Hugo Marquerie 19/03/2025

Teorema de Abel

Teorema 1 (de Abel). Sea $f(x) = \sum_n a_n x^n \in A[[x]]$ una serie formal de potencias con coeficientes en \mathbb{C} (o \mathbb{R}) tal que $f(x_0)$ converge

$$\implies \forall x : |x| < |x_0| : f(x) \ converge \ uniform emente.$$

Demostración: Como $\sum_n a_n x_0$ converge, se tiene que $a_n x_0^n \xrightarrow{n \to \infty} 0$ y, por tanto, $\exists C > 0 : \exists N_0 \in \mathbb{N} : \forall n \geq N_0 : |a_n x_0^n| \leq C$. Sea $r \in \mathbb{R}$ y $x \in \mathbb{C}$ (o \mathbb{R}) tal que $|x| \leq r < |x_0|$

$$\implies |a_n x^n| = |a_n| |x|^n \le |a_n| r^n \frac{|x_0|^n}{|x|^n} \le C \left(\frac{r}{|x_0|}\right)^n =: M_n.$$

Aplicando el criterio de Weierstrass, tenemos que $\sum_n a_n x^n$ converge uniformemente en cada disco cerrado $\overline{D}(0,r)$.