Seminarul 4

- 1. Se dorește *clasificarea naivă Bayes* a unor **r**estaurante, în *clasele*: **r**ecomandat sau **n**erecomandat, în funcție de următoarele *atribute* cu valorile lor posibile:
- cost: ieftin, mediu, scump;
- timp de aşteptare: puţin, mediu, îndelungat;
- mâncare: fadă, acceptabilă, bună, delicioasă.

Fie \mathbb{R} , C, T, M variabilele aleatoare corespunzătoare și \mathbb{r} , \mathbb{n} , i, m, s, p, m, $\hat{\imath}$, f, a, b, d valorile de mai sus, în ordinarea în care sunt menționate.

Considerăm următorul tabel de date furnizat de clienții unor restaurante:

	Cost	Timp de așteptare	$M\hat{a}ncare$	Restaurant	
1	mediu	îndelungat	acceptabilă	nerecomandat	
2	scump	puţin	bună	recomandat	
3	ieftin	îndelungat	delicioasă	recomandat	
4	mediu	puţin	bună	recomandat	
5	ieftin	mediu	acceptabilă	nerecomandat	
6	ieftin	puţin	fadă	nerecomandat	
7	mediu	puţin	acceptabilă	nerecomandat	
8	mediu	mediu	delicioasă	recomandat	
9	scump	puţin	delicioasă	recomandat	
10	ieftin	îndelungat	bună	nerecomandat	
11	scump	puţin	acceptabilă	nerecomandat	
12	mediu	mediu	bună	recomandat	
13	mediu	îndelungat	fadă	nerecomandat	
14	scump	mediu	delicioasă	recomandat	
15	ieftin	mediu	fadă	nerecomandat	
16	mediu	puţin	delicioasă	recomandat	
17	ieftin	puţin	acceptabilă	recomandat	
18	scump	îndelungat	bună	nerecomandat	
19	ieftin	puţin	fadă	recomandat	
20	scump	îndelungat	delicioasă	nerecomandat	

- i) Folosind datele din tabel, determinați probabilitățile claselor și probabilitățile condiționate ale atributelor, știind clasa.
- ii) Considerăm evenimentul dat de vectorul de atribute: $E = (C = s) \cap (T = m) \cap (M = b)$. Alegeți o clasă pentru E, stabilind care din următoarele probabilități este mai mare: $P(\mathbf{R} = \mathbf{r}|E)$ sau $P(\mathbf{R} = \mathbf{n}|E)$. iii) Determinați P(E).

Rezolvare:

i)

R = r	R = n	$P(\mathbf{R} = \mathbf{r})$	$P(\mathbf{R} = \mathbf{n})$
10	10	$\frac{1}{2}$	$\frac{1}{2}$

C	R = r	R = n	$P(C = \mathbf{R} = \mathbf{r})$	$P(C = \mathbf{R} = \mathbf{n})$
i	3	4	$\frac{3}{10}$	$\frac{4}{10}$
m	4	3	$\frac{4}{10}$	$\frac{3}{10}$
S	3	3	$\frac{3}{10}$	$\frac{3}{10}$

T	R = r	R = n	$P(T = \mathbf{R} = \mathbf{r})$	$P(T = \mathbf{R} = \mathbf{n})$
p	6	3	$\frac{6}{10}$	$\frac{3}{10}$
m	3	2	$\frac{3}{10}$	$\frac{2}{10}$
î	1	5	$\frac{1}{10}$	$\frac{5}{10}$

M	R = r	R = n	$P(M = \mathbf{R} = \mathbf{r})$	$P(M = \mathbf{R} = \mathbf{n})$
f	1	3	$\frac{1}{10}$	$\frac{3}{10}$
a	1	4	$\frac{1}{10}$	$\frac{4}{10}$
b	3	2	$\frac{3}{10}$	$\frac{2}{10}$
d	5	1	$\frac{5}{10}$	$\frac{1}{10}$

ii) Pe baza formulei lui Bayes și a ipotezei de independență condiționată, deducem că:

$$P(\mathbf{R} = \mathbf{r}|E) = \frac{P(E|\mathbf{R} = \mathbf{r})P(\mathbf{R} = \mathbf{r})}{P(E)} = \frac{P(C = s, T = m, M = b|\mathbf{R} = \mathbf{r})P(\mathbf{R} = \mathbf{r})}{P(E)}$$
$$= \frac{P(C = s|\mathbf{R} = \mathbf{r})P(T = m|\mathbf{R} = \mathbf{r})P(M = b|\mathbf{R} = \mathbf{r})P(\mathbf{R} = \mathbf{r})}{P(E)} = \frac{\frac{3}{10} \cdot \frac{3}{10} \cdot \frac{3}{10} \cdot \frac{3}{10} \cdot \frac{1}{2}}{P(E)} = \frac{1}{P(E)} \cdot \frac{27}{2000}$$

