Applications of LP-Duality

Max-Flow-Min-Cut Theorem Revisit, von Neumann's Minimax Theorem

Strong Duality Theorem

• Theorem [Strong Duality Theorem]. Let \mathbf{x}^* be the optimal solution to (a) and \mathbf{y}^* be the optimal solution to (b), then $\mathbf{c}^\mathsf{T}\mathbf{x}^* = \mathbf{b}^\mathsf{T}\mathbf{y}^*$.

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (a) subject to $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{c}$ $\mathbf{x} \geq \mathbf{0}$ $\mathbf{y} \geq \mathbf{0}$

Dual feasible

(b)

Part I: Max-Flow-Min-Cut Theorem Revisited

Strong LP-Duality ⇒ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut theorem:

- Step 1: Write down the LP for max-flow problem.
- Step 2: Show that the dual program describes the fractional version of the min-cut problem.
- Step 3: Show that the dual program always have integral optimum.
 - So that the dual optimum is indeed the size of min-cut.
- Step 4: apply Strong Duality Theorem to show max-flow = min-cut

Strong LP-Duality ⇒ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut theorem:

- Step 1: Write down the LP for max-flow problem.
- Step 2: Show that the dual program describes the fractional version of the min-cut problem.
- Step 3: Show that the dual program always have integral optimum.
 - So that the dual optimum is indeed the size of min-cut.
- Step 4: apply Strong Duality Theorem to show max-flow = min-cut

The Maximum Flow Problem

The maximum flow problem can be formulated by a linear program.

maximize
$$\sum_{u:(s,u)\in E} f_{su}$$
 subject to
$$0 \le f_{uv} \le c_{uv} \qquad \forall (u,v) \in E$$

$$\sum_{v:(v,u)\in E} f_{vu} = \sum_{w:(u,w)\in E} f_{uw} \quad \forall u \in V \setminus \{s,t\}$$

Let's Write It in Standard Form

$$\begin{aligned} & \underset{u:(s,u) \in E}{\text{maximize}} & & \underset{u:(s,u) \in E}{\sum} f_{su} \\ & \text{subject to} & & f_{uv} \leq c_{uv} & \forall (u,v) \in E \end{aligned}$$

$$& \qquad \qquad \forall (u,v) \in E$$

$$& \qquad \qquad \sum_{v:(v,u) \in E} f_{vu} - \sum_{w:(u,w) \in E} f_{uw} \leq 0 & \forall u \in V \setminus \{s,t\} \\ & \qquad \qquad - \sum_{v:(v,u) \in E} f_{vu} + \sum_{w:(u,w) \in E} f_{uw} \leq 0 & \forall u \in V \setminus \{s,t\} \end{aligned}$$

$$& \qquad \qquad f_{uv} \geq 0 & \forall (u,v) \in E$$

Strong LP-Duality ⇒ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut theorem:

- Step 1: Write down the LP for max-flow problem.
- Step 2: Show that the dual program describes the fractional version of the min-cut problem.
- Step 3: Show that the dual program always have integral optimum.
 - So that the dual optimum is indeed the size of min-cut.
- Step 4: apply Strong Duality Theorem to show max-flow = min-cut

Compute Its Dual Program

minimize
$$\sum_{(u,v)\in E} c_{uv}y_{uv}$$
subject to
$$y_{su} + z_u \ge 1 \qquad \forall u: (s,u) \in E$$

$$y_{vt} - z_v \ge 0 \qquad \forall v: (v,t) \in E$$

$$y_{uv} - z_u + z_v \ge 0 \qquad \forall (u,v) \in E, u \ne s, v \ne t$$

$$y_{uv} \ge 0 \qquad \forall (u,v) \in E$$

- We aim to show the LP above describes the min-cut problem.
- Let OPT_{dual} be its optimal objective value. We need to show OPT_{dual} is the size of the min-cut.

