КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра прикладних інформаційних систем

Звіт до лабораторної роботи №8

з курсу

«Системний аналіз та теорія прийняття рішень»

Студентки 3 курсу групи ПП-31 спеціальності 122 «Комп'ютерні науки» ОП «Прикладне програмування» Матвіїв Анастасії Юріївни

Викладач: Білий Р.О. Тема: транспортна задача.

Мета: вивчення методів розв'язання транспортних задач.

Хід роботи

	b_1	b_2	b_3	b_4	b ₅	a_i
a_1	4	8	13	2	7	300
a_2	9	4	11	9	17	250
a_3	3	16	10	1	4	200
b _j	210	150	120	135	135	

Цільова функція F — загальна вартість перевезень, яку слід мінімізувати, виражається через введені змінні у вигляді

$$F = 4x_{11} + 8x_{12} + 13x_{13} + 2x_{14} + 7x_{15} +$$

$$+ 9x_{21} + 4x_{22} + 11x_{23} + 9x_{24} + 17x_{25} +$$

$$+ 3x_{31} + 16x_{32} + 10x_{33} + 1x_{34} + 4x_{35} \quad -> min$$

Визначаємо тип даної транспортної задачі.

$$\sum_{i=1}^{3} a_i = 300 + 250 + 200 = 750$$

$$\sum_{j=1}^{5} b_j = 210 + 150 + 120 + 135 + 135 = 750$$

Оскільки загальний запас продукції у всіх пунктах відправлення дорівнює сумарній потребі усіх пунктів споживання:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

то ця задача ε *збалансованою* або *закритою*.

Початковий опорний план перевезень побудуємо методом північно-західного кута.

План починається заповнюватися з верхнього лівого кута.

Шуканий елемент дорівнює $c_{11}=4$. Для цього елемента запаси дорівнюють 300, потреби 210. Оскільки мінімальним є 210, то віднімаємо його

$$x_{11} = \min(300,210) = 210.$$

	b_1	b_2	b ₃	b_4	b ₅	a_{i}
a_1	4	8	13	2	7	300 - 210 = 90
a_2	X	4	11	9	17	250
a_3	X	16	10	1	4	200
	210 -	150	120	135	135	
b_j	210 = 0					

Шуканий елемент дорівнює \mathbf{x}_{12}

$$x_{12} = \min(90, 150) = 90.$$

	b_1	b_2	b_3	b_4	b_5	a_{i}
a_1	4	8	X	X	X	90 - 90 = 0
a_2	X	4	11	9	17	250
a_3	X	16	10	1	4	200
b _i		150 - 90	120	135	135	
	0	= 60				

Шуканий елемент дорівнює x_{22}

$$x_{22} = \min(250,60) = 60.$$

	b_1	b_2	b_3	b_4	b_5	a_i
a_1	4	8	X	X	X	0
a_2	X	4	11	9	17	250 - 60 = 190
a_3	X	X	10	1	4	200

h	0	60 -	120	135	135	
\bigcup_{j}		60 = 0				

Шуканий елемент дорівнює х₂₃

 $x_{23} = \min(190, 120) = 120.$

	b_1	b_2	b_3	b_4	b_5	a_i
a_1	4	8	X	X	X	0
a_2	X	4	11	9	17	190 - 120 = 70
a_3	X	X	X	1	4	200
	0	0	120 -	135	135	
b_{j}			120 =			
			0			

Шуканий елемент дорівнює x_{24}

 $x_{24} = \min(70,135) = 70.$

	b_1	b_2	b_3	b_4	b ₅	a_{i}
a_1	4	8	X	X	X	0
a_2	X	4	11	9	X	70 - 70 = 0
a_3	X	X	X	1	4	200
	0	0	0	135 -	135	
b_j				70 =		
				65		

Шуканий елемент дорівнює х₃₄

$$x_{34} = \min(200,65) = 65.$$

	b_1	b_2	b_3	b_4	b ₅	a_i
a_1	4	8	X	X	X	0
a_2	X	4	11	9	X	0
a_3	X	X	X	1	4	200 - 65 = 135

l _a	0	0	0	65 -	135	
\bigcup_{j}				65 = 0		

Шуканий елемент дорівнює х₃₅

$$x_{35} = \min(135, 135) = 135.$$

	b_1	b_2	b_3	b_4	b_5	a_{i}
a_1	4	8	X	X	X	0
a_2	X	4	11	9	X	0
a_3	X	X	X	1	4	135 - 135 = 0
	0	0	0	0	135 -	
b_j					135 =	
					0	

