

Meta-analysis in biological and environmental sciences

yDiv/HIGRADE course 23-26 October 2017 Dr. Dylan Craven, Dr. Katharina Gerstner

iDiv is a research centre of the

Day 1	Introduction to meta-analysis						
	What is a meta-analysis?						
	Examples of meta-analyses						
	 Why performing a meta-analysis? Procedure of meta-analysis in a nutshell Searching the literature 						
	Effect sizes and moderators						
	Data extraction/Coding						
Day 2	Meta-analytic models						
	Fixed effects model						
	Random effects model						
	Mixed effects/hierarchical model						
	Quantifying and explaining heterogeneity						
Day 3	Assumptions, biases and confounding effects						
	Variance homogeneity and normality of residuals						
	Publication bias						
	Sensitivity analysis						
	Interpretation and presentation of results						
	Format for meta-analysis report						
	PRISMA flow diagram						
	Forest plots						
Day 4	Methodological issues, advances, and common mistakes						
	Non-independence among effect sizes						
	Non-independence of moderators						
	Missing data						
	Criticism of meta-analysis						

Meta-analysis in biological and environmental sciences

Meta-analytic models

Procedure of meta-analysis

- Transformation of data or test statistics from individual studies into effect sizes
- Combining effect sizes from individual studies into a common estimate of the magnitude of the effect
- 3. Estimating the significance of the overall effect
- Estimating the degree of heterogeneity of the effect between studies
- 5. Exploring the causes of heterogeneity in effect

Considerations when choosing a model

Meta-analysis typically involves

- within-study variation (i.e. sampling variance)
- between-study variation (e.g. due to differential study design or covariables)

Meta-analysis models depend on

- aim of the meta-analysis
- assumptions about the influence of within- and between-study variation on effect size estimates

Why not to use standard statistical procedures on effect size estimates?

- These procedures do not test whether the variability in effect sizes is due solely to sampling error
- The assumption of homogeneity of variances is often violated in meta-data and transformations usually do not help

Approaches to inference in meta-analysis

1. Moment and least squares approaches

- Estimate parameters by matching moments or minimizing the squared residuals
- Less amenable to more complex modelling

2. Maximum likelihood approach

- Choose parameters that maximize the probability of the data
- Allows more complex modelling (e.g. based on effects with non-normal distribution, nested models etc)

3. Bayesian approach

- Makes inferences on the posterior distribution of the model parameters, given the data
- Allows complex and flexible modelling, non-normal distributions, missing data, incorporation of other info in meta-analysis (e.g. expert opinions)
- Computationally demanding

Fixed, random and mixed effect model

Koricheva et al. (2013), Fig. 8.1

Fixed-effects model

Based on the assumption that studies share one common/fixed effect, i.e. no variation between study effects

$$\theta_i = \mu$$

 θ_i observed effect in study i μ overall effect

The only variation in effect sizes is due to sampling error e

$$T_i = \theta_i + e_i$$

 T_i estimated effect size for study i

Alternatively: $\theta_i \sim N(\mu, e_i)$

Random-effects model

In addition to sampling error e_i there is a true random component of variation in effect sizes between studies ε_i

The true effect size is expected to differ among studies:

$$T_i = \theta_i + e_i$$
$$\theta_i = \mu + \varepsilon_i$$

 T_i estimated effect size for study i θ_i observed effect in study i μ overall effect

Alternatively: $\theta_i \sim N(\mu, e_i + \varepsilon_i)$

Fixed, random and mixed effect model

- Fixed-effects model is appropriate if:
 - we can assume that variation between studies is negligible
 - our goal is to estimate the common effect size for studies included in the analysis and not to generalize to other studies/populations
- Random-effects model is appropriate if:
 - we expect the effect size to vary between studies due to different experimental conditions, location etc
 - we want our estimate of the mean effect size to be generalizable to a large group of similar studies

Fixed, random and mixed effect model

a Fixed- / Common Effect Model

b Random-Effects Model

C Multilevel Model

Weighting: a fundamental aspect of metaanalysis

- Different studies are not contributing equal amount of information to a meta-analysis
- In meta-analysis, study-specific effect estimates are weighted by the variance terms included in the model

In a **fixed-effects model**, study-specific estimates are measured by study precision (inverse of sampling variance)

$$w_i = \frac{1}{v_i}$$

In a random-effects model, weighting includes both within- and between-study variance terms

$$w_i = \frac{1}{v_i + \sigma^2}$$

Weight can also incorporate other study-specific measures such as quality scores or phylogenetic information

Why do we need weighting?

Weighted vs. unweighted approach

Meta-analysis in biological and environmental sciences

Quantifying and explaining heterogeneity

Combining effect sizes across studies

The mean effect size

$$\mu = \frac{\sum w_i \theta_i}{\sum w_i}$$

The variance of the mean effect size

$$s_{\mu}^2 = \frac{1}{\sum w_i}$$

The 95% confidence interval around the mean

95%
$$CI = \mu \pm 1.96 \cdot s_{\mu}$$

The mean effect is considered significantly different from 0 if its CI does not include 0 (cf. t-test).

Quantifying heterogeneity

Q-test

Is the observed variance in effect sizes significantly different from that expected by chance (i.e. due to sampling error alone)?

Quantify total heterogeneity

$$Q_T = \sum_{i=1}^n w_i (\theta_i - \mu)^2,$$

 θ_i observed effect in study i w_i weight of study i μ overall effect

$$Q_T \sim X_{n-1}^2$$

If Q_T exceeds the critical value, effect sizes are more heterogeneous than would be expected by chance.

