Name: _____

Student No.:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 : I \to \mathbb{R}$ satisfying $y_1(t_0) = y_2(t_0)$ for some $t_0 \in I$?

 $y' = \sin(t y^2)$ y' = 0 y' = |ty| $y' = y\sqrt{t}$ $y' = \sqrt{|ty|}$

3. The family of curves $y = c/x^2, c \in \mathbb{R}$ satisfies the ODE

 $dy = x^{-2} dx$ $dy = 2x^{-3} dx$ $2xy dx + x^2 dy = 0$ dx = dy

 $\int 2vx^{-3} dx - x^{-2} dv = 0$

4. For the solution y(t) of the IVP $y' = y^3 - 7y + 6$, y(0) = 0 the limit $\lim_{t \to +\infty} y(t)$ equals

2

 $2 \ln 2$

6. For the solution y(t) of the IVP $y' = y^2 e^{-t}$, y(0) = -1 the value y(-1) is equal to

7. For the solution y: $(0, +\infty) \to \mathbb{R}$ of the IVP $t^2y'' + 2ty' - 2y = 1$, y(1) = 0, y'(1) = 1the value y(2) is equal to

8. The power series $\sum_{k=1}^{\infty} 2^k z^{k^2}$ has radius of convergence

9. The smallest integer s such that $f_s(x) = \sum_{k=1}^{\infty} \frac{\cos(k^2 x)}{k^s}$ is differentiable on \mathbb{R} is equal to

10. If y(t) solves $y' = t^2y + ty^2$ then z = 1/y(t) solves

11. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Pica has $\phi_2(t)$ equal to	rd-Lindelöf iterat	es for the IVP $y' =$	$y = y + 2t, \ y(0) = -2$
	$^2 + \frac{1}{3}t^3$	$\boxed{ -2-2t+\frac{1}{3}t^3}$	
12. $y'' - 4y' + 4y = 2t + e^{2t}$ has a part $c_0 + c_1 t + c_2 e^{2t}$ $c_0 + c_1 t + c_2 e^{2t}$		$y_p(t)$ of the form	$c_0 + c_1 t$
13. Maximal solutions of $y' = y^2 + y^2$	y satisfying y(0) > 0 are define	d on an interval of
the form $[a,b]$ with $a,b\in\mathbb{R}$.			
14. For $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, the matrix	$x e^{At}$ is equal to		
$\square \left(egin{array}{cc} { m e}^t & 0 \ 0 & { m e}^{-t} \end{array} ight)$			
		$\begin{pmatrix} -t \\ -t \end{pmatrix}$,
15. The matrix norm of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$	(subordinate to	the Euclidean lengt	h on \mathbb{R}^2) is equal to
01	$\sqrt{2}$	2	4
Time allowed: 60 min	CLOSED BO	OOK	Good luck!