The Global Heat Flow Database: Release 2024

(https://doi.org/10.5880/fidgeo.2024.014)

Global Heat Flow Data Assessment Group, Sven Fuchs¹, Florian Neumann¹, Ben Norden¹, Elif Balkan-Pazvantoglu¹, Samah Elbarbary¹, Alexey Petrunin¹, Graeme Beardsmore², Robert Harris³, Raquel Negrete-Aranda⁴, Jeffrey Poort⁵, Massimo Verdoya⁶, Shaowen Liu⁷, Emma Chambers⁸, Karina Fuentes-Bustillos⁴, Eswara Rao Sidagam⁹, Jhon Camilo Matiz-León¹⁰, Mohammed Hichem Bencharef¹¹, Belay Gulte Mino², Mohamed S. Khaled¹², Denise Verch¹, Leonard Berger¹, Saman Firdaus Chishti¹, Viktoria Dergunova¹, Helena Liebing¹, Marvin Schulz¹, Pia Schuppe¹, Zlata Trepalova¹, Paolo Chiozzi¹³, Maria Rosa Alves Duque¹⁴, Florian Forster², Martina Levini¹⁵, Tobias Staal¹⁶

	Last name	First name	ORCID	Affiliation (Name, City, Country)	email
1	Fuchs	Sven	0000-0002-2896-6662	GFZ German Research Centre for Geosciences, Potsdam, Germany	fuchs@gfz-potsdam.de
1	Neumann	Florian	0000-0002-9666-5087	GFZ German Research Centre for Geosciences, Potsdam, Germany	fneu@gfz-potsdam.de
1	Norden	Ben	0000-0003-2228-9979	GFZ German Research Centre for Geosciences, Potsdam, Germany	norden@gfz-potsdam.de
1	Balkan- Pazvantoglu	Elif	0000-0002-8117-4576	GFZ German Research Centre for Geosciences, Potsdam, Germany	elif@gfz-potsdam.de
1	Elbarbary	Samah	0000-0002-1479-787X	GFZ German Research Centre for Geosciences, Potsdam, Germany	samelb@gfz-potsdam.de
1	Petrunin	Alexey	0000-0002-5439-4178	GFZ German Research Centre for Geosciences, Potsdam, Germany	alexey.petrunin@gfz- potsdam.de
2	Beardsmore	Graeme	0000-0003-4812-1146	University of Melbourne, Australia	g.beardsmore@unimelb.e du.au
3	Harris	Robert	0000-0002-4641-1425	Oregon State University	harrisr@oregonstate.ed u
4	Negrete-Aranda	Raquel	0000-0003-3049-4374	Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California	rnegrete@cicese.mx
5	Poort	Jeffrey	0000-0001-5964-9697	Sorbonne Université, CNRS, Institut des Sciences de la Terre de Paris, Paris, France	jeffrey.poort@sorbonne- universite.fr

6	Verdoya	Massimo	0000-0002-3845-6914	DISTAV, University of Genoa, Italy	massimo.verdoya@unige.i t
7	Liu	Shaowen	0000-0002-9358-9648	School of Geography and Ocean Science, Nanjing University, China	shaowliu@nju.edu.cn
8	Chambers	Emma	0000-0001-6969-2920	School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin, Ireland	echambers@cp.dias.ie
4	Fuentes-Bustillos	Karina	0000-0002-9638-5771	Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California	kfuentes@cicese.edu.mx
9	Sidagam	Eswara Rao	0000-0001-9268-6123	CSIR National Geophysical Research Institute, Hyderabad, India	eswar5063@gmail.com
10	Matiz-León	Jhon Camilo	0000-0002-1885-9804	Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Geociencias, Bogotá D.C., Colombia	jmatizl@unal.edu.co
11	Bencharef	Mohammed Hichem	0000-0002-3058-3652	Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria	m.bencharef@univ- tebessa.dz
2	Mino	Belay G.	0000-0002-6289-4471	University of Melbourne	belay.mino@student.unim elb.edu.au
12	Khaled	Mohamed Shafik	0000-0001-8855-3504	The University of Texas at Austin	mohamed.khaled@beg.ut exas.edu
1	Verch	Denise	0009-0005-2296-5297	GFZ German Research Centre for Geosciences, Potsdam, Germany	denise.verch@gfz- potsdam.de
1	Berger	Leonard		GFZ German Research Centre for Geosciences, Potsdam, Germany	leoberg@gfz-potsdam.de
1	Chishti	Saman Firdaus		GFZ German Research Centre for Geosciences, Potsdam, Germany	saman.firdaus.chishti@uni -potsdam.de
1	Dergunova	Viktoria	0009-0003-9565-6597	GFZ German Research Centre for Geosciences, Potsdam, Germany	dergun@gfz-potsdam.de
1	Liebing	Helena	0009-0008-5211-8242	GFZ German Research Centre for Geosciences, Potsdam, Germany	liebing@gfz-potsdam.de
1	Schulz	Marvin	0009-0007-1871-5900	GFZ German Research Centre for Geosciences, Potsdam, Germany	marvin.schulz@gfz- potsdam.de
1	Schuppe	Pia	0000-0002-0149-1142	GFZ German Research Centre for Geosciences, Potsdam, Germany	pia.schuppe@gmail.com
1	Trepalova	Zlata	0009-0004-4037-4194	GFZ German Research Centre for Geosciences, Potsdam, Germany	trep@gfz-potsdam.de
13	Chiozzi	Paolo	0000-0002-2950-5438	DISTAV, University of Genoa, Italy	chiozzi_rp@libero.it
14	Duque	Maria Rosa Alves	0000-0002-0350-9246	Universidade de Évora, Departamento de Física, Évora, Portugal.	mrad@uevora.pt
2	Forster	Florian	0000-0001-7452-7241	School of Earth Sciences, University of Melbourne, Australia	florian.forster@tutamail.c om
15	Leveni	Martina	0000-0001-8896-002X	The Ohio State University, Columbus, Ohio, United States	leveni.1@osu.edu
16	Stål	Tobias	0000-0002-4323-6748	University of Tasmania, Tasmania, Australia	tobias.staal@utas.edu.au

1. License

Creative Commons Attribution 4.0 International License (CC BY 4.0)

2. Citation

When using the data please cite:

Global Heat Flow Data Assessment Group; Fuchs, S.; Neumann, F.; Norden, B.; Balkan-Pazvantoglu, E.; Elbarbary, S.; Petrunin, A.; Beardsmore, G.; Harris, R.; Negrete-Aranda, R.; Poort, J.; Verdoya, M.; Liu, S.; Chambers, E.; Fuentes-Bustillos, K.; Rao, E.S.; Matiz-León, J.C.; Bencharef, M.H.; Mino, B.G.; Khaled, M.S.; Verch, D.; Berger, L.; Chishti, S.F.; Dergunova, V.; Liebing, H.; Schulz, M.; Schuppe, P.; Trepalova, Z.; Chiozzi, P.; Duque, M.R.A.; Forster, F.; Levini, M.; Staal, T. (2024): **The Global Heat Flow Database: Release 2024**. V. 1. GFZ Data Services. https://doi.org/10.5880/fidgeo.2024.014

Table of contents

1. License	2
2. Citation	2
3. Data description	3
3.1. Data processing	3
3.2. Heat-flow data	3
4. File description	4
4.1. Description of data tables	4
5. Change log and revision status	6
Acknowledgements	9
6. References	g
7. Database References	10

3. Data description

The data publication contains the compilation of global heat-flow data by the International Heat Flow Commission (IHFC; www.ihfc-iugg.org) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI). The presented data update release 2024 contains data generated between 1939 and 2024 and constitutes the second intermediate update benefiting from the global collaborative assessment and quality control of the Global Heat Flow Database running since May 2021 (http://assessment.ihfc-iugg.org).

3.1. Data processing

The presented data release considers the most-recent definitions for structure and quality of heat-flow data in the Global Heat Flow Database (e.g. Fuchs et al., 2023). For the evolution of data, we refer to past publications, like Global Heat Flow Data Assessment Group et al. (2023) and Fuchs et al., 2021b as well as to the previous paper that describe the database concepts and definitions at that time (Fuchs et al., 2021a and Jessop et al., 1976).

The current database concept has some distinct key features, namely: it is design for a relational database system, it consists of parent elements (listing location-specific information), child elements (heat-flow values with relevant meta-data) and additional fields, providing sufficient information for the evaluation of the quality of the heat-flow data. The presented structure assigns a 'desirability' classification to each field according to its relevance for understanding the quality of the reported heat-flow value; 'mandatory', 'recommended', or 'optional'. This classification defines mandatory fields that delineate minimum requirements for heat-flow values to be entered into the database. Beyond this, the new heat-flow scoring system is added and results are reported for each entry.

3.2. Heat-flow data

The data release comprises new original heat-flow data published since April 2023 (the update 2023). It contains 91,182 heat-flow data from 71,934 locations and 1,586 publications. 57% of the reported heat-flow values are from the continental domain (n ~54,553), while the remaining 43% are located in the oceanic domain (n ~36,692). The progress of data assessment is generally distributed heterogeneously across the continents and oceans, as shown in Figure 1.

GLOBAL HEAT FLOW DATABASE

Figure 1: Assessment rate (top), distribution of heat flow data across continents (bottom left) and publications over time (bottom right). Top map: blue segments are assessed data rate; red segment is open to review for North America.

4. File description

4.1. Description of data tables

The files IHFC_2024_GHFDB.txt or IHFC_2024_GHFDB.xlsx contain:

Abbreviations – Level: Parent level (P), child level (C); Scheme: Applicable for borehole and mine data (B), applicable for probe sensing data in oceans and lakes (S), relevant for all (BS); Classification – Class: Mandatory (M), Recommended (R), Optional (O); Field: Field numbers defined in Fuchs et al. (2023)

In the excel file, first six rows are header information about field ID (row 1), Class (row 2), Scheme (row 3), relevance for quality scoring (row 4), unit (row 5), and column header (row6).

Field ID	Column header	Unit	Short description	Level	Scheme	Class
P1	q	=	Terrestrial heat-flow (hf) value after all corrections for instrumental and environmental effects	Р	B,S	М
P2	q_uncertainty	mW/m²	Uncertainty standard deviation (SD) of q	Р	B,S	М
Р3	name	-	Name of the related hf site	Р	B,S	М
P4	lat_NS	degrees	N-S coordinate	Р	B,S	М

	m Height above or below mean sea level P B,S M - Geographical setting of the hir site P B,S M - Comments on the reported hir site P B,S R - Comments on the reported hir site P B,S R - Contribution of the heat production of the overburden to the personal representative heat flow q or not? m Total measured depth P B,S R m Total true vertical depth P B,S M - Type of exploration method P B,S M - Main purpose of exploration - Type of exploration method P B,S M - Min purpose of exploration - Type of exploration method P B,S M - Min purpose of exploration - MW/m¹ Any kind of hir value - Method of hir calculation - Method of hir calculation - M Depth of to pth interval - Depth of to pth interval - M Depth of to pth interval - M Depth of bottom hir interval - M Depth of bottom hir interval - C B,S M - M Depth of bottom hir interval - C B,S M - M Depth of bottom hir interval - C B,S M - M Depth of the site of the	P5	long_EW	degrees	E-W coordinate	Р	B,S	М
p8 p. comment	- Comments on the reported hf - Contribution of the heat production of the overburden to the presentable production of the heat production of the overburden to the perfect presentable production of the overburden to the perfect presentable production of the overburden to the perfect production of the overburden to the perfect production of the overburden to the perfect production of the perfect product	P6		_	Height above or below mean sea level	Р	B,S	М
	Comments on the reported hf Contribution of the hear production of the overburden to the enterstrial surface heat flow q or not? m Total true vertical depth P B B R R Total measured depth P P B B R R P Total true vertical depth P P B B R R P P B R R P R P	P7	environment	-	-	Р	B,S	М
	Contribution of the heat production of the overburden to the terrestrial surface heat flow q or not? m Total measured depth P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P P B R R P R P		p comment	-		Р		R
P10	rerrestrial surface heat flow q or not? m Total trew vertical depth P B R R Total trew vertical depth P B R R Type of exploration method P B R R m Total trew vertical depth P B R R Type of exploration method P B R R mW/m² Any kind of hf value C B,5 M M mW/m² Any kind of hf value C B,5 M M mW/m² Uncertainty standard deviation (SD) of qc C B,5 M M m Depth of bottom hinterval C B,5 M M m Depth of bottom hinterval C B,5 M M m Depth of bottom hinterval C B,5 M M m Depth of bottom hinterval C B,5 M M m Penetration depth of probe C S M M m Penetration depth of probe C B,5 M M m Penetration d	P9		-		Р		R
11	m Total true vertical depth P B R R Type of exploration method P B, B, S M Main purpose of exploration P B B R mW/m² Any kind of hf value C B, S M mW/m² Uncertainty standard deviation (SD) of qc C B, S R Method of h Calculation C C B, S M m Depth of top hf interval C B, S M m Depth of bottom hf interval C B B M m Depth of bottom hf interval C B B M m Depth of bottom hf interval C C B, S M m Depth of probe C C S R m Depth of bottom hf interval C C B, S M m Depth of probe C C S R m Depth of bottom hf interval C C B, S M m Depth of probe C C S M m Depth of frinterval C C B, S D m Depth of frinterval C C B, S D m Depth of frinterval C C B, S D m Depth of frinterval C C B				· ·		_,-	
912 explo_method - Type of exploration method P B.5 913 explo_purpose - Main purpose of exploration P B C1 qc mW/m² Nakind of hir Value C B,5 C2 qc_uncertainty mW/m² Nethod of hir calculation C B,5 C3 q_moth - Method of hir calculation C B,5 C4 Q_top m Depth of bottom hir interval C B,5 C5 q_bottom m Depth of bottom hir interval C B,5 C5 q_bottom m Depth of bottom hir interval C B,5 C6 or be_penetration m Depth of bottom hir interval C B,5 C7 publication_reference - Literature reference C B,5 C8 data_reference - Supporting literature references C B,5 C9 relevant_child - qic is used for computation of representative heat flow values at the parent level or not. C B,5 <td< td=""><td>- Type of exploration method P B, S, M Main purpose of exploration P P B R R P MM/m² Anyk ind of Inf value C B, S, M M MM/m² Anyk ind of Inf value C C B, S R P MM/m² Anyk ind of Inf value C C B, S R P MM/m² Uncertainty standard deviation (SD) of qc C B, S M M Depth of top hf Infavoral C C B, S M M Depth of top hf Interval C C B, S M M Depth of top hf Interval C C B, S M M Depth of bottom hf interval C C B, S M M M Depth of bottom hf interval C C B, S M M M Depth of bottom hf interval C C B, S M M M M M M Penertation depth of probe C C S M M M M M M Penertation depth of probe C C B, S M M M M M M M M M M M M M M M M M M</td><td>P10</td><td>total_depth_MD</td><td>m</td><td>·</td><td>Р</td><td>В</td><td>R</td></td<>	- Type of exploration method P B, S, M Main purpose of exploration P P B R R P MM/m² Anyk ind of Inf value C B, S, M M MM/m² Anyk ind of Inf value C C B, S R P MM/m² Anyk ind of Inf value C C B, S R P MM/m² Uncertainty standard deviation (SD) of qc C B, S M M Depth of top hf Infavoral C C B, S M M Depth of top hf Interval C C B, S M M Depth of top hf Interval C C B, S M M Depth of bottom hf interval C C B, S M M M Depth of bottom hf interval C C B, S M M M Depth of bottom hf interval C C B, S M M M M M M Penertation depth of probe C C S M M M M M M Penertation depth of probe C C B, S M M M M M M M M M M M M M M M M M M	P10	total_depth_MD	m	·	Р	В	R
Page	mW/m² Any kind of hf value C B,5 M M with of hf value C B,5 M M M with of hf value C B,5 M M M with of hf value C B,5 M M M Depth of top hf interval C B,5 M M Depth of bottom hf interval C B,5 M M Depth of hf probe C C S R M Depth of hf probe C C S S M M Depth of hf probe C C S S M M Depth of hf probe C	P11	total depth TVD	m	Total true vertical depth	Р	В	R
Page	mW/m² Any kind of hf value	P12	explo_method	-	Type of exploration method	Р	B,S	М
C1 9c uncertainty mW/m² Any kind of hf value C2 9c uncertainty mW/m² Uncertainty standard deviation (SD) of qc C 8,5 3c unethod - Method of hf calculation C C 8,5 4c 1,top m Depth of bottom hf interval C B,5 5c 1, bottom m Depth of bottom hf interval C B,5 5c 1, bottom m Depth of bottom hf interval C B,5 6c probe penetration m Penetration depth of probe C C 5 9c publication_reference - Uncertaint depth of probe C C 5 9c publication_reference - Uncertaint depth of probe C C 6 8c 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference - Uncertaint depth of probe C C 8,5 9c publication_reference defined to probe C C 8,5 9c publication_reference definition_reference determination at the top C 8,5 9c publication_reference determination at the top C 8,5 9c publication	mW/m² Uncertainty standard deviation (SD) of qc - Method of hf calculation - Bopth of top hf interval - Bopth of bottom hf interval - Uterature reference - Uterature reference - Uterature reference - Uterature references - Supporting literature references - Supporting literature references - Qc is used for computation of representative heat flow values at the parent level or not - Comments for child entries - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. - T data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warring, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the problem to the concerning the reported hf - Specifies the ocovection effects concerning the reported hf - Specifies the ocovection effects concerning the reported hf - Specifies the ocovection effects concerning the reported hf - Specifies the ocovection effects concerning the reported hf - Specifies the ocovection effects ocoverning the reported hf - Specifies the o	P13		-	Main purpose of exploration	Р	В	R
4_method	- Method of hf calculation	C1	qc	mW/m²	Any kind of hf value	С	B,S	М
G3 q_method - Method of hf calculation C B,5 C4 q_top m Depth of bottom hf interval C B,5 C5 q_bottom m Depth of bottom hf interval C B,5 C6 probe_penetration m Penetration depth of probe C S C7 publication_reference Literature reference C B,5 G3 data_reference Supporting literature references C B,5 C9 relevant_child - qc is used for computation of representative heat flow values at the parent level or not C B,5 C10 c. Comment - Comments for child entries C B,5 C11 corr_IS_flag - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. C B,5 C12 corr_T_flag - T data corrected for instrumental effects or not C B,5 C13 corr_S_flag - Specifies the esdimentation/subsidence effects concerning the concerning the reported hf C B,5 C14 corr_S_flag	- Method of hf calculation	C2	gc uncertainty	mW/m²	Uncertainty standard deviation (SD) of gc	С	B,S	R
C4 q_top m Depth of top hf interval C B,5 C5 q_bottom m Depth of top hf interval C B,5 C5 q_bottom m Depth of bottom hf interval C B,5 C7 publication_reference	m Depth of bottom hf interval C B M M n m Penetration depth of probe C S M M ence - Literature reference C C B,S M - Supporting literature references C B,S M C C B,S M - Qc is used for computation of representative heat flow values at the parent level or not C C B,S R - Qc is used for computation of representative heat flow values at the parent level or not C C B,S R - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not Totat corrected for instrumental effects or not C B,S M - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (5) concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the r	C3	g method	-	Method of hf calculation	С	B,S	М
Second S	m Penetration depth of probe - Literature reference - Literature references - Literature refer		-	m	Depth of top hf interval	С	B,S	М
Penetration depth of probe C S S	m Penetration depth of probe chece - Literature reference C B,S M chece - Literature reference C B,S M chece - Literature reference C B,S M check - Supporting literature references C B,S R check - Supporting literature references C B,S R check - Q qc is used for computation of representative heat flow values at the parent level or not check - Literature references C B,S R check - Q qc is used for computation of representative heat flow values at the parent level or not check - Comments for child entries check - Lin-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. check - Lin-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. check - Lin-situ pressure and temperature conditions were considered to C B,S M check - Specifies the sedimentation/subsidence effects concerning the reported hf check - Specifies the erosion effects concerning the reported hf check - Specifies the topographic effects concerning the reported hf check - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf check - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the refraction effects concerning the reported hf check - Specifies the refraction effects concerning the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the operature convection the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the convection effects concerning the reported hf check - Specifies the effects effect	C5		m	Depth of bottom hf interval	С	В	М
Description Company	ence - Literature reference C B,S M - Supporting literature references C B,S R - qt is used for computation of representative heat flow values at the parent level or not the parent level or not C B,S R - qt is used for computation of representative heat flow values at the parent level or not C C B,S R - c In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not T data corrected for instrumental effects or not C B,S M - Specifies the sedimentation/subsidence effects concerning the reported hf C B,S M - Specifies the sedimentation/subsidence effects concerning the reported hf C B,S M - Specifies the terosion effects concerning the reported hf C B,S M - Specifies the topographic effects concerning the reported hf C B,S M - Specifies the topographic effects concerning the reported hf C B,S M - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf C B,S M - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf C B,S M - Specifies the refraction effects concerning the reported hf C B,S M - Specifies the refraction effects concerning the reported hf C B,S M - Specifies the refraction effects concerning the reported hf C B,S M - Specifies the refraction effects concerning the reported hf C B,S M - Expedition, cruise, platform, or research vessel name or number C B,S R - Expedition, cruise, platform, or research vessel name or number C B,S R - C Bottom water temperature C S C S R - C Bottom water temperature C S S R - C Bottom water temperature C S S R - C Bottom water temperature C S S O S R - C Bottom water temperature C S S O S R - C Bottom water temperature C S S S S S S S S S S S S S S S S S S			m	·	С	S	М
C8 data_reference - Supporting literature references C B,S C9 relevant_child - qc is used for computation of representative heat flow values at the parent level or not C B,S C10 c_comment - Comments for child entries C B,S C11 corr_IS_flag - In-situ pressure and temperature conditions were considered to the parent level or not. C B,S C12 corr_IS_flag - T data corrected for instrumental effects on not C B,S C13 corr_S_flag - Specifies the sedimentation/subsidence effects concerning the reported hf C B,S C14 corr_S_flag - Specifies the estimatic conditions (glaciation, post-industrial C B,S C15 corr_DAL_flag - Specifies the climatic conditions (glaciation, post-industrial C B,S C16 corr_PAL_flag - Specifies the telmatic conditions (glaciation, post-industrial C B,S C17 cor_SUR_flag - Specifies the convention effects concerning the reported hf C	- Supporting literature references - q is used for computation of representative heat flow values at the parent level or not the parent level or not - Comments for child entries - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not It data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf	C7		-		С	B,S	М
relevant_child	the parent level or not Comments for child entries - Comments for child entries - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. - T data corrected for instrumental effects or not - T data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the terosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the convection (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (8) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf -			_				R
the parent level or not comment corr_IS_flag corr_IS_flag corr_T_flag corr_S_flag corr_S_	the parent level or not - Comments for child entries - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. - I data corrected for instrumental effects or not - T data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (8) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the conv			_				
Comment - Comments for child entries - Comments for child entries - C B,S C11 corr_IS_flag - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. C12 corr_T_flag - T data corrected for instrumental effects or not	- Comments for child entries - In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not T data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the teosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the limatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning the reported hf - Specifies the surface the refraction effects concerning t	03	relevant_ema		1.	Č	5,5	
C11 corr_IS_flag	- In-situ pressure and temperature conditions were considered to the reported thermal conductivity value or not. - T data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the version effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects the refraction effects the reported hf - Specifies the refra	C10	c comment	_	·	С	B.S	R
the reported thermal conductivity value or not. 1 corr_T_flag	the reported thermal conductivity value or not. T data corrected for instrumental effects or not Specifies the sedimentation/subsidence effects concerning the reported hf Specifies the erosion effects concerning the reported hf Specifies the erosion effects concerning the reported hf Specifies the topographic effects concerning the reported hf Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf Specifies the convection effects concerning the reported hf Specifies the refraction effects defe			_				
C12 corr_T_flag	- It data corrected for instrumental effects or not - Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (5) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction of respectation at the concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction of the samples his part and the concerni	011	15_11dg				5,5	
C13 corr_S_flag	- Specifies the sedimentation/subsidence effects concerning the reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (5) concerning the reported hf - Specifies the surface temperature variation (8) or bottom water temperature variation (5) concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - C Sp. M - Specifies the convection effects concerning the reported hf - C Sp. S M - Specifies the convection effects concerning the reported hf - C Sp. S M - Number of discrete temperature determination at the top - Number of discrete temperature points - Number of discrete temperature points - Number of discrete temperature points - Number of the samples - C Sp.	C12	corr T flag	_		С	B.S	М
reported hf C14	reported hf - Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Expedition, cruise, platform, or research vessel name or number where hf conducted - Type of hf probe - Expedition, cruise, platform, or research vessel name or number where hf conducted - Type of hf probe - Type of hf probe - Type of hf probe - Specifies the curve temperature - C S R - Dominant rock type for hf interval - Stratigraphic age of hf interval - The method used for temperature determination at the top - The method used for temperature determination at the top - The method used for temperature determination at the bottom - The method used for temperature determination at the bottom - The method dapplied at the bottom - The method applied at the bottom - C B R - Number of discrete temperature points - Number of discrete temperature points - Number of discrete temperature points - Number of the samples - Location of the samples - Location of the samples			_				
C14 corr_Eflag	- Specifies the erosion effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - C B,S M - C Specifies the refraction effects concerning the reported hf - C B,S M - Specifies the refraction effects concerning the reported hf - C B,S M - Specifies the refraction effects concerning the reported hf - C B,S M - Number of discrete temperature determination at the bottom - C B R - Number of discrete temperature points - Number of the samples - C B,S M - Number of the samples	010	55.155		<u> </u>		2,3	
C15 corr_TOPO_flag	- Specifies the topographic effects concerning the reported hf - Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects concerning the reported hf - Specifies the vertical effects on endough and vertical effects on the post of the samples concerning the reported hf - Specifies the vertical effects on the post of the samples concerning the reported hf - Specifies the vertical effects on the post of the samples concerning the reported hf	C14	corr_E_flag	-	<u> </u>	С	B,S	М
C16 corr_PAL_flag	- Specifies the climatic conditions (glaciation, post-industrial warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the convected problem on the reported hf - Specifies the convected problem on the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convected problem on the reported hf - Specifies the convected problem on the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the convected problem on the reported hf - Specifies the convected problem on the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects on the reported hf - Specifies the refrac	C15		-		С	B,S	М
warming, etc.) concerning the reported hf corr_SUR_flag - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf corr_CONV_flag - Specifies the convection effects concerning the reported hf C B,S C19	warming, etc.) concerning the reported hf - Specifies the surface temperature variation (B) or bottom water temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Expedition, cruise, platform, or research vessel name or number where he conducted - Type of hf probe - Type of hf probe - Type of hf probe - C S R - Meagree Tilt of probe - C S M - Stratigraphic age of hf interval - Dominant rock type for hf interval - Stratigraphic age of hf interval - Stratigraphic ag	C16		-		С	B,S	М
temperature variation (S) concerning the reported hf C18 corr_CONV_flag	temperature variation (S) concerning the reported hf - Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Expedition, cruise, platform, or research vessel name or number where hf conducted - Type of hf probe - Type of hf probe - Type of hf probe - C S R - Megree Tilt of probe - C S M - Bottom water temperature - Dominant rock type for hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf interval - K/km Measured T gradient - K/km Uncertainty (SD) of gradT - K/km Corrected T gradient - Ky_cor K/km Uncertainty (SD) of corrected gradT - The method used for temperature determination at the top - The method used for temperature determination at the bottom - The method used for temperature determination at the bottom - Time after end of drilling/end of mud circulation at the bottom - Correction method applied at the top - Correction method applied at the top - Correction method applied at the bottom - Number of discrete temperature points - Number of discrete temperature of C B,S M - W/(mK) Mean conductivity in vertical direction - Nature of the samples - Location of the samples - Coraction of the samples - Location of the samples - Location of the samples				<u> </u>			
C18 corr_CONV_flag	- Specifies the convection effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Specifies the refraction effects concerning the reported hf - Expedition, cruise, platform, or research vessel name or number where hf conducted - Type of hf probe - Type of hf probe - Type of hf probe - C S R - Megree Tilt of probe - C S M - C S M - Dominant rock type for hf interval - Dominant rock type for hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf interval - K/km Measured T gradient - K/km Uncertainty (SD) of gradT - K/km Uncertainty (SD) of corrected gradT - The method used for temperature determination at the top - The method used for temperature determination at the bottom - The method used for temperature determination at the top - Correction method applied at the top - Correction method applied at the bottom - Number of discrete temperature points - Nature of the samples - Location of the samples - C B,S M	C17	corr_SUR_flag	-	Specifies the surface temperature variation (B) or bottom water	С	B,S	М
C19 corr_HR_flag	- Specifies the refraction effects concerning the reported hf C B,S M Expedition, cruise, platform, or research vessel name or number where hf conducted C S R Where hf conducted C S R M Length of probe C S R M Length of probe C S R M Length of probe C S R M M Length of probe C S M M M Length of probe C S M M M Length of probe C S M M M M Length of probe C S M M M M Length of probe C S M M M M Length of probe C S M M M M Length of probe C S M M M M Length of probe C S M M M M Length of probe C S M M M M Length of the first of the fir				temperature variation (S) concerning the reported hf			
Expedition C Expedition, cruise, platform, or research vessel name or number where hf conducted C B,S	- Expedition, cruise, platform, or research vessel name or number where hf conducted - Type of hf probe - Type of hf probe - Mength of probe - C S R - Megree Tilt of probe - C S MM -	C18	corr_CONV_flag	-	Specifies the convection effects concerning the reported hf	С	B,S	М
where hf conducted C21 probe_type	where hf conducted - Type of hf probe - Type of hf probe - Length of probe - C S R - Megree Tilt of probe - Dominant rock type for hf interval - Dominant rock type for hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf interval - Stratigraphic age of hf or bear of type for hf interval - Stratigraphic age of hf or bear of type for hf interval - Stratigraphic age of hf or bear of type for hf interval - Stratigraphic age of hf or bear of type for hf interval - Stratigraphic age of hi interval - Stratigraphic age of hit interval - Stratigraphic age of by interval age of hit interval - Stratigraphi	C19	corr_HR_flag	-	Specifies the refraction effects concerning the reported hf	С	B,S	М
C21 probe_type	- Type of hf probe	C20	expedition	-		С	B,S	R
C22 probe length m Length of probe C S C23 probe_tilt degree Tilt of probe C S C24 water_temperature °C Bottom water temperature C S C25 geo_lithology - Dominant rock type for hf interval C B,S C26 geo_stratigraphy - Stratigraphic age of hf interval C B,S C26 geo_stratigraphy - Stratigraphic age of hf interval C B,S C27 T_grad_mean K/km Measured T gradient C B,S C28 T_grad_uncertainty K/km Uncertainty (SD) of gradT C B,S C30 T_grad_mean_cor K/km Uncertainty (SD) of corrected gradT C B,S C30 T_grad_uncertainty_cor K/km Uncertainty (SD) of corrected gradT C B,S C31 T_method_top - The method used for temperature determination at the top C B,S C31 T_method_bottom - The method used for temperature determination at the bottom C B	m Length of probe degree Tilt of probe re °C Bottom water temperature C S O Dominant rock type for hf interval C B,S O Stratigraphic age of hf interval C B,S O K/km Measured T gradient C B,S M Ky K/km Uncertainty (SD) of gradT C B,S O K/km Corrected T gradient C B,S O C B,S O C B,S M C K/km Uncertainty (SD) of corrected gradT C B,S O C C B,S O C C B,S R C C B,S M							
C23 probe_tilt degree Tilt of probe C S C24 water_temperature °C Bottom water temperature C S C25 geo_lithology - Dominant rock type for hf interval C B,S C26 geo_stratigraphy - Stratigraphic age of hf interval C B,S C27 T_grad_mean K/km Measured T gradient C B,S C28 T_grad_uncertainty K/km Uncertainty (SD) of gradT C B,S C29 T_grad_mean_cor K/km Corrected T gradient C B,S C30 T_grad_uncertainty_cor K/km Uncertainty (SD) of corrected gradT C B,S C31 T_method_top - The method used for temperature determination at the top C B C32 T_method_bottom - The method used for temperature determination at the bottom C B C33 T_shutin_top hr Time after end of drilling/end of mud circulation at the bottom C B C34 T_shutin_bottom hr Time after end of drilling/end of mud circul	degree Tilt of probe re °C Bottom water temperature - Dominant rock type for hf interval - Stratigraphic age of hf interval K/km Measured T gradient ty K/km Uncertainty (SD) of gradT C B,S O - K/km Uncertainty (SD) of corrected gradT C B,S O - The method used for temperature determination at the top The method used for temperature determination at the bottom hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R YYYY-MM The acquisition date of T data W/(mK) Mean conductivity in vertical direction W/(mK) Uncertainty (SD) of TC mean - Nature of the samples C B,S M C B,S M W/(mK) Uncertainty (SD) of TC mean - Nature of the samples C B,S M Location of the samples			-				
C24 water_temperature °C Bottom water temperature C S C25 geo_lithology - Dominant rock type for hf interval C B,S C26 geo_stratigraphy - Stratigraphic age of hf interval C B,S C27 T_grad_mean K/km Measured T gradient C B,S C28 T_grad_uncertainty K/km Uncertainty (SD) of gradT C B,S C29 T_grad_mean_cor K/km Corrected T gradient C B,S C30 T_grad_uncertainty_cor K/km Uncertainty (SD) of corrected gradT C B,S C31 T_method_top - The method used for temperature determination at the top C B C32 T_method_bottom - The method used for temperature determination at the bottom C B C33 T_shutin_top hr Time after end of drilling/end of mud circulation at the top C B C34 T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B C35 T_corr_top - Correction method applied at the top C B	re °C Bottom water temperature C S O - Dominant rock type for hf interval C B,S O - Stratigraphic age of hf interval C B,S O K/km Measured T gradient C B,S M ty K/km Uncertainty (SD) of gradT C B,S R K/km Corrected T gradient C B,S O - K/km Uncertainty (SD) of corrected gradT C B,S O - The method used for temperature determination at the top C B,S O - The method used for temperature determination at the bottom C B M hr Time after end of drilling/end of mud circulation at the top C B R hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M							
C25geo_lithology-Dominant rock type for hf intervalCB,SC26geo_stratigraphy-Stratigraphic age of hf intervalCB,SC27T_grad_meanK/kmMeasured T gradientCB,SC28T_grad_uncertaintyK/kmUncertainty (SD) of gradTCB,SC29T_grad_mean_corK/kmCorrected T gradientCB,SC30T_grad_uncertainty_corK/kmUncertainty (SD) of corrected gradTCB,SC31T_method_top-The method used for temperature determination at the topCBC32T_method_bottom-The method used for temperature determination at the bottomCBC33T_shutin_tophrTime after end of drilling/end of mud circulation at the topCBC34T_shutin_bottomhrTime after end of drilling/end of mud circulation at the bottomCBC35T_corr_top-Correction method applied at the topCBC36T_corr_bottom-Correction method applied at the bottomCBC37T_number-Number of discrete temperature pointsCB,SC38q_dateYYYY-MMThe acquisition date of T dataCB,SC40tc_uncertaintyW/(mK)Uncertainty (SD) of TC meanCB,SC41tc_source-Nature of the samplesCB,S	- Dominant rock type for hf interval C B,S O - Stratigraphic age of hf interval C B,S O K/km Measured T gradient ty K/km Uncertainty (SD) of gradT C B,S R K/km Corrected T gradient C B,S R K/km Uncertainty (SD) of corrected gradT C B,S O ty_cor K/km Uncertainty (SD) of corrected gradT C B,S O - The method used for temperature determination at the top C B M n - The method used for temperature determination at the bottom C B M hr Time after end of drilling/end of mud circulation at the top C B R hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M			- ŭ	·			
C26 geo_stratigraphy - Stratigraphic age of hf interval C B,S C27 T_grad_mean K/km Measured T gradient C B,S C28 T_grad_uncertainty K/km Uncertainty (SD) of gradT C B,S C29 T_grad_mean_cor K/km Corrected T gradient C B,S C30 T_grad_uncertainty_cor K/km Uncertainty (SD) of corrected gradT C B,S C31 T_method_top - The method used for temperature determination at the top C B C32 T_method_bottom - The method used for temperature determination at the bottom C B C33 T_shutin_top hr Time after end of drilling/end of mud circulation at the top C B C34 T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B C35 T_corr_top - Correction method applied at the top C B C36 T_corr_bottom - Correction method applied at the bottom C B C37 T_number - Number of discrete temperature points C B,S C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples	- Stratigraphic age of hf interval C B,S O K/km Measured T gradient C B,S M ty K/km Uncertainty (SD) of gradT C B,S R K/km Corrected T gradient C B,S O ty_cor K/km Uncertainty (SD) of corrected gradT C B,S O - The method used for temperature determination at the top C B M - The method used for temperature determination at the bottom C B M hr Time after end of drilling/end of mud circulation at the top C B R hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M							
C27T_grad_meanK/kmMeasured T gradientCB,SC28T_grad_uncertaintyK/kmUncertainty (SD) of gradTCB,SC29T_grad_mean_corK/kmCorrected T gradientCB,SC30T_grad_uncertainty_corK/kmUncertainty (SD) of corrected gradTCB,SC31T_method_top-The method used for temperature determination at the topCBC32T_method_bottom-The method used for temperature determination at the bottomCBC33T_shutin_tophrTime after end of drilling/end of mud circulation at the topCBC34T_shutin_bottomhrTime after end of drilling/end of mud circulation at the bottomCBC35T_corr_top-Correction method applied at the topCBC36T_corr_bottom-Correction method applied at the bottomCBC37T_number-Number of discrete temperature pointsCB,SC38q_dateYYYY-MMThe acquisition date of T dataCB,SC39tc_meanW/(mK)Mean conductivity in vertical directionCB,SC40tc_uncertaintyW/(mK)Uncertainty (SD) of TC meanCB,SC41tc_source-Nature of the samplesCB,S	K/km Measured T gradient ty K/km Uncertainty (SD) of gradT C B,S R K/km Corrected T gradient C B,S O Ty_cor K/km Uncertainty (SD) of corrected gradT C B,S O The method used for temperature determination at the top The method used for temperature determination at the bottom The method used for temperature determination at the bottom Time after end of drilling/end of mud circulation at the top Time after end of drilling/end of mud circulation at the bottom C B R Time after end of drilling/end of mud circulation at the bottom C B R Correction method applied at the top C B R - Correction method applied at the bottom C B R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples		<u> </u>					
T_grad_uncertainty	ty K/km Uncertainty (SD) of gradT C B,S R K/km Corrected T gradient C B,S O ty_cor K/km Uncertainty (SD) of corrected gradT C B,S O - The method used for temperature determination at the top C B M n - The method used for temperature determination at the bottom C B M hr Time after end of drilling/end of mud circulation at the top C B R hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M							
C29T_grad_mean_corK/kmCorrected T gradientCB,SC30T_grad_uncertainty_corK/kmUncertainty (SD) of corrected gradTCB,SC31T_method_top- The method used for temperature determination at the topCBC32T_method_bottom- The method used for temperature determination at the bottomCBC33T_shutin_tophrTime after end of drilling/end of mud circulation at the topCBC34T_shutin_bottomhrTime after end of drilling/end of mud circulation at the bottomCBC35T_corr_top- Correction method applied at the topCBC36T_corr_bottom- Correction method applied at the bottomCBC37T_number- Number of discrete temperature pointsCB,SC38q_dateYYYY-MMThe acquisition date of T dataCB,SC39tc_meanW/(mK)Mean conductivity in vertical directionCB,SC40tc_uncertaintyW/(mK)Uncertainty (SD) of TC meanCB,SC41tc_source- Nature of the samplesCB,S	K/km Corrected T gradient ty_cor K/km Uncertainty (SD) of corrected gradT The method used for temperature determination at the top The method used for temperature determination at the bottom The method used for temperature determination at the bottom The method used for temperature determination at the bottom Time after end of drilling/end of mud circulation at the top Time after end of drilling/end of mud circulation at the bottom C B R Correction method applied at the top C B R Correction method applied at the bottom C B R Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M Location of the samples C B,S M		=======================================		<u> </u>			
T_grad_uncertainty_cor K/km Uncertainty (SD) of corrected gradT C B,S T_method_top - The method used for temperature determination at the top C B T_method_bottom - The method used for temperature determination at the bottom C B T_shutin_top hr Time after end of drilling/end of mud circulation at the top C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_corr_top - Correction method applied at the top C B T_corr_bottom - Correction method applied at the bottom C B T_number - Number of discrete temperature points C B,S T_mumber - Number of discrete temperature points C B,S T_man C B,S T_m	ty_cor K/km Uncertainty (SD) of corrected gradT							
T_method_top - The method used for temperature determination at the top C B T_method_bottom - The method used for temperature determination at the bottom C B T_shutin_top hr Time after end of drilling/end of mud circulation at the top C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_corr_top - Correction method applied at the top C B T_corr_bottom - Correction method applied at the bottom C B T_corr_bottom - Number of discrete temperature points C B,S T_number - Number of discrete temperature points C B,S T_cass q_date YYYY-MM The acquisition date of T data C B,S T_cmean W/(mK) Mean conductivity in vertical direction C B,S T_cuncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C40 tc_uncertainty - Nature of the samples C B,S	- The method used for temperature determination at the top C B M - The method used for temperature determination at the bottom C B M - Time after end of drilling/end of mud circulation at the top C B R - Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R - Number of discrete temperature points C B,S R - YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M						<u> </u>	
T_method_bottom - The method used for temperature determination at the bottom C B T_shutin_top hr Time after end of drilling/end of mud circulation at the top C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B T_corr_top - Correction method applied at the top C B T_corr_bottom - Correction method applied at the bottom C B T_number - Number of discrete temperature points C B,S T_number - Number of discrete temperature points C B,S T_mumber - Number of	hr Time after end of drilling/end of mud circulation at the top C B R hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M			-	, , ,			М
C34 T_shutin_bottom hr Time after end of drilling/end of mud circulation at the bottom C B C35 T_corr_top - Correction method applied at the top C B C36 T_corr_bottom - Correction method applied at the bottom C B C37 T_number - Number of discrete temperature points C B,S C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	hr Time after end of drilling/end of mud circulation at the bottom C B R - Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S M - Nature of the samples C B,S M - Location of the samples C B,S M	C32		-	The method used for temperature determination at the bottom	С	В	М
C35 T_corr_top - Correction method applied at the top C B C36 T_corr_bottom - Correction method applied at the bottom C B C37 T_number - Number of discrete temperature points C B,S C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	- Correction method applied at the top C B R - Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M	C33	T_shutin_top	hr	Time after end of drilling/end of mud circulation at the top	С	В	R
C36 T_corr_bottom - Correction method applied at the bottom C B C37 T_number - Number of discrete temperature points C B,S C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	- Correction method applied at the bottom C B R - Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M				5		В	R
C37 T_number - Number of discrete temperature points C B,S C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	- Number of discrete temperature points C B,S R YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M	C35	T_corr_top	-	Correction method applied at the top	С	В	R
C38 q_date YYYY-MM The acquisition date of T data C B,S C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	YYYY-MM The acquisition date of T data C B,S M W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M	C36	T_corr_bottom	-	Correction method applied at the bottom	С	В	R
C39 tc_mean W/(mK) Mean conductivity in vertical direction C B,S C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	W/(mK) Mean conductivity in vertical direction C B,S M W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M		T_number		Number of discrete temperature points	С	B,S	R
C40 tc_uncertainty W/(mK) Uncertainty (SD) of TC mean C B,S C41 tc_source - Nature of the samples C B,S	W/(mK) Uncertainty (SD) of TC mean C B,S R - Nature of the samples C B,S M - Location of the samples C B,S M	C37		YYYY-MM	·		B,S	М
C41 tc_source - Nature of the samples C B,S	- Nature of the samples C B,S M - Location of the samples C B,S M		q_date		In A company of the Administration of the Ad	٠ _	DС	М
	- Location of the samples C B,S M	C38 C39		- ` '				
land the second		C38 C39 C40	tc_mean tc_uncertainty	- ` '	Uncertainty (SD) of TC mean	С	B,S	R
	I - IMethod used for TC determination I C I R S I M I	C38 C39 C40 C41	tc_mean tc_uncertainty tc_source	W/(mK)	Uncertainty (SD) of TC mean Nature of the samples	C C	B,S B,S	R M
C43 tc_method - Method used for TC determination C B,S	- Saturation state of the rock sample C B,S M	C38 C39 C40 C41 C42	tc_mean tc_uncertainty tc_source tc_location	W/(mK) - -	Uncertainty (SD) of TC mean Nature of the samples Location of the samples	C C	B,S B,S B,S	R M M
	- Invertion used for 1C determination I (I R < I	C30		-	Number of discrete temperature points The acquisition date of T data	C C	B,S B,S	

C45	tc_pT_conditions	-	pT conditions of TC determination	С	B,S	М
C46	tc_pT_fuction	-	Technique or approach used to consider pT conditions	С	B,S	R
C47	tc_number	-	Number of discrete TC determinations	С	B,S	М
C48	tc_strategy	-	Strategy to estimate the TC over the vertical hf interval	С	B,S	R
C49	Ref_ISGN	-	International Generic Sample Numbers	С	B,S	0
	Reviewer_name	-		Α	-	-
	Reviewer_comment	-		Α	-	-
	Review_date	-		Α	-	-
	Review_status	-		Α	-	-
	Country	-		Α	-	-
	Region	-		Α	-	-
	Continent	-		Α	-	-
	Domain	-	Continental/marine	Α	-	-
	Year	-	Year of publication	Α	-	-
	Quality code	-	According to IHFC quality standards - Fuchs et al. (2023)	Α	-	-
	ID_location		ID of location (parent heat flow)	Α	-	-
	ID	-	Unique ID of heat flow entry	Α	-	-

Table 1: Table columns of data table.

5. Change log and revision status

The database release 2024 is an update of the 2023 release (Global Heat Flow Assessment Group et al., 2023). The following actions took place:

- 1) New data from 176 publications (141 continental, 35 marine) with 12,113 data, published between 1954 and 2024, have been accepted.
- 2) Data from 549 publications, with 29,809 data points, already contained in the 2023 release, have been systematically quality assessed.

Figure 2: Change from release 2023 to release 2024

Compared to the last IHFC database release of 2023 (73,033 heat-flow data), 91,182 heat-flow data (71,891 locations) from 1,586 publications have been considered for the present release. Circa 46% of data (725 publications with 41,922 data from 23,925 sites) were revised by 42 contributors. For the reassessed historical data, mandatory data fields are filled to 83%, while this is the case for only 35% of the data not assessed yet. 48% of the marine data and 45% of the global continental data are updated so far (an overall rate of 46% of data compared to 18% in 2023). Ongoing work aims to finish the continental data before improving the marine data.

