Published by Elsevier Science Publishers B.V. (Biomedical Division) 00145793/87/\$3.50 © 1987 Federation of European Biochemical Societies

NOTICE: This material may be protected by copyright law (fittle 17 U.S. Code)

The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers

Robert O. Blaustein, William J. Germann, Alan Finkelstein and Bibhuti R. DasGupta*

Departments of Physiology and Biophysics and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 and *Food Research Institute, University of Wisconsin, 1925 Willow Drive, Madison, WI 53706, USA

Received 4 November 1987

The heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayer membranes. Channel activity is confined to the N-terminal half of this chain; the C-terminal half is inactive. Channel activity is stimulated by low pH (4.5-5.5) on the cis side (the side to which protein is added), neutral pH on the opposite (trans) side, and cis positive voltages. These findings are strikingly similar to those previously reported for analogous fragments of diphtheria and tetanus toxins.

Neurotoxin fragment; pH-dependent channel; Voltage gating; Lipid bilayer; Diphtheria toxin; Tetanus toxin; (Clostridium hotulinum)

1. INTRODUCTION

The botulinum neurotoxins, which number among the most potent toxins known, cause a flaccid paralysis by blocking the release of acctylcholine from presynaptic cholinergic nerve terminals. The toxin is synthesized by the anaerobe Clostridium botulinum as a single polypeptide (M, ~150000) which is split (termed nicking) into a heavy chain ($M_r \sim 100000$) and a light chain (M_r ~50000) by a protease endogenous to the bacteria or by mild trypsinization; the two chains are separated by reduction of the disulfide bond(s) which link(s) them (fig.1). The seven serologically distinct botulinum neurotoxin types recognized so

Correspondence address: A. Finkelstein, Departments of Physiology and Biophysics and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

far have a similar structure (see [1] and [2] for a general review of botulinum toxin). Interestingly, tetanus and diphtheria toxin share the same general macrostructure with botulinum neurotoxin

[1]. Although a clear picture of the mechanism by which the toxin gains entry to the cytosol has yet to emerge, there may be an analogy with diphtheria toxin which is believed to employ cellsurface receptor binding, receptor-mediated endocytosis, and membrane translocation of its enzymatic light chain into the cytosol from an acidic vesicle compartment [3,4]. The exact molecular mechanism by which transmitter release is disabled also remains a mystery, although type D botulinum toxin has recently been shown to ADPribosylate a membrane protein of $M_r \sim 21000$ in bovine adrenal gland homogenate, suggesting that

the mechanism is enzymatic [5]. It has previously been demonstrated that the heavy chains of botulinum type B neurotoxin,

115

Fig.

app add

seer

are

seer

con

elex

DM

vol:

on to a

tetanus toxin and diphtheria toxin form large, voltage-dependent and pH-dependent ionic channels in planar lipid bilayers [6]. The channel-forming properties of the three toxins are remarkably alike, with channel activity maximal under the pH conditions which are likely to exist in an endocytic vesicle. This comparison makes compelling the suggestion that these pores formed by the heavy chain are involved in protein translocation of the light chain, and a possible role as 'tunnel proteins' has been suggested [6].

In this study we report that the heavy chain of botulinum type A neurotoxin, like that of type B, makes voltage-dependent and pH-dependent ionic channels in planar lipid bilayers. We further show that channel-forming activity is confined to the N-terminal half of the heavy chain; the C-terminal half of the heavy chain is devoid of channel-forming activity.

2. MATERIALS AND METHODS

2.1. Neurotoxin and neurotoxin fragments preparation

Botulinum type A neurotoxin was produced and purified as described [7], and its heavy and light chains were separated and purified chromatographically [8]. To cut the heavy chain, the whole neurotoxin ($M_r \sim 145000$) was digested with trypsin (EC 3.4.4.4) at a 10:1, w/w, ratio in 0.02 M Na₂HPO₄-NaH₂PO₄ buffer, pH 6.0, for 90 min at 30°C. The primary cleavage products were (i) light chain ($M_r \sim 53000$) linked to the N-terminal half of the heavy chain $(M_r \sim 50000)$ by a disulfide bond (hence total $M_1 \sim 103000$) and (ii) the C-terminal half $(M_r \sim 47000)$ of the heavy chain; in fig.1 the two halves of the heavy chain are marked as H2 and H_1 . The two fragments ($M_r \sim 103000$ and \sim 47000) were purified by ion-exchange chromatography. The light chain (L) was then separated from the N-terminal half of the heavy chain (H₂), and the two were purified by ionexchange chromatography. The two halves of the chain were partially sequenced characterization [9]. Details of fragmentation, purification and amino acid sequence determination will be published elsewhere (Sathyamoorthy, DasGupta, Nicce and Foley, in preparation). The first 27 amino acid residues of the H₂ fragment (M_r ~50000) of the heavy chain [9] were identical to

