Thom spectra, higher THH and Tensors in ∞ -Categories

Nima Rasekh joint with Bruno Stonek, Gabriel Valenzuela

École Polytechnique Fédérale de Lausanne

November 20th, 2020

A New Perspective on THH

The goal of this talk is to show how we can use presentable ∞ -category theory to reformulate our understanding of THH.

- Recall classical perspective THH and its motivation!
- Why even a modern perspective?
- **③** Tensors of Presentable ∞-Categories
- Thom Spectra
- Computing THH
- O Proof?

THH: The Classical Story for Rings

Let A be a k-algebra. Then

$$A \Longleftrightarrow A \otimes_k A \Longleftrightarrow A \otimes_k A \otimes_k A \Longleftrightarrow \cdots$$

with

$$d_i(a_0 \otimes ... \otimes a_n) = \begin{cases} a_0 \otimes ... \otimes a_i a_{i+1} \otimes ... \otimes a_n & \text{if } i < n \\ a_n a_0 \otimes ... \otimes a_{n-1} & \text{if } i = n \end{cases}$$

and

$$s_i(a_0 \otimes ... \otimes a_n) = a_0 \otimes ... \otimes a_i \otimes 1 \otimes a_{i+1} \otimes ... \otimes a_n$$

The Hochschild homology HH(A) is the homology of this complex.

THH: The Classical Story for E_{∞} -Rings

Let A be an E_{∞} -R-algebra. Then we can define a simplicial E_{∞} -R-algebra

$$A \Longleftrightarrow A \land_R A \Longleftrightarrow A \land_R A \land_R A \Longleftrightarrow \cdots$$

We define the topological Hochschild homology E_{∞} -R-algebra $THH^R(A)$ as the geometric realization of this simplicial object.

First studied by Bökstedt (1985) and in this form Elmendorf-Kriz-Mandell-May (1996).

Why THH?

The key word is algebraic K-theory.

The **cyclotomic trace** preserves information (Goodwillie-Dundas-McCarthy 2012).

Why a new Approach?

Theorem (Schlichtkrull, 2011)

Let $f: G \to BGl_1(\mathbb{S})$ be a map of E_{∞} -groups with M(f) the associated Thom spectrum. Then we have an equivalence of E_{∞} -rings

$$THH(M(f)) \simeq Mf \wedge \mathbb{S}[BG].$$

• $\mathbb{S}[BG] = \Sigma^{\infty}BG$ with ring structure

A New Approach Can Avoid these Difficulties

" ... However, when trying to make this argument precise one encounters several technical difficulties. First of all one needs A and T(f) to be **cofibrant** in order to control the homotopy type of the Loday functors but unfortunately the Thom S-algebra associated to a **cofibrant** \mathcal{I} -space A need not be **cofibrant**. It is also not clear that the **T-goodness condition** for an object in IU/BF is preserved under cofibrant replacement. (The latter difficulty is caused by the technical subtlety that whereas Hurewicz cofibrations are preserved under pullback along Hurewicz fibrations, the behavior under pullback along Serre **fibrations** *is not well understood*)...

- Christian Schlichtkrull

Hence, we need an ∞-Categorical Approach

So, the goal is to generalize the constructions to the ∞ -categorical setting and realize the dream of Schlichtkrull, while avoiding all the model categorical pitfalls!

A Good Start

Theorem (McClure-Schwänzl-Vogl, 1997)

There is a tensor E_{∞} -ring $K \otimes R$ for every space K and E_{∞} -ring R and we have an equivalence of E_{∞} -rings

$$\mathrm{THH}(R) \simeq S^1 \otimes R$$

What is an ∞ -Category?

The technical term here is *quasi-category* \mathbb{C} . If that is not familiar, then just think of the following data:

- We have objects X, Y, \dots in \mathcal{C} .
- ② We have a mapping space $Map_c(X, Y)$
- All classical categorical terms (limits, adjunctions, presentability, ...) still hold, although some need to be adjusted.

