Justificación Proyecto 3

Equipo N

June 6, 2022

Esta simulación interactiva tiene como objetivo modelar una máquina de Carnot que funciona entre dos reservorios de temperatura T_H y T_L , la eficiencia está dada por

$$\eta = 1 - \frac{T_L}{T_H}$$

Con $T_H = 1050 \text{ K y } T_L = 300 \text{ K}.$

El barco se mueve en aguas marinas y genera trabajo a partir del gradiente de temperatura entre un reservorio de agua a una temperatura T_H en el barco y T_L con agua del mar.

Partimos de la definición de eficiencia

$$1 - \frac{T_L}{T_H} = \frac{W}{Q_H}$$

Despejando para W

$$W = Q_H \left(1 - \frac{T_L}{T_H} \right) = mC\Delta T \left(1 - \frac{T_L}{T_H} \right)$$

Como el trabajo se aplica horizontalmente sobre el barco, podemos escribir (de alguna manera, una turbina logra crear una fuerza igual en magnitud pero en sentido contrario sobre el agua, que mueve al barco)

$$F\Delta x = mC\Delta T \left(1 - \frac{T_L}{T_H}\right)$$

Consideramos la situación ideal de un barco que se desplaza al aplicarle una fuerza de 1 N, y con masa de 1 kg, por lo tanto, obtenemos

$$\Delta x = \frac{mc\Delta T \left(1 - \frac{T_L}{T_H}\right)}{F}$$

Dentro de la dinámica del juego incluimos objetos (carbón) a una temperatura alta (rojos) o baja (azules). En el momento en que el barco hace contacto con un objeto rojo, T_H aumenta 50 K y por lo tanto Δx también aumenta, ya que

$$1 - \frac{T_L}{T_H} < 1 - \frac{T_L}{T_H + 50}$$

Cuando entra en contacto con un objeto azul, T_H disminuye 50 K y Δx disminuye, de manera similar. T_L se mantiene constante.

Otras consideraciones importantes.

El objetivo del juego es desplazarte la mayor cantidad de Δx como te sea posible, para esto Δx disminuye en razón de un frame, como se muestra en pantalla.

El programa es base javascript-html5 y requiere abrir el archivo .html en el navegador para visualizar el proyecto.