Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 2

Eva Reszka, Mateusz Roszkowski, Dominika Zając

Spis treści

1.	Proj	${ m ekt}$
	1.1.	Sprawdzenie poprawności punktu pracy
		Wyznaczenie odpowiedzi skokowych procesu
	1.3.	Algorytmy PID i DMC
	1.4.	Rozmyty algorytm PID
	1.5.	Rozmyty algorytm DMC
2.	Ćwie	zenie laboratoryjne
	2.1.	Przygotowanie do wykonania ćwiczenia
	2.2.	Mechanizm zabezpieczający przed uszkodzeniem
	2.3.	Regulator dwupętlowy PID
	2.4.	Dobór parametrów PID
	2.5.	Dwuwymiarowy regulator DMC
	2.6.	Wyświetlanie danych na panelu operatora

1. Projekt

1.1. Sprawdzenie poprawności punktu pracy

Implementacja zadania znajduje się w pliku zad1_2.m.

Punkt pracy równy jest $U_{pp}=0,\,Y_{pp}=0,\,$ co zostało przedstawione na wykresach 1.1 i 1.2.

Rys. 1.1. Wejście układu w punkcie pracy

Rys. 1.2. Wyjście układu w punkcie pracy

1.2. Wyznaczenie odpowiedzi skokowych procesu

Układ został pobudzony sygnałami o wartościach U = [-0, 8; -0, 3; 0, 2; 0, 6; 1, 0].

Otrzymane zostały w ten sposób odpowiedzi skokowe:

Na wykresie?? widoczna jest charakterystyka statyczna obiektu.

Właściwości dynamiczne oraz statyczne nie są liniowe. Do charakterystyki statycznej nie może zostać dopasowana prosta.

1.3. Algorytmy PID i DMC

Obiekt został poddany regulacji za pomocą algorytmów PID i DMC z Projektu 2.

1. Projekt 3

Jakość sterowania zależy od wartości Y_{zad} . Różni się intensywność oscylacji oraz wartość przeregulowania. Wynika to z nieliniowości charakterystyki statycznej.

Wskaźnik jakości wyniosi E = 388.88.

Wskaźnik jakości wyniosi E=515.34. Jego wartość jest większa, niż dla PID. Regulator DMC sprawdził się gorzej od pierwszego algorytmu. Wstępuje znacznie większe przeregulowanie oraz oscylacje. Dla $Y_{zad}=4.5$ sygnał wyjściowy nie osiąga tej wartości.

1.4. Rozmyty algorytm PID

1.5. Rozmyty algorytm DMC

Następnie zaimplementowano algorytm rozmytego regulatora DMC dla różnej liczby regulatorów lokalnych (2, 3, 4 lub 5). Dla każdego regulatora z inną liczbą regulatorów lokalnych dobrano parametry oddzielnie.

Zestaw liczb s_1, s_2, s_3 obliczany jest oddzielnie dla każdego z regulatorów lokalnych poprzez wykorzystanie funkcji licz_s.m.

Przyjmuje ona jako parametry wartości u1 i u2. Parametr u1 przekazywany jest następnie funkcji wynik_y, która przeprowadza symulację dla wartości sterowania u=u1 i zwraca ostatnią wartość odpowiedzi skokową y_temp .

Wartość ta została następnie wykorzystana do przeprowadzenia kolejnej symulacji, dla skoku wartości sterowania z u1 do u2. Otrzymana odpowiedź skokowa została przeskalowana, w celu wyliczenia zestawu liczb s_1, s_2, s_3 Przekształcenie to przebiegło zgodnie ze wzorem 1.1, gdzie $Y_{pp} = y_temp$. Zamiast Y_i użyto Y_{i+10} , ponieważ zmiana wartości sterowania z u1 na u2 wystąpiła w chwili k=10.

$$S_i = \frac{Y_{i+10} - Y_{pp}}{\Delta U}, i = 1, 2, 3, \dots$$
 (1.1)

1. Projekt 4

Po otrzymaniu przekształconych odpowiedzi skokowych dla każdego z regulatorów lokalnych przystąpiono do liczenia macierzy $M, M^P i K$. Wartości horyzontów dynamiki D zostały dobrane oddzielnie dla każdego z regulatorów. Dla ułatwienia przyjęto, że $N=N_u=D$. $\lambda=1$ w przypadku każdego regulatora.

