

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

LM - LCC - LF - PM - PF Algebra y Geometría Analítica I - 2018

1 Números complejos

El conjunto $\mathbb C$ de los números complejos es

$$\mathbb{C} = \{ z = a + bi : a, b \in \mathbb{R} \}$$

donde i es la unidad imaginaria que verifica $i^2 = -1$.

Si $z \in \mathbb{C}$, la representación z = a + bi se llama forma binómica de z. La parte real de z es a, y la parte imaginaria de z es b, y se escribe

$$\operatorname{Re} z = a, \quad \operatorname{Im} z = b.$$

Notación:

$$a + (-b)i = a - bi$$
, $a + 0i = a$, $0 + bi = bi$.

Si $z, w \in \mathbb{C}$ entonces

$$z = w \iff \operatorname{Re} z = \operatorname{Re} w \quad \text{y} \quad \operatorname{Im} z = \operatorname{Im} w.$$

Sean z = a + bi y w = c + di dos números complejos. La suma y el producto se definen por

$$z + w = (a + c) + (b + d)i$$

 $z w = (ac - bd) + (ad + bc)i.$

La suma es asociativa y conmutativa; el producto es asociativo y conmutativo y vale la propiedad distributiva del producto respecto de la suma. Si $z \in \mathbb{C}$, z = a + bi, llamamos conjugado de z al número complejo $\bar{z} = a - bi$, y llamamos $m \acute{o} dulo$ de z al número real $|z| = \sqrt{a^2 + b^2}$. Se verifica

1)
$$|z|^2 = z \bar{z}$$
, 2) Si $z \neq 0, z^{-1} = \frac{\bar{z}}{|z|^2}$.

Si z = a + bi y w = c + di con $w \neq 0$ entonces

$$\frac{z}{w} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i.$$

Propiedades:

C1)
$$\overline{\overline{z}} = z$$
 M1) $z = 0 \iff |z| = 0$

C2)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 M2) $|zw| = |z||w|$

C3)
$$\overline{z}\overline{w} = \overline{z}\overline{w}$$
 M3) $|z| = |\overline{z}|$

C4) Si
$$z \neq 0$$
, $\overline{z^{-1}} = (\overline{z})^{-1}$ M4) $|z| = |-z|$

C5)
$$z + \bar{z} = 2 \operatorname{Re} z$$
 M5) Si $z \neq 0$, $|z^{-1}| = |z|^{-1}$

C6)
$$z - \overline{z} = 2 \left(\operatorname{Im} z \right) i$$
 M6) Si $w \neq 0$, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$

Si $z \in \mathbb{C}$, z = a + bi, $z \neq 0$, llamamos argumento de z al único número real arg z tal que

•
$$0 \le \arg z \le 2\pi$$

•
$$\cos(\arg z) = \frac{a}{|z|}$$

•
$$\sin(\arg z) = \frac{b}{|z|}$$

Si $z \in \mathbb{C}$ la forma trigonométrica de z es

$$z = |z| (\cos \arg z + i \sin \arg z)$$
.

Si $z = \rho(\cos \alpha + i \sin \alpha)$ y $w = \tau(\cos \beta + i \sin \beta)$ con $\rho, \tau > 0$ y $\alpha, \beta \in \mathbb{R}$ entonces

$$z=w \iff \rho=\tau \text{ (es decir, } |z|=|w|) \text{ y } \alpha=\beta+2k\pi \text{ para algún } k\in\mathbb{Z}.$$

Teorema de De Moivre. Sean $z, w \in \mathbb{C}$, $z \neq 0$, $w \neq 0$. Entonces si $z = |z| (\cos \alpha + i \sin \alpha)$ y $w = |w| (\cos \beta + i \sin \beta)$, entonces

$$zw = |z||w| \left[\cos(\alpha + \beta) + i\sin(\alpha + \beta)\right].$$

Corolario.

