ConservaFauna

Universidade Federal do Ceará (UFC) – Campus Quixadá

Antonio Victor C. Rodrigues

cavalcantevictor2003@alu.ufc.br

Yan Lima Queiroz

yanlqueiroz@alu.ufc.br

1. Objetivo

O ConservaFauna tem como objetivo central implementar um sistema eficiente e abrangente para monitorar e proteger as espécies em risco de extinção presentes na região. O sistema visa fornecer informações essenciais sobre essas espécies, seus habitats, ocorrências, ameaças e estratégias de conservação. Além disso, busca promover a conscientização e engajamento da comunidade local, órgãos governamentais e entidades de preservação ambiental na proteção desses animais e seus ecossistemas.

1.1. Título da aplicação

ConservaFauna.

1.2. Descrição das Entidades

Entidade Espécie: contém informações sobre as espécies em risco de extinção, como nome científico, nome popular, habitat, classificação de risco, descrição e principais ameaças.

Entidade Localização: registra as áreas específicas onde as espécies foram avistadas ou têm ocorrência conhecida, incluindo coordenadas geográficas, descrição do local.

Entidade Ameaças: armazena informações sobre o nivel da ameaça, e as principais ameaças enfrentadas pelas espécies, como desmatamento, caça ilegal, mudanças climáticas, entre outras.

Entidade Medidas de Conservação: descreve as estratégias e ações em andamento para a conservação das espécies, incluindo programas de reprodução em cativeiro, reintrodução na natureza, projetos de educação ambiental, entre outros, e também descreve o tipo de medida adotada.

Entidade Instituição: representa as entidades e organizações envolvidas no controle e proteção das espécies, como institutos de pesquisa, órgãos governamentais, ONGs e reservas naturais, e também apresenta a sede onde a instituição está localizada .

Entidade Responsáveis: registra os responsáveis pelas ações e projetos de conservação, incluindo pesquisadores, biólogos, voluntários e gestores de unidades de conservação.

Entidade Avistamentos: armazena informações sobre avistamentos recentes das espécies, incluindo a data, localização e observações adicionais.

1.3. Relacionamentos

Uma espécie pode ter várias localizações registradas. 1:n

Uma espécie pode estar sujeita a várias ameaças. 1:n

Para cada espécie, são definidas medidas de conservação específicas. 1:1

Várias instituições estão envolvidas na conservação de diferentes espécies.

Cada ação de conservação é atribuída a um ou mais responsáveis. 1:n

Os avistamentos são registrados para acompanhar a presença e distribuição das espécies.

2. Atividades

Data	Entrega	Tarefa	Responsável
06/06/2023	1: Requisitos da aplicação	Objetivo e nome da aplicação	Ambos
		Descrição da entidades	Victor Cavalcante
		Relacionamento	Yan Lima
24/06/2023	2: Modelagem e Mapeamento	Modelagem dos diagramas e Mapeamento do banco de dados	Victor Cavalcante
25/06/2023		Desenvolvimento das consultas	Ambos
		Criação e população do banco de dados	
08/07/2023	3: Consultas e Aplicação	Criação das visões e dos triggers	Yan Lima
09/07/2023		Criação da aplicação	Victor Cavalcante

3. Diagrama ER/EER

- 4. 10 perguntas relacionadas ao banco de dados da sua aplicação e apresente as respectivas consultas em SQL.
 - 4.1. Crie uma view chamada "especies_ameacadas" que exibe o nome das espécies em perigo e a descrição da ameaça, juntamente com o nível da ameaça.

CREATE VIEW especies ameacadas AS

SELECT e.nome_cientifico AS especie, a.descricao AS ameaca, a.nivel_ame

FROM especie e

JOIN ameacas a ON e.id ameaca = a.id

WHERE e.classificacao risco = 'Em perigo';

4.2. Crie uma view chamada "avistamentos_recentes" que exibe os detalhes dos avistamentos registrados nos últimos 30 dias.

CREATE VIEW avistamentos_recentes AS

SELECT a.data avistamento, e.nome cientifico, e.nome popular, l.latitude, l.longitude

FROM avistamentos a

INNER JOIN especie e ON a.id_especie = e.id

INNER JOIN localização | ON a.id_localização = l.id

4.3. Quais são as espécies avistadas na Floresta Amazônica?

SELECT e.nome popular AS especie, l.descricao

FROM especie e

JOIN avistamentos a ON a.id especie = e.id

JOIN localização l ON a.id localização = l.id

WHERE l.descricao = 'Floresta Amazônica';

VIEW: CREATE VIEW especies amazonicas AS

SELECT e.nome popular AS especie, l.descricao

FROM especie e

```
JOIN avistamentos a ON a.id_especie = e.id
JOIN localização l ON a.id_localização = l.id
```

WHERE l.descricao = 'Floresta Amazônica';

