1. Graph Basics

Figure 1: An undirected graph G_1 with 5 vertices and 7 edges

Figure 2: A directed graph G_2 with 5 vertices and 7 edges.

a. Representation: Adjacency List, Adjacency Matrix What is the adjacency matrix and adjacency list of G_1 and G_2 , respectively?

	1	2	3	4	5
1	0	1	0	0	0
2 3	1	0	1	1	1
3	0	1	0	1	0
4 5	0	1	1	0	1
5	1	1	0	1	0

Figure 3: Adjacency list and adjacency matrix representation of G_1

How about G_2 ? It's your turn now!

Discussion 8

- 1. Adjacency matrix needs $\Theta(|V| \times |E|)$ storage space while adjacency list requires $\Theta(|V| + |E|)$.
- 2. If G is undirected, its adjacency matrix A is symmetric. Namely, $A^T = A$. Further, the main diagonal entries of A are all zeros.
- 3. **Self-loops**—edges from a vertex to itself—are possible in a directed graph, but are forbidden in an undirected graph.

b. Degree

- 1. $\sum_{u \in V} \text{degree}(u) = 2|E|$, where G is an undirected graph.
- 2. $\sum_{u \in V} \text{out-degree}(u) = \sum_{u \in V} \text{in-degree}(u) = |E|$, where G is a directed graph.
- 3. degree(u) = out-degree(u) + in-degree(u), where $u \in V$ and G is a directed graph.
- 4. A vertex whose degree is 0 is **isolated**.
- c. Path, Connected Component
 - 1. A **path** of length k from a vertex u to a vertex u' in a graph $G = \langle V, E \rangle$ is a sequence $\langle v_0, v_1, v_2, ..., v_k \rangle$ of vertices such that $u = v_0, u' = v_k$.
 - 2. An undirected graph is **connected** if every vertex is reachable from all other vertices.
 - 3. A directed graph is **strongly connected** if every two vertices are reachable from each other.

2. BFS and DFS

```
BFS(G, s)
    # G: input graph; s: source vertex
    for each vertex u \in V - \{s\}
 3
         d[u] = +INFTY
 4
    d[s] = 0
 6
    // create FIFO queue
    Q = \text{EMPTY}
    ENQUEUE(G, s)
9
    while Q not EMPTY
         u = \text{Dequeue}(G)
10
11
         for each v \in Adj[u]
12
              if d[v] = +INFTY
                   d[v] = d[u] + 1
13
14
                   Engueue(G, v)
15
    return d
```

Discussion 8

```
DFS(G)
   for each vertex u \in V
        u.color = White
2
   time=0
   for each vertex u \in V
4
5
        if u.color = White
             DFS-Visit(u)
6
DFS-Visit(u)
 1 /\!\!/ white vertex u has just been discovered
   time = time + 1
 3
   u.discover = time
   u.color = Gray
 5
 6
   /\!\!/ explore edge (u, v)
   for each vertex u \in Adj[u]
 7
 8
         if u.color = White
              DFS-VISIT(u)
 9
10
11
   /\!\!/ blacken u, it is finished
12 \quad u.color = Black
13 \quad time = time + 1
14 \quad u.finish = time
```