- Due: Apr. 16, 2013, 5PM
- 1. Consider a T.L. with characteristic impedance $Z_o = 100 \Omega$, length l = 600 m, and propagation velocity $v = \frac{1}{\sqrt{\mathcal{LC}}} = c = 3 \times 10^8$ m/s. A voltage source f(t) with an internal resistance $R_g = Z_o$ is connected to one end of the T.L. (at z = 0) and the other end (z = l) is terminated by a load resistance $R_L = Z_o/2$.
 - a) Construct two "bounce diagrams" to determine the voltage, V(z,t), and current, I(z,t), variations on the line for 0 < z < l and t > 0 for $f(t) = \delta(t)$.
 - b) Write the expressions for $V(\frac{l}{4},t)$ and $I(\frac{l}{4},t)$ as weighted sums of appropriately delayed impulses $\delta(t)$.
 - c) Plot $V(\frac{l}{4},t)$ as a function of t for $0 < t < 13 \,\mu\mathrm{s}$ for f(t) = 10 u(t) V. **Hint:** use the convolution of the result of part (b) with 30 u(t).
 - d) Determine the steady state voltage and current on the line for the excitation from part (c).
- 2. A generator with internal resistance $R_g = 50\,\Omega$ and an open circuit output voltage $f(t) = 90\delta(t)$ feeds a T.L. that has an unknown characteristic impedance Z_o and an unknown resistive load termination R_L at an unknown distance, L, from the generator. At a distance $z_0 = 300$ m from the generator, smaller than L, the voltage waveform as a function of time for $0 < t < 9\,\mu s$ is found to be $V(z_0, t) = 60\delta(t-2) 20\delta(t-4) + \frac{20}{3}\delta(t-8)$ V, which is plotted below.

- a) Determine the injection coefficient τ_g and the impedance of the transmission line, Z_o .
- b) Determine the load reflection coefficient Γ_L and the load resistance, R_L .
- c) Determine the transmission time, $T=L/v_p$, of the impulse propagating on the transmission line.
- d) Determine the speed of wave propagation on the line, v_p , in m/s and the length of the transmission line, L in meters.
- e) Determine the next two voltage impulses (magnitudes and time delays) that will be measured at z_0 on the line for $t > 9 \mu s$.
- f) Sketch a bounce diagram for the current waveform I(z,t) not the voltage waveform as we have often done for $0 < t < 12 \,\mu s$. Be sure to mark the numerical values for the amplitude of the current in the diagram.
- g) What is the algebraic expression for the current waveform as a function of (z,t) for the domain 0 < z < L and $0 < t < 12 \,\mu\text{s}$?

3. A system of two transmission lines connected in series are driven by a voltage source $f_i(t) = V_0 u(t)$ and terminated by a resistive load of 60Ω as shown in the figure below. A switch is closed at t = 0 and the positive voltages are measured for $5 \mu s$ giving the bounce diagram shown in the figure — the voltage values indicated in the diagram correspond to delta function weights times the source voltage V_o , products such as $V_o \tau_g$, $V_o \tau_g (1 + \Gamma_{12})$, etc.

The impedance and transmission time of line 1 are Z_1 and T_1 and those of line 2 are Z_2 and T_2 . Using the figures, identify the following parameters in appropriate units:

- a) Transmission times T_1 and T_2
- b) Propagation velocity v_{p1} on line 1, and propagation velocity v_{p2} on line 2
- c) Impedance Z_2
- d) Reflection coefficient Γ_{12} between lines 1 and 2
- e) Impedance Z_1
- f) Source resistance R_q
- g) Source voltage V_o
- h) Reflected voltage V^{-+-} on line 1 (see the diagram for this notation)
- i) Steady state voltage V_1 on line 1 as $t \to \infty$
- j) Steady state voltage V_2 on line 2 as $t \to \infty$
- 4. Two T.L.'s with characteristic impedances Z_1 and Z_2 are joined at a junction that also includes a series resistance R as shown in the diagram below.

a) Write the pertinent KVL and KCL equations at the junction that relate $V^+(t-\frac{z}{v_{p1}})$, $V^-(t+\frac{z}{v_{p1}})$ and $V^{++}(t-\frac{z}{v_{p2}})$.

2

- b) Solve the KVL and KCL equations above to obtain the reflection and transmission coefficients $\Gamma_{12} \equiv \frac{V^-}{V^+}$ and $\tau_{12} = \frac{V^{++}}{V^+}$ for the junction.
- c) Calculate $\Gamma_{12} \equiv \frac{V^{-}}{V^{+}}$ and $\tau_{12} = \frac{V^{++}}{V^{+}}$ for $Z_{1} = 50 \,\Omega$, $Z_{2} = 25 \,\Omega$, and $R = 100 \,\Omega$.
- 5. A defect in one of the wires of a transmission line manifests itself as an effective series resistance at a distance d from the input. The transmission line is lossless, of length 4 m, and propagation speed $v = 2 \times 10^8$ m/s. The load impedance is 50 Ω . When the line is driven by a unit step voltage source with internal (Thevenin) source impedance of 50 Ω , the voltage response at the input of the line, V(0,t), is depicted in the figure below (where time is denoted in ns):

- a) Calculate the characteristic impedance of the transmission line;
- b) Calculate the distance d from the source where the defect occurs;
- c) Calculate the defect resistance;
- d) Plot the voltage response at the load.