Norma di un vettore

Una **norma vettoriale** su \mathbb{R}^n è una funzione $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}_+\cup\{0\}$, che associa ad ogni vettore $\boldsymbol{x}\in\mathbb{R}^n$, di componenti $x_i,\,i=1,\ldots,n$, uno scalare, in modo che valgano le seguenti proprietà:

- $\|\boldsymbol{x}\| \geqslant 0$ per ogni $\boldsymbol{x} \in \mathbb{R}^n$;
- $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$ (se non vale tale proprietà si parla di seminorma);
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \alpha \in \mathbb{R} \ \mathbf{e} \ \forall \mathbf{x} \in \mathbb{R}^n$;
- $\|x + y\| \le \|x\| + \|y\|$ (disuguaglianza triangolare).

Segue che $\|x - y\| \ge \|x\| - \|y\|\|$.

In \mathbb{R}^n si definiscono le seguenti norme:

- $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^T \mathbf{x}}$ (norma euclidea)
- $\|\mathbf{x}\|_{\infty} = \max_{i=1,n} |x_i|$ (norma uniforme o norma del massimo)
- $\|x\|_1 = \sum_{i=1}^n |x_i|$

Si dimostra che queste funzioni godono delle proprietà delle norme (ossia sono norme).

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022–2023

[152]

Norma di un vettore

In particolare per dimostrare la disuguaglianza triangolare per la norma euclidea è necessario dimostrare la disuguaglianza di Cauchy-Schwarz:

$$|\mathbf{x}^T \mathbf{y}| \leq \sum_{i=1}^n |x_i y_i| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2$$

Esempio. Se $\mathbf{x} = (1, -1, 2)^T$ allora $\|\mathbf{x}\|_2 = \sqrt{6}$, $\|\mathbf{x}\|_1 = 4$ e $\|\mathbf{x}\|_{\infty} = 2$.

Le norme 1, 2 e ∞ sono casi particolari di norma p, definita in generale da:

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \quad p \geqslant 1$$

Questo vale anche per la norma uniforme perché si ha

$$\max_{i=1,\ldots,n}|x_i|\leqslant \left(\sum_{i=1}^n|x_i|^p\right)^{1/p}\leqslant n^{1/p}\max_{i=1,\ldots,n}|x_i|\qquad \text{e}\qquad n^{1/p}\xrightarrow[p\to\infty]{}1$$

dunque $\|\mathbf{x}\|_{\infty} = \max_{i=1,...,n} |x_i|$.

Norma di un vettore

Si dicono rispettivamente sfera unitaria e palla unitaria di \mathbb{R}^n rispetto a una norma i seguenti insiemi:

$$\mathcal{S} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \|\boldsymbol{x}\| = 1 \}$$
 e $\mathcal{B} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \|\boldsymbol{x}\| \leqslant 1 \}$

In \mathbb{R}^2 , le sfere unitarie rispetto alle norme 2,1 e ∞ sono le seguenti:

 \mathcal{B} è un insieme convesso, ossia se $\mathbf{x}, \mathbf{y} \in \mathcal{B}$, anche $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{B}$, per $\alpha \in (0, 1)$: infatti è $\|\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\| \le \alpha \|\mathbf{x}\| + (1 - \alpha) \|\mathbf{y}\| \le 1$. Inoltre si dice che la norma è una funzione strettamente convessa se

$$\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\| \Leftrightarrow \mathbf{x} = \alpha \mathbf{y}$$

La norma euclidea è una funzione strettamente convessa, le norme 1 e ∞ non lo sono (si veda norma 1 con $\mathbf{x} = (0, 1)^T$, $\mathbf{y} = (1, 0)^T$, $\mathbf{x} + \mathbf{y} = (1, 1)^T$).

La norma è una funzione uniformemente continua delle sue componenti.

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[154]

Norma di un vettore

Definizione. Due norme $\|\cdot\|_+$ e $\|\cdot\|_*$ si dicono equivalenti se esistono costanti positive A e B tali che per ogni x:

$$\|\mathbf{x}\|_{+} \leqslant A\|\mathbf{x}\|_{*}$$
$$\|\mathbf{x}\|_{*} \leqslant B\|\mathbf{x}\|_{+}$$

Proprietà.

$$\|\mathbf{X}\|_{\infty} \leqslant \|\mathbf{X}\|_{2} \leqslant \sqrt{n} \|\mathbf{X}\|_{\infty}$$
$$\|\mathbf{X}\|_{\infty} \leqslant \|\mathbf{X}\|_{1} \leqslant n \|\mathbf{X}\|_{\infty}$$
$$\|\mathbf{X}\|_{2} \leqslant \|\mathbf{X}\|_{1} \leqslant \sqrt{n} \|\mathbf{X}\|_{2}$$

Teorema. In uno spazio di dimensione finita, tutte le norme sono equivalenti.

