

Essentials of Analytical Geometry and Linear Algebra 1

Polar coordinate

1B from midterm

Find the equations of directrices, the length of the latus rectum and coordinates of focus (or foci) of the following curves:

(a)
$$\frac{x^2}{72} - \frac{y^2}{8} = 2$$

(b)
$$x^2 - xy - y^2 + x + y = 0$$

Polar coordinates (1)

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases} \begin{cases} \rho = \sqrt{x^2 + y^2}; \\ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}; \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}. \end{cases}$$

Trigonometric formulas

$\begin{array}{c} \overset{\bullet}{\text{sin}} \overset{d}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 - \cos d}}} \\ & \overset{\bullet}{\text{cos}} \overset{d}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{tg}} \overset{d}{\underline{d}} = \overset{\bullet}{\underbrace{\sin d}} \\ & \overset{\bullet}{\text{1+cos}} \overset{d}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{ctg}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sin d}} \\ & \overset{\bullet}{\text{ctg}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sin d}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{ctg}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sin d}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\text{1-cos}} \overset{\bullet}{\underline{d}} = \overset{\bullet}{\underbrace{\sqrt{1 + \cos d}}} \\ & \overset{\bullet}{\underline{d}} = $					cos	3d= g3d	4 cos 3to	d-4 d-3 d-t d-t d-3 tgd	cosd g'd	$\cos d \cos \beta = \frac{1}{2} [\cos \sin d \cos \beta = \frac{1}{2} [\sin \cos d \sin \beta = \frac{1}{2} [\sin \cos d \cos d \sin \beta = \frac{1}{2} [\sin \cos d \cos $	enne $\varphi y n \epsilon \eta n$ $s(d - \beta) - \cos(d + \beta)$ $s(d - \beta) + \cos(d + \beta)$ $n(d - \beta) + \sin(d + \beta)$ $n(d + \beta) - \sin(d - \beta)$ $= \frac{tgd + tg\beta}{ctgd + ctg\beta}$	
1-sind = $2\sin^2\left(\frac{\pi}{4} - \frac{d}{2}\right)$ $\sin^2d = \frac{1}{2}$	(1-cos2d (3sind-sir (cos4d-4) 3d)		пені)	cos,	d= 1	(30		d) cos3d) 4cos2d+3)	' ctgd ctgβ sin(d+β)-sin(d	$d - \beta = \frac{\cot \beta + \cot \beta}{\cot \beta + \cot \beta}$ $d - \beta = \cos^2 \beta - \cos^2 \alpha$ $d - \beta = \cos^2 \beta - \sin^2 \alpha$	
Общий вид уравнений		0	1 π 6	$\frac{\sqrt{2}}{2}$	13 2 π 3	1 π/2	<u>1</u> √3	13	ПОМНИ: знаменатель≠ $\frac{1}{\sqrt{2}} = \sqrt{\frac{2}{2}}$	o sin' x= cosx	Производные sirt x= cosx	
		π2 0 π2	$\frac{\pi}{3}$	$\frac{\pi}{4}$	<u>π</u>	0 π/4 π/4	$\frac{\pi}{6}$	π 3 π 6	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ $\sin x = t g x = 0$	Перв f (x) = sinx	F(x) = -cosx+c F(x) = sinx+c	
$\sin x=1$ $x=\frac{\pi}{2}+2\pi n$ $n\in \mathbb{Z}$ π $\sin x=1$ $x=-\frac{\pi}{2}+2\pi n$ $n\in \mathbb{Z}$ π $\sin x=0$ $x=\pi n$ $n\in \mathbb{Z}$	arcsin (- arctg (-	$\frac{\operatorname{arcciga}}{2}$ $\frac{2}{3}$ $\frac{1}{6}$ $\frac{1}{$									F(x) = tgx + c $F(x) = -ctgx + c$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cosx = √	$\sin x - \frac{1}{2}$, $x = (-1)^n \arcsin \frac{1}{2} + \pi n = (-1)^n \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$ $\cos x = \sqrt{\frac{2}{2}}$, $x = \pm \arccos \sqrt{\frac{2}{2}} + 2\pi n = \pm \frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$ $\tan x = -\frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$								f(x) = tgx $f(x) = ctgx$	$f(x) = tgx$ $F(x) = -\ln \cos x + t$ $f(x) = ctgx$ $F(x) = \ln \sin x + c$ $[-1]^{n}(-1) = (-1)^{n}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7	_				_			-		$\pi n = (-1)^{m_1} \frac{\pi}{3} + \pi n$, n $\pi n = \pm \frac{3}{4} \pi + 2 \pi n$, n	

Polar coordinates (2): straight line

The general equation of a straight line in Cartesian coordinates is Ax + By + C = 0, where A, B and C are constants. Let (r, θ) be polar

$$A(r\cos\theta) + B(r\sin\theta) + C = 0$$

(i.e.)
$$A \cos \theta + B \sin \theta + C/r = 0$$

The equation of the line joining the points (r_1, θ_1) and (r_2, θ_2) is

$$\frac{1}{r}\sin\left(\theta_{2}-\theta_{1}\right) = \frac{1}{r_{1}}\sin\left(\theta_{2}-\theta\right) + \frac{1}{r_{2}}\sin\left(\theta-\theta_{1}\right).$$

Note 9.5.1: Polar equation of the straight line perpendicular to

$$A\cos\theta + B\sin\theta = \frac{l}{r}$$
 is of the form $A\cos\left(\theta + \frac{\pi}{2}\right) + B\sin\left(\theta + \frac{\pi}{2}\right) = k\frac{l}{r}$.

