Exercise 3.20

Aaron Fenyes

June 2, 2022

Let $\mathcal D$ be the noncommutative $\mathbb C$ -algebra generated by the number operator N and the lowering operator A, with the relation NA = A(N-1). Let N act as $t\frac{\partial}{\partial t}$ on $\mathbb C(t)$ and $\zeta\frac{\partial}{\partial \zeta}$ on $\mathbb C(\zeta)$. Let A act as t^{-1} on $\mathbb C(t)$ and

$$\frac{\zeta^n}{n!} \mapsto \frac{\zeta^{n-1}}{(n-1)!} \qquad n > 0$$

$$\zeta^n \mapsto \zeta^{n-1} \qquad n < 0$$

on $\mathbb{C}(\zeta)$. These actions commute with the physicist's Borel transform

$$\mathcal{B}_{\mathrm{ph}} \colon \mathbb{C}[\![t]\!] \to \mathbb{C}[\![\zeta]\!]$$
$$t^n \mapsto \frac{\zeta^n}{n!}$$

whenever both paths through the commutative square are well-defined.

Exercise. Suppose $f \in \mathbb{C}[\![t]\!]$ is annihilated by $D \in \mathcal{D}$. Prove that $\mathcal{B}_{ph}f \in \mathbb{C}[\![\zeta]\!]$ is annihilated by the operator $\mathcal{F}(D)$ given by the alternate representation

$$\mathcal{F} \colon \mathcal{D} \to \left\{ \mathbb{C}[\![\zeta]\!] \to \mathbb{C}(\![\zeta]\!] \right\}$$
$$A \mapsto \frac{\partial}{\partial \zeta}$$
$$N \mapsto \zeta \frac{\partial}{\partial \zeta}.$$

Solution. Moving A to the right, we can write

$$D = P_0(N) A^n + P_1(N) A^{n-1} + \dots + P_{n-1}(N) A + P_n(N)$$

$$\mathcal{F}(D) = P_0(N) \left(\frac{\partial}{\partial \zeta}\right)^n + P_1(N) \left(\frac{\partial}{\partial \zeta}\right)^{n-1} + \dots + P_{n-1}(N) \frac{\partial}{\partial \zeta} + P_n(N)$$

in terms of polynomials P_0, \ldots, P_n . Let Π be the projection $\mathbb{C}(\zeta) \to \mathbb{C}[\![\zeta]\!]$ in the monomial basis. Notice that $\left(\frac{\partial}{\partial \zeta}\right)^k$ and ΠA^k act the same on elements of $\mathbb{C}[\![\zeta]\!]$. Since Π commutes with N, it follows that $\mathcal{F}(D) = \Pi D$. Since the action of \mathcal{D} commutes with $\mathcal{B}_{\mathrm{ph}}$, the assumption that Df = 0 implies that

$$\mathcal{F}(D)\,\mathcal{B}_{\mathrm{ph}}f = \Pi D\mathcal{B}_{\mathrm{ph}}f$$
$$= \Pi \mathcal{B}_{\mathrm{ph}}Df$$
$$= 0.$$

Note from Alex: For holomorphic functions, the correct statement might be that Df = 0 implies $\frac{\partial}{\partial \zeta} \mathcal{F}(D) \mathcal{B}_{ph} f = 0$. The idea is that $\mathcal{F}(A)$ only differs from A because it annihilates constants, so a "translation error" in the differential equation can only leave constants left over.