Rotations

MEAM 620, SPRING 2020

Rotations

Rotations

Rotations are rigid body displacements, *i.e.*, must satisfy two important properties

1. A rotation preserves lengths

$$||Rp|| = ||p||$$

2. Cross products are preserved by a rotation

$$Rp \times Rq = R(p \times q)$$

Which implies

$$RR^T = R^T R = I, \quad \det R = 1$$

for all rotation matrices

The group of rotations

$$SO(3) = \{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = R R^T = I, \det R = 1 \}$$

SO(3) satisfies the four axioms that must be satisfied by the elements of an algebraic group:

- □ Closure under the binary operation
- Associativity
- \square SO(3) includes the identity element
- \square SO(3) includes the inverse of every element

SO(3) is a continuous group.

the binary operation above is a continuous operation the inverse of any element is a continuous function of that element. Example: the integers \mathbb{Z}

- addition
- (a+b)+c = a + (b+c)
- a + 0 = a
- (a) + (-a) = 0

Manifold

Definition

A manifold of dimension n is a set M which is locally homeomorphic to R^n .

Homeomorphism:

A map f from M to N and its inverse, f^{-1} , are both continuous.

Examples

$$f:(-1,1) \to R, \quad f(x) = \frac{x}{1-x^2}$$

Sphere in three dimensions (S_2)

 \square Manifold is locally homeomorphic to R^2

□ Parametrize using a set of local coordinate charts (latitude

and longitude

■ Need a collection of charts covering the surface of the earth

■ A collection of charts is an "atlas."

The group of rotations

SO(3) is a continuous group.

the binary operation is a continuous operation the inverse is a continuous function

SO(3) is a smooth manifold.

SO(3) is a Lie group

Continuous map from SO(3) to \mathbb{R}^n Map is also differentiable

Coordinates for SO(3)

- 1 Rotation matrices
- 2 Euler angles
- 3 Axis angle parameterization
- 4 Exponential coordinates
- 5 Quaternions

2 Euler Angles

Composition of Three Rotations

$${}^{\mathbf{A}}\mathbf{R}_{\mathbf{D}} = \mathrm{Rot}(x, \, \mathbf{\psi}) \times \mathrm{Rot}(y, \, \mathbf{\phi}) \times \mathrm{Rot}(z, \, \mathbf{\theta})$$

Euler Angles

Any rotation can be described by three successive rotations about linearly independent axes.

3 Euler angles ξ_2

3 × 3 rotation matrix

Almost 1-1 transformation

X-Y-Z Euler Angles

$${}^{\mathbf{A}}\mathbf{R}_{\mathbf{D}} = \mathrm{Rot}(x, \, \mathbf{\psi}) \times \mathrm{Rot}(y, \, \mathbf{\phi}) \times \mathrm{Rot}(z, \, \mathbf{\theta})$$

roll

pitch

yaw

Z-Y-Z Euler Angles

$$\mathbf{R} = \text{Rot}(z, \phi) \times \text{Rot}(y, \theta) \times \text{Rot}(z, \psi)$$

Determination of Euler Angles

$$\mathbf{R} = \text{Rot}(z, \phi) \times \text{Rot}(y, \theta) \times \text{Rot}(z, \psi)$$

$$R_{31} = -\sin\theta\cos\psi$$
$$R_{32} = \sin\theta\sin\psi$$

$$R_{33} = \cos \theta$$

$$R_{13} = \sin \theta \cos \phi$$

$$R_{23} = \sin \theta \sin \phi$$

known rotation matrix

Determination of Euler Angles

If
$$|R_{33}| < 1$$
,

$$\psi = a \tan 2 \left(\frac{R_{32}}{\sin \theta}, \frac{-R_{31}}{\sin \theta} \right)$$

$$\phi = a \tan 2 \left(\frac{R_{23}}{\sin \theta}, \frac{R_{13}}{\sin \theta} \right)$$

Two sets of Euler angles for every **R** for almost all **R**'s!

If
$$R_{33} = 1$$
,

$$R = \begin{bmatrix} \cos\phi\cos\psi - \sin\phi\sin\psi & -\cos\phi\sin\psi - \sin\phi\cos\psi & 0 \\ \cos\phi\sin\psi + \sin\phi\cos\psi & -\sin\phi\sin\psi + \cos\phi\cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f(\phi + \psi)$$

If
$$R_{33} = -1$$
,

$$R = \begin{bmatrix} -\cos\phi\cos\psi - \sin\phi\sin\psi & \cos\phi\sin\psi - \sin\phi\cos\psi & 0\\ \cos\phi\sin\psi - \sin\phi\cos\psi & \sin\phi\sin\psi + \cos\phi\cos\psi & 0\\ 0 & 0 & -1 \end{bmatrix}$$

Infinite set of Euler Angles!

$$\sum g(\psi - \theta)$$

3 Axis/Angle Representation

Euler's Theorem

Rotations

Any displacement of a rigid body such that a point on the rigid body, say O, remains fixed, is equivalent to a rotation about a fixed axis through the point O.

Rotation with O fixed

$$\overrightarrow{OP} = p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + p_3 \mathbf{a}_3$$
$$\overrightarrow{OP}' = q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + q_3 \mathbf{a}_3$$

$$OP' = q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + q_3\mathbf{a}_3$$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

coord. of P'

coord. of P

Sketch of Proof of Euler's Theorem

$$q = Rp$$

Is there a point *p* that maps onto itself?

