Méthodes statistiques en traduction automatique

François Yvon

avec l'aide de D. Déchelotte, P. Koehn, P. Langlais, H. Schwenk, P. Knight

LIMSI-CNRS & Université Paris-Sud 11

January 20, 2011

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

- Domaine scientifique complexe faisant intervenir pratiquement tous les aspects du traitement du langage naturel
- Domaine de recherche ancien (Russe/Anglais)
- Initialement plutôt approches "classiques", IA + TAL: utilisation de Parseurs, de règles développées par des humains, ...
- Initialement, traduction de textes; depuis quelques années, traduction de la parole

- Domaine scientifique complexe faisant intervenir pratiquement tous les aspects du traitement du langage naturel
- Domaine de recherche ancien (Russe/Anglais)
- Initialement plutôt approches "classiques", IA + TAL: utilisation de Parseurs, de règles développées par des humains, ...
- Initialement, traduction de textes; depuis quelques années, traduction de la parole

- Domaine scientifique complexe faisant intervenir pratiquement tous les aspects du traitement du langage naturel
- Domaine de recherche ancien (Russe/Anglais)
- Initialement plutôt approches "classiques", IA + TAL: utilisation de Parseurs, de règles développées par des humains, ...
- Initialement, traduction de textes; depuis quelques années, traduction de la parole

- Domaine scientifique complexe faisant intervenir pratiquement tous les aspects du traitement du langage naturel
- Domaine de recherche ancien (Russe/Anglais)
- Initialement plutôt approches "classiques", IA + TAL: utilisation de Parseurs, de règles développées par des humains, ...
- Initialement, traduction de textes; depuis quelques années, traduction de la parole

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- ► Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 - (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 - (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 - (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 - (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 (il n'est pas toujours facile de trouver de traducteurs)

Traduire et localiser

Quelques applications de la TA

- ▶ Grande quantité de pages en langue étrangère
 ⇒ inaccessible sans traduction automatique
- Communauté européenne : nombre croissant de langues officielles ⇒ grand effort de traduction
- ► Mondialisation ⇒ multiplication des échanges et rencontres entre locuteurs de langues différentes (conversations, documentations, règlementations, etc)
- Traduction de parole téléphonique
- Applications humanitaires et militaires dans des pays étrangers
 (il n'est pas toujours facile de trouver de traducteurs)

Difficultés de la traduction Automatique

Pourquoi la traduction est-elle difficile ?

- ► Problèmes de morphologie (les langues ne marquent pas toutes les mêmes distinctions)
- L'ordre des mots varie entre les langues
- Les mots peuvent avoir plusieurs sens
- Expressions idiomatiques
- Résolution des références
- Tout est-il traduisible ??

Variations dans l'ordre des mots et des groupes syntaxiques

- ► Anglais: adjectif-noun et sujet-verb-objet
- ► Français: noun-adjectif
- ▶ Japonais: sujet-objet-verb
- Allemand: position du verbe "inhabituelle" (rejet en fin dans certaines constructions verbales)
- ⇒ Il faut réordonner" les mots

Belle marquise...

Exemples:

- anglais / japonais
 - ► IBM bought Lotus ↔ IBM Lotus bought
 - ▶ Reporters said IBM bought Lotus ↔ Reporters IBM Lotus bought said
- français / anglais
 - ▶ une voiture neuve ↔ a new car
 - ▶ une voiture de course ↔ a racing car

Quelques problèmes de sémantique

Ambiguïté sémantique: multiplicité des sens d'un mot

- Anglais : plant (arbre ou entreprise); bank (banque ou bord d'une rivière)
- Français : allumer (une cigarette ou le moteur), couper (les cheveux (en 4) ou le moteur)
- ⇒ Souvent les sens différents correspondent à des traductions différentes

Idiomes

- Expressions poly-léxématiques qu'on ne peut traduire mot par mot (= non-compositionnelles)
- lacktriangledown être au pied du mur o To be at the foot of the wall ?
- ▶ tenir sa langue → keep ones tongue ?
- ▶ ne pas mâcher ses mots → not to chew ones words ?

Quelques problèmes de sémantique

Ambiguïté sémantique: multiplicité des sens d'un mot

- Anglais : plant (arbre ou entreprise); bank (banque ou bord d'une rivière)
- Français : allumer (une cigarette ou le moteur), couper (les cheveux (en 4) ou le moteur)
- ⇒ Souvent les sens différents correspondent à des traductions différentes

Idiomes

- Expressions poly-léxématiques qu'on ne peut traduire mot par mot (= non-compositionnelles)
- être au pied du mur → To be at the foot of the wall ?
- ▶ tenir sa langue → keep ones tongue ?
- ▶ ne pas mâcher ses mots → not to chew ones words ?

Problèmes de morpho-syntaxe

Utilisation des pronoms

- Certaines langues autorisent l'omission des pronoms personnels sujet (eg. espagnol, italien)
- Parfois la forme verbale identifie le bon pronom
- ► Mais pas son genre ... (he, she ou it)

Marques flexionnelles

- ► He is nice → II est beau vs She is nice → Elle est belle : accord d'un côté mais pas de l'autre
- ► Ich gebe der Frau einen Buch → Je donne à la femme un livre: marques casuelles d'un côté pas de l'autre
- Arabe : singulier, pluriel et dual

Traduire est + difficile quand la cible est morphologiquement riche.

Problèmes de morpho-syntaxe

Utilisation des pronoms

- Certaines langues autorisent l'omission des pronoms personnels sujet (eg. espagnol, italien)
- Parfois la forme verbale identifie le bon pronom
- ► Mais pas son genre ... (he, she ou it)

Marques flexionnelles

- ► He is nice → Il est beau vs She is nice → Elle est belle : accord d'un côté mais pas de l'autre
- ► Ich gebe der Frau einen Buch → Je donne à la femme un livre: marques casuelles d'un côté pas de l'autre
- Arabe : singulier, pluriel et dual

Traduire est + difficile quand la cible est morphologiquement riche.

Problèmes de morpho-syntaxe

Utilisation des pronoms

- Certaines langues autorisent l'omission des pronoms personnels sujet (eg. espagnol, italien)
- Parfois la forme verbale identifie le bon pronom
- ► Mais pas son genre ... (he, she ou it)

Marques flexionnelles

- ► He is nice → Il est beau vs She is nice → Elle est belle : accord d'un côté mais pas de l'autre
- ► Ich gebe der Frau einen Buch → Je donne à la femme un livre: marques casuelles d'un côté pas de l'autre
- Arabe : singulier, pluriel et dual

Traduire est + difficile quand la cible est morphologiquement riche.

Les difficultés de la traduction

- en: Should this fail to materialise, we should not be surprised if public opinion proves sceptical about Europe, or even rejects it.
- fr: Faute de quoi comment s'étonner du scepticisme, voire du rejet de l'Europe dans l'opinion publique.
- → construction verbale (proves sceptical...rejects) en anglais, nominale (scepticisme...du rejet) en français

Les difficultés de la traduction

- en: The Intergovernmental Conference to address a third subject on the reform of the European institutions is also of decisive significance for us in Parliament.
- fr: Pour nous, en tant que Parlement et j'aborde là un troisième thème -, la Conférence intergouvernementale sur la réforme des institutions européennes est aussi éminemment importante.
- ▶ ⇒ déplacement majeur de ...for us in parliament

Les difficultés de la traduction

- en: ... because it has made a major contribution to this project.
- fr: ... parce qu'il a contribué fortement à ce travail.
- ⇒ construction nominale (made a major contribution) en anglais, verbale (a contribué) en français

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humans
 - Minimisor le problème d'acquisition de connaissances
 Example-based machine translation (EBMT)
 - Approache statistique (Statistical machine translation)
- Systèmes hybrides

- Traduction mot par mot
- Transfert syntaxique

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - ⇒ Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - Corpus-, memory- similarity-based MT
 - Approche statistique (Statistical machine translation)
- Systèmes hybrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - ⇒ Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - ► Corpus-, memory- similarity-based M7
 - Approche statistique (Statistical machine translation)
- Svstèmes hvbrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - → Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - Corpus-, memory- similarity-based MT
 - Approche statistique (Statistical machine translation)
- Systèmes hybrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - ⇒ Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - ► Corpus-, memory- similarity-based Mi
 - Approche statistique (Statistical machine translation)
- Svstèmes hvbrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - ⇒ Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - Corpus-, memory- similarity-based MT
 - Approche statistique (Statistical machine translation)
- Systèmes hybrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - → Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - Corpus-, memory- similarity-based MT
 - Approche statistique (Statistical machine translation)
- Systèmes hybrides

- Traduction mot par mot
- Transfert syntaxique
- Utilisation d'une "langue" pivot (Interlingua)
- Approches utilisant des textes déjà traduits
 - Utiliser "l'expertise" contenue dans des traductions effectuées par des humains
 - ⇒ Minimiser le problème d'acquisition de connaissances
 - Example-based machine translation (EBMT)
 - Corpus-, memory- similarity-based MT
 - Approche statistique (Statistical machine translation)
- Systèmes hybrides

