Teoria da Computação

Autômatos Finitos Não Determinísticos (AFN)

Felipe Cunha

Sumário

- Introdução
- Autômatos Finitos Não Determinísticos (AFN)
- Equivalência entre AFD's e AFN's
- AFN estendido

• Considere o AFD para a linguagem $L = \{0,1\}^*\{00\}$

E para a linguagem $L = \{0,1\}^* \{000\}$

• Considere o AFD para a linguagem $L = \{0,1\}^* \{000\}$

- Em ambos os exemplos a maior parte da lógica foi para evitar que a palavra terminasse com 00 ou 000
 - Mas parece tão fácil reconhecer que uma palavra termina com 00 ou 000
- Uma definição mais natural seria

O que têm de diferente aqui?

AUTÔMATO FINITO NÃO DETERMINÍSTICO (AFN)

- Em um autômato finito determinístico (AFD), cada par (estado, símbolo) é uma transição para um único estado
- Se está restrição for eliminada, se para algum par (estado, símbolo) houver transições para dois ou mais estados, então têm-se um autômato finito não determinístico (AFN)

• O não determinismo se verifica pela **indecisão** associada ao estado e_1 , que possui duas transições sob o símbolo 0

 Para a palavra 1010 têm-se as seguintes computações possíveis, dependendo do caminho tomado

$$[e_1, 1010] \vdash [e_1, 010] \vdash [e_1, 10] \vdash [e_1, 0] \vdash [e_1, \lambda] \\ [e_2, 10] \vdash [e_2, \lambda]$$

Quando um
AFN
reconhece
uma palavra?

- Com relação ao reconhecimento para AFN
 - Uma palavra é reconhecida se, e somente se, existe uma computação que a consome e termina em estado final
 - Em todo ponto de indecisão, a máquina adivinha qual escolha (se houver alguma) leva a uma computação que resulta em sucesso no reconhecimento

- Um AFN é uma quíntupla $(E, \Sigma, \delta, I, F)$, em que
 - -E é um conjunto finito não vazio de estados
 - $-\Sigma$ é um alfabeto
 - $-\delta: E \times \Sigma \rightarrow P(E)$ é a função de transição (função total)
 - $-I\subseteq E$ é um conjunto não vazio de estados iniciais
 - $-F \subseteq E$ é um conjunto de estados finais
- Exemplo de AFN

Linguagem Reconhecida por AFN

• A linguagem reconhecida por um AFN $M = (E, \Sigma, \delta, I, F)$ é dada por

$$L(M) = \{ w \in \Sigma^* \mid \overset{\wedge}{\delta}(I, w) \cap F \neq \phi \}$$

AFN's possuem maior poder computacional que AFD's?

AFN x AFD

• AFN e AFD para a linguagem $L = \{0,1\}^* \{1010\}$

AFN x AFD

• AFN e AFD para a linguagem $L = \{0,1\}^* \{1\} \{0,1\} \{0,1\}$

EQUIVALÊNCIA ENTRE AFN'S e AFD'S

Equivalência Entre AFN's e AFD's

- Teorema: para qualquer AFN existe um AFD equivalente
 - A ideia é que um estado será um conjunto, significando todos os estados do AFN atingidos por todas as computações possíveis para a mesma palavra
- Seja um AFN $M=(E,\Sigma,\delta,I,F)$, o AFD equivalente é dado por $M'=(\mathrm{P}(E),\Sigma,\delta',I,F')$, onde
 - $-\delta'(\phi,a) = \phi, \forall a \in \Sigma^*$
 - $-\delta'(X,a) = \bigcup_{e \in X} \delta(e,a), \forall a \in \Sigma, X \subseteq E$
 - $-F' = \{X \subseteq E \mid X \cap F \neq \emptyset\}$

Equivalência Entre AFN's e AFD's

Obtenha o diagrama de estados do AFD equivalente ao AFN dado a seguir

Equivalência Entre AFN's e AFD's

Obtenha o diagrama de estados do AFD equivalente ao AFN dado a seguir

AFN ESTENDIDO

AFN Estendido

- Um AFN **estendido** é uma quíntupla $(E, \Sigma, \delta, I, F)$, em que
 - $-E, \Sigma, I, F$ são como em AFN's
 - δ é uma função parcial $E \times D \rightarrow P(E)$, em que D é algum subconjunto finito de Σ^*
- Exemplo: AFNE para $\{w \in \{0\}^* \mid |w| \text{ é par }\} \cup \{w \in \{1\}^* \mid |w| \text{ é impar }\}$

AFN Estendido

Uma transição da forma

pode ser substituída por *n* transições

AFN λ

- Um autômato finito não determinístico com transições λ (AFN λ) é uma quíntupla $M=(E,\Sigma,\delta,I,F)$, onde
 - $-E, \Sigma, I, F$ são como em AFN's
 - δ é uma função total $E \times (\Sigma \cup {\lambda}) \rightarrow P(E)$
- A função **fecho** λ para $M, f \lambda$: $P(E) \rightarrow P(E)$ é definida recursivamente como
 - a) $X \subseteq f\lambda(X)$
 - b) se $e \in f\lambda(X)$, então $\delta(e,\lambda) \subseteq f\lambda(X)$

AFN λ

• A função de transição estendida para um AFN λ $M = (E, \Sigma, \delta, I, F)$, $\delta : P(E) \times \Sigma^* \rightarrow P(E)$ é definida recursivamente como segue

a)
$$\delta(\phi, w) = \phi, \forall w \in \Sigma^*$$

a)
$$\delta(A, \lambda) = f\lambda(A), \forall A \subseteq E$$

a)
$$\delta(A, ay) = \delta(\bigcup_{e \in f\lambda(A)} \delta(e, a), y), \forall A \subseteq E, a \in \Sigma, y \in \Sigma^*$$

A linguagem reconhecida por um AFN λ é dada por

$$L(M) = \{ w \in \Sigma^* \mid \overset{\wedge}{\delta}(I, w) \cap F \neq \phi \}$$

AFN λ

Exemplo de AFN λ

Equivalência entre AFN λ e AFN

- Seja um AFN $\lambda M = (E, \Sigma, \delta, I, F)$, o AFN equivalente é dado por $M' = (E, \Sigma, \delta', I', F)$, onde
 - $-I' = f\lambda(I)$
 - $-\delta'(e,a) = f\lambda(\delta(e,a)), \forall e \in E, a \in \Sigma$
- Exemplo

Equivalência entre AFN λ e AFN

Outro exemplo

Relação Entre Autômatos Finitos

O diagrama abaixo ilustra a relação entre autômatos finitos

