Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea 1: **Ejercicios**

 $\begin{array}{c} Luis\ Erick\ Montes\ Garcia\ \mbox{-}\ 419004547\\ Hele\ Michelle\ Salazar\ Zaragoza\ \mbox{-}\ 316068895 \end{array}$

- 2. Sea la función vectorial $r(\overrightarrow{t})=(4cos(\frac{t}{2}),4sin(\frac{t}{2})),$ donde $t\in[0,2\pi].$ A continuación responda lo siguiente:
 - (a) Calcule los vectores de velocidad y aceleración. Obtenemos la derivada de la función $r(\overrightarrow{t})$ para obtener la **velocidad**:

$$r'(\overrightarrow{t'}) = (-2sin(\frac{t}{2}), 2cos(\frac{t}{2}))$$

Obtenemos la derivada de la función $r'(\overrightarrow{t})$ para obtener la **aceleración**:

	$r''(\overrightarrow{t}) = (-cos($	$(\overrightarrow{t}) = (-cos(\frac{t}{2}), -sin(\frac{t}{2}))$				
t	velocidad	aceleración				
0	(0,2)	(-1,0)				
2π	(-0.109, 1.99)	(-0.99, -0.054)				

(b) Grafique la función vectorial, en el intervalo de t indicado.

(c) En la gráfica de la función vectorial (inciso anterior), agregue los vectores de velocidad y aceleración en el instante $t=\pi$

	t	velocidad	aceleración	
	π	(-0.054, 1.99)	(-0.99, -0.02)	
		4		
		3		
		2		
		(-0.054, 1.99)		
		1		
	(-0.99, -0.02)		
-4 -:	,	-2 -1 0	1 2 3	3 4
		-1		

(d) Obtenga el ángulo entre los vectores velocidad y aceleración.

Decimos que el vector de velocidad es el vector \overrightarrow{d} y que el vector de aceleración es \overrightarrow{b} . Para obtener el ángulo θ formamos un triángulo, siendo $\overrightarrow{d} - \overrightarrow{b}$ el lado opuesto al ángulo.

```
Aplicando ley de cosenos, tenemos que:
(\overrightarrow{a} \cdot \overrightarrow{b}) = ||\overrightarrow{a}||||\overrightarrow{b}||cos\theta
```

Despejamos
$$Cos\theta$$
:

$$cos\theta = \frac{(\overrightarrow{a} \cdot \overrightarrow{b})}{||\overrightarrow{a}||||\overrightarrow{b}||}$$

$$cos\theta = \frac{((-0.054, 1.99) \cdot (-0.99, -0.02))}{||(-0.054, 1.99)||||(-0.99, -0.02)||}$$

Despejamos
$$Cos\theta$$
:
$$cos\theta = \frac{(\overrightarrow{a} \cdot \overrightarrow{b})}{||\overrightarrow{a}|||||\overrightarrow{b}||}$$
Sustituímos:
$$cos\theta = \frac{((-0.054,1.99)\cdot(-0.99,-0.02))}{||(-0.054,1.99)||||(-0.99,-0.02)||}$$

$$cos\theta = \frac{((-0.054\cdot-0.99)+(1.99\cdot-0.02))}{\sqrt{(-0.054)^2+(1.99)^2\cdot\sqrt{(-0.99)^2+(-0.02)^2}}}$$

$$cos\theta = \frac{0.09326}{(1.99)(0.99)}$$

$$cos\theta = \frac{0.09326}{1.9701}$$

$$cos\theta = 0.04733$$
Spannes accomo inverso:

$$cos\theta = \frac{0.09326}{(1.99)(0.99)}$$

$$cos\theta = \frac{0.09326}{1.0701}$$

$$cos\theta = 0.04733$$

Sacamos coseno inverso:

$$\theta = \cos^- 1(0.04733) = 87.29\delta$$

3.

4. Proporcione la función vectorial $r(\overrightarrow{t})$, tal que cumpla las siguientes condiciones:

(a)
$$a(t) = (-1, -1, -1)$$

(b)
$$v(0) = (0, 0, 0)$$

(c)
$$r(0) = (10, 10, 10)$$

5.

6. Considere la función vectorial $r(\overrightarrow{t}) = ([cost]^3, [sint]^3)$. Responda lo siguiente:

- (a) Obtenga el vector tangente unitario a la curva.
- (b) Calcule la longitud de la curva para $t \in [0, \frac{\pi}{2}]$

7.

8. Obtenga la ecuación del círculo osculador para la función y = sinx en el punto de coordenadas $(\frac{\pi}{2}, 1)$. Proponga $r(\overrightarrow{t})$ a partir de la "parametrización trivial" de la función. Calcule lo siguiente:

(a)
$$(\overrightarrow{T})$$
, (\overrightarrow{N}) y k .

Haga una gráfica con la siguiente información:

- (a) La función y = sinx
- (b) El círculo osculador y además localizar el punto de coordenadas $(\frac{\pi}{2}, 1)$
- (c) Los vectores (\overrightarrow{T}) , (\overrightarrow{N}) .

9.