Appendix

Proof for Theorem 1

Theorem 1: Suppose that $\hat{X} = x_i \overline{R}_j x_k^{\top}$ for $j = 1, 2, \dots, |\mathcal{R}|$, where x_i, x_k, R_j are real matrices and R_j is diagonal. Then, the following equation holds

$$\begin{split} \min & \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_F^2 + ||\boldsymbol{x}_k||_F^2 + ||\boldsymbol{x}_i \mathbf{R}_j - \boldsymbol{x}_k \mathbf{R}_j||_F^2 \\ &= ||\hat{\mathcal{X}}||_2. \end{split}$$

Proof Notice that

$$\min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j} - \boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}$$

$$\stackrel{a}{\leq} \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}$$

$$- ||\boldsymbol{x}_{i} \mathbf{R}_{j} \boldsymbol{x}_{k} \mathbf{R}_{j}|| - ||\boldsymbol{x}_{k} \mathbf{R}_{j} \boldsymbol{x}_{i} \mathbf{R}_{j}||$$

$$\leq \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}$$

$$\leq \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}.$$

$$\leq \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}.$$

$$\leq \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{i} \mathbf{R}_{j}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}.$$

$$\leq \min \sum_{(\boldsymbol{x}_{i}, \boldsymbol{R}_{j}, \boldsymbol{x}_{k}) \in \mathcal{S}} ||\boldsymbol{x}_{i}||_{F}^{2} + ||\boldsymbol{x}_{k}||_{F}^{2} + ||\boldsymbol{x}_{k} \mathbf{R}_{j}||_{F}^{2}.$$

Since $\mathbf{x}_i \mathbf{R}_j$ and $\mathbf{x}_k \mathbf{R}_j$ are all vectors, we can have $\|\mathbf{x}_i \mathbf{R}_j \mathbf{x}_k \mathbf{R}_j\| = \|\mathbf{x}_k \mathbf{R}_j \mathbf{x}_i \mathbf{R}_j\|$. Then the inequality (a) holds.

We first prove that the following equation holds

$$\min_{\hat{X}_{j} = \boldsymbol{x}_{i} R_{j} x_{k}^{\top}} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \left(\|\boldsymbol{x}_{i}\|_{F}^{2} + \|\boldsymbol{x}_{k}\|_{F}^{2} + \|\boldsymbol{x}_{i} \boldsymbol{R}_{j}\|_{F}^{2} + \|\boldsymbol{x}_{k} \boldsymbol{R}_{j}\|_{F}^{2} \right) = \|\hat{\mathcal{X}}\|_{2}.$$
(18)

Denote x_i as p and x_k as q. Then we have that

$$\begin{split} &\sum_{j=1}^{|\mathcal{R}|} \left(\| \boldsymbol{x}_{i} \mathbf{R}_{j} \|_{F}^{2} + \| \boldsymbol{x}_{k} \|_{F}^{2} \right) \\ &= \sum_{j=1}^{|\mathcal{R}|} \left(\sum_{d=1}^{D} \| \mathbf{q}_{:d} \|_{F}^{2} + \sum_{i=1}^{I} \sum_{d=1}^{D} \mathbf{p}_{id}^{2} \mathbf{r}_{jd}^{2} \right) \\ &= \sum_{j=1}^{|\mathcal{R}|} \sum_{d=1}^{D} \| \mathbf{q}_{:d} \|_{2}^{2} + \sum_{d=1}^{D} \| \mathbf{p}_{:d} \|_{2}^{2} \| \mathbf{r}_{:d} \|_{2}^{2} \\ &= \sum_{d=1}^{D} \left(\| \mathbf{p}_{:d} \|_{2}^{2} \| \mathbf{r}_{:d} \|_{2}^{2} + |\mathcal{R}| \| \mathbf{q}_{:d} \|_{2}^{2} \right) \\ &\geq \sum_{d=1}^{D} 2\sqrt{|\mathcal{R}|} \| \mathbf{p}_{:d} \|_{2} \| \mathbf{r}_{:d} \|_{2} \| \mathbf{q}_{:d} \|_{2} \\ &= 2\sqrt{|\mathcal{R}|} \sum_{d=1}^{D} \| \mathbf{p}_{:d} \|_{2} \| \mathbf{r}_{:d} \|_{2} \| \mathbf{q}_{:d} \|_{2} \end{split}$$

