An Activity Selection Problem

- ▶ We are given *n* activities indexed from 1 to *n*
- Activity i has start time s_i and finish time f_i
- We cannot participate in two activities that overlap in time
- We wish to determine a maximum-cardinality set of non-overlapping activities

Key Observation

- Let *i* be an activity with minimum finish time
- Claim: Some optimal solution includes i
- ▶ To prove this claim, we can use an "exchange argument"
 - Suppose S is an optimal solution that does not include i
 - Let j be the first activity in S
 - ▶ Then (S j) + i is an optimal solution that includes i

A Greedy Algorithm

- ▶ Re-index the activities in nondecreasing order of finish time
- ▶ Initialize I to $\{1, ..., n\}$ and S to \emptyset
- ▶ While $I \neq \emptyset$
 - Let i be a minimum-index activity in I
 - ▶ Add *i* to *S*
 - ▶ Eliminate from *I* all indices *j* such that activities *i* and *j* overlap

A Fast Implementation

- ▶ Re-index the activities in nondecreasing order of finish time
- ▶ Initialize *S* to {1} and *k* to 1
- ► For *i* running from 2 to *n*
 - ▶ If the start time of activity *i* is at least the finish time of activity *k*, then add *i* to *S* and set *k* to *i*

The Fractional Knapsack Problem

- Recall the knapsack problem
 - ► We are given a positive integer knapsack capacity *W* and *n* items indexed from 1 to *n*
 - ▶ Item i has positive integer value v_i and weight w_i
 - We wish to identify a maximum-value set of items with weight at most W
- In the fractional knapsack problem, we are allowed to take a fractional amount of any item

Key Observation

- Let i be an item with maximum "value density" v_i/w_i
- ► Claim: Some optimal solution includes a $z = \min(1, W/w_i)$ fraction of item i
- To prove this claim, we can use an exchange argument
 - ▶ Let S be an optimal solution that includes a fraction z' < z of item i
 - Observe that the weight of S is at least z
 - Modify S by removing (fractional) items not equal to i with total weight z z', and replacing them with z z' units of item i
 - Observe that S remains optimal

A Greedy Algorithm

- ▶ Re-index the items in nonincreasing order of value density
- ► Take as much as possible of item 1, then as much as possible of item 2, et cetera, until the knapsack is full or there are no items left
- ► This algorithm uses $O(n \log n)$ operations due to the sorting (re-indexing) step
- ► Can we do better?

A Faster Implementation

- Recall the BFPRT linear-time selection algorithm
- ▶ It is easy to generalize the BFPRT algorithm to solve the following weighted selection problem in linear time
 - ► Each of the *n* keys in the input has a positive weight *w_i*
 - ▶ If some keys are equal, choose a way to break ties (e.g., by index) to obtain a total ordering of the keys
 - ▶ Let X denote $\sum_{1 \le i \le n} w_i$
 - We are given a desired threshold x, $0 \le x \le X$
 - ► We wish to identify the maximum key *k* such that the total weight of the keys preceding key *k* is less than *x*
- ► We can use a linear-time weighted selection algorithm to solve fractional knapsack in linear time

Scheduling to Minimize Maximum Lateness

- ▶ We are given n tasks indexed from 1 to n
- ► Task i has a positive integer deadline d_i and a positive integer execution requirement e_i
- We wish to (nonpreemptively) schedule all n tasks on a single resource beginning at time 0 in such a way that the maximum "lateness" of any task is minimized
 - A task with deadline d and termination time t is defined to have lateness $\max(0, t d)$
- ▶ We can restrict attention to gap-free schedules, so we are optimizing over *n*! schedules

Key Lemma

- ▶ Suppose *S* is a schedule in which task *j* is executed immediately after task *i* and $d_i \le d_i$
 - ▶ Let ℓ_i (resp., ℓ_i) denote the lateness of task i (resp., j) in S
- ▶ Let S' be the schedule that is the same as S except that the order of execution of tasks i and j is interchanged
 - Let ℓ'_i (resp., ℓ'_i) denote the lateness of task i (resp., j) in S'
- ▶ Lemma: $\ell_j \ge \max(\ell'_i, \ell'_j)$
- ► This lemma implies that the "earliest deadline" rule yields an optimal schedule
 - Ties can be broken arbitrarily