the N-terminal sequence of the intact heavy chain $(M_r \sim 97000)$ [10]. This proved that (i) this fragment is the N-terminal half of the heavy chain, and (ii) the other half $(M_r \sim 47000)$, whose 12 amino acid residues were sequenced [9], is apparently the C-terminal half of the heavy chain $(H_1 \text{ fragment})$.

2.2. Membrane formation and measurements

Planar phospholipid bilayer membranes were formed at room temperature from the union of two lipid monolayers across a hole (0.1 to 0.2 mm diameter) in a Teflon partition [11] that had been pretreated with squalene; the partition separated two 1 ml compartments of a Teflon chamber containing buffered salt solutions, which were stirred independently by magnetic fleas. Monolayers were spread from 1% lipid solutions in hexane, and the solvent was allowed to evaporate before membrane formation. The lipid solutions consisted of either diphytanoylphosphatidylcholine (DPhPC) or a mixture of plant phosphatidylethanolamine (PE), plant phosphatidylcholine (PC), and bovine phosphatidylserine (PS) in the ratio PE/PC/PS of 2:2:1; all lipids were obtained from Avanti Polar Lipids, Birmingham, AL. The salt solutions contained 1 M KCl, 5 mM CaCl₂ and 0.1 mM EDTA. The cis solution (the one to which the toxin fragment was added) was buffered either at pH 4.7 with 5 mM dimethylglutaric acid (DMG) or at pH 5.5 with 5 mM 2-(N-morpholino)ethanesulfonic acid (Mes). The trans solution was buffered either at pH 7.4 with 5 mM Hepes or with the same buffer as in the cis solution. In the latter case, the pH of the trans solution was sometimes raised during the course of an experiment by stirring into it small aliquots of concentrated Hepes solution. After membrane formation, neurotoxin fragments were added from stock aqueous solutions to the cis compartment, to final concentrations of $0.1-1 \mu g/ml$.

BOTULINUM TOXIN AND FRAGMENTS

Fig. 1. Botulinum neurotoxin and fragments. The scale is in units of kDa.

+30 mV

+20 mV

—соон

during

t small

After

s were

zg/ml.

150

scale is

0 mV

Stock solutions of fragments were stored at 4°C at concentrations of ~150 µg/ml. Protein concentrations were estimations based on absorbance at 278 nm or intensity of Coomassie blue stained polyacrylamide bands in gels. Electrical measurements were made under voltage-clamp conditions using a single pair of Ag/AgCl electrodes, contacting the solutions via 3 M KCl agar bridges; current was monitored on a Narco physiograph chart recorder. The conductance (G) at any time is obtained from the relation G = I/V, where V is the voltage at which the membrane is clamped and I is the resulting current. The trans compartment was held at virtual ground; all voltages, therefore, refer to those of the cis compartment.

3. RESULTS

Several fragments of botulinum type A neurotoxin were examined for possible channelforming activity: (i) the entire heavy chain; (ii) the N-terminal half of the heavy chain (H2 fragment); (iii) the N-terminal half of the heavy chain linked via a disulfide bond to the light chain (H2-L fragment); and (iv) the C-terminal half of the heavy chain (H₁ fragment) (see fig. 1). The first three of these fragments listed were fairly similar in their channel-forming activity; differences which were evident include noise/fluctuation levels and potencies. In particular, experimental records with the heavy chain and the H2-L fragment exhibited much more noise than those of the H2 fragment. In addition, these fragments had to be present in ~5-10-fold higher concentrations than the H₂ fragment to achieve comparable conductances. When the C-terminal half of the heavy chain was examined under conditions which yielded maximal activity for the other fragments, no channelforming activity was observed even when present at ~50-fold higher concentrations.

