Bank Regulation with Uninformed Regulators

Alex von Hafften

UW-Madison

August 29, 2022

Motivation

- Deposit insurance creates moral hazard through limited liability
- Some regulatory regimes use tailored credit risk estimates created by banks
- Other regimes only use standardized credit risk estimates from regulators
- Key tradeoffs:
 - Banks have better information about their credit risk
 - ▶ Banks have incentive to underreport credit risk to loosen requirements
- Behn, Haselmann, and Vig (2022) find evidence of banks underreporting risk
- Question: How should regulators deal with incentive to underreport risk?

Behn, Haselmann, and Vig (JF, 2022)

Regulators use risk-weighted capital requirements:

$$E \ge \theta \cdot \mathbf{A} \cdot \mathbf{w}$$

where E is shareholder equity, ${\bf A}$ are assets, ${\bf w}$ are risk weights, θ is minimum ratio

- w is determined differently across regulatory regimes
 - ► Standardized approach (SA): Regulators determine set of risk weights
 - Internal ratings based approach (IRB): Banks report credit risk estimates from models they develop and regulators approved
- BHV (2022) find evidence of IRB banks underreporting risks
 - ▶ Banks reported lower PD for IRB loans relative to SA loans despite IRB loans having higher realized losses and higher interest rates
 - ▶ Then, lending by IRB banks grew faster relative to SA banks

Related Literature

What do I do?

- Regulator decision problem w/ 2-period model à la Allen and Gale (2004)
- Bank is funded by equity and insured deposits and invests in risky loans
- Bank privately chooses risk-return characteristic of its loan portfolio
- How does private information change allocations and regulation?
- Result: w/ private info, regulation leads to an underprovision of bank lending and deposits relative to first best allocation
- ullet Why? Fewer deposits \Longrightarrow more "skin in the game" \Longrightarrow safer loans

Outline

- Introduction
- 2 Model
- Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

Environment

- Bank endowed with equity financing $e \ge 0$
- Bank obtains $d \ge 0$ from **deposit technology** where bank has to pay back $R(d) \cdot d$ where R is twice differentiable with R' > 0, $R'' \ge 0$, and R(0) = 0
- ullet Bank invests d+e into **risky loan technology** with risk-return $s\in[0,1]$
 - ▶ With prob. p(s), risky technology outputs $A \cdot s \cdot (d + e)$ where A > 0
 - ▶ With prob. 1 p(s), risky loan technology outputs zero
 - p is twice differentiable with p' < 0, $p'' \le 0$, p(0) = 1, p(1) = 0
 - ▶ Risk-return trade-off: $\uparrow s \implies \uparrow$ return and \uparrow probability of failure
- Bank chooses s and d with s unobservable and d observable.

First Best Problem

• First best allocation s^* and d^* solve

$$\max_{s^*,d^*} \underbrace{p(s^*) \cdot A \cdot s^* \cdot (d^* + e)}_{\text{expected risky tech output}} - \underbrace{R(d^*) \cdot d^*}_{\text{deposit return}}$$

FOC wrt s*

$$\underbrace{p(s^*)}_{\uparrow s^* \implies \uparrow \text{ output if success}} = \underbrace{-p'(s^*) \cdot s^*}_{\text{but failure more likely}}$$

$$\uparrow s^* \implies \uparrow \text{ output if success}$$

$$\downarrow \text{ output if success}$$

$$\downarrow \text{ output if success}$$

$$\downarrow \text{ output if success}$$

• FOC wrt d*

$$\underbrace{p(s^*) \cdot A \cdot s^*}_{\uparrow \ d^* \implies \uparrow \ \text{expected output}} = \underbrace{R(d^*) + R'(d^*) \cdot d^*}_{\text{but pay more for deposits}}$$

Problem with Deposit Insurance Environment

ullet Deposit insurance \Longrightarrow bank does not pay deposits back if risky tech fails

$$\max_{s^U,d^U} \underbrace{p(s^U) \cdot A \cdot s^U \cdot (d^U + e)}_{\text{expected risky tech output}} - \underbrace{p(s^U) \cdot R(d^U) \cdot d^U}_{\text{expected deposit return}}$$

