The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 17

Aryan Mokhtari

Wednesday, October 30, 2019.

Goal: In this lecture, we talk about Semidefinite Programming (SOCP), Schur complement, and the connection between SOCP and SDP.

1 Semidefinite Programming (SDP)

The general form of a Semidefinite Program is given by

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $x_1\mathbf{F}_1 + x_2\mathbf{F}_2 + \dots + x_n\mathbf{F}_n + \mathbf{G} \leq \mathbf{0}$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$.

where $\mathbf{G}, \mathbf{F}_1, \dots, \mathbf{F}_n \in \mathbf{S}^k$ and $\mathbf{A} \in \mathbb{R}^{p \times n}$.

Note: The inequality constraint is called linear matrix inequality (LMI).

We might have multiple LMI constraints: for example

$$x_1\hat{\mathbf{F}}_1 + x_2\hat{\mathbf{F}}_2 + \dots + x_n\hat{\mathbf{F}}_n + \hat{\mathbf{G}} \leq \mathbf{0}, \qquad x_1\tilde{\mathbf{F}}_1 + x_2\tilde{\mathbf{F}}_2 + \dots + x_n\tilde{\mathbf{F}}_n + \tilde{\mathbf{G}} \leq \mathbf{0}$$

we can write them as

$$x_1 \begin{bmatrix} \hat{\mathbf{F}}_1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{F}}_1 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{\mathbf{F}}_n & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{F}}_n \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{G}} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{G}} \end{bmatrix} \leq \mathbf{0}$$

1.1 Inequality form semidefinite programs

An inequality form SDP, analogous to an inequality form LP, has no equality constraints, and one LMI

min:
$$\mathbf{c}^{\top}\mathbf{x}$$

s.t.: $x_1\mathbf{F}_1 + x_2\mathbf{F}_2 + \dots + x_n\mathbf{F}_n + \mathbf{G} \leq \mathbf{0}$

- -If we have multiple LMI we can combine them
- -We can also write $\mathbf{Q}\mathbf{x} \leq \mathbf{h}$ as an LMI. Note that this constraint is equivalent to

$$x_1\mathbf{q}_1 + x_2\mathbf{q}_2 + \cdots + x_n\mathbf{q}_n \leq \mathbf{h}$$

where \mathbf{q}_i is the *i*-th column of \mathbf{Q} . This condition is equivalent to

$$x_1 \operatorname{\mathbf{diag}}(\mathbf{q}_1) + x_2 \operatorname{\mathbf{diag}}(\mathbf{q}_2) + \cdots + x_n \operatorname{\mathbf{diag}}(\mathbf{q}_n) + \operatorname{\mathbf{diag}}(\mathbf{h}) \leq \mathbf{0}$$

- Hence, we can also write $\mathbf{A}\mathbf{x} = \mathbf{b}$ as an LMI.

Observation: Any linear equality and inequality constraint can be written as LMI. Hence, we can conclude that any LP can be written as an SDP (LP \subset SDP).

Remark 1. Whenever we have a matrix $F(\mathbf{x})$ that its components are affine functions of x_1, \ldots, x_n , we can express $F(\mathbf{x})$ as an LMI. To be more specific, consider the general form of $F(\mathbf{x})$

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} a_{11}^1 x_1 + \dots + a_{11}^n x_n + b_{11} & \dots & a_{1n}^1 x_1 + \dots + a_{1n}^n x_n + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1}^1 x_1 + \dots + a_{n1}^n x_n + b_{n1} & \dots & a_{nn}^1 x_1 + \dots + a_{nn}^n x_n + b_{nn} \end{bmatrix}$$

Then, we can write

$$\mathbf{F}(\mathbf{x}) = x_1 \mathbf{F}_1 + x_2 \mathbf{F}_2 + \dots + x_n \mathbf{F}_n + \mathbf{G}$$

where

$$\mathbf{F}_i = \begin{bmatrix} a_{11}^i & \dots & a_{1n}^i \\ \vdots & \ddots & \vdots \\ a_{n1}^i & \dots & a_{nn}^i \end{bmatrix} \quad \text{for } i = 1, \dots, n, \qquad \mathbf{G} = \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{bmatrix}.$$

1.2 Standard form semidefinite programs

Following the analogy to LP, a standard form SDP has linear equality constraints, and a (matrix) nonnegativity constraint on the variable $\mathbf{X} \in \mathbf{S}^n$

min:
$$\mathbf{tr}(\mathbf{CX})$$

s.t.: $\mathbf{tr}(\mathbf{A}_i\mathbf{X}) = b_i$, for $i = 1, \dots, p$
 $\mathbf{X} \succ \mathbf{0}$,

where $\mathbf{C}, \mathbf{A}_1, \dots, \mathbf{A}_p \in \mathbf{S}^n$.

