Tema 5. Aritmètica d'enters i coma flotant

Joan Manuel Parcerisa

Aritmètica d'enters

- Suma i resta
- Multiplicació
- Divisió

Α	В	Suma	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	Suma	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

Full Adder

Sumador de n bits amb propagació de carry

• El mateix sumador per a naturals i enters en Ca2

Resta d'enters

La resta

$$D = A - B$$

Equival a
 $D = A + (-B)$

Resta d'enters

La resta

$$D = A - B$$

Equival a

$$D = A + (-B)$$

- Podem usar el sumador de n bits, canviant el signe de B
 - Invertir els bits de B (amb una porta NOT a cada bit)
 - Sumar 1 (fent el carry inicial c₀=1)

- Rang d'enters en Ca2 amb *n* bits: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Overflow: si el resultat no pertany al rang
 - → El resultat amb n bits NO és correcte

- Rang d'enters en Ca2 amb *n* bits: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Overflow: si el resultat no pertany al rang
 - → El resultat amb n bits NO és correcte
- Overflow de la suma
 - Si operands del mateix signe però resultat de signe contrari

- Rang d'enters en Ca2 amb *n* bits: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Overflow: si el resultat no pertany al rang
 - → El resultat amb n bits NO és correcte
- Overflow de la suma
 - Si operands del mateix signe però resultat de signe contrari
- Formulem la resta com una suma

```
diferència = minuend – substraend
minuend = substraend + diferència
```

- Rang d'enters en Ca2 amb *n* bits: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Overflow: si el resultat no pertany al rang
 - → El resultat amb n bits NO és correcte
- Overflow de la suma
 - Si operands del mateix signe però resultat de signe contrari
- Formulem la resta com una suma

```
diferència = minuend – substraend
minuend = substraend + diferència
```

- Overflow de la resta
 - Si substraend i diferència són del mateix signe però el minuend és de signe contrari

Com detecta el hardware que hi ha overflow?

```
○ Naturals: si c_n = 1 (overflow = c_n)
```

○ Enters: si $c_{n-1} \neq c_n$ (overflow = $c_{n-1} \oplus c_n$)

- Com detecta el hardware que hi ha overflow?
 - Naturals: si $c_n = 1$ (overflow = c_n)

- Enters: si $c_{n-1} \neq c_n$ (overflow = $c_{n-1} \oplus c_n$)
- Instruccions MIPS
 - o add, addi, sub
 - o addu, addiu, subu

- l'overflow d'enters causa excepció
- l'overflow s'ignora

Com detecta el hardware que hi ha overflow?

```
○ Naturals: si c_n = 1 (overflow = c_n)
```

• Enters:
$$\operatorname{si} c_{n-1} \neq c_n$$
 (overflow = $c_{n-1} \oplus c_n$)

Instruccions MIPS

o add, addi, sub l'overflow d'enters causa excepció

o addu, addiu, subu l'overflow s'ignora

 En alguns llenguatges d'alt nivell, l'overflow d'enters ha de causar excepció

```
o add, addi, sub per a enters
```

o addu, addiu, subu per a naturals

Com detecta el hardware que hi ha overflow?

```
• Naturals: si c_n = 1 (overflow = c_n)
```

○ Enters: si
$$c_{n-1} \neq c_n$$
 (overflow = $c_{n-1} \oplus c_n$)

Instruccions MIPS

o add, addi, sub l'overflow d'enters causa excepció

o addu, addiu, subu l'overflow s'ignora

 En alguns llenguatges d'alt nivell, l'overflow d'enters ha de causar excepció

```
o add, addi, sub per a enters
```

o addu, addiu, subu per a naturals

• En C, s'ignoren els overflows

o Usarem addu, addiu, subu tant per a enters com naturals

- Com pot detectar el software que hi ha overflow?
 - o MIPS no té instruccions específiques

- Com pot detectar el software que hi ha overflow?
 - MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

- Com pot detectar el software que hi ha overflow?
 MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

- Com pot detectar el software que hi ha overflow?
 MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

```
addu $t2, $t0, $t1 # a + b

xor $t3, $t0, $t1 # a xor b

nor $t3, $t3, $zero
```

- Com pot detectar el software que hi ha overflow?
 - MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

```
addu $t2, $t0, $t1 # a + b
xor $t3, $t0, $t1 # a xor b
nor $t3, $t3, $zero
xor $t4, $t0, $t2 # a xor s
```

- Com pot detectar el software que hi ha overflow?
 - MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

```
addu $t2, $t0, $t1 # a + b

xor $t3, $t0, $t1 # a xor b

nor $t3, $t3, $zero

xor $t4, $t0, $t2 # a xor s

and $t3, $t3, $t4
```

- Com pot detectar el software que hi ha overflow?
 - MIPS no té instruccions específiques
- Però es pot calcular: suposem la suma s = a+b

overflow =
$$(\overline{a_{31} \oplus b_{31}}) \cdot (a_{31} \oplus s_{31})$$

```
addu $t2, $t0, $t1 # a + b

xor $t3, $t0, $t1 # a xor b

nor $t3, $t3, $zero

xor $t4, $t0, $t2 # a xor s

and $t3, $t3, $t4

srl $t3, $t3, 31 # mou el bit 31 a posició 0
```

Aritmètica d'enters

- Suma i resta
- Multiplicació
- Divisió

• En base 10

	348	multiplicand	
X	951	multiplicado	
	348	= 348 x 1	
	1740	$= 348 \times 50$	
+	3132	$= 348 \times 900$	
	330948		

• En base 2

 Problema: hem d'emmagatzemar els 4 productes parcials per fer la suma final

- Solució: acumular els productes parcials
 - Sols hem de guardar el valor acumulat (P)

Inicialment, P=0: $0 0 0 0 0 0 0 = P_0$

- Solució: acumular els productes parcials
 - Sols hem de guardar el valor acumulat (P)

Acumulem el primer producte

- Solució: acumular els productes parcials
 - Sols hem de guardar el valor acumulat (P)

Acumulem el segon producte

- Solució: acumular els productes parcials
 - Sols hem de guardar el valor acumulat (P)

Acumulem el tercer producte

- Solució: acumular els productes parcials
 - Sols hem de guardar el valor acumulat (P)

Acumulem el quart producte

```
0000000
                                 = P_0
1010 x 1 =
                        1010+
                  00001010
                                 = P_1
1010 \times 00 =
                                 = P_2
                  00001010
                     101000+
1010 x 100 =
                                 = P_3
                  00110010
                    1010000+
1010 x 1000 =
                                 = P_4
                  1000010
```

- Hardware necessari per al multiplicador sequencial:
 - Registre Multiplicand (MD, 8 bits), que es desplaça a l'esquerra

- Hardware necessari per al multiplicador sequencial:
 - Registre Multiplicand (MD, 8 bits), que es desplaça a l'esquerra
 - Registre Multiplicador (MR, 4 bits)

```
0000000
                                     = P_0 -
1010 \times 1 =
                            1010 +
                     00001010
                                    = P₁ ←
1010 \times 00 =
                                0 +
                                    = P<sub>2</sub> ←
                     00001010
1010 x 100 =
                        101000+
                     00110010
                                    = P_3 -
1010 x 1000 =
                      1010000+
                                    = P<sub>4</sub> ←
                     1000010
```

- Hardware necessari per al multiplicador sequencial:
 - Registre Multiplicand (MD, 8 bits), que es desplaça a/l'esquerra
 - Registre Multiplicador (MR, 4 bits)
 - Registre Producte on acumular els parcials (P, 8 bits)

- Hardware necessari per al multiplicador sequencial:
 - Registre Multiplicand (MD, 8 bits), que es desplaça a l'esquerra
 - Registre Multiplicador (MR, 4 bits)
 - Registre Producte on acumular els parcials (P, 8 bits)
 - Sumador de 8 bits
 - Desplaçar MR a la dreta i consultar sempre el bit de menys pes

Multiplicació de naturals: circuit

- Naturals de 32 bits amb resultat de 64 bits
 - Tarda 33 cicles... (suposant que una suma de 64 bits tarda 1 cicle)

Pseudocodi // Inicialització $MD_{0:31} = x$; $MD_{32:63} = 0$; P = 0;MR = y;for (i=1; i<=32; i++)if (MR0 == 1)P = P + MD; $MD = MD \ll 1;$ $MR = MR \gg 1;$ z = P;

• Exemple. Multipliquem $x \times y$: 1010×1101 (amb 4 bits)

Init: Inicialitzem $MD_{0:3} = x$, MR = y, i P=0

Iter.		MD (Multiplicand)						(M	M ultip		or)			Р	(Pro	duc	te)			
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0

```
MD_{0:31} = x; MD_{32:63} = 0;

P = 0;

MR = y;
```

```
for (i=1; i<=32; i++)
{
    if (MR0 == 1)
        P = P + MD;
    MD = MD << 1;
    MR = MR >> 1;
}
z = P;
```


Iter. 1: Com que $MR_0=1$, sumem P = P + MD

Р	0	0	0	0	0	0	0	0
MD	0	0	0	0	1	0	1	0
Ρ'	0	0	0	0	1	0	1	0

Iter.		N	MD (Mul	tiplic	cand	l)		(M	M ultip		or)			Р	(Pro	duc	te)			
Init	0 0 0 0 1 0 1								1	1	0	(1)	0	0	0	0	0	0	0	0	
1													0	0	0	0	1	0	1	0	*

Iter. 1: Com que $MR_0=1$, sumem P=P+MDDesplacem MD a esquerra i MR a dreta

Iter.		N	MD (Mul	tiplic	and)		(M	M ultip	R licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0 0 0 1 0 1 0								0	1	1	0	0	0	0	0	1	0	1	0

Iter. 2: Com que MR₀=0, P no es modifica

Iter.		N	MD (Mul	tiplic	cand	l)		(M		IR licad	or)			Р	(Pro	duc	te)		-	
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	1	0	0	0	1	1	\bigcirc	0	0	0	0	1	0	1	0	_
2													0	0	0	0	1	0	1	0	4

Iter. 2: Com que MR₀=0, P no es modifica Desplacem MD a esquerra i MR a dreta

Iter.		N	ЛD (Mul	tiplic	and	l)		(M		IR licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0

Iter. 3: Com que $MR_0=1$, sumem P = P + MD

Р	0	0	0	0	1	0	1	0
MD	0	0	1	0	1	0	0	0
Ρ'	0	0	1	1	0	0	1	0

Iter.		N	MD (Mul	tiplic	cand)		(M		IR licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	(1)	0	0	0	0	1	0	1	0
3													0	0	1	1	0	0	1	0

Iter. 3: Com que $MR_0=1$, sumem P=P+MDDesplacem MD a esquerra i MR a dreta

Iter.		N	ЛD (Mul	tiplic	cand	l)		(M	M ultip	R licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0
3	0	1	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0

Iter. 4: Com que $MR_0=1$, sumem P = P + MD

Р	0	0	1	1	0	0	1	0
MD	0	1	0	1	0	0	0	0
Ρ'	1	0	0	0	0	0	1	0

Iter.		N	ЛD (Mul	tiplic	and	l)		(M		IR licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0
3	0	1	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0
4													1	0	0	0	0	0	1	0

