

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

REQUEST FOR FILING REISSUE PATENT APPLICATION

The Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

This is a request for a reissue patent application of:

Robert H. Reid, John E. van Hamont, William R. Brown, Inventor:

Edgar C.Boedeker, Curt Thies

Title: MICROPARTICLE CARRIERS OF MAXIMAL UPTAKE CAPACITY

BY BOTH M CELLS AND NON-M CELLS

Patent No: 5,693,343 **Issue Date:** December 2, 1997

Serial No.: 08/242,960 Filing Date: May 16, 1994

Date of this reissue application filing: November 30, 1999

Attorney docket no: Army 103

This application for reissue includes:

Specification: 15 pages (only spec. and claims)

Abstract: 1 page(s)

Drawings:* sheet(s) per set: _1_ set(s) informal (Figs. 1-19);

set(s) formal of size A4 13"

*see separate letter requesting transfer of the drawings from the patent file

Declaration

Assent of Assignee

Request for Title Search Verified Statement establishing small entity status

Power of Attorney (included in Declaration)

Also attached:

(1) Form PTO-1449

(2) copies of references cited

(3) Letter Requesting Transfer of Drawings from the Patent File

Priority is claimed under 37 CFR 1.78(a)(3) based on: Ser. No. 867,301, filed April 10, 1992, Pat. No. 5,417,986 which is a continuation in part of Ser. No. 805,721, filed Nov. 21, 1991, abandoned, which is a continuation in part of Ser. No 690,485, filed April 24, 1991, abandoned, which is a continuation in part of Ser. No. 521,945, filed May 11, 1990, abandoned, which is a continuation in part of Ser. No. 493,597, filed March 15, 1990, abandoned, which is a continuation in part of Ser. No. 590,308, filed March 16, 1984.

Fee Calculation:

Basic Filing For Claim fees:	ee (\$76	0/\$380)		\$ 760
Total effective	Claims in reissue app.	Claims in orig. pater	<u>nt</u>	
claims	(A) 24	(B) 7	(A) minus [larger of (B) or 20] = $_{4}$ x \$18/\$9=	\$72.00
Total indep. claims	(D) 7	(E) 1	(D) minus (E) $= _6_ x $78/$39=$	= \$468.00
Title Search Fe Petition Fee pe Other Fees:	` ,	for Rule 4	47 Petition (\$130.00)	\$ \$ \$

TOTAL FEES

\$1300.00

CHARGE STATEMENT: The Commissioner is hereby authorized to charge the above fee and any fee specifically authorized hereafter, or any missing or insufficient fee(s) filed, or asserted to be filed, or which should have been filed herewith or concerning any paper filed hereafter, and which may be required under Rules 16-18 (missing or insufficient fee only) now or hereafter relative to this application and the resulting Official document under Rule 20, or credit any overpayment, to our Deposit Account No. 21-0380, for which purpose a duplicate copy of this sheet is attached.

Submitted by:

For: Charles H. Harris, Reg. No. 34,616

Attorney for Applicant

U.S. Army Medical Research and Materiel

Command, Attn: MCMR-JA Fort Detrick, Maryland 21702-5012

Caroline M. Nash Reg. No. 36, 329 Nash & Titus, LLC 3415 Brookeville Road Suite 1000 Brookeville, Maryland 20833 Tel. No. (301) 924-9500 Fax. No. (301) 924-5883

NOTE: File in duplicate with post card receipt

rention: MICROPARTICLE CARRIERS OF M N-M CELLS I hereby certify that this Request for Filing Reis is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The	(Identify type of correspondence) I Service "Express Mail Post Office to Add	dressee" service unde
vention: MICROPARTICLE CARRIERS OF MON-M CELLS I hereby certify that this Request for Filing Reis is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The on November 30, 1999	SSUE Patent Application (Identify type of correspondence) I Service "Express Mail Post Office to Add	dressee" service unde
I hereby certify that this Request for Filing Reis is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The on November 30, 1999	ssue Patent Application (Identify type of correspondence) I Service "Express Mail Post Office to Add	dressee" service unde
is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The onNovember 30, 1999	(Identify type of correspondence) I Service "Express Mail Post Office to Add	
is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The onNovember 30, 1999	(Identify type of correspondence) I Service "Express Mail Post Office to Add	
is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The on	(Identify type of correspondence) I Service "Express Mail Post Office to Add	
is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The onNovember 30, 1999	(Identify type of correspondence) I Service "Express Mail Post Office to Add	
is being deposited with the United States Postal 37 CFR 1.10 in an envelope addressed to: The onNovember 30, 1999	(Identify type of correspondence) I Service "Express Mail Post Office to Add	
37 CFR 1.10 in an envelope addressed to: The onNovember 30, 1999	I Service "Express Mail Post Office to Add	
on November 30, 1999	Assistant Commissioner for Patents, W	ashington, D.C. 20231
on November 30, 1999	i	(aomington, 5.5. 2020
	i	
	Caroline Nash	
	(Typed or Printed Name of Person Mailing	g Correspondence)
	Caroline/	Vash
	(Signature of Person Mailing Corre	espondence)
	EJ843694054US	
	("Express Mail" Mailing Label I	Number)
	1	
Note: Each paper m	nust have its own certificate of mailing.	

