

Algorithms and Data Structures

Priority Queues

Ulf Leser

Special Scenarios for Searching

- Up to now, we assumed that all elements of a list are equally important and that any of them could be searched next (with varying probability)
- What if some elements are more important than others?
 - There is a (maybe partial) order on list elements
 - The most important elements are always retrieved next
 - Priority Queues
- Difference to Self-Organizing Lists
 - Most important element is always retrieved next should be O(1)
 - List most be kept ordered by importance
 - We look at a scenario where new elements are inserted all the time and the most important element is removed regularly

Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Sink-Shortest-Paths
 - Famous solution: Dijkstra's algorithm

Assumptions

- We assume that there is at least one path between X and any other node (every node is reachable from X)
- We assume strictly positive edge weights
- Distance is the length (=sum of weights) of the shortest path
- There might be many shortest paths, but distance is unique
- We only want the distance and need no "witness path"

Exhaustive Solution

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Dijkstra's Idea

- Enumerate paths by their length (neither DFS nor BFS)
- Assume we reach a node Y by a path p of length I and we have already explored all paths with length I' ≤ I and that Y was not reached yet
 - We always mean "all paths starting from X"
- Then p must be the shortest path between X and Y
 - Because any p' between X and Y would have a prefix of length at least I and (a) a continuation with length>0 or (b) would not need a continuation (then p is as short as p')

Example for Idea

- 1: X K3
- 2: X K3 K2
- 2: X K1
- 4: X K3 K2 K6
- 4: X K3 K4
- 4: X K3 K7

- 5: X K3 K4 K5
- 7: X K3 K7 K8
- Stop (all nodes found)

K3	1
K2	2
K1	2
K6	4
K4	4
K7	4
K5	5
K8	7

K8

A Further Trick

- We enumerate paths by length by iteratively extending short paths by all possible next edges
 - I.e., by looking at all edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn't reach yet then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found the a shortest path already – these can be ignored
- Eventually, we can enumerate nodes by their distance

Algorithm

```
1. G = (V, E);
2. x : start node;
                         # xEV
3. A : array_of_distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L\neq\emptyset
   k := L.get_closest_node();
8.
9. L := L \setminus k;
10. forall (k,f,w) \in E do
       if fEL then
11.
12.
          new dist := A[k]+w;
13.
          if new dist < A[f] then
14.
            A[f] := new dist;
15.
    end if;
16.
       end if:
     end for:
17.
18. end while;
```

Assumptions

- Nodes have IDs between 1 ... |V|
- Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

•	Ρi		k	Χ
•		U	lacksquare	Λ

Adapt distances to all neighbors

X	0
K1	2
K2	
K3	1
K4	
K 5	
K6	5
K7	
K8	

• Pick K3 (closest to x)

X	0
K1	2
K2	
K3	1
K4	
K5	
K6	5
K7	
K8	

•	Ρi	را	k	K3
•		U	lack	

 Adapt distances (from x) to all neighbors (of K3)

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

•	Pi	\sim L	K	1
•	r	しド		1

- Adapt distances to all neighbors
 - There are none

Χ	0
K1	2
K2	2
К3	1
K4	4
K5	
K6	5
K7	4
K8	

•	Ρi	k	K2
-			

- Adapt distances to all neighbors
 - K1 was picked already ignore
 - We found a shorter path to K6

X	0
K1	2
K2	2
К3	1
K4	4
K5	
K6	4
K7	4
K8	

• Pick K6 (or K4 or K7)

0
2
2
1
4
4
4

•	Ρi	را	k	K6
•	ГІ	U		NU

- Adapt distances to all neighbors
 - There are none

Χ	0
K1	2
K2	2
К3	1
K4	4
K5	
K6	4
K7	4
K8	

•	Ρi	C	k	K	7
•		U	lacksquare	 	/

- Adapt distances to all neighbors
 - K6 was visited already

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	4
K7	4
K8	7

		! _ I	_	1/1
•	Р	ICE	(Κ4

- Adapt distances to all neighbors
 - X was visited already

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	5
K6	4
K7	4
K8	7

A Closer Look

```
1. G = (V, E);
2. x : start node;
                        # xev
3. A : array_of_distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L\neq\emptyset
  k := L.get_closest_node();
8.
9. L := L \setminus k;
10. forall (k,f,w) \in E do
       if fEL then
11.
12.
         new_dist := A[k]+w;
13.
         if new dist < A[f] then
14.
           A[f] := new dist;
15.
    end if;
16.
    end if;
17.
     end for;
18. end while;
```