Traduire avec un dictionnaire

Traduction mot par mot

- Utilisation d'un dictionnaire bilingue pour traduire chaque mot dans un texte (de façon indépendante)
- Facile à mettre en place
- Le résultat donne une vague idée du sujet du texte
- ► Problèmes avec l'ordre, le sens de mots, les expressions,

très mauvaise solution

Traduire avec un dictionnaire

Traduction mot par mot

- Utilisation d'un dictionnaire bilingue pour traduire chaque mot dans un texte (de façon indépendante)
- Facile à mettre en place
- Le résultat donne une vague idée du sujet du texte
- ▶ Problèmes avec l'ordre, le sens de mots, les expressions,

très mauvaise solution

Traduction Automatique par transfert syntaxique

Principes

- 1. Analyse (morpho-) syntaxique de la phrase source
- 2. Ré-arrangement des composantes
- 3. Traduction des mots
- 4. Génération de la phrase source

Pros & Cons

- Aborde le réordonnement des mots
- Nécessite des règles de transfert pour chaque paire de langue
- Travail difficile, besoin d'experts (linguistes bi-lingues)

Peut être performant, mais lourd à développer et à maintenir, faible robustesse

Traduction Automatique par transfert syntaxique

Principes

- 1. Analyse (morpho-) syntaxique de la phrase source
- 2. Ré-arrangement des composantes
- 3. Traduction des mots
- 4. Génération de la phrase source

Pros & Cons

- Aborde le réordonnement des mots
- Nécessite des règles de transfert pour chaque paire de langue
- Travail difficile, besoin d'experts (linguistes bi-lingues)

Peut être performant, mais lourd à développer et à maintenir, faible robustesse

Utilisation d'une langue pivot

Approche Interlingua

- Utiliser une "langue" intermédiaire pour le transfert par exemple la logique des prédicats
- Traduire: analyser l'entrée, construire la forme logique, générer en langue cible

Traiter plusieurs paires de langues est facilité

Utilisation d'une langue pivot

Approche Interlingua

- Utiliser une "langue" intermédiaire pour le transfert par exemple la logique des prédicats
- Traduire: analyser l'entrée, construire la forme logique, générer en langue cible

Traiter plusieurs paires de langues est facilité

Traduction à base d'exemples (EBMT)

Les grands principes

- systématiser l'utilisation de mémoires de traduction = phrases déjà traduites
- pour généraliser: décomposer les traductions mémorisées en plusieurs appariemments
- pour traduire: décomposer la phrase cible, l'analyser, extraire des exemples exploitables, recombiner les fragments extraits

Défis

- Localiser des phrases/fragments similaires dans un corpus
- Alignement des fragments
- Choisir les bons fragments
- Recombinaison des fragments dans la phrase cible
- Sélection parmi plusieurs solutions

Traduction à base d'exemples (EBMT)

Les grands principes

- systématiser l'utilisation de mémoires de traduction = phrases déjà traduites
- pour généraliser: décomposer les traductions mémorisées en plusieurs appariemments
- pour traduire: décomposer la phrase cible, l'analyser, extraire des exemples exploitables, recombiner les fragments extraits

Défis

- Localiser des phrases/fragments similaires dans un corpus
- Alignement des fragments
- Choisir les bons fragments
- Recombinaison des fragments dans la phrase cible
- Sélection parmi plusieurs solutions

- Évaluer les systèmes de traduction est une question difficile
- Il existe des métriques subjectives et objectives
- La mesure BLEU . . .
- quantifie la ressemblance avec des traductions de références
- Formellement, une moyenne géomérique de la précision n-gram

Calcul du score BLEU

Ref1: I am happy

I am feeling good

- Évaluer les systèmes de traduction est une question difficile
- Il existe des métriques subjectives et objectives
- La mesure BLEU . . .
- quantifie la ressemblance avec des traductions de références
- Formellement, une moyenne géomérique de la précision n-gram

Calcul du score BLEU

Ref1: I am happy

I am feeling good

$$p_1 = 1$$

- Évaluer les systèmes de traduction est une question difficile
- Il existe des métriques subjectives et objectives
- La mesure BLEU . . .
- quantifie la ressemblance avec des traductions de références
- Formellement, une moyenne géomérique de la précision n-gram

Calcul du score BLEU

Ref1: I am happy

I am feeling good

$$p_1 = 1$$
 $p_2 = \frac{2}{3}$

- Évaluer les systèmes de traduction est une question difficile
- Il existe des métriques subjectives et objectives
- La mesure BLEU . . .
- quantifie la ressemblance avec des traductions de références
- Formellement, une moyenne géomérique de la précision n-gram

Calcul du score BLEU

Ref1: I am happy

I am feeling good

$$p_1 = 1$$
 $p_2 = \frac{2}{3}$ $p_3 = \frac{1}{2}$ $p_4 = \frac{0}{1}$

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

Le modèle du canal bruité

Canal Bruité

f une phrase *source* [Français], traduire **f**= résoudre:

$$\underset{e}{\operatorname{argmax}} P(\mathbf{e}|\mathbf{f}) = \underset{e}{\operatorname{argmax}} P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$$

où le maximum est calculé sur l'ensemble de toutes les phrases **e** du langage *cible* [English],

Les deux modèles

- ▶ p(f|e) définit le modèle de transfert:
 - mesure la qualité de l'appariement entre e et f
 - estimée sur des corpus parallèles
- ▶ p(e) définit le modèle de langue
 - mesure la "qualité" (syntaxique, sémantique) de la traduction en cible
 - estimée sur des corpus monolingues
 - (cf. cours modélisation du langage)

Le modèle du canal bruité

Canal Bruité

f une phrase *source* [Français], traduire **f**= résoudre:

$$\underset{e}{\operatorname{argmax}} P(\mathbf{e}|\mathbf{f}) = \underset{e}{\operatorname{argmax}} P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$$

où le maximum est calculé sur l'ensemble de toutes les phrases **e** du langage *cible* [English],

Les deux modèles

- $ightharpoonup p(\mathbf{f}|\mathbf{e})$ définit le modèle de transfert:
 - mesure la qualité de l'appariement entre e et f
 - estimée sur des corpus parallèles
- ▶ p(e) définit le modèle de langue
 - mesure la "qualité" (syntaxique, sémantique) de la traduction en cible
 - estimée sur des corpus monolingues
 - (cf. cours modélisation du langage)

Pourquoi le canal bruité ?

Un modèle paradoxal

Pour produire une phrase en français, le locuteur choisit une phrase en anglais (avec probabilité $P(\mathbf{e})$), puis la passe dans un canal bruité.

L'intérêt du canal bruité Décomposer:

$$\underset{\mathbf{e}}{\operatorname{argmax}} P(\mathbf{e}|\mathbf{f}) = \underset{\mathbf{e}}{\operatorname{argmax}} P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$$

permet de séparer le problème:

- P(f|e) sélectionne des phrases cibles qui sont des appariemments probables de f
- P(e) sélectionne des phrases cibles qui sont probablement des phrases correctes

Pourquoi le canal bruité ?

Un modèle paradoxal

Pour produire une phrase en français, le locuteur choisit une phrase en anglais (avec probabilité $P(\mathbf{e})$), puis la passe dans un canal bruité.

L'intérêt du canal bruité Décomposer:

$$\underset{\mathbf{e}}{\operatorname{argmax}} P(\mathbf{e}|\mathbf{f}) = \underset{\mathbf{e}}{\operatorname{argmax}} P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$$

permet de séparer le problème:

- P(f|e) sélectionne des phrases cibles qui sont des appariemments probables de f
- ► *P*(**e**) sélectionne des phrases cibles qui sont probablement des phrases correctes

Décodage argmax $P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$

Décodage argmax $P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$

Décodage argmax $P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$

Les corpus alignés: le nerf de la guerre

Pourquoi	donc	les	pro-
ducteurs	d'armes	de	ľUE
devraient-	ils s'en	richir	sur
le dos de	e person	nes	inno-
centes?			

So why should EU arms producers profit at the expense of innocent people?

Sources principales:

- ► Institutions multi-lingues (Canada, Suisse, EU)
- Textes techniques (documentations, cours)
- "Classiques" de la littérature (Bible, etc)

Ces ressources sont rares, mais faciles à aligner phrase à phrase

Les corpus alignés: le nerf de la guerre

Pourquoi donc les pro-	So why should EU arms pro-
ducteurs d'armes de l'UE	ducers profit at the expense
devraient-ils s'enrichir sur	of innocent people?
le dos de personnes inno-	
centes?	

Sources principales:

- Institutions multi-lingues (Canada, Suisse, EU)
- Textes techniques (documentations, cours)
- "Classiques" de la littérature (Bible, etc)

Ces ressources sont rares, mais faciles à aligner phrase à phrase

Les corpus alignés: le nerf de la guerre

Pourquoi				
ducteurs	d'armes	de	ľUE	dι
devraient-	ils s'en	richir	sur	of
le dos de	person	nes	inno-	
centes?				

