Particle spectrograph

Wave operator and propagator

$\tau_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{+}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_1 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}(k+k^3)(2r_1+r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{\#2} + ^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_2^{\sharp 1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$\omega_{2}^{\#1} + \alpha^{\beta} \qquad \frac{t_{1}}{2} \qquad -\frac{ikt_{1}}{\sqrt{2}} \qquad 0$ $f_{2}^{\#1} + \alpha^{\beta} \qquad \frac{ikt_{1}}{\sqrt{2}} \qquad k^{2}t_{1} \qquad 0$ $\omega_{2}^{\#1} + \alpha^{\beta}\chi \qquad 0 \qquad 0 \qquad k^{2}r_{1} + \frac{t_{1}}{2}$		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$V_2^{\pm 1} + V_3^{\pm 1} = V_4^{\pm 1} = V_4^{\pm 1}$ $W_{27}^{\pm 1} + W_4^{\pm 1} = V_4^{\pm 1} = V$	$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$\omega_2^{\#1} + \alpha \beta \chi$ 0 0 $k^2 r_1 + \frac{t_1}{2}$	$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	0
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$i\sqrt{2}~kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0}^{\#1}$	-¢1	$-i \sqrt{2} k t_1$	0	0
	$\omega_0^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ \dagger	$\omega_{0}^{\#1}$ \dagger

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\sigma_0^{\#1} == 0$	1			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	17			

α				-			
$f_{1}^{#2}$	0	0	0	$i k t_1$	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha} f_{1^{-}}^{\#1}{}_{\alpha} f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$- ilde{\it i}$ k t_1
$f_1^{\#1}{}_+\alpha\beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 13	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}\ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	4 <u>1</u> 3	$-\frac{1}{3}$ \vec{l} k t_1	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha_{\beta}$	ر) ہے ا	$-\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
,	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{#2} + ^{\alpha}$	$f_{1}^{\#1} +^{lpha}$	$f_1^{\#2} + \alpha$

Massive and massless spectra

?
$$J^P = 2^-$$
 ? Polaris Square ? ? Spin:

Massive particle				
Pole residue:	$-\frac{1}{r_1} > 0$			
Polarisations:	5			
Square mass:	$-\frac{t_1}{2r_1} > 0$			
Spin:	2			
Parity:	Odd			

Quadratic pole					
Pole residue:	$\frac{1}{(2r_1+r_5)t_1^2p^2} > 0$				
Polarisations:	2				

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$