We can have the equality holds if and only if $\|\mathbf{p}_{:d}\|_{2}^{2} \|\mathbf{r}_{:d}\|_{2}^{2} = \|\mathcal{R}\| \|\mathbf{q}_{:d}\|_{2}^{2}$, i.e., $\|\mathbf{p}_{:d}\|_{2} \|\mathbf{r}_{:d}\|_{2} = \sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_{2}$.

For all CP decomposition $\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}_{:d} \otimes \mathbf{r}_{:d} \otimes \mathbf{q}_{:d}$, we can always let $\mathbf{p}'_{:d} = \mathbf{p}_{:d}$, $\mathbf{r}'_{:d} = \sqrt{\frac{\|\mathbf{q}_d\|_2\sqrt{|\mathcal{R}|}}{\|\mathbf{p}_{:d}\|_2\|\mathbf{r}_{:d}\|_2}}\mathbf{r}_{:d}$ and $\mathbf{q}'_{:d} = \sqrt{\frac{\|\mathbf{p}_{:d}\|_2\|\mathbf{r}_{:d}\|_2}{\|\mathbf{q}_{:d}\|_2\sqrt{|\mathcal{R}|}}}\mathbf{p}_{:d}$, then we have

$$\|\mathbf{p}'_{\cdot d}\|_{2} \|\mathbf{r}'_{\cdot d}\|_{2} = \sqrt{|\mathcal{R}|} \|\mathbf{q}'_{\cdot d}\|_{2},$$

and at the same time we make sure that $\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}'_{:d} \otimes \mathbf{q}'_{:d}$. Then, we can have

$$\begin{split} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \left\| \hat{\mathcal{X}}_{j} \right\|_{2} &= \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \min_{\hat{\mathcal{X}}_{j} = \boldsymbol{x}_{i} \mathbf{R}_{j} \boldsymbol{x}_{k}^{\top}} \left(\left\| \boldsymbol{x}_{i} \mathbf{R}_{j} \right\|_{F}^{2} + \left\| \boldsymbol{x}_{k} \right\|_{F}^{2} \right) \\ &\leq \frac{1}{2\sqrt{|\mathcal{R}|}} \min_{\hat{\mathcal{X}}_{j} = \boldsymbol{x}_{i} \mathbf{R}_{j} \boldsymbol{x}_{k}^{\top}} \sum_{j=1}^{|\mathcal{R}|} \left(\left\| \boldsymbol{x}_{i} \mathbf{R}_{j} \right\|_{F}^{2} + \left\| \boldsymbol{x}_{k} \right\|_{F}^{2} \right) \\ &= \min_{\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}_{j} \otimes \mathbf{r}_{id} \otimes \mathbf{q}_{:d}} \sum_{d=1}^{D} \left\| \mathbf{p}_{:d} \right\|_{2} \left\| \mathbf{r}_{:d} \right\|_{2} \left\| \mathbf{q}_{:d} \right\|_{2} \\ &= \|\hat{\mathcal{X}}\|_{2}. \end{split}$$

And in the same manner, we can have that

$$\min \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_F^2 + ||\boldsymbol{x}_k||_F^2 + ||\boldsymbol{x}_i \mathbf{R}_j - \boldsymbol{x}_k \mathbf{R}_j||_F^2$$

$$= ||\hat{\mathcal{X}}||_2.$$

We can have the equality holds if and only if $\|\mathbf{q}_{:d}\|_2 \|\mathbf{r}_{:d}\|_2 = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_2$. Then we can see that the conclusion holds if and only if $\|\mathbf{p}_{:d}\|_2 \|\mathbf{r}_{:d}\|_2 = \sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_2$ and $\|\mathbf{q}_{:d}\|_2 \|\mathbf{r}_{:,d}\|_2 = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_2$, $\forall d \in \{1,2,\ldots,D\}$. Then the proof of Theorem 1 completes.

Proof for Theorem 2

Theorem 2. Suppose that $\hat{X} = x_i \overline{R}_j x_k^{\top}$ for $j = 1, 2, \dots, |\mathcal{R}|$, where x_i, x_k, R_j are real matrices and R_j is diagonal. Then, the following equation holds

$$\min \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_F^2 + ||\boldsymbol{x}_k||_F^2 + ||\boldsymbol{x}_i \boldsymbol{R}_j + \boldsymbol{x}_k \boldsymbol{R}_j||_F^2$$
$$= ||\hat{\mathcal{X}}||_2.$$

Proof First we have

$$\min rac{1}{2\sqrt{|\mathcal{R}|}} \sum_{(oldsymbol{x}_i, oldsymbol{R}_j, oldsymbol{x}_k) \in \mathcal{S}} ||oldsymbol{x}_i||_F^2 + ||oldsymbol{x}_k||_F^2 + ||oldsymbol{x}_i oldsymbol{\mathbf{R}}_j + oldsymbol{x}_k oldsymbol{\mathbf{R}}_j||_F^2} ||\mathcal{R}_i||_F^2 + ||oldsymbol{x}_i oldsymbol{\mathbf{R}}_j + oldsymbol{x}_k oldsymbol{\mathbf{R}}_j||_F^2}$$

$$\leq \min_{(\boldsymbol{x}_i,\boldsymbol{R}_j,\boldsymbol{x}_k) \in \mathcal{S}} \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \|\boldsymbol{x}_i\|_F^2 + \|\boldsymbol{x}_k\|_F^2 + \|\boldsymbol{x}_i\boldsymbol{R}_j\|_F^2$$

$$+ \| m{x}_k m{R}_j \|_F^2 + \| m{x}_i m{R}_j m{x}_k m{R}_j \| + \| m{x}_k m{R}_j m{x}_i m{R}_j \|$$

$$= \min_{(oldsymbol{x}_i, oldsymbol{R}_j, oldsymbol{x}_k) \in \mathcal{S}} rac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \|oldsymbol{x}_i\|_F^2 + \|oldsymbol{x}_k\|_F^2 + \|oldsymbol{x}_ioldsymbol{R}_j\|_F^2$$

$$+ \|\boldsymbol{x}_k \boldsymbol{R}_j\|_F^2 + 2\|\boldsymbol{x}_i \boldsymbol{R}_j \boldsymbol{x}_k \boldsymbol{R}_j\|$$

$$\leq \min_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \|\boldsymbol{x}_i\|_F^2 + \|\boldsymbol{x}_k\|_F^2 + \|\boldsymbol{x}_i \boldsymbol{R}_j\|_F^2$$

$$+ \| \boldsymbol{x}_{k} \boldsymbol{R}_{i} \|_{F}^{2} + \| \boldsymbol{x}_{i} \boldsymbol{R}_{i} \|_{F}^{2} + \| \boldsymbol{x}_{k} \boldsymbol{R}_{i} \|_{F}^{2}$$

$$\leq \min_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \|\boldsymbol{x}_i\|_F^2 + \|\boldsymbol{x}_k\|_F^2 + 2 \|\boldsymbol{x}_i \boldsymbol{R}_j\|_F^2$$

$$+2\|\boldsymbol{x}_{k}\boldsymbol{R}_{j}\|_{F}^{2}$$

$$\leq \min_{(\boldsymbol{x}_i,\boldsymbol{R}_j,\boldsymbol{x}_k) \in \mathcal{S}} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \|\boldsymbol{x}_i\|_F^2 + \|\boldsymbol{x}_k\|_F^2 + \|\boldsymbol{x}_i\boldsymbol{R}_j\|_F^2 + \|\boldsymbol{x}_k\boldsymbol{R}_j\|_F^2$$

Since $x_i R_j$ and $x_k R_j$ are all vectors, we can have $||x_i R_j x_k R_j|| = ||x_k R_j x_i R_j||$. Then the equality (a) hold-

