

PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE

### PROPORTIONALITY AND POWER FUNCTIONS

Blake Farman 1

<sup>1</sup>University of South Carolina, Columbia, SC USA

Math 122: Calculus for Business Administration and Social Sciences



## **OUTLINE**

PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

1 2.1: Instantaneous Rate of Change



## **OUTLINE**

PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

1 2.1: Instantaneous Rate of Change

2.2: THE DERIVATIVE FUNCTION



PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

The *instantaneous rate of change* of *f* at *a* is defined to be the limit of the average rates of change of *f* over successively smaller intervals around *a*. This is also known as the *derivative of f at a*.



## **EXAMPLE**

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

The quadratic

$$s(t) = -4.9t^2 + 9.8t$$

models the position of an object thrown vertically into the air with an initial velocity of 9.8 m/s.



## **EXAMPLE**

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

The quadratic

$$s(t) = -4.9t^2 + 9.8t$$

models the position of an object thrown vertically into the air with an initial velocity of 9.8 m/s. The graph of the quadratic is





## EXAMPLE

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function The quadratic

$$s(t) = -4.9t^2 + 9.8t$$

models the position of an object thrown vertically into the air with an initial velocity of 9.8 m/s. The graph of the quadratic is



What is the instantaneous rate of change at the vertex, where t = 1?



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

t 
$$\frac{f(t)-f(1)}{t-1}$$



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

t 
$$\frac{f(t)-f(1)}{t-1}$$
 0 4.9



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Here are some values:

| t | f(t)-f(1) |
|---|-----------|
| ι | t_1       |
| 0 | 4.9       |

0.9  $\approx 0.49$ 



PROPORTIONAL AND POWER FUNCTIONS

FARM

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Here are some values:

| t | t(t)-t(1)   |
|---|-------------|
| · | <i>t</i> −1 |
| 0 | 4.9         |
|   |             |

 $0.9 \approx 0.49$ 

 $0.99 \approx 0.049$ 



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

| t     | $\frac{f(t)-f(1)}{t-1}$ |
|-------|-------------------------|
| 0     | 4.9                     |
| 0.9   | $\approx 0.49$          |
| 0.99  | pprox 0.049             |
| 0.999 | $\approx 0.0049$        |



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

| t      | $\frac{f(t)-f(1)}{t-1}$ |
|--------|-------------------------|
| 0      | 4.9                     |
| 0.9    | $\approx 0.49$          |
| 0.99   | $\approx 0.049$         |
| 0.999  | $\approx 0.0049$        |
| 0.9999 | pprox 0.00049           |



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

| t       | $\frac{f(t)-f(1)}{t-1}$ |
|---------|-------------------------|
| 0       | 4.9                     |
| 0.9     | $\approx 0.49$          |
| 0.99    | $\approx 0.049$         |
| 0.999   | $\approx 0.0049$        |
| 0.9999  | $\approx 0.00049$       |
| 0.99999 | $\approx 0.000049$      |



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

| t        | $\frac{f(t)-f(1)}{t-1}$ |
|----------|-------------------------|
| 0        | 4.9                     |
| 0.9      | $\approx 0.49$          |
| 0.99     | pprox 0.049             |
| 0.999    | $\approx 0.0049$        |
| 0.9999   | $\approx 0.00049$       |
| 0.99999  | $\approx 0.000049$      |
| 0.999999 | $\approx 0.0000049$     |



ROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Here are some values:

t 
$$\frac{f(t)-f(1)}{t-1}$$
  
0 4.9  
0.9  $\approx 0.49$   
0.99  $\approx 0.049$   
0.999  $\approx 0.0049$   
0.9999  $\approx 0.00049$   
0.99999  $\approx 0.000049$   
0.999999  $\approx 0.0000049$ 

So, we would guess that the instantaneous rate of change is 0 at t = 1.



PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

#### **DEFINITION 1**

• If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.



PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

#### **DEFINITION 1**

- If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of f at x.



PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

#### **DEFINITION 1**

- If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of f at x.
- We call f'(x) the *derivative function*.



### THE TANGENT LINE

PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

### **DEFINITION 2**

• We can regard  $f'(x_0)$  as a velocity by viewing it as the slope of a line passing through  $(x_0, f(x_0))$ .



### THE TANGENT LINE

PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

#### **DEFINITION 2**

- We can regard  $f'(x_0)$  as a velocity by viewing it as the slope of a line passing through  $(x_0, f(x_0))$ .
- We call the line

$$y - f(x_0) = f'(x_0)(x - x_0)$$

the line tangent to f at  $(x_0, f(x_0))$ .



## LINEARIZATION

PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined  $f'(x_0)$  by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to  $x_0$ .



## LINEARIZATION

ROPORTIONA AND POWER FUNCTIONS

FARM

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined  $f'(x_0)$  by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to  $x_0$ .

• Writing  $\Delta x = x - x_0$  we can get a good linear approximation of f close to  $x_0$ :

$$f(x) \approx f'(x) \Delta x + f(x_0)$$

called the Tangent Line Approximation.



## LINEARIZATION

AND POWER
FUNCTIONS

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined  $f'(x_0)$  by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to  $x_0$ .

• Writing  $\Delta x = x - x_0$  we can get a good linear approximation of f close to  $x_0$ :

$$f(x) \approx f'(x)\Delta x + f(x_0)$$

called the Tangent Line Approximation.

• This means f locally looks like a line!



### Non-Differentiable Function

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).



## NON-DIFFERENTIABLE FUNCTION

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x| - 0}{x - 0} = \frac{-x}{x} = -1.$$



## Non-Differentiable Function

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x| - 0}{x - 0} = \frac{-x}{x} = -1.$$

• For all 0 < x,

$$\frac{|x|-0}{x-0}=\frac{x}{x}=1.$$



## NON-DIFFERENTIABLE FUNCTION

PROPORTIONA AND POWER FUNCTIONS

FARMAN

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x| - 0}{x - 0} = \frac{-x}{x} = -1.$$

• For all 0 < x,

$$\frac{|x|-0}{x-0}=\frac{x}{x}=1.$$

• So the derivative at (0,0) is **not** defined: it's -1 if we approach from left to right, and 1 if right to left.



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all  $a \le x \le b$ 



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all  $a \le x \le b$ 

•  $f'(x) \leq 0$ , then f is decreasing on (a, b),



PROPORTIONAL AND POWER FUNCTIONS

FARMA

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all  $a \le x \le b$ 

- $f'(x) \leq 0$ , then f is decreasing on (a, b),
- $0 \le f'(x)$ , then f is increasing on (a, b),



PROPORTIONA AND POWER FUNCTIONS

FARMA

2.1: INSTANGE TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

What does the derivative tells us about the original function? On the interval (a, b), if for all  $a \le x \le b$ 

- $f'(x) \leq 0$ , then f is decreasing on (a, b),
- $0 \le f'(x)$ , then f is increasing on (a, b),
- f'(x) = 0, then f is constant on (a, b).