	_			
\(\alpha \)		ESERCIZIO 1.a. La funzione di transizione è definita correttamente? Punteggio massimo 2	mancano due nastri	1 / 2
		ESERCIZIO 1.b. Si dimostra che i linguaggi Turing-riconoscibili sono riconoscibili dalle RATM? Punteggio massimo 2	si	2 / 2
		ESERCIZIO 1.b. La soluzione codifica correttamente il nastro della RATM? Punteggio massimo 2	manca la codifiica del nastro puntatore	1 / 2
		ESERCIZIO 1.b. La soluzione simula correttamente l'operazione di accesso diretto? Punteggio massimo 4	descrizione ad alto livello, non si spiega come fa la TM a memorizzare i valor di p, l e m $$	1 /
		ESERCIZIO 1.b. La soluzione simula correttamente gli spostamenti a destra e sinistra della testina? Punteggio massimo 2	no	0 / 2
		ESERCIZIO 2.a. La definizione del linguaggio SUFFIXCLOSED_TM è corretta? Punteggio massimo 2	condizione di appartenenza non valida	1 / 2
2°		ESERCIZIO 2.b. il problema di riferimento è scelto correttamente? Punteggio massimo 2	Si	2 / 2
		ESERCIZIO 2.b. Input e output della riduzione sono corretti? Punteggio massimo 2	si	2 /
		ESERCIZIO 2.b. La riduzione è corretta? Punteggio massimo 3	definizione ambiga e inconsistente di M'. Uso di u, v, L non definiti in quel contesto	1 /
	_ _	ESERCIZIO 2.b. Si dimostra la correttezza della riduzione? Punteggio massimo 3	no, perché M' non è definita in modo valido	0 / 3
		ESERCIZIO 3.a. Il certificato è corretto? Punteggio massimo 2	si	2 / 2
		ESERCIZIO 3.a. Il verificatore è corretto e polinomiale? Punteggio massimo 2	no, il verificatore non fa i controlli necessari ed è descritto in modo poco chiaro e ambiguo	0 /
		ESERCIZIO 3.b. Input e output della riduzione sono corretti? Punteggio massimo 2	manca	0 /
		ESERCIZIO 3.b. La riduzione è corretta e polinomiale? Punteggio massimo 3	manca	0 / 3
L	_	ESERCIZIO 3.b. Si dimostra la correttezza della riduzione? Punteggio massimo 3	no	0 /

- 1. (12 punti) Una Macchina di Turing ad accesso casuale (RATM) è una variante della macchina di Turing che estende il modello standard introducendo un meccanismo per accedere direttamente a una qualsiasi posizione dell'input, senza dover scorrere sequenzialmente le celle del nastro. Una RATM è dotata di tre nastri:
 - un nastro di input a sola lettura, che contiene l'input;
 - $\bullet\,$ un nastro di lavoro dove la macchina può leggere, scrivere e spostarsi a piacere;
 - un nastro puntatore con alfabeto binario. Anche in questo nastro la macchina può leggere, scrivere e spostarsi a piacere.

Oltre alle consuete operazioni di lettura, scrittura e spostamento delle testine, una RATM può eseguire un'operazione aggiuntiva di accesso diretto all'input. Per eseguire questa operazione, la macchina legge il numero binario p sul nastro puntatore e poi scrive il p-esimo simbolo dell'input sulla cella corrente del nastro lavoro. I simboli dell'input sono numerati da sinistra a destra a partire dalla posizione 0.

- (a) Dai una definizione formale della funzione di transizione di una RATM.
- (b) Dimostra che le RATM riconoscono la classe dei linguaggi Turing-riconoscibili. Usa una descrizione a livello implementativo per definire le macchine di Turing.

