Graficas y juegos. Tarea 1(pares).

Diego Méndez Medina, Pablo Trinidad... .

2. Den un ejemplo de una gráfica tal que $m > \binom{n}{2}$.

Solución:

Sea n = 3.

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} \tag{1}$$

 $\implies m > 3$

Así:

 $V_G = \{v_1, v_2, v_3\}$ $A_G = \{v_1v_2, v_2v_3, v_3v_1, v_3v_3\}$

Den un ejemplo de dos gráficas distintas G y H tales que $n_G=nH$ y $m_G = m_H$ pero $G \ncong H$.

Solución:

Considerese la siguiente gráfica:

$$V_G = \{v_1, v_2, v_3, v_4\}$$

$$A_G = \{v_1v_4, v_2v_3\}$$

$$V_H = \{u_1, u_2, u_3, u_4\}$$

$$A_H = \{u_1u_2, u_2u_3\}$$

Veamos por que no son isomorfas:

Como f_A debe ser biyectiva omitiremos los casos donde f_A no es inyectiva. Así:

Caso 1:

Si
$$\Psi_G(a_1) = v_1 v_3 \Rightarrow \Psi_H(f_A(a_1)) = u_2 u_3 = f_V(v_1) f_V(v_3)$$

$$\implies \Psi_G(a_2) = v_2 v_4 \Rightarrow \Psi_H(f_A(a_2)) = u_1 u_3 = f_V(v_2) f_v(v_4)$$

$$\implies f_V(v_3) = f_V(v_4) = u_3$$
. Con lo que f_v no es inyectiva.

Caso 2:

Si
$$\Psi_G(a_1) = v_2 v_4 \Rightarrow \Psi_H(f_A(a_1)) = u_2 u_3 = f_V(v_1) f_V(v_3)$$

$$\implies \Psi_G(a_2) = v_1 v_3 \Rightarrow \Psi_H(f_A(a_2)) = u_1 u_3 = f_V(v_2) f_v(v_4)$$

$$\implies f_V(v_4) = f_V(v_3) = u_3$$
. Con lo que f_v no es inyectiva.

Recordemos que un ismorfismo ocurre cuando f_V y f_A son biyectivas. f_V no es inyectiva por lo antes mencionado y f_V no es suprayectica por que u_4 no forma parte de la imagen debido a que es el unico vertice de ambas graficas con grado igual a cero.

6. Muestren que si G es bipartita, $H \leq G$ y H no es trivial entonces H tambien es bipartita.

Solución:

Vamos a dar por hecho las premisas, negaremos lo que queremos demostrar y buscaremos alguna contradiccion. Es decir:

- G es una gráfica bipartita.
- $H \leq G$.
- H no es trivial.
- H **no** es bipartita

Debido a que G es bipartita existen dos conjuntos de vertices, X y Y, t.q $V_G \subseteq X \cup Y$, con $X \neq \emptyset \neq Y$ y $X \cap Y = \emptyset$.

Asi
$$H \subseteq G \Rightarrow V_H \subseteq X \cup Y$$

Definimos a los conjuntos X' y Y' como:

$$X' = \forall x (x \in X \land x \in V_H).$$

 $Y' = \forall y (y \in Y \land y \in V_H).$

Se observa que:

- $X' \subseteq X, X' \subseteq V_H$.
- $Y' \subseteq Y$, $Y' \subseteq V_H$.
- $X' \cup Y' = \emptyset$.

Como H no es bipartita:

$$\exists v_x \in X' \land \exists u(u \in V_H \backslash Y' \land u \in V_H) \land \exists a \in A_H \text{ t.q } \Psi_H(a) = v_x u$$

Así: existe una partición en V_H entre los conjuntos $X'' = X' \cup u$ y Y'.

Pero estamos afirmando que existe un elemento en V_H , u, que no existe en V_G y al hacer eso no ocurre que $H \leq G$ sino que $H \geq G$ lo cual contradice una de las premisas.

El hecho de que si H no es bipartita conlleve incongruencias, prueba que H debe ser bipartita tambien. ■

8. Muestren que en un gráfica simple no trivial siempre hay dos vértices(por lo menos) que tienen el mismo grado.

Solución:

Como G no es trivial existen por lo menos dos vertices.

Sea $v \in V_G$ t.q $\forall u \in V_G \setminus v(gra(v) \geq gra(u))$. Es decir v es el o uno de los vertice(s) con grado máximo.

- caso gra(v) = 0 Si ocurre que gra(v) = 0 $\implies \forall u \in V_G(grad(u) = 0) \equiv \neg \exists u \in V_G(grad(v) > 0)$ Es decir que n, con $n \geq 2$, vertices tienen grado 0.
- caso gra(v) = n-1 Si gra(v) = n - 1 $\forall u \in V_G \backslash v(vu \in A_G) \equiv \neg \exists u \in V_G(vu \notin A_G)$ $\implies \forall u \in V_G(gra(v) \ge 1)$
- caso 0 < gra(v) < n 1.

 ${\bf 10.}\;\;$ Demuestren que si k es un número impar entonces no puede existir una gráfica G $k - regular con n_G impar.$

Solución:

12. Muestren que si G es simple y $m > \binom{n-1}{2}$ entonces G es conexa. Solución: