import numpy as np
import pandas as pd
import matplotlib.pyplot as py
import seaborn as sns
from sklearn.linear_model import LogisticRegression

Out[2]:		date	BEN	co	EBE	MXY	NMHC	NO_2	NOx	OXY
	0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN
	1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN
	2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN
	3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN
	4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49
	225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00
	225116	2007- 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN
	225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN
	225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN
	225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37

225120 rows × 17 columns

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 225120 entries, 0 to 225119
Data columns (total 17 columns):
    Column
             Non-Null Count
                              Dtype
     -----
             -----
0
    date
             225120 non-null object
1
    BEN
             68885 non-null
                              float64
2
    C0
             206748 non-null float64
3
             68883 non-null
                              float64
    EBE
4
    MXY
             26061 non-null
                              float64
5
    NMHC
             86883 non-null
                              float64
6
    NO 2
             223985 non-null float64
7
    N0x
             223972 non-null float64
8
    0XY
             26062 non-null
                              float64
9
    0 3
             211850 non-null float64
10
    PM10
             222588 non-null float64
                              float64
11
    PM25
             68870 non-null
12 PXY
             26062 non-null
                              float64
13 S0 2
             224372 non-null float64
14
   TCH
             87026 non-null
                              float64
15
    T0L
             68845 non-null
                              float64
16 station 225120 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 29.2+ MB
```

```
In [4]: df1 =df.fillna(value=0)
df1
```

Out[4]:		date	BEN	СО	EBE	MXY	имнс	NO_2	NOx	OXY
	0	2007- 12-01 01:00:00	0.00	2.86	0.00	0.00	0.00	282.200012	1054.000000	0.00
	1	2007- 12-01 01:00:00	0.00	1.82	0.00	0.00	0.00	86.419998	354.600006	0.00
	2	2007- 12-01 01:00:00	0.00	1.47	0.00	0.00	0.00	94.639999	319.000000	0.00
	3	2007- 12-01 01:00:00	0.00	1.64	0.00	0.00	0.00	127.900002	476.700012	0.00
	4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49
	225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00
	225116	2007- 03-01 00:00:00	0.00	0.16	0.00	0.00	0.00	46.820000	51.480000	0.00
	225117	2007- 03-01 00:00:00	0.24	0.00	0.20	0.00	0.09	51.259998	66.809998	0.00
	225118	2007- 03-01 00:00:00	0.11	0.00	1.00	0.00	0.05	24.240000	36.930000	0.00
	225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37

225120 rows × 17 columns

In [5]: dfl.info()

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 225120 entries, 0 to 225119
      Data columns (total 17 columns):
           Column
                    Non-Null Count
                                    Dtype
           -----
                    -----
       0
                    225120 non-null object
           date
           BEN
                    225120 non-null float64
       1
       2
           C0
                    225120 non-null float64
       3
                    225120 non-null float64
           EBE
       4
           MXY
                    225120 non-null float64
       5
                    225120 non-null float64
           NMHC
       6
           NO 2
                    225120 non-null float64
       7
                    225120 non-null float64
           N0x
       8
           0XY
                    225120 non-null float64
       9
           0 3
                    225120 non-null float64
       10 PM10
                    225120 non-null float64
                    225120 non-null float64
       11 PM25
                    225120 non-null float64
       12 PXY
       13 S0 2
                    225120 non-null float64
       14 TCH
                    225120 non-null float64
       15 T0L
                    225120 non-null float64
       16 station 225120 non-null int64
       dtypes: float64(15), int64(1), object(1)
      memory usage: 29.2+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O
        3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [7]: df2=df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station']]
        df2
```

