Capstone Project Bike Sharing Demand Prediction

By - Arindam Paul (aripaul05@gmail.com)

Points for Discussion

01

Problem Statement

02

Data Description

03

Data Preparation and Cleaning

04

EDA (Exploratory Data Analysis)

Points for Discussion

O5
Hypothesis
Testing

O6
Feature
Engineering

O7Modelling

O8 Model Interpretation

O9 Conclusion

Problem Statement

Currently **Rental bikes** are introduced in many urban cities. The business problem is to ensure a **stable supply** of **rental bikes** in **urban cities** by predicting the **demand for bikes** at **each hour**. By providing a stable supply of rental bikes, the system can enhance **mobility comfort** for the **public** and **reduce waiting time**, leading to greater customer satisfaction.

Data Description

The **Seoul Bike Sharing Demand dataset** contains information about bike rental in Seoul from **2017-2018**. It includes **hourly observations** of **14 columns**, such as the **date**, **time**, **number of rented bikes**, **weather conditions**, and other factors that may influence **bike rental demand**.

This dataset contains **8760 rows** and **14 columns** of the data.

Data Description

- **Date**: The date of the observation.
- **Rented Bike Count**: The number of bikes rented during the observation period.
- **Hour**: The hour of the day when the observation was taken.
- **Temperature(°C)**: The temperature in Celsius at the time of observation.
- **Humidity(%)**: The percentage of humidity at the time of observation.
- Wind speed (m/s): The wind speed in meters per second at the time of observation.
- **Visibility (10m)**: The visibility in meters at the time of observation.
- **Dew point temperature(°C)**: The dew point temperature in Celsius at the time of observation.
- **Solar Radiation (MJ/m2)**: The amount of solar radiation in mega-joules per square meter at the time of observation.
- **Rainfall(mm)**: The amount of rainfall in millimeters during the observation period.
- **Snowfall(cm)**: The amount of snowfall in centimeters during the observation period.
- **Seasons**: The season of the year when the observation was taken.
- **Holiday**: Whether the observation was taken on a holiday or not.
- **Functioning Day**: Whether the bike sharing system was operating normally or not during the observation period.

Data Preparation & Cleaning

- There are no duplicate rows in the dataset.
- There are **no missing values** or **Null values** in the dataset.
- Change datatype of Date to datetime.
- From the Date column, 'month' and 'day of the week' columns are created.
- From the 'day of the week' column, 'weekend' column is created where 6
 and 7 are the weekends (Saturday and Sunday).
- Change Data types of numerical columns which represents categories like
 Month, Day of the Week, Weekend to categorical data type.

Rented Bike Count Distribution

Distribution plot of rented_bike_count

- Rented Bike Count by Seasons
 - Rental Bike **demand** in **winter season** is significantly **lower** than other seasons.
 - Demand is highest in Summer.

Rented Bike Count by Hour

- We can see **demand peaks** during rush hours of the day.
- Rush hour is generally around
 8AM in the morning and 6PM in the evening.

Rented Bike Count by Months

- Similar to what we saw with seasons, demand decreases significantly during winter months like Dec, Jan, Feb etc.
- Demand peaks at the summer months like May, June, July etc.

- Rented Bike Count by Temperature
 - The Bike rental **demand increases** as the **temperature increases**.
 - Although too high temperature leads to decrease in demand again.

Rented Bike Count by Dew Point Temperature

- Similar trend for dew point temperature as well i.e., The Bike rental demand increases as the temperature increases.
- Although too high dew point temperature leads to decrease in demand again.

- Rented Bike Count by Functioning Day
 - Obviously on non functioning day i.e., when the bike renting service was not operating, there was zero bikes rented.

Rented Bike Count by Holiday

- Rental Bike demand is higher on non holiday compared to holiday.

- Rented Bike Count by Hour by each Season
 - We can see demand peaks during rush hours of the day.
 - Each season has similar hourly pattern only levels are different.

- 0.25

0.00

-0.25

-0.50

- -0.75

-1.00

- Temperature and Dew Point
 Temperature are highly correlated
 which can create problem while
 doing model interpretation.
- Hence will be dropping Dew Point
 Temperature later before modelling.

- Rented Bike Count by Rainfall
 - Rainfall leads to decrease in the demand in bike rentals.
 - This is obvious because people do not want to go out on a bike when it is raining unless it is emergency.

Rented Bike Count by Snowfall

- Similarly snowfall leads to decrease in the demand in bike rentals.
- This is obvious because people also
 do not want to go out on a bike
 when it is snowing unless it is
 emergency.

