

DATI:

$$V_{DD} = 5V, V_{SS} = -5V$$

 $k_n = 8\text{mA}/V^2, V_{TN} = 0.5V$
 $R_1 = 10k\Omega, R_1 = 4k\Omega$

- 1) Trovare il valore di R_s tale che il MOSFET lavori in saturazione con transconduttanza $g_m = 4mS$
- 2) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o
- 5) Come cambiano le risposte al punto 3 e 4 se si usa un carico $R_L = 1k\Omega$, mantenendo invariato il valore di R_S calcolato al punto 1

DATI:

$$\begin{split} &V_{DD} = 12 V, \, V_{SS} = -12 V \\ &k_n = 4 m A / V^2, \, V_{TN} = 1.5 V \\ &R_1 = 140 k \Omega, \, R_2 = 100 k \Omega, \, R_{S1} = 4.5 k \Omega, \, R_{S2} = 11.5 k \Omega, \\ &R_D = 20 k \Omega, \, R_I = 10 k \Omega, \, R_L = 80 k \Omega \end{split}$$

- 1) Trovare il punto di lavoro (V_{GS},V_{DS}) del MOSFET in condizioni DC
- 2) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o
- 5) Disegnare il modello a doppio bipolo dell'amplificatore
- 6) Supponendo che $v_i = V_i \sin \omega t \cos V_i = 100 \text{mV}$ trovare il minimo e il massimo valore del potenziale del drain v_D del MOSFET e della tensione di uscita v_D

DATI:

$$V_{DD} = 12V$$
, $V_{SS} = -12V$
 $k_p = 3\text{mA}/V^2$, $V_{TP} = -3V$
 $R_2 = 85\text{k}\Omega$, $R_S = 3\text{k}\Omega$, $R_D = 8\text{k}\Omega$, $R_I = 100\Omega$, $R_I = 8\text{k}\Omega$

- 1) Trovare il valore della resistenza R_1 e il punto di lavoro del MOS sapendo che in condizioni stazionarie $I_{DS} = 1.5$ mA
- 2) Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 3) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o
- 4) Disegnare il modello a doppio bipolo dell'amplificatore
- 5) Quanto vale il guadagno di corrente in cortocircuito
- Supponiamo di sostituire la sorgente con un generatore di corrente di norton con resistenza $R_1 = 2.4k\Omega$, calcolare il guadagno di corrente dalla sorgente al carico R_1

DATI:

$$V_{DD} = 3V, k_n = 4mA/V^2, V_{TN} = -0.5V$$

 $R_I = 10k\Omega, R_L = 4.5k\Omega$

- 1) Trovare il valore di R_D tale che $V_{DS} = V_{DD}/2$
- 2) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o

DATI:

$$V_{DD} = 5V$$
 $k_{p1} = 3.2 \text{mA/V}^2, V_{TP} = -1V$
 $k_{p2} = 3.2 \text{mA/V}^2, V_{TP} = -1V$
 $k_{p3} = 0.8 \text{mA/V}^2, V_{TP} = -1V$
 $k_{p4} = 0.8 \text{mA/V}^2, V_{TP} = -1V$
 $R_3 = 25 \text{k}\Omega, R_4 = 35 \text{k}\Omega, R_D = 5 \text{k}\Omega,$
 $R_1 = 15 \text{k}\Omega, R_1 = 20 \text{k}\Omega$

- 1) Trovare il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- 2) Disegnare il circuito ai piccoli segnali
- 3) Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Determinare il valore della resistenza RS affinché il modulo del guadagno a vuoto sia 4.
- 5) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o

DATI:

$$V_{DD} = 5V, V_{SS} = -5V$$

 $k_{n1} = 8mA/V^2, V_{TN} = 1.5V$
 $k_{n2} = 2mA/V^2, V_{TN} = 1.5V$
 $k_{n3} = 0.5mA/V^2, V_{TN} = 1.5V$
 $k_{n4} = 0.5mA/V^2, V_{TN} = 1.5V$
 $R_1 = 10k\Omega, R_1 = 3k\Omega$

- Trovare il valore di R_B affinché la transconduttanza di M1 (in saturazione) sia 4mS.
- 2) Il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- 3) Disegnare il circuito ai piccoli segnali
- 4) Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 5) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o