So why should EU arms producers profit at the expense of innocent people?

Sources principales:

- Institutions multi-lingues (Canada, Suisse, EU)
- Textes techniques (documentations, cours)
- "Classiques" de la littérature (Bible, etc)

Ces ressources sont rares, mais faciles à aligner phrase à phrase

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements

200 angriornorito mot a mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

Introduction des alignements

- ► l'estimation directe de P(f|e) est impossible
- ▶ la décomposition $P(\mathbf{f}|\mathbf{e}) = \prod_i P(f_i|e_i)$ est trop simpliste
- ➤ ⇒ décomposition via des alignements latents:

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{a}, \mathbf{f}|\mathbf{e})$$

où ${\mathcal A}$ est l'ensemble des alignements entre ${\mathbf e}$ et ${\mathbf f}$

Mary₁ n'₂ est₃ pas₄ d'accord₅ avec₆ les₇ amis₈ de₉ John₁₀

Mary₁ does₂ not₃ agree₄ with₅ John's₆ friends₇

▶ un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,3), (5,4) \dots\}$$

 $2^{l \times J}$ relations possibles

▶ un alignement = application partielle de *J* vers *l*:

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

"seulement" I^J applications possibles

Mary₁ n'₂ est₃ pas₄ d'accord₅ avec₆ les₇ amis₈ de₉ John₁₀

Mary₁ does₂ not₃ agree₄ with₅ John's₆ friends₇

▶ un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,3), (5,4) \dots\}$$

 $2^{I \times J}$ relations possibles

▶ un alignement = application partielle de J vers I:

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

"seulement" I^J applications possibles

Mary₁ n'₂ est₃ pas₄ d'accord₅ avec₆ les₇ amis₈ de₉ John₁₀

Mary₁ does₂ not₃ agree₄ with₅ John's₆ friends₇

• un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,3), (5,4) \ldots\}$$

$2^{I \times J}$ relations possibles

▶ un alignement = application partielle de J vers I:

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

"seulement" IJ applications possibles

Mary₁ n'₂ est₃ pas₄ d'accord₅ avec₆ les₇ amis₈ de₉ John₁₀

Mary₁ does₂ not₃ agree₄ with₅ John's₆ friends₇

• un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,3), (5,4) \dots\}$$

 $2^{I \times J}$ relations possibles

▶ un alignement = application partielle de J vers I:

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

"seulement" IJ applications possibles

Apories des alignements mots à mots

- chaque mot source apparié à exactement un mot cible ?
 - ► e = slap / f = donner une claque
 - ► e = thank you / f = merci
 - ▶ e = in accordance with / f = dans le respect de
- et les mots non alignés (en cible) ?
- asymétrie des alignements

Modélisation avec alignements cachés

Notations

- $\mathbf{f} = f_1^J = f_1 \dots f_J$ la phrase source (J mots)
- $\mathbf{e} = e_1^I = e_1 \dots e_I$ la phrase cible (I mots)
- problème: décomposer P(a, f|e)

Structure du modèle génératif

- choisir J sachant e_1^I
- ▶ pour chaque position $j \in [1 : J]$
 - choisir a_i sachant $J, a_1^{j-1}, f_1^{j-1}, e_1^j$
 - choisir f_j sachant $J, a_1^j, f_1^{j-1}, e_1^j$

$$P(a_1^J, f_1^J | e_1^I) = P(J | e_1^I) \prod_j P(a_j | a_1^{j-1}, f_1^{j-1}, e_1^I) P(f_j | a_1^I, f_1^{j-1}, e_1^I)$$

Modélisation avec alignements cachés

Notations

- $\mathbf{f} = f_1^J = f_1 \dots f_J$ la phrase source (J mots)
- $\mathbf{e} = e_1^I = e_1 \dots e_I$ la phrase cible (I mots)
- problème: décomposer P(a, f|e)

Structure du modèle génératif

- choisir J sachant e₁^l
- ▶ pour chaque position $j \in [1 : J]$
 - choisir a_i sachant $J, a_1^{i-1}, f_1^{i-1}, e_1^l$
 - choisir f_j sachant $J, a_1^j, f_1^{j-1}, e_1^j$

$$P(a_1^J, f_1^J | e_1^J) = P(J | e_1^J) \prod_j P(a_j | a_1^{j-1}, f_1^{j-1}, e_1^J) P(f_j | a_1^J, f_1^{j-1}, e_1^J)$$

Modéliser les alignements: avec des HMMs

Hypothèses

- J ne dépend que de I
- ▶ a_i ne dépend que de a_{i-1} et e_1^I (dépendance Markovienne)
- ▶ f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir J sachant I
- ▶ pour chaque position $j \in [1 : J]$
 - ▶ choisir $a_i | I, a_{i-1}, e_1^I$, 'indice du mot qui engendre f_i
 - ▶ choisir $f_j|J, e_{a_j}$: sachant le mot cible, choisir le mot source

$$P(a_1^J, f_1^J|e_1^I) = P(J|I) \prod_i P(a_i|a_{j-1}, e_1^I) P(f_i|e_{a_i})$$

Modéliser les alignements: avec des HMMs

Hypothèses

- ▶ J ne dépend que de I
- ▶ a_i ne dépend que de a_{i-1} et e_1^I (dépendance Markovienne)
- ▶ f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir J sachant I
- ▶ pour chaque position $j \in [1 : J]$
 - choisir $a_i | I, a_{i-1}, e_1^I$, 'indice du mot qui engendre f_i
 - choisir $f_j|J,e_{a_j}$: sachant le mot cible, choisir le mot source

$$P(a_1^J, f_1^J|e_1^I) = P(J|I) \prod_j P(a_j|a_{j-1}, e_1^I) P(f_j|e_{a_j})$$

Engendrer des alignements avec un HMM

```
Target: e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9
```

```
1 ... |f(x)| \Rightarrow 0 = 9

1 ... |f(x)| = 1

2 |a_2| = P(a_2|1) |a_2| = 2 |f_2| = P(f|seems) |f_2| = me

3 ... |f(x)| = 1

4 |a_1| = P(a_2|2) |a_1| = 3 |f_2| = P(f|f(seems)) |f_3| = que

5 ... |f(x)| = 1

6 |a_3| = P(a_3|5) |a_3| = 6 |f_3| = P(f|seems) |f_3| = est

7 ... |f(x)| = 1

8 |a_3| = P(a_3|7) |a_3| = 8 |f_3| = P(f|seems) |f_3| = bonne

9
```

Engendrer des alignements avec un HMM

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

Engendrer des alignements avec un HMM

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

$$J \sim P(J|9) \Rightarrow J = 9$$
1 $a_1 \sim P(a_1) : a_1 = 1$ $f_4 \sim P(f|this) : f_4 = il$
2 $a_2 \sim P(a_2|1) : a_2 = 2$ $f_2 \sim P(f|seems) : f_2 = me$
3 $a_3 \sim P(a_3|2) : a_4 = 3$ $f_4 \sim P(f|to) : f_4 = que$
5 $a_4 \sim P(a_4|2) : a_4 = 3$ $f_4 \sim P(f|to) : f_6 = est$
6 $a_6 \sim P(a_6|5) : a_6 = 6$ $f_6 \sim P(f|be) : f_6 = est$
7 $a_1 \sim P(a_1|6) : a_1 \sim f_1 \sim P(f|a_1) : f_1 \sim une$
8 $a_8 \sim P(a_8|7) : a_8 = 8$ $f_8 \sim P(f|workable) : f_8 = bonne$
9 $a_9 \sim P(a_8|8) : a_9 \sim f_1 \sim P(f|solution) : f_8 = solution$

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution₉

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

$$J \sim P(J|9) \Rightarrow J = 9$$

1 $a_1 \sim P(a_1) : a_1 = 1$ $f_1 \sim P(f|this) : f_1 = iI$

2 $a_2 \sim P(a_2|1) : a_2 = 2$ $f_2 \sim P(f|seems) : f_2 = me$

3 $a_1 \sim P(a_1|2) : a_1 = 3$ $f_4 \sim P(f|to) : f_4 = que$

5 $a_5 \sim P(a_5|3) : a_5 = 5$ $f_5 \sim P(f|be) : f_6 = est$

7 $a_1 \sim P(a_1|6) : a_1 \sim 1$ $f_1 \sim P(f|a_1) : a_2 \sim 1$

8 $a_8 \sim P(a_8|7) : a_8 = 8$ $f_8 \sim P(f|workable) : f_8 = bonne$

9 $a_1 \sim P(a_1|8) : a_1 \sim 1$ $f_1 \sim P(f|solution) : f_1 \sim solution$

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution₉

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

$$J \sim P(J|9) \Rightarrow J = 9$$
1 $a_1 \sim P(a_1) : a_1 = 1$ $f_1 \sim P(f|this) : f_1 = iI$
2 $a_2 \sim P(a_2|1) : a_2 = 2$ $f_2 \sim P(f|seems)$ $f_2 = me$
3 $a_3 \sim P(a_3|2)$ $a_3 = 2$ $f_4 \sim P(f|to) : f_4 = que$
5 $a_4 \sim P(a_4|2) : a_4 = 3$ $a_5 \sim P(f|seems)$ $a_5 \sim P(a_5|5) : a_6 = 6$ $a_6 \sim P(a_6|5) : a_6 = 6$ $a_6 \sim P(f|seems)$ $a_5 \sim P(f|seems)$

