Cognome:	Nome:	Matricola:	Punti:

Analisi Matematica 2, Ing. Informatica e Telecomunicazioni Esame del 10 giugno 2021

Durata: 90 minuti

Pagina 1: Esercizio 1 (7 punti). Tempo consigliato: 25 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Siano $f(x, y) = 3x^3 + xy^2 - x$,

$$D = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, \ -1 \le y \le x\}.$$

- (1) **(3 punti)** E' vero che

 - $\square \boxed{\mathbf{V}} \max_{(x,y) \in D} f(x,y) = 3, \min_{(x,y) \in D} f(x,y) = -3$
 - \square $\boxed{\mathbf{V}}$ il massimo di f in D è assunto in due punti
 - \Box f non ha massimo in D, $\min_{(x,y)\in D} f(x,y) = -\frac{2}{9}$
 - \Box f ha un punto di sella in (x,y)=(0,0)
- (2) **(4 punti)** È vero che
 - \square $\boxed{\mathbf{V}}$ f ha un punto di minimo locale in D per $(x,y)=(\frac{1}{3},0)$
 - $\Box \ \boxed{\mathbf{V}} \iint_D f(x,y) \, dx dy = \frac{2}{3}$
 - \Box f ha un punto di sella per $(x,y)=(\frac{1}{3},0)$
 - \Box f ha un punto di minimo locale in D per (x,y)=(1,0)
 - $\Box \iint_D f(x,y) \, dx dy = \frac{8}{3}$
 - \square $\boxed{\mathbf{V}}$ f è convessa sull'intersezione di D col semipiano y>0,ma non su tutto D

Pagina 2: Esercizio 2 (8 punti). Tempo consigliato: 20 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Sia $f(x) = \pi - x$ per $x \in [0, \pi]$, estesa in modo pari in $(-\pi, 0)$ e poi prolungata per 2π -periodicità in tutto \mathbb{R} . Sia poi

$$a_0 + \sum_{n=1}^{+\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

la sua serie di Fourier.

(1) **(3 punti)** Si ha

- $\square \ \boxed{\mathbf{V}} \ a_0 = \frac{\pi}{2}$
- $\square \ \boxed{\mathbf{V}} \ b_n = 0 \text{ per ogni } n \ge 1$
- $\square \ \boxed{\mathbf{V}} \ a_1 = \frac{4}{\pi}$
- $\square \ a_n = \frac{1}{n^2} \text{ per ogni } n \ge 1$
- $\Box b_n = \frac{2}{n} \text{ per ogni } n \ge 1$

(2) (2 punti) La serie di Fourier di f

- \Box V converge totalmente a f in tutto $\mathbb R$
- \square $\boxed{\mathbf{V}}$ converge in media quadratica ad f nell'intervallo $[-\pi,\pi]$
- \square $\boxed{\mathbf{V}}$ converge puntualmente per ogni $x\in\mathbb{R}$
- \square $\boxed{\mathrm{V}}$ converge totalmente a f in [-1,1]

(3) (3 punti) Scritta la serie di Fourier per f, possiamo dedurre che

- \Box dall'uguaglianza di Parseval discende $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$
- \Box V calcolando la serie di Fourier di f in x=0 otteniamo $\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\frac{\pi^2}{8}$
- \Box dall'uguaglianza di Parseval discende $\sum_{n=1}^{+\infty}\frac{1}{n^4}=\frac{\pi^4}{90}$
- \Box calcolando la serie di Fourier di f in $x=\pi/2$ otteniamo $\sum_{n=0}^{+\infty}\frac{4}{n^2}=\frac{\pi^2}{4}$
- \square $\boxed{\mathrm{V}}$ calcolando la serie di Fourier di f in $x=\pi$ otteniamo $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$

Pagina 3: Esercizio 3 (7 punti). Tempo consigliato: 20 minuti

Tutte le domande in questa pagina ammettono una o più risposte corrette.

Si consideri l'equazione differenziale ordinaria

 \square $\boxed{\mathbf{V}}$ y_a' cambia segno esattamente una volta

 \square y_a è monotona su tutto \mathbb{R} \square y_a è convessa su tutto \mathbb{R} \square y_a è concava su tutto \mathbb{R}

$$y'(x) = x\sin(y(x))$$

$g(x) = x \sin(g(x)).$
(1) (2 punti) Scrivendola nella forma $y'(x) = f(x, y(x))$ e denotando A il dominio di definizione di f , si ha
$\square \ A = \mathbb{R}$ $\square \ \boxed{V} \ A = \mathbb{R}^2$ $\square \ \boxed{V} \ \text{il teorema di esistenza e unicità locale si applica in ogni punto di } A$ $\square \ \boxed{V} \ \text{l'equazione è a variabili separabili}$
(2) (2 punti) Riguardo alle soluzioni di questa EDO
\square $\boxed{\mathrm{V}}$ esistono infinite soluzioni costanti
\square se y_1 e y_2 sono soluzioni allora $z(x)=y_1(x)+y_2(x)$ è soluzione
\square se $y(x)$ è soluzione allora $z(x)=y(x+c)$ è soluzione per ogni $c\in\mathbb{R}$
\Box esiste una soluzione che cambia segno
\Box esiste un'unica soluzione costante
(3) (3 punti) Si consideri ora il seguente problema di Cauchy, al variare di $a \in (0, \pi)$,
$\begin{cases} y'(x) = x \sin(y(x)) \\ y(0) = a. \end{cases}$
Detta y_a una soluzione di questo problema di Cauchy e sapendo che essa è definita per ogni $x \in \mathbb{R}$,
\Box $\boxed{\mathrm{V}}$ y_a ammette asintoti orizzontali a $+\infty$ e a $-\infty$

Pagina 4: Domande di teoria (7 punti). Tempo consigliato: 15 minuti

Le domande 1 e 2 ammettono una o più risposte corrette.

