psy504_glm

February 12, 2025

• Assignment requirements:

- If you are using Github (recommended), make sure to commit and push your work to GitHub regularly, at least after each exercise. Write short and informative commit messages, and share the link to your assignment with me. If not, you can also send me the rmd & rendered file via Canvas.
- In this assignment, you will not need to code from scratch. Rather, you'll need to fill in code where needed. This assignment has a logisitic regression implementation for a scenario from EDA down to model comparison (and would be useful for whenever you may encounter such a situation in the future).
- I want the assignments to begin reflecting a bit more of how you'd be doing things on your own, where you have some prior knowledge and you figure other things out (by referring to documentation, etc.) . In addition to the rmd, I also want you to submit to me **notes** of anything new that you learn while finishing the assignment. And any pain-points, and we'll discuss more.

• Note:

- If you are fitting a model, display the model output in a neatly formatted table. (The gt tidy and kable functions can help!). Modelsummary also looks good(https://vincentarelbundock.github.io/modelsummary/articles/modelsummary.html)
- Make sure that your plots are clearly labeled for all axes, titles, etc.

0.1 Data: General Social Survey

The General Social Survey (GSS) has been used to measure trends in attitudes and behaviors in American society since 1972. In addition to collecting demographic information, the survey includes questions used to gauge attitudes about government spending priorities, confidence in institutions, lifestyle, and many other topics. A full description of the survey may be found here.

The data for this lab are from the 2016 General Social Survey. The original data set contains 2867 observations and 935 variables. We will use and abbreviated data set that includes the following variables:

natmass: Respondent's answer to the following prompt:

"We are faced with many problems in this country, none of which can be solved easily or inexpensively. I'm going to name some of these problems, and for each one I'd like you to tell me whether

you think we're spending too much money on it, too little money, or about the right amount...are we spending too much, too little, or about the right amount on mass transportation?"

age: Age in years.

sex: Sex recorded as male or female

sei10: Socioeconomic index from 0 to 100

region: Region where interview took place

polviews: Respondent's answer to the following prompt:

"We hear a lot of talk these days about liberals and conservatives. I'm going to show you a sevenpoint scale on which the political views that people might hold are arranged from extremely liberal - point 1 - to extremely conservative - point 7. Where would you place yourself on this scale?"

The data are in gss2016.csv in the data folder.

1 EDA

```
[35]: suppressPackageStartupMessages({
    library(dplyr)
    library(ggplot2)
    library(readr)
    library(tidyr)
    library(knitr)
    library(easystats)
    library(broom)
    library(emmeans)
    library(marginaleffects)
    library(performance)
    library(arm)
    library(modelsummary)
})
```

```
[3]: data <- read.csv("gss2016.csv") head(data)
```

```
natmass
                                                         sei10
                                                                  region
                                                                                 polviews
                                      age
                                               sex
                        <chr>
                                                                  <chr>
                                      < chr >
                                               <chr>
                                                         <dbl>
                                                                                 <chr>
                        Too little
                                      47
                                               Male
                                                         87.9
                                                                  New england
                                                                                 Moderate
                        Too little
                                      61
                                               Male
                                                         38.3
                                                                  New england
                                                                                 Liberal
A data.frame: 6 \times 6
                                                                  New england
                        Too much
                                               Female
                                                        21.8
                                                                                 Moderate
                                      43
                        Too little
                                                                  New england
                                                                                 Slightly liberal
                                      55
                                               Female
                                                        39.7
                                                                                 Slightly liberal
                        About right
                                      53
                                               Female
                                                                  New england
                                                        44.6
                                                                                 Slightly liberal
                        Too little
                                      50
                                               Male
                                                         80.7
                                                                  New england
```

```
[4]: data <- data %>%
    mutate(mass_trans_spend_right = (natmass == "About right"))
    head(data)
```

```
sei10
                        natmass
                                                                 region
                                                                                 polviews
                                                                                                  mass trans
                                      age
                                               sex
                        <chr>
                                      <chr>
                                               <chr>
                                                         <dbl>
                                                                  <chr>
                                                                                 <chr>
                                                                                                  \langle lgl \rangle
                        Too little
                                      47
                                                                  New england
                                                                                 Moderate
                                               Male
                                                         87.9
                                                                                                  FALSE
                        Too little
                                                                  New england
                                                                                 Liberal
                                               Male
                                      61
                                                         38.3
                                                                                                  FALSE
A data.frame: 6 \times 7
                        Too much
                                               Female
                                                                  New england
                                                                                 Moderate
                                      43
                                                        21.8
                                                                                                  FALSE
                    4
                        Too little
                                      55
                                               Female
                                                        39.7
                                                                 New england
                                                                                 Slightly liberal
                                                                                                 FALSE
                        About right
                                                                  New england
                                                                                 Slightly liberal
                                                                                                 TRUE
                    5
                                      53
                                               Female
                                                        44.6
                    6
                        Too little
                                      50
                                               Male
                                                        80.7
                                                                 New england
                                                                                Slightly liberal
                                                                                                 FALSE
```