Addition of the H_2 fragment to one side of a planar lipid bilayer separating salt solutions at symmetric low pH (cis, 4.7; trans, 4.7) and subsequent clamping of the membrane potential to positive voltages results in steady rates of channel turn-on. (A typical record is shown in fig.2.) If the membrane is initially held at large negative potentials (< -50 mV), little or no activity is seen. Rais-

ing the trans pH causes a dramatic (>100-fold) increase in the rate of channel turn-on. This effect is apparent when one compares the rate of current increase at +50 mV at symmetric low pH to the rate after the trans pH has been raised to 6.7 (fig.2a, note the change in current scales). A second effect of raising the trans pH is a rapid (within stirring time) 3-5-fold increase in the steady-state conductance (fig.2a, second arrow). This is most likely due to an increase in the conductance of the single channels which comprise the macroscopic conductance, rather than an increase in the actual number of open channels. Consistent with this is a comparable rapid fall in conductance seen upon lowering of the trans pH from ~7.0 to ~5.0, presumably the result of a decrease in the single-channel size. No activity is exhibited by any of the active fragments when added to one side of a membrane separating solutions at symmetric neutral pH (or higher). If the cis pH is subsequently lowered to ≤5.5, however, full activity appears.

The effects of negative potentials on the channel kinetics are somewhat complicated (fig.2a). At symmetric low pH, large negative voltages (< -50 mV) result in a fast (2-5 s) phase of turnoff, followed by a much slower turn-off phase. This effect is also seen after the *trans* pH has been raised, but only initially; after ~1 min, potentials of -60 mV result in a turning-on of channels. It is likely that multiple open and closed states exist and that raising the *trans* pH drives channels into deeper open states. In addition to the gating of these channels by pH, there is also an effect of voltage on the rate of channel turn-on, with increasing positive voltages resulting in higher rates of turn-on (fig.2a,b).

4. DISCUSSION

It has previously been shown that botulinum neurotoxin types A, B, C₁, D and E [12,13], diphtheria toxin [14], and tetanus toxin [6,15] all form pH-dependent and voltage-dependent channels in planar lipid bilayer membranes. Furthermore, this channel-forming activity was found to be confined to the heavy chains of diphtheria toxin, tetanus toxin and botulinum type B neurotoxin [6,15,16]. In the present study, we have extended this finding to the heavy chain of botulinum type A neurotoxin. Moreover, we have shown that the

chann restric the C formi chain formi [6] th neuro precis toxin ing th

Sev formi dipht1 parab heavy manif the ir. voltag in ch creas€ single elevat point, botuli level, fig.2a with diphtl

A· possil the h light prote: by wh the hydro journ plasm and t nel fo it has ed by mod: unfo Th

The diphi quen prote of n

old) fect

rent the 6.7

. A spid the

ow). lucthe

tent ince 0 to

the any e of

entars,

anel At ages

ase. Jeen

tials
3. It
:xist

into g of t of

inates

1um 13],] all

nanherd to tox-

toxoxin ided type the channel-forming domain of the heavy chain is restricted to its N-terminal half (the H₂ fragment); the C-terminal half does not possess channel-forming activity. (Although our sample of the light chain was too dilute to adequately test for channel-forming activity, it is known from previous work [6] that the light chain of botulinum type B neurotoxin does not form channels.) This is precisely what was found earlier for diphtheria toxin and tetanus toxin [6,15], thereby strengthening the analogy among these three toxins.

Several striking similarities among the channelforming properties of the botulinum, tetanus and diphtheria toxins are worthy of mention: (i) comparable fragments (the N-terminal half of the heavy chain) form channels; (ii) the channels manifest a similar voltage dependence, particularly the increase in channel activity with cis positive voltages; (iii) there is a requirement of low cis pH in channel formation; (iv) channel activity increases upon elevation of the trans pH; and (v) the single-channel conductance increases with the elevation of trans pH. With regard to this last point, although we have not yet investigated botulinum type A neurotoxin at the single-channel level, effects of pH on macroscopic records (see fig.2a) are consistent with those seen previously with botulinum type B neurotoxin (and with diphtheria toxin and tetanus toxin as well) [6,13].

