Manual de referencia

Pedro Jorge De Los Santos Lara

Ingeniería Mecánica

Instituto Tecnológico de Tuxtla Gutiérrez

^{*}El siguiente enlace le proporciona ayuda en vídeo acerca del uso del programa: <u>Vídeo tutorial</u>

^{*}Si requiere consultar la notación utilizada haga clic en el siguiente enlace: Notación utilizada

^{*}Visite http://matlab-typ.blogspot.mx/p/mfitec.html para descargar el programa y algunas utilidades.

Contenido

1.	Requerimientos	. 1
	1.1 Instalación y/o ejecución del programa	
2.	Descripción de la interfaz gráfica	. 2
	Interfaz de inicio	. 2
	Interfaz de selección de datos	. 2
	Interfaz de cálculos	. 3
	Interfaz de resultados	. 3
3.	Descripción de los íconos del menú de herramientas	. 5
4.	Notación y unidades de medición utilizadas	. 8
5.	Consideraciones generales en los procedimientos	11

1. Requerimientos

El programa ha sido desarrollado y probado en MATLAB R2012b instalado en una PC con sistema operativo Windows 7 de 64 bits.

1.1 Instalación y/o ejecución del programa

Para ejecutar la aplicación consideraremos los dos casos que se muestran enseguida:

- 1) Dispone de una versión de MATLAB igual o posterior a R2010a instalada en su PC
- 2) No dispone de MATLAB en su PC

Caso 1

Si dispone de una versión de MATLAB igual o posterior a la R2010a utilice la aplicación contenida en el directorio correspondiente:

Instrucciones de instalación

- 1. Ubique el paquete de instalación en una carpeta destinada para este fin.
- 2. Ejecute el paquete de instalación (doble clic), esto le permitirá extraer el programa y las carpetas de datos y documentación correspondiente para que este funcione.
- 3. Ejecute la aplicación "MFITEC".

Caso 2

Si no dispone de MATLAB proceda con los siguientes puntos:

- 1. Ubique el paquete de instalación en una carpeta destinada para este fin.
- 2. Ejecute el paquete de instalación (doble clic), esto le permitirá extraer el programa y las carpetas de datos y documentación correspondiente para que este funcione, además que iniciará automáticamente la instalación del MCR (MATLAB Compiler Runtime), el cual le será útil para ejecutar el programa de manera independiente.
- 3. Ejecute la aplicación "MFITEC".

2. Descripción de la interfaz gráfica

Interfaz de inicio

La interfaz gráfica de inicio al ejecutar el programa es la que se muestra en la figura 1, esta le permite seleccionar entre tres opciones (bombas centrífugas, turbinas de acción y turbinas de reacción) de un menú desplegable. El botón Continuar >> le permitirá acceder a una nueva interfaz dependiendo de la opción que se haya elegido. El botón ubicado en la parte superior le permitirá acceder a la ayuda del programa.

Figura 1. Interfaz gráfica de inicio

Interfaz de selección de datos

La interfaz de selección de datos, como la mostrada en la figura 3, le permite seleccionar los datos de entrada disponibles. Una vez se han seleccionado los datos, el botón con el ícono de "check" en color verde le permitirá al programa verificar si los datos seleccionados son suficientes para continuar y abrir una nueva interfaz de cálculo (figura 4), si los datos no son suficientes el programa le enviará un mensaje de advertencia como el que se muestra en la figura 2.

Figura 2. Mensaje de datos no suficientes

Figura 3. Interfaz de selección de datos

Interfaz de cálculos

En la figura 4 se muestra un ejemplo tipo de la interfaz de cálculos, en la cual deberá proporcionar los datos correspondientes en las unidades de medición indicadas para cada magnitud. Después de haber rellenado los datos adecuadamente deberá presionar el botón "Calcular" para proceder a ejecutar los cálculos y mostrar los resultados en la interfaz correspondiente que se describe enseguida.

Interfaz de resultados

La interfaz de resultados como la mostrada en la figura 5 le proporcionará los datos de salida que enviará el programa una vez este haya ejecutado los cálculos, cada uno con su descripción y unidades de medición correspondientes.

Figura 4. Interfaz de cálculos

Figura 5. Interfaz de resultados

3. Descripción de los íconos del menú de herramientas

Este botón le permite regresar al nivel superior inmediato en el programa.

Botón de triángulos de velocidades

Si hay datos disponibles para trazar los triángulos de velocidades a la entrada y salida, este botón le permitirá trazar los triángulos y le proporcionará las magnitudes características.

Figura 6. Interfaz de los triángulos de velocidades

Botón de conversor de unidades

Le permitirá acceder al conversor de unidades incorporado al programa.

Figura 7. Conversor de unidades

Botón de calculadora

Le permite acceder a la calculadora incorporada en el programa.

Figura 8. Calculadora

Botón de gráficas

Esta opción le desplegará un menú con las gráficas disponibles de acuerdo al tipo de problema, o en el caso de haber sólo una opción le abrirá la interfaz de la gráfica correspondiente.

Figura 7. Interfaz de gráficas

Botón de tablas

Este botón le permitirá acceder a un documento de tablas y gráficos que pueden ser utilizados en el proceso de cálculo (coeficientes de pérdidas, propiedades del agua, etc.).

Botón de ayuda

Esta opción le proporcionará la ayuda correspondiente para un funcionamiento adecuado del programa.

