Generated on 2025-04-15 17:48:01 by gEcon version 1.2.1 (2023-01-18) Model name: baseline_NK

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$
(1.2)

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad (q_t)$$
 (1.3)

1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left((1 - \delta) E_t \left[q_{t+1} \right] + E_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

3 PRICE SETTING PROBLEM

3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

5 PRODUCT AGGREGATION

5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$Dw_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \alpha h h^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

8 GOVERNMENT

8.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{8.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{8.2}$$

9 GOVERNMENT SPENDING SHOCK

9.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{9.1}$$

10 TECHNOLOGY

10.1 Identities

$$Z_t = e^{\epsilon_t^{\mathrm{Z}} + \rho^{\mathrm{a}} \log Z_{t-1}} \tag{10.1}$$

11 Equilibrium relationships (after reduction)

$$-B_t = 0 (11.1)$$

$$-\lambda_t + q_t = 0 \tag{11.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(11.3)

$$-q_t + \beta \left((1 - \delta) \,\mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{11.4}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s}^{1-\alpha} = 0$$
(11.5)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{11.6}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (11.7)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(11.8)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 (11.9)$$

$$Y_t^{j} - Y_t^{s} = 0 (11.10)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (11.11)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{11.12}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{11.13}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(11.14)

$$-1 + \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
(11.15)

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{11.16}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{11.17}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (11.18)

$$-g_t^2 + \beta \xi^{P} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
(11.19)

$$-\nu_t^{\mathbf{P}} + (1 - \xi^{\mathbf{P}}) \pi_t^{\star - \lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} + \xi^{\mathbf{P}} \nu_{t-1}^{\mathbf{P}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{P}} \right)^{-\lambda^{\mathbf{P}^{-1}}(1 + \lambda^{\mathbf{P}})} = 0$$
(11.20)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (11.21)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(11.22)

_

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{alt} r^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0$$

$$\left(1 - \rho^{\pi^{\text{bar}}}\right) = 0 \tag{11.23}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{s} r_t - L_t^{s} W_t = 0 (11.24)$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (11.25)$$

$$-\alpha k r^{\pi} + \eta_{t}^{R} - \log(R_{ss}^{-1}R_{t}) + \rho \log(R_{ss}^{-1}R_{t-1}) + (1-\rho)\left(\log \pi_{t}^{obj} + r^{\pi}\left(-\log \pi_{t}^{obj} + \log(\pi_{ss}^{-1}\pi_{t-1})\right) + r^{Y}\log(Y_{ss}^{-1}Y_{t})\right) = 0$$
(11.26)

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(11.27)

12 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{12.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{12.2}$$

$$-\lambda_{\rm ss} + \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0$$
 (12.3)

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{12.4}$$

$$-r_{ss} + \alpha m c_{ss} Z_{ss} K_{ss}^{s-1+\alpha} L_{ss}^{s-1-\alpha} = 0$$
 (12.5)

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.6}$$

$$-Q_{\rm ss} + \lambda_{\rm ss}^{-1} q_{\rm ss} = 0 ag{12.7}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(12.8)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{l} = 0$$
 (12.9)

$$Y_{cc}^{j} - Y_{cc}^{s} = 0$$
 (12.10)

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0$$
 (12.11)

$$-Z_{\rm ss} + e^{\rho^{\rm a}\log Z_{\rm ss}} = 0 {12.12}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{12.13}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0 \tag{12.14}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
 (12.15)

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0 (12.16)$$

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{12.17}$$

$$-g_{ss}^{1} + \lambda_{ss}\pi_{ss}^{\star}Y_{ss} + \beta\xi^{p}g_{ss}^{1}\left(\pi_{ss}^{-1}\pi_{ss}^{\gamma^{p}}\right)^{-\lambda^{p-1}} = 0$$
(12.18)

೮

$$-g_{ss}^2 + \lambda_{ss} m c_{ss} Y_{ss} + \beta \xi^p g_{ss}^2 \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^p} \right)^{-\lambda^{p-1} (1+\lambda^p)} = 0$$
(12.19)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{12.20}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{12.21}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{12.22}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \omega \partial r^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}} \right) = 0 \tag{12.23}$$

$$-D\dot{w}_{ss} + Y_{ss} - r_{ss}K_{ss}^{s} - L_{ss}^{s}W_{ss} = 0$$
(12.24)

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0$$
(12.25)

$$-\alpha k b r^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(12.26)$$

$$-C_{\rm ss} + D\dot{w}_{\rm ss} - I_{\rm ss} - T_{\rm ss} + \pi_{\rm ss}^{-1}B_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - B_{\rm ss}R_{\rm ss}^{-1} + L_{\rm ss}^{\rm s}W_{\rm ss} = 0$$
(12.27)

13 Calibrating equations

 $-1 + \pi_{\rm ss}^{\rm obj} = 0 \tag{13.1}$

$$-0.18 + G_{ss}Y_{ss}^{-1} = 0 (13.2)$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{13.3}$$

14 Parameter settings

6

$$\alpha = 0.3 \tag{14.1}$$

$$\beta = 0.99 \tag{14.2}$$

$$\delta = 0.025 \tag{14.3}$$

$$\eta = 2 \tag{14.4}$$

$$\gamma^{\mathbf{p}} = 0.469 \tag{14.5}$$

$$\lambda^{\mathbf{p}} = 0.5 \tag{14.6}$$

$$\mu = 0.3 \tag{14.7}$$

$$r^{\pi} = 1.684 \tag{14.8}$$

$$r^{Y} = 0.099 \tag{14.9}$$

$$\rho = 0.961 \tag{14.10}$$

$$\rho^{\pi^{\text{bar}}} = 0.9999 \tag{14.11}$$

$$\rho^{G} = 0.949 \tag{14.12}$$

$$\rho^{\rm a} = 0.823 \tag{14.13}$$

$$\xi^{\rm p} = 0.908 \tag{14.14}$$

15 Steady-state values

	Steady-state value
ϵ^{G}	1
g^1	7.3514
g^2	4.9009
λ	1.5467
mc	0.6667
$ u^{ m p}$	1
π	1
π^{\star}	1
$\pi^{ m obj}$	1
q	1.5467
r	0.0351
B	0
C	0.3255
Div	0.1601
G	0.0865
I	0.0684
K^{s}	2.7374
L^{s}	0.2279
Q	1
R	1.0101
T	0.0865
U	-167.8256
W	0.9837
Y	0.4804
$Y^{ m j}$	0.4804
Y^{s}	0.4804
Z	1

16 The solution of the 1st order perturbation

Matrix P

Matrix Q

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$ u_{t-1}^{ ext{p}}$	π_{t-1}	$\pi^{ ext{obj}}_{t-1}$	B_{t-1}	K_{t-1}^{s}	R_{t-1}	Z_{t-1}
g_t^1	$\int 0.1474$	0.9164	-1.9772	30.4192	0	-0.8826	-15.6826	-0.8627
g_t^2	0.1474	0.9164	-1.9772	30.4192	0	-0.8826	-15.6826	-0.8627
λ_t	0.1179	0.1359	0.8044	-9.5956	0	-0.2745	9.2056	-0.0385
mc_t	0.0862	4.9707	-10.2156	126.743	0	-4.181	-122.7414	-4.7402
π_t^{\star}	-0.0012	0.5419	-1.3251	16.5244	0	-0.3941	-11.0059	-0.636
q_t	0.1179	0.1359	0.8044	-9.5956	0	-0.2745	9.2056	-0.0385
r_t	0.2504	9.6818	-19.1237	237.5383	0	-8.6795	-230.1009	-7.5809
C_t	-0.0534	0.9651	-2.6415	32.5385	0	-0.6513	-31.4584	-0.8022
$D\dot{w}_t$	-0.0082	-7.9544	11.5232	-142.6906	0	4.8635	138.1234	6.6399
G_t	0.949	0	0	0	0	0	0	0
I_t	0.2078	22.1074	-49.9721	623.034	0	-21.4622	-604.0515	-16.1258
L_t^{s}	0.2346	6.7301	-12.7258	158.2791	0	-5.4264	-153.3707	-5.2337
Q_t	0	0	0	0	0	0	0	0
T_t	0.949	0	0	0	11.5637	0	0	0
U_t	-0.0107	-0.0272	-0.0234	0.2831	0	0.0226	-0.1954	0.0162
W_t	0.0158	2.9517	-6.3979	79.2593	0	-2.2531	-76.7302	-2.3471
Y_{t}	0.1642	3.803	-8.9081	110.7953	0	-3.4985	-107.3595	-2.8406
Y_t^{j}	0.1642	4.711	-8.9081	110.7953	0	-3.4985	-107.3595	-2.8406
Y_t^{s}	\setminus 0.1642	4.711	-8.9081	110.7953	0	-3.4985	-107.3595	-2.8406

