Problem: HBr has a molecular weight of 81 while CH₄ has a molecular weight of 16. HBr effuses through a opening at 4 ml/sec. at what rate will the CH₄ effuse through the same opening.

The speed of effusion of gases is inversely proportional to the square root of their molecular weight.

$$\frac{\text{rate}_{A}}{\text{rate}_{B}} = \frac{\sqrt[2]{M_{B}}}{\sqrt[2]{M_{A}}}$$

In this case $rate_A$ is HBr and $rate_B$ is CH_4 . Therefore to find $rate_{CH4}$, we will find $rate_B$. We know the following information from the problem.

$$rate_A := 4$$

 $M_A := 81$
 $M_B := 16$

Therefore,

nonlinsolve
$$\left(\frac{\text{rate}_A}{\text{rate}_B} = \frac{\sqrt[2]{M_B}}{\sqrt[2]{M_A}}, \text{ rate}_B\right) = 9$$

And the rate of effusion is 9 ml/sec.