MECHANIKA I. (Statika)

Igénybevételek

1.3.1 Lecke. Egyenes tartók igénybevételei

O B U D A I

E GYETEM

CÉLKITŰZÉS

Ennek a fejezetnek a megértésével lehetőség nyílik az egyenes tengelyű tartók igénybevételeinek meghatározására, illetve igénybevételi függvény értékek számítására és ábrázolására az igénybevételi ábrák alkalmazásával.

KAPCSOLÓDÓ IRODALOM

Mechanika I. (Statika) elektronikus jegyzet 12., 13., és 14. fejezet.

Felhasznált irodalom

[1] Kósa Csaba: Nyugvó rendszerek mechanikája. Példatár és útmutató, Budapest, 2009

Ó B U D A Ι

E G Y E T E M

MOTIVÁCIÓ

A tananyag elsajátítása segítséget nyújt az egyenes tartók különböző igénybevételeinek meghatározására. Megismerhetik az igénybevételi függvény felírásának szabályait és az igénybevételi ábrák szerkesztésének módját. Rámutatunk az igénybevételi ábrák közötti összefüggésekre is ebben a fejezetben.

A leggyakrabban alkalmazott kéttámaszú és befogott tartószerkezetek mellett bemutatásra kerül összetett szerkezet is, mint például a Gerber-tartó, mely főleg hídszerkezetek esetében használatos.

Kulcsszavak: igénybevétel, igénybevételi ábrák, igénybevételi függvények, Gerber-tartó

EGYETEM

ELMÉLETI ÁTTEKINTÉS

A tartószerkezeteink vizsgálata során meghatározott reakcióerők ismeretében lehetőség nyílik arra, hogy meghatározzuk a merev test egyes keresztmetszeteit terhelő belső erőket, az *igénybevételeket*.

Az igénybevétel okozza a testek deformációját és esetleges tönkremenetelét is.

A továbbiakban csak statikailag határozott, egyenes tengelyű rudakból kialakított tartószerkezetekkel foglalkozunk. Statikailag határozott megtámasztású az a tartószerkezet, melyre a felírható független statikai egyenletek száma (s) megegyezik az ismeretlenek számával (k). Síkbeli tartószerkezetek esetében s=k=3, míg térbeli tartóknál s=k=6.

EGYETEM

Változó sűrűségű tárgy esetében – amikor a térfogatelemek tömegei különbözőek – a térfogatelemeire ható súlyerők is eltérőek, *súlyerőrendszert* alkotnak. Ugyanakkor a súlyerők okozta gyorsulás változatlan.

A gravitációs gyorsulásvektor (g) mindig a Föld középpontja felé mutat, abszolút értéke egy adott helyen állandó. Magyarországon – s a 45° szélességi körön – ez az érték 9,81 m/s². Vizsgált szerkezeteink a tér igen kis részére terjednek ki, így a gravitációs gyorsulásvektor jó közelítéssel, mindig önmagával párhuzamosan vesszük fel, lefelé irányuló vektorként értelmezzük.

Az igénybevételeket úgy vizsgáljuk, hogy a tartót képzeletben kettévágjuk a vizsgált keresztmetszetben, majd az erre a keresztmetszetre ható bal oldali erők eredőjének meghatározása a feladatunk.

Az ábrán látható a jobb oldali tartórész az átvágási keresztmetszettel és az igénybevételt jelentő bal oldali erők eredőjével. Az eredőt redukáljuk a "K" keresztmetszet súlypontjára (S), majd bontsuk fel egy a keresztmetszet normálvektorával párhuzamos (F_N), és egy arra merőleges (F_T) tangenciális összetevőre.

ÓE-BGK GBI Mechanika 1

Bakos Imre

EGYETEM

O B U D A I E G Y E T E

AZ IGÉNYBEVÉTELEK FAJTÁI:

1., Húzó vagy nyomó igénybevétel

a vizsgált keresztmetszettől balra levő erők eredőjének (normális irányú) összetevője.

$$F_{N} = \underline{F}_{Rb} \cdot \underline{n} = |\underline{F}_{Rb}| \cdot \cos \alpha = \sum_{i=1}^{n} |\underline{F}_{bi}| \cdot \cos \alpha$$

Pozitív az előjele, ha a keresztmetszettől el mutat, tehát húzza azt. Negatív, ha nyomó az igénybevétel.

2., Nyíró (tangenciális) igénybevétel

a vizsgált keresztmetszettől balra levő erők eredőjének a tengelyre merőleges, azaz a keresztmetszet síkjába eső összetevője.

$$F_T = \underline{F}_{Rb} \cdot \underline{m} = |\underline{F}_{Rb}| \cdot \sin \alpha = \sum_{i=1}^{n} |\underline{F}_{bi}| \cdot \sin \alpha$$

M

3., Hajlító igénybevétel

a vizsgált keresztmetszettől balra levő erők eredőjének nyomatéka a keresztmetszet hajlítási tengelyére.

$$\mathbf{M} = \left| \underline{\mathbf{r}}_{Rb} \times \underline{\mathbf{F}}_{Rb} \right| = \mathbf{M}_{b} = \sum_{(b)} \mathbf{M}_{i}$$

Pozitív az előjele, ha az óramutató járásával ellentétesen forgat.

Az előjel szabályt foglalja össze a következő ábra.

Az igénybevételt a tartó valamennyi keresztmetszetében meg kell határoznunk, hogy igénybevételi függvényeket készíthessünk. Legegyszerűbben úgy fogalmazható meg, - egyenes tengelyű tartót feltételezve- hogy a tartószerkezet keresztmetszeteinek helyét megmutató "z" független változóhoz hozzá kell rendelni egy igénybevételfajtát a $0 \le z \le I$ tartományban. Így három igénybevételi függvényt kapunk, az alábbi alakban:

$$F_N = F_N(z)$$

$$F_T = F_T(z)$$

$$M = M(z)$$

Az igénybevételek meghatározásához a koordinátarendszert úgy illesztjük, hogy a tartó keresztmetszetének síkja az "xy" sík legyen, míg hossztengelye a "z" tengellyel legyen megegyező.

Az igénybevételi ábra olyan ábra, melynek minden egyes ordinátája megmutatja, hogy a felette levő keresztmetszetben mekkora a baloldali erők eredőjének $[F_{Rb}; M_{Rb}]_k$ vektorkettőse.

ÓE-BGK GBI Mechanika 1

O B U D A I E G Y E T E

M Bánki

4., Csavaró igénybevétel

Ahol a nyomaték a tengely hosszirányával egybeeső tengelye (z) körül lép fel ott a keresztmetszetet csavarja, azaz csavaró igénybevételt okoz.

Előjelét a következő összefüggés adja:

$$M_{zb} = \underline{M}_{Rb} \cdot \underline{k} = T$$

E

G Y E T E

STATIKAILAG HATÁROZOTT TÖBBTÁMASZÚ TARTÓ (GERBER-TARTÓ)

A Gerber-tartók egyenes tengelyű rudakból állnak, melyeket sorban egymást követően csuklókkal kapcsolnak össze, és támaszokkal a környezethez rögzítik az így kialakított szerkezetet.

A szerkezetet kéttámaszú tartókra lehet bontani:

- fő rész: önmagában is megáll
- befüggesztett rész: önmagukban nem állnak meg, csak a tartó más részeire, vagy az alátámasztásra és a tartó más részeire támaszkodva állnak meg

A fent említett részeket belső csuklók kötik egymáshoz.

M

ÓE-BGK GBI Mechanika 1

A Gerber-tartó jellegzetes felépítése - valamint felbontása főrészre és befüggesztett részre - látható a következő ábrán.

Fontos szabály, hogy az erőjáték vizsgálatát mindig a befüggesztett tartóval kell kezdeni!

ÓE-BGK GBI Mechanika 1

NYITOTT KERETSZERKEZETEK

Az olyan egyenes tengelyű vagy görbetengelyű rudakból álló tartószerkezetet, amelyben a rudak találkozásánál létrejövő csomópontok sarokmerevek, keretszerkezetnek nevezzük. A *sarokmerevség* azt jelenti, hogy a rúdvégek, amelyek a csomópontban találkoznak, külső erő vagy más egyéb hatás következtében egyformán mozdulnak el.

M

ÓE-BGK GBI Mechanika 1

E G Y E T E M

A törttengelyű tartóknál a tartón felveszünk egy kezdőpontot és egy haladási irányt (ajánlatos az óramutató járásával megegyező irányt felvenni haladási irányként). Ezt követően bármely keresztmetszetben az igénybevételeket úgy határozhatjuk meg, hogy a vizsgált helyen a tartót képzeletben kettévágjuk, és a haladási irányba eső oldal mindig a "jobb" oldal. Értelemszerűen az ezzel ellentétes oldal pedig a "bal" oldal.

