

Data Analysis of the Passengers' Flows from the Hong Kong Airport

DONG Zhengyuan MAO Yusang LIN Yuhang PENG Zhichao ZHAO Yiming,

Schedule

- Background
- Assumptions
- Estimations
- Forecasting

Background

 Passenger capacity of the airport will grow at an annual rate of 4% in the next 10 years

• KPI (key performance index): At least 95% of departing passengers (with their flights departing from 7:00am to 10:55am) at the immigration counter have to wait for less than 15 minutes.

Airline Counter

Pre-document Counter

Security Counter

Immigration Counter

Arrival Time

Service Time

Waiting Time

Flight Information

Passenger Information

	香港人	訪港 旅客	轉機過境旅客 總數	非港人旅客 總數	非港人旅客 轉機過境比例	總旅客
2008	11552	19616	17417	37033	47.03%	48585
2015	14109	23021	19491	42512	45.85%	56621
2023	18883	30809	26296	57105	46.05%	75988
2030	24018	39187	33809	72996	46.76%	97015
全部準確至千位(,000)						

	Base	Worst
HK Resident	0.69	0.61
Non-resident	0.31	0.39

- 1. Assume 111 flights in 2016 would not change their type and time.
- 2. Assume the number of flight also increases by 0.04 each year.
- 3. Assume the flights of airline companies are the same proportion as in 2016.
- 4. Assume the capacity of flights remains the same.

Flight Information

5. Assume the number of passengers on the flights follows the same distributions as in 2016.

Beta Distribution				
alpha	2.25			
beta	5.95			
min	66.09			
max	458.74			

6. Assume the proportion of different groups on different types of flights would keep the same.

# of people							
in group	1	2	3	4	5	6	7
S	0.32	0.29	0.09	0.20	0.05	0.04	0.00
M	0.30	0.28	0.10	0.20	80.0	0.03	0.01
L	0.33	0.26	0.09	0.24	0.05	0.01	0.01
UL	0.28	0.29	0.12	0.21	0.07	0.02	0.01

Passenger Information

1. Assume the probability of a passenger being resident and the probability of checking in on different types of flights also keep the same as 2016.

	Non-resident	HK Resident	Check in	Don't Check in
S	0.25	0.75	0.45	0.55
M	0.30	0.70	0.65	0.35
L	0.71	0.29	0.94	0.06
UL	0.69	0.31	0.86	0.14

- ΔT = Flight departure time Airline counter arrival time
- How long the passengers will arrive at the airport in advance.
- Whether they need to visit the airline counter
- HK resident/non-residentWhether they are familiar with the airport
- Take the ticket only/need to deal with luggage Flight type

Resident Identity

Need of Check in

12

- -s,m,check in,non resident (Emprical)
- -s,m,check in,non resident (Model)
- —I,ul,check in,non resident (Emprical)
- --- I,ul,check in,non resident (Model)
- No need check in, non resident (Emprical)
- No need check in, non resident (Model)
- —s,m, check in, resident (Emprical)
- —s,m, check in, resident (Model)
- I,ul,check in, resident (Emprical)
- —I,ul,check in, resident (Model)
- No need check in, resident (Emprical)
- No need check in, resident (Model)

- —s,m,check in,non resident (Emprical)
- -s,m,check in,non resident (Model)
- —I,ul,check in,non resident (Emprical)
- --- I,ul,check in,non resident (Model)
 - No need check in, non resident (Emprical)
- No need check in, non resident (Model)
- —s,m, check in, resident (Emprical)
- s,m, check in, resident (Model)
- I,ul,check in, resident (Emprical)
- —I,ul,check in, resident (Model)
- No need check in, resident (Emprical)
 - No need check in, resident (Model)

- s,m,check in,non resident (Emprical)
- ---s,m,check in,non resident (Model)
- I,ul,check in,non resident (Emprical)
- --- I,ul,check in,non resident (Model)
- No need check in, non resident (Emprical)
- No need check in, non resident (Model)
- —s,m, check in, resident (Emprical)
- —s,m, check in, resident (Model)
- I,ul,check in, resident (Emprical)
- —I,ul,check in, resident (Model)
- No need check in, resident (Emprical)
- No need check in, resident (Model)

Arrival Time – Pre-document Counter

- ΔT = Pre-document counter arrival time— Airline counter departure time
- Time needed for walking
- Perhaps they will go around or have some meals before entering the restricted area
- HK resident / Non-resident
- Whether they are familiar with the airport
- How long the plane will take off
- Time permitted, perhaps they can walk around

