SZTUCZNA INTELIGENCJA

RAPORT Z LABORATORIÓW

"Jednokierunkowa wielowarstwowa sieć neuronowa typu MLP" "Algorytm Support Vector Machines (SVM)"

> Piotr Krawiec L1 Semestr: 5 2021/2022 Kierunek: III/FS0-DI Numer indeksu: 164165 Prowadzący: Maciej Kusy

Spis treści

1	Dan	ne	3
2	Jed	nokierunkowa wielowarstwowa sieć neuronowa typu MLP	3
	2.1	Sieć z jedną warstwą ukrytą	3
		2.1.1 Wykresy precyzji dla każdej z klas	4
		2.1.2 Wykresy czułości dla każdej z klas	5
	2.2	Sieć z dwiema warstwami ukrytymi	6
		2.2.1 Wykresy precyzji dla każdej z klas	7
		2.2.2 Wykresy czułości dla każdej z klas	8
	2.3	Podsumowanie sieci MLP	9
3	ΔΙσ	orytm SVM	9
J	_		•
	3.1	Zmiana parametru Standardize	10

1 Dane

Dane wykorzystane podczas pracy pochodzą ze zbioru OptDigits5. Składa się on z 62 cech i jednej listy klas, do których należy dana lista cech. Problem, który prezentują dane, jest problemem wieloklasowym, zatem wymagać on będzie dostosowania kodu prezentowanego na zajęciach.

2 Jednokierunkowa wielowarstwowa sieć neuronowa typu MLP

2.1 Sieć z jedną warstwą ukrytą

Ze względu na ilość danych określiłem przedział neuronów, które będę przeszukiwał na 10 do 190 neuronów. Trenowanie sieci odbyło się z wykorzystaniem GPU, jednak nie wszystkie funkcje trenowania sieci oraz aktywacji neuronów są dostępne. Zatem do trenowania wykorzystałem następujące funkcje: trainscg, trainro i traincgb oraz następujące funkcje aktywacji: tansig i logsig. Wykorzystanie GPU pozwoliło skrócić czas trenowania do około 10 minut.

Poniżej znajduje się tabela, która zestawia informacje o dokładności, czułości sieci i odchyleniach tych wartości dla każdej z sieci. Najlepszy wynik osiągnęła sieć traincgb-logsig-120 z dokładnością 0.971 i czułością 0.969.

Network	acc	std(acc)	recall	std(recall)
traincgb-logsig-120	0.971	0.0488	0.969	0.0551
traincgb-logsig-130	0.967	0.0582	0.963	0.0652
traincgb-logsig-90	0.966	0.0572	0.963	0.0648
trainscg-logsig-110	0.966	0.0656	0.96	0.073
trainscg-tansig-110	0.965	0.0611	0.96	0.0683
traincgb-logsig-70	0.967	0.0679	0.959	0.0754
trainscg-logsig-70	0.962	0.0702	0.956	0.0775
traincgb-logsig-80	0.961	0.0609	0.956	0.0782
traincgb-logsig-100	0.962	0.0608	0.955	0.0817
trainscg-logsig-90	0.962	0.0667	0.955	0.0746
trainscg-logsig-80	0.961	0.0681	0.955	0.0807
traincgb-logsig-140	0.961	0.0687	0.955	0.0781
traincgb-logsig-150	0.96	0.0682	0.955	0.0897
traincgb-logsig-160	0.959	0.0711	0.955	0.0804
traincgb-logsig-60	0.962	0.0613	0.954	0.0654
traincgb-logsig-110	0.959	0.0661	0.954	0.0794
trainscg-logsig-130	0.959	0.0661	0.954	0.0793
trainscg-logsig-40	0.96	0.07	0.953	0.0861
trainscg-logsig-60	0.96	0.0669	0.953	0.0822
trainscg-logsig-150	0.958	0.0722	0.953	0.0822