Iter. 4: Com que $MR_0=1$, sumem P=P+MDDesplacem MD a esquerra i MR a dreta

Iter.		N	ЛD (Mul	tiplic	and)		(M	M ultip	R licad	or)			Р	(Pro	duc	te)		
Init	0	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0
3	0	1	0	1	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0
4	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0

- Calcular els valors absoluts
- 2. Multiplicar valors absoluts (producte de naturals)
- 3. Canviar el signe del resultat si els operands tenen signe diferent


```
mult rs, rt \# $hi:$lo \leftarrow rs * rt (enters)
multu rs, rt \# $hi:$lo \leftarrow rs * rt (naturals)
```

```
mult rs, rt \# $hi:$lo \leftarrow rs * rt (enters)
multu rs, rt \# $hi:$lo \leftarrow rs * rt (naturals)
```

- \$hi i \$10 són registres especials
 - No es poden usar a la resta d'instruccions estudiades fins ara

```
mult rs, rt \# $hi:$lo \leftarrow rs * rt (enters)
multu rs, rt \# $hi:$lo \leftarrow rs * rt (naturals)
```

- \$hi i \$10 són registres especials
 - No es poden usar a la resta d'instruccions estudiades fins ara
- Per moure el resultat a registres de propòsit general:

```
mflo rd # rd \leftarrow $10 mfhi rd # rd \leftarrow $hi
```

```
mult rs, rt \# $hi:$lo \leftarrow rs * rt (enters)
multu rs, rt \# $hi:$lo \leftarrow rs * rt (naturals)
```

- \$hi i \$10 són registres especials
 - No es poden usar a la resta d'instruccions estudiades fins ara
- Per moure el resultat a registres de propòsit general:

```
mflo rd # rd \leftarrow $10 mfhi rd # rd \leftarrow $hi
```

- Overflow
 - o Naturals: si \$hi ≠ 0
 - o Enters: si \$hi:\$lo no és l'extensió de signe de \$lo

Aritmètica d'enters

- Suma i resta
- Multiplicació
- Divisió

• En base 10 (4 dígits): 0421 / 0013

Dividend \rightarrow 0 4 2 1 0 0 1 3 \leftarrow Divisor

• En base 10 (4 dígits): 0421 / 0013

• En base 10 (4 dígits): 0421 / 0013

• En base 10 (4 dígits): 0421 / 0013

Pas 1.- Desplacem 0013 un lloc a la dreta...

• En base 10 (4 dígits): 0421 / 0013

... i comparem amb el dividend: 421 - 13000 < 0

No hi cap:

 \rightarrow 0 al quocient

• En base 10 (4 dígits): 0421 / 0013

Pas 2.- Desplacem 0013 un lloc més...

• En base 10 (4 dígits): 0421 / 0013

 \rightarrow 0 al quocient

• En base 10 (4 dígits): 0421 / 0013

Pas 3.- Desplacem 0013 un lloc més...

• En base 10 (4 dígits): 0421 / 0013

i comparem: $421 - 130 \ge 0$

Hi cap

• En base 10 (4 dígits): 0421 / 0013

Hi cap a 3: $3 \times 130 = 390$

 \rightarrow 3 al quocient

• En base 10 (4 dígits): 0421 / 0013

I restem:

$$421 - 390 = 31$$

• En base 10 (4 dígits): 0421 / 0013

Pas 4.- Desplacem 0013 un lloc més...

• En base 10 (4 dígits): 0421 / 0013

i comparem: 31 - 13 >= 0

Hi cap

• En base 10 (4 dígits): 0421 / 0013

Hi cap a 2:
$$2 \times 13 = 26$$

 \rightarrow 2 al quocient

• En base 10 (4 dígits): 0421 / 0013

i restem:

31 - 26 = 5

• En base 10 (4 dígits): 0421 / 0013

• En base 2 (4 dígits): 1011 / 0010

Dividend \rightarrow 1 0 1 1 \bigcirc 0 1 0 \leftarrow Divisor

• En base 2 (4 dígits): 1011 / 0010

• En base 2 (4 dígits): 1011 / 0010

• En base 2 (4 dígits): 1011 / 0010

Pas 1.- Desplacem 0010 un lloc a la dreta...

• En base 2 (4 dígits): 1011 / 0010

... i comparem (restem) : 1011 – 10000 < 0

No hi cap:

 \rightarrow 0 al quocient

• En base 2 (4 dígits): 1011 / 0010

Pas 2.- Desplacem 0010 un lloc més...

• En base 2 (4 dígits): 1011 / 0010

... i comparem (restem): $1011 - 1000 \ge 0$

Hi cap

 \rightarrow 1 al quocient

• En base 2 (4 dígits): 1011 / 0010

Pas 3.- Desplacem 0010 un lloc més...

• En base 2 (4 dígits): 1011 / 0010


```
... i comparem (restem): 11 - 100 < 0
```

No hi cap

 \rightarrow 0 al quocient

• En base 2 (4 dígits): 1011 / 0010

Pas 4.- Desplacem 0010 un lloc més...

• En base 2 (4 dígits): 1011 / 0010

• En base 2 (4 dígits): 1011 / 0010

- Un registre D, de 8 bits per al divisor
 - o Inicialment hi ubicarem el divisor alineat a l'esquerra
 - o I en cada pas successiu el desplaçarem a la dreta 1 bit

- Un registre D, de 8 bits per al divisor
 - Inicialment hi ubicarem el divisor alineat a l'esquerra
 - o I en cada pas successiu el desplaçarem a la dreta 1 bit
- Un registre R, de 8 bits per al dividend
 - Inicialment extendrem el dividend amb zeros a l'esquerra
 - $_{\circ}$ I en cada pas li restarem els successius divisors: R = R $_{\circ}$ D
 - Al final contindrà el Residu

- Un registre D, de 8 bits per al divisor
 - o Inicialment hi ubicarem el divisor alineat a l'esquerra
 - o I en cada pas successiu el desplaçarem a la dreta 1 bit
- Un registre R, de 8 bits per al dividend
 - Inicialment extendrem el dividend amb zeros a l'esquerra
 - $_{\circ}$ I en cada pas li restarem els successius divisors: R = R $_{\circ}$ D
 - Al final contindrà el Residu
- Un registre Q, de 4 bits per al quocient
 - Inicialment a zero
 - En cada pas el desplaçarem a l'esquerra insertant-li un 1 o un 0

- Un registre D, de 8 bits per al divisor
 - o Inicialment hi ubicarem el divisor alineat a l'esquerra
 - o I en cada pas successiu el desplaçarem a la dreta 1 bit
- Un registre R, de 8 bits per al dividend
 - o Inicialment extendrem el dividend amb zeros a l'esquerra
 - $_{\circ}$ I en cada pas li restarem els successius divisors: R = R $_{\circ}$ D
 - Al final contindrà el Residu
- Un registre Q, de 4 bits per al quocient
 - Inicialment a zero
 - En cada pas el desplaçarem a l'esquerra insertant-li un 1 o un 0
- Un registre temporal T de 8 bits
 - $_{\circ}$ Hi escrivim el resultat de la comparació (resta): T = R D
 - o Si T ≥ 0, es copia T en R, altrament es descarta

- Un registre D, de 8 bits per al divisor
 - o Inicialment hi ubicarem el divisor alineat a l'esquerra
 - o I en cada pas successiu el desplaçarem a la dreta 1 bit
- Un registre R, de 8 bits per al dividend
 - o Inicialment extendrem el dividend amb zeros a l'esquerra
 - $_{\circ}$ I en cada pas li restarem els successius divisors: R = R $_{\circ}$ D
 - Al final contindrà el Residu
- Un registre Q, de 4 bits per al quocient
 - Inicialment a zero
 - o En cada pas el desplaçarem a l'esquerra insertant-li un 1 o un 0
- Un registre temporal T de 8 bits
 - $_{\circ}$ Hi escrivim el resultat de la comparació (resta): T = R D
 - Si T ≥ 0, es copia T en R, altrament es descarta
- Algorisme de divisió "amb restauració": estalvia el registre temporal
 - Escrivim en R el resultat de la resta: R = R D
 - Si R < 0, "restaurem" el seu valor anterior: R = R + D</p>

Divisió de naturals: circuit

- Divisió de naturals de 32 bits "amb restauració"
 - \circ Quocient: z = x/y
 - \circ Residu: w = x % y

Divisor sequencial de naturals

Pseudocodi

```
// Inicialització
R_{0:31} = x; R_{32:63} = 0;
D_{0:31} = 0; D_{32:63} = y;
0 = 0;
for (i=1; i<=32; i++) {
      D = D >> 1;
      R = R - D;
      if (R_{63} == 0)
              Q = (Q << 1) | 1;
      else {
              R = R + D;
              0 = 0 << 1;
```

Init: x a la part baixa del Dividend/Residu (R)y a la part alta del Divisor (D), i zeros a la resta

// Inicialització

$$R_{0:31} = x$$
; $R_{32:63} = 0$;
 $D_{0:31} = 0$; $D_{32:63} = y$;
 $Q = 0$;

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0

Iter 1: Desplacem D a dreta

D	=	D	>>	> 1	;
R	=	R	-	D;	
if	Ē	(R		==	0)

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1									0	0	0	1	0	0	0	0				

Iter 1: Restem R=R-D per comparar-los. Comprovem R < 0!

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	0				

Iter 1: Restaurem R sumant R=R+D

Iter 1: Insertem Q₀=0 desplaçant Q a l'esquerra

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0(0

Iter 2: Desplacem D a la dreta

$$D = D >> 1;$$
 $R = R - D;$
if $(R_{63} == 0)$
 $Q = (Q << 1) | 1;$

Iter.		R	(Div	ider	nd/R	esic	du)	_			D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
2									0	0	0	0	1	0	0	0				

Iter 2: Restem R=R-D i comprovem que R ≥ 0

Iter 2: Insertem Q₀=0 desplaçant Q a l'esquerra

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)	
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0 (1	

Iter 3: Desplacem D a la dreta

D	=	D	>>	1;	;
			- :		
ii	E	(R	:a =	=	0)

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
3									0	0	0	0	0	1	0	0				

Iter 3: Restem R=R-D per comparar-los. Comprovem R < 0!

