CS 547: Foundation of Computer Security

S. Tripathy IIT Patna

Previous class

- User Authentication
- · Access Control

Present class

Crypto Basics

- Cryptographic algorithms
 - important element in security services
- review various types of elements
 - symmetric encryption
 - public-key (asymmetric) encryption
 - Cryptographic hash functions
 - digital signatures

A Taxonomy of Cryptographic Primitives

Symmetric Encryption

- universal technique for providing confidentiality
- also referred to as single-key encryption
- two requirements for secure use:
 - need a strong encryption algorithm
 - sender and receiver must have obtained copies of the secret key in a secure fashion
 - and must keep the key secure

Ideal Block Cipher

Block cipher Design Principle

Confusion:

 The relation between the statistics of cipher text and plain texts must be complex

Diffusion:

 Every bit of the cipher text should depend on the every bit of key and plain text

Ex.: Suppose encrypting plaintext 11111111111111 produces ciphertext 0110110000101001

Then encrypt 11111110111111111, can't predict anything about ciphertext

- These two important properties can be achieved by repeatedly using of keyed substitutions and permutations.
 - Block cipher in this principle is called Iterated Block cipher

Common Building Blocks

Substitution-Permutation Network (SPN)

 General term for sequence of operations that performs substitutions and permutations on bits

Feistel Network

- For input $L_0 \mid\mid R_0$ and any function F
- $L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$
- K_i = other input to F, (ex. key material)

Whitening

- XOR data with key material $(X \oplus K)$
- Helps break relationship between output of one round and input to next round

Iterative Block cipher

Ex.: DES, AES

Attacking Symmetric Encryption

- Cryptanalytic Attacks
 - rely on:
 - nature of the algorithm
 - plus some knowledge of the general characteristics of the plaintext
 - even some sample plaintextciphertext pairs
 - exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or the key being used
 - if successful all future and past messages encrypted with that key are compromised

Brute-Force Attack

- try all possible keys on some ciphertext until an intelligible translation into plaintext is obtained
 - on average half of all possible keys must be tried to achieve success

Symmetric Encryption Algorithms

	DES	Triple DES	AES
Plaintext block size (bits)	64	64	128
Ciphertext block size (bits)	64	64	128
Key size (bits)	56	112 or 168	128, 192, or 256

DES = Data Encryption Standard

AES = Advanced Encryption Standard