Chapter 4

Sho Shirasaka, December 12, 2022

Exercise 4.2.

By taking derivatives of both sides of $f^{-1} \circ f(x) = x$, we obtain

$$D_{f(x)}(f^{-1}) \cdot D_x f = \mathbf{I}. \tag{0.1}$$

Exercise 4.5.

Consider a characteristic polynomial

$$f(x) = x^2 - \text{tr}(A)x + \text{det}(A).$$
 (0.2)

Its descriminant is $\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 2^2 - 4 = 0$. Moreover, f(0) = 1 > 0 and $f(1) = 2 - \operatorname{tr}(A) < 0$. Hence the two eigenvalues λ_1, λ_2 of A are real and positive and satisfy $\lambda_1 < 1 < \lambda_2$.

The matrix A can be diagonalized as $A = P \operatorname{diag}(\lambda_1, \lambda_2) P^{-1}$ since the eigenvalues are distinct. Let us define $y = P^{-1}x$. This conjugates $x \mapsto Ax$ and $y \mapsto \operatorname{diag}(\lambda_1, \lambda_2)y$. An orbit in the y-coordinate can be expressed as $(\lambda_1^n y_1(0), \lambda_2^n y_2(0))_{n \in \mathbb{Z}}, (y_1(0), y_2(0)) \in \mathbb{R}^2$. The orbit belongs to $y_1 y_2 = y_1(0)y_2(0) = \operatorname{const}$, since $\lambda_1 \lambda_2 = \det(A) = 1$. This is a hyperbola if $y_1(0)y_2(0) \neq 0$ and a line otherwise. An image of a linear transformation of a hyperbola (resp. a line) by a regular matrix x = Py is a hyperbola (resp. a line). Thus each orbit of the linear map $x \mapsto Ax$ belongs to a hyperbola (or a line in a degenerate situation).

Exercise 4.10. (WIP)

This answer greatly relies on [1] but somewhat concretized.

Let f_1, f_2 be C^n and

$$Q_k(\omega) = \left\{ \pi = (\pi_1, \dots, \pi_k) \mid \emptyset \neq \pi_i \subset \omega, \ \bigcup_{i=1}^k \pi_i = \omega, \ \pi_i \cap \pi_j = \emptyset \text{ and } \min \pi_i < \min \pi_j \text{ for all } i < j \right\}, \quad (0.3)$$

$$Q(\omega) = \bigcup_{k=1}^{|\omega|} Q_k(\omega), \quad Q(\emptyset) = \{\emptyset\}, \quad Q(n) = Q(\{1, \dots, n\}).$$

$$(0.4)$$

Then the Faá di Bruno's formula is given as [2, Sec. 2.4]¹

$$D^{n}\left(f_{1}\circ f_{2}\right)(x)\eta_{\omega} = \sum_{\substack{\pi\in\mathcal{Q}(n)\\(k:=|\pi|)}} D^{k}f_{1}\left(f_{2}(x)\right)\left(D^{|\pi_{1}|}f_{2}(x)\eta_{\pi_{1}},\dots,D^{|\pi_{k}|}f_{2}(x)\eta_{\pi_{k}}\right),\tag{0.5}$$

where for any $\pi = (\pi_1, \dots, \pi_k)$ let $|\pi| = k$ denote its length and for any finite subset $\omega = \{\omega_1, \dots, \omega_n\}$ of \mathbb{N} ,

$$\eta_{\omega} = (\eta_{\sigma(\omega_1)}, \cdots, \eta_{\sigma(\omega_n)}) \tag{0.6}$$

where σ is a permutation and $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$.

Let $\tilde{g}(x) := (x, g(x))$. We take the *n*-th derivatives of the both sides of

$$g \circ f^{s}(\eta, g(\eta)) = f^{u}(\eta, g(\eta)) \Leftrightarrow g \circ f^{s} \circ \tilde{g}(\eta) = f^{u} \circ \tilde{g}(\eta)$$

$$(0.7)$$

¹Note that how the sum is taken in the last expression in the page. 97 is somewhat vague.

and apply the rule (0.5).

$$(l.h.s): D^{n}(g \circ f^{s} \circ \tilde{g})(0)(\eta_{1}, \dots, \eta_{n})$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k}(g \circ f^{s})(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l}g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\tau_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}} \right)_{\tau_{1}}$$

(r.h.s): $D^n(f^{\mathbf{u}} \circ \tilde{g})(0)(\eta_1, \dots, \eta_n)$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f^{\mathbf{u}}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right). \tag{0.9}$$

Here, we defined

$$\left(D^{|\pi_1|}\tilde{g}(0)\eta_{\pi_1},\dots,D^{|\pi_k|}\tilde{g}(0)\eta_{\pi_k}\right)_{\omega} = \left(D^{|\pi_{\sigma(\omega_1)}|}\tilde{g}(0)\eta_{\pi_{\sigma(\omega_1)}},\dots,D^{|\pi_{\sigma(\omega_n)}|}\tilde{g}(0)\eta_{\pi_{\sigma(\omega_n)}}\right),$$
(0.10)

where $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$. Thus we obtain

$$\sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l} g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, \right) \\
D^{|\tau_{l}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{l}} \right) = \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f^{u}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right). \tag{0.11}$$

Let D_s, D_u denote differentiation w.r.t E^s, E^u respectively. Let $x_1 \in E^s, x_2 \in E^u$. The linearization of the mapping f at the origin is

$$Df(0) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} D_{\mathbf{s}} f^{\mathbf{s}}(0) & D_{\mathbf{u}} f^{\mathbf{s}}(0) \\ D_{\mathbf{s}} f^{\mathbf{u}}(0) & D_{\mathbf{u}} f^{\mathbf{u}}(0) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \tag{0.12}$$

The linearized dynamics is invariant on E^{s} and E^{u} , thus

$$D_{\mathbf{u}}f^{\mathbf{s}}(0) = 0, D_{\mathbf{s}}f^{\mathbf{u}}(0) = 0. \tag{0.13}$$

Let us denote $A_s := D_s f^s(0)$, $A_u := D_u f^u(0)$. By definition σ_{A_s} (resp. σ_{A_u}) is included inside (resp. outside) the unit circle, where σ_A is the spectrum of A.

