### Charlotte77

### 数学系的数据挖掘民工(公众号:CharlotteDataMining)

博客园 首页 新随笔 联系 管理 订阅 🔼

随笔-47 文章-0 评论-1051

### 一文弄懂神经网络中的反向传播法——BackPropagation

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

说到神经网络, 大家看到这个图应该不陌生:



这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,...,xn},输出也是一堆数据{y1,y2,y3,...,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:) (注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记: [Mechine Learning & Algorithm] 神经网络基础)

假设, 你有这样一个网络层:

本博客所有内容以学习、研究和分享 为主,如需转载,请联系本人,标明 作者和出处,并且是非商业用途,谢

Email:charlotte77\_hu@sina.com Github:https://github.com/huxiao man7

知乎:https://www.zhihu.com/people/charlotte77\_hu 微博:http://weibo.com/218950544

微博:http://weibo.com/218950544 7/profile?topnav=1&wvr=6 总访问量:

602956

昵称: Charlotte77 园龄: 2年9个月 荣誉: 推荐博客 粉丝: 2065 关注: 12 +加关注

谢!

| <  | < 2018年10月 |    |          |    |    |                                |
|----|------------|----|----------|----|----|--------------------------------|
| 日  | _          | =  | $\equiv$ | 四  | 五  | $\stackrel{\rightarrow}{\sim}$ |
| 30 | 1          | 2  | 3        | 4  | 5  | 6                              |
| 7  | 8          | 9  | 10       | 11 | 12 | 13                             |
| 14 | 15         | 16 | 17       | 18 | 19 | 20                             |
| 21 | 22         | 23 | 24       | 25 | 26 | 27                             |
| 28 | 29         | 30 | 31       | 1  | 2  | 3                              |
| 4  | 5          | 6  | 7        | 8  | 9  | 10                             |

### 搜索



## 常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

# 最新随笔

- 1. 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)
- 2. 【深度学习系列】PaddlePaddle垃圾邮件处理实战(一)
- 3. 【深度学习系列】用PaddlePaddle进行车牌识别(二)
- 4. 【深度学习系列】用PaddlePaddle进行车牌识别(一)
- 5. 【深度学习系列】迁移学习Transfer Le arning



第一层是輸入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

现在对他们赋上初值,如下图:



其中, 输入数据 i1=0.05, i2=0.10;

输出数据 o1=0.01,o2=0.99;

初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;

w5=0.40,w6=0.45,w7=0.50,w8=0.55

目标: 给出输入数据i1,i2(0.05和0.10), 使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

#### Step 1 前向传播

#### 1.输入层---->隐含层:

计算神经元h1的输入加权和:

$$net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

$$net_{h1} = 0.15*0.05+0.2*0.1+0.35*1 = 0.3775$$

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

$$out_{h1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992$$

同理,可计算出神经元h2的输出o2:

$$out_{h2} = 0.596884378$$

### 2.隐含层---->输出层:

计算输出层神经元o1和o2的值:

- 6. 【深度学习系列】PaddlePaddle可视化 之VisualDL
- 7. 【深度学习系列】CNN模型的可视化
- 8.2017年总结与2018年目标和计划
- 9. 【深度学习系列】关于PaddlePaddle的一些避"坑"技巧
- 10.【深度学习系列】一起来参加百度 Pad dlePaddle AI 大赛吧!

### 我的标签

深度学习(23)

机器学习(9)

数据挖据(5)

Spark(4)

学习心得(3)

数据挖掘(2)

推荐系统(2)

文本挖掘(2)

相似度计算(1)

用户画像(1)

更多

### 随笔分类(53)

C语言

Hadoop

java

MapReduce

python学习笔记

R语言

Spark(7)

常见错误集合&小技巧

机器学习笔记(11)

深度学习(21)

数据可视化

数据挖掘(9) 推荐系统(2)

文本挖掘(3)

## **随笔档**案(47)

2018年6月 (1)

2018年5月(1)

2018年3月 (1)

2018年2月 (2)

