Théorie de la dimension dans les modules

Soit *A* un anneau commutatif. On considère la catégorie des *A*-modules.

Quelques contre-exemples utiles, à intégrer dans la colonne « faux » :

- L'idéal (X,Y) de $\mathbf{R}[X,Y]$, est un $\mathbf{R}[X,Y]$ -module non libre et sans torsion, sous-module de $\mathbf{R}[X,Y]$ libre et de rang = dimension 1.
- Si *A* est intègre mais n'est pas noethérien, *I* un idéal qui n'est pas de type fini, *A* est un *A*-module libre de rang 1 mais *I* n'est ni libre, ni de type fini.
- On rappelle que **Z** est principal. Le **Z**-module **Q** est sans torsion, de type fini mais n'est pas libre, car entre tout couple de rationnel, il existe une relation de **Z**-liaison donnée par les dénominateurs.
- Le **Z**-module **Z/2Z** est cyclique mais n'est pas libre, car de torsion.
- Observer la famille de vecteurs (2) du **Z**-module libre **Z**. Observer la famille de vecteurs (2,3) du **Z**-module **Z** en remarquant que $2 \land 3 = 1$.
- Le sous-module 2Z du Z-module Z, tous deux libres de rang 1, n'admet pas de supplémentaire.
- Bonus : le co-produit de $\prod_{n \in \mathbb{N}^*} \mathbf{Z}/n\mathbf{Z}$ est de torsion mais son annulateur est nul.

VRAI	FAUX
Modules libres et modules de type fini	
	Tout module admet une base.
Tout module est isomorphe à un quotient de module libre = admettant une base.	
	Tout module engendré par une famille finie est de dimension finie.
Tout module de type fini n est isomorphe à un quotient de A^n .	
	Tout sous-module d'un module (même libre) de type fini est de type fini.
Si A est noethérien, tout sous-module d'un module de type fini est de type fini.	
	Tout module est isomorphe à $A^{(I)}$.
	Tout module de type fini est isomorphe à A^n .
Un module est libre, si et seulement s'il est isomorphe à un $A^{(I)}$.	
Un module de type fini est libre, si et seulement s'il est isomorphe à un A^n .	
	Tout sous-module d'un module libre est libre.
Un sous-module libre d'un module libre est de rang inférieur à celui du module ambiant.	
	Un sous-module libre de rang n d'un module
	libre de rang n est le module tout entier.
Dans un module libre de rang $m{n}$, toute	
famille libre peut-être complétée en une	
famille libre à n éléments.	

Dans un module de type fini, de toute	
famille génératrice infinie on peut extraire	
une famille génératrice finie.	
Théorèmes fondan	nentaux de la dimension
	Théorème de la base incomplète : on peut
	compléter toute famille libre d'un module, que
	l'on peut prendre libre et de type fini, en une
	base.
	Théorème de la base extraite : on peut extraire
	de toute famille génératrice d'un module, que
	l'on peut prendre libre et de type fini, une base.
	Théorème d'échange : si F est une famille de
	vecteurs de $M, x, y \in M$ tels que $x \notin Vect(F)$
	mais $x \in Vect(F, y)$, alors $Vect(F, y) =$
	Vect(F,x).
	Une famille libre maximale, càd strictement
	contenue dans aucune famille libre, est une base.
	Une famille génératrice minimale, càd ne
	contenant strictement aucune autre famille
	génératrice, est une base.
Familles libres e	t génératrices, torsion
Toute sous-famille d'une famille libre est	
libre.	
Toute sur-famille d'une famille liée est liée.	
Toute sur-famille d'une famille génératrice est génératrice.	
	Si $(x_1,, x_n)$ est liée, l'un des x_i est combinaison linéaire des autres.
Si l'un des x_i est combinaison linéaire des	
autres, alors $(x_1,, x_n)$ est liée.	
	a divise b ou b divise a , si et seulement si, (a, b)
	est liée.
	Une famille à un seul élément non nul est libre,
	où A est un anneau intègre. (Autrement dit, $ax =$
	$0 \Rightarrow a = 0$ ou $x = 0$, propriété notée dès à présent (T) .)
	Un module cyclique (i. e. de type 1) est toujours
	libre (et donc de rang 1).
	Tout module où (<i>T</i>) est vérifiée est libre.
	Tout module de type fini où (T) est vérifiée est
	libre.
Dans un module libre (de type fini ou non), toutes les bases ont le même cardinal.	
	Dans un module libre de rang n , les familles
	libres à <i>n</i> éléments sont génératrices
MAIS	a is cicinonto dont generatives
Dans un module libre de rang n , les	
familles génératrices à n éléments sont libres.	
iibies.	

Modules sur un anneau principal	
	Si A est principal, tout module où (T) est vérifiée est libre.
Si A est principal, tout module de type fini où (T) est vérifiée est libre.	
Tout sous-module d'un module libre est libre, en dimension quelconque, et même, on peut extraire une base du sous-module de toute base du module.	
	Théorème de la base incomplète, théorème de la base extraite, théorème d'échange
Supplémentaires et facteurs directs	
	Tout sous-module d'un module est facteur direct = admet un supplémentaire.
	Tout sous-module libre d'un module libre est facteur direct.
La concaténation de familles libres de sous- espaces supplémentaires forme une famille libre.	
La concaténation de bases d'une décomposition d'un module en somme quelconque de sous-espaces supplémentaires forme une base du module.	