DATI:

$$\begin{split} &V_{DD}=3V,\,V_{SS}=-3V\\ &k_{p1}=0.4\text{mA/V}^2,\,V_{TP}=-0.5V,\,\lambda_p=0\\ &k_{n2}=0.1\text{mA/V}^2,\,V_{TN}=0.5V,\,\lambda_n=0.01V^{-1}\\ &k_{p3}=2.5\text{mA/V}^2,\,V_{TP}=-0.5V,\,\lambda_p=0.005V^{-1}\\ &k_{p4}=5\text{mA/V}^2,\,V_{TP}=-0.5V,\,\lambda_p=0\\ &R_1=2.5k\Omega,\,R_1=45k\Omega \end{split}$$

- 1) Trovare il valore di R_B tale che la corrente attraverso M_a sia 0.4mA
- 2) Trovare il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- 3) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 5) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o

DATI:

$$\begin{split} &V_{DD} = 3V,\, V_{SS} = -5V \\ &k_{n1} = 8mA/V^2,\, V_{TN} = 1V,\, \lambda_n = 0.01V^{-1} \\ &k_{n2} = 0.5mA/V^2,\, V_{TN} = 1V,\, \lambda_n = 0.01V^{-1} \\ &k_{n3} = 2mA/V^2,\, V_{TN} = 1V,\, \lambda_n = 0.01V^{-1} \end{split}$$

$$R_{l} = 10k\Omega$$
, $R_{L} = 1k\Omega$

- 1) Trovare il punto di lavoro (V_{GS} , V_{DS}) di tutti i MOSFET e il valore di R_B in condizioni DC, sapendo che M1 ha V_{GS} = 1.5V
- 2) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione dall'ingresso v_i all'uscita v_o

DATI:

$$\begin{split} &V_{DD} = 7V, \, V_{SS} = -7V \\ &k_1 = k_2 = 1 \text{mA/V}^2, \, V_{TP} = -2V \\ &k_3 = 8 \text{mA/V}^2, \, \lambda_p = 0.001 V^{-1} \\ &k_4 = 2.2 \text{mA/V}^2, \\ &R_B = 10 k\Omega, \, R_D = 2.5 k\Omega, \, R_L = 10 k\Omega \end{split}$$

- Trovare il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- 2) Disegnare il circuito ai piccoli segnali
- Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione di modo differenziale rispetto alla tensione $v_2 v_1$.
- Calcolare il guadagno di modo comune e il CMRR

DATI:

$$V_{DD} = 4V$$
, $V_{SS} = -4V$
 $k_1 = k_2 = 5\text{mA/V}^2$, $V_{TN} = 1V$
 $k_3 = k_4 = 0.2\text{mA/V}^2$,
 $k_5 = k_6 = 2.5\text{mA/V}^2$, $\lambda_5 = 0.001V^{-1}$
 $R_1 = 60\text{k}\Omega$

- 1) Trovare il valore di R_B tale che $I_{DS1} = 0.4$ mA
- 2) Trovare il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- 3) Disegnare il circuito ai piccoli segnali
- 4) Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 5) Calcolare il guadagno di tensione di modo differenziale rispetto alla tensione $v_1 v_2$.
- 6) Calcolare il guadagno di modo comune e il CMRR

DATI:

$$\begin{split} &V_{DD} = 4V,\, V_{SS} = -4V \\ &k_1 = 1 mA/V^2 \,,\, V_{TN} = 1V \\ &k_2 = 10 mA/V^2 \,,\, V_{TN} = 1V,\, \lambda_2 = 0.01V^{-1} \\ &k_3 = 4 mA/V^2 \,,\, V_{TN} = 1V \\ &k_4 = 10 mA/V^2 \,,\, V_{TN} = 1V,\, \lambda_4 = 0.01V^{-1} \\ &k_5 = 8 mA/V^2 \,,\, V_{TN} = 1V \end{split}$$

$$\begin{aligned} R_1 &= 500 k \Omega & R_1 &= 10 k \Omega, \\ R_2 &= 300 k \Omega & R_L &= 1 k \Omega \\ R_3 &= 100 k \Omega & R_B &= 7 k \Omega \\ R_4 &= 300 k \Omega & R_D &= 8 k \Omega \end{aligned}$$

