CdL Fisica - Meccanica - (prof. Spurio) - 07/06/2021

Esercizio A

La legge del decadimento radioattivo è data dalla relazione $N(t) = N_o e^{-\lambda t}$, dove N_o è il numero iniziale di nuclei di una certa sostanza, N(t) quelli rimasti dopo un certo tempo t e λ una costante caratteristica di ogni sostanza radioattiva. Il tempo di dimezzamento, $t_{1/2}$, è il tempo necessario per osservare il dimezzamento del numero iniziale di elementi. L'attività A(t) è il numero di decadimenti per unità di tempo (unità: 1 disintegrazione/sec= 1 Bq). L'isotopo $^{14}_{6}C$ del carbonio ha tempo di dimezzamento $t_{1/2}=5730$ anni ed è presente in natura con una concentrazione, rispetto all'isotopo stabile $^{12}_{6}C$, pari a $r=\frac{^{14}_{6}C}{^{12}_{6}C}=1.17\ 10^{-12}$. Il $^{12}_{6}C$ ha concentrazione in natura pari al 99% del totale. La costante di Avogadro è pari a 6.02 10^{23} mol $^{-1}$.

- 1. Determinare la relazione funzionale tra $t_{1/2}$ e λ e il valore di λ per ${}^{14}_{6}C$.
- 2. Mostrare che la relazione funzionale tra 6attività A(t) e λ è data da $A(t) = \lambda N(t)$.
- 3. Determinare l'attività di 1 g di carbonio naturale appena ottenuto da combustione.
- 4. L'attività misurata di un pezzo di carbone di massa m=25 g proveniente da una fornace etrusca è pari a 250 decadimenti/minuto. Determinare l'età del campione.
- 5. Il limite di datazione con la tecnica del ${}^{14}_{6}C$ è circa 50000 anni. In un campione con tale età, qual è la percentuale di radioisotopi ${}^{14}_{6}C$ rimasta?

Esercizio B

Ad un blocco di massa m=4.8 kg che si trova su un piano inclinato di un angolo α =38° rispetto all'orizzontale, è applicata la forza **F** orizzontale, disegnata in figura, di modulo pari a F=47 N. Il coefficiente di attrito dinamico fra blocco e il piano inclinato è μ_D =0.33 ($\mu_S > \mu_D$). All'istante iniziale (t=0) il blocco è in moto lungo il piano inclinato con velocità \mathbf{v}_{ini} =4.3 m/s verso l'alto. Si osserva che successivamente il blocco rallenta fino a fermarsi all'istante di tempo t*.

- 1) Si disegnino le forze agenti sulla massa m quando il corpo è in moto;
- 2) Si trovi la lunghezza dello spostamento del blocco fino all'istante t*.
- 3) Si calcoli il lavoro della forza totale agente sul blocco nell'intervallo di tempo tra l'istante iniziale e t*.
- 4) Si calcoli per t≥t* (ossia, l'istante in cui il blocco si ferma) modulo, direzione e verso della forza d'attrito statica che il piano applica sul blocco.

A1) $\lambda = 3.84 \times 10^{-12} s^{-1}$	B2) 3.16 m
A3) A=0.22 Bq	B3) -44 J
A4) 2350 anni	B4) Modulo forza attrito= 8 N
A5) 0.024%	