Should We Allow Non-Competes?

Nico Fernandez-Arias

Macro Workshop, Dec 14, 2017

Motivation

- A non-compete is a clause in an employment contract preventing the employee from working for a competitor until usually 1-2 years after employment ends
- Most states in US enforce (at least for knowledge / tech workers and/or "key employees")
- Prevalent among innovative workers
 - ▶ 70% of senior executives (Garmaise 2011)
 - ▶ Nearly 50% of engineers (Marx 2011)

Motivation - Policy issue

- Economic literature has tentatively endorsed the view that Silicon Valley, CA displaced Rt. 128, MA as high-tech hub due to non-enforcement (Saxenian 1994, Gilson 1999, etc.)
- Policymakers converging to belief that not enforcing is key to creating high-tech hub
 - 2015 Hawaii passes law precluding enforcement of non-competes for "technology workers"
 - Several states considering weakening enforcement explicitly in an effort to imitate California
 - Oct 2016: Obama administration report, "call to action" to state legislatures to reduce enforcement of non-competes
 - * Mostly about requiring informing about non-compete requirement and banning non-competes for low-wage workers (e.g. cafeteria workers)

Motivation - Tradeoffs

- Non-competes...
 - Protect intellectual property (Sometimes can't patent, non-disclosure agreements hard to enforce)
 - Prevent knowledge diffusion (reduce production possibilities of the economy)
 - Increase employer incentive to invest in worker human capital
 - Reduce employee incentive to invest in own human capital
 - Reduce worker bargaining power
 - Prevent workers hopping jobs until find a good match
 - Harm reallocation after layoffs
 - May lead to more market concentration
- But...freedom of contract inefficient?
 - ▶ No welfare theorems here..so there may be externalities
 - Burden of proof still on those who say freedom of contract is inefficient...
 - In particular since many criticisms hurt parties to the contract (key difference to patents)

Existing empirical work

- In non-enforcing regimes:
 - ► Employment / payroll / business formation grows more in response to exogenous increases in the supply of VC funding (Samila-Sorenson 2011)
 - More workforce mobility (Fallick et al. 2006, Garmaise 2011, Marx et. al 2009)
 - ► Less market concentration (Kang-Fleming 2017)
 - ► Employees have better lifetime wage profiles (Chang et al. 2017)
- Knowledge spillovers contribute 20% of productivity growth in IT sector (Tambe-Hitt 2014)

Existing empirical work (cont.)

- Existing work cannot identify aggregate effect if non-enforcing states crowd out enforcing states
 - Analogous to inability to identify aggregate effect of shocks in Autor-Dorn-Hanson 2013 and similar papers
- Direct evidence of crowding out: brain drain from enforcing to non-enforcing (Marx 2015)

Existing theoretical work

- Some work exists...
 - Franco-Filson 2006
 - ► Shankar-Ghosh 2013
- But shortcomings...
 - No creative destruction → misleading Pareto efficiency results
 - ▶ No long-run growth (2- or 3-period models)

Proposal

- Write a structural model of R&D-driven productivity growth
 - ► E.g., high-tech industry like biotech, computer hardware, artificial intelligence, etc.
 - Endogenous knowledge spillovers from employees spinning out firms (which compete in R&D race)
 - ► Creative destruction
 - Enforcing & non-enforcing regions
- Calibrate to micro data / existing empirical work (e.g. cross-sectional results, brain drain)
 - ► LEHD probably won't work
 - "New" data: Crunchbase
 - Maybe replace LEHD withu LinkedIn data, but not very optimistic hard to scrape (could ask, but doubt I will get access)
- Use model to assess effect of non-competes on productivity growth and welfare

Data

- Crunchbase (have obtained)
 - Employer-employee matched data
 - ► Coverage: mostly startups
 - Worldwide, but US coverage better
 - Information on founders and some C-level employees and board members, funding rounds
- LinkedIn possibly
 - Previous occupation of firm founders
- LEHD (US Census)
 - ▶ Plan was to use these data to (1) improve observation of process of employees starting / joining competing startups / firms, and (2) get wage distributions to match
 - California and Massachusetts never approve
 - ▶ In addition, would need significant funding (\$25,000) to merge datasets by employee name

Model: Workers

• Unit mass continuum of risk-neutral individuals indexed by $i \in I = [0, 1]$, with objective

$$U = \int_0^\infty \exp(-\rho t)c(t)dt$$

where c(t) is final goods consumption at t.

