ELFERENCE COPY

REPORT NO. 760 JULY 1951

AN INVESTIGATION OF SOME OF THE EFFECTS OF THE IONOSPHERE ON ELECTROMAGNETIC WAVE PROPOGATION

PROPERTY OF U.S. ARMY STIMPO BRANCH BEL, APG, MD. 21005

John C. Mester

BALLISTIC RESEARCH LABORATORIES

Destroy when no longer needed. DO NOT RETURN

BALLISTIC RESEARCH LABORATORIES REPORT NO. 760

July 1951

AN INVESTIGATION OF SOME OF THE EFFECTS OF THE IONOSPHERE ON ELECTROMAGNETIC WAVE PROPOGATION

John C. Mester

DECFERTY OF U.S. ARGZ STINTO BRANCH RIW, AFG. NO. 21005

Project No. TB3-0538C of the Research and Development Division, Ordnance Corps

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES REPORT NO. 760

Mester/1be Aberdeen Proving Ground, Md. 30 July 1951

AN INVESTIGATION OF SOME OF THE EFFECTS OF THE IONOSPHERE ON ELECTROMAGNETIC WAVE PROPOGATION

ABSTRACT

A study is made of the magneto-ionic splitting and reflection of electro-magnetic waves incident obliquely on a stratified ionosphere. Certain simplifying assumptions are applied to the theory. Under these assumptions the opinion is offered that for sufficiently high frequencies the loss of signal strength due to splitting and reflection may be neglected.

FIGURE 1

INTRODUCTION

It appears advisable, in view of the long range missile program to determine the reduction in signal strength of the DOVAP (1) system for waves propagated in the ionosphere. At long ranges and hence large angles of incidence, the reflection, refraction and magneto-ionic splitting of waves propagated in the ionosphere might possibly cause sufficient loss of signal strength as to effect the tracking distance of the system. Using the magneto-ionic theory in the form given by Appleton(2) and others and as generalized by Booker(3) an attempt will be made to determine quantitatively to a first approximation the reduction in field strength due to these causes.

MAGNETO-IONIC WAVE SPLITTING

Following Booker, we take a cartesion coordinate system (X_1, X_2, X_3) where X2 is altitude and consider the ionosphere to be horizontally stratified, dependent only on X_{3} . (See Figure 1) It has been shown (4) that under these conditions the propagation of phase in the neighborhood of a point in the ionosphere may be described by a vector (0, sin 0, q) where the wave is incident at an angle 9 in the (2,3) plane. The magnitude of this vector (designated Q) is the index of refraction of the medium, that is, the ratio of the velocity of light in free space to the velocity of phase propagation in the medium. For an ionized medium Q is less than one. The horizontal component of this vector depends only on the angle of incidence and does not vary from point to point in the layer; the vertical component (q) is a somewhat complicated function of frequency, angle of incidence, the earth's magnetic field and ion density. Booker has shown, under the assumption that only free electrons in the ionosphere affect propagation, that q may be expressed by means of a quartic equation of the form

(1.1)
$$a_{11} q^{14} + a_{31} q^{3} + a_{21} q^{2} + a_{11} q + a_{01} = 0$$

⁽¹⁾ Doppler Velocity And Position: a system for determining velocity and position of a missile in flight by phase comparison of two radio signals transmitted between two ground stations - one signal directly, the other by way of the missile. The investigation, however, is applicable to most radio position determination systems.

Appleton; Journ. of Inst. of Elec. Engr. Vol. 71 P-642 (1932)

⁽³⁾ Booker; Phil. Trans. Roy. Soc. Vol. 237 P-411 (1938)

⁽⁴⁾ Booker; Proc. of Conference on Ionospheric Research Vol. 1 (D) (1949)

It is further assumed that damping by collision has little practical affect on phase propagation. Then the coefficients in (1.1) may be written as

$$\begin{aligned} \mathbf{a}_{\downarrow\downarrow} &= 1 - (\frac{\mathbf{e} \ H}{2\pi \mathrm{fmv}_0})^2 - \frac{\mathbf{h} \ \pi^2}{\mathbf{h} \ \pi^2 \ \mathrm{mf}^2} \ \mathrm{N} \ \left\{ 1 - (\frac{\mathbf{e} \ H}{2\pi \mathrm{fmv}_0})^2 \right\} \\ \mathbf{a}_3 &= 25 \ (\frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \ \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \ \mathrm{m}}) \ (\frac{\mathbf{e} \ H_2}{2\pi \mathrm{fmv}_0}) \ (\frac{\mathbf{e} \ H_3}{2\pi \mathrm{fmv}_0}) \\ \mathbf{a}_2 &= -2 \left\{ (\mathbf{c}^2 - \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) \ (1 - \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) - (\frac{\mathbf{e} \ \mathbf{C} \ H}{2\pi \mathrm{fmv}_0})^2 \right\} + \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}} \\ \left\{ (\frac{\mathbf{e} \ \mathrm{S} \ H_2}{2\pi \mathrm{fmv}_0})^2 - (\frac{\mathbf{e} \ \mathrm{C} \ H_3}{2\pi \mathrm{fmv}_0})^2 - (\frac{\mathbf{e} \ H}{2\pi \mathrm{fmv}_0})^2 \right\} \\ \mathbf{a}_1 &= -2 \ \mathbf{C}^2 \ \mathbf{S} \ (\frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \ \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) \ \left(\frac{\mathbf{e} \ H_2}{2\pi \mathrm{fmv}_0} \right) \ (\frac{\mathbf{e} \ H_3}{2\pi \mathrm{fmv}_0}) \\ \mathbf{a}_0 &= (\mathbf{c}^2 - \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \ \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) \left\{ (\mathbf{c}^2 - \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \ \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) \ (1 - \frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) - (\frac{\mathbf{e} \ \mathbf{C} \ H}{2\pi \mathrm{fmv}_0})^2 \right\} \\ &- (\frac{\mathbf{C} \ \mathrm{S} \ H_2 \mathbf{e}}{2\pi \mathrm{fmv}_0})^2 \ (\frac{\mathbf{h} \ \pi^2 \mathbf{e}^2 \mathrm{N}}{\mathbf{h} \ \pi^2 \mathbf{f}^2 \mathrm{m}}) \end{aligned}$$