Таким чином, отримано опорний план:

ПВ	B_1		B_2		B_3		B_4		B ₅		a_i
		4		8		13		2		7	300
A_1	210		90								
		9		4		11		9		17	250
A_2			60		120		70				
		3		16		10		1		4	200
A_3							65		135	·	
b_{j}	210	·	150	•	120		135		135	·	

$$F(x) = 4*210 + 8*90 + 4*60 + 11*120 + 9*70 + 1*65 + 4*135 = 4355$$

Нехай $u_1 = 0$, тоді

$$u_1 + v_1 = 4 \implies v_1 = 4$$

$$u_1 + v_2 = 8 \implies v_2 = 8$$

$$u_2 + v_2 = 4 \implies u_2 = -4$$

$$u_2 + v_3 = 11 \implies v_3 = 15$$

$$u_1 + v_4 = 9 \implies v_4 = 13$$

$$u_3 + v_4 = 1 \implies u_3 = -12$$

$$u_3 + v_5 = 4 \implies v_5 = 16$$

ПВ	B_1		B_2		B ₃		-	B_{4}		B ₅		a_i	U_i
\mathbf{A}_1	210	4	90	8		13			2		7	300	0
\mathbf{A}_2		9	60	4	120	11	70	ı	9		17	250	-4
A_3		3		16		10	65		1	135	4	200	-12
b_{i}	210		150		120		1	.35		135			
${V}_{i}$	4		8		15			13		16			

Опорний план не є оптимальним, тому що існують оцінки вільних

клітин, для яких $u_{\rm i} + v_{\rm j}$ - $c_{\rm ij} > 0$

$$\Delta_{13} = 0 + 15 - 13 = 2 > 0$$

$$\Delta_{14} = 0 + 13 - 2 = 11 > 0$$

$$\Delta_{15} = 0 + 16 - 7 = 9 > 0$$

$$max(2,11,9) = 11$$

Вибираємо максимальну оцінку вільної клітини (1; 4): 2

Для цього в перспективну клітину (1; 4) поставимо знак «+», а в інших вершинах багатокутника знаки «-», «+», «-».

HC	B_{l}		Е	B_2	Е	33	Е	3_4	Е	B ₅	a_i
A_1	210	4	90	8		13		2 +		7	300
		9		4		11		9		17	250
A_2			60	+	120		70	-			
A ₃		3		16		10	65	1	135	4	200
b_{j}	210		15	50	12	20		35		35	

3 вантажів x_{ij} які у мінусових клітинах, вибираємо найменше, тобто. у = min (2,4) = 70. Додаємо 70 до обсягів вантажів, що стоять у плюсових клітинах і віднімаємо 70 з X_{ij} , що стоять у мінусових клітинах. В результаті отримаємо новий опорний план.

ПВ	B_1		B_2		B ₃		$\mathrm{B}_{\!\scriptscriptstyle{4}}$		B_{5}		a_i	U_i
\mathbf{A}_1	210	4	20	8		13	70	2		7	300	0
A_2		9	130	4	120	11		9		17	250	-4
A_3		3		16		10	65	1	135	4	200	-1
b_{i}	210		150		120		135	,)	135			
$ec{V}_{i}$	4		8		15		2		5			

$$\Delta_{13} = 0 + 15 - 13 = 2 > 0$$

$$\Delta_{33} = -1 + 15 - 10 = 4 > 0$$

IIB	B_1	B_2	В3	B_{4}	B ₅	a_i
A_1	210	20 –	13	70 +	7	300
A_2	9	130 +	11 120 –	9	17	250
A ₃	3	16		65 –	135	200
b_{i}	210	150	120	135	135	

Опорний план ε оптимальним, тому всі оцінки вільних клітин задовольняють умову $u_i + v_i$ - $c_{ii} > 0$

$$F(x) = 4*210 + 2*90 + 4*150 + 11*100 + 10*20 + 1*45 + 4*135 = 3505$$

Далі вирішила завдання за допомогою Python.

```
costs = [[4, 8, 13, 2, 7],
         [9, 4, 11, 9, 17],
         [3, 16, 10, 1, 4]]
supply = [300, 250, 200]
demand = [210, 150, 120, 135, 135]
num supply = len(supply)
num_demand = len(demand)
nwc = [[0] * num_demand for _ in range(num_supply)]
і, ј = 0, 0 # індекси для відстеження постачальників і споживачів
while i < num supply and j < num demand:
    x = min(supply[i], demand[j]) # визначення кількості товарів, що можуть бути
відправлені
    supply[i] -= x
    demand[j] -= x
    nwc[i][j] = x
    print(f"Крок: ({i + 1}, {j + 1}) - Відправлено: {x}")
    print("Опорний план:")
    for row in nwc:
        print(row)
    print("\nЗалишок постачальників:", supply)
    print("Залишок споживачів:", demand)
    print("-" * 30)
    if supply[i] == 0:
        i += 1
    if demand[j] == 0:
        j += 1
total_cost = sum(nwc[i][j] * costs[i][j] for i in range(num_supply) for j in
range(num_demand))
print("\nОстаточний опорний план:")
for row in nwc:
    print(row)
```

Залишок постачальників: [0, 190, 200]

Залишок споживачів: [0, 0, 120, 135, 135]

```
Крок: (2, 3) - Відправлено: 120
Опорний план:
[210, 90, 0, 0, 0]
[0, 60, 120, 0, 0]
[0, 0, 0, 0, 0]
Залишок постачальників: [0, 70, 200]
Залишок споживачів: [0, 0, 0, 135, 135]
Крок: (2, 4) - Відправлено: 70
Опорний план:
[210, 90, 0, 0, 0]
[0, 60, 120, 70, 0]
[0, 0, 0, 0, 0]
Залишок постачальників: [0, 0, 200]
Залишок споживачів: [0, 0, 0, 65, 135]
Крок: (3, 4) - Відправлено: 65
Опорний план:
[210, 90, 0, 0, 0]
[0, 60, 120, 70, 0]
[0, 0, 0, 65, 0]
Залишок постачальників: [0, 0, 135]
Залишок споживачів: [0, 0, 0, 0, 135]
```

```
Крок: (3, 5) - Відправлено: 135
Опорний план:

[210, 90, 0, 0, 0]

[0, 60, 120, 70, 0]

[0, 0, 0, 65, 135]

Залишок постачальників: [0, 0, 0]

Залишок споживачів: [0, 0, 0, 0, 0]

Остаточний опорний план:

[210, 90, 0, 0, 0]

[0, 60, 120, 70, 0]

[0, 0, 0, 65, 135]

Total cost = 4355
```

	b_1	b_2	b ₃	b_4	b ₅	a_i
a_1	27	36	35	31	29	250
a_2	22	23	26	32	35	200
a_3	35	42	38	32	39	200
b_j	120	130	100	160	140	

Цільова функція F — загальна вартість перевезень, яку слід мінімізувати, виражається через введені змінні у вигляді

$$F = 27x_{11} + 36x_{12} + 35x_{13} + 21x_{14} + 29x_{15} +$$

$$+ 22x_{21} + 23x_{22} + 26x_{23} + 32x_{24} + 35x_{25} +$$

$$+ 35x_{31} + 42x_{32} + 38x_{33} + 32x_{34} + 39x_{35} \qquad -> min$$

Визначаємо тип даної транспортної задачі.

$$\sum_{i=1}^{3} a_i = 250 + 200 + 200 = 650$$

$$\sum_{j=1}^{5} b_{j} = 120 + 130 + 100 + 160 + 140 = 650$$

Оскільки загальний запас продукції у всіх пунктах відправлення дорівнює сумарній потребі усіх пунктів споживання:

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

то ця задача ϵ збалансованою або закритою.

Початковий опорний план перевезень побудуємо методом мінімальної вартості. Для цього, заповнення таблиці починаємо з клітини, якій відповідає найменша вартість c_{ii} з усієї матриці вартостей.

