

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по курсу «Моделирование»

Студент	Маслова Марина Дмитриевна	
Группа	ИУ7-63Б	
Оценка (баллы)		
,		
Преподаватель	Градов Владимир Михайлович	

Тема: Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

Цель работы. Программная реализация приближенного аналитического метода и численных алгоритмов первого и второго порядков точности при решении задачи Коши для ОДУ.

1 Исходные данные

1. ОДУ, не имеющее аналитического решения (формула (1.1)).

$$u'(x) = x^2 + u^2,$$

 $u(0) = 0.$ (1.1)

2 Описание алгоритмов

Обыкновенные дифференциальные уравнения (ОДУ) — дифференциальные уравнения (ДУ) с одной независимой переменной.

ДУ n-ого порядка описывается формулой (2.1). Заменой переменной ОДУ n-ого порядка сводится к системе ДУ первого порядка.

$$F(x, u, u', u'', ..., u^{(n)}) = 0. (2.1)$$

Задача данной лабораторной работы является задачей Коши, состоящей в поиске решения дифференциального уравнения, удовлетворяющего начальным условия (формула (2.2)).

$$u'(x) = f(x, u),$$

$$u(\xi) = \eta.$$
(2.2)

В данной лабораторной работе рассматриваются следующие методы решения:

- метод Пикара;
- явный метод первого порядка точности (Эйлера);
- явный метод второго порядка точность (Рунге-Кутта).

2.1 Метод Пикара

Пусть поставлена задача Коши, выражющаяся формулой (2.3):

$$u'(x) = \varphi(x, u(x)),$$

$$x_0 \le x \le x_l$$

$$u(x_0) = u_0.$$
(2.3)

Проитегрировав выписанное уравнение получим формулу (2.4).

$$u(x) = u_0 + \int_{x_0}^{x} \varphi(t, u(t))dt.$$
 (2.4)

Последовательные приближения метода пикара реализуются по схеме, описывающейся формулой (2.5).

$$u_i(x) = u_0 + \int_{x_0}^x \varphi(t, u_{i-1}(t))dt,$$
 (2.5)

где i = 1, 2, ... — номер итерации,

причем $u_0(t) = u_0$.

Для задачи данной лабораторной работы с помощью схемы, описывающейся формулой (2.5), получим следующие приближения (формулы (2.6-2.9)):

$$u_1(x) = 0 + \int_0^x (t^2 + u_0^2(t))dt = \int_0^x t^2 dt = \frac{t^3}{3} \Big|_0^x = \frac{x^3}{3},$$
 (2.6)

$$u_{2}(x) = 0 + \int_{0}^{x} (t^{2} + u_{1}^{2}(t))dt = \int_{0}^{x} \left(t^{2} + \left(\frac{t^{3}}{3}\right)^{2}\right)dt =$$

$$= \int_{0}^{x} \left(t^{2} + \frac{t^{6}}{9}\right)dt = \left(\frac{t^{3}}{3} + \frac{t^{7}}{63}\right)\Big|_{0}^{x} = \frac{x^{3}}{3} + \frac{x^{7}}{63}$$
(2.7)

$$u_3(x) = 0 + \int_0^x (t^2 + u_2^2(t))dt =$$

$$= \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63} \right)^2 \right) dt = \int_0^x \left(t^2 + \frac{t^6}{9} + \frac{2t^{10}}{63 \cdot 3} + \frac{t^{14}}{63^2} \right) dt =$$

$$= \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535} \right) \Big|_0^x = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$(2.8)$$

$$u_4(x) = 0 + \int_0^x (t^2 + u_3^2(t))dt =$$

$$= \int_0^x \left(t^2 + \left(\frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} \right)^2 \right) dt =$$

$$= \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{13t^{15}}{218295} + \frac{82t^{19}}{37328445} + \frac{662t^{23}}{10438212015} + \frac{4t^{27}}{3341878155} + \frac{t^{31}}{109876901975} \right) \Big|_0^x = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$
(2.9)

3 Код программы

4 Результат работы

5 Контрольные вопросы