5.1 Newly added publications:

Akhmedzyanov_etal._2012b, Alfaro_etal._2010, Avetisyyants_etal._1968, Bachu_etal._1995, Bakhova_2021, Balkan-Pazvantoglu_etal._2021, Beltran_Quintanilla_2001, Bertaux_etal._1978, Brock_etal._1991, Bullard_1954,

Catalan_etal._2023, Chavez_etal._2000, Dorofeeva_etal._1995, Duchkov_etal._1979, Duchkov_etal._1980, Duchkov_etal._1989, Duchkov_etal._1992, Duchkov_etal._1999a, Duchkov_etal._2001, Duchkov_etal._2010, Duchkov etal. 2023, Duchkov Rakityansky 1989, Dzhamalova 1969, Eckstein 1977, Eckstein Maurath 1995, Ehara 1971a, Ehara 1977, Erkan 2015, Erkan Balkan-Pazvantoglu 2023, Ewing etal. 1961, Feng etal. 2019, Flueh Grevemeyer 2005, Folinsbee 1969, Fotiadi etal. 1969, Francheteau etal. 1984, Fytikas Kolios 1979, Gable 1979a, Gerner_etal._2012, Gettings_1982, Gettings_1983, Gettings_Showail_1982, Golovanova_1997b, Golubev_1978, Gomes_etal._2021, Gonzalez-Lopez_1997, Gordienko_etal._2005, Gordienko_etal._2013, Gordienko_etal._2014, Gordienko etal. 2015a, Gordienko etal. 2015b, Gordienko etal. 2018, Gornov 2009, Goswami etal. 2024, Gregory etal. 2023, Gupta etal. 2014, Gupta Gaur 1984, Gupta Sharma 2018, Haenel Zoth 1982, He Middleton 2002, Hendrawan Draniswari 2016, Horai 1959, Horai 1963a, Horai 1963b, Horai 1963c, Ilkisik etal. 1996, Ilkisik etal. 1997, Iriyama_1981, Iriyama_1995, Jones_etal._2011, Jones_Schreiber-Enslin_2022, Kanyuan_etal._1994, Khutorskoy_etal._1986b, Khutorskoy_etal._2013, Khutorskoy_Polyak_2014, Kirkby_Gerner_2010, Kirkby_Gerner_2013, Kutas etal. 1976, LaCruz etal. 2020, Lesquer etal. 1988, Liao etal. 2023, Louden Mareschal 1996, Lucazeau Rolandone 2012, Lysak 1974, Lyubimova etal. 1964b, Macgregor 2020, Matsumoto etal. 2022, Matvienko_Sergienko_1976c, McGiveron_Jong_2018, Mesecar_1968, Moiseenko_etal._1973, Moiseenko_Sokolova_1967a, Moiseenko_Sokolova_1967b, Morgan_etal._1980, Nagihara_etal._1993, Neumann_etal._2023, Norvell_etal._2023, Pandey_1981a, Pandey_1991, Phillips_etal._1969, Pigott_Betis_1996, Podugu_etal._2017, Prol-Ledesma_etal._2013, Prol-Ledesma_etal._2021, Puzankov_etal._1977, Qiu_etal._2022, Rao_etal._1970b, Rao_etal._1976, Rao_Rao_1980, Ray_2021, Reitzel_1961b, Rimi_Lucazeau_1991, Roded_2012, Roded_etal._2013, Roy_2008, Roy_Decker_1965, Roy_etal._2003, Roy etal. 2007, Salnikov 1984, Sanchez-Zamora etal. 1991, Savostin 1979, Savostin etal. 1974, Sayin Guerer 2021, Schoonmaker Ladd 1984, Schuetz etal. 2014, Sertsrivanit 1984, Shcherbakov Dvorov 1985, Shen 1993, Smirnov etal. 1974b, Smirnov etal. 1983b, Smith Griffin 1977, Soinov Veselov 1979, Sokolova Duchkov 1993, Sugrobov etal. 1983a, Sugrobov etal. 1983b, Suleiman 1985, Takherist 1991, Talebi etal. 2014, Taylor 2017, Taylor_etal._2016, Taylor_Mather_2015, Thienprasert_etal._1978, Tsybulya_Zhuk_1985, Tuezov_etal._1986a, Tuezov etal. 1986b, Uyeda etal. 1958, Uyeda etal. 1964, Uyeda etal. 1978a, Uyeda etal. 1978b, Uyeda etal. 1980, Uyeda Horai 1960, Uyeda Horai 1963a, Uyeda Horai 1963b, Veliciu Demetrescu 1979, Verma etal. 1967, Verma_etal._1968b, Verma_Narain_1968, Verma_Rao_1965, Vermeesch_etal._2004, Verzhbitsky_etal._2007, Veselov_etal._1975a, Veselov_etal._1976a, Veselov_etal._1978a, Veselov_Kozlov_2014, Wang_etal._2001b, Watanabe_etal._1980, Weber_etal._2011, Whiteford_1992, Whiteford_1996, Whiteford_Graham_1994, Windisch_etal._1962, Xu_etal._2019, Zhang_etal._2020a, Zolotarev_etal._1979b, Zolotarev_Sochelnikov_1980, Zui Zhuk 2006, Zuo etal. 2020,

5.2 Quality-assessed publications:

Afandi etal. 2021, Albert-Beltran 1979, Anderson 1975, Anderson etal. 1976a, Anderson etal. 1976b, Anderson_etal._1977, Anderson_etal._1978b, Anderson_Hobart_1976, Anderson_VonHerzen_1978, Andreescu_etal._1989, Arnaiz-Rodriguez_Orihuela_2013, Ashirov_1985, Atroshchenko_1975, Balkan-Pazvantoglu_Erkan_2019, Ballard_etal._1987, Barr_etal._1979, Beardsmore_2004, Beardsmore_2005, Beardsmore Altmann 2002, Beck Mustonen 1972, Ben-Avraham etal. 1978, Ben-Avraham VonHerzen 1987, Berndt_etal._2015, Birch_1956, Birch_1964, Birch_1965, Birch_1970, Birch_Halunen_1966, Blackman_etal._1987, Boccaletti_etal._1977, Bojadgieva_etal._1991, Boldizsar_1956a, Boldizsar_1959, Boldizsar_1963, Boldizsar_1964a, Boldizsar_1964b, Boldizsar_1965, Boldizsar_1966, Boldizsar_1967, Boldizsar_1975, Bookman_etal._1972, Boulos_1987, Boulos 1990, Bowin etal. 1980, Brigaud etal. 1985, Brock 1989, Brock Barton 1984, Brun Lucazeau 1988, Brunnerova etal. 1975, Bucher 1980, Bullard 1939, Bullard Day 1961, Bullard etal. 1956, Burch Langseth 1981, Burgassi etal. 1970, Burns 1964, Burns 1970, Burns Grim 1967, Camelo 1987, Carte 1954, Carte VanRooyen 1969, Carvalho etal. 1980, Carvalho Vacquier 1977, Cermak 1967a, Cermak 1967b, Cermak 1968a, Cermak 1968b, Cermak 1968c, Cermak 1968d, Cermak 1968e, Cermak 1975a, Cermak 1975b, Cermak 1977a, Cermak 1977b, Cermak_etal._1968a, Cermak_etal._1968b, Chapman_Pollack_1974, Chapman_Pollack_1977, Chukwueke_1987, Chukwueke_1990, Chukwueke_etal._1992, Clark_1961, Clark_etal._1978, Cochran_1981, Collette_etal._1968, Coster_1947, Crowe_1981, Cull_1980, Cull_1982, Cull_1991, Cull_Denham_1979, Curray_etal._1978a, Curray_etal._1978b, Curray_etal._1978c, Dao_Huyen_1995, Davis_Lister_1977, Decker_Bucher_1983, Degens_etal._1971, Degens_etal._1973, Delisle 2011, Delisle Zeibig 2007, DellaVedova etal. 1984, DellaVedova etal. 1992, DellaVedova Pellis 1979, DellaVedova_Pellis_1986b, Devyatkin_Shamshurin_1978, Diment_Weaver_1964, Dorofeeva_1992, Dorofeeva_Duchkov_1995, Dovenyi_etal._1983, Duchkov_etal._1976, Duchkov_etal._1977, Duchkov_etal._1978, Duchkov Kazantsev 1985, Duchkov Kazantsev 1988, Duchkov Sokolova 1974, Duennebier etal. 1987, Duque Mendes-Victor 1993, Ebinger etal. 1987, Eckstein 1976, Eckstein 1979, Eckstein etal. 1982, Eckstein Simmons 1978, Ehara 1979, Eldholm etal. 1999, Epp etal. 1970, Erickson 1970, Erickson 1973, Erickson etal. 1972, Erickson etal. 1975, Erickson etal. 1977, Erickson etal. 1979, Erickson Hyndman 1979, Erickson Simmons 1969, Erickson_Simmons_1974, Erickson_VonHerzen_1978a, Erickson_VonHerzen_1978b, Espinoza-Ojeda_etal._2017, Evans_1975, Evans_Tammemagi_1974, Fanelli_etal._1974, Feinstein_etal._1996, Feng_etal._2009, Fernandez_etal._1998,

Fisher_etal._2001, Flores-Marquez_etal._1999, Foerster_etal._2007, Foster_1962, Foster_etal._1974, Foucher_Sibuet_1979, Funnell_etal._1996, Furukawa_etal._1998, Gable_1979b, Gable_1980, Gable_Watermez_1979, Galanis_etal._1986, Gallagher_1987, Gallagher_1990, Garcia-Estrada_etal._2001, Geilert_etal._2018, Gerard_etal._1962, Gettings 1981, Girdler 1970, Girdler etal. 1974, Golovanova etal. 2001, Golubev 1982, Golubev 1992, Golubev Poort 1995, Gordienko Kutas 1971a, Gordienko Zavgorodnyaya 1988, Gough 1963, Goutorbe etal. 2008a, Goutorbe_etal._2008b, Green_etal._1981, Grevemeyer_etal._2009, Grevemeyer_etal._2017, Griffin_etal._1977, Grim_1969, Gupta_1981, Gupta_etal._1967, Gupta_etal._1970, Gupta_etal._1987, Gupta_etal._1991a, Gupta_etal._1993, Gupta Rao 1970, Haenel 1972a, Haenel 1972b, Haenel 1974c, Haenel 1974d, Haenel 1979a, Haenel etal. 1974, Halunen VonHerzen 1973, Harder etal. 1995, He etal. 2006, Henry Pollack 1988, Hentinger Jolivet 1967, Hentinger Jolivet 1970, Henyey Bischoff 1973, Herman etal. 1977, Herman etal. 1978, Hobart etal. 1975, Hobart_etal._1985, Honda_etal._1979, Horai_1964, Horai_etal._1970, Horvath_etal._1979, Houseman_etal._1989, Howard_Sass_1964, Hsu_1975, Hurter_Pollack_1996, Hyndman_1976, Hyndman_etal._1968, Hyndman_etal._1969, Hyndman etal. 1974b, Hyndman etal. 1976, Hyndman etal. 1978, Hyndman Everett 1968, Hyndman Rankin 1972, Hyndman Sass 1966, Ismail Yousoff 1985, Jaeger 1970, Jessop Judge 1971, Jiang etal. 2016b, Jones 1987, Jones 1988, Jones_1992, Jongsma_1974, Kasameyer_etal._1972a, Kaul_etal._2000, Khutorskoy_1996b, Khutorskoy_etal._1986a, Khutorskoy_etal._1990, Khutorskoy_etal._1994, Khutorskoy_etal._2009, Kido_etal._1993, Kim_Lee_2007, Kinoshita_etal._1989, Kinoshita_etal._1990, Kinoshita_etal._1991a, Kinoshita_etal._1991b, Kitajima_etal._2001, Kono Kobayashi 1971, Kononov etal. 1990, Korgen etal. 1971, Kostadinoff Reartes 1993, Kubik etal. 1986, Kutas_etal._1992, Kutas_etal._2003, Lachenbruch_Marshall_1966, Lachenbruch_Marshall_1968, Langseth_etal._1965, Langseth etal. 1966, Langseth etal. 1970, Langseth etal. 1971, Langseth etal. 1972, Langseth etal. 1974, Langseth etal. 1988b, Langseth etal. 1992, Langseth Grim 1964, Langseth Hobart 1976, Langseth Taylor 1967, Langseth_Zielinski_1974, Lavenia_1967, Law_etal._1965, Lawver_1975, Lawver_etal._1973, Lawver_etal._1975, Lawver Taylor 1987, Lawver Williams 1979, Lee Cheng 1986, Lee Henyey 1975, Lee VonHerzen 1975, LeGal_etal._2018, Lekuthai_etal._1995, LeMarne_Sass_1962, Lesquer_etal._1989, Lesquer_etal._1991, Levitte_etal._1984, Lewis_1983, Lewis_Hyndman_1976, Li_etal._1989, Lilley_etal._1977, Lister_1963a, Lister_1963b, Lister_1970a, Lister 1970b, Lister 1972, Lister Reitzel 1964, Liu etal. 2015, Loddo Mongelli 1975, Louden etal. 1997, Lu etal. 1981, Lu_etal._2005, Lucazeau_Dhia_1989, Lucazeau_etal._2004, Lucazeau_etal._2010, Lucazeau_etal._2015, Ludwig_Rabinowitz_1975, Lysak_Zorin_1976, Lyubimova_1969, Lyubimova_etal._1969, Lyubimova_etal._1972a, Lyubimova_etal._1972b, Lyubimova_etal._1973a, Lyubimova_etal._1974a, Lyubimova_etal._1976, Lyubimova_Savostin_1973, Lyubimova_Shelyagin_1966, MacDonald_2009, Macdonald_etal._1973, Macelloni_etal._2015, Madon Jong 2021, Majorowicz 1973b, Makarenko etal. 1970, Marshall Erickson 1974, Martinelli etal. 1995, Martinez Cochran 1989, Mas etal. 2000, Matsubara 1981, Matsubayashi etal. 1979, Matsubayashi Uyeda 1979, Matthews_Beardsmore_2007, Matthews_etal._2013, Maxwell_Revelle_1956, Medici_Rybach_1995, Melnikov_etal._1972, Middleton 1979a, Miridzhanyan 1983, Mizutani etal. 1970, Mizutani Yokokura 1982, Moiseenko etal. 1971, Moiseenko etal. 1972, Moller etal. 2018, Mongelli Ricchetti 1970a, Mongelli Ricchetti 1970b, Morgan 1973, Morgan etal. 1976, Morgan etal. 1983, Morgan etal. 1985, Morgan Swanberg 1979, Munroe etal. 1975, Muraviev_etal._1988, Nagao_etal._2002, Nagao_Uyeda_1989, Nagaraju_etal._2012, Nagasaka_etal._1970, Nagasawa_Komatsu_1979, Nagihara_etal._1989, Nakamura_Wakita_1982, Nason_Lee_1962, Nason_Lee_1964, Negrete-Aranda_etal._2021, Neumann_etal._2017, Nurusman_Subono_1995, Nyblade_1997, Nyblade_etal._1990, Nyblade_etal._1996, Onuoha_Ekine_1999, Oryan_etal._2019, Ostrihansky_1980, Palmason_1967, Palmason_1973, Pandey_1981b, Parasnis_1975, Parasnis_1982, Paterson_Law_1966, Pena-Dominguez_etal._2022, Peng_etal._2015, Pfister_etal._1998, Pollett_etal._2019a, Pollett_etal._2019b, Polyak_etal._1996, Poort_Klerkx_2004, Popov_etal._2021, Popova 1974, Prol-Ledesma etal. 1989, Prol-Ledesma etal. 2018, Puranen etal. 1968, Purss Cull 2001, Pye Hyndman 1972, Rabinowitz Ludwig 1980, Raksaskulwong Thienprasert 1995, Ramaekers 1991, Rao 1970, Rao etal. 1970a, Rao etal. 2013, Rao Rao 1974, Rao Rao 1983, Ray etal. 2003, Reiter Tovar 1982, Reitzel 1961a, Reitzel 1963, Revelle Maxwell 1952, Reznik Bartov 2021, Rhea etal. 1964, Rimi 1990, Rimi etal. 1998, Rimi Lucazeau 1987, Risk Hochstein 1974, Rolandone etal. 2020, Roy etal. 2008, Roy Rao 1999, Roy Rao 2000, Ryan 1969, Rybach Finckh 1979, Safanda etal. 1995, Salnikov 1976a, Salnikov 1976b, Sarkar Singh 2005, Sass Behrendt 1980, Sass etal. 1971a, Sass etal. 1974, Sass LeMarne 1963, Sass Munroe 1970, Sato etal. 1984, Schroeder_etal._2011, Schubert_Peter_1974, Schuech_1973, Schuetz_etal._2012, Schuetz_etal._2018, Sclater_1966, Sclater_Corry_1967, Sclater_Crowe_1979, Sclater_Erickson_1974, Sclater_etal._1970a, Sclater_etal._1970b, Sclater_etal._1970c, Sclater_etal._1971, Sclater_etal._1972, Sclater_etal._1974b, Sclater_etal._1976, Sclater Klitgord 1973, Sebagenzi etal. 1993, Seck 1984, Sestini 1970, Shalev etal. 2013, Shastkevich Zabolotnik 1975, Shelyagin_etal._1973, Shen_etal._1984, Shevaldin_etal._1987, Shevaldin_etal._1988, Simpson_1987, Skinner_1985, Smirnov_etal._1970, Smirnov_etal._1976, Smirnov_etal._1991b, Smith_1974, Smith_etal._1979, Soinov_etal._1997, Sokolova Duchkov 1982, Sokolova Duchkov 2008, Sokolova etal. 1972, Springer Foerster 1998, Stein Cochran 1985, Studt Thompson 1969, Sun etal. 2005, Sun etal. 2006, Sundar etal. 1990, Taktikos 1991, Talwani etal. 1971, Tammemagi Wheildon 1974, Tammemagi Wheildon 1977, Tezcan Turgay 1991, Thamrin 1986, Thienprasert Raksaskulwong 1984, Thompson 1977, Tomara et al. 1984, Townend 1997, Townend 1999, Tsaturyants etal. 1970, Tsukahara 1976, Tsybulya Urban 1984, Uyeda etal. 1962, Uyeda etal. 1973,

Uyeda_etal._1982a, Uyeda_etal._1982b, Uyeda_Horai_1964, Uyeda_Horai_1982, Uyeda_Watanabe_1982, Vacquier_1981, Vacquier_etal._1966, Vacquier_etal._1967, Vacquier_Taylor_1966, Vacquier_VonHerzen_1964, VanGool_etal._1987, Vartanyan_Gordienko_1984, Veliciu_etal._1977, Veliciu_Visarion_1984, Verheijen_Ajakaiye_1979, Verma_etal._1966, Verma_etal._1968a, Verma_etal._1969, Verzhbitsky_etal._2005, Verzhbitsky_Zolotarev_1989, Veselov_etal._1974a, Vigneresse_etal._1987, Vitorello_etal._1980, VonHerzen_1959, VonHerzen_1963, VonHerzen_1964, VonHerzen_1973, VonHerzen_Anderson_1972, VonHerzen_etal._1970, VonHerzen_etal._1971, VonHerzen_etal._1974, VonHerzen_Langseth_1965, VonHerzen_Maxwell_1964, VonHerzen_Simmons_1972, VonHerzen_Uyeda_1963, VonHerzen_Vacquier_1966, VonHerzen_Vacquier_1967, Wang_etal._2002, Watanabe_etal._1975, Watremez_1980, Wheildon_etal._1977, Wheildon_etal._1994, Whiteford_1990, Williams_etal._1974, Williams_etal._1977, Williams_etal._1979a, Williams_etal._1979b, Williamson_1975, Wimbush_Sclater_1971, Xu_etal._1995b, Xu_etal._2011, Xu_etal._2021, Yamano_1985a, Yamano_etal._1981, Yamano_etal._1984, Yamano_etal._1986a, Yamano_etal._1986b, Yamano_etal._1987, Yamano_etal._1989, Yamazaki_1992a, Yasui_etal._1963, Yasui_etal._1966, Yasui_etal._1967, Yasui_etal._1968b, Yasui_etal._1968b, Yasui_etal._1970, Yasui_Watanabe_1965, Yuan_etal._2006, Zhang_etal._2018, Zheng_etal._2016, Ziagos_etal._1985, Zolotarev_Kobzar_1980, Zolotarev_Sochelnikov_1988, Zu_etal._1996, Zuo_etal._2013,

6. Acknowledgements

This work continues a tradition of the International Heat Flow Commission (IHFC) to periodically publish releases of the Global Heat Flow Database (e.g., Lee and Uyeda, 1965; Simmons and Horai, 1968; Jessop et al., 1976; Pollack et al., 1993; Gosnold and Panda, 2002; IHFC, 2012; Global Heat Flow Compilation Group, 2013; Fuchs et al., 2021b; Global Heat Flow Data Assessment Group et al., 2023). We gratefully acknowledge the contributions of present and past members of the International Heat Flow Commission (IHFC; www.ihfc-iugg.org) and the broader international heat-flow community. We also acknowledge funding provided by the German Research Foundation (DFG), the International Lithosphere Program (ILP), the Project InnerSpace, The Helmholtz Centre Potsdam German Research Centre for Geosciences GFZ, respectively, as well as support of the International Geothermal Association (IGA).

7. References

- Fuchs, S.; Beardsmore, G.; Chiozzi, P.; Espinoza-Ojeda, O. M.; Gola, G.; Gosnold, W.; Harris, R.; Jennings, S.; Liu, S.; Negrete-Aranda, R.; Neumann, F.; Norden, B., Poort, J.; Rajver, D.; Ray, L.; Richards, M.; Smith, J.; Tanaka, A.; Verdoya, M. (2021a) A new database structure for the IHFC Global Heat Flow Database. International Journal of Terrestrial Heat Flow and Applied Geothermics 4(1), 14p. https://doi.org/10.31214/ijthfa.v4i1.62
- Fuchs, S.; Norden, B.; International Heat Flow Commission (2021b) The Global Heat Flow Database: Release 2021. GFZ Data Services. https://doi.org/10.5880/fidgeo.2021.014
- Fuchs, S.; Norden B.; Neumann, F.; Kaul, N.; Akiko Tanaka, Kukkonen, I. T.; Pascal, C.; Christiansen, R.; Gola, G.; Šafanda, J.; Espinoza-Ojeda, O.M.; Marzan, I.; Rybach, L.; Balkan-Pazvantoğlu, E.; Ramalho, E.C.; Dědeček, P.; Negrete-Aranda, R.; Balling, N.; Poort, J.; Wang, Y.; Jõeleht, A; Rajver, D.; Gao, X.; Liu, S.; Harris, R.; Richards, M.; McLaren, S.; Chiozzi P.;, Nunn, J.; Madon, M.; Beardsmore, G.; Funnell, R.; Duerrast, H.; Jennings, S.; Elger, K.; Pauselli, C.; Verdoya, M. (2023) Quality-assurance of heat-flow data: The new structure and evaluation scheme of the IHFC Global Heat Flow Database, Tectonophysics, Volume 863, 2023. https://doi.org/10.1016/j.tecto.2023.229976
- Global Heat Flow Compilation Group (2013) Component parts of the World Heat Flow Data Collection. PANGAEA, https://doi.org/10.1594/PANGAEA.810104
- Global Heat Flow Data Assessment Group; Fuchs, S.; Neumann, F.; Norden, B.; Beardsmore, G.; Chiozzi, P.; Colgan, W.; Anguiano D., Ana P.; Duque, M. R. A.; Ojeda Espinoza, O. M.; Forster, F.; Förster, A.; Fröhder, R.; Fuentes, K.; Hajto, M.; Harris, R.; Jõeleht, A.; Liebing, H.; Liu, S.; Lüdtke, G.; Madon, M.; Negrete-Aranda, R.; Poort, J.; Reznik, I. J.; Riedel, M.; Rolandone, F.; Stål, T.; Verdoya, M.; Wu, J.-N. (2023): The Global Heat Flow Database: Update 2023. V. 1. GFZ Data Services. https://doi.org/10.5880/fidgeo.2023.008
- Gosnold, W.; Panda, B. (2002) The global heat flow database of the International Heat Flow Commission.
- IHFC (2012) Global Heat Flow Database. *The Global Heat Flow Database of the International Heat Flow Commission (IHFC)*, University of North Dakota, USA; (data copied, 2012-10), http://www.heatflow.und.edu/index2.html (link expired)
- Jessop, A.M.; Hobart, M. A.; Sclater, J. G. (1976) The World Heat Flow Data Collection 1975. Geological Survey of Canada, Earth Physics Branch, Geothermal Series, 5, https://doi.org/10. https://doi.org/10013/epic.40176.d002

Lee, W. H. K.; Uyeda, S. (1965) Review of Heat Flow Data. In Terrestrial Heat Flow (pp. 87-190): American Geophysical Union. Pollack, H. N.; Hurter, S. J.; Johnson, J. R. (1993) Heat flow from the earth's interior: analysis of the global data set. Reviews of Geophysics, 31(3), 267-280.

Simmons, G.; Horai, K.-i. (1968) Heat flow data 2. Journal of Geophysical Research (1896-1977), 73(20), 6608-6609 https://doi.org/10.1029/JB073i020p06608.

8. Database Referenc	es
Abbott_2008	Abbott, Dallas H. (2008), <i>Abbott Marine Heat Flow Compilation</i> , Secondary, Abbott Marine Heat Flow Compilation,
Abbott_etal1984	Abbott, Dallas H.; Menke, William; Hobart, Michael A.; Anderson, Roger N.; Embley, Robert W. (1984), Correlated sediment thickness, temperature gradient and excess pore pressure in a marine fault block basin, Secondary, Correlated sediment thickness, temperature gradient and excess pore pressure in a marine fault block basin, https://doi.org/10.1029/GL011i005p00485
Abbott_etal1986a	Abbott, Dallas H.; Morton, Janet L.; Holmes, Mark L. (1986), Heat flow measurements on a hydrothermally-active, slow-spreading ridge: The Escanaba Trough, Secondary, Heat flow measurements on a hydrothermally-active, slow-spreading ridge: The Escanaba Trough, 13(7), 678–680, https://doi.org/10.1029/GL013i007p00678
Abbott_etal1986b	Abbott, Dallas H.; Hobart, Michael A.; Embley, Robert W. (1986), Heat flow and mass wasting in the Wilmington Canyon Region: U.S. Continental Margin, Secondary, Heat flow and mass wasting in the Wilmington Canyon Region: U.S. Continental Margin, 6(131–138,
Adam_etal2003	Adam, C.; Bonneville, Alain; Cannat, M.; Escartin, J.; Gouze, Philippe; Lucazeau, Francis; Lebars, M.; Monoury, E.; Vidal, V.; Herzen, Richard P. Von (2003), <i>Taking the temperature of the Lucky Strike area</i> , Secondary, Taking the temperature of the Lucky Strike area, 12(2), 27–30,
Afandi_etal2021	Afandi, Akhmad; Lusi, Nuraini; Catrawedarma, I.G.N.B.; Zaman, M.Badarus (2021), Identification of gradient temperature and heat flow area of geothermal Ijen Volcano Indonesia, Secondary, Identification of gradient temperature and heat flow area of geothermal Ijen Volcano Indonesia, https://doi.org/10.1088/1757-899x/1034/1/012072
Akhmedzyanov_etal2012a	Akhmedzyanov, V.R.; Ermakov, A.V.; Khutorskoy, M.D. (2012), <i>New data on heat flow in the North Atlantic Region</i> , Secondary, New data on heat flow in the North Atlantic Region, 442(1), 91–96, https://doi.org/10.1134/s1028334x12010011
Akhmedzyanov_etal2012b	Akhmedzyanov, V.R.; Ermakov, A.V.; Khutorskoy, M.D. (2012), New heat flow data of the North Altlantic - (Новые данные о тепловом потоке Северной Атлантики), Secondary, New heat flow data of the North Altlantic - (Новые данные о тепловом потоке Северной Атлантики), 442(1), 112–117,
Albert-Beltran_1979	Albert-Beltran, J.F. (1979), Heat flow and temperature gradient data from Spain, Secondary, Heat flow and temperature gradient data from Spain, 261–266, https://doi.org/10.1007/978-3-642-95357-6 27
Alexandrino_Hamza_2008	Alexandrino, Carlos H.; Hamza, Valiya M. (2008), <i>Estimates of heat flow and heat production and a thermal model of the Sao Francisco craton</i> , Secondary, Estimates of heat flow and heat production and a thermal model of the Sao Francisco craton, 289–306, https://doi.org/10.1007/s00531-007-0291-y
Alexandrov_etal1972	Alexandrov, A.L.; Lyubimova, Elena A.; Tomara, G.A. (1972), <i>Heat flow through the bottom of the inner seas and lakes in the USSR</i> , Secondary, Heat flow through the bottom of the inner seas and lakes in the USSR, 1(2), 73–80, https://doi.org/10.1016/0375-6505(72)90016-8
Alfaro_etal2010	Alfaro, C.; Alverado, I.; Manrique, A. (2010), Preliminary Map of Terrestrial Heat Flow in La Cuenca de Los Llanos Orientales - (Mapa Preliminar De Flujo De Calor Terrestre

En La Cuenca De Los Llanos Orientales), Secondary, Preliminary Map of Terrestrial Heat Flow in La Cuenca de Los Llanos Orientales - (Mapa Preliminar De Flujo De Calor Terrestre En La Cuenca De Los Llanos Orientales), Bogotá, Colombia, República De Colombia Ministerio De Minas Y Energía Instituto Colombiano De Geología Y Minería

Ingeominas,

Aliev_etal._1979Aliyev, S.A.; Ashirov, T.; Lipsits, Yu.M.; Sopiev, V.A.; Sudakov, N.P. (1979), New Dataon Heat Flow Through the Bottom of the Caspian Sea - (Новые данные о тепловом

потоке через дно Каспийского моря), Secondary, New Data on Heat Flow Through the Bottom of the Caspian Sea - (Новые данные о тепловом потоке через дно

Каспийского моря), 2(124-126,

Allis_Garland_1976 Allis, Richard G.; Garland, G.D. (1976), Geothermal measurements in five small lakes

of northwest Ontario, Secondary, Geothermal measurements in five small lakes of

northwest Ontario, 13(7), 987–992, https://doi.org/10.1139/e76-100

Allis_Garland_1979

Allis, Richard G.; Garland, G.D. (1979), Heat flow measurements under

Allis, Richard G.; Garland, G.D. (1979), Heat flow measurements under some lakes in the Superior Province of the Canadian Shield, Secondary, Heat flow measurements under some lakes in the Superior Province of the Canadian Shield, 16(10), 1951–

1964, https://doi.org/10.1139/e79-182

Anderson_1940 Anderson, E.M. (1940), The Loss of heat by conduction from the Earth's Crust in

Britain, Secondary, The Loss of heat by conduction from the Earth's Crust in Britain,

60(2), 192–209, https://doi.org/10.1017/s0370164600020186

Anderson_1975 Anderson, Roger N. (1975), Heat flow in the Mariana Marginal Basin, Secondary,

Heat flow in the Mariana Marginal Basin, 80(29), 4043–4048,

https://doi.org/10.1029/JB080i029p04043

Anderson_etal._1976a Anderson, Roger N.; Langseth Jr, Marcus G.; Vacquier, Victor; Francheteau, Jean

(1976), New terrestrial heat flow measurements on the Nazca plate, Secondary, New

terrestrial heat flow measurements on the Nazca plate, 29(2), 243–254,

https://doi.org/10.1016/0012-821x(76)90128-x

Anderson_etal._1976b Anderson, Roger N.; Moore, Gregory F.; Schilt, Steve S.; Cardwell, Rich C.; Tréhu,

Anne; Vacquier, Victor (1976), Heat flow near a fossil ridge on the north flank of the Galapagos Spreading Center, Secondary, Heat flow near a fossil ridge on the north

flank of the Galapagos Spreading Center, 81(11), 1828–1838,

Anderson_etal._1977 Anderson, Roger N.; Langseth Jr, Marcus G.; Sclater, John G. (1977), *The mechanisms*

of heat transfer through the floor of the Indian Ocean, Secondary, The mechanisms of heat transfer through the floor of the Indian Ocean, 82(23), 3391–3409,

https://doi.org/10.1029/JB082i023p03391

Anderson_etal._1978a Anderson, Roger N.; Langseth Jr, Marcus G.; Hayes, Dennis E.; Watanabe, Teruhiko;

Yasui, Masashi (1978), *Heat fow, thermal conductivity, thermal gradient*, Hayes, D., Secondary, Heat fow, thermal conductivity, thermal gradient, Ser. Geol. Soc. Amer.,

Anderson_etal._1978b Anderson, Roger N.; Hobart, Michael A.; Herzen, Richard P. Von; Fornari, Daniel J.

(1978), Geophysical surveys on the East Pacific Rise—Galapagos Rise system,

Secondary, Geophysical surveys on the East Pacific Rise—Galapagos Rise system, 54(1), 141–166, https://doi.org/10.1111/j.1365-246X.1978.tb06761.x

Anderson_etal._1979 Anderson, Roger N.; Hobart, Michael A.; Langseth Jr, Marcus G. (1979), Geothermal

convection through oceanic crust and sediments in the Indian Ocean, Secondary, Geothermal convection through oceanic crust and sediments in the Indian Ocean,

204(4395), 828-832, https://doi.org/10.1126/science.204.4395.828

Anderson_Hobart_1976 Anderson, Roger N.; Hobart, Michael A. (1976), *The relation between heat flow,*

sediment thickness, and age in the eastern Pacific, Secondary, The relation between heat flow, sediment thickness, and age in the eastern Pacific, 81(17), 2968–2989,

https://doi.org/10.1029/JB081i017p02968

Anderson_Larue_1991 Anderson, Roger N.; Larue, D.K. (1991), Wellbore Heat-Flow from the Toa-Baja

Scientific Drillhole, Puerto-Rico, Secondary, Wellbore Heat-Flow from the Toa-Baja Scientific Drillhole, Puerto-Rico, 18(3), 537–540, https://doi.org/10.1029/91gl00391

Anderson_VonHerzen_1978 Anderson, Roger N.; Herzen, Richard P. Von (1978), Heat flow on the Pacific-Antarctic

Ridge, Secondary, Heat flow on the Pacific-Antarctic Ridge, 41(4), 451–460,

https://doi.org/10.1016/0012-821x(78)90176-0

Andreescu_etal._1989 Andreescu, Maria; Burst, D.; Demetrescu, D.; Ene, M.; Polonic, G. (1989), On the

geothermal regime of the Moesian Platform and Getic Depression, Secondary, On the geothermal regime of the Moesian Platform and Getic Depression, 164(44288), 281–

286, https://doi.org/10.1016/0040-1951(89)90021-8

Andrews-Speed_etal._1984 Andrews-Speed, C.P.; Oxburgh, Ernest R.; Cooper, B.A. (1984), Temperatures and depth dependent heat flow in western North Sea, Secondary, Temperatures and depth dependent heat flow in western North Sea, 68(11), 1764-1781, https://doi.org/10.1306/ad461999-16f7-11d7-8645000102c1865d Arnaiz-Rodriguez_Orihuela_2013 Arnaiz-Rodriguez, Mariano S.; Orihuela, Nuris (2013), Curie point depth in Venezuela and the Eastern Caribbean, Secondary, Curie point depth in Venezuela and the Eastern Caribbean, 590(38-51, https://doi.org/10.1016/j.tecto.2013.01.004 Arshavskaya_etal._1984 Arshavskaya, N.I.; Galdin, N.E.; Karus, E.V.; Kuznetsov, O.L.; Lyubimova, Elena A.; Milanovsky, S.Y.; Nartikoev, V.D.; Semashko, S.A.; Smirnova, E.V. (1984), Thermal Properties of Rocks - (Тепловые свойства горных пород), Secondary, Thermal Properties of Rocks - (Тепловые свойства горных пород), 341-348, https://doi.org/10.1594/pangaea.809040 Artemenko etal. 1986 Artemenko, V.I.; Selyaninov, V.G.; Smirnova, L.A.; Strygin, V.N. (1986), Autonomous Digital Thermal Probe for Marine Geothermal Research (ATSTM-1) - (Автономный цифровой термозонд для морских геотермальных исследований (АТСТМ-1)), Secondary, Autonomous Digital Thermal Probe for Marine Geothermal Research (ATSTM-1) - (Автономный цифровой термозонд для морских геотермальных исследований (АТСТМ-1)), 29(6), 1033-1038, https://doi.org/10.1594/pangaea.809041 ASCOPE 1986 ASCOPE (1986), Terrestrial Heat Flow Map of Southeast Asia, Secondary, Terrestrial Heat Flow Map of Southeast Asia, 6(21, https://doi.org/10.1594/pangaea.806688 Ashirov_1984 Ashirov, Tachmet O. (1984), Geothermal Field of Turkmenia - (Геотермическое поле Туркмении), Secondary, Geothermal Field of Turkmenia - (Геотермическое поле Туркмении), 160, Ashirov_1985 Ashirov, Tachmet O. (1985), Thermal Field In the Limiting Board of the South Caspian Depression - (Тепловое поле, в предельном борту Южно-Каспийской впадины -Новости Туркменистана Сср, сер Физико-технические, химические и геологические науки), Secondary, Thermal Field In the Limiting Board of the South Caspian Depression - (Тепловое поле, в предельном борту Южно-Каспийской впадины - Новости Туркменистана Сср, сер Физико-технические, химические и геологические науки), 2(70-74, https://doi.org/10.1594/pangaea.808847 Atroshchenko_1975 Atroshchenko, P.P. (1975), Geothermal conditions of the northern part of the Pripyat Depression - (Геотермические условия Северной части Припятской впадины), Secondary, Geothermal conditions of the northern part of the Pripyat Depression -(Геотермические условия Северной части Припятской впадины), 104, Avetisyyants_1974a Avetisyyants, Aikak Akopovich (1974), Heat flow in Armenia - (Тепловой поток в Армении), Secondary, Heat flow in Armenia - (Тепловой поток в Армении), 44228(44-47, Avetisyyants_1974b Avetisyyants, Aikak Akopovich (1974), Thermal Field of Geosynclinal Framing East European Platform Armenia and Adjacent Territories - (Тепловое Поле Геосинклинального Обрамления Восточно-европейской платформы Армения и Сопредельные территории), Secondary, Thermal Field of Geosynclinal Framing East European Platform Armenia and Adjacent Territories - (Тепловое Поле Геосинклинального Обрамления Восточно-европейской платформы Армения и Сопредельные территории), 44-47, Avetisyyants_etal._1968 Avetisyyants, Aikak Akopovich; Ananyan, A.L.; Igumnov, V.A. (1968), Heat flow through the kajaran well - (Тепловой поток через колодец каджарана), Secondary, Heat flow through the kajaran well - (Тепловой поток через колодец каджарана), 46(3), 110-113, Bachu_etal._1995 Bachu, Stefan; Ramon, J. C.; Villegas, M. E.; Underschultz, J. R. (1995), Geothermal Regime and Thermal History of the Llanos Basin, Colombia1, Secondary, Geothermal Regime and Thermal History of the Llanos Basin, Colombia1, 79(1), 116-128, https://doi.org/10.1306/8d2b14d0-171e-11d7-8645000102c1865d Bakhova_2021 Bakhova, N.I. (2021), Thermal regime of the Dniester-Prut interfluve. In: Problems of

regional geology of the West of the East-European Platform and adjacent territories, Lukashyov, V., Secondary, Thermal regime of the Dniester-Prut interfluve. In:

Problems of regional geology of the West of the East-European Platform and adjacent territories, Minsk, Republic of Belarus. Belorus. State Univ, 14-17, Balabashin_Koptev_1987 Balabashin, Valery I.; Koptev, Alexander A. (1987), Results of the 6th voyage of the R/V Akademik Lavrentyev in 1987 (personal communication) - (Итоги 6-го рейса НЭС Академик Лаврентьев в 1987 г (личное сообщение)), Secondary, Results of the 6th voyage of the R/V Akademik Lavrentyev in 1987 (personal communication) -(Итоги 6-го рейса НЭС Академик Лаврентьев в 1987 г (личное сообщение)), https://doi.org/10.1594/pangaea.810038 Balabashin_Koptev_2004 Balabashin, Valery I.; Koptev, Alexander A. (2004), Results of the 6th cruise of R/V Academic Lavrentiev in 1987, Secondary, Results of the 6th cruise of R/V Academic Lavrentiev in 1987. Balkan-Pazvantoglu_Erkan_2019 Balkan-Pazvantoğlu, Elif; Erkan, Kamil (2019), Temperature-depth curves and heat flow in central part of Anatolia, Turkey, Secondary, Temperature-depth curves and heat flow in central part of Anatolia, Turkey, 757(24-34, https://doi.org/10.1016/j.tecto.2019.02.019 Balkan-Pazvantoglu_etal._2021 Balkan-Pazvantoğlu, Elif; Erkan, Kamil; Müjgan, Şalk; Bülent, Oktay Akkoyunlu; Mete, Tayanc (2021), Surface heat flow in Western Anatolia (Turkey) and implications to the thermal structure of the Gediz Grabenthe thermal structure of the Gediz, Secondary, Surface heat flow in Western Anatolia (Turkey) and implications to the thermal structure of the Gediz Grabenthe thermal structure of the Gediz, 30(9), 991-1007, https://doi.org/10.3906/yer-2105-28 Ballard_etal._1987 Ballard, Sanford; Pollack, Henry N.; Skinner, Neville J. (1987), Terrestrial heat flow in Botswana and Namibia, Secondary, Terrestrial heat flow in Botswana and Namibia, 92(B7), 6291-6300, https://doi.org/10.1029/JB092iB07p06291 Ballard_Pollack_1987 Ballard; Sanford; Pollack; N., Henry (1987), Diversion of heat by Archean cratons: a model for southern Africa, Secondary, Diversion of heat by Archean cratons: a model for southern Africa, 85(01. Mrz), 253-264, https://doi.org/10.1016/0012-821x(87)90036-7 Balling_1979 Balling, Niels (1979), Subsurface temperatures and heat flow estimates in Denmark, Secondary, Subsurface temperatures and heat flow estimates in Denmark, Springer, 161-171, https://doi.org/10.1007/978-3-642-95357-6 15 Balling_1991 Balling, Niels (1991), Catalogue of Heat Flow Density Data: Denmark, Secondary, Catalogue of Heat Flow Density Data: Denmark, https://doi.org/10.1594/pangaea.807555 Balling_etal._1984 Balling, Niels; Kristiansen, Jan I.; Saxov, Svend (1984), Geothermal measurements from the Vestmanna-1 and Lopra-1 boreholes, Secondary, Geothermal measurements from the Vestmanna-1 and Lopra-1 boreholes, 9(137-147, Balling_etal._2006 Balling, Niels; Breiner, Niels; Waagstein, Regin (2006), Thermal structure of the deep Lopra-1/1A borehole in the Faroe Islands, Secondary, Thermal structure of the deep Lopra-1/1A borehole in the Faroe Islands, 9(91-107, https://doi.org/10.1594/pangaea.802270 Balobaev_1978 Balobaev, V.T. (1978), Reconstruction of paleoclimate from modern geothermal data - (Реконструкция палеоклимата по современным геотермическим данным), Secondary, Reconstruction of paleoclimate from modern geothermal data -(Реконструкция палеоклимата по современным геотермическим данным), Canada, 1(45610, Balobaev_1983 Balobaev, V.T. (1983), Teplovoy potok i temperatura nedr osnovnykh geostructur kriolitozony SSSR (Heat flow and subsoil temperature of the main geostructures of the permafrost zone of the USSR, Pavlov, A.V., Secondary, Teplovoy potok i temperatura nedr osnovnykh geostructur kriolitozony SSSR (Heat flow and subsoil temperature of the main geostructures of the permafrost zone of the USSR, Novosibirsk, USSR, Nauka, 74-88, Balobaev_Devyatkin_1982a Balobaev, V.T.; Deviatkin, V.N. (1982), Permafrost-geothermal conditions of Western

Yakutia in connection with its oil and gas content - (Мерэлотно-геотермические условия Западной Якутии в связи с ее нефтегазоносностью), Secondary, Permafrost-geothermal conditions of Western Yakutia in connection with its oil and

	gas content - (Мерзлотно-геотермические условия Западной Якутии в связи с ее
	нефтегазоносностью), Novosibirsk, USSR, 18–28,
Balobaev_Devyatkin_1982b	Balobaev, V.T.; Deviatkin, V.N. (1982), Thermal regime and terrestrial heat flow in
	permafrost areas of the USSR, Vladimír Čermák, Ralph Haenel, Secondary, Thermal
	regime and terrestrial heat flow in permafrost areas of the USSR, Stuttgart, Germany,
	Schweizerbartische Verlagsbuch-Handlung, 107–110,
Balobaev_Levchenko_1978	Balobaev, V.T.; Levchenko, A.I. (1978), Geothermal features and frozen zone of the
	Suntar-Khayata ridge (using the example of the Nezhdaninskoye field) -
	(Геотермические особенности и мерзлая зона хр Сунтар-Хаята (на примере
	Нежданинского месторождения)), Secondary, Geothermal features and frozen
	zone of the Suntar-Khayata ridge (using the example of the Nezhdaninskoye field) -
	(Геотермические особенности и мерзлая зона хр Сунтар-Хаята (на примере
	Нежданинского месторождения)), 129–142,
Banda_etal1991a	Banda, E.; Albert-Beltran, J.F.; Fernandez, M.; Noceda, C. Garcia de la (1991),
	Catalogue of Heat Flow Density Data: Spain, E. Hurtig, Vladimir Cermak, Ralph
	Haenel, Vladimir Zui, Secondary, Catalogue of Heat Flow Density Data: Spain, Gotha,
	Germany, Hermann & Haack Verlagsgesellschaft,
	https://doi.org/10.1594/pangaea.807564
Barr_etal1979	Barr, S.M.; Ratanasathien, B.; Breen, D.; Ramingwong, T.; Sertsrivanit, S. (1979), Hot
	springs and geothermal gradients in northern Thailand, Secondary, Hot springs and
	geothermal gradients in northern Thailand, 8(44228), 85–95,
	https://doi.org/10.1016/0375-6505(79)90002-6
Batir_etal2016b	Batir, Joseph F.; Blackwell, David D.; Richards, Maria C. (2016), Updated Surface Heat
	Flow Map of Alaska, Secondary, Updated Surface Heat Flow Map of Alaska, 37(
Beamish_Busby_2016	Beamish, David; Busby, Jon (2016), The Cornubian geothermal province: heat
	production and flow in SW England: estimates from boreholes and airborne gamma-
	ray measurements, Secondary, The Cornubian geothermal province: heat production
	and flow in SW England: estimates from boreholes and airborne gamma-ray
	measurements, 4(1), 4, https://doi.org/10.1186/s40517-016-0046-8
Beardsmore_2004	Beardsmore, Graeme R. (2004), The influence of basement on surface heat flow in
	the Cooper Basin, Secondary, The influence of basement on surface heat flow in the
	Cooper Basin, 35(4), 223–235, https://doi.org/10.1071/Eg04223
Beardsmore_2005	Beardsmore, Graeme R. (2005), High-resolution heat-flow measurements in the
	Southern Carnarvon Basin, Western Australia, Secondary, High-resolution heat-flow
	measurements in the Southern Carnarvon Basin, Western Australia, 36(2), 206–215,
	https://doi.org/10.1071/eg05206
Beardsmore_Altmann_2002	Beardsmore, Graeme R.; Altmann, M.J. (2002), A heat flow map of the Dampier sub-
	basin, Secondary, A heat flow map of the Dampier sub-basin, 3(641 – 659,
	https://doi.org/10.1594/pangaea.806483
Becher_Meincke_1968	Becher, D.; Meincke, W. (1968), The heat flow between Harz and Prignitz - (Der
	Wärmefluß zwischen Harz und Prignitz), Secondary, The heat flow between Harz and
	Prignitz - (Der Wärmefluß zwischen Harz und Prignitz), 14(6), 291–297,
Beck_1962	Beck, Antje E. (1962), Terrestrial flow of heat near Flin Flon, Manitoba, Secondary,
	Terrestrial flow of heat near Flin Flon, Manitoba, 195(4839), 368–369,
	https://doi.org/10.1038/195368a0
Beck_Judge_1969	Beck, Antje E.; Judge, Alan S. (1969), Analysis of Heat Flow Data—I Detailed
	Observations in a Single Borehole, Secondary, Analysis of Heat Flow Data—I Detailed
	Observations in a Single Borehole, 18(2), 145–158, https://doi.org/10.1111/j.1365-
	246X.1969.tb03558.x
Beck_Mustonen_1972	Beck, Antje E.; Mustonen, E.D. (1972), Preliminary Heat Flow Data from Ghana,
	Secondary, Preliminary Heat Flow Data from Ghana, 235(61), 172–174,
	https://doi.org/10.1038/physci235172a0
Beck_Neophytou_1969	Beck, Antje E.; Neophytou, J.P. (1969), Heat flow and underground water flow in the
	Coronation mine area, Secondary, Heat flow and underground water flow in the
	Coronation mine area, 68(5), 229–239, https://doi.org/10.1594/pangaea.809504
D I C 4000	D A E C

Beck_Sass_1966

Beck, Antje E.; Sass, John H. (1966), A preliminary value of heat flow at the Muskox

Intrusion near Coppermine, NWT, Canada, Secondary, A preliminary value of heat flow at the Muskox Intrusion near Coppermine, NWT, Canada, 1(3), 123-129, https://doi.org/10.1594/pangaea.806510 Becker, Keir (1981), Heat flow studies of spreading center hydrothermal processes,

Secondary, Heat flow studies of spreading center hydrothermal processes, San Diego, University of California Scripps Institution of Oceanography, Ph.D. thesis(298, https://doi.org/10.1594/pangaea.806697

Becker, Keir; Langseth Jr, Marcus G.; Herzen, Richard P. Von (1983), Deep crustal geothermal measurements, Hole 504B, Deep Sea Drilling Project Legs 69 and 70, Secondary, Deep crustal geothermal measurements, Hole 504B, Deep Sea Drilling Project Legs 69 and 70, 69(223–235, https://doi.org/10.2973/dsdp.proc.69.105.1983 Becker, Keir; Fisher, Andrew T. (1991), A brief review of heat-flow studies in the Guaymas Basin, Gulf of California, Secondary, A brief review of heat-flow studies in

the Guaymas Basin, Gulf of California, 709-720, https://doi.org/10.1594/pangaea.803747

Becker, Keir; Herzen, Richard P. Von (1983), Heat flow on the western flank of the East Pacific Rise at 21°N, Secondary, Heat flow on the western flank of the East Pacific Rise at 21°N, 88(B2), 1057–1066, https://doi.org/10.1029/JB088iB02p01057

Becker, Keir; Herzen, Richard P. von (1983), Heat transfer through the sediments of the Mounds Hydrothermal Area, Galapagos Spreading Center at 86°W, Secondary, Heat transfer through the sediments of the Mounds Hydrothermal Area, Galapagos Spreading Center at 86°W, 88(B2), 995-1008,

https://doi.org/10.1029/JB088iB02p00995

Becker, Keir; Herzen, Richard P. Von (1996), Pre-Drilling Observations of Conductive Heat Flow at the TAG Active Mound Using Alvin, Secondary, Pre-Drilling Observations of Conductive Heat Flow at the TAG Active Mound Using Alvin, 158(23-29,

https://doi.org/10.2973/odp.proc.ir.158.103.1996

Beltrán-Abaunza, J.M.; Quintanilla-Montoya, A.L. (2001), Calculated heat flow for the Ensenada region, Baja California, Mexico, Secondary, Calculated heat flow for the Ensenada region, Baja California, Mexico, 27(4), 619-634,

https://doi.org/10.7773/cm.v27i4.497

Ben-Avraham, Zvi; Haenel, Ralph; Villinger, Heinrich W. (1978), Heat flow through the Dead Sea rift, Secondary, Heat flow through the Dead Sea rift, 28(45355), 253–269,

https://doi.org/10.1016/0025-3227 (78)90021-x

Ben-Avraham, Zvi; Herzen, Richard P. Von (1987), Heat flow and continental breakup:

The Gulf of Elat (Aqaba), Secondary, Heat flow and continental breakup: The Gulf of Elat (Aqaba), 92(B2), https://doi.org/10.1029/JB092iB02p01407

Benfield, A.E. (1939), Terrestrial heat flow in Great Britain, Secondary, Terrestrial

heat flow in Great Britain, 173(955), 428-450, https://doi.org/10.1098/rspa.1939.0157

Bentkowski, W.H.; Lewis, Trevor J. (1989), Thermal measurements in Cordilleran boreholes of opportunity, 1984–1987, Secondary, Thermal measurements in

Cordilleran boreholes of opportunity, 1984–1987, 30,

Bentkowski, W.H.; Lewis, Trevor J. (1994), Heat flow determinations in the Cordillera,

1988-1992, Secondary, Heat flow determinations in the Cordillera, 1988-1992, 2981(Berndt, Christian; Hensen, Christian; Muff, Sina; Karstens, Jens; Schmidt, Mark;

Liebetrau, Volker; Kipfer, Rolf; Lever, Mark; Böttner, Christoph; Doll, Mechthild; Sarkar, Sudipta; Geilert, Sonja (2015), RV SONNE 241 Cruise Report Fahrtbericht, Manzanillo, 23.6.2015 – Guayaquil, 24.7.2015 : SO241 - MAKS: Magmatism induced carbon escape from marine sediments as a climate driver – Guaymas Basin, Gulf of California, Secondary, RV SONNE 241 Cruise Report Fahrtbericht, Manzanillo, 23.6.2015 - Guayaquil, 24.7.2015 : SO241 - MAKS: Magmatism induced carbon escape from marine sediments as a climate driver - Guaymas Basin, Gulf of

California, https://doi.org/10.3289/cr_s241

Bertaux, Marie-Gabrielle; Bienfait, Gerard; Bottinga, Yan; Fontaine, Jacques; Guyot, Gerard; Jolivet, Jean; Kast, Yves; Meunier, Jean; Ottle, Jean; Perrier, Guy; Poupinet,

Becker_1981

Becker_Fisher_1991

Becker_etal._1983

Becker_VonHerzen_1983a

Becker_VonHerzen_1983b

Becker_vonHerzen_1996

Beltran_Quintanilla_2001

Ben-Avraham_etal._1978

Ben-Avraham_VonHerzen_1987

Benfield_1939

Bentkowski_Lewis_1989

Bentkowski_Lewis_1994

Berndt_etal._2015

Bertaux_etal._1978

Berthier_etal1984	Georges; Vasseur, Guy (1978), New determinations of geothermal flow in France - (Nouvelles determinations du flux geothermique en France), Secondary, New determinations of geothermal flow in France - (Nouvelles determinations du flux geothermique en France), 286(933–936, Berthier, F.; Fabriol, R.; Puvillan, P. (1984), Assessment of Low Energy Geothermal Resources in the Republic of Haiti. Search for a Typical Project - (Évaluation des Ressources Géothermiques Basse Énergie en République de Haiti. Recherche d'un Projet Type), Secondary, Assessment of Low Energy Geothermal Resources in the Republic of Haiti. Search for a Typical Project - (Évaluation des Ressources Géothermiques Basse Énergie en République de Haiti. Recherche d'un Projet Type),
Birch_1947	Birch, Francis S. (1947), <i>Temperature and heat flow in a well near Colorado Springs</i> , Secondary, Temperature and heat flow in a well near Colorado Springs, 245(12), 733–53, https://doi.org/10.2475/ajs.245.12.733
Birch_1950	Birch, Francis S. (1950), Flow of heat in the Front Range, Colorado, Secondary, Flow of heat in the Front Range, Colorado, 61(6), 567–630, https://doi.org/10.1130/0016-7606(1950)61%5b567:Fohitf%5d2.0.Co;2
Birch_1956	Birch, Francis S. (1956), <i>Heat flow at Eniwetok atoll</i> , Secondary, Heat flow at Eniwetok atoll, 67(7), 941–942, https://doi.org/10.1130/0016-7606(1956)67%5b941:HFAEA%5d2.0.CO;2
Birch_1964	Birch, Francis S. (1964), Some heat flow measurements in the Atlantic Ocean, Secondary, Some heat flow measurements in the Atlantic Ocean, USA, University of Wisconsin - Madison, https://doi.org/10.1594/pangaea.806698
Birch_1965	Birch, Francis S. (1965), <i>Heat flow near the New England seamounts</i> , Secondary, Heat flow near the New England seamounts, 70(20), 5223–5226, https://doi.org/10.1029/JZ070i020p05223
Birch_1970	Birch, Francis S. (1970), <i>The Barracuda Fault Zone in the western North Atlantic: geological and geophysical studies</i> , Secondary, The Barracuda Fault Zone in the western North Atlantic: geological and geophysical studies, 17(5), 847–859, https://doi.org/10.1016/0011-7471(70)90002-1
Birch_Halunen_1966	Birch, Francis S.; Halunen Jr, A. John (1966), <i>Heat flow measurements in the Atlantic Ocean, Indian Ocean, Mediterranean Sea, and Red Sea</i> , Secondary, Heat flow measurements in the Atlantic Ocean, Indian Ocean, Mediterranean Sea, and Red Sea, 71(2), 583–586, https://doi.org/10.1029/JZ071i002p00583
Blackman_etal1987	Blackman, D.K.; Herzen, Richard P. Von; Lawver, Lawrence A. (1987), Heat flow and tectonics in the western Ross Sea, Antarctica, Secondary, Heat flow and tectonics in the western Ross Sea, Antarctica, 5B(179–189, https://doi.org/10.1594/pangaea.802482
Blackwell_1969	Blackwell, David D. (1969), <i>Heat-flow determinations in the northwestern United States</i> , Secondary, Heat-flow determinations in the northwestern United States, 74(4), 992–1007, https://doi.org/10.1029/JB074i004p00992
Blackwell_1974	Blackwell, David D. (1974), <i>Terrestrial heat flow and its implications on the location of geothermal reservoirs in Washington</i> , Secondary, Terrestrial heat flow and its implications on the location of geothermal reservoirs in Washington, 50(21–33, https://doi.org/10.1594/pangaea.809508
Blackwell_1980	Blackwell, David D. (1980), Heat flow and geothermal gradient measurements in Washington to 1979 and temperature-depth data collected during 1979, Secondary, Heat flow and geothermal gradient measurements in Washington to 1979 and temperature-depth data collected during 1979, 80–9(24–29, https://doi.org/10.1594/pangaea.803582
Blackwell_1989x	Blackwell, David D. (1989), <i>Heat flow data for Oregon and Idaho</i> , Secondary, Heat flow data for Oregon and Idaho,
Blackwell_1989y	Blackwell, David D. (1989), Heat flow data for Kansas, Montana, Oregon, Texas and Utah, Secondary, Heat flow data for Kansas, Montana, Oregon, Texas and Utah,
Blackwell_Baag_1973	Blackwell, David D.; Baag, Czang-Go (1973), Heat Flow in a "Blind" Geothermal Area near Marysville, Montana, Secondary, Heat Flow in a "Blind" Geothermal Area near

