# Homework 4: Clustering and EM

This homework assignment focuses on different unsupervised learning methods from a theoretical and practical standpoint. In Problem 1, you will explore Hierarchical Clustering and experiment with how the choice of distance metrics can alter the behavior of the algorithm. In Problem 2, you will derive from scratch the full expectation-maximization algorithm for fitting a Gaussian mixture model. In Problem 3, you will implement K-Means clustering on a dataset of handwritten images and analyze the latent structure learned by this algorithm.

There is a mathematical component and a programming component to this homework. Please submit your PDF and Python files to Canvas, and push all of your work to your GitHub repository. If a question requires you to make any plots, please include those in the writeup.

## Hierarchical Clustering [7 pts]

At each step of hierarchical clustering, the two most similar clusters are merged together. This step is repeated until there is one single group. We saw in class that hierarchical clustering will return a different result based on the pointwise-distance and cluster-distance that is is used. In this problem you will examine different choices of pointwise distance (specified through choice of norm) and cluster distance, and explore how these choices change how the HAC algorithm runs on a toy data set.

#### Problem 1

Consider the following four data points in  $\mathbb{R}^2$ , belonging to three clusters: the black cluster consisting of  $\mathbf{x}_1 = (0.1, 0.5)$  and  $\mathbf{x}_2 = (0.35, 0.75)$ , the red cluster consisting of  $\mathbf{x}_3 = (0.28, 1.35)$ , and the blue cluster consisting of  $\mathbf{x}_4 = (0, 1.01)$ .



Different pointwise distances  $d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_p$  can be used. Recall the definition of the  $\ell_1$ ,  $\ell_2$ , and  $\ell_{\infty}$  norm:

$$\|\mathbf{x}\|_1 = \sum_{j=1}^m |x_i|$$
  $\|\mathbf{x}\|_2 = \sqrt{\sum_{j=1}^m x_i^2}$   $\|\mathbf{x}\|_{\infty} = \max_{j \in \{1, \dots, m\}} |x_j|$ 

Also recall the definition of min-distance, max-distance, centroid-distance, and average-distance between two clusters (where  $\mu_G$  is the center of a cluster G):

$$\begin{aligned} d_{\min}(G, G') &= & \min_{\mathbf{x} \in G, \mathbf{x}' \in G'} d(\mathbf{x}, \mathbf{x}') \\ d_{\max}(G, G') &= & \max_{\mathbf{x} \in G, \mathbf{x}' \in G'} d(\mathbf{x}, \mathbf{x}') \\ d_{\text{centroid}}(G, G') &= & d(\boldsymbol{\mu}_G, \boldsymbol{\mu}_{G'}) \\ d_{\text{avg}}(G, G') &= & \frac{1}{|G||G'|} \sum_{\mathbf{x} \in G, \mathbf{x}' \in G'} d(\mathbf{x}, \mathbf{x}') \end{aligned}$$

- 1. Draw the 2D unit sphere for each norm, defined as  $S = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| = 1 \}$ . Feel free to do it by hand, take a picture and include it in your pdf.
- 2. For each norm  $(\ell_1, \ell_2, \ell_\infty)$  and each clustering distance, specify which two clusters would be the first to merge.
- 3. Draw the complete dendrograms showing the order of agglomerations for the  $\ell_2$  norm and each of the clustering distances. We have provided some code to make this easier for you. You are not required to use it.



Figure 1: Problem 1, 2d unit ball for 11, 12, and  $1\infty$  norms

### Solution: Hierarchical Clustering Clustering

1. Draw the 2D unit sphere for each norm, defined as  $S = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| = 1 \}$ . Feel free to do it by hand, take a picture and include it in your pdf.

See fig. 1

2. For each norm  $(\ell_1, \ell_2, \ell_\infty)$  and each clustering distance, specify which two clusters would be the first to merge.

See table 1.

