### **Applied Data Science Capstone**

### **Final Project Report**

By Ted Lin

May 28, 2020

#### **INTRODUCTION**

The current COVID-19 pandemic, also known as coronavirus pandemic, has been ravaging the world recently. As of this writing, over 5.6 million cases worldwide have been confirmed with approximately 355,000 death. In U.S., nearly 1.7 million cases have been confirmed with over 100,000 deaths<sup>1</sup>.

Despite being a diverse metropolitan city with its economy supported by industries such as technologies, conventions, and tourism, , the city/county of San Francisco only has slightly over 2,400 confirmed cases with 40 deaths<sup>2</sup>. Early decisions by the city to close non-essential businesses and impose social distancing had played a major factor in its relatively low case counts.

This analysis attempts to see if any correlation can be found between COVID-19 case counts and Foursquare location data in San Francisco. Specifically, we will look at estimate COVID-19 case counts per 10K population by zip code, and attempt to correlate those with venue found within those zip codes from Foursquare.

If any correlation can be found, audiences such as city/county administrators, public health officials, and general public can expand on the finding to learn how to utilize such correlation to predict and prevent future outbreak of diseases and other public health issues.

#### DATA

### **Data Sources**

Data from this analysis mainly came from two main sources.

First source was "Rate of COVID-19 Cases by Census ZIP Code Tabulation Area" published by DataSF (<a href="https://datasf.org/">https://datasf.org/</a>). DataSF is part of City and County of San Francisco. A description of the data set, including how the data set is created, how it is updated, definition of data field, and preview of the data set can be found on it website (see link <a href="https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://exa

The website hosts a well-presented map visualization with data table (see image to the right; to see the actual website, see link <a href="here">here</a>). Because this page is dynamically updated with embedded JavaScript, it was a hard to use Python web-scraping tool (BeautifulSoup) to gather the data table. Fortunately, the website provides links to download the data set in various format, including CSV.

The data sets included 27 rows and 12 columns. The 27 rows represented 27 zip codes in San Francisco, while the 12 columns contained data such as zip codes, count of confirmed cases (in a zip code), and count of San Francisco confirmed cases (for the entire city/county). We mainly utilized two columns of data:



- Zip code is the postal code assigned by United States Postal Services (USPS) and represents geographical boundaries.
- Rate groups are segmentation of estimated cases per 10K population; for example, if the estimated cases per 10K population is 8.54, it will be categorized as "5-10" in rate groups columns. The segmentation is in increment of 5 ("0-5", "5-10", ...etc.) with any estimated case count per 10K population greater than 50 categorized in ">50" segment. (Estimated case count per 10K population is used in the data set as the population by zip code data is from 2017.)

The zip code data was augmented further by adding:

- Neighborhood name(s) we web-scrapped San Francisco neighborhood names by zip code and append them to the data set.
- Geo-coordinates latitude and longitude of each zip code was extracted using Python's GeoPy library and appended to the data set.

The second source of data was Foursquare. We used API codes covered in earlier modules in this class. 7 columns of data were extracted from the JSON file downloaded by the API codes; however, we mainly focused on the two columns:

- Neighborhood neighborhood name will represent zip code.
- Venue Category category of venue found within the zip code's geographical area.

# Data Date/Timing

For this analysis, we downloaded data from both sources on May 27, 2020. San Francisco COVID-19 case count by zip code data set reflected its case count data as of May 26, 2020, as the website updates daily with prior date's case counts.

#### **METHODOLOGY**

# Data Analysis Tools

We utilized Python programing language in Jupyter Notebook. In addition, the following Python libraries were used to assist in data extraction, analysis, and modeling:

- Data manipulation and mathematical calculation
  - pandas (https://pandas.pydata.org/)
  - numpy (https://numpy.org/)
- Data importing, web scraping, and geo-encoding
  - requests (https://requests.readthedocs.io/en/master/)
  - beautifulsoup (https://www.crummy.com/software/BeautifulSoup/)
  - wget (https://pypi.org/project/wget/)
  - geopy (https://geopy.readthedocs.io/en/stable/#)
- Data normalization, machine learning, and data model evaluation
  - scikit-learn (https://scikit-learn.org/stable/)
- Data visualization
  - matplotlib (https://matplotlib.org/)
  - folium (https://python-visualization.github.io/folium/)

Jupyter Notebook containing Python scripts for this analysis is available on GitHub repository: https://github.com/tedlin1/Coursera Capstone/blob/master/Capstone Project Final.ipynb

# **Data Cleansing & Wrangling**

More often than not, main data sets imported from sources are not ready for analysis and modeling. They may contain too much data, not enough parameters, or missing data elements. Therefore, initial data cleansing and wrangling is often necessary to prepare and format data sets for analysis and modeling steps.