Then in the same manner with Eq.(18), we can have that

$$\min \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_F^2 + ||\boldsymbol{x}_k||_F^2 + ||\boldsymbol{x}_i \boldsymbol{R}_j + \boldsymbol{x}_k \boldsymbol{R}_j||_F^2$$

$$=\|\hat{\mathcal{X}}\|_2.$$

We can have the equality holds if and only if $\|\mathbf{q}_{:d}\|_2 \|\mathbf{r}_{:d}\|_2 = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_2$. Then we can see that the conclusion holds if and only if $\|\mathbf{p}_{:d}\|_2 \|\mathbf{r}_{:d}\|_2 =$ $\sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_2$ and $||\mathbf{q}_{:d}||_2 ||\mathbf{r}_{:,d}||_2 = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_2, \forall d \in \{1,2,\ldots,D\}$. Then the proof of Theorem 2 completes.

Proof for Theorem 3

Here we denote $|x|^3$ as $||x||_3^3$ and denote $|x|^{\frac{3}{2}}$ as $||x||_C$. Then we have Theorem 3 and Theorem 4 with their proofs

Theorem 3 Suppose that $\hat{X} = x_i \overline{R}_j x_k^{\top}$ for $j = 1, 2, \cdots, |\mathcal{R}|$, where x_i, x_k, R_j are real matrices and R_j is diagonal. Then, the following equation holds

$$\frac{1}{\sqrt{|\mathcal{R}|}} \min \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \mathbf{R}_j - \boldsymbol{x}_k \mathbf{R}_j||_3^3$$
$$- ||\hat{\mathcal{X}}||_3$$

$$\min \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \boldsymbol{R}_j - \boldsymbol{x}_k \boldsymbol{R}_j||_3^3$$

$$\leq \min \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \mathbf{R}_j||_3^3 + ||\boldsymbol{x}_k \mathbf{R}_j||_3^3.$$

We first prove that the following equation holds

$$\min_{\hat{X}_{j} = \boldsymbol{x}_{i} R_{j} \boldsymbol{x}_{k}^{\top}} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} (\|\boldsymbol{x}_{i}\|_{3}^{3} + \|\boldsymbol{x}_{k}\|_{3}^{3} + \|\boldsymbol{x}_{i} \boldsymbol{R}_{j}\|_{3}^{3} + \|\boldsymbol{x}_{k} \boldsymbol{R}_{j}\|_{3}^{3})$$

$$= \|\hat{\mathcal{X}}\|_{3}.$$
(20)

Denote x_i as p and x_k as q. Then we have that

$$\sum_{j=1}^{|\mathcal{R}|} \left(\| \boldsymbol{x}_{i} \mathbf{R}_{j} \|_{3}^{3} + \| \boldsymbol{x}_{k} \|_{3}^{3} \right)$$

$$= \sum_{j=1}^{|\mathcal{R}|} \left(\sum_{d=1}^{D} \| \mathbf{q}_{:d} \|_{3}^{3} + \sum_{i=1}^{I} \sum_{d=1}^{D} \mathbf{p}_{id}^{3} \mathbf{r}_{jd}^{3} \right)$$

$$= \sum_{j=1}^{|\mathcal{R}|} \sum_{d=1}^{D} \| \mathbf{q}_{:d} \|_{3}^{3} + \sum_{d=1}^{D} \| \mathbf{p}_{:d} \|_{3}^{3} \| \mathbf{r}_{:d} \|_{3}^{3}$$

$$= \sum_{d=1}^{D} \left(\| \mathbf{p}_{:d} \|_{3}^{3} \| \mathbf{r}_{:d} \|_{3}^{3} + |\mathcal{R}| \| \mathbf{q}_{:d} \|_{3}^{3} \right)$$

$$\geq \sum_{d=1}^{D} 2\sqrt{|\mathcal{R}|} \| \mathbf{p}_{:d} \|_{C} \| \mathbf{r}_{:d} \|_{C} \| \mathbf{q}_{:d} \|_{C}$$

$$= 2\sqrt{|\mathcal{R}|} \sum_{d=1}^{D} \| \mathbf{p}_{:d} \|_{C} \| \mathbf{r}_{:d} \|_{C} \| \mathbf{q}_{:d} \|_{C}$$

We can have the equality holds if and only if $\|\mathbf{p}_{:d}\|_3^3 \|\mathbf{r}_{:d}\|_3^3 = |\mathcal{R}| \|\mathbf{q}_{:d}\|_3^3$, i.e., $\|\mathbf{p}_{:d}\|_C \|\mathbf{r}_{:d}\|_C =$ $\sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_{C}$.

