Regresi Linear

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

October 25, 2019

Selayang Pandang

- 1 Simple Linear Regression
- 2 Multicollinearity
- 3 Basis Function Regression
- 4 Regularisation

Bahan Bacaan

- 1 VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: Linear Regression) http://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.06-Linear-Regression.ipynb
- McElreath, R. (2018). Statistical Rethinking. (Chapter 4, Chapter 8) https://xcelab.net/rm/statistical-rethinking/
- Murray, I. (2016). MLPR class notes. (Linear Regression; Regression and Gradients) http://www.inf.ed.ac.uk/ teaching/courses/mlpr/2016/notes/ (graduate level)

Gambar: Golem of Prague

"...scientific models are neither true nor false, neither prophets nor charlatans. Rather they are constructs engineered for some purpose."

- Richard McElreath

Simple Linear Regression

Prediksi hubungan antara dua variabel

Gambar: weight = 1083.77 + 18.21 horsepower

Simple Linear Regression

Fungsi linear

Kasus paling sederhana adalah mencocokkan garis lurus ke sekumpulan data

$$y = ax + b$$

dengan a adalah slope, sedangkan b dikenal dengan nama intercept.

Notasi lain

$$y = w_0 + w_1 x_1$$

dengan w adalah bobot atau koefisien.

Simple Linear Regression

Example

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
```

Mencocokkan Garis

Gambar: Hasil pencocokan garis

Model slope: 2.02720881036

Model intercept: -4.99857708555

Prediksi hubungan tenaga mobil dan konsumsi bahan bakar

Gambar: mpg = 36.75 - 0.13 horsepower

Residual

Gambar: Kita menginginkan garis (fungsi) yang meminimalkan residual

Residual Plot

Gambar: Residual plot untuk menggambarkan kinerja model

Bagaimana kalau ada lebih dari dua variabel yang ingin kita lihat hubungannya?

Multivariable Linear Regression

Model

$$y = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_D x_D = \sum_{j=0}^{D} w_j x_j$$

dengan $x_0 = 1$

Notasi matriks-vektor

$$y = \phi \mathbf{w}$$

dengan
$$\phi = (1, \mathbf{x}^T)$$

Regresi linear untuk dua variabel

Gambar: Hubungan antara 'share', 'comment', dan 'like' pada foto di Facebook

Prediktor linear (contoh)

Vektor bobot $\mathbf{w} \in \mathbb{R}^D$

bias: -20.24 share: 6.65

comment: 3.53

Vektor fitur $\phi(x) \in \mathbb{R}^D$

bias: 1 share: 147

comment: 58

$$\hat{y} = \mathbf{w} \cdot \phi(x)$$

$$= \sum_{j=1}^{D} w_j \phi_j(x)$$

$$= -20.24(1) + 6.65(147) + 3.53(58) = 1162.05$$

Jadi, diprediksi bahwa untuk foto dengan share = 147 dan comment = 58, foto tersebut akan mendapatkan ≈ 1162.05 likes.

Kita sudah tahu nilai y dan ϕ , tapi berapa nilai \mathbf{w} ?

Nyatanya, kita tidak bisa mencari nilai ϕ^{-1}

Loss Function

- $oldsymbol{\phi}$ bukan matriks bujur sangkar dan datanya mengandung noise
- Harus menggunakan loss function O(w) yang dapat diminimalkan
- Pilihan umum: squared error

$$O(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$= (\mathbf{y} - \phi \mathbf{w})^T (\mathbf{y} - \phi \mathbf{w})$$

Solusi

- Jawaban: Minimalkan $O(\mathbf{w}) = \sum_{i=1}^{n} (y_i \mathbf{w}^T \mathbf{x}_i)^2$ dengan mencari turunan parsial yang diatur sama dengan 0
- Solusi analitis:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

• Bagian $(\phi^T\phi)^{-1}\phi^T$ dikenal sebagai *pseudo-inverse*

Multicollinearity

Apakah prediksi selalu lebih baik saat prediktornya ditambah?

Kembali ke contoh mobil

Gambar: mpg = 36.75 - 0.13 horsepower

Mean Absolute Error (MAE) = 3.21

Mari tambahkan variabel prediktor!

 $\mathsf{mpg} = 43.99 - 0.01 \; \mathsf{horsepower} - 0.01 \; \mathsf{weight}$ $\mathsf{MAE} = 2.38$

Perhatikan kembali koefisiennya!

Meski MAE lebih rendah, koefisiennya menjadi semakin kecil, yang artinya variabel prediktornya makin tidak berguna(?)

Multikolinearitas

Gambar: Heatmap korelasi antarvariabel, 'horsepower' dan 'mpg' berkorelasi negatif kuat

Multikolinearitas

		coef	std err	t	P> t	[0.025	0.975]
Intercept	43.9918		1.751	25.120	0.000	40.469	47.515
horsepower	-0.0077		0.024	-0.322	0.749	-0.056	0.041
weight	-0.0067		0.001	-5.614	0.000	-0.009	-0.004
Omnibus:		3.240) Dur	Durbin-Watson:			
Prob(Omnibu	ıs):	0.198	3 Jarqu	e-Bera (JB):	2.550	
Ske	ew:	0.550)	Prob(JB):	0.279	
Kurto	sis:	3.126	6	Cond.	No.	1.26e+04	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Gambar: Pustaka statsmodels dapat mendeteksi kasus multikolinearitas

StatsModels

```
import statsmodels.formula.api as smf

model = smf.ols(
   'mpg ~ horsepower + weight',
   data=df
).fit()
model.summary()
```

Prediksi tinggi badan

Asumsikan kita ingin membuat model untuk memprediksi tinggi badan dari panjang kaki

$$height = 44.71 + 1.62 \ left_leg$$

Multikolinearitas

 $height = 44.57 - 19.27 leg_left + 20.88 leg_right$

Dengan kata lain: kalau kaki kiri lebih panjang, tinggi badan akan lebih pendek(?)

Basis Function Regression

Non-linearity

Gambar: Data yang dihasilkan dari fungsi sin dengan noise

Underfitting

Gambar: Hasil fitting regresi linear sederhana

Residual Plot

Gambar: Residual plot dari model yang mengalami underfitting

Jika model yang dihasilkan lebih sederhana dibandingkan data yang seharusnya dicocokkan, maka model tersebut disebut mengalami underfitting.

Polynomial Basis Functions

Regresi linear dengan fungsi basis polinomial

Jika kita mengubah $x_p=f_p(x)$, dengan $f_p()$ adalah fungsi transformasi, maka untuk $f_p()=x^p$ dan x adalah input berdimensi satu, modelnya menjadi

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots$$

Polynomial Basis Functions

In

```
from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])
poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])
```

Out

```
1 array([[ 2., 4., 8.],
2 [ 3., 9., 27.],
3 [ 4., 16., 64.]])
```

Best-fit

Gambar: Hasil fitting fungsi basis polinomial p = 2

Apa yang terjadi jika p dibuat lebih besar?

Overfitting

Gambar: Hasil fitting fungsi basis polinomial p = 8

Jika model yang dihasilkan lebih kompleks (\sim parameternya banyak) dibandingkan data yang seharusnya dicocokkan, maka model tersebut disebut mengalami overfitting.

Regularisation

Bagaimana cara menghindari overfitting?

Ridge Regression

- Digunakan untuk menghindari overfitting
- Dikenal juga sebagai L₂ regularisation atau Tikhonov regularisation
- Pemberian penalti untuk koefisien model

$$P = \alpha \sum_{j=1}^{p} w_j^2 = \alpha \|\mathbf{w}\|_2^2$$

Loss Function pada Ridge Regression

· Loss function yang harus diminimalkan menjadi

$$O(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = (\sum_{j=1}^p |w_j|^d)^{\frac{1}{d}}$$

Loss Function pada Ridge Regression

Loss function yang harus diminimalkan menjadi

$$O(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = \left(\sum_{j=1}^p |w_j|^d\right)^{\frac{1}{d}}$$

• Parameter α (terkadang juga ditulis sebagai λ) bernilai bebas (ditentukan oleh pengguna)

Loss Function pada Ridge Regression

Loss function yang harus diminimalkan menjadi

$$O(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \alpha \|\mathbf{w}\|_2^2$$

dengan
$$\|\mathbf{w}\|_d = \left(\sum_{j=1}^p |w_j|^d\right)^{\frac{1}{d}}$$

- Parameter α (terkadang juga ditulis sebagai λ) bernilai bebas (ditentukan oleh pengguna)
- Solusi analitis:

$$\hat{\mathbf{w}} = (\boldsymbol{\phi}^{\mathsf{T}} \boldsymbol{\phi} + \alpha I_p)^{-1} \boldsymbol{\phi}^{\mathsf{T}} \mathbf{y}$$

Gambar: Semakin besar nilai α , nilai koefisien mengerucut ke nol

Lasso Regression

- Secara konsep mirip seperti ridge regression
- Penalti dengan jumlah nilai absolut dari koefisien (1-norms; L_1 regularisation)

$$P = \alpha \sum_{j=1}^{p} |w_j|$$

Bekerja dengan membuat banyak koefisien bernilai nol

Gambar: Penalti yang diberikan lasso lebih "keras"

Referensi

Jake VanderPlas (2016)

In Depth: Linear Regression

Python Data Science Handbook

Sebastian Raschka (2015)

Single-Layer Neural Networks and Gradient Descent

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Terima kasih