Университет ИТМО Кафедра ВТ

Теория автоматов

Практическое задания №2
«Минимизация абстрактных автоматов»
Вариант 16

Выполнил студент 3 курса

Группы Р3311 Романов Олег

Преподаватель: Ожиганов А.А.

Санкт-Петербург 2018 год

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Эквивалентные автоматы могут иметь различное число состояний. В связи с этим возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов. Для абстрактного алгоритм, минимизации автомата использовать предложенный Ауфенкампом и Хоном. Основная идея алгоритма состоит в разбиении всех состояний исходного абстрактного автомата на попарно не пересекаемые классы эквивалентных состояний. После разбиения происходит замена каждого класса эквивалентности одним состоянием. Получившийся в результате минимальный абстрактный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного абстрактного автомата.

Исходный абстрактный автомат

λ	w1	w1	w2	w2	w2	w1	w2	w1
δ	a1	a2	a3	a4	a5	a6	a7	a8
z1	a3	a4	a1	a7	a2	a6	a3	a3
z2	a8	a4	a6	a2	a2	a2	a5	a1

Минимизация абстрактного автомата

Классы одноэквивалентных состояний:

$$B_1 = \{a_1, a_2, a_6, a_8\}.$$

$$B_2 = \{a_3, a_4, a_5, a_7\}.$$

$$\Pi_1 = \{B_1, B_2\}.$$

Таблица П₁

		В	1		B ₂						
	a1	a2	a6	a8	a3	a4	a5	a7			
z1	B_2	B_2	B_1	B_2	B_1	B_2	B_1	B_2			
z2	B_1	B_2	B_1	B_1	B_1	B_1	B_1	B_2			

$$C_1 = \{a_1, a_4, a_8\}.$$

 $C_2 = \{a_2, a_7\}.$

$$C_3 = \{a_3, a_5, a_6\}.$$

 $\Pi_2 = \{C_1, C_2, C_3\} \neq \Pi_1.$

Таблица Π_2

		C ₁		C	2	C₃				
	a1	a4	a8	a2	а7	a3	а5	a6		
z1	C_3	C_2	C_3	C_1	C_3	C_1	C_2	\mathcal{C}_3		
z2	C_1	C_2	C_1	C_1	C_3	C_3	C_2	C_2		

 $D_1 = \{a_1, a_8\}.$

 $D_2 = \{a_4, a_5\}.$

 $D_3 = \{a_2\}.$

 $D_4 = \{a_3\}.$

 $D_5 = \{a_6\}.$

 $D_6 = \{a_7\}.$

 $\Pi_3 = \{ \pmb{D_1}, \pmb{D_2}, \pmb{D_3}, \pmb{D_4}, \pmb{D_5}, \pmb{D_6} \} \neq \Pi_2.$

Таблица П3

	D	1	D	2	D_3	D_4	D_5	D_6
	a1	a8	a4	a5	a2	a3	a3 a6	
z1	D_4	D_4	D_6	D_3	D_2	D_1	D_5	D_4
z2	D_1	D_1	D_3	D_3	D_2	D_5	D_3	D_2

 $E_1 = \{a_1, a_8\}.$

 $E_2 = \{a_2\}.$

 $E_3 = \{a_3\}.$

 $E_4 = \{a_4\}.$

 $E_5 = \{a_5\}.$

 $E_6 = \{a_6\}.$

 $E_7 = \{a_7\}.$

 $\Pi_4 = \{E_1, E_2, E_3, E_4, E_5, E_6, E_7\} \neq \Pi_3.$

Таблица Π_4

	E	1	$\boldsymbol{E_2}$	$\boldsymbol{E_3}$	$\boldsymbol{E_4}$	$\boldsymbol{E_5}$	$\boldsymbol{E_6}$	$\boldsymbol{E_7}$
	a1 a8		a2	a3	a4	a5	a6	а7
z1	E_3	E_3	E_4	E_1	E_7	E_2	E_6	E_3
				E_6				

 $F_1 = \{a_1, a_8\}.$

 $F_2 = \{a_2\}.$

 $F_3 = \{a_3\}.$

 $F_4 = \{a_4\}.$

 $F_5 = \{a_5\}.$

 $F_6 = \{a_6\}.$

 $F_7 = \{a_7\}.$

 $\Pi_5 = \{F_1, F_2, F_3, F_4, F_5, F_6, F_7\} = \Pi_4.$

Минимизированный абстрактный автомат

λ	w1	w1	w2	w2	w2	w1	w2
δ	a1	a2	a3	a4	a5	a6	a7
z1	a3	a4	a1	a7	a2	a6	a3
z2	a1	a4	a6	a2	a2	a2	a5

Реакции исходного и минимизированного автоматов на входное слово

Реакция исходного автомата

																-
	z1		z1		z2		z2		z2		z1		z2		z1	
	\downarrow															
	a1w1	\rightarrow	a3w2	\rightarrow	a1w1	\rightarrow	a8w1	\rightarrow	a1w1	\rightarrow	a8w1	\rightarrow	a3w2	\rightarrow	a6w1	\rightarrow
			\downarrow													
			w2		w1		w1		w1		w1		w2		w1	_
	z2		z1		z2		z2		z1		z2		z1		z1	•
	\downarrow															
\rightarrow	a6w1	\rightarrow	a2w1	\rightarrow	a4w2	\rightarrow	a2w1	\rightarrow	a4w2	\rightarrow	a7w2	\rightarrow	a5w2	\rightarrow	a2w1	\rightarrow
	\downarrow															
	w1		w1		w2		w1		w2		w2		w2		w1	-
	z1		z2		z2		z1		z1		z1					
	\downarrow															
\rightarrow	a4w2	\rightarrow	a7w2	\rightarrow	a5w2	\rightarrow	a2w1	\rightarrow	a4w2	\rightarrow	a7w2	\rightarrow	a3w2			
	\downarrow															
	w2		w2		w2		w1		w2		w2		w2			

Реакция минимизированного автомата

	z1		z1		z2		z2		z2		z1		z2		z1	
	\downarrow															
	a1w1	\rightarrow	a3w2	\rightarrow	a1w1	\rightarrow	a1w1	\rightarrow	a1w1	\rightarrow	a1w1	\rightarrow	a3w2	\rightarrow	a6w1	\rightarrow
			\downarrow													
			w2		w1		w1		w1		w1		w2		w1	_
	z2		z1		z2		z2		z1		z2		z1		z1	
	\downarrow															
\rightarrow	a6w1	\rightarrow	a2w1	\rightarrow	a4w2	\rightarrow	a2w1	\rightarrow	a4w2	\rightarrow	a7w2	\rightarrow	a5w2	\rightarrow	a2w1	\rightarrow
	\downarrow															
	w1		w1		w2		w1		w2		w2		w2		w1	

Как можно заметить реакции исходного автомата и минимизированного автомата на входное слово одинаковы, значит автоматы эквивалентны.

Выводы по работе

Эквивалентные автоматы могут иметь различное число состояний. Гораздо эффективнее использовать из двух эквивалентных автоматов тот, число состояний которого наименьшее. Поэтому минимизация автоматов очень важна. В данной практической работе я как раз научился это делать.