A sarokmerevség következtében végtelen közel a sarokponthoz a balra és jobbra kijelölt, és egymással szöget bezáró keresztmetszetekben az igénybevételnek azonosnak kell lennie. (Kivétel e szabály alól, ha itt koncentrált erő vagy nyomaték hat a tartóra!)

BÁNKI

A nyitott keretszerkezet K_1 keresztmetszetben a "bal" oldal úgy értelmezhető, hogy a keresztmetszet alatt található, míg a jobb a keresztmetszet felett. A K_2 keresztmetszetben a már ismertek szerint - a kéttámaszú tartóhoz hasonlóan - helyezkedik el a "bal" és a "jobb" oldal. A K_3 keresztmetszetben pedig a "bal" oldal felül van, míg a "jobb" oldal lejjebb helyezkedik el.

ÖSSZEFÜGGÉSEK AZ IGÉNYBEVÉTELI ÁBRÁK KÖZÖTT

Az igénybevételi ábrák vizsgálatakor, közöttük az alábbi

összefüggéseket figyelhetjük meg. A nyomaték igénybevételi fügvénynek (M(z)) a z szerinti deriváltja megegyezik az F_T ellentettjével:

$$\frac{dM}{dz} = -F_T$$

A nyomatéki ábra z szerinti deriváltjával tehát a nyíróerő ábrához jutunk, majd azt újra z szerint deriválva a megoszló terhelést kapjuk eredményül.

$$\frac{d^2M}{dz^2} = -\frac{dF_T}{dz} = q$$

Koncentrált erő esetén a nyíróerő ábra vonalvezetése vízszintes ("z"-től független) az erők hatásvonalán eltolódással, míg a hozzátartozó nyomatéki ábra ferde ("z" első fokú) egyenes alakú az erők hatásvonalán töréspontokkal.

Az az egyenletesen megoszló terhelés nyíró igénybevételi ábrája mindig ferde egyenes ("z"elsőfokú) a terhelés teljes hosszán, míg nyomatéki ábrája másodrendű ("z" másodfokú) parabola függvény. Amennyiben nem egyenletes a megoszló a teher, akkor a nyíróerő ábra másodrendű függvénnyel és a nyomatéki ábra harmadrendű függvénnyel írható le.

UDAI EGYETE

Az összefüggéseket táblázatba foglalva:

Terhelés		Terhelés függvény	Nyíróerő függvény	Nyomatéki függvény
Koncentrált nyomaték	M	-2 fokú (pont)	-1 fokú (ugrás)	0-ad fokú (konstans)
Koncentrált erő	F	-1 fokú (ugrás)	0-ad fokú (konstans)	elsőfokú (egyenes)
Egyenletesen megoszló terhelés	q	0-ad fokú (konstans)	elsőfokú (egyenes)	másodfokú (parabola)
Lineárisan megoszló terhelés	q_0	elsőfokú (egyenes)	másodfokú (parabola)	harmadfokú (parabola)

ÓE-BGK GBI Mechanika 1

1. MINTAPÉLDA

Határozzuk meg az ábrán látható befogott tartó igénybevételeit függvények felírásával és egyszerű felrajzolás módszerével.

q=4 kN/m, M=5 kNm, F=7 kN, I=1 m, $F_{A}=3 \text{kN}$,

 $M_A=4$ kNm

Felbontjuk I. és II. 2 részre a tartót z irányba.

M

ÓE-BGK GBI Mechanika 1

EGYETEM

M BÁNK Igénybevételi egyenletek a I. szakaszra felírva:

0≤z≤1m

Nyíró igénybevételi függvények:

 $F_{T(Z)} = -qz$ $F_{T(Z=0)} = 0 \text{ kN}$ $F_{T(Z=1m)} = -4 \text{ kN/m} \cdot 1 \text{m} = -4 \text{ kN}$

Hajlító igénybevételi függvények:

 $M_{(Z)}=M+-qz^2/2$ $M_{(Z=0)}=5 \text{ kNm}$ $M_{(Z=1m)}=5\text{kNm}+4 \text{ kN/m} \cdot (1m)^2/2=7 \text{ kNm}$

E GYETEM

M BÁNK Igénybevételi egyenletek a II. szakaszra felírva:

1m≤z≤2m

Nyíró igénybevételi függvények:

 $F_{T(Z)}$ = - qz+F $F_{T(Z=1)}$ =- 4kN/m·1m+7kN= 3 kN $F_{T(Z=2m)}$ = - 4kN/m·1m+7kN= 3 kN

Hajlító igénybevételi függvények:

 $M_{(Z)}=M+q \cdot 1m \cdot (z-0.5m) - F(z-1m)$ $M_{(Z=1m)}= 7 \text{ kNm}$ $M_{(Z=2m)}= 4 \text{ kNm}$

Az igénybevételi függvény eredményeinek ábrázolása

ÓE-BGK GBI

Mechanika 1

Az igénybevételi függvény rajzos megoldása A nyíró igénybevételi ábrát balról jobbra haladva a tartót érő erők irányának és nagyságának megfelelően rajzoljuk meg.

A 0 pontból (origóból) kiindulva eljutunk a $-4kN/m\cdot 1m = -4kN-ig.$ A függvény képe ezen szakaszon egy egyenes, mert a távolságtól egyenesen arányosan nő negatív irányba a megoszló terhelésből adódó nyíróerő értéke.

Ezt követően felmérjük az 1m-nél található F=7kN nagyságú koncentrált erőt, ami ugrást eredményez a függvény képében. Így jutunk el a -4kN-tól a 3kN értékig.

M

ÓE-BGK GBI

Mechanika 1

Az 1m-től 3 kN értékről indulva konstans a nyíróerő függvény a II. szakaszon, mert a terhelés ebben a részben nem változik. A függvény csak a 2m-nél zár be 0 értékre az F_A = -3kN értéknek megfelelően a reakció erő irányával megegyezően negatív irányba felmérve.

ÓE-BGK GBI

Mechanika 1

A nyomatéki ábra a koncentrált nyomatéknak megfelelően M=5 kNm-ről indul. Ez a érték növekszik a felette levő nyíróerő függvény területének értékével 1m·4 kN= 4 kNm-nal, ami a 7 kNm-t eredményezi.

A I. szakaszban függvény képe másodfokú parabola, mert a felette levő nyíróerő ábra elsőfokú. Érintő pontja ott van, ahol a nyíróerő függvény metszi a z tengelyt. Jelen esetben ez a 0 pontnál van.

ÓE-BGK GBI

Mechanika 1

BÁNKI

A nyomatéki ábra a II.- es szakaszban lineáris, mert a nyíróerő képe konstans. A nyomatéki árba értéke a z=2m-nél meg kell, hogy egyezzen a reakciónyomaték M_A = 4 kNm értékkel.

1. FELADAT

Határozzuk meg az ábrán látható befogott tartó igénybevételeit függvények felírásával és egyszerű felrajzolás módszerével.

q= 4 kN/m, M=4 kNm, F=6 kN, a=1 m, $F_{\Delta}=2 \text{kN}$, $M_A=4$ kNm

ÓE-BGK GBI

BÁNKI

A feladat megoldása

E G Y E T E M

2. FELADAT

Határozzuk meg az ábrán látható befogott tartó igénybevételeit függvények felírásával!

ÓE-BGK GBI

Mechanika 1

ÓE-BGK GBI

Mechanika 1

EGYETEM

3. FELADAT

Határozzuk meg az ábrán látható befogott tartó igénybevételeit függvények felírásával.

Megoldás:

ÓE-BGK GBI

Mechanika 1

4. FELADAT

Gerber tartó igénybevételének meghatározása

Határozzuk, szerkesszük meg az ábrán látható gerber tartó nyíró és nyomatéki ábráit!

M

Megoldás:

ÓE-BGK GBI

Mechanika 1

O B U D A I

E GYETEM

<u>ÖSSZEGZÉS</u>

A tananyag megértésével lehetőség nyílik az egyenes tartók igénybevételeinek meghatározására.

Gyakoroltuk - konkrét számpéldákon bemutatva - az igénybevételi függvény értékek számítását és ábrázolását. Függvénykapcsolatokra mutattunk rá az különböző igénybevételi ábrák között, de ismertettük a területszámítás elvén alapuló megoldást is.

A gyakorláshoz több gyakorló feladatot is figyelmükbe ajánlottunk.

