Оглавление

			Стр.
Введен	ние		2
Глава 1. Теоретический базис			3
Глава	2. Me	годы моделирования ондуляторного излучения	
	от і	пучка с конечным эмиттансом	4
2.1	Оста	тистических свойствах синхротронного излучения	4
2.2	Численное моделирование ондуляторного излучения		5
	2.2.1	Влияние размера электронного пучка на	
		расходимость излучения	9
	2.2.2	Различие расходимости излучения для случая	
		продольно полностью когерентного и некогерентного	
		пучка	10
	2.2.3	Влияние энергетического разброса электронного	
		пучка на расходимость излучения	11
2.3	Метод ограничения пространственных гармоник		
	огибающими: SERVAL		12
	2.3.1	Алгоритм получения поля	12
	2.3.2	Выбор подходящих огибающих	14
2.4	Сравнение метода Монте-Карло, SRW и SERVAL		16
	2.4.1	Дифракция на апертуре	16
	2.4.2	Фокусировка	16
Глава	3. Кор	рреляционный анализ модовой структуры	17
Списо	и пито	аролург I	10

Введение

Представленная работа посвящена разработке методов моделирования процесса генерации синхротронного излучения (СИ) от электронного пучка с конечным эмиттансом и прохождения этого излучения через оптическую систему. Развитие магнитных схем циклических ускорителей дало возможность снизить эмиттанс электронного пучка и приблизить источники СИ к дифракционному пределу для широкого диапазона длин волн, вплоть до жёсткого рентгена. Под дифракционным пределом мы понимаем, что эмиттанс электронного пучка $\epsilon_{x,y}$ много больше или, по крайней мерее, сравним с "эмиттансом"
излучения – $\lambda/4\pi$, то есть $\epsilon_{x,y} \ll \lambda/4\pi$. Такое излучение характиризуется заметной степенью поперечной когерентностью. Случай с частичной когерентностью представляет наибольший интерес, так как именно он реализуется в большинстве практических случаях. В работе предложен оригинальный метод генерации частично когерентного синхротронного излучения и рассмотрены практические примеры распространения частично когерентного волнового фронта через оптическую систему источников СИ.

[...]

Глава 1. Теоретический базис

Распространение функции взаимной когерентности излучения через свободное пространство от некогерентных источников излучения описывается теоремой Ван Циттера - Цирнике. [написать положение теоремы и её практические следствия, описать при каких предположениях выполняется теорема]

[дать введение и основные заключения из работы Джанлуки, рассказать про ондуляторный источник излучения]

[сделать обзор литературы по тому какие подходы в основном реализуются сейчас: Гаусс-Шелл модель, указать на несоответствие того, что ондуляторное излучение имеет форму синк-функции]

Глава 2. Методы моделирования ондуляторного излучения от пучка с конечным эмиттансом

[интро]

2.1 О статистических свойствах синхротронного излучения

Электромагнитное излучение от электронного пучка с конечным эмиттансом может быть представлено как сумма полей от каждого индивидуального электрона. Каждый k электрон в пучке имеет свою координату — $\vec{\eta}_k$, угол — \vec{l}_k , отсчитываемый от проектной траектории, а также продольную координату или, другими словами, время прибытия t_k относительно некоторого времени t_0 , вклад которого в $r\omega$ -пространстве будет умножением поля на фазовый фактор $\exp(i\omega t_k)$. Указанные величины подчиняются некоторым распределениям плотности вероятности, для накопительных колец в модельных случаях это распределение Гаусса. В данном случае не рассматривается разброс электронов по энергии, он будет включён в рассмотрение позже. Объём фазового пространства, которые составляют эти шесть переменных, и есть эмиттанс электронного пучка. Результирующее поле от N_e электронов можно записать следующим образом:

$$\bar{E}_b(z, \vec{r}, \omega) = \sum_{k=1}^{N_e} \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \exp(i\omega t_k), \qquad (2.1)$$

Для электронов в накопительных кольцах случайные величины $\vec{\eta}_k$ и \vec{l}_k не зависят от времени прибытия t_k . Модуля поля $\bar{E} = |\bar{E}_k| \exp i\phi_k$ имеет независящей от k одинаковое распределение со средним $\langle |\bar{E}_k| \rangle$ и конечным вторым моментом $\langle |\bar{E}_k|^2 \rangle$. [Всё это здорово, но должно откуда-то следовать. По всей видимости, эти предположения следуют из наличия дробового шума в электронном пучке (затухание и квантовая раскачка бетатронных колебаний). Нужна объяснительная команда.].