Out[7]:		BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_
	0	0.00	2.86	0.00	0.00	0.00	282.200012	1054.000000	0.00	4.03000
	1	0.00	1.82	0.00	0.00	0.00	86.419998	354.600006	0.00	3.26000
	2	0.00	1.47	0.00	0.00	0.00	94.639999	319.000000	0.00	5.31000
	3	0.00	1.64	0.00	0.00	0.00	127.900002	476.700012	0.00	4.50000
	4	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.68999
	225115	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.20999
	225116	0.00	0.16	0.00	0.00	0.00	46.820000	51.480000	0.00	22.15000
	225117	0.24	0.00	0.20	0.00	0.09	51.259998	66.809998	0.00	18.54000
	225118	0.11	0.00	1.00	0.00	0.05	24.240000	36.930000	0.00	0.00000
	225119	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.15000

225120 rows \times 16 columns

In [8]: sns.pairplot(df2)

C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\seabor
n\axisgrid.py:118: UserWarning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)

Out[8]: <seaborn.axisgrid.PairGrid at 0x29aa7fbce90>

In [9]: sns.distplot(df2['station'])

C:\Users\HP\AppData\Local\Temp\ipykernel_20236\1070072814.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df2['station'])

Out[9]: <Axes: xlabel='station', ylabel='Density'>

linear

Out[14]:		Co-efficient
	BEN	-4.901166
	СО	-3.332806
	EBE	1.320768
	MXY	-4.076326
	NMHC	-18.241084
	NO_2	-0.038461
	NOx	-0.000335
	OXY	7.389035
	0_3	-0.022905
	PM10	0.025985
	PM25	0.231014
	PXY	13.800943
	SO_2	-0.117629
	TCH	3.086789
	TOL	0.317025

```
In [15]: print(lr.intercept_)
```

28079023.788329333

```
In [16]: prediction =lr.predict(x_test)
    py.scatter(y_test,prediction)
```

Out[16]: <matplotlib.collections.PathCollection at 0x29ace65e990>


```
In [17]: print(lr.score(x_test,y_test))
```

0.1429631374738325

In [18]: print(lr.score(x_train,y_train))

0.14756150749971852

Ridge

Lasso

```
In [22]: la=Lasso(alpha=10)
         la.fit(x train,y train)
Out[22]: ▼
               Lasso
         Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.05464033474941632
         elasticnet
In [24]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[24]: ▼ ElasticNet
         ElasticNet()
In [25]: print(en.coef_)
        [-0.
                     -0.
                                 0.
                                              1.53407132 -0.
                                                                    -0.04534596
         -0.01527569 1.05895994 -0.02195549
                                             0.01720276  0.32492437  0.86063822
         -0.15735869 0.03856496 0.036728391
In [26]: print(en.intercept_)
        28079025,29709729
In [27]: print(en.predict(x test))
        [28079024.34385792 28079021.33979359 28079019.91992053 ...
         28079019.69538361 28079018.8352405 28079011.60003699]
In [28]: print(en.score(x_test,y_test))
        0.09907894813506457
         logistic
In [29]: feature matrix =df2.iloc[:,0:15]
         target vector=df2.iloc[:,-1]
```

```
In [30]: feature matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY'
                'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL']]
         y=df2['station']
In [31]: feature matrix.shape
Out[31]: (225120, 15)
In [32]: target vector.shape
Out[32]: (225120,)
In [33]: from sklearn.preprocessing import StandardScaler
In [34]: fs=StandardScaler().fit transform(feature matrix)
In [35]: logr = LogisticRegression()
         logr.fit(fs,target vector)
        C:\Users\HP\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklear
        n\linear model\ logistic.py:460: ConvergenceWarning: lbfgs failed to converg
        e (status=1):
        STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
        Increase the number of iterations (max iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html
        Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear model.html#logistic-regre
        ssion
          n iter i = check optimize result(
Out[35]: ▼ LogisticRegression
         LogisticRegression()
In [36]: observation=[[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16]]
In [37]: prediction =logr.predict(observation)
         print(prediction)
        [280790991
In [38]: logr.classes
Out[38]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [39]: logr.score(fs,target vector)
Out[39]: 0.46988717128642504
```

