Machine Learning Techniques

(機器學習技法)

Lecture 5: Kernel Logistic Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 4: Soft-Margin Support Vector Machine

allow some margin violations ξ_n while penalizing them by C; equivalent to upper-bounding α_n by C

Lecture 5: Kernel Logistic Regression

- Soft-Margin SVM as Regularized Model
- SVM versus Logistic Regression
- SVM for Soft Binary Classification
- Kernel Logistic Regression
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Wrap-Up

Hard-Margin Primal

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$

Hard-Margin Primal

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$

Hard-Margin Dual

 $\min_{\alpha} \qquad \frac{1}{2} \alpha^T Q \alpha - \mathbf{1}^T \alpha$

s.t. $\mathbf{y}^T \alpha = 0$

 $0 \le \alpha_n$

Wrap-Up

s.t.

Hard-Margin Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) > 1$$

Soft-Margin Primal

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + \frac{C}{C} \sum_{n=1}^{N} \xi_{n}$$
s.t.
$$y_{n}(\mathbf{w}^{T}\mathbf{z}_{n} + b) \geq 1 - \xi_{n}, \xi_{n} \geq 0$$

Hard-Margin Dual

$$\min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0$$

$$0 \leq \alpha_n$$

Hard-Margin Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$$

Soft-Margin Primal

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \xi_n$$

s.t. $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n, \xi_n \ge 0$

Hard-Margin Dual

$$\begin{aligned} \min_{\alpha} & \quad \frac{1}{2} \alpha^T \mathbf{Q} \alpha - \mathbf{1}^T \alpha \\ \text{s.t.} & \quad \mathbf{y}^T \alpha = \mathbf{0} \end{aligned}$$

$$0 \leq \alpha_n$$

Soft-Margin Dual

$$\min_{\alpha} \qquad \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{1}^{T} \alpha$$

s.t.
$$\mathbf{y}^T \alpha = 0$$

$$0 \le \alpha_n \le C$$

Hard-Margin Primal

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \geq 1$$

Soft-Margin Primal

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n, \xi_n \ge 0$$

Hard-Margin Dual

$$\begin{aligned} \min_{\alpha} & \quad \frac{1}{2} \alpha^{T} \mathbf{Q} \alpha - \mathbf{1}^{T} \alpha \\ \text{s.t.} & \quad \mathbf{y}^{T} \alpha = 0 \end{aligned}$$

 $0 < \alpha_n$

Soft-Margin Dual

min
$$\frac{1}{2}\alpha^{T}Q\alpha - \mathbf{1}^{T}\alpha$$

s.t. $\mathbf{y}^{T}\alpha = 0$
 $0 < \alpha_{n} < C$

soft-margin preferred in practice; linear: LIBLINEAR; non-linear: LIBSVM

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\xi} \qquad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_{n}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b, \mathbf{w}, \xi} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{2} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

on any
$$(b, \mathbf{w})$$
, $\xi_n = \mathbf{margin \ violation} = \mathbf{max}($

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{2} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n \text{ and } \xi_n \ge 0 \text{ for all } n$$

on any
$$(b, \mathbf{w})$$
, $\xi_n = \mathbf{margin \ violation} = \max($

• $(\mathbf{x}_n, \mathbf{y}_n)$ violating margin: $\xi_n =$

,)

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

on any
$$(b, \mathbf{w})$$
, $\xi_n = \mathbf{margin \ violation} = \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), \)$

• (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 - y_n(\mathbf{w}^T \mathbf{z}_n + b)$

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b,\mathbf{w},\boldsymbol{\xi}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}}{2} \cdot \sum_{n=1}^N \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

on any
$$(b, \mathbf{w})$$
, $\xi_n = \mathbf{margin \ violation} = \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), \)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- $(\mathbf{x}_n, \mathbf{y}_n)$ not violating margin: $\xi_n =$

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{b, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

on any
$$(b, \mathbf{w})$$
, $\xi_n =$ margin violation $= \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- (\mathbf{x}_n, y_n) not violating margin: $\xi_n = 0$