wnere

e, m = charge and mass of electron in esu and grams respectively N = equivalent electron density, number of electrons per cc $H = (H_1 H_2 H_3)$ earths magnetic field in gauss |H| = H

v_o = velocity of light in free space (cm/sec)

f = wave frequency (cps)

 θ = angle of incidence, S = $\sin \theta$, C = $\cos \theta$

q = upward vertical component of phase propagation vector.

The general solution of this equation for q gives rise to some difficulty and will in general involve complex values of q. However under the transformation $\tilde{a}_i = f^{ij} a_i$, one can rewrite the coefficients as

$$\begin{split} & \bar{a}_{\downarrow} = f^{2} \left\{ f^{2} - \left(\frac{e}{2\pi m v_{o}} \right)^{2} H_{2}^{2} \right\} - \frac{e^{2}}{\pi m} \left\{ f^{2} - \left(\frac{e}{2\pi m v_{o}} \right)^{2} H_{3}^{2} \right\} N \\ & \bar{a}_{3} = \frac{e^{\downarrow \downarrow}}{2\pi^{3} m^{3} v_{o}^{2}} \left\{ S H_{2} H_{3} N \right\} \\ & \bar{a}_{2} = -2 \left\{ (f^{2} C^{2} - \frac{e^{2}}{\pi^{2}} N) (f^{2} - \frac{e^{2}}{\pi^{2}} N) - \left(\frac{e}{2\pi m v_{o}} \right)^{2} C^{2} H^{2} f^{2} \right\} + \\ & \frac{e^{\downarrow \downarrow} N}{\downarrow_{\downarrow} \pi^{3} m^{3} v_{o}^{2}} \left\{ S^{2} H_{2}^{2} - C^{2} H_{3}^{2} - H^{2} \right\} \\ & \bar{a}_{1} = \frac{-e^{\downarrow \downarrow}}{2\pi^{3} m^{3} v_{o}^{2}} \left\{ S C^{2} H_{2} H_{3} N \right\} \\ & \bar{a}_{o} = \frac{1}{f^{2}} (f^{2} C^{2} - \frac{e^{2}}{\pi^{2}} N) \left\{ (f^{2} C^{2} - \frac{e^{2}}{\pi^{2}} N) (f^{2} - \frac{e^{2}}{\pi^{2}} N) - \left(\frac{e}{2\pi m v_{o}} \right)^{2} C^{2} H^{2} f^{2} \right\} - \frac{e^{\downarrow \downarrow}}{\downarrow_{\downarrow} \pi^{3} m^{3} v_{o}^{2}} \left\{ C^{2} S^{2} H_{2}^{2} N \right\} \end{split}$$

It can be seen from this that the coefficients of the odd powers of q are independent of frequency while the coefficients of the even powers and the constant term involve the fourth power of the frequency. Hence for sufficiently high values of frequency the terms in q³ and q may be neglected and the equation reduces to a simple quadratic in q.

.(1.2)
$$a_{\mu} q^{\mu} + a_{2} q^{2} + a_{0} = 0$$

From this equation it is then relatively easy to obtain values of q. This introduces one obvious physical error in that it assumes that the effect of the earth's magnetic field on the upward and downward waves is symetric. However, for sufficiently high frequencies this asymetrical effect of the earth's field can for all practical purposes be neglected. The solution of the equation gives rise to two pairs of equal but opposite signed real values. We associate the positive values with the up going wave and the negative with the down coming. The lesser in numerical values is assigned to the ordinary wave since it is closer to the value obtained when the magnetic field is neglected. One notes that one of the effects of the magnetic field is to make the refractive indices closer to unity.

Perhaps at this point some remarks should be made as to what is meant by the rather arbitrary statement that one may use (Eq. 1.2) in place of (Eq. 1.1) for sufficiently high frequencies. Certainly the obtaining of exact solutions for q from Eq. 1.1 is of such difficulty as to warrant any not too unreasonable simplification. However, it is clear that if one is chiefly interested in an investigation of polarization and absorption effects resulting from a complex index of refraction, that even a very high frequency does not justify the use of Eq. 1.2, since Eq. 1.2 in the most part neglects these effects. On the other hand if the primary concern is with possible weakening of the signal due to the interaction of two magneto-ionic components of different phase, one needs a high enough

frequency to make $\left|\frac{q_r}{q_i}\right|>>>1$ where q_r is real part of q_i is imaginary part of q_i

to justify the use of Eq. 1.2. The complete mathematical investigation of what frequency, for a specific value of equivalent electron density

and angle of incidence, is necessary to make $\left|\frac{q_r}{q_i}\right|$ equal any desired

ratio is beyond the scope of this paper. However, Table I gives some indication of the value of frequency necessary. To set up the criteria

to be used here one should concentrate on the ratio $\frac{a_0}{a_3}$. If this ratio is equal to or greater than 10^5 then one can feel reasonably sure that neglecting the terms in q^3 and q will have little effect on the numerical value of q. Hence, for frequencies that give this value for a_0/a_3 one can use Eq. 1.2. Under these conditions the q's obtained from Eq. 1.2 are essentially the vertical components of the Q's calculated from the ex-

pression given by Appleton $(1.3) \ Q = \left\{ 1 - \frac{2}{2 - \frac{\chi_{T}^{2}}{2 - 1} + \left[\frac{\chi_{T}^{2}}{(2 - 1)^{2}} + 4 \chi_{L}^{2} \right]^{1/2}} \right\}^{1/2}$