Marysville, Montana, 38(5), 941–956, https://doi.org/10.1190/1.1440384

Blackwell_Baker_1988 Blackwell, David D.; Baker, Sydney L. (1988), Thermal analysis of the Breitenbush geothermal system, Secondary, Thermal analysis of the Breitenbush geothermal system, 12(221-227, https://doi.org/10.1594/pangaea.803587 Blackwell_etal._1975 Blackwell, David D.; Brott, Charles A.; Goforth, T.T.; Holdaway, M.J.; Morgan, Paul; Petefish, D.; Rape, T.; Steele, John L.; Spafford, Robert E.; Waibel, A.F. (1975), The Marysville Geothermal Area, Montana, Secondary, The Marysville Geothermal Area, Montana. Blackwell_etal._1978 Blackwell, David D.; Hull, Donald A.; Bowen, Richard G.; Steele, John L. (1978), Heat flow of Oregon, Secondary, Heat flow of Oregon, Portland, Oregon, Oregon Department of Geology and Mineral Industries Portland OR, https://doi.org/10.1594/pangaea.806535 Blackwell_etal._1982 Blackwell, David D.; Bowen, Richard G.; Hull, Donald A.; Riccio, Joseph; Steele, John L. (1982), Heat flow, arc volcanism, and subduction in northern Oregon, Secondary, Heat flow, arc volcanism, and subduction in northern Oregon, 87(B10), 8735-8754, https://doi.org/10.1029/JB087iB10p08735 Blackwell_etal._1986a Blackwell, David D.; Kelley, Shari A.; Edmiston, Robert C. (1986), Analysis and interpretation of thermal data from the Borax Lake geothermal prospect, Oregon, Secondary, Analysis and interpretation of thermal data from the Borax Lake geothermal prospect, Oregon, 10(169-174, https://doi.org/10.1594/pangaea.803599 Blackwell_etal._1990a Blackwell, David D.; Steele, John L.; Kelley, Shari A.; Korosec, M.A. (1990), Heat flow in the state of Washington and the Cascade thermal conditions, Secondary, Heat flow in the state of Washington and the Cascade thermal conditions, 95(B12), 19495-19516, https://doi.org/10.1029/JB095iB12p19495 Blackwell_Richards_2004 Blackwell, David D.; Richards, Maria C. (2004), Geothermal Map of North America, Secondary, Geothermal Map of North America, https://doi.org/10.1130/dnag-csmsv6.1 Blackwell_Spafford_1987 Blackwell, David D.; Spafford, Robert E. (1987), Experimental Methods in Continental Heat Flow, Secondary, Experimental Methods in Continental Heat Flow, 24(189-226, https://doi.org/10.1016/s0076-695x(08)60599-2 Blackwell_Steele_1979 Blackwell, David D.; Steele, John L. (1979), Heat flow of the Mount Hood Volcano, Oregon, Secondary, Heat flow of the Mount Hood Volcano, Oregon, 190-264, Blackwell_Steele_1987 Blackwell, David D.; Steele, John L. (1987), Geothermal data from deep holes in the Oregon Cascade Range, Secondary, Geothermal data from deep holes in the Oregon Cascade Range, 11(317-322, https://doi.org/10.1594/pangaea.803596 Bloomer_etal._1979 Bloomer, J.R.; Richardson, S.W.; Oxburgh, Ernest R. (1979), Heat Flow in Britain: an Assessment of the Values and Their Reliability, Vladimír Čermák, Ladislaus Rybach, Secondary, Heat Flow in Britain: an Assessment of the Values and Their Reliability, Berlin, Heidelberg, Germany, Springer Berlin Heidelberg, 293–300, https://doi.org/10.1007/978-3-642-95357-6 31 Boccaletti_etal._1977 Boccaletti, M.; Fazzuoli, M.; Loddo, M.; Mongelli, Francesco M. (1977), Heat-flow measurements on the Northern Apennine arc, Secondary, Heat-flow measurements on the Northern Apennine arc, https://doi.org/10.1016/0040-1951(77)90182-2 Bodell_Chapman_1982 Bodell, John Michael; Chapman, David S. (1982), Heat flow in the north-central Colorado Plateau, Secondary, Heat flow in the north-central Colorado Plateau, 2869-2884, https://doi.org/10.1029/JB087iB04p02869 Bodmer_1982 Bodmer, Philippe H. (1982), Beiträge zur Geothermie der Schweiz, Secondary, Beiträge zur Geothermie der Schweiz, Zuerich, Switzerland, ETH Zuerich, Ph.D. thesis(10.1594/pangaea.809525 Bodmer_Rybach_1984 Bodmer, Philippe H.; Rybach, Ladislaus (1984), Geothermal map of Switzerland (heat flow density), Secondary, Geothermal map of Switzerland (heat flow density), 22(47, https://doi.org/10.1594/pangaea.803576 Bogomolov_1970 Bogomolov, Y.G. (1970), Data on the Thermal Regime of the Earth's Crust in the Southwest of the BSSR - (Данные О Тепловом Режиме Земной Кори Юго-Запада *BCCP*), Secondary, Data on the Thermal Regime of the Earth's Crust in the Southwest

of the BSSR - (Данные О Тепловом Режиме Земной Кори Юго-Запада БССР),

14(1), 57-60,

Boldizsar_1956a

Bojadgieva_etal._1991 Bojadgieva, K.; Petrov, P.; Gasharov, S.; Velinov, T. (1991), Catalogue of Heat Flow

Density Data: Bulgaria, E. Hurtig, Vladimir Cermak, Ralph Haenel, Vladimir Zui, Secondary, Catalogue of Heat Flow Density Data: Bulgaria, Gotha, Germany,

Hermann & Haack Verlagsgesellschaft, 18, https://doi.org/10.1594/pangaea.808853 Boldizsár, Tibor (1956), *Terrestrial heat flow in Hungary*, Secondary, Terrestrial heat

flow in Hungary, 34(1), 66-70, https://doi.org/10.1038/178035a0

Boldizsar_1959 Boldizsár, Tibor (1959), Terrestrial heat flow in the Nagylengyel oilfield, Secondary,

Terrestrial heat flow in the Nagylengyel oilfield, 20(44409,

Boldizsar_1963 Boldizsár, Tibor (1963), Terrestrial heat flow in the natural steam field at Larderello,

Secondary, Terrestrial heat flow in the natural steam field at Larderello,

https://doi.org/10.1007/bf01993335

Boldizsar_1964a Boldizsár, Tibor (1964), Geothermal measurements in the twin shaft of Hosszuheteny,

Secondary, Geothermal measurements in the twin shaft of Hosszuheteny, 47(44289),

293-308,

Boldizsar_1964b Boldizsár, Tibor (1964), *Terrestrial heat flow in the Carpathians*, Secondary,

Terrestrial heat flow in the Carpathians, 69(24), 5269-5275,

https://doi.org/10.1029/JZ069i024p05269

Boldizsár_1965 Boldizsár, Tibor (1965), Heat flow in Oligocene sediments at Szentendre, Secondary,

Heat flow in Oligocene sediments at Szentendre, 61(1), 127-138,

https://doi.org/10.1007/bf00875769

Boldizsar_1966 Boldizsár, Tibor (1966), Heat flow in the natural gas field of Hajduszoboszló,

Secondary, Heat flow in the natural gas field of Hajduszoboszló, 64(1), 121–125,

https://doi.org/10.1007/bf00875537

Boldizsar_1967 Boldizsár, Tibor (1967), Terrestrial heat flow in Hungarian Permian strata, Secondary,

Terrestrial heat flow in Hungarian Permian strata, 67(1), 128-132,

https://doi.org/10.1007/bf00880570

Boldizsar_1968 Boldizsár, Tibor (1968), *Geothermal data from the Vienna Basin*, Secondary,

Geothermal data from the Vienna Basin, 73(2), 613–618,

https://doi.org/10.1029/JB073i002p00613

Boldizsar_1975 Boldizsár, Tibor (1975), *Research and development of geothermal energy production*

in Hungary, Secondary, Research and development of geothermal energy production

in Hungary, 4(44287), 44–56, https://doi.org/10.1016/0375-6505(75)90008-5

Bonneville_etal._1997 Bonneville, Alain; Herzen, Richard P. Von; Lucazeau, Francis (1997), *Heat flow over*

Reunion hot spot track: Additional evidence for thermal rejuvenation of oceanic lithosphere, Secondary, Heat flow over Reunion hot spot track: Additional evidence

for thermal rejuvenation of oceanic lithosphere, 102(B10), 22731–22747,

https://doi.org/10.1029/97jb00952

Bookman_etal._1972 Bookman, Charles A.; Malone, Isabel E.; Langseth Jr, Marcus G. (1972), Sea Floor

Geothermal Measurements from CONRAD Cruise 13, Secondary, Sea Floor Geothermal Measurements from CONRAD Cruise 13, https://doi.org/10.7916/d8-

fajs-xc27

Bossolasco_Palau_1967 Bossolasco, Mario; Palau, Carlo (1967), The geothermal flow below Monte Bianco -

Secondary, Il flusso geotermico sotto il Monte Biancohttps://doi.org/10.1594/pangaea.809532

Bott_etal._1972 Bott, M.H.P.; Johnson, G.A.L.; Mansfield, J.; Wheilden, J. (1972), Terrestrial heat flow

in north-east England, Secondary, Terrestrial heat flow in north-east England, 27(3),

277–288, https://doi.org/10.1594/pangaea.802413

Boulos_1987 Boulos, Fouad K. (1987), Geothermal gradients inside water wells of east Oweinat

area, south western desert of Egypt, Secondary, Geothermal gradients inside water

wells of east Oweinat area, south western desert of Egypt, 5(2), 165–172,

https://doi.org/10.1594/pangaea.809533

Boulos_1990 Boulos, Fouad K. (1990), Some aspects of the geophysical regime of Egypt in relation

to heat flow, ground water and microearthquakes, Secondary, Some aspects of the

geophysical regime of Egypt in relation to heat flow, ground water and

microearthquakes,

Bowen 1973 Bowen, Richard G. (1973), Geothermal activity in 1972, Secondary, Geothermal activity in 1972, 35(1), 44381, https://doi.org/10.1594/pangaea.807965 Bowen_etal._1977 Bowen, Richard G.; Blackwell, David D.; Hull, Donald A. (1977), Geothermal exploration studies in Oregon, Secondary, Geothermal exploration studies in Oregon, Fortland, Oregon, State of Oregon Department of Geology and Mineral Industries, https://doi.org/10.1594/pangaea.803581 Bowin_etal._1980 Bowin, C.; Purdy, G.M.; Johnston, C. (1980), Arc-continent collision in Banda Sea region, Secondary, Arc-continent collision in Banda Sea region, 64(6), 868-915, https://doi.org/10.1594/pangaea.806471 Boyce_1981 Boyce, R.E. (1981), Electrical resistivity, sound velocity, thermal conductivity, densityporosity, and temperature, obtained by laboratory techniques and well logs: D site 462 in the Naru Basin of hte Pacific Ocean, Secondary, Electrical resistivity, sound velocity, thermal conductivity, density-porosity, and temperature, obtained by laboratory techniques and well logs: D site 462 in the Naru Basin of hte Pacific Ocean, 61(743-761, https://doi.org/10.2973/dsdp.Proc.61.133.1981 Bram_1979a Bram, Kurt (1979), Heat flow measurements in the Federal Republic of Germany, Ladislaus Rybach, Vladimír Čermák, Secondary, Heat flow measurements in the Federal Republic of Germany, Heidelberg-Berlin-New York, Springer, 191-196, https://doi.org/10.1007/978-3-642-95357-6 19 Bram 1980 Bram, Kurt (1980), New heat flow observations on the Reykjanes Ridge, Secondary, New heat flow observations on the Reykjanes Ridge, 47(1), 86-90, https://doi.org/10.1594/pangaea.809539 Brewster_Pollack_1976 Brewster, D.; Pollack, Henry N. (1976), Continued heat flow investigations in the Michigan basin deep borehole, Secondary, Continued heat flow investigations in the Michigan basin deep borehole, 57(760, https://doi.org/10.1594/pangaea.809543 Brigaud_etal._1985 Brigaud, Frédéric; Lucazeau, Francis; Ly, Saidou; Sauvage, Jean François (1985), Heat flow from the West African Shield, Secondary, Heat flow from the West African Shield, 12(9), 549-552, https://doi.org/10.1029/GL012i009p00549 Brock_1989 Brock, A. (1989), Heat flow measurements in Ireland, Secondary, Heat flow measurements in Ireland, 164(44288), 231-236, https://doi.org/10.1016/0040-1951(89)90016-4 Brock_Barton_1984 Brock, A.; Barton, K.J. (1984), Equilibrium Temperature and Heat Flow Density Measurements In Ireland, Secondary, Equilibrium Temperature and Heat Flow Density Measurements In Ireland, Ireland, National University of Ireland, 425–429, https://doi.org/10.1594/pangaea.803583 Brock_etal._1991 Brock, A.; Brueck, P.; Aldwell, R. (1991), Heat flow measurements in Ireland, Ladsilaus Rybach, E.R. Decker, Vladimir Cermak, Secondary, Heat flow measurements in Ireland, 164(231-236, Brott_etal._1976 Brott, Charles A.; Blackwell, David D.; Mitchell, John A. (1976), Geothermal investigations in Idaho. Part 8: Heat flow in the Snake River plain region, southern Idaho, Secondary, Geothermal investigations in Idaho. Part 8: Heat flow in the Snake River plain region, southern Idaho, 30(1697–1707, https://doi.org/10.2172/7300489 Brott_etal._1978 Brott, Charles A.; Blackwell, David D.; Mitchell, John A. (1978), Tectonic implications of the heat flow of the western Snake River Plain, Idaho, Secondary, Tectonic implications of the heat flow of the western Snake River Plain, Idaho, 89(12), 1697-1707, https://doi.org/10.1594/pangaea.802458 Brott, Charles A.; Blackwell, David D.; Ziagos, John P. (1981), Thermal and tectonic Brott_etal._1981 implications of heat flow in the Eastern Snake River Plain, Idaho, Secondary, Thermal and tectonic implications of heat flow in the Eastern Snake River Plain, Idaho, 86(B12), https://doi.org/10.1029/JB086iB12p11709 Brun_Lucazeau_1988 Brun, Marie Véronique Latil; Lucazeau, Francis (1988), Subsidence, extension and thermal history of the West African margin in Senegal, Secondary, Subsidence, extension and thermal history of the West African margin in Senegal, 90(2), 204–220, https://doi.org/10.1016/0012-821x(88)90101-x Brunnerova, Z.; Skorepa, J.; Simanek, V. (1975), Bituminous Indications in the Roblin Brunnerova_etal._1975

RO-1 borehole in the Barrandian, to the SW of Prague, Secondary, Bituminous

SO(217-229, https://doi.org/10.1594/pangeas.805544 Buachidze_tal_1980 Buachidze_tal_1980 Buachidze_tal_1980 Buachidze_tal_1980 Buachidze_tal_1980 Buachidze_tal_1980 Buachidze_tal_1980 Bucher_1980 Bucher_		Indications in the Roblin RO-1 borehole in the Barrandian, to the SW of Prague,
Buachidze_etal_1980 Buachidze_etal_1980, [1980], Geothermal Conditions and Thermal Waters of Georgia - [Feamphun-eccuse Vanoaus u Tepunans-use Bodus Грузии), Secondary, Geothermal Conditions and Thermal Waters of Georgia - (Fearphun-eccuse Vanoaus u Tepunans-use Bodus Грузии), Secondary, Geothermal Conditions and Thermal Waters of Georgia - (Fearphun-eccuse Vanoaus u Tepunans-use Bodus Грузии), Secondary, Geothermal Conditions and Thermal Waters of Georgia - (Fearphun-eccuse Vanoaus u Tepunans-use Bodus Грузии), Secondary, Beat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Secondary, Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Ph.D. thesic(158, https://doi.org/10.1594/pangaea.806603) Buecker_etal_2001 Buecker_etal_2002 Bugge_etal_2002 Bugge_etal_2002 Bugge_file Media Fearphun		
M. P. (1980), Geothermal Conditions and Thermal Workers of Georgia- (Пеотерлические Условия и Термальные Воды Грузии), Эсо, https://doi.org/10.1984/pangae.809042 Bucher_1980 Bucher Geotal (1980), Hear flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Secondary, Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Ph.D. thesis(158, https://doi.org/10.1594/pangaea.806603) Bucker_etal_2001 Bücker, Christian I.; Jarrand, Richard D.; Wonik, Thomas (2001), Downhole temperature, radiogenic hear production, and heat flow from the CRP-3 drillhole, Victoria Land Bosin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Bosin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and feet flow from the CRP-3 drillhole, Victoria Land Bosin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and feet flow from the CRP-3 drillhole, Victoria Land Bosin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and feet flow from the CRP-3 drillhole, Victoria Land Bosin, Antarctica, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Bosin, Borents Sec, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Bosin, Borents Sec, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich_1983 Bulashevich, W.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ura leugeosynchic - (Nuhopoxamusocome seomepawun pu suyeenuu seemak kopps ypoxaccia Secundary, Land Secundary, Land Secundary, Land Secundary, Land Secundary, Land Secundary, Land Secundary	Buachidze etal. 1980	
Пеотермические Условия и Термальение Воды Призии), Secondary, Geothermal Conditions and Thermal Waters of Georgia - (Теотермические Условия и Термальеные Воды Грузии), 206, https://doi.org/10.1594/pangae.809042 Bucher_1980		
Conditions and Thermal Waters of Georgia - (Геогорямческие Условия и Термальные Воды Грузии), 206, https://doi.org/10.1594/pangaea.809042		
Bucher_1980 Bucher_1980 Bucher_Cerald J. (1980). Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Secondary, Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Ph.D. thesis (158, https://doi.org/10.1594/pangaea.806603 Bücker_Christian J.; Jarrand, Richard D.; Wonlik, Thomas (2001), Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 8(3), 151–160. Bugge_etal_2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann IV.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kāre (2002), Shollow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-8 Bulashevich_1983 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Mn¢popmarusнocrus ecomepnuu npu usyvenuu земной коры Уральской геосинклинали), Usrs, (3), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермии при изучения земной коры Уральской геосинклинали), Usrs, (3), 187–83. Bullard_1939 Bullard_1939 Bullard_1939 Bullard_1939 Bullard_1939 Bullard_1940 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1955 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1955 Bullard_1956 Bullard_6dward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(95), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_1956 Bullard_6dward C. (1934), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 422, https		Conditions and Thermal Waters of Georgia - (Геотермические Условия и
Bucker_etal_2001 walley area, Antorctica and their tectonic implications, Secondary, Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications, Ph.D. thesis(158, https://doi.org/10.1594/papea.806003) Bucker_etal_2001 Bücker, Christian I.; Jarrard, Richard D.; Wonlk, Thomas (2001), Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 8(3), 151–160. Bugge_etal_2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann Mr. Gjelberg, John; Kristensen, Stein E.; Nilsen, Kâre (2002), Shollow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sec, Secondary, Barents Sec, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37. https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Mrdopomamusnocrus zeomemun un u		Термальные Воды Грузии), 206, https://doi.org/10.1594/pangaea.809042
Buecker_etal2001 Buecker_etal2001 Buecker_etal2001 Bucker_christian i.; Jarrard, Richard D.; Wonik, Thomas (2001), Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 813, 151–160. Bugge_etal2002 Bugge_com; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Rilsen, Kāre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich_1983 Bulashevich_1983, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информаливность recorrepawar при изучении земной коры Уральской гесосинклинал), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информаливность теотермики при изучении земной коры Уральской гесомиклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информаливность теотермики при изучении земной коры Уральской гесомиклинали), Uss; 8), 76–83. Bullard_1939 Bullard_1939 Bullard_1939 Bullard_1939 Bullard_2039 Bullard_1940 Bullard_1954 Bullard_1954 Bullard_1955 Bullard_1954 Bullard_1955 Bullard_204 Bullard_205 Bullard_206 Bullard_206 Bullard_307 Bullard_1951 Bullard_1951 Bullard_1951 Bullard_1952 Bullard_206 Bulla	Bucher_1980	Bucher, Gerald J. (1980), Heat flow and radioactivity studies in the Ross Island-dry
Bucker_etal_2001 Bücker, Christian J.; Jarrard, Richard D.; Wonik, Thomas (2001), Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 8(3), 151—160, Bugge_etal_2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kāra (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich, 1983 Bulashevich, 1983 Bulashevich, 1983, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Muhopomarusнocoma exomemus un pu usywensus semula koppus Mypanscuckā zeocunsnusnusnus), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Muhopomarushocoma exocunsnusnusnus), Secondary, Heat flow in South Africa, Secondary, Heat flow in Heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Accordary, The flow of heat through the floor of the Atlantic Ocean, 4(1), 282–292, https://doi.org/10.1098/rspa.1954.0085 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, 4(1), 282–292, https://doi.org/10.1016/30056-2687(08)60389-1 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, 4(1), 282–292		
Bucker_etal_2001 Bücker, Christian J.; Jarrard, Richard D.; Wonik, Thomas (2001), Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 8(3), 151–160. Bugge_etal_2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kåre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермия при маучении земной коры Уральской геосинклиали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермия при маучении земной коры Уральской геосинклиали), Ussr, 8), 76–83. Bullard_1939 Bullard_1939, 76–80. Bullard_1954 Bullard_2 Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.193-9159 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_2 Edward C. (1939), Heat flow in Four flow of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow		
temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, Secondary, Downhole temperature, radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria Land Basin, Antarctica, 8(3), 151–160, Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hernann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Käre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich_1983 Bulashevich_1983 Bulashevich_1983 Bulashevich_1983 Bulashevich_1983 Bullard_1984 Bullard_1994 Bullard_1995 Bullard_1995 Bullard_1995 Bullard_1995 Bullard_1995 Bullard_1996 Bullard		
Bugge_etal2002 Bugge_etal2002 Bugge_otom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kāre (2002). Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотивной вереимельной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотивной вероимельной коры Уральской геосинклинали), Ussr, 8), 76–83. Bullard_1939 Bullard_Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), A74–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Bedward C. (1994), Heat flow in Found the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the flow of the Atlantic Ocean, Secondary, The flow of heat through the flow of the Atlantic Ocean, Secondary, The flow of heat through the flow in England, Secondary, 101,111/j.1365-2468.1961.106820.x Bullard_etal_1956 Bulla	Buecker_etal2001	
Bugge_etal2002 Bugge_Tom, Elwebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kåre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4		
Bugge_etal2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E, Nilsen, Kåre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермина), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермин при изучении земной коры Уральской геосинклинали), Steondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермин при изучении земной коры Уральской геосинклинали), Steondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермин при изучении земной коры Уральской геосинклинали), Steondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермин при изучении земной коры Уральской геосинклинали), Steondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермин разовать уральской геосинклинали), Steondary, Heat flow in South Africa, Secondary, Heat flow in South Africa, Secondary, Heat flow of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, A(S1), 282–292, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_etal1956 Bullard_etal1956 Bullard_etal1956 Bullard_etal1956 Bullard_etal1951 Bullard_etal195		
Bugge_etal2002 Bugge, Tom; Elvebakk, Geir; Fanavoll, Stein; Mangerud, Gunn; Smelror, Morten; Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Káre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13—37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативносты геотермии при изучении земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативносты геотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76—83, Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474—502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard, Edward C. (1939), Heat flow in Flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_1936 Bullard_1936 Bullard_1936 Bullard_1936 B		
Weiss, Hermann M.; Gjelberg, John; Kristensen, Stein E.; Nilsen, Kåre (2002), Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативностье зеотермии при изучении земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативностье теотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, Edward C.; Naxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, Secondary, The flow of heat through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, 6(2222–238, https://doi.org/10.1111/j.1365-24	Bugge etal. 2002	
stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность zeomepмии при изучении земной коры Уральской zeocunклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность reorepмии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard_Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1955 Bullard_1955 Bullard_Day_1961 Bullard_Day_1961 Bullard_Day_1961 Bullard_1954 Bullard_2054 Bullard_2054 Bullard_3054 Bullard_3055 Bullard_3055 Bullard_3055 Bullard_3055 Bullard_4056 Bullard_5066 Bullard_5066 Bullard_6067 Bullard_10666 Cocan, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Niblett_1951 Bullard_10666 Bullard_1067 Bullar		
exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37, https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермии при изучении земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность теотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–50, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, Heat flow through the deep sea floor, Secondary, Heat flow in England, Secondary, Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, Secondary, Heat flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan		
https://doi.org/10.1016/s0264-8172 (01)00051-4 Bulashevich_1983 Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информотивность геотермии при изучении земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность теотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76-83, Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474-502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of the Atlantic Ocean, Seconda		Barents Sea, Secondary, Shallow stratigraphic drilling applied in hydrocarbon
Bulashevich_1983Bulashevich, Yu.P. (1983), Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермим при изучении земной коры Уральской геосинклинали), Usar, 81, 76–83,Bullard_1939Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159Bullard_1954Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, Geothermal flow in England, Secondary, Heat flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in t		exploration of the Nordkapp Basin, Barents Sea, 19(1), 13–37,
crust of the Ural eugeosyncline - (Информативность геотермии при изучении земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1951.006820.x Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burghard_Edward_C.; Department of the flow in the Radicofani region (east of Monte Amiata, Ital		
земной коры Уральской геосинклинали), Secondary, Informative value of geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard_Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmerm	Bulashevich_1983	
geothermy in the study of the earth's crust of the Ural eugeosyncline - (Информативность геотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard_Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burgassi_etal_1983 Burkhardt_etal_1983 Burgassi_P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte		
(Информативность геотермии при изучении земной коры Уральской геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard_Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Edward C. (1934), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes n		
геосинклинали), Ussr, 8), 76–83, Bullard_1939 Bullard_16ward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_1954 Bullard_1954 Bullard_1955, 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_1955, https://doi.org/10.1098/rspa.1954.0085 Bullard_1955, https://doi.org/10.1098/rspa.1954.0085 Bullard_1956 Bullard_2006 B		
Bullard_1939 Bullard, Edward C. (1939), Heat flow in South Africa, Secondary, Heat flow in South Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal_1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Miblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Color_1982 Burch_1983 All Papan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal_1970 Burgassi_etal_1970 Burgassi_etal_1970 Burgassi_P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_Ha		
Africa, 173(955), 474–502, https://doi.org/10.1098/rspa.1939.0159 Bullard_1954 Bullard_Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(51), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–449, https://doi.org/10.1007/978-3-642-74588-1_18	Bullard_1939	
Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–429, https://doi.org/10.1098/rspa.1954.0085 Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(51), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP doreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP doreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP doreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt_Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations	_	
Bullard_Day_1961 Bullard_Day_1961 Bullard, Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal1956 Bullard, Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard, Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Se(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Bullard_1954	Bullard, Edward C. (1954), The flow of heat through the floor of the Atlantic Ocean,
Bullard_Day_1961 Bullard_Edward C.; Day, A. (1961), The flow of heat through the floor of the Atlantic Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x Bullard_etal1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_Langseth_1981 Burch_1982 Burch_1983 Burch_1984 Burch_1984 Burch_1984 Burch_1984 Burch_1985 Burch_1985 Burch_1986 Burch_1		Secondary, The flow of heat through the floor of the Atlantic Ocean, 222(1150), 408–
### Ocean, Secondary, The flow of heat through the floor of the Atlantic Ocean, 4(S1), 282–292, https://doi.org/10.1111/j.1365-246X.1961.tb06820.x #### Bullard_etal1956 #### Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), *## Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 #### Bullard_Niblett_1951 #### Bullard_Edward C.; Niblett, E.R. (1951), **Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x #### Burch_Langseth_1981 ##################################		
Bullard_etal1956 Bullard_Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi_P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Nttps://doi.org/10.1007/978-3-642-74588-1_18	Bullard_Day_1961	
Bullard_etal1956 Bullard, Edward C.; Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard, Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		
deep sea floor, Secondary, Heat flow through the deep sea floor, 3(153–181, https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard_Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch_Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Nttps://doi.org/10.1007/978-3-642-74588-1_18	Rullard etal 1956	
https://doi.org/10.1016/s0065-2687(08)60389-1 Bullard_Niblett_1951 Bullard, Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Bullaru_etal1930	
Bullard_Niblett_1951 Bullard, Edward C.; Niblett, E.R. (1951), Terrestrial heat flow in England, Secondary, Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365- 246X.1951.tb03007.x Burch_Langseth_1981 Burch_Langseth_1982 Burch_Langseth_1983 Burch_Langseth_1983 Burch_Langseth_1983 Burch_Langseth_1983 Burch_1983 Bur		
Terrestrial heat flow in England, 6(222–238, https://doi.org/10.1111/j.1365-246X.1951.tb03007.x Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Bullard Niblett 1951	
Burch_Langseth_1981 Burch, Thomas K.; Langseth Jr, Marcus G. (1981), Heat-flow determination in three DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		
DSDP boreholes near the Japan Trench, Secondary, Heat-flow determination in three DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		246X.1951.tb03007.x
DSDP boreholes near the Japan Trench, 86(B10), 9411–9419, https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Burch_Langseth_1981	
https://doi.org/10.1029/JB086iB10p09411 Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		
Burgassi_etal1970 Burgassi, P.D.; Ceron, P.; Ferrara, G.C.; Sestini, G.; Toro, B. (1970), Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		• • • • • • • • • • • • • • • • • • • •
gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Burnard and 4070	
Secondary, Geothermal gradient and heat flow in the Radicofani region (east of Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Burgassi_etai1970	
Monte Amiata, Italy), 2(443–449, https://doi.org/10.1016/0375-6505 (70)90042-8 Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		
Burkhardt_etal1989a Burkhardt, Hans; Haack, U.; Hahn, A.; Honarmand, H.; Jaeger, K.; Stiefel, A.; Waegerle, P.; Wilhelm, Helmut (1989), Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		
Waegerle, P.; Wilhelm, Helmut (1989), <i>Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald</i> , Rolf Emmermann, Jürgen Wohlenberg, Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	Burkhardt_etal1989a	
Secondary, Geothermal investigations at the KTB locations Oberpfalz and Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18	_ _	
Schwarzwald, 433–480, https://doi.org/10.1007/978-3-642-74588-1_18		locations Oberpfalz and Schwarzwald, Rolf Emmermann, Jürgen Wohlenberg,
		Secondary, Geothermal investigations at the KTB locations Oberpfalz and
Burkhardt_etal1989b Burkhardt, H.; Erbas, K.; Giese, P.; Haack, U.; Hornamand, H.; Huenges, E.; Stiefel, A.;		
	Burkhardt_etal1989b	Burkhardt, H.; Erbas, K.; Giese, P.; Haack, U.; Hornamand, H.; Huenges, E.; Stiefel, A.;

Giese, R. Emmermann, Secondary, The predicted and measured temperature profile - (Das vorhergesagte und das gemessene Temperaturprofil), Hannover, Germany, NLfB, 216 - 242, https://doi.org/10.2312/ktb.89-3 **Burns 1964** Burns, Robert E. (1964), Sea bottom heat-flow measurements in the Andaman Sea, Secondary, Sea bottom heat-flow measurements in the Andaman Sea, 69(22), 4918-4919, https://doi.org/10.1029/JZ069i022p04918 Burns_1970 Burns, Robert E. (1970), Heat flow operations at holes 35.0 and 35.1, Secondary, Heat flow operations at holes 35.0 and 35.1, 5(551-554, https://doi.org/10.1594/pangaea.803744 Burns_Grim_1967 Burns, Robert E.; Grim, Paul J. (1967), Heat flow in the Pacific Ocean off central California, Secondary, Heat flow in the Pacific Ocean off central California, 72(24), 6239-6247, https://doi.org/10.1594/pangaea.802427 Burrus, Jean; Foucher, Jean P. (1986), Contribution to the thermal regime of the Burrus_Foucher_1986 Provençal Basin based on Flumed heat flow surveys and previous investigations, Secondary, Contribution to the thermal regime of the Provençal Basin based on Flumed heat flow surveys and previous investigations, 128(44289), 303-334, https://doi.org/10.1016/0040-1951(86)90299-4 Buryanov_1985 Buryanov, Vladlen Borisovich (1985), Geophysical model of the tectonosphere of Ukraine - (Геофизическая модель тектоносферы Украины), Secondary, Geophysical model of the tectonosphere of Ukraine - (Геофизическая модель тектоносферы Украины), Kiev, Ukraine, Nauk. dumka, Cabal_Fernandez_1995 Cabal, J.; Fernandez, M. (1995), Heat-Flow and Regional Uplift at the North-Eastern Border of the Ebro Basin, Ne Spain, Secondary, Heat-Flow and Regional Uplift at the North-Eastern Border of the Ebro Basin, Ne Spain, 121(2), 393-403, https://doi.org/10.1111/j.1365-246X.1995.tb05720.x Camelo_1987 Camelo, S.M.L. (1987), Analysis of bottom—hole temperature and preliminary estimation of heat flow in Portuguese sedimentary basins, Secondary, Analysis of bottom—hole temperature and preliminary estimation of heat flow in Portuguese sedimentary basins, 5(139-142, Camerlenghi_etal._1995 Camerlenghi, Angelo; Cita, M.B.; Vedova, Bruno Della; Fusi, N.; Mirabile, L.; Pellis, Giulio (1995), Geophysical Evidence of Mud Diapirism on the Mediterranean Ridge Accretionary Complex, Secondary, Geophysical Evidence of Mud Diapirism on the Mediterranean Ridge Accretionary Complex, 17(2), 115-141, https://doi.org/10.1007/Bf01203423 Cande_etal._1987 Cande, S.C.; Leslie, R.B.; Parra, J.C.; Hobart, Michael A. (1987), Interaction between the Chile Ridge and Chile Trench: geophysical and geothermal evidence, Secondary, Interaction between the Chile Ridge and Chile Trench: geophysical and geothermal evidence, 92(B1), 495-520, https://doi.org/10.1029/JB092iB01p00495 Cardoso_Hamza_2014 Cardoso, Roberta A.; Hamza, Valiya M. (2014), Heat Flow in the Campos Sedimentary Basin and Thermal History of the Continental Margin of Southeast Brazil, Secondary, Heat Flow in the Campos Sedimentary Basin and Thermal History of the Continental Margin of Southeast Brazil, 2014(43466, https://doi.org/10.1155/2014/384752 Carrier_1979 Carrier, Daniel L. (1979), Gravity and heat flow studies at Twin Peaks, an area of late Tertiary silicic volcanism in Millard County, Utah, Secondary, Gravity and heat flow studies at Twin Peaks, an area of late Tertiary silicic volcanism in Millard County, Utah, M.Sc. thesis(120, https://doi.org/10.1594/pangaea.809546 Carte_1954 Carte, A.E. (1954), Heat flow in the Transvaal and Orange Free State, Secondary, Heat flow in the Transvaal and Orange Free State, 67(9), 664-672, https://doi.org/10.1088/0370-1301/67/9/302 Carte_VanRooyen_1969 Carte, A.E.; Rooyen, A.I.M. Van (1969), Further measurements of heat flow in South Africa, Secondary, Further measurements of heat flow in South Africa, 2(445–448, https://doi.org/10.1594/pangaea.807966

Wilhelm, H.; Zoth, G.; Buntebarth, G.; Schulz, R. (1989), *The predicted and measured temperature profile - (Das vorhergesagte und das gemessene Temperaturprofil)*, P.

Carter, L.S.; Kelley, Shari A.; Blackwell, David D.; Naeser, N.D. (1998), *Heat flow and thermal history of the Anadarko Basin, Oklahoma*, Secondary, Heat flow and thermal

Carter_etal._1998

history of the Anadarko Basin, Oklahoma, 82(2), 291-316, Carvalho_etal._1980 Carvalho, Humberto Da Silva; Purwoko, Siswoyo; Thamrin, Mochamad; Vacquier, Victor (1980), Terrestrial heat flow in the Tertiary basin of Central Sumatra, Secondary, Terrestrial heat flow in the Tertiary basin of Central Sumatra, 69(1), 163-188, https://doi.org/10.1016/0040-1951 (80)90132-8 Carvalho_Vacquier_1977 Carvalho, Humberto Da Silva; Vacquier, Victor (1977), Method for determining terrestrial heat flow in oil fields, Secondary, Method for determining terrestrial heat flow in oil fields, 42(3), 584-593, https://doi.org/10.1190/1.1440729 Catalan_etal._2023 Catalán, M.; Negrete-Aranda, Raquel; Martos, Y. M.; Neumann, F.; Santamaría, A.; Fuentes, K. (2023), On the intriguing subject of the low amplitudes of magnetic anomalies at the Powell Basin, Secondary, On the intriguing subject of the low amplitudes of magnetic anomalies at the Powell Basin, 11(10.3389/feart.2023.1199332 Cermak_1967a Čermák, Vladimír (1967), Heat Flow near Teplice in North Bohemia, Secondary, Heat Flow near Teplice in North Bohemia, 13(5), 547-549, https://doi.org/10.1111/j.1365-246X.1967.tb02306.x Čermák, Vladimír (1967), Heat flow in the Kladno-Rakovnik coal basin, Secondary, Cermak_1967b Heat flow in the Kladno-Rakovnik coal basin, 76(461-466, https://doi.org/10.1594/pangaea.809548 Cermak 1968a Čermák, Vladimír (1968), Heat flow in the upper Silesian coal basin, Secondary, Heat flow in the upper Silesian coal basin, 69(1), 119-130, https://doi.org/10.1007/bf00874910 Cermak_1968b Čermák, Vladimír (1968), Terrestrial heat flow in the Alpine-Carpathian foredeep in South Moravia, Secondary, Terrestrial heat flow in the Alpine-Carpathian foredeep in South Moravia, 73(2), 820-821, https://doi.org/10.1029/JB073i002p00820 Cermak_1968c Čermák, Vladimír (1968), Heat flow in the Zacler-Svatonovice basin, Secondary, Heat flow in the Zacler-Svatonovice basin, 16(45360, Cermak_1968d Čermák, Vladimír (1968), Terrestrial heat flow in Czechoslovakia and its relation to some geological features, Secondary, Terrestrial heat flow in Czechoslovakia and its relation to some geological features, 5(75-85, https://doi.org/10.1594/pangaea.808855 Cermak_1968e Čermák, Vladimír (1968), Terrestrial heat flow in eastern Slovakia, Secondary, Terrestrial heat flow in eastern Slovakia, 15(275), 305-319, Cermak_1975a Čermák, Vladimír (1975), Terrestrial heat flow in the neogene foredeep and the flysch zone of the Czechoslovak Carpathians, Secondary, Terrestrial heat flow in the neogene foredeep and the flysch zone of the Czechoslovak Carpathians, 4(44287), 41487, https://doi.org/10.1016/0375-6505(75)90003-6 Cermak_1975b Čermák, Vladimír (1975), Combined heat flow and heat generation measurements in the Bohemian Massif, Secondary, Combined heat flow and heat generation measurements in the Bohemian Massif, 4(44287), 19-26, https://doi.org/10.1016/0375-6505 (75)90005-x Cermak_1976a Čermák, Vladimír (1976), Paleoclimatic effect on the underground temperature and some problems of correcting heat flow, Secondary, Paleoclimatic effect on the underground temperature and some problems of correcting heat flow, 59-66, Cermak_1976e Čermák, Vladimír (1976), Ground heat flow in the Lidecko-1 borehole in the Magura Flys in the Outer Carpathians - (Zemsky tepelny tok ve vrtu Lidecko-1 v magurskem flysi ve vnejsich Karpatech), Secondary, Ground heat flow in the Lidecko-1 borehole in the Magura Flys in the Outer Carpathians - (Zemsky tepelny tok ve vrtu Lidecko-1 v magurskem flysi ve vnejsich Karpatech), 21(193-198, https://doi.org/10.1594/pangaea.809555 Cermak_1977a Čermák, Vladimír (1977), Heat flow measured in five holes in eastern and central Slovakia, Secondary, Heat flow measured in five holes in eastern and central Slovakia, 34(1), 67-70, https://doi.org/10.1016/0012-821x(77)90106-6 Cermak_1977b Čermák, Vladimír (1977), Geothermal measurements in Palaeogene, Cretaceous and

Permocarboniferous sediments in northern Bohemia, Secondary, Geothermal measurements in Palaeogene, Cretaceous and Permocarboniferous sediments in

	northern Bohemia, 48(3), 537–541, https://doi.org/10.1111/j.1365-
Commode 1070a	246X.1977.tb03690.x
Cermak_1979a	Čermák, Vladimír (1979), <i>Review of Heat Flow Measurements in Czechoslovakia</i> , Vladimír Čermák, Ladislaus Rybach, Secondary, Review of Heat Flow Measurements
	in Czechoslovakia, Berlin, Heidelberg, Germany, Springer Berlin Heidelberg, 152–160,
	https://doi.org/10.1007/978-3-642-95357-6_14
Cermak_1979b	Čermák, Vladimír (1979), <i>Heat flow in CSR - (Tepelny tok v csr)</i> , Paces, T., Secondary,
Cerman_13735	Heat flow in CSR - (Tepelny tok v csr), Prague, Czech, 45642,
Cermak_etal1968a	Čermák, Vladimír; Kresl, Milan; Veselý, Ivan (1968), Experimental determination of
cerman_cran_1300a	the coefficient of heat transfer during hole boring and the re-establishment of the
	temperature field equilibrium, Secondary, Experimental determination of the
	coefficient of heat transfer during hole boring and the re-establishment of the
	temperature field equilibrium, 5(153–158, https://doi.org/10.1016/s0012-
	821x(68)80032-9
Cermak_etal1968b	Čermák, Vladimír; Jetel, J.; Krcmar, B. (1968), Terrestrial heat flow in the Bohemian
	Massif and its relation to the deep structure, Secondary, Terrestrial heat flow in the
	Bohemian Massif and its relation to the deep structure, 7(25–38,
Cermak_etal1984	Čermák, Vladimír; Kresl, Milan; Šafanda, Jan; Napoles-Pruna, M.; Tenreyroperez, R.;
	Torres-Paz, L.M.; Valdés, J.J. (1984), First heat flow density assessments in Cuba,
	Secondary, First heat flow density assessments in Cuba, 103(44287), 283–296,
	https://doi.org/10.1594/pangaea.803898
Cermak_etal1991a	Čermák, Vladimír; Kresl, Milan; Šafanda, Jan; Bodri, L.; Napoles-Pruna, M.;
	Tenreyroperez, R. (1991), <i>Terrestrial Heat-Flow in Cuba</i> , Secondary, Terrestrial Heat-
	Flow in Cuba, 65(44289), 207–209, https://doi.org/10.1016/0031-9201 (91)90128-5
Cermak_etal1991b	Čermák, Vladimír; Kresl, Milan; Šafanda, Jan; Bodri, L.; Napoles-Pruna, M.;
	Tenreyroperez, R. (1991), Catalogue of Heat Flow Density Data: Czechoslovakia,
	Secondary, Catalogue of Heat Flow Density Data: Czechoslovakia,
Cermak_etal1996	Čermák, Vladimír; Kresl, Milan; Kucerova, L.; Šafanda, Jan; Frasheri, A.; Kapedani, N.;
	Lico, R.; Cano, D. (1996), Heat flow in Albania, Secondary, Heat flow in Albania, 25(1),
Cormak Joseph 1971	91–102, https://doi.org/10.1016/0375-6505(95)00036-4 Čermák, Vladimír; Jessop, Alan M. (1971), <i>Heat flow, heat generation and crustal</i>
Cermak_Jessop_1971	temperatures in the Kapuskasing area of the Canadian shield, Secondary, Heat flow,
	heat generation and crustal temperatures in the Kapuskasing area of the Canadian
	shield, 11(4), 287–303, https://doi.org/10.1016/0040-1951 (71)90035-7
Cermak_Krcmar_1968a	Čermák, Vladimír; Krcmar, B. (1968), Heat flow measurements in mines of the
	western and southern Bohemia - (Měřeni tepelného toku ve dvou šachtách v
	západnich a jižnich Čechách), Secondary, Heat flow measurements in mines of the
	western and southern Bohemia - (Měřeni tepelného toku ve dvou šachtách v
	západnich a jižnich Čechách), 43(415–422, https://doi.org/10.1594/pangaea.808857
Cermak_Safanda_1982b	Čermák, Vladimír; Šafanda, Jan (1982), Map of heat flow in the territory of
	Czechoslovakia - (Mapa tepelneho toku na uzemi Ceskoslovenska), Secondary, Map
	of heat flow in the territory of Czechoslovakia - (Mapa tepelneho toku na uzemi
	Ceskoslovenska), 20, https://doi.org/10.1594/pangaea.809578
Chadwick_1956	Chadwick, Peter (1956), Heat-Flow from the Earth at Cambridge, Secondary, Heat-
	Flow from the Earth at Cambridge, 178(4524), 105–106,
	https://doi.org/10.1038/178105a0
Chapman_etal1978	Chapman, David S.; Blackwell, David D.; Parry, William T.; Sill, William R.; Ward,
	Stanley H.; Whelan, James A. (1978), Regional heat flow and geochemical studies in
	southwest Utah, Secondary, Regional heat flow and geochemical studies in
Chanman etal 1991	southwest Utah, 2(Chapman, David S.: Clament, Monica D.: Maso, Charles W. (1991). Thermal regime of
Chapman_etal1981	Chapman, David S.; Clement, Monica D.; Mase, Charles W. (1981), Thermal regime of the Escalante Desert, Utah, with an analysis of the Newcastle geothermal system,
	Secondary, Thermal regime of the Escalante Desert, Utah, with an analysis of the
	Newcastle geothermal system, 86(B12), 11735–11746,
	https://dei.arg/10.1020/JD006:D12-11735-11740,

Chapman, David S.; Pollack, Henry N. (1974), Cold spot in west Africa—Anchoring the

https://doi.org/10.1029/JB086iB12p11735

Chapman_Pollack_1974

African Plate, Secondary, Cold spot in west Africa—Anchoring the African Plate, 250(5466), 477-478, https://doi.org/10.1038/250477a0 Chapman_Pollack_1977 Chapman, David S.; Pollack, Henry N. (1977), Heat flow and heat production in Zambia: Evidence for lithospheric thinning in central Africa, Secondary, Heat flow and heat production in Zambia: Evidence for lithospheric thinning in central Africa, 41(44256), 79-100, https://doi.org/10.1016/0040-1951(77)90181-0 Chavez etal. 2000 Chávez, R.E.; Flores, E.L.; Campos, J.O.; Guevara, M. Ladrón de; Fernández-Puga, M.C.; Herrera, J. (2000), Three-dimensional structure of the Laguna Salada Basin and its thermal regime, Secondary, Three-dimensional structure of the Laguna Salada Basin and its thermal regime, 48(5), 835-870, https://doi.org/10.1046/j.1365-2478.2000.00215.x Chen_1988 Chen, Mo-Xiang (1988), Geothermics in North China, Secondary, Geothermics in North China. Chen_etal._1982 Chen, Mo-Xiang; Huang, Ge-Shan; Zhang, Wen-Ren; Zheng, Ronyan; Liu, Bingyi (1982), The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province, Secondary, The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province, 3), 239-252, https://doi.org/10.1007/bf01033890 Chen_etal._1984 Chen, Mo-Xiang; Huang, Ge-Shan; Jiyang, Wang; Deng, Xiao; Wang, Ji-Yang (1984), A Preliminary Research on the Geothermal Characteristics in the Bohai Sea, Secondary, A Preliminary Research on the Geothermal Characteristics in the Bohai Sea, 19(4), 392-401. Chen_Xia_1991 Chen, Mo-Xiang; Xia, Shigao (1991), Geothermal study in the Leizhou panisulase China (in Chinese), Secondary, Geothermal study in the Leizhou panisulase China (in Chinese), 4(369-383, Cheremenskii 1979 Cheremenskii, G.A. (1979), Influence of Fracturing in the Foundation on Heat Flux Density on the South-Eastern Edge of the Baltic Shield - (Влияние трещиноватости фундамента на плотность теплового потока на юговосточной окраине Балтийского щита), Secondary, Influence of Fracturing in the Foundation on Heat Flux Density on the South-Eastern Edge of the Baltic Shield -(Влияние трещиноватости фундамента на плотность теплового потока на юговосточной окраине Балтийского щита), 9(90-95, Choi_etal._1990 Choi, D.R.; Liu, Y.S.B.; Cull, J.P. (1990), Heat-Flow and Sediment Thickness in the Queensland Trough, Western Coral Sea, Secondary, Heat-Flow and Sediment Thickness in the Queensland Trough, Western Coral Sea, 95(B13), 21399-21411, https://doi.org/10.1029/JB095iB13p21399 Chukwueke_1987 Chukwueke, C. (1987), Measurement of heat flow in Ririwai, Niger Delta (Nigeria) -(Mesure du flux de chaleur à Ririwai, delta du Niger (Nigéria)), Secondary, Measurement of heat flow in Ririwai, Niger Delta (Nigeria) - (Mesure du flux de chaleur à Ririwai, delta du Niger (Nigéria)), Ph.D. thesis(10.1594/pangaea.806738 Chukwueke_1990 Chukwueke, C. (1990), Notes on heat flow at Ririwai, Nigeria, Secondary, Notes on heat flow at Ririwai, Nigeria, 10(3), 503-507, https://doi.org/10.1016/0899-5362(90)90102-k Chukwueke_etal._1992 Chukwueke, C.; Thomas, G.P.; Delfaud, J. (1992), Sedimentary processes, eustatism, subsidence and heat flow in the distal part of the Niger Delta, Secondary, Sedimentary processes, eustatism, subsidence and heat flow in the distal part of the Niger Delta, 16(1), 137–186, https://doi.org/10.1594/pangaea.809580 Chung; Y.; Bell; M.Lee; J.G., Sclater; Corry; E., Charles (1969), Temperature data from Chung_etal._1969 the Pacific abyssal water, Secondary, Temperature data from the Pacific abyssal water, https://doi.org/10.1594/pangaea.806636 Clark_1957 Clark Jr, Sydney P. (1957), Heat flow at Grass Valley, California, Secondary, Heat flow at Grass Valley, California, 38(2), 239-244, https://doi.org/10.1029/TR038i002p00239 Clark_1961 Clark Jr, Sydney P. (1961), Heat flow in the Austrian Alps, Secondary, Heat flow in the

