Structural Transformations and State Institutions in Latin America, 1900-2010

HÉCTOR BAHAMONDE

*PhD Candidate • Political Science Dpt. • Rutgers University

e:hector.bahamonde@rutgers.edu

w:www.hectorbahamonde.com

April 27, 2017

Abstract

The paper proposes an alternative channel to explain the emergence of political and economic development in Latin America. Historically, agriculturalists had been a hegemonic group protected by institutions that originated in colonial times. These norms had survived due to institutional inertia, perpetuating their advantaged position. Building on the fiscal sociology and dual sector models, I argue that a structural transformation marked by a secular decline of agriculture and substantial expansion of manufacturing helped political development by promoting the emergence of an industrial political elite. Industrialization altered the status quo not by increasing incomes (á la modernization theory) but by supporting the rise of a political challenger. Importantly, the structural transformation required both sectors to grow in a balanced fashion, leveling both elites in their relative political and military capacities. Under egalitarian conditions to engage in conflict, there were no incentives to make war, and thus conflict was avoided generating a status of inter-sectoral cooperation. I use the Chilean and Argentinean cases to illustrate the theory. In an effort to suggest that this hypothesis could be generalized to other countries in Latin America, I provide a number of time series analyses (VAR models, impulse response functions and Granger-causality tests) for a dataset spanning approximately 100 years on agricultural and industrial sectoral growths.

Please consider downloading the last version of the paper here

^{*}I thank Robert Kaufman, Daniel Kelemen, Douglas Blair, Paul Poast, John Landon-Lane, Mark Pickup, Paul Kellstedt, Henry Thomson, Quintin Beazer and Ira Gang for all the helpful comments. I also thank the participants of the 75th Annual Conference of the Midwest Political Science Association, the School of Arts and Sciences and the Political Science Department at Rutgers for granting me a Pre-Dissertation Award (2016) that helped me to continue with this project. All errors are my own.

I. Sectoral Conflicts and Development

Practically all governments are engaged in promoting one [group]. There are [...] landlord governments against the peasants and the industrialists

Lewis [1965, 410]

The literature on political and economic development is vast. Without trying to survey all of it, there seems to be an agreement in that strong institutions cause better economic performance. For example North [1990, 3] asserts that the idea that "institutions affect the performance of economies is hardly controversial." However, most explanations focus property rights protection. I find that this is a limitation since regimes that do not respect property rights (for example, dictatorships) grow at levels that sometimes even surpass democratic countries. While I still think that institutions matter for economic growth, this paper seeks to contribute to this literature by introducing an alternative channel, particularly, emphasizing the role of sectoral conflicts on political and economic development. I build on the fiscal sociology paradigm to argue that fiscal institutions are product of a sectoral conflict. In turn, borrowing from the dual sector model I document how the secular structural transformation (i.e. the gradual emergence of the industrial sector) triggered a major political transformation reverting the backward institutional order implemented since colonial times (and sustained by the landowning class), producing long-term economic growth. More generally, this paper explains how political development is associated with economic growth. I use sectoral outputs from 1900 to 2009 to proxy the emergence of the industrial sector in a number of Latin American countries,² vector autoregressive models (VAR), Granger-causality tests and impulse response functions (IRFs). The results suggest that long-term economic development is channeled through sectoral contestation and institutional investments, particularly the expansion of the fiscal system.

The political development literature has traditionally focused on socio-economic cleavages and potential alliances between a homogeneous ruling elite and politically excluded segments of the society, traditionally peasants or other disenfranchised groups such as the bourgeoisie. Moore [1966], Tilly [1992], Boix [2003], Stasavage [2008] and Acemoglu and Robinson [2009] are among the most prominent examples supporting this view.³ In this paper I focus on political divisions among the elite. The elite-sector approach is hardly new. Just to mention some examples, O'Donnell and Schmitter [1986] emphasized the positive impact of elite outsiders on democratic transitions, Ansell

¹Johnson and Koyama [2016].

²The actual data availability might vary by case.

³Acemoglu and Robinson [2009, 293] explain that 'all members of the elite have identical endowments so there is no heterogeneity among the elites.' However, later in the book (p. 289) they briefly consider preferences over democracy of industrialists and agriculturalists.

and Samuels [2014] and Boix [2015] examine the role of economic inequality/equality among the elite on democratization, Waldner [1999] studies how the formation of a modern state should coincide with the incorporation of lower classes to produce developmental states, Saylor [2014, 8] looks at the "coalitional basis of state building" while Mares and Queralt [2015] examine how income taxation in Europe is associated with inter-elite conflicts, particularly between the landed elite and the industrial elite. While political economists have already recognized the relevance of sectoral conflicts and the structure of the economy, the focus has been on democratic development. Using the same conflictual-sectoral approach as a starting point, the paper stresses how these structural conflicts are associated with institutional and economic development.

Figure 1: Causal Mechanism

An elite divided on an economic cleavage should at the same time be divided on their political preferences, particularly regarding their attitudes towards taxation.⁵ Taxation affects landowners and industrialists in a different way.⁶ Agriculturalists will systematically resist it as land fixity increases the risk premium of their main asset.⁷ In contrast, industrialists' preferences toward taxation are more elastic as capital can be reinvested in nontaxable sectors.⁸ However, class conflicts are more likely to resolve in favor of direct taxation when income inequality among the elite is low.⁹ When inequality among the elite is high, there are no incentives to cooperate, and rather elites rule in a monopolistic way. However, given that similar degrees of sectoral economic development can be converted into armies of similar capabilities,¹⁰ elites will have incentives to make agreements rather than engaging in conflict when their economic/military capacities are similar. In other words, when levels of inter-elite inequality are low, war is more likely to exhaust all existent assets without producing positive outcomes for either sector,¹¹ putting then pressures to reach agreements instead of engaging in armed conflicts.

⁴See specially Ansell and Samuels [2014] and Acemoglu and Robinson [2009].

⁵See for example Llavador and Oxoby [2005].

⁶Acemoglu and Robinson [2009, 289].

⁷Robinson [2006, 512].

⁸Hirschman [1970] and Ronald Rogowski in Drake and McCubbins [1998, ch. 4]. However, see Bates and Lien [1985, 15].

⁹Tani [1966, 157] explains that the absence of "wealth groups" makes passing an income tax law easier.

¹⁰Boix [2015].

¹¹Richard Salvucci in Uribe-Uran [2001, 48].

I argue that the emergence of the industrial sector lowered the levels of inter-sectoral inequality making possible higher levels of inter-sectoral contestation, forcing industrial and agricultural political elites to make institutional agreements. I identify one such compromise, the implementation of the income tax. Elsewhere I have argued that the rise of the industrial sector accelerated the implementation of the income tax law, 12 causing a long-lasting positive impact on state institutions and political development.¹³ In this paper I study how the implementation of the income tax set states in a path of political development causing long-term modern (i.e. 'balanced') economic growth (see Figure 1).¹⁴ Given that each economic sector has a corresponding political arm, the sectoral conflict is also a political conflict. ¹⁵ Hence, the crux of the argument is that the economic structural transformation characterized by "a secular decline of agriculture and substantial expansion of manufacturing" ¹⁶ imposed tight constraints on the way politics was run by the incumbent landowning class. These gradual long-term changes not only altered the structure of the economy but also the balance of political power. In particular, lower levels of inter-elite inequality expressed in balanced economic growth put both sectors in an equilibrium of economic interdependence, where no sector predominated. The political correlate is that if both sectors grew in a balanced fashion, no political elite had more power than the other.

Using a series of econometric time-series techniques, I find that before the income tax law, institutions were designed to give unfair advantage to the agricultural sector, locking countries in a backwards economic suboptimal equilibrium. The income tax law, as an institution that improved the overall state institutional capabilities reverted that. After the implementation of the income tax law countries show clear patterns of long-term economic growth. I contend that when the elite structure was weak, the income tax did not reflect the sectoral conflict (because there was no sectoral contestation). Landowners were never challenged and there were less pressures to centralize the state, making further institutional investments less likely. Hence, even though in these cases the income tax was implemented, it did not reflect the economic cleavage, compromising long-run economic development. Consequently, the income tax is a necessary but not sufficient cause of development as it requires sectoral conflicts to cause economic development. Next section explains the dual sector model, with a special emphasis on its political consequences. Then I provide some historical context using the Chilean case to illustrate the theory. Next, I present the econometric evidence, putting especial attention to the relationship between long-term growth and fiscal expansion. Finally, I provide some final comments.

¹²Bahamonde [2017b].

¹³Bahamonde [2017c].

¹⁴Bahamonde [2017b] studies the *timing* of the implementation of the income tax as a function of the emergence of the industrial sector (white boxes in Figure 1). In this paper I explain the conditions under which this mechanism causes long-term economic growth.

¹⁵See Ansell and Samuels [2014] and Bahamonde [2017a].

¹⁶Johnston and Mellor [1961, 567].

