Algorithms for Programming Contests - Week 10

Tobias Meggendorfer, Philipp Meyer, Christian Müller, Gregor Schwarz conpra@in.tum.de

09.01.2019

Trie

A Trie is a tree data structure that is used to store a set of strings:

- Root node represents empty string.
- Outgoing edges are associated with a label (e.g. a letter).
- Path from root to a node represents a prefix of a word/words.
- All descendants of a node have the same prefix.
- Position of a node in the trie defines the associated string.
- Nodes at which a word ends are tagged.
- Invented by René de la Briandais in 1959.
- Name originates from the term retrieval.

Trie for words: LAME, LMU, LOSE, LOSER, LOST, TOP, TO, TUM

Trie - Implementation

A node of the trie contains:

- A label indicating whether a word ends at this node.
- A map/hashmap/array representing edges to children.

```
struct Node
{
    bool end;
    map < char, Node > next;
};
```

Trie - Operations

LOOKUP(S)

- Start at the root node and traverse edges w.r.t. letters of s.
- If no suitable edge exist, s is not contained in the trie.
- If the whole word was processed, check whether the current node marks the end of a word.

Trie - Operations

LOOKUP(S)

- Start at the root node and traverse edges w.r.t. letters of s.
- If no suitable edge exist, s is not contained in the trie.
- If the whole word was processed, check whether the current node marks the end of a word.

Insert(s)

- Start at the root node and traverse edges w.r.t. letters of s.
- Add non-existing edges along the way.
- Tag last node.

Trie - Operations

LOOKUP(S)

- Start at the root node and traverse edges w.r.t. letters of s.
- If no suitable edge exist, s is not contained in the trie.
- If the whole word was processed, check whether the current node marks the end of a word.

Insert(s)

- Start at the root node and traverse edges w.r.t. letters of s.
- Add non-existing edges along the way.
- Tag last node.

Complexity

- Lookup a string s of length k is in O(k).
- Inserting a string s of length k is in O(k).

Trie - Applications

- Storing a dynamic set of strings.
- Sorting strings lexicographically.
- Autocompletion
- Spell-checking

Given an integer array a[n]. Implement two operations:

- ADD(i, v): Add value v to i-th element.
- $Sum(\ell, r)$: Sum up all elements in interval $[\ell, r]$.

Given an integer array a[n]. Implement two operations:

- ADD(i, v): Add value v to i-th element.
- SUM (ℓ, r) : Sum up all elements in interval $[\ell, r]$.

Alg 1:

- ADD(i, v): Simply add v to a[i].
- SUM(ℓ, r): Loop from $a[\ell]$ to a[r] and sum up values.
- Complexity: ADD $(i, v) \in \mathcal{O}(1)$, SUM $(\ell, r) \in \mathcal{O}(n)$

Alg 2:

- Compute prefix sums and store them in b[].
- ADD(i, v): Add v to a[i] and recompute b[].
- SUM (ℓ, r) : Return $b[r] b[\ell 1]$.
- Complexity: ADD $(i, v) \in \mathcal{O}(n)$, SUM $(\ell, r) \in \mathcal{O}(1)$

Alg 2:

- Compute prefix sums and store them in b[].
- ADD(i, v): Add v to a[i] and recompute b[].
- SUM(ℓ , r): Return $b[r] b[\ell 1]$.
- Complexity: ADD $(i, v) \in \mathcal{O}(n)$, SUM $(\ell, r) \in \mathcal{O}(1)$

Conclusion:

- Use Alg 1 if # ADD-Queries $\gg \# SUM$ -Queries.
- Use Alg 2 if # AddD-Queries $\ll \# Sum$ -Queries.

What if #ADD-Queries $\approx \#SUM$ -Queries?

Segment Tree

A Segment Tree is a tree data structure used for storing information about intervals.

- A segment tree is a binary tree.
- Each node stores a value v for an interval $[\ell, r]$.
- Root represents the full interval [0, n-1].
- If node v represents interval $[\ell, r]$, its left child represents $[\ell, m]$ and its right child [m+1, r] where $m = (\ell + r)/2$.
- Leaves represent unit-intervals [t, t].
- Segment trees were invented by Jon Louis Bentley in 1977.

Segment Tree - Example

Input array: a[] = [1,6,5,2,4,2]

Segment Tree - Implementation

Each node holds a value and the associated interval.

```
struct Node {int v,1,r;}
```

- Represent segment tree as an array of nodes.
- Root node is stored at index zero.
- Children of node i are stored at indices 2i + 1 and 2i + 2.
- Let *n* be the size of the input array:
 - Segment tree has height $h = \lceil \log n \rceil$.
 - Segment tree has $2^{h+1} 1$ nodes.

Segment Tree - Example

```
Input array: a[] = [1,6,5,2,4,2]
Segment tree values: v[] = [20,12,8,7,5,6,2,1,6,0,0,2,4,0,0]
```


Segment Tree - Build

```
Algorithm 1 Segment Tree - Build
Input: input a[], segment tree t[], current index p, interval [\ell, r].
Output: Segment tree rooted at p on interval [\ell, r].
  procedure BUILD(a[], t[], p, \ell, r)
      t[p].\ell \leftarrow \ell
      t[p].r \leftarrow r
      if \ell = r then
           t[p].v \leftarrow a[\ell]
           return t[p].v
      end if
      m \leftarrow (1+r)/2
      t[p].v \leftarrow BUILD(a, t, 2p + 1, \ell, m) + BUILD(a, t, 2p + 2, m + 1, r)
      return t[p].v
  end procedure
```


$$Sum(1,5) = 19$$


```
Algorithm 2 Segment Tree - Sum Input: Segment tree t[], current index p, interval [\ell,r]. Output: Sum on interval [\ell,r]. procedure \mathrm{SUM}(t[],p,\ell,r) if \ell > t[p].r or r < t[p].\ell then return 0 end if if \ell \leq t[p].\ell and t[p].r \leq r then return t[p].v end if return \mathrm{SUM}(t,2p+1,\ell,r) + \mathrm{SUM}(t,2p+2,\ell,r) end procedure
```



```
Algorithm 3 Segment Tree - Add Input: Segment tree t[], current index p, update index i, update value v. procedure \mathrm{Add}(t[],p,i,v) if i < t[p].\ell or i > t[p].r then return end if t[p] \leftarrow t[p] + v if t[p].\ell \neq t[p].r then \mathrm{Add}(t,2p+1,i,v) \mathrm{Add}(t,2p+2,i,v) end if end procedure
```

Segment Tree - Complexity

Complexity

Let *n* be the size of the input array a[].

- BUILD: Each of the 2n-1 nodes is visited once. $\mathcal{O}(n)$.
- ADD: At most two nodes are visited on every level. $\mathcal{O}(\log n)$.
- SUM: At most four nodes are visited on every level. $\mathcal{O}(\log n)$.

Segment Tree - Operations

Segment trees do not only work for sums but for all monoids.

Segment Tree - Operations

Segment trees do not only work for sums but for all monoids.

A *monoid* is a set S with some binary operator $\bullet: S \times S \to S$ if it satisfies the following two axioms:

- Associativity: For all $x, y, z \in S$ it holds that $(x \bullet y) \bullet z = x \bullet (y \bullet z)$.
- Identity element: It exists an $e \in S$ such that for all $z \in S$ it holds that $e \bullet z = z \bullet e = z$.

Segment Tree - Operations

Segment trees do not only work for sums but for all monoids.

A *monoid* is a set S with some binary operator $\bullet: S \times S \rightarrow S$ if it satisfies the following two axioms:

- Associativity: For all $x, y, z \in S$ it holds that $(x \bullet y) \bullet z = x \bullet (y \bullet z)$.
- Identity element: It exists an $e \in S$ such that for all $z \in S$ it holds that $e \bullet z = z \bullet e = z$.

In particular they work for:

- (ℝ, +)
- (ℝ, min)
- (ℝ, max)
- $(2^{\mathbb{N}}, XOR)$

Segment Tree - RangeAdd

Implement a new operation:

- ADD(i, v): Add value v to i-th element.
- SUM(ℓ , r): Sum up all elements in interval [ℓ , r].
- RANGEADD(ℓ, r, v): Add value v to each element in range $[\ell, r]$.

Segment Tree - RangeAdd

Implement a new operation:

- ADD(i, v): Add value v to i-th element.
- SUM (ℓ, r) : Sum up all elements in interval $[\ell, r]$.
- RANGEADD(ℓ, r, v): Add value v to each element in range [ℓ, r].

Naïve approach:

```
Call Add(i, v) for all i \in [\ell, r]. Complexity: \mathcal{O}(n \log n).
```

Can we do better?

Segment Tree - RangeAdd

Implement a new operation:

- ADD(i, v): Add value v to i-th element.
- SUM(ℓ , r): Sum up all elements in interval [ℓ , r].
- RANGEADD(ℓ, r, v): Add value v to each element in range $[\ell, r]$.

Naïve approach:

```
Call Add(i, v) for all i \in [\ell, r]. Complexity: \mathcal{O}(n \log n).
```

Can we do better? \rightarrow Yes! Just be lazy...

Segment Tree - Lazy Propagation

- Store an additional integer value *lazy* in each node.
- Do not apply updates immediately but push them to the lazy variable.
- Only propagate lazy value to children when value of node is queried.

PROPAGATE lazy value of root node.

PROPAGATE lazy value of root node.

