Do your exposures need supervision?

Jenna Krall
Postdoctoral Fellow
Department of Biostatistics & Bioinformatics
Emory University
July 13 & 14, 2015

Coauthors: Howard H. Chang, Katherine M. Gass, W. Michael Caudle, Matthew J. Strickland

Acknowledgements: NIEHS (P30ES019776, K01ES019877, T32ES012160), EPA (R834799)

Overview of Methods

Unsupervised and supervised approaches

- *Unsupervised*: Group predictors independent of the outcome
- **Supervised**: Use the outcome to determine the best predictors

We used Principal Component Analysis (PCA) as our unsupervised approach and Classification and Regression Trees (C&RT) as our supervised approach.

Supervised					
	Unsupervised				
Υ	X1	X2	X3		
-0.14	-1.01	-0.92	0.54		
0.77	0.39	-1.01	-0.06		
1.82	0.38	-0.95	0.48		
2.35	0.93	0.23	0.33		

Principal Component Analysis (PCA)

Overview for PCA approach:

- Groups exposures together based on correlation
- Decreases multicollinearity in multivariate regression models

Methods:

- 1. Apply PCA to the correlation matrix of exposures
- 2. Use varimax rotation to improve interpretability
- 3. Regress outcome on rotated principal components (rPCs)

Assumptions:

Exposures are approximately multivariate normal

Classification and Regression Trees (C&RT)

Overview for C&RT:

- Uses dichotomous splits of the exposures to predict the outcome
- Chooses most important exposures recursively

Methods:

- 1. Regress out effects of confounders from the outcome and exposures
- 2. Apply C&RT to residuals
- 3. Prune final tree based on cross validation

Assumptions:

Fewer assumptions than many models

Final model

PCA approach

- Identified 6 rotated PCs (rotPCs) that explained 88.7% of the variability in the exposures
- Final adjusted model (g is natural spline with 3 df)

$$E(Y) = \beta_0 + \sum_{k=1}^{6} \beta_k \times rot PC_k + \gamma_1 Z_1 + \gamma_2 Z_3 + g(\phi; Z_2)$$

C&RT

Confounder model for outcome Y and exposures X1-X14

$$E(Y) = \alpha_0 + \alpha_1 Z_1 + \alpha_2 Z_3 + g(\eta; Z_2)$$

Use all exposures in C&RT model

Software and Code Used

- R version 3.1
- Existing functions
- PCA approach
 - principal() in psych
 - version 1.5, Revelle (2015)
- C&RT
 - rpart() in rpart
 - Version 4.1 Therneau, et al. (2015)
- Full code available
 - github.com/kralljr/niehs-epistats

Varimax rotated principal component (rotPC) loadings

Estimated coefficients using the PCA approach and the exposures directly.

Adjusted models control for other predictors and Z1-Z3

Pruned regression tree using C&RT

- No exposures were found to significantly predict the outcome using cross validation
- We highlight the most important predictors.

None of the top exposures correspond to *rotPC2* or *rotPC5*

Results

- 1. Which exposures contributed to the outcome?
 - PCA: Positive associations for rotPC1 (X3-X5, X8, X14), rotPC2 (X12-X13), rotPC3 (X10-X11), rotPC4 (X6-X7, X9), and rotPC6 (X1).
 - C&RT: Did not find any exposures were predictive of the outcome.
 First splits occurred on (in order) X14, X10, X5, X1, X6, X11.
- 2. How much did the exposures contribute to the outcome?
 - PCA: Final model

$$E(Y) = 3.8 + \underline{0.15 \times rotPC1} + 0.05 \times rotPC2 + \underline{0.10 \times rotPC3} + \\ \underline{0.08 \times rotPC4} + 0.03 \times rotPC5 + 0.05 \times rotPC6 + confounders$$

- The final model explained 51.2% of the variability in Y.
- The likelihood ratio test demonstrated that the final model fit the data better than a model using the confounders alone (p < 0.01).
- C&RT: Exposures did not significantly contribute to the outcome using cross validation.

Results

- 3. Was there evidence of interactions?
 - PCA: We found some evidence of interaction between rotPC1 and rotPC3.
 - C&RT: Difficult to evaluate interactions.
- 4. What was the effect of joint exposure to the mixture?
 - PCA: Final model

$$E(Y) = 3.8 + 0.15 \times rotPC1 + 0.05 \times rotPC2 + 0.10 \times rotPC3 + 0.08 \times rotPC4 + 0.03 \times rotPC5 + 0.05 \times rotPC6 + confounders$$

 C&RT: Un-pruned tree indicates that increased exposures were generally associated with increased Y.

Reflection

Did PCA get the right answer?

- True exposures all contributed to the rPC groups most associated with Y
- Could not determine which exposures were most important using PCA
- Varimax rotation yields results closest to truth

PCA approach		Truth	Z3 = 0	Z3 = 1
rotPC1	0.15	X14	0.10	0.10
		X4	0.05	0.05
rotPC2	0.05	X12	0.50	0
rotPC3	0.10	X11	0.10	0.10
rotPC4	0.08	X6	0.10	0
rotPC5	0.03	X2	0	0
rotPC6	0.05	X1	0	0.01

Reflection

Did C&RT get the right answer?

- No splits were predictive of the outcome
- Associations were mostly in the correct direction
- X4 and X12 not in the top splits

Summary

Strengths and weaknesses

- Both approaches are easy to apply and are implemented in most statistical packages.
- A lack of consistency between unsupervised and supervised approaches may indicate uncertainty in the results.
- Each approach has its own strengths and limitations.
 - PCA: Groups correlated exposures together, but resulting PCs may not be very interpretable.
 - C&RT: Fewer assumptions, but does not find exposures predictive of the outcome in the presence of strong confounding. It is difficult to add complexity to the model.

Next steps

 Compare PCA approach and C&RT to other supervised and unsupervised approaches.