Austrian Alps, 6(1), 54-63, https://doi.org/10.1111/j.1365-246X.1961.tb02961.x

Clark_etal._1978 Clark, Tony F.; Korgen, Ben J.; Best, David M. (1978), Heat flow in the eastern Caribbean, Secondary, Heat flow in the eastern Caribbean, https://doi.org/10.1029/JB083iB12p05883 Clement_1980 Clement, Monica D. (1980), Heat flow and geothermal assessment of the Escalante Desert: part of the Oligocene to Miocene volcanic belt in southwestern Utah, Secondary, Heat flow and geothermal assessment of the Escalante Desert: part of the Oligocene to Miocene volcanic belt in southwestern Utah, Salt Lake City, University of Utah, M.Sc. thesis(118, https://doi.org/10.1594/pangaea.809582 Cochran_1981 Cochran, James R. (1981), Simple models of diffuse extension and the pre-seafloor spreading development of the continental margin of the north-eastern Gulf of Aden, Secondary, Simple models of diffuse extension and the pre-seafloor spreading development of the continental margin of the north-eastern Gulf of Aden, https://doi.org/10.7916/d8-8bhx-8a26 Coleno_1986 Coleno, Bernadette (1986), Thermal diagrams and temperature distribution in the Paris basin - (Diagraphies thermiques et distribution du champ de température dans le bassin de Paris), Secondary, Thermal diagrams and temperature distribution in the Paris basin - (Diagraphies thermiques et distribution du champ de température dans le bassin de Paris), Brest, France, Univ Bretagne Occidentale / University of Brest, Ph.D. thesis(220, https://doi.org/10.1594/pangaea.809583 Colgan_Wansing_2021 Colgan, William; Wansing, Agnes (2021), Greenland Geothermal Heat Flow Database and Map, Secondary, Greenland Geothermal Heat Flow Database and Map, Denmark, GEUS Dataverse, https://doi.org/10.22008/fk2/f9p03l Collette_etal._1968 Collette, R.J.; Lagaay, R.A.; Lenner, A.P. Van; Schouten, J.A.; Schiling, R.D. (1968), Some heat-flow measurements in the North Atlantic Ocean, Secondary, Some heatflow measurements in the North Atlantic Ocean, Series B(203-208, https://doi.org/10.1594/pangaea.809584 **Combs 1970** Combs, James Boyd (1970), Terrestrial heat flow in North Central United States, Secondary, Terrestrial heat flow in North Central United States, Cambridge, Massachusetts Institute of Technology, Ph.D. thesis(Combs_1971 Combs, Jim (1971), Heat flow and geothermal resource estimates for the Imperial Valley in Rex RW, principal investigator, Cooperative geological-geophysicalgeochemical investigation oJ geothermal resources in the Imperial Valley oJ CaliJornia, Secondary, Heat flow and geothermal resource estimates for the Imperial Valley in Rex RW, principal investigator, Cooperative geological-geophysicalgeochemical investigation oJ geothermal resources in the Imperial Valley oJ CaliJornia, 5(10.1594/pangaea.807968 Combs_1980 Combs, Jim (1980), Heat flow in the Coso Geothermal Area, Inyo County, California, Secondary, Heat flow in the Coso Geothermal Area, Inyo County, California, 85(B5), 2411-2424, https://doi.org/10.1029/JB085iB05p02411 Combs_Simmons_1973 Combs, Jim; Simmons, Gene (1973), Terrestrial heat flow determinations in the north central United States, Secondary, Terrestrial heat flow determinations in the north central United States, 78(2), 441-461, https://doi.org/10.1029/JB078i002p00441 Correia_Jones_1996 Correia, António; Jones, F.W. (1996), On the importance of measuring thermal conductivities for heat flow density estimates: an example from the Jeanne d'Arc Basin, offshore eastern Canada, Secondary, On the importance of measuring thermal conductivities for heat flow density estimates: an example from the Jeanne d'Arc Basin, offshore eastern Canada, 257(1), 71-80, https://doi.org/10.1016/0040-1951(95)00121-2 Corry_Brown_1998 Corry, D.; Brown, C. (1998), Temperature and heat flow in the Celtic Sea basins, Secondary, Temperature and heat flow in the Celtic Sea basins, 4(4), 317–326, https://doi.org/10.1144/petgeo.4.4.317 Corry_etal._1990 Corry, Charles E.; Herrin, Eugene; McDowell, Fred W.; Phillips, Kenneth A. (1990), Geology of the Solitario, Trans-Pecos, Texas, Secondary, Geology of the Solitario, Trans-Pecos, Texas, 250(10.1594/pangaea.807979 Costain_Decker_1987 Costain, John K.; Decker, Edward R. (1987), Heat flow at the proposed Appalachian ultradeep core hole (ADCOH) site: Tectonic implications, Secondary, Heat flow at the

proposed Appalachian ultradeep core hole (ADCOH) site: Tectonic implications, 14(3), 252-255, https://doi.org/10.1029/GL014i003p00252 Costain, John K.; Speer, J.A.; Glover, L.; Perry, L.D.; Dashevsky, S.; McKinney, M. Costain_etal._1986 (1986), Heat flow in the Piedmont and Atlantic Coastal Plain of the southeastern United States, Secondary, Heat flow in the Piedmont and Atlantic Coastal Plain of the southeastern United States, 91(B2), 2123-2135, https://doi.org/10.1029/JB091iB02p02123 Costain_Wright_1973 Costain, John K.; Wright, P.M. (1973), Heat flow at Spor Mountain, Jordan Valley, Bingham, and La Sal, Utah, Secondary, Heat flow at Spor Mountain, Jordan Valley, Bingham, and La Sal, Utah, 78(35), 8687-8698, https://doi.org/10.1029/JB078i035p08687 Coster_1947 Coster, H.P. (1947), Terrestrial heat flow in Persia, Secondary, Terrestrial heat flow in Persia, 5(5), 131-145, https://doi.org/10.1111/j.1365-246X.1947.tb00349.x Courtney_Recq_1986 Courtney, Robert C.; Recq, Maurice (1986), Anomalous heat flow near the Crozet Plateau and mantle convection, Secondary, Anomalous heat flow near the Crozet Plateau and mantle convection, 79(44289), 373–384, https://doi.org/10.1016/0012-821x(86)90193-7 Courtney_White_1986 Courtney, Robert C.; White, Robert S. (1986), Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle, Secondary, Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle, 87(3), 815-867, https://doi.org/10.1594/pangaea.803796 Crane_etal._1982 Crane, Kathleen; Eldholm, Olav; Myhre, Annik M.; Sundvor; Eirik (1982), Thermal implications for the evolution of the spitsbergen transform fault, Secondary, Thermal implications for the evolution of the spitsbergen transform fault, 89(1), 11689, https://doi.org/10.1016/0040-1951 (82)90032-4 Crane, Kathleen; Sundvor, Eirik; Foucher, Jean P.; Hobart, Michael A.; Myhre, Annik Crane_etal._1988 M.; LeDouaran, S. (1988), Thermal evolution of the western Svalbard margin, Secondary, Thermal evolution of the western Svalbard margin, 9(2), 165–194, https://doi.org/10.1007/bf00369247 Crane_etal._1991 Crane, Kathleen; Sundvor, Eirik; Buck, Roger; Martinez, Fernando (1991), Rifting in the Northern Norwegian-Greenland Sea - Thermal Tests of Asymmetric Spreading, Secondary, Rifting in the Northern Norwegian-Greenland Sea - Thermal Tests of Asymmetric Spreading, 96(B9), 14529-14550, https://doi.org/10.1029/91jb01231 Cranganu_etal._1998 Cranganu, Constantin; Lee, Young-Min; Denning, D. (1998), Heat flow in Oklahoma and the south central United States, Secondary, Heat flow in Oklahoma and the south central United States, 103(B11), 27107-27121, https://doi.org/10.1029/98jb02525 Creutzburg, Horst (1964), Studies on the earth's heat flow in West Germany -Creutzburg_1964 (Untersuchungen über den Wärmestrom der Erde in Westdeutschland), Secondary, Studies on the earth's heat flow in West Germany - (Untersuchungen über den Wärmestrom der Erde in Westdeutschland), 3(73-108, https://doi.org/10.1594/pangaea.806670 Crowe_1981 Crowe, John (1981), Mechanisms of heat transport through the floor of the equatorial Pacific Ocean, Secondary, Mechanisms of heat transport through the floor of the equatorial Pacific Ocean, Ph.D. thesis(10.1575/1912/3214 Cui_2004 Cui, Jun-Ping (2004), Study on the Thermal Evolution and Reservoir History in Hailar Basin, Secondary, Study on the Thermal Evolution and Reservoir History in Hailar Basin, M.Sc. thesis(Cull_1980 Cull, J.P. (1980), Geothermal records of climatic change in New South Wales, Secondary, Geothermal records of climatic change in New South Wales, 11(6), 201-203, https://doi.org/10.1594/pangaea.809586 Cull_1982 Cull, J.P. (1982), An appraisal of Australian heat-flow data, Secondary, An appraisal of Australian heat-flow data, 7(44501, https://doi.org/10.1594/pangaea.809587 Cull_1991 Cull, J.P. (1991), Terrestrial Heat Flow and Lithospheric Structure, Secondary,

Terrestrial Heat Flow and Lithospheric Structure, Berlin, Heidelberg, Germany,

Springer, 507, https://doi.org/10.1594/pangaea.806675

Cull_Denham_1979 Cull, J.P.; Denham, D. (1979), Regional variations in Australian heat flow, Secondary,

Regional variations in Australian heat flow, 4(1), 45304,

https://doi.org/10.1594/pangaea.807985

Curray_etal._1978a Curray, Joseph R.; Moore, David G.; Aguayo, J.Eduardo; Aubry, Marie-Pierre; Einsele, Gerhard; Fornari, Daniel J.; Gieskes, Joris; Guerrero-Garcia, José; Kastner, Miriam;

Kelts, Kerry; Lyle, Mitchell; Matoba, Yasumochi; Molina-Cruz, Adolfo; Niemitz, Jeffrey; Rueda-Gaxiola, Jaime; Saunders, Andrew D. (1982), Baja California passive margin transect; Sites 474, 475, and 476, Secondary, Baja California passive margin

transect; Sites 474, 475, and 476, 64(1), 35,

Curray_etal._1978c

Dahl-Jensen_etal._1998

Curray, Joseph R.; Moore, David G.; Aguayo, J.Eduardo; Aubry, Marie-Pierre; Einsele, Curray_etal._1978b

> Gerhard; Fornari, Daniel J.; Gieskes, Joris; Guerrero-Garcia, José; Kastner, Miriam; Kelts, Kerry; Lyle, Mitchell; Matoba, Yasumochi; Molina-Cruz, Adolfo; Niemitz, Jeffrey; Rueda-Gaxiola, Jaime; Saunders, Andrew D. (1982), Guaymas Basin; Sites

> 477, 478, and 481, Secondary, Guaymas Basin; Sites 477, 478, and 481, 64(1), 211,

Curray, Joseph R.; Moore, David G.; Aguayo, J.Eduardo; Aubry, Marie-Pierre; Einsele, Gerhard; Fornari, Daniel J.; Gieskes, Joris; Guerrero-Garcia, José; Kastner, Miriam; Kelts, Kerry; Lyle, Mitchell; Matoba, Yasumochi; Molina-Cruz, Adolfo; Niemitz,

Jeffrey; Rueda-Gaxiola, Jaime; Saunders, Andrew D. (1982), Guaymas Basin slope; Sites 479 and 480, Secondary, Guaymas Basin slope; Sites 479 and 480, 64(1), 417,

Dahl-Jensen, D.; Mosegaard, K.; Gundestrup, N.; Clow, G.D.; Johnsen, S.J.; Hansen, A.W.; Balling, Niels (1998), Past temperatures directly from the greenland ice sheet, Secondary, Past temperatures directly from the greenland ice sheet, 282(5387), 268-

71, https://doi.org/10.1126/science.282.5387.268

Daignieres_Vasseur_1979 Daignières, M.; Vasseur, Guy (1979), Determination and interpretation of the

> geothermal flux in Bournac, Haute Loire - (Détermination et interprétation du Flux Géotermique à Bournac, Haute Loire), Secondary, Determination and interpretation of the geothermal flux in Bournac, Haute Loire - (Détermination et interprétation du

Flux Géotermique à Bournac, Haute Loire), 35(31-39,

https://doi.org/10.1594/pangaea.807986

Dao_Huyen_1995 Dao, D.V.; Huyen, T. (1995), Heat flow in the oil basins of Vietnam, Secondary, Heat

> flow in the oil basins of Vietnam, 25(55-61, https://doi.org/10.1594/pangaea.806750

Davis_Becker_1994 Davis, Earl E.; Becker, Keir (1994), Thermal and Tectonic Structure of Escanaba

> Trough: New Heat-Flow Measurements and Seismic-Reflection Profiles, Secondary, Thermal and Tectonic Structure of Escanaba Trough: New Heat-Flow Measurements

and Seismic-Reflection Profiles, 2022(45-64, https://doi.org/10.1594/pangaea.806763

Davis_etal._1980 Davis, Earl E.; Lister, Clive R.B.; Wade, U.S.; Hyndman, Roy D. (1980), Detailed heat

> flow measurements over the Juan de Fuca Ridge System, Secondary, Detailed heat flow measurements over the Juan de Fuca Ridge System, 85(B1), 299-310,

https://doi.org/10.1029/JB085iB01p00299

Davis_etal._1984 Davis, Earl E.; Lister, Clive R.B.; Sclater, John G. (1984), Towards determining the

> thermal state of old ocean lithosphere: heat-flow measurements from the Blake— Bahama outer ridge, north-western Atlantic, Secondary, Towards determining the thermal state of old ocean lithosphere: heat-flow measurements from the Blake-

Bahama outer ridge, north-western Atlantic, 78(2), 507-545,

https://doi.org/10.1111/j.1365-246X.1984.tb01962.x

Davis_etal._1990 Davis, Earl E.; Hyndman, Roy D.; Villinger, Heinrich W. (1990), Rates of fluid expulsion

across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data, Secondary, Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and

multichannel seismic reflection data, 95(B6), 8869-8889,

https://doi.org/10.1029/JB095iB06p08869

Davis_etal._1997a Davis, Earl E.; Chapman, David S.; Villinger, Heinrich W.; Robinson, S.W.; Grigel, J.;

Rosenberger, A.; Pribnow, Dan F.C. (1997), Seafloor heat flow on the Eastern Flank of

Seafloor heat flow on the Eastern Flank of the Juan de Fuca ridge: Data from 'FlankFlux' studies through 1995, 23-33, Davis_etal._2003 Davis, Earl E.; Wang, K.L.; Becker, Keir; Thomson, R.E.; Yashayaev, I. (2003), Deepocean temperature variations and implications for errors in seafloor heat flow determinations, Secondary, Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations, 108(B1), https://doi.org/10.1029/2001jb001695 Davis_etal._2004 Davis, Earl E.; Becker, Keir; He, J.H. (2004), Costa Rica Rift revisited: Constraints on shallow and deep hydrothermal circulation in young oceanic crust, Secondary, Costa Rica Rift revisited: Constraints on shallow and deep hydrothermal circulation in young oceanic crust, 222(44289), 863-879, https://doi.org/10.1016/j.epsl.2004.03.032 Davis_Lewis_1984 Davis, Earl E.; Lewis, Trevor J. (1984), Heat flow in a back-arc environment: Intermontane and Omineca Crystalline belts, southern Canadian Cordillera, Secondary, Heat flow in a back-arc environment: Intermontane and Omineca Crystalline belts, southern Canadian Cordillera, 21(6), 715-726, https://doi.org/10.1139/e84-077 Davis_Lister_1977 Davis, Earl E.; Lister, Clive R.B. (1977), Heat flow measured over the Juan de Fuca Ridge: Evidence for widespread hydrothermal circulation in a highly heat transportive crust, Secondary, Heat flow measured over the Juan de Fuca Ridge: Evidence for widespread hydrothermal circulation in a highly heat transportive crust, 82(30), 4845-4860, https://doi.org/10.1029/JB082i030p04845 Davis_Riddihough_1982 Davis, Earl E.; Riddihough, R.P. (1982), The Winona Basin: structure and tectonics, Secondary, The Winona Basin: structure and tectonics, 19(4), 767-788, https://doi.org/10.1139/e82-065 Davis_Villinger_1992 Davis, Earl E.; Villinger, Heinrich W. (1992), Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge, Secondary, Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge, 139(15220, https://doi.org/10.2973/odp.Proc.Ir.139.102.1992 Decker_1969 Decker, Edward R. (1969), Heat flow in Colorado and New Mexico, Secondary, Heat flow in Colorado and New Mexico, 74(2), 550-559, https://doi.org/10.1029/JB074i002p00550 Decker_1987 Decker, Edward R. (1987), Heat flow and basement radioactivity in Maine: First-order results and preliminary interpretations, Secondary, Heat flow and basement radioactivity in Maine: First-order results and preliminary interpretations, 14(3), 256-259, https://doi.org/10.1029/GL014i003p00256 Decker_Birch_1974 Decker, Edward R.; Birch, Francis S. (1974), Basic heat-flow data from Colorado, Minnesota, New Mexico, and Texas, Secondary, Basic heat-flow data from Colorado, Minnesota, New Mexico, and Texas, 44201, https://doi.org/10.1594/pangaea.807988 Decker_Bucher_1979 Decker, Edward R.; Bucher, Gerald J. (1979), Thermal gradients and heat flow data in Colorado and Wyoming, Secondary, Thermal gradients and heat flow data in Colorado and Wyoming, New Mexico, https://doi.org/10.2172/5923882 Decker_Bucher_1983 Decker, Edward R.; Bucher, Gerald J. (1983), Geothermal studies in the Ross Island-Dry Valley region, Secondary, Geothermal studies in the Ross Island-Dry Valley region, 4(887–894, https://doi.org/10.1594/pangaea.808006 Decker_etal._1980 Decker, Edward R.; Baker, Keith R.; Bucher, Gerald J.; Heasler, Henry P. (1980), Preliminary heat flow and radioactivity studies in Wyoming, Secondary, Preliminary heat flow and radioactivity studies in Wyoming, 85(B1), 311-321, https://doi.org/10.1029/JB085iB01p00311 Decker_etal._1988 Decker, Edward R.; Heasler, Henry P.; Buelow, Kenneth L.; Baker, Keith H.; Hallin, James S. (1988), Significance of past and recent heat-flow and radioactivity studies in the southern Rocky Mountains region, Secondary, Significance of past and recent heat-flow and radioactivity studies in the southern Rocky Mountains region, 100(12),

the Juan de Fuca ridge: Data from 'FlankFlux' studies through 1995, Secondary,

1851-1885, https://doi.org/10.1130/SPE253-p277

Decker_Smithson_1975	Decker, Edward R.; Smithson, S.B. (1975), Heat flow and gravity interpretation across the Rio Grande Rift in southern New Mexico and west Texas, Secondary, Heat flow and gravity interpretation across the Rio Grande Rift in southern New Mexico and west Texas, 17), 2542–2552, https://doi.org/10.1029/JB080i017p02542
Degens_etal1971	Degens, Egon T.; Herzen, Richard P. Von; Wong, How-Kin (1971), <i>Lake Tanganyika:</i> water chemistry, sediments, geological structure, Secondary, Lake Tanganyika: water chemistry, sediments, geological structure, 58(5), 229–241, https://doi.org/10.1594/pangaea.804018
Degens_etal1973	Degens, Egon T.; Herzen, Richard P. Von; Wong, How-Kin; Deuser, Werner G.; Jannasch, Holger W. (1973), <i>Lake Kivu: structure, chemistry and biology of an East African rift lake</i> , Secondary, Lake Kivu: structure, chemistry and biology of an East African rift lake, 62(1), 245–277, https://doi.org/10.1594/pangaea.804016
Delisle_1994	Delisle, Georg (1994), <i>Measurement of terrestrial heat flow in glaciated terrain</i> , Secondary, Measurement of terrestrial heat flow in glaciated terrain, 1(3), 527–528, https://doi.org/10.1594/pangaea.806779
Delisle_2011	Delisle, Georg (2011), <i>Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka</i> , Secondary, Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka, 2(2), 191–198, https://doi.org/10.5194/se-2-191-2011
Delisle_etal1995	Delisle, Georg; Marzan, Ignacio; Steinmann, Dieter (1995), <i>Heat flow measurements</i> , H.R. Kudrass, G. Delisle, Secondary, Heat flow measurements, Bundesanstalt für Geowissenschaften und Rohstoffe BGR,
Delisle_etal1998	Delisle, Georg; Beiersdorf, H.; Neben, S.; Steinmann, Dieter (1998), <i>The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments</i> , Secondary, The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments, 267–274, https://doi.org/10.1144/gsl.Sp.1998.137.01.21
Delisle_Ladage_2002	Delisle, Georg; Ladage, S. (2002), New heat flow data from the Chilean coast between 36° and 40° , Secondary, New heat flow data from the Chilean coast between 36° and 40° ,
Delisle_Zeibig_1999	Delisle, Georg; Zeibig, Michael (1999), <i>Geothermal Measurements</i> , Secondary, Geothermal Measurements, 54–62, https://doi.org/10.1594/pangaea.810030
Delisle_Zeibig_2007	Delisle, Georg; Zeibig, Michael (2007), <i>Marine Heat Flow Measurements in Hard Ground Offshore Sumatra</i> , Secondary, Marine Heat Flow Measurements in Hard Ground Offshore Sumatra, 88(4), 38–39, https://doi.org/10.1029/2007eo040004
DellaVedova_etal1984	DellaVedova, Bruno; Pellis, , Giulio; Foucher, Jean P.; Rehault, J.P. (1984), <i>Geothermal structure of the Tyrrhenian Sea</i> , https://doi.org/10.1016/0025-3227(84)90072-0
DellaVedova_etal1992	Della Vedova, Bruno; Pellis, Giulio; Lawver, Lawrence A.; Brancolini, G. (1992), Heat flow and tectonics of the Western Ross Sea, Secondary, Heat flow and tectonics of the Western Ross Sea, https://doi.org/10.1594/pangaea.804230
DellaVedova_Pellis_1979	Della Vedova, Bruno; Pellis, Giulio (1979), Results of heat flux measurements performed in the South-Eastern Tyrrhenian Sea - Secondary, Risultati delle misure di flusso di calore eseguite nel Tirreno Sud-Orientale), 693–712,
DellaVedova_Pellis_1983	Della Vedova, Bruno; Pellis, Giulio (1983), Heat flow data in Italian seas - (Dati di flusso di calore nei mari italiani), Secondary, Heat flow data in Italian seas - (Dati di flusso di calore nei mari italiani),
DellaVedova_Pellis_1986b	Della Vedova, Bruno; Pellis, Giulio (1986), <i>Heat flow and subsidence of the deep Ionian Basin</i> , Secondary, Heat flow and subsidence of the deep Ionian Basin, Monaco, CIESM Congress Proceedings, 30(2), 78,
DellaVedova_Pellis_1987	Della Vedova, Bruno; Pellis, Giulio (1987), - (Risultatiti-delle Misure di Flusso di Calore nel Mare di Sardegna), Secondary, Results from heat flow measurements in the sea of Sardinia - , 1141–1155,
DelRey_1989	Rey, A.C. Del (1989), Hydrogeothermal studies of the regions of Águas de Lindoia, Amparo e Socorro- Northeastern parts of the state of São Paulo, Secondary, Hydrogeothermal studies of the regions of Águas de Lindoia, Amparo e Socorro-Northeastern parts of the state of São Paulo, São Paulo, Brazil, University of São

Paulo.

Demetrescu_etal._1981a Demetrescu, Crisan; Ene, M.; Andreescu, Maria (1981), Geothermal profile in the

Central Moesian Platform, Secondary, Geothermal profile in the Central Moesian

Platform, 33(1015-1021,

Demetrescu, Crisan; Ene, M.; Andreescu, Maria (1981), On the geothermal regime of Demetrescu_etal._1981b

Transylvanian Depression, Secondary, On the geothermal regime of Transylvanian

Depression, 19(61-71, https://doi.org/10.1594/pangaea.809694

Demetrescu_etal._1983 Demetrescu, Crisan; Ene, M.; Andreescu, Maria (1983), New heat flow data for the

Romanian Territory, Secondary, New heat flow data for the Romanian Territory, 45-

56,

Demetrescu_etal._2001 Demetrescu, Crisan; Nielsen, Soren B.; Ene, M.; Serban, D.Z.; Polonic, G.; Andreescu,

> Maria; Pop, A.; Balling, Niels (2001), Lithosphere thermal structure and evolution of the Transylvanian Depression - insights from new geothermal measurements and modelling results, Secondary, Lithosphere thermal structure and evolution of the Transylvanian Depression - insights from new geothermal measurements and modelling results, 126(44289), 249–267, https://doi.org/10.1016/s0031-9201

(01)00259-x

Demetrescu_etal._2007 Demetrescu, Crisan; Wilhelm, Helmut; Tumanian, M.; Nielsen, Soren B.; Damian, A.;

Dobrică, V.; Ene, M. (2007), Time-dependent thermal state of the lithosphere in the

foreland of the Eastern Carpathians bend. Insights from new geothermal

measurements and modelling results, Secondary, Time-dependent thermal state of the lithosphere in the foreland of the Eastern Carpathians bend. Insights from new

geothermal measurements and modelling results, 170(2), 896-912,

https://doi.org/10.1111/j.1365-246X.2007.03408.x

Deming_Chapman_1988 Deming, David; Chapman, David S. (1988), Heat flow in the Utah-Wyoming thrust

> belt from analysis of bottom-hole temperature data measured in oil and gas wells, Secondary, Heat flow in the Utah-Wyoming thrust belt from analysis of bottom-hole

temperature data measured in oil and gas wells, 93(B11), 13657-13672,

https://doi.org/10.1029/JB093iB11p13657

Deng_Wang_1982 Deng, Xiao; Wang, Jian (1982), Terrestrial heat flow in Anhui Province, Secondary,

Terrestrial heat flow in Anhui Province, 1(82-89,

DeRito_etal._1989 Rito, Robert F. De; Lachenbruch, Arthur H.; Moses Jr, Thomas H.; Munroe, Robert J.

> (1989), Heat flow and thermotectonic problems of the central Ventura Basin, southern California, Secondary, Heat flow and thermotectonic problems of the

central Ventura Basin, southern California, 94(B1), 681-699,

https://doi.org/10.1029/JB094iB01p00681

Detrick_etal._1986 Detrick, Robert S.; Herzen, Richard P. Von; Parsons, Barry; Sandwell, David;

> Dougherty, M.E. (1986), Heat flow observations on the Bermuda Rise and thermal models of midplate swells, Secondary, Heat flow observations on the Bermuda Rise

and thermal models of midplate swells, 91(B3), 3701-3723,

https://doi.org/10.1029/JB091iB03p03701

Deville_etal._2006 Deville, Eric; Guerlais, Sophie-Hélène; Callec, Yannick; Griboulard, Roger; Huyghe,

> Pascale; Lallemant, Siegfried; Mascle, Alain; Noble, Mark; Schmitz, Julien (2006), Liquefied vs stratified sediment mobilization processes: Insight from the South of the

Barbados accretionary prism, Secondary, Liquefied vs stratified sediment

mobilization processes: Insight from the South of the Barbados accretionary prism,

428(44287), 33-47, https://doi.org/10.1016/j.tecto.2006.08.011

Devyatkin_1973 Deviatkin, V.N. (1973), Methodology for studying geothermal parameters in the area

> of permafrost distribution - (Методика изучения геотермических параметров в области распространения многолетнемерзлых пород), Secondary, Methodology for studying geothermal parameters in the area of permafrost

distribution - (Методика изучения геотермических параметров в области распространения многолетнемерзлых пород), Moscow, USSR, Porod., 975(148-

150,

Devyatkin_1975 Deviatkin, V.N. (1975), Results of determining the deep heat flow in Yakutia -

(Результаты определения глубинного теплового потока на территории

	Grand Consider Death of determining the death and flow in Valuetie
	Якутии), Secondary, Results of determining the deep heat flow in Yakutia -
	(Результаты определения глубинного теплового потока на территории Якутии),
Description 4000	Novosibirsk, USSR, Nauka, 148–150,
Devyatkin_1982	Deviatkin, V.N. (1982), On the geothermal anomaly of the Lena-Ust-Vilyui gas-
	bearing region - (О геотермической аномалии Лено-Усть-Вилюйского
	газоносного района), Secondary, On the geothermal anomaly of the Lena-Ust-Vilyui
	gas-bearing region - (О геотермической аномалии Лено-Усть-Вилюйского
	газоносного района), Yakutsk, Russia, Institute for Permafrost Studies of the USSR
	Academy of Sciences (Ин-та мерзлотоведения АН СССР), 111–117,
Devyatkin_etal1980	Deviatkin, V.N.; Shamshurin, V.Yu (1980), Geothermal conditions of the Yubileinaya
	kimberlite pipe - (Геотермические условия кимберлитовой трубки Юбилейная),
	Secondary, Geothermal conditions of the Yubileinaya kimberlite pipe -
	(Геотермические условия кимберлитовой трубки Юбилейная), Novosibirsk, USSR,
	Nauka, 79–82,
Devyatkin_Gavriliev_1981	Deviatkin, V.N.; Gavriliev, R.I. (1981), Geothermy of host rocks of the Mir quarry
	(Western Yakutia) - (Геотермия вмещающих пород карьера "Мир" (Западная
	Якутия)), Secondary, Geothermy of host rocks of the Mir quarry (Western Yakutia) -
	(Геотермия вмещающих пород карьера "Мир" (Западная Якутия)), 76–79,
Devyatkin_Shamshurin_1978	Deviatkin, V.N.; Shamshurin, V.Yu. (1978), Geothermal characteristics of the Sytykan
	deposit - (Геотермическая Характеристика Месторождения Сытыкан),
	Secondary, Geothermal characteristics of the Sytykan deposit - (Геотермическая
	Характеристика Месторождения Сытыкан), 142–148,
Diment_etal1965a	Diment, William H.; Raspet, R.; Mayhew, M.A.; Werre, R.W. (1965), Terrestrial Heat
	Flow near Alberta, Virginia, Secondary, Terrestrial Heat Flow near Alberta, Virginia,
	4), 923–929, https://doi.org/10.1029/JZ070i004p00923
Diment_Robertson_1963	Diment, William H.; Robertson, E.C. (1963), Temperature, thermal conductivity, and
	heat flow in a drilled hole near Oak Ridge, Tennessee, Secondary, Temperature,
	thermal conductivity, and heat flow in a drilled hole near Oak Ridge, Tennessee,
	68(17), 5035-5047, https://doi.org/10.1029/JZ068i017p05035
Diment_Weaver_1964	Diment, William H.; Weaver, J.D. (1964), Subsurface temperatures and heat flow in
	the AMSOC core hole near Mayaguez, Puerto Rico, Secondary, Subsurface
	temperatures and heat flow in the AMSOC core hole near Mayaguez, Puerto Rico,
	75–91, https://doi.org/10.1594/pangaea.806802
Diment_Werre_1964	Diment, William H.; Werre, R.W. (1964), Terrestrial heat flow near Washington, D.C,
	Secondary, Terrestrial heat flow near Washington, D.C, 69(10), 2143–2149,
	https://doi.org/10.1029/JZ069i010p02143
Doig_1961	Doig, Ronald (1961), A further study of terrestrial heat flow in the St. Lawrence
	Lowlands of Quebec, Secondary, A further study of terrestrial heat flow in the St.
	Lawrence Lowlands of Quebec, Ph.D. thesis(
Dong_Zhang_1992	Dong, Zhi-Ping; Zhang, Bi-Ao (1992), The first batch of geothermal flow data in Gansu
5_ 5_	- (甘肃首批大地热流数据), Secondary, The first batch of geothermal flow data in
	Gansu - (甘肃首批大地热流数据), 4(3), 41–44,
Dorofeeva_1992	Dorofeeva, R.P. (1992), Geothermal studies in Siberia and Mongolia, Secondary,
	Geothermal studies in Siberia and Mongolia, 237–240,
	https://doi.org/10.1594/pangaea.806810
Dorofeeva_Duchkov_1995	Dorofeeva, R.P.; Duchkov, Albert D. (1995), A new geothermal study in underwater
	boreholes on Lake Baikal continental rift zone, Secondary, A new geothermal study in
	underwater boreholes on Lake Baikal continental rift zone, 763–766,
	https://doi.org/10.1594/pangaea.808087
Dorofeeva_etal1995	Dorofeeva, R.P.; Lysak, Svetlana V.; Golubev, V.A.; Balobaev, V.T.; Duchkov, Albert D.;
<u>-</u> - 	Sokolova, L.S. (1995), Terrestrial heat flow in Siberia and Mongolia, Secondary,
	Terrestrial heat flow in Siberia and Mongolia, A.A. Balkema Rotterdam
	(Netherlands);, 251-279,
Dougherty_etal1986	Dougherty, M.E.; Herzen, Richard P. Von; Barker, Peter F. (1986), <i>Anomalous heat</i>
5 ,	flow from a Miocene ridge crest-trench collision, Antarctic Peninsula, Secondary,
	Anomalous heat flow from a Miocene ridge crest-trench collision, Antarctic
	The state of the s

	Peninsula, 21(5), https://doi.org/10.1594/pangaea.806816
Dovenyi_etal1983	Dövényi, P.; Horváth, F.; Liebe, P.; Gafi, J.; Erki, I. (1983), Geothermal conditions of
	Hungary, Secondary, Geothermal conditions of Hungary, 29(1), 3–114,
Davanyi Harvath 1000	https://doi.org/10.1594/pangaea.808029 Dövényi, P.; Horváth, F. (1988), <i>A review of temperature, thermal conductivity, and</i>
Dovenyi_Horvath_1988	heat flow data from the Pannonian Basin, Secondary, A review of temperature,
	thermal conductivity, and heat flow data from the Pannonian Basin, 45(195–233,
	https://doi.org/10.1306/m45474c16
Drachev_etal2003	Drachev, S.S.; Kaul, Norbert E.; Beliaev, V.N. (2003), Eurasia spreading basin to
	Laptev Shelf transition: structural pattern and heat flow, Secondary, Eurasia
	spreading basin to Laptev Shelf transition: structural pattern and heat flow, 152(3),
	688–698, https://doi.org/10.1046/j.1365-246X.2003.01882.x
Drury_1985	Drury, Malcolm J. (1985), Heat flow and heat generation in the Churchill Province of
	the Canadian Shield, and their palaeotectonic significance, Secondary, Heat flow and
	heat generation in the Churchill Province of the Canadian Shield, and their
	palaeotectonic significance, 115(1), 25–44, https://doi.org/10.1016/0040-1951
	(85)90097-6
Drury_1991	Drury, Malcolm J. (1991), Heat flow in the Canadian Shield and its relation to other
	geophysical parameters, Secondary, Heat flow in the Canadian Shield and its relation to other geophysical parameters, 317–337, https://doi.org/10.1007/978-3-642-
	75582-8_16
Drury_etal1987	Drury, Malcolm J.; Jessop, Alan M.; Lewis, Trevor J. (1987), The thermal nature of the
	Canadian Appalachian crust, Secondary, The thermal nature of the Canadian
	Appalachian crust, 133(1), 41640, https://doi.org/10.1016/0040-1951(87)90276-9
Drury_Lewis_1983	Drury, Malcolm J.; Lewis, Trevor J. (1983), Water movement within lac du bonnet
	batholith as revealed by detailed thermal studies of three closely-spaced boreholes,
	Secondary, Water movement within lac du bonnet batholith as revealed by detailed
	thermal studies of three closely-spaced boreholes, 95(3), 337–351,
	https://doi.org/10.1016/0040-1951(83)90077-x
Drury_Taylor_1987	Drury, Malcolm J.; Taylor, Alan (1987), Some new measurements of heat flow in the
	Superior Province of the Canadian Shield, Secondary, Some new measurements of
	heat flow in the Superior Province of the Canadian Shield, 24(7), 1486–1489,
Duchkov_1972	https://doi.org/10.1139/e87-140 Duchkov, Albert D. (1972), <i>Heat flow for the Altai-Sayan Region</i> , Secondary, Heat
Duchkov_1972	flow for the Altai-Sayan Region,
Duchkov_2004	Duchkov, Albert D. (2004), personal communication, In: CD Rom: Geothermal
	Gradient and Heat Flow Data in and, around Japan. Geological Survey of Japan, AIST,
	2004, Secondary, personal communication, In: CD Rom: Geothermal Gradient and
	Heat Flow Data in and, around Japan. Geological Survey of Japan, AIST, 2004,
Duchkov_etal1976	Duchkov, Albert D.; Kazantsev, S.A.; Golubev, Valery A.; Lysak, Svetlana V.;
	Khaikovsky, E.S. (1976), Heat flow within Lake Baikal - (И Др Тепловои Поток,
	В.П.ределакх Озера Баикал - Геологиа И Геофизика), Secondary, Heat flow within
	Lake Baikal - (И Др Тепловои Поток, В.П.ределакх Озера Баикал - Геологиа И
	Геофизика), 4(112–121, https://doi.org/10.1594/pangaea.808862
Duchkov_etal1977	Duchkov, Albert D.; Kazantsev, S.A.; Golubev, Valery A.; Lysak, Svetlana V. (1977),
	Geothermic investigations in the Baikal Lake - (Геотермические Исследованиыа На
	Озере Баикал), Secondary, Geothermic investigations in the Baikal Lake -
	(Геотермические Исследованиыа На Озере Баикал), 6(126–130, https://doi.org/10.1594/pangaea.808867
Duchkov_etal1978	Duchkov, Albert D.; Sokolova, L.S.; Solov'eva, Z.A.; Khaykovskiy, Z.S. (1978), <i>Heat flow</i>
	in the western part of the Altai-Sayan region - (Тепловой поток западной части
	алтае-саянской области), Secondary, Heat flow in the western part of the Altai-
	Sayan region - (Тепловой поток западной части алтае-саянской области), 4(96–
	100,

Duchkov, Albert D.; Kazantsev, S.A.; Velinskii, V.V. (1979), Heat flow of Lake Baikal - (Тепловои Поток Озера Баикал - Геология И Геофизика), Secondary, Heat flow of

Duchkov_etal._1979

Lake Baikal - (Тепловои Поток Озера Баикал - Геология И Геофизика), 20(110-113, https://doi.org/10.1594/pangaea.808866 Duchkov, Albert D.; Kazantsev, S.A.; Selegey, V.V.; Selegey, T.S.; Velinskii, V.V. (1980), Duchkov_etal._1980 Geothermal studies on Lake Teletskoye - (Геотермические исследования на Телецком озере), Secondary, Geothermal studies on Lake Teletskoye -(Геотермические исследования на Телецком озере), 4), 111-118, Duchkov_etal._1989 Duchkov, Albert D.; Sokolova, L.S.; Lebedev, V.I.; Molchanov, I.V.; Novikov, G.N.; Rastvorov, V.I.; Frizen, L.F. (1989), New data on the heat flow in Western Siberia -(Новые данные о тепловом потоке Западной Сибири), Secondary, New data on the heat flow in Western Siberia - (Новые данные о тепловом потоке Западной Сибири), 1), 140-144, Duchkov_etal._1992 Duchkov, Albert D.; Chonglem, Nguyen; Toan, Dinh Van; Bak, Chinh V. (1992), First estimates of the heat flow in North Vietnam - (Первые оценки теплового потока, В.С.еверном Вьетнаме), Secondary, First estimates of the heat flow in North Vietnam - (Первые оценки теплового потока, В.С.еверном Вьетнаме), 5), 92-96, 110-115, https://doi.org/10.1594/pangaea.808868 Duchkov_etal._1999a Duchkov, Albert D.; Lysak, Svetlana V.; Golubev, Valery A.; Dorofeeva, R.P.; Sokolova, L.S. (1999), Heat flow and geotemperature field of the Baikal region - (Тепловой поток и геотемпературное поле Байкальского региона), Secondary, Heat flow and geotemperature field of the Baikal region - (Тепловой поток и геотемпературное поле Байкальского региона), 40(3), 287-303, Duchkov_etal._2001 Duchkov, Albert D.; Shavartsman, Y.G.; Sokolova, L.S. (2001), Deep heat flow of the Tien Shan: achievements and problems - (Глубинный тепловой поток Тянь-Шаня: достижения и проблемы), Secondary, Deep heat flow of the Tien Shan: achievements and problems - (Глубинный тепловой поток Тянь-Шаня: достижения и проблемы), 42(10), 1516-1531, Duchkov_etal._2010 Duchkov, Albert D.; Rychkova, K.M.; Lebedev, V.I.; Kamenskii, I.L.; Sokolova, L.S. (2010), Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs, Secondary, Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs, 51(2), 209-219, https://doi.org/10.1016/j.rgg.2009.12.023 Duchkov_etal._2023 Duchkov, Albert D.; Ayunov, D.E.; Yan, P.A.; Sivtsev, A.I.; Sokolova, L.S. (2023), Thermal Conductivity of Rocks and Estimates of Heat Flow in the Lena-Anabar Interfluve (Siberian Platform), Secondary, Thermal Conductivity of Rocks and Estimates of Heat Flow in the Lena-Anabar Interfluve (Siberian Platform), https://doi.org/10.2113/rgg20224518 Duchkov_Kazantsev_1984 Duchkov, Albert D.; Kazantsev, S.A. (1984), Results of studying heat flow through the bottom of lakes - (Резултаты изучениыа теплового потока через дно озер), Secondary, Results of studying heat flow through the bottom of lakes - (Резултаты изучениыа теплового потока через дно озер), Moscow, USSR, Nauka, 104-113, Duchkov_Kazantsev_1985 Duchkov, Albert D.; Kazantsev, S.A. (1985), Heat flow through the bottom of the western part of the Black Sea - (Тепловой поток через дно западной части Черного моря), Secondary, Heat flow through the bottom of the western part of the Black Sea - (Тепловой поток через дно западной части Черного моря), 8(113-123, https://doi.org/10.1594/pangaea.808860 Duchkov_Kazantsev_1988 Duchkov, Albert D.; Kazantsev, S.A. (1988), Heat flow in the Black Sea basin -(Тепловой поток впадины Черного моря), Secondary, Heat flow in the Black Sea basin - (Тепловой поток впадины Черного моря), Moscow, USSR, Nauka, 121-130, https://doi.org/10.1594/pangaea.808861 Duchkov_Rakityansky_1989 Duchkov, Albert D.; Rakityansky, D.F. (1989), Geothermal research in the northeastern part of the Pacific Ocean - (Геотермические исследования в Северовосточной части Тихого Океана), Secondary, Geothermal research in the northeastern part of the Pacific Ocean - (Геотермические исследования в Северовосточной части Тихого Океана), 5), 77-85,

Duchkov, Albert D.; Sokolova, L.S. (1974), Heat flow in the Central Regions of the Altai-Sayan Region - (Тепловой поток в центральных районах Алтае-Саянского

Duchkov_Sokolova_1974

края), Secondary, Heat flow in the Central Regions of the Altai-Sayan Region -(Тепловой поток в центральных районах Алтае-Саянского края), 8(114-123, Duchkov_Sokolova_1985 Duchkov, Albert D.; Sokolova, L.S. (1985), Geothermal Studies in the Eastern Caspian Lowlands - (Геотермические Исследования, в восточной Части Прикаспийской Низменности), Secondary, Geothermal Studies in the Eastern Caspian Lowlands -(Геотермические Исследования, в восточной Части Прикаспийской Низменности), 255-261, Duennebier_etal._1987 Duennebier, Fred K.; Cessaro, Robert K.; Harris, David (1987), Temperature and tilt variation measured for 64 days in hole 581C, Secondary, Temperature and tilt variation measured for 64 days in hole 581C, 88(161-165, https://doi.org/10.2973/dsdp.proc.88.112.1987 Duque_Mendes-Victor_1993 Duque, Maria Rosa Alves; Mendes-Victor, Luis A. (1993), Heat flow and deep temperature in South Portugal, Secondary, Heat flow and deep temperature in South Portugal, 37(3), 279-292, https://doi.org/10.1007/Bf01624601 Dzhamalova_1969 Dzhamalova, A.S. (1969), Deep heat flow in the territory of Dagestan - (Глубокий тепловой поток на территории Дагестана), Secondary, Deep heat flow in the territory of Dagestan - (Глубокий тепловой поток на территории Дагестана), Moscow, USSR, Nauka, 126, Dzhamalova_1972b Dzhamalova, A.S. (1972), Radioactive Decay in Sedimentary Deposits and Its Role in the Formation of Deep Thermal Flux in the Territory of Dagestan - (Радиоактивный Распад В Осадочной Толще И Его Рол В Формировании Глубинного Теплового Потока На Территории Да-Гестана), Secondary, Radioactive Decay in Sedimentary Deposits and Its Role in the Formation of Deep Thermal Flux in the Territory of Dagestan - (Радиоактивный Распад В Осадочной Толще И Его Рол В Формировании Глубинного Теплового Потока На Территории Да-Гестана), Moscow, USSR, Nauka, 88-89, Dziadek_etal._2019 Dziadek, Ricarda; Gohl, K.; Kaul, Norbert E.; Uenzelmann-Neben, G.; Hochmuth, K.; Riefstahl, F.; Gebhardt, C.; Arndt, J.E.; Klages, J.; Esper, O.; Ronge, T.; Kussner, K.; Kuhn, G.; Larter, R.; Hillenbrand, C.D.; Smith, J.; Bickert, T.; Palike, H.; Frederichs, T.; Freudenthal, T.; Zundel, M.; Spiegel, C.; Ehrmann, W.; Bohaty, S.; Flierdt, T. Van de; Pereira, P.S.; Najman, Y.; Scheinert, M.; Ebermann, B.; Afanasyeva, V. (2019), Elevated geothermal surface heat flow in the Amundsen Sea Embayment, West Antarctica, Secondary, Elevated geothermal surface heat flow in the Amundsen Sea Embayment, West Antarctica, 506(530-539, https://doi.org/10.1016/j.epsl.2018.11.003 Ebinger_etal._1987 Ebinger, C.J.; Rosendahl, B.R.; Reynolds, D.J. (1987), Tectonic model of the Malaŵi rift, Africa, Secondary, Tectonic model of the Malaŵi rift, Africa, 141(1), 215–235, https://doi.org/10.1016/0040-1951 (87)90187-9 Eckstein_1976 Eckstein, Yoram (1976), The Measurements and Interpretation of Terrestrial Heat Flow in Israel, Secondary, The Measurements and Interpretation of Terrestrial Heat Flow in Israel, Ireland, Ministry of Commerce and Industry Geological Survey of Israel Hydrogeology Division, 170, Eckstein_1977 Eckstein, Yoram (1977), The Interrelation Between Heat Flow and Groundwater Circulation in Israel, Secondary, The Interrelation Between Heat Flow and Groundwater Circulation in Israel, Athens, Greece, National Technical Univeristy of Athens, 2(97-112, Eckstein, Yoram (1979), Heat Flow and the Hydrologic Cycle: Examples from Israel, Eckstein_1979 Vladimír Čermák, Ladislaus Rybach, Secondary, Heat Flow and the Hydrologic Cycle: Examples from Israel, Berlin, Heidelberg, Germany, Springer Berlin Heidelberg, 88-97, https://doi.org/10.1007/978-3-642-95357-6 6 Eckstein_etal._1982 Eckstein, Yoram; Heimlich, Richard A.; Palmer, Donald F.; Shannon Jr, Spencer S. (1982), Geothermal investigations in Ohio and Pennsylvania, Secondary, Geothermal investigations in Ohio and Pennsylvania, https://doi.org/10.1594/pangaea.806820 Eckstein_Maurath_1995 Eckstein; Yoram; Maurath; Garry (1995), Terrestrial heat flow density and geothermal regime in Israel, Gupta, M.L.;; Yamano, M., Secondary, Terrestrial heat

flow density and geothermal regime in Israel, A.A. Balkema Rotterdam

(Netherlands);, Jan 21,

Eckstein_Simmons_1978 Eckstein, Yoram; Simmons, Gene (1978), *Measurement and interpretation of*

terrestrial heat flow in Israel, Secondary, Measurement and interpretation of terrestrial heat flow in Israel, 6(3), 117–142, https://doi.org/10.1016/0375-6505

(77)90023-2

Edwards_etal._1978 Edwards, C.L.; Reiter, Marshall; Shearer, Charles; Young, Wesley (1978), Terrestrial

heat flow and crustal radioactivity in northeastern New Mexico and southeastern Colorado, Secondary, Terrestrial heat flow and crustal radioactivity in northeastern

New Mexico and southeastern Colorado, 89(9), 1341–1350, https://doi.org/10.1130/0016-7606(1978)89%3c1341:THFACR

Eggleston_Reiter_1984 Eggleston, Roberta Eaton; Reiter, Marshall (1984), *Terrestrial heat-flow estimates*

from petroleum bottom-hole temperature data in the Colorado Plateau and the eastern Basin and Range Province, Secondary, Terrestrial heat-flow estimates from petroleum bottom-hole temperature data in the Colorado Plateau and the eastern Basin and Range Province, 95(9), 1027–1034, https://doi.org/10.1130/0016-

7606(1984)95%3c1027:THEFPB

Ehara_1971a Ehara, Sachio (1971), *Terrestrial Heat Flow in Hokkaido, Japan : Preliminary Report*,

Secondary, Terrestrial Heat Flow in Hokkaido, Japan : Preliminary Report, Hokkaido,

Japan, Hokkaido University, 3(5), 443-460,

Ehara_1977 Ehara, Sachio (1977), *Heat flow in the Hokkaido-Okhotsk region and its tectonic*

implications, Secondary, Heat flow in the Hokkaido-Okhotsk region and its tectonic

implications, Ph.D. thesis(

Ehara_1979 Ehara, Sachio (1979), *Heat flow in the Hokkaido–Okhotsk region and its tectonic*

implications, Secondary, Heat flow in the Hokkaido–Okhotsk region and its tectonic

implications, 27(125-139, https://doi.org/10.1594/pangaea.809696

Ehara_1984 Ehara, Sachio (1984), Terrestrial Heat Flow Determinations In Central Kyushu, Japan,

Secondary, Terrestrial Heat Flow Determinations In Central Kyushu, Japan, 29(75–94,

https://doi.org/10.1594/pangaea.806961

Ehara_etal._1980 Ehara, Sachio; Yuhara, Kozo; Shigematsu, Akira (1980), *Heat flow measurements in*

the submarine calderas, southern Kyushu, Japan, Secondary, Heat flow

measurements in the submarine calderas, southern Kyushu, Japan, 25(51–61,

Ehara_etal._1989 Ehara, Sachio; Jin, Xu; Yuhara, Kozo (1989), Determination of heat flow values in the

two granitic rock regions of Japan - Houfu area in Yamaguchi Prefecture and Kunisaki area in Oita Prefecture, Southwest Japan, Secondary, Determination of heat flow values in the two granitic rock regions of Japan - Houfu area in Yamaguchi Prefecture

and Kunisaki area in Oita Prefecture, Southwest Japan, 11(4), 269–283,

https://doi.org/10.1594/pangaea.806958

Ehara_Sakamoto_1985 Ehara, Sachio; Sakamoto, Mitsuhiro (1985), *Terrestrial Heat Flow Determinations in*

Southern Kyushu, Japan : Kushikino and Nichinan Area - (九州南部地域の地殻熱流 量の決定: 串木野及び日南地域), Secondary, Terrestrial Heat Flow Determinations in Southern Kyushu, Japan : Kushikino and Nichinan Area - (九州南部地域の地殻熱

流量の決定: 串木野及び日南地域), 30(4), 253-271,

https://doi.org/10.18940/kazanc.30.4_253

Ehara Yokoyama 1971 Ehara, Sachio; Yokoyama, I. (1971), Measurements of terrestrial heat flow in

Hokkaido (Part 2), Secondary, Measurements of terrestrial heat flow in Hokkaido

(Part 2), 26(67-84, https://doi.org/10.1594/pangaea.809698

Eldholm_etal._1987 Eldholm, Olav; Thiede, Jörn; Taylor, Elliott (1987), Norwegian Sea, Secondary,

Norwegian Sea, 53-453, https://doi.org/10.2973/odp.proc.ir.104.104.1987

Eldholm_etal._1999 Eldholm, Olav; Sundvor, Eirik; Vogt, Peter R.; Hjelstuen, B.O.; Crane, Kathleen; Nilsen,

A.K.; Gladczenko, Tadeusz P. (1999), SW Barents Sea continental margin heat flow and Hakon Mosby Mud Volcano, Secondary, SW Barents Sea continental margin heat

flow and Hakon Mosby Mud Volcano, 19(1), 29–37,

https://doi.org/10.1007/s003670050090

Eliasson_etal._1991 Eliasson, T.; Eriksson, K.G.; Lindqvist, J.G.; Malmqvist, David; Parasnis, D.S. (1991),