IN RE THE

APPLICATION OF

ROBERT H. REID JOHN E. VAN HAMONT WILLIAM R. BROWN EGAR C. BOEDEKER CURT THIES

FOR REISSUE LETTERS PATENT OF
UNITED STATES PATENT NO. 5,693,343
FOR
"MICROPARTICLE CARRIERS OF MAXIMAL UPTAKE CAPACITY
BY BOTH M CELLS AND NON-M CELLS"

1

MICROPARTICLE CARRIERS OF MAXIMAL UPTAKE CAPACITY BY BOTH M CELLS AND NON-M CELLS

L CROSS REFERENCE

This application is a continuation-in-part of U.S. patent application Ser. No. 07/867.301 filed Apr. 10. 1992. now U.S. Pat. No. 5.417.986, which in turn is a continuation-in-part of U.S. patent application Ser. No. 07/805.721. filed Nov. 21, 1991, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 07/690.485 filed Apr. 24, 1991, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 07/521.945 filed May 11, 1990, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 07/493.597 filed Mar. 15, 1990, now abandoned, which in turn is a continuation-in-part of U.S. patent application Ser. No. 06/590.308 filed Mar. 16, 1984, pending.

IL GOVERNMENT INTEREST

The invention described herein may be manufactured, licensed and used by or for governmental purposes without the payment of any royaltes to us thereon.

The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawing (s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

IIL FIELD OF THE INVENTION

The invention pertains in part to a method for preparing particle size distributions of microparticles of biodegradable polymers having the capacity to be maximally absorbed in both M cells and non-M cells in the Peyer's patches (PP) follicle-associated epithelium (FAE) and the villous epithelium region so that when the microparticles are used as carries of immunogens for oral immunization, the maximal conditions for uptake by gut lymphoid tissues will absorb any antigens so as to induce production of antibodies against diseases caused by the antigen or other enteropathogenic organisms, when using antigens encapsulated within biodegradable-biocompatible microspheres prepared by the process of the invention.

IV. BACKGROUND OF THE INVENTION

Infectious agents generally have their first contact with host organisms at a mucosal surface. Therefore, mucosal protective immune mechanisms are of key importance in preventing these agents form colonizing or penetrating the mucosal surface. It is apparent from past studies that a protective mucosal immune response can best be obtained by introduction of the antigen at the mucosal surface; however, parenteral immunization has not been an effective method to induce mucosal immunity. Antigen taken up by the gut-associated lymphoid tissue (GALT), primarily by the Peyer's patches stimulates T helper cells (T_H) to assist in IgA B cell responses or stimulates T suppressor cells (T_{KS}) to mediate the unresponsiveness of oral tolerance.

While particulate antigen appears to shift the responses towards the (T_H) , soluble antigens favor a response by the (T_{KS}) .

Although studies have demonstrated that oral immunization does induce an intestinal mucosal immune response. large doses of antigen are generally required to achieve sufficient local concentrations in the Peyer's patches. Further, unprotected protein antigens tend to be degraded or they complex with secretory IgA in the intestinal lumen. One approach to overcoming the aforementioned problems is to homogeneously disperse the antigen of interest within the polymeric matrix of biodegradable, biocompatible microspheres that are specifically taken up by GALT.

5 Eldridge, et al. have used a murine model to show that orally-administered 1-10 micrometer microspheres consisting of polymerized lactide and glycolide, (the same materials used in resorbable sutures), were readily taken up into Peyer's patches, and that 1-5 micrometer sizes were rapidly phagocytized by macrophages. Microspheres that were 5-10 micrometers (microns) remained in the Peyer's patches for up to 35 days, whereas those less than 5 micrometer disseminated to the mesenteric lymph node (MLN) and spleen within migrating MAC-1* cells.

15 Biodegradable Microspheres: Vaccine Delivery System For Oral Immunization, 1989, 146.

However. Eldridge, et al. used 50 µm microspheres of poly (DL-lactide-co-glycolide) composed of molar parts of polymerized lactide and glycolide (85:15 DL-PLG), which biodegrades to completion in approximately 24 weeks after intramascular injection.

Poly (DL-lactide-co-glycolide) composed of equal molar parts of polymerized lactide and glycolide (50:50 DL-PLG) is the more stable or lest biodegradable, and biodegrades to completion after 25 weeks.

Therefore, there is a need extant in the biodegradable microsphere field to provide a method of producing poly (DL-lactide-co-glycolide) materials of 50:50 DL-PLG that is more biodegradable and capable of being taken up by both M cells and non-M cells in the Peyer's patches follicle-associated epithelium when used as microencapsulant as carriers for antigens for enteric immunization.

V. SUMMARY OF THE INVENTION

One object of the invention is to provide a method for producing microparticles of biodegradable-biocompatible microspheres having an average particle size distribution that maximizes uptake of the microspheres by both M cells and non-M cells, either in the villous epithelium or in the Peyer's patches follicle-associated epithelium so that upon encapsulating antigens or other chemotherapeutic agents within these microspheres, large doses of antigen will not be required to achieve sufficient local concentrations in these regions of the intestines when these microparticles are used as carriers of immunogens for oral or other types of immunization.

A further object of the invention is to provide a method for producing microspheres composed of poly (DL-lactide-coglycolide) having an average particle size distribution so as to maximize the uptake of these microspheres into the lymphoid tissue of the gut through uptake by both M cells and non-M cells, either in the villous epithelium or in the PP follicle-associated epithelium, in order to enable smaller doses of antigen to achieve sufficient local concentrations in these regions of the intestines when using the poly (DL-lactide-co-glycolide) as a carrier of immunogens for oral or other types of immunization.

A yet further object of the invention is to provide a method for producing an average distribution of particle sizes of the most stable or least biodegradable poly (DL-lactide-co-glycolide) having equal molar parts of polymerized lactide and glycolide (50:50 DL-PLG) so as to maximize uptake of microspheres of this copolymer by both M cells and non-M cells, either in the villous epithelium or in the PP follicle-associated epithelium when using this copolymer as a carrier of immunogens for oral or other types of immunization in mammals.

In general the invention is accomplished by modifying the solvent extraction process for producing microspheres so that the average particle size distribution can be controlled by altering the viscosity of the emulsion, either by: 1) pre-dilution of the emulsion oil with extractant solvent; 2) adding thickening agents such as polybutylene to the emulsion oil to deliberately increase its viscosity; 3) use of oils with predefined viscosities for preparation of the emulsion: or 4) by deliberately adjusting the viscosity of paraffin oil used by preheating it to a temperature which yields the desired viscosity. When the emulsion time is kept sufficiently short to prevent a significant temperature increase during the emulsification process, the oil viscosity is the primary process parameter in determining the average distribution of particle size ranges of the spheres' diameter. Variations in screen and rotor dimensions of the equipment and emulsification speed and time have negligible effects on the outcome of the microspheres diameter.

VI. BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 shows that, during preparation of the microspheres, the spheres actually got larger as the emulsion time was increased.
- FIG. 2 is a schematic showing the preparation of sucrose-loaded vaccine placebo microspheres.
- FIG. 3 is a graph showing substitution of stable-viscosity machine oils or paraffin oils during the formation of the emulsion to accomplish sphere populations whose average sizes and volumes decreased with increasing emulsification times. in contrast to that which was observed for emulsions formed with paraffin oil as shown in FIG. 1.
- FIG. 4 shows the consistent relationship between sphere sizes at 3.0 minutes versus 0.75 minutes across all viscosities of oil tested, and show that sphere sizes are directly related to viscosity.
- FIG. 5 shows that reducing the viscosity of the paraffin oil by diluting it with heptane resulted in the formation of progressively larger spheres.
- FIG. 6 shows that reducing the viscosity of the paraffin oil by diluting it with iso-octane resulted in the formation of progressively larger spheres.
- FIG. 7 shows that when reducing the viscosity of the paraffin oil by diluting it with heptane using one second emulsification without an emulsion screen, resulted in the formation of progressively larger spheres.
- FIG. 8 shows microsphere volume average versus emulsification time in paraffin oil.
- FIG. 9 shows viscosity versus sphere diameter obtained with paraffin oil diluted with iso-octane.
- FIG. 10 shows viscosity versus sphere diameter obtained with paraffin oil diluted with heptane.
- FIG. 11 shows viscosity versus sphere diameter obtained with machine oils.
- FIG. 12 is a color photograph of the flank region of the intestinal lymphoid follicle of a New Zealand white rabbit histochemically stained for acid phosphatase (red) and immunohistochemically stained for the MHCII antigen.
- FIG. 13 is a color photograph of the flank region of the intestinal lymphoid follicle histochemically stained for alkaline phosphasate (red) and immunohistochemically stained for the MHCII antigen.
- FIG. 14 is a color photograph of the flank region of the intestinal lymphoid follicle of a New Zealand white rabbit showing numerous microspheres of the poly (DL-lactide-

co-glycolide) composed of molar parts of polymerized lactide and glycolide (50:50 DL-PLG) in the company of MHCII-positive cells in lymphoid pockets in the Follicle Associated Epithelium (FAE), and wherein some of the microsphere particles are within the cells (arrows). In the lymphoid follicle, numerous MHUCII-positive cells are present, and some have microspheres associated with them (arrowheads).

FIG. 15 is a color photograph showing that both kinds of particles were taken up by the follicle-associated epithelium and entered the underlying lymphoid tissues of Peyer's patches (fluoresceinated microspheres are more easily visualized, and as a consequence they are shown in the photograph).

FIG. 16 is a color photograph showing the flank region of the previously illustrated intestinal lymphoid follicle and the adjacent villous stained for acid phosphotates (red) and CD43 (pan-T cell). Numerous CD43-positive cells are present in the FAE and in the lymphoid follicle. Microparticles in the FAE are in the company of CD43-positive cells in the lymphoid pockets, and some of the particles are within the cells (arrows). The CD43 cells are CD8- and CD4-negative. and Igu-positive cells are sparse in the FAE. The microparticles have not entered the epithelium of the villous (v) adjacent to the lymphoid follicle. although some are present nearby in the lumen.

FIG. 17 is an immunofluorescence micrograph of the previously illustrated lymphoid follicle. The fluoresceinlabeled microspheres are present mostly in the flank region of the FAE (lower area of the photograph), with declining numbers present in the more apically located regions.

FIG. 18 is a color photograph showing the lymphoid follicle of a Peyer's patch of a New Zealand white rabbit stained for vimentin. The polymerized lactide and glycolide particles appear principally in the FAE area and are practically non-existent in the villous area.

FIG. 19 is a color photograph of the lymphoid follicles of the New Zealand white rabbit's intestines showing the pan-T cell markup stained for CD43. The view shows the villous epithelium, the lamina propria, the location of the copolymer (PLGA) particles and the CD43-positive cells.

VIL DETAILED DESCRIPTION OF THE INVENTION

Use of the emulsion viscosity as the means for controlling the average particle size distribution of polymerized lactide and glycolide microspheres has utility in manufacturing oral and injectable vaccines as well as for use in devices for 50 sustained drug and antibiotic delivery. Preparation of the microspheres was accomplished by a modification of the solvent extraction process to control the sphere size by altering the viscosity of the emulsion either by: 1) predilution of the emulsion oil with an extractant solvent; 2) 55 adding thickening agents such as polybutylene to the emulsion oil to deliberately increase its viscosity; 3) through use of oils with predefined viscosities for preparation of the emulsion; or 4) through deliberately adjusting the viscosity of the paraffin oil by preheating it to a temperature which 60 yields the desired viscosity, taking care that the emulsion time is kept sufficiently short so as to prevent a significant temperature increase during the emulsification process.

