

Backward Charings

Start from goal and work backward - 11 will take the good mode first and Salidy -the result

Stack

BALMPS -Already Know as true

first Order logic

Regrescion :-

Evi- obocolate of a coco Ex= 315 Ea2 = 1 5225 Ey=620 55 Ey'= 56550 30 40 Ezy = 28750 35 100 Which Brand is Overpried! .yo 60 50 90 what should be the 110 60 - Fair price? 70 130

prec(y) 60 2 30 40 50 60 20 -> % of coco (2) y= 16.98 + 1.53x $\sqrt{2} = y - \beta = 16.98$ J=16, 98+1.53 X35. β= 7 ερίν - ερίεμ = 1.54

τερί - (ερί)² = 70.52 clasification: (a19)
A categorical
(class) Decision Tree Naîve Bayes Bayenan Network Evaluation of classification models _ Confusion on Anx Evaluation midny - Accuracy ! - Error Rale - precision Recall - FI- Score Confucion modring - Bissamp ontput tetral -0 Predie FN TN -lco

A couracy:
$$\frac{\text{TP+TN}}{\text{TP+FP+TN+FN}} = \frac{100}{165} = 0.9$$

$$F_{1} = 2 * \frac{P * R}{P + R}$$

$$= 0.83 * 0.9$$

$$= 0.86.$$

892:

Actual 1	prediction.	Doctorz prediction.
0 0 0 0 0 0 0	0 1 0 0 0 0 0	O Accuracy O Doctor $1 = \frac{3}{10} = 0.7$ O Doctor $2 = \frac{4}{10} = 0.8$ O' O' O'

poc

poet

0

features - length weight

Tyma: small length, light weight Shak: long length, heavy weight

$$P(Y|X) = P(X \land Y) \rightarrow \text{foint}$$

$$P(X) \Rightarrow \text{marginal}$$

$$P(X \land Y) = P(Y|X) P(X)$$

$$P(X|Y) = P(X \land Y)$$

$$P(Y|X) = P(X|Y) P(Y)$$

$$P(Y|X) = P(X|Y) P(Y)$$

$$P(X|Y) = P(X|Y) P(Y)$$

$$P(X|Y) = P(X|Y) P(Y)$$

	Gender	Ri	èz	وع	Total
1	. Ju	30	82	90	an
×.	F	20	uo	чо	1000
V	70tal	مع	120	130	300

P(X=FAY=R2) = 40 Marganes - 1 11 mil.

p (x=m) = 200

= p(x=mny=Ri)+p(x=mny=R2)+p(x=mny=R3) $=\frac{30}{300} + \frac{90}{300} + \frac{90}{300} = \frac{200}{300}$

Conditionals - p (y=R1/x=m) = 30

 $\frac{P(Y=R_3|X=F)}{Y(Y=R_3)}=\frac{40}{130}.$

Nauc Bayes Classifies:

P(XAY)-goint P(X/Y) - Conditional

b(x) - woording

P(4=0|x= {21,122}) = P(x=0|1x)

= (x)4(r/x)9=(r/x)9 PCYIX) P(x)

P(x/y) = P(xAY)

= p (Y/x) P(x)

P(Y/x) = P(X / Y) = P(x|y) P(y) P(x)

Nature Bayes Assumption (conditional In dependence):

P(x={21,22}) 4=0}

= P(x=21 y=0) & P(x=x2 1y=0)

4 Assume XIF Y2 are Independent given y

Independences

P (x1.x2)

-P CXI)P (XL)

play Golf: -

	Outlook	Temp	Humidity	wind	play
Dony	Value		High _	wenk.	No
1	Sumny	Hot	H	Strong	N
2	SI	H	H	l w	40
8	Overcast	1-1	H	w	7
4	Rainy	mild.	4.55	w	Y
5	R	Cold	Normal	S	N
6	R	C	N	- 1	HEL
7	0	C	N	3	<u>4</u> ,
.8	S	m	Н	w	17
9	-7. S	v c	7	w	4.17
lo	R	J.	N	w	7
-11	5	رها	7	5	Y
12	0	m ·	H	S	7
la	0007	- H	, N	·w	BY
lu	R	.	4	3	N

Day = of Rany, cold 1 High, sketting?

play = yell ?

PCYes | R.C.H, s)=? PCNO | R.C.H, s)=?

P(Y/RIC,H,S) = P(R;C,H,S/Y)P(Y)
P(R,C,H,S)

= P(RiciHisly)P(Y) P(RiciHisly)P(Y)+ P(RiciHisln)P(N)

1

Outlook. P (outlook /play).

	Yes	No !	P Colyes	bC. (No)
5	2	. 3	219	3/5
0	4	.0	419	0
B	3	2.	319	26
Total	. 9	, 5	1 1	

Temp: P (Temp / play)

40年	Yes	No.	PC-lyes)	PC·[NO)
Hot	a	. 2	219	2/5
wild.	4	2	पीन	213
Cold	3		3/9	1/5
Total	9	5		
			7. 1.	3 3

Humidity P(Humidity | play)

Plate of	1.40	1 100	p (. 14a)	p (0/N0)
High	3	24	3/9	1/5
Normal	6		619	
Total	1 9	5	1	

Wind PC wind/play)

4	i ces	Yes	1.70	(p (0 / 4 a)	P (-/No)
	Estading			6/9	3/5
	weak.	. 3	3	3/9,	315
	Total	9	5		P(40)=9/1
	4.		C.	地名	PCN0) = 5/

e)9. (e/2)9(e/H)9. p(H/2)9(s/y) P (R) y P (C) y . P (H) y 18 (4) - P(7) + P(R/N) P(C/N) . P(H/N). P(3/N) . P(H)

= (3/9) (3/4) (3/4) (6/4) (9/14) (3/9) (3/9) (3/9) (6/9) (9/14) + (2/6) (1/5) (4/9) (2/E) (5/14)

0.0158 0.0201

20.7860

Decision Trees-

Fortropy

U for a distribution

freg: [9+,5-]

prob: [2/141 5/14]

Entropy: - 9 hog, 9 - 5 hog, 5/14

Pusity

[14+; O-] pyre

T> Entropy: 0 Low I certainity 1

[10+, 4-]

[7+1 7-] umpure => Entropy: 1 bight Certainity

-7 log_ = -7 log_ = TU

= -1/2 log, -1 -1/2 log, -2

- - bg21/2

= - (log_1 - log_2)

= - log, '+ log, '
= 0+1

Neural Networki-

Data

21	22	9
0.1	0.3	0.03

Lous Emis

1. Mean Square crroy

2. Cross Entrophy

Z=1/2 5 (yi-4i)21-> calculate for all Examples

Backpropagation Cusing Gradient Descent):

1	21	22	4
1	0 - 1	0.3	0.03

$$21 \xrightarrow{\omega_1 = 0.5} \boxed{C} \xrightarrow{\sigma} \cancel{\hat{y}}$$

$$b = 1.83$$

$$\hat{y} = \frac{1}{1+\tilde{\epsilon}^2} = \frac{1}{1+\tilde{\epsilon}^{1.94}} = 0.874352143$$

$$\frac{d^2}{d^2} = -(y-\hat{y})_2 - (0.03 - 0.874352143)$$

$$= 0.844352143$$

$$\frac{\partial \hat{y}}{\partial t} = \hat{y} \left(1 - \hat{y} \right) = 0.874352143 \left(1 - 0.874352143 \right) = 0.013803732$$

$$\frac{d^2}{\partial \omega_1} = \alpha_1 = 0.1$$

$$\frac{\partial t}{\partial \omega_1} = \alpha_2 = 0.3$$

$$\frac{\partial t}{\partial b} = 1$$

$$\sqrt{\omega_1} = \frac{\partial x}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \hat{z}} \cdot \frac{\partial \hat{z}}{\partial \omega} = 0.84x - x 0.01 \times 0.1$$

$$= 0.001165$$

New parameter Valua:

$$\omega_1 = 0.5 - 1 \times 0.001165$$

$$= 0.498835$$

New 9:-