Some Intuitions

minimize
$$\sum_{(u,v)\in E} c_{uv}y_{uv}$$
subject to
$$y_{su} + z_u \ge 1$$

$$y_{vt} - z_v \ge 0$$

$$y_{uv} - z_u + z_v \ge 0$$

$$y_{uv} \ge 0$$

$$\forall u: (s, u) \in E$$
 $\forall v: (v, t) \in E$
 $\forall (u, v) \in E, u \neq s, v \neq t$
 $\forall (u, v) \in E$

•
$$y_{uv}$$
 describes if edge (u, v) is cut:
$$y_{uv} = \begin{cases} 1 & \text{if } (u, v) \text{ is cut} \\ 0 & \text{otherwise} \end{cases}$$

•
$$z_u$$
 describes u 's "side":
$$z_u = \begin{cases} 1 & \text{if } u \text{ is on the } s\text{-side} \\ 0 & \text{if } u \text{ is on the } t\text{-side} \end{cases}$$

Strong LP-Duality ⇒ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut theorem:

- Step 1: Write down the LP for max-flow problem.
- Step 2: Show that the dual program describes the fractional version of the min-cut problem.
- Step 3: Show that the dual program always have integral optimum.
 - So that the dual optimum is indeed the size of min-cut.
- Step 4: apply Strong Duality Theorem to show max-flow = min-cut

Turn Intuitions to Formal Proof

• y_{uv} describes if edge (u, v) is cut: $y_{uv} = \begin{cases} 1 & \text{if } (u, v) \text{ is cut} \\ 0 & \text{otherwise} \end{cases}$

• z_u describes u's "side": $z_u = \begin{cases} 1 & \text{if } u \text{ is on the } s\text{-side} \\ 0 & \text{if } u \text{ is on the } t\text{-side} \end{cases}$

To turn our intuitions to a formal proof, we will show

- There is an optimal solution with $y_{uv}, z_u \in \mathbb{Z}$,
 - A common method: total unimodularity
- and furthermore, there is an optimal solution with $y_{uv} \in \{0, 1\}$.
 - If $y_{uv} \ge 2$ for some $(u, v) \in E$, then the solution cannot be optimal.
- The optimal integral solution exactly gives a min-cut.

Totally Unimodular Matrix

- Definition. A matrix A is totally unimodular if every square submatrix has determinant 0, 1 or −1.
- **Theorem.** If $A \in \mathbb{R}^{m \times n}$ is totally unimodular and **b** is an integer vector, then the polytope $P = \{x : Ax \le b\}$ has integer vertices.
- Proof. If $\mathbf{v} \in \mathbb{R}^n$ is a vertex of P. Then there exists an invertible square submatrix A' of A such that $A'\mathbf{v} = \mathbf{b}'$ for some sub-vector \mathbf{b}' of \mathbf{b} .
- By Cramer's Rule, we have $v_i = \frac{\det(A_i'|\mathbf{b}')}{\det(A_i')}$, where $(A_i'|\mathbf{b}')$ is the matrix A' with i-th column replaced by \mathbf{b}' .
- $\det(A') = \pm 1$ and $\det(A'_i|\mathbf{b}') \in \mathbb{Z}$. Thus, \mathbf{v} is integral.

Some Simple Observations

- If A is totally unimodular, then so are A^{T} , $[I \ A]$, $[A \ I]$, $A \in \mathbb{R}^{I}$, and $A \in \mathbb{R}^{I}$ any of A^{T} , $A \in \mathbb{R}^{I}$, $A \in \mathbb{R}^{I}$, and $A \in \mathbb{R}^{I}$ is totally unimodular, then so is A.
- Proof. Just expand the determinant and you will see it...
- The determinant of $[A \ I]$ equals to ± 1 times the determinant of some square submatrix of A.

Corollary on Integrality of LP

- **Theorem.** If $A \in \mathbb{R}^{m \times n}$ is totally unimodular and **b** is an integer vector, then the polytope $P = \{x : Ax \le b\}$ has integer vertices.
- Since there always exists optimum at a vertex of the feasible region of LP, we have the following corollary.
- Corollary. If A is totally unimodular, then the optimal solution to LP (a) is integral when b is integral, and the optimal solution to LP (b) is integral when c is integral.

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 minimize $\mathbf{b}^{\mathsf{T}}\mathbf{y}$ subject to $A\mathbf{x} \leq \mathbf{b}$ (a) subject to $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{c}$ (b) $\mathbf{x} \geq \mathbf{0}$ $\mathbf{y} \geq \mathbf{0}$

Proving Integrality of y_{uv}, z_u

minimize
$$\sum_{(u,v)\in E} c_{uv}y_{uv}$$
subject to
$$y_{su} + z_u \ge 1 \qquad \forall u: (s,u) \in E$$

$$y_{vt} - z_v \ge 0 \qquad \forall v: (v,t) \in E$$

$$y_{uv} - z_u + z_v \ge 0 \qquad \forall (u,v) \in E, u \ne s, v \ne t$$

$$y_{uv} \ge 0 \qquad \forall (u,v) \in E$$

 Now, we show that the matrix describing the first three rows of the constraints is totally unimodular.

