

SEQUENCE LISTING

<110> Pennica, Diane
Polakis, Paul
Szeto, Wayne

<120> UPREGULATION OF TUMOR ANTIGENS TO
ENHANCE EFFICACY OF IMMUNOTHERAPY

<130> GENENT.083A

<150> 60/228,914
<151> 2000-08-29

<150> 09/759,056
<151> 2001-01-11

<150> 60/175,849
<151> 2000-01-13

<150> 60/197,089
<151> 2000-04-14

<160> 28

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2732
<212> DNA
<213> Homo sapiens

<400> 1
agtcccagac gggctttcc cagagagcta aaagagaagg gccagagaat gtcgtcccag 60
ccagcaggga accagacctc ccccggggccc acagaggact actcctatgg cagctggcac 120
atcgatgagc cccaggggggg cgaggagctc cagccagagg gggaaagtgc ctcctgcccac 180
accagcatac caccggccct gtaccacgccc tgcctggccct cgctgtcaat ctttgctg 240
ctgctcctgg ccatgctggt gagggcgcgc cagctctggc ctgactgtgt gcgtggcagg 300
ccggcctgc ccagccctgt ggatttcttgc gctgggaca ggccccgggc agtgcctgct 360
gctgtttca tggtcctcctt gagctccctg tggttgc tcccccacgca ggacgcattt 420
cccttcctga ctctcgccctc agcacccagc caagatggga aaactgaggc tccaagaggg 480
gccttggaga tactgggact gttctattat gctgccctct actaccctct ggctgcctgt 540
gccacggctg gccacacagc tgcacacctg ctcggcagca cgctgtccctg ggcccacctt 600
gggttccagg tctggcagag ggcagagtgt ccccaggtgc ccaagatctca caagtactac 660
tccctgtgg cctccctgccc tctcctgtgg ggcctcgat tccctgagccct ttggtagccct 720
gtgcagctgg tgagaagctt cagccgtagg acaggagcag gctccaagggg gctgcagagc 780
agctactctg aggaatatct gaggaacctc ctttgcagga agaagctggg aagcagctac 840
cacacctcca agcatggctt cctgtcctgg gcccgcgtct gcttgagaca ctgcatactac 900
actccacagc caggattcca tctcccgctg aagctgggtgc tttcagctac actgacaggg 960
acggccattt accaggtggc cctgctgtgg ctgggtggcg tggtacccac tatccagaag 1020
gtgagggcag gggtcaccac ggatgtctcc tacctgtgg cccgcttgg aatcgctc 1080
tccgaggaca agcaggaggt ggtggagctg gtgaagcacc atctgtggc tctggaaagt 1140
tgctacatct cagccttggc tttgtcctgc ttactcacct tcctggccct gatcgctca 1200
ctggtgacac acaggaccaa ctttcgagct ctgcaccgag gagctgcctt ggacttgagt 1260
cccttgatc ggagtccccca tccctcccgcc caagccatat tctgttggat gagcttcagt 1320