- Temperature and Solar Radiation over time
 - As expected temperature rises during summer months like May, June, July etc. and decreases during months like Dec, Jan etc.
 - Similar trend for solar radiation as well, but one thing to observe that there are huge fluctuations in the value, it may be because of day-night cycle, as there is no sunlight at night-time.

Rented Bike Count by Wind Speed (m/s)

 There is a slight increase in demand as wind speed increases but too much wind speed leads to slight decreases in demand.

- Rented Bike Count by Humidity
 - The demand is consistent for humidity till 75% but after that is starts decreasing.
 - One reason for such high humidity can be rain and we already saw rain causes decreases in demand.

Hypothesis Testing

- Rented Bike Demand in hot weather is higher compared to demand in cold weather.
 - Assumed threshold as 20°C for hot and cold.
 - The two sample t-test is used to determine if there
 is a significant difference between the means of
 two groups.
- Also we know from previous charts that Rented Bike
 Count is right skewed with large sample sizes (i.e.,
 nhot = 2928 & ncold = 5832) and we don't know σp.

Null Hypothesis: $H_o: \mu_{cold} = \mu_{hot}$

Alternate Hypothesis : $H_1: \mu_{cold}
eq \mu_{hot}$

Test Type: Two-sample t-test

Hypothesis Testing

- Rented Bike Demand during rush hour (7-9AM & 5-7PM) is higher compared to non-rush hour.
 - The two sample t-test is used to determine if there
 is a significant difference between the means of
 two groups.
 - Also we know from previous charts that Rented Bike Count is right skewed with large sample sizes (i.e., nrush = 2190 & nnon-rush = 6570) and we don't know σp.

Null Hypothesis: $H_o: \mu_{rush} = \mu_{non-rush}$

Alternate Hypothesis : $H_1: \mu_{rush}
eq \mu_{non-rush}$

Test Type: Two-sample t-test

Hypothesis Testing

- Rented Bike Demand is different in different seasons with highest in summer and lowest in winter.
- The one-way ANOVA test is used to determine if there is a significant difference between the means of more than two groups.
- Also we know from previous charts that Rented Bike Count is right skewed with large sample sizes (i.e., nautumn = 2184, nspring = 2208, nsummer = 2208, nwinter = 2160).

F-statistic: 776.4678149879506 p-value: 9.381784283723713e-104

Multiple Comparison of Means - Tukey HSD, FWER=0.05

=====							
group1	group2	meandiff	p-adj	lower	upper	reject	
Autumn	Enning	-89.5667	0.0	-134.0266	4E 1060	True	
		214.4754		170.0156		True	
	The state of the s	-594.0568	WAS IN	-638.7616		True	
		304.0421		259.7039		True	
		-504.49	0.0	-549.0739	-459.9062	True	
Summer	Winter	-808.5322	0.0	-853.116	-763.9483	True	

Null Hypothesis: H_o : No significant difference between rented bike counts for different seasons.

Alternate Hypothesis: H_1 : Significant difference between rented bike counts for different seasons.

Test Type: One-way ANOVA test

Feature Engineering

- I have used pearson correlation coefficient to check correlation between variables and also with dependent variable.
- And also i check the multicollinearity using VIF and remove those who are having high VIF value.
- Found that there is high correlation between temperature and dew point temperature. So, i take 50 % of the both and create new variable 'temp' by adding both of them.

Feature Engineering

- The Rented Bike Count was right skewed, and to train a robust model transform it to normal.
- Applied **square root** to **transform** it to **normal**.

Feature Engineering

- I have different independent features of different scale so i have used standard scalar method to scale our independent features into one scale.
- **Splitted Data** into train and test sets with ratio **80:20**.

• Since we're trying to predict **continuous variable**, I trained various **regression algorithms** along with **hyper parameter tuning** and **cross validation** to get the best model.

01

Linear Regression 02

Lasso Regression 03

Ridge Regression 04

Decision Tree

O5 Random Forest O6GradientBoosting

Xtreme Gradient Boosting

Linear Regression

Performance (before tuning)

MSE: 88090.65909000415 RMSE: 296.80070601331823 MAE: 201.8068025396329 Train R2: 0.784428200422006

Test R2: 0.7895199410494631

Adjusted R2: 0.7828222844888686

Performance (after tuning)

MSE : 88090.65909000415 RMSE : 296.80070601331823 MAE : 201.8068025396329

Train R2: 0.784428200422006 Test R2: 0.7895199410494631

Adjusted R2: 0.7828222844888686

Lasso Regression

Performance (before tuning)

MSE: 199251.13943499743 RMSE: 446.37555873389556 MAE: 303.758212165632

Train R2 : 0.5201240107717402 Test R2 : 0.5239178363804666

Adjusted R2: 0.5087684923407172

Performance (after tuning)

