Deniable Key Exchanges for Secure Messaging

Nik Unger & Ian Goldberg

Presented By: Shubham Agarwal

Motivation

Deniability in Secure Messaging

- What is it?
- What are the existing solutions, if there are any?
- How do we define deniability?
- What do we discuss today?

Deniability/Repudiation

- Plausible Deniability Lack of convincing proof that an action occurred.
- Repudiation: Message & Participation Repudiation.
- Judgement Metrics: Valid cryptographic proof of the communication/authorship.
- Goal: No additional evidence against the participant, except protocol transcripts.

Online & Offline Judges - I

- Consideration: no unforgeable cryptographic proofs as evidence.
- Offline Judge:
 - Evidence: chat transcripts.
 - Assumption: long-term secret keys revealed.
 - Goal: prevent distinction between real and fake transcripts.

Online & Offline Judges - II (continued)

Online Judge:

- Evidence: Responses provided by informant.
- Assumption: The judge interacts with informant and instructs them to perform desired actions.
- Goal: The judge decides the actions of informant as real or simulated/fake.

Practicality of Deniability

- Scientific Community:
 - Too expensive to design & implement.
 - Little to no practical relevance or usage.
 - Legal and ethical implications.
- Author's Opinion:

"we should strive to design deniable protocols to avoid unintentionally incriminating users"

Topics Discussed in this Research Study

- \triangleright Discussion on ϕ_{dre} , closest known solution, its shortcomings and proposed modifications.
- ightharpoonup RSDAKE interactive DAKE which improves the security of $\phi_{dre.}$
- > SPAWN first non-interactive DAKE; provides forward secrecy and also achieves deniability.
- Proposed extension for TextSecure Messaging Application.

Pre-requisites

Cryptographic Constructs - I

Dual-Receiver Encryption - enables publicly verifiable encryption of messages - only either of the two involved entities can read the actual message.

- ightharpoonup DRGen(r), DREnc(pk₁, pk₂, pk₂, sk₁, γ)
- For any (pk_1, sk_1) and (pk_2, sk_2) produced by *DRGen*, for $i \in \{1, 2\}$, and any m and r:

 $DRDec(pk_{1}, pk_{2}, sk_{i}, DREnc(pk_{1}, pk_{2}, m, r)) = m$

Cryptographic Constructs - II (continued)

Non-Committing Encryption - Functionalities offered by standard PKE scheme + ability to generate **rigged** ciphertexts.

- $ightharpoonup NCGen(r), NCEnc(pk, m, r), NCDec(pk, sk, <math>\gamma$), **NCSim(r)**, **NCEqv(pk, \gamma, \alpha, m)**.
- $ightharpoonup NCSim(r) = \{pk, \gamma, \alpha\}$ identically distributed along with outputs of NCGen & NCEnc.
- $ightharpoonup NCEqv(pk, \gamma, \alpha, m) = \{sk, r^*, r^{NCE}\}; \text{ s.t. } NCGen(r^*) = \{pk, sk\}, \text{ and } NCEnc(pk, m, r^{NCE}) = \gamma.$

Cryptographic Constructs - III (continued)

Ring Signatures - digital signature scheme - given a set of *n* members, the ring signature could be verifiably produced by any of them without revealing the exact identity of the signer.

- $ightharpoonup RSGen(r), RSig(pk, sk, R, m, r), RVrf(R, <math>\sigma$, m)
- \triangleright Ring, R set of n public keys $\{pk_1, pk_2, ..., pk_n\}$

Proposed Schemes

The Walfish Protocol, ϕ_{dre} - I

- ightharpoonup only known DAKE which claimed to offer forward secrecy as well as both offline and online repudiation simultaneously.
- > Two-round interactive DAKE with non-transferable auth.
- > UC Framework extended to **GUC** Framework to prove the security model of the protocol.
- \succ \mathcal{F}_{ke} models the idealized protocol for security guarantees.

Interlude: (G)UC Framework

- UC Framework method to prove that a real protocol behaves identically to an ideal protocol with well-defined security properties.
- ➤ It assumes that the protocol in test does not have access to shared information between multiple sessions.
- > GUC Framework models the security of multiple concurrent protocol sessions and the shared information exchanges.

The Walfish Protocol, ϕ_{dre} - II (continued)

Figure 1: Φ_{dre} [29]. The shared secret is k.

The Walfish Protocol, ϕ_{dre} & IncProc- III (continued)

- \triangleright Imperfect online deniability in ϕ_{dre} detected.
- \blacktriangleright Walfish proved that \mathcal{F}_{ke} cannot be realized in the presence of adaptive corruptions.
- ➤ **Problem** What if an adversary, *S*, disrupts the protocol during its execution such that it aborts?
- IncProc used by the judge to discriminate between a real response and simulated response served by (mis-)informant.

Modified/Proposed φ_{idre} - I

- \succ \mathcal{F}_{keia} along with IncProc, models the idealized protocol for security guarantees.
- Non-interactive ZKPK to interactive ZKPK.
- DRE Construction based on Cramer-Shoup PKE scheme.
- Resulting Protocol contains 9 message flows along with an interactive ZKPK that proceeds between the prover and the verifier.

RSDAKE - I

Φ_{idre}:

- > 9 message flows latency.
- \rightarrow Non-contributory computation of k.
- Pre-specified peer KE.

RSDAKE:

- > 3 message flows.
- \triangleright Contributory computation of k.
- ➤ Post-specified peer KE.

 $\mathcal{F}_{\it post-keia}$ along with IncProc, models the security guarantees of RSDAKE appropriately.

RSDAKE - II (continued)

Figure 2: RSDAKE. The shared secret is g^{ir} .

Spawn*- I

- > Secure and deniable **one-round key exchange protocol** suitable for both interactive & non-interactive settings.
- > Relies on central server to upload & distribute prekeys.
- Single Post-specified Peer.
- \succ $\mathcal{F}_{1psp\text{-}keia}$ along with **IncProc**, models the security guarantees for the proposed protocol.

Spawn*- II

Figure 3: Spawn*. The shared secret is k. γ denotes "R" concatenated with the output of NCEnc. Spawn replaces NCGen with PKGen and NCEnc with PKEnc. In all other ways, Spawn is identical to Spawn*.

Weakness/Limitations

- Incriminating abort by an adversary, S possible, yet under unreasonable settings.
- \succ Security assumption of GUC Framework: if an adversary, S, has previously corrupted any party, P, it gets access to its SK^{RS} .
- Security assumption of Spawn*: if an adversary, S, corrupts any party, P, it can get access to P's SK^{DRE} .
- An online judge may discriminate between real and simulated messages when *R* impersonates as *I*.

Spawn* - Summary

- ightharpoonup Unlike $\phi_{(i)dre}$ & RSDAKE, Spawn* provides identical security also in non-interactive settings.
- > Incriminating abort still possible but under specific settings.
- Weakened online repudiation.
- Still provides stronger deniability guarantees than 3-DH, the current (non-interactive) KE protocol in *TextSecure*.

TextSecure Iron Triangle - I

- Conjecture: Any TextSecure-like one-round KE Protocol cannot provide non-interactivity, forward secrecy and online repudiation simultaneously - when R simulates as I.
- Can R simulate as I to an online judge?
 - Secrets known to $R: \{SK_R\}$
 - Secrets missing to recover k from transcript: $\{sk_{l}, sk_{R}\}$

TextSecure Iron Triangle - II (continued)

- ightharpoonup Can R deniably simulate sk_{j} by itself and go unnoticed by an online judge?
- **Problem:** R may not have knowledge of sk_{j} as it could be replaced by genuine sk_{j} by the online judge. Thus, cannot recover k from transcript.
 - If R recovers k just with SK_R **no forward secrecy**.
 - If R does not recover k no simulation possible no online repudiability

Practicality of Spawn(*)

- (Too) Strong Threat Model: adaptive corruption & non-erasure model of encryption.
- ➤ Spawn* Spawn:
 - either of the above two assumptions are relaxed.
 - NC Encryption replaced by Standard PK Encryption.
- Weaker model/Spawn practical in real-time environment.

TextSecure & Spawn

TextSecure:

- Key Features: Forward & Backward Secrecy.
- Protocol: 3-DH DAKE
- Protects against offline judges, but not against online judges.

Deniability can be added to TextSecure with Spawn by:

- Replacing 3-DH with Spawn based KE.
- Models the contributory Axolotl by generating new keys from k.

