SIMULATING ULTRACOLD ATOMS

CHRISTOPHER JON WATKINS

From classical to quantum gases

December 2013 – version 0.0.1

Ohana means family. Family means nobody gets left behind, or forgotten.

— Lilo & Stitch

Dedicated to the loving memory of Rudolf Miede. 1939–2005

ABSTRACT

Short summary of the contents...

PUBLICATIONS

Some ideas and figures have appeared previously in the following publications:

Put your publications from the thesis here. The packages multibib or bibtopic etc. can be used to handle multiple different bibliographies in your document.

We have seen that computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty.

— ? [?]

ACKNOWLEDGEMENTS

Put your acknowledgements here.

Many thanks to everybody who already sent me a postcard!

Regarding the typography and other help, many thanks go to Marco Kuhlmann, Philipp Lehman, Lothar Schlesier, Jim Young, Lorenzo Pantieri and Enrico Gregorio¹, Jörg Sommer, Joachim Köstler, Daniel Gottschlag, Denis Aydin, Paride Legovini, Steffen Prochnow, Nicolas Repp, Hinrich Harms, Roland Winkler, and the whole LATEX-community for support, ideas and some great software.

Regarding LyX: The LyX port was intially done by Nicholas Mariette in March 2009 and continued by Ivo Pletikosić in 2011. Thank you very much for your work and the contributions to the original style.

¹ Members of GuIT (Gruppo Italiano Utilizzatori di TEX e LATEX)

CONTENTS

```
INTRO MATERIAL
  INTRODUCTION
                       3
    Organization
1.1
                      4
    Style Options
1.2
                      5
    Customization
                       6
1.3
    Issues
    Future Work
                     8
1.5
    License
2 EXAMPLES
    A New Section
2.1
      Test for a Subsection
2.1.1
      Autem Timeam
2.1.2
2.2 Another Section in This Chapter
                                      10
      Personas Initialmente
2.2.1
      Figure Citations
2.2.2
  MATH TEST CHAPTER
                            15
    Some Formulas
                       15
3.2 Various Mathematical Examples
                                      16
  INTRODUCTION
    Thermal Physics
                        17
      Collision Rates
4.1.1
                        17
II
  DSMC
             19
  INHOMOGENEOUS GASES
    Collision Rates in Inhomogeneous Gases
                                              21
    Thermalisation
      Walraven Thermlisation
                                22
5.2.1
      Monroe Thermalisation
                                23
5.3 Evaporation
                    23
5.4 Adiabaticity
                    24
6 MAJORANA INTERULDE
                              27
    Majornan Spin Flips
6.2 Landau Zener Formula
                              27
  DSMC WITH SPIN - EHRENFEST
    Schrödinger Simulations
      Simulating Schrödinger Equation
                                         29
      Single Atom Spin Flips
7.2 Full Gas Simulations
      Ioffe Pritchard Trap
      Quadrupole Trap
7.2.2
8 DSMC WITH SPIN - MCWF
                                31
```

```
8.1 Schrödinger Simulations
      Simulating Schrödinger Equation
                                        31
      Single Atom Spin Flips
8.2 Full Gas Simulations
                           31
      Ioffe Pritchard Trap
8.2.1
                            31
8.2.2
      Quadrupole Trap
                          31
III FEMDVR
                33
9 FEMDVR
              35
9.1 1D FEMDVR
                    35
9.1.1 Scaling Comparison to CPU
                                   35
9.1.2 Real Simulation
                        35
9.2 3D FEMDVR
                    35
9.2.1 Knots
               35
IV CUDA
             37
10 CUDA DSMC
                  39
10.1 CUDA
10.1.1 Parallelisation
10.2 Speed up
10.2.1 Some simulations
                          39
   APPENDIX
A
   MOTION INTEGRATION
                              43
     Euler Method
A.1
                      43
     Semi-Implicit Euler Method
A.2
     Verlet Algorithm
A.3
                        43
     Leap Frog Method
A.4
                          44
     Velocity Verlet
A.5
                      44
     Beeman's Algorithm
А.6
   MAGNETIC TRAPPING
                             45
  DIRECT SIMULATION MONTE CARLO
                                          47
    Appendix Section Test
   Another Appendix Section Test
                                     48
D NON-DIMENSIONALISATION
                                  49
D.1 Quasi - 1D GPE
D.2 Majorana Problem Spin Half
D.3 Another Appendix Section Test
                                     52
E FINITE ELEMENT METHOD
                                53
BIBLIOGRAPHY
                  55
```

LIST OF FIGURES

Figure 1 Tu duo titulo debitas latente 13

LIST OF TABLES

Table 1	Autem timeam de	eleniti usu id	12
Table 2	Autem usu id	48	
Table 3	Autem usu id	52	

LISTINGS

т	A Cl 1	0
Listing 1	A floating example	48
Listing 2	A floating example	52

ACRONYMS

DRY Don't Repeat Yourself

API Application Programming Interface

UML Unified Modeling Language

Part I

INTRO MATERIAL

You can put some informational part preamble text here. Illo principalmente su nos. Non message <u>occidental</u> angloromanic da. Debitas effortio simplificate sia se, auxiliar summarios da que, se avantiate publicationes via. Pan in terra summarios, capital interlingua se que. Al via multo esser specimen, campo responder que da. Le usate medical addresses pro, europa origine sanctificate nos se.

INTRODUCTION

This template for LATEX has two goals:

- 1. Provide students with an easy-to-use template for their Master's or PhD thesis (though it might also be used by other types of authors for reports, books, etc.).
- 2. Provide a classic, high-quality typographic style that is inspired by ?'s "The Elements of Typographic Style" [?].

The bundle is configured to run with a <u>full</u> MiKT_EX or T_EXLive installation right away and, therefore, it uses only freely available fonts.

People interested only in the nice style and not the whole bundle can now use the style stand-alone via the file classicthesis.sty. This works now also with "plain" LATEX.

As of version 3.0, classicthesis can also be easily used with $L_{Y}X^{1}$ thanks to Nicholas Mariette and Ivo Pletikosić. The $L_{Y}X$ version of this manual will contain more information on the details.

This should enable anyone with a basic knowledge of \LaTeX 2 $_{\mathcal{E}}$ or \LaTeX to produce beautiful documents without too much effort. In the end, this is my overall goal: more beautiful documents, especially theses, as I am tired of seeing so many ugly ones.

The whole template and the used style is released under the GNU General Public License.

If you like the style then I would appreciate a postcard:

Andre Miede Detmolder Strasse 32 31737 Rinteln Germany

The postcards I received so far are available at:

http://postcards.miede.de

IMPORTANT NOTE: Some things of this style might look unusual at first glance, many people feel so in the beginning. However, all things are intentionally designed to be as they are, especially these:

• No bold fonts are used. Italics or spaced small caps do the job quite well.

¹ http://www.lyx.org

- The size of the text body is intentionally shaped like it is. It supports both legibility and allows a reasonable amount of information to be on a page. And, no: the lines are not too short.
- The tables intentionally do not use vertical or double rules. See the documentation for the booktabs package for a nice discussion of this topic.²
- And last but not least, to provide the reader with a way easier access to page numbers in the table of contents, the page numbers are right behind the titles. Yes, they are <u>not</u> neatly aligned at the right side and they are <u>not</u> connected with dots that help the eye to bridge a distance that is not necessary. If you are still not convinced: is your reader interested in the page number or does she want to sum the numbers up?

Therefore, please do not break the beauty of the style by changing these things unless you really know what you are doing! Please.

1.1 ORGANIZATION

A very important factor for successful thesis writing is the organization of the material. This template suggests a structure as the following:

You can use these margins for summaries of the text body...

- Chapters/ is where all the "real" content goes in separate files such as Chapter01.tex etc.
- FrontBackMatter/ is where all the stuff goes that surrounds the "real" content, such as the acknowledgments, dedication, etc.
- gfx/ is where you put all the graphics you use in the thesis. Maybe they should be organized into subfolders depending on the chapter they are used in, if you have a lot of graphics.
- Bibliography.bib: the BibTEX database to organize all the references you might want to cite.
- classicthesis.sty: the style definition to get this awesome look and feel. Bonus: works with both LaTeX and PDFLATeX...and LγX.
- ClassicThesis.tcp a TeXnicCenter project file. Great tool and it's free!
- ClassicThesis.tex: the main file of your thesis where all the content gets bundled together.

http://www.ctan.org/tex-archive/macros/latex/contrib/booktabs/.

² To be found online at

• classicthesis-config.tex: a central place to load all nifty packages that are used. In there, you can also activate backrefs in order to have information in the bibliography about where a source was cited in the text (i. e., the page number).

Make your changes and adjustments here. This means that you specify here the options you want to load classicthesis.sty with. You also adjust the title of your thesis, your name, and all similar information here. Refer to Section 1.3 for more information.

This had to change as of version 3.0 in order to enable an easy transition from the "basic" style to L γX .

In total, this should get you started in no time.

1.2 STYLE OPTIONS

There are a couple of options for classicthesis.sty that allow for a bit of freedom concerning the layout:

General:

 drafting: prints the date and time at the bottom of each page, so you always know which version you are dealing with. Might come in handy not to give your Prof. that old draft.

• Parts and Chapters:

- parts: if you use Part divisions for your document, you should choose this option. (Cannot be used together with nochapters.)
- nochapters: allows to use the look-and-feel with classes that do not use chapters, e.g., for articles. Automatically turns off a couple of other options: eulerchapternumbers, linedheaders, listsseparated, and parts.
- linedheaders: changes the look of the chapter headings a bit by adding a horizontal line above the chapter title. The chapter number will also be moved to the top of the page, above the chapter title.

Typography:

- eulerchapternumbers: use figures from Hermann Zapf's Euler math font for the chapter numbers. By default, old style figures from the Palatino font are used.
- beramono: loads Bera Mono as typewriter font. (Default setting is using the standard CM typewriter font.)
- eulermath: loads the awesome Euler fonts for math. (Palatino is used as default font.)

...or your supervisor might use the margins for some comments of her own while reading.

- pdfspacing: makes use of pdftex' letter spacing capabilities via the microtype package.³ This fixes some serious issues regarding math formulæ etc. (e.g., "ß") in headers.
- minionprospacing: uses the internal textssc command of the MinionPro package for letter spacing. This automatically enables the minionpro option and overrides the pdfspacing option.

• Table of Contents:

- tocaligned: aligns the whole table of contents on the left side. Some people like that, some don't.
- dottedtoc: sets pagenumbers flushed right in the table of contents.
- manychapters: if you need more than nine chapters for your document, you might not be happy with the spacing between the chapter number and the chapter title in the Table of Contents. This option allows for additional space in this context. However, it does not look as "perfect" if you use \parts for structuring your document.

• Floats:

- listings: loads the listings package (if not already done) and configures the List of Listings accordingly.
- floatperchapter: activates numbering per chapter for all floats such as figures, tables, and listings (if used).
- subfig(ure): is passed to the tocloft package to enable compatibility with the subfig(ure) package. Use this option if you want use classicthesis with the subfig package.

The best way to figure these options out is to try the different possibilities and see, what you and your supervisor like best.

In order to make things easier in general, classicthesis-config.tex contains some useful commands that might help you.

1.3 CUSTOMIZATION

This section will give you some hints about how to adapt classicthesis to your needs.

The file classicthesis.sty contains the core functionality of the style and in most cases will be left intact, whereas the file classicthesis-config.tex is used for some common user customizations.

The first customization you are about to make is to alter the document title, author name, and other thesis details. In order to do this, replace the data in the following lines of classicthesis-config.tex:

Modifications in classicthesis-config.tex

³ Use microtype's DVIoutput option to generate DVI with pdftex.

```
\newcommand{\myTitle}{A Classic Thesis Style\xspace}
\newcommand{\mySubtitle}{An Homage to ...\xspace}
\newcommand{\myDegree}{Doktor-Ingenieur (Dr.-Ing.)\xspace}
```

Further customization can be made in classicthesis-config.tex by choosing the options to classicthesis.sty (see Section 1.2) in a line that looks like this:

```
\PassOptionsToPackage{eulerchapternumbers, listings, drafting,
   pdfspacing, subfig,beramono,eulermath,parts}{classicthesis}
```

If you want to use backreferences from your citations to the pages they were cited on, change the following line from:

```
\setboolean{enable-backrefs}{false}
```

```
\setboolean{enable-backrefs}{true}
```

Many other customizations in classicthesis-config.tex are possible, but you should be careful making changes there, since some changes could cause errors.