It has been found that the oil viscosity is the primary process parameter for controlling the sphere diameter, and 65 that variation in screen and rotor dimensions, emulsification speed and time only exhibit negligible effects on the outcome of the diameter of the microspheres.

The following examples will provide more detailed steps in producing the controlled particle size microspheres of poly (DL-lactide-co-glycolide) by the modified solvent extraction process of the present invention.

EXAMPLE

Solvent Extraction

Preparation of Freeze-Dried Antigen-Sucrose Matrix

Materials

8 ml water

80 mg sucrose

20 mg purified antigen/active

The freeze-drier is turned on and the temperature is set at -25 degrees.

Preparation of the Antigen-Sucrose Matrix

The antigen/active is placed in a 20 ml capacity plastic vial to which water and sucrose are added.

The dispersion is then flash freezed by gently swirling the vial (without the cap) in liquid nitrogen for about one half of an hour.

After about 1000 minutes the temperature is elevated to about +5 degrees for 500 minutes (8.33 hours) and then elevated to about +20 degrees for 1000 minutes (16.67 hours), and the vial is removed.

Preparation of Polymerized Lactide Glycolide (PLG) Solution

The PLG is removed from the freezer and allowed to come to room temperature.

About 2.8 g of acetonitrile is weighed into a 20 ml capacity glass vial and set aside.

After the polymer reaches room temperature, about 1.0 g of the polymer is added to the vial of acetonitrile and a sonicator bath until all of the polymer has dissolved (5–10 minutes).

Homogenization of Sucrose

Preparing the Homogenizer

Homogenization

- 3.2 g of acetonitrile is weighed in a plastic vial for washings during homogenization.
- 1.5 g of acetonitrile is weighed into another vial and added to the earlier prepared freeze-dried sucrose-antigen matrix and mixed until it becomes a milky white slurry. The slurry is homogenized at maximum speed for one minute and the 3.2 g of acetonitrile is used to wash the sides of the vial and homogenizer tip, after which the slurry is again homogenized for one minute at maximum speed.

The mixture is separated into two parts by weight by weighing 2.4 g into another 20 ml plastic vial.

The polymer solution prepared earlier is added to one of the vials of homogenized sucrose-antigen and the vial is placed in a sonicator bath for about 2 minutes to ensure proper mixing.

Preparation of Microspheres

The homogenizer is set up with the rotor and fine emulsion screen and the following materials are weighed out: 400 g of light mineral oil in a 600 ml glass beaker and 2500 g of heptane in a 4000 ml propylene beaker. A beaker of heptane is placed under the mixer and a propeller is placed about two-thirds of the way down into the heptane, after which the mixer is started at about 450 rpm.

A Masterflex mode #7550-60 peristaltic pump with pump head model #7518-00 with PharMed tubing, size 16 is set up. The pump speed is set at 300 ml/min after which one end of the tubing is placed into the beaker of heptane.

Approximately 175 ml of the mineral oil is poured into the jacket beaker and the homogenizer head is dipped at 15 degrees into the oil to coat it, after which water is circulated through the beaker.

6

The polymer/sucrose-antigen solution is poured into the beaker and the vial is rinsed with about 5 ml of mineral oil. and the rinse is added to the beaker.

The homogenizer head is placed into the liquid and then turned to its maximum setting for 3 minutes.

At the end of three minutes the other end of the tubing is placed into the jacketed beaker and the peristaltic pump is started. When the liquid level has dropped to the level of the homogenizer head, the homogenizer is turned off and pumping is continued until all of the liquid has been pumped to the heptane after which the heptane is left stirring for 30 minutes.

Using fresh tubing, the heptane is pumped into centrifuge bottles and centrifuged for 5 minutes at 3000 rpm. 20 degrees celsius. The supernatant is pumped into waste bottles and the sediment is rinsed with heptane (it may be necessary to sonicate the sample for 1 to 5 minutes to break up the sediment).

The supernatant is pumped into the waste bottle and washed with fresh heptane until all the microspheres are in the one tared 50 ml centrifuge tube. This tube is then centrifuged for 5 minutes and washed with fresh heptane three times.

After the final wash and centrifuge cycle, the supernatant is pumped into the waste bottle and the microspheres are air dried with a slow air current for about 5 minutes, and the tube is placed in the vacuum oven at room temperature and left overnight.

The microspheres are removed from the vacuum oven and weighed, after which about 1 mg of the microspheres is put in a 1.5 ml centrifuge tube for evaluation.

Evaluation of Microspheres

About 1 ml of 1% Tween 80 in water is added to the 1 mg of microspheres in the 1.5 ml centrifuge tube, and the tube is sonicated for about 1 minute.

One drop of the dispersion is placed on a glass slide and a coverslip is placed over it. The slide is then placed under a calibrated optical microscope and examined under 100× magnification using a standard oil immersion technique. Using the precalibrated eyepiece micrometer, the diameter of 150 randomly chosen microspheres is determined. (Under 100× magnification, 1 division on the micrometer is equal to 1 micron.)

The numbers are then entered into a Lotus spread sheet program to determine the average size distribution of the particles.

The prior art extraction procedure for production of poly-lactide: glycolide microencapsulated oral vaccines is based on disbursal of a highly concentrated solution of polymer and acetonitrile into oil, followed by extraction of the acetonitrile and oil with heptane.

The procedure of the invention requires high energy shear to disburse the viscose polymer solution. This high shear process resulted in the generation of major heat change which caused the mineral oil's viscosity to change significantly.

