Sakkfutam

Sakkország mítikus világa egy R sorból és C oszlopból álló téglalap alakú négyzetrács, ahol R nagyobb vagy egyenlő C-vel. A sorai 1-től R-ig, az oszlopai 1-től C-ig számozottak.

Sakkország lakosait egyszerűen csak *bábuknak* szokták nevezni, és 5 típusukat különböztetjük meg aszerint, hogy hogyan járják be az országot: gyalog, bástya, futó, királynő és király. A hiedelemmel ellentétben a vitézség már a múlté, így huszárokat nem találunk a birodalomban.

Mindegyik bábu egyedi a tekintetben, ahogy egyik mezőről a másikra lép (a sakk szokásos szabályai szerint): egy lépésben

- egy gyalog egy sort léphet előre (azaz az r. sorról az r + 1.-re) oszlopváltás nélkül;
- egy bástya akárhány oszlopot léphet jobbra/balra sorváltás nélkül, VAGY akárhány sort mozoghat előre/hátra oszlopváltás nélkül;
- egy futó bármelyik mezőre léphet azon két átló mentén, amelyek metszéspontjában a jelenleg elfoglalt helye van;
- egy királynő bármelyik mezőre léphet, ahova egy bástya vagy egy futó léphetne az adott helyről;
- egy király a szomszédos 8 mező bármelyikére léphet.

Az alábbi ábrán X-szel jelöltük azokat a mezőket, ahova az egyes bábuk mozoghatnak egy lépésben (itt a sorok lentről fölfele számozottak, és az oszlopok balról jobbra).

Az utóbbi időben Sakkország veszélyes hely lett: az országon átkelő bábukat ismeretlen erők váratlanul elrabolhatják és egyszerűen eltűntethetik. Következésképpen a bábuk igyekeznek a lehető leggyorsabban (azaz a legkevesebb lépésben) elérni céljukat, és az is érdekli őket, hogy hány különböző útvonalon tehetik ezt meg a minimális lépésszámot használva – mivel minél

1

v1

többféle útvonal áll rendelkezésre, annál kisebb az esélye az elrablásuknak. Két útvonal akkor tekinthető különbözőnek, ha legalább egy meglátogatott mezőben eltérnek egymástól.

Ennél a feladatnál tegyük fel, hogy a bábuk Sakkországba az 1. sor adott oszlopában lépnek be, és az R. sor adott oszlopából hagyják el azt. Feladatod, hogy Q kérdésre válaszolj: egy adott bábutípusnál ismerve az oszlopot, ahol az 1. sorba belép, és a kilépési oszlopot, amelyet el kell érnie az R. sorban, számold ki a Sakkországon való átkeléshez szükséges minimális lépésszámot, és azt, hogy ezt hány különböző útvonalon tudja megtenni.

Bemenet

A standard bemenet első sora három, szóközzel elválasztott egész számot tartalmaz, Sakkország sorainak R és oszlopainak C számát, valamint a kérdések Q számát. Ezt Q sor követi.

Mindegyik sor három adatot tartalmaz:

- egy T karaktert a kérdéses bábu típusának megfelelően ('P' a gyalog, 'R' a bástya, 'B' a futó, 'Q' a királynő és 'K' a király);
- c_1 és c_R egész számokat, $1 \le c_1, c_R \le C$, jelezve, hogy a bábu az 1. sor c_1 . oszlopában kezd, és az R. sor c_R . oszlopát kell elérnie.

Kimenet

A standard kimenetre Q sort kell kiírnod. Az i. sor két, szóközzel elválasztott egész számot tartalmaz, az i. kérdésre adott választ: az első szám a minimálisan szükséges lépések száma, a második a minimális lépésszámmal bejárható különböző útvonalak száma. Mivel az eredmény elég nagy lehet, a $10^9 + 7$ -tel vett moduloját számold ki, amihez használhatod az értékelőrendszer által biztosított külső függvényeket.

