

# SPACE DEBRIS MANAGEMENT

PRESENTATION BY,

SNEHA MANJUNATH CHAKRABHAVI JANANI KARTHIKEYAN GROUP 18

## TABLE OF CONTENTS

BACKGROUND INFORMATION

BUSINESS PROBLEM

O3 EER DIAGRAM

O4- UML DIAGRAM

05 RELATIONAL MODEL

## INTRODUCTION

- Space debris management is a critical but often under-addressed issue that requires immediate action.
- Collisions in space can lead to abundant debris, a scenario known as the Kessler Syndrome, which can exponentially increase the likelihood of further collisions, potentially making certain orbits unusable for generations.
- Space Debris Management focuses on the development of information-centric strategies that leverage data-driven methodologies to mitigate the risks associated with space debris.
- By combining advanced database systems, we aim to enhance the analysis, tracking, and prediction of space debris trajectories and their origin.
- Establish a robust framework for the collection, processing, and management of space debris data, with real-time tracking and prediction capabilities.
- There is a pressing need for comprehensive strategies to mitigate space debris and manage the orbital environment.

## BACKGROUND INFORMATION

- **Definition:** Space debris, also called space junk or orbital debris, consists of old satellites, discarded and unnecessary parts of rockets, and non-functional objects orbiting Earth.
- **Composition:** Includes spent rocket stages, dysfunctional satellites, fragments resulting from disintegration, and debris generated from diverse space missions and activities.
- **Speed:** Space debris travels at high speeds, making even small pieces hazardous due to the potential for collisions.
- **Risk Factors:** The accumulation of space debris presents risks to ongoing and future space missions, as collisions can cause damage to operational satellites and spacecraft.
- **Global Impact:** Space debris is a global concern, requiring international collaboration and responsible space practices to address the challenges associated with its presence in Earth's orbit.
- **Mitigation Strategies:** Efforts include tracking and monitoring debris, developing strategies for debris removal, and promoting responsible space practices to minimize the creation of additional debris.



### BUSINESS PROBLEM



**Critical challenge:** Increased risk of collisions and orbital mishaps due to growing space debris.

#### **Business Dilemma:**

- Absence of an efficient real-time system for space debris data.
- Challenges in collecting, processing, managing, and analyzing space debris data.

### **Data-Driven Approaches:**

- Advocates the use of data analysis, orbital surveillance, and predictive modeling.
- Highlights the need for methodologies driven by accurate and timely data.

### **Integrated Approach Needed:**

- Calls for an integrated approach to address the challenge.
- Advocates the fusion of advanced database systems and deep learning techniques like MySQL, Python, etc.

### **Enhancing Surveillance and Analysis:**

- Aims to significantly enhance the efficiency and accuracy of space debris surveillance and analysis.
- Emphasizes the role of advanced technologies in improving space debris management.



## EER DIAGRAM ENTITIES AND ATTRIBUTES

- 1. ORBIT Identified by an Orbit ID, it has attributes such as Altitude, Inclination, and Period.
- 2. SPACE\_DEBRIS Identified by a Debris ID, it has attributes like Size, Origin, and the Last Observed time
- 3. ROCKET Has a Rocket ID, Name, Launch Date, and Payload Capacity.
- 4. SATELLITE Identified by Satellite ID, it holds details such as Name, Mass, and Status
- 5. SENSOR Each sensor, with a unique Sensor ID, can detect objects and is characterized by its Type, Detection Range, and Detection Frequency
- 6. COUNTRY Characterized by Country ID, Name, and ISO.
- 7. ORGANIZATION Identified by Organization ID, includes Name, Location, and Contact Info
- 8. SPACE\_AGENCY \*: Identified by Agency ID, including Name and Location.
- 9. MANUFACTURER Identified by Manufacturer ID, including Name, Location, and Contact Info.
- 10. LAUNCH\_LICENSE Identified by a License ID, it has an Issue Date, Expiry Date, and Purpose
- 11. TRACKING\_STATION Identified by Station ID, including Name and Location.
- 12. LAUNCH\_FACILITY Identified by a Facility ID, including Name and Location.



