

DISPLAY LCD

Ilton L. Barbacena Claudio Afonso Fleury

Outubro - 1996

01. INTRODUÇÃO

Os módulos LCD são interfaces de saída muito útil em sistemas microprocessados. Estes módulos podem ser gráficos e a caracter. Os módulos LCD gráficos são encontrados com resuluções de 122x32, 128x64, 240x64 e 240x128 dots pixel, e geralmente estão disponíveis com 20 pinos para conexão. Os LCD comuns (tipo caracter) são especificados em número de linhas por colunas e são encontrados nas configurações previstas na Tabela 1.

Tabela 1 - Módulos LCD disponíveis

Número de	Número de	Quantidade
Colunas	Linhas	de pinos
8	2	14
12	2	14/15
16	1	14/16
16	2	14/16
16	4	14/16
20	1	14/16
20	2	14/16
20	4	14/16
24	2	14/16
24	4	14/16
40	2	16
40	4	16
	<u> </u>	

Os módulos podem ser encontrados com *LED backlight* (com uma iluminação de fundo) para facilitar as leituras durante a noite. Neste caso, a alimentação deste led fazse normalmente pelos pinos 15 e 16 para os módulos comuns e 19 e 20 para os módulos gráficos, sendo os pinos 15 e 19 para ligação ao anodo e os pinos 16 e 20 para o catodo. A corrente de alimentação deste led varia de 100 a 200mA, dependendo do modelo.

Estes módulos utilizam um controlador próprio, permitindo sua interligação com com outras placas através de seus pinos, onde deve ser alimentado o módulo e interligado o barramento de dados e controle do módulo com a placa do usuário. Naturalmente que além de alimentar e conectar os pinos do módulo com a placa do usuário deverá haver um protocolo de comunicação entre as partes, que envolve o envio de bytes de instruções e bytes de dados pelo sistema do usuário.

A Tabela 2 descreve cada pino do módulo ou do *display* para conexão deste a outras placas:

Tabela 2 - Pinagem dos Módulos LCD

Pino	Função	Descrição
1	Alimentação	Terra ou GND
2	Alimentação	VCC ou +5V
3	V0	Tensão para ajuste de contraste (ver Figura 1)
4	RS Seleção:	1 - Dado, 0 - Instrução
5	R/W Seleção:	1 - Leitura, 0 - Escrita
6	E Chip select	1 ou $(1 \rightarrow 0)$ - Habilita, 0 - Desabilitado
7	B0 LSB	
8	B1	
9	B2	Barramento
10	B3	de
11	B4	Dados
12	B5	
13	B6	
14	B7 MSB	
15	A (qdo existir)	Anodo p/ LED backlight
16	K (qdo existir)	Catodo p/ LED backlight

Assim como em um rádio relógio todo módulo LCD permite um ajuste na intensidade da luz emitida ou ajuste de contraste, isto é possível variando-se a tensão no pino 3. A Figura 1 mostra um circuito típico e recomendado pela maioria dos fabricantes para efetuar este ajuste. Alguns fabricantes recomenda o uso de um resistor de 4K7 em série com o potenciômetro de 10K.

Figura 1 - Detalhe do controle de contraste do módulo LCD

02. INTERFACE COM CPU

Os módulos LCD são projetados para conectar-se com a maioria das CPU's disponíveis no mercado, bastando para isso que esta CPU atenda as temporizações de leitura e escrita de instruções e dados, fornecido pelo fabricante do módulo. A Figura 2 mostra um exemplo de diagrama de tempos típico requeridos para operação de escrita no módulo LCD, estes tempos variam em função do clock da CPU do usuário.

A Tabela 3 a seguir mostra a relação entre a freqüência da CPU e a temporização de leitura/escrita da maioria dos módulos LCD. Em geral, podemos conectar o barramento de dados da CPU ao barramento do módulo, mapeando-o convenientemente na placa de usuário, e efetuarmos uma operação normal de leitura/escrita sem mais problemas.

