

October 1987 Revised April 2002

CD4049UBC • CD4050BC Hex Inverting Buffer • Hex Non-Inverting Buffer

General Description

The CD4049UBC and CD4050BC hex buffers are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. These devices feature logic level conversion using only one supply voltage (V $_{DD}$). The input signal high level (V $_{IH}$) can exceed the V $_{DD}$ supply voltage when these devices are used for logic level conversions. These devices are intended for use as hex buffers, CMOS to DTL/TTL converters, or as CMOS current drivers, and at V $_{DD}$ = 5.0V, they can drive directly two DTL/TTL loads over the full operating temperature range.

Features

- Wide supply voltage range: 3.0V to 15V
- Direct drive to 2 TTL loads at 5.0V over full temperature range
- High source and sink current capability
- \blacksquare Special input protection permits input voltages greater than V_{DD}

Applications

- · CMOS hex inverter/buffer
- · CMOS to DTL/TTL hex converter
- · CMOS current "sink" or "source" driver
- · CMOS HIGH-to-LOW logic level converter

Ordering Code:

Order Number	Package Number	Package Description
CD4049UBCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4049UBCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4050BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4050BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for DIP

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V_{DD}) -0.5V to +18V Input Voltage (V_{IN}) -0.5V to +18V Voltage at Any Output Pin (V_{OUT}) -0.5V to $V_{DD} + 0.5V$

Storage Temperature Range (T_S) -65°C to $+150^{\circ}\text{C}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{DD}) 3V to 15V 0V to 15V Input Voltage (V_{IN}) Voltage at Any Output Pin (V_{OUT}) 0 to V_{DD}

Operating Temperature Range (T_A)

CD4049UBC, CD4050BC -55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	-5	5°C		+25°C	+25°C +125°C		Units			
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units		
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		1.0		0.01	1.0		30			
		$V_{DD} = 10V$		2.0		0.01	2.0		60	μΑ		
		$V_{DD} = 15V$		4.0		0.03	4.0		120			
V _{OL}	LOW Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V,$										
		$ I_O < 1 \mu A$										
		$V_{DD} = 5V$		0.05		0	0.05		0.05			
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V		
		$V_{DD} = 15V$		0.05		0	0.05		0.05			
V _{OH}	HIGH Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V,$										
		$ I_O < 1 \mu A$										
		$V_{DD} = 5V$	4.95		4.95	5		4.95				
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V		
		$V_{DD} = 15V$	14.95		14.95	15		14.95				
V _{IL}	LOW Level Input Voltage	I _O < 1 μA										
	(CD4050BC Only)	$V_{DD} = 5V, \ V_{O} = 0.5V$		1.5		2.25	1.5		1.5			
		$V_{DD} = 10V, V_{O} = 1V$		3.0		4.5	3.0		3.0	V		
		$V_{DD} = 15V, V_{O} = 1.5V$		4.0		6.75	4.0		4.0			
1.2	LOW Level Input Voltage	$ I_O < 1 \mu A$										
	(CD4049UBC Only)	$V_{DD} = 5V, V_{O} = 4.5V$		1.0		1.5	1.0		1.0			
		$V_{DD} = 10V, V_{O} = 9V$		2.0		2.5	2.0		2.0	V		
		$V_{DD} = 15V, V_{O} = 13.5V$		3.0		3.5	3.0		3.0			
V _{IH}	HIGH Level Input Voltage	$ I_O < 1 \mu A$										
	(CD4050BC Only)	$V_{DD} = 5V, V_{O} = 4.5V$	3.5		3.5	2.75		3.5				
		$V_{DD} = 10V, V_{O} = 9V$	7.0		7.0	5.5		7.0		V		
		$V_{DD} = 15V, V_{O} = 13.5V$	11.0		11.0	8.25		11.0				
V _{IH}	HIGH Level Input Voltage	I _O < 1 μA										
	(CD4049UBC Only)	$V_{DD} = 5V, \ V_{O} = 0.5V$	4.0		4.0	3.5		4.0				
		$V_{DD} = 10V, V_{O} = 1V$	8.0		8.0	7.5		8.0		V		
		$V_{DD} = 15V, V_{O} = 1.5V$	12.0		12.0	11.5		12.0		05 V 05 V 05 V 07 V 08 MA		
l _{OL}	LOW Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$										
	(Note 4)	$V_{DD} = 5V, V_{O} = 0.4V$	5.6		4.6	5		3.2				
		$V_{DD} = 10V, V_{O} = 0.5V$	12		9.8	12		6.8		mA		
		$V_{DD} = 15V, V_{O} = 1.5V$	35		29	40		20				
ОН	HIGH Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$										
	(Note 4)	$V_{DD} = 5V, V_{O} = 4.6V$	-1.3		-1.1	-1.6		-0.72				
		$V_{DD} = 10V, V_{O} = 9.5V$	-2.6		-2.2	-3.6		-1.5		mA		
		$V_{DD} = 15V, V_{O} = 13.5V$	-8.0		-7.2	-12		-5				
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	4		
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0	μΑ		

