CLAIMS

- 1. Use of a compound which is an inhibitor of PKC, in free form or in a pharmaceutically acceptable salt form, for the manufacture of a medicament for treating or preventing diseases or disorders mediated by T lymphocytes and/or PKC, in particular allograft rejection, graft versus host disease, autoimmune diseases, infectious diseases, inflammatory diseases, cardiovascular diseases or cancer, wherein said compound possesses a selectivity for PKC α , PKC β and optionally PKC θ , over one or more of the other PKC isoforms of at least 10 fold, as measured by the ratio of the IC $_{50}$ of the compound for a PKC which is not α and β , and optionally not θ , to the IC $_{50}$ of the compound for the PKC α , PKC β or PKC θ , respectively.
- 2. A compound which is an inhibitor of the PKC, in free form or in a pharmaceutically acceptable salt form, wherein said compound possesses a selectivity for the PKC over one or more protein kinases which do not belong to the CDK-family, and a selectivity for the PKC α , PKC β and optionally PKC θ , over one or more of the other PKC isoforms of at least 10 fold, as measured according to claim 1.
- 3. A compound which is an inhibitor of the PKC, in free form or in a pharmaceutically acceptable salt form, wherein said compound possesses a selectivity for PKC α , PKC β and optionally PKC θ , over one or more of the other PKC isoforms of at least 10 fold, and for which the ratio of the IC $_{50}$ value as determined by Allogeneic Mixed Lymphocyte Reaction (MLR) assay to the IC $_{50}$ value as determined by Bone Marrow proliferative (BM) assay is higher than 5.
- 4. A compound which is an inhibitor of the PKC, in free form or in a pharmaceutically acceptable salt form, wherein said compound possesses a selectivity for the PKCα, PKCβ and PKÇθ, over one or more of the other PKC isoforms of at least 10 fold, as measured according to claim 1.
- 5. A compound of formula I

wherein

 R_a is H; C_{14} alkyl; or C_{14} alkyl substituted by OH, NH₂, NHC₁₄alkyl or N(di- C_{14} alkyl)₂; one of R_b , R_c , R_d and R_e is halogen; C_{14} alkoxy; C_{14} alkyl; CF_3 or CN and the other three substituents are each H; or R_b , R_c , R_d and R_e are all H; and R is a radical of formula (a), (b) or (c)

$$R_1$$
 (a)

$$R_{10}$$
 (b)

wherein

 R_1 is -(CH₂)_n-NR₃R₄,

wherein

each of R₃ and R₄, independently, is H or C₁₋₄alkyl; or R₃ and R₄ form together with the nitrogen atom to which they are bound a heterocyclic residue;

n is 0, 1 or 2; and

R₂ is H; halogen; C₁₋₄alkyl; CF₃; OH; SH; NH₂; C₁₋₄alkoxy; C₁₋₄alkylthio; NHC₁₋₄alkyl; N(di-C₁₋₄alkyl)₂, CN, alkyne or NO₂;

wherein

each of R_{10} and $R_{10a}\text{,}$ independently, is a heterocyclic residue; or a radical of formula α

wherein X is a direct bond, O, S or NR₁₁ wherein R₁₁ is H or C₁₄alkyl,

 R_f is C_{1-4} alkylene or C_{1-4} alkylene wherein one CH_2 is replaced by CR_xR_y wherein one of R_x and R_y is H and the other is CH_3 each of R_x and R_y is CH_3 or R_x and R_y form together $-CH_2$ - CH_2 -,

Y is bound to the terminal carbon atom and is selected from OH, $-NR_{30}R_{40}$ wherein each of R_{30} and R_{40} , independently, is H, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl, aryl- C_{1-4} alkyl, heteroaryl- C_{1-4} alkyl, C_{2-6} alkenyl or C_{1-4} alkyl optionally substituted on the terminal carbon atom by OH, halogen, C_{1-4} alkoxy or $-NR_{50}R_{60}$ wherein each of R_{50} and R_{60} , independently, is H, C_{1-4} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl, aryl- C_{1-4} alkyl, or R_{30} and R_{40} form together with the nitrogen atom to which they are bound a heterocyclic residue; and

each of R₂₀ and R_{20a}, independently, is H; halogen; C₁₋₄alkyl; C₁₋₄alkoxy; CF₃; nitrile; nitro or amino;

or a salt thereof.

- 6. A compound according to clalm 5 wherein R_a is H or methyl; each of R_2 , R_{20} and R_{20a} , independently, is H, Cl, NO₂, F, CF₃ or methyl, n is o or 1; one of R_b , R_c , R_d and R_a is methyl or ethyl and the other three substituents are H; or R_b , R_c , R_d and R_a are all H; and each of R_3 and R_4 , independently, is H, methyl, ethyl or *i*-propyl; or R_3 and R_4 form together with the nitrogen atom to which they are bound a heterocyclic residue optionally substituted; and each of R_{10} and R_{100} , independently, is a heterocyclic residue.
- 7. A compound according to claim 5 or 6 which is selected from
- 3-[5-Chloro-2-(4-methyl-piperazin-1-yl)-pyridin-4-yl]-4-(1H-indol-3-yl)-pyrrole-2,5-dione;
- 3-(2-Chloro-7-dimethylaminomethyl-naphthalen-1-yl)-4-(1-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;
- 3-(7-Aminomethyl-2-Chloro-naphthalen-1-yl)-4-(1-methyl-1H-indol-3-yl)-pyrrole-2,5-dlone;
- 3-(2-Chloro-7-methylaminomethyl-naphthalen-1-yl)-4-(1H-indol-3-yl)-pyrrole-2,5-dione;
- 3-(2-Chloro-7-methylaminomethyl-naphthalen-1-yl)-4-(1-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;
- 3-(2-Chloro-7-methylaminomethyl-naphthalen-1-yl)-4-(7-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;
- 3-(2-Chloro-7-methylaminomethyl-naphthalen-1-yl)-4-(6-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;

- 12. A pharmaceutical combination comprising a compound according to any one of claims 2 to 7, in free form or in a pharmaceutically acceptable salt form, and a further agent selected from immunosuppressant, immunomodulatory, anti-inflammatory, chemotherapeutic, antiproliferative and anti-diabetic agents.
- 13. A process for the production of a compound according to claim 5 or 6, which process comprises reacting a compound of formula II

wherein R_a to R_θ are as defined in claim 5, with a compound of formula III

$$R - CH_2 - CO - NH_2$$
 (III)

wherein R is as defined in claim 5,

and, where required, converting the resulting compound of formula I obtained in free form to a salt form or vice versa, as appropriate.

- 14. A method for treating or preventing disorders or diseases mediated by T lymphocytes and/or PKC, in particular allograft rejection, graft versus host disease, autoimmune diseases, infectious diseases, inflammatory diseases, cardiovascular diseases or cancer, in a subject in need of such a treatment, which method comprises administering to said subject an effective amount of an inhibitor of PKC which possesses a selectivity for PKC α , PKC β and optionally PKC θ , over one or more of the other PKC isoforms of at least 10 fold, as measured according to claim 1, or a pharmaceutically acceptable sait thereof.
- 17. A method for treating or preventing disorders or diseases mediated by T lymphocytes and/or PKC, in particular allograft rejection, graft versus host disease, autoimmune diseases, infectious diseases, inflammatory diseases, cardiovascular diseases or cancer, in a subject in need of such a treatment, which method comprises administering to said subject an effective amount of a compound according to any one of claims 2 to 7, or a pharmaceutically acceptable salt thereof.