	1a	1b	1c	1d	2a	2b	2c	2d	3a	3b	3c	3d	4a	4b	4c	4d	\sum
ſ																	

ATENÇÃO: Não é permitido destacar as folhas

 $1^{\underline{a}}$ Prova de MA327 — 18/04/2023, **16:00–18:00 hs**

NOME:	Turma: RA:
1. (4 pt) a) Definir $subespaço$ de um espaço vetorial. Defin b) Se $V=M_4(\mathbb{R})$ é o espaço vetorial das matrizes de orde	ir <i>soma</i> e <i>soma direta</i> de dois subespaços de um espaço vetorial. m 4 sobre os reais, mostrar que os conjuntos
$U = \{ A \in V \mid A^t = A \}, \qquad W$	$Y = \{B = (b_{ij}) \in V \mid b_{ij} = 0 \text{ se } i \ge j\}$
das matrizes simétricas e das matrizes triangulares superiores con Mostrar que $V=U\oplus W$. d) Encontrar as dimensões de U e de W . Encontrar uma ba	
a) Se v_1, \ldots, v_k são vetores linearmente independentes no b) Se $T: V \to W$ é uma transformação linear entre os dois c) Se $T: V \to V$ é uma transformação linear de V , dim V s	
função definida por $T(f)=xf'(x)+f''(x)$ para todo $f\in V$. a) Mostrar que T é uma transformação linear em V e encorb) Mostrar que os elementos $C=\{1,x,1+x^2\}$ formam uc) Encontrar a matriz P da mudança de base de B para C .	ntrar a matriz $A = (T)_B^B$ de T na base $B = \{1, x, x^2\}$ de V .
4. (1 pt) Definir (aqui mesmo!):a) Sistema de vetores linearmente dependentes num espaço	vetorial V .
b) Dimensão de um espaço vetorial.	
c) Núcleo de uma transformação linear $T:V \to W$.	
, =	
d) Base de um espaço vetorial.	

Boa prova!