- Algorithm seems to work
 - Proof and analysis will follow later
 - Hint: 8 is passed-by |V| times and12 at most |E| times
- Central: get_closest_node()
 - Needs to find the node k in L for which A[k] is the smallest
 - A[k] is changed a lot during a run
- Searching A? Resorting A?
- Better: Priority queue
 - List of tuples (o, v) (object, value)
 - Central operation: Return tuple where v is smallest

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
 - add(o,v): Add element o with value (priority) v
 - May be also bulk insert convert a list in a priority queue
 - getMin(): Retrieve element with highest priority
 - removeMin(): Remove element with smallest value
- Typical additional operations
 - merge(p1, p2): Merge two PQs into one (properly sorted)
 - delete(o): Delete o from PQ
 - changeValue(o,v): Change value of o to v

Applications

- Games (e.g. chess)
 - The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore moves with highest benefit first (also called A* algorithm)
- Event simulators
 - While events are handled, new events are generated for the future;
 manage all events in a PQ sorted by event time and always pull the next event
- Quality of Service in a network
 - When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority

•

Naive Implementations (with |Q|=n)

- Using a linked list
 - add requires O(1)
 - getMin requires O(n) [bad]
 - deletemin requires O(1) (if we keep the pointer after a getMin)
 - merge requires O(1)
- Using a linked list sorted by priority
 - add requires O(n) [bad]
 - getMin requires O(1)
 - deleteMin requires O(1)
 - merge requires O(n+m)

Maybe Arrays?

- Using a sorted array
 - add requires O(n) [We find the position in log(n), but then have to free a cell by moving all elements after this cell]
 - getMin requires O(1)
 - deleteMin requires O(n)
- PQs are typically used in applications where elements are inserted and removed all the time
- We need a DS that can change its size dynamically at very low cost
- We want constant or at most log-time for all operations

Content of this Lecture

- Priority Queues
- Using Heaps
 - Heaps
 - Operations on Heaps
 - Heap Sort
- Using Fibonacci Heaps

Heap-based PQ

- Unsorted lists require O(n) for getMin()
 - We don't know where the smallest element is
- Sorted lists require O(n) for add()
 - We don't know where to put the new element
- Can we find a way to keep the list "a little sorted"?
 - Actually, we only want the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - add() / deleteMin() should be faster than O(n), because they don't need to keep the entire list sorted
- One such structure is called a heap

Heaps

- Definition
 - A heap is a labeled binary tree for which the following holds
 - Form-constraint (FC): The tree is complete except the last level
 - I.e.: Every node has exactly two children
 - Heap-constraint (HC): The value of any node is smaller than that of its children

Properties

Order

- A heap is "a little" sorted: We know the smallest element (root)
- We know the order for some pairs of elements (parent-successors), but for many pairs we don't know which is bigger (e.g. nodes in the same level)

Size

 A complete binary tree with m levels has 2^m-1 nodes

 A heap with m levels thus has between 2^{m-1}+1 and 2^m-1 nodes

 A heap with n nodes has ceil(log(n+1)) levels

Operations

- Assume we store our PQ as a heap
- Clearly, getMin() is possible in O(1)
 - Keep a pointer to the root
- But ...
 - How can we perform deleteMin() such that the new structure again is a heap?
 - How can we add an element to a heap such that the new structure again is a heap?
 - How can we turn a list into a heap?

DeleteMin()

- We first remove the root
 - Creates two heaps
 - We must connect them again
- We take the "last" node, place it in root, and sift it down the tree
 - Last node: right-most in the last level (actually, we can take any from the last level)
 - Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself

Analysis - Correctness

- We need to show that FC and HC still hold
- HC: Look at the tree after we moved a node k. k may
 - ... be smaller than its children. Then HC holds and we are done
 - ... be larger than at least one child k2. Assume that k2 is the smaller of the two children (k1, k2) of k. We next swap k and k2.
 The new parent (k2) now is smaller than its children (k1, k), so the HC holds
 - After the last swap, k has no children HC holds
- FC: We remove one node, then we sift down
 - Removing last node doesn't affect FC as we remove in the last level
 - Sifting does not change the topology of the tree (we only swap)

Analysis - Complexity

- Recall that a heap with n nodes has ceil(log(n+1)) levels
- During sifting, we perform at most one comparison and one swap in every level
- Thus: O(ceil(log(n+1))) = O(log(n))

Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and sift up
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger

Analysis

- Correctness
 - HC
 - If parent has only one child, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1.
 We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2≥k, HC holds immediately (and we don't swap).
 - FC: See deleteMin()
- Complexity: O(log(n))
 - See deleteMin()

