Точки сочленения

Articulation Points

Точки сочленения

Точкой сочленения в **неориентированном** графе G называется вершина, удаление которой (вместе со всеми инцидентными ей ребрами) приводит к **увеличению** числа компонент связности.

Теорема 1. Пусть запустили алгоритм DFS со стартовой вершиной r. Тогда r - точка сочленения \Leftrightarrow у r более одного сына в дереве обхода в глубину.

Теорема 1. Пусть запустили алгоритм DFS со стартовой вершиной r. Тогда r - точка сочленения \Leftrightarrow у r более одного сына в дереве обхода в глубину.

Доказательство.

У r более одного сына \Leftrightarrow из первого сына r не посетили других сыновей $r\Leftrightarrow$ по лемме о белых путях из первого сына r нет пути в других, который бы не проходил через $r\Leftrightarrow r$ - точка сочленения.

Теорема 2. Пусть запустили алгоритм DFS со стартовой вершиной r. Тогда $v \neq r$ - точка сочленения $\Leftrightarrow \exists u - \text{Сын } v : \text{из } u$ нельзя попасть в предка v, двигаясь только по ребрам дерева и максимум 1 обратному ребру.

Теорема 2. Пусть запустили алгоритм DFS со стартовой вершиной r. Тогда $v \neq r$ - точка сочленения $\Leftrightarrow \exists u - \text{сын } v : \text{из } u$ нельзя попасть в предка v, двигаясь только по ребрам дерева и максимум 1 обратному ребру.

Доказательство.

Из u нельзя попасть в предка v, двигаясь только по ребрам дерева и максимум 1 обратному ребру. \Leftrightarrow из u совсем нельзя попасть в предков v, минуя v (так как ребер других типов нет - см. упражнение к лекции по DFS) \Leftrightarrow удаление v приведет к потере связности между u и предками $v \Leftrightarrow v$ - точка сочленения.

Поиск точек сочленения: план

- 1. Запустим DFS из произвольной вершины r.
- 2. Если r смог найти хотя бы 2 белые соседние вершины, то r TC.
- 3. Если у какой-то из вершин $u \neq r$ нашелся ребенок, из которого нельзя попасть в предка u, двигаясь по ребрам дерева и максимум 1-му обратному, то u TC.
- 4. Если обошли не все вершины, то повторяем 1-3 для непосещенной компоненты.

Поиск точек сочленения: пункт 3

Как определить, что из ребенка u нельзя попасть в предка u?

Идея: для каждой вершины будем хранить "меру глубины" и "как высоко можно подняться". Тогда, если ребенок не может подняться выше родителя, то условие выполнено.

Хорошая новость: в качестве меры глубины можно использовать $time_in$ (меньше - выше).

Поиск точек сочленения: как высоко подняться

Параллельно будем подсчитывать высоту, на которую можно подняться, двигаясь только по ребрам дерева и максимум 1-му обратному, - $time_up$.

Легко понять, что $time_up[v]$ - это минимум из

- $time_in[v]$ (можно остаться на месте)
- $time_in[back]$ (подняться по обратному ребру в back)
- $time_up[tree]$ (спуститься по древесному ребру в tree и подняться оттуда)

Поиск точек сочленения: критерий

- 1. Для корня обхода считаем количество детей (встретившихся белых вершин). Если больше 1, то значит точка сочленения.
- 2. Условие недостижимости предков вершины v из ее ребенка u можно записать так: $time_in[v] \leq time_up[u]$

Точки сочленения: алгоритм

```
def DfsVisit(G, v, is_root):
colors[v] = GRAY
time_in[v] = time_up[v] = ++time
n_children = 0
for u in G.neighbors(v):
  if colors[u] == GRAY: # back edge
    time_up[v] = min(time_up[v], time_in[u])
  if colors[u] == WHITE:
    ++n_children
    DfsVisit(G, u, false)
    time_up[v] = min(time_up[v], time_up[u])
    if !is_root and time_in[v] <= time_up[u]:</pre>
      articulation_points.add(v)
if is_root and n_children > 1:
  articulation_points.add(v)
colors[v] = BLACK
```

Мосты

Bridges

Мост

Мостом в неориентированном графе называется ребро, удаление которого приводит к увеличению числа компонент связности.

Критерий моста

Теорема (критерий моста).

Пусть запустили обход в глубину. Ребро vu - мост $\Leftrightarrow v$ - родитель u в дереве обхода, и из u нельзя подняться выше себя, двигаясь только по ребрам дерева и обратным ребрам.

Критерий моста

Теорема (критерий моста).

Пусть запустили обход в глубину. Ребро vu - мост $\Leftrightarrow v$ - родитель u в дереве обхода, и из u нельзя подняться выше себя, двигаясь только по ребрам дерева и обратным ребрам.

Доказательство.

Из u нельзя подняться выше себя, двигаясь только по ребрам дерева и обратным ребрам \Leftrightarrow из поддерева u нет пути в v и ее предков, кроме ребра vu (так как перекрестных ребер тоже нет) $\Leftrightarrow vu$ - единственный путь, соединяющий v и $u \Leftrightarrow vu$ - мост.

Поиск мостов: алгоритм

Таким образом, поиск мостов отличается от поиска точек сочленинея:

- 1. Отсутствием случая корня
- 2. Заменой условия на $time_in[v] < time_up[u]$

Поиск мостов: алгоритм

```
def DfsVisit(G, v):
colors[v] = GRAY
time_in[v] = time_up[v] = ++time
for u in G.neighbors(v):
  if colors[u] == GRAY: # back edge
    time_up[v] = min(time_up[v], time_in[u])
  if colors[u] == WHITE:
    DfsVisit(G, u)
    time_up[v] = min(time_up[v], time_up[u])
    if time_in[v] < time_up[u]:</pre>
      bridges.add(vu)
colors[v] = BLACK
```

Время работы = Время работы DFS

Поиск мостов: подводные камни

- Просматривать ребро дерева в обратном направлении запрещено. То есть, если в вершину u пришли по ребру e=(v,u), то серая вершина v не должна учитываться при подсчете $time_up[u]$.
- Однако в случае мультиграфа первый пункт будет давать сбой. В таких ситуациях достаточно проверять является ли ребро кратным и удалять такие ребра из списка мостов.

Теорема Роббинса

Теорема (G.Robbins, 1939).

Неориентированный связный граф можно сильно ориентировать (задать ориентацию ребер так, что граф будет сильно связным) ⇔ В связном графе нет мостов.

Теорема Роббинса

Teopeмa (G.Robbins, 1939).

Неориентированный связный граф можно сильно ориентировать (задать ориентацию ребер так, что граф будет сильно связным) ⇔ В связном графе нет мостов.

Доказательство.

 \Rightarrow Допустим, есть мост vu. Сильно ориентируем граф. Без ограничения общности предположим, что vu ориентировано в направлении от v к u. В исходном графе не было пути из u в v, не проходящего по ребру vu \Rightarrow теперь в графе совсем нет пути из u в v. Противоречие.

 \Leftarrow Ориентируем ребра согласно обходу DFS (ребра дерева в направлении предок-потомок, обратные - потомок-предок). Из любой вершины можно подняться выше нее самой \Rightarrow из любой вершины можно подняться в корень \Rightarrow из любой вершины можно добраться до любой другой. \blacksquare