Codebook for CANDOUR Conjoint Analysis

Raymond Duch et al

19/12/2020

All data used for the conjoint analysis and variables is stored within the data/nbh_clean_global.* files. We provide a raw .CSV version and a formatted .Rds file which contains the same data but with factor-variable formatting pre-applied to the conjoint attribute variables.

Each row of the dataset is a hypothetical vaccine recipient, or "profile". Two profiles comprise a single conjoint "round", and forms the basis of the dichotomous choice the respondent makes between potential recipients. Each respondent is presented with 8 rounds of the conjoint experiment, and therefore makes 8 choices.

Respondent Characteristics

id – Character variable – Distinguishes individual respondents in the dataset, and takes the form of [country] and a unique number corresponding to each respondent within that country.

	id
Obs.	214960
Unique	13435
Missing	0

E.g.,

[1] "Canada_1, Canada_2, Canada_3, Canada_4, Canada_5, ..."

country - Country location of respondent.

Value	Obs
Australia	21600
Brazil	22784
Canada	18400
Chile	17088
China	20656
Colombia	13728
France	16496
India	10864
Italy	16976
Spain	18448
Uganda	2688
UK	16912
US	18320
Missing	(

 \mathbf{age} – Age of respondent.

	age
Obs.	214960
Mean	44.7
Std.Dev.	47.4
Min.	2
Max.	1987
Missing	0

gender – Gender of respondent.

Value	Obs.
Female	107136
Male	107024
Other	272
Missing	528

ideology – Ideological self-placement of respondent on an 11-point scale from 0 (Left) to 10 (Right). Note, this question was not asked in China.

	ideology
Obs.	214960
Mean	5.2
Std.Dev.	2.6
Min.	0
Max.	10
Missing	50592

 ind_inc – Dichotomous classification of respondents' income level. High and Low values are relative to the median estimated income for each country.

Value	Obs.
High	85440
Low	106176
Missing	23344

education – Trichotomous classification of respondents' level of education, relative to the educational levels within each country.

Value	Obs.
High	98816
Medium	75616
Low	30224
Missing	10304

hes_covid_2 - Five-point Likert scale from Strongly agree to Strongly disagree, asking respondents' opinions on the following statement: "I am concerned about serious side effects of the COVID-19 vaccine".

Value	Obs.
Strongly agree	64400
Agree	75312
Disagree	21504
Neither agree nor disagree	39632
Strongly disagree	8864
Do not know	5040
Missing	208

wtp_access - Response to the following prompt:

"Talking about vaccines in general, in some countries vaccines are only available from the government either at low or no cost. In some countries vaccines are only available for private purchase. And in some countries vaccines are available from the government but citizens can pay privately to gain early access.

Which of these three approaches do you think should be applied to the COVID-19 vaccine? Would you prefer

- Vaccines only made available by government at low or no cost?
- Vaccines are only available for private purchase?
- Vaccines made available by government but citizens can pay privately to gain access?"

Value	Obs.
Do not know	14448
Vaccines only made available by government at low or no cost	155568
Vaccines made available by government but citizens can pay privately to gain access	38608
Vaccines are only available for private purchase	6128
Prefer not to say	208
Missing	0

wtp_private - Response to the following prompt:

"Consider the following situation: a COVID-19 vaccine becomes available and is provided by government health agencies. For 80 out of 100 people the vaccine would provide protection for at least 18 months. But there are limited initial supplies of the vaccine. For this reason, you would have to wait 6 months before you could receive it. If a COVID-19 vaccine was also available for private purchase and you could receive it immediately would you considering buying it?"

Value	Obs.
Do not know	47440
No	70224
Yes	97152
Prefer not to say	144
Missing	0

 $int_pol_implem_6$ – 0-100 scale, asking respondent's how much they agree with the following statement: "The government should make the COVID-19 vaccine mandatory for everybody"

	$int_pol_implem_6$
Obs.	214960
Mean	57.5
Std.Dev.	37.5
Min.	0
Max.	100
Missing	14720

Conjoint Variables

Meta-data

person - distinguishes rounds of the conjoint experiment, and takes the form of <code>person[i]</code> where <code>i</code> corresponds to the ith comparison between two hypothetical profiles. Each respondent was presented with 8 rounds of the conjoint.

	person
Obs.	214960
Unique	8
Missing	0

candidate – distinguishes the two candidate profiles within each round of the conjoint experiment ("A" or "B").

	candidate
Obs.	214960
Unique	2
Missing	0

ans – indicates which candidate ("A" or "B") the respondent chose in the round of the experiment corresponding to this observation.

	ans
Obs.	214960
Unique	2
Missing	0

select – binary indicator of whether each profile (the unit of observation) was chosen (1) or not (0).

Value	Obs.
1	107480
0	107480
Missing	0

Attributes

 $Note:\ reference\ levels\ for\ each\ attribute\ are\ indicated\ with\ an\ asterisk.$

 ${\bf vulnerability} - {\rm Risk} \ {\rm of} \ {\rm COVID\text{-}19} \ {\rm related} \ {\rm death}.$

Value	Obs.
*Average risk of COVID-19 death	71190
Moderate (Twice the average risk of COVID-19 death)	71839
High (Five times the average risk of COVID-19 death)	71931
Missing	0

 ${\bf transmission}$ – Risk of catching and transmitting the COVID-19 virus.

Value	Obs.
*Average risk of catching and transmitting the COVID-19 virus	71593
Moderate risk (Twice the average risk of catching and transmitting the COVID-19 virus)	71765
High risk (Five times the average risk of catching and transmitting the COVID-19 virus)	71602
Missing	0

income – Income level.

Value	Obs.
*Lowest 20% income level	71439
Average income level	71774
Highest 20% income level	71747
Missing	0

${\bf occupation}-{\bf Occupation\ status.}$

Value	Obs.
*Not working	27068
Non-Key worker: Can work at home	26807
Non-Key worker: Cannot work at home	26919
Key worker: Education and childcare	26738
Key worker: Factory worker	26692
Key worker: Water and electricity service	26920
Key worker: Police and fire-fighting	26819
Key worker: Health and social care	26997
Missing	0

age_category – Age category.

Value	Obs.
*25 years old	53900
40 years old	53715
65 years old	53676
79 years old	53669
Missing Missing	0