2018年1月 (5)

2017年12月 (4)

2017年11月 (4)

2017年10月 (2)

2017年9月 (1) 2016年12月 (1)

2016年7月 (3)

2016年6月 (3)

2016年5月 (9)

2016年4月 (6)

2016年3月(1)

2015年12月 (3)

# 积分与排名

积分 - 136310 排名 - 2493

# 最新评论

1. Re:【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

小姐姐,请问28,28,1里面的"1"指的是深度是指什么的深度?另外,在文章后面的"手写数字识别cnn"的程序里面,第二个卷积核的channel是20,这个也是深度是吗?如果是的话,这个深度又是怎么界……

--Isqsdu

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$
  
 $net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1$   
 $out_{o1} = \frac{1}{1 + e^{-net_{o1}}} = \frac{1}{1 + e^{-1.105905967}} = 0.75136507$   
 $out_{o2} = 0.772928465$ 

这样前向传播的过程就结束了,我们得到输出值为[0.75136079,0.772928465],与实际值[0.01,0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

### Step 2 反向传播

#### 1.计算总误差

总误差: (square error)

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

但是有两个输出, 所以分别计算o1和o2的误差, 总误差为两者之和:

$$E_{o1} = \frac{1}{2}(target_{o1} - out_{o1})^2 = \frac{1}{2}(0.01 - 0.75136507)^2$$

$$E_{o2} = 0.023560026$$

$$E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298$$

#### 2.隐含层---->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出: (链式法则)

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$$

下面的图可以更直观的看清楚误差是怎样反向传播的:



现在我们来分别计算每个式子的值:

计算 
$$\frac{\partial E_{total}}{\partial out_{o1}}$$
 .

2. Re:一文弄懂神经网络中的反向传播法——BackPropagation

很好

--心中天堂

3. Re:一文弄懂神经网络中的反向传播法 ——BackPropagation

@两个漩涡w1只是从i1到h1的权重,i1到 h2的权重是w3...

--kukudebenxiaohai

4. Re:2017年总结与2018年目标和计划 巾帼不让须眉,这么勤奋,让我毕业五年的 程序员无地自容啊,持续关注。

--暗里着迷0917

5. Re:一文弄懂神经网络中的反向传播法——BackPropagation

给你打个666

--abcxs

6. Re:【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

引用》》》一个28\*28=784的一列向量,这一列向量和隐含层的15个神经元连接,就有784\*15=11760个权重w,隐含层和最后的输出层的10个神经元连接,就有11760\*10=117600个权……

--彭玉松

7. Re:一文弄懂神经网络中的反向传播法——BackPropagation

很棒啊!

--ssscorch~

8. Re:【深度学习系列】用PaddlePaddle 和Tensorflow实现经典CNN网络GoogLeN et

引用训练阶段通过对Inception(4a、4d)增加两个额外的分类器来增强反向传播时的梯度信号,但最重要的还是正则化作用想问一下,这里面正则化的作用是怎么体现的呢?谢谢....

--魔灵幽亭

9. Re:【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SOL

学习了, 我也要拒绝拖延症

--qinglanmei

10. Re:三个月教你从零入门深度学习 厉害了 值得学习

--LHBlog

## 阅读排行榜

- 1. 一文弄懂神经网络中的反向传播法——B ackPropagation(132964)
- 2. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(39482)
- 3. 机器学习基础与实践(一)----数据清洗(29566)
- 4. 如何用卷积神经网络CNN识别手写数字集? (20285)
- 5. 三个月教你从零入门深度学习(20203)
- 6.【深度学习系列】卷积神经网络详解(二)——自己手写一个卷积神经网络(20149)
- 7. 【深度学习Deep Learning】资料大全 (19565)
- 8. 用Tensorflow让神经网络自动创造音乐
- 9. 机器学习基础与实践(二)----数据转换 (16362)
- 10. 【原】数据分析/数据挖掘/机器学习----- 必读书目(15173)