FOC wrt s^U

$$\underbrace{p(s^U)}_{\uparrow s^U \implies \uparrow \text{ output if success}} + \underbrace{\frac{-p'(s^U) \cdot R(d^U) \cdot d^U}{A \cdot (d^U + e)}}_{\text{and less likely to pay back deposits}} = \underbrace{-p'(s^U) \cdot s^U}_{\text{but failure more likely (MC)}}$$

- Deposit insurance introduces additional MB $\implies s^U > s^*$
- FOC wrt d^U

$$\underbrace{p(s^U) \cdot A \cdot s^U}_{\text{(MB)}} = \underbrace{p(s^U) \cdot [R(d^U) + R'(d^U) \cdot d^U]}_{\text{but might pay more for deposits}}$$

• Deposit insurance reduces MC $\implies d^U > d^*$

Can regulation implement the first best?

- Implement with limit on leverage that depends on s
- For example, risk-weighted capital requirement

$$e \geq \underbrace{\theta^*}_{\text{minimum ratio}} \cdot \underbrace{w(s)}_{\text{risk weight}} \cdot \underbrace{(d+e)}_{\text{loans}}$$
 where $\theta^* = \frac{e}{d^* + e}$ and $w(s) = \begin{cases} 1, & \text{if } s = s^* \\ K, & \text{if } s \neq s^* \end{cases}$

- ullet Risk-weighted capital requirement \equiv deposit limit that depends on s
- ullet Implementing with leverage limit only if regulator can see s and d

What if s is unobservable to regulator? **Environment**

Regulator chooses limit on leverage that does not depend on s

$$\max_{\theta^P} \underbrace{p(s^P) \cdot A \cdot s^P \cdot (d^P + e)}_{\text{expected risky tech output}} - \underbrace{R(d^P) \cdot d^P}_{\text{deposit return}}$$
s.t. $(s^P, d^P) \in \arg\max_{s, d} \left\{ \underbrace{p(s) \cdot A \cdot s \cdot (d + e)}_{\text{expected risky tech output}} - \underbrace{p(s) \cdot R(d) \cdot d}_{\text{expected deposit return}} \right\}$
s.t. $e \geq \theta^P(d + e)$

• Deposit insurance \implies bank borrows until $e = \theta^P(d+e) \implies$ regulator effectively chooses d

$$\max_{s^P, d^P} p(s^P) \cdot A \cdot s^P \cdot (d^P + e) - R(d^P) \cdot d^P$$
s.t. $s^P \in \arg\max_{s} \left\{ p(s) \cdot A \cdot s \cdot (d^P + e) - p(s) \cdot R(d^P) \cdot d^P \right\}$

First best cannot be implemented

• FOC of constraint on private info problem

$$\underbrace{p(s^P)}_{\text{(MB)}} + \underbrace{\frac{-p'(s^P) \cdot R(d^P) \cdot d^P}{A \cdot (d^P + e)}}_{\text{so less likely to pay back deposits}} = \underbrace{-p'(s^P) \cdot s^P}_{\text{but failure more likely (MC)}}$$

• At d^* , marginal benefit of higher $s^* >$ marginal cost of higher s^*

$$\underbrace{p(s^*) + \frac{-p'(s^*) \cdot R(d^*) \cdot d^*}{A \cdot (d^* + e)}}_{\mathsf{MB}} > \underbrace{-p'(s^*) \cdot s^*}_{\mathsf{MC}}$$

• If naive regulator implements θ^* so that banks choose $d^N=d^*$, then bank chooses $s^N>s^*$

What if *s* is unobservable to regulator?

