Arithmetic for Cryptography

- **The Use of Random Numbers**
- Many uses of random numbers in cryptography
 - 1. nonces in authentication protocols to prevent replay
 - 2. session keys
 - 3. public key generation
 - 4. keystream for a one-time pad
- These applications give rise to two distinct requirements for a sequence of random numbers:
 - 1. Randomness the generated sequence of numbers be random in some well defined statistical sense.
 - 2. Unpredictability the requirement is not randomness but that the successive members of the sequence are unpredictable.

- **TRNGs, PRNGs, and PRFs**
- Cryptographic applications make use of many techniques for random number generation.
- These algorithms are deterministic and produce sequences of numbers that are not statistically random.
- If the algorithm is good, the resulting sequences will pass many reasonable tests of randomness. Such numbers are referred to as **pseudorandom numbers**.

■ TRNG

- true random number generator
- takes as input a source that is effectively random, the source is often referred to as an entropy source.
- TRNG may simply involve conversion of an analog source to a binary output.

PRNG

- ► PRNG takes as input a fixed value, called the **seed**, and produces a sequence of output bits using a deterministic algorithm.
- output bit stream is determined solely by the input value or values.
- Pseudorandom number generator: An algorithm that is used to produce an open-ended sequence of bits is referred to as a PRNG.
- Pseudorandom function (PRF)
 - ► A PRF is used to produce a pseudorandom string of bits of some fixed length. Exsymmetric encryption keys, nonces.
 - the PRF takes as input a seed plus some context specific values, such as a user ID or an application ID.
- Other than the number of bits produced, there is **no difference** between a PRNG and a PRF.

- PRNG Requirements
- RANDOMNESS
 - 1. Uniformity
 - 2. Scalability
 - 3. Consistency

UNPREDICTABILITY

- 1. forward & backward unpredictability
- 2. use same tests to check

CHARACTERISTICS OF THE SEED

- 1. secure
- 2. if known adversary can determine output
- 3. must be random or pseudorandom number

- Algorithm Design
- Two categories:
 - 1. Purpose-built algorithms: These are algorithms designed specifically and solely for the purpose of generating pseudorandom bit streams.
 - 2. Algorithms based on existing cryptographic algorithms: Cryptographic algorithms have the effect of randomizing input.
 - Three categories of cryptographic algorithms are used to create PRNGs:
 - 1. Symmetric block ciphers
 - 2. Asymmetric ciphers
 - 3. Hash functions and message authentication codes

Pseudorandom Number Generators

- Linear Congruential Generators
- Proposed by Lehmer.
- The algorithm is parameterized with four numbers:

m	the modulus	m>0
a	the multiplier	0 <a<m< td=""></a<m<>
C	the increment	0<=c <m< td=""></m<>
X_0	the starting value, or seed	$0 <= X_0 < m$

 \blacksquare The sequence of random numbers $\{X_n\}$ is obtained via iterative equation:

$$X_{n+1} = (aX_n + c) \bmod m$$

■ If m, a, c and X_0 are integers, then this technique will produce a sequence of integers with each integer in the range $0 <= X_n < m$.

Pseudorandom Number Generators

- Blum Blum Shub Generator
- Based on public key algorithms
- procedure is:
 - choose two large prime numbers, p and q, that both have a remainder of 3 when divided by 4.
 - That is, $p \equiv q \equiv 3 \pmod{4}$
- ► the BBS generator produces a sequence of bits according to the following algorithm:

$$X_0 = s^2 \mod n$$

 $\mathbf{for} i = 1 \mathbf{to} \infty$
 $X_i = (X_{i-1})^2 \mod n$
 $B_i = X_i \mod 2$

Pseudorandom Number Generators

- The BBS is referred to as a **cryptographically secure pseudorandom bit generator** (CSPRBG).
- Example of BBS operation
 - \blacksquare Here, n = 192649 = 383 x 503, and the seed s = 101355.

i	X_{i}	B_i
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

i	X_i	B_i
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

Prime Numbers

- Central concern of number theory is the study of prime numbers.
- \blacksquare An integer p > 1 is a **prime number** if and only if its only divisors are 1 and p.
- \blacksquare Any integer a > 1 can be factored in a unique way as:

$$a = p_1^{a1} \times p_2^{a2} \times \dots \times p_t^{at}$$

Examples

$$91 = 7 \times 13$$
$$3600 = 2^4 \times 3^2 \times 5^2$$
$$11011 = 7 \times 11^2 \times 13$$

The value of any given positive integer can be specified by simply listing all the **nonzero** exponents in the foregoing formulation.

