BykovDS 20122024-160034

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения в-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.236	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 2 на частоте 8 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -11.4 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 4.1 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 1.2 mB_T
- 2) 0.3 MBT
- 3) 2.4 mBT
- 4) 0.2 мBт

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouno, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 0.9 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 1.8 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 1.3 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 0 дБ, подключённый к плечу 1.

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=1.9~\Gamma\Gamma$ ц и $f_{\rm B}=2.5~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 0.6 дБ
- 2) 1.2 дБ
- 3) 0.1 дБ
- 4) 0.7 дБ

Дано значение коэффициента отражения от входа реактивной цепи коррекпии

$$s_{11} = 0.27 + 0.23i$$
.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.6 дБ
- 2) -1.2 дБ
- 3) -1.9 дБ
- 4) -0.9 дБ