gcctaccaga cagccttat ctgccttggg ctccctggc agcagatcat cttcttcctg 1380
ggaaccacgg ccctggcctt cctgggtc tcgcctgtgc tccatggcag gaacccctc 1440
ctcttcgtt ccctggagtc ctcgtggccc ttctggctga ctttggccct ggctgtgatc 1500
ctgcagaaca tggcagccca ttgggtcttc ctggagactc atgatggaca cccacagctg 1560
accaaccggc gagtgctcta tgcaagccacc tttcttctct tccccctcaa tgtgtggtg 1620
ggtgcacatgg tggccacactg gcgagtgctc ctctctgccc tctacaacgc catccacactt 1680
ggccagatgg acctcagcct gctgccaccg agagcccca ctctcgacc cggctactac 1740
acgtaccgaa acttcttcaa gattgaagtc agccagtcgc atccagccat gacagccttc 1800
tgctccctgc tcctgcaagc gcagagcctc ctacccagga ccatggcagc cccccaggac 1860
agcctcagac caggggagga agacgaaggg atgcagctgc tacagacaaa ggactccatg 1920
gccaaggggag ctaggcccgg ggcagccgc ggcagggctc gctggggctc ggcctacacg 1980
ctgctgcaca acccaaccct gcaggtcttc cgcaagacgg ccctgttggg tgccaatgg 2040
gcccagccct gagggcaggg aaggtaacc cacctgcca tctgtctga ggcatgttcc 2100
tgccattacat cctcctccct ccccggtctc cctcccgacca tcacaccagc catgcagcca 2160
gcaggtcctc cggatcactg tgggtgggtg gaggtctgtc tgcactggg gcctcaggag 2220
ggctctgctc cacccacttg gctatgggag agccagcagg ggttctggag aaaaaaaactg 2280
gtgggttagg gccttggtcc aggagccagt tgagccaggg cagccacatc caggcgtctc 2340
cctaccctgg ctctgcccattc agccttgaag ggcctcgatc aagccttctc tggaaaccact 2400
ccagcccagc tccacctcag ccttggcctt cacgctgtgg aagcagccaa ggcacttcct 2460
cacccctca ggcacacggc cctctctggg gagtggccgg aaagctcccg gtcctctggc 2520
ctgcagggca gccaagtca tgactcagac caggtcccac actgagctgc ccacactcga 2580
gagccagata tttttagt ttttatgcct ttggcttatta tgaaagaggt tagtgttcc 2640
cctgcaataa acttgttcct gagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 2700
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaa aa 2732

2100660
<210> 2
<211> 667
<212> PRT
<213> Homo sapiens

4 <400> 2
Met Ser Ser Gln Pro Ala Gly Asn Gln Thr Ser Pro Gly Ala Thr Glu
1 5 10 15
Asp Tyr Ser Tyr Gly Ser Trp Tyr Ile Asp Glu Pro Gln Gly Gly Glu
20 25 30
Glu Leu Gln Pro Glu Gly Glu Val Pro Ser Cys His Thr Ser Ile Pro
35 40 45
Pro Gly Leu Tyr His Ala Cys Leu Ala Ser Leu Ser Ile Leu Val Leu
50 55 60
Leu Leu Leu Ala Met Leu Val Arg Arg Arg Gln Leu Trp Pro Asp Cys
65 70 75 80
Val Arg Gly Arg Pro Gly Leu Pro Ser Pro Val Asp Phe Leu Ala Gly
85 90 95
Asp Arg Pro Arg Ala Val Pro Ala Ala Val Phe Met Val Leu Leu Ser
100 105 110
Ser Leu Cys Leu Leu Leu Pro Asp Glu Asp Ala Leu Pro Phe Leu Thr
115 120 125
Leu Ala Ser Ala Pro Ser Gln Asp Gly Lys Thr Glu Ala Pro Arg Gly
130 135 140
Ala Trp Lys Ile Leu Gly Leu Phe Tyr Tyr Ala Ala Leu Tyr Tyr Pro
145 150 155 160
Leu Ala Ala Cys Ala Thr Ala Gly His Thr Ala Ala His Leu Leu Gly
165 170 175
Ser Thr Leu Ser Trp Ala His Leu Gly Val Gln Val Trp Gln Arg Ala
180 185 190
Glu Cys Pro Gln Val Pro Lys Ile Tyr Lys Tyr Tyr Ser Leu Leu Ala
195 200 205