# 评论排行榜

- 1. 三个月教你从零入门深度学习(204)
- 2. 2015年总结与2016年目标和计划(11 9)
- 3. 一文弄懂神经网络中的反向传播法——B ackPropagation(105)

$$E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2} (target_{o1} - out_{o1})^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial out_{-1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.7413$$

计算  $\frac{\partial out_{o1}}{\partial net_{o1}}$  :

$$out_{o1} = \frac{1}{1+e^{-net_{o1}}}$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186$$

(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)

 $\frac{\partial net_{o1}}{\partial w_5}$  :

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial nu} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$$

最后三者相乘:

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$$

$$\frac{\partial E_{total}}{\partial w_{r}} = 0.74136507 * 0.186815602 * 0.593269992 = 0.08216704$$

这样我们就计算出整体误差E(total)对w5的偏导值。

回过头来再看看上面的公式, 我们发现:

$$\frac{\partial E_{total}}{\partial w_5} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1}) * out_{h1}$$

为了表达方便,用<sup>6</sup>11 来表示输出层的误差:

$$\delta_{o1} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = \frac{\partial E_{total}}{\partial net_{o1}}$$

$$\delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})$$

因此,整体误差E(total)对w5的偏导公式可以写成:

$$\frac{\partial E_{total}}{\partial w_5} = \delta_{o1} out_{h1}$$

如果输出层误差计为负的话, 也可以写成:

$$\frac{\partial E_{total}}{\partial w_5} = -\delta_{o1} out_{h1}$$

最后我们来更新w5的值:

$$w_5^+ = w_5 - \eta * \frac{\partial E_{total}}{\partial w_5} = 0.4 - 0.5 * 0.082167041 =$$

(其中, 是学习速率, 这里我们取0.5)

同理,可更新w6,w7,w8:

- 4. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(90)
- 5.2017年总结与2018年目标和计划(70)
- 6. 坑爹的2016年总结(56)
- 7. 【深度学习系列】卷积神经网络详解(二) ——自己手写一个卷积神经网络(46)
- 8. 用Tensorflow让神经网络自动创造音乐 (26)
- 9. 读过的书(25)
- 10. 机器学习基础与实践 (三) ----数据降 维之PCA(22)

### 推荐排行榜

- 1. 三个月教你从零入门深度学习(214)
- 2. 一文弄懂神经网络中的反向传播法——B ackPropagation(87)
- 3. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(67)
- 4. 2017年总结与2018年目标和计划(49)
- 5. 【深度学习系列】卷积神经网络详解(二) ——自己手写一个卷积神经网络(46)
- 6. 坑爹的2016年总结(37)
- 7. 2015年总结与2016年目标和计划(26)
- 8. 【深度学习Deep Learning】资料大全 (26)
- 9. 【深度学习系列】用PaddlePaddle进行 车牌识别(一)(25)
- 10.【深度学习系列】PaddlePaddle之数据预处理(25)

$$w_6^+ = 0.408666186$$

$$w_7^+ = 0.511301270$$

$$w_8^+ = 0.561370121$$

#### 3. 隐含层----> 隐含层的权值更新:

方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)--->net(o1)---->w5,但是在隐含层之间的权值更新时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。



计算  $rac{\partial E_{total}}{\partial out_{h1}}$  :

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}$$

先计算 
$$\frac{\partial E_{o1}}{\partial out_{h1}}$$
 :

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}}$$

$$\frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = 0.74136507 * 0.186815602 = 0.1384985$$

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40$$

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425$$

同理, 计算出:

$$\frac{\partial E_{o2}}{\partial out_{h1}} = -0.019049119$$

两者相加得到总值:

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119 =$$

西计算  $\frac{\partial out_{h1}}{\partial net_{h1}}$  :

$$out_{h1} = \frac{1}{1 + e^{-net_{h1}}}$$

$$\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999) =$$

再计算  $\frac{\partial net_{h1}}{\partial w_1}$  :

$$net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

$$\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05$$

最后,三者相乘:

