Speeding up of the Nelder-Mead Method by Data-driven Speculative Execution

Shuhei Watanabe Yoshihiko Ozaki Yoshiaki Bando Masaki Onishi

National Institute of Advanced Industrial Science and Technology

Background | Hyperparameter Optimization (HPO)

Fast HPO is important to use complex algorithms properly

- The hyperparameter (HP) space becomes bigger exponentially
- The performance significantly depends on HP settings

Background | Problem Setting of HPO

The goal of HPO is to find HP θ maximizing the $f(\theta)$

- θ is an HP setting of an algorithm
- The performance of the algorithm $f(\theta)$ is **black-box** and **expensive** to evaluate

Related Work | HPO Methods

Nelder-Mead (NM) method converges faster [Ozaki+ 2017]

✓NM outperforms Bayesian optimization and CMA-ES on HPO of CNN

- X NM is sequential and HPO of CNN requires several months
 - Therefore, we propose parallel method for the NM method

NM Method | Flowchart

Iterates the operations below until the termination

There are 5 operations and 6 possible transition in an iteration

NM Method | Possible Transitions 1 ~part 1~

- 1. Evaluate R
- 2. If R is the best
- 3. Evaluate E
- 4. Take the better, R or E

NM Method | Possible Transitions 1 ~part 2~

- 1. Evaluate R
- 2. If R is the best
- 3. Evaluate E
- 4. Take the better, R or E

NM Method | Possible Transitions 1 ~part 3~

- 1. Evaluate R
- 2. If R is the best
- 3. Evaluate E
- 4. Take the better, R or E

NM Method | Possible Transitions 1 ~part 4~

- 1. Evaluate R
- 2. If R is the best
- 3. Evaluate E
- 4. Take the better, R or E

NM Method | Possible Transitions 2 ~part 1~

- 1. Evaluate R
- 2. If R is between best and 2nd worst
- 3. Accepting R

NM Method | Possible Transitions 2 ~part 2~

- 1. Evaluate R
- 2. If R is between best and 2nd worst
- 3. Accepting R

NM Method | Possible Transitions 3 ~part 1~

- 1. Evaluate R
- 2. If R is the 2nd worst
- 3. Evaluate OC
- 4. If OC is better than R take OC

NM Method | Possible Transitions 3 ~part 2~

- 1. Evaluate R
- 2. If R is the 2nd worst
- 3. Evaluate OC
- 4. If OC is better than R take OC

NM Method | Possible Transitions 3 ~part 3~

- 1. Evaluate R
- 2. If R is the 2nd worst
- 3. Evaluate OC
- 4. If OC is better than R take OC

NM Method | Possible Transitions 4 ~part 1~

- 1. Evaluate R
- 2. If R is the worst
- 3. Evaluate IC
- 4. If IC is better than the worst take IC

NM Method | Possible Transitions 4 ~part 2~

- 1. Evaluate R
- 2. If R is the worst
- 3. Evaluate IC
- 4. If IC is better than the worst take IC

NM Method | Possible Transitions 4 ~part 3~

- 1. Evaluate R
- 2. If R is the worst
- 3. Evaluate IC
- 4. If IC is better than the worst take IC

NM Method | Possible Transitions 5, 6 ~part 1~

- 1. Evaluate R
- 2. If R is the worst or 2nd worst
- 3. Evaluate IC or OC
- 4. If IC or OC does not improve
- 5. Evaluate S

NM Method | Possible Transitions 5, 6 ~part 2~

- 1. Evaluate R
- 2. If R is the worst or 2nd worst
- 3. Evaluate IC or OC
- 4. If IC or OC does not improve
- 5. Evaluate S

NM Method Possible Transitions 5, 6 ~part 3~

- 1. Evaluate R
- 2. If R is the worst or 2nd worst
- 3. Evaluate IC or OC
- 4. If IC or OC does not improve
- 5. Evaluate S

NM Method | Possible Transitions 5, 6 ~part 4~

- 1. Evaluate R
- 2. If R is the worst or 2nd worst
- 3. Evaluate IC or OC
- 4. If IC or OC does not improve
- 5. Evaluate S

Nelder-Mead (NM) Method | Series of Transitions

NM Method | The Algorithm Inefficiency

Sequential Method × Expensive Function = # Months

- **X** Each evaluation is **expensive** and takes **several hours to days**
- √ However, we can determine the hyperparameter settings' values

