Isomorphism between automorphism groups of finitely generated groups

Sandeep Singh*and Deepak Gumber[†]

School of Mathematics and Computer Applications Thapar University, Patiala - 147 004, India

Abstract. Let G be a finitely generated group and let C^* denote the group of all central automorphisms of G fixing the center of G elementwise. Azhdari and Malayeri [J. Algebra Appl., $\mathbf{6}(2011)$, 1283-1290] gave necessary and sufficient conditions on G such that $C^* \simeq \operatorname{Inn}(G)$. We prove a technical lemma and, as a consequence, obtain a short and easy proof of this result of Azhdari and Malayeri. Subsequently, we also obtain short proofs of some other existing and some new related results.

2010 Mathematics Subject Classification: 20F28, 20F18.

Keywords: Central-automorphism, nilpotent group.

1 Introduction. Let G be a finitely generated group and let Inn(G) denote the inner automorphism group of G. For normal subgroups X and Y of G, let $\operatorname{Aut}^X(G)$ and $Aut_Y(G)$ denote the subgroups of Aut(G) centralizing G/X and Y respectively. We denote the intersection $\operatorname{Aut}^X(G) \cap \operatorname{Aut}_Y(G)$ by $\operatorname{Aut}^X_Y(G)$. Let C^* , in particular, denote the group $\operatorname{Aut}_{Z(G)}^{Z(G)}(G)$, where Z(G) is the center of G. For a finite group G, let G_p and $\pi(G)$ respectively denote the Sylow p-subgroup and the set of prime divisors of G. For a finite p-group G, Attar [2, Main Theorem] proved that $C^* = \text{Inn}(G)$ if and only if either G is abelian or G is nilpotent of class 2 and Z(G) is cyclic. Azhdari and Malayeri [4, Theorem 0.1] (see also [5, Theorem 2.3] for correct version) generalized this result of Attar and proved that if G is a finitely generated nilpotent group of class 2, then $C^* \simeq \text{Inn}(G)$ if and only if Z(G) is infinite cyclic or $Z(G) \simeq C_m \times H \times \mathbb{Z}^r$, where $C_m \simeq \prod_{p \in \pi(G/Z(G))} Z(G)_p, \ H \simeq \prod_{p \notin \pi(G/Z(G))} Z(G)_p, \ r \geq 0$ is the torsion-free rank of Z(G) and G/Z(G) is of finite exponent dividing m. We prove a technical lemma, Lemma 2.1, and as a consequence give a short and easy proof of this main theorem of Azhdari and Malayeri. We also obtain short and alternate proofs of Corollary 2.1 of [5], and Propostion 1.11 and Theorem 2.2(i) of [3]. Some other related results for finitely generated and finite *p*-groups are also obtained.

By C_p we denote a cyclic group of order p and by X^n we denote the direct product of n-copies of a group X. By $\operatorname{Hom}(G,A)$ we denote the group of all homomorphisms of G into an abelian group A. The rank of G is the smallest cardinality of a generating set of G. The torsion rank and torsion-free rank of G are respectively denoted as d(G) and $\rho(G)$. By $\exp(G)$ we denote the exponent of torsion part of G. All other unexplained

^{*}Supported by Council of Scientific and Industrial Research.

[†]Supported by National Board for Higher Mathematics, Department of Atomic Energy.

notations, if any, are standard. The following well known results will be used very frequently without further referring.

Lemma 1.1. Let U, V and W be abelian groups. Then (i) if U is torsion-free of rank m, then $\operatorname{Hom}(U, V) \simeq V^m$, and (ii) if U is torsion and V is torsion-free, then $\operatorname{Hom}(U, V) = 1$.

2 Main results. Let G be a finitely generated group and M be an abelian subgroup of G with $\pi(M) = \{q_1, q_2, \ldots, q_e\}$. Let L and N be normal subgroups of G such that $G' \leq N \leq L$ and $\pi(G/L) = \pi(G/N) = \{p_1, p_2, \ldots, p_d\}$. Let X, Y, Z be respective torsion parts and a, b, c be respective torsion-free ranks of G/L, G/N and M. Let $X_{p_i} \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}$, $Y_{p_i} \simeq \prod_{j=1}^{n_i} C_{p_i^{\beta_{ij}}}$ and $Z_{q_i} \simeq \prod_{j=1}^{m_i} C_{q_i^{\gamma_{ij}}}$, where for each $i, \alpha_{ij} \geq \alpha_{i(j+1)}$, $\beta_{ij} \geq \beta_{i(j+1)}$ and $\gamma_{ij} \geq \gamma_{i(j+1)}$ are positive integers, respectively denote the Sylow subgroups of X, Y and Z. Then

$$G/L \simeq X \times \mathbb{Z}^a \simeq \prod_{i=1}^d X_{p_i} \times \mathbb{Z}^a \simeq \prod_{i=1}^d \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}} \times \mathbb{Z}^a,$$

$$G/N \simeq Y \times \mathbb{Z}^b \simeq \prod_{i=1}^d Y_{p_i} \times \mathbb{Z}^b \simeq \prod_{i=1}^d \prod_{j=1}^{n_i} C_{p_i^{\beta_{ij}}} \times \mathbb{Z}^b$$

and

$$M \simeq Z \times \mathbb{Z}^c \simeq \prod_{i=1}^e Z_{q_i} \times \mathbb{Z}^c \simeq \prod_{i=1}^e \prod_{j=1}^{m_i} C_{q_i^{\gamma_{ij}}} \times \mathbb{Z}^c.$$

Since G/L is a quotient group of G/N, it follows that $a \leq b$, $l_i \leq n_i$ and $\alpha_{ij} \leq \beta_{ij}$ for all $i, 1 \leq i \leq d$ and for all $j, 1 \leq j \leq l_i$. We begin with the following lemma.

Lemma 2.1. Let G, L, M and N be as above. Then $\text{Hom}(G/N, M) \simeq G/L$ if and only if one of the following conditions hold:

- (i) G is torsion-free, M is infinite cyclic and both G/L and G/N are torsion-free of same rank.
- (ii) G is torsion, $M \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i}$, $l_i = n_i$ and either $\alpha_{ij} = \beta_{ij} \leq \gamma_{i1}$ for each j or $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest positive integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ for each fixed $i, 1 \leq i \leq d$.
- (iii) G is a mixed group, $M \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i} \times \mathbb{Z}^c$, both G/L and G/N are finite, $l_i = n_i$ and either $\alpha_{ij} = \beta_{ij} \leq \gamma_{i1}$ for each j or $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest positive integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ for each fixed $i, 1 \leq i \leq d$.

Proof. It is easy to see that if any of the three conditions hold, then $\operatorname{Hom}(G/N, M) \simeq G/L$. Conversely suppose that $\operatorname{Hom}(G/N, M) \simeq G/L$. Then

$$\operatorname{Hom}(Y \times \mathbb{Z}^b, Z \times \mathbb{Z}^c) \simeq X \times \mathbb{Z}^a. \tag{1}$$

We prove only (i) and (ii), because (iii) can be proved using similar arguments. First assume that G is torsion-free. Then N is also torsion-free and therefore by (1) $\operatorname{Hom}(Y \times Y)$

 $\mathbb{Z}^b, \mathbb{Z}^c) \simeq X \times \mathbb{Z}^a$. Thus X=1 and since $a \leq b$, c=1 and a=b. It follows that M is infinite cyclic and both G/N and G/L are torsion-free of same rank. Next assume that G is torsion. Then $\operatorname{Hom}(Y,Z) \simeq X$ by (1). Since $\pi(X) = \pi(Y)$ and $d(X) \leq d(Y)$, therefore $q_i = p_i$ and $m_i = 1$ for all $i, 1 \leq i \leq d$. Thus $M \simeq \prod_{i=1}^d C_{p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e \prod_{j=1}^{m_i} C_{q_i^{\gamma_{ij}}}$. Also, observe that

$$\begin{array}{lcl} \operatorname{Hom}(Y,Z) & \simeq & \operatorname{Hom}(\prod_{i=1}^d \prod_{j=1}^{n_i} C_{p_i^{\beta_{ij}}}, \prod_{i=1}^d C_{p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e \prod_{j=1}^{m_i} C_{q_i^{\gamma_{ij}}}) \\ & \simeq & \operatorname{Hom}(\prod_{i=1}^d \prod_{j=1}^{n_i} C_{p_i^{\beta_{ij}}}, \prod_{i=1}^d C_{p_i^{\gamma_{i1}}}) \\ & \simeq & \prod_{i=1}^d \operatorname{Hom}(\prod_{j=1}^n C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \end{array}$$

and $X \simeq \prod_{i=1}^d \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}$. Therefore $\operatorname{Hom}(\prod_{j=1}^{n_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}$ for each $i, 1 \leq i \leq d$, and hence $l_i = n_i$. It thus follows that for each fixed $i, 1 \leq i \leq d$,

$$\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\alpha_{ij}}}. \tag{2}$$

Now, if $\exp(Y_{p_i}) \leq \exp(Z_{p_i})$, then $\beta_{ij} \leq \gamma_{i1}$ for each j and $\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}$. It therefore follows from (2) that $\alpha_{ij} = \beta_{ij}$ for each j. And, if $\exp(Y_{p_i}) > \exp(Z_{p_i})$, then there exists largest positive integer r_i between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ and $\beta_{ij} \leq \gamma_{i1}$ for each $j, r_i + 1 \leq j \leq l_i$. Therefore $\operatorname{Hom}(\prod_{j=1}^{l_i} C_{p_i^{\beta_{ij}}}, C_{p_i^{\gamma_{i1}}}) \simeq \prod_{j=1}^{r_i} C_{p_i^{\gamma_{i1}}} \times \prod_{j=r_i+1}^{l_i} C_{p_i^{\beta_{ij}}}$. It then follows by (2) that $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$.

Remark 2.2. Observe that if N = L and $\exp(G/N) | \exp(M)$, then $\exp(Y_{p_i}) \le \exp(Z_{p_i})$ for all i and hence $\operatorname{Hom}(G/L,M) \simeq G/L$ if and only if either M is infinite cyclic or $M \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i} \times \mathbb{Z}^c$, where $c \ge 0$ is the torsion-free rank of M.

The next lemma is a little modification of arguments of Alperin [1, Lemma 3] and Fournelle [7, Section 2].

Lemma 2.3. Let G be any group and Y be a central subgroup of G contained in a normal subgroup X of G. Then the group of all automorphisms of G that induce the identity on both X and G/Y is isomorphic to Hom(G/X,Y).

Observe that $C^* \simeq \operatorname{Hom}(G/Z(G), Z(G))$ by Lemma 2.3. If G is nilpotent of class 2, then $\exp(G') = \exp(G/Z(G))$. Now taking L = M = N = Z(G) in Lemma 2.1, we get the following main result of Azhdari and Malayeri [4, Theorem 0.1] (see [5, Theorem 2.3] for correct version).

Corollary 2.4. Let G be a finitely generated nilpotent group of class 2. Then $C^* \simeq \operatorname{Inn}(G)$ if and only if either Z(G) is infinite cyclic or $Z(G) \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i} \times \mathbb{Z}^c$, where c is the torsion-free rank of Z(G).

Corollary 2.5 ([5, Corollary 2.1]). Let G be a finitely generated non-abelian group and let M and N be normal subgroups of G such that $M \leq Z(G) \leq N$ and G/Z(G) is finite. Then $\operatorname{Aut}_N^M(G) = \operatorname{Inn}(G)$ if and only if G is a nilpotent group of class 2, N = Z(G), $G' \leq M$ and $M \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i} \times \mathbb{Z}^c$, where $c \geq 0$ is the torsion-free rank of M.

Proof. First suppose that $\operatorname{Aut}_N^M(G) = \operatorname{Inn}(G)$. Observe that $\operatorname{Aut}_N^M(G) \simeq \operatorname{Hom}(G/N, M)$ by Lemma 2.3. It follows that $\operatorname{Inn}(G)$ is abelian and therefore nilpotence class of G is 2. For any $[a,b] \in G'$, $[a,b] = a^{-1}I_b(a) \in M$ and thus $G' \leq M$. Also, for any $n \in N$, $I_x(n) = n$ for all $x \in G$ and therefore N = Z(G). Now since $\exp(G/Z(G)) = \exp(G')$ divides $\exp(M)$, the result follows from Lemma 2.1 by taking L = Z(G). The converse follows easily.

In 1911, Burnside [6, Note B, p. 463] gave the notion of pointwise inner automorphism of a group G. An automorphism α of G is called pointwise inner automorphism of G if x and $\alpha(x)$ are conjugate for each $x \in G$. Let H be a characteristic subgroup of G. As defined in [3], an automorphism α of G is called H-pointwise inner if for each element $x \in G$, there exists $h \in H$ such that $\alpha(x) = x^h = x[x,h]$. For convenience, we denote $\gamma_k(G)$ -pointwise inner automorphism of G by $\operatorname{Aut}_{k-pwi}(G)$. As another application of Lemma 2.1, we get the following two results of Azhdari [3]. The second one generalizes Theorem 2.2(i) of [3].

Corollary 2.6 ([3, Prop. 1.11]). Let G be a finitely generated nilpotent group of class $k+1 \geq 2$. Then $\text{Hom}(G/\zeta_k(G), \gamma_{k+1}(G)) \simeq G/\zeta_k(G)$ if and only if $\gamma_{k+1}(G)$ is cyclic. In particular, if $\gamma_{k+1}(G) = [x, \gamma_k(G)]$ for all $x \in G \setminus C_G(\gamma_k(G))$ is cyclic, then $\text{Aut}_{k-pwi}(G)$ is isomorphic to a quotient group of Inn(G).

Proof. It follows from [9, Cor. 2.6, Cor. 3.16, Cor. 3.17] that $\exp(G/\zeta_k(G)) = \exp(\gamma_{k+1}(G))$ and $G/\zeta_k(G)$ is finite if and only if $\gamma_{k+1}(G)$ finite. The result now follows from Lemma 2.1 (see Remark 2.2) by taking $L = N = \zeta_k(G)$ and $M = \gamma_{k+1}(G)$. In particular, if $\gamma_{k+1}(G) = [x, \gamma_k(G)]$ for all $x \in G \setminus C_G(\gamma_k(G))$ is cyclic, then using the arguments as in [10, Prop. 3.1], we can prove that $\operatorname{Aut}_{k-pwi}(G) \simeq \operatorname{Hom}(G/\zeta_k(G), \gamma_{k+1}(G))$.

Corollary 2.7 (cf. [3, Theorem 2.2(i)]). Let G be a finitely generated nilpotent group of class $k+1 \geq 2$. Then $\text{Hom}(G/\zeta_k(G), \gamma_{k+1}(G)) \simeq \text{Inn}(G)$ if and only if G is nilpotent of class 2 and G' is cyclic. In particular, if $\gamma_{k+1}(G) = [x, \gamma_k(G)]$ for all $x \in G \setminus C_G(\gamma_k(G))$, then $\text{Aut}_{k-vwi}(G) \simeq \text{Inn}(G)$ if and only if G is nilpotent of class 2 and G' is cyclic.

Proof. Observe that if $\text{Hom}(G/\zeta_k(G), \gamma_{k+1}(G)) \simeq \text{Inn}(G)$, then G/Z(G) is abelian, and therefore nilpotence class of G is 2. It follows that $\zeta_k(G) = Z(G)$ and $\gamma_{k+1}(G) = G'$. The result now follows from above corollary by taking k = 1.

For $g \in G$ and $\alpha \in \text{Aut}(G)$, the element $[g, \alpha] = g^{-1}\alpha(g)$ is called the autocommutator of g and α . Inductively, define

$$[g, \alpha_1, \alpha_2, \dots, \alpha_n] = [[g, \alpha_1, \alpha_2, \dots, \alpha_{n-1}], \alpha_n],$$

where $\alpha_i \in \text{Aut}(G)$. The absolute center L(G) of G is defined as

$$L(G) = \{g \in G \mid [g, \alpha] = 1, \text{ for all } \alpha \in \text{Aut}(G)\}.$$

Let $L_1(G) = L(G)$, and for $n \geq 2$, define $L_n(G)$ inductively as

$$L_n(G) = \{g \in G \mid [g, \alpha_1, \alpha_2, \dots, \alpha_n] = 1 \text{ for all } \alpha_1, \alpha_2, \dots, \alpha_n \in \text{Aut}(G)\}.$$

The autocommutator subgroup G^* of G is defined as

$$G^* = \langle g^{-1}\alpha(g) | g \in G, \alpha \in \operatorname{Aut}(G) \rangle.$$

It is easy to see that $L_n(G) \leq Z_n(G)$ for all $n \geq 1$ and $G' \leq G^*$. An automorphism α of G is called an autocentral automorphism if $g^{-1}\alpha(g) \in L(G)$ for all $g \in G$. The group of all autocentral automorphisms of G is denoted by $\operatorname{Var}(G)$. A group G is called autonilpotent of class at most n if $L_n(G) = G$ for some natural number n. Observe that if G is autonilpotent of class 2, then $G^* \leq L(G)$. Nasrabadi and Farimani [8] proved that if G is a finie autonilpotent p-group of class 2, then $\operatorname{Var}(G) = \operatorname{Inn}(G)$ if and only if L(G) = Z(G) and Z(G) is cyclic. Observe that $\operatorname{Var}(G) \simeq \operatorname{Hom}(G/L(G), L(G))$ by Lemma 2.3. As a final consequence of Lemma 2.1, we get the following result which generalizes the main result of Nasrabadi and Farimani. The proof follows from Lemma 2.1 by taking M = N = L(G) and L = Z(G).

Corollary 2.8. Let G be a finitely generated non-abelian group such that $G' \leq L(G)$ and $\pi(G/L(G)) = \pi(G/Z(G))$. Then $Var(G) \simeq Inn(G)$ if and only if one of the following holds

- (i) G is torsion-free, L(G) is infinite cyclic and $\rho(G/L(G)) = \rho(G/Z(G))$;
- (ii) G is torsion, $L(G) \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i}$ and either L(G) = Z(G) or $l_i = n_i$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest positive integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ for each fixed $i, 1 \leq i \leq d$.
- (iii) G is a mixed group, both G/L(G) and G/Z(G) are finite, $L(G) \simeq C_{\prod_{i=1}^d p_i^{\gamma_{i1}}} \times \prod_{i=d+1}^e Z_{q_i} \times \mathbb{Z}^c$ and either L(G) = Z(G) or $l_i = n_i$, $\alpha_{ij} = \gamma_{i1}$ for $1 \leq j \leq r_i$ and $\alpha_{ij} = \beta_{ij}$ for $r_i + 1 \leq j \leq l_i$, where r_i is the largest positive integer between 1 and l_i such that $\beta_{ir_i} > \gamma_{i1}$ for each fixed $i, 1 \leq i \leq d$.

Let G be a finite p-group such that $G' \leq L(G)$. Let $G/Z(G) \simeq \prod_{i=1}^r C_{p^{\alpha_i}}$, $G/L(G) \simeq \prod_{i=1}^s C_{p^{\beta_j}}$ and $L(G) \simeq \prod_{i=1}^t C_{p^{\gamma_i}}$, where $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_r$, $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_s$ and $\gamma_1 \geq \gamma_2 \geq \ldots \geq \gamma_t$ are positive integers. Since G/Z(G) is a quotient group of G/L(G), $r \leq s$ and $\alpha_i \leq \beta_i$ for $1 \leq i \leq r$.

Corollary 2.9. Let G be a finite non-abelian p-group. Then Var(G) = Inn(G) if and only if $G' \leq L(G)$, L(G) is cyclic and either L(G) = Z(G) or d(G/L(G)) = d(G/Z(G)), $\alpha_i = \gamma_1$ for $1 \leq i \leq k$ and $\alpha_i = \beta_i$ for $k+1 \leq i \leq r$, where k is the largest positive integer such that $\beta_k > \gamma_1$.

Proof. Observe that if Var(G) = Inn(G), then for any $[a, b] \in G'$, $[a, b] = a^{-1}I_b(a) \in L(G)$ and thus $G' \leq L(G)$. The result now follows from Cor. 2.8.

Corollary 2.10 ([8, Theorem 3.2]). Let G be a non-abelian autonilpotent finite p-group of class 2. Then Var(G) = Inn(G) if and only if L(G) = Z(G) and L(G) is cyclic.

Proof. Suppose that $\operatorname{Var}(G) = \operatorname{Inn}(G)$. Observe that if $g^{-1}\alpha(g) \in G^*$, then $\alpha(g) = gl$ for some $l \in L(G)$ and hence $(g^{-1}\alpha(g))^m = g^{-m}\alpha(g)^m$ for all $m \geq 1$. Let $\exp(G/L(G)) = d$ and $\exp(G^*) = k$. Then $1 = (g^{-1}\alpha(g))^k = g^{-k}\alpha(g)^k$ implies that $g^k \in L(G)$ and hence $d \leq k$. Conversely, if $gL(G) \in G/L(G)$, then $g^d \in L(G)$ and thus $1 = g^{-d}\alpha(g^d) = (g^{-1}\alpha(g))^d$. It follows that $k \leq d$ and hence $\exp(G/L(G)) = \exp(G^*)$. Since $G^* \leq L(G)$, $\exp(G/L(G)) | \exp(L(G))$. Therefore $\operatorname{Var}(G) \simeq \operatorname{Hom}(G/L(G), L(G)) \simeq G/L(G)$, because L(G) is cyclic by Corollary 2.9, and hence L(G) = Z(G).

References

- [1] J. L. Alperin, Groups with finitely many automorphisms, Pacific J. Math., 12(1962), 1-5.
- [2] M. S. Attar, On central automorphisms that fix the centre elementwise, Arch. Math., 89(2007), 296-297.
- [3] Z. Azhdari, On certain automorphisms of nilpotent groups, Math. Proc. R. Ir. Acad., 113A(2013), 5-17.
- [4] Z. Azhdari, M. A. Malayeri, On inner automorphisms of nilpotent group of class 2,
 J. Algebra Appl., 6(2011), 1283-1290.
- [5] Z. Azhdari, M. A. Malayeri, On automorphisms fixing certain groups, J. Algebra Appl., 2(2013), 1250163(1-17).
- [6] W. Burnside, *Theory of Groups of Finite Order*, 2nd ed., Cambridge University Press, Cambridge, 1911.
- [7] T. A. Fournelle, *Torsion in semicomplete nilpotent groups*, Math. Proc. Cambridge Philos. Soc., **94** (1983), 191-202.
- [8] M. M. Nasrabadi, Z. K. Farimani, Absolute central automorhisms that are inner, Indag. Math. (N.S.), 26(2015), 137-141.
- [9] R. B. Warfield Jr., *Nilpotent Groups*, Lecture Notes in Mathematics, vol. 513, Springer-Verlag, New York, 1976.
- [10] M. K. Yadav, On automorphisms of some finite p-groups, Proc. Indian Acad. Sci. (Math. Sci.), 118(1)(2008), 1-11.