—,	选择	题																
	1. 4	4185:	已知	扣一身	色学	七照身	付在钠:	表面。	上,狈	得き	化电	子的最	大动	能是	1.2 e	V,	而钠的	约红
限》	支长是	5400	Å,	那么	入射	光的	波长是	Ē.										
_	(A)	53	350	Å		(B)	500	00 Å		((C)	435	0 Å		(D)	3550	Å
L		J																
.15												红限波						
											勺绝.	对值为	<i>e</i>)在	垂直	十極均		半面月	习作
半名							射光光				,					,		
		$\frac{hc}{\lambda_0}$			<u>h</u>	<u>c</u>	(eRB	$)^2$			<u>hc</u>	$+\frac{eR}{n}$	PB			<u>hc</u>		
	(A)	$\lambda_{ m o}$		(B)	λ	′0 —	$\overline{2m}$		(C	λ_0	+	n	((D)	λ_0	+2e	RB
Γ	(11)	7		(D)	,				,	<i>(C)</i>				,	(D)			
_]单色	光照射	寸某利	中金属	时,	逸ŀ	出光电	子的。	最大云	力能为	$1 E_K$: 若己	女用
频3												大动能	为.					
												hv-			(I))	hv+	E_K
[()					,				,	,					,		
	4. 4	1737:	在	康普	顿效)	应实	验中,	若散	射光	皮长	是入	射光》	支长的	J 1.2	倍,「	則散	射光光	七子
能量	$ar{arepsilon}$ 与 $ar{arepsilon}$	反冲电	子芸	力能 🛭	$\mathbb{Z}_K \mathcal{Z}$	比 ϵ /	E_K 为											
	(A)	2				(B	3)	3				(C)	4				(D)	5
]																
												曼系(由				表态	发射的	勺各
谱约	 线组成	的谱	线系)的最	长波	长的]谱线,	至り	少应向	基為	「氢」	原子提	供的	能量是	己			
_	(A)	_ 1.	5 e ^v	V		(B)	3.4	eV		((C)	10.2	eV		(D)	13.6	eV
		_																
												的激发						
г	(A)		波弋	に的力	Ĺ	(B)	两 柙	波长	的光		(C)	三种	皮长日	7 光	(1))	生续为	七谐
	_	17.40	⊸ 4	<i> </i>	= -> 1	I II' - I	→ Nál. 112. °	전나	2-1	- CC 6		目 17. 4	0.10		NV 📂 I	 →	II 스톤 트	3 11.
0												量为 1	0.19	eV,	当氢儿	泉 十。	外配事	巨刀
-0							。时,月 2.4						. W		(D	`	0.05	αV
Γ	(A)	2]	30 6	V		(B)	3.4	ı ev	′	(()	4.25	ev		(D)	9.93	ev
L	8 4	_	在点	三休克	女由名	争由.	田能	量为	12 1 6	Vβ	カー	子去轰	丰加	モ其 ニ	太的怎	言 百 -	子. 止	ト 計
复国		能发	-					生ノリ	12.1	∨ н	1	1 4 30	ЩХ	1 坐/	いりつ		J , 14	пн1
								(C)	12 1 e	v.	10.2	2 eV 和	19	eV				
	(D)	11	•	12	1	eV	 V	•	10	2	10	eV	和	•		3 4	ļ	eV
Γ	(-)	7				•	•						•					
_	9. 4	4241 :		若α	粒子	:(电看)在磁	越感应	强度	为。	B均匀	磁场	中沿	半径)	$\supset R$	的圆刑	多轨
道泛		则 $lpha$ 料				•		,	,		-, -			,.				,
	(A)	h/						eRB))	(C	`	1/(2 <i>ei</i>	RBh)		(D)	1	/(eRI	<i>Bh</i>)
Е	(A)]				(B)		,		(C)		,		(D)			,
L	10	_	. / n	里팺	釉 不	同馬	島的粉	;ヱ	甘油	右男	音证	皮长相 [a 10	山之田	5. 毛山米宁	子	1	
												速度						目目
Е	(A)]	<u> </u>	ا⊷ا		(D)	比里	7H 1	'n	(C)	巫 汉 ′	[-1		(D)	4),	116 4 L	ויין ו
L		٦														1	3	πν
														$\psi(x)$	c) = -	<u>-</u> .	$\cos \frac{3}{2}$	<u> </u>
	11.	4428:	已知	旧粒子	在-	一维知	形无[限深す	势阱中	运动	力,其	其波函	数为:		4	\sqrt{a}	4	2a
(- 1	$q \leq x \leq$	$\leq a$),	那么	人粒子	·在 x	c = 5a	/6 处出	出现的	的概率	密度	为							
	(A)	1 /	(2a)		((R)	$1/\alpha$		((7)	1.	$\sqrt{2a}$			(D)	1	$/\sqrt{a}$	
Ε	(11)]	(2u)		((L)	1/4		(1	~ <i>J</i>		$/\sqrt{2a}$			(1)			
L	12	_										(B), (C	C), (D)所·	示. :	『人』	其中和	角定
粒	子	动	· 虽	的								(D)、(v 函					图	
,	•	/4	-		111	1711	<i>,</i> ~	- 1~	1.4		·^		<i>>></i> \	<i>,</i> _	/*1	,	,—i	

