

# VFIO-based Mediated Pass Through – KVMGT as an example

Jike Song jike.song@intel.com
October 2016



# **Agenda**

☐ Graphics Virtualization: KVMGT and MPT

☐ VFIO

☐ VFIO-based KVMGT



### **Graphics Virtualization – Before MPT: API Forwarding**



#### Pros

- Performance
- Scalability

#### Cons

- Lagging features
- Incompatible APIs
- Maintenance burden



### **Graphics Virtualization – Before MPT: direct Pass-Through**



#### Pros

- Performance
- Full features

#### Cons

No or limited sharing (w/o or w/ SR-IOV)



### **Graphics Virtualization – MPT: Mediated Pass-Through**



#### Pros

- Performance
- Full feature
- Scalability

#### Cons

Vendor specific



### **Graphics Virtualization – MPT based KVMGT**



#### Pros

- Full Feature
- Performance
- Scalability

#### Cons

 Touched a lot: Kernel, KVM, i915, QEMU, SeaBIOS ...



# **Agenda**

☐ Graphics Virtualization: KVMGT and MPT

☐ VFIO

☐ VFIO-based KVMGT



### **VFIO – Virtual Function I/O**

- ☐ By Alex Williamson @ Redhat
- ☐ Used for: device Pass-Through in KVM
  - Replaced the legacy PCI Assignment in KVM
- ☐ Used for: Userspace Drivers
  - Replaced UIO
- ☐ Modular Bus drivers, Modular IOMMU backends
  - > Available Bus drivers: PCI, platform
  - ➤ Available IOMMU backends: type1, SPARR



### VFIO – PCI device Pass-Through to KVM Guest





## VFIO – PCI device Pass-Through to KVM Guest

- ☐ A PCI Device or VF consists of:
  - ➤ PCI Configuration Registers
  - > MMIO Registers
  - ➤ INTx/MSI/MSI-X IRQ
  - > DMA
- □ VFIO passthrough it by:
  - ➤ vfio\_pci bus driver
    - ✓ PCI CFG : proxying the access
    - ✓ MMIO: mmap to QEMU, thereby to guest
    - ✓ IRQ : eventfd to QEMU, ioctl to KVM & inject to guest
  - > Type1 IOMMU backend
    - ✓ DMA: pin & map GPA(Guest Physical Address) to HPA(Host Physical Address)



# **VFIO – PCI device Userspace Driver**





### **VFIO – PCI device Userspace Driver**

- □VFIO enables userspace driver by:
  - ➤vfio\_pci bus driver
    - ✓ PCI CFG : porxying the access
    - ✓ MMIO : mmap to userspace
    - ✓IRQ: eventfd to userspace
  - ➤Type1 IOMMU backend
    - ✓DMA: pin & map userspace virtual address to physical address



# **Agenda**

☐ Graphics Virtualization: KVMGT and MPT

☐ VFIO

■ VFIO-based KVMGT



### VFIO Based KVMGT – the VFIO MDEV support

- ☐ Framework first implemented by Nvidia
- Upstreaming in progress
- New Bus driver for Mediated Device
  - vfio-mdev
  - flexible configuration: trapping or passing-through
  - Capable of being compatible with the existing userspace API for PCIDEV
  - > Yet not PCI-specific
- Extended type1 IOMMU backend
  - Pin guest pages on-demand
  - Without hardware IOMMU dependency
- Multiple Usage
  - > vGPU Solution : Nvidia, Intel
  - > CCW Pass-Through: IBM
  - > Probably other mediated devices in the near future



### VFIO Based KVMGT – the new KVMGT



#### **Pros** compared with old KVMGT

- API compatibility with vfio-pci and all vGPU vendors
- No QEMU/SeaBIOS changes

### Cons compared with old KVMGT

- More difficult to support primary GPU mode
- A little performance drop: MMIO emulation is longer



# Thank you!

**Questions?** 