The integer 12 is represented by $\{a2 = 2, a3 = 1\}$.

The integer 18 is represented by $\{a2 = 1, a3 = 2\}$.

The integer 91 is represented by $\{a7 = 1, a13 = 1\}$.

Prime numbers under 2000

2	101	211	307	401	503	601	701	809	907	1009	1103	1201	1301	1409	1511	1601	1709	1801	1901
3	103	223	311	409	509	607	709	811	911	1013	1109	1213	1303	1423	1523	1607	1721	1811	1907
5	107	227	313	419	521	613	719	821	919	1019	1117	1217	1307	1427	1531	1609	1723	1823	1913
7	109	229	317	421	523	617	727	823	929	1021	1123	1223	1319	1429	1543	1613	1733	1831	1931
11	113	233	331	431	541	619	733	827	937	1031	1129	1229	1321	1433	1549	1619	1741	1847	1933
13	127	239	337	433	547	631	739	829	941	1033	1151	1231	1327	1439	1553	1621	1747	1861	1949
17	131	241	347	439	557	641	743	839	947	1039	1153	1237	1361	1447	1559	1627	1753	1867	1951
19	137	251	349	443	563	643	751	853	953	1049	1163	1249	1367	1451	1567	1637	1759	1871	1973
23	139	257	353	449	569	647	757	857	967	1051	1171	1259	1373	1453	1571	1657	1777	1873	1979
29	149	263	359	457	571	653	761	859	971	1061	1181	1277	1381	1459	1579	1663	1783	1877	1987
31	151	269	367	461	577	659	769	863	977	1063	1187	1279	1399	1471	1583	1667	1787	1879	1993
37	157	271	373	463	587	661	773	877	983	1069	1193	1283		1481	1597	1669	1789	1889	1997
41	163	277	379	467	593	673	787	881	991	1087		1289		1483		1693			1999
43	167	281	383	479	599	677	797	883	997	1091		1291		1487		1697			
47	173	283	389	487		683		887		1093		1297		1489		1699			
53	179	293	397	491		691				1097				1493					
59	181			499										1499					
61	191																		
67	193																		
71	197																		
73	199																		
79																			
83																			
89																			
97																			
				L				L				L						L	

Relatively Prime Numbers & GCD

- Two numbers a, b are relatively prime if have no common divisors apart from 1.
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor.
- Can determine the greatest common divisor (GCD) by comparing their prime factorizations and using least powers.
 - eg. $300 = 2^1 \times 3^1 \times 5^2 + 18 = 2^1 \times 3^2$ hence $GCD(18,300) = 2^1 \times 3^1 \times 5^0 = 6$

Fermat's Theorem

- Two theorems that play important role in public-key cryptography:
 - 1. Fermat's theorem and
 - 2. Euler's theorem.
- Fermat's Theorem
- $a^{p-1} = 1 \pmod{p}$

where p is prime and gcd(a,p)=1

```
a = 7, p = 19

7^2 = 49 \equiv 11 \pmod{19}

7^4 \equiv 121 \equiv 7 \pmod{19}

7^8 \equiv 49 \equiv 11 \pmod{19}

7^{16} \equiv 121 \equiv 7 \pmod{19}

a^{p-1} = 7^{18} = 7^{16} \times 7^2 \equiv 7 \times 11 \equiv 1 \pmod{19}
```

Fermat's Theorem

- ► Alternative form of Fermat's theorem is also useful:
 - If is prime and is a positive integer, then
 - $ightharpoonup a^p = a \pmod{p}$
- The first form of the theorem requires that **a** be relatively prime to **p**, but this form does not.

$$p = 5, a = 3$$
 $a^p = 3^5 = 243 \equiv 3 \pmod{5} = a \pmod{p}$
 $p = 5, a = 10$ $a^p = 10^5 = 100000 \equiv 10 \pmod{5} \equiv 0 \pmod{5} = a \pmod{p}$

Euler's Totient Function (φ(n))

- ► The number of positive integers less than n and relatively prime to n.