- 13. 5619: 波长 λ =5000 Å的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda$ =10⁻³ Å,则 利用不确定关系式 $\Delta p_x \Delta x \geq h$ 可得光子的 x 坐标的不确定量至少为:

- (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm
- 14. 8020: 将波函数在空间各点的振幅同时增大 D 倍,则粒子在空间的分布概率将
- - (A) 增大 D 倍 (B) 增大 2D 倍 (C) 增大 D 倍 (D) 不变

- 15. 4965: 下列各组量子数中,哪一组可以描述原子中电子的状态?
- (A) n=2, l=2, $m_l=0$, $m_s=\frac{1}{2}$ (B) n=3, l=1, $m_l=-1$, $m_s=-\frac{1}{2}$
- (C) $m=1, l=2, m_l=1, m_s=\frac{1}{2}$ (D) $m=1, l=0, m_l=1, m_s=-\frac{1}{2}$
- 16. 8022: 氢原子中处于 3d 量子态的电子,描述其量子态的四个量子数 (n, l, m_l, m_s) 可能取的值为
 - (A) (3, 0, 1, 2) (B) (1, 1, 1, 2)
 - (C) (2, 1, 2, 2) (D) (3, 2, 0, 2)
 - 17. 4785: 在氢原子的 K 壳层中, 电子可能具有的量子数 (n, l, m_l, m_s) 是
 - 1 (A) $(1, 0, 0, \overline{2})$ (B) $(1, 0, -1, \overline{2})$

 - (C) (1, 1, 0, 2) (D) (2, 1, 0, 2)18. 4222: 与绝缘体相比较,半导体能带结构的特点是
 - (A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电
- 子

- 19. 4789: p型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应 外干
- (A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶 (D) 禁 带 中 , 但 接 近 导 带 底
- 20. 8032: 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们 所产生的光的特点是:
 - (A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的
 - (B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的

J. L.	(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干
的	(D) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是相干的
	21. 9900: $\hat{x} = \hat{P}_x$ 的互易关系[\hat{x}, \hat{P}_x]等于
	(A) $i\hbar$ (B) $-i\hbar$ (C) $i\hbar$ (D) $-i\hbar$ [
	22. 9901: 厄米算符 \hat{A} 满足以下哪一等式(u 、 v 是任意的态函数)
	$\int u^* \hat{A} v dx = \int (\hat{A} u^*) v dx \qquad (B) \int v^* \hat{A} u dx = \int v (\hat{A} u)^* dx$
[$ \begin{pmatrix} C \\ C \end{pmatrix} \int v^* \hat{A}u dx = \int (\hat{A}v)^* u dx $ $ \begin{pmatrix} D \\ D \end{pmatrix} \int u^* \hat{A}v dx = \int (\hat{A}u)^* dx $
_,	填空题
·	 4179: 光子波长为λ,则其能量=; 动量的大小 =; 质量=。
1.0-1	2. 4180: 当波长为 3000 Å的光照射在某金属表面时,光电子的能量范围从 0 到 4.0×
	9 J。在作上述光电效应实验时遏止电压为 $ U_a =V$; 此金属的红限频率 v_0 Hz。
	3. 4388: 以波长为 λ = 0.207 μ m 的紫外光照射金属钯表面产生光电效应,已知钯的红限
频率	$\mathbb{E}_{V_0}=1.21\times 10^{15}$ 赫兹,则其遏止电压 $ U_a =$
收至	4. 4546: 有一九线电接收机接收到频率为 10° H2 的电磁波的功率为 1 倾 Li,则每秒接 间的光子数为 。
	5. 4608: 钨的红限波长是 230 nm, 用波长为 180 nm 的紫外光照射时, 从表面逸出的
电寸	P的最大动能为eV。 6.4611:某一波长的 X 光经物质散射后,其散射光中包含波长 和波长
	的两种成分,其中的散射成分称为康普顿散射。
	7. 4191:在氢原子发射光谱的巴耳末线系中有一频率为 6.15×10 ¹⁴ Hz 的谱线,它是氢
原寸	子从能级 $E_n =eV$ 跃迁到能级 $E_k =eV$ 而发出的。 8. 4192: 在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线
系)	的最短波长的谱线所对应的光子能量为eV; 巴耳末系的最短波长的谱线
所对	时应的光子的能量为eV。
系)	9. 4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线的最短波长的谱线所对应的光子能量为eV;巴耳末系的最短波长的谱线
	付应的光子的能量为eV。
사. 1	10. 4424: 欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射的谱线构成) 中波长
刀」	216 Å的谱线,应传给基态氢原子的最小能量是eV。 11. 4754: 氢原子的部分能级跃迁示意如图。在这些能级跃迁 $\frac{1}{n}$ $\frac{1}{$
	(1) 从 $n = $ 的能级跃迁到 $n = $ 的能级时所发射的光子
	皮长最短; (2) 从 $n =$ 的能级跃迁到 $n =$ 的能级时所
汉为	12. 4755: 被激发到 $n=3$ 的状态的氢原子气体发出的辐射中, $n=1$
有_	条可见光谱线和条非可见光谱线。
所发	13. 4760: 当一个质子俘获一个动能 E_K =13.6 eV 的自由电子组成一个基态氢原子时, ξ 出的单色光频率是。
1111	14. 4207: 令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量, c 为真
空中	P光速, / 为普朗克常量)。当电子的动能等于它的静止能量时,它的德布罗意波长是
	λ_c
阳和	15. 4429: 在戴维孙——革末电子衍射实验装置中,自热 K 发射出的电子束经 $U = 500 \text{ V}$ 的电势差加速后投射到晶
	K 及新出的电子 聚经 $\delta = 300$ V 的电势差加速后投射到相上。这电子束的德布罗意波长 $\lambda = 1$ 如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,如
	=
	1, 1

10. 体系在无限深方势阱中的波函数为 一化常数A。

$$U(x) = \begin{cases} 0 & 0 < x < a \\ \infty & x \le 0, x \ge a \end{cases}$$

11. 质量为m的粒子沿x轴运动,其势能函数可表示为: 求解粒子的归一化波函数和粒子的能量。

12. 设质量为粒子处在
$$(0, a)$$
 内的无限方势阱中,
$$\psi(x) = \frac{4}{\sqrt{a}} \sin\left(\frac{\pi}{a}x\right) \cos^2\left(\frac{\pi}{a}x\right),$$
 对它的能量进行测量,可能得到的值有哪几个?概率各多少?平均能量是多少?

 $\psi(x) = \sqrt{\frac{1}{3}}u_0(x) + \sqrt{\frac{1}{2}}u_2(x) + cu_3(x)$ _o 其中, $u_n(x)$ 是 归一化的谐振子的定态波函数。求:c和能量的可能取值,以及平均能量 \overline{E} 。

— ,	选择题	
	1. 4185: I	D 2. 4244: B 3. 4383: D 4. 4737: D 5. 4190: C 6. 4197: C
	7. 4748: A	A 8. 4750: C 9. 4241: A 10. 4770: A 11. 4428: A 12. 4778:
	13. 5619:	C 14. 8020; D 15. 4965; B 16. 8022; D 17. 4785; A 18. 4222;
D		
		C 20. 8032: B 21. 9900: A 22. 9901: C
_,	· · · · · ·	
	1. 4179:	hc/λ
分		
	2. 4180:	2.52 分; 4.0×10 ¹⁴ 2 分
	3. 4388:	0.993 分
	4. 4546:	1.5×10 ¹⁹ 3 分
	5. 4608:	1.53 分
	6. 4611:	不变1分; 变长1分; 波长变长1
分		
	7. 4191:	-0.852 分; -3.4 2 分
	8. 4192:	13.62 分; 3.42 分
	9. 4200:	62 分; 9732 分
		10.23 分
	11. 4754:	4 12分; 4 32分
	12. 4755:	12 分; 22 分
	13. 4760:	6.56×10 ¹⁵ Hz3 分
	14. 4207:	$1/\sqrt{3}$
		0.05493 分
		1.45 Å2 分; 6.63×10 ⁻¹⁹ Å2 分
	17. 4630:	0.1 Å3 分
	18. 4203:	粒子在 t 时刻在(x, y, z)处出现的概率密度2 分
		单值、有限、连续1 分
		$\iiint \Psi ^2 \mathrm{d} x \mathrm{d} y \mathrm{d} z = 1$
	19. 4632:	1.33×10 ⁻²³

由题可知 α 粒子受磁场力作用作圆周运动: $qvB = m_{\alpha}v^2/R$, $m_{\alpha}v = qRB$

2. 4431: 解: (1) 德布罗意公式: λ = h/(mυ)

```
\lambda_{\alpha} = h/(2eRB) = 1.00 \times 10^{-11} \text{ m} = 1.00 \times 10^{-2} \text{ nm}
                     v = 2eRB/m_{\alpha}
   (2) 由上一问可得
                    对于质量为 m 的小球:
                  E_K = p^2 / (2m_e) = (h/\lambda)^2 / (2m_e) ______3 /
   3. 4506: 解:
                      =5.0\times10^{-6} \text{ eV}
                              E_K = \frac{1}{2} m_e v^2
   4. 4535: 解: 非相对论动能:
                         E_K = \frac{p^2}{2m_e}
而 p = m_e v, 故有:
又根据德布罗意关系有 P=h/\lambda 代入上式------1 分
       E_K = \frac{1}{2} h^2 / (m_e \lambda^2) = 4.98 \times 10^{-6} \text{ eV}
则:
   5. 4631: 解: 若电子的动能是它的静止能量的两倍, 则: mc^2 - m_e c^2 = 2m_e c^2 _____1
分
       故:
由相对论公式: m = m_e / \sqrt{1 - v^2 / c^2}
                 3m_e = m_e / \sqrt{1 - v^2 / c^2}
有:
       德布罗意波长为: \lambda = h/(mv) = h/(\sqrt{8}m_ec) \approx 8.58 \times 10^{-13} \, \text{m}-----2 分
                       \lambda = \frac{h}{p} = \frac{h}{m_e \nu} = \frac{1.04 \times 10^{-9} \text{ m}}{1.04 \times 10^{-9} \text{ m}} = 10.4 \text{ Å}
光电子的德布罗意波长为:
                   \lambda = h/(m_e \nu) ①-----2 分
   6. 5248: 解:
                   v^2 - v_0^2 = 2ad (2)
                   eE = m_e a (3)-----2 \%
          v = h/(m_e \lambda) = 7.28 \times 10^6 \text{ m/s}
(1) (1) 由
          a = eE/m_e = 8.78 \times 10^{13} \text{ m/s}^2
由③式:
          d = (v^2 - v_0^2)/(2a) = 0.0968 \text{ m} = 9.68 \text{ cm}
由②式:
   7. 4430: 解: 先求粒子的位置概率密度:
        |\psi(x)|^2 = (2/a)\sin^2(\pi x/a) = (2/2a)[1 - \cos(2\pi x/a)]_{-----2/2}
    \cos(2\pi x/a) = -1 时, |\psi(x)|^2 有最大值. 在 0 \le x \le a 范围内可得 2\pi x/a = \pi
当:
             x = \frac{1}{2}a 3 分
```

粒子位于 0-a/4 内的概率为:

$$P = \int_{0}^{a/4} \frac{2}{a} \sin^{2} \frac{\pi x}{a} dx = \int_{0}^{a/4} \frac{2}{a} \frac{a}{\pi} \sin^{2} \frac{\pi x}{a} d(\frac{\pi x}{a})$$

$$= \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi x}{a} - \frac{1}{4} \sin \frac{2\pi x}{a} \right]_{0}^{a/4} = \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi}{a} \frac{a}{4} - \frac{1}{4} \sin(\frac{2\pi}{a} \frac{a}{4}) \right]_{0}^{a/4} = 0.091 - ... + 2 \frac{1}{2} \frac{1}{4} \sin(\frac{2\pi}{a} \frac{a}{4})$$

9. 解:根据给出的氢原子波函数的表达式,可知能量E的可能值为: E_1 、 E_2 、 E_3 .

所以,能量为
$$E_1$$
 的概率为
$$P_1 = \left| \frac{2}{\sqrt{10}} \right|^2 = \frac{2}{5}$$

$$P_3 = \left| \frac{\sqrt{3}}{\sqrt{10}} \right|^2 = \frac{3}{10}$$
 能量为 E_3 的概率为

能量的平均值为: $\overline{E} = P_1 E_1 + P_2 E_2 + P_3 E_3$ = -6.913eV ______1 分

10. 解: 由归一化条件,应有 $\int_0^a A^2 \sin^2 \frac{n\pi}{a} x dx = 1$ ______3 分 $A = \sqrt{\frac{2}{a}}$

11. 解: 当 $x \le 0$ 或 $x \ge a$ 时, 粒子势能无限大, 物理上考虑这是不可能的, 所以粒子 在该区域出现纪律为零,即: $\psi(x)=0$

当
$$0 < x < a$$
时, $U(x) = 0$,定态薛定谔方程为:
$$-\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} = E \psi$$
设 $k = \sqrt{2\mu E/\hbar^2}$,则方程为:
$$\frac{d^2 \psi}{dx^2} + k^2 \psi = 0$$
 通解为: $\psi(x) = A \sin kx + B \cos kx$

由波函数的连续性可知, 在x=0、 $x=a_{\pm}\psi(x)=0$, 即. $\psi(x) = A\sin 0 + B\cos 0 = 0$

$$\psi(x) = A\sin(ka) + B\cos(ka) = 0$$

 $\psi(x) = A\sin(ka) + B\cos(ka) = 0$
 $\psi(x) = A\sin(ka) + B\cos(ka) = 0$

所以有: $\psi_n(x) = A\sin\left(\frac{n\pi}{a}\right), \quad n = 1, 2, 3 \dots$

归一化条件:
$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_0^a |\psi(x)|^2 dx = \int_0^a A^2 \sin^2\left(\frac{n\pi}{a}\right) dx = 1$$
所以:
$$A = \sqrt{\frac{2}{a}}, \quad \text{即:} \quad \psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}\right), \quad n = 1, 2, 3 \dots$$

$$E = E_n = \frac{\pi^2 \hbar^2}{2\mu a^2} n^2$$

粒子能量为: $n = 1, 2, 3 \dots$

12.
$$mu(x) = \frac{2}{\sqrt{a}} \sin\left(\frac{\pi x}{a}\right) \cos^2\left(\frac{\pi x}{a}\right) = \frac{2}{\sqrt{a}} \left[\sin\left(\frac{\pi x}{a}\right) + \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{2\pi x}{a}\right)\right]$$

$$= \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right) + \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{3\pi x}{a}\right)$$

 $\mathbb{D}^{\psi(x)}$ 是第一和第三个能量本征态的叠加,所以测得能量值可为:

$$\frac{\pi^2 \hbar^2}{2\mu a^2}$$
, 相应概率为: $\left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$

$$\frac{9\pi^2\hbar^2}{2\mu a^2}$$
, 相应概率为: $\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$

所以,能量平均值为: $\overline{E} = \frac{1}{2} \frac{\pi^2 \hbar^2}{2\mu a^2} + \frac{1}{2} \frac{9\pi^2 \hbar^2}{2\mu a^2} - \frac{5\pi^2 \hbar^2}{2\mu a^2}$

13. 解: 由归一化条件得:
$$\left|\sqrt{\frac{1}{3}}\right|^2 + \left|\sqrt{\frac{1}{2}}\right|^2 + \left|c\right|^2 = 1$$
 解得: $c = \sqrt{\frac{1}{6}}$

根据谐振子波函数的表达式,可知能量E的可能值为: E_0 、 E_2 、 E_3

 $E_n = \left(n + \frac{1}{2} \right) h v$ 因为:

所以:

$$E_0 = \frac{1}{2}hv$$
 $E_2 = \frac{5}{2}hv$ $E_3 = \frac{7}{2}hv$

$$\overline{E} = P_0 E_0 + P_2 E_2 + P_3 E_3 = \left| \sqrt{\frac{1}{3}} \right|^2 \cdot \frac{1}{2} h v + \left| \sqrt{\frac{1}{2}} \right|^2 \cdot \frac{5}{2} h v + \left| \sqrt{\frac{1}{6}} \right|^2 \cdot \frac{7}{2} h v = 2 h v$$

一、填空题

- 1.一束单色光垂直入射到光栅上,衍射光谱中共出现5条明纹。若已知此光栅的 缝宽度与不透明部分宽度相等,则中央明纹一侧的两条明纹分别是第 和第 级谱线
- 2.一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光 为 , 反射光 E 矢量的振动方向 , 透射光为 。
- 3.用波长为 λ 的单色光垂直照射如图所示的、折射率为 n_2 的劈形膜 $(n_1 > n_2 , n_3 > n_2)$,观察

15. 在如图所示的劈尖干涉中实验装置中,如果把上面的一块玻

璃 A 向上平移,干涉条纹将 <u>向</u>
条纹将。
16.白光垂直入射在单缝上,则中央明纹为色条纹,最远的光是色的条纹。
17 . 平行放置两偏振片,使它们的偏振化方向成 60°角,则自然光垂直入射时,透射光强与
入射光强之比为 ()。1:8
18. 菲涅耳半波带中,由任何相邻带的对应部分所发出的子波到达观察点时的光程差
().
19. 平面衍射光栅的光栅常数为 a+b, 其中缝宽为 a。若 b=2a, 则光谱中缺第()级。
二.选择题
1. 一束平行单色光垂直入射在光栅上,当光栅常数 ($o+b$) 为下列情况 (o 代表每条缝的宽
度) $k=3$ 、 6 、 9 等级次的主极大均不出现? ()
(A) $a+b=2a$ (B) $a+b=3a$
(C) $a+b=4a$ (D) $a+b=6a$
2.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是()。
(A) 使屏靠近双缝。 (B) 使两缝的间距变小。
(C) 把两个缝的宽度稍微调窄。 (D) 改用波长较小的单色光源。
2 左直京中边长头的首名业。左长钟家头。 的汤明人氏中儿 4 刈井吻尔丛梗到 2 艾 4
3.在真空中波长为 λ 的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B , 若 A 、 B 两点位相差为 3π ,则此路径 AB 的光程为:()
(A) 1.5λ (B) $1.5n\lambda$ (C) 3λ (D) $1.5\lambda/n$
$(3) 1.3h \qquad (3) 1.3hh \qquad (3) 1.3h/h$
4.在双缝干涉实验中,为使屏上的干涉条纹间距变小,可以采取的办法是()。
(A) 使屏远离双缝。 (B) 使两缝的间距变小。
(C) 把两个缝的宽度稍微调窄。 (D) 改用波长较小的单色光源。
5. 来自不同光源的两束白光,例如两束手电筒光,照射在同一区域内,是不能
产生干涉条纹的,这是由于()。
(A)、白光是由许多不同波长的光构成的;
(B)、来自不同光源的光,不能具有正好相同的频率;

(C)、两光源发出的光强度不同;

- 7. 一束平行单色光垂直入射在光栅上,当光栅常数(b+b)为下列哪种情况时(b代表每条缝的宽度),k=3、6、9 等级次的主极大均不出现?
 - (A) b + b = 2b. (B) b + b = 3b.
 - (C) b + b = 4b. (D) b + b = 6b.
- 8. 一束光强为 6 的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成 45°角,则穿过两个偏振片后的光强 / 为
 - (A) $I_0/4\sqrt{2}$. (B) $f_0/4$. (C) $f_0/2$. (D) $f_0/2$. (D) $f_0/2$.
- 9. 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是
 - (A) 在入射面内振动的完全线偏振光.
 - (B) 平行于入射面的振动占优势的部分偏振光.
 - (C) 垂直于入射面振动的完全线偏振光.
 - (D) 垂直于入射面的振动占优势的部分偏振光.

()

- 10. 两偏振片的偏振化方向的夹角由 60°转到 45°时,若入射光的强度不变,则透射光的强度 145°: 160°等于()
- A, 2: 1 B, 3: 1 C, 1: 2 D, 1: 3
- 11. 杨氏双缝实验 x=0 的中央条纹是
 - A、明纹; B、暗纹;
 - C、既不是明纹也不是暗纹: D、无法确定。