	-	
Question	Scheme	Marks
Number		
1(a)	Substitute $x = \pm 2$ or divide by $(x-2)$	M1
(b)	Rem = 0	A1
		(2)
	Use remainder theorem with $x = \pm 1, \pm 3$; remainder theorem again or	
	inspection OR Divide $f(x)$ by $x-2$, Factorise quadratic	M1M1
	(x-2)(x+3)(x-1) All 3 brackets must be shown.	A1
		(3)
		[5]

<u>Notes</u>

(a)

M1: for either substituting ± 2 or attempting to divide by (x-2)

A1: for the remainder = 0

This is a show so please check that $f(\pm 2) = (\pm 2)^3 - 7(\pm 2) + 6$ is seen for M1 and 8 - 14 + 6 = 0 or $2^3 - 2 \times 7 + 6 = 0$ is seen for the A mark

ALT Using division

M1: minimally acceptable answer for the quotient for this mark is $x^2 + 2x \pm k$ If there is no evidence of inclusion of a term in x^2 somewhere in their division – M0

A1: correct quotient $(x-2)(x^2+2x-3)$ and there must be a conclusion. ie., therefore (x-2) is a factor oe.

(b)

In general, first M1 for finding one factor or dividing by (x-2), second M1 for finding second factor.

M1: for remainder theorem OR by inspection OR divide by (x-2) to give a quadratic factor OR by expanding and comparing coefficients.

Note: If there is no evidence of inclusion of a term in x^2 somewhere in their division – M0 Look for $x^2 + 2x \pm k$ to award M1

M1: for using remainder theorem again OR by inspection OR factorising the quadratic factor (refer to general guidance) OR by comparing coefficients

A1: for answer as shown

Note: (x-2)(x-3)(x+1) with no working is M0M0A0