厦门大学《微积分 I-1》课程期中试卷

试卷类型:(理工类A卷) 考试时间:2018.11.24

一、计算下列极限: (每小题 5 分, 共 25 分)

1	$\lim x(\sqrt{x^2+2}-x)$
т.	$x \rightarrow +\infty$

得 分	
评阅人	

2. $\lim_{x\to 0} (1+x^3)^{\frac{1}{\tan x-x}}$;

得 分	
评阅人	

3. $\lim_{x \to \infty} \frac{\arctan x}{x + \sin x};$

得 分	
评阅人	

4.
$$\lim_{x \to 0} \frac{\ln(1 - x^2 + x^4) + \ln(1 + x^2 + x^4)}{(\sqrt{1 + x^2} - 1) \cdot \arcsin x^2};$$

得 分	
评阅人	

5. 求数列的极限
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \frac{3}{n^2+3} + \dots + \frac{n}{n^2+n}\right)$$
 •

得 分	
评阅人	

二、(本题 6 分) 求函数
$$y = x\sqrt{1-x^2} + \arcsin x + (\sec x)^x$$
 的一阶导数。

得 分	
评阅人	

三、(本题 10 分) 设数列 $\{x_n\}$ 满足: $x_1=\sqrt{2}$, $x_{n+1}=\sqrt{2+x_n}$, 证明 $\lim_{n\to\infty}x_n$ 存在,并求其极限值。

得 分	
评阅人	

四、(本题 10 分)设方程 $\ln(x^2 + y^2) = 2 \arctan \frac{y}{x}$ 确定了隐函数 y = y(x),求此隐函数在点 (1,0) 处的一阶导数和二阶导数。

得 分	
评阅人	

五、(本题 10 分) 计算由摆线的参数方程 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ $(0 < t < 2\pi)$ 所确定的函数 y = y(x) 的一阶导数和二阶导数。

得 分	
评阅人	

六、(本题 10 分)设函数 $f(x) = \begin{cases} b(1+\sin x) + a + 2 \\ e^{ax} - 1 \end{cases}$	$ x > 0 x \le 0 \stackrel{\text{def}(-\infty, +\infty)}{\text{def}(-\infty, +\infty)} $
上处处可导,求 a,b 。	

得 分	
评阅人	

七、(本题 9 分) 求函数 $f(x) = \frac{x \ln |x|}{|x^2 - 3x + 2|}$ 的间断点,并判断其间断点类型(说明理由)。

得 分	
评阅人	

八、(本题 10 分) 设函数 f(x) 在 x=0 的某个邻域上单调、二阶可导,其反函数为 g(x)。已知 f(0)=1, f'(0)=2, f''(0)=3,求 g(x) 在 x=1 处的一阶导数和二阶导数。

得 分	
评阅人	

九、(本题共 10 分,第一小题 4 分,第二小题 6 分) 设函数 f(x) 在 [0,3] 上连续,在 (0,3) 内可导,且有 f(0)=0, f(1)+f(2)=2, f(3)=4。证明:

得 分	
评阅人	

- (1)至少存在一点 $\xi \in [1,2]$,使得 $f(\xi) = 1$;
- (2)至少存在一点 $\eta \in (0,3)$,使得 $f'(\eta) = 1$ 。