

ANADOLU UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EEM 334 – Digital Systems II

LAB 3 – COMBINATIONAL CIRCUIT DESIGN

1. PURPOSE

In this lab, you will learn how to design a combinational circuit with different concurrent signal assignment techniques.

Inputs				Outputs		
A	В	C	D	X	Y	Z
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	1	1	0
0	1	1	0	0	0	0
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	0	0	0
1	0	1	1	0	1	0
1	1	0	0	1	0	1
1	1	0	1	1	0	0
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Figure 1: Truth Table of the design

Figure 2: Top Module

2. BACKGROUND

In this lab, you will use the following signal assignment techniques;

1. Concurrent signal assignment:

Example: A <= B and C;

2. Conditional concurrent signal assignment:

Example : A <= B when B>2 else C when B=2 else

0.

3. Selected concurrent signal assignment:

Example: with B select

A<= C when "00"

D when "01"

E when others;

3. PROCEDURE

In this lab, you will design four modules. Each module must provide following properties:

- 1. Find X.vhd:
 - It has four inputs and each of them is 1-bit.
 - It has 1 output for X and it is also 1-bit.
 - Firstly, you must find a simplified Boolean expression for output X according to the truth table given in Figure 1 (Hint: Use the Karnough map)
 - Then, define X by using the <u>concurrent signal assignment technique (<=)</u>.
- 2. Find Y.vhd
 - It has 4-bit wide one input and 1 bit output (Y).
 - You must use the conditional concurrent signal assignment (when-else) to obtain Y.
- 3. Find Z.vhd
 - It has 4-bit wide one input and 1 bit output (Z).
 - You must use the selected concurrent signal assignment (with-select-when) to obtain Z.
- 4. Top.vhd
 - In this module, you will implement the diagram given in Figure 2.
 - A, B, C, D, S0 and S1 are 1-bit inputs.
 - F is 1-bit output.
 - You must concatenate A, B, C and D inputs to obtain input signal of Find_Y and Find_Z modules. (A is the most significant bit.)
 - Find_X, Find_Y and Find_Z modules are the components of Top module. The outputs of these modules (X, Y and Z) will be connected to inputs of 4x1 multiplexer.
 - The final output (F) is the output of the multiplexer. It will be selected by S1 and S0.

Steps:

- 1. Implement Find_X, Find_Y and Find_Z modules as specified above.
- 2. Write a test bench and test these modules, individually.
- 3. Implement Top module and test it.
- 4. Show your simulation result to the lab assistant.
- 5. Create a UCF file. Connect A, B, C, D, S1 and S0 to switches and F to one of LEDs.
- 6. Load the design to FPGA.
- 7. Verify results and show them to the lab assistant.
- 8. Wait for your task.