Dunque in \mathbb{R}^n , che ha dimensione $n < \infty$, tutte le norme sono equivalenti.

Convergenza di una successione di vettori

Definizione. Una successione di vettori $\{\boldsymbol{x}^{(k)}\}\in\mathbb{R}^n$ si dice che converge a un vettore \boldsymbol{x}^* per $k\to\infty$ se esiste una norma per cui $\lim_{k\to\infty}\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^*\|=0$.

Questa definizione è ben posta poiché tutte le norme sono equivalenti. Dunque se in una norma vale che $\lim_{k\to\infty}\|\pmb{x}^{(k)}-\pmb{x}^*\|=0$, allora vale in qualunque norma.

Inoltre,

$$\lim_{k \to \infty} \boldsymbol{x}^{(k)} = \boldsymbol{x}^* \qquad \Leftrightarrow \qquad \lim_{k \to \infty} x_i^{(k)} = x_i^* \quad \forall i = 1, \dots, n$$

$$\Leftrightarrow \qquad \lim_{k \to \infty} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}\| = 0$$

Esempio. Sia $\mathbf{x}^{(k)} = (1/k, 1, 1/k^2)^T$: allora $\lim_{k \to \infty} \mathbf{x}^{(k)} = (0, 1, 0)^T$.

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022–2023

[156]

Calcolo della norma di un vettore (in Matlab)

```
function [y] = normvett(x,p)
% normvett - Calcolo della norma di un vettore (1, 2 o uniforme)
% Calcolo della norma p di un vettore x nei tre casi p=1, 2, o infinito (N.B.: esiste la funzione predefinita 'norm')
% SYNOPSIS:
% [y] = normvett(x, p)
% INPUT:
% x (double array) - il vettore di cui calcolare la norma
     p (scalar) - il tipo di norma da calcolare
%
                         se p = 1, norma 1
%
                         se p = 2, norma 2
                        se p = inf, norma infinito
% OUTPUT:
   y (double) - la norma calcolata
  if ( isempty(find(x)) )
    y = 0;
  else
     switch p
     case 1
       y = sum(abs(x));
     case 2
       t = max(abs(x));
        y = sqrt(sum((x/t).^2)) *t;
     case inf
        y = max(abs(x));
     otherwise
        error('p non valido');
  end
end
```

Calcolo della norma di un vettore

In Matlab esiste una funzione predefinita che fornisce la norma di un vettore x:

- y = norm(x) restituisce la norma euclidea (o norma 2);
- y = norm(x, p), con p intero maggiore o uguale a 1, restituisce la norma p;
- y = norm(x,inf) restituisce la norma del massimo (o norma uniforme)

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[158]

Norma di una matrice

Poiché una matrice $m \times n$ si può **pensare** come un vettore di $m \cdot n$ componenti (ordinando gli elementi della matrice per righe o per colonne), segue che una norma matriciale generalizzata è una funzione $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}_+ \cup \{0\}$, tale che:

- $||A|| \geqslant 0$ per ogni $A \in \mathbb{R}^{m \times n}$;
- $\bullet \|A\| = 0 \Leftrightarrow A = \mathbf{0}_{m \times n};$
- $\|\alpha A\| = |\alpha| \|A\|$ per ogni $\alpha \in \mathbb{R}$ e per ogni $A \in \mathbb{R}^{m \times n}$;
- $||A + B|| \le ||A|| + ||B||$

Di conseguenza, una norma matriciale generalizzata è una funzione uniformemente continua delle sue componenti, tutte le norme matriciali generalizzate sono equivalenti e vale che

$$\|A - B\| \geqslant \left| \|A\| - \|B\| \right|$$

Una norma matriciale generalizzata è una norma matriciale se vale la seguente proprietà submoltiplicativa o proprietà di consistenza:

$$\|AB\| \leqslant \|A\|\|B\|$$

ove A e B sono matrici moltiplicabili.

Norma di una matrice

Una norma matriciale $\|\cdot\|_M$ si dice **compatibile con una norma vettoriale** $\|\cdot\|_V$ se

$$\|A\boldsymbol{x}\|_{V} \leqslant \|\boldsymbol{x}\|_{V} \|A\|_{M}$$

per ogni $\mathbf{x} \in \mathbb{R}^n$ e $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Non tutte le norme matriciali generalizzate sono consistenti. Per esempio, se si definisce

$$\|A\|_{M}=\max_{i,j}|a_{ij}|$$

questa è una norma generalizzata. Tuttavia

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad \Rightarrow \quad AB = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

e $||AB||_M = 2$, mentre $||A||_M = ||B||_M = 1$: non vale dunque la consistenza.

