Machine Learning with Python

Life is too short, You need Python

실습 내용

- 머신러닝 모델링을 위한 코딩은 무조건 할 수 있어야 합니다.
- 코딩 내용을 자세히 알지 못해도 무작정 코딩을 진행해봅니다.
- AirQuality 데이터를 대상으로 모델링 해서 오존 농도를 예측해 봅니다.
- LinearRegression 알고리즘을 사용합니다.

1.환경 준비

• 기본 라이브러리와 대상 데이터를 가져와 이후 과정을 준비합니다.

In [1]: # 라이브러리 불러오기

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings(action='ignore') # 경고 무시

%config InlineBackend.figure_format = 'retina'

In [2]: # 데이터 읽어오기

path = 'https://raw.githubusercontent.com/Jangrae/csv/master/airquality_simple.csv'

data = pd.read_csv(path)

2.데이터 이해

• 분석할 데이터를 충분히 이해할 수 있도록 다양한 탐색 과정을 수행합니다.

In [3]: # 상위 몇 개 행 확인 data.head()

Out[3]: Ozone Solar.R Wind Temp Month Day 0 41 190.0 7.4 67 5 1 1 36 118.0 8.0 72 5 2 2 12 149.0 12.6 74 5 3 3 18 313.0 11.5 62 5 4 19 5 5 NaN 14.3 56

In [4]: # 하위 몇 개 행 확인 data.tail()

Ozone Solar.R Wind Temp Out[4]: Month Day 148 30 193.0 6.9 70 9 26 149 23 145.0 13.2 77 9 27 150 14 191.0 14.3 75 9 28 151 18 131.0 8.0 76 9 29 152 223.0 20 11.5 68 9 30

In [7]: # 변수 확인 data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 153 entries, 0 to 152 Data columns (total 6 columns): Column Non-Null Count Dtype # -----0 0zone 153 non-null int64 Solar.R 146 non-null float64 1 2 153 non-null float64 3 Temp 153 non-null int64 Month 153 non-null int64 Dav 153 non-null int64

dtypes: float64(2), int64(4)

memory usage: 7.3 KB

In [8]: # 기술통계 확인

data.describe().T

Out[8]:		count	mean	std	min	25%	50%	75%	max
	Ozone	153.0	42.052288	30.156127	1.0	20.00	34.0	59.00	168.0
	Solar.R	146.0	185.931507	90.058422	7.0	115.75	205.0	258.75	334.0
	Wind	153.0	9.957516	3.523001	1.7	7.40	9.7	11.50	20.7
	Temp	153.0	77.882353	9.465270	56.0	72.00	79.0	85.00	97.0
	Month	153.0	6.993464	1.416522	5.0	6.00	7.0	8.00	9.0
	Day	153.0	15.803922	8.864520	1.0	8.00	16.0	23.00	31.0

In [10]: # 상관관계 확인 # 숫자만 data.corr(numeric_only=True)

Out[10]: Ozone Solar.R Wind **Temp** Month Day 1.000000 0.280068 -0.605478 0.683372 0.174197 0.004419 Ozone 0.280068 1.000000 -0.056792 Solar.R 0.275840 -0.075301 -0.150275 **Wind** -0.605478 -0.056792 1.000000 -0.457988 -0.178293 0.027181 Temp 1.000000 0.420947 -0.130593 Month 0.174197 -0.075301 -0.178293 0.420947 1.000000 -0.007962 Day 0.004419 -0.150275 0.027181 -0.130593 -0.007962 1.000000

```
In [28]: # 상관관계 시각화
plt.figure(figsize=(6, 3))
sns.heatmap(data.corr(numeric_only=True), annot=True, cbar=False, fmt='.3f', square=True, cmapplt.show()
```


3.데이터 준비

• 전처리 과정을 통해 머신러닝 알고리즘에 사용할 수 있는 형태의 데이터를 준비합니다.

