Assignment-5: Apply Support Vector Machine On Amazon Fine Food Reviews DataSet

Introduction

- (i). "Support Vector Machine" (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges. However, it is mostly used in classification problems.
- (ii). The main goal of this algorithm is to find the optimal hyperplane.

Objective

To Predict the Polarity of Amazon Fine Food Review Using Support Vector Machine Algorithm.

Importing All Required Library

```
In [1]: | %matplotlib inline
        import sqlite3
        import pandas as pd
        import numpy as np
        import nltk
        import string
        import matplotlib.pyplot as plt
        import seaborn as sns
        import math
        from sklearn.model selection import GridSearchCV
        from sklearn.feature extraction.text import CountVectorizer
        from sklearn.linear model import SGDClassifier
        from sklearn.svm import SVC
        from sklearn.calibration import CalibratedClassifierCV
        from sklearn.metrics import classification report
        from sklearn.feature extraction.text import TfidfTransformer
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.model selection import TimeSeriesSplit
        from sklearn.metrics import confusion matrix
        from sklearn import metrics
        from sklearn.metrics import roc_curve, auc
        from sklearn.model selection import cross val score
        from sklearn import preprocessing
        from sklearn.metrics import accuracy score
        from sklearn.metrics import f1 score
        from gensim.models import Word2Vec
         from gensim.models import KeyedVectors
        import pickle
        from tqdm import tqdm
        import os
        import warnings
        warnings.filterwarnings("ignore")
```

```
C:\Users\User\Anaconda3\lib\site-packages\gensim\utils.py:1197: UserWarning:
detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
```

Importing Amazon Fine Food Review Dataset

Information About DataSet

```
In [4]: print("\nNumber of Reviews: ",Data["Text"].count())
        print("\nNumber of Users: ",len(Data["UserId"].unique())) # Unique returns 1-D
        array of unique values of DataFrame.
        print("\nNumber of Products: ",len(Data["ProductId"].unique()))
        print("\nShape of Data: ", Data.shape)
        print("\nColumn Name of DataSet : ",Data.columns)
        print("\n\nNumber of Attributes/Columns in data: 12")
        print("\nNumber of Positive Reviews : ", Data['Score'].value counts()[1])
        print("\nNumber of Negative Reviews : ", Data['Score'].value_counts()[0])
        Number of Reviews: 364171
        Number of Users: 243414
        Number of Products: 65442
        Shape of Data: (364171, 12)
        Column Name of DataSet : Index(['index', 'Id', 'ProductId', 'UserId', 'Profi
        leName',
               'HelpfulnessNumerator', 'HelpfulnessDenominator', 'Score', 'Time',
               'Summary', 'Text', 'CleanedText'],
              dtype='object')
        Number of Attributes/Columns in data: 12
        Number of Positive Reviews: 307061
        Number of Negative Reviews : 57110
In [5]:
        print("\nNumber of Reviews: ",Data["Text"].count())
        Number of Reviews: 364171
```

Attribute Information About DataSet

- 1.ld A unique value starts from 1
- 2. ProductId A unique identifier for the product
- 3.UserId A unqiue identifier for the user
- 4. Profile Name Name of user profile
- 5.HelpfulnessNumerator Number of users who found the review helpful
- 6.HelpfulnessDenominator Number of users who indicated whether they found the review helpful or not
- 7.Score Rating 0 or 1
- 8. Time Timestamp for the review
- 9.Summary Brief summary of the review
- 10.Text Text of the review
- 11. Cleaned Text Text that only alphabets

```
In [6]: # Sorting on the basis of Time Parameter
    Data.sort_values('Time',inplace=True)

In [7]: Data=Data.head(100000)

In [8]: Y = Data['Score']
    X = Data['CleanedText']
```

Splitting DataSet into Train and Test Data

```
In [9]: from sklearn.model_selection import train_test_split
# X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, sh
uffle=Flase): this is for time series split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, shuff
le=False) # this is random splitting

print("Shape of Train and Test Dataset for 100k points")
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)

Shape of Train and Test Dataset for 100k points
(67000,) (67000,)
(33000,) (33000,)
```

Defining Some Function

Train Data Confusion Matrix Plot

```
In [10]: def trainconfusionmatrix(model,X_train,y_train):
    print("Confusion Matrix for Train set")
    cm=confusion_matrix(y_train, model.predict(X_train))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
    plt.title("Train Confusiion Matrix")
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.show()
```

Test Data Confusion Matrix Plot

ROC-AUC Curve (RBF SVM)

Plot Linear

Plot RBF

ROC-AUC Curve (Linear SVM)

```
In [15]: def plot auc roc L(model, X train, X test, y train, y test):
             Clf = CalibratedClassifierCV(model,cv='prefit')
             Clf.fit(X train,y train)
             train fpr, train tpr, thresholds = roc curve(y train,Clf.predict proba(X t
         rain)[:,1])
             test fpr, test tpr, thresholds = roc curve(y test,Clf.predict proba(X test
         )[:,1])
             plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, trai
         n tpr)))
             plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr
         )))
             plt.legend()
             plt.xlabel("Hyperameter (C)")
             plt.ylabel("AUC")
             plt.title("ROC CURVE PLOTS")
             plt.show()
```

GridSearchCV Linear

GridSearchCV RBF

30 Informative Feature

```
In [18]:
          def show 30 informative feature(vectorizer, model, n=30):
             Weights Index = model.coef [0].argsort()
             length = len(Weights Index)
             # For Negative Class
             neg class=Weights Index[:30]
             neg_feat=[vectorizer.get_feature_names()[x] for x in neg_class]
             neg_prob=[model.coef_[0][x] for x in neg_class]
             neg_zip=list(zip(neg_feat,neg_prob))
             neg_zip.sort()
             # For Positive Class
             pos_class = Weights_Index[-30:]
             pos_feat=[vectorizer.get_feature_names()[x] for x in pos_class]
             pos_prob=[model.coef_[0][x] for x in pos_class]
             pos zip=list(zip(pos feat,pos prob))
             pos zip.sort()
             top=zip(pos zip,neg zip)
             print("{0:20}{1:55}{2:20}".format("S.N","Positive","Negative"))
             print("_"*90)
             i=1
             for (fn_1,coef_1), (fn_2,coef_2) in top:
                  print("%d.\t\t%.3f\t%-30s\t\t%.3f\t%s" % (i,coef 1, fn 1, coef 2, fn 2
         ))
                 i+=1
```

Bags of Words Vectorizer

```
In [19]: vectorizer = CountVectorizer()
vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
X_train_bow = vectorizer.transform(X_train)
X_train_bow=preprocessing.normalize(X_train_bow)

X_test_bow = vectorizer.transform(X_test)
X_test_bow=preprocessing.normalize(X_test_bow)

print("Shape of Train and Test Data After vectorizations")
print(X_train_bow.shape, Y_train.shape)
print(X_test_bow.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
(67000, 30737) (67000,)
(33000, 30737) (33000,)
```

Part 1: Taking L1 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

Plot

Training the model

n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l1',
power_t=0.5, random_state=None, shuffle=False, tol=None,
validation fraction=0.1, verbose=0, warm start=False)

Evaluating the performance of model

```
In [24]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)
```

Confusion Matrix for Train set

In [25]: testconfusionmatrix(Model_Bow,X_test_bow,Y_test)

Confusion Matrix for Test set


```
In [27]: print("Classification Report: \n")
y_pred=Model_Bow.predict(X_test_bow)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.43	0.89	0.58	4478
	1	0.98	0.81	0.89	28522
micro	avg	0.82	0.82	0.82	33000
macro	avg	0.70	0.85	0.73	33000
weighted	avg	0.91	0.82	0.85	33000

Displaying 30 most informative features

In [28]: show_30_informative_feature(vectorizer, Model_Bow)

S.N gative	Pos	sitive		Ne
1.	6.557	addict	-5.486	ancho
vi 2	2 000	- 7	F F76	
2.	3.099	alway	-5.576	aw bland
3.	5.918	amaz		bland
4.	4.781	awesom		brief
5. hel	3.891	beat	-7.289	clams
6.	3.725	beauti	-5.133	conce
pt	3.723	Deauci	-3.133	Conce
7.	5.042	best	-7.386	credi
t t	3.072	bese	7.300	CICUI
8.	3.831	burton	-5.385	dirt
9.	6.243	delici		disap
point	312.3	0.00_	0.502	и
10.	4.048	delight	-8.115	edit
11.	3.165	easi		gophe
r				0 1
12.	6.141	excel	-6.973	horch
ata				
13.	4.659	fantast	-10.263	horri
bl				
14.	3.686	fast	-4.066	lack
15.	3.750	favorit	-4.140	leg
16.	4.033	glad	-8.273	poor
17.	4.977	great	-7.422	retur
n				
18.	3.624	happi		sept
19.	3.176	hook		sorri
20.	3.119	keep	-5.333	stenc
h				
21.	3.467	love	-6.720	sucra
los				
22.	3.931	nice	-7.303	terri
bl	7 400	٠.		
23.	7.188	perfect		threw
24.	3.628	refresh	-4.404	throw
n ar	2 225	مام شام	F 122	
25.	3.335	rich		trap twink
26. i	4.295	satisfi	-6.764	CMTUK
1 27.	4.254	smooth	-5.329	unfor
tun	4.404	SIIIOOCII	-3.329	uiii Oi.
28.	4.167	uniqu	-4.145	weak
29.	3.766	wonder		weak
30.	5.052	yummi		worst
٠, ٥٠	2ره. ر	yummı	-7.702	WOI 3 C

Part 2: Taking L2 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

```
In [22]: gsv=Grid_SearchCV(X_train_bow,Y_train,'12')
    print("Best HyperParameter: ",gsv.best_params_)
    print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

