Homework Assignment 2 & 3

Problem 2.4

We need to show that $\| \cdot \| \infty$ satisfies the 3 properties of any norm.

- 1) $\| \cdot \| \infty = \max \{|x_1|, |x_2|\} >= 0$ for any \mathbf{x} in R^2, and if $\|\mathbf{x}\| \infty = 0$, then max $\{|x_1|, |x_2|\} = 0 ==> \mathbf{x}$ 1 = 0 = \mathbf{x} 2 ==> \mathbf{x} = 0. So, $\| \cdot \|_{\infty}$ is positive-definite.
- 2) For any c in R and any x in R^2 , one has

 $\|c\mathbf{x}\| = \max \{ |c\mathbf{x}_1|, |c\mathbf{x}_2| \} = |c| \max \{ |\mathbf{x}_1|, |\mathbf{x}_2| \} = |c| \|\mathbf{x}\| = > \| \cdot \|$ satisfies the absolute homogeneity property.

3) For any x, y in R^2 , one has

Problem 2.12

Let $\{x \mid k\}$ be an arbitrary convergent sequence in Rⁿ and let x 0 be its limit.

a) Suppose that there is another limit of $\{x_k\}$, say x'. Let e > 0 be any real number $< \|x_0 - x'\|/2$. There exists a natural number k_1 for which $\|x_k - x_0\| < e$ for all $k > k_1$. Likewise, there exists a natural number k_1 such that $\|x_k - x'\| < e$ for all $k > k_1$. Then for all $k > max(k_1, k_2)$:

$$2e < ||x | 0 - x'|| \le ||x | k - x | 0|| + ||x | k - x'|| \le 2e$$

contradiction. So, the limit of a convergent sequence is unique.

- b) Let e > 0 be any real number. There exists a k_1 for which $||x_k x_0|| < e$ for all $k > k_1$, where x_0 is the limit of the sequence $\{x_k\}$. So, $||x_k|| <= ||x_k x_0|| + ||x_0|| < e + ||x_0||$ for all $k > k_1$. Let $M = max(||x_1||, ..., ||x_{k_1}||, e + ||x_0||)$. Then $||x_k|| <= M$ for all k.
- c) Let e > 0 be any real number. There exists a k_1 such that $||x_k x_0|| < e/2$ for all $k >= k_1$ (where k >= k 0 is the limit of the sequence k >= k). So, for all k >= k

$$||x_k - x_m|| <= ||x_k - x_0|| + ||x_m - x_0|| <= e \quad ===> \{x \ k\} \text{ is Cauchy.}$$

Problem 2.15

For any given e > 0, there exists a k 1 such that

$$|| x_m - x_k| < e \text{ for all } m >= k >= k_1.$$

In particular, for $k = k \cdot 1$:

$$\|x_m - x_{k_1}\| < e \text{ for all } m >= k_1 ===>$$

 $\|x_m\| < \|x_k\| + e \text{ for all } m >= k_1.$

Let
$$M = max(||x_1||, ..., ||x_{k_1-1}||, ||x_{k_1}|| + e) ==> ||x_k|| \le M$$
 for every natural number $k ==> \{x_k\}$ is bounded.

Problem 2.17

Note that any deleted neighborhood N'(x_0; e) of x_0 contains infinitely many points of S [If a deleted neighborhood N'(x_0; e) contains only finitely many points, say x_{i_1}, ..., x_{i_k}, let e_1 = min($||x_{i_1} - x_0||, ..., ||x_{i_k} - x_0||$). Then N'(x_0; e_1) contains no points of S, contradiction]. Let x_1 be a point of S in N'(x_0; e), and let x_2 be a point of S in N'(x_0; e/2),

which is different from x_1. Having chosen the points x_1, x_2, ..., x_k of S, let x_{k+1} be a point of S in N'(x_0; e/{k+1}), different from x_1, x_2, ..., x_k. Then {x_k} is a sequence of distinct points in S. Observe that $||x_k - x_0|| < e/k$ for every natural number k. Let e' > 0 be any real number. Then there exists a k_1 for which $e/k_1 < e' ==>$ for any $k > k_1$, $||x_k - x_0|| < e/k <= e/k_1 < e' ==>$ $\lim \{k \text{ goes to infinity}\}\ x_k = x_0$.

