IN THE CLAIMS:

Please rewrite the following claims:

Sult J'

- 1. (Previously Presented) A router for distributing packets in a network, wherein the packets originate at a source and are routed to a destination, comprising:
- a plurality of route processing engines located within said router;
- a mechanism that performs a hashing function on a destination address portion of
- a network layer in the packets transferred to the routing system, to produce an indicia of a
- 6 flow and,
- means for switching packets with a same said indicia of a flow to a single route
- processing engine of said plurality of route processing engines.
- 1 2. (Previously Presented) The routing system of claim 1, further comprising:
- at least one fast uplink connection to an external network to accept outgoing
- packets from a plurality of processing engines.
- 1 3. (Previously Presented) The routing system of claim 1, further comprising:
- a crossbar as said means for switching packets.
- 1 4-8. (Previously Cancelled).
- 9. (Previously Presented) The routing system of claim 1, further comprising:
- means for scaling processing power of said system by adding additional route
- processing engines to said plurality of route processing engines.
- 1 10. (Previously Cancelled).

1	11.	(Previously Presented) A router for distributing packets in a network, wherein the
2	packet	s originate at a source and are routed to a destination, comprising:
3		a plurality of network interfaces that transfer the packets to said destination and
4	from s	aid source;
5		a plurality of route processing engines located within said router;
6		a fabric interconnecting said plurality of network interfaces and said plurality of
7	route p	processing engines;
8		a hashing function to hash a destination address of a packet to determine a distri-
9	bution	of the packets by said fabric, in response to an output of said hashing function,
10	among	g said plurality of route processing engines.
1	12.	(Previously Presented) The routing system of claim 11, further comprising:
2		said fabric includes a crossbar.
1	13-14.	(Previously Cancelled).
1	15.	(Currently Amended) The routing system of claim 11, further comprising:
2		A router for distributing packets in a network, wherein the packets originate at a
3	source	and are routed to a destination, comprising:
4		a plurality of network interfaces that transfer the packets to said destination and
5	from s	said source;
6		a plurality of route processing engines located within said router;
7		a fabric interconnecting said plurality of network interfaces and said plurality of
8	route p	processing engines;
9		a hashing function to hash a destination address of a packet to determine a distri-
10	bution	of the packets by said fabric, in response to an output of said hashing function,
11	among	g said plurality of route processing engines; and
12		a port adapter, wherein the port adapter converts input data to a desired interface.
		1

- 1 16. (Previously Presented) The routing system of claim 15, wherein said network in-
- terfaces include at least one uplink connection to an external/network, wherein the port
- 3 adapter converts input data to a known interface.
- 1 17. (Previously Presented) A method, in a router, for selecting one processing engine
- of a plurality of processing engines located within the vouter for processing at least one
- packet, the method comprising the steps of:
- hashing a destination address portion of a network layer of at least one packet to
- determine a hash result, said hash result indicating a flow;
- selecting one processing engine of said plurality of processing engines located
- within said router to process the flow indicated by said hash result.
- 1 18. (Previously Presented) The method of claim 17, further comprising:
- the network layer information comprises one or more of the following network in-
- formation: a network source address of the/at least one packet, a network destination
- address of the at least one packet, a network destination address of the at least one packet,
- a source port of the at least one packet, and a protocol type value of the at least one
- 6 packet.
- 1 19. (Previously Cancelled).
- 1 20. (Previously Presented) The method of claim 17, further comprising:
- the hashing is computed by logically XORing an addresses, a port, and a protocol
- 3 type value.
- 1 21. (Previously Presented) The method of claim 17, further comprising:
- 2 providing a table containing entries for use in selecting the one processing engine;
- selecting one entry in the table specified by an index value, the index value based
- upon the hash value to select the processing engine for the hash value.

- 22. (Previously Cancelled). ı
- 23. (Currently Amended) The method of claim 17, further comprising: 1
- distributing, in response to the hash function, the packets evenly among the plu-2 rality of processing engines. 3
- 24-25 (Previously Cancelled). 1
- 26. (Previously Presented) A system, in a router, for selecting one processing engine 1 of a plurality of processing engines located within said router for processing at least one 2 packet, the system comprising: 3
 - means for hashing a destination address of a network layer of the at least one packet to obtain a hash result; and
- means, responsive to said hash result, for selecting said one processing engine of 6 said plurality of processing engines located within said router to preserve a packet flow 7 indicated by said destination address. 8
- 27. (Previously Presented) The system of claim 26 wherein the network layer flow 1 information comprises: 2
- at least one of a network source address of the at least one packet, a network des-3 tination address of the at least one packet, a source port of the at least one packet, a desti-4
- nation address of the at least one packet, and a protocol type value of the at least one 5
- packet.
- (Previously Cancelled). 28.
- (Previously Presented) The system of claim 26, further comprising: 29. 1
- the hash value is computed by logically XORing the addresses, the ports, and the 2 protocol type value.