Результирующее поле \bar{E}_b является суммой вкладов от каждого электрона в пучке и по своей структуре в правой части уравнения 2.1 записан некоторый фазор. Следуя предпосылкам центральной предельной теоремы (ЦПТ), можно показать, что \bar{E}_b комплексная Гауссова переменная. Другими словами, амплитуда поля в каждой точке \vec{r} подчиняется гауссовому распределению. Однако, предпосылки ЦПТ выполняются для двух практически значимых предельных случаев: случай длинного $\omega \sigma_T \gg 1$ и короткого электронного пучка $\omega \sigma_T \gg 1$, где σ_T – длительность электронного пучка [а что не так с $\omega \sigma_T \sim 1$?]. В случае длинного электронного пучка величина ωt_k равномерно распределена в пределах от 0 до 2π и излучение продольно некогерентно, для короткого пучка фазовый множитель $\exp(i\omega t_k)$ может быть взят равным единице и излучения является продольно когерентным.

2.2 Численное моделирование ондуляторного излучения

Формула 2.1 используется напрямую при моделирования ондуляторного излучения, как продольно когерентного так и некогерентного. Общий вид поля ондуляторного излучения от одного электрона с некоторыми углом $\vec{\eta}_k$ и координатой \vec{l}_k может быть записан как [1] [спросить Джанлуку про эту формулу]:

$$\bar{E}_{\perp}(z_0, \omega, \vec{\eta}_k, \vec{l}_k, \vec{\theta}) = -\frac{\omega e A_{JJ} L_s}{2c^2 z_0} \frac{K}{\gamma} \exp\left[i\frac{\omega z_0}{2c} \left| \vec{\theta} - \vec{l}/z_0 \right|^2\right] \\
\times \operatorname{sinc}\left[\left(k_w \frac{\Delta \omega}{\omega} + \frac{\omega |\vec{\theta} - (\vec{l}/z_0) - \vec{\eta}|^2}{2c}\right) \frac{L_s}{2}\right], (2.2)$$

где $\vec{\theta} = \vec{r}/z_0$ [пояснить все новые параметры]. Формула 2.2 даёт распределение амплитуды поля в дальней зоне ($z_0 \gg L_w$ [и что-то ещё]). Чтобы получить более точно выражение это поле должно быть отпропагировано назад в центр ондулятора с помощью пропагатора свободного пространства. Распределение поля в мнимом источнике излучения: [Откуда

взялась информация, которой не было. Нужна пояснительная команда.]

$$\widetilde{E}_{\perp}(0, \vec{\eta}, \vec{l}, \vec{r}_{\perp}) = i \frac{eA_{JJ}\omega}{2c^2} \frac{K}{\gamma} \exp\left[i \frac{\omega}{c} (\vec{r}_{\perp} - \vec{l})\right] \times \left[\pi - 2\operatorname{Si}\left(\frac{i\omega|\vec{r}_{\perp} - \vec{l}|^2}{L_w c}\right)\right], \qquad (2.3)$$