şi

$$P(\mathbf{R} = \mathbf{n}|E) = \frac{P(E|\mathbf{R} = \mathbf{n})P(\mathbf{R} = \mathbf{n})}{P(E)} = \frac{P(C = s, T = m, M = b|\mathbf{R} = \mathbf{n})P(\mathbf{R} = \mathbf{n})}{P(E)}$$
$$= \frac{P(C = s|\mathbf{R} = \mathbf{n})P(T = m|\mathbf{R} = \mathbf{n})P(M = b|\mathbf{R} = \mathbf{n})P(\mathbf{R} = \mathbf{n})}{P(E)} = \frac{\frac{3}{10} \cdot \frac{2}{10} \cdot \frac{2}{10} \cdot \frac{1}{2}}{P(E)} = \frac{1}{P(E)} \cdot \frac{12}{2000}.$$

Deoarece $P(\mathbf{R} = \mathbf{r}|E) > P(\mathbf{R} = \mathbf{n}|E)$, asociem vectorului de atribute E clasa $\mathbf{R} = \mathbf{r}$.

iii) Din ii) rezultă

1 =
$$P(\mathbf{R} = \mathbf{r}|E) + P(\mathbf{R} = \mathbf{n}|E) = \frac{1}{P(E)} \cdot \frac{27 + 12}{2000}$$
,

deci

$$P(E) = \frac{19,5}{1000} = 0,0195.$$

- 2. Considerăm următoarele variabile aleatoare care indică anumite situații (1=da și 0=nu), pe care le aveți în vedere pentru o persoană într-o seară:
 - \bullet Findică dacă filmul care rulează la cinema este în premieră sau nu.
 - \bullet S indică dacă biletul de intrare la film este scump sau nu.
 - \bullet Cindică dacă persoana vizionează filmul de la cinema sau nu.
 - \bullet Rindică dacă persoana ia cina la un restaurant sau nu.
 - B indică dacă persoana bea un cocteil la un bar sau nu.

Variabilele aleatoare de mai sus depind unele de altele conform unei rețele Bayes cu probabilitățile condiținate date mai jos.

P(F=1)	P(F=0)
0,8	0,2

S	$P(S = \dots F = 1)$	$P(S = \dots F = 0)$
1	0,9	0,6
0	0,1	0,4

C	P(C = S = 1, F = 1)	P(C = S = 1, F = 0)	P(C = S = 0, F = 1)	P(C = S = 0, F = 0)
1	0,6	0,2	0,9	0,4
0	0,4	0,8	0,1	0,6

R	$P(R = \dots C = 1)$	$P(R = \dots C = 0)$
1	0,3	$0,\!5$
0	0,7	0,5

B	P(B = C = 1)	$P(B = \dots C = 0)$
1	0,5	0,8
0	0,5	0,2

Calculați probabilitățile următoarelor evenimente:

- a) Persoana bea un cocteil la un bar, știind că nu vizionează filmul care rulează în premieră la cinema, biletul de intrare la film fiind scump.
- b) Persoana vizionează un film care nu e în premieră la cinema.
- c) Persoana ia cina la un restaurant.
- d) Filmul care rulează la cinema este în premieră, știind că persoana ia cina la un restaurant.

