122 — Architecture des ordinateurs et système d'exploitation

J. Razik

Dpt. Informatique — UTLN

2021-2022

Logique Combinatoire

Fonction booléenne à plusieurs variables

- $f: \{0,1\}^n \to \{0,1\}$
- $y = f(x_1, x_2, ..., x_n), y \in \{0, 1\}$
- Table de vérité

		x_1	<i>X</i> ₀	$f(x_0, x_1)$
X	f(x)	0	0	f(0,0)
0	f(0)	0	1	f(1,0)
1	f(1)	1	0	f(0,1)
	•	1	1	f(1,1)

Fonction booléenne à plusieurs variables

• Fonctions à 1 variable : exactement 4 fonctions possibles

X	f(x)	
0	0	f_1 , fonction Faux ou False
1	0	11, Tollection Taux ou Taise
0	0	f_2 , fonction <i>Identité</i> ou <i>Id</i>
1	1	12, Torrection raentite ou ra
0	1	f_3 , fonction <i>Non</i> ou <i>Not</i>
1	0	73, Tonetion Won ou Not
0	1	f_4 , fonction <i>Vrai</i> ou <i>True</i>
1	1	14, Tolletion Vial ou True

Fonction booléenne à plusieurs variables

- Fonctions à 2 variables booléennes : $2^4 = 16$ fonctions différentes
 - ► « ET » (*AND*),
 - ▶ « OU » (OR),
 - « OU EXCLUSIF » (XOR),
 - « NON-ET » (NAND),
 - « NON-OU » (NOR),
 - etc . . .
- Fonctions à n variables booléennes
 - On peut se ramener aux fonctions de bases à 1 ou 2 variables.

Algèbre de Boole

- $B: (\{0,1\}, OU, ET, NON)$, ou noté $(\{0,1\}, +, ., \overline{})$
- Propriétés ensemblistes
 - Lois de composition internes : ET et OU sont internes, c'est-à-dire à valeur dans {0,1};
 - ▶ La loi ET est commutative et associative;
 - ▶ La loi OU est commutative et associative;
 - ▶ Distributivité du *ET* sur le *OU* et du *OU* sur le *ET*;
 - ▶ Idempotence : A ET A = A, A OU A = A ;
 - Élément neutre : 1 pour ET, 0 pour OU;
 - Élément absorbant : 0 pour ET, 1 pour OU;
 - $\blacktriangleright \ \forall A, \ A + \overline{A} = 1;$
 - $\forall A, \ A.\overline{A} = 0.$
- Lois de De Morgan :
 - $\forall (A, B), \ \overline{A + B} = \overline{A}.\overline{B};$
 - $\forall (A,B), \ \overline{A.B} = \overline{A} + \overline{B};$
 - $\overline{A_1 + \cdots + A_n} = \overline{A_1} \cdot \cdots \cdot \overline{A_n};$
 - $\overline{A_1.\cdots.A_n} = \overline{A_1} + \cdots + \overline{A_n};$

Décomposition en OU

- Soit f(x, y, z) telle que f(0, 1, 0) = 1, f(1, 0, 0) = 1 et f = 0 ailleurs
 - Soit $f_{010}(x, y, z)$ telle que $f_{010}(x, y, z) = 1$ pour (x, y, z) = (0, 1, 0) et $f_{010}(x, y, z) = 0$ pour toutes les autres combinaisons;
 - Soit $f_{100}(x, y, z)$ telle que $f_{100}(x, y, z) = 1$ pour (x, y, z) = (1, 0, 0) et $f_{100}(x, y, z) = 0$ pour toutes les autres combinaisons.
 - ► Soit g(x, y, z) définie par $g(x, y, z) = f_{010}(x, y, z) + f_{100}(x, y, z)$
 - ▶ Alors *f* = *g*
- Soit $f(x_1, x_2, ..., x_N)$ une fonction booléenne à N variables booléennes x_i
 - \blacktriangleright { \underline{a}_i }, q multiplets de N bits
 - $f(\underline{x}) = 1 \Leftrightarrow \underline{x} \in \{\underline{a}_1, \dots, \underline{a}_q\}$
 - On peut créer q fonctions $f_i(\underline{x})$ telles que $f_i(\underline{x}) = 1$ si et seulement si $\underline{x} = a_i$
 - $f(\underline{x}) = f_1(\underline{x}) + \cdots + f_q(\underline{x})$