 $\mathbf{H}_{\mathbf{T}}$ is the value of the magnetic field in direction of propagation

H_L is value of magnetic field perpendicular to direction of propagation.

other symbols as previously used,

$$\mathcal{L} = \frac{\mathcal{T} \text{ m f}^2}{\text{N e}^2}$$

$$\mathcal{V}_{\text{T}} = \frac{\text{f H}_{\text{T}}}{2\text{v}_{\text{O}} \text{ N e}}$$

$$\mathcal{V}_{\text{L}} = \frac{\text{f H}_{\text{L}}}{2\text{v}_{\text{O}} \text{ N e}}$$

There are then two components of the form A
$$e^{i\omega(t-\frac{x_2}{v_0})}\sin\theta-\frac{x_3}{v_0}q$$

present in the ionized layer, where, for up going waves, the positive values of q as calculated from Eq. 1.2 are used to give the ordinary and extraordinary components. One wishes to consider what effect these components have upon each other. These two waves, considered as rays, will take different paths and for the most part have different spatial location at any particular time. There will exist cross modulation between the waves and further interference due to difference in polarization. Study of these effects has attracted considerable attention in the recent literature and will not be considered here. Rather it is proposed to make the simplifying assumption, however naive, that the net resultant field at any point in space near the mean path of the waves at any particular time, is merely the sum of two waves of the same frequency, but of changing phase with respect to each other. Further, it will be assumed that this difference in phase is dependent only on the vertical distance of the chosen point from some initial point and the difference in vertical refractive index of the two waves. This leads to the consideration that a minimum field strength due to interaction of the two components will occur when the waves are 180° out of phase, that is when

$$\omega \left(t - \frac{x_2}{v_0} \sin \theta - \frac{x_3}{v_0} q_0\right) = (2n + 1) \pi + \omega \left(t - \frac{x_2}{v_0} \sin \theta - \frac{x_3}{v_0} q_x\right)$$

where n is an integer.

This reduces to

$$(q_x - q_0) x_3 = (2 n + 1) \frac{2}{2}$$

with q_0 , q_x = the vertical indices of refraction of the ordinary and extraordinary waves respectively, x_3 = vertical distance of point considered above initial plane, λ = wave length.

See for example - Scott, Proc. I.R.E., Vol. (28), No. 9, (1950), P-1057.

Let reference now be made to Table II which gives the q's calculated from Eq. 1.2 using the coefficients of Table I. Consider only those q's that are obtained when the criteria for the use of Eq. 1.2 is satisfied: that

is $\frac{a_0}{a_3} \ge 10^5$. These values of q are so nearly equal that minimums re-

sulting from phase interference must be a relatively large vertical distance apart. Hence, it seems reasonable, considering all the assumptions made and realizing that the values of the q's are probably accurate only to three figures and certainly not more than four that one can, for frequencies satisfying the criteria on the use of Eq. 1.2, ignore these minimums and considered the two components as one wave of the same frequency and phase.

REFLECTED AND REFRACTED COMPONENTS OF THE WAVE

It is now wished to study the effect of reflection on the wave. Treating a plane polarized wave incident on a stratified ionized medium an attempt will be made to determine the reflection and refraction ratios in terms of the index of refraction and the initial angle of incidence. Consider for the moment, only a single layer of the ionosphere with total refractive index Q and assume a plane polarized wave incident on the layer at an angle 9. Part of the wave will be transmitted thru the medium and the remainder will be reflected from the layer. Assume that the reflection takes place at the boundary of the layer.

One may take the angle of incidence to be in the 2-3 plane as before without loss of generality and one may further assume that the magnetic vector H of the wave is in the plane of incidence and the electric vector E normal to it. Let \mathbf{I}_{H} , \mathbf{I}_{E} be the incident magnetic and electric vectors respectively; \mathbf{R}_{H} , \mathbf{R}_{E} the reflected vectors and \mathbf{D}_{H} , \mathbf{D}_{E} the refracted vectors. The usual boundary conditions that at the reflecting surface the tangential components of E and H must be continuous hold, that is,

$$(2.1) \quad I_{E_t} + R_{E_t} = D_{E_t}$$

(2.2)
$$I_{H_t} + R_{H_t} = D_{H_t}$$

where t refers to tangential component.

Since E is normal to the plane of incidence, it will be tangent to the boundary so one can write 2.1 as

(2.3)
$$I_E + R_E = D_E$$

If one takes \emptyset as the angle of refraction and takes the angle of reflection as equal to the angle of incidence one can write

(2.4)
$$I_{H_t} = I_H \cos \theta$$
, $R_{H_t} = R_H \cos \theta$, $D_{H_t} = D_H \cos \emptyset$

Furthermore, for a plane wave η H = E where η is the intrinsic impedance of the medium. Eq. (2.2) can then be written as

$$(2.5) \quad \frac{I_{E} \cos \theta}{\gamma \circ} \quad - \quad \frac{R_{E} \cos \theta}{\gamma \circ} = \frac{D_{E} \cos \theta}{\gamma 1}$$

The minus sign arising from the fact that E and H are of opposite sign after reflection. Combining 2.3 and 2.4 one obtains

$$(2.6) \quad \frac{R_{E}}{I_{E}} = \frac{\eta_{1} \cos \theta - \eta_{o} \cos \emptyset}{\eta_{1} \cos \theta + \eta_{o} \cos \emptyset}$$

(2.7)
$$\frac{D_{E}}{I_{E}} = \frac{2 \eta_{1} \cos \theta}{\eta_{1} \cos \theta + \eta_{0} \cos \theta}$$

and in a similar manner

$$(2.8) \quad \frac{R_{\text{H}}}{I_{\text{H}}} = - \quad \frac{\gamma_1 \cos \theta - \gamma_0 \cos \phi}{\gamma_1 \cos \theta + \gamma_0 \cos \phi}$$

(2.9)
$$\frac{D_{H}}{I_{H}} = \frac{2 \eta_{0} \cos \theta}{\eta_{1} \cos \theta + \eta_{0} \cos \theta}$$

If one now sets $\eta = (H_1)^{1/2}$ where $\epsilon' = \epsilon (1 - \frac{N e^2}{\omega^2 \epsilon_m})$

 ϵ = dielectric constant μ = permeability, the other symbols as before, one may write

(2.10)
$$\eta_0 = \left(\frac{M_0}{\epsilon_0}\right)^{1/2}$$
 for free space $\eta_1 = \left(\frac{M_1}{\epsilon_1}\right)^{1/2}$ for ionized medium

The permeability of the ionosphere is very nearly equal to that of free space, hence

(2.11)
$$\frac{\eta_0}{\eta_1} = (\frac{\epsilon_1}{\epsilon_0})^{1/2}$$

And for a low conducting medium one has

$$(2.12) \quad \mathbb{Q} \approx \left(\frac{\boldsymbol{\epsilon} \, \mathbf{1}}{\boldsymbol{\epsilon} \, \mathbf{0}}\right)^{1/2}$$

So that

(2.13) $Q \approx \frac{N_0}{N_1}$ where Q is the total refractive index of the medium.

By Snell's law one can write $\frac{\sin Q}{\sin Q} = \frac{Q}{Q_0}$ where $Q_0 = 1$, hence

(2.14)
$$\cos \emptyset = \frac{1}{Q} (Q^2 - \sin^2 \theta)^{1/2}$$

Substituting these relations in 2.6 - 2.9 it follows that

$$(2.15) \quad \frac{R_E}{I_E} = \frac{Q_0 \cos \theta_0 - Q_1 \cos \theta_1}{Q_0 \cos \theta_0 + Q_1 \cos \theta_1} = \frac{\cos \theta_0 - q_1}{\cos \theta_0 + q_1}$$

(2.16)
$$\frac{I_{E}}{I_{E}} = \frac{2 \cos \theta_{0}}{Q_{0} \cos \theta_{0} + Q_{1} \cos \theta_{1}} = \frac{2 \cos \theta_{0}}{\cos \theta_{0} + q_{1}}$$

$$(2.17) \quad \frac{R_{H}}{I_{H}} = -\left(\frac{Q_{o}\cos\theta_{o} - Q_{1}\cos\theta_{1}}{Q_{o}\cos\theta_{o} + Q_{1}\cos\theta_{1}}\right) = -\left(\frac{\cos\theta_{o} - q_{1}}{\cos\theta_{o} + q_{1}}\right)$$

(2.18)
$$\frac{D_{H}}{I_{H}} = \frac{2 Q_{1} \cos \theta_{0}}{Q_{0} \cos \theta + Q_{1} \cos \theta_{1}} = \frac{2 Q_{1} \cos \theta_{0}}{\cos \theta_{0} + Q_{1}}$$

One may note that these ratios are functions of the angle of incidence and the index of refraction which itself is a function of N_{\bullet} f and the magnetic field.

It is wished now to extend this development to a stratified ionosphere. Let there be (n) layers numbered consecutively (1, 2 - - n); to each layer assign a Q_i (i = 1 - - - n). For free space assign Q_i = 1 and let I_{E_0} be the wave incident on the boundary between free space and the first layer at angle Θ_i . Then R_{E_0} and D_{E_0} will be the reflected and refracted waves respectively associated with the incident wave I_{E_0} , R_{E_0} , and D_{E_0} will be reflected and refracted waves associated with I_{E_0} , the incident wave on the boundary between the j and j + 1 layer. Neglecting absorption through

the layer $\mathbf{D}_{\mathbf{E}_{\mathbf{j}}} = \mathbf{I}_{\mathbf{E}_{\mathbf{j}+1}}$. The equations can then be written in the following form

$$D_{E_{0}} = M_{0} I_{E_{0}}$$

$$D_{E_{1}} = M_{1} I_{E_{1}} = M_{1} D_{E_{0}} = M_{0} M_{1} I_{E_{0}}$$

$$D_{E_{1}} = M_{1} I_{E_{1}} = M_{0} M_{1} - - - M_{1} I_{E_{0}} = M_{1} I_{E_{0}}$$

$$M_{0} = \frac{2 \cos \Theta_{0}}{Q_{0} \cos \Theta_{0} + Q_{1} \cos \Theta_{1}}$$

$$M_{1} = \frac{2 Q_{1} \cos \Theta_{1}}{Q_{1} \cos \Theta_{1} + Q_{0} \cos \Theta_{0}}$$

(2.20)
$$M_{n} = \frac{2 Q_{n} \cos \theta_{n}}{Q_{n} \cos \theta_{n} + Q_{n+1} \cos \theta_{n+1}}$$

Now (2.21)
$$\sin \theta_n = \frac{\sin \theta_0}{Q_n}, \cos \theta_n = \frac{1}{Q_n} (Q_n^2 - \sin^2 \theta_0)^{1/2}$$

from which
$$(2.22) \quad M_{n} = \frac{2 \left(Q_{n}^{2} - \sin^{2} \theta_{0}\right)^{1/2}}{\left(Q_{n}^{2} - \sin^{2} \theta_{0}\right)^{1/2} + \left(Q_{n+1}^{2} - \sin^{2} \theta_{0}\right)^{1/2}} = \frac{2 q_{n}}{q_{n} + q_{n+1}}$$

In a similar manner

where.

$$K_0 = \frac{\cos \theta_0 - Q_1 \cos \theta_1}{\cos \theta_0 + Q_1 \cos \theta_1}$$

$$K_{1} = \frac{Q_{1} \cos \theta_{1} - Q_{2} \cos \theta_{2}}{Q_{1} \cos \theta_{1} + Q_{2} \cos \theta_{2}}$$

$$(2.24) \quad K_{n} = \frac{Q_{n} \cos \theta_{n} - Q_{n+1} \cos \theta_{n+1}}{Q_{n} \cos \theta_{n} + Q_{n+1} \cos \theta_{n+1}}$$

$$(2.25) \quad K_{n} = \frac{(Q_{n}^{2} - \sin^{2} Q_{0})^{1/2} - (Q_{n+1}^{2} - \sin^{2} Q_{0})^{1/2}}{(Q_{n}^{2} - \sin^{2} Q_{0})^{1/2} + (Q_{n+1}^{2} - \sin^{2} Q_{0})^{1/2}} = \frac{q_{n} - q_{n+1}}{q_{n} + q_{n+1}}$$

Finally one has for the ratio of the reflected and refracted wave at the $n^{\mbox{th}}$ Layer boundary to the incident wave in free space.

(2.26)
$$\frac{R_{E_n}}{T_{E_0}} = 2^n \left(\frac{q_n - q_{n+1}}{q_n + q_{n+1}} \right)^{1/2} \int_{j=0}^{n-1} \frac{q_j}{q_j + q_{j+1}}$$

(2.27)
$$\frac{D_{E}}{I_{E}} = 2^{n+1} \prod_{j=0}^{n} \frac{q_{j}}{q_{j} + q_{j+1}}$$

The energy in the transmitted wave is dependent on the index of refraction and the area of the ray. If one lets $\mathbf{I}_{\pmb{\xi}}$ be the energy in the incident

wave and $\mathbf{D}_{\mathbf{c}_{\mathbf{o}}}$ be the energy in the refracted wave, one can write

$$\frac{\mathbf{E}_{o}}{\mathbf{E}_{o}} = (\frac{\mathbf{E}_{o}}{\mathbf{I}_{E_{o}}}) \quad (\mathbf{Q}_{1} \frac{\cos \theta_{1}}{\cos \theta_{o}}) = (\frac{\mathbf{E}_{o}}{\mathbf{I}_{E_{o}}}) \quad (\frac{\mathbf{Q}_{1}}{\cos \theta_{o}})$$

(2:28)
$$\frac{\mathbf{\epsilon}_{n}}{\mathbf{\epsilon}_{o}} = \frac{\mathbf{E}_{n}}{\mathbf{I}_{\mathbf{\epsilon}_{o}}} \cdot \frac{\mathbf{q}_{n+1}}{\mathbf{e}_{o}}$$

In a similar manner if $R_{\hat{\boldsymbol{\ell}}}$ is the energy in the reflected wave then

$$\frac{R_{E_0}}{C_0} = \left(\frac{R_{E_0}}{I_{E_0}}\right)^2$$

$$(2.29) \quad \frac{\stackrel{R}{\mathcal{E}}_n}{I_{\stackrel{}{\mathcal{E}}_0}} = \left(\frac{\stackrel{R}{E}_n}{I_{\stackrel{}{E}_0}}\right)^2 \frac{q_n}{\cos \theta_0}$$

NUMERICAL EXAMPLE

It is now possible to apply the equations derived to certain idealized, but representative conditions. Let there first be set up a stratified ionosphere of four layers and let the equivalent electron density in the layers one to four be .1 x 10^6 , .2 x 10^6 , .5 x 10^6 and 1 x 10^6 electrons per cubic centimeters respectively. Then a wave of frequency f and incident at angle 0 on layer one will be partially transmitted and partially reflected. The energy transmitted in the fourth layer for frequencies of 40 mc. and 100 mc. incident at 30° and 10^6 respectively will be calculated.

From Table II the q's corresponding to an ordinary wave of 40 mc and 30° angle of incidence are

$$q_1 = .8630$$
 $q_3 = .8509$ $q_2 = .8600$ $q_1 = .8356$

then from Eq. (2.25)

$$K_{0} = \frac{.8660 - .8630}{.8660 + .8630} = .0017$$

$$M_{0} = \frac{2 (.8660)}{.8660 + .8630} = 1.0017$$

$$K_{1} = \frac{.8630 - .8600}{.8630 + .8600} = .0017$$

$$M_{1} = \frac{2 (.8630)}{.8630 + .8600} = 1.0017$$

$$K_{2} = \frac{.8600 - .8509}{.8600 + .8509} = .0053$$

$$M_{2} = \frac{2 (.8600)}{.8600 + .8509} = 1.0053$$

$$K_{3} = \frac{.8509 - .8356}{.8509 + .8356} = .0091$$

$$M_{3} = \frac{2 (.8509)}{.8509 + .8356} = 1.0091$$

The total reflected energy will be the sum of the energy reflected from each boundary of the medium. That is

$$R_{\boldsymbol{\epsilon}_{T}} = R_{\boldsymbol{\epsilon}_{0}} + R_{\boldsymbol{\epsilon}_{1}} + R_{\boldsymbol{\epsilon}_{2}} + R_{\boldsymbol{\epsilon}_{3}} = \sum_{i=0}^{3} R_{\boldsymbol{\epsilon}_{i}}$$

