Tarea Normalización

Parte 1. Justificar por qué los siguientes resultados son equivalentes

staffNo	name	position	salary	branchNo	branchAddress	telNo
S1500	Tom Daniels	Manager	46000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0003	Sally Adams	Assistant	30000	B001	8 Jefferson Way, Portland, OR 97201	503-555-3618
S0010	Mary Martinez	Manager	50000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S3250	Robert Chin	Supervisor	32000	B002	City Center Plaza, Seattle, WA 98122	206-555-6756
S2250	Sally Stern	Manager	48000	B004	16 – 14th Avenue, Seattle, WA 98128	206-555-3131
S0415	Art Peters	Manager	41000	B003	14 - 8th Avenue, New York, NY 10012	212-371-3000
A	В	C	D	E	F	G

Caso 1

PK: {A}

 $A \to \{B, C, D, E\}$

 $E \to \{F, G\}$

1FN sí se cumple porque no hay atributos multivaluados ni grupos de repetición.

2FN sí se cumple porque la llave primaria es simple.

3FN no se cumple porque hay transitividad entre atributos no principales

Caso 2

PK: {A, E}

 ${A, E} \rightarrow {B, C, D, F, G}$

 $A \rightarrow \{B, C, D\}$

 $E \to \{F, G\}$

1FN sí se cumple porque no hay atributos multivaluados ni grupos de repetición.

2FN no se cumple porque la PK no es simple. Hay que analizar si hay dependencias funcionales parciales:

$${A, E} \rightarrow {B, C, D, F, G}$$

 $A \rightarrow {B, C, D}$
 $E \rightarrow {F, G}$

Resultado 2 A -> {B, C, D} E -> {F, G} {A, E} -> {} Si nos remitimos a la Trasformación de Relaciones a Modelo Relacional, recordaremos las siguientes reglas:

- 1. Para relaciones m:m se crea una nueva relación que tendrá como PK las PKs de las entidades que une (que a su vez son FKs) más los atributos (si los hubiera) de la relación.
- 2. Para relaciones 1:m o m:1 la clave primaria de la relación con cardinalidad 1 se propaga como llave foránea a la relación con cardinalidad m.

Considerando esto, si observamos el Resultado 2:

$$A \rightarrow \{B, C, D\}$$

 $E \rightarrow \{F, G\}$
 $\{A, E\} \rightarrow \{\}$

Podemos ver que se cumple la primera regla de transformación de relaciones, ya que se creó una nueva relación {A, E}, donde la PK es el conjunto de las PKs de las entidades que une: {staffNo, branchNo}. Por lo que ese caso corresponde a cuando se tiene una relación m:m, ya que un empleado puede trabajar en muchas empresas y en una empresa pueden trabajar muchos empleados.

Con este caso podemos hacer cruces entre las tablas Empleado y Sucursal para cuando nos queremos enfocar tanto en los empleados que puede tener una sucursal y como en todas las sucursales en las que puede trabajar un empleado.

Y si ahora observamos el Resultado 1:

$$A \rightarrow \{B, C, D, E\}$$

 $E \rightarrow \{F, G\}$

Podemos ver que se cumple la segunda regla de transformación de relaciones, ya que tenemos la llave primaria E propagada como llave foránea en la relación A, por lo que este caso corresponde a cuando se tiene una relación 1:m, donde A (*staffNo*) es la relación con cardinalidad m y E (*branchNo*) es la relación con cardinalidad 1: Un empleado puede trabajar en solo una empresa y en una empresa pueden trabajar muchos empleados.

Este caso satisface el escenario en el que simplemente queremos conocer los empleados que tiene una sucursal.

Dicho todo esto, los resultados son equivalentes porque ambos nos dan información sobre empleados y sucursales, solo que una solución se adapta más al caso en el que solo queremos conocer los empleados que trabajan en una sucursal, mientras que la otra solución se adapta más al escenario en el que queremos conocer las sucursales en las que trabaja un empleado y los empleados que trabajan en una sucursal.

Parte 2. Normalizar hasta 3FN el siguiente ejercicio para los casos:

Caso 1 -> PK: {A} Caso 2 -> PK: {A, F}

Ordenes

Oruciics								
Id_orden	Fecha	Id_cliente	Nom_cliente	Estado	Num art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00
A	В	C	D	Е	F	G	Н	I

Caso 1 -> PK: {A}

Observamos que la llave primaria aparece en múltiples registros, por lo que redefinimos la tabla:

A Id_orden	B Fecha	C Id_cliente	D Nom_cliente	E Estado	F Num_art	G nom_art	H cant	I Precio
2301	23/02/11	101	Martin	Caracas	3786, 4011, 9132	Red, Raqueta, Paq-3	3, 6, 8	35.00, 65.00, 4.75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5.00
2303	27/02/11	110	Pedro	Maracay	4011, 3141	Raqueta, Funda	2, 2	65.00, 10.00

1FN.

La relación sí tiene atributos multivalor, por lo que no cumple 1FN.

Normalizando tenemos:

Clientes

A	В	С	D	Е
Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

A	F	G	Н	I
Id_orden (FK)(PK)	Num_art (PK)	Nom_art	cant	Precio
2301	3786	Red	3	35.00
2301	4011	Raqueta	6	65.00
2301	9132	Paq-3	8	4.75
2302	5794	Paq-6	4	5.00
2303	4011	Raqueta	2	65.00
2303	3141	Funda	2	10.00

Ahora ya no tenemos atributos multivalor y seguimos sin tener grupos de repetición, por lo tanto, ya cumple 1FN

2FN

La tabla Ordenes tiene llave primaria compuesta PK: {Id_orden, Num_art}, por lo tanto no cumple la 2FN.

¿Hay dependencias funcionales? $\{A, F\} \rightarrow \{G, H, I\}$ $A \rightarrow \{\}$ $F \rightarrow \{G, I\}$ $\{A, F\} \rightarrow \{H\}$

Diagrama de dependencias

Normalizando tenemos:

Clientes

A	В	С	D	Е
Id_orden	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

F	G	I
Num_art (PK)	Nom_art	Precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
4011	Raqueta	65.00
3141	Funda	10.00

Ordenes2

A	F	Н
Id_orden (FK)(PK)	Num_art (PK)	Cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

De esta manera ya cumple con la 2FN

3FN Identificamos si hay dependencias transitivas en cada tabla:

Clientes

A	В	С	D	Е
Id_orden (PK)	Fecha	Id_cliente	Nom_cliente	Estado
2301	23/02/11	101	Martin	Caracas
2302	25/02/11	107	Herman	Coro
2303	27/02/11	110	Pedro	Maracay

$$\begin{array}{c} A \rightarrow \{B,C,D,E\} \\ C \rightarrow \{D,E\} \end{array} \quad \text{Existen dependencias transitivas}$$

F	G	I
Num_art (PK)	Nom_art	Precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
4011	Raqueta	65.00
3141	Funda	10.00

 $F \rightarrow \{G, I\}$, no hay dependencias transitivas

Ordenes2

A	F	Н
Id_orden (FK)(PK)	Num_art (PK)	Cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

 $\{A, F\} \rightarrow \{H\}$, no hay dependencias transitivas

Por lo tanto, al normalizar tenemos:

Clientes1

A	В	С
Id_orden (PK)	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

Clientes2

С	D	Е
Id_cliente	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

Ordenes1

F	G	I
Num_art (PK)	Nom_art	Precio
3786	Red	35.00
4011	Raqueta	65.00
9132	Paq-3	4.75
5794	Paq-6	5.00
4011	Raqueta	65.00
3141	Funda	10.00

Ordenes2

A	F	Н
Id_orden (FK)(PK)	Num_art (PK)	Cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

Ya cumple con la 3FN

Caso 2 -> PK: {A, F}

Ordenes Id_orden Fecha Id_cliente Nom_cliente Estado Num_art nom_

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado	Num_art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00
	ъ		ъ	-	-			

A B C D E F G H I

1FN

La relación no presenta grupos de repetición y cada una de sus columnas contiene valores atómicos, por lo tanto, sí cumple con 1FN

2FN

La tabla tiene PK compuesta {A, F}, por lo tanto, no cumple con 2FN

Validamos las dependencias:

 $\{A,F\} \mathrel{->} \{\underline{B},C,D,E,G,H,I\}$

 $\begin{array}{c} A \rightarrow \{B,C\} \\ F \rightarrow \{G,I\} \end{array} \quad \text{Existen dependencias funcionales parciales}$

 $C \to \{D, E\}$

 ${A, F} \rightarrow {H}$

Por lo tanto, normalizando tenemos:

Ordenes1

A	F	Н
Id_orden (PK)	Num_art (PK)	cant
2301	3786	3
2301	4011	6
2301	9132	8
2302	5794	4
2303	4011	2
2303	3141	2

Ordenes2

A	В	С
Id_orden (PK)	Fecha	Id_cliente
2301	23/02/11	101
2302	25/02/11	107
2303	27/02/11	110

F	G	I
Num_art (PK)	nom_art	Precio
3786	Red	35,00
4011	Raqueta	65,00
9132	Paq-3	4,75
5794	Paq-6	5,00
4011	Raqueta	65,00
3141	Funda	10,00

Ordenes4

С	D	Е
Id_cliente(PK)	Nom_cliente	Estado
101	Martin	Caracas
107	Herman	Coro
110	Pedro	Maracay

3FN

Observamos que entre las relaciones no hay ninguna dependencia transitiva:

$$A \rightarrow \{B, C\} \\ F \rightarrow \{G, I\} \\ C \rightarrow \{D, E\} \\ \{A, F\} \rightarrow \{H\}$$

Por lo tanto, si cumple con la 3FN