For all CP decomposition $\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}_{:d} \otimes \mathbf{r}_{:d} \otimes \mathbf{q}_{:d}$, we can always let $p'_{:d} = p_{:d}$, $r'_{:d} = \sqrt{\frac{\|\mathbf{q}_d\|_C \sqrt{|\mathcal{R}|}}{\|\mathbf{p}_{:d}\|_C \|\mathbf{r}_{:d}\|_C}} \mathbf{r}_{:d}$ and $q'_{:d} = \sqrt{\frac{\|\mathbf{p}_{:d}\|_C \|\mathbf{r}_{:d}\|_C}{\|\mathbf{q}_{:d}\|_C \sqrt{|\mathcal{R}|}}} \mathbf{p}_{:d}$, then we have

$$\|\mathbf{p}_{:d}'\|_{C} \|\mathbf{r}_{:d}'\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}'\|_{C},$$

and at the same time we make sure that that $\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}'_{:d} \otimes \mathbf{r}'_{:d} \otimes \mathbf{q}'_{:d}$. Therefore, we can have

$$\begin{split} &\frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \left\| \hat{\mathcal{X}}_{j} \right\|_{C} \\ =& \frac{1}{2\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} \min_{\hat{\mathcal{X}}_{j} = \boldsymbol{x}_{i} \mathbf{R}_{j} \boldsymbol{x}_{k}^{\top}} \left(\left\| \boldsymbol{x}_{i} \mathbf{R}_{j} \right\|_{3}^{3} + \left\| \boldsymbol{x}_{k} \right\|_{3}^{3} \right) \\ \leq & \frac{1}{2\sqrt{|\mathcal{R}|}} \min_{\hat{\mathcal{X}}_{j} = \boldsymbol{x}_{i} \mathbf{R}_{j} \boldsymbol{x}_{k}^{\top}} \sum_{j=1}^{|\mathcal{R}|} \left(\left\| \boldsymbol{x}_{i} \mathbf{R}_{j} \right\|_{3}^{3} + \left\| \boldsymbol{x}_{k} \right\|_{3}^{3} \right) \\ = & \min_{\hat{\mathcal{X}} = \sum_{d=1}^{D} \mathbf{p}_{j} \otimes \mathbf{r}_{id} \otimes \mathbf{q}_{:d}} \sum_{d=1}^{D} \left\| \mathbf{p}_{:d} \right\|_{C} \left\| \mathbf{r}_{:d} \right\|_{C} \left\| \mathbf{q}_{:d} \right\|_{C} \\ = & \|\hat{\mathcal{X}}\|_{3}. \end{split}$$

And in the same manner, we can have that

$$\min \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \mathbf{R}_j - \boldsymbol{x}_k \mathbf{R}_j||_3^3$$

$$=\|\hat{\mathcal{X}}\|_3$$

We can have that the equality holds if and only if $\|\mathbf{q}_{:d}\|_{C} \|\mathbf{r}_{:d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_{C}$. Then we can see that the conclusion holds if and only if $\|\mathbf{p}_{:d}\|_{C} \|\mathbf{r}_{:d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_{C}$ and $\|\mathbf{q}_{:d}\|_{C} \|\mathbf{r}_{:,d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_{C}$, $\forall d \in \{1,2,\ldots,D\}$. Then the proof of Theorem 3 completes.