Best HyperParameter: {'alpha': 0.0001, 'penalty': '12'}
    Best Accuracy: 92.20%
```

Plot

Training the model

Evaluating the performance of model

In [32]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)

Confusion Matrix for Train set

In [33]: testconfusionmatrix(Model_Bow,X_test_bow,Y_test)

Confusion Matrix for Test set


```
In [34]: plot_auc_roc_L(Model_Bow,X_train_bow,X_test_bow,Y_train,Y_test)
```



```
In [35]: print("Classification Report: \n")
y_pred=Model_Bow.predict(X_test_bow)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.45	0.90	0.60	4478
	1	0.98	0.83	0.90	28522
micro	avg	0.84	0.84	0.84	33000
macro	avg	0.72	0.86	0.75	33000
weighted	avg	0.91	0.84	0.86	33000

Displaying 30 most informative features

In [36]: show_30_informative_feature(vectorizer, Model_Bow)

S.N gative	Pos	sitive		Ne
1.	2.893	addict	-2.919	aw
2.	2.360	alway	-2.134	away
3.	3.197	amaz	-2.315	bad
4.	2.507	awesom	-3.416	bland
5.	1.977	beat	-2.024	didnt
6.	4.094	best	-4.536	disap
point		5656	1.555	атзар
7.	4.449	delici	-1.933	disgu
st				
8.	2.361	easi	-2.119	guess
9.	4.225	excel	-2.056	_
10.	2.416	fantast	-2.413	horri
bl				
11.	2.080	fast	-1.976	howev
12.	2.728	favorit	-2.306	lack
13.	2.383	glad	-2.317	mayb
14.	2.028	good	-2.377	money
15.	4.143	great	-2.103	perha
р		J		•
16.	2.732	happi	-2.069	refun
d				
17.	2.326	keep	-2.037	retur
n		•		
18.	2.859	love	-1.915	sad
19.	2.835	nice	-2.064	sorri
20.	4.463	perfect	-2.667	stale
21.	2.222	pleasant	-2.100	stick
22.	1.984	quick	-1.929	stuck
23.	2.154	refresh	-2.467	taste
less				
24.	2.323	rich	-3.430	terri
bl				
25.	2.314	satisfi	-2.392	thoug
ht				
26.	2.632	smooth	-2.086	threw
27.	2.330	tasti	-3.094	unfor
tun				
28.	2.244	thank	-2.724	weak
29.	2.746	wonder	-2.064	wors
30.	2.673	yummi	-3.865	worst

TF-IDF Vectorizer

```
In [24]: vectorizer tfidf=TfidfVectorizer()
         vectorizer tfidf.fit(X train)
Out[24]: TfidfVectorizer(analyzer='word', binary=False, decode_error='strict',
                 dtype=<class 'numpy.float64'>, encoding='utf-8', input='content',
                 lowercase=True, max df=1.0, max features=None, min df=1,
                 ngram range=(1, 1), norm='l2', preprocessor=None, smooth idf=True,
                 stop words=None, strip accents=None, sublinear tf=False,
                 token pattern='(?u)\\b\\w\\b', tokenizer=None, use idf=True,
                 vocabulary=None)
         X Train Tfidf=vectorizer tfidf.transform(X train)
In [25]:
         X Train Tfidf=preprocessing.normalize(X Train Tfidf)
         X Test Tfidf=vectorizer tfidf.transform(X test)
         X Test Tfidf=preprocessing.normalize(X Test Tfidf)
In [26]:
         print("Shape of Train and Test Data After vectorizations")
         print(X Train Tfidf.shape, Y train.shape)
         print(X_Test_Tfidf.shape, Y_test.shape)
         Shape of Train and Test Data After vectorizations
         (67000, 30737) (67000,)
         (33000, 30737) (33000,)
```

Taking L1 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

Plot

In [28]: plot_1(gsv)

Training the model

```
In [21]: Best_Param=gsv.best_params_
    C=Best_Param['alpha']
    Penalty = Best_Param['penalty']

Model_Tfidf=SGDClassifier(alpha=C,penalty=Penalty,loss='hinge',shuffle=False,class_weight='balanced')
    Model_Tfidf.fit(X_Train_Tfidf,Y_train)

Out[21]: SGDClassifier(alpha=0.0001, average=False, class_weight='balanced', early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l1', power_t=0.5, random_state=None, shuffle=False, tol=None, validation fraction=0.1, verbose=0, warm start=False)
```

Evaluating the performance of model

In [22]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)

Confusion Matrix for Train set

In [23]: testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)