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
3	1	1	1	1	1	1	1	1	0	0	0	0	0	1	0	0				

Iter 3: Restaurem R sumant R=R+D

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocier	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0				

Iter 3: Insertem Q₀=0 desplaçant Q a l'esquerra

Iter.		R	(Div	ider	nd/R	esic	du)				D	(Di	viso	r)			Q	(Qu	ocie	nt)
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1 (0

Iter 4: Desplacem D a la dreta

$$D = D >> 1;$$
 $R = R - D;$
 $if (R_{63} == 0)$
 $Q = (Q << 1) | 1;$

Iter.	R (Dividend/Residu)									D (Divisor)									Q (Quocient)				
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0			
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0			
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1			
3	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	0			
4									0	0	0	0	0	0	1	0							

Iter 4: Restem R=R-D i comprovem que R ≥ 0

Iter.		R (Dividend/Residu)									D (Divisor)									Q (Quocient)				
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0				
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0				
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1				
3	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	0				
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0								

Iter 4: Insertem Q₀=1 desplaçant Q a l'esquerra

$$D = D >> 1;$$
 $R = R - D;$
 $if (R_{63} == 0)$

$$Q = (Q << 1) | 1;$$

Iter.		R (Dividend/Residu)									D (Divisor)									Q (Quocient)				
Init	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0				
1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0				
2	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	1				
3	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	0				
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0 (1				

Si $y \neq 0$:

1. Calcular valors absoluts del operands: |x|, |y|

Si $y \neq 0$:

- 1. Calcular valors absoluts del operands: |x|, |y|
- 2. Dividir els valors absoluts (divisió de naturals)
 - Obtenim quocient i residu

Si $y \neq 0$:

- Calcular valors absoluts del operands: |x|, |y|
- Dividir els valors absoluts (divisió de naturals)
 - Obtenim quocient i residu
- 3. Ajustar signes
 - Canviar signe del quocient si x, y de diferent signe
 - Canviar signe del residu si el dividend és negatiu

Si $y \neq 0$:

- Calcular valors absoluts del operands: |x|, |y|
- Dividir els valors absoluts (divisió de naturals)
 - Obtenim quocient i residu
- 3. Ajustar signes
 - Canviar signe del quocient si x, y de diferent signe
 - Canviar signe del residu si el dividend és negatiu

Instruccions MIPS

```
divu rs, rt  # Naturals
div rs, rt  # Enters
```

Instruccions MIPS

```
divu rs, rt  # Naturals
div rs, rt  # Enters
```

Operació

```
som rs / rt (quocient)

rs % rt (residu)
```

Instruccions MIPS

```
divu rs, rt  # Naturals
div rs, rt  # Enters
```

Operació

```
som rs / rt (quocient)

rs % rt (residu)
```

- Si el divisor és 0
 - El resultat és indefinit

Instruccions MIPS

```
divu rs, rt  # Naturals
div rs, rt  # Enters
```

Operació

```
slo \leftarrow rs / rt (quocient)

rs \% rt (residu)
```

- Si el divisor és 0
 - El resultat és indefinit
- Overflow
 - Naturals: no n'hi ha
 - o Enters: només hi ha un cas. Quin és?

Divisió d'enters i naturals

Instruccions MIPS

```
divu rs, rt  # Naturals
div rs, rt  # Enters
```

Operació

```
som rs / rt (quocient)

rs % rt (residu)
```

- Si el divisor és 0
 - El resultat és indefinit
- Overflow
 - Naturals: no n'hi ha
 - o Enters: només hi ha un cas. Quin és?

$$\frac{-2^{31}}{-1} = 2^{31} \rightarrow \text{No representable en Ca2!}$$

- Algunes divisions per potències de 2
 - o Es poden traduir per un shift, molt més ràpid que una divisió

- Algunes divisions per potències de 2
 - Es poden traduir per un shift, molt més ràpid que una divisió
- Per a naturals
 - o srl i divu calculen el mateix quocient

- Algunes divisions per potències de 2
 - Es poden traduir per un shift, molt més ràpid que una divisió
- Per a naturals
 - srl i divu calculen el mateix quocient
- Per a enters
 - o Si el dividend és positiu, sra i div calculen el mateix quocient
 - Però atenció! Si el dividend és negatiu i la divisió no és exacta,
 sra i div donen resultats diferents

- Algunes divisions per potències de 2
 - Es poden traduir per un shift, molt més ràpid que una divisió
- Per a naturals
 - o srl i divu calculen el mateix quocient
- Per a enters
 - Si el dividend és positiu, sra i div calculen el mateix quocient
 - Però atenció! Si el dividend és negatiu i la divisió no és exacta,
 sra i div donen resultats diferents
- En conclusió
 - Traduirem operadors C de divisió (/) i mòdul (%) amb div i divu
 - Només optimitzarem amb sra si el resultat és equivalent a div

Aritmètica de coma flotant

Introducció

- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

- Com representarem nombres fraccionaris?
 - Necessaris per a la física, l'enginyeria, etc.

- Com representarem nombres fraccionaris?
 - Necessaris per a la física, l'enginyeria, etc.
- En coma fixa
 - o Alguns bits per a la part entera, i alguns per a la part fraccionària
 - Exemple amb 8 bits:

```
eeeeefff → part entera i part fraccionària
```

- Com representarem nombres fraccionaris?
 - Necessaris per a la física, l'enginyeria, etc.
- En coma fixa
 - o Alguns bits per a la part entera, i alguns per a la part fraccionària
 - Exemple amb 8 bits:

```
eeeeefff \rightarrow part entera i part fraccionària

10101,110 =

= 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}

= 21,7510
```

- Com representarem nombres fraccionaris?
 - Necessaris per a la física, l'enginyeria, etc.
- En coma fixa
 - o Alguns bits per a la part entera, i alguns per a la part fraccionària
 - Exemple amb 8 bits:

```
eeeeefff \rightarrow part entera i part fraccionària

10101,110 =

= 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}

= 21,7510
```

- El rang és bastant limitat
- o Els números representables són equidistants

- En coma flotant (base 10)
 - o També coneguda com notació exponencial o científica

$$v = \pm m \times 10^e$$
 $m = mantissa, e = exponent$

- En coma flotant (base 10)
 - o També coneguda com notació exponencial o científica $v = \pm m \times 10^e$ m = mantissa, e = exponent
 - Rang molt més gran que la coma fixa
 - Però números representables no-equidistants

- En coma flotant (base 10)
 - També coneguda com notació exponencial o científica

```
V = \pm m \times 10^e m = mantissa, e = exponent
```

- Rang molt més gran que la coma fixa
- Però números representables no-equidistants
- Notació científica normalitzada (base 10)

$$v = \pm m \times 10^e$$
 tal que $1 \le m < 10$

o És a dir: la part entera de m ha de tenir 1 sol dígit, i ha de ser no-nul

- En coma flotant (base 10)
 - També coneguda com notació exponencial o científica

```
v = \pm m \times 10^e m = mantissa, e = exponent
```

- Rang molt més gran que la coma fixa
- Però números representables no-equidistants
- Notació científica normalitzada (base 10)

$$v = \pm m \times 10^e$$
 tal que $1 \le m < 10$

- o És a dir: la part entera de m ha de tenir 1 sol dígit, i ha de ser no-nul
- Exemples

$$2.34 \times 10^{6}$$

→ Normalitzat

$$0.0234 \times 10^{8}$$

→ No normalitzat!

Coma flotant en base 2

 \circ En forma més compacta: $V = (-1)^s \times (1 + 0, F) \times 2^E$

Coma flotant en base 2

- \circ En forma més compacta: $V = (-1)^s \times (1 + 0, F) \times 2^E$
- Format: signe, exponent, fracció

```
s eeeeeee fffffffffffffffffffff
```

- Signe: 0=positiu, 1=negatiu
- Exponent: enter representat "en excés"

Coma flotant en base 2

- \circ En forma més compacta: $V = (-1)^s \times (1 + 0, F) \times 2^E$
- Format: signe, exponent, fracció

```
s eeeeeee ffffffffffffffffffff
```

- Signe: 0=positiu, 1=negatiu
- Exponent: enter representat "en excés"
- Mantissa: normalitzada
 - → La part entera val 1, és implícita i no es codifica ("bit ocult")
 - → Sols es codifica la fracció

```
bit ocult fracció (F) v = \pm 1, fff \dots f \times 2 \stackrel{\text{eee } \dots \text{ e}}{} signe (S) mantissa exponent (E)
```

El format és un compromís

```
s eeeeeee ffffffffffffffffffff
```

- Si dedica + bits a exponent → major rang
- Si dedica + bits a fracció → major precisió

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

• EI IEEE-754

- Estàndard de coma flotant nascut el 1985
- Necessitat d'intercanviar dades entre diferents sistemes (abans cada fabricant tenia el seu format)
- Regula representació, operacions, arrodoniment i excepcions
- o Es va renovant cada cert temps, darrerament el 2008 i 2019

Dos formats

• En C

```
float x; // simple precisió (4 bytes)
double y; // doble precisió (8 bytes)
```


- Signe: 1 bit
- Exponent: 8 bits / 11 bits
 - Codificat en excés a 127 / 1023
 - Permet comparar magnituds amb un comparador de naturals

- Signe: 1 bit
- Exponent: 8 bits / 11 bits
 - Codificat en excés a 127 / 1023
 - Permet comparar magnituds amb un comparador de naturals
- Fracció: 23 bits / 52 bits
 - Part fraccionària de la mantissa
- Part entera = 1
 - o bit ocult implícit, no es representa

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

• Mantissa: 1,000...0 ≤ mantissa ≤ 1,111...1

- Mantissa: $1,000...0 \le \text{mantissa} \le 1,111...1$
- Exponent: Emin ≤ E ≤ Emax
- Resultats for de rang (Overflow): E > Emax

- Mantissa: $1,000...0 \le \text{mantissa} \le 1,111...1$
- Exponent: Emin ≤ E ≤ Emax
- Resultats for de rang (Overflow): E > Emax
- Resultats "no fiables" (Underflow): magnitud < 1,0 · 2^{Emin}

- Valors representables no equidistants
 - Amb 32 bits es poden representar 2³² números, igual que amb coma fixa, però no són equidistants:

- Resultat exacte v està entre 2 valors representables: v_0 i v_1
- Si l'arrodonim a v_0 l'error de precisió és $\varepsilon = |v v_0|$

- Resultat exacte v està entre 2 valors representables: v_0 i v_1
- Si l'arrodonim a v_0 l'error de precisió és $\varepsilon = |v v_0|$
- Exemple: representar el racional $\frac{1}{10}$ en simple precisió
 - o És el número amb fracció periòdica:

- Resultat exacte v està entre 2 valors representables: v_0 i v_1
- Si l'arrodonim a v_0 l'error de precisió és $\varepsilon = |v v_0|$
- Exemple: representar el racional $\frac{1}{10}$ en simple precisió
 - o És el número amb fracció periòdica:

23 bits de fracció

 $_{\circ}$ Si l'arrodonim a v_{0} (eliminant bits)

$$\mathbf{v}_0 = 1,1001100110011001100 \times 2^{-4}$$

- Resultat exacte v està entre 2 valors representables: v_0 i v_1
- Si l'arrodonim a v_0 l'error de precisió és $\varepsilon = |v v_0|$
- Exemple: representar el racional $\frac{1}{10}$ en simple precisió
 - o És el número amb fracció periòdica:

• Fita de l'error absolut en l'interval (v_0, v_1)

$$\varepsilon_{\text{max}} = |\mathbf{v}_1 - \mathbf{v}_0|$$

Fita de l'error absolut en l'interval (v₀, v₁)

$$\varepsilon_{\text{max}} = |\mathbf{v}_1 - \mathbf{v}_0|$$

• Fita de l'error absolut en simple precisió

$$v_0 = m \cdot 2^{E}$$

$$v_1 = (m + 2^{-23}) \cdot 2^{E}$$

$$\epsilon_{max} = (m + 2^{-23} - m) \cdot 2^{E} = 2^{E-23}$$

- L'error relatiu pot ser més significatiu que l'absolut
 - \circ Un error ε = 1m és petit per a la distància Terra-Sol...
 - ... però inacceptable per a la longitud d'un pont

$$\eta = \frac{\varepsilon}{|v|}$$

- L'error relatiu pot ser més significatiu que l'absolut
 - Un error ε = 1m és petit per a la distància Terra-Sol...

... però inacceptable per a la longitud d'un pont

$$\eta = \frac{\varepsilon}{|v|}$$

• Fita de l'error relatiu en simple precisió

$$\eta_{max} < \frac{\varepsilon_{max}}{|v_0|} = \frac{2^{E-23}}{m \cdot 2^E} = \frac{2^{-23}}{m}$$

Error de precisió per arrodoniment

- L'error relatiu pot ser més significatiu que l'absolut
 - $_{\circ}$ Un error $_{\epsilon}$ = 1m és petit per a la distància Terra-Sol...

... però inacceptable per a la longitud d'un pont

$$\eta = \frac{\varepsilon}{|v|}$$

• Fita de l'error relatiu en simple precisió

$$\eta_{max} < \frac{\varepsilon_{max}}{|v_0|} = \frac{2^{E-23}}{m \cdot 2^E} = \frac{2^{-23}}{m}$$

o I com que m ≥ 1,0, queda

$$\eta_{max} < 2^{-23} = 1$$
 ULP ("Unit in the Last Place")

- Hi ha un cas especial, quan un resultat és |v| < 2^{Emin}
 - \circ |v| pertany a l'interval (v_0, v_1) = (0, 2^{Emin})

- Hi ha un cas especial, quan un resultat és |v| < 2^{Emin}
 - \circ |v| pertany a l'interval (v_0, v_1) = (0, 2^{Emin})
 - Si l'arrodonim a v₀=0, l'error absolut és

$$\varepsilon = |v - 0| = v$$

○ I l'error relatiu és

$$\eta = \frac{\varepsilon}{|v|} = 1$$

- Hi ha un cas especial, quan un resultat és |v| < 2^{Emin}
 - \circ |v| pertany a l'interval (v_0, v_1) = (0, 2^{Emin})
 - Si l'arrodonim a v₀=0, l'error absolut és

$$\varepsilon = |v - 0| = v$$

I l'error relatiu és

$$\eta = \frac{\varepsilon}{|v|} = 1$$

- L'error és tan gran com el resultat!
 - No és fiable
 - L'estàndard determina que es produeix un "underflow"

- Hi ha un cas especial, quan un resultat és |v| < 2^{Emin}
 - \circ |v| pertany a l'interval (v_0, v_1) = (0, 2^{Emin})
 - Si l'arrodonim a v₀=0, l'error absolut és

$$\varepsilon = |v - 0| = v$$

I l'error relatiu és

$$\eta = \frac{\varepsilon}{|v|} = 1$$

- L'error és tan gran com el resultat!
 - No és fiable
 - L'estàndard determina que es produeix un "underflow"
 - El tractament és configurable: arrodonir a zero, excepció, etc.

- 1. Truncament ("cap al zero") $\rightarrow v = v_0$
 - o El més simple d'implementar, sols cal eliminar els bits extra

- 1. Truncament ("cap al zero") $\rightarrow v = v_0$
 - o El més simple d'implementar, sols cal eliminar els bits extra
 - Fita superior d'error, en simple precisió

$$\mathbf{\epsilon}_{\text{max}} < |\mathbf{v}_{1} - \mathbf{v}_{0}|$$
 $\mathbf{\epsilon}_{\text{max}} < 2^{E-23}$
 $\eta_{max} < 2^{-23} = 1 \text{ ULP}$

- 1. Truncament ("cap al zero") $\rightarrow v = v_0$
 - o El més simple d'implementar, sols cal eliminar els bits extra
 - Fita superior d'error, en simple precisió

$$\mathbf{\epsilon}_{\max} < |\mathbf{v}_1 - \mathbf{v}_0|$$
 $\mathbf{\epsilon}_{\max} < 2^{E-23}$
 $\eta_{\max} < 2^{-23} = 1 \text{ ULP}$

- 2. Cap al + ∞ \rightarrow v=max (v₀, v₁)
- 3. Cap al ∞ \rightarrow v=min (v_0, v_1)
 - Usats en "aritmètica d'intervals"

- 1. Truncament ("cap al zero") $\rightarrow v = v_0$
 - o El més simple d'implementar, sols cal eliminar els bits extra
 - Fita superior d'error, en simple precisió

$$\mathbf{\epsilon}_{\max} < |\mathbf{v}_1 - \mathbf{v}_0|$$
 $\mathbf{\epsilon}_{\max} < 2^{E-23}$
 $\eta_{\max} < 2^{-23} = 1 \text{ ULP}$

- 2. Cap al + ∞ \rightarrow v=max (v₀, v₁)
- 3. Cap al ∞ \rightarrow v=min (v_0, v_1)
 - Usats en "aritmètica d'intervals"
- 4. Cap al més pròxim (o al valor "parell", si equidistant)
 - Mètode usat per defecte, perquè dona el menor error possible

- 1. Truncament ("cap al zero") $\rightarrow v = v_0$
 - o El més simple d'implementar, sols cal eliminar els bits extra
 - Fita superior d'error, en simple precisió

$$\mathbf{\epsilon}_{\max} < |\mathbf{v}_1 - \mathbf{v}_0|$$
 $\mathbf{\epsilon}_{\max} < 2^{E-23}$
 $\eta_{\max} < 2^{-23} = 1 \text{ ULP}$

- 2. Cap al + ∞ \rightarrow v=max (v₀, v₁)
- 3. Cap al ∞ \rightarrow v=min (v_0, v_1)
 - Usats en "aritmètica d'intervals"
- 4. Cap al més pròxim (o al valor "parell", si equidistant)
 - Mètode usat per defecte, perquè dona el menor error possible
 - $_{\circ}$ Fita superior d'error: quan $_{
 m V}$ és equidistant de $_{
 m V_0}$ i $_{
 m V_1}$

$$\mathbf{\epsilon}_{\max} < |\mathbf{v}_1 - \mathbf{v}_0|/2$$
 $\mathbf{\epsilon}_{\max} < 2^{E-24}$
 $\eta_{\max} < 2^{-24} = 0,5 \text{ ULP}$

- Regla pràctica per arrodonir al més pròxim
 - Calculem el resultat amb alguns bits extra de precisió:

```
v = 1, xxxxxx...0011 0000101... \times 2^{E}
bits del format bits extra
```

- Regla pràctica per arrodonir al més pròxim
 - o Calculem el resultat amb alguns bits extra de precisió
 - Examinem el primer bit extra de la mantissa en diversos casos:
 - a) El bit és $\mathbf{0}$: arrodonim a l'anterior (\mathbf{v}_0) $\mathbf{v} = 1, \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \dots \times \mathbf{v}_0 = \mathbf{1}, \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \dots \times \mathbf{v}_0 = \mathbf{1}$

- Regla pràctica per arrodonir al més pròxim
 - Calculem el resultat amb alguns bits extra de precisió
 - Examinem el primer bit extra de la mantissa en diversos casos:

```
    a) El bit és 0: arrodonim a l'anterior (v<sub>0</sub>)
    v = 1,xxxxxxx...0011 0000101...
    v<sub>0</sub> = 1,xxxxxxx...0011
    b) El bit és 1, i la resta NO són tots zeros: arrodonim al següent (v<sub>1</sub>)
```

```
v = 1, xxxxxx...0011 1010001...
+ 0,000000...0001
v_1 = 1, xxxxxx...0100
```

- Regla pràctica per arrodonir al més pròxim
 - Calculem el resultat amb alguns bits extra de precisió
 - Examinem el primer bit extra de la mantissa en diversos casos:
 - a) El bit és **0**: arrodonim a **l'anterior** (v₀)

b) El bit és **1**, i la resta NO són tots zeros: arrodonim al **següent** (v₁)

```
v = 1, xxxxxx...0011 1010001...
+ 0,000000...0001
v_1 = 1, xxxxxx...0100
```

c) El bit és 1, i la resta TOTS zeros

```
v = 1, xxxxxx...0011 1000000...
v és equidistant de v_0 i v_1
```

```
v_0 = 1, xxxxxx...0011

v_1 = 1, xxxxxx...0100
```

- Regla pràctica per arrodonir al més pròxim
 - Calculem el resultat amb alguns bits extra de precisió
 - Examinem el primer bit extra de la mantissa en diversos casos:
 - a) El bit és **0**: arrodonim a **l'anterior** (v₀)

b) El bit és **1**, i la resta NO són tots zeros: arrodonim al **següent** (v₁)

```
v = 1, xxxxxx...0011 1010001...
+ 0,000000...0001
v_1 = 1, xxxxxx...0100
```

c) El bit és 1, i la resta TOTS zeros

v és **equidistant** de v₀ i v₁: arrodonim al que sigui **parell**

```
v_0 = 1, xxxxxx...001
\mathbf{v_1} = 1, xxxxxx...010
```

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

- Es reserven dos exponents per a casos especials
 - E = 000 . . . 0, i E = 111 . . . 1
- Per tant
 - $_{\circ}$ $E_{min} = 000 \dots 01 i E_{max} = 111 \dots 10$
 - El rang d'exponents és E ∈ [-126,127] o [-1022, 1023]
- Casos especials
 - Zero
 - Infinit
 - Not a Number
 - Denormals

Zero

No hi ha cap combinació de Fracció i Exponent que doni zero!

$$(-1)^{s} \cdot (1 + 0,F) \cdot 2^{E} = 0$$
 ???

Zero

No hi ha cap combinació de Fracció i Exponent que doni zero!

$$(-1)^{s} \cdot (1 + 0,F) \cdot 2^{E} = 0$$
 ???

Codificació especial del zero

$$E = 000...0$$
 $F = 000...0$

Zero

No hi ha cap combinació de Fracció i Exponent que doni zero!

$$(-1)^{s} \cdot (1 + 0,F) \cdot 2^{E} = 0$$
 ???

Codificació especial del zero

$$E = 000...0$$
 $F = 000...0$

- De fet, amb el signe, tenim 2 codificacions del zero: +0 i -0
- En simple precisió:

- Infinit ("Inf")
 - Segueix algunes regles bàsiques d'operació. Per exemple

$$\frac{1}{0} = +\infty$$
, $\frac{1}{\infty} = 0$, $x + \infty = \infty$, etc.

