

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Numerical Analysis Gaussian elimination

by Csaba Gáspár

Széchenyi István University

2020, autumn semester

Linear systems of equations

Numerical Analysis

by Csaba Gáspár

Direct solutio of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Let $A = [a_{kj}] \in \mathbf{M}_{N \times N}$ be a given matrix, and let $b \in \mathbf{R}^N$ be a given vector. Consider the equation

$$Ax = b$$

This is equivalent to the following system of linear equations with N unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N = b_2$
.....

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N = b_N$$

The system is **homogeneous**, if b=0. In this case, x=0 is always a solution (**trivial solution**). The solution x is said to be a **nontrivial solution**, if at least one component of x differs from zero.

Linear systems of equations

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Let $A = [a_{kj}] \in \mathbf{M}_{N \times N}$ be a given matrix, and let $b \in \mathbf{R}^N$ be a given vector. Consider the equation

$$Ax = b$$

This is equivalent to the following system of linear equations with N unknowns:

The system is homogeneous, if b=0. In this case, x=0 is always a solution (trivial solution). The solution x is said to be a nontrivial solution, if at least one component of x differs from zero.

Linear systems of equations

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Let $A = [a_{kj}] \in \mathbf{M}_{N \times N}$ be a given matrix, and let $b \in \mathbf{R}^N$ be a given vector. Consider the equation

$$Ax = b$$

This is equivalent to the following system of linear equations with N unknowns:

The system is **homogeneous**, if $b=\mathbf{0}$. In this case, $x=\mathbf{0}$ is always a solution (**trivial solution**). The solution x is said to be a **nontrivial solution**, if at least one component of x differs from zero.

Solvability of linear systems

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the equation Ax = b has a solution for every right-hand side. In this case, the solution is unique, namely: $x = A^{-1}b$.

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the only the trivial solution solves the corresponding homogeneous equation $Ax = \mathbf{0}$, i.e. the matrix A is singular if and only if the corresponding homogeneous equation has a nontrivial solution (in this case, an infinite number of nontrivial solutions exist).

Solvability of linear systems

Numerical Analysis

by Csab Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the equation Ax = b has a solution for every right-hand side. In this case, the solution is unique, namely: $x = A^{-1}b$.

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the only the trivial solution solves the corresponding homogeneous equation $Ax = \mathbf{0}$, i.e. the matrix A is singular if and only if the corresponding homogeneous equation has a nontrivial solution (in this case, an infinite number of nontrivial solutions exist).

Solvability of linear systems

Numerical Analysis

Gáspár

of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the equation Ax = b has a solution for every right-hand side. In this case, the solution is unique, namely: $x = A^{-1}b$.

The matrix $A \in \mathbf{M}_{N \times N}$ is regular if and only if the only the trivial solution solves the corresponding homogeneous equation $Ax = \mathbf{0}$, i.e. the matrix A is singular if and only if the corresponding homogeneous equation has a nontrivial solution (in this case, an infinite number of nontrivial solutions exist).

Numerical Analysis

The Gaussian elimination and its variants

Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3$$

$$a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N$$

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3$$

$$a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix.

Divide the 1st equation by the coefficient a_{11} (**pivot element**):

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3$$

 $a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N$

Numerical Analysis

by Csaba Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1N}x_N = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3$$

$$a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N$$

Divide the 1st equation by the coefficient a_{11} (**pivot element**):

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3$$

$$a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N$$

Numerical Analysis

by Csaba Gáspár

Direct solutio
of linear
systems of
equations
Linear systems
The Gaussian
elimination and
its variants

Now let us subtract the 1st row multiplied by a_{k1} , from the kth row: (k = 2, 3, ..., N):

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2N}x_N = b'_2$$

$$a'_{32}x_2 + a'_{33}x_3 + \dots + a'_{3N}x_N = b'_3$$

$$a'_{N2}x_2 + a'_{N3}x_3 + \ldots + a'_{NN}x_N = b'_N$$

The procedure is repeated for the 2nd, 3rd, ..., Nth equations:

$$x_N = \tilde{b}_N$$

The components $x_{N-1}, x_{N-2}, \dots, x_1$ can be computed by back-substitutions

Numerical Analysis

by Csaba Gáspár

Direct solutio
of linear
systems of
equations
Linear systems
The Gaussian
elimination and
its variants

Now let us subtract the 1st row multiplied by a_{k1} , from the kth row: (k = 2, 3, ..., N):

