

Network-aware Data Management for Disaggregated Memory Systems

Scan me

Thaleia Dimitra Doudali and Ada Gavrilovska Georgia Institute of Technology

1. Problem Space

Application in-memory data cold data hot data → access frequency → Data Management Software Dynamic Data Tiering hot data Data rest of **Local Memory** the data Migrations HBM DRAM NVM DRAM CPU FPGA -NVM High Speed DRAM Compute Unit Interconnect NVM CPU GPU **Remote Memory** DRAM NVM (Shared or Dedicated) **Local Memory** Disaggregated Memory System

2. Challenges

Time to migrate the pages > Time to access them from remote memory.

- 1. How to predict which application data to migrate? [Kleio¹ HPDC '19 best paper award finalist]
- 2. How to predict the performance curve for zero cost migrations? [Mnemo² HPBDC workshop of IPDPS '19]
- 3. How to predict the performance curve for costly migrations? [Work In Progress]

3. Solution

Data Management Software Dynamic scheduling of data migrations based on memory and network load Explicit management of data migration traffic Remote Memory Remote Memory Access Traffic High Speed Interconnect

4. Implementation

Evaluation Metrics:

- Average Data Response Time
- Bandwidth Utilization

Goal
Optimize Application Performance

Maximize Local Memory Accesses

Managed bursts of Data Migrations