Table 1: First clusters to merge

|               | L1 norm                 | L2 norm     | $L\infty$ norm |
|---------------|-------------------------|-------------|----------------|
| Min dist      | black, blue black, blue | black, blue | red, blue      |
| Max dist      |                         | red, blue   | red, blue      |
| Avg dist      | red, blue               | red, blue   | red, blue      |
| Centroid dist |                         | black, blue | black, blue    |

3. Draw the complete dendrograms showing the order of agglomerations for the  $\ell_2$  norm and each of the clustering distances. We have provided some code to make this easier for you. You are not required to use it.

See fig. 2

For reference on distances used, see table 2

# Expectation-Maximization for Gaussian Mixture Models [7pts]

In this problem we will explore expectation-maximization for the Gaussian Mixture model. Each observation  $\mathbf{x}_i$  is a vector in  $\mathbb{R}^D$ . We posit that each observation comes from *one* mixture component. For this problem, we will assume there are c components. Each component  $k \in \{1, \ldots, c\}$  will be associated with a mean vector  $\mu_k \in \mathbb{R}^D$  and a covariance  $\Sigma_k$ . Finally let the (unknown) overall mixing proportion of the components be  $\boldsymbol{\theta} \in [0, 1]^c$ , where  $\sum_{k=1}^c \theta_k = 1$ .

Our generative model is that each of the n observations comes from a single component. We encode observation i's component-assignment as a one-hot vector  $\mathbf{z}_i \in \{0,1\}^c$  over components. This one-hot vector is drawn from  $\boldsymbol{\theta}$ ; then,  $\mathbf{x}_i$  is drawn from  $N(\mu_{z_i}, \Sigma_{z_i})$ . Formally documents are generated in two steps:

$$\mathbf{z}_i \sim \operatorname{Categorical}(\boldsymbol{\theta})$$

$$\mathbf{x}_i \sim N(\mu_{z_i}, \Sigma_{z_i})$$



Figure 2: Problem 1, dendogram for clustering with l2 norm and each of the clustering distances.

|                                        | L1 norm       |                              | L2 norm       |                                | LâĹđ norm     |                              |
|----------------------------------------|---------------|------------------------------|---------------|--------------------------------|---------------|------------------------------|
| min dist First merge Second merge      | black, blue   | (merge dist)<br>0.61<br>0.62 | black, blue   | (merge dist)<br>0.436<br>0.440 | red, blue     | (merge dist)<br>0.34<br>0.35 |
| max dist First merge Second merge      | black, blue   | 0.61<br>1.03                 | red, blue     | 0.440<br>0.869                 | red, blue     | 0.34<br>0.34                 |
| avg dist First merge Second merge      | red, blue all | 0.62<br>11.68                | red, blue all | 0.440<br>9.715                 | red, blue all | 0.34<br>9.24                 |
| centroid dist First merge Second merge | black, blue   | 0.25<br>1.09                 | black, blue   | 0.210<br>0.657                 | black, blue   | 0.205<br>0.515               |

Table 2: Problem 1. Not asked for, but here are actual merge distances as output by python script for each combination of norms (distances) and clustering criteria

### Problem 2

1. Intractability of the Data Likelihood Let  $\phi_k$  represent all the parameters associated with a component  $(\mu_k, \Sigma_k)$ . We are generally interested in finding a set of parameters  $\phi_k$  that maximize the data likelihood  $\log p(\{x_i\}|\{\phi_k\})$ . Expand the data likelihood to include the necessary sums over observations  $x_i$  and latents  $z_i$ . Why is optimizing this loss directly intractable?

