We claim:

1. A polynuclear \(\alpha \) -diimine Ni(II) complex used as the precursor of the catalyst in polymerizing polyolefine, represented by the following formula:

wherein M is Ni; X is Cl or Br; m and n is independently an integer from 0 to 100, respectively; R_1 and R_2 is the same or different, and is selected from the group consisting of H, methyl, ethyl, isopropyl and tert-butyl; Y is CR_3R_4 , wherein R_3 and R_4 is the same or different, and is selected from the group consisting of H, methyl, ethyl, propyl, butyl and phenyl, or R_3 and R_4 forming a cyclic alkyl group; R_5 and R_6 is the same or different, and is selected from the group consisting of methyl, ethyl, propyl and heterocyclic group; Q is a cyclic divalent residual group of the following formula or a mixture thereof:

2. A polynuclear α -diimine Ni(II) complex of claim 1, wherein, M is Ni; X is Cl or Br; m is an integer from 0 to 100, n is 0; R_1 and R_2 is the same or different, and is selected from the group consisting of H, methyl, ethyl, isopropyl and tert-butyl; Y is CR_3R_4 , wherein R_3 and R_4 is the same or different and is selected from the group consisting of H, methyl, ethyl, propyl, butyl and phenyl, or R_3 and R_4 forming a cyclic alkyl group; Q is a cyclic divalent residual group of the following formula or a mixture thereof:

3. A polynuclear $\,^{\alpha}$ -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 20, n is 0; R_1 is isopropyl, R_2 is methyl or isopropyl; Y is CR_3R_4 , wherein R_3 and R_4 is the same and is H or methyl, or R_3 and R_4 forming a cyclohexyl group; Q is a cyclic divalent residual group of the following formula or a mixture thereof:

4. A polynuclear $\,^{\alpha}$ -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 10, n is 0; R_1 is isopropyl, R_2 is methyl or isopropyl; Y is CR_3R_4 , wherein R_3 and R_4 is the same and is H or methyl, or R_3 and R_4 forming a cyclohexyl group; Q is a cyclic divalent residual group of the following formula:

5. A polynuclear $\,^{\alpha}$ -diimine Ni(II) complex of claim 1, wherein, M is Ni; X is Cl or Br; m is 0, n is an integer from 1 to 100; R_1 and R_2 is the same or different and is selected from the group consisting of H, methyl, ethyl, isopropyl and tert-butyl; Y is CR_3R_4 , wherein R_3 and R_4 is the same or different and is selected from the group consisting of H, methyl, ethyl, propyl, butyl and phenyl, or R_3 and R_4 forming a cyclic alkyl group; R_5 and R_6 is the same or different and is selected from the group consisting of methyl, ethyl, isopropyl and

heterocyclic group.

- 6. A polynuclear $\,^{\alpha}$ -diimine Ni(II) complex of claim 1, wherein, $\,^{\alpha}$ X is Br; m is 0, n is an integer from 1 to 30; $\,^{\alpha}$ R₁ is isopropyl, $\,^{\alpha}$ R₂ is methyl or isopropyl; Y is $\,^{\alpha}$ CR₃R₄, where $\,^{\alpha}$ R₃ and $\,^{\alpha}$ R₄ is the same, and is H or methyl, or, $\,^{\alpha}$ R₃ and $\,^{\alpha}$ R₄ forming a cyclohexyl group; $\,^{\alpha}$ R₅ and $\,^{\alpha}$ R₆ is methyl.
- 7. A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is 0, n is an integer from 1 to 20; R_1 and R_2 is isopropyl; Y is CR_3R_4 , where R_3 and R_4 is the same, and is H or methyl; R_5 and R_6 is methyl.
- 8. A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 10, n is an integer from 1 to 20; R_1 is isopropyl, R_2 is methyl or isopropyl; Y is CR_3R_4 , where R_3 and R_4 is the same, and is H or methyl, or R_3 and R_4 forming a cyclohexyl group; R_5 and R_6 is methyl; Q is a cyclic divalent residual group of the following formula:

9. A polynuclear α -diimine Ni(II) complex of claim 1, wherein, X is Br; m is an integer from 1 to 10, n is an integer from 1 to 20; R_1 and R_2 is methyl; Y is CR_3R_4 , where R_3 and R_4 is the same, and is H or methyl; R_5 and R_6 is methyl; Q is a cyclic divalent residual group of the following formula:

- 10. A method for the preparation of the polynuclear $\,^{\alpha}$ -diimine Ni(II) complex of claim 1, comprising the steps of:
 - (a) condensing an α -diketone represented by the formula or a mixture thereof,

$$Q$$
 R_5 R_6

wherein, Q, R₅ and R₆ have the same definition in claim 1, a substituted aromatic diamine represented by the formula

$$H_2N$$
 Y NH_2 R_2 R_2

wherein, R_1 , R_2 and Y are as defined in claim 1, and a substituted aromatic amine represented by the formula

$$R_1$$
 R_2
 R_2

wherein, R_1 and R_2 are as defined in claim 1,

in a medium of alcohol, aromatic hydrocarbon, alcohol-ether mixture, or alcohol-halogenated hydrocarbon mixture and under the catalytic action of HCOOH, CF₃COOH or HX, wherein X is F, Cl, Br, or I;

thereby obtaining an oligomer of substituted $\,\alpha$ -diimine of the formula

wherein, R₁, R₂, R₅, R₆, Q, Y, m and n have the same definition in claim 1;

(b) carrying out coordination reaction of the oligomer of step (a) with NiX_2 , wherein X is Cl or Br, in the absence of water and oxygen, thereby obtaining a polynuclear α -diimino Ni(II) complex of the following formula:

wherein, R₁, R₂, R₅, R₆, Q, Y, M, X, m and n have the same definition in claim 1.

11. A method for preparing polyethylene, comprising the step of using the polynuclear α -diimine Ni(II) complex of claim 1 as the precursor of the catalyst.