DC Electrical Characteristics (Continued)

Note 4: These are peak output current capabilities. Continuous output current is rated at 12 mA maximum. The output current should not be allowed to exceed this value for extended periods of time. I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 5)

 $T_A = 25$ °C, $C_L = 50$ pF, $R_L = 200$ k, $t_r = t_f = 20$ ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		30	65	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		45	85	
	LOW-to-HIGH Level	$V_{DD} = 10V$		25	45	ns
		$V_{DD} = 15V$		20	35	
t _{THL}	Transition Time	$V_{DD} = 5V$		30	60	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
t _{TLH}	Transition Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		$V_{DD} = 15V$		25	45	
C _{IN}	Input Capacitance	Any Input		15	22.5	pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

AC Electrical Characteristics (Note 6)

CD4050BC $T_A=25^{\circ}C,\ C_L=50\ pF,\ R_L=200k,\ t_f=t_f=20\ ns,\ unless\ otherwise\ specified$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		60	110	
	HIGH-to-LOW Level	$V_{DD} = 10V$		25	55	ns
		$V_{DD} = 15V$		20	30	
t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		V _{DD} = 15V		25	45	
t _{THL}	Transition Time	$V_{DD} = 5V$		30	60	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
t _{TLH}	Transition Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		$V_{DD} = 15V$		25	45	
C _{IN}	Input Capacitance	Any Input		5	7.5	pF

Note 6: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

Typical Applications

CMOS to TLL or CMOS at a Lower $\ensuremath{\text{V}_{\text{DD}}}$

 $V_{DD1} \ge V_{DD2}$

In the case of the CD4049UBC the output drive capability increases with increasing input voltage. E.g., If $V_{\rm DD1}$ = 10V the CD4049UBC could drive 4 TTL loads.

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 **HEX INVERTERS**

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

Dependable Texas Instruments Quality and Reliability

description/ordering information

These devices contain six independent inverters.

SN5404 . . . J PACKAGE SN54LS04, SN54S04 . . . J OR W PACKAGE SN7404, SN74S04 . . . D, N, OR NS PACKAGE SN74LS04...D, DB, N, OR NS PACKAGE (TOP VIEW)

SN5404 . . . W PACKAGE (TOP VIEW)

SN54LS04, SN54S04 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PAC	KAGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN7404N	SN7404N
	PDIP – N	Tube	SN74LS04N	SN74LS04N
		Tube	SN74S04N	SN74S04N
		Tube	SN7404D	7404
		Tape and reel	SN7404DR	7404
	0010 5	Tube	SN74LS04D	1004
0°C to 70°C	SOIC - D	Tape and reel	SN74LS04DR	LS04
		Tube	SN74S04D	004
		Tape and reel	SN74S04DR	S04
	SOP - NS	Tape and reel	SN7404NSR	SN7404
		Tape and reel	SN74LS04NSR	74LS04
		Tape and reel	SN74S04NSR	74S04
	SSOP – DB	Tape and reel	SN74LS04DBR	LS04
		Tube	SN5404J	SN5404J
		Tube	SNJ5404J	SNJ5404J
	CDIP – J	Tube	SN54LS04J	SN54LS04J
	CDIP – J	Tube	SN54S04J	SN54S04J
		Tube	SNJ54LS04J	SNJ54LS04J
-55°C to 125°C		Tube	SNJ54S04J	SNJ54S04J
		Tube	SNJ5404W	SNJ5404W
	CFP – W	Tube	SNJ54LS04W	SNJ54LS04W
		Tube	SNJ54S04W	SNJ54S04W
	1.000 F1/	Tube	SNJ54LS04FK	SNJ54LS04FK
	LCCC – FK	Tube	SNJ54S04FK	SNJ54S04FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each inverter)

`	,
INPUT	OUTPUT
Α	Υ
Н	L
L	н

logic diagram (positive logic)

schematics (each gate)

Resistor values shown are nominal.