- record 'margin violation' by ξ_n
- penalize with margin violation

$$\min_{\boldsymbol{b}, \mathbf{w}, \boldsymbol{\xi}} \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\mathbf{C}}{\mathbf{C}} \cdot \sum_{n=1}^{N} \xi_n$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 - \xi_n$$
 and $\xi_n \ge 0$ for all n

on any
$$(b, \mathbf{w})$$
, $\xi_n = \mathbf{margin\ violation} = \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$

- (\mathbf{x}_n, y_n) violating margin: $\xi_n = 1 y_n(\mathbf{w}^T \mathbf{z}_n + b)$
- (\mathbf{x}_n, y_n) not violating margin: $\xi_n = 0$

'unconstrained' form of soft-margin SVM:

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

familiar? :-)

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

familiar? :-)
$$\min \qquad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \mathbf{C} \sum \widehat{\text{err}}$$

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

min $\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}\sum \widehat{\text{err}}$

just L2 regularization

min $\frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{err}$

with shorter w, another parameter, and special err

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

familiar? :-)

min
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}\sum \widehat{\text{err}}$$

just L2 regularization

min $\frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{err}$

with shorter w, another parameter, and special err

why not solve this? :-)

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

min
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}\sum \widehat{\text{err}}$$

just L2 regularization

min $\frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{err}$

with shorter w, another parameter, and special err

why not solve this? :-)

not QP, no (?) kernel trick

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{C}\sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

familiar? :-)

$$\min \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + \mathbf{C}\sum \widehat{\mathrm{err}}$$

just L2 regularization

min $\frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum \text{err}$

with shorter w, another parameter, and special err

why not solve this? :-)

- not QP, no (?) kernel trick
- $max(\cdot, 0)$ not differentiable, harder to solve

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T \mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\text{in}} = 0$ [and more]

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T \mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{C}{N}\widehat{E_{in}}$	

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T\mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}}{N}\widehat{E_{\text{in}}}$	

large margin \Longleftrightarrow fewer hyperplanes \Longleftrightarrow L2 regularization of short ${\bf w}$

	minimize	constraint
regularization by constraint	<i>E</i> in	$\mathbf{w}^T\mathbf{w} \leq \mathbf{C}$
hard-margin SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}}{N}\widehat{E_{\text{in}}}$	

large margin \iff fewer hyperplanes \iff L2 regularization of short \mathbf{w} soft margin \iff special $\widehat{\mathrm{err}}$

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T\mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}}{N}\widehat{E_{\text{in}}}$	

large margin \Longleftrightarrow fewer hyperplanes \Longleftrightarrow L2 regularization of short ${\bf w}$

 $\text{soft margin} \Longleftrightarrow \text{special } \widehat{\text{err}}$

larger ${\it C}$ or ${\it C} \Longleftrightarrow$ smaller $\lambda \Longleftrightarrow$ less regularization

	minimize	constraint
regularization by constraint	E _{in}	$\mathbf{w}^T\mathbf{w} \leq \frac{\mathbf{C}}{\mathbf{C}}$
hard-margin SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\text{in}} = 0$ [and more]
L2 regularization	$\frac{\lambda}{N}\mathbf{w}^T\mathbf{w} + E_{in}$	
soft-margin SVM	$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\mathbf{C}N\widehat{E_{in}}}{2}$	

large margin \iff fewer hyperplanes \iff L2 regularization of short \mathbf{w}

 $\text{soft margin} \Longleftrightarrow \text{special } \widehat{\text{err}}$

larger \mathcal{C} or $\mathcal{C} \iff$ smaller $\lambda \iff$ less regularization

viewing SVM as regularized model:

allows extending/connecting to other learning models

Fun Time

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- **1** a larger λ , that is, stronger regularization
- **2** a smaller λ , that is, stronger regularization
- \odot a larger λ , that is, weaker regularization
- $oldsymbol{4}$ a smaller λ , that is, weaker regularization

Fun Time

When viewing soft-margin SVM as regularized model, a larger *C* corresponds to

- $oldsymbol{0}$ a larger λ , that is, stronger regularization
- $oldsymbol{2}$ a smaller λ , that is, stronger regularization
- \odot a larger λ , that is, weaker regularization
- $oldsymbol{4}$ a smaller λ , that is, weaker regularization

Reference Answer: 4

Comparing the formulations on page 4 of the slides, we see that C corresponds to $\frac{1}{2\lambda}$. So larger C corresponds to smaller λ , which surely means weaker regularization.

