Types of Models: WHAT's in the BOX

Conceptual......Mathematical

Static......Dynamic: TIME

Lumped......Spatially Distributed: SPACE

Stochastic.....Deterministic

Abstract.....Physically/Process Based

but biggest differences may often be the degree specific processes/parameters are accounted for

Dynamic Models

- * solvers in R: for different types of differential equations;
- library(desolve)
- * Two steps
 - model specification (implement your differential equation as a function)
 - * model application (apply the differential equation to obtain an estimate)

Differential more than one variable

- * For many dynamic systems, you may have more than one dependent variable that you are tracking through time (or space)
- * These variables may interact
- * If the differentials are all with respect to a single independent variable (e.g time) it is an ODE
 - * use ODE solver in R

Predator / Prey Models - Competition Vito Volterra and Alfred Lotka in 1925-6.

Alfred J. Lotka (1880–1949) Founder of Theoretical Ecology

Vito Volterra (1860–1940) Professor of Mathematical Physics, University of Rome

Chemical Reactions

Fish in the Adriatic Sea

- Predator-Prey models
- * A simple approach that assumes
 - prey grow exponentially, with a fixed intrinsic growth rate
 - * a fixed mortality rate of predators
 - * a fixed rate of consumption/predation rate of prey by predators
 - * a fixed conversion rate (ingestion rate) that determines how many "new" predators you get with predation
 - * no environmental effects (e.g no carrying capacity)
- Note this has analog

- * Prey
 - * dprey $/ dt = r_{prey}$ * prey α *prey*pred
- Predator
 - * dpredator $/dt = eff * \alpha * prey*pred <math>mort*pred$

- * As with diffusion, the basic form/ideas in this model can be applied elsewhere
 - economics (firm competition)
 - infectious disease

Differential equation - 1 independent variable "time" -ODE solver

As before, we need to generate our derivative function inputs to function are (time, y, parameters) outputs are derivatives

Our "y" or dependent variable now has two dimensions : pred, and prey; list with a pred and prey component to capture this

We will also have two derivatives - again we will use a list (2-d)

- * Prey. dprey / dt = r_{prey} * prey α *prey*pred
- * Predator. dpredator $/dt = eff * \alpha * prey*pred <math>pmort*pred$

- Visualizing results: two interesting things
 - * Populations over time
 - * Population interactions with each other
- Common in dynamic systems of more than one variable
- Dynamic model of a firm (labor, production, profit)

When does population stop changing?

- * Prey
 - * dprey $/ dt = r_{prey}$ * prey α *prey*pred
- Predator
 - * dpredator $/dt = eff * \alpha * prey*pred <math>mort*pred$

When does population stop changing?

- * derivative are zero
 - * $0 = r_{prey}$ * prey α *prey*pred
 - * $0 = eff * \alpha * prey*pred pmort*pred$
 - * occurs when pred = $r_{prey/\alpha}$
 - * and when prey = $pmort/(eff * \alpha)$

- * Prey
 - * dprey $/ dt = (r_{prey} * (1-prey / K)*) prey <math>\alpha *$ prey * pred
- * Predator
 - * dpredator $/dt = eff * \alpha * prey*pred <math>mort*pred$

Expand to add in carrying capacity to the prey species

Competition Model

- * Species A
 - * dspecies_A / dt = (r_A *(1-species_A / K_A)*) species_A α_{AB} *speciesA*speciesB
- * Species B
 - * dspecies_B / dt = (r_B *(1-species_B / K_B)*) species_B α _{BA}*speciesA*speciesB

Similar to predictor - prey models - building on logistic growth

Dynamic Equations

* Lorenz equations are example of dynamic systems that can exhibit stable and chaotic states depending on parameters and initial conditions

A sample solution in the Lorenz attractor when $\varrho = 28$, $\sigma = 10$, and $\beta = 8/3$

Dynamics

* Lorenz Equations (for fluid dynamics), P, R, B are parameters (fixed values), x,y,z variables that change with time (think of them as coordinates)

$$dx/dt = P(y - x)$$
$$dy/dt = Rx - y - xz$$
$$dz/dt = xy - By$$