TEMA 4

Introducción a SQL

CREAT TABLE AFFICELD (
CREAT TABLE AFFICELD (
CREAT TABLE AFFICELD (
CREAT TABLE PROVINCIA (
CREAT TABLE CROSTAL (
CROSTAL CROSTAL CROSTAL (
CROSTAL CROSTAL CROSTAL CROSTAL CROSTAL CROSTAL CROSTAL CRO

CURSO 23-24

1.- Introducción.

ÍNDICE

- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

2

1

Copyright 2024 Marisa Escudero Sanchis

ÍNDICE 🗐

- 1.- Introducción.
- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

Copyright 2024 Marisa Escudero Sanchis

1.- INTRODUCCIÓN

SQL= Structured Query Language

- Lenguaje comercial para BD relacionales.
- Se utiliza para la DEFINICIÓN, MANIPULACIÓN y GESTIÓN de BD relacionales:
 - ◆Creación de la BD; consultas; altas, bajas y modificaciones; definición de restricciones de integridad; gestión de usuarios, gestión del almacenamiento, etc.
 - ◆Esta amplia funcionalidad hace que sea un lenguaje utilizado por administradores, desarrolladores, e incluso usuarios avanzados.
- Es un lenguaje **DECLARATIVO**: se especifica QUÉ se quiere obtener, no COMO obtenerlo.

3

1.- INTRODUCCIÓN

© SQL nos permite la comunicación con el SGBD:

Copyright 2024 Marisa Escudero Sanchis

ÍNDICE

5

7

1.- Introducción.

- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

1.- INTRODUCCIÓN

SQL se puede utilizar de las siguientes formas:

■ MODO INTERACTIVO:

- ◆El usuario escribe las sentencias SQL y se muestran los resultados en pantalla.
- ◆Trabajamos así cuando utilizamos editores de comandos SQL: SQL* plus, SQL Developer, Toad, Antiguo SQL* plus Worksheet, etc.

■ MODO EMBEBIDO:

- ◆Las sentencias o comandos SQL se encuentran inmersos (o embebidos) entre las instrucciones de un lenguaje de programación anfitrión (Java, PHP, PL/SQL, etc.)
- ◆Los resultados los gestiona el código del programa.

Copyright 2024 Marisa Escudero Sanchis

2.- TIPOS DE SENTENCIAS SQL

- SQL proporciona un gran repertorio de sentencias que se utilizan para realizar distintas tareas.
- Dependiendo de las tareas, podemos clasificar las sentencias SQL en 2 grandes tipos. Cada uno de estos tipos de sentencias define un sublenguaje SQL.

■ <u>Sentencias de DEFINICIÓN de datos</u>:

- **♦DDL** (Data Definition Language)
- ◆Se utilizan para definir y mantener la estructura de la BD.

■ Sentencias de MANIPULACIÓN de datos:

- **♦DML** (Data Manipulation Language)
- ◆Se utilizan para manipular los datos contenidos en la BD.

0

2.- TIPOS DE SENTENCIAS SQL

DML (MANIPULACIÓN DE DATOS)			
SENTENCIA DESCRIPCION			
SELECT	CONSULTA de datos		
INSERT	INSERCIÓN de datos		
UPDATE	MODIFICACIÓN de datos		
DELETE	BORRADO de datos		

DDL (DEFINICIÓN DE OBJETOS)				
SENTENCIA DESCRIPCION				
CREATE	CREACIÓN de objetos de la BD			
DROP	BORRADO de objetos de BD			
ALTER	MODIFICACIÓN de objetos de la BD			
GRANT/REVOKE CONCEDER/REVOCAR privilegios				
COMMIT/ROLLBACK	VALIDAR/DESHACER Transacción actual			

9

Copyright 2024 Marisa Escudero Sanchis

2.- TIPOS DE SENTENCIAS SQL

- - DML= Lenguaje de manipulación de datos:
 - **◆**Consulta
 - ◆Inserción

DE DATOS

- ◆Modificación
- **◆**Borrado
- **DDL**= Lenguaje de definición de datos
 - ◆Creacion

 - ◆Modificación DE LOS OBJETOS DE LA BD
 - **◆**Borrado
- El DDL se encarga de la definición de todos los objetos y estructuras (básicas, derivadas, internas) de la BD:
 - ◆Tablas, vistas, usuarios, privilegios, etc.

