Aufgabe: RSA und das Entschlüsseln

... Message-Text (der sog. Klartext: $A \rightarrow 1$, $B \rightarrow 2$, $C \rightarrow 3$, ...) m

... der RSA-Modul n

... Cipher-Text (der verschlüsselte Text)

(e,N) ... der Public-Key (wird zum Verschlüsseln verwendet) (d,N) ... der Private-Key (wird zum Entschlüsseln verwendet)

phi(N) ... Eulersche phi-Funktion (wird zum Berechnen von e und d verwendet)

1.1. Entschlüssle "8 1 4 7 2 5 6"

☑ Gegeben: a) Cipher-Text: c= "8 1 4 7 2 5 6" b) public Key(e,n): (3,10)

Arbeitsunterlage

☑ Gesucht: Message: m="?????" (im Klartext; also in Form v. Buchstaben)

Lösung:

☑ Entschlüsseln mi	(Formel angeben): m=	
--------------------	----------------------	--

☑ Berechne: d, wenn N=10 und e=3 bekannt sind:

 \square es gilt: e*d \equiv ______

 \square es gilt: phi(n) = ___

 \square Berechne nun d durch Einsetzen von d=1,2,3,4,... in die Formel zur Berechnung des

multiplikativ Inversen zu e. Die Formel lautet: 3*d_____

d	3*d mod	Ergebnis
1	3*1 mod	
2		
3		

☑ Entschlüssle nun den Text: m= cd mod N

С	8	1	4	7	2	5	6
berechne: cd							
m= c ^d mod N							
Buchstabenfolge							

☑ Probe: Verschlüsseln: c= me mod N

m				
berechne: me				
c= m ^e mod N				

Informatik 1/2

1.2. Euklidischer Algorithmus zur Berechnung von d

 \square Es gilt: ggT(a,b)=ggT(b,a) und ggT(a,1)= 1 und ggT(a,b)= ggT(b,a%b)

ggT	Division	Modulo	Linearkombination	Rest explizit schreiben
ggT(,)	/_ =	% =	= * +	=*
				rückwärts einsetzen

1.3. Weitere Fragen

□ n,p,q sind Zahlen, die geheim,öffentlich,prim oder nicht prim sein können? Was gilt?

n:	O prim,	O nicht prim,	O geheim,	O öffentlich
p:	O prim,	O nicht prim,	O geheim,	O öffentlich
q:	O prim,	O nicht prim,	O geheim,	O öffentlich

□ Wie können	p und q	geheim	sein,	wenn	doch	n=	p*q	öffentlich	bekannt	ist?
Antwort:										

□ Für die Zahl **e** , den öffentlichen Schlüssel, muss gelten ggT(e, phi(n))= _____

Hierbei ist phi(n), die _____

☐ Gib eine math. Erklärung für

$$phi(n) = (p-1)(q-1)$$

☐ Wie wählt man e? Was muss für e gelten?

e wird gewählt unter folg. Bedingungen: _____

Informatik 2/2