Notes of Ilya Prigogine's – $Modern\ Dynamics$

Regoon Wang, ChemE@UNSW wang.regoon@gmail.com

October 2, 2013

Contents

Ι	Hi	storical Roots			
1	The	e Basic Concepts			
	1.1	Thermodynamic Systems			
	1.2	Equilibrium and Nonequilibrium Systems			
	1.3	Temperature, Heat and Quantitative Laws of Gases			
	1.4	States of Matter and the van der Walls Equation			
2	The First Law of Thermodynamics				
	2.1	The Nature of Heat			
	2.2	The First Law of Thermodynamics: Convservation of Energy			
	2.3	Elementary Applications of the First Law			
	2.4	Elementary Applications of the First Law			
	2.5	Thermochemistry: Conservation of Energy in Chemical Reactions			
	2.6	Extent of Reaction: A State Variable for Chemical Systems			
	2.7	Convservation of Energy in Nuclear Reactions			
3	The Second Law of Thermodynamics and The Arrow of Time				
	3.1	The Birth of the Second Law			
	3.2	The Absolute Scale of Temperature			
	3.3	The Second Law and the Comcept of Entropy			
	3.4	Entropy, Reversible and Irreversible Processes			
	3.5	Examples of Entropy Changes due to Irreversible Processes			
	3.6	Entropy Changes Associated with Phase Transformations			
	3.7	Entropy of an Ideal Gas			
	3.8	Remarks on the Second Law and Irreversible Processes			
4	Entropy in The Realm of Chemical Reactions				
	4.1	Chemical Potential and Affinity: The Driving Force of Chemical Reactions .			
	4.2	General Properties of Affinity			
	4.3	Entropy Production due to Diffusion			
	4.4	General Properties of Entropy			

Η	Equilibrium Thermodynamics	10
5	Extermum Principles and General Thermodynamic Relations 5.1 Extremum Priciples and the Second Law 5.2 General Thermodynamic Relations 5.3 Gibbs Free Energy of Formation and Chemical Potential 5.4 Maxwell Relations 5.5 Extensivity and Partial Molar Quantities 5.6 Surface Tension	11 11 11 11 11 11
6	Basic Thermodynamics of Gases, Liquids and Solids 6.1 Thermodynamics of Ideal Gases	12 12 12 12
7	Phase Change7.1 Phase Equilibrium and Phase Diagrams7.2 The Gibbs Phase Rule and Duhem's Theorem7.3 Binary and Ternary Systems7.4 Maxwell's Construction and the Lever Rule7.5 Phase Transitions	13 13 13 13 13
8	Solutions 8.1 Ideal and Nonideal Solutions	14 14 14 14 14
9	Chemical Transformations 9.1 Transformations of Matter 9.2 Chemical Reaction Rates 9.3 Chemical Equilibrium and the Law of Mass Action 9.4 The Principle of Detailed Balance 9.5 Entropy Production due to Chemical Reactions	15 15 15 15 15
10	Fields and Internal Degrees of Freedom 10.1 Chemical Potential in a Field	16 16 16 16
11	Thermodynamics of Radiation 11.1 Energy Density and Intensity of Thermal Radiation	17 17 17 17