(i.e.)
$$-A \sin \theta + B \cos \theta = \frac{kl}{r}$$

Note 9.5.2: The polar equation of the straight line parallel to

$$A\cos\theta + B\sin\theta = \frac{l}{r}$$
 is $A\cos\theta + B\sin\theta = \frac{kl}{r}$, where k is a constant.

Task 4

Find the equation of the line joining the points $\left(2, \frac{\pi}{3}\right)$ and $\left(3, \frac{\pi}{6}\right)$ and

deduce that this line also passes through the point $\left(\frac{6}{3\sqrt{3}-2},\frac{\pi}{2}\right)$.

Task 4 (solution)

The equation of the line joining the points (r_1, θ_1) and (r_2, θ_2) is

$$\frac{1}{r}\sin\left(\theta_{2}-\theta_{1}\right) = \frac{1}{r_{1}}\sin\left(\theta_{2}-\theta\right) + \frac{1}{r_{2}}\sin\left(\theta-\theta_{1}\right).$$

Therefore, the equation of the line joining the points $\left(2,\frac{\pi}{3}\right)$ and $\left(3,\frac{\pi}{6}\right)$ is

$$\frac{1}{r}\sin\left(\frac{\pi}{6} - \frac{\pi}{3}\right) = \frac{1}{2}\sin\left(\frac{\pi}{6} - \theta\right) + \frac{1}{3}\sin\left(\theta - \frac{\pi}{3}\right)$$

$$-\frac{1}{r}\sin\left(\frac{\pi}{6}\right) = \frac{-3\sin\left(\theta - \frac{\pi}{6}\right) + 2\sin\left(\theta - \frac{\pi}{3}\right)}{6}$$

$$\text{when } \theta = \frac{\pi}{2}$$

$$\therefore \frac{1}{r} = \frac{-3\cos\frac{\pi}{6} + 2\cos\frac{\pi}{3}}{-6\sin\frac{\pi}{6}} = \frac{-3\frac{\sqrt{3}}{2} + 2\frac{1}{2}}{-6 \times \frac{1}{2}} = \frac{3\sqrt{3} - 2}{6}$$

$$r = \frac{6}{3\sqrt{3} - 2}$$

Hence, the point $\left(\frac{6}{3\sqrt{3}-2},\frac{\pi}{2}\right)$ lies on the straight line.

Task 5

Show that the feet of the perpendiculars from the origin on the sides of the triangle formed by the points with vectorial angles α , β , γ and which lie on the circle $r = 2a \cos \theta$ lie on the straight line $2a \cos \alpha \cos \beta \cos \gamma = r \cos (\pi - \alpha - \beta - \gamma)$.

Task 5 (solution)

The equation of the circle is $r = 2a \cos \theta$. Let the vectorial angles of P, Q, R be α , β , γ respectively.

The equations of the chord PQ, QR and RP are

$$2a\cos\alpha\cos\beta = r\cos\left(\theta - \overline{\alpha + \beta}\right)$$
$$2a\cos\beta\cos\gamma = r\cos\left(\theta - \overline{\beta + \gamma}\right)$$
$$2a\cos\gamma\cos\alpha = r\cos\left(\theta - \overline{\gamma + \alpha}\right)$$

Let *L*, *M* and *N* be the feet of the perpendiculars from *O* on the lines *PQ*. *QR* and *RP*

Then from the above equations, we infer that the coordinates of L, M and N are

$$(2a\cos\alpha\cos\beta,\alpha+\beta)$$

$$(2a\cos\beta\cos\gamma,\beta+\gamma)$$

$$(2a\cos\gamma\cos\alpha,\gamma+\alpha)$$

These three points satisfy the equation

$$2a\cos\alpha\cos\beta\cos\gamma=r\cos\left(\theta-\alpha-\beta-\gamma\right)$$

Hence L, M and N lies on the above line.

Polar coordinates: conic sections

Note 9.7.1.1: If the axis of the conic is inclined at an angle α to the

initial line then the polar equation of conic is $\frac{l}{r} = 1 + e \cos(\theta - \alpha)$.

However, the equation of tangent is given as

$$\frac{l}{r} = A\cos\theta + B\sin\theta$$

To trace the conic, $\frac{l}{r} = 1 + e \cos \theta$.

polar equation of the directrix is $\frac{l}{r} = e \cos \theta$.

Task 6

A focal chord SP of an ellipse is inclined at an angle α to the major axis. Prove that the perpendicular from the focus on the tangent at P

makes with the axis an angle $\tan^{-1}\left(\frac{\sin\alpha}{e+\cos\alpha}\right)$.

Task 6 (solution)

Let the equation of the conic be

$$\frac{l}{r} = 1 + e \cos \theta \tag{9.57}$$

The equation of tangent at P is

$$\frac{l}{r} = 1 + e \cos \theta + \cos(\theta - \alpha) \tag{9.58}$$

The equation of the perpendicular line to the tangent at P is

$$\frac{k}{r} = e \cos\left(\theta + \frac{\pi}{2}\right) + \cos\left(\theta + \frac{\pi}{2} - \alpha\right)$$
 (i.e.)
$$\frac{k}{r} = -e \sin\theta - \sin(\theta - \alpha)$$

If the perpendicular passes through the focus then k = 0

$$-e\sin\theta - \sin(\theta - \alpha) = 0$$
(i.e.) $e\sin\theta + \sin\theta\cos\alpha - \cos\theta\sin\alpha = 0$

$$\tan\theta = \frac{\sin\alpha}{e + \cos\alpha}$$
or $\theta = \tan^{-1}\left(\frac{\sin\alpha}{e + \cos\alpha}\right)$