[5]: #Get proportions

```
mass_spend_summary <- data %>%
  count(mass_trans_spend_right) %>%
  mutate(proportion = n / sum(n))
mass spend summary
```


[8]: data %>% count(polviews)

	polviews	n
	<chr></chr>	<int $>$
-	Conservative	395
	Extremely liberal	133
A data.frame: 7×2	Extrmly conservative	104
	Liberal	336
	Moderate	974
	Slghtly conservative	358
	Slightly liberal	290

the most freq is 'Moderate'

```
natmass
                                                                                polviews
                                                        sei10
                                                                 region
                                                                                                mass trans
                                      age
                                               sex
                        <chr>
                                      <chr>
                                                                 <chr>
                                                                                \langle ord \rangle
                                               <chr>
                                                        <dbl>
                                                                                                 \langle lgl \rangle
                        Too little
                                      47
                                                                 New england
                                                                                Moderate
                                               Male
                                                        87.9
                                                                                                FALSE
                        Too little
                                      61
                                               Male
                                                        38.3
                                                                 New england
                                                                               Liberal
                                                                                                FALSE
A data.frame: 6 \times 7
                        Too much
                                      43
                                               Female 21.8
                                                                 New england
                                                                               Moderate
                                                                                                FALSE
                       Too little
                                                                               Slightly liberal FALSE
                                      55
                                               Female 39.7
                                                                 New england
                                                                 New england
                                                                                Slightly liberal
                        About right
                                      53
                                               Female
                                                                                                TRUE
                                                        44.6
                    6 Too little
                                      50
                                               Male
                                                        80.7
                                                                 New england Slightly liberal
                                                                                                FALSE
```


satisfaction by political views

2 Logistic regression

```
[14]: glm_intercept <- glm(mass_trans_spend_right ~ 1, data = data, family = binomial) summary(glm_intercept)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
     (Intercept) 0.11906
                             0.03937 3.024 0.00249 **
     Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
     (Dispersion parameter for binomial family taken to be 1)
         Null deviance: 3581.3 on 2589 degrees of freedom
     Residual deviance: 3581.3 on 2589 degrees of freedom
     AIC: 3583.3
     Number of Fisher Scoring iterations: 3
[15]: b0 = coef(glm_intercept)
      b0_transformed <- exp(b0) / (1 + exp(b0)) # logistic transform
      ci_lower = b0 - 1.96 * 0.0393685
      ci\_upper = b0 + 1.96 * 0.0393685
      #transforming confidence intervals of coefficients into probabilities
      p_lower = exp(ci_lower) / (1 + exp(ci_lower))
      p_upper = exp(ci_upper) / (1 + exp(ci_upper))
      print(b0_transformed)
      print(p_lower)
      print(p_upper)
     (Intercept)
       0.5297297
     (Intercept)
       0.5104727
     (Intercept)
       0.5488986
```

'b0_transformed' shows that the probability of mass_trans_spend_right is TRUE is around 53%, and is significantly different from 50%, suggesting people in general are satisfied with the spending. This is also evident from CIs which do not include 50%.

```
kable()

glm_1 %>%
  tidy(exponentiate = TRUE) %>%
  kable()
```

```
    |term
    | estimate| std.error| statistic| p.value|

    |:-----|-----|-------|
    | (Intercept) | 2.2829100| 0.1395587| 5.914722| 0.0000000|

    |age
    | 0.9938530| 0.0022824| -2.701502| 0.0069027|

    |sexMale
    | 0.7743403| 0.0798020| -3.204732| 0.0013519|

    |sei10
    | 0.9937922| 0.0016609| -3.749229| 0.0001774|
```

3 effect of Sex

```
[17]: bsex <- coef(glm_1)["sexMale"]
    ci_lower_lo = bsex - 1.96 * 0.0798020
    ci_upper_lo = bsex + 1.96 * 0.0798020

ci_lower_or = 1.29 - 1.96 * 0.0798020
    ci_upper_or = 1.29 + 1.96 * 0.0798020
    emm_sex <- emmeans(glm_1, "sex", type = "response")

    print(emm_sex)</pre>
```

```
        sex
        prob
        SE
        df
        asymp.LCL
        asymp.UCL

        Female
        0.559
        0.0133
        Inf
        0.533
        0.585

        Male
        0.495
        0.0147
        Inf
        0.467
        0.524
```

Confidence level used: 0.95

Intervals are back-transformed from the logit scale

4 effect of age

```
bage <- coef(glm_1)["age"]

ci_lower_lo_age = bage - 1.96 * 0.0022824

ci_upper_lo_age = bage + 1.96 * 0.0022824

c(LO = bage, CI_Lower = ci_lower_lo_age, CI_Upper = ci_upper_lo_age)

or_age <- exp(bage)

ci_lower_or_age = exp(ci_lower_lo_age)

ci_upper_or_age = exp(ci_upper_lo_age)

c(OR = or_age, CI_Lower = ci_lower_or_age, CI_Upper = ci_upper_or_age)

emm_age <- emmeans(glm_1, "age", at = list(age = seq(min(data$age), umax(data$age), by = 10)), type = "response")

print(emm_age)</pre>
```

 $\begin{array}{ll} \textbf{OR.age} & 0.993853030835906 \ \textbf{CI} \\ \hline 0.998308995802162 \end{array}$

0.989416955126246 CI_Upper.age

```
SE df asymp.LCL asymp.UCL
age prob
                           0.535
                                     0.613
 18 0.574 0.01980 Inf
 28 0.559 0.01530 Inf
                           0.529
                                     0.589
 38 0.544 0.01160 Inf
                           0.521
                                     0.567
48 0.529 0.00993 Inf
                           0.509
                                     0.548
 58 0.513 0.01120 Inf
                           0.491
                                     0.535
 68 0.498 0.01470 Inf
                           0.469
                                     0.527
 78 0.482 0.01930 Inf
                           0.445
                                     0.520
 88 0.467 0.02430 Inf
                           0.420
                                     0.515
```

Results are averaged over the levels of: sex

Confidence level used: 0.95

Intervals are back-transformed from the logit scale

A one unit increase in age is associated with a decrease in the log-odds of being satisfied with spending on mass transportation by -0.0061659 units (95% CI [-0.010, -0.002]), holding all other variables constant. The odds ratio is 0.9938530 (95% CI [0.989, 0.998]) which confirms the negative relationship implied by the log-odds coefficient.

Specifically, for each additional unit of age, the odds of being satisfied with mass transportation spending decrease by a factor of about 0.9938, or approximately 0.62% per unit increase in age, holding other factors constant.

5 effect of SES index

```
[19]: bses <- coef(glm_1)["sei10"]
    ci_lower_lo_ses = bses - 1.96 * 0.0001774
    ci_upper_lo_ses = bses + 1.96 * 0.0001774

    c(LO = bses, CI_Lower = ci_lower_lo_ses, CI_Upper = ci_upper_lo_ses)

    or_ses <- exp(bses)
    ci_lower_or_ses = exp(ci_lower_lo_ses)
    ci_upper_or_ses = exp(ci_upper_lo_ses)

    c(OR = or_ses, CI_Lower = ci_lower_or_ses, CI_Upper = ci_upper_or_ses)

    emm_ses <- emmeans(glm_1, "sei10", type = "response")
    print(emm_ses)</pre>
```

LO.sei10 -0.00622714075833176 CI_Lower.sei10 -0.00657484475833176 CI_Upper.sei10 -0.00587943675833176

OR.sei10 0.99379220769999 **CI_Lower.sei10** 0.993446722241023 **CI_Upper.sei10** 0.99413781330652

```
sei10 prob SE df asymp.LCL asymp.UCL 46.1 0.527 0.00992 Inf 0.508 0.547
```

Results are averaged over the levels of: sex Confidence level used: 0.95 Intervals are back-transformed from the logit scale

A one unit increase in ses is associated with a decrease in the log-odds of being satisfied with spending on mass transportation by -0.006227 units (95% CI [-0.00657, -0.005879]), holding all other variables constant. The odds ratio is 0.99379 (95% CI [0.993, 0.994]) which confirms the negative relationship implied by the log-odds coefficient.

Specifically, for each additional unit of ses, the odds of being satisfied with mass transportation spending decrease by a factor of about 0.99379, or approximately 0.63% per unit increase in ses, holding other factors constant.

6 marginal effects

Let's examine the results on the probability scale.

```
[20]: avg_comparisons(glm_1, comparison = "difference") %>%
    kable()
```

```
|term |contrast | estimate| std.error| statistic| p.value| s.value| u conf.low| conf.high|
```

The marginal effect of age is -0.0015153 (95% CI [-0.0026088, -0.0004219]). So, for each additional unit increase of age, the probability of being satisfied with mass transportation spending decreases by approximately 0.1515 percentage points, holding other factors constant (p = 0.0066050).

The marginal effect of SES is -0.0015304 (95% CI [-0.0023219, -0.0007388]). For each one-unit increase in the socioeconomic index, the probability of being satisfied with mass transportation spending decreases by approximately 0.15304 percentage points, holding other variables constant (p = 0.0001510).

The marginal effect for being male compared to female is -0.0630688 (95% CI [-0.1015743, -0.0245632]). This indicates that males are, on average, about 6.3% percentage points less likely than females to be satisfied with mass transportation spending, holding other factors constant (p = 0.0013262).

7 model comparison

the model with 'polviews' is significantly better

8 visualization

```
[22]: library(ggeffects)
      str(data)
      data <- data %>%
        mutate(polviews = as.factor(polviews))
      data <- data %>%
       mutate(mass_trans_spend_right = as.numeric(mass_trans_spend_right))
      fit_3 <- glm(mass_trans_spend_right ~ age + sex + sei10 + polviews,
                   data = data,
                   family = binomial)
     Attaching package: 'ggeffects'
     The following object is masked from 'package:easystats':
         install latest
     'data.frame':
                     2590 obs. of 7 variables:
                              : chr "Too little" "Too little" "Too much" "Too
      $ natmass
     little" ...
      $ age
                              : num 47 61 43 55 53 50 23 71 86 32 ...
                              : Factor w/ 2 levels "Female", "Male": 2 2 1 1 1 2 1 2 1
      $ sex
     2 ...
      $ sei10
                              : num 87.9 38.3 21.8 39.7 44.6 80.7 20.1 32 13.2 20.8
      $ region
                             : chr "New england" "New england" "New england" "New
     england" ...
                              : Ord.factor w/ 7 levels "Extremely liberal"<..: 4 2 4
      $ polviews
     3 3 3 5 6 5 3 ...
      $ mass_trans_spend_right: logi FALSE FALSE FALSE FALSE TRUE FALSE ...
[23]: colors <- c("Extremely liberal" = "black",</pre>
                  "Liberal" = "#0e2f44", # Dark blue
                  "Slightly liberal" = "#1d5a6c", # Less dark blue
                  "Moderate" = "#358ca3", # Medium blue
                  "Slghtly conservative" = "#71b9d1", # Light blue
                  "Conservative" = "#a6dcef", # Lighter blue
                  "Extrmly conservative" = "#d0f0fd") # Very light blue
```

```
pp_pol <- ggemmeans(fit_3, terms = "polviews")
print(pp_pol)</pre>
```

Predicted probabilities of mass_trans_spend_right

Adjusted for:

- * age = 48.90
- * sei10 = 46.07

The above plot shows the probability of being satisfied with Mass transportation increases when political views become more conservative, when controlling for age and SES.

```
[25]: pp_sex <- ggemmeans(fit_3, terms = c("sex"))

sex_plot <- ggplot(pp_sex, aes(x = x, y = predicted, color = x)) +
    geom_point(size = 2) +
    geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.2) +
    labs(title = "Effect of Sex on Satisfaction with Mass Transportation",
        x = "Sex", y = "Predicted Probability",
        color = "Sex") +
    theme_minimal()</pre>
```

```
print(pp_sex)
sex_plot
```

Predicted probabilities of mass_trans_spend_right

sex	Predicted	9!	5%	CI
Female	0.55	0.51,	0.	. 58
Male	0.48	0.44,	0.	.51

Adjusted for:

* age = 48.90

* sei10 = 46.07

Effect of Sex on Satisfaction with Mass Transportation

The above plot shows that women are in general more satisfied with Mass transportation than man, when controlling for age and SES.

