

Assignment 9

Transportation & Warehouse Location Problem

Cinoy Cyriac

Harikrishnan Sabu

Vishakh Cheruparambath

Overview

- Theoretical Background
- Comparison between transportation and assignment problem
- Mathematical model
- Business Application Examples
- Implementation in CPLEX
- Comparison between transportation and warehouse problem
- References

The Transportation Problem

Theoretical Background

 Sending quantities of identical goods from n different origins, such as factories, to m different destinations, such as storage/warehouse/customer.

Goal: minimize the transportation cost

Assignment problem

Transportation Problem	Assignment Problem		
Minimizing cost of transportation merchandise	Assigning finite sources to finite destinations where only one destination is allotted for one source with minimum cost		
 Number of sources and number of demand need not be equal 	Number of sources and the number of destinations must be equal		
 If total demand and total supply are not equal then the problem is said to be unbalanced 	If the number of rows are not equal to the number of columns then problems are unbalanced		

Mathematical model(General Solution)

Index set

```
m number of sources ( i = 1...m)
n number of destinations ( j = 1...n)
```

Parameters

s_i supply at source 'i'

d_i demand at destination 'j'

Decision variable

c_{ij} unit cost of shipping from source 'i' to destination 'j'

x_{ij} amount shipped from source 'i' to destination 'j

Mathematical model(General Solution)

Minimize
$$\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} * x_{ij}$$

Constraints

$$\sum_{j=1}^{n} x_{ij} \leq s_i, \forall i = 1 \dots m$$

$$\sum_{i=1}^m x_{ij} \,=\, d_j\,,\,\forall\,j=1\dots n$$

$$x_{ij} \geq 0, \forall i \& j$$

Business Application Example

- The origins are 4 branches plants with supplies or capacities of 35,50,80,and 65 units.
- While the distribution are four distributions centres with demand of 70,30,75 and 55 respectively.
- The cost of transporting a unit of product from each branches to each distributions are given.
- Optimize this problem to minimize the transportation cost.

	DC1	DC2	DC3	DC3	Supply
Branch A	10	7	6	4	35
Branch B	8	8	5	7	50
Branch C	4	3	6	9	80
Branch D	7	5	4	3	65
Demand	70	30	75	55	

Business Application Example

Index set

```
i \in I Set of branches j \in J Set of warehouses
```

model file(.mod)

```
6 //Index
7 {int} branches = ...; //set of branches
8 {int} warehouses = ...; //set of warehouses
```

data file(.dat)

```
6 //Index
7 branches={1,2,3,4};
8 warehouses= {1,2,3,4};
9
```

Parameters

demand total demand at warehouses 'j'

supply total supply at branches 'i'

total transportation cost from branches(i) to warehouses(j)

model file(.mod)

```
//Parameters
int demand[warehouses]= ...; //demand of products
int supply[branches]= ...; //suppy of products
int tcost[branches][warehouses]=...; //total transportation cost
```

data file(.dat)

```
10 //Parameters

11 demand=[70,30,75,55];

12 supply=[35,50,80,65];

13 tcost=[[10,7,6,4],[8,8,5,7],[4,3,6,9],[7,5,4,3]];

14
```

Decision variables

amttransp amount shipped from branches 'i' to warehouses 'j'

model file(.mod)

```
//Decision variables
dvar float+ amounttransp[branches][warehouses];
```

Objective function

```
Minimize
\sum_{i=1}^{I} \sum_{j=1}^{J} amounttransp_{ij} * tcost_{ij}
```

```
//Decision expression
dexpr float transpcost = sum( i in branches, j in warehouses)
amounttransp[i][j]*tcost[i][j];
//Objective fun
minimize transpcost;
```

Constraints

$$\sum_{j=1}^{J} amounttransp_{ij} \leq supply_i, \forall i = 1 ... I$$

$$\textstyle \sum_{i=1}^{I} amount transp_{ij} = demand_j, \forall \, j=1 \dots J$$

 $amount transp_{ij} \geq 0, \forall i \in I \& j \in J$

model file(.mod)

```
25 //Constraints
26@ subject to {
27    supplycons:
28@    forall( i in branches)
29        sum( j in warehouses) amounttransp[i][j]<=supply[i];
30        demandcons:
31@    forall(j in warehouses)
32        sum(i in branches) amounttransp[i][j]==demand[j];
33@    forall(i in branches, j in warehouses)
34        amounttransp[i][j] >= 0;
35    }
```