Współczynniki przynależności (wagi) każdego z regulatorów obliczone zostały w funkcji rozklad. Wykorzystana została funkcja przynależności dzwonowej gbellmf.

Regulator przetestowano dla kilku skoków wartości zadanej y_{zad} . Przebiegi dla różnej ilości regulatorów lokalnych, przy wartości parametru $\lambda=1$ przedstawiono poniżej.

Dla dwóch regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=227,3882.

Dla trzech regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=203,6199.

Dla czterech regulatorów lokalnych wskaźnik jakości regulacji wyniósł E=844,2965

2. Ćwiczenie laboratoryjne

Podczas tego zadania laboratoryjnego wykorzystano:

- grzałki G1 i G2 (sygnał sterujący U),
- wentylatory W1 i W2 (wartość zadana Y_{zad}),
- czujniki temperatury T1 i T3 (sygnał wyjściowy Y)

2.1. Przygotowanie do wykonania ćwiczenia

Przed rozpoczęciem pomiarów sprawdzono możliwość sterowania i pomiaru w komunikacji ze stanowiskiem. Punkty pracy grzałek G1 i G2 dla zespołu obliczone zostały wg. wzoru 2.1:

$$G1 = 25 + Z G2 = 30 + Z \tag{2.1}$$

gdzie Z to numer zespołu %5, zatem dla grupy Z02 punkt pracy wynosi:

$$G1 = 25 + 2\%5 = 25 + 2 = 27$$
 $G2 = 30 + 2\%5 = 30 + 2 = 32$ (2.2)

Następnie określono wartości pomiarów temperatur T1 i T3 dla obliczonych punktów pracy. W tym celu moc wentylatorów W1 i W2 ustawiono na 50% za pomocą rejestrów:

```
D110 := 500; // W1
D111 := 500; // W2
```

Moc wentylatorów, zarówno jak i grzałek przesyłana jest w postaci wartości 10 razy większych niż oczekiwane (np. 50% reprezentowane jest przez wartość 500). Odczytywana temperatura jest za to pomnożona razy 100 (np. 25°C reprezentowane jest przez wartość 2500)

Wartości mocy grzałki zadawane są poprzez rejestry:

```
D114 := 270; // G1
D115 := 320; // G2
```

Wartość G1 została ustawiona na 27%, a G2 na wartość 32%.

Temperatury T1 i T3 odczytano korzystając odpowiednio z rejestrów

```
T_1 := D100;
T_3 := D102;
```

Przy G1=27 i G2=32 temperatura T1 ustabilizowała się na wartości ${\bf 20,37^{\circ}C}$, a temperatura T3 na wartości ${\bf 21,00~^{\circ}C}$

2.2. Mechanizm zabezpieczający przed uszkodzeniem

Zaimplementowane zostało zabezpieczenie przed uszkodzeniem stanowiska w przypadku uszkodzenia czujnika temperatury. Sytuacja taka może doprowadzić do wzrostu temperatury stanowiska do niebezpiecznego stopnia, zatem, gdy czujnik wskaże temperaturę przekraczającą 250 °C, grzałka znajdująca się przy tym czujniku zostaje wyłączona. Implementacja zabezpieczenia znajduje się poniżej. Uwzględnia ona również ograniczenia sterowania grzałkami (minimalnie 0% i maksymalnie 100% mocy).

```
F (T_3 > 25000.0) THEN

U1_PID2 := 0;
ELSIF(U1_PID2 > 1000) THEN

U1_PID2 := 1000;
ELSIF(U1_PID2 < 1) THEN

U1_PID2 := 0;
END_IF;
```

2.3. Regulator dwupętlowy PID

Do realizacji zadania wykorzystano podstawowy plik do komunikacji ze stanowiskiem grzejąco - chłodzącym PUST_PLC.gx3.

