PSALTer results panel

 $S = \iiint \left(\frac{1}{4} \left(2 \stackrel{a}{a} \stackrel{\mathcal{A}}{\beta} \stackrel{\beta}{\beta} \stackrel{\beta}{\chi} + \mathcal{A}^{\alpha \beta \chi} \left(-2 \stackrel{a}{a} \stackrel{\mathcal{A}}{\beta} \stackrel{\beta}{\chi} + \mathcal{A}^{\alpha \beta \chi} \left(-2 \stackrel{a}{a} \stackrel{\mathcal{A}}{\beta} \stackrel{\beta}{\chi} \stackrel{\alpha}{\beta} + 2 \stackrel{a}{a} \stackrel{\beta}{\beta} \stackrel{\beta}{\beta}$

Wave operator

	$^{0^+}h^{\perp}$	o <u>⁺</u> h∥	${}^{0^{\scriptscriptstyle +}}_{}\mathscr{F}_a{}^{\parallel}$	${}^{0^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}_{\scriptscriptstyle S}{}^{\scriptscriptstyle \perp t}$	${}^{0^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}_{S}{}^{\parallel}$	^{0⁺} ℋ _S ^{⊥h}	⁰⁻ .∄a
[⊙] *h [⊥] †	0	0	0	Θ	$\frac{i a \cdot k}{\frac{0}{4}}$	$-\frac{i a \cdot k}{4 \sqrt{2}}$	0
[⊙] * <i>h</i> [∥] †	0	0	$\frac{i a \cdot k}{2 \sqrt{2}}$	Θ	$-\frac{ia.k}{4\sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0
${}^{0^{\scriptscriptstyle +}}_{\scriptscriptstyle \bullet}\mathcal{A}_a{}^{\parallel}$ †	0	$-\frac{i a_{0} k}{2 \sqrt{2}}$	$-\frac{a_{\stackrel{\circ}{0}}}{2}-c_{\stackrel{\circ}{1}}k^2$	Θ	$\frac{c_{i} k^{2}}{\sqrt{6}}$	$-\frac{c_1^2 k^2}{2\sqrt{3}}$	0
${}^{0^{+}}_{\bullet}\mathcal{A}_{S}{}^{\perp t}$ †	0	0	0	0	$\frac{a_{\stackrel{\bullet}{0}}}{2}$	$-\frac{a_0}{2\sqrt{2}}$	0
${}^{0^{\scriptscriptstyle +}}_{\scriptstyle \bullet}\mathcal{A}_{\scriptscriptstyle S}{}^{\parallel}$ †	$-\frac{1}{4} i a \cdot k$	$\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{c_{1}k^{2}}{\sqrt{6}}$	$\frac{a}{\frac{\theta}{2}}$	$-\frac{2c_1k^2}{3}$	$\frac{-3 a_0 + 4 c_1 k^2}{6 \sqrt{2}}$	0
${}^{0^{\scriptscriptstyle +}}_{\: \:}\mathcal{A}_{S}{}^{\perp h}$ †	$\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$	$-\frac{c_{i}k^{2}}{2\sqrt{3}}$	$-\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	$\frac{-3 a_{0} + 4 c_{1} k^{2}}{6 \sqrt{2}}$	$\frac{1}{6} \left(3 a \cdot - 2 c \cdot k^2 \right)$	Θ
${}^{0^{-}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}$ †	0	0	0	0	0	0	$-\frac{a}{0}$

$\begin{bmatrix} 5 & a & -c & k^- \\ 0 & 1 \end{bmatrix}$	$2^{+}_{\cdot h} \ _{\alpha\beta}$	${}^{2^{\scriptscriptstyle +}}_{}\mathcal{A}_{a}{}^{\parallel}_{\alpha\beta}$	${}^{2^+}_{\bullet}\mathcal{A}_{S}{}^{\parallel}{}_{\alpha\beta}$	${}^{2^+}_{\cdot}\mathcal{A}_{s}{}^{\perp}{}_{\alpha\beta}$	$^{2^{-}}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	${}^{2^{-}}\mathcal{A}_{S}{}^{\parallel}{}_{\alpha\beta\chi}$	
$^{2^{+}}h^{\parallel}$ † $^{\alpha\beta}$	0	$-\frac{ia.k}{4\sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0	0	
${}^{2^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{2}}$	$\frac{1}{4} \left(a \cdot - c \cdot k^2 \right)$	$-\frac{c_{\frac{1}{2}}k^2}{2\sqrt{6}}$	$\frac{c_1 k^2}{\sqrt{2}}$	Θ	0	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\parallel} \dagger^{\alpha\beta}$	$\frac{i \stackrel{a}{\circ} \stackrel{k}{\circ}}{4 \sqrt{3}}$	$-\frac{c_1 k^2}{2 \sqrt{6}}$	$\frac{1}{6} \left(-3 \ a_{\stackrel{\bullet}{0}} - c_{\stackrel{\bullet}{1}} \ k^2 \right)$	$\frac{c_1^2 k^2}{6 \sqrt{2}}$	Θ	0	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\perp}\dagger^{lphaeta}$	$-\frac{i a_{0} k}{4 \sqrt{6}}$	$\frac{c_{i}k^{2}}{4\sqrt{3}}$	$\frac{1}{6} \left(-3 a \cdot -c \cdot k^2 \right)$ $\frac{c \cdot k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(3 a_{\stackrel{\bullet}{0}} - c_{\stackrel{\bullet}{1}} k^2 \right)$	Θ	0	
${}^{2^{-}}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{a}{0}$	0	
${}^{2^{-}}_{\bullet}\mathcal{A}_{S}^{\parallel} \uparrow^{\alpha\beta\chi}$	Θ	0	0	0	0	$\frac{a}{0}$	^{3⁻} Æ _s
						$^{3}\mathcal{A}_{s}^{\parallel}$ † $^{\alpha\beta\chi}$	

Saturated propagator

	${}^{0^+}_{{\color{blue} {\bullet}}}\mathcal{T}^{\perp}$	° ⁺ 7 ∥	^{0⁺} Wa [∥]	*Ws ^{±t}	0⁺ _{Ws} ∥	°*w _s ^{⊥h}	${}^{0^-}W_a{}^{\parallel}$
$\overset{0^+}{\cdot}\mathcal{T}^\perp$ †	$-\frac{36 k^2 \left(a_0 - 2 c_1 k^2\right)}{a_0^2 \left(16 + 3 k^2\right)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a +3 a k^2}$	$-\frac{72 i k \left(a_{0}^{2}-2 c_{1}^{2} k^{2}\right)}{a_{0}^{2} \left(16+3 k^{2}\right)^{2}}$	$\frac{8 i k \left(19 a + 3 \left(a - 2 c \right) k^{2}\right)}{a \cdot 2 \left(16 + 3 k^{2}\right)^{2}}$	$-\frac{4 i \sqrt{2} k \left(10 a_{0} + 3 \left(a_{0} + 4 c_{1} \right) k^{2}\right)}{a_{0}^{2} \left(16 + 3 k^{2}\right)^{2}}$	0
^{⊙⁺} ீீ †	$\frac{4\sqrt{3}}{16a_0+3a_0k^2}$	$\frac{4\left(2c_1+\frac{a_0}{k^2}\right)}{a_0^2}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8 i \sqrt{3}}{16 a \cdot k+3 a \cdot k^3}$	$-\frac{8 i}{\sqrt{3} \left(16 a_{0} k+3 a_{0} k^{3}\right)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^3}$	0
^{0⁺} Wa [∥] †	$-\frac{2 i \sqrt{6} k}{16 a_{0} + 3 a_{0} k^{2}}$	$-\frac{2 i \sqrt{2}}{a \cdot k}$	0	$\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a + 3 a \cdot k^2}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	0
^{0⁺} Ws ^{±t} †	$\frac{72 i k \left(a_{0}^{2} - 2 c_{1} k^{2}\right)}{a_{0}^{2} \left(16 + 3 k^{2}\right)^{2}}$	$-\frac{8 i \sqrt{3}}{16 a \cdot k+3 a \cdot k^3}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{144 \left(a_{.0} - 2c_{.1} k^{2}\right)}{a_{.0}^{2} \left(16 + 3 k^{2}\right)^{2}}$	$\frac{304 a_0 + 48 \left(a_0 - 2 c_1\right) k^2}{a_0^2 \left(16 + 3 k^2\right)^2}$	$-\frac{8\sqrt{2}\left(10a_{0}+3\left(a_{0}+4c_{1}\right)k^{2}\right)}{a_{0}^{2}\left(16+3k^{2}\right)^{2}}$	0
^{0⁺} w _s " †	$-\frac{8 i k \left(19 a +3 \left(a -2 c \right) k^{2}\right)}{a \cdot \left(2 \left(16+3 k^{2}\right)^{2}\right)}$	$\frac{8 i}{\sqrt{3} \left(16 a_{\stackrel{\circ}{0}} k+3 a_{\stackrel{\circ}{0}} k^3\right)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a_{0} + 3 a_{0} k^{2}}$	$\frac{304 a_0 + 48 \left(a_0 - 2 c_1 \right) k^2}{a_0^2 \left(16 + 3 k^2 \right)^2}$	$\frac{-560 a_{0} + 96 \left(-a_{0} + c_{1}\right) k^{2}}{3 a_{0}^{2} \left(16 + 3 k^{2}\right)^{2}}$	$-\frac{8\sqrt{2}\left(22a.+3\left(a4c.\right)k^{2}\right)}{3a.0^{2}\left(16+3k^{2}\right)^{2}}$	0
^{0⁺} Ws ^{⊥h} †	$\frac{4 i \sqrt{2} k \left(10 a + 3 \left(a + 4 c \right) k^{2}\right)}{a \cdot \left(16 + 3 k^{2}\right)^{2}}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a \cdot k + 3 a \cdot k^3}$	$-\frac{8}{\sqrt{3}\left(16a_{\cdot}+3a_{\cdot}k^2\right)}$	$-\frac{8\sqrt{2}\left(10a_{0}+3\left(a_{0}+4c_{1}\right)k^{2}\right)}{a_{0}^{2}\left(16+3k^{2}\right)^{2}}$	$-\frac{8\sqrt{2}\left(22a_{0}+3\left(a_{0}-4c_{1}\right)k^{2}\right)}{3a_{0}^{2}\left(16+3k^{2}\right)^{2}}$	$\frac{416 a_0 + 96 \left(a_0 + 2 c_1\right) k^2}{3 a_0^2 \left(16 + 3 k^2\right)^2}$	0
o⁻wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$

