Definition: When A and B are sets, we say any subset of $A \times B$ is a **binary relation**. A relation R can also be represented as

• A function
$$f_{TF}: A \times B \to \{T, F\}$$
 where, for $a \in A$ and $b \in B$, $f_{TF}((a, b)) = \begin{cases} T & \text{when } (a, b) \in R \\ F & \text{when } (a, b) \notin R \end{cases}$

• A function $f_{\mathcal{P}}: A \to \mathcal{P}(B)$ where, for $a \in A$, $f_{\mathcal{P}}(a) = \{b \in B \mid (a, b) \in R\}$

When A is a set, we say any subset of $A \times A$ is a (binary) **relation** on A.