Loading [MathJax]/extensions/Safe.js

```
In [40]: logr.predict proba(observation)[0][0]
  Out[40]: 1.745952639955472e-161
  In [41]: logr.predict proba(observation)[0][1]
  Out[41]: 6.936763848931293e-219
           Random forest
  In [42]: from sklearn.ensemble import RandomForestClassifier
           from sklearn.tree import plot tree
  In [43]: x=df2.drop('station',axis=1)
           y=df2['station']
  In [44]: x train,x test,y train,y test=train test split(x,y,test size=0.70)
  In [45]: rfc=RandomForestClassifier()
            rfc.fit(x train,y train)
  Out[45]: ▼ RandomForestClassifier
           RandomForestClassifier()
  In [46]: parameters={'max depth':[1,2,3,4,5],
                        'min_samples_leaf' :[6,7,8,9,10],
                        'n estimators':[11,12,13,14,15]}
  In [47]: from sklearn.model_selection import GridSearchCV
  In [48]: grid search =GridSearchCV(estimator =rfc,param grid=parameters,cv=2,scoring=
           grid_search.fit(x_train,y_train)
  Out[48]:
                         GridSearchCV
            ▶ estimator: RandomForestClassifier
                  ▶ RandomForestClassifier
  In [49]: grid search.best score
  Out[49]: 0.4933072731580195
  In [50]: rfc best=grid search.best estimator
  In [51]: py.figure(figsize=(80,50))
           plot tree(rfc best.estimators [5],filled=True)
Loading [MathJax]/extensions/Safe.js
```

```
42794\nvalue = [2585, 2548, 2549, 2677, 2629, 2670, 2618, 2681, 2664\n2705,
                   2575, 2585, 2558, 2583, 2553, 2733, 2644, 2625\n2648, 2556, 2497, 2628, 261
                   5, 2089, 2595, 2726]'),
                    Text(0.2541666666666665, 0.75, 'x[5] \le 59.255  ngini = 0.938 \ nsamples = 2
                   6288\nvalue = [2585, 2548, 2549, 3, 10, 46, 2618, 25, 2664, 2705\n6, 2585,
                   2558, 2583, 2553, 2733, 5, 9, 2648, 32, 1\n2628, 2615, 2089, 2595, 0]'),
                    3\nsamples = 14805\nvalue = [625, 1601, 1391, 2, 9, 45, 691, 18, 1773, 143]
                   0, 6\n2198, 1878, 1281, 1190, 1258, 5, 9, 1274, 31, 1\n1879, 1385, 1359, 19
                   70, 0]'),
                    Text(0.06666666666666667, 0.416666666666667, 'x[10] \le 0.34 \cdot ngini = 0.886
                   \nsamples = 3051\nvalue = [61, 55, 1, 2, 2, 45, 281, 9, 283, 4, 4, 87\n666,
                   4, 92, 450, 1, 6, 360, 21, 1, 979, 268, 497\n623, 0]'),
                    94\nvalue = [16, 55, 1, 2, 2, 45, 281, 9, 283, 4, 3, 87\n666, 4, 92, 7, 1,
                   5, 360, 19, 1, 979, 5, 497\n623, 0]'),
                    293\nvalue = [16, 51, 1, 2, 2, 45, 265, 9, 282, 4, 3, 87\n657, 4, 86, 7, 1,
                   5, 360, 19, 1, 972, 5, 165\n530, 0]'),
                    4, 0, 0, 0, 0, 16, 0, 1, 0, 0, 0, 9, 0\n6, 0, 0, 0, 0, 0, 0, 7, 0, 332, 93,
                   0]'),
                    Text(0.1, 0.25, 'x[1] \le 0.285 \cdot gini = 0.531 \cdot gini = 457 \cdot gini = 4
                   0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0\n0, 443, 0, 1, 0, 2, 0, 0, 263, 0, 0,
                   0]'),
                    9\nvalue = [15, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0\n0, 246, 0, 0, 0, 2,
                   0, 0, 229, 0, 0, 0]'),
                    Text(0.11666666666666667, 0.08333333333333333, 'qini = 0.405\nsamples = 14
                   8\nvalue = [30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 197, 0, 1, 0, 0,
                   0, 0, 34, 0, 0, 0]'),
                    Text(0.2, 0.416666666666667, 'x[12] \le 9.655 \setminus gini = 0.93 \setminus gini = 1175
                   4\nvalue = [564, 1546, 1390, 0, 7, 0, 410, 9, 1490, 1426, 2\n2111, 1212, 12
                   77, 1098, 808, 4, 3, 914, 10, 0, 900\n1117, 862, 1347, 0]'),
                    43\nvalue = [405, 1089, 859, 0, 7, 0, 272, 9, 1031, 1136, 2\n1706, 747, 116
                   8, 815, 540, 4, 3, 759, 10, 0, 294\n642, 847, 305, 0]'),
                    5, 0, 0, 7, 0, 0, 4, 6, 22, 1, 236, 22\n3, 245, 45, 0, 0, 145, 10, 0, 0, 19
                   4, 451, 83\n0]'),
                    Text(0.18333333333333333, 0.0833333333333333, 'qini = 0.92\nsamples = 705
                   7\ value = [333, 1084, 859, 0, 0, 0, 272, 5, 1025, 1114, 1\ 1\n1470, 725, 116
                   5, 570, 495, 4, 3, 614, 0, 0, 294\n448, 396, 222, 0]'),
                    Text(0.23333333333333334, 0.25, 'x[12] \le 13.975  | mgini = 0.91 | nsamples = 3
                   711\nvalue = [159, 457, 531, 0, 0, 0, 138, 0, 459, 290, 0, 405\n465, 109, 2
                   83, 268, 0, 0, 155, 0, 0, 606, 475\n15, 1042, 0]'),
                    Text(0.21666666666666667, 0.0833333333333333, 'gini = 0.894 \nsamples = 25
                   24\nvalue = [85, 295, 323, 0, 0, 0, 94, 0, 239, 271, 0, 290\n288, 92, 183,
                   211, 0, 0, 90, 0, 0, 236, 289, 14\n961, 0]'),
                    4, 162, 208, 0, 0, 0, 44, 0, 220, 19, 0, 115\n177, 17, 100, 57, 0, 0, 65,
                   0, 0, 370, 186, 1\n81, 0]'),
                    Text(0.375, 0.58333333333333334, 'x[6] \le 99.755  ngini = 0.928 \ nsamples = 1
                   1483\nvalue = [1960, 947, 1158, 1, 1, 1, 1927, 7, 891, 1275, 0\n387, 680, 1
Loading [MathJax]/extensions/Safe.js , 1475, 0, 0, 1374, 1, 0, 749 \ln 1230, 730, 625, 0]'),
```

```
samples = 2150 \cdot \text{nvalue} = [154, 273, 324, 0, 0, 0, 176, 1, 178, 147, 0, 89 \cdot \text{n}]
76, 238, 382, 265, 0, 0, 150, 0, 0, 215, 237\n239, 177, 0]'),
