Nearest neighbor search

Nearest neighbor search

- \blacktriangleright Naïve implementation of NN classifiers based on n labeled examples requires n distance computations to compute the prediction on any test point $x \in \mathcal{X}$.
 - ▶ If using Euclidean distance in \mathbb{R}^d , then each distance computation is O(d) operations.

 $\implies O(dn)$ operations per test point.

▶ **Solution**: store the labeled examples in a special data structure that permits fast NN queries.

Tree structures for one-dimensional data

A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember midpoint between rightmost point in left child, and leftmost point in right child. This permits very efficient NN search.

If tree is (approximately) balanced, then $O(\log(n))$ time to find NN!

Tree structures for multi-dimensional data

A data structure for fast NN search in \mathbb{R}^d , d>1Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $i \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_i : x \in S\}$.
- 3. Split points into halves:

4. Recurse on L and R.

$$L := \{ \boldsymbol{x} \in S : x_j < m \},$$

$$R := \{ \boldsymbol{x} \in S : x_j > m \}.$$

Easy to lookup points in S (in $O(\log(n))$ time).

What about new points (not in S)?

Same $O(\log(n))$ -time routing of a test point $x \in \mathbb{R}^d$ (called *defeatest search*) is overly optimistic: might not yield the NN!

3/8

Searching general tree structures

Using geometric properties

Generic NN search procedure for binary space partition trees

Given a test point x and a tree node v (initially v = root):

- 1. Pick one child L, recursively find NN of x in L (call it x_L).
- 2. Let R be the other child. If

$$\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2$$
 (*)

then return x_L .

3. Otherwise recursively find NN of x in R (call it x_R); return the closer of x_L and x_R .

Note: can't always guarantee $O(\log(n))$ search time due to Step 3.

Question: How do you check if (\star) is true?

▶ **Note**: it is okay (though wasteful) to declare "false" in Step 2 even if (★) turns out to be true.

For K-D trees:

L and R are separated by a hyperplane $H=\left\{ oldsymbol{z}\in\mathbb{R}^{d}:z_{j}=m
ight\} .$

Suppose test point x is in L, and the NN of x in L is x_L .

By geometry,

$$\min_{m{x}' \in R} \|m{x} - m{x}'\|_2 \geq ext{distance from } m{x} ext{ to } H$$

$$= |x_j - m| \, .$$

A valid check: if $\|\boldsymbol{x} - \boldsymbol{x}_L\|_2 < |x_j - m|$, then

$$\|m{x} - m{x}_L\|_2 < \min_{m{x}' \in R} \|m{x} - m{x}'\|_2$$
 .

In this case, we can skip searching R and immediately return \boldsymbol{x}_L .

5 / 8

Efficient NN search?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- ► Very fast in low dimensions.
- ▶ But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification.

K-D tree construction doesn't even look at the labels!

Question: Can we use trees to directly build good classifiers?

Key takeaways

- 1. Efficient data structure for NN search in \mathbb{R}^1 .
- 2. Construction of K-D trees in \mathbb{R}^d , d > 1.
- 3. NN search in K-D trees.

0 / 0