Probeklausur Analysis I für Mathematiker

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Hilfsmittel. Keine.

- (1) (a) Sei (N, e, ν) mit $e \in N$ und $\nu : N \to N \setminus \{e\}$. Geben Sie die Definition der Peano Axiome an.
 - (b) Zeigen Sie, dass $\nu:N\to N\setminus\{e\}$ bijektiv ist, falls (N,e,ν) die Peano Axiome erfüllt
 - (c) Es genüge (N, e, ν) mit $e \in N$ und $\nu : N \to N \setminus \{e\}$ den Peano Axiomen und es seien A_n , $n \in N$, die eindeutig bestimmten Teilmengen von N für die gilt $A_e = \{e\}$ und $A_{\nu(n)} = A_n \cup \{\nu(n)\}$. Seien weiterhin Aussagen B(n), $n \in N$ gegeben. Zeigen Sie, dass B(n) für alle $n \in N$ wahr ist, falls gilt
 - B(e) ist wahr.
 - Gilt B(k) für alle $k \in A_n$, so folgt dass $B(\nu(n))$ wahr ist.
 - (d) Zeigen Sie, dass für reelle Zahlen a, b und $n \in \mathbb{N}$ gilt

$$(a-b)\sum_{k=0}^{n} a^k b^{n-k} = a^{n+1} - b^{n+1}.$$

- (2) (a) Wann heißt ein angeordneter Körper ordnungsvollständig?
 - (b) Geben Sie jeweils ein Beispiel für einen angeordneten Körper an, der ordnungsvollständig und der nicht ordnungsvollständig ist. Begründen Sie Ihre Aussage.
 - (c) Gegeben seien beschränkte Teilmengen M_1 und M_2 von \mathbb{R} . Was können Sie über die Beschränktheit der Menge

$$M_1 + M_2 := \{ m_1 + m_2 \mid m_1 \in M_1, m_2 \in M_2 \}$$

sagen? In welcher Beziehungen stehen $\sup(M_1)$, $\sup(M_2)$ und $\sup(M_1 + M_2)$. Klären Sie dazu zuerst deren Existenz.

(d) Es sei M die Menge aller Menschen. Welche der folgenden Mengen ist mächtiger:

$$\{Michelle, Barack\}$$
 oder $\{M\}$?

- (3) (a) Sei (x_n) eine Folge in \mathbb{R} und $x \in \mathbb{R}$. Wie ist $x_n \to x$, $n \to \infty$, definiert?
 - (b) Wann ist eine Folge (x_n) beschränkt?
 - (c) Was ist ein Häufungspunkt einer Folge?
 - (d) Geben Sie ein Beispiel einer Folge mit zwei Häufungspunkten an und begründen Sie Ihre Aussage. Konvergiert die von Ihnen angegebene Folge?
 - (e) Was ist eine Cauchyfolge? Zeigen Sie mit der Definition und unter Verwendung des Archimedischen Axioms, dass die Folge $(\frac{1}{n})$ eine Cauchyfolge in \mathbb{R} ist.
- (4) (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{C} . Wann heißt die Reihe $\sum_{n=0}^{\infty} a_n$ konvergent? Wann heißt sie absolut konvergent?
 - (b) Was besagt das Majorantenkriterium? Was besagt das Quotientenkriterium?
 - (c) Beweisen Sie das Quotientenkriterium mit Hilfe des Majorantenkriteriums.
 - (d) Das Quotientenkriterium zur Konvergenz von $\sum_{n=0}^{\infty} a_n$ trifft keine Aussage über den Fall $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$. Geben Sie jeweils ein Beispiel dafür an.
 - (e) Was kann über die (absolute) Konvergenz von $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n!}}$ ausgesagt werden? (Hinweis: Man zeige zunächst $n! < n^n$)
 - (f) Berechnen Sie $\sum_{n=1}^{\infty} \frac{2^n + 5^n}{7^{n-2}}$.
- (5) (a) Definieren Sie den Begriff der Stetigkeit und der gleichmäßigen Stetigkeit einer komplexwertigen Funktion.
 - (b) Geben Sie eine stetige, aber nicht gleichmäßig stetige Funktion an. Können Sie ein Beispiel einer gleichmäßig stetigen, aber nicht stetigen Funktion angeben? Begründen Sie Ihre Aussagen.
 - (c) Bestimmen Sie alle Werte $a,b\in\mathbb{R},$ so dass die Funktion $f:[0,\infty)\to\mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} ax + a & : x \in [0, 2) \\ 6 & : x \in [2, 4) \\ \sqrt{x + b} & : x \in [4, \infty) \end{cases}$$

stetig ist.

(d) Berechnen Sie den links- und rechtsseitigen Grenzwert von

$$\mathbb{R}\setminus\{-1\}\to\mathbb{R}, \quad x\mapsto \frac{x^4-1}{x-1}$$

für x gegen 0.

(6) Seien $-\infty < a < b < \infty$ gegeben.

- (a) Nennen Sie vier Aussagen, die für jede stetige Funktion $f:[a,b]\to\mathbb{R}$ gelten.
- (b) Beweisen Sie drei dieser Aussagen.
- (c) Zeigen Sie, dass es eine Zahl x mit 3/2 < x < 2 und $x^4 = 11$ gibt.
- (7) Seien $-\infty < a < b < \infty$ gegeben.
 - (a) Sei $f:(a,b) \longrightarrow \mathbb{R}$ gegeben. Wann heißt f in $x_0 \in (a,b)$ differenzierbar? Wann heißt f differenzierbar?
 - (b) Zeigen Sie: Eine Funktion $f:(a,b)\longrightarrow \mathbb{R}$ ist genau dann differenzierbar in einem Punkt x, wenn sie in x rechts- und linksseitig differenzierbar ist und die beiden einseitigen Ableitungen übereinstimmen.
 - (c) Untersuchen Sie folgende Funktionen von \mathbb{R} nach \mathbb{R} (und, wo möglich, auch ihre Ableitungen) auf links und rechtsseitige Differenzierbarkeit. Was können sie daraus schlussfolgern?
 - $\bullet x \mapsto |x|,$
 - $x \mapsto [x] := \max\{n \in \mathbb{Z} : n \le x\},\$
 - $\bullet \ x \mapsto \operatorname{sgn}(x) := \begin{cases} x/|x| & \text{für } x \neq 0, \\ 0 & \text{für } x = 0, \end{cases}$ $\bullet \ x \mapsto f(x) := \begin{cases} x^2 & \text{für } x > 0, \\ 0 & \text{für } x \leq 0. \end{cases}$
 - (d) Zeigen Sie anhand der Definition von Differenzierbarkeit, dass

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = x^2 + 2x + 7$$

differenzierbar ist.

(e) Sei $g:(a,b)\to\mathbb{R}\setminus\{0\}$ eine Funktion, die in $p\in(a,b)$ differenzierbar ist. Zeigen Sie die Differenzierbarkeit von 1/g in p und beweisen Sie eine Formel für die Ableitung von 1/g in p.

Viel Erfolg!