Predicted probabilities of mass_trans_spend_right

sei10	I	Predicted	I	98	5% CI
0.00	1	0.57		0.52,	0.61
24.10	-	0.54		0.51,	0.57
31.60	-	0.53		0.50,	0.56
39.50	1	0.52		0.49,	0.55
50.40	1	0.51		0.48,	0.53
59.40	-	0.50		0.47,	0.52
70.30	-	0.48		0.45,	0.51
99.90		0.45		0.40,	0.50

Adjusted for:

```
* age = 48.90
```

Not all rows are shown in the output. Use $\operatorname{print}(..., n = \operatorname{Inf})$ to show all rows.

The above plot shows that the satisfaction for Mass transportation decreases with increase in SES, while controlling for age.

9 model assumptions

Is the logistic model a good choice for this data?

```
[34]: bin_res = binned_residuals(fit_2)
print(bin_res)
plot(bin_res)
```

Warning: About 86% of the residuals are inside the error bounds (~95% or higher would be good).

The model does not seem to fit the data well, because of low proportion of data (86% as opposed to the ideal >95%) within the error bound.

60%

50%

Estimated Probability of mass_trans_spend_right

[29]: r2_mcfadden(fit_2)

-0.6 **-**

40%

R2 for Generalized Linear Regression

R2: 0.010 adj. R2: 0.009

The model explains 1% of variance, suggesting a poor fit.

```
[30]: binned_residuals(fit_2, term="sei10")
binned_residuals(fit_2, term="age")

binned_residuals(fit_2, term="sei10") %>% plot(show_dots=TRUE)
binned_residuals(fit_2, term="age") %>% plot(show_dots=TRUE)
```

