The numpy Package

Python and Machine Learning

Machine Learning applications typically involve

- Dealing with large amounts of data
- Computational-heavy algorithms
- Complex pipelines of preprocessing/learning/inference

Is it a good idea to use Python for that?

- Combining operations in complex pipelines is easy in Python
- ...But the language itself is rather slow

And yet, Python is the nowadays the mainstream language for ML

Packages to the Rescue

The trick to get high-performance in Python is using external packages

Dedicated packages can provide:

- Data structures to handle large amount of data
- Efficient algorithms for frequently occurring problems

Both can be implemented in high-performance languages, like C, C++, or Fortran

A fundamental package in this group is called <u>numpy</u> and provides:

- A data structure to handle data in tensor format
- Algorithms for a number of common numerical operators

In a nutshell, numpy makes Python behave a bit like Matlab

The numpy.array Class

The main data structure provided by numpy is called array

From a math standpoit, it corresponds to a tensor

- \blacksquare A tensor is an n-dimensional collection of elements of a uniform type
- \blacksquare Intuitively, it's a generalization of a vector to n dimensions
- 1 dimension = vector, 2 dimensions = matrix, > 3 dimensions = tensor

From an implementation standpoint:

- Data in an array is memorized in a single sequence
- ...But the array also stores a "shape", listing the size of each dimension
- This shape is used to determine how to access the elements

The numpy.array Class

Let's see as an example a 2x3 matrix:

The actual matrix is:

$$\begin{pmatrix} x_{0,0} & x_{0,1} & x_{0,2} \\ x_{1,0} & x_{1,1} & x_{1,2} \end{pmatrix}$$

...Which is memorized as a sequence by rows, i.e.:

$$(x_{0,0} \quad x_{0,1} \quad x_{0,2} \quad x_{1,0} \quad x_{1,1} \quad x_{1,2})$$

- \blacksquare The shape is in this acse (2,3)
- The two-dimension index (i, j) corresponds to the linear index 3i + j

Using numpy

numpy is not part of a minimal Python installation

- You can find it pre-installed in scientific Python distributions (e.g. <u>Anaconda</u>)
- ...Or you can install it using a package managed
 - E.g. pip install numpy

You can import numpy as any other package

...Except that it has a canonical alias, i.e. np

```
In [2]: import numpy as np
```

- Extensive documentation can be <u>found online</u>
- ...Or accessed with help(numpy) or help('numpy')

Any iterable can be converted to an array via the np.array constructor:

```
In [3]: x = [1, 2, 3]
a = np.array(x)
print('Original collection:', x)
print('Array:', a)

Original collection: [1, 2, 3]
Array: [1 2 3]
```

■ The array shape can be access through the shape attribute:

```
In [52]: a.shape
Out[52]: (3,)
```

shape is always a tuple (with a single element for one-dimensional arrays)

Using nested iterables leads to multi-dimensional arrays

E.g. a list of list becomes a two-dimensional array

- In this case, the shape tuple has two elements
- ...Respectively the number of rows and columns

Ad-hoc functions can be used to build notable arrays

For an all-zero array you can use zeros

```
In [5]: shape = (2, 3) # number of rows and columns
print(np.zeros(shape))

[[0. 0. 0.]
[0. 0. 0.]]
```

For an all-one array you can use ones:

```
In [6]: print(np.ones(shape))
        [[1. 1. 1.]
        [1. 1. 1.]]
```


Ad-hoc functions can be used to build notable arrays

For an array filled with a single, user-chosen, values you can use full:

- Nan stands for Not a Number
- It's the equivalent of a missing/ill defined value

For the identity matrix, you can use eye:

```
In [8]: n = 3
    print(np.eye(n))
```


There are two ways to build arrays with uniformly spaced values

If you know the spacing, you can use arange:

```
In [14]: x = np.arange(1, 10, step=0.5)
print(x)

[1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5]
```

If you know how many numbers you need, you can use linspace

```
In [19]: x = np.linspace(start=0, stop=8, num=6)
print(x)

[0. 1.6 3.2 4.8 6.4 8.]
```

- The default value for step is 1
- The default value for num is 50

Type of an Array

All elements in an array must be of the same type

...Which can be accessed via the dtype attribute

```
In [20]: x = np.zeros(3)
x.dtype
Out[20]: dtype('float64')
```

- If you try converting a collection with non-uniform types
- ...numpy tries to cast them to the same, most-general, type

```
In [21]: x = np.array([1, 2.3, True])
print(x, x.dtype)

[1. 2.3 1. ] float64
```


Array Operators

Most basic operators are redefined for arrays

In particular, the apply element wise to the involved arrays

■ Some example with arithmetic operators

```
In [22]: x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print('x + y:', x + y)
print('x * y:', x * y)
print('x - y:', x - y)
print('x / y:', x / y)
print('y % 2:', y % 2)

x + y: [5 7 9]
x * y: [4 10 18]
x - y: [-3 -3 -3]
x / y: [0.25 0.4 0.5]
y % 2: [0 1 0]
```


Array Operators

Most basic operators are redefined for arrays

In particular, the apply element wise to the involved arrays

Some example with comparison operators

```
In [23]: x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
print('x <= y:', x <= y)
print('x == y:', x == y)

x <= y: [True True False]
x == y: [False True False]</pre>
```

■ The results is an array with a logical type

Array Operators

Most basic operators are redefined for arrays

In particular, the apply element wise to the involved arrays

- The &, |, and ~ operatore no longer apply bit-wise
- ...But element-wise (the same as all the others)

```
In [24]: print('~(x <= y):', ~(x <= y))
print('(x <= y) | (x >= y):', (x <= y) | (x >= y))
print('(x <= y) & (x >= y):', (x <= y) & (x >= y))

~(x <= y): [False False True]
  (x <= y) | (x >= y): [True True True]
  (x <= y) & (x >= y): [False True False]
```

- Priorities are a bit tricky with these operators
- E.g. & and | has higher priority than comparison operators
- When in doubt, add brackets ;-)

Arrays can be accesses via the indexing operator, i.e. []

In particular, we use tuple indices to access single elements

```
In [26]: x = np.array([[1, 2, 3], [4, 5, 6]])
print(x[0, 2]) # row 0, column 2
```

Slice indexing is also possible:

```
In [27]: print(x[0, :]) # The whole row 0
print(x[:, 1]) # The whole column 1
print(x[:2, :2]) # First two rows and columns

[1 2 3]
[2 5]
[[1 2]
[4 5]]
```


Basically, you can specify one slide per dimension

It's possible to access arrays via a collection of indices

This is most often employed with single-dimenension arrays:

```
In [28]: x = np.array([2, 4, 6, 8, 10, 12])
    idx = [0, 2, 4]
    print(x[idx]) # accesso agli indici 0, 2 e 4
[ 2 6 10]
```

- First, we build an iterable with the desired indexes
- ...Then we pass it as the argument for the indexing operator
- I.e. between the square brackets []

The results is an array containing the elements at the specified indices

Arrays can be access via a "logic mask"

- The mask is second array, having the same shape
- But filled with boolean values.

```
In [29]: x = np.array([[1, 2, 3], [4, 5, 6]])
         print(x)
         mask = np.array([[True, True, False], [False, False, True]])
         print(mask)
         [[1 2 3]
         [[ True True False]
           [False False True]]
```

- Using such a mask an index always returns a one-dimensional arrays
- ...Containig the elements whose value is True in the mask

```
In [30]: print(x[mask])
```


Arrays can be access via a "logic mask"

It's often used to retrieve elements that satisfy a given condition:

```
In [31]: x = np.array([[1, 2, 3], [4, 5, 6]])
x[x % 2 == 0]
Out[31]: array([2, 4, 6])
```

In this example:

- The expression x % 2 == 0 returns a Boolean-type array
- ...Which is then used as mask to access the x array

The results contained all elements in x having an even value

Assigning Arrays

It's possible to assign individual elements within an array

...Just like it is done for lists:

```
In [32]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[1, 1] = -1
    print(x)

    [[1 2 3]
      [4 5 6]]
    [[ 1 2 3]
      [4 -1 6]]
```


Assigning Arrays

It's possible to assign entire sub-parts of an array

E.g. we can assign a whole column:

```
In [33]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[:, 1] = [-1, -1]
    print(x)

    [[1 2 3]
      [4 5 6]]
    [[ 1 -1      3]
      [ 4 -1      6]]
```

...Or a row:

```
In [34]: x[0, :] = [-1, -1, -1]
print(x)

[[-1 -1 -1]
[ 4 -1 6]]
```


Assigning Arrays

It's possible to assign entire sub-parts of an array

- If the shape of the selected sub-part
- ...Is different from the shape of the assigned object
- numpy trys to bridge the gap by repeating the assigned object

The typical case is that of assigning a scalar to an tensor:

```
In [37]: x = np.array([[1, 2, 3], [4, 5, 6]])
    print(x)
    x[:2, :2] = -1
    print(x)

    [[1 2 3]
      [4 5 6]]
    [[-1 -1 3]
      [-1 -1 6]]
```

- In this case, all the selected elements
- .Are replaced with the specified scalar

Functions and Methods in numpy

numpy provides a number of functions to work with arrays

Here are a few arithmetic functions:

Functions and Methods in numpy

numpy provides a number of functions to work with arrays

...And here we have some aggregation functions:

```
In [39]: x = np.array([1, 2, 3, 4])
    print(np.prod(x)) # prodotto degli elementi
    print(np.sum(x)) # somma degli elementi
    print(np.mean(x)) # media
    print(np.std(x)) # deviazione standard
24
10
2.5
1.118033988749895
```


Functions and Methods in numpy

numpy provides a number of functions to work with arrays

Here are some functions to work with pseudo-random numbers:

- Le funzioni in questa categoria sono nel modulo np.random
- Vi sono altri moduli utili (al solito: vedere la documentazione!)

Functions and Methods in numpy

Benefits of numpy

We can use numpy to write more readable and efficient code

E.g. let's assume we need to sum two sequences of numbers

■ First, we see a native Python solution:

```
In [42]: %%time
    n = 20000000
    a = [i for i in range(n)]
    b = [i for i in range(n)]
    c = [v1 + v2 for v1, v2 in zip(a, b)]

CPU times: user 1.67 s, sys: 439 ms, total: 2.11 s
Wall time: 2.12 s
```

■ The %%time directive measures and prints the run-time of a cell

Benefits of numpy

We can use numpy to write more readable and efficient code

E.g. let's assume we need to sum two sequences of numbers

■ Then, we solve it using numpy

```
In [43]: %%time
    n = 20000000
    a = np.arange(n)
    b = np.arange(n)
    c = a + b

CPU times: user 309 ms, sys: 154 ms, total: 462 ms
Wall time: 462 ms
```

- The numpy version us more readable
- ...And also much faster!

