1.0 Intro to Machine Learning

Intro to Machine Learning

A form of AI that enables a system to learn from data. -IBM

- Supervised learning
 - Prediction of a given output using other variables in the data set
 - Used for tasks involving the prediction of a given output (target, Y variable) using predictor variables (features, X variable)
 - Finds patterns that can be applied to an analytic process
- Unsupervised learning
 - Performs analysis without target variable
 - Used when the problem requires a lot of unlabled data

X and Y Terminology

- X-Variable
 - Predictor variable
 - Independent variable
 - Attribute
 - Feature
- Y-Variable
 - Target variable
 - Dependent variable
 - Response
 - Outcome Measurement

Basic Processes

ML Steps

- Define and understand purpose
 - What is the problem statement?
- Get data
 - May involve random sampling
- Clean and process data
 - Ensure data is accurate
 - DS spend 70-80% of time here

- Partition data for generlizability
 - Generalizeability of our algorithm
 - Fits our past data and predicts the future
- Reduce data
- Specify task
- Choose the techniques
- Iterative implementation and tuning

Partioning Data for Generalizability

- Split data into training and testing data
- Training data to train algos for choosing the final model
- Testing data for model's performance
- Split recommendations (training%/testing%):
 - -60/40, 70/30, 80/20
 - Splitting can be done in R by sampling portions of data
 - * Be sure to use consistent seeds
- Overfitting
 - Doesn't allow us to get a good assessment of training performance
 - Typically with higher traing% splits
- Underfitting
 - Having too little test data to assess our model

Partioning Data in R

Data: Wisconsin Breast Cancer

```
# Read in Wisconsin breast cancer data
wis.df <- read.csv("Data Sets/1.2-wisc_bc_data.csv")</pre>
```

Partition data the easy way

- Knowing the count of observations and feeding those row numbers into separate variables
- Querying dataframes syntax:
 - dataframe.df[rows,columns]
 - Leaving either argument blank returns all values
 - Below we grab specific rows, and all columns because it's blank

```
train <- wis.df[1:469,]
test <- wis.df[470:569,]</pre>
```

Partition data with sampling

Create Training Data

sample takes a sample of the specified size from the elements of x using either with or without replacement.

```
sample(x, size, replace = FALSE, prob = NULL)
```

dim has a method for data.frames, which returns the lengths of the row.names attribute of x and of x (as the numbers of rows and columns respectively) - Assumption about what's happening because prof didn't explain: - Sample the rownames column - . . . With the size of the length(dim) of the first column [1] - . . . Multiplied by 0.7 to get 70%

Create the training data, add it to the dataset

```
train2.row <- sample(rownames(wis.df),dim(wis.df)[1]*0.7)
# Add training data to the data set
train2 <- wis.df[train2.row,]
# Optional: view train2 to see number of observations
#str(train2)</pre>
```

Create Test Data

- Use setdiff to get the rows from the first argument that aren't in the second argument
 - In this case the rows in our original df that aren't in the training data

The elements of setdiff(x,y) are those elements in x but not in y.

```
test2.row <- setdiff(rownames(wis.df),train2.row)
# Add training data to the data set
test2 <- wis.df[test2.row,]</pre>
```

Model Performance Evaluation

Overfitting

- Causes
 - Too many predictors
 - Too many parameters
 - Trying many different models
 - * May wind up picking one that just happens to fit your training data the best
- Consequence: the deployed model won't work as well with brand new data ### Measuring Predictive Error
- Used for predictive numerical values where the outcome is numerical, e.g. house prices
- Not the same as goodness-of-fit, standard error (r^2) (difference between actual and predicted Y, or "error")
 - This merely compares the model to the data it was trained with
 - We are interested in the model's ability to predict new records
 - * How do we do that? Witchcraft mostly.
 - * Also by validating the error of the training model against the test data

Measure Classifier Performance

For categorical data - Evaluation - Measure the classifier accuracy by dividing the proportion of correct predictions by the total number of predictions - The error being misclassification - Goals of evaluation models - Attempting to understand how model performance will extrapolate to future cases - A natural criterion - Actual class values - Predicted class values - Estimated probablity of the prediction

Confusion/Misclassification Matrix

- A matrix showing the results between actual and predicted classifications
- Errors (false positive and false negative) are found in $(n_{1,2})$ and $(n_{2,1})$
- Can be used to find the error rate and accuracy

Figure 1: Confusion Matrix

• Note: $(n_{1,2})$ and $(n_{2,1})$ should read "incorrectly"

Calculating Error Rate and Accuracy Error Rate: $ErrorRate = \frac{FP + FN}{TP + TN + TP + TN} = 1 - accuracy$ Accuracy: Accuracy = 1 - ErrorRate

Limitations of Accuracy Given two groups: - Group 1 observed 9990 times - Group 2 observed 10 times

- If a model predicted all 10,000 observations to be group 1, the accuracy would be 9990/10000 = 99.9%
 - This is misleading because the model did not detect any members of group 2

Cutoff Table

 \bullet If the cutoff is 0.5 as indicated by the dividing line, every 1 on the right side and 0 on the left is an error

Use the confusionMatrix() function from the caret package. > The caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models.

Confusion Matrix

201 1's correctly classified as "1"

85 1's incorrectly classified as "0"

25 0's incorrectly classified as "1"

2689 0's correctly classified as "0"

Overall error rate = (25+85)/3000 = 3.67%Accuracy = 1 - err = (201+2689) = 96.33%

$$Error Rate = \frac{FP + FN}{P + TN + FP + FN} = 1 - accuracy$$

Figure 2: Confusion Matrix Example

Cutoff Table

Actual Class	Prob. of "1"	Actual Class	Prob. of "1"
1	0.996	1	0.506
1	0.988	0	0.471
1	0.984	0	0.337
1	0.980	1	0.218
1	0.948	0	0.199
1	0.889	0	0.149
1	0.848	0	0.048
0	0.762	0	0.038
1	0.707	0	0.025
1	0.681	0	0.022
1	0,656	0	0.016
0	0.622	0	0.004

If cutoff is 0.50: eleven records are classified as "1" If cutoff is 0.80: seven records are classified as "1"

Figure 3: Cutoff Table

[confusionMatrix] Calculates a cross-tabulation of observed and predicted classes with associated statistics.

- confusionMatrix(data, reference)
 - data: the predicted classification
 - * In this example we compute the prediction with an if/else and store it as column "Predicted" in "owner"
 - · If the probability is greater than 0.5, classify as owner. Otherwise, classify as nonowner.
 - * We need to be sure to cast this new column as a factor so it can be used by confusionMatrix()
 - · Use as.factor()
 - reference: the "actual" classifications

```
#install.packages("caret", repos = "http://cran.us.r-project.org")
```

library(caret)

```
owner <- read.csv("Data Sets/1.3-owner.csv")

# Create Predicted classification
owner$Predicted <- ifelse(owner$Probability>0.5, 'owner', 'nonowner')

# Build confusion matrix casting Predicted as a factor
confusionMatrix(as.factor(owner$Predicted), as.factor(owner$Class))
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction nonowner owner
##
     nonowner
                    10
##
     owner
                     2
                           11
##
##
                  Accuracy: 0.875
##
                    95% CI: (0.6764, 0.9734)
##
       No Information Rate: 0.5
       P-Value [Acc > NIR] : 0.0001386
##
##
##
                     Kappa : 0.75
##
##
    Mcnemar's Test P-Value: 1.0000000
##
##
               Sensitivity: 0.8333
               Specificity: 0.9167
##
##
            Pos Pred Value: 0.9091
##
            Neg Pred Value: 0.8462
                Prevalence: 0.5000
##
##
            Detection Rate: 0.4167
      Detection Prevalence: 0.4583
##
##
         Balanced Accuracy: 0.8750
##
##
          'Positive' Class : nonowner
##
```

str(owner)

```
## 'data.frame': 24 obs. of 3 variables:
## $ Class : chr "owner" "owner" "owner" "owner" ...
## $ Probability: num  0.996 0.988 0.984 0.98 0.948 ...
## $ Predicted : chr "owner" "owner" "owner" "owner" ...
```

Other Criteria

Beyond Accuracy

- Useful classifiers balance between predictions that are overly conservative or aggressive
- Sensitivity vs. specificity
 - Sensitivity
 - * The ability to detect the important class members correctly
 - * E.g. the % of C1 members classified correctly $Sensitivity = \frac{a}{a+b}$
 - Specificity
 - * The ability to rule out other members correctly
 - * E.g. the % of C2 members classified correctly $Specificity = \frac{d}{c+d}$
- Precision and recall

Receiver Operating Characteristic (ROC) Curve

- A method for plotting sensitivity and specificity cutoff values from 1 to 0
 - The x-axis (specificity) is reversed from 1 to 0, you could also write it ascending as 1 specificity
- Better performance would be in the top left corner
- Area under the curve (AOC) is a useful metric for judging classifier
 - 1 is a perfect classification
 - .9-1 is excellent
 - .8-.9 is good
 - .7-.8 is fair
 - .6-.7 is poor
 - .5-.6 is failure

 ${f ROC}$ in ${f R}$ Install the pROC package > This is the main function of the pROC package. It builds a ROC curve and returns a "roc" object

- Use roc(response, predictor) to get a dataframe of ROC points
 - Response is the "true class"
 - * In our case owner\$Class
 - Predictor is the predicted value of each observation, must match the length of response
 - * In our case owner\$Probability
- Use auc() to obtain the area under the curve value

```
#install.packages("pROC")

library(pROC)

# Read in data
owner <- read.csv("Data Sets/1.3-owner.csv")

# Create roc object and store in r
r <- roc(owner$Class, owner$Probability)

## Setting levels: control = nonowner, case = owner

## Setting direction: controls < cases

# Plot the roc
plot.roc(r)</pre>
```


Obtain the AUC value
auc(r)

Area under the curve: 0.9375