

Relatório - Sprint 1

Resistência e Energia - Térmica

FISIAP/LAPR3 - Lic. Eng. Informática

Realizado por:

Délcio Monjane - 1211739

Inês Costa - 1210814

José Barbosa – 1211359

Rodrigo Peireso – 1211345

Joana Perpétuo - 1211148

Docentes:

Carlos Augusto Ramos CAR

Alberto Pereira ABP

Índice

A - Determinação da resistência térmica de uma estrutura:	4
Estrutura – Croqui, Esquemas e Medidas	4
Planta da estrutura:	4
Corte transversal:	5
Porta A:	5
Porta B:	6
Materiais utilizados na estrutura	7
Constituição das paredes:	7
Constituição interna das janelas:	9
Constituição interna do telhado:	10
Constituição interna das portas interiores e porta B:	11
Constituição interna da porta A:	12
Determinação de Resistências térmicas:	13
Resistência térmica de janelas e portas:	13
Resistência térmica da zona C e D:	17
Porção da parede BC e BD:	17
Porção da parede ExteriorC:	18
Porção da parede CA e DA:	19
A resistência da parede em paralelo com a da porta:	19
Porção do telhado:	20
Resistência térmica da zona E:	21
Porção da parede BCDE:	21
Porção da parede ACDE:	22
Porção da parede ExteriorABE:	23
Parede ED e DC :	24
Porção do telhado:	25
Resistência total da Zona E:	25
Resistência térmica da estrutura grande:	26
Telhado:	26
Parede ExteriorB:	27
Parede ExteriorABE:	28
Parede ExteriorABC:	29
Parede ExteriorA:	30
Resistência total da estrutura grande:	30
Bibliografia	31

Índice de imagens

Figura 1 - Croqui do Armazém Agrícola	4
Figura 2 - Corte transversal da estrutura	5
Figura 3 - Janela	5
Figura 4 - Porta A	
Figura 5 - Porta B	
Figura 6 - Porta interior	
Figura 7 – Constituição interna das paredes internas	
Figura 8 – Constituição interna das paredes externas	8
Figura 9 - Secção de uma janela	g
Figura 10 – Constituição interna do telhado	
Figura 11 - Constituição interna das portas interiores e porta B	
Figura 12 - Constituição interna da porta A	

A - Determinação da resistência térmica de uma estrutura:

Estrutura - Croqui, Esquemas e Medidas

Planta da estrutura:

Página 4 de 31

Corte transversal:

Figura 2 - Corte transversal da estrutura

Janelas:

Figura 3 - Janela

Porta A:

3.5m

Figura 4 - Porta A

Porta B:

Figura 5 - Porta B

Portas Interiores:

Figura 6 - Porta interior

Materiais utilizados na estrutura

Constituição das paredes:

Figura 7 – Constituição interna das paredes internas

Condutividade térmica dos materiais:

Alumínio – 204.00 W/(m.K) (Protolab - Tabela de Condutividade Térmica de Materiais de Construção, n.d.)

Lã de vidro – 0.04 W/(m.K)(*Lã de Vidro - Deformac*, n.d.)

Cimento – 2.25 W/(m.K)(Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures - PMC, n.d.)

Figura 8 – Constituição interna das paredes externas

Condutividade térmica dos materiais:

Alumínio - 204.00 W/(m.K)

Espuma de poliuretano - 0.03 W/(m.K)(Polyurethane Foam - Thermal Insulation, n.d.)

Cimento - 2.25 W/(m.K)

Constituição interna das janelas:

Figura 9 - Secção de uma janela

Condutividade térmica dos materiais:

Alumínio - 204.00 W/(m.K)

Ar – 0.025 W/(m.K) (Air | Density, Heat Capacity, Thermal Conductivity, n.d.)

 $Vidro - 0.80 \ W(m.K)$ (Protolab - Tabela de Condutividade Térmica de Materiais de Construção, n.d.)

Constituição interna do telhado:

Figura 10 – Constituição interna do telhado

Condutividade térmica dos materiais:

Exterior

Zinco – 113 W/(m.K)(Caracteristicas Técnicas | Zinco | ICZ, n.d.)