Шуканий елемент дорівнює $c_{21}=22$. Для цього елемента запаси дорівнюють 200, потреби 120. Оскільки мінімальним є 120, то віднімаємо

його.

$$x_{21} = \min(200, 120) = 120.$$

	b_1	b_2	b_3	b_4	b_5	a_{i}
a_1	X	36	35	31	29	250
a_2	22	23	26	32	35	200 - 120 =
						80
a_3	X	42	38	32	39	200
	120 -	130	100	160	140	
b_j	120 =					
	0					

У частині таблиці, що залишилась, найменшою є вартість x_{22} $x_{22} = \min(80,130) = 80.$

	b_1	b_2	b_3	b_4	b_5	a_i
a_1	X	36	35	31	29	250
a_2	22	23	X	X	X	80 - 80 = 0
a_3	X	42	38	32	39	200
b_{j}	0	130 - 80 = 50	100	160	140	

У частині таблиці, що залишилась, найменшою ϵ вартість x_{15} $x_{15} = \min(250,140) = 140.$

	b_1	b_2	b_3	b_4	b_5	$a_{\rm i}$
a_1	X	36	35	31	29	250 - 140 = 110
a_2	22	23	X	X	X	0
a_3	X	42	38	32	X	200

	0	50	100	160	140 -	
b_{j}					140 =	
					0	
					0	

У частині таблиці, що залишилась, найменшою ϵ вартість x_{14} $x_{14} = \min(110,160) = 110$.

	b_1	b_2	b_3	b_4	b_5	a_{i}
a_1	X	X	X	31	29	110 - 110 = 0
a_2	22	23	X	X	X	0
a_3	X	42	38	32	X	200
	0	50	100	160 -	0	
b_{j}				110 =		
				50		

У частині таблиці, що залишилась, найменшою ϵ вартість x_{34} $x_{34} = \min(200,50) = 50$.

	b_1	b_2	b_3	b_4	b_5	a_i
a_1	X	X	X	31	29	0
a_2	22	23	X	X	X	0
2	X	42	38	32	X	200 - 50 =
a_3						150
h	0	50	100	50 -	0	
b _j				50 = 0		

У частині таблиці, що залишилась, найменшою є вартість x_{33} $x_{33} = \min(150,100) = 100.$

	b_1	b_2	b_3	b_4	b_5	a_{i}
a_1	X	X	X	31	29	0
a_2	22	23	X	X	X	0

a_3	X	42	38	32	X	150 - 100 = 50
b_i	0	50	100 -	0	0	
			100 = 0			

У частині таблиці, що залишилась, найменшою ϵ вартість x_{32} $x_{32} = \min(50,50) = 50$.

	b_1	b_2	b_3	b_4	b_5	a_i
a_1	X	X	X	31	29	0
a_2	22	23	X	X	X	0
a_3	X	42	38	32	X	50 - 50 = 0
b_{j}	0	50 -	0	0	0	
		50 = 0				

Таким чином, отримано опорний план:

IIB IIB	F	B_1	E	\mathbf{B}_2	E	B ₃	E	\mathbf{B}_4	В	3 ₅	a_i
A_1		27		36		35		31		29	
1								110		140	
_		22		23		26		32		35	200
A_2	120		80								
^		35		42		38		32		39	200
A ₃			50		100		50				
b_j	12	20	13	30	10	00	10	50	14	10	

$$F(x) = 31*110 + 29*140 + 22*120 + 23*80 + 42*50 + 38*100 + 32*50 = 19450$$

Нехай
$$u_1 = 0$$
, тоді

$$u_1 + v_4 = 31 \Longrightarrow v_4 = 31$$

$$u_3 + v_4 = 32 \Longrightarrow u_3 = 1$$

$$u_3 + v_2 = 42 \Longrightarrow v_2 = 41$$

$$u_2 + v_2 = 23 \implies u_2 = -18$$

$$u_2 + v_1 = 22 \Longrightarrow v_1 = 40$$

$$u_3 + v_3 = 38 \Longrightarrow v_3 = 37$$

$$u_1 + v_5 = 29 \implies v_5 = 29$$

IIB]	B_l	F	β_2	F	B₃	Е	\mathbf{B}_4	E	B ₅	a_i	U_i
_		27		36		35		31		29	250	0
A_1								110		140		U
		22		23		26		32		35	200	10
A_2	120		80									-18
		35		42		38		32		39	200	1
A ₃			50		100		50					1
b_j	120		13	130		00	160		140			
\vec{V}_j	4	40	4	1	3	7	3	1	2	1		

Опорний план не ε оптимальним, тому що існують оцінки вільних клітин, для яких $u_i + v_j$ - $c_{ij} > 0$

$$\Delta_{11} = 0 + 40 - 27 = 13 > 0$$

$$\Delta_{12} = 0 + 41 - 36 = 5 > 0$$

$$\Delta_{13} = 0 + 37 - 35 = 2 > 0$$

$$\Delta_{31} = 1 + 40 - 35 = 6 > 0$$

$$max(13,5,2,6) = 13$$

Вибираємо максимальну оцінку вільної клітини (1; 1): 27

Для цього в перспективну клітину (1; 1) поставимо знак «+», а в інших вершинах багатокутника знаки «-», «+», «-».