Let us derive a few concrete n-th order equations from (0.11).

We can see that

$$Df^{s}(0)D\tilde{g}(0) = (D_{s}f^{s}(0) \ D_{u}f^{s}(0)) \begin{pmatrix} I \\ Dq(0) \end{pmatrix} = A_{s},$$
 (0.14)

$$Df^{\mathrm{u}}(0)D\tilde{g}(0) = A_{\mathrm{u}}Dg(0). \tag{0.15}$$

Thus the first order equation is equivalent to the Sylvester equation

$$Dg(0)A_{\rm s}\eta - A_{\rm u}Dg(0)\eta = 0.$$
 (0.16)

To analyze and solve the Sylvester equation, we resort to the trick of the Kronecker form. Let us denote a space of n-multilinear maps of E_1, \dots, E_n to E_0 by $\mathcal{L}(E_1, \dots, E_n; E_0)$. For $\nu = 1, \dots, n$ let $(e_{\nu,1}, \dots, e_{\nu, \dim E_{\nu}})$ be an

ordered basis of E_{ν} and let $(e_{\nu,1}^*, \dots, e_{\nu,\dim E_{\nu}}^*)$ be its dual. Then the space $\mathcal{L}(E_1, \dots, E_n; E_0) = E_n^* \otimes \dots \otimes E_1^* \otimes E_0$, where \otimes means a tensor product, has a basis

$$(e_{n,r_n}^* \otimes \cdots \otimes e_{1,r_1}^* \otimes e_{0,r_0})_{(r_n \cdots, r_0)}, \quad (r_n \cdots, r_0) \in \prod_{k=n}^0 \{1, \cdots, \dim E_k\}.$$
 (0.17)

We order the basis (0.17) lexicographically with priority to the first components of $(r_n \cdots, r_0)$. A multilinear map $\tilde{U} \in \mathcal{L}(E_1, \cdots, E_n; E_0)$ has a coordinate representation $U \in \mathbb{R}^{\dim E_n^* \times \cdots \times \dim E_1^* \times \dim E_0}$ as

$$\tilde{U} = \sum_{(r_n \cdots, r_0) \in \prod_{k=n}^0 \{1, \cdots, \dim E_k\}} U_{r_n \cdots r_1 r_0} e_{n, r_n}^* \otimes \cdots \otimes e_{1, r_1}^* \otimes e_{0, r_0}. \tag{0.18}$$

Let vec: $\mathbb{R}^{I_1 \times \cdots \times I_N} \to \mathbb{R}^{\prod_{i=1}^N I_i}$ be a vectorization operator

$$(\operatorname{vec}(U))_i = U_{i_1 \cdots i_N} \quad \text{with} \quad i = 1 + \sum_{l=1}^N \left[(i_l - 1) \prod_{l'=1}^{l-1} I_{l'} \right].$$
 (0.19)

By $U \times_n A \in \mathbb{R}^{I_1 \times \cdots I_{n-1} \times I \times I_{n+1} \times I_N}$ we denote an *n*-mode product of a tensor [3] $U \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ with a matrix $A \in \mathbb{R}^{I \times I_n}$, defined as

$$(U \times_n A)_{i_1 \cdots i_{n-1} i i_{n+1} \cdots i_N} = \sum_{i_n=1}^{I_n} U_{i_1 \cdots i_N} A_{i i_n}. \tag{0.20}$$

An action of $\tilde{U} \in E_n^* \otimes \cdots \otimes E_1^* \otimes E_0$ on $(\tilde{h}_1, \cdots, \tilde{h}_n, \tilde{h}_0^*) \in \prod_{i=1}^n E^n \times E_0^*$ is rewritten in the coordinate representation as $U \times_1 h_0^* \times_2 h_1^* \times_3 \cdots \times_{n+1} h_n^*$. The vec operation on this representation provides a convenient Kronecker form (this is a special case of [3, Proposition 3.7 (b)])

$$\operatorname{vec}(U \times_1 h_0^* \times_2 h_1^* \times_3 \dots \times_{n+1} h_n^*) = (h_n^* \otimes \dots \otimes h_1^* \otimes h_0^*) \operatorname{vec}(U), \tag{0.21}$$

where \otimes denotes the Kronecker product. In the following, we identify any multilinear map and elements in E^{s} , E^{u} as their coordinate representation.

References

- [1] Wolf-Jürgen Beyn and Winfried Kleß. Numerical taylor expansions of invariant manifolds in large dynamical systems. *Numerische Mathematik*, 80(1):1–38, 1998.
- [2] Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. *Manifolds, tensor analysis, and applications*, volume 75. Springer Science & Business Media, 2012.
- [3] Tamara Gibson Kolda. Multilinear operators for higher-order decompositions. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA ..., 2006.