From Eq. (2.29) this may be written as

$$R_{\mathcal{E}_{T}} = \left\{ \frac{R_{E_{o}}^{2}}{I_{E_{o}}^{2}} + \frac{R_{E_{1}}^{2}}{I_{E_{o}}^{2}} + \frac{q_{1}}{\cos \theta_{0}} + \frac{R_{E_{2}}^{2}}{I_{E_{o}}^{2}} + \frac{q_{2}}{\cos \theta_{0}} + \frac{R_{E_{3}}^{2}}{I_{E_{o}}^{2}} + \frac{q_{3}}{\cos \theta_{0}} \right\} \quad I_{\mathcal{E}_{o}}$$

$$= \left(\left(\frac{q_1}{\cos \theta_0} \right)^2 + \left(\frac{q_1}{\cos \theta_0} + \left(\frac{q_2}{\cos \theta_0} \right)^2 + \left(\frac{q_2}{\cos \theta_0} + \left(\frac{q_3}{\cos \theta_0} \right) \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \left(\frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos \theta_0} \right)^2 + \left(\frac{q_3}{\cos \theta_0} + \frac{q_3}{\cos$$

$$= \left\{ (.0017)^2 + (.0017 \times 1.0017)^2 \frac{.8630}{.8660} + (.0053 \times 1.0017 \times 1.0017)^2 \right.$$

$$\frac{.8600}{.8660} + (.0091 \times 1.0017 \times 1.0017 \times 1.0053)^2 \frac{.8509}{.8660} \right\} I_{\epsilon_0}$$

$$R_{\xi_T} = .00012 I_{\xi_0}$$

Then the energy transmitted to the fourth layer (since absorption is being neglected) is merely

$$D_{\varepsilon_3} = I_{\varepsilon_0} - .00012 I_{\varepsilon_0} = .99988 I_{\varepsilon_0}$$

Or the energy transmitted can be found directly from Eq. (2.28)

$$D_{\mathcal{E}_{3}} = \frac{D_{E_{3}}^{2}}{I_{E_{0}}} \frac{q_{l_{1}}}{\cos \theta_{0}} \quad I_{\mathcal{E}_{0}} = (M_{0} M_{1} M_{2} M_{3})^{2} \frac{q_{l_{1}}}{\cos \theta_{0}} \quad I_{\mathcal{E}_{0}}$$
$$= (1.0017 \times 1.0017 \times 1.0053 \times 1.0091)^{2} \frac{8356}{866} \quad I_{\mathcal{E}_{0}}$$

This agreement between the transmitted energy is well within the accuracy of the figures used. Furthermore it appears that one can for practical purposes assume that all the energy is transmitted.

In a similar manner for f = 100 mc, $9 = 45^{\circ}$, from Table II we determine the energy transmitted to the 4th layer.

$$q_1 = .7065$$
 $q_2 = .7060$
 $q_3 = .7042$
 $q_{11} = .7013$

$$K_{0} = \frac{.7071 - .7065}{.7071 + .7065} = \frac{.0006}{1.04136} \qquad M_{0} = \frac{1.04142}{1.04136} = 1.00004$$

$$K_{1} = \frac{.7005 - .7060}{.7065 + .7060} = \frac{.0005}{1.04125} \qquad M_{1} = \frac{1.0130}{1.04125} = 1.00004$$

$$K_{2} = \frac{.7060 - .7042}{.7060 + .7042} = \frac{.0018}{1.04102} \qquad M_{2} = \frac{1.04120}{1.04102} = 1.0013$$

$$K_{3} = \frac{.7042 - .7013}{.7042 + .7013} = \frac{.0029}{1.04056} \qquad M_{3} = \frac{1.0084}{1.0055} = 1.0020$$

The energy transmitted to the fourth layer will then be

$$D_{\xi_3} = (M_0 M_1 M_2 M_3)^2 \frac{q_{l_1}}{\cos \theta_0} I_0 = .99993 I_{\epsilon_0}$$

CONCLUSIONS

As was previously stated, absorption in the ionized medium has been neglected. However, the energy lost by absorption is approximately inversely proportional to the square of the frequency. Hence, for the frequencies under consideration, this loss will be small and can, for most practical purposes, be ignored. This has for the most part been born out by previous experience. The net result of the investigation then is that for sufficiently high frequencies, and for angles of incidence not exceeding 40° to 50°, the loss of signal strength due to magneto-ionic splitting and to reflection from the ionosphere is of a negligible nature.