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568$$

为了简化公式,用sigma(h1)表示隐含层单元h1的误差:

$$\frac{\partial E_{total}}{\partial w_1} = \left(\sum_o \frac{\partial E_{total}}{\partial out_o} * \frac{\partial out_o}{\partial net_o} * \frac{\partial net_o}{\partial out_{h1}}\right) * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = (\sum_o \delta_o * w_{ho}) * out_{h1} (1 - out_{h1}) * i_1$$

$$\frac{\partial E_{total}}{\partial w_1} = \delta_{h1} i_1$$

最后,更新w1的权值:

$$w_1^+ = w_1 - \eta * \frac{\partial E_{total}}{\partial w_1} = 0.15 - 0.5 * 0.000438568 = 0.14978071$$

同理, 额可更新w2,w3,w4的权值:

$$w_2^+ = 0.19956143$$

$$w_3^+ = 0.24975114$$

$$w_4^+ = 0.29950229$$

这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。

代码(Python):

```
1 #coding:utf-8
2 import random
3 import math
4
5 #
6 # 参数解释:
```

```
"pd_" : 偏导的前缀
 8 #
       "d " : 导数的前缀
      "w_ho" : 隐含层到输出层的权重系数索引
 9 #
      "w ih": 输入层到隐含层的权重系数的索引
10 #
12 class NeuralNetwork:
13
       LEARNING RATE = 0.5
1.4
15
       def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None,
hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
16
           self.num_inputs = num_inputs
17
18
           self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
           self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
19
20
21
           self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
22
self.init weights from hidden layer neurons to output layer neurons(output layer weights)
2.3
24
       def init weights from inputs to hidden layer neurons(self, hidden layer weights):
25
           weight num = 0
26
           for h in range(len(self.hidden_layer.neurons)):
27
               for i in range(self.num inputs):
28
                   if not hidden_layer_weights:
29
                       self.hidden_layer.neurons[h].weights.append(random.random())
30
                   else:
31
self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
32
                   weight_num += 1
34
       def init_weights from hidden layer_neurons_to_output_layer_neurons(self,
output_layer_weights):
35
           weight num = 0
36
           for o in range(len(self.output layer.neurons)):
37
               for h in range(len(self.hidden layer.neurons)):
38
                   if not output laver weights:
39
                       self.output layer.neurons[o].weights.append(random.random())
40
                   else:
41
self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
42
                   weight\_num \ += \ 1
43
44
     def inspect(self):
4.5
         print('----')
46
         print('* Inputs: {}'.format(self.num_inputs))
47
           print('----')
           print('Hidden Layer')
48
49
          self.hidden layer.inspect()
50
         print('----')
          print('* Output Layer')
51
52
           self.output layer.inspect()
           print('----')
53
54
55
      def feed_forward(self, inputs):
           hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
56
57
           return self.output layer.feed forward(hidden layer outputs)
58
59
      def train(self, training_inputs, training_outputs):
60
           self.feed forward(training inputs)
61
           # 1. 输出神经元的值
62
63
           pd_errors_wrt_output_neuron_total_net_input = [0] *
len(self.output_layer.neurons)
64
           for o in range(len(self.output layer.neurons)):
65
66
               # aE/aza
               pd errors wrt output neuron total net input[o] =
self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
68
           # 2. 隐含层神经元的值
70
           pd_errors_wrt_hidden_neuron_total_net_input = [0] *
len(self.hidden layer.neurons)
71
           for h in range(len(self.hidden_layer.neurons)):
73
               # dE/dy_j = \Sigma \frac{\partial E}{\partial z_j} * \frac{\partial z}{\partial y_j} = \Sigma \frac{\partial E}{\partial z_j} * w_{ij}
74
               d_error_wrt_hidden_neuron_output = 0
75
               for o in range(len(self.output_layer.neurons)):
```

```
d error wrt hidden neuron output +=
pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
 78
                 \# \partial E/\partial z_j = dE/dy_j * \partial z_j/\partial
79
                 pd_errors_wrt_hidden_neuron_total_net_input[h] =
d_error_wrt_hidden_neuron_output *
self.hidden layer.neurons[h].calculate pd total net input wrt input()
80
81
            # 3. 更新输出层权重系数
82
            for o in range(len(self.output_layer.neurons)):
83
                for w_ho in range(len(self.output_layer.neurons[o].weights)):
 84
 85
                      \# \partial E_j / \partial w_{ij} = \partial E / \partial z_j * \partial z_j / \partial w_{ij}
