Question Number	Scheme	Marks
1.	1 2 2 3 3 3 2 1 2 3 3 4 4 4 4 2 3 4 4 5 5 5 2 3 4 4 5 5 5 2 4 5 5 6 6 6	M1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1
		M1 A1
		(5 marks)
Alt 1	Tree with relevant branches $\frac{1}{6}$	M1
	All correct - $\frac{2}{6}$, $\frac{3}{6}$ on those branches	A1
	P(sum at least 5) = $\left(\frac{2}{6} \times \frac{3}{6}\right) + \left(\frac{3}{6} \times \frac{2}{6}\right)$	M1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1
	$3 \frac{\frac{\frac{1}{6}}{2}}{\frac{2}{6}} 2 = \frac{21}{36}; \frac{7}{12}; 0.58\dot{3}; 0.583$	A1 (5)

Question Number	Scheme	Marks	
Alt 2	Outcomes (2, 3), (3, 3), (3, 2) Recognising 2 pa	Recognising 2 pairs Can be implied	
	$\left(\frac{2}{6}\times\frac{3}{6}\right) + \left(\frac{3}{6}\times\frac{3}{6}\right) + \left(\frac{3}{6}\times\frac{2}{6}\right)$ Multiplying 2 pa	rs of 2 probs. & adding	A1 M1
	All correct		A1
	$\frac{21}{36}$		A1 (5)
Alt 3	$P (sum \ge 5) = 12 (\frac{1}{6} \times \frac{1}{6}) + 9 (\frac{1}{6} \times \frac{1}{6})$ $a(p_1 \times p_2)$ or be	$(p_1 \times p_2)$	M1
	$p_1 = p_2 = \frac{1}{6}$	A1	
	a()+b()	M1	
	21 or 12 + 9	A1	
	$\frac{21}{36}$	<u>21</u> <u>36</u>	A1 (5)
Alt 4	x 2 3 4 5 6 2,3	, 4, 5, 6	M1
	$P(X = x)$ $\frac{1}{36}$ $\frac{4}{36}$ $\frac{10}{36}$ $\frac{12}{36}$ $\frac{9}{36}$ Add	ling probability	M1
	All	correct	A1
	$P(X \ge 5) = \frac{12}{36} + \frac{9}{36}$ Add	ling P(5) & P(6)	M1
	$\frac{21}{36}$	$\frac{21}{36}$	A1 (5)

Question Number	Scheme		Marks	
2. (a)	Scatter diagram	Labels (not x , y)	B1	
	S	ensible scales allow axis interchange	B1	
		Points	B2	
		(-1 ee)		(4)
(b)	$S_{hc} = 884484 - \frac{1562 \times 5088}{9} = 1433\frac{1}{3}$	correct use of S	M1	
		14331/3; 1433. 3	A1	
	$S_{hh} = 1000 \frac{2}{9}$; $S_{cc} = 2550$	$1000\frac{2}{9}$, $1000.\dot{2}$; 2550	A1; A1 ((4)
	(NB: accept :- 9; i.e.:- $159 \frac{7}{27}$; $111 \frac{11}{81}$; $283\frac{1}{3}$)			
	1433 ½	- Latitudian in account Communication	M1	
(c)	$r = \frac{1433 \frac{1}{3}}{\sqrt{1000 \frac{2}{9} \times 2550}}$	substitution in correct formula	A1 ft	
	= 0.897488	AWRT 0.897(accept 0.8975)	A1	(3)
(d)	Taller people tend to be more confident	context	B1	(1)
(e)	$b = \frac{1433.\dot{3}}{1000.\dot{2}} = 1.433014$		M1	
	$a = \frac{5088}{9} - \frac{1433.\dot{3}}{1000.\dot{2}} \times \frac{1562}{9} = 316.6256$	allow use of their b	M1	
	$\therefore c = 317 + 1.43h$	3sf	A1	(3)
(f)	$h = 180 \Rightarrow c = 574.4 \text{ or } 574.5683$	subt. of 180	M1	
		574 - 575	A1	(2)
(g)	$161 \le h \le 193$		B1	(1)
			(18 mar	ks)
	NB (a) No graph paper $\Rightarrow 0/4$			

Question Number		Scheme		Marks	
3.	(a)	0.5 + b + a = 1	use of $\Sigma P(X = x) = 1$	M1 A1	
		0.3 + 2b + 3a = 1.7	use of $E(x) = \sum x P(X = x)$	M1 A1	
		$\therefore a = 0.4$			
		b = 0.1	a = 0.4, b = 0.1	B1	(5)
	(b)	P(0 < X < 1.5) = P(X = 1) = 0.3		B1	(1)
	(c) $E(2X-3) = 2E(X) - 3$ Use of		Use of $E(aX + b)$	M1	
		$= 2 \times 1.7 - 3 = 0.4$		A1	(2)
	(d) $Var(X) = (1^2 \times 0.3) + (2^2 \times 0.1) + (3^2 \times 0.4) - 1.7^2$ Use of $= 1.41$ (*)		Use of $E(x^2) - \{E(x)\}^2$	M1 A1 ft	
			cso	A1	(3)
	(e)	$Var(2X - 3) = 2^2 Var(X)$	Use of Var	M1	
		$= 4 \times 1.41 = 5.64$		A1	(2)
		(1:		(13 m	narks)

