Write your name here	Other na	imes
		J
Edexcel Certificate Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: KCH0/4CH0 Science (Double Av Paper: 1C		0
Monday 14 January 2013 Time: 2 hours	– Morning	Paper Reference KCH0/1C 4CH0/1C KSC0/1C 4SC0/1C
You must have: Calculator Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 1 5 3 8 A 0 1 2 8

Turn over ▶

THE PERIODIC TABLE

0

9

2

က

Group

N

Period

N

က

Helium 2	Neon Neon 10 40 Ar Argon 18	Krypton 36 34 Xenon Xenon 54	Radon Badon 86
	Fluorine 9 35.5 CI Chlorine 17	Bromine 35 127 127 53	At Asiatine 85
	Oxygen 8 8 8 Sulfur 16	Selenium 34 128 Tellurium 52	Polonium 84
	Nitrogen 7 31 Phosphorus 15	As Arsenic 33 122 Sb Antimony 51	209 Bismuth 83
	Carbon Carbon 6 6 Silicon 14	Germanium 32 119 Sn Tin 50	Pb Lead 82
	Boron 5 5 27 Al Aluminium 13	70 Gallium 31 115 In	204 TI Thallium 81
		65 Zn Zinc 30 112 Cd Cadmium 48	Hg Mercury 80
		63.5 Cu Copper 29 108 Ag Silver 47	Au Gold 79
		Nickel Nickel 28 106 Pd Palladium 46	195 Pt Platinum 78
		Cobalt 27 103 Rh Glodium 45	192 Iridium 77
		Fe Iron 26 101 Ruthenium 44	OSmium 76
H Hydrogen		52 55 Cr Mn Chromium Manganese 24 25 96 99 MO TC Molybdenum Technetium F42	186 Renium 75
		Chromium 124 96 MO Aolybdenum 42	184 W W Tungsten 74
		Vanadium 23 93 Nb Niobium A 11	181 Ta Tantalum 73
		48 Ti Titanium 22 21 22 22 22 22 24 27 Zirconium 40	179 Hafnium 72
		Scandium 21 89 Yttrium 39	La Lanthanum 57 227 AC Actinium 89
	Be Beryllium 4 4 AMg Magnesium 12	Calcium 20 20 88 Strontium 38	
		39 K K 19 19 86 R R R R N 37	
		L	

Key

Relative atomic mass
Symbol Name
Atomic number

2

9

Answer ALL questions.

- 1 This question is about the element beryllium.
 - (a) Use words from the box to complete the sentences about beryllium.

Each word may be used once, more than once or not at all.

(7)

electrons nucleus	negative positive	neutral protons	neutrons shells	
An atom of beryllium	has a central	tha	at contains particles	
called	and	Ar	ound these	
particles there are		orbiting in		
An atom of beryllium	has no charge beca	ause it contains equ	al numbers	
of	and			
The particles with the	lowest mass in an	atom of beryllium a	re called	
Beryllium forms a com	pound with the fo	rmula Be(OH) ₂		
(i) How many differer	nt elements are the	ere in Be(OH) ₂ ?		(1)
(ii) What is the total n	umber of atoms in	the formula Be(OH)	₂ ?	(1)
		(Total f	or Question 1 = 9 ma	arks)

	(Total for Question 2 = 6	marks)
(iii) What is the formula that is used to represent both the colourless gas and th	e acid? (1)
(ii)	What is the name of the acid?	(1)
(i)	What is the name of the colourless gas?	(1)
	lorine reacts with hydrogen to form a colourless gas that dissolves in water tom an acid.	0
b) W	nich is the most reactive element in Group 7?	(1)
■ D	aqueous solution	
⊠ C	gas	
В	liquid	
⋈ A	solid	(1)
(ii)	At room temperature, the physical state of bromine is	
	violet	
	green	
■ A■ B	colourless	
(i)	Chlorine gas is	(1)
	t a cross 🛮 in the box to indicate your answer.	