Problem 2.25

Let $T = \{x_k : k \text{ in } N\}$. Then $S = T \cup \{x_0\}$. Obviously, x_0 is a limit point of S. Suppose that S has another limit point, say x'. Then any deleted neighborhood S contains infinitely many points of S ==> infinitely points of S ==> S is a limit point of S ==> S is a cluster point of the sequence S is a subsequence S that converges to S contradiction, since all the subsequences of S converges to S converges to S is the limit of the sequence S is the only limit point of S and S and S is in S ==> S is closed.

Problem 2.29

- a) interior(S) = (a, b), closure(S) = [a, b], derived set(S) = [a, b], bd(S) = {a, b} (consists of points a and b) (every point in the interval (a,b) has a neighborhood which is completely contained in S, and if x' is any point that does not belong to (a,b), then any neighborhood of x' contains a point that belongs to S-complement ==> interior(S) = (a,b). It is easy observe that, the only points whose every neighborhood contains a point of S are those that are contained in [a,b], so closure(S) = [a,b]. If x' is a point that N(x'; e) contains both point of S and S-complement for every e > 0, then $ext{x'} = a$ or $ext{x'} = b ==> bd(S) = \{a, b\}$. Finally, the only points whose every neighborhood contains a point of S are those that are contained in [a, b] ==> derived set(S) = [a,b])
- b) interior(S) = { (x, 0) in R^2 : a < x < b }, closure(S) = { (x, 0) in R^2 : a <= x <= b }, derived set(S) = { (x, 0) in R^2 : a <= x <= b }, bd(S) = {(a, 0), (b, 0) } (consists of points (a, 0) and (b, 0) in R^2). (the same reasoning as in (a))
- c) interior(S) = empty set, closure(S) = R (the set of real numbers), derived set(S) = R, bd(S) = R. (if x is any rational number, then every neighborhood of x will contain irrational numbers ==> interior(S) = empty set.

For any real number x and any positive real number e, the neighborhood N(x;e) contains both rational numbers and irrational numbers ==> derived set(S) = closure(S) = bd(S) = R.

- d) interior(S) = empty set, closure(S) = R^n , derived set(S) = R^n , bd(S) = R^n . (the same reasoning as in (c))
- e) interior(S) = empty set, closure (S) = S, derived set (S) = S, bd(S) = S.

Problem 2.43

For a point x, d(x, S) = 0 if and only if x is in the closure of S. So, a set S in R^n is closed <==> S contains all of its limit points <==> S = closure(S) <==> d(x, S) = 0 if and only if x is a point of S <==> d(x, S) > 0 if and only if x is a point of S-complement. (<==> means "if and only if")

Problem 2.52

We assume that the following is true:

If $\{C_k\}$ is a nested sequence of closed, bounded, non-empty subsets of R^n (where n is fixed), then $n \in \mathbb{R}$ is non-empty.

Furthermore, if $\lim\{k \text{ goes infinity}\}\ d(C_k) = 0$, then $\bigcap(k : 1 \text{ to infinity})\ C_k = \{x_0\}$, where x_0 is a point of \mathbb{R}^n .

Let $\{a_k\}$ and $\{b_k\}$ be any two sequences (in R) such that $a_k < b_k$ (for every natural number k), $b_k <= b_\{k-1\}$ (for every k > 1), and $a_k >= a_\{k-1\}$ (for every k > 1). Then $C_k = \{(x, 0, ..., 0) \text{ in } R^n : a_k <= x <= b_k\}$ is a non-empty, bounded, closed subset of R^n and $\{C_k\}$ is a nested sequence ==> (according to the assumption above)

 \bigcap (k: 1 to infinity) C k is non-empty ==>

 $x_0 = (c, 0, ..., 0) \in \cap(k : 1 \text{ to infinity}) C_k \text{ for some real number } c \Longrightarrow$

 $c \in \cap(k : 1 \text{ to infinity}) [a_k, b_k] ==>$

 $\bigcap(k:1 \text{ to infinity}) \ [a_k,b_k] \ \text{ is not empty. Note that } \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <==> \lim\{k \text{ goes to infinity}\} \ d(C_k) = 0 <=$

So, Cantor's criterion holds in R.

Problem 2.53

a) Suppose that A is an empty set \Rightarrow B = R (the set of real numbers) \Rightarrow contradiction, because S is non-empty.