PIÙ NAGRU

SOMI - INFUNDO (NO PINO ASX)

SUNGOLO

Se devo dimostrare solo con nastro singolo:

- Dimostra con TM a nastro singolo

Dimostra che la tua variante riconosce la classe dei linguaggi Turing-riconoscibili → 3 scelte a disposizione

Q (or; Q x []) INPOT STAP NASTO QX X X X X X L R INPUT & MULE LIS MA OCUMS ranno austre 2 (B) RATT (3 MASTRI) (SINGOLD -> RATM VARIANTS) = ANSAM (RSTR >> SNGOLA) = RUBALIO 442 MPUTS 4423 (WPUT -NAGED 1) - MIJI paris [LALORO - NATIONO] DJJJJ & ponsarous do, 133 THE CON PLU NASSEL (INPUT) @ = & L, C, INPUT Y

NASTO SINGOLO:
$$S = SUINDUT"$$

SITEULA

NASTO 1 : W

NASMO 3 : CONS TI 50950

- of (9, 2, b, C) = (t, b, R)

DOLTA = STATE IN LITATE

TRANSPAME.

TRANSIDOM = ~USSX

= SCRIVI "b" AMAMO R

PARODA 9, ARRIVORMSCRUENZO B SUL MAGNO 2

SUCUSNOS NAMO 3 >> MIRICONSO

VADO

INPUT -> SCORRI SERIENZIAUZONE

SISU LNPUT "W"

- of (9,0) = (r, b, 2)

Per simulare una mossa del tipo $\delta(q,a,b,c) = (r,d,m_1,e,m_2,m_3)$ senza accesso diretto:

- Leggi il simbolo a dal primo nastro, b dal secondo nastro, c dal terzo nastro
- Scrivi d sulla cella corrente del secondo nastro
- Scrivi e sulla cella corrente del terzo nastro
- Muovi la testina del secondo nastro secondo m1
- Muovi la testina del terzo nastro secondo m2
- Muovi la testina del primo nastro secondo m3

Passa allo stato r andando verso DESTRA (R)

- J(9,0) = (r,b,L)

Per simulare una mossa del tipo $\delta(q,a,b,c) = (r,d,m_1,e,m_2,m_3)$ senza accesso diretto:

- Leggi il simbolo a dal primo nastro, b dal secondo nastro, c dal terzo nastro
- Scrivi d sulla cella corrente del secondo nastro
- Scrivi e sulla cella corrente del terzo nastro
- Muovi la testina del secondo nastro secondo m1
- Muovi la testina del terzo nastro secondo m2
- Muovi la testina del primo nastro secondo m3

Passa allo stato r andando verso SINISTRA (SX)

- or (9,0) = (+,6,10, put)

ACCOSSO

DIRECTO

SCRU

NASTRO 1: INPUT MY SCRUW
NASTRO 2: TROUTOND MY L, Q
MASTRO 3: POSIZIONS (?)

Operazione di accesso diretto:

- Salva la posizione corrente della testina del terzo nastro (puntatore)
- Sposta la testina del terzo nastro all'inizio
- Leggi la sequenza binaria dal terzo nastro

fino al primo ⊔ (blank = vuoto) e calcola la combo di 0 e di 1

- Salva la posizione corrente della testina del primo nastro
- Sposta la testina del primo nastro alla posizione p (se p è valido)
- Leggi il simbolo in posizione p
- e scrivilo sulla cella corrente del secondo nastro
- Ripristina le posizioni salvate delle testine del primo e terzo nastro

Se in qualsiasi momento la simulazione raggiunge lo stato di accettazione di M, allora S termina con accettazione.

Se in qualsiasi momento la simulazione raggiunge lo stato di rifiuto di M, allora S termina con rifiuto.
Negli altri casi continua
la simulazione dal punto 2."

11644A 25~pus

SINGOLO/ _____ RAMI

Sia M una TM standard. Costruiamo una RATM R equivalente. R = "Su input w:

Copia sequenziale: Usa il nastro puntatore per mantenere un contatore binario inizializzato a 0.