Text(0.3, 0.25, 'x[12] \le 5.715 \cdot ngini = 0.914 \cdot nsamples = 1760 \cdot nvalue = [2, 1.5]
273, 324, 0, 0, 0, 176, 1, 178, 147, 0, 89\n176, 238, 382, 2, 0, 0, 150, 0,
0, 215, 8, 239\n177, 0]'),
\nvalue = [0, 8, 4, 0, 0, 0, 82, 0, 7, 0, 0, 2, 48, 0 n57, 0, 0, 0, 60, 0,
0, 133, 0, 134, 59, 0]'),
Text(0.31666666666666665, 0.08333333333333333, 'qini = 0.904\nsamples = 13
85\nvalue = [2, 265, 320, 0, 0, 0, 94, 1, 171, 147, 0, 87\n128, 238, 325,
2, 0, 0, 90, 0, 0, 82, 8, 105\n118, 0]'),
Text(0.3666666666666664, 0.25, 'x[1] \le 0.635 \text{ ngini} = 0.651 \text{ nsamples} = 39
0\nvalue = [152, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 263, 0, 0, 0, 0,
0, 0, 229, 0, 0, 0]'),
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 263, 0, 0, 0, 0, 0, 0, 207, 0, 0,
0]'),
0, 22, 0, 0, 0]'),
Text(0.4166666666666667, 0.416666666666667, 'x[6] \le 145.15 
\n = 9333\n = [1806, 674, 834, 1, 1, 1, 1751, 6, 713, 1128, 0\n
298, 504, 1064, 981, 1210, 0, 0, 1224, 1, 0, 534\n993, 491, 448, 0]'),
Text(0.4, 0.25, 'qini = 0.929\nsamples = 3239\nvalue = [497, 322, 300, 0, ]
0, 1, 494, 2, 290, 385, 0, 94\n206, 351, 406, 478, 0, 0, 339, 0, 0, 192, 38
9\n201, 163, 0]'),
94\nvalue = [1309, 352, 534, 1, 1, 0, 1257, 4, 423, 743, 0\n204, 298, 713,
575, 732, 0, 0, 885, 1, 0, 342\n604, 290, 285, 0]'),
Text(0.4166666666666667, 0.083333333333333333, 'qini = 0.903\nsamples = 449
7\nvalue = [20, 352, 534, 0, 1, 0, 1257, 4, 423, 743, 0, 204\n298, 713, 57
5, 2, 0, 0, 885, 0, 0, 342, 63, 290\n285, 0]'),
89, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 730, 0, 0, 0, 1, 0, 0, 541,
0, 0, 0]'),
\nvalue = [0, 0, 0, 2674, 2619, 2624, 0, 2656, 0, 0, 2569\n0, 0, 0, 0, 0, 2
639, 2616, 0, 2524, 2496, 0, 0\n0, 0, 2726]'),
Text(0.6, 0.5833333333333334, 'x[0] \le 0.05 \cdot ngini = 0.858 \cdot nsamples = 11506
\nvalue = [0, 0, 0, 33, 2619, 2624, 0, 2656, 0, 0, 2569, 0 \n0, 0, 0, 0, 263]
9, 25, 0, 2524, 2496, 0, 0, 0\n0, 0]'),
\n in samples = 3515 \nvalue = [0, 0, 0, 29, 2619, 21, 0, 2656, 0, 0, 168, 0\n0,
0, 0, 0, 6, 24, 0, 3, 0, 0, 0, 0, 0, 0]'),
Text(0.5, 0.25, 'x[10] \le 0.48 \cdot gini = 0.479 \cdot gsamples = 797 \cdot gsamples = [0, 0.48]
0, 0, 2, 440, 4, 0, 799, 0, 0, 14, 0, 0 \setminus 0, 0, 4, 0, 0, 1, 0, 0, 0, 0
0, 0]'),
Text(0.4833333333333334, 0.0833333333333333, 'gini = 0.465 \nsamples = 78
6\nvalue = [0, 0, 0, 0, 440, 4, 0, 799, 0, 0, 0, 0, 0\n0, 0, 4, 0, 0, 0,
0, 0, 0, 0, 0, 0]'),
Text(0.5166666666666667, 0.08333333333333333, 'gini = 0.304 \nsamples = 11
\nvalue = [0, 0, 0, 2, 0, 0, 0, 0, 0, 14, 0, 0, 0 \n0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0]'),
Text(0.5666666666666667, 0.25, 'x[9] \le 42.095 \cdot gini = 0.547 \cdot gini = 27
```

