Procedimiento Lignina Ácido Soluble (LAS)

Índice de Figuras	
Figura 1. Materiales Necesarios.	1
Índice de Tablas	
Tabla 1. Preparación de la Solución 3-4% H ₂ SO ₄	2
Tabla 2. Equivalencias que se usan normalmente al medir la Lignina (LAS)	3
Índice de Ecuaciones	
Ecuación 1. Ecuación para el cálculo de diluciones	
Ecuación 2. Ejemplo de Dilución 1:10 con 5 mL	2
Ecuación 3. Ejemplo de Dilución con 0,5 ml de Muestra en 5 mL de volumen total	2

Muestras

Uso

Líquidos después de una caracterización PULS.

Calcular la lignina de una muestra después de caracterización PULS.

Materiales Necesarios

Figura 1. Materiales Necesarios.

Equipos Necesarios

- Espectrofotómetro
- Agitador

Químicos Necesarios

Ácido (H₂SO₄ 72%)

Procedimiento

1. Solución 3-4% H₂SO₄

Preparar la solución 3-4% H₂SO₄, dependiendo cuánto quede en el bote habrá que hacer una o el doble, triple a la vez.

Solución	Cantidad (mL)
Ácido (H ₂ SO ₄ 72%)	3

Agua Destilada	84
----------------	----

Tabla 1. Preparación de la Solución 3-4% H₂SO₄.

2. Encender Espectrofotómetro

Pulsar el botón de encendido del lateral izquierdo del instrumento y esperar que arranque. Pulsar en aplicaciones, longitud de onda simple, 205 mm. Luego, preparar los 2 blancos echando en las cubetas de cuarzo la disolución del ácido 3-4% y posteriormente metiéndolos dentro del espectrofotómetro. Por último, pulsar en la tecla que pone blanco y esperar que analice la absorbancia, tiene que salir 0.

Hay que revisar que las cubetas sean de cuarzo y no de plástico porque las de plástico dan problemas al medir la absorbancia. Colocar las cubetas de forma que la luz pase a través de la parte transparente.

3. Probar las diluciones

Hay que ir probando distintas combinaciones para saber qué dilución se ajusta correctamente, para que la absorbancia esté entre 0.2 y 0.7, aproximadamente. Para calcular estas combinaciones existe una fórmula con 2 variantes:

$$\frac{1 \ ml \ Muestra}{Y \ ml \ Dilución} \times Z \ ml \ Disolución = X \ ml \ Muestra$$

Ecuación 1. Ecuación para el cálculo de diluciones.

Para saber el volumen de Muestra necesitamos saber cuál será el factor de disolución y el volumen total, que suele ser 5 ml.

Ejemplo Dilución 1:10 en 5 ml de Volumen Total:

$$\frac{1}{10} \times 5 = X Muestra$$

Ecuación 2. Eiemplo de Dilución 1:10 con 5 mL.

X Muestra= 0,5 ml Muestra

Por lo tanto, lo que falta hasta llegar a 5 ml del volumen total es de solución 3-4%:

B Ácido= 5-0,5 = 4,5 ml Ácido 3-4%

Para saber el factor de dilución:

Ejemplo 0,5 ml de Muestra en 5 ml de Volumen Total:

$$\frac{1}{Y \, ml \, Disoluci\'on} \times 5 = 0.5$$

Ecuación 3. Ejemplo de Dilución con 0,5 ml de Muestra en 5 mL de volumen total.

Y Dilución = 10, así que haría la dilución sería 1:10.

Hay que tener en cuenta que el volumen de la muestra no puede ser inferior a 0,1 ml porque tendría mucho error. Si se diera este caso aumentar el volumen total.

Tabla de equivalencias.

Disolución Volumen (ml) Muestra (ml) Solución 3-4 (ml)
--

1:5	5	1	4
1:10	5	0,5	4,50
1:20	5	0,25	4,75
1:25	5	0,20	4,80
1:30	9	0,3	8,7

Tabla 2. Equivalencias que se usan normalmente al medir la Lignina (LAS).

4. Medir la absorbancia

Una vez escogida la Dilución, echar en un tubo de 10 ml el volumen de muestra y de Solución 3-4% H₂SO₄ que les correspondan y agitar un momento en el agitador.

Sacar la primera cubeta de cuarzo del espectrofotómetro, lavar un poco con agua destilada, luego secar bien y llenar con lo del tubo, no es necesario enrasar.

A continuación, meter dentro, cerrar y pulsar Muestras. Luego, nos dará un valor de absorbancia que debe estar entre 0,2 y 0,7, si sale más bajo hay que diluir menos y si sale más alto lo contrario.

Por último, sacar la cubeta limpiarla y dejarla secar para la siguiente prueba o muestra.

Los resultados posibles son:

El valor no está dentro del rango, se apunta el resultado de absorbancia en sucio y se escoge otra dilución repitiendo de nuevo.

El valor está dentro del rango, se apunta en la hoja de resultados y se continúa con otra muestra.

Tener en Cuenta

- Los resultados de los triplicados saldrán similares y necesitarán la misma dilución.
- Manejar siempre las cubetas por el espacio rugoso
- No dejar abierta la tapa del espectrofotómetro
- Al finalizar hay que sacar las cubetas, lavarlas, apagar el instrumento y taparlo
- Dejar las cubetas secándose dentro del armario porque se pueden caer y romper