II. STRUCTURAL TRANSFORMATIONS AND THE DUAL SECTOR ECONOMY MODEL

When by the improvement and cultivation of land [...] the labour of half the society becomes sufficient to provide food for the whole, the other half [...] can be employed [...] in satisfying the other wants and fancies of mankind

Smith [1904, I.11.59]

The dual sector or balanced growth model explains the mechanics of economic modern growth¹⁷ by emphasizing the importance of macro-structural gradual transformations. The model argues that the economic system is divided into two sectors loosely defined as 'advanced or modern sector' or 'manufacturing sector,' and as 'backward or traditional sector,' or 'agriculture.' 18 The basic intuition of this paradigm is that in order for the industrial sector to develop, it needs first an efficient and strong agricultural sector. Contingent on efficient agricultural productivity, the industrial sector goes from a low-productivity sector to high-productivity, eventually surpassing the agricultural sector. If the agricultural sector lacks economic efficiency, the industrial sector will hardly develop, leaving the country in an economic trap. This literature is vast. While in this section I explain the core of it, there are many current theoretical and methodological applications and extensions of the dual sector model. Just to name a few examples, Thirlwall [1986], Mathur [1990], Hatton and Williamson [1991], Blunch and Verner [2006], Tiffin and Dawson [2003], Kanwar [2000] and McArthur and McCord [2017] study sectoral growth, shock persistence, and other related topics using the same theoretical framework and methodology I employ in this paper (or some variation of it). Notably, Ansell and Samuels [2014] use this model in political science to explain democratization. I use this model to conceptualize the conflictual origins of economic growth and political development.

It was Lewis [1965, 151] who popularized the idea that "[t]he secret of most development problems is to maintain a proper balance between sectors." The dual nature of the economy has been widely accepted and forms part of "a long tradition in development economics." And while dichotomizing the entire economy in just two sectors might sound as too much of an oversimplification, ²⁰ I follow

¹⁷Gollin et al. [2002, 160].

¹⁸Jorgenson [1961, 311]. Importantly, I follow Kuznets [1967, 87] in that "mining is combined with [...] industry because of the large scale of its productive unit, its close connection with manufacturing, and the distinctive trend in its share in product and resources." Similarly, Debowicz and Segal [2014, 237] includes mining within the industrial sector.

¹⁹Kelley et al. [1972, 8].

²⁰This is a stylized theory. Of course, in reality, there are other economic activities such as logging, mining and others. Given its dependence on capital, mining has always been considered industrial. The Chilean case illustrates this.

Dixit [1973, 325] in that the dual economy model provides a significantly better description of the economy because "it reflects several vital social and economic distinctions." Johnston and Nielsen [1966, 280] also explain that "[t]he reality found in most underdeveloped countries approximates this dichotomy [...] sufficiently." In fact, Lindert and Williamson [1985, 354] explain that the dual-sector model is "the dominant paradigm used by Third World observers." However, "balanced growth is almost axiomatic as a desirable objective, for both developed and under-developed countries." For example, Bergquist [1986, 8] explains that "Colombia's two traditional political parties crystallized in the 1840's and reflected in many respects the dual nature of the Colombian economy." While this is a stylized model which approximates a good-enough description of reality, Dixit [1973, 326] is right in that a "major drawback of dualistic theories [...] is the total neglect of the service sector." However, the literature is consistent in that the third sector necessarily develops after the industrial sector is developed.²³

Economic development depends on the emergence of the industrial sector which in turn depends on the development of a productive agricultural sector.²⁴ As Kuznets [1961, 59] puts it, "economic growth is *impossible* unless there is a substantial rise in product per worker in the agricultural sector."25 Following Jorgenson [1961, 311], Ranis and Fei [1964, 59], Jorgenson [1967, 291], Skott and Larudee [1998, 279-280] and Vollrath [2009, 290], the industrial sector is assumed to use capital and labor (having increasing returns to scale), while the agriculture sector is assumed to use only land (which is fixed) and labor.²⁶ This implies that the industrial sector is structurally protected: even when the agricultural sector is efficient, ceteris paribus, it cannot grow faster than an efficient industrial sector. The fixity of land requires countries to industrialize in order to grow, and for that they need first an efficient agricultural sector. This insight is shared by many other development economists. Hayami and Yamada [1969, 105] for example argue that "[i]ndustrialization and modern economic growth are basically conditioned by the level of agricultural productivity."²⁷ There are two main reasons for why agricultural development is a prerequisite of industrial development: efficient agricultures are more likely to supply the industrial sector with cheap foodstuff and cheap labor. In Johnston [1951, 498]'s words, "[e]xpanded agricultural productivity releases people from the land for employment in industry [and] provides food for the growing population." This structural transformation is the key of economic growth. If the expansion of the agricultural sector is compromised, it will necessarily compromise the expansion of the industrial sector as well.²⁸ The

 $^{^{21}}$ Emphasis is mine.

²²Streeten [1959, 169]. Emphasis is mine.

²³Galenson [1963, 506-507, 513] and Baer and Herve [1966, 95-96].

²⁴Johnston and Mellor [1961, 567] argue that this process "seems to be a necessary condition for cumulative and self-sustaining growth."

²⁵Emphasis is mine.

²⁶And while agriculture also needs capital (Federico [2008, 40]), its main input is land.

²⁷Emphasis is mine.

²⁸In fact Landon-Lane and Robertson [2003, 2] find that an important source of growth in developing economies is "derived through the reallocation of resources [particularly] by drawing labour moving out of traditional sector

political correlate is that a weak inter-sectoral economic cleavage engendered a weak political elite structure, leaving the agricultural political elites uncontested. Institutional investments and political development in general then are more likely to happen when levels of sectoral conflict due to sectoral equality/balance is high. As Hechter and Brustein [1980, 1085] explain, "state formation will be more likely to the degree that powerful individual actors form two groups on the basis of divergent economic and political interests."

The first reason for why a productive agricultural sector is key to industrial development is that more efficient agricultural techniques make agricultural production less labor intensive, allowing landowners to free workers which the industrial sector can rely on. The need for an improvement in agricultural production as a necessary step prior to industrialization "has been termed the 'prerequisite' hypothesis." Technologies such as "crop rotation, pest control, seed breeding [and] fertilizer use [represent] the major potential source of agricultural labor productivity," increasing also "non-agricultural value added per worker." Nicholls [1961, 339-340] shows that advanced industrial countries initially had relatively more developed and productive agricultural sectors. In fact, Gallo [1991, 57] finds that in Bolivia, a primarily agricultural economy, "[t]he tools employed in production were few and rudimentary, the use of fertilizers was minimal, and methods for conservation of the soil were practically unknown until the beginning of the 1950s." However, highly industrialized countries such as Japan, the U.K., the U.S.S.R. and Taiwan adopted prior industrialization very efficient agricultural technologies such as higher-yielding varieties, fertilizers and other activities that improved farm practices. ³²

Surplus of labor naturally leads to a reallocation of redundant workers into the industrial sector, which is the crux of economic development.³³ Nurkse [1953] in fact argues that development means to employ the surplus labor.³⁴ The literature coincides in that the 'natural role' of the agricultural sector is to provide labor to the industrial sector.³⁵ For example, Dixit [1973, 326] argues that the "agricultural sector must fulfill [...] its dual role of supplier of labour to industry and of food for the industrial labour force."³⁶ While Lewis [1954] in his canonical work argued that there existed an 'unlimited' supply of agricultural labor, a word of caution is in order. The meaning of the supposedly 'unlimitedness' of labor should not be taken literally, as in reality means redundant labor force.³⁷ In

employment into the modern sector."

²⁹Kelley et al. [1972, 133].

³⁰Ranis and Fei [1964, 62].

³¹McArthur and McCord [2017].

³²Johnston and Mellor [1961, 571] and Johnston [1951, 507-508]. Similarly Caselli [2005, 723] explains that poorer economies have inefficient agricultural sectors which at the same time are the mayor source of employment.

³³Ranis and Fei [1964, 7] and Leibenstein [1957b, 51].

 $^{^{34}}$ Similarly, Matsuyama [1991, 621-622] points out that "[i]ndustrialization [consists of] a shift of resources from agriculture to manufacturing."

³⁵Ranis and Fei [1964, 114] argue that "labor reallocation [...] is the *inevitable* and *natural* consequence of the continuous expansion of agricultural labor productivity." Emphases are mine.

³⁶Emphasis is mine.

³⁷See Ranis and Fei [1964, 203] and Jorgenson [1967, 289].

fact, Nurske [1961, 225] points out that the concept "is commonly used to denote all types of rural unemployment." ³⁸

The second reason for why a productive agricultural sector is key to industrial development is because efficient techniques in agricultural production are able to supply cheaper foodstuff.³⁹ "It is self-evident that without increasing food output, the capitalist sector must remain in a stationary state."⁴⁰ Food surplus is a direct consequence of efficiency, and it is just as important as labor reallocation. In sum, as Kuznets [1961, 60] explains it, if "output per worker in agriculture does not rise substantially, economic growth in the first case will be stopped by scarcity of agricultural products, and in the second case by scarcity of labour."

