Работа 4.2.3

Рис. 1. Устройство интерферометра Релея: а) вид сверху; б) вид сбоку

(подвижная) образована лучами, прошедшими через кювету, нижняя (неподвижная) — лучами, прошедшими под кюветой. Обе системы интерференционных полос разграничены при помощи пластины П тонкой разделительной линией. Для наблюдения двух систем полос в окуляре применена цилиндрическая линза диаметром 2,2 мм, ось которой расположена вертикально. Вторая («глазная») линза окуляра — обычная сферическая. Она служит для подстройки чёткости картины под глаз наблюдателя.

При малых дифракционных углах $\varphi = \lambda/d$ расстояние между соседними светлыми (или тёмными) полосами δy зависит от длины волны λ , фокусного расстояния f объектива O_2 и расстояния между дифракционными щелями d:

$$\delta y = f \frac{\lambda}{d}.\tag{1}$$

В техническом интерферометре ИТР-1, который используется в нашей работе, $f\simeq 20$ см, $d\simeq 1.5$ см, и δy оказывается порядка 10^{-3} см. Для наблюдения таких мелких интерференционных полос требуется окуляр с большим увеличением ($\gamma\simeq 150^\times$). Короткофокусная цилиндрическая линза окуляра О сильно растягивает интерференционную картину по горизонтали, не меняя её вертикальных размеров и тем самым мало ослабляя освещённость полос. Изображение светящейся точки в фокальной плоскости объектива O_2 при рассматривании через цилиндрическую линзу имеет вид светлой вертикальной линии, длина которой определяется диаметром объектива. Поэтому распределение освещённости в нижней части светлой линии зависит от действия нижней ча-