A question which remains unanswered is the possible connection between channel formation by the heavy chain and protein translocation of the light chain. In addressing the general question of protein translocation one seeks to find the means by which nature solves the problem of overcoming the significant energy barrier which polar, hydrophilic regions must overcome in their journey across the low dielectric medium of the plasma (or vesicle) membrane. In the light of this, and the similarity of conditions required for channel formation in bilayers and intoxication in cells, it has been suggested that the aqueous pores formed by the heavy chains of these toxins may accommodate the passage of the light chains in an unfolded conformation [6,16].

The genes for both tetanus toxin [17] and diphtheria toxin [18,19] have been cloned and sequenced and the primary structures of these toxin proteins thereby deduced. In recent years, the use of molecular cloning techniques in the study of

ionic channels has provided a unique probe into the molecular mechanisms which underlie channelforming activity. We hope to eventually bring this technique to bear on the channels formed by the botulinum neurotoxins.

ACKNOWLEDGEMENTS

We thank V. Sathyamoorthy and J. Foley jr for their assistance in preparing the neurotoxin and its fragments, and Professor Azer Lektin for a stimulating discussion. This work was supported by N1H grants GM29210-10 (A.F.), NS17742 and NS24545 (B.R.D.), NIH Training grant T32GM7288 from NIGMS (R.O.B.), and the Food Research Institute and College of Agriculture and Life Sciences of the University of Wisconsin (B.R.D.).

REFERENCES

- [1] Simpson, L.L. (1981) Pharmacol. Rev. 33, 155-188.
- [2] Simpson, L.L. (1986) Annu. Rev. Pharmacol. Toxicol. 26, 427-453.
- [3] Leppla, S.H., Dorland, R.B. and Middlebrook, J.L. (1980) J. Biol. Chem. 255, 2247-2250.
- [4] Sandvig, K. and Olsnes, S. (1980) J. Cell. Biol. 87, 828 832.
- [5] Ohashi, Y. and Narumiya, S. (1987) J. Biol. Chem. 262, 1430-1433.
- [6] Hoch, D.H., Romero-Mira, M., Ehrlich, B.E., Finkelstein, A., DasGupta, B.R. and Simpson, L.L. (1985) Proc. Natl. Acad. Sci. USA 82, 1692-1696.
- [7] DasGupta, B.R. and Sathyamoorthy, V. (1984) Toxicon 22, 415-424.
- [8] Sathyamoorthy, V. and DasGupta, B.R. (1985) J. Biol. Chem. 260, 10461-10466.
- [9] Sathyamoorthy, V., DasGupta, B.R. and Niece, R.L. (1986) Fed. Proc. 45, 1793.
- [10]- Schmidt, J.J., Sathyamoorthy, V. and DasGupta, B.R. (1984) Biochem. Biophys. Res. Commun. 119, 900-904.
- [11] Montal, M. (1974) Methods Enzymol. 32, 545-554.
- [12] Donovan, J.J. and Middlebrook, J.L. (1986) Biochemistry 25, 2872-2876.
- [13] Hoch, D.H. (1985) PhD Thesis, Albert Einstein College of Medicine, Yeshiva University.

 V_{τ}

- [14] Donovan, J.J., Simon, M.I., Draper, R.K. and Montal, M. (1981) Proc. Natl. Acad. Sci. USA 78, 172-176.
- [15] Boquet, P. and Duflot, E. (1982) Proc. Natl. Acad. Sci. USA 79, 7614-7618.
- [16] Kagan, B.L., Finkelstein, A. and Colombini, M. (1981) Proc. Natl. Acad. Sci. USA 78, 4950 4954.
- [17] Eisel, U., Jarausch, W., Goretzki, K., Henschen, A., Engels, J., Weller, U., Hudel, M., Habermann, E. and Niemann, H. (1986) EMBO J. 5, 2495-2502.
- [18] Greenfield, L., Bjorn, M.J., Horn, G., Fong, D., Buck, G.A., Collier, R.J. and Kaplan, D.A. (1983) Proc. Natl. Acad. Sci. USA 80, 6853-6857.
- [19] Kaczorek, M., Delpeyroux, F., Chenciner, N., Streeck, R.E., Murphy, J.R., Boquet, P. and Tiollais, P. (1983) Science 221, 855-858.