Implementation & Evaluation

Implementation - I

- Usability Issues with existing solutions.
- Open Implementation to encourage adoption.
- Objective:
 - \circ Implemented ϕ_{dre} , ϕ_{idre} , RSDAKE and Spawn.
 - Provably secure in the standard-model.

Implementation - II (continued)

- Along with proposed protocols, the authors implemented few other libraries:
 - Pairing-based Cryptography Wrapper
 - HORS+ Signature Scheme
 - Elliptic Curve Cramer-Shoup Scheme.
 - Chow, Franklin, and Zhang Scheme.
 - Shasham-Waters Scheme.

Performance Evaluation - I

- > Simulation: Interactive session between 2 parties over Internet.
- \triangleright Protocols Evaluated: $\phi_{dre.} \phi_{idre.}$ RSDAKE, Spawn.
- Metrics:
 - Security Bits
 - Network Bandwidth
 - Transmission Latency.

Performance Evaluation - II (continued)

Figure 4: The amount of data transmitted increases significantly with higher security levels. Φ_{dre} and Spawn require significantly more transmissions than Φ_{idre} or RSDAKE.

Performance Evaluation - III (continued)

Figure 5: Over a high-bandwidth connection with no latency, the cryptographic overhead of each protocol is clear. The use of ring signatures negatively affects RSDAKE and Spawn.

Figure 6: Over a low-bandwidth and high-latency connection, the network significantly affects performance. RSDAKE and Spawn perform the best at 112- and 128-bit security levels.

Performance Evaluation - III (continued)

- In general, all four schemes require increasingly expensive cryptographic operations with increasing security level.
- \triangleright ϕ_{idre} uses the least data among all four protocols.
- \triangleright ϕ_{idre} scales well in both high and low latency conditions.
- \rightarrow ϕ_{dre} suffers due to its underlying DRE scheme, in general.
- Performance of RSDAKE and Spawn hampered by Shacham-Waters scheme.

Conclusion

- Spawn non-interactive protocol with forward secrecy and strong deniability properties.
- **RSDAKE** interactive substitute for Spawn with additional security property compared to $\phi_{(i)dre}$ contributory KE.
- ightharpoonup ϕ_{idre} and RSDAKE optimal for bandwidth-constrained network. ϕ_{dre} and ϕ_{idre} better suited over large & fast connections.
- Relaxing cryptographic schemes which use random oracle for security may greatly increase the performance of protocols.

Other Relevant Works

- Dodis, Yevgeniy, et al. "Composability and on-line deniability of authentication." Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2009.
- Unger, Nik, and Ian Goldberg. "Improved strongly deniable authenticated key exchanges for secure messaging." Proceedings on Privacy Enhancing Technologies 2018.1 (2018): 21-66.
- Tian, Yangguang, et al. "DABKE: Secure deniable attribute-based key exchange framework." Journal of Computer Security Preprint (2019): 1-17.

Potential Future Works

- Agreement on standard definition of deniability.
- Consideration of online repudiability during design, analysis and implementation of messaging protocols.
- Active contribution to open-end libraries and adoption by messaging applications.

"My opinions are my own..."

Yay!

- Adversarial examples
- Analysis of existing solutions
- Appeal for usable solutions and not just solutions

Nay!

- Implementation
- Proof summary
- Consistency in definitions.

Questions?

Topics Discussed in this Research Study

- Discussion on ϕ_{dre} , closest known solution, its shortcomings and proposed modifications.
- **RSDAKE** interactive DAKE which improves the performance of Φ_{dre.}
- SPAWN first non-interactive DAKE which provides forward secrecy and also achieves deniability.
- Proposed extension for TextSecure Messaging Application.

Figure 3: Spawn*. The shared secret is k, γ denotes "R" concatenated with the output of NCEnc. Spawn replaces NCGen with PKGen and NCEnc with PKEnc. In all other ways, Spawn is identical to Spawn*.

Figure 2: RSDAKE. The shared secret is g^{ir} .

of ring signatures negatively affects RSDAKE and Spawn.

Figure 5: Over a high-bandwidth connection with no latency, Figure 4: The amount of data transmitted increases signifithe cryptographic overhead of each protocol is clear. The use cantly with higher security levels. Φ_{dre} and Spawn require significantly more transmissions than Φ_{idre} or RSDAKE.

Figure 6: Over a low-bandwidth and high-latency connection, the network significantly affects performance. RSDAKE and Spawn perform the best at 112- and 128-bit security levels.