после этого поле можно распространять на любую дистанцию вдоль оптической оси z_0 . Снова применяя пропагатор свободно пространства, получаем:

$$\bar{E}_{\perp}(z_{0}, \omega, \vec{\eta_{k}}, \vec{l_{k}}, \vec{r}) = \frac{eA_{JJ}\omega}{2c^{2}} \frac{K}{\gamma} \exp\left[i\frac{\omega}{2z_{0}c} (|\vec{r_{\perp}} - \vec{l}|^{2} - |\vec{r_{\perp}} - \vec{l} - z_{0}\vec{\eta}|^{2})\right] \times \left\{ \operatorname{Ei}\left[\frac{i\omega(\vec{r_{\perp}} - \vec{l} - z_{0}\vec{\eta})^{2}}{2z_{0}c - L_{w}c}\right] - \operatorname{Ei}\left[\frac{i\omega(\vec{r_{\perp}} - \vec{l} - z_{0}\vec{\eta})^{2}}{2z_{0}c + L_{w}c}\right] \right\}.$$
(2.4)

Рассчитанное таким образом поле может быть рассчитано для любого значения z_0 , такое поле называют поле в приближении ближней зоны, так как эта формула применим для значение $z_0 \sim L_w$. Обе формулы 2.2 и 2.4 имеют практическую ценность при моделировании, однако при использовании выражения 2.4 время на моделирование значительно увеличивается, так как необходимо дважды численно взять интеграл $Ei(\cdot)$.

После расчёта суммарного поля с N_e электронами получившиеся монохроматическое поле по своей сути есть одна статистическая реализация поля. [переформулировать следующее предложение] Физически это значит следующее, если экспериментатор измерит распределение интенсивности поля на детекторе от пролёта одного электронного пучка, используя монохроматор с разрешением, которое позволит разрешить одну продольную моду излучения, то на детекторе будет распределение эквивалентное по своим статистическим свойствам распределению, представленному на Рис..

После усреднения по N_b реализациям (с идеальным монохроматором¹), наблюдаемая интенсивность даётся выражением:

$$I_{\omega} = \left\langle \left| \sum_{k=1}^{N_e} \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \exp(i\omega t_k) \right|^2 \right\rangle, \tag{2.5}$$

Рисунок 2.1 — Схема работы метода сложения амплитуд [перерисовать, изменить подпись]

результирующая интенсивность будет сходиться к некоторой огибающей. В грубом приближении огибающая является свёрткой распределения расходимости излучения и распределения расходимости электронного пучка. Данный подход является наиболее прямым подходом к задаче моделирования частично когерентного излучения, однако время расчёта в таком случае может быть оценено как время затрачиваемое на расчёт одной одного поля N_e раз по формуле 2.2 или 2.4, в последней, как уже упоминалось, необходимо дважды численно взять интеграл $Ei(\cdot)$ и потом усреднить по N_b реализациям поля \bar{E}_b . Итого, если за τ_{calc} взять время расчёта одного поля, то расчёт одного результирующего поля в сумме займёт $T_{calc} = \tau_{calc} \cdot N_e \cdot N_b$.

Однако в случае полностью некогерентного излучения время расчёта можно сократить за счёт фазового фактора $\exp(i\omega t_k)$, который эф-

¹другими словами, монохроматором разрешается одна поперечная мода

фективно приводит к тому, что отдельный электрон в электронном пучке коррелирует только с самим собой [2]. Таким образом формула 2.5 упрощается до

$$I_{\omega} = \sum_{k=1}^{N_e} \left| \bar{E}(\vec{\eta}_k, \vec{l}_k, z, \vec{r}, \omega) \right|^2,$$
 (2.6)

Рисунок 2.2 — Схема метода сложения интенсивностей [перерисовать, изменить подпись]

а время расчёта уменьшается до $T_{calc} = \tau_{calc} \cdot N_e$. Недостатком такого подхода можно считать потерю фазовой информации о излучение и, следовательно, невозможности расчёта поперечной автокрелляционной функции первого порядка [Можно ли через второй порядок найти первый? Нужна пояснительная команда]. Тем не менее, подход основанный на формуле 2.6 даёт мощный метод расчёта частично когерентного излучения. Именно этот подход реализован в широко распространённом коде SRW [cite].