Monôme booléen

Produit booléen par l'opérateur ET de N variables distinctes, complémentées ou non

- Exemple : A.B.C
 - ightharpoonup A.B.C = 1 si et seulement si A, B et C valent 1, 0 sinon
- Exemple : $A.\overline{B}.C$
 - ▶ $A.\overline{B}.C = 1$ si et seulement si A et C valent 1 et que B vaut 0

Si
$$f(x_1,...,x_N) = 1$$
 pour $(a_1,...,a_N)$, $a_i \in \{0,1\}$, alors

• $f(\underline{x}) = u_1 \cdot \cdots \cdot u_N$, tel que

$$\forall i \in [1, N],$$
 $\left\{ \begin{array}{ll} u_i &= x_i \text{ si } a_i = 1 \\ u_i &= \overline{x}_i \text{ si } a_i = 0 \end{array} \right.$

Forme normale disjonctive (OU)

- Forme normale disjonctive
 - disjonction de conjonctions
 - définition des monômes booléens où f vaut 1
 - disjonction entre ces monômes
- Exemple
 - $f(\underline{x}) = 1$ si et seulement si $\underline{x} = (0, 1, 0)$ ou $\underline{x} = (1, 0, 0)$

$$\begin{cases} f_{010}(x_1, x_2, x_3) = \overline{x}_1.x_2.\overline{x}_3 \\ f_{100}(x_1, x_2, x_3) = x_1.\overline{x}_2.\overline{x}_3 \end{cases}$$

 $f = f_{010} + f_{100}$

$$f(x_1, x_2, x_3) = f_{010}(x_1, x_2, x_3) + f_{100}(x_1, x_2, x_3) = \overline{x}_1.x_2.\overline{x}_3 + x_1.\overline{x}_2.\overline{x}_3$$

- Forme normale conjonctive (ET)
 - Autre expression du polynôme booléen : conjonction de disjonctions

Polynôme en NON-ET (NAND) et en NON-OU (NOR)

- 3 opérateurs logiques générateurs
 - ► ET, OU, NON
- 1 opérateur pour les générer tous : NON-ET (NAND)
 - \triangleright NAND $(x, y) = \overline{x.y}$
 - $NAND(x,x) = \overline{x}.$
 - ► $NAND(NAND(x, y), NAND(x, y)) = \overline{\overline{x.y}} = x.y$
 - ► $NAND(NAND(x,x), NAND(y,y)) = \overline{\overline{x}.\overline{y}} = \overline{\overline{x}} + \overline{\overline{y}} = x + y$
- Même conclusion avec l'opérateur NON-OU (NOR)
- ⇒ On peut exprimer un polynôme booléen avec uniquement des opérateurs NON-ET (respectivement NON-OU)

Réseau logique

Portes logiques

Réseau logique : exemple

Réalisation physique des opérateurs logiques

(g) Réalisation d'une porte OU

(h) Réalisation d'une porte ET

Réalisation physique des opérateurs logiques

(i) Un transistor *NPN*

(j) Réalisation d'une porte *NON* avec un transistor *NPN*

Réduction d'un polynôme booléen

- Objectifs
 - Simplifier l'équation
 - Diminuer le nombre de monômes et leur complexité
 - Diminuer la complexité et le coût de réalisation
- 2 méthodes
 - Algébrique
 - ★ Utilisation des propriétés ensemblistes
 - Graphique
 - ★ Utilisation des tables de Karnaugh

Réduction d'un polynôme booléen

- Comment?
 - ▶ Fusion de monômes avec un facteur et son inverse
 - ★ Exemple : $\overline{A}.B.\overline{C}$ et $A.B.\overline{C}$
 - ★ $(A + \overline{A}).B.\overline{C} = 1.B.\overline{C} = B.\overline{C}$
- Détection de ces monômes candidats
 - Réordonner la table de vérité
 - Code binaire réfléchi ou code de Gray
 - ▶ 1 seul 1 bit change entre deux valeurs successives

