

Wavelength Agnostic Design of Next Generation 2D Photodetectors

Ayush Jamdar (EE) | B.Tech Project

Aryan Palimkar (EP) | UGRC

Project Advisor Prof. Sivarama Krishnan

Guided by Prof. Srini and Prof. Rituraj

Motivation

Metasurfaces dramatically improve absorption in 2D materials through critical coupling and resonance^[1]

Graphene - 0.34 nm! Silicon Metasurface Metal Reflector

Key Idea - Device optical response depends on metasurface structure

- Method to design structures exhaustive search or manual trials through parameter space
- Parameters hole radius, periodicity, thickness, etc.

0.8 simulation—theory

0.65 0.66 0.67 0.68 0.69

Frequency (µm⁻¹)

[1] and Images: Piper, Jessica R., and Shanhui Fan. "Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance." *Acs Photonics* 1.4 (2014): 347-353.

Intuition

Challenge: Several emerging 2D materials and metasurface choices - How much will you search?

- Can we devise a <u>well-defined method</u> to optimize metasurface geometry?
- Hence, can we design structures that perfectly absorb any chosen wavelength?
- Why just absorption, can we also tailor transmission and reflection?

Framing the 'Inverse' Problem

Framing the 'Inverse' Problem

Framing the 'Inverse' Problem

This study presents a general technique to *inverse* design resonance at one or multiple desired optical modes - wavelengths, angle, polarization, etc.

Simulation and Optimization

Absorption A is a function of

- wavelength λ
- metasurface geometry X
- material refractive indices O

For a set of wavelengths Λ , find the best absorber with optimal \mathbf{X}^* such that

$$\mathbf{X}^* = \arg \max_{\mathbf{X} \in \Omega} \sum_{i=1}^{|\Lambda|} A(\lambda_i, \mathbf{X}, \Theta)$$

Simulation: Rigorous Coupled Wave Analysis (RCWA)

- Computationally efficient tool to solve Maxwell's equations in the Fourier domain.
- Method of choice for 2D photonic crystals
 invariant along z-axis
- A: non-separable, non-convex, and noisy
- Required: a stochastic numerical optimization

Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES)

- Treat metasurface parameters as random variables sampled from a multivariate Gaussian distribution.
- Characterized by
 - Mean best solution
 - Covariance Matrix direction of search
- Iteratively adapt the distribution to the absorption objective function

Genetic Algorithm inspired by Natural Selection

CMA-ES Algorithm

Results | Designing a Photodetector for 1.55 um

Structure

- 1. Black Phosphorus^[2] **4 nm**
- 2. Si Metasurface 130 nm
- 3. Metallic Mirror

Fig. BP Extinction % plotted against photon energy^[2]

Fig 1. Absorption in BP

[2] Zhang, Guowei, et al. "Infrared fingerprints of few-layer black phosphorus." *Nature communications* 8.1 (2017): 14071.

Results | Designing a Photodetector for **2.1 um**

Structure

1. Black Phosphorus **4 nm**

2. Si Metasurface **110 nm**

3. DBR Mirror

Fig 2. Absorption in BP

Results | Designing Double Resonance at 1.3 & 1.55

Structure

- 1. Black Phosphorus **4 nm**
- 2. Si **110 nm**
- 3. Metallic Mirror
- ☐ Notice the partial holes

Fig 3. Absorption in BP

Results | Wide-angle Absorption at 1.55 um

Structure

- 1. Black Phosphorus **4 nm**
- 2. Si Metasurface **130 nm**
- 3. Metallic Mirror

Fig 4. Absorption in BP

From Mathematics to Physics - Aryan

Understanding Photonic Band Structures

The Problem

- Detectors- less responsive for large angles of incidence (upto 10-15 degrees)
- Design a system of graphene+PCS+mirror for broad-angle absorption

Image:Ding H.,Lalouat L.,Gonzalez B. "Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells" *Optics Express* 24(6):A650

A Physics Approach

Using band diagrams of the photonic crystal

 Solutions, in frequency, to the eigenvalue Maxwell's equation for the photonic crystal

	Quantum Mechanics	Electrodynamics
Field	$\Psi(\mathbf{r},t) = \Psi(\mathbf{r})e^{-iEt/\hbar}$	$\mathbf{H}(\mathbf{r},t) = \mathbf{H}(\mathbf{r})e^{-i\omega t}$
Eigenvalue problem	$\hat{H}\Psi = E\Psi$	$\hat{\Theta}\mathbf{H} = \left(\frac{\omega}{c}\right)^2 \mathbf{H}$
Hermitian operator	$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r})$	$\hat{\Theta} = \nabla \times \frac{1}{\varepsilon(\mathbf{r})} \nabla \times$

Analogy With Quantum Mechanics

A Physics Approach

Electronic band diagrams- familiar counterpart from solid state physics

Electronic band diagram of Si

Photonic band diagram
Triangular lattice of air columns in dielectric

Band diagram of a photonic crystal

- The light cone represents a continuum of states (radiation modes)
 in the band diagram
- Region inside the light cone corresponds
 to propagating waves that can exist
 outside the photonic crystal-extend into
 the surrounding material

Fig 1. Band dispersion curve Cylindrical Si rods in a square lattice Inset: Johannopalous J. ,"Photonic crystals: Molding the flow of light "

Bands & Transmission

Our hypothesis:

Fig 2. Comparison of band diagrams of Si slab

Bands & Transmission

Our hypothesis:

Fig 2. Comparison of band diagrams of Si slab

Bands & Transmission

Our hypothesis:

Fig 2. Comparison of band diagrams of Si slab

Results | Square lattice of circular holes in Si slab

Thickness=210.26nm, Hole Radius=548.18nm

Fig3. Band diagrams of Si slab with circular air holes in a square lattice

Results and Follow-up

- Yet to explain all features in the transmittance plots through band diagrams and quantify correlation
- Vary parameters lattice constant, thickness, radius to achieve nearly flat bands
- Using these parameters to reduce bounds of exploration in CMA-ES

Future Work

- Hyperspectral Sensitivity tailoring transmission (Sourav)
- Biphoton Generator Devices pump in and pump out at different wavelengths
- Experimenting with different objective functions

$$\mathbf{X}^* = \arg\max_{\mathbf{X} \in \Omega} \sum_{i=1}^{|\Lambda|} A(\lambda_i, \mathbf{X}, \Theta)$$

Conclusion

- The method presents an assistive tool to design metasurface devices
- We can thus, tailor absorption, reflection, and transmission.
- Moreover, the tool can be extended to general optical modes - angle, polarization, etc.
- Improvements can be made by drawing inferences from the band diagrams of the photonic crystal

Acknowledgement

We sincerely our guides thank **Prof. Srini Krishnamurthy** and **Prof. Rituraj** for their support and advice in this study. We would also like to thank our project advisor **Prof. Sivarama Krishnan**

Questions?

Photonic Crystals in Nature - *Parides sesostris* Right image scale 1.2 microns

Image Courtesy: Vukusic, P., Sambles, J. Photonic structures in biology. *Nature* 424, 852–855 (2003) and <u>R. Prum, Yale University</u>