Deep Learning for Object Detection

Lluis Gomez i Bigorda

Object detection pipeline (recap of previous class)

Given the unbalanced nature of detection. What do we need?

Two Stage Framework

2nd Stage

1st Stage

OverFeat

R-CNN

R-CNN

Deep learning for object detection: Outline

- Introduction
- Basic blocks and concepts
- Models (i)
- Models (ii)
 - Single Stage Object Detectors
 - Feature Pyramid Networks
 - Focal Loss
 - Mask R-CNN
 - DETR
 - Other ideas

You Only Look Once - YOLO (2015, CVPR2016)

Two Stage Framework Faster R-CNN image Conv. Layers Class Softmax Fully onfidence ROI Connected pooling Layers **Bounding Box** Regressor **RPN** Extra Loss 1st stage 2nd stage

Single Stage Framework

YOLO

YOLO: Key idea

YOLO: Architecture

YOLO: Training

- 1. Pre-train network on Imagenet classification task
- 2. Train the model with joint loss (quite engineered loss function)

YOLO: Training tricks

- 1. Use 448×448 input for detection, instead of 224×224 ,
- 2. Use Leaky ReLU for all layers,
- 3. Dropout after the first fully connected layer,
- 4. Normalize bounding boxes parameters in [0, 1],
- 5. Use a quadratic loss not only for the bounding box coordinates, but also for the confidence and the class scores,
- 1. Reduce the weight of large bounding boxes by using the square roots of the size in the loss,
- 2. Reduce the importance of empty cells by weighting less the confidence-related loss on them,
- 1. Use momentum 0.9, decay 5e 4,
- 2. Data augmentation with scaling, translation, and HSV transformation.

YOLO: Inference

Single pass through the network.

Inference is very fast.

YOLO: Results

	Pascal 2007 mAP	Speed			
DPM v5	33.7	.07 FPS	14 s/img		
R-CNN	66.0	.05 FPS	20 s/img		
Fast R-CNN	70.0	.5 FPS	2 s/img		
Faster R-CNN	73.2	7 FPS	140 ms/img		
YOLO	63.4	45 FPS	22 ms/img		

Single Shot Detector / SSD (ECCV 2016)

Fully Connected

Fully Connected

Single Shot Detector / SSD (ECCV 2016)

YOLOv2 (2016)

	YOLO								YOLOv2
batch norm?		√	√	√	√	✓	√	√	√
hi-res classifier?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	✓
dimension priors?						\checkmark	\checkmark	\checkmark	✓
location prediction?						\checkmark	\checkmark	\checkmark	✓
passthrough?							\checkmark	\checkmark	✓
multi-scale?								\checkmark	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

There are a lot of tricks to get a good architecture for object detection...

Comparison

The YOLO family from v1 to v7

The YOLO family from v1 to v7

YOLO version	backbone	neck	head(s)	augmentations
YOLOv1	GoogLeNet, VGG-16	2x fully connected layers	combined classes + bboxes	random scaling & translations up to 20%; random adjust exposure & saturation up to x1.5 in HSV
YOLOv2	Darknet-19	fully convolutional layers	combined hierarchical classes + bboxes, anchor- based	random crops, rotations, and hue, saturation, and exposure shifts
YOLOv3	Darknet-53	FPN	combined multilabel + bboxes, anchor-based	no specific info, seems like the same as in YOLOva
YOLOv5	CSPDarknet53	SPPF, CSP-PAN	combined multilabel + bboxes, anchor-based	Mosaic, copy-paste, random affine, MixUp, random adjust HSV, random horizontal flip
PP-YOLO	ResNet50-vd + deformable convolutions	FPN, SPP	combined multilabel + bboxes, anchor-based	MixUp
YOLOv4	CSPDarknet53	PANet, SPP	combined multilabel + bboxes, anchor-based	CutMix, Mosaic, MixUp, CutOut, Self-Adversarial Training, bilateral blurring
PP-YOLOv2	ResNet50-vd + deformable convolutions	PANet	combined multilabel + bboxes, anchor-based	MixUp; random color distortion, expand, crop, flip
YOLOX	Darknet-53	FPN	decoupled multilabel + bboxes, anchor-free	Mosaic, MixUp, random horizontal flip, colorjitter
YOLOR	sequence of convolutional layers with downscaling	FPN, CSP, SPP	multi-head (object detection, multi-label classification, feature embedding)	CutMix, Mosaic, MixUp, CutOut, Self-Adversarial Training, bilateral blurring
PP-YOLOE	CSPRepResNet	PANet	Efficient Task-aligned Head (decoupled), anchor- free	random crop, horizontal flip, color distortion, multi- scale
YOLOv6	EfficientRep	Rep-PAN	Efficient decoupled head, anchor-free	Mosaic, MixUp
YOLOv7	Extended-ELAN		multiple (lead heads & aux heads), anchor-based	random perspective, HSV litter, flips, Mosaic

Table source: The evolution of the YOLO neural networks family from v1 to v7.