Proof of the Key Lemma

- ▶ Lemma: $\ell_j \ge \max(\ell'_i, \ell'_j)$
 - Assume tasks i and j are executed in the time interval $[s, s + e_i + e_j]$ in S and S'
 - We have $\ell_j = \max(0, A)$ where $A = s + e_i + e_j d_j$, $\ell'_i = \max(0, B)$ where $B = s + e_i + e_j d_i$, and $\ell'_j = \max(0, C)$ where $C = s + e_i d_i$
 - ▶ Observe that A > C
 - ▶ Since $d_i \le d_i$, we have $A \ge B$
 - The lemma follows since

$$\ell_j = \max(0, A) \ge \max(0, B, C) = \max(\ell_i', \ell_j')$$

Single-Source Shortest Paths, Revisited

- ▶ Recall that we can solve the SSSP problem in $O(|E| \cdot |V|)$ using the Bellman-Ford algorithm, which can handle negative edge weights
- ▶ If the edge weights are nonnegative, we can solve the SSSP problem much more rapidly using Dijkstra's algorithm
- For any vertex v, let d(v) denote the shortest path distance from the source s to v
 - ▶ Thus d(s) = 0
 - ▶ We will maintain a "label" ℓ_v for each vertex v in V
 - We initialize ℓ_s to 0 and ℓ_v to ∞ for $v \neq s$

Dijkstra's SSSP Algorithm

- We maintain a subset U of V that is initialized to $\{s\}$
- ▶ In each of |V| 1 iterations, we add a vertex to U
- We maintain the following key invariants
 - ▶ For each vertex u in U, we have $\ell_u = d(u)$
 - ▶ For each vertex v in $V \setminus U$, we have

$$\ell_{v} = \min_{u \in U: (u,v) \in E} d(u) + w(u,v)$$

(or ∞ if the minimization is over an empty set); this is an upper bound on d(v)

► How do we choose which vertex to add to *U* in each iteration, and how do we maintain the key invariants?

A General Iteration

- ▶ Let u be a minimum-label vertex in $V \setminus U$
 - ▶ Observe that any path from s to a vertex in $V \setminus U$ has cost at least ℓ_u ; hence $\ell_u \leq d(u)$
 - ▶ Since $d(u) \le \ell_u$ by the second key invariant, we conclude that $\ell_u = d(u)$
- ▶ We add u to U
- ▶ The first key invariant is maintained since $\ell_u = d(u)$
- lacktriangle To re-establish the second key invariant, we update $\ell_{
 m v}$ to

$$\min(\ell_{v},d(u)+w(u,v))$$

for each vertex v in $V \setminus U$ such that $(u, v) \in E$

Efficient Implementation of Dijkstra's Algorithm

- ightharpoonup We can use a heap to maintain the labels of the vertices in $V\setminus U$
 - ▶ We use O(|V|) INSERT and DELETE-MIN operations
 - ▶ We use O(|E|) DECREASE-KEY operations
- ▶ Using an elementary heap data structure, the algorithm runs in $O(|E| \log |V|)$ time
 - ▶ Using an array to maintain the labels, we obtain an $O(|V|^2)$ bound, which is an improvement for sufficiently dense graphs
- ▶ Using a more sophisticated data structure such as a Fibonacci heap (to be discussed in a later lecture), we obtain a bound of $O(|E| + |V| \log |V|)$

The Minimum Spanning Tree Problem

- ▶ We are given a connected, undirected graph G = (V, E) where each edge e in E has an associated weight w(e) (which may be negative)
- A (graph-theoretic) tree is a graph that is acyclic and connected
- A spanning tree T of G is a subgraph G' = (V, E') of G that is a tree
 - It is convenient to identify T with its edge set
 - It is easy to prove that all spanning trees of G have cardinality $|{\cal V}|-1$
- ▶ The weight of a spanning tree T is defined as $\sum_{e \in T} w(e)$
- ► A minimum spanning tree (MST) of *G* is a spanning tree of *G* of minimum weight

Key Observation

- ▶ Let *e* be a minimum-weight edge in *E*
- ▶ Claim 1: Some MST of G includes e
- ▶ To prove this claim, we can use an exchange argument
 - ▶ Let *T* be an MST of *G* that does not include *e*
 - ▶ If we add e to T we get a unique cycle C
 - For any edge e' on C, T + e e' is a spanning tree of G with weight at most that of T, and hence is an MST of G
- ▶ We can obtain an MST of G by recursively computing an MST T' of the graph G' obtained by "contracting" edge e, and returning T' + e
 - Alternatively, we can get an iterative implementation by repeatedly selecting a minimum-weight edge that does not form a cycle with any subset of the previously selected edges

