Детектирование лиц на фотографиях с помощью сверточных нейронных сетей

группа 16 МАГ ИАД Кетков Сергей Кондратьев Никита

октябрь, 2017 г.

Задача детектирования лиц

Необходимо ответить на следующие вопросы:

- Есть ли на изображении *лицо* человека?
- Если есть, то выделить на изображении области, в которых лицо (быть может, несколько) находится с наибольшей вероятностью?
- Если возможно, то указать для выделенных областей *степень* уверенности в ответе.

Tiny Face Detector

Main ideas:

- I. Preprocessing based on Jaccard distance
- 2. Fine-tuning of ImageNet models with different scales
- 3. NMS

MTCNN P-Net Conv: 3x3 Conv: 3x3

MP: 2x2

input size

12x12x3

P-Net R-Net Conv: 3x3 Face classification | Conv: 3x3 | Conv: 3x3 | MP: 3

bounding box

Blocks

Loss function

Euclidian norm

cross-entropy

Euclidian norm

Goal

Тестирование

	MTCNN	TFD
Wider face	0.32	0.13

Для тестирования обученных сетей используется Jaccard index:

- Для всех пар найденных ограничивающих и размеченных прямоугольников находятся Jaccard расстояния;
- 2. Устанавливается соответствие ранжированием по индексу;
- 3. Если Jaccard индекс > 0.5, то говорится, что объект детектирован верно, иначе ошибка
- 4. Ошибкой на тестовой выборке считается средняя ошибка по всем изображениям и объектам на них.

Вычислительная эффективность

Model	Number of images	Execution time (hh:mm:ss)
MTCNN	976	00:58:26
TFD		11:13:55

Intel® Core™ i5-3337U CPU @ 1.80GHz × 4, RAM: 16 GB