Lecture 12: Options

B. Ravindran

Options Framework

Options (Sutton, Precup, & Singh, 1999): A generalization of actions to include temporally-extended courses of action

An option is a triple $o = \langle I, \pi_o, \beta \rangle$

- $I \subseteq S$ is the set of states in which o may be started
- π_o : $\Psi \rightarrow [0,1]$ is the (stochastic) policy followed during o
- $\beta: S \to [0,1]$ is the probability of terminating in each state

Generalising over Tasks

- Each task has a different reward structure in the state space
- Options provide a model for subtasks
- Semi-Markov Processes
- Can use generalization of TD, Q-learning, SARSA, etc. with options

Speedup using Options

Primitive Actions

Underlying policy of one hallway option

Hallway Options

Initial Values

Iteration # 1

Iteration # 2

Sub-goal Options

Types of Options

- Markov Options:
 - \blacksquare π_o depends only on current state

- Semi-Markov Options:
 - \blacksquare π_o depends on history since option started

Learning with Options

SMDP Q-Learning: In a state s,

- If a primitive action a is selected, Q(s,a) is updated according to the regular Q-Learning update rule
- ☐ If an *option o* is selected, no state-action values are updated until o terminates
- ☐ The cumulative, discounted reward received during the execution of *option o* is used to update only *Q(s,o)*

$$egin{aligned} Q(s_t, a_t) &= Q(s_t, a_t) + lphaigg[ar{r}_{t+ au} + \gamma^ au \max_{a'} Qig(s_{t+ au}, a'ig) - Q(s_t, a_t)igg] \ ar{r}_{t+ au} &= r_{t+1} \,+\, \gamma\, r_{t+2} \,+\, \dots \,+\, \gamma^{ au-1}r_{\,t+ au} \end{aligned}$$

Intra-Option Q-Learning

- At every step, the state-action value of the
 - primitive action, as well as
 - options that would have selected the same action are updated, regardless of the option in effect

For
$$\pi_o - a_1(for s_1), a_2(for s_2)...$$

Option o is updated as

$$Q(s_1, o) = Q(s_1, o) + \alpha[r_1 + \gamma Q(s_2, o) - Q(s_1, o)]$$
 If not terminating at s_2
= $Q(s_1, o) + \alpha[r_1 + \gamma \max_a Q(s_2, a) - Q(s_1, o)]$ If terminating at s_2

Intra-Option Q-Learning

For primitive actions (state-action pairs), we use regular
 Q-learning update

$$Q(s_1, a_1) = Q(s_1, a_1) + \alpha \Big[r_1 + \gamma \max_a Q(s_1, a) - Q(s_1, a_1) \Big]$$

$$Q(s_2, a_2) = \dots$$

- Additionally, an option execution allows us to update for all other options that are consistent with the first option (every other option o' where the same action would have been selected)
- $oldsymbol{\Box}$ Suppose $\pi_o(s_1)=a$ & $\pi_{o'}(s_1)=a$
- When executing option o, option o' can also be updated

$$Q(s_1, o') = Q(s_1, o') + \alpha (r_1 + \gamma Q(s_2, o') - Q(s_1, o'))$$

Discovering Options

Goodness Measures

- What are good options?
 - Connect to bottlenecks
 - Speed up learning; Useful for a family of tasks
 - Essentially transfer
 - Reduce uncertainty
 - Explainability
 - Mainly heuristics
 - Not connected directly to performance on MDPs

Discovering Options

- Bottlenecks [McGovern & Barto, Stolle & Precup, etc.]
- ☐ Graph partitions [Mannor et al.]
- Betweenness [Simsek & Barto]
- ☐ Frequency of changes [Jonsson & Barto, Hengst]
- ☐ Bisimulation metrics [Castro & Precup]
- ☐ Intrinsic Motivation [Satinder et al.; Barto et al.]
- Our Contribution: Metastability, Small World Options, etc.

Finding Bottlenecks

MDP can be segmented and modeled as a graph (Nodes = states; Edge = action)

☐ Find components of graph which are weakly connected (Graph partitioning)

States where weak connections happen are 'bottleneck' states

Diverse Density

- Assume we've obtained a bunch of successful & unsuccessful trajectories (Experience Replay)
- Find states that appear frequently on successful and rarely on unsuccessful trajectories

RED: unsuccessful trajectories

GREEN: successful trajectories

Betweenness Centrality

- ☐ Pick (all possible) pair of nodes on the graph and calculate the shortest path
- A node has high betweenness if many shortest-paths pass through it
- States with high betweenness centrality can be considered bottlenecks

Metastable Regions

Small World Options

THE SURPRISING RESULT

WAS THAT, ON AVERAGE

THESE CHAINS OF

CORRESPONDENCE WERE ONLY TO AN ACQUAINTANCE
OF THEIRS
THAT THEY BELIEVED
COULD GET CLOSER TO
A CHOSEN INDIVIDUAL
(WHICH MILGRAM HAD
PREVIOUSLY INFORMED
OF THE EXPERIMENT)

- Random options inserted with the expected length of these options following a certain probability distribution
 - ☐ Inspired by Stanley Milgram's experiment
- Exploration time can be cut down significantly
- Makes best use of data in comparison

Small World Options

- □ A r-dimensional lattice graph
- Edges distributed inversely proportional to distance
- → A greedy agent will move from one neighbourhood to another in log(n) time

Small Worlds in RL

- Construct "path options" that take an agent from state s to s'
- s' is chosen according to the power-law
- Which distance based?
- Value and state-space distance are related