Arrival Time – Pre-document Counter – HK Resident

Original data - HK resident

	min	1:37:01					
	max	1:49:20					
	gap	0:00:04					
		0.067367	0.067409878	0.067452648	0.067495	0.067538	0.067581
		1	11	3	16	4	8
0:00:50	1:37:01	0:00:50	0:00:50	0:00:50	0:00:50	0:00:50	0:00:50
0:00:50	1:37:01	0:00:00	0.00058017	0	0	0	0
0:00:50	1:37:01	0:00:00	0.000578251	0	0	0	0
0:00:50	1:37:01	0:00:00	0.000578464	0	0	0	0
0:00:51	1:37:02	0:00:00	0.000594841	0	0	0	0
0:00:50	1:37:02	0:00:00	0.000580846	0	0	0	0
0:00:50	1:37:02	0:00:00	0.000577441	0	0	0	0
0:00:52	1:37:03	0:00:00	0.000602332	0	0	0	0
0:00:52	1:37:03	0:00:00	0.000597831	0	0	0	0
0:00:50	1:37:03	0:00:00	0.000582634	0	0	0	0

Arrival Time – Pre-document Counter – HK Resident

How long will the plane take off

Intercept -0.05899 X Variable 0.88422

maximun delat T After 1:48:20

how long will the plane take off

Intercept -0.06737 X Variable 0.990533

0:00:00

Arrival Time – Pre-document Counter – HK Resident

Original data - HK resident

T: How long the plane will take off

X: time difference between pre-document arrival time and airline counter arrival time

U[0:00:40,0:02:40]

0:57:36

 $1:37:00 \le T \le 1:48:20$

U[0:00:50, 0.8842T-0.0590]

T > 1:48:00

80.50% passengers U[0:00:50,0:13:21]

19.50% passengers

U[0:13:21,0.9905T-0.0674]

Arrival Time – Pre-document Counter – Non-resident

Original Data-NonResident

Arrival Time – Pre-document Counter – Non-resident

Mixture of three uniforms

U[0:00:40,0:03:00]

U[0:03:00, 0:13:00]

U[0:13:00,0:41:31]

0:00:40	0
0:03:00	0.360031633
0:13:00	0.871781883
0:41:31	1.000032038
222.063808 5	-0.102807319
73.7519316 4	0.206313353
6.47519382 2	0.813355783
critical value	0.020207266
	0:03:00 0:13:00 0:41:31 222.063808 5 73.7519316 4 6.47519382 2

Arrival Time – Security Counter

 ΔT = Security counter arrival time – Pre-document counter departure time

1.2

- > Short distance
- Passengers can do nothing else
- > Time needed for walking ONLY

U[0:00:15,0:00:30]

Arrival Time – Immigration Counter

 ΔT = Immigration counter arrival time – Security counter departure time

- Non-residents only, walking time
- Groups DO NOT go together

Truncated Normal

N(0:01:05,0:00:18²)

=COUNTIF(\$B\$3:\$B\$3037, "<="&B3)/COUNT(\$B\$3:\$B\$3037)

	Airline Cou	inter Service	Time S&M							
Individual	i/n	Model cdf	abs_i/n	abs_i-1/n		Group(2)	i/n	Model cdf	abs_i/n	abs_i-1/n
1.13039	0.0003295	0	0.000329	0		1.582228	0.000723	0	0.000723	0
1.13042	0.000659	0	0.000659	0.000329	4	1.583922	0.001445	0	0.001445	0.000723
1.13121	0.0009885	0	0.000988	0.000659	1	1.584704	0.002168	0	0.002168	0.001445
1.13151	0.001318	0	0.001318	0.000988		1.584887	0.00289	0	0.00289	0.002168
1.13194	0.0016474	0	0.001647	0.001318		1.585083	0.005013	0	0.003613	0.00289
1.13208	0.0019769	0	0.001977	0.001647		1.585555	0.004335	0	0.004335	0.003613
1.13224	0.0023064	0	0.002306	0.001977		1.581 793	0.005058	0	0.005058	0.004335
1.13246	0.0026359	0	0.002636	0.002306		1.5 5803	0.00578	0	0.00578	0.005058
1.13253	0.0029654	0	0.002965	0.002636		1, 86135	0.006503	0	0.006503	0.00578
1.13261	0.0032949	0	0.003295	0.002965		1.58769	0.007225	0	0.007225	0.006503
1.13273	0.0036244	0	0.003624	0.003295		1.589087	0.007948	0	0.007948	0.007225
1.13287	0.0039539	0	0.003954	0.003624		1.589469	0.008671	0	0.008671	0.007948
1.13321	0.0042834	0	0.004283	0.003954		1.589749	0.009393	0	0.009393	0.008671
1.13338	0.0046129	0	0.004613	0.004283		1.591413	0.010116	0	0.010116	0.009393
1.1337	0.0049423	0	0.004942	0.004613		1.591506	0.010838	0	0.010838	0.010116
1.13412	0.0052718	0	0.005272	0.004942		1.591926	0.011561	0	0.011561	0.010838