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \frac{\mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

• $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \frac{\mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$

$$\min_{b,\mathbf{w}} \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \frac{\mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- err_{SVM}(s, y) = max(1 ys, 0): upper bound of err_{0/1}
 —often called hinge error measure

$$\min_{b,\mathbf{w}} \qquad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{n=1}^N \max(1 - \frac{\mathbf{y}_n(\mathbf{w}^T\mathbf{z}_n + b), 0)$$

linear score
$$s = \mathbf{w}^T \mathbf{z}_n + b$$

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
 - —often called hinge error measure

err_{SVM}: algorithmic error measure by convex upper bound of err_{0/1}

Connection between SVM and Logistic Regression

```
linear score s = \mathbf{w}^T \mathbf{z}_n + b
```

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$

Connection between SVM and Logistic Regression

linear score $s = \mathbf{w}^T \mathbf{z}_n + b$

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

Connection between SVM and Logistic Regression

linear score $s = \mathbf{w}^T \mathbf{z}_n + b$

- $err_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

 $-\infty$

VS

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\widehat{\text{err}}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\widehat{\text{err}}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\widehat{\text{err}}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

- $\operatorname{err}_{0/1}(s, y) = [ys \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\widehat{\text{err}}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

linear score $s = \mathbf{w}^T \mathbf{z}_n + b$

- $\operatorname{err}_{0/1}(s, y) = [y \le 0]$
- $\widehat{\text{err}}_{\text{SVM}}(s, y) = \max(1 ys, 0)$: upper bound of $\operatorname{err}_{0/1}$
- $err_{SCE}(s, y) = log_2(1 + exp(-ys))$: another upper bound of $err_{0/1}$ used in **logistic regression**

SVM ≈ L2-regularized logistic regression

PLA

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

PLA

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

regularized logistic regression for classification

minimize regularized err_{SCF} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative ys

PLA

soft-margin SVM

regularized logistic regression for classification

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket minimize regularized $\widehat{\operatorname{err}}_{\mathsf{SVM}}$ by QP

minimize regularized err_{SCE} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative vs

PLA

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

soft-margin SVM

minimize regularized $\widehat{\operatorname{err}}_{\operatorname{SVM}}$ by QP

pros: 'easy'
optimization &
theoretical
guarantee

regularized logistic regression for classification

minimize regularized err_{SCE} by GD/SGD/...

- pros: 'easy'
 optimization &
 regularization
 guard
- cons: loose bound of err_{0/1} for very negative ys

PLA

$\begin{array}{c} \text{minimize} \\ \text{err}_{0/1} \text{ specially} \end{array}$

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

soft-margin SVM

minimize regularized $\widehat{\operatorname{err}}_{\operatorname{SVM}}$ by QP

- pros: 'easy'

 optimization &
 theoretical
 guarantee
 - cons: loose bound of err_{0/1} for very negative ys

regularized logistic regression for classification

minimize regularized err_{SCF} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative ys

PLA

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

soft-margin SVM

minimize regularized $\widehat{\operatorname{err}}_{\mathsf{SVM}}$ by QP

- pros: 'easy'
 optimization &
 theoretical
 guarantee
 - cons: loose bound of err_{0/1} for very negative ys

regularized logistic regression for classification

minimize regularized err_{SCF} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative ys

regularized LogReg \Longrightarrow approximate SVM

PLA

minimize err_{0/1} specially

 pros: efficient if lin. separable

 cons: works only if lin. separable, otherwise needing pocket

soft-margin SVM

minimize regularized $\widehat{\operatorname{err}}_{\operatorname{SVM}}$ by QP

- pros: 'easy'
 optimization &
 theoretical
 guarantee
 - bound of err_{0/1} for very negative *ys*

regularized logistic regression for classification

minimize regularized err_{SCF} by GD/SGD/...