Most work here goes back to Joyal and Lurie.

Presentable Categories vs. Presentable ∞-Categories

Definition

A category \mathcal{P} is called *locally presentable* if there exists a **small** category \mathcal{C} and an adjunction

$$\operatorname{Fun}(\mathbb{C}^{op},\operatorname{Set}) \xrightarrow{L} \mathcal{P}$$

such that i is fully faithful

Presentable Categories vs. Presentable ∞-Categories

Definition

An ∞ -category \mathcal{P} is called *locally presentable* if there exists a **small** ∞ -category \mathcal{C} and an adjunction

Fun(
$$\mathbb{C}^{op}$$
, $\stackrel{\mathcal{S}}{\overset{\perp}{\smile}}$) $\stackrel{\mathcal{L}}{\overset{\perp}{\smile}}$ \mathcal{P}

such that *i* is fully faithful and *L* is accessible.

Presentable ∞-Categories and Tensors

Slogan!

There is an analogy between symmetric monoidal categories (Gepner-Groth-Nikolaus, 2016):

(Locally Presentable Categories, \otimes) \iff (Presentable ∞ -Categories, \otimes)

Presentable ∞-Categories Higher Categorical Approach to Thom Spectra

Concept	Algebra	Categories	Higher Categories

Presentable $\infty ext{-Categories}$ Higher Categorical Approach to Thom Spectra

Concept	Algebra	Categories	Higher Categories
Object	Set		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
-			

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
-			

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		

Concept	Algebra	Categories	Higher Categories
Object	Set		
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{ccc} A & \mathbb{Q}\text{-vector space} & \leftrightarrow \\ \mathbb{Z} \times A & \longrightarrow & A \\ \downarrow & & & \exists! \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group		
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$A \ \mathbb{Q}\text{-vector space} \leftrightarrow \\ \mathbb{Z} \times A \longrightarrow A \\ \downarrow \qquad \exists 1$ $\mathbb{Q} \times A$		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism		
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{c} A \ \mathbb{Q}\text{-vector space} \leftrightarrow \\ \mathbb{Z} \times A \longrightarrow A \\ \downarrow \qquad \exists 1 \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$		
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{ccc} A & \mathbb{Q}\text{-vector space} & \leftrightarrow \\ \mathbb{Z} \times A & \longrightarrow & A \\ \downarrow & & \exists ! \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathfrak{E})= \ \mathit{Fun}^{L,L}(\mathfrak{C} imes\mathfrak{D},\mathfrak{E})$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E})= \ \mathit{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$		
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{ccc} A \mathbb{Q}\text{-vector space} \leftrightarrow \\ \mathbb{Z} \times A & \longrightarrow A \\ \downarrow & \exists ! \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathfrak{E})= \ \mathit{Fun}^{L,L}(\mathfrak{C} imes\mathfrak{D},\mathfrak{E})$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E}) = \mathit{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	\mathcal{S} et \otimes \mathcal{C} \simeq \mathcal{C}	S ⊗ C ≃ C
Monoid Object	Commutative Ring		
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{ccc} A & \mathbb{Q}\text{-vector space} & \leftrightarrow \\ \mathbb{Z} \times A & \longrightarrow & A \\ \downarrow & & & \exists ! \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathfrak{E})= \ \mathit{Fun}^{L,L}(\mathfrak{C} imes\mathfrak{D},\mathfrak{E})$	$\mathit{Fun}^{L}(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E}) = \ \mathit{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	Set \otimes $\mathfrak{C} \simeq \mathfrak{C}$	S ⊗ C ≃ C
Monoid Object	Commutative Ring	Symm. Monoidal Category	Symm. Monoidal ∞-Category
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$		
Modules	$R \otimes M \to M$		
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{ccc} A & \mathbb{Q}\text{-vector space} & \leftrightarrow \\ \mathbb{Z} \times A & \longrightarrow & A \\ \downarrow & & \exists ! \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$	$\mathit{Fun}^L({\mathbb C}\otimes{\mathbb D},{\mathbb E})= \ \mathit{Fun}^{L,L}({\mathbb C} imes{\mathbb D},{\mathbb E})$	$\mathit{Fun}^{L}(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E}) = \mathit{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	Set \otimes $\mathfrak{C} \simeq \mathfrak{C}$	S ⊗ C ≃ C
Monoid Object	Commutative Ring	Symm. Monoidal Category	Symm. Monoidal ∞-Category
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$	$Set \otimes Set \simeq Set$ $-\times - = \coprod_{(-)} (-) : Set \times Set \rightarrow Set$	$\begin{array}{c} \mathbb{S} \otimes \mathbb{S} \simeq \mathbb{S} \\ -\times -= \operatorname{colim}(-) : \mathbb{S} \times \mathbb{S} \to \mathbb{S} \\ (-) \end{array}$
Modules	$R \otimes M \to M$, ,	
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{c} A \ \mathbb{Q}\text{-vector space} \leftrightarrow \\ \mathbb{Z} \times A \longrightarrow A \\ \downarrow \qquad \exists 1 \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$ $BiLin(G \times H, K)$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathfrak{E})= \ \mathit{Fun}^{L,L}(\mathfrak{C} imes\mathfrak{D},\mathfrak{E})$	$\mathit{Fun}^{L}(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E}) = \ \mathit{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	Set \otimes $\mathfrak{C} \simeq \mathfrak{C}$	S ⊗ C ≃ C
Monoid Object	Commutative Ring	Symm. Monoidal Category	Symm. Monoidal ∞-Category
Unit Multiplicative	$\mathbb{Z} \otimes \mathbb{Z} \cong \mathbb{Z}$ $- \times - : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$	$Set \otimes Set \simeq Set$ $-\times - = \coprod_{(-)} (-) : Set \times Set \rightarrow Set$	$\begin{array}{c} \mathbb{S} \otimes \mathbb{S} \simeq \mathbb{S} \\ -\times -= \operatorname{colim}(-) : \mathbb{S} \times \mathbb{S} \to \mathbb{S} \\ (-) \end{array}$
Modules	$R \otimes M \to M$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$
Module over Unit	$- \times - : \mathbb{Z} \times A \to A$ $(n, a) \mapsto na$		
Canonical Module	$ \begin{array}{c} A \ \mathbb{Q}\text{-vector space} \leftrightarrow \\ \mathbb{Z} \times A \longrightarrow A \\ \downarrow \qquad \exists 1 \end{array} $ $ \mathbb{Q} \times A $		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞-Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞ -Category+accessible = Presentable ∞ -Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$\mathit{Hom}(\mathit{G} \otimes \mathit{H}, \mathit{K}) =$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E})=$	$\mathit{Fun}^{L}(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E})=$
	$BiLin(G \times H, K)$	$\mathit{Fun}^{L,L}(\mathbb{C} imes \mathfrak{D}, \mathcal{E})$	$\operatorname{Fun}^{L,L}(\mathfrak{C}\times\mathfrak{D},\mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	$Set \otimes \mathfrak{C} \simeq \mathfrak{C}$	$S \otimes C \simeq C$
Monoid Object	Commutative Ring	Symm. Monoidal Category	Symm. Monoidal ∞-Category
	$\mathbb{Z}\otimes\mathbb{Z}\cong\mathbb{Z}$	Set \otimes Set \simeq Set	$s \otimes s \simeq s$
Unit Multiplicative	$-\times -: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$	$-\times - = \coprod_{(-)} (-) : \$et \times \$et \rightarrow \et	$-\times -= \underset{(-)}{\operatorname{colim}}(-) : S \times S \to S$
Modules	$R \otimes M \to M$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$
	$-\times -: \mathbb{Z} \times A \to A$	$\coprod_{(-)} (-) : \mathbb{S}et \times \mathbb{C} \to \mathbb{C}$	$\operatorname*{colim}(-):\mathbb{S}\times\mathbb{C}\rightarrow\mathbb{C}$
Module over Unit	$(n,a)\mapsto na$	$(S,C)\mapsto\coprod C=$	$(X, C) \mapsto \operatorname{colim}_{X} \{C\} =$
		$\operatorname{colim}(S \to * \xrightarrow{S} \mathbb{C})$	$\operatorname{colim}(X \to \ast \xrightarrow{\{C\}} \mathcal{C})$
Canonical Module	$A \mathbb{Q}\text{-vector space} \leftrightarrow \mathbb{Z} \times A \longrightarrow A$ $\downarrow \qquad \qquad \exists 1$ $\mathbb{Q} \times A$		

