and which may contain inorganic counterions, but is not a nitrate group; E is a methylene group and G¹ is a methylene group or does not exist; F¹ is H; and G² is R^N-Z^N;

D'cont

wherein R^N is an organic radical possessing a heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula Ia; and Z^N is W^N_{mm} - X^N_{nn} - Y^N_{oo} ;

wherein mm, nn, oo are 0 or 1 and WN, XN, YN are NH, NRNN, CO, O or CH2; wherein R^{NN} is a C_1 – C_{12} alkyl group.

13. (Twice amended) A method for providing sedation, mitigating anxiety or providing anaesthesia in a subject in need thereof, comprising administering to a subject an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ic):

(Ic)
$$G^{2}$$
 \downarrow
 $F^{1}-C-F^{2}$
 \downarrow
 $E-ONO_{2}$

B

in which E is $(R^1R^2C)_m$ and $G^2-G^1-CF^1F^2-$ is $R^{19}-(R^3R^4C)_p-(R^{17}R^{18}C)_n-$;

wherein.

m, n, p are integers from 0 to 10;

R^{3,17} are each independently hydrogen, a nitrate group, or A; and R^{1,4} are each independently hydrogen, or A;

where A is selected from a substituted or unsubstituted aliphatic group comprising a branched or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, which optionally may contain O, S, NR6 and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted cyclic aliphatic moiety having from 3 to 7 carbon atoms in the aliphatic ring, which optionally may contain O, S, NR6 and unsaturations in the ring, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted aliphatic moiety constituting a linkage of from 0 to 5 carbons, between R¹ and R³ and/or between R¹7 and R⁴, which optionally may contain O, S, NR6 and unsaturations in the linkage, and optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aliphatic group comprising a branched,

cyclic or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, containing carbonyl linkages selected from the group consisting of C=O, C=S, and C=NOH, which optionally may contain O, S, NR6 and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aryl group; a heterocyclic group; an amino group selected from alkylamino, dialkylamino, cyclic amino, diamino and triamino moieties, arylamino, diarylamino, and alkylarylamino; hydroxy; alkoxy; a substituted or unsubstituted aryloxy;

wherein X is F, Br, Cl, NO₂, CH₂, CF₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂H_{R¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)₂R⁹, S(O)₂OR⁸, S(O)₂OR⁹, PO₂HM, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂H, PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵;}

Y is F, Br, Cl, CH₃, CF₂H, CF₃, OH, NH₂, NHR⁶, NR⁶R⁷, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂H₂R¹³, N₂H_R¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)₂R⁹, S(O)₂OR⁹, S(O)₂OR⁹, PO₂HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O)R¹², C(O)(OR¹³), C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵, or does not exist;

R², R⁵, R¹⁸, R¹⁹ are optionally hydrogen, A or X-Y;

 R^6 , R^7 , R^8 , R^9 , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ONO₂ substituents; or C_1 - C_6 connections to R^1 - R^4 in cyclic derivatives which may contain 1-4 ONO₂ substituents; or are each independently hydrogen, a nitrate group or A;

M is H, Na+, K+, NH₄+, N+H_kR¹¹_(4-k) where k is 0-3; or other pharmaceutically acceptable counterion;

and with the proviso that when m=n=p=1 and R^{19} , R^2 , R^{18} , $R^1=H$ and R^{17} , R^3 are nitrate groups, R^4 is not H.

14. (Twice amended) The method of claim 11, wherein F² is a nitrate group; and E, F¹, G¹, G² are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions;

with the proviso that when E and G¹ are methylene groups and F¹ is H, G² is not a nitrate group, nor R^N-Z^N;

Con

wherein R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N , Y^N are NH, NR^{NN} , O or CH₂; wherein R^{NN} is a C_1 – C_{12} alkyl group.

Dont

15. (Amended) The method of claim 11, wherein F^2 is a nitrate group; E and G^1 are methylene groups; F^1 is H; and G^2 is $R^{N_-}Z^{N_+}$;

wherein R^N is an organic radical possessing an heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula Ia; and Z^N is $W^N_{mm}-X^N_{nn}-Y^N_{oo}$;

wherein mm, nn, oo are 0 or 1 and WN, XN, YN are NH, NRNN, CO, O or CH₂; wherein R^{NN} is a C_1 – C_{12} alkyl group.

24. (Amended) The method of any one of claims 11, 13, 14 or 15, further comprising administering the therapeutic compound with a pharmaceutically acceptable vehicle.

26. (Amended) The method of any one of claims 11, 13, 14 or 15, wherein the therapeutic compound modulates levels of the cyclic nucleotides cGMP and/or cAMP in said subject.

- 28. (Amended) The method of any one of claims 11, 13, 14 or 15, wherein the therapeutic compound modulates guanylyl cyclase activity in said subject.
- 41. (Amended) The method of claim 13, wherein when E and G¹ are independently methylene groups or do not exist and F¹ is H, G² is not R^N-Z^N;

wherein R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N,Y^N are NH, NRNN, O or CH₂; wherein R^{NN} is a C_1 – C_{12} alkyl group.

42. (Amended) The method of claim 41, wherein F² is a nitrate group; and E, F¹, G¹, G² are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions;

with the proviso that when E and G¹ are methylene groups and F¹ is H, G² is not a nitrate group, nor R^N-Z^N;