DETERMINE $\phi(37)$ AND $\phi(35)$.

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 37. Thus $\phi(37) = 36$.

To determine $\phi(35)$, we list all of the positive integers less than 35 that are relatively prime to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so $\phi(35) = 24$.

Euler's Totient Function (φ(n))

for a prime number p,

$$\phi(\mathbf{p}) = \mathbf{p} - \mathbf{1}$$

- Suppose that we have two prime numbers \mathbf{p} and \mathbf{q} with $\mathbf{p} \neq \mathbf{q}$.
 - ightharpoonup for n = pq,
- To see that, $\varphi(n) = \varphi(p) \times \varphi(q)$

 $\phi(21) = \phi(3) \times \phi(7) = (3-1) \times (7-1) = 2 \times 6 = 12$ where the 12 integers are $\{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$.

Euler's Theorem

- ► A generalization of Fermat's Theorem
- $a^{\phi(n)} = 1 \pmod{n}$

for any a, n where gcd(a, n)=1

• eg. a = 3; n = 10; $\varphi(10) = 4$;

hence
$$3^4 = 81 = 1 \mod 10$$

$$a=2$$
; $n=11$; $\phi(11)=10$;

hence
$$2^{10} = 1024 = 1 \mod 11$$

also have: $\mathbf{a}^{\phi(\mathbf{n})+1} = \mathbf{a} \pmod{\mathbf{n}}$

Primality Testing

- often need to find large prime numbers
- traditionally sieve using trial division
 - ie. divide by all numbers (primes) in turn less than the square root of the number
 - only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
 - for which all primes numbers satisfy property
 - but some composite numbers, called pseudo-primes, also satisfy the property
- **c**an use a slower deterministic primality test

The Chinese Remainder Theorem

The Chinese remainder theorem (CRT) is used to solve a set of congruent equations with one variable but different moduli, which are relatively prime, as shown below:

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$
...
$$x \equiv a_k \pmod{m_k}$$

- Suppose m_1, \ldots, m_k are pairwise relatively prime positive integers, and suppose a_1, \ldots, a_k are integers.
- Then the system of k congruences $x = a_i \pmod{m_i}$ $(1 \le i \le k)$ has a unique solution modulo $M = m_1 \times ... \times m_k$, which is given by

$$x = \sum_{i=1}^{k} a_i c_i \bmod M,$$

where $c_i = M_i$ ($M_i^{-1} \mod m_i$) and $M_i = M / m_i$, for $1 \le i \le k$.

The Chinese Remainder Theorem

Steps to follow:

- 1. Find $M = m1 \times m2 \times ... \times mk$. This is the common modulus.
- 2. Find M1 = M/m1, M2 = M/m2, ..., Mk = M/mk.
- 3. Find the multiplicative inverse of M1, M2, ..., Mk using the corresponding moduli (m1, m2, ..., mk). Call the inverses M1-1, M2-1, ..., Mk -1.
- 4. The solution to the simultaneous equations is

$$x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + \cdots + a_k \times M_k \times M_k^{-1}) \mod M$$

The Chinese Remainder Theorem (Example)

- Find the solution to the simultaneous equations:
- $x \equiv 2 \pmod{3}$
 - $x \equiv 3 \pmod{5}$
- $x \equiv 2 \pmod{7}$

- Solution-
- We follow the four steps.