Tabela 3 - Relação clock da CPU x Temporização do Módulo LCD

Clock da CPU	$t_{AS}(MHz)$	$PW_{\scriptscriptstyle EH}(\mathrm{nS})$	$t_{H}(nS)$
08 MHz	325	650	75
10 MHz	250	500	50
12 MHz	200	400	33,3
16 MHz	138	275	12,5

A Figura 3 mostra um exemplo de conexão de uma placa baseada nos microcontroladores da linha Intel de 8 bits (8051), ao módulo LCD. Neste caso como os sinais A0 e A1 estão conectados aos pinos 4 e 5, teremos então 04 (quatro) endereços distintos para comunicação entre a CPU e o módulo LCD. A Tabela 4 mostra estes endereços.

Figura 3 - Sistema baseado na CPU 8051 com módulo LCD

Tabela 4 - Endereçamento do módulo LCD para Figura 3

ENDEREÇO	R/W	RS	DESCRIÇÃO
4000	0	0	Instrução - Escrita no modulo
4001	0	1	Dados - Escrita no modulo
4002	1	0	Instrução - Leitura no modulo
4003	1	1	Dados - Leitura no modulo

O exemplo apresentado na Figura 3 refere-se a conexão do módulo LCD com comunicação/transmissão de 8 bits, mas podemos conectar o módulo com transmissão a cada 4 bits, conforme é mostrado na Figura 4. Neste caso não utilizamos os pinos 7, 8, 9 e 10. Isto é muito útil quando a CPU do usuário possui poucos pinos de I/O, caso típico da linha de microprocessadores PIC, como por exemplo o **Basic Stamp**. Agora surge a dúvida, um mesmo módulo pode conectar-se com 8 ou 4 bits? como isto é possível?

Ocorre que o módulo LCD quando alimentado necessita de algumas instruções de inicialização que identificará qual a forma de transmissão de dados que será estabelecida entre a CPU e o módulo.

Figura 4 - Modulo LCD comunicando-se com 4 bits

03. PROGRAMAÇÃO / INSTRUÇÕES

Tabela 5 - Conjunto de instruções do módulo LCD

·			_	-			_				s do modulo LCD	
INSTRUÇÃO	RS	R/W	B7	B6	B5	B4	В3	B2	B1	B 0	DESCRIÇÃO e tempo de execução (uS)	t
Limpa Display	0	0	0	0	0	0	0	0	0	1	-Limpa todo o display e retorna o cursor para a primeira posição da primeira linha	1.6 mS
Home p/ Cursor	0	0	0	0	0	0	0	0	1	*	-Retorna o cursor para a 1. coluna da 1. Linha -Retorna a mensagem previamente deslocada a sua posição original	1.6 mS
Fixa o modo de funcionamento	0	0	0	0	0	0	0	1	X	S	-Estabelece o sentido de deslocamento do cursor (X=0 p/ esquerda, X=1 p/ direita) -Estabelece se a mensagem deve ou não ser deslocada com a entrada de um novo caracter (S=1 SIM, X=1 p/ direita) -Esta instrução tem efeito somente durante a leitura e escrita de dados.	40 uS
Controle do Display	0	0	0	0	0	0	1	D	С	В	-Liga (D=1) ou desliga display (D=0) -Liga(C=1) ou desliga cursor (C=0) -Cursor Piscante(B=1) se C=1	40 uS
Desloca cursor ou mensagem	0	0	0	0	0	1	С	R	*	*	-Desloca o cursor (C=0) ou a mensagem (C=1) para a Direita se (R=1) ou esquerda se (R=0) - Desloca sem alterar o conteúdo da DDRAM	40 uS
Fixa o modo de utilização do módulo LCD	0	0	0	0	1	Y	N	F	*	*	-Comunicação do módulo com 8 bits(Y=1) ou 4 bits(Y=0) -Número de linhas: 1 (N=0) e 2 ou mais (N=1) -Matriz do caracter: 5x7(F=0) ou 5x10(F=1) - Esta instrução deve ser ativada durante a inicialização	40 uS
Posiciona no endereço da CGRAM	0	0	0	1	End	ereço	da Co	GRAN	Л	l	-Fixa o enderço na CGRAM para posteriormente enviar ou ler o dado (byte)	40 uS
Posiciona no endereço da DDRAM	0	0	1	End	ereço	da D	DRAN	M			-Fixa o enderço na DDRAM para posteriormente enviar ou ler o dado (byte)	40 uS
Leitura do Flag Busy	0	1	B F		AC						-Lê o conteúdo do contador de endereços (AC) e o BF . O BF (bit 7) indica se a última operação foi concluída (<i>BF=0 concluída</i>) ou está em execução (BF=1).	0
Escreve dado na CGRAM / DDRAM	0	1					io LC:	D			- Grava o byte presente nos pinos de dados no local apontado pelo contador de endereços (<i>posição do cursor</i>)	40 uS
Lê Dado na CGRAM / DDRAM	1	1	Dad	o lido	do m	ódulc)				- Lê o byte no local apontado pelo contador de endereços (posição do cursor)	40 uS

