Fault-Tolerant Middleware: Communication Reliable communication middelwares for distributed systems

Kyle E. Benson

Department of Computer Science University of California, Irvine Irvine, California 92697 kebenson@uci.edu

May 29, 2013

Introduction

- Traditional routing
 - Unique address: IP, MAC, Peer ID, etc.
 - Source routing: next hop address, neighbor index
 - Local routing: distance-vector, link state, label-switching

Introduction

- Traditional routing
 - Unique address: IP, MAC, Peer ID, etc.
 - Source routing: next hop address, neighbor index
 - Local routing: distance-vector, link state, label-switching
- Why location information?
 - Geocast: message all (or some) nodes in target region
 - Latency: request from closer server, route locally when possible
 - Congestion: confine route requests to smaller regions (MANETs)
 - Energy: closer nodes need less radio power to reach
 - Sensors: regional event detection, spatial querying
 - Planning: paths (robots), surveillance cameras (focus on area target will appear next)
 - Recovery: avoid problematic areas of the network

Introduction

- Traditional routing
 - Unique address: IP, MAC, Peer ID, etc.
 - Source routing: next hop address, neighbor index
 - Local routing: distance-vector, link state, label-switching
- Why location information?
 - Geocast: message all (or some) nodes in target region
 - Latency: request from closer server, route locally when possible
 - Congestion: confine route requests to smaller regions (MANETs)
 - Energy: closer nodes need less radio power to reach
 - Sensors: regional event detection, spatial querying
 - Planning: paths (robots), surveillance cameras (focus on area target will appear next)
 - Recovery: avoid problematic areas of the network
 - our primary interest!

Roadmap

- 1 Location Service
- 2 Greedy Forwarding
- Trajectory Routing
- 4 Geometric Routing
- 6 Clustering
- 6 Hybrid
- Wired Overlay Routing

Roadmap

- 1 Location Service
- 2 Greedy Forwarding
- Trajectory Routing
- 4 Geometric Routing
- 6 Clustering
- 6 Hybric
- Wired Overlay Routing

Location Service

- Nodes have GPS
- But how to look up destination's location?
- Maintain global information

Location Service

- Nodes have GPS
- But how to look up destination's location?
- Maintain global information easily outdated/inefficient

Location Service

- Nodes have GPS
- But how to look up destination's location?
- Maintain global information easily outdated/inefficient
- Distribute load
 - In ?, node updates location servers (LS) throughout network
 - Divide network into hierarchical grid
 - LS's in 3 external grids at each level
 - Lookup distance < square
 LS co-resides in

Figure: Hierarchical grid with 4 order-i squares in order-i+1 square.