Proof for Theorem 4

Theorem 4 Suppose that $\hat{X} = x_i \overline{R}_j x_k^{\top}$ for $j = 1, 2, \dots, |\mathcal{R}|$, where x_i, x_k, R_j are real matrices and R_j is diagonal. Then, the following equation holds

$$\frac{1}{4\sqrt{|\mathcal{R}|}} \min \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \mathbf{R}_j + \boldsymbol{x}_k \mathbf{R}_j||_3^3$$

 $=\|\hat{\mathcal{X}}\|_3$ (21)

First we prove $\|\mathbf{x}_i\mathbf{R}_j\|^2 |\mathbf{x}_k\mathbf{R}_j| + |\mathbf{x}_i\mathbf{R}_j|||\mathbf{x}_k\mathbf{R}_j||^2 \le \|\mathbf{x}_i\mathbf{R}_j\|_3^3 + \|\mathbf{x}_k\mathbf{R}_j\|_3^3 \text{ holds. Notice that } |\mathbf{x}_i\mathbf{R}_j| + |\mathbf{x}_k\mathbf{R}_j| \ge 0 \text{ and } (|\mathbf{x}_i\mathbf{R}_j| - |\mathbf{x}_k\mathbf{R}_j|)^2 \ge 0. \text{ Then we have}$

$$(|\boldsymbol{x}_{i}\mathbf{R}_{j}| + |\boldsymbol{x}_{k}\mathbf{R}_{j}|)(|\boldsymbol{x}_{i}\mathbf{R}_{j}| - |\boldsymbol{x}_{k}\mathbf{R}_{j}|)^{2} \ge 0$$

$$(|\boldsymbol{x}_{i}\mathbf{R}_{j}| + |\boldsymbol{x}_{k}\mathbf{R}_{j}|)(|\boldsymbol{x}_{i}\mathbf{R}_{j}| - |\boldsymbol{x}_{k}\mathbf{R}_{j}|)(|\boldsymbol{x}_{i}\mathbf{R}_{j}| - |\boldsymbol{x}_{k}\mathbf{R}_{j}|) \ge 0$$

$$(|\boldsymbol{x}_{i}\mathbf{R}_{j}|^{2} - |\boldsymbol{x}_{k}\mathbf{R}_{j}|^{2})(|\boldsymbol{x}_{i}\mathbf{R}_{j}| - |\boldsymbol{x}_{k}\mathbf{R}_{j}|) \ge 0$$

Then we can derive the following formula:

$$|\mathbf{x}_{i}\mathbf{R}_{j}|^{2}(|\mathbf{x}_{i}\mathbf{R}_{j}| - |\mathbf{x}_{k}\mathbf{R}_{j}|) \ge |\mathbf{x}_{k}\mathbf{R}_{j}|^{2}(|\mathbf{x}_{i}\mathbf{R}_{j}| - |\mathbf{x}_{k}\mathbf{R}_{j}|)$$

$$|\mathbf{x}_{i}\mathbf{R}_{j}|^{3} - |\mathbf{x}_{i}\mathbf{R}_{j}|^{2}|\mathbf{x}_{k}\mathbf{R}_{j}| \ge |\mathbf{x}_{k}\mathbf{R}_{j}|^{2}|\mathbf{x}_{i}\mathbf{R}_{j}| - |\mathbf{x}_{i}\mathbf{R}_{j}|^{3}$$

$$||\mathbf{x}_{i}\mathbf{R}_{j}||_{3}^{3} + ||\mathbf{x}_{k}\mathbf{R}_{j}||_{3}^{3} \ge ||\mathbf{x}_{i}\mathbf{R}_{j}||^{2}|\mathbf{x}_{k}\mathbf{R}_{j}^{\top}| + |\mathbf{x}_{i}\mathbf{R}_{j}|||\mathbf{x}_{k}\mathbf{R}_{j}||^{2}$$
(23)

