

11/2/0

NIINFEL ON

Children of Aller

MINTEN

WHATY OF

Linux Audio 开发指南

11424,0,

rullyth of

Willy the Or

CHAFT OF

rully ty of

Willy Dy

Willy DA

Willy Dy

rallyth of

rally the of

版本号: 2.0

发布日期: 2020.11.11

William Control

CHARTY ON

NINATA ON

Ullyft Y O'

rully the of

White Of

WHATA ON

NIIII THE REAL PROPERTY.

版本历史

NIIN EN ON

版本号。	日期	制/修订人	内容描述	01
1.0	2020.06.19	AWA1636	建立初版	Kirin.
2.0	2020.11.11	AWA1636	新增 Linux-5.4 配置	(1)

HILINATA ON CHARACTER ON CHARAC NIINEN ON NIIN DY rullyft. Y O' WHALH OF nuly ty of NIIII/EX ON NIIII/EHO? WHAT OF

NIIN EN ON

NIIN THE PROPERTY OF

MINTE

NIIN EN ON

目 录

2	1	前言	1
White Of		1.1 文档简介	\dagger 1
Units,		1.2~目标读者	1
		1.3 适用范围	1
	2	模块介绍	2
		2.1 模块功能介绍	2
		2.1.1 AudioCodec 模块功能	2
		2.1.2 Daudio 模块功能	2
		2.1.3 DMIC 模块功能	3
		2.1.4 S/PDIF 模块功能	3
		2.2 相关术语介绍	3
		2.2.1 硬件术语	3
		2.2.2 软件术语	3
^\		2.3 模块配置介绍	4
MINTEN ON		2.3.1 Device Tree 配置说明	4
CITILE.		2.3.2 board.dts 板级配置	12
		2.3.3 kernel menuconfig 配置	18
		2.4 源码模块结构	24
		2.5 驱动框架介绍	25
		2.5.1 音频驱动硬件框架图	25
		2.4 源码模块结构	26
	3	模块接口说明	29
		3.1 asoc_dma_platform_register()	29
		3.2 snd_soc_register_component()	29
		3.3 snd_soc_register_codec	30
		3.4 snd_soc_register_card()	30
· ^		3.5 snd_soc_dapm_add_routes()	30
KZ) 0.		3.6 snd_soc_dapm_new_controls()	31
MINTEN ON	_	- trips, trips, trips, trips, trips, trips,	
	4	FAQ	32
		4.1 调试方法	32
		4.1.1 调试工具	
		4.1.2 调试节点	
		4.2 常见问题	35
		4.2.1 audiocodec 输入输出无声音	35
		4.2.2 录音或播放变速	
		4.2.3 DMIC 录音异常(静音/通道移位)	35
		4.3 常见问题	36
		4.3.1 audiocodec 输入输出无声音	36
		4.3.2 录音或播放变速	36

O Kitelli

版权所有 © 珠海全志科技股份有限公司。保留一切权利

ì

rullyft y O'

	文档密级: 秘密

4.3.4 录音或播放变速

4.3.3 DMIC 录音异常(静音/通道移位)

4.3.5 DMIC 录音异常(静音/通道移位)

4.3.6 DMIC 录音异常(静音/通道移位)

numpted of numbted of rullytel of NIINET OF

Nully EX O1

CHALLY OF

Rully EX ON

NIIIAFEY ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

rullyft y Or

CHAFT OF

插 冬

6	2-1 Device Driver
Juny 127 On	2-2 Sound
71.,	2-3c ¹ Advanced
	2-4 ALSA
	2-5 Allwinner
	2-6 module
	2-7 module
	2-8 hardware
	2-9 软件框架图

NIINEY ON

NIINFEX ON rullyft JOY

NUMBER OF nully to you Willyft Joy NIIII/EX ON

WHAT OF

NIIII/EHO?

NIIN EN ON

NIIN EN ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

NIII/E

White Or

1 前言

Kital

MATA ON

Mrtay Or

COLLAND

1.1 文档简介

本文档是让开发者了解 Sunxi 平台音频系统框架,能够在 Sunxi 平台上开发新的音频方案。

1.2 目标读者

音频系统开发人员。

自频示机开及八页

114/24 0

NIMEN OF STREET

WHY D

1.3 适用范围

表 1-1: 适用产品列表

产品名称	内核版本	驱动文件
T509	Linux-4.9	sound/soc/sunxi/*
MR813	Linux-4.9	sound/soc/sunxi/*
R818	Linux-4.9	sound/soc/sunxi/*
A133	Linux-4.9	sound/soc/sunxi/*
A133	Linux-5.4	sound/soc/sunxi/*
H616	Linux-4.9	sound/soc/sunxi/*
R329	Linux-4.9	sound/soc/sunxi/*
	47,	49,

MATAON

HALLI

111/12/0

2 模块介绍

2.1 模块功能介绍

在 Sunxi 中,从 Linux 软件上通常存在 4 类音频设备。分别为 audiocodec,daudio,dmic,spdif。

每一类音频设备都适配 asoc 架构。

2.1.1 AudioCodec 模块功能

Audio Codec 驱动所具有的功能:

- 支持多种采样率格式 (8KHz, 11.025KHz, 12KHz, 16KHz, 22.0KHz, 24KHz, 32KHz, 44.1KHz, 48KHz, 96KHz, 192KHz), 其中录音最大支持 48KHz;
- 支持同时 playback 和 record(全双工模式);
- 支持 mixer 接口;
- 支持 dapm 接口;
- 支持 16bit/20bit 数据精度;
- 支持 DAC, 采样率为 8KHz~192KHz, 支持差分输出;
- 支持 ADC, 采样率为 8KHz~48KHz, 支持差分输入;

2.1.2 Daudio 模块功能

驱动所具有的功能:

- 支持多种采样率格式 (8KHz, 11.025KHz, 16KHz, 22.05KHz, 24KHz, 32KHz, 44.1KHz, 48KHz, 88.2KHz, 96KHz, 176.4KHz, 192KHz);
- 支持 mono 和 stereo 模式,支持 1-8 通道;
- 支持同时 playback 和 record(全双工模式);
- 支持 i2s、pcm 协议格式配置;
- 支持 16bit/24bit/32bit 数据精度;

WHY THE

MINITE

2.1.3 DMIC 模块功能

驱动所具有的功能:

- 支持多种采样率格式 (8KHz, 11.025KHz, 16KHz, 22.05KHz, 24KHz, 32KHz, 44.1KHz, 48KHz);
- 最多支持 8 通道;
- 只支持 record;
- 支持 64 OSR 以及 128 OSR;
- 支持 16bit/24bit 数据精度

2.1.4 S/PDIF 模块功能

驱动所具有的功能:

- 支持多种采样率格式 (44.1KHz, 48KHz, 96KHz, 192KHz);
 支持单声道和立体声输出;
 支持 16bit/20bit/24bit 数据精度

 2.2 相关术语介绍

2.2.1 硬件术语

表 2-1: 硬件术语

相关术语	解释说明	301	97	201	01	20
audiocodec	芯片内置音频接口	Willyke,	Willyft,	Willyft,	Williams,	Willyky,
DMIC	外置数字 MIC 接口	`		`	`	
SPDIF	外置音响音频设备接口	,一般使用同年	铀电缆或光纤接			
I2S	外置音频通道接口					
Daudio	数字音频接口,可配置	成 i2s/pcm 格	S式标准音频接口]		
Ahub	音频集线器,AW 独有	的硬件模块,同	内部集成连接了	4 组 I2S 接口、	3 组 APB 及	2 组 DAM 混

