

CLAIMS:

We claim:

- 1 1. A channel assignment scheme for a node comprising:
 - 2 assigning a first channel to an uplink for a node;
 - 3 assigning a second channel for a downlink for a node; and
 - 4 maintaining the first channel and the second channel distinct from uplink channel
 - 5 of an upstream node. .

- 1 2. The method of Claim 1, wherein each interface is half-duplex.

- 1 3. The method of Claim 1 wherein the channels are frequency channels.

- 1 4. The method of Claim 1 wherein the channels are different spreading codes
2 in a spread-spectrum CDMA system.

- 1 5. The method of Claim 1 wherein the channels are different polarizations of
2 the transmitted waveform.

- 1 6. The method of Claim 1 wherein the channels are different spatial
2 signatures as determined by a smart antenna or adaptive antenna array at the receiver.

- 1 7. The method of Claim 1, further comprising:

2 assigning of the first channel and the second channel for the node based on a
3 number of hops from the node to a distinguished node.

1 8. The method of claim 7, wherein there are multiple downlink nodes and the
2 multiple downlink nodes use multiple downlink channels.

1 9. The method of Claim 7 wherein the number of hops is determined from
2 information carried in the routing packets.

1 10. The method of Claim 9, wherein the routing information is propagated in
2 the network on some or all of the channels available in the system.

1 11. The method of Claim 9, wherein the routing information is propagated in
2 the network on a dedicated channel.

1 12. The method of Claim 1 wherein the uplink channel of the node is
2 assigned by the default gateway of the node.

1 13. The method of Claim 12, wherein assigning the downlink channel for a
2 node comprises:

3 determining a plurality of potential channels for communication;
4 sending a reservation packet to trigger testing of each of the plurality of potential
5 channels; and
6 determining a best channel based on responses to the reservation packet.

1 14. The method of Claim 13 wherein testing comprises:

2 each downstream node sending a plurality of packets to the node; and
3 evaluating a channel with the best link quality..

1 15. The method of Claim 14 wherein link quality is estimated by the
2 throughput on the link.

1 16. The method of Claim 14 wherein link quality is estimated by measuring
2 the packet error rate on the link.

1 17. The method of Claim 14 wherein link quality is estimated by the signal-
2 to-noise ratio observed on the link.

1 18. The method of Claim 14 wherein link quality is estimated by the latency
2 observed on the link.

1 19. A method to determine a quality of a link comprising:
2 sending a predetermined number of packets to an originating node in response to
3 a reservation packet; and
4 deducing, at the originating node, a packet error rate based on a number of
5 packets received without error; and
6 assigning best quality channel to the downstream connection from the
7 originating node based on the packet error rate.

1 20. The method of claim 19, wherein the best quality channel comprises a
2 plurality of downlink channels, and each downstream connection to a downstream node
3 uses one of the plurality of downlink channels.

1 21. A method to determine a quality of a link comprising:
2 sending a predetermined number of packets to an originating node in response to
3 a reservation packet; and
4 deducing, at the originating node, a throughput rate based on the packets received
5 without error; and
6 assigning a best quality channel to the downstream connection from the
7 originating node based on the observed throughput.

1 22. The method of claim 21, wherein the best quality channel comprises plurality
2 of downlink channels, and each downstream connection to a downstream node uses one
3 of the plurality of downlink channels.

1 23. The method of claim 22, wherein the determination is performed
2 periodically, and on all downstream links from a given node and on all available channels
3 in order to determine the choice of channel or channels for the downlink for which the
4 best link quality is achieved.

1 24. A method to allocate communication channels that results in enhanced
2 resistance to external interferers in a wireless mesh network comprising:
3 periodically evaluating a downstream channel by receiving a plurality of packets
4 from each downstream node for each of a plurality of channels; and
5 selecting as the downstream channel a best of the plurality of channels based on
6 link-quality.

1 25. The method of Claim 24, wherein the method results in a channel
2 allocation for the system that eliminates interference between adjacent links or next-to-
3 adjacent links.

1 26. The method of Claim 24, wherein the communications channel to be used
2 on a link (connecting two nodes) is assigned by the node that is at a smaller number of
3 hops to the access point.

1 27. The method of Claim 24, wherein all the links comprising the downlink
2 from a given node are assigned to the same channel.

1 28. The method of Claim 24, wherein the links comprising the downlink from
2 a given node may be assigned to different channels.

1 29. The method of Claim 24, wherein the channel allocations for the system
2 may change in response to the presence of an interferer or jammer transmitting on one or
3 more of the channels used by the system.

1 30. The method of Claim 24 wherein the presence of an interferer or a jammer
2 is inferred based on the link quality observed on each link.