Let $a \in A$ and $b \in B ==> b$ is an upper bound for S, but a is not ==> there exists an $x_0 \in S$ for which $x_0 > a ==> a < x_0 <= b ==> x_0 \in S \cap [a, b]$ and a < b.

Problem 2.56

b) $C_k = \text{closure}(N(0; 1/k)) \cap X ==> C_k = [-1/k, 1/k] \cap X ==> C_k = (0, 1/k) \cap X$. Suppose that \cap (k : 1 to infinity) C_k is non-empty; let $x_0 \in \cap$ (k : 1 to infinity) C_k . There exists a natural number k_0 for which $k_0 > 1/k_0 ==> x_0 \notin C_{k_0} ==> x_0 \notin \cap (k : 1 \text{ to infinity}) C_k$, contradiction. So \cap (k : 1 to infinity) C_k is an empty set.

Problem 2.57

c) $C_k = closure(N(x_0; e_k)) \cap X = [x_0 - e_k, x_0 + e_k] \cap X$ (because if S = (a, b), then closure(S) = [a, b]). Let x_1 be any real number different from $x_0 => |x_0 - x_1| = e > 0 ==>$ there exists a natural number k_0 for which $e > e_k = k_0 ==> x_1 \notin [x_0 - e_k], x_0 + e_k = k_0 ==>$ closure $(N(x_0; e_k = k_0)) => x_1 \notin C_k => x_1 \notin C_k$

It is obvious that the sets C_k are nonempty (since Q is dense in R), bounded $(x_0 - e_k \le x \le x_0 + e_k$ for all $x \in C_k$), relatively closed in X (since the sets closure(N(x_0; e_k)) are closed), and $C_k \in C_{k-1}$ for all k > 1.

Problem 2.61

Suppose the claim is false; let U and V be two disjoint open sets for which

- 1) $R \in U \cup V$,
- 2) $R \cap U$ is non-empty and $R \cap V$ is non-empty.

Let $a \in R \cap U$ and $b \in R \cap V$. It follows that

- 1) $[a, b] \in U \cup V$,
- 2) $[a,b] \cap U$ is non-empty and $[a,b] \cap V$ is non-empty.

This means that the interval [a,b] is disconnected; contradiction. So, R cannot be disconnected ==> R is connected.

Problem 2.68

- a) S = Rⁿ is closed (S contains all of its limit points), but is not compact, because it is not bounded.
- b) There is no such set; any compact subset S of R^n is closed.
- c) $S = R^n$ is an open subset of R^n (for every point x in R^n , every neighborhood of x is contained R^n), and is not compact (since it is not bounded),
- d) $S = \{x \in R^n : ||x|| \le 1\}$ is compact, since it is closed and bounded. However, it is not open, as there is no neighborhood $N(x_0; e)$ for which $||x_0|| = 1$ and $N(x_0; e) \in S$.

Problem 2.69

Let S be any compact set in Rⁿ and let $A \in S$ be any closed subset of S. Then A is bounded, as S is bounded. Since A is also closed (in Rⁿ), it follows that A is compact.

Problem 2.70

C 1, C 2, ..., C k – compact subsets of R^n .

a) U(j:1 to k) C_j is compact; U(j:1 to k) C_j is closed, because each C_j is closed, and U(j:1 to k) is bounded, as each C_j is bounded (let m_j be an upper bound for C_j ; then $max(m_1, m_2, ..., m_k)$ is an upper bound for U(j:1 to k) C_j => U(j:1 to k) C_j is compact.

b) \cap (j : 1 to k) C_j is compact; \cap (j : 1 to k) C_j is closed, since each C_j is closed, and \cap (j : 1 to k) C_j \in C_1 is bounded ==> \cap (j : 1 to k) C_j is compact.

Problem 3.17

If $x_0 \neq \frac{1}{2}$ is a rational number in [0,1], let $\{e_k\}$, where $e_1 < 1 - x_0$, be a sequence of positive irrational numbers that converges monotonically to 0 So, $\{x_0 + e_k\}$ converges to x_0 , and $x_0 + e_k$ is irrational for all k. Then $\lim\{k \text{ goes to infinity}\}\ f(x_0 + e_k) = \lim\{k \text{ goes to infinity}\}\ m(1 - x_0 - e_k) = m(1 - x_0) \neq f(x_0) \Longrightarrow f$ is not continuous at x_0 (because f is continuous at c if and only if every Cauchy sequence $\{x_k\}$ such that $\lim\{k \text{ goes to infinity}\}\ x_k = c$, it follows that $\lim\{k \text{ goes to infinity}\}\ = f(c)$ (where c is a limit point of the domain of f; in this problem, the domain of f is the interval [0,1], and each point of this interval is a limit point).