$$z^{-1} = |z|^{-1} \left[\cos(-\alpha) + i \sin(-\alpha) \right]$$

$$\bar{z} = |z| \left[\cos(-\alpha) + i \sin(-\alpha) \right]$$

$$\frac{z}{w} = \frac{|z|}{|w|} \left[\cos(\alpha - \beta) + i \sin(\alpha - \beta) \right]$$

$$z^{n} = |z|^{n} \left[\cos(n\alpha) + i \sin(n\alpha) \right] \quad n \in \mathbb{Z} \quad \text{(Fórmula de De Moivre)}$$

Si $w \in \mathbb{C}$, $w \neq 0$, una raíz n-ésima de w, con $n \in \mathbb{N}$, es un número $z \in \mathbb{C}$ tal que $z^n = w$. Propiedad. z es una raíz n-ésima de $w \neq 0$ si y solo si

$$z = |z|^{\frac{1}{n}} \left[\cos \frac{\arg w + 2k\pi}{n} + i \sin \frac{\arg w + 2k\pi}{n} \right]$$

para algún entero k con $0 \le k \le n-1$.

Si $z \in \mathbb{C}$, $z = |z| (\cos \alpha + i \sin \alpha)$, la notación exponencial de z es

$$z = |z|e^{i\alpha}$$
.

Propiedades. Si $\alpha, \beta \in \mathbb{R}$, entonces

$$\overline{e^{i\alpha}} = e^{\overline{i\alpha}} = e^{-i\alpha}$$
 $e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)}$.

2 Polinomios

Sea \mathbb{K} el conjunto de números reales \mathbb{R} o de números complejos \mathbb{C} . Un polinomio con coeficientes en \mathbb{K} es una expresión de la forma

$$P(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n = \sum_{j=0}^n a_j x^j, \quad \text{con} \quad a_j \in \mathbb{K}, 0 \le j \le n, \quad n \in \mathbb{N}.$$
 (1)

Denotamos por $\mathbb{K}[x]$ al conjunto de todos los polinomios con coeficientes en \mathbb{K} . Si el polinomio P está dado por (1) con $a_n \neq 0$ decimos que P tiene grado n y escribimos grP = n. El polinomio nulo, P(x) = 0, no tiene grado.

Si $P(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n$ y $Q(x) = b_0 x^0 + b_1 x^1 + \ldots + b_m x^m$, entonces la suma de P y Q es el polinomio P + Q definido por

$$(P+Q)(x) = c_0 x^0 + c_1 x^1 + \ldots + c_\ell x^\ell$$
, con $\ell = \max\{n, m\}$ y $c_j = a_j + b_j, 0 \le j \le \ell$,

poniendo $a_j=0$ si j>n y $b_j=0$ si j>m. También se define el polinomio producto $P\cdot Q$ de P y Q como

$$P \cdot Q(x) = d_0 x^0 + d_1 x^1 + \dots d_{m+n} x^{m+n}$$

donde, para $0 \le j \le m + n$,

$$d_j = a_0 b_j + a_1 b_{j-1} + a_2 b_{j-2} + \ldots + a_{j-1} b_1 + a_j b_0 = \sum_{k=0}^{j} a_k b_{j-k},$$

poniendo, de nuevo, $a_j = 0$ si j > n y $b_j = 0$ si j > m.

Propiedades. Sean P y Q polinomios en $\mathbb{K}[x]$. Entonces

1.
$$\operatorname{gr}(P+Q) \leq \max \{\operatorname{gr} P, \operatorname{gr} Q\}.$$

2.
$$\operatorname{gr}(P \cdot Q) = \operatorname{gr} P + \operatorname{gr} Q$$
.

Dado $P \in \mathbb{K}[x]$ como en (1), y un número $z \in \mathbb{C}$, la evaluación de P en z es el número, en general, complejo

$$P(z) = \sum_{j=0}^{n} a_j z^j \in \mathbb{C}.$$

Decimos que z es raíz de P si P(z) = 0.

Importante. Convenimos en que $x^0 = 1$ para todo $x \in \mathbb{K}$, o sea, la evalución de x^0 es siempre igual a 1.

Algoritmo de división. Dados P y Q en $\mathbb{K}[x]$, con $Q \neq 0$, existen únicos R y S en $\mathbb{K}[x]$ tales que

$$P = Q \cdot S + R$$
, $\operatorname{gr} R < \operatorname{gr} Q \circ R = 0$.