2.- TIPOS DE SENTENCIAS SQL

- Actualmente se tiende a subdividir el DDL en 2 sublenguajes más:
 - **DCL** (Data Control Language)
 - **DTL** (Data Transaction Language)

DCL (CONTROL DE ACCESO)				
SENTENCIA DESCRIPCION				
GRANT/REVOKE	CONCEDER/REVOCAR privilegios			

DTL (CONTROL TRANSACCIONES)					
SENTENCIA DESCRIPCION					
COMMIT/ROLLBACK	VALIDAR/DESHACER Transacción actual				

10

Copyright 2024 Marisa Escudero Sanchis

2.- TIPOS DE SENTENCIAS SQL

- Considerando la tendencia actual...
- SQL= DML + DDL + DCL+ DTL
 - DML= Lenguaje de manipulación de datos:
 - **◆**Consulta
 - ◆Inserción

DE DATOS

- ◆ Modificación
- **◆**Borrado
- DDL= Lenguaje de definición de datos
 - **◆**Creacion
 - ◆Modificación DE LOS OBJETOS DE LA BD
 - **♦**Borrado
- DCL= Lenguaje de control de acceso
- DTL= Lenguaje de control de transacciones

11

- 1.- Introducción.
- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT

13

Copyright 2024 Marisa Escudero Sanchis

3.1.- CADENAS DE CARACTERES

© CHAR (tamaño)

- Cadenas de caracteres de longitud fija
 - ♦ASCII o EBCDIC según la configuración en servidor.
 - ◆<u>Tamaño máximo¹</u>: 2000 caracteres.
- Si se introduce en el campo una cadena:
 - ◆<u>De menor longitud a la definida</u>: se rellena con blancos a la derecha hasta que alcanza la longitud.
 - ◆<u>De mayor longitud</u>: Oracle devuelve un error.

O VARCHAR2 (tamaño)

- Cadenas de caracteres de longitud variable.
 - ◆Tamaño máximo: 4000 caracteres.
- Si se introduce en el campo una cadena:
 - ◆<u>De menor longitud a la definida</u>: se almacena con la longitud introducida (No se rellena con blancos).
 - ◆<u>De mayor longitud</u>: Oracle devuelve un error.

3.- TIPOS DE DATOS DE ORACLE

© CADENAS DE CARACTERES.

- CHAR (tamaño)
- VARCHAR2 (tamaño)
- **LONG**
- CLOB

NUMÉRICOS.

- NUMBER [(precision[, escala])]
- **©** FECHA.
 - DATE

DATOS BINARIOS.

- RAW (tamaño)
- **LONG RAW**
- BLOB

Con más detalle...

14

16

Copyright 2024 Marisa Escudero Sanchis

3.1.- CADENAS DE CARACTERES

LONG (en desuso)

- Cadenas de caracteres de gran tamaño de longitud variable.
 - ◆tamaño máximo: 2GB
- Se utiliza para almacenar textos muy grandes.
- <u>Tiene MUCHAS restricciones</u>:
 - ♦Sólo se puede definir una columna LONG por tabla.
 - ◆No pueden aparecer en CONSTRAINTS.
 - ◆No sirve para indexar.
 - ◆No es posible su uso en clausulas WHERE, GROUP BY, ORDER BY, DISTINCT, etc.
 - ◆No se puede utilizar con UNION, INTERSECT, MINUS.
 - ◆Etc, etc, etc.
- <u>Está en desuso</u>. Se mantiene por compatibilidad.

46

1: Consultar siempre el tamaño maximo en ayudas en línea, ya que puede cambiar con las versiones

3.2.- NUMÉRICOS

MUMBER [(precision[, escala])]

- Datos numéricos.
 - ◆tanto enteros como reales, con o sin signo.
- **Precision**: número total de dígitos (de 1 a 38)
- Escala: número de dígitos decimales (de -38 a 127)
 - ◆Reales en coma fija: NUMBER (precision, escala)
 - ❖ Se indica precisión y escala.
 - ❖ Escala Negativa: NO LA USAMOS.
 - ◆Enteros de longitud predeterminada: NUMBER (precision)
 - ❖ Se indica la precisión. Escala es 0, no hay decimales.
 - ◆Enteros sin longitud y Reales en coma flotante: NUMBER
 - Sin indicar precisión ni escala (precisión es 38)
 - ❖ El número se almacena tal y como se introduce, sea entero o real.
 - ❖ Se automatiza la escala (la precisión de las operaciones peligra)

17

Copyright 2024 Marisa Escudero Sanchis

3.2.- NUMÉRICOS

Actual Data	Specified As	Stored As
123.89	NUMBER	123.89
123.89	NUMBER (3)	124
123.89	NUMBER (3,2)	exceeds precision
123.89	NUMBER (4,2)	exceeds precision
123.89	NUMBER (5,2)	123.89
123.89	NUMBER (6,1)	123.9
123.89	NUMBER (6,-2)	100
.01234	NUMBER (4,5)	.01234

3.2.- NUMÉRICOS

Las siguientes <u>tablas de ejemplo</u> muestran como se almacenan los datos numéricos en Oracle con diferentes precisiones y escalas:

Input Data	Specified As	Stored As
7,456,123.89	NUMBER	7456123.89
7,456,123.89	NUMBER(*,1)	7456123.9
7,456,123.89	NUMBER (9)	7456124
7,456,123.89	NUMBER (9,2)	7456123.89
7,456,123.89	NUMBER (9,1)	7456123.9
7,456,123.89	NUMBER (6)	How Scale Factors Affect Numeric Data Storage exceeds precision)
7,456,123.89	NUMBER (7,-2)	7456100

18

Copyright 2024 Marisa Escudero Sanchis

3.2.- NUMÉRICOS

Conviene observar que:

- Precision=* permite indicar solo escala (*=38)
- Si no se indica la escala se asume 0.
- Si no se indica precisión se almacena la del dato introducido (la precisión máxima sería 38).
- Si se excede la precisión se produce un error.
- Si se excede la escala se produce un redondeo.
- <u>La escala puede ser negativa</u>. El numero se redondea a la izquierda del punto decimal los dígitos indicados.