A Tabela 5 apresenta o conjunto de instruções, levando-se em consideração que a comunicação com o módulo seja com barramento de 8 bits (fixado durante a inicialização). Para o caso desta comunicação ocorrer com apenas 4 bits (nible), os

dados ou instruções serão enviados por **nible.** sendo enviado o *nible mais significativo primeiro*. Por exemplo para limpar o display, escreve-se o nible 0000 e depois 0001.

A Tabela 6 traz um resumo das instruções mais usadas na comunicação com os módulos LCD.

Tabela 6 - Instruções mais comuns

DESCRIÇÃO	MODO	RS	R/W	Código
				(Hexa)
Display	Liga (sem cursor)	0	0	0C
	Desliga	0	0	0A / 08
Limpa Display com		0	0	01
Home cursor				
Controle do Cursor	Liga	0	0	0E
	Desliga	0	0	0C
	Desloca para Esquerda	0	0	10
	Desloca para Direita	0	0	14
	Cursor Home	0	0	02
	Cursor Piscante	0	0	0D
	Cursor com Alternância	0	0	0F
Sentido de deslocamento do	Para a esquerda	0	0	04
cursor ao entrar com caracter	Para a direita	0	0	06
Deslocamento da mensagem	Para a esquerda	0	0	07
ao entrar com caracter	Para a direita	0	0	05
Deslocamento da mensagem	Para a esquerda	0	0	18
sem entrada de caracter	Para a direita	0	0	1C
End. da primeira posição	primeira linha	0	0	80
	segunda linha	0	0	C0

3.1 - DESCRIÇÃO DETALHADA DAS INSTRUÇÕES

3.1.1- Limpa Display

	R S	R/W	B7	B6	B5	B4	B3	B2	B 1	B 0	
CÓDIGO	0	0	0	0	0	0	0	0	0	1	
			MSB				LSB				

Esta instrução escreve o caracter ASCII 32 que corresponde ao branco ou barra de espaço em todos os endereços da DDRAM apagando a mensagem que estiver

escrita. O cursor retorna ao endereço "zero", ou seja, à posição mais a esquerda da primeira linha.

3.1.2 - Cursor Home

Faz retornar o cursor para a posição mais a esquerda da primeira linha e faz voltar à posição original mensagens previamente deslocadas. O conteúdo da DDRAM permanece inalterado.

3.1.3 - Fixa o modo de operação

	R	R/W	B7	B6	B5	B4	B3	B2	B 1	B0
	S									
CÓDIGO	0	0	0	0	0	0	0	1	X	S
			MSB					LS	SB	

Esta instrução tem efeito somente durante a leitura ou escrita de dados, portanto, deve ser ativada na inicialização.