                     pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] *
86
self.output layer.neurons[o].calculate pd total net input wrt weight(w ho)
87
 88
                     \# \Delta w = \alpha * \partial E_1 / \partial w_1
 89
                     self.output layer.neurons[o].weights[w ho] -= self.LEARNING RATE *
pd_error_wrt_weight
 90
 91
            # 4. 更新隐含层的权重系数
            for h in range(len(self.hidden_layer.neurons)):
 92
 93
                 for w ih in range(len(self.hidden layer.neurons[h].weights)):
 94
 95
                     \# \partial E_j / \partial w_i = \partial E / \partial z_j * \partial z_j / \partial w_i
                     pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] *
self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
97
 98
                     \# \Delta w = \alpha * \partial E_j / \partial w_i
 99
                     self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE *
pd error wrt weight
101
        def calculate_total_error(self, training_sets):
102
            total error = 0
            for t in range(len(training_sets)):
                training inputs, training outputs = training sets[t]
104
105
                 self.feed forward(training inputs)
106
                for o in range(len(training outputs)):
107
                     total error +=
self.output_layer.neurons[0].calculate_error(training_outputs[0])
108
            return total_error
109
110 class NeuronLayer:
111
     def __init__(self, num_neurons, bias):
112
            # 同一层的神经元共享一个截距项10
113
            self.bias = bias if bias else random.random()
114
115
116
            self.neurons = []
            for i in range(num neurons):
118
                 self.neurons.append(Neuron(self.bias))
119
120
     def inspect(self):
            print('Neurons:', len(self.neurons))
            for n in range(len(self.neurons)):
123
                print(' Neuron', n)
124
                 for w in range(len(self.neurons[n].weights)):
125
                    print(' Weight:', self.neurons[n].weights[w])
126
                 print(' Bias:', self.bias)
127
128
        def feed forward(self, inputs):
129
            outputs = []
             for neuron in self.neurons:
131
                outputs.append(neuron.calculate output(inputs))
            return outputs
134
       def get outputs(self):
135
            outputs = []
136
            for neuron in self.neurons:
137
                outputs.append(neuron.output)
138
            return outputs
139
140 class Neuron:
      def __init__(self, bias):
141
            self.bias = bias
142
143
            self.weights = []
144
```

```
145
       def calculate output(self, inputs):
146
           self.inputs = inputs
           self.output = self.squash(self.calculate_total_net_input())
147
148
           return self.output
149
150
      def calculate total net input(self):
151
           total = 0
152
           for i in range(len(self.inputs)):
153
              total += self.inputs[i] * self.weights[i]
154
           return total + self.bias
155
156
       # 激活函数sigmoid
157
       def squash(self, total_net_input):
           return 1 / (1 + math.exp(-total_net_input))
158
159
160
161
       def calculate_pd_error_wrt_total_net_input(self, target_output):
162
           return self.calculate pd error wrt output(target output) *
self.calculate_pd_total_net_input_wrt_input();
163
164
       # 每一个神经元的误差是由平方差公式计算的
165
     def calculate_error(self, target_output):
166
           return 0.5 * (target output - self.output) ** 2
167
168
169
      def calculate_pd_error_wrt_output(self, target_output):
170
         return -(target_output - self.output)
171
172
173
      def calculate_pd_total_net_input_wrt_input(self):
174
           return self.output * (1 - self.output)
175
176
177
      def calculate pd total net input wrt weight(self, index):
178
           return self.inputs[index]
179
180
181 # 文中的例子:
182
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3],
hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
184 for i in range(10000):
185
    nn.train([0.05, 0.1], [0.01, 0.09])
186
     print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187
188
189 #另外一个例子,可以把上面的例子注释掉再运行一下:
190
191 # training_sets = [
192 # [[0, 0], [0]],
193 #
         [[0, 1], [1]],
194 #
         [[1, 0], [1]],
195 #
         [[1, 1], [0]]
196 # ]
197
198 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
199 # for i in range(10000):
         training_inputs, training_outputs = random.choice(training_sets)
200 #
201 #
         nn.train(training inputs, training outputs)
202 #
         print(i, nn.calculate_total_error(training_sets))
```