Concept	Algebra	Categories	Higher Categories
Object	Set	Category	∞ -Category
Structured Object	Abelian Group	Cocomplete Category+accessible = Locally Presentable Categories	Cocomp. ∞-Category+accessible = Presentable ∞-Categories
Morphism	Group Homomorphism	Colimit Preserving Functor	Colimit Preserving Functor
Symm. Monoidal	$Hom(G \otimes H, K) =$	$\operatorname{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E})=$	$\mathit{Fun}^L(\mathfrak{C}\otimes\mathfrak{D},\mathcal{E})=$
	$BiLin(G \times H, K)$	$\mathit{Fun}^{L,L}(\mathfrak{C} imes \mathfrak{D}, \mathcal{E})$	$\mathit{Fun}^{L,L}(\mathbb{C} imes \mathfrak{D}, \mathcal{E})$
Unit = Free Object	$\mathbb{Z}\otimes A\cong A$	Set \otimes \mathcal{C} \simeq \mathcal{C}	$S \otimes \mathcal{C} \simeq \mathcal{C}$
Monoid Object	Commutative Ring	Symm. Monoidal Category	Symm. Monoidal ∞-Category
	$\mathbb{Z}\otimes\mathbb{Z}\cong\mathbb{Z}$	Set \otimes Set \simeq Set	$s \otimes s \simeq s$
Unit Multiplicative	$-\times -: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$	$-\times - = \coprod_{(-)} (-) : \$et \times \$et \rightarrow \et	$-\times -= \underset{(-)}{\operatorname{colim}} (-) : \mathbb{S} \times \mathbb{S} \to \mathbb{S}$
Modules	$R \otimes M \to M$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$	$\mathcal{R}\otimes\mathcal{C}\to\mathcal{C}$
	$-\times -: \mathbb{Z} \times A \to A$	$\coprod_{(-)} (-) : \operatorname{Set} imes \operatorname{\mathfrak{C}} o \operatorname{\mathfrak{C}}$	$\underset{(-)}{\operatorname{colim}}(-): \mathcal{S} \times \mathcal{C} \to \mathcal{C}$
Module over Unit	$(n,a)\mapsto na$	$(S,C)\mapsto\coprod C=$	$(X, C) \mapsto \operatorname{colim}_{Y} \{C\} =$
		$\operatorname{colim}(S \to *\frac{S}{\{C\}} \to \mathbb{C})$	$\operatorname{colim}(X \to * \xrightarrow{\{C\}} \mathfrak{C})$
	$A \mathbb{Q}$ -vector space \leftrightarrow	$\mathcal C$ is pointed \leftrightarrow	\mathbb{C} is stable \leftrightarrow
	$\mathbb{Z} \times A \longrightarrow A$	$\begin{array}{c} \operatorname{Set} \times \operatorname{\mathbb{C}} \longrightarrow \operatorname{\mathbb{C}} \\ \downarrow & \exists ! \end{array}$	$\begin{array}{c} \mathbb{S} \times \mathbb{C} \longrightarrow \mathbb{C} \\ \downarrow & \mathbb{B}! \end{array}$
Canonical Module	$\mathbb{Z} \times A \longrightarrow A$ $\downarrow \qquad \exists !$, ,	
	$\mathbb{Q} \times A$	$\operatorname{Set}_* imes \operatorname{C}$	$Sp \times C$

