Probability and random variables assignment

Maharshi Kadeval

1 Q8 c)

- 1.1. Using ruler and compass only, construct a $\triangle ABC$ such that BC = 5 cm and AB = 6.5 cm and $\angle ABC = 120^{\circ}$
 - (i) Construct a circum-circle of △ABC
 - (ii) Construct a cyclic quadrilateral ABCD, such that D is equidistant from AB and BC.

Solution: The parameters for constructing the figure are given in the table below:

TABLE 1.1.1

Symbol	Value	Description
a	5	BC
c	6.5	AB
α	$\cot^{-1} \frac{11*\sqrt{3}}{13}$	$\angle ACB$
θ	$\frac{\pi}{3}$	$\pi - \angle ABC$
l	$\frac{6.5*\sqrt{3}}{2*\sin\alpha}$	AD
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	origin
В	$\begin{pmatrix} c \\ 0 \end{pmatrix}$	point of triangle
C	$ \begin{pmatrix} 6.5 + a * \cos \theta \\ a * \sin \theta \end{pmatrix} $	point of triangle
E		centre of circumcircle of $\triangle ABC$.
r	$\frac{c}{2\operatorname{cosec}\theta}$	radius of circumcircle of $\triangle ABC$.
D	$l * \begin{pmatrix} \cos(2\theta - \alpha) \\ \sin(2\theta - \alpha) \end{pmatrix}$	intersection point of angle bisector of AB and BC and circumcircle

Steps of construction:

- 1. The point A is taken as origin and a line segment AB = 6.5 cm is drawn along positive x-axis.
- 2. Draw a line segment emerging from B at $\angle 120^{\circ}$ in anticlockwise direction from BA of length 5 cm.
- 3. Name the other endpoint of the line segment as C.

- 4. Join AC. This completes the \triangle ABC.
- 5. Now take the perpendicular bisector of any two sides, mark their point of intersection as E(centre of circumcircle).
- 6. Taking E as centre and EA=EB=EC as radius draw a circle(circumcircle).
- 7. Take internal angle bisector of AB and BC, let its point of intersection with the circumcircle be D.
- 8. Join AD and CD.

(i)1.1.1

center of the circumcircle is the point of intersection of the perpendicular bisectors of AB and BC.

Fig. 1.1.1.

(ii)1.1.2 the point D of the cyclic quadrilateral ABCD is the point of intersection of the angle bisectors of AB and BC and the circumcircle.

Fig. 1.1.2.