Matrix S

17 Model statistics

17.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
ϵ^{G}	1	1.3033	1.6986	Y
$g^1 \ g^2$	7.3514	33.2677	1106.7424	Y
g^2	4.9009	33.2676	1106.7321	Y
λ	1.5467	16.9701	287.9841	Y
mc	0.6667	174.7416	30534.6343	Y
$ u^{ m p}$	1	0	0	Y
π	1	2.0482	4.1953	Y
π^{\star}	1	18.6163	346.566	Y
$\pi^{ m obj}$	1	1.2917	1.6684	Y
q	1.5467	16.9701	287.9841	Y
r	0.0351	336.2645	113073.7905	Y
B	0	0	0	N
C	0.3255	42.2113	1781.7967	Y
Div	0.1601	198.2805	39315.1724	Y
G	0.0865	1.3033	1.6986	Y
I	0.0684	868.202	753774.7611	Y
K^{s}	2.7374	27.5515	759.0867	Y
L^{s}	0.2279	220.2727	48520.0799	Y
Q	1	0	0	Y
R	1.0101	0.8977	0.8059	Y
T	0.0865	1.3033	1.6986	Y
U	-167.8256	0.8178	0.6688	Y
W	0.9837	106.1997	11278.3793	Y
Y	0.4804	151.3198	22897.6721	Y
$Y^{ m j}$	0.4804	151.3198	22897.6721	Y
Y^{s}	0.4804	151.3198	22897.6721	Y
Z	1	1.227	1.5056	Y

17.2 Correlation matrix

	ϵ^{G}	g^1	g^2	λ	mc	π	π^{\star}	$\pi^{ m obj}$	q	r	C	Div	G	I
$\epsilon^{ m G}$	1	0.006	0.006	0.01	0	-0.001	-0.001	0	0.01	0	-0.002	0	1	0
g^1		1	1	-0.463	0.92	0.844	0.983	0.545	-0.463	0.914	0.905	-0.919	0.006	0.918
g^2			1	-0.463	0.92	0.844	0.983	0.545	-0.463	0.914	0.905	-0.919	0.006	0.918
λ				1	-0.443	-0.799	-0.579	-0.701	1	-0.384	-0.659	0.425	0.01	-0.419
mc					1	0.758	0.953	0.25	-0.443	0.998	0.966	-1	0	1
π						1	0.884	0.752	-0.799	0.723	0.866	-0.748	-0.001	0.744
π^{\star}							1	0.528	-0.579	0.94	0.966	-0.949	-0.001	0.948
$\pi^{ m obj}$								1	-0.701	0.207	0.411	-0.237	0	0.232
q									1	-0.384	-0.659	0.425	0.01	-0.419
r										1	0.948	-0.999	0	0.999
C											1	-0.961	-0.002	0.959
Div												1	0	-1
G													1	0
I														1
K^{s}														
L^{s}														
R														
T														
U														
W														
Y														
$Y^{ m j}$														
Y^{s}														
Z														

17.3 Cross correlations with the reference variable (π)

	$\sigma[\cdot]$ rel. to $\sigma[\pi]$	π_{t-5}	π_{t-4}	π_{t-3}	π_{t-2}	π_{t-1}	π_t	π_{t+1}	π_{t+2}	π_{t+3}	π_{t+4}	$ \pi_{t+5} $
$\epsilon_t^{ m G}$	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
	16.242	-0.018	0.017	0.073	0.173	0.376	0.844	-0.13	-0.085	-0.074	-0.073	-0.073
$g_t^1 \\ g_t^2$	16.242	-0.018	0.017	0.073	0.173	0.376	0.844	-0.13	-0.085	-0.074	-0.073	-0.073
λ_t	8.285	0.155	0.14	0.102	0.008	-0.221	-0.799	-0.568	-0.392	-0.251	-0.139	-0.05
mc_t	85.313	-0.007	0.009	0.041	0.115	0.294	0.758	-0.254	-0.193	-0.156	-0.128	-0.105
π_t	1	-0.084	-0.047	0.017	0.139	0.396	1	0.396	0.139	0.017	-0.047	-0.084
π_t^\star	9.089	-0.038	-0.008	0.043	0.142	0.36	0.884	-0.079	-0.051	-0.052	-0.06	-0.068
$\pi_t^{ ext{obj}}$	0.631	-0.114	-0.067	0.005	0.121	0.329	0.752	0.566	0.406	0.269	0.155	0.063
q_t	8.285	0.155	0.14	0.102	0.008	-0.221	-0.799	-0.568	-0.392	-0.251	-0.139	-0.05
r_t	164.172	0.004	0.019	0.05	0.118	0.287	0.723	-0.303	-0.227	-0.179	-0.142	-0.112
C_t	20.609	-0.05	-0.033	0.005	0.094	0.31	0.866	-0.05	-0.05	-0.059	-0.068	-0.074
$D\dot{w}_t$	96.805	0.004	-0.012	-0.044	-0.116	-0.292	-0.748	0.27	0.204	0.163	0.132	0.107
G_t	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
I_t	423.876	-0.003	0.013	0.045	0.116	0.291	0.744	-0.275	-0.208	-0.166	-0.134	-0.108
$K_t^{ m s}$	13.451	-0.154	-0.14	-0.101	-0.007	0.222	0.802	0.566	0.388	0.248	0.136	0.048
$L_t^{ m s}$	107.542	-0.003	0.013	0.044	0.116	0.292	0.745	-0.273	-0.206	-0.164	-0.133	-0.107
R_t	0.438	0.005	0.054	0.111	0.169	0.206	0.158	0.185	0.161	0.122	0.082	0.045
T_t	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
U_t	0.399	-0.169	-0.156	-0.123	-0.046	0.132	0.565	0.758	0.537	0.362	0.221	0.108
W_t	51.849	-0.022	-0.005	0.029	0.108	0.302	0.8	-0.187	-0.146	-0.124	-0.109	-0.095
Y_t	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.102
Y_t^{j}	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.102
Y_t^{s}	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.102
Z_t	0.599	0.005	0.002	-0.004	-0.012	-0.024	-0.043	-0.028	-0.016	-0.008	-0.001	0.003

