関数繰り込み群を利用したガウス積分

岡田 大 (Okada Masaru)

October 20, 2025

Abstract

関数繰り込み群 (fRG) を利用して、厳密解が分かっているガウス積分を解いてみるという、fRG の入門的な計算例を示したノート。このノートの目的は、fRG が高エネルギーから低エネルギーへと揺らぎを順に取り込んでいく様子を、厳密解が分かっているガウス積分で実演することである。

Contents

1		このノートの流れ	1
2		Wetterch Equation	1
3		レギュレーター R_k とフロー方程式の具体化	2
	3.1	Gaussian Integral	2
	3.2	Effective Action の仮定	2
	3.3	レギュレーター R_k	2
4		Wetterich Equation	3
	4.1	Wetterich Equation へ代入	3
	4.2	フローの積分	3
5		まとめ	4
1	この	ノートの流れ	
	1. 問題設定: $Z = \int dx e^{-S(x)}$ $(S(x) = \frac{1}{2}m^2x^2)$ を計算したい。		
	2. fRG	の導入: レギュレーター R_k を導入し、高エネルギースケール Λ から $k=0$ まで、有効作用 Γ	Γ_k
	を流っ	す (フローさせる)。	
	3. Wett	erich Equation: その流れを記述するのが Wetterich Equation。	
	4. 計算:	方程式を解き、 $k=0$ での有効作用 $\Gamma_{k=0}$ を求める。	
	5. 結論:	$\Gamma_{k=0}$ から $Z=e^{-\Gamma_{k=0}(\phi=0)}$ を計算すると、ガウス積分の正しい答え $\frac{\sqrt{2\pi}}{2\pi}$ が得られる。	

2 Wetterch Equation

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left[(\Gamma_k^{(2)} + R_k)^{-1} (\partial_k R_k) \right]$$

ここで STr はスーパートレースを表す。

これがfRGの核心となるフロー方程式になる。

 Γ_k はスケール k における有効平均作用を表す。これには k 以上の高エネルギースケールの揺らぎが取り込まれ、k 未満の揺らぎはまだ取り込まれていない状態の作用である。

 R_k はレギュレーターと呼ばれる関数であり、k よりも低いエネルギーのゆらぎを抑制する天井のような設定になっている。 $k=\Lambda$ から k=0 へと変化させることは、この上限を徐々に開放し、ゆらぎを取り込んでいく操作になる。

 $\Gamma_k^{(2)}=rac{\partial^2\Gamma_k}{\partial\phi^2}$ はヘシアンに相当する量で、場 $\phi=\langle x
angle$ に対する 2 階微分。

3 レギュレーター R_k とフロー方程式の具体化

3.1 Gaussian Integral

以下のガウス積分は初等的に求められる。

$$Z = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2 x^2} = \frac{\sqrt{2\pi}}{m}$$

この積分結果をfRG の枠組みを使って再現してみるというのがこのノートの目的である。

分配関数と作用の関係は以下である。

$$Z = e^{-\Gamma_{k=0}(\phi=0)}$$

fRG のフレームワークを用いて $\Gamma_k(\phi)$ の関数形を導出してから $\Gamma_{k=0}(\phi=0)$ と置くことで分配関数を求める。

3.2 Effective Action の仮定

この問題は相互作用の無い理論なので、 Γ_k の場 ϕ に関する部分は k に依存せず、古典作用 $S(\phi)=\frac{1}{2}m^2\phi^2$ と同じ形であると仮定する。そこで

$$\Gamma_k(\phi) = \frac{1}{2}m^2\phi^2 + C_k$$

と置く。

ここで C_k は ϕ に依らない定数項である。ここに場のゆらぎの寄与が全て蓄積される。 この仮定から

$$\Gamma_k^{(2)} = \frac{\partial^2 \Gamma_k}{\partial \phi^2} = m^2 = \text{const.}$$

となる。

3.3 レギュレーター R_k

レギュレーター Rk として

$$R_k = k^2$$

$$\partial_k R_k = 2k$$

を選択する。

$$Z_k = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2x^2 - \frac{1}{2}R_kx^2}$$

大きな R_k の極限では classical になる。

一方で、 $R_k \to 0$ の極限で求めたい分配関数 $Z_{k=0}$ になる。

4 Wetterich Equation

4.1 Wetterich Equation へ代入

この問題は 0 次元であるので、Wetterich Equation の STr は不要で、単純なスカラーの式になる。

$$\partial_k \Gamma_k = \frac{1}{2} (\Gamma_k^{(2)} + R_k)^{-1} (\partial_k R_k) = \frac{1}{2} (m^2 + k^2)^{-1} (2k) = \frac{k}{m^2 + k^2}$$

この式は Γ_k のうち、 ϕ によらない定数項 C_k だけが k と共に流れていくことを示している。

4.2 フローの積分

 $\partial_k \Gamma_k$ が求まったので、これを積分することで作用 Γ_k が求まる。

$$\Gamma_{k}(\phi) = \Gamma_{\Lambda}(\phi) - \int_{k}^{\Lambda} dk' \partial_{k'} \Gamma_{k'}(\phi)$$
$$= \Gamma_{\Lambda}(\phi) - \frac{1}{2} \ln \left(\frac{m^{2} + \Lambda^{2}}{m^{2} + k^{2}} \right)$$

ここで、 Λ は非常に大きい値(UV カットオフ)である。

4.2.1 初期条件: $k = \Lambda$

 $k = \Lambda$ ではレギュレーター $R_{\Lambda} = \Lambda^2$ によって揺らぎが抑制されている。

 $\Gamma_{\Lambda}(\phi)$ は古典極限になっている。

このときの分配関数 Z_Λ は以下のように計算できる。

$$Z_{\Lambda} = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}m^2x^2 - \frac{1}{2}R_{\Lambda}x^2} = \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}(m^2 + \Lambda^2)x^2} = \sqrt{\frac{2\pi}{m^2 + \Lambda^2}}$$

 Γ_{Λ} はこの Z_{Λ} と $S(\phi)$ から求まる。

$$\Gamma_{\Lambda}(\phi) = S(\phi) - \ln Z_{\Lambda} = \frac{1}{2}m^2\phi^2 - \ln\left(\sqrt{\frac{2\pi}{m^2 + \Lambda^2}}\right)$$
$$\Gamma_{\Lambda}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2 + \Lambda^2}{2\pi}\right)$$

4.2.2 作用 $\Gamma_k(\phi)$ の関数形

積分結果に、この $\Gamma_{\Lambda}(\phi)$ を代入する。

$$\Gamma_k(\phi) = \left[\frac{1}{2} m^2 \phi^2 + \frac{1}{2} \ln \left(\frac{m^2 + \Lambda^2}{2\pi} \right) \right] - \frac{1}{2} \ln \left(\frac{m^2 + \Lambda^2}{m^2 + k^2} \right)$$

ln の項が打ち消し合い、

$$\Gamma_k(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2 + k^2}{2\pi}\right)$$

となる。

4.2.3 求めたかった k=0 における作用 $\Gamma_0(\phi)$ の関数形

k=0 では、レギュレーター $R_0=0$ となり、全てのゆらぎを取り込んだ、元の理論の真の有効作用 $\Gamma_{k=0}$ が得られる。

$$\Gamma_{k=0}(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{2}\ln\left(\frac{m^2}{2\pi}\right)$$

4.2.4 ガウス積分の値

求めたい Z は、 $Z=e^{-\Gamma_{k=0}(\phi=0)}$ で与えられる。

$$\Gamma_{k=0}(0) = \frac{1}{2} \ln \left(\frac{m^2}{2\pi} \right)$$

$$Z = e^{-\Gamma_{k=0}(0)} = \exp\left[-\frac{1}{2} \ln \left(\frac{m^2}{2\pi} \right) \right] = \exp\left[\ln \left(\left(\frac{m^2}{2\pi} \right)^{-1/2} \right) \right] = \left(\frac{m^2}{2\pi} \right)^{-1/2} = \sqrt{\frac{2\pi}{m^2}} = \frac{\sqrt{2\pi}}{m}$$

5 **まとめ**

このノートでは、関数繰り込み群 (fRG) という高度な理論的手法を、単純なガウス積分(相互作用のない理論)に対して用いた。

fRG のフローを通して、厳密かつ系統的に「ゆらぎ」の効果(この場合は ϕ によらない定数項、すなわち分配関数そのもの)を取り込んでいくかを示した。