Apresentação Datasets Depressão + Titanic

Gabriel Marchezi, Manoel Rodrigues, Matheus Oliveira

Titanic

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Depressão

Variável	Definição
CC	Perguntas sobre Doenças Crônicas
D	Perguntas sobre Depressão
SC	Perguntas gerais sobre Transtornos Comuns
DSM_MDDH	Indica se a pessoa tem depressão ou não baseado nas perguntas

O processo de Machine Learning - Titanic

Sex	Fare	Parch	SibSp	Age	Pclass	Survived
0	0.017274	0	0	24.0	3	0
1	0.015330	0	0	20.0	3	0
1	0.026350	0	0	59.0	2	0
0	0.025374	0	0	24.0	2	0
1	0.014102	0	0	40.0	3	0

O processo de Machine Learning - Depressão

IA	. [D64B	D64C	D64D	D64E	D64G	D64H	D64I	D64J	D64K	D64L	D64M	D64N	D66A	D66B	D68	SC20	SC20A	SC21	SC22	SC23	SC25	SC25A	SC26	SC26A	SC26B	dsm_mddh
N		NaN	NaN	5	5.0	1	1	5	5	NaN	5	5.0	5.0	5													
N		NaN	NaN	5	5.0	1	1	5	1	5.0	1	NaN	NaN	5													
N		NaN	NaN	5	5.0	5	1	1	1	5.0	5	5.0	5.0	5													
N		NaN	NaN	5	5.0	1	1	1	5	NaN	1	NaN	NaN	5													
N		NaN	NaN	5	5.0	5	5	5	5	NaN	5	5.0	5.0	5													

Pré Processamento/Tratamento de Dados - Titanic

Fare Sex

7.2500 0 71.2833

0 53.1000

0 8.0500

Pré Processamento/Tratamento de Dados - Titanic

```
[29] count 0 = len(df titanic[df titanic.Survived == 0])# Não sobreviventes
     count 0
                                                                                         [35] Melhores_Atributos = SelectKBest(chi2, k='all').fit(X_train.fillna(0), y_train)
    424
                                                                                              Melhores Atributos.get support()
                                                                                              Lista_Melhores = list(X_train.columns[Melhores Atributos.get_support()])
                                                                                              Score Melhores = pd.Series(Melhores Atributos.scores )
[30] count 1 = len(df titanic[df titanic.Survived == 1])# Sobreviventes
                                                                                              Score Melhores.index = X train.columns
     count 1
                                                                                              Score Melhores = Score Melhores.sort values(ascending=False)
    290
                                                                                              for i in Score Melhores.index:
                                                                                                   print('%s ---> %f'%(i,Score Melhores[i]))
[31] df titanic.shape
                                                                                              Sex ---> 53.400873
    (714, 7)
                                                                                              Age ---> 32.643678
                                                                                              Pclass ---> 18.436577
                                                                                              Fare ---> 4.427265
[32] df balanceado = df titanic[df titanic.Survived == 0].sample(count 1, replace=True)
    df balanceado = pd.concat([df balanceado,df titanic[df titanic.Survived == 1]], axis=0)
                                                                                              SibSp ---> 2.641333
     df balanceado.shape
                                                                                              Parch ---> 1.604163
     (580, 7)
                                                             [39] ax = sns.boxplot(x=df balanceado['Age'])
                                                                 ax = sns.swarmplot(x=df balanceado['Age'], color='red')
```

Pré Processamento/Tratamento de Dados - Depressão

```
excluir_nulos = []
nulos = df_depressao.isnull().sum()
nulos.sort_values(ascending=False,inplace=True) [ ] fig, ax = plt.subplots(figsize=(20,5))
                                                         sns.heatmap(df depressao.isnull(),
for i in nulos.index:
                                                                  yticklabels=False,
    print(i,"--->",nulos[i])
                                                                  cbar=False.
    if nulos[i] >= 5037*0.9:
                                                                  cmap='viridis',
         excluir nulos.append(i)
                                                                  ax=ax)
CC2A06 ---> 5037
                                                         <matplotlib.axes. subplots.AxesSubplot at 0x7f1bae433c90>
D23A18 ---> 5037
D23A16 ---> 5037
D23A15 ---> 5037
D23A14 ---> 5037
D23A13 ---> 5037
D23A12 ---> 5037
D23A11 ---> 5037
D23A10 ---> 5037
CC2A04 ---> 5037
CC2A05 ---> 5037
D23A09 ---> 5037
CC2A12 ---> 5037
CC2A11 ---> 5037
CC2A10 ---> 5037
CC2A09 ---> 5037
CC2A08 ---> 5037
D23A17 ---> 5037
CC2A07 ---> 5037
D23A08 ---> 5036
D23A07 ---> 5036
```

D50 ---> 5035 CC2A03 ---> 5035

Pré Processamento/Tratamento de Dados - Depressão

```
[12] X train = df depressao.drop(['dsm mddh'], axis=1)
     y train = df depressao['dsm mddh']
     X_train.fillna(0, inplace=True)
                                                                               [ ] count 1 = len(df depressao 50[df depressao 50.dsm mddh == 1]) # Diagnostico Negativo
     Melhores Atributos = SelectKBest(chi2, k=50).fit(X train, v train)
     Melhores_Atributos.get_support()
                                                                                    count 1
     Lista Melhores = list(X train.columns[Melhores Atributos.get support()])
     Score Melhores = pd.Series(Melhores Atributos.scores )
     Score Melhores.index = X train.columns
                                                                               [ ] count 5 = len(df depressao 50[df depressao 50.dsm mddh == 5]) # Diagnostico Positivo
     Score Melhores = Score Melhores.sort values(ascending=False)
                                                                                    count 5
     i = 0
     for i in Score_Melhores.index:
         j += 1
                                                                               [ ] df balanceado = df depressao 50[df depressao 50.dsm mddh == 5].sample(count 1, replace=True)
         print(j, '%s ---> %f'%(i,Score_Melhores[i]))
                                                                                    df_balanceado = pd.concat([df_balanceado,df_depressao_50[df_depressao_50.dsm_mddh == 1]], axis=0)
                                                                                    df balanceado.shape
[13] Lista Melhores.append('dsm mddh')
     df depressao 50 = df depressao[Lista Melhores]
     df depressao 50
```

Análise Exploratória (Promental)

Quantos dias durou o período mais longo em que o(a) Sr(a). se sentiu (FRASE-CHAVE) durante a maior parte do dia?

Episódios em que uma pessoa se sente (FRASE-CHAVE) algumas vezes ocorrem sem nenhuma causa e, outras vezes, ocorrem após a morte de uma pessoa próxima, ou em resposta a uma experiência estressante.

D37D

Como foi (o seu/a primeira vez que o(a) Sr(a). teve um) episódio desse tipo---começou sem motivo, após a morte de uma pessoa próxima ou em resposta a alguma experiência estressante que tinha acontecido com o(a) Sr(a).?

D26L

Quase todos os dias,o(a) Sr(a). falava ou se movia mais lentamente do que o habitual?

1 = SEM CAUSA

2 = MORTE DE UMA PES

3 = RESPOSTA AO ESTRESSE

8 = NÃO SABE

9 = RECUSOU

Análise Exploratória (Promental)

A primeira série se refere a dificuldades para dormir:

- 1: O(A) Sr(a). demorava menos de 30 minutos para pegar no sono.
- 2: O(A) Sr(a). demorava no mínimo 30 minutos para pegar no sono, menos do que a metade das noites.
- 3: O(A) Sr(a). demorava no mínimo 30 minutos para pegar no sono, mais do que a metade das noites.
- 4: O(A) Sr(a). demorava mais de 60 minutos para pegar no sono, mais do que a metade das noites.

A próxima série se refere a acordar durante a noite:

Um: O(A) Sr(a). não acordava durante a noite.

D64B

D64A

Dois:O(A) Sr(a). tinha um sono inquieto, leve, com alguns breves despertares a cada noite. Três:O(A) Sr(a). acordava no mínimo uma vez durante a noite, mas voltava a dormir facilmente. Quatro:O(A) Sr(a). acordava mais de uma vez durante a noite e ficava acordado(a) por 20 minutos ou mais, e isso ocorria em mais do que a metade das noites.

A próxima série se refere a acordar cedo demais de manhã:

D64C

Um: Na maior parte dos dias, o(a) Sr(a). acordava no máximo 30 minutos antes do que precisava. Dois: Em mais da metade dos dias, o(a) Sr(a). acordava mais de 30 minutos antes do que precisava.

Três: Quase sempre o(a) Sr(a). acordava no mínimo cerca de uma hora antes do que precisava, mas às vezes voltava a dormir.

Quatro:O(A) Sr(a). acordava no mínimo uma hora antes do que precisava e não conseguia voltar a dormir.