Code binaire réfléchi

Exemple : f(A, B, C) = A + B.C

В	C	A+B.C
0	0	0
0	1	0
1	0	0
1	1	1
0	0	1
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0

(k) Ordre binaire habituel

Α	В	C	A+B.C
0	0	0	0
0	0	1	0
0	1	1	1
0	1	0	0
1	1	0	1
1	1	1	1
1	0	1	1
1	0	0	1

(I) Ordre binaire réfléchi

Représentation réordonnée de la table de vérité sur 2 dimensions

Α	В	C	A+B.C	Α
0	0	0	0	
0	0	1	0	
0	1	1	1	
0	1	0	0	
1	1	0	1	
1	1	1	1	
1	0	1	1	
1	0	0	1	

BC			
00	01	11	10
0	0	1	0
1	1	1	1

Exemple de tables de Karnaugh à 2, 3 et 4 variables.

$$f(A,B)=B$$

$$f(A, B, C) = A + B.C$$

$$f(A, B, C, D) = CD + AB\overline{D}$$

Exemple d'une table de Karnaugh.

Les différents regroupements valides pour une table de Karnaugh d'au plus 4 variables

Les cas indéterminés

(m) Table sans tenir compte de la valeur indéterminée.

(n) Table en tenant compte de la valeur indéterminée.

Table de Karnaugh à plus de 4 variables

Exemple de table de Karnaugh à 6 variables

Fonctions booléennes et multiplets (sur n bits)

Fonction
$$f: \{0,1\}^N \rightarrow \{0,1\}^M$$

- $y = f(\underline{x})$
- Introduction de fonctions à valeur sur $\{0,1\}$ telles que
 - ▶ f_0, \ldots, f_{M-1}
 - $y_0 = f_0(\underline{x}) = f_0(x_0, \dots, x_{N-1})$
 - •
 - $y_{M-1} = f_{M-1}(\underline{x})$

Fonctions booléennes usuelles

Comparaison CMP sur N bits

Tranche i sur 1 bit

X_i	$ Y_i $	S_i
0	0	1
0	1	0
1	0	0
1	1	1

Figure – Test d'égalité - table de vérité.

Figure - Test d'égalité - table de Karnaugh

Comparaison CMP sur N bits

Comparaison CMP sur N bits

Resynthèse des tranches

Figure – Algorithme d'addition sur *N* bits avec retenues amont et aval.

Tranche sur 1 bit

(I) La fonction de sortie S_i .

(m) La fonction de retenue C_i .

Table - Tables de Karnaugh d'un additionneur 1 bit avec retenues amont et aval.

Tranche sur 1 bit

Tranche sur 1 bit

Inverseur commandé CINV sur N bits

- Si K = 0, alors la sortie $\underline{S} = \underline{X}$;
- Si K = 1, alors la sortie $\underline{S} = \overline{\underline{X}}$.

Analyse par tranche sur 1 bit

Table – Table de Karnaugh d'un inverseur commandé sur 1 bit.

Inverseur commandé CINV sur N bits

Soustracteur commandé CSUB sur N bits

Passeur PASS sur N bits

- Si K = 0, alors la sortie $\underline{S} = \underline{0}$;
- Si K = 1, alors la sortie $\underline{S} = \underline{X}$.

Codeur 2^N vers N

X_3	X_2	X_1	<i>X</i> ₀	S_1	S_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	-	0	1
0	1	-	-	1	0
1	-	-	-	1	1

<i>X</i> ₃	X_2	X_1	<i>X</i> ₀	S_1	S_0	G
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	-	0	1	1
0	1	_	-	1	0	1
1	-	-	-	1	1	1

(a) Codeur 4 vers 2.

(b) Codeur 4 vers 2 corrigé.

Table - Codeur 4 vers 2.

On en déduit les équations de ceux-ci :

- $S_1 = X_2 + X_3$,
- $S_0 = X_3 + \overline{X_2}.X_1$,
- et par déduction logique $G = X_0 + X_1 + X_2 + X_3$.

Codeur 2^N vers N

(a) Table de Karnaugh du bit S_1 .