1.
$$M = 3 \times 5 \times 7 = 105$$

2.
$$M_1 = 105 / 3 = 35$$
, $M_2 = 105 / 5 = 21$, $M_3 = 105 / 7 = 15$

3. The inverses are
$$M_1^{-1} = 2$$
, $M_2^{-1} = 1$, $M_3^{-1} = 1$

4.
$$x = (2 \times 35 \times 2 + 3 \times 21 \times 1 + 2 \times 15 \times 1) \mod 105 = 23 \mod 105$$

Stream Ciphers

Stream cipher encrypts plaintext one bit or one byte at a time.

Stream Ciphers

- ► A key is input to a pseudorandom bit generator that produces a stream of 8-bit numbers.
- The output of the generator, called a **keystream**, is combined one byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation.

```
11001100 plaintext

① 01101100 key stream
10100000 ciphertext
```

10100000 ciphertext

① 01101100 key stream
11001100 plaintext

- The stream cipher is similar to the one-time pad.
- The difference is that a one-time pad uses a genuine random number stream, whereas a stream cipher uses a pseudorandom number stream.

RC4

- RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security.
 - variable key size, byte-oriented stream cipher
 - widely used (web SSL/TLS, wireless WEP/WPA)
 - key forms random permutation of all 8-bit values
 - uses that permutation to scramble input info processed a byte at a time

Initialization of S

for
$$i = 0$$
 to 255 **do**

$$S[i] = i;$$

$$T[i] = K[i \mod keylen];$$

RC4

Use T to produce the initial permutation of S

```
j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);
```

Stream Generation

```
i, j = 0;
while (true)

i = (i + 1) mod 256;

j = (j + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;

k = S[t];
```

■ To encrypt, XOR the value with the next byte of plaintext. To decrypt, XOR the value with the next byte of ciphertext.

RC4

Strength of RC4

- Claimed secure against known attacks
 - ► However, have some analyses, some on the verge of practical
 - first 256 bytes have bias
 - multiple keys/same plaintext attack
- result is very non-linear
- since RC4 is a stream cipher, must never reuse a key
- have a concern with WEP, but due to key handling rather than RC4 itself.

PUBLIC KEY CRYPTOGRAPHY

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is symmetric, parties are equal
- ▶ hence does not protect sender from receiver forging a message & claiming is sent by sender.

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto.

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures.
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures.
- is asymmetric because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures.

Public-Key Cryptography: Encryption

Public-Key Cryptography: Authentication

- Why Public-Key Cryptography?
 - developed to address two key issues:
 - ► key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford University in 1976
 - known earlier in classified community

Conventional and Public – Key Encryption

Conventional Encryption	Public-Key Encryption
Needed to Work:	Needed to Work:
 The same algorithm with the same key is used for encryption and decryption. The sender and receiver must share the algorithm and the key. Needed for Security: The key must be kept secret. It must be impossible or at least impractical to decipher a message if no other information is available. Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key. 	 One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption. The sender and receiver must each have one of the matched pair of keys (not the same one). Needed for Security: One of the two keys must be kept secret. It must be impossible or at least impractical to decipher a message if no other information is available. Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
 - computationally infeasible to find decryption key knowing only algorithm & encryption key
 - computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

Public-Key Cryptosystems: Secrecy

▶ Public-Key Cryptosystems: Authentication

Public-Key Cryptosystems: Secrecy and Authentication

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one.

Applications :

Algorithm	Encryption/Decryption	Encryption/Decryption Digital Signature	
RSA	Yes Yes		Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (encrypt/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, its just made too hard to do in practice
- requires the use of very large numbers
- hence is slow compared to private key schemes.

- Developed by **Rivest**, **Shamir & Adleman** of MIT in 1977
- First published in 1978.
- best known & widely used public-key scheme
- The **RSA** scheme is a **block cipher** in which the plaintext and ciphertext are integers between 0 and n 1 for some n.
- \blacksquare typical size for *n* is 1024 bits
- security due to cost of factoring large numbers

- **RSA Key Setup**: each user generates a public/private key pair by:
 - selecting two large primes at random: p, q.
 - ightharpoonup computing their system modulus $N = p \times q$
 - ightharpoonup note $\varphi(N)=(p-1)\times(q-1)$
 - selecting at random the encryption key e
 - where $1 < e < \phi(N)$, $gcd(e, \phi(N)) = 1$
 - solve following equation to find decryption key d
 - \bullet e*d=1 mod $\varphi(N)$ and $0 \le d \le N$
 - publish their public encryption key: KU={e,N}
 - ► keep secret private decryption key: KR={d,p,q}.