Tabela 1: Podsumowanie najlepszych sieci z jedną warstwą

2.1.1 Wykresy precyzji dla każdej z klas

2.1.2 Wykresy czułości dla każdej z klas

2.2 Sieć z dwiema warstwami ukrytymi

Sieci te także były trenowane na GPU, na tych samych funkcjach trenowania i aktywacji co sieć z jedną ukrytą warstwą. Natomiast ilość neuronów:

- 1. W pierwszej warstwie wynosi 20, 40, 60, 120
- 2. A w drugiej 20, 40, 60, 80

Czas trenowania wszystkich sieci wyniósł około 20 minut. Najlepsze wyniki osiągnęła sieć trainscg-tansig-[60 80] z dokładnością 0.967 i czułością 0.962.

Network	acc	std(acc)	recall	std(recall)
trainscg-tansig-[60 80]	0.967	0.0616	0.962	0.0718
trainscg-tansig-[120 40]	0.964	0.0615	0.959	0.0801
traincgb-tansig-[120 60]	0.963	0.064	0.958	0.0749
traincgb-logsig-[60 80]	0.964	0.0686	0.956	0.0735
traincgb-logsig-[120 80]	0.961	0.0671	0.954	0.0742
trainscg-tansig-[60 40]	0.959	0.0683	0.954	0.0762
trainscg-tansig-[60 60]	0.959	0.0733	0.953	0.0793
trainscg-logsig-[60 20]	0.958	0.0716	0.953	0.0792
trainscg-logsig-[60 80]	0.957	0.067	0.953	0.0796
trainscg-logsig-[120 20]	0.959	0.0789	0.951	0.084
traincgb-logsig-[60 20]	0.959	0.0737	0.951	0.0808
trainscg-logsig-[60 60]	0.958	0.0774	0.951	0.0879
traincgb-logsig-[60 60]	0.958	0.0705	0.951	0.0839
$trainscg-logsig-[120 \ 40]$	0.957	0.0734	0.95	0.0776
trainscg-logsig-[40 80]	0.956	0.0736	0.95	0.0962
trainscg-logsig-[120 60]	0.956	0.0692	0.95	0.073
trainscg-tansig-[120 60]	0.955	0.0801	0.95	0.0893
trainscg-tansig-[60 20]	0.958	0.0666	0.949	0.0885
trainscg-logsig-[120 80]	0.953	0.0706	0.949	0.0845
trainscg-tansig-[120 20]	0.953	0.0674	0.949	0.0731

Tabela 2: Podsumowanie najlepszych sieci z dwiema warstwami

2.2.1 Wykresy precyzji dla każdej z klas

2.2.2 Wykresy czułości dla każdej z klas

2.3 Podsumowanie sieci MLP

Obie sieci osiągnęły wyniki podobnego rzędu. Natomiast zastosowanie dwóch warstw ukrytych poprawiło wynik dla najgorszej kombinacji tj. **trainrp–tansig**. Porównując najlepsze wyniki z obu sieci, **najlepsze wyniki osiągnęła sieć jednowarstwowa**, z algorytmem **traincgb**, funkcją aktywacji **logsig** i **120** neuronami w warstwie ukrytej.

3 Algorytm SVM

Algorytm SVM został przetestowany dla dwóch funkcji jądra: gaussian i polynomial. Obliczeń dokonałem, wybierając kolejno dane z jednej klasy i oznaczając je "1", a pozostałe "0". Dla tak stworzonych modeli (per każda klasa) obliczyłem dokładność, czułość oraz F1. Wyniki te zostały uśrednione dla każdej z grup klasyfikatorów i umieszczone w tabeli poniżej. Zera w Tabeli 3 wynikają ze sposobu obliczania danej metryki, pojawia się tam dzielenie przez 0. Dzieje się tak, ponieważ w macierzy pomyłek w polach TP i FP pojawiają się 0 (wszystkie próbki określane są jako 0). Parametry w Tabeli 3 kodowane są w następujący sposób:

1. Dla kernela gaussian: kernel-sigma-C

2. Dla kernela polynomial: kernel-d-C

Jako najlepszy model wybrałem SVM z parametrami **kernel polynomial**, **d=2 oraz C=0.1**. Nie był on najlepszy w każdej z meryk, ale był najlepszy w największej liczbie metryk, a w pozostałych przegrywał dopiero na 3-4 miejscu po przecinku.

SVM	acc	std(acc)	precision	recall	F1 score
polynomial-2-0.1	0.9923	0.0097	0.9823	0.9475	0.9618
polynomial-2-10	0.9925	0.0091	0.9847	0.9454	0.9617
polynomial-2-1000	0.9914	0.0095	0.9776	0.9447	0.9584
polynomial-3-1000	0.9906	0.011	0.9782	0.9342	0.9522
gaussian-20-1000	0.9884	0.0112	0.9667	0.9318	0.9448
gaussian-20-10	0.9891	0.0113	0.9723	0.9298	0.9463
polynomial-3-10	0.9894	0.0131	0.9779	0.921	0.9442
polynomial-3-0.1	0.9895	0.0146	0.9686	0.9193	0.9398
gaussian-5-1000	0.9858	0.0136	0.9961	0.8642	0.9189
gaussian-5-10	0.9861	0.0125	0.9969	0.8626	0.9195
gaussian-5-0.1	0.911	0.0105	0.27	0.1102	0.1456
gaussian-0.5-0.1	0.9001	0.0069	0	0	0
gaussian-20-0.1	0.9001	0.007	0	0	0
gaussian-0.5-10	0.9	0.0071	0	0	0
gaussian-0.5-1000	0.9	0.0071	0	0	0

Tabela 3: Wyniki działania algorytmów SVM z różnymi parametrami

3.1 Zmiana parametru Standardize

Dla najlepszego modelu dokonałem trenowania ponownie zmieniając parametr Standardize. Tabele Tabela 4 oraz Tabela 5 przedstawiają wyniki. Znajdują się w nich metryki obliczone dla każdej z klas oraz wyniki uśrednione. Lepszy okazał sie model z parametrem **standardize=true**. Jednak zmiana tego parametru nie zmieniła tych wyników znacząco, w większości różnią się na 3 miejscu po przecinku.

Klasa	acc	std(acc)	prec	recall	F1
1	0.9953	0.0105	1	0.9524	0.9723
2	0.9921	0.0083	0.9528	0.9833	0.9658
3	0.9968	0.01	1	0.9667	0.98
4	0.9907	0.0108	0.9889	0.9262	0.953
5	0.9953	0.0105	0.9875	0.9714	0.9767
6	0.9921	0.0083	0.9875	0.9357	0.9584
7	1	0	1	1	1
8	0.9891	0.0105	0.9639	0.9429	0.9487
9	0.9843	0.0146	0.9532	0.9107	0.9273
10	0.9859	0.0173	0.9597	0.9113	0.9308
Średnia	0.9922	0.0101	0.9793	0.9501	0.9613

Tabela 4: Tabela dla polynomial-2-0.1 ze standardize=true

Piotr Krawiec

Klasa	acc	std(acc)	prec	recall	F1
1	0.9953	0.0075	1	0.9524	0.9741
2	0.989	0.0148	0.9635	0.9417	0.9501
3	0.9938	0.008	0.9875	0.9548	0.9689
4	0.9906	0.011	0.9732	0.9429	0.956
5	0.9938	0.008	0.9764	0.9714	0.9721
6	0.9922	0.0082	0.9764	0.9524	0.9616
7	0.9985	0.0049	0.9889	1	0.9941
8	0.9906	0.0133	0.9818	0.9357	0.9532
9	0.9828	0.0188	0.9625	0.8905	0.9123
10	0.978	0.0199	0.9257	0.9089	0.9118
Średnia	0.9904	0.0115	0.9736	0.9451	0.9554

Tabela 5: Tabela dla **polynomial-2-0.1** ze **standardize=false**