$-\frac{2}{a}$	$\ \cdot^* \mathcal{W}_a \ _{\alpha\beta}$	$^{1^+}_{\cdot}W_{a^{\perp}_{\alpha\beta}}$	$^{1^{+}}\mathcal{W}_{S}{^{\perp}}_{\alpha\beta}$	${\stackrel{1}{\cdot}}\mathcal{T}^{\perp}{}_{\alpha}$	$\left\ \mathbf{w}_{a} \right\ _{\alpha}$	1 · $W_a^_lpha$	1 W_{s}^{t} α	${}^{1}_{\cdot}W_{s}{}^{\parallel t}{}_{\alpha}$	1 $^{-}$ W s $^{\perp h}$ α	${}^{1}_{\cdot}W_{s}{}^{\parallel h}{}_{\alpha}$	
$^{1^{+}}W_{a}^{\parallel}$ † $^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{0}}}$	0	0	0	0	0	0	0	0	
$^{1^{+}}_{\cdot}W_{a}^{\perp}$ $^{+}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{0}}$	$\frac{2}{a_{\bullet}}$	0	0	0	0	Θ	0	0	0	
$^{1^{+}}_{\cdot}W_{S}^{\perp}$ $^{\alpha\beta}$	0	0	$\frac{4}{a}$	0	0	0	0	0	0	0	
$\stackrel{1^{-}}{\cdot}\mathcal{T}^{\perp} \dagger^{\alpha}$	0	0	0	$\frac{2 k^2 \left(a_{.0} + 4 c_{.1} k^2\right)}{a_{.0}^2 (2 + k^2)^2}$	$\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	$\frac{i k \left(4 a_{0} + \left(a_{0} + 8 c_{1}\right) k^{2}\right)}{a_{0}^{2} \left(2 + k^{2}\right)^{2}}$	$-\frac{i\left(6 a_{.0} k + \left(5 a_{.0} - 16 c_{.1}\right) k^{3}\right)}{\sqrt{6} a_{.0}^{2} (2 + k^{2})^{2}}$	$\frac{i \sqrt{\frac{5}{6}} k}{2 a \cdot a \cdot k^2}$	$-\frac{2 i k \left(3 a + 4 c \right) k^{2}}{\sqrt{3} a \cdot (2 + k^{2})^{2}}$	$\frac{i \sqrt{\frac{2}{3}} k}{2 a \cdot a \cdot k^2}$	
1 · W_{a} $^{\parallel}$ † $^{\alpha}$	0	0	0	$-\frac{2 i \sqrt{2} k}{2 a + a k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_{\stackrel{\cdot}{o}} (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a \cdot k^2\right)}$	Θ	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a \cdot a \cdot k^2}$	0	
$\frac{1}{2}W_a^{\perp} \dagger^{\alpha}$	0	0	0	$-\frac{i\left(4 a_{0} k+\left(a_{0}+8 c_{1} k^{3}\right) a_{0}^{2} \left(2+k^{2}\right)^{2}\right)}{a_{0}^{2} \left(2+k^{2}\right)^{2}}$	$\frac{\sqrt{2} (4+k^2)}{a_{\stackrel{\circ}{0}} (2+k^2)}$	$\frac{16 c_1^2 k^2 + a_0^2 (4 + k^2)^2}{2 a_0^2 (2 + k^2)^2}$	$\frac{k^2 \left(32 c_{1} + a_{0} \left(-2 + k^2\right)\right)}{2 \sqrt{6} a_{0}^{2} (2 + k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 \left(-8 c_{1}^{1} + a_{0}^{2} \left(5 + 2 k^2\right)\right)}{\sqrt{3} a_{0}^{2} (2 + k^2)^2}$	$-\frac{k^2}{\sqrt{6}\left(2a_{\bullet}+a_{\bullet}k^2\right)}$	
$\frac{1}{2}$ $w_s^{\perp t}$ t^{α}	0	0	0	$\frac{i\left(6a_{\stackrel{.}{\Theta}}k+\left(5a_{\stackrel{.}{\Theta}}-16c_{\stackrel{.}{1}}\right)k^{3}\right)}{\sqrt{6}a_{\stackrel{.}{\Theta}}^{2}\left(2+k^{2}\right)^{2}} \ -$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a k^2 \right)}$	$\frac{k^2 \left(32 c_1 + a_0 \left(-2 + k^2\right)\right)}{2 \sqrt{6} a_0^2 \left(2 + k^2\right)^2}$	$\frac{64 c_{1} k^{2} - a_{0} \left(76 + 52 k^{2} + 3 k^{4}\right)}{12 a_{0}^{2} \left(2 + k^{2}\right)^{2}}$	$\frac{\sqrt{5} \left(10+3 k^2\right)}{12 a_{0} \left(2+k^2\right)}$	$\frac{-2 a_{0} + (a_{0} - 16 c_{1}) k^{2}}{3 \sqrt{2} a_{0}^{2} (2+k^{2})^{2}}$	$\frac{1}{-2 a_{\cdot 0} - \frac{8 a_{\cdot 0}}{2+3 k^2}}$	
\mathcal{W}_{s}^{1} \dagger^{α}	0	0	0	$-\frac{i\sqrt{\frac{5}{6}}k}{2a\cdot +a\cdot k^2}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_{0} (2+k^2)}$	$\frac{1}{12 a}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a + 3 a k^2}$	$-\frac{\sqrt{5}}{6 a_{\bullet}}$	
1 · W_{s} ^{$^{\perp h}$} $^{\alpha}$	0	0	0	$\frac{2 i k \left(3 a \cdot + \left(a \cdot + 4 c \cdot \right) k^{2}\right)}{\sqrt{3} a \cdot \left(2 + k^{2}\right)^{2}}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a + a k^2}$	$\frac{k^{2}\left(-8c_{1}+a_{0}\left(5+2k^{2}\right)\right)}{\sqrt{3}a_{0}^{2}\left(2+k^{2}\right)^{2}}$	$\frac{-2 a_0 + (a_0 - 16 c_1) k^2}{3 \sqrt{2} a_0^2 (2 + k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6 a + 3 a k^2}$	$\frac{8 c_1 k^2 + a_0 (34 + 28 k^2 + 6 k^4)}{3 a_0^2 (2 + k^2)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_{0} (2+k^2)}$	
\mathcal{W}_{s}^{1} $W_{s}^{\parallel h}$ T^{α}	0	0	0	$-\frac{i\sqrt{\frac{2}{3}}k}{2a.+a.k^2}$	Θ	$-\frac{k^2}{\sqrt{6}\left(2a_{\bullet}+a_{\bullet}k^2\right)}$	$\frac{1}{-2 a \cdot -\frac{8 a \cdot 6}{2 \cdot 3 \cdot 4^2}}$	$-\frac{\sqrt{5}}{6 a}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a \cdot (2+k^2)}$	$\frac{5}{3 a}$	2,

