BEST AVAILABLE COPY

(a wavelength of isotope ¹²CO₂(nm)): (a wavelength of isotope ¹³CO₂(nm))

2054.37	;	2053.96
2044		2044,49
2035.34	. :	2035.63
2010.18	:	2010.29
2002.51	:	2002.54

and a abundance ratio is measured by an absorbance in accordance with said a respective pair of wavelengths.

1996.10

Please amend the paragraph beginning at page 5 line 8 as follows.

1995.99

A preferred embodiment of the present invention will be described hereinafter. A spectroscopic method for analyzing isotopes according to the present invention is carried out by a spectroscopic analysis apparatus using a semiconductor laser shown in figure 1. That is to say, figure 1 is a schematic diagram of a system showing an embodiment of a spectroscopic analysis apparatus using a semiconductor laser according to the present invention. A semiconductor laser beam source 1 oscillating a laser beam having 2000nm-wavelength band is driven by a laser driver 2. For oscillating a desired and appropriate laser beam, the laser driver 2 comprises a temperature controller 2a for controlling appropriately a temperature of a laser element, a laser diode (hereinafter, referred to as "LD") driver 2b for providing the laser element with an electric current and driving the same, and a function generator 2c as a frequency modulating means for modulating oscillating frequency of the laser based on frequency modulation. Moreover, these 2a,2b,2c are coupled to a computer 9 for an appropriate operation.

Please amend the paragraph beginning at page 9 line 11 as follows.