- -Estabelece o sentido de **deslocamento do cursor** (X=0 p/ esquerda, X=1 p/ direita)
- -Estabelece se a **mensagem** deve ou não ser deslocada com a entrada de um novo caracter

S=1 SIM, S=0 NÃO. Exemplo: X=1 e S=1 => mensagem desloca p/ direita.

3.1.4 - Controle do Display

A mensagem fica aparente quando D=1 e desaparece quando D=0, porém o conteúdo da DDRAM fica inalterado. O cursor fica aparente quando C=1 e desaparece quando C=0, porém as propriedades de escritas vigentes permanecem inalteradas. O cursor quando aparente liga a última linha que compõem o caracter, exceto quando B=1, que apresenta em alternância com uma matriz com todos os

pontos negros em intervalos de 0,4 segundos. Quando B=1 e C=0, obteremos a ativação intermitente de uma matriz completa (todos os pontos da matriz).

3.1.5 - Deslocamento do Cursor ou da Mensagem

	R S	R/W	B7	B6	B5	B4	B3	B2	B 1	B0
CÓDIGO	0	0	0	0	0	1	С	R	*	*
			MSB					LS	SB	

Desloca o cursor ou a mensagem sem que para isso tenha que escrever ou ler dados do display. Utilizado para posicionamento dos dados no display.

C	R	FUNÇÃO
0	0	Desloca o cursor para a esquerda e decrementa o contador de
		endereço.
0	1	Desloca o cursor para a direita e incrementa o contador de
		endereço.
1	0	Desloca a mensagem e o cursor para a esquerda.
1	1	Desloca a mensagem e o cursor para a direita

3.1.6 - Estabelece o **modo de utilização** do Módulo LCD

Y estabelece o modo de comunicação. Se Y=1 estabelece 8 bits e quando Y=0 será 4 bits, enviados em duas operações, com os 4 bits (Nible) mais significativos sendo enviados primeiro. N fixa o número de linhas: N=0 para uma linha e N=1 para duas ou mais linhas. F fixa o tipo da matriz: F=0 para matriz 7x5 ou 8x5 e F=1 para matriz 10x5 (somente possível quando apresentando em uma linha).

3.1.7 - Endereçamento da CGRAM

CGRAM é uma região da memória RAM destinada para criação de caracteres especiais, como por exemplo: c, c, c, etc.

Estabelece o endereço da CGRAM no contador de endereços (AC) como um número binário AAAAAA e após isto os dados serão escritos ou lidos pela CPU neste endereço. Cada caracter especial ocupa 8 endereços na CGRAM.

3.1.8 - Endereçamento da DDRAM

Estabelece o endereço da DDRAM no contador de endereços (AC) como um número binário AAAAAAA e após isto os dados serão escritos ou lidos pela CPU neste endereço. Para os display de uma linha AAAAAAA varia de 80H a CFH. Já para todos os display de duas linhas varia de 80H a A7H para a primeira linha e de C0H a E7H para a segunda linha.

3.1.9 - Busy Flag (BF)

	R	R/W	B7	B6	B5	B4	B3	B2	B 1	B0	
	\mathbf{S}										
CÓDIGO	0	1	BF	A	Α	Α	Α	Α	Α	Α	
			MSB				LSB				

Busy Flag ou o bit 7 indica ao sistema onde está conectado o módulo LCD, se o controlador do módulo está ocupado com alguma operação interna (BF=1), e neste caso, não aceita nenhuma instrução até que BF volte para 0.

Além disso, permite a leitura do conteúdo do contador de endereços (AC) expressa por AAAAAAA. O contador de endereços pode conter tanto endereço da CGRAM como da DDRAM, depende neste caso, da instrução anterior.

