Explication requêtes 20

Rappel: DIVISION

Agir

NomMol

libellePat

- **Définition :** La division d'une table T1 par une table T2 est une table T3 composées d'enregistrements, tel que le produit cartésien de T2 et T3 est un sous ensemble dans la table T1.
- © Condition: L'ensemble d'attributs de T2 doit être inclus dans l'ensemble d'attributs de T1
- T3 a pour schéma les attributs de T1 qui ne sont pas dans T2
- © L'op. de l'algèbre relationnelle : DIVISION, noté %, est utilisé pour répondre aux requêtes de type « tous les ».
- Exemples de requêtes : Quels sont les articles achetés par <u>tous</u> les clients ? Quels sont les étudiants qui ont réussi **toutes** les matières ?

libellePat

descPat

Requête 20 : Quels sont les molécules actives qui agissent dans toutes les pathologies ?

Pathologie

	Mol2		Pat2				Pat1		descPat1	
	Mol2		Pat3				Pat2		descPat2	
	Mol1		Pat3				Pat3		descPat3	
	Mol2		Pat1							
	Mol1		Pat1							
Agir	→	Non Mol Mol Mol Mol	2 1 2	Pat Pat Pat Pat Pat	3 3 1	libe Pat: Pat:	2		π _{libelléPat}	(Pathologi®)
						No	mMol		Résultat	t

Ainsi l'écriture algébrique de la requête n°20 est la suivante : $(Agir)\% \pi_{libell\'ePat}(Pathologie)$

Mol2

Notons que la plupart des SGBD n'offrent pas une opération pour exprimer la division. Alors comment exprimer cette requête en SQL ?

- ⇒ Il s'agit de ne pas sélectionner les molécules ayant des pathologies manquantes
- ⇒ Il faut alors extraire les pathologies manquantes pour chaque molécule

On sélectionne nomMol de agir **a1** tel <u>qu'il n'existe aucune</u> pathologie p qui est manquante pour a1.nomMol Sélectionner a1.nomMol tel qu'il n'existe aucune pathologie p <u>qui n'est pas</u> dans la même ligne que a1.nomMol dans agir a2.

a1.nomMol	a1.libellePat	a2.nomMol	a2.libellePat
Mol2	Pat2	Mol2	Pat2
Mol2	Pat3	Mol2	Pat2
Mol1	Pat3	Mol2	Pat2
Mol2	Pat1	Mol2	Pat2
Mol1	Pat1	Mol2	Pat2
Mol2	Pat2	Mol2	Pat3
Mol2	Pat3	Mol2	Pat3
Mol1	Pat3	Mol2	Pat3
Mol2	Pat1	Mol2	Pat3
Mol1	Pat1	Mol2	Pat3
Mol2	Pat2	Mol1	Pat3
Mol2	Pat3	Mol1	Pat3
Mol1	Pat3	Mol1	Pat3
Mol2	Pat1	Mol1	Pat3
Mol1	Pat1	Mol1	Pat3
Mol2	Pat2	Mol2	Pat1
Mol2	Pat3	Mol2	Pat1
Mol1	Pat3	Mol2	Pat1
Mol2	Pat1	Mol2	Pat1
Mol1	Pat1	Mol2	Pat1
Mol2	Pat2	Mol1	Pat1
Mol2	Pat3	Mol1	Pat1
Mol1	Pat3	Mol1	Pat1
Mol2	Pat1	Mol1	Pat1
Mol1	Pat1	Mol1	Pat1

- Ce tableau représente le résultat du produit cartésien agir a1 x agir a2
- Les lignes qui sont barrées n'obéissent pas à la condition :
 - a1.nomMol=a2.nomMol

Pour plus de détails consulter : https://www.youtube.com/watch?v=EWQfSRzNmtl