MSE: 88358.33989461442 RMSE: 297.25130764155506 MAE: 201.70425481228804 Train R2: 0.7834759534324424 Test R2: 0.7888803559661375

Adjusted R2: 0.7821623472579298

Ridge Regression

Performance (before tuning)

MSE: 88365.68734453894 RMSE: 297.26366637135277 MAE: 201.717161005283

Train R2 : 0.7834601310784806 Test R2 : 0.788862800283058

Adjusted R2: 0.7821442329379108

Performance (after tuning)

MSE: 88416.84817480511 RMSE: 297.3497068685374 MAE: 201.78332256985254 Train R2: 0.7833529276131157 Test R2: 0.7887405587800244

Adjusted R2 : 0.7820181016050811

Decision Tree

Performance (before tuning)

MSE: 73491.68150684932 RMSE: 271.09349218830266 MAE: 152.0673515981735

Train R2 : 1.0

Test R2: 0.824402114642698

Adjusted R2: 0.8188144388564315

Performance (after tuning)

MSE : 89557.65707345174 RMSE : 299.2618536891258 MAE : 184.41649011155485

Train R2 : 0.8375934856837123 Test R2 : 0.7860147587154215

Adjusted R2: 0.7792055642373029

Random Forest

Performance (before tuning)

MSE: 38747.939048529646 RMSE: 196.8449619587193 MAE: 112.34713100325216 Train R2: 0.9881686099987611 Test R2: 0.9074173291538947

Adjusted R2: 0.9044712689148319

Performance (after tuning)

MSE : 75962.32375859405 RMSE : 275.6126335250147 MAE : 166.3139028404189

Train R2 : 0.8558829868398841 Test R2 : 0.8184988675542456

Adjusted R2: 0.8127233453668145

Gradient Boosting

Performance (before tuning)

MSE: 77975.24920161186 RMSE: 279.2404863224741 MAE: 186.13005739507054 Train R2: 0.8258252767878081 Test R2: 0.8136892694619378 Adjusted R2: 0.8077607017253112

Performance (after tuning)

MSE: 28399.67260989422 RMSE: 168.52202410929624 MAE: 97.43931235582568 Train R2: 0.99476509675711 Test R2: 0.9321430350634672 Adjusted R2: 0.9299837680590047

> Xtreme Gradient Boosting

Performance (before tuning)

MSE: 30509.675256575534 RMSE: 174.67018994830096 MAE: 103.70351631526435

Train R2: 0.9759196537311359 Test R2: 0.9271014848463719 Adjusted R2: 0.9247817913765451

8

Performance (after tuning)

MSE: 27293.013392206205 RMSE: 165.2059726287346 MAE: 95.98635923067152

Train R2 : 0.9991356437190565 Test R2 : 0.934787239338737

Adjusted R2 : 0.9327121131892331

> Performance Comparison

	Linear regression	Linear regression tuned	Lasso regression	Lasso with alpha = 0.0001	Ridge	Ridge with alpha = 5	Decision tree	Decision tree tuned	Random forest	Random forest tuned	Gradient Boosting Regressor	Gradient Boosting Regressor Tuned	Extreme Gradient Boosting Regressor	Extreme Gradient Boosting Regressor Tuned
MSE	88090.659090	88090.659090	199251.139435	88358.339895	88365.687345	88416.848175	73491.681507	89557.657073	38747.939049	75962.323759	77975.249202	28399.672610	30509.675257	27293.013392
RMSE	296.800706	296.800706	446.375559	297.251308	297.263666	297.349707	271.093492	299.261854	196.844962	275.612634	279.240486	168.522024	174.670190	165.205973
MAE	201.806803	201.806803	303.758212	201.704255	201.717161	201.783323	152.067352	184.416490	112.347131	166.313903	186.130057	97.439312	103.703516	95.986359
Train R2	0.784428	0.784428	0.520124	0.783476	0.783460	0.783353	1.000000	0.837593	0.988169	0.855883	0.825825	0.994765	0.975920	0.999136
Test R2	0.789520	0.789520	0.523918	0.788880	0.788863	0.788741	0.824402	0.786015	0.907417	0.818499	0.813689	0.932143	0.927101	0.934787
Adjusted R2	0.782822	0.782822	0.508768	0.782162	0.782144	0.782018	0.818814	0.779206	0.904471	0.812723	0.807761	0.929984	0.924782	0.932712

Plot of R2 score for each model

Plot of adjusted R2 score

Model Interpretation

Conclusion

- The XGBoost (Extreme Gradient Boosting) which gave the best result for predicting Rented Bike Count using several features on both train and test data with R2 score of 0.92.
- There is **no use** of **removing outliers**, it **affects negatively** on model performance.

Thank You!