Confusion Matrix for Test set


```
In [24]: plot_auc_roc_L(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)
```



```
In [25]: print("Classification Report: \n")
y_pred=Model_Tfidf.predict(X_Test_Tfidf)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.44	0.89	0.59	4478
	1	0.98	0.83	0.90	28522
micro	avg	0.83	0.83	0.83	33000
macro	avg	0.71	0.86	0.74	33000
weighted	avg	0.91	0.83	0.85	33000

Displaying 30 most informative features

In [28]: | show_30_informative_feature(vectorizer_tfidf,Model_Tfidf)

S.N	Pos	Positive				
gative						
1.	- 6.218	addict	-5.533 alvin			
2.	3.493	alway	-5.740 billi			
3.	6.243	amaz	-5.652 bland			
4.	4.914	awesom	-8.018 brief			
5.	3.631	beauti	-12.165 categ			
or						
6.	8.510	best	-7.380 cinem			
atographi						
7.	5.288	burton	-15.401 clams			
hel						
8.	8.874	delici	-8.837 credi			
t						
9.	4.007	delight	-6.060 debbi			
10.	7.494	excel	-6.335 defic			
it						
11.	4.363	fantast	-7.808 dirt			
12.	5.369	favorit	-6.838 disap			
point			·			
13.	3.787	find	-7.074 edit			
14.	4.131	glad	-8.417 gazil			
lion		_	_			
15.	4.704	good	-6.761 ghoul			
16.	9.627	great	-13.176 gophe			
r						
17.	4.196	happi	-8.771 horch			
ata						
18.	3.498	hotter	-8.035 horri			
bl						
19.	3.977	keep	-6.861 leg			
20.	6.823	love	-6.551 misle			
ad						
21.	5.009	nice	-5.475 scrip			
t						
22.	3.390	often	-11.039 sept			
23.	9.882	perfect	-8.171 spamm			
er						
24.	4.544	satisfi	-7.132 stenc			
h						
25.	4.150	smooth	-5.628 sucra			
los						
26.	3.599	tasti	-5.817 terri			
bl						
27.	3.788	tim	-6.206 titan			
ium						
28.	4.407	uniqu	-5.556 unfor			
tun						
29.	4.719	wonder	-7.890 wors			
30.	5.013	yummi	-6.649 worst			

Taking L2 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

Plot

Training the mode

```
In [48]: Best_Param=gsv.best_params_
    C=Best_Param['alpha']
    Penalty = Best_Param['penalty']

Model_Tfidf=SGDClassifier(alpha=C,penalty=Penalty,loss='hinge',shuffle=False,class_weight='balanced')
    Model_Tfidf.fit(X_Train_Tfidf,Y_train)

Out[48]: SGDClassifier(alpha=0.0001, average=False, class_weight='balanced', early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='12', power_t=0.5, random_state=None, shuffle=False, tol=None, validation fraction=0.1, verbose=0, warm start=False)
```

Evaluating the performance of model

```
In [49]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)
```

Confusion Matrix for Train set

In [50]: testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)

Confusion Matrix for Test set

In [51]: plot_auc_roc_L(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)


```
In [52]: print("Classification Report: \n")
y_pred=Model_Tfidf.predict(X_Test_Tfidf)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.47	0.90	0.62	4478
	1	0.98	0.84	0.91	28522
micro	avg	0.85	0.85	0.85	33000
macro	avg	0.73	0.87	0.76	33000
weighted	avg	0.91	0.85	0.87	33000

Displaying 30 most informative features

In [53]: show_30_informative_feature(vectorizer_tfidf, Model_Tfidf)

S.N gative	Pos	itive		Ne
1.		addict	-2.662	
2.	2.614	alway	-1.930	away
3.	2.992	amaz	-2.193	bad
4.	2.450	awesom	-3.264	bland
5.	2.087	beat	-2.160	didnt
6.	5.369	best	-4.585	disap
point	3.303	bese	4.303	атзар
7.	4.792	delici	-1.957	disgu
st	7.732	dellel	1.337	arsga
8.	2.346	easi	-2.081	gross
9.	4.339	excel	-2.012	guess
10.	2.252	fantast	-2.115	hope
11.	2.046	fast	-2.416	horri
bl	2.0.0	. 430	21.120	
12.	3.172	favorit	-2.484	lack
13.	2.483	find	-2.234	mayb
14.	2.164	glad	-2.366	money
15.	3.430	good	-1.959	perha
p		8		F
16.	6.535	great	-1.970	retur
n		8		
17.	2.700	happi	-2.098	sorri
18.	2.560	keep	-2.445	stale
19.	4.743	love	-1.997	stick
20.	3.208	nice	-2.004	stuck
21.	4.640	perfect	-2.033	tast
22.	2.132	quick	-2.474	taste
less		•		
23.	2.132	refresh	-3.163	terri
bl				
24.	2.070	rich	-2.535	thoug
ht				Ü
25.	2.201	satisfi	-2.050	threw
26.	2.554	smooth	-2.916	unfor
tun				
27.	2.429	tasti	-2.585	weak
28.	2.123	thank	-2.208	wors
29.	3.127	wonder	-3.548	worst
30.	2.548	yummi	-1.936	yuck

Word To Vector

```
In [31]: list_of_Train_sent=[]
list_of_Test_sent=[]

for sent in X_train:
    list_of_Train_sent.append(sent.split())

for sent in X_test:
    list_of_Test_sent.append(sent.split())

In [32]: model=Word2Vec(list_of_Train_sent,min_count=5,size=50, workers=4)
```