Whole script - model file(.mod)

```
7 {int} branches = ...; //set of branches
   {int} warehouses = ...; //set of warehouses
10 //Parameters
11 int demand[warehouses] = ...; //demand of products
12 int supply[branches] = ...; //suppy of products
13 int tcost[branches][warehouses]=...; //total transportation cost
   //Decision variables
   dvar float+ amounttransp[branches][warehouses];
18 //Decision expression
19 dexpr float transpcost = sum( i in branches, j in warehouses)
    amounttransp[i][j]*tcost[i][j];
22 //Objective fun
23 minimize transpcost;
25 //Constraints
26⊖ subject to {
      supplycons:
      forall( i in branches)
        sum( j in warehouses) amounttransp[i][j]<=supply[i];</pre>
        demandcons:
      forall(j in warehouses)
        sum(i in branches) amounttransp[i][j]==demand[j];
      forall(i in branches, j in warehouses)
        amounttransp[i][j] >= 0;
34
35
36
```

Whole script - data file(.dat)

```
6 //Index

7 branches={1,2,3,4};

8 warehouses= {1,2,3,4};

9

10 //Parameters

11 demand=[70,30,75,55];

12 supply=[35,50,80,65];

13 tcost=[[10,7,6,4],[8,8,5,7],[4,3,6,9],[7,5,4,3]];

14
```

Results

```
// solution (optimal) with objective 960
// Quality There are no bound infeasibilities.
// There are no reduced-cost infeasibilities.
// Maximum Ax-b residual
// Maximum c-B'pi residual
// Maximum |x|
                                        = 70
// Maximum |slack|
                                        = 70
// Maximum |pi|
// Maximum |red-cost|
// Condition number of unscaled basis = 1,7e+01
amounttransp = [[0
             0 0 35]
              [0 0 50 0]
              [70 10 0 0]
              [0 20 25 20]];
```

The Warehouse Problem

Theoretical Background

 How do we allocate each stores into each warehouses according with capacity constraints?

Mathematical model(General Solution)

Index set

 $w \in W$ set of warehouses

 $s \in S$ set of stores

Parameters

F fixed cost for opening a warehouse

C maximum number of stores assigned to each warehouses

S supply cost between each stores and each warehouses

Decision variable

Open 1, if warehouses is open. 0, otherwise

Supply 1, if store supplied by warehouses. 0, otherwise

Mathematical model(General Solution)

Minimize
$$\sum_{w=1}^{W} F * O_w + \sum_{w=1}^{W} \sum_{s=1}^{S} C_{sw} * S_{sw}$$
 (fixed cost + supply cost)

Constraints

$$\sum_{w=1}^{W} S_{sw} = 1, \ \forall S$$
 (Each store has one warehouses)

$$S_{sw} \le O_w$$
, $\forall s, w$ (If particular warehouses is open, we can supply from that warehouse)
$$\sum_{s=1}^{S} S_{sw} \le C_w$$
 Capacity constraints

Business Application Example

Number of stores = 10

Warehouses = "Bonn", "Bordeaux", "London", "Paris", "Rome"

Fixed cost = 3000 Euro

Capacity of each warehouses = 1,4,2,1,3

Supply cost from each warehouses 'W' to stores 'S'

```
[20,24,11,225,30],

[28,27,82,83,74],

[74,97,71,96,70],

[2,55,73,69,61],

[46,96,59,83,4],

[42,96,59,83,4],

[1,5,73,59,56],

[10,73,13,43,96],

[93,35,63,85,46],

[47,65,55,71,95]
```

Index set

 $w \in W$ Set of warehouses

 $s \in S$ Set of stores

model file(.mod)

```
6 //Index
7 {string} Warehouses =...;
8 int NbStores =...;
9 range Stores =0..NbStores-1;
10
```

data file(.dat)

```
6 //Index
7 Warehouses ={"Bonn","Bordeaux","London","Paris","Rome"};
8 NbStores= 10;
9
```

Parameters

FixedCost fixed cost for opening a warehouse

capacity maximum number of stores assigned to each warehouses

SupplyCost supply cost between each stores and each warehouses

model file(.mod)

```
//Parameters
int FixedCost =...;
int capacity [Warehouses]=...;
int SupplyCost[Stores][Warehouses]=...;
```

data file(.dat)

Decision variables

Open 1, if warehouses is open. 0, otherwise

Supply 1, if store supplied by warehouses. 0, otherwise

model file(.mod)

```
//Decision variables
dvar boolean Open[Warehouses];
dvar boolean Supply[ Stores][Warehouses];
```