• Individuals can supply labor to final goods production (I^F) , intermediate good production (I^I) and R&D (I^{RD}) such that

$$I_t^F + I_t^I + I_t^{RD} = 1$$

• Aggregate labor market satisfies (where $L_t^k = \int_I I_t^k(i)di$)

$$L_t^F + L_t^I + L_t^{RD} = 1$$

Model: Intermediate goods production

- ullet Continuum of intermediate goods, indexed by $j\in J=[0,1]$
- ullet Denote quality of good j by q_j , amount produced by k_j
- Each good produced with technology

$$k_j = \overline{q}I_j$$

where $\overline{q}=\int_0^1 q_j dj$ is the average quality level of the economy

Alternative setup

$$k_j = q_j I_j$$

requires slightly modified final goods production function

Model: Final good production

• Final good is produced using labor and a continuum of intermediate goods $j \in [0,1]$ with production technology

$$Y(t) = (1 - \beta)^{-1} L(t)^{\beta} \left(\left(\int_0^1 q_j(t)^{\beta} k_j^{1-\beta}(t) dj \right)^{1/(1-\beta)} \right)^{1-\beta}$$
$$= (1 - \beta)^{-1} L(t)^{\beta} \int_0^1 q_j(t)^{\beta} k_j^{1-\beta}(t) dj$$

where q_j is quality, k_j is quantity

- Restricts labor share to be related to markup $\mu = 1/(1-\beta)$ but necessary for BGP
- There may be a way to relax this using Oberfield et. al "Balanced Growth Despite Uzawa"

Model: R&D overview

- R&D improves quality of intermediate goods, generates long-run growth
- ullet Incumbent has monopoly on good j production
- Incumbent initially has monopoly on good j R&D
- R&D "spills" knowledge to R&D employees who become entrants after non-competes expire
- ullet Incumbent and entrants perform R&D to improve quality to $(1+\lambda)q_j$
- Upon discovery, become incumbent with monopoly

Model: R&D technology

• z units of labor yields innovations at Poisson rate

$$R_I(z_I; \overline{z}) = \chi_I z_I \phi(\overline{z})$$

$$R_E(z_E; \overline{z}) = \chi_E z_E \phi(\overline{z})$$

where

$$\overline{z} = \int_0^m z(\ell)d\ell + z_I$$

is total innovation effort on j, with (endogenous) mass m of entrants indexed by ℓ .

- $\phi(z)$ decreasing, $z\phi(z)$ increasing
- Entrant ℓ can hire $z \leq \xi$ units of R&D labor (in equilibrium $z(\ell) = \xi$)

Model: R&D spillovers

- Individual supplying R&D labor to an intermediate goods firm (or entrant) acquires the knowledge required to enter the race at rate ν per unit of labor
- At Poisson rate v, these workers transition out of competition-restricted status ("Perpetual youth": tractability)
- n_j is mass of workers with knowledge who are still bound by non-competes; m_j is those whose non-competes expired
- Laws of motion

$$\dot{n}_j = \nu I_j^{RD} - \nu n_j$$
$$\dot{m}_j = \nu n_j$$

• Note that (q_j, m_j, n_j) is the state of product j

Model: R&D spillovers

Participant in the R&D race for good j begins with monopoly on good j R&D

1

Hires R&D labor; at rate ν per unit of R&D labor hired, an employee acquires knowledge to open rival R&D lab (but not to compete directly on product market).

 \downarrow

This worker becomes part of mass n_j and leaves the lab (replaced by someone who wants the knowledge)

At rate v, agents' non-competes expire, adding to the mass

$$m_j$$

↓

At some point, either incumbent or entrant wins patent race, restarting the process

Final goods production

$$Y(t) = (1-eta)^{-1} L(t)^{eta} \Biggl(\Biggl(\int_0^1 q_j(t)^{eta} k_j^{1-eta}(t) dj \Biggr)^{1/(1-eta)} \Biggr)^{1-eta}$$

- CRS implies no profits
- CES implies constant markups $\mu = (1 \beta)^{-1}$ in equilibrium
- Closed form solution for final goods wage $\overline{w}_t = \beta^{\beta} (1 \beta)^{1 2\beta} \overline{q}_t$

Worker optimization

- Workers indifferent between occupations (Final goods, intermediate goods, R&D)
- ullet Final goods wage pinned down by \overline{q}_t at $\overline{w}_t=eta^eta(1-eta)^{1-2eta}\overline{q}_t$
- Intermediate goods wage $w_t^I = \overline{w}_t$
- R&D wage at product j depends on state of the product, which is (q, m, n)
- Indifference condition

$$w_t(q, m, n) + \nu W_t^{NC}(q, m, n) = \overline{w}_t$$

where $W_t^{NC}(q, m, n)$ is the value of the knowledge (bound by a non-compete)

• Since $w_t(q, m, n) < \overline{w}_t$, workers will switch to a different R&D employer once they attain knowledge (workers are infinitesimal so this goes on forever)

Worker optimization timeline

Allocates labor to R&D and final and intermediate good production

While performing R&D for good j hit by knowledge shock with intensity ν per unit of R&D labor supplied to j