RSA Use

- **to encrypt** a message M the sender:
 - obtains public key of recipient KU={e,N}
 - ightharpoonup computes: $C = M^e \mod N$, where $0 \le M < N$
- **to decrypt** the ciphertext C the owner:
 - \blacksquare uses their private key KR={d,p,q}
 - ightharpoonup computes: $M = C^d \mod N$
- the message M must be smaller than the modulus N (block if needed)

Brief summary of RSA

Key Generation Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calcuate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$

Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^{\epsilon} \mod n$

Decryption by Alice with Alice's Public Key

Ciphertext:

Plaintext: $M = C^d \mod n$

The RSA Algorithm (Example)

- ► Select primes: p=17 & q=11
- Compute $n = pq = 17 \times 11 = 187$
- Compute $\phi(n)=(p-1)(q-1)=16\times 10=160$
- Select e : gcd(e,160)=1; choose e=7
- **Determine** d:

de=1 mod 160 and d < 160

Value is d=23 since $23 \times 7 = 161 = 10 \times 160 + 1$

- Publish public key KU={7,187}
- Keep secret private key KR={23,17,11}

RSA Processing of Multiple Blocks

The Security of RSA

- Four approaches to attacking RSA:
 - **Brute force:** This involves trying all possible private keys.
 - Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.
 - **Timing attacks:** These depend on the running time of the decryption algorithm.
 - Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

The Security of RSA

► Factoring Problem

- mathematical approach takes 3 forms:
 - factor N=p.q, hence find $\phi(N)$ and then d
 - determine $\emptyset(N)$ directly and find d
 - find d directly

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-Years	Algorithm
100	332	April 1991	7	Quadratic sieve
110	365	April 1992	75	Quadratic sieve
120	398	June 1993	830	Quadratic sieve
129	428	April 1994	5000	Quadratic sieve
130	431	April 1996	1000	Generalized number field sieve
140	465	February 1999	2000	Generalized number field sieve
155	512	August 1999	8000	Generalized number field sieve
160	530	April 2003	_	Lattice sieve
174	576	December 2003	_	Lattice sieve
200	663	May 2005	_	Lattice sieve

The Security of RSA

■ Timing Attacks

- developed in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
- infer operand size based on time taken
- RSA exploits time taken in exponentiation

Countermeasures

- use constant exponentiation time
- add random delays
- blind values used in calculations

- First public-key type scheme.
- Proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts.
- is a practical method for public exchange of a secret key.
- used in a number of commercial products.
- The **purpose of the algorithm** is to enable two users to securely exchange a key that can then be used for subsequent encryption of messages. The algorithm itself is limited to the exchange of secret values.

- Two publicly known numbers: a prime number q and an integer α that is a primitive root of q.
- Each user (eg. A) generates their key:
 - chooses a secret key (number): $X_A < q$
 - ightharpoonup compute their public key: $Y_A = a^{XA} \mod q$
- Similarly, B also generates the keys.
- Each side keeps the **X** value private and makes the **Y** value available publicly to the other side.
- User A computes the key as, $K = (Y_B)^{XA} \mod q$
- User **B** computes the key as, $\mathbf{K} = (Y_A)^{XB} \mod q$