Individual	х	У	k	m
a	1.148692	0	1.323632419	-1.52045
turning point	1.646456	0.658855	0.297211623	0.16951
b	2.794273	1		
	max	sumsq	to optimize	
ks-test	0.02108	0.72069	0.021086944	
D_n	0.024652			
Group(2)	х	у	k	m
a	1.593195	0	1.270842724	-2.0247
turning point	2.103528	0.648554	0.265933463	0.089155
b	3.425085	1		
	max	sumsq	to optimize	
ks-test	0.020542	0.339158	0.020544929	
Dn	0.036506			

Short and Medium flight type can be modeled by a mixture of two uniform distributions.

Lines	x	y(min)	y(turning)	y(max)
	1	1.148692	1.6464555	2.794273
	2	1.593195	2.1035283	3.425085
	3	2.048019	2.5670384	3.81
	4	2.473641	2.9984634	4.348375
y-turning	x	У		
	1	0.658855		
	2	0.648554		
	3	0.649069		
	4	0.650236		
	k	m		
min line	0.442967	0.708469		
turning line	0.451953	1.198988		
max line	0.504722	2.332628		
y tunring	-0.00253	0.658015		

K-S Test

	max	sumsq	to optimize	D_n
Individual	0.058252	0.502083	0.05825745	0.07726
			0.05666392	
Group(3)	0.103448	0.130756	0.10344958	0.252193
			0.06028327	

K-S Test

	max	sumsq	to optimize	D_n
Individual	0.051858	0.527202	0.051863	0.082196
Group(2)	0.062711	0.095245	0.062711	0.117322
Group(3)	0.078927	0.095245	0.078928	0.21747
Group(4)	0.056604	0.061156	0.056604	0.18655

Use VBA to calculate the service time of each passenger.

```
Function AirlineSM(i)
p = Rnd()
  = -0.00253
   = 0.658015
   = 0.708469
   = 0.451953
 a3 = 0.504722
k1 = (k * i + m) / ((a2 * i + b2) - (a1 * i + b1))

k2 = (1 - (k * i + m)) / ((a3 * i + b3) - (a2 * i + b2))
m1 = -k1 * (a1 * i + b1)
m2 = 1 - k2^* (a3 * i + b3)
If k * i + m > p Then
x = (p - m1) / k1
Else
x = (p - m2) / k2
AirlineSM = x
End Function
```

J	K					
Α	irline counter					
1	1.395701695					
1	1.851661888					
2	2.025305764					
1	2.025305764					
3	2.392169915					
2	2.392169915					
1	2.392169915					
3	0					
2	0					
1	0					

Lines	x	y(min)	y(turning)	y(max)
	1	1.148692	1.6464555	2.794273
	2	1.593195	2.1035283	3.425085
	3	2.048019	2.5670384	3.81
	4	2.473641	2.9984634	4.348375
y-turning	x	у		
	1	0.658855		
	2	0.648554		
	3	0.649069		
	4	0.650236		
	k	m		
min line	0.442967	0.708469		
turning line	0.451953	1.198988		
max line	0.504722	2.332628		
y tunring	-0.00253	0.658015		

I = IF(D2 = "Y", IF(OR G2 = "S", G2 = "M"), AirlineSM(B2), IF(G2 = "L", AirlineL(B2), AirlineUL(B2))), 0)