Sophisticated regulator accounts for bank's choice of s

$$\max_{s^P, d^P} \underbrace{p(s^P) \cdot A \cdot s^P \cdot (d^P + e)}_{\text{expected risky tech output}} - \underbrace{R(d^P) \cdot d^P}_{\text{deposit return}}$$
s.t.
$$p(s^P) + \frac{-p'(s^P) \cdot R(d^P) \cdot d^P}{A \cdot (d^P + e)} = -p'(s^P) \cdot s^P$$
 [Bank FOC]

FOC wrt s^P

$$\begin{array}{c} \underbrace{\rho(s^P)}_{\text{(MB)}} + \underbrace{\frac{-\lambda}{A \cdot (d^P + e)} \left[\frac{\rho''(s^P) \cdot [As^P(d^P + e) - R(d^P) \cdot d^P]}{A \cdot (d^P + e)} + 2\rho'(s^P) \right]}_{\text{ease bank FOC}} = \underbrace{\frac{\rho'(s^P) \cdot s^P}_{\text{(MC)}}}_{\text{(MC)}} \\ \text{but failure more likely} \\ \end{array}$$

FOC wrt d^P

$$\underbrace{p(s^P) \cdot A \cdot s^P}_{\text{(MB)}} = \underbrace{R(d^P) + R'(d^P) \cdot d^P}_{\text{but pay more for deposits}} + \underbrace{\frac{-\lambda \cdot p'(s^P)}{A \cdot (d^P + e)} \cdot \left[\frac{R(d^P) \cdot e}{d^P + e} + R'(d^P) \cdot d^P \right]}_{\text{tighten bank FOC}}$$

Comparing Problems and FOCs

$$\begin{aligned} \max_{s^*,d^*} p(s^*) \cdot A \cdot s^* \cdot (d^* + e) - R(d^*) \cdot d^* & \text{[First Best]} \\ \max_{s^U,d^U} p(s^U) \cdot A \cdot s^U \cdot (d^U + e) - p(s^U) \cdot R(d^U) \cdot d^U & \text{[w/ Deposit Insurance]} \\ \max_{s^P,d^P} p(s^P) \cdot A \cdot s^P \cdot (d^P + e) - R(d^P) \cdot d^P & \text{[w/ S Private]} \\ \text{s.t. } p(s^P) + \frac{-p'(s^P) \cdot R(d^P) \cdot d^P}{A \cdot (d^P + e)} &= -p'(s^P) \cdot s^P \\ & p(s^*) = -p'(s^*) \cdot s^* & \text{FOC } [s^*] \\ p(s^U) + \frac{-p'(s^U) \cdot R(d^U) \cdot d^U}{A \cdot (d^U + e)} &= -p'(s^U) \cdot s^U & \text{FOC } [s^U] \\ p(s^P) + \frac{-\lambda}{A \cdot (d^P + e)} \left[\frac{p''(s^P) \cdot [A \cdot s^P \cdot (d^P + e) - R(d^P) \cdot d^P]}{A \cdot (d^P + e)} + 2p'(s^P) \right] &= -p'(s^P) \cdot s^P & \text{FOC } [s^P] \end{aligned}$$

$$\rho(s^{U}) \cdot A \cdot s^{U} = \rho(s^{U}) \cdot [R(d^{U}) + R'(d^{U}) \cdot d^{U}]$$

$$\rho(s^{P}) \cdot A \cdot s^{P} = R(d^{P}) + R'(d^{P}) \cdot d^{P} + \frac{-\lambda \cdot \rho'(s^{P})}{A \cdot (d^{P} + e)} \cdot \left[\frac{R(d^{P}) \cdot e}{d^{P} + e} + R'(d^{P}) \cdot d^{P} \right]$$

$$FOC [d^{P}]$$

 $p(s^*) \cdot A \cdot s^* = R(d^*) + R'(d^*) \cdot d^*$

FOC [d*]

Results

• W/ private s, regulation leads to underprovision of deposits

$$d^{U} > d^{*} = d^{N} > d^{P} \implies \theta^{*} > \theta^{P}$$

L2: $d^U > d^*$ L3: $d^* > d^P$ Parametric Solutions

ullet Why? Fewer deposits \Longrightarrow more "skin in the game" \Longrightarrow safer loans

$$s^U > s^N > s^P > s^*$$

L1: $s^U > s^*$ and $s^P > s^*$ L4: $s^U > s^N > s^P$ Parametric Solutions

Conclusion

- What do I do? Study regulator decision problem in simple model where risk-return characteristic of loan portfolio is private information
- Result: w/ private info about bank loan risk, regulation leads to underprovision of bank lending and deposits
- Next steps
 - Adverse Selection: $A_H > A_L$ where A_i is private Private Productivity
 - ► Move to general equilibrium GE Environment

