## Discretization of the Advection-Diffusion Equation

```
clear, clc, close all
set_demo_defaults
```

Consider the Advection-Diffusion Equations (ADE) for the heat transport by advection and conduction

$$\frac{\partial T}{\partial t} + \nabla \cdot (\mathbf{v} \, T - k \nabla T) = f_s$$

where we have assumed that  $\rho$  and  $c_p$  are constant and divided by them, so that  $k = \kappa/(\rho c_p)$  is the thermal diffusivity. Using the  $\theta$ -method and our discrete operators we discretize this equation as follows

$$\mathbf{I}\frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \mathbf{D} * (\mathbf{A}(\mathbf{v}) - \mathbf{Kd} * \mathbf{G}) * (\theta \mathbf{u}^{n+1} + (1 - \theta)\mathbf{u}^{n+1}) = \mathbf{f}_s$$

Here both the advective and diffusive/conductive terms are treated equally. Let's first consider the purely advective case, k = 0 and  $f_s = 0$ , so that

$$\mathbf{IM} * \mathbf{u}^{n+1} = \mathbf{EX} * \mathbf{u}^n$$

where implicit and explicit matrices are given by

$$\mathbf{IM} = \mathbf{I} + \Delta t (1 - \theta) \mathbf{D} * \mathbf{A}(\mathbf{v})$$

$$\mathbf{EX} = \mathbf{I} - \Delta t \, \theta \, \mathbf{D} * \mathbf{A}(\mathbf{v})$$

here A(v) is the matrix that computes the upwind flux based on the sign of v.

```
v0= 1;
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 30;
Grid.periodic = 'x-dir';
Grid = build_grid(Grid);
[D,G,~,I,M] = build_ops(Grid);
v = v0*ones(Grid.Nfx,1); A = flux_upwind(v,Grid);
L = D*A; S = I;
IM = @(theta,dt) S + (1-theta)*dt*L;
EX = @(theta,dt) S - theta*dt*L;
```

## **Explicit advective time step restriction (CFL-condition)**

Similar to the diffusive case the Forward Euler Method ( $\theta=1$ ) is only conditionally stable. Again we can confirm this by looking at the eigenvalue spectrum of the resulting amplification matrix,  $\mathbf{AMP} = \mathbf{IM}^{-1}\mathbf{EX}$ . For an advection problem we cannot impose natural boundary conditions, hence we impose periodic BC's - something we have not discussed in class (but not very difficult).

```
theta = 1;
dt_max = Grid.dx/(v0);
dt_vec = logspace(-4,-1,3e2);
figure
```

```
for i = 1:length(dt_vec)
    A = inv(IM(theta,dt_vec(i)))*EX(theta,dt_vec(i));
    lam = eig(full(A));
    lam_max_FE(i) = max(lam);
    lam_min_FE(i) = min(lam);
end
semilogx(dt_vec,lam_max_FE,'k'), hold on
semilogx(dt_vec,lam_min_FE,'k')
semilogx(dt_vec,ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_vec,-ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_max*[1 1],[-2 2],'r','linewidth',4), hold off
ylim([-2 2])
xlabel '\Delta t [s]'
ylabel('\lambda')
title 'Stability of the Forward Euler Method: \theta = 1'
```



For  $\Delta t > \Delta x/|v|$  the magnitude of the largest eigenvalues exceeds 1 and the method is unstable (red line). This criterion is referred to a the Courant-Friedrichs-Levy condition or CFL-condition.

## **Comparison to Neumann condtion for diffusion**

It is worth comparing the explicit time step limits for both diffusion and advection as function of the dimensionless grid size,  $\Delta x' = \Delta x/L$ , and the Peclet number, Pe = vL/k, where L is the domain size. Given the two conditions on the time step  $\Delta t_N \leq \Delta x^2/(2k)$  and  $\Delta t_{CFL} \leq \Delta x/|v|$  we have the ratio

$$\frac{\Delta t_{\rm CFL}}{\Delta t_{\rm Neu}} = \frac{2}{\Delta x' Pe}$$

so that the explicit timestep is limited by diffusion when  $\Delta x' < 2/\text{Pe}$ . Therefore, as the grid is refined the time step is always limited by diffusion. In fluid dynamical problems surch as convection in the ice shell,  $\text{Pe} \gg 1$ , so that advection may limit the time step for realistic problems with finite grid size.

## Implicit advective time stepping

Of course, we can also choose the implicit Backward Euler (BE) and Crank-Nicholson Methods (CN) to time step the advection equation.

```
theta = 1;
dt max = Grid.dx/(v0);
dt vec = logspace(-4,1,3e2);
lam max BE = zeros(length(dt vec), 1);
lam max CN = lam max BE;
lam min BE = lam max BE;
lam min CN = lam max BE;
figure
for i = 1:length(dt vec)
    theta = 0; % BE
    A = inv(IM(theta,dt vec(i)))*EX(theta,dt vec(i));
    lam = eig(full(A));
    lam max BE(i) = max(lam);
    lam min BE(i) = min(lam);
    theta = 0.5; % CN
    A = inv(IM(theta,dt_vec(i)))*EX(theta,dt_vec(i));
    lam = eig(full(A));
    lam max CN(i) = max(lam);
    lam min CN(i) = min(lam);
end
semilogx(dt vec, lam min CN, 'k:'), hold on
semilogx(dt vec,lam min BE,'k')
semilogx(dt vec, ones(size(dt vec)), 'g--', 'linewidth',2)
semilogx(dt vec, -ones(size(dt vec)), 'g--', 'linewidth',2)
semilogx(dt max*[1 1],[-2 2],'r','linewidth',4), hold off
ylim([-2 2])
xlabel '\Delta t'
ylabel('\lambda')
title 'Implicit Methods for Advection: \theta < 1'
legend('CN','BE')
```



#### **Transient solution**

```
theta = 1; Nx = 100; Length = 2; v0 = 1; phi =1;
tmax = 1.5; cfl = .5;
% Grid and operators
Grid.xmin = 0; Grid.xmax = Length; Grid.Nx = Nx;
Grid = build grid(Grid);
[D,G,~,I,M] = build_ops(Grid);
dt = cfl*Grid.dx/(v0);
Nt = round(tmax/dt);
v = v0*ones(Grid.Nfx,1);
A = flux upwind(v,Grid);
% Assemble implicit and explicit operators
IM = @(theta) I + (1-theta)*dt/phi*(D*A);
EX = @(theta) I - theta*dt/phi*(D*A);
% Boundary conditions
BC.dof dir = Grid.dof xmin;
BC.dof f dir = Grid.dof f xmin;
BC.dof neu = [];
BC.dof f neu = [];
        = [];
BC.qb
            = 1;
BC.g
[B,N,fn] = build bnd(BC,Grid,I);
```

```
% Initial conditions
cFE = zeros(Grid.Nx,1);

% Transient solution
figure
time = 0;
for i=1:Nt
    time = time + dt; xf = v0*time;
    %% Finite Volume
    cFE = solve_lbvp(IM(theta),EX(theta)*cFE,B,BC.g,N);
    if mod(i,10) == 0
    plot(Grid.xc,cFE,'-'), hold on
    plot([0 xf xf Grid.xmax],[1 1 0 0],'k--')
    drawnow
end
end
```



## **Numerical diffusion**

The main challence in numerical simulation of advective transport is the elimination of so-called numerical diffusion. The numerical example below illustrates this

```
theta = 1; Nx = 100; Length = 2; v0 = 1; phi =1; tmax = .5; cfl = .1;
```

```
% Grid and operators
Grid.xmin = 0; Grid.xmax = Length; Grid.Nx = Nx;
Grid = build grid(Grid);
[D,G,\sim,I,M] = build ops(Grid);
dt = cfl*Grid.dx/(v0);
Nt = round(tmax/dt);
v = v0*ones(Grid.Nfx,1);
A = flux upwind(v, Grid);
% Assemble implicit and explicit operators
Lim = @(theta) I + (1-theta)*dt/phi*(D*A);
Lex = @(theta) I - theta*dt/phi*(D*A);
% Boundary conditions
BC.dof dir = Grid.dof xmin;
BC.dof_f_dir = Grid.dof_f_xmin;
BC.dof neu = [];
BC.dof f neu = [];
BC.qb = [];
BC.q = 1;
[B,N,fn] = build bnd(BC,Grid,I);
% Initial conditions
cFE = zeros(Grid.Nx, 1);
cCN = zeros(Grid.Nx, 1);
CBE = zeros(Grid.Nx, 1);
% Transient solution
figure
time = 0
```

time = 0

```
for i=1:Nt
    time = time + dt;
    %% Finite Volume
    cFE = solve lbvp(Lim(1.0), Lex(1.0)*cFE, B, BC.g, N);
    ccn = solve lbvp(Lim(0.5), Lex(0.5)*ccn, B, Bc.g, N);
    CBE = solve lbvp(Lim(0.0), Lex(0.0)*CBE, B, BC.q, N);
end
xf = v0*time;
clf
plot(Grid.xc,cFE,'-'), hold on
plot(Grid.xc,cBE,'-')
plot(Grid.xc,cCN,'-')
plot([0 xf xf Grid.xmax],[1 1 0 0],'k--')
xlabel 'x'
ylabel 'c'
legend('FE','BE','CN','MOC')
```



# **Auxillary functions**

## **Advection-diffusion front**

This function evaluates the analytic solution for an advection dffusion front in a semi-infinte half space. This solution matches the constant Dirichlet BC at x=0;