John C. MESTER

				-	•	•							
•	£	= 10m	C			a		ţ	f = 40mc				•
	•.	No. of Ele cc	e./	, x 10 ⁶	x 10 ⁶	x 10 ⁶	· * 10 ⁶			•1 × 10 ⁶	•2 x 10 ⁶	.5 x 10 ⁶	1.0 x 10 ⁶
	al	x 10	24	. 1	•2	•5	1 0		a x 10 ²⁴				
e≈10°)	a L	=	8988.301	8195.740	5818.057	1855.251	10°	a ₄	2543611.	2530728.	2492079.	2427663.
		a ₃		•57?5757	1.1551511	2.887878	5•775757		a 3	•5775757	1.1551514	2.887878	5•775757
		a ₂		- 15956 . 98	-132 01 . 98	-6496.264	-517.676		$\mathbf{a}_{2}^{\mathbf{r}}$	-4908167.	- 4857773•	-4 7 08170.	-4464025.
•		a _l		5601597	-1.120319	-2.800798	-5.601597		al	5601597	-1.102319	-2.800798	-5.601597
18		a _o		7081 مللة	5312.953	1797.549	17.170		a o	2367706.	2331145.	2223731.	2052125
9 =20°		a 4	=	8988.301	8195 .7 40	5818.057	1855.251	20°	a _l l	2543611.	2530728.	2)197079.	2427663
-		a ₃		1.1360584	2.2921168	5.680292	11.360584		a ₃	1.1360584	2.2721168	5.680292	11.360584
		a ₂		-14397-33	-11781.11	-51:91.731	- 207 . 040		a ₂	- 4466472	_竹打8355	<u>-</u> 4275431	-40421:78
		a ₁	,	-i.0031648	-2.0063296	-5.015824	-10.031648		al	-1.0031648			-10.0316/.8
-		a _o		5764.467	4230.520	1282.464	-3.614		a _o	1960734	1928454	1833740	1682851
9= 30°		alı	=	8988.301	8195.740	5818.057	1855.251	30°	$\mathbf{a}_{\underline{1}}$	2543611.	2530728.	2492079	2427663
		a ₃		1.6608063	3.3216126	8.304031	16,608063		a 3	1,6608063	3.3216126	8.304031	16.608063
		a ₂		-12007.81	-9604.213	- 3952 .6 98	+268.881		a ₂	-37 89760	- 2745039	-3 612436	-3396629
		a 1		-1.2060473	-2.4120946	-6.030236	-12.060473		al	-1.2060473	-2.4120946	-6.030236	-12.060473
		ao		4009.674	2811.042	661.513	14.916		a _o	17171907	1385503	1309117	1188082.
0= 45°		a _{lı}	,	8988.301	8195.740	4818.057	1855.251	45°	а <u>4</u>	2543611.		2492079	2կ27663
		a ₃		2.3487348	4.6974696	11.743674	23.487348		^a 3	2.3487348	4.6974696	11.743674	23.487348
	•	a ₂		-751.6.981	-5512.981	-1060.263	+1163.321		^a 2	- 25 179 58	-2479682		2182831
		a 1		-1.1 7ù36 7 4	-2.3487348	-5.0871837	-11.743674		al			-5.0871837	
		్డిం		1571.019	925.541	45.264	214,681		^a o	6231/1 - 0	607416.5	561770.9	490669.9

TABLE I (Cont'd)

f =	100mc				TABLE I	. (Cont	' α)			* - * - * - * - * - * - * - * - * - * - * -	
•	x 10 ⁻²⁴	.1 × 10 ⁶	.2 x 10 ⁶	.5 x 10 ⁶	1.0 x 10 ⁶		10-24	.1 x 10 ⁶	•2 x 10 ⁶	.5 x 10 ⁶	1.0 x 10 ⁶
10°	$\mathbf{a}_{\mathbf{j}_{i}}$	9989 7 496。	99816905.	99575133	99172180	30°	a ₁₄	9989 7 496	99816905	99575133	99172180
	aą	•5775757	1.1551514	2.887878	5.775757	•	a ₃	1.6608063	3.3216126	8,.304031	16,608063
-	a _o	-193609360	-193292226	-192342381	-190764504		$\mathbf{a}_{2}^{'}$	- 14968 517 3	-149403476	-148559945	-147159258
	a _n	5601597	-1.120319	-2.800798	-5.601597		a ₁	-1.2060473	-2.4120946	- 6 . 030236	-12.060473
	a _o	93807618	935760l _l l _j	92883610	91737157		a _o	56071603	55905857	55410564	54591537
200	a)4	99897496	99816905	99575133	99172180	45°	_ਤ ਾਂ 	99897496	99816905	995 7 5133	99172180
	4 & ₂	1.1360584	2.2721168	5.680292	11.360584		a ₃	2.3487348	4.6974696	11.743674	23.487348
	ر a _و	-176262344	-175959205	-175051347	-173543448		a ₂	- 99736428	-99195030	-98 <i>1</i> 72395	-97573201
	a,	-1. 0031648	-2,0063296	~5. 015824	-10.0316 48	,	a _l	-1.1743674	-2.3487348	-5.0871837	-11.743674
-	a _o	77750733	77546087	76934303	75921816		a _o	24893905	24793548	5/1/19/1035	21:000000

					· · · · · · · · · · · · · · · · · · ·
9	F	.1 x 10 ⁶	•2 x 10 ⁶	.5 x 10 ⁶	1 x 10 ⁶
10°	10 x 10 ⁶	•93657 •9l ₁ 771	•88569 •90905	•711/ ₁ 2 •78131	•19614 •149047
	40 x 10 ⁶	•982 1 6 •98233	•97951 •97984	•97151 •97233	•95802 •95969
`.	100 x 10 ⁶	•98439 •98441	•98398 •98400	•98273 •982 7 9	•98065 •98076
20°	10 x 10 ⁶	.88933 .90048	.83601 .85940	.65104 .72115	•35629 only one real root
	40 x 10 ⁶	•93692 •93 7 09	•93415 •93447	•92576 •92654	•91162 •91330
	100 x 10 ⁶	•93926 •93926	•93883 •93884	•937 5 2 •93757	•93534 •93545
30°	10 x 10 ⁶	.81169 .82286	•75364 •77710	•51,61,2 •61 71 0	Imaginary
	h0 x 10 ⁶	•86303 •86319	•86002 •86035	•85093 •85176	.83565 :8 3 72 l 4
	100 x 10 ⁶	•86556 •86556	.86509 .86509	.86367 .86367	.86131 .86131
45°	10 x 10 ⁶	•64099 •65226	•5679li •59170	•26126 •33761	Imaginary
	40 × 10 ⁶	•70345 •70361	:69977 •70010	: 68863 •68946	: 66966 67135
	1 00 x 10 ⁶	•70653 •70654	•70596 •70598	•70422 •70428	•70137 •70149