Ser Leu Pro Leu Leu Leu Gly Leu Gly Phe Leu Ser Leu Trp Tyr Pro
 210 215 220
 Val Gln Leu Val Arg Ser Phe Ser Arg Arg Thr Gly Ala Gly Ser Lys
 225 230 235 240
 Gly Leu Gln Ser Ser Tyr Ser Glu Glu Tyr Leu Arg Asn Leu Leu Cys
 245 250 255
 Arg Lys Lys Leu Gly Ser Ser Tyr His Thr Ser Lys His Gly Phe Leu
 260 265 270
 Ser Trp Ala Arg Val Cys Leu Arg His Cys Ile Tyr Thr Pro Gln Pro
 275 280 285
 Gly Phe His Leu Pro Leu Lys Leu Val Leu Ser Ala Thr Leu Thr Gly
 290 295 300
 Thr Ala Ile Tyr Gln Val Ala Leu Leu Leu Val Gly Val Val Pro
 305 310 315 320
 Thr Ile Gln Lys Val Arg Ala Gly Val Thr Thr Asp Val Ser Tyr Leu
 325 330 335
 Leu Ala Gly Phe Gly Ile Val Leu Ser Glu Asp Lys Gln Glu Val Val
 340 345 350
 Glu Leu Val Lys His His Leu Trp Ala Leu Glu Val Cys Tyr Ile Ser
 355 360 365
 Ala Leu Val Leu Ser Cys Leu Leu Thr Phe Leu Val Leu Met Arg Ser
 370 375 380
 Leu Val Thr His Arg Thr Asn Leu Arg Ala Leu His Arg Gly Ala Ala
 385 390 395 400
 Leu Asp Leu Ser Pro Leu His Arg Ser Pro His Pro Ser Arg Gln Ala
 405 410 415
 Ile Phe Cys Trp Met Ser Phe Ser Ala Tyr Gln Thr Ala Phe Ile Cys
 420 425 430
 Leu Gly Leu Leu Val Gln Gln Ile Ile Phe Phe Leu Gly Thr Thr Ala
 435 440 445
 Leu Ala Phe Leu Val Leu Met Pro Val Leu His Gly Arg Asn Leu Leu
 450 455 460
 Leu Phe Arg Ser Leu Glu Ser Ser Trp Pro Phe Trp Leu Thr Leu Ala
 465 470 475 480
 Leu Ala Val Ile Leu Gln Asn Met Ala Ala His Trp Val Phe Leu Glu
 485 490 495
 Thr His Asp Gly His Pro Gln Leu Thr Asn Arg Arg Val Leu Tyr Ala
 500 505 510
 Ala Thr Phe Leu Leu Phe Pro Leu Asn Val Leu Val Gly Ala Met Val
 515 520 525
 Ala Thr Trp Arg Val Leu Leu Ser Ala Leu Tyr Asn Ala Ile His Leu
 530 535 540
 Gly Gln Met Asp Leu Ser Leu Leu Pro Pro Arg Ala Ala Thr Leu Asp
 545 550 555 560
 Pro Gly Tyr Tyr Thr Tyr Arg Asn Phe Leu Lys Ile Glu Val Ser Gln
 565 570 575
 Ser His Pro Ala Met Thr Ala Phe Cys Ser Leu Leu Leu Gln Ala Gln
 580 585 590
 Ser Leu Leu Pro Arg Thr Met Ala Ala Pro Gln Asp Ser Leu Arg Pro
 595 600 605
 Gly Glu Glu Asp Glu Gly Met Gln Leu Leu Gln Thr Lys Asp Ser Met
 610 615 620
 Ala Lys Gly Ala Arg Pro Gly Ala Ser Arg Gly Arg Ala Arg Trp Gly
 625 630 635 640
 Leu Ala Tyr Thr Leu Leu His Asn Pro Thr Leu Gln Val Phe Arg Lys
 645 650 655
 Thr Ala Leu Leu Gly Ala Asn Gly Ala Gln Pro

<210> 3
 <211> 676
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (0)...(0)
 <223> n = A, T, C or G

<400> 3
 gtgtctccg aggacaagca ggagggngtg gagctggta agcaccatct gtgggctctg 60
 gaagtgtct acatctcagc cttggcttgc tcctgcttac tcacccctt ggtccttgatg 120
 cgctcactgg tgacacacag gaccaacctt cgagctctgc accgaggagc tgccctggac 180
 tttagtccct tgcacatggag tccccatccc tcccgccaag ccatattctg ttggatgagc 240
 ttcagtgcct accagacacgc ctttatctgc cttggctcc tgggtcagca gatcatctt 300
 ttcctggaa ccacggccct ggcccttcgt gtgctcatgc ctgtgctcca tggcaggaac 360
 ctccgtct tccgttccct ggagtcctcg tggcccttct ggctgacttt ggccctggct 420
 gtgatcctgc agaacatggc agcccatggt gtcttcctgg agactcatga tggacaccca 480
 cagctgacca accggcgagt gctctatgca gccacccctt ttcttcctcc cctcaatgtg 540
 ctgggtggtg ccatggtgcc cacctggcga gtgctctct ctggccctcta caacgcccac 600
 cacctggcc agatggacct cagcctgctg ccaccgagag ccgcccactct cgaccggc 660
 tactacacgt accgaa 676

