PARABOLA

LEVEL-I

*1.	The parametric equation of the parabola is its directrix is (A) $x = 0$ (C) $y = 0$	$x = t^2 + 1$, $y = 2t + 1$. The equation of (B) $x + 1 = 0$ (D) none of these
*2.	The tangents to the parabola $y^2 = 4x$ at the line (A) $x = 3$ (C) $y = 3$	the points $(1, 2)$ and $(4, 4)$ meets on (B) $x + y = 4$ (D) none of these
3.	Normal at point to the parabola $y^2 = 8x$, will meet the parabola again at a point (A) (12, -18) (C) (-18, 12)	where abscissa is equal to ordinate, (B) (-12, 18) (D) (18, -12)
4.	If the tangents to the parabola $y^2 = 4ax$ at the point (x_3, y_3) then (A) $y_3 = \sqrt{y_1y_2}$ (C) $\frac{2}{y_3} = \frac{1}{y_1} + \frac{1}{y_2}$	the points (x_1, y_1) and (x_2, y_2) meet at (B) $2y_3 = y_1 + y_2$ (D) none of these
5.	If tangents at A and B on the parabola y^2 ordinates of A, C and B are (A) always in A.P. (C) always in H.P.	(B) always in G.P. (D) none of these
6.	The point P on the parabola $y^2 = 4ax$ for $w = (-a, 0)$, $Q = (0, a)$, is (A) (a, 2a) (C) (4a, 4a)	which PR - PQ is maximum, where R (B) (a, -2a) (D) (4a, -4a)
*7.	The point (1, 2) is one extremity of focal cloth of this focal chord is (A) 2 (C) 6	hord of parabola $y^2 = 4x$. The length (B) 4 (D) none of these
8.	If normals at two points of a parabola y^2 = product of ordinates is (A) $2a^2$ (C) $6a^2$: 4ax intersect on the curve, then the (B) $4 a^2$ (D) $8a^2$
9.	If AFB is a focal chord of the parabola y^2 latus-rectum of the parabola is equal to (A) $\frac{80}{9}$ (C) 9	= 4ax and AF = 4, FB = 5, then the (B) $\frac{9}{80}$ (D) 80

10.	The length of the chord of the parabola α and having slope $\cot \alpha$ is (A) $4\cos \alpha$. $\csc^2 \alpha$ (C) $4\sin \alpha$. $\sec^2 \alpha$	$x^2 = 4y$ passing through the vertex (B) 4 tan α sec α (D) none of these
11.	The straight line $y = mx + c$ touches the part (A) $c = am - \frac{a}{m}$ (C) $c = am + \frac{a}{m}$	abola $y^2 = 4a(x + a)$ if (B) $c = m - \frac{a}{m}$ (D) none of these
*12.	The equation of the tangent to the parabola x-axis is (A) $3x - \sqrt{3}y + 4 = 0$ (C) $3x - y + 4 = 0$	$y^2 = 16x$ inclined at an angle of 60^0 to (B) $3x + \sqrt{3}y + 4 = 0$ (D) none of these
*13.	For all parabolas $x^2 + 4x + 4y + 16 = 0$, the are given by (A) $x + 2 = 0$, $y - 2 = 0$ (C) $x + 2 = 0$, $y + 2 = 0$	equations of the axis and the directrix (B) $x - 2 = 0$, $y + 2 = 0$ (D) none of these
*14.	If (4, 0) is the vertex and y-axis the directrix (A) (8, 0) (C) (0, 8)	of a parabola, then its focus is (B) (4, 0) (D) (0, 4)
15.	The slope of the normal at the point (at ² , 2at (A) $\frac{1}{t}$ (C) -t	t) of the parabola $y^2 = 4ax$ is (B) t (D) $-\frac{1}{t}$
*16.	If ASB is a focal chord of a parabola such the rectum of the parabola is (A) $\frac{8}{3}$ (C) $\frac{25}{3}$	hat AS = 2 and SB = 4, then the latus (B) $\frac{16}{3}$ (D) none of these
17.	The normal to the parabola $y^2 = 8x$ at $(2, 4)$ (A) $(18, 12)$ (C) $(-18, 12)$	meets the parabola again at (B) (18, -12) (D) none of these
*18.	The value of k for which the line $x + y + 1 = (A) -4$ (C) 2	0 touches the parabola $y^2 = kx$ is (B) 4 (D) -2
*20.	The equation of directrix of the parabola x^2 (A) $y = -1$	4x + 4y + 8 = 0 is (B) $y = 1$