Proving Integrality of y_{uv}, z_u

• The matrix can be written below:

 Let the matrix be [Y Z]. Y is the identity matrix. We only need to show Z is totally unimodular.

Proving Z is totally unimodular by Induction...

- Base Step: Each cell of Z belongs to $\{0, 1, -1\}$.
- Inductive Step: Suppose every $k \times k$ submatrix of Z has determinant belongs to $\{0, 1, -1\}$. Consider any $(k + 1) \times (k + 1)$ submatrix Z'.
- Case 1: If a row of Z' is all-zero, then det(Z') = 0.
- Case 2: If a row of Z' contains only one non-zero entry, then $\det(Z')$ equals to ± 1 times the determinant of a $k \times k$ submatrix. $\det(Z') \in \{0, 1, -1\}$ by induction hypothesis.
- Case 3: If every row of Z' has two non-zero entries (one of them is -1 and the other is 1), then det(Z') = 0:
 - Adding all the column vectors, we get a zero vector.

Proving Integrality of y_{uv}, z_u

minimize
$$\sum_{(u,v)\in E} c_{uv}y_{uv}$$
subject to
$$y_{su} + z_u \ge 1 \qquad \forall u: (s,u) \in E$$

$$y_{vt} - z_v \ge 0 \qquad \forall v: (v,t) \in E$$

$$y_{uv} - z_u + z_v \ge 0 \qquad \forall (u,v) \in E, u \ne s, v \ne t$$

$$y_{uv} \ge 0 \qquad \forall (u,v) \in E$$

• Now, we conclude that there exists an optimal solution with $y_{uv}, z_u \in \mathbb{Z}$.

Some Intuitions

- Consider an arbitrary s-t path s v_1 v_2 \cdots $v_{\ell-1}$ t.
- Sum up all the constraints for the edges on the path:

$$(y_{sv_1} + z_{v_1}) + (y_{v_{\ell-1}t} - z_{v_{\ell-1}}) + \sum_{i=1}^{\ell-2} (y_{u_iu_{i+1}} - z_{u_i} + z_{u_{i+1}}) \ge 1$$

$$\Rightarrow y_{sv_1} + y_{v_{\ell-1}t} + \sum_{i=1}^{\ell-2} y_{u_iu_{i+1}} \ge 1$$

- Conclusion: We must have $y_{uv} \ge 1$ for at least one edge (u, v) on the path.
- Removing $\{(u, v): y_{uv} \ge 1\}$ disconnects t from s.

OPT_{dual} is an upper-bound to min-cut.

- Lemma 1. OPT_{dual} is an upper-bound to min-cut.
- Proof. Let (y^*, z^*) be an integral optimal solution.
- Let $C = \{(u, v) \in E : y_{uv}^* \ge 1\}$. We have shown removing C disconnect t from s.
- Let $L \subseteq V$ be the vertices reachable from s after removing C, and $R = V \setminus L$. Then $\{L, R\}$ is an s-t cut.
- For min-cut $\{L^*, R^*\}$, we have

$$c(L^*, R^*) \le c(L, R) = \sum_{(u,v) \in E: u \in L, v \in R} c_{uv} \le \sum_{(u,v) \in E: u \in L, v \in R} c_{uv} y_{uv}^* = OPT_{dua}$$

OPT_{dual} is also a lower-bound to min-cut.

- Lemma 2. OPT_{dual} is a lower-bound to min-cut.
- Proof. Let $\{L^*, R^*\}$ be a min-cut. We construct a LP solution:

•
$$y_{uv} = \begin{cases} 1 & \text{if } u \in L^*, v \in R^* \\ 0 & \text{otherwise} \end{cases}$$
 and $z_u = \begin{cases} 1 & \text{if } u \in L^* \\ 0 & \text{if } u \in R^* \end{cases}$

- It is easy to verify that the solution is feasible...
- Then,

$$OPT_{dual} \le \sum_{(u,v) \in E} c_{uv} y_{uv} = \sum_{(u,v) \in E: u \in L^*, v \in R^*} c_{uv} = c(L^*, R^*)$$

OPT_{dual} Equals Min-Cut!

