```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Load dataset
df = pd.read_csv(r"C:\Users\hp\Downloads\Data (1).csv")

Index	State	Age	Salary	Purchased
0	Mumbai	44	72000	No
1	Bangalore	27	48000	Yes
2	Hyderabad	30	54000	No
3	Bangalore	38	61000	No
4	Hyderabad	40	nan	Yes
5	Mumbai	35	58000	Yes
6	Bangalore	nan	52000	No
7	Mumbai	48	79000	Yes
8	Hyderabad	50	83000	No
9	Mumbai	37	67000	Yes

```
# Split dataset into features (x) and target (y) x = df.iloc[:, :-1].values  # All rows, all columns except last one <math>\rightarrowFeatures
```

	0	1	2
0	Mumbai	44.0	72000.0
1	Bangalore	27.0	48000.0
2	Hyderabad	30.0	54000.0
3	Bangalore	38.0	61000.0
4	Hyderabad	40.0	nan
5	Mumbai	35.0	58000.0
6	Bangalore	nan	52000.0
7	Mumbai	48.0	79000.0
8	Hyderabad	50.0	83000.0
9	Mumbai	37.0	67000.0

y = df.iloc[:, 3].values # All rows, 4th column (index 3) \rightarrow Target

	0
0	No
1	Yes
2	No
3	No
4	Yes
5	Yes
6	No
7	Yes
8	No
9	Yes

```
# Handle missing values using mean strategy
from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy="mean")
x[:, 1:3] = imputer.fit_transform(x[:, 1:3])  # Apply imputation on columns 1
and 2

# Encode categorical data
from sklearn.preprocessing import LabelEncoder

labelencoder_x = LabelEncoder()
x[:, 0] = labelencoder_x.fit_transform(x[:, 0])  # Encode first column of features

labelencoder_y = LabelEncoder()
```

```
y = labelencoder_y.fit_transform(y)  # Encode target variable

# Split dataset into training and test sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

	0	1	2
0	2	44.0	72000.0
1	0	27.0	48000.0
2	1	30.0	54000.0
3	0	38.0	61000.0
4	1	40.0	63777.77777777
5	2	35.0	58000.0
6	0	38.7777777777	52000.0
7	2	48.0	79000.0
8	1	50.0	83000.0
9	2	37.0	67000.0

	0	1	2
О	1	30.0	54000.0
1	1	50.0	83000.0

	0	1	2
0	1	40.0	63777.77777777
1	2	37.0	67000.0
2	0	27.0	48000.0
3	0	38.7777777777	52000.0
4	2	48.0	79000.0
5	0	38.0	61000.0
6	2	44.0	72000.0
7	2	35.0	58000.0

	0
О	0
1	1
2	0
3	0
4	1
5	1
6	0
7	1
8	0
9	1

import numpy as np import pandas as pd import matplotlib.pyplot as plt

```
import seaborn as sns
# Load dataset
df = pd.read csv(r"C:\Users\hp\Downloads\Data (1).csv")
# Split dataset into features (x) and target (y)
x = df.iloc[:, :-1].values # All rows, all columns except last one <math>\rightarrow Features
y = df.iloc[:, 3].values # All rows, 4th column (index 3) \rightarrow Target
# Handle missing values using mean strategy
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="mean")
x[:, 1:3] = imputer.fit transform(x[:, 1:3]) # Apply imputation on columns 1 and 2
# Encode categorical data
from sklearn.preprocessing import LabelEncoder
labelencoder x = LabelEncoder()
x[:, 0] = labelencoder x.fit transform(x[:, 0]) # Encode first column of features
labelencoder y = LabelEncoder()
y = labelencoder y.fit transform(y) # Encode target variable
# Split dataset into training and test sets
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size=0.2, random state=0)
```