♦NO LO USAMOS

- <u>La escala puede ser mayor que la precisión</u>. Sólo tiene sentido para números decimales menores que 1.
 - **♦NO LO USAMOS**

19

3.3.- FECHA

DATE

- Información de fecha/hora.
- Almacena siglo/año/mes/día/hora/minutos/segundos
- El formato se especifica mediante el parámetro de configuración de sesión: NLS_DATE_FORMAT
 - ◆Normalmente suele ser: 'dd/mm/yy'
- El formato se puede cambiar modificando el parámetro **NLS_DATE_FORMAT** con la orden ALTER SESSION
 - ◆Los posibles formatos se recuerdan en prácticas.
- Existen otros tipos de datos para el manejo de fechas con mayor precisión.
 - Permiten fracciones de segundo. No los vamos a usar.
 - Consultadlos en las ayudas.

21

Copyright 2024 Marisa Escudero Sanchis

3.5.- TIPOS LOB (LARGE OBJECTS)

- © CLOB (Character Large Objects)
 - Cadenas de caracteres de tamaño SUPER (hasta 4GB)
- BLOB (Binary Large Objects)
 - Objeto binario de tamaño SUPER (hasta 4GB)
- Oracle recomienda estos tipos frente a los LONG:
 - LONG, LONG RAW.
 - En desuso. Se mantienen por compatibilidad.
- Su utilización es un poco peculiar.

3.4.- DATOS BINARIOS

RAW (tamaño)

- Datos binarios.
- Similar a VARCHAR2 pero para datos binarios (bytes) en lugar de caracteres
 - ◆Tamaño máximo: 2000 bytes.
- Se utiliza para almacenar gráficos, archivos de sonido, documentos, etc.

LONG RAW (en desuso)

- Similar a LONG pero para datos binarios de gran tamaño.
 - ◆Tamaño máximo: 2GB
- <u>Está en desuso</u>. Se mantiene por compatibilidad.

22

Copyright 2024 Marisa Escudero Sanchis

3.- TIPOS DE DATOS DE ORACLE

© RESUMEN:

	TIPO DE DATOS	TAMAÑO	OBSERVACIONES
	CHAR (N)	2000B	Longitud fija
CADENAS	VARCHAR2 (N)	4000B	Longitud variable
CADENAS	LONG	2GB	Sólo Compatibilidad
	CLOB	4GB	
NUMERICOS	NUMBER [(P[,E])]	P=138	Enteros y reales
FECHAS	DATE		
	RAW (N)	2000B	
BINARIOS	LONG RAW	2GB	Sólo Compatibilidad
	BLOB	4GB	

3.- TIPOS DE DATOS DE ORACLE

- Es conveniente consultar la documentación sobre los tipos de datos en cada versión, ya que estos sufren revisiones (tamaño, etc.):
 - Directamente en la documentación Web de Oracle:
 - ◆http://docs.oracle.com
 - A través de buscador WEB (es a veces más rápido)
 - ◆Buscad en Google: Oracle 11g Datatypes .
 - ◆Consultad detenidamente el resultado.
- A partir de ahora indicaremos los tipos de datos Oracle en los esquemas, ya que vamos a trabajar con este SGBD.

25

Copyright 2024 Marisa Escudero Sanchis

4.- ESQUEMAS LÓGICOS DE EJEMPLO

1.- TABLAS EMPLE Y DEPART:

(TRADUCCIÓN ESQUEMA EJEMPLO SCOTT)

- Este mini esquema lógico de ejemplo lo utilizaremos en algunos ejemplos y prácticas del tema.
- Son tablas obtenidas y traducidas del famoso esquema de usuario de Oracle SCOTT (scott/tiger)
- Esquema de ejemplo de Oracle en desuso sustituido por los esquemas de ejemplo vistos en la práctica 1 del tema 3:
 - ♦HR, OE, OC, PM, IX, SH
 - ◆Estos esquemas los utilizaremos tal cual

DE DO YOU SPEAK LIGHT MAKE ALLOW FIVE AN ARE ON FULL

- 1.- Introducción.
- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

26

Copyright 2024 Marisa Escudero Sanchis

4.- ESQUEMAS LÓGICOS DE EJEMPLO

ESQUEMA USUARIO SCOTT (visión grafica DM)

scott/tiger

SCOTT.SALGRADE
GRADE NUMBER
LOSAL NUMBER
HISAL NUMBER

4.- ESQUEMAS LÓGICOS DE EJEMPLO

Who is Scott/Tiger?