DISTRIBUTION LIST

No. of No. of Copies Copies 2 6 Commander Chief of Ordnance Naval Ordnance Laboratory Washington 25, D. C. White Oak Attn: ORDTB - Bal Sec Silver Spring 19, Md. Attn: The Library, Rm 1-333 10 British - ORDTB for distribution Of interest to: Commander Naval Ordnance Test Station Dr. K. Weekes Inyokern Cambridge Univ. P.O. China Lake, California Attn: Technical Library and Dr. J. A. Ratcliffe Editorial Section Cavendish Lab. 1 Superintendent Dr. J. W. Cox Postgraduate School Defense Research Board U. S. Naval Academy Ottawa, Canada Annapolis, Maryland Dr. B. W. Currie Univ. of Saskatchewan Commanding General Air University Dr. William Tilston Maxwell Air Force Base Montgomery, Alabama Univ. of Toronto Attn: Air University Library 71 Parts C and DG of ANAF/GM List No. 15 Commanding General Air Materiel Command Wright-Patterson Air Force Base Chief, Bureau of Ordnance 4 Dayton, Ohio Department of the Navy Attn: CADO-D Washington 25, D. C. Attn: Re3 National Bureau of Standards Washington 25, D. C. Chief of Naval Research Attn: Mr. A. H. Shapley Department of the Navy Washington 25, D. C. Attn: Scientific Litera-Central Radio Propagation Lab. National Bureau of Standards ture Branch (N482) Washington 25, D. C. Attn: Dr. J. H. Dellinger Commanding Officer 1 Naval Proving Ground Office, Chief Signal Officer Dahlgren, Virginia 1 Washington 25, D. C. Commanding Officer Attn: Mr. A. R. Beach Naval Aviation Ordnance

l

Naval Research Laboratory Washington 25, D. C.

Attn: Dr. T. R. Burnight

Test Station

Chincoteague, Virginia

DISTRIBUTION LIST

	DISTR	TROLLON .	FT2L
No. of Copies		No. of Copies	
1	Signal Corps Engineering Lab. Fort Monmouth, N. J. Attn: Mr. H. Blake	1	Cornell University Ithaca, New York Attn: Dr. H. G. Booker THRU:
1	Pasadena Physics Section USNOTS 1030 Green Street Pasadena, California Attn: Dr. David R. Bates		District Chief New York Ordnance District 180 Varick Street New York 14, New York
1.	University of Alaska College, Alaska Attn: Dr. S. L. Seaton	1	Watson Laboratories Red Bank, New Jersey Attn: Mr. Ralph I. Cole
1	Carnegie Inst. of Washington Washington 25, D. C. Attn: Dr. L. V. Berkner		
1	Ionosphere Research Lab. Penn State College State College, Pa. Attn: Dr. John M. Kelso	1	Naytheon Manufacturing Co. Waltham, Massachusetts Attn: Dr. J. T. deBettencourt THRU:
	THRU: Commanding Officer Pittsburgh Ord. District		Inspector of Naval Material 495 Summer Street Boston 10, Massachusetts
	311 Old P.O. Building hth Ave., and Smithfield Street Pittsburgh 19, Pa.	1	New York University New York, New York Attn: Dr. Bernard Friedman THRU:
1	California Inst. of Tech. Pasadena, California Attn: Dr. Sidney Chapman		District Chief New York Ordnance District 180 Varick Street New York 14, New York
	District Chief Los Angeles Ordnance Dist 35 North Raymond Ave. Pasadena 1, California		Geophysical Research Directorate Cambridge, Massachusetts Attn: Mr. N. C. Gerson THRU: District Chief Boston Ordnance District Boston Army Supply Base Boston 10, Massachusetts

DISTRIBUTION LIST

No. of Copies

No. of Copies

1 Univ. of California
Los Angeles, California
Attn: Dr. W. W. Kellogg

THRU:
District Chief
Los Angeles Ordnance District
Pasadena 1, California

Johns Hopkins University
Baltimore, Maryland
Attn: Dr. D. E. Kerr

THRU:
Naval Inspector of Ordnance
Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

1 Stanford University Stanford, California Attn: Dr. L. A. Manning

THRU:
District Chief
San Francisco Ord. Dist.
Oakland Army Base
Oakland 14, California

1 Crift Laboratory
Harvard University
Cambridge, Massachusetts
Attn: Dr. H. R. Mimno

THRU: District Chief Boston Ordnance District Boston Army Supply Base Boston 10, Massachusetts

1 RCA Laboratories Div. New York, New York Attn: Dr. A. B. Moulton

> THRU: Chief, New York AFPFO 67 Broad Street New York 4, New York

1 Bell Telephone Laboratories New York, New York Attn: Dr. S. A. Schelkunoff

> THRU: Chief, New York AFPFO 67 Broad Street New York 4, New York

1 Glenn L. Martin Company Baltimore 3, Maryland Attn: Dr. Harold Schutz

THRU:
Bureau of Aeronautics
Representatives
Glenn L. Martin Company
Baltimore 3, Maryland