4. Notación y unidades de medición utilizadas

Bombas centrífugas

Simbología	Descripción	Unidad de medición
Q	Caudal	m ³ /s
Н	Altura útil	m
n	Velocidad en rpm	rpm
rho	Densidad del líquido bombeado	kg/m ³
g	Constante de la aceleración de la gravedad	m/s ²
Hu	Altura teórica	m
PA	Presión en el depósito de aspiración	kPa
PΖ	Presión en el depósito de impulsión	kPa
PS	Presión a la salida de la bomba	kPa
PE	Presión a la entrada de la bomba	kPa
zA	Cota del depósito de aspiración	m
zΖ	Cota del depósito de impulsión	m
zS	Cota de la salida de la bomba	m
zE	Cota de la entrada de la bomba	m
La	Longitud de la tubería de aspiración	m
Li	Longitud de la tubería de impulsión	m
da	Diámetro de la tubería de aspiración	m
di	Diámetro de la tubería de impulsión	m
va	Velocidad en la tubería de aspiración	m/s
vi	Velocidad en la tubería de impulsión	m/s
Hra	Pérdidas en la sección de aspiración	m
Hri	Pérdidas en la sección de impulsión	m
Ka	Coeficiente de pérdidas secundarias en la tubería de aspiración	Adimensional
Ki	Coeficiente de pérdidas secundarias en la tubería de impulsión	Adimensional
Hrext	Pérdidas en el exterior de la bomba	m
Hrint	Pérdidas en el interior de la bomba	m
Pa	Potencia de accionamiento	kW
Pi	Potencia interna	kW
P	Potencia útil	kW
eta	Rendimiento total	Adimensional
eta h	Rendimiento hidráulico	Adimensional
eta v	Rendimiento volumétrico	Adimensional
eta m	Rendimiento mecánico	Adimensional
	Trendinion in occurso	7 tairrionoriai
u	Velocidad de los álabes	m/s
C	Velocidad absoluta del fluido	m/s
cm	Componente meridional de la velocidad del fluido	m/s
cu	Componente periférica de la velocidad del fluido	m/s
W	Velocidad relativa	m/s
alpha	Ángulo formado por c y u	Grados sexagesimales
beta	Ángulo formado w y –u	Grados sexagesimales

Turbinas de acción

Q	Caudal	
~	Odudai	m3/s
n	Velocidad en rpm de la turbina	rpm
Н	Altura útil	m
Hu	Altura teórica o de Euler	m
D	Diámetro del rodete	m
d	Diámetro del chorro	m
rho	Densidad del agua	kg/m3
g	Aceleración de la gravedad	m/s2
u	Velocidad periférica de la turbina	m/s
c1	Velocidad absoluta del fluido a la entrada	m/s
с2	Velocidad absoluta del fluido a la salida	m/s
w1	Velocidad relativa a la entrada	m/s
w2	Velocidad relativa a la salida	m/s
beta2	Ángulo suplementario de la desviación del chorro	Grados sexagesimales
beta1		
alpha2		
alpha1		
w1u		
w2u		
c1u		
c2u		
Ku		
Kc		
Kw		
F	Fuerza transmitida por el fluido al rodete	
М	Momento transmitido por el fluido al rodete	
Hrint	Pérdidas en la sección comprendida entre la entrada y salida	
	de la turbina	
Hrext	Pérdidas en las secciones anterior y posterior a la turbina	
Hb	Altura bruta	
P	Potencia absorbida, Potencia neta.	
Pi	Potencia interna / Potencia impartida del fluido al rodete	
Pa	Potencia de accionamiento	
eta	Rendimiento total	
eta_h	Rendimiento hidráulico	
eta_v	Rendimiento volumétrico	
eta_m	Rendimiento mecánico	

Turbinas de reacción

Simbología	Descripción
Q	Caudal
H	Altura útil
n	Velocidad en rpm
rho	Densidad del líguido bombeado
	Constante de la aceleración de la gravedad
g Hu	Altura teórica
PA	Presión en el depósito de aspiración
PZ	Presión en el depósito de impulsión
PS	Presión a la salida de la bomba
PE	Presión a la entrada de la bomba
zA	Cota del depósito de aspiración
zZ	Cota del depósito de impulsión
zS	Cota de la salida de la bomba
zE	Cota de la entrada de la bomba
La	Longitud de la tubería de aspiración
Li	Longitud de la tubería de impulsión
da	Diámetro de la tubería de aspiración
di	Diámetro de la tubería de impulsión
va	Velocidad en la tubería de aspiración
vi	Velocidad en la tubería de impulsión
Hra	Pérdidas en la sección de aspiración
Hri	Pérdidas en la sección de impulsión
Ka	Coeficiente de pérdidas secundarias en la tubería de aspiración
Ki	Coeficiente de pérdidas secundarias en la tubería de impulsión
Hrext	Pérdidas en el exterior de la bomba
Hrint	Pérdidas en el interior de la bomba
Pa	Potencia de accionamiento
Pi	Potencia interna
P	Potencia útil
eta	Rendimiento total
eta_h	Rendimiento hidráulico
eta_v	Rendimiento volumétrico
eta_m	Rendimiento mecánico
u	Velocidad de los álabes
С	Velocidad absoluta del fluido
cm	Componente meridional de la velocidad del fluido
cu	Componente periférica de la velocidad del fluido
W	Velocidad relativa
alpha	Ángulo formado por c y u
beta	Ángulo formado w y –u

5. Consideraciones generales en los procedimientos

Bombas centrífugas

- El ángulo de entrada α_1 se considera igual a 90°, a menos que se especifique lo contrario.
- Por defecto los cálculos se realizarán considerando un rendimiento ideal, a menos que se especifique dicho rendimiento
- El valor de la densidad (ρ) es por defecto 1000 kg/m³ correspondiente al agua en condiciones normales. Si necesita resolver problemas que impliquen otras sustancias, en el menú herramientas puede insertar el valor adecuado en kg/m³.

Turbinas de acción

Turbinas de reacción