$$P(B = 1|F = 1, S = 1, C = 0) = P(B = 1|C = 0) = 0, 8.$$

b)
$$P(C=1,F=0) = P(C=1,F=0,S=1) + P(C=1,F=0,S=0)$$

$$= P(C=1|S=1,F=0) \cdot P(S=1|F=0) \cdot P(F=0) + P(C=1|S=0,F=0) \cdot P(S=0|F=0) \cdot P(F=0)$$

$$= 0.2 \cdot 0.6 \cdot 0.2 + 0.4 \cdot 0.4 \cdot 0.2 = 0.056 = 5.6\%.$$

c)
$$P(R = 1) = P(R = 1|C = 1) \cdot P(C = 1) + P(R = 1|C = 0) \cdot P(C = 0)$$

$$= 0.3 \cdot \sum_{i,j \in \{0,1\}} P(C = 1, S = i, F = j) + 0.5 \cdot \sum_{i,j \in \{0,1\}} P(C = 0, S = i, F = j)$$

$$= 0.3 \cdot \sum_{i,j \in \{0,1\}} P(C = 1|S = i, F = j) \cdot P(S = i|F = j) \cdot P(F = j)$$

$$+0.5 \cdot \sum_{i,j \in \{0,1\}} P(C = 0|S = i, F = j) \cdot P(S = i|F = j) \cdot P(F = j)$$

$$= 0.3 \cdot (0.6 \cdot 0.9 \cdot 0.8 + 0.2 \cdot 0.6 \cdot 0.2 + 0.9 \cdot 0.1 \cdot 0.8 + 0.4 \cdot 0.4 \cdot 0.2)$$

$$+0.5 \cdot (0.4 \cdot 0.9 \cdot 0.8 + 0.8 \cdot 0.6 \cdot 0.2 + 0.1 \cdot 0.1 \cdot 0.8 + 0.6 \cdot 0.4 \cdot 0.2)$$

$$= 0.168 + 0.22 = 0.388 = 38.8\%.$$

d)
$$P(F=1|R=1) = \frac{P(R=1, F=1)}{P(R=1)} = \frac{\sum_{i,j \in \{0,1\}} P(R=1, F=1, C=i, S=j)}{0,388}$$

$$= \frac{\sum_{i,j \in \{0,1\}} P(R=1|C=i) P(C=i|F=1,S=j) P(S=j|F=1) P(F=1)}{0,388}$$

$$= \frac{0,3 \cdot 0,6 \cdot 0,9 \cdot 0,8 + 0,3 \cdot 0,9 \cdot 0,1 \cdot 0,8 + 0,5 \cdot 0,4 \cdot 0,9 \cdot 0,8 + 0,5 \cdot 0,8 \cdot 0,1 \cdot 0,8}{0,388}$$

$$= \frac{0,3272}{0.388} \approx 84,3\%.$$

3. Următoarele variabile aleatoare indică decizia unui parior sportiv de a paria sau nu (1=da, 0=nu) într-o zi pe anumite tipuri de meciuri: fotbal F, handbal H, baschet B şi tenis T. Pariorul ia deciziile conform rețelei Bayes alăturate, cu următoarele probabilități:

H

T

B

$$P(F=1) = P(H=1) = 0.6;$$

 $P(B=1|F=1, H=1) = P(B=1|F=0, H=0) = 0.5;$
 $P(T=1|F=1, H=1) = P(T=1|F=0, H=0) = 0.9;$
 $P(B=1|F=0, H=1) = P(B=1|F=1, H=0) = 0.2;$
 $P(T=1|F=0, H=1) = P(T=1|F=1, H=0) = 0.3.$
Calculati probabilitătile următearolor evenimento:

Calculați probabilitățile următoarelor evenimente:

- a) Pariorul nu pariază pe niciun tip de meci.
- b) Pariorul alege meciuri de fotbal și baschet, știind că nu alege niciun meci de handbal.
- c) Pariorul alege meciuri de baschet.

R: a)
$$P(F = 0, H = 0, B = 0, T = 0) = P(F = 0)P(H = 0)P(B = 0|F = H = 0)P(T = 0|F = H = 0) = 0.4 \cdot 0.4 \cdot 0.5 \cdot 0.1 = 0.008.$$

b) $P(F = 1, B = 1|H = 0) = \frac{P(F = 1, B = 1, H = 0)}{P(H = 0)} = \frac{P(F = 1)P(H = 0)P(B = 1|F = 1, H = 0)}{P(H = 0)} = \frac{0.6 \cdot 0.4 \cdot 0.2}{0.4} = 0.12.$
c) $P(B = 1) = P(B = 1|F = 1, H = 1)P(F = 1, H = 1) + P(B = 1|F = 0, H = 0)P(F = 0, H = 0) + P(B = 1|F = 1, H = 0)P(F = 1, H = 0) + P(B = 1|F = 0, H = 1)P(F = 0, H = 1) = 0.5 \cdot 0.6 \cdot 0.6 + 0.5 \cdot 0.4 \cdot 0.4 + 0.2 \cdot 0.6 \cdot 0.4 + 0.2 \cdot 0.4 \cdot 0.6 = 0.18 + 0.08 + 0.048 + 0.048 = 0.356.$