4.4. Quais são as espécies ameaçadas e suas respectivas medidas de conservação?

SELECT e.nome popular AS especie, m.descricao AS

medida conservação

FROM especie_medida_conservacao_instituicao emci

JOIN especie e ON emci.id_especie = e.id

JOIN medidas_conservação m ON emci.id_medida_conservação = m.id;

VIEW: CREATE VIEW especie conserva AS

SELECT e.nome popular AS especie, m.descricao AS medida conservação

FROM especie medida conservação instituição emci

JOIN especie e ON emci.id especie = e.id

JOIN medidas_conservação m ON emci.id_medida_conservação = m.id;

4.5. Quais espécies não possuem medidas de conservação associadas?

SELECT nome_popular

FROM especie

WHERE NOT EXISTS (

SELECT id_especie

```
FROM especie_medida_conservacao_instituicao

WHERE especie_medida_conservacao_instituicao.id_especie = especie.id
);
```

4.6. Qual é a quantidade total de espécies registradas no catálogo de espécies ameaçadas?

SELECT COUNT(*) AS quantidade_especies FROM especie;

4.7. Quais são os nomes e cargos dos responsáveis pelas instituições cadastradas?

SELECT r.nome, r.cargo, i.nome AS instituicao
FROM responsaveis r
INNER JOIN instituicao_responsavel ir ON r.id = ir.id_responsavel

INNER JOIN instituicao i ON ir.id instituicao = i.id;

4.8. Quais são as espécies que foram avistadas em determinada localização?

SELECT e.nome_cientifico AS especie, l.descricao AS localizacao FROM especie e

INNER JOIN avistamentos a ON e.id = a.id_especie

INNER JOIN localizacao l ON a.id_localizacao = l.id

4.9. Qual é a instituição responsável pela medida de conservação mais frequente entre as espécies ameaçadas de alto risco?

```
SELECT i.nome

FROM instituicao i

JOIN especie_medida_conservacao_instituicao emci ON i.id = emci.id_instituicao

JOIN medidas_conservacao mc ON emci.id_medida_conservacao = mc.id

JOIN especie e ON emci.id_especie = e.id

JOIN ameacas a ON e.id_ameaca = a.id

WHERE a.nivel_ame = 'Alto'

GROUP BY i.nome

ORDER BY COUNT(*) DESC

LIMIT 1;
```

4.10. Recupere as instituições responsáveis pelas medidas de conservação das espécies classificadas como "Em perigo" e que foram observadas na Floresta Amazônica (latitude entre -4 e 0 e longitude entre -74 e -60). Inclua o nome científico da espécie, o nome popular, a descrição da medida de conservação e o nome da instituição responsável.

```
SELECT e.nome_cientifico, e.nome_popular, mc.descricao, i.nome
FROM especie AS e

JOIN especie_medida_conservacao_instituicao AS emci ON e.id = emci.id_especie
JOIN medidas_conservacao AS mc ON emci.id_medida_conservacao = mc.id

JOIN instituicao AS i ON emci.id_instituicao = i.id

JOIN localizacao AS 1 ON e.id = l.id_especie

WHERE e.classificacao_risco = 'Em perigo'

AND l.latitude BETWEEN -4 AND 0
```

5. TRIGGERS

1. Essa view é utilizada para verificar a entrada de valor "nome_cientifico" na tabela "especie", se o animal inserido tiver o mesmo nome científico de outro animal já presente na tabela, vai mostrar uma mensagem de erro na aplicação quando a inserção for realizada.

```
CREATE OR REPLACE FUNCTION
check_especie_nome_cientifico_unique()

RETURNS TRIGGER AS $$

BEGIN

IF EXISTS (

SELECT 1 FROM especie WHERE nome_cientifico =
NEW.nome_cientifico AND id <> NEW.id

) THEN

RAISE EXCEPTION 'Já existe uma espécie com o mesmo nome científico';
END IF;
RETURN NEW;

END;

$$ LANGUAGE plpgsql;
```

CREATE TRIGGER trigger_especie_nome_cientifico_unique BEFORE INSERT OR UPDATE ON especie

FOR EACH ROW

EXECUTE FUNCTION check especie nome cientifico unique();

2. Essa view verifica a existência de "id_especie" na tabela "especie", se o valor não estiver presente na seguinte tabela irá aparecer uma mensagem de erro na aplicação.

CREATE OR REPLACE FUNCTION
check_avistamentos_especie_exists()

RETURNS TRIGGER AS \$\$

BEGIN

IF NOT EXISTS (

SELECT 1 FROM especie WHERE id = NEW.id_especie
) THEN

RAISE EXCEPTION 'Valor inválido para id_especie na tabela avistamentos';

END IF;

RETURN NEW;

END;

\$\$ LANGUAGE plpgsql;

CREATE TRIGGER trigger_avistamentos_especie_exists

BEFORE INSERT OR UPDATE ON avistamentos

FOR EACH ROW

EXECUTE FUNCTION check avistamentos especie exists();

Link da apresentação:

https://drive.google.com/file/d/1olJt6QBzZgw3MWXORaatCU_1T36M cc5l/view?usp=sharing