Below is a quick summary of data cleansing and wrangling steps taken for this analysis. For detailed cleansing and wrangling techniques and progressions, please see codes in GitHub repository (link available in Data Analysis Tools section above).

As mentioned above, data set containing San Francisco COVID-19 case counts by zip code was downloaded from DataSF in CSV format. It contained 27 rows and 12 columns. A preview of the data set downloaded into a pandas dataframe is shown here:

| Data a           | s of | OBJECTID | ZIP<br>Code | Count of<br>Confirmed<br>Cases | Estimated<br>2017 ACS<br>Population | Estimated<br>Rate of<br>Cases per<br>10k | Rate<br>Groups | Count of San<br>Francisco<br>Confirmed<br>Cases | Estimated 2017<br>ACS San<br>Francisco<br>Population | Estimated Rate<br>of San Francisco<br>Cases per 10k | Case Rate<br>Difference<br>from San<br>Francisco | multipolygon                                         |
|------------------|------|----------|-------------|--------------------------------|-------------------------------------|------------------------------------------|----------------|-------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
| 0 2020/05        | /26  | 2        | 94121       | 39.0                           | 43638                               | 8.94                                     | 5-10           | 2320                                            | 864263                                               | 26.84                                               | -17.91                                           | MULTIPOLYGON<br>(((-122.48542599984555<br>37.7898249 |
| 1 2020/05        | /26  | 4        | 94123       | 28.0                           | 25461                               | 11.00                                    | 10-15          | 2320                                            | 864263                                               | 26.84                                               | -15.85                                           | MULTIPOLYGON<br>(((-122.45005999994794<br>37.8024729 |
| <b>2</b> 2020/05 | /26  | 13       | 94158       | 25.0                           | 6547                                | 38.19                                    | 35-40          | 2320                                            | 864263                                               | 26.84                                               | 11.34                                            | MULTIPOLYGON<br>(((-122.3836959998312<br>37.75470099 |
| <b>3</b> 2020/05 | /26  | 18       | 94107       | 122.0                          | 29920                               | 40.78                                    | 40-45          | 2320                                            | 864263                                               | 26.84                                               | 13.93                                            | MULTIPOLYGON<br>(((-122.38530302568738               |

The following steps were taken to clean and prepare this data set:

- Eliminated rows containing no COVID-19 case counts (as they were determined to be insignificant)
- Eliminated certain columns that were not needed for analysis
- Augmented integer segmentation for COVID-19 case count groups
- Added neighborhood names for each zip code
- Added geo-coordinates (latitude and longitude) for each zip code

After cleaning and formatting, data frame for San Francisco COVID-19 case counts by zip code contained 23 rows and 10 columns. A preview is shown here:

| Data as of          | ZIP<br>Code | Count of Confirmed<br>Cases | Estimated 2017 ACS<br>Population | Estimated Rate of Cases<br>per 10k | Rate<br>Groups | group_id | Neighborhood               | Latitude  | Longitude   |
|---------------------|-------------|-----------------------------|----------------------------------|------------------------------------|----------------|----------|----------------------------|-----------|-------------|
| 0 2020/05/26        | 94121       | 39.0                        | 43638                            | 8.94                               | 5-10           | 1.0      | Outter Richmond            | 37.778591 | -122.492289 |
| 1 2020/05/26        | 94123       | 28.0                        | 25461                            | 11.00                              | 10-15          | 2.0      | Marina District/Cow Hollow | 37.801901 | -122.430807 |
| 2 2020/05/26        | 94158       | 25.0                        | 6547                             | 38.19                              | 35-40          | 7.0      | Mission Bay                | 37.769982 | -122.386828 |
| <b>3</b> 2020/05/26 | 94107       | 122.0                       | 29920                            | 40.78                              | 40-45          | 8.0      | Portrero Hill              | 37.782740 | -122.392789 |
| 4 2020/05/26        | 94118       | 39.0                        | 41417                            | 9.42                               | 5-10           | 1.0      | Richmond District          | 37.775515 | -122.457818 |
| 5 2020/05/26        | 94114       | 40.0                        | 34561                            | 11.57                              | 10-15          | 2.0      | Castro                     | 37.761403 | -122.435242 |