#### 2. Complete-Data Log Likelihood

Define the complete data for this problem to be  $D = \{(\mathbf{x}_i, \mathbf{z}_i)\}_{i=1}^n$ . Write out the complete-data (negative) log likelihood.

$$\mathcal{L}(\boldsymbol{\theta}, \{\mu_k, \Sigma_k\}_{k=1}^c) = -\ln p(D \mid \boldsymbol{\theta}, \{\mu_k, \Sigma_k\}_{k=1}^c).$$

- 3. Expectation Step Our next step is to introduce a mathematical expression for  $\mathbf{q}_i$ , the posterior over the hidden topic variables  $\mathbf{z}_i$  conditioned on the observed data  $\mathbf{x}_i$  with fixed parameters, i.e  $p(\mathbf{z}_i|\mathbf{x}_i;\boldsymbol{\theta},\{\mu_k,\Sigma_k\}_{k=1}^c)$ .
  - Write down and simplify the expression for  $\mathbf{q}_i$ .
  - Give an algorithm for calculating  $\mathbf{q}_i$  for all i, given the observed data  $\{\mathbf{x}_i\}_{i=1}^n$  and settings of the parameters  $\boldsymbol{\theta}$  and  $\{\mu_k, \Sigma_k\}_{k=1}^c$ .
- 4. **Maximization Step** Using the  $\mathbf{q}_i$  estimates from the Expectation Step, derive an update for maximizing the expected complete data log likelihood in terms of  $\boldsymbol{\theta}$  and  $\{\mu_k, \Sigma_k\}_{k=1}^c$ .
  - Derive an expression for the expected complete-data log likelihood in terms of  $\mathbf{q}_i$ .
  - Find an expression for  $\theta$  that maximizes this expected complete-data log likelihood. You may find it helpful to use Lagrange multipliers in order to force the constraint  $\sum \theta_k = 1$ . Why does this optimized  $\theta$  make intuitive sense?
  - Apply a similar argument to find the value of the  $(\mu_k, \Sigma_k)$ 's that maximizes the expected complete-data log likelihood.
- 5. Finally, compare this EM approach to the generative model for classification in Homework 2. How are the computations similar? Different?

### Solution EM for Gaussian Mixture Models

#### 1. Intractability of the Data Likelihood

Let  $\phi_k$  represent all the parameters associated with a component  $(\mu_k, \Sigma_k)$ . We are generally interested in finding a set of parameters  $\phi_k$  that maximize the data likelihood  $\log p(x_i|\phi_k)$ . Expand the data likelihood to include the necessary sums over observations  $x_i$  and latents  $z_i$ .

Suppose we observe some data and we would like to calculate the likelihood of observing such data.

Let  $\phi_k$  be our model parameters. If we assume a mixture of Gaussians model,  $\phi_k$  consists of the  $\mu_k$  and  $\Sigma_k$  for each component (aka class).

Note: The "complete-data" case is if we knew the true class labels, in which case we cold directly calculate  $p(\mathbf{x}, \mathbf{z}|\phi)$ . However, as  $\mathbf{z}$  is a latent (unobservable) variable, we may only calculate  $p(\mathbf{x}|\phi)$ .

(a) Let  $\theta_k$  indicate the **class** distribution for our latent variable z's.

$$p(\mathbf{z} = C_k) = \theta_k, \text{ for } k \in \{1, ..., c\}$$
 (1)

For this problem we assume  $z_i$  to be identically distributed, so that  $\theta_k$  is the same for each.

(b) Let our class conditional distribution be

$$p(\mathbf{x}|\mathbf{z} = C_k) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (2)

As per the s17 lecture 14 slides, the log likelihood of observed data x may thus be written

$$\ln p(\mathbf{x}_i|\phi) = \ln \sum_{k=1}^{c} \theta_k \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (3)

That is, the probability of our  $\mathbf{x}$ 's given our model parameters is equal to the sum, across all possible classes, of the probability  $\theta_k$  of  $\mathbf{x}_k$  being from each class times the normal distribution from where  $\mathbf{x}$  would be drawn if it was of class k.

Question: Why is optimizing this loss directly intractable?

We cannot find a closed solution for this, as the log of the sum prevents us from being able to decompose it by  $\phi$ . In general, it is hard to simplify the log of a sum of expressions (unliked decomposing a log of a product of expressions).