=IF(OR(AND(J3>J2,J3>J4),J3=J2),IF(D3="Y",IF(OR(G3="S",G3="M"),AirlineSM(B3),IF(G3="L",AirlineL(B3),AirlineUL(B3))),0)
=IF(OR(AND(J4>J3,J4>J5),J4=J3),IF(D4="Y",IF(OR(G4="S",G4="M"),AirlineSM(B4),IF(G4="L",AirlineL(B4),AirlineUL(B4))),0)
=IF(OR(AND(J5>J4,J5>J6),J5=J4),IF(D5="Y",IF(OR(G5="S",G5="M"),AirlineSM(B5),IF(G5="L",AirlineL(B5),AirlineUL(B5))),0)
=IF(OR(AND(J6>J5,J6>J7),J6=J5),IF(D6="Y",IF(OR(G6="S",G6="M"),AirlineSM(B6),IF(G6="L",AirlineL(B6),AirlineUL(B6))),0)

Service Time – Pre-document Counter

	x	y(min)	y(max)
	1	0.053321068	0.119610089
	2	0.106750051	0.173946296
	3	0.158729667	0.227157867
	4	0.213655175	0.279878452
	5	0.272029879	0.334868318
	а	b	
min line	0.05443227	-0.00239966	
max line	a	b	
	0.05364486	0.06615762	

Service Time – Pre-document Counter

	individual	Group(2)	Group(3)	Group(4)	Group(5)	Group(6)	Group(7)
min	0.05332107	0.106750051	0.158729667	0.2136552	0.272029879	0.321691018	0.376401221
max	0.11961009	0.173946296	0.227157867	0.2798785	0.334868318	0.387400873	0.447806343
k	15.0854543	14.88178382	14.61385811	15.100431	15.91382628	15.2184174	14.00459766
m	-0.80437253	-1.58863118	-2.31965284	-3.226285	-4.32903624	-4.895628184	-5.271347659
D0	0.00822891	0.016962079	0.026949622	0.0168765	0.06666667	0.054827124	0.127742139
D_n	0.01709826	0.025214965	0.053433789	0.04242	0.085047616	0.128328531	0.329388
Sumsq	0.13495266	0.35271445	0.203813847	0.1050808	0.314910797	0.090762566	0.101278288
Optimize	0.01709961	0.025218492	0.053435828	0.042421	0.085050765	0.128329439	0.329389013

```
Function Predocument(i)

a1 = 0.054432275

a2 = 0.053644861

b1 = -0.002399656

b2 = 0.06615762

k = 1 / ((a2 * i + b2) - (a1 * i + b1))

b = -(a1 * i + b1) * k

y = Rnd()

x = (y - b) / k

Predocument = x

End Function
```


Service time - Security counter

2	Passenger ID	Group Traveler?	Service Time (in Mins)
3	44	Individual	0.46962
4	34	Individual	0.45032
5	168	Individual	0.46025
6	154	Group	0.28827
7	155	Group	0.41441
8	158	Group	0.25027
9	161	Group	0.44038
10	13	Individual	0.3391
11	112	Individual	0.4009
12	49	Individual	0.34475
13	163	Individual	0.49137
14	116	Individual	0.2713
15	72	Group	0.30914
16	75	Group	0.34429

Same group, but different service time.

■ Total number: 20215

■ Min: 0.25000407

■ Max: 0.499990668

Passengers pass the security counter (X-ray machine) one by one.

So it is intuitively reasonable to assume that security service time is independent of number of group. And every passenger here is treated fairly.

Service time - Security counter

D0 : 0.003157D_n: 0.009552

• F(t)= 4.011155 *t-1.00467

(Model: time=(rand()+1.00467)/4.011155)

Service time – Immigration counter

Service time – e-Channel Counter

E-channels service time

- Assume only HK-residents use e-channels and HK-residents only use e-channels and pass one by one.
- So it is intuitively reasonable to assume that security service time is independent of number of group.

Service time – Immigration counter

Information		Immigration Clearance Count				
Group Traveler?	Passenger Type	Counter Type	Service Time (in Mins)			
Group	Non-resident	Immigration_Counter	1.792163214			
Group	Non-resident	Immigration_Counter	1 792163214			
Group	Non-resident	Immigration_Counter	1.43265684			
Group	Non-resident	Immigration_Counter	1.43265684			
Individual	Non-resident	Immigration_Counter	0.903502285			
Group	Non-resident	Immigration_Counter	1.693862741			
Group	Non-resident	Immigration_Counter	1.693862741			
Group	Non-resident	Immigration_Counter	1.693862741			
Individual	Non-resident	Immigration_Counter	1.076388503			
Group	Non-resident	Immigration_Counter	1.134586308			
Group	Non-resident	Immigration_Counter	1.134586308			
Individual	Non-resident	Immigration_Counter	0.968755658			
Individual	Non-resident	Immigration_Counter	1.203670088			
Group	Non-resident	Immigration_Counter	1.049915669			
Group	Non-resident	Immigration_Counter	1.049915669			
Individual	Non-resident	Immigration_Counter	1.250377264			
Individual	Non-resident	Immigration_Counter	0.943601628			
Individual	Non-resident	Immigration_Counter	1.618557995			