4

5

2		means for providing a table containing entries for use in selecting the one proc-
3	essing	engine; and
4		means, responsive to the hash value, for selecting one entry in the table.
1	31.	(Previously Presented) The system of claim 26, further comprising:
2		the means for selecting carries out a hashing function that preserves the packet
3	flow.	
1	32.	(Currently Amended) The system of claim 26, further comprising:
2		the at least one packet is one of a plurality of packets, and the means for selecting
3	carries	out a hashing function that causes the packets to be mostly evenly distributed
4	among	the processing engines.
1	33-43.	(Previously Cancelled).
1	44.	(Currently Amended) A routing system for distributing packets in a network,
2	where	n the packets originate at a source and are returned to a destination, both source
3	and de	stination external with respect to the routing system, comprising:
4		a plurality of network interfaces that transfer packets to a destination and from a
5	source	;
6		a plurality of route processing engines;
7		a hash mechanism that performs a hashing function on at least a portion of net-
8	work l	ayer information packet, in the packets transferred to the routing system, to deter-
9	mine <u>a</u>	an approximately even-distribution of the packets to the route processing engines
10	for pro	cessing by the engines, and

(Previously Presented) The system of claim 26 further comprising:

30.

1

11

12

13

their original order from the network layer information of the packets, the network layer

information including at least the same source/destination and protocol,

a processing mechanism that determines packets belonging to a same flow and

- a data transferer that sends each ordered packet flow to a single route processing 14 engine, thereby preserving the original ordered packet flows.. 15
- 45. (Previously Presented) A router, comprising: 1
- a plurality of processing engines located within said router for processing packets; 2
- an interface for receiving a received packet from a network; 3
- a data compiler to perform a hash function on a destination address of said re-4
- ceived packet to generate a hash result, and to select a selected processing engine from 5
- said plurality of processing engines located within said router in response to said hash 6
- result; and, 7
- a switch to distribute said packet to said selected processing engine. 8
- (Previously Presented) The router as in claim 45 further comprising: 46. said data compiler selection of said processing engine is partly table driven. 2
- (Previously Presented) The router as in claim 45 further comprising: 47.
- said data/compiler distributes the packets evenly among said plurality of process-
- ing engines.

- (Previously Presented) The router as in claim 45 further comprising: said data compiler distributes the packets evenly among said plurality of process-
- ing engines.
- (Previously Presented) The router as in claim 45 further comprising: 49.
- said hash function uses a destination address information. 2
- (Previously Presented) The router as in claim 45 further comprising: 50. 1
- said hash function uses a protocol information. 2
- (Previously Presented) The router as in claim 45 further comprising: 51.

2		said hash function uses a source port information.
1	52.	(Previously Presented) A router, comprising:
2		a plurality of processing engines for processing packets;
3		an interface for receiving a received packet from a network;
4		a data compiler to perform a hash function on said received packet to generate a
5	hash	result, and to select a selected processing engine from said plurality of processing
6	engin	es in response to said hash result; and,
7	a swi	tch to distribute said packet to said selected processing engine; and
8		said data compiler determines an IP source address having source bytes and an IP
9	destir	nation address having destination bytes and a protocol byte, and performs said hash
0	funct	ion by performing an exclusive OR/(XOR) to said source bytes and said destination
1	bytes	and said protocol byte to generate said hash result as at least one output byte, said at
2	least	one output byte to designate a flow to which said received packet belongs, and
3	routir	ng all packets having the same flow to a selected processing engine.
1	53.	(Previously Presented) A router, comprising:
2		a plurality of processing engines for processing packets;
3		an interface for receiving a received packet from a network;
4		a data compiler to perform a hash function on said received packet to generate a
5	hash	result, and to select a selected processing engine from said plurality of processing
6	engin	es in response to said hash result;
7		a switch to distribute said packet to said selected processing engine; and
8		said data compiler puts packets received from said network into packet digest
9	form	before transferring them to said switch.
1	54.	(Previously Presented) The router as in claim 45, further comprising:
2		said switch receiving said received packet from said processing engine after said
3	proce	ssing engine/finishes processing said packet as a processed packet, and then said

10

11

12

13

4	switch routing said processed packet to an interface to transr	nit said processed packet out
5	to said network.	/

		1
1	55.	(Currently Amended) The router as in claim 45, further comprising:
2		A router, comprising:
3		a plurality of processing engines located within said router for processing packets;
4		an interface for receiving a received packet from a network;
5		a data compiler to perform a hash function on a destination address of said re-
6	ceived	packet to generate a hash result, and to select a selected processing engine from
7	said pl	urality of processing engines located within said router in response to said hash
8	result;	

a switch to distribute said packet to said selected processing engine; and each processing engine of said plurality of processing engines—has—having a plurality of queues, said packet has classification information in a header, and said processing engine selects a queue of said plurality of queues in response to said classification information.