Then we have:

$$\min \frac{1}{4\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + ||\boldsymbol{x}_{i}\boldsymbol{R}_{j} + \boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3}$$

$$\stackrel{a}{\leq} \min_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} \frac{1}{4\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + ||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3}$$

$$+ ||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3} + 3||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||^{2} ||\boldsymbol{x}_{k}\boldsymbol{R}_{j}| + 3||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||^{2}$$

$$\stackrel{b}{\leq} \min_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} \frac{1}{4\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + ||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3}$$

$$+ ||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3} + 3||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3} + 3||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3}$$

$$\leq \min_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} \frac{1}{4\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + 4||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3}$$

$$\leq \min_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + ||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3} + ||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3}$$

$$\leq \min_{(\boldsymbol{x}_{i},\boldsymbol{R}_{j},\boldsymbol{x}_{k})\in\mathcal{S}} \frac{1}{\sqrt{|\mathcal{R}|}} \sum_{j=1}^{|\mathcal{R}|} ||\boldsymbol{x}_{i}||_{3}^{3} + ||\boldsymbol{x}_{k}||_{3}^{3} + ||\boldsymbol{x}_{i}\boldsymbol{R}_{j}||_{3}^{3} + ||\boldsymbol{x}_{k}\boldsymbol{R}_{j}||_{3}^{3}$$

Datasets	WN18RR	FB15K237	YAGO3-10
dimension	2000	2000	2000
batch size	100	100	500
learning rate	0.1	0.05	0.1

Table 2: Hyperparameters found by grid search for CP m-doel.

Datasets	WN18RR	FB15K237	YAGO3-10
dimension	2000	2000	2000
batch size	200	200	1000
learning rate	0.05	0.1	0.05

Table 3: Hyperparameters found by grid search for ComplEx mdoel.

Since $x_i R_j$ and $x_k R_j$ are all vectors, we can have $||x_i R_j x_k R_j|| = ||x_k R_j x_i R_j||$. Then the inequality (a) holds. The inequality (b) holds due to the Eq.(22).

Then in the same manner with Eq.(20), we can have that

$$\min \frac{1}{4\sqrt{|\mathcal{R}|}} \sum_{(\boldsymbol{x}_i, \boldsymbol{R}_j, \boldsymbol{x}_k) \in \mathcal{S}} ||\boldsymbol{x}_i||_3^3 + ||\boldsymbol{x}_k||_3^3 + ||\boldsymbol{x}_i \mathbf{R}_j + \boldsymbol{x}_k \mathbf{R}_j||_3^3$$

$$=\|\hat{\mathcal{X}}\|_3.$$

We can have that the equality holds if and only if $\|\mathbf{q}_{:d}\|_{C} \|\mathbf{r}_{:d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_{C}$. Then we can see that the conclusion holds if and only if $\|\mathbf{p}_{:d}\|_{C} \|\mathbf{r}_{:d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{q}_{:d}\|_{C}$ and $\|\mathbf{q}_{:d}\|_{C} \|\mathbf{r}_{:,d}\|_{C} = \sqrt{|\mathcal{R}|} \|\mathbf{p}_{:d}\|_{C}$, $\forall d \in \{1,2,\ldots,D\}$. Then the proof of Theorem 4 completes.

Experimental Details and Appendix

We implement our model using PyTorch and test it on a single GPU. Here Table 7 shows statistics of the datasets used in this paper. The hypermeters for CP, ComplEx, RESCAL RotatE models are shown in Table 2, Table 3, Table 4 and Table 5 respectively. We have counted the running time of each epoch for different models with ER in WN18RR as follows: CP with ER takes 58s, ComplEx with ER takes 84s and RESCAL with ER takes 73s.

Study on semantic-similarity hyperparameter ϵ . In the experiments above, we provide the semantic-similarity parameter ϵ_j for each relation R_j in ER. To characterize the similarity between entities adequately and study the impact of ϵ , here we also conduct another version of ER where we provide ϵ_{ik} for a_{ik} (in Eq.(3)), which we denote as ER*. From Table 6, we can see ER and ER* have similar performance. It shows providing ϵ_j for each relation R_j in ER is proper.