Scott

Bruce Scott (Oracle employee no. 4)

Tiger

Bruce's daughter's cat

4.- ESQUEMAS LÓGICOS DE EJEMPLO

1.- TABLAS EMPLE Y DEPART:

■ Esquema lógico (notación utilizada en clase)

ESQUEMA LÓGICO

DEPART (dept_no: number (2), dnombre: varchar2 (14), loc: varchar2 (14))

EMPLE (emp_no: number (4), apellido: varchar2 (10), oficio: varchar2 (10), dir: number (4), fecha_alt: date, salario: number (7,2), comision: number (7,2), dept_no: number (2))

CP= {emp_no}

 $CA = \{dir\} \rightarrow EMPLE$

 $CA= \{dept_no\} \rightarrow DEPART$

29

Copyright 2024 Marisa Escudero Sanchis

4.- ESQUEMAS LÓGICOS DE EJEMPLO

1.- TABLAS EMPLE Y DEPART:

■ Visión gráfica DM

 \triangleleft

32

30

Copyright 2024 Marisa Escudero Sanchis

4.- ESQUEMAS LÓGICOS DE EJEMPLO

O Datos de ejemplo (ocurrencia esquema)

DEPT_NO	♦ DNOMBRE	⊕ LOC
10	CONTABILIDAD	SEVILLA
20	INVESTIGACIÓN	MADRID
30	VENTAS	BARCELONA
40	PRODUCCIÓN	BILBAO

			∯ DIR				DEPT_NO
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

4.- ESQUEMAS LÓGICOS DE EJEMPLO

© 2.- ESQUEMA HR

■ **HR (Human resources)**: esquema simple útil para trabajar los conceptos básicos de BD

Copyright 2024 Marisa Escudero Sanchis

4.- ESQUEMAS LÓGICOS DE EJEMPLO

ESOUEMA LÓGICO NOTACIÓN CLASE (ESOUEMA USUARIO HR) REGIONS (region_id, region_name) CP= {region_id} COUNTRIES (country_id, country_name, region_id) CP= {country_id} CA= {region_id}→REGIONS LOCATIONS (location id, street address, postal code, city, state province, country id) CP= {location id} VNN= {city} CA= {country_id}→COUNTRIES JOBS (job_id, job_title, min_salary, max_salary) CP= {inh id} VNN= {iob_title} EMPLOYEES (employee_id, first_name, last_name, email, phone_number, hire_date, job_id, salary, commission_pct, manager id, department id) CP= {employee_id} VNN= {last_name, email, hire_date, job_id} CAlt= {email} CA= {department id} →DEPARTMENTS CA= {iob id} →JOBS $CA = \{manager_id\} \rightarrow EMPLOYEES$ **DEPARTMENTS** (department_id, department_name, manager_id, location_id) CP={department_id} VNN= {department_name} CA={manager_id} →EMPLOYEES CA={location_id} →LOCATIONS JOB_HISTORY (employee_id, start_date, end_date, job_id, department_id) CP={employee_id, start_date} VNN={end_date, job_id} CA={employee_id} →EMPLOYEES CA={job id} →JOBS CA={department_id} →DEPARTMENTS

4.- ESQUEMAS LÓGICOS DE EJEMPLO

2.- ESQUEMA HR (Visión grafica DM)

Copyright 2024 Marisa Escudero Sanchis

- 1.- Introducción.
- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

21

33

5.- SINTAXIS DEL LENGUAJE

- © La notación que se va a utilizar para presentar el lenguaje SOL es una versión extendida de BNF*:
 - PALABRAS EN MAYÚSCULA: indican palabras reservadas de SQL.
 - Cadenas en minúscula cursiva: indican un elemento sintáctico que se define posteriormente.
 - Cadenas en minúscula (sin cursiva): indican un elemento sintáctico terminal (que no se define posteriormente).
 - La barra vertical | separa distintas alternativas de entre las que debe elegirse solo una .
 - Los corchetes [] indican elementos sintácticos opcionales.
 - Las llaves {} indican elementos sintácticos obligatorios.
 - Si xyz es un elemento sintáctico, comalista_xyz indica que el elemento xyz puede repetirse las veces que se necesite mediando una coma entre cada par de elementos.
 - Si xyz es un elemento sintáctico, lista_xyz indica que el elemento xyz puede repetirse las veces que se necesite mediando al menos un espacio entre cada par de elementos.

*Backus-Naur Form

Copyright 2024 Marisa Escudero Sanchis

5.- SINTAXIS DEL LENGUAJE

© Por ejemplo: (Sintaxis sentencia SELECT)

Basándonos en el esquema lógico de EMPLE y DEPART:

■ Sentencias SELECT BIEN construidas sintácticamente:

SELECT	*	SELECT	dept_no
FROM	DEPART	FROM	DEPART
SELECT	dept_no, dnombre	SELECT	*
FROM	DEPART	FROM	DEPARTAMENTO, EMPLE
SELECT FROM	DISTINCT dnombre DEPART	SELECT FROM ORDER BY	* DEPART dnombre

■ Sentencias SELECT MAL construidas sintácticamente:

SELECT	*	SELECT FROM	cod_dep, DEPART
SELECT FROM	DEPART	FROM	DEPART, EMPLE
SELECT FROM WHERE	* DEPART	SELECT FROM ORDER BY	* ′ dnombre

5.- SINTAXIS DEL LENGUAJE

Por ejemplo: (Sintaxis sentencia SELECT)

Copyright 2024 Marisa Escudero Sanchis

- 1.- Introducción.
- 2.- Tipos de sentencias SQL.
- 3.- Tipos de datos de ORACLE.
- 4.- Esquemas lógicos de ejemplo.
- 5.- Sintaxis del lenguaje.
- 6.- DML: consulta de datos.
 - ◆Introducción a la sentencia SELECT.