Ha nem lehet elérni a célmezőt, akkor "0 0" legyen a sorban.

Külső könyvtár

Az értékelőrendszer a következő függvényeket biztosítja a számítások elvégzéséhez magába foglalva a 10^9+7 -tel vett moduloszámítások alap aritmetikai műveleteit. Minden esetben a bemenet bármilyen érvényes **int** érték lehet, és a kimeneti tartomány $0,1,2,\ldots,10^9+6$. Egy példa implementáció rendelkezésre áll, hogy teszteld a megoldásodat, a részleteket lásd a következő részben.

- int Add(int a, int b): a és b számokat összeadja, majd visszatér az eredmény $10^9 + 7$ -tel vett modulojával.
- int Sub(int a, int b): a-ból kivonja b-t, majd visszatér az eredmény $10^9 + 7$ -tel vett modulojával.
- int Mul(int a, int b): a és b számok szorzatát számítja ki, majd visszatér az eredmény $10^9 + 7$ -tel vett modulojával.

2

v1

• int Div(int a, int b): kiszámítja a-nak $b \neq 0$ -val való osztásakor keletkező hányadosának $10^9 + 7$ -tel vett moduloját, azaz visszatér $0 \leq q < 10^9 + 7$ értékkel akkor és csak akkor, ha Mul(b,q) = $a \mod (10^9 + 7)$.

Feltételezhetjük, hogy a fenti műveletek mindegyike konstans időben lefut.

A fenti függvények eléréséhez a következő sort kell a megoldásod include listájához hozzáadnod: #include "arithmetics.h".

Gyakorlati tudnivalók

A sample.zip néven megtalálható fájl tartalmazza a függvények deklarációját tartalmazó arithmetics.h fejlécet, valamint egy példa implementációt tartalmazó arithmetics.cpp fájlt, amelyet a megoldásod teszteléséhez használhatsz.

Ahhoz, hogy használhasd ezeket, mindkét fájlt ugyanabba a könyvtárba kell másolnod, ahol a megoldásod forrásfájlja található (pl. chessrush.cpp), és add a #include "arithmetics.h" sort a megoldásod include listájához.

Ezután, fordítsd le a chessrush.cpp fájlt az arithmetics.cpp fájllal együtt, pl. a g++ -o chessrush arithmetics.cpp chessrush.cpp parancs használatával a parancssorban. Ha projekt alapú fejlesztőkörnyezetet használsz, akkor kézzel kell hozzáadni mindhárom fájlt a projekthez, mielőtt lefordítanád a megoldásodat.

A példabemenetek helyes megoldásait a output0.txt, output1.txt fájlokban találhatod. Se a biztosított eszközök, se a függvények nem ellenőrzik a megoldásaid helyességét.

Megoldásod beküldésekor csak a megoldásod forrásfájlját (pl. chessrush.cpp) kell az értékelőrendszerbe feltölteni.

3

Példák

Bemenet	Kimenet
8 8 5	0 0
P 1 2	2 2
R 4 8	2 5
Q 2 3	2 2
B 3 6	7 393
K 5 5	

Korlátok

 $1 \le Q \le 1000$ $2 \le C \le 1000$ $C \le R \le 10^9$

Időlimit: 1.3 s

Memórialimit: 64 MiB

v1

Értékelés

Részfeladat	Pontok	Korlátok
1	0	minta
2	8	$T \in \{'P', 'R', 'Q'\}$, azaz mindegyik bábu vagy gyalog, vagy bástya, vagy királynő
3	15	$T = 'B'$ és $C, R \le 100$
4	22	T = 'B'
5	5	$T = 'K'$ és $C, R \le 100$ és $Q \le 50$
6	8	$T = 'K'$ és $C, R \le 100$
7	15	$T = 'K'$ és $C \le 100$
8	20	T = 'K'
9	7	nincs további megszorítás

4