Simulazione: Per ogni mossa di M:

Se M si sposta a destra:

incrementa il contatore binario sul nastro puntatore, usa DIRECT per leggere il simbolo success: Se M si sposta a sinistra:

decrementa il contatore binario, usa DIRECT per accedere alla posizione precedente Simula scrittura e cambio di stato normalmente

Terminazione: Termina negli stessi stati di M."

- 2. (12 punti) Data una parola w su un alfabeto Σ , si dice che $u \in \Sigma^*$ è un suffisso di w se esiste una stringa $v \in \Sigma^*$ tale che w = vu. Un linguaggio $L \subseteq \Sigma^*$ è chiuso per suffisso se per ogni parola $w \in L$, tutti i suffissi u di w appartengono anch'essi a L. Considera il problema di determinare se il linguaggio di una TM M è chiuso per suffisso.
 - (a) Formula questo problema come un linguaggio $SuffixClosed_{TM}$.
 - (b) Dimostra che il linguaggio Suffix Closed $_{TM}$ è indecidibile.

SUFFISSO = STRINGA DOPO NWH SUFFIX CLOSED Z GM > IM ème TM o. L(r) CHIUSO POR SUFFLESSO 3 4WEL, 4 V 62 => W=Q MO TO S WEVU

, X= YY > RWORN AM W=UU -> 65 Am ACCOTTA, 6 CHLUGA POR SUPPLSED , RESTITULSCI (M) FING: ZM, W> EATT SS5 (M1) G SUPFIX - CLOSED > Am > w GM CHUSI DOR -> AMATA (m) > W & L(m) > NON CHUSO por easpisso $\mathcal{N}_{\lambda} \neq \mathcal{N}_{\lambda}$ N=VO > CAMED COL plotises

3. (12 punti) Un sottoinsieme S di vertici di un grafo non orientato G=(V,E) è quasi indipendente se esiste esattamente un arco di G che ha entrambi gli estremi in S. Considera il seguente problema:

Almost Independent
Set = $\{\langle G, k \rangle \mid$ esiste $S \subseteq V$ quasi indipendente di cardinalità $k\}$

- (a) Dimostra che AlmostIndependentSet è un problema NP.
- (b) Dimostra che Almost Independent
Set è NP-hard, usando Independent Set come problema NP-hard di riferimento.

NP-> RIDUBLOMS (SUSGU IL PROBLOMA)

Ogni dimostrazione di NP-completezza di compone di due parti:

- 1 dimostrare che il problema appartiene alla classe NP;
- 2 dimostrare che il problema è NP-hard.
- Dimostrare che un problema è in NP vuol dire dimostrare l'esistenza di un verificatore polinomiale.
- Le tecniche che si usano per dimostrare che un problema è NP-hard sono fondamentalmente diverse.

3. (12 punti) Un sottoinsieme S di vertici di un grafo non orientato G=(V,E) è quasi indipendente se esiste esattamente un arco di G che ha entrambi gli estremi in S. Considera il seguente problema:

Almost Independent
Set = $\{\langle G, k \rangle \mid$ esiste $S \subseteq V$ quasi indipendente di cardinalità $k\}$

- (a) Dimostra che AlmostIndependentSet è un problema NP.
- (b) Dimostra che Almost Independent
Set è NP-hard, usando Independent Set come problema NP-hard di riferimento.

3. (12 punti) Un sottoinsieme S di vertici di un grafo non orientato G=(V,E) è quasi indipendente se esiste esattamente un arco di G che ha entrambi gli estremi in S. Considera il seguente problema:

AlmostIndependentSet = $\{\langle G, k \rangle \mid \text{esiste } S \subseteq V \text{ quasi indipendente di cardinalità } k\}$

- (a) Dimostra che AlmostIndependentSet è un problema NP.
- (b) Dimostra che Almost
Independent Set è NP-hard, usando Independent Set come problema NP-hard di riferimento.