The structural transformation affected the labor structure as well. In fact, Harris and Todaro [1970, 134-135] explain that while "the creation of an additional job in the urban area reduces agricultural output through induced migration," the opposite is not true. ⁴¹ This implies that agriculture-industry productivity differentials "may even increase with development." Actually, Serrano and Pinilla [2016] find that in Latin America there has been a declining role of agricultural exports as industrialization levels have increased. That said, it is important to say that "the agricultural sector declines relative to the overall economy but continues to expand absolutely." In other words, it is the "the proportional contribution of agriculture to the growth" what decays, implying that in the long run the agricultural sector "must also grow," specially given the continuing dependence on a constant supply of food. ⁴⁶

III. Dualism in Chile, a brief illustrative case

Historically, Chilean agriculturalists had been a hegemonic group protected by norms and institutions that originated in colonial times. Those norms had survived due to institutional inertia, perpetuating their advantaged position.⁴⁷ As Collier and Collier [2002, 106] argue, the "national government was dominated by [...] owners of large agricultural holdings,"⁴⁸ while Zeitlin [1984, 13] explains that

³⁸Or as Leibenstein [1957a, 102-103] puts it, "where the existing labor supply could cultivate more land without loss of efficiency." In any case, Sen [1966] explains that a number of important predictions made by the dual sector model do not need this assumption to hold for the model to work. On a separate note, Ranis and Fei [1964, 99], Skott and Larudee [1998, 280] and Fields [2004, 730] argue that a pool of redundant agricultural workers (a 'reserve army') is what prevents a rise in industrial wages.

³⁹See Jorgenson [1961, 312] and Ranis and Fei [1964, 157].

⁴⁰Ohkawa [1961, 21]. Emphasis is mine.

⁴¹See also Johnston and Nielsen [1966, 280].

 $^{^{42}}$ Kelley et al. [1972, 110].

⁴³Nerlove [1994, 14].

 $^{^{44}}$ Kuznets [1961, 45].

⁴⁵Ranis and Fei [1961, 534].

⁴⁶Nicholls [1963, 2].

⁴⁷This idea also applies for Mexico. "The principal source of its wealth was not its mines, Humboldt noted, but agriculture." Amaral and Doringo, in <u>Uribe-Uran</u> [2001, 13].

⁴⁸See also McBride [1936, 15] who argues that "Chile's people live on the soil. Her life is agricultural to the core. Her government has always been of farm owners. Her Congress is made up chiefly of rich landlords. Social life is dominated by families whose proudest possession is the ancestral estate."

"landowners controlled both the vote and the labor power of the agrarian tenants [and] peasants [...] and this was the *sine qua non* of their continuing political hegemony." Similarly, Baland and Robinson [2008, 1748] explain that "[c]ongressional representation was heavily weighted in favor of rural districts." In the presidency also, landowners were the single most represented group. 49

While on the one hand institutions, policies and other practices were biased against industrial elites, on the other, rapid industrial growth (see Figure 2, top left) incentivized industrial elites to form pressure groups to offset the bias against them. The little public infrastructure that existed benefited the agricultural sector only. Zeitlin [1984, 41] explains that "the Montt regime did invest in the construction of Chile's railways but only in the Central Valley and south-central zones [b]ut there was no public investment [...] in railroads built in the Norte Chico mining provinces." To address this situation, industrialists started to "form trade associations to engage in lobbying and propaganda."⁵⁰ Eventually, these interests groups turned into political parties.⁵¹ These new groups, backed by their economic leverage, put pressures to open the political system in a way that allowed industrial elites to gain egalitarian political conditions and equal access to state power. While initially both elites confronted each other in two civil wars.⁵² conflict was not sustainable over time. Consequently, Chilean agricultural and industrial elites opted for a political compromise. The keystone of these inter-elite compromises was the implementation of the income tax in 1924, which marked the beginning of an institutionalization path. As others have observed, industrialists "accepted taxation, while demanding state services and expecting to influence how tax revenues were spent."53 This is why the expansion of political rights among the elite and the rise of the industrial sector shared the same timing. As Collier [1977, 683] has pointed out, "the real story of Chilean industrialization belongs to the Parliamentary period" (1891-1925).

The implementation of the income tax in Chile, as part of the sectoral bargain, was then associated with the implementation of other state institutions and services, expanding in this way the bureaucratic dominion of the state. However, unlike other 'regular' state institutions, taxing incomes makes the state.⁵⁴ It is the very practice of this technology what gives the state the big push making it able to continue the reproduction of its power via learning by doing. Critically, from the elite's perspective, it was in their interest to see these extractive capacities grow. Taxation is more likely to survive as an institution when it counts with the elite's 'blessing.' Boix [1999] and

⁴⁹Bauer [2008, 45].

⁵⁰Weaver [1980, 107].

⁵¹Collier and Collier [2002, 109].

⁵²Zeitlin [1984, 23] argues that the civil wars challenged a "large landed property [elite against a] productive capital [elite]."

⁵³Carmenza Gallo, in Brautigam et al. [2008, 165]. Emphases are mine. She refers specifically to nitrate producers, one of the first industrial activities.

⁵⁴Indirect taxes are easier to levy (Krasner [1985, 46], Bertola and Ocampo [2012, 132]), and hence this kind of revenue is generally considered "unearned income" (Moore [2004b, 304]) or "easy-to-collect source of revenues" (Coatsworth and Williamson [2002, 10]). Given the relatively lower costs states have to incur to collect them, indirect taxes have a very low impact on state-building (Moore [2004a, 14]). In fact, when early Latin American states depended heavily on trade taxes, the state apparatus tended to be less developed (Campbell [1993, 177]).

Parente and Prescott [1994] explain how the development of certain institutions or the adoption of certain technologies are implemented when they go in the benefit of the elites. In fact, for the Latin American case, Beramendi et al. [2016] argue that "capitalist elites [preferred] to shoulder a higher tax burden through progressive direct taxation, which they [viewed] as the least-worst economic option."55 Fiscal sociologists in turn argue that the capacity the state has of taxing its subjects diffuses to other state institutions via spillovers. For example Musgrave [1992, 99] argues that since taxation (specially of incomes) requires such a high degree of state penetration, public finances offer the key for a theory of state-making. I contend that the implementation of an institutional order with sectoral conflicts in origin, expanded the overall capacities of the state, ⁵⁶ fostering economic growth. In this paper, I concentrate in one macro institution: the inclusion of all mayor elites into the political system, which in turn translated into policies that enhanced balanced growth, benefiting both elites. One concrete example were protectionist tariffs. Protectionism did not start with the ISI policies. As Haber [2005, 18] explains, in Chile and Latin America in general, protectionism can be dated as early as by the turn of the 20th century. Importantly, having both sectors access to political power, it was possible to implement a deeper protectionist agenda. Since the timing of protectionist and income taxation cycles matches,⁵⁷ it could be argued that industrial tariffs were also part of the political compromises between the two elites. Next section tests the effect of implementing the income tax has on long-term economic growth.

IV. TIME SERIES ANALYSES: VECTOR AUTOREGRESSIVE MODELS AND GRANGER CAUSALITY TESTS

what a sector does is not fully attributable or credited to it but is contingent upon what happens in the other sectors

Kuznets [1961, 41]

Structural change is clearly an endogenous process, driven by a variety of economic forces [...] also in the statistical sense

Temple and Wößmann [2006, 212]

⁵⁵Similarly, Best [1976, 71] argues that the "taxes can be viewed as dependent upon the distribution of power rather than as an expression of the free choice of the majority of the people."

⁵⁶See for example Bahamonde [2017c].

⁵⁷Lederman [2005, 53]. See for a similar view Haber [2005, 18].

Granger-causality Tests The emergence of a new industrial sector rose a new politically disenfranchised elite who demanded political and economic reforms, ending years of political asymmetries. In exchange for these demands, the industrial sector accepted to be income-taxed, setting countries in a path of both political and long-run economic development. The income tax, as an institution that contributed to develop further state capacities and institutional development, should then be associated with long-term economic growth, and consequently with a secular relative decline of agriculture and substantial relative expansion of manufacturing. To test this hypothesis, the theory should pass a number of tests. As argued, before the inter-sectoral compromises (i.e., before the income tax law was implemented), political institutions and social norms inherited from the colonial period were designed to allocate economic inputs in a way that benefited the landowning class. Hence, I expect the transference of economic inputs to go from the industrial sector to the agriculture sector, a backwards equilibrium as stated by the dual sector model. However, after the income tax was implemented, we should see a reversion of the flow of inputs, generating growth from the agricultural sector to the industrial sector (balanced growth). In econometric terms, we should see that the income tax reverted the way in which one sector 'Granger-caused' the other.⁵⁸ Lutkepohl [2006, 42] explains that if some variable X forecasts variable Y (and not vise versa), X is said to 'Granger-cause' Y. According to Granger [1980, 349], this concept of 'causation' is based on the idea "that the future cannot cause the past." ⁵⁹

I utilize the MOxLAD data to test this, particularly the agriculture value-added and manufacturing value-added variables.⁶⁰ The dataset spans from as early as 1900 to as late as 2009. ⁶¹ Table A1 specifies the available time-spans. Using secondary information, the table also states when the income tax was implemented, what the law was and its corresponding source(s).⁶² Following Mahoney [2010, 5] I consider two 'advanced' economy countries (Chile and Argentina), two 'intermediate' countries (Mexico and Colombia) and two 'less advanced' countries (Guatemala and Nicaragua). Figure 2 shows the sectoral outputs for each country, both before and after the income tax law was implemented.

