The Out-of-Kilter Algorithm

Abigail Nix

MATH 7825

May 2, 2024

Outline ¹

- Optimality Conditions
- Out-of-Kilter Algorithm
- Correctness and Complexity

Optimality Conditions

Negative Cycle Optimality Conditions

Theorem

A feasible flow x^* is optimal for a minimum cost flow problem if and only if the residual network $G(x^*)$ contains no negative cycle.

4/18

Reduced Cost Optimality Conditions

Definition

Let $\pi(i)$, the node potential for node i, be some real number associated with node i.

Reduced Cost Optimality Conditions

Definition

Let $\pi(i)$, the node potential for node i, be some real number associated with node i.

Definition

For a given set of node potentials π , we define the reduced cost of an arc (i,j) as $c_{ij}^{\pi} = c_{ij} - \pi(i) + \pi(j)$.

Reduced Cost Optimality Conditions

Definition

Let $\pi(i)$, the node potential for node i, be some real number associated with node i.

Definition

For a given set of node potentials π , we define the reduced cost of an arc (i,j) as $c_{ij}^{\pi} = c_{ij} - \pi(i) + \pi(j)$.

Theorem

A feasible flow x^* is optimal for a minimum cost flow problem if and only if there exists a set of node potentials π that satisfy $c_{ij}^{\pi} \geq 0$ for every arc (i,j) in the residual network $G(x^*)$.

Complementary Slackness Optimality Conditions

Theorem

A feasible flow x^* is optimal for a minimum cost flow problem if and only if there exists a set of node potentials π such that:

- 1. if $c_{ij}^{\pi} > 0$, then $x_{ij}^{*} = 0$
- 2. If $0 < x_{ij}^* < u_{ij}$, then $c_{ij}^\pi = 0$
- 3. If $c_{ij}^{\pi} < 0$, then $x_{ij}^* = u_{ij}$

Out-of-Kilter Algorithm

Kilter Numbers

Figure: The kilter diagram for arc (i, j).

Complementary Slackness conditions

 x^* is optimal if and only if the following hold:

- 1. If $c_{ij}^\pi>0$, then $x_{ij}^*=0$
- 2. if $0 < x_{ij}^* < u_{ij}$, then $c_{ij}^\pi = 0$
- 3. if $c_{ij}^{\pi} < 0$, then $x_{ij}^* = u_{ij}$

 arcs that satisfy complementary slackness optimality conditions are "in-kilter", those that don't are "out-of-kilter"

Kilter Numbers

Definition

The kilter number of an arc (i,j), k_{ij} , with current flow x_{ij} and reduced cost c_{ij}^{π} , is defined as how much x_{ij} needs to be changed without changing c_{ij}^{π} in order to make (i,j) in-kilter.

Kilter Numbers

Definition

The kilter number of an arc (i,j), k_{ij} , with current flow x_{ij} and reduced cost c_{ij}^{π} , is defined as how much x_{ij} needs to be changed without changing c_{ij}^{π} in order to make (i,j) in-kilter.

We make a simplifying assumption that the algorithm starts with a feasible flow, i.e., $0 \le x_{ij} \le u_{ij}$ for all (i,j). So, with $r_{ij} = u_{ij} - x_{ij}$, we can redefine k_{ij} as

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$
 (1)

The Out-of-Kilter Algorithm

Algorithm 1 Out-Of-Kilter Algorithm for finding a Minimum Cost Flow

```
1: procedure OutOfKilter(G)
        \pi := 0
        find feasible flow x

    □ using a Max Flow Algorithm

        define residual network G(x)
 4.
        for (i, j) \in G(x) do
 5:
            k_{ij} := Kilter((i, j))
        end for
 7.
        while there exists (i, j) \in G(x) with k_{ij} > 0 do
                                                                                         b there is an out-of-kilter arc
            select out-of-kilter arc (p,q) \in G(x)
 9:
            define length of each arc (i, j) \in G(x) as \max\{0, c_{ij}^{\pi}\}\
10:
            let d(i) denote the shortest path distance from q to i for each i \in G(x) - \{(q,p)\}
11:
12:
            let P denote the shortest path from q to p
            \pi'(i) := \pi(i) - d(i) for each node i in G(x)
13:
            if c_{pq}^{\pi'} < 0 then
14:
                W := P \cup \{(p, q)\}
15:
                \delta := \min\{r_{ij} : (i,j) \in W\}
16:
                augment \delta units of flow along W
17:
                update x with new feasible flow, residual network G(x), and reduced costs c_{ij}^{\pi'}
18:
19:
            end if
        end while
20:
                                                                                         \triangleright x is the minimum cost flow
21:
        return x
22: end procedure
```