- 1 56. (Previously Presented) The router as in claim 55, further comprising: 2 said classification information indicates a priority of said packet.
- 1 57. (Previously Presented) The router as in claim 45, further comprising: 2 said processing engine performs routing of said packet.
- 1 58. (Previously Presented) The router as in claim 45, further comprising: 2 said processing engine performs tag application update on said packet.
- 1 59. (Previously Presented) The router as in claim 45, further comprising: 2 said processing engine performs filtering on said packet.

- 60. (Previously Presented) The router as in claim 45/, further comprising: said data compiler allocating said processing of packets to remaining processing 2 engines in the event that a processor fails. 3 61. (Previously Presented) A router, comprising: l a plurality of processing engines for processing packets; 2 an interface for receiving a received packet from a network; 3 a data compiler to perform a hash function on said received packet to generate a 4 hash result, and to select a selected processing/engine from said plurality of processing 5 engines in response to said hash result; 6 a switch to distribute said packet to said selected processing engine; 7 said data compiler detecting that a particular packet requires specialized process-8 ing; and 9 said switch distributing said particular packet to a specialized processing engine 10 to perform said specialized processing. 11 62. (Previously Presented) The router as in claim 61, further comprising: 1 said specialized processing is/compression. 2
- 1 63. (Previously Presented) The router as in claim 61, further comprising: 2 said specialized processing is decompression.
- 1 64. (Previously Presented) The router as in claim 61, further comprising: 2 said specialized processing is encryption.
- 1 65. (Previously Presented) The router as in claim 61, further comprising: 2 said specialized processing is routing.
- 1 66. (Previously Presented) The router as in claim 45, further comprising:
 2 said processing engine designates a high bandwidth uplink to receive said packet.

- 67. (Previously Presented) The router as in claim 45, further comprising: said processing engine performs encryption on said packet.
- 1 68. (Previously Presented) The router as in claim 45, further comprising: 2 said processing engine performs decryption on said packet.
- 1 69. (Previously Presented) The router as in claim 45, further comprising:
 2 said switch is a crossbar switch.
- 1 70. (Previously Presented) A router, comprising:
 2 a plurality of processing engines located within said router for processing packets;
 3 an interface for receiving a received packet from a network;
- means for performing a hash function calculation on a destination address of said received packet to produce a hash resulf; and,
- means, responsive to said hash/result, for switching said received packet to a
 processing engine selected from said plurality of processing engines located within said
 router for further processing of said received packet.
- 1 71. (Previously Presented) A method of processing packets in a router, comprising:
 2 receiving a packet from a network;
- performing a hash function calculation on a destination address of said packet to produce a hash result; and,
- switching, in response to said hash result, said packet to a processing engine of a plurality of processing engines in said router, for further processing of said packet.
- 1 72. (Previously Presented) The method as in claim 71, further comprising: 2 selecting a processing engine by using said hash result and a table.
- 1 73. (Currently Amended) The method as in claim 71, further comprising:
 2 distributing the packets evenly among said plurality of processing engines.

1	74.	(Previously Presented) The method as in claim/1 further comprising:
2		using a source address information in said hash function calculation.

- 1 75. (Previously Presented) The method as in claim 71 further comprising:
 2 using a destination address information in said hash function calculation.
- 1 76. (Previously Presented) The method as in claim 71 further comprising: 2 using a protocol information in said hash function calculation.
- 1 77. (Previously Presented) The method as in claim 71 further comprising: 2 using a source port information in said hash function calculation.
- (Previously Presented) A method/of processing packets in a router, comprising: 78. 1 2 receiving a packet from a network; performing a hash function calculation on said packet to produce a hash result; 3 switching, in response to said hash result, said packet to a processing engine of a plurality of processing engines in said router, for further processing of said packet; and 5 performing an exclusive OR/(XOR) in response to a source address and a desti-6 nation address and a protocol byte to generate said hash result as at least one output byte, 7 said at least one output byte to designate a flow to which said received packet belongs, 8 and routing all packets having the same flow to a selected processing engine. 9
- 1 79. (Currently Amended) The method as in claim 71 further comprising:
- 2 A method of processing packets in a router, comprising:
- receiving a packet from a network;
- performing a hash function calculation on a destination address of said packet to
 produce a hash result;
- switching, in response to said hash result, said packet to a processing engine of a
 plurality of processing engines in said router, for further processing of said packet; and

allocating said packets to remaining processing engines in the event that a proc-8 essing engine fails. 9 80. (Previously Presented) A method of processing packets in a router, comprising: 1 receiving a packet from a network; 2 performing a hash function calculation on said packet to produce a hash result; 3 switching, in response to said hash result, said packet to a processing engine of a 4 plurality of processing engines in said router, for further processing of said packet; 5 detecting that a particular packet requires' specialized processing; and 6 distributing said particular packet to a specialized processing engine to perform 7 said specialized processing. 8 81. (Previously Presented) The method/as in claim 80 further comprising: processing compression as said specialized processing. 2 82. (Previously Presented) The method as in claim 80, further comprising: 1 processing decompression as said specialized processing. 2 (Previously Presented) The method as in claim 80, further comprising: 83. 1 processing encryption as said specialized processing. 2 (Previously Presented) The method as in claim 80, further comprising: 84. processing routing as said specialized processing. 2 (Previously Presented) A router, comprising: 85. 1 a plurality of processing engines located within said router for processing packets; 2 an interface for receiving a packet from a network, said packet referred to as a re-3 ceived packet; 4 a hashing function to perform a hash calculation on a destination address of said 5

packet, said hash calculation producing a hash result;

7		a data compiler to determine a type of service required by said received packet;
8	and,	
9		a switch, responsive to said type of service and responsive to said hash result, to
10	distrib	oute said packet to a selected processing engine ϕ f said plurality of processing en-
11	gines	located within said router, said selected processing engine providing said type of
12	servic	ee.
ı	86.	(Previously Presented) The apparatus as in claim 85 further comprising:
2		said type of service is compression.
1	87.	(Previously Presented) The apparatus as in claim 85, further comprising:
2		said type of service is decompression.
1	88.	(Previously Presented) The router as in claim 85, further comprising:
2		said type of service is encryption.
1	89.	(Previously Presented) The router as in claim 85, further comprising:
2		said type of service is routing.
1	90.	(Previously Presented) A method of processing packets in a router, comprising:
2		receiving a packet from anetwork, referred to as a received packet;
3		hashing a destination address of said received packet to obtain a hash result;
4		determining a type of service required by said received packet; and,
5		distributing, in response to said type of service and in response to said hash result
6	said r	eceived packet to a selected processing engine located within said router, said se-
7	lected	I processing engine providing said type of service.
1	91.	(Previously Presented) The method as in claim 90 further comprising:

processing compression as said type of service.

- 1 92. (Previously Presented) The router as in claim 90, further comprising:
- 2 processing decompression as said type of service.
- 1 93. (Previously Presented) The router as in claim 90, further comprising:
- processing encryption as said type of service.
- 1 94. (Previously Presented) The router as in claim 90, further comprising:
- 2 processing routing as said type of service.
- 1 95. (Previously Presented) A computer/readable media, comprising:
- said computer readable media containing instructions for execution in a processor
- for the practice of the method of claim 17/0 or claim 71 or claim 90.
- 1 96. (Previously Presented) Electromagnetic signals propagating on a computer net-
- work, comprising:
- said electromagnetic signals carrying instructions for execution on a processor for
- the practice of the method of claim/17 or claim 71 or claim 90.
- 1 97. (Previously Presented) A router for distributing packets in a network, the packets
- originate at a source and are routed to a destination, comprising:
- a plurality of route prodessing engines located within said router;
- a mechanism that performs a hashing function on at least a portion of network
- s layer information in said packets, said information indicating said destination, said hash-
- 6 ing function producing an indicia of a flow; and
- a classification engine to switch packets with a same said indicia of a flow to a
- single route processing engine of said plurality of route processing engines.

2

1	98.	(Currently Amended) The apparatus of claim 97, further comprising:
2	, , ,	A router for distributing packets in a network, the packets originate at a source
3	and ar	e routed to a destination, comprising:
4	una un	a plurality of route processing engines located within said router;
-		a mechanism that performs a hashing function on at least a portion of network
5	lavar i	nformation in said packets, said information indicating said destination, said hash-
6	•	
7		nction producing an indicia of a flow;
8		ification engine to switch packets with a same said indicia of a flow to a single
9	route 1	processing engine of said plurality of route processing engines; and
10		said packets are a plurality of packets, individual packets of said plurality of
11	packet	s arrive in substantially random order to produce different values of said informa-
12	tion in	random order, and said classification engine carries out a hashing function to pro-
13	duce s	aid indicia of flow, and different values of said indicia of flow are in substantially
14	randor	n order in response to said plurality of packets arriving in random order, and a par-
15	ticular	flow always produces a same indicia of flow, and said particular flow is assigned
16	to a pa	articular route processing engine in the order that a first packet of said particular
17	flow f	irst arrives at said router.
1	99.	(Currently Amended) The apparatus of claim 98 further comprising:
2		said random order of arrival of said first packet of said particular flow leads to a
3	substa	ntially uniform distribution of packets being assigned to said route processing en-
4	gines.	
i	100.	(Previously Presented) The router of claim 97, further comprising:
2		said information indicating said destination includes a destination address of said
3	destin	ation.
1	101.	(Previously Presented) A method of operating a router, comprising:

router having a plurality of route processing engines;

receiving a packet by said router, said packet addressed to a destination, said

4	hashing a portion of a network layer information of said packet, said information
5	indicating said destination, to determine an indication of a flow:
6	selecting, in response to said indication of a flow, one processing engine of said
7	plurality of processing engines to process the flow indicated.
1	102. (Currently Amended) The method of claim 101, further comprising:
2	A method of operating a router, comprising:
3	receiving a packet by said router, said packet addressed to a destination, said
4	router having a plurality of route processing engines;
5	hashing a portion of a network layer information of said packet, said information
6	indicating said destination, to determine an indication of a flow:
7	selecting, in response to said indication of a flow, one processing engine of said plurality
8	of processing engines to process the flow indicated;
9	said receiving step receives a plurality of packets, individual packets of said plu-
10	rality of packets arrive in substantially random order to produce different values of said
11	information in random order;
12	said hashing step produces different values of said indication of a flow in sub-
13	stantially random order in response to said plurality of packets arriving in random order;
14	producing by a particular flow a same indicia of flow; and
15	assigning said particular flow to a particular route processing engine in the order
16	that a first packet of said particular flow first arrives at said router.
ı	103. (Currently Amended) The method of claim 102 further comprising:
2	assigning, in response to/said random order of arrival of said first packet of said
3	particular flow, a substantially uniform distribution of packets to said route processing
4	engines.
1	104. (Previously Presented) The method of claim 101, further comprising:
2	including in said information a destination address of said destination.

Capil	
1	
1	

		1
1	105.	(Previously Presented) A router, comprising:
2		a port adapter to receive a packet by said router, said packet addressed to a desti-
3	nation,	said router having a plurality of route processing engines;
4		means for hashing a portion of a network layer information of said packet, said in-
5	format	ion indicating said destination, to determine an indication of a flow:
6		means for selecting, in response to said indication of a flow, one processing en-
7	gine of	f said plurality of processing engines to process the flow indicated.
1	106.	(Currently Amended) The apparatus of claim 105, further comprising:
2		A router, comprising:
3,		a port adapter to receive a packet by said router, said packet addressed to a desti-
4	nation.	said router having a plurality of route processing engines;
5		means for hashing a portion of a network layer information of said packet, said in-
6	format	ion indicating said destination to determine an indication of a flow:
7	means	for selecting, in response to said indication of a flow, one processing engine of
8	said pl	urality of processing engines to process the flow indicated;
9		means for receiving a plurality of packets, individual packets of said plurality of
10	packet	s arrive in substantially random order to produce different values of said informa-
11	tion in	random order;
12		means for producing different values of said indication of a flow in substantially
13	randor	n order in response to said plurality of packets arriving in random order;
14		means for producing by a particular flow a same indicia of flow; and
15		means for assigning said particular flow to a particular route processing engine in
16	the ord	ler that a first packet of said particular flow first arrives at said router.
1	107.	(Currently Amended) The apparatus of claim 106 further comprising:
2		means for assigning, in response to said random order of arrival of said first
3	packet	of said particular flow, a substantially uniform-distribution of packets to said route
4	proces	sing engines.

- (Previously Presented) The apparatus of claim 105, further comprising: 108. said information includes a destination address of said destination. 2
- 109. (Previously Presented) A computer readable media, comprising:
- said computer readable media having instructions written thereon for execution on 2
- a processor for the practice of the method of claim 101.
- (Previously Presented) Electromagnetic signals propagating on a computer net-110. 1
- work, comprising: 2
- said electromagnetic signals carrying instructions for execution on a processor for 3
- the practice of the method of claim/101.