CS314- Recap of flows 10/25/2013 - HW due today - Next HW-written, due in I week

The algorithm: all about the residual graph

A flow f in a weighted graph G and the corresponding residual graph G_f .

Analysis:

How many paths could you have to find I'm the residual graph?

You saw: O(m|fl)

But can we so better?

Q: Which path in the residual should we take? Ideas: - largest bottleneck path - take path w fewest edge

Edmonds - Karp: take a "fat" pipe (largest bottle neck l'edge)

A greedy approach!

O(m² log n log Ifl)

Dinits (Edmonds-Karp);

Choose a short path:

Bounding how levels increase in Gardes:

O(n·m²)

Best Possible: Unknown

Technique	Direct	With dynamic trees	Sources
Blocking flow	$O(V^3)$	$O(VE \log V)$	[Dinits; Sleator and Tarjan]
Network simplex	$O(V^2E)$	$O(VE \log V)$	[Dantzig; Goldfarb and Hao;
_			Goldberg, Grigoriadis, and Tarjan]
Push-relabel (generic)	$O(V^2E)$	_	[Goldberg and Tarjan]
Push-relabel (FIFO)	$O(V^3)$	$O(V^2 \log(V^2/E))$	[Goldberg and Tarjan]
Push-relabel (highest label)	$O(V^2\sqrt{E})$	_	[Cheriyan and Maheshwari; Tunçel]
Pseudoflow	$O(V^2E)$	$O(VE \log V)$	[Hochbaum]

(plus many more...)