(b) Table de Karnaugh du bit S_0 .

Table – Tables de Karnaugh des sorties d'un codeur 4 vers 2.

Codeur 2^N vers N

(a) Schéma de réalisation.

(b) Représentation simplifiée.

Figure – Encodeur 4 vers 2.

Décodeur N vers 2^N

X_1	$\mid X_0 \mid$	S_3	S_2	S_1	S_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Table – Table de vérité d'une décodeur 2 vers 4.

Décodeur N vers 2^N

(b) Représentation simplifiée.

Figure – Décodeur 2 vers 4.

Multiplexeur M vers 1

S	X_1	X_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

(b) Table de Karnaugh.

(a) Table de vérité.

Table – Multiplexeur 2 vers 1 sur 1 bit.

Multiplexeur M vers 1

(a) Schéma de réalisation.

(b) Représentation simplifiée.

Figure – Multiplexeur 2 vers 1 sur 1 bit.

Multiplexeur M vers 1

Figure - Multiplexeur 2 vers 1 sur 2 bits.

Multiplexeur M vers 1

Figure – Multiplexeur 4 vers 1 sur N bits, réalisé à partir d'un arbre de MUX2 \rightarrow 1.

Démultiplexeur 1 vers M

Figure – Représentation d'un démultiplexeur 1 vers 4.

Décaleur sur N bits

Figure – Décaleur à gauche de 0 à 3 bits sur un mot de 4 bits.

Décaleur sur N bits

- Si $\underline{S} = 00$ alors on en fait rien, $\underline{Y} = \underline{X}$;
- Si $\underline{S} = 01$ alors on décale à droite d'un bit, et $Y_3 = I_L$;
- Si $\underline{S} = 10$ alors on décale à gauche d'un bit, et $Y_0 = I_R$.

Figure – Décaleur gauche/droite d'un bit.

Unité Arithmétique et Logique UAL sur N bits

Figure – Représentation d'une Unité Arithmétique et Logique sur N bits.

Unité Arithmétique et Logique UAL sur N bits

- PASS: un passeur, utilisé par exemple pour l'instruction CLA;
- CSUB : un soustracteur commandé de deux mots sur N bits ;
- SHIFLR : un décaleur commandé gauche-droit sur 1 bit ;
- *CMP* : un comparateur d'égalité entre les deux entrées.

Figure – Décomposition d'une *UAL* 4 bits en tranches.

Temps de calcul — temps de propagation

- la sortie ne change sûrement pas d'état pendant T_{pmin} après un événement en entrée;
- la sortie a sûrement pris sa nouvelle valeur de manière stable à T_{pmax} après un événement en entrée.

Deux portes A et B en cascade

- $T_p(Y|X)$ le temps de propagation pour le sortie Y par rapport à un changement sur l'entrée X pour la porte logique A;
- $T_p(Z|Y)$ le temps de propagation pour le sortie Z par rapport à un changement sur l'entrée Y pour la porte logique B;

Alors

$$T_p(Z|X) = T_p(Z|Y) + T_p(Y|X)$$

Avec la même conséquence pour la fourchette des temps de propagation :

$$T_p min(Z|X) = T_p min(Y|X) + T_p min(Z|Y)$$

 $T_p max(Z|X) = T_p max(Y|X) + T_p max(Z|Y)$

Temps de calcul — temps de propagation

(b) Chronogramme avec inversion de l'entrée.

Temps de calcul — temps de propagation

Circuit à 2 portes $S = A.\overline{B}$.

Porte	T_{pmin}	T_{pmax}
Not	3	5
And	4	8

(d) Temps de propagation (en ns).

Figure - Multiplexeur 2 vers 1.

Temps t	V_1	V_2	$S = V_1 + V_2$
$<\overline{T_{and}}$	1	0	1
$T_{ extsf{and}} \leq \cdots \leq T_{ extsf{and}} + T_{ extsf{not}}$	0	0	0
$>T_{and}+T_{not}$	0	1	1

Table – Table des états selon le temps depuis le changement de K.

Table – Table de Karnaugh du multiplexeur avec aléa.

Table – Table de Karnaugh du multiplexeur sans aléa.