Zaimplementowany został algorytm dwupętlowego regulatora PID.

```
//PID 1
Y_zad1 := 3000; // 25*C
T_1 := D100; // (x100)
G_1 := D114; // (x10)
E2_PID1 := E1_PID1;
E1_PID1 := E_PID1;
E_{PID1} := (Y_{zad1} - T_{1})/100;
r0_PID1:= 15.9769734;
r1_PID1 := -14.58552;
r2_{PID1} := 0.1875;
delta_U_PID1 := r2_PID1 * E2_PID1 + r1_PID1 * E1_PID1 + r0_PID1 * E_PID1;
U1_PID1 := delta_U_PID1 + U1_PID1;
// ograniczenia
F (T_1 > 25000.0) THEN
        U1_PID1 := 0;
        ELSIF(U1_PID1 > 1000) THEN
        U1_PID1 := 1000;
        ELSIF(U1_PID1 < 1) THEN
        U1_PID1 := 0;
END_IF;
// send U1
D114 := REAL_TO_INT(U1_PID1); // G1;
u_k := D114; // do wysylania wykresow G1 w SocketComm
D110 := 500; // W1
D111 := 500; // W2
```

```
y_k := D100; // do wysylania wykresow T1 w SocketComm
y_k2 := D102; // do wysylania wykresow T3 w SocketComm
Y_zad2 := 3000; // 30*C
T_3 := D102; // (x100)
G_2 := D115; // (x10)
E2_PID2 := E1_PID2;
E1_PID2 := E_PID2;
E_{PID2} := (Y_{zad2} - T_{3})/100;
// r0_PID2, r1_PID2, r2_PID2 mozemy obliczyc w MATLABIE
r0_PID2 := 15.9769734;
r1_PID2 := -14.58552;
r2_{PID2} := 0.1875;
delta_U_PID2 := r2_PID2 * E2_PID2 + r1_PID2 * E1_PID2 + r0_PID2 * E_PID2;
U1_PID2 := delta_U_PID2 + U1_PID2;
// ograniczenia
IF (T_3 > 25000.0) THEN
       U1_PID2 := 0;
       ELSIF(U1_PID2 > 1000) THEN
       U1_PID2 := 1000;
       ELSIF(U1_PID2 < 1) THEN
       U1_PID2 := 0;
END_IF;
D115 := REAL_TO_INT(U1_PID2); // do wysylania wykresow G2 w SocketComm
u_k2 := D115;
D110 := 500; // W1
D111 := 500; // W2
D117 := REAL_TO_INT(Y_zad1);
D118 := REAL_TO_INT(Y_zad2);
y_k := D100; // do wysylania wykresow T1 w SocketComm
y_k2 := D102; // do wysylania wykresow T3 w SocketComm
// wizualizacja
D117 := REAL_TO_INT(Y_zad1);
D118 := REAL_TO_INT(Y_zad2);
y_k := D100;
y_k2 := D102;
// automat stanow
IF (T_1 < 3000) THEN
       D121 := 1;
       ELSIF (T_1 = 2500) THEN
       D121 := 2;
```

```
ELSIF (T_1 > 2500) THEN
D121 := 3;

END_IF;

IF (T_3 < 3000) THEN
D122 := 1;
ELSIF (T_3 = 2500) THEN
D122 := 2;
ELSIF (T_3 > 2500) THEN
D122 := 3;

END_IF;
```

2.4. Dobór parametrów PID

Parametry regulatorów obliczane były w MatLabie, w pliku PID_wyliczanie_parametrow.m. W obu regulatorach stosowano te same nastawy.

Zespół zdecydował rozpoczęcie dobierania parametrów od przetestowania parametrów regulatora PID z bloku 3 ($K=0,132199, T_i=3,637091; T_d=0,107170$). Wyniki przedstawione zostały na Rys.??.

Jak widać na Rys.??, nastawy te powodowały znaczące oscylacje, powodujące amplitudę zmian temperatury T1 o wartości około 9,18 °C, oraz 1,33 °C w przypadku temperatury T3. Należy zaznaczyć, że wartość zadana dla obydwu temperatur wynosiła wówczas 25 °C. Przy tych nastawach temperatura T3 nie dosięgała nawet tej wartości, a w przypadku temperatury T1 występowało znaczące przesterowanie. Na wykresie widoczne są również chwilowe zaniki sterowania, reprezentowane jego spadkiem do wartości około 0. Nie wynikały one ze sposobu implementacji regulatora - zakładamy, że źródłem były chwilowe problemy komunikacyjne między sterownikiem a stanowiskiem grzejąco-chłodzącym.