3.1.10 - Escrita de dados na DDRAM ou CGRAM

Escreve o byte AAAAAAAA tanto na CGRAM como na DDRAM, dependendo da instrução anterior (que define o endereço). Após a escrita, o endereço é automaticamente incrementado ou decrementado de uma unidade dependendo do modo escolhido (ver item 3.1.3).

3.1.11 - Leitura de dados na DDRAM ou CGRAM

Faz uma leitura na CGRAM ou na DDRAM, dependendo da instrução anterior (que define o endereço). É importante que precedendo a esta leitura seja executado a instrução de estabelecimento do endereço da CGRAM ou DDRAM, pois caso contrário o dado lido é inválido.

3.2 - TABELAS DE ENDEREÇOS DOS CARCTERES NA <u>DDRAM</u>

A seguir resumiremos os endereços da DDRAM (em hexadecimal) dos caracteres da maioria dos módulos LCD disponíveis no mercado.

		_		cara	cter			
Módulo 8x1	1	2	3	4	5	6	7	8
Endereço(hexa)	80	81	82	83	84	85	86	87

LCD 16x1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	80	81	82	83	84	85	86	87	88	89	8	8B	8C	8	8E	8F
											Α			D		

LCD 16x1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	80	81	82	83	84	85	86	87	C0	C1	C2	C3	C4	C5	C6	C7

LCD 16x2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
linha 1	80	81	82	83	84	85	86	87	88	89	8	8B	8C	8	8E	8F
											Α			D		
linha 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF

LCD 20x2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
linha 1	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
linha 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF	D0	D1	D2	D3

LCD 20x4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
linha 1	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
linha 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF	D0	D1	D2	D3
linha 3	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
linha 4	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF	D0	D1	D2	D3

LCD 24x1 LCD 24x2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
linha 1	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93	94	95	96	97
linha 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	CC	CD	CE	CF	D0	D1	D2	D3	D4	D5	D6	D7

LCD 40x1 a LCD 40X4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
linha 1	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
linha 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	С9	CA	СВ	CC	CD	CE	CF	D0	D1	D2	D3
linha 3	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F	90	91	92	93
linha 4	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	CC	CD	CE	CF	D0	D1	D2	D3
Cont.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
linha 1	94	95	96	97	98	99	9A	9B	9C	9E	9D	9F	A0	A1	A2	A3	A4	A5	A6	A7
linha 2	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF	E0	E1	E2	E3	E4	E5	E6	E7
linha 3	94	95	96	97	98	99	9A	9B	9C	9E	9D	9F	A0	A1	A2	A3	A4	A5	A6	A7
linha 4	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF	E0	E1	E2	E3	E4	E5	E6	E7

OBS:

- Para os módulos de 04 linhas estamos considerando que existe um outro pino de habilitação (como o pino 6) para as duas últimas linhas, portando outros endereços de hardware.
- Antes de enviar uma instrução para escrita de dados no display, enviar antes uma de endereçamento na DDRAM, com o endereço onde deve ser escrito o caracter, tipo um *gotoxy()*.

3.3 - TABELAS DE ENDEREÇOS DOS CARCTERES NA <u>CGRAM</u>

Os caracteres especiais previamente programado, durante a inicialização, podem ser utilizados a qualquer tempo como se fossem caracteres normais, lembrando que os **endereços bases** em *hexadecimal* para gravação dos caracteres especiais, na maioria dos módulos LCD, são respectivamente: 40, 48, 50, 58, 60, 68, 70 e 78. Cada caracter especial ocupa 8 (oito) endreços.