0 0	$^{2^{+}}\mathcal{T}^{\parallel}_{\alpha\beta}$	$^{2}W_{a}^{\parallel}_{\alpha\beta}$	$^{2}W_{s} _{\alpha\beta}$	2 $W_{s}^{1}_{\alpha\beta}$	2 $W_{a}^{\parallel}_{\alpha\beta\chi}$	2 . $W_{s}^{\parallel}_{\alpha\beta\chi}$	
$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$\frac{8\left(c_{\frac{1}{1}}-\frac{a_{\frac{0}{k^2}}}{k^2}\right)}{a_{\frac{0}{0}}^2}$	$-\frac{4i\sqrt{2}}{a.k}$	$\frac{4i}{\sqrt{3} a_{0} k}$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0	
$^{2^{+}}W_{a}^{\parallel}$ † $^{\alpha\beta}$	$\frac{4 i \sqrt{2}}{a \cdot k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{\stackrel{\bullet}{0}}}$	$\frac{4}{\sqrt{3} \ a_{0}}$	0	Θ	
$^{2^{+}}W_{S}^{\parallel}$ † $^{\alpha\beta}$	$-\frac{4i}{\sqrt{3}} a_{0k} k$	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$-\frac{8}{3 a_{\bullet}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\circ}{0}}}$	Θ	Θ	
$^{2^{+}}W_{s}^{\perp}\dagger^{\alpha\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3} \ a_{0}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\bullet}{0}}}$	$\frac{8}{3 a_{\bullet}}$	Θ	Θ	
2 · w_a † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0	
2 · W_{s} $^{\parallel}$ † $^{\alpha\beta\chi}$	Θ	Θ	0	Θ	Θ	$\frac{4}{a}$	3-
						3 $^{-}$ W_{s} $^{\parallel}$ $^{\alpha\beta\chi}$	