4. Un punct material se deplasează pe axa reală dintr-un nod spre un nod vecin, la fiecare pas, cu probabilitatea $p \in (0,1)$ la dreapta și cu probabilitea 1-p la stânga. Nodurile sunt centrate în numerele întregi:

Fie X variabila aleatoare care indică poziția finală a punctului material după $n \in \mathbb{N}$ pași ai unei deplasări ce pornește din nodul 0. Determinați distribuția și valoarea medie lui X.

R: Dacă
$$Y_i$$
 reprezintă pasul i , atunci $Y_i \sim \begin{pmatrix} -1 & 1 \\ 1-p & p \end{pmatrix} \implies Y_i = 2X_i - 1$ cu $X_i \sim Bernoulli(p)$, $i \in \{1, \dots, n\}$. $X = Y_1 + \dots + Y_n = (2X_1 - 1) + \dots + (2X_n - 1)$, $X_1 + \dots + X_n \sim Bino(n, p) \implies X \sim \begin{pmatrix} 2k - n \\ C_n^k p^k (1-p)^{n-k} \end{pmatrix}_{k=\overline{0,n}}$ şi $E(X) = 2np - n$.

5. Trei prieteni decid cine va plăti nota la restaurant astfel: fiecare aruncă pe rând o monedă; plătește cel care obține un simbol diferit de al celorlalți doi; dacă toți au obținut același simbol, atunci se reia seria de trei aruncări ale monedei, ș.a.m.d. până când se decide cine plătește nota. Determinați valoarea medie a numărului de serii de aruncări până la (înainte de) seria de aruncări care va decide cine plătește nota.

R.:
$$p = 1 - P(\text{"toţi au obţinut acelaşi simbol"}) = 1 - \frac{2}{2^3} = \frac{3}{4}; \Rightarrow X \sim \text{Geom}(p) = Geom(\frac{3}{4}),$$

 $\Rightarrow E(X) = \frac{1-p}{p} = \frac{1}{3}.$

6. O persoană are două cutii de Tic Tac în buzunar, fiecare cu câte un număr inițial de $n \in \mathbb{N}^*$ drajeuri. De fiecare dată când dorește un drajeu, scoate aleatoar (și independent de alegerile anterioare) din buzunar una dintre cutii, din care ia un drajeu. La un moment dat scoate din buzunar o cutie și constată că e goală. Fie X numărul de drajeuri din cealaltă cutie. Determinați distribuția lui X.

R.: Fixăm $k \in \{0, ..., n\}$; C_1 prima cutie; C_2 a doua cutie; notăm:

 A_1 : când persoana observă că ${\cal C}_1$ e goală, în ${\cal C}_2$ sunt kdrajeuri

 A_2 : când persoana observă că ${\cal C}_2$ e goală, în ${\cal C}_1$ sunt k drajeuri.

 $\Rightarrow A_1$ şi A_2 sunt disjuncte şi $P(A_1) = P(A_2)$, iar $P(X = k) = P(A_1 \cup A_2) = 2P(A_1)$.

Persoana observă că C_1 e goală, când alege C_1 pentru a (n+1) oară.

Definim "success": persoana alege C_1 ; definim "insucces": persoana alege C_2 .

$$\implies P(\text{"succes'}) = P(\text{"insucces"}) = 1/2$$

 A_1 = obţinem al (n+1)-lea "succes" după n-k "insuccese" (în n+(n-k) repetări, se obţin n-k "insuccese", la a n+(n-k)+1 repetare se obţine "succes")

$$\Longrightarrow P(A_1) = C_{n+(n-k)}^{n-k} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{n-k} \frac{1}{2} = \frac{1}{2} C_{2n-k}^n \cdot \left(\frac{1}{2}\right)^{2n-k}.$$

$$\Longrightarrow P(X=k) = C_{2n-k}^n \left(\frac{1}{2}\right)^{2n-k}.$$

Concluzie:
$$X \sim \begin{pmatrix} k \\ C_{2n-k}^n \frac{1}{2^{2n-k}} \end{pmatrix}_{k=\overline{0,n}}$$
.