 $\frac{1.00 \times 1.00}{\text{Loading [MathJax]/extensions/Safe.js}} = [0, 0, 0, 27, 2179, 17, 0, 1857, 0, 0, 154, 0 \ n0, 0, 0, 0, 2, 2]$

```
4, 0, 2, 0, 0, 0, 0, 0, 0]'),
0, 0, 21, 1464, 16, 0, 1369, 0, 0, 68, 0, 0\n0, 0, 0, 1, 23, 0, 2, 0, 0,
0, 0, 0]'),
Text(0.5833333333333334, 0.08333333333333333, 'qini = 0.551\nsamples = 828
\nvalue = [0, 0, 0, 6, 715, 1, 0, 488, 0, 0, 86, 0, 0 \setminus n0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0]
Text(0.6666666666666666, 0.416666666666667, 'x[14] \le 2.365 \text{ ngini} = 0.8 \text{ ngini}
samples = 7991\nvalue = [0, 0, 0, 4, 0, 2603, 0, 0, 0, 0, 2401, 0, 0\nvalue, 0, 0, 0, 0, 0, 0, 0, 0]
0, 2633, 1, 0, 2521, 2496, 0, 0, 0, 0, 0]'),
67\nvalue = [0, 0, 0, 0, 0, 746, 0, 0, 0, 51, 0, 0, 0\n0, 0, 1089, 1, 0,
1839, 1971, 0, 0, 0, 0, 0]'),
Text(0.6166666666666667, 0.08333333333333333, 'gini = 0.447 \ nsamples = 815
\nvalue = [0, 0, 0, 0, 0, 169, 0, 0, 0, 12, 0, 0, 0 \setminus 10, 0, 949, 0, 0, 19]
1, 0, 0, 0, 0, 0, 0]'),
0, 0, 0, 0, 577, 0, 0, 0, 39, 0, 0, 000, 0, 140, 1, 0, 1648, 1971, 0,
0, 0, 0, 0]'),
Text(0.7, 0.25, 'x[1] \le 0.06 \cdot gini = 0.75 \cdot samples = 4424 \cdot value = [0, 0, 0]
0, 4, 0, 1857, 0, 0, 0, 0, 2350, 0, 0\n0, 0, 0, 1544, 0, 0, 682, 525, 0, 0,
0, 0, 0]'),
\nvalue = [0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0 \setminus n0, 0, 0, 0, 682, 52]
5, 0, 0, 0, 0, 0]'),
Text(0.7166666666666667, 0.08333333333333333, 'qini = 0.657\nsamples = 364
0\nvalue = [0, 0, 0, 4, 0, 1855, 0, 0, 0, 0, 2349, 0, 0\n0, 0, 0, 1544, 0,
0, 0, 0, 0, 0, 0, 0, 0]'),
Text(0.8666666666666667, 0.5833333333333334, 'x[5] \le 29.965 \cdot qini = 0.667
nsamples = 5000 \quad e = [0, 0, 0, 2641, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 2591, 0, 0, 0, 0, 0, 0, 0, 2726]'),
Text(0.8, 0.4166666666666667, 'x[4] \le 0.155 \cdot gini = 0.377 \cdot gini = 1204
0, 0, 0, 0, 0, 305]'),
Text(0.7666666666666667, 0.25, 'x[11] \le 0.995 \text{ ngini} = 0.628 \text{ nsamples} = 30
3\nvalue = [0, 0, 0, 83, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 209, 0, 0,
0, 0, 0, 0, 0, 171]'),
0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 48, 0, 0, 0, 0, 0, 0, 1
44]'),
\nvalue = [0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 161, 0, 0,
0, 0, 0, 0, 0, 27]'),
Text(0.83333333333333334, 0.25, 'x[11] \le 0.995 \text{ ngini} = 0.227 \text{ nsamples} = 90
1\nvalue = [0, 0, 0, 45, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 1234, 0, 0,
0, 0, 0, 0, 0, 134]'),
Text(0.8166666666666667, 0.083333333333333333, 'qini = 0.384 \ nsamples = 434
\nvalue = [0, 0, 0, 38, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 519, 0, 0,
0, 0, 0, 0, 0, 125]'),
0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\, 15, 0, 0, 0, 0, 0, 0, 0,
9]'),
nsamples = 3796 \quad [0, 0, 0, 2513, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
0, 0, 1148, 0, 0, 0, 0, 0, 0, 0, 2421]'),
```

0, 0, 278, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 359, 0, 0, 0, 0, 0, 0, 35]'),

concusion

The bestfit model is Random Forest with score of 0.4933072731580195

In []: