ilk_inv MANUAL

ILKIN ÖZSÖZ

Contact: ilkin.ozsoz@mta.gov.tr

HOW TO RUN

Computer Code Availability

Name of the code/library: ilk_inv

Contact: ilkin.ozsoz@mta.gov.tr

Program language: MATLAB

Software required: MATLAB 2019a or above / MATLAB

Runtime 2019a

Program size: 31 kb

The source codes are available for download at the link:

https://github.com/ikzsz/ilk_inv

HOW TO RUN There are 3 ways only choose one of them. Do not try to apply all of them

ui_v2.mlapp 31 Ki DAT Dosyası 400 Ki
DAT Dosyası 400 Ki
Microsoft PowerPoint P 2.172 Ki
DAT Dosyası 470 Ki
DAT Dosyası 1.620 Ki

2

HOW TO RUN

■ Ul Figure				_		×
Gravity Data	INPUT DATA i	n «.dat» forn	nat		Browse	
not square	rid size. The algo hm automatically	m=n		_	-	t» file is
f your data ha	ve a negative der	Negative den		option.	Eg. Salt	domes
		ess of the sla		The algo	rithm	
Und	certainty (Percentage %)					
Therefo	certainty. You car ore the minimum nended.			-		•
		Run				

From: Ilk_inv: a Matlab based algorithm for rapid computation of pseudo-3D density contrast distribution by using Bouguer gravity data

Filename: cube_grav_3_5_1.dat

■ UI Figure	-		×
Gravity Data cube_grav_3_5_1.dat		Browse	
m=n 50			
Negative density contrast			
Slab Thickness (km) 4			
Uncertainty (Percentage %) 10			
Run			

CASE 2

From: Ilk_inv: a Matlab based algorithm for rapid computation of pseudo-3D density contrast distribution by using Bouguer gravity data

Filename: salt_grav_10_12_mines03xyz.dat

Correct value, which is -0.3 g/cc is obtained

CASE 3

From: Ilk_inv: a Matlab based algorithm for rapid computation of pseudo-3D density contrast distribution by using Bouguer gravity data

Filename: plot_bouguer_Akdeniz_Uydu_xyz.dat

NOTES

- The uncertainty value should be higher than 0. If it is selected «0», the algorithm will not run.
- In general 10% uncertainty produces the best result.
- If you have further questions and recommendations, feel free to contact.

Contact: ilkin.ozsoz@mta.gov.tr