EECS/BioE C106A/206A Introduction to Robotics

Lost Section 1

Sep 18 Fri 7 – 9 PM

Contents

Theory
 Rigid body transformation
 Twist, exponential coordinates
 Screw

- Example
The satellites system (Homework1 Problem 4)

One message in this section:

Check a frame in which a coordinate is defined.

Rigid body transformation (relative+absolute)

 ω : the coordinate for the rotation axis of frame 0 r_{0F} : the coordinate for the translation of frame 0

p: a point

 p_F : the coordinate for q of frame F p_0 : the coordinate for q of frame 0

absolute

 ω : frame 0 r_{0F} : frame 0

 p_0^a : the coordinate of frame 0, for the fixed point on frame 0 p_F : the coordinate of frame 0, for the fixed point on frame F

Rigid body transformation (relative+absolute)

 ω : the coordinate for the rotation axis of frame 0 r_{0F} : the coordinate for the translation of frame 0

p: a point

 p_F : the coordinate for q of frame F p_0 : the coordinate for q of frame 0

There is a single p, but multiple coordinates p_F , p_0 . $(R, \omega, r_{0F}, p_F, p_0)$ are defined in the relative frame.

absolute

ω: frame 0 r_{0F} : frame 0

 p_0^a : the coordinate of frame 0, for the fixed point on frame 0 p_F^a : the coordinate of frame 0, for the fixed point on frame F

There are multiple p_0^a , p_F^a . $(R, \omega, r_{0F}, p_0^a, p_F^a)$ are defined in the frame 0.

Exponential Coordinates, Twist + Screw (absolute)

 $(v,\widehat{\omega}) \in se(3)$: twist

$$\xi \coloneqq (v, \omega) \in \mathbb{R}^6$$
: the twist coordinates of $\hat{\xi} = \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix}$

 (ξ, θ) : exponential coordinate

$$\frac{d}{dt} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \begin{bmatrix} \dot{p}(t) \\ 0 \end{bmatrix} = \hat{\xi} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{\omega} & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p(t) \\ 1 \end{bmatrix} \qquad \begin{array}{l} p(t) : \text{frame 0} \\ \omega : \text{the coordinate for the rotation axis of frame 0} \end{array}$$

Then, $\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = e^{\hat{\xi}\theta} \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$

Here, we only have a single frame: frame 0.

$$g = e^{\hat{\xi}\theta} = \begin{cases} \begin{bmatrix} e^{\hat{\omega}\theta} & v\theta \\ 0 & 1 \end{bmatrix} & \omega = 0 \\ \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})(\omega \times v) + \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix} & \omega \neq 0, \parallel \omega \parallel = 1 \end{cases}$$

Exponential Coordinates, Twist + Screw (absolute)

Case 1. $\omega \neq 0$

$$\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} e^{\widehat{\omega}\theta} & (I - e^{\widehat{\omega}\theta})q + h\theta\omega \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p(0) \\ 1 \end{bmatrix}$$

Case 2. $\omega=0$: pure translation $h=\infty$

$$\begin{bmatrix} p(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p(0) \\ 1 \end{bmatrix} \text{, where } v \text{ is a velocity vector and a unit vector.}$$

p: the coordinate of the point of frame 0

 ω : the coordinate for the rotation axis of frame 0

q: the coordinate for the center of the rotation of frame 0

h: pitch

 θ : rotation angle

Here, we only have a single frame: frame 0.

Exponential Coordinates, Twist + Screw (absolute)

	Exponential Coordinates, Twist	Screw
All v, ω, q are defined in the single frame: frame 0.	$(v,\omega, heta)$: exponential coordinate	$\omega,q,h, heta$
$\omega \neq 0$	$\begin{bmatrix} e^{\widehat{\omega}\theta} & \left(I - e^{\widehat{\omega}\theta}\right)(\omega \times v) + \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix}$ If $v = -\omega \times q + h\omega$, the type	$\begin{bmatrix} e^{\widehat{\omega}\theta} & \left(I-e^{\widehat{\omega}\theta}\right)q+h\theta\omega\\ 0 & 1 \end{bmatrix}$ wo transformations are the same.
$\omega = 0$	$egin{bmatrix} I & v heta \ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} I & v\theta \ 0 & 1 \end{bmatrix}$

Relative transformation: method 1

rotation θ and translation R (g_{01}) -> coordinate change (g_{1e})

$$g_{0e} =$$

$$g_{1e} =$$

$$g_{01} =$$

Relative transformation: method 2

rotation θ (g_{01}) -> coordinate change and translation R (g_{1e})

$$g_{0e} =$$

$$g_{1e} =$$

 $g_{01} =$

Relative transformation: other methods

Absolute transformation: method 3

translation R and coordinate change (g_1) -> rotation θ (g_2)

$$g_{0e} =$$

$$g_1 =$$

screw

$$g_2 =$$

Absolute transformation: method 4

translation R (g_1) -> coordinate change (g_2) -> rotation θ (g_3)

$$g_{0e} =$$

$$g_1 =$$

$g_2 =$

$$g_3 =$$

Absolute transformation: method 5

translation $R(g_1)$ -> rotation $\theta(g_2)$ -> coordinate change (g_3)

$$g_{0e} =$$

$$g_1 =$$

screw

$$g_2 =$$

screw

$$g_3 =$$