_____ldea

5마일 이내의 있는 빌딩끼리 서로 연결된다고 생각할 때, Cycle이 생기는 경우 문제의 조건이 충돌한다.

- [1] 모든 빌딩에 한 개의 브랜드를 세워야 함.
- [2] 5마일 이내에 있는 빌딩끼리는 서로 같은 브랜드를 세울 수 없음.
- → 주어지는 input은 **Acyclic Graph**를 이룬다.

Data Structure

adj_list

빌딩의 x, y 좌표를 저장할 1차원 배열 buildings Graph의 Adjacency list를 나타낼 벡터

풀이

- . 1. (x, y) pair를 **buildings**에 저장하고 x값을 기준으로 정렬한다.
- 2. n개의 pair에서 다음을 검사한다.
 - a. 현재 index (x_{curr}, y_{curr}) 보다 작은 index를 가진 pair (x_i, y_i) 들 중 $x_{curr} x_i \le 5$ 인 pair들을 검사한다. (정렬 돼 있으므로, $x_{curr} x_i > 5$ 라면 더 이상 검사하지 않는다)
 - b. (x_{curr},y_{curr}) 와 (x_i,y_i) 사이의 유클리드 거리가 5 이하라면 (x_i,y_i) 와 (x_{curr},y_{curr}) 사이의 Edge를 생성하여 adj_i list에 저장한다.
- 3. 형성된 각 Graph에서, BFS를 돌려 각각의 Node(Building)에 인접한 Node들끼리는 다른 색을 칠한다.
- 4. 각 Graph에서 빈도가 더 작은 색의 빈도수를 모두 더한다.

Time complexity (input size n)

- 1. 정렬: *O*(*nlogn*)
- 2. Graph 구성: $O(n^2)$
- 3. BFS: $O(n + n 1) \rightarrow O(n)$