2.2.2 软件术语

表 2-2: 软件术语

相关术语	解释说明	0	0	C
Sunxi Jingto	全志科技使用的 Linux 开发平台	Differ	J.Hytch	JIN EN
ASOC	ALSA System on Chip	6	(0	40
ALSA	Advanced Linux Sound Architecture			
DMA	直接内存存取,指数据不经 cpu 直接在设备	备和内存,内存和内	7存,设备和设备	之间传输
样本长度 (sample)	样本是记录音频数据最基本的单位,常见的	有 16 位		
通道数 (channel)	该参数为 1 表示单声道,2 则是立体声			
帧 (frame)	帧记录了一个声音单元,其长度为样本长度	与通道数的乘积		
采样率 (rate)	每秒钟采样次数,该次数是针对帧而言			
周期 (period)	音频设备一次处理所需要的帧数,对于音频	设备的数据访问以	及音频数据的存储	者,
	都是以此为单位			
DRC	音频输出动态范围控制			
HPF	高通滤波			
XRUN	音频流异常状态,分为 underrun 和 over	run 两种状态		,
DAPM (N)	动态音频电源管理	(A)	57)	243
hp nilly	headphone 缩写,耳机/耳麦	Light.	CONT.	Cilly
交错模式 (interleave)	是一种音频数据的记录模式,在交错模式下	,数据以连续帧的	形式存放,即首先	Ē
	记录完帧 1 的左声道样本和右声道样本(假	设为立体声格式)	,再开始帧 2 的	记录,
	而在非交错模式下,首先记录的是一个周期	内所有帧的左声道	样本,再记录右声	=
	道样本,数据是以连续通道的方式存储。多	数情况下,只需要	使用交错模式。	

2.3 模块配置介绍

2.3.1 Device Tree 配置说明

设备树中存在的是该类芯片所有平台的模块配置,设备树文件的路径为: kernel/内核版本/arch/arm64(32 位平台为 arm)/boot/dts/sunxi/CHIP.dtsi(CHIP 为研发代号,如sun50iw10p1等),设备树配置如下所示:

• Codec 配置 Linux-4.9 内核版本配置如下:

MALY O.

rullyft y O'

版权所有 © 珠海全志科技股份有限公司。保留一切权利

4


```
compatible = "allwinner,sunxi-internal-cpudai";
    reg = <0x0 0x05096000 0x0 0x32c>;
    playback_cma = <128>;
   capture_cma = <256>;
    device_type \( \opi \) cpudai";
    status = "disabled";
};
sndcodec:sound@0 {
    compatible = "allwinner,sunxi-codec-machine";
    interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
    sunxi,cpudai-controller = <&cpudai>;
    sunxi,audio-codec = <&codec>;
    hp_detect_case = <0x00>;
    device_type = "sndcodec";
    status = "disabled";
};
```

Linux-5.4 内核版本配置和 Linux-4.9 内核版本配置有稍许差异,如下:

```
/* codec addr: 0x05096000, the others is invalid to avoid build warining */
codec:codec@5096000 {
  #sound-dai-cells = <0>;
   compatible = "allwinner, sunxi internal-codec",
    reg = <0x0 0x05096000 0x0 0x32c>;
    clocks = <&ccu CLK PLL AUDIO>, /* 98.304M / 90.3168M
        <&ccu CLK_AUDIO_DAC>,
        <&ccu CLK_AUDIO_ADC>,
        <&ccu CLK_PLL_COM>,
        <&ccu CLK_PLL_COM_AUDIO>
        <&ccu CLK_BUS_AUDIO_CODEC>;
    clock-names = "pll_audio", "codec_dac", "codec_adc",
        "pll_com", "pll_com_audio", "codec_bus";
    resets = <&ccu RST_BUS_AUDIO_CODEC>;
    playback_cma = <128>;
    capture_cma = <256>;
    device_type = "codec";
};
dummy_cpudai:dummy_cpudai@509632c {
    compatible = "allwinner,sunxi-dummy_cpudai";
    reg = <0x0 0x0509632c 0x0 0x4>;
 tx_fifo_size = <128>;
    rx_fifo_size
                   = <256>:
    dac txdata = <0x05096020>;
    adc_txdata = <0x05096040>;
    playback_cma
                   = <128>;
    capture cma = <256>;
    device_type = "cpudai";
    dmas = <\&dma 7>, <\&dma 7>;
    dma-names = "tx", "rx";
};
sndcodec:sound@5096330 {
    compatible = "allwinner, sunxi-codec-machine";
    reg = <0x0 0x05096330 0x0 0x4>;
    interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
    hp_detect_case = <0x00>;
```



```
sunxi,audio-codec = <&codec>;
    sunxi,cpudai-controller = <&dummy_cpudai>;
    device_type = "sndcodec";
};
```

● DMIC 配置

Linux-4.9 内核版本配置如下:

```
dmic:dmic-controller@0x05095000{
    compatible = "allwinner,sunxi-dmic";
    reg = <0x0 0x05095000 0x0 0x50>;
    clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_dmic>;
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&dmic_pins_a>;
    pinctrl-1 = <&dmic pins b>;
    device_type = "dmic";
    status = "disabled";
};
snddmic:sound@2{
    compatible = "allwinner, sunxi-dmic-machine";
    sunxi,dmic-controller = <&dmic>;
    device_type = "snddmic";
    status = "disabled";
};
```

Linux-5.4 内核版本配置和 Linux-4.9 内核版本配置有稍许差异,如下:

```
/* dmic addr: 0x05095000, the others is invalid to avoid build warining */
dmic:dmic@5095000{
    #sound-dai-cells = <0>;
    #sound-dai-cells = <0>;
    compatible = "allwinner,sunxi-dmic";
    reg = <0x0 0x05095000 0x0 0x50>;
    clocks = <&ccu CLK_PLL_AUDIO>, /* 98.304M / 90.3168M */
         <&ccu CLK_DMIC>,
         <&ccu CLK_BUS_DMIC>; <
    clock-names = "pll_audio", "dmic", "dmic_bus";
    resets = <&ccu RST BUS DMIC>;
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&dmic_pins_a>;
    pinctrl-1 = <&dmic_pins_b>;
    clk parent = <0x1>;
    capture cma = <256>;
               = <0 \times B0>;
    data vol
    dmic_rxsync_en = <0x0>;
                = <0x76543210>;
    rx_chmap
    device_type = "dmic";
    dmas = <\&dma 8>;
    dma-names = "rx";
};
```



```
dmic codec:sound@5095050{
    #sound-dai-cells = <0>;
    \#sound-dai-ce\|\forall s = <0>;
    compatible "dmic-codec";
    reg = <0x0 0x05095050 0x0 0x4>;
    num-channels = <6>;
};
sounddmic:sounddmic@5095060 {
    reg = <0x0 0x05095060 0x0 0x4>;
    compatible = "sunxi,simple-audio-card";
    simple-audio-card,name = "snddmic";
    /* simple-audio-card,format = "i2s"; */
    simple-audio-card,cpu {
    sound-dai = <&dmic>;
};
```

● S/PDIF 配置

Rullyft y On

Linux-4.9 内核版本配置如

```
spdif:spdif-controller@0x05094000{
    compatible = "allwinner,sunxi-spdif";
    reg = <0x0 0x05094000 0x0 0x40>;
    clocks = <&clk pll audio>,<&clk pll audiox4>,<&clk spdif>;
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&spdif pins a>;
    pinctrl-1 = <&spdif pins b>;
    device_type = "spdif";
    status = "disabled";
};
sndspdif:sound@1{
    compatible = "allwinner, sunxi-spdif-machine";
    sunxi,spdif-controller = <&spdif>;
    device_type = "sndspdif";
    status =
             "disabled";
```

Linux-5.4 内核版本配置和 Linux-4.9 内核版本配置有稍许差异,如下:

```
/* spdif addr: 0x05094000, the others is invalid to avoid build warining */
spdif:spdif@5094000{
   #sound-dai-cells = <0>;
   #sound-dai-cells = <0>;
   compatible = "allwinner,sunxi-spdif";
    reg = <0x0 0x05094000 0x0 0x40>;
   clocks = <&ccu CLK_PLL_AUDIO>, /* 98.304M / 90.3168M */
         <&ccu CLK_SPDIF>,
         <&ccu CLK_BUS_SPDIF>;
   clock-names = "pll_audio", "spdif", "spdif_bus";
```



```
resets = <&ccu RST BUS SPDIF>;
   pinctrl-names = "default", "sleep";
   pinctrl-0 = <&spdif_pins_a>;
   pinctrl-1 = <&spdif_pins_b>;
   clk_parent ₹ 0x1>;
   playback_cma
                    = <128>;
   capture cma = <128>;
   device_type = "spdif";
   dmas = <\&dma 2>, <\&dma 2>;
   dma-names = "tx", "rx";
};
soundspdif:soundspdif@5094040 {
    reg = <0x0 0x05094040 0x0 0x4>;
   compatible = "sunxi,simple-audio-card";
   simple-audio-card,name = "sndspdif";
   /* simple-audio-card,format = "i2s"; */
   simple-audio-card,cpu {
        sound-dai = <&spdif>;
   simple-audio-card,codec {
        /*snd-soc-dummy*/
```