6.- DML: CONSULTA DE DATOS

Introducción a la sentencia SELECT

- 6.1.- Sintaxis básica para consultas simples.
- 6.2.- Comparación de cadenas.
- 6.3.- Comparación de valores nulos.
- 6.4.- Comparación con conjuntos de valores.
- 6.5.- Comparación con rangos de valores.

41

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

- Una sentencia SELECT siempre dará como resultado una tabla temporal con los datos consultados.
 - El resultado de la consulta anterior será una tabla temporal que contiene:
 - ◆Una sola columna (EMP_NO)
 - ◆Las filas de la tabla EMPLE con nº de departamento (DEPT_NO) 10.

 $\blacktriangleleft \blacktriangleright$

6.1.- Sintaxis básica consultas simples

- La sentencia SELECT se utiliza para obtener datos de una BD relacional (consultar datos)
- Por ejemplo: consultando la tabla EMPLE
 - "Obtener el Nº de los empleados del departamento 10"

\$ EMP_NO	APELLIDO	♦ OFICIO	∯ DIR		♦ SALARIO	♦ COMISION	DEPT_NO
7369 S	ÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499 A	RROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521 S	ALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566 J	IMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654 M	ARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698 N	EGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782 C	EREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788 G	IL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839 R	EY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844 T	OVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876 A	LONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900 J	IMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902 F	ERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934 M	WÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

42

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

- Al realizar una sentencia SELECT se debe decidir:
 - 1. TABLAS que contienen la información a obtener.
 - 2. Características o CONDICIONES que debe cumplir la información a obtener de las tablas especificadas.
 - 3. Información de las tablas especificadas que se desea seleccionar o MOSTRAR en la tabla resultado.
 - 4. ORDENACIÓN deseada en el resultado.
 - **3** SELECT[ALL|DISTINCT] {comalista ref columna | *}
 - 1 FROM comalista ref tabla
 - **2** [WHERE condicion]
 - 4 [ORDER BY comalista_ref_columna [DESC|ASC]]

© SINTAXIS BÁSICA:

```
3 SELECT[ALL|DISTINCT] {comalista_ref_columna | *}
```

- **1** FROM comalista_ref_tabla
- 2 [WHERE condicion]
- 4 [ORDER BY comalista ref columna [DESC|ASC]]
- FROM...: especifica de que tabla (o lista de tablas) se recuperará la información

 ref tabla::= tabla [alias]
- SELECT...: especifica la información a obtener de la BD (información final a mostrar en la consulta resultado)

45

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

WHERE...: expresa una condición que deben cumplir las filas a obtener (se comprueba por cada fila)

```
condicion::= comparacion|
condicion AND condicion|
condicion OR condicion|
NOT condicion
```

comparacion_operador::= operando {=|>|>=|<|<=|!=|<>} operando

operando::= ref columna | subconsulta

6.1.- Sintaxis básica consultas simples

© Ejemplos SELECT/FROM:

EMP_NO			♦ DIR	FECHA_ALT	SALARIO	♦ COMISION	♦ DEPT_NO
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	2
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	3
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	3
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	2
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	3
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	3
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	1
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	2
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	1
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	3
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	2
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	3
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	2
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	1

SELECT *
FROM EMPLE

SELECT OFICIO FROM EMPLE

SELECT EMP_NO, SALARIO FROM EMPLE E

Copyright 2024 Marisa Escudero Sanchis

* indica que se desean seleccionar todas las columnas de la tabla (o lista de tablas) especificadas en la clausula FROM.

46

6.1.- Sintaxis básica consultas simples

<u>© Ejemplos WHERE:</u>

\$ EMP_NO		♦ OFICIO	♦ DIR	♦ FECHA_ALT			DEPT_NO
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT *
FROM EMPLE
WHERE SALARIO>=1000

SELECT SALARIO
FROM EMPLE E
WHERE OFICIO!= 'DIRECTOR'

SELECT *
FROM EMPLE
WHERE SALARIO>=1000 AND
DEPT NO=20

© COMPARACIÓN DE VALORES NULOS:

comparacion_operador::= operando {=|>|>=|<|<=|!=|<>} operando

- Las comparaciones entre cualquier valor y el valor NULO (NULL) dan como resultado INDEFINIDO (lógica trivaluada).
- Las filas que evalúan la condición a indefinido NO se incluyen en la selección (**Indefinido no es verdadero**).

■ **Ejemplo**: SELECT

SELECT *
FROM tabla
WHERE atributo1< atributo2

at	tributo1	atributo2	
	1	10	
	13	NULL	←
	NULL	1	INDEFINIDO
	NULL	NULL	4

49

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

© OPERADORES DE COMPARACIÓN Y LÓGICOS:

- **■** Combinación de operadores lógicos:
 - ◆Conviene tener en cuenta el orden de precedencia o prioridad de los operadores lógicos.

Orden de prioridad

NOT
AND
OR

- ◆Los paréntesis rompen el orden de precedencia.
- ◆Son necesarios en determinadas ocasiones, sino los resultados pueden ser indeseados.

6.1.- Sintaxis básica consultas simples

© OPERADORES DE COMPARACIÓN Y LÓGICOS: COMPARACIÓN

=	Igual
>	Mayor
>=	Mayor o igual
<	Menor
<=	Menor o igual
!= <>	Distinto

AND
OR
NOT

■ Se utilizan para formar condiciones (diapositiva 48).

G H E- GAND H E-GOD H

Conviene NO olvidar la lógica TRIVALUADA.

				ו - ט אוט וו	0 010 11
		Falso	Falso	Falso	Falso
		Indefinido	Falso	Falso	Indefinido
G	H= NOT G	Cierto	Falso	Falso	Cierto
Falso	Cierto	Falso	Indefinido	Falso	Indefinido
	Indefinido	Indefinido	Indefinido	Indefinido	Indefinido
Cierto	Falso	Cierto	Indefinido	Indefinido	Cierto
		Falso	Cierto	Falso	Cierto
		Indefinido	Cierto	Indefinido	Cierto
		Cierto	Cierto	Cierto	Cierto

Falso AND X = Falso
Cierto AND X = X
Cierto OR X = Cierto
Falso OR X = X
Indefinido AND/OR Indefinido= Indefinido

50

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

O OPERADORES DE COMPARACIÓN Y LÓGICOS:

- <u>Ejemplo de uso OBLIGATORIO de paréntesis</u>:
 - ♦ Obtener el apellido, salario y nº de departamento de los empleados cuyo salario sea mayor de 2000 Euros pertenecientes a los departamentos 10 o 20.

SELECT APELLIDO, SALARIO, DEPT_NO
FROM EMPLE
WHERE SALARIO>2000 AND
DEPT_NO=10 OR
DEPT_NO=20

SELECT APELLIDO, SALARIO, DEPT_NO
FROM EMPLE
WHERE SALARIO>2000 AND
(DEPT_NO=10 OR
DEPT_NO=20)

51

- ORDER BY: especifica un criterio de ordenación para el resultado de la consulta.
 - ASC: ordenación ascendente (POR DEFECTO)
 - **DESC**: ordenación descendente.
- [ALL | DISTINCT]
 - ALL: recupera todas las filas, aunque estén repetidas
 - ◆Opción por defecto.
 - **DISTINCT**: elimina las filas repetidas.

53

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

O ALIAS DE COLUMNAS:

- Cuando se realizan consultas a la BD, los nombres de las columnas seleccionadas se muestran como cabeceras de presentación de la tabla resultado.
- Existe la posibilidad de crear un nombre alternativo (alias) para una columna en una consulta SQL
 - ♦Sólo para visualizarlo, el nombre de columna no cambia.
 - ◆Se indica a la derecha de columna.
 - ◆Puede ir o no entre comillas dobles (si hay espacios).

SELECT EMP_NO "Nº DE EMPLEADO", DIR JEFE FROM EMPLE ORDER BY SALARIO

6.1.- Sintaxis básica consultas simples

© Ejemplos ORDER BY/DISTINCT:

EMP_NO		♦ OFICIO	⊕ DIR	FECHA_ALT	\$ SALARIO		DEPT_N
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	2
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	3
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	3
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	2
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	3
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	3
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	1
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	2
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	1
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	3
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	2
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	3
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	2
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	1

SELECT *
FROM EMPLE E
ORDER BY SALARIO DESC

SELECT DISTINCT DEPT_NO FROM EMPLE ORDER BY DEPT_NO

SELECT DISTINCT OFICIO FROM EMPLE

SELECT EMP_NO, SALARIO FROM EMPLE WHERE SALARIO<1000 ORDER BY SALARIO ASC

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

© EJEMPLOS:

■ Analiza el resultado de las siguientes sentencias

	♦ APELLIDO	♦ OFICIO	DIR		♦ SALARIO		
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	3(
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT EMP_NO "No", APELLIDO SELECT FROM EMPLE FROM WHERE DIR=7698 WHERE ORDER BY APELLIDO ORDER

SELECT APELLIDO, OFICIO FROM EMPLE WHERE SALARIO < 2000 ORDER BY DEPT_NO, SALARIO

OPERADORES ARITMÉTICOS:

■ Se utilizan para formar expresiones aritméticas

ref_columna::= atributo| constante|

expresion_aritmetica ← ref funcion

expresion_aritmetica::= [+| -] ref_columna |
 ref_columna [+| -| *| /] ref_columna

57

Copyright 2024 Marisa Escudero Sanchis

6.1.- Sintaxis básica consultas simples

Resumen final (funcionamiento SELECT).