10 / 18

Correctness and Complexity

Lemma

Updating node potentials, i.e., setting $\pi'(i) := \pi(i) - d(i)$ for all nodes i, does not increase the kilter number of any arc in G(x).

Lemma

Augmenting flow along $W = P \cup \{(q, p)\}$ does not increase the kilter number of any arc in G(x), and strictly decreases k_{pq} , the kilter number of arc (p, q).

13 / 18

Lemma

Augmenting flow along $W = P \cup \{(q, p)\}$ does not increase the kilter number of any arc in G(x), and strictly decreases k_{pq} , the kilter number of arc (p, q).

Proof.

ullet only arcs whose kilter numbers can change are those along W (or their reversed arcs)

Lemma

Augmenting flow along $W = P \cup \{(q, p)\}$ does not increase the kilter number of any arc in G(x), and strictly decreases k_{pq} , the kilter number of arc (p, q).

Proof.

- ullet only arcs whose kilter numbers can change are those along W (or their reversed arcs)
- ullet P is a shortest path with arc lengths $\max\{0,c_{ij}^\pi\}$, so for $(i,j)\in P$,

$$d(j) = d(i) + \max\{0, c_{ij}^{\pi}\} \ge d(i) + c_{ij}^{\pi}.$$

Lemma

Augmenting flow along $W = P \cup \{(q, p)\}$ does not increase the kilter number of any arc in G(x), and strictly decreases k_{pq} , the kilter number of arc (p, q).

Proof.

- ullet only arcs whose kilter numbers can change are those along W (or their reversed arcs)
- P is a shortest path with arc lengths $\max\{0, c_{ij}^{\pi}\}$, so for $(i, j) \in P$,

$$d(j) = d(i) + \max\{0, c_{ij}^{\pi}\} \ge d(i) + c_{ij}^{\pi}.$$

$$\bullet$$
 $\pi' = \pi - d$, so

$$c_{ij}^{\pi'} = c_{ij} - (\pi(i) - d(i)) + (\pi(j) - d(j)) = c_{ij}^{\pi} + d(i) - d(j) \le 0.$$

Lemma

Augmenting flow along $W = P \cup \{(q, p)\}$ does not increase the kilter number of any arc in G(x), and strictly decreases k_{pq} , the kilter number of arc (p, q).

Proof.

- ullet only arcs whose kilter numbers can change are those along W (or their reversed arcs)
- ullet P is a shortest path with arc lengths $\max\{0,c_{ij}^\pi\}$, so for $(i,j)\in P$,

$$d(j) = d(i) + \max\{0, c_{ij}^{\pi}\} \ge d(i) + c_{ij}^{\pi}.$$

 \bullet $\pi' = \pi - d$, so

$$c_{ij}^{\pi'} = c_{ij} - (\pi(i) - d(i)) + (\pi(j) - d(j)) = c_{ij}^{\pi} + d(i) - d(j) \le 0.$$

• Augment flow along W by $\delta = \min\{r_{ij}: (i,j) \in W\}$, so new flow is feasible. Thus, if $c_{ij}^{\pi'} = 0$, k_{ij} stays 0, and if $c_{ij}^{\pi'} < 0$, k_{ij} decreases since r_{ij} decreases.

Proof.

• augmenting flow along (i,j) may introduce the arc (j,i) into the new residual network, but since $c_{ii}^{\pi'} \leq 0$, then $c_{ii}^{\pi'} \geq 0$, meaning $k_{ji} = 0$, and (j,i) is in-kilter.

Proof.

- augmenting flow along (i,j) may introduce the arc (j,i) into the new residual network, but since $c_{ij}^{\pi'} \leq 0$, then $c_{ij}^{\pi'} \geq 0$, meaning $k_{ji} = 0$, and (j,i) is in-kilter.
- \bullet For arc (p,q) , we only augment flow if $c_{pq}^{\pi'}<0.$

Proof.

- augmenting flow along (i,j) may introduce the arc (j,i) into the new residual network, but since $c_{ij}^{\pi'} \leq 0$, then $c_{ji}^{\pi'} \geq 0$, meaning $k_{ji} = 0$, and (j,i) is in-kilter.
- For arc (p,q), we only augment flow if $c_{pq}^{\pi'} < 0$.
- Since $c_{pq}^{\pi'} < 0$, $k_{pq} = r_{pq}$. Thus, increasing flow on (p,q) strictly decreases k_{pq} since $r_{pq} = u_{pq} x_{pq}$ is strictly decreased.

Proof.

- augmenting flow along (i,j) may introduce the arc (j,i) into the new residual network, but since $c_{ij}^{\pi'} \leq 0$, then $c_{ji}^{\pi'} \geq 0$, meaning $k_{ji} = 0$, and (j,i) is in-kilter.
- For arc (p,q), we only augment flow if $c_{pq}^{\pi'} < 0$.
- Since $c_{pq}^{\pi'} < 0$, $k_{pq} = r_{pq}$. Thus, increasing flow on (p,q) strictly decreases k_{pq} since $r_{pq} = u_{pq} x_{pq}$ is strictly decreased.
- Note $c_{qp}^{\pi'}=-c_{pq}^{\pi'}>0$, so (q,p) is in-kilter.

Therefore, the flow augmentation step of the algorithm does not increase the kilter number of any arc, strictly decreases the kilter number of (p,q), and only adds in-kilter arcs to the updated residual network.

May 2, 2024

ullet Maximum possible kilter number is $U=\max\{u_{ij}\}$ since

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$

• Maximum possible kilter number is $U = \max\{u_{ij}\}$ since

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$

ullet Sum of the kilter numbers at the start of the algorithm is at most mU, where m is the number of arcs in the network.

ullet Maximum possible kilter number is $U=\max\{u_{ij}\}$ since

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$

- ullet Sum of the kilter numbers at the start of the algorithm is at most mU, where m is the number of arcs in the network.
- Each iteration of the algorithm does not increase the kilter number of any arc, and strictly decreases the kilter number of one arc (by at least 1) \Rightarrow at most mU iterations.

ullet Maximum possible kilter number is $U=\max\{u_{ij}\}$ since

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$

- ullet Sum of the kilter numbers at the start of the algorithm is at most mU, where m is the number of arcs in the network.
- Each iteration of the algorithm does not increase the kilter number of any arc, and strictly decreases the kilter number of one arc (by at least 1) \Rightarrow at most mU iterations.
- ullet In each iteration, we solve a shortest path problem. Using Dijkstra's, this takes $O(n^2)$, but could be different for different algorithms.

• Maximum possible kilter number is $U = \max\{u_{ij}\}$ since

$$k_{ij} = \begin{cases} 0 & \text{if } c_{ij}^{\pi} \ge 0 \\ r_{ij} & \text{if } c_{ij}^{\pi} < 0. \end{cases}$$

- ullet Sum of the kilter numbers at the start of the algorithm is at most mU, where m is the number of arcs in the network.
- Each iteration of the algorithm does not increase the kilter number of any arc, and strictly decreases the kilter number of one arc (by at least 1) \Rightarrow at most mU iterations.
- ullet In each iteration, we solve a shortest path problem. Using Dijkstra's, this takes $O(n^2)$, but could be different for different algorithms.
- So, Out-of-Kilter takes at most $O(mUn^2)$ time, pseudopolynomial!

General Out-of-Kilter Algorithm

- ullet We started with a feasible flow, but could also start with flow x=0, whether or not this is feasible.
- In general, OOK algorithm maintains mass balance constraints at every iteration, but may disrespect flow bounds and complementary slackness optimality conditions.
- At each iteration, the algorithm increases both feasibility and optimality.

Thank you!

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall.

Durbin, E. P. and Kroenke, D. (1967). *The Out-of-Kilter Algorithm: A Primer*. RAND Corporation, Santa Monica. CA.