

Correction to Structure Elucidation and Antimalarial Activity of Apicidin F: An Apicidin-like Compound Produced by Fusarium fujikuroi

Katharina Walburga von Bargen, Eva-Maria Niehaus, Klaus Bergander, Reto Brun, Bettina Tudzynski, and Hans-Ulrich Humpf*

J. Nat. Prod. 2013, 76 (11), 2136-2140, 10.1021/np4006053

Page 2137: The 13 C NMR data for the carbonyl C atoms and the multiplicity of the proton at C2 of phenylalanine of apicidin F in C_5D_5N (Table 1) should be corrected as shown below. The authors apologize for any inconvenience.

Table 1. NMR Spectroscopic Data (600 MHz, CD_3OD and C_5D_5N) for Apicidin F

		CD ₃ OD	C_5D_5N				
			$\delta_{\rm C}$				
position	δ_{C} , type	$\delta_{ m H}$ (J in Hz)	type	$\delta_{ m H}$ (J in Hz)			
N-Methoxytryptophan							
NH				10.00, d (5.0)			
1	175.4, C		174.5				
2	59.4, CH	4.32, t (7.5)	61.8	4.51-4.56, m			
3	26.6, CH ₂	3.25, d (8.0)	26.1	3.80-3.72, m			
		3.28, d (8.7)		4.21-4.13, m			
4	107.7, C		108.5				
4a	124.9, C		124.4				
5	119.7, CH	7.60, d (8.0)	119.7	7.74, d (8.0)			
6	120.8, CH	7.10, t (7.5)	120.5	7.18, d (6.8)			
7	123.6, CH	7.22, d (7.7)	123.6	7.37-7.30, m			
8	109.3, CH	7.40, d (8.2)	109.2	7.54, d (8.3)			
8a	133.8, C		133.2				
10	123.0, CH	7.06, s	123.2	7.50-7.42, m			
OCH_3	66.2, CH ₃	4.03, s	66.0	3.93, s			
2-Aminooctanedioic Acid							
NH				7.34, d (7.8)			
1	175.8, C		177.0				
2	56.4, CH	4.37-4.33, m	55.3	4.78, dd (16.9, 8.0)			
3	30.6, CH ₂	1.55-1.52, m	30.6	2.02-1.98, m			
		1.75-1.70, m		1.68-1.60, m			
4	26.8, CH ₂	1.67-1.62, m	26.5	1.51-1.40, m			
5	29.7, CH ₂	1.39-1.31, m	29.4	1.29-1.24, m			
6	25.8, CH ₂	1.60-1.56, m	25.6	1.72-1.66, m			
7	34.8, CH ₂	2.28, t (7.4)	34.6	2.40, t (7.4)			
8	177.6, C		176.1				
	Pipecolic acid						
1	173.4, C		172.3				
2	52.1, CH	5.20, d (5.9)	51.4	5.47, d (5.8)			
3	25.2, CH ₂	2.00, d (14.8)	24.8	2.04-2.00, m			
		1.47-1.40, m		1.35-1.31, m			
4	20.6, CH ₂	2.09-2.03, m	20.2	2.35-2.24, m			
_		1.52-1.48, m		1.35-1.31, m			
5	26.3, CH ₂	1.39-1.31, m	25.9	1.29-1.24, m			
		1.18–1.15, m		1.51-1.40, m			
6	45.1, CH ₂	2.97, td (13.7, 2.5)	44.6	3.26, t (13.5)			
		3.84, d (13.4)		4.32, d (13.3)			

Table 1. continued

	CD ₃ OD		C_5D_5N	
position	$\delta_{ m C'}$ type	$\delta_{ m H}$ (J in Hz)	δ_{C} , type	$\delta_{ m H}$ (J in Hz)
		Phenylalanine		
NH				8.56, d (10.1)
1	174.9, C		174.1	
2	51.4, CH	5.30, t (7.7)	50.8	5.85, dt (10.1, 7.5)
3	37.8, CH ₂	3.08, dd (13.6, 7.5)	37.8	3.55, dd (14.0, 7.4)
		3.24-3.21, m		3.40, dd (13.8, 7.4)
4	138.4, C		138.7	
5/9	130.3, CH	7.32-7.27, m	130.1	7.50-7.42, m
6/8	129.5, CH	7.32-7.27, m	129.1	7.37-7.30, m
7	127.8, CH	7.27-7.22, m	127.2	7.28-7.25, m

Published: January 27, 2014