In Table 1 I test for Granger-causation, i.e. the directionality in which economic growth was produced both prior and after the implementation of the income tax law.⁶³ The results strongly suggest that the income tax caused a structural transformation in (almost) all 'developed' countries,

⁵⁸This is not an experimental design, and hence the term 'causation' should be taken loosely. As Beck [1992, 241] explains, cointegration is not causal.

⁵⁹See Durr [1992, 197] for a similar definition.

⁶⁰The former measures "the output of the sector net of intermediate inputs and includes the cultivation of crops, livestock production, hunting, forestry and fishing." The later "[r]eports the output of the sector net of intermediate inputs."

⁶¹According to Astorga et al. [2005, 790], this dataset provides extended *comparable* sectoral value-added series in constant purchasing power parity prices.

⁶²Some countries implemented some kind of income tax before, however these laws lacked enforcement, they were weak or not at all followed. In Table A1 in the Appendix section I establish the year that the literature seems to agree for when the law was implemented and properly enforced.

 $^{^{63}}$ Specifically, the tests were computed after estimating the reduced form VAR specified in Equation 1.

Figure 2: Sectoral Outputs Before and After the Implementation of the Income Tax Law

namely Chile, Colombia and Mexico. In all these cases the income tax reverted the initial intersectoral growth equilibrium suggesting a contested elite structure, as the case of Chile conveys. Before the income tax law, industrial development Granger-caused agricultural development, and after the income tax law, the agricultural sector Granger-caused industrial development (all p-values are significant at the .05 level).⁶⁴ These results suggest that the implementation of the income tax was associated with the overthrowing of the political institutions and practices that permitted agricultural expansion at the expenses of the modern sector, and that the reversion of the original backwards macroeconomic structure set in motion a path of long-term economic development.⁶⁵ In Nicaragua and Guatemala the tests suggest the exact opposite (all p-values are significant at the .05 level).⁶⁶ The implementation of the income tax in these countries did *not* revert the initial backward macroeconomic equilibrium because when lately implemented, the tax did not reflect the inter-sectoral tensions, challenges and compromises proper of the contested political economies. The industrial sector never had enough economic leverage to politically confront the landowning elite (see Figure 2) and hence industrialists never posed credible threats to the status quo, relaxing the endogenous incentives to invest in state institutions. The Argentinian case is different. In line with

the historical references, the Granger tests are inconclusive, and no significant results were found, suggesting a weak inter-sectoral cleavage structure.

Vector Autoregressive Models (VAR) and Impulse Response Analysis (IRF) Once we have determined the directionality of economic growth is associated with the imposition of the income tax law, it is necessary to establish the inter-sectoral long-run economic equilibrium. This relationship is an endogenous one.⁶⁷ If this endogeneity is not accounted for, the error term and the regressors will be correlated, and so OLS will be inconsistent. Additionally, growth rates are usually integrated. 'Unit root' or 'integrated' I(1) vectors⁶⁸ are time-series that "wander" up and down, yet they never revert to a given mean.⁶⁹ Moreover, two integrated vectors that are mutually endogenous, such as industrial and agricultural outputs, imply a 'cointegrated' CI(1) relationship, imposing additional statistical restrictions.⁷⁰ A "set of integrated time-series is said to be cointegrated if some linear combination of the series in levels produces a stationary series," or I(0).⁷¹ The economic literature generally coincides in that economic growth is an I(1) process, and that sectoral development is a CI(1) process.

Integration and cointegration are assumptions that should be tested. The first step is to find strong evidence of integration in each of the series. In Table A2 I show several unit root tests. The table indicates that all variables, periods, sectors and countries have I(1) processes. The second step is to find evidence of cointegration. Substantively, cointegration means that there is a long-lasting mutual inter-sectoral economic dependence, allowing both sectors to grow in a balanced fashion. In turn, failure to find evidence of cointegration would imply coordination failures between the two sectors (economic backwardness), the delayed emergence of a political challenger, the lack of a sectoral political conflict, and consequently a politically unchallenged landed elite. Given that the maximum number of cointegrated vectors in bivariate cointegrated series is 1, I only test for the minimum number of cointegrated relationships. I expect to find evidence of cointegration only in the 'developed' cases. Following Johansen [1988], Table 2 indicates that all 'developed' and 'semi-developed' countries have cointegrated series, while 'less developed' countries do not have

⁶⁴Except for the Mexico after the implementation of the income tax (p-value = .06).

⁶⁵See specially next section.

⁶⁶Except for the pre income tax period test of Guatemala, which is significant at the .1 level.

⁶⁷Tiffin and Dawson [2003, 33].

 $^{^{68}}$ The order of integration could be higher than 1. However, for simplicity sake, I restrict my analyses to I(1) processes, which is the most common strategy in applied econometric analyses of time series.

⁶⁹Box-Steffensmeier et al. [2014, 129].

 $^{^{70}}$ See Granger [1981] and Engle and Granger [1987]).

⁷¹Durr [1992, 193].

⁷²I show the test statistic and its associated MacKinnon approximate p-value in parenthesis for the ADF and Phillips-Perron tests. Both trend and drift were tested in all tests, when applicable. As I did not find any differences, I show the test statistic with no trend nor drift and one lag. The lags in the KPSS test were selected via an automatic procedure. "+" indicates that the test is barely significant or non-significant.

⁷³I use VAR regressions, which do not necessarily need cointegrated vectors (see Box-Steffensmeier et al. [2014, 161, 164]). Cointegration, however, is important from a substantive standpoint in this paper.

⁷⁴Box-Steffensmeier et al. [2014, 165].

Country	Pre/Post Income Tax	Sample	e Directionality		P-value
	Pre	1905 - 1924	${\it Agriculture} \to {\it Industry}$	3.55	0.47
Chile			$Industry \to Agriculture$	12.13	0.02
	Post	1928 - 2009	Agriculture \rightarrow Industry	11.92	0.00
			$Industry \rightarrow Agriculture$	5.37	0.07
	Pre	1902 - 1935	Agriculture \rightarrow Industry	4.96	0.03
Colombia			${\rm Industry} \to {\rm Agriculture}$	10.44	0.00
	Post	1938 - 2009	Agriculture \rightarrow Industry	4.32	0.04
			$Industry \to Agriculture$	1.63	0.20
	Pre	1903 - 1933	Agriculture \rightarrow Industry	4.19	0.12
Argentina			$Industry \to Agriculture$.42	0.81
	Post	1937 - 2010	$Agriculture \to Industry$.18	0.91
			$Industry \to Agriculture$	1.37	0.50
	Pre	1902 - 1965	Agriculture \rightarrow Industry	.73	0.39
Mexico			$Industry \to Agriculture$	11.57	0.00
	Post	1969 - 2009	Agriculture \rightarrow Industry	5.56	0.06
			$Industry \rightarrow Agriculture$	1.32	0.52
	Pre	1923 - 1974	Agriculture \rightarrow Industry	.48	0.79
Nicaragua			$Industry \to Agriculture$	6.83	0.03
	Post	1977 - 2009	$Agriculture \rightarrow Industry$.014	0.91
	1 050	1011 2000	$Industry \to Agriculture$	4.96	0.03
	Pre	1924 - 1963	$Agriculture \rightarrow Industry$	2.18	0.54
Guatemala		1000	$Industry \to Agriculture$	6.72	0.08
	Post	1966 - 2009	$Agriculture \rightarrow Industry$.58	0.45
	1 030	1500 - 2005	$\text{Industry} \rightarrow \text{Agriculture}$	6.05	0.01

Table 1: Granger Causality Wald Tests

Country	$\begin{array}{c} \text{Number of} \\ \text{Cointegrated Vectors} \\ \text{(rank)} \end{array}$	Restrictions	Lags	Log-Likelihood	Trace
Chile	at least 1		5	-1665.9736	0.3799
Argentina	at least 1		3	-1802.292	4.7657
Colombia	at least 1		2	-1805.6773	10.0076
Mexico	at least 1		4	-1978.1322	1.0274
Nicaragua	at least 0		2	-1020.221	11.5297
Guatemala	at least 0		3	-859.2802	16.5493

Table 2: Johansen Tests for Cointegration

cointegrated series.⁷⁵

Cointegration "implies a particular kind of model" to estimate the series.⁷⁶ If traditional methods are used, given the interdependent relationship of these kinds of time-series, the results will be spurious.⁷⁷ I use the vector-autoregressive approach (VAR) specified in Johansen [1988] which among several advantages, is estimated via MLE. Another advantage is that VAR models do not need to specify the number of cointegrated vectors as opposed to error correction models.⁷⁸ Formally, I will model the next reduced form VAR in differences, one per country, both before and after the income tax law was passed:

$$\Delta M_{t_m} = \alpha_m + \beta_m \Delta M_{t-l} + \beta_m \Delta A_{t-l} + \epsilon_{t_m}
\Delta A_{t_a} = \alpha_a + \beta_a \Delta M_{t-l} + \beta_a \Delta A_{t-l} + \epsilon_{t_a}$$
(1)

Notice that in both lines the different dependent variables are expressed as a function of the *same* set of lagged independent variables. Since the number of lags l varies by country and time-span (i.e. before/after the income tax law), Equation 1 is in standard form. Table A3 describes the optimal lag structure, i.e. the value of t, per each country regression.⁷⁹ Most tests give satisfactory results.

