1 The Photon

1.1 constants

		$c = 2.998 \cdot 10^8 \left[\frac{\mathrm{m}}{\mathrm{s}} \right]$
$c \left[\frac{\mathbf{m}}{\mathbf{s}} \right]$	speed of light	$h = 6.626 \cdot 10^{-34} \left[\frac{\mathrm{m}^2 \mathrm{kg}}{\mathrm{s}} \right]$
$h\left[\frac{\mathrm{m}^2\mathrm{kg}}{\mathrm{s}}\right]$	planc's constant	$\hbar=rac{h}{2\pi}$
e [C]	electorn charge	211
m_e [kg]	electron mass	$e = 1.602 \cdot 10^{-19} \text{ [C]}$
$k_B \left[\frac{\mathrm{m}^2 \mathrm{kg}}{\mathrm{s}^2 \mathrm{K}} \right]$	bolzmann constant	$m_e = 9.109 \cdot 10^{-31} \text{ [kg]}$
λ [m]	Wavelength	$k_B = 1.381 \cdot 10^{-23} \left[\frac{\text{m}^2 \text{ kg}}{\text{s}^2 \text{ K}} \right]$
$\nu \left[\frac{1}{s}\right]$	Frequency	[5 11]
$\omega \left[\frac{\mathrm{rad}}{\mathrm{s}}\right]$	Radial frequency	1 [eV] = $1.602 \cdot 10^{-19}$ [J]
E [J]	Energy	$\lambda = \frac{c}{\nu}$ $\nu = \frac{c}{\lambda}$ $\omega = 2\pi\nu$
		$E = h \cdot \nu$

1.2 Photoelectric effect

$$V$$
 [V] Voltage $h\nu - \phi_0 = \frac{1}{2}mv^2 = eV$ ϕ_0 [eV] Work function $V(\nu) = \frac{h}{e}\nu - \frac{\phi_0}{e}$

1.3 Blackbody Radiation

$$L$$
 [m] length of blackbody cube k_i wave constants E_x Electric field in x-direction $< E >$ Average Energy N Number of states D Density of states U Blackbody radiation U Power radiated

$$E_x(x,y,z) = E_{0x}\cos(k_x x)\sin(k_y y)\sin(k_z z)$$

$$k_x = n\frac{\pi}{L} \quad k_y = m\frac{\pi}{L} \quad k_z = l\frac{\pi}{L} \qquad k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$N(k) = \frac{1}{3\pi^2}k^3L^3 \qquad D(k) = \frac{k^2}{\pi^2}$$

$$u(\omega) = \frac{\omega^2}{\pi^2 c^3} \cdot \frac{\hbar \omega}{\exp\left(\frac{-\hbar \omega}{kT}\right) - 1} d\omega \qquad u(\nu) = \frac{8\pi h \nu^3}{c^3 \left(\exp\left(\frac{h\nu}{kT}\right) - 1\right)} d\nu$$

$$I(\omega) = c \cdot u(\omega)$$

Equipartition-Theorem: Each degree of Freedom has an energy of kT

1.4 Johnson-Noise

This is the noise created in a one-dimensional circuit (like a coax-cable).

$$\langle V^2 \rangle$$
 Noise Voltage

$$\Delta \nu$$
 Bandwidth

$$E = E_0 \cdot \sin(k_x \cdot x)$$

$$\langle V^2 \rangle = 4R \cdot k_B T \cdot \Delta \nu$$

1.5 Momentum of a photon

1.6 Absorption, spontaneous and stimulated emission

absorbtion spontaneous emission stimulated emission

 n_1 Number of electrons in the lower energy state

 n_2 Number of electrons in the higher energy state

$$\frac{dn_2}{dt} = \underbrace{n_1 \cdot u(\nu) \cdot B_{12}}_{\text{absorbtion}} - \underbrace{n_2 \cdot u(\nu) \cdot B_{21}}_{\text{stimulated emission}} - \underbrace{n_2 \cdot A_{21}}_{\text{spontaneous emission}}$$

$$\frac{n_2}{n_1} = e^{-\frac{h\nu}{k_BT}} = \frac{u(\nu)B_{12}}{u(\nu)B_{21} + A_{21}}$$

$$B_{21} = B_{12} = B \qquad A_{21} = \frac{8\pi h\nu^3}{c^3}$$

1.7 Laser-optical amplification

Electrons are excited from the ground state "0" to the level "3" by pumping through incoherent radiation. The electrons then fall onto a long-lived state n_2 (State "2") from level "3". The pumping can be done either optically by shining a strong incoherent light or by passing a current. It is also assumed that the lower state is quickly emptied by a fast process with lifetime τ_1 . As a result, the population in state "2" is:

$$n_2 = \frac{R}{A_{21}}$$
 whereas $n_1 \approx 0$ because $A_{21} < \frac{1}{\tau_1}$

We have rherefore a population inversion between the two states. The likelihood of a stimulated emission process is larger than the one of absorbtion. bIf we enclose the system in an optical cavity, we can achieve self-sustained oscillation at the frequency ν .