3 SELECT [ALL|DISTINCT]

{comalista_ref_columna | *}

- **1** FROM comalista_ref_tabla
- 2 [WHERE condicion]
- **4** [ORDER BY comalista_ref_columna [DESC|ASC]]

■ Selección de columnas

◆Se realiza en la parte SELECT.

SELECT [ALL|DISTINCT]

[comalista_ref_columna | *]

■ Selección de filas:

◆Se realiza en la parte WHERE.

[WHERE condicion]

6.1.- Sintaxis básica consultas simples

© Ejemplos OPERADORES ARITMETICOS:

⊕ EMP_NO		♦ OFICIO	DIR				DEPT_NO
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT EMP_NO, SALARIO, SALARIO+COMISION "SALARIO TOTAL"
FROM EMPLE
WHERE FECHA_ALT >='01/01/1980' AND
FECHA_ALT<='31/12/1980'
ORDER BY FECHA_ALT

58

Copyright 2024 Marisa Escudero Sanchis

6.- DML: CONSULTA DE DATOS

Introducción a la sentencia SELECT

- 6.1.- Sintaxis básica para consultas simples.
- 6.2.- Comparación de cadenas.
- 6.3.- Comparación de valores nulos.
- 6.4.- Comparación con conjuntos de valores.
- 6.5.- Comparación con rangos de valores.

6.2.- Comparación de cadenas

© comparacion_like

comparacion::= comparacion_operador | comparacion_like | ← comparacion_null | comparacion_in | comparacion_between | comparacion_all_any | comparacion_exists

comparacion_like::= atributo [NOT] LIKE 'cadena_comparacion'

- Permite comprobar si un atributo <u>de tipo cadena</u> sigue un patrón determinado
 - ◆cadena_comparacion puede contener los siguientes caracteres especiales (comodín):
 - ♦'%': representa cualquier secuencia de caracteres
 - *' ': representa cualquier carácter individual

61

Copyright 2024 Marisa Escudero Sanchis

6.2.- Comparación de cadenas

© CUIDADO!!

 Si buscamos coincidencia exacta de cadenas os recomiendo utilizar operador de comparación en lugar de like

SELECT *
FROM EMPLE
WHERE APELLIDO = 'GIL'

SELECT *
FROM EMPLE
WHERE APELLIDO LIKE 'GIL'

■ LIKE se utiliza principalmente con caracteres comodín:

SELECT *
FROM EMPLE
WHERE APELLIDO LIKE 'A%'

■ Los caracteres comodín **NO** pueden utilizarse con los operadores de comparación

SELECT *
FROM EMPLE
WHERE APELLIDO = 'A%'

6.2.- Comparación de cadenas

© EJEMPLOS: ⊕ EMP_NO ⊕ APELLIDO ⊕ OFICIO 7369 SÁNCHEZ EMPLEADO 7902 17/12/1980 7499 ARROYO VENDEDOR 7698 20/02/1980 7521 SALA VENDEDOD 7698 22/02/1981 1625 7566 JIMÉNEZ DIRECTOR 7839 02/04/1981 3867 (mu11) 7654 MARTÍN VENDEDOR 7698 29/09/1981 1625 1820 7698 NEGRO DIRECTOR 7839 01/05/1981 3705 (mu11) 7839 09/06/1981 7788 GTT. ANATISTA 7566 09/11/1981 3000 (nu11) 7839 REY PRESIDENTE (null) 17/11/1981 6500 (null) 7844 TOVAR VENDEDOR 7698 08/09/1981 1950 7876 ALONSO EMPLEADO 7788 23/09/1981 1430 (mii11) EMPLEADO 7698 03/12/1981 1235 7902 FERNÁNDEZ ANALISTA 7566 03/12/1981 3900 (nu11) 7934 MUÑOZ 7782 23/01/1982 1690

SELECT *
FROM EMPLE
WHERE APELLIDO LIKE 'A%'

SELECT *
FROM EMPLE
WHERE OFICIO LIKE '%R'

SELECT *
FROM EMPLE
WHERE OFICIO LIKE 'A_A'

FROM EMPLE WHERE APELLIDO LIKE 'GIL'

Copyright 2024 Marisa Escudero Sanchis

6.2.- Comparación de cadenas

© comparacion_like

62

64

- Si deseamos "escapar" el significado de los caracteres comodín y buscarlos como caracteres literales en cadenas debemos utilizar un carácter de escape
- En SQL estándar se establece un carácter de escape para una *comparación like* añadiendo:

comparacion_like::= atributo [NOT] LIKE 'cadena_comparacion' [ESCAPE 'caracter']

- ◆Indica que 'caracter' se utiliza como carácter de escape en 'cadena_comparacion'
- ◆Es frecuente utilizar la contrabarra '\' como carácter de escape.
 - ❖ La mayoría de los SGBD lo utilizan por defecto.