Tensors of E_{∞} -Groups

Example

 $\operatorname{Grp}_{E_{\infty}}(S)$ is the unit of additive presentable ∞ -categories.

$$-: \qquad \mathbb{S} \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S}) \xrightarrow{-\otimes -} \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

Tensors of E_{∞} -Groups

Example

 $\operatorname{Grp}_{E_{\infty}}(S)$ is the unit of additive presentable ∞ -categories.

$$-: \qquad \mathcal{S} \times \operatorname{Grp}_{E_{\infty}}(\mathcal{S})$$

$$(-)_{+} \times id \downarrow \qquad \xrightarrow{-\odot -} \operatorname{Grp}_{E_{\infty}}(\mathcal{S}) \xrightarrow{-\odot -} \operatorname{Grp}_{E_{\infty}}(\mathcal{S})$$

$$Pointed: \qquad \mathcal{S}_{*} \times \operatorname{Grp}_{E_{\infty}}(\mathcal{S}) \xrightarrow{-\odot -} \operatorname{Grp}_{E_{\infty}}(\mathcal{S})$$

Tensors of E_{∞} -Groups

Example

 $\operatorname{Grp}_{E_{\infty}}(S)$ is the unit of additive presentable ∞ -categories.

$$-: \qquad \mathbb{S} \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

$$(-)_{+} \times id \downarrow \qquad \qquad \longrightarrow \qquad \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

$$Free \times id \downarrow \qquad \qquad \longrightarrow \qquad \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

$$Additive: \operatorname{Grp}_{E_{\infty}}(\mathbb{S}) \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

Tensors of E_{∞} -Groups

Example

 $\operatorname{Grp}_{E_{\infty}}(S)$ is the unit of additive presentable ∞ -categories.

$$-: \qquad \mathbb{S} \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

$$(-)_{+} \times id \downarrow \qquad -\otimes -$$

$$Pointed: \qquad \mathbb{S}_{*} \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S}) \xrightarrow{-\odot -} \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

$$\operatorname{Free} \times id \downarrow \qquad -\boxtimes -$$

$$Additive: \operatorname{Grp}_{E_{\infty}}(\mathbb{S}) \times \operatorname{Grp}_{E_{\infty}}(\mathbb{S})$$

Old Notation:

$$X \odot G \simeq \operatorname{Free}(X) \boxtimes G \simeq \Omega^{\infty}(\Sigma^{\infty}X \wedge B^{\infty}G)$$

Splitting Groups

Let X be a pointed space

Splitting Groups

Let X be a pointed space

$$\{*\}_{+} \xrightarrow{\kappa} X_{+} \longrightarrow X$$

$$\{*\}_{+} \odot G \longrightarrow X_{+} \odot G \longrightarrow X \odot G$$

$$G \xrightarrow{\kappa} X \otimes G \longrightarrow X \odot G.$$

This gives us an equivalence:

$$X \otimes G \simeq G \times (X \odot G)$$
.

What is a Thom Spectrum?

What is a Thom Spectrum?

- M is colimit preserving.

(Ando-Blumberg-Gepner-Hopkins-Rezk, 2014).

A New Perspective on Thom Spectra I

- $G: E_{\infty}$ -group
- R: E_{∞} -ring spectrum

Left Kan extension:

$$\{*\}_{/BGL_1R} \simeq BGL_1R \xleftarrow{\{R\}} \operatorname{Mod}_R$$

$$\downarrow \\ \$_{/BGL_1R}$$

$$M(f: X \to BGL_1R) = \operatorname{colim}(X \to BGL_1R \hookrightarrow \operatorname{Mod}_R)$$

A New Perspective on Thom Spectra II

Definition

An R-module M is *invertible* if there exists an R-module S, such that $M \wedge_R S \simeq R$. Let $\operatorname{Pic}(R)$ be the subgroupoid of *invertible* R-modules in Mod_R .