Given that "it is often difficult to draw any conclusions from the large number of coefficient estimates in a VAR system," ⁸⁰ econometricians usually turn to the analyses of *impulse response functions* (IRFs), which are derived from VAR analyses. ⁸¹ "Impulse responses trace out the response of current and future values of each of the variables to a one-unit increase in the current value of one of the VAR errors." ⁸² Figure 3 shows four panels for each of the six countries, one for the response of agriculture to industrial growth (left column), one for the response of industrial growth to agricultural growth (right column), both before (top row) and after (bottom row) the implementation of the income tax. Similar to the Granger-causality tests, I expect politically 'developed' countries to have gone through a process of structural transformation reverting the initial backwards development trap. However, this time I am able to observe the (predicted) long-run equilibrium. The X-axis is expressed in years. The Y-axis is not growth, but response to equilibrium. That is, the reaction of

 $^{^{75}}$ Since I am interested in the long-run equilibrium, I do not split the sample before and after the implementation of the income tax.

⁷⁶Wooldridge [2002, 571]. Cointegrated vectors, ECM and VAR models are widely common in political science too. Just to mention some examples, refer to Ostrom and Smith [1992], Krause [1997], Fish and Choudhry [2007], Haber and Menaldo [2011], Sobel and Coyne [2011], Herzer and Vollmer [2012, 489] and Blaydes and Kayser [2011].

⁷⁷Ostrom and Smith [1992, 142-143].

⁷⁸Box-Steffensmeier et al. [2014, 164].

⁷⁹The next information criteria were used to determine the appropriate lag length: final prediction error, AIC, Schwarz's Bayesian information criterion, Hannan and Quinn criterion as well as the corresponding likelihood-ratio test statistics. The same criteria are used to compute the optimal lag length in Table 2. The table also shows a summary of different post-estimation tests when the optimum lag length specified in the table was used. A check mark indicates that the tests was passed successfully, a check-minus mark indicates that the test was passed somewhat successfully, and a cross mark denotes failure to reject specification problems. Detailed results are available upon request.

⁸⁰Lütkepohl and Krätzig [2004, 159].

⁸¹The raw VAR regression tables are available upon requests.

 $^{^{82}}$ Stock and Watson [2001, 106]. See also Lütkepohl [2005, 51].

Figure 3: VAR Impulse Response Functions: Sectoral Responses to Each Other's Growths

one sector once the other one is shocked. 83

Figure 3 suggests that all 'developed' countries switched from a backwards equilibrium to a modern economic growth strategy after the income tax was implemented. For example, a shock to industrial growth in Chile before the tax has a positive and increasing effect on agriculture. However, after the income tax is adopted, a shock on industry has a negligible effect on agricultural output. This suggests that the political institutions before the tax were oriented to channel all economic resources in a way such that to give advantage to the agricultural sector and the landed elites. This situation was reverted after the income tax law causing long-term economic growth. Colombia and Mexico show a similar pattern. While the analyses on the Argentinean case suggest that there is a long-term inter-sectoral relationship (Table 2), according to Figure 3 and Table 1 this relationship is weak, indicating weak inter-sectoral complementarity. Nicaragua and Guatemala are the prototypical backward cases. In each case, the economy was designed to develop the agricultural sector completely at the expenses of the industrial sector. This goes in line with the null findings of

⁸³That is why the "shape of the [IRFs] indicate [...] the dynamic responses of the variables [and since the variables] are I(0) the impulse responses [...] should converge to zero" (Enders [2014, 364]).

cointegration in Table 2 and Granger-causality tests in Table 1. In these cases the effect of a shock to agricultural output on industrial output is zero both before and after the implementation of the income tax law, suggesting a situation of unbalanced economic growth. The political correlate is the lack of a strong political challenger. Figure 2 suggests that the industrial sector was always week, indicating that their corresponding political elites were unable to contest the landowning class. In both cases the implementation of the income tax did not revert the initial backward macroeconomic equilibrium because when implemented, it did not reflect the inter-sectoral tensions, challenges and compromises proper of the contested political economies.

V. Discussion

Elites split along economic interests will use state power to influence certain policies and hence, growth and state building in different ways. I have argued that the emergence of the industrial sector caused political development by rising a political challenger. The argument differs deeply from modernization theory. What causes political development is not industrialization per se, but the development of a productive landed elite which supplied labor and cheap foodstuff to the modern sector, promoting balanced economic development between the two sectors. In turn, balanced growth politically empowered both economic elites. When there were weak inter-sectoral linkages and lack of economic complementarity between the two sectors, countries not only failed to grow, but also produced uncontested political environments, and investments in political institutions were less likely. The radical transformation of the economy is a precondition for political development.

Two brief historical references were discussed. The Chilean case stressed the importance of sectoral competition and the role of income taxation, while the Argentinean case focused on an important issue, namely, the overlap between the export/agriculture and import/industry, a recurrent topic in Latin American economic history. Time-series analyses, particularly, Granger-causality tests and VAR models (and IRF analyses) were presented in an effort to suggest that this theory can be applied to other countries in the region. There are good reasons to believe that the theory has general applicability to other cases.

VI. Appendix

Country	Available Data	Year Income Tax	Law	Source
Chile	1900 - 2009	1924	Ley 3996	Mamalakis [1976, 20] and LeyChile.Cl (official)
Colombia	1900 - 2009	1935	Ley 78	Figueroa [2008, 9]
Argentina	1900 - 2010	1933	Ley 11682	Infoleg.Gob.Ar (official)
Mexico	1900 - 2009	1965	Ley de Impuesto sobre la Renta	Díaz González [2013, 130-133] and Diario Oficial (official)
Nicaragua	1920 - 2009	1974	Ley 662	Legislacion.Asamblea.Gob.Ni (official)
Guatemala	1920 - 2009	1963	Decreto 1559	Instituto Centroamericano de Estudios Fiscales [2007, 165]

 ${\bf Table\ A1:}\ Sample,\ Data\ Available\ and\ Year\ the\ Income\ Tax\ was\ Implemented$

Country	Time Frame	Sector	Augmented Dickey-Fuller	Phillips-Perron	KPSS	Conclusion
	Pre	Agriculture	-1.185 (0.68)	-1.241 (0.66)	.107+	I(1)
Chile	110	Industry	2.310 (0.99)	2.556 (0.99)	.113+	I(1)
	Post	Agriculture	4.557 (1.00)	5.40 (1.00)	.289	I(1)
	rost	Industry	0.908 (0.99)	1.458 (0.99)	.249	I(1)
	Δ11	Agriculture	5.521 (1.00)	6.722 (1.00)	.31	I(1)
	All	Industry	1.582 (0.99)	2.305 (0.99)	.314	I(1)
	Pre	Agriculture	2.709 (0.99)	2.414 (0.99)	.204	I(1)
Colombia	110	Industry	2.103 (0.99)	3.257 (1.00)	.183	I(1)
	Post	Agriculture	2.392 (0.99)	3.156 (1.00)	.282	I(1)
		Industry	0.520 (0.98)	1.044 (0.99)	.241	I(1)
Argentina	A11	Agriculture	4.256 (1.00)	5.893 (1.00)	.372	I(1)
	Pre Agriculture Industry All Agriculture Industry All Agriculture Industry Post Agriculture Industry All Agriculture Industry Agriculture Industry	Industry	1.674 (0.99)	2.707 (0.99)	.374	I(1)
	Pre	Agriculture	-0.849 (0.80)	-1.201 (0.67)	.0801+	I(1)
Argentina	110	Industry	-0.495 (0.89)	-0.378 (0.91)	.115+	I(1)
9	Post	Agriculture	1.197 (0.99)	1.093 (0.99)	.277	I(1)
Chile Colombia	1 OSt	Industry	0.228 (0.97)	0.381 (0.98)	.0901+	I(1)
	A 11	Agriculture	1.484 (0.99)	1.401 (0.99)	.332	I(1)
	Chile Indust Post Agricult Indust All Agricult Indust Pre Agricult Indust All Agricult Indust Agricult Indust Agricult Indust All Agricult Indust Indust Indust Agricult Indust	Industry	1.007 (0.99)	1.237 (0.99)	.183	I(1)
	Pro	Agriculture	4.601 (1.00)	5.552 (1.00)	.288	I(1)
Mexico	116	Industry	5.803 (1.00)	10.776 (1.00)	.29	I(1)
nication .	Post	Agriculture	0.599 (0.9876)	0.497 (0.99)	.109+	I(1)
	1 030	Industry	-1.255 (0.65)	-0.982 (0.76)	.113+	I(1)
	A 11	Agriculture	3.431 (1.00)	3.607 (1.00)	.341	I(1)
	All	Industry	0.672 (0.99)	2.020 (0.99)	.367	I(1)
	Pre	Agriculture	2.473 (0.99)	2.355 (0.99)	.25	I(1)
Nicaragua	110	Industry	4.958 (1.00)	9.100 (1.00)	.244	I(1)
	Post	Agriculture	-0.154 (0.94)	0.154 (0.97)	.2	I(1)
		Industry	-1.237 (0.6577)	-1.176 (0.68)	.189	I(1)
	A 11	Agriculture	0.636 (0.99)	0.759 (0.99)	.116+	I(1)
	All	Industry	-0.164 (0.94)	-0.090 (0.95)	.123	I(1)
	Pro	Agriculture	-0.393 (0.91)	-0.343 (0.92)	.0639+	I(1)
Guatemala	ı re	Industry	1.358 (0.99)	1.704 (0.99)	.199	I(1)
_ aavomara	Post	Agriculture	1.786 (0.99)	1.965 (0.99)	.162	I(1)
	1 050	Industry	-0.998 (0.75)	-1.352 (0.61)	.0915+	I(1)
	A 11	Agriculture	3.349 (1.00)	3.714 (1.00)	.321	I(1)
	AII		0.413 (0.98)	0.017 (0.96)	.288	I(1)

