Probabilistisk följning av multipla morrhår i monokulär video

Jim Holmström, Emil Lundberg

CSC,KTH

15 maj 2012

Bakgrund

- Neurofysiologer vill studera rörelser hos morrhår
- Befintliga kommersiella lösningar är dyra eller kräver inskränkningar
- Hedvig Sidenbladh, 2001: probabilistisk metod för följning av mänskliga rörelser

Mål med projektet

- Undersöka om Sidenbladhs metod går att applicera här
- Testa några olika varianter
- Identifiera problem och svårigheter

Introduktion

Bakgrund

Mål med projektet

Probabilistisk metod

Dold Markovmodell

Partikelfiltret

Morrhårens Matematiska Modell

Prediktion: Sökning i databas med träningsdata

Filtrering: Jämförelse av bilder

Resultat

Nästa steg

Dold Markovmodell

- System övergår mellan tillstånd med sannolikheter $p(Z_{n+1}|Z_n)$
- ► Tillståndet kan ej mätas direkt
- ► Får istället en *observation* I_n av tillståndet Z_n med sannolikhet $p(I_n|Z_n)$

Dold Markovmodell Partikelfiltret Morrhärens Matematiska Modell Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Partikelfiltret

Approximerar sannolikhetsfördelning med diskreta mängder

Dold Markovmodell
Partikelfiltret
Morrhärens Matematiska Modell
Prediktion: Sökning i databas med träningsdata

Filtrering: Jämförelse av bilder

Partikelfiltrets fyra steg

Prediktion Skapa hypoteser om nästa tidssteg
Perception Läs in och tolka bild

Filtrering Välj ut de hypoteser för vilka bilden är trolig

Urval Konstruera en uppskattning av systemet utifrån de filtrerade hypoteserna

Dold Markovmodell Partikelfiltret

Morrhårens Matematiska Modell

Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Illustration av stegen

Före filtrering

Efter filtrering

Slutlig uppskattning

Dold Markovmodell Partikelfiltret

Morrhårens Matematiska Modell

Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Illustration av stegen

Före filtrering

Efter filtrering

— Slutlig uppskattning

Dold Markovmodell Partikelfiltret Morrhårens Matematiska Modell Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Morrhårens Matematiska Modell

- Mycket enkel modell: $a_1x + a_2x^2 + a_3x^3$
 - Approximerar morrhårens form inom felmarginal för blotta ögat
 - ► Kan avvika lite i sällsynta extrema fall
- Andra kandidater t.ex. $\sum_{k} a_k \sin(kx)$

Prediktion: Sökning i databas med träningsdata

- ▶ Implementerar $p(X_{n+1}|X_n)$ som en sökning i databas
- lacktriangle Databas av tillståndsövergångar T=(f,t)
- ▶ Givet en hypotes x_n uppskattas x_{n+1} som ett medelvärde över t, viktat mot skillnaden mellan x_n och f
- ▶ Viktfunktion $w(x_n, f)$

$$x_{n+1} = \frac{\sum\limits_{(f,t) \in \text{DB}} t \cdot w(x_n,f)}{\sum\limits_{f} w(x_n,f)} + \mathcal{N}\left(0,\sigma\right)$$

▶ T.ex. $w(x_n, f) = \|x_n - f\|_{\operatorname{L}^p}^{-a}$ för något $a \in \mathbb{R}^+$

Dold Markovmodell

Exempelövergång

Gul: Från-tillstånd

$$f = \frac{x^3 + 100x^2 - 2000x}{10000}$$

▶ Röd: Till-tillstånd

$$t = \frac{x^3 + 150x^2 - 2000x}{10000}$$

▶
$$(f, t) \in DB$$

Dold Markovmodell Partikelfiltret

Morrhårens Matematiska Modell

Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Exempel: Genererad databas

- Genererad databas av tillståndsövergångar
- ► Vänster: Från-tillstånd
- ► Höger: Till-tillstånd

Partikelfiltret Morrhärens Matematiska Modell Prediktion: Sökning i databas med träningsdata Filtrering: Jämförelse av bilder

Dold Markovmodell

Filtrering: Jämförelse av bilder

Resultat: 32 partiklar, databas med 10000 övergångar

Resultat: 256 partiklar, databas med 10000 övergångar

- Resultaten på genererade morrhår verkar lovande
 - Förvånansvårt bra resultat med endast 32 partiklar
 - Mycket litet fel med 256 partiklar
- Återstår att göra:
 - Testa på riktiga morrhår
 - ▶ Optimera parametrar (bl.a. a och val av L^p)

Nästa steg

