Coordination and Learning in Human Dialogue

Raquel Fernández

Institute for Logic, Language & Computation University of Amsterdam

LDLMD @ NIPS 2016

Language learning through interaction

Focus today: child language acquisition

⇒ asymmetric setting: agents with different linguistic abilities

Outline:

- multimodal word learning from child-directed input
- coordination in child-adult dialogue
- impact of corrective feedback on child language learning

Motivation:

- relevant to computational models of learning in dialogue
- computational models as tools for gaining further insights

Raquel Fernández LDLMD @ NIPS 2016 2 / 2

How children learn word meaning

MOT: here's the pig look at the piggie oink oink

[Rollins corpus, CHILDES database]

- before production
- situated environment
- incrementally
- from few exposures

Raquel Fernández LDLMD @ NIPS 2016 3 / 2:

Multimodal semantic learning

Model that operates on images and child-directed speech to induce word-object associations (Lazaridou, Chrupała, Fernández & Baroni, NAACL-2016)

 based on the multimodal skip-gram model (Lazaridou, Pham & Baroni, NAACL-2015)

- trained on very limited amount of child-directed linguistic input
- referential uncertainty: multiple words co-occur with multiple objects

Raquel Fernández LDLMD @ NIPS 2016 4 / 2

The Frank et al. corpus

```
(Frank, Goodman, & Tenenbaum, NIPS-2008)
http://langcog.stanford.edu/materials/nipsmaterials.html
```

```
*mot: let me have that
%ref: RING
*mot: ahhah what's this
%ref: RING HAT
*mot: what does mom look like with the hat on
%ref: RING HAT
*mot: do i look pretty good with the hat on
%ref: RING HAT
*mot: hmm
```

- 2 transcribed dialogues, 10 minutes each, 2,533 words in total
- visible objects manually annotated with arbitrary symbolic labels
- gold-standard lexicon: 36 words paired with 17 object labels

Raquel Fernández LDLMD @ NIPS 2016 5 / 2

The Frank et al. corpus: Our version

(Lazaridou, Chrupała, Fernández & Baroni, NAACL-2016)

Raquel Fernández LDLMD @ NIPS 2016 6 / 2

Object identification after a single exposure

word	gold	17 objed	cts	5.1K objects	
	object	nearest	r	nearest	r
bunny	bunny	bunny	1	bunny	1
cows	cow	cow	1	lea	7
duck	duck	duck	1	mallard	4
duckie	duck	duck	1	mallard	3
kitty	kitty	book	2	bookcase	66
lambie	lamb	lamb	1	lamb	1
moocows	cow	cow	1	ranch	4
rattle	rattle	rattle	1	rattle	1

- the model associates words with relevant visual concepts
- like children, the model can get word meaning right based on a single exposure to the word in a situated context

Raquel Fernández LDLMD @ NIPS 2016 7 / 2

Linguistic interaction in child-adult dialogue

input vs. interaction

sensitivity to statistical regularities in the child-directed input

sensitivity to when & how the input if offered in interaction

```
Adult: Help me put your toys away, darling.
Child: I'm going to Colin's and I need some toys.
Adult: You don't need a lot of toys.
Child: Only a little bit toys.
Adult: You only need a few.
Child: Yes, a few toys.
```

Interest in studying patterns of local coordination in interaction and their effect on learning [now abstracting away from embodiment]

Raquel Fernández LDLMD @ NIPS 2016 8 / 2

Linguistic interaction in child-adult dialogue

Coordination: there are robust correlations between the complexity of the adult's and the child's speech.

379 child-adult dialogues from 3 children over a period of \sim 3 years.

(Kunert, Fernández & Zuidema, SemDial-2011)

Raquel Fernández LDLMD @ NIPS 2016 9 / 2

Turn-based cross-recurrence quantification analysis

Fernández & Grimm (CogSci-2014), inspired by Dale & Spivey's (2006) use of RQA

Cross-recurrence plot: each cell corresponds to a pair of turns (i, j)Two-party dialogue transcript A1: which one do you want first B1: that one A2: you like this one B2: yeah, give me child $b_1 b_2 b_3$ A_n : ... B_n : ... $a_1 \, a_2 \, a_3$ a_n Recurrence score for each (i, j)adult (lexical, syntactic,...)

- global recurrence: average coordination over all turn pairs
- local recurrence: recurrence in (semi-)adjacent turns, separated by at most distance d < n (diagonal line of incidence: d = 1)

Raquel Fernández LDLMD @ NIPS 2016 10 /

Cross-recurrence plot

dialogue with Abe (2.5 years old)

Clear pattern of local lexical recurrence when the temporal development of the interaction is preserved.

Raquel Fernández LDLMD @ NIPS 2016 11 / 2

Child-adult vs. adult-adult dialogue

- significantly more local coordination
- both coordinate more at local levels, but the adult recurs with the child significantly more (not shown by graphs)
- different coordination patterns in adults: local syntactic divergence

Raquel Fernández LDLMD @ NIPS 2016 12 / 2

Negative input?

Local syntactic recurrence may be related to reformulations or

recasts (Brown, 1973; Chouinard & Clark, 2003; Saxton et al., 2005)

Child: you're good to sharing.
Mother: I'm good at sharing?

Large scale data-driven analysis to test the influence of corrective feedback on language learning (Hiller & Fernández, CoNLL-2016)

Definition: Child-adult utterance pair meeting all these constraints

- 1. The child's utterance contains a grammatical anomaly.
- 2. There is some overlap between the adult and child utterances.
- 3. There is some contrast: the adult's utterance is not a mere repetition.
- 4. This contrast offers a correct counterpart of the child's erroneous form.

Raquel Fernández LDLMD @ NIPS 2016 13 / 20

Corpus Study

4 children, 4-6 transcripts per child, 2,627 candidate CF exchanges (child-adult utterance pairs with partial overlap)

subject, omission:

CHI: don't want to.

MOT: you don't want to?

irregular past, substitution:

 ${\tt CHI:}$ he falled out and bumped his head.

MOT: he fell out and bumped his head.

auxiliary verb, addition:

CHI: I'm read it.

DAD: you read it to mummy.

Focus: subject omission errors (SOE)

	Om	Add	Sub	Total
Syntax				
subject	171	-	1	172
verb	90	1	-	91
object	13	-	-	13
N morph				
poss -'s	4	1	-	5
regular pl	-	3	-	3
irregular pl	-	-	3	3
V morph				
3rd person	4	-	-	4
regular past	10	1	-	11
irregular past	1	-	4	5
Unb. morph				
det	79	-	6	85
prep	21	1	12	34
aux verb	114	5	1	120
progressive	9	0	0	9
Other	4	2	19	25
Total	520	14	46	580

Raquel Fernández LDLMD @ NIPS 2016 14 /

Automatic detection

High-precision automatic classifiers for SOE and CF on SOE to enable an analysis of the entire dataset:

- 25 children, 1,683 transcripts, 1,598,838 utterances, 136,152 candidate CF
- manually annotated data for training (2,627 candidate CF)
- 5-fold cross validation for feature tuning

Detection of	Classifier	Precision	Recall	Total #
SOE	rule-based	0.83	0.8	287,309
CF on SOE	SVM	0.89	0.36	31,080

Raquel Fernández LDLMD @ NIPS 2016 15 / 2

Adam, Brown corpus

MLU: mean length of utterance in words

SOE: subject omission errors

CF: corrective feedback on subject omission errors

Raguel Fernández LDLMD @ NIPS 2016 16 /

Corrective feedback and learning

Relative error reduction (rer) of subject omission errors:

control variables

- child age
- child / adult MLU
- child / adult vocabulary size
- adult subject omissions
- proportion of child speech

Linear regression models

- \bullet with rer as dependent variable
- including / excluding CF

${\bf 3}$ experimental settings

- t_0 : starting age
- $d(t_0, t_1)$: time lag

Raquel Fernández LDLMD @ NIPS 2016 17 /

Results

Setting 1: any t_0 and any $d(t_0, t_1) \ge 1$ month

- Positive correlation between CF_{t_0} and $\text{rer}(\texttt{t_0}, \texttt{t_1})$ $r\!=\!0.29, p\!<\!0.001$
- Linear regression model: CF explains a significant proportion of rer, independently of other predictors

Raquel Fernández LDLMD @ NIPS 2016 18 / 2

Results

Setting 2: any t_0 and fixed $d(t_0, t_1)$

CF has an impact after a time lag of 7–12 months...

Setting 3: fixed t_0 and fixed $d(t_0, t_1)$

... for all starting ages for which there is data available.

Raquel Fernández LDLMD @ NIPS 2016 19 / 2

Concluding remarks

Language learning through interaction

- incremental multimodal word learning from few exposures
- coordination in child-adult dialogue
- local interaction can function as negative input:
 - \hookrightarrow corrective feedback contributes to learning of subject inclusion in English, after a lag of at least 7–9 months

How can we model this interactive process for automated learners?

- learning to communicate with each other
- exploiting implicit supervision
- in a situated environment
 [work in progress with Afra Alishahi, Grzegorz Chrupała & Lieke Gerderloos]

thank you

Collaborators & students: Marco Baroni, Grzegorz Chrupała, Robert Grimm, Sarah Hiller, Richard Kunert, Angeliki Lazaridou, Willem Zuidema

Raquel Fernández LDLMD @ NIPS 2016 20 / 2