	(C) $y = 0$	(D) $y = \frac{3}{2}$		
21.	The area of the triangle formed by the tang = $4ax$ both drawn at the same end of the parabola is $(A) 2\sqrt{2} a^2$			
	(C) 4a ²	(D) none of these		
22.	If two normals at P and Q of a parabola y^2 the curve, then the product of ordinates of F (A) $8a^2$ (C) $2a^2$			
23.	The length of the subnormal to the parabola (A) a $\sqrt{2}$ (C) a/ $\sqrt{2}$	$y^2 = 4ax$ at any point is equal to (B) $2\sqrt{2}$ a (D) 2a		
*24.	The number of tangents to the parabola $y^2 = (A) \ 0$ (C) 2	= 8x through (2, 1) is (B) 1 (D) none of these		
*25.	If the line $x - 1 = 0$ is the directrix of the parabola $y^2 - kx + 8 = 0$, then one of the values of k is			
	(A) $\frac{1}{8}$	(B) 8		
	(C) 4	(D) $\frac{1}{4}$		
*26.	If the point P $(4, -2)$ is one end of the focal the slope of the tangent at Q is	chord PQ of the parabola $y^2 = x$, then		
	$(A) - \frac{1}{4}$	(B) $\frac{1}{4}$		
	(C) 4	(D) - 4		
*27.	The equation of the parabola whose veri distances a and a_1 from the origin respective (A) $y^2 = 4(a_1 - a)x$ (C) $y^2 = 4(a_1 - a)(x - a_1)$			
*28.	If (2, 0) is the vertex and y– axis the directric (A) (2, 0) (C) (4, 0)	ix of the parabola, then the focus is (B) $(-2, 0)$ (D) $(-4, 0)$		
29.	If the normals at t ₁ and t ₂ meets on the parabola then			
	(A) $t_2 = -t_1 - \frac{2}{t_1}$	(B) $t_1t_2 = 2$		
	(C) $t_1 t_2 = -1$	(D) none of these		

*30.

*30.	The graph represented by the equations x = (A) parabola (C) hyperbola	= sin ² t, y = 2 cost is (B) circle (D) none of these
31.	If $y = -4$ is the directrix and $(-2, -1)$ the vertices	ertex of a parabola then its focus is at
32.	The condition that the line $\frac{x}{a} + \frac{y}{b} = 1$ be	a normal to the parabola $y^2 = 4px$ is
33.	If $k = \dots$, the line $y = 2x + k$	is normal to the parabola $y^2 = 4x$ at
34.	The value of k for which the equation $x^2 + y$ a parabola are	
35.	The point of intersection of the tangents of where the parameter t has the value 1 and 2 (A) (3, 8) (C) (2, 3)	
36.	If the line $y = x + k$ is a normal to the paral (A) $2\sqrt{2}$ (C) -3	pola $y^2 = 4x$ then k can have the value (B) 4 (D) 3
37.	The tangents from the origin to the parabol (A) $\pi/6$ (C) $\pi/3$	a $y^2 + 4 = 4x$ inclined of (B) $\pi/4$ (D) $\pi/2$
38.	Normal at point to the parabola $y^2 = 4ax$ will meet the parabola again at a point (A) (6a, $-9a$) (C) ($-9a$, 6a)	where abscissa is equal to ordinate, (B) (-6a, 9a) (D) (9a, -6a)
*39.	If the focus of the parabola is (-2, 1) and the then the vertex is (A) (0, 3) (C) (-1, 2)	ne directrix has the equation $x + y = 3$ (B) $(-1, 1/2)$ (D) $(2, -1)$
40.	The locus of the point from which tangents (A) straight line (C) circle	s to a parabola are at right angles is a (B) pair of straight lines (D) none
41.	Given the two ends of the latus rectum, the can be drawn is (A) 1	e maximum number of parabolas that (B) 2