Tabela 7 - Caracter especial {c} na CGRAM

	RS	R/W			Dad	o en	n Bin	ário			HEXA
Endereço 50	0	0	0	1	0	1	0	0	0	0	50

50	1	0	X	X	X	0E
51	1	0	X		X	11

52	1	0	X					10
53	1	0	X					10
54	1	0	X		X		X	15
55	1	0		X	X	X		0E
56	1	0	X					10
57	1	0						00*

Isto significa que para utilizarmos o caracter gravado no endereço base 50, durante a inicialização ou reset do sistema, teremos que escrevermos 8 bytes entre os endereços 50 e 57, para construirmos o caracter. Para ilustrar este procedimento, supor que queiramos construir o caracter {ç} no endereço base 50. Neste caso, devemos construir o mapa deste caracter especial como mostrado na Tabela 7 (supondo estar trabalhando com matriz 7x5 e com auto incremento de endereço a cada escrita). Observe que o último endereço sempre será 00, pois esta posição é sempre ocupada pelo cursor.

3.4 - INICIALIZAÇÃO DOS MÓDULOS LCD

Toda vez que alimentamos o módulo LCD deve ser executado o procedimento de inicialização, que consiste no *envio de uma seqüência de instruções* para configurar o modo de operação para execução de um dado programa de interfaceamento. Em muitos display este procedimento ocorre automaticamente, dentro de condições específicas que envolve temporizações mínimas referente a transição do nível lógico 0 para 1, ao ligarmos a fonte. Em caso de dúvidas, recomendamos o envio destas instruções após o reset do sistema.

3.4.1 - Inicialização para sistemas 8 bits de dados (5 instruções)

Entre as duas primeiras instruções recomendamos um *delay de 15 mS*. As demais instruções podem ser escritas após checar o *Busy Flag*.

		Inst	truçõe	es em :	Hexac	decim	al (8 t	oits)	
MÓDULO LCD	1		2		3		4		5
1 linha - Matriz 7x5 e 8x5	30	15mS	30	15mS	06	BF	0E	BF	01
1 linha - Matriz 10x5	34	15mS	34	15mS	06	BF	0E	BF	01
2 linha - Matriz 7x5 e 8x5	38	15mS	38	15mS	06	BF	0E	BF	01

3.4.2 - Inicialização para sistemas 4 bits de dados (5 instruções)

Entre as quatro primeiras instruções recomendamos um *delay de 15 mS*. As demais instruções podem ser escritas após checar o *Busy Flag*. Estes bits (*nible*) devem estar conectados aos pinos 11, 12.13 e 14.

		In	stru	ıçõe	s en	ı He	exad	ecin	nal ((4 bi	ts)	
MÓDULO LCD	1	2	3	4	5	6	7	8	9	10	11	12
1 linha - Matriz 7x5 e 8x5	3	3	3	2	2	0	0	8	0	1	0	1
1 linha - Matriz 10x5	3	3	3	2	2	4	0	8	0	1	0	1
2 linha - Matriz 7x5 e 8x5	3	3	3	2	2	8	0	8	0	1	0	1

04. ROTEIRO PARA PROGRAMAÇÃO

A seguir passaremos a descrever um resumo dos procedimentos para utilização de um módulo ou display LCD:

- 1. Ao energizar o módulo ajuste o potenciômetro de controle do brilho ou contraste até obter a visualização da matriciação na primeira linha para módulo de duas linhas ou até a matriciação de meia linha para módulos de uma linha.
- 2. Alguns módulos de uma linha só funcionam com a instrução 38 ao invés de 30, conforme instruções de inicialização.
- 3. O sinal de Enable (pino 6) deverá ser gerado conforme a temporização mostrada na Figura 2. Os códigos de dados ou de instruções só serão processados pelo processador do módulo após a descida do sinal do Enable.
- 4. Para ajustar a velocidade de comunicação entre a CPU do usuário e o módulo LCD existem duas possibilidades:
 - Intercalar uma rotina de atraso de aproximadamente 15 mS entre as instruções.
 - Fazer a leitura do **Busy Flag** antes do envio de cada instrução e só enviar quando o mesmo for 0. Neste caso, a única exceção será durante a inicialização.
- 5. Durante a inicialização enviar a sequência correta das instruções de inicialização conforme item 3.4
- 6. Para programar caracteres na CGRAM, faça inicialmente o endereçamento da mesma.
- 7. Após a escrita de dados na CGRAM envie a instrução 01, para posicionar o cursor.
- 8. Para escrever os caracteres especiais previamente gravados na CGRAM, utilize os códigos de 00 até 07 correspondente aos endereços bases de 40, 48 até 78 em hexa.