最后写到这里就结束了,现在还不会用latex编辑数学公式,本来都直接想写在草稿纸上然后扫描了传上来,但是觉得太影响阅读体验了。以后会用公式编辑器后再重把公式重新编辑一遍。稳重使用的是sigmoid激活函数,实际还有几种不同的激活函数可以选择,具体的可以参考文献[3],最后推荐一个在线演示神经网络变化的网址:http://www.emergentmind.com/neural-network,可以自己填输入输出,然后观看每一次迭代权值的变化,很好玩~如果有错误的或者不懂的欢迎留言:)

(http://www.cnblogs.com/maybe2030/p/5597716.html#3457159) 2.Rachel\_Zhang:http://blog.csdn.net/abcjennifer/article/details/7758797 3.http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf 4.https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ 和出处,并且是非商业用途,谢谢! ----作者: Charlotte77 出处: http://www.cnblogs.com/charlotte77/ 本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 分类: 深度学习 标签: 深度学习 好文要顶 关注我 收藏该文 Charlotte77 <u> 关注 - 12</u> 87 0 粉丝 - 2065 荣誉: 推荐博客 +加关注 « 上一篇: 机器学习基础与实践(二)----数据转换 » 下一篇: <u>机器学习基础与实践(三)----数据降维之PCA</u> posted @ 2016-06-30 16:23 Charlotte77 阅读(132967) 评论(105) 编辑 收藏 < Prev 1 2 3 评论 #101楼 2018-09-04 16:07 | 星炎123 写的太好了,, 支持(0) 反对(0) #102楼 2018-09-10 16:35 | ssscorch~ 很棒啊! 支持(0) 反对(0) #103楼 2018-09-15 20:11 | abcxs 给你打个666 支持(0) 反对(0) #104楼 2018-09-18 09:51 | kukudebenxiaohai @ 两个漩涡 w1只是从i1到h1的权重,i1到h2的权重是w3 支持(0) 反对(0) #105楼 2018-09-23 12:29 | 心中天堂 很好 支持(0) 反对(0)

1.Poll的笔记: [Mechine Learning & Algorithm] 神经网络基础

### 刷新评论 刷新页面 返回顶部

### 注册用户登录后才能发表评论,请 登录 或 注册,访问网站首页。

【推荐】超50万VC++源码: 大型组态工控、电力仿真CAD与GIS源码库!

【免费】要想入门学习Linux系统技术,你应该先选择一本适合自己的书籍

【直播】如何快速接入微信支付功能



### 最新IT新闻:

- 扒一扒诺贝尔奖史上"夫妻档":除居里夫妇还有4对
- · TypeScript 3.1.1发布,微软推出的JavaScript超集
- · 微软为IoT安全方案Azure Sphere安全模块Pluton注册商标
- 谷歌网页的小彩蛋 源代码中隐藏着一个冒险小游戏
- 诺奖生理学或医学奖今日揭晓: 弗洛伊德"陪跑"该奖32次
- » 更多新闻...



### 最新知识库文章:

- · 为什么说 Java 程序员必须掌握 Spring Boot ?
- · 在学习中,有一个比掌握知识更重要的能力
- 如何招到一个靠谱的程序员
- 一个故事看懂"区块链"
- 被踢出去的用户
- » 更多知识库文章...

Copyright ©2018 Charlotte77