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2N}x_N = b'_2$$

$$a'_{32}x_2 + a'_{33}x_3 + \dots + a'_{3N}x_N = b'_3$$

$$a'_{N2}x_2 + a'_{N3}x_3 + \ldots + a'_{NN}x_N = b'_N$$

The procedure is repeated for the 2nd, 3rd, ..., Nth equations:

$$x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 + \dots + \tilde{a}_{1N}x_N = \tilde{b}_1$$

$$x_2 + \tilde{a}_{23}x_3 + \dots + \tilde{a}_{2N}x_N = \tilde{b}_2$$

$$x_3 + \dots + \tilde{a}_{3N}x_N = \tilde{b}_3$$

$$x_N = \tilde{b}_N$$

The components $x_{N-1}, x_{N-2}, \dots, x_1$ can be computed by back-substitutions.

Numerical Analysis

by Csaba Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Now let us subtract the 1st row multiplied by a_{k1} , from the kth row: (k = 2, 3, ..., N):

$$x_1 + a'_{12}x_2 + a'_{13}x_3 + \dots + a'_{1N}x_N = b'_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2N}x_N = b'_2$$

$$a'_{32}x_2 + a'_{33}x_3 + \dots + a'_{3N}x_N = b'_3$$

$$a'_{N2}x_2 + a'_{N3}x_3 + \ldots + a'_{NN}x_N = b'_N$$

The procedure is repeated for the 2nd, 3rd, \dots , Nth equations:

$$x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 + \dots + \tilde{a}_{1N}x_N = \tilde{b}_1$$

$$x_2 + \tilde{a}_{23}x_3 + \dots + \tilde{a}_{2N}x_N = \tilde{b}_2$$

$$x_3 + \dots + \tilde{a}_{3N}x_N = \tilde{b}_3$$

.....

$$x_N = \tilde{b}_N$$

The components $x_{N-1}, x_{N-2}..., x_1$ can be computed by back-substitutions.

Numerical Analysis

The Gaussian

elimination and its variants

$$x_1 - 3x_2 + 5x_3 = -6$$

 $2x_1 - 5x_2 + 3x_3 = -4$
 $3x_1 - 2x_2 + x_3 = 3$

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $7x_2 - 14x_3 = 21$

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $35x_3 = -35$

Numerical Analysis

The Gaussian elimination and its variants

 $2x_1 - 6x_2 + 10x_3 = -12$ $-5x_2 + 3x_3 =$ $2x_1$ $2x_2 +$ $3x_1$ x_3

$$x_1 - 3x_2 + 5x_3 = -6$$

 $2x_1 - 5x_2 + 3x_3 = -4$
 $3x_1 - 2x_2 + x_3 = 3$

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $7x_2 - 14x_3 = 21$

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $35x_3 = -35$

Numerical Analysis

by Csaba Gáspár

Direct solut of linear systems of equations Linear system

The Gaussian elimination and

its variants

$$2x_{1} - 6x_{2} + 10x_{3} = -12$$

$$2x_{1} - 5x_{2} + 3x_{3} = -4$$

$$3x_{1} - 2x_{2} + x_{3} = 3$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$2x_{1} - 5x_{2} + 3x_{3} = -4$$

$$3x_{1} - 2x_{2} + x_{3} = 3$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$7x_{2} - 14x_{3} = 21$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$7x_{2} - 14x_{3} = 21$$

Numerical Analysis

by Csaba Gáspár

Direct solut of linear systems of equations

Linear systems The Gaussian elimination and its variants

$$2x_{1} - 6x_{2} + 10x_{3} = -12$$

$$2x_{1} - 5x_{2} + 3x_{3} = -4$$

$$3x_{1} - 2x_{2} + x_{3} = 3$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$2x_{1} - 5x_{2} + 3x_{3} = -4$$

$$3x_{1} - 2x_{2} + x_{3} = 3$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$7x_{2} - 14x_{3} = 21$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$7x_{2} - 14x_{3} = 3$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$35x_{3} = -35$$

Numerical Analysis

by Csaba Gáspár

Direct solut of linear systems of

Linear system

The Gaussian elimination and its variants

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $x_3 = -1$

$$\begin{array}{rcl}
x_1 & = & 2 \\
x_2 & = & 1 \\
x_3 & = & -1
\end{array}$$

Numerical Analysis

The Gaussian

 x_1 elimination and its variants

$$x_1 - 3x_2 + 5x_3 = -6$$

 $x_2 - 7x_3 = 8$
 $x_3 = -1$

$$\begin{array}{ccc}
x_1 & = & 2 \\
x_2 & = & 1 \\
x_3 & = & -1
\end{array}$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear system