Note that when **A** and **B** are symmetric we have

$$\mathbf{tr}(\mathbf{AB}) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ij}$$

Hence, trace can be considered as an inner product of symmetric matrices.

A semidefinite program is an optimization problem over the space of symmetric matrices. It has two types of constraints

- 1. Affine constraints in the entries of the decision matrix X
- 2. A constraint forcing some matrix to be **positive semidefinite**.

It is easy again to see an LP is a special case of SDP with diagonal matrices.

Exercise: Show that a linear matrix inequality (LMI) constraint can be written in standard form. As a result, show that an SDP in inequality form can be transferred to standard form.

2 Schur complement

Consider a symmetric matrix \mathbf{M} given by

$$\mathbf{M} = egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{B}^{ op} & \mathbf{C} \end{bmatrix}$$

If matrix C is invertible, then the matrix $A - BC^{-1}B^{\top}$ is called the Schur Complement of C in M. Futher, if A is invertible the Schur complement of A in M is $C - B^{\top}A^{-1}B$.

Lemma 1. For any symmetric matrix, \mathbf{M} , of the form $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix}$ if \mathbf{C} is invertible then

- (i) $\mathbf{M} \succ \mathbf{0} \iff \mathbf{C} \succ \mathbf{0} \text{ and } \mathbf{A} \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \succ \mathbf{0}.$
- (ii) If $\mathbf{C} \succ \mathbf{0}$, then $\mathbf{M} \succeq \mathbf{0} \iff \mathbf{A} \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\top} \succeq \mathbf{0}$.

Proof. Observe that

$$\mathbf{M} = egin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{C}^{-1} \ \mathbf{0} & \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{ op} & \mathbf{0} \ \mathbf{0} & \mathbf{C} \end{bmatrix} egin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{C}^{-1} \ \mathbf{0} & \mathbf{I} \end{bmatrix}^{ op}$$

Further, note that

$$\begin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I} & -\mathbf{B}\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

We know that for any symmetric matrix, \mathbf{T} , and any invertible matrix, \mathbf{N} , the matrix \mathbf{T} is positive definite iff $\mathbf{N}\mathbf{T}\mathbf{N}^{\top}$ (which is obviously symmetric) is positive definite. Further, a block diagonal matrix is positive definite iff each diagonal block is positive definite, which concludes the proof of first claim.

The second result also holds since any symmetric matrix, \mathbf{T} , and any invertible matrix, \mathbf{N} , we have $\mathbf{T} \succeq \mathbf{0}$ iff $\mathbf{N}\mathbf{T}\mathbf{N}^{\top} \succeq \mathbf{0}$

Lemma 2. For any symmetric matrix, \mathbf{M} , of the form $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C} \end{bmatrix}$ if \mathbf{A} is invertible then

- (i) $\mathbf{M} \succ \mathbf{0} \iff \mathbf{A} \succ \mathbf{0} \text{ and } \mathbf{C} \mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B} \succ \mathbf{0}.$
- (ii) If $\mathbf{A} \succ \mathbf{0}$, then $\mathbf{M} \succeq \mathbf{0} \iff \mathbf{C} \mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B} \succeq \mathbf{0}$.

2.1 Application of Schur complement for SDP

Consider the following optimization problem:

$$\begin{aligned} & \min: & & \frac{(\mathbf{c}^{\top} \mathbf{x})^2}{\mathbf{d}^{\top} \mathbf{x}} \\ & \text{s.t.}: & & \mathbf{d}^{\top} \mathbf{x} \geq 1, \\ & & & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \end{aligned}$$

Then, we can write this problem as

min:
$$t$$

s.t.: $(\mathbf{c}^{\top}\mathbf{x})^2 \le t\mathbf{d}^{\top}\mathbf{x}$
 $\mathbf{d}^{\top}\mathbf{x} \ge 1$,
 $\mathbf{A}\mathbf{x} \le \mathbf{b}$,