Outline

- Introduction
- 2 Model
- 3 Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

Related Literature

- Banking models with risk-return choice
 - ▶ Allen and Gale (2004), Boyd and DeNicolo (2005), Martinez-Miera and Repullo (2010), Corbae and Levine (2022)
- Hard and soft information in lending
 - ▶ Liberti and Peterson (2018), Agarwal et al (2018), Agarwal and Hauswald (2010), Petersen and Rajan (2002), Berger and Udell (1995)
- Banks underreporting risk
 - ▶ Behn, Haselmann, and Vig (2022), Mariathasan and Merrouche (2014), Berg and Koziol (2017), Begley, Purnanandam, Zheng (2017), Demirguc-Kunt et al (2010), Blum (2007)

Outline

- Introduction
- 2 Model
- 3 Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

Environment with Deposit Insurance

- Period 1
 - ▶ Bank born with $e \ge 0$ and chooses $d \ge 0$ and $s \in [0, 1]$
 - Bank pulls d out of deposit technology
 - ▶ Bank inputs d + e into risky technology at s
- Period 2 with probability p(s)
 - ▶ Risky technology outputs $A \cdot s \cdot (d + e)$
 - ▶ Bank pays back $R(d) \cdot d$
 - ▶ Profit is $A \cdot s \cdot (d + e) R(d) \cdot d$
- Period 2 with probability 1 p(s)
 - Risky technology outputs 0
 - ▶ Bank pays back R(d) · d
 - ► Profit is 0

Environment with Deposit Insurance and s Private

- Period 1
 - ▶ Bank born with $e \ge 0$ and chooses $d \ge 0$ and $s \in [0, 1]$ (hidden)
 - ▶ Bank pulls *d* out of deposit technology
 - ▶ Bank inputs d + e into risky technology at s (hidden)
- Period 2 with probability p(s)
 - ▶ Risky technology outputs $A \cdot s \cdot (d + e)$ (hidden)
 - ▶ Bank pays back R(d) · d
 - ▶ Profit is $A \cdot s \cdot (d + e) R(d) \cdot d$ (hidden)
- Period 2 with probability 1 p(s)
 - Risky technology outputs 0
 - ► Bank pays back R(d) · d
 - ▶ Profit is 0

Outline

- Introduction
- 2 Model
- 3 Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

Lemma 1: $s^U > s^*$ and $s^P > s^*$

• FOC wrt s^* , FOC wrt s^U , and constraint on regulator problem

$$p(s^*) + p'(s^*) \cdot s^* = 0 \tag{1}$$

$$p(s^{U}) + p'(s^{U}) \cdot s^{U} = \frac{p'(s^{U}) \cdot R(d^{U}) \cdot d^{U}}{A \cdot (d^{U} + e)}$$
(2)

$$p(s^P) + p'(s^P) \cdot s^P = \frac{p'(s^P) \cdot R(d^P) \cdot d^P}{A \cdot (d^P + e)}$$
(3)

- LHS of (1), (2), and (3) are strictly decreasing in s
- RHS of (2) and (3) are negative because p' < 0

Back

Lemma 2: $d^U > d^*$

• Since R' > 0 and $R'' \ge 0$,

$$d^{U} > d^{*} \iff R(d^{U}) + R'(d^{U}) \cdot d^{U} > R(d^{*}) + R'(d^{*}) \cdot d^{*}$$

• FOC wrt d^* and FOC wrt d^U hold

$$p(s^*) \cdot A \cdot s^* = R(d^*) + R'(d^*) \cdot d^*$$
 (4)

$$p(s^{U}) \cdot A \cdot s^{U} = p(s^{U}) \cdot [R(d^{U}) + R'(d^{U}) \cdot d^{U}]$$
 (5)