- pros: 'easy' optimization & regularization guard
- cons: loose bound of err_{0/1} for very negative ys

regularized LogReg ⇒ approximate SVM SVM ⇒ approximate LogReg (?)

Fun Time

We know that $\widehat{\operatorname{err}}_{\text{SVM}}(s,y)$ is an upper bound of $\operatorname{err}_{0/1}(s,y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{\text{SVM}}(s,y) = \operatorname{err}_{0/1}(s,y)$?

- $2 ys \leq 0$
- 3 $ys \ge 1$
- **4** $ys \le 1$

Fun Time

We know that $\widehat{\operatorname{err}}_{\operatorname{SVM}}(s,y)$ is an upper bound of $\operatorname{err}_{0/1}(s,y)$. When is the upper bound tight? That is, when is $\widehat{\operatorname{err}}_{\operatorname{SVM}}(s,y) = \operatorname{err}_{0/1}(s,y)$?

- 1 $ys \ge 0$
- 2 $ys \leq 0$
- 3 $ys \ge 1$
- 4 $ys \leq 1$

Reference Answer: (3)

By plotting the figure, we can easily see that $\widehat{\text{err}}_{\text{SVM}}(s,y) = \text{err}_{0/1}(s,y)$ if and only if $ys \geq 1$. In that case, both error functions evaluate to 0.

Naïve Idea 1

1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\text{SVM}}^T \mathbf{x} + b_{\text{SVM}})$

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{SVM}^T \mathbf{x} + b_{SVM})$

'direct' use of similarity
 —works reasonably well

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{SVM}^T \mathbf{x} + b_{SVM})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\text{SVM}}^T \mathbf{x} + b_{\text{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^T \mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

Naïve Idea 2

1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\text{SVM}}^T \mathbf{x} + b_{\text{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^T \mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0
- **3** return LogReg solution as $g(\mathbf{x})$

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^{\mathsf{T}}\mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0
- **3** return LogReg solution as $g(\mathbf{x})$
 - not really 'easier' than original LogReg

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^T \mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0
- **3** return LogReg solution as $g(\mathbf{x})$
 - not really 'easier' than original LogReg
 - SVM flavor (kernel?) lost

Naïve Idea 1

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 return $g(\mathbf{x}) = \theta(\mathbf{w}_{\mathsf{SVM}}^{\mathsf{T}}\mathbf{x} + b_{\mathsf{SVM}})$

- 'direct' use of similarity
 —works reasonably well
- no LogReg flavor

Naïve Idea 2

- 1 run SVM and get $(b_{SVM}, \mathbf{w}_{SVM})$
- 2 run LogReg with $(b_{SVM}, \mathbf{w}_{SVM})$ as \mathbf{w}_0
- 3 return LogReg solution as $g(\mathbf{x})$
 - not really 'easier' than original LogReg
- SVM flavor (kernel?) lost

want: flavors from both sides

$$g(\mathbf{x}) = \theta((\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}))$$

• SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if \mathbf{w}_{SVM} reasonably good

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often $B \approx 0$ if b_{SVM} reasonably good

$$\mathbf{g}(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often $B \approx 0$ if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{A,B} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\underbrace{A} \cdot \left(\underbrace{\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}} \right) + \underbrace{B} \right) \right) \right)$$

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often $B \approx 0$ if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{A,B} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\underbrace{A} \cdot \left(\underbrace{\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}}_{\mathbf{\Phi}_{\text{SVM}}(\mathbf{x}_n)} \right) + \underbrace{B} \right) \right) \right)$$

$$g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}}) + \mathbf{B})$$

- SVM flavor: fix hyperplane direction by w_{SVM}—kernel applies
- LogReg flavor: fine-tune hyperplane to match maximum likelihood by scaling (A) and shifting (B)
 - often A > 0 if w_{SVM} reasonably good
 - often $B \approx 0$ if b_{SVM} reasonably good

new LogReg Problem:

$$\min_{\mathbf{A},\mathbf{B}} \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \left(\mathbf{A} \cdot (\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}) + \mathbf{B} \right) \right) \right)$$

two-level learning:

LogReg on SVM-transformed data

Platt's Model of Probabilistic SVM for Soft Binary Classification

Platt's Model of Probabilistic SVM for Soft Binary Classification

1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$

Platt's Model of Probabilistic SVM for Soft Binary Classification

- 1 run SVM on $\mathcal D$ to get $(b_{\text{SVM}}, \mathbf w_{\text{SVM}})$ [or the equivalent α], and transform $\mathcal D$ to $\mathbf z_n' = \mathbf w_{\text{SVM}}^T \mathbf \Phi(\mathbf x_n) + b_{\text{SVM}}$
 - -actual model performs this step in a more complicated manner

Platt's Model of Probabilistic SVM for Soft Binary Classification

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$
 - -actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)
 - -actual model adds some special regularization here

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})$

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \frac{\theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})}{\mathbf{B}}$
 - soft binary classifier not having the same boundary as SVM classifier

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \frac{\theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})}{\mathbf{B}}$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \frac{\theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})}{\mathbf{B}}$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B
 - how to solve LogReg: GD/SGD/or better

- 1 run **SVM** on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)
 - -actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B
 - how to solve LogReg: GD/SGD/or better
 - -because only two variables

Platt's Model of Probabilistic SVM for Soft Binary Classification

- 1 run SVM on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$ —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \frac{\theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})}{\theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})}$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B
 - how to solve LogReg: GD/SGD/or better
 - -because only two variables

kernel SVM \Longrightarrow approx. LogReg in \mathcal{Z} -space

Platt's Model of Probabilistic SVM for Soft Binary Classification

- **1** run **SVM** on \mathcal{D} to get $(b_{\text{SVM}}, \mathbf{w}_{\text{SVM}})$ [or the equivalent α], and transform \mathcal{D} to $\mathbf{z}'_n = \mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}_n) + b_{\text{SVM}}$
- —actual model performs this step in a more complicated manner
- 2 run LogReg on $\{(\mathbf{z}'_n, y_n)\}_{n=1}^N$ to get (A, B)—actual model adds some special regularization here
- 3 return $g(\mathbf{x}) = \theta(\mathbf{A} \cdot (\mathbf{w}_{SVM}^T \mathbf{\Phi}(\mathbf{x}) + b_{SVM}) + \mathbf{B})$
 - soft binary classifier not having the same boundary as SVM classifier
 - —because of B
 - how to solve LogReg: GD/SGD/or better
 - —because only two variables

kernel SVM \Longrightarrow approx. LogReg in \mathcal{Z} -space exact LogReg in \mathcal{Z} -space?

Fun Time

Recall that the score $\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}} = \sum_{\text{SV}} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b_{\text{SVM}}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

- $\bullet \left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$
- 2 $\theta \left(\sum_{SV} B \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + B b_{SVM} + A \right)$
- 3 $\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$
- $\theta \left(\sum_{SV} A \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + A b_{SVM} + B \right)$

Fun Time

Recall that the score $\mathbf{w}_{\text{SVM}}^T \mathbf{\Phi}(\mathbf{x}) + b_{\text{SVM}} = \sum_{\text{SV}} \alpha_n \mathbf{y}_n K(\mathbf{x}_n, \mathbf{x}) + b_{\text{SVM}}$ for the

kernel SVM. When coupling the kernel SVM with (A, B) to form a probabilistic SVM, which of the following is the resulting $g(\mathbf{x})$?

$$\bullet \left(\sum_{SV} B\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

2
$$\theta \left(\sum_{SV} B \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + B b_{SVM} + A \right)$$

3
$$\theta\left(\sum_{SV} A\alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b_{SVM}\right)$$

$$4 \theta \left(\sum_{SV} A \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + A b_{SVM} + B \right)$$

Reference Answer: (4)

We can simply plug the kernel formula of the score into $q(\mathbf{x})$.