This problem can also be written as

$$\text{s.t.}: \quad \begin{bmatrix} t & \mathbf{c}^{\top}\mathbf{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{c}^{\top}\mathbf{x} & \mathbf{d}^{\top}\mathbf{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{d}^{\top}\mathbf{x} - 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{diag}(\mathbf{b} - \mathbf{A}\mathbf{x}) \end{bmatrix} \succeq \mathbf{0}$$

which is an SDP. (Each component of the constraint matrix is an affine function of x_1, \ldots, x_n, t and therefore it can be written as an LMI)

2.2 Matrix norm minimization

Let $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n$, where $\mathbf{A}_i \in \mathbb{R}^{p \times q}$. Consider the problem

$$\min_{\mathbf{x}} \quad \|\mathbf{A}(\mathbf{x})\|_2$$

which is the problem of minimizing l_2 norm (maximum singular value) of matrix $\mathbf{A}(\mathbf{x})$. This problem can also be written as

min:
$$t$$

s.t.: $\|\mathbf{A}(\mathbf{x})\|_2 \le t$

which is equivalent to

min:
$$t$$

s.t.: $\mathbf{A}(\mathbf{x})^{\top} \mathbf{A}(\mathbf{x}) \leq t^2 \mathbf{I}$

We can write this problem as an SDP by using Schur complement

min:
$$t$$

s.t.: $\begin{bmatrix} t\mathbf{I} & \mathbf{A}(\mathbf{x}) \\ \mathbf{A}(\mathbf{x})^{\top} & t\mathbf{I} \end{bmatrix} \succeq \mathbf{0}$

with variable $\mathbf{x} \in \mathbb{R}^n$ and $t \in \mathbb{R}$. [All the components of the constraint matrix are affine functions of x_1, \ldots, x_n and t.]

3 SOCP as a special case of SDP

Recall that SOCP has a general form of

min:
$$\mathbf{q}^{\top}\mathbf{x}$$

s.t.: $\|\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}\|_{2} \leq \mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}, \quad i = 1, \dots, m.$

(Note: The affine equality constraints can also be written as an SOC constraint). It can be shown that this problem is equivalent to the following SDP:

min:
$$\mathbf{q}^{\top}\mathbf{x}$$

s.t.:
$$\begin{bmatrix} (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i})\mathbf{I}_{n_{i}} & \mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i} \\ (\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i})^{\top} & (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}) \end{bmatrix} \succeq \mathbf{0}, \qquad i = 1, \dots, m.$$

Proof: We can assume $\mathbf{c}_i^{\mathsf{T}}\mathbf{x} + d_i > 0$. In this case, according to Schur complement we have

$$\begin{bmatrix} (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i})\mathbf{I}_{n_{i}} & \mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i} \\ (\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i})^{\top} & (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}) \end{bmatrix} \succeq \mathbf{0} \Leftrightarrow \mathbf{c}_{i}^{\top}\mathbf{x} + d_{i} - (\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i})^{\top} (\frac{1}{\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}})\mathbf{I}(\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}) \geq 0$$

$$\Leftrightarrow \mathbf{c}_{i}^{\top}\mathbf{x} + d_{i} - (\frac{1}{\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}})(\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i})^{\top}(\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}) \geq 0$$

$$\Leftrightarrow (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i})^{2} - \|\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}\|_{2}^{2} \geq 0$$

$$\Leftrightarrow (\mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}) \geq \|\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}\|_{2}$$

For the case that $\mathbf{c}_i^{\top}\mathbf{x} + d_i = 0$, one can easily show that

$$\begin{bmatrix} \mathbf{0}_{n_i} & \mathbf{A}_i \mathbf{x} + \mathbf{b}_i \\ (\mathbf{A}_i \mathbf{x} + \mathbf{b}_i)^\top & 0 \end{bmatrix} \succeq \mathbf{0} \iff \mathbf{A}_i \mathbf{x} + \mathbf{b}_i = \mathbf{0}$$

(Consider vectors $[v_1, \ldots, v_{n_i}, 1]$ and $[-v_1, \ldots, -v_{n_i}, 1]$).

Therefore, SOCP \subset SDP.

Important observation:

 $\mathrm{LP} \subset (\mathrm{convex}) \ \mathrm{QP} \subset (\mathrm{convex}) \ \mathrm{QCQP} \subset \mathrm{SOCP} \subset \mathrm{SDP}.$