#### 2. Complete-Data Log Likelihood

Define the complete data for this problem to be  $D = \{(\mathbf{x}_i, \mathbf{z}_i)\}_{i=1}^n$ . Write out the complete-data (negative) log likelihood.

$$\mathcal{L}(\boldsymbol{\theta}, \{\mu_k, \Sigma_k\}_{k=1}^c) = -\ln p(D \mid \boldsymbol{\theta}, \{\mu_k, \Sigma_k\}_{k=1}^c).$$

As before:

- (a) Let D be the data x, z.
- (b) Let  $\phi$  be the parameters  $\theta$  (class distribution) as well as  $\{\mu_k, \Sigma_k\}_{k=1}^c$  (parameters for class conditional distribution.)

Per the definition of a joint probability distribution, the probability of both  $x_i$  and  $z_i$  happening is equal to the probability of  $z_i$  happening, times the probability of  $x_i$  happening given that  $z_i$  happened.

$$p(D) = p(\mathbf{x}_i, \mathbf{z}_i) = p(\mathbf{z}_i)p(\mathbf{x}_i|\mathbf{z}_i)$$
(4)

Let  $z_{ik}$  be the indicator variable, which is 1 only when  $x_i$  is of true class k, and zero otherwise.

We can now write out the negative log of the complete-data log likelihood:

$$-\ln p(D|\phi) = -\ln p(\mathbf{x}|\phi) - \ln p(z|\phi) \tag{5}$$

$$p(\mathbf{z}_i) = \prod_{k=1}^c \theta_z^{z_{ik}} \tag{6}$$

$$p(\mathbf{x}_i|\mathbf{z}_i) = \prod_{k=1}^{c} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{ik}}$$
(7)

$$p(\mathbf{x}_{i}|\mathbf{z}_{i}) = \prod_{k=1}^{c} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{ik}}$$

$$p(\mathbf{z}_{i})p(\mathbf{x}_{i}|\mathbf{z}_{i}) = \prod_{k=1}^{c} \theta_{k}^{z_{ik}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{ik}}$$
(8)

Note by thinking carefully that in the product series case, we use the indicator variable as an exponent (think through what raising something to the power of 1 or 0 does). In a product series, multiplying by one "does nothing", while in a summation series, summing a zero "does nothing".

Taking the log of eq. (8) we get that

$$\ln p(\mathbf{x}_i, \mathbf{z}_i | \phi) = -\sum_{k=1}^{c} z_{ik} \ln \theta_k - \sum_{k=1}^{c} z_{ik} \ln \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{ik}}$$
(9)

- 3. Expectation Step Our next step is to introduce a mathematical expression for  $\mathbf{q}_i$ , the posterior over the hidden topic variables  $\mathbf{z}_i$  conditioned on the observed data  $\mathbf{x}_i$  with fixed parameters, i.e  $p(\mathbf{z}_i|\mathbf{x}_i;\boldsymbol{\theta},\{\mu_k,\Sigma_k\}_{k=1}^c).$ 
  - Write down and simplify the expression for  $\mathbf{q}_i$ .

As per section 8 notes, problem 3.4:

$$\mathbf{q}_i = p(\mathbf{z}_i = C_k | \mathbf{x}_i, \phi) \tag{10}$$

$$\propto p(\mathbf{z}_i, \phi) p(\mathbf{x}_i | \mathbf{z}_i, \phi)$$
 (11)

$$\propto \theta_k^{z_{ik}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{ik}} \tag{12}$$

• Give an algorithm for calculating  $\mathbf{q}_i$  for all i, given the observed data  $\{\mathbf{x}_i\}_{i=1}^n$  and settings of the parameters  $\boldsymbol{\theta}$  and  $\{\mu_k, \Sigma_k\}_{k=1}^c$ .

We have settings for  $\theta$  and  $\{\mu_k, \Sigma_k\}$  (specifically: if it's the first iteration, these are chosen randomly, otherwise these are output from the previous iteration); and that we have observed data x. We see that our posterior belief is our belief about our the distribution of our class variables z given our observed data x (In k-means, the posterior would be our belief about the location of our centroids given our unlabeled data).

