Sampling

By: Jeferson Bisconde

Data Discovery

- Question / Hypothesis
- Experiment
- Collect and Analyze Data
- Check Results
- Repeat / Redesign

Random Sampling

 every member is given equal opportunities of being selected

Sampling Methods

- Simple Random Sampling (SRS)
 - easiest and most widespread

- Other common methods:
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling

Random Sampling & Assignment

		Random assignment	No random assignment	
	Random sampling	Causal conclusion, generalized to the whole population.	No causal conclusion, correlation statement generalized to the whole population.	Generalizability
	No random sampling	Causal conclusion, only for the sample.	No causal conclusion, correlation statement only for the sample.	No generalizability
		Causation	Correlation	

Sampling and Inference

Central Limit Theorem (CLT)

- Given certain conditions
 - the mean will be approximately normal
 - regardless of the underlying distribution

draw i.i.d. samples and average them

Central Limit Theorem (CLT)

• Not only is the sample mean normally distributed, we have....

$$\bar{X} \sim Normal(\mu, \frac{\sigma^2}{n})$$

 And as usual, from any normally distributed random variable, we can derive a standard normal variable. In this case...

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Underlying distribution

draw i.i.d. samples and average them

Confidence Interval

interval estimate of a population parameter

- stated at 95% CI
 - o can be 50%, 90% or 99%

$$(\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}})$$
 or $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

Confidence Interval - cont

- if σ is not known
- and if N > 30, then

$$\overline{x} \pm 1.96 \frac{s}{\sqrt{n}}$$

• When N is small

$$\overline{\mathbf{x}} \pm \mathbf{t}_{(\alpha/2, \mathbf{n}-1)} \frac{s}{\sqrt{n}}$$

Resampling

• drawing repeated samples from the data

- Common techniques:
 - Bootstrapping
 - Jackknifing
 - o Cross-validation
 - Permutation tests

Bootstrapping

- Estimates the sampling distribution
 - sampling with replacement from original sample

 used to estimate standard errors and confidence intervals of a population parameter

Bootstrap Variance Estimation

Draw
$$X_1^*, \ldots, X_n^* \sim \hat{F}_n$$

Compute
$$\hat{\theta}^* = t(X_1^*, \dots, X_n^*)$$

Repeat steps 1 and 2, B times, to get $\hat{\theta}_1^*, \dots, \hat{\theta}_B^*$

Let
$$v_{boot} = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta}_b^* - \frac{1}{B} \sum_{r=1}^{B} \hat{\theta}_r^*)^2$$
$$(\hat{se}_{boot} = \sqrt{v_{boot}})$$

Bootstrap Confidence Interval

Percentile method

$$C_n = (\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*)$$

The Normal interval

$$\hat{\theta} \pm z_{\alpha/2} \hat{se}_{boot}$$

When to Bootstrap?

- Theoretical distribution is complicated or unknown
- sample size is too small
- estimating the variance of a statistic
 - small pilot sample for power calculations