Quantifying heterogeneity

Comments on Q-statistic

- Calculation of Q_T is meaningful only in fixed-effects models where we assume that all studies share the same effects
- In random-effects models, we already account for additional between-study variation in effects, hence Q_T cannot be significant
- Choice between fixed- and random-effects models should not be made based on \mathcal{Q}_T
- Q_T test has low statistical power if the number of studies in metaanalysis is low (<40)

Quantifying heterogeneity

*l*² statistic

*I*² statistics indicates % of heterogeneity that can be attributed to between-study variance

$$I^2 = \frac{Q_T - df}{Q_T} \cdot 100\%$$

Guidelines for interpretation:

- $I^2 = 25\%$... small heterogeneity
- $I^2 = 50\%$... moderate heterogeneity
- $I^2 = 75\%$... large heterogeneity

Explaining heterogeneity

Meta-regression model

- A meta-regression model allows inclusion of study characteristics in the model to explain variability between studies and thereby reduce between-study variance
- Total heterogeneity Q_T in meta-regression model is partitioned into heterogeneity explained by the model Q_M and unexplained heterogeneity Q_E :

$$Q_T = Q_M + Q_E$$

 Mixed effects model: variation within groups is considered random, and between groups - fixed

Explaining heterogeneity

Meta-regression model

Types of moderators

Categorical

- Type of study organisms
- Type of treatment
- Type of experiment
- Type of response variable

Continuous

- Duration of the experiment
- Intensity of treatment
- Study location (latitude or altitude)
- Year of publication

Single categorical moderator => "ANOVA-like" structure Single continuous factor => weighted linear regression model

Partitioning heterogeneity

Simple categorical model

Source of heterogeneity			df
Model (between-group heterogeneity)	Q_M	$Q_{M} = \sum_{m=1}^{M} w_{m} (\mu_{m} - \mu)^{2},$	M-1
Error (within-group heterogeneity)	Q_E	$Q_T = \sum_{m=1}^{M} \sum_{k=1}^{K_m} w_{mk} (\theta_{mk} - \mu_m)^2,$	n-M
Total	Q_T	$Q_T = \sum_{i=1}^n w_i (\theta_i - \mu)^2,$	n-1

M=number of groups, K_m =number of studies in the mth group, n=total number of studies

Partitioning heterogeneity

Linear regression model

Source of heterogeneity			df
Model	Q_M	$Q_{M} = \frac{\beta^{2}}{S_{\beta^{2}}}$ Square of slope of the regression divided by its standard error	1
Error	Q_E	$Q_T - Q_M$	n-2
Total	Q_T	$Q_T = \sum_{i=1}^n w_i (\theta_i - \mu)^2,$	n-1

The R-package `metafor`

- rma returns an object of the class `rma`.
 - This object behaves like a list.
 - > You can use the function names to see available elements.
- Frequently Used Elements

Name	Description
b	Summary effect
ci.lb, ci.ub	lower and upper bound of the 95% confidence interval
vb	variance-covariance of summary effects
fit.stats	model fit statistics log-likelihood, deviance, AIC, BIC, and AICc values
QE, QEp	test statistic for the test of (residual) heterogeneity and corresponding p-value
QM, QMp	test statistic for the heterogeneity explained by the model (called omnibus test of coefficients) and corresponding p-value
12	value of I ²
yi, vi	Vectors of study effect sizes and corresponding variances

The R-package `metafor`

Functions to extract informations from a `rma` object

Name	Description
coef	Summary effect
confint	confidence interval
summary	summary table of meta-analytic model

- Specifying the Model
 - The function can be used to fit fixed- and random/mixed-effects models

method	Description
FE	Fixed-effects model
DL	Random-effects model using DerSimonian-Laird estimator (Methods-of-Moments)
ML	Random-effects model using Maximum-Likelhood estimator
REML	Random-effects model using Restricted maximum-likelihood estimator

 as well as meta-regression models including moderators using the mods=~mods1 + mods2

Visualizing heterogeneity

The Forest Plot

"Seeing the forest through the trees..."

- Plots effect sizes and their precisions
- The most common way to report the results of a meta-analysis
- Can help identify patterns across effects
- Can help spot large variation in effects or possible outliers
- forest is the function to plot forest plots of rma-objects
- Custimizing forest plots
 - order: Sort by "obs", "fit", "prec", etc.
 - slab: Change study labels
 - ilab: Add study information
 - transf: Apply function to effects
 - refline: Location to plot vertical 'reference' line
 - psize: Symbol sizes

EXAMPLE 2.1

- 1. Fitting and comparing a fixed-effects and random-effects model and obtaining heterogeneity statistics in metafor
- 2. Fitting a mixed-effects model (also called hierarchical, multilevel model, meta-regression) and obtaining heterogeneity statistics in metafor.

EXERCISE 2.1

Data

Stewart, G.B. A database on windfarm impacts on birds.

- Determine the percentage each study contributed to the overall effect size variation. Which study contributes the most? How much? Use a barplot to show the percentages graphically.
- 2. Fit a fixed-effects model, a random-effects model
- 3. Obtain the Q-tests, and I² statistics. How can they be interpreted?
- 4. Fit a meta-regression. Determine to what extent the mods1 explains the remaining heterogeneity in the data. How can the estimated coefficients be interpreted? What is the percentage change in I² as compared to the random-effects model?
- 5. Perform multiple comparison analysis for a categorical trait.
- 6. Make pretty forest plots for modelled effects.