1) 결측치 처리

• 결측치가 있으면 제거하거나 적절한 값으로 채웁니다.

```
# 결측치 확인
In [29]:
          data.isna().sum()
         0zone
Out[29]:
         Solar.R
                    7
         Wind
                    0
         Temp
         Month
                    0
         Day
         dtype: int64
In [30]: # 전날 값으로 결측치 채우기
          data.fillna(method='ffill', inplace=True)
          # 확인
          data.isna().sum()
```

```
Out[30]: Ozone 0
Solar.R 0
Wind 0
Temp 0
Month 0
Day 0
dtype: int64
```

2) 변수 제거

• 분석에 의미가 없다고 판단되는 변수는 제거합니다.

```
In [31]: # 변수 제거 drop_cols = ['Month', 'Day'] data.drop(drop_cols, axis=1, inplace=True) # 확인 data.head()
```

Ozone Solar.R Wind Temp Out[31]: 41 190.0 67 0 7.4 1 36 118.0 8.0 72 2 12 149.0 12.6 74 3 62 18 313.0 11.5 4 19 313.0 14.3 56

3) x, y 분리

- 우선 target 변수를 명확히 지정합니다.
- target을 제외한 나머지 변수들 데이터는 x로 선언합니다.
- target 변수 데이터는 y로 선언합니다.
- 이 결과로 만들어진 x는 데이터프레임, y는 시리즈가 됩니다.
- 이후 모든 작업은 x, y를 대상으로 진행합니다.

```
In [32]: # target 확인
target = 'Ozone'

# 데이터 분리
x = data.drop(target, axis=1)
y = data.loc[:, target] # [행, 열]

In [36]: # x 확인
x.head()
```

Out[36]:		Solar.R	Wind	Temp
	0	190.0	7.4	67
	1	118.0	8.0	72
	2	149.0	12.6	74
	3	313.0	11.5	62
	4	313.0	14.3	56

```
In [37]: # y 확인
```

y.head()

Out[37]:

- 0 41 1 36
- 1 20
- 2 12
- 3 18
- 4 19

Name: Ozone, dtype: int64

4) 학습용, 평가용 데이터 분리

- 학습용, 평가용 데이터를 적절한 비율로 분리합니다.
- 반복 실행 시 동일한 결과를 얻기 위해 random_state 옵션을 지정합니다.

In [41]: # 모듈 불러오기

from sklearn.model_selection import train_test_split # 데이터를 무자위로 섞음

7:3으로 분리

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=1, shuff

In [42]:

확인

x_train.head()

Out[42]:

	Solar.R	Wind	lemp
132	259.0	9.7	73
73	175.0	14.9	81
18	322.0	11.5	68
48	37.0	9.2	65
4	313.0	14.3	56

4.모델링

- 본격적으로 모델을 선언하고 학습하고 평가하는 과정을 진행합니다.
- 우선 회귀 문제인지 분류 문제인지 명확히 구분합니다.

1) 모델링

- 회귀 문제 인가요? 분류 문제인가요?
- 회귀인지 분류인지에 따라 사용할 알고리즘과 평가 방법이 달라집니다.
- 우선 다음 알고리즘과 평가 방법을 사용합니다.
 - 알고리즘: LinearRegression
 - 평가방법: mean absolute error
- In [43]: # 1단계: 불러오기 from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error # 평가는 metrics에서 다 불러올 수 있다.
- In [71]: # 2단계: 선언하기
 model = LinearRegression()
- In [72]: #3단계: 학습하기
 model.fit(x_train, y_train)
- Out[72]:

 LinearRegression

 LinearRegression()
- In [73]: # 4단계: 예측하기 y_pred = model.predict(x_test)
- In [74]: # 실제값, 예측값 비교
 print(y_test.values[:10])
 print(y_pred[:10])

[24 18 97 47 34 22 66 18 69 27] [13.84003067 5.82919112 81.93563027 58.41267418 50.86150737 31.52971121 66.8083547 -8.56411529 50.2136544 39.13346172]

In [75]: # 5단계: 평가하기 # 평균 절대 오차 # 값이 낮을 수록 좋은 모델 print('MAE:', mean_absolute_error(y_test, y_pred))

MAE: 13.976843190385708

- In [76]: # 기준(평균) 모델 성능 평가
 mean_ozone = y_train.mean()
 y_base= np.array([mean_ozone] * len(y_test))
- In [77]: #5단계: 평가하기 # 평균 절대 오차 # 값이 낮을 수록 좋은 모델 print('MAE:', mean_absolute_error(y_test, y_base))

MAE: 23.823852092645264

2) 결과 시각화

```
In [78]: plt.plot(y_test.values, label='Actual')
   plt.plot(y_pred, label='Predicted')
   plt.plot(y_base, label='baseline', color='r', linestyle='--')
   plt.legend()
   plt.show()
```


In []: