Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (previously presented) An information processing system comprising:

first and second of levels of a non-volatile storage hierarchy, wherein accessing information in the first level consumes more energy than accessing information in the second level; and

a processor for storing only strategically selected storage data in the second level of non-volatile storage based on energy-conserving criteria.

- 2. (previously presented) The system of claim 1 wherein the energy-conserving criteria comprise criteria compiled using a heuristic approach.
- 3. (previously presented) The system of claim 1 wherein the energy-conserving criteria comprise system state information.
- 4. (previously presented) The system of claim 3 further comprising a storage input/output subsystem and wherein the system state information comprises whether the storage input/output subsystem is using one or more specific files.

2

5. (previously presented) The system of claim 4 wherein the system state information is

selected from the group consisting of:

the storage input/output associated with one or more predetermined software

applications;

a sequence of storage input/output operations;

observed interactions with the first level of the storage hierarchy and wherein the

collection of heuristics infer the state of the second level of the storage hierarchy; and

a type of energy source powering the system.

6. (previously presented) The system of claim 1 wherein the-energy-conserving criteria

comprise limiting use of parts of a file system.

7. (previously presented) The system of claim 3 wherein the system stores current user

profiles and the system state information comprises whether storage input/output data are

associated with a current user profile.

8. (previously presented) The system of claim 3 wherein the system stores current user

preferences and the system state information comprises whether storage input/output data are

associated with current user preferences.

3

CORRECTED AMENDMENT

9. (Previously presented) The system of claim 4 wherein the system state information comprises at least one factor from among the following factors:

the storage input/output data associated with the characteristics of the connection between the first and second levels of the storage hierarchy;

the storage input/output data associated with characteristics of the connection between the system and at least one second level of the storage hierarchy;

the proximity of the storage input/output to events that change the state of the at least one first level of the storage hierarchy;

the proximity of the storage input/output to a previous interaction with at least one first level of storage hierarchy;

an indication of a hard-disk drive spin-down event; and physical characteristics of the second levels of the storage hierarchy.

- 10. (previously presented) The system of claim 3 wherein the system state information comprises physical characteristics of the second level of the storage hierarchy.
- 11. (previously presented) The system of claim 1 wherein the second level of the storage hierarchy are implemented using Flash memory.
- 12. (previously presented) The system of claim 3 wherein the system state information comprises the number of remaining write cycles.
- 13. (previously presented) The system of claim 1 wherein the processor is for removing information from the second level of storage based on energy-conserving criteria.

Filed: 09/30/2003

CORRECTED AMENDMENT

14. (previously presented) The system of claim 1 wherein the second level of storage further

comprises: a mapping schema between cache files in the second level of storage and disk files in

the first level of storage, wherein each cache file is named with a logical cluster number of its

corresponding disk file.

15. (previously presented) The system of claim 1, comprising a hard disk drive comprising

rotating magnetic media comprising the first level storage and a cache comprising the second

level storage and an application-specific integrated circuit for managing the cache according to

the energy-conserving criteria.

15. (cancelled)

16. (previously presented) An information handling system, comprising:

first level non-volatile storage for storing information;

second level non-volatile storage for storing information according to a set of energy-

saving criteria;

a battery level detector for determining the level of charge in a battery; and

a controller for storing only strategically selected storage data in the second level of

storage when the battery level detector determines that the battery charge is below a pre-

determined threshold of charge.

5

17. (previously presented)A method for managing storage of information in an information processing system comprising two levels of non-volatile storage wherein a first level is managed and a second level is unmanaged wherein storing information in managed storage consumes less system resources than storing information in unmanaged storage, the method comprising:

monitoring the system to determine whether the operating state of the system satisfies one or more energy-conserving criteria; and

storing only strategically selected storage data in managed storage when the operating state of the system satisfies one or more energy-conserving criteria.

18. (currently amended) A computer readable medium comprising program instructions for: monitoring a system to determine whether the operating state of the system satisfies one or more energy-conserving criteria; and

storing only strategically selected storage data in managed non-volatile storage when the operating state of the system satisfies one or more energy-conserving criteria; and

storing all storage data in non-managed non-volatile storage when the operating state of the system does not satisfy the one or more energy-conserving criteria.

19. (previously presented) An information handling system, comprising:

first and second levels of non-volatile storage, wherein accessing the first level of storage uses more energy than accessing the second level of storage;

an energy use detector for determining the level of energy being used by the system; and an arbiter for storing only strategically selected storage data in second level storage when the energy use detector determines that the system is being powered by a battery.