Tuttavia a partire da una norma matriciale generalizzata, moltiplicandola per una opportuna costante, si ottiene una norma matriciale. Per esempio, la seguente definizione della norma di Turing fornisce una norma matriciale:

$$\|A\|_T = \sqrt{mn} \max_{i,j} |a_{ij}|$$

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[160]

Norme matriciali

Siamo interessati a introdurre norme matriciali indotte da una norma vettoriale $\|\cdot\|_V$.

Una norma di questo tipo è detta **norma naturale o norma indotta dalla norma vettoriale**. Essa viene definita come la più piccola costante *C* per cui vale la condizione:

$$\|Ax\|_V \leqslant C \|\boldsymbol{x}\|_V \Leftrightarrow \frac{\|Ax\|_V}{\|\boldsymbol{x}\|_V} \leqslant C \quad \text{per } \|\boldsymbol{x}\|_V \neq 0$$

Pertanto la definizione di norma naturale è la seguente:

$$||A||_{N} = \sup_{\|\boldsymbol{x}\|_{V} \neq 0} \frac{||A\boldsymbol{x}||_{V}}{\|\boldsymbol{x}\|_{V}}$$

Lo scalare non cambia se si sostituisce \boldsymbol{x} con un suo multiplo. Allora si può prendere un versore $\boldsymbol{y} = \boldsymbol{x}/\|\boldsymbol{x}\|_V$, dove \boldsymbol{y} ha norma unitaria. Tenendo conto che $\mathcal{S} = \{\boldsymbol{y} \mid \|\boldsymbol{y}\|_V = 1\}$ è un compatto e la norma è funzione uniformemente continua, l'estremo superiore è un massimo:

$$||A||_N = \max_{\|\boldsymbol{y}\|_V = 1} ||A\boldsymbol{y}||_V$$

Si dimostra che $||A||_N$ è una norma matriciale, che è compatibile con $||\cdot||_V$ e che tale norma (per come è definita) è la più piccola norma matriciale compatibile con la norma $||\cdot||_V$.

Norme matriciali

Significato della norma naturale: quando si opera in algebra lineare, le applicazioni lineari che trasformano dati in risultati sono lineari e dunque associabili a una matrice.

La $||A||_N$ esprime la massima perturbazione relativa che subisce una qualsiasi direzione dello spazio \mathbb{R}^n per effetto della trasformazione lineare associata ad A. Ciò permette di *misurare* come gli errori sui dati si amplificano per effetto di una trasformazione lineare.

Se m = n = 2, $||A||_2$ è il massimo semiasse dell'ellissoide Ax.

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[162]

Norme matriciali

Norma matriciale compatibile con la norma ∞

$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Norma matriciale compatibile con la norma 1

$$||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$$

Norma matriciale compatibile con la norma 2 (euclidea), detta norma spettrale

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}(\mathbf{A}^T\mathbf{A})}$$

dove $\lambda_{max}(A^TA)$ indica l'autovalore massimo della matrice simmetrica semidefinita positiva A^TA .

Un'altra norma matriciale compatibile con la norma euclidea è la norma di Frobenius:

$$\|A\|_F = \sqrt{\sum_i \sum_j (a_{ij})^2} = \sqrt{\mathsf{trace}(A^T A)}$$

dove $trace(A^TA)$ è la somma degli elementi diagonali di A^TA . Vale che

$$||A||_2 \leqslant ||A||_F$$

Esempio

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -3 & 2 \end{pmatrix}$$

Allora

$$||A||_T = 3\sqrt{6}$$
 $||A||_F = \sqrt{16}$ $||A||_1 = 4$ $||A||_{\infty} = 5$

La norma naturale dell'identità è sempre 1.

$$||I||_N = \max_{\|\boldsymbol{x}\|_V = 1} ||I\boldsymbol{x}||_V = 1$$

Tutte le norme matriciali sono equivalenti.

Allora, data la successione di matrici $\{A^{(k)}\}$ si dice che la successione è convergente alla matrice A^* per $k \to \infty$ se esiste una norma matriciale per cui $\lim_{k \to \infty} \|A^{(k)} - A^*\| = 0$.

Questa definizione è ben posta poiché tutte le norme sono equivalenti. Inoltre,

$$\lim_{k\to\infty} A^{(k)} = A^* \quad \Leftrightarrow \quad \lim_{k\to\infty} a_{ij}^{(k)} = a_{ij}^* \quad \forall i,j$$

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[164]

Raggio spettrale

Definizione. Si chiama raggio spettrale di una matrice quadrata A di ordine n il massimo dei valori assoluti degli autovalori di A, denotato con $\rho(A) = \max_{i=1,n} |\lambda_i(A)|$.

