Interaction Based Feature Extraction

How to Convert User Activity into Valuable Features

Shlomi Babluki, Principal Data Scientist

October, 2018

User Activity

Provides Digital Insights for 190+ countries

Every Website

- ✓ Traffic Metrics
- ✓ Traffic Sources
- ✓ Audience
- ✓ Industry
- ✓ Content

Every Mobile App

- ✓ Ranking
- ✓ Engagement
- ✓ App Store
- ✓ Category
- ✓ Keywords

SimilarWeb PRO

Website Demographics

Our Data

International Panel

Millions of user in almost every country.

Learning Set

Direct measurement data (like Google Analytics) for ~50,000 Websites.

Gender Distribution - Standard Solution

- For each website in our panel:
 - Count the number of males
 - Count the number of females
 - Calculate the gender distribution
- Use the learning set to improve the estimation

Our panel is completely anonymous!

Our Idea - Example

Website A:

- Panel: 100 Users
- Learning set: 80% Females / 20% Males

Website A - 80 Females and 20 Males

Website B:

- Panel: 90 Users
- Learning set: N/A

Website B Gender Distribution

77% - 88% Females

Our Idea

Estimate website gender distribution

based on its user engagement with the other sites in

the learning set.

Our Panel Matrix (P)

Convert Our Panel Into An Interaction Matrix

An indicator matrix of websites (S) and users (U):

$$P(i, j) = 1$$
 if user j visited website i

$$P(i, j) = 0$$
 Otherwise

$$dim(P) = |S| \times |U| \rightarrow \underline{P} \text{ is a very large sparse matrix!}$$

"The Curse of Dimensionality"

We need to reduce the dimension of the panel matrix (P):

$$dim(P) = |S| \times |U|$$

$$\downarrow$$

$$dim(F) = |S| \times K$$

Feature Extraction / Dimension Reduction Algorithms:

- Principal Component Analysis
- Matrix Factorization (ALS Model)
- Word2Vec

The standard algorithms didn't solve our problem

Dimension Reduction - Conclusion

The Problem

The standard algorithms reduce the dimension without taking into account our problem.

The Solution

An algorithm that reduces the dimension in a way that is **optimized to solve our problem.**

Interaction Based Feature Extraction

Interaction Based Feature Extraction - Step 1/3

- Convert our learning set (L) into a matrix (D1):
 - Split the gender percentiles into K (=10) "buckets":

Map each value from the learning set into an indicator vector:

```
Website A, 0.73 \rightarrow [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] Website B, 0.26 \rightarrow [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] ...
```

$$dim(D1) = |L| \times K$$

Interaction Based Feature Extraction - Step 1/3

Learning Set Vector (K)

	_		_	_
0.0	0.0	0.0	0.0	
0.0	0.0	1.0	0.0	

D1

Interaction Based Feature Extraction - Step 2/3

Create another matrix (D2) of users (U) and only the learning set websites (L):

```
D2(i, j) = 1 if user i visited learning set website j

D2(i, j) = 0 Otherwise

dim(D2) = |U| \times |L|
```

Multiply the D2 matrix by D1:

$$\mathbf{D} = D2 * D1$$

$$\mathbf{dim}(\mathbf{D}) = (|U| \times |L|) * (|L| \times K) \rightarrow |\mathbf{U}| \times K$$

Normalize each row (user) in the matrix D to 1.0

Interaction Based Feature Extraction - Step 2/3

Interaction Based Feature Extraction - Step 2/3

D Matrix - Example:

User 1: [0.0, 0.0, 0.0, 0.0, **0.2, 0.3, 0.1 0.1, 0.2, 0.1**]

User 2: [0.1, 0.0, 0.2, 0.1, 0.5, 0.0, 0.1, 0.0, 0.0, 0.0]

Interaction Based Feature Extraction - Step 3/3

Multiply the panel matrix (P) by D:

$$dim(F) = (|S| \times |U|) * (|U| \times K) \rightarrow |S|x K$$

Normalize each row (website) in the matrix F to 1.0

Interaction Based Feature Extraction - Step 3/3

Interaction Based Feature Extraction - Features

Train a Regressor

Random Forest Regression - Results

Expanding The Algorithm

Can We Expand It To Other Domains?

MovieLens Dataset:

- 27,000 Movies
- 138,000 Users
- ~20M Ratings (Explicit Feedback: 1-5)
- Multiple Genres per Movie

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. DOI=http://dx.doi.org/10.1145/2827872

Predicting Movie Genres

MovieLens Movie Genres (18):

- Action
- Adventure
- Animation
- Children
- Comedy
- Crime
- Documentary
- Drama
- Fantasy

- Film-Noir
- Horror
- Musical
- Mystery
- Romance
- Sci-Fi
- Thriller
- War
- Western

Predicting Movie Genres

ratings.csv

userId, movieId, rating, timestamp

1,2,3.5,1112486027 1,29,3.5,1112484676 1,32,3.5,1112484819

. . .

International Panel

movies.csv

movieId, title, genres

1,Toy Story (1995),Adventure|Animation|Children
2,Jumanji (1995),Adventure|Children|Fantasy
3,Grumpier Old Men (1995),Comedy|Romance

. . .

Learning Set

Predicting Movie Genres - Genre Features

Predicting Movie Genres - Genre Features

Predicting Movie Genres - Results

Genre: Animation

• Total Accuracy: 95.5% (6611)

• True Positive Rate: 93.4% (273)

• True Negative Rate: 95.6% (6338)

Overall Accuracy: ~83%

Genre: Adventure

Total Accuracy: 86.9% (6559)

True Positive Rate: 70.0% (682)

True Negative Rate: 88.9% (5877)

^{*} Movies with more than 20 users / votes

Interaction Based Feature Extraction

- High Accuracy
- Very Low Dimension
- Scalable
- Simple & Explainable (not a "black box" solution)

Questions?

Table D1: <ls_site, k1, k2... k10> Table D2: <user, ls_site> Table P: <site, user>


```
SELECT
       site
       AVG(f1) as f1,
       AVG(f10) as f10
FROM (
       SELECT
               site,
               user,
               D.k1 / (D.k1 + ... + D.k10) as f1,
               D.k10 / (D.k1 + ... + D.k10) as f10
       FROM (
               SELECT P.site, D.user, D.ls site, D.kl... D.kl0
               FROM P
               JOIN (
                      SELECT D2.user, D1.ls site, D1.kl... D1.kl0
                      FROM D1
                      JOIN D2
                      ON D1.1s site = D2.1s site
               ) AS D
               ON P.user = D.user AND P.site <> D.ls site
       ) as F1
       GROUP BY site, user
) as F
GROUP BY site
```

```
SELECT
        site
       AVG(f1) as f1,
       AVG(f10) as f10
FROM (
       SELECT
               site,
               user,
               D.k1 / (D.k1 + ... + D.k10) as f1,
               D.k10 / (D.k1 + ... + D.k10) as f10
       FROM (
               SELECT P.site, D.user, D.ls site, D.kl... D.kl0
               FROM P
               JOIN (
                      SELECT D2.user, D1.ls site, D1.kl... D1.kl0
                       FROM D1
                       JOIN D2
                      ON D1.1s site = D2.1s site
               ) AS D
                                                                                  Avoid Data Leakage
               ON P.user = D.user AND P.site <> D.ls site
       ) as F1
       GROUP BY site, user
) as F
GROUP BY site
```


Thank You!

shlomib@similarweb.com

@shlomibabluki