	11.4 Wien's Theorem	17
Η	I Fluctions and Stability	18
12	The Gibbs Stability Theory	19
	12.1 Classical Stability Theory	
	12.2 Thermal Stability	
	12.3 Mechanical Stability	
	12.4 Stability and Fluctuations in Mole Number	19
13	Critical Phenomena and Configurational Heat Capacity	20
	13.1 Stability and Critical Phenomena	
	13.2 Stability and Critical Phenomena in Binary Solutions	
	13.3 Configurational Heat Capacity	20
14	Stability and Fluctuations Based on Entropy Production	21
	14.1 Stability and Entropy Productions	
	14.2 Thermodynamic Theory of Fluctuations	21
т.		96
IX	Linear Nonequilibrium Thermodynamics	22
15	Nonequilibrium Thermodynamics: The Foundations	23
	15.1 Local Equilibrium	
	15.2 Local Entropy Production	
	15.3 Balance Equation for Concentration	
	15.4 Energy Conservation in Open Systems	
	15.5 The Entropy Balance Equation	25
16	Nonequilibrium Thermodynamics: The Linear Regime	2 4
	16.1 Linear Phenomenological Laws	$\cdot \cdot \cdot 2$
	40.0 O D 1 1D 1 11 0 11 0 D 1 11	
	16.2 Onsager Reciprocal Relations and the Symmetry Principle	24
	16.3 Thermoelectric Phenomena	24 24
	16.3 Thermoelectric Phenomena	24 24
	16.3 Thermoelectric Phenomena	$\begin{array}{ccc} . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \end{array}$
	16.3 Thermoelectric Phenomena16.4 Diffusion	$\begin{array}{cccc} . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \end{array}$
	16.3 Thermoelectric Phenomena	$\begin{array}{cccc} . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \end{array}$
	16.3 Thermoelectric Phenomena16.4 Diffusion	$\begin{array}{cccc} . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \\ . & . & 2^{2} \end{array}$
17	16.3 Thermoelectric Phenomena 16.4 Diffusion	$egin{array}{cccccccccccccccccccccccccccccccccccc$
17	16.3 Thermoelectric Phenomena 16.4 Diffusion	$egin{array}{cccccccccccccccccccccccccccccccccccc$
17	16.3 Thermoelectric Phenomena 16.4 Diffusion	24 24 24 24 24 24 24 24 24 25 25

\mathbf{V}	Order Through Fluctuations	26
18	Nonlinear Thermodynamics	27
	18.1 Far-From-Equilibrium Systems	27
	18.2 General Properties of Entropy Production	27
	18.3 Stability of Noneuilibrium Staionary States	
	18.4 Linear Stability Analysis	
19	Dissipative Structures	28
	19.1 The Constructive Role of Irreversible Processes	28
	19.2 Loss of Stability, Bifurcation and Symmetry Breaking	28
	19.3 Chiral Symmetry Breaking and Life	28
	19.4 Chemical Oscillations	28
	19.5 Turing Structures and Propagating Waves	
	19.6 Structural Instability and Biochemical Evolution	
20	Where Do We Go From Here	29
	20.1 References	29

Part I Historical Roots

The Basic Concepts

- 1.1 Thermodynamic Systems
- 1.2 Equilibrium and Nonequilibrium Systems
- 1.3 Temperature, Heat and Quantitative Laws of Gases
- 1.4 States of Matter and the van der Walls Equation

The First Law of Thermodynamics

- 2.1 The Nature of Heat
- 2.2 The First Law of Thermodynamics: Convservation of Energy
- 2.3 Elementary Applications of the First Law
- 2.4 Elementary Applications of the First Law
- 2.5 Thermochemistry: Conservation of Energy in Chemical Reactions
- 2.6 Extent of Reaction: A State Variable for Chemical Systems
- 2.7 Convservation of Energy in Nuclear Reactions

The Second Law of Thermodynamics and The Arrow of Time

- 3.1 The Birth of the Second Law
- 3.2 The Absolute Scale of Temperature
- 3.3 The Second Law and the Comcept of Entropy
- 3.4 Entropy, Reversible and Irreversible Processes
- 3.5 Examples of Entropy Changes due to Irreversible Processes
- 3.6 Entropy Changes Associated with Phase Transformations
- 3.7 Entropy of an Ideal Gas
- 3.8 Remarks on the Second Law and Irreversible Processes

Entropy in The Realm of Chemical Reactions

- 4.1 Chemical Potential and Affinity: The Driving Force of Chemical Reactions
- 4.2 General Properties of Affinity
- 4.3 Entropy Production due to Diffusion
- 4.4 General Properties of Entropy

Part II Equilibrium Thermodynamics

Extermum Principles and General Thermodynamic Relations

- 5.1 Extremum Priciples and the Second Law
- 5.2 General Thermodynamic Relations
- 5.3 Gibbs Free Energy of Formation and Chemical Potential
- 5.4 Maxwell Relations
- 5.5 Extensivity and Partial Molar Quantities
- 5.6 Surface Tension