Above, we wrote down how to calculate  $q_i$  for one datapoint (implicitly, 11 may be denoted more accurately as  $(q_i)_k$ . That is to say, we will have i number of vectors  $q_i$ , where each vector is of length k:

- 4. **Maximization Step** Using the  $\mathbf{q}_i$  estimates from the Expectation Step, derive an update for maximizing the expected complete data log likelihood in terms of  $\boldsymbol{\theta}$  and  $\{\mu_k, \Sigma_k\}_{k=1}^c$ .
  - Derive an expression for the expected complete-data log likelihood in terms of  $\mathbf{q}_i$ .

Now we have the true class labels (well, our estimate of them) from the expectation step. We can now calculate, as per slide 19, sp17 lec14, the expected (positive) complete-data log likelihood (which we will next try to maximize):

$$\mathbb{E}_{Z}[\mathcal{L}(\phi)] = \mathbb{E}_{Z}\left[\sum_{i=1}^{n} \ln(p(\mathbf{x}_{i}, \mathbf{z}_{i}|\phi))\right]$$
(13)

$$= \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \ln \theta_k + \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \ln \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(14)

$$= \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \left( \ln \theta_k + \ln \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$
 (15)

(25 revisited)

• Find an expression for  $\theta$  that maximizes this expected complete-data log likelihood. You may find it helpful to use Lagrange multipliers in order to force the constraint  $\sum \theta_k = 1$ . Why does this optimized  $\theta$  make intuitive sense?

To maximize given a constraint, we will use the method of Lagrangian multipliers. As we are maximizing with respect to  $\theta_k$ , we may also drop the terms (on the right) not including  $\theta$ . Previously, in homework 2, we had  $z_{ik}$  as our indicator variable. However, we now treat z as a latent variable, and instead we have a "soft estimate" q variable.

$$\mathcal{L}(\theta_{\mathbf{k}}, \lambda) = \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \ln \theta_k + \lambda \left(\sum_{k=1}^{c} \theta_k - 1\right)$$
(16)

Take the partial derivative of  $\mathcal{L}$  with respect to  $\theta_k$  and set it equal to zero, and noting that

$$\sum_{i} q_{ik} = n_k \tag{17}$$

(see homework 2 problem 2.2 for more details)

$$0 = \sum_{i=1}^{n} \frac{q_{ik}}{\theta_k} - \lambda \tag{18}$$

$$\theta_k = \frac{n_k}{\lambda} \tag{19}$$

Take the partial derivative with respect to  $\lambda$  and set it equal to zero to get

$$0 = \sum_{k=1}^{c} \theta_k - 1 \tag{20}$$

(21)

Now let's solve from lambda by combining eq. (19) and eq. (21)

$$0 = \sum_{k=1}^{c} \frac{n_k}{\lambda} - 1 \tag{22}$$

$$\lambda = n_k \tag{23}$$

Returning to eq. (19) we now see that

$$\theta_k = \frac{n_k}{n} \tag{24}$$

(Note that since we are actually estimating  $\theta_k$ , it would be clearer to write  $\hat{\theta_k}$ )

This solution for  $\hat{\theta_k}$  makes sense: the optimal (prior) probability of a given  $x_i$  belong to a class k is equal to the proportion of observations (we've estimated in this iteration) that come from class k.

• Apply a similar argument to find the value of the  $(\mu_k, \Sigma_k)$ 's that maximizes the expected completedata log likelihood. For  $\mu_k$  case.

As in homework 2:

$$= \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \left( \ln \theta_k + \ln \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$
 (25)

To solve for optimal  $\mu_k$ , taking the derivative of eq. (25) with respect to  $\mu_k$  and set to zero. Note that the left hand terms drop out. Furthermore, we remove terms in the log gaussian without  $\mu_k$ 

$$= \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \left( \ln \theta_k + \ln \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \ln \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
(25 revisited)

The natural log of the Gaussian is equal to

$$= -\frac{1}{2} \left( D \ln 2\pi + \ln |\mathbf{\Sigma}| + (\mathbf{x}_i - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) \right)$$
 (26)

$$= -\frac{1}{2} (\mathbf{x}_i - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k)$$
 (27)

