Estatística Descritiva com Python

- Sou astrônoma pelo IAG-USP e divulgadora científica;
- PyLady desde 2016;
- Há três anos trabalho no mercado de Marketing Digital
- Atualmente do time de Data Science da DP6.

Quem são vocês?

Acesse: sli.do Event code: pyladies

Por que estatística?

"Estatística é o ramo da matemática que trata da coleta, da análise, da interpretação e da apresentação de dados."

Por que Python?

Exemplo do mesmo programa em diferentes linguagens

Java

```
public class Hello

public static void main(String args[]) {
    java.util.Scanner s = new java.util.Scanner(System.in);
    System.out.print("Digite seu nome:");
    String nome = s.nextLine();
    System.out.println("Olá, " + nome);
}

}
```


C

```
#include <stdio.h&gt;
int main()
{
    char nome[200];
    printf("Digite seu nome:");
    scanf("%s", nome);
    printf("Olá, %s\n", nome);
    return 0;
}
```

Python

```
nome = input('Digite seu nome:')
print ('Olá,', nome)
```

Código Aberto

Comunidade Python •

Documentação (inclusive em pt-br)

Bibliotecas fáceis

tack Overflow

Ferramentas para análise de dados

Estatística Descritiva

"Estatística descritiva é um ramo da estatística que aplica várias técnicas para resumir e descrever um conjunto de dados"

Resumo dos dados

Estatística Descritiva

Tipos de variáveis

Categóricas (Dimensões)

Dispositivo

Cidade

Dia da semana

Data

Numéricas (Métricas)

Visitas no site

Taxas

Receita

Novos Usuários

Nominal

Dispositivo

Cidade

Ordinal

Dia da semana

Data

Discreta (int)

Novos Usuários

Visitas no site

Contínua (float)

Receita

Bounce Rate

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Primeiro passo: **importando** as bibliotecas

```
df = sns.load dataset("tips")
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
total bill
             244 non-null float64
             244 non-null float64
tip
             244 non-null category
sex
smoker
              244 non-null category
             244 non-null category
dav
              244 non-null category
time
size
              244 non-null int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.3 KB
```

Importando os dados e salvando em uma variável df

Visualizando o tipo dos dados.

Nem sempre (quase nunca) todos vão estar no formato certo.

É aqui que passamos 80% do nosso tempo. Mas uma hora acaba!

Visualizando a base de dados

Tudo certo? Sim! **#Partiu** explorar as variáveis.

Distribuição de frequências: Histograma

```
ax, fig = plt.subplots(figsize=(10,6))
g = sns.distplot(df_android['download.cancel'], kde=False, color='purple')
g.set_xlabel('Hits download.cancel')
g.set_ylabel('Frequência')
```


Comparação entre variáveis categóricas: gráfico de barras

O parâmetro *estimator* indica a **agregação** da variável categórica.

Ao lado, a **soma** dos *hits* de cada evento representado no eixo x.

Aqui temos a **média** dos *hits* dos eventos no eixo x.

Distribuição de frequências

```
ax, fig = plt.subplots(figsize=(10,6))
g = sns.distplot(df['Hits'], color='purple')
g.set_xlabel('Hits')
g.set_ylabel('Frequência Relativa')
```


A frequência relativa representa uma **porcentagem**.

Além de mostrar a distribuição dos dados, traz uma visão de **composição**.

A curva desenhada é uma estimativa para a **função densidade de probabilidade**, vulgo *fdp*.

Distribuição de probabilidades

```
g = sns.distplot(df_android['download.cancel'], hist=False, color='purple', label='download.cancel')
g = sns.distplot(df_android['download.complete'], hist=False, color='blue', label = 'download.complete')
g.set_xlabel('Hits')
g.set_ylabel('Frequência Relativa')
```


Podemos comparar as probabilidades de variáveis distintas assumirem determinados valores.