Robert Boyle discovered that hydrogen was produced when iron reacted with dilute acids.	Henry Cavendish found that water was formed when hydrogen burned.	Jacques Charles launched the first hydrogen-filled balloon.	James Dewar liquefied hydrogen for the first time.
1671	1781	1783	1898
	Y	ear	
(a) (i) The student r	epeated Boyle's experime	nt using iron and dilute su	lfuric acid.
State two obs	servations that he could h	ave made.	(2)
			(2)
l			
(ii) Complete the	word equation for this re	action.	(1)
iron + sulfuric a	acid →	+	
(b) Balance the equa	tion for the complete con	nbustion of hydrogen.	
(6) 23.3.1.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3			(1)
	H ₂ +	$O_2 \to H_2O$	
	liquid produced by burning mical test and a physical t	ng hydrogen was pure wat est.	ter, a student
	test involved adding a fev pper(II) sulfate.	w drops of the liquid to a s	ample of
State the colo	our change observed.		(2)
			(2)
nitial colour			

		(Total for Question 3 = 12 ma	rks)
(e)		ite an equation, including state symbols, to show the process that occurs when drogen is liquefied.	(1)
			(1)
		State the property of helium that makes it more suitable than hydrogen for filling balloons.	
	(ii)	Helium is now used instead of hydrogen to fill balloons.	
(d)	(1)	Suggest what property of hydrogen makes it suitable for filling balloons.	(1)
•	-	operty	
Dbyesi -	ما ام	ronorti.	(2)
		State a suitable physical property and give the value for pure water.	(2)
	(iii)	The physical test involved measuring a property of the liquid.	
×	D	CuSO ₄ .5H ₂ O	
×	C	CuSO ₄ ·H ₂ O	
X	В	CuSO ₄	
×	A	Cu(OH) ₂	(1)
	(11)	Place a cross ⊠ in one box to show the formula of the compound formed in this chemical test.	(1)

	is needed for iron to rus State one other substa	st. ance needed for iron to rust.	(1))
(ii)	When iron rusts, a broformula Fe ₂ O ₃ State the name of this	wn compound forms that can l	pe represented by the)
th th	e mass of each nail befo	investigate the rusting of som re placing it in some water. Af nd their masses were measured lts.	ter rusting had occurred,	
	Student	Mass of nail before rusting in g	Mass of nail after rusting in g	
	A	3.0	3.3	
	В	1.5	1.7	
	С	1.8	1.7	
(i) (ii)		in measuring the mass of a nai	(1)	
(iii) Student B thought tha Suggest why she thou	t the results showed that her r	nail had rusted most.)

e>	xperiment?					(1)
	methods used to nvolves covering	•	•		•	ater.
	plete the table by hould be used to					(2)
	aluminium	grease	oil	paint	plastic	
	Iron object		Substanc	e used to pre	vent rusting	
bicy	cle chain					
railw	vay bridge					
as a p preve	iron objects are only hysical barrier, but the rusting even if	it an extra adva the layer of zin	antage of us ac is damage	ing zinc is tha ed.	t it continues to	(3)
				,_	uestion 4 = 11 m	

5 The table shows the displayed formulae of three unsaturated hydrocarbons.

H H C=C	H H C=C H	H H H H C=C-C-H H H H
Compound A	Compound B	Compound C

(a) Explain the meaning of the term **hydrocarbon**.

(2)

(b) Explain the meaning of the term **unsaturated**.

(1)

- (c) Compounds **A**, **B** and **C** belong to the same homologous series. One characteristic of the compounds in a homologous series is that they have the same general formula.
 - (i) State the name of this homologous series.

(1)

(ii) State the general formula of this homologous series.

(1)

(iii) State **two** other characteristics of the compounds in a homologous series.

(2)

2

2

(d) Compound C has several isomers.	
(i) What is the name of compound C ?	(1)
(ii) What is the molecular formula of compound C ?	(1)
(iii) Explain the meaning of the term isomers .	(2)
(iv) Draw the displayed formula of an isomer of compound C .	(1)
 (e) Bromine water can be used to distinguish compound A from ethane. (i) Complete the sentence to show the colour change when compound A is bubbled through bromine water. Bromine water changes from orange to	(1)
(ii) Complete the chemical equation for the reaction between compound A and bromine water.	(1)
$C_2H_4 + Br_2 \rightarrow \dots$	
(Total for Question 5 = 14 m	narks)

6 The reactivity of metals can be studied using displacement reactions. In these reactions, one metal is added to a solution of a salt of a different metal.