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

$$J \sim P(J|9) \Rightarrow J = 9$$

1 $a_1 \sim P(a_1) : a_1 = 1$ $f_1 \sim P(f|this) : f_1 = il$

2 $a_2 \sim P(a_2|1) : a_2 = 2$ $f_2 \sim P(f|seems) : f_2 = me$

3 $a_3 \sim P(a_3|2) : a_4 = 3$ $f_4 \sim P(f|to) : f_4 = que$

5 $a_4 \sim P(a_4|2) : a_4 = 3$ $f_4 \sim P(f|to) : f_6 = est$

6 $a_6 \sim P(a_6|5) : a_6 = 6$ $f_6 \sim P(f|be) : f_6 = est$

7 $a_4 \sim P(a_8|7) : a_8 = 8$ $f_8 \sim P(f|workable) : f_8 = bonne$

9 $a_4 \sim P(a_8|7) : a_8 = 8$ $a_8 \sim P(f|workable) : f_8 = bonne$

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

Source: $f_1^9 = ll_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

```
J \sim P(J|9) \Rightarrow J = 9
   a_1 \sim P(a_1) : a_1 = 1 f_1 \sim P(f|this) : f_1 = if
2 a_2 \sim P(a_2|1): a_2 = 2 f_2 \sim P(f|seems): f_2 = me
3 a_3 \sim P(a_3|2) : a_3 = 2 f_3 \sim P(f|seems) : f_3 = semble
5
6
8
9
```

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

```
J \sim P(J|9) \Rightarrow J = 9

1   a_1 \sim P(a_1) : a_1 = 1   f_1 \sim P(f|this) : f_1 = il

2   a_2 \sim P(a_2|1) : a_2 = 2   f_2 \sim P(f|seems) : f_2 = me

3   a_3 \sim P(a_3|2) : a_3 = 2   f_3 \sim P(f|seems) : f_3 = semble

4   a_4 \sim P(a_4|2) : a_4 = 3

5   a_4 \sim P(a_4|2) : a_4 = 3

6   a_5 \sim P(a_5|5) : a_5 \sim P(a_5|6) : a_5 \sim P(a_
```

Source: $f_1^s = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution₉

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

```
J \sim P(J|9) \Rightarrow J = 9

1   a_1 \sim P(a_1) : a_1 = 1   f_1 \sim P(f|this) : f_1 = il

2   a_2 \sim P(a_2|1) : a_2 = 2   f_2 \sim P(f|seems) : f_2 = me

3   a_3 \sim P(a_3|2) : a_3 = 2   f_3 \sim P(f|seems) : f_3 = semble

4   a_4 \sim P(a_4|2) : a_4 = 3   f_4 \sim P(f|to) : f_4 = que

5   a_5 \sim P(a_5|5) = a_5 \sim a_5 \sim
```

Source: $f_1^9 = Il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solutions

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

```
J \sim P(J|9) \Rightarrow J = 9
   a_1 \sim P(a_1) : a_1 = 1 f_1 \sim P(f|this) : f_1 = il
2 a_2 \sim P(a_2|1): a_2 = 2 f_2 \sim P(f|seems): f_2 = me
   a_3 \sim P(a_3|2) : a_3 = 2
                               f_3 \sim P(f|seems) : f_3 = semble
                               f_4 \sim P(f|to): f_4 = que
   a_4 \sim P(a_4|2) : a_4 = 3
5
   a_5 \sim P(a_5|3) : a_5 = 5 f_5 \sim P(f|to) : f_5 = c'
   a_6 \sim P(a_6|5) : a_6 = 6
                               f_6 \sim P(f|be): f_6 = est
   a_7 \sim P(a_7|6) : a_7 = 7 f_7 \sim P(f|a) : f_7 = une
   a_8 \sim P(a_8|7) : a_8 = 8 f_8 \sim P(f|workable) : f_8 = bonne
8
   a_9 \sim P(a_9|8): a_9 = 9 f_9 \sim P(f|solution): f_9 = solution
```

Source: $f_1^9 = il_1 me_2$ semble₃ que₄ c'₅ est₆ une₇ bonne₈ solution

Target: $e_1^9 = this_1 seems_2 to_3 me_4 to_5 be_6 a_7 workable_8 solution_9$

```
J \sim P(J|9) \Rightarrow J = 9
   a_1 \sim P(a_1) : a_1 = 1 f_1 \sim P(f|this) : f_1 = il
2 a_2 \sim P(a_2|1): a_2 = 2 f_2 \sim P(f|seems): f_2 = me
3 a_3 \sim P(a_3|2) : a_3 = 2 f_3 \sim P(f|seems) : f_3 = semble
   a_4 \sim P(a_4|2) : a_4 = 3 f_4 \sim P(f|to) : f_4 = que
5
   a_5 \sim P(a_5|3) : a_5 = 5 f_5 \sim P(f|to) : f_5 = c'
   a_6 \sim P(a_6|5) : a_6 = 6 f_6 \sim P(f|be) : f_6 = est
   a_7 \sim P(a_7|6): a_7 = 7 f_7 \sim P(f|a): f_7 = une
8 a_8 \sim P(a_8|7): a_8 = 8 f_8 \sim P(f|workable): f_8 = bonne
  a_9 \sim P(a_9|8): a_9 = 9 f_9 \sim P(f|solution): f_9 = solution
```

Source: $f_1^9 = il_1 me_2 semble_3 que_4 c'_5 est_6 une_7 bonne_8 solution_9$

Deux finesses

Les mots "vides"

Traiter des mots source non alignables: *ai* et *l'* dans: *j' ai eu l' occasion* / *I had occasion*

- état fictif dans la cible (d'indice 0) atteint avec $P_0 = P(a_i = 0 | a_{i-1}, J)$
- une distribution associée à cet état $P = P(f|\epsilon)$

Modéliser les sauts

Rendre le modèle d'alignement indépendant des indices absolus: \Rightarrow remplacer $P(a_i|a_{i-1})$ par $P(a_i-a_{i-1}|a_{i-1}-a_{i-2})$

Deux finesses

Les mots "vides"

Traiter des mots source non alignables: ai et l' dans: j' ai eu l' occasion / I had occasion

- état fictif dans la cible (d'indice 0) atteint avec $P_0 = P(a_i = 0 | a_{i-1}, J)$
- une distribution associée à cet état $P = P(f|\epsilon)$

Modéliser les sauts

Rendre le modèle d'alignement indépendant des indices absolus: \Rightarrow remplacer $P(a_i|a_{i-1})$ par $P(a_i-a_{i-1}|a_{i-1}-a_{i-2})$

La puissance de EM

```
... la maison ... la maison blue ... la fleur ...

the house ... the blue house ... the flower ...
```

Tous les alignements sont également probables

La puissance de EM

Tous les alignements sont également probables *la/the*, *maison/house* émergent...

La puissance de EM

```
... la maison ... la maison bleu ... la fleur ...

the house ... the blue house ... the flower ...
```

Tous les alignements sont également probables *la/the*, *maison/house* se renforcent

La puissance de EM

```
... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...
```

Tous les alignements sont également probables *bleue/blue*, *fleur/flower* s'imposent (principe du *pigeonhole*)

Estimation supervisée du modèle

- à alignements connus...
- ... les paramètres se déduisent par décompte:

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{n(I,J)}{n(I)}$$

$$\forall i, i' \in [1 \dots I_{max}], P(i'|i,J,I) = \frac{n(i,i')}{n(i')}$$

$$\forall e \in V_e, f \in V_f, P(f|e) = \frac{n(e,f)}{n(e)}$$

Calculer les alignements (à modèle connu)

- ▶ P(.|I) connu; P(.|a,I,J) connu; P(f|e) connu
- ▶ e₁^I et f₁^J sont observés
- trouver:

$$a^* = \underset{a_1...a_J}{\operatorname{argmax}} P(f_1^J, a_1^J | e_j)$$

= $\underset{a_1...a_J}{\operatorname{argmax}} P(J | I) \prod_j P(a_j | a_{j-1}) P(f_i | e_{a_j})$

Résolution par programmation dynamique (Viterbi)

$$\begin{cases} \delta(i,1) = P(a_1 = i), \forall i \in [1 \dots I] \\ \delta(i,j) = \max_{i' \in I} \delta(i',j-1) P(a_j = i | a_{j-1} = i') P(f_j | e_i) \forall i,j > 1 \end{cases}$$

Estimation par EM

Étape E(xpectation)

à paramètres connus (étape précédente):

$$P(a_1^J|e_1^I, f_1^J) = \frac{P(a_1^J, f_1^J|e_1^I)}{\sum_a P(a_1^J, f_1^J|e_1^I)}$$

Le dénominateur se calcule par l'algorithme forward.

