How the consumer behavior could be described for the Olist Platform (Brazilian eCommerce)?

XImena Rios Cotazo, Ramon Manuel Sandoval, Luisa Maria Carabali, Alejandro Camargo, Cristian Sarmiento, Hector Melo

- From the EDA we found out the states that make the most purchases are Sao Paulo and Rio de Janeiro, the two main states in the country.
- Almost 60 % of orders with late deliveries got a score of 1 star in the product
- December is the most important month in total sales.
- Most people in Brazil use Credit Card to pay their online purchases.
- The categories of products with more sales are: Bed table bath, health and beauty, sports, and decoration furniture.
- Purchasing by hour is low from 12:00AM, and starts decreasing till 5:00 AM.

Background

What aspects of consumers online behavior is useful for businesses to better understand their customers and predict consumer demand

Almost 60 % of orders with late deliveries got a 1 star review

5.653/9.550

Data

we analyze a Brazilian ecommerce public dataset of orders made at Olist Store. The dataset has information of 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil.

Model

We use Recurrent NN Architecture which is designed for time series, in our case we have sales, prices and reviews on a time series and want to predict future sales from that information.

Exploratory Data Analysis (EDA)

Analysis/Modelling

DATA SCIENCE 4 A L L

COLOMBIA

Models/Insights

Sales Count by Month for Category

What does affect the total price?

Dep. Variable:			R-squared: Adj. R-squared: F-statistic:		0.156 0.156 2287.		
Model:							
Method:							
Date:	ri, 18 Dec 20	020	Prob	(F-statistic):	0.00 -7.3106e+05		
Time:	21:01			kelihood:			
No. Observations:	1111	179	AIC:			1.462e+06	
Df Residuals:	1111	160	BIC:			1.462e+86	
Df Model:		9					
Covariance Type:	nonrobu	ust					
	coef	std	err	t	P> t	[0.025	0.975]
Intercept			.631	-5.868	0.000	-1.63e+84	-8158.519
regions[T.Sur]	-52.0669	4	.091	-12.727	0.000	-60.086	-44.048
regions[T.Sudeste]	-61.5766	3	.904	-15.771	0.000	-69.229	-53.924
regions[T.Nordeste]	-13.5198	4	.215	-3.207	0.001	-21.782	-5.258
regions[T.CentroOeste]	-37.3676	4	.410	-8.473	0.000	-46,012	-28.723
year	6.1383	1	.035	5.932	0.000	4.110	8.166
product_weight_g	0.0151	0	696.	64.904	0.000	0.015	0.016
product_vol	0.0008	3.73	e-05	21.378	0.000	0.001	0.001
product_photos_qty	4.5273	0	.303	14.934	0.000	3.933	5.121
review_score	1.3929	0	.376	3.705	0.000	0.656	2.130

Conclusions

- Promoting quality and quantity of product photos with sellers could be a good strategy to improve sales, according to models any changes in this variable have a positive impact on the total sales.
- Review score is key in order to increase sales, promoting among customers the evaluation of their orders is a good practice.
- Recurrent Neural Networks are designed to time series modeling, for our case we build a model to predict sales according to the historical data.