1. About Al

像人一样行动/思考,理性特征

三大学派:符号主义(逻辑推理和符号处理)行为主义(黑箱与机器学习)连接主义(神经网络)

2. 搜索问题

搜索问题: 状态空间=初始状态+行为+转移模型

状态空间图 = 结点(一个只出现一次) + 边

搜索树: 无环图, 可能存在大量重复和无限延拓

2.1 <mark>盲目搜索</mark> Uninformed Search

b 叉树,m 层	Complete	Time	Space	Optimal
DFS 深度优先	when m=inf×	$O(b^m)$	O(bm)	No(Only left)
BFS 广度优先	√	$O(N)=O(b^m)$	$O(N)=O(b^m)$	When cost=1 √
DFS + Iterative	√	$O(N)=O(b^m)$	O(bm)	√
Deepening				
Uniform-Cost	√	$O(b^{C*/\epsilon})$	$O(b^{\mathcal{C}*/\epsilon})$	√
Search UCS	问题成本 C*			

UCS: 每次推出当前最小代价节点并标记,加入该节点子节点,目标出栈时结束

2.2 有信息搜索 Informed Search

估计 h(n),实际 h*(n)	Complete	Optimal
启发式函数:估计与目	可接受 0≤h(n)≤h*(n)	一致性
标接近程度		h(A)-h(C)≤cost(A to C)
贪婪算法	×	×
A*算法	√	√
图搜索 Graph Search	√	✓

- * 满足一致性(效率与准确)一定满足可接受(确保最优解),同时即为最优
- * A*算法的思想: f(n) = 代价函数 UCS(g(n)) + 预期函数 Greedy(h(n))

3. 博弈论(对抗搜索)

- * 纳什均衡: 不能单方面改变自己策略以使自己的收益变得更好的均衡状态
- * 极小极大化问题: V(S) = Max_{s' \infty} successors V(S'),每个玩家轮流极小 极大取值
- * 效率:与 DFS 类似,Time = $O(b^m)$, Space = O(bm)
- * 评价函数:不同特征加权求和评估当前状态 | 节约资源: Depth-Limited
- *回溯剪枝:比较当前节点的价值与已知最值,若此时已不利,提前终止搜索。
- * 期望最大值搜索: 解决不确定性问题, 加权求和计算出每个节点的期望值,

目的是达到平均效用最大(效用:任何理性的偏好值 U=pU(A)+(1-p)U(B))

4. 约束满足问题 CSP: 找到满足所有约束条件的变量取值的问题

三要素:变量 Variable,域 Domain(取值范围),约束 Constraint

- * Constraint Graph: 图的节点对应变量,节点相连(弧)代表变量之间存在约束
- * 分类: 离散变量: 有限域/无限域。可转化为二元约束(只有两个 V 相互约束) 连续变量: 线性约束可解(离散无限域同)
- * 解法:初始状态(空集)+后继方程(不断赋值)+目标检测(约束)
- **4.1 回溯搜索问题**: Space = O(b·n), b=域大小, n=变量数

思路: 是**每次只给一个变量赋值(按顺序),随时检查约束**的深度 DFS

过滤(Filtering)	排序(Ordering)	最小剩余值(MRV)	
划去不满足约束的选择	→	优先选择候选值集合最小的变量	

* 弧一致性检查(Arc Consistency Check): **搜索前的预处理**,遍历每对相关变量的所有可能取值组合(尤其是 X 的 neighbor),划去不满足约束条件的情况

4.2 结构

- * 复杂度: 假设 n 变量,分成 c 变量的小问题,d 是变量域大小 原先 $O(d^n) \to \mathcal{O}$ 而论之 $O(\frac{n}{c} \cdot d^c) \to \mathbb{E}$ 无环树状图 $O(n \cdot d^2)$
- * 树状结构求解:从 root 开始扩展,在每个节点上,根据约束条件选择变量的一个值。若某节点上无法继续,就会回溯到上一个节点,尝试选择不同的值。
- * 优势: 弧一致性可以在父到子节点的传播过程中进行维护, 使变量域中至少有一个合法取值。减少搜索空间, 提高了算法效率, 局部变动不影响其他部分。
- * **最小割集**: 把这个(几个)点删掉,剩下由图变成无环图: $O(d^2 \cdot (n-c) \cdot d^c)$