► Key Exchange Algorithm

Global Public Elements

prime number

 $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private X_A

 $X_A < q$

Calculate public Y_A

 $Y_A = \alpha^{XA} \mod q$

User B Key Generation

Select private X_B

 $X_B < q$

Calculate public Y_B

 $Y_R = \alpha^{XB} \mod q$

Calculation of Secret Key by User A

$$K = (Y_B)^{XA} \mod q$$

Calculation of Secret Key by User B

$$K = (Y_A)^{XB} \mod q$$

Diffie-Hellman Key Exchange

Man-in-the-Middle Attack

- Suppose Alice and Bob wish to exchange keys, and Darth is the adversary.
- **■** The attack proceeds as follows:
 - Darth prepares for the attack by generating two random private keys X_{D1} and X_{D2} and then computing the corresponding public keys Y_{D1} and Y_{D2} .
 - \blacksquare Alice transmits Y_A to Bob.
 - Darth intercepts Y_A and transmits Y_{D1} to Bob. Darth also calculates $K2 = (Y_A)^{XD2} \mod q$
 - Bob receives Y_{D1} and calculates $K1 = (Y_{D1})^{XB} \mod q$
 - Bob transmits Y_B to Alice
 - Darth intercepts Y_B and transmits Y_{D2} to Alice. Darth calculates $K1 = (Y_B)^{XD1} \mod q$
 - Alice receives Y_{D2} and calculates $K2 = (Y_{D2})^{XA} \mod q$

Man-in-the-Middle Attack

- Bob and Alice think that they share a secret key, but instead Bob and Darth share secret key
 K1 and Alice and Darth share secret key
 K2.
- ► All future communication between Bob and Alice is compromised in the following way:
 - ► Alice sends an encrypted message M : E(K2, M)
 - Darth intercepts the encrypted message and decrypts it to recover
 - \blacksquare Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message.
 - In the first case, Darth simply wants to eavesdrop on the communication without altering it.
 - In the second case, Darth wants to modify the message going to Bob.
- The key exchange protocol is vulnerable to such an attack because it does not authenticate the participants.
- This vulnerability can be overcome with the use of digital signatures and public-key certificates.

Elliptic Curve Cryptography

- Majority of public-key crypto (RSA, Diffie-Hellman) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form

$$y2 = x3 + ax + b$$

where x, y, a, b are all real numbers also define zero point O

- consider set of points E(a,b) that satisfy
- have addition operation for elliptic curve
 - geometrically sum of P+Q is reflection of the intersection R

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- have two families commonly used:
 - ightharpoonup prime curves $E_p(a,b)$ defined over Z_p
 - use integers modulo a prime
 - best in software
 - binary curves $E_{2m}(a,b)$ defined over $GF(2^n)$
 - use polynomials with binary coefficients
 - best in hardware

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- need "hard" problem equiv to discrete log
 - Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E23(9,17)

- Can do key exchange analogous to D-H
- users select a suitable curve $E_q(a,b)$
- ightharpoonup select base point $G=(x_1,y_1)$
- A & B select private keys $n_A < n$, $n_B < n$
- ightharpoonup compute public keys: $P_A = n_A G$, $P_B = n_B G$
- ightharpoonup compute shared key: $K=n_AP_B$, $K=n_BP_A$
 - \blacksquare same since $K=n_An_BG$
- attacker would need to find k, hard

Global Public Elements

 $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private n_A

 $n_A < n$

Calculate public P_A

 $P_A = n_A \times G$

User B Key Generation

Select private n_R

 $n_R < n$

Calculate public P_B

 $P_R = n_R \times G$

Calculation of Secret Key by User A

$$K = n_A \times P_B$$

Calculation of Secret Key by User B

$$K = n_B \times P_A$$

ECC Encryption/Decryption

- several alternatives, will consider simplest
- must first encode any message M as a point on the elliptic curve P_m
- select suitable curve & point G as in D-H
- each user chooses private key n_A<n</p>
- \blacksquare and computes public key $P_A = n_A G$
- to encrypt $P_m : C_m = \{kG, P_m + kP_b\}$, k random
- decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

ECC Security

- relies on elliptic curve logarithm problem.
- fastest method is "Pollard rho method".
- compared to factoring, can use much smaller key sizes than with RSA etc.
- for equivalent key lengths computations are roughly equivalent.
- hence for similar security ECC offers significant computational advantages.

Thank You