Clase # 7 de Análisis 3

Equipo clases a \LaTeX

20 de noviembre de 2020

Índice

т.	Teorema	Т
2.	Teorema	1
3.	Ejercicios	2
4.	Solución	3

1. Teorema

Condición suficiente de diferenciabilidad

Sea $f:S\subset\mathbb{R}^n\mapsto\mathbb{R},\ S$ abierto, $\vec{x}\in S.\ D_1f,\cdots,D_nf$ existen y son continuas en $B(\vec{x},r)\subset S.$ Entonces f es diferenciable en \vec{x}

2. Teorema

Regla de la cadena

Consideremos $f: S \subset \mathbb{R}^n \to \mathbb{R}$, S abierto, $\vec{r}: I \subset \mathbb{R} \to S$, y $g(t) = f(\vec{r}(t))$, $t \in I$. Sea $t \in I$ donde $\vec{r}'(t)$ existe y supongamos que f es diferenciable en $\vec{r}(t)$, entonces existe g'(t) y tenemos que

$$g'(t) = \nabla f(\vec{x}) \cdot \vec{r}'(t)$$

donde $\vec{x} = \vec{r}(t)$.

3. Ejercicios

- 1. Halle el vector gradiente si
 - a) $f(x,y) = x^2 + y^2 \sin(xy)$.
 - b) $f(x, y, z) = x^2 y^2 + 2z^2$.
- 2. Calcule la derivada direccional de $f(x,y,z)=x^2+2y^2+3z^2$ en (1,1,0) en la dirección de $\vec{e}_1-\vec{e}_2+2\vec{e}_3$.
- 3. Hallar los puntos (x,y) y las direcciones para las que la derivada direccional de $f(x,y) = 3x^2 + y^2$ tiene valor máximo, si (x,y) pertenece a la circunferencia $x^2 + y^2 = 1$.
- 4. Supóngase que f es diferenciable en cada punto de $B(\vec{x},r)$. Demuestre:
 - a) Si $\nabla f(\vec{y}) = \vec{0}$ para todo $\vec{y} \in B(\vec{x}, r)$ entonces f es constante en $B(\vec{x}, r)$.
 - b) Si $f(\vec{y}) \leq f(\vec{x})$ para todo $\vec{y} \in B(\vec{x}, r)$ entonces $\nabla f(\vec{x}) = \vec{0}$.
- 5. Hallar la derivada direccional de $f(x,y) = x^2 x + 2$ a lo largo de $y = x^2 x + 2$ en el punto (1,2). Use regla de la cadena.
- 6. Sea f un campo escalar no constante diferenciable en todo el plano y c una constante. Supongamos que la ecuación f(x,y) = c describe una curva C que tiene tangente en cada uno de sus puntos. Demuestre que f tiene las siguientes propiedades en cada punto de C
 - a) ∇f es un vector normal a \mathcal{C} .
 - b) La derivada direccional de f
 a lo largo de $\mathcal C$ es cero.
 - c) La derivada direccional de f
 tiene su valor máximo en la dirección del vector normal a \mathcal{C} .
- 7. Sea $f: S \subset \mathbb{R}^3 \to \mathbb{R}$, S es abierto, f es diferenciable en S. Sea c una constante y consideremos la superficie de nivel $\mathcal{H} = \{\vec{y} \in S; f(\vec{y}) = c\}$. Sea $\vec{a} \in \mathcal{H}$. Demuestre que la ecuación del plano tangente a la superficie \mathcal{H} satisface la ecuación

$$\nabla f(\vec{a}) \cdot (\vec{x} - \vec{a}) = 0$$

8. Sea $f(x,y) = \sqrt{|xy|}$. Compruebe que $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ en (0,0) ¿Tiene la superficie z = f(x,y) plano tangente en (0,0)?

2

4. Solución

1. a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = x^2 + y^2 \sin(xy)$. Como $\frac{\partial f}{\partial x}(x,y) = 2x + y^3 \cos(xy)$ y $\frac{\partial f}{\partial y}(x,y) = 2y \sin(xy) + y^2 x \cos(xy)$, tenemos que

$$\nabla f(x,y) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j$$
$$= (2x + y^3\cos(xy))i + (2y\sin(xy) + y^2x\cos(xy))j$$

b) Sea $f: \mathbb{R}^3 \mapsto \mathbb{R}$ tal que $f(x, y, z) = x^2 - y^2 + 2z^2$. Entonces

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial y}k$$
$$= 2x i - 2y j + 4z k$$

2. Sea $f: \mathbb{R}^3 \to \mathbb{R}$ la función definida por $f(x,y,z) = x^2 + 2y^2 + 3z^2$, consideremos el punto P(1,1,0) y el vector $\vec{v} = e_1 - e_2 + 2e_3 = (1,-1,2)$. Entonces tenemos que el vector unitario \vec{u} en dirección del vector \vec{v} es

$$\vec{u} = \frac{1}{||\vec{v}||} \vec{v} = \left(\frac{\sqrt{6}}{6}, \frac{-\sqrt{6}}{6}, \frac{\sqrt{6}}{3}\right)$$

Ahora, como $D_{\vec{v}}(x,y,z) \,=\, \nabla f(x,y,z) \cdot \vec{u}$ tenemos que

$$D_{\vec{v}}(x,y,z) = \frac{\sqrt{6}}{6}x - \frac{-2\sqrt{6}}{3}y + 2\sqrt{6}z.$$

Por tanto,

$$D_{\vec{v}}(1,1,0) = \frac{\sqrt{6}}{6} - \frac{-2\sqrt{6}}{3} = -\frac{\sqrt{6}}{3}$$

3.

4. a) Sea $\vec{y} \in B(\vec{x},r)$, consideremos la función $g:[0,1] \mapsto \mathbb{R}$ definida por $g(t) = f((1-t)\vec{x} + t\vec{y})$. Como f es diferenciable en el conjunto convexo $B(\vec{x},r)$, tenemos que g es continua en [0,1] y diferenciable en (0,1).

Si aplicamos que teorema del valor medio para funciones de un variable, tendremos que

$$g(1) - g(0) = g'(\theta), \ \theta \in (0, 1)$$

Como $g(1) = f(\vec{y})$ y $g(0) = f(\vec{x})$, tenemos que

$$f(\vec{y}) - f(\vec{x}) = g'(\theta)$$

Ahora, si aplicamos la regla de la cadena a $g(\theta) = f((1-\theta)\vec{x} + \theta \vec{y})$ tendremos que

$$g'(\theta) = \nabla f(\vec{r}(\theta)) \cdot (\vec{y} - \vec{x})$$

donde $\vec{r}(\theta) = (1 - \theta)\vec{x} + \theta \vec{y}$. Por lo que

$$f(\vec{y}) - f(\vec{x}) \, = \, \nabla f(\vec{r}(\theta)) \cdot (\vec{y} - \vec{x})$$

Como $\vec{r}(\theta) \in B(\vec{x},r)$ para toda $\theta \in (0,1)$, tenemos que $\nabla f(\vec{r}(\theta)) = \vec{0}$, y en consecuencia

$$f(\vec{y}) - f(\vec{x}) = \vec{0} \cdot (\vec{y} - \vec{x}) \implies f(\vec{y}) = f(\vec{x})$$

Por tanto, para todo $\vec{y} \in B(\vec{x}, r)$ f es constante.