```
In [1]:
pip install pandas
Requirement already satisfied: pandas in c:\users\dilip\anaconda3\lib\site-packages (1.3.
Requirement already satisfied: numpy>=1.17.3; platform_machine != "aarch64" and platform_
machine != "arm64" and python version < "3.10" in c:\users\dilip\anaconda3\lib\site-packa</pre>
ges (from pandas) (1.19.2)
Requirement already satisfied: pytz>=2017.3 in c:\users\dilip\anaconda3\lib\site-packages
(from pandas) (2020.1)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\dilip\anaconda3\lib\sit
e-packages (from pandas) (2.8.1)
Requirement already satisfied: six>=1.5 in c:\users\dilip\anaconda3\lib\site-packages (fr
om python-dateutil>=2.7.3->pandas) (1.15.0)
Note: you may need to restart the kernel to use updated packages.
Creating Pandas Series
In [1]:
import pandas as pd
import numpy as np
# Creating empty series
ser = pd.Series()
#print("Pandas Series: ", ser)
# simple array
data = np.array(['g', 'p', 'r', 'e', 'c'])
ser = pd.Series(data)
print("Pandas Series:\n", ser)
Pandas Series:
    a
    р
    r
3
     е
4
dtype: object
<ipython-input-1-6e5d90e0c662>:5: DeprecationWarning: The default dtype for empty Series
will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to
silence this warning.
  ser = pd.Series()
In [7]:
import numpy as np
import pandas as pd
#info= np.array(['p', 'a', 'n', 'd', 'a', 's'])
#print(info)
ser=pd.Series(info)
print(ser)
0
     р
1
```

Accessing data from Series

2

3

4

5

n

d

а

dtype: object

```
In [10]:
# import pandas and numpy
import pandas as pd
import numpy as np
# creating simple array
data = np.array(['g','p','r','e','c','k', 'u','r','n','o','o','l'])
ser = pd.Series(data)
#print(ser)
#retrieve the first element
print(ser[:5])
0
    р
2
3
     е
    С
dtype: object
Creating DataFrame
 · creating an empty dataframe
In [21]:
# import pandas as pd
import pandas as pd
df = pd.DataFrame()
print(df)
Empty DataFrame
Columns: []
Index: []
In [2]:
# import pandas as pd
import pandas as pd
# list of strings
lst = ['Assam', 'Andhra Pradesh', 'Bhopal', 'Delhi',
            'Maharastra', 'Tamilnadu', 'Karnataka']
df = pd.DataFrame(lst)
print(df)
0
           Assam
1 Andhra Pradesh
2
         Bhopal
3
           Delhi
4
     Maharastra
5
       Tamilnadu
      Karnataka
In [4]:
# DataFrame from dictonary / lists
```

import pandas as pd

initialise data of lists.

```
data = {'Name':['Tom', 'nick', 'krish', 'jack'], 'Age':[20, 21, 19, 18]}
# Create DataFrame
df = pd.DataFrame(data)
# Print the output.
print(df)
   Name Age
0
   Tom 20
  nick 21
1
2 krish
        19
3 jack 18
In [11]:
data['Age']
Out[11]:
[20, 21, 19, 18]
In [27]:
# importing pandas as pd
import pandas as pd
# dictionary of lists
df = pd.DataFrame(dict)
print(df)
   name degree score
0 aparna MBA
                 90
1 pankaj BCA
2 sudhir M.Tech
                   40
                   80
3 Geeku MBA
                   98
In [28]:
import pandas as pd
data = {
 "calories": [420, 380, 390],
  "duration": [50, 40, 45]
#load data into a DataFrame object:
df = pd.DataFrame(data)
print(df)
  calories duration
     420
       380
                 40
1
       390
                 45
```

Giving names to index

```
In [12]:
```

```
import pandas as pd

data = {
    "calories": [420, 380, 390],
    "duration": [50, 40, 45]
```

In [33]:

```
import pandas as pd
data=pd.read_csv("cocoa.csv")
data
```

Out[33]:

	ld	Company	Bean Origin	Review Date	Cocoa Percent	Company Location	Rating
0	1	A. Morin	Agua Grande	2016.0	63%	France	3.75
1	2	A. Morin	Kpime	2015.0	70%	France	2.75
2	3	A. Morin	Atsane	2015.0	70%	France	3.00
3	4	A. Morin	Akata	2015.0	70%	France	3.50
4	5	A. Morin	Quilla	2015.0	70%	France	3.50
•••							
1790	1791	Zotter	Peru	2011.0	70%	Austria	3.75
1791	1792	Zotter	Congo	2011.0	65%	Austria	3.00
1792	1793	Zotter	Kerala State	2011.0	65%	Austria	3.50
1793	1794	Zotter	Kerala State	2011.0	62%	Austria	3.25
1794	1795	Zotter	Brazil, Mitzi Blue	2010.0	65%	Austria	3.00

1795 rows × 7 columns

In [34]:

data.tail()

Out[34]:

	ld	Company	Bean Origin	Review Date	Cocoa Percent	Company Location	Rating
1790	1791	Zotter	Peru	2011.0	70%	Austria	3.75
1791	1792	Zotter	Congo	2011.0	65%	Austria	3.00
1792	1793	Zotter	Kerala State	2011.0	65%	Austria	3.50
1793	1794	Zotter	Kerala State	2011.0	62%	Austria	3.25
1794	1795	Zotter	Brazil, Mitzi Blue	2010.0	65%	Austria	3.00

In [41]:

data.head(20)

Out[41]:

	ld	Company	Bean Origin	Review Date	Cocoa Percent	Company Location	Rating
0	1	A. Morin	Agua Grande	2016.0	63%	France	3.75
1	2	A. Morin	Kpime	2015.0	70%	France	2.75
2	3	A. Morin	Atsane	2015.0	70%	France	3.00
3	4	A. Morin	Akata	2015.0	70%	France	3.50

4	ld	Company A. Morin	Bean Origin Quilla	Review Date 2015.0	Cocoa Percent	Company Location France	Rating 3.50
5	6	A. Morin	Carenero	NaN	70%	France	2.75
6	7	A. Morin	Cuba	2014.0	70%	France	3.50
7	8	A. Morin	Sur del Lago	2014.0	70%	France	3.50
8	9	A. Morin	Puerto Cabello	2014.0	70%	France	3.75
9	10	A. Morin	Pablino	2014.0	70%	France	4.00
10	11	A. Morin	Panama	2013.0	70%	France	2.75
11	12	A. Morin	Madagascar	2013.0	70%	France	3.00
12	13	A. Morin	Brazil	2013.0	70%	France	3.25
13	14	A. Morin	Equateur	2013.0	70%	France	3.75
14	15	A. Morin	Colombie	2013.0	70%	France	2.75
15	16	A. Morin	Birmanie	2013.0	70%	France	3.00
16	17	A. Morin	Papua New Guinea	NaN	70%	France	3.25
17	18	A. Morin	Chuao	2013.0	70%	France	4.00
18	19	A. Morin	Piura	2013.0	70%	France	3.25
19	20	A. Morin	Chanchamayo Province	2013.0	70%	France	3.50

In [2]:

data.describe()

NameError Traceback (most recent call last)

NameError
<ipython-input-2-2bb0b18689d4> in <module>

---> 1 data.describe()

NameError: name 'data' is not defined

In [43]:

import pandas as pd

In [14]:

df=pd.read csv("iris.csv")

In [15]:

df

Out[15]:

	sepal_length	sepal_width	petal_length	petal_width	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

```
In [16]:
```

df.head()

Out[16]:

	sepal_length	sepal_width	petal_length	petal_width	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [17]:

df.tail()

Out[17]:

	sepal_length	sepal_width	petal_length	petal_width	target
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

In [18]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Non-Null Count Dtype # Column 0 sepal_length 150 non-null 1 sepal_width 150 non-null float64 float64 2 petal_length 150 non-null float64 3 petal_width
4 target 150 non-null float64 150 non-null int64 dtypes: float64(4), int64(1)

In [19]:

df.describe()

memory usage: 6.0 KB

Out[19]:

	sepal_length	sepal_width	petal_length	petal_width	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667	1.000000
std	0.828066	0.433594	1.764420	0.763161	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	e 400000	3 300000	5 100000	1 200000	3 UUUUUU

```
        sepal_length
        sepal_width
        petal_length
        petal_width

        7.900000
        4.400000
        6.900000
        2.500000

                                                                  target 2.000000
In [27]:
df.isnull().sum()
Out[27]:
sepal_length
                       0
sepal width
                       0
petal length
                       0
petal width
                       0
target
                       0
dtype: int64
In [29]:
df.shape
Out[29]:
(150, 5)
In [31]:
df.columns
Out[31]:
Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'target'], dtype='ob
ject')
In [ ]:
```

۷.000000

0.000000

J. 100000

U.TUUUUU