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} \mathbf{z}_n^T \mathbf{z} =$$

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n \mathbf{z}_n^T \mathbf{z}}{\beta_n \mathbf{z}_n^T \mathbf{z}} = \sum_{n=1}^N \frac{\beta_n K(\mathbf{x}_n, \mathbf{x})}{\beta_n K(\mathbf{x}_n, \mathbf{z})}$$

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\mathbf{z}_n^T} \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} K(\mathbf{x}_n, \mathbf{x})$$

SVM

$$\mathbf{w}_{\text{SVM}} = \sum_{n=1}^{N} (\alpha_n \mathbf{y}_n) \mathbf{z}_n$$

 α_n from dual solutions

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^{N} \beta_n \mathbf{z}_n$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} \mathbf{z}_n^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} K(\mathbf{x}_n, \mathbf{x})$$

SVM

$\mathbf{w}_{ extsf{SVM}} = \sum_{n=1}^{N} (lpha_{n} \mathbf{y}_{n}) \mathbf{z}_{n}$

 α_n from dual solutions

PLA

$$\mathbf{w}_{\mathsf{PLA}} = \sum_{n=1}^{N} (\alpha_n y_n) \mathbf{z}_n$$

 α_n by # mistake corrections

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^N \frac{\beta_n \mathbf{z}_n}{n}$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} \mathbf{z}_n^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} K(\mathbf{x}_n, \mathbf{x})$$

SVM

$\mathbf{w}_{\text{SVM}} = \sum_{n=1}^{N} (\alpha_n \mathbf{y}_n) \mathbf{z}_n$

 α_n from dual solutions

PLA

$$\mathbf{w}_{\mathsf{PLA}} = \sum_{n=1}^{N} (\alpha_{n} \mathbf{y}_{n}) \mathbf{z}_{n}$$

 α_n by # mistake corrections

LogReg by SGD

$$\mathbf{W}_{\mathsf{LOGREG}} = \sum_{n=1}^{N} (\alpha_n \mathbf{y}_n) \mathbf{z}_n$$

 α_n by total SGD moves

one key behind kernel trick: optimal
$$\mathbf{w}_* = \sum_{n=1}^N \frac{\beta_n \mathbf{z}_n}{n}$$

because
$$\mathbf{w}_*^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} \mathbf{z}_n^T \mathbf{z} = \sum_{n=1}^N \frac{\beta_n}{\beta_n} K(\mathbf{x}_n, \mathbf{x})$$

SVM

$\mathbf{w}_{ extsf{SVM}} = \sum_{n=1}^{N} (\alpha_{n} \mathbf{y}_{n}) \mathbf{z}_{n}$

 α_n from dual solutions

PLA

$$\mathbf{w}_{\mathsf{PLA}} = \sum_{n=1}^{N} (\alpha_n \mathbf{y}_n) \mathbf{z}_n$$

 α_n by # mistake corrections

LogReg by SGD

$$\mathbf{w}_{\mathsf{LOGREG}} = \sum_{n=1}^{N} (\alpha_n \mathbf{y}_n) \mathbf{z}_n$$

 α_n by total SGD moves

when can optimal \mathbf{w}_* be represented by \mathbf{z}_n ?

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal
$$\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$$
.

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \frac{\beta_n}{\beta_n} \mathbf{z}_n$.

• let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} =$

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$.

• let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \operatorname{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \operatorname{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not?

