 - Connect R₂ between V₂ and inverting input
 - Connect R₃ between output and inverting input (feedback)
 - Set DC voltage sources:

Configure ±12V power supplies

3. Measurement Setup

- Voltmeter Block:
 - Place "Voltage Sensor" at op-amp output
- PS-Simulink Converter:
 - Convert physical electrical signals to Simulink-compatible data
 - Enable real-time voltage monitoring on the oscilloscope
- Simulink Scope:
 - Displays time-domain waveform of V₀

4. Run Simulation

- Set solver to ode15s (for electrical systems)
- Simulation time: 0.1 sec (sufficient for DC analysis)
- Click Run

Results & Analysis

V ₁ (V)	V ₂ (V)	Theoretical V ₀ (V)	Simulated V _o (V)	Error (µV)
12	12	-24.0	-24.0	0.0
2.5	3.5	-6.0	-6.0	0.0
-1.2	0.7	0.5	0.5	0.0
4.8	-3.2	-1.6	-1.6	0.0
0.0	0.0	0.0	0.0	0.0

Explanation

- Ideal Op-Amp Model:
 - Simulink's Simscape uses infinite gain and zero offset by default matlab
- Perfect Components:
 - No resistor tolerance (exact 100kΩ)
 - Ideal voltage sources (no internal resistance)

Hardware Implementation

Components Required:

Component	Value/Model	Purpose	
Op-Amp IC	TL084 or LM324	Amplification	
Resistors (R ₁ , R ₂ , R ₃)	100 kΩ each	Input/Feedback	
Breadboard	-	Circuit Assembly	
DC Power Supply	±12V Op-Amp Biasi		
Digital Multimeter	- Voltage Measur		
Jumper Wires	-	Connections	

Circuit Wiring Steps:

- Insert the Op-Amp into the breadboard (ensure correct pinout).
- Connect Power Rails:
 - +12V to V+ (Pin 7 for TL084).
 - -12V to V- (Pin 4 for TL084).
- Wire the Feedback Resistor ($R_3 = 100 \text{ k}\Omega$) between output (Pin 6) and inverting input (Pin 2).
- Connect Input Resistors (R_1 , $R_2 = 100 \text{ k}\Omega$) from V_1 , V_2 to Pin 2.
- Ground the Non-Inverting Input (Pin 3).
- Measure Output (V₀) using a multimeter between Pin 6 and GND.

Testing Procedure:

Apply 5 different DC input combinations (e.g., $V_1=1V$, $V_2=0.5V$). Record theoretical (calculated) vs. measured (practical) output.

V ₁ (V)	V ₂ (V)	Theoretical V₀ (V)	Measured V ₀ (V)	Error (µV)

Error Sources:

- 1. Resistor Tolerance (5% tolerance in 100 k Ω resistors).
- 2. Measurement Errors (multimeter accuracy)
- 3. Amplifier imperfections

Discussion

Key Observations:

- The circuit behaves as expected, following $V_0 = -(V_1 + V_2)$.
- Simulation closely matches theory, but hardware has minor deviations due to real-world factors.

Challenges & Solutions:

Conclusion

- Successfully simulated and built a weighted summer circuit.
- Verified $V_0 = -(V_1 + V_2)$ with slight practical deviations.
- Learned the impact of real-world factors (resistor tolerances, measurement errors).

Applications:

- Audio Mixers (combining multiple signals).
- Sensor Signal Conditioning (summing multiple sensor outputs).

Datasheet References

- TL084 Datasheet
- LM324 Datasheet