Bernstein-concentration

Eklavya Sharma

Definition 1 (γ -bernstein-concentration). A random variable $X \in \mathbb{R}^n$ is γ -bernstein-concentrated iff

$$\Pr[a^T X - \mathcal{E}(a^T X) \ge t] \le \exp\left(\frac{-1}{2\gamma} \frac{t^2}{\sum_{i=1}^n a_i^2 \operatorname{Var}(X_i) + \frac{Mt}{3}}\right)$$

where $M = \max_{i=1}^{n} |a_i(X_i - E(X_i))|$.

Theorem 1 (Bernstein's inequality). Let $X \in \mathbb{R}^n$ be a random variable where each coordinate of X is independent. Then X is 1-bernstein-concentrated.

1 Bernouilli variables

Theorem 2. Let $X \in \{0,1\}^n$ be a random variable with E(X) = x. If X is γ -bernstein-concentrated, then

$$\Pr[a^T X - a^T x \ge t] \le \exp\left(\frac{-1}{2\gamma} \frac{t^2}{\|a\|_{\infty} (a^T x + t/3)}\right)$$

Proof. $Var(X_i) = x_i(1 - x_i)$.

$$\sum_{i=1}^{n} a_i^2 x_i (1 - x_i) \le ||a||_{\infty} \sum_{i=1}^{n} a_i x_i = ||a||_{\infty} a^T x$$

$$M = \max_{i=1}^{n} |a_i| |X_i - E(X_i)| \le ||a||_{\infty} \max_{i=1}^{n} |X_i - E(X_i)| \le ||a||_{\infty}$$

Theorem 3. Let $X \in \{0,1\}^n$ be a random variable with E(X) = x. Let X be γ -bernstein-concentrated. Let $\alpha \leq a^T x \leq \beta$. Then

$$\Pr[a^T X \ge (1+\delta)\beta] \le \exp\left(\frac{-1}{2\gamma} \frac{\beta}{\|a\|_{\infty}} \frac{\delta^2}{1+\delta/3}\right)$$

$$\Pr[a^T X \le (1 - \delta)\alpha] \le \exp\left(\frac{-1}{2\gamma} \frac{\alpha}{\|a\|_{\infty}} \frac{\delta^2}{1 + \delta/3}\right)$$

Proof. Let $c = (1 + \delta)\beta$.

$$\Pr[a^T X \ge c] = \Pr[a^T X - a^T x \ge c - a^T x]$$

$$\le \exp\left(-\frac{1}{2\gamma} \frac{(c - a^T x)^2}{\|a\|_{\infty} \left(a^T x + \frac{1}{3}(c - a^T x)\right)}\right)$$

$$\le \exp\left(-\frac{1}{2\gamma} \frac{3}{\|a\|_{\infty}} \frac{(c - a^T x)^2}{c + 2a^T x}\right)$$
(by theorem 2)

Let $f(y) = (c - y)^2/(c + 2y)$, where $y \in [\alpha, \beta]$. f(y) > 0.

$$\ln(f(y)) = 2\ln(c - y) - \ln(c + 2y)$$

$$\frac{f'(y)}{f(y)} = -\frac{2}{c-y} - \frac{2}{c+2y} < 0$$

Since f'(y) < 0, f(y) is minimized at $y = \beta$. $f(\beta) = (\delta^2 \beta)/(3 + \delta)$. Therefore,

$$\Pr[a^T X \ge (1+\delta)\beta] \le \exp\left(\frac{-1}{2\gamma} \frac{\beta}{\|a\|_{\infty}} \frac{\delta^2}{1+\delta/3}\right)$$

The other inequality can be proven similarly.