

INTÉGRALES IMPROPRES ET INTÉGRALE DÉPENDANT D'UN PARAMÈTRE

AA4: Intégrale impropre des fonctions quelconques

Soit l'intégrale

$$\int_{\pi}^{+\infty} \frac{\sin x}{3(x^2+1)} \, dx$$

① Montrer que
$$\left| \frac{\sin x}{3(x^2+1)} \right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[.$$

Soit l'intégrale

$$\int_{\pi}^{+\infty} \frac{\sin x}{3(x^2+1)} \, dx$$

① Montrer que
$$\left| \frac{\sin x}{3(x^2+1)} \right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[.$$

$$\forall x, |\sin(x)| \le 1 \implies \left|\frac{\sin x}{3(x^2+1)}\right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[$$

Soit l'intégrale

$$\int_{\pi}^{+\infty} \frac{\sin x}{3(x^2+1)} \, dx$$

① Montrer que $\left| \frac{\sin x}{3(x^2+1)} \right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[.$

$$\forall x, |\sin(x)| \le 1 \implies \left|\frac{\sin x}{3(x^2+1)}\right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[$$

② En déduire que l'intégrale $\int_{\pi}^{+\infty} \left| \frac{\sin x}{3(x^2+1)} \right| dx$ converge.

Soit l'intégrale

$$\int_{\pi}^{+\infty} \frac{\sin x}{3(x^2+1)} \, dx$$

① Montrer que $\left| \frac{\sin x}{3(x^2+1)} \right| \le \frac{1}{3(x^2+1)}, \ \forall \ x \in [\pi, +\infty[.$

$$\forall x, |\sin(x)| \le 1 \implies \left| \frac{\sin x}{3(x^2 + 1)} \right| \le \frac{1}{3(x^2 + 1)}, \ \forall \ x \in [\pi, +\infty[$$

2 En déduire que l'intégrale $\int_{\pi}^{+\infty} \left| \frac{\sin x}{3(x^2+1)} \right| dx$ converge.

On remarque que

$$\frac{1}{3(x^2+1)} \underset{+\infty}{\sim} \frac{1}{3x^2}$$

Or
$$\int_{\pi}^{+\infty} \frac{1}{3x^2} dx$$
 est convergente.

Or
$$\int_{\pi}^{+\infty} \frac{1}{3x^2} dx$$
 est convergente.

D'après le théorème d'équivalence
$$\int_{\pi}^{+\infty} \frac{1}{3(x^2+1)} dx$$
 est convergente.

Or
$$\int_{\pi}^{+\infty} \frac{1}{3x^2} dx$$
 est convergente.

D'après le théorème d'équivalence $\int_{\pi}^{+\infty} \frac{1}{3(x^2+1)} dx$ est convergente.

Or

$$0 \le \left| \frac{\sin x}{3(x^2 + 1)} \right| \le \frac{1}{3(x^2 + 1)}, \ \forall \ x \in \left[\pi, +\infty \right[$$

Or
$$\int_{\pi}^{+\infty} \frac{1}{3x^2} dx$$
 est convergente.

D'après le théorème d'équivalence $\int_{\pi}^{+\infty} \frac{1}{3(x^2+1)} dx$ est **convergente**.

Or

$$0 \le \left| \frac{\sin x}{3(x^2 + 1)} \right| \le \frac{1}{3(x^2 + 1)}, \ \forall \ x \in [\pi, +\infty[$$

D'après le théorème de comparaison $\int_{\pi}^{+\infty} \left| \frac{\sin x}{3(x^2+1)} \right| dx$ est **convergente**.

Convergence absolue

Convergence absolue

Soit f une fonction continue sur un intervalle I de \mathbb{R} . On dit que l'intégrale généralisée $\int_I f(x) \, dx$ est absolument convergente si et seulement si $\int_I |f(x)| \, dx$ est convergente.

$$\int_I f(x) dx$$
 converge absolument $\iff \int_I |f(x)| dx$ converge

Convergence absolue

Convergence absolue

Soit f une fonction continue sur un intervalle I de \mathbb{R} . On dit que l'intégrale généralisée $\int_I f(x) \, dx$ est absolument convergente si et seulement si $\int_I |f(x)| \, dx$ est convergente.

$$\int_I f(x) dx$$
 converge absolument $\iff \int_I |f(x)| dx$ converge

Théorème

Toute intégrale généralisée absolument convergente est convergente.

Convergence absolue

Convergence absolue

Soit f une fonction continue sur un intervalle I de \mathbb{R} . On dit que l'intégrale généralisée $\int_I f(x) \, dx$ est absolument convergente si et seulement si $\int_I |f(x)| \, dx$ est convergente.

$$\int_I f(x) dx$$
 converge absolument $\iff \int_I |f(x)| dx$ converge

Théorème

Toute intégrale généralisée absolument convergente est convergente.

Attention!

La réciproque est fausse: il existe des intégrales généralisées convergentes mais non absolument convergentes.

Montrer que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente.

Montrer que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente.

On a

$$\forall t \in \mathbb{R} |cos(t)| \le 1 \Rightarrow 0 \le \left| \frac{cos(t)}{t^2} \right| \le \frac{1}{t^2} \quad \forall t \in \mathbb{R}$$

Montrer que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente.

On a

$$\forall t \in \mathbb{R} |cos(t)| \le 1 \Rightarrow 0 \le \left| \frac{cos(t)}{t^2} \right| \le \frac{1}{t^2} \quad \forall t \in \mathbb{R}$$

Comme $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Reimann convergente.

Montrer que l'intégrale
$$\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$$
 est convergente.

On a

$$\forall t \in \mathbb{R} |cos(t)| \le 1 \Rightarrow 0 \le \left| \frac{cos(t)}{t^2} \right| \le \frac{1}{t^2} \quad \forall t \in \mathbb{R}$$

Comme $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Reimann convergente.

D'aprés le théorème de comparaison

$$\int_{1}^{+\infty} \frac{\cos(t)}{t^{2}} dt \text{ est absolument convergente } \Longrightarrow \int_{1}^{+\infty} \frac{\cos(t)}{t^{2}} dt \text{ est convergente}$$

Soit l'intégrale

$$\int_{1}^{+\infty} \frac{\sin(x)}{x} dx$$

 $\mbox{1}$ En intégrant par partie, montrer que $\int_1^{+\infty} \frac{\sin(t)}{t} \, dt$ est convergente.

Soit l'intégrale

$$\int_{1}^{+\infty} \frac{\sin(x)}{x} dx$$

- ① En intégrant par partie, montrer que $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.
- Soit X > 1, on intègre par parties, en intégrant le sinus et en dérivant 1/t pour augmenter l'exposant au dénominateur.

$$\int_{1}^{X} \frac{\sin(t)}{t} dt = \left[\frac{-\cos(t)}{t} \right]_{1}^{X} - \int_{1}^{X} \frac{\cos t}{t^{2}} dt$$
$$= -\frac{\cos(X)}{X} + \frac{\cos(1)}{1} - \int_{1}^{X} \frac{\cos(t)}{t^{2}} dt.$$

Or
$$\lim_{X \to +\infty} \frac{\cos(X)}{X} = 0$$

$$\int_{1}^{+\infty} \frac{\sin(x)}{x} dx = \lim_{X \to +\infty} \int_{1}^{X} \frac{\sin(t)}{t} dt = \frac{\cos(1)}{1} - \int_{1}^{+\infty} \frac{\cos(t)}{t^{2}} dt$$

De plus, on a:

$$\left| \frac{\cos(t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

De plus, on a:

$$\left| \frac{\cos(t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

2 Montrer que $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ converge grâce à une intégration par partie.

De plus, on a:

$$\left| \frac{\cos(t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

- 2 Montrer que $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ converge grâce à une intégration par partie.
- Soit X > 1, on intègre par parties, en intégrant le fonction $t \longrightarrow cos(2t)$ et en dérivant 1/t pour augmenter l'exposant au dénominateur.

$$\int_{1}^{X} \frac{\cos(2t)}{t} dt = \left[-\frac{\sin(2t)}{t} \right]_{1}^{X} + \int_{1}^{X} \frac{\cos(2t)}{t^{2}} dt$$
$$= -\frac{\sin(2X)}{X} + \frac{\sin(2)}{1} + \int_{1}^{X} \frac{\cos(2t)}{t^{2}} dt$$

Or
$$\lim_{X \to +\infty} \frac{\sin(2X)}{X} = 0$$
$$\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt = \lim_{X \to +\infty} \int_{1}^{X} \frac{\cos(2t)}{t} dt = \frac{\sin(2)}{1} + \int_{1}^{+\infty} \frac{\cos(2t)}{t^{2}} dt$$

De plus, on a:

$$\left| \frac{\cos(2t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ est convergente.

De plus, on a:

$$\left| \frac{\cos(2t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ est convergente.

3 Montrer que $\forall t \in [1; +\infty[, 0 \le \sin^2(t) = \frac{1 - \cos(2t)}{2} \le |\sin(t)|.$

De plus, on a:

$$\left| \frac{\cos(2t)}{t^2} \right| \le \frac{1}{t^2} \ \forall \ t \in [1, +\infty[$$

Ceci implique que l'intégrale $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ est convergente. Alors, $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ est convergente.

3 Montrer que
$$\forall t \in [1; +\infty[, 0 \le \sin^2(t) = \frac{1 - \cos(2t)}{2} \le |\sin(t)|.$$

$$\forall t \in [1, +\infty[, |\sin(t)| \le 1 \Rightarrow |\sin(t)| \ge \sin^2(t) = \frac{1 - \cos(2t)}{2}.$$

 $\mbox{\em 3}$ En déduire que $\int_0^{+\infty} |\frac{\sin t}{t}| \, dt$ diverge. Conclure.

3 En déduire que $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ diverge. Conclure.

On a

$$\frac{\sin^2 t}{t} = \frac{1 - \cos(2t)}{2t} \le \frac{|\sin t|}{t}, \qquad \forall t \ge 1.$$

 Et

$$\int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{t} dt - \frac{1}{2} \int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$

3 En déduire que $\int_0^{+\infty} |\frac{\sin t}{t}| dt$ diverge. Conclure.

On a

$$\frac{\sin^2 t}{t} = \frac{1 - \cos(2t)}{2t} \le \frac{|\sin t|}{t}, \qquad \forall t \ge 1.$$

 Et

$$\int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{t} dt - \frac{1}{2} \int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$

• $\int_{1}^{+\infty} \frac{1}{t} dt$ est **divergente**

 Et

•
$$\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$
 est convergente

3 En déduire que $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ diverge. Conclure.

On a

$$\frac{\sin^2 t}{t} = \frac{1 - \cos(2t)}{2t} \le \frac{|\sin t|}{t}, \qquad \forall t \ge 1.$$

 Et

$$\int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{t} dt - \frac{1}{2} \int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$

•
$$\int_{1}^{+\infty} \frac{1}{t} dt$$
 est divergente

•
$$\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$
 est convergente

•
$$\int_{1}^{+\infty} \frac{1}{t} dt$$
 est **divergente**

Et

• $\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$ est **convergente**
 $\Rightarrow \int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt$ est **divergente**

3 En déduire que $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ diverge. Conclure.

On a

$$\frac{\sin^2 t}{t} = \frac{1 - \cos(2t)}{2t} \le \frac{|\sin t|}{t}, \qquad \forall t \ge 1.$$

 Et

$$\int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt = \frac{1}{2} \int_{1}^{+\infty} \frac{1}{t} dt - \frac{1}{2} \int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$

•
$$\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$$
 est convergente

• $\int_{1}^{+\infty} \frac{1}{t} dt$ est divergente

Et

• $\int_{1}^{+\infty} \frac{\cos(2t)}{t} dt$ est convergente $\Rightarrow \int_{1}^{+\infty} \frac{1 - \cos(2t)}{2t} dt$ est divergente

D'après le théorème de comparaison, l'intégrale $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ est divergente

Semi-convergence

Semi-convergence

Soit f une fonction continue sur un intervalle I de \mathbb{R} . On dit que l'intégrale généralisée $\int_I f(x) \, dx$ est semi-convergente si et seulement si $\int_I |f(x)| \, dx$ **diverge** et $\int_I f(x) \, dx$ **converge**, c'est à dire que $\int_I f(x) \, dx$ est convergente mais n'est pas absolument convergente.

•
$$\int_{I} |f(x)| dx$$
 est divergente

Et

• $\int_{I} f(x) dx$ est convergente

• $\int_{I} f(x) dx$ est convergente