Objective function

Minimize

```
\sum_{w=1}^{W} FixedCost * Open_w + \sum_{w=1}^{W} \sum_{s=1}^{S} SupplyCost_{sw} * Supply_{sw}
```

```
model file(.mod)
```

```
22 // Objective function

23 minimize sum( w in Warehouses) FixedCost* Open [w] +

24 sum(w in Warehouses, s in Stores) SupplyCost[s][w]* Supply[s][w];

25
```

Constraints

$$\sum_{w=1}^{W} Supply_{sw} = 1, \ \forall S$$

 $Supply_{sw} \leq Open_w, \forall s, w$

$$\sum_{s=1}^{S} Supply_{sw} \leq capacity_{w}$$

model file(.mod)

```
//Constraints
swbject to {

forall(s in Stores)
    cteachStoresHasoneWarehouses:
    sum(w in Warehouses) Supply[s][w]==1;

forall(w in Warehouses, s in Stores)
    ctUseopenWarehouses:
    Supply[s][w]<=Open[w];

forall(w in Warehouses)
    ctMaxUseOfwarehouses:
    sum(s in Stores) Supply[s][w]<=capacity[w];

// Apply [s] [w]<=capacity[w];

// Apply [w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=capacity[w]<=c
```

Whole script - model file(.mod)

```
6 //Index
   {string} Warehouses =...;
 8 int NbStores =...;
   range Stores =0..NbStores-1;
   //Parameters
12 int FixedCost =...;
   int capacity [Warehouses] = ...;
   int SupplyCost[Stores][Warehouses]=...;
   //Decision variables
   dvar boolean Open[Warehouses];
   dvar boolean Supply[ Stores][Warehouses];
21 //Objective function
22⊖ minimize sum( w in Warehouses) FixedCost* Open [w] +
             sum(w in Warehouses, s in Stores) SupplyCost[s][w]* Supply[s][w];
24
25 //Constraints
26⊕ subject to {
28⊖ forall( s in Stores)
       cteachStoresHasoneWarehouses:
       sum( w in Warehouses) Supply[s][w]==1;
     forall( w in Warehouses, s in Stores)
       ctUseopenWarehouses:
33
34
       Supply[s][w]<=Open[w];
35
     forall( w in Warehouses)
       ctMaxUseOfwarehouses:
       sum(s in Stores) Supply[s][w]<=capacity[w];</pre>
39 }
```

Whole script - data file(.dat)

```
6 //Index
 7 Warehouses ={"Bonn", "Bordeaux", "London", "Paris", "Rome"};
 8 NbStores= 10:
11 //Parameters
12 FixedCost = 3000;
13 capacity=[1,4,2,1,3];
14 SupplyCost=[[20,24,11,225,30],
                [28,27,82,83,74],
                [74,97,71,96,70],
                [2,55,73,69,61],
                [46,96,59,83,4],
                [42,96,59,83,4],
                [1,5,73,59,56],
20
                [10,73,13,43,96],
                [93,35,63,85,46],
23
                [47,65,55,71,95]];
24
```

Results

```
// solution (optimal) with objective 12236
// Quality Incumbent solution:
// MILP objective
// MILP solution norm |x| (Total, Max)
// MILP solution error (Ax=b) (Total, Max)
// MILP x bound error (Total, Max)
// MILP x integrality error (Total, Max)
// MILP slack bound error (Total, Max)
Open = [1
         1 1 0 1];
Supply = [[0 \ 0 \ 1 \ 0 \ 0]
             [0 1 0 0 0]
              [0 0 0 0 1]
              [1 0 0 0 0]
              [0 0 0 0 1]
              [0 0 0 0 1]
              [0 1 0 0 0]
              [0 0 1 0 0]
              [0 1 0 0 0]
              [0 1 0 0 0]];
```

```
1,2236000000e+04

1,40000e+01 1,00000e+00

0,00000e+00 0,00000e+00

0,00000e+00 0,00000e+00

0,00000e+00 0,00000e+00

0,00000e+00 0,00000e+00
```

Why transportation problem is easier to solve than the warehouse location problem?

- Number of data required
- Complexity

References

- Business optimisation: Using mathematical programming, Macmillan, Basingstoke.: Chapter 4.3.1 & 7.3
- Produktion und Logistik, Springer, Berlin.: Chapter 11.1 & 4.3.3
 Kallrath, J. & Wilson, J. M. (1997)
- https://www.sarthaks.com/881661/what-is-the-difference-betweenassignment-problem-and-transportation-problem

Thanks for your attention!