Lab11-NP Reduction

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

	* If there is any problem, please	contact TA Shuodian Yu.	
* Name:	Student ID:	Email:	

- 1. What is the "certificate" and "certifier" for the following problems?
 - (a) ZERO-ONE INTEGER PROGRAMMING: Given an integer $m \times n$ matrix A and an integer m-vector b, is there an integer n-vector x with elements in the set $\{0,1\}$ such that Ax < b.
 - (b) SET PACKING: Given a finite set U, a positive integer k and several subsets U_1, U_2, \ldots, U_m of U, is there k or more subsets which are disjoint with each other?
 - (c) STEINER TREE IN GRAPHS: Given a graph G = (V, E), a weight $w(e) \in Z_0^+$ for each $e \in E$, a subset $R \subset V$, and a positive integer bound B, is there a subtree of G that includes all the vertices of R and such that the sum of the weights of the edges in the subtree is no more than B.
- 2. Algorithm class is a democratic class. Denote class as a finite set S containing every students. Now students decided to raise a student union $S' \subseteq S$ with $|S'| \leq K$.
 - As for the members of the union, there are many different opinions. An opinion is a set $S_o \subseteq S$. Note that number of opinions has nothing to do with number of students.
 - The question is whether there exists such student union $S' \subseteq S$ with $|S'| \le K$, that S' contains at least one element from each opinion. We call this problem *ELECTION* problem, prove that it is NP-complete.
- 3. Not-All-Equal Satisfiability (NAE-SAT) is an extension of SAT where every clause has at least one true literal and at least one false one. NAE-3-SAT is the special case where each clause has exactly 3 literals. Prove that NAE-3-SAT is NP-complete. (Hint: reduce 3-SAT to NAE-k-SAT for some k > 3 at first)
- 4. In the Lab10, we have introduced Minimum Constraint Data Retrieval Problem (MCDR). Prove that MCDR (Version 1 or 2) is NP-complete. (Hint: reduce from VERTEX-COVER or 3-SAT)

Remark: Please include your .pdf, .tex files for uploading with standard file names.