9. Comandos úteis:

FIXAÇAO DAS CONDIÇOES DE UTILIZAÇAO	Instrução
1 linha 5x7 (8 bits)	30H
2 linha 5x7 (8 bits)	38H
1 linha 5x10 (8 bits)	34H
1 linha 5x7 (4 bits)	20H
2 linha 5x7 (4 bits)	28H
1 linha 5x10 (4 bits)	24H

CONTROLE DISPLAY

Instrução

Display aceso c/ cursor fixo	0EH
Display aceso c/ cursor intermitente	0FH
Display aceso sem cursor	0CH
Display apagado	08H

MODO DE OPERAÇÃO

Instru	ıcão
	-340

Escreve deslocando a mensagem para esquerda (cursor fixo)	07H
Escreve deslocando a mensagem para a direita (cursor fixo)	05H
Escreve deslocando o cursor para a direita	06H
Escreve deslocando o cursor para a esquerda	04H

OUTROS COMANDOS ÚTEIS

Instrução

Limpa display e retorna o cursor para o inicio	01H
Retorna o cursor para o inicio (sem alterar a DDRAM)	02H
Desloca somente o cursor para a direita	14H
Desloca somente o cursor para a esquerda	10H
Desloca o cursor + mensagem para a direita	1CH
Desloca o cursor + mensagem para a esquerda	18H
Desloca o cursor para posição inicial da segunda linha	СОН
Desloca o cursor para posição inicial da primeira linha	80H

CGRAM (caracteres especiais)

Instrução

Endereço inicial para construir caracteres especiais	40H
Para escrever o primeiro caracter (previamente construídos)	00H
Para escrever o último caracter (previamente construídos)	07H

Obs:

Após o endereçamento da CGRAM, o cursor se desloca para a primeira posição da segunda linha (ou metade), portanto é recomendado enviar a instrução 01 ou "limpa display e cursor home".

05. CUIDADOS ESPECIAIS COM MÓDULOS LCD

5.1 - MANUSEIO

- Somente retire o módulo de sua embalagem protetora imediatamente antes de sua instalação
- Não guarde os módulos em recintos de alta temperatura e alta umidade. A temperatura de armazenamento deverá estar compreendida entre 5 e 30 °C.
- O LCD é coberto por uma lâmina plástica polarizada a qual não pode ser riscada. Cuidado em seu manuseio. Para a limpeza da lâmina utilize cotonetes embebido em benzina. Não utilize outros tipos de solventes.
- Observe cuidadosamente os procedimentos de controle anti-estático quando manusear os módulos. Eles incorporam circuitos integrados CMOS LSI os quais são sensíveis à descarga eletrostática. Não toque nos terminais do conector, trilhas do circuito impresso e/ou terminais do CI.

5.2 - INSTALAÇÃO

- Nunca desmonte o módulo
- Use uma estação de solda aterrada para soldagem de conectores ou terminais.
- montador deverá também ser convenientemente aterrado.
- Sempre que o projeto o permita, instale o módulo atrás de uma janela protetora de plástico ou vidro.
- Somente retire a fita adesiva que protege a lâmina plástica frontal imediatamente antes de seu uso.

5.3 - OPERAÇÃO

- Nunca instale ou desconecte o módulo com sua alimentação ligada.
- Sempre opere os módulos respeitando sua gama de temperatura de operação.
- Observe cuidadosamente os valores das tensões de alimentação e os níveis dos sinais de controle.
- Ajuste a tensão no pino 3 (V0) para obter o contraste mais conveniente para uma dada aplicação.