• Daudio 配置

Linux-4.9 内核版本配置如下:

```
daudio0:daudio@0x05090000 {
    compatible = "allwinner,sunxi-daudio";
    reg = <0x0 0x05090000 0x0 0x7c>;
    clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_i2s0>;
    pinctrl-names = "default" / "sleep";
    pinctrl-0 = <&daudio0_pins_a>;
    pinctrl-1 = <&daudio0_pins_b>;
    device_type = "daudio0";
    tdm num = <0\times00>;
    status = "disabled";
snddaudio0:sound@3{
    compatible = "allwinner,sunxi-daudio0-machine";
    sunxi,daudio-controller = <&daudio0>;
    device_type = "snddaudio0";
    status = "disabled";
};
```

Linux-5.4 内核版本配置和 Linux-4.9 内核版本配置有稍许差异,如下:

```
/* daudio0 addr: 0x05090000, the others is invalid to avoid build warining */
daudio0:daudio@5090000 {
    #sound-dai-cells = <0>;
    compatible = "allwinner,sunxi-daudio";
```

1114EX 01

版权所有 © 珠海全志科技股份有限公司。保留一切权利

Z. 8

INTE


```
reg = <0x0 0x05090000 0x0 0x7c>;
                           clocks = <&ccu CLK_PLL_AUDIO>, /* 98.304M / 90.3168M */
                                 <&ccu CLK_I2S0>,
                                 <&ccu CLK_BUS_I2S0>;
                                                                   "i2s0_bus"
                           clock-names pll_audio", "i2s0",
                           resets = <&ccu RST_BUS_I2S0>;
                           pinctrl-names = "default", "sleep";
                           pinctrl-0 = <&daudio0_pins_a>;
                           pinctrl-1 = <&daudio0_pins_b>;
                           pinctrl used
                                                  = <0 \times 01 >;
                           sign extend
                                             = <0 \times 00 >;
                           tx_data_mode
                                                  = <0 \times 00 >;
                           rx_data_mode
                                                  = <0 \times 00 >;
                           msb_lsb_first
                                                  = <0 \times 00 >;
                           daudio_rxsync_en
                                                  = <0 \times 00 >;
                           pcm_lrck_period
                                                  = <0x80>;
                           slot_width_select
                                                  = <0 \times 20 >;
                           frametype
                                             = <0 \times 00 >;
                           tdm_config
                                             = <0 \times 01 >:
                           tdm_num
                                             = <0 \times 00 >;
                           mclk_div
                                              = <0 \times 00 >;
                                              = <0 \times 01 >;
                           clk_parent
                                                                          Tour training of
                           capture cma
                                              = <128>;
                           playback_cma
                                                  = <128>;
                           tx num
                                             = <4>:
                           tx chmap1
                                             = <0 \times 76543210 >;
                                             = <0 \times FEDCBA98>;
                           tx_chmap0
                                             = <4>:
                           rx_num
                                              = <0 \times 03020100 >;
                           rx_chmap3
                                             = <0x07060504>;
                           rx_chmap2
                                             = <0 \times 0B0A0908 > ;
                           rx_chmap1
                           rx_chmap0
                                              = <0x0F0E0D0C>
                           device_type = "daudio0";
                           dmas = <\&dma 3>, <\&dma 3>;
                           dma-names = "tx", "rx";
                      };
                      sounddaudio0: sounddaudio0@509007c {
                           reg = <0x0 0x0509007c 0x0 0x4>;
                           compatible = "sunxi,simple-audio-card";
                           simple-audio-card,name = "snddaudio0";
                           simple-audio-card,format = "i2s";
RIMPEN ON
                         simple-audio-card,cpu {
                           daudio0_master: simple-audio-card,codec { rullyfr}

/* sound-dai = <&ac108>. */
}:
                               sound-dai = <&daudio0>;
                           };
                      };
```

• Ahub 配置

Linux-4.9 内核版本配置如下:

```
ahub_cpudai0:cpudai0-controller@0x05097000 {
   compatible = "allwinner,sunxi-ahub-cpudai";
   reg = <0x0 0x05097000 0x0 0xADF>;
```

White Of

版权所有 © 珠海全志科技股份有限公司。保留一切权利

11/12 9

111/12


```
id = <0x0>;
     status = "okay";
 };
 abub cpudai1:cpudai1-controller@0x05097000 {
      compatible "allwinner, sunxi-ahub-cpudai"
      reg = <0x0 0x05097000 0x0 0xADF>;
     id = <0x1>;
     status = "okay";
 };
 ahub cpudai2:cpudai2-controller@0x05097000 {
      compatible = "allwinner,sunxi-ahub-cpudai";
      reg = <0x0 0x05097000 0x0 0xADF>;
     id = <0x2>;
     status = "okay";
 };
 ahub_cpudai3:cpudai3-controller@0x05097000 {
      compatible = "allwinner,sunxi-ahub-cpudai";
      reg = <0x0 0x05097000 0x0 0xADF>;
     id = <0x3>;
      status = "okay
 ahub codec:ahub codec@0x05097000{
     compatible = "allwinner,sunxi-ahub";
      reg = <0x0 0x05097000 0x0 0xADF>;
     clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_ahub>;
      status = "okay";
 };
 ahub daudio0:ahub daudio0@0x05097000{
      compatible = "allwinner,sunxi-ahub-daudio";
      reg = <0x0 0x05097000 0x0 0xADF>;
     clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_ahub>;
     pinctrl-names = "default", "sleep";
     pinctrl-0 = <&ahub_daudio0_pins_a>;
     pinctrl-1 = <&ahub_daudio0_pins_b>;
      tdm_num = <0x00>;
     device_type = "ahub_daudio0";
     status = "disabled";
ahub_daudio1:ahub_daudio1@0x05097000{
      compatible = "allwinner,sunxi-ahub-daudio";
      reg = <0x0 0x05097000 0x0 0xADF>;
     clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_ahub>;
      tdm_num = <0x01>;
     device_type = "ahub_daudio1";
     status = "okay";
 };
 ahub_daudio2:ahub_daudio2@0x05097000{
      compatible = "allwinner,sunxi-ahub-daudio";
      reg = <0x0 0x05097000 0x0 0xADF>;
     clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_ahub>;
     pinctrl-names = "default", "sleep";
     pinctrl-0 = <&ahub_daudio2_pins_a>;
     pinctrl-1 = <&ahub_daudio2_pins_b>;
```

10/12

版权所有 © 珠海全志科技股份有限公司。保留一切权利

10 المركبة

JIN Z


```
tdm num = <0\times02>;
      device_type = "ahub_daudio2";
      status = "disabled";
ahub_daudio3:ahub_daudio3@0x05097000{
      compatible = "allwinner,sunxi-ahub-daudio"
       reg = <0x0 0x05097000 0x0 0xADF>;
      clocks = <&clk_pll_audio>,<&clk_pll_audiox4>,<&clk_ahub>;
      pinctrl-names = "default", "sleep";
      pinctrl-0 = <&ahub daudio3 pins a>;
      pinctrl-1 = <&ahub_daudio3_pins_b>;
      tdm num = <0x03>;
      device_type = "ahub_daudio3";
      status = "disabled";
  };
  snddaudio0:sound@0{
      compatible = "allwinner,sunxi-daudio0-machine";
      sunxi,cpudai-controller = <&ahub_daudio0>;
      device_type = "snddaudio0";
      status = "disabled";
  };
shdhdmi:sound@1{{Ki
      compatible = "allwinner, sunxi-hdmi-machine";
      sunxi,cpudai-controller = <&ahub_daudio1>;
      device_type = "sndhdmi";
      status = "okay";
  };
  snddaudio2:sound@2{
       compatible = "allwinner,sunxi-daudio2-machine";
      sunxi,cpudai-controller = <&ahub_daudio2>;
      device_type = "snddaudio2";
      status = "disabled";
  };
  snddaudio3:sound@3{
      compatible = "allwinner,sunxi-daudio3-machine";
      sunxi,cpudai-controller = <&ahub_daudio3>;
      device_type = "snddaudio3";
     status = "disabled";
  sndahub:sound@7{
      compatible = "allwinner,sunxi-ahub-machine";
      sunxi,cpudai-controller0 = <&ahub_cpudai0>;
      sunxi,cpudai-controller1 = <&ahub_cpudai1>;
      sunxi,cpudai-controller2 = <&ahub_cpudai2>;
      sunxi,audio-codec = <&ahub_codec>;
      device_type = "sndahub";
      status = "okay";
  };
```