Using the list of geo-coordinates by neighborhood from the data set above, we downloaded venue data (with limit of 100 venues within approximately 1 mile circumference) from Foursquare API. The initial data download contained 1,769 rows and 7 columns. A preview of that data set downloaded into a pandas dataframe is shown here:

|   | Neighborhood    | Neighborhood Latitude | Neighborhood Longitude | Venue                       | Venue Latitude | Venue Longitude | Venue Category          |
|---|-----------------|-----------------------|------------------------|-----------------------------|----------------|-----------------|-------------------------|
| 0 | Outter Richmond | 37.778591             | -122.492289            | Pacific Cafe                | 37.779782      | -122.494428     | Seafood Restaurant      |
| 1 | Outter Richmond | 37.778591             | -122.492289            | Kufu-ya Japanese Restaurant | 37.779641      | -122.494581     | Japanese Restaurant     |
| 2 | Outter Richmond | 37.778591             | -122.492289            | Pagan                       | 37.781520      | -122.493383     | Burmese Restaurant      |
| 3 | Outter Richmond | 37.778591             | -122.492289            | Cassava                     | 37.775722      | -122.496702     | New American Restaurant |

The following steps were taken to clean and prepare this data set:

- Transformed data into a table with venue categories as columns and neighborhoods as rows
- Grouped neighborhoods and recalculated each venue categories as statistical mean for each neighborhood

The resulting data set contained 23 rows and 276 columns. A preview is shown here:

|   | Neighborhood                      | ATM      | Accessories<br>Store | Adult<br>Boutique | African<br>Restaurant | Alternative<br>Healer | American<br>Restaurant | Antique<br>Shop | Arcade | Arepa<br>Restaurant | <br>Video<br>Store | Vietnamese<br>Restaurant | Vineyard | Wagashi<br>Place | Whisk<br>Ba |
|---|-----------------------------------|----------|----------------------|-------------------|-----------------------|-----------------------|------------------------|-----------------|--------|---------------------|--------------------|--------------------------|----------|------------------|-------------|
| 0 | Bayview                           | 0.000000 | 0.00                 | 0.00              | 0.00                  | 0.00                  | 0.095238               | 0.000000        | 0.00   | 0.00                | <br>0.00           | 0.000000                 | 0.00     | 0.00             | 0.0         |
| 1 | Castro                            | 0.000000 | 0.00                 | 0.00              | 0.00                  | 0.00                  | 0.010000               | 0.000000        | 0.01   | 0.00                | <br>0.00           | 0.000000                 | 0.00     | 0.00             | 0.0         |
| 2 | Chinatown                         | 0.000000 | 0.00                 | 0.00              | 0.00                  | 0.00                  | 0.020000               | 0.000000        | 0.00   | 0.00                | <br>0.00           | 0.010000                 | 0.00     | 0.00             | 0.0         |
| 3 | Cole<br>Valley/Height<br>District | 0.000000 | 0.02                 | 0.00              | 0.00                  | 0.00                  | 0.010000               | 0.000000        | 0.01   | 0.00                | <br>0.01           | 0.010000                 | 0.00     | 0.00             | 0.0         |
| 4 | Embarcadero                       | 0.000000 | 0.00                 | 0.00              | 0.00                  | 0.01                  | 0.020000               | 0.000000        | 0.00   | 0.00                | <br>0.00           | 0.010000                 | 0.00     | 0.01             | 0.0         |

### **Exploratory Analysis**

Because the San Francisco COVID-19 case counts by zip code data set was small (23 rows by 10 columns), it could be quickly browsed and all data were self-explanatory. Therefore, no further data manipulation was needed to explore the data further.

Besides CSV format, DataSF also provides the same data set in other formats including GEOJSON. We downloaded the GEOJSON data format, and utilized folium library in Python to provide a geovisualization of the COVID-19 case count grouping by zip code (see image on the right). You can also access an interactive map on my personal website here.



Since the venue category data set from Foursquare was much larger, more in-depth exploratory analysis was needed. First, we explored the initial data set downloaded from Foursquare to see if we can spot any data pattern or anomaly; then, we took the cleansed data show in section above to further analyze and determine data patterns and insights.