 ${\bf Table~A2:}~{\it Unit~Root~Tests~for~Agricultural~and~Industrial~Growth}$

Country	Time Frame	Number of Lags	LM	Normally Tests			Stability Condition
				Jarque-Bera	Skewness	Kurtosis	
Chile	Pre	4	1	1	/	1	✓
	Post	2	1	✓-	✓-	✓-	1
Colombia	Pre	1	✓-	×	×	×	✓
	Post	1	1	✓-	✓-	✓-	/
Argentina	Pre	2	1	✓	✓	1	/
	Post	2	1	✓-	1	✓-	1
Mexico	Pre	1	1	✓-	✓-	✓-	✓
	Post	2	1	✓	✓	1	✓
Nicaragua	Pre	2	1	✓-	✓-	/ -	/
, ,	Post	1	1	✓-	✓-	✓-	1
Guatemala	Pre	3	1	×	/ -	/ -	/
	Post	1	✓-	✓-	✓-	✓-	✓

Table A3: Lag Length and Post-Estimation Results

References

- Daron Acemoglu and James Robinson. *Economic Origins of Dictatorship and Democracy*. Cambridge University Press, 2009.
- Ben Ansell and David Samuels. *Inequality and Democratization: An Elite-Competition Approach*. Cambridge University Press, 2014.
- Pablo Astorga, Ame Berges, and Valpy Fitzgerald. The Standard of Living in Latin America During the Twentieth Century. *Economic History Review*, 58(4):765-796, nov 2005. ISSN 0013-0117. doi: 10.1111/j.1468-0289.2005.00321.x. URL http://doi.wiley.com/10.1111/j.1468-0289.2005.00321.x.
- Werner Baer and Michael Herve. Employment and Industrialization in Developing Countries. The Quarterly Journal of Economics, 80(1):88-107, feb 1966. ISSN 00335533. doi: 10.2307/1880581. URL http://qje.oxfordjournals.org/lookup/doi/10.2307/1879592http://qje.oxfordjournals.org/lookup/doi/10.2307/1880581.
- Hector Bahamonde. Structural transformations and state institutions in latin america, 1900-2010. 2017a. URL https://github.com/hbahamonde/Negative_Link_Paper/blob/master/Bahamonde_NegativeLink.pdf.
- Hector Bahamonde. Sectoral origins of income taxation: Industrial development in latin america and the case of chile (1900-2010). 2017b. URL https://github.com/hbahamonde/IncomeTaxAdoption/raw/master/Bahamonde_IncomeTaxAdoption.pdf.
- Hector Bahamonde. Income taxation and state capacities in chile: measuring institutional development using historical earthquake data, 2017c. URL https://github.com/hbahamonde/Earthquake_Paper/raw/master/Bahamonde_Earthquake_Paper.pdf.
- Jean Marie Baland and James Robinson. Land and Power: Theory and Evidence from Chile. American Economic Review, 98(5):1737–1765, 2008. ISSN 00028282. doi: 10.1257/aer.98.5.1737.
- Robert Bates and Donald Lien. A Note on Taxation, Development, and Representative Government. Politics & Society, 14(1):53-70, jan 1985. ISSN 0032-3292. doi: 10.1177/003232928501400102. URL http://pas.sagepub.com/cgi/doi/10.1177/003232928501400102.
- Arnold Bauer. Chilean Rural Society: From the Spanish Conquest to 1930. Cambridge University Press, 2008.
- Nathaniel Beck. The Methodology of Cointegration. *Political Analysis*, 4:237–247, 1992. URL http://www.jstor.org/stable/23321238.

- Pablo Beramendi, Mark Dincecco, and Melissa Rogers. Intra-Elite Competition and Long-Run Fiscal Development. 2016.
- Charles Bergquist. Coffee and Conflict in Colombia, 1886-1910. Duke University Press, 1986.
- Luis Bertola and Jose Antonio Ocampo. The Economic Development of Latin America since Independence. Oxford University Press, 2012. URL https://global.oup.com/academic/product/the-economic-development-of-latin-america-since-independence-9780199662142?cc=us{&}lang=en{&}.
- Michael Best. Political Power and Tax Revenues in Central America. *Journal of Development Economics*, 3(1):49–82, 1976. ISSN 03043878. doi: 10.1016/0304-3878(76)90040-7.
- Lisa Blaydes and Mark Kayser. Counting Calories: Democracy and Distribution in the Developing World. *International Studies Quarterly*, 55(4):887–908, dec 2011. ISSN 00208833. doi: 10. 1111/j.1468-2478.2011.00692.x. URL http://isq.oxfordjournals.org/cgi/doi/10.1111/j. 1468-2478.2011.00692.x.
- Niels-Hugh Blunch and Dorte Verner. Shared Sectoral Growth Versus the Dual Economy Model: Evidence from Cote d'Ivoire, Ghana, and Zimbabwe. *African Development Review*, 18(3):283–308, dec 2006. ISSN 1017-6772. doi: 10.1111/j.1467-8268.2006.00150.x. URL http://doi.wiley.com/10.1111/j.1467-8268.2006.00150.x.
- Carles Boix. Setting the Rules of the Game: The Choice of Electoral Systems in Advanced Democracies. *The American Political Science Review*, 93(3):609–624, 1999. ISSN 1556-5068. doi: 10.2139/ssrn.159213. URL http://www.ssrn.com/abstract=159213.
- Carles Boix. Democracy and Redistribution. Cambridge University Press, 2003.
- Carles Boix. Political Order and Inequality: Their Foundations and their Consequences for Human Welfare. Cambridge Studies in Comparative Politics, 2015.
- Janet Box-Steffensmeier, John Freeman, Matthew Hitt, and Jon Pevehouse. *Time Series Analysis* for the Social Sciences. Cambridge University Press, 2014.
- Deborah Brautigam, Odd-Helge Fjeldstad, and Mick Moore. *Taxation and State-Building in Developing Countries: Capacity and Consent*. Cambridge University Press, 2008. ISBN 9781139469258. URL http://books.google.be/books?id=yKqioeqwsTkC.
- John Campbell. The State and Fiscal Sociology. Annual Review of Sociology, 19(1):163–185, aug 1993. ISSN 0360-0572. doi: 10.1146/annurev.so.19.080193.001115. URL http://www.annualreviews.org/doi/abs/10.1146/annurev.so.19.080193.001115.

- Francesco Caselli. Accounting for Cross-Country Income Differences. In *Handbook of Economic Growth*, volume 1, chapter 9, pages 679–741. 2005. ISBN 9780444520418. doi: 10.1016/S1574-0684(05)01009-9.
- John Coatsworth and Jeffrey Williamson. The Roots of Latin American Protectionism: Looking Before the Great Depression. Technical report, National Bureau of Economic Research, Cambridge, MA, jun 2002. URL http://www.nber.org/papers/w8999.pdf.
- Ruth Collier and David Collier. Shaping The Political Arena: Critical Junctures, the Labor Movement, and Regime Dynamics in Latin America. University of Notre Dame Press, 2002.
- Simon Collier. The Historiography of the "Portalian" Period (1830-1891) in Chile. The Hispanic American Historical Review, 57(4):660-690, 1977. URL http://www.jstor.org/stable/2513483.
- Dario Debowicz and Paul Segal. Structural Change in Argentina, 1935-1960: The Role of Import Substitution and Factor Endowments. *The Journal of Economic History*, 74(01):230-258, mar 2014. ISSN 0022-0507. doi: 10.1017/S0022050714000084. URL http://www.journals.cambridge.org/abstract{_}S0022050714000084.
- Eliseo Díaz González. La Reforma Del Impuesto Sobre La Renta Aplicado a Salarios. *Argumentos*, 26(71):127–148, 2013.
- Avinash Dixit. *Models of Dual Economy*. Models of Economic Growth: Proceedings of a Conference Held by the International Economic Assicuation at Jerusalem. 1973.
- Paul Drake and Mathew McCubbins, editors. The Origins of Liberty: Political and Economic Liberalization in the Modern World. Princeton University Press, 1998.
- Robert Durr. An Essay on Cointegration and Error Correction Models. *Political Analysis*, 4:185–228, 1992. URL http://www.jstor.org/stable/23321236.
- Walter Enders. Applied Econometric Time Series. Wiley, 4th. edition, 2014. ISBN 8126515643. doi: 10.1198/tech.2004.s813.
- Robert Engle and Clive Granger. Co-Integration and Error Correction: Representation, Estimation, and Testing. *Econometrica*, 55(2):251–276, 1987. doi: 10.2307/1913236. URL http://www.jstor.org/stable/1913236.
- Giovanni Federico. Feeding the World: An Economic History of Agriculture, 1800-2000. Princeton University Press, 2008.