• Substituting in (4) and (5):

$$\begin{split} R(d^U) + R'(d^U) \cdot d^U &> R(d^*) + R'(d^*) \cdot d^* \iff A \cdot s^U > p(s^*) \cdot A \cdot s^* \\ &\iff \frac{s^U}{s^*} > 1 \ge p(s^*) \end{split}$$

because $s^U > s^*$ by Lemma 1 and $p(s^*) \in [0,1]$

Lemma 3: $d^* > d^P$

ullet Constraint on private info problem and FOC wrt s^P hold

$$p(s^P) + p'(s^P) \cdot s^P = \frac{p'(s^P) \cdot R(d^P) \cdot d^P}{A \cdot (d^P + e)}$$

$$\tag{6}$$

$$p(s^{P}) + p'(s^{P}) \cdot s^{P} = \frac{\lambda}{A \cdot (d^{P} + e)} \cdot \left[\frac{p''(s^{P}) \cdot [A \cdot s^{P} \cdot (d^{P} + e) - R(d^{P}) \cdot d^{P}]}{A \cdot (d^{P} + e)} + 2p'(s^{P}) \right]$$
(7)

Using (6) and (7),

$$\lambda = \frac{p'(s^P) \cdot R(d^P) \cdot d^P}{2p'(s^P) + p''(s^P) \cdot \frac{A \cdot s^P \cdot (d^P + e) - R(d^P) \cdot d^P}{A \cdot (d^P + e)}} > 0$$

because both numerator and denominator are negative with p'<0, $p''\leq0$, and $A\cdot s\cdot (d+e)>R(d)\cdot d$

• FOC wrt d^* and FOC wrt d^P holds

$$R(d^*) + R'(d^*) \cdot d^* = p(s^*) \cdot A \cdot s^*$$
(8)

$$R(d^{P}) + R'(d^{P}) \cdot d^{P} = p(s^{P}) \cdot A \cdot s^{P} + \frac{\lambda \cdot p'(s^{P})}{A \cdot (d^{P} + e)} \cdot \left[\frac{R(d^{P}) \cdot e}{d^{P} + e} + R'(d^{P}) \cdot d^{P} \right]$$
(9)

- s^* maximizes $p(S) \cdot S$ and $s^* \neq s^P$ by Lemma $1 \implies p(s^*) \cdot A \cdot s^* > p(s^P) \cdot A \cdot s^P$
- Second term of (9) is negative because $\lambda > 0$, p'' < 0 and R' > 0
- Since R' > 0, $R(d^*) + R'(d^*) \cdot d^* > R(d^P) + R'(d^P) \cdot d^P \implies d^* > d^P$

Lemma 4: $s^U > s^N > s^P$

- By Lemma 2 and 3, $d^U > d^* > d^P$ with $d^N = d^*$ by assumption
- ullet FOC wrt s^U holds both at (s^U, d^U) and (s^P, d^P)

$$p(s) + p'(s) \cdot s = \frac{p'(s) \cdot R(d) \cdot d}{A \cdot (d+e)}$$
(10)

• Implicitly differentiating (10)

$$\frac{\partial s}{\partial d} = \frac{(p'(s))^2 \cdot [R'(d) \cdot d \cdot (d+e) + R(d) \cdot e]}{A \cdot (d+e)^2 \cdot [2(p'(s))^2 - p(s)p''(s)]} > 0$$

- Numerator is positive because p' < 0 and R' > 0
- Denominator is positive because p' < 0 and $p'' \le 0$
- Since $d^U > d^N > d^P$ and $\frac{\partial s}{\partial d} > 0 \implies s^U > s^N > s^P$

Outline

- Introduction
- 2 Model
- Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

$d^{U} > d^{*} = d^{N} > d^{P}$

where
$$A=1$$
, $p(s)=1-s$, and $R(d)=d$.

 $d^* = d^N > d^P$

where
$$A = 1$$
, $p(s) = 1 - s$, and $R(d) = d$.

$$s^{U} > s^{N} > s^{P} > s^{*}$$

where
$$A = 1$$
, $p(S) = 1 - s$, and $R(d) = d$.