The Gaussian elimination and its variants

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} - 7x_{3} = 8$$

$$x_{3} = -1$$

$$x_{1} - 3x_{2} + 5x_{3} = -6$$

$$x_{2} = 1$$

$$x_{3} = -1$$

$$x_{1} = 2$$

$$x_{2} = 1$$

$$x_{3} = -1$$

Numerical Analysis

The Gaussian

elimination and its variants

$$\begin{pmatrix} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

$$\begin{pmatrix} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems

Linear systems
The Gaussian
elimination and
its variants

$$\begin{pmatrix} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) -$$

$$\rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 0 & 1 & -7 & | & 8 \\ 0 & 0 & 1 & | & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems

equations
Linear systems
The Gaussian
elimination and
its variants

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

The Gaussian elimination and

its variants

$$\left(\begin{array}{cc|ccc|c} 2 & -6 & 10 & -12 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & -3 & 5 & -6 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and

its variants

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants

$$\begin{pmatrix} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 0 & 1 & -7 & | & 8 \\ 0 & 7 & -14 & | & 21 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 0 & 1 & -7 & | & 8 \\ 0 & 0 & 35 & | & -35 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & & 2 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & -1 \end{array}\right)$$

Numerical Analysis

by Csab Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting

Numerical Analysis

by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and

its variants

Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting

Numerical Analysis

by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting

Numerical Analysis

by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and

its variants

Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting

Numerical Analysis

> by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting:

Numerical Analysis

by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Computational cost: $\mathcal{O}(N^3)$.

If a pivot element is zero, then the algorithm stops.

Partial pivoting:

Swap the kth row with the rth row, where $r \geq k$ is the index for which $|a'_{rk}|$ is maximal.

Complete pivoting:

The Gauss-Jordan elimination

Numerical Analysis

by Csaba Gáspár

Direct soluti of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Idea: we eliminate not only from the next equations but also from the previous ones.

Example:

$$\begin{pmatrix} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

The Gauss-Jordan elimination

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Idea: we eliminate not only from the next equations but also from the previous ones.

Example:

$$\left(\begin{array}{cc|ccc|c} 2 & -6 & 10 & -12 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & -3 & 5 & -6 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

The Gauss-Jordan elimination

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Idea: we eliminate not only from the next equations but also from the previous ones.

Example:

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & -12 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Idea: we eliminate not only from the next equations but also from the previous ones.

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems The Gaussian elimination and its variants Idea: we eliminate not only from the next equations but also from the previous ones.

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & | & -12 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & | & -6 \\ 2 & -5 & 3 & | & -4 \\ 3 & -2 & 1 & | & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

The Gaussian elimination and its variants

Idea: we eliminate not only from the next equations but also from the previous ones.

$$\left(\begin{array}{ccc|c} 2 & -6 & 10 & -12 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array} \right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems

The Gaussian

elimination and

Idea: we eliminate not only from the next equations but also from the previous ones.

$$\left(\begin{array}{cc|ccc|c} 2 & -6 & 10 & -12 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 2 & -5 & 3 & -4 \\ 3 & -2 & 1 & 3 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -3 & 5 & -6 \\ 0 & 1 & -7 & 8 \\ 0 & 7 & -14 & 21 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 35 & -35 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -16 & 18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations

Linear systems The Gaussian elimination and its variants

Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ -2 & 1 & 1 & 4 \\ 1 & 1 & -2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & -3 & 3 & 6 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 3 & -3 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 6 \end{array} \right)$$

Numerical Analysis

by Csaba Gáspár

systems of equations Linear systems The Gaussian elimination and its variants Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ -2 & 1 & 1 & 4 \\ 1 & 1 & -2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & -3 & 3 & 6 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 3 & -3 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 6 \end{array} \right)$$

Numerical Analysis

by Csaba Gáspár

systems of equations Linear systems The Gaussian elimination and its variants Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ -2 & 1 & 1 & 4 \\ 1 & 1 & -2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & -3 & 3 & 6 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 3 & -3 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 6 \end{array} \right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants Example:

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants Example:

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants Example:

Numerical Analysis

by Csaba Gáspár

Direct solution of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations

The Gaussian elimination and its variants

Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cccc|ccc} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

systems of equations Linear systems The Gaussian

its variants

Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

Numerical Analysis

by Csaba Gáspár

systems of equations Linear systems The Gaussian elimination and its variants Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

systems of equations Linear systems The Gaussian elimination and its variants Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and its variants Example:

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & -3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cccc|ccc} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Numerical Analysis

by Csaba Gáspár

Direct solut of linear systems of equations

Linear systems

The Gaussian elimination and its variants

$$\left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & t \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & -2 & 0 & -t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{array}\right)$$

An infinite number of nontrivial solutions exist: $x_1 = t$, $x_2 = t$, $x_3 = t$.