Catalogue of Heat Flow Density Data: Sweden, Secondary, Catalogue of Heat Flow

Density Data: Sweden, 1(124–125, https://doi.org/10.1594/pangaea.807573

Embley_etal._1983 Embley, Robert W.; Hobart, Michael A.; Anderson, Roger N.; Abbott, Dallas H. (1983), Anomalous heat flow in the northwest Atlantic: A case for continued hydrothermal circulation in 80-MY crust, Secondary, Anomalous heat flow in the northwest Atlantic: A case for continued hydrothermal circulation in 80-MY crust, 88(B2), 1067-1074, https://doi.org/10.1029/JB088iB02p01067 Epp_etal._1970 Epp, David; Gnim, Paul J.; Langseth Jr, Marcus G. (1970), Heat flow in the Caribbean and Gulf of Mexico, Secondary, Heat flow in the Caribbean and Gulf of Mexico, 75(29), 5655-5669, https://doi.org/10.1029/JB075i029p05655 Erickson_1970 Erickson, Albert J. (1970), The measurement and interpretation of heat flow in the Mediterranean and Black Seas, Secondary, The measurement and interpretation of heat flow in the Mediterranean and Black Seas, Ph.D. thesis(10.1594/pangaea.806989 Erickson 1973 Erickson, Albert J. (1973), Initial report on downhole temperature and shipboard thermal conductivity measurements, Leg 19, Secondary, Initial report on downhole temperature and shipboard thermal conductivity measurements, Leg 19, 19(643-656, https://doi.org/10.2973/dsdp.Proc.19.116.1973 Erickson, Albert J.; Helsley, C.E.; Simmons, Gene (1972), Heat flow and continuous Erickson_etal._1972 seismic profiles in the Cayman Trough and Yucatan Basin, Secondary, Heat flow and continuous seismic profiles in the Cayman Trough and Yucatan Basin, 83(5), 1241-1260, https://doi.org/10.1130/0016-7606 Erickson_etal._1975 Erickson, Albert J.; Herzen, Richard P. Von; Sclater, John G.; Girdler, Ron W.; Marshall, B.Vaughn; Hyndman, Roy D. (1975), Geothermal measurements in deepsea drill holes, Secondary, Geothermal measurements in deep-sea drill holes, 80(17), 2515-2528, https://doi.org/10.1029/JB080i017p02515 Erickson_etal._1977 Erickson, Albert J.; Simmons, Gene; Ryan, W.B.F. (1977), Review of heat flow data from the Mediterranean and Aegean Seas, Secondary, Review of heat flow data from the Mediterranean and Aegean Seas, 263-280, https://doi.org/10.1594/pangaea.806987 Erickson_etal._1979 Erickson, Albert J.; Avera, W.E.; Byrne, R. (1979), Heat flow results, DSDP leg 48, Secondary, Heat flow results, DSDP leg 48, 48(277-328, https://doi.org/10.2973/dsdp.proc.48.108.1979 Erickson_Hyndman_1979 Erickson, Albert J.; Hyndman, Roy D. (1979), Downhole temperature measurements and thermal conductivities of samples, Site 396 Deep Sea Drilling Project Leg 46, Secondary, Downhole temperature measurements and thermal conductivities of samples, Site 396 Deep Sea Drilling Project Leg 46, 46(389-400, https://doi.org/10.2973/dsdp.proc.46.130.1979 Erickson_Simmons_1969 Erickson, Albert J.; Simmons, Gene (1969), Thermal measurements in the Red Sea hot brine pools, Egon T. Degens, David A. Ross, Secondary, Thermal measurements in the Red Sea hot brine pools, Berlin, Heidelberg, Germany, Springer Berlin Heidelberg, 114-121, https://doi.org/10.1007/978-3-662-28603-6 11 Erickson_Simmons_1974 Erickson, Albert J.; Simmons, Gene (1974), Environmetal and geophysical interpreation of heat-flow measurements in the Black Sea, Secondary, Environmetal and geophysical interpreation of heat-flow measurements in the Black Sea, 20(50-62, https://doi.org/10.1594/pangaea.806970 Erickson_VonHerzen_1978a Erickson, Albert J.; Herzen, Richard P. Von (1978), Downhole temperature measurements and heat flow data in the Black Sea — DSDP Leg 42B, Secondary, Downhole temperature measurements and heat flow data in the Black Sea — DSDP Leg 42B, 42(2), 1085–1103, https://doi.org/10.2973/dsdp.proc.42-2.152.1978 Erickson, Albert J.; Herzen, Richard P. Von (1978), Down-hole temperature Erickson_VonHerzen_1978b measurements, Deep Sea Drilling Project, Leg 42A, Secondary, Down-hole temperature measurements, Deep Sea Drilling Project, Leg 42A, 42(1), 857-871, https://doi.org/10.2973/dsdp.proc.42-1.143.1978 Eriksson, K.G.; Malmqvist, David (1979), A review of the past and the present Eriksson_Malmqvist_1979 investigations of heat flow in Sweden, Secondary, A review of the past and the present investigations of heat flow in Sweden, 267-277, https://doi.org/10.1007/978-3-642-95357-6_28

Erkan_2015 Erkan, K. (2015), Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes, Secondary, Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes, Copernicus Publications, 6(1), 103–113, https://doi.org/10.5194/se-6-103-2015 Erkan_Balkan-Pazvantoglu_2023 Erkan, Kamil; Balkan-Pazvantoğlu, Elif (2023), Distribution of surface heat flow and effects on the subsurface temperatures in the northern part of Thrace Basin, NW Turkey, Secondary, Distribution of surface heat flow and effects on the subsurface temperatures in the northern part of Thrace Basin, NW Turkey, 11(1), 13, https://doi.org/10.1186/s40517-023-00253-7 Erki_etal._1984 Erki, I.; Kolios, N.P.; Stegena, L. (1984), Heat flow density determination in the Strymon basin, NE Greece, Secondary, Heat flow density determination in the Strymon basin, NE Greece, 54(2), 106–109, https://doi.org/10.1594/pangaea.809701 Espinoza-Ojeda, Orlando M.; Prol-Ledesma, Rosa-Maria; Iglesias, E.R.; Figueroa-Soto, Espinoza-Ojeda_etal._2017 A. (2017), Update and review of heat flow measurements in México, Secondary, Update and review of heat flow measurements in México, 121(466-479, https://doi.org/10.1016/j.energy.2017.01.045 Evans, T.R. (1975), Terrestrial heat flow studies in eastern Africa and the North Sea, Evans_1975 Secondary, Terrestrial heat flow studies in eastern Africa and the North Sea, Ph.D. thesis(490, https://doi.org/10.1594/pangaea.806998 Evans_Tammemagi_1974 Evans, T.R.; Tammemagi, H.Y. (1974), Heat flow and heat production in northeast Africa, Secondary, Heat flow and heat production in northeast Africa, 23(3), 349-356, https://doi.org/10.1016/0012-821x(74)90124-1 Ewing_etal._1961 Ewing, Maurice; Worzel, J.L.; Aitken, T.D. (1961), VEMA 17 Data, Secondary, VEMA 17 Data, New York, Lamont-Doherty Geological Observatory Columbia University, 267. Fanelli_etal._1974 Fanelli, M.; Loddo, M.; Mongelli, Francesco M.; Squarci, P. (1974), Terrestrial heat flow measurements near rosignano solvay (Tuscany), Italy, Secondary, Terrestrial heat flow measurements near rosignano solvay (Tuscany), Italy, 3(2), 65-73, https://doi.org/10.1016/0375-6505 (74)90022-4 Feinstein_etal._1996 Feinstein, S.; Kohn, Barry P.; Steckler, M.S.; Eyal, M. (1996), Thermal history of the eastern margin of the Gulf of Suez .1. Reconstruction from borehole temperature and organic maturity measurements, Secondary, Thermal history of the eastern margin of the Gulf of Suez .1. Reconstruction from borehole temperature and organic maturity measurements, 266(44287), 203-220, https://doi.org/10.1016/s0040-1951(96)00190-4 Feng_etal._2009 Feng, Chang-Ge; Liu, Shao-Wen; Wang, Liang-Shu; Li, Cheng (2009), Present-Day Geothermal Regime in Tarim Basin, Northwest China, Secondary, Present-Day Geothermal Regime in Tarim Basin, Northwest China, 52(11), 1237-1250, https://doi.org/10.1002/cjg2.1450 Feng_etal._2019 FENG, Renpeng; ZUO, Yinhui; YANG, Meihua; ZHANG, Jiong; LIU, Zhi; ZHOU, Yongshui; HAO, Qingqing (2019), Present Terrestrial Heat Flow Measurements of the Geothermal Fields in the Chagan Sag of the Yingen-Ejinaqi Basin, Inner Mongolia, China, Secondary, Present Terrestrial Heat Flow Measurements of the Geothermal Fields in the Chagan Sag of the Yingen-Ejinaqi Basin, Inner Mongolia, China, 93(2), 283-296, https://doi.org/10.1111/1755-6724.13761 Fernandez_etal._1998 Fernàndez, M.; Marzan, Ignacio; Correia, António; Ramalho, Elsa C. (1998), Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula, Secondary, Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula, 291(1), 29-53, https://doi.org/10.1016/s0040-1951 (98)00029-8 Finckh_1981 Finckh, Peter G. (1981), Heat-flow measurements in 17 perialpine lakes, Secondary, Heat-flow measurements in 17 perialpine lakes, 92(3 Part II), 452-514, https://doi.org/10.1130/gsab-p2-92-452 Firsov_1979 Firsov, F.V. (1979), Thermal Field in the South Urals - (Тепловое поле на Южном Урале), Secondary, Thermal Field in the South Urals - (Тепловое поле на Южном Урале), 217-221,

Fisher, Andrew T.; Giambalvo, Emily R.; Sclater, John G.; Kastner, Miriam; Ransom,

Fisher_etal._2001

chemistry, and hydrothermal circulation on the east flank of Alarcon Ridge, Gulf of California, Secondary, Heat flow, sediment and pore fluid chemistry, and hydrothermal circulation on the east flank of Alarcon Ridge, Gulf of California, 188(44289), 521-534, https://doi.org/10.1016/S0012-821x (01)00310-7 Fisher Gardner 1981 Fisher, Marci A.; Gardner, Murray C. (1981), Temperature-gradient and heat-flow data, Panther Canyon, Nevada, Secondary, Temperature-gradient and heat-flow data, Panther Canyon, Nevada, https://doi.org/10.1594/pangaea.806999 Flores-Marquez_etal._1999 Flores-Márquez, E. Leticia; Chávez-Segura, René E.; Campos-Enriquez, Jóse Oscar; Pilkington, Mark (1999), Preliminary 3-D structural model from the Chicxulub impact crater and its implications in the actual geothermal regime, Secondary, Preliminary 3-D structural model from the Chicxulub impact crater and its implications in the actual geothermal regime, 5(19-40, Flovenz_Saemundsson_1991 Flovenz, Olafur G.; Saemundsson, Kristjan (1991), Catalogue of Heat Flow Density Data: Iceland, Secondary, Catalogue of Heat Flow Density Data: Iceland, 1(10.1594/pangaea.807574 Flovenz_Saemundsson_1993 Flovenz, Olafur G.; Saemundsson, Kristjan (1993), Heat flow and geothermal processes in Iceland, Secondary, Heat flow and geothermal processes in Iceland, 225(1), 123-138, https://doi.org/10.1016/0040-1951 (93)90253-g Flueh_Grevemeyer_2005 Flueh, Ernst R.; Grevemeyer, Ingo (2005), FS Sonne Fahrtbericht Cruise Report SO181 TIPTEQ - from The Incoming Plate to mega Thrust EarthQuakes, Valparaiso -Talcuhuano, 06.12.2004 - 26.02.2005, Ernst R. Flueh, Ingo Grevemeyer, Secondary, FS Sonne Fahrtbericht Cruise Report SO181 TIPTEQ - from The Incoming Plate to mega Thrust EarthQuakes, Valparaiso - Talcuhuano, 06.12.2004 - 26.02.2005, Kiel, Germany, https://doi.org/10.3289/ifm-geomar rep 2 2005 Foerster_etal._2007 Förster, Andrea; Förster, Hans-Jürgen; Masarweh, R.; Masri, A.; Tarawneh, K.; Group, DESERT (2007), The surface heat flow of the Arabian Shield in Jordan, Secondary, The surface heat flow of the Arabian Shield in Jordan, 30(2), 271-284, https://doi.org/10.1016/j.jseaes.2006.09.002 Foerster_Foerster_2000 Förster, Andrea; Förster, Hans-Juergen (2000), Crustal composition and mantle heat flow: Implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany), Secondary, Crustal composition and mantle heat flow: Implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany), 105(B12), 27917-27938, https://doi.org/10.1029/2000jb900279 Foerster_Merriam_1997 Förster, Andrea; Merriam, Daniel F. (1997), Heat flow in the Cretaceous of Northwestern Kansas and implications for regional hydrology, Secondary, Heat flow in the Cretaceous of Northwestern Kansas and implications for regional hydrology, 240(45302, https://doi.org/10.1594/pangaea.807000 Folinsbee_1969 Folinsbee, Robert Allin (1969), Heat flow over the equatorial mid-atlantic ridge, Secondary, Heat flow over the equatorial mid-atlantic ridge, 60(1), 108–119, https://doi.org/10.1134/s0001437020010142 Fontes_1980 Fontes, Luiz C.A.A. (1980), Determining the Geothermal Flux of the Bacia Sediment Sergipe – Alagoas - (Determinação do Fluxo Geotérmico na bacia sedimentar Sergipe - Alagoas), Secondary, Determining the Geothermal Flux of the Bacia Sediment Sergipe – Alagoas - (Determinação do Fluxo Geotérmico na bacia sedimentar Sergipe - Alagoas), Salvador, Bahia, Brasil, Federal University of Bahia, M.Sc. thesis(78, Foster_1962 Foster, Theodore D. (1962), Heat-flow measurements in the northeast Pacific and in the Bering Sea, Secondary, Heat-flow measurements in the northeast Pacific and in the Bering Sea, 67(7), 2991-2993, https://doi.org/10.1029/JZ067i007p02991 Foster_etal._1974 Foster, Stephen Eric; Simmons, Gene; Lamb, Wilson (1974), Heat-flow near a North Atlantic fracture zone, Secondary, Heat-flow near a North Atlantic fracture zone, 3(1), 42430, https://doi.org/10.1016/0375-6505(74)90030-3 Fotiadi_etal._1969 Fotiadi, E.E.; Moiseenko, U.I.; Sokolova, L.S. (1969), The heat flow field of the West Siberian platform - (О тепловом поле западно- сибирской плиты), Secondary, The

B.; Weinstein, Yishai; Lonsdale, Peter (2001), Heat flow, sediment and pore fluid

heat flow field of the West Siberian platform - (О тепловом поле западно-

сибирской плиты), 189(2), 385-388,

Foucher_etal._1985 Foucher, Jean P.; Chenet, P.Y.; Montadert, L.; Roux, J.M. (1985), Geothermal

Measurements during Deep-Sea Drilling Project Leg-80, Secondary, Geothermal Measurements during Deep-Sea Drilling Project Leg-80, 80(MAR), 423–436,

Foucher_etal._1990 Foucher, Jean P.; Lepichon, X.; Lallemant, Siegfried; Hobart, Michael A.; Henry,

Pierre; Benedetti, M.; Westbrook, Graham K.; Langseth Jr, Marcus G. (1990), Heat-Flow, Tectonics, and Fluid Circulation at the Toe of the Barbados Ridge Accretionary Prism, Secondary, Heat-Flow, Tectonics, and Fluid Circulation at the Toe of the

Barbados Ridge Accretionary Prism, 95(B6), 8859–8867,

https://doi.org/10.1029/JB095iB06p08859

Foucher_etal._1992 Foucher, Jean P.; Mauffret, A.; Steckler, M.S.; Brunet, M.F.; Maillard, A.; Rehault, J.P.;

Alonso, Belén; Desegaulx, P.; Murillas, J.; Ouillon, G. (1992), *Heat-Flow in the Valencia Trough - Geodynamic Implications*, Secondary, Heat-Flow in the Valencia Trough - Geodynamic Implications, 77–97, https://doi.org/10.1016/0040-1951

(92)90216-s

Francheteau_etal._1984

Foucher_Sibuet_1979 Foucher, Jean P.; Sibuet, Jean-Claude (1979), *Thermal regime of the northern Bay of*

Biscay continental margin in the vicinity of DSDP sites 400 to 402, Secondary, Thermal regime of the northern Bay of Biscay continental margin in the vicinity of DSDP sites 400 to 402, 68(789–796, https://doi.org/10.2973/dsdp.proc.48.109.1979 Francheteau, Jean; Jaupart, Claude; Shen, Xian-Jie; Kang, Wen-Hua; De-Lu, Lee; Jia-

Chi; Bai; Hung-Pin, Wei; Hsia-Yeu, Deng (1984), High heat flow in southern Tibet,

Secondary, High heat flow in southern Tibet, 307(5946), 32–36,

https://doi.org/10.1038/307032a0

Fuchs_Balling_2016b Fuchs, Sven; Balling, Niels (2016), *Improving the temperature predictions of*

subsurface thermal models by using high-quality input data. Part 2: A case study from the Danish-German border region, Secondary, Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 2: A

case study from the Danish-German border region, 64(45305, https://doi.org/10.1016/j.geothermics.2016.04.004

Fuchs_etal._2015 Fuchs, Sven; Balling, Niels; Förster, Andrea (2015), Calculation of thermal

conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs, Secondary, Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well

logs, 203(1977-2000, https://doi.org/10.1093/gji/ggv403

Fuchs_etal._2020a Fuchs, Sven; Balling, Niels; Mathiesen, Anders (2020), *Deep basin temperature and*

heat-flow field in Denmark – New insights from borehole analysis and 3D geothermal modelling, Secondary, Deep basin temperature and heat-flow field in Denmark – New insights from borehole analysis and 3D geothermal modelling, 83(101722,

https://doi.org/10.1016/j.geothermics.2019.101722

Fuchs_Foerster_2010 Fuchs, Sven; Förster, Andrea (2010), Rock thermal conductivity of Mesozoic

geothermal aquifers in the Northeast German Basin, Secondary, Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin,

70(13–22, https://doi.org/10.1016/j.chemer.2010.05.010

Fujii_1981 Fujii, Naoyuki (1981), *Down-hole temperature measurements and heat flow at Hess*

Rise, Deep Sea Drilling Project Leg 62, Secondary, Down-hole temperature

measurements and heat flow at Hess Rise, Deep Sea Drilling Project Leg 62, 62(1009–

1014, https://doi.org/10.2973/dsdp.proc.62.159.1981

Funnell_etal._1996 Funnell, R.H.; Chapman, David S.; Allis, Richard G.; Armstrong, Phillip A. (1996),

Thermal state of the Taranaki Basin, New Zealand, Secondary, Thermal state of the

Taranaki Basin, New Zealand, 101(B11), 25197–25215,

https://doi.org/10.1029/96jb01341

Furukawa_etal._1998 Furukawa, Yoshitsugu; Shinjoe, Hironao; Nishimura, Susumu (1998), *Heat flow in the*

Southwest Japan Arc and its implication for thermal processes under arcs, Secondary, Heat flow in the Southwest Japan Arc and its implication for thermal processes under

arcs, 25(7), 1087–1090, https://doi.org/10.1029/98gl00545

Fytikas_Kolios_1979 Fytikas, M.D.; Kolios, N.P. (1979), Preliminary heat flow map of Greece, Secondary,

Preliminary heat flow map of Greece, Heidelberg-Berlin-New York, Springer, 197-205, https://doi.org/10.1007/978-3-642-95357-6 20 Gable_1979a Gable, Robert (1979), The heat flow in France, determination and synthesis - (Le flux de chaleur en France, détermination et synthèse), Secondary, The heat flow in France, determination and synthesis - (Le flux de chaleur en France, détermination et synthèse), 80(80 SGN 048 GTH), Gable 1979b Gable, Robert (1979), Draft of a geothermal flux map of France, Ladislaus Rybach, Vladimír Čermák, Secondary, Draft of a geothermal flux map of France, Heidelberg-Berlin-New York, Springer, 179-185, https://doi.org/10.1007/978-3-642-95357-6_17 Gable_1980 Gable, Robert (1980), Terrestrial heat flow in France, Secondary, Terrestrial heat flow in France, 466-473, https://doi.org/10.1007/978-94-009-9059-3_41 Gable_Watermez_1979 Gable, Robert; Watermez, P. (1979), First estimates of heat flow in the Armorican Massif - (Premières estimations du flux de chaleur dans le Massif Armoricain), Secondary, First estimates of heat flow in the Armorican Massif - (Premières estimations du flux de chaleur dans le Massif Armoricain), 17(35-38, Galanis_etal._1986 Galanis, S. Peter Jr; Sass, John H.; Munroe, Robert J.; Abu-Ajamieh, M. (1986), Heat flow at Zerqa Ma'in and Zara and a geothermal reconnaissance of Jordan, Secondary, Heat flow at Zerga Ma'in and Zara and a geothermal reconnaissance of Jordan, 110, https://doi.org/10.1594/pangaea.807061 Gallagher_1987 Gallagher, Kerry (1987), Thermal conductivity and heat flow in the southern Cooper Basin, Secondary, Thermal conductivity and heat flow in the southern Cooper Basin, 18(2), 62-65, https://doi.org/10.1071/eg987062 Gallagher_1990 Gallagher, Kerry (1990), Some strategies for estimating present day heat flow from exploration wells, with examples, Secondary, Some strategies for estimating present day heat flow from exploration wells, with examples, 21(45355), 145-159, https://doi.org/10.1071/eg990145 Galson, D.A.; Herzen, Richard P. Von (1981), A heat flow survey on anomaly MO south Galson_VonHerzen_1981 of the Bermuda Rise, Secondary, A heat flow survey on anomaly MO south of the Bermuda Rise, 53(3), 296–306, https://doi.org/10.1016/0012-821x(81)90035-2 Garcia-Estrada_etal._2001 Garcia-Estrada, G.; Lopez-Hernandez, A.; Prol-Ledesma, Rosa-Maria (2001), Temperature-depth relationships based on log data from the Los Azufres geothermal field, Mexico, Secondary, Temperature-depth relationships based on log data from the Los Azufres geothermal field, Mexico, 30(1), 111-132, https://doi.org/10.1016/s0375-6505 (00)00039-0 Garland_Lennox_1962 Garland, G.D.; Lennox, D.H. (1962), Heat flow in western Canada, Secondary, Heat flow in western Canada, 6(2), 245–262, https://doi.org/10.1594/pangaea.804696 Gebski_etal._1987 Gebski, J.S.; Wheildon, J.; Thomas-Betts, A.A. (1987), Investigations of the UK Heat Flow Field (1984-1987): Investigation of the Geothermal Potential of the UK, Secondary, Investigations of the UK Heat Flow Field (1984-1987): Investigation of the Geothermal Potential of the UK, Uk, British Geological Survey, https://doi.org/10.1594/pangaea.807065 Geilert_etal._2018 Geilert, S.; Hensen, C.; Schmidt, M.; Liebetrau, V.; Scholz, F.; Doll, M.; Deng, L.; Fiskal, A.; Lever, M.A.; Su, C.C.; Schloemer, S.; Sarkar, S.; Thiel, V.; Berndt, C. (2018), On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California, Secondary, On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California, Copernicus Publications, 15(18), 5715-5731, https://doi.org/10.5194/bg-15-5715-2018 Geli_etal._2008 Geli, Louis; Lee, Tien-Chang; Cochran, James R.; Francheteau, Jean; Abbott, Dallas H.; Labails, C.; Appriou, D. (2008), Heat flow from the Southeast Indian Ridge flanks between 80°E and 140°E: Data review and analysis, Secondary, Heat flow from the Southeast Indian Ridge flanks between 80°E and 140°E: Data review and analysis, 113(B1), https://doi.org/10.1029/2007jb005001 Geller, Carol A.; Weissel, Jeffrey K.; Anderson, Roger N. (1983), Heat transfer and Geller_etal._1983 intraplate deformation in the central Indian Ocean, Secondary, Heat transfer and

https://doi.org/10.1029/JB088iB02p01018

intraplate deformation in the central Indian Ocean, 88(B2), 1018-1032,

Gerard, Robert; Langseth Jr, Marcus G.; Ewing, Maurice (1962), Thermal gradient Gerard_etal._1962 measurements in the water and bottom sediment of the western Atlantic, Secondary, Thermal gradient measurements in the water and bottom sediment of the western Atlantic, 67(2), 785-803, https://doi.org/10.1594/pangaea.804700 Gerner_etal._2012 Gerner, Edward; Kirkby, Alison L.; Ayling, B. (2012), Heat Flow Determinations for the Australian Continent: Release 4, Secondary, Heat Flow Determinations for the Australian Continent: Release 4, Canberra, Australia, Geoscience Australia, Gettings_1981 Gettings, M.E. (1981), A heat flow profile across the Arabian Shield and Red Sea, Secondary, A heat flow profile across the Arabian Shield and Red Sea, 62(17), 407, https://doi.org/10.1029/EO062i017p00201 Gettings_1982 Gettings, M.E. (1982), Heat-flow measurements at shot points along the 1978 Saudi Arabian seismic deep-refraction line, part 2: discussion and interpretation, Secondary, Heat-flow measurements at shot points along the 1978 Saudi Arabian seismic deep-refraction line, part 2: discussion and interpretation, (IR) SA-443), 82-784, https://doi.org/10.3133/ofr82794 Gettings_1983 Gettings, M.E. (1983), Estimates of the thermal state of the Arabian plate from heat flow, uplift, and volcanism of Western Saudi Arabia, Secondary, Estimates of the thermal state of the Arabian plate from heat flow, uplift, and volcanism of Western Saudi Arabia, Reston, Valley, U.S. Geological Survey, Gettings_Showail_1982 Gettings, M.E.; Showail, A. (1982), Heat-flow measurements at shot points along the 1978 Saudi Arabian seismic deep-refraction line: part 1, results of the measurements, Secondary, Heat-flow measurements at shot points along the 1978 Saudi Arabian seismic deep-refraction line: part 1, results of the measurements, Reston, Valley, U.S. Geological Survey, Ginsburg_Soloviev_2004 Ginsburg, G.D.; Soloviev, V.A. (2004), personal communication, Secondary, personal communication. Girdler 1970 Girdler, Ron W. (1970), A review of Red Sea heat flow, Secondary, A review of Red Sea heat flow, 267(1181), 191–203, https://doi.org/10.1098/rsta.1970.0032 Girdler_etal._1974 Girdler, Ron W.; Erickson, Al J.; Herzen, Richard P. Von (1974), Downhole temperature and shipboard thermal conductivity measurements aboard D/V Glomar challenger in the Red Sea, Secondary, Downhole temperature and shipboard thermal conductivity measurements aboard D/V Glomar challenger in the Red Sea, 23(25), 879-886, https://doi.org/10.2973/dsdp.proc.23.125.1974 Glaeser_1982 Gläser, S. (1982), Geothermal conditions on the southern edge of the North German-Polish Depression - (Geothermische Verhältnisse am Südrand der Norddeutschen-Polnischen Senke), Secondary, Geothermal conditions on the southern edge of the North German-Polish Depression - (Geothermische Verhältnisse am Südrand der Norddeutschen-Polnischen Senke), Potsdam, Germany, Zentralinstitut für Physik der Erde (ZIPE), 11, Glaeser_1983 Gläser, Siegmar (1983), Maps of the temperature-depth distribution for the territory of the GDR as a basis for the assessment of the potential for geothermal energy -(Karten der Temperatur-Tiefenverteilung für das Territorium der DDR als Grundlage für die Höffigkeitseinschätzung Geothermische Energie), Secondary, Maps of the temperature-depth distribution for the territory of the GDR as a basis for the assessment of the potential for geothermal energy - (Karten der Temperatur-Tiefenverteilung für das Territorium der DDR als Grundlage für die Höffigkeitseinschätzung Geothermische Energie), Potsdam, Germany, Zentralinstitut für Physik der Erde (ZIPE), 1003848), 93,

Goff_etal._1992

Golovanova_1997b

Goff, S.J.; Goff, F.; Janik, C.J. (1992), *Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results*, Secondary, Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results, 21(4), 483–502, https://doi.org/10.1016/0375-6505(92)90003-r

Golovanova, I.V. (1997), Heat flow and radiogenic heat generation in the Southern Urals - (Тепловой поток и радиогенная теплогенерация на Южном Урале), Secondary, Heat flow and radiogenic heat generation in the Southern Urals - (Тепловой поток и радиогенная теплогенерация на Южном Урале), 110–114,

Golovanova, I.V.; Harris, Robert N.; Selezniova, Galina V.; Stulc, Petr (2001), Evidence Golovanova_etal._2001 of climatic warming in the southern Urals region derived from borehole temperatures and meteorological data, Secondary, Evidence of climatic warming in the southern Urals region derived from borehole temperatures and meteorological data, 29(44289), 167-188, https://doi.org/10.1016/s0921-8181 (01)00088-1 Golubev 1978 Golubev, Valery A. (1978), Geothermal research in Baikal using a cable thermometer probe - (Новые геотерми- ческие исследования на озере Байкал), Secondary, Geothermal research in Baikal using a cable thermometer probe - (Новые геотермические исследования на озере Байкал), Novosibirsk, USSR, Nauka, 3), 106-109, https://doi.org/10.1594/pangaea.808870 Golubev_1982 Golubev, Valery A. (1982), Geothermy of Baikal - (Геотермия Байкала), Secondary, Geothermy of Baikal - (Геотермия Байкала), Moscow, USSR, Nauka, Golubev 1992 Golubev, Valery A. (1992), Heat flow through the bottom of Lake Khuvsgul and adjacent mountains (Mongolia) - (Тепловой поток через дно озера Хубсугул и прилегающие горы (Монголия)), Secondary, Heat flow through the bottom of Lake Khuvsgul and adjacent mountains (Mongolia) - (Тепловой поток через дно озера Хубсугул и прилегающие горы (Монголия)), 1(48-60, https://doi.org/10.1594/pangaea.808874 Golubev_Khutorskoy_1986 Golubev, Valery A.; Khutorskoy, M.D. (1986), Geo-and hydrothermal features of Lake Khubsugul (MPR) - (Гео-и гидротермические особенности озера Хубсугул (MHP)), Secondary, Geo-and hydrothermal features of Lake Khubsugul (MPR) - (Feoи гидротермические особенности озера Хубсугул (МНР)), 10), 122-129, Golubev_Osokina_1980 Golubev, Valery A.; Osokina, S.V. (1980), Heat flow distribution and the nature of its local anomalies in the area of Lake Baikal - (Распределение теплового потока и природа его локальных аномалий в районе озера Байкал)), Secondary, Heat flow distribution and the nature of its local anomalies in the area of Lake Baikal -(Распределение теплового потока и природа его локальных аномалий в районе озера Байкал)), 4(63-75, https://doi.org/10.1594/pangaea.809056 Golubev_Poort_1995 Golubev, Valery A.; Poort, Jeffrey (1995), Local heat flow anomalies along the western shore of the north Baikal basin, Secondary, Local heat flow anomalies along the western shore of the north Baikal basin, 36(175-186, https://doi.org/10.1594/pangaea.808030 Gomes, Jorge L.S.; Vieira, Fabio P.; Hamza, Valiya M. (2021), Reappraisal of heat flow Gomes_etal._2021 variations in mainland Africa, Secondary, Reappraisal of heat flow variations in mainland Africa, 4(1), 26-78, https://doi.org/10.31214/ijthfa.v4i1.64 Gomez_Hamza_2005 Gomez, A.J.L.; Hamza, Valiya M. (2005), Geothermal gradient and heat flow in the state of Rio de Janeiro, Secondary, Geothermal gradient and heat flow in the state of Rio de Janeiro, 23(4), 325–347, https://doi.org/10.1590/s0102-261x2005000400001 Gong_etal._2003 Gong, Yuling; Wang, Liang-Shu; Liu, Shao-Wen; Guo, Lingzhi; Cai, Jingong (2003), Distribution characteristics of geotemperature field in Jiyang depression, Shandong, North China, Secondary, Distribution characteristics of geotemperature field in Jiyang depression, Shandong, North China, 46(5), 652-658, https://doi.org/10.1002/cjg2.413 Gonzalez-Lopez_1997 Gonzalez-Lopez, Macario (1997), Geophysical prospecting for the evaluation of the geothermal potential of the northern sector of the Valle de la Laguna Salada -(Prospeccion geofisica para la evaluacion del potencial geotermico del sector norte del Valle de la Laguna Salada), Secondary, Geophysical prospecting for the evaluation of the geothermal potential of the northern sector of the Valle de la Laguna Salada - (Prospeccion geofisica para la evaluacion del potencial geotermico del sector norte del Valle de la Laguna Salada), IPN, BSC(Gordeev, A.D.; Gordienko, Vadim V.; Zavgorodnyaya, Olga V.; Tsybulya, L.A. (1985), Gordeev_etal._1985 New Definitions of Heat Flow on the Territory of Belarus - (Новые Определения Теплового Потока На Территории Белоруссии), Secondary, New Definitions of Heat Flow on the Territory of Belarus - (Новые Определения Теплового Потока На Территории Белоруссии), 45453,

Gordienko, Vadim V. (1972), New data about the Heat Flow of Crimea and the Black

Gordienko_1972

Gordienko_etal1984 Gordienko_etal2005	Sea region - (Новый данные Про Тепловый Потока Крыму Та Причерноморья), Secondary, New data about the Heat Flow of Crimea and the Black Sea region - (Новый данные Про Тепловый Потока Крыму Та Причерноморья), 8(711–713, Gordienko, Vadim V.; Zavgorodnyaya, Olga V.; Moiseenko, U.I.; Smyslov, A.A. (1984), Thermal Field of the Southern Slope of the Baltic Shield - (Тепловое поле южного склона Балтийского щита), Secondary, Thermal Field of the Southern Slope of the Baltic Shield - (Тепловое поле южного склона Балтийского щита), 6(3), 31–37, Gordienko, Vadim V.; Gordienko, I.V.; Zavgordnyaya, O.V.; Kovachikova, S.; Logvinov,
	I.M.; Tarasov, A.A.; Usenko, O.V. (2005), Ukrainian shield (geophysics, deep processes) - (Украинский щит (геофизика, глубинные процессы)), Secondary, Ukrainian shield (geophysics, deep processes) - (Украинский щит (геофизика, глубинные процессы)), 210,
Gordienko_etal2013	Gordienko, Vadim V.; Gordienko, I.V.; Zavgordnyaya, O.V. (2013), Thermal models of the tectonosphere - (Тепловые модели тектоносферы), Gordienko, V.V., Secondary, Thermal models of the tectonosphere - (Тепловые модели тектоносферы), Kiev, Ukraine, Logos, 118,
Gordienko_etal2014	Gordienko, Vadim V.; Gordienko, I.V.; Zavgordnyaya, O.V. (2014), Thermal field of the southeastern part of the Dnieper basin of the Dnieper-Donets Basin - (Тепловое поле юго-восточной части Днепровского бассейна Днепровско-Донецкой впадины. Доповіді НАН України), Secondary, Thermal field of the southeastern part of the Dnieper basin of the Dnieper-Donets Basin - (Тепловое поле юго-восточной части Днепровского бассейна Днепровско-Донецкой впадины. Доповіді НАН України), 2(98–104,
Gordienko_etal2015a	Gordienko, Vadim V.; Gordienko, I.V.; Zavhorodnya, O.V.; Logvinov, I.M.; Tarasov, V.N. (2015), <i>Donbass (geophysics, deep processes)</i> , Secondary, Donbass (geophysics, deep processes),
Gordienko_etal2015b	Gordienko, Vadim V.; Gordienko, I.V.; Zavhorodnya, O.V. (2015), <i>Modern activation and thermal field South Ukrainian monocline and Scythian plate</i> , Secondary, Modern activation and thermal field South Ukrainian monocline and Scythian plate, 7), 85–90,
Gordienko_etal2018	Gordienko, Vadim V.; Gordienko, I.V.; Zavgordnyaya, O.V.; Logvinov, I.M.; Tarasov, A.A. (2018), <i>South-Ukrainian monocline, Scythian plate, Black sea</i> , Secondary, South-Ukrainian monocline, Scythian plate, Black sea,
Gordienko_Kutas_1970	Gordienko, Vadim V.; Kutas, R.I. (1970), Thermal Flow of the Dnieper-Donets Basin and Donbass - (Тепловый Поток Днепровско-Донецкой Впадины Та Донбасу), Secondary, Thermal Flow of the Dnieper-Donets Basin and Donbass - (Тепловый Поток Днепровско-Донецкой Впадины Та Донбасу), 1(56–59,
Gordienko_Kutas_1971a	Gordienko, Vadim V.; Kutas, R.I. (1971), Thermal Field of Ukraine - (Тепловое поле Украины), Secondary, Thermal Field of Ukraine - (Тепловое поле Украины), Kiev, Ukraine, Naukova Dumka, 142,
Gordienko_Zavgorodnyaya_1980	Gordienko, Vadim V.; Zavgorodnyaya, Olga V. (1980), Measuring the Earth's heat flow at the surface - (Измерение теплового потока Земли у поверхности), Secondary, Measuring the Earth's heat flow at the surface - (Измерение теплового потока Земли у поверхности), Kiev, Ukraine, Naukova Dumka, 104,
Gordienko_Zavgorodnyaya_1982	Gordienko, Vadim V.; Zavgorodnyaya, Olga V. (1982), New Estimates and a map of the Crimean Heat Flow - (Новые определения и Карта Теплового потока Крыма), Secondary, New Estimates and a map of the Crimean Heat Flow - (Новые определения и Карта Теплового потока Крыма), 4(3), 56–62,
Gordienko_Zavgorodnyaya_1983	https://doi.org/10.1594/pangaea.808875 Gordienko, Vadim V.; Zavgorodnyaya, Olga V. (1983), New Definitions of the Heat Flow in Sedimentary Basins of Ukraine - (Новые Определения Теплового Потока В Осадочных Бассейнах Украины), Secondary, New Definitions of the Heat Flow in Sedimentary Basins of Ukraine - (Новые Определения Теплового Потока В
Gordienko_Zavgorodnyaya_1987	Осадочных Бассейнах Украины), B(3), 45483, Gordienko, Vadim V.; Zavgorodnyaya, Olga V. (1987), Heat flow anomalies in the Moscow and Baltic syneclines - (Аномалии теплового потока в московскои и

	outilitation carecinastic, secondary, fleat flow anomalies in the Moscow and
	Baltic syneclines - (Аномалии теплового потока в московскои и балтиискои
	синеклизакх), 3), 45514,
Gordienko_Zavgorodnyaya_1988	Gordienko, Vadim V.; Zavgordnyaya, O.V. (1988), Yavorovska Heat Flow Anomaly -
	(Яворовская аномалия теплового потока), Secondary, Yavorovska Heat Flow
	Anomaly - (Яворовская аномалия теплового потока), 10(1), 49–58,
Gorecki_etal2011	Górecki, Wojciech; Szczepa´nski, Andrzej; Oszczypko, Nestor; al., et (2011), Atlas of
	geothermal resources of mesozoic formations in the Polish Lowlands - (Atlas zasobów
	geotermalnych formacji mezozoicznej na Niżu Polskim), Secondary, Atlas of
	geothermal resources of mesozoic formations in the Polish Lowlands - (Atlas
	zasobów geotermalnych formacji mezozoicznej na Niżu Polskim), Krakow, Poland,
	Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie. Wydział Geologii Geofizyki i
	Ochrony Środowiska. Zakład Surowców Energetycznych (AGH - University of Science
	and Technology in Cracow Faculty of Geology Geophysics and Environment
	Protection Department of Fossil Fuels),
Gornov_2009	Gornov, P.Yu. (2009), Geothermal characteristics of the Middle Amur depression -
	(Геотермические характеристики Средне-Амурской впадины), Secondary,
	Geothermal characteristics of the Middle Amur depression - (Геотермические
	характеристики Средне-Амурской впадины), 3), 56–61,
Gosnold_1984	Gosnold Jr, William D. (1984), Geothermal resource assessment for North Dakota.
	Final report, Secondary, Geothermal resource assessment for North Dakota. Final
	report, North Dakota, North Dakota Univ. Grand Forks (USA). Dept. of Geology, 110,
	https://doi.org/10.2172/6652013
Gosnold_1990	Gosnold Jr, William D. (1990), Heat-Flow in the Great-Plains of the United-States,
	Secondary, Heat-Flow in the Great-Plains of the United-States, 95(B1), 353–374,
	https://doi.org/10.1029/JB095iB01p00353
Gosnold_1999	Gosnold Jr, William D. (1999), Basin-scale groundwater flow and advective heat flow:
	an example from the northern Great Plains, Andrea Förster, Daniel F. Merriam,
	Secondary, Basin-scale groundwater flow and advective heat flow: an example from
	the northern Great Plains, 99–116, https://doi.org/10.1007/978-1-4615-4751-8_5
Gosnold_Eversoll_1983	Gosnold Jr, William D.; Eversoll, Duane A. (1983), An inventory of geothermal
	resources in Nebraska, Secondary, An inventory of geothermal resources in
	Nebraska, DOE/ET/27205-T1, (DE84009679)),
Goswami_etal2024	Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Roy, Sukanta (2024), <i>Heat flow and</i>
	thermal structure in the Koyna seismic zone, western India: Implications for recurrent
	reservoir triggered seismicity, Secondary, Heat flow and thermal structure in the
	Koyna seismic zone, western India: Implications for recurrent reservoir triggered
Course 1063	seismicity, 873(230216, https://doi.org/10.1016/j.tecto.2024.230216 Gough, D.I. (1963), <i>Heat flow in the southern Karroo</i> , Secondary, Heat flow in the
Gough_1963	
Goutorbe_etal2007c	southern Karroo, 272(1349), 207–230, https://doi.org/10.1098/rspa.1963.0050 Goutorbe, Bruno; Drab, L.; Loubet, N.; Lucazeau, Francis (2007), <i>Heat-flow revisited</i>
Gouldibe_etal2007C	on the eastern canadian shield shelf, Secondary, Heat-flow revisited on the eastern
	canadian shield shelf, 19(6), 381–386,
Goutorbe_etal2008a	Goutorbe, Bruno; Lucazeau, Francis; Bonneville, Alain (2008), <i>Surface heat flow and</i>
doutorbe_ctall_2000a	the mantle contribution on the margins of Australia, Secondary, Surface heat flow
	and the mantle contribution on the margins of Australia, 9(5),
	https://doi.org/10.1029/2007gc001924
Goutorbe_etal2008b	Goutorbe, Bruno; Lucazeau, Francis; Bonneville, Alain (2008), <i>The thermal regime of</i>
	South African continental margins, Secondary, The thermal regime of South African
	continental margins, 44228), 256–265, https://doi.org/10.1016/j.epsl.2007.11.044
Goy_etal1996	Goy, Laurent; Fabre, D.; Menard, G. (1996), Modelling of rock temperatures for deep
,	Alpine tunnel projects, Secondary, Modelling of rock temperatures for deep Alpine
	tunnel projects, 29(1), 43101, https://doi.org/10.1007/Bf01019936
Green_etal1981	Green, Kenneth E.; Herzen, Richard P. Von; Williams, David L. (1981), <i>The Galapagos</i>
-:	Green, Kernicus E., Meszeri, Mestarus I. von, williams, David E. (1901), The Guidpugos

балтиискои синеклизакх), Secondary, Heat flow anomalies in the Moscow and

Spreading Center at 86°W: A detailed geothermal field study, Secondary, The Galapagos Spreading Center at 86°W: A detailed geothermal field study, B2), 979–

986, https://doi.org/10.1029/JB086iB02p00979

Gregory_etal._2023 Gregory, Emma P. M.; Villinger, Heinrich; Singh, Satish C.; Kaul, Norbert (2023), High

> Heat Flow Anomaly Within the St Paul Fracture Zone: Heat Advection and/or Inherent Thermal Structure?, Secondary, High Heat Flow Anomaly Within the St Paul Fracture Zone: Heat Advection and/or Inherent Thermal Structure?, 24(4), e2022GC010385,

https://doi.org/10.1029/2022gc010385

Greutter_1977 Greutter, A. (1977), Terrestrial heat flow in Edeleny - (Terrestrial heat flow in

Edelény), Secondary, Terrestrial heat flow in Edeleny - (Terrestrial heat flow in

Edelény), 18(2), 15-25,

Grevemeyer_etal._1999 Grevemeyer, Ingo; Kaul, Norbert E.; Villinger, Heinrich W.; Weigel, W. (1999),

> Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust, Secondary, Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust, 104(B3), 5069-5079, https://doi.org/10.1029/1998jb900096

Grevemeyer, Ingo; Diaz-Naveas, Juan L.; Ranero, Cesar R.; Villinger, Heinrich W.

(2003), Heat flow over the descending Nazca plate in central Chile, 32 degrees S to 41

degrees S: observations from ODP Leg 202 and the occurrence of natural gas hydrates, Secondary, Heat flow over the descending Nazca plate in central Chile, 32 degrees S to 41 degrees S: observations from ODP Leg 202 and the occurrence of natural gas hydrates, 213(44289), 285–298, https://doi.org/10.1016/S0012-821x

(03)00303-0

Grevemeyer_etal._2004 Grevemeyer, Ingo; Kopf, A.J.; Fekete, N.; Kaul, Norbert E.; Villinger, Heinrich W.;

> Heesemann, M.; Wallmann, K.; Spiess, V.; Gennerich, H.H.; Muller, M.; Weinrebe, W. (2004), Fluid flow through active mud Dome Mound Culebra offshore Nicoya Peninsula, Costa Rica: evidence from heat flow surveying, Secondary, Fluid flow through active mud Dome Mound Culebra offshore Nicoya Peninsula, Costa Rica:

evidence from heat flow surveying, 207(44287), 145-157,

https://doi.org/10.1016/j.margeo.2004.04.002

Grevemeyer_etal._2005 Grevemeyer, Ingo; Kaul, Norbert E.; Diaz-Naveas, Juan L.; Villinger, Heinrich W.;

> Ranero, Cesar R.; Reichert, Christian (2005), Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile, Secondary, Heat flow and bending-related faulting at subduction trenches: Case

studies offshore of Nicaragua and Central Chile, 236(44228), 238-248,

https://doi.org/10.1016/j.epsl.2005.04.048

Grevemeyer_etal._2006 Grevemeyer, Ingo; Kaul, Norbert E.; Diaz-Naveas, Juan L. (2006), Geothermal

> evidence for fluid flow through the gas hydrate stability field off Central Chiletransient flow related to large subduction zone earthquakes?, Secondary,

Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile-transient flow related to large subduction zone earthquakes?, 166(1), 461-468,

https://doi.org/10.1111/j.1365-246X.2006.02940.x

Grevemeyer_etal._2009 Grevemeyer, Ingo; Kaul, Norbert E.; Kopf, A.J. (2009), Heat flow anomalies in the Gulf

of Cadiz and off Cape San Vincente, Portugal, Secondary, Heat flow anomalies in the

Gulf of Cadiz and off Cape San Vincente, Portugal, 26(6), 795-804,

https://doi.org/10.1016/j.marpetgeo.2008.08.006

Grevemeyer_etal._2017 Grevemeyer, Ingo; Lange, Dietrich; Villinger, Heinrich; Custódio, Susana; Matias, Luis

> (2017), Seismotectonics of the Horseshoe Abyssal Plain and Gorringe Bank, eastern Atlantic Ocean: Constraints from ocean bottom seismometer data, Secondary, Seismotectonics of the Horseshoe Abyssal Plain and Gorringe Bank, eastern Atlantic

Ocean: Constraints from ocean bottom seismometer data, 122(1), 63-78,

https://doi.org/10.1002/2016jb013586

Griffin_etal._1977 Griffin, George M.; Reel, D.A.; Pratt, R.W. (1977), Heat flow in Florida oil test holes

> and indications of oceanic crust beneath the southern Florida- Bahamas platform, Secondary, Heat flow in Florida oil test holes and indications of oceanic crust

beneath the southern Florida-Bahamas platform, 21(43-63,

https://doi.org/10.1594/pangaea.807089

Grim, Paul J. (1969), Heat flow measurements in the Tasman Sea, Secondary, Heat

flow measurements in the Tasman Sea, 74(15), 3933-3934,

Grevemeyer_etal._2003

Grim_1969

https://doi.org/10.1029/JB074i015p03933

Groenlie_etal._1977 Groenlie, Gisle; Heier, Knut S.; Swanberg, Chandler A. (1977), *Terrestrial heat flow determinations from Norway*, Secondary, Terrestrial heat flow determinations from

Norway, 57(2), 153–162, https://doi.org/10.1594/pangaea.809753

GSJ_CCOP_1997 GSJ-CCOP (1997), Heat Flow Map of East and Southeast Asia, Secondary, Heat Flow

Map of East and Southeast Asia,

Guillou-Frottier_etal._1994 Guillou-Frottier, Laurent; Mareschal, Jean-Claude; Jaupart, Claude; Gariepy, Clement;

Bienfait, Gerard; Lapointe, Raynald (1994), *Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada: Implications for mantle heat flow,* Secondary, Heat flow, gravity and structure of the Abitibi belt, Superior Province, Canada:

Implications for mantle heat flow, 122(44228), 103-123,

https://doi.org/10.1016/0012-821x(94)90054-X

Guillou-Frottier_etal._1995 Guillou-Frottier, Laurent; Mareschal, Jean-Claude; Jaupart, Claude; Gariepy, Clement;

Lapointe, Raynald; Bienfait, Gerard (1995), Heat flow variations in the Grenville Province, Canada, Secondary, Heat flow variations in the Grenville Province, Canada,

136(44289), 447–460, https://doi.org/10.1016/0012-821x (95)00187-h

Guillou-Frottier_etal._1996 Guillou-Frottier, Laurent; Jaupart, Claude; Mareschal, Jean-Claude; Gariepy, Clement;

Bienfait, Gerard; Cheng, Li-Zhen; Lapointe, Raynald (1996), High heat flow in the trans-Hudson Orogen, Central Canadian Shield, Secondary, High heat flow in the

trans-Hudson Orogen, Central Canadian Shield, 23(21), 3027–3030,

https://doi.org/10.1029/96gl02895

Gupta_1972 Gupta, Mohan L. (1972), Geothermal gradients, heat flow values along Aravalli belt

and their significance regarding its tectonic history, Secondary, Geothermal gradients, heat flow values along Aravalli belt and their significance regarding its

tectonic history, 286(

Gupta_1988

Gupta_1981 Gupta, Mohan L. (1981), Surface heat flow and igneous intrusion in the Cambay

Basin, India, Secondary, Surface heat flow and igneous intrusion in the Cambay Basin, India, 10(4), 279–292, https://doi.org/10.1016/0377-0273 (81)90080-9

Gupta, Mohan L. (1988), pers. comm, Secondary, pers. comm,

Gupta_etal._1967 Gupta, Mohan L.; Verma, R.K.; Rao, R.U.M.; Hamza, Valiya M.; Rao, G.Venkateshwar

(1967), *Terrestrial heat flow in Khetri copper belt Rajasthan, India*, Secondary, Terrestrial heat flow in Khetri copper belt Rajasthan, India, 72(16), 4215–4220,

https://doi.org/10.1594/pangaea.804762

Gupta_etal._1970 Gupta, Mohan L.; Verma, R.K.; Hamza, Valiya M.; Rao, G.Venkateshwar; Rao, R.U.M.