4.3 局部搜索

爬山	模拟退火(全局优化)	遗传 (全局搜索)
Hill Climbing	Simulated Annealing	Genetic Algorithm
在当前解的邻域中搜	允许劣质解,迭代中逐渐	对解变异交叉+评估选择,
索更好的解,局部最优	减小接受劣质解的概率	保留优质解并迭代

5. 概率推理问题 Probabilistic Reasoning

- 5.1 概率模型: 是一组随机变量的联合分布
- * 先验概率分布: $P(a|b) = \frac{P(a,b)}{P(b)} = \frac{P(b|a) \cdot P(a)}{P(b)}$
- * 全概率公式: $P(a) = \sum_{i} P(a|b_i)$
- * 链式法则: P(x1,x2,...,xn) = P(x1) · P(x2|x1) · P(x3|x1,x2)...
- * 独立: P(X,Y) = P(X) · P(Y)
- * 条件独立: $P(X,Y|Z) = P(X|Z) \cdot P(Y|Z)$ 或者: P(X|Y,Z) = P(X|Z)
- 5.2 **贝叶斯网络**: 用简单的局部分布(条件概率)描述复杂联合分布(模型) 贝叶斯网络 Bayesian's Network = 拓扑图(有向无环图)+概率表
- * 联合概率分布 in Bayesian: P(X1...Xn) = ∏P(Xi|Parents(Xi))
- * 箭头: A->B 表示 B 的取值依赖于 A 的取值,并不一定表示 A 是 B 的因果原因

中间结点状态	H2H: 2 个指向 1 个	T2T: 1 个指向 2 个	H2T: 链式
已知	不独立	独立	独立
未知	独立	不独立	不独立

* 多节点图: 找 X-Y 的所有路径,只要有一个不独立那就不独立

5.3 变量消除法

- 1) **因子合并 Join Factors**:将所有的因子合并成一个大的因子,一般通过**乘积**实现,以得到一个包含了所有变量的联合概率分布
- 2) **边际化** Marginalization:对于要消除的变量**求和**,即对包含该变量的因子进行求和,形成一个包含了其他变量的较小的因子,不再涉及该被消除的变量
- 3)结果(归一化):反复执行到只剩下目标变量因子,以计算目标的后验概率

$P(B|j,m) \propto P(B,j,m)$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

 $P(B|j,m) \propto P(B,j,m)$

- $=\sum P(B, j, m, e, a)$
- $= \sum_{i=1}^{n} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$
- $= \sum_{a} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$
- $= \sum_{e}^{e} P(B)P(e)f_1(B,e,j,m)$
- $= P(B) \sum P(e) f_1(B, e, j, m)$
- $= P(B)f_2(B, j, m)$
- *规则:只有所有变量都出现在"|"之后时,最终才会在"|"之后

* 复杂度: 受消元顺序影响,用 Max(2^i)估算, i 是一次消元影响到的变量数

先验抽样	拒绝抽样	极大似然抽象	吉布斯抽样
按拓扑顺	从先验分布中采样,	基于概率分布参数	每一步采样中,固定
序逐层采	根据观测数据的条	的最大似然估计,根	其他变量,根据条件
样,顺序	件概率进行接受或	据观测数据计算似	概率分布采样当前
采样	拒绝→联合分布	然函数,直到收敛	变量,逐步更新其他

6. 马尔可夫链

基本假设: 未来的状态只依赖于当前状态,而与过去的状态无关,因此独立

- * 由上,特别的,有 P(X1, X2...Xn) = P(X1) · P(X2|X1) · P(X3|X2) ··· P(Xn|Xn-1)
- * 假设他是收敛的: $P_{inf}(X) = P_{inf+1}(X) = \sum_{x} P(X|x) \cdot P_{inf}(x)$

6.1 <mark>隐藏马尔可夫链</mark> Hidden Markov

* eg. $P(X1, E1, X2, E2) = P(X1) \cdot P(E1|X1) \cdot P(X2|X1) \cdot P(E2|X2)$

通过观测输出 e 来推断系统状态 \mathbf{X} , \diamondsuit $B(Xt) = P(Xt|e_{1:t})$, $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

$$\begin{split} P(X_{t+1}|e_{1:t}) &= \sum_{xt} P(X_{t+1}|xt) \cdot P(xt|\,e_{1:t}) \\ P(X_{t+1}|e_{1:t+1}) &= P(e_{t+1}|X_{t+1}) \cdot P(X_{t+1}|e_{1:t}) \end{split}$$