No longer works for good j until next step on ladder (because already has knowledge)

When hit by non-compete expiry shock, and provided m < M(q) threshold mass of entrants, hires ξ units of R&D labor and enters R&D race (continue to work throughout – no worker / entrepreneurship choice)

Intermediate goods firms optimization

- Making the environment stationary: let \tilde{q} denote qe^{-gt} where g is growth rate on BGP
- Value function of **incumbent** $A_t(q, m, n) = e^{gt}A(\tilde{q}, m, n)$
- CES demand structure implies constant markup over marginal cost, flow profit function $\pi(\tilde{q}) = \tilde{\pi}\tilde{q}$ in eq.
- HJB:

$$(\rho - g)A(\tilde{q}, m, n) = \pi(\tilde{q}) - g\tilde{q}A_{\tilde{q}}(\tilde{q}, m, n)$$

$$+ \max_{\mathbf{z}} \left\{ \chi_{I}\mathbf{z}\phi(\mathbf{z} + \overline{z}_{E}(\tilde{q}, m, n)) \underbrace{\left(A((1 + \lambda)\tilde{q}, 0, 0) - A(\tilde{q}, m, n)\right)}_{\text{NPV of successful innovation}} \right.$$

$$- w(\tilde{q}, m, n)\mathbf{z} + (\nu(\mathbf{z} + \overline{z}_{E}(\tilde{q}, m, n)) - \nu n)A_{n}(\tilde{q}, m, n)$$

$$+ \nu nA_{m}(\tilde{q}, m, n) - \chi_{E}\overline{z}_{E}(\tilde{q}, m, n)\phi(\mathbf{z} + \overline{z}_{E}(\tilde{q}, m, n)) \right\}$$

• $A_m, A_n < 0$ and $A_{\tilde{a}} > 0$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Intermediate goods firms optimization (cont.)

- Value function of **entrant no longer bound by non-compete** is $W^F(\tilde{q}, m, n)$
- HJB:

$$(\rho - g)W^{F}(\tilde{q}, m, n) = -g\tilde{q}W_{\tilde{q}}^{F}(\tilde{q}, m, n)$$

$$+ \max_{z} \left\{ \chi_{E} z \phi(\overline{z}(\tilde{q}, m, n)) \overbrace{A((1 + \lambda)\tilde{q}, 0, 0) - W^{F}(\tilde{q}, m, n))}^{\text{NPV of successful innovation}} \right.$$

$$- w(\tilde{q}, m, n)z + (\nu \overline{z}(\tilde{q}, m, n) - vn)W_{n}^{F}(\tilde{q}, m, n) + vnW_{m}^{F}(\tilde{q}, m, n)$$

$$- (\chi_{I} z_{I}(\tilde{q}, m, n) + \chi_{E} \overline{z}_{E}(\tilde{q}, m, n)\phi(\overline{z}(\tilde{q}, m, n))W^{F}(\tilde{q}, m, n) \right\}$$

- ullet $W_m^F,W_n^F<0$ and $W_{ ilde{q}}^F>0$
- Entrants continue to enter until a mass $m = M(\tilde{q})$, defined as the mass of entrants if we assumed (1) free entry and (2) each hires ξ units of R&D labor
- Hence total policy will be $\overline{z}_E(\tilde{q}, m, n) = \xi \min(M(\tilde{q}), m)$

Equilibrium

- An equilibrium consists of: growth rate g, value functions $A(\tilde{q}, m, n), W^F(\tilde{q}, m, n) and W^NC(\tilde{q}, m, n)$, R&D wages $w(\tilde{q}, m,)$, production wage \overline{w} , prices and quantities of intermediate goods, research effort policies $z_I(\tilde{q}, m, n)$ and $z_E(\tilde{q}, m, n)$, and production labor allocations L^F and $L^I(j)$ such that:
 - Value functions solve HJBs (with relevant boundary conditions)
 - Research effort policies are optimal
 - ► R&D wages satisfy indifference condition $w(\tilde{q}, m, n) + \nu W^{NC}(\tilde{q}, m, n) = \overline{w}$
 - ► Final goods firms and intermediate goods firms optimize production, pricing and demand for intermediate goods and labor
 - etc.

Possible extensions or improvements

- Add mechanisms
 - Incentives for worker & firm investment into human capital
 - Reallocation of workers across firms
- Enforcing and non-enforcing regions
 - ► Test if model can reproduce cross-sectional results (e.g. brain drain)
 - Geography
- When are non-competes used in enforcing regions?
 - ► E.g., non-competes that harm parties relative to no non-compete shouldn't be signed in equilibrium
 - Assuming all are signed / all are same could exaggerate case against non-competes

Enforcement

Figure: Map of enforcement across US states (for technology workers)

Created with responant net