Étape M(aximisation)

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{n(I,J)}{n(I)}$$

$$\forall i, i' \in [1 \dots I], P(i'|i,J,I) = \frac{\sum_{k} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(i,i')}{\sum_{i} \sum_{k} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(i,i')}$$

$$\forall e, f, P(f|e) = \frac{\sum_{(k)} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(e,f)}{\sum_{f} \sum_{(k)} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(e,f)}$$

Estimation par EM

Étape E(xpectation)

à paramètres connus (étape précédente):

$$P(a_1^J|e_1^J, f_1^J) = \frac{P(a_1^J, f_1^J|e_1^J)}{\sum_a P(a_1^J, f_1^J|e_1^J)}$$

Le dénominateur se calcule par l'algorithme forward.

Étape M(aximisation)

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{n(I,J)}{n(I)}$$

$$\forall i, i' \in [1 \dots I], P(i'|i,J,I) = \frac{\sum_{k} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(i,i')}{\sum_{i} \sum_{k} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(i,i')}$$

$$\forall e, f, P(f|e) = \frac{\sum_{(k)} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(e,f)}{\sum_{f} \sum_{(k)} P(a^{(k)}|e^{(k)}, f^{(k)}) n^{(k)}(e,f)}$$

Initialiser avec des modèles simples: IBM1 et IBM2

Des modèles faciles à entrainer

IBM₁

Les probabilités des a_j sont uniformes: $P(a_j|a_{j-1},I,J)=\frac{1}{I+1}$

$$P(a_1^J, f_1^J | e_1^I) = \frac{P(J|I)}{(I+1)^J} \prod_j P(f_j | e_{a_j})$$

IBM₂

Les a_i ne dépendent que de j: $P(a_i|a_{i-1}, I, J) = P(a_i|j, J)$

$$P(a_1^J, f_1^J | e_1^I) = P(J | I) \prod_j P(a_j | j, J) P(f_j | e_{a_j})$$

Initialiser avec des modèles simples: IBM1 et IBM2

Des modèles faciles à entrainer

IBM₁

Les probabilités des a_j sont uniformes: $P(a_j|a_{j-1},I,J)=\frac{1}{I+1}$

$$P(a_1^J, f_1^J | e_1^I) = \frac{P(J|I)}{(I+1)^J} \prod_j P(f_j | e_{a_j})$$

IBM₂

Les a_i ne dépendent que de j: $P(a_i|a_{i-1}, I, J) = P(a_i|j, J)$

$$P(a_1^J, f_1^J | e_1^I) = P(J | I) \prod_j P(a_j | j, J) P(f_j | e_{a_j})$$

Un décodeur... pas très bon

Après estimation du HMM, approximer:

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) \approx \textit{max}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

Traduire = résoudre $argmax_e P(e) max_a P(f|e)$

Nouvelle Histoire générative de f sachant e

 Pour chaque e_j, tirer le nombre de mots générés n_j (fertilité)

Pour chaque e_j, tirer n_j mots cibles f_{i,1}...f_{i,n_j}
 Four chaque f_i, tirer sa position dans la plurase

Un décodeur... pas très bon

Après estimation du HMM, approximer:

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) \approx \textit{max}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

Traduire = résoudre $argmax_e P(e) max_a P(f|e)$

Nouvelle Histoire générative de f sachant e

- Pour chaque e_j, tirer le nombre de mots générés n_j (fertilité)
- ▶ Pour chaque e_j , tirer n_j mots cibles $f_{i,1}...f_{i,n_j}$
- ▶ Pour chaque f_k , tirer sa position dans la phrase

Un décodeur... pas très bon

Après estimation du HMM, approximer:

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) \approx \textit{max}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

Traduire = résoudre $argmax_e P(e) max_a P(f|e)$

Nouvelle Histoire générative de f sachant e

- Pour chaque e_j, tirer le nombre de mots générés n_j (fertilité)
- ▶ Pour chaque e_j , tirer n_j mots cibles $f_{i,1}...f_{i,n_j}$
- ▶ Pour chaque f_k , tirer sa position dans la phrase

Un décodeur... pas très bon

Après estimation du HMM, approximer:

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e}) \approx \textit{max}_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

Traduire = résoudre argmax_e $P(\mathbf{e}) max_{\mathbf{a}} P(\mathbf{f}|\mathbf{e})$

Nouvelle Histoire générative de f sachant e

- Pour chaque e_j, tirer le nombre de mots générés n_j (fertilité)
- ▶ Pour chaque e_j , tirer n_j mots cibles $f_{i,1}...f_{i,n_j}$
- ▶ Pour chaque f_k , tirer sa position dans la phrase

Les ingrédients des modèles IBM

- ▶ Un modèle de fertilité: $n(\phi|e)$ (nombre de mots produits)
- ▶ Un modèle lexical: t(f|e) (quels mots sont produits)
- ▶ Un modèle de distorsion: d(j|i,...) (où ces mots sont placés)
- ▶ Un paramètre p₀ de production spontanée de mots
- ► Un modèle de langage $P(\mathbf{e})$ (de la langue cible)

- IBM-3 Les probabilités des alignements dépendent des positions dans *f* et *e* et des longueurs des deux phrases (comme pour IBM-2)
- IBM-4 Les probabilités des alignements dépendent en plus des mots français et anglais alignés et des autres mots qui sont alignés au même mot anglais
- IBM-5 Comme IBM-4, mais corrige des problèmes d'alignement (plusieurs mots assignés à la même position)
- L'inférence exacte n'est plus possible ⇒ approches heuristiques, apprentissage très long.

- IBM-3 Les probabilités des alignements dépendent des positions dans *f* et *e* et des longueurs des deux phrases (comme pour IBM-2)
- IBM-4 Les probabilités des alignements dépendent en plus des mots français et anglais alignés et des autres mots qui sont alignés au même mot anglais
- IBM-5 Comme IBM-4, mais corrige des problèmes d'alignement (plusieurs mots assignés à la même position)
- L'inférence exacte n'est plus possible ⇒ approches heuristiques, apprentissage très long.

- IBM-3 Les probabilités des alignements dépendent des positions dans *f* et *e* et des longueurs des deux phrases (comme pour IBM-2)
- IBM-4 Les probabilités des alignements dépendent en plus des mots français et anglais alignés et des autres mots qui sont alignés au même mot anglais
- IBM-5 Comme IBM-4, mais corrige des problèmes d'alignement (plusieurs mots assignés à la même position)

L'inférence exacte n'est plus possible ⇒ approches heuristiques, apprentissage très long.

- IBM-3 Les probabilités des alignements dépendent des positions dans *f* et *e* et des longueurs des deux phrases (comme pour IBM-2)
- IBM-4 Les probabilités des alignements dépendent en plus des mots français et anglais alignés et des autres mots qui sont alignés au même mot anglais
- IBM-5 Comme IBM-4, mais corrige des problèmes d'alignement (plusieurs mots assignés à la même position)

L'inférence exacte n'est plus possible ⇒ approches heuristiques, apprentissage très long.

- IBM-3 Les probabilités des alignements dépendent des positions dans *f* et *e* et des longueurs des deux phrases (comme pour IBM-2)
- IBM-4 Les probabilités des alignements dépendent en plus des mots français et anglais alignés et des autres mots qui sont alignés au même mot anglais
- IBM-5 Comme IBM-4, mais corrige des problèmes d'alignement (plusieurs mots assignés à la même position)
- L'inférence exacte n'est plus possible ⇒ approches heuristiques, apprentissage très long.

Des alignements... plus ou moins heureux

Des alignements... plus ou moins heureux

Des alignements... plus ou moins heureux

Pour en savoir plus...