		WN18R	R		FB15K-2	37		YAGO3-	10
Models	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10
CP-FRO	.460	-	.480	.340	=	.510	.540	=	.680
CP-N3	.470	.430	.544	.354	.261	.544	.577	.505	.705
CP-DURA	.478	.441	.552	.367	.272	.555	.579	.506	.709
CP-ER	.482	.444	.557	.371	.275	.561	.584	.508	.712
ComplEx-FRO	.470	-	.540	.350	-	.530	.573	-	.710
ComplEx-N3	.489	.443	.580	.366	.271	.558	.577	.502	.711
ComplEx-DURA	.491	.449	.571	.371	.276	.560	.584	.511	.713
ComplEx-ER	.494	.453	.575	.374	.282	.563	.588	.515	.718
RESCAL-FRO	.397	.363	.452	.323	.235	.501	.474	.392	.628
RESCAL-DURA	.498	.455	.577	.368	.276	.550	.579	.505	.712
RESCAL-ER	.499	.458	.582	.373	.281	.554	.583	.509	.715

Table 9: Comparison between DURA, the squared Frobenius norm (FRO), and the nuclear 3-norm (N3) regularizers (N3 does not apply to RESCAL). The best performance on each model are marked in bold.

		WN18R	R		FB15K-2	37		YAGO3-	10
Models	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10
TransE-FRO	.259	.105	.532	.327	.231	.519	.478	.377	.665
TransE-N3	.265	.107	.533	.328	.232	.518	.483	.385	.664
TransE-DURA	.260	.105	.531	.328	.233	.518	.475	.371	.666
TransE-ER	.268	.110	.536	.329	.235	.525	.489	.384	.669
RotatE-FRO	.481	.434	.572	.337	.242	.528	.570	.481	.680
RotatE-N3	.483	.440	.580	346	.251	.538	.574	.498	.701
RotatE-DURA	.487	.443	.580	.342	.246	.533	.567	.491	.702
RotatE-ER	.490	.445	.581	.352	.255	.547	.581	.505	.704

Table 10: Comparison between DURA, the squared Frobenius norm (FRO), and the nuclear 3-norm (N3) regularizers. The best performance on each model are marked in bold.

Datasets	WN18RR	FB15K237	YAGO3-10
dimension	512	512	512
batch size	400	400	1000
learning rate	0.1	0.1	0.05

Table 4: Hyperparameters found by grid search for RESCAL mdoel.

Datasets	WN18RR	FB15K237	YAGO3-10
dimension	400	400	400
batch size	100	100	500
learning rate	0.1	0.05	0.05

Table 5: Hyperparameters found by grid search for RotatE mdoel.

Model	MRR	Hits@1	Hits@10
ComplEx-ER	.374	.282	.563
ComplEx-ER*	.375	.282	.565

Table 6: Evaluation results of ϵ on FB15K237.

Figure 3: Study of training and validation curves.

		WN18R	R		FB15K-2	37		YAGO3-	10
Models	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10
ComplEx-RHE	.469	.430	.538	.348	.262	.542	.570	.501	.708
ComplEx-LLE	.477	.442	.551	.363	.271	.552	.576	.504	.701
ComplEx-TFR	.473	.441	.545	.358	.264	.541	.573	.502	.702
ComplEx-EIA	.463	.345	.542	.356	.266	.529	.573	.501	.703
ComplEx-Pretrain	.479	.440	.553	.353	.268	.533	.578	.502	.704
ComplEx-ER	.494	.453	.575	.374	.282	.563	.588	.515	.718

Table 11: Evaluation results of different models on WN18RR, FB15k-237 and YAGO3-10 datasets.

		WN18R	R		FB15K-2	37		YAGO3-	10
Models	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10	MRR	Hits@1	Hits@10
CP-ER ComplEx-ER	.479 .492	.441 .452	.556 .574	.371 .371	.273 .275	.560 .560	.582 .586	.506 .514	.709 .712

Table 12: Evaluation results of ER based on 3-norm on WN18RR, FB15k-237 and YAGO3-10 datasets.

Dataset	#Entity	#Relation	#Training	#Valid	#Test
WN18RR FB15K237 YAGO3-10	,-	11 237 37	86,835 272,115 1,079,040	3,034 17,535 5,000	-,

Table 7: Statistics of the datasets used in this paper.

Model	MRR	Hits@1	Hits@10
ComplEx ₀	.355	.263	.542
ComplEx ₁	.374	.282	.563
ComplEx ₂	.378	.284	.569

Table 8: Evaluation results on FB15K237.