Numerical Analysis

The Gaussian

elimination and its variants

$$\left(\begin{array}{ccc|ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & t \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & -2 & 0 & -t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{array}\right) \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{array}\right)$$

Numerical Analysis

The Gaussian

elimination and its variants

$$\begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & -t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

Direct solut of linear systems of equations

Linear systems
The Gaussian
elimination and
its variants

$$\begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & -t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & t \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & t \end{pmatrix}$$

An infinite number of nontrivial solutions exist: $x_1 = t$, $x_2 = t$, $x_3 = t$.

Numerical Analysis

by Csab Gáspár

Direct solutio of linear systems of equations Linear systems The Gaussian elimination and its variants Let $A\in \mathbf{M}_{N\times N}$ be a regular matrix. Then $AA^{-1}=I$. Denote by $a_1,\ a_2,\ \dots$, a_N the columns of the inverse matrix A^{-1} . Similarly, let $e_1,\ e_2,\ \dots$, e_N be the column vectors of the unit matrix I, then

$$A \cdot \left(\begin{array}{c|c} a_1 & a_2 & \dots & a_N \end{array} \right) = \left(\begin{array}{c|c} e_1 & e_2 & \dots & e_N \end{array} \right)$$

i.e

$$Aa_k = e_k$$
 $(k = 1, 2, ..., N)$

That is, N different systems of equations have to be solved (with different right-hand sides but with a common matrix).

Numerical Analysis

by Csab Gáspár

Direct solution of linear systems of equations
Linear systems
The Gaussian elimination and its variants

Let $A\in \mathbf{M}_{N\times N}$ be a regular matrix. Then $AA^{-1}=I$. Denote by $a_1,\ a_2,\ \dots$, a_N the columns of the inverse matrix A^{-1} . Similarly, let $e_1,\ e_2,\ \dots$, e_N be the column vectors of the unit matrix I, then

$$A \cdot \left(\begin{array}{c|c} a_1 & a_2 & \dots & a_N \end{array} \right) = \left(\begin{array}{c|c} e_1 & e_2 & \dots & e_N \end{array} \right)$$

i.e.

$$Aa_k = e_k$$
 $(k = 1, 2, ..., N)$

That is, N different systems of equations have to be solved (with different right-hand sides but with a common matrix).

Numerical Analysis

by Csaba Gáspár

Direct solution
of linear
systems of
equations
Linear systems
The Gaussian
elimination and
its variants

Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix. Then $AA^{-1} = I$. Denote by a_1, a_2, \ldots, a_N the columns of the inverse matrix A^{-1} . Similarly, let e_1, e_2, \ldots, e_N be the column vectors of the unit matrix I, then

$$A \cdot \left(\begin{array}{c|c} a_1 & a_2 & \dots & a_N \end{array} \right) = \left(\begin{array}{c|c} e_1 & e_2 & \dots & e_N \end{array} \right)$$

i.e.

$$Aa_k = e_k$$
 $(k = 1, 2, ..., N)$

That is, N different systems of equations have to be solved (with different right-hand sides but with a common matrix).

Numerical Analysis

The Gaussian elimination and its variants

$$\left(\begin{array}{cc|ccc|c} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) -$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 3 & 2 & | & 0 & 1 & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
-$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
-\frac{1}{3} & 0 & 0 \\
4 & 3 & -6 \\
-6 & -4 & 9
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
-\frac{3}{6} -\frac{2}{6} -\frac{4}{6}$$

Numerical Analysis

by Csaba Gáspár

Of linear systems of equations Linear systems

Linear systems
The Gaussian
elimination and
its variants

$$\left(\begin{array}{cc|ccc|c} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 3 & 2 & | & 0 & 1 & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & \frac{1}{9}
\end{pmatrix}
-\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
-\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & 1
\end{pmatrix}
-\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
-6 & -4 & 9
\end{pmatrix}
-$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & | & 4 & 3 & -6 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & -3 & -2 & 4 \\
0 & 1 & 0 & | & 4 & 3 & -6 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}$$