Question Number		Scheme		Marks
4. (a)(i)	$\bar{x} = \frac{270}{16} = 16.875$		16.875, 16 ½; 16.9; 16.88	B1
	$sd = \sqrt{\frac{4578}{16} - 16.875}$	2	$\frac{\sum x^2}{16} - \overline{x}^2 \& $	M1
			All correct	A1 ft
	= 1.16592		AWRT 1.17	A1
(ii)	Mean % attendance = $\frac{16.87}{18}$	$\frac{5}{2}$ × 100 (= 93.75)	cao	B1 ft (5)
(b)	First 4 1 means 14	Second	1 8 means 18	
	(1) 4 1	4 4 4	(3) Both Labels and 1 key	B1
	(1) 5 1	5 5 5 5	(4) Back-to-back	
	(3) 6 6 6 1		(3) S and L	M1 —
	(5) 7 7 7 7 7 1	7	(1) (ignore totals)	dep.
	(5) 7 7 7 7 7 7 1 (6) 8 8 8 8 8 8 1	8 8 8	(3) Sensible splits of 1	M1 —
	(0)	9	(1) First-correct	A1
	(0) 2	0	(1) Second - correct	A1 (5)
(c)	Mode	 Median IQR		
	First 18	17 2		B1 B1 B1
	Second 15	16 3		B1 B1 B1 (6)
(d)	Median _S < Median _F ; Mode _F > Mode _S ;			
	Second had larger spread/IQR		ANY THREE sensible	B1 B1 B1 (3)
	Only 1 student attends all classes in second comments			
	$Mean\%_F > Mean\%_S$			
				(19 marks)

Question Number	Scheme	Marks
5.	Let <i>L</i> represent length of visit \therefore L ~ N (90, σ^2)	
(a)	P(L < 125) = 0.80 or $P(L > 125) = 0.20$	
	$\therefore P\left(Z < \frac{125 - 90}{\sigma}\right) = 0.8 \qquad \therefore P\left(L > \frac{125 - 90}{\sigma}\right) = 0.20 \qquad \begin{array}{c} \text{Standardising,} \\ \pm (125 - 90), \\ \sigma/\sigma^2/\sqrt{\sigma} \end{array}\right)$	M1
	$\therefore \frac{125 - 90}{\sigma} = 0.8416$	B1
	$\frac{\pm (125 - 90)}{\sigma} = z \text{ value}$	M1
	0.8416	A1 (4)
(b)	$P(L < 25) = P\left(Z < \frac{125 - 90}{41.587}\right)$ Standardising 25, 90, their +ve 41.587	M1
	= P(Z < -1.56)	
	= $1 - P(Z < 1.56)$ For use of symmetry or $\Phi(-z) = 1 - \Phi(z)$; p< 0.5	M1
	=0.0594	A1 (3)
(c)	$90 + 3\sigma = 215 \Rightarrow 6.25 \text{ pm for latest arrival}$	B1
	$90 + 2\sigma = 173.\dot{3} \Rightarrow 7.07 \text{ pm for latest arrival}$ Based on $2\sigma/3\sigma$ rule	
	∴ This normal distribution is <u>not</u> suitable.	B1 (2)
		(9 marks)

Question Number		Scheme		Marks	
6.	(a)	S			
		A C B A	A, B, C inside S	B1	
		$ C_c $	A, B no overlap	B1	
			A, C overlap	B1	(3)
	(b)	$P(A C) = \frac{P(A \cap C)}{P(C)} = \frac{P(A)P(C)}{P(C)} = P(A)$	Use of independence	M1	
		= 0.2		A1	(2)
	(c)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ use of $P(A \cup B)$ & $P(A \cap B) = 0$ can be implied		M1	
		=0.2+0.4-0			
		= 0.6		A1	(2)
	(d)	$P(A \cup C) = P(A) + P(C) - P(A \cap C)$	Use of $P(A \cup C)$ & independence	M1	
		$\therefore 0.7 = 0.2 + P(C) - 0.2 P(C)$		A1	
		$\therefore 0.5 = P(C) \{1 - 0.2\}$ Solving	for $P(C)$ from an equation with $2P(C)$ terms	M	
		$\therefore P(C) = \frac{5}{8}$		A1	(4)
				(11	marks)
		$NB P(B \cup C) = P(B) + P(C) - P(B \cap C)$			
		$= 0.4 + 0.625 - P(B \cap C)$	$\Rightarrow P(B \cap C) > 0$		