LISTA DE EXERCÍCIOS

Lista

(Definições Recursivas e Indução Estrutural, Algoritmos Recursivos)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 4.3: Definições Recursivas e Indução Estrutural
 - Capítulo 4.4: Algoritmos Recursivos

Revisão.

- 1. Responda formalmente as seguintes perguntas:
 - (a) O que é uma definição recursiva? Quais os elementos essenciais de uma definição recursiva?

Exercícios.

- 2. (Rosen 4.3.1) Encontre f(1), f(2), f(3) e f(4) se f(n) for definido recursivamente por f(0) = 1 e para $n = 0, 1, 2, \ldots$:
 - a) f(n+1) = f(n) + 2
 - b) f(n+1) = 3f(n)
 - c) $f(n+1) = 2^{f(n)}$
 - d) $f(n+1) = f(n)^2 + f(n) + 1$
- 3. (Rosen 4.3.3) Encontre f(2), f(3), f(4) e f(5) se f(n) for definido recursivamente por f(0) = -1, f(1) = 2 e para n = 0, 1, 2, ...:
 - a) f(n+1) = f(n) + 3f(n-1)
 - d) f(n+1) = f(n-1)/f(n)
- 4. (Rosen 4.3.7) Dê uma definição recursiva para a sequência $\{a_n\}, n=1,2,3,...$ se
 - (a) $a_n = 6n$.
 - (b) $a_n = 2n + 1$.
 - (c) $a_n = 10^n$.
 - (d) $a_n = 5$.
- 5. Nesta questão vamos generalizar os operadores de conjunção (\land) e de disjunção (\lor) para um número qualquer de operandos. Isto é feito de maneira similar como generalizamos a operação de soma (+) de dois operandos para um número qualquer usando somatórios (\sum).

Para isto, complete as seguintes definições recursivas, onde cada p_i , com $i \ge 1$, é uma proposição.

(a) Generalização da conjunção:
$$\begin{cases} \bigwedge_{i=1}^{0} p_i =?, \\ \bigwedge_{i=1}^{n} p_i =?, & n \geq 1 \end{cases}$$

(b) Generalização da disjunção:
$$\begin{cases} \bigvee_{i=1}^0 p_i =?,\\ \bigvee_{i=1}^n p_i =?, & n\geq 1 \end{cases}$$

- 6. (Rosen 4.3.25) Dê uma definição recursiva de:
 - (a) o conjunto dos inteiros pares.
 - (b) o conjunto dos inteiros positivos congruentes a 2 módulo 3 (ou seja, os inteiros positivos que têm resto 2 na divisão por 3).
 - (c) o conjunto dos inteiros positivos não divisíveis por 5.
- 7. (Rosen 4.3.27) Seja S um subconjunto dos pares ordenados de inteiros, definido recursivamente por $Passo\ base:\ (0,0)\in S,$

Passo recursivo: Se $(a,b) \in S$, então $(a,b+1) \in S$, $(a+1,b+1) \in S$ e $(a+2,b+1) \in S$.

- a) Liste os elementos de S produzidos pelas quatro primeiras aplicações da definição recursiva.
- c) Utilize indução estrutural para mostrar que $a \leq 2b$ quando $(a,b) \in S$.
- 8. (Rosen 4.3.29) Dê uma definição recursiva para cada um dos conjuntos de pares ordenados de inteiros positivos. (Dica: Plote os pontos no plano e procure por linhas que contenham os pontos do conjunto.)
 - (a) $S = \{(a, b) \mid a, b \in \mathbb{Z}^+, a + b \text{ \'e par}\}$
 - (b) $S = \{(a, b) \mid a, b \in \mathbb{Z}^+, a \text{ ou } b \text{ \'e impar}\}$
- 9. (Rosen 4.3.35) Dê uma definição recursiva para o reverso de uma string.

(Dica: primeiro defina o reverso de uma string vazia λ . Então escreva uma string w de tamanho n+1 como xy, onde x é uma string de tamanho n, e expresse o reverso de w em termos de x^R e y.)

10. (Rosen 4.3.43) Seja T é uma árvore binária completa (ou seja, uma árvore em que todos os vértices internos têm exatamente dois vértices filhos), seja n(T) o número de vértices na árvore T, e seja h(T) a altura (ou seja, o maior caminho da raiz até uma folha da árvore) de T.

Use indução estrutural para mostrar que $n(T) \ge 2h(T) + 1$.

11. (Rosen 4.4.11) Dê um algoritmo recursivo para encontrar o mínimo de um conjunto finito de números inteiros, considerando o fato de que o mínimo de n números inteiros é o menor entre o último inteiro da lista e o mínimo dos primeiros n-1 elementos da lista.

Exiba como seu algoritmo encontra o mínimo elemento do conjunto {3, 5, 1, 2, 4}.

12. Os números de Fibonacci, f_0, f_1, f_2, \dots são definidos recursivamente como a seguir:

$$\begin{cases} f_0 = 0, \\ f_1 = 1, \\ f_{n+1} = f_n + f_{n-1}, & \text{para } n = 1, 2, 3, \dots \end{cases}$$

Em particular, os primeiros números de Fiboacci são

$$f_0 = 0$$
, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8$, $f_7 = 13$, $f_8 = 21$, $f_9 = 34$, $f_{10} = 55$, ...

Utilize indução estrutural para mostrar que

$$f_n = \frac{1}{\sqrt{5}}\phi^n - \frac{1}{\sqrt{5}}\psi^n,$$

para n=0,1,2,..., onde $\phi=\frac{1+\sqrt{5}}{2}\approx 1.61803398$ (a "proporção divina") e $\psi=\frac{1-\sqrt{5}}{2}\approx -0.61803398$.

2