Metodi Matematici per l'Informatica (secondo canale) — 11 Gennaio 2024 Soluzioni di Andrea Princic. Cartella delle soluzioni.

```
Es 1. Sia A = \{2, \{2, 7, 5\}, 4, (1, 2, 3), 3\}. Allora:
```

$$\square_V \boxtimes_F \mathbf{A}. \ 5 \in A$$

 $\boxtimes_V \square_F \mathbf{B}. \ \{2, 5, 7\} \in A$

$$\square_V \square_F \mathbf{C}. \{2,3\} \subseteq A$$

$$x = 2, y = 2, z = \{2, 7, 5\}$$

- **Es 2.** Siano R e S due relazioni di equivalenza sullo stesso insieme A. Allora $R \cup S$, $R \cap S$ e R S sono relazioni di equivalenza su A?
 - 1. $R \cup S$ potrebbe non essere una relazione di equivalenza perché potrebbe non essere transitiva. Ad esempio:

$$A = \{1, 2, 3\}$$

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$$

$$S = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$$

$$R \cup S = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}$$

 $R \cup S$ non è transitiva perché manca (3,1), che ci viene richiesto da (3,2) e (2,1)

- 2. $R \cap S$ è una relazione di equivalenza:
 - è riflessiva perché R e S lo sono
 - per ogni $(x,y) \in R \cap S$, per simmetria, $(y,x) \in R$ e $(y,x) \in S$, quindi $(y,x) \in R \cap S$
 - per ogni $(x,y), (y,z) \in R \cap S$, per transitività, $(x,z) \in R$ e $(x,z) \in S$, quindi $(x,z) \in R \cap S$
- 3. R-S non è riflessiva
- Es 3. Vero o Falso?
 - $\square_V \square_F$ A. Se esiste una funzione $f: X \to Y$ suriettiva, allora esiste una funzione $g: Y \to X$ iniettiva
 - $\square_V \square_F$ B. Se esiste una funzione $f: X \to Y$ iniettiva, allora esiste una funzione $g: Y \to X$ suriettiva
 - $\square_V \boxtimes_F \mathbf{C}$. Per ogni $f: X \to Y$ esiste un insieme Z tale che esistano una funzione $h: Z \to Y$ iniettiva e una funzione $g: X \to Z$ suriettiva per cui $f = h \circ g$
- Es 4. Definiamo numerabile un insieme in corrispondenza biunivoca con i naturali, e S-numerabile un insieme in corrispondenza biunivoca con un sottoinsieme dei numeri naturali. Le due definizioni coincidono?

No: un insieme **numerabile** deve necessariamente avere cardinalità infinita, mentre un insieme **S-numerabile** può anche avere cardinalità finita ed essere in corrispondenza biunivoca con un sottoinsieme finito di $\mathbb N$

Es 5. Dimostrare per induzione che, per ogni $n \ge 1$, se X e Y sono insiemi di n elementi, il numero di funzioni biiettive tra X e Y è n!.

Caso base n=1: Se X e Y hanno un solo elemento, allora esiste una sola funzione biiettiva tra X e Y:

$$1! = 1$$

Passo induttivo n + 1: X e Y hanno n elementi e aggiungiamo a entrambi un elemento. Tra le nuove funzioni biiettive ci sono le stesse di prima in cui però l'elemento aggiunto in X viene associato all'elemento aggiunto in Y: queste funzioni sono ancora n!.

A queste si aggiungono le nuove funzioni biiettive in cui l'elemento aggiunto in X viene associato ad un elemento vecchio di Y: le vecchie funzioni sono n! e i vecchi elementi sono n quindi queste funzioni sono $n! \cdot n$. Quindi il numero di funzioni biiettive tra X e Y è:

$$n! + n! \cdot n = n! \cdot (n+1) = (n+1)!$$

Es 6. I seguenti enunciati sono verità logiche. Vero o Falso?

$$\boxtimes_V \square_F \mathbf{A}. (\exists x P(x) \to \exists x Q(x)) \to \exists x (P(x) \to Q(x))$$

$$\square_V \boxtimes_F \mathbf{B}. \exists y \exists z \forall x ((F(x) \to G(y)) \land (G(z) \to F(x)))$$

Es 7. Definire (se possibile) un'interpretazione che verifichi ed una che falsifichi la formula

$$\forall y(\neg \exists x A(x) \to \exists x A(y))$$

La formula è falsa in tutte le interpretazioni in cui A sia insoddisfacibile.

La formula è vera in tutte le interpretazioni in cui A sia soddisfacibile.

Es 8. Un giocatore di strada vi propone la seguente variante del gioco delle tre carte: vi mostra tre carte coperte ciascuna con una scritta. La prima e la seconda dicono "L'asso non è qui". La terza dice: "L'asso è la carta due". Sapete che solo una delle carte è un asso e che solo una delle scritte è vera. Formalizzare in logica proposizionale e decidere quale carta è l'asso.

Utilizziamo tre variabili logiche A, B, C per rappresentare rispettivamente che l'asso si trovi sotto la prima, la seconda o la terza carta. Inoltre introduciamo il simbolo ternario $\oplus (x,y,z) = \text{solo una tra } x,y,z$ è vera. Per le scritte, possiamo rappresentare le prime due come $\neg A$ e $\neg B$, e la terza come B. Sappiamo che solo una carta è un asso, quindi indichiamo questa condizione con $\oplus (A,B,C)$. Sappiamo che solo una delle scritte è vera, quindi indichiamo questa condizione con $\oplus (\neg A, \neg B, B)$. A questo punto possiamo rappresentare il problema con la seguente tavola di verità:

	_	~	(4 5 6)	(1 5 5)	
A	B	C	$\oplus (A, B, C)$	$\oplus \left(\neg A, \neg B, B \right)$	risultato
F	F	F	F	F	F
F	F	V	V	F	F
F	V	F	V	F	F
F	V	V	F	F	F
V	F	F	V	V	V
V	F	V	F	V	F
V	V	F	F	V	F
V	V	V	F	V	F

Quindi l'asso è la prima carta perché soltanto nella riga $V,\ F,\ F$ entrambe le condizioni sono verificate.

Tableau

$$\neg((\exists x P(x) \to \exists x Q(x)) \to \exists x (P(x) \to Q(x))))$$

$$| \\ \exists x P(x) \to \exists x Q(x)$$

$$| \\ \neg \exists x (P(x) \to Q(x))$$

$$| \\ \neg (P(a) \to Q(a))$$

$$| \\ P(a)$$

$$| \\ \neg Q(a)$$

$$| \\ \neg Q(a)$$

$$| \\ \neg P(a) \qquad Q(b)$$

$$| \\ | \\ \times \qquad \neg(P(b) \to Q(b))$$

$$| \\ P(b)$$

$$| \\ \neg Q(b)$$

$$| \\ \neg Q(b)$$

$$| \\ \neg Q(b)$$

$$| \\ \neg Q(b)$$

$$\begin{split} \neg \exists y \exists z \forall x ((F(x) \to G(y)) \land (G(z) \to F(x))) \\ \neg \exists z \forall x ((F(x) \to G(a)) \land (G(z) \to F(x))) \\ & | \\ \neg \forall x ((F(x) \to G(a)) \land (G(a) \to F(x))) \\ & | \\ \neg ((F(b) \to G(a)) \land (G(a) \to F(b))) \end{split}$$