Average Word To Vector

```
In [33]: import numpy as np
         Train vectors = []
         for sent in list_of_Train_sent:
             sent_vec = np.zeros(50)
             cnt words = 0
             for word in sent:
                 try:
                      vec = model.wv[word]
                      sent vec += vec
                      cnt_words += 1
                 except:
                      pass
             if cnt_words!=0:
                  sent vec /= cnt words
             Train vectors.append(sent vec)
         Train_vectors = np.nan_to_num(Train_vectors)
```

```
In [34]: import numpy as np
         Test vectors=[]
         for sent in list of Test sent:
              sent_vec=np.zeros(50)
              cnt words=0
              for word in sent:
                  try:
                      vec=model.wv[word]
                      sent_vec+=vec
                      cnt_words+=1
                  except:
                      pass
              if cnt_words!=0:
                  sent_vec/=cnt_words
              Test vectors.append(sent vec)
         Test_vectors=np.nan_to_num(Test_vectors)
```

Taking L1 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

```
In [38]: gsv=Grid_SearchCV(X_Train_Awv,Y_train,"l1")
    print("Best HyperParameter: ",gsv.best_params_)
    print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

Best HyperParameter: {'alpha': 0.001, 'penalty': 'l1'}
Best Accuracy: 88.50%
```

Plot

Training Model

Evaluating the performance of model

```
In [63]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)
```

Confusion Matrix for Train set

In [64]: trainconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Train set

In [65]: plot_auc_roc_L(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)


```
In [66]: print("Classification Report: \n")
y_pred=Model_Awv.predict(X_Test_Awv)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.34	0.89	0.49	4478
	1	0.98	0.73	0.83	28522
micro	avg	0.75	0.75	0.75	33000
macro	avg	0.66	0.81	0.66	33000
weighted	avg	0.89	0.75	0.79	33000

Taking L2 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

Plot

```
In [41]: plot_l(gsv)
```


Training the model

Evaluating the performance of model

In [69]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)

Confusion Matrix for Train set

In [70]: testconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Test set


```
In [71]: plot_auc_roc_L(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)
```

```
ROC CURVE PLOTS
1.0
0.8
0.6
0.4
0.2
                                train AUC = 0.8921954438198699
                                test AUC = 0.897951457920371
0.0
                0.2
                                       0.6
                                                  0.8
                                                             1.0
     0.0
                            0.4
                           Hyperameter (C)
```

```
In [72]: print("Classification Report: \n")
y_pred=Model_Awv.predict(X_Test_Awv)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.36	0.88	0.51	4478
	1	0.97	0.75	0.85	28522
micro	avg	0.77	0.77	0.77	33000
macro	avg	0.67	0.81	0.68	33000
weighted	avg	0.89	0.77	0.80	33000

TF-IDF Word To Vector

```
In [42]: TFIDF_Feature=vectorizer_tfidf.get_feature_names()
    print(len(TFIDF_Feature))
    print(TFIDF_Feature[0:20])
30737
```

```
from tqdm import tqdm
In [43]:
         Train_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list of Train sent):
             sent vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                      w2v vec=model.wv[word]
                      tfidf_vec=X_Train_Tfidf[row,TFIDF_Feature.index(word)]
                      sent vec+=(w2v vec*tfidf vec)
                      weight+=tfidf vec
                 except:
                      pass
             if weight!=0:
                 sent vec/=weight
             Train_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
         100%
                                            67000/67000 [32:16<00:00, 34.60it/
         s]
In [44]:
         Test_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list_of_Test_sent):
             sent vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                      w2v vec=model.wv[word]
                      tfidf vec=X Test Tfidf(row,TFIDF Feature.index(word))
                      sent vec+=(w2v vec*tfidf vec)
                      weight+=tfidf
                 except:
                      pass
             if weight!=0:
                  sent_vec/=weight
             Test TFIDF W2V Vectors.append(sent vec)
             row+=1
         100%
                                                     33000/33000 [11:02<00:00, 49.84it/
         s]
In [45]: | Train_TFIDF_W2V_Vectors = np.nan_to_num(Train_TFIDF_W2V_Vectors)
         Test_TFIDF_W2V_Vectors = np.nan_to_num(Test_TFIDF_W2V_Vectors)
In [46]: | X_Train_TfidfW2v=Train_TFIDF_W2V_Vectors
         X Test TfidfW2v=Test TFIDF W2V Vectors
```

```
In [47]: print(X_Train_TfidfW2v.shape, Y_train.shape)
    print(X_Test_TfidfW2v.shape, Y_test.shape)

    (67000, 50) (67000,)
    (33000, 50) (33000,)
```

Taking L1 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

```
In [48]: gsv=Grid_SearchCV(X_Train_TfidfW2v,Y_train,"11")
    print("Best HyperParameter: ",gsv.best_params_)
    print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

Best HyperParameter: {'alpha': 0.01, 'penalty': 'l1'}
    Best Accuracy: 85.66%
```

Plot

Training Model

Evaluating the performance of model

```
In [48]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
```

Confusion Matrix for Train set

In [49]: testconfusionmatrix(Model_TfidfW2v,X_Test_TfidfW2v,Y_test)