	(C) 0	(D) infinite
*42.	The Cartesian equation of the curve whose 3 and $y = t + 1$ is	parametric equations are $x = t^2 + 2t + 2t$
	(A) $y = (x-1)^2 + 2(y-1) + 3$ (C) $x = y^2 + 2$	(B) $x = (y-1)^2 + 2(y-1) +5$ (D) None of these
*43.	If line $y = 2x + \frac{1}{4}$ is tangent to $y^2 = 4ax$, then	n a is equal to
	(A) 1/2 (C) 2	(B) 1 (D) None of these
44.	The shortest distance between the parabole $12y + 20 = 0$ is	a $y^2 = 4x$ and the circle $x^2 + y^2 + 6x -$
	(A) $4\sqrt{2}-5$	(B) 0
	(C) $3\sqrt{2}+5$	(D) 1
45.	The equation $(13x - 1)^2 + (13y - 1)^2 = k (5x)^2$	x – 12y + 1) ² will represent a parabola
	(A) $k = 2$ (C) $k = 169$	(B) k = 81 (D) k =1
*46.	If I, m be the lengths of segments of any following length of semi-latus rectum is	
	(A) $\frac{1+m}{2}$	(B) $\frac{lm}{l+m}$
	(C) $\frac{2 \text{Im}}{\text{I} + \text{m}}$	(D) $\sqrt{\text{Im}}$
47.	The normal chord of a parabola $y^2 = 4ax$ a abscissa subtends a right angle at the	t a point whose ordinate is equal to
	(A) focus	(B) vertex
	(C) end of the latus rectum	(D) none of these
48.	If a tangent to the parabola $y^2 = ax$ makes of contact will be	an angle of 45°with x – axis, its point
	(A) (a/2, a/4) (C) (a/4, a/2)	(B) (-a/2, a/4) (D) (-a/4, a/2)
49.	The triangle formed by the tangents to a platus rectum and the double ordinate throug (A) equilateral (C) right angled isosceles	
50.	The equation $\lambda x^2 + 4xy + y^2 + \lambda x + 3y + 2 =$ (A) -4 (C) 0	0 represents a parabola if λ is (B) 4 (D) none of these

LEVEL-II

1.	From point P two tangents are drawn from slope of one tangent is three times the slope (A) straight line (C) parabola	
*2.	The chord AB of the parabola $y^2 = 4ax + A = (at_1^2, 2at_1)$, $B = (at_2^2, 2at_2)$ and AC : A (A) $t_2 = 2t_1$ (C) $t_1 + 2t_2 = 0$	
3.	If the normals drawn at the end poir parabola $y^2 = 4ax$ intersect at parabola, intersection of the tangent drawn at the (A) $x + a = 0$ (C) $y^2 - 4x + 6 = 0$	then the locus of the point of
4.	If the normals at the end points of a variab $2x = 0$ are perpendicular, then the tangents (A) $x + y = 3$ (C) $y+3=0$	
*5.	The number of focal chord(s) of length 4/7 (A) 1 (C) infinite	in the parabola $7y^2 = 8x$ is (B) zero (D) none of these .
6.	The equation of common tangent touching parabola $y^2 = 4x$ is	g the circle $x^2 - 4x + y^2 = 0$ and the
	(A) $\sqrt{2}$ y = 2x + 1	(B) $\sqrt{2} y = -(x + 2)$
	(C) $\sqrt{2} y = x + 2$	(D) none of these
7.	Three normals to the parabola $y^2 = x$ are drawn	awn through a point (c, 0) then
	$(A) c = \frac{1}{4}$	(B) $c = \frac{1}{2}$
	(C) $c > \frac{1}{2}$	(D) none of these
8.	Tangents are drawn from (-2, 0) to $y^2 = 8x$ these tangents and the corresponding characteristics (A) $4(\sqrt{2}+1)$	
	(C) 8 $\sqrt{2}$	(D) None of these.
9.	The coordinates of the point on the parabothe straight line $y = 3x - 3$ are (A) (-2, -8) (C) (2, 20)	ola $y = x^2 + 7x + 2$, which is nearest to (B) (1, 10) (D) (-1, -4)

