

K. J. Somfrya College of Engineering, Mumhai-77 (A Communi College of Somerja Vidyrohae Laweruty) Department of Sciences and Humanities

C	Elements of Electrical and Electronics	Semester:	I/II	
Course Name:	Engineering			
Date of Performance:	14/10/20-	Batch No:	(4-01	
Student Name:	Ramery PATEL	Roll No:	16010114224	
Faculty Sign & Date:		Grade/Marks:	/ 20	

Experiment No: 4

Title: Maximum Power Transfer Theorem

Aim and Objective of the Experiment:
 To observe maximum power transfer across load resistor in a D.C circuit.

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

K. J. Somalya College of Engineering, Mumbai-77
(A Constituent College of Somalya Vidyavihar University)
Department of Sciences and Humanities

Stepwise-Procedure:

- Set D.C. supply voltage V_S = 15 V
 Vary R_L in the range 100 Ω 1 KΩ in steps of 100 Ω
 Note down I_L and V_L for each value of R_L. Where I_L and V_L are current through R_L and voltage across R_L respectively.
 Prepare observation table showing readings of R_L Vs power P = I_L · V_L
- 6. Locate the point of maximum value of power P and note down corresponding value of R_L . Verify the results theoretically

bserva	ition Tal	ole:					
Sr.	$R_L\Omega$	Circuit Current (lL) in mA		Voltage (VL)	Power absorbed by load (P_L) in W $P_L = I_L^2.R_L$		
No.		Theoretical	Practical		Theoretical		Practical
1.	100	15 0 011 1	24.3	2.430	0.05-5	0	.054
2.	200	19-7	23.6	4.720	FF0.0	0	.1113
3.	300	17.44	18.6	5. 580	0.091	0	.103
4.	400	15.62	16.6	6.690	0.097	0	110
5.	500	14.15	14.9	7.450	0.1001	0	. 111
6.	600	12.93	13.1	1.860	0.10031	0	111.0
7.	700	11.90	12.5	8.750	0.099	1	0.109
8.	800	11.02	11.6	9.280	0.09	7	101.0
9.	900	10.17	10.8	9.62	0.09	0.0923 0	
10.	1 K	9.61	9.8	988	0.692	3	0.096
dec.in	56 13	13.53	13-6		0.099		0.103

Graph: Draw a graph showing effect of variation in R_L on P_L using observation table. Take R_L on

EEEEL

Semester: I/II

Academic Year: 2024-25

SOMAIYA K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Sciences and Humanities X -axis and P₁ on Y-axis. (Use a graph paper) load (Pr) in W 0.111 0 015 0 054 0.015 Conclusion-1. Explore one practical application where Maximum Power Transfer Theorem is used. 2. Draw a block diagram or circuit diagram of this application. 3. Explain in brief. OR Answer the following: 4. Do you apply Thevenin's Theorem to calculate Maximum Power across load resistor in a D.C. circuit? 5. Take a sample problem. Draw a block diagram or circuit diagram of this sample Explain the solution in brief. Signature of faculty in-charge with Date: Academic Year: 2024-25 Semester: 1/II EEEEL EFFF