GUÍA DE T.P. A péndice Sistema Internacional de Unidades

Ley de metrología. LEY 19 511. El Sistema Métrico Legal Argentino (Simela) estará constituido por las unidades, múltiplos y submúltiplos, prefijos y símbolos del Sistema Internacional de Unidades (SI)

Sistema Internacional de Unidades (SI)

Unidades de base

Magnitud	Unidad	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Intensidad de corriente eléctrica	ampere	A
Temperatura termodinámica	kelvin	K
Intensidad luminosa	candela	cd
Cantidad de materia	mol	mol

Unidades suplementarias

Angulo plano	radián	rad
Angulo sólido	estéreo radián	sr

Unidades derivadas

	Official Contracts		
Superficie	metro cuadrado	m^2	
Volumen	metro cúbico	m^3	
Frecuencia	hertz	Hz ó s ⁻¹	
Densidad	kilogramo por metro cúbico	kg/m ³	
Velocidad	metro por segundo	m/s	
Velocidad angular	radián por segundo	rad/s	
Aceleración	metro por segundo al cuadrado	m/s^2	
Aceleración angular	radián por segundo al cuadrado	rad/s ²	
Fuerza	newton	N ó kg.m/s ²	
Presión (esfuerzo mecánico)	pascal	Pa ó N/m ²	
Viscosidad cinemática	metro cuadrado por segundo	m^2/s	
Viscosidad dinámica	newton-segundo por metro cuadrado	N.s/m ²	
Trabajo, energía, cantidad de calor	joule	J ó N.m	
Potencia	watt	W ó J/s	
Cantidad de electricidad	coulomb	C ó A.s	
Tensión eléctrica, diferencia de	volt	V ó W/A	
potencial, fuerza electromotriz	VOIL		
Intensidad de campo eléctrico	volt por metro	V/m	
Resistencia eléctrica	ohm	Ω ό V/A	
Conductancia eléctrica	siemens	S ό Ω ⁻¹	
Capacidad eléctrica	farad	F ó A.s/V	
Flujo de inducción magnética	weber	Wb ó V.s	
Inductancia	henry	H ó V.s/A	
Inducción magnética	tesla	T ó Wb/m ²	
Intensidad de campo magnético	ampere por metro	A/m	
Fuerza magnetomotriz	ampere	A	
Flujo luminoso	lumen	lm ó cd.sr	
Luminancia	candela por metro cuadrado	cd/m ²	
Iluminación	lux	lx ó lm/m ²	
Número de ondas	1 por metro	m ⁻¹	
Entropía	joule por kelvin	J/K	
Calor específico	joule por kilogramo-kelvin	J/kg.K	
Conductividad térmica	watt por metro kelvin W/(m.K		
Intensidad radiante	watt por estéreo- radián W/sr		
Actividad (de una fuente radiactiva)	becquerel	Bq ó s ⁻¹	
·	·	· · · · · · · · · · · · · · · · · · ·	

GUÍA DE T.P. A péndice Sistema Internacional de Unidades

Sinonimias

- Litro: nombre especial que puede darse al decímetro cúbico en tanto cuanto no exprese resultados de medidas de volumen de alta precisión.
- Grado Celsius: puede utilizarse para expresar un intervalo de temperatura, en lo que es equivalente al kelvin.

Formación de múltiplos y submúltiplos

Factor por el que se multiplica la unidad	Prefijo	Símbolo
10 ¹²	tera	T
109	giga	G
10^{6}	mega	M
10^3	kilo	k
10^2	hecto	h
10 ¹	deca	da
10 ⁻¹	deci	d
10 ⁻²	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	p
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a

Unidades fuera del Sistema Internacional (S I)

Magnitud	Unidades		
Tiempo	minuto, hora y día		
Ángulo plano	grado, minuto y segundo sexagesimales		

Resumen de los valores recomendados en 1986 para las constantes físicas fundamentales

Cantidad	Símbolo	Valor	Unidades	Incertidumbre
Velocidad de la luz en el vacío	С	2.99792458 x 10 ⁸	m . s ⁻¹	(exacto)
Temperatura del punto triple	T_{t}	273.16	K	(exacto)
Permeabilidad del vacío	μ_0	4π 10 ⁻⁷	N. A ⁻²	(exacto)
Permitividad del vacío; $\varepsilon_0=1/\mu_0.c^2$	ϵ_0	8.854 187 817 x 10 ⁻¹²	F. m ⁻¹	(exacto)
Constante de Newton de la gravitación universal	G	6.672 59(85) x 10 ⁻¹¹	m ³ . kg ⁻¹ . s ⁻²	128
Constante de Planck	h	6.626 075 5(40) x 10 ⁻³⁴	J. s	0.60
Carga elemental (carga del electrón)	e	1.602 177 33(49) x 10 ⁻¹⁹	С	0.30
Cuanto de flujo magnético, h/2e	Φ_0	2.067 834 61(61) x 10 ⁻¹⁵	Wb	0.30
Masa del electrón	$m_{\rm e}$	9.109 389 7(54) x 10 ⁻³¹	kg	0.59
Masa del protón	m_p	1.672 623 1(10) x 10 ⁻²⁷	kg	0.59
Razón entre la masa del electrón y del protón	m_p/m_e	1836.152 701(37)		0.020
Masa del neutrón	m_n	1.674 928 6(10) x 10 ⁻²⁷	kg	0.59
Longitud de onda Compton, h/m _e c	$\lambda_{ m c}$	2.426 310 58(22) x 10 ⁻¹²	m	0.089
Constante de estructura fina. μ ₀ ce ² /2h	α	7.297 353 08(33) x 10 ⁻³		0.045
Inversa de la constante de estructura fina	α^{-1}	137.035 989 5(61)		0.045
Constante de Rydberg. m _e cα ² /2h	R_{∞}	10 973 731.534(13)	m ⁻¹	0.0012
Constante de Avogadro (moléculas/mol)	N_A	6.022 136 7(36) x 10 ²³	mol ⁻¹	0.59
Constante de Faraday	F	96 485.309(29)	C. mol ⁻¹	0.30
Constante molar de los gases	R	8.314 510(70)	J. mol ⁻¹ . K ⁻¹	8.4
Constante de Boltzmann R/N _A ,	k	1.380658 (12) x 10 ⁻²³	J. K ⁻¹	8.5
Constante de Stefan – Boltzmann	σ	5.67051 (19) x 10 ⁻⁸	W. m ⁻² .K ⁻⁴	34

Otras unidades usadas con el Sistema Internacional (S I)

0 1-100 0					
Cantidad	Símbolo	Valor	Unidades	Incertidumbre	
Electronvoltio	eV	1.60217733(49) x 10 ⁻¹⁹	J	0.30	
Unidad atómica de masa (unificada)	u	1.6605102(10) x 10 ⁻²⁷	kg	0.59	