10.	The equation of the common tangent to the (A) $x = 0$ (C) $2x - 3y - 36 = 0$	parabola $y^2 = 32x$ and $x^2 = 108y$ is (B) $2x + 3y + 36 = 0$ (D) $2x - 3y + 36 = 0$
11.	The locus of the middle points of the che subtend a right angle at the vertex is	
12.	Three normals are drawn from a point (c, 0 always the x-axis. the value of c for perpendicular to each other is	which the other two normals are
13.	Three distinct normals are drawn from a portion foot of two normals are -1 and 3 on the particular normal is	
14.	If two of the three feet of normals drawn from $(1, 2)$ and $(1, -2)$ then the third foot is (A) $(2, 2\sqrt{2})$ (C) $(0, 0)$	om a point to the parabola $y^2 = 4x$ be (B) $(2, -2\sqrt{2})$ (D) none
15.	Let $y^2 = 4ax$ be a parabola and $x^2 + y^2 + 2b$ and b so that parabola and circle touch eact (A) $ab > 0$ (C) $ab < -1$	
*16.	The parametric coordinates of any point on (A) $(\sin^2\theta, \sin\theta)$ (C) $(\sec^2\theta, \sec\theta)$	the parabola $y^2 = x$ can be (B) $(\cos^2\theta, \cos\theta)$ (D) $(\tan^2\theta, \tan\theta)$
*17.	Slope of tangent to $x^2 = 4y$ from (-1, -1) can (A) $\frac{-1+\sqrt{5}}{2}$ (C) $\frac{1-\sqrt{5}}{2}$	be (B) $\frac{-1-\sqrt{5}}{2}$ (D) $\frac{1+\sqrt{5}}{2}$
18.	A line ℓ passing through the focus of the parabola in two distinct points. Slope of the (A) any real number (C) less than −1 or greater than 1	
19.	The length of the common chord of the curv $y^2 - 4x-4 = 0$ and $4x^2 + 9y^2 - 36 = 0$ is (A) 2 $\sqrt{3}$ units (C) 4 units	(B) 3 $\sqrt{2}$ units (D) 6 units
20.	$\sqrt{x} + \sqrt{y} = \sqrt{a}$ represents (A) a part of parabola (C) Hyperbola	(B) ellipse (D) Line segment

- A line through the focus of parabola $y^2 = 4(x 2)$ having slope 'm' meets the curve in distinct real points, then exhaustive set of values of 'm' is; 21.
 - (A) $m \in (-1, 1)$

(B) $m \in (-2, 2)$

(C) $m \in (-\infty, \infty)$

- (D) none of these
- If $(y + b) = m_1 (x + a)$ and $(y + b) = m_2 (x + a)$ be tangents of $y^2 = 4ax$ then; (A) $m_1 + m_2 = 0$ (B) $m_1 m_2 = 0$ 22.

(C) $m_1 m_2 = -1$

- (D) $m_1 = -m_2 \frac{2}{m_2}$
- A tangent to the parabola $x^2 = 4ay$ is inclined at an angle $\frac{\pi}{6}$ with the x-axis, then *23. coordinates of point of contact is;
 - (A) $(3a, 2a\sqrt{3})$

(B) $\left(\frac{a}{3}, \frac{2a}{\sqrt{3}}\right)$

(C) $\left(\frac{a}{3}, -\frac{2a}{\sqrt{3}}\right)$

- (D) $\left(\frac{2a}{\sqrt{3}}, \frac{a}{3}\right)$
- The length of focal chord of the parabola $y^2 = 4ax$ at a distance b from the vertex 24.
 - (A) $2a^2 = bc$