- Infinit ("Inf")
 - Segueix algunes regles bàsiques d'operació. Per exemple

$$\frac{1}{0} = +\infty$$

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0} = +\infty$$
, $\frac{1}{\infty} = 0$, $x + \infty = \infty$, etc.

o Concepte útil que permet evitar overflows en algunes expressions

$$y = \frac{1}{1 + \frac{100}{x}}$$

Normalment, $\frac{100}{x}$ causaria overflow per a $x \to 0$

- Infinit ("Inf")
 - Segueix algunes regles bàsiques d'operació. Per exemple

$$\frac{1}{0} = +\infty$$

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0} = +\infty$$
, $\frac{1}{\infty} = 0$, $x + \infty = \infty$, etc.

o Concepte útil que permet evitar overflows en algunes expressions

$$y = \frac{1}{1 + \frac{100}{x}}$$

Normalment, $\frac{100}{x}$ causaria overflow per a $x \to 0$

Si usem l'infinit,
$$\frac{100}{x} = \infty$$
 i resulta $y = 0$

- Infinit ("Inf")
 - Segueix algunes regles bàsiques d'operació. Per exemple

$$\frac{1}{0} = +\infty$$

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0} = +\infty$$
, $\frac{1}{\infty} = 0$, $x + \infty = \infty$, etc.

Concepte útil que permet evitar overflows en algunes expressions

$$y = \frac{1}{1 + \frac{100}{x}}$$

Normalment, $\frac{100}{x}$ causaria overflow per a $x \to 0$

Si usem l'infinit, $\frac{100}{y} = \infty$ i resulta y = 0

Codificació especial de Inf (en realitat tenim +Inf i –Inf)

$$E = 111...1$$
 $F = 000...0$

Infinit ("Inf")

o Segueix algunes regles bàsiques d'operació. Per exemple

$$\frac{1}{0} = +\infty$$

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0} = +\infty$$
, $\frac{1}{\infty} = 0$, $x + \infty = \infty$, etc.

o Concepte útil que permet evitar overflows en algunes expressions

$$y = \frac{1}{1 + \frac{100}{x}}$$

Normalment, $\frac{100}{x}$ causaria overflow per a $x \to 0$

Si usem l'infinit, $\frac{100}{y} = \infty$ i resulta y = 0

Codificació especial de Inf (en realitat tenim +Inf i –Inf)

En simple precisió:

- Not a Number ("NaN")
 - Representa resultat invàlid, en algunes operacions:

$$\sqrt{-1} = \text{NaN}$$
 $\log(-1) = \text{NaN}$ $\infty - \infty = \text{NaN}$ $0 \times \infty = \text{NaN}$ $\frac{\infty}{\infty} = \text{NaN}$

o El programa pot comprovar si un resultat és vàlid o no

- Not a Number ("NaN")
 - Representa resultat invàlid, en algunes operacions:

$$\sqrt{-1} = \text{NaN}$$
 $\log(-1) = \text{NaN}$ $\infty - \infty = \text{NaN}$ $0 \times \infty = \text{NaN}$ $\frac{\infty}{\infty} = \text{NaN}$

- El programa pot comprovar si un resultat és vàlid o no
- En general, qualsevol operació amb un NaN dona resultat = NaN
 - → En una cadena de càlculs, podem diferir la comprovació fins al final

- Not a Number ("NaN")
 - Representa resultat invàlid, en algunes operacions:

$$\sqrt{-1} = \text{NaN}$$
 $\log(-1) = \text{NaN}$ $\infty - \infty = \text{NaN}$ $0 \times \infty = \text{NaN}$ $\frac{\infty}{\infty} = \text{NaN}$

- El programa pot comprovar si un resultat és vàlid o no
- En general, qualsevol operació amb un NaN dona resultat = NaN
 - → En una cadena de càlculs, podem diferir la comprovació fins al final
- Codificació de NaN

$$E = 111...1$$
 $F \neq 000...0$

- Not a Number ("NaN")
 - Representa resultat invàlid, en algunes operacions:

$$\sqrt{-1} = \text{NaN}$$
 $\log(-1) = \text{NaN}$ $\infty - \infty = \text{NaN}$ $0 \times \infty = \text{NaN}$ $\frac{\infty}{\infty} = \text{NaN}$

- El programa pot comprovar si un resultat és vàlid o no
- En general, qualsevol operació amb un NaN dona resultat = NaN
 - → En una cadena de càlculs, podem diferir la comprovació fins al final
- Codificació de NaN

$$E = 111...1$$
 $F \neq 000...0$

En simple precisió:

s 11111111 xxxxxxxxxxxxxxxxxxxxxx (algun $x \neq 0$)

Denormals

 Un resultat molt petit, del tipus |v| < 2^{Emin} no és fiable, ja que si l'arrodonim a 0, l'error de precisió és enorme

Denormals

 Un resultat molt petit, del tipus |v| < 2^{Emin} no és fiable, ja que si l'arrodonim a 0, l'error de precisió és enorme

$$\varepsilon = |\mathbf{v} - \mathbf{0}| = |\mathbf{v}| \qquad \qquad \eta = \frac{|v - \mathbf{0}|}{|v|} = 1$$

 En aquests casos podem millorar la precisió admetent nombres no-normalitzats o denormals en el rang (0, 2^{Emin}), de la forma:

$$v = 0, xxx \dots x * 2^{Emin}$$

Denormals

 Un resultat molt petit, del tipus |v| < 2^{Emin} no és fiable, ja que si l'arrodonim a 0, l'error de precisió és enorme

$$\varepsilon = |\mathbf{v} - \mathbf{0}| = |\mathbf{v}| \qquad \qquad \eta = \frac{|v - \mathbf{0}|}{|v|} = 1$$

 En aquests casos podem millorar la precisió admetent nombres no-normalitzats o denormals en el rang (0, 2^{Emin}), de la forma:

$$v = 0, xxx \dots x * 2^{Emin}$$

En simple precisió, la fita superior d'error absolut és

$$\varepsilon_{max} = |\mathbf{v}_1 - \mathbf{v}_0| = 2^{\text{Emin-23}}$$

Denormals

Codificació

$$E = 000...0$$

$$F \neq 000...0$$

Denormals

Codificació

$$E = 000...0$$
 $F \neq 000...0$

En simple precisió:

s 00000000 xxxxxxxxxxxxxxxxxxxxxx (algun $x \neq 0$)

Denormals

Codificació

$$E = 000...0$$
 $F \neq 000...0$

En simple precisió:

s 00000000 xxxxxxxxxxxxxxxxxxxxxx (algun $x \neq 0$)

- Alerta! Si els hem d'operar, tinguem en compte que
 - El bit ocult implícit és 0
 - L'exponent implícit és E_{min}

IEE-754: resum dels formats

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

1. Convertir la part entera, per divisions successives 1029 = 10000000101 (té 11 bits)

1. Convertir la part entera, per divisions successives 1029 = 10000000101 (té 11 bits)

2. Convertir la fracció, per multiplicacions successives

```
0,68 \times 2 = 1,36 \rightarrow 1 (ler bit de fracció) 0,36 \times 2 = 0,72 \rightarrow 0 (2on bit de fracció) ... etc.
```

o Quants bits de fracció calculem?

1. Convertir la part entera, per divisions successives

```
1029 = 10000000101 (té 11 bits)
```

2. Convertir la fracció, per multiplicacions successives

```
0,68 \times 2 = 1,36 \rightarrow 1 (ler bit de fracció) 0,36 \times 2 = 0,72 \rightarrow 0 (2on bit de fracció) ... etc.
```

- o Quants bits de fracció calculem?
 - → 13 bits, per totalitzar 24 bits de mantissa

```
0,68 = 0,1010111000010 (té 13 bits)
```

1. Convertir la part entera, per divisions successives

```
1029 = 10000000101 (té 11 bits)
```

2. Convertir la fracció, per multiplicacions successives

```
0,68 \times 2 = 1,36 \rightarrow 1 (ler bit de fracció) 0,36 \times 2 = 0,72 \rightarrow 0 (2on bit de fracció) ... etc.
```

- o Quants bits de fracció calculem?
 - → 13 bits, per totalitzar 24 bits de mantissa

```
0,68 = 0,1010111000010 (té 13 bits)
```

→ i alguns "bits extra", per decidir com arrodonir al més pròxim

```
0,68 = 0,1010111100001010001... (té 18 bits)
```

1. Convertir la part entera, per divisions successives

```
1029 = 10000000101 (té 11 bits)
```

2. Convertir la fracció, per multiplicacions successives

```
0,68 \times 2 = 1,36 \rightarrow 1 (ler bit de fracció) 0,36 \times 2 = 0,72 \rightarrow 0 (2on bit de fracció) ... etc.
```

- o Quants bits de fracció calculem?
 - → 13 bits, per totalitzar 24 bits de mantissa

```
0,68 = 0,1010111000010 (té 13 bits)
```

→ i alguns "bits extra", per decidir com arrodonir al més pròxim

```
0,68 = 0,1010111100001010001... (té 18 bits)
```

3. Ajuntar part entera i fracció (11+18=29 bits)

```
1029,68 = 10000000101,101011100001010001...
```

1. Convertir la part entera, per divisions successives 1029 = 10000000101 (té 11 bits)

2. Convertir la fracció, per multiplicacions successives

```
0,68 \times 2 = 1,36 \rightarrow 1 (ler bit de fracció) 0,36 \times 2 = 0,72 \rightarrow 0 (2on bit de fracció) ... etc.
```

- o Quants bits de fracció calculem?
 - → 13 bits, per totalitzar 24 bits de mantissa

```
0,68 = 0,1010111000010 (té 13 bits)
```

→ i alguns "bits extra", per decidir com arrodonir al més pròxim

```
0,68 = 0,1010111100001010001... (té 18 bits)
```

3. Ajuntar part entera i fracció (11+18=29 bits)

```
1029,68 = 10000000101,101011100001010001...
```

4. Normalitzar (moure la coma 10 llocs i ajustar l'exponent)

```
1029,68 = 1,0000000101101011100001010001... \times (2^{10})
```

5. Arrodonir (al més pròxim), usant els "bits extra"

1029, 68 = 1,00000001011010111000010 10001... × 2¹⁰

→ Arrodonim "al següent"

5. Arrodonir (al més pròxim), usant els "bits extra"

1029, 68 = 1,0000000101101011100001010001... × 2¹⁰

→ Arrodonim "al següent"

1029, 68 = 1,000000010110101111000010 × 2¹⁰

+ 1

= 1,000000010110101111000011 × 2¹⁰

5. Arrodonir (al més pròxim), usant els "bits extra"

$$1029,68 = 1,00000001011010111100001010001... \times 2^{10}$$

→ Arrodonim "al següent"

$$1029,68 = 1,00000001011010111000010 \times 2^{10}$$

+ 1

$$= 1,00000001011010111000011 \times 2^{10}$$

6. Codificar l'exponent en excés a 127

$$E = 10 + 127 = 137 = 10001001$$

5. Arrodonir (al més pròxim), usant els "bits extra"

$$1029,68 = 1,0000000101101011100001010001... \times 2^{10}$$

→ Arrodonim "al següent"

$$1029,68 = 1,00000001011010111000010 \times 2^{10}$$

$$= (1) 000000010110101111000011 \times 2^{10}$$

6. Codificar l'exponent en excés a 127

$$E = 10 + 127 = 137 = 10001001$$

- 7. Ajuntar signe, exponent i fracció
 - La part entera (1) no s'escriu: és el bit ocult!