We can extend the Thom spectrum to $\operatorname{Pic}(R)$. R inv $\operatorname{Pic}(R) \hookrightarrow \operatorname{Mod}_R \qquad \operatorname{Pic}(R) \xrightarrow{S/\operatorname{Pic}(R)} \operatorname{Mod}_R \qquad \operatorname{Pic}(R) \hookrightarrow \operatorname{Mod}_R)$

Properties of Thom Spectra

1 The construction is symmetric monoidal:

$$M: \mathrm{Grp}_{E_{\infty}}(\mathbb{S})_{/\mathrm{Pic}(R)} \to \mathrm{CAlg}_R$$

In particular

$$Mf \wedge_R Mf \simeq M(G \times G \xrightarrow{\mu} G \xrightarrow{f} \operatorname{Pic}(R))$$

• For example, if $f: G \to \operatorname{Pic}(R)$ is the trivial map, then $M(f) = \mathbb{S}[G] \wedge R$.

Tensor of Thom Spectra

We finally have all the background to do some computations!

Tensor of Thom Spectra

We finally have all the background to do some computations!

Theorem (R-Stonek-Valenzuela)

Suppose $f: G \to \operatorname{Pic}(R)$ is an E_{∞} -map and X is pointed. There is an equivalence of E_{∞} -R-algebras.

$$X \otimes_{R} Mf \simeq Mf \wedge \mathbb{S}[X \odot G].$$

Interesting Implications I

① THH:

$$\mathrm{THH}(Mf) \simeq Mf \wedge \mathbb{S}[S^1 \odot G] \simeq Mf \wedge \mathbb{S}[BG]$$

② Thom Isomorphism:

$$Mf \wedge_R Mf \simeq S^0 \otimes_{\mathbb{R}} Mf \simeq Mf \wedge \mathbb{S}[BG]$$

Extends the result by Schlichtkrull to non-connective Thom spectra.

Interesting Implications II

Theorem (R-Stonek-Valenzuela)

Let $f: G \to \operatorname{Pic}(R)$ be a map of grouplike E_{∞} -spaces and $x \in \pi_*(Mf)$. Let X be a connected pointed space. Then

$$X \otimes (Mf[x^{-1}]) \simeq Mf[x^{-1}] \wedge \mathbb{S}[X \odot G]$$

Interesting Implications II

Theorem (R-Stonek-Valenzuela)

Let $f: G \to \operatorname{Pic}(R)$ be a map of grouplike E_{∞} -spaces and $x \in \pi_*(Mf)$. Let X be a connected pointed space. Then

$$X \otimes (Mf[x^{-1}]) \simeq Mf[x^{-1}] \wedge \mathbb{S}[X \odot G]$$

Example

For any pointed connected space $X: |X| = S[K(\mathbb{Z}_2)] \cap S[K(\mathbb{Z}_2)]$

$$X \otimes KU \simeq X \otimes \mathbb{S}[K(\mathbb{Z},2)][\beta^{-1}] \simeq KU \wedge \mathbb{S}[X \odot K(\mathbb{Z},2)]$$

$$THH(KU) \simeq KU \wedge \mathbb{S}[BK(\mathbb{Z},2)]$$

Proven originally in a model category setting by Stonek.

Proof I

Proof II

$$X = S^{\circ}$$

$$C_{X} C_{XY} \xrightarrow{\longrightarrow} C_{X} C_{X}$$

Proof III

This argument goneralizes

XOME = ME. SIXOG

The End!

For more details see:

- Thom spectra, higher THH and tensors in ∞-categories
- Nima Rasekh, Bruno Stonek, Gabriel Valenzuela
- arXiv:1911.04345

Thank you!

Questions?