

时间序列模型— ARIMA与GARCH类模型

厦门大学财政系 王艺明

ARIMA模型

- ▼ 对于投资人而言,其最关心的莫过于能预先获知商品股价的变动趋势,获取最大的利润;而对于商品交易的管理当局而言,其亦期望能对未来市场趋于过热或过冷加以预测,而预先加以对策因应,规避市场的过度波动
- ▼ 因此传统的时间序列模型旨在提供一套有效的预测技术,以 掌握近期内各金融商品股价的走向,提前因应景气转坏所受 的冲击
- ▼ 其中最著名的之一便是Box & Jenkins 于1976年提出ARIMA模型,以往的文献曾将单变量ARIMA模型的预测效果与其它预测技术(如多元回归、GARCH、倒传递类神经网络模型、向量自回归模型及误差修正模型等)相比较,其结果显示ARIMA预测技术有一定的使用价值

~~~~

ARIMA模型的研究步骤

ARMA模型的设定

- ▼ 我们假设经过差分后获得的时序y_t是平稳的,此时 我们对其建立ARMA(p,q)模型
- ∨ ARMA模型假设时序y_t为其当前与前期的误差和随机项,以及它的前期值的线性函数,表示为
- $y_{t} = \Phi_{1}y_{t-1} + \Phi_{2}y_{t-2} + ... + \Phi_{p}y_{t-p} + \mu_{t} \theta_{1}\mu_{t-1} \theta_{2}\mu_{t-2} ... \theta_{q}\mu_{t-q}$
- **v** 则称该时序y,为自回归移动平均序列,该模型为 (p,q) 阶自回归移动平均模型,记作ARMA (p,q)。参数 $\phi_1,\phi_2,...,\phi_n$ 为自回归参数, $\theta_1,\theta_2,...,\theta_n$ 为移动平均参数,是模型的待估参数

ARMA模型p,q阶数的确定

- → 决定ARMA (p,q) 模型中的p与q值阶数的方法之一为,应用样本的自相关图 (ACF) 判断AR (p) 的阶数,应用偏自相关图 (PACF) 判断MA (q) 的阶数
- v 但该方法较主观

模型	ACF	PACF
AR(p)	呈指数或正弦函数图形	截断与k,当k>p
MA(q)	截断于q期之后	呈指数或正弦函数图形
ARMA(p,q)	呈指数与正弦函数混合 的衰退消失	呈指数与正弦函数混合的衰 退消失

- ✓样本数据为第一讲中的数据
- ∨对月利率r进行单位根检验,无法拒绝其为单位根的零假设
- ▼ 因此应拟合ARIMA(p,1,q)模型
- ∨产生差分序列 new series dr=r-r(-1)
- v观察dr的自相关和偏自相关图形

Date: 07/10/05 Time: 22:23 Sample: 1959:01 1996:02 Included observations: 445

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		2 -0.116 3 -0.099	-0.204 -0.007 -0.037 -0.064 -0.262	39.026 43.466	0.000 0.000 0.000 0.000 0.000 0.000
		7 -0.194	-0.050	77.902	0.000

- ∨ 从PACF图形来看,似乎是截尾的,可以考虑AR(2)模型
- √ 输入 Is dr c ar(1) ar(2)

<u>Variable</u>	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	0.004472 0.327216 -0.204470	0.027779 0.046663 0.046664	0.160969 7.012350 -4.381785	0.8722 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.112554 0.108520 0.512918 115.7574 -331.3206 2.002667	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		0.004555 0.543241 1.509348 1.537070 27.90230 0.000000
Inverted AR Roots	1642i	.16+.42i		

- ▼ 从ACF图形来看,似乎是二阶截尾的,可以考虑MA(2)模型
- √ 输入 Is dr c ma(1) ma(2)

<u>Variable</u>	Coefficient	Std. Error	t-Statistic	Prob.
