Tema 5.

Fractali.

Termenul *fractal* a fost generalizat pentru a include obiecte din afara definitiei originale a lui Mandelbrot. Prin *obiect fractal* vom intelege orice

obiect care are proprietatea de autoasemanare (self-similarity in lb. engleza).

Obiectele obtinute in cele ce urmeaza sunt aproximatii ale unui obiect fractal

ideal, fiind obtinute intr-un numar finit de iteratii.

1. Multimea Julia-Fatou: se obtine utilizand un proces iterativ.

Plecand de la $z_0 \in \mathbb{C}$ se obtin numerele complexe $(z_n)_{n\geq 0}$ astfel :

 $z_{n+1}=z_n^2+c$, unde $c\in {\bf C}.$ Un numar complex $x\in {\bf C}$ apartine multimii

Julia-Fatou $\mathbf{J}_{\mathbf{c}}$ daca, plecand cu $\mathbf{z}_{0} = \mathbf{x}$, urmatoarele conditii <u>nu</u> sunt

indeplinite : $(\exists z \in \mathbb{C})(\lim_{n \to \infty} z_n = z)$ sau $\lim_{n \to \infty} |z_n| = \infty$.

In programul <u>urmator</u> s-au generat 2 (aproximari ale) multimi Julia-Fatou

corespunzatoare valorilor $\underline{c_1}$ si $\underline{c_2}$ pentru $c \in \mathbb{C}$ indicate in figurile de mai jos.

Cele 2 conditii de mai sus au fost utilizate in program sub forma

 $(\exists n_0>0)\big(z_{n_0}=z_{n_0+1}\big)$ si $(\exists n_0\geq 0)(\exists M>0)\big(\big|z_{n_0}\big|>M\big)$ i.e., intr-un numar finit de

iteratii n_0 , se testeaza daca sirul (z_n) devine constant sau $|z_n|$ depaseste

M (ales suficient de mare).

Daca dupa terminarea celor n_0 iteratii nici o conditie nu a fost adevarata atunci

punctul respectiv apartine multimii Julia-Fatou si a fost colorat cu rosu in figura.

2. <u>Multimea Mandelbrot</u>: se obtine tot printr-un proces iterativ.

Un numar $c \in \mathbb{C}$ apartine multimii Mandelbrot \mathbf{M} daca $\lim_{n \to \infty} |z_n| \neq \infty$, unde

sirul $(z_n)_{n\geq 0}$ este obtinut astfel : $z_0=0+0i$ iar $z_{n+1}=z_n^2+c$, $\forall n\geq 0$.

 a. Construiti multimea Mandelbrot bazandu-va pe urmatoarea proprietate a acesteia (mai bine zis pe negatia ei): daca numarul complex c apartine multimii

Mandelbrot atunci $|z_n| \le 2$, $\forall n \ge 0$. In concluzie procesul iterativ se opreste daca $|z_n|$ depaseste 2.

- Realizati o clasificare a punctelor care nu apartin multimii Mandelbrot,
 colorandu-le cu culori diferite in functie de numarul de iteratii care a fost necesar pentru a detecta neapartenenta.
- 3. In programul <u>urmator</u> sunt generati, recursiv, fractali construiti prin geometria "turtle" (in acest stil de grafica imaginile sunt obtinute prin deplasarea unui cursor pe ecran, acesta deplasandu-se conform unor comenzi : desenare, rotatie catre stanga sau dreapta cu un anumit unghi):
 - a. curba lui Koch (fulg de zapada),
 - b. arbori binari,
 - c. arborele lui Perron,
 - d. curba lui Hilbert.

4. Desenati imaginile urmatoare (utilizand geometria "turtle"): $\frac{1}{2}$, $\frac{2}{3}$.

Multime Julia-Fatou

(1,1)

c = -0.012+0.74i

(-1,-1)

Multime Julia-Fatou

Multimea Mandelbrot (2,2)

(-2_r-2)

Nivel= 4

arbore Perron Nivel= 3

curba Hilbert Nivel= 4

Imaginea 1

Nivel= 2

Imaginea 2

Intrebari, etc. : ghirvu@info.uaic.ro