

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS

Fundamento teórico

Ensayo en cortocircuito

Introducción:

Se conecta el transformador con el secundario en cortocircuito y se aplica en el primario una tensión progresiva, partiendo de 0 V, hasta que el amperímetro indique la intensidad nominal (lcc = ln). A la tensión necesaria para ello, se la denomina tensión de cortocircuito Ucc y a la potencia medida en el vatímetro Pcc.

Se deben utilizar instrumentos clase 0,5; la tensión debe ser sinusoidal de frecuencia igual a la nominal y se aplica el circuito mostrado en el esquema.

Esta potencia, demandada por el transformador en cortocircuito, corresponde a las pérdidas en el cobre de la máquina (pérdidas en el cobre nominales; a plena carga) debido a que lcc = In y Ucc es muy pequeña con respecto a Un (lo que implica pérdidas en el hierro despreciables).

Objetivo

- Determinar las pérdidas en el Cobre de los devanados PCu
- Determinar la resistencia total de los devanados,RT = Rcc
- 3. Determinar la reactancia de dispersión o de corto circuito Xcc
- 4. Determinar la impedancia de corto circuito Zcc

Circuito

Ensayo del transformador Monofásico

Constante de escala para lectura de vatímetro

$$Kw = \frac{Alc. A. k_{TI}. Alc. v. k_{TV}^{-1}}{n^{\circ} div}$$

Circuito Ensayo del transformador Trifásico

Constante de escala para lectura de los vatímetros

$$Kw = \frac{Alc. A. k_{TI}. Alc. v. k_{TV}^{-1}}{n^{\circ} div}$$

Cálculos

Parámetros medidos:

$$\checkmark Icc = In$$

Parámetros a calcular

$$\checkmark Rcc = \frac{Pcc}{Icc^2}$$

$$\checkmark Rcc = \frac{Pcc}{Icc^2}$$

$$\checkmark cos\varphi_{cc} = \frac{Pcc}{Ucc.Icc}$$

$$\checkmark Z_{cc} = \frac{ucc}{Icc}$$

$$\checkmark X_{cc} = \sqrt{Zcc^2 - Rcc^2}$$

Como las ecuaciones están referidas a una temperatura de 75°c, se hace el siguiente ajuste:

$$Rcc_{(75^{\circ}c)} = Rcc_{(T^{\circ}c)} = \frac{235 + 75}{235 + T^{\circ}c}$$
 $Pcc_{(75^{\circ}c)} = Pcc_{(T^{\circ}c)} = \frac{235 + 75}{235 + T^{\circ}c}$

VALORES OBTENIDOS

Valores Obtenidos	Valores calculados
U _{cc} [V]	cosφcc
I _{cc} [A]	φεε
P _{cc} [w]	$Rcc[\Omega]$
	Zcc[Ω]
	Xcc[Ω]

Fundamento teórico

Circuito equivalente

$$R_{cc} = R_1 + R_{21}$$

$$X_{cc} = X_1 + X_{21}$$

Por construcción en la mayoría de los transformadores resulta:

$$R1 = R21$$

$$X1 = X21$$

Entonces:

$$R1 = R21 = \frac{Rcc}{2} = k^2.R2$$

$$X1 = X21 = \frac{X\overline{c}c}{2} = k^2.X2$$

Fundamento teórico

Rendimiento

$$\eta = \frac{potencia\ cedida}{potencia\ absorbida} = \frac{U_2.\ I_2.\ cos\phi_2}{U_2.\ I_2.\ cos\phi_2 + Po + Pcc}$$

Para otro estado de carga habrá que hacer intervenir el factor de carga Kc

Regulación

$$\Delta U\% = UR\%cos\varphi + Ux\%sen\varphi + \frac{(Ux\%cos\varphi - UR\%sen\varphi)^2}{200}$$

$$UR\% = \frac{Icc.Rcc}{UR}.100$$

$$UR\% = \frac{Icc.Rcc}{U1}.100$$

$$Ux\% = \frac{Icc.Xcc}{U1}.100$$

Conclusiones

;?