Finally, changes can be made in the file classicthesis.sty, although this is mostly not designed for user customization. The main change that might be made here is the text-block size, for example, to get longer lines of text.

Modifications in classicthesis.sty

```
1.4 ISSUES
```

This section will list some information about problems using classicthesis in general or using it with other packages.

Beta versions of classicthesis can be found at the following Google code repository:

```
http://code.google.com/p/classicthesis/
```

There, you can also post serious bugs and problems you encounter.

Compatibility with the glossaries Package

If you want to use the glossaries package, take care of loading it with the following options:

\usepackage[style=long,nolist]{glossaries}

Thanks to Sven Staehs for this information.

Compatibility with the (Spanish) babel Package

Spanish languages need an extra option in order to work with this template:

\usepackage[spanish,es-lcroman]{babel}

Thanks to an unknown person for this information (via Google Code issue reporting).

Compatibility with the pdfsync Package

Using the pdfsync package leads to linebreaking problems with the graffito command. Thanks to Henrik Schumacher for this information.

1.5 FUTURE WORK

So far, this is a quite stable version that served a couple of people well during their thesis time. However, some things are still not as they should be. Proper documentation in the standard format is still missing. In the long run, the style should probably be published separately, with the template bundle being only an application of the style. Alas, there is no time for that at the moment...it could be a nice task for a small group of LATEXnicians.

Please do not send me email with questions concerning LATEX or the template, as I do not have time for an answer. But if you have comments, suggestions, or improvements for the style or the template in general, do not hesitate to write them on that postcard of yours.

1.6 LICENSE

GNU GENERAL PUBLIC LICENSE: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1 A NEW SECTION

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Examples: Italics, ALL CAPS, SMALL CAPS, LOW SMALL CAPS¹.

2.1.1 Test for a Subsection

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Note: The content of this chapter is just some dummy text.

¹ Footnote example.

Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

2.1.2 Autem Timeam

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

2.2 ANOTHER SECTION IN THIS CHAPTER

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Sia ma sine svedese americas. Asia ? [?] representantes un nos, un altere membros qui.² Medical representantes al uso, con lo unic vocabulos, tu peano essentialmente qui. Lo malo laborava anteriormente uso.

DESCRIPTION-LABEL TEST: Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

LABEL TEST 2: Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

This statement requires citation? [?].

2.2.1 Personas Initialmente

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

² De web nostre historia angloromanic.

LABITUR BONORUM PRI NO	QUE VISTA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated?

Table 1: Autem timeam deleniti usu id.?

2.2.1.1 A Subsubsection

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

A PARAGRAPH EXAMPLE Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

- A. Enumeration with small caps
- в. Second item

Another statement requiring citation ? [?] but this time with text after the citation.

2.2.2 Figure Citations

Veni introduction es pro, qui finalmente demonstrate il. E tamben anglese programma uno. Sed le debitas demonstrate. Non russo existe o, facite linguistic registrate se nos. Gymnasios, e.g., sanctificate sia le, publicate Figure 1 methodicamente e qui.

Lo sed apprende instruite. Que altere responder su, pan ma, i.e., signo studio. Figure 1b Instruite preparation le duo, asia altere tentation web su. Via unic facto rapide de, iste questiones methodicamente o uno, nos al.

Figure 1: Tu duo titulo debitas latente.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

3.1 SOME FORMULAS

Due to the statistical nature of ionisation energy loss, large fluctuations can occur in the amount of energy deposited by a particle traversing an absorber element¹. Continuous processes such as multiple scattering and energy loss play a relevant role in the longitudinal and lateral development of electromagnetic and hadronic showers, and in the case of sampling calorimeters the measured resolution can be significantly affected by such fluctuations in their active layers. The description of ionisation fluctuations is characterised by the significance parameter κ , which is proportional to the ratio of mean energy loss to the maximum allowed energy transfer in a single collision with an atomic electron:

$$\kappa = \frac{\xi}{E_{max}} \tag{1}$$

 E_{max} is the maximum transferable energy in a single collision with an atomic electron.

$$E_{max} = \frac{2m_e\beta^2\gamma^2}{1+2\gamma m_e/m_x + \left(m_e/m_x\right)^2} \; , \label{eq:emax}$$

where $\gamma = E/m_x$, E is energy and m_x the mass of the incident particle, $\beta^2 = 1 - 1/\gamma^2$ and m_e is the electron mass. ξ comes from the Rutherford scattering cross section and is defined as:

$$\xi = \frac{2\pi z^2 e^4 N_{AV} Z \rho \delta x}{m_o \beta^2 c^2 A} = 153.4 \frac{z^2}{\beta^2} \frac{Z}{A} \rho \delta x \quad \text{keV},$$

where

You might get unexpected results using math in chapter or section heads. Consider the pdfspacing option.

¹ Examples taken from Walter Schmidt's great gallery: http://home.vrweb.de/~was/mathfonts.html

z charge of the incident particle

N_{Av} Avogadro's number

Z atomic number of the material

A atomic weight of the material

ρ density

 δx thickness of the material

 κ measures the contribution of the collisions with energy transfer close to E_{max} . For a given absorber, κ tends towards large values if δx is large and/or if β is small. Likewise, κ tends towards zero if δx is small and/or if β approaches 1.

The value of κ distinguishes two regimes which occur in the description of ionisation fluctuations:

- 1. A large number of collisions involving the loss of all or most of the incident particle energy during the traversal of an absorber.
 - As the total energy transfer is composed of a multitude of small energy losses, we can apply the central limit theorem and describe the fluctuations by a Gaussian distribution. This case is applicable to non-relativistic particles and is described by the inequality $\kappa > 10$ (i. e., when the mean energy loss in the absorber is greater than the maximum energy transfer in a single collision).
- 2. Particles traversing thin counters and incident electrons under any conditions.