- The mathematics of statistical machine translation (Brown & al, 1993): publication de référence sur la trauduction mot-à-mot et les modèles d'alignement
- A Statistical MT tutorial workbook (Knight, 1999): le même, en pédagogique
- Giza, Giza++, Giza-pp, MGiza: logiciels open-source pour la construction d'alignements

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

- Les alignements mot-à-mot sont problématiques
- ▶ Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- nouveau modèle de traduction, alignement de "blocs de mots" (segments).
- Apprentissage du modèle:

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- nouveau modèle de traduction, alignement de "blocs de mots" (segments).
- ► Apprentissage du modèle:

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- nouveau modèle de traduction, alignement de "blocs de mots" (segments).
- Apprentissage du modèle:

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- ⇒ nouveau modèle de traduction, alignement de "blocs de mots" (segments).
 - Apprentissage du modèle:

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- ⇒ nouveau modèle de traduction, alignement de "blocs de mots" (segments).
 - Apprentissage du modèle:
 - acquisition des segments
 - modèles probabilistes de segments

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- ⇒ nouveau modèle de traduction, alignement de "blocs de mots" (segments).
 - Apprentissage du modèle:
 - acquisition des segments
 - modèles probabilistes de segments

- Les alignements mot-à-mot sont problématiques
- Le modèle lexical t(f|e) n'utilise pas de contexte: choix de traduction imprécis
- ▶ Un modèle lexical $t(f_j|e_{i-2}e_{i-1}e_i)$ est trop complexe à estimer
- ⇒ nouveau modèle de traduction, alignement de "blocs de mots" (segments).
 - Apprentissage du modèle:
 - acquisition des segments
 - modèles probabilistes de segments

Des alignements de segments

Phrases Anglaises:

- ▶ I was reading reports from the united states
- ► To this first group of figures let us quickly add a second one
- One of my colleagues says that i have not had an answer yet

Phrases Françaises:

- ▶ Je lisais des rapports qui nous parviennent des États-Unis
- À cette première <u>vague</u> de chiffres ajoutons rapidement une seconde
- L'un de mes collègues dit que je n' ai pas encore eu de réponse

Un algorithme d'extraction de segments

- ightharpoonup Construction d'alignements de mots $\mathbf{f} \to \mathbf{e}$ et $\mathbf{e} \to \mathbf{f}$
- Symétrisation des alignements:
 - Création d'une matrice croisant les mots source et cible
 - Intersection des alignements
 - Etendus de façon heuristique au voisinage
- ▶ Extraction de segments $(\tilde{f}_i, \tilde{e}_i)$
- Évaluation des segments

Symétrisation des alignements

spanish to english

Symétrisation des alignements

N	Maria	no	daba		feta	da a	la	oruja	a verde
Mary									П
did		×							Н
not	\vdash								Н
slap			×	+					П
the					2 8				П
green									
witch				20 20 20		, S			

Les alignements symétrisés

Les contraintes de cohérence

$$\forall e_i \in \tilde{e}, (e_i, f_j) \in A \Rightarrow f_j \in \tilde{f}$$

 $\forall f_i \in \tilde{f}, (e_i, f_i) \in A \Rightarrow e_i \in \tilde{e}$

(Mary, Maria), (did not, no), (slap, daba una bofetada)...

(Mary did not, Maria no), (did not slap, no daba una bofetada)...

(Mary did not slap, Maria no daba una bofetada)...

Les scores d'un fragment

- Au maximum de vraisemblance:
 - $P(\tilde{f}|\tilde{e}) = \frac{c(\tilde{f},\tilde{e})}{c(\tilde{e})}$
 - $P(\tilde{e}|\tilde{f}) = \frac{c(\tilde{e},\tilde{f})}{c(\tilde{f})}$
 - ⇒ estimateurs très optimistes pour les longs segments
- Autres options:
 - $P(\tilde{f}|\tilde{e}) = P_{IBM}(\tilde{f}|\tilde{e})$
 - $P(\tilde{e}|\tilde{f}) = P_{IBM}(\tilde{e}|\tilde{f})$
- ▶ Pourquoi choisir ? ⇒ combinaison des scores

Combinaison des scores et tuning

Nouveau modèle de traduction (segments indépendants):

$$P(\mathbf{e}|\mathbf{f}) = \sum_{a=s1...s_k} \prod_{i=1}^k P(\tilde{f}_i, s_i|\tilde{e}_{s_i})$$

$$\approx \max_{a=s1...s_k} \prod_{i=1}^k P(\tilde{f}_i, s_i|\tilde{e}_{s_i})$$

- Modèles probabilistes individuellement imprécis
- ⇒ Pondération de leur influence :

$$\mathbf{e}^* = \underset{\mathbf{e}}{\operatorname{argmax}} \prod_{k} P_k(\mathbf{f}, \mathbf{e})^{\lambda_i}$$
 $\mathbf{e}^* = \underset{\mathbf{e}}{\operatorname{argmax}} \sum_{k} \lambda_k \log P_k(\mathbf{f}, \mathbf{e})$

Comment déterminer les coefficients λ_i ?

- À la main ?
- ► Boucle exploratoire:
 - Choisir λ_k initiaux
 Faire un décodage avec ces valeurs
 Objenir une solution et calculer son score BLE Elle Modifier les λ_k et recommencer à l'étape 2)
 Terminer si le score BLE Line s'améliore olus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_{k} initiaux
 - Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

- À la main ?
- Boucle exploratoire:
 - 1. Choisir λ_k initiaux
 - 2. Faire un décodage avec ces valeurs
 - 3. Obtenir une solution et calculer son score BLEU
 - 4. Modifier les λ_k et recommencer à l'étape 2)
 - 5. Terminer si le score BLEU ne s'améliore plus
- Il n'est pas possible d'utiliser des algorithmes du type "descente de gradient"
- ⇒ Algorithmes itératifs de recherche

Les ingrédients d'un modèle de segment

- Modèle de traduction :
- $P(\tilde{f}|\tilde{e})$ traduction segments $e \rightarrow f$
- P(f|e) traduction de mots $e \rightarrow f$ (modèle lexical type IBM1)
- $P(\tilde{e}|\tilde{f})$ traduction segments $f \rightarrow e$
- P(e|f) traduction de mots $e \rightarrow f$ (modèle lexical type IBM1)
 - *e* constante → pénalité sur le nombre de segments
 - + modèles de distortions (une autre fois)
- ▶ Modèle de langage : P(e)
- ► constante 1 → pénalité de longueur
- ... et tout ce qui peut caractériser un segment...

La table des segments

quelques traductions de "A big"

```
A big ||| Le grand ||| 0.0106383 0.000152962 0.166667 0.00405915 2.718
A big ||| Un des principaux ||| 0.0434783 0.0005689 0.166667 1.56536e-05 2.718
A big ||| Un grand ||| 0.00961538 0.00957428 0.166667 0.0300893 2.718
A big ||| Une grande ||| 0.0108696 0.00360665 0.166667 0.0208976 2.718
A big ||| ont une grande ||| 0.0217391 1.12938e-05 0.166667 3.79597e-06 2.718
A big ||| une grande ||| 0.000256345 1.12938e-05 0.166667 0.00211983 2.718
```

Les scores : $P(\tilde{t}|\tilde{e})$, P(e|t), $P(\tilde{e}|\tilde{t})$, P(t|e) et exp(1)

La table des segments (suite)

467 traductions de "European Commission"

```
European Commission ||| Commission européenne ||| 0.752696 0.812097 0.749849 0.455413 2.718 European Commission ||| Commission ||| 0.00265859 0.00194196 0.0511501 0.552132 2.718 European Commission ||| la Commission européenne ||| 0.0426116 0.812097 0.0352603 0.0174883 2 European Commission ||| Commission européenne ||| 0.17041 0.812097 0.0195218 0.0364258 2.71 European Commission ||| de la Commission européenne ||| 0.1625 0.812097 0.0160412 0.00229579
```

38 traductions inverses de "Commission européenne"

```
European Commission ||| Commission européenne ||| 0.752696 0.812097 0.749849 0.455413 2.718 Commission ||| Commission européenne ||| 0.116208 0.490344 0.00548883 0.00587199 2.718 the European Commission ||| Commission européenne ||| 0.0095701 0.0437849 0.0119704 0.455413 Commission 's ||| Commission européenne ||| 0.00592435 0.00389219 0.0137227 0.00378834 2.718 Commission is ||| Commission européenne ||| 0.00303813 0.000335368 0.0036914 4.97013e-05 2.71
```

La table des segments (suite et fin)

672 traductions de '!' !!!

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

Recherche et décodage: un gros soucis

- Décodage monotone: ordre des mots identique en source et en cible
 - efficace
 - pas de réordonnancement
- Décodage avec distortion
 - résoudre argmax P(e|f) est NP-difficile (y compris avec IBM1 !)
 - ▶ méthodes heuristiques (A*, recherche en faisceau, recherche locale, etc)
- L'espace de recherche est gigantesque
 - ne pas considérer toutes les traductions de phrase
 - ne pas considérer tous les réordonnancements
 - élaguer pendant la recherche

This beautiful plant is unique

1

transfer table				
this	\leftrightarrow	ce		
	\leftrightarrow	cette		
beautiful	\leftrightarrow	belle		
	\leftrightarrow	beau		
plant	\leftrightarrow	plante		
	\leftrightarrow	usine		
is	\leftrightarrow	est		
unique	\leftrightarrow	seule		
	\leftrightarrow	unique		
beautiful plant				
\$				
belle plante				
plante magnifique				

language mode	
ce beau plante cette belle usine belle usine est	:-(:- :-)

This beautiful plant is unique

transfer table				
this	\leftrightarrow	ce		
	\leftrightarrow	cette		
beautiful	\leftrightarrow	belle		
	\leftrightarrow	beau		
plant	\leftrightarrow	plante		
	\leftrightarrow	usine		
is	\leftrightarrow	est		
unique	\leftrightarrow	seule		
	\leftrightarrow	unique		
bea	beautiful plant			
‡				
belle plante				
plante magnifique				

language model	
ce beau plante cette belle usine belle usine est	:-(:- :-)