If a displacement reaction occurs, there is a temperature rise.

A student used the following method in a series of experiments.

- Pour some metal salt solution into a polystyrene cup supported in a glass beaker and record the temperature of the solution.
- Add a known mass of a metal and stir.
- Record the maximum temperature of the mixture.
- (a) Suggest **three** variables that should be kept the same for the student's experiments to be a fair test.

(3)

1

3

(b) The student used a thermometer to measure the temperature rise. The diagrams show the thermometer readings before and after adding the metal.

before adding metal

after adding metal

Use the diagrams to complete the table.

(3)

Temperature after adding the metal in °C	
Temperature before adding the metal in °C	
Temperature change in °C	

(c) The student used copper(II) sulfate solution in all her experiments. She used five different metals. She did not know the identity of the metal labelled **X**.

The student did each experiment twice. The table shows her results.

Matel	Temperati	Average	
Metal	Run 1	Run 2	temperature rise in °C
magnesium	10.5	15.5	13.0
silver	0.0	0.0	0.0
iron	3.5	4.5	4.0
x	0.0	0.0	0.0
zinc	8.0	9.0	8.5

(i) Which of the metals gave the least reliable temperature rise?

Explain your choice.

(2)

Metal	
Explanation	
(ii) Identify the most reactive of the metals used.	
Explain how the results show that it is the most reactive.	(2)
Metal	(-)
Explanation	
(iii) Why is there no temperature rise when silver is added to copper(II) sulfate	solution? (1)

(iv) Why do the results make it impossible to decide which of the metals is the least reactive?	(1)
(d) A word equation for one of the reactions is $ {\sf zinc} + {\sf copper(II)} {\sf sulfate} \to {\sf copper} + {\sf zinc} {\sf sulfate} $	
Write a chemical equation for this reaction.	(1)
(Total for Question 6 = 1.	3 marks)

- 7 Most metals are extracted in a blast furnace or by electrolysis.
 - (a) (i) The chemical equations for two reactions that occur during the extraction of aluminium are

A
$$Al^{3+}$$
 + $3e^- \rightarrow Al$

B
$$\underline{C} + O_2 \rightarrow CO_2$$

For each of these reactions, complete the table to show whether the underlined species is being oxidised or reduced. In each case, explain your choice.

(3)

Reaction	Species oxidised or reduced	Explanation of choice
A		
В		

(ii) Reaction **A** takes place at the negative electrode during the extraction of aluminium.

Write an ionic half-equation for the reaction at the positive electrode.

(2)

(iii) Reaction **B** gives a waste product during the extraction of aluminium.

What effect does this reaction have on the positive electrodes?

(1)

(iv) Reaction **B** is also important in the extraction of iron in a blast furnace.

Name the raw material that reacts with oxygen and state why the reaction is important.

(2)

Raw material

Importance of reaction

(b) Galena (PbS) and cerussite (PbCO₃) are two ores of lead. A mining company is considering which of these two ores to use for the extraction of lead.

The equations for the reactions occurring are

Process using galena:

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$

$$2PbO + C \rightarrow 2Pb + CO_{2}$$

Process using cerussite:

$$PbCO_3 \rightarrow PbO + CO_3$$

$$2PbO + C \rightarrow 2Pb + CO_{2}$$

(i) Both processes form carbon dioxide, which the mining company hopes to sell.

Complete the table to show **two** uses of carbon dioxide and a property on which each use depends.

(4)

Use	Property

(ii) One disadvantage of using galena is that the sulfur dioxide produced can cause acid rain.

Write a chemical equation to show the formation of an acidic solution from sulfur dioxide and state one effect of acid rain.