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		
Input voltage, V _I : '04, 'S04		
'LS04		
Package thermal impedance, θ _{JA} (see Note 2	2): D package	86°C/W
	DB package	96°C/W
	N package	80°C/W
	NS package	
Storage temperature range, T _{stg}		

recommended operating conditions (see Note 3)

			SN5404		,	SN7404		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
ІОН	High-level output current			-0.4			-0.4	mA
lOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		TEGT CONDITIO			SN5404		SN7404			ш
PARAMETER		TEST CONDITION	JNS+	MIN	TYP§	MAX	MIN	TYP§	MAX	UNIT
VIK	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$				-1.5			-1.5	V
Voн	$V_{CC} = MIN,$	$V_{IL} = 0.8 V$,	$I_{OH} = -0.4 \text{ mA}$	2.4	3.4		2.4	3.4		V
VOL	$V_{CC} = MIN,$	$V_{IH} = 2 V$,	$I_{OL} = 16 \text{ mA}$		0.2	0.4		0.2	0.4	V
lį	$V_{CC} = MAX$,	V _I = 5.5 V				1			1	mA
lΗ	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μΑ
I _Ι Γ	$V_{CC} = MAX$,	V _I = 0.4 V				-1.6			-1.6	mA
los¶	VCC = MAX			-20		-55	-18		-55	mA
Іссн	$V_{CC} = MAX$,	V _I = 0 V			6	12		6	12	mA
ICCL	$V_{CC} = MAX$,	V _I = 4.5 V			18	33		18	33	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

[§] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[¶] Not more than one output should be shorted at a time.

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	CONDITIONS		SN5404 SN7404		UNIT
		(INFOT)	(001701)			MIN	TYP	MAX	
I	^t PLH	۸	V	P 400 O	C 15 pE		12	22	20
	^t PHL	A	ſ	$R_L = 400 \Omega$,	C _L = 15 pF		8	15	ns

recommended operating conditions (see Note 3)

		s	N54LS04	4	S	SN74LS04		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ІОН	High-level output current			-0.4			-0.4	mA
lOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEGT 0011DIT	- vict	S	N54LS0	4	S	N74LS0	4	
PARAMETER		TEST CONDITION	UNST	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	V _{CC} = MIN,	$I_{I} = -18 \text{ mA}$				-1.5			-1.5	V
Voн	$V_{CC} = MIN,$	$V_{IL} = MAX$,	$I_{OH} = -0.4 \text{ mA}$	2.5	3.4		2.7	3.4		V
	Vaa – MIN	V 2 V	$I_{OL} = 4 \text{ mA}$		0.25	0.4			0.4	V mA
V_{OL}	$V_{CC} = MIN,$	$V_{IH} = 2 V$	I _{OL} = 8 mA					0.25	0.5	
ΙĮ	$V_{CC} = MAX$,	V _I = 7 V				0.1			0.1	mA
lН	$V_{CC} = MAX$,	V _I = 2.7 V				20			20	μΑ
I _{IL}	$V_{CC} = MAX$,	V _I = 0.4 V				-0.4			-0.4	mA
I _{OS} §	VCC = MAX		_	-20		-100	-20		-100	mA
ІССН	V _{CC} = MAX,	V _I = 0 V			1.2	2.4		1.2	2.4	mA
ICCL	$V_{CC} = MAX,$	V _I = 4.5 V	_		3.6	6.6		3.6	6.6	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	SN54LS04 SN74LS04			UNIT	
	(1141 01)			MIN	TYP	MAX	1	
t _{PLH}	^	Y	D. Olio	C: 45 pF		9	15	
^t PHL	A		$R_L = 2 k\Omega$, $C_L = 15 pF$			10	15	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

recommended operating conditions (see Note 3)

		SN54S04			SN74S04			LINUT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-1			-1	mA
lOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			SN54S04			SN74S04			
			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$				-1.2			-1.2	V
Voн	$V_{CC} = MIN,$	$V_{IL} = 0.8 V$,	$I_{OH} = -1 \text{ mA}$	2.5	3.4		2.7	3.4		V
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V,	$I_{OL} = 20 \text{ mA}$			0.5			0.5	V
ΙĮ	$V_{CC} = MAX$,	V _I = 5.5 V				1			1	mA
lН	$V_{CC} = MAX$,	V _I = 2.7 V				50			50	μΑ
Ι _Ι L	$V_{CC} = MAX$,	V _I = 0.5 V				-2			-2	mA
los§	$V_{CC} = MAX$			-40		-100	-40		-100	mA
Іссн	$V_{CC} = MAX$,	V _I = 0 V			15	24		15	24	mA
ICCL	$V_{CC} = MAX$,	V _I = 4.5 V	-		30	54		30	54	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	SN54S04 SN74S04			UNIT	
	(INFOT) (OUTFOT)			MIN	TYP	MAX	,	
^t PLH	۸	V	P 290 O	C _I = 15 pF		3	4.5	ns
tPHL	A	'	$R_L = 280 \Omega$,	OL = 13 pr		3	5	115
tPLH .	۸	V	$R_1 = 280 \Omega$	C _I = 50 pF		4.5		ns
^t PHL	А	r	KL = 200 52,	OL = 30 pr		5		

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 AND 54S/74S DEVICES

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{\Omega} \approx 50 \Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