If there were such a point p ...

$$p = Rp$$

Eigenvalue problem

$$Rp = \lambda p$$

Rotation Axis and Angle

1. Any rotation can be described by an element of SO(3)

$$\tau = (R_{11} + R_{22} + R_{33})$$

$$\cos \phi = \frac{\tau - 1}{2}$$

Are the axis and angle always uniquely defined for a rotation?

How does one find the rotation matrix for a general axis and angle of rotation?

Note we already know the answer if the axis of rotation is one of the coordinate axes.

Axis/Angle to Rotation Matrix

Rotation of a generic vector p about u through ϕ

$$Rp = p\cos\phi + uu^{T}(1-\cos\phi)p + \hat{u}p\sin\phi$$

Axis of rotation

u

Rotation angle

 ϕ

Rodrigues' formula

$$Rot(u,\phi) = I\cos\phi + uu^{T}(1-\cos\phi) + \hat{u}\sin\phi$$

2. Is the (axis, angle) to rotation matrix map *onto*? 1-1?

Euler's theorem

 $Rot(u, \phi)$ and $Rot(-u, 2\pi - \phi)$? restrict ϕ to the interval $[0,\pi]$?

Rotation Matrix to Axis/Angle

Rotation of a generic vector p about u through ϕ

$$Rp = p\cos\phi + uu^{T}(1-\cos\phi)p + \hat{u}p\sin\phi$$

Axis of rotation

u

Rotation angle

Rodrigues' formula

$$Rot(u,\phi) = I\cos\phi + uu^{T}(1-\cos\phi) + \hat{u}\sin\phi$$

Lets extract the axis and the angle from the rotation matrix, R

Verify

$$\cos \phi = \frac{\tau - 1}{2}$$
 $\hat{u} = \frac{1}{2 \sin \phi} (R - R^T)$ (*u*, without solving for eigenvector)

- 1. (axis, angle) to rotation matrix map is many to 1
- 2. restricting angle to the interval $[0,\pi]$ makes it 1-1 except for

4 Exponential Coordinates

Exponential map onto SO(3)

Property 1: Exponentials of 3×3 skew symmetric matrices are rotation matrices

$$\forall a \in \mathbb{R}^3, \ \exp \hat{a} \in SO(3)$$

Property 2: The exponential map is surjective onto SO(3).

$$\forall R \in SO(3), \exists \boldsymbol{a} \in \mathbb{R}^3 \mid R = \exp \widehat{\boldsymbol{a}}$$

Alternative interpretation

Rotation of a generic vector p about u through ϕ

Rotation of a generic vector *p* about *u* at a constant angular velocity ω through time Δt

$$\phi = \omega \Delta t$$

$$\phi = \omega \Delta t$$
$$\dot{p} = \omega \times p$$

$$\dot{p} = \hat{\omega}p$$

$$p(t) = \exp(\hat{\omega}\Delta t)p(t=0)$$

$$\exp \hat{\omega} \Delta T = I + \hat{\omega} \frac{\sin \omega \Delta T}{|\omega|} + \hat{\omega}^2 \frac{(1 - \cos \omega \Delta T)}{|\omega|^2}$$

Exponential map onto SO(3)

Property 1: Exponentials of 3×3 skew symmetric matrices are rotation matrices

$$\forall a \in \mathbb{R}^3, \ \exp \hat{a} \in SO(3)$$

Property 2: The exponential map is surjective onto SO(3).

$$\forall R \in SO(3), \exists \widehat{a} \in \mathbb{R}^3 \mid R = \exp \widehat{a}$$

angular velocity vector $(\times \Delta t)$

Definition: The set of all 3×3 skew symmetric matrices is a *Lie algebra*, denoted by so(3).

Summary: Coordinates for SO(3)

□ Can write every rotation matrix as a function of a unit vector and a scalar

$$R = \exp \hat{u}\theta$$

Exponential coordinates are *canonical coordinates* of the first kind.

$$R = \exp\left(\xi_1 + \xi_2 + \xi_3\right)$$

Product of exponentials define *canonical coordinates* of the second kind.

$$R = \exp(\xi_1') \exp(\xi_2') \exp(\xi_3')$$

See Euler angles

Quaternions

An extension of the complex numbers.

Basis

$$\{1, i,$$

$$i^2 = j^2 = k^2 = -1$$

$$ij = k$$

$$jk = i$$

$$ki = j$$

Represent with a (real) scalar part and (imaginary) vector part.

Products of quaternions can be (tediously) worked out using the rules of products of the basis vectors.

Unit Quaternion

Unit quaternions describe rotations by their axis and angle.

$$\mathbf{v} = \mathbf{u} \sin \frac{\phi}{2}$$

$$\mathbf{q} = (s, \mathbf{v})$$

$$s = \cos \frac{\phi}{2}$$

The unit quaternions form a group called Spin(3).

They are a double cover of the group SO(3).

The negative of the quaternion represents the same rotation.

Summary

Rotation matrices

No free lunch; do you want:

Euler angles (exponential coordinates of the second kind) Compactness?

■ Easy calculations?

Axis/angle parameterization (exponential coordinates)

□ Unique representations?

Quaternions

□ Geometric insight?