As a result, small increases in shear time or minor differences in the emulsifier's rotor dimensions which increased shear, resulted in increased microsphere diameters, as can be seen from the graph of FIG. 16.

The substitution of stable viscosity machine oils for paraffin oil during the formation of the emulsion resulted in sphere populations whose average sizes and volumes decreased with increasing emulsification times.

This result can be seen in Table I, which is in contrast to the data showing microsphere volume average versus emulsification time and paraffin oil (FIG. 16).

TABLE I

	Emulsification Time						
	0.75	minutes	30 m	inutes			
C/S*	V.A.**	D.A.***	V.A.	D.A.			
36	2.8	0.9	2.4	0.9			
50	7.3	2.9	6.8	3.2			
65	7.9	3.3	6.9	2.9			
72	49	1.0	3.0	0.9			
80	2.4	1.1	1.4	0.9			

 ⁼ Centistokes

Both paraffin emulsions and machine oil emulsions underwent similar temperature increases during the emulsion process, and the differences between these two oils appears to be due to maintenance of a relatively constant emulsion viscosity by the machine oils. At a constant viscosity, increased homogenization time appears to have resulted in a progressively finer dispersal of the polymer-acetonitrile solution into the oil. Viscosity breakdown in the paraffin oil appears to have allowed particles to recoalesce as the emulsion temperature increased.

Reducing the viscosity of the paraffin oil by diluting it with either heptane or iso-octane resulted in the formation of a progressively larger spheres as can be seen in Table 2.

TABLE 2

Solvent/	Diameter Averages in U						
Oil Mixture	н•	10**	10***				
1/2	11.0	4.6	9.7				
1/4	2.6	5.0	3.3				
1/8	1.5	2.2	2.6				
У16	1.2	1.4	0.6				
No Solvent	1.0	1.0	0.6				

^{· =} Heptane Diluent,

The results of these tables show that sphere size can be controlled by altering the viscosity of the emulsion oil through its pre-dilution with an extractant solvent, provided that the emulsion time is kept sufficiently short so as to prevent a significant temperature increase during the emulsification process.

The data in Table 1 shows a relationship between the microsphere size and oil viscosity in that, microsphere size increased as oil viscosity increased from 36 to 65 centistokes and then decreased from 65 to 80 centistokes, which appears to indicate a bell-shaped sphere size distribution as viscosity increased.

FIG. 17 shows viscosity versus sphere diameter obtained with paraffin oil diluted with iso-octane.

FIG. 18 shows viscosity versus sphere diameter obtained with paraffin oil diluted with heptane.

FIG. 19 shows viscosity versus sphere diameter obtained with machine oils.

^{• =} Volume Average

^{*** =} Diameter Average

^{** =} Iso-octane.

^{*** = 2}nd Series of Iso-octane Batches Employing Reduced Shear Forces

A histochemical and immunohistochemical analysis of the uptake of PLG and polystyrene microparticles by Peyer's patches from a New Zealand white rabbit was conducted using the poly (DL-lactide-co-glycolide) copolymer⁵ in which the molar parts of polymerized lactide and glycolide were 50:50, as prepared according to the modified solvent extraction process of the invention.

Fluorescent polystyrene microspheres were also used as a comparison to test these microparticles as carriers of immunogens for oral immunization, and to ascertain or determine the actual location of their uptake by gut lymphoid tissues, and to ascertain which tissues were engaged in the uptake.

The study also served in part to ascertain if encapsulation may protect the antigens from proteolytic degradation in the gut lumen and facilitate their uptake and retention in the intestinal lymphoid tissues, as a thorough understanding of the fate of ingested antigen-containing microparticles is important in using antigens which have been microencapsulated for enteric immunization strategies.

25

VIII. METHOD

30

Fluorescent polystyrene microspheres and unlabelled poly (lactide-co-glycolide) microspheres of diameters of 0.5, 1, and 2 um where instilled into the lumens of in situ rabbit intestinal loops.

35

After a period of between about 1 to 2 hours, the loops were removed, and sections were cut and reacted histochemically for acid (AcP), phosphatase and immunohis-tochemically in a biotin-streptavidin method with several monoclonal antibodies to the rabbit lymphoid cell antigens.

The rabbits were anesthetized New Zealand white rabbits
45 and the dimensions of the intestinal loops were 2 cm
(containing Peyer's patches) and the tissue blocks were
excised and fixed in periodate-lysine-praformaldehyde.

The results of these tests show that both kinds of particles (0.5>1>2 μm were taken up by the Peyer's patches.

However, the particles of copolymer from the invention process principally taken up in the Peyer's patch region have a volume average of about 1.0 to about 7.0 micrometers as the particle size distribution.

- 60 Particles of copolymer from the invention process principally taken up in the villous epithelium of the intestines have a volume average of from about 0.5 to about 2.0 micrometers.
- Tables 3 and 4 show respectively, the particles used when testing placement in Peyer's patch and villous regions.

