Лабораторна робота № 1

Задано: аналітичні залежності цільових функцій $f_1(x)$, $f_2(x)$ і порогові обмеження f_1^* , f_2^* .

Потрібно: визначити множину Парето на заданому інтервалі [x_1, x_2], якщо виконуються умови $f_1(x) \ge f_1^*$. $f_2(x) \ge f_2^*$. Звузити множину Парето, використовуючи прийоми (варіанти) технічних обмежень.

Розв'язуючи рівняння, всі обчислення виконати з точністю до 0,0001, у разі звуження інтервалів значення меж округлити до 0,001 і крок сітки брати таким, що дорівнює 0,001.

Варіанти завдання подано в табл 1.

Таблиця 1. Цільові функції суб'єктів та значення змінних

Dantour	Цільові фу	Значення				
Варіант	$f_1(x)$	$f_2(x)$	fi	f_2^*	x ₁	3 (2)
	Обмеж	хения: $f_1(x) \ge f_1^*$, $f_2(x) \ge$	f ₂			
1	100log(x)	100-x2	60	19	0	10
2 2*		9-x2	2	6	0	4
$\sin x$		$4-x^2$	$\sqrt{2}/2$	0,5	0	2
4	$20 + 6x - 3x^2$	9ln(x)+9	20	10	1	5
5	2 ^x	$5 + 2x + x^3$	5	15	1	5
6	$0.8\exp(-2(x-3)^2)$	$10-6x+x^2$	0,2	1	1	5
7	20x-1	$5+6x-x^{15}$	5	12	1	5
8	32+1	$5+4x-3x^2$	1	3	1	3
9	$\sqrt{5x^2+10}$	$3-0.5x^2$	10	6	1	6
10	$15\sin(x+1)$	$10\cos(2x-2,4)+12$	12,82	16	6	8
	Обмеж	ення: $f_1(x) \leqslant f_1^*$, $f_2(x) \geqslant$	f_2^*			
11	1-x2	[x]	-2	2	-2	2
12	$3+12x+0.4x^3$	$\sin(x^3) + 7x^2$	50	10	0	4
13	5 x-2 +10 x-3	15+4x	25	23	0	5
14	$2+0.5\exp(x)$	8 + x ³	3	7	-3	3
15	$-32 - x + 10x^2$	$10 + x - 32x^2$	0,001	-10	-2	2
16	5log(x+9)	-12 + 4x	10	2	0,001	5
17	$9-6x+x^2$	$18 - 9x - 0.1x^2$	45	10	-5	4
18	$1 - 1.6x + 7x^2$	$6+8r-3r^2$	45	5	-2	2
19	$1-x+x^3$	$56 - x - 3x^2$	15	5	-5	2
20	$1+\ln(x)$	$-1+x+x^2$	1	-0,25	0,001	1,5

Приклад

Потрібно знайти множину Парето і визначити умови раціонального компромісу для заданих цільових функцій

$$f_1 = 2^x$$
, $f_2(x) = 9 - x^2$, $x \in [0; 4]$ (4.17)

за обмежень

$$f_1(x) \ge f_1^*; \quad f_2(x) \ge f_2^*;$$

 $f_1^* = 2; \quad f_2^* = 6.$

Спочатку визначимо множину Парето на інтервалі $[x^-, x^+]$, де справедливі нерівності

$$\frac{f_1(x)}{2} \geqslant 1; \quad \frac{f_2(x)}{6} \geqslant 1$$

або

$$2^x \ge 2$$
, $9 - x^2 \ge 6$. (4.18)

Аналітичне розв'язання системи нерівностей (4.18) свідчить, що шукана множина Парето лежить в інтервалі $x \in [1, \sqrt{3}]$ (рис. 4.4).

Рис. 4.4. Визначення множини Парето для системи (4.17)

Для звуження множини Парето і зведення вихідної двокритерійної задачі до однокритерійної скористаємося технічними обмеженнями, що грунтуються на принципах мінімаксу $\min_{x} \max_{i} f_{i}(x)/f_{i}^{*}$ та максиміну $\max_{x} \min_{i} f_{i}(x)/f_{i}^{*}$. Значення відношень $f_{i}(x)/f_{i}^{*}$ і $f_{2}(x)/f_{2}^{*}$, $\min_{x} \max_{i} f_{i}(x)/f_{i}^{*}$ і $\max_{x} \min_{i} f_{i}(x)/f_{i}^{*}$ на інтервалі $x \in [1, \sqrt{3}]$, що обчислені з кроком сітки 0,01, подано у табл. 4.1.

Таблиця 4.1. Значення $f_i(x)/f_i^*$ і $f_2(x)/f_2^*$, $\min_x \max_i f_i(x)/f_i^*$ і $\max_x \min_i f_i(x)/f_i^*$

x	fi/fi	f_2/f_2^*	$\max f_i/f_i^*$	$\min \max(f_i/f_i^*)$	$\min(f_i/f_i^*)$	$\max \min(f_i/f_i^*)$
1	1	1,333333	1,333333	<u> </u>	1	_
1,1	1,071773	1,298333	1,298333	-	1,071773	-
1,2	1,148698	1,26	1,26	1-	1,148698	-
1,3	1,231144	1,218333	1,231144	1,231144	1,218333	1,218333
1,4	1,319508	1,173333	1,319508	_	1,173333	_
1,5	1,414214	1,125	1,414214	-	1,125	_
1,6	1,515717	1,073333	1,515717	-	1,073333	_
1,7	1,624505	1,018333	1,624505	-	1,018333	_
1,8	1,741101	0,96	1,741101	_	0,96	_

З таблиці видно, що для двох досліджуваних функцій як раціональний компроміс слід вибрати стратегію x=1,3.