(1970), Terrestrial heat flow and tectonics of the Cambay Basin, Gujarat State (India), Secondary, Terrestrial heat flow and tectonics of the Cambay Basin, Gujarat State

(India), 10(1), 147–163, https://doi.org/10.1016/0040-1951 (70)90104-6

Gupta_etal._1987 Gupta, Mohan L.; Sharma, S.R.; Sundar, A.; Singh, S.B. (1987), Geothermal studies in

the Hyderabad granitic region and the crustal thermal structure of the Southern Indian Shield, Secondary, Geothermal studies in the Hyderabad granitic region and the crustal thermal structure of the Southern Indian Shield, 140(45326), 257–264,

https://doi.org/10.1016/0040-1951(87)90233-2

Gupta_etal._1991a Gupta, Mohan L.; Sundar, A.; Sharma, S.R. (1991), *Heat flow and heat generation in*

the Archaean Dharwar cratons and implications for the Southern Indian Shield geotherm and lithospheric thickness, Secondary, Heat flow and heat generation in the Archaean Dharwar cratons and implications for the Southern Indian Shield

geotherm and lithospheric thickness, 194(45293), 107-122,

https://doi.org/10.1016/0040-1951(91)90275-w

Gupta_etal._1993 Gupta, Mohan L.; Sundar, A.; Sharma, S.R.; Singh, S.B. (1993), Heat-Flow in the Bastar

Craton, Central Indian Shield - Implications for Thermal-Characteristics of Proterozoic Cratons, Secondary, Heat-Flow in the Bastar Craton, Central Indian Shield -

Implications for Thermal-Characteristics of Proterozoic Cratons, 78(44228), 23–31,

https://doi.org/10.1016/0031-9201 (93)90081-j

Gupta_etal._2014 Gupta, Mohan L.; Sharma, S.R.; Rao, Vijay K. (2014), Conductive heat flow in the

Godavari sub-basin (Pranhita-Godavari valley), Indian shield and its significance, Secondary, Conductive heat flow in the Godavari sub-basin (Pranhita-Godavari

valley), Indian shield and its significance, 18(3), 394-404, Gupta_Gaur_1984 Gupta, Mohan L.; Gaur, V.K. (1984), Surface heat flow and probable evolution of the Deccan volcanism, Secondary, Surface heat flow and probable evolution of the Deccan volcanism, 105(44287), 309-318, https://doi.org/10.1016/0040-1951(84)90210-5 Gupta_Rao_1970 Gupta, Mohan L.; Rao, G. Venkateshwar (1970), Heat flow studies under upper mantle project, Secondary, Heat flow studies under upper mantle project, 8(87–112, https://doi.org/10.1594/pangaea.808031 Gupta_Sharma_2018 Gupta, Mohan Lal; Sharma, Shadi (2018), Heat flow in Rajasthan Craton, North-Western Indian Shield and its Implications, Secondary, Heat flow in Rajasthan Craton, North-Western Indian Shield and its Implications, 1(1), 30-34, Haenel_1969a Haenel, Ralph (1969), Report on geothermal measurements in the Christophstal research well near Freudenstadt - (Bericht über geothermische Messungen in der Forschungsbohrung Christophstal bei Freudenstadt), Secondary, Report on geothermal measurements in the Christophstal research well near Freudenstadt -(Bericht über geothermische Messungen in der Forschungsbohrung Christophstal bei Freudenstadt), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5695), Haenel_1969b Haenel, Ralph (1969), Geothermal measurements in boreholes near Nabburg -(Geothermische Messungen in Bohrungen bei Nabburg), Secondary, Geothermal measurements in boreholes near Nabburg - (Geothermische Messungen in Bohrungen bei Nabburg), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5691), Haenel_1969c Haenel, Ralph (1969), Geothermal measurements in the Hirzenhain 85 borehole -(Geothermische Messungen in der Bohrung Hirzenhain 85), Secondary, Geothermal measurements in the Hirzenhain 85 borehole - (Geothermische Messungen in der Bohrung Hirzenhain 85), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5689), Haenel_1969d Haenel, Ralph (1969), Report on geothermal measurements in the Heuchelberg 1 borehole - (Bericht über geothermische Messungen in der Bohrung Heuchelberg 1), Secondary, Report on geothermal measurements in the Heuchelberg 1 borehole -(Bericht über geothermische Messungen in der Bohrung Heuchelberg 1), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5698), 11, Haenel_1970a Haenel, Ralph (1970), Report on geothermal measurements in the boreholes near Bad Teinach - (Bericht über geothermische Messungen in den Bohrungen bei Bad Teinach), Secondary, Report on geothermal measurements in the boreholes near Bad Teinach - (Bericht über geothermische Messungen in den Bohrungen bei Bad Teinach), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5697), Haenel_1970b Haenel, Ralph (1970), A new method for determining terrestrial heat flux density in inland lakes - (Eine neue Methode zur Bestimmung der terrestrischen Wärmestromdichte in Binnenseen), Secondary, A new method for determining terrestrial heat flux density in inland lakes - (Eine neue Methode zur Bestimmung der terrestrischen Wärmestromdichte in Binnenseen), 36(H. 6), 725-742, Haenel_1971a Haenel, Ralph (1971), Heat flow measurements and a first heat flow map of Germany, Secondary, Heat flow measurements and a first heat flow map of Germany, 37(975-992, https://doi.org/10.1594/pangaea.809709 Haenel_1971b Haenel, Ralph (1971), Determinations of terrestrial heat flux density in Germany -(Bestimmungen der terrestrischen Wärmestromdichte in Deutschland), Secondary, Determinations of terrestrial heat flux density in Germany - (Bestimmungen der terrestrischen Wärmestromdichte in Deutschland), 37(119-134, Haenel_1972a Haenel, Ralph (1972), Heat flow measurements in the Ionian Sea with a new heat flow probe, Secondary, Heat flow measurements in the Ionian Sea with a new heat flow probe, C11(105-108, https://doi.org/10.1594/pangaea.809711 Haenel_1972b Haenel, Ralph (1972), Heat flow measurements in the Red Sea and the Gulf of Aden,

Secondary, Heat flow measurements in the Red Sea and the Gulf of Aden, 38(6),

1035-1047. Haenel_1972c Haenel, Ralph (1972), Report on geothermal measurements in the Böß-Gesäß borehole - (Bericht über geothermische Messungen in der Bohrung Böß-Gesäß), Secondary, Report on geothermal measurements in the Böß-Gesäß borehole -(Bericht über geothermische Messungen in der Bohrung Böß-Gesäß), 7482), Haenel 1973a Haenel, Ralph (1973), Report on geothermal measurements in the Oldenswort research well - (Bericht über geothermische Messungen in der Forschungsbohrung Oldenswort), Secondary, Report on geothermal measurements in the Oldenswort research well - (Bericht über geothermische Messungen in der Forschungsbohrung Oldenswort), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 10563), Haenel_1973c Haenel, Ralph (1973), Report on geothermal measurements in the boreholes near Trier - (Bericht über geothermische Messungen in den Bohrungen bei Trier), Secondary, Report on geothermal measurements in the boreholes near Trier -(Bericht über geothermische Messungen in den Bohrungen bei Trier), Hannover, Germany, Niedersächisches Landesamt für Bodenforschung, 10723), Haenel_1974a Haenel, Ralph (1974), Report on temperature measurements near Landau/Palatinate - (Bericht über Temperaturmessungen bei Landau/Pfalz), Secondary, Report on temperature measurements near Landau/Palatinate - (Bericht über Temperaturmessungen bei Landau/Pfalz), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 31287), Haenel_1974b Haenel, Ralph (1974), Report on the heat flux density determination of the Alexanderbad borehole - (Bericht zur Wärmestromdichtebestimmung der Bohrung Alexanderbad), Secondary, Report on the heat flux density determination of the Alexanderbad borehole - (Bericht zur Wärmestromdichtebestimmung der Bohrung Alexanderbad), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, Haenel_1974c Haenel, Ralph (1974), Heat flow measurements in Northern Italy and heat flow maps of Europe, Secondary, Heat flow measurements in Northern Italy and heat flow maps of Europe, 40(1), 367-380, https://doi.org/10.1594/pangaea.809712 Haenel 1974d Haenel, Ralph (1974), Heat flow measurements in the Norwegian Sea, Secondary, Heat flow measurements in the Norwegian Sea, C17(74-78, Haenel_1975 Haenel, Ralph (1975), Report on geothermal measurements in the Werra boreholes -(Bericht über geothermische Messungen in den Werra-Bohrungen), Secondary, Report on geothermal measurements in the Werra boreholes - (Bericht über geothermische Messungen in den Werra-Bohrungen), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 68382), Haenel_1979a Haenel, Ralph (1979), A critical review of heat flow measurements in sea and lake bottom sediments, Secondary, A critical review of heat flow measurements in sea and lake bottom sediments, 49-73, https://doi.org/10.1007/978-3-642-95357-6 3 Haenel_1983 Haenel, Ralph (1983), Geothermal investigations in the Rhenish Massif, K. Fuchs, K. von Gehlen, H. Malzer, H. Murawski, A. Semmel, Secondary, Geothermal investigations in the Rhenish Massif, Berlin Germany, Springer, 228–246, https://doi.org/10.1594/pangaea.807112 Haenel_Bram_1977 Haenel, Ralph; Bram, Kurt (1977), About the geothermal field of the Ries - (Das Geothermische Feld des Rieses (About the geothermal field of the Ries)), Secondary, About the geothermal field of the Ries - (Das Geothermische Feld des Rieses (About the geothermal field of the Ries)), 75(373-380, https://doi.org/10.1594/pangaea.809713 Haenel_etal._1974 Haenel, Ralph; Gronlie, Gisle; Heier, Knut S. (1974), Terrestrial heat flow determinations from lakes in southern Norway, Secondary, Terrestrial heat flow

48

Haenel_etal._1979

https://doi.org/10.1594/pangaea.809750

determinations from lakes in southern Norway, 54(4), 421-428,

Haenel, Ralph; Gronlie, Gisle; Heier, Knut S. (1979), Terrestrial heat flow

determination in Norway and an attempted interpretation, Secondary, Terrestrial heat flow determination in Norway and an attempted interpretation, 232–239,

https://doi.org/10.1007/978-3-642-95357-6_24

Haenel_etal._1983 Haenel, Ralph; Grubbe, Jobst S.; Reichert, C.; Zoth, Gustav (1983), Research project:

Haenel_Zoth_1971a

Haenel_Zoth_1971b

Haenel_Zoth_1973

Vertical movements and their causes using the example of the Rhenish Shield (Forschungsvorhaben: Vertikalbewegungen und ihre Ursachen am Beispiel des
Rheinischen Schildes), Secondary, Research project: Vertical movements and their

causes using the example of the Rhenish Shield - (Forschungsvorhaben:

Vertikalbewegungen und ihre Ursachen am Beispiel des Rheinischen Schildes), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 93273(49,

Haenel, Ralph; Zoth, Gustav (1971), Report on geothermal measurements in the Riedenburg borehole - (Bericht über geothermische Messungen in der Bohrung

Riedenburg), Secondary, Report on geothermal measurements in the Riedenburg

borehole - (Bericht über geothermische Messungen in der Bohrung Riedenburg), Hannover, Germany, Niedersächsisches Landesamt für Bodenforschung, 5718),

Haenel, Ralph; Zoth, Gustav (1971), Report on geothermal measurements in the

Weissenstein borehole - (Bericht über geothermische Messungen in der Bohrung Weissenstein), Secondary, Report on geothermal measurements in the Weissenstein

borehole - (Bericht über geothermische Messungen in der Bohrung Weissenstein), 5715),

Haenel, Ralph; Zoth, Gustav (1973), Heat Flow Measurements in Austria and Heat Flow Maps of Central Europe, Secondary, Heat Flow Measurements in Austria and

Heat Flow Maps of Central Europe, 39(425–439, https://doi.org/10.1594/pangaea.808039

Haenel_Zoth_1975 Haenel, Ralph; Zoth, Gustav (1975), Geothermal measurements in the Bad Sassendorf

borehole - (Geothermische Messungen in der Bohrung Bad Sassendorf), Secondary, Geothermal measurements in the Bad Sassendorf borehole - (Geothermische

Messungen in der Bohrung Bad Sassendorf), 68388),

Haenel_Zoth_1982 Haenel, Ralph; Zoth, Gustav (1982), Heat flow density determination in shallow lakes along the geotraverse from München/Salzburg to Verona/Trieste, Vladimír Čermák,

 $\label{eq:Ralph-Haenel} \textbf{Ralph-Haenel}, \textbf{Secondary}, \textbf{Heat flow density determination in shallow lakes along the}$

geotraverse from München/Salzburg to Verona/Trieste,

Halunen_VonHerzen_1973 Halunen Jr, A. John; Herzen, Richard P. Von (1973), Heat flow in the western equatorial Pacific Ocean, Secondary, Heat flow in the western equatorial Pacific

Ocean, 78(23), 5195–5208, https://doi.org/10.1029/JB078i023p05195

Hamamoto_etal._2011 Hamamoto, Hideki; Yamano, Makoto; Goto, Shusaku; Kinoshita, Masataka; Fujino,

Keiko; Wang, Kelin (2011), Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula, Secondary, Heat flow distribution and thermal

structure of the Nankai subduction zone off the Kii Peninsula, 12(10),

https://doi.org/10.1029/2011gc003623

Hamza_1982 Hamza, Valiya M. (1982), Earth's heat flow and geothermal resources - (Flux de

chaleur de la Terre et ressources géothermiques), Secondary, Earth's heat flow and geothermal resources - (Flux de chaleur de la Terre et ressources géothermiques),

37(1), 25–38,

Hamza_Eston_1983 Hamza, Valiya M.; Eston, S.M. (1983), Assessment of geothermal resources of Brazil

- 1981, Secondary, Assessment of geothermal resources of Brazil - 1981, 1(128-

155, https://doi.org/10.1594/pangaea.809751

Hamza_etal._1981 Hamza, Valiya M.; Vieira, F.P.; Guimaraes, S.N.P. (1981), Assessment of Geothermal

Resources of Brazil, Secondary, Assessment of Geothermal Resources of Brazil,

1(128-155,

Hamza_etal._1986 Hamza, Valiya M.; Frangipani, A.; Becker, E.A. (1986), Maps of Geotherms, Thermal Gradients and Geothermal Resources of the State of São Paulo - Phase 1: Regions of

the Government of São Jose dos Campos, Taubaté, Guaratinguetá and Cruzeiro - (Mapas de Geotermas, Gradientes Térmicos e Recursos Geotermais do Estado de São Paulo - Fase 1: Regiões do Governo de São Jose dos Campos, Taubaté, Guaratinguetá e Cruzeiro), Secondary, Maps of Geotherms, Thermal Gradients and Geothermal

Resources of the State of São Paulo - Phase 1: Regions of the Government of São Jose dos Campos, Taubaté, Guaratinguetá and Cruzeiro - (Mapas de Geotermas,

49

Gradientes Térmicos e Recursos Geotermais do Estado de São Paulo - Fase 1: Regiões do Governo de São Jose dos Campos, Taubaté, Guaratinguetá e Cruzeiro), São Paulo, Brazil, Prominério,

Hamza_etal._1987 Hamza, Valiya M.; Frangipani, A.; Becker, E.A. (1987), Geothermal maps of Brazil -(Mapas geotermais do Brasil), Secondary, Geothermal maps of Brazil - (Mapas geotermais do Brasil), Sao Paulo, Brazil, Institute de Pesquisas Tecnológicas. Sao

Paulo, 25305),

Hamza_etal._2005 Hamza, Valiya M.; Dias, F.J.S.S.; Gomes, A.J.L.; Terceros, Z.G.D. (2005), Numerical and

functional representations of regional heat flow in South America, Secondary, Numerical and functional representations of regional heat flow in South America,

152(4), 223-256, https://doi.org/10.1016/j.pepi.2005.04.009

Hamza_Munoz_1996 Hamza, Valiya M.; Munoz, Miguel (1996), Heat flow map of South America,

Secondary, Heat flow map of South America, 25(6), 599-646,

https://doi.org/10.1016/s0375-6505 (96)00025-9

Han_1979 Han, U. (1979), Heat Flow in South Korea, Secondary, Heat Flow in South Korea, Salt

Lake City, University of Utah, M.Sc. thesis(10.1594/pangaea.809752

Han_Wu_1993 Han, Y.H.; Wu, C.S. (1993), Geothermal gradient anf heat flow values of some deep

> wells in sichuan basin - (四川盆地地温梯度和几个深井热流测量), Secondary, Geothermal gradient anf heat flow values of some deep wells in sichuan basin - (四

川盆地地温梯度和几个深井热流测量), 14(1), 80-84,

Harder etal. 1995 Harder, Steven H.; Toan, Dinh V.; Yem, Nguyen T.; Bac, Trinh V.; Vu, Nguyen G.;

Mauri, Steven J.; Fisher, Andrew T.; McCabe, Robert; Flower, Martin F.J. (1995), Preliminary heat flow results from the Hanoi Basin, Vietnam, Secondary, Preliminary

heat flow results from the Hanoi Basin, Vietnam, 163-172,

https://doi.org/10.1594/pangaea.807121

Harris_etal._2000 Harris, Robert N.; Herzen, Richard P. Von; McNutt, Marcia K.; Garven, Grant; Jordahl,

> Kelsey (2000), Submarine hydrogeology of the Hawaiian archipelagic apron: 1. Heat flow patterns north of Oahu and Maro Reef, Secondary, Submarine hydrogeology of the Hawaiian archipelagic apron: 1. Heat flow patterns north of Oahu and Maro Reef,

105(B9), 21353–21369, https://doi.org/10.1594/pangaea.804411

Harris_etal._2010 Harris, Robert N.; Grevemeyer, Ingo; Ranero, Cesar R.; Villinger, Heinrich W.;

> Barckhausen, U.; Henke, T.; Mueller, C.; Neben, S. (2010), Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors, Secondary, Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors, 11(12),

https://doi.org/10.1029/2010gc003272

Harris_etal._2011 Harris, Robert N.; Schmidt-Schierhorn, Friederike; Spinelli, Glenn A. (2011), Heat flow

along the NanTroSEIZE transect: Results from IODP Expeditions 315 and 316 offshore the Kii Peninsula, Japan, Secondary, Heat flow along the NanTroSEIZE transect:

Results from IODP Expeditions 315 and 316 offshore the Kii Peninsula, Japan, 12(8),

https://doi.org/10.1029/2011gc003593

Harris, Robert N.; Johnson, H.P.; Solomon, E. (2015), Processed heat flow data

acquired at the Cascadia subduction zone during Atlantis cruise AT26-04, Secondary, Processed heat flow data acquired at the Cascadia subduction zone during Atlantis

cruise AT26-04, Interdisciplinary Earth Data Alliance (IEDA),

https://doi.org/10.1594/ieda/321799

Hart, Stanley R.; Steinhart, John S.; Smith, T.J. (1968), Heat Flow, Secondary, Heat

Flow, 67(360-367,

Hart Steinhart 1965 Hart, Stanley R.; Steinhart, John S. (1965), Terrestrial Heat Flow: Measurement in

Lake Bottoms, Secondary, Terrestrial Heat Flow: Measurement in Lake Bottoms,

149(3691), 1499–501, https://doi.org/10.1126/science.149.3691.1499

Hass, Bridget; Harris, Robert N. (2016), Heat flow along the Costa Rica Seismogenesis

Project drilling transect: Implications for hydrothermal and seismic processes, Secondary, Heat flow along the Costa Rica Seismogenesis Project drilling transect:

Implications for hydrothermal and seismic processes, 17(6), 2110–2127,

Harris_etal._2015

Hart_etal._1968

Hass_Harris_2016

https://doi.org/10.1002/2016gc006314

Hayashi_1997 Hayashi, Tsutomu (1997), Thermal Structure and Tectonic History of the Derugin

Basin, Sea of Okhotsk (in Japanese with English abstract), Secondary, Thermal

Structure and Tectonic History of the Derugin Basin, Sea of Okhotsk (in Japanese with

English abstract), Tokyo, Japan, University of Tokyo, M.Sc.

thesis(10.1594/pangaea.809754

He_etal._2002 He, Li-Juan; Xiong, Liang-Ping; Wang, Ji-Yang (2002), *Heat flow and thermal modeling*

of the Yinggehai Basin, South China Sea, Secondary, Heat flow and thermal modeling

of the Yinggehai Basin, South China Sea, 351(3), 245–253,

https://doi.org/10.1016/s0040-1951 (02)00160-9

He_etal._2006 He, Li-Juan; Hu, Sheng-Biao; Yang, Wencai (2006), Temperature Measurement in the

Main Hole of the Chinese Continental Scientific Drilling, Secondary, Temperature Measurement in the Main Hole of the Chinese Continental Scientific Drilling, 49(3),

745-752, https://doi.org/10.1002/cjg2.881

He_etal._2008 He, Li-Juan; Hu, Sheng-Biao; Huang, Shao-Peng; Yang, Wencai; Wang, Ji-Yang; Yuan,

Yu-Song; Yang, Shuchun (2008), Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production, Secondary, Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production,

113(B2), https://doi.org/10.1029/2007jb004958

He_etal._2014 He, Jianglin; Wang, Jian; Tan, Fuwen; Chen, Ming J.; Li, Zhongxiong; Sun, Tao; Wang, Pingkang; Du, Baiwei; Chen, Wenbin (2014), A comparative study between present

and palaeo-heat flow in the Qiangtang Basin, northern Tibet, China, Secondary, A comparative study between present and palaeo-heat flow in the Qiangtang Basin,

northern Tibet, China, 57(345–358,

https://doi.org/10.1016/j.marpetgeo.2014.05.020

He_Middleton_2002 He; S.; Middleton; F., Mike (2002), Heat flow and thermal maturity modelling in the

Northern Carnarvon Basin, North West Shelf, Australia, Secondary, Heat flow and thermal maturity modelling in the Northern Carnarvon Basin, North West Shelf, Australia, 19(9), 1073-1088, https://doi.org/10.1016/s0264-8172 (03)00003-5

Heasler_etal._1982 Heasler, Henry P.; Decker, Edward R.; Buelow, Kenneth L. (1982), Heat flow studies in

Wyoming: 1979 to 1981, Secondary, Heat flow studies in Wyoming: 1979 to 1981, Henderson, Jeremy; Davis, Earl E. (1983), *An estimate of heat flow in the western north Atlantic at Deep Sea Drilling Project Site 534*, Secondary, An estimate of heat flow in the western north Atlantic at Deep Sea Drilling Project Site 534, 76(719–724,

https://doi.org/10.2973/dsdp.Proc.76.135.1983

Hendrawan_Draniswari_2016 Hendrawan, Rezki Naufan; Draniswari, Windi Anarta (2016), *The Possibility of*

Enhanced Geothermal System in South Sumatra Basin, Secondary, The Possibility of Enhanced Geothermal System in South Sumatra Basin, Cendrawasih Hall - Jakarta

Convention Center, Indonesia,

Henderson_Davis_1983

Henrikson_2000 Henrikson, Andrew (2000), New heat flow determinations from oil and gas wells in

the Colorado Plateau and Basin and Range of Utah, Secondary, New heat flow determinations from oil and gas wells in the Colorado Plateau and Basin and Range

of Utah, Salt Lake City, University of Utah, M.Sc. thesis(70,

https://doi.org/10.1594/pangaea.807126

Henry_Pollack_1988 Henry, Steven G.; Pollack, Henry N. (1988), Terrestrial heat flow above the Andean

Subduction Zone in Bolivia and Peru, Secondary, Terrestrial heat flow above the Andean Subduction Zone in Bolivia and Peru, 93(B12), 15153–15162,

https://doi.org/10.1029/JB093iB12p15153

Hentinger_Jolivet_1967 Hentinger, R.; Jolivet, Jean (1967), On some geothermal flux determinations in France

- (Sur quelques déterminations de flux géothermique en France), Secondary, On some geothermal flux determinations in France - (Sur quelques déterminations de flux

géothermique en France), 2(102-114,

Hentinger_Jolivet_1970 Hentinger, R.; Jolivet, Jean (1970), New determinations of geothermal flow in France

- (Nouvelles déterminations du flux géothermique en France), Secondary, New determinations of geothermal flow in France - (Nouvelles déterminations du flux

51

géothermique en France), 10(44256), 127-146, https://doi.org/10.1016/0040-1951 (70)90103-4 Henyey, Thomas L. (1968), Heat flow near major strike-slip faults in central and Henyey_1968 southern California, Secondary, Heat flow near major strike-slip faults in central and southern California, Ph.D. thesis(10.1594/pangaea.807128 Henyey_Bischoff_1973 Henyey, Thomas L.; Bischoff, James L. (1973), Tectonic Elements of the Northern Part of the Gulf of California, Secondary, Tectonic Elements of the Northern Part of the Gulf of California, 84(1), https://doi.org/10.1130/0016-7606(1973)84<315:Teotnp>2.0.Co;2 Henyey_Lee_1976 Henyey, Thomas L.; Lee, Tien-Chang (1976), Heat flow in Lake Tahoe, California-Nevada, and the Sierra Nevada-Basin and Range transition, Secondary, Heat flow in Lake Tahoe, California-Nevada, and the Sierra Nevada-Basin and Range transition, 87(8), 1179-1187, https://doi.org/10.1130/0016-7606(1976)87<1179:Hfiltc>2.0.Co;2 Henyey_Wasserburg_1971 Henyey, Thomas L.; Wasserburg, G.J. (1971), Heat flow near major strike-slip faults in California, Secondary, Heat flow near major strike-slip faults in California, 76(32), 7924–7946, https://doi.org/10.1029/JB076i032p07924 Herman_etal._1977 Herman, Bruce M.; Langseth Jr, Marcus G.; Hobart, Michael A. (1977), Heat flow in the oceanic crust bounding Western Africa, Secondary, Heat flow in the oceanic crust bounding Western Africa, 41(44256), 61-77, https://doi.org/10.1016/0040-1951(77)90180-9 Herman_etal._1978 Herman, Bruce M.; Anderson, Roger N.; Truchan, M. (1978), Extensional Tectonics in the Okinawa Trough: Convergent Margins, Joel S. Montadert, Lucien Wood Dickerson, Patricia Watkins, Secondary, Extensional Tectonics in the Okinawa Trough: Convergent Margins, American Association of Petroleum Geologists, 29), 199-208, https://doi.org/10.1306/m29405c13 Herrin_Clark_1956 Herrin, Eugene; Clark Jr, Sydney P. (1956), Heat flow in West Texas and eastern New Mexico, Secondary, Heat flow in West Texas and eastern New Mexico, 21(4), 1087-1099, https://doi.org/10.1190/1.1438306 Hobart_etal._1974 Hobart, Michael A.; Udintsev, Gleb B.; Popova, A.K. (1974), Heat-flow measurements in the East-central Atlantic Ocean and near the Atlantis fracture zone, Secondary, Heat-flow measurements in the East-central Atlantic Ocean and near the Atlantis fracture zone, https://doi.org/10.1594/pangaea.809755 Hobart, Michael A.; Bunce, Elizabeth T.; Sclater, John G. (1975), Bottom water flow Hobart_etal._1975 through the Kane Gap, Sierra Leone Rise, Atlantic Ocean, Secondary, Bottom water flow through the Kane Gap, Sierra Leone Rise, Atlantic Ocean, 80(36), 5083-5088, https://doi.org/10.1029/JC080i036p05083 Hobart_etal._1985 Hobart, Michael A.; Langseth Jr, Marcus G.; Anderson, Roger N. (1985), A geothermal and geophysical survey on the south flank of the Costa Rica rift: Sites 504 and 505, Secondary, A geothermal and geophysical survey on the south flank of the Costa Rica rift: Sites 504 and 505, 83(379-404, https://doi.org/10.1594/pangaea.804429 Honda_etal._1979 Honda, Satoru; Matsubara, Yukio; Watanabe, Teruhiko; Uyeda, Seiya; Shimazaki, Kunihiko; Nomura, Kenichi; Fujii, Naoyuki (1979), Compilation of eleven new heat flow measurements on the Japanese Islands, Secondary, Compilation of eleven new heat flow measurements on the Japanese Islands, 54(45-73, https://doi.org/10.1594/pangaea.807151 Horai_1959 Horai, Ki-Iti (1959), Studies of the Thermal State of the Earth. The Third Paper: Terrestri al Heat Flow at Hitachi, Ibaraki Prefecture, Japan, Secondary, Studies of the Thermal State of the Earth. The Third Paper: Terrestri al Heat Flow at Hitachi, Ibaraki Prefecture, Japan, 37(4), 571-592, Horai_1963a Horai, Ki-Iti (1963), Studies of the Thermal State of the Earth. The 10th Paper: Terrestrial Heat Flow Measurements in Tohoku District, Japan, Secondary, Studies of the Thermal State of the Earth. The 10th Paper: Terrestrial Heat Flow Measurements in Tohoku District, Japan, 41(137-147, https://doi.org/10.15083/0000033735 Horai_1963b Horai, Ki-Iti (1963), Studies of the Thermal State of the Earth. The 11th Paper: Terrestrial Heat Flow Measurements in Kyushu District, Japan, Secondary, Studies of the Thermal State of the Earth. The 11th Paper: Terrestrial Heat Flow Measurements

in Kyushu District, Japan, 41(149-165, https://doi.org/10.15083/0000033736 Horai_1963c Horai, Ki-iti (1963), Studies of the Thermal State of the Earth. The 12th Paper: Terrestrial Heat Flow Measurements in Hokkaido District, Japan, Secondary, Studies of the Thermal State of the Earth. The 12th Paper: Terrestrial Heat Flow Measurements in Hokkaido District, Japan, Tokyo, Japan, University of Tokyo, 41(1), 167-187, https://doi.org/10.15083/0000033737 Horai 1964 Horai, Ki-Iti (1964), Studies of the thermal state of the Earth. The 13th paper: Terrestrial Heat Flow in Japan, Secondary, Studies of the thermal state of the Earth. The 13th paper: Terrestrial Heat Flow in Japan, 42(1), 93-132, https://doi.org/10.15083/0000033688 Horai_etal._1970 Horai, Ki-Iti; Chessman, Mary D.; Simmons, Gene (1970), Heat Flow Measurements on the Reykjanes Ridge, Secondary, Heat Flow Measurements on the Reykjanes Ridge, 225(5229), 264-265, https://doi.org/10.1038/225264a0 Horai_etal._1994 Horai, Ki-Iti; Sasaki, Y.; Kobayashi, Yoji (1994), A relationship between cut off depth of seismicity and heat flow in the Central Japan, Secondary, A relationship between cut off depth of seismicity and heat flow in the Central Japan, 273, https://doi.org/10.1594/pangaea.809756 Horai_VonHerzen_1985 Horai, Ki-Iti; Herzen, Richard P. Von (1985), Measurement of heat flow on Leg 86 of the Deep Sea Drilling Project, Secondary, Measurement of heat flow on Leg 86 of the Deep Sea Drilling Project, 86(759–777, https://doi.org/10.2973/dsdp.proc.86.135.1985 Horvath_etal._1977 Horvath, F.; Erki, I.; Bodri, L.; Marko, L.; Gellert, T. (1977), Heat Flow Measurements In Hungary, Secondary, Heat Flow Measurements In Hungary, Horvath_etal._1979 Horváth, F.; Bodri, L.; Ottlik, P. (1979), Geothermics of Hungary and the tectonophysics of the Pannonian Basin red spot, Secondary, Geothermics of Hungary and the tectonophysics of the Pannonian Basin red spot, 206-217, https://doi.org/10.1007/978-3-642-95357-6_21 Houseman_etal._1989 Houseman, G.A.; Cull, J.P.; Muir, P.M.; Paterson, H.L. (1989), Geothermal signatures and uranium ore deposits on the Stuart Shelf of South Australia, Secondary, Geothermal signatures and uranium ore deposits on the Stuart Shelf of South Australia, 54(2), 158-170, https://doi.org/10.1190/1.1442640 Howard_Sass_1964 Howard, L.E.; Sass, John H. (1964), Terrestrial heat flow in Australia, Secondary, Terrestrial heat flow in Australia, 69(8), 1617-1626, https://doi.org/10.1029/jz069i008p01617 Hsu_1975 Hsu, K.T. (1975), Glomar challenger returns to the mediterranean sea, Secondary, Glomar challenger returns to the mediterranean sea, 20(16-19, Hu_1988 Hu, Sheng-Biao (1988), Heat flow in Fujian province, southeastern China, Secondary, Heat flow in Fujian province, southeastern China, M.Sc. thesis(Hu, Sheng-Biao; Qiu, Nan-Sheng; Xiong, Liang-Ping (1992), Heat flow and geothermal Hu_etal._1992a fields in Zhejiang Province, see: Li Jiliang, editor-in-chief, Research on the Structure and Evolution of Marine and Continental Lithosphere in Southeast China - (浙江省热 流和地温场,见:李继亮主编,中国东南地区海陆岩石圈结构与演化研究), Secondary, Heat flow and geothermal fields in Zhejiang Province, see: Li Jiliang, editor-in-chief, Research on the Structure and Evolution of Marine and Continental Lithosphere in Southeast China - (浙江省热流和地温场,见:李继亮主编,中国东南地 区海陆岩石圈结构与演化研究), 257-264, Hu_etal._1992b Hu, Sheng-Biao; Xiong, Liang-Ping; Wang, J. (1992), Measurement of heat flow density in boreholes in eastern Fujian - (福建东部钻孔热流密度测量), Li, Ji Liang, Secondary, Measurement of heat flow density in boreholes in eastern Fujian - (福建 东部钻孔热流密度测量), Beijing, China, Chinese Sci. and Technology Publishing House, 295-301, Hu_etal._1992c Hu, Sheng-Biao; Xiong, Liang-Ping; Wang, J.H. (1992), Heat flow measurements in Southeast China, Secondary, Heat flow measurements in Southeast China, Beijing, China, Institute of Geology Chinese Academy of Sciences China Ocean Press, 35(352-361.

Hu, Sheng-Biao; O'Sullivan, Paul B.; Raza, Asaf; Kohn, Barry P. (2001), Thermal history

Hu_etal._2001a

	and tectonic subsidence of the Bohai Basin, northern China: a Cenozoic rifted and
	local pull-apart basin, Secondary, Thermal history and tectonic subsidence of the
	Bohai Basin, northern China: a Cenozoic rifted and local pull-apart basin, 126(44289), 221–235, https://doi.org/10.1016/s0031-9201 (01)00257-6
Hu_etal2001b	Hu, Sheng-Biao; He, Li-Juan; Wang, Ji-Wang (2001), Compilation of heat flow data in
c.a20015	the China continental area (3rd edition), Secondary, Compilation of heat flow data in
	the China continental area (3rd edition), 44(5), 611–626,
	https://doi.org/10.1002/cjg2.180
Hueckel_Kappelmeyer_1965	Hückel, B.; Kappelmeyer, O. (1965), Geothermal investigations in the Saar
, _	Carboniferous - (Geothermische Untersuchungen im Saarkarbon), Secondary,
	Geothermal investigations in the Saar Carboniferous - (Geothermische
	Untersuchungen im Saarkarbon), 117(280–311,
	https://doi.org/10.1127/zdgg/117/1966/280
Huenges_Zoth_1991	Huenges, Ernst; Zoth, Gustav (1991), KTB-Oberpfalz KTB-VB: temperature, thermal
	conductivity and heat flow density, Sci. Drill. 2,81-89, Secondary, KTB-Oberpfalz KTB-
	VB: temperature, thermal conductivity and heat flow density, Sci. Drill. 2,81-89,
	2(81–89,
Hull_etal1977	Hull, Donald A.; Blackwell, David D.; Bowen, Richard G. (1977), Heat flow study of the
	Brothers fault zone, Oregon, Secondary, Heat flow study of the Brothers fault zone,
	Oregon, 43, https://doi.org/10.1594/pangaea.807157
Hurter_Haenel_2002	Hurter, Suzanne J.; Haenel, Ralph (2002), Atlas of geothermal resources in Europe,
	Secondary, Atlas of geothermal resources in Europe, Brussels, Belgium, Commission
	of the European Communities Brussels Belgium,
Hurter_Pollack_1996	Hurter, Suzanne J.; Pollack, Henry N. (1996), Terrestrial heat flow in the Paraná Basin,
	southern Brazil, Secondary, Terrestrial heat flow in the Paraná Basin, southern Brazil,
	101(B4), 8659–8671, https://doi.org/10.1029/95jb03743
Hurtig_etal1991	Hurtig, Eckart; Čermák, Vladimír; Haenel, Ralph; Zui, V.I. (1991), Geothermal Atlas of
	Europe, Secondary, Geothermal Atlas of Europe, Gotha, Germany, Hermann & Haack
	Verlagsgesellschaft, 156, https://doi.org/10.1594/pangaea.807578
Hutchison_etal1981	Hutchison, Iain; Louden, Keith E.; White, Robert S.; Herzen, Richard P. Von (1981),
	Heat flow and age of the Gulf of Oman, Secondary, Heat flow and age of the Gulf of
	Oman, 56(252–262, https://doi.org/10.1016/0012-821x(81)90132-1
Hutchison_etal1985	Hutchison, Iain; Herzen, Richard P. Von; Louden, Keith E.; Sclater, John G.; Jemsek,
	J.P. (1985), Heat flow in the Balearic and Tyrrhenian basins, western Mediterranean,
	Secondary, Heat flow in the Balearic and Tyrrhenian basins, western Mediterranean,
Hutnak atal 2009	90(B1), 685–701, https://doi.org/10.1029/JB090iB01p00685 Hutnak, Michael; Fisher, Andrew T.; Harris, Robert N.; Stein, Carol A.; Wang, K.;
Hutnak_etal2008	Spinelli, Glenn A.; Schindler, M.; Villinger, Heinrich W.; Silver, E.A. (2008), <i>Large heat</i>
	and fluid fluxes driven through mid-plate outcrops on ocean crust, Secondary, Large
	heat and fluid fluxes driven through mid-plate outcrops on ocean crust, 1(9), 611–
	614, https://doi.org/10.1038/ngeo264
Hyndman_1967	Hyndman, Roy D. (1967), Heat flow in Queensland and Northern Territory, Australia,
,	Secondary, Heat flow in Queensland and Northern Territory, Australia, 72(2), 527–
	539, https://doi.org/10.1029/JZ072i002p00527
Hyndman_1976	Hyndman, Roy D. (1976), Heat flow measurements in the inlets of southwestern
_	British Columbia, Secondary, Heat flow measurements in the inlets of southwestern
	British Columbia, 81(2), 337–349, https://doi.org/10.1029/JB081i002p00337
Hyndman_etal1968	Hyndman, Roy D.; Lambert, I.B.; Heier, Knut S.; Jaeger, J.C.; Ringwood, A.E. (1968),
	Heat flow and surface radioactivity measurements in the Precambrian Shield of
	Western Australia, Secondary, Heat flow and surface radioactivity measurements in
	the Precambrian Shield of Western Australia, 1(2), 129–135,
	https://doi.org/10.1594/pangaea.804494
Hyndman_etal1969	Hyndman, Roy D.; Jaeger, J.C.; Sass, John H. (1969), Heat flow measurements on the
	southeast coast of Australia, Secondary, Heat flow measurements on the southeast
	coast of Australia, 7(1), 45642, https://doi.org/10.1016/0012-821x(69)90004-1
Hundman stal 107/s	Hundman Boy D.: Muscko C.V.: Aumonto E. (1074). Doop Drill 1072. Host Flow and

Hyndman, Roy D.; Muecke, G.K.; Aumento, F. (1974), Deep Drill 1972. Heat Flow and

Hyndman_etal._1974a

Hyndman_etal1974b	Heat Production in Bermuda, Secondary, Deep Drill 1972. Heat Flow and Heat Production in Bermuda, 11(6), 809–818, https://doi.org/10.1139/e74-081 Hyndman, Roy D.; Erickson, Albert J.; Herzen, Richard P. Von (1974), Geothermal measurements on DSDP Leg 26, Secondary, Geothermal measurements on DSDP Leg 26, 26(451–463, https://doi.org/10.2973/dsdp.Proc.26.113.1974
Hyndman_etal1976	Hyndman, Roy D.; Herzen, Richard P. Von; Erickson, Albert J.; Jolivet, Jean (1976), Heat flow measurements in deep crustal holes on the Mid-Atlantic Ridge, Secondary, Heat flow measurements in deep crustal holes on the Mid-Atlantic Ridge, 81(23), 4053–4060, https://doi.org/10.1029/JB081i023p04053
Hyndman_etal1978	Hyndman, Roy D.; Rogers, Garry C.; Bone, M.N.; Lister, Clive R.B.; Wade, U.S.; Barrett, D.L.; Davis, Earl E.; Lewis, Trevor J.; Lynch, S.; Seemann, D. (1978), Geophysical measurements in the region of the Explorer ridge off western Canada, Secondary, Geophysical measurements in the region of the Explorer ridge off
Hyndman_etal1979	western Canada, 15(9), 1508–1525, https://doi.org/10.1139/e78-156 Hyndman, Roy D.; Davis, Earl E.; Wright, J.A. (1979), The measurement of marine geothernal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity, Secondary, The measurement of marine geothernal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity, 4(2), 181–205, https://doi.org/10.1594/pangaea.804500
Hyndman_etal1982	Hyndman, Roy D.; Lewis, Trevor J.; Wright, J.A.; Burgess, Margaret M.; Chapman, David S.; Yamano, Makoto (1982), <i>Queen Charlotte fault zone: heat flow measurements</i> , Secondary, Queen Charlotte fault zone: heat flow measurements, 19(8), 1657–1669, https://doi.org/10.1139/e82-141
Hyndman_etal1984	Hyndman, Roy D.; Langseth Jr, Marcus G.; Herzen, Richard P. Von (1984), <i>A review of Deep Sea Drilling Project geothermal measurements through Leg 71</i> , Secondary, A review of Deep Sea Drilling Project geothermal measurements through Leg 71, 78(1), 813–823, https://doi.org/10.2973/dsdp.Proc.78b.116.1984
Hyndman_Everett_1968	Hyndman, Roy D.; Everett, J.E. (1968), Heat Flow measurements in a low Radioactivity area of the Western Australian Precambrian Shield, Secondary, Heat Flow measurements in a low Radioactivity area of the Western Australian Precambrian Shield, 14(44287), 479–486, https://doi.org/10.1111/j.1365-246X.1967.tb06267.x
Hyndman_Lewis_1999	Hyndman, Roy D.; Lewis, Trevor J. (1999), <i>Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada</i> , Secondary, Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada, 306(45355), 397–422, https://doi.org/10.1016/s0040-1951 (99)00068-2
Hyndman_Rankin_1972	Hyndman, Roy D.; Rankin, Douglas S. (1972), <i>The Mid-Atlantic Ridge Near 45°N</i> , Secondary, The Mid-Atlantic Ridge Near 45°N, 9(6), 664–670, https://doi.org/10.1139/e72-056
Hyndman_Sass_1966	Hyndman, Roy D.; Sass, John H. (1966), <i>Geothermal measurements at Mount Isa, Queensland</i> , Secondary, Geothermal measurements at Mount Isa, Queensland, 71(2), 587–601, https://doi.org/10.1029/jz071i002p00587
llkisik_etal1996	Ilkisik, O. Metin (1996), Heat Flow Research in the Aegean Region - (Ege Bolgrsinde Isi Akisi Arastirmalari), Secondary, Heat Flow Research in the Aegean Region - (Ege Bolgrsinde Isi Akisi Arastirmalari),
Ilkisik_etal1997	Ilkisik, O. Metin (1997), <i>Geothermic Research in the Aegean Region - (Ege Bolgrsinde Jeotermik Arastirmalar)</i> , Secondary, Geothermic Research in the Aegean Region - (Ege Bolgrsinde Jeotermik Arastirmalar),
Ingebritsen_etal1993 Iriyama_1981	Ingebritsen, S.E.; Scholl, M.A.; Sherrod, D.R. (1993), Heat flow from four new research drill holes in the Western Cascades, Oregon, U.S.A, Secondary, Heat flow from four new research drill holes in the Western Cascades, Oregon, U.S.A, 22(3), 151–163, https://doi.org/10.1016/0375-6505 (93)90040-t Iriyama, Jun (1981), Thermal structure of the yakedake volcano, Japan: Karukaya and
· -	Takara geothermal areas, Secondary, Thermal structure of the yakedake volcano, Japan: Karukaya and Takara geothermal areas, 10(4), 299–308,

https://doi.org/10.1016/0377-0273 (81)90082-2 Iriyama_1995 Iriyama, J. (1995), Case study of an active volcano in Japan. Geothermal process and energy of the Yake-dake volcano, Japan, Secondary, Case study of an active volcano in Japan. Geothermal process and energy of the Yake-dake volcano, Japan, Isaksen_etal._2001 Isaksen, Ketil; Holmlund, Per; Sollid, Johan Ludvig; Harris, Charles (2001), Three deep Alpine-permafrost boreholes in Svalbard and Scandinavia, Secondary, Three deep Alpine-permafrost boreholes in Svalbard and Scandinavia, 12(1), 13-25, https://doi.org/10.1002/ppp.380 Ismail_Yousoff_1985 Ismail, Wan; Yousoff, Wan (1985), Heat flow study in the Malay basin, Secondary, Heat flow study in the Malay basin, 15(77-87, https://doi.org/10.1594/pangaea.807161 Jackson_etal._1984 Jackson, H. Ruth; Johnson, G.Leonard; Sundvor, Eirik; Myhre, Annik M. (1984), The Yermak Plateau: Formed at a triple junction, Secondary, The Yermak Plateau: Formed at a triple junction, 89(B5), 3223-3232, https://doi.org/10.1029/JB089iB05p03223 Jaeger, J.C. (1970), Heat flow and radioactivity in Australia, Secondary, Heat flow and Jaeger_1970 radioactivity in Australia, 8(4), 285-292, https://doi.org/10.1016/0012-821x(70)90114-7 Jaeger_Sass_1963 Jaeger, J.C.; Sass, John H. (1963), Lees topographic correction in heat flow and the geothermal flux in Tasmania, Secondary, Lees topographic correction in heat flow and the geothermal flux in Tasmania, 54(1), 53-63, https://doi.org/10.1007/bf01988254 Jaervimaeki_Puranen_1979 Järvimäki, P.; Puranen, M. (1979), Heat flow measurements in Finland, Secondary, Heat flow measurements in Finland, 172-178, https://doi.org/10.1007/978-3-642-95357-6 16 Jansen, Eystein; Raymo, Maureen; Blum, Peter (1996), North Atlantic-Arctic Jansen_etal._1996 Gateways II, Secondary, North Atlantic-Arctic Gateways II, 8(43), 846, https://doi.org/10.2973/odp.Pr.162.1995 Jaupart_etal._1981 Jaupart, Claude; Sclater, John G.; Simmons, Gene (1981), Heat flow studies: constraints on the distribution of uranium, thorium and potassium in the continental crust, Secondary, Heat flow studies: constraints on the distribution of uranium, thorium and potassium in the continental crust, 52(2), 328-344, https://doi.org/10.1016/0012-821x(81)90187-4 Jaupart, Claude; Mann, Jeff R.; Simmons, Gene (1982), A detailed study of the Jaupart_etal._1982 distribution of heat flow and radioactivity in New Hampshire (U.S.A.), Secondary, A detailed study of the distribution of heat flow and radioactivity in New Hampshire (U.S.A.), 59(2), 267-287, https://doi.org/10.1016/0012-821x (82)90131-5 Jaupart_etal._2014 Jaupart, Claude; Mareschal, Jean-Claude; Bouquerel, Hélène; Phaneuf, Catherine (2014), The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective, Secondary, The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective, 119(12), 9130–9155, https://doi.org/10.1002/2014jb011018 Jemsek_etal._1985a Jemsek, J.P.; Herzen, Richard P. Von; Rehault, J.P.; Williams, David L.; Sclater, John G. (1985), Heat flow and lithospheric thinning in the Ligurian Basin (N.W. Mediterranean), Secondary, Heat flow and lithospheric thinning in the Ligurian Basin (N.W. Mediterranean), 12(10), 693-696, https://doi.org/10.1029/GL012i010p00693 Jessop_etal._1984a Jessop, Alan M.; Souther, J.G.; Lewis, Trevor J.; Judge, Alan S. (1984), Geothermal Measurements in Northern British Columbia and the Southern Yukon Territory, Secondary, Geothermal Measurements in Northern British Columbia and the Southern Yukon Territory, 21(5), 599-608, https://doi.org/10.1139/e84-064 Jessop_etal._1984b Jessop, Alan M.; Lewis, Trevor J.; Judge, Alan S.; Taylor, Alan; Drury, Malcolm J. (1984), Terrestrial heat flow in Canada, Secondary, Terrestrial heat flow in Canada, 103(45295), 231-261, https://doi.org/10.1016/0040-1951(84)90087-8 Jessop_Judge_1971 Jessop, Alan M.; Judge, Alan S. (1971), Five Measurements of Heat Flow in Southern

716, https://doi.org/10.1139/e71-069

Jessop_Lewis_1978

Canada, Secondary, Five Measurements of Heat Flow in Southern Canada, 8(6), 711-

Jessop, Alan M.; Lewis, Trevor J. (1978), Heat flow and heat generation in the

superior province of the canadian shield, Secondary, Heat flow and heat generation in the superior province of the canadian shield, 50(1), 55-77, https://doi.org/10.1016/0040-1951(78)90199-3 Jessop_Vigrass_1989 Jessop, Alan M.; Vigrass, L.W. (1989), Geothermal measurements in a deep well at Regina, Saskatchewan, Secondary, Geothermal measurements in a deep well at Regina, Saskatchewan, 37(2), 151-166, https://doi.org/10.1016/0377-0273(89)90067-x Jiang_etal._2016a Jiang, Guang-Zheng; Gao, Peng; Rao, Song; Zhang, Lin-You; Tang, Xiao-Yin; Huang, Fan; Zhao, Ping; Pang, Zhonghe; He, Li-Juan; Hu, Sheng-Biao; Wang, Ji-Yang (2016), Compilation of heat flow data in the continental area of China (4th edition), Secondary, Compilation of heat flow data in the continental area of China (4th edition), 59(8), 2892-2910, https://doi.org/10.6038/cjg20160815 Jiang etal. 2016b Jiang, Guang-Zheng; Tang, Xiao-Yin; Rao, Song; Gao, Peng; Zhang, Lin-You; Zhao, Ping; Hu, Sheng-Biao (2016), High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton, Secondary, High-quality heat flow determination from the crystalline basement of the southeast margin of North China Craton, 118(44470, https://doi.org/10.1016/j.jseaes.2016.01.009 Johnson, H.P.; Becker, Keir; Herzen, Richard P. Von (1993), Near-Axis Heat-Flow Johnson_etal._1993 Measurements on the Northern Juan-De-Fuca Ridge - Implications for Fluid Circulation in Oceanic-Crust, Secondary, Near-Axis Heat-Flow Measurements on the Northern Juan-De-Fuca Ridge - Implications for Fluid Circulation in Oceanic-Crust, 20(17), 1875-1878, https://doi.org/10.1029/93gl00734 Johnson_etal._2010 Johnson, Paul H.; Tivey, Maurice A.; Bjorklund, Tor A.; Salmi, Marie S. (2010), Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge, Secondary, Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge, 11(5), https://doi.org/10.1029/2009gc002957 Johnson_Hutnak_1997 Johnson, Paul; Hutnak, Michael (1997), Conductive heat loss in recent eruptions at mid-ocean ridges, Secondary, Conductive heat loss in recent eruptions at mid-ocean ridges, 24(23), 3089-3092, https://doi.org/10.1029/97gl02998 Jones_1987 Jones, M.Q.W. (1987), Heat flow and heat production in the Namaqua Mobile Belt, South Africa, Secondary, Heat flow and heat production in the Namagua Mobile Belt, South Africa, 92(B7), https://doi.org/10.1029/JB092iB07p06273 Jones_1988 Jones, M.Q.W. (1988), Heat flow in the Witwatersrand Basin and environs, and its significance for the South African shield geotherm and lithospheric thickness, Secondary, Heat flow in the Witwatersrand Basin and environs, and its significance for the South African shield geotherm and lithospheric thickness, 93(B4), 3243-3260, https://doi.org/10.1029/JB093iB04p03243 Jones_1992 Jones, M.Q.W. (1992), Heat-Flow Anomaly in Lesotho - Implications for the Southern Boundary of the Kaapvaal Craton, Secondary, Heat-Flow Anomaly in Lesotho -Implications for the Southern Boundary of the Kaapvaal Craton, 19(20), 2031–2034, https://doi.org/10.1029/92gl02207 Jones_etal._2011 Jones, T.; Kirkby, Alison L.; Gerner, Edward; Weber, R. (2011), Heat flow determinations for the Australian Continent: Release 2, Secondary, Heat flow determinations for the Australian Continent: Release 2, 28(2011, https://doi.org/10.13140/rg.2.1.4509.9767 Jones_Schreiber-Enslin_2022 Jones, M.Q.W.; Scheiber-Enslin, S.E. (2022), Heat flow in the Main Karoo Basin, South Africa, Secondary, Heat flow in the Main Karoo Basin, South Africa, 125(45355), 345-360, https://doi.org/10.25131/sajg.125.0022 Jongsma_1974 Jongsma, D. (1974), Heat Flow in the Aegean Sea, Secondary, Heat Flow in the Aegean Sea, 37(3), 337-346, https://doi.org/10.1111/j.1365-246X.1974.tb04087.x Jordan_etal._2018 Jordan, T.A.; Martin, C.; Ferraccioli, F.; Matsuoka, K.; Corr, H.; Forsberg, R.; Olesen, A.; Siegert, M. (2018), Anomalously high geothermal flux near the South Pole, Secondary, Anomalously high geothermal flux near the South Pole, 8(1), 16785, https://doi.org/10.1038/s41598-018-35182-0 Joshima_1984 Joshima, Masato (1984), Heat flow measurement in the GH80-5 area, Secondary,