Confusion Matrix for Test set


```
In [87]: print("Classification Report: \n")
y_pred=Model_TfidfW2v.predict(X_Test_TfidfW2v)
print(classification_report(Y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.14	1.00	0.24	4478
	1	0.00	0.00	0.00	28522
micro	avg	0.14	0.14	0.14	33000
macro	avg	0.07	0.50	0.12	33000
weighted	avg	0.02	0.14	0.03	33000

Taking L2 as a Regularisation Parameter

Finding the best value Of hyperparameter (Alpha)

```
In [50]: gsv=Grid_SearchCV(X_Train_TfidfW2v,Y_train,"11")
    print("Best HyperParameter: ",gsv.best_params_)
    print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

Best HyperParameter: {'alpha': 0.01, 'penalty': 'l1'}
    Best Accuracy: 85.66%
```

Plot

In [51]: plot_l(gsv)

Training the model

```
In [89]: Best_Param=gsv.best_params_
    C=Best_Param['alpha']
    Penalty = Best_Param['penalty']

Model_TfidfW2v=SGDClassifier(alpha=C,penalty=Penalty,loss='hinge',shuffle=False,class_weight='balanced')
    Model_TfidfW2v.fit(X_Train_TfidfW2v,Y_train)

Out[89]: SGDClassifier(alpha=0.001, average=False, class_weight='balanced', early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=None, n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l1', power_t=0.5, random_state=None, shuffle=False, tol=None, validation fraction=0.1, verbose=0, warm start=False)
```

Evaluating the performance of model

In [90]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)

Confusion Matrix for Train set

In [91]: testconfusionmatrix(Model_TfidfW2v,X_Test_TfidfW2v,Y_train)

Confusion Matrix for Test set


```
In [92]: plot_auc_roc_L(Model_TfidfW2v,X_Train_TfidfW2v,X_Test_TfidfW2v,Y_train,Y_test)
```



```
In [93]: print("Classification Report: \n")
y_pred=Model_TfidfW2v.predict(X_Test_TfidfW2v)
print(classification_report(Y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.14	1.00	0.24	4478
1	0.00	0.00	0.00	28522
micro avg	0.14	0.14	0.14	33000
macro avg	0.07	0.50	0.12	33000
weighted avg	0.02	0.14	0.03	33000

Using RBF Kernal

```
In [52]: Data_RBF = Data.head(20000)
In [53]: Y = Data_RBF['Score']
X = Data_RBF['CleanedText']
```

```
In [54]: from sklearn.model_selection import train_test_split
    # X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, sh
    uffle=Flase): this is for time series split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, shuff
    le=False) # this is random splitting

    print("Shape of Train and Test Dataset for 100k points")
    print(X_train.shape, Y_train.shape)
    print(X_test.shape, Y_test.shape)

Shape of Train and Test Dataset for 100k points
    (13400,) (13400,)
    (6600,) (6600,)
```

Bag Of Words

```
In [55]: vectorizer = CountVectorizer(max_features=500)
    vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
    X_train_bow = vectorizer.transform(X_train)
    X_train_bow=preprocessing.normalize(X_train_bow)

X_test_bow = vectorizer.transform(X_test)
    X_test_bow=preprocessing.normalize(X_test_bow)

print("Shape of Train and Test Data After vectorizations")
    print(X_train_bow.shape, Y_train.shape)
    print(X_test_bow.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
    (13400, 500) (13400,)
    (6600, 500) (6600,)
```

Finding the best value of hyperparameter Alpha

Plot

Training the model

```
In [100]: Best_Param=gsv.best_params_
    C = Best_Param['C']

Model_Bow=SVC(C=C,probability=True,class_weight='balanced')
Model_Bow.fit(X_train_bow,Y_train)

Out[100]: SVC(C=100, cache_size=200, class_weight='balanced', coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
    kernel='rbf', max_iter=-1, probability=True, random_state=None,
    shrinking=True, tol=0.001, verbose=False)
```

Evaluating the performance of model

In [101]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)

Confusion Matrix for Train set

In [102]: testconfusionmatrix(Model_Bow,X_test_bow,Y_test)

Confusion Matrix for Test set


```
In [103]: plot_auc_roc(Model_Bow,X_train_bow,X_test_bow,Y_train,Y_test)
```



```
In [104]: print("Classification Report: \n")
y_pred=Model_Bow.predict(X_test_bow)
print(classification_report(Y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.35	0.80	0.48	705
	1	0.97	0.82	0.89	5895
micro	avg	0.82	0.82	0.82	6600
macro	avg	0.66	0.81	0.69	6600
weighted	avg	0.90	0.82	0.85	6600

TF-IDF Vectorizer

```
In [58]: vectorizer_tfidf=TfidfVectorizer()
    vectorizer_tfidf.fit(X_train)
```

```
In [59]: X_Train_Tfidf=vectorizer_tfidf.transform(X_train)
    X_Train_Tfidf=preprocessing.normalize(X_Train_Tfidf)

