Endomorphisms of Lifted Planning Tasks

Rostislav Horčík
Czech Technical University in Prague
Daniel Fišer
Saarland University
Saarland Informatics Campus

INTRODUCTION

We propose a method for automatic detection of redundant objects in PDDL tasks.

RUNNING EXAMPLE

Predicates:

at(v: vehicle, x: location), road(x: location, y: location)

Goal: $at(T_1, Hamburg)$

Action: drive(v, x, y) =

 $at(v,x) \land road(x,y) \Longrightarrow at(v,y) \land \neg at(v,x)$

Redundant objects: Madrid, T_2

DESIGN CHOICES

- Keep the action schema, change only its instances.
- Represent mapping between tuples of objects by a map

 $\sigma: \mathcal{B} \to \mathcal{B}$, e.g., $\sigma \text{Mad} = \text{Ber and } \sigma x = x \text{ otherwise.}$

- σ has to be a homomorphism from s_i to t_i , e.g., if $s_i \models \operatorname{at}(v, x)$ then $t_i \models \operatorname{at}(\sigma v, \sigma x)$.
- In particular, σ has to be an endomorphism on s_I .

PDDL ENDOMORPHISM

 $\sigma\colon \mathcal{B} o \mathcal{B}$ is a PDDL endomorphism if

(P1) σ preserves types, i.e., $\sigma(\tau) \subseteq \tau$ for all types τ ,

(P2) σ is an endomorphism on s_I ,

(P3) $p(\vec{b}) \in Goal \text{ iff } p(\sigma \vec{b}) \in Goal$,

(P4) for all reachable states s, t and each ground action $a(\vec{b})$

$$\sigma$$

$$\begin{array}{c|c}
a(b) \\
\hline
\sigma \\
a(\sigma \vec{b}) \\
t
\end{array}$$

(P5) for the optimal planning, we further assume that $cost_a(\sigma \vec{b}) \leq cost_a(\vec{b})$ for all ground actions $a(\vec{b})$.

THEOREM

Let σ be a PDDL endomorphism. If $\pi = \langle a_1(\vec{b}_1), \dots, a_n(\vec{b}_n) \rangle$ is an (optimal) plan, then $\pi' = \langle a_1(\sigma \vec{b}_1), \dots, a_n(\sigma \vec{b}_n) \rangle$ is an (optimal) plan as well.

COROLLARY

If $b \not\in \sigma(\mathcal{B})$ then b is redundant.

COMPUTATION

To find σ , we formulate the problem as an instance of CSP. (P1-P3,P5) can be easily formulated as constraints in CSP. (P4) is problematic due to delete effects. Suppose $\sigma(T_2) = \sigma(T_1) = T_1$, $\sigma(x) = x$ and $\sigma(y) = y$.

$$\operatorname{at}(T_1,\mathsf{x}) \qquad \operatorname{at}(T_1,\mathsf{y}) \ \operatorname{at}(T_2,\mathsf{x}) \qquad \operatorname{at}(T_2,\mathsf{x}) \ \sigma \qquad \sigma \qquad \mathsf{x} \ \operatorname{drive}(T_1,\mathsf{x},\mathsf{y}) \qquad \sigma \qquad \mathsf{x} \ \operatorname{drive}(T_1,\mathsf{x},\mathsf{y}) \qquad \operatorname{at}(T_1,\mathsf{y}) \ \operatorname{at$$

WHAT CAN BE COLLAPSED?

 $\{at(v,x)\}\$ is a lifted mutex group with v fixed and x counted. We cannot have $at(T_1,x) \wedge at(T_1,y)$ for $x \neq y$ in a reachable state s. Consequently, we cannot recreate the previous counter-example with two different locations. The map σ defined by $\sigma Mad = Ber$ and $\sigma x = x$ otherwise is an PDDL endomorphism so Madrid is a redundant object.

EXPERIMENTS

domain	#ps	%obj	%op	%fact
caldera18 (20)	20	15.15	0.00	0.00
citycar14 (20)	5	7.76	0.00	0.00
parcprinter11 (20)	6	7.28	0.00	0.00
rovers06 (40)	33	3.84	11.32	6.43
satellite02 (20)	17	7.61	20.40	11.48
tpp06 (30)	1	2.22	13.44	0.42
transport11 (20)	11	4.65	9.28	7.63
visitall11 (20)	8	15.57	21.28	16.71
overall from above (530)	244	5.83	5.33	3.61
overall from op-pruned (220)	106	5.99	12.26	8.31