SELECT APELLIDO
FROM EMPLE
WHERE APELLIDO LIKE '%\%%' ESCAPE '\'

6.- DML: CONSULTA DE DATOS

Introducción a la sentencia SELECT

- 6.1.- Sintaxis básica para consultas simples.
- 6.2.- Comparación de cadenas.
- 6.3.- Comparación de valores nulos.
- 6.4.- Comparación con conjuntos de valores.
- 6.5.- Comparación con rangos de valores.

65

Copyright 2024 Marisa Escudero Sanchis

6.3.- Comparación de valores nulos

© EJEMPLOS:

⊕ EMP_NO	APELLIDO	♦ OFICIO	♦ DIR	FECHA_ALT			
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT *
FROM EMPLE
WHERE COMISION IS NOT NULL

SELECT *
FROM EMPLE
WHERE DIR IS NULL

6.3.- Comparación de valores nulos

© comparacion_null

comparacion_null::= atributo IS [NOT] NULL

- Permite comprobar si un atributo es nulo
 - ◆El valor nulo en SQL es NULL.
 - No se pueden utilizar las comparaciones normales para comprobar este valor

Atributo = NULL → iiiINDEFINIDO!!!

66

Copyright 2024 Marisa Escudero Sanchis

6.- DML: CONSULTA DE DATOS

Introducción a la sentencia SELECT

- 6.1.- Sintaxis básica para consultas simples.
- 6.2.- Comparación de cadenas.
- 6.3.- Comparación de valores nulos.
- 6.4.- Comparación con conjuntos de valores.
- 6.5.- Comparación con rangos de valores.

6.4.- Comparación con conjuntos de valores

© comparacion_in

comparacion_in::= operando [NOT] IN {(comalista_valores) | subconsulta}

- Permite comprobar si un *operando* se encuentra dentro de un conjunto de valores.
 - \bigstar X IN (a, b, ...,z) \equiv (X=a) OR (X=b) OR...OR (X=z)
 - \bigstar X NOT IN (a, b, ...,z) \equiv NOT (X IN (a, b, ...,z))
- El tipo de los valores debe coincidir con el de *operando*

69

Copyright 2024 Marisa Escudero Sanchis

6.- DML: CONSULTA DE DATOS

Introducción a la sentencia SELECT

- 6.1.- Sintaxis básica para consultas simples.
- 6.2.- Comparación de cadenas.
- 6.3.- Comparación de valores nulos.
- 6.4.- Comparación con conjuntos de valores.
- 6.5.- Comparación con rangos de valores.

18	EMP_NO		⊕ OFICIO	⊕ DIR	FECHA_ALT	SALARIO	⊕ COMISION	⊕ DEPT_NO
	7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
	7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
	7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
	7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
	7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
	7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
	7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
	7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
	7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
	7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
	7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
	7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
	7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
	7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT *
FROM EMPLE
WHERE DEPT_NO IN (10,20)

SELECT *
FROM EMPLE
WHERE OFICIO NOT IN ('PRESIDENTE', 'DIRECTOR')

Copyright 2024 Marisa Escudero Sanchis

6.5.- Comparación con rangos de valores

© comparacion_between

comparacion_between::= operando [NOT] BETWEEN operando AND operando

- Permite comprobar si un *operando* está comprendido dentro de un rango.
 - \blacklozenge Y BETWEEN X AND Z = (X<=Y) AND (Y<=Z)
 - \blacklozenge Y NOT BETWEEN X AND Z = NOT (Y BETWEEN X AND Z)

Valor inicial

Valor final

6.5.- Comparación con rangos de valores

© EJEMPLOS:

⊕ EMP_NO	♦ APELLIDO	♦ OFICIO	♦ DIR				DEPT_NO
7369	SÁNCHEZ	EMPLEADO	7902	17/12/1980	1040	(null)	20
7499	ARROYO	VENDEDOR	7698	20/02/1980	2080	390	30
7521	SALA	VENDEDOR	7698	22/02/1981	1625	650	30
7566	JIMÉNEZ	DIRECTOR	7839	02/04/1981	3867	(null)	20
7654	MARTÍN	VENDEDOR	7698	29/09/1981	1625	1820	30
7698	NEGRO	DIRECTOR	7839	01/05/1981	3705	(null)	30
7782	CEREZO	DIRECTOR	7839	09/06/1981	3185	(null)	10
7788	GIL	ANALISTA	7566	09/11/1981	3900	(null)	20
7839	REY	PRESIDENTE	(null)	17/11/1981	6500	(null)	10
7844	TOVAR	VENDEDOR	7698	08/09/1981	1950	0	30
7876	ALONSO	EMPLEADO	7788	23/09/1981	1430	(null)	20
7900	JIMENO	EMPLEADO	7698	03/12/1981	1235	(null)	30
7902	FERNÁNDEZ	ANALISTA	7566	03/12/1981	3900	(null)	20
7934	MUÑOZ	EMPLEADO	7782	23/01/1982	1690	(null)	10

SELECT *
FROM EMPLE

WHERE SALARIO BETWEEN 1500 AND 2000

SELECT >

FROM EMPLE

WHERE SALARIO NOT BETWEEN 1500 AND 2000