		xbar	ybar	n	x.lo	x.hi	se	CI_l
		<dbl></dbl>	<dbl $>$	<int $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl
_	conf_int	0.00000	-0.011793983	80	0.0	0.0	0.2550301	-0.12
	$conf_int1$	12.20541	-0.269309119	37	9.0	12.6	0.3845044	-0.43
	$conf_int2$	13.54259	-0.107946954	54	13.2	13.6	0.3174032	-0.24
	$conf_int3$	14.18235	-0.088890080	34	14.0	14.8	0.4006327	-0.26
	$conf_int4$	18.75600	-0.222304869	75	15.8	19.6	0.2713304	-0.33
	$conf_int5$	20.03182	0.218663094	44	19.7	20.1	0.3347770	0.071
	conf_int6	20.67333	-0.277131083	45	20.5	20.7	0.3409253	-0.42
	$conf_int7$	21.39322	0.034109141	59	20.8	21.6	0.3007066	-0.09
	conf_int8	21.83103	0.526726461	29	21.8	22.4	0.3579303	0.368
	conf_int9	23.36981	0.140830987	53	22.9	23.8	0.3116481	0.003
	conf_int10	24.16842	0.236713173	76	24.0	24.2	0.2549783	0.125
	conf_int11	24.77368	0.075699992	38	24.6	25.0	0.3750762	-0.08
	conf_int12	25.20270	-0.095667272	37	25.1	25.4	0.3852950	-0.26
	conf_int13	26.06531	-0.012777085	49	25.7	26.8	0.3316817	-0.15
	conf_int14	27.52115	-0.033649173	52	26.9	28.4	0.3199773	-0.17
	conf_int15	28.80769	0.151224428	52	28.5	29.6	0.3181639	0.011
	conf_int16	31.19630	0.340733568	54	29.9	31.6	0.2970537	0.208
	conf_int17	31.99434	0.033395797	53	31.9	32.0	0.3172123	-0.10
	conf_int18	33.12558	0.113020911	43	32.6	34.4	0.3471490	-0.04
	conf_int19	35.29123	0.110167765	57	34.5	35.8	0.3046176	-0.02
	conf_int20	37.28315	0.013944083	89	36.2	37.6	0.2456516	-0.09
	$conf_int21$	38.03889	0.180317687	18	37.8	38.1	0.5465760	-0.05
	conf_int22	38.28750	-0.012005609	40	38.2	38.3	0.3688487	-0.17
	conf_int23	38.79385	0.181048581	65	38.4	38.8	0.2809402	0.057
A binned_residuals: 51×9	$conf_int24$	39.64516	0.004424233	62	39.0	39.7	0.2954619	-0.12
	$conf_int25$	40.83714	0.608763998	35	39.9	41.1	0.3185876	0.466
	conf_int26	42.80000	0.115359593	66	41.4	43.0	0.2832513	-0.00
	$conf_int27$	43.82353	0.108690330	34	43.4	43.9	0.4030259	-0.06
	conf_int28	45.12558	-0.111853001	43	44.5	45.4	0.3559469	-0.26
	conf_int29	47.07222	0.221015977	54	46.0	49.4	0.3086951	0.085
	conf_int30	51.26071	-0.188652521	56	49.6	52.0	0.3043499	-0.32
	conf_int31	53.47381	-0.049632650	42	52.1	54.6	0.3575811	-0.20
	conf_int32	56.54902	-0.216585677	51	55.1	57.5	0.3218849	-0.35
	conf_int33	58.63704	-0.030175847	54	57.8	59.1	0.3142450	-0.16
	conf_int34	60.06458	-0.170403945	48	59.4	60.5	0.3328321	-0.31
	conf_int35	61.76346	-0.197321220	52	61.2	62.4	0.3191634	-0.33
	conf_int36	63.16182	0.314008214	55	62.6	63.7	0.2977596	0.180
	conf_int37	64.99388	-0.064046370	49	64.2	65.3	0.3333393	-0.21
	conf_int38	67.51429	0.059954361	56	66.1	67.7	0.3106004	-0.07
	conf_int39	68.69123	0.069359045	57	67.8	69.3	0.3024461	-0.06
	conf_int40	70.60250	0.150458050	40	69.4	71.7	0.3658329	-0.01
	conf_int41	72.85472	-0.177222808	53	71.8	73.9	0.3116525	-0.31
	conf_int42	75.71091	0.012589373	55	74.6	76.3	0.3137005	-0.12
	conf_int43	77.54902	-0.056629634	51	76.7	78.3	0.3262849	-0.19
	conf_int44	80.60811	0.228797075	74	79.3	80.9	0.2668726	0.111
	conf_int45	81.63125	-0.396034864	16	81.0	82.4	0.5574244	-0.63
	conf_int46	82.96727	0.039342766	55	82.5	84.0	0.3110093	-0.09
	conf_int47	84.20020	0.252302313	47	84.2	84.2	0.3368999	0.105
	conf_int48	84.98679	-0.332185921	53	84.5	86.5	0.3031489	-0.46
	conf_int49	88.59310	-0.382812848	58	86.6	91.1	0.2790762	-0.50
	conf_int50	96.64146	-0.059629935	41	91.9	99.9	0.3666793	-0.21