17.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
ϵ^{G}	0.713	0.471	0.271	0.109	-0.017
g^1	-0.035	-0.013	-0.016	-0.025	-0.034
g^2	-0.035	-0.013	-0.016	-0.025	-0.034
λ	0.686	0.443	0.25	0.097	-0.022
mc	-0.114	-0.079	-0.063	-0.053	-0.046
π	0.396	0.139	0.017	-0.047	-0.084
π^{\star}	-0.06	-0.029	-0.026	-0.031	-0.037
$\pi^{ m obj}$	0.721	0.484	0.286	0.125	-0.002
q	0.686	0.443	0.25	0.097	-0.022
r	-0.117	-0.081	-0.064	-0.054	-0.046
C	-0.026	-0.021	-0.028	-0.037	-0.044
Div	-0.116	-0.08	-0.063	-0.054	-0.046
G	0.713	0.471	0.271	0.109	-0.017
I	-0.116	-0.08	-0.064	-0.054	-0.046
K^{s}	0.682	0.438	0.246	0.095	-0.023
L^{s}	-0.116	-0.08	-0.063	-0.054	-0.046
R	0.71	0.475	0.283	0.127	0.004
T	0.713	0.471	0.271	0.109	-0.017
U	0.835	0.544	0.312	0.128	-0.015
W	-0.098	-0.068	-0.056	-0.05	-0.046
Y	-0.111	-0.076	-0.061	-0.053	-0.046
$Y^{ m j}$	-0.111	-0.076	-0.061	-0.053	-0.046
Y^{s}	-0.111	-0.076	-0.061	-0.053	-0.046
Z	0.644	0.368	0.159	0.006	-0.102

17.5 Variance decomposition

	$\epsilon^{ m Z}$	$\eta^{ m p}$	$\eta^{ m R}$	η^{π}	$\eta^{ m G}$
$\epsilon^{ m G}$	0	0	0	0	1
g^1	0.001	0	0.347	0.652	0
g^2	0.001	0	0.347	0.652	0
λ	0	0	0.492	0.508	0
mc	0.001	0	0.506	0.493	0
π	0.002	0	0.323	0.675	0
π^{\star}	0.002	0	0.373	0.625	0
$\pi^{ m obj}$	0	0	0	1	0
q	0	0	0.492	0.508	0
r	0.001	0	0.506	0.493	0
C	0.001	0	0.504	0.495	0
Div	0.001	0	0.506	0.493	0
G	0	0	0	0	1
I	0.001	0	0.506	0.493	0
K^{s}	0.001	0	0.496	0.503	0
$L^{ m s}$	0.001	0	0.506	0.493	0
R	0	0	0.573	0.426	0
T	0	0	0	0	1
U	0.001	0	0.415	0.584	0
W	0.001	0	0.506	0.494	0
Y	0.001	0	0.506	0.493	0
$Y^{ m j}$	0.001	0	0.506	0.493	0
$Y^{ m s}$	0.001	0	0.506	0.493	0
Z	1	0	0	0	0

18 Impulse response functions

Storo 0000 from the steady state

1 5 10 15 20 25 30 35 40

Periods

— pi — C — R

Figure 1: Impulse responses (π,C,R) to $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse responses (π, C, R) to η^{p} shock

Figure 3: Impulse responses (π, C, R) to η^{R} shock

Figure 4: Impulse responses (π, C, R) to η^{π} shock

Figure 5: Impulse responses (π,C,R) to $\eta^{\rm G}$ shock