

CKineticsDB: An Extensible and FAIR Datahub for Multiscale Modeling in Heterogeneous Catalysis

Siddhant Lambor, Sashank Kasiraju, Dionisios Vlachos

University of Delaware

ACS CATL Conference, Fall 2023

Open-Source Workshops August 16, 2023

J. Chem. Inf. Model. 2023, 63, 14, 4342-4354 https://doi.org/10.1021/acs.jcim.3c00123

CKineticsDB: An Extensible and FAIR Datahub for Multiscale Modeling in Heterogeneous Catalysis

Findable, Accessible, Interoperable, Reusable

- Easily share and integrate data
- Make data interpretable by humans and by machines

1. Wilkinson, M. D. et. al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018

CKineticsDB stores the simulation files involved in multiscale modeling

Chemical Kinetics Database

CKineticsDB top-level components

Database Management System

Frontend Python Software

Graphical User Interface

Command line interface

```
$ ckineticsdb download [OPTIONS]
$ ckineticsdb upload [OPTIONS]
$ ckineticsdb quality [OPTIONS]
```


Current data snapshot

14000+ DFT calculations

Gas Phase

Bulk structures

Adsorbates

Transition states

Catalysts

Pure Metals Ag, Au, Cu, Ir, Ni, Pd, Pt, Rh, Ru

Zeolites H-BEA Metal oxides Al₂O₃, ReO_x, TiO₂, SiO₂, ZrO₂

Reaction Chemistries

Hydrogenolysis, dehydrogenation, hydroformylation, hydrodeoxygenation, C-O bond activation, and acylation; several catalyst facets and active center structures

CKineticsDB data is openly shared online

Available at: https://files.ccei.udel.edu/p/CKineticsDB/data/

<u>Name</u>

Data associated with several publications of Vlachos group pertaining to microkinetic modeling

Demo containing only one dataset to test software setup

MS Excel and JSON files containing metadata of the complete dataset available above

CKineticsDB Data Workflow

CKineticsDB Data Workflow

CKineticsDB Data Workflow

Download CKineticsDB as a desktop application separate from the data

University of Delaware HPC

https://files.ccei.udel.edu/p/CKineticsDB/

Users don't need to -

- Learn MongoDB
- Run a local database server
- Worry about data persistence

Users can -

- Connect CKineticsDB to any different database, local or remote
- Use CKineticsDB with their local data

CKineticsDB Software Components

Available at: https://files.ccei.udel.edu/p/CKineticsDB/sw/

Name

Get access credentials by emailing to

vkineticslab@udel.edu

Application.zip:

- Desktop application executable
- MongoDB server credentials file
- Template files and readMe file

-<u>ckineticsdb-database.tar:</u> Pre-configured docker image

Getting Started – Setting up the database

Detailed documentation at: https://github.com/VlachosGroup/ckineticsdb-documentation

- 1. Install Docker Desktop (from Docker website)
- 2.1. Download and load the Docker image:

Load the image: > docker load --input <path_to>/ckineticsdb-database.tar

2.2. Run a docker container and specify the data snapshot of choice to be injected

Options to inject different data snapshots – Default option

Running the container with no specific options will download and inject the demo data snapshot by default

>>> docker run --name ckineticsdb-db -p 27017:27017 ckineticsdb-database:latest

Add a URL: Download and inject a specific data snapshot from the website

Add a local path: Inject a downloaded data snapshot locally

Syntax for each option is available in documentation

Demo

- Graphical user interface
- Parameters to browse and make selections in the GUI for downloading data

Select the directory of calculations to be tested

DFT data quality assessment

Identify the type of Relaxation, Dimer, NEB, etc. calculation Run tests based on the Convergence, KPOINTS, more calculation Provide results and a dataset summary Assessment results Missing files (PDF) (MS Excel)

DFT Data Quality Tests and Output

Software	Calculation	Quality Test(s)
VASP	Ionic Relaxation	Convergence, Kpoints, Encut
VASP	Dimer	Convergence, Curvature, Kpoints, Encut
VASP	(Climbing - /) Nudged Elastic Band (inclusive of all images)	Convergence of the highest energy image, Kpoints, Encut
VASP	Individual NEB Image	Convergence
VASP	Frequency Analysis	Frequencies assessment, Kpoints, Encut
Gaussian	Optimization	Convergence
Gaussian	Frequency Analysis	Frequencies assessment

Summary of a complete dataset's assessment

Summary:

Total Number of Calculations: 239

Passed all tests: 168

Need to be reviewed: 71

Related Inconsistencies:

Ionic step information not available: 4

More than one imaginary frequencies: 10

No frequencies found in vibrational calculation : 56

No POSCAR file: 1

Demo

Data Quality Assessment Results

Conditions to upload a new dataset to CKineticsDB

Organize the files as per the Data
Organization Policy

Run data quality assessment and include results

Complete the readMe.xlsx file with materials information, software information, and other required details

Upload

Value in data management for multiscale modeling in catalysis

Organize Data

Extract Information

Accelerate applications

- Reaction mechanisms, microkinetic models
- Kinetic and thermochemical parameters
- Scripts to process DFT output; data from NIST
- DFT energies and frequencies

- Input settings
- Catalyst specifications

- Minimize DFT simulations
- Facilitate thermodynamic and kinetic studies
- Utilize chemically similar data for new mechanisms
- Develop multiscale software

Collaboration and Future Development

- Update CKineticsDB for common needs of groups
- Cover more simulation software
- Build new data-based features
- Guide Onboarding

Acknowledgements CKineticsDB

Dr. Jeffrey Frey, HPC Kelly Walker, Logo

Department of Energy

Acknowledgements Virtual Kinetics Lab

Graphic Design
Kelly Walker
Jaynell Kelly

HPC supportDr. Jeffrey Frey

Developers

Dr. Jonathan Lym

Dr. Bharat Medasani

Dr. Himaghna Bhattacharjee

Dr. Gerhard Wittreich

Dr. Maximilian Cohen

Dr. Tai Ying Chen

Dr. Joshua Lansford

Siddhant Lambor

Jackson Burns

Dr. Geun Ho Gu

Dr. Xue Zong

Dr. Yifan Wang

Dr. Udit Gupta

CKineticsDB Paper: https://doi.org/10.1021/acs.jcim.3c00123

Thank you

Documentation: https://github.com/VlachosGroup/ckineticsdb-documentation