En este caso, R es el resto de la división de P por Q. Decimos que Q divide a P, o que P es divisible por Q, y escribimos Q|P, si el resto R de la división de P por Q es el polinomio nulo, o sea R=0. En este caso, $P=Q\cdot S$.

Observación. Si uno de los polinomios P y Q está en $\mathbb{C}[x]$ y el otro en $\mathbb{R}[x]$, entonces solo podemos asegurar que S y R están en $\mathbb{C}[x]$.

Teorema del Resto. Si $P \in \mathbb{K}[x]$ y $a \in \mathbb{C}$, el resto de dividir P por x - a es P(a).

Corolario. Sea $P \in \mathbb{K}[x]$ y sea $a \in \mathbb{C}$. Entonces a es raíz de P si y solo si (x-a)|P.

Decimos que $a \in \mathbb{C}$ es una raíz de multiplicidad $k \in \mathbb{N}$ de un polinomio $P \in \mathbb{K}[x]$, si $(x-a)^k | P$ y $(x-a)^{k+1}$ $/\!\!/ P$.

Teorema Fundamental del Álgebra. Todo polinomio $P \in \mathbb{C}[x]$ de grado mayor o igual a 1 admite una raíz compleja.

Corolario. Todo polinomio $P \in \mathbb{C}[x]$ de grado n mayor o igual a 1 admite exactamente n raíces complejas, contadas con su multiplicidad.

Observar que un polinomio $P \in \mathbb{R}[x]$ tiene exactamente n raíces complejas (contadas con multiplicidad), estas raíces pueden ser o no reales.

Teorema. Sea $P \in \mathbb{R}[x]$, y $a \in \mathbb{C}$. Si a es raíz de P de multiplicidad k, entonces \bar{a} también es raíz de P de multiplicidad k.

Entonces si un polinomio P tiene coeficientes reales, sus raíces complejas aparecen de a pares. Esto implica el siguiente corolario.

Corolario. Si $P \in \mathbb{R}[x]$ y grP es impar, entonces P tiene al menos una raíz real.

Factorización de polinomios.

1. Todo polinomio $P \in \mathbb{C}[x]$ puede factorizarse como

$$P(x) = (x - a_1)^{k_1} (x - a_2)^{k_2} \cdots (x - a_r)^{k_r}$$

con $k_i \in \mathbb{N}$, $a_i \in \mathbb{C}$, para $1 \le i \le r$, verificando $k_1 + k_2 + \dots k_r = \operatorname{gr} P$, y $a_i \ne a_j$ si $i \ne j$. En este caso las raíces de P son a_1, a_2, \dots, a_r y con a_j con multiplicidad k_j .

2. Todo polinomio a coeficientes reales puede, además, factorizarse como producto de polinomios lineales o cuadráticos, todos a coeficientes reales.

Teorema de Gauss. Sea $P(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n \in \mathbb{Z}[x]$ un polinomio con coeficientes enteros, con $a_0 \neq 0$. Si $\alpha = \frac{r}{s}$ es una raíz racional de P, con r y s coprimos, entonces $r|a_0$ y $s|a_n$.

Este teorema es útil para encontrar raíces racionales de polinomios con coefientes enteros o, incluso, racionales.

Raíces múltiples. Notar que si $P \in \mathbb{K}[x]$ es un polinomio de grado n > 0, entonces el polinomio derivado $P' \in \mathbb{K}[x]$ que se obtiene derivando formalmente a P, tiene grado n - 1. Esto es, si

$$P(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n, \qquad a_n \neq 0$$

entonces

$$P'(x) = a_1 + 2a_2x + 3a_3x^2 + \ldots + na_nx^{n-1}$$

tiene grado n-1. Análogamente consideramos derivadas superiores, $P^{(s)}$, de P. Entonces tenemos el siguiente resultado.

Teorema. $a \in \mathbb{C}$ es raíz de $P \in \mathbb{K}[x]$ de multiplicidad k si y solo si $P(a) = P'(a) = \cdots = P^{(k-1)}(a) = 0$.

