Formula Sheet for Quiz 1 STAT 011

For a sample of data

If $\{x_1, x_2, \dots, x_n\}$ is a data set of n observational units, we have the following:

Sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance

$$Var(x_1, ..., x_n) = s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample standard deviation

$$sd(x_1,\dots,x_n) = s = \sqrt{s^2}$$

If we want to standardize the data set X, to create a new standardized data set $Z = \{z_1, z_2, \dots, z_n\}$ we preform

$$z_i = \frac{x_i - \bar{x}}{sd(x_1, \dots, x_n)}, \text{ for } i = 1, \dots, n.$$

Simple linear regression notation

The fitted/estimated regression model is $\hat{y}_i = b_0 + b_1 x_i$ where $b_0 = \bar{y} - b_1 \bar{x}$ and $b_1 = \frac{s_{xy}}{\sqrt{s_x s_y}} \cdot \frac{s_y}{s_x}$.

Residual = $e = y - \hat{y} = \text{observed value} - \text{predicted value}$

Standard error of the residuals: $s_e = \sqrt{\frac{\sum_{i=1}^n e_i^2}{n-2}}$

Sum of squares terms

$$s_x = \sum_{i=1}^n (x_i - \bar{x})^2$$
, $s_y = \sum_{i=1}^n (y_i - \bar{y})^2$, $s_{xy} = \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$

Correlation coefficient

$$r = \frac{s_{xy}}{\sqrt{s_x s_y}}$$