## RELATIONAL MODEL

#### 1. ORBIT(ORBIT\_ID,ALTITUDE,INCLINATION,PERIOD)

Primary Key: orbitID

Foreign Key: NA

#### 2. SPACE\_DEBRIS(DEBRIS\_ID,SIZE,SD\_MASS,ORIGIN,LAST\_OBSERVED)

Primary Key: debrisID

Foreign Key: NA

#### 3. PRESENT\_IN(ORBIT\_ID,DEBRIS\_ID)

Primary Key: orbitID refers to Orbit (Not Null) and debrisID refers to space\_debris (Not Null)

Foreign Key: NA

#### **4. ROCKET**(<u>ROCKET\_DEBRIS\_ID</u>,R\_NAME,R\_LAUNCHDATE,PAYLOAD\_CAPACITY)

Primary Key: rocket\_debris refers to space\_debris

Foreign Key: NA

#### **5. SATELLITE**(<u>SATELLITE\_DEBRIS\_ID</u>,S\_NAME,STATUS,S\_LAUNCHDATE,S\_MASS)

Primary Key: satellite\_debris refers to space\_debris

Foreign Key: NA

#### **6. SENSOR**(SENSOR\_ID,TYPE,DETECTION\_RANGE,DETECTION\_FREQUENCY,*ORBIT\_ID,COUNTRY\_ID*)

Primary Key: sensorID refers to sensor

Foreign Key: orbitID refers to orbit (Not Null) and countryID refers to country (Not Null)

#### 7. COUNTRY (COUNTRY ID, C\_NAME, ISO, AGENCY\_ID, STATION\_ID, FACILITY\_ID)

Primary Key: countryID refers to country

Foreign Key: agencyID refers to space agency (Not Null), stationID refers to tracking station (Not Null) and facilityID refers to launch facility (Not Null)

#### **8. ORGANIZATION**(ORGANIZATION\_ID,O\_NAME,O\_LOCATION,O\_CONTACT)

Primary Key: organizationID refers to organization

Foreign Key: NA

#### 9. REPORTS\_TO(ORGANIZATION\_ID,COUNTRY\_ID)

Primary Key: organizationID refers to organization and countryID refers to country

Foreign Key: NA

#### 10. SPACE\_AGENCY(AGENCY\_ID,A\_NAME,A\_LOCATION,LICENSE\_ID)

Primary Key: agencyID

Foreign Key: licenseID refers to launch license (Not Null)

#### 11. MANUFACTURER (MANUFACTURER ID, M\_NAME, M\_LOCATION, M\_CONTACT)

Primary Key: manufacturerID

Foreign Key: NA

#### 12. COUNTRY\_MANUFACTURER(COUNTRY\_ID,MANUFACTURER\_ID)

Primary Key: countryID refers to country and manufacturerID refers to manufacturer

Foreign Key: NA

#### 13. LAUNCH\_LICENSE(LICENSE\_ID,ISSUE\_DATE,EXPIRY\_DATE,PURPOSE)

Primary Key: licenseID

Foreign Key: NA

#### **14. TRACKING\_STATION**(<u>STATION\_ID</u>,T\_NAME,T\_LOCATION)

Primary Key: stationID

Foreign Key: NA

#### **15. LAUNCH\_FACILITY**(<u>FACILITY\_ID</u>,F\_NAME,F\_LAUNCHDATE,F\_LOCATION)

Primary Key: facilityID

Foreign Key: NA

# THANK YOU



Group 18

Janani Karthikeyan +1-413-557-9761 karthikeyan.j@northeastern.edu

Sneha Manjunath +1-857-891-3226 <a href="mailto:chakrabhavi.s@northeastern.edu">chakrabhavi.s@northeastern.edu</a>