As mentioned above, data set from initial download contained 1,769 rows by 7 columns. Grouping the data by neighborhood, we could determine venue category count for each neighborhood. First few rows of this data is shown here:

|                             | Neighborhood Latitude | Neighborhood Longitude | Venue | Venue Latitude | Venue Longitude | Venue Category |
|-----------------------------|-----------------------|------------------------|-------|----------------|-----------------|----------------|
| Neighborhood                |                       |                        |       |                |                 |                |
| Bayview                     | 21                    | 21                     | 21    | 21             | 21              | 21             |
| Castro                      | 100                   | 100                    | 100   | 100            | 100             | 100            |
| Chinatown                   | 100                   | 100                    | 100   | 100            | 100             | 100            |
| Cole Valley/Height District | 100                   | 100                    | 100   | 100            | 100             | 100            |

Though most neighborhoods had 100 venue categories, some neighborhoods only have a small count of venue categories. As shown above, Bayview had 21 venue categories.

We can also see two other neighborhoods had small quantities of venue categories:

| Portola:         |    |    |    |    |    |    |
|------------------|----|----|----|----|----|----|
| Portola          | 11 | 11 | 11 | 11 | 11 | 11 |
| Sunset District: |    |    |    |    |    |    |
| Sunset District  | 15 | 15 | 15 | 15 | 15 | 15 |

This may be due to the following factors:

- Though San Francisco is a small city geographically, some neighborhoods are more densely packed than others. Even though we used approximately one-mile radius to capture venue data, more dispersedly populated neighborhoods may find less venues.
- Foursquare users tend to be more affluent, and may not frequent and rate venues in neighborhoods that are economically depressed. Therefore, those areas may show less venue data.

After the data cleansing step, the data set resulted in 23 rows and 276 columns. This was still a fairly large data set to review; therefore, we refined the data down to top 10 venue categories and bottom 10 venue categories by neighborhood.

First few rows of the top 10 venue categories is shown here:

|   | Neighborhood                   | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common Venue     | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue |
|---|--------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|
| 0 | Bayview                        | Light Rail<br>Station       | Mountain                    | Park                        | Café                        | American<br>Restaurant      | Latin American<br>Restaurant | Sandwich<br>Place           | Bus Station                 | Food Truck                  | Burger Joint                 |
| 1 | Castro                         | Coffee Shop                 | Park                        | Gay Bar                     | Thai<br>Restaurant          | Playground                  | New American<br>Restaurant   | Indian<br>Restaurant        | Yoga Studio                 | Juice Bar                   | Deli / Bodega                |
| 2 | Chinatown                      | Hotel                       | Italian<br>Restaurant       | Coffee Shop                 | Café                        | Speakeasy                   | Gym / Fitness<br>Center      | Bar                         | Boutique                    | Breakfast Spot              | Bubble Tea<br>Shop           |
| 3 | Cole Valley/Height<br>District | Coffee Shop                 | Park                        | Boutique                    | Café                        | Bookstore                   | Garden                       | Thrift /<br>Vintage Store   | Clothing Store              | Supermarket                 | Middle Eastern<br>Restaurant |
| 4 | Embarcadero<br>South           | Coffee Shop                 | Gym                         | Burger Joint                | Art Gallery                 | Gym / Fitness<br>Center     | Museum                       | Café                        | Mediterranean<br>Restaurant | Hotel                       | Food Truck                   |

You can see the bottom 10 venue categories by viewing the Jupyter Notebook in GitHub repository.

These 2 ranking data sets still did not show us much pattern or insight. Therefore, we further ranked the appearance of each venue categories in top and bottom 10 venues; another word, we ranked venue categories by how many times they showed up in "1st Most Common Venue" column in descending order, and repeated this for all other columns. For 10 most common venues, here was the result (showing top 10 frequently-appeared venue categories):