Heat flow measurement in the GH80-5 area, 20(53-66,

https://doi.org/10.1594/pangaea.804805

Joshima_1994 Joshima, Masato (1994), Heat flow measurements in the Eastern Japan Sea during

GH93 cruise, in 1994, Secondary, Heat flow measurements in the Eastern Japan Sea during GH93 cruise, in 1994, 281–282, https://doi.org/10.1594/pangaea.809758

Joshima, Masato (1996), Heat flow measurements off Shakotan Peninsula during the R/V Hakurei-maru GH95 cruise, Secondary, Heat flow measurements off Shakotan

Peninsula during the R/V Hakurei-maru GH95 cruise, 662,

https://doi.org/10.1594/pangaea.809759

Joshima 1996

Kaul_etal._2006

Joshima_Honza_1986 Joshima, Masato; Honza, Eiichi (1986), *Age estimation of the Solomon Sea based on*

heat flow data, Secondary, Age estimation of the Solomon Sea based on heat flow

data, 6(4), 211–217, https://doi.org/10.1007/bf02239582

Joshima_Kuramoto_1999 Joshima, Masato; Kuramoto, Shinichi (1999), Heat flow measurements in the off

Tokai area, Secondary, Heat flow measurements in the off Tokai area, 24(81–86,

https://doi.org/10.1594/pangaea.808055

Joyner_1960 Joyner, William B. (1960), Heat flow in Pennsylvania and West Virginia, Secondary,

Heat flow in Pennsylvania and West Virginia, 25(6), 1229–1241,

https://doi.org/10.1190/1.1438811

Judge_Beck_1967 Judge, Alan S.; Beck, Antje E. (1967), An anomalous heat flow layer at London,

Ontario, Secondary, An anomalous heat flow layer at London, Ontario, 167–170,

https://doi.org/10.1016/0012-821x(67)90029-5

Judge_Beck_1973 Judge, Alan S.; Beck, Antje E. (1973), Analysis of Heat-Flow Data—Several Boreholes

in a Sedimentary Basin, Secondary, Analysis of Heat-Flow Data—Several Boreholes in

a Sedimentary Basin, 1494-1507, https://doi.org/10.1139/e73-142

Kaemmlein_etal._2020 Kämmlein, Marion; Bauer, Wolfgang; Stollhofen, Harald (2020), *The Franconian Basin*

thermal anomaly, SE Germany revised: New thermal conductivity and uniformly corrected temperature data, Secondary, The Franconian Basin thermal anomaly, SE Germany revised: New thermal conductivity and uniformly corrected temperature

data, 171(21-44, https://doi.org/10.1127/zdgg/2020/0204

Kanyuan_etal._1994 Kanyuan, Xia; Sigao, Xia; Zhongrong, Chen; Uyeda, Seiya; Matsubayashi, Osamu;

Nagao, Toshiyasu; Xinyuan, Li; Sizhong, Chen; Zhengyi, Tang; Chuntao, Rao (1995), Determination of heat flow in some exploration wells in the northern part of the South China Sea, Secondary, Determination of heat flow in some exploration wells in

the northern part of the South China Sea,

Kappelmeyer_1967 Kappelmeyer, O. (1967), The geothermal field of the upper Rhinegraben, Secondary,

The geothermal field of the upper Rhinegraben, 6(101–103,

https://doi.org/10.1594/pangaea.807174

Kasameyer_etal._1972a Kasameyer, Paul W.; Herzen, Richard P. Von; Simmons, Gene (1972), Heat flow,

bathymetry, and the mid-atlantic ridge at 43°N, Secondary, Heat flow, bathymetry,

and the mid-atlantic ridge at 43°N, 77(14), 2535-2542,

https://doi.org/10.1029/JB077i014p02535

Kasameyer_etal._1972b Kasameyer, Paul W.; Herzen, Richard P. Von; Simmons, Gene (1972), Layers of high

thermal conductivity in the North Atlantic, Secondary, Layers of high thermal

conductivity in the North Atlantic, 77(17), 3162–3167,

https://doi.org/10.1029/JB077i017p03162

Kashkai_Aliyev_1974 Kashkai, M.A.; Aliyev, S.A. (1974), Heat Flow in the Kuria Depression - (Тепловой

Поток В Курьинской Депрессии), Secondary, Heat Flow in the Kuria Depression -

(Тепловой Поток В Курьинской Депрессии), 95-109,

Kaul_etal._2000 Kaul, Norbert E.; Rosenberger, A.; Villinger, Heinrich W. (2000), Comparison of

measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan, Secondary, Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan, https://doi.org/10.1016/s0025-3227 (99)00125-5

Kaul, Norbert E.; Foucher, Jean P.; Heesemann, M. (2006), Estimating mud expulsion

rates from temperature measurements on Hakon Mosby Mud Volcano, SW Barents Sea, Secondary, Estimating mud expulsion rates from temperature measurements on

Hakon Mosby Mud Volcano, SW Barents Sea, 229(44228), 41640,

https://doi.org/10.1016/j.margeo.2006.02.004

Khutorskoy_1982b Khutorskoy, M.D. (1982), Geothermal Prospecting of Deposits in Conditions of

> Structural and Geological Nonuniformity - (Тепловой поток в областях структурно-геологических неоднородностей), Secondary, Geothermal Prospecting of Deposits in Conditions of Structural and Geological Nonuniformity -(Тепловой поток в областях структурно-геологических неоднородностей),

353(77, https://doi.org/10.1594/pangaea.808877

Khutorskoy, M.D. (1996), Geothermics of the Central-Asian fold belt - (Геотермия Центрально-Азиатского складчатого пояса), Secondary, Geothermics of the

Central-Asian fold belt - (Геотермия Центрально-Азиатского складчатого пояса),

https://doi.org/10.1594/pangaea.809761

Khutorskoy, M.D.; Margolin, E.M.; Muraviev, A.V.; Shilnikov, A.M. (1982), Thermal field of the Akchatau field, central Kazakhstan - (Тепловое поле месторождения

акчатау (центральный казахстан)), Secondary, Thermal field of the Akchatau field, central Kazakhstan - (Тепловое поле месторождения акчатау (центральный

казахстан)), 8), 143-149,

Khutorskoy_etal._1986a Khutorskoy, M.D.; Golubev, Valery A.; Kozlovtseva, S.V.; Timareva, S.V. (1986), Deep

> heat flow of Mongolia - regional characteristics and evolution - (Глубинный тепловой поток в Монгольской Народной Республике - региональная характеристика и эволюция), Secondary, Deep heat flow of Mongolia - regional characteristics and evolution - (Глубинный тепловой поток в Монгольской Народной Республике - региональная характеристика и эволюция), 291(4), 939-

944, https://doi.org/10.1594/pangaea.809077

Khutorskoy_etal._1986b Khutorskoy, M.D.; Gorodnitsky, A.M.; Golmshtok, A.Ya; Sochelnikov, V.V. (1986),

> Heat flow, basaltic volcanism and lithosphere structure of the Tyrrhenian Sea -(Тепловой поток, базальтовый вулканизм и строение литосферы Тирренского моря), Secondary, Heat flow, basaltic volcanism and lithosphere structure of the

> Tyrrhenian Sea - (Тепловой поток, базальтовый вулканизм и строение литосферы

Тирренского моря), 5), 116-123,

Khutorskoy_etal._1990 Khutorskoy, M.D.; Fernandez, R.; Kononov, V.I.; Polyak, B.G.; Matveev, V.G.; Rot, A.A.

(1990), Heat flow through the sea bottom around the Yucatan Peninsula, Secondary, Heat flow through the sea bottom around the Yucatan Peninsula, 95(B2), 1223-

1237, https://doi.org/10.1029/JB095iB02p01223

Khutorskoy, M.D.; Delgado-Argote, L.A.; Fernandez, R.; Kononov, V.I.; Polyak, Boris G. (1994), Tectonics of the offshore Manzanillo and Tecpan basins, Mexican Pacific, from heat flow, bathymetric and seismic data, Secondary, Tectonics of the offshore Manzanillo and Tecpan basins, Mexican Pacific, from heat flow, bathymetric and

seismic data, Ciudad de México, Universidad Nacional Autónoma de México, 33(1),

161-185, https://doi.org/10.22201/igeof.00167169p.1994.33.1.547

Khutorskoy_etal._2003 Khutorskoy, M.D.; Podgornykh, L.V.; Gramberg, I.S.; Leonov, Y.G. (2003), Thermal

tomography of the West Arctic basin, Secondary, Thermal tomography of the West Arctic basin, 37(3), 245-260, https://doi.org/10.1594/pangaea.809076

Khutorskoy, M.D.; Leonov, Y.G.; Ermakov, A.V.; Akhmedzyanov, V.R. (2009),

Abnormal heat flow and the nature of the troughs in the northern part of the Svalbard Plate - (Аномальный тепловой поток и природа желобов в северной части Свальбардской плиты), Secondary, Abnormal heat flow and the nature of

the troughs in the northern part of the Svalbard Plate - (Аномальный тепловой поток и природа желобов в северной части Свальбардской плиты), 424(45293),

29-35, 227-233, https://doi.org/10.1134/s1028334x09010073

Khutorskoy, M.D.; Akhmedzyanov, V.R.; Ermakov, A.V.; Leonov, Y.G.; Podgornykh, L.V.; Polyak, Boris G.; Sukhikh, E.A.; Tsybulya, L.A. (2013), Geothermics of the Arctic

Seas - (Геотермия арктических морей), Secondary, Geothermics of the Arctic Seas

- (Геотермия арктических морей), 605(1-232,

Khutorskoy, M.D.; Polyak, Boris G. (2014), Geothermal models of geodynamic environments of different types - (Геотермические модели геодинамических

обстановок разного типа), Secondary, Geothermal models of geodynamic

Khutorskoy_etal._1982

Khutorskoy_etal._1994

Khutorskoy_etal._2009

Khutorskoy_etal._2013

Khutorskoy_Polyak_2014

	енинопшена от аптегент турез - (геотермические модели геодинамических
	обстановок разного типа), 1), 77–96, https://doi.org/10.7868/s0016853x14010020
Khutorskoy_Yarmoluk_1989	Khutorskoy, M.D.; Yarmoluk, V.V. (1989), Heat flow, structure and evolution of the
	lithosphere of Mongolia, Secondary, Heat flow, structure and evolution of the
	lithosphere of Mongolia, 164(45326), 315–322, https://doi.org/10.1016/0040-
	1951(89)90024-3
Kido_etal1993	Kido, M.; Kinoshita, Hajimu; Seno, T. (1993), Heat Flow Measurements in the Ayu
Kido_ctdii_1333	Trough, Secondary, Heat Flow Measurements in the Ayu Trough, 99–105,
	https://doi.org/10.1594/pangaea.807179
Kido_etal2004	Kido, M.; Kinoshita, Hajimu; Seno, T. (2004), Personal communication, 1996. In: CD
	Rom: Geothermal Gradient and Heat Flow Data in and around Japan. Geological
	Survey of Japan, AIST, 2004, Secondary, Personal communication, 1996. In: CD Rom:
	Geothermal Gradient and Heat Flow Data in and around Japan. Geological Survey of
	Japan, AIST, 2004,
Kim_etal2010	Kim, Young-Gyun; Lee, Sang-Mook; Matsubayashi, Osamu (2010), New heat flow
	measurements in the Ulleung Basin, East Sea (Sea of Japan): relationship to local BSR
	depth, and implications for regional heat flow distribution, Secondary, New heat flow
	measurements in the Ulleung Basin, East Sea (Sea of Japan): relationship to local BSR
	depth, and implications for regional heat flow distribution, 6), 595–603,
	https://doi.org/10.1007/s00367-010-0207-x
Kim_Lee_2007	Kim, H.C.; Lee, Young-Min (2007), Heat flow in the Republic of Korea, Secondary,
	Heat flow in the Republic of Korea, B5), https://doi.org/10.1029/2006jb004266
King_Simmons_1972	King, Warren; Simmons, Gene (1972), Heat flow near Orlando, Florida and Uvalde,
	Texas determined from well cuttings, Secondary, Heat flow near Orlando, Florida and
	Uvalde, Texas determined from well cuttings, 1(4), 133–139,
	https://doi.org/10.1016/0375-6505(72)90021-1
Kinoshita_1987	Kinoshita, Masataka (1987), Heat flow measurements in some western Pacific trench-
	arc-backarc systems and their interpretation, Secondary, Heat flow measurements in
	some western Pacific trench-arc-backarc systems and their interpretation,
	https://doi.org/10.1594/pangaea.809762
Vincebite 1000	
Kinoshita_1990	Kinoshita, Masataka (1990), Heat flow anomaly in some western Pacific trench-arc-
	backarc systems associated with interstitial water circulation, Secondary, Heat flow
	anomaly in some western Pacific trench-arc-backarc systems associated with
	interstitial water circulation, Tokyo, Japan, University of Tokyo, Ph.D.
	thesis(10.1594/pangaea.809763
Kinoshita_etal1989	Kinoshita, Hajimu; Kasumi, Y.; Baba, H. (1989), Report on DELP 1987 Cruises in the
	Ogasawara Area : Part VI: Heat Flow Measurements, Secondary, Report on DELP
	1987 Cruises in the Ogasawara Area: Part VI: Heat Flow Measurements, 64(223–232,
	https://doi.org/10.1594/pangaea.807194
Kinoshita_etal1990	Kinoshita, Masataka; Yamano, Makoto; Post, Johannes; Halbach, Peter (1990), <i>Heat</i>
Killosiika_etall_1550	flow measurements in the southern and middle Okinawa Trough on R/V Sonne in
	1988, Secondary, Heat flow measurements in the southern and middle Okinawa
	Trough on R/V Sonne in 1988, 65(3), 571–588,
	https://doi.org/10.1594/pangaea.807198
Kinoshita_etal1991a	Kinoshita, Masataka; Yamano, Makoto; Kasumi, Y.; Baba, H. (1991), Report on DELP
	1988 cruises in the Okinawa Trough. Part 8: Heat flow measurements, Secondary,
	Report on DELP 1988 cruises in the Okinawa Trough. Part 8: Heat flow
	measurements, 66(221–228,
Kinoshita_etal1991b	Kinoshita, Masataka; Yamano, Makoto; Makita, S. (1991), High Heat-Flow Anomaly
	around Hatsushima Biological Community in the Western Sagami Bay, Japan,
	Secondary, High Heat-Flow Anomaly around Hatsushima Biological Community in the
	Western Sagami Bay, Japan, 39(4), 553–571, https://doi.org/10.4294/jpe1952.39.553
Kinoshita_etal2006	Kinoshita, Masataka; Kawada, Yoshifumi; Tanaka, Akiko; Urabe, T. (2006),
osiiita_etaii_2000	Recharge/discharge interface of a secondary hydrothermal circulation in the Suiyo
	Seamount of the Izu-Bonin arc, identified by submersible-operated heat flow
	magguraments Secondary Becharge Hischarge interface of a secondary

environments of different types - (Геотермические модели геодинамических

measurements, Secondary, Recharge/discharge interface of a secondary

submersible-operated heat flow measurements, 245(44289), 498-508, https://doi.org/10.1016/j.epsl.2006.02.006 Kinoshita_Yamano_1986 Kinoshita, Hajimu; Yamano, Makoto (1986), The heat flow anomaly in the Nankai Trough area, Secondary, The heat flow anomaly in the Nankai Trough area, 87(737– 743, https://doi.org/10.2973/dsdp.proc.87.121.1986 Kinoshita Yamano 1995 Kinoshita, Masataka; Yamano, Makoto (1995), Heat flow distribution in the Nankai Trough region, Secondary, Heat flow distribution in the Nankai Trough region, 77–86, https://doi.org/10.1594/pangaea.807189 Kinoshita_Yamano_1997 Kinoshita, Masataka; Yamano, Makoto (1997), Hydrothermal regime and constraints on reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from heat flow measurements, Secondary, Hydrothermal regime and constraints on reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from heat flow measurements, 102(B2), 3183-3194, https://doi.org/10.1029/96jb03556 Kirkby, Alison L.; Gerner, Edward (2010), Heat flow interpretations for the Australian Kirkby_Gerner_2010 continent: Release 1, Secondary, Heat flow interpretations for the Australian continent: Release 1, 1(29, Kirkby_Gerner_2013 Kirkby, Alison L.; Gerner, Edward (2013), Heat Flow Determinations for the Australian Continent: Release 5, Secondary, Heat Flow Determinations for the Australian Continent: Release 5, Canberra, Australia, Geoscience Australia, 33, Kitajima_etal._1997 Kitajima, Taku; Kobayashi, Yoji; Suzuki, Hiroyoshi; Ikeda, Ryuji; Omura, Kentaro; Kasahara, K.; Okada, Y. (1997), Thermal structure and earthquakes beneath the Kanto district - (関東地方の熱的構造と地殻内地震), Secondary, Thermal structure and earthquakes beneath the Kanto district - (関東地方の熱的構造と地殼内地震), Seismological Society of Japan, 247, https://doi.org/10.1594/pangaea.809767 Kitajima_etal._2001 Kitajima, Taku; Kobayashi, Yoji; Ikeda, Ryuji; Iio, Yoshihisa; Omura, Kentaro (2001), Terrestrial heat flow at Hirabayashi on Awaji Island, south-west Japan, Secondary, Terrestrial heat flow at Hirabayashi on Awaji Island, south-west Japan, 10(44289), 318-325, https://doi.org/10.1111/j.1440-1738.2001.00330.x Kobolev_etal._1993 Kobolev, V.P.; Kutas, R.I.; Tsvyashchenko, V.A.; Kravchuk, O.P.; Bevzyuk, M.I. (1993), Geothermal studies in the Northwestern Black Sea - (Геотермальные исследования на северо-западе Черного моря), Secondary, Geothermal studies in the Northwestern Black Sea - (Геотермальные исследования на северо-западе Черного моря), 15(3), 61–72, https://doi.org/10.1594/pangaea.809078 Kolandaivelu_etal._2017 Kolandaivelu, Kannikha P.; Harris, Robert N.; Lowell, Robert P.; Alhamad, A.; Hobbs, Richard W. (2017), Analysis of a conductive heat flow profile in the Ecuador Fracture Zone, Secondary, Analysis of a conductive heat flow profile in the Ecuador Fracture Zone, 467(120-127, https://doi.org/10.1016/j.epsl.2017.03.024 Kondyurin_Sochelnikov_1983 Kondyurin, A.V.; Sochelnikov, V.V. (1983), Geothermal Stream in the Western and Parts of the Black Sea - (Геотермический Поток В Западнои Части Черного Моря), Secondary, Geothermal Stream in the Western and Parts of the Black Sea -(Геотермический Поток В Западнои Части Черного Моря), 23(4), 622-627, https://doi.org/10.1594/pangaea.808878 Kono_Kobayashi_1971 Kono, Y.; Kobayashi, Yoji (1971), Terrestrial heat flow in Hokuriku district, central Japan, Secondary, Terrestrial heat flow in Hokuriku district, central Japan, 16(61–72, https://doi.org/10.1594/pangaea.809774 Kononov_etal._1990 Kononov, V.I.; Zverev, V.P.; Khutorskoy, M.D.; Augustynyak, O.V.; Bogatyrev, D.B.; Buiss, F.; Butuzova, G.Yu.; Bylinskaya, M.E.; Voznesensky, A.I.; D.V.Grichuk; V.I.Yard; V.P.Zinkevich; A.Kriyu; D.I.Kudryavtsev; Matveev, V.G.; Paduchikh, V.G.; Polyak, B.G.; Porshnev, N.V.; Prilutskaya, T.A.; Radionova, E.P.; Roth, A.A.; Simonov, I.L.; Tolstikhin, I.N.; Fernandez, R. (1990), Geothermal Activity and Sedimentary Process in the Caribbean-Mexican Region - (Геотермальная активность и осадочный процесс в Карибско-Мексиканском регионе), A.L. Knipper, A.V. Kopp, P.P. Timofeev, Secondary, Geothermal Activity and Sedimentary Process in the Caribbean-Mexican

hydrothermal circulation in the Suiyo Seamount of the Izu-Bonin arc, identified by

Мексиканском регионе), Moscow, USSR, Nauka, 448(192,

Region - (Геотермальная активность и осадочный процесс в Карибско-

Kopf_etal._2006 Kopf, A.J.; Alves, T.; Heesemann, B.; Irving, M.; Kaul, Norbert E.; Kock, I.; Krastel, S.; Reichelt, M.; Schaefer, R.; Stegmann, S.; Strasser, M.; Thoelen, M. (2006), Report and preliminary results of poseidon cruise P336: Crests-Cretan Sea tectonics and sedimentation, Secondary, Report and preliminary results of poseidon cruise P336: Crests-Cretan Sea tectonics and sedimentation, 82, https://doi.org/10.1594/pangaea.805110 Korgen etal. 1971 Korgen, Ben J.; Bodvarsson, Gunnar; Mesecar, Rod S. (1971), Heat Flow through the Floor of the Cascadia Basin, Secondary, Heat Flow through the Floor of the Cascadia Basin, 76(20), 4758-4774, https://doi.org/10.1029/JB076i020p04758 Kostadinoff_Reartes_1993 Kostadinoff, J.; Reartes, W.A. (1993), Measurements and interpretation of the terrestrial heat flow in the south of the province of Buenos Aires - (Mediciones e interpretacion del flujo de calor terrestre en el sur de la provincia de Buenos Aires), Secondary, Measurements and interpretation of the terrestrial heat flow in the south of the province of Buenos Aires - (Mediciones e interpretacion del flujo de calor terrestre en el sur de la provincia de Buenos Aires), 48(2), 7, Kral_etal._1985 Kral, M.; Lizon, I.; Janci, J. (1985), Geotermicky vyskrum ssr. zav. sprava za roky 1981 az 1985 (in Slovak), Secondary, Geotermicky vyskrum ssr. zav. sprava za roky 1981 az 1985 (in Slovak), Kubík, Jaroslav; Čermák, Vladimír; Janáčková, A. (1986), Heat flow in the Upper Kubik_etal._1986 Silurian coal basin: re-evaluation of data with special attention to the lithology, Secondary, Heat flow in the Upper Silurian coal basin: re-evaluation of data with special attention to the lithology, 30(4), 376-393, https://doi.org/10.1594/pangaea.809775 Kukkonen_1988 Kukkonen, Ilmo T. (1988), Terrestrial heat flow and groundwater circulation in the bedrock in the central Baltic Shield, Secondary, Terrestrial heat flow and groundwater circulation in the bedrock in the central Baltic Shield, 156(44228), 59-74, https://doi.org/10.1016/0040-1951(88)90283-1 Kukkonen_1989 Kukkonen, Ilmo T. (1989), Terrestrial heat flow and radiogenic heat production in Finland, the central Baltic shield, Secondary, Terrestrial heat flow and radiogenic heat production in Finland, the central Baltic shield, 164(44288), 210-230, https://doi.org/10.1016/0040-1951 (89)90015-2 Kukkonen_1993 Kukkonen, Ilmo T. (1993), Heat-Flow Map of Northern and Central Parts of the Fennoscandian Shield Based on Geochemical Surveys of Heat Producing Elements, Secondary, Heat-Flow Map of Northern and Central Parts of the Fennoscandian Shield Based on Geochemical Surveys of Heat Producing Elements, 225(44228), 41334, https://doi.org/10.1016/0040-1951 (93)90243-d Kukkonen, Ilmo T.; Gosnold Jr, William D.; Šafanda, Jan (1998), Anomalously low heat Kukkonen_etal._1998 flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature, Secondary, Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature, 44287), 235-249, https://doi.org/10.1016/s0040-1951 (98)00043-2 Kukkonen_etal._2011 Kukkonen, Ilmo T.; Rath, Volker; Kivekas, L.; Šafanda, Jan; Čermák, Vladimír (2011), Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications, Secondary, Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications, 188(44228), 45901, https://doi.org/10.1016/j.pepi.2011.06.002 Kunze_Marlor_1982 Kunze, J.F.; Marlor, J.K. (1982), Industrial food processing and space heating with geothermal heat, Secondary, Industrial food processing and space heating with geothermal heat, Kurchikov_1982 Kurchikov, A.R. (1982), Paleogeothermal Conditions for the Formation of Zones of Preferential Oil - (Палеогеотермические Условиыа Формированиыа Зон Преиму-Шчественного Нефте), Secondary, Paleogeothermal Conditions for the Formation of Zones of Preferential Oil - (Палеогеотермические Условиыа Формированиыа

Kurchikov, A.R.; Stavitsky, B.P. (1981), Heat flow within the Western Siberian Plate -

Зон Преиму- Шчественного Нефте),

Kurchikov_Stavitsky_1981

(Тепловоы Поток, в Пределакх Западно-сибир- Скоы Плиты), Secondary, Heat flow within the Western Siberian Plate - (Тепловоы Поток, в Пределакх Западносибир- Скоы Плиты), 51), 45610, Kurchikov_Stavitsky_1987 Kurchikov, A.R.; Stavitsky, B.P. (1987), Geothermy of oil and gas bearing regions of western siberia - (Геотермика нефтегазоносных областей Западной Сибири), Secondary, Geothermy of oil and gas bearing regions of western siberia -(Геотермика нефтегазоносных областей Западной Сибири), 134, Kutas_etal._1972 Kutas, R.I.; Gordienko, Vadim V.; Zavgorodnyaya, Olga V. (1972), Heat Flow of the Ukrainian Shield and Its Slopes - (Тепловой Поток Украинского Щита И Его Склонов), Secondary, Heat Flow of the Ukrainian Shield and Its Slopes - (Тепловой Поток Украинского Щита И Его Склонов), 63-65, Kutas_etal._1975a Kutas, R.I.; Gordienko, Vadim V.; Bevzyuk, M.I. (1975), Measuring Heat Flows in the Southwest Territory of the East European Platform - (Измерение Тепловых Потоков На Территории Юго-Запада Восточно-Европейской Платформы), Secondary, Measuring Heat Flows in the Southwest Territory of the East European Platform -(Измерение Тепловых Потоков На Территории Юго-Запада Восточно-Европейской Платформы), 64(73, Kutas_etal._1975b Kutas, R.I.; Gordienko, Vadim V.; Bevzyuk, M.I.; Zavgorodnyaya, Olga V. (1975), New Heat Flow Determination in the Carpathian Region - (Новый Определения Теплового Потока В Карпатском Регионе), Secondary, New Heat Flow Determination in the Carpathian Region - (Новый Определения Теплового Потока В Карпатском Регионе), 63(68, Kutas_etal._1976 Kutas, R.I.; Gordienko, Vadim V.; Bevzyuk, M.I.; Zavgorodnyaya, Olga V. (1976), New Data on Heat Flows in the USSR - (Новые Данные О Тепловых Потоках На Территории Ссср), Secondary, New Data on Heat Flows in the USSR - (Новые Данные О Тепловых Потоках На Территории Ссср), 13-23, Kutas, R.I.; Bevzyuk, M.I.; Vygovsky, V.F. (1979), Heat flow and heat transfer Kutas_etal._1979a conditions in the bottom sediments of the equatorial indian ocean, Secondary, Heat flow and heat transfer conditions in the bottom sediments of the equatorial indian ocean, 8(1), 31-36, https://doi.org/10.1016/0375-6505(79)90064-6 Kutas_etal._1981 Kutas, R.I.; Bevzyuk, M.I.; Mikhailyuk, S.F. (1981), Methodology and Results of Heat Flux Determination on the Ukrainian Shield and its Slopes - (Методика и результаты определения тепловых потоков на Украинском щите и его склонах), Secondary, Methodology and Results of Heat Flux Determination on the Ukrainian Shield and its Slopes - (Методика и результаты определения тепловых потоков на Украинском щите и его склонах), 3(1), 22-29, Kutas_etal._1992 Kutas, R.I.; Kobolev, V.P.; Tsvyashchenko, V.A.; Vasilyev, A.D.; Kravchuk, O.P. (1992), New determination of heat flow in the Bulgarian sector of the Black Sea (in Ukranian), Secondary, New determination of heat flow in the Bulgarian sector of the Black Sea (in Ukranian), 7(104-107, https://doi.org/10.1594/pangaea.809089 Kutas_etal._1999 Kutas, R.I.; Kobolev, V.P.; Tsvyashchenko, V.A.; Bevzyuk, M.I.; Kravchuk, O.P. (1999), Results of heat flow determinations in the northwestern Black Sea basin -(Результаты определений теплового потока, в С.еверо-западной части бассейна Черного моря), Secondary, Results of heat flow determinations in the northwestern Black Sea basin - (Результаты определений теплового потока, в С.еверо-западной части бассейна Черного моря), 2(38-51, https://doi.org/10.1594/pangaea.809090 Kutas_etal._2003 Kutas, R.I.; Kobolev, V.P.; Bevzyuk, M.I.; Kravchuk, O.P. (2003), New heat flow determinations in the northwestern Black Sea - (Новые определения теплового потока, в Северо-западной части Черного моря), Secondary, New heat flow determinations in the northwestern Black Sea - (Новые определения теплового потока, в Северо-западной части Черного моря), 2(48-52, https://doi.org/10.1594/pangaea.809108 Kutas_Gordienko_1970 Kutas, R.I.; Gordienko, Vadim V. (1970), Thermal Field And Deep Structure of the Eastern Carpathians - (Тепловое Поле И Глубинное Строение Вос-Точных

Карпат), Secondary, Thermal Field And Deep Structure of the Eastern Carpathians -

(Тепловое Поле И Глубинное Строение Вос-Точных Карпат), 29-41, Kutas_Gordienko_1971 Kutas, R.I.; Gordienko, Vadim V. (1971), Thermal Field of Ukraine - (Тепловое Поле Украины), Secondary, Thermal Field of Ukraine - (Тепловое Поле Украины), 140, Kutas_Gordienko_1973 Kutas, R.I.; Gordienko, Vadim V. (1973), New Data on Heat Flow of the South-Western Part of Ukraine - (Новые Данные О Тепловом Потоке Юго-Западной Части Украины), Secondary, New Data on Heat Flow of the South-Western Part of Ukraine - (Новые Данные О Тепловом Потоке Юго-Западной Части Украины), 56(35-40, Kutas_Poort_2008 Kutas, R.I.; Poort, Jeffrey (2008), Regional and local geothermal conditions in the northern Black Sea, Secondary, Regional and local geothermal conditions in the northern Black Sea, 97(2), 353–363, https://doi.org/10.1007/s00531-007-0216-9 Kuzmin_etal._1972 Kuzmin, V.A.; Suzyumov, A.E.; Bezlyudov, A.V. (1972), Geothermal studies on the Manihiki Plateau and Marcus Necker Ridge (Pacific Ocean) - (Геотермические исследования на плато Манихики и хребте Маркус-Неккер (Тихий океан)), Secondary, Geothermal studies on the Manihiki Plateau and Marcus Necker Ridge (Pacific Ocean) - (Геотермические исследования на плато Манихики и хребте Маркус-Неккер (Тихий океан)), 12(6), 1044-1046, https://doi.org/10.1594/pangaea.809778 Lachenbruch_1957 Lachenbruch, Arthur H. (1957), Thermal effects of the ocean on permafrost, Secondary, Thermal effects of the ocean on permafrost, 68(11), 1515–1530, https://doi.org/10.1130/0016-7606(1957)68%5b1515:Teotoo%5d2.0.Co;2 Lachenbruch_etal._1976 Lachenbruch, Arthur H.; Sass, John H.; Munroe, Robert J.; Moses Jr, Thomas H. (1976), Geothermal setting and simple heat conduction models for the Long Valley Caldera, Secondary, Geothermal setting and simple heat conduction models for the Long Valley Caldera, 81(5), 769-784, https://doi.org/10.1029/JB081i005p00769 Lachenbruch_etal._1976a Lachenbruch, Arthur H.; Sorey, M.L.; Lewis, R.E.; Sass, John H. (1976), The nearsurface hydrothermal regime of Long Valley Caldera, Secondary, The near-surface hydrothermal regime of Long Valley Caldera, 81(5), 763-768, https://doi.org/10.1029/JB081i005p00763 Lachenbruch_etal._1982 Lachenbruch, Arthur H.; Sass, John H.; Marshall, B. Vaughn; Moses Jr, Thomas H. (1982), Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska, Secondary, Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska, 87(B11), 9301-9316, https://doi.org/10.1029/JB087iB11p09301 Lachenbruch_etal._1985 Lachenbruch, Arthur H.; Sass, John H.; Galanis Jr, S. Peter (1985), Heat flow in southernmost California and the origin of the salton trough, Secondary, Heat flow in southernmost California and the origin of the salton trough, 90(B8), 6709-6736, https://doi.org/10.1029/JB090iB08p06709 Lachenbruch_Marshall_1966 Lachenbruch, Arthur H.; Marshall, B. Vaughn (1966), Heat flow through the Arctic Ocean Floor: The Canada Basin-AlphaRise Boundary, Secondary, Heat flow through the Arctic Ocean Floor: The Canada Basin-AlphaRise Boundary, 71(4), 1223-1248, https://doi.org/10.1029/JZ071i004p01223 Lachenbruch_Marshall_1968 Lachenbruch, Arthur H.; Marshall, B. Vaughn (1968), Heat flow and water temperature fluctuations in the Denmark Strait, Secondary, Heat flow and water temperature fluctuations in the Denmark Strait, 73(18), 5829-5842, https://doi.org/10.1029/JB073i018p05829 Lachenbruch_Sass_1980 Lachenbruch, Arthur H.; Sass, John H. (1980), Heat flow and energetics of the San Andreas Fault Zone, Secondary, Heat flow and energetics of the San Andreas Fault Zone, https://doi.org/10.1029/JB085iB11p06185 LaCruz_etal._2020 Cruz, Juan Luis Carrillo-de la; Prol-Ledesma, Rosa-Maria; Gomez-Rodriguez, Darío; Rodríguez-Díaz, Augusto Antonio (2020), Analysis of the relation between bottom hole temperature data and Curie temperature depth to calculate geothermal gradient and heat flow in Coahuila, Mexico, Secondary, Analysis of the relation between bottom hole temperature data and Curie temperature depth to calculate geothermal gradient and heat flow in Coahuila, Mexico, 780(10.1016/j.tecto.2020.228397 Landstroem_etal._1980 Landstroem, Ove; Larson, Sven A.; Lind, Gustaf; Malmqvist, David (1980), Geothermal

	investigations in the Bohus granite area in southwestern Sweden, Secondary,
	Geothermal investigations in the Bohus granite area in southwestern Sweden,
	64(44228), 131–162, https://doi.org/10.1016/0040-1951(80)90266-8
Langseth_etal1965	Langseth Jr, Marcus G.; Grim, Paul J.; Ewing, Maurice (1965), Heat flow
3 3 3 3 3 3 3 3 3 3	measurements in the East Pacific Ocean, Secondary, Heat flow measurements in the
	East Pacific Ocean, 70(2), 367–380, https://doi.org/10.1029/JZ070i002p00367
Langseth_etal1966	Langseth Jr, Marcus G.; Pichon, Xavier Le; Ewing, Maurice (1966), Crustal structure of
	the mid-ocean ridges. 5. Heat flow through the Atlantic Ocean floor, and convection
	currents, Secondary, Crustal structure of the mid-ocean ridges. 5. Heat flow through
	the Atlantic Ocean floor, and convection currents, 71(22), 5321–5355,
	https://doi.org/10.1029/JZ071i022p05321
Langseth_etal1970	Langseth Jr, Marcus G.; Malone, Isabel E.; Breger, Dee (1970), Sea Floor Geothermal
Langseth_etal1370	Measurements from VEMA Cruise 23, Secondary, Sea Floor Geothermal
	Measurements from VEMA Cruise 23, 12 CU-2-70), https://doi.org/10.7916/d8-95pr-
	tc68
Langeoth etal 1071	
Langseth_etal1971	Langseth Jr, Marcus G.; Malone, Isabel E.; Breger, Dee (1971), Sea floor geothermal
	measurements form Vema cruise 24, Secondary, Sea floor geothermal measurements
	form Vema cruise 24, https://doi.org/10.7916/d8-6g0k-yx09
Langseth_etal1972	Langseth Jr, Marcus G.; Malone, Isabel E.; Bookman, Charles A. (1972), Sea Floor
	Geothermal Measurements from VEMA Cruise 25, Secondary, Sea Floor Geothermal
	Measurements from VEMA Cruise 25, 4(CU-4-72), 168,
Lawrenth and 4074	https://doi.org/10.1594/pangaea.805039
Langseth_etal1974	Langseth Jr, Marcus G.; Malone, Isabel E.; Ongley, Lois K.; Bookman, Charles A.; III,
	John R. Fiske (1974), Sea floor geothermal measurements from Vema cruise 26,
	Secondary, Sea floor geothermal measurements from Vema cruise 26, New York,
	Lamont-Doherty Geological Observatory Columbia University, 7-CU-7-73), 201,
	https://doi.org/10.7916/d8-a7ec-ez26
Langseth_etal1980	Langseth Jr, Marcus G.; Hobart, Michael A.; Horai, Ki-Iti (1980), Heat flow in the
	Bering Sea, Secondary, Heat flow in the Bering Sea, 85(B7), 3740–3750,
	https://doi.org/10.1029/JB085iB07p03740
Langseth_etal1988a	Langseth Jr, Marcus G.; Westbrook, Graham K.; Hobart, Michael A. (1988),
	Geophysical survey of a mud volcano seaward of the Barbados ridge accretionary
	complex, Secondary, Geophysical survey of a mud volcano seaward of the Barbados
	ridge accretionary complex, 93(B2), 1049–1061,
	https://doi.org/10.1029/JB093iB02p01049
Langseth_etal1988b	Langseth Jr, Marcus G.; Mottl, M.J.; Hobart, Michael A.; Fisher, Andrew T. (1988), <i>The</i>
	distribution of geothermal and geochemical gradients near site 501/504: Implications
	for hydrothermal circulation in the oceanic crust, Secondary, The distribution of
	geothermal and geochemical gradients near site 501/504: Implications for
	hydrothermal circulation in the oceanic crust, 111(2), 23–32,
	https://doi.org/10.2973/odp.proc.ir.111.102.1988
Langseth_etal1990	Langseth Jr, Marcus G.; Westbrook, Graham K.; Hobart, Michael A. (1990),
	Contrasting geothermal regimes of the Barbados Ridge accretionary complex,
	Secondary, Contrasting geothermal regimes of the Barbados Ridge accretionary
	complex, 95(B6), 8829–8843, https://doi.org/10.1029/JB095iB06p08829
Langseth_etal1992	Langseth Jr, Marcus G.; Becker, Keir; Herzen, Richard P. Von; Schultheiss, P. (1992),
	Heat and Fluid Flux through Sediment on the Western Flank of the Mid-Atlantic Ridge
	- a Hydrogeological Study of North Pond, Secondary, Heat and Fluid Flux through
	Sediment on the Western Flank of the Mid-Atlantic Ridge - a Hydrogeological Study
	of North Pond, 19(5), 517–520, https://doi.org/10.1029/92gl00079
Langseth_Grim_1964	Langseth Jr, Marcus G.; Grim, Paul J. (1964), New heat-flow measurements in the
	Caribbean and western Atlantic, Secondary, New heat-flow measurements in the
	Caribbean and western Atlantic, 69(22), 4916–4917,
	https://doi.org/10.1029/JZ069i022p04916
Langseth_Herman_1981	Langseth Jr, Marcus G.; Herman, Bruce M. (1981), Heat transfer in the oceanic crust
	of the Pracil Pasin Coconday, Heat transfer in the accomic syst of the Pracil Pasin

of the Brazil Basin, Secondary, Heat transfer in the oceanic crust of the Brazil Basin,

Langseth_Hobart_1976	86(B11), 10805–10819, https://doi.org/10.1029/JB086iB11p10805 Langseth Jr, Marcus G.; Hobart, Michael A. (1976), Interpretation of heat flow measurements in the Vema Fracture Zone, Secondary, Interpretation of heat flow measurements in the Vema Fracture Zone, 3(5), 241–244, https://doi.org/10.1029/GL003i005p00241
Langseth_Ludwig_1983	Langseth Jr, Marcus G.; Ludwig, William J. (1983), <i>A heat flow measurement on the Falkland Plateau</i> , Secondary, A heat flow measurement on the Falkland Plateau, 71(299–303, https://doi.org/10.2973/dsdp.proc.71.109.1983
Langseth_Silver_1996	Langseth Jr, Marcus G.; Silver, E.A. (1996), <i>The Nicoya convergent margin—a region of exceptionally low heat flow</i> , Secondary, The Nicoya convergent margin—a region of exceptionally low heat flow, 23(8), 891–894, https://doi.org/10.1029/96gl00733
Langseth_Taylor_1967	Langseth Jr, Marcus G.; Taylor, Patrick T. (1967), Recent heat flow measurements in the Indian Ocean, Secondary, Recent heat flow measurements in the Indian Ocean, 72(24), 6249–6260, https://doi.org/10.1029/JZ072i024p06249
Langseth_Zielinski_1974	Langseth Jr, Marcus G.; Zielinski, Gary W. (1974), Marine heat flow measurements in the Norwegian—Greenland Sea and in the vicinity of Iceland, Kristjansson, L., Secondary, Marine heat flow measurements in the Norwegian—Greenland Sea and in the vicinity of Iceland, Dordrecht, Springer, 11(277–295, https://doi.org/10.1007/978-94-010-2271-2_19
Lavenia_1967	Lavenia, A. (1967), Heat flow measurements through bottom sediments in the southern Adriatic Sea, Secondary, Heat flow measurements through bottom sediments in the southern Adriatic Sea, 9(36), 323–332, https://doi.org/10.1594/pangaea.808058
Law_etal1965	Law, L.K.; Paterson, W.S.B.; Whitham, K. (1965), <i>Heat flow determinations in the Canadian arctic archipelago</i> , Secondary, Heat flow determinations in the Canadian arctic archipelago, 2(2), 59–71, https://doi.org/10.1139/e65-006
Lawver_1975	Lawver, Lawrence A. (1975), <i>History of geothermal observations in the Gulf of California</i> , Secondary, History of geothermal observations in the Gulf of California, 1(10.1594/pangaea.807228
Lawver_etal1973	Lawver, Lawrence A.; Sclater, John G.; Henyey, Thomas L.; Rogers, J. (1973), <i>Heat flow measurements in the southern portion of the Gulf of California</i> , Secondary, Heat flow measurements in the southern portion of the Gulf of California, 19(2), 198–208, https://doi.org/10.1016/0012-821x(73)90115-5
Lawver_etal1975	Lawver, Lawrence A.; Williams, David L.; Herzen, Richard P. Von (1975), <i>A major geothermal anomaly in the Gulf of California</i> , Secondary, A major geothermal anomaly in the Gulf of California, 5521), 23–28, https://doi.org/10.1038/257023a0
Lawver_etal1982	Lawver, Lawrence A.; Loy, Walter; Sclater, John G.; Herzen, Richard P. Von (1982), Heat flow in the east Scotia Sea, Secondary, Heat flow in the east Scotia Sea, 16(5), 106–107, https://doi.org/10.1594/pangaea.809794
Lawver_etal1991	Lawver, Lawrence A.; Vedova, Bruno Della; Herzen, Richard P. Von (1991), <i>Heat-Flow in Jane Basin, Northwest Weddell Sea</i> , Secondary, Heat-Flow in Jane Basin, Northwest Weddell Sea, 96(B2), 2019–2038, https://doi.org/10.1029/90jb01721
Lawver_etal1994	Lawver, Lawrence A.; Williams, T.; Sloan, B. (1994), Seismic stratigraphy and heat flow of Powell Basin, Secondary, Seismic stratigraphy and heat flow of Powell Basin, 1(2), 309–310, https://doi.org/10.1594/pangaea.805003
Lawver_etal1995	Lawver, Lawrence A.; Keller, G.Randy; Fisk, Martin R.; Strelin, Jorge A. (1995), Bransfield Strait, Antarctic Peninsula Active Extension behind a Dead Arc, Taylor, Brian, Secondary, Bransfield Strait, Antarctic Peninsula Active Extension behind a Dead Arc, Springer, 315–342, https://doi.org/10.1007/978-1-4615-1843-3_8
Lawver_Taylor_1987	Lawver, Lawrence A.; Taylor, Patrick T. (1987), <i>Heat flow off Sumatra</i> , Secondary, Heat flow off Sumatra, 67–76, https://doi.org/10.1594/pangaea.807226
Lawver_Williams_1979	Lawver, Lawrence A.; Williams, David L. (1979), Heat flow in the central Gulf of California, Secondary, Heat flow in the central Gulf of California, 84(B7), 3465–3478, https://doi.org/10.1029/JB084iB07p03465
LDEO_2004	Observatory, Lamont-Doherty Earth (2004), unpublished data, Secondary, unpublished data,

Lee_1983 Lee, Tien-Chang (1983), Heat flow through the San Jacinto fault zone, southern California, Secondary, Heat flow through the San Jacinto fault zone, southern California, 72(3), 721–731, https://doi.org/10.1111/j.1365-246X.1983.tb02829.x Lee_Cheng_1986 Lee, C.R.; Cheng, W.T. (1986), Preliminary heat flow measurements in Taiwan, Secondary, Preliminary heat flow measurements in Taiwan, 31-36, https://doi.org/10.1594/pangaea.808059 Lee Deming 1999 Lee, Young-Min; Deming, David (1999), Heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform, Secondary, Heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform, 313(4), 399-410, https://doi.org/10.1016/s0040-1951 (99)00210-3 Lee, Young-Min; Deming, David; Chen, Kevin F. (1996), Heat flow and heat Lee_etal._1996 production in the Arkoma Basin and Oklahoma Platform, southeastern Oklahoma, Secondary, Heat flow and heat production in the Arkoma Basin and Oklahoma Platform, southeastern Oklahoma, 101(B11), 25387-25401, https://doi.org/10.1029/96jb02532 Lee_Henyey_1975 Lee, Tien-Chang; Henyey, Thomas L. (1975), Heat flow through the Southern California Borderland, Secondary, Heat flow through the Southern California Borderland, 80(26), 3733-3743, https://doi.org/10.1029/JB080i026p03733 Lee, Tien-Chang; Herzen, Richard P. Von (1975), Heat flow near the South Atlantic Lee_VonHerzen_1975 Triple Junction, 55°S, 0°E, Secondary, Heat flow near the South Atlantic Triple Junction, 55°S, 0°E, 2(6), 201-204, https://doi.org/10.1029/GL002i006p00201 Lee_VonHerzen_1977 Lee, Tien-Chang; Herzen, Richard P. Von (1977), A composite trans-Atlantic heat flow profile between 20° and 35°, Secondary, A composite trans-Atlantic heat flow profile between 20° and 35°, 35(123–133, https://doi.org/10.1016/0012-821x(77)90035-8 LeGal_etal._2018 Gal, Virginie Le; Lucazeau, Francis; Cannat, M.; Poort, Jeffrey; Monnin, C.; Battani, Anne; Fontaine, F.; Goutorbe, Bruno; Rolandone, Frédérique; Poitou, C.; Blanc-Valleron, M.M.; Piedade, A.; Hipólito, A. (2018), Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone, Secondary, Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone, 423-433, https://doi.org/10.1016/j.epsl.2017.11.035 Lekuthai_etal._1995 Lekuthai, T.; Charusirisawad, R.; Vacher, M. (1995), Heat flow map of the Gulf of Thailand, Secondary, Heat flow map of the Gulf of Thailand, 25(63-78, https://doi.org/10.1594/pangaea.807242 LeMarne_Sass_1962 Marne, A.E. Le; Sass, John H. (1962), Heat flow at Cobar, New South Wales, Secondary, Heat flow at Cobar, New South Wales, 67(10), 3981-3983, https://doi.org/10.1029/JZ067i010p03981 Leney_Wilson_1955 Leney, G.W.; Wilson, J.T. (1955), Preliminary investigations of rock conductivity and terrestrial heat flow in southeastern Michigan, Secondary, Preliminary investigations of rock conductivity and terrestrial heat flow in southeastern Michigan, 66(12), LePichon_etal._1971 Pichon, X. Le; Eittreim, S.L.; Ludwig, William J. (1971), Sediment transport and distribution in the Argentine Basin. 1. Antarctic Bottom Current passage through the Falkland fracture zone, Secondary, Sediment transport and distribution in the Argentine Basin. 1. Antarctic Bottom Current passage through the Falkland fracture zone, 8(45361, https://doi.org/10.1016/0079-1946(71)90013-9 Lesquer_etal._1983 Lesquer, Alain; Pagel, Maurice; Orsini, Jean-Baptiste; Bonin, Bernard (1983), First determinations of heat flow and heat production in Corsica - (Premières déterminations du flux de chaleur et de la production de chaleur en Corse), Secondary, First determinations of heat flow and heat production in Corsica -(Premières déterminations du flux de chaleur et de la production de chaleur en Corse), 297(6), 491-494, Lesquer_etal._1988 Lesquer, Alain; Bourmatte, A.; Dautria, J.M. (1988), Deep structure of the Hoggar domal uplift (Central Sahara, south Algeria) from gravity, thermal and petrological data, Secondary, Deep structure of the Hoggar domal uplift (Central Sahara, south Algeria) from gravity, thermal and petrological data, 152(45293), 71-87, https://doi.org/10.1016/0040-1951 (88)90030-3