С	0.004486	0.029275	0.153252	0.8783
MA(1)	0.334211	0.047184	7.083125	0.0000
MA(2)	-0.127170	0.047184	-2.695172	0.0073
R-squared	0.112868	Mean dep	endent var	0.004569
Adjusted R-squared	0.108854	S.D. depe	ndent var	0.542089
S.E. of regression	0.511735	Akaike inf	o criterion	1.504697
Sum squared resid	115.7475	Schwarz	Schwarz criterion	
Log likelihood	-331.7951	F-statistic		28.11750
Durbin-Watson stat	1.994661	Prob(F-st:	0.0000000	
Inverted MA Roots	23	56		

ARMA模型p,q阶数的确定

- ▼ 可以采用试错法(Trial and Error)方法加以选取使得SBC 值最小的p与q值
- ▼ Schwartz(1978)提出的SBC(Schwarz Bayesian Criterion) 准则
- ∨ SBC(M)=nIn σ _ε ²+MIn n
- v 其中σ_ε²为最大似然估计量,M为模型中参数的个数,n为 有效的观测指数
- ▼ 在试错过程中,p与q值阶数均限制在3(含3)以下
- v 该方法较为客观

不同p,q取值时,模型拟合的SBC值。当(p,q)=(3,3)时模型拟合的SBC值最小。

	Р	0	1	2	3
Q					
0		1.624680	1.563960	1.537070	1.553134
1		1.530077	1.534262	1.550752	1.556467
2		1.532325	1.541504	1.556771	1.563041
3		1.545586	1.554925	1.564360	1.485790

<u>Variable</u>	Coefficient	Std. Error	t-Statistic	Prob.
С	0.042584	0.015807	2.694085	0.0073
AR(1)	-0.311711	0.101515	-3.070596	0.0023
AR(2)	-0.896754	0.024629	-36.41083	0.0000
AR(3)	-0.477184	0.100714	-4.737997	0.0000
MA(1)	0.644363	0.080750	7.979745	0.0000
MA(2)	0.955682	0.011524	82.93066	0.0000
MA(3)	0.753795	0.084310	8.940730	0.0000
R-squared	0.203930	Mean dep	endent var	0.004321
Adjusted R-squared	0.192949	S.D. depe		0.543834
S.E. of regression	0.488559	Akaike inf		1.420996
Sum squared resid	103.8299	Schwarz		1.485790
Log likelihood	-307.0400	F-statistic		18.57234
Durbin-Watson stat	<u>1.975533</u>	Prob(F-sta	atistic)	0.000000

ARIMA模型参数的限制

- ν 对于AR(1)、AR(2)模型,系数Φ₁、Φ₂的绝对值通常限制低于1,该限制称为稳定性界限,若超出该界限,则该时序不是自回归。可能存在单位根或趋势
- ν 对于MA(1)、MA(2)模型,系数θ₁、θ₂的绝对值限制低于 1,该限制称为可逆性界限,若超出该界限,则该模型就不 稳定
- v 稳定性界限:

AR(1)
$$-1 < \phi_1 < 1$$
,

AR(2)
$$-1 < \Phi_{1,2} < 1$$
, $\Phi_1 + \Phi_2 < 1$, $\Phi_2 - \Phi_1 < 1$

∨ 可逆性界限

MA(1)
$$-1 < \theta_1 < 1$$

MA(2)
$$-1 < \theta_{1,2} < 1$$
, $\theta_1 + \theta_2 < 1$, $\theta_2 - \theta_1 < 1$

残差项的白噪音检验

- ▼当预测模式拟合后,对残差值可以算出各滞后期的自相关,将残差值的自相关系数经Q 检验以决定残差项是否符合自噪音假设
- ▼ 当检验后如符合白噪音假设,则表示所选用的模型合适,可以此模型进行预测
- ▼ 若经模型后不符合自噪音假设,即有一型态存在,表示所选用的模型不合适,需要重新拟合预测模型,直至通过Q检验为止

残差项的白噪音检验

✓ 通常使用Ljung-Box (1978) 提出的修正的Q检验, 作为残差项白噪音检验的方法

$$\widetilde{Q}(K) = n(n+2)\sum_{j=1}^{k} (n-j)^{-1} \hat{\rho}_{k}^{2}(j) \sim \chi_{k_{p-q}}^{2}$$

k通常可取24或k~ln(n)。

其虛假設為:

Ha: {ax}**. 爲白噪音

H₁: {α_i}*_i, 不爲白噪音

其拒絕域爲 $\tilde{Q}(K) \ge X_{k_{*,*,*}}^{2}$,屬右尾之單尾檢定。

- Is dr c ar(1) ar(2) ar(3) ma(1) ma(2) ma(3)
- v new series et=resid
