2021 年普通高等学校招生全国统一考试数学试题(甲卷·理科)

- 1. 设集合 $M = \{x | 0 < x < 4\}, N = \{x | \frac{1}{3} \le x \le 5\}, 则 M \cap N = ($)

 - A. $\{x|0 \le x \le \frac{1}{3}\}$ B. $\{x|\frac{1}{3} \le x \le 4\}$ C. $\{x|4 \le x \le 5\}$ D. $\{x|0 \le x \le 5\}$
- 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频 率分布直方图:

根据此频率分布直方图,下面结论中不正确的是(

- A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
- B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
- C. 估计该地农户家庭年收入的平均值不超过6.5万元
- D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
- 3. 己知 $(1-i)^2z=3+2i$,则z=()
 - A. $-1 \frac{3}{2}i$ B. $-1 + \frac{3}{2}i$
- C. $-\frac{3}{2}+i$ D. $-\frac{3}{2}-i$
- 4. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量. 通常用五分记录法和小数记录法记录视力数 据,五分记录法的数据 L 和小数记录法的数据 V 满足 $L=5+\lg V$. 已知某同学视力的五分记录法的数据为 4.9,则 其视力的小数记录法的数据约为($\sqrt[1]{10}$ ≈ 1.259)()
 - A. 1.5
- B. 1.2

C. 0.8

- D. 0.6
- 5. 已知 F_1 , F_2 是双曲线C的两个焦点,P为C上一点,且 $\angle F_1PF_2=60^\circ$, $|PF_1|=3|PF_2|$,则C的离心率为

- A. $\frac{\sqrt{7}}{2}$
- B. $\frac{\sqrt{13}}{2}$

C. $\sqrt{7}$

D. $\sqrt{13}$

6.	在一个正方体中,过顶点 A 的三条棱的中点分别为 E , F , G .该正方体截去三棱锥 $A-EFG$ 后,所得多面体的三视					
	图中,正视图如右图所	示,则相应的侧视图是(
	A.	В.	C.	D. 正视 图	1	
7.	等比数列 $\{a_n\}$ 的公比为 q	q ,前 n 项和为 S_n 设甲: $q > 0$),乙: $\{S_n\}$ 是递增数列,	则()		
	A. 甲是乙的充分条件(B. 甲是乙的必要条件			
	C. 甲是乙的充要条件		D. 甲既不是乙的充分	条件也不是乙的必要条件		
8.	位: m),三角高程测量 一个示意图,现有 A , E	国和尼泊尔联合公布珠程朗法是珠峰高程则量方法之一 B , C 三点,且 A , B , C 在同 $B'C'=60°$. 由 C 点测得 B 点的	一. 右图是三角高程测量 一水平面上的投影A', B	法的 '', C '	\	
		的 $BC = 60$,田 C 点测得 B 点 B 的仰角为 45° ,则 A , C 两点:			\supseteq_B	
	$-CC'$ 约为($\sqrt{3} \approx 1.732$)		到小干面ADC 的同反左	C C		
	A. 346	В. 373	* XE	CU A	B'	
	C. 446	D. 473		C. <u>r</u>	<i>⊸B</i>	
		2,e	Life it			
9.	若 $\alpha \in (0, \frac{\pi}{2}), \tan 2\alpha =$	$\frac{\cos \alpha}{2-\sin \alpha}$, $\sqrt{\arctan \alpha}$	%			
	A. $\frac{\sqrt{15}}{15}$	B. $\frac{\sqrt{5}}{5}$	C. $\frac{\sqrt{5}}{3}$	D. $\frac{\sqrt{15}}{3}$		
10	. 将 4 个 1 和 2 个 0 随材	几排成一行,则2个0不相邻	郊的概率为()			
	A. $\frac{1}{3}$	B. $\frac{2}{5}$	C. $\frac{2}{3}$	D. $\frac{4}{5}$		
11	. 已知 <i>A</i> , <i>B</i> , <i>C</i> 是半径;	为 1 的球 O 的球面上的三个	、点,且 AC↓BC,AC=B	BC=1,则三棱锥 <i>O-ABC</i> 的体积为(()	
	A. $\frac{\sqrt{2}}{12}$	B. $\frac{\sqrt{3}}{12}$	C. $\frac{\sqrt{2}}{4}$	D. $\frac{\sqrt{3}}{4}$		
12			•	2]时, $f(x)=ax^2+b$. 若 $f(0)+f(3)=$	=	
	6,则 $f(\frac{9}{2}) = ($)					
	A. $-\frac{9}{4}$	B. $-\frac{3}{2}$	C. $\frac{7}{4}$	D. $\frac{5}{2}$		
<u>_</u>	、填空题:本题共4小是	厦,每小题 5 分,共 20 分。				
13	. 曲线 $y = \frac{2x-1}{x+2}$ 在点(-1	1, -3)处的切线方程为	·			
14	. 已知向量 \vec{a} =(3, 1), \bar{b}	$\vec{c} = (1, 0), \vec{c} = \vec{a} + k\vec{b}$. 若 \vec{a}	Lc, 则 k=			
15	. 已知 F_1 , F_2 为椭圆 C_1	$\frac{x^2}{16} + \frac{y^2}{4} = 1$ 两个焦点, P , Q	为 C 上关于坐标原点对表	称的两点,且 $ PQ = F_1F_2 $,则四边 $\mathfrak P$	形P	
	F_1QF_2 的面积为	10 1				