Same group has the same service time.
Thus, grouping and eliminating duplications are necessary.

d	A	В	С	D	E	F	G
1	Individual		Group of 2		Group of 3		Group of
2	0 23506981		1.020255747		1.335084586		1.640195
3	0.72838919		1.024177918		1.345635772		1.643256
4	0.728827263		1.025466336		1.349600162		1.646206
5	0.730027346		1.03217478		1.352729711		1.658255
6	0.730427434		1.03224422		1.368484126		1.664238
7	0.730681734		1.032779922		1.368822897		1.66759
8	0.73210901		1.034476019		1.369223889		1.66777
9	0.733984181		1.03613211		1.371000575		1.668508
10	0.734351303		1.041011217		1.385935212		1.669308
11	0.735645488		1.041186647		1.386525671		1.67291
12	0.736595168		1.045000818		1.399270173		1.675191
13	0.737223667		1.0488985		1.404937061		1.683902
14	0.738162101		1.049915669		1.414482752		1.686485
15	0.738237171		1.052987948		1.417506742		1.686947
16	0.738641127		1.053960893		1.419021047		1.689167
17	0.738716556		1.053977462		1.421552327		1.694624
18	0.740387908		1.055068758		1.422920692		1.695382
19	0.741268893		1.055720883		1.434025762		1.697855
20	0.742503826		1.057684647		1.43916279		1.699708
21	0.742763976		1.057773717		1.441657467		1.707607
22	0.744675257		1.060968428		1.446494817		1.711264
23	0.745835034		1.064733679		1.454220307		1.716524

Service time – Immigration counter

0.9

- Parameter: λ, a, b;
- (Why not Gamma distribution? To reduce number of parameters.)

-Individual

Truncated exponential distribution

Immigration counter

	k	1							
(Exponential)	Individual	а	1.604238						
		b	18.41783						
		lambda	0.611184						
		max	sumsq	to optimize					
	ks-test	0.015462	0.133981						
	D_n	0.029337							
	k	2							
(Exponential)	Group(2)	а	2.639773						
		b	18.41783			177			
		lambda	0.611184		(Exp dist)	Group(5)	a	5.746378	
							b	18.41783	
							lambda	0.611184	
		max	sumsq	to optimize					
	ks-test	0.02556	0.22183	0.02556193			max	sumsq	to optimize
						ks-test			
	D_n	0.04522				KS CCSC	0.032103	0.130103	0.03210030
	k	3				D_n	0.155785		
(Exp dist)	Group(3)	а	3.675308			k	6		
		b	18.41783		(Exp dist)	Group(6)	a	6.781913	
		lambda	0.611184				b	18.41783	
							lambda	0.611184	
		max	sumsq	to optimize					
	ks-test	0.097007				To a cont	max	sumsq	to optimize
						ks-test	0.189153	0.360801	0.18915665
	D_n	0.097007				Dn	0.31157		

Vba code to model.

```
Function immigration(i)
k = 0.320063039
m = 0.42397627
a = k * i + m
b = 6.690427443
lambda = 1.654961148
y = Rnd()
x = -Log(1 - y * (1 - Exp(-lambda * (b - a)))) / lambda + a
immigration = x

End Function
```

- a(min) = 0.320 *k+ 0.42397; k=# of passengers in a group
 - (Makes sense, add one period of time per person.)
- **b**(max)=6.6904;

(Since b has little influence of model, set it to one certain value to reduce the parameter.)

= λ = 1.654961;

Waiting Time

Calculate rather than model

Arrival time & Service time

Assumptions:

- ➤ Passengers line up in a single queue only, and each of them will be served by the first available counter.
- ➤ At airline counter, pre-document counter and immigration counter, a group will queue up together and be served together by one counter.
- ➤ At security counter, a group of people will be served as individual, that is to say they can go to different counters.

Monte Carlo:

- > KPI based on waiting time for each type of counter
- ➤ Airline counter: for each airline company

	In 2016	Base case	Worst case
Resident	0.69	0.69	0.61
Non-resident	0.31	0.31	0.39
# of immigration counters	20	27	32
# of immigration counters needed to be added		7	12

THANK YOU