By the two lemmas, OPT_{dual} is exactly the size of the minimum cut!

Strong LP-Duality ⇒ Max-Flow-Min-Cut

Use Strong Duality Theorem to prove max-flow-min-cut theorem:

- Step 1: Write down the LP for max-flow problem.
- Step 2: Show that the dual program describes the fractional version of the min-cut problem.
- Step 3: Show that the dual program always have integral optimum.
 - So that the dual optimum is indeed the size of min-cut.
- Step 4: apply Strong Duality Theorem to show max-flow = min-cut

Now we conclude Max-Flow-Min-Cut Theorem

- By the two lemmas, OPT_{dual} equals to the size of min-cut.
- By the strong duality theorem, OPT_{dual} equals to OPT_{primal}
- OPT_{primal} is the size of the max-flow.
- Thus, the size of min-cut equals the size of max-flow.

A Framework for Proving Theorems Using Strong Duality

- Write down the primal and dual LPs.
- Justify that the primal and dual LPs describe the corresponding problems.
- If the problem described is discrete, prove that the corresponding LP always gives integral solution.
 - Total Unimodularity
- Apply strong duality theorem.

Revisiting Integrality Theorem for Max-Flow

- Theorem. If the capacities are all integers, then there exists an integral maximum flow.
- We have seen that "A" in the LP is totally unimodular
 - For dual program, we have proved A^{T} is totally unimodular.
- If all c_{uv} are integers, then vector "b" in the LP is integral, and the LP has an integral optimal solution.

maximize
$$\sum_{u:(s,u)\in E} f_{su}$$
 subject to
$$f_{uv} \leq c_{uv}$$

$$\sum_{v:(v,u)\in E} f_{vu} - \sum_{w:(u,w)\in E} f_{uw} \leq 0$$

$$-\sum_{v:(v,u)\in E} f_{vu} + \sum_{w:(u,w)\in E} f_{uw} \leq 0$$

$$f_{uv} \geq 0$$

Part II: von Neumann's Minimax Theorem

Not discussed in the lecture...

Zero-Sum Game

- Two players: A and B
- Each player has a set of actions that (s)he can play.
 - Set of actions A can play: $\mathbf{a} = \{a_1, a_2, ..., a_m\}$
 - Set of actions *B* can play: $\mathbf{b} = \{b_1, b_2, \dots, b_n\}$
- For each pair of actions (a_i, b_j) that two players play, an utility is assigned to each player: $u_A(a_i, b_j), u_B(a_i, b_j)$.
- A game is a zero-sum game if $\forall x_i, y_j : u_A(a_i, b_j) + u_B(a_i, b_j) = 0$.
- Payoff Matrix $G \in \mathbb{R}^{m \times n}$, where $G_{i,j}$ is the utility gain for A, or the utility loss for B, when (a_i, b_i) is played.

Example

The payoff matrix for the Rock-Scissors-Paper game:

		Player B		
		Rock	Scissors	Paper
Player A	Rock	0	1	-1
	Scissors	-1	0	1
	Paper	1	-1	0

Strategy

- Set of actions A can play: $\mathbf{a} = \{a_1, a_2, \dots, a_m\}$
- A strategy for A is a probability distribution of x.
- A pure strategy specifies one of $a_1, a_2, ..., a_m$ with probability 1.
 - In other words, a pure strategy is an action.
- Otherwise, it is a mixed strategy.
 - In other words, a mixed strategy specify at least two actions with non-zero probability.
- Fix A's strategy, the best response for B is the strategy that maximizes B's utility.

Rock-Scissors-Paper Example

- A plays (R, S, P) = (1, 0, 0):
 - It is a pure strategy that always plays "rock".
 - The best response for \overline{B} is (0,0,1), with utility 1.
- A plays $(R, S, P) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$:
 - It is a mixed strategy.
 - The best response for B is (0,0,1), with expected utility $\frac{1}{2} \times 1 + \frac{1}{4} \times 0 + \frac{1}{4} \times 0 = \frac{1}{2}$.
- A plays $(R, S, P) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$:
 - It is a mixed strategy.
 - Any strategy for B, pure or mixed, is a best response, with expected utility 0.