TABLE 3

Microsph	eres: Particle Size D	istributi	on by M	Licroscopy	,				_	
•			S	tage magn	ification: 100	×			% volume	qual to 5-10 u % number
			С	alibration	1 div = (u)		1.00		73.25	13.53
									greater than	
										% number
Reading	Frequency Dia.,	u	ď3	FD'3	% Vol. Dist	.01°f°d	F*D	% Num Dist.	0.00	0.00
1	40		1	40	0	0	40	27	between or	equal to 1-5 u
;	41	;	8	329	3	0	82	27	% volume	% number
ī	25	- 3	27	675	6	2	75	17	26.75	86.67
4	13	ă	64	832	7	4	52	9		
\$	11	5	125	1375	11	14	55	7		
6	9	6	216	1944	16	35	54	6		
7	Ś	7	343	1715	14	48	35	3		
8	1	8	512	512	4	22	8	i		
9	i	ğ	729	729	6	44	9	1		
10	i	10	1000	4000	33	329	40	3		
Total	150	55	3025	12150	85	498	450	100		
average	150	5.50	6.71		2.15		3	2.15		
S.D.		2.87	6.88		2.08		2.85	2.12		
.		2.0.		A	GGREGATIO	N DATA		~		
	Particle Size Di	emburic	m **	· v	ol % Aggregat	bed		0.00	Weight %	
	Volume Average (u)		79		umber % Agg			0.00	number %	
	Number Average (u)		3.0		vg Part Size A		1	ERR		
			5.0		vg # of Part p			ERR		

TABLE 4

Microspb	eres: Particle Size Di	stributio	n by M	Licroscopy	•					qual to 5-10 u
			s C	alibration: alibration:	ification: 100 1 div = (u)	×	1.00		% volume 60 12 greater than	% number 4.67
Reading	Frequency Dia.,	u	ď3	F°D'3	% Vol. Dist	.01°f°d	F•D	% Num Dist.	0.00	0.00
1	103	1	1	103	3	0	103	69	between or	equal to 1-5 u
2	17	2	8	136	4	0	34	11	% volume	% number
3	16	3	27	432	12	3	48	11	39 88	95.33
4	2	4	64	128	4	2	8	1		
5	5	5	125	625	18	22	25	3		
6	2	6	216	432	12	26	12	1		
7	5	7	343	1715	48	165	35	3		
Ö	ő	Ó	0	0	0	0	0	0		
ō	ŏ	ŏ	ō	0	0	0	0	0		
ō	ŏ	ō	Ō	Ó	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	Ó	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	Ô	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0		
Total	150	28	784	3571	100	219	265	100		
average		1.56	3.52		1.77		2	1 77		
S.D		2.31	4.51		2.26		2.96	2.50		
				A	GGREGATIO	N DATA				
	Particle Size Dis	tributio	123		ol % Aggregat			0.00		
	Volume Average (u)		6.0		umber % Agg			0.00		
	Number Average (u)		1.8		vg Part Size A			ERR		
				A	vg # of Part p	er Aggregi	ue	ERR		

The significance of what particle size distribution of the copolymer prepared according to the invention process is taken up in the villous epithelium section of the intestine is that, for oral administration of a vaccine (especially when no booster vaccine is administered), the antigen must principally be uptaken by the villous epithelium region, which is more than 90% of the area of the intestine needed for effective immunization. On the other hand, the fact that

some of the smaller particle size distribution copolymer materials are also taken up by the Peyer's patch region of the intestine while the majority of the copolymer is taken up by the villous epithelium section indicates that several combinations of modes of immunization may be effected through vaccine.

The following information obtains from a immunohistochemistry basis:

11 IMMUNOHISTOCHEMISTRY

Antibodies

	IMMUNOHISTOCHEMISTRY						
Antibodies: Monoclonal Antibody	Source	Antigen Recognized					
V 9	Biomeda	Vimentin (M cell marker)					
L11-35	Serotec	CD43 (pan T cell)					
45-3	Spring Valley	MHCII					
Ken-4	Spring Valley	CD4					
12C7	Spring Valley	CD8					
NRBM	Serotec	Ig u chain					
Procedure:		-					
Biotin-streptay	in method						

Uptake was greatest along the flanks of the follicles, where M cells (demonstrated by anti-vimentin MAb) were most numerous. While the particles were sometimes present within M cell cytoplasm, they were much more numerous in the lymphocyte pockets of the M cells.

In the pockets, the particles were intermingled with cells that were CD43+, CD8-, CD4-, Igu-, and MHC II+.

The results showed that, occasionally, the particles were present within large AcP+ cells in the pockets. In the follicular tissue beneath the M cell-rich epithelium, particles were very numerous in the vicinity of MHC II+ cells and occasionally within the large AcP+ cells.

Unexpectedly, microspheres also entered non-M cell epithelium cells, especially in the domes. These cells were vimentin negative AcP+. Microparticles were sparse or absent in the subepithelial tissue beneath the cells.

As a result of these tests, it became clear that both M cells and non-M cells in the rabbit PP follicle-associated epithelium can take up certain microparticles. Only the M cells may be capable of permitting migration of the particles to adjacent cells.

Microparticles taken up by the M cells appear to migrate to lymphocyte pockets richly populated with MHC II+ cells and CD8-/CD4- T cells, as well as to a certain extent to AcP+ phagocytic cells.

20

What is claimed is:

√1. In a solvent extraction process for preparing microspheres of an antigen containing biodegradable poly(DL-lactide-co-glycolide), the improvement comprising:

- preparing a lyophilized antigen-sucrose matrix; adding acetonitrile solvent to the antigen-sucrose matrix to form a solution;
- preparing a solution of a biodegradable poly (DL-lactideco-glycolide) polymer by adding acetonitrile solvent to the polymer;
 - adding the biodegradable poly (DL-lactide-co-glycolide) polymer acetonitrile solution to the antigen-sucrose acetonitrile solution;
 - adding an oil to the poly (DL-lactide-co-glycolide) polymer-sucrose-antigen solution to form an emulsion having a controlled viscosity, that corresponds to a predetermined average particle size of distributions of microspheres of poly (DL-lactide-co-glycolide) biodegradable polymers of from about 0.5 to about 7.0 micrometers;
- centrifuging the emulsion of controlled viscosity and removing a supernatant to obtain microspheres of the predetermined range of particle size distributions.
 - 2. The process of claim 1, wherein the oil is selected with a predefined viscosity to form the microspheres.
- 3. The process of claim 1, wherein a thickening agent is 30 added to the oil to increase its viscosity.
 - 4. The process of claim 1, wherein the oil is prediluted with an extractant solvent.
- 5. The process of claim 1, wherein the oil is a paraffin oil in which the viscosity is adjusted by preheating to a temperature of desired viscosity.
 - 6. The process of claim 1, wherein relative ratios between the lactide and glycolide is 50:50.
- The process of claim 1, wherein the average particle size distribution is from about 1.0 to about 2.0 micrometers.

* * *

Please add claims 8-24 as follows:

Claim 8. The process of claim 1, wherein the oil is a paraffin oil.

Claim 9. The process of claim 8, wherein the viscosity of the paraffin oil is reduced by diluting it with heptane or iso-octane.

Claim 10. The process of claim 2, wherein the viscosity of the oil is reduced to produce larger spheres.

Claim 11. The process of claim 3, wherein the thickening agent is polybutylene.

/Claim 12. A method of controlling average particle size of agent containing micropheres in a solvent extraction process, comprising

adjusting a viscosity of an oil to a value that corresponds to a predetermined average particle size of microspheres to control said size of said microspheres;

adding said oil to a biodegradable polymer –stabilizer agent solution emulsion; centrifuging the emulsion;

and removing said microspheres of said predetermined average particle size.

Claim 13. In a solvent extraction process for preparing microspheres of an agent containing biodegradable polymer, the improvement comprising:

preparing a lyophilized agent-stabilizer matrix; adding solvent to the agent-stabilizer matrix to form a solution;

preparing a solution of a biodegradable polymer by adding solvent to the polymer; adding the biodegradable polymer solution to the agent-stabilizer solvent solution;

adding an oil to the polymer-stabilizer-agent solution emulsion having a controlled viscosity that corresponds to a predetermined average particle size of distributions of micropspheres biodegradable polymers;

centrifuging the emulsion of controlled viscosity;

and removing a supernatant to obtain microspheres of the predetermined average particle size of distributions.

Claim 14. The process of claim 13, wherein said biodegradabel polymer is a biodegradable poly(DL-lactide-co-glycolide) polymer.

Claim 15. The process of claim 13, wherein said agent is an antigen or chemotherapeutic agent.

Claim 16. Micropheres containing an agent wherein said micropheres are prepared by the process of claim 13.

Claim 17. An immunostimulating composition comprising an encapsulatingmicrosphere of a biodegradable polymer having an average particle size distribution
wherein a majority of the microspheres will be taken up by a villous epithelium section of
an intestines of a mammalian subject when administered as a vaccine against diseases
caused by enteropathogenic organisms.

Claim 18. An immunostimulating composition comprising an encapsulating-microsphere of a biodegradable polymer having an average particle size distribution wherein a majority of the microspheres will be taken up by a Peyer's patch section of an intestines of a mammalian subject when administered as a vaccine against diseases caused by enteropathogenic organisms.

Claim 19. A composition comprising an encapsulating-microsphere of a biodegradable polymer having an average particle size distribution wherein a majority of the microspheres will be taken up by a villous epithelium section of an intestines of a mammalian subject when administered.

Claim 20. The composition of claim 19, wherein said biodegradable polymer comprises a poly (DL-lactide-co-glycolide) copolymer.

Claim 21. The composition of claim 19, wherein said average particle size distribution is about 0.5 to about 2.0 micrometers.

Claim 22. A composition comprising an encapsulating-microsphere of a biodegradable polymer having an average particle size distribution wherein a majority of the microspheres will be taken up by a Peyer's patch section of an intestines of a mammalian subject when administered.

Claim 23. The composition of claim 22, wherein said biodegradable polymer comprises a poly (DL-lactide-co-glycolide) copolymer.

Claim 24. The composition of claim 22, wherein said average particle size distribution is about 1.0 to about 7.0 micrometers.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re PATENT APPLICATION OF

REID et al. REISSUE of U. S. Patent No. 5,693,343

Appln. No.: TBA

Group Art Unit: TBA

Filed: Herewith

Examiner: TBA

Title: MICROPARTICLE CARRIERS OF MAXIMAL UPTAKE CAPACITY BY

BOTH M CELLS AND NON-M CELLS

LETTER REQUESTING TRANSFER OF THE DRAWINGS FROM THE PATENT FILE UNDER MPEP 1413

Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Please transfer the drawings upon which the original patent was issued to this reissue application in lieu of new drawings. No changes whatsoever are to be made in the drawings. Temporary drawings which consists of a copy of the printed drawings of the patent or photoprint of the original drawings of the size required for original drawings are submitted with this reissue application.

> Respectfully submitted, Varoline Nach Reg. No. 36,329

For:

Charles H. Harris, Reg. No. 34,616

Attorney for Applicant

U.S. Army Medical Research and Materiel

Command, Attn: MCMR-JA

Fort Detrick, Maryland 21702-5012

Caroline M. Nash, Reg. No. 36, 329 Nash & Titus, LLC 3415 Brookeville Road **Suite 1000** Brookeville, Maryland 20833 Tel. No. (301) 924-9500 Fax. No. (301) 924-5883

Date: Nov. 30, 1999

FIG.1

F1G. 2

FIG.3

EMULSION OIL VISCOSITY IN CENTISTOKES 8 40°C

X-X-0.75" EMULSIFICATION TIME 0--0-3.0" EMULSIFICATION TIME

The first man and the state of the state of

The fact that the feet of the first first

FIG. 4

* - VISCOSITY ON OIL IN CENTISTOKES & 40°C

FIG. 5

FIG.6

FIG.7

Dec. 2, 1997

ISO-OCTANE / ISO-OCTANE + OIL RATIO *

*ONE SECOND EMULSIFICATION WITHOUT AN EMULSION SCREEN

5,693,343

FIG.8

Dec. 2, 1997

F1G 12

FIG 13

F I G 14

FIG. 15

FIG '6

F1G.18

FIG.19

DECLARATION AND POWER OF ATTORNEY FOR REISSUE APPLICATION

We, Robert H. Reid, John E. van Hamont, William R. Brown, Egar C. Boedeker, and Curt Thies, hereby declare that we are citizens of the United States and that our residences are as stated below next to our names. We believe that we are the original joint inventors of the invention entitled MICROPARTICLE CARRIERS OF MAXIMAL UPTAKE CAPACITY BY BOTH M CELLS AND NON-M CELLS described and claimed in our original application No. 08/242,960, filed May 16, 1994, and the resulting United States Patent No. 5,693,343 which issued December 2, 1997 ("the '343 patent"), for which priority was claimed based on Ser. No. 867,301, filed April 10, 1992, Pat. No. 5,417,986 which is a continuation in part of Ser. No. 805,721, filed Nov. 21, 1991, abandoned, which is a continuation in part of Ser. No. 690,485, filed April 24, 1991, abandoned, which is a continuation in part of Ser. No. 521,945, filed May 11, 1990, abandoned, which is a continuation in part of Ser. No. 590,308, filed March 15, 1990, abandoned, which is a continuation in part of Ser. No. 590,308, filed March 16, 1984, and for which invention a reissue patent is solicited.

We do not know and do not believe that the invention of the '343 patent was ever known or used in the United States before our invention thereof. Furthermore, we do not know and do not believe that the invention was patented or described in any publication in any country before our invention thereof, or more than one year prior to the original application. We do not know and do not believe that the invention was in public use or on sale in the United States more than one year prior to the original application. To the best of our knowledge and belief, this invention has

not been patented or made the subject of an inventors' certificate in any country foreign to the United States prior to the date of the original application on an application filed by us or our legal representatives or assigns more than 12 months before our original application.

We have reviewed and understand the contents of the attached specification, including the claims, as amended by the addition of new claims 8-24. We acknowledge the duty to disclose information of which we are aware and which is material to the examination of the application in accordance with 37 C.F.R. §§ 1.56(a) and 1.175(a) (7).

We believe that through error, without any deceptive intent, the '343 patent is partially inoperative or invalid by reason of the patentee claiming less than the patentee had the right to claim in the patent. In particular, there is a possible defect in that the patentees claimed less than patentees had the right to claim in the patent.

This possible error arose without deceptive intent during prosecution of the application before the United States Patent and Trademark Office. Upon reviewing the issued claims we realized that the claims did not cover all of the subject matter that the we believe we are entitled to.

Therefore, by reason of the above-described error, Applicants believe the original patent to be partly inoperative or invalid by reason of the patentees claiming less than patentees had the right to claim in the patent and the claims are possibly not broad enough to cover all aspects of the invention disclosed in the patent. The possible invalidity of the patent resulted from a failure by ourselves, the assignee and counsel to realize the totality of the subject matter that should have been claimed. By this reissue application, the identified errors are believed to be corrected.

Inventor's Name: Robert H. Reid

Inventor's Residence: Box 531, Fairfield, PA 17320, USA

Inventor's Citizenship: U.S.A.

Inventor's Signature:

| Appent H. Reif un D. |
| Date Signed: | 10/19/99

Inventor's Name: John E. van Hamont

Inventor's Residence: 239B Barnard Loop, West Point, New York 10096, USA

Inventor's Citizenship: U.S.A.

Inventor's Signature: Ash E. earthannt

Date Signed: 10 November 1999

Inventor's Name: William R. Brown

Inventor's Residence: 2151 South Alton Way, Denver, CO 80231, USA

Inventor's Citizenship: U.S.A.

Inventor's Signature: ____

Date Signed:

Inventor's Name: Edgar C. Boedeker

Inventor's Residence: 552 Maynadier Lane, Crownsville, MD 21032, USA

Inventor's Citizenship: U.S.A.

Inventor's Signature:

Date Signed: 10/21/99

Inventor's Name: Curt Thies

Inventor's Residence: 305 Fawn Meadows Drive, Ballwin, MO 63011

Inventor's Citizenship: U.S.A.

Inventor's Signature: Curt Misson Date Signed: Nov. 5, 1999

All errors which are being corrected in the present reissue application up to the time of filing of this declaration arose without any deceptive intention on the part of the applicants.

Wherefore we request that we may be allowed to surrender, and we hereby offer to surrender, said U.S. Letters Patent No. 5,693,343 and request that Letters Patent be reissued to ourselves and the assignee, The United States of America as represented by the Secretary of the Army, for the same invention upon the foregoing amended reissue application.

We hereby declare further that all statements made herein of our knowledge are true and that all statements made on information and belief are believed to be true. We further declare that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

We hereby appoint Charles H. Harris (Reg. No. 34,616) of the U.S. Army Medical Research and Materiel Command, 504 Scott Street, ATTN: MCMR-JA, Fort Detrick, MD 22702 and Caroline Nash (Reg. No. 36,329) and Marlana K. Titus (Reg. No. 35,843) of Nash & Titus, LLC, 3415 Brookeville Road, Suite 1000, Brookeville, Maryland 20833, (301) 924-9500 or (301) 924-9600 (all communications are to be directed to Nash & Titus, LLC) individually and collectively as our attorneys to prosecute this application and to transact all business in the Patent and Trademark office connected therewith and with the resultant Patent.