Rzeczywista niezmienność momentów Hu

Szymon Rogus

1. Dane:

Dane to 18 zdjęć – po 6 każdej litery; A, E oraz F. Każda została poddana 5 transformacjom:

- zdj nr 1 to lustrzane odbicie (z wyjątkiem A tutaj jest rotacją o 180 stopni).
- Zdj nr 2 to rozmycie filtrem 20x20.
- Zdj nr 3 to lustrzane odbicie (z wyjątkiem A) oraz rozmycie filtrem 30x30.
- Zdj nr 4 to rotacja o 90 stopni w prawo.
- Zdj nr 5 to zdj nr 1 z nałożonym szumeme o gęstości 80 I instensywności 50 (Wyjątkowo użyłem programu pinta – odpowiednik painta na linuxa:))

2. Obliczenia:

Dla każdego zdjęcia do obliczenia momentów Hu wykorzystałem bibliotekę openCv (python) oraz metodę:

huMoments = cv2.HuMoments(moment)

3. Wyniki i Interpretacja:

Momenty Hu dla konkretnych liter:

Α	3.01725	9.27563	11.21206	13.35632	-25.77868	-18.66809	25.80412
A1	3.01725	9.27559	11.21203	13.35640	-25.77899	-18.66739	-25.80400
A2	3.01695	9.27519	11.21399	13.32241	-25.69169	-18.78963	25.80524
A3	3.01659	9.28293	11.21356	13.37043	-25.70702	-20.14384	-26.02809
A4	3.01725	9.27563	11.21206	13.35631	-25.77922	-18.66683	25.80346
A5	3.00895	9.30008	11.21739	13.43560	-25.87144	-18.94461	-25.96346
Е	3.02573	8.23624	11.78180	11.10431	22.54749	15.22856	24.16332

E1	3.02573	8.23624	11.78180	11.10431	22.54749	15.22856	-24.16332
E2	3.02514	8.23685	11.77633	11.09533	22.53135	15.21945	24.06153
E3	3.02538	8.24362	11.75943	11.08669	22.50990	15.21421	-24.09363
E4	3.02573	8.23626	11.78175	11.10431	22.54747	15.22856	24.16325
E5	3.02174	8.24385	11.78104	11.10749	22.55187	15.23591	-24.17681
F	3.06171	8.79430	11.66151	11.13923	22.88261	15.90042	-22.58970
F1	3.06171	8.79430	11.66151	11.13923	22.88261	15.90042	22.58970
F2	3.06212	8.79452	11.66974	11.14813	22.90177	15.91603	-22.60674
F3	3.06231	8.80522	11.66647	11.14359	22.88820	15.92190	22.59962
F4	3.06171	8.79430	11.66151	11.13923	22.88261	15.90042	-22.58970
F5	3.05733	8.79670	11.66657	11.14295	22.89124	15.90448	22.59767

Tabela z momentami jest słabą reprezentacją, więc wykonwałem trzy porównawcze wykresy. Na każdym wykresie jest 6 linii, które reprezentują przejścia z momentów Hu (od 1 do 7) dla każdej litery (Osobno wykresy dla A, E oraz F).

Wykres dla litery A:

Na powyższym wykresie na współrzędnej x oznaczone są kolejne momenty Hu (linie między wartościami x dodałem aby pokazać ewentualne odbicia średnich)

Dla litery A, momenty Hu od 1 do 6 są w zasadzie zgodne, różnica pojawia się przy 7. Tutaj Obrazek oryginalny osiągnął zbliżone momenty do obrazka 2 oraz 4 – jest to rozmycie filtrem 2x2 (2) oraz rotacja w prawo o 90 stopnii (4). Wartości przeciwne dla ostatniego momentu osiągają obrazki 1,3,5.

Wykres dla litery E:

Tutaj analogicznie jak dla litery A, momenty od 1 do 6 są zbliżone – różnica pojawia się przy ostatnim momencie. Analogicznie, podział jest na dwie grupy:

- obrazek oryginalny, obrazek nr 2 (rozmycie filtrem 20x20) oraz obrazek nr 4 (rotacja o 90 stopnii w prawo).
- obrazek nr 1 (lustrzane odbicie), obrazek nr 3 (odbicie lustrzene plus filtr) oraz obrazek nr 5 (lustrzane odbicie I szum).

Wykres dla litery F:

Dla litery F wnioski są niemal takie same jak dla litery E, z tą różnicą że tutaj grupy obrazków:

- oryginalny, 2 oraz 4
- obrazek 1, 3 oraz 5

Są przeciwstawne w stosunku do litery E. Warto również zauważyć, że ogólny wykres litery E oraz F jest bardzo zbliżony.

4. Wnioski:

Dla tak dobranych zmian w obrazkach, wielkich różnic w momentach Hu nie było. Tylko ostatni moment pokazywał różnice, jednak ta różnica grupowała obrazki.