Outline

- Introduction
- 2 Model
- 3 Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

Environment w/ Private Productivity

- Period 1
 - ▶ Bank born w/ $e \ge 0$ and A_H w/ prob. π or A_L w/ prob. 1π (hidden)
 - ▶ Bank chooses $d \ge 0$ and $s \in [0, 1]$
 - ▶ Bank pulls *d* out of deposit technology
 - ▶ Bank inputs d + e into risky technology at s
- Period 2 with probability p(s)
 - ▶ Risky technology outputs $A_i \cdot s \cdot (d + e)$ (hidden)
 - ▶ Bank pays back R(d) · d
 - ▶ Profit is $A_i \cdot s \cdot (d + e) R(d) \cdot d$ (hidden)
- Period 2 with probability 1 p(s)
 - Risky technology outputs 0
 - ► Bank pays back R(d) · d
 - ► Profit is 0

First Best with Multiple Types

• If A_i and s are observable to outsiders

$$\max_{s_{i}^{*},d_{i}^{*}} p(s_{i}^{*}) \cdot A_{i} \cdot s_{i}^{*} \cdot (d_{i}^{*} + e) - R(d_{i}^{*}) \cdot d_{i}^{*}$$

• FOC wrt s_i^*

$$p(s_i^*) + p'(s_i^*) \cdot s_i^* = 0 \implies s_H^* = s_L^* \equiv s^*$$

FOC wrt d_i*

$$p(s_i^*) \cdot A_i \cdot s_i^* = R(d_i^*) + R'(d_i^*) \cdot d_i^* \implies d_H^* > d_L^*$$

• Both types invest at same s, but high type gets more d

Regulator Problem with Private A_i and Deposit Insurance

$$\begin{aligned} \max_{s_H^P, d_H^P, s_L^P, d_L^P} \pi \cdot \left[p(s_H^P) \cdot A_H \cdot s_H^P \cdot (d_H^P + e) - R(d_H^P) \cdot d_H^P \right] \\ + (1 - \pi) \cdot \left[p(s_L^P) \cdot A_L \cdot s_L^P \cdot (d_L^P + e) - R(d_L^P) \cdot d_L^P \right] \end{aligned}$$

s.t.
$$\underbrace{p(s_{H}^{P})A_{H}s_{H}^{P}(d_{H}^{P}+e) - p(s_{H}^{P})R(d_{H}^{P})d_{H}^{P}}_{Profit from truthfully reporting H} \ge \underbrace{p(s_{L}^{P})A_{H}s_{L}^{P}(d_{L}^{P}+e) - p(s_{L}^{P})R(d_{L}^{P})d_{L}^{P}}_{Profit from falsely reporting L} [IC_{H}]$$

$$\underbrace{p(s_L^P)A_Ls_L^P(d_L^P+e) - p(s_L^P)R(d_L^P)d_L^P}_{\text{Profit from truthfully reporting }L} \ge \underbrace{p(s_H^P)A_Ls_H^P(d_H^P+e) - p(s_H^P)R(d_H^P)d_H^P}_{\text{Profit from falsely reporting }H} \quad [IC_L]$$

ullet Both types want more deposits \Longrightarrow IC_H is slack and IC_L binds

Back

FOCs with Multiple Types

$$p'(s_H^P) \cdot s_H^P + p(s_H^P) = \frac{\gamma}{\pi - \gamma} \left[-\frac{p'(s_H^P)R(d_H^P)d_H^P}{A_H(d_H^P + e)} \right]$$
 [s_H^P]

$$p'(s_L^P) \cdot s_L^P + p(s_L^P) = \frac{\gamma}{1 - \pi - \gamma} \left[-\frac{p'(s_L^P)R(d_L^P)d_L^P}{A_L \cdot (d_L^P + e)} \right]$$
 [s_L^P]

$$p(s_{H}^{P}) \cdot A_{H} \cdot s_{H}^{P} - R(d_{H}^{P}) - R'(d_{H}^{P})d_{H}^{P} = \frac{\gamma p(s_{H}^{P})}{\pi} [A_{L}s_{H}^{P} - R'(d_{H}^{P})d_{H}^{P} - R(d_{H}^{P})] \qquad [d_{H}^{P}]$$

$$p(s_{L}^{P}) \cdot A_{L} \cdot s_{L}^{P} - R'(d_{L}^{P}) \cdot d_{L}^{P} - R(d_{L}^{P}) = -\frac{\gamma p(s_{L}^{P})}{(1-\pi)} [A_{L}s_{L}^{P} - R'(d_{L}^{P})d_{L}^{P} - R(d_{L}^{P})] \quad [d_{L}^{P}]$$

$$p(s_{L}^{P})A_{L}s_{L}^{P}(d_{L}^{P}+e)-p(s_{L}^{P})R(d_{L}^{P})d_{L}^{P}=p(s_{H}^{P})A_{L}s_{H}^{P}(d_{H}^{P}+e)-p(s_{H}^{P})R(d_{H}^{P})d_{H}^{P}$$
 [\gamma]