- View/correlogram/OK

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1/1		1	0.008	0.008	0.0295	0.864
ı j ı	l di	2	0.028	0.028	0.3720	0.830
ı(lı	n -	3	-0.033	-0.033	0.8467	0.838
(-	(1)	4	-0.062	-0.063	2.5805	0.630
ılı.	101	5	-0.030	-0.027	2.9802	0.703
□ I	 	6	-0.150	-0.148	13.042	0.042
(-	(1)	7	-0.068	-0.072	15.159	0.034
ı 🗖	' 	8	0.110	0.115	20.679	0.008
ı þ i		9	0.059	0.052	22.274	0.008
1 1	1[1	10	-0.001	-0.032	22.274	0.014
ı 	' 	11	0.113	0.106	28.106	0.003
ı l ı	I II	12	-0.039	-0.049	28.808	0.004
□ !	■ '	13	-0.102	-0.128	33.540	0.001
ı 🗖	' 	14	0.162	0.220	45.546	0.000
□ !	(()	15	-0.106	-0.070	50.692	0.000
ı		16	0.134	0.110	58.955	0.000

促使残差项为白噪音的方法

- ▼ 就上述模型来看,残差序列存在高阶(6阶以上)序列自相关
- ▼ 当残差项无法通过白噪音检验时,以往解决此问题的方法通常是将残差拟合成ARIMA模型,再代入原序列的ARIMA(p,d,q)模型,进而得到修正后的模型,但有时常会造成(p,q)阶数过高,过度拟合
- ▼ 另一种方法是先采用Box-Cox变换,并通过编程求得使SSE 最小的转换参数,对原数据进行转换,以促使原数据方差稳 定化并服从渐近常态分配,之后又对离群值加以修正,使得 模型能顺利地通过白噪音检验

预测准确度的评估指标一MAPE

▼ 平均绝对值误差(Mean Absolute Percentage Error), 其公式为

- ▼ 其中,M为预测期数,I为预测第几期数
- ▼ 一般来说,MAPE因分母为实际值,所代表为百分比,不会 因数值的大小而产生无可比性的问题
- ✓ MAPE评估预测准确度准则(Martin & Witt,1989): MAPE<10 预测准确度极佳; 10<MAPE<20<MAPE<50 预测准确度普通; 50<MAPE 预测准确度差

- Is dr c ar(1) ar(2) ar(3) ma(1) ma(2) ma(3)
- ▼ Forecast/OK ARMA(3,3)模型拟合情况较差

Forecast: DRF

Actual: DR

Forecast sample: 1959:01 1996: Adjusted sample: 1959:05 1996: Included observations: 442

Root Mean Squared Error 0.545672
Mean Absolute Error 0.307682
Mean Abs. Percent Error 175.9600
Theil Inequality Coefficient 0.921759
Bias Proportion 0.004881
Variance Proportion 0.089682

GARCH类模型

- ✓ ARIMA是对时序的均值进行预测的模型
- ▼ 而GARCH类模型是对时序的条件方差(波动率,volatility)进行预测的模型
- ✓ 其预测的出发点是 波动率的群集现象 (volatility clustering) 以及非对称现象等

GARCH类模型的设定

- ▼ GARCH类模型包括两部分,一是条件均值的预测模型,一 是条件方差的预测模型
- ▼ 标准GARCH (1,1) 模型的设定为:

$$\begin{aligned} \boldsymbol{y}_t &= \boldsymbol{x}_t \boldsymbol{\gamma} + \boldsymbol{\epsilon}_t \\ \boldsymbol{\sigma}_t^2 &= \boldsymbol{\omega} + \alpha \boldsymbol{\epsilon}_{t-1}^2 + \beta \boldsymbol{\sigma}_{t-1}^2 \end{aligned}$$

- v 均值方程包括外生变量的函数和一个误差项
- ν $σ_t^2$ 为方差的向前一期预测值,即条件方差。其函数包含三项:均值,上一期的波动率 $ε_{t-1}^2$ (ARCH项),上一期的预测方差 $σ_{t-1}^2$ (GARCH项)

GARCH类模型的设定

- ▼ GARCH(1,1),前一个参数表示一阶GARCH项,后一个参数表示一阶ARCH项
- ▼ ARCH模型即为GARCH(0,1)模型,无GARCH项
- ▼ GARCH(p,q)模型设定为

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

▼ 还可以在方差模型中引入外生变量

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 + \pi z_t$$

美国月利率数据的拟合一GARCH

Quick/Estimate Equation

▼ 在method中选择ARCH Equation Specification