6.2 <mark>马尔可夫决策过程</mark> Markov Decision Process

考虑一个决策者(agent)在环境中采取一系列动作并观察到相关的奖励

模型: 状态 State + 动作 Action + 转移模型 Transition Model + 奖励函数
Reward Function + 价值函数 Value Function + 折扣 Discount (Maybe)

* 决策过程解法:

值迭代	策略迭代	
1) 所有状态的价值函数初始化	1) 初始化: 随机选择一个初始策略	
2)价值函数:对所有动作 a,	2) 策略评估: 根据当前策略进行策略评	
$V^*(S) = Max \sum T \cdot [R + \gamma V^*(S')]$	估,计算每个状态的价值函数	
3) 迭代更新,选择最大化的策略	3) 策略改进: 对每个状态选择最优策略	
4) 重复直到收敛 O(S ² A)	4) 重复直到收敛 O(S²)	
0.63	0.94 0.95 0.95 0.97 0.99 1.00 0.95 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	

6.3 完美期望价值 Value of Perfect Information (信息带来的收益、价值)

E表示事件, e表示信息,有一撇表示有信息条件下

MEU: 最大期望效用: $MEU(e) = Max_a \sum_s P(s|e)U(s,a)$

$$MEU(e,e') = Max_a \sum P(s|e,e')U(s,a)$$

$$MEU(e, E') = \sum_{e'} P(e'|e) \cdot MEU(e, e')$$
 $VPI(E'|e) = VPI = MEU(完全信息) - MEU(有限信息)$ $= MEU(e, E') - MEU(e)$

7. 朴素贝叶斯与感知机 Naive Bayes & Perceptron

7.1 朴素贝叶斯

思想:通过已知的特征值来预测未知实例的类别,将每个特征视为独立且对分 类结果的影响相互独立

- * 贝叶斯推断: 计算目标变量 Y 的后验分布
- 1) 计算每个目标变量标签和证据的联合概率 P(Y) · P(F1...Fn|Y)
- 2) 对所有可能的目标变量标签进行求和,得到证据概率 P(F1...Fn)
- 3)将第一步计算的联合概率除以第二步计算的证据概率,对联合概率归一化
- * 参数估计: $P_{ML}(x) = \frac{count(x)}{total samples}$
- * 拉普拉斯平滑: 为所有事件添加一个先验的"假想计数",以避免零概率的问题,有: $P_{ML}(x) = \frac{\operatorname{count}(x)}{N+|x|\cdot k}$ (N 采样总数,|x|类别)
- * 过拟合:过度拟合训练数据,与(**训练集**)数据中的噪声建立了过多的关联, 在新数据(**测试集**和**验证集**)上的表现不佳

7.2 感知机

二分类线性算法,通过学习一组权重参数,将输入实例映射到预定义的类别 W: 每一类的权重向量 $|w\cdot f(x):$ 每一类的学习得分

$$y = arg max w_v \cdot f(x)$$

- 一开始: w=0 \rightarrow if wrong: $w_v = w_v f(x)$; $w_v^* = w_v^* + f(x)$
- * 缺点: 噪声; 过拟合风险; 学习速度较难选择; 只能线性
- * MIRA: 引入规范化步长,对步长进行调整,从而更好地适应噪声和不均衡数据(步长 C) MIRA

$$\tau^* = \min\left(\frac{(w_y'-w_{y^*}')\cdot f + 1}{2f\cdot f}, C\right)$$

$$\min_{w} \frac{\frac{1}{2}||w-w'||^2}{|w_{y^*}\cdot f(x_i) \geq w_y\cdot f(x_i) + 1}$$
 SVM 支持向量机

SVM 支持向量机
$$\min_{w} \frac{1}{2} ||w||^2$$
 $\forall i, y \ w_{y^*} \cdot f(x_i) \geq w_y \cdot f(x_i) + 1$

8. 神经网络 Neural Network

*基本模型:由多个称为神经元(neuron)或节点(node)的单元组成,相互连接形成层次结构,并通过学习权重参数来实现输入数据的非线性转换和预测。

* 基本架构:

- 1) 输入层: 原始数据和特征向量
- 2)隐藏层:通过连接方式进行信息传递,加权求和后通过激活函数进行非线性 转换,隐藏层的存在使得神经网络能够学习和提取更高级别的特征表示
- 3)输出层:通过输出层生成预测结果,每个神经元对应一个类别或输出值

9. 物联网 IoT

爬