Preliminary Numerical Results

• Use p(s) = 1 - s, R(d) = d, $A_H = 2.0$, $A_L = 1.0$, $\pi = 0.5$, e = 0.5

Allocation	First Best	Private Productivity
SH	0.5	0.487
SL	0.5	0.491
d_H	0.25	0.252
d_L	0.125	0.149
γ	-	0.248

- Suggests $s_L^P pprox s^*$ and "no distortion at the top" with $s_H^P pprox s^*$ and $d_H^P pprox d_H^*$
- ullet But give more deposits to low type w/ $d_L^P>d_L^*$ so they truthfully reveal
- Interesting preliminary result:
 - With hidden s, deposits and lending is lower: $d^* < d^P$
 - ▶ With hidden A, deposits and lending might be higher:

$$\pi d_H^* + (1-\pi)d_L^* > \pi d_H^P + (1-\pi)d_L^P$$

Outline

- Introduction
- 2 Model
- 3 Appendix
 - Environments with Frictions
 - Proofs of Main Lemmas
 - Parametric Solutions
 - Private Productivity
 - General Equilibrium

GE Environment - HH Problems

Depositor problem:

Given (y^D, R, T^D) , solves

$$\max_{c_{1}^{D}, c_{2}^{D}, d} u(c_{1}^{D}) + \beta E[u(c_{2}^{D})]$$
s.t. $c_{1}^{D} + d = y^{D}$

$$c_{2}^{D} = R \cdot d + T^{D}$$

Bank owner problem:

Given (y^O, T^O, π) , solves

$$\max_{\substack{c_1^O, c_2^O, e}} u(c_1^O) + \beta E[u(c_2^O)]$$
s.t. $c_1^O + e = y^O$

$$c_2^O = \pi + T^O$$

Contracting Problem Setup

- Principal is regulator and agent is competitive bank
- Period 1
 - ▶ Principal meets agent with $e \ge 0$
 - Principal and agent agree on contract (b, s, d)
 - Principal borrows $d \ge 0$ at interest rate R from HHs
 - ▶ Agent puts *d* + *e* into risky tech at *s*
- Period 2 with probability p(s)
 - Agent collects $A \cdot s \cdot (d + e)$ from risky tech
 - Agent gives b to principal
 - Principal pays $R \cdot d$ and lump-sum transfer $T^D + T^O = b R \cdot d$ to HHs
 - Agent profit is $\pi = A \cdot s \cdot (d + e) b$
- Period 2 with probability 1 p(s)
 - ► Agent collects zero from risky tech
 - Principal lump-sum taxes HHs $T^D + T^O = -R \cdot d$
 - Principal pays depositors R · d
- Agent outside option is to run risky technology only with e

Back

Contracting Problems

Contracting problem maximizes principal objective s.t. agent participation

$$\max_{s,d,b} p(s) \cdot [b - Rd] + (1 - p(s)) \cdot [-Rd]$$

$$p(s) \cdot [As(d + e) - b] \ge \max_{\hat{s}} \{p(\hat{s}) \cdot A \cdot \hat{s} \cdot e\}$$
 [Agent PC]

Hidden s introduces agent incentive compatibility constraint

$$\begin{aligned} \max_{s,d,b} p(s) \cdot [b - Rd] + (1 - p(s)) \cdot [-Rd] \\ p(s) \cdot [As(d+e) - b] &\geq \max_{\hat{s}} \{p(\hat{s}) \cdot A \cdot \hat{s} \cdot e\} \\ s &\in \arg\max_{\hat{s}} \{p(\hat{s}) \cdot A \cdot \hat{s} \cdot (d+e) - p(\hat{s}) \cdot b\} \end{aligned} \quad \text{[Agent PC]}$$