美国月利率数据的拟合一GARCH

v 该模型设定说明均值方程为

$$dr_t = c + \Phi_1 dr_{t-1} + \varepsilon_t$$

v 方差方程为

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

v 估计结果为

	Coefficient	Std. Error	z-Statistic	<u>Prob.</u>
C	0.029142	0.013326	2.186921	0.0287
AR(1)	0.362682	0.043466	8.344131	0.0000
	Varia	nce Equation		
C	0.001140	0.000386	2.954294	0.0031
ARCH(1)	0.295118	0.040154	7.349718	0.0000
GARCH(1)	0.755002	0.027549	27.40614	0.0000

美国月利率数据的拟合

▼ View/Residual tests/Correlogram-Q-Statistics一说明残差不

存在序列自相关 Date: 07/12/05 Time: 14:08

Sample: 1959:03 1996:02 Included observations: 444

Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- <u> </u>		1	0.037	0.037	0.6266	
1 1		2	0.000	-0.001	0.6266	0.429
ı j jı	l di	3	0.031	0.031	1.0515	0.591
1 1	1 1	4	0.006	0.004	1.0705	0.784
ı j ı	• 	5	0.086	0.086	4.4439	0.349
1)1	1 1	6	0.017	0.010	4.5779	0.470
(I)	(7	-0.073	-0.074	6.9858	0.322
ı j lı	l ili	8	0.037	0.037	7.6001	0.369
ı j i	l ili	9	0.045	0.041	8.5080	0.385
ı l ı	1 1	10	0.011	0.004	8.5605	0.479
ı þ i	' 0	11	0.070	0.067	10.817	0.372

美国月利率数据的拟合一GARCH

▼ View/Residual tests/ARCH-LM Test-残差不存在ARCH效

ARCH Test:

F-statistic	Probability	0.979254
Obs*R-squared	Probability	0.979195

▼ 说明用AR(1)-GARCH(1,1)模型拟合dr较为充分

ARCH-M模型的设定

✓ ARCH-M模型将条件方差引入均值方程(ARCH-in-Mean, Engle, Lilien, Robins, 1987),模型设定为

$$y_t = x_t' \gamma + \sigma_t^2 \tilde{\gamma} + \epsilon_t$$

▼ 该设定的经济意义为,资产的期望收益与期望风险相关,期望风险系数的估计值可视为风险一收益的抵换系数(risk-return tradeoff)

美国月利率数据的拟合一ARCH-M

v 在均值方程中加入条件方差或条件标准差,似乎均不显著

	Coefficient	Std. Error	z-Statistic	Prob.			
GARCH C AR(1)	-0.097304 0.025831 0.357442	0.118360 0.013163 0.044114	-0.822102 1.962381 8.102665	0.4110 0.0497 0.0000			
	Variance Equation						
C ARCH(1) GARCH(1)	0.001108 0.284490 0.759017	0.000380 0.038495 0.026753	2.911986 7.390336 28.37087	0.0036 0.0000 0.0000			

非对称GARCH模型

✓ 通常在金融市场中可以发现,熊市的波动率高于牛市, Engle and Ng(1993)应用非对称新闻影响曲线来说明该 现象

v EViews可以应用两类模型来估计对波动率的非对称冲击:

TARCH和EGARCH模型

TGARCH模型的设定

▼ TGARCH模型或门限GARCH模型,由Zakoian(1990)和 Glosten,Jaganathan and Runkle(1993)提出,模型设定为

$$\sigma_t^2 = \omega + \alpha \epsilon_{t-1}^2 + \gamma \epsilon_{t-1}^2 d_{t-1} + \beta \sigma_{t-1}^2$$

- v 其中,当 ε _t<0时d_t=1,否则d_t=0
- ▼ 在该模型中,好消息和坏消息对条件方差有不同影响
- ▼ TGARCH(p,q)模型的设定为

$$\sigma_t^2 = \omega + \sum\limits_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \gamma \epsilon_{t-1}^2 d_{t-1} + \sum\limits_{j=1}^p \beta_j \sigma_{t-j}^2$$

美国月利率数据的拟合一TGARCH

▼ TGARCH模型估计结果显示存在显著的非对称效应

- A	Coefficient	Std. Error	z-Statistic	Prob.			