ПВ	B_1		B_2		B_3		B_{4}		B_5		a_i
A_1	+	27		36		35	110	- 31		29 140	
A_2	120		80	23		26		32		35	200
A_3		35	50	42 -	100	38	50	+ 32		39	200
b_{j}		120	13	30	10	00	1	60	14	-0	

3 вантажів x_{ij} які у мінусових клітинах, вибираємо найменше, тобто. у = min (3, 2) = 50. Додаємо 50 до обсягів вантажів, що стоять у плюсових клітинах і віднімаємо 50 з X_{ij} , що стоять у мінусових клітинах. В результаті отримаємо новий опорний план.

IIB		B_1	Е	β_2	F	33	Е	3_{4}	F	3 ₅	a_i	U_i
A_1	50	27		36		35	60	31		29 140		0
A_2	70	22	130	23		26		32		35	200	-5
A ₃		35		42	100	38	100	32		39	200	1
b_i		120	13	30	10	00	16	50	14	40		
\vec{V}_{j}		27	2	8	3	7	3	1	2	.9		

$$\Delta_{13} = 0 + 37 - 35 = 2 > 0$$

$$\Delta_{23} = -5 + 37 - 26 = 6 > 0$$

ПВ		B_1	E	3_2	E	33		B_4	B ₅		a_i
A_1	50	+ 27		36		35	60	31		29 140	250
A_2	70	_ 22	130	23		<u>26</u>		32		35	200
A_3		35		42	100	38	100	+		39	200
b_i		120	13	30	10	00		160	140)	

HC		B_1	F	β_2	F	33	E	B_4	E	B ₅	a_i	U_i
A_1	110	27		36		35		31		29 140		0
A_2	10	22	130	23	60	26		32		35	200	-5
A_3		35		42	40	38	160	32		39	200	7
b_{i}		120	13	30	10	00	10	50	14	40		
${V}_{j}$		27	2	8	3	1	2	5	2	9		

$$F(x) = 27*110 + 29*140 + 22*10 + 23*130 + 26*60 + 38*40 + 32*160 =$$

18440

Далі вирішила завдання за допомогою Python.

```
import numpy as np
from scipy.optimize import linprog
costs = np.array([[27, 36, 35, 31, 29],
                  [22, 23, 26, 32, 35],
                  [35, 42, 38, 32, 39]])
supply = np.array([250, 200, 200])
demand = np.array([120, 130, 100, 160, 140])
# Розгортаємо матрицю вартостей для використання в функції лінійного програмування
c = costs.flatten()
# Матриця обмежень (A_eq) та права частина рівняння (b_eq)
A_eq = np.zeros((len(supply) + len(demand), len(c)))
b_eq = np.zeros(len(supply) + len(demand))
# Додаємо обмеження на постачання та на попит
for i in range(len(supply)):
   A_eq[i, i * len(demand):(i + 1) * len(demand)] = 1
   b eq[i] = supply[i]
for j in range(len(demand)):
   A_eq[len(supply) + j, j:len(c):len(demand)] = 1
    b_eq[len(supply) + j] = demand[j]
# Розв'язуємо задачу лінійного програмування
result = linprog(c, A eq=A eq, b eq=b eq, method='highs')
solution = result.x.reshape(costs.shape)
print("Оптимальний план:")
```

```
print(solution)
print("\nTotal Cost:", result.fun)
```

```
… Оптимальний план:
[[110. 0. 0. 0. 140.]
[ 10. 130. 60. 0. 0.]
[ 0. 0. 40. 160. 0.]]

Total Cost: 18440.0
```

Висновок:

Під час виконання лабораторної роботи я ознайомилася з різними мктодами розвязування транспортних задач та застосувала це на практиці.