METHOD AND APPARATUS FOR MANAGING NODE CONTROLLERS USING PARTITIONS IN A COMPUTER SYSTEM

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to computer system operation and more particularly to a method and apparatus for managing node controllers by using partitions in a computer system.

5

10

15

BACKGROUND OF THE INVENTION

In a conventional multi-processor computer system, controllers are connected by node multiple interconnection network and communicate among each other over such network. Each node controller manages memory in a region of the computer system's address space, interfaces with attached processors, provides a port to communicate with attached input/output devices, includes a network interface to provide communications The multi-processor with the interconnection network. computer system may be configured to have separate kernel When passing critical kernel data between partitions. in separate kernel partitions, the directory partition may contain references to nodes in another partition. Thus, a failure of one partition may cause a failure in another partition. Therefore, it is desirable to provide a technique to manage node controllers in a manner that improves reliability without causing failures in adjacent partitions.

10

15

20

25

30

ATTORNEY DOCKET NO. 062986.0195 15-4-1094.00

3

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated that a need has arisen for a technique to manage node controllers in different partitions of a computer system. In accordance with the present invention, a method and apparatus for managing node controllers by using partitions in a computer system are provided that substantially eliminate or reduce disadvantages and problems associated with conventional computer systems.

According to an embodiment of the present invention, method for partitioning node controllers without maintaining coherency includes partitioning a plurality controllers connected network by a of node partitioned groups. A requesting node controller requests a latest copy of a line in memory and identifies a storing node controller in a separate partitioned group holding the latest copy of the line in memory. method also determines that the partitioned group associated with the requesting node controller, transmits a request for a coherent copy of a line to the storing node controller and transmits the latest copy of the line to the requesting node controller without including the requestor in a sharer-tracking process.

In accordance with another embodiment, a system for partitioning node controllers without maintaining coherency includes a computer system having node controllers partitioned in separate groups. The node controllers include a requesting node controller in one partitioned group and a storing node controller in another partitioned group of the computer system. The partitions separate node controllers into at least two

of the first of the first state of the first state

5

10

partitioned groups. The get message is able to communicate across partitions.

The present invention provides various technical advantages over conventional computer system operation. For example, one technical advantage is to obtain a snapshot copy of coherent data located in another partition. Another technical advantage is to pass the snapshot copy of coherent data from without maintaining coherency in the transferred partition. Yet another technical advantage is to eliminate inter-partition references to data. Other technical advantages may be readily apparent to those skilled in the art from the following figures, description, and claims.

10

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:

FIGURE 1 is a block diagram that illustrates a computer system;

FIGURE 2 is a block diagram that illustrates a node controller in the computer system;

FIGURE 3 is a block diagram that illustrates multiple partitions separating node controllers in the computer system.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

FIGURE 1 is a block diagram of a computer system 10. includes a plurality of Computer system 10 controllers 12 interconnected by a network 14. Each node controller 12 processes data and traffic both internally and with other node controllers 12 within computer system Each node controller 12 may 10 over network 14. communicate with a local processor 16, a local memory device 17, and a local input/output device 18. Computer may include node controllers 12 without system 10 attached processors for configurations that require additional processing power but do provide the memory capacity and input/output port capability for certain applications to be executed in computer system 10.

FIGURE 2 is a block diagram of node controller 12 used in a multi-processor computer system 10. controller 12 includes a network interface unit 20, a processor memory directory, interface unit 22, a interface unit 24, an input/output interface unit 26, a Network local block unit 28, and a crossbar unit 30. interface unit 20 may provide a communication link to network 14 in order to transfer data, messages, and other traffic to other node controllers 12 in a computer system unit 22 may provide Processor interface 10. communication link with one or more local processors 16. interface unit 22 may provide Memory directory communication link with one or more local memory devices 26 may provide a Input/output interface unit communication link with one or more local input/output Local block unit 28 is dedicated to devices 18. programmed invalidation requests and processing

5

10

15

20

25

30

input/output operations. Crossbar unit 30 arbitrates the transfer of data, messages, and other traffic for node controller 12.

FIGURE 3 shows a partitioned computer system 10 improving reliability without arranged in a manner maintaining coherency. Partitioned computer system 32 includes a requesting node controller 34, a storing node controller 36, a partition 38 separating node controllers 12 into partitioned groups 40, and a get message 42 operable to communicate across partitions 38. Each node controller 12 is associated with a partitioned group 40 such that partition 38 divides node controllers 12 into at least two partitioned groups 40. For example, a computer system 10 might contain one hundred node controllers 12 divided into four partitioned groups, each twenty-five node 40 containing partitioned group controllers 12.

the teachings of the described According to invention, the processor 16 or I/O device transmit a request, or get message 42, to requesting node controller 34 for a coherent copy of a cache line. Upon receiving the request, requesting node controller 34 will forward the get message 42 on to the memory 17. Memory 17 then must determine which node controller 12 partitioned computer system 32 holds the latest copy of This is accomplished by identifying all node the line. controllers 12 which maintain a copy of the line in memory 17 and comparing the dates on which the requested line has been changed at each node controller 12. identified is the storing node node controller 12 Requesting node controller 36. 34 controller forwards the get message 42 on to storing node controller in your first that one you give give the time and then that the time to be the first first that

5

10

15

20

25

30

36 who in turn replies via network 14 with a latest copy of the line.

Upon receiving the copy, storing node controller 36 must determine whether the partitioned group 40 associated with the requesting node controller 34 is the same as the partitioned group 40 associated with the storing node controller 36. The requesting node controller 34 and the storing node controller 36 may be in different partitioned groups 38. After making this determination, storing node controller 36 will transmit the latest copy of the line to requesting node controller 34 via network 14 without including requesting node controller 34 in a sharer-tracking process.

The state of the line at requesting node controller 34 and storing node controller 36 depends on the type of request 42 issued and whether storing node controller 36 holds the line in an exclusive state. Preferably, the type of request for the latest copy of the line is a get such a request, requesting message 42. For controller 34 and storing node controller 36 are not marked as sharers and storing node controller 36 will not be notified of subsequent changes made to the line by any other node controller 12. Where storing node controller 36 holds the line in an exclusive state, neither the state of the line at requesting node controller 34 nor the state of the line at storing node controller 36 is In another embodiment, the type of request for the latest copy of the line may be a forced get message Where the storing node controller 36 holds the line 42. in an exclusive state and a forced get message is transmitted, the state of the line at storing node the first fluit from form first the second second first the first fluit first the

5

10

15

20

controller 36 is changed but the state of the line at requesting node controller 34 is not changed.

In either embodiment, the request 42 for a cache line across a partition 38 will result in a momentarily coherent copy of the line. Subsequent changes to the line made by requesting node controller 34 or any other node controller will not be updated in the directory of storing node controller 36. In this manner, storing node controller 36 will not be depending on cross-partition notice from requesting node controller 34. Should one partitioned group 40 become inoperable, this will not affect other node controllers 12 located in a different partitioned group 40.

Thus, it is apparent that there has been provided, in accordance with the present invention, a method and apparatus for managing node controllers by using partitioning in a computer system that satisfies the advantages set forth above. Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations may be ascertainable by those skilled in the art and may be made herein without departing from the spirit and scope of the present invention as defined by the following claims.