<210> 4
 <211> 2777
 <212> DNA
 <213> Homo sapiens

<400> 4
 cacaaccaggc caccctcta ggatcccaggc ccagctggtg ctgggctcag aggagaaggc 60
 cccgttgg gaggcacctg cttgccttgg gggacaagtt tccgggagag atcaataaaag 120
 gaaaggaaag agacaaggaa gggagaggc aggagagcgc ttgattggag gagaagggcc 180
 agagaatgtc gtcccagcca gcaggaaacc agacccccc cggggccaca gaggactact 240
 cctatggcag ctggtacatc gatgagcccc agggggcga ggagctccag ccagaggggg 300
 aagtgcctc ctgccacacc agcataccac ccggcctgtt ccacgcctgc ctggcctcgc 360
 tgtcaatct tggctgtct ctctggcca tgctggtag ggcggccag ctctggctg 420
 actgtgtcg tggcaggccc ggccgtccca ggccccggc agtgcctgt gctgtttca 480
 tggctctctt gagctccctg tggtagtgc tcccccacga ggacgcattt cccttcctga 540
 ctctcgccctc agcaccaggc caagatgggaa aaactgaggg tccaagaggg gccttggaaaga 600
 tactggact gttctattat gtcgcctct actaccctt ggctgcctgt gccacggctg 660
 gccacacaggc tgcacacctg ctccggcagca cgctgtcctg ggcccaccc tgggtccagg 720
 tctggcagag ggcagagtgt ccccaagggtgc ccaagatcta caagtaactac tccctgtcgg 780
 cctccctgccc tctctgtcgg tggccgtccat tccctgaccc ttggtagtgc gtcagctgg 840
 tgagaagctt cagccgttagg acaggaggcag gtcggcaagg gtcgcagagc agctactctg 900
 aggaatatct gaggaaacctc cttgcagga agaagctggg aagcagctac cacacccatca 960
 agcatggctt cctgtctgg gcccgcgtct gcttgagaca ctgcacatctc actccacaggc 1020
 cagattcca tctcccgctg aagctgggtgc tttcagctac actgacagagg acggccattt 1080
 accaggtggc cctgtctgt ctgggtggcg tggtagccac tatccagaag gtgagggcag 1140
 gggtcaccac ggtatgttcc tacctgtctgg ccggcttgg aatcgtgctc tccgaggaca 1200
 agcaggaggt ggtggagctg gtggaaaggcact atctgtggc tctggaaagt tgctacatct 1260
 cagccttggc tttgtctgtc ttactcacct tccctgtctt gatgcgttca ctggtagacac 1320
 acaggaccaa ctttcgttgcgt ctgcacccggag gagctggccct ggacttgagt cccttgcatc 1380
 ggagtcccca tccctcccgca aagccatat tctgttggat gagcttcagt gcctaccaga 1440

