复变函数单元测验试题 2005.9

1.
$$-1+3i$$
 的 辐角 及 主 辐角 为
A. $Arg(-1+3i) = \arctan(-3) + (2k+1)\pi$, $\arg(-1+3i) = \arctan(-3) + \pi$;
B. $Arg(-1+3i) = \arctan(-3) + 2k\pi$, $\arg(-1+3i) = \arctan(-3)$;
C. $Arg(-1+3i) = \arctan(-3) + (2k-1)\pi$, $\arg(-1+3i) = \arctan(-3) - \pi$;
D. $Arg(-1+3i) = \arctan(-3) + 2k\pi$, $\arg(-1+3i) = \arctan(-3) + \pi$.

2. 方程 $z^3 + 8 = 0$ 的根 为
A. $z_1 = -2$, $z_2 = \sqrt{3} + i$, $z_3 = \sqrt{3} - i$;
B. $z_1 = -2$, $z_2 = 1 + \sqrt{3}i$, $z_3 = 1 - \sqrt{3}i$;
C. $z_1 = -2$, $z_2 = 1 + \sqrt{3}i$, $z_3 = 1 - \sqrt{3}i$;
D. $z_1 = -2$, $z_2 = -\sqrt{3} + i$, $z_3 = -\sqrt{3} - i$.

3. $|z+i| > |z-i|$ 所表示的平面区域为
A. 下半平面;
B. 上半平面;
B. 上半平面;
C. 以 i 为中心, $|2i|$ 为半径的圆的内部;
D. 以 i 为中心, $|2i|$ 为半径的圆的外部。
4. 设 $f(z) = x^3 - 3xy^2 + i(3x^2y - y^3)$, 则 $f(z) = x^3 - 3y^2 + i(3x^2 - 3y^2)$;
C. 一6 $xy + i(3x^2 - 3y^2)$;
D. 不存在。
5. 函数 $f(z) = x^2 + iy^2$
A. 在整个复平面上解析;

B. 仅在x = y上解析;

C. x = y 上可导在复平面上不解析;

D. 在除x = y的复平面上解析•

A.
$$f(z) = (2x^2 - 2y^2 + x) + i(-4xy - y + 2)$$
;

B.
$$f(z) = (2x^2 - 2y^2 + x) + i(4xy - y + 2)$$
;

C.
$$f(z) = (2x^2 - 2y^2 + x) + i(-4xy + y + 2)$$
;

D.
$$f(z) = (2x^2 - 2y^2 + x) + i(4xy + y + 2)$$
.

7.
$$(-1-i)^{(1+i)}$$
的值为 ()

A.
$$\sqrt{2}e^{\frac{\pi}{4}-2k\pi}e^{i\frac{\pi}{4}+\ln\sqrt{2}\hat{\xi}};$$
 B. $\sqrt{2}e^{-\frac{3\pi}{4}-2k\pi}e^{i\frac{\pi}{4}+\ln\sqrt{2}\hat{\xi}};$

C.
$$\sqrt{2}e^{\frac{3\pi}{4}-2k\pi}e^{i\frac{3\pi}{4}+\ln\sqrt{2}}$$
; D. $\sqrt{2}e^{-\frac{3\pi}{4}-2k\pi}e^{i\frac{3\pi}{4}+\ln\sqrt{2}}$.

8. 积分
$$\frac{z}{(2z+1)(z-2)}dz=$$
 ()

A.
$$\frac{2}{5}\pi i$$
; B. $-\frac{1}{3}\pi i$; C. $\frac{3}{5}\pi i$; D. $\frac{1}{5}\pi i$ •

9. 积分
$$\frac{8\sin z}{(2z-\pi)^3}dz=$$

A.
$$8\pi i$$
; B. $2\pi i$; C. $-\pi i$; D. πi .

10. 读
$$f(z) = \frac{3\xi^2 + 7\xi + 1}{\xi - z} d\xi$$
,则 $f = 1 + i$ = ()

A.
$$2\pi(-6+13i)$$
; B. $13+6i$;

C.
$$\frac{13+6i}{2\pi i}$$
; D. $-\frac{49}{(2-i)^2}$.

答案: A C B B C D C D C A。