Fundindo Árvores

Por Maratona de Programação da SBC – 2016 🔯 Brazil

Timelimit: 1

Em Computação árvores são objetos estranhos: a raiz está no topo e as folhas estão embaixo! Uma árvore é uma estrutura de dados composta de **N** vértices conectados por **N**-1 arestas de forma que é possível chegar de um vértice a qualquer outro vértice seguindo as arestas. Em uma árvore enraizada, cada aresta conecta um vértice pai a um vértice filho. Um único vértice não tem pai, e é chamado de raiz. Assim, partir da raiz é possível chegar a qualquer outro vértice da árvore seguindo as arestas na direção de pai para filho.

Em uma árvore ternária cada vértice pode ter até três vértices filhos, chamados esquerdo, central e direito. Uma árvore ternária canhota é uma árvore ternária enraizada em que nenhum vértice tem filho direito. Uma árvore ternária destra é uma árvore ternária enraizada em que nenhum vértice tem filho esquerdo. A raiz de uma árvore ternária é sempre um vértice central. A figura abaixo mostra exemplos de uma árvore canhota e de uma árvore destra.

Em uma árvore ternária cada vértice pode ter até três vértices filhos, chamados esquerdo, central e direito. Uma árvore ternária canhota é uma árvore ternária enraizada em que nenhum vértice tem filho direito. Uma árvore ternária destra é uma árvore ternária enraizada em que nenhum vértice tem filho esquerdo. A raiz de uma árvore ternária é sempre um vértice central. A figura abaixo mostra exemplos de uma árvore canhota e de uma árvore destra.

Note que na Figura (a) a raiz é o vértice x (da árvore destra) e os pares de vértices (a, y)e(c, u) são superpostos. Na Figura (b) a raiz é o vértice a (da árvore canhota) e os pares de vértices (d, x),(e, y)e(f, u) são superpostos. Na Figura (c) a raiz também é o vértice a (da árvore canhota) e o par de vértices (f, x)

é superposto.

Dadas uma árvore canhota e uma árvore destra, sua tarefa é determinar o número mínimo de vértices necessários para construir uma árvore ternária que é uma superposição das árvores dadas.

Entrada

A primeira linha de um caso de teste contém um inteiro**N** indicando o número de vértices da árvore canhota $(1 \le N \le 10^4)$. Vértices nesta árvore são identificados por números de 1 a **N**, e a raiz é o vértice de número 1. Cada uma das **N** linhas seguintes contém três inteiros**I**, **L** e **K**, indicando respectivamente o identificador de um vértice **I**, o identificador do filho esquerdo**L** de **I** e o identificador do filho central**K** de **I** $(0 \le I, L, K \le I)$. A linha seguinte contém um inteiro**M** indicando o número de vértices da árvore destra $(1 \le M \le 10^4)$. Vértices nesta árvore são identificados por números de 1 a **M**, e a raiz é o vértice de número 1. Cada uma das **M** linhas seguintes contém três inteiros**P**, **Q** e **R**, indicando respectivamente o identificador de um vértice **P**, o identificador do filho central**Q** de **P** e o identificador do filho direito**R** de **P** $(0 \le I)$, **Q**, **R** $\le I$). O valor zero indica um vértice não existente (usado quando um vértice não tem um ou ambos os seus filhos).

Saída

Imprima o número mínimo de vértices de uma árvore que é a superposição das duas árvores dadas na entrada.

Exemplos de Entrada	Exemplos de Saída
7	11
1 2 3	
2 0 0	
3 4 0	
4 0 5	
5 0 6	
6 7 0	
7 0 0	
7	
1 2 3	
2 4 0	
3 5 0	
4 0 6	
5 0 0	
6 0 7	
7 0 0	
5	6
1 2 3	
2 4 5	
3 0 0	
4 0 0	
5 0 0	
3	
1 2 3	
2 0 0	
3 0 0	

3	3
3 0 2	
2 0 0	
1 0 3	
2	
2 0 0	
1 2 0	

Maratona de Programação da SBC – 2016