If $x_0 \neq \frac{1}{2}$ is an irrational number in [0,1], let $\{e_k\}$ be a sequence of positive irrational numbers that converges monotonically to 0, and satisfies $e_1 < 1 - x_0$ and $(x_0 + e_k) \in Q$ (the set of rational numbers) for every natural number k. Then $\{x_0 + e_k\}$ converges to x_0 . So, $\lim\{k \text{ goes to infinity}\}\$ $f(x_0 + e_k) = \lim\{k \text{ goes to infinity}\}\$ $m(x_0 + e_k) = \max_0 \neq f(x_0) ==> f$ is not continuous at x_0 .

Combining the two results obtained above, we conclude that f is not continuous at any point $\neq \frac{1}{2}$ in the interval [0,1]. It remains to show that f is continuous at $x = \frac{1}{2}$. Let e > 0 be any real number, and let a = e/m.

If x is a rational number in the neighborhood N(1/2; a): |f(x) - f(1/2)| = |mx - m/2| = m|x - 1/2| < ma = e;

if x is an irrational number in the neighborhood N(1/2; a): |f(x) - f(1/2)| = |m(1-x) - m/2| = m|1/2 - x| < ma = e.

So, if x in the neighborhood N(1/2; a), then f(x) is in the neighborhood N(f(1/2); e) ==> f is continuous at $x = \frac{1}{2}$.

Problem 3.20

- a) $x \to x/2$, $y \to x/2$: $f(x) = [f(x/2)]^2 >= 0 ===> f(x) >= 0$ for every real number x.
- b) $f(x_0) = 0$ for some real number $x_0 ==> x \rightarrow x x_0$, $y \rightarrow x_0 : f(x) = f(x x_0)f(x_0) = 0 ==> f(x) = 0$ for every real number x.
- c) $f(x \ 0) \neq 0$ for some real number $x \ 0 ==> x \rightarrow x \ 0, y \rightarrow 0$: $f(x \ 0) = f(x \ 0)f(0) ==> f(0) = 1$.
- d) Suppose that $\lim\{x \text{ goes to } 0\}$ f(x) = f(0). If $f(x_0) = 0$ some x_0 , then f is identically 0 (according to (b)), so $\lim\{x \text{ goes to } c\}$ f(x) = 0 = f(c) for every real number c ==> f is continuous on all of R. Consider the case $f(x) \neq 0$ for all x in R. Then $\lim\{x \text{ goes to } 0\}$ f(x) = f(0) = 1. So,

 $\lim\{x \text{ goes to } c\}\ f(x) = \lim\{y \text{ goes to } 0\}\ f(y+c) = \lim\{y \text{ goes to } 0\}\ f(y)f(c) = \lim\{y \text{ goes to } 0\}\ f(y) \times \lim\{y \text{ goes to } 0\}\ f(c) = f(c) ==> f \text{ is continuous at every point } c \text{ of } R.$

- e) Observe that $f(2x) = f(x)^2 = f(3x) = f(x)f(2x) = f(x)^3 = \dots$ if $f(x) = f(x)^n$ for every natural number n. So, setting $x = 1 = f(n) = f(1)^n$ for every natural number n. Also, setting $y \to x$: $f(-x) = 1/f(x) = f(-n) = 1/f(1)^n = f(1)^n$ for every natural number $f(x) = f(x) = f(1)^n$ for every integer $f(x) = f(x)^n$ (where $f(x) = f(x)^n$ (where $f(x) = f(x)^n$ (where $f(x) = f(x)^n$ (where $f(x) = f(x)^n$ is any natural number) $f(x) = f(x)^n$ (where $f(x) = f(x)^n$ is any natural number) $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a limit point of the set of real numbers. So, as $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a limit point of the set of real numbers. So, as $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a limit point of the set of real numbers. So, as $f(x) = f(x)^n$ is a sequence of rational numbers and $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a sequence of rational numbers. So, as $f(x) = f(x)^n$ is a sequence of rational numbers that converges to $f(x) = f(x)^n$ is a sequence of rational numbers. So, as $f(x) = f(x)^n$ is a sequence of rational numbers.
- $f(c) = \lim\{x \text{ goes to } c\}f(x) = \lim\{k \text{ goes to infinity}\}\ f(c_k) = \lim\{k \text{ goes to infinity}\}\ f(1)^c_k = f(1)^c = f(1)^x \text{ for every irrational number } x ==> f(x) = f(1)^x \text{ for every real number } x.$