2.3.2 board.dts 板级配置

board.dts 用于保存每一个板级平台设备差异化的信息的补充(如 demo 板,demo2.0 板,ver1 板等等),里面的配置信息会覆盖上面的 device tree 默认配置信息。

board.dts 的路径为/device/config/chips/{IC}/configs/{BOARD}/board.dts, 其中的具体配置如下:

(注意:在 Linux-5.4 内核版本中对 board.dts 语法做了修改,不再支持同名节点覆盖,使用 "&"符号引用节点)

Linux-4.9 内核版本配置如下:

• Codec 的具体配置

```
William Survey S.
/* Audio Driver Modules */
codec:codec@0x05096000 {
/* MIC and headphone gain setting */
   miclgain = <0x17>;//micl增益设置
   mic2gain
              = <0x17>;//mic2增益设置
   headphonegain = <0x00>;//耳机增益设置
   /* adc/dac DRC/HPF func enabled */
   adcdrc_cfg = <0x00>;//是否配置drc
   adchpf cfg = <0x00>;//是否配置hpf
   dacdrc_cfg = <0x00>;
   dachpf\_cfg = <0x00>;
   /* Volume about */
                  = <0x00>;//默认数字音量
   digital_vol
   lineout_vol
                  = <0x1a>;//默认输出音量
   /* Pa enabled about */
   pa_level = <0x01>;//是否使用pa
   pa_msleep_time = <0xa0>;//喇叭pa进入稳定状态需要的时间
   gpio-spk = <&pio PH 18 1 1 1 1>;//外部功放使能脚,一般用于了外放喇叭控制
   status = "okay";
};
sndcodec:sound@0 {
   hp_detect_case = <0x01>;
   status = "okay";
};
```

DMIC 的具体配置

```
dmic:dmic-controller@0x05095000{
    status = "okay";//开启dmic
};

snddmic:sound@2{
    status = "okay";//开启dmic
};
```

WIN ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

12

• S/PDIF 的具体配置

```
spdif:spdif-controller@0x05094000{
    status = "okay";//开启spdif
};
sndspdif:sound@1{
    status = "okay";//开启spdif
```

• Daudio 的具体配置

```
daudio0:daudio@0x05090000 {
    mclk div
                 = <0 \times 01 >;
                = <0 \times 00 >;
    frametype
    tdm\_config = <0x01>;
                                        Counter Of
    sign_extend
                     = <0 \times 00 >;
                   0 = <0 \times 00 >;
   √tx_data_mode
    rx_data_mode() = <0x00>;
                    = <0x00>;
    msb_lsb_first
    pcm_lrck_period = <0x80>;
    audio_format
                     = <0 \times 01 >;
    daudio_master
                     = <0 \times 04 >;
    signal inversion = <0\times01>;
    slot width select = <0x20>;
    status = "okay";
};
snddaudio0:sound@3 {
    sunxi,snddaudio-codec = "ac108.0-003b";
    sunxi,snddaudio-codec-dai = "ac108-pcm0";
    status = "okay";
};
```

相应配置说明如下:

```
daudio_master:
    1: SND_SOC_DAIFMT_CBM_CFM(codec clk & FRM master)
    2: SND_SOC_DAIFMT_CBS_CFM(codec clk slave & FRM master)
    3: SND_SOC_DAIFMT_CBM_CFS(codec clk master & frame slave)
    4: SND_SOC_DAIFMT_CBS_CFS(codec clk & FRM slave)
tdm config:
    0 is pcm; 1 is i2s
audio format:
    1:SND SOC DAIFMT I2S(standard i2s format)
    2:SND_SOC_DAIFMT_RIGHT_J(right justfied format)
    3:SND_SOC_DAIFMT_LEFT_J(left justfied format)
    4:SND_SOC_DAIFMT_DSP_A(pcm. MSB is available on 2nd BCLK rising edge after LRC rising
    5:SND_SOC_DAIFMT_DSP_B(pcm. MSB is available on 1nd BCLK rising edge after LRC rising
    edge)
```



```
signal inversion:
    1:SND_SOC_DAIFMT_NB_NF(normal bit clock + frame)
    2:SND_SOC_DAIFMT_NB_IF(normal BCLK + inv FRM)
    3:SND_SOC_DAIFMT_IB_NF(invert BCLK + non FRM)
    4:SND_SOC_DAIFMT_IB_IF(invert BCLK + FRM)
word_select_size
                   :16bits/20bits/24bits/32bits
                    :16/32/64/128/256 表示多少个bclk, 具体关系见sunxi-daudio.c中关于set clk函数部
pcm lrck period
    分
msb_lsb_first
                   :0: msb first; 1: lsb first
sign extend
                   :0: zero pending; 1: sign extend
                   :8 bit width / 16 bit width / 32 bit width 必须大于或等于使用的采样精度
slot width select
               :0: short frame = 1 clock width; 1: long frame = 2 clock width
frametype
mclk div
               :0: not output(normal setting this)
    1/2/4/6/8/12/16/24/32/48/64/96/128/176/192:
           setting mclk as input clock to external codec, freq is pll_audio/mclk_div
                   :0: 16bit linear PCM; 1: reserved; 2: 8bit u-law; 3: 8bit a-law
tx_data_mode
rx_data_mode
                    :0: 16bit linear PCM; 1: reserved;
            :2: 8bit u-law; 3: 8bit a-law
playback_cma
                   :dma memory size(kB) for playback;
               :dma memory size(kB) for capture;
status = "okay"打开, "disabled"关闭.
```

• Ahub 的具体配置

MATERION RUMPHYON

WHY Y

```
/* this set of daudio0 pins is used for t507 board */
ahub daudio0 pins a: ahub daudio0@0 {
    allwinner,pins = "PA6", "PA7", "PA8", "PA9";
    allwinner, function = "h i2s0";
    allwinner, muxsel = <3>;
    allwinner,drive = <1>;
    allwinner,pull = <0>;
};
ahub_daudio0_pins_b: ahub_daudio0_sleep@0 {
    allwinner,pins = "PA6", "PA7", "PA8", "PA9";
    allwinner,function = "io_disabled";
    allwinner,muxsel = <7>;
    allwinner,drive = <1>;
    allwinner, pull = <0>;
ahub_daudio2_pins_a: ahub_daudio2@0 {
    allwinner,pins = "PG11", "PG12", "PG13", "PG14";
    allwinner, function = "h i2s2";
    allwinner, muxsel = <2>;
    allwinner,drive = <1>;
    allwinner, pull = <0>;
};
ahub_daudio2_pins_b: ahub_daudio2_sleep@0 {
    allwinner,pins = "PG11", "PG12", "PG13", "PG14";
    allwinner, function = "io disabled";
    allwinner,muxsel = <7>;
    allwinner,drive = <1>;
    allwinner, pull = <0>;
};
```