C AR(1)	0.039645 0.342005	0.014757 0.044121	2.686565 7.751554	0.0072 0.0000			
Variance Equation							
C ARCH(1) (RESID<0)*ARCH(1) GARCH(1)	0.000911 0.348668 -0.202200 0.794953	0.000334 0.056829 0.051978 0.027635	2.723253 6.135335 -3.890113 28.76667	0.0065 0.0000 0.0001 0.0000			

EGARCH模型的设定

▼ EGARCH或指数GARCH模型由Nelson(1991)提出,其条件方差设定为

$$\log(\sigma_t^2) = \omega + \beta \log(\sigma_{t-1}^2) + \alpha \left| \frac{\epsilon_{t-1}}{\sigma_{t-1}} \right| + \gamma \frac{\epsilon_{t-1}}{\sigma_{t-1}}$$

▼ EGARCH(p,q)模型设定为

$$\log(\sigma_t^2) = \omega + \sum_{j=1}^p \beta_j \log(\sigma_{t-j}^2) + \sum_{i=1}^q \left(\alpha_i \left| \frac{\epsilon_{t-i}}{\sigma_{t-i}} \right| + \gamma_i \frac{\epsilon_{t-i}}{\sigma_{t-i}} \right)$$

美国月利率数据的拟合一EGARCH

▼ EGARCH模型估计结果显示存在显著的非对称效应

	Coefficient	Std. Error	z-Statistic	Prob.		
C AR(1)	0.058374 0.349260	0.012339 0.045362	4.730849 7.699361	0.0000 0.0000		
Variance Equation						
C RES /SQR[GARCH](1 RES/SQR[GARCH](1) EGARCH(1)	-0.350487 0.388859 0.108497 0.971998	0.040163 0.041404 0.024151 0.007018	-8.726627 9.391873 4.492539 138.5056	0.0000 0.0000 0.0000 0.0000		

Component ARCH模型的设定

✓ Component ARCH模型将波动率分为永久性和暂时性两部分,其设定为

$$\begin{split} \sigma_{t}^{2} - q_{t} &= \alpha(\epsilon_{t-1}^{2} - q_{t-1}) + \beta(\sigma_{t-1}^{2} - q_{t-1}) \\ q_{t} &= \omega + \rho(q_{t-1} - \omega) + \phi(\epsilon_{t-1}^{2} - \sigma_{t-1}^{2}). \end{split}$$

- ▼ 通常假设0.99< p <1, Component ARCH模型近似于 GARCH(2,2)
- ▼ 非对称Component 模型将其与TGARCH模型相结合,设定为

$$\begin{split} \boldsymbol{y}_{t} &= \boldsymbol{x}_{t} \pi + \boldsymbol{\epsilon}_{t} \\ q_{t} &= \boldsymbol{\omega} + \rho (q_{t-1} - \boldsymbol{\omega}) + \phi (\boldsymbol{\epsilon}_{t-1}^{2} - \sigma_{t-1}^{2}) + \theta_{1} \boldsymbol{z}_{1t} \\ \sigma_{t}^{2} - q_{t} &= \alpha (\boldsymbol{\epsilon}_{t-1}^{2} - q_{t-1}) + \gamma (\boldsymbol{\epsilon}_{t-1}^{2} - q_{t-1}) \boldsymbol{d}_{t-1} + \beta (\sigma_{t-1}^{2} - q_{t-1}) + \theta_{2} \boldsymbol{z}_{2t} \end{split}$$

美国月利率数据的拟合一Component GARCH

▼ Component GARCH模型拟合结果说明暂时性部分不显著

	Coefficient	Std. Error	z-Statistic	Prob.		
C	0.020775	0.026090	0.796300	0.4259		
AR(1)	0.212045	0.057725	3.673381	0.0002		
Variance Equation						
Perm: C	0.168076	0.023313	7.209434	0.0000		
Perm: [Q-C]	0.833926	0.023138	36.04062	0.0000		
Perm: [ARCH-GARCH]	0.200350	0.064083	3.126408	0.0018		
Tran: [ARCH-Q]	-0.032367	0.071472	-0.452867	0.6506		
Tran: [GARCH-Q]	-0.285524	1.887064	-0.151306	0.8797		