5. Arrodonir (al més pròxim), usant els "bits extra"

1029, 68 = 1,0000000101101011100001010001... × 2¹⁰

→ Arrodonim "al següent"

1029, 68 = 1,000000010110101111000010 × 2¹⁰

+ 1

= 1,000000010110101111000011 × 2¹⁰

6. Codificar l'exponent en excés a 127

$$E = 10 + 127 = 137 = 10001001$$

- 7. Ajuntar signe, exponent i fracció
 - La part entera (1) no s'escriu: és el bit ocult!

5. Arrodonir (al més pròxim), usant els "bits extra"

$$1029,68 = 1,0000000101101011100001010001... × $2^{10}$$$

→ Arrodonim "al següent"

$$1029,68 = 1,00000001011010111000010 \times 2^{10}$$

$$=$$
 1,0000000101101011100001**1** \times 2¹⁰

6. Codificar l'exponent en excés a 127

$$E = 10 + 127 = 137 = 10001001$$

- 7. Ajuntar signe, exponent i fracció
 - La part entera (1) no s'escriu: és el bit ocult!

```
-1029,68 = 1 10001001 00000001011010111000011
```

8. Expressar en hexadecimal

$$-1029,68 = 0xC480B5C3$$

- Calcular l'error de precisió ($\varepsilon = |v v_0|$)
 - o Restant el valor arrodonit i el valor "exacte" $\epsilon = (1,00000001011010111000011 \times 2^{10} 1,00000001011010111100001010001... \times 2^{10})$

0,0000000000000000000000001111

 $\times 2^{10}$

- Calcular l'error de precisió ($\varepsilon = |v v_0|$)
 - Restant el valor arrodonit i el valor "exacte"

$$\epsilon = (1,000000010110101111000011 \times 2^{10} - 1,00000001011010111100001010101... \times 2^{10})$$

$$= 0,0000000000000000000001111 \times 2^{10}$$

Normalitzem: movem la coma 25 posicions a la dreta ...

- Calcular l'error de precisió ($\varepsilon = |v v_0|$)
 - Restant el valor arrodonit i el valor "exacte"

$$\epsilon = (1,000000010110101111000011 \times 2^{10} - 1,00000001011010111100001010101... \times 2^{10})$$

$$= 0,0000000000000000000001111 \times 2^{10}$$

Normalitzem: movem la coma 25 posicions a la dreta ...

o Convertim a decimal (no es demanarà sense calculadora) ...

$$\varepsilon = 1,875 \times 2^{-15}$$

= 1,875 / 2¹⁵
= 1,875/32768
= 5,722 × 10⁻⁵

1. L'escrivim en binari

 $v = 0100 \ 0101 \ 1000 \ 0001 \ 0100 \ 0001 \ 0100 \ 0000$

1. L'escrivim en binari

```
v = 0100 \ 0101 \ 1000 \ 0001 \ 0100 \ 0001 \ 0100 \ 0000
```

2. Identifiquem els 3 camps: signe, exponent, fracció v = 0 10001011 00000010100000101000000

1. L'escrivim en binari

```
v = 0100 \ 0101 \ 1000 \ 0001 \ 0100 \ 0001 \ 0100 \ 0000
```

- 2. Identifiquem els 3 camps: signe, exponent, fracció $v = 0 \ 10001011 \ 00000010100000101000000$
- 3. Convertim l'exponent a decimal i li restem l'excés 127

```
10001011 = 139
E = 139 - 127 = 12
```

1. L'escrivim en binari

```
v = 0100 \ 0101 \ 1000 \ 0001 \ 0100 \ 0001 \ 0100 \ 0000
```

- 2. Identifiquem els 3 camps: signe, exponent, fracció $v = 0 \ 10001011 \ 00000010100000101000000$
- 3. Convertim l'exponent a decimal i li restem l'excés 127 10001011 = 139 E = 139 - 127 = 12

1. L'escrivim en binari

```
v = 0100 \ 0101 \ 1000 \ 0001 \ 0100 \ 0001 \ 0100 \ 0000
```

- 2. Identifiquem els 3 camps: signe, exponent, fracció $v = 0 \ 10001011 \ 00000010100000101000000$
- 3. Convertim l'exponent a decimal i li restem l'excés 127 10001011 = 139 E = 139 127 = 12
- 5. En coma fixa: moure la coma 12 llocs a la dreta i eliminar zeros finals

```
v = +1000000101000,00101000000
```

6. Convertir la part entera a base 10 (suma ponderada) $1000000101000 = 1 \cdot 2^{12} + 1 \cdot 2^5 + 1 \cdot 2^3 = 4136$

$$1000000101000 = 1 \cdot 2^{12} + 1 \cdot 2^{5} + 1 \cdot 2^{3} = 4136$$

6. Convertir la part entera a base 10 (suma ponderada) $1000000101000 = 1 \cdot 2^{12} + 1 \cdot 2^5 + 1 \cdot 2^3 = 4136$

7. Convertir la fracció a base 10 (movent la coma a dreta) $0,00101 = 101 \times 2^{-5} = 5/32 = 0,15625$

6. Convertir la part entera a base 10 (suma ponderada) $1000000101000 = 1 \cdot 2^{12} + 1 \cdot 2^5 + 1 \cdot 2^3 = 4136$

7. Convertir la fracció a base 10 (movent la coma a dreta) $0,00101 = 101 \times 2^{-5} = 5/32 = 0,15625$

8. Ajuntar part entera i fracció

$$v = 4136, 15625$$

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- Rang, precisió i arrodoniment
- o Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹
 - o Així?

$$9,999 \times 10^{1}$$
+ $1,680 \times 10^{-1}$
= $11,679 \times 10^{?}$

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹
 - o Així? No!

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹
 - o Així? No!

Igualar exponents (al major = 1), alinear mantisses i sumar:

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹
 - Així? No!

Igualar exponents (al major = 1), alinear mantisses i sumar:

$$\begin{array}{c}
 9,999 \times 10^{1} \\
 0,01680 \times 10^{1} \\
 = 10,01580 \times 10^{1}
 \end{array}$$

Normalitzar:

$$1,001580 \times 10^{2}$$

- Suposem un cas senzill que coneixem bé (base 10):
 - \circ Format: mantissa normalitzada amb 4 dígits: x, $xxx \times 10^{xx}$
 - \circ Sumar: 9,999 \times 10¹ + 1,680 \times 10⁻¹
 - o Així? No!

Igualar exponents (al major = 1), alinear mantisses i sumar:

Normalitzar:

$$1,001580 \times 10^{2}$$

Arrodonir a 4 dígits:

$$1,001580 \times 10^{2}$$
 $1,002 \times 10^{2}$

- 1. Igualar els exponents, al major dels dos
 - I alinear les mantisses, desplaçant a l'esquerra la coma d'aquella amb menor exponent

- 1. Igualar els exponents, al major dels dos
 - I alinear les mantisses, desplaçant a l'esquerra la coma d'aquella amb menor exponent
- 2. Sumar les magnituds (valors absoluts)
 - Signes iguals → sumar magnituds
 - Signes diferents → restar la magnitud major menys la menor, i assignar al resultat el signe de la major

1. Igualar els exponents, al major dels dos

 I alinear les mantisses, desplaçant a l'esquerra la coma d'aquella amb menor exponent

2. Sumar les magnituds (valors absoluts)

- Signes iguals → sumar magnituds
- Signes diferents → restar la magnitud major menys la menor, i assignar al resultat el signe de la major

3. Normalitzar el resultat

Movent la coma per obtenir un dígit no-nul a la part entera

1. Igualar els exponents, al major dels dos

 I alinear les mantisses, desplaçant a l'esquerra la coma d'aquella amb menor exponent

2. Sumar les magnituds (valors absoluts)

- Signes iguals → sumar magnituds
- Signes diferents → restar la magnitud major menys la menor, i assignar al resultat el signe de la major

3. Normalitzar el resultat

Movent la coma per obtenir un dígit no-nul a la part entera

4. Arrodonir la mantissa

- Al valor representable més pròxim
- Pot requerir haver de normalitzar i arrodonir per segon cop

1. Igualar els exponents, al major dels dos

 I alinear les mantisses, desplaçant a l'esquerra la coma d'aquella amb menor exponent

2. Sumar les magnituds (valors absoluts)

- Signes iguals → sumar magnituds
- Signes diferents → restar la magnitud major menys la menor, i assignar al resultat el signe de la major

3. Normalitzar el resultat

Movent la coma per obtenir un dígit no-nul a la part entera

4. Arrodonir la mantissa

- Al valor representable més pròxim
- Pot requerir haver de normalitzar i arrodonir per segon cop

5. Codificar el resultat

Signe, exponent (en excés) i mantissa (sense el bit ocult)

Suposem x=0x3F40000D, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 1111 0100 0000 0000 0000 0000 1101 y = 1100 0000 1000 0000 0000 0000 0100
```

Suposem x=0x3F40000D, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 1111 0100 0000 0000 0000 0000 1101 y = 1100 0000 1000 0000 0000 0000 0100
```

2. Identifiquem els camps: signe, exponent, fracció

Suposem x=0x3F40000D, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 1111 0100 0000 0000 0000 0000 1101 y = 1100 0000 1000 0000 0000 0000 0100
```

2. Identifiquem els camps: signe, exponent, fracció

3. Convertim exponents a base 10 (restant l'excés)

$$011111110 = 126 \rightarrow \mathbf{E} = 126 - 127 = -1$$

 $10000001 = 129 \rightarrow \mathbf{E} = 129 - 127 = 2$

Suposem x=0x3F40000D, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 1111 0100 0000 0000 0000 0000 1101

y = 1100 0000 1000 0000 0000 0000 0100
```

2. Identifiquem els camps: signe, exponent, fracció

3. Convertim exponents a base 10 (restant l'excés)

$$011111110 = 126 \rightarrow \mathbf{E} = 126 - 127 = -1$$

 $10000001 = 129 \rightarrow \mathbf{E} = 129 - 127 = 2$

4. Expressem x i y en coma flotant, afegint el bit ocult i el signe

Suposem x=0x3F40000D, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 1111 0100 0000 0000 0000 0000 1101 y = 1100 0000 1000 0000 0000 0000 0100
```

2. Identifiquem els camps: signe, exponent, fracció

3. Convertim exponents a base 10 (restant l'excés)

$$011111110 = 126 \rightarrow \mathbf{E} = 126 - 127 = -1$$

 $10000001 = 129 \rightarrow \mathbf{E} = 129 - 127 = 2$

4. Expressem x i y en coma flotant, afegint el bit ocult i el signe

5. Igualem exponents al major (=2), movent la coma 3 pits a l'esquerra

$$x = +0,00110000000000000001101 \times 2^{2}$$

Fracció de 23 bits

bits extra

4. Signes diferents \rightarrow restar la magnitud major (y) menys la menor (x)...

4. Signes diferents \rightarrow restar la magnitud major (y) menys la menor (x)...

...i assignar el signe del que té major valor absolut: és y (negatiu)

$$z = -0,1101000000000000000010011 \times 2^{2}$$

5. Normalitzar mantissa (desplaçant els bits a l'esquerra)

5. Normalitzar mantissa (desplaçant els bits a l'esquerra)

6. Arrodonir mantissa (amunt)

$$|z| = 1,101000000000000000101 \times 2^{1}$$

5. Normalitzar mantissa (desplaçant els bits a l'esquerra)

$$|z| = 1,101000000000000000000100$$
1 × 2¹

6. Arrodonir mantissa (amunt)

7. Codificar exponent (en excés)

$$E \rightarrow 1+127 = 128 = 10000000$$

5. Normalitzar mantissa (desplaçant els bits a l'esquerra)

