FLIPOO PROJECT REPORT

Yao Yang

Chongqing University of Posts and Telecommunications

Introduction

The goal of this project is to forecast bike rental demand given the input feature like weather, temperature, humidity, and windspeed.

The raw datasets contain eight data fields, which attributes are shown below.

Name	Attribute		
datetime	hourly date + timestamp		
season	1 = spring, 2 = summer, 3 = fall, 4 = winter		
holiday	whether the day is considered a holiday		
workingday	whether the day is neither a weekend nor holiday		
weather	1: Clear, 2: Mist + Cloudy, 3: Light Snow, 4: Heavy Rain		
temp	temperature in Celsius		
atemp	"feels like" temperature in Celsius		
humidity	relative humidity		
windspeed	wind speed		
casual	number of non-registered user rentals initiated		
registered	number of registered user rentals initiated		
count	count number of total rentals		

Data Preprocessing and Feature EnginPeering

- Process date data (datetime module)
- Transform categorical features (calendar module)
- Analyze missing value and handle outlier
- Analyze target variable (logarithmic transformation)
- Fill in zero values in the windspeed feature (random forest model)

Build and Solve the Model

	Model	RMSLE
15	LightGBM	0.316161
11	Random Forest Regressor	0.375379
10	BaggingRegressor	0.394187
14	XGBoost	0.422559
13	GBRT	0.435759
8	DecisionTreeRegressor	0.523695
9	ExtraTreeRegressor	0.554145
12	AdaBoostRegressor	0.697286
4	KernelRidge Regression	0.813210
7	KNN	0.864965
6	SVR	1.045943
5	ElasticNet Regression	1.053736
3	Ridge Regression	1.053749
2	Lasso Regression	1.054156
0	Linear Regression	1.054414
1	Logistic Regression	1.127804

Modeling and Result

• Model: Stacking*0.6+LightGBM*0.4

Score: 0.50413Rank: 1741/3243

Data Visualization

The eight category features are visualized.

Plot a heat map of the correlation matrix between the individual numerical features.

Conclusion

When modeling, we mainly consider the three numerical features "temp", "humidity" and "windspeed". Sixteen basic machine learning regression prediction family models were used. The final prediction is composed of the predictions of the best two models Stacking and LightGBM with a weight of 0.6 and 0.4.