101

版权所有 © 珠海全志科技股份有限公司。保留一切权利

14 (V)


```
ahub_daudio3_pins_a: ahub_daudio3@0 {
    allwinner,pins = "PH5", "PH6", "PH7", "PH8", "PH9";
    allwinner,function = "h_i2s3";
    allwinner,drive = <1>;
    allwinner,pull = <0>;
};

ahub_daudio3_pins_b: ahub_daudio3_sleep@0 {
    allwinner,pins = "PH5", "PH6", "PH7", "PH8", "PH9";
    allwinner,function = "io_disabled";
    allwinner,muxsel = <7>;
    allwinner,drive = <1>;
    allwinner,pull = <0>;
};
```

相应配置说明如下:

表 2-3: 模块引脚组定义说明

```
节点配置 解释说明
pins 模块需要使用到的引脚组定义,一般分别对应模块引脚定义为"MCLK/BCLK/LRCK/DIN/DOUT" function 模块引脚组复用名称
muxsel 模块引脚组具体复用
drive 模块引脚驱动力,默认配置为 1 即可
pull 模块引脚下拉选择,默认配置 1 即可
```

Linux-5.4 内核版本配置如下:

• Codec 的具体配置

```
/* Audio Driver Modules */
&codec {
    /* MIC and headphone gain setting */
             = <0x1F>;//mic1增益设置
= <0x1F>;//mic2增益设置
   miclgain
   mic2gain
    /* ADC/DAC DRC/HPF func enabled */
    /* 0x1:DAP HP EN; 0x2:DAP SPK EN; 0x3:DAP HPSPK EN */
    adcdrc cfg = <0x2>;//是否配置drc
    adchpf_cfg = <0x1>;//是否配置hpf
    dacdrc_cfg = <0x2>;
    dachpf cfg = <0x0>;
    /* Volume about */
                   = <0x00>;//默认数字音量
    digital vol
    lineout vol
                   = <0x1a>;//默认输出音量
    headphonegain = <0x00>;//耳机增益设置
    /* Pa enabled about */
    pa level
               = <0x01>;//是否使用pa
    pa_msleep_time = <0x78>;
              = <&pio PH 6 GPIO_ACTIVE_HIGH>;//外部功放使能脚,一般用于了外放喇叭控制
    /* CMA config about */
```

111/12/01

版权所有 © 珠海全志科技股份有限公司。保留一切权利

15


```
playback cma
                  = <128>;//播放CMA大小配置
   capture_cma = <256>;//录音CMA大小配置
   /* regulator about */
    avcc-supply = <&reg_aldo1>;
    cpvin supply = <&reg_eldo1>;
    status = "okay";
};
&sndcodec {
   status = "okay";
```

• DMIC 的具体配置

```
&dmic {
   capture_cma = <128>;//录音CMA大小配置
   data_vol
            = <0xB0>;//录音音量
   rx_chmap
              = <0x76543210>;//录音通道映射设置
   status = "okay";//开启dmic
&dmic_codec {
   status = "okay";//开启dmic
```

• S/PDIF 的具体配置

```
&spdif {
   playback_cma
                   = <128>;
    capture_cma = <128>;
   status = "okay";//开启spdif
```

• Daudio 的具体配置

```
&daudio0 {
    mclk_div
                 = <0 \times 01 >;
    frametype = <0x00>;
    tdm\_config = <0x01>;
    sign extend
                     = <0 \times 00 >;
    tx data mode
                      = <0 \times 00 >;
    rx_data_mode
                      = <0 \times 00 >;
    msb lsb first = <0x00>;
    pcm_lrck_period = <0x80>;
    slot_width_select = <0x20>;
    status = "okay";//开启daudio
};
&sounddaudio0 {
```

rullyfty O1


```
simple-audio-card,format = "i2s";
/* simple-audio-card,frame-master = <&daudio0_master>; */
/* simple-audio-card,bitclock-master = <&daudio0_master>; */
/* simple-audio-card,bitclock-inversion; */
/* simple-audio-card,frame-inversion; */
status = "okay";//开启daudio
daudio0_master: simple-audio-card,codec {
    /* sound-dai = <&ac108>; */
};
};
```

其中:

White O

- simple-audio-card, frame-master 代表 codec 做主, soc 做从。
- simple-audio-card, bitclock-master 代表 bitclock 由 codec 发出。
- simple-audio-card, bitclock-inversion 代表 bitclock 极性取反。
- simple-audio-card, frame-inversion 代表 lrclock 极性取反。

daudio 相应配置说明如下:

```
daudio_master:
    1: SND_SOC_DAIFMT_CBM_CFM(codec clk & FRM master)
    2: SND_SOC_DAIFMT_CBS_CFM(codec clk slave & FRM master)
    3: SND SOC DAIFMT CBM CFS(codec clk master & frame slave)
    4: SND SOC DAIFMT CBS CFS(codec clk & FRM slave)
tdm config:
    0 is pcm; 1 is i2s
audio format:
    1:SND SOC DAIFMT I2S(standard i2s format)
    2:SND_SOC_DAIFMT_RIGHT_J(right justfied format)
    3:SND_SOC_DAIFMT_LEFT_J(left justfied format)
    4:SND_SOC_DAIFMT_DSP_A(pcm. MSB is available on 2nd BCLK rising edge after LRC rising
    5:SND_SOC_DAIFMT_DSP_B(pcm. MSB is available on 1nd BCLK rising edge after LRC rising
    edge)
signal_inversion:
    1:SND SOC DAIFMT NB NF(normal bit clock + frame)
    2:SND_SQC_DAIFMT_NB_IF(normal BCLK + inv FRM)
    3:SND_SOC_DAIFMT_IB_NF(invert BCLK + nor FRM)
    4:SND_SOC_DAIFMT_IB_IF(invert BCLK + FRM)
word_select_size
                    :16bits/20bits/24bits/32bits
pcm_lrck_period
                    :16/32/64/128/256 表示多少个bclk, 具体关系见sunxi-daudio.c中关于set_clk函数部
    分
msb lsb first
                    :0: msb first; 1: lsb first
sign extend
                    :0: zero pending; 1: sign extend
slot_width_select
                    :8 bit width / 16 bit width / 32 bit width 必须大于或等于使用的采样精度
frametype
                :0: short frame = 1 clock width; 1: long frame = 2 clock width
mclk div
                :0: not output(normal setting this)
    1/2/4/6/8/12/16/24/32/48/64/96/128/176/192:
            setting mclk as input clock to external codec, freq is pll audio/mclk div
tx data mode
                    :0: 16bit linear PCM; 1: reserved; 2: 8bit u-law; 3: 8bit a-law
                    :0: 16bit linear PCM; 1: reserved;
rx_data_mode
            :2: 8bit u-law; 3: 8bit a-law
playback_cma
                    :dma memory size(kB) for playback;
capture_cma
                :dma memory size(kB) for capture;
status = "okay"打开, "disabled"关闭.
```

11 KIN 01

版权所有 © 珠海全志科技股份有限公司。保留一切权利

17

RUINATA ON

2.3.3 kernel menuconfig 配置

在命令行进入内核根目录,执行 make ARCH=arm64 menuconfig (32 位平台执行: make ARCH=arm menuconfig) 进入配置主界面 (Linux-5.4 内核执行: ./build.sh menuconfig), 并按以下步骤操作:

1、选择 Device Drivers 选项进入下一级配置,如下图所示:

```
<Enter> selects submenus ---> (or empty submenus ----).
Arrow keys navigate the menu.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [ ]
excluded <M> module < > module capable
               General setup --->
               Enable loadable module support
           [*] Enable the block layer
               Platform selection
               Bus support --->
               Kernel Features --->
                                    Chanter Off
               Boot options --->
               Userspace binary formats
               Power management options
               CPU Power Management --->
           [*] Networking support
               Firmware Drivers --->
               File systems --->
           [ ] Virtualization ----
               Kernel hacking
               Security options

    Cryptographic API

               Library routines
                                        < Help >
                             < Exit >
                  <Select:
                                                    < Save >
                                                               < Load >
```

图 2-1: Device Driver

2、选择 Sound card support 选项,进入下一级配置,如下图所示:

图 2-2: Sound

3、选择 ALSA 框架,即 Advanced Linux Sound Architecture 选项,如下图所示:

HINATA OF HINATA OF

MINTEN

WHY EX

,

图 2-3: Advanced

4、选择 ALSA for SoC audio support 选项,进入下一级配置,如下图所示:

CHINES OF

图 2-4: ALSA

5、选择 Allwinner SoC Audio support 选项,如下图所示:

HINATA OF HINATA OF

HINTEN

Mytzy (

Krylli

UllALL

William Comment

图 2-5: Allwinner

6、选择需要的模块,可选择直接编译进内核,也可编译成模块。如下图所示:

nully to you rullyft y Or rullyft y O1

图 2-6: module

7、Linux-5.4 需要先选择 Allwinner Audio Simple Card 选项。如下图所示:

rullyft y Or

图 2-7: module

2.4 源码模块结构

Audio 驱动的源代码位于内核的 sound/soc/sunxi/目录下:

Linux-4.9 内核版本如下

```
kernel/linux-4.9/sound/soc/
   sunxi
                            // Sunxi平台
      sun50iw10-codec.c
                            // Sunxi平台具体芯片codec(AD/DA)代码
                                // Sunxi平台的虚拟cpudai驱动代码
       sunxi-cpudai.c
       sun50iw10-sndcodec.c
                            // Sunxi平台具体芯片Codec machine部分代码
       sunxi-dmic.c
                              // Sunxi平台DMIC接口代码
       sunxi-snddmic.c
                            // Sunxi平台DMIC machine部分代码
      sunxi-spdif.c
                            // Sunxi平台S/PDIF接口代码
                            // Sunxi平台的虚拟S/PDIF解码器代码
      spdif-utils.c
                            // Sunxi平台S/PDIF machine部分代码
       sunxi-sndspdif.c
       sunxi-daudio.c
                            // Sunxi平台Daudio接口代码
       sunxi-snddaudio.c
                            // Sunxi平台Daudio machine部分代码
       sunxi-pcm.c
                            // Sunxi平台platform部分dma代码
       sunxi-ahub.c
                            // Sunxi平台ahub接口代码
       sunxi-ahub.h
                            // Sunxi平台ahub驱动头文件
                            // Sunxi平台ahub Machine部分代码
       sunxi-sndahub.c
       sunxi-snddaudio.h
                            // Sunxi平台ahub Machine部分头文件
       sunxi_ahub_daudio.c
                            // Sunxi平台ahub Machine部分头文件
                            // Sunxi平台ahub Machine部分头文件
      - sunxi_ahub_cpudai.c
   codecs
                               解码器存放路径
   ├─ dmic.c
                            // DMIC解码器驱动
```


└─ ac108.c

// AC108解码器codec驱动

Linux-5.4 内核版本如下

```
kernel/linux-5.4/sound/soc/
  – sunxi
                            // Sunxi平台
                            // Sunxi平台具体芯片codec解码器代码
     - sun50iw10-codec.c
     - sunxi-dummy-cpudai.c
                            // Sunxi平台的虚拟cpudai驱动代码
     - sun50iw10-sndcodec.c
                            // Sunxi平台具体芯片Codec machine部分代码
     - sunxi-simple-card.c // Sunxi平台通用Codec machine框架部分代码
     - sunxi-dmic.c
                             // Sunxi平台DMIC接口代码
      - sunxi-spdif.c
                            // Sunxi平台S/PDIF接口代码
                            // Sunxi平台Daudio接口代码
      - sunxi-daudio.c
                            // Sunxi平台platform部分dma代码
     - sunxi-pcm.c
   codecs
                            // 解码器存放路径
     - dmic.c
                            // DMIC解码器驱动
       ac108.c
                            // AC108解码器codec驱动
```

2.5 驱动框架/

2.5.1 音频驱动硬件框架图

各个设备对应的设备节点:

表 2-4: 设备节点

硬件接口/设备	设备节点		/sys	/class/sound/c	ardX/id
	/dev/snd/controlC0				
模拟 codec	/dev/snd/pcmC0D0c		aud	iocodec	
	/dev/snd/pcmC0D0p				
	/dev/snd/controlC1				
spdif 接口	/dev/snd/pcmC1D0c		snds	spdif/xxxx	
0	0	0	0	0	0
80	版权所有 @ 珠海·	◆ → → → → → → → → → → → → →	/₽.632_±π±π±π	80	. KD 25

rullyft y O'

硬件接口/设备	设备节点	/sys/class/sound/cardX/id
~	/dev/snd/pcmC1D0p	
(KI)	/dev/snd/controlC2	Chi.
dmic 接口	/dev/snd/pcmC2D0e	snddmic/xxx
	注:DMIC 模块无播放功能	
	/dev/snd/controlC3	
daudio 接口	/dev/snd/pcmC3D0c	snddaudio/xxx
	/dev/snd/pcmC3D0p	
	/dev/snd/controlC4	
	/dev/snd/pcmC4D0c	
ahub 接口	/dev/snd/pcmC4Dnc(第 n 个录音设备)	sndahub/xxx
	/dev/snd/pcmC4D0p	
	/dev/snd/pcmC4Dnp(第 n 个播放设备)	

可以输入以下命令查看系统挂载上的声卡:

cat /proc/asound/cards]: audiocodec - audiocodec 0 [audiocodec audiocodec 1 [sndspdif]: sndspdif - sndspdif sndspdif 2 [snddmic]: snddmic - snddmic snddmic 3 [snddaudio0]: snddaudio0 - snddaudio0 snddaudio0 4 [sndahub]: sndahub - sndahub sndahub

2.5.2 音频驱动软件框架图

音频软件框架使用 ASOC、它是在 ALSA 驱动程序上封装的一层,如下图:

图 2-9: 软件框架图

为了更好地支持嵌入式处理器和移动设备中的音频 codec 的一套软件体系,ASOC 将音频系统分 为 3 部分: Machine, Platform 和 Codec。

• Codec 驱动

ASoC 中的一个重要设计原则就是要求 Codec 驱动是平台无关的,它包含了一些音频的控件 (Controls) , 音频接口, DAMP (动态音频电源管理) 的定义和某些 Codec IO 功能。为了 保证硬件无关性,任何特定于平台和机器的代码都要移到 Platform 和 Machine 驱动中。

所有的 Codec 驱动都要提供以下特性:

- 1. Codec DAI (Digital Audio Interface) 和 PCM 的配置信息;
- 2. Codec 的 IO 控制方式 (I2C 等);
- 3. Mixer 和其他的音频控件;
- 4. Codec 的 ALSA 音频操作接口;

必要时,也可以提供以下功能:

- 5. DAPM 描述信息;
- 6. DAPM 事件处理程序;
- 7. DAC 数字静音控制;

• Platform 驱动

它包含了该 SoC 平台的音频 DMA 和音频接口的配置和控制(I2S, PCM 等等);一般不包含 与板子或 codec 相关的代码。

• Machine 驱动

单独的 Platform 和 Codec 驱动是不能工作的,它必须由 Machine 驱动把它们结合在一起才能 完成整个设备的音频处理工作。

numpth of humber of rullyft y O' rallytel of

3.1 asoc dma platform register()

- 函数原型: int asoc_dma_platform_register(struct device *dev, unsigned int flags)
- 作用: 注册 asoc 里 platform 部分
- 参数:
 - dev: 指向所属的设备;
 - flag: 可选为:
 - SND DMAENGINE PCM FLAG COMPAT, SND DMAENGINE PCM FLAG NO DT
 - SND DMAENGINE PCM FLAG HALF DUPLEX
 - .eL_. SND DMAENGINE PCM FLAG CUSTOM CHANNEL NAME
- 返回:
 - 0:成功;
 - <0: 失败;

3.2 snd soc register component()

- 函数原型: int snd_soc_register_component(struct device *dev, const struct snd_soc_component_driver *cmpnt_drv, struct snd_soc_dai_driver *dai_drv, int num dai)
- 作用: 注册 dai 组件
- 参数:
 - dev: 指向所属的设备;
 - cmpnt drv: 组件结构体;
 - dai drv: dai 的描述;
 - num dai: dai 的数量
- 返回:
 - 0:成功;
 - <0:失败;