The relevant inequalities and distributions are $0.01 < \kappa < 10$, Vavilov distribution, and $\kappa < 0.01$, Landau distribution.

3.2 VARIOUS MATHEMATICAL EXAMPLES

If n > 2, the identity

$$t[u_1,\ldots,u_n]=t\big[t[u_1,\ldots,u_{n_1}],t[u_2,\ldots,u_n]\big]$$

defines $t[u_1, \ldots, u_n]$ recursively, and it can be shown that the alternative definition

$$t[u_1,...,u_n] = t[t[u_1,u_2],...,t[u_{n-1},u_n]]$$

gives the same result.

4

INTRODUCTION

4.1 THERMAL PHYSICS

Content

4.1.1 Collision Rates

Content

Part II

DSMC

You can put some informational part preamble text here. Illo principalmente su nos. Non message <u>occidental</u> angloromanic da. Debitas effortio simplificate sia se, auxiliar summarios da que, se avantiate publicationes via. Pan in terra summarios, capital interlingua se que. Al via multo esser specimen, campo responder que da. Le usate medical addresses pro, europa origine sanctificate nos se.

Need to introduce the usefulness of the method here. References to many kinds of applications and such things. I also need to perform a literature review of all DSMC used in cold atoms physics.

Compare to molecular dynamic approaches, when is DSMC appropriate / good? When does it fail?

Find out the knudsen number for typical cold atom conditions. Wade has numbers for stamper kern and shvatchuck.

DSMC - Birds Book [1]

Evaporative Cooling and Expansion Dynamics: [2-4]

Bosonic Collective-Mode dynamics: [5–9], Can't find Jackson Zaremba 2002 Laser Physics, 12, 93

Fermion Dynamics: [10–13] (see also [14–17])

Sympathetic Cooling: [18, 19]

Applications - Rayleigh Bernard Flow: [20]

Spacecraft aerodynamics: [21]

Chemical reactions: [22] Goldsworthy?

Microfluidics: [23]

Acoustics on Earth, Mars and Titan: [24]

Volcanic plumes on Jupiter: [25]

Read: $\frac{[26]}{[45]}$

Refer to cuda section 10 Should also discuss the development of this parallel implementation of the code. Compare to CPU implementations. Goldsworthy has a few references for other CUDA codes.

5.1 COLLISION RATES IN INHOMOGENEOUS GASES

Overall collision rate, spatial collision rate, talk about number of cells, the occupancy of cells and the effect of inhomogeniety.

The heart of the DSMC method is to simplify the simulation of interparticle interactions in the form of two body collisions. The DSMC method offers some free parameters which we can optimise to balance the accuracy and efficiency, namely the number of cells, n_c , and the number of test particles, N_p . We wish to see the effect of varying these parameters on the results of the simulation. One of the most basic tests for the application of the DSMC method to cold atom physics is to investigate the collision rate for a thermal gas. We saw in section 4.1.1 that the thermally averaged collision rate per unit density for a single species atomic gas bound by the potential $\mathfrak{U}(\mathbf{r})$ is given by

$$\tau_c^{-1} = \frac{1}{2} \dot{n}_0 \langle \nu \sigma \rangle \frac{V_{2e}}{V_e}. \tag{2}$$

The simplest scenario we can use to investigate the effects of changing the free parameters is that of a homogeneous gas. In this case the collision rate simply reduces to

$$\tau_{c,box}^{-1} = \frac{1}{\sqrt{2}} n_0 \bar{\nu} \sigma,$$

where $\bar{v} = \sqrt{8k_BT/\pi m}$, is the average speed of the atoms.

**Include a surface plot of the collision rate as a function of cell number and test particle number. Should make the z axis percentage error. See fig 14. in wade. **

- (a) Homegeneous gas error. ** DO THIS FOR DIFFERENT NUMBER OF ATOMS / 10 AND / 100. TO TEST OVER RANGE OF COLLI-SION RATES. DISPLAY AS INDI-VIDUAL SHEETS **
- (b) QUADRUPOLE GAS ERROR. ** SAME AS ABOVE **

Figure 2: Error of DSMC method as a function of test particle number and cell number.

Figure 6a shows how well the DSMC method performs over a wide range of test particle and cell numbers. We can see in the corner the method beginning to fail. This is the region where, on average, we have less than two test particles per cell. This means that there is not enough atoms to perform a collision within a cell. One way to avoid this (which has not been implemented here) is to search neighbouring cells for collision pairs when a partner can not be found in the current cell. The main thing to observe here is the increase in the error as the number of test particles is reduced.

5.2 THERMALISATION

5.2.1 Walraven Thermlisation

In [27] we are shown that if we perturb the energy of a small fraction of atoms in a single component gas then the rethermalisation time is given by

$$\tau_{\rm th}^{-1} = \frac{1}{2(\gamma + 3/2)} \tau_{\rm c}^{-1},\tag{3}$$

where γ describes the geometry of the trap. For a homogeneous, harmonic and linear trap γ is equal to 0, 3/2 and 3 respectively. Thus we would expect these traps to thermalise in 3, 6 and 9 collision times.

(a) Walraven homegeneous gas thermalisation. $\tau_c^{-1}/\tau^{-1}=1.2$ should equal 3?

(b) Walraven ip gas thermalisation(c) Walraven quad gas thermalisation. $\tau_c^{-1}/\tau^{-1}=1.6$ should equal 6? $\tau_c^{-1}/\tau^{-1}=10.45$ should equal 9?

Figure 3: Error of DSMC method as a function of test particle number and cell number.

5.2.2 Monroe Thermalisation

Also simulations of Monroe et al. I need to somehow think about this problem analytically. Is there anyway to find an analytic expression for this directional thermalisation?

Also do it for different temperatures or trap numbers.

*** MUST REDO ALL OF THESE SIMULATIONS WITH COLLISIONS WORKING CORRECTLY (I.E. WITH THE NEW SORTING FIX IMPLEMENTED). ***

5.3 EVAPORATION

Compare some results to those predicted by the theory of walraven and the other guy.

(a) Monroe homegeneous gas thermalisation. $\tau_c^{-1}/\tau^{-1}=0.77$

(b) Walraven homegeneous gas ther(c) Walraven quad gas thermalisation. malisation. $\tau_c^{-1}/\tau^{-1}=2.21$ $\qquad \qquad \tau_c^{-1}/\tau^{-1}=6.09$

Figure 4: Error of DSMC method as a function of test particle number and cell number.

5.4 ADIABATICITY

Have a look at squeezing the magnetic trap both diabaticaly and adiabatically.

(a) η should equal 7, here it is equal to 7.86

(b) I want this to be a plot of no vs N. $\,$ (c) Not sure what plot tp put here

Figure 5: IP trap evaporation.

(a) η should equal ?(check the paper), here it is equal to 5

(b) I want this to be a plot of no vs N. (c) Not sure what plot tp put here

Figure 6: Quadrupole trap evaporation.

MAJORANA INTERULDE

6.1 MAJORNAN SPIN FLIPS

Talk about Majorana problem, history, derive formula etc

6.2 LANDAU ZENER FORMULA

DSMC WITH SPIN - EHRENFEST

7.1 SCHRÖDINGER SIMULATIONS

Content

7.1.1 Simulating Schrödinger Equation

Content

7.1.2 Single Atom Spin Flips

Content

7.2 FULL GAS SIMULATIONS

Content

7.2.1 Ioffe Pritchard Trap

Content

7.2.2 Quadrupole Trap

DSMC WITH SPIN - MCWF

8.1 SCHRÖDINGER SIMULATIONS

Content

8.1.1 Simulating Schrödinger Equation

Content

8.1.2 Single Atom Spin Flips

Content

8.2 FULL GAS SIMULATIONS

Content

8.2.1 *Ioffe Pritchard Trap*

Content

8.2.2 Quadrupole Trap

Part III

FEMDVR

You can put some informational part preamble text here. Illo principalmente su nos. Non message <u>occidental</u> angloromanic da. Debitas effortio simplificate sia se, auxiliar summarios da que, se avantiate publicationes via. Pan in terra summarios, capital interlingua se que. Al via multo esser specimen, campo responder que da. Le usate medical addresses pro, europa origine sanctificate nos se.

9

FEMDVR

9.1 1D FEMDVR

Content

9.1.1 Scaling Comparison to CPU

Content

9.1.2 Real Simulation

Content

9.2 3D FEMDVR

Content

9.2.1 Knots

Part IV

CUDA

You can put some informational part preamble text here. Illo principalmente su nos. Non message <u>occidental</u> angloromanic da. Debitas effortio simplificate sia se, auxiliar summarios da que, se avantiate publicationes via. Pan in terra summarios, capital interlingua se que. Al via multo esser specimen, campo responder que da. Le usate medical addresses pro, europa origine sanctificate nos se.

CUDA DSMC

10.1 CUDA

Content

10.1.1 Parallelisation

Content

10.2 SPEED UP

Content

10.2.1 Some simulations

Part V APPENDIX

MOTION INTEGRATION

In this appendix we will explain in detail the different methods of integrating the Newtonian motion of particles and specifically how we have gone about it.

A.1 EULER METHOD

$$x_{n+1} = x_n + v_n \Delta t, \tag{4}$$

$$v_{n+1} = v_n + a_n \Delta t. \tag{5}$$

A.2 SEMI-IMPLICIT EULER METHOD

$$\chi_{n+1} = \chi_n + \nu_n \Delta t, \tag{6}$$

$$v_{n+1} = v_n + a_{n+1} \Delta t. \tag{7}$$

A.3 VERLET ALGORITHM

Sometimes referred to as the Störmer-Verlet method (see wikipedia page it's pretty good), it was made popular by Verlet in 1976 [28]. The Verlet algorithm can be derived from the Taylor series expansions for position as follows,

$$\mathbf{r}(\mathbf{t}_{n+1}) = \mathbf{r}(\mathbf{t}_n) + k\mathbf{v}(\mathbf{t}_n) + \frac{1}{2}k^2\mathbf{a}(\mathbf{t}_n) + O(k^3),$$
 (8a)

$$\mathbf{r}(\mathbf{t}_{n-1}) = \mathbf{r}(\mathbf{t}_n) - k\mathbf{v}(\mathbf{t}_n) + \frac{1}{2}k^2\mathbf{a}(\mathbf{t}_n) + O(k^3),$$
 (8b)

we can now add equations (8a) and (8b) together to get

$$\mathbf{r}(t_{n+1}) + \mathbf{r}(t_{n-1}) = 2\mathbf{r}(t_n) + k^2 \mathbf{a}(t_n) + \mathcal{O}(k^4),$$

$$\Rightarrow \mathbf{r}(t_{n+1}) = 2\mathbf{r}(t_n) - \mathbf{r}(t_{n-1}) + k^2 \mathbf{a}(t_n) + \mathcal{O}(k^4),.$$
(9)

We can see from equation (9) that the leap frog method is fourth order in time. However, we can also note that the velocities do not explicitly appear in the method, this means we need to derive them from positions. A simple approximation would be to use the midpoint method

$$\mathbf{v}(\mathbf{t}_{n}) = \frac{1}{2} k \left(\mathbf{r}(\mathbf{t}_{n+1}) - \mathbf{r}(\mathbf{t}_{n-1}) \right)$$
 (10)

A.4 LEAP FROG METHOD

[29]

$$x_n = x_{n-1} + v_{i-1/2} \Delta t, \tag{11}$$

$$\nu_{n+1/2} = \nu_{n-1/2} + a_n \Delta t. \tag{12}$$

A.5 VELOCITY VERLET

[30]

$$x_{n+1} = x_n + v_i \Delta t + \frac{1}{2} a_n \Delta t^2, \tag{13}$$

$$v_{n+1} = v_n + \frac{1}{2} (a_n + a_{n+1}) \Delta t.$$
 (14)

A.6 BEEMAN'S ALGORITHM

[31]

$$x_{n+1} = x_n + v_n \Delta t + \frac{1}{6} (4a_n - a_{n-1}) \Delta t^2,$$
 (15)

$$v_{n+1} = v_n + \frac{1}{6} (2a_{n+1} + 5a_n - a_{n-1}) \Delta t.$$
 (16)

B

MAGNETIC TRAPPING

C

DIRECT SIMULATION MONTE CARLO

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

C.1 APPENDIX SECTION TEST

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse

More dummy text

LABITUR BONORUM PRI NO	QUE VISTA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated

Table 2: Autem usu id.

Listing 1: A floating example

```
for i:=maxint to 0 do
begin
{ do nothing }
end;
```

viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

C.2 ANOTHER APPENDIX SECTION TEST

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

D

NON-DIMENSIONALISATION

D.1 QUASI - 1D GPE

Let's just start with writing out the full quasi-one-dimensional three component equation in a harmonic potential

$$\begin{split} \iota\hbar\frac{\partial}{\partial t}f_{+} &= \left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}} + \frac{1}{2}m\omega_{z}{}^{2}z^{2} + E_{+} + E_{\perp} + c_{0}N\eta\rho\right.\\ &\quad + c_{2}N\eta\left(\rho_{+} + \rho_{0} - \rho_{-}\right)\right)f_{+} + c_{2}N\eta f_{0}{}^{2}f_{-}{}^{*}, \quad \text{(17a)}\\ \iota\hbar\frac{\partial}{\partial t}f_{0} &= \left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}} + \frac{1}{2}m\omega_{z}{}^{2}z^{2} + E_{0} + E_{\perp} + c_{0}N\eta\rho\right.\\ &\quad + c_{2}N\eta\left(\rho_{+} + \rho_{-}\right)\right)f_{0} + 2c_{2}N\eta f_{+}f_{-}f_{0}{}^{*}, \quad \text{(17b)}\\ \iota\hbar\frac{\partial}{\partial t}f_{-} &= \left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial z^{2}} + \frac{1}{2}m\omega_{z}{}^{2}z^{2} + E_{-} + E_{\perp} + c_{0}N\eta\rho\right.\\ &\quad + c_{2}N\eta\left(\rho_{-} + \rho_{0} - \rho_{+}\right)\right)f_{-} + c_{2}N\eta f_{0}{}^{2}f_{+}{}^{*}, \quad \text{(17c)}\\ \rho\frac{\partial E_{\perp}}{\partial \chi} + \left(\frac{c_{0}N}{2}\rho^{2} + \frac{c_{2}N}{2}S_{2}\right)\frac{\partial \eta}{\partial \chi} = 0. \quad \text{(17d)} \end{split}$$

If we make the Thomas Fermi ansatz then the transverse mode energy and the scaling factor are given by

$$\mathsf{E}_{\perp} = \frac{\hbar\omega_{\perp}}{6} \frac{\chi^2}{{\mathfrak{a}_{\perp}}^2},\tag{18}$$

$$\eta = \frac{4}{3\pi\chi^2},\tag{19}$$

where $a_{\perp}=\sqrt{\hbar/m\omega_{\perp}}.$ If we substitute (18) and (19) into (17d) then we find

$$\chi = \left(\frac{4c_0 N \rho^2 + c_2 N S_2}{m \pi \rho \omega_{\perp}^2}\right)^{\frac{1}{4}}.$$
 (20)

Now substituting (20) back into (18) and (19) and simplifying we have

$$E_{\perp} = \sqrt{\frac{mN\omega_{\perp}^{2} (c_{0}\rho^{2} + c_{2}S_{2})}{9\pi\rho}},$$
 (21)

$$\eta = \frac{2}{3} \sqrt{\frac{m\rho\omega_{\perp}^2}{\pi N \left(c_0 \rho^2 + c_2 S_2\right)}}.$$
 (22)

Now we can begin to non-dimensionalise the equations. Let us only consider the non-dimensionalisation of the positive component since the procedure will be exactly the same for all components. We begin by making the substitutions

$$t
ightarrow t_c au,$$
 $z
ightarrow z_c \zeta,$ $f_+
ightarrow f_c u_+.$

Equation (17a) now becomes

$$\begin{split} \imath\hbar\frac{f_{c}}{t_{c}}\frac{\partial}{\partial\tau}u_{+} &= \bigg(-\frac{\hbar^{2}}{2mz_{c}^{2}}\frac{\partial^{2}}{\partial\zeta^{2}} + \frac{1}{2}m\omega_{z}^{2}z_{c}^{2}\zeta^{2} + f_{c}E_{+} + f_{c}E_{\perp} + c_{0}f_{c}N\eta\rho\\ &\quad + c_{2}f_{c}N\eta\left(\rho_{+} + \rho_{0} - \rho_{-}\right)\bigg)f_{c}u_{+} + c_{2}f_{c}^{2}N\eta u_{0}^{2}u_{-}^{*},\\ \imath\frac{mz_{c}^{2}}{\hbar t_{c}}\frac{\partial}{\partial\tau}u_{+} &= \bigg(-\frac{1}{2}\frac{\partial^{2}}{\partial\zeta^{2}} + \frac{1}{2}\frac{m^{2}\omega_{z}^{2}z_{c}^{4}}{\hbar^{2}}\zeta^{2} + \frac{mz_{c}^{2}}{\hbar^{2}}f_{c}\big[E_{+} + E_{\perp} + c_{0}N\eta\rho\\ &\quad + c_{2}N\eta\left(\rho_{+} + \rho_{0} - \rho_{-}\right)\big]\bigg)u_{+} + \frac{mz_{c}^{2}}{\hbar^{2}}c_{2}f_{c}N\eta u_{0}^{2}u_{-}^{*}. \end{split}$$

Looking at the coefficient of the ζ^2 term we can see that if we set it to 1/2 we will be able to solve for z_c ,

$$1 = \frac{m^2 w_z^2 z_c^4}{\hbar^2},$$

$$\Rightarrow z_c = \sqrt{\frac{\hbar}{m\omega_z}},$$
(23)

which is the harmonic oscillator length along the z axis, a natural length scale for the z dimension. Now we can turn our attention to the coefficient of the time derivative, and set it to 1,

$$1 = \frac{mz_c^2}{\hbar t_c},$$

$$= \frac{m\hbar}{m\hbar \omega_z t_c},$$

$$\Rightarrow t_c = \frac{1}{w_c},$$
(24)

which is the angular period of the oscillator, again a natural length scale. Finally we can consider the energy terms. With these we need to choose f_c such that the dimension of the energy term is one. To cut a long story short, this makes a suitable choice for f_c to be $1/\sqrt{z_c}$. Giving us the final form of the non-dimensionalised equation

$$\iota \frac{\partial}{\partial \tau} u_{+} = \left(-\frac{1}{2} \frac{\partial^{2}}{\partial \zeta^{2}} + \frac{1}{2} \zeta^{2} + \frac{m}{\hbar^{2}} \left(\frac{\hbar}{m \omega_{z}} \right)^{\frac{3}{4}} \left[E_{+} + E_{\perp} + c_{0} N \eta \rho \right. \\
\left. + c_{2} N \eta \left(\rho_{+} + \rho_{0} - \rho_{-} \right) \right] \right) u_{+} + \frac{m}{\hbar^{2}} \left(\frac{\hbar}{m \omega_{z}} \right)^{\frac{3}{4}} c_{2} N \eta u_{0}^{2} u_{-}^{*}.$$
(25)

(28)

D.2 MAJORANA PROBLEM SPIN HALF

The potential energy operator [?] for a magnetic dipole in a field is given by

$$\hat{\mathbf{V}} = -\hat{\mathbf{\mu}} \cdot \mathbf{B},\tag{26}$$

where $\hat{\mu}$ is the magnetic dipole operator and **B** is the magnetic field. Which for a spin half particle is

$$\hat{V} = \frac{1}{2} \mu_B g_s \begin{bmatrix} B_z & B_x - \iota B_y \\ B_x + \iota B_y & -B_z \end{bmatrix} \text{,}$$

where μ_B is the Bohr magneton [?] and g_s is the Landé g-factor of the spin- $\frac{1}{2}$ particle. Now we can write the time dependant Schrödinger equation for our system (need to introduce kinetic energy operator as well)

$$\begin{split} \imath\hbar\partial_t\psi_\uparrow &= -\frac{\hbar^2}{2m}\partial_{zz}\psi_\uparrow + \frac{1}{2}\mu_Bg_sB_z\psi_\uparrow + \frac{1}{2}\mu_Bg_s\left(B_x - \imath By\right)\psi_\downarrow, \\ \imath\hbar\partial_t\psi_\downarrow &= -\frac{\hbar^2}{2m}\partial_{zz}\psi_\downarrow - \frac{1}{2}\mu_Bg_sB_z\psi_\downarrow + \frac{1}{2}\mu_Bg_s\left(B_x + \imath By\right)\psi_\uparrow. \end{split}$$

Maybe before we non-dimensionalise we will insert or actual values for the magnetic field, $\mathbf{B} = (B_x, 0, -dB_z z)$. Now to non-dimensionalise. We make the substitutions

$$z
ightarrow z_{
m c}\zeta$$
, $m t
ightarrow t_{
m c} au$, $m \psi_{
m i}
ightarrow \psi_{
m c}\phi$.

From here we will only consider the equation for the spin up component as the two will have the same non-dimensionalisation. After making these substitutions the above equation becomes

$$\label{eq:psicon} \mathfrak{1}\hbar\frac{\psi_c}{t_c}\vartheta_\tau\varphi_\uparrow = -\frac{\hbar^2}{2m}\frac{\psi_c}{{z_c}^2}\vartheta_{\zeta\zeta}\varphi_\uparrow - \frac{1}{2}\mu_Bg_sdB_zz_c\zeta\psi_c\varphi_\uparrow + \frac{1}{2}\mu_Bg_s\psi_cB_x\varphi_\downarrow,$$

rearranging so that the coefficient of the highest derivative is dimensionless

$$\iota \frac{m}{\hbar} \frac{{z_c}^2}{t_c} \vartheta_\tau \varphi_\uparrow = -\frac{1}{2} \vartheta_{\zeta\zeta} \varphi_\uparrow - \frac{1}{2} \frac{\mu_B g_s m dB_z {z_c}^3}{\hbar^2} \zeta \varphi_\uparrow + \frac{1}{2} \frac{\mu_B g_s m {z_c}^2}{\hbar^2} B_x \varphi_\downarrow.$$

From here we can see

$$z_{\rm c} = \frac{B_{\rm x}}{{\rm d}B_{\rm z}},\tag{29}$$

$$t_c = \frac{\hbar}{B_x g_s \mu_B}$$
, 1 / Larmor frequency around Bx (30)

$$\psi_{c} = \frac{dB_{z}^{2}\hbar^{2}}{B_{x}^{3}g_{s}m\mu_{B}}.$$
(31)

LABITUR BONORUM PRI NO	QUE VISTA	HUMAN
fastidii ea ius	germano	demonstratea
suscipit instructior	titulo	personas
quaestio philosophia	facto	demonstrated

Table 3: Autem usu id.

Listing 2: A floating example

```
for i:=maxint to 0 do
begin
{ do nothing }
end;
```

Leaving us with the non-dimensionalised equation

$$\vartheta_\tau \varphi_\uparrow = \frac{\iota}{2} \vartheta_{\zeta\zeta} \varphi_\uparrow + \frac{\iota}{2} \zeta \varphi_\uparrow - \frac{\iota}{2} \varphi_\downarrow.$$

More dummy text

D.3 ANOTHER APPENDIX SECTION TEST

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

E

FINITE ELEMENT METHOD

- [1] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford, 2 ed., 1994.
- [2] H. Wu and C. J. Foot, "Direct simulation of evaporative cooling," Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 29, no. 8, p. L321, 1996.
- [3] H. Wu, E. Arimondo, and C. J. Foot, "Dynamics of evaporative cooling for bose-einstein condensation," Phys. Rev. A, vol. 56, pp. 560–569, Jul 1997.
- [4] H. Wu and E. Arimondo, "Expansion cooling for an atomic beam," <u>Journal of Physics D: Applied Physics</u>, vol. 31, no. 22, p. 3218, 1998.
- [5] B. Jackson and C. S. Adams, "Damping and revivals of collective oscillations in a finite-temperature model of trapped bose-einstein condensation," Phys. Rev. A, vol. 63, p. 053606, Apr 2001.
- [6] B. Jackson and E. Zaremba, "Finite-temperature simulations of the scissors mode in bose-einstein condensed gases," Phys. Rev. Lett., vol. 87, p. 100404, Aug 2001.
- [7] B. Jackson and E. Zaremba, "Modeling bose-einstein condensed gases at finite temperatures with <i>n</i>-body simulations," Phys. Rev. A, vol. 66, p. 033606, Sep 2002.
- [8] B. Jackson and E. Zaremba, "Quadrupole collective modes in trapped finite-temperature bose-einstein condensates," Phys. Rev. Lett., vol. 88, p. 180402, Apr 2002.
- [9] B. Jackson and E. Zaremba, "Accidental suppression of landau damping of the transverse breathing mode in elongated bose-einstein condensates," Phys. Rev. Lett., vol. 89, p. 150402, Sep 2002.
- [10] M. Urban and P. Schuck, "Dynamics of a trapped fermi gas in the bcs phase," Phys. Rev. A, vol. 73, p. 013621, Jan 2006.
- [11] M. Urban, "Coupling of hydrodynamics and quasiparticle motion in collective modes of superfluid trapped fermi gases," Phys. Rev. A, vol. 75, p. 053607, May 2007.
- [12] M. Urban, "Radial quadrupole and scissors modes in trapped fermi gases across the bcs phase transition," Phys. Rev. A, vol. 78, p. 053619, Nov 2008.

- [13] T. Lepers, D. Davesne, S. Chiacchiera, and M. Urban, "Numerical solution of the boltzmann equation for the collective modes of trapped fermi gases," Phys. Rev. A, vol. 82, p. 023609, Aug 2010.
- [14] P. Vignolo, M. Chiofalo, M. Tosi, and S. Succi, "Explicit finite-difference and particle method for the dynamics of mixed bose-condensate and cold-atom clouds," <u>Journal of Computational</u> Physics, vol. 182, no. 2, pp. 368 391, 2002.
- [15] F. Toschi, P. Vignolo, S. Succi, and M. P. Tosi, "Dynamics of trapped two-component fermi gas: Temperature dependence of the transition from collisionless to collisional regime," <u>Phys. Rev.</u> <u>A</u>, vol. 67, p. 041605, Apr 2003.
- [16] P. Capuzzi, P. Vignolo, F. Toschi, S. Succi, and M. P. Tosi, "Effects of collisions against thermal impurities in the dynamics of a trapped fermion gas," Phys. Rev. A, vol. 70, p. 043623, Oct 2004.
- [17] F. Toschi, P. Capuzzi, S. Succi, P. Vignolo, and M. P. Tosi, "Transition to hydrodynamics in colliding fermion clouds," <u>Journal of Physics B: Atomic, Molecular and Optical Physics</u>, vol. 37, no. 7, p. S91, 2004.
- [18] P. Barletta, J. Tennyson, and P. F. Barker, "Direct monte carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms," <u>New Journal of Physics</u>, vol. 12, no. 11, p. 113002, 2010.
- [19] P. Barletta, "Cool: A code for dynamic monte carlo simulation of molecular dynamics," <u>Computer Physics Communications</u>, vol. 182, no. 2, pp. 388 399, 2011.
- [20] T. Watanabe, H. Kaburaki, and M. Yokokawa, "Simulation of a two-dimensional rayleigh-bénard system using the direct simulation monte carlo method," Phys. Rev. E, vol. 49, pp. 4060–4064, May 1994.
- [21] E. Oran, C. Oh, and B. Cybyk, "DIRECT SIMULATION MONTE CARLO: recent advances and application," <u>Annual Review of Fluid Mechanics</u>, vol. 30, pp. 403–441, 1998.
- [22] J. B. Anderson and L. N. Long, "Direct monte carlo simulation of chemical reaction systems: Prediction of ultrafast detonations," <u>The Journal of Chemical Physics</u>, vol. 118, no. 7, 2003.
- [23] A. Frangi, C. Cercignani, S. Mukherjee, and N. Aluru, <u>Advances in Multiphysics Simulation and Experimental Testing of MEMS</u>. Imperial College Press, London, 2008.

- [24] A. D. Hanford and L. N. Long, "The direct simulation of acoustics on earth, mars, and titan," The Journal of the Acoustical Society of America, vol. 125, no. 2, 2009.
- [25] J. Zhang, D. Goldstein, P. Varghese, L. Trafton, C. Moore, and K. Miki, "Numerical modeling of ionian volcanic plumes with entrained particulates," <u>Icarus</u>, vol. 172, no. 2, pp. 479 502, 2004.
- [26] A. Minguzzi, S. Succi, F. Toschi, M. Tosi, and P. Vignolo, "Numerical methods for atomic quantum gases with applications to bose–einstein condensates and to ultracold fermions," Physics Reports, vol. 395, no. 4–5, pp. 223 355, 2004.
- [27] J. T. Walraven, Elements of Quantum Gases: Thermodynamic and Collisional Properties of Trapped Atomic Gases. University of Amsterdam, 2010.
- [28] L. Verlet, "Computer "experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules," Phys. Rev., vol. 159, pp. 98–103, Jul 1967.
- [29] R. W. Hockney, "The potential calculation and some applications," Methods in Computational Physics, vol. 9, pp. 136–211, 1970.
- [30] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," <u>The Journal of Chemical Physics</u>, vol. 76, no. 1, pp. 637–649, 1982.
- [31] D. Beeman, "Some multistep methods for use in molecular dynamics calculations," <u>Journal of Computational Physics</u>, vol. 20, no. 2, pp. 130 139, 1976.

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst's seminal book on typography "The Elements of Typographic Style". classicthesis is available for both LATEX and LyX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

DECLARATION	
Put your declaration here.	
Clayton, Victoria, December 2013	
	Christopher Jon Watkins, November 17, 2014