#### **Diffusion Model**

| Name         | Dharini Baskaran |
|--------------|------------------|
| Identity Key | dhba5060         |

|                   | Level        | Completed |  |  |  |
|-------------------|--------------|-----------|--|--|--|
| O                 | Beginner     | 0         |  |  |  |
|                   | Intermediate | 0         |  |  |  |
| <b>\Q</b>         | Advanced     | 0         |  |  |  |
| <b>\&amp;&gt;</b> | Expert       | 0         |  |  |  |

|                 | Goal   |    |  |  |  |  |  |  |
|-----------------|--------|----|--|--|--|--|--|--|
| 4722            | 12     |    |  |  |  |  |  |  |
| 5722            | )<br>- | 14 |  |  |  |  |  |  |
| Total Completed |        |    |  |  |  |  |  |  |
|                 | 0      |    |  |  |  |  |  |  |

## Generating a Sentence





#### Joint Probability



a. p("you can swim") = 
$$12x \cdot 2x \cdot 2x \cdot 2$$
  
= 0.008

b. p("you can go") = 
$$.2 \times .2 \times .4$$
  
=  $0.016$ 

c. p("how are they") = 
$$.2 \times .5 \times .3$$

d. p("how is she") = 
$$.2 \times .4 \times .4$$
  
=  $0.032$ 



Which sentence does this sequence of random

numbers generate?

Random Number Generator

| 0.41 | 0.33 |  |  |
|------|------|--|--|
|------|------|--|--|

- A. meow woof
- B. woof woof
- C. woof meow
- D. oink woof
- E. oink meow

| woof | 0.5 |          |
|------|-----|----------|
| oink | 0.2 | 0,200,41 |
| meow | 0.3 | 0.3      |
|      |     | 9        |

| _ |      |     |
|---|------|-----|
|   | woof | 0.7 |
|   | oink | 0.2 |
|   | meow | 0.1 |

woof

oink

meow

0.1

0.1

8.0

| woof | 0.8 |  |  |
|------|-----|--|--|
| oink | 0.2 |  |  |
| meow | 0   |  |  |







Which sentence does this model generate from a random sequence of [0.6, 0.3, 0.7]?

- A pow, boom, bang
- B. boom, pow, bang
- C. pow, pow, bang
- D. boom, boom, pow







bang

0

## Training an Autoregressive Language Model





### ✓ Conditional Probability



b. 
$$p(\text{"meow"} \mid \text{"woof"}) = 0$$



#### Joint Probability



a. 
$$p(\text{``woof''}) = 0.5$$

c. 
$$p(\text{"woof meow woof"}) = 0.12 \times 0.2$$

d. 
$$p(\text{"woof meow meow"}) = 0.12 \times 0.8$$

$$= 0.096$$

### Training an Autoregressive Image Model





#### Conditional Probability Distributions





Write out the conditional probability distribution expression that correspond to A, B, C, D. Enter 1 if the variable should be included.

|    |    | y0 | y1           | y2 | у3 | y0 | y1 | y2 | у3 |   |
|----|----|----|--------------|----|----|----|----|----|----|---|
| A. | p( | 0  | ~            | 0  | D  | ť  | 0  | 0  | 0  | ) |
| B. | p( | Q  | <sub>0</sub> | 1  | 0  | l  | Ţ  | 0  | 0  | ) |
| C. | p( | 0  | 0            | 1  | 0  | 0  | 0  | 0  | 1  | ) |
| D. | p( | Ŋ  |              | 0  | O  | 0  | O  | (  |    | ) |



$$Y_1 - Y_0$$

$$+= \begin{array}{|c|c|c|c|c|} \hline 1 & 0 \\ \hline 0 & 1 \\ \hline \end{array}$$
 0.40

$$+= \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$$
 0.60

Hint: Guess which forward path leads to Y<sub>1</sub>



#### Reverse

$$Y_2 - Y_1$$

0.30

What are the pixel values of the images involved in the reverse process?

$$+=\begin{array}{|c|c|c|c|}\hline 1 & 0 \\ \hline 0 & 1 \\ \hline \end{array}$$

 $Y_1 - Y_0$ 

0.60

$$+= \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} \quad 0.20$$

$$+= \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} \quad 0.70$$



#### Forward

$$Y_2 - Y_1$$



$$+= \begin{array}{|c|c|c|c|c|} \hline 0 & 1 \\ \hline 1 & 0 \\ \hline \end{array}$$
 0.60 a. p(Y)

0.30

b. 
$$p(Y_2 = \begin{vmatrix} 4 & 6 \\ 6 & 4 \end{vmatrix}) = \frac{0.6 \times 0.5}{0.18}$$

Hint: Guess which forward path leads to Y<sub>2</sub>.

O.70 Calculate joint probability using the chain rule.

# Denoising Diffusion Probabilistic Model (DDPM)



### V C

#### Forward vs Reverse

During the forward diffusion process, signals are

\_\_\_\_\_ (a) {1. removed from, 2. added to} an image by

(b) {1. removing, 2. adding} noises.

During the reverse diffusion process, signals are
\_\_\_\_\_ (c) {1. removed from, 2. added to} an image by
\_\_\_\_\_ (d) {1. removing, 2. adding} noises.

# NumPy by Hand (Land) [Math → For Loops]





#### Match math to code

$$Y_i = \sum_{i=1}^{I-1} X_i$$

$$Y = \sum_{i=0}^{I-1} \sum_{j=0}^{J-1} X_{ij}$$

$$Y_i = \sum_{j=0}^{J-1} X_{ij}$$

$$Y = np.zeros((I,J))$$
  $Y = 0$ 

for 
$$i = range(I)$$
: for  $i = range(I)$ :

$$Y[i] += X[j,i]$$
  $Y += X[i,j]$ 

$$I, J = X.shape$$

$$Y = 0$$

for 
$$j = range(J)$$
: for  $j = range(J)$ :







What are the indices?

$$D_{kl} = \sum_{\substack{i=0 \ a}}^{3-i} \sum_{\substack{j=0 \ b}}^{3-i} A_{ij} B_{jk} C_{kl}$$

$$D_{ik} = \sum_{j=0}^{J-1} \sum_{k=0}^{J-1} A_{ij} B_{jk} C_{kl}$$

#### ○ Math → Code

$$D_{ij} = \sum_{k} \sum_{k} A_{ij} B_{jk} C_{kl}$$

```
I, J = A.shape
   J, K = B.shape
   K, L C.shape
a D = np.zeros((_{\underline{}}, _{\underline{}}))
   for i = range(I) :
         for j = range(J):
               for k = range(K):
                    for l = range(L):
                     D[\frac{1}{2}, \frac{1}{2}] += A[\frac{1}{2}, \frac{1}{2}] * B[\frac{1}{2}, \frac{1}{2}] * C[\frac{1}{2}, \frac{1}{2}]
```



### ■ Math → Code → Calculate by hand

Complete the two missing lines of code

$$Y = \sum_{i=0}^{i-1} X_{ii}$$

$$I, I = X.shape$$

for i = range(I):



$$X = \begin{bmatrix} 3 & -5 & 4 \\ 2 & 2 & 0 \\ 8 & 5 & 1 \end{bmatrix}$$