Basic Thermodynamics of Gases, Liquids and Solids

- 6.1 Thermodynamics of Ideal Gases
- 6.2 Thermodynamics of Real Gases
- 6.3 Thermodynamics Quantities for Pure Liquids and Solids

Phase Change

- 7.1 Phase Equilibrium and Phase Diagrams
- 7.2 The Gibbs Phase Rule and Duhem's Theorem
- 7.3 Binary and Ternary Systems
- 7.4 Maxwell's Construction and the Lever Rule
- 7.5 Phase Transitions

Solutions

- 8.1 Ideal and Nonideal Solutions
- 8.2 Colligative Properties
- 8.3 Solubility Equilibrium
- 8.4 Mixing and Excess Functions
- 8.5 Azeotropy

Chemical Transformations

- 9.1 Transformations of Matter
- 9.2 Chemical Reaction Rates
- 9.3 Chemical Equilibrium and the Law of Mass Action
- 9.4 The Principle of Detailed Balance
- 9.5 Entropy Production due to Chemical Reactions

Fields and Internal Degrees of Freedom

- 10.1 Chemical Potential in a Field
- 10.2 Membranes and Electrochemical Cells
- 10.3 Diffusion
- 10.4 Chemical Potential for an Internal Degree of Freedom

Thermodynamics of Radiation

- 11.1 Energy Density and Intensity of Thermal Radiation
- 11.2 The Equation of State
- 11.3 Entropy and Adiabatic Processes
- 11.4 Wien's Theorem
- 11.5 Chemical Potential for Thermal Radiation
- 11.6 Matter, Radiation and Zero Chemical Potential

Part III Fluctions and Stability

The Gibbs Stability Theory

- 12.1 Classical Stability Theory
- 12.2 Thermal Stability
- 12.3 Mechanical Stability
- 12.4 Stability and Fluctuations in Mole Number

Critical Phenomena and Configurational Heat Capacity

- 13.1 Stability and Critical Phenomena
- 13.2 Stability and Critical Phenomena in Binary Solutions
- 13.3 Configurational Heat Capacity

Stability and Fluctuations Based on Entropy Production

- 14.1 Stability and Entropy Productions
- 14.2 Thermodynamic Theory of Fluctuations

Part IV Linear Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics: The Foundations

- 15.1 Local Equilibrium
- 15.2 Local Entropy Production
- 15.3 Balance Equation for Concentration
- 15.4 Energy Conservation in Open Systems
- 15.5 The Entropy Balance Equation

Nonequilibrium Thermodynamics: The Linear Regime

- 16.1 Linear Phenomenological Laws
- 16.2 Onsager Reciprocal Relations and the Symmetry Principle
- 16.3 Thermoelectric Phenomena
- 16.4 Diffusion
- 16.5 Chemical Reactions
- 16.6 Heat Conduction in Anisotropic Solids
- 16.7 Electrokinetic Phenomena and the Saxen Relations
- 16.8 Thermal Diffusion

Nonequilibrium Stationary States and Their Stability: Linear Regime

- 17.1 Stationary States under Nonequilibrium Conditions
- 17.2 The Theorem of Minimum Entropy Production
- 17.3 Time Variation of Entropy Production and the Stability of Stationary States

${\bf Part~V}$ ${\bf Order~Through~Fluctuations}$

Nonlinear Thermodynamics

- 18.1 Far-From-Equilibrium Systems
- 18.2 General Properties of Entropy Production
- 18.3 Stability of Noneuilibrium Staionary States
- 18.4 Linear Stability Analysis

Dissipative Structures

- 19.1 The Constructive Role of Irreversible Processes
- 19.2 Loss of Stability, Bifurcation and Symmetry Breaking
- 19.3 Chiral Symmetry Breaking and Life
- 19.4 Chemical Oscillations
- 19.5 Turing Structures and Propagating Waves
- 19.6 Structural Instability and Biochemical Evolution

Where Do We Go From Here

20.1 References