Numerical Analysis

The Gaussian elimination and its variants

$$\left(\begin{array}{cc|ccc|c} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow$$

$$\left(\begin{array}{cc|ccc}1&\frac{2}{3}&0&&-\frac{1}{3}&0&0\\0&3&2&&0&1&0\\0&\frac{4}{3}&1&&-\frac{2}{3}&0&1\end{array}\right)\rightarrow\left(\begin{array}{ccccc}1&\frac{2}{3}&0&&-\frac{1}{3}&0&0\\0&1&\frac{2}{3}&&0&\frac{1}{3}&0\\0&\frac{4}{3}&1&&-\frac{2}{3}&0&1\end{array}\right)\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
-$$

$$\begin{pmatrix} 1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -3 & -2 & 4 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix}$$

Numerical Analysis

The Gaussian elimination and its variants

$$\left(\begin{array}{ccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ 0 & \frac{4}{3} & 1 & -\frac{2}{3} & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 1 & \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{4}{3} & 1 & -\frac{2}{3} & 0 & 1 \end{array}\right) \rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
-$$

$$\begin{pmatrix} 1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -3 & -2 & 4 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix}$$

Numerical Analysis

The Gaussian elimination and its variants

$$\left(\begin{array}{ccc|c} 1 & \frac{2}{3} & 0 & \left| \begin{array}{cccc} -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & \left| \begin{array}{cccc} 0 & 1 & 0 \\ 0 & \frac{4}{3} & 1 & \left| \begin{array}{cccc} -\frac{2}{3} & 0 & 1 \end{array} \right.\right) \rightarrow \left(\begin{array}{ccccc} 1 & \frac{2}{3} & 0 & \left| \begin{array}{cccc} -\frac{1}{3} & 0 & 0 \\ 0 & 1 & \frac{2}{3} & \left| \begin{array}{ccccc} 0 & \frac{1}{3} & 0 \\ 0 & \frac{4}{3} & 1 & \left| \begin{array}{ccccc} -\frac{2}{3} & 0 & 1 \end{array} \right.\right) \rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & \frac{1}{9}
\end{pmatrix}
-\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
-\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & 1
\end{pmatrix}
-\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{1}{3} & 0 \\
-6 & -4 & 9
\end{pmatrix}
-$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & | & 4 & 3 & -6 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & -3 & -2 & 4 \\
0 & 1 & 0 & | & 4 & 3 & -6 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems

Linear systems
The Gaussian
elimination and
its variants

$$\left(\begin{array}{ccc|ccc|c} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) -$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 3 & 2 & | & 0 & 1 & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix} 1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -3 & -2 & 4 \\ 0 & 1 & 0 & | & 4 & 3 & -6 \\ 0 & 0 & 1 & | & -6 & -4 & 9 \end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian elimination and

its variants

$$\left(\begin{array}{cc|cccc} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccccccc} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow$$

$$\begin{pmatrix} 1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & | & 0 & 1 & 0 \\ 0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\ 0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-\frac{1}{3} & 0 & 0 \\
4 & 3 & -6 \\
-6 & -4 & 9
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-3 & -2 & 4 \\
4 & 3 & -6 \\
-6 & -4 & 9
\end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

of linear systems of equations Linear systems The Gaussian

its variants

$$\left(\begin{array}{cc|cc|c} -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 3 & 2 & 0 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 1 \end{array}\right) \rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 3 & 2 & | & 0 & 1 & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & \frac{4}{3} & 1 & | & -\frac{2}{3} & 0 & 1
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{9} & | & -\frac{2}{3} & -\frac{4}{9} & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & \frac{2}{3} & 0 & | & -\frac{1}{3} & 0 & 0 \\
0 & 1 & \frac{2}{3} & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & -6 & -4 & 9
\end{pmatrix}
\rightarrow$$

$$\left(\begin{array}{ccc|c}
1 & \frac{2}{3} & 0 & -\frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & 4 & 3 & -6 \\
0 & 0 & 1 & -6 & -4 & 9
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 0 & 0 & -3 & -2 & 4 \\
0 & 1 & 0 & 4 & 3 & -6 \\
0 & 0 & 1 & -6 & -4 & 9
\end{array}\right)$$