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{||}
 - of same err as \mathbf{w}_* : $\operatorname{err}(y_n, \mathbf{w}_*^T \mathbf{z}_n) = \operatorname{err}(y_n, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{||}
 - of same err as \mathbf{w}_* : $\operatorname{err}(y_n, \mathbf{w}_*^T \mathbf{z}_n) = \operatorname{err}(y_n, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$
 - of smaller regularizer as \mathbf{w}_* : $\mathbf{w}_*^T \mathbf{w}_* = \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel} + 2 \mathbf{w}_{\parallel}^T \mathbf{w}_{\perp} + \mathbf{w}_{\perp}^T \mathbf{w}_{\perp}$

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{||}
 - of same err as \mathbf{w}_* : $\operatorname{err}(y_n, \mathbf{w}_*^T \mathbf{z}_n) = \operatorname{err}(y_n, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$
 - of smaller regularizer as \mathbf{w}_* : $\mathbf{w}_*^T \mathbf{w}_* = \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel} + 2 \mathbf{w}_{\parallel}^T \mathbf{w}_{\perp} + \mathbf{w}_{\perp}^T \mathbf{w}_{\perp} > \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel}$

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{||}
 - of same err as \mathbf{w}_* : $\operatorname{err}(y_n, \mathbf{w}_*^T \mathbf{z}_n) = \operatorname{err}(y_n, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$
 - of smaller regularizer as \mathbf{w}_* : $\mathbf{w}_*^T \mathbf{w}_* = \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel} + 2 \mathbf{w}_{\parallel}^T \mathbf{w}_{\perp} + \mathbf{w}_{\perp}^T \mathbf{w}_{\perp} > \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel}$
 - -w_{||} 'more optimal' than w_∗ (contradiction!)

claim: for any L2-regularized linear model

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^T \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, \mathbf{w}^T \mathbf{z}_n)$$

optimal $\mathbf{w}_* = \sum_{n=1}^N \beta_n \mathbf{z}_n$.

- let optimal $\mathbf{w}_* = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where $\mathbf{w}_{\parallel} \in \text{span}(\mathbf{z}_n) \ \& \ \mathbf{w}_{\perp} \perp \text{span}(\mathbf{z}_n)$ —want $\mathbf{w}_{\perp} = \mathbf{0}$
- what if not? Consider w_{||}
 - of same err as \mathbf{w}_* : $\operatorname{err}(y_n, \mathbf{w}_*^T \mathbf{z}_n) = \operatorname{err}(y_n, (\mathbf{w}_{\parallel} + \mathbf{w}_{\perp})^T \mathbf{z}_n)$
 - of smaller regularizer as \mathbf{w}_* :

$$\mathbf{w}_*^T \mathbf{w}_* = \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel} + 2 \mathbf{w}_{\parallel}^T \mathbf{w}_{\perp} + \mathbf{w}_{\perp}^T \mathbf{w}_{\perp} > \mathbf{w}_{\parallel}^T \mathbf{w}_{\parallel}$$

—w_∥ 'more optimal' than w_∗ (contradiction!)

any L2-regularized linear model can be **kernelized**!

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{\mathbf{z}_n}$

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\beta} \frac{\lambda}{N}$$

$$+\frac{1}{N}\sum_{i=1}^{N}\log\left(1+\exp\left(-y_{n}\right)\right)$$

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\beta} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m}{\beta_n \beta_m} K(\mathbf{x}_n, \mathbf{x}_m) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_n \right) \right)$$

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m}}{M} K(\mathbf{x}_{n}, \mathbf{x}_{m}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m}}{M} K(\mathbf{x}_{m}, \mathbf{x}_{n}) \right) \right)$$

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})}{\beta_{n} \beta_{m} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})}{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})} \right) \right)$$

-how?

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})}{\beta_{n} \beta_{m} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})}{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})} \right) \right)$$

—how? GD/SGD/... for unconstrained optimization

solving L2-regularized logistic regression

$$\min_{\mathbf{w}} \frac{\lambda}{N} \mathbf{w}^{T} \mathbf{w} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \mathbf{w}^{T} \mathbf{z}_{n} \right) \right)$$

yields optimal solution $\mathbf{w}_* = \sum_{n=1}^{N} \frac{\beta_n \mathbf{z}_n}{n}$

with out loss of generality, can solve for optimal β instead of w

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})}{\beta_{n} K(\boldsymbol{x}_{n}, \boldsymbol{x}_{m})} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})}{\beta_{m} K(\boldsymbol{x}_{m}, \boldsymbol{x}_{n})} \right) \right)$$

