Lecture 5: Convolutional Neural Networks

Last time: Neural Networks

Linear score function:

2-layer Neural Network

f = Wx

 $f = W_2 \max(0, W_1 x)$

Next: Convolutional Neural Networks

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

max pool with 2x2 filters and stride 2

6	8
3	4

Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural **Networks**

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to \sim 5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm