SURA - Meeting Notes

Shih-Ting (Cindy) Huang

Tasks

Week 1

- ⊠ 1. Go through the HMS description website and examine data retrieval, product information.
- □ 2. Determine the time frame of the data, its structure, and whether we can solely rely on the hazard mapping system (HMS) as a data source.
- [x]3. Download a data sample and map it.

Week 2

\boxtimes	1.	Figure out if we can calculate smoke area.
		Investigate how to link information between the smoke and fire detection datasets.
		Create better visualizations of the smoke KML data.
\boxtimes	4.	Create histograms of fire detection times throughout the day and color by satellite/method of
	$d\epsilon$	etection to see if they always collect data at the same times.
	5.	Examine the change of fire points overtime, specifically for the California campfire (November 7th,
	20	018 - November 16th, 2018).
\boxtimes	6.	Summary of ecosystem types (variable "ecosys").
	7.	Look into how to structure the fire dataset.
		 Want to use fire as a predictor for the two projects Would be useful to get information on area, intensity, smoke amount
		Check out FEER.v1: do they have data available, or do we only have access to the model? Can we ombine this data with the HMS data based on location?

Week 3

- \boxtimes 1. Clip data to California's borders
- \boxtimes 2. Smoke dataset visualization
- \square 3. Fire detection points by time
 - Not doable given current file format (KML) and available packages (mapview)

Week 4

- \boxtimes 1. Combine all fire points of the week into one dataset and merge in FRP
- ⊠ 2. Experiment with HDBSCAN to identify clusters where there is persistent fires

Week 5-6

- □ 1. Try HDBSCAN for daily data
- \boxtimes 2. Determine best way to assign minpts value
- ⊠ 3. Plot it onto a map (one dot per daily cluster -> centroid) + maybe original points in the background
 - HDBSCAN clusters don't have centroids because shape is irregular
- \boxtimes 4. Merge in FRP based on clusters and examine variance
- \square 5. Look into POSTGIS

Week 7

- \boxtimes 1. Add in AQ data
 - Clip it to the week
 - Plot the locations of the air quality record points -> look at concentration of PM 2.5
 - Maybe get distance between PM2.5 site and fire cluster and where it is wrt smoke
- ∑ 2. Choose top k most probable points in a cluster: display latitude and longitude
 - So that we can calculate distance between person's home and the cluster point
- □ 3. Research if FRP can tell us anything about emission spread, intensity, etc.
 - date, center point, frp for cluster, num obs, distance to pm2.5 site

Week 8

- \square 1. Cleaner way of calculating each PM2.5 observation to closest cluster of the day
- \square 2. Create 3 indicator variables for if PM2.5 site lies in light, medium, and/or heavy smoke plume that day
- □ 3. Create polygon out of cluster points and calculate area
 - small area, lot of points -> intense fire