Oil & Gas Economic Model - Code Documentation

Streamlit Application for Economic Analysis of Oil & Gas Projects

1. Overview

This Streamlit-based application performs **economic evaluations** for oil and gas field developments. It allows users to:

- Upload production, cost, and makeup gas data.
- Calculate Net Present Value (NPV), Profitability Index (CPI), and Cash Flow.
- Compare scenarios with **sensitivity analysis** on key variables (oil price, discount rate, costs).

2. Key Features

Feature	Description
Three-Tab Layout	Inputs & Results, Calculation Details, Sensitivity Analysis.
Dynamic Calculations	Adjusts for inflation, discounting, and operating efficiency.
Sensitivity Analysis	Tests Low/Mid/High cases for oil price, discount rate, and costs.
Makeup Gas Scenarios	Compares economics with/without makeup gas costs.
Visualizations	Generates cash flow charts and summary tables.

3. Workflow

Tab 1: Inputs & Results

- 1. File Uploads:
 - o Production Data File: Oil, gas, and condensate volumes by year.
 - Cost & Drilling Schedule: CAPEX (wells, facilities, workovers).
 - Make-up Gas Schedule: Gas availability for injection.
- 2. User Inputs:
 - o Prices (/bbl,/bbl,/MMSCF), inflation rates, discount rate, well costs.
 - Toggle for fixed/escalating prices.
- 3. Calculations:
 - o **Revenue**: Oil + Condensate + Gas sales, adjusted for inflation.
 - o **CAPEX**: Drilling, facilities, workovers (escalated for inflation).
 - OPEX: Operating costs + makeup gas (if applicable).
 - NPV: Discounted net cash flow.

4. Outputs:

- o Key metrics (NPV, PIR, CPI).
- o Cash flow chart (Revenue, CAPEX, OPEX).

Tab 2: Calculation Details

- Displays intermediate dataframes for:
 - o CAPEX breakdown (wells, facilities).
 - o OPEX (BOE-based costs, makeup gas).
 - Revenue and Net Cash Flow.

Tab 3: Sensitivity Analysis

- 1. User Defines Bounds:
 - o Low/High oil price, discount rate, cost per BOE.
- 2. Two Scenarios:
 - No Makeup Gas Cost: makeup_gas_cost = 0.
 - o With Makeup Gas Cost: Uses user-input cost.
- 3. Outputs:
 - o Tables comparing NPV, Revenue, Costs for Low/Mid/High cases.
 - Cash flow plots for each scenario.

4. Critical Fixes (Based on User Feedback)

Issue:

• Sensitivity analysis showed identical results for both makeup gas scenarios because OPEX2 MM\$ was not recalculated dynamically.

Solution:

Modified the run_case() function to **recompute makeup gas costs per scenario**: Python

```
def run_case(oil_p, disc_rate, cost_boe, current_makeup_cost_for_case):
    df_temp = df.copy()
    # Recalculate OPEX2 (makeup gas) from scratch
    df_temp["OPEX2 MM$"] = (current_makeup_cost_for_case * makeup_gas_daily_mmscf *
365 * df_temp["Availability"] / 1e3)
    df_temp["Total OPEX MM$"] = df_temp["OPEX1 MM$"] + df_temp["OPEX2 MM$"]
    # ... (rest of calculations)
```

Scenario Execution:

python

```
# Scenario 1: No Makeup Gas Cost
run_case(..., current_makeup_cost_for_case=0) # Zero cost for gas
# Scenario 2: With Makeup Gas Cost
run_case(..., current_makeup_cost_for_case=makeup_gas_cost) # User-defined cost
```

5. Code Structure

markdown
Copy
Download
eco_app_test.py
— Session State Setup
— Page Config & Tabs
| — Tab 1: Inputs & Results
| — File Uploads
| — User Inputs (Prices, Costs, Inflation)

— Calculations (CAPEX, OPEX, Revenue, NPV)

— Output (Metrics, Cash Flow Chart)

- Tab 2: Calculation Details

Lackbox DataFrames (CAPEX, OPEX, Revenue Breakdowns)

- Tab 3: Sensitivity Analysis

— Low/Mid/High Case Inputs

Scenario Execution (No/With Makeup Gas)

Output (Tables, Plots, Download)

- Dynamic Plotting & Error Handling

6. Usage Instructions

1. Upload Files:

 Ensure Excel files match the expected columns (e.g., Year, Oil Prod STB, Availability).

2. Run Calculations:

o Click "Calculate" in Tab 1 to process data.

3. Adjust Sensitivity Parameters:

o Modify bounds in Tab 3 and click "Run Combined Sensitivity Analysis".

4. Download Results:

Export sensitivity results as a .txt file.

7. Dependencies

- Python 3.8+
- Libraries:

plaintext

Copy

Download

streamlit, pandas, numpy, matplotlib, io, os

8. Notes for Maintenance

- Column Names: Ensure uploaded files match expected headers (e.g., Gas Prod SCF).
- Inflation Logic: Verify escalation formulas if assumptions change.
- **Session State**: Reset (st.session_state.clear()) if recalculations behave unexpectedly.