Interior:

Alumínio - 204.00 W/(m.K)

Isolante:

Espuma de poliuretano - 0.03 W/(m.K)

Constituição interna das portas interiores e porta B:

Figura 11 - Constituição interna das portas interiores e porta B

Condutividade térmica dos materiais:

Alumínio – 204.00 W/(m.K)

Ar - 0.025 W/(m.K)

Constituição interna da porta A:

Figura 12 - Constituição interna da porta A

Condutividade térmica dos materiais:

Alumínio - 204.00 W/(m.K)

Espuma de polietileno – 0.04 W/(m.K)(*Polyethylene Foam Material - The Rubber Company*, n.d.)

Determinação de Resistências térmicas:

Resistência térmica de janelas e portas:

Janelas:

Al – Alumínio

Ar - Ar

Vidro - Vidro

Considerando-se o vidro duplo em paralelo com a caixilharia. As várias camadas do vidro duplo e da caixilharia encontram-se em série. Tem-se:

 $R_{caixilharia} = R_{Al} + R_{Ar} + R_{Al}$, $R_{Vidro} duplo = R_{Vidro} + R_{Ar} + R_{Vidro}$

$$RAI = LAI / (kAI \cdot A_{caixilharia}), RAr = LAr / (kAr \cdot A) e RVidro = LVidro / (kVidro \cdot A_{vidro duplo})$$

Para calcular as áreas, tendo em conta das dimensões presentes na figura 3:

Ajanela =
$$0.9 \times 0.9 = 0.81 \text{ m}^2$$
 Avidro duplo = $0.7 \times 0.7 = 0.49 \text{ m}^2$

$$A \text{caixilharia} = A \text{janela} - A \text{vidro duplo}$$

$$A_{caixilharia} = (0.81 - 0.49) = 0.32 \text{ m}^2$$

$$\frac{1}{R_{Total}} = \frac{1}{R_{Al} + R_{Ar} + R_{Al}} + \frac{1}{R_{Vidro} + R_{Ar} + R_{Vidro}}$$

$$\frac{1}{R_{Total}} = \frac{1}{\frac{0.005}{204 \times 0.32} + \frac{0.04}{0.025 \times 0.32} + \frac{0.005}{204 \times 0.32}} + \frac{1}{\frac{0.005}{0.80 \times 0.49} + \frac{0.04}{0.025 \times 0.49} + \frac{0.005}{204 \times 0.49}}$$

$$R_{Total} = 1.9846 K/W$$

Porta A:

AI – Alumínio

P – Espuma de polietileno

Considerando-se as várias camadas da porta em série, tem-se:

$$RAI = LAI / (kAI \cdot A) e RP = LP / (kP \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 4:

$$AportaA = 3.5 \times 3.5 = 12.25 \text{ m}^2$$

A resistência térmica do conjunto será calculada através de:

$$R_{Total} = R_{AI} + R_P + R_{AI}$$

$$R_{Total} = 2 \times \frac{0.01}{204 \times 12.25} + \frac{0.03}{0.04 \times 12.25}$$

$$R_{Total} = 0.0612K/W$$

Porta B:

AI - Alumínio

Ar - Ar

Considerando-se as várias camadas da porta em série, tem-se:

$$RAI = LAI / (kAI \cdot A) e RAr = LAr / (kAr \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 5:

$$AportaB = 2.20 \times 1.80 = 3.96 \text{ m}^2$$

A resistência térmica do conjunto será calculada através de:

$$R_{Total} = R_{Al} + R_{Ar} + R_{Al}$$

$$R_{Total} = 2 \times \frac{0.005}{204 \times 3.96} + \frac{0.04}{0.025 \times 3.96}$$

$$R_{Total} = 0.4041K/W$$

Portas Interiores:

AI - Alumínio

Ar - Ar

Considerando-se as várias camadas da porta em série, tem-se:

$$RAI = LAI / (kAI \cdot A) e RAr = LAr / (kAr \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 6:

$$AportaB = 2.20 \times 0.93 = 2.05 \text{ m}^2$$

A resistência térmica do conjunto será calculada através de:

$$R_{Total} = R_{AI} + R_{Ar} + R_{AI}$$

$$R_{Total} = 2 \times \frac{0.005}{204 \times 2.05} + \frac{0.04}{0.025 \times 2.05}$$

$$R_{Total} = 0.7820K/W$$

Data: 04/12/2022

Resistência térmica da zona C e D:

P – Espuma de poliuretano

L – Lã de vidro

AI - Alumínio

C - Cimento

Z - Zinco

Porção da parede BC e BD:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 2:

$$AporçãoBD = 3.09 \times 5 = 15.45 m^2$$

A resistência térmica do conjunto será: RTotal = RAI + RP + RC + RP + RAI

$$R_{Total} = 2 \times \frac{0.01}{204 \times 15.45} + 2 \times \frac{0.06}{0.04 \times 15.45} + \frac{0.10}{2.25 \times 15.45} = 0.099969 \frac{K}{W}$$

Porção da parede ExteriorC:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes na figura 1:

$$AExteriorC = 5 \times 3.67 = 18.35 m^2$$

$$R_{Total} = 2 \times \frac{0.01}{204 \times 18.35} + \frac{0.03}{0.03 \times 18.35} + \frac{0.10}{2.25 \times 18.35} = 0.1114173 K/W$$

Porção da parede CA e DA:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área, tendo em conta das dimensões, sabendo que a área e a diferença entre a área da parede e a da porta:

Aporta 0.93
$$\times$$
 2.2 = 2.046 m^2

$$AporçãoCA = 15.45 - 2.046 = 13.404 m^2$$

A resistência térmica do conjunto será: RTotal = RAI + RP + RC + RP + RAI

$$R_{Parede} = 2 \times \frac{0.01}{204 \times 13.404} + 2 \times \frac{0.06}{0.04 \times 13.404} + \frac{0.10}{2.25 \times 13.404} = 0.115228 \frac{K}{W}$$

$$R_{Porta} = 2 \times \frac{0.005}{204 \times 2.046} + \frac{0.04}{0.025 \times 2.046} = 0.782013 \frac{K}{W}$$

A resistência da parede em paralelo com a da porta:

$$R_{Total} = \frac{0.115228 \times 0.782013}{0.115228 + 0.782013} = 0.100434 \frac{K}{W}$$

Porção do telhado:

Considerando as várias camadas do telhado em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RZ = LZ / (kZ \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$ATelhado = 3.67 \times \sqrt{0.45^2 + (\sin 15^\circ \times 0.45)^2} = 0.4620 m^2$$

A resistência térmica do conjunto será: RTotal = RZ + RP + RAI

$$R_{Total} = \frac{0.01}{113 \times 0.4620} + \frac{0.06}{0.03 \times 0.4620} + \frac{0.01}{204 \times 0.4620} = \frac{0.00029807K}{W}$$

A resistência da zona C:

$$R_{ZonaC} = R_{BC} + R_{CD} + R_{ExteriorC} + R_{AC} + R_{Telhado} = 0.5786203K/W$$

A resistência da zona D:

$$R_{ZonaD} = R_{BD} + R_{CD} + R_{AD} + R_{ED} + 2R_{Telhado} = 0.39270707 K/W$$

Resistência térmica da zona E:

P – Espuma de poliuretano

L – Lã de vidro

AI – Alumínio

C – Cimento

Z - Zinco

Porção da parede BCDE:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 2:

$$AporçãoBCDE = \frac{5+5.80}{2} \times 3.09 = 16.69 m^2$$

A resistência térmica do conjunto será: RTotal = RAI + RP + RC + RP + RAI

$$R_{Total} = 2 \times \frac{0.01}{204 \times 16.69} + 2 \times \frac{0.03}{0.03 \times 16.69} + \frac{0.10}{2.25 \times 16.69} = 0.1225 K/W$$

Porção da parede ACDE:

Considerando as várias camadas da parede em série e a mesma em paralelo com a porta tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes na figura 2:

$$AporçãoBCDE = \frac{5+5.80}{2} \times 3.09 - A_{PortaInterior} = 14.64 m^2$$

$$\begin{split} \frac{1}{R_{Total}} &= \frac{1}{R_{PortaInterior}} + \frac{1}{R_{Al} + R_P + R_C + R_P + R_{Al}} \\ \frac{1}{R_{Total}} &= \frac{1}{0.7820} + \frac{1}{2 \times \frac{0.01}{204 \times 14.64} + 2 \times \frac{0.03}{0.03 \times 14.64} + \frac{0.10}{2.25 \times 14.64}} \\ R_{Total} &= 0.1185 K/W \end{split}$$

Porção da parede ExteriorABE:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes na figura 1:

$$AExteriorABE = 5 \times 3.67 = 18.35 m^2$$

$$R_{Total} = 2 \times \frac{0.01}{204 \times 18.35} + \frac{0.06}{0.04 \times 18.35} + \frac{0.10}{2.25 \times 18.35} = 0.0842 K/W$$

Parede ED e DC:

Considerando as várias camadas da parede em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes na figura 2:

$$ADE = 5.8 \times 3.67 = 21.29 \, m^2$$

A resistência térmica do conjunto será: RTotal = RAI + RP + RC + RP + RAI

$$R_{Total} = 2 \times \frac{0.01}{204 \times 21.29} + 2 \times \frac{0.03}{0.03 \times 21.29} + \frac{0.10}{2.25 \times 21.29} = 0.0960 K/W$$

Porção do telhado:

Considerando as várias camadas do telhado em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RZ = LZ / (kZ \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$ATelhado = 3.67 \times \sqrt{3.09^2 + (\sin 15^\circ \times 3.09)^2} = 11.71 \, m^2$$

A resistência térmica do conjunto será: RTotal = RZ + RP + RAI

$$R_{Total} = \frac{0.01}{113 \times 11.71} + \frac{0.06}{0.03 \times 11.71} + \frac{0.01}{204 \times 11.71} = 0.1708 K/W$$

Resistência total da Zona E:

$$R_{ZonaE} = R_{BCDE} + R_{ACDE} + R_{ExteriorABE} + R_{ED} + R_{Telhado} = 0.592 K/W$$

Data: 04/12/2022

Resistência térmica da estrutura grande:

P - Espuma de poliuretano

L – Lã de vidro

AI – Alumínio

C - Cimento

Z - Zinco

Telhado:

Considerando as várias camadas do telhado em série tem-se:

$$RAI = LAI / (kAI \cdot A), RP = LP / (kP \cdot A) e RZ = LZ / (kZ \cdot A)$$

Para calcular a área, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$ATelhado = 2 \times ((20 - 2 \times 0.18) \times \sqrt{\frac{9.64^2}{2} + (\sin 15^\circ \times \frac{9.64}{2})^2}) = 212.4223 \, m^2$$

A resistência térmica do conjunto será: RTotal = RZ + RP + RAI

$$R_{Total} = \frac{0.01}{113 \times 212.4223} + \frac{0.06}{0.03 \times 212.4223} + \frac{0.01}{204 \times 212.4223} = 0.0094 K/W$$

Parede ExteriorB:

Considerando as várias camadas da parede em série e a mesma em paralelo com a janela tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$AExteriorB = 5 \times 9.64 + \frac{\sin 15^{\circ} \times \frac{9.64}{2}}{2} - A_{Janela} = 48.01 \text{ m}^2$$

$$\begin{split} \frac{1}{R_{Total}} &= \frac{1}{R_{Janela}} + \frac{1}{R_{Al} + R_L + R_C + R_{Al}} \\ \frac{1}{R_{Total}} &= \frac{1}{1.9846} + \frac{1}{2 \times \frac{0.01}{204 \times 48.01} + \frac{0.06}{0.04 \times 48.01} + \frac{0.10}{2.25 \times 48.01}} \\ R_{Total} &= 0.0317 K/W \end{split}$$

Parede ExteriorABE:

Considerando as várias camadas da parede em série e a mesma em paralelo com a porta B tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$AExteriorABE = 5 \times (20 - 2 \times 0.18) - A_{PortaB} = 94.24 m^2$$

$$\begin{split} \frac{1}{R_{Total}} &= \frac{1}{R_{PortaB}} + \frac{1}{R_{Al} + R_L + R_C + R_{Al}} \\ \frac{1}{R_{Total}} &= \frac{1}{0.4041} + \frac{1}{2 \times \frac{0.01}{204 \times 94.24} + \frac{0.06}{0.04 \times 94.24} + \frac{0.10}{2.25 \times 94.24}} \\ R_{Total} &= 0.0158 K/W \end{split}$$

Parede ExteriorABC:

Considerando as várias camadas da parede em série e a mesma em paralelo com a janela tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes na figura 1:

$$AExteriorABC = 5 \times (20 - 2 \times 0.18) - A_{Janela} = 97.39 m^2$$

$$\begin{split} \frac{1}{R_{Total}} &= \frac{1}{R_{Janela}} + \frac{1}{R_{Al} + R_L + R_C + R_{Al}} \\ \frac{1}{R_{Total}} &= \frac{1}{1.9846} + \frac{1}{2 \times \frac{0.01}{204 \times 97.39} + \frac{0.06}{0.04 \times 97.39} + \frac{0.10}{2.25 \times 97.39}} \\ R_{Total} &= 0.0157 K/W \end{split}$$

Parede ExteriorA:

Considerando as várias camadas da parede em série e a mesma em paralelo com a porta A tem-se:

$$RAI = LAI / (kAI \cdot A), RL = LL / (kL \cdot A) e RC = LC / (kC \cdot A)$$

Para calcular a área da porção da parede, tendo em conta das dimensões presentes nas figuras 1 e 2:

$$AExteriorA = 5 \times 9.64 + \frac{\sin 15^{\circ} \times \frac{9.64}{2}}{2} - A_{PortaA} = 36.57 \, m^2$$

A resistência térmica do conjunto será:

$$\begin{split} \frac{1}{R_{Total}} &= \frac{1}{R_{PortaA}} + \frac{1}{R_{Al} + R_L + R_C + R_{Al}} \\ \frac{1}{R_{Total}} &= \frac{1}{0.0612} + \frac{1}{2 \times \frac{0.01}{204 \times 36.57} + \frac{0.06}{0.04 \times 36.57} + \frac{0.10}{2.25 \times 36.57}} \\ R_{Total} &= 0.0250 K/W \end{split}$$

Resistência total da estrutura grande:

 $R_{estruturaGrande} = R_{Telhado} + R_{ExteriorB} + R_{ExteriorABE} + R_{ExteriorABC} + R_{ExteriorA} = 0.0976 K/W$

Data: 04/12/2022

Bibliografia

- Air | Density, Heat Capacity, Thermal Conductivity. (n.d.). Retrieved October 16, 2022, from https://material-properties.org/air-density-heat-capacity-thermal-conductivity/
- Caracteristicas Técnicas | Zinco | ICZ. (n.d.). Retrieved December 4, 2022, from http://www.icz.org.br/zinco-caracteristicas-tecnicas.php
- Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures PMC. (n.d.). Retrieved December 4, 2022, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947845/
- Lã de Vidro Deformac. (n.d.). Retrieved December 4, 2022, from https://deformac.com/pt-pt/producto/la-de-vidro/
- Polyethylene Foam Material The Rubber Company. (n.d.). Retrieved December 4, 2022, from https://therubbercompany.com/sponge-foam/polyethylene-foam/polyethylene-foam
- Polyurethane Foam Thermal Insulation. (n.d.). Retrieved October 16, 2022, from https://www.nuclear-power.com/nuclear-engineering/heat-transfer/heat-losses/insulation-materials/polyurethane-foam/
- Protolab Tabela de Codutividade Térmica de Materiais de Construção. (n.d.).
 Retrieved October 16, 2022, from http://www.protolab.com.br/Tabela-Condutividade-Material-Construção.htm