#### Modelagem

6. Uma refinaria produz 2 tipos de gasolina (1 e 2) a partir de 2 tipos de petróleo (A e B). Os requisitos, precos de venda e custos são:

| Petróleo | Disponib | Custo |  |  |  |
|----------|----------|-------|--|--|--|
| А        | 100      | 6     |  |  |  |
| В        | 200      | 3     |  |  |  |

| Gasolina | % min de A | Preço venda |
|----------|------------|-------------|
| 1        | 60         | 8           |
| 2        | 30         | 5           |

Formular, de modo a decidir quanto comprar de A e B e quanto fabricar de 1 e 2, maximizando o <u>lucro</u>.

- 7. A Politoy S/A fabrica soldados e trens de madeira:
- -Cada soldado é vendido por \$27 e utiliza \$10 de matéria-prima e \$14 de mão-deobra. Duas horas de acabamento e 1 hora de carpintaria são demandadas para produção de um soldado.
- Cada trem é vendido por \$21 e utiliza \$9 de matéria-prima e \$10 de mão-de-obra.
   Uma hora de acabamento e 1 h de carpintaria são demandadas para produção de um trem.
- A disponibilidade de horas para as operações de acabamento e carpintaria são 100 e 80 horas, respectivamente. Devido a problemas de demanda, não devem ser produzidas mais do que 40 unidades de soldados. Formular o problema, de modo a maximizar o lucro

#### Modelagem

- Objetivo: maximizar lucro
- Restrições : quantidades minima de petroleo A, disponibilidade de petroleo

```
x_{A1} = Quantidade de petroleo A usado para fabricar gasolina tipo 1
x_{A2} = Quantidade de petroleo A usado para fabricar gasolina tipo 2
x_{B1} = Quantidade de petroleo B usado para fabricar gasolina tipo 1
x_{B2} = Quantidade de petroleo B usado para fabricar gasolina tipo 2
max z = 8.(x_{\Delta 1} + x_{B1}) + 5. (x_{\Delta 2} + x_{B2}) - 6.(x_{\Delta 1} + x_{\Delta 1}) - 3.(x_{B1} + x_{B2})
                    ≤ 100 (disponibilidade de petróleo A)
X_{A1} + X_{A2}
X_{B1} + X_{B2}
                    ≤ 200 (disponibilidade de petróleo B)
x_{A1}/(x_{A1}+x_{B1}) \ge 0.6 (proporção de petróleo A na gasolina 1)
x_{A2}/(x_{A2}+x_{B2}) \ge 0.3 (proporção de petróleo A na gasolina 2)
X_{A1}, X_{A2}, X_{R1}, X_{R2} \ge 0
```

#### Modelagem

Uma fornalha elétrica é usada para produzir 4000 kg de uma liga de ferro fundido que deve ter

|      | min  | max  |
|------|------|------|
| % Si | 3,25 | 3,4  |
| % C  | 2,05 | 2,25 |

#### como insumo podemos usar:

Minimizar o custo de produção.

|          | %C   | %Si  | Custo/kg |
|----------|------|------|----------|
| sucata A | 0,45 | 0,1  | 0,30     |
| sucata B | 0,40 | 0,15 | 0,315    |
| sucata C | 3,50 | 2,3  | 0,034    |
| sobra    | 3,30 | 2,2  | 0,02     |
| Carbono  | 100  | 0    | 0,3      |
| Silício  | 0    | 100  | 0,5      |
|          |      |      |          |

1. min 
$$z = -x_1 + 2x_2$$

2. max 
$$z = 2x_1 + 2x_2$$

S.A. 
$$\begin{cases} x_1 + x_2 \le 10 \\ x_1 + 2x_2 \ge 8 \\ -x_1 + x_2 = 2 \\ x_1 \cdot x_2 \ge 0 \end{cases}$$

3. max 
$$z = 4x_1 + 2x_2$$

4. max 
$$z = 2x_1 + 3x_2$$

5. max 
$$z = 2x_1 + x_2$$

S. A. 
$$\begin{cases} x_1 - x_2 \leq 0 \\ x_2 \leq 2 \\ x_1 + 2x_2 \geq 8 \\ x_1, x_2 \geq 0 \end{cases}$$

Multiplas Soluções



Solução ótima ilimitada



Não há solução viável

