

포항공과대학교 산업경영공학과

Stochastic Systems Lab

Jongwon Kim

May 16, 2022

Contents

- 1. Problem statement
- 2. Previous studies
- 3. SWAD: Domain Generalization by Seeking Flat Minima
- 4. Result

Problem statement

Why is domain generalization?

We have multi-domain training data. We don't know the test task.

The figure is adopted from [1]

Previous studies

Main idea

Find domain invariant representation!

Limitations of traditional domain generalization methods in the practical perspective

Degrade in-domain performance

Degrade training or inference speed

Be restricted to a task (e.g. classification) or domain (e.g. vision) Require domain labels

Domain divergence can be minimized implicitly, e.g., by data augmentation.

Main idea

Find flat minima!

 θ : model parameter

 ε : Loss function

D : Training data (Domain)

 γ : robust parameter

$$\hat{\mathcal{E}}_{\mathcal{D}}^{\gamma}(\theta) := \max_{\|\Delta\| \le \gamma} \hat{\mathcal{E}}_{\mathcal{D}}(\theta + \Delta)$$

$$\hat{\theta}^{\gamma} := \arg\min_{\theta} \hat{\mathcal{E}}_{\mathcal{D}}^{\gamma}(\theta)$$

Main idea

Find flat minima!

$$\hat{\theta}^{\gamma} := \arg\min_{\theta} \hat{\mathcal{E}}_{\mathcal{D}}^{\gamma}(\theta)$$

Objective function

 $\mathcal{E}_{\mathcal{T}}(\hat{\theta}^{\gamma}) - \min_{\theta'} \mathcal{E}_{\mathcal{T}}(\theta')$

DG gap in test domain T

the optimum of robust risk

domain divergence

$$\hat{\mathcal{E}}_{\mathcal{D}}^{\gamma}(\hat{\theta}^{\gamma}) - \min_{\theta''} \hat{\mathcal{E}}_{\mathcal{D}}(\theta'') + \frac{1}{I} \sum_{i=1}^{I} \mathbf{Div}(\mathcal{D}_{i}, \mathcal{T})$$

Gap between RRM and ERM in training domains D

Domain divergence

$$+ \max_{k \in [1,N]} \sqrt{\frac{v_k \ln (m/v_k) + \ln (2N/\delta)}{m}} + \sqrt{\frac{v \ln (m/v) + \ln (2/\delta)}{m}}$$

Model capacity and sample size

Main idea

Main idea

- ▲ Stochastic weight
- Averaged weight

Results

Performance table

Comparison with conventional generalization methods

Comparison of flatness-aware solvers

	Out-of-domain	In-domain
ERM	85.3±0.4	96.6±0.0
EMA	$85.5 \pm 0.4(-)$	97.0±0.1(†)
SAM	$85.5 \pm 0.1(-)$	97.4±0.1(†)
Mixup	84.8 ± 0.3 (-)	97.3±0.1(†)
CutMix	$83.8 \pm 0.4 (\downarrow)$	97.6±0.1(†)
VAT	$85.4 \pm 0.6(-)$	96.9±0.2(†)
$\Pi\text{-model}$	$83.5 \pm 0.5 (\downarrow)$	96.8±0.2(†)
SWA	85.9±0.1(↑)	97.1±0.1(†)
SWAD	87.1 ±0.2(↑)	97.7 ±0.1(↑)

Comparison between conventional generalization methods on PACS

Algorithm	PACS	VLCS	OfficeHome	TerraInc	DomainNet	Avg.
ERM (baseline)	85.5 ± 0.2	77.5 ± 0.4	66.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	63.3
SAM	85.8 ± 0.2	79.4 ± 0.1	69.6 ± 0.1	43.3 ± 0.7	44.3 ± 0.0	64.5
SWA	87.1 ± 0.1	76.5 ± 0.2	68.5 ± 0.2	49.6 ± 1.0	45.6 ± 0.0	65.5
SWAD	88.1 ± 0.1	79.1 ± 0.1	70.6 ± 0.2	50.0 ± 0.3	46.5 ± 0.1	66.9

Previous studies

Self-supervised learning

Combination with domain divergence minimization

							Minimize	
	PACS	VLCS	OfficeHome	TerraInc	${\tt DomainNet}$	Avg. (Δ)	Robust risk	Domain div.
ERM ERM + SWAD	$85.5 \pm 0.2 \\ 88.1 \pm 0.1$	$77.5 \pm 0.4 \\ 79.1 \pm 0.1$	$66.5 \pm 0.3 \\ 70.6 \pm 0.2$	$46.1 \pm 1.8 \\ 50.0 \pm 0.3$	$40.9 \pm 0.1 \\ 46.5 \pm 0.1$	63.3 66.9 (+3.6)	·	
CORAL CORAL + SWAD	86.2 ± 0.3 88.3 ± 0.1	78.8 ± 0.6 78.9 ± 0.1	68.7 ± 0.3 71.3 ± 0.1	47.6 ± 1.0 51.0 ± 0.1	$41.5 \pm 0.1 \\ 46.8 \pm 0.0$	64.5 67.3 (+2.8)	·	~

Thank you