06. EXEMPLO DE PROGRAMAÇÃO

Baseado no hardware da Figura 3, eaborar um programa em assembler para o 8031 que escreva no módulo LCD a seguinte mensagem: "Vila Nova".

```
; Programa: Exemplo para manuseio de display ou modulo LCD
; Autor: Ilton L. Barbacena
; Data: Out/96
; Compilador: ASM51.EXE / versao shareware para 8051 / $mod51
 versao:
          1.0
; Descricao:
           Este programa grava a mensagem "Vila Nova"
           no display LCD 2x20 (duas linha de 20 caracteres).
           Os pinos de dados do mudulo LCD estao conectados
           diretamente no barramento de dados da CPU, conforme =
           Figura 3 da apostila sobre LCD.
$mod51
lcd_wr_inst equ 4000H
lcd_wr_dado equ 4001H
1cd rd inst equ 4002H
lcd_rd_dado equ 4003H
; Programa principal
ORG 0H
 MOV SP, #50H
 MOV TMOD, #11H
                     ; TIMER1 / TIMER0 no modo 1
 CLR EA
                     ; desabilita todas as interrupcoes
 CALL inicia lcd
 MOV R7, #0FFH
loop:
 INC R7
 MOV A, R7
 MOV DPTR, #mensagem
 MOVC A,@A+DPTR ; le caracter da mensagem CJNE A,#OFFH,cont ; testa se fim da mensagem
 JMP fim
cont:
                   ; escreve o conteudo de acumulador no LCD
 CALL wr dado
                     ; aguarda busy flag
 CALL espera
 JMP loop
fim:
 JMP fim
                      ; fim do programa
; Rotinas chamadas pelo Programa Principal
ORG 100H
                     ; rotina de inicializacao
inicia lcd:
 MOV \overline{A}, #38H
                     ; 2 linhas / matriz 7x5
 CALL wr inst
                     ; delay de 15mS
 CALL tempo
 MOV A, #38H
                     ; 2 linhas / matriz 7x5
 CALL wr inst
 CALL tempo
                  ; delay de 15mS
 MOV A, #06H
                     ; cursor com autoincremento para direita
 CALL wr inst
 CALL espera
                      ; busy flag
```

```
MOV A, #OEH
                        ; liga display / cursor
 CALL wr inst
                ; busy flag
 CALL espera
 MOV A, #01H
                        ; limpa display / cursor home
 CALL wr inst
 CALL espera
                        ; busy flag
 RET
 espera:
 RET
wr inst:
                        ; escreve a instrucao em A no LCD
 MOV DPTR, #lcd wr inst
 MOVX @DPTR, A
 RET
wr dado:
                        ; escreve o dado em A no LCD
 MOV DPTR, #1cd wr dado
 MOVX @DPTR, A
 RET
rd inst:
                        ; le o Busy Flag e o contador de endereco
 MOV DPTR, #lcd rd inst
 MOVX A, @DPTR
                        ; retorna em A
 d_dado: ; le dado / de qual endereco?

MOV DPTR,#lcd_rd_dado ; depende da ultima operacao no LCD

MOVX A,@DPTR ; retorna em A
rd dado:
; Rotina de tempo: 15 mS / clock 12 MHz => 50.000 ciclos
tempo:
 MOV DPTR, #15536 ; (65536-50000)
 MOV TH1, DPH
 MOV TL1, DPL
 CLR TR1
 CLR TF1
                   ; prepara para proxima chamada
 RET
                   ; mensagem a ser escrita no LCD
mensagem:
 DB 'Vila Nova', OFFH
 END
                   ; obrigatorio
```

Exercício para praticar:

Repetir o exercício anterior, porém com a mensagem "Escola Técnica". Construir o {é} na CGRAM. Lembre-se que apenas os códigos ascii são caracteres válidos para o LCD (verificar a tabela no manual do fabricante).