Come scegliere il problema giusto

- Se il problema richiede di assegnare bit agli oggetti: SAT
- Se il problema richiede di assegnare etichette agli oggetti prese un piccolo insieme, o di partizionare gli oggetti in un numero costante di sottoinsiemi: 3Color o kColor
- Se il problema richiede di organizzare un insieme di oggetti in un ordine particolare: Circuito Hamiltoninano
- Se il problema richiede di trovare un piccolo sottoinsieme che soddisfi alcuni vincoli: VertexCover
- Se il problema richiede di trovare un sottoinsieme grande che soddisfi alcuni vincoli: IndependentSet
- Se il numero 3 appare in modo naturale nel problema, provare 3SAT o 3Color (No, questo non è uno scherzo.)
- Se tutto il resto fallisce, prova **3SAT** o anche **SAT**!

VAAD 1 = TRUS? Bipartite graph **SAT formula** $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$ (\bar{x}) Literals: $x_1, \neg x_1, x_2, \neg x_2$ Clauses: c_1 , c_2 , c_3 BOOLE AN SAT = SATISFIA BILLTY A OL BAND NOTC CLAUSOUS (A V B 10 MALAU CLRCULT COLOR. DEL GRAPO Z N.D. COLORS 3-COLOR ->(E) - COLOR

3. (12 punti) Un sottoinsieme S di vertici di un grafo non orientato G=(V,E) è quasi indipendente se esiste esattamente un arco di G che ha entrambi gli estremi in S. Considera il seguente problema:

Almost Independent
Set = $\{\langle G, k \rangle \mid$ esiste $S \subseteq V$ quasi indipendente di cardinalità $k\}$

- (a) Dimostra che AlmostIndependentSet è un problema NP.
- (b) Dimostra che AlmostIndependentSet è NP-hard, usando IndependentSet come problema NP-hard di riferimento.

VSRUTICATIONS > CONTRECATION

INPUT BUONO

PERROP

PER

Almost Independent
Set = $\{\langle G, k \rangle \mid \text{esiste } S \subseteq V \text{ quasi indipendente di cardinalità } k \}$

(a) Dimostra che AlmostIndependentSet è un problema NP.

) conone us so |S| = K CANDINAMIA IND = SOR Em ALTO ST A = NO-HANS (NP-HAND) A-SOT B -> ALTOST INDSUBLBUG SS USO LND - SOT - SON O COSMOTRO AD USANT ALTOS por resolvens CALOUATINAS DSUBIUS > FINISCE!

ALTOST -> NP-HAND 1) è IN NP (VONTIFIC - / CONTIFE) 2) HAL USATO _ NP-HAM UNALTO P103057 NP- COMPLISTO NP NP- HAND A) EmB) -> 3 (PICCOLO) le divental. A e NP-HAMD (GRANDS) LND SOU Em ALMOSS 77 Worder Mors? 6= (V, b) INTIQUOS P

COMINGATO AS AGGLUNGORS 100 051 0GN1 GOPIA 3 INDUPSINGNI > CHANDS 1 ~ DIGE NDO VILA Sia R la seguente funzione di riduzione: $R = "Su input \langle G, k \rangle dove G = (V, E):$ Costruzione nuovo grafo: Crea G' = (V', E') dove: $V' = V \cup \{a, b\}$ (aggiungi due nuovi vertici) $E' = E \cup \{(a,b)\}$ (aggiungi arco tra i nuovi vertici) Nuovo parametro: k' = k + 2Restituisce $\langle G', k' \rangle$." HAM/ INDSOT/ UDROOK COUSE! > GRAFI (00)L GAT / K-SAT/ CIRCUIT-GAT > CHANSONS

AURIZ PROGLETT) 5502UB1 65A~1 el som SUB 555 - SUM SOMOINSWI $S = S_1 \cup S_2$ Sn \$ 52 5 = 989 51,52 Sn= M, Z, 4, 13 >> 506542 52=1/2,2,2,2 SOT-PANTONING DUGNA Preusur parthoning 509555 -507

TOLURADO, (B) IND. SOT AUONO AUTOST I=K+2 SSI SS AUZOST AWORA S575 >K Vergez > K+2 = I