|   | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most<br>Common Venue | 5th Most<br>Common Venue   | 6th Most<br>Common Venue | 7th Most<br>Common Venue | 8th Most<br>Common Venue    | 9th Most<br>Common Venue | 10th Most<br>Common Venue    |
|---|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|------------------------------|
| 0 | Coffee Shop              | Park                     | Coffee Shop              | Café                     | Playground                 | Bakery                   | Sandwich Place           | Mediterranean<br>Restaurant | Sandwich Place           | Burger Joint                 |
| 1 | Chinese<br>Restaurant    | Café                     | Gym                      | Coffee Shop              | New American<br>Restaurant | Café                     | Pizza Place              | Bus Station                 | Chinese<br>Restaurant    | Deli / Bodega                |
| 2 | Park                     | Coffee Shop              | Bus Station              | Art Gallery              | Park                       | Light Rail Station       | Bar                      | Yoga Studio                 | Event Space              | Mexican<br>Restaurant        |
| 3 | Italian<br>Restaurant    | Pizza Place              | Italian Restaurant       | French<br>Restaurant     | French<br>Restaurant       | Bar                      | Spa                      | Pizza Place                 | Supermarket              | Art Gallery                  |
| 4 | Trail                    | Gym                      | Garden                   | Gay Bar                  | Bus Stop                   | Garden                   | Deli / Bodega            | Gas Station                 | Juice Bar                | Pizza Place                  |
| 5 | Hotel                    | Bar                      | Gay Bar                  | Dance Studio             | Wine Bar                   | Pharmacy                 | Pharmacy                 | Indian<br>Restaurant        | Dance Studio             | Food Truck                   |
| 6 | Bakery                   | Mountain                 | Boutique                 | Baseball Field           | Gym / Fitness<br>Center    | Flower Shop              | Indian<br>Restaurant     | Italian Restaurant          | Sushi Restaurant         | Middle Eastern<br>Restaurant |
| 7 | Cocktail Bar             | Theater                  | Vietnamese<br>Restaurant | Baseball Stadium         | Sushi Restaurant           | Convenience<br>Store     | Convenience<br>Store     | Monument /<br>Landmark      | Breakfast Spot           | Dance Studio                 |
| 8 | Food Truck               | Gym / Fitness<br>Center  | Trail                    | Park                     | Chinese<br>Restaurant      | Coffee Shop              | Gym / Fitness<br>Center  | Deli / Bodega               | Cantonese<br>Restaurant  | Spa                          |
| 9 | Gym / Fitness<br>Center  | Pool                     | Yoga Studio              | Gym / Fitness<br>Center  | Grocery Store              | Scenic Lookout           | Cocktail Bar             | Scenic Lookout              | Spa                      | Bubble Tea Shop              |

We could see that "Coffee Shop" appeared consistently in top rankings; "Bar" and "Gym/Fitness Center" also appeared frequently.

The result for 10 least common venues is shown here:

|   | 1st Least<br>Common Venue | 2nd Least<br>Common Venue     | 3rd Least<br>Common Venue    | 4th Least<br>Common Venue     | 5th Least<br>Common Venue    | 6th Least<br>Common Venue | 7th Least<br>Common Venue    | 8th Least<br>Common Venue | 9th Least<br>Common Venue    | 10th Least<br>Common Venue |
|---|---------------------------|-------------------------------|------------------------------|-------------------------------|------------------------------|---------------------------|------------------------------|---------------------------|------------------------------|----------------------------|
| 0 | MTA                       | Modern European<br>Restaurant | Motel                        | Music School                  | Music Store                  | Music Venue               | Music Venue                  | Motorcycle Shop           | Moving Target                | Music Store                |
| 1 | Yoga Studio               | Moving Target                 | Mobile Phone<br>Shop         | Mountain                      | Motel                        | Moroccan<br>Restaurant    | Motel                        | National Park             | National Park                | New American<br>Restaurant |
| 2 | None                      | Movie Theater                 | Museum                       | Museum                        | Movie Theater                | Music Store               | Mountain                     | Movie Theater             | Music School                 | Community                  |
| 3 | None                      | Miscellaneous<br>Shop         | Moving Target                | Modern European<br>Restaurant | Music School                 | Motorcycle Shop           | Nail Salon                   | Nail Salon                | Mountain                     | Movie Theater              |
| 4 | None                      | Lake                          | Martial Arts Dojo            | Martial Arts Dojo             | Monument /<br>Landmark       | National Park             | Mini Golf                    | Moroccan<br>Restaurant    | Community                    | Nail Salon                 |
| 5 | None                      | Market                        | Latin American<br>Restaurant | Motel                         | Nail Salon                   | Mattress Store            | Middle Eastern<br>Restaurant | Mini Golf                 | Martial Arts Dojo            | Mini Golf                  |
| 6 | None                      | Juice Bar                     | Mini Golf                    | Massage Studio                | Sports Club                  | Mountain                  | Community                    | Market                    | Moroccan<br>Restaurant       | Market                     |
| 7 | None                      | Massage Studio                | Lingerie Store               | Music Store                   | Middle Eastern<br>Restaurant | Museum                    | Movie Theater                | Mac & Cheese<br>Joint     | Middle Eastern<br>Restaurant | Massage Studio             |
| 8 | None                      | Irish Pub                     | Music Store                  | Moroccan<br>Restaurant        | Lingerie Store               | Video Store               | Sports Bar                   | Community                 | Newsstand                    | Motel                      |
| 9 | None                      | Music School                  | Moroccan<br>Restaurant       | Music Venue                   | Massage Studio               | Jewelry Store             | Moving Target                | Music Store               | Lingerie Store               | Newsstand                  |