Value	Count	Fr	equency (%)
4	322	I	6.4%
1	136	I	2.7%
2	83		1.6%
3	65	B	1.3%
998	7		0.1%
999	4		0.1%
(Missing)	4420	9).	87.8%

Value	Count	Fre	quency (%)
/ S.	555555		1
4	323	1	6.4%
2	101	Ĩ	2.0%
1	99		2.0%
3	86	1	1.7%
998	6		0.1%
999	2		< 0.1%
(Missing)	4420		87.8%

Value	Count	Fre	quency (%
4	204	1	4.1%
1	191	1	3.8%
3	118	1	2.3%
2	70		1.4%
998	28		0.6%
999	6	I	0.1%
(Missing)	4420		87.8%

Análise Exploratória (Titanic)

Pandas Profiling

Dataset statistics		Variable types					
Number of variables	8	Numeric	5				
Number of observations	574	Categorical	3				
Missing cells	0						
Missing cells (%)	0.0%						
Duplicate rows	78						
Duplicate rows (%)	13.6%						
Total size in memory	36.0 KjB						
Average record size in memory	64.2 B						

Análise Exploratória (Titanic)

Análise Exploratória (Titanic)

Correlations

Classificação vs Estimação

Auto-ML (Titanic)

Auto-ML (Depressão)

Score de Acuracia [TESTE]: 0.9774011299435028

Logistic Regression - Titanic

Logistic Regression - Depressão

```
[27] modelo1 = LogisticRegression(random_state=100, C=3, max_iter=100000).fit(X_train.fillna(0), y_train)
    score_treino = modelo1.score(X_train.fillna(0), y_train)
    print('Score de Acuracia [TREINO]:',score_treino)
    score_teste = modelo1.score(X_test.fillna(0), y_test)
    print('Score de Acuracia [TESTE]:',score_teste)
```

Score de Acuracia [TREINO]: 0.975247524752 Score de Acuracia [TESTE]: 0.9689265536723164

Métricas de Desempenho - Titanic

```
[43] predicted = modelo.predict(X_test.fillna(0))
    matriz_confusao = confusion_matrix(y_test, predicted)
    print(matriz_confusao)

[[52 9]
    [17 66]]
```

```
Previsto
                        Previsto
Real 0
                                    Soma (0)
             TN
                          FP
Real 1
                                    Soma (1)
              EN
                          TP
             Soma
                         Soma
                        (previsto
           (previsto
                                    Amostra
                                       s)
```

```
[44] report = classification report(y test, predicted)
     print('==== Report ====')
     print(report)
     ==== Report ====
                                recall f1-score
                                                   support
                   precision
                        0.75
                                  0.85
                                            0.80
                                                        61
                        0.88
                                  0.80
                                            0.84
                                            0.82
                                                       144
         accuracy
                                            0.82
                                                       144
       macro avg
                        0.82
                                  0.82
     weighted avg
                        0.83
                                  0.82
                                            0.82
                                                       144
```

```
[45] scoring = ['accuracy', 'recall_macro', 'f1_macro', 'precision_macro']
    kfold = KFold(n_splits = 5, random_state = 5, shuffle = True)
    cv_results1 = cross_validate(modelo1, X_test.fillna(0), y_test, cv = kfold, scoring = scoring)

print('Accuracy mean: ', cv_results1['test_accuracy'].mean())
print('Precision mean: ', cv_results1['test_precision_macro'].mean())
print('Recall mean: ', cv_results1['test_recall_macro'].mean())

Accuracy mean: 0.833743842364532
Precision mean: 0.8346253076129238
Recall mean: 0.83057775556
```

F1 mean:

0.8241196428644268

Métricas de Desempenho - Depressão

```
[27] predicted = modelo1.predict(X_test.fillna(0))
    matriz_confusao = confusion_matrix(y_test, predicted)
    print(matriz_confusao)

[[170     2]
      [ 14     168]]
```



```
[29] report = classification_report(y_test, predicted)
    print('==== Report ====')
    print(report)
```

```
==== Report ====
                            recall f1-score
              precision
                                               support
                   0.94
                              0.99
                                        0.97
                                                    172
                   0.99
                              0.95
                                        0.97
                                                    182
                                        0.97
                                                    354
    accuracy
                                        0.97
   macro avg
                   0.97
                              0.97
                                                    354
weighted avg
                   0.97
                              0.97
                                        0.97
                                                    354
```

```
[29] scoring = ['accuracy', 'recall_macro', 'f1_macro', 'precision_macro']
   kfold = KFold(n_splits = 5, random_state = 5, shuffle = True)
   cv_results1 = cross_validate(modelo1, X_test.fillna(0), y_test, cv = kfold, scoring = scoring)

print('Accuracy mean: ', cv_results1['test_accuracy'].mean())
   print('Precision mean: ', cv_results1['test_precision_macro'].mean())
   print('Recall mean: ', cv_results1['test_recall_macro'].mean())
   print('F1 mean: ', cv_results1['test_f1_macro'].mean())
```

Accuracy mean: 0.8898591549295775
Precision mean: 0.8912943709946626
Recall mean: 0.8846963623042265
F1 mean: 0.8865291020694229