16. 已知函数 $f(x)=2\cos(\omega x+\varphi)$ 的部分图像如图所示,则满足条件 $\left(f(x)-f\left(-\frac{7\pi}{4}\right)\right)\left(f(x)-f\left(\frac{4\pi}{3}\right)\right)>0$ 的最小正整数 x为 .

三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。

(一)必考题: 共60分。

17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了 200 件产品,产品的质量情况统计如下表:

	一级品	二级品	合计
甲机床	150	50	200
乙机床	120	780	200
合计	270	130	400

(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?

(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,

$P(K^2 \ge k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

- 18. 已知数列 $\{a_n\}$ 的各项均为正数,记 S_n 为 $\{a_n\}$ 的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立。①数列 $\{a_n\}$ 是等差数列;②数列 $\{\sqrt{S_n}\}$ 是等差数列;③ $a_2=3a_1$.
 - 注:若选择不同的组合分别解答,则按第一个解答计分.

- 19. 已知直三棱柱 $ABC A_1B_1C_1$ 中,侧面 AA_1B_1B 为正方形.AB = BC = 2,E,F分别为AC和 CC_1 的中点,D为棱 A_1B_1 上的点, $BF \perp A_1B_1$.
 - (1)证明: $BF \perp DE$;
 - (2)当 B_1D 为何值时,面 BB_1C_1C 与而DFE所成的二面角的正弦值最小?

- 20. 抛物线 C 的顶点为坐标原点 O,焦点在 x 轴上,直线 l: x=1 交 C 于 P, Q 两点,且 $OP \perp OQ$.已知点M(2, 0),且 O M与<math>l相切.
 - (1)求 *C*, ⊙ *M*的方程;
- (2)设 A_1 , A_2 , A_3 是 C 上的三个点,直线 A_1A_2 , A_1A_3 均与 $\bigcirc M$ 相切. 判段直线 A_2A_3 与 $\bigcirc M$ 的位置关系,并说明理由.

- 21. 已知a > 0且 $a \neq 1$,函数 $f(x) = \frac{x^a}{a^x}(x > 0)$.
 - (1)当a=2时,求f(x)的单调区间;
 - (2)若曲线y=f(x)与直线y=1有且仅有两个父点,求a的取值范围.

(二)选考题: 共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22. [选修 4-4: 坐标系与参数方程]

在直角坐标系xOy中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 $\rho=2\sqrt{2}\cos$ θ .

- (1)将C的极坐标方程化为直角坐标方程;
- (2)设点A的直角坐标为(1,0),M为C上的动点,点P满足 $\overrightarrow{AP} = \sqrt{2} \overrightarrow{AM}$,写出P的轨迹 C_1 的参数方程,并判断C与 C_1 是否有公共点.

23. [选修 4-5: 不等式选讲]