(remember) Common component to all Object Detection architectures!

Before non-max suppression

Non-Max Suppression

After non-max suppression


```
Input : \mathcal{B} = \{b_1, ..., b_N\}, \mathcal{S} = \{s_1, ..., s_N\}, N_t
                 \mathcal{B} is the list of initial detection boxes
                S contains corresponding detection scores
                N_t is the NMS threshold
begin
      \mathcal{D} \leftarrow \{\}
      while \mathcal{B} \neq empty do
             m \leftarrow \operatorname{argmax} S
             \mathcal{M} \leftarrow b_m
             \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{M}; \mathcal{B} \leftarrow \mathcal{B} - \mathcal{M}
             for b_i in \mathcal{B} do
                   if iou(\mathcal{M}, b_i) \geq N_t then
                           \mathcal{B} \leftarrow \mathcal{B} - b_i; \mathcal{S} \leftarrow \mathcal{S} - s_i
              end
      end
       return \mathcal{D}, \mathcal{S}
end
```


NMS: https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py

Soft-NMS:

https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py

Feature Pyramid Networks (CVPR 2017)

Feature Pyramid Networks

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He et al. [16] [†]	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓	✓	56.9	33.9	17.8	37.7	45.8

RetinaNet (ICCV 2017)

4 Conv Layers with 256 3x3 filters

A=9 **anchor boxes** K=80 object class labels (COCO)

Focal Loss

$$\begin{aligned} \text{CE}(p_{\text{t}}) &= -\log(p_{\text{t}}) \\ \text{FL}(p_{\text{t}}) &= -(1-p_{\text{t}})^{\gamma} \log(p_{\text{t}}) \end{aligned}$$

$$p_{\rm t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise,} \end{cases}$$

The unbalanced nature of detection. Hard Negative Mining vs. Focal Loss

Why putting more focus on hard, misclassified examples?

Positive Negative Hard negative 1 70 6

Focal Loss / RetinaNet

Mask R-CNN (ICCV 2017)

Mask R-CNN

Mask R-CNN for instance segmentation

ROI Align

Input activation

Region projection and pooling sections

Sampling locations

Bilinear interpolated values

 2×2 values per cell.

Max pooling output

ROI Align / Bilinear interpolation

Bilinear interpolation for RoIAlign.

Mask R-CNN Bounding Box Detection Results

	backbone	APbb	$\mathrm{AP_{50}^{bb}}$	AP_{75}^{bb}	AP^bb_S	$\mathrm{AP}^{\mathrm{bb}}_{M}$	$\mathrm{AP}^{\mathrm{bb}}_{L}$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [41]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [39]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

DETR (ECCV 2020)

End-to-End Object Detection with Transformers

- DETR directly predicts (in parallel) the final set of detections by combining a CNN with a transformer architecture. No need of NMS!
- During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (Ø) class prediction.

DETR (ECCV 2020)

End-to-End Object Detection with Transformers

- Encoder input: CNN features + positional encoding.
- Decoder input:
 - o a fixed number N of learned positional embeddings (N=100), object queries.
 - also attends to the encoder output.
- Output embeddings of the decoder go to a shared feed forward network (FFN) that predicts a detection (class and bbox) or a "no object" class.

DETR (ECCV 2020)

-								
Model	$\operatorname{GFLOPS}/\operatorname{FPS}$	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Swin Transformer (2021)

The hierarchical Transformers (e.g., Swin Transformers) reintroduce several ConvNet priors.

Makes Transformers practically viable as a generic vision backbone and demonstrate remarkable performance on a wide variety of vision tasks.