However, possible to **Determine the HPs**

Related Work | Naïve Parallel NM Method [Dennis+ 1988]

This method computes 1 iteration in parallel

Naïve Parallel NM method

- √ Guarantees to proceed 1 iteration
- X Evaluate many redundant points

Most of them are not required to proceed the Algorithm

Related Work | Gaussian Process NM Method [Ozaki+ 2019]

GP approximates the function and gives us next operation

Gaussian Process (GP) NM method

- √ Removes redundant points
- X Not works on noisy high-dim cases

Difficult to predict the exact transition in the case of noisy high-dim function

Solution for Problems of the previous methods

Control of trade-off between completeness and speed

- √ Naïve method guarantees to proceeds 1 iteration
- X However, inefficient and slow
- ✓ GP method removes redundant points
- X However, tends to remove required points in case of noisy high-dim function

Solution for these problems

- ✓ Analyze the behavior of noisy high-dim function statistically
- ✓ Use the statistical information to remove the redundant points

Good Aspects of Proposed Data Collection

Collect the data from benchmark functions *

- ✓ Can evaluate many kinds of functions and average the statistics
- ✓ Easy to collect the data of noisy high-dim functions
- ✓ Not requires substantial amount of time to collect many data

Generalize By diverse functions

High dimension And Noisy function Inexpensive That's why Many data

^{*} https://www.sfu.ca/~ssurjano/optimization.html

Settings for Data Collection

Settings for the data collection

- 1. Optimize the benchmark functions
- 2. Compute the probabilities of each operation taken in 1 iteration

# of dims	10
# of evaluations	100
# of functions	17 *

Statistics of NM Method

Some operations occurs more often than the others

- 2 out of 6 transitions occupy the 83% of transitions in 1 iteration
- It is not reasonable to treat other 4 operations in the same way

Proposed Method | Data-driven Parallel NM Method

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Proposed Method | Example ~ # of processors: 1 ~

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Proposed Method | Example ~ # of processors: 2 ~

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Proposed Method | Example ~ # of processors: 3 ~

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Proposed Method | Example ~ # of processors: 4 ~

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Proposed Method | Example ~ # of processors: 5 ~

Using probabilities to transition to next operation

Takes the transitions with high probabilities with a priority

- Determines points to be evaluated
- 2. The points will be taken by the order of statistical probabilities
- 3. Evaluates the points in parallel
- 4. Iterate 1. to 3. until termination

Comparison of Parallel NM Methods | Settings

Comparing NM with the other parallel HPO methods

1. Parallel NM Methods

Naïve Parallel NM method (NP-NM)

[Dennis+ 1988]

Gaussian Process based NM method (GP-NM)

[Ozaki+ 2019]

2. The target of the optimization

Classifier	Wide Residual Networks 28-10	[Zagoruyko+ 2016]
# of HPs	11 (Learning rate, Momentum, Weight decay etc)	
# of evaluations	100 (17 GPUdays)	
# of GPUs	12	
Dataset	CIFAR100 (Training 50k, Validation 10k)	

Comparison of Parallel NM Methods | Results 1

Achieved better performance than manual tuning [Zagoruyko+ 2016]

- Found good HP settings with a limited budget
- NM method worked successfully on a complex model

Comparison of Parallel NM Methods | Results 2

Converged only with 39% less steps and evaluations

^{* #} of steps = # of evalauations / # of GPUs

Performance Evaluation of Parallel NM | Settings

Comparing NM with the other parallel HPO methods

1. Parallel HPO Methods

- Parallel Bayesian Optimization via Thompson Sampling (BOTS) [Kandasamy+ 2018]
- Random Search (The most naïve parallel approach)

2. The target of the optimization

Classifier	Naïve 8-layer CNN
# of HPs	9 (Learning rate, Momentum, Weight decay etc)
# of evaluations	150 (6 GPUdays)
# of GPUs	4
Dataset	CIFAR100 (Training 50k, Validation 10k)

Performance Evaluation of Parallel NM Results

Our method found better HPs faster than other methods

- The parallel NM converges faster than Parallel Bayesian optimization
- We denote # of steps = # of evaluatios / # of GPUs

Conclusion

Contents

Proposition

Parallel method for NM method based on statistics on 17 types of benchmark functions

Results

- Better than the other parallel HPO methods
- Reduced 40% of evaluations and computational time without decreasing the target's performance

Future Study

- Asynchronic parallel method
- Combining with the Gaussian Process

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)