Domanda 1 (3 punti)

La serie geometrica $\sum_{n=0}^{+\infty} x^n$

- \square ha come insieme di convergenza puntuale [-1,1)
- \square $\boxed{\mathbf{V}}$ verifica $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$ per ogni $x \in (-1,1)$
- \square \boxed{V} converge assolutamente in (-1,1)
- \square $\boxed{\mathrm{V}}$ converge totalmente in ogni intervallo del tipo $[-\delta, \delta]$, con $0 < \delta < 1$
- \square converge totalmente in (-1,1)

Domanda 2 (3 punti)

Siano $f: \mathbb{R}^2 \to \mathbb{R}$ e $\underline{r}: \mathbb{R} \to \mathbb{R}^2$ definite rispettivamente da

$$f(x,y) = x \log y,$$
 $\underline{r}(t) = (t^2 - 1, t).$

Sia poi $F(t) = f(\underline{r}(t)) = f \circ \underline{r}(t)$. Allora

$$\Box \ \boxed{\mathbf{V}} \ F'(1) = 0$$

$$\square \ \boxed{\mathbf{V}} \ F'(1) = \langle \nabla f(\underline{r}(1)), \underline{r}'(1) \rangle$$

$$\Box F(t)$$
 non è derivabile in $t=1$

$$\Box F'(1) = 1$$

$$\hfill\Box$$
 $F(1)$ è una quantità non ben definita

La domanda 3 ammette una e una sola risposta corretta.

Domanda 3 (1 punto)

L'integrale curvilineo di una funzione continua $f: \mathbb{R}^2 \to \mathbb{R}$ lungo una curva γ avente parametrizzazione $\varphi: [a,b] \to \mathbb{R}^2, \varphi(t) = (x(t),y(t))$, è definito come:

$$\Box \int_{\gamma} f(x,y) dx dy$$

$$\Box \int_a^b f(x(t), y(t)) \varphi'(t) dt$$

$$\Box \boxed{V} \int_a^b f(x(t), y(t)) \|\varphi'(t)\| dt$$

$$\Box \int_{\gamma} f(x,y) \|\varphi'(x,y)\| \, ds$$

Pagina 5: Domande di teoria (3 punti). Tempo consigliato: 10 minuti

Tutte le domande in questa pagina ammettono una e una sola risposta corretta.

Domanda 4 (1 punto)

Dato il problema di Cauchy

$$\begin{cases} y'(x) = (e^x + 1)y(x)^{3/2} \\ y(x_0) = y_0, \end{cases}$$

con $x_0 \in \mathbb{R}$, $y_0 \ge 0$, si ha:

- \square la sua soluzione esiste sempre, ma è unica soltanto se $y_0 > 0$
- $\Box\,$ la sua soluzione è sempre definita su tutto $\mathbb R$
- \square esistono scelte di $x_0 \in \mathbb{R}, y_0 \ge 0$ per cui non esiste soluzione

Domanda 5 (1 punto)

Un generico sistema differenziale lineare y'(x) = Ay(x) in \mathbb{R}^2 , con A matrice costante 2×2 reale,

- \Box ha sempre soluzioni del tipo $\underline{y}(x)=\underline{v}_1e^{\lambda_1x}+\underline{v}_2e^{\lambda_2x},$ con $\underline{v}_1,\underline{v}_2$ opportuni vettori di \mathbb{R}^2 e $\lambda_1,\lambda_2\in\mathbb{R}.$
- \square $\boxed{\mathbf{V}}$ se A è simmetrica, ha solamente soluzioni del tipo $\underline{y}(x) = \underline{v}_1 e^{\lambda_1 x} + \underline{v}_2 e^{\lambda_2 x}$, con $\underline{v}_1, \underline{v}_2$ opportuni vettori di \mathbb{R}^2 e $\lambda_1, \lambda_2 \in \mathbb{R}$.
- \square se A è invertibile, ha solamente soluzioni del tipo $\underline{y}(x) = \underline{v}_1 e^{\lambda_1 x} + \underline{v}_2 e^{\lambda_2 x}$, con $\underline{v}_1, \underline{v}_2$ opportuni vettori di \mathbb{R}^2 e $\lambda_1, \lambda_2 \in \mathbb{R}$.
- \square se A è diagonalizzabile su \mathbb{R} , può avere soluzioni periodiche

Domanda 6 (1 punto)

Sia $\sum_n f_n$ una serie di funzioni, con $f_n : [a, b] \to \mathbb{R}$ derivabile per ogni n, a < b. Quale affermazione risulta vera?

- \square se $f_n(x) \leq \frac{1}{n^2}$ per ogni $x \in [a,b]$ e per ognin, allora la serie assegnata converge totalmente
- \square se la serie assegnata converge puntualmente in [a,b], si può integrare termine a termine in [a,b]
- \square se la serie assegnata converge totalmente in [a,b], si può derivare termine a termine in [a,b]
- \square V se la serie assegnata converge assolutamente in [a, b], allora converge puntualmente in [a, b]