Teorema

Rispetto ad una qualunque norma naturale, vale che $\rho(A) \leqslant ||A||_N$.

Infatti, se \boldsymbol{x} è un autovettore relativo a un autovalore λ di \boldsymbol{A} , vale che

$$\lambda \mathbf{x} = A\mathbf{x} \Rightarrow |\lambda| \|\mathbf{x}\| = \|A\mathbf{x}\| \leqslant \|A\|_N \|\mathbf{x}\|$$

Dividendo per $\|\mathbf{x}\| \neq 0$ e ricordando che λ è un autovalore qualunque (anche quello di modulo massimo), si ha la tesi.

Inoltre per ogni $\epsilon > 0$ esiste una norma naturale per cui

$$\|A\|_{N} \leqslant \rho(A) + \epsilon$$

Matrici definite

Definizione. Sia A una matrice simmetrica. Allora A è definita positiva se, per ogni $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \ \mathbf{x}^T A \mathbf{x} > 0$. La matrice A è semidefinita positiva se, per ogni $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \ \mathbf{x}^T A \mathbf{x} \geqslant 0$.

Definizione. Sia A una matrice simmetrica. Allora A è definita negativa se, per ogni $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbf{x}^T A \mathbf{x} < 0$, mentre è semidefinita negativa se $\mathbf{x}^T A \mathbf{x} \leq 0$.

Si dimostra che A è definita positiva (semidefinita positiva) se e solo se gli autovalori di A sono positivi (non negativi).

Si dimostra che A è definita negativa (semidefinita negativa) se e solo se gli autovalori di A sono negativi (non positivi).

Sia $A \in \mathbb{R}^{n \times m}$. Allora $A^T A$ e AA^T sono simmetriche e semidefinite positive. Infatti per ogni $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^T A^T A \mathbf{x} = \|A\mathbf{x}\|^2 \geqslant 0$. Analogamente $\mathbf{x}^T A A^T \mathbf{x} = \|A^T \mathbf{x}\|^2 \geqslant 0$.

Se m > n e A è di rango massimo per colonne, A^TA è definita positiva. Infatti non è possibile che $||A\mathbf{x}||^2 = 0$. Se così fosse, $A\mathbf{x} = \mathbf{0}$ e dunque esisterebbe una n-upla $\mathbf{x} \neq \mathbf{0}$ tale $A_{*1}x_1 + \ldots + A_{*n}x_n = \mathbf{0}$; ma allora le colonne di A sarebbero linearmente dipendenti, contro l'ipotesi fatta.

Se $m \le n$ e A è di rango massimo per righe, AA^T è definita positiva.

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022-2023

[166]

Esempio per matrici di ordine 2

forma quadratica definita positiva

forma quadratica semidefinita positiva

Calcolo della norma di una matrice

```
function [y] = normmat(A, p)
% normmat - Calcolo della norma di una matrice (1, di Frobenius, di Turing, uniforme)
% Calcolo della norma di una matrice A nei quattro casi: 1, Frobenius, Turing, infinito
\% [y] = normmat(A, p) (N.B.: esiste la funzione predefinita 'norm')
% INPUT:
   A (double array)
                      - la matrice di cui calcolare la norma
    p (scalar or string) - il tipo di norma da calcolare
%
                            se p = 1, norma 1
                            se p = \frac{1}{2} Fro, norma di Frobenius (o di Schur)
%
%
                            se p = 'Tur', norma di Turing
%
                            se p = \inf, norma infinito
% OUTPUT:
%
    y (double)

    la norma calcolata

  if ( isempty(find(A)) )
     y = 0;
  else
     switch p
     case 1
        y = max(sum(abs(A)));
     case 'Fro
       t = max(abs(A(:)));
        y = sqrt(sum(A(:)/t).^2) * t;
     case 'Tur
       y = sqrt(prod(size(A))) * max(abs(A(:)));
     case inf
       y = max(sum(abs(A')));
     otherwise
        error('p non valido');
     end
  end
end
```

V. Ruggiero e G. Zanghirati (DMI, UniFe)

Calcolo numerico e laboratorio

C.d.S. in Informatica, A.A. 2022–2023

[168]

Calcolo della norma di una matrice

In Matlab esiste la funzione predefinita norm che fornisce la norma di una matrice A:

- y = norm(A) restituisce la norma euclidea (o norma 2)
- y = norm(A, 1) restituisce la norma 1
- y = norm(A, inf) restituisce norma del massimo (o norma infinito)
- y = norm(A, 'fro') restituisce la norma di Frobenius