Source constraints

Spin-parity form	ovariant form	Multiplicities
$k \cdot W_{S}^{\parallel} + 2 k \cdot W_{S}^{\perp h} - 6 i \cdot T^{\perp} = 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} + \partial_{\chi}\partial^{\chi}\partial_{\alpha}\mathcal{W}^{\alpha\beta}_{ \beta} = \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$k \stackrel{0^+}{\cdot} \mathcal{W}_{S}^{\perp t} + 2 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} = 0 $ 2 ∂	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$6 k ! W_a^{\perp \alpha} + 2 k ! W_s^{\parallel h^{\alpha}} + k ! W_s^{\parallel t^{\alpha}} + 3 k ! W_s^{\perp t^{\alpha}} + 12 i ! T^{\perp \alpha} == 0 $	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}w^{\beta\alpha\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}w^{\alpha\beta}_{\beta} = 4 \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}w^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\beta}\partial^{\alpha}w^{\beta\chi}_{\chi}$	3
$k \stackrel{1}{\cdot} W_{s}^{\perp h^{\alpha}} - 6 i \stackrel{1}{\cdot} \mathcal{T}^{\perp \alpha} = k \left(3 \stackrel{1}{\cdot} W_{a}^{\perp \alpha} + \stackrel{1}{\cdot} W_{s}^{\perp t^{\alpha}} \right) $ 2 ∂	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi} == 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi\delta}$	3
Total expected gauge generators:		8

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| -\frac{p^2}{a} \right| > 0$ Polarisations: 2

Unitarity conditions