Jako, że powyższy wynik był tak niezadowalający, a ograniczenie czasowe laboratoriów i długi czas przeprowadzania symulacji ograniczał zespołowi możliwość zrealizowania prawidłowego strojenia metodą inżynierską, zdecydowano wypróbować skrajnie inne nastawy o wartościach $K=15, T_i=38; T_d=0,05$. Znacznie zwiększono wzmocnienie K, jak i człon całkujący T_i , aby umożliwić temperaturze T3 dosięgnięcie wartości zadanej. Przebiegi dla tych nastaw przedstawione zostały na Rys.??. Należy zaznaczyć, że poniższe testy przeprowadzane były innego dnia i wartość zadana dla obu temperatur została zmieniona na 30 °C, przy kolejnych testach powrócono jednak do wartości 25 °C.

Taki dobór nastaw spowodował, że obie temperatury zaczęły oscylować wokół wartości zadanej, jednak amplitudy ich zmian wzrosły.

Aby zmniejszyć oscylacje, zmniejszono wartości wzmocnienia K i członu całkującego T_i , przy jednoczesnym zwiększeniu wartości członu różniczkującego T_d , który miał za zadanie wypłaszczyć oscylacje. Następnie przetestowane nastawy to zatem: $K=13, 8, T_i=35; T_d=8,75$. Przebiegi przedstawiono na Rys. ?? .

Oscylacje znacząco się zmniejszyły - dla obu temperatur wynosiły około 4 °C. Były to najlepsze wyniki, jakie udało się osiągnąć zespołowi w czasie trwania laboratorium.

Jeśli zespół miałby więcej czasu na dostrajanie regulatora, najprawdopodobniej jeszcze bardziej zostałaby zmniejszona wartość wzmocnienia K i członu całkującego T_i , które powodowały widoczne na wykresach przesterowania i oscylacje. Zwiększona zostałby za to wartość członu różniczkującego T_d , który widocznie przyczynił się do spadku poziomu oscylacji.

Najbardziej optymalnym podejściem byłoby zastosowanie metody inżynierskiej - znalezienie wzmocnienia krytycznego i obliczanie parametrów na jego podstawie, a następne ich dostrajanie, jednak ograniczenia czasowe wobec ilości zadań do wykonania nie pozwoliłyby zespołowi na przeprowadzenie jej w całości.

2.5. Dwuwymiarowy regulator DMC

2.6. Wyświetlanie danych na panelu operatora

Stworzony został interfejs graficzny na podstawie przykładowego pliku $\mathtt{sample_GOT.GTX}$. Implementacja interfejsu, jak i automatu stanów opisanego w następnej sekcji znajduje się w pliku $\mathtt{wizualizacja.GTX}$. Interfejs zaprojektowany został w programie GT Designer3 (Rys. 2.1). W projekcie uwzględniono wartości mierzone, zadane oraz sterowania. W celu zaimplementowania logiki wyświetlania się wartości na panelu stworzono dwa nowe rejestry (D117 i D118) przetrzymujące wartości zadane. Następnie podpięto odpowiednie rejestry do odpowiednich słupków w wizualizacji (G1 - D114, G2 - D115, $T1_{zad}$ - D117, $T3_{zad}$ - D118, oraz T1 - D100 i T3 - D102).

Rys. 2.1. Projekt wizualizacji w programie GT Designer3

```
// wizualizacja
D117 := REAL_TO_INT(Y_zad1);
D118 := REAL_TO_INT(Y_zad2);
y_k := D100;
y_k2 := D102;
// automat stanow
IF (T_1 < 3000) THEN
D121 := 1;
ELSIF (T_1 = 2500) THEN
D121 := 2;
ELSIF (T_1 > 2500) THEN
D121 := 3;
END_IF;
IF (T_3 < 3000) THEN
D122 := 1;
ELSIF (T_3 = 2500) THEN
```

```
D122 := 2;

ELSIF (T_3 > 2500) THEN

D122 := 3;

END_IF;
```


Rys. 2.2. Wizualizacja na panelu operatora