- Gary Fields. Dualism in the Labor Market: A Perspective on the Lewis Model After Half a Century. The Manchester School, 72(6):724-735, 2004. ISSN 1463-6786. doi: 10.1111/j.1467-9957.2004. 00432.x. URL http://doi.wiley.com/10.1111/j.1467-9957.2004.00432.x.
- Alfredo Lewin Figueroa. Historia de las Reformas Tributarias en Colombia. In *Fundamentos* de la *Tributación*, page 371. Universidad de los Andes Editorial Temis, Bogotá, 2008. ISBN 9789583507069.
- Steven Fish and Omar Choudhry. Democratization and Economic Liberalization in the Post-communist World. *Comparative Political Studies*, 40(3):254–282, 2007. ISSN 0010-4140. doi: 10.1177/0010414006294169.
- Walter Galenson. Economic Development and the Sectoral Expansion of Employment. *International Labour Review*, 87(6):505–519, 1963.
- Carmenza Gallo. Taxes and state power: Political instability in Bolivia, 1900-1950. Temple University Press, 1991.
- Douglas Gollin, Stephen Parente, and Richard Rogerson. The Role of Agriculture in Development. The American Economic Review, 92(2):160–164, 2002. URL http://www.jstor.org/stable/3083394.
- Clive Granger. Testing for Causality: A Personal Viewpoint. *Journal of Economic Dynamics and Control*, 2:329–352, 1980. doi: 10.1016/0165-1889(80)90069-X.
- Clive Granger. Some Properties of Time Series Data and Their Use in Econometric Model Specification. *Journal of Econometrics*, 16(1):121–130, may 1981. ISSN 03044076. doi: 10.1016/0304-4076(81)90079-8. URL http://linkinghub.elsevier.com/retrieve/pii/0304407681900798.
- Stephen Haber. Development Strategy or Endogenous Process? The Industrialization of Latin America. 2005.
- Stephen Haber and Victor Menaldo. Do Natural Resources Fuel Authoritarianism? A Reappraisal of the Resource Curse. American Political Science Review, 105(01):1-26, feb 2011. ISSN 0003-0554. doi: 10.1017/S0003055410000584. URL http://www.journals.cambridge.org/abstract{_}\$S0003055410000584.
- John Harris and Michael Todaro. Migration, Unemployment & Development: A Two-Sector Analysis. American Economic Review, 60(1):126–142, 1970. URL http://www.jstor.org/stable/1807860.

- Timothy Hatton and Jeffrey Williamson. Integrated and Segmented Labor Markets: Thinking in Two Sectors. *The Journal of Economic History*, 51(02):413, jun 1991. ISSN 0022-0507. doi: 10.1017/S0022050700039036. URL http://www.journals.cambridge.org/abstract{_}S0022050700039036.
- Yujiro Hayami and Saburo Yamada. Agricultural Productivity at the Beginning of Industrialization. In Kazushi Ohkawa, Bruce Johnston, and Hiromitsu Kaneda, editors, Agriculture and Economic Growth: Japan's Experience, pages 105–144. Princeton University Press and Tokyo University Press, Princeton, NJ and Tokyo, 1969.
- Michael Hechter and William Brustein. Regional Modes of Production and Patterns of State Formation in Western Europe. *American Journal of Sociology*, 85(5):1061–1094, mar 1980. ISSN 0002-9602. doi: 10.1086/227125. URL http://www.journals.uchicago.edu/doi/10.1086/227125.
- Dierk Herzer and Sebastian Vollmer. Inequality and Growth: Evidence From Panel Cointegration. *Journal of Economic Inequality*, 10(4):489–503, 2012. ISSN 15691721. doi: 10.1007/s10888-011-9171-6.
- Albert Hirschman. Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and States. Harvard University Press, 1970.
- Instituto Centroamericano de Estudios Fiscales. Historia de la Tributación en Guatemala. Technical report, Instituto Centroamericano de Estudios Fiscales, 2007.
- Soren Johansen. Statistical Analysis of Cointegration Vectors. *Journal of Economic Dynamics and Control*, 12(2-3):231–254, 1988. ISSN 01651889. doi: 10.1016/0165-1889(88)90041-3.
- Noel Johnson and Mark Koyama. States and Economic Growth: Capacity and Constraints. Explorations in Economic History, dec 2016. ISSN 00144983. doi: 10.1016/j.eeh.2016.11.002. URL http://linkinghub.elsevier.com/retrieve/pii/S0014498316301966.
- Bruce Johnston. Agricultural Productivity and Economic Development in Japan. *Journal of Political Economy*, 59(6):498-513, 1951. URL http://www.jstor.org/stable/1830239.
- Bruce Johnston and John Mellor. The Role of Agriculture in Economic Development. *The American Economic Review*, 51(4):566-593, 1961. URL http://www.jstor.org/stable/1812786.
- Bruce Johnston and Soren Nielsen. Agricultural and Structural Transformation in a Developing Economy. *Economic Development and Cultural Change*, 14(3):279–301, 1966. URL http://www.jstor.org/stable/1152435.

- Dale Jorgenson. The Development of a Dual Economy. *The Economic Journal*, 71(282):309–334, 1961. URL http://www.jstor.org/stable/2228770.
- Dale Jorgenson. Surplus Agricultural Labour and the Development of a Dual Economy. Oxford Economic Papers, New Series, 19(3):288–312, 1967. URL http://www.jstor.org/stable/2662328.
- Sunil Kanwar. Does the Dog Wag the Tail or the Tail the Dog? Cointegration of Indian Agriculture with Nonagriculture. *Journal of Policy Modeling*, 22(5):533-556, sep 2000. ISSN 01618938. doi: 10.1016/S0161-8938(97)00161-0. URL http://linkinghub.elsevier.com/retrieve/pii/S0161893897001610.
- Allen Kelley, Jeffrey Williamson, and Russell Cheetham. Dualistic Economic Development: Theory and History. University of Chicago Press, 1972.
- Stephen Krasner. Structural Conflict: The Third World Against Global Liberalism. University of California Press, 1985.
- George Krause. Voters, Information Heterogeneity, and the Dynamics of Aggregate Economic Expectations. *American Journal of Political Science*, 41(4):1170–1200, 1997.
- Simon Kuznets. Economic Growth and the Contribution of Agriculture: Notes on Measurement. 1961 Conference, August 19-30, 1961, Cuernavaca, Morelos, Mexico, 1961. URL http://ideas.repec.org/p/ags/iaae61/209625.html.
- Simon Kuznets. Modern Economic Growth: Rate, Structure and Spread. Yale University Press, 1967.
- John Landon-Lane and Peter Robertson. Accumulation and Productivity Growth in Industrializing Economies. 2003. URL http://econpapers.repec.org/RePEc:rut:rutres:200305.
- Daniel Lederman. The Political Economy of Protection: Theory and the Chilean Experience. Stanford University Press, Stanford, CA, 2005. ISBN 9780804749176.
- Harvey Leibenstein. The Theory of Underemployment in Backward Economies. *Journal of Political Economy*, 65(2):91–103, 1957a. URL http://www.jstor.org/stable/1827366.
- Harvey Leibenstein. *Economic Backwardness and Economic Growth*. John Wiley and Sons, 1st. edition, 1957b.
- Arthur Lewis. Economic Development with Unlimited Supplies of Labour. *The Manchester School*, 22(2):139–191, may 1954. ISSN 1463-6786. doi: 10.1111/j.1467-9957.1954.tb00021.x. URL http://doi.wiley.com/10.1111/j.1467-9957.1954.tb00021.x.