2.2.1 Влияние размера электронного пучка на расходимость излучения

[где такой эффект можно неожиданно встретить?] [когерентный случай]

Рисунок 2.3 — Интенсивность комплексного гауссового шума

[некогерентный случай]

Рисунок 2.4 — Интенсивность комплексного гауссового шума

2.2.2 Различие расходимости излучения для случая продольно полностью когерентного и некогерентного пучка

В зависимости от длительности электронного пучка результирующее поле \bar{E}_b будет вести себя по-разному. В случае короткого электронного пучка: $\omega\sigma_T\ll 1$, где σ_T – длительность электронного сгустка, излучение будет продольно когерентным, в иностранной литературе этот эффект называется Coherent Synchrotron Radiation (CSR). Методы моделирования такого излучения рассмотрены в работах [cite]. Приближение короткого электронного пучка справедливо для низких энергий [каких?]. Случай длинного электронного пучка, а именно $\omega\sigma_T\gg 1$ соответствует случаю продольно некогерентного излучения, а для уравнения 2.1 это означает, что показатель экспоненты $\omega\sigma_T$ равномерно распределён в интервале от 0 до 2π .

[отличие на $\sqrt{2}$] [где такой эффект можно неожиданно встретить?]

Рисунок 2.5 — Интенсивность комплексного гауссового шума

2.2.3 Влияние энергетического разброса электронного пучка на расходимость излучения

[Как-то влияет]
[картинки моделирования]

2.3 Метод ограничения пространственных гармоник огибающими: SERVAL

В работе предлагается эффективный метод для моделирования частично когерентного излучения, основанный на ограничении пространственного шума огибающими поля. Метод заключается в имитации дробового шума в электронном пучке комплексным Гауссовым шумом и последующим его ограничением пространственных мод этого шума эффективным размером и расходимостью электромагнитного поля в источнике. Эффетивный размер и расходимость поля оценивается как соответствующая свёртка распределения электронного пучка с распределением поля от электронного пучка с бесконечно малым поперечным эмиттансом в источнике излучения — центре ондулятора. Выбор позиции в центре ондулятор объясняется тем, что ондуляторное излучение имеет плоский волновой фронт именно в центре ондулятора, этим оно схоже лазерными Гауссовыми пучками.

2.3.1 Алгоритм получения поля

Для начала алгоритм будет представлен в общем виде, без уточнения чем определяются распределение размера и расходимости излучения и, в целом, без относительно характера источника излучение – в нашёл случае ондулятора.

1. Создание комлексного гауссового шума Z = X + iY в $r\omega$ - пространстве, где величины X и Y подчиняются нормальному распределению.

Рисунок 2.6 — Интенсивность комплексного гауссового шума

2. Ограничение шума эффективным размером электромагнитного излучения в перетяжке.

100 75 50 25 25 -50 -75 -100 -100 -75 -50 -25 0 25 50 75 100
x, [мкрад]

Рисунок 2.7 — Размер электромагнитного излучения в перетяжке наложенный на шум

Рисунок 2.8 -Получившиеся моды в $k\omega$ -пространстве от размера электронного пучка

3. Ограничение пространственных мод эффективной расходимостью излучения

4. Распространение излучения через оптическую систему

2.3.2 Выбор подходящих огибающих

При выполнение второго шага выполняется операция умножения шума, на распределение размера излучения. Размер излучения в случае электронного пучка с бесконечно малым поперечным эмиттансом может быть получено, как обратная пропагация излучения в дальней зоне 2.2 обратно в центр ондулятора посредствам пропагатора в свободном пространстве. Выражение для распределения поля в центре ондулятора да-ётся выражением:

$$\widetilde{E}_{\perp}(0, \vec{\eta}, \vec{l}, \vec{r}_{\perp}) = i \frac{eA_{JJ}\omega}{2c^2} \frac{K}{\gamma} \exp\left[i \frac{\omega}{c} (\vec{r}_{\perp} - \vec{l})\right] \times \left[\pi - 2\operatorname{Si}\left(\frac{i\omega|\vec{r}_{\perp} - \vec{l}|^2}{L_w c}\right)\right]$$
(2.7)

Для того, чтобы получить распределение амплитуды (интенсивности) излучение в случае электронного пучка с конечным эмиттансом следует произвести свёртку распределение размера электронного пучка $f(\vec{r})$ с распределением излучения амплитуды (интенсивности) от пучка с бес-

конечно малым эмиттансом.

$$\bar{A}_b(0, \vec{r}) = (\tilde{A}_{\perp}(0, 0, 0, \vec{r}_{\perp}) * f(\vec{r}_{\perp})),$$
 (2.8)

тоже для шага 3. для расходимости.

$$\hat{\bar{A}}_b(0,\vec{\theta},\omega) = (\hat{\tilde{A}}_\perp(0,0,0,\vec{\theta}_\perp) * \hat{f}(\vec{\theta}_\perp)), \tag{2.9}$$

именно $\bar{A}_b(0,\vec{r})$ и $\hat{A}_b(0,\vec{\theta},\omega)$ используются при ограничении пространственных гармоник огибающими. Однако, точный вид огибающих пока не затрагивался, а именно следует ли использовать в качестве свёртываемых функций амплитудные распределения, распределения интенсивности или же третий вариант квадратный корень из квадратов амплитуд.

I.
$$\bar{A}_b(0, \vec{r}) = (\tilde{E}_{\perp}(0, 0, 0, \vec{r}_{\perp}) * f(\vec{r}_{\perp}))$$

$$\hat{\bar{A}}_b(0, \vec{\theta}) = (\hat{\tilde{E}}_{\perp}(0, 0, 0, \vec{\theta}_{\perp}) * \hat{f}(\vec{\theta}_{\perp}))$$

II.
$$\bar{A}_b(0, \vec{r}) = \sqrt{\left(\tilde{E}_{\perp}^2(0, 0, 0, \vec{r}_{\perp}) * f^2(\vec{r}_{\perp})\right)}$$

 $\hat{A}_b(0, \vec{\theta}) = \sqrt{\left(\hat{\tilde{E}}_{\perp}^2(0, 0, 0, \vec{\theta}_{\perp}) * \hat{f}^2(\vec{\theta}_{\perp})\right)}$

III.
$$\bar{A}_b(0, \vec{r}) = (|\tilde{E}_{\perp}(0, 0, 0, \vec{r}_{\perp})| * f(\vec{r}_{\perp}))$$

 $\hat{A}_b(0, \vec{\theta}) = (|\hat{\tilde{E}}_{\perp}(0, 0, 0, \vec{\theta}_{\perp})| * \hat{f}(\vec{\theta}_{\perp}))$

Чтобы выбрать для каждого из случаев наиболее подходящую огибающую проще всего проверить поведение поля в обычной фокусирующей системе, каким образом поле выглядит в дальней зоне и после фокусировки в фокальной плоскости. Сравнив поля, рассчитываемые методом SERVAL с наиболее реалистичным методом, основанным на подходе Монте-Карло будет сделан вывод о применимости огибающих І., ІІ. и ІІІ.

[картинки различных распределений в случае почти когерентного источника в одном направлении и некогерентного источника в другом]

- 2.4 Сравнение метода Монте-Карло, SRW и SERVAL
 - 2.4.1 Дифракция на апертуре
 - 2.4.2 Фокусировка

Глава 3. Корреляционный анализ модовой структуры

Заключение

Основные результаты работы заключаются в следующем.

Список литературы

- 1. Fourier treatment of near-field synchrotron radiation theory / G. Geloni [et al.] // Optics Communications. 2007. Aug. 1. Vol. 276, no. 1. P. 167–179. DOI: 10.1016/j.optcom.2007.03. 051. URL: https://www.sciencedirect.com/science/article/pii/S0030401807003367 (visited on 02/26/2021).
- 2. Transverse coherence properties of X-ray beams in third-generation synchrotron radiation sources / G. Geloni [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2008. Apr. 11. Vol. 588, no. 3. P. 463–493. DOI: 10.1016/j. nima.2008.01.089. URL: https://www.sciencedirect.com/science/article/pii/S0168900208001605 (visited on 02/22/2021).