- Trovare il punto di lavoro (V_{GS},V_{DS}) di tutti i MOSFET in condizioni DC
- Disegnare il circuito ai piccoli segnali
- 3) Calcolare le resistenze di ingresso e di uscita dell'amplificatore
- 4) Calcolare il guadagno di tensione da v_i a v_o

DATI:

$$R_1 = 3k\Omega$$

 $R_L = 10k\Omega$

- 1) Trovare R_2 affinché $A_v = 10$
- 2) Calcolare la corrente erogata o assorbita dall'AO con $v_S = 1V e v_S = -1V$

DATI:

 $R_1 = 10k\Omega$

 $R_2 = 60k\Omega$

 $R_L = 1k\Omega$

- 1) Trovare A_v
- 2) Calcolare la corrente erogata o assorbita dall'AO con $v_s = 2V$
- 3) Sostituiamo v_s con una sorgente reale di tensione con resistenza serie R_s = $2k\Omega$. Come cambiano le risposte ai punti 1 e 2?

- Trovare il guadagno e la resistenza di ingresso dell'amplificatore in funzione di R₁ e R₂
- 2) Trovare il valore di R_1 e R_2 affinché A_v = 0.25 e R_{IN} = 100k Ω
- 3) Calcolare la corrente erogata o assorbita dall'AO con $v_S = 10V$

- 1) Trovare v_0 in funzione di v_1 , v_2 e v_3
- 2) Assumendo $R_1 = 5k\Omega$ e $R_2 = 100k\Omega$, calcolare la tensione di uscita con:
 - A) $v_1 = 1V$, $v_2 = 0.9V$, $v_3 = 0V$
 - B) $v_1 = 0V$, $v_2 = 0V$, $v_3 = 3V$
 - C) $v_1 = 1V$, $v_2 = 0.9V$, $v_3 = 3V$
- 3) Assumiamo v3 = v1. Calcolare il guadagno di modo comune, il guadagno di modo differenziale e il CMRR dell'amplificatore

$$R_1$$
 = 5k Ω , R_2 = 20k Ω , R_3 = 40k Ω , R_4 = 10k Ω e R_5 = 4k Ω

Calcolare il guadagno dell'amplificatore e la corrente erogata dall'AO con $v_s = 1V$

- 1) Trovare la relazione tra v_0 e gli ingressi v_1 , v_2 e v_3
- 2) Ponendo $R_4 = 12k\Omega$, determinare R_1 , R_2 e R_3 in modo che $v_0 = 4v_3 3v_1 2v_2$

 $R_1 = 100k\Omega$, $R_2 = 10k\Omega$

- 1) Trovare la relazione tra i_0 e i_S in funzione del carico R_L .
- Disegnare lo schema a doppio bipolo dell'amplificatore e calcolare il guadagno, la resistenza di uscita e la resistenza di ingresso
- 3) Che valore devono avere R₃ e R₄ affinché il guadagno in cortocircuito abbia modulo 100 e la resistenza di uscita sia infinita?

$$R_1 = 1k\Omega, R_2 = 99k\Omega, R_4 = 8k\Omega$$

- 1) Trovare la relazione tra v_o e v_s .
- 2) Che valore deve avere R₃ affinché il guadagno sia 10?

$$V_{ON} = 0$$
, $V_{Z} = 4V$, $R_{1} = 100k\Omega$, $R_{2} = 40k\Omega$, $R_{3} = 60k\Omega$, $R_{4} = 12k\Omega$

- 1) Tracciare la transcaratteristica di v_o in funzione di v_s .
- 2) Determinare le coordinate dei punti di spezzamento

$$V_{ON} = 0.8V$$

- 1) Tracciare la transcaratteristica di v_o in funzione di v_s .
- 2) Determinare le coordinate dei punti di spezzamento

$$R_1$$
 = 1k Ω , R_2 = 10k Ω , R_L = 1k Ω , V_{OS} = 50mV, V_{MAX} = 9.5V, V_{MIN} = -9.5V, I_{OMAX} = 6mA

- 1) Dato il circuito di figura A, calcolare la tensione v_0 , il potenziale del terminale invertente v_N e la corrente erogata dall'AO con:
 - A) $v_s = 0.5V$
 - B) $v_s = 1V$
 - C) $v_s = -1V$