cagccttat ctgccttggg ctccctggc agcagatcat cttcttcctg ggaaccacgg 1500
ccctggcctt cctgggtgtc atgcctgtc tccatggcag gaacctccctg ctcttccgtt 1560
ccctggagtc ctcgtggccc ttctggctga ctttggccct ggctgtgatc ctgcagaaca 1620
tggcagccca ttgggtcttc ctggagactc atgatggaca cccacagctg accaaccggc 1680
gagtgctcta tgcagccacc ttcttcctct tccccctcaa tggctgggtg ggtgcccata 1740
tggccacctg gcgagtgtc ctctctgtccc tctacaacgc catccacctt ggccagatgg 1800
acctcagcct gctgccaccg agagccgcca ctctcgaccc cggctactac acgtaccgaa 1860
acttcttcaa gattgaagtc agccagtcgc atccagccat gacagccttc tgctccctgc 1920
tcctgcaagc gcagagcctc ctacccagga ccatggcagc ccccccaggac agcctcagac 1980
caggggagga agacgaaggg atgcagctgc tacagacaaa ggactccatg gccaaggggag 2040
ctaggccccc ggcacccgc ggcagggtc gctggggctt ggcctacacg ctgctgcaca 2100
acccaaccct gcaggtcttc cgcaagacgg ccctgttggg tgccaatggt gcccagccct 2160
gagggcaggg aaggtaacc cacctgccc tctgtgtcga ggcatgttcc tgccattaccac 2220
ctcctccctc cccggctctc ctcccagcat cacaccagcc atgcagccag caggccctcc 2280
ggatcaactgt ggttgggtgg aggtctgtct gcactggag cctcaggagg gctctgtcc 2340
acccacttgg ctatgggaga gccagcaggg gttctggaga aagaaaactgg tgggttaggg 2400
ccttggtcca ggagccagtt gagccaggc agccacatcc aggccgtctcc ctaccctggc 2460
tctgccatca gccttgaagg gcctcgatga agccttctct ggaaccactc cagccagct 2520
ccacctcagc cttggccttc acgctgtgga agcagccaa gcaactccctc accccctcag 2580
cgccacggac ctctctgggg agtggccgga aagctcccgq qcctctggcc tgccaggcag 2640
cccaagtcat gactcagacc aggtcccaca ctgagctgccc cacactcgag agccagatata 2700
ttttagtgg tttatgcctt tggctattat gaaagagggtt agtgtgttcc ctgcaataaaa 2760
cttggccctg agaaaaaa 2777

<210> 5
<211> 658
<212> PRT
<213> Homo sapiens

<400> 5
Met Ser Ser Gln Pro Ala Gly Asn Gln Thr Ser Pro Gly Ala Thr Glu
1 5 10 15
Asp Tyr Ser Tyr Gly Ser Trp Tyr Ile Asp Glu Pro Gln Gly Gly Glu
20 25 30
Glu Leu Gln Pro Glu Gly Glu Val Pro Ser Cys His Thr Ser Ile Pro
35 40 45
Pro Gly Leu Tyr His Ala Cys Leu Ala Ser Leu Ser Ile Leu Val Leu
50 55 60
Leu Leu Leu Ala Met Leu Val Arg Arg Arg Gln Leu Trp Pro Asp Cys
65 70 75 80
Val Arg Gly Arg Pro Gly Leu Pro Arg Pro Arg Ala Val Pro Ala Ala
85 90 95
Val Phe Met Val Leu Leu Ser Ser Leu Cys Leu Leu Leu Pro Asp Glu
100 105 110
Asp Ala Leu Pro Phe Leu Thr Leu Ala Ser Ala Pro Ser Gln Asp Gly
115 120 125
Lys Thr Glu Ala Pro Arg Gly Ala Trp Lys Ile Leu Gly Leu Phe Tyr
130 135 140
Tyr Ala Ala Leu Tyr Tyr Pro Leu Ala Ala Cys Ala Thr Ala Gly His
145 150 155 160
Thr Ala Ala His Leu Leu Gly Ser Thr Leu Ser Trp Ala His Leu Gly
165 170 175
Val Gln Val Trp Gln Arg Ala Glu Cys Pro Gln Val Pro Lys Ile Tyr
180 185 190
Lys Tyr Tyr Ser Leu Leu Ala Ser Leu Pro Leu Leu Gly Leu Gly
195 200 205
Phe Leu Ser Leu Trp Tyr Pro Val Gln Leu Val Arg Ser Phe Ser Arg

