Matroids for solving Optimisation Problems The Greedy algorithm as a solution

emcd123

NUI Galway

2018

The Problem

Let G be K_4 as seen here, where the vertices correspond to towns to be linked by railway network, and the weight on each edge is the cost of providing a link between the towns correspnding to the respective vertices. In this case, the minimum weight of a spanning tree in G corrsponds to the minimum cost of providing a railway that will link all n towns.

Greedy Algorithm

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted Graph.

Algorithm:

- 1) Create a graph F containing just the vertices of G.
- 2) Create a set S = E(G); the edge set of G.
- 3) While S is non-empty and F is not yet spanning
 - 3(a) Remove an edge with minimum weight from S.
 - 3(b) If the removed edge introduces no cycles to F
 - 3(b) If the removed edge introduces no cycles to F then add the edge to F

Why Greedy works?

Let B_G be a spanning tree created through the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

But what is a matroid?

Independence Systems and Matroids

Definition

An *independence system* is a pair (E, S), where E is a set and S is a non-empty subset of the power set of E, closed under inclusion. The elements of S are called the *independent sets*.

Definition

A matroid is a pair (E, \mathcal{I}) with finite ground set E and \mathcal{I} being a collection of independent subsets of E satisfying the following conditions

- (I1): The empty set is always independent
- (I2): Every subset of an independent set is independent
- (I3): If A and B are two independent sets in \mathcal{I} and |A|=|B|+1, then there exists $x\in A\setminus B$ such that $B\cup\{x\}$ is in \mathcal{I}

4□ > 4Ē > 4Ē > 4Ē > 4Ē > 4Ē > 4Ē

Bases of a Matroid

Definition

A base is a maximally independent subset of \mathcal{I} .

All the maximally independent sets have the same cardinality, this is the *rank* of the matroid.

Definition

Let $\mathcal B$ be a set of subsets of a finite set E. Then $\mathcal B$ is the collection of bases of a matroid on E if and only if $\mathcal B$ satisfies the following conditions:

- (B1) \mathcal{B} is non-empty.
- (B2) If B_1 and B_2 are members of \mathcal{B} and $x \in B_1 \setminus B_2$, then there is an element y of $B_1 \setminus B_2$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

4 D > 4 A > 4 B > 4 B > B 900

Spanning trees are Bases

Definition

A spanning tree T of an undirected graph G is a subgraph that is a *tree* which includes all of the vertices of G.

From this we can see, that if \mathcal{B} is the collection of maximally elements of \mathcal{I} , then in G, \mathcal{B} is the set of spanning trees of the graph.

NUI Galwav

Weight Function

The optimization problem associated with (E, S) is the following: for a given weight function $\omega : E \to \mathbb{R}^+$, we want to find an independent set A whose weight is maximal, where

$$\omega(A) := \sum_{e \in A} \omega(e) \tag{1}$$

Demonstration of Kruskal's algorithm

```
owen@owen-ThinkPad-X201 ~/Matroids $ perl kruskal.pl
SVAR1 = {
          'BC' => 7,
                                             Hello
This Graph is Acyclic
owen@owen-ThinkPad-X201 ~/Matroids $
```

Why Greedy works: The solution

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Proof.

If r(M)=r, then $B_G=\{e_1,e_2,...,e_r\}$ is a basis of M. Let B be another basis of M, $B=\{f_1,f_2,...,f_r\}$ where $\omega(f_1)\geq \omega(f_2)\geq ...\geq \omega(f_r)$. This follows from the result of the next additional lemma showing that not only is B_G a maximum weight basis of M, but is also at least as heavy as the elements of B at each step.

(ロト 4周) 4 手 > 4 手 > 一手 の の ()

Continued

Lemma

if $1 \le j \le r$, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$. Take $I_1 = \{e_1, e_2, ..., e_{k-1}\}$ and $I_1 = \{f_1, f_2, ..., f_{k-1}\}$. Since $|I_1| = |I_2| + 1$ by (I_3) implies $I_1 \cup \{f_t\} \in \mathcal{I}$ for some $f_t \in I_2 \setminus I_1$. But this means that $\omega(f_t) \geq \omega(f_t) > \omega(e_k)$. Hence the Greedy algorithm would have chosen f_t over e_k , which gives us our contradiction.

Wrap Up

The combination of the previous lemma and our use of the greedy algorithm to find a maximal member B of $\mathcal I$ of maximum weight allows us to deduce that Kruskal's algorithm does generate a minimum weight spanning tree of a graph.

We have seen that greedy algorithm gives us a solution to our optimisation problem as long as we have a matroid.