FACULTAD DE CIENCIAS EXACTAS, ÎNGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA

LM - LCC - LF - PM - PF

Algebra y Geometría Analítica I - 2018 Trabajo Práctico: Números Complejos

1. (Calcular:				
	(a) $(6,2) - (3,\frac{2}{3})$	(c) $(1+i)^2$	(e)	$1_{\frac{\pi}{2}}1_{\frac{3\pi}{2}}$	
	(b) $(4,-1).(-2,3)$	(d) $\frac{(3+i)^2+(1-i)^2}{4+i}$	$\frac{(i)^3 - 2.(2+i)}{2i}$ (f)	$3\frac{\pi}{5}:4$	
	Representar gráficamente y números complejos:	entar gráficamente y escribir en froma polar y trigonométrica cada uno de los siguientes os complejos:			
	(a) $\sqrt{3} - i$		(c) -1		
	(b) $\frac{1+i}{1-i}$		(d) $-2 + 6i^{10}$		
3. I	3. Representar gráficamente y escribir en forma binómica los siguientes números complejos:				
	(a) 3	(b) $1_{-45^{\circ}}$	(c) $\sqrt{2}_{420^{\circ}}$	(d) $3(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$	
	Cuántos números complejo pinómica, polar y trigonom		$\bar{3}$ y $ z = 9$? Cuáles son	? Expresarlos en forma	
5. I	Indicar si las siguientes pro	posiciones son verdadera	s o falsas.Justificar las i	respuestas	
	 (a) Si z = a + bi, a, b ∈ ℝ entonces a ≤ z (b) arg(z) = arg(z̄) ∀z ∈ ℂ (c) ∃z ∈ ℂ / arg(z) = arg(z̄) (d) Si z = -4(cos ^{7π}/₃ + i sin ^{7π}/₃ entonces arg(z) = ^{7π}/₃ 				
6. I	Expresar en forma polar los	resultados de las opera	ciones indicadas:		
	(a) $2.(2\sqrt{3}-2i).(1+i)$	(b) $(-1+\sqrt{3}i)^6$	(c) $2_{30^{\circ}} + 5_{315^{\circ}}$	(d) $\frac{6_{60} \circ \frac{1}{2}_{30} \circ}{\frac{1}{4} \pi}$	

(b) Dar en cada uno de los casos anteriores dos números complejos que pertenezcan y dos que no pertenezcan al conunto indicado

7. (a) Representar gráficamente los siguientes conjuntos:

iii. $A_3 = \left\{ z \in \mathbb{C} / |z| \le 2 \mid \frac{\pi}{4} \le \arg(z) \le \frac{\pi}{2} \right\}$

v. $A_5 = \{ z \in \mathbb{C} / ||z - i| = |z + i| \}$

iv. $A_4 = \{z \in \mathbb{C}/ \ 1 < Re(z) \le 3, \ 2 \le Im(z) \le 4\}$

i. $A_1 = \{z \in \mathbb{C}/|z| = 1\}$ ii. $A_2 = \{z \in \mathbb{C}/\arg(z) = \frac{\pi}{6}\}$ 8. Caracterizar las siguientes regiones graficadas mediante un subconjunto de \mathbb{C} .

a) Im

b)

c)

d)

9. Hallar las soluciones reales de cada una de las ecuaciones lineales con dos incógnitas a coeficientes en \mathbb{C} :

(a)
$$x + iy = 1$$

(c)
$$(1+i)x + (2-i)y = 7$$

(b)
$$ix + y = 1 + i$$

(d)
$$(3+i)(x+iy) = 6+2i$$

10. Hallar las soluciones complejas de cada una de las ecuaciones lineales con una incógnita a coeficientes en \mathbb{C} :

(a)
$$z = 1$$

(c)
$$(3+i)z = 6+2i$$

(b)
$$(3+i)z = 4i$$

(d)
$$4iz = 7 + 2i - 6z$$

11. Calcular:

(a)
$$\sqrt{2i}$$

(d)
$$\sqrt[4]{1}$$

(b)
$$\sqrt[3]{-27}$$

(c)
$$\sqrt[5]{-\sqrt{2}-\sqrt{2}i}$$

(e)
$$\sqrt[6]{-i}$$

12. Resolver las siguientes ecuaciones:

(a)
$$z^5 - 32 = 0$$

(c)
$$(i-1)-z^3=0$$

(b)
$$z + \overline{z} = 5 + 3i$$

(d)
$$1 + z^4 + i = 0$$

13. Resolver las siguientes ecuaciones:

(a)
$$z^2 - (2+i)z - 7i = 0$$

(c)
$$z^4 + z^2 + i = 0$$

(b)
$$z^2 - (3-2i)z + 5 - 5i = 0$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales DEPARTAMENTO DE MATEMÁTICA

LM - LCC - LF - PM - PF Algebra y Geometría Analítica I - 2018 Trabajo Práctico: Polinomios

- 1. Sean $P(x) = x^5 + 4x^2 2i$, $Q(x) = x^2 + (2-i)$, $R(x) = x^7 + 5x^3 ix^2 + 2x + 1 i$. Hallar los polinomios indicados en cada caso:

- (a) P + Q (b) P + Q R (c) $P \cdot Q$ (d) $Q \cdot (P + 2R)$ (e) $2P \cdot (R Q)$
- 2. En cada uno de los siguientes casos hallar el cociente y el resto de dividir el polinomio P por el polinomio Q. En los casos que sea posible aplicar la regla de Ruffini.
 - (a) $P(x) = 4x^3 + x^2$, $Q(x) = x^2 + 1 + i$
 - (b) $P(x) = 4x^3 + x^2$. Q(x) = x + 1 + i
 - (c) $P(x) = 3x^4 x^2 + ix 2$, Q(x) = 5x 4
 - (d) $P(x) = 3x^6 x^4 + ix^3 2x^2$, $Q(x) = 5x^3 4x^2$
- 3. Analizar por qué son iguales los resultados de los ejercicios 2c) y 2d)
- 4. Siendo $P(x) = x^4 ix^3 ix + 1 + i$, hallar P(0), P(1), P(i), P(i), P(i), P(i+1), P(5), P(6), P(2-i). Cuando resulte más conveniente, utilizar el teorema del resto.
- 5. Siendo $P(x) = kx^4 + kx^3 33x^2 + 17x 10$, calcular P(4) sabiendo que P(5) = 0.
- 6. Determinar si los números 1, 1, i y -i son raíces del polinomio $P(x) = 3x^12 + x^9 x^6 + 2x^5 + 2x^4 x^6 + 2x^5 + 2x^5 + 2x^4 x^6 + 2x^5 + 2x^$ $3x^2 + 2$
- 7. Dar en cada caso un polinomio P que cumpla con las condiciones pedidas, explicitando si es único o no.
 - (a) P tiene a 2 como raíz simple y a i como raíz triple.
 - (b) P tiene a 2 como raíz simple y a i como raíz triple y es de grado 4.
 - (c) P tiene a 2 como raíz simple y a i como raíz triple y es de grado 4 y P(1) = 3i.
 - (d) 1, 4, 2 y 0 son raíces de P y P es de grado 6.
 - (e) 1, 4, 2 y 0 son raíces de P, P es de grado 5 y a coeficientes reales.
- 8. Encontrar la descomposición factorial de los siguientes polinomios. En los casos que existan raíces complejas, dar la descomposición en factores lineales exclusivamente y en factores lineales y cuadráticos a coeficientes reales.
 - (a) $P(x) = 2x^4 + 5x^3 11x^2 20x + 12$
 - (b) $P(x) = x^5 3x^4 + x^3 + x^2 + 4$
- 9. Sea $P(x) = 2x^4 6x^3 + 7x^2 + ax + a$. Determinar $a \in \mathbb{R}$ sabiendo que (1+i) es raíz de P. Luego hallar las restantes raíces de P.

- 10. Hallar un polinomio P de grado mínimo con coeficientes reales que verifique simultáneamente:
 - (a) las soluciones de $z^2=5\bar{z}$ son raíces de P,
 - (b) P tiene alguna raíz doble,
 - (c) P(1) = 31.