Exploratory Data Analysis in R

Ciaran Evans

Agenda

- Overview of exploratory data analysis
- Introduction to R and RStudio
- Class activity: penguins!

The data analysis process

The data analysis process

Understanding:

- Not a linear process
- Begins with exploratory data analysis

- What does the data represent?
 - How big is the data?
 - What are the rows and columns?
 - Where and when was it collected?
 - Who collected it, and what choices did they make?

- What do the variables look like? (univariate EDA)
 - histograms, frequency tables, summary statistics, etc.
 - any outliers?

- How are the variables related? (multivariate EDA)
 - two-way tables, scatterplots, boxplots, etc.

- What relationships might we want to model?
 - generally informed by why we're looking at the data

Data: Penguins!

Data on 344 penguins from 3 species (Adelie, Chinstrap, Gentoo). Variables include

- Species
- Bill length
- Bill depth
- + ...

Visualizations

Bill length is a quantitative variable. What plot could we use to visualize the distribution of bill length in the penguins dataset?

Answer: A histogram is a good choice for visualizing the distribution of a single quantitative variable.

Visualizations

Species is a categorical variable. What plot could we use to visualize the distribution of species in the penguins dataset?

Answer: A bar chart is a good choice for visualizing the distribution of a single categorical variable. Pie charts also work, but I find them harder to read.

Visualizations

Bill length and bill depth are both quantitative variables. What plot could we use to visualize the relationship between these two variables?

Answer: A scatterplot shows the relationship between two quantitative variables.

Tools for working with data

R: Statistical software for data manipulation, visualization, computing, modeling

RStudio: Integrated development environment (IDE) that makes it easy to use R

Overview of RStudio

Panes

Panes

Create a new file

Class activity: EDA with penguins

https://sta112-f25.github.io/class_activities/ca_02.html

Distribution of bill length

```
penguins |>
ggplot(aes(x = bill_length_mm)) +
geom_histogram()
```


Distribution of bill length

- Most bill lengths between 35mm and 55mm
- Multimodal, with peaks around 40mm, 45mm, and 50mm
- Fairly symmetric, no clear outliers

Aside: changing the number of bins

```
penguins |>
ggplot(aes(x = bill_length_mm)) +
geom_histogram(bins = 20)
```

When making histograms, it is good to try different numbers of bins. The default in geom_histogram is 30, but can be changed with bins = ...

Bill depth vs. bill length

Bill depth vs. bill length

There does not appear to be a relationship between bill length and bill depth

Coloring by species

Within each species, there appears to be a positive, linear relationship between bill length and bill depth.

Predicting species

New penguin 49:

- → Bill length = 50mm, bill depth = 15mm
- Predicted species = ?