    X_Test_Tfidf=vectorizer_tfidf.transform(X_test)
    X_Test_Tfidf=preprocessing.normalize(X_Test_Tfidf)

In [60]: print("Shape of Train and Test Data After vectorizations")
    print(X_Train_Tfidf.shape, Y_train.shape)
    print(X_Test_Tfidf.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
    (13400, 15698) (13400,)
    (6600, 15698) (6600,)
```

Finding the best value of hyperparameter Alpha

```
In [61]: gsv=Grid_SearchCV_RBF(X_Train_Tfidf,Y_train)
    print("Best HyperParameter: ",gsv.best_params_)
    print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))

Fitting 5 folds for each of 9 candidates, totalling 45 fits
    [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
    [Parallel(n_jobs=-1)]: Done 45 out of 45 | elapsed: 14.2min finished

Best HyperParameter: {'C': 1000}
Best Accuracy: 90.33%
```

Plot

Training the model

Evaluating the performance of model

```
In [112]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)
```

Confusion Matrix for Train set

In [113]: testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)

Confusion Matrix for Test set

In [114]: plot_auc_roc(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)


```
In [115]: print("Classification Report: \n")
y_pred=Model_Tfidf.predict(X_Test_Tfidf)
print(classification_report(Y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.43	0.80	0.56	705
	1	0.97	0.87	0.92	5895
micro	avg	0.86	0.86	0.86	6600
macro	avg	0.70	0.84	0.74	6600
weighted	avg	0.92	0.86	0.88	6600

Word To Vector

```
In [63]: list_of_Train_sent=[]
list_of_Test_sent=[]

for sent in X_train:
    list_of_Train_sent.append(sent.split())

for sent in X_test:
    list_of_Test_sent.append(sent.split())
```

```
In [64]: model=Word2Vec(list_of_Train_sent,min_count=5,size=50, workers=4)
```

```
In [65]: import numpy as np
         Train vectors = []
         for sent in list of Train sent:
             sent_vec = np.zeros(50)
             cnt words = 0
             for word in sent:
                 try:
                      vec = model.wv[word]
                      sent vec += vec
                      cnt_words += 1
                 except:
                      pass
             if cnt words!=0:
                  sent_vec /= cnt_words
             Train vectors.append(sent vec)
         Train_vectors = np.nan_to_num(Train_vectors)
```

```
In [66]:
         import numpy as np
         Test vectors=[]
         for sent in list of Test sent:
             sent vec=np.zeros(50)
             cnt_words=0
             for word in sent:
                 try:
                      vec=model.wv[word]
                      sent_vec+=vec
                      cnt words+=1
                 except:
                      pass
             if cnt words!=0:
                  sent vec/=cnt words
             Test_vectors.append(sent_vec)
         Test vectors=np.nan to num(Test vectors)
In [67]: print("Shape of Test Vectors : ",Test vectors.shape)
         Shape of Test Vectors: (6600, 50)
In [68]:
         X Train Awv=Train vectors
         X Test Awv=Test vectors
In [69]:
         print(X Train Awv.shape, Y train.shape)
         print(X Test Awv.shape, Y test.shape)
         (13400, 50) (13400,)
         (6600, 50) (6600,)
```

Finding the best hyperparameter (C)

Plot

```
In [71]: plot_r(gsv)
```


Training the model

```
In [124]: Best_Param=gsv.best_params_
    C = Best_Param['C']

Model_Awv=SVC(C=C,probability=True,class_weight='balanced')
Model_Awv.fit(X_Train_Awv,Y_train)

Out[124]: SVC(C=10, cache_size=200, class_weight='balanced', coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
    kernel='rbf', max_iter=-1, probability=True, random_state=None,
    shrinking=True, tol=0.001, verbose=False)
```

Evaluating the performance of model

In [125]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)

Confusion Matrix for Train set

In [126]: testconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Test set


```
In [127]: plot_auc_roc(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)
```

```
ROC CURVE PLOTS
1.0
0.8
0.6
0.4
0.2
                                train AUC = 0.8805280921230819
                                test AUC = 0.8548612539777067
0.0
                0.2
                                       0.6
                                                  0.8
                                                             1.0
     0.0
                            0.4
                           Hyperameter (C)
```

```
In [128]: print("Classification Report: \n")
y_pred=Model_Awv.predict(X_Test_Awv)
print(classification_report(Y_test, y_pred))
```

m', 'aboard', 'abod']

		precision	recall	f1-score	support
	0	0.29	0.78	0.43	705
	1	0.97	0.77	0.86	5895
micro	avg	0.78	0.78	0.78	6600
macro	avg	0.63	0.78	0.64	6600
weighted	avg	0.90	0.78	0.81	6600

