STSCI 5080 Probability Models and Inference

Lecture 6: Continuous Random Variables (cont.)

September 11, 2018

Announcement

- Homework 2 will be posted on Blackboard after the lecture.
- Due is Sep. 20 (Th) in class.

Applications of distributions in Statistics

Discrete distributions

- Binomial distribution \rightarrow sum of $\{0,1\}$ variables.
- Poisson distribution \rightarrow count data with values in $\{0, 1, 2, \dots\}$.

Continuous distributions

- Exponential distribution → positive data.
- Normal distribution → data with values in both positive and negative numbers.

Other continuous distributions: gamma and beta distributions. Rice 2.2.2 and 2.2.4.

Example

Suppose that the number of typos on a single page of a certain book follows the Poisson distribution with parameter $\lambda=1/2$. What is the probability that there is at least one error on this page?

Example

Suppose that the number of typos on a single page of a certain book follows the Poisson distribution with parameter $\lambda=1/2$. What is the probability that there is at least one error on this page?

$$P(X \ge 1) = \sum_{k \ge 1} p(k) = \sum_{k=0}^{\infty} p(k) - p(0) = 1 - p(0) = 1 - P(X = 0).$$

In addition,

$$P(X=0) = e^{-\lambda} = e^{-1/2},$$

so that $P(X \ge 1) = 1 - e^{-1/2} \approx 0.393$.

Example

Let *Y* be an IQ test score and suppose that $Y \sim N(100, 15^2)$. What is the probability that 120 < Y < 130?

Example

Let *Y* be an IQ test score and suppose that $Y \sim N(100, 15^2)$. What is the probability that 120 < Y < 130?

Since Y = 100 + 15X for $X \sim N(0, 1)$, we have

$$120 < Y < 130 \Leftrightarrow \frac{4}{3} < X < 2,$$

so that

$$P(120 < Y < 130) = F_X(2) - F_X(4/3)$$

$$\approx 0.977 - 0.908$$

$$= 0.069.$$

• If f is a pdf, then so is -f.

• If f is a pdf, then so is -f.

Answer: False.

$$\int_{-\infty}^{\infty} -f(x)dx = -1.$$

• If f is a pdf, then so is -f.

Answer: False.

$$\int_{-\infty}^{\infty} -f(x)dx = -1.$$

• If f is a pdf, then so is 2f.

• If f is a pdf, then so is -f.

Answer: False.

$$\int_{-\infty}^{\infty} -f(x)dx = -1.$$

• If f is a pdf, then so is 2f.

Answer: False.

$$\int_{-\infty}^{\infty} 2f(x)dx = 2.$$

.

• If f and g are pdfs, then their product fg is also a pdf.

• If *f* and *g* are pdfs, then their product *fg* is also a pdf.

Answer: False. Counterexample?

• If f and g are pdfs, then their product fg is also a pdf.

Answer: False. Counterexample?

• If f and g are pdfs, then 2f - g is also a pdf.

• If f and g are pdfs, then their product fg is also a pdf.

Answer: False. Counterexample?

• If f and g are pdfs, then 2f - g is also a pdf.

Answer: False. Counterexample?

Functions of a random variable

Question

Let X be a continuous random variable with pdf f_X , and consider a new random variable Y = g(X) for some function g. Find the pdf of Y.

General strategy: Evaluate the cdf of Y using the cdf of X, and differentiate the cdf of Y.

Location-scale transformation

Example

Let Y = aX + b for some a > 0 and $-\infty < b < \infty$. Then Y has pdf

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right).$$

Location-scale transformation

Example

Let Y = aX + b for some a > 0 and $-\infty < b < \infty$. Then Y has pdf

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right).$$

$$F_Y(y) = P(Y \le y) = P\left(X \le \frac{y-b}{a}\right) = F_X\left(\frac{y-b}{a}\right).$$

Differentiating both sides w.r.t. y, we have

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right).$$

Exponential transformation

Example

Let $Y = e^X$. Then Y has pdf

$$f_Y(y) = \begin{cases} 0 & y \le 0 \\ \frac{1}{y} f_X(\log y) & y > 0 \end{cases}.$$

Exponential transformation

Example

Let $Y = e^X$. Then Y has pdf

$$f_Y(y) = \begin{cases} 0 & y \le 0 \\ \frac{1}{y} f_X(\log y) & y > 0 \end{cases}.$$

Since Y > 0, $f_Y(y) = 0$ for $y \le 0$, For y > 0,

$$F_Y(y) = P(Y \le y) = P(X \le \log y) = F_X(\log y).$$

Differentiating both sides w.r.t. y, we have

$$f_Y(y) = (\log y)' f_X(\log y) = \frac{1}{y} f_X(\log y).$$

For the general monotone transformation case, see Rice Proposition B in p. 62.

Square transformation

Example

Let $Y = X^2$. Then Y has pdf

$$f_Y(y) = \begin{cases} 0 & y \le 0 \\ \frac{1}{2\sqrt{y}} \left\{ f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right\} & y > 0 \end{cases}.$$

Square transformation

Example

Let $Y = X^2$. Then Y has pdf

$$f_Y(y) = \begin{cases} 0 & y \le 0 \\ \frac{1}{2\sqrt{y}} \left\{ f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right\} & y > 0 \end{cases}.$$

Since Y > 0, $f_Y(y) = 0$ for $y \le 0$. For y > 0,

$$F_Y(y) = P(Y \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}).$$

Differentiating both sides w.r.t. y, we have

$$f_Y(y) = (\sqrt{y})' f_X(\sqrt{y}) - (-\sqrt{y})' f_Y(y) = \frac{1}{2\sqrt{y}} \{ f_X(\sqrt{y}) + f_X(-\sqrt{y}) \},$$

Chi-square random variable with 1 degree of freedom

Definition

If $X \sim N(0,1)$, then $Y = X^2$ is called a chi-square random variable with 1 degree of freedom, $Y \sim \chi^2(1)$ in short. The pdf of Y is

$$f_Y(y) = \begin{cases} 0 & y \le 0 \\ \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2} & y > 0 \end{cases}.$$

Quantile function

Definition

Let X be a continuous random variable with values in an interval I and cdf F that is strictly increasing on I. Then the inverse function of F, i.e., F^{-1} , defined on (0,1) is called the quantile function of X or F.

For $u \in (0,1)$, the value of $F^{-1}(u)$ is the solution of

$$F(x) = u$$

w.r.t. x.

Definition

 $F^{-1}(0.5)$ is called the median of X or F.

Fundamental theorem of random number generation

Theorem

For $U \sim U[0,1]$, let $Y = F^{-1}(U)$. Then Y has cdf F.

Example

Let F be the cdf of $Exp(\lambda)$, i.e., $F(x)=1-e^{-\lambda x}$ for $x\geq 0$. The inverse function is

$$F^{-1}(u) = -\frac{1}{\lambda}\log(1-u),$$

so that for $U \sim U[0,1]$,

$$Y = -\frac{1}{\lambda}\log(1-U) \sim Exp(\lambda).$$