Readings Chapter 17.

Self test Exercises 17.1-2.

Lecture 13

Amortized Analysis

Often we perform sequences of operations on data structures and time complexity for processing the entire sequence is important. Define worst-case sequence complexity of sequence of m operations as the maximum runtime over all sequences of m operations.

WCSC $\leq m \cdot \text{worst-case}$ time of any one operation in any sequence of m operations

Ex. sorted linked list, starting from empty, INS, DEL, SEARCH

Upper Bound

Worst case for one operation is $\Theta(k)$ where k is the size of the list. Also max size after k operations $\leq k$. Worst-case runtime of operation $i \leq c(i-1)$.

WCSC
$$\leq \sum_{i=1}^{m} c(i-1) = O\left(\frac{c(m)(m-1)}{2}\right)$$

Lower Bound

Consider the sequence INS(1), INS(2), ..., INS(m)

$$\sum_{i=1}^{m} d(i-1) = \frac{d(m-1)m}{2}$$

Combing upper and lower bounds we get that

WCSC
$$\in \left(\frac{\Theta(m^2)}{m}\right) = \Theta(m)$$
 ammortized sequence complexity

Binary Counter

Sequence of k bits (k fixed) with single operation:

increment: add 1 to integer represented by counter. The "cost" (i.e. running time) of one increment operation is equal to the number of bits that change during increment. For example, if k=5:

```
(value = 0)
initial counter
                   00000
                           (value = 1)
after increment:
                   00001
                                         cost = 1
after increment: 00010
                           (value = 2)
                                         cost = 2
                           (value = 3)
after increment: 00011
                                         cost = 1
                           (value = 4)
                                         cost = 3
after increment:
                  00100
after increment:
                  00101
                           (value = 5)
                                         cost = 1
after increment: 11101
                           (value = 29)
                                         cost = 1
after increment: 11110
                           (value = 30)
                                         cost = 2
after increment: 11111
                           (value = 31)
                                         cost = 1
after increment: 00000
                           (value = 0)
                                         cost = 5
```

Aggregate Approach

Compare worst-case sequence complexity of a sequence of operations and divide by the number of operations in the sequence.

k bits in counter, INCREMENT "cost" \rightarrow runtime (# of bits flipped)

bit number	changes	total number of changes
0	every time	n
1	every other time	$\lfloor n/2 \rfloor$
2	every other ² time	$\lfloor n/4 \rfloor$
$i^{ m th}$	every other i time	$\lfloor n/2^i \rfloor$
k-1	every 2^{k-1} operations	$\lfloor n/2^{k-1} \rfloor$
	Total bits flipped $\leq \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq \sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor \leq n \sum_{i=0}^{\lg n} \frac{1}{2^i} \leq n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n \sum_{i=0}^{\infty} \frac{1}{2^i}$	

Ammortized cost is =2n/n=2.

Accounting Method

Each operation is assigned a "cost" (representing running time) and a "charge" (representing ammortized worst-case running time, approximately). Goal: ensure total charge for sequence > total cost for sequence.

Imagine individual elements in data structure can store "credit": when operation's charge \geq cost, charge "pays" for cost and amount left over is assigned to specific elements in data structure; when operation's charge < cost, use some stored credit to "pay" for cost. To ensure this works, argue credit never negative (equivalent to total charge for sequence \geq total cost for sequence). Then ammortized complexity \leq average charge.

Binary counter example:

During one increment operation many bits may change from 1 to 0 but exactly one bit will change from 0 to 1. (for example, increment (00111) \rightarrow 01000) Can we ensure enough credits to flip every 1 to 0? Then each operation only need be charged for flipping 0 to 1.

Idea: just charge each operaion \$2: \$1 to flip 0 to 1 and \$1 to store with the bit just changed to 1. Since counter starts at 0, possible to show "credit invariant":

"At any step during the sequence, each bit of the counter that is equal to 1 will have \$1 credit."

Proof by induction:

Initially, counter is 0 and no credit: invariant trivially true.

Assume invariant true and increment is performed

Cost of flipping 1's to 0's paid for by credits stored with each 1;

Cost of flipping 0 to 1 paid for by \$1 of \$2 charge;

Remaining \$1 stored with new 1.

No other bit changes so every 1 has \$1 credit at the end.

This shows total charge for sequence is upper bound on total cost. In this case, total charge = 2n, so ammortized cost per operation is < 2n/n = 2 (same as before).