Sensitivity of Coastal Adaptation Costs and Decisions to Sea Level and Socioeconomic Uncertainties

RIT

Rochester
Institute of

Technology

Tony Wong¹ Lisa Rennels² Frank Errickson³ Vivek Srikrishnan⁴ David Anthoff² Klaus Keller⁵

tony.wong@rit.edu

¹School of Mathematical Sciences, Rochester Institute of Technology

²Energy and Resources Group, University of California Berkeley ³School of Public and International Affairs, Princeton University

- ⁴Department of Biological and Environmental Engineering, Cornell University
- ⁵Thayer School of Engineering, Dartmouth College

Introduction

- Sea-level rise and coastal flooding pose significant risks to coastal communities
- · Efficacy of strategies to manage these risks depends on:
- uncertainty in future emissions pathways
- uncertainty in future socioeconomic change
- uncertainty in geophysical factors (e.g., climate sensitivity)
- Greater model detail can constrain these uncertainties, but also introduces new uncertainties to represent additional processes
- · So, we use Galveston, TX and New York City as case studies to ask:
- As we increase model complexity, are we gaining information? Or are we awash in uncertainty?
- 2. Which uncertain predictions & parameters most strongly influence coastal risk?

Workflow

Sea-level projections using MimiBRICK1

Antarctic & Greenland ice sheets, thermal expansion, glaciers and ice caps, and land water storage contributions to local sea levels

Deep uncertainties

3 model configurations (BRICK, DOECLIM-BRICK, SNEASY-BRICK) 4 SSP-RCP pathways (SSP1-2.6, SSP2-4.5, SSP4-6.0, SSP5-8.5)

Calibration to observational data

CO₂, temperature, ocean heat uptake, and sea level contributions

Local coastal impacts using MimiCIAM²

Mimi Coastal Impact and Adaptation Model to estimate net present value (NPV) of total adaptation costs from **protection** or **retreat**, and damages from **inundation**, **wetland loss**, and **flooding**

Global sensitivity analysis

- Run model many times, varying uncertain parameters
- How much variance in NPV of total adaptation costs is attributable to each uncertainty?

Results What are probabilistic estimates for NPV of adaptation costs?

Model configurations Lowest Global model BRICK CIAM (coasta complexity DOECLIM-BRICK DOECLIM BRICK SNEASY-BRICK (RCP) Highest SNEASY model CIAM (coastal complexity

Take-aways

- Distributions tighten as model detail added information gained!
- Predictions/parameters most strongly influencing coastal risk:
- Antarctic Ice Sheet Socioeconomic (dryland value, relocation costs) Climate sensitivity
- Role of major ice sheets varies by proximity to site, gravitational effects
- In U.S. Gulf Coast site, CO₂, climatic, and temperature-driven factors important
- This open source framework is readily incorporated into cost-benefit integrated assessment models
 to represent deeply uncertain sea-level impacts and adaptation responses in policy relevant metrics
 such as the social cost of carbon⁴
- Model and analysis codes available from: https://github.com/raddleverse

References

- 1. Wong et al. 2022a, doi: 10.21105/joss.04556
- 2. Wong et al. 2022b, arxiv.org/abs/2211.16460 (accepted, Earth's Future)
- 3. Doss-Gollin & Keller 2022, doi: 10.1002/essoar.10511798.2
- 4. Rennert et al. 2022, doi: 10.1038/s41586-022-05224-9

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award No. DMS-2213432. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