—how? GD/SGD/... for unconstrained optimization

kernel logistic regression:

use representer theorem for kernel trick on L2-regularized logistic regression

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m}}{\beta_{n} \beta_{m}} K(\mathbf{x}_{n}, \mathbf{x}_{m}) + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m}}{\beta_{m}} K(\mathbf{x}_{m}, \mathbf{x}_{n}) \right) \right)$$

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

•
$$\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$$
:

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

• $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m}{\beta_m} K(\mathbf{x}_n, \mathbf{x}_m)$:

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)}{n}$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$
- KLR = linear model of β
 with kernel as transform & kernel regularizer;

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)}{n}$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$
- KLR = linear model of β
 - with kernel as transform & kernel regularizer;
 - = linear model of **w**with embedded-in-kernel transform & L2 regularizer

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)}{n}$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$
- KLR = linear model of β
 with kernel as transform & kernel regularizer;
 - = linear model of w with embedded-in-kernel transform & L2 regularizer
- similar for SVM

$$\min_{\boldsymbol{\beta}} \frac{\lambda}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{\beta_{n} \beta_{m} K(\mathbf{x}_{n}, \mathbf{x}_{m})}{N} + \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{m=1}^{N} \frac{\beta_{m} K(\mathbf{x}_{m}, \mathbf{x}_{n})}{N} \right) \right)$$

- $\sum_{m=1}^{N} \beta_m K(\mathbf{x}_m, \mathbf{x}_n)$: inner product between variables $\boldsymbol{\beta}$ and transformed data $(K(\mathbf{x}_1, \mathbf{x}_n), K(\mathbf{x}_2, \mathbf{x}_n), \dots, K(\mathbf{x}_N, \mathbf{x}_n))$
- $\sum_{n=1}^{N} \sum_{m=1}^{N} \beta_n \beta_m K(\mathbf{x}_n, \mathbf{x}_m)$: a special regularizer $\boldsymbol{\beta}^T \mathbf{K} \boldsymbol{\beta}$
- KLR = linear model of β
 with kernel as transform & kernel regularizer;
 - = linear model of **w**with embedded-in-kernel transform & L2 regularizer
- similar for SVM

warning: unlike coefficients α_n in SVM, coefficients β_n in KLR often non-zero!

Fun Time

When viewing KLR as linear model of β with embedded-in-kernel transform & kernel regularizer, what is the dimension of the \mathcal{Z} space that the linear model operates on?

- $oldsymbol{0}$ d, the dimension of the original $\mathcal X$ space
- N, the number of training examples
- (3) \vec{d} , the dimension of some feature transform $\Phi(\mathbf{x})$ that is embedded within the kernel
- $oldsymbol{4}$ λ , the regularization parameter

Fun Time

When viewing KLR as linear model of β with embedded-in-kernel transform & kernel regularizer, what is the dimension of the \mathcal{Z} space that the linear model operates on?

- $oldsymbol{0}$ d, the dimension of the original ${\mathcal X}$ space
- N, the number of training examples
- 3 \tilde{d} , the dimension of some feature transform $\Phi(\mathbf{x})$ that is embedded within the kernel
- 4 λ , the regularization parameter

Reference Answer: 2

For any \mathbf{x} , the transformed data is $(K(\mathbf{x}_1, \mathbf{x}), K(\mathbf{x}_2, \mathbf{x}), \dots, K(\mathbf{x}_N, \mathbf{x}))$, which is N-dimensional.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 5: Kernel Logistic Regression

- Soft-Margin SVM as Regularized Model
 L2-regularization with hinge error measure
- SVM versus Logistic Regression
 ≈ L2-regularized logistic regression
- SVM for Soft Binary Classification
 common approach: two-level learning
- Kernel Logistic Regression
 representer theorem on L2-regularized LogReg
- next: kernel models for regression
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models