		xbar	ybar	n	x.lo	x.hi	se	CI_l
		<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl< td=""></dbl<>
-	conf_int	19.29508	0.252699356	61	18	20	0.2796780	0.130
	conf_int1	21.57971	-0.082685721	69	21	$\frac{20}{22}$	0.2806257	-0.20
	conf_int2	23.00000	0.134071722	47	23	23	0.3249980	-0.20
	conf_int3	24.00000	-0.077045204	32	$\frac{23}{24}$	$\frac{23}{24}$	0.4203514	-0.25
	conf_int4	25.00000	-0.050310988	49	$\frac{24}{25}$	$\frac{24}{25}$	0.3286766	-0.19
	$conf_int5$	26.57778	0.080751232	90	26	$\frac{20}{27}$	0.2402476	-0.02
	conf_int6	28.00000	0.236950312	40	28	28	0.3484210	0.081
	$conf_int7$	29.00000	0.263383294	53	29	29	0.3013667	0.001
	conf_int8	30.00000	-0.260353855	51	30	30	0.3264432	-0.40
	conf_int9	31.00000	-0.122194103	49	31	31	0.3204432 0.3290419	-0.26
	conf_int10	32.00000	0.155177646	49	$\frac{31}{32}$	32	0.3290419 0.3598777	-0.20
	conf_int11	33.00000	0.020793220	48	33	33	0.3356858	-0.12
	conf_int11	34.00000	0.020793220 0.059707321	48	34	34	0.3334760	-0.12
	conf_int12	35.00000	0.039707321 0.141749907	52	35	35	0.3334700 0.3196699	0.002
		36.00000	-0.179486502	46	36	36	0.3190099 0.3425105	-0.32
	conf_int14							
	conf_int15	37.00000	0.004014122	53 42	37	37	0.3177028	-0.13
	conf_int16	38.00000	0.263346697	42	38	38	0.3431834	0.111
	conf_int17	39.52439	-0.023038670	82	39 41	40	0.2541881 0.4204482	-0.13
	conf_int18	41.00000	-0.007929817	31	41	41		-0.19
	conf_int19	42.00000	0.277877666	45	42	42	0.3377048	0.131
	conf_int20	43.00000	0.053218208	44	43	43	0.3524159	-0.10
	conf_int21	44.35821	0.162999851	67	44	45	0.2776105	0.040
	conf_int22	46.00000	-0.178925036	38	46	46	0.3723397	-0.34
A binned_residuals: 50×9	conf_int23	47.00000	-0.089516208	53	47	47	0.3183979	-0.22
	conf_int24	48.00000	-0.132138628	43	48	48	0.3529043	-0.28
	conf_int25	49.56962	0.006727989	79	49	50	0.2592525	-0.10
	conf_int26	51.00000	-0.053819937	44	51	51	0.3467750	-0.20
	conf_int27	52.00000	-0.171101425	56 56	52 50	52 53	0.3096809	-0.30
	conf_int28	53.00000	0.084964907	56	53	53	0.3062914	-0.05
	conf_int29	54.00000	-0.087942228	49	54	54	0.3370405	-0.23
	conf_int30	55.00000	-0.129463967	45	55	55	0.3536815	-0.28
	conf_int31	56.00000	0.009699976	43	56	56	0.3538465	-0.14
	conf_int32	57.00000	0.140458736	67	57	57	0.2812257	0.016
	conf_int33	58.00000	0.122476280	61	58	58	0.2974261	-0.00
	conf_int34	59.00000	0.083529266	55	59	59	0.3093207	-0.05
	conf_int35	60.51579	-0.097434209	95	60	61	0.2375947	-0.20
	conf_int36	62.00000	0.090866282	53	62	62	0.3195544	-0.04
	conf_int37	63.00000	0.036679437	38	63	63	0.3700293	-0.12
	conf_int38	64.00000	-0.009923302	30	64	64	0.4293501	-0.19
	conf_int39	65.00000	0.389914821	39	65	65	0.3533468	0.234
	conf_int40	66.50549	-0.057377378	91	66	67	0.2433667	-0.16
	conf_int41	68.00000	-0.198354956	39	68	68	0.3608844	-0.36
	conf_int42	69.00000	0.058927115	38	69	69	0.3780426	-0.10
	$conf_int 43$	70.45283	-0.016005957	53	70	71	0.3170405	-0.15
	conf_int44	72.45238	-0.093241357	42	72	73	0.3652911	-0.25
	$conf_int45$	75.05000	-0.208274842	60	74	76	0.2960546	-0.33
	$conf_int46$	77.55556	0.145327376	45	77	78	0.3356981	-0.00
	$conf_int47$	79.59 4<u>5</u>9	0.127142699	37	79	80	0.3801455	-0.04
	$conf_int48$	$82.42\overline{373}$	-0.094142705	59	81	84	0.3001413	-0.22
	$conf_int49$	87.09302	0.134854090	43	85	89	0.3459166	-0.02

Binned Residuals

Binned Residuals Points should be within error bounds

Age seems to stick out. It is a better predictor than SES. We may need to add interactions; or add other predictors, like 'polviews', which according to the above model comparisons makes the model significantly better.

```
[31]: emmeans(fit_3, "polviews") %>% pairs() %>% as.data.frame() %>% filter(p.value <_\_ \cdots .05)

emmeans(fit_3, "polviews", type="response") %>% pairs() %>% as.data.frame() %>%\_\_ \cdots filter(p.value < .05)
```

	contrast	estimate	SE	$\mathrm{d}\mathrm{f}$	z.ratio
	<chr></chr>	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>
	Extremely liberal - Moderate	-0.9266262	0.1950664	Inf	-4.750312
	Extremely liberal - Slghtly conservative	-0.8487137	0.2127293	Inf	-3.989642
	Extremely liberal - Conservative	-0.9935486	0.2108369	Inf	-4.712403
A summary_emm: 9×6	Extremely liberal - Extrmly conservative	-1.3402621	0.2792876	Inf	-4.798860
	Liberal - Moderate	-0.7090022	0.1308520	Inf	-5.418353
	Liberal - Slghtly conservative	-0.6310897	0.1555805	Inf	-4.056356
	Liberal - Conservative	-0.7759246	0.1532082	Inf	-5.064512
	Liberal - Extrmly conservative	-1.1226380	0.2392048	Inf	-4.693210
	Slightly liberal - Extrmly conservative	-0.7334002	0.2412625	Inf	-3.039843
	contrast	odds.ratio	SE	$\mathrm{d}\mathrm{f}$	null
	contrast <fct></fct>	odds.ratio <dbl></dbl>	SE $ $	df <dbl></dbl>	null <dbl></dbl>
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	<fct> Extremely liberal / Moderate</fct>	<dbl> 0.3958871</dbl>	<dbl> 0.07722426</dbl>	<dbl></dbl>	<dbl></dbl>
A summary_emm: 9×7	<fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative</fct>	<dbl> 0.3958871 0.4279651</dbl>	<dbl> 0.07722426 0.09104070</dbl>	<dbl> Inf Inf</dbl>	<dbl> 1 1</dbl>
A summary_emm: 9×7	<fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative</fct>	<dbl> 0.3958871 0.4279651 0.3702605</dbl>	<dbl> 0.07722426 0.09104070 0.07806458</dbl>	<dbl> Inf Inf Inf</dbl>	<dbl> 1 1 1 1</dbl>
A summary_emm: 9×7	<fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative Extremely liberal / Extrmly conservative</fct>	<dbl> 0.3958871 0.4279651 0.3702605 0.2617771</dbl>	<dbl> 0.07722426 0.09104070 0.07806458 0.07311109</dbl>	<dbl> Inf Inf Inf Inf Inf</dbl>	<dbl> 1 1 1 1 1</dbl>
A summary_emm: 9×7	<fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative Extremely liberal / Extrmly conservative Liberal / Moderate</fct>	<dbl> 0.3958871 0.4279651 0.3702605 0.2617771 0.4921350</dbl>	<dbl> 0.07722426 0.09104070 0.07806458 0.07311109 0.06439684</dbl>	<dbl> Inf Inf Inf Inf Inf Inf</dbl>	<dbl> 1 1 1 1 1 1 1</dbl>
A summary_emm: 9×7	<pre> <fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative Extremely liberal / Extrmly conservative Liberal / Moderate Liberal / Slghtly conservative </fct></pre>	<dbl> 0.3958871 0.4279651 0.3702605 0.2617771 0.4921350 0.5320118</dbl>	<dbl> 0.07722426 0.09104070 0.07806458 0.07311109 0.06439684 0.08277063</dbl>	<dbl> Inf Inf Inf Inf Inf Inf Inf</dbl>	<dbl> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</dbl>
A summary_emm: 9×7	<pre> <fct> Extremely liberal / Moderate Extremely liberal / Slghtly conservative Extremely liberal / Conservative Extremely liberal / Extrmly conservative Liberal / Moderate Liberal / Slghtly conservative Liberal / Conservative </fct></pre>	<dbl> 0.3958871 0.4279651 0.3702605 0.2617771 0.4921350 0.5320118 0.4602780</dbl>	<dbl> 0.07722426 0.09104070 0.07806458 0.07311109 0.06439684 0.08277063 0.07051835</dbl>	<dbl> Inf Inf Inf Inf Inf Inf Inf Inf Inf</dbl>	<dbl> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</dbl>

Conservatives are 1/0.37 and 1/0.46 times more likely to support mass transit spending compared to extremely liberal and liberal.

Extreme liberals are 0.37, 0.39, and 0.42 times more likely to support spending compared to conservatives, moderates and slight conservatives.

Extrm conservatives are 1/0.32 and 1/0.48 times more likely to support mass spending than liberals and slight liberals.

Liberals are 0.49 and 0.53 times more likely to support spending than moderates and slight conservatives.

10 conclusions

```
[32]: fit_anova = anova(fit_3, test="Chisq")

fit_anova %>%
   kable()
```

The model best predicts satisfaction of Mass transportation when it includes age, sex, ses and polviews and predictors. Specifically, conservatives are happier in general to mass transportation than liberals; females are happier towards mass transportation than males; and people of lower socioeconomic status are happier towards mass transportation than people of higher socioeconomic status.