"ATM" and "Karaoke Bar" were the only categories in the 1st Lease Common Venue ranking; I suspect that these 2 categories showed up very infrequently in the entire original downloaded from Foursquare and therefore were outliers. Other than those two categories, categories such as "Motel" and "Moroccan Restaurant" appeared on this grid somewhat frequently.

# Inferential Statistical Testing/Machine Learning

The main goal for this analysis is to determine if any correlation between COVID-19 case counts and Foursquare location data in San Francisco; therefore, statistical testing methods deployed should be those that measure correlation between data sets. For inferential statistical testing, we used two data modeling techniques: simple linear regression and K-Nearest Neighbors.

For each of the modeling techniques, we randomly selected 75% of data set as training data and the rest as testing data. We also used 2-D plots to help us visualize correlation and modeling results.

#### **ANALYSIS RESULTS**

### A. Simple Linear Regression

First, we used scatter plots to quickly visualize if any linear relationship between venue categories and COVID-19 case counts can be spotted. Using "Coffee Shop", "Bar", and "Grocery Store" as independent variable, we generated the following three plots.



These plots did not show any linear correlations (positive or negative). We wanted to see if any other category showed correlation. However, with more than 270 categories, it was impossible to manually go through them. Therefore, codes using Python and its scikit-learn libraries were written to: 1)split data into train/test sets; 2)generate a linear regression machine learning model for each category; 3)train the model with train data set; 4)calculate Mean Absolute Error, Mean Squared Error (MSE), and R-Squared (R2-score) from model's prediction of test data set, and; 5)store results of all categories in a dataframe. The data was then sorted by R2-score in descending order, shown here:

|     | Venue                         | Mean absolute error | MSE       | R2-score |
|-----|-------------------------------|---------------------|-----------|----------|
| 169 | Mountain                      | 3.500000            | 15.744792 | 0.104296 |
| 160 | Middle Eastern Restaurant     | 2.976458            | 10.978351 | 0.072928 |
| 221 | Scenic Lookout                | 4.042901            | 19.744010 | 0.072554 |
| 5   | American Restaurant           | 3.812349            | 21.394497 | 0.070947 |
| 191 | Pedestrian Plaza              | 2.866667            | 8.906667  | 0.000000 |
| 190 | Parking                       | 2.958333            | 9.420573  | 0.000000 |
| 108 | General Entertainment         | 3.000000            | 9.666667  | 0.000000 |
| 100 | Dance / Office Cumpling Store | 2.626162            | 7 701446  | 0.000000 |

The highest positive R2-score was 0.104 for "Mountain", indicating that there was no category with meaningful positive correlation to COVID-19 case counts.

We proceeded by looking for any category with inverse correlation by searching out R2-score between -1.2 and -0.8, and the one resulting category is shown below:

|     | Venue | Mean absolute error | MSE      | R2-score  |  |
|-----|-------|---------------------|----------|-----------|--|
| 262 | Tree  | 2.206979            | 5.803123 | -0.960189 |  |

Any reasonable person would question if "Tree" could really correlate with a respiratory epidemic. To examine this further, we plotted "Tree" venue category data against COVID-19 case counts, shown on the right.



The graph definitely did not substantiate inverse correlation between "Tree" and COVID-19 case counts. There were 22 neighborhoods (or zip codes) in the data set, but only 2 neighborhoods had "Tree" in their venue categories, meaning a majority of neighborhoods did not have "Tree" in their venue rankings.

Does this mean majority of neighborhoods in San Francisco do not have trees? No, it is fairly obvious that most people do not rate trees online, so it is reasonable to expect a lack of ranking data for categories similar to "Tree".