Problem 3.48

a) for every $y \in [c,d]$, there exists at least one $x \in [a,b]$ such that f(x) = y, since f maps [a,b] onto [c,d]. Furthermore, if there existed two different values $x = x_1$ and $x = x_2$ for which f(x) = y, then f would not be strictly monotone. This implies that for every $y \in [c,d]$, there exists a unique value $x \in [a,b]$ such that $f(x) = y = x_1 + y_2 = x_2 + y_3 = x_4 +$

b) let $y_1 < y_2 < y_3$ be any three numbers in [c,d], and let x_1, x_2 , and x_3 be the unique values for which $f(x_1) = y_1$, $f(x_2) = y_2$, and $f(x_3) = y_3$ (so $f^1(y_i) = x_i$ for i = 1,2,3). Since f is strictly monotone on [a,b], it follows that either $x_1 < x_2 < x_3$ or $x_1 > x_2 > x_3$ should hold ==> f^1 is strictly monotone on [c,d].

Problem 3.51

Note that $\tan(x) = \sin(x)/\cos(x)$, and since $\sin(x)$ and $\cos(x)$ are continuous on all of R, $\tan(x)$ is also continuous at every point it is defined; that is, $\tan(x)$ is continuous at every point x for which $\cos(x) \neq 0$. Furthermore, $\tan(x)$ maps $(-\pi/2, \pi/2)$ one-to-one onto R. To prove this assertion, first notice that $\tan(x_1) = \tan(x_2)$ for $x_1, x_2 \in (-\pi/2, \pi/2)$ implies $x_1 = x_2 = \cot(x)$ is one-to-one on $(-\pi/2, \pi/2)$. Secondly,

$$y = tan(x) = sin(x)/cos(x) ==>$$

 $sin(x) = cos(x) y ===>$

$$1 = \sin(x)^2 + \cos(x)^2 = \cos(x)^2 (y^2 + 1) = >$$

which is solvable for every real number y, since $\cos(x)^2$ can take any real value not exceeding 1. So, the claim is justified. Consequently, $\tan^{-1}(x)$ maps R one-to-one onto $(-\pi/2, \pi/2)$.

Another observation is that tan(x) is strictly monotone increasing on $(-\pi/2, \pi/2)$. This, in turn, implies that $tan^{-1}(x)$ is strictly monotone increasing on R.

Let $0 < x_0 < \pi/2$ be any real number. Consider the compact set $[-x_0, x_0]$. tan(x) is continuous and strictly increasing on $[-x_0, x_0]$, and maps $[-x_0, x_0]$ one-to-one onto $[-tan(-x_0), tan(x_0)]$. Therefore, $tan^{-1}(x)$ is continuous and strictly increasing on $[-tan(-x_0), tan(x_0)]$, and maps $[-tan(-x_0), tan(x_0)]$ one-to-one onto $[-x_0, x_0]$. Choosing x_0 close enough to $\pi/2$, one can make the interval $[-tan(-x_0), tan(x_0)]$ as large as one wishes. So, $tan^{-1}(x)$ is continuous on all of R.

- a) the function $\tan^{-1}(x)$ has domain R (the set of real numbers), so f(x) has domain R^2 (there is no restriction on the values of x_1 and x_2). As noted above, $\tan^{-1}(x)$ is strictly increasing on R. Since $\tan^{-1}(0) = 0$, and since the range of $\tan^{-1}(x)$ is the interval $(-\pi/2, \pi/2)$, it follows that the range of f(x) is the interval $[0, \pi/2]$.
- b) $g(x) = \tan^{-1}(x)$ is continuous on all of R. $h(\mathbf{x}) = x_1^2 + x_2^2$ is also continuous on all of R^2 . Consequently, $g(h(\mathbf{x})) = \tan^{-1}(x_1^2 + x_2^2)$ is continuous at every point (x_1, x_2) of R^2 .
- c) As noted above, $\tan^{-1}(x)$ is strictly increasing on R, and maps the real line one-to-one onto the interval $(-\pi/2, \pi/2)$. The immediate consequence is that $\lim\{x \text{ goes to infinity}\}\ \tan^{-1}(x) = \pi/2$. Then

 $\lim \{ ||\mathbf{x}|| \text{ goes to infinity} \} \tan^{-1}(x_1^2 + x_2^2) = \lim \{ x \text{ goes to infinity} \} \tan^{-1}(x) = \pi/2.$

Let g(x) = f(x) - x for all $x \in [a,b]$.