This beautiful plant is unique

1	

13
7

transfer table			
this	\leftrightarrow	ce	
	\leftrightarrow	cette	
beautiful	\leftrightarrow	belle	
	\leftrightarrow	beau	
plant	\leftrightarrow	plante	
	\leftrightarrow	usine	
is	\leftrightarrow	est	
unique	\leftrightarrow	seule	
	\leftrightarrow	unique	
beautiful plant			
1			
belle plante			
plante magnifique			

language mod	el
ce beau plante	:-(
cette belle usine	:-[
belle usine est	:-)

	1	

transfer table			
this	\leftrightarrow	ce	
	\leftrightarrow	cette	
beautiful	\leftrightarrow	belle	
	\leftrightarrow	beau	
plant	\leftrightarrow	plante	
	\leftrightarrow	usine	
is	\leftrightarrow	est	
unique	\leftrightarrow	seule	
	\leftrightarrow	unique	
beautiful plant			
‡			
belle plante			
plante magnifique			

language mod	el
ce beau plante	:-(
cette belle usine	:-[
belle usine est	:-)

transfer table			
this	\leftrightarrow	ce	
	\leftrightarrow	cette	
beautiful	\leftrightarrow	belle	
	\leftrightarrow	beau	
plant	\leftrightarrow	plante	
	\leftrightarrow	usine	
is	\leftrightarrow	est	
unique	\leftrightarrow	seule	
	\leftrightarrow	unique	
beautiful plant			
‡			
belle plante			
plante magnifique			

language mode	ı
ce beau plante cette belle usine belle usine est	:-(:- :-)

transfer table			
transier table			
this	\leftrightarrow	ce	
	\leftrightarrow	cette	
beautiful	\leftrightarrow	belle	
	\leftrightarrow	beau	
plant	\leftrightarrow	plante	
	\leftrightarrow	usine	
is	\leftrightarrow	est	
unique	\leftrightarrow	seule	
	\leftrightarrow	unique	
beautiful plant			
:t: '			
belle plante			
plante magnifique			
planto magninque			

language mode	el
ce beau plante	:-(
cette belle usine	:-[
belle usine est	:-)

transfer table			
this	\leftrightarrow	се	
	\leftrightarrow	cette	
beautiful	\leftrightarrow	belle	
	\leftrightarrow	beau	
plant	\leftrightarrow	plante	
	\leftrightarrow	usine	
is	\leftrightarrow	est	
unique	\leftrightarrow	seule	
	\leftrightarrow	unique	
beautiful plant			
‡			
belle plante			
plante magnifique			

language mode	el
ce beau plante cette belle usine	:-(:-l
belle usine est	:-)

Décodage en passes multiples

Motivations

- Certains modèles sont difficiles à appliquer pendant la phase de décodage
 - Des modèles de langage avec un ordre élevé
 - Des modèles de phrases
 - Diverses analyses morpho-syntaxiques
 - **•** ...
- ⇒ Utiliser une approche en deux passes :
 - Décodage et création d'un ensemble de solutions plausibles
 - Ajout de connaissances supplémentaires et sélection de la meilleure hypothèse

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- ► Listes *n*-best

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- Listes n-best

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - ▶ Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- ► Listes *n*-best

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - ► Moins adaptés à la traduction (ordre de mots variables)
- ► Listes *n*-best

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- Listes n-best
 - Moins compactes et variées qu'un lattice (redondance)
 - ▶ Il est facile de gérer des solutions très variables
 - Permettent l'application de modèle de phrases complexes (au-delà des n-grammes)

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- Listes n-best
 - Moins compactes et variées qu'un lattice (redondance)
 - ► Il est facile de gérer des solutions très variables
 - Permettent l'application de modèle de phrases complexes (au-delà des n-grammes)

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- Listes n-best
 - Moins compactes et variées qu'un lattice (redondance)
 - Il est facile de gérer des solutions très variables
 - Permettent l'application de modèle de phrases complexes (au-delà des n-grammes)

- Graphes de mots (lattices) a.k.a accepteurs pondérés
 - Utilisés en reconnaissance de la parole (outils existants)
 - Représentations compactes rès compacts
 - Moins adaptés à la traduction (ordre de mots variables)
- Listes n-best
 - Moins compactes et variées qu'un lattice (redondance)
 - Il est facile de gérer des solutions très variables
 - Permettent l'application de modèle de phrases complexes (au-delà des n-grammes)

Une liste de *n*-best

```
0 | | | Notre déclaration des droits est la première de ce millénaire .
 III lm: -53.1725 tm: -8.54868 -8.36703 -6.29597 -9.46295 8.99907 w: -11 III -2.01804
0 | | | Notre déclaration des droits n ' est la première de ce millénaire .
 | | | 1m: -55.9546 tm: -4.29181 -8.36703 -5.70585 -16.96 7.99917 w: -13 | | | -2.10735
0 | | | Notre déclaration des droits est le premier de ce millénaire .#
 ||| lm: -52.6802 tm: -8.68783 -8.73413 -7.26683 -10.4078 8.99907 w: -11 ||| -2.11691
0 | | | Notre déclaration des droits est la première de ce nouveau millénaire .
 | | | | lm: -53.4205 tm: -10.6899 -9.05756 -9.47818 -12.9981 8.99907 w: -12 | | | -2.21531
0 | | | Notre déclaration des droits n ' est le premier de ce millénaire .
 | | | 1m: -55.7673 tm: -4.43096 -8.73413 -6.67671 -17.9048 7.99917 w: -13 | | | -2.22684
0 | | | Notre déclaration de droits est la première de ce millénaire .
  ||| lm: -59.4228 tm: -3.32516 -8.27583 -5.18753 -8.48052 7.99917 w: -11 ||| -2.2324
0 | | | La déclaration des droits est la première de ce millénaire .
  ||| lm: -47.5985 tm: -14.3938 -14.2576 -9.5678 -12.6795 8.99907 w: -11 ||| -2.29651
0 ||| Notre déclaration des droits n ' est la première de ce nouveau millénaire .
 ||| lm: -56.2027 tm: -6.43302 -9.05756 -8.88807 -20.4951 7.99917 w: -14 ||| -2.30462
0 | | | Notre déclaration des droits , c' est la première de ce millénaire .
 | | | 1m: -54.6978 tm: -9.60467 -8.81344 -10.844 -16.6753 8.99907 w: -13 | | | -2.30946
0 | | | Notre déclaration des droits est la première de millénaire .
  III lm: -53.9945 tm: -7.78823 -12.0139 -4.39036 -8.23918 6.99927 w: -10 ||| -2.31331
```

Remarque : les scores du modèle de distorsion ont été omis

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

Traduire la Parole: plus ou moins facile?

De nouvelles difficultés

- des entrées "bruitées" (dysfluences)
- des données d'entraînement encore plus rares...
- ou encore moins bien adaptées

Des facteur simplificateurs

- utilisation de la prosodie ?
- possibilité d'interactions avec l'utilisateur ?

Architectures pour la Traduction de la Parole

Architectures

- ▶ Pipe line: reconnaissance | traduction | synthèse
- Peut-on faire mieux avec une interaction étroite ?
- Traduction assistée par ordinateur

Architectures pour la Traduction de la Parole

Architectures

- Pipe line: reconnaissance | traduction | synthèse
- Peut-on faire mieux avec une interaction étroite ?
- Traduction assistée par ordinateur

Architectures pour la Traduction de la Parole

Architectures

- Pipe line: reconnaissance | traduction | synthèse
- Peut-on faire mieux avec une interaction étroite ?
- Traduction assistée par ordinateur

La traduction de parole, décision probabiliste

Analyse Théorique [Ney ICASSP'99]

e: phrase cible, *x* signal source, *f* phrase source

$$e^* = \underset{e}{\operatorname{argmax}} \Pr(e|x) = \underset{e}{\operatorname{argmax}} \Pr(e) \Pr(x|e)$$

$$= \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(x, f|e) \right)$$

$$= \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(f|e) \Pr(x|f, e) \right)$$

Comment simplifier cette équation ?

Sans modéliser les textes en source ??

Analyse Théorique (suite) :

$$e^* = \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(f|e) \Pr(x|f, e) \right)$$
$$= \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(f|e) \Pr(x|f) \right)$$
$$\approx \underset{e}{\operatorname{argmax}} \left(\Pr(e) \underset{f}{\operatorname{max}} \Pr(f|e) \Pr(x|f) \right)$$

Questions

- ► Faut-il un modèle de langage source P(f) ?
- Comment obtenir une interaction étroite '

Sans modéliser les textes en source ??

Analyse Théorique (suite) :

$$e^* = \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(f|e) \Pr(x|f, e) \right)$$

$$= \underset{e}{\operatorname{argmax}} \left(\Pr(e) \sum_{f} \Pr(f|e) \Pr(x|f) \right)$$

$$\approx \underset{e}{\operatorname{argmax}} \left(\Pr(e) \underset{f}{\operatorname{max}} \Pr(f|e) \Pr(x|f) \right)$$

Questions

- ► Faut-il un modèle de langage source P(f) ?
- Comment obtenir une interaction étroite ?

One step back

Interprétation:

$$e^* pprox arg \max_e \left(\Pr(e) \max_f \Pr(f|e) \Pr(x|f) \right)$$

- ▶ Pr(f|e) probabilise des phrases entières
- ⇒ Induit une structure sur l'ensemble des phrases sources
 - Mais les modèles de traduction actuels sont plutôt basés sur des mots

Analyse Expérimentale :

- Analyser les performances de traduction pour différents modèles acoustiques et modèles de langage source
- Essayer d'utiliser les scores du module de reconnaissance afin d'améliorer la traduction

Taux d'erreur et erreurs de traduction

Score BLEU pour différents systèmes de reconnaissance

Traduction de texte: score bleu de 40.5 Erreur de la Reco: Système 1: 10.9% Système 2: 13.7%

Conclusions

- Peu de perte par rapport à la traduction de texte
- Dépendance linéaire entre l'erreur de mots et score BLEU ?

Une interface plus riche: les listes d'hypothèses

- ▶ Reconnaissance de la parole et génération de listes n-best
- Traduction de toutes les hypothèses
- Combinaison des scores de traduction et des scores de transcription
- ⇒ Reclassement des hypothèses traduites
 - Généralisation: reclassement de treillis d'hypothèses, de réseaux de confusion

Outline

Traduire

Anatomie d'un système de traduction statistique

Traduction statistique mot-à-mot et alignements Les alignements mot-à-mot

Modèles de segments

Décodage et recherche

Traduire la parole

Perspectives

Perspectives de recherche

- ▶ Plus de traitements linguistiques (en source, en cible)
- Modèles discriminants pour l'alignement
- Utilisation de tables de segments généralisées
- Meilleure évaluation/sélection des segments (utilisation de la source: segmentation, désambiguïsation)
- Meilleurs modèles de réordonnancement (traduction de paires de langues très différentes)
- Vers la traduction de documents (coréférence, discours...)
- Couplage Reconnaissance/traduction:
 - quelles interfaces ?
 - utilisation des informations prosodiques (segmentation, intonation)
- Construction semi-supervisée de modèles de traduction

Incorporation de Connaissances Linguistiques Motivation

Motivation

- Les méthodes statistiques permettent facilement de construire des systèmes performants
- Mais la traduction ne correspond pas toujours à un texte grammaticalement correct, facile à comprendre ou bien structuré
- ⇒ De la place pour des améliorations

Directions de Recherche

- ▶ Meilleurs modèles statistiques
- ► Incorporation de connaissances linguistiques

Incorporation de Connaissances Linguistiques Motivation

Motivation

- Les méthodes statistiques permettent facilement de construire des systèmes performants
- Mais la traduction ne correspond pas toujours à un texte grammaticalement correct, facile à comprendre ou bien structuré
- ⇒ De la place pour des améliorations

Directions de Recherche

- Meilleurs modèles statistiques
- Incorporation de connaissances linguistiques

Incorporation de Connaissances Linguistiques

Idées:

- Incorporation de connaissances dans le modèle de langage
- Incorporation de connaissances dans le modèle de traduction
- Utilisation d'autres ressources, p.ex. des dictionnaires bilingues

Incorporation de Connaissances Linguistiques

Idées:

- Incorporation de connaissances dans le modèle de langage
- Incorporation de connaissances dans le modèle de traduction
- Utilisation d'autres ressources, p.ex. des dictionnaires bilingues

Incorporation de Connaissances Linguistiques

Idées:

- Incorporation de connaissances dans le modèle de langage
- Incorporation de connaissances dans le modèle de traduction
- Utilisation d'autres ressources, p.ex. des dictionnaires bilingues

Améliorer les modèles statistiques

Modèles de Traduction

- Grammaires synchrones
- Modèles discriminants
- Désambiguïsation lexicale
- Modèles de traduction factorisés

Modèles de Langue

- Traitement en deux passes (traduction avec n-gramme + rescoring)
- Modèles n-grammes de catégories morpho-syntaxiques
- Modèles fondés sur la syntaxe (SCFG, dépendances)
- Pour l'instant, peu d'améliorations observées (sauf en ajoutant du corpus)

Segments généralisés (avec trous)

f= tu ne veux pas dormir

e= you don't want to sleep

- ► (want; veux) a sub-phrase of (don't want; ne veux pas)
- ▶ segment à trous N(don't X ; ne X pas)++
- meilleure généralisation

Segments généralisés (avec trous)

f=je ne le comprends pluse= I don't understand it anymore

- même idée, avec deux non-terminaux
- $ightharpoonup N(don't X_1X_2 \ anymore ; ne X_2X_1 \ plus)++$
- définit un modèle de réordonnancement lexicalisé

Un système hiérarchique

Quelques innovations dues à D. Chiang

- segments à trous = règles d'une grammaire hors-contexte synchrone
 - ▶ segment classique (e; f) \Leftrightarrow règle terminale $X \to e$; f
 - ▶ segment à trou $(\alpha; \beta) \Leftrightarrow X \to \alpha; \beta$
 - règle de concaténation S → SX | X
 - estimation ML (+ lissage)
- traduction pendant le décodage

$$\mathbf{e} = \operatorname*{argmax}_{\mathbf{h}_1} \lambda_1 \log P_{LM}(\mathbf{e}) + \lambda_2 \log P_G(\mathbf{f}; \mathbf{e}) + \dots$$

- Avantage
 - des segments plus généraux
 - un meilleur modèle de réordonnancement
 - les performances [?]
- Problèmes
 - taille de la gramaire
 - coût du décodage

An: You must make the first move.

An: You must first move the car.

Comment traduire le mot move ?

An: You must make the first move.

Fr: Tu dois faire le premier pas.

An: You must first move the car.

Fr: Tu dois d'abord déplacer la voiture.

Comment traduire le mot *move* ? \(\begin{align*} \text{pas} \\ \text{déplacer} \end{align*}

An: You must make the first move.

Fr: Tu dois faire le premier pas.

An: You must first move the car.

Fr: Tu dois d'abord déplacer la voiture.

Traduction de *first move* ? \(\begin{aligned} \text{premier pas} \\ \text{d'abord déplacer} \end{aligned}

An: You must make the first move.

PP MD VV DT JJ NN

Fr: Tu dois faire le premier pas.

An: You must first move the car.

PP MD RB VV DT NN

Fr: Tu dois d'abord déplacer la voiture.

Les catégories lexicales permettraient de désambiguïser

An: You must make the first move.

PP MD VV DT JJ NN

Fr: Tu dois faire le premier pas.

An: You must first move the car.

PP MD RB VV DT NN

Fr: Tu dois d'abord déplacer la voiture.

Traductions : $move_{NN} \rightarrow pas$

 $\mathsf{move}_{\mathit{VV}} \to \mathsf{d\acute{e}placer}$

Utilisation de morpho-syntaxe

Principe:

- Étiqueter les textes parallèles avec des informations morpho-syntaxiques (les deux côtés)
- Enrichir les mots avec les catégories lexicales : You_P must_V make_V the_D first_{Adj} move_N.
 - Tu_P dois $_V$ faire $_V$ le $_D$ premier $_{Adj}$ pas $_N$.
- Construire un système statistique complet sur ce vocabulaire enrichi
- En sortie :
 - Suppression des étiquettes
 - Réutilisation des étiquettes (ML morpho-syntaxique)

Modèles de Traduction Factorisés

Motivation

- Seuls sont disponibles les segments du corpus parallèle d'apprentissage
- Pas de généralisation lexicale

Exemple

- La voiture rouge est belle
 - → The red car is nice
- Les vélos rouges sont beaux
 - → The red bikes are nice
- Les voitures rouges sont belles Traduction de cette phrase sachant les deux autres ?

Modèles de Traduction Factorisés

Motivation

- Seuls sont disponibles les segments du corpus parallèle d'apprentissage
- Pas de généralisation lexicale

Exemple

- La voiture rouge est belle
 - \rightarrow The red car is nice
- Les vélos rouges sont beaux
 - \rightarrow The red bikes are nice
- Les voitures rouges sont belles Traduction de cette phrase sachant les deux autres ?

Modèle de Traduction Factorisé

Principe

- L'approche actuelle de traduction par syntagmes traite des formes
- Savoir traduire une forme ne permet pas de traduire les formes apparentés (conjugaison, flexion ...)
- ⇒ Décomposer les mots en lemme, genre, nombre, ...
 - ► Traduire ces facteurs séparément
 - Recomposer le mot dans la langue cible à partir de la traductions des facteurs
 - Processus de génération

Modèle de Traduction Factorisé: Mise en œuvre

Conclusion

État de l'art

- applications grand public: traduction approximative (aide à la traduction, RI cross-lingue, etc): Google Translate, Microsoft Translator... vers une navigation transparente
- applications professionnelles: modules statistiques dans Systran 7, partenariat Reverso/Language Weaver, etc
- applications militaires traduction de parole déployées

Des verrous?

- Robustesse aux énoncés bruités, aux changements de domaine
- Des modèles moins lourds
- Discours, aspects culturels
- Faire avec le manque de données
- Hybrider SMT/EBMT/RBMT

