

Canadian Bioinformatics Workshops

www.bioinformatics.ca

bioinformaticsdotca.github.io

Attribution-ShareAlike 4.0 International

Canonical URL: https://creativecommons.org/licenses/by-sa/4.0/

See the legal code

You are free to:

 $\label{eq:Share-copy} \textbf{Share} - \textbf{copy} \ \text{and} \ \textbf{redistribute} \ \textbf{the material in any medium} \ \textbf{or format for any} \\ \textbf{purpose, even commercially.}$

 $\label{eq:Adapt-remix} \textbf{Adapt}-\text{remix}, \text{transform, and build upon the material for any purpose, even commercially.}$

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.

No additional restrictions — You may not apply legal terms or <u>technological</u> measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as <u>publicity</u>, <u>privacy</u>, <u>or moral rights</u> may limit how you use the material.

RNA-Seq Module 3: HTSeq

Malachi Griffith, Obi Griffith, Isabel Risch, Nicolas Ho, Melisa Acun, Varinder Verma, Mobin Khoramjoo RNA-seq Analysis 2025. July 7-9, 2025

Alternatives to FPKM

- Raw read counts for differential expression analysis
 - Assign reads/fragments to defined genes/transcripts, get "raw counts"
 - Transcript structures could still be defined by something like Stringtie
- HTSeq (htseq-count)
 - https://htseq.readthedocs.io/

```
htseq-count --mode intersection-strict --stranded no --minaqual 1 --type
exon --idattr transcript_id accepted_hits.sam chr22.gff >
transcript_read_counts_table.tsv
```

- Caveats of 'transcript' analysis by htseq-count:
 - Designed for genes ambiguous reads from overlapping transcripts may not be handled!
 - http://seqanswers.com/forums/showthread.php?t=18068

HTSeq-count basically counts reads supporting a feature (exon, gene) by assessing overlapping coordinates

Note, if gene_A and gene_B on opposite strands, sequence data is stranded, and correct HTSeq parameter set then this read may not be ambiguous

Whether a read is counted depends on the nature of overlap and "mode" selected

We are on a Coffee Break & Networking Session

Workshop Sponsors:

