Aditya N. Panda

Department of Chemistry Indian Institute of Technology Guwahati Guwahati, Assam, 781039

February 2, 2023

Introduction

Why do we need to approximate derivatives at all?

Several reasons

There could be several situations where we would be needing numerical evaluations of derivatives:

- Let us say that we have a set of sampled data points. This may
 have an underlying function satisfying the data points which we do
 not know.
- Let us say that the sampled/discrete data points do not have any underlying function satisfying the data
- There are situations where the given function is too complicated to calculate the functional derivative.
- We will see later while solving ordinary differential equations that solutions are discrete approximations defined on grids. Hence, to find a derivative, we need numerical methods.

Introduction to Numerical Differentiation

Approximating a Derivative

• Derivative of a function f(x) at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

As an approximation, we can just write

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

and this is applicable for very small values of h.

But we will start the discussion with this.

Introduction to Numerical Differentiation

Taylor expansion of f(x+h)

We can start with Taylor expansion of f(x+h) about x as

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots$$

Looking at above we can write

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2}hf''(x)$$
 (1)

Eq. 1 shows that approximation of derivative by $\frac{f(x+h)-f(x)}{h}$ induces an error (called truncation error) which is of the order of h (written as O(h)).

Introduction to Numerical Differentiation

Forward-difference formula

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$
 (2)

Eqs. 1 and 2 are known as the forward-difference formula if h > 0 and the backward-difference formula if h < 0.

To note: If the second derivative is close to zero, this simple two point formula can be used to approximate the derivative.

Example

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

h	f(1.8+h)	$\frac{f(1.8+h)-f(1.8)}{h}$	$\frac{h}{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	1 0.5540180	0.0015432

The exact answer at 1.8 is 0.555. And we see that as h decreases answer gets better, and the error bound become smaller.

Consider the following two Taylor series expansions of f(x+h)

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(x) + \dots$$

By subtraction, we obtain

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{2}{3!}h^3f'''(x) + \frac{2}{5!}f^{(5)}(x) + \dots$$

The above can be rewritten

$$f'(x) = \frac{1}{2h} [f(x+h) - f(x-h)] - \frac{h^2}{3!} f'''(x) - \frac{h^4}{5!} f^{(5)}(x) - \dots$$
 (3)

Central difference formula, also called 3-point midpoint formula

$$f'(x) \equiv \frac{1}{2h} [f(x+h) - f(x-h)] \tag{4}$$

where the truncation error is $\frac{-1}{6}h^2f'''(x)$ which makes it $O(h^2)$, smaller than the previous formula. This is the second-order approximation to the first derivative. We will use this while discussing the solution time-dependent Schrödinger's equation.

Three point Endpoint Formula or second-order forward difference formula

$$f'(x) = \frac{1}{2h} \left[-3f(x) + 4f(x+h) - f(x+2h) \right] + \frac{h^2}{3} f^{(3)}(x) \tag{5}$$

Similar to the 3-point formulas, 5-point formulas can also be derived.

Compute the first-derivative of f(x) = exp(x) using

- first-order forward difference
- second-order Central-difference formula
- 3 second-order forward difference, Eq. 5

Use h = 0.4, 0.2 and 0.1. Make a table.

2nd derivatives

In a similar fashion like in the previous slides, formula for 2nd and 3rd degree derivatives can also be derived. Below we show the formula for 2nd derivatives.

2nd derivative: backward-difference

• 1st-order formulae:

$$f''(x) = \frac{1}{h^2}(f(x) - 2f(x - h) + f(x - 2h) + O(h))$$

• 2nd-order formulae:

$$f''(x) = \frac{1}{h^2}(2f(x) - 5f(x - h) + 4f(x - 2h) - f(x - 3h) + O(h^2))$$

2nd derivative: forward-difference

• 1st-order formulae:

$$f''(x) = \frac{1}{h^2}(f(x+2h) - 2f(x+h) + f(x) + O(h))$$

• 2^{nd} -order formulae:

$$f''(x) = \frac{1}{h^2}(-f(x+3h) + 4f(x+2h) - 5f(x+h) + 2f(x) + O(h^2))$$

2nd derivatives

2nd derivative: central-difference

• 2nd-order formulae:
$$f''(x) = \frac{1}{h^2}(f(x+h) - 2f(x) + f(x-h) + O(h^2))$$

• 4th-order formulae: $f''(x) = \frac{1}{12h^2}(-f(x+2h)+16f(x+h) 30f(x) + 16f(x-h) - f(x-2h) + O(h^4)$

Assignment

Let f(x) = cos(x).

- Calculate approximations for f'(0.8) with h = 0.1, 0.001 and 0.0001 using 2nd-order central-difference formula and the central-difference formula of 4th-order. Remember that we have not seen the 4th-order formula yet. Either derive it or look up online.
- Calculate approximations for f''(0.8) with h = 0.1, 0.001 using the 2nd-order central-difference formula.

END