Instructions: Five points total. Show all work for credit. GS: Scan two pages for your solutions.

1. (a) Find the vector-valued function $\mathbf{r}(\mathbf{t})$ that represents the curve of intersection between the paraboloid $x = 4y^2 + z^2$ and the cylinder $z = y^2$. See figure. Give your answer in vector form.

Z=y²

$$x = 4y^{2} + z^{2}$$
Slightly easier to Start

Let $y = b$, $z = t^{2}$

Then $x = 4y^{2} + z^{2}$

$$= 4t^{2} + (t^{2})^{2}$$

$$= 4t^{2} + t^{4} = x$$

Answer:
$$\mathbf{r}(t) = \left\langle \begin{array}{cccc} t^4 + 4t^2 & t \\ \end{array} \right\rangle, \ t \in \mathbb{R}.$$

(b) For the paraboloid $x = 4y^2 + z^2$, sketch the x-traces for the values of k = 0, 1, 4 on the axes below. Label the traces with their equations and include intercepts if relevant.

2. Consider the vector-valued function

$$\mathbf{r}(t) = \left\langle 0, \ t e^{3t}, \cos^2(2t)\sin(2t) \right\rangle.$$

Compute the value of the definite integral

$$\int_0^{\frac{\pi}{2}} \mathbf{r}(t)dt$$
Let $\chi(t) = 0$, $y(t) = te^{3t}$, $\chi(t) = \cos^2(2t) \sin(2t)$ and
$$\int_0^{\frac{\pi}{2}} \mathbf{r}(t)dt$$
Conpute
$$\int_0^{\frac{\pi}{2}} \chi(t) dt$$
,
$$\int_0^{\frac{\pi}{2}} \chi(t) dt$$
,
$$\int_0^{\frac{\pi}{2}} \chi(t) dt$$
,
$$\int_0^{\frac{\pi}{2}} \chi(t) dt$$

$$\int_{0}^{\pi/2} \chi(t)dt = 0$$

•
$$\int_{0}^{\pi/2} te^{3t} dt \rightarrow Integration by pass. u=t dv=e^{3t} dt$$

$$= \left(\frac{\pi}{6} e^{\frac{3\pi}{2}} - \frac{1}{3} e^{\frac{3\pi}{2}} dt = \frac{1}{3} te^{\frac{3\pi}{2}} - \frac{1}{9} e^{\frac{3\pi}{2}} \right) - \left(0 - \frac{1}{9} \right) = \frac{\pi}{6} e^{\frac{3\pi}{2}} - \frac{1}{9} e^{\frac{3\pi}{2}} + \frac{1}{9}$$

$$\int_{0}^{\pi/2} \cos^{2}(2t) \sin(t) dt \rightarrow Substitution = \cos(2t) du = -2\sin(2t) dt$$

$$\sin(2t) dt = -\frac{1}{2} du$$

Limits:
$$t=0 \Rightarrow u=1$$

 $t=\pi/2 \Rightarrow u=\cos(\pi)=-1$

$$= \int_{1}^{1} u^{2} \left[-\frac{1}{2} du \right] = -\frac{1}{2} \int_{1}^{1} u^{2} du = -\frac{1}{6} u^{3} \right]_{1}^{1} = \frac{1}{6} - \left(-\frac{1}{6} \right) = \frac{1}{3}$$