Expected Utility

- Let $\mathbf{x} = \{x_1, ..., x_m\}$ and $\mathbf{y} = \{y_1, ..., y_n\}$ be the strategies played by the two players.
- The expected utility for Player A is

$$U_A(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}} G \mathbf{y} = \sum_{i,j} G_{i,j} x_i y_j$$

The expected utility for Player B is

$$U_B(\mathbf{x}, \mathbf{y}) = -\mathbf{x}^{\mathsf{T}} G \mathbf{y} = -\sum_{i,j} G_{i,j} x_i y_j$$

Does it matter who chooses strategy first?

Rock-Scissors-Paper:
$$G = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

- Suppose A chooses a strategy first.
 - Given that B will always play the best response
 - The optimal strategy for A is $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
 - Expected utility for both players is 0
- Suppose B chooses a strategy first.
 - Similar analysis, expected utility for both players is 0
- Same outcome regardless who chooses strategy first.
- Does it always hold for any zero-sum game?
- Yes! This is von Neumann's Minimax Theorem.

Minimax Theorem

 Suppose A chooses strategy first. Knowing that B will play the best response, A will choose an optimal strategy x that maximizes his/her utility:

B plays the best response given A's strategy \mathbf{x} .

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \sum_{i,j} G_{i,j} x_i y_j$$

Given B plays the best response, A choose a strategy maximizing the utility.

 Suppose B chooses strategy first. Similarly, the utility for A is $\min_{\mathbf{y}} \max_{\mathbf{x}} \sum_{i} G_{i,j} x_i y_j$

$$\min_{\mathbf{y}} \max_{\mathbf{x}} \sum_{i,j} G_{i,j} x_i y_j$$

Minimax Theorem

• Minimax Theorem:

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \sum_{i,j} G_{i,j} x_i y_j = \min_{\mathbf{y}} \max_{\mathbf{x}} \sum_{i,j} G_{i,j} x_i y_j$$

Who chooses strategy first doesn't matter!

Pure Strategy Best Response

- Lemma. Fix A's strategy $\mathbf{x} = \{x_1, ..., x_m\}$, there exists a best response for B that is a pure strategy.
- Proof. Let $\mathbf{y} = \{y_1, \dots, y_n\}$ be B's strategy.
- The utility for B is given by

$$-y_1 \sum_{i=1}^{m} G_{i,1} x_i - y_2 \sum_{i=1}^{m} G_{i,2} x_i - \dots - y_n \sum_{i=1}^{m} G_{i,n} x_i$$

• Clearly, this is maximized if we set $y_i = 1$ where y_i has smallest coefficient.

LP formulation

The lemma implies

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \sum_{i,j} G_{i,j} x_i y_j = \max_{\mathbf{x}} \min_{j=1,\dots,n} \sum_{i} G_{i,j} x_i$$

 Let z be the utility for Player A. The following LP formulates the max-min expression:

maximize
$$z$$
 subject to $\sum_i G_{i,j} x_i \geq z$ $\forall j=1,\dots,n$ $x_1+\dots+x_m=1$ $x_1,\dots,x_m\geq 0$

Standard Form...

maximize
$$z^+ - z^-$$

subject to $-\sum_i G_{i,j} x_i + z^+ - z^- \le 0$ $\forall j = 1, ..., n$
 $x_1 + \cdots + x_m \le 1$
 $-x_1 - \cdots - x_m \le -1$
 $x_1, ..., x_m, z^+, z^- \ge 0$

It's dual program is...

minimize
$$w^+ - w^-$$

subject to $-\sum_j G_{i,j} y_i + w^+ - w^- \ge 0$ $\forall i = 1, ..., m$
 $y_1 + \cdots + y_n \ge 1$
 $-y_1 - \cdots - y_n \ge -1$
 $y_1, ..., y_n, w^+, w^- \ge 0$

Simplify it, we get...

minimize
$$w$$
 subject to $\sum_j G_{i,j} y_i \leq w$ $\forall i=1,\ldots,m$ $y_1+\cdots+y_n=1$ $y_1,\ldots,y_n\geq 0$

This is exactly

$$\min_{\mathbf{y}} \max_{\mathbf{x}} \sum_{i,j} G_{i,j} x_i y_j = \min_{\mathbf{y}} \max_{i=1,\dots,m} \sum_{i,j} G_{i,j} y_j$$

- Strong duality theorem ⇒ Minimax Theorem.