(assumere sempre nulla la corrente assorbita dagli ingressi dell'AO)

2) Dato il circuito di figura B, calcolare la tensione v_o e la corrente erogata dall'AO alle stesse tensioni del punto 1

$$R_1$$
 = R_3 = $1k\Omega$, R_2 = $99k\Omega$, V_{OS} = $1mV$, I_{BP} = $0.99\mu A$, I_{BN} = $1\mu A$

- 1) Dato il circuito di figura A, calcolare la tensione v_o con:
 - A) $v_S = 0V$
 - B) $v_S = 0.1V$
- 2) Dato il circuito di figura B, calcolare la tensione $v_{\rm O}$ alle stesse tensioni del punto 1

 R_1 = 1kΩ, R_2 = 12kΩ, R_3 = 5kΩ , R_4 = 10kΩ, V_{OS} = 2mV, I_{BP} = 10nA, I_{BN} = 9nA

- 1) Calcolare il guadagno del circuito assumendo gli AO ideali
- 2) Calcolare la tensione v_O assumendo gli operazionali reali e:
 - A) $v_1 = v_2 = 0V$
 - B) $v_1 = 1V$, $v_2 = 1.2V$
- 3) Come cambia la risposta al punto 2.B se si avesse un CMRR = 1000

 $R_1 = 1k\Omega$

Dato il filtro passabanda in figura

- 1) Trovare la funzione di trasferimento
- 2) Calcolare R_2 , C_1 e C_2 affinché il guadagno in banda sia 40dB e la banda passante sia tra 100rad/s e 1000rad/s
- 3) Tracciare i diagrammi di bode di modulo e fase

$$R_1 = 1k\Omega$$
, $R_2 = 10k\Omega$, $R_3 = 40k\Omega$, $C_1 = 10nF$, $C_3 = 50nF$

- 1) Trovare la funzione di trasferimento
- 2) Tracciare i diagrammi di bode di modulo e fase
- 3) Calcolare ampiezza e fase del segnale di uscita <u>usando il diagramma</u> <u>asintotico di Bode</u>, quando all'ingresso è applicato il segnale $v_S = V_S \sin(\omega_S t + \phi_S)$ con:
 - A) $V_S = 0.5V$, $\phi_S = 10^{\circ}$, $\omega_S = 100 rad/s$
 - B) $V_S = 1V$, $\phi_S = 10^{\circ}$, $\omega_S = 10^{6} rad/s$

 $R = 5k\Omega$, C = 200nF

Dato il filtro in figura, assumendo $R_1 = R$

- 1) Trovare la funzione di trasferimento
- 2) Calcolare il guadagno per $\omega = 0$ e $\omega \rightarrow \infty$. Identificare il tipo di filtro
- 3) Tracciare i diagrammi di bode di modulo e fase
- 4) Come cambiano le risposte se $R_1 = 550k\Omega$

 $R = 10k\Omega$, C = 100nF

- 1) Trovare la funzione di trasferimento
- 2) Tracciare i diagrammi di bode di modulo e fase
- 3) Calcolare ampiezza e fase del segnale di uscita <u>usando il diagramma asintotico di</u> <u>Bode</u>, quando all'ingresso è applicato il segnale:

$$v_S = V_{S1}\sin(\omega_{S1}t+\phi_{S1}) + V_{S2}\sin(\omega_{S2}t+\phi_{S2})$$
 Con: V_{S1} = V_{S2} = 1V, $\phi_{S1} = \phi_{S2}$ = 45°, $\omega_{S1} = 100rad/s$, $\omega_{S2} = 1000rad/s$

$$R_1 = 10k\Omega$$
, $R_2 = 1k\Omega$, $C_1 = 1\mu F$, $C_2 = 50nF$

- 1) Trovare la funzione di trasferimento
- 2) Tracciare i diagrammi di bode di modulo e fase

 $R = 5k\Omega$, C = 20nF

- 1) Trovare la funzione di trasferimento
- 2) Tracciare i diagrammi di bode di modulo e fase
- 3) Quanto valgono modulo e fase stimate dal diagramma di Bode asintotico? e quanto il valore esatto?