```
|z| = 1,1010000000000000000001001 \times 2^{1}
```

6. Arrodonir mantissa (amunt)

7. Codificar exponent (en excés)

$$E \rightarrow 1+127 = 128 = 10000000$$

8. Ajuntar signe (negatiu=1), exponent i fracció (sense el bit ocult)

• Quan igualem els exponents al major, ¿quants bits es desplaça la mantissa en el pitjor cas?

- Quan igualem els exponents al major, ¿quants bits es desplaça la mantissa en el pitjor cas?
 - $_{\odot}$ Per exemple, restem $x = 1.0 \times 2^{127}$ menys $y = 1.0 \times 2^{-126}$

- Quan igualem els exponents al major, ¿quants bits es desplaça la mantissa en el pitjor cas?
 - $_{\odot}$ Per exemple, restem $x = 1.0 \times 2^{127}$ menys $y = 1.0 \times 2^{-126}$
 - Igualem els exponents al major = 127, movent la coma a l'esquerra 126 + 127 = 253 posicions

$$x = 1,000...0 \times 2^{127}$$
23 bits
$$y = 0,00000000000000...001 000...0 \times 2^{127}$$
23 bits
253 posicions a l'esquerra

- Quan igualem els exponents al major, ¿quants bits es desplaça la mantissa en el pitjor cas?
 - $_{\odot}$ Per exemple, restem $x = 1.0 \times 2^{127}$ menys $y = 1.0 \times 2^{-126}$
 - Igualem els exponents al major = 127, movent la coma a l'esquerra 126 + 127 = 253 posicions

 Per no perdre precisió ens cal un sumador amb més de 200 bits bits de guarda!

- Podem aconseguir el mateix resultat amb sols 3 bits de guarda
 - Guard (**G**): bit 24 de la mantissa
 - Round (R): bit 25 de la mantissa
 - Sticky (S): OR lògica de tots els bits a la dreta del bit 25

- Podem aconseguir el mateix resultat amb sols 3 bits de guarda
 - Guard (G): bit 24 de la mantissa
 - Round (R): bit 25 de la mantissa
 - Sticky (S): OR lògica de tots els bits a la dreta del bit 25
- Exemple:

- Podem aconseguir el mateix resultat amb sols 3 bits de guarda
 - Guard (**G**): bit 24 de la mantissa
 - Round (R): bit 25 de la mantissa
 - Sticky (S): OR lògica de tots els bits a la dreta del bit 25
- Exemple:

Igualant exponents i alineant mantisses

- Podem aconseguir el mateix resultat amb sols 3 bits de guarda
 - Guard (**G**): bit 24 de la mantissa
 - Round (R): bit 25 de la mantissa
 - Sticky (S): OR lògica de tots els bits a la dreta del bit 25
- Exemple:

Igualant exponents i alineant mantisses

- Podem aconseguir el mateix resultat amb sols 3 bits de guarda
 - Guard (G): bit 24 de la mantissa
 - Round (R): bit 25 de la mantissa
 - Sticky (S): OR lògica de tots els bits a la dreta del bit 25
- Exemple:

Igualant exponents i alineant mantisses

I obtindrem idèntic resultat que amb infinits bits!

• Siguin x, y

$$x = m_x \times 2^{ex}$$
$$y = m_v \times 2^{ey}$$

$$x \times y = m_x \times 2^{ex} \times m_y \times 2^{ey} = (m_x \times m_y) \times 2^{(ex+ey)}$$

 $x / y = m_x \times 2^{ex} / m_y \times 2^{ey} = (m_x / m_y) \times 2^{(ex-ey)}$

• Siguin x, y

$$x = m_x \times 2^{ex}$$
$$y = m_v \times 2^{ey}$$

$$x \times y = m_x \times 2^{ex} \times m_y \times 2^{ey} = (m_x \times m_y) \times 2^{(ex+ey)}$$

 $x / y = m_x \times 2^{ex} / m_y \times 2^{ey} = (m_x / m_y) \times 2^{(ex-ey)}$

- Algorisme
 - Multiplicar (o dividir) les mantisses (igual que amb els naturals)

• Siguin x, y

$$x = m_x \times 2^{ex}$$

 $y = m_v \times 2^{ey}$

$$x \times y = m_x \times 2^{ex} \times m_y \times 2^{ey} = (m_x \times m_y) \times 2^{(ex+ey)}$$

 $x / y = m_x \times 2^{ex} / m_y \times 2^{ey} = (m_x / m_y) \times 2^{(ex-ey)}$

- Algorisme
 - Multiplicar (o dividir) les mantisses (igual que amb els naturals)
 - Sumar (o restar) exponents

• Siguin x, y

$$x = m_x \times 2^{ex}$$

 $y = m_v \times 2^{ey}$

$$x \times y = m_x \times 2^{ex} \times m_y \times 2^{ey} = (m_x \times m_y) \times 2^{(ex+ey)}$$

 $x / y = m_x \times 2^{ex} / m_y \times 2^{ey} = (m_x / m_y) \times 2^{(ex-ey)}$

- Algorisme
 - Multiplicar (o dividir) les mantisses (igual que amb els naturals)
 - Sumar (o restar) exponents
 - Ajustar el signe: positiu si els signes són iguals, negatiu altrament

- Suposem un cas senzill que coneixem bé (base 10)
 - \circ Format: mantissa normalitzada de 4 dígits: x, $xxx \times 10^{xx}$
 - o Multiplicar: $(-1,110\times10^{10}) \times (9,200 \times 10^{-5})$

- Suposem un cas senzill que coneixem bé (base 10)
 - \circ Format: mantissa normalitzada de 4 dígits: x, $xxx \times 10^{xx}$
 - o Multiplicar: $(-1,110\times10^{10}) \times (9,200 \times 10^{-5})$
 - o Producte de mantisses:

- Suposem un cas senzill que coneixem bé (base 10)
 - o Format: mantissa normalitzada de 4 dígits: x, xxx × 10xx
 - o Multiplicar: $(-1,110\times10^{10}) \times (9,200 \times 10^{-5})$
 - o Producte de mantisses:

Suma d'exponents: 10 + (-5) = 5

$$1 \ 0, 2 \ 1 \ 2 \ 0 \ 0 \ 0 \times 10^{5}$$

- Suposem un cas senzill que coneixem bé (base 10)
 - o Format: mantissa normalitzada de 4 dígits: x, xxx × 10xx
 - \circ Multiplicar: $(-1,110\times10^{10})\times(9,200\times10^{-5})$
 - Producte de mantisses:

Suma d'exponents: 10 + (-5) = 5

$$1 \ 0, 2 \ 1 \ 2 \ 0 \ 0 \ 0 \times 10^{5}$$

o Normalitzar:

- Suposem un cas senzill que coneixem bé (base 10)
 - \circ Format: mantissa normalitzada de 4 dígits: x, $xxx \times 10^{xx}$
 - o Multiplicar: $(-1,110\times10^{10}) \times (9,200 \times 10^{-5})$
 - o Producte de mantisses:

Suma d'exponents: 10 + (-5) = 5

$$1 \ 0,2 \ 1 \ 2 \ 0 \ 0 \ 0 \times 10^{5}$$

Normalitzar:

1,0 2 1
$$2 0 0 0 \times 10^6$$

Arrodonir a 4 dígits (avall):

$$1,021$$
 × 10^6

- Suposem un cas senzill que coneixem bé (base 10)
 - \circ Format: mantissa normalitzada de 4 dígits: x, $xxx \times 10^{xx}$
 - o Multiplicar: $(-1,110\times10^{10}) \times (9,200 \times 10^{-5})$
 - o Producte de mantisses:

Suma d'exponents: 10 + (-5) = 5

$$1 \ 0, 2 \ 1 \ 2 \ 0 \ 0 \ 0 \times 10^{5}$$

Normalitzar:

$$1,0212000 \times 10^{6}$$

Arrodonir a 4 dígits (avall):

$$1,021 \times 10^6$$

○ Afegir signe (negatiu): -1,021 × 10⁶

Suposem x=0x3F600000, y=0xBED00002

1. Els escrivim en binari

Suposem x=0x3F600000, y=0xBED00002

1. Els escrivim en binari

2. Separem els camps: signe, exponent, fracció

Suposem x=0x3F600000, y=0xBED00002

1. Els escrivim en binari

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

Suposem x=0x3F600000, y=0xBED00002

1. Els escrivim en binari

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

4. Producte de mantisses (ignorant zeros finals, part entera en negreta)

Exemple (cont.)

5. Suma d'exponents: -1+(-2) = -3 $|z| = 10,110110000000000000001110... \times 2^{-3}$

Exemple (cont.)

5. Suma d'exponents: -1+(-2) = -3

$$|z| = 10,11011000000000000001110... \times 2^{-3}$$

6. Normalitzar

$$|z| = 1,0110110000000000000001110... \times 2^{-2}$$

Exemple (cont.)

5. Suma d'exponents: -1+(-2) = -3

$$|z| = 10,110110000000000000001110... \times 2^{-3}$$

6. Normalitzar

$$|z| = 1,0110110000000000000001110... \times 2^{-2}$$

7. Arrodonir (amunt)

Exemple (cont.)

5. Suma d'exponents: -1+(-2) = -3

$$|z| = 10,110110000000000000001110... \times 2^{-3}$$

6. Normalitzar

$$|z| = 1,0110110000000000000001110... \times 2^{-2}$$

7. Arrodonir (amunt)

8. Codificar l'exponent (en excés a 127)

$$-2 + 127 = 125 = 011111101$$

Exemple (cont.)

5. Suma d'exponents: -1+(-2) = -3

$$|z| = 10,110110000000000000001110... \times 2^{-3}$$

6. Normalitzar

$$|z| = 1,0110110000000000000001110... \times 2^{-2}$$

7. Arrodonir (amunt)

8. Codificar l'exponent (en excés a 127)

$$-2 + 127 = 125 = 011111101$$

9. Ajuntar signe (negatiu), exponent i mantissa (sense el bit ocult!)

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- o Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

Coma flotant en el MIPS

- Coprocesador de coma flotant
 - Històricament, els processadors tenien la unitat de coma flotant (FPU) en un xip opcional separat de la CPU
 - La ISA de MIPS conserva aquesta distinció, encara que actualment les FPUs són part de la CPU: la FPU de MIPS rep el nom de CP1 (co-processador 1)

Coma flotant en el MIPS

- Coprocesador de coma flotant
 - Històricament, els processadors tenien la unitat de coma flotant (FPU) en un xip opcional separat de la CPU
 - La ISA de MIPS conserva aquesta distinció, encara que actualment les FPUs són part de la CPU: la FPU de MIPS rep el nom de CP1 (co-processador 1)
 - Banc de registres propi: 32 registres de 32 bits: \$f0, . . . \$f31
 - Cada registre pot contenir un "float"
 - Per operar "doubles", només s'usen registres parells: \$f0,\$f2,...

Coma flotant en el MIPS

- Coprocesador de coma flotant
 - Històricament, els processadors tenien la unitat de coma flotant (FPU) en un xip opcional separat de la CPU
 - La ISA de MIPS conserva aquesta distinció, encara que actualment les FPUs són part de la CPU: la FPU de MIPS rep el nom de CP1 (co-processador 1)
 - o Banc de registres propi: 32 registres de 32 bits: \$f0, ... \$f31
 - Cada registre pot contenir un "float"
 - Per operar "doubles", només s'usen registres parells: \$f0,\$f2,...
 - Hi ha un registre de control addicional per reportar excepcions, configurar els modes d'arrodoniment, etc.

Instruccions MIPS

Accés a memòria

Simple precisió	Doble precisió		
lwc1 ft, offset(rs)	ldc1 ft, offset(rs)		
swc1 ft, offset(rs)	sdc1 ft, offset(rs)		

Instruccions MIPS

Accés a memòria

Simple precisió	Doble precisió	
lwc1 ft, offset(rs)	ldc1 ft, offset(rs)	
swc1 ft, offset(rs)	sdc1 ft, offset(rs)	

Aritmètiques

Simple precisió	Doble precisió
add.s fd,fs,ft	add.d fd,fs,ft
sub.s fd,fs,ft	sub.d fd,fs,ft
mul.s fd,fs,ft	mul.d fd,fs,ft
div.s fd,fs,ft	div.d fd,fs,ft

Instruccions de coma flotant

Còpia entre registres

