Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Informatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny

Sprawozdanie z ćwiczenia nr 29

Fale podłóżne w ciałach stałych.

18 października 2017r

1 Wstęp

1.1 Cele ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla prętów różnych materiałów na podstawie pomiarów ich częstotliwości harmonicznych.

1.2 Wprowadzenie teoretyczne

1.2.1 Fala podłóżna

Fala podłóżna jest to fala powstająca przez gwałtowne wychylenie ciała z położenia równowagi oraz dalszemu jego drganiu aż do momentu odzyskania równowagi. Szybkość rozchodzenia się tej fali zależy od bezwładności i sprężystości ciała.

1.2.2 Moduł Younga

Wielkość charakteryzującą sprężystość materiału, będąca jego integralną częścią nazywamy modułem Younga oraz oznaczamy go jako E. Ogólny wzór na moduł Younga określa się jako stosunek naprężenia σ do względnego odkszałcenia liniowego ε materiału:

$$E = \frac{\sigma}{\varepsilon} \tag{1}$$

Po uwzględnieniu, że ćwiczenie przeprowadzane jest na prętach materiałów, analizie rozchodzenia się fali podłóżej w pręcie oraz prawa Hooke'a uzyskujemy wzór:

$$E = 4\rho l^2 f^2 \tag{2}$$

gdzie ρ to gęstość materiału, l - długość pręta oraz f częstotliwość fali podłużnej. Tego wzoru będziemy używać do wykonania ćwiczenia.

1.2.3 Analiza Fouriera

Jest to proces badania drgań harmonicznych, polega na przedstawieniu funkcji okresowej w postaci nieskończonego szeregu trygonometrycznego (szeregu Fouriera). W naszym doświadczeniu wykorzystujemy program Zelscope, który realizuje algorytm FFT pozwalający na szybkie obliczenie transformaty Fouriera i przedstawia ją jako widmo funkcji na ekranie (analogicznie do oscyloskopu znanego z elektroniki). Będziemy odczytywać kolejne wartości drgań harmonicznych z ekranu.

1.3 Układ pomiarowy

Układ pomiarowy składa się z komputera z zainstalowanym oprogramowaniem Zelscope, mikrofonu podłączonego do komuptera, długich prętów wykonanych z różnych materiałów zawieszonych na nitkach w dwóch miejscach. Do wprawienia ciał w drgania użyjemy młotka, do pomiaru długości prętów użyjemy miary milimetrowej zwijanej, do pomiaru masy prętów użyjemy wagi elektronicznej firmy RAWAG model WTB 200 oraz do zmierzenia grubości materiałów w celu wyznaczenia ich objętości użyjemy suwmiarki.

Rysunek 1: Schemat układu pomiarowego

2 Wykonanie ćwiczenia

Wykonanie ćwiczenia dzieli się na dwa kroki stosowane dla każdego badanego pręta oraz jednej wspólnej analizy wyników.

2.1 Pomiary specyfikacji prętów

- Pomiar długości pręta za pomocą miary zwijanej.
- Pomiar grubości pręta za pomocą suwmiarki (w przypadku otwartego walca mierzymy promień zewnętrzny i wewnętrzny).
- Zważenie pręta w najlepszy możliwy sposób za pomocą wagi elektronicznej.
- Zapisanie wyników o danym ciele do tabeli.

2.2 Pomiar częstotliwości harmonicznych

- Osadzenie preta w niciach zamontowanych do stelaża.
- Przybliżenie mikrofonu do badanego pręta.
- Uderzenie młotkiem w pręt aby wprawić go w drganie.
- Zamrożenie odczytu programu Zelscope w momencie najlepszej widoczności widma fal harmonicznych.
- Odczyt sześciu pierwszych harmonicznych (jeżeli taką ilość udało się zaobserwować).

W przypadku niejednoznacznego odczytu częstotliwości harmonicznych nalezy powtórzyć pomiar.

2.3 Oblicznanie koniecznych wartości

Z zapisanych danych pomiarowych należy obliczyć gęstość ciała daną wzorem:

$$\rho = \frac{m}{V} \tag{3}$$

gdzie m to zmierzona masa ciała oraz V to objętość ciała obliczona odpowiednio dla każdego pręta z odpowiednich wielkości. Pręty są różnymi figurami przestrzennymi, przez wykorzystujemy odpowiedni wzór dla:

• walca o promieniu podstawy r oraz wysokości h

$$V = \pi r^2 h \tag{4}$$

ullet prostopadłościanu prawidłowego czworokątnego o krawędzi podstawy a oraz wysokości h

$$V = a^2 h ag{5}$$

 $\bullet\,$ otwartego walca o promieniu zewnętrznym podstawy R, promieniu wewnętrznym podstawy r oraz wysokości h

$$V = \pi (R^2 - r^2)h \tag{6}$$

Do oblicznia długości fali λ zastosujemy zależność od częstotliwości:

$$\lambda = \frac{1}{f} \tag{7}$$

Odległość l między węzłami fali stojącej stanowi połowę jej długości:

$$l = \frac{1}{2}\lambda\tag{8}$$

Do obliczenia predkości rozchodzenia się fali zastosujemy wzór:

$$V = 2lf (9)$$

3 Opracowanie danych pomiarowych

3.1 Wyniki pomiarów

Zmierzone wielkości zostały zapisane w tabeli 1, gdzie zapisano również wyniki wyliczonych wartości obliczonych za pomocą wzorów (3), (4), (5) i (6).

Materiał	Kształt	Masa [kg]	Długość [m]	Objętość [m²]	Gęstość [kg/m³]
Aluminium	Walec	0.030	0.561	$1.102 \cdot 10^{-5}$	2720.326
Mosiądz	Walec	0.237	0.998	$2.821 \cdot 10^{-5}$	8401.275
Stal	Prostopadłościan	1.802	1.252	$3.710 \cdot 10^{-4}$	7529.529
Stal	Walec	1.138	1.800	$1.470 \cdot 10^{-4}$	7741.496
Żeliwo szare	Walec otwarty	0.760	1.800	$1.095 \cdot 10^{-4}$	6940.639

Tablica 1: Dane pomiarowe dla pięciu próbek

Analiza Aluminiu	ml = 0.561[m]		
Nr harmonicznej	Częstotliwość f [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	990,89	3,6	3567,21
2	1976,59	1,8	3557,86
3	2982,95	1,2	3579,54
4	3956,61	0,9	3560,98
5	4948,17	0,72	3562,68
6	5924,12	0,6	3554,47

Tablica 2: Wyniki obliczeń dla aluminium

3.2 Analiza niepewności

4 Podsumowanie

5 Wnioski