(2)

Equation

Effect

Calculate the maximum mass of le	ad that can be obtained from this sample of cerussite.
	(3)
	Mass of lead =
	(Total for Question 7 = 17 marks)

8 The	equation for	a reaction that	occurs in the	manufacture o	of nitric acid is
--------------	--------------	-----------------	---------------	---------------	-------------------

$$4NH_{3}(g) + 5O_{2}(g) \rightleftharpoons 4NO(g) + 6H_{2}O(g)$$
 $\Delta H = -900 \text{ kJ/mol}$

(a) (i) State the meanings of the symbols
$$\rightleftharpoons$$
 and ΔH .

(2)

A 1 1

(ii) What does the negative sign of ΔH indicate about the reaction?

(1)

(b) Complete the energy level diagram for this reaction.

(2)

Energy

(c) Typical conditions used for this reaction are a temperature of 900 $^{\circ}$ C and a pressure of 10 atmospheres.

Deduce the effects of changing the conditions as shown in the table. Choose from the words **increased**, **decreased** or **unchanged** to complete the table.

(4)

Change	Effect on rate of reaction	Effect on yield of products
increase in temperature		
addition of catalyst		

(d) A	manufacturer considers using a pressure of 5 atm instead of 10 atm.	
(i)	Predict and explain the effect on the rate of reaction of changing the pressure to 5 atm.	
		(3)
Effect on	rate of reaction	
Explanation	on	
(ii)	Predict and explain the effect on the position of equilibrium of changing the pressure to 5 atm.	
		(2)
Effect on	position of equilibrium	
Explanation	on	
(e) Ba	lance the equation that represents the last stage in the manufacture of nitric aci	d.
	$NO_2 +NO_2 +HNO_3$	(1)
	(Total for Question 8 = 15 ma	

9	Thi	is qu	estion is about bromine and some of its compounds.	
	(a)	Ato	oms of bromine can be represented as ⁷⁹ Br and ⁸¹ Br	
		(i)	State the number of protons, neutrons and electrons in an atom of ⁷⁹ Br	(2)
Pro	oton	ıs		
Ne	utro	ns .		
Ele	ctro	ns .		
		(ii)	What name is used for atoms of bromine that have different numbers of neutro	ons? (1)
		(iii)	Why do all atoms of bromine have the same chemical properties?	(1)
		(iv)	The relative atomic mass of bromine is given in the Periodic Table as 80, but a more accurate value is 79.9 Suggest, with a reason, which of the atoms ⁷⁹ Br and ⁸¹ Br exists in greater	
			numbers in a sample of bromine.	(2)

(b)	Hydrogen bromide (HBr) and sodium bromide (NaBr) are compounds of bromine.	
	(i) Draw a dot and cross diagram to represent a hydrogen bromide molecule.	
	Show only the outer electrons in each atom.	(2)
	(ii) Explain how the atoms are held together in a hydrogen bromide molecule.	(2)
	(iii) Explain why sodium bromide has a higher melting point than hydrogen bromic	de. (3)
	A compound has the percentage composition 13.8% sodium, 47.9% bromine and 38.3% oxygen by mass.	
	Calculate its empirical formula.	(5)
		(3)
	Empirical formula =	
	(Total for Question 9 = 16 ma	rks)

10 A teacher discussed with her students whether the boiling points of organic compounds are related to the size of their molecules.

The students suggested measuring the boiling points of some organic compounds using this apparatus.

(a) The teacher said that their suggested method was too dangerous.

She recommended using the apparatus shown below instead.

Suggest **one** reason why this apparatus is better than the students' suggestion.

(1)

(b) The students used the apparatus recommended by the teacher to measure the boiling points of five alcohols.

Their results are shown in the table.

	Alcohol				
	A B C D				
Boiling point in °C	78	96	138	157	176
Relative formula mass	46	60	88	102	116

(i) Plot a graph of the data in the table on the grid.

Draw a straight line of best fit through the points.

(3)

(ii) Describe the relationship shown by your graph.	(1)
(iii) Use your graph to predict the boiling point of the alcohol that has a formula mass of 74.	relative (1)
(iv) Which of the alcohols A , B , C , D or E is the least volatile?	(1)
(Total for Question	10 = 7 marks)
(TOTAL FOR PAPER :	= 120 MARKS)