(C) ac = b^2

(B) $a^3 = b^2c$ (D) $b^2c = 4a^3$

LEVEL-III

1.	The circle drawn with variable chord $x + ay$ parabola $y^2 = 20x$ as diameter will always $(A) x + 5 = 0$ $(C) x + y + 5 = 0$			
2.	The set of points on the axis of the parafrom which 3 distinct normals can be drawn (h, k) lying on the axis of the parabola such (A) $h > 3$ (C) $k > 3/2$	n to the parabola, is the set of points		
3.	Radius of the circle passing through the ori at (1, 2) (A) 5/6	(B) $5\sqrt{2}/6$		
	(C) $5/\sqrt{2}$	(D) none of these		
4.	If the parabola $y = f(x)$, having axis parall $(1, 1)$ then;	el to y-axis, touches the line $y = x$ at		
	(A) $2f'(0) + f(0) = 1$ (C) $2f(0) - f'(0) = 1$	(B) $2f(0) + f'(0) = 1$ (D) $2f'(0) - f(0) = 1$		
*5.	The length of latus rectum of the parabola whose focus is (a $sin2\theta$, a $cos2\theta$) a directrix is the line $y = a$, is			
	(A) $\left 4a\cos^2\theta\right $	(B) $\left 4a\sin^2\theta\right $		
	(C) $ 4a\cos 2\theta $	(D) $ 4a\sin 2\theta $		
6.	Chord AB of the parabola $y^2 = 4ax$ subtendintersection of tangents drawn to parabola at (A) $x + 2a = 0$ (C) $x + 4a = 0$			
7.	A circle is drawn to pass through the extremities of the latus rectum of the parabola $y^2 = 8x$. It is given that this circle also touches the directrix of the			
	parabola. Radius of this circle is equal to (A) 2 (C) 8	(B) $\sqrt{21}$ (D) 4		
8.	The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the $P_i(x_i, y_i)$, i = 1, 2, 3, 4; then	ne parabola $x^2 = 4ay$ at points		
	(A) $\sum y_i = 0$	(B) $\sum x_i = 0$		
	(C) $\sum y_i = -4(f+2a)$	(D) $\sum x_i = -2(g+2a)$		

16. The line x + y = a touches the parabola
$$y = x - x^2$$
 and $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right), \ g\left(\frac{5}{4}\right) = 1, \ b = g(f(x)), \text{ then `}$

(A) a = b	(B) $a = 2b$
(C) $a + b = 0$	(D) $a + 2b = 0$

17. The co-ordinates of the point on the parabola $y^2 = 8x$, which is at minimum distance from the circle $x^2 + (y+6)^2 = 1$ are

(A) (2, 4) (B) (-2, 4) (C) (-2, -4) (D) (2, -4)

18. If three normals can be drawn to the parabola $y^2 = x$ from the point (C, 0), then the two normals other than the axis of the parabola are perpendicular to each other if C =

(A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $-\frac{3}{4}$ (D) $-\frac{4}{3}$

19. If $f(x) = \frac{1}{1-x}$ and α , $\beta(\alpha > \beta)$ be the values of x, where f(f(x)) is not defined, then a ray of light parallel to the axis of the parabola $y^2 = 4x$ after reflection from the internal surface of the parabola will necessarily pass through the point (A) (α, α) (B) (α, β)

*20. If t_1 and t_2 be the ends of a focal chord of the parabola $y^2 = 4ax$, then the

(A) imaginary roots,

equation $t_1x^2 + ax + t_2 = 0$ has

 $(C)(\beta,\beta)$

(B) both roots positive

(D) None

- (C) one positive and one negative roots
- (D) both roots negative

ANSWERS

LEVEL -I								
	1. 5.	A A	2. 6.	C A	3. 7.	D B	4. 8.	B D
	9. 13. 17. 22. 26. 30. 33. 37. 41. 45.	A C B A C A -12, (4, -4) B B D C	10. 14. 18. 23. 27. 31. 34. 38. 42. 46. 50.	A A B D B (-2, 2) ± 1 D C C C B	11. 15. 20. 24. 28. 32. 35. 39. 43.	C C C A C $a^3b = 2pba^2 - C$ C C A A	12. 16. 21. 25. 29. + pb ³ 36. 40. 44.	A B C C B C A A C
LEVE	L -II							
	1. 5. 9.	C B A $c = \frac{3}{4}$	2. 6. 10.	B D B	3. 7. 11.	B C $y^2 - 2ax + 8a$	4. 8. 1 ² = 0	D B
	13. 17. 21.	4 -2 A, B D	14. 18. 22.	C D C	15. 19. 23.	B C D	16. 20. 24.	D A D
LEVE	1. 5. 9. 13. 17.	A B D B	2. 6. 10. 14. 18.	A, B, C, D C A C A	3. 7. 11. 15. 19.	C D A D B	4. 8. 12. 16. 20.	B B D A C