Thus we get that we are solving for  $\mu_k$  s.t.

$$\frac{\partial L}{\partial \boldsymbol{\mu}_k} = -\frac{1}{2} \sum_{i=1}^n \sum_{k=1}^c q_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) + const$$
 (28)

$$=0 (29)$$

Carrying the derivative out:

$$0 = -\frac{1}{2} (\mathbf{\Sigma}^{-1} + \mathbf{\Sigma}^{-T}) \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k)$$
 (30)

$$0 = \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} (\mathbf{x}_i - \boldsymbol{\mu}_k)$$

$$(31)$$

$$0 = \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \mathbf{x}_i - q_{ik} \boldsymbol{\mu}_k \tag{32}$$

$$\sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \boldsymbol{\mu}_{k} = \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \mathbf{x}_{i}$$
(33)

(34)

As the  $\mu_k$  is the same for all points in the class,  $\sum_{k=1}^c q_{ik} \mu_k$  is simply  $n_k \mu_k$ . Thus we get that

$$\boldsymbol{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n q_{ik} \mathbf{x}_i \tag{35}$$

Apply a similar argument to find the value of the  $(\mu_k, \Sigma_k)$ 's that maximizes the expected completedata log likelihood.  $\Sigma_k$  case.

As before for  $\mu_k$ 

$$\hat{\Sigma}_k = \frac{1}{n_k} \sum_{i=1}^n q_{ik} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T$$
(36)

Dropping terms without  $\Sigma$ 

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{k=1}^{c} q_{ik} \left[ -\frac{1}{2} (\ln |\mathbf{\Sigma}| + (\mathbf{x}_i - \boldsymbol{\mu}_k)^T \Sigma^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k)) \right]$$
(37)

Taking the partial derivative and collapsing sums, we get

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{n_k}{2} \mathbf{\Sigma}_k - \frac{1}{2} \sum_{i=1}^n q_{ik} (x_i - \hat{\boldsymbol{\mu}}_k) (x_i - \hat{\boldsymbol{\mu}}_k)^T$$
(38)

(39)

For our final answer

$$\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n q_{ik} (x_i - \boldsymbol{\mu}_k) (x_i - \boldsymbol{\mu}_k)^T$$
(40)

5. Finally, compare this EM approach to the generative model for classification in Homework 2. How are the computations similar? Different?

In homework 2, classification with generative models, we view the data x that we observe as being generated by a random variable y. We estimate the joint probability model p(x,y) to create predications about y given future observations of x.

$$[y] \rightarrow [x]$$

In the EM approach, we similarly consider the data to come from a generative \*process\*, and apply Baye's rule to model the posterior distribution aka our estimate of the class label given a particular datapoint x and parameters for the distribution from which z is drawn. But we consider that this process involves an unknown and unobservable random variable z. Thus, we do not know which sample came from which class, and we must use EM as a way to maximize the likelihoods we are solving for.

$$[z] \rightarrow [x]$$

In short, homework 2 was supervised learning, and the EM approach is unsupervised learning. We are looking at the discrete model in both homework 2 and this homework.

# K-Means [15 pts]

For this problem you will implement K-Means clustering from scratch. Using numpy is fine, but don't use a third-party machine learning implementation like scikit-learn. You will then apply this approach to clustering of image data.

We have provided you with the MNIST dataset, a collection of handwritten digits used as a benchmark of image recognition (you can learn more about the data set at <a href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a>). The MNIST task is widely used in supervised learning, and modern algorithms with neural networks do very well on this task.

Here we will use MNIST unsupervised learning. You have been given representations of 6000 MNIST images, each of which are  $28 \times 28$  greyscale handwritten digits. Your job is to implement K-means clustering on MNIST, and to test whether this relatively simple algorithm can cluster similar-looking images together.

#### Problem 3

The given code loads the images into your environment as a 6000x28x28 array.

