- Let Σ be a finite alphabet.
- Let $L \subseteq \Sigma^*$.
- Define a binary relation \equiv_L on strings in Σ^* as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \Leftrightarrow yz \in L)$$

- Show that \equiv_L is an equivalence relation on Σ^* .
- Two strings x and y are said to be indistinguishable by L iff $x \equiv_L y$.
- Two strings x and y are said to be distinguishable by L iff x and y belong to different equivalence classes; that is, there exists some string z such that exactly one of xz or yz is in L.
- Let $[x] = \{y \mid y \equiv_L x\}$ be the equivalence classes.
- Let index(L) denote the number of equivalence classes.

Claim 1: If L is recognized by a DFA with k states then $index(L) \leq k$. Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA with k states that recognizes L.

• For each state $q \in Q$, define

$$C_q = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) = q \}.$$

- Let $x, y \in C_q$ for some $q \in Q$. That is, $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.
- We have, for all $z \in \Sigma^*$, $\hat{\delta}(q_0, xz) = \delta(\hat{\delta}(q_0, x), z) = \delta(\hat{\delta}(q_0, y), z) = \hat{\delta}(q_0, yz)$.
- That is, for all $z \in \Sigma^*$, it is true that $xz \in L \Leftrightarrow yz \in L$ showing that $x \equiv_L y$.
- That is, $index(L) \leq |Q|$.

NOTE: Define a binary relation \equiv_M on Σ^* :

$$x \equiv_M y \iff \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$$

Then, \equiv_M is an equivalence relation on Σ^* and the equivalence classes are $\{C_q \mid q \in Q\}$.

Claim 2: If index(L) is a finite number k then there is a DFA with k states that accepts L. Proof:

• Define a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ as follows:

$$- \ Q' \ = \ \{ [x] \mid x \ \in \ \Sigma^* \}.$$

$$- q_0 = [\epsilon].$$

$$- \delta'([x], a) = [xa].$$

$$- F' = \{ [x] \mid x \in L \}.$$

• δ' is well-defined. That is, $\delta'([x], a) = [ya]$ for any $y \in [x]$ and all $a \in \Sigma$.

$$x \equiv_{L} y \implies \forall z \in \Sigma^{*}, (xz \in L \Leftrightarrow yz \in L)$$

$$\Rightarrow \forall a \in \Sigma, u \in \Sigma^{*}, (xau \in L \Leftrightarrow yau \in L)$$

$$\Rightarrow \forall a \in \Sigma, (xa \equiv_{L} ya).$$

 $\bullet \ x \ \in \ L \ \Leftrightarrow \ x \ \in \ L(M').$

$$x \in L(M') \Leftrightarrow \hat{\delta'}([\epsilon], x) \in F'$$

 $\Leftrightarrow [x] \in F'$
 $\Leftrightarrow x \in L$

(We have used the fact that $\hat{\delta}'([\epsilon], x) = [x]$, which fact can be proved by induction on |x|.)

Claim 3: If L is a regular language then index(L) (which is a finite number) is the size of the smallest DFA that recognizes L.

Proof:

- By Claim 1, $index(L) \leq the number of states in any DFA for L.$
- The number of states in the DFA M' constructed in the proof of Claim 2 is index(L).
- Therefore, M' is a minimum size DFA for L.