Swin Transformer (2021)

(b) Various backbones w. Cascade Mask R-CNN									
	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	AP ^{mask}	AP ₅₀ AP ₅₀	AP ₇₅ ^{mask}	param	FLOP	FPS
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739G	18.0
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745G	15.3
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838G	12.0
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6

ConvNext (2022)

"Modernize" a standard ResNet toward the design of a vision Transformer: "Patchify" input, ResNeXt, Larger Kernels, ReLU->GeLU, fewer activations, BN->LN, modern optimizer, better augmentations, etc...

Constructed entirely from standard ConvNet modules.

ConvNeXts compete favorably with
Transformers in terms of accuracy and
scalability, outperforming Swin
Transformers on COCO detection, while
maintaining the simplicity and efficiency of
standard ConvNets.

backbone	FLOPs	FPS	APbox	AP ₅₀	APos A				
	Mask-RCNN 3× schedule								
o Swin-T	267G	23.1	46.0	68.1	50.3				
 ConvNeXt-T 	262G	25.6	46.2	67.9	50.8				
	Cas	cade N	Mask-RO	CNN 3×	schedule				
• ResNet-50	739G	16.2	46.3	64.3	50.5				
• X101-32	819G	13.8	48.1	66.5	52.4				
• X101-64	972G	12.6	48.3	66.4	52.3				
Swin-T	745G	12.2	50.4	69.2	54.7				
 ConvNeXt-T 	741G	13.5	50.4	69.1	54.8				
o Swin-S	838G	11.4	51.9	70.7	56.3				
 ConvNeXt-S 	827G	12.0	51.9	70.8	56.5				
o Swin-B	982G	10.7	51.9	70.5	56.4				
ConvNeXt-B	964G	11.4	52.7	71.3	57.2				
o Swin-B [‡]	982G	10.7	53.0	71.8	57.5				
• ConvNeXt-B‡	964G	11.5	54.0	73.1	58.8				
○ Swin-L [‡]	1382G	9.2	53.9	72.4	58.8				
 ConvNeXt-L[‡] 	1354G	10.0	54.8	73.8	59.8				
 ConvNeXt-XL[‡] 	1898G	8.6	55.2	74.2	59.9				

Other ideas in Object Detection: Rotated objects

Other ideas in Object Detection: STR

One-hot classification

How many classes?

Label Embedding (PHOC)

Text strings are embedded into a d-dimensional binary space: Pyramidal Histogram Of Characters (PHOC)

PHOC encodes if a particular character appears in a particular region of the string

Label Embeddings

Attribute-based recognition

Comparison of:

- Direct Attribute Prediction (DAP): compute attribute probabilities + combine scores Lampert, Nickisch, Harmeling, "Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer", CVPR'09
- Attribute Label Embedding (ALE): embed classes + bilinear compatibility Akata, Perronnin, Harchaoui, Schmid, "Label-embedding for attribute-based classification", CVPR'13
- → ALE outperforms DAP by large margin on zero-shot bird recognition

 See also: Alabdulmohsin, Cissé, Zhang, "Is attribute-based zero-shot learning an ill-posed strategy?", EACL'16.

Single Shot Text Detection and Recognition

References

- Ross B. Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik; Rich feature hierarchies for accurate object detection and semantic segmentation.
- Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun; OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.
- Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun; Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
- Ross B. Girshick; Fast R-CNN.
- Shaoqing Ren, Kaiming He, Ross B. Girshick and Jian Sun; Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
- Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, Ali Farhadi; You Only Look Once: Unified, Real-Time Object Detection.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; Deep Residual Learning for Image Recognition.
- Joseph Redmon and Ali Farhadi; YOLO9000: Better, Faster, Stronger.
- M. Oquab and L. Bottou and I. Laptev and J. Sivic; Is object localization for free? -Weakly-supervised learning with convolutional neural networks.

References

- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). SSD: Single shot multibox detector. ECCV 2016.
- Bodla, N., Singh, B., Chellappa, R., & Davis, L. S. Soft-NMS--improving object detection with one line of code. ICCV 2017.
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. CVPR 2017.
- Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. Focal loss for dense object detection. ICCV 2017.
- He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017.
- Carion et al. "End-to-end object detection with transformers. ECCV, 2020.
- Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., & Liang, J. EAST: an efficient and accurate scene text detector. CVPR 2017.
- L.Gomez, A. Mafla, M. Rusiñol, D. Karatzas. Single Shot Scene Text Retrieval, ECCV 2018.

