

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

 $SRM\ Nagar,\ Kattankulathur-603203,\ Chengalpattu\ District,\ Tamilnadu$

Academic Year: 2022-2023(ODD)

Course Code &Title: 18MAB201T-Transforms and Boundary Value Problems

Year &Sem: II/III, Unit: IV

Tutorial 2 Part A

1	Define infinite complex Fourier cosine and Fourier sine transform of $f(x)$ and write their inversion formula.
2	Write down the corresponding Kernels in the above formulas.
3	Write down the expressions for $F_c[xf(x)]$ and $F_s[xf(x)]$.
4.	If $F_c[f(x)] = F_c(s)$, $F_c[g(x)] = G_c(s)$, $F_s[f(x)] = F_s(s)$ and $F_s[g(x)] = G_s(s)$ then show that $F_c[a. f(x) + b. g(x)] = a. F_c(s) + b. G_c(s)$ and $F_s[a. f(x) + b. g(x)] = a. F_s(s) + b. G_s(s)$.
5.	If $F_c[f(x)] = F_c(s)$ and $F_s[f(x)] = F_s(s)$ then write down the expressions for $F_c[f(x)\cos(ax)]$, $F_s[f(x)\cos(ax)]$, $F_c[f(x)\sin(ax)]$, $F_s[f(x)\sin(ax)]$, $F_c[f(ax)]$ and $F_s[f(ax)]$.
6.	Fill in the blanks: $\int_{0}^{\infty} F_{c}(s)G_{c}(s)ds = \underline{\hspace{1cm}}, \int_{0}^{\infty} F_{s}(s)G_{s}(s)ds = \underline{\hspace{1cm}}, \int_{0}^{\infty} F_{c}(s) ^{2}ds = \underline{\hspace{1cm}} \text{ and } \int_{0}^{\infty} F_{s}(s) ^{2}ds = \underline{\hspace{1cm}}.$

Part B

7.	Find the Fourier sine transform of $f(x) = \frac{1}{x}$.
8.	Find the Fourier cosine transform of
	$f(x) = \begin{cases} \cos(x), & 0 < x < a \\ 0, & x > a \end{cases}.$
9.	Find the Fourier cosine and sine transforms of
	$f(x) = e^{-ax}, a > 0$
	And hence evaluate $\int_0^\infty \frac{s}{a^2 + s^2} \sin(sx) ds \text{ and } \int_0^\infty \frac{1}{a^2 + s^2} \cos(sx) ds.$
10.	Evaluate the values of
	$\int_0^\infty \frac{dx}{(a^2 + x^2)(b^2 + x^2)} \text{ and } \int_0^\infty \frac{dx}{(a^2 + x^2)^2}.$
11.	Find the expressions for
	$F_s[xf(x)]$ and $F_c[xf(x)]$.
12.	Find Fourier cosine transform of $e^{-a^2x^2}$ and hence evaluate the Fourier sine transform of $xe^{-a^2x^2}$.
13.	Find the expression for $f(x)$ from the integral equation

	$\int_{0}^{\infty} f(x)\sin(sx) dx = \begin{cases} a, & 0 \le s < 1 \\ b, & 1 \le s < 2 \\ c, & s \ge 2 \end{cases}$
14.	Define the Dirac Delta function $\delta(x-a)$ and find its Fourier transformation.