3.3 snd_soc_register_codec

• 函数原型: int snd_soc_register_codec(struct device *dev, const struct snd_soc_codec_driver *codec_drv, struct snd_soc_dai_driver *dai_drv, int num_dai)

• 作用: 注册 codec

• 参数:

• dev: 指向所属的设备;

• codec_drv: codec 结构体;

dai_drv: dai 的描述;num dai: dai 的数量

• 返回:

0:成功;<0:失败;

3.4 snd soc register card()

• 函数原型: int snd soc register card(struct snd soc card *card)

• 作用: 注册一个声卡

• 参数说明:

• card: 描述声卡的结构体

• 返回:

• 0: 成功;

• <0: 失败;

3.5 snd soc dapm add routes()

• 函数原型: int snd_soc_dapm_add_routes(struct snd_soc_dapm_context *dapm, const struct snd_soc_dapm_route *route, int num)

• 作用: 在 DAPM 中添加音频路由表

• 参数说明:

• dapm: dapm 结构体;

• route: 需要添加的音频路由;

• num: 路由的数量

• 返回:

• 0: 成功;

• <0: 失败;

_

版权所有 © 珠海全志科技股份有限公司。保留一切权利

30

3.6 snd_soc_dapm_new controls()

• 函数原型: int snd_soc_dapm_new_controls(struct_snd_soc_dapm_context *dapm, const struct snd_soc_dapm_widget *widget, int num)

• 作用: 在 DAPM 中添加 control 控制项

参数说明:

• dapm: dapm 结构体; • widget: 控制的小部件; • num: 小部件的数量

• 返回:

• 0: 成功; • <0: 失败;

rullytel O

nully to the state of the state RAINSEN ON

NIIN PARTY OF

4.1 调试方法

4.1.1 调试工具

正常情况下 Linux 固件都会配置由 tinyalsa 工具,如果是 Android 固件,可以在 Android 下 编译生成。

Android 在 android/external/tinyalsa 目录下使用 mm 编译, 会生成 tinycap tinyplay tinymix tinypcminfo tinyhostless 这五个调试工具。

调试工具的用途与用法:

tinycap

录音测试工具。用于操作声卡里音频录音设备节点。

Usage: tinycap file.wav [-D card] [-d device] [-c channels] [-r rate] [-b bits] [-p period_size] [-n n_periods] [-T capture time]

例如:

tinycap record.wav -D 0 -d 0 -c 2 -r 48000 -b 16

这条指令将会使用声卡 0 的第 0 个设备录制一条 48K 双通道 16bit 的音频数据,并命名为 record.wav 保存在当前路径。

tinyplay 播放测试工具。用于操作声卡里音频播放设备节点。

Usage: tinyplay file.wav [-D card] [-d device] [-p period_size] [-n n_periods]

例如:

tinyplay test.wav -D 0 -d 0

这条指令将会使用声卡 0 的第 0 个设备播放测试音频 test.wav。

tinymix 查看音频通路相关的各项配置参数,并通过命令修改参数配置。

Usage: tinymix [-D card] [control id] [value to set]

例如:

```
tinymix -D 0
```

这条指令可以查看声卡 0 的配置参数。

例如:

```
tinymix -D 0 5 1
```

这条指令可以修改声卡 0 中序号为 5 的参数配置为 1。

4.1.2 调试节点

● 寄存器 dump 搜索

```
Crusted C.
/ # find /sys/ -name "audio reg"
/sys/devices/platform/soc/codec/audio_reg_debug/audio_reg
/ # find /sys/ -name "daudio reg"
/sys/devices/platform/soc/daudio2/daudio_debug/daudio_reg
/sys/devices/platform/soc/r_daudio0/daudio_debug/daudio_reg
/sys/devices/platform/soc/daudio1/daudio_debug/daudio_reg
```

codec 输出

```
/ # tinyplay music-44100-2ch.wav -D 0 -p 1024 -n 8&
/ # cat /sys/devices/platform/soc/codec/audio reg debug/audio reg
dump audio reg:
                    [0x000]: 0x80000000
SUNXI_DAC_DPC
                                            Save:0x0
SUNXI DAC VOL CTL
                    [0x004]: 0x1a0a0
                                            Save:0x0
SUNXI DAC FIFO CTL
                    [0x010]: 0x3004010
                                            Save:0x0
SUNXI DAC FIFO STA
                    [0x014]: 0x3e04
                                            Save:0x0
SUNXI DAC TXDATA
                    [0x020]: 0x0
                                            Save:0x0
SUNXI DAC CNT
                    [0x024]: 0x4f334
                                            Save:0x0
                    [0x028]: 0x0
SUNXI_DAC_DG
                                            Save:0x0
                    [0x030]: 0xe000800
SUNXI_ADC_FIF0_CTL
                                            Save:0x0
SUNXI_ADC_VOL_CTL1
                    [0x034]: 0xa0a0a0a0
                                            Save:0x0
SUNXI_ADC_FIFO_STA
                    [0x038]: 0x1
                                            Save:0x0
SUNXI_ADC_VOL_CTL2
                    [0x03c]: 0xa0
                                            Save:0x0
```



```
SUNXI ADC RXDATA
                     [0 \times 040]: 0 \times 0
                                             Save:0x0
SUNXI ADC CNT
                     [0x044]: 0x0
                                             Save:0x0
SUNXI_ADC_DG
                     [0x04c]: 0x0
                                             Save:0x0
SUNXI ADC DIG CTL
                     [0x050] 0x0
                                             Save:0x0
SUNXI VARA SPEEDUP DOWN CTL [0x054]: 0x10
                                                     Save: 0x0
SUNXI_DAC_DAP_CTL
                     [0x0f0]: 0x0
                                             Save:0x0
SUNXI ADC DAP CTL
                     [0x0f8]: 0x99000000
                                             Save:0x0
                     [0x300]: 0xcd055
SUNXI_ADC1_REG
                                             Save:0x0
SUNXI_ADC2_REG
                     [0x304]: 0xc1055
                                             Save:0x0
SUNXI ADC3 REG
                     [0x308]: 0xc1055
                                             Save:0x0
SUNXI ADC4 REG
                     [0x30c]: 0xc0055
                                             Save:0x0
SUNXI_DAC_REG
                     [0x310]: 0x15fd6a
                                             Save:0x0
SUNXI_MICBIAS_REG
                     [0x318]: 0x30
                                             Save:0x0
SUNXI_RAMP_REG
                                             Save:0x0
                     [0x31c]: 0x1
SUNXI_BIAS_REG
                     [0x320]: 0x0
                                             Save:0x0
SUNXI_ADC5_REG
                     [0x330]: 0xc0055
                                             Save:0x0
```

• codec 输入

```
# tinycap rec-mic.wav -D 0 -c 2 -r 16000 p 1024 -n 8&
                                                               ruth
/ # cat /sys/devices/platform/soc/codec/audio_reg_debug/audio_reg
dump audio reg:
                     [0x000]: 0x0
                                            Save:0x0
SUNXI_DAC_DPC
SUNXI_DAC_VOL_CTL
                     [0x004]: 0x1a0a0
                                            Save:0x0
SUNXI_DAC_FIFO_CTL
                     [0x010]: 0x3004000
                                            Save:0x0
SUNXI DAC FIFO STA
                     [0x014]: 0x80800c
                                            Save:0x0
                     [0x020]: 0x0
                                             Save: 0x0
SUNXI DAC TXDATA
SUNXI_DAC_CNT
                     [0 \times 024]: 0 \times 6487c
                                            Save: 0x0
SUNXI DAC DG
                     [0x028]: 0x0
                                            Save: 0x0
SUNXI_ADC_FIFO_CTL
                     [0x030]: 0x1f000808
                                             Save:0x0
                     [0x034]: 0xa0a0a0a0
SUNXI_ADC_VOL_CTL1
                                            Save:0x0
                     [0x038]: 0x807f01
SUNXI_ADC_FIF0_STA
                                            Save:0x0
SUNXI_ADC_VOL_CTL2
                     [0x03c]: 0xa0
                                            Save:0x0
                     [0x040]: 0x6
SUNXI_ADC_RXDATA
                                            Save:0x0
                     [0x044]: 0x46eaa
SUNXI_ADC_CNT
                                            Save:0x0
SUNXI ADC DG
                     [0x04c]: 0x0
                                            Save:0x0
SUNXI ADC DIG CTL
                     [0x050]: 0x3
                                            Save:0x0
SUNXI VAR1 SPEEDUP DOWN CTL[0x054]: 0x10
                                                    Save:0x0
SUNXI_DAC_DAP_CTL
                     [0x0f0]: 0x0
                                            Save:0x0
SUNXI_ADC_DAP_CTL
                     [0x0f8] 0x99000000
                                            Save:0x0
                     [0x300]: 0xc00cd055
SUNXI_ADC1_REG
                                            Save:0x0
                     [0x304]: 0xc00c1055
                                            Save:0x0
SUNXI_ADC2_REG
                                            Save:0x0
SUNXI_ADC3_REG
                     [0x308]: 0xc1055
SUNXI_ADC4_REG
                     [0x30c]: 0xc0055
                                            Save:0x0
SUNXI_DAC_REG
                     [0x310]: 0x15016a
                                            Save:0x0
SUNXI MICBIAS REG
                     [0x318]: 0xb0
                                            Save:0x0
SUNXI_RAMP_REG
                     [0x31c]: 0x0
                                            Save:0x0
SUNXI_BIAS_REG
                                            Save:0x0
                     [0x320]: 0x0
SUNXI ADC5 REG
                     [0x330]: 0xc0055
                                             Save:0x0
```

Rullytty O1

MINITA

版权所有 © 珠海全志科技股份有限公司。保留一切权利

34 (1)11/12

4.2 常见问题

4.2.1 audiocodec 输入输出无声音

【分析步骤一】:确认通路设置。通过 tinymix 查看 route 状态,通过 debugfs 查看 dapm 状态,是否设置了需要的。

【分析步骤二】: 对于喇叭,查看设备树 audiocodec 节点中 spk 的 gpio 配置和硬件原理图比对,代码是否适配了对应的 gpio。

【分析步骤三】: 以上无法定位,请联系 FAE 协助分析定位。

4.2.2 录音或播放变速

【分析步骤一】:确认录音和播放采样率是否一致。

【分析步骤二】:以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于录音和播放不在同一采样点时钟上,备注: spdif 录音不支持单通道。

4.2.3 DMIC 录音异常(静音/通道移位)

【分析步骤一】:确认 GPIO 是否正常。

- (1) 通过 datasheet 核对 arch/arm(64 位为 arm64)/boot/dts/CHIP-pinctrl.dtsi 部分的 dmic 的 pin 设置。
- (2)通过 sunxi_dump 来打印出 dmic 的 gpio 设置是否正常(dump 寄存器的时候请在 DMIC 正在录音的时候)。

【分析步骤二】:确认 clk 的频率。以上正常情况下,示波器查看 dmic clk 的频率是否满足如下 关系:

clk = sample * over_sample_rate;

关于过采样率有两个选项,具体意义查看 datasheet.

【分析步骤三】:dump 寄存器

- (1)由于布线问题和语音算法需要,针对通道需要移位情况,寄存器查看和修改 chan_map,将对应的 MIC 的数据移到指定的通道。
 - (2) ——比对下寄存器是否有明显遗漏部分。

【分析步骤四】:排查硬件连接和 dmic 物料问题。

【分析步骤五】:以上无法定位,请联系 FAE 协助分析定位。

THALLY O.

版权所有 © 珠海全志科技股份有限公司。保留一切权利

ີ 35

【问题解析】常见问题在于 GPIO 和通道修改的问题上。

4.3

4.3 常见问题

nytol O' nullyto

July 124 C

MINITY O.

4.3.1 audiocodec 输入输出无声音

【分析步骤一】:确认通路设置。通过 tinymix 查看 route 状态,通过 debugfs 查看 dapm 状态,是否设置了需要的。

【分析步骤二】: 对于喇叭,查看设备树 audiocodec 节点中 spk 的 gpio 配置和硬件原理图比对,代码是否适配了对应的 gpio。

【分析步骤三】: 以上无法定位,请联系 FAE 协助分析定位。

4.3.2 录音或播放变速

【分析步骤一】:确认录音和播放采样率是否一致。

【分析步骤二】: 以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于录音和播放不在同一采样点时钟上,备注: spdif 录音不支持单通道。

4.3.3 DMIC 录音异常(静音/通道移位)

【分析步骤一】: 确认 GPIO 是否正常。

- (1) 通过 datasheet 核对 arch/arm(64 位为 arm64)/boot/dts/CHIP-pinctrl.dtsi 部分的 dmic 的 pin 设置。
- (2) 通过 sunxi_dump 来打印出 dmic 的 gpio 设置是否正常(dump 寄存器的时候请在 DMIC 正在录音的时候)。

【分析步骤二】:确认 clk 的频率。以上正常情况下,示波器查看 dmic clk 的频率是否满足如下关系:

clk = sample * over_sample_rate;

关于过采样率有两个选项,具体意义查看 datasheet.

【分析步骤三】: dump 寄存器

- (1)由于布线问题和语音算法需要,针对通道需要移位情况,寄存器查看和修改 chan_map, 将对应的 MIC 的数据移到指定的通道。
 - (2) ——比对下寄存器是否有明显遗漏部分。

WHATA ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

36

【分析步骤四】: 排查硬件连接和 dmic 物料问题。

【分析步骤五】: 以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于 GPIO 和通道修改的问题上。

interior aimitario

4.3.4 录音或播放变速

【分析步骤一】:确认录音和播放采样率是否一致。

【分析步骤二】: 以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于录音和播放不在同一采样点时钟上,备注: spdif 录音不支持单通道。

4.3.5 DMIC 录音异常(静音/通道移位)

【分析步骤一】:确认 GPIO 是否正常。

(1) 通过 datasheet 核对 arch/arm(64 位为 arm64)/boot/dts/CHIP-pinctrl.dtsi 部分的 dmic 的 pin 设置。

(2) 通过 sunxi_dump 来打印出 dmic 的 gpio 设置是否正常(dump 寄存器的时候请在 DMIC 正在录音的时候)。

【分析步骤二】:确认 clk 的频率。以上正常情况下,示波器查看 dmic clk 的频率是否满足如下关系:

clk = sample * over sample rate;

关于过采样率有两个选项,具体意义查看 datasheet.

【分析步骤三】: dump 寄存器

- (1)由于布线问题和语音算法需要,针对通道需要移位情况,寄存器查看和修改 chan_map,将对应的 MIC 的数据移到指定的通道。
 - (2) 一一比对下寄存器是否有明显遗漏部分。

【分析步骤四】: 排查硬件连接和 dmic 物料问题。

【分析步骤五】: 以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于 GPIO 和通道修改的问题上。

4.3.6 DMIC 录音异常(静音/通道移位)

【分析步骤一】:确认 GPIO 是否正常。

IIIAEN O.

- (1) 通过 datasheet 核对 arch/arm(64 位为 arm64)/boot/dts/CHIP-pinctrl.dtsi 部分的 dmic 的 pin 设置。
- (2) 通过 sunxi_dump 来打印出 dmic 的 gpio 设置是否正常 (dump 寄存器的时候请在 DMIC

【分析步骤二】:确认 clk 的频率。以上正常情况下,示波器查看 dmic clk 的频率是否满足如下 关系:

clk = sample * over sample rate;

关于过采样率有两个选项,具体意义查看 datasheet.

【分析步骤三】:dump 寄存器

- (1) 由于布线问题和语音算法需要,针对通道需要移位情况,寄存器查看和修改 chan map, 将对应的 MIC 的数据移到指定的通道。
 - (2) ——比对下寄存器是否有明显遗漏部分。

【分析步骤四】: 排查硬件连接和 dmic 物料问题。

.v 【分析步骤五】: 以上无法定位,请联系 FAE 协助分析定位。

【问题解析】常见问题在于 GPIO 和通道修改的问题上。

RUINFEX ON

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。

l)li.

权所有 © 珠海全志科技股份有限公司。保留一切权利

39