Kruskal's MST Algorithm

- ▶ Index the edges $e_1, \ldots, e_{|E|}$ in nondecreasing order of weight
- ▶ Initialize T to ∅
- ▶ For *i* running from 1 to |E|
 - ▶ If $T + e_i$ is acyclic, then add e_i to T
- ► Return *T*

Correctness of Kruskal's Algorithm

- ▶ We first claim that the output *T* is a spanning tree of *G*
- Clearly, T is acyclic
- ▶ Suppose (V, T) has connected components G_1, \ldots, G_k where k > 1
- Since G is connected, there is an edge e in E such that the two endpoints of e belong to distinct components G_i and G_j
- ▶ But then T + e is acyclic, a contradiction

Correctness of Kruskal's Algorithm (cont'd)

- ▶ It remains to prove that *T* is an MST of *G*
- ▶ Let T_0 be an MST of G
- ▶ If $T = T_0$, we are done, so assume $T \neq T_0$
 - ▶ Let *i* be the least integer such that $e_i \in T \oplus T_0$
 - ▶ Observe that $e_i \in T \setminus T_0$
 - ▶ Let C denote the unique cycle in $T_0 + e_i$
 - Let e_j denote an edge in $C \cap (T_0 \setminus T)$; thus i < j and $w(e_i) \le w(e_j)$
 - Since T_0 is an MST and $T_1 = T_0 + e_i e_j$ is a spanning tree, we have $w(e_j) \le w(e_i)$
 - ► Thus $w(e_i) = w(e_j)$ and T_1 is an MST with $|T \cap T_1| = |T \cap T_0| + 1$

Correctness of Kruskal's Algorithm (cont'd)

- ▶ If $T_1 \neq T$, we can repeat the previous argument with T_1 playing the role of T_0 to obtain an MST T_2 such that $|T \cap T_2| = |T \cap T_0| + 2$
- ▶ Let k denote $|V| 1 |T \cap T_0|$
- ▶ After k iterations, we obtain a sequence of k+1 MSTs T_0, \ldots, T_k such that $T = T_k$
 - Thus T is an MST
- \blacktriangleright All of the T_i 's have the same distribution of edge weights
 - ► That is, for any given weight z, all of the T_i's contain the same number of edges of weight z
 - Since T_0 is an arbitrary MST of G, we conclude that all MSTs of G have the same distribution of edge weights

Some Other Properties of MSTs

- ▶ If all of the edge weights are distinct, there is a unique MST
 - Follows from the preceding claim that all MSTs have the same distribution of edge weights
- Kruskal's algorithm can generate any MST
 - When indexing the edges, Kruskal's algorithm can break ties arbitrarily
 - ▶ To produce MST *T*, favor edges in *T* over edges not in *T*
- ► The set of MSTs does not change if we replace each weight x with f(x) for some increasing function f
 - ► This transformation preserves the relative order of the weights, which is all that Kruskal's algorithm looks at

Efficient Implementation of Kruskal's Algorithm

- Adding an edge e to T creates a cycle if and only if the two endpoints of e belong to the same connected component of (V, T)
- If T + e is acyclic, so that we add e to T, then the two connected components bridged by e are merged into one
- We can use a "union-find" data structure to manage the vertex sets associated with the connected components of (V, T)

Union-Find

- A union-find data structure maintains a collection of disjoint sets, subject to the following operations
- ▶ Make-Set(x) forms a new singleton set {x}
 - ► To maintain disjointness, we require that *x* does not belong to any of the existing sets in the collection
- ► UNION(x, y) merges the set containing x with the set containing y, where x and y belong to distinct sets
- ► FIND-SET(x) returns the "name" of the set containing x (x is required to belong to some set)
 - ▶ We require that FIND-Set(x) = FIND-Set(y) if and only if x and y belong to the same set
- We will study a fast union-find data structure in a later lecture

A Union-Find Implementation of Kruskal's Algorithm

- At the outset, we perform a MAKE-SET(v) operation for each v in V
 - ▶ Thus our initial sets are the vertex sets of the |V| connected components of (V, \emptyset)
- ▶ For an edge e = (u, v), we check whether T + e contains a cycle by asking whether FIND-SET(u) = FIND-SET(v)
 - ▶ We perform 2|E| FIND-SET operations
- ▶ When we add an edge e = (u, v) to T, we perform a UNION(u, v) operation
 - ▶ We perform |V| 1 UNION operations