210 215 220
Arg Thr Gly Ala Gly Ser Lys Gly Leu Gln Ser Ser Tyr Ser Glu Glu
225 230 235 240
Tyr Leu Arg Asn Leu Leu Cys Arg Lys Lys Leu Gly Ser Ser Tyr His
245 250 255
Thr Ser Lys His Gly Phe Leu Ser Trp Ala Arg Val Cys Leu Arg His
260 265 270
Cys Ile Tyr Thr Pro Gln Pro Gly Phe His Leu Pro Leu Lys Leu Val
275 280 285
Leu Ser Ala Thr Leu Thr Gly Thr Ala Ile Tyr Gln Val Ala Leu Leu
290 295 300
Leu Leu Val Gly Val Val Pro Thr Ile Gln Lys Val Arg Ala Gly Val
305 310 315 320
Thr Thr Asp Val Ser Tyr Leu Leu Ala Gly Phe Gly Ile Val Leu Ser
325 330 335
Glu Asp Lys Gln Glu Val Val Glu Leu Val Lys His His Leu Trp Ala
340 345 350
Leu Glu Val Cys Tyr Ile Ser Ala Leu Val Leu Ser Cys Leu Leu Thr
355 360 365
Phe Leu Val Leu Met Arg Ser Leu Val Thr His Arg Thr Asn Leu Arg
370 375 380
Ala Leu His Arg Gly Ala Ala Leu Asp Leu Ser Pro Leu His Arg Ser
385 390 395 400
Pro His Pro Ser Arg Gln Ala Ile Phe Cys Trp Met Ser Phe Ser Ala
405 410 415
Tyr Gln Thr Ala Phe Ile Cys Leu Gly Leu Leu Val Gln Gln Ile Ile
420 425 430
Phe Phe Leu Gly Thr Thr Ala Leu Ala Phe Leu Val Leu Met Pro Val
435 440 445
Leu His Gly Arg Asn Leu Leu Leu Phe Arg Ser Leu Glu Ser Ser Trp
450 455 460
Pro Phe Trp Leu Thr Leu Ala Leu Ala Val Ile Leu Gln Asn Met Ala
465 470 475 480
Ala His Trp Val Phe Leu Glu Thr His Asp Gly His Pro Gln Leu Thr
485 490 495
Asn Arg Arg Val Leu Tyr Ala Ala Thr Phe Leu Leu Phe Pro Leu Asn
500 505 510
Val Leu Val Gly Ala Ile Val Ala Thr Trp Arg Val Leu Leu Ser Ala
515 520 525
Leu Tyr Asn Ala Ile His Leu Gly Gln Met Asp Leu Ser Leu Leu Pro
530 535 540
Pro Arg Ala Ala Thr Leu Asp Pro Gly Tyr Tyr Thr Tyr Arg Asn Phe
545 550 555 560
Leu Lys Ile Glu Val Ser Gln Ser His Pro Ala Met Thr Ala Phe Cys
565 570 575
Ser Leu Leu Leu Gln Ala Gln Ser Leu Leu Pro Arg Thr Met Ala Ala
580 585 590
Pro Gln Asp Ser Leu Arg Pro Gly Glu Glu Asp Glu Gly Met Gln Leu
595 600 605
Leu Gln Thr Lys Asp Ser Met Ala Lys Gly Ala Arg Pro Gly Ala Ser
610 615 620
Arg Gly Arg Ala Arg Trp Gly Leu Ala Tyr Thr Leu Leu His Asn Pro
625 630 635 640
Thr Leu Gln Val Phe Arg Lys Thr Ala Leu Leu Gly Ala Asn Gly Ala
645 650 655
Gln Pro

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 6
cacactcgag agccagatat ttt 23

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 7
aacaagttt ttgcagggaa cac 23

<210> 8
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 8
tgtatgtttt atgcctttgg ctattatgaa agaggt 36

<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 9
agaccaggta ccacactga 19

<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 10
ttcataatag ccaaaggcat aaaa 24

2000-00000000000000000000000000000000

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 16
caagcttccc gttctcagcc 20

<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 17
tgccaccacca actgcttag 19

<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 18
ggatgcaggg atgatgttc 19

<210> 19
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 19
cagaagactg tggatggccc ctc 23

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 20
gttaggccagg gctatttctg 20

<210> 21

1996-2000 Artificial Sequences

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 21
tgtctcatga gggtccaaaaa 20

<210> 22
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 22
tggcgctctt ctctcctcgg t 21

<210> 23
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 23
tcgccaagct actggctaa 19

<210> 24
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 24
cttggctgtg ccagttca 18

<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence = synthetic oligonucleotide

<400> 25
aaccaggcat cgttgtgcaa tacaactc 28

<210> 26
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence = synthetic oligonucleotide

<400> 26

gccagtacaq gatctqqaaa q

21

<210> 27

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence = synthetic oligonucleotide

<400> 27

catatctcat caqagagcat ctaaaa

26

<210> 28

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence = synthetic oligonucleotide

<400> 28

<400> 28
aagcttttag cctggcccagc ca

22

Digitized by srujanika@gmail.com