ПАРАЛЛЕЛЬНОСТЬ ЦИКЛОВ ПОСЛЕ АФФИННОГО ПРЕОБРАЗОВАНИЯ

(дополнение к разделу 1.4)

Утверждение 1. Пусть аффинное преобразование гнезда тесно вложенных циклов задают векторные таймирующие функции $(t_1^{(\beta)}(J),...,t_n^{(\beta)}(J))$, $1 \le \beta \le K$ $(K - число выполняемых операторов тела циклов). Если для любой зависимости <math>S_{\alpha}(I) \to S_{\beta}(J)$ выполняется либо $t_1^{(\beta)}(J) > t_1^{(\alpha)}(I)$, либо $(t_1^{(\beta)}(J),...,t_n^{(\beta)}(J)) = (t_1^{(\alpha)}(I),...,t_n^{(\alpha)}(I))$, то n-1 внутренних циклов преобразованного гнезда циклов являются параллельными.

Утверждение 2. Пусть $t_1^{(\beta)}(J), t_2^{(\beta)}(J), \dots, t_n^{(\beta)}(J)$ — таймирующие функции, т.е. для любой зависимости $S_{\alpha}(I) \rightarrow S_{\beta}(J)$ выполняется $t_1^{(\beta)}(J) \geq t_1^{(\alpha)}(I), t_2^{(\beta)}(J) \geq t_2^{(\alpha)}(I), \dots, t_n^{(\beta)}(J) \geq t_n^{(\alpha)}(I)$. Если функции $t_1^{(\beta)}(J), t_2^{(\beta)}(J), \dots, t_n^{(\beta)}(J)$ независимы (для фиксированных β), то функции $(t_1^{(\beta)}(J) + t_2^{(\beta)}(J) + \dots + t_n^{(\beta)}(J), t_2^{(\beta)}(J), \dots, t_n^{(\beta)}(J)$ являются векторными таймирующими и задают преобразование гнезда тесно вложенных циклов, приводящее κ n-1 параллельным внутренним циклам.

Следствие. Если для любой зависимости $S_{\alpha}(I(i_1,...,i_n)) \rightarrow S_{\beta}(J(j_1,...,j_n))$ выполняется $j_1 \ge i_1$, ..., $j_n \ge i_n$, то векторная функция $(j_1 + ... + j_n, \ j_2,...,j_n)$ является таймирующей (для операций всех K операторов) и задает преобразование гнезда тесно вложенных циклов, приводящее κ n-1 параллельным внутренним циклам.

Утверждение 3. Пусть преобразование гнезда тесно вложенных циклов задают векторные таймирующие функции $(t_1^{(\beta)}(J),...,t_n^{(\beta)}(J))$. Если для любой зависимости $S_{\alpha}(I) \rightarrow S_{\beta}(J)$ выполняется $t_1^{(\beta)}(J) = t_1^{(\alpha)}(I)$, то самый внешний цикл преобразованного гнезда циклов является параллельным.

Способы показать, что векторные функции $(t_1^{(\beta)}(i,j),t_2^{(\beta)}(i,j))$ являются таймирующими:

- 1. Воспользоваться определением векторной таймирующих функций. Для этого надо: 1) доказать независимость функций $t_1^{(\beta)}(i,j)$ и $t_2^{(\beta)}(i,j)$ (невырожденность матрицы T, фигурирующий в определении); 2) показать, что для любой зависимости $S_{\alpha}(I) \rightarrow S_{\beta}(J)$ имеет место $(t_1^{(\beta)}(J), t_2^{(\beta)}(J)) \geq_{lex} (t_1^{(\alpha)}(I), t_2^{(\alpha)}(I))$, т.е. выполняется либо $t_1^{(\beta)}(J) > t_1^{(\alpha)}(I)$, либо $t_1^{(\beta)}(J) = t_1^{(\alpha)}(I)$, $t_2^{(\beta)}(J) \geq t_2^{(\alpha)}(I)$.
- 2. Воспользоваться (раздел 2.2) теорией получения таймирующих функций: рассмотреть подходящие строки матрицы (P|B).

Способы обосновать параллельность внутреннего цикла после применения к алгоритму аффинного преобразования, задаваемого векторными таймирующими функциями $(t_1^{(\beta)}(i,j),t_2^{(\beta)}(i,j))$:

- 1. Воспользоваться утверждением 1: показать, что для любой зависимости $S_{\alpha}(I) \rightarrow S_{\beta}(J)$ выполняется либо $t_1^{(\beta)}(J) > t_1^{(\alpha)}(I)$, либо $t_1^{(\beta)}(J) = t_1^{(\alpha)}(I)$, $t_2^{(\beta)}(J) = t_2^{(\alpha)}(I)$. Если предварительно показывалось, что векторные функции $(t_1^{(\beta)}(i,j),t_2^{(\beta)}(i,j))$ являются таймирующими, то во многом можно сослаться на уже показанное.
- 2. Воспользоваться утверждением 2: указать таймирующие функции $t_{\rm I}^{(\beta)}(i,j)$ и $t_{\rm II}^{(\beta)}(i,j)$ такие, что $t_{\rm I}^{(\beta)}(i,j) = t_{\rm II}^{(\beta)}(i,j) + t_{\rm II}^{(\beta)}(i,j)$, $t_{\rm 2}^{(\beta)}(i,j) = t_{\rm II}^{(\beta)}(i,j)$.
- 3. Воспользоваться теорией получения таймирующих функций: получить подходящие строки матрицы (P|B), т.е. получить таймирующие функции, указанные в первом или втором способе.

Способы обосновать параллельность внешнего цикла после применения к алгоритму аффинного преобразования, задаваемого векторными таймирующими функциями $(t_1^{(\beta)}(i,j),t_2^{(\beta)}(i,j))$:

- 1. Воспользоваться утверждением 3: показать, что для любой зависимости $S_{\alpha}(I) \to S_{\beta}(J)$ выполняется $t_1^{(\beta)}(J) = t_1^{(\alpha)}(I)$. Если предварительно показывалось, что векторные функции $(t_1^{(\beta)}(i,j),t_2^{(\beta)}(i,j))$ являются таймирующими, то во многом можно сослаться на показанное.
- 2. Воспользоваться теорией получения таймирующих функций: получить подходящую строку матрицы (P|B), т.е. получить таймирующую функцию, указанную в первом способе.