- Implement K-means clustering from different random initializations and for several values of K using the  $\ell_2$  norm as your distance metric. (You should feel free to explore other metrics than the  $\ell_2$  norm, but this is strictly optional.) Compare the K-means objective for different values of K and across random initializations.
- For three different values of K, and a couple of random restarts for each, show the mean images for each cluster (i.e., for the cluster prototypes), as well as the images for a few representative images for each cluster. You should explain how you selected these representative images. To render an image, use the pyplot imshow function.
- Are the results wildly different for different restarts and/or different values of K? For one of your runs, plot the K-means objective function as a function of iteration and verify that it never increases.

As in past problem sets, please include your plots in this document. (There may be several plots for this problem, so feel free to take up multiple pages.)

#### Solution: K-Means

• Implement K-means clustering from different random initializations and for several values of K using the  $\ell_2$  norm as your distance metric. (You should feel free to explore other metrics than the  $\ell_2$  norm, but this is strictly optional.) Compare the K-means objective for different values of K and across random initializations.

From the following table 3 we may observe that the objective decreases as K increases. Additionally, for each run of K, the final objective (cost) is fairly consistent, without large variations, compared to the changes in final cost between different K values.

Table 3: K-Means l2 objective for different values of K. Normalized = divided by 6000\*28\*28, for readability.

| K (# clusters) | Objective (normalized) | Objective  |
|----------------|------------------------|------------|
| 2              | 2.2632                 | 10646092.8 |
| 2              | 2.2631                 | 10645622.4 |
| 2              | 2.2631                 | 10645622.4 |
| 5              | 2.1117                 | 9933436.8  |
| 5              | 2.1191                 | 9968246.4  |
| 5              | 2.1183                 | 9964483.2  |
| 10             | 1.99                   | 9360960    |
| 10             | 1.9888                 | 9355315.2  |
| 10             | 1.9868                 | 9345907.2  |
| 15             | 1.9222                 | 9042028.8  |
| 15             | 1.9212                 | 9037324.8  |
| 15             | 1.9187                 | 9025564.8  |

• For three different values of K, and a couple of random restarts for each, show the mean images for each cluster (i.e., for the cluster prototypes), as well as the images for a few representative images for each cluster. You should explain how you selected these representative images. To render an image, use the pyplot imshow function.

In the representative images, each row indicates images from one cluster. For each row, the three left images are chosen as the three closest (as defined by the objective function) to the centroid, and the three right images are the three worst scoring images.

#### Mean images for k = (2,5,10,15) clusters, with 3 runs each k = 15k = 2k = 10MNIST Kmeans: 50 iters,2 clusters Normalized Obj: 2.2632 MNIST Kmeans: 50 iters,10 clusters Normalized Obj: 1.9900 0 8 1 MNIST Kmeans: 50 iters,2 clusters Normalized Obj: 2.2631 B k = 5 / MNIST Kmeans: 50 iters,5 clusters Normalized Obj: 2.1117 -8 2 9 . 1 9 6 6 9 S



Figure 4: Problem 3, Representative images, note that K=15 is not depicted here. Left 3 are closest to centroid by l2 norm, right 3 are furthest.

• Are the results wildly different for different restarts and/or different values of K? For one of your runs, plot the K-means objective function as a function of iteration and verify that it never increases.

Compared to the k-means objective (as answered in part 1), The representative images / cluster results do seem to vary noticeably between runs, aside from the K=2 case, which exhibits little variation. The results do vary even more for different values of K; for K=10, the mean images will sometimes miss entire numbers, while for k=15 we will get repeats of a few of the values even if we get most of the digits.

For the following, we graph a run of the KMeans algorithm for K=10 clusters. The run converged after 24 iterations (where by converge I set it to mean that the previous and current objective value did not change).



Figure 5: Problem 3: Verification that K-means objective function decreases as a function of iteration

### **Problem 4** (Calibration, 1pt)

Approximately how long did this homework take you to complete?

30-40 hours

### Name, Email, and Collaborators

Name: Nao Ouyang

Email: nouyang@g.harvard.edu

Collaborators: Eric Buse Philip David