Tf-IDF Word To Vector

```
In [72]: TFIDF_Feature=vectorizer_tfidf.get_feature_names()
    print(len(TFIDF_Feature))
    print(TFIDF_Feature[0:20])

15698
    ['aaaaah', 'aafco', 'aagh', 'aah', 'ab', 'aback', 'abandon', 'abba', 'abc',
    'abdomen', 'abdomin', 'abhor', 'abid', 'abil', 'abj', 'abl', 'abliti', 'abnor
```

```
from tqdm import tqdm
In [73]:
         Train_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list of Train sent):
             sent vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                      w2v vec=model.wv[word]
                      tfidf_vec=X_Train_Tfidf[row,TFIDF_Feature.index(word)]
                      sent vec+=(w2v vec*tfidf vec)
                      weight+=tfidf vec
                 except:
                      pass
             if weight!=0:
                  sent vec/=weight
             Train_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
         100%
                                                   | 13400/13400 [02:49<00:00, 79.23it/
         s]
In [74]:
         Test_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list of Test sent):
             sent_vec=np.zeros(50)
             weight=0
             for word in sent:
                  try:
                      w2v vec=model.wv[word]
                      tfidf_vec=X_Test_Tfidf(row,TFIDF_Feature.index(word))
                      sent_vec+=(w2v_vec*tfidf_vec)
                      weight+=tfidf
                  except:
                      pass
             if weight!=0:
                  sent vec/=weight
             Test_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
                                                    | 6600/6600 [00:56<00:00, 117.44it/
         100%
         s]
In [75]: Train_TFIDF_W2V_Vectors = np.nan_to_num(Train_TFIDF_W2V_Vectors)
         Test TFIDF W2V Vectors = np.nan to num(Test TFIDF W2V Vectors)
In [76]: X Train TfidfW2v=Train TFIDF W2V Vectors
         X_Test_TfidfW2v=Test_TFIDF_W2V_Vectors
```

Finding the best hyperparameter (C)

Plot

```
In [79]: plot_r(gsv)
```


Training the model

```
In [136]: Best_Param=gsv.best_params_
    C = Best_Param['C']

Model_TfidfW2v=SVC(C=C,probability=True,class_weight='balanced')
Model_TfidfW2v.fit(X_Train_TfidfW2v,Y_train)
```

Evaluating the performance of model

```
In [137]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
```

Confusion Matrix for Train set

In []: testconfusionmatrix(Model_TfidfW2v,X_Test_TfidfW2v,Y_test)

```
In [139]: | plot_auc_roc(Model_TfidfW2v,X_Train_TfidfW2v,X_Test_TfidfW2v,Y_train,Y_test)
```



```
In [140]: print("Classification Report: \n")
y_pred=Model_TfidfW2v.predict(X_Test_TfidfW2v)
print(classification_report(Y_test, y_pred))
```

		precision	recall	f1-score	support
	0	0.11	1.00	0.19	705
	1	0.00	0.00	0.00	5895
micro	avg	0.11	0.11	0.11	6600
macro	avg	0.05	0.50	0.10	6600
weighted	avg	0.01	0.11	0.02	6600

1.Report On Different Vectorizer Method and RBF Kernel

```
In [75]: from prettytable import PrettyTable

x = PrettyTable()

x.field_names = ["Vectorizer", "Hyperparameter(C)","Train AUC","Test AUC","F1-Score"]

x.add_row(["BOW",100,0.90,0.87,0.86])
x.add_row(["TF-IDF",1000,0.97,0.91,0.94])
x.add_row(["Avg W2V",100,0.88,0.84,0.85])
x.add_row(["TF-IDF W2V",1000,0.90,0.50,0.84])

print(x)
```

Vectorizer	Hyperparameter(C)	Train AUC	Test AUC	F1-Score
BOW TF-IDF Avg W2V TF-IDF W2V	100	0.9	0.87	0.86
	1000	0.97	0.91	0.94
	100	0.88	0.84	0.85
	1000	0.9	0.5	0.84

2.Report On Different Vectorizer Method and Linear Kernel (L1 Regularisation Parameter)

```
+----+
| Vectorizer | Hyperparameter(Alpha) | Train AUC | Test AUC | F1-Score |
           0.0001 |
0.0001 |
  BOW
                          0.93
                                 0.92
                                        0.87
  TF-IDF |
                          0.93
                                 0.93
                                        0.87
             0.001
                                 0.89
                                        0.83
 Avg W2V
                          0.89
| TF-IDF W2V |
              0.001
                                 0.5
                          0.86
                                        0.8
```

3.Report On Different Vectorizer Method and Linear Kernel (L2 Regularisation Parameter)

+	L	+			┺
Vectorizer	 Hyperparameter(Alpha)	Train AUC	Test AUC	F1-Score	
BOW TF-IDF Avg W2V TF-IDF W2V	0.0001 0.0001 0.0001 0.001	0.94 0.96 0.89 0.86	0.93 0.94 0.89 0.5	0.88 0.88 0.8	
+		+		+	F

- 4. I have used SGDClassifier for Linear SVM on 100K DataSet and SVC for RBF SVM on 20K DataSet.
- 5. Since data is unbalanced , i did time based splitting and used roc_auc metric as scoring parameter in GridsearchCV .
- 6. In case of RBF SVM, TFIDF is performing better than other.
- 7. In Case of Linear SVM, TFIDF-W2V is overfitting.