#### B. K-Nearest Neighbors (KNN)

First, we determined the most frequently ranked venue categories by sorting the Foursquare data set by frequency of appearance, and put them in a list. A preview of resulting data is shown on the right.

| Coffee Shop          | 93 |
|----------------------|----|
| Park                 | 65 |
| Café                 | 55 |
| Pizza Place          | 44 |
| Gym                  | 34 |
| Bakery               | 33 |
| Italian Restaurant   | 33 |
| Gym / Fitness Center | 32 |
| Bar                  | 32 |
| Sandwich Place       | 27 |
|                      |    |

For KNN modeling, we wanted to generate 3 different scenarios with different numbers of independent variables. Specifically,

we wanted to model with top 4 independent variable, top 8 independent variables, and top 12 independent variables.

For each of the 3 scenarios, we generated data set of independent variables, then used scikit-learn's StandardScaler function to normalize the data. A preview of these data for top 4 independent variables are show on the following page.

```
Coffee Shop
                Park
                        Café Pizza Place
                                           array([[-1.34479292, 0.8052657 , 2.5712085 , -1.21568739],
    0.000000 0.095238 0.095238
                              0.000000
                                                   [ 0.07439828, -0.04325534, -0.8641893 , -1.21568739],
    0.050000 0.050000 0.010000
                              0.000000
                                                   [ 0.07439828, -0.60595877, 0.74795268, -0.69345349],
    0.050000 0.020000 0.050000
                              0.010000
                                                   [ 0.35823652, 0.14431246, 1.15098818, -0.17121959]
3
    0.060000 0.060000 0.060000
                              0.020000
                                                   [ 2.3451042 , -0.60595877, -0.05811831, -0.69345349]])
     0.130000 0.020000 0.030000
                              0.010000
    0.060000 0.050000 0.040000
     0.070000 0.020000 0.010000
7
    0.037500 0.012500 0.012500
                              0.062500
     0.093750 0.125000 0.062500
```

With independent variable data set created, we then split the data into train/test. With scikit-learn's KNeightborsClassifier function, we generated a KNN machine learning model. Iterating K (number of neighbors) value from 1 to 10, we trained the model with training data, and calculated the model's accuracy mean and standard deviation from the model's prediction with test data. The results of the 3 scenarios were then plotted to see which scenario and K value yielded best results. The plots are shown here:



The highest accuracy mean was 0.1667 across all 3 scenarios. Therefore, this indicated that we could not find a KNN model providing reasonable accuracy for predicting COVID-19 case counts from venue categories.

#### **DISCUSSION**

Prior to discussing results of the analysis, we would like to remind readers that the goal of this analysis was to attempt to <u>see if any correlation can be found between COVID-19 case counts and Foursquare location data in San Francisco</u>, not to determine what Foursquare's location data correlates with the city's COVID-19 case count.

With the in mind, our results did not find any correlation between Foursquare's location data and San Francisco's COVID-19 case count by zip code. Neither set of data modeling showed any meaningful correlation between the data's independent variables (venue categories by neighborhood/zip code) and dependent variable (COVID-19 case counts by zip code).

This should not be a surprise to any reasonable reader. As we are aware, geo-location data aggregation companies such as Foursquare are in the business of selling data to customers who are mainly interested in using such data for sales and marketing purposes; therefore, geo-location data collected are typically geared toward commercial establishments, such as retail stores, tourist attractions, and restaurants/bars. Rankings of these places seldom correlate with public health statistics.

Demographic census data such as income, age, and/or ethnicity distribution may correlate with public health data in more significant and meaningful ways. Finding such data sources, cleansing and exploring that data, modeling and analyzing the subsequent modeling results can be the topic of a future project.

#### CONCLUSION

For this project, we performed the following steps:

- Downloaded relevant data from various websites/sources
- Wrangled the data in formats needed for analysis and modeling
- Performed exploratory data analysis and visualization
- Generated Linear Regression models
- Generated K-Nearest Neighbors models
- Analyzed the results

The goal of this analysis was to attempt to attempt to see if any correlation can be found between COVID-19 case counts and Foursquare location data in San Francisco. We analyzed the results of our data models and could not find reasonable correlation between the two data sets. As mentioned in discussion section above, this should not come as a surprise as geolocation data geared toward commercial purposes typically do not correlate with public health statistics.

#### REFERENECES

<sup>1</sup>Johns Hopkins University Corona Resource Center (<a href="https://coronavirus.jhu.edu/us-ma">https://coronavirus.jhu.edu/us-ma</a>)

<sup>2</sup>San Francisco Department of Public Health (https://www.sfdph.org/dph/alerts/coronavirus.asp)