HyperZEXE

Recursive HyperPlonk for fully function-private smart contract

Tianyi Liu Ye Zhang Yupeng Zhang Zhenfei Zhang

June 29, 2023

Liu et. al. HyperZEXE June 29, 2023 1/24

Zero knowledge proofs

Attest a statement while hidding some inputs of the statement

- Zcash: prove the validity of UTXO without leaking the ID info
- zkRollups: prove the soundness of a list of transactions
- zkBridge: prove the soundness of a list of transactions from another chain
- zkDID: prove who you are without revealing who you are
- zkOracle: attest historical data

Liu et. al. HyperZEXE June 29, 2023 2

Function Privacy

Execute a function with additional guarantees:

- The inputs and outputs to the function remain hidden.
 - Zcash: execute a Layer 1 transaction where sender/receiver and amount are hidden
 - Tornado cash: execute a smart contract transaction where sender/receiver and amount are hidden
- Above, and the function itself is also secret.
 - Aleo (earlier version of testnet): smart contract 1 is IND from SC 2

Liu et. al. HyperZEXE June 29, 2023 3/24

Function-private smart contract

Applications

- Distributed private computations.
- Miner-extractable values (MEV).
 - all info. w.r.t the smart contract are hidden, no MEV to extract.
- Plausible deniability.
 - Miners do not see if a smart contract is sanctioned.

Liu et. al. HyperZEXE June 29, 2023 4 / 24

Function-private smart contract

Applications

- Distributed private computations.
- Miner-extractable values (MEV).
 - all info. w.r.t the smart contract are hidden, no MEV to extract.
- Plausible deniability.
 - Miners do not see if a smart contract is sanctioned.

Bonus

• An efficient recursive prover.

Liu et. al. HyperZEXE June 29, 2023 4

- Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, \nu k) == 1$

Liu et. al. HyperZEXE June 29, 2023 7 / 24

- Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, \nu k) == 1$

EC-based provers: $E: y^2 = x^3 + b \mod q$

- \bullet Proves relations over the scalar field $\mathbb{F}_{|\mathbb{G}|}$
- ullet Produces a proof over the base field \mathbb{F}_q

Liu et. al. HyperZEXE June 29, 2023 7 / 24

- ullet Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, \nu k) == 1$

EC-based provers: $E: y^2 = x^3 + b \mod q$

- \bullet Proves relations over the scalar field $\mathbb{F}_{|\mathbb{G}|}$
- ullet Produces a proof over the base field \mathbb{F}_q

EC1: Two chain proofs

- Two curves CurveA and CurveB
- CurveA::BaseField = CurveB::ScalarField
- e.g.: ZEXE

Liu et. al. HyperZEXE June 29, 2023 7/24

- Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, vk) == 1$

EC-based provers: $E: y^2 = x^3 + b \mod q$

- Proves relations over the scalar field $\mathbb{F}_{|\mathbb{G}|}$
- Produces a proof over the base field \mathbb{F}_a

EC2: Cyclic curves

- Two curves CurveA and CurveB
- CurveA::BaseField = CurveB::ScalarField and CurveB::BaseField = CurveA::ScalarField
- e.g.: Halo2-Pasta, Nova, etc.

Liu et. al HyperZEXE June 29, 2023

- Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, \nu k) == 1$

EC-based provers: $E: y^2 = x^3 + b \mod q$

- Proves relations over the scalar field $\mathbb{F}_{|\mathbb{G}|}$
- Produces a proof over the base field \mathbb{F}_a

EC3: Non-native arithmetics

- Single Curve BN254
- Use $\mathbb{F}_{|\mathbb{G}|}$ to emulate \mathbb{F}_q
- Penalty: 30× larger circuit (Halo2-lib)
- e.g.: zkEVM via Halo2-KZG

Liu et. al **HyperZEXE** June 29, 2023

- Input a proof π_1 that is valid w.r.t. verification key vk
- Generate a new proof π_2 asserting verify $(\pi_1, \nu k) == 1$

Code based provers

- Relation and proof uses a same field
- FRI, Breakdown, etc...

Liu et. al. HyperZEXE June 29, 2023 10 / 24

ZEXE paradigm

	Inner Prover		Outer Prover		
	Scheme	ne Curve Scheme		Curve	
ZEXE	Groth16	BLS12-377	Groth16	CP6-782	
${\tt SnarkVM}$	Marlin	BLS12-377	Groth16	BW6-761	
VeriZEXE	TurboPlonk	BLS12-377	UltraPlonk	BW6-761	

Table: 2-Chain recursive proof systems in ZEXE

Liu et. al. HyperZEXE June 29, 2023 11 / 24

ZEXE paradigm

	Inner Prover		Outer Prover		
	Scheme	Scheme Curve Scheme		Curve	
ZEXE	Groth16	BLS12-377	Groth16	CP6-782	
${\tt SnarkVM}$	Marlin	BLS12-377	Groth16	BW6-761	
VeriZEXE	TurboPlonk	BLS12-377	UltraPlonk	BW6-761	

Table: 2-Chain recursive proof systems in ZEXE

 \bullet Plonk arithmetization is $10\sim30\times$ more expressive than R1CS

Liu et. al. HyperZEXE June 29, 2023 11 / 24

Challenges 1

- The outer proof has to be on BN254 curve
- Ethereum does not support other popular ZK-friendly curves or fields
 - BN254 curve group mul: 6K Gas
 - Pasta curves group mul: 3M Gas
 - BW6-761 curve group mul: ??? Gas

Liu et. al. HyperZEXE June 29, 2023 12 / 24

Challenges 1

- The outer proof has to be on BN254 curve
- Ethereum does not support other popular ZK-friendly curves or fields
 - BN254 curve group mul: 6K Gas
 - Pasta curves group mul: 3M Gas
 - BW6-761 curve group mul: ??? Gas

Solution 1

Use Grumpkin ←⇒ BN254 cyclic curves

Liu et. al. HyperZEXE June 29, 2023 12 / 24

Challenges 2

- Grumpkin does not support FFT
- Groth16 and Plonk require FFT

Liu et. al. HyperZEXE June 29, 2023 13 / 24

Challenges 2

- Grumpkin does not support FFT
- Groth16 and Plonk require FFT

Solution 2

- Use an FFT-free prover
- Candidates:
 - Nova (R1CS)
 - HyperPlonk

Liu et. al. HyperZEXE June 29, 2023 13 / 24

Challenges 3

- Grumpkin does not support pairing
- ML-KZG commitment requires pairing
- Other commitment schemes are less verifier friendly

Liu et. al. HyperZEXE June 29, 2023 14 / 24

Challenges 3

- Grumpkin does not support pairing
- ML-KZG commitment requires pairing
- Other commitment schemes are less verifier friendly

Solution 3

- Use Hyrax, verifier does $2\sqrt{n}$ group muls
- Or IPA, verifier does n group muls (deferred and aggregated)

Liu et. al. HyperZEXE June 29, 2023 14 / 24

ZEXE paradigm

	Inner Prover		Outer Prover		
	Scheme	Curve	Scheme	Curve	
ZEXE	Groth16	BLS12-377	Groth16	CP6-782	
SnarkVM	Marlin	BLS12-377	Groth16	BW6-761	
VeriZEXE	TurboPlonk	BLS12-377	UltraPlonk	BW6-761	
HyperZEXE	HyperPlonk	Grumpkin	UltraPlonk	BN254	

Table: 2-Chain recursive proof systems in ZEXE

Liu et. al. HyperZEXE June 29, 2023 15 / 24

Concrete efficiency

- vs non-native Halo2-KZG: saves 30× in # constraints
- vs (Veri)ZEXE: saves 5× due to smaller field (254 bits vs 761 bits)
- and more ...

Liu et. al. HyperZEXE June 29, 2023 16 / 24

Native ECAdd: $(x_3, y_3) := (x_1, y_1) + (x_2, y_2)$

(Veri) ZEXE: prove Short Weierstrass formula directly

•
$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

•
$$y_3 = \frac{(2x_1 + x_2)(y_2 - y_1)}{x_2 - x_1} - \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^3 - y_1$$

Liu et. al. HyperZEXE June 29, 2023 17 / 24

Native ECAdd: $(x_3, y_3) := (x_1, y_1) + (x_2, y_2)$

(Veri)ZEXE: prove Short Weierstrass formula directly

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

•
$$y_3 = \frac{(2x_1 + x_2)(y_2 - y_1)}{x_2 - x_1} - \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^3 - y_1$$

HyperZEXE

- (x_3, y_3) is on curve: $y_3^2 = x_3^3 + b$
- (x_1, y_1) , (x_2, y_2) and $(x_3, -y_3)$ are on the same line: $(x_1 x_3)(y_2 + y_3) = (x_2 x_3)(y_1 + y_3)$
- $(x_1, y_1)! = (x_3, -y_3)$ and $(x_2, y_2)! = (x_3, -y_3)$

Liu et. al. HyperZEXE June 29, 2023 17 / 24

Native Double: $(x_2, y_2) := (x_1, y_1) + (x_1, y_1)$

(Veri) ZEXE: prove Short Weierstrass formula directly

$$\bullet \ x_2 = \left(\frac{3x_1}{2y_1}\right)^2 - 2x_1$$

Liu et. al. HyperZEXE June 29, 2023 18 / 24

Native Double: $(x_2, y_2) := (x_1, y_1) + (x_1, y_1)$

(Veri)ZEXE: prove Short Weierstrass formula directly

$$\bullet \ x_2 = \left(\frac{3x_1}{2y_1}\right)^2 - 2x_1$$

$$y_2 = \frac{9x_1^3}{2y_1} - \left(\frac{3x^2}{2y_1}\right)^3 - y_1$$

HyperZEXE

- (x_2, y_2) is on curve: $y_2^2 = x_2^3 + b$
- (x_1, y_1) and $(x_2, -y_2)$ are on a tangential line of the curve $\frac{x_1 x_2}{y_1 + y_2} = \frac{3x_1^2}{2y_1}$
- $(x_1, y_1)! = (x_2, -y_2)$

Liu et. al **HyperZEXE** June 29, 2023

HyperZEXE's custom gate

OpCodes	Advices		Selectors			
Opcodes	w_1	<i>W</i> ₂	q _{ecc}	q_1	q ₂	q 3
On Curve	a ₀	<i>b</i> ₀	1	0	0	1
EC double	a_1	b_1	1	0	1	0
LC double	a ₂	b_2				
	a ₃	<i>b</i> ₃	1	1	0	0
Conditional	a ₄	b_4				
EC Add	cond	-				
	a ₅	b_5				

- Custom gate degree: 5 (c.f. 6 for VeriZEXE on SW curve)
- Total witness cells per EC mul: 2442 cells
 - c.f., 9325 cells in VeriZEXE
 - \bullet Further reduced by $5\times$ via Pippenger and lookups

Liu et. al. HyperZEXE June 29, 2023 19 / 24

Beyond ZEXE: infinity recursion for Ethereum applications

Liu et. al. HyperZEXE June 29, 2023 20 / 24

Use HyperZEXE as a recursive prover

Target: generate a recursive proof for zkEVM

• Typical circuit size: 2^{20} rows and ≈ 500 columns

Liu et. al. HyperZEXE June 29, 2023 22 / 24

Use HyperZEXE as a recursive prover

Target: generate a recursive proof for zkEVM

• Typical circuit size: 2^{20} rows and ≈ 500 columns

baseline

- ullet Single layer, non-native halo2-KZG: BN254 ightarrow BN254
- Cost: $2^{25} \times 20 \approx 640 M$ cells

Liu et. al. HyperZEXE June 29, 2023 22 / 24

Use HyperZEXE as a recursive prover

Target: generate a recursive proof for zkEVM

 \bullet Typical circuit size: 2^{20} rows and ≈ 500 columns, or 2^{29} witness cells

HyperZEXE first layer: BN254 → Grumpkin

- ullet verify π_1 dominated by batch verifying 500 KZG openings
- requires roughly 1000 ECMULs, or $\approx 2^{19}$ witness cells
- generate a proof π_2 with Hyrax commitment

HyperZEXE second layer: Grumpkin \rightarrow BN254

- ullet verify π_2 dominated by batch verifying 2 hyrax openings
- requires roughly $2 \times \sqrt{2^{19}} = 2^{11}$ ECMULs, or $\approx 2^{20}$ witness cells

Liu et. al. HyperZEXE June 29, 2023 23 / 24

	Inner Prover		Outer Prover		Prover	OnChain
	Scheme	Setup	Scheme	Setup	time	Verifier
ZEXE	Groth16	Trusted	Groth16	Trusted		
SnarkVM	Marlin	Universal	Groth16	Trusted	150 s	N/A
VeriZEXE	TurboPlonk	Universal	UltraPlonk	Universal	13 s	N/A
HyperZEXE	HyperPlonk	Transparent	UltraPlonk	Universal	< 1s	450K Gas

Progress

- ✓ HyperPlonk with Hyrax commitment
- Optimized native-ECC custom gate
- Solidity onchain verifier
- X UltraPlonk verifier circuit
- X HyperPlonk verifier circuit