- Arthur Lewis. The Theory of Economic Growth. Harper and Row, 1965.
- Peter Lindert and Jeffrey Williamson. Growth, Equality, and History. Explorations in Economic History, 22(4):341–377, 1985. ISSN 00144983. doi: 10.1016/0014-4983(85)90001-4.
- Humberto Llavador and Robert Oxoby. Partisan Competition, Growth, and the Franchise. The Quarterly Journal of Economics, 120(3):1155-1189, aug 2005. ISSN 0033-5533. doi: 10.1093/qje/120.3.1155. URL http://www.jstor.org/stable/25098765{%}OAhttp://about.jstor.org/termshttp://qje.oxfordjournals.org/cgi/doi/10.1093/qje/120.3.1155.
- Helmut Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer, Berlin, 2005. ISBN 3540262393.
- Helmut Lutkepohl. New Introduction to Multiple Time Series Analysis. Springer, 2006. ISBN 9783540262398.
- Helmut Lütkepohl and Markus Krätzig. Applied Time Series Econometrics. Cambridge University Press, 2004. ISBN 9780521839198. doi: 10.1017/CBO9780511606885. URL http://books.google.com/books?hl=en{&}lr={&}id=xe7NDY8leWwC{&}oi=fnd{&}pg=PP1{&}dq=Applied+ Time+series+Econometrics{&}ots={_}88dV4qX5p{&}sig=N2ZBeAsV0i25ThJjVf7b2QSRXCA.
- James Mahoney. Colonialism and Postcolonial Development: Spanish America in Comparative Perspective. Cambridge University Press, 2010.
- Markos Mamalakis. Growth and Structure of the Chilean Economy: From Independence to Allende. Yale University Press, 1976.
- Isabela Mares and Didac Queralt. The Non-Democratic Origins of Income Taxation. *Comparative Political Studies*, 48(14):1974–2009, dec 2015. ISSN 0010-4140. doi: 10.1177/0010414015592646. URL http://cps.sagepub.com/cgi/doi/10.1177/0010414015592646.
- Ashok Mathur. The Interface of Agricultural and Industrial Growth in the Development Process: Some Facets of the Indian Experience. Development and Change, 21(2):247-280, apr 1990. ISSN 0012155X. doi: 10.1111/j.1467-7660.1990.tb00377.x. URL http://search.proquest.com.ezproxy.library.ubc.ca/docview/1500798747?accountid=14656http://gw2jh3xr2c.search.serialssolutions.com/?ctx{_}}ver=Z39.88-2004{&}ctx{_}}enc=info:ofi/enc: UTF-8{&}rfr{_}}id=info:sid/ProQ:envabstractsmodule{&}rft{_}}val{_}}fmt=info:ofi/fmt:kev:mtx:jou.
- Kiminori Matsuyama. Increasing Returns, Industrialization, and Indeterminacy of Equilibrium. *The Quarterly Journal of Economics*, 106(2):617–650, 1991. URL http://www.jstor.org/stable/2937949.

- John McArthur and Gordon McCord. Fertilizing Growth: Agricultural inputs and their effects in economic development. *Journal of Development Economics*, (77), mar 2017. ISSN 03043878. doi: 10.1016/j.jdeveco.2017.02.007. URL http://dx.doi.org/10.1016/j.jdeveco.2017.02. 007http://linkinghub.elsevier.com/retrieve/pii/S0304387817300172.
- George McCutchen McBride. Chile: Land and Society. Octagon Books, 1936.
- Barrington Moore. Social Origins of Dictatorship and Democracy: Lord and Peasant in the Making of the Modern World. Beacon Press, September 1966.
- Mick Moore. Taxation and the Political Agenda, North and South. Forum for Development Studies, 1:7–32, 2004a. ISSN 0803-9410. doi: 10.1080/08039410.2004.9666262.
- Mick Moore. Revenues, State Formation, and The Quality of Governance in Developing Countries. International Political Science Review, 25(3):297–319, 2004b. ISSN 01925121. doi: 10.1177/0192512104043018.
- Richard Musgrave. Schumpeter's Crisis of The Tax State: An Essay in Fiscal Sociology. *Journal of Evolutionary Economics*, 2(2):89–113, jun 1992. ISSN 0936-9937. doi: 10.1007/BF01193535. URL http://link.springer.com/10.1007/BF01193535.
- Marc Nerlove. The Role of Agriculture in General Economic Development: A Reinterpretation of Jorgenson and Lewis. In Agricultural Development, Population Growth and the Environment: Lecture Notes for AREC 445, chapter 4. 1994.
- William Nicholls. Industrialization, Factor Markets, and Agricultural Development. *Journal of Political Economy*, 69(4):319-340, 1961. URL http://www.jstor.org/stable/1828643.
- William Nicholls. An "Agricultural Surplus" as a Factor in Economic Development. *Journal of Political Economy*, 71(1):1–29, 1963.
- Douglass North. *Institutions, Institutional Change and Economic Performance*. Cambridge University Press, 1990.
- Ragnar Nurkse. Problems of Capital Formation in Underdeveloped Countries. Basil Blackwell, 2nd. edition, 1953.
- Ragnar Nurske. Equilibrium and growth in the world economy: Economic essays. Harvard University Press, 1961.
- Guillermo O'Donnell and Philippe Schmitter. Transitions from Authoritarian Rule, Vol. 4: Tentative Conclusions about Uncertain Democracies. Johns Hopkins University Press, 1986.

- Kazushi Ohkawa. Balanced Growth and the Problem of Agriculture With Special Reference to Asian Peasant Economy. *Hitotsubashi Journal of Economics*, 2(1):13–25, 1961. URL http://doi.org/10.15057/8120.
- Charles Ostrom and Renée Smith. Error Correction, Attitude Persistence, and Executive Rewards and Punishments: A Behavioral Theory of Presidential Approval. *Political Analysis*, 4(1):127–183, 1992. ISSN 1047-1987. doi: 10.1093/pan/4.1.127. URL http://pan.oxfordjournals.org/cgi/doi/10.1093/pan/4.1.127.
- Stephen Parente and Edward Prescott. Barriers to Technology Adoption and Development. *Journal of Political Economy*, 102(2):298–321, apr 1994. ISSN 0022-3808. doi: 10.1086/261933. URL http://www.journals.uchicago.edu/doi/10.1086/261933.
- Gustav Ranis and John Fei. A Theory of Economic Development. *The American Economic Review*, 51(4):533-565, 1961. URL http://www.jstor.org/stable/1812785.
- Gustav Ranis and John Fei. Development of the Labor Surplus Economy. The Economic Growth Center, Yale University. Richard D.Irwin, Inc, 1964.
- James Robinson. Economic Development and Democracy. Annual Review of Political Science, 9(1):503–527, jun 2006. ISSN 1094-2939. doi: 10.1146/annurev.polisci.9.092704.171256. URL http://www.annualreviews.org/doi/abs/10.1146/annurev.polisci.9.092704.171256.
- Ryan Saylor. State Building in Boom Times: Commodities and Coalitions in Latin America and Africa. Oxford University Press, 2014.
- Amartya Sen. Peasants and Dualism with or without Surplus Labor. The Journal of Political Economy, 74(5):425–450, 1966.
- Raúl Serrano and Vicente Pinilla. The Declining Role of Latin America in Global Agricultural Trade, 1963-2000. *Journal of Latin American Studies*, 48(01):115-146, feb 2016. ISSN 0022-216X. doi: 10.1017/S0022216X15001236. URL http://www.journals.cambridge.org/abstract{_}S0022216X15001236.
- Peter Skott and Mehrene Larudee. Uneven Development and the Liberalisation of Trade and Capital Flows: The Case of Mexico. *Cambridge Journal of Economics*, 22(3):277–295, 1998. ISSN 0309166X.
- Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. Methuen & Co., Ltd., 5th. edition, 1904.

- Russell Sobel and Christopher Coyne. Cointegrating Institutions: The Time-Series Properties of Country Institutional Measures. *The Journal of Law and Economics*, 54(1):111–134, feb 2011. ISSN 0022-2186. doi: 10.1086/652304. URL http://www.journals.uchicago.edu/doi/10.1086/652304.
- David Stasavage. Public Debt and the Birth of the Democratic State: France and Great Britain 1688-1789. Cambridge University Press, 2008.
- James Stock and Mark Watson. Vector Autoregressions. The Journal of Economic Perspectives, 15 (4):101-115, 2001. URL http://www.jstor.org/stable/2696519.
- Paul Streeten. Unbalanced Growth. Oxford Economic Papers, New Series, 11(2):167–190, 1959. URL http://www.jstor.org/stable/2662122.
- Vito Tani. Personal Income Taxation in Latin America: Obstacles and Possibilities. *National Tax Journal*, 19(2):156–162, 1966.
- Jonathan Temple and Ludger Wößmann. Dualism and Cross-Country Growth Regressions. *Journal of Economic Growth*, 11(3):187–228, nov 2006. ISSN 1381-4338. doi: 10.1007/s10887-006-9003-x. URL http://link.springer.com/10.1007/s10887-006-9003-x.
- Anthony Thirlwall. A General Model of Growth and Development on Kaldorian Lines. Oxford Economic Papers, 38(2):199–219, 1986.
- Richard Tiffin and P.J. Dawson. Shock Persistence in a Dual Economy Model of India. *Journal of Development Studies*, 40(1):32–47, oct 2003. ISSN 0022-0388. doi: 10.1080/00220380412331293657. URL http://www.tandfonline.com/doi/abs/10.1080/00220380412331293657.
- Charles Tilly. Coercion, Capital and European States: AD 990 1992. Wiley-Blackwell, 1992.
- Victor Uribe-Uran. State and Society in Spanish America during the Age of Revolution. Rowman & Littlefield Publishers, 2001.
- Dietrich Vollrath. The Dual Economy in Long-Run Development. *Journal of Economic Growth*, 14(4):287-312, dec 2009. ISSN 1381-4338. doi: 10.1007/s10887-009-9045-y. URL http://link.springer.com/10.1007/s10887-009-9045-y.
- David Waldner. State Building and Late Development. Cornell University Press, 1999.
- Frederic Weaver. Class, State, and Industrial Structure: The Historical Process of South American Industrial Growth. Praeger, 1980.
- Jeffrey Wooldridge. Introductory Econometrics: A Modern Approach. South-Western College Pub, 2nd. edition, 2002. ISBN 0324113641.

Maurice Zeitlin. The Civil Wars in Chile: (or The Bourgeois Revolutions that Never Were). Maurice

Zeitlin, 1984.

##	Loading	required	package:	pacman			

.**Word count**: 9,705