Onde as curvas se cruzam as variáveis têm a mesma probabilidade de ocorrência. (Mesma frequência relativa)

Distribuição de probabilidades

Hits

```
g = sns.distplot(df_android['download.cancel'], hist=False, color='purple', label='download.cancel')
g = sns.distplot(df_android['download.complete'], hist=False, color='blue', label = 'download.complete')
g.set_xlabel('Hits')
g.set_ylabel('Frequência Relativa')
```


Distribuição de probabilidades

Skewness (viés)

Medidas Resumo

Estatística Descritiva

Medidas de Posição

Média Simples

$$M_s = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Medidas de Tendência Central

Média

é soma dos elementos de uma amostra dividida pela quantidade de elementos

Média Ponderada

$$M_p = \frac{p_1 * x_1 + p_2 * x_2 + \dots + p_n * x_n}{p_1 + p_2 + \dots + p_n}$$

$$Q_2 = x_{(\frac{n+1}{2})} \stackrel{\text{n impar}}{\longleftarrow}$$

Mediana

É definida como o valor tal que 50% das observações são menores e 50% são maiores que ela.

$$Q_2 = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}$$

Ex.: [2, 3, 4, 2, 5, 6, 2, 8]

Moda = 2

Moda lor (ou atributo) que oc

é o valor (ou atributo) que ocorre com maior frequência Ex.: [2, 3, 3, 2, 5, 3, 2, 8]

Moda = 2

Medidas de Dispersão

Variância (σ²)

é uma medida de dispersão que mostra o quão distante cada valor desse conjunto está do valor central (média).

$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{N}$$

Pode ser difícil de interpretar o valor, por ser uma soma quadrática dos termos. Ex.: a variância do ticket médio é

Desvio Padrão (σ)

É o resultado da raiz quadrada da variância.

$$\sigma = \sqrt{\sigma^2}$$

Indica qual seria o "erro" se substituíssemos um dos valores coletados pelo valor da média.

Coeficiente de Variação (CV)

comparar a variação de conjuntos de observações que diferem na média ou são medidos em grandezas diferentes.

$$CV = \frac{\sigma}{\overline{x}} * 100$$

O **CV** é o desvio padrão expresso como uma porcentagem média.

Quantis

Tanto a média como o desvio padrão podem não ser medidas adequadas para representar um conjunto de dados, pois:

- são afetados por valores extremos;
- apenas com esses dois valores não temos ideia de simetria ou assimetria da distribuição dos dados.

A mediana no entanto não é afetada por valores discrepantes, por isso dizemos que é um parâmetro **robusto.**

Definimos **q(p)** o quantil de ordem p ou **p-quantil** (0 100p% das observações sejam menor que ele na amostra ordenada.

Alguns exemplos de quantis:

 $q(0.25) = 1^{\circ} Quartil = 25^{\circ} Percentil$

 $q(0.50) = Mediana = 2^{\circ} Quartil$

 $q(0.75) = 3^{\circ} Quartil$

 $q(0.40) = 4^{\circ} Decil$

 $q(0.95) = 95^{\circ}$ Percentil

Quantis e simetria

Os valores $X_{(1)}$, q_1 , q_2 , q_3 e $X_{(n)}$ São importantes para se ter uma boa ideia da assimetria dos dados.

Para uma distribuição simétrica (ou aproximadamente simétrica):

(a)
$$q_2 - X_{(1)} \approx X_{(n)} - q_2$$

(b)
$$q_2 - q_1 \approx q_3 - q_2$$

(c)
$$q_1 - x_{(1)} \approx x_{(n)} - q_3$$

(d) distâncias entre mediana e \mathbf{q}_1 , \mathbf{q}_3 menores do que distâncias entre os extremos e \mathbf{q}_1 , \mathbf{q}_3

Distribuição simétrica: normal ou gaussiana

Mostra a **distribuição** dos dados com base em parâmetros descritivos (*Mediana e Quartis*)

Útil para **comparação** da distribuição dos dados em diferentes dimensões.

Descreve a **simetria** dos dados.

Aponta possíveis *outliers*.

Limite Inferior Q1 - 1.5*(IQR)

Limite Superior
Q3 + 1.5*(IQR)

Intervalo Interquartil IQR = Q3 - Q1

Serão considerados *outliers* valores acima do limite superior ou abaixo do limite inferior

Qual tem maior variabilidade?

Maior intervalo interquartil e limites.

Qual está mais propenso a outliers?

O que tiver distribuição mais simétrica ou menor intervalo interquartil.

Qual possui distribuição mais simétrica?