```
mfc1 rt, fs \rightarrow copia de fs a rt

mtc1 rt, fs \rightarrow copia de rt a fs

mov.s fd, fs \rightarrow copia de fs a fd
```

Instruccions de coma flotant

Còpia entre registres

mfc1	rt,	fs	→ copia de fs a rt
mtc1	rt,	fs	→ copia de rt a fs
mov.s	fd,	fs	→ copia de fs a fd

Comparació

Simple precisió	Doble precisió
c.xx.s fs,ft	c.xx.d fs,ft

```
\circ on xx \in \{eq, lt, le\}
```

o Escriu el resultat al bit de condició (és un registre intern)

Instruccions de coma flotant

Còpia entre registres

mfc1	rt,	fs	→ copia de fs a rt
mtc1	rt,	fs	→ copia de rt a fs
mov.s	fd,	fs	→ copia de fs a fd

Comparació

Simple precisió	Doble precisió
c.xx.s fs,ft	c.xx.d fs,ft

- \circ on $xx \in \{eq, lt, le\}$
- Escriu el resultat al bit de condició (és un registre intern)

Salt

bc1t	etiqueta	→ salta si el <i>bit de condició</i> = TRUE
bc1f	etiqueta	→ salta si el <i>bit de condició</i> = FALSE

Declaracions

- Declaració de variables globals de coma flotant
 - o En C

```
float v[2] = \{3.1416, -3.5E2\};
double x = 3E350, y;
```

En MIPS

```
.data
v: .float 3.1416, -3.5E2
x: .double 3E350
y: .double 0.0
```

Alineen a adreces múltiples de 4 (.float) o de 8(.double)

Subrutines

- Pas de paràmetres i resultats a subrutines
 - Nota: La mescla de paràmetres de coma flotant amb altres enters segueix en MIPS unes regles complexes, que no estudiarem en EC. Sols estudiarem un cas
 - Quan tenim sols 1 o 2 paràmetres de tipus "float"

Subrutines

- Pas de paràmetres i resultats a subrutines
 - Nota: La mescla de paràmetres de coma flotant amb altres enters segueix en MIPS unes regles complexes, que no estudiarem en EC. Sols estudiarem un cas
 - Quan tenim sols 1 o 2 paràmetres de tipus "float"
 - o Paràmetres: en \$f12 i \$f14
 - Resultat: en \$f0
 - Registres "segurs": del \$f20 al \$f31

```
float func (float x)
{
  if (x < 1.0)
    return x * x;
  else
    return 2.0 - x;
}</pre>
```

```
.data
const1: .float 1.0

.text
...
```

func:

Guardem la constant 1.0 en memòria

Carreguem la constant 1.0 en \$f16

```
float func (float x)
                              .data
 if (x < 1.0)
                   const1: .float 1.0
  return x * x;
 else
  return 2.0 - x;
                              .text
                   func:
                       la
                               $t0, const1
                       lwc1 $f16, 0($t0)
                                                   # $f16 = 1.0
                       c.lt.s $f12, $f16
                                                   \# x < 1.0?
                       bc1f
                               else
                                                   # br. if false
  Si x < 1.0 és fals,
```

saltem a else

```
float func (float x)
                             .data
 if (x < 1.0)
                  const1: .float 1.0
  return x * x;
 else
  return 2.0 - x;
                             .text
                  func:
                      la $t0, const1
                      lwc1 $f16, 0($t0)
                                                 # $f16 = 1.0
                      c.lt.s $f12, $f16
                                                 \# x < 1.0?
                      bclf else
                                                 # br. if false
   El paràmetre x
                      mul.s $f0, $f12, $f12 # x * x
    està en $f12
                              fisi
                      b
```

```
float func (float x)
                           .data
 if (x < 1.0)
                 const1: .float 1.0
 return x * x;
 else
  return 2.0 - x;
                           .text
                 func:
                    la $t0, const1
                    lwc1 $f16, 0($t0) # $f16 = 1.0
                    c.lt.s $f12, $f16  # x < 1.0?
                                           # br. if false
                    bclf else
    Calculem la
                    mul.s $f0, $f12, $f12 # x * x
   constant 2.0
                           fisi
                    b
                 else:
                           $f16, $f16, $f16 # 1.0 + 1.0
                    add.s
```

```
float func (float x)
                          .data
 if (x < 1.0)
                const1: .float 1.0
 return x * x;
 else
  return 2.0 - x;
                         .text
                func:
                   la $t0, const1
                   lwc1 $f16, 0($t0) # $f16 = 1.0
                   c.lt.s $f12, $f16 # x < 1.0?
                                        # br. if false
                   bc1f else
                   mul.s $f0, $f12, $f12 # x * x
                          fisi
                   b
                else:
                   add.s $f16, $f16, $f16 # 1.0 + 1.0
                   sub.s $f0, $f16, $f12 # 2.0 - x
                fisi:
                          $ra
                   jr
```

Aritmètica de coma flotant

- o Introducció
- Estàndard IEEE-754: Format
- o Rang, precisió i arrodoniment
- Codificacions especials, underflow i nombres denormals
- Conversions entre base 10 i base 2
- o Operacions: suma, resta, bits de guarda, multiplicació i divisió
- Coma flotant en MIPS
- Associativitat de la suma

Associativitat de la suma

• La suma de números en coma flotant no té la propietat associativa

$$x + (y + z) \neq (x + y) + z$$

Associativitat de la suma

La suma de números en coma flotant no té la propietat associativa

$$x + (y + z) \neq (x + y) + z$$

• Suposem
$$x = -1.5 \times 10^{38}$$
, $y = 1.5 \times 10^{38}$, $z = 1.0$

$$x + (y + z)$$
 = -1,5 × 10³⁸ + (1,5 × 10³⁸ + 1,0)
= -1,5 × 10³⁸ + 1,5 × 10³⁸
= 0,0

Associativitat de la suma

La suma de números en coma flotant no té la propietat associativa

$$x + (y + z) \neq (x + y) + z$$

• Suposem $x = -1.5 \times 10^{38}$, $y = 1.5 \times 10^{38}$, z = 1.0 $x + (y + z) = -1.5 \times 10^{38} + (1.5 \times 10^{38} + 1.0)$ $= -1.5 \times 10^{38} + 1.5 \times 10^{38}$ = 0.0 $(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0$ = 0.0 + 1.0

= 1.0

Suposem *x*=3DC00046, *y*=0xC0800004

1. Els escrivim en binari

Suposem x=3DC00046, y=0xC0800004

1. Els escrivim en binari

2. Separem els camps: signe, exponent, fracció

Suposem x=3DC00046, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 \ 1101 \ 1100 \ 0000 \ 0000 \ 0000 \ 0100 \ 0110
y = 1100 \ 0000 \ 1000 \ 0000 \ 0000 \ 0000 \ 0100
```

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

```
01111011 = 123 \rightarrow E = 123 - 127 = -4

10000001 = 129 \rightarrow E = 129 - 127 = 2
```

Suposem x=3DC00046, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 \ 1101 \ 1100 \ 0000 \ 0000 \ 0000 \ 0100 \ 0110
y = 1100 \ 0000 \ 1000 \ 0000 \ 0000 \ 0000 \ 0100
```

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

Suposem x=3DC00046, y=0xC0800004

1. Els escrivim en binari

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

4. Igualem al major (2) l'exponent de x, desplaçant la coma 6 llocs

Suposem x=3DC00046, y=0xC0800004

1. Els escrivim en binari

```
x = 0011 \ 1101 \ 1100 \ 0000 \ 0000 \ 0000 \ 0100 \ 0110
y = 1100 \ 0000 \ 1000 \ 0000 \ 0000 \ 0000 \ 0100
```

2. Separem els camps: signe, exponent, fracció

3. Convertim exponents a decimal, afegim bit ocult, i el signe

6. Sumar magnituds: signes diferents \Rightarrow restar de la major: |y| - |x|

6. Sumar magnituds: signes diferents \Rightarrow restar de la major: |y| - |x|

6. Sumar magnituds: signes diferents \Rightarrow restar de la major: |y| - |x|

7. Normalitzar

```
|z| = 1,1111010000000000000101 \times 2^{1}
```

8. Arrodonir (amunt)

```
1,1111010000000000000101 × 2<sup>1</sup>

|z| = 1,1111010000000000000110 × 2<sup>1</sup>
```

6. Sumar magnituds: signes diferents \Rightarrow restar de la major: |y| - |x|

7. Normalitzar

$$|z| = 1,111101000000000000010111 \times 2^{1}$$

8. Arrodonir (amunt)

9. Codificar exponent (en excés)

$$E \rightarrow 1+127 = 128 = 10000000$$

6. Sumar magnituds: signes diferents \Rightarrow restar de la major: |y| - |x|

7. Normalitzar

```
|z| = 1,11110100000000000010111 \times 2^{1}
```

8. Arrodonir (amunt)

9. Codificar exponent (en excés)

$$E \rightarrow 1+127 = 128 = 10000000$$

10. Ajuntar signe (negatiu=1), exponent i fracció (sense el bit ocult)