Algorithm 4 Segment Tree - Propagate

```
Input: Segment tree t[], current index p.

procedure Propagate(t[], p)

t[p].v \leftarrow t[p].v + (t[p].r - t[p].\ell + 1) * t[p].lazy

if t[p].\ell \neq t[p].r then

t[2p+1].lazy \leftarrow t[2p+1].lazy + t[p].lazy

t[2p+2].lazy \leftarrow t[2p+2].lazy + t[p].lazy

end if

t[p].lazy \leftarrow 0

end procedure
```


RANGEADD 2 on interval $[0,4] \longrightarrow \mathsf{Update}$ node 1

RangeAdd 2 on interval $[0,4] \longrightarrow Update root$

13 Lazy value

Segment Tree - RangeAdd

```
Algorithm 5 Segment Tree - RangeAdd
Input: Segment tree t[], current index p, interval [\ell, r], value v.
  procedure RANGEADD(t[], p, \ell, r, v)
      Propagate(t, p)
      if \ell > t[p].r or r < t[p].\ell then
          return
      end if
      if \ell \leq t[p].\ell and t[p].r \leq r then
          t[p].lazy \leftarrow t[p].lazy + v
          Propagate(t, p)
      else if t[p].\ell \neq t[p].r then
          RANGEADD(t, 2p + 1, \ell, r, v)
          RANGEADD(t, 2p + 2, \ell, r, v)
          t[p].v \leftarrow t[2p+1].v + t[2p+2].v
      end if
  end procedure
```

Segment Tree - Sum

```
Algorithm 6 Segment Tree - Sum
```

```
Input: Segment tree t[], current index p, interval [\ell,r]. Output: Sum on interval [\ell,r]. procedure \mathrm{SUM}(t[],p,\ell,r) if \ell > t[p].r or r < t[p].\ell then return 0 end if PROPAGATE(t,p) if \ell \leq t[p].\ell and t[p].r \leq r then return t[p].v end if return \mathrm{SUM}(t,2p+1,\ell,r) + \mathrm{SUM}(t,2p+2,\ell,r) end procedure
```

Segment Tree - Complexity

Complexity

Let n be the size of the input array a[].

- BUILD: Each of the 2n-1 nodes is visited once. $\mathcal{O}(n)$.
- ADD: At most two nodes are visited on every level. $\mathcal{O}(\log n)$.
- SUM: At most four nodes are visited on every level. $\mathcal{O}(\log n)$.
- RANGEADD: At most four nodes are visited on every level. $\mathcal{O}(\log n)$.

LCA - Example

The Lowest Common Ancestor (LCA) of two nodes u and v in a tree is the deepest node that has both u and v as descendants. (A node is assumed to be a descendant of itself.)

$$LCA(5,6) = 2$$

Naïve approach to compute LCA(u, v):

- Compute the path from root to u and v.
- Find the first entry at which both paths differ.
- The LCA is the node right before this mismatch.

Naïve approach to compute LCA(u, v):

- Compute the path from root to u and v.
- Find the first entry at which both paths differ.
- The LCA is the node right before this mismatch.
- Example above:
 - Path from root to node 5: (0, 2, 5)
 - Path from root to node 6: (0, 2, 4, 6)
 - LCA is 2.
- Complexity: $\mathcal{O}(n)$, where n is the number of nodes in the tree.

Naïve approach to compute LCA(u, v):

- Compute the path from root to u and v.
- Find the first entry at which both paths differ.
- The LCA is the node right before this mismatch.
- Example above:
 - Path from root to node 5: (0, 2, 5)
 - Path from root to node 6: (0, 2, 4, 6)
 - LCA is 2.
- Complexity: $\mathcal{O}(n)$, where n is the number of nodes in the tree.

We can do better using segment trees!

LCA - Eulerian Tour Technique

The Eulerian Tour Technique is a special representation of trees:

- Replace every undirected edge $\{u, v\}$ by two directed edges (u, v) and (v, u).
- Compute an Eulerian cycle starting from the root.

The Euler Tour Representation (ETR) of a tree is the traversal order of nodes in the Eulerian cycle.

Segment Tree

Segment Tree - Lazy Propagation

LCA - Eulerian Tour Representation

idx	0	1	2	3	4	5	6	7	8	9	10	11	12
ETR	0	1	0	2	4	6	4	2	5	2	0	3	0
depth	0	1	0	1	2	3	2	1	2	1	0	1	0

first visit

Segment Tree

Segment Tree - Lazy Propagation

LCA - Eulerian Tour Representation

idx	0	1	2	3	4	5	6	7	8	9	10	11	12
ETR	0	1	0	2	4	6	4	2	5	2	0	3	0
depth	0	1	0	1	2	3	2	1	2	1	0	1	0

Depth of LCA(5,6) is 1, and LCA(5,6) = 2.

Segment Tree - Lazy Propagation

LCA - Eulerian Tour Representation

idx	0	1	2	3	4	5	6	7	8	9	10	11	12
ETR	0	1	0	2	4	6	4	2	5	2	0	3	0
depth	0	1	0	1	2	3	2	1	2	1	0	1	0

Depth of LCA(1,3) is 0, and LCA(5,6) = 0.

How to compute LCA(u, v)?

- Compute the ETR of the tree.
- Compute the depths corresponding to the nodes in the ETR.
- Store at which index a node is first visited in the ETR.
- Build a segment tree on the depth array using the mininum operator.
- LCA(u, v) is the node associated to the minimum in the interval [x, y] of the depth array, where x and y are the indices of the first occurrences of u and v in the ETR.

LCA - Complexity

Complexity

- Computing the ETR requires a tree traversal. $\mathcal{O}(n)$.
- Building the segment tree on the depth array. $\mathcal{O}(n)$.
- Any further computation of LCA(u, v) requires one minimum query in the segment tree. $\mathcal{O}(\log n)$.