MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Midterm Quiz

October 18, 2012 120 minutes Room 34-303

- 1. This examination consists of three problems. Work all problems.
- 2. This examination is closed book. Calculators are allowed.
- 3. You will have to make reasonable approximations to do the problems quickly. You only need to calculate results within about 5% of an accurate value.
- 4. Please summarize your solutions in the spaces provide in this examination packet. Draw all sketches neatly and clearly where requested. Remember to label ALL important features of any sketches.
- 5. All problems have equal weight.
- 6. Make sure that your name is on this packet and on each examination booklet.

Good luck!

General equations, worst case OCT:

$$R_{10} = r_{\pi} \left\| \frac{(R_1 + R_2)}{1 + g_m R_2} \right\|$$

$$R_{20} = \underbrace{R_1 \left\| \left[r_{\pi} + (\beta + 1) R_2 \right]}_{R_{\parallel}} + R_3 + \frac{g_m r_{\pi} R_{\parallel} R_3}{r_{\pi} + (\beta + 1) R_2}$$

Problem 1 Inductively Loaded Emitter Follower

Figure 1: Inductively Loaded Emitter Follower Circuit

- (a) Draw a simplified small signal model for the circuit, including only r_{π}, c_{π} , and g_m .
- (b) Calculate the input impedance for the simplified small signal model as described in (a), and neglect higher order terms when appropriate. Justify your approximation.
- (c) Show that for a specific values of L_E , the input impedance will be purely resistive. Determine the critical value for L_E in terms of transistor parameters.
- (d) Sketch plots of the magnitude and phase of $Z_{\rm in}$ for the two cases where L_E is larger and smaller than the critical value determined above.

Problem 2 Amplifier Bandwidth

Consider the circuit below

For this problem, you may assume $\beta=100,\,v_{\rm BE}=0.6$ V, $c_\pi=20$ pF, $c_\mu=2$ pF, $r_b=0$ and $r_o=\infty$ for all transistors.

- (a) Calculate the mid-band gain $v_{\rm out}/v_{\rm in}$.
- (b) Derive the upper 3-dB frequency (ω_h) using the method of open circuit time constants.
- (c) How big must $C_{\rm in}$ be for the circuit transfer function to have a lower 3-dB frequency of at most 100 rad/sec?
- (d) Now consider the modified version of the circuit below. Calculate the ω_h for this topology.

(e) Explain qualitatively (in a few sentences) the difference in bandwidth between the two topologies.

Problem 3 Differential Amplifier

Assume $\beta=100,\ r_o=\infty,\ r_b=0,\ V_{BE}=0.6\ V$ for all transistors. Ignore all parasitic capacitance.

- (a) Calculate the differential input resistance R_{id} .
- (b) Calculate the differential output resistance R_{od} .
- (c) Calculate the differential voltage gain $A_{vd} = v_{od}/v_{id}$.
- (d) Calculate the common-mode voltage gain $A_{vc} = v_{oc}/v_{ic}$.