If $g(x) \ge 0$ for all the values of x, then $g(b) \ge 0 = 0 = 0$ f(b) 0 = 0 f(b) 0 = 0 f(x) 0 = 0 for x holds for x 0 = 0.

If $g(x) \le 0$ for all the values of x, then $g(a) \le 0 \Longrightarrow f(a) \le a \Longrightarrow f(a) = a \Longrightarrow f(x) = x$ holds for x = a.

Suppose that there exist real numbers x_1 and x_2 in [a,b] for which $g(x_1) < 0$ and $g(x_2) > 0$. By the intermediate value theorem, there should exist a value x_0 such that $x_1 < x_0 < x_2$ and $g(x_0) = 0$ ==> $f(x_0) = x_1 = 0$ f(x) = x holds for $x = x_1 = 0$.

Problem 3.76

a) Suppose that f is uniformly continuous on S. Let $\varepsilon > 0$ be any positive real number. Then there exists a real number $\delta > 0$ such that if x, y are any two positive real numbers with $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$ holds. Observe that

$$\begin{split} |f(x)-f(y)| &<\epsilon &<===> &|ln(x)-ln(y)| &<\epsilon &<===> &e^{\{|ln(x)-ln(y)|\}} & &x/y &$$

Let x be an arbitrary positive real number, and let $\delta' < \delta$ be any positive real number. According to the assumption above, $|f(x) - f(x + \delta')| < \epsilon$ holds. So,

$$|f(x) - f(x + \delta')| < \varepsilon$$
 ===> $(x + \delta')/x < e^{\varepsilon}$ ===> $1 + \delta'/x < e^{\varepsilon}$.

Note that x was arbitrarily chosen, that is, it can be any positive real number. Let x = s for some s with $0 < s < \delta'/(e^{s} - 1)$. Then

$$1 + \delta'/x > 1 + \delta'/[\delta'/(e^{\xi} - 1)] = 1 + (e^{\xi} - 1) = e^{\xi},$$

contradiction. This means that $f(x) = \ln x$ is not uniformly continuous on $S = (0, \infty)$.

b) Let $\epsilon > 0$ be any real number, and let $\delta = a(e^{\epsilon} - 1)$. Then, if $|x - y| < \delta$ for any two real numbers x, y in $[a, \infty)$, it follows that (assume without loss of generality that x > y and let $\delta = x - y$)

$$x/y = (y + \delta')/y = 1 + \delta'/y < 1 + \delta/a = 1 + (e^{\epsilon} - 1) = e^{\epsilon}$$
 and $y/x <= 1 <= e^{\epsilon}$ ====> $e^{\{|\ln x - \ln y|\}} < e^{\epsilon}$ ====> $|\ln x - \ln y| < \epsilon$ ====> $|f(x) - f(y)| < \epsilon$.

Consequently, $f(x) = \ln x$ is uniformly continuous on $[a, \infty)$ for any a > 0.

Problem 3.83

a) Let f be any continuous, periodic function on R. Then f is also continuous on the compact set [0, p] = f([0,p]) = [m, M], where $m = \{\min(f(x)) : x \text{ in } [0,p]\}$ and $M = \{\max(f(x)) : x \text{ in } [0,p]\}$. Since f is periodic with period p, it follows that the range of f is [m, M] = f is bounded on R. Observe that, since f is continuous, it is uniformly continuous on any closed interval [-kp, kp], where k is any natural number. Since there is no restriction on the values that k can take, we conclude that f is uniformly continuous on R.

b) Note that sin(x) and cos(x) are continuous on all of R, and $sin(x + 2\pi) = sin(x)$ and $cos(x + 2\pi) = cos(x)$, that is, sin(x) and cos(x) both are periodic functions. According to (a), sin(x) and cos(x) are uniformly continuous on R.