How to Find the Next Free / Last Occupied Node

- What do we need to find?
 - For deletemin, we use the right-most leaf on the last level
 - For add, we add after the leaf right from the last leaf
- We actually need the parent k
 - From n, we can compute in O(1) the position p of the last leaf in the last level: $p = n 2^{(floor(log(n)))}$
 - Or log(n+1) for add
 - The parent k of the node at p has index floor(p/2)'th in level d-1
 - The parent k' of k has index floor(p/4)'th in level d-2
 - **–** ...
 - Now, in each node, we can decide whether to go left or right
 - Fast trick: Use the binary representation of p

Illustration

- For deleteMin, we need x (or x'); for add, we need y (or y')
 - p(x)=0, p(y)=1, p(x')=4, p(y')=5
 - Binary: 000, 001, 100, 101
- Go through bitstring from leftto-right
- Next bit=0: Go left
- Next bit=1: Go right
- Allows finding k in O(log(n))

Summary

	Linked list	Sorted linked list	Heap
getMin()	O(n)	O(1)	O(1)
deleteMin()	O(1)	O(1)	O(log(n))
add()	O(1)	O(n)	O(log(n))
merge()	O(1)	O(n1+n2)	C(log(n1)*log(n2))
Space	n add. pointer	n add. pointer	n add. pointer

Heaps can also be kept efficiently in an array – no extra space, but limit to heap size

But merge() requires O(n1+n2) or O(n1*log(n2+n1)) when using an array

Creating a Heap

- We start with an unsorted list with n elements
- Naïve algorithm: Start with empty heap and perform n additions
 - Obviously requires O(n*log(n))
- Better: Bottom-Up-Sift-Down
 - Build a tree from the n elements fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level this is in O(n)
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - ...
 - Sift down root

Analysis

Correctness

- After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
- Thus, when we are done with the first level (root), we have a heap

Analysis

- We look at the cost per level h (1 ... log(n)=d)
- For every node at level h, we need at most d-h operations
- At level h≠d, there are 2^{h-1} nodes
 - For nodes at level d, we don't do anything
- Over all levels, this yields

$$T(n) = \sum_{h=1}^{d-1} 2^{h-1} * (d-h) = \sum_{h=1}^{d-1} h * 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \le n * \sum_{h=1}^{\infty} \frac{h}{2^h} = n * 2 = O(n)$$

Heap Sort

- Heaps also are a suitable data structure for sorting
- Heap-Sort (a classical one)
 - Given an unsorted list, first create a heap in O(n)
 - Repeat
 - Take the smallest element and store in array in O(1)
 - Re-build heap in O(log(n))
 - Call deleteMin(root)
 - Until heap is empty after n iterations
- Thus: O(n*log(n))
 - Average-case only slightly better
- Can be implemented in-place when heap is stored in array
 - See [OW93] for details

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Fibonacci-Heaps (very rough sketch)

- A Fibonacci Heap (FH) is a forest of (non-binary) heaps with disjoint values
 - All roots are maintained in a double-linked list
 - Special pointer (min) to the smallest root
 - Accessing this value (getMin()) obviously is O(1)

Maintainance of a FH

- FHs are maintained in a lazy fashion
 - add(v): We create a new heap with a single element node with value v. Add this heap to the list of heaps; adapt min-pointer, if v is smaller than previous min
 - Clearly O(1)
 - merge(): Simple link the two root-lists and determine new min (as min of two mins)
 - Clearly O(1)
- Deleting an element (deleteMin()) needs more work
 - Until now, we just added single-element heaps
 - Thus, our structure after n add() is an unsorted list of n elements
 - Finding the next min element after deleteMin() in a naïve manner would require O(n)

deleteMin() on FH

- Method is not complicated
 - We first remove the min element
 - We then go through the root-list and merge heaps with the same rank (=# of children) until all heaps in the list have different ranks
 - Merging two heaps in O(1): (1) Find the heap with the smaller root value; (2) Add it as child to the root of the other heap
- But analysis is fairly complicated
 - The above method is O(n) in worst case
 - But after every clean-up, the root-list is much smaller than before
 - Subsequent clean-ups need much less time
 - Amortized analysis shows: Average-case complexity is O(log(n))
 - Analysis depends on the growth of the trees during merge these grow as the Fibonacci numbers

Disadvantage

- Though faster on average, Fibonacci Heaps have unpredictable delays
- No log(n) upper bound for every operation
- Not suitable for real-time applications etc.

Summary

	Linked list	Sorted linked list	Heap	Fibonacci Heap
getMin()	O(n)	O(1)	O(1)	O(1)
deleteMin()	O(1)	O(n)	O(log(n))	O(log(n))*
add()	O(1)	O(n)	O(log(n))	O(1)
merge()	O(1)	O(n1+n2)	O(log(n))	O(1)