Mediana aproximadamente equidistante ao primeiro e terceiro quartil.

Qual mais assimétrica e qual o viés?

Maior distância entre Q1 e Mediana: Viés Negativo

Maior distância entre Q3 e Mediana: Viés Positivo

Análise Estatística

Qual tem maior variabilidade? Qual está mais propenso a *outliers*? Qual possui distribuição mais simétrica Qual mais assimétrica e qual o viés?

Análise de Negócio

Melhor ticket médio?

Canal mais estável/consistente?

Qual provável motivo de *outliers*?

Como as **particularidades** dos canais
se refletem na distribuição de valores?

Perguntas

Qual tem maior variabilidade? Qual está mais propenso a *outliers*? Qual possui distribuição mais simétrica Qual mais assimétrica e qual o viés?

Pandas Describe

O método .describe() traz os valores descritos no boxplot além da média, desvio padrão e número de dados das variáveis.

download.start	download.complete	download.cancel
----------------	-------------------	-----------------

count	122.000000	122.000000	122.000000
mean	21684.721311	10460.795082	4291.885246
std	4896.082065	2976.841543	1180.326248
min	3632.000000	1947.000000	577.000000
25%	18233.500000	8390.000000	3603.000000
50%	21168.500000	10184.500000	4277.000000
75%	24912.000000	11912.000000	4966.250000
max	35593.000000	17605.000000	11158.000000

Sugestão de abordagem

Comparar média e mediana. *Pois a média é afetada por outliers.*

Comparar média e desvio padrão.

Estimar a distância entre a média e a mediana em termos do desvio padrão.

Verificar valores mínimos e máximos;

E agora, José?

	Users	New Users	Sessions	Bounce Rate	Pages / Session	Avg. Session Duration	Ecommerce Conversion Rate	Transactions	Avg. Order Value
count	3697.000000	3697.000000	3697.000000	3697.000000	3697.000000	3696.000000	3697.000000	3697.000000	3697.000000
mean	45727.556397	18582.534217	56115.506357	0.202332	5.133541	5.074223	0.019523	1406.295375	693.789775
std	51495.911380	22976.269330	62071.045055	0.124176	1.429403	3.492824	0.013508	1756.958170	236.642036
min	1.000000	0.000000	1.000000	0.000000	1.110000	1.000000	0.000000	0.000000	0.000000
25%	10841.000000	3171.000000	13786.000000	0.128400	4.270000	3.500000	0.007800	104.000000	592.460000
50%	22369.000000	7779.000000	28444.000000	0.168200	4.980000	5.040000	0.016800	441.000000	674.740000
75%	71843.000000	29833.000000	89619.000000	0.249000	5.930000	6.060000	0.029400	2469.000000	760.150000
max	580360.000000	344101.000000	724749.000000	0.888900	19.000000	58.000000	0.073300	13901.000000	2158.950000

Agrupamento de variáveis em dimensões com comportamento distintos pode causar assimetria e grande variância.

Por exemplo

Será que o padrão de navegação é o mesmo em *Web* e *Mobile*?
Será que tratar as métricas sem essa quebra é uma boa generalização?

Análise Bidimensional

Estatística Descritiva

Gráfico de dispersão

Com o gráfico de dispersão podemos ter uma ideia de que tipo de função ajusta os nossos dados.

Ex.: retas, parábolas etc

Como identificar correlação em gráficos de dispersão?

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Covariância e Correlação

Covariância entre as variáveis X e Y: a média dos produtos dos valores centrados das variáveis.

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}$$

A interpretabilidade pode ser difícil por conta da escala

Coeficiente de Correlação:

$$-1 \le Corr(X, Y) \le 1$$

Resolve o problema da escala.

$$Corr(X,Y) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{dp(X)} \right) \left(\frac{y_i - \bar{y}}{dp(Y)} \right)$$

ax = sns.heatmap(df.corr(), annot = True)

Algumas correlações não são tão úteis para tomada de decisão, por exemplo:

- Users e Sessions;
- Revenue e Transactions;

Além disso, em modelos preditivos, podemos (e devemos) dispensar variáveis que são altamente correlacionadas.

Correlação e causalidade

Gracias!

kayleighmeneghini@gmail.com

