

AY:2024-25

Class:	BE	Semester:	VII
Course Code:	CSDOL7011	Course Name:	Natural Language Processing

Name of Student:	Parth Raut
Roll No.:	40
Experiment No.:	5
Title of the Experiment:	N-Gram Model Implementation
Date of Performance:	
Date of Submission:	

Evaluation

Performance Indicator	Max. Marks	Marks Obtained
Performance	5	
Understanding	5	
Journal work and timely submission	10	
Total	20	

Performance Indicator	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
Performance	4-5	2-3	1
Understanding	4-5	2-3	1
Journal work and timely submission	8-10	5-8	1-4

Checked by

Name of Faculty :

Signature :

Date :

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Experiment 5

Aim: Implement N-Gram model for the given text input.

Objective: To study and implement N-gram Language Model.

Theory:

A language model supports predicting the completion of a sentence.

Eg:

- Please turn off your cell _____
- Your program does not _____

Predictive text input systems can guess what you are typing and give choices on how to complete it.

N-gram Models:

Estimate probability of each word given prior context.

P(phone | Please turn off your cell)

- Number of parameters required grows exponentially with the number of words of prior context.
- An N-gram model uses only N1 words of prior context.
 - o Unigram: P(phone)
 - o Bigram: P(phone | cell)
 - o Trigram: P(phone | your cell)
- The Markov assumption is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a kth-order Markov model, the next state only depends on the k most recent states, therefore an N-gram model is a (N1)-order Markov model.

N-grams: a contiguous sequence of n tokens from a given piece of text

Fig. Example of Trigrams in a sentence

Code:

Necessary Imports

```
import nltk, re, pprint, string
from nltk import word_tokenize, sent_tokenize
string.punctuation = string.punctuation.replace('.', '')
file = open('./dataset.txt', encoding = 'utf8').read()
```

Preprocess of the Data

```
file_nl_removed = ""
for line in file:
  line_nl_removed = line.replace("\n", " ")
file_nl_removed += line_nl_removed
file_p = "".join([char for char in file_nl_removed if char not in string.punctuation])
```

Statistics of the Data

```
sents = nltk.sent_tokenize(file_p)
print("The number of sentences is", len(sents))
  words = nltk.word_tokenize(file_p)
print("The number of tokens is", len(words))
  average_tokens = round(len(words)/len(sents))
print("The average number of tokens per sentence is",
  average_tokens)
  unique tokens = set(words)
  print("The number of unique tokens are", len(unique_tokens))
The number of sentences is 981
```

The number of tokens is 27361
The average number of tokens per sentence is 28 The number of unique tokens are 3039

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Building the N-Gram Model

```
In [4]:
             from nltk.util import ngrams
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
              unigram=[]
              bigram=[]
trigram=[]
              fourgram=[]
tokenized_text = []
for word in sequence:
   if (word =='.'):
                                 sequence.remove(word)
                                unigram.append(word)
                    tokenized_text.append(sequence)
bigram.extend(list(ngrams(sequence, 2)))
                    trigram.extend(list(ngrams(sequence, 3)))
                     fourgram.extend(list(ngrams(sequence, 4)))
               #removes ngrams containing only stopwords
               def removal(x):
                    y = []
for pair in x:
count = 0
                          for word in pair:
    if word in stop_words:
        count = count or 0
                              else:
                         count = count or 1
if (count==1):
                   y.append(pair)
return(y)
                bigram = removal(bigram)
                trigram = removal(trigram)
fourgram = removal(fourgram)
freq_bi = nltk.FreqDist(bigram)
               freq_Di = nltk.FreqDist(Digram)
freq_tri = nltk.FreqDist(trigram)
freq_tri = nltk.FreqDist(fourgram)
print("Most common n-grams without stopword removal and without add-1 smoothing: \n")
print ("Most common bigrams: ", freq_bi.most_common(5))
print ("\nMost common trigrams: ", freq_tri.most_common(5))
print ("\nMost common trigrams: ", freq_four.most_common(5))
            Most common n-grams without stopword removal and without add-1 smoothing:
            Most common bigrams: [(('said', 'the'), 209), (('said', 'alice'), 115), (('the', 'queen'), 65), (('the', 'king'), 60), (('a', 'little'), 59)]
            Most common trigrams: [(('the', 'mock', 'turtle'), 51), (('the', 'march', 'hare'), 30), (('said', 'the', 'king'), 29), (('the', 'white', 'rabbit'), 21), (('said', 'the', 'hatter'), 21)]
            Most common fourgrams: [(('said', 'the', 'mock', 'turtle'), 19), (('she', 'said', 'to', 'herself'), 16), (('a', 'minute', 'or', 'two'), 11), (('said', 'the', 'march', 'hare'), 8), (('will', 'you', 'wont', 'you'), 8)]
              Script for downloading the stopwords using NLTK
 In [7]:
    from nltk.corpus import stopwords
    stop_words = set(stopwords.words('english'))
               Print 10 Unigrams and Bigrams after removing stopwords
```

```
In [8]:
    print("Most common n-grams with stopword removal and without add-1 smoothing: \n")
    unigram_sw_removed = [p for p in unigram if p not in stop_words]
    fdist = nltk.FreqDist(unigram_sw_removed)
    print("Most common unigrams: ", fdist.most_common(10))
    bigram_sw_removed = []
    bigram_sw_removed.extend(list(ngrams(unigram_sw_removed, 2)))
    fdist = nltk.FreqDist(bigram_sw_removed)
    print("\nMost common bigrams: ", fdist.most_common(10))
```

Most common n-grams with stopword removal and without add-1 smoothing:

Add-1 smoothing

Prints top 10 unigram, bigram, trigram, fourgram after smoothing

```
In [10]:
    print("Most common n-grams without stopword removal and with add-1 smoothing: \n")
    for i in range(4):
        ngrams_prob[i+1] = sorted(ngrams_prob[i+1], key = lambda x:x[1], reverse = True)

print ("Most common unigrams: ", str(ngrams_prob[1][:10]))
    print ("\nMost common bigrams: ", str(ngrams_prob[2][:10]))
    print ("\nMost common fourgrams: ", str(ngrams_prob[3][:10]))
    print ("\nMost common fourgrams: ", str(ngrams_prob[4][:10]))
```

Next word Prediction

```
str1 = 'after that alice said the'
               str2 = 'alice felt so desperate that she was'
In [12]:
               token 1 = word tokenize(str1)
               token_1 = word_tokenize(str1)
token_2 = word_tokenize(str2)
ngram_1 = {1:[], 2:[], 3:[]}
ngram_2 = {1:[], 2:[], 3:[]}
for i in range(3):
                                                               #to store the n-grams formed
               ngram_1[i+1] = list(ngrams(token_1, i+1))[-1]
ngram_2[i+1] = list(ngrams(token_2, i+1))[-1]
print("String 1: ", ngram_1,"\nString 2: ",ngram_2)
            String 1: {1: ('the',), 2: ('said', 'the'), 3: ('alice', 'said', 'the')}
String 2: {1: ('was',), 2: ('she', 'was'), 3: ('that', 'she', 'was')}
                     ngrams_prob[i+1] = sorted(ngrams_prob[i+1], key = lambda x:x[1], reverse = True)
               pred_1 = \{1:[], 2:[], 3:[]\}
               for i in range(3):
    count = 0
               for each in ngrams_prob[i+2]:
    if each[0][:-1] == ngram_1[i+1]:
#to find predictions based on highest probability of n-grams
                                  pred_1[i+1].append(each[0][-1])
                     break
if count<5:
                            while(count!=5):
                                 pred_1[i+1].append("NOT FOUND")
               #if no word prediction is found, replace with NOT FOUND
                                count +=1
                     \label{eq:ngrams_prob} $$ \inf_{i+1} = \operatorname{sorted}(\operatorname{ngrams\_prob}[i+1], \text{ key = lambda } x: x[1], \text{ reverse = True})$$
               pred_2 = {1:[], 2:[], 3:[]}
```



```
pred_2 = {1:[], 2:[], 3:[]}
             for i in range(3):
    count = 0
                  for each in ngrams_prob[i+2]:
    if each[0][:-1] == ngram_2[i+1]:
                           count
                            pred_2[i+1].append(each[0][-1])
                           if count ==5:
                               break
                  if count<5:
                      while(count!=5):
                           pred_2[i+1].append("\0")
                            count +=1
In [14]:
             print("Next word predictions for the strings using the probability models of bigrams, trigrams, and fourgrams\n")
                                   after that alice said the-\n")
            print("Bigram model predictions: {}\nTrigram model predictions: {}\nFourgram model predictions: {}\n" .format(pred_1[1], pre
print("String 2 - alice felt so desperate that she was-\n")
             Next word predictions for the strings using the probability models of bigrams, trigrams, and fourgrams
          String 1 - after that alice said the-
         Bigram model predictions: ['queen', 'king', 'gryphon', 'mock', 'hatter']
Trigram model predictions: ['king', 'hatter', 'mock', 'caterpillar', 'gryphon']
Fourgram model predictions: ['NOT FOUND', 'NOT FOUND', 'NOT FOUND', 'NOT FOUND']
          String 2 - alice felt so desperate that she was-
         Bigram model predictions: ['a', 'the', 'not', 'that', 'going']
Trigram model predictions: ['now', 'quite', 'a', 'walking', 'looking']
Fourgram model predictions: ['now', 'losing', 'quite', 'dozing', 'walking']
```

Conclusion:

The N-gram language model was implemented for text analysis, generating unigrams, bigrams, trigrams, and fourgrams from a dataset. Key statistics included 981 sentences, 27,361 tokens, and 3,039 unique tokens. Most common n-grams were identified, with bigrams like ('said', 'the') and trigrams like ('the', 'mock', 'turtle') being the most frequent. Add-1 smoothing was applied to enhance the probability distribution. Next-word predictions were made for two input strings, yielding various bigram and trigram predictions. The model effectively captures word patterns but showed limitations in fourgram predictions, indicating a need for more data or refinement for improved accuracy.