Lesquer_etal._1989 Lesquer, Alain; Bourmatte, A.; Ly, Saidou; Dautria, J.M. (1989), First heat flow determination from the central Sahara: relationship with the Pan-African belt and Hoggar domal uplift, Secondary, First heat flow determination from the central Sahara: relationship with the Pan-African belt and Hoggar domal uplift, 1), 41–48, https://doi.org/10.1016/0899-5362(89)90006-7 Lesquer_etal._1991 Lesquer, Alain; Villeneuve, J.C.; Bronner, G. (1991), Heat-Flow Data from the Western Margin of the West African Craton (Mauritania), Secondary, Heat-Flow Data from the Western Margin of the West African Craton (Mauritania), 66(44289), 320-329, https://doi.org/10.1016/0031-9201 (91)90087-x Lesquer_Vasseur_1992 Lesquer, Alain; Vasseur, Guy (1992), Heat-flow constraints on the west African lithosphere structure, Secondary, Heat-flow constraints on the west African lithosphere structure, 19(6), 561-564, https://doi.org/10.1029/92gl00263 Levitte_etal._1984 Levitte, D.; Maurath, Garry; Eckstein, Yoram (1984), Terrestrial heat flow in a 3.5 km deep borehole in the Jordan-Dead Sea rift valley, Secondary, Terrestrial heat flow in a 3.5 km deep borehole in the Jordan-Dead Sea rift valley, 16(6), 575, https://doi.org/10.1594/pangaea.809797 Levy_etal._2010 Levy, F.; Jaupart, Claude; Mareschal, Jean-Claude; Bienfait, Gerard; Limare, A. (2010), Low heat flux and large variations of lithospheric thickness in the Canadian Shield, Secondary, Low heat flux and large variations of lithospheric thickness in the Canadian Shield, 115(B6), https://doi.org/10.1029/2009jb006470 Lewis_1969 Lewis, Trevor J. (1969), Terrestrial heat flow at Eldorado, Saskatchewan, Secondary, Terrestrial heat flow at Eldorado, Saskatchewan, 6(5), 1191-1197, https://doi.org/10.1139/e69-120 Lewis_1983 Lewis, Brian T.R. (1983), Temperatures, heat flow and lithospheric cooling at the mouth of the Gulf of California, Secondary, Temperatures, heat flow and lithospheric cooling at the mouth of the Gulf of California, 65(343-355, https://doi.org/10.2973/dsdp.proc.65.109.1983 Lewis_1984 Lewis, Trevor J. (1984), Geothermal energy from Penticton Tertiary outlier, British Columbia: an initial assessment, Secondary, Geothermal energy from Penticton Tertiary outlier, British Columbia: an initial assessment, 21(2), 181-188, https://doi.org/10.1139/e84-019 Lewis_Beck_1977 Lewis, Trevor J.; Beck, Antje E. (1977), Analysis of heat flow data—detailed observations in many holes in a small area, Secondary, Analysis of heat flow data detailed observations in many holes in a small area, 41(41-59, Lewis_etal._1985 Lewis, Trevor J.; Jessop, Alan M.; Judge, Alan S. (1985), Heat flux measurements in southwestern British Columbia: the thermal consequences of plate tectonics, Secondary, Heat flux measurements in southwestern British Columbia: the thermal consequences of plate tectonics, 22(9), 1262-1273, https://doi.org/10.1139/e85-131 Lewis_etal._1988 Lewis, Trevor J.; Bentkowski, W.H.; Davis, Earl E.; Hyndman, Roy D.; Souther, J.G.; Wright, J.A. (1988), Subduction of the Juan de Fuca Plate: Thermal consequences, Secondary, Subduction of the Juan de Fuca Plate: Thermal consequences, 93(B12), 15207-15225, https://doi.org/10.1029/JB093iB12p15207 Lewis_etal._1992 Lewis, Trevor J.; Bentkowski, W.H.; Hyndman, Roy D. (1992), Crustal Temperatures near the Lithoprobe Southern Canadian Cordillera Transect, Secondary, Crustal Temperatures near the Lithoprobe Southern Canadian Cordillera Transect, 29(6), 1197-1214, https://doi.org/10.1139/e92-096 Lewis_etal._2003 Lewis, Trevor J.; Hyndman, Roy D.; Fluck, P. (2003), Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics, Secondary, Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics, 108(B6), https://doi.org/10.1029/2002jb002090 Lewis_Hyndman_1976 Lewis, J.F.; Hyndman, Roy D. (1976), Oceanic heat flow measurements over the continental margins of eastern Canada, Secondary, Oceanic heat flow measurements over the continental margins of eastern Canada, 13(8), 1031-1038, https://doi.org/10.1139/e76-106 Lewis_Jessop_1981 Lewis, J.F.; Jessop, Alan M. (1981), Heat flow in the Garibaldi volcanic belt, a possible

volcanic belt, a possible Canadian geothermal energy resource area, 18(2), 366-375, https://doi.org/10.1139/e81-028 Lewis_Wang_1992 Lewis, Trevor J.; Wang, K. (1992), Influence of terrain on bedrock temperatures, Secondary, Influence of terrain on bedrock temperatures, 98(45326), 87–100, https://doi.org/10.1016/0031-0182(92)90190-g Leyden etal. 1978 Leyden, R.; Damuth, John E.; Ongley, L.K.; Kostecki, J.; Stevenick, W. Van (1978), Salt diapirs and São Paulo Plateau, southeastern Brazilian continental margin, Secondary, Salt diapirs and São Paulo Plateau, southeastern Brazilian continental margin, 62(4), 657-666, https://doi.org/10.1306/c1ea4e23-16c9-11d7-8645000102c1865d Li_etal._1989 Li, Xinyuan; Furukawa, Yoshitsugu; Nagao, Toshiyasu; Uyeda, Seiya; Suzuki, Hiroyoshi (1989), Heat flow in central Japan and its relations to geological and geophysical features, Secondary, Heat flow in central Japan and its relations to geological and geophysical features, 64(13150, https://doi.org/10.1594/pangaea.807255 Li_etal._2014 Li, W.J.; Rao, Saaish; Tang, Xiao-Yin; Jiang, Guang-Zheng; Hu, Sheng-Biao; Kong, Yanlong; Pang, J.; Wang, J. (2014), Drilling ground temperature measurement and ground temperature field characteristics in Xiongxian geothermal field, Hebei Province - (河北雄县地热田钻井地温测量及地温场特征), Secondary, Drilling ground temperature measurement and ground temperature field characteristics in Xiongxian geothermal field, Hebei Province - (河北雄县地热田钻井地温测量及地温 场特征), 49(3), 850-863, https://doi.org/10.3969/j.issn.0563-5020.2014.03.012 Liang_etal._1987 Liang, Shuxing; etal. (1987), Heat Flow Values of the 5th Ggt in China, Secondary, Heat Flow Values of the 5th Ggt in China, Liang_etal._1992 Liang, Shuxing; Sun, T.Z.; Han, You Z.; Shi, S.Y. (1992), Heat flow study along the iv ggt china, Secondary, Heat flow study along the iv ggt china, 2(143-146, Liao_etal._2014 Liao, Wei-Zhi; Lin, Andrew T.; Liu, Char-Shine; Oung, Jung-Nan; Wang, Yunshuen (2014), Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications, Secondary, Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications, 92(233-244, https://doi.org/10.1016/j.jseaes.2014.01.003 Liao_etal._2023 Liao, Yuzhong; Zhang, Wei; Rong, Yuwei; Liu, Feng; Wei, Shuaichao; Li, Long; Zhao, Zirui; Li, Man (2023), A high geothermal setting in the Linyi geothermal field: Evidence from the lithospheric thermal structure, Secondary, A high geothermal setting in the Linyi geothermal field: Evidence from the lithospheric thermal structure, 41(6), 1899-1918, https://doi.org/10.1177/01445987231185850 Lilley_etal._1977 Lilley, F.E.M.; Sloane, Merren N.; Sass, John H. (1977), A compilation of Australian heat-flow measurements, Secondary, A compilation of Australian heat-flow measurements, 24(45481), 439-445, https://doi.org/10.1080/00167617708729003 Lindqvist_1984 Lindqvist, J.G. (1984), Heat flow density measurements in the sediments of three lakes in Northern Sweden, Secondary, Heat flow density measurements in the sediments of three lakes in Northern Sweden, 103(45295), 121-140, https://doi.org/10.1016/0040-1951(84)90078-7 Lister 1963a Lister, Clive R.B. (1963), A close group of heat-flow stations, Secondary, A close group of heat-flow stations, 68(19), 5569-5573, https://doi.org/10.1029/JZ068i019p05569 Lister_1963b Lister, Clive R.B. (1963), Geothermal Gradient Measurement using a Deep Sea Corer, Secondary, Geothermal Gradient Measurement using a Deep Sea Corer, 7(5), 571-583, https://doi.org/10.1111/j.1365-246X.1963.tb03822.x Lister_1970a Lister, Clive R.B. (1970), Heat flow west of the Juan de Fuca Ridge, Secondary, Heat flow west of the Juan de Fuca Ridge, 75(14), 2648-2654, https://doi.org/10.1029/JB075i014p02648 Lister_1970b Lister, Clive R.B. (1970), Measurement of in Situ Sediment Conductivity by means of a Bullard-type Probe, Secondary, Measurement of in Situ Sediment Conductivity by means of a Bullard-type Probe, 19(5), 521-532, https://doi.org/10.1111/j.1365-246X.1970.tb00157.x Lister 1972 Lister, Clive R.B. (1972), On the Thermal Balance of a Mid-Ocean Ridge, Secondary,

Canadian geothermal energy resource area, Secondary, Heat flow in the Garibaldi

On the Thermal Balance of a Mid-Ocean Ridge, 26(5), 515-535,

https://doi.org/10.1111/j.1365-246X.1972.tb05766.x Lister_etal._1990 Lister, Clive R.B.; Sclater, John G.; Davis, Earl E.; Villinger, Heinrich W.; Nagihara, Seiichi (1990), Heat-Flow Maintained in Ocean Basins of Great Age - Investigations in the North-Equatorial West Pacific, Secondary, Heat-Flow Maintained in Ocean Basins of Great Age - Investigations in the North-Equatorial West Pacific, 102(3), 603-630, https://doi.org/10.1111/j.1365-246X.1990.tb04586.x Lister Reitzel 1964 Lister, Clive R.B.; Reitzel, John S. (1964), Some measurements of heat flow through the floor of the north Atlantic, Secondary, Some measurements of heat flow through the floor of the north Atlantic, 69(10), 2151-2154, https://doi.org/10.1029/JZ069i010p02151 Liu, Yiqun; Wu, Tao; Cui, Hanyun; Feng, Qiao (1997), Paleotemperature gradient and Liu_etal._1997 thermal history of Tulufan-Hami Basin, Xinjiang - (哈密盆地古地温梯度和热历史), Secondary, Paleotemperature gradient and thermal history of Tulufan-Hami Basin, Xinjiang - (哈密盆地古地温梯度和热历史), 27(5), 431-436, Liu_etal._2015 Liu, Shao-Wen; Lei, Xiao; Wang, Liang-Shu (2015), New heat flow determination in northern Tarim Craton, northwest China, Secondary, New heat flow determination in northern Tarim Craton, northwest China, 200(2), 1196-1206, https://doi.org/10.1093/gji/ggu458 Liu_etal._2020 Liu, Yuchen; Qiu, Nan-Sheng; Li, Huili; Ma, Anlai; Chang, Jian; Jia, Jingkun (2020), Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin, Secondary, Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin, 83(101709, https://doi.org/10.1016/j.geothermics.2019.101709 Lizon_etal._1978 Lizon, I.; Janci, J.; Kral, M. (1978), Basic research of the spatial distribution of the earth's heat in the Western Carpathians - (Zakladny vyskum priestoroveho rozlozenia zemskeho tepla v zapadnych karpatoch), Secondary, Basic research of the spatial distribution of the earth's heat in the Western Carpathians - (Zakladny vyskum priestoroveho rozlozenia zemskeho tepla v zapadnych karpatoch), 35, Loddo_etal._1973 Loddo, M.; Mongelli, Francesco M.; Roda, F. (1973), Heat flow in Calabria, Italy, Secondary, Heat flow in Calabria, Italy, 244(45293), 91-92, https://doi.org/10.1007/bf00879741 Loddo, M.; Mongelli, Francesco M.; Pecorini, G.; Tramacere, Antonio (1982), First Loddo_etal._1982 measurements of Heat Flow in Sardinia -Secondary, Prime misure di Flusso di Calore in Sardegna), 10(181-209, https://doi.org/10.1594/pangaea.809875 Loddo_Mongelli_1975 Loddo, M.; Mongelli, Francesco M. (1975), Heat Flow In Southern Italy and Surrounding Seas, Secondary, Heat Flow In Southern Italy and Surrounding Seas, 16115-122, https://doi.org/10.1594/pangaea.809880 Lonsdale_Becker_1985 Lonsdale, Peter; Becker, Keir (1985), Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin, Secondary, Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin, 73(44288), 211-225, https://doi.org/10.1016/0012-821x(85)90070-6 Loseth etal. 1992 Løseth, H.; Lippard, S.J.; Saettem, Joar; Fanavoll, Stein; Fjerdingstad, V.; Leith, L.T.; Ritter, Ulrich; Smelror, Morten; Sylta, O. (1992), Cenozoic uplift and erosion of the Barents Sea-evidence from the Svalis Dome area, Secondary, Cenozoic uplift and erosion of the Barents Sea-evidence from the Svalis Dome area, 2(643-664, https://doi.org/10.1016/b978-0-444-88943-0.50042-3 Louden, Keith E.; Wallace, Derek O.; Courtney, Robert C. (1987), Heat flow and depth Louden_etal._1987 versus age for the Mesozoic northwest Atlantic Ocean: results from the Sohm abyssal

Louden_etal._1990

Louden, Keith E.; Leger, G.; Hamilton, N. (1990), Marine Heat-Flow Observations on the Canadian Arctic Continental-Shelf and Slope, Secondary, Marine Heat-Flow Observations on the Canadian Arctic Continental-Shelf and Slope, 93(44287), 267–

https://doi.org/10.1016/0012-821x(87)90055-0

and implications for the Bermuda Rise, 83(44287), 109-122,

plain and implications for the Bermuda Rise, Secondary, Heat flow and depth versus age for the Mesozoic northwest Atlantic Ocean: results from the Sohm abyssal plain

288, https://doi.org/10.1016/0025-3227(90)90087-z Louden_etal._1991 Louden, Keith E.; Sibuet, Jean-Claude; Foucher, Jean P. (1991), Variations in Heat-Flow across the Goban Spur and Galicia Bank Continental Margins, Secondary, Variations in Heat-Flow across the Goban Spur and Galicia Bank Continental Margins, 96(B10), 16131-16150, https://doi.org/10.1029/91jb01453 Louden_etal._1997 Louden, Keith E.; Sibuet, Jean-Claude; Harmegnies, Francois (1997), Variations in heat flow across the ocean-continent transition in Iberia abyssal plain, Secondary, Variations in heat flow across the ocean-continent transition in Iberia abyssal plain, 151(3), 233-254, https://doi.org/10.1016/S0012-821x(97)81851-1 Louden_Mareschal_1996 Louden, Keith E.; Mareschal, Jean-Claude (1996), Measurements of radiogenic heat production on basement samples from sites 897 and 900, Secondary, Measurements of radiogenic heat production on basement samples from sites 897 and 900, 149(675-682, https://doi.org/10.2973/odp.proc.sr.149.243.1996 Lovering_1948 Lovering, T.S. (1948), Geothermal gradients, recent climatic changes, and rate of sufide oxidation in the San Manuel district, Arizona, Secondary, Geothermal gradients, recent climatic changes, and rate of sufide oxidation in the San Manuel district, Arizona, 43(1), 45311, https://doi.org/10.1594/pangaea.804870 Lu_etal._1981 Lu, R.S.; Pan, J.J.; Lee, Tien-Chang (1981), Heat flow in the southwestern Okinawa Trough, Secondary, Heat flow in the southwestern Okinawa Trough, 55(2), 299-310, https://doi.org/10.1016/0012-821x(81)90109-6 Lu_etal._2005 Lu, Qing-Zhi; Hu, Sheng-Biao; Guo, Tong-Lou; Li, Zhong-Ping (2005), The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan Basin, Secondary, The background of the geothermal field for formation of abnormal high pressure in the northeastern Sichuan Basin, 48(5), 1110-1116, Lucazeau_2011 Lucazeau, Francis; Cautru, J.P.; Maget, P.; Vasseur, Guy (2011), Heat flow analysis on EST433, Secondary, Heat flow analysis on EST433, Lucazeau, Francis; Dhia, Hammed Ben (1989), Preliminary heat-flow density data Lucazeau_Dhia_1989 from Tunisia and the Pelagian Sea, Secondary, Preliminary heat-flow density data from Tunisia and the Pelagian Sea, 26(5), 993-1000, https://doi.org/10.1139/e89-Lucazeau_etal._1981 Lucazeau, Francis; Vasseur, Guy; Kast, Yves; Jolivet, Jean (1981), Heat flow data in the French Massif Central - (Données du flux de chaleur dans le Massif Central français), Secondary, Heat flow data in the French Massif Central - (Données du flux de chaleur dans le Massif Central français), 37(481-491, Lucazeau_etal._1984 Lucazeau, Francis; Vasseur, Guy; Bayer, Roger (1984), Interpretation of heat flow data in the French Massif Central, Secondary, Interpretation of heat flow data in the French Massif Central, 103(1), 99-119, https://doi.org/10.1594/pangaea.804847 Lucazeau_etal._1991a Lucazeau, Francis; Cautru, J.P.; Maget, P.; Vasseur, Guy (1991), Catalogue of Heat Flow Density Data: France, Secondary, Catalogue of Heat Flow Density Data: France, Lucazeau_etal._2004 Lucazeau, Francis; Brigaud, Frédéric; Bouroullec, J.L. (2004), High-resolution heat flow density in the lower Congo basin, Secondary, High-resolution heat flow density in the lower Congo basin, 5(3), https://doi.org/10.1029/2003gc000644 Lucazeau_etal._2006 Lucazeau, Francis; Bonneville, Alain; Escartin, J.; Herzen, Richard P. Von; Gouze, Philippe; Carton, H.; Cannat, M.; Vidal, V.; Adam, C. (2006), Heat flow variations on a slowly accreting ridge: Constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid-Atlantic Ridge, 37 degrees N), Secondary, Heat flow variations on a slowly accreting ridge: Constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid-Atlantic Ridge, 37 degrees N), 7(7), https://doi.org/10.1029/2005gc001178 Lucazeau_etal._2008 Lucazeau, Francis; Leroy, Sylvie; Bonneville, Alain; Goutorbe, Bruno; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Dusunur, Doga; Tuchais, P.; Huchon, P.; Bellahsen, N.; Al-Toubi, K. (2008), Persistent thermal activity at the Eastern Gulf of Aden after continental break-up, Secondary, Persistent thermal activity at the Eastern Gulf of Aden after continental break-up, 1(12), 854-858, https://doi.org/10.1038/ngeo359

Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez,

Lucazeau_etal._2010

Louise; Bonneville, Alain; Goutorbe, Bruno; Dusunur, Doga (2010), Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden, Secondary, Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden, 295(44289), 554-570,

https://doi.org/10.1016/j.epsl.2010.04.039

Lucazeau_etal._2012 Lucazeau, Francis; Rolandone, Frédérique; Poort, Jeffrey (2012), Heat flow coring -(Carottages flux de chaleur), Secondary, Heat flow coring - (Carottages flux de

chaleur), 45319,

Lucazeau_etal._2014 Lucazeau, Francis; Bouquerel, Hélène; Rolandone, Frédérique; Pichot, T.; Heuret, A.

> (2014), Methodology and results of the ANTITHESIS 2 campaign - (Méthodologie et résultats de la campagne ANTITHESIS 2), Secondary, Methodology and results of the ANTITHESIS 2 campaign - (Méthodologie et résultats de la campagne ANTITHESIS 2), Lucazeau, Francis; Armitage, John K.; Étienne, Kadima (2015), Thermal regime and evolution of the Congo basin as an intracratonic basin, Secondary, Thermal regime

and evolution of the Congo basin as an intracratonic basin, 229-244,

https://doi.org/10.1007/978-3-642-29482-2_12

Lucazeau_Mailhe_1986 Lucazeau, Francis; Mailhe, D. (1986), Heat flow, heat production and fission track

data from the Hercynian basement around the Provençal Basin (Western Mediterranean), Secondary, Heat flow, heat production and fission track data from the Hercynian basement around the Provençal Basin (Western Mediterranean),

128(3), 335-356, https://doi.org/10.1016/0040-1951 (86)90300-8

Lucazeau_Rolandone_2012 Lucazeau, Francis; Rolandone, Frédérique (2012), Heat-flow and subsurface

> temperature history at the site of Saraya (eastern Senegal), Secondary, Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal), 3(2),

213-224, https://doi.org/10.5194/se-3-213-2012

Ludwig_Rabinowitz_1975 Ludwig, William A.; Rabinowitz, Philip D. (1975), Results of IPOD Site Survey Aboard

> R/V VEMA Cruise 3206-PART A: DATA REPORT, Secondary, Results of IPOD Site Survey Aboard R/V VEMA Cruise 3206-PART A: DATA REPORT, New York, Lamont-Doherty Geological Observatory Columbia University, Technical report CU-1-75(304,

> Luyendyk, Bruce P. (1969), Geological and geophysical observations in an abyssal hill area using a deeply towed instrument package, Secondary, Geological and

geophysical observations in an abyssal hill area using a deeply towed instrument package, San Diego, Scripps Institution of Oceanography, Ph.D. thesis(212,

https://doi.org/10.1594/pangaea.807321

Lysak_1974 Lysak, Svetlana V. (1974), Geothermal field of the Baikal rift zone and adjacent areas

- (Геотермическое поле Байкальской рифтовой зоны и сопредельных районов),

Secondary, Geothermal field of the Baikal rift zone and adjacent areas -

(Геотермическое поле Байкальской рифтовой зоны и сопредельных районов), 45293), 67-70,

Lysak, Svetlana V. (1976), New Data on the Patterns of Changes in Depth

Temperatures and Heat Flow in the South of Eastern Siberia - (Новые Данные О Закономерностыакх Изменениыа Глубинныкх Температур И Тепловом Потоке Ыуга Восточнои Сибири), Secondary, New Data on the Patterns of Changes in Depth Temperatures and Heat Flow in the South of Eastern Siberia - (Новые Данные О Закономерностыакх Изменениыа Глубинныкх Температур И Тепловом Потоке

Ыуга Восточнои Сибири),

Lysak, Svetlana V. (1978), Forecast map of the deep heat flow of the BAM territory -

(Прогнозная карта глубинного теплового потока территории БАМ),

Secondary, Forecast map of the deep heat flow of the BAM territory - (Прогнозная

карта глубинного теплового потока территории БАМ), 94-99,

Lysak, Svetlana V. (1983), Methodology and results of geothermal mapping of the

territory of the south of eastern Siberia - (Методика и ресултаты

геотермического картированиыа территории ыуга восточнои сибири), Secondary, Methodology and results of geothermal mapping of the territory of the

south of eastern Siberia - (Методика и ресултаты геотермического картированиыа территории ыуга восточнои сибири), 55-60,

Lucazeau_etal._2015

Luyendyk_1969

Lysak_1976a

Lysak_1978

Lysak_1983

Lysak, Svetlana V.; Duchkov, Albert D.; Golubev, Valery A.; Sokolova, L.S. (1975), Heat Lysak_etal._1975 flow of the Baikal rift zone, Secondary, Heat flow of the Baikal rift zone, 70-71, Lysak_etal._1980 Lysak, S.T.; Platonov, L.M.; Dorofeeva, R.P.; Levitsky, V.U. (1980), Geothermal studies in the Baikal-Angarakan area of the BAM route - (Геотермические исследования в Байкало-Ангараканском районе трассы БАМ), Secondary, Geothermal studies in the Baikal-Angarakan area of the BAM route - (Геотермические исследования в Байкало-Ангараканском районе трассы БАМ), Moscow, USSR, Nauka, 139-153, Lysak_Zorin_1976 Lysak, Svetlana V.; Zorin, Yu.A. (1976), Geothermal Field of the Baikal Rift Zone -(Геотермическое Поле Баикалскои Рифтовои Зоны), Secondary, Geothermal Field of the Baikal Rift Zone - (Геотермическое Поле Баикалскои Рифтовои Зоны), Lyubimova_1964 Lyubimova, Elena A. (1964), Heat flow in the Ukrainian Shield in relation to recent tectonic movements - (Тепловой поток в Украинском щите, В.С.вязи С.Н.едавними тектоническими движениями), Secondary, Heat flow in the Ukrainian Shield in relation to recent tectonic movements - (Тепловой поток в Украинском щите, В.С.вязи С.Н.едавними тектоническими движениями), 69(24), 5277-5284, https://doi.org/10.1029/JZ069i024p05277 Lyubimova_1968b Lyubimova, Elena A. (1968), Earth's and Moon's thermal state - (Термика Земли и Луны), Secondary, Earth's and Moon's thermal state - (Термика Земли и Луны), 279, https://doi.org/10.1594/pangaea.809800 Lyubimova_1969 Lyubimova, Elena A. (1969), Terrestrial heat flow for the USSR and its connection with other geophenomena - (Земной тепловой поток для СССР и его связь с другими геоявлениями), Secondary, Terrestrial heat flow for the USSR and its connection with other geophenomena - (Земной тепловой поток для СССР и его связь с другими геоявлениями), 33(1), 341-367, https://doi.org/10.1007/bf02596728 Lyubimova_1975 Lyubimova, Elena A. (1975), Heat flow map, a review of heat flow data and anomalies for the European plate, Secondary, Heat flow map, a review of heat flow data and anomalies for the European plate, 4(1), 44289, https://doi.org/10.1016/0375-6505(75)90002-4 Lyubimova_etal._1964b Lyubimova, Elena A.; Lyusova, L.N.; Firsov, F.V. (1964), Heat Flow from the Earth's Intreror in the Krivoy Rog Area - (Тепловой поток из земных недр в районе Kpusozo Poza), Secondary, Heat Flow from the Earth's Intreror in the Krivoy Rog Агеа - (Тепловой поток из земных недр в районе Кривого Рога), 11), 1622-1633, Lyubimova, Elena A.; Tomara, G.A.; Demenitskaya, R.M.; Karasik, A.M. (1969), Lyubimova_etal._1969 Measurement of heat flow across the Arctic Ocean floor in the vicinity of the median Gakkel Ridge - (Измерение теплового потока через дно Северного Ледовитого океана в районе срединного хребта Гаккеля), Secondary, Measurement of heat flow across the Arctic Ocean floor in the vicinity of the median Gakkel Ridge -(Измерение теплового потока через дно Северного Ледовитого океана в районе срединного хребта Гаккеля), 186(1318-1321, https://doi.org/10.1594/pangaea.809120 Lyubimova_etal._1972a Lyubimova, Elena A.; Karus, E.V.; Firsov, F.V.; Starikova, G.N.; Vlasenko, V.I.; Lyusova, L.N.; Koperbakh, E.B. (1972), Terrestrial heat flow on the Precambrian shields in the USSR - (Земные тепловые потоки нА.Д.окембрийских щитах, В.С.ССР), Secondary, Terrestrial heat flow on the Precambrian shields in the USSR - (Земные тепловые потоки нА.Д.окембрийских щитах, В.С.ССР), 8), 45587, Lyubimova_etal._1972b Lyubimova, Elena A.; Gorshkov, A.P.; Vlasenko, V.I.; Efimov, A.V.; Aleksandrov, A.L. (1972), Heat flow measurements near the Kuril island arc, on Kamchatka and the Kuril lake - (Измерения теплового потока вблизи Курильской островной дуги, на Камчатке и Курильском озере), Secondary, Heat flow measurements near the Kuril island arc, on Kamchatka and the Kuril lake - (Измерения теплового потока вблизи Курильской островной дуги, на Камчатке и Курильском озере), 207(4), 842-845, Lyubimova_etal._1973a Lyubimova, Elena A.; Aleksandrov, A.L.; Duchkov, Albert D. (1973), Methods of study of heat flows through the bottom of the ocean - (Методика изучения тепловых

потоков через дно океанов), Secondary, Methods of study of heat flows through the bottom of the ocean - (Методика изучения тепловых потоков через дно

океанов), Moscow, USSR, Nauka, 176,

Lyubimova_etal._1973b Lyubimova, Elena A.; Polyak, Boris G.; Smirnov, Ya.B.; Kutas, R.I.; Firsov, F.V.;

Sergienko, S.I.; Luisova, L.N. (1973), Heat flow on the USSR territory catalogue of data - (Тепловой поток на территории СССР каталог данных), Secondary, Heat flow on the USSR territory catalogue of data - (Тепловой поток на территории СССР

каталог данных), https://doi.org/10.1594/pangaea.809114

Lyubimova_etal._1973c Lyubimova, Elena A.; Polyak, Boris G.; Smirnov, Ya.B.; Sergienko, S.I.; Ko-Perbakh,

E.B.; Lyusova, L.N.; Firsov, F.V. (1973), Review of Data on Heat Flows in the USSR - (Обзор данных по тепловому потоку для СССР), Secondary, Review of Data on Heat Flows in the USSR - (Обзор данных по тепловому потоку для СССР), Moscow,

USSR, Nauka, 12(154-195,

Lyubimova_etal._1974a Lyubimova, Elena A.; Lysak, Svetlana V.; Firsov, F.V.; Starikova, G.N.; Efimov, A.V.;

Ignatov, B.I. (1974), Heat flow in the Listvennichnoe on the coast of Lake Baikal - (Тепловой поток в пос. Лиственничное на побережье Байкала), Secondary, Heat flow in the Listvennichnoe on the coast of Lake Baikal - (Тепловой поток в пос.

Лиственничное на побережье Байкала), 2), 94–102,

Lyubimova_etal._1976 Lyubimova, Elena A.; Nikitina, V.N.; Tomara, G.A. (1976), *Thermal Fields of the Inland*

and Outlying Seas of the USSR (Thermal Fields of Inland and Marginal Seas of the Ukrainian SSR) - (Тепловые Полыа Внутренникх и Окраинныкх Мореы СССР (Тхермал Фиелдс оф Инланд анд Маргинал Сеас оф тхе УССР)), Secondary, Thermal Fields of the Inland and Outlying Seas of the USSR (Thermal Fields of Inland and Marginal Seas of the Ukrainian SSR) - (Тепловые Полыа Внутренникх и

Окраинныкх Мореы СССР (Тхермал Фиелдс оф Инланд анд Маргинал Сеас оф

тхе УССР)), https://doi.org/10.1594/pangaea.809117

Lyubimova_etal._1985 Lyubimova, Elena A.; Milanovsky, S.Y.; Smirnova, E.V. (1985), New Results of a

Thermal Flow Study on the Baltic Shield - (Новые Результаты Изучения Теплового Потока На Балтийском Щите), Secondary, New Results of a Thermal Flow Study on the Baltic Shield - (Новые Результаты Изучения Теплового Потока На

Балтийском Щите), 93-110,

Lyubimova_Savostin_1973

Lyubimova_Salman_1984 Lyubimova, Elena A.; Salman, A.G. (1984), About the Connection of Heat Flow With

Geologically Mi Structures of the DNA of the Arctic Ocean - (О связи теплового потока с геологическими структурами дна Северного Ледовитого океана), Secondary, About the Connection of Heat Flow With Geologically Mi Structures of the DNA of the Arctic Ocean - (О связи теплового потока с геологическими структурами дна Северного Ледовитого океана), Moscow, USSR, Nauka, 52–59,

Lyubimova, Elena A.; Savostin, L.A. (1973), Heat flows in the central and eastern parts

of the Black Sea - (Тепловои Поток в Тсентралнои и восточнои Части Черного Морыа), Secondary, Heat flows in the central and eastern parts of the Black Sea -

(Тепловои Поток в Тсентралнои и восточнои Части Черного Морыа), 212(2), 349–

352, https://doi.org/10.1594/pangaea.809038

Lyubimova_Shelyagin_1966 Lyubimova, Elena A.; Shelyagin, V.A. (1966), *Heat flow through the bottom of Lake*

Baikal - (Тепловои Поток Через Дно Озера Баикал - Доклады Академии Наук Ссср, 171, Н 6), Secondary, Heat flow through the bottom of Lake Baikal - (Тепловои Поток Через Дно Озера Баикал - Доклады Академии Наук Ссср, 171, Н 6), 171(6),

1321–1325, https://doi.org/10.1594/pangaea.809109

Lyusova_1979 Lyusova, L.N. (1979), Assessment of Heat Flows in the Central Part of the Moscovian

Syneclise - (Оценка Тепловых Потоков в Центральной Части Московской Синеклизы), Secondary, Assessment of Heat Flows in the Central Part of the Moscovian Syneclise - (Оценка Тепловых Потоков в Центральной Части

Московской Синеклизы), 51-74,

Lyusova_Kutasov_1973 Lyusova, L.N.; Kutasov, I.M. (1973), *Heat Flows on the Territory of the Crimean*

Peninsula - (Тепловые Потоки На Территории Крымского Полуострова), V.I. Vlodavets, E.A. Lyubimova, Secondary, Heat Flows on the Territory of the Crimean Peninsula - (Тепловые Потоки На Территории Крымского Полуострова), Moscow,

USSR, Nauka, 12(12), 58-77,

MacDonald_2009 MacDonald, D. (2009), Completion of surface heat flow program 5 july 2009,

Secondary, Completion of surface heat flow program 5 july 2009, 4, https://doi.org/10.1594/pangaea.807217 Macdonald_etal._1973 MacDonald, Ken C.; Luyendyk, Bruce P.; Herzen, Richard P. Von (1973), Heat flow and plate boundaries in Melanesia, Secondary, Heat flow and plate boundaries in Melanesia, 78(14), 2537-2546, https://doi.org/10.1029/JB078i014p02537 Macelloni etal. 2015 Macelloni, L.; Lutken, C.B.; Garg, S.; Simonetti, A.; D'Emidio, M.; Wilson, R.M.; Sleeper, K.; Lapham, L.L.; Lewis, T.; Pizzi, M.; Knapp, J.H.; Knapp, C.C.; Brooks, J.; McGee, T.M. (2015), Heat-flow regimes and the hydrate stability zone of a transient, thermogenic, fault-controlled hydrate system (Woolsey Mound northern Gulf of Mexico), Secondary, Heat-flow regimes and the hydrate stability zone of a transient, thermogenic, fault-controlled hydrate system (Woolsey Mound northern Gulf of Mexico), 59(491-504, https://doi.org/10.1016/j.marpetgeo.2014.09.010 Macgregor_2020 Macgregor, Duncan S. (2020), Regional variations in geothermal gradient and heat flow across the African plate, Secondary, Regional variations in geothermal gradient and heat flow across the African plate, 171(103950, https://doi.org/10.1016/j.jafrearsci.2020.103950 Madon_Jong_2021 Madon, Mazlan; Jong, John (2021), Geothermal gradient and heat flow maps of offshore Malaysia: Some updates and observations, Secondary, Geothermal gradient and heat flow maps of offshore Malaysia: Some updates and observations, 71(159-183, https://doi.org/10.7186/bgsm71202114 Madsen_1975 Madsen, L. (1975), Approximate Geothermal Gradients in Denmark and the Danish North Sea Sector, Secondary, Approximate Geothermal Gradients in Denmark and the Danish North Sea Sector, 1974(45428, https://doi.org/10.1594/pangaea.807341 Majorowicz_1973a Majorowicz, Jacek A. (1973), Heat flow in Poland and its relation to the geological structure, Secondary, Heat flow in Poland and its relation to the geological structure, 2(1), 24-28, https://doi.org/10.1016/0375-6505 (73)90031-x Majorowicz_1973b Majorowicz, Jacek A. (1973), Heat flow data from Poland, Secondary, Heat flow data from Poland, 241(105), 16-17, https://doi.org/10.1038/physci241016a0 Majorowicz_1996 Majorowicz, Jacek A. (1996), Anomalous heat flow regime in the Western margin of the North American Craton, Canada, Secondary, Anomalous heat flow regime in the Western margin of the North American Craton, Canada, 21(2), 123-140, https://doi.org/10.1016/0264-3707 (95)00020-2 Majorowicz, Jacek A.; Embry, A.F. (1998), Present heat flow and paleo-geothermal Majorowicz_Embry_1998 regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients, Secondary, Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients, 291(44287), 141-159, https://doi.org/10.1016/s0040-1951 (98)00036-5 Majorowicz_etal._1990 Majorowicz, Jacek A.; Jones, F.W.; Judge, Alan S. (1990), Deep Subpermafrost Thermal Regime in the Mackenzie Delta Basin, Northern Canada - Analysis from Petroleum Bottom-Hole Temperature Data, Secondary, Deep Subpermafrost Thermal Regime in the Mackenzie Delta Basin, Northern Canada - Analysis from Petroleum Bottom-Hole Temperature Data, 55(3), 362-371, https://doi.org/10.1190/1.1442844 Majorowicz_etal._2014 Majorowicz, Jacek A.; Chan, Judith; Crowell, James; Gosnold Jr, William D.; Heaman, Larry M.; Kueck, Jochem; Nieuwenhuis, Greg; Schmitt, Douglas R.; Unsworth, Martyn; Walsh, Nathaniel; Weides, Simon (2014), The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin, Secondary, The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin, 197(2), 731-747, https://doi.org/10.1093/gji/ggu065 Majorowicz_Jessop_1981 Majorowicz, Jacek A.; Jessop, Alan M. (1981), Regional heat flow patterns in the Western Canadian Sedimentary Basin, Secondary, Regional heat flow patterns in the Western Canadian Sedimentary Basin, 74(3), 209-238, https://doi.org/10.1016/0040-1951 (81)90191-8 Makarenko_etal._1970 Makarenko, F.A.; Smirnov, Ya.B.; Sergienko, S.I. (1970), Heat Flow in the Pre-Caucasus Territory - (Тепловой Поток На Территории Предкавказья), Secondary,

Heat Flow in the Pre-Caucasus Territory - (Тепловой Поток На Территории

Предкавказья), Moscow, USSR, Nauka, 137–152,

Makita_1992 Makita, S. (1992), Heat flow measurements around the Japanese Islands:

Malmqvist etal. 1983

Manga_etal._2012

 ${\it Interpretation with reference to the tectonics in the Okinawa\ Trough\ (in\ Japanese),} \\ {\it Secondary, Heat flow measurements around the Japanese\ Islands:\ Interpretation} \\$

with reference to the tectonics in the Okinawa Trough (in Japanese),

Malmqvist, David; Larson, Sven A.; Landstroem, Ove; Lind, Gustaf (1983), Heat flow and heat production from the Malingsbo granite, central Sweden, Secondary, Heat

flow and heat production from the Malingsbo granite, central Sweden, 9(137–152, Manga, Michael; Hornbach, Matthew J.; Friant, Anne Le; Ishizuka, Osamu; Stroncik,

Nicole; Adachi, Tatsuya; Aljahdali, Mohammed; Boudon, Georges; Breitkreuz, Christoph; Fraass, Andrew; Fujinawa, Akihiko; Hatfield, Robert; Jutzeler, Martin; Kataoka, Kyoko; Lafuerza, Sara; Maeno, Fukashi; Martinez-Colon, Michael; McCanta, Molly; Morgan, Sally; Palmer, Martin R.; Saito, Takeshi; Slagle, Angela; Stinton, Adam J.; Subramanyam, K.S.V.; Tamura, Yoshihiko; Talling, Peter J.; Villemant, Benoit; Wall-

Palmer, Deborah; Wang, Fei (2012), Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin, Secondary, Heat flow in the Lesser Antilles island

arc and adjacent back arc Grenada basin, 13(8),

Mansure_Reiter_1977 Mansure, Arthur J.; Reiter, Marshall (1977), An Accurate Equilibrium Temperature

Log in AEC No. 8: A Drill Test in the Vicinity of the Proposed Carlsbad Disposal Site,

https://doi.org/10.1029/2012gc004260

Secondary, An Accurate Equilibrium Temperature Log in AEC No. 8: A Drill Test in the Vicinity of the Proposed Carlsbad Disposal Site, New Mexico, New Mexico Bureau of

Mines and Mineral Resources, 80(

Marcaillou_etal._2012 Marcaillou, Boris; Henry, Pierre; Kinoshita, Masataka; Kanamatsu, Toshiya; Screaton,

Elizabeth; Daigle, Hugh; Harcouët-Menou, Virginie; Lee, Young-Min; Matsubayashi, Osamu; Thu, Moe Kyaw; Kodaira, Shuichi; Yamano, Makoto (2012), Seismogenic zone temperatures and heat-flow anomalies in the To-nankai margin segment based on temperature data from IODP expedition 333 and thermal model, Secondary, Seismogenic zone temperatures and heat-flow anomalies in the To-nankai margin

segment based on temperature data from IODP expedition 333 and thermal model,

349-350(171-185, https://doi.org/10.1016/j.epsl.2012.06.048

Mareschal_etal._1989 Mareschal, Jean-Claude; Pinet, Christophe; Gariepy, Clement; Jaupart, Claude;

Bienfait, Gerard; Coletta, G.; Jolivet, Jean; Lapointe, Raynald (1989), New heat flow density and radiogenic heat production data in the Canadian Shield and Quebec Appalachians, Secondary, New heat flow density and radiogenic heat production

data in the Canadian Shield and Quebec Appalachians, 26(4), 845–852,

https://doi.org/10.1139/e89-068

Mareschal_etal._1999b Mareschal, Jean-Claude; Jaupart, Claude; Cheng, Li-Zhen; Rolandone, Frédérique;

Gariepy, Clement; Bienfait, Gerard; Guillou-Frottier, Laurent; Lapointe, Raynald (1999), Heat flow in the Trans-Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth, Secondary, Heat flow in the Trans-Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth,

104(B12), 29007–29024, https://doi.org/10.1029/1998jb900209

Mareschal_etal__2000a Mareschal, Jean-Claude; Poirier, A.; Rolandone, Frédérique; Bienfait, Gerard;

Gariepy, Clement; Lapointe, Raynald; Jaupart, Claude (2000), Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador, Secondary, Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador,

27(6), 823-826, https://doi.org/10.1029/1999gl011069

Mareschal_etal._2000b Mareschal, Jean-Claude; Jaupart, Claude; Gariepy, Clement; Cheng, Li-Zhen; Guillou-Frottier, Laurent; Bienfait, Gerard; Lapointe, Raynald (2000), *Heat flow and deep*

thermal structure near the southeastern edge of the Canadian Shield, Secondary,
Heat flow and deep thermal structure near the southeastern edge of the Canadian

Shield, 37(2), 399-414, https://doi.org/10.1139/e98-106

Mareschal_etal__2004 Mareschal, Jean-Claude; Nyblade, Andrew A.; Perry, Hannah K.C.; Jaupart, Claude; Bienfait, Gerard (2004), Heat flow and deep lithospheric thermal structure at Lac de

Gras, Slave Province, Canada, Secondary, Heat flow and deep lithospheric thermal

76

Mareschal_etal2005	structure at Lac de Gras, Slave Province, Canada, 12), https://doi.org/10.1029/2004gl020133 Mareschal, Jean-Claude; Jaupart, Claude; Rolandone, Frédérique; Gariepy, Clement; Fowler, C.M.R.; Bienfait, Gerard; Carbonne, C.; Lapointe, Raynald (2005), Heat flow, thermal regime, and elastic thickness of the lithosphere in the Trans-Hudson Orogen, Secondary, Heat flow, thermal regime, and elastic thickness of the lithosphere in the
Mareschal_etal2017	Trans-Hudson Orogen, 42(4), 517–532, https://doi.org/10.1139/e04-088 Mareschal, Jean-Claude; Jaupart, Claude; Armitage, John K.; Phaneuf, Catherine; Pickler, Carolyne; Bouquerel, Hélène (2017), <i>The Sudbury Huronian heat flow anomaly, Ontario, Canada</i> , Secondary, The Sudbury Huronian heat flow anomaly, Ontario, Canada, 295(187–202, https://doi.org/10.1016/j.precamres.2017.04.024
Marshall_Erickson_1974	Marshall, B.Vaughn; Erickson, Albert J. (1974), <i>Heat flow and thermal conductivity measurements, Leg 25, Deep Sea Drilling Project</i> , Secondary, Heat flow and thermal conductivity measurements, Leg 25, Deep Sea Drilling Project, 25(349–355, https://doi.org/10.2973/dsdp.Proc.25.111.1974
Martinelli_etal1995	Martinelli, G.; Dongarra, G.; Jones, M.Q.W.; Rodriguez, A. (1995), <i>Geothermal features of Mozambique -Country update</i> , Secondary, Geothermal features of Mozambique -Country update, 1(251–273,
Martinez_Cochran_1989	Martinez, Fernando; Cochran, James R. (1989), <i>Geothermal measurements in the northern Red Sea: Implications for lithospheric thermal structure and mode of extension during continental rifting</i> , Secondary, Geothermal measurements in the northern Red Sea: Implications for lithospheric thermal structure and mode of extension during continental rifting, 94(B9), https://doi.org/10.1029/JB094iB09p12239
Marusiak_Lizon_1975	Marusiak, I.; Lizon, I. (1975), Results of Geothermal Research in the Czech-Slovak Part of the Vienna Basin - (Vysledky Geotermickeho Vyskumu V Cesko Slovenskej Casti Viedenskej Panvy), Secondary, Results of Geothermal Research in the Czech-Slovak Part of the Vienna Basin - (Vysledky Geotermickeho Vyskumu V Cesko Slovenskej Casti Viedenskej Panvy), 63(191–204,
Marzan_2000	Marzan, Ignacio (2000), Thermal Regime in the Iberian Peninsula. Lithospheric Structure across the Iberian Massif and the Southern Portuguese Margin - (Régimen Térmico en la Peninsula Ibérica. Estructura Litosférica a través del Macizo Ibérico y el Margen Surportugués), Secondary, Thermal Regime in the Iberian Peninsula. Lithospheric Structure across the Iberian Massif and the Southern Portuguese Margin - (Régimen Térmico en la Peninsula Ibérica. Estructura Litosférica a través del Macizo Ibérico y el Margen Surportugués), Ph.D. thesis(
Mas_etal2000	Mas, L.; Mas, G.; Bengochea, L. (2000), <i>Heat flow of Copahue geothermal field, and its relation with tectonic scheme</i> , Secondary, Heat flow of Copahue geothermal field, and its relation with tectonic scheme, 1419–1424, https://doi.org/10.1594/pangaea.805214
Mase_etal1979	Mase, Charles W.; Galanis Jr, S. Peter; Munroe, Robert J. (1979), <i>Near-surface heat flow in Saline Valley, California</i> , Secondary, Near-surface heat flow in Saline Valley, California, USGS-OFR79-1136, DE84 900438), 56,
Mase_etal1980	Mase, Charles W.; Sass, John H.; Lachenbruch, Arthur H. (1980), Near-surface hydrothermal regime of the Lassen Known Geothermal Resource Area, California, Secondary, Near-surface hydrothermal regime of the Lassen Known Geothermal Resource Area, California,
Mase_etal1981	Mase, Charles W.; Sass, John H.; Brook, C.A.; Munroe, Robert J. (1981), Shallow hydrothermal regime of the east brawley and glamis known geothermal resource areas, salton trough, California, Secondary, Shallow hydrothermal regime of the east brawley and glamis known geothermal resource areas, salton trough, California,
Mase_etal1982	Mase, Charles W.; Sass, John H.; Lachenbruch, Arthur H.; Munroe, Robert J. (1982), Preliminary heat-flow investigations of the California Cascades, Secondary, Preliminary heat-flow investigations of the California Cascades, https://doi.org/10.3133/ofr82150
Mataubara 1001	Matsubara Vulsia (1991) Heat flow maggiraments in the Bonin Are area. Secondary

Matsubara_1981

Matsubara, Yukio (1981), Heat flow measurements in the Bonin Arc area, Secondary,

Heat flow measurements in the Bonin Arc area, 14(130-136, https://doi.org/10.1594/pangaea.807371 Matsubara, Yukio; Kinoshita, Hajimu; Uyeda, Seiya; Thienprasert, Amnuaychai Matsubara_etal._1982 (1982), Development of a new system for shallow sea heat flow measurement and its test application in the Gulf of Thailand, Secondary, Development of a new system for shallow sea heat flow measurement and its test application in the Gulf of Thailand, 83(45293), 13-31, https://doi.org/10.1016/0040-1951(82)90004-x Matsubara_Fujii_1979 Matsubara, Yukio; Fujii, Naoyuki (1979), Heat flow in Omaezaki, Shizuoka Prefecture, central Japan (in Japanese), Secondary, Heat flow in Omaezaki, Shizuoka Prefecture, central Japan (in Japanese), 32(360-362, Matsubayashi, Osamu (1982), Reconnaissance measurements of heat flow in the Matsubayashi_1982 Central Pacific, Secondary, Reconnaissance measurements of heat flow in the Central Pacific, 18(90-94, https://doi.org/10.1594/pangaea.807384 Matsubayashi_etal._1979 Matsubayashi, Osamu; Kinoshita, Hajimu; Matsubara, Yukio; Matsuda, Jun-Ichi (1979), Preliminary report on heat flow in the central part of Kagoshima Bay, Kyushu, Japan, Secondary, Preliminary report on heat flow in the central part of Kagoshima Bay, Kyushu, Japan, 30(45-49, https://doi.org/10.1594/pangaea.807377 Matsubayashi_Uyeda_1979 Matsubayashi, Osamu; Uyeda, Seiya (1979), Estimation of heat flow in certain exploration wells in offshore areas of Malaysia, Secondary, Estimation of heat flow in certain exploration wells in offshore areas of Malaysia, 54(31-44, https://doi.org/10.1594/pangaea.807387 Matsumoto_etal._2022 Matsumoto, Takumi; Yamada, Ryuji; Iizuka, Satoshi (2022), Heat flow data and thermal structure in northeastern Japan, Secondary, Heat flow data and thermal structure in northeastern Japan, 74(1), 155, https://doi.org/10.1186/s40623-022-01704-4 Matthews_Beardsmore_2007 Matthews, Chris; Beardsmore, Graeme R. (2007), New heat flow data from southeastern South Australia, Secondary, New heat flow data from south-eastern South Australia, 38(4), 260-269, https://doi.org/10.1071/Eg07028 Matthews_etal._2013 Matthews, Chris; Beardsmore, Graeme R.; Driscoll, Jim; Pollington, Nicky (2013), Heat flow data from the southeast of South Australia: distribution and implications for the relationship between current heat flow and the Newer Volcanics Province, Secondary, Heat flow data from the southeast of South Australia: distribution and implications for the relationship between current heat flow and the Newer Volcanics Province, 44(2), 133-144, https://doi.org/10.1071/eg12052 Matvienko_Sergienko_1976a Matvienko, V.N.; Sergienko, S.I. (1976), Thermal Field of Oil and Gas Bearing Regions of Ciscaucasia - (Тепловое Поле Нефтегазоносныкх Раионов предкавказыыа), Secondary, Thermal Field of Oil and Gas Bearing Regions of Ciscaucasia - (Тепловое Поле Нефтегазоносныкх Раионов предкавказыыа), 2), 149-155, Matvienko_Sergienko_1976b Matvienko, V.N.; Sergienko, S.I. (1976), Thermal field of oil-and-gas-bearing areas of the Pre-Caucasus region - (Тепловое поле нефтегазоносных районоВ.П.редкавказья), Secondary, Thermal field of oil-and-gas-bearing areas of the Pre-Caucasus region - (Тепловое поле нефтегазоносных рай-оноВ.П.редкавказья), 2), 112-155, Matvienko_Sergienko_1976c Matvienko, V.N.; Sergienko, S.I. (1976), Results of the Heat Flow Determination in the Western Precaucasus - (Результаты Определения Теплового Потока В Западном Предкавказье), Secondary, Results of the Heat Flow Determination in the Western Precaucasus - (Результаты Определения Теплового Потока В Западном Предкавказье), 53-58, Maurath_1980 Maurath, Garry (1980), Heat generation and terrestrial heat flow in northwestern Pennsylvania, Secondary, Heat generation and terrestrial heat flow in northwestern Pennsylvania, Kent, Ohio, Kent State University, M.Sc. thesis(156, Maxwell_1958 Maxwell, Arthur E. (1958), The outflow of heat under the Pacific Ocean, Secondary, The outflow of heat under the Pacific Ocean, San Diego, University of California,

Secondary, Heat flow through the Pacific ocean basin, 19(

Maxwell, Arthur E.; Revelle, Roger (1956), Heat flow through the Pacific ocean basin,

Ph.D. thesis(128,

Maxwell_Revelle_1956

Maystrenko, Yuriy Petrovich; Slagstad, Trond; Elvebakk, Harald K.; Olesen, Odleiv; Maystrenko_etal._2015 Ganerød, Guri Venvik; Rønning, Jan Steinar (2015), New heat flow data from three boreholes near Bergen, Stavanger and Moss, southern Norway, Secondary, New heat flow data from three boreholes near Bergen, Stavanger and Moss, southern Norway, 79-92, https://doi.org/10.1016/j.geothermics.2015.03.010 McGiveron Jong 2018 McGiveron, Steve; Jong, John (2018), Complex geothermal gradients and their implications, deepwater Sabah, Malaysia, Secondary, Complex geothermal gradients and their implications, deepwater Sabah, Malaysia, Medici_Rybach_1995 Medici, F.; Rybach, Ladislaus (1995), Geothermal map of Switzerland 1995:(heat flow density)(No. 30), Secondary, Geothermal map of Switzerland 1995:(heat flow density)(No. 30), 30(36, https://doi.org/10.1594/pangaea.807347 Meert_etal._1991 Meert, Joseph G.; Smith, Douglas L.; Fishkin, Len (1991), Heat-Flow in the Ozark Plateau, Arkansas and Missouri - Relationship to Groundwater-Flow, Secondary, Heat-Flow in the Ozark Plateau, Arkansas and Missouri - Relationship to Groundwater-Flow, 47(44289), 337-347, https://doi.org/10.1016/0377-0273 (91)90008-n Meincke_etal._1967 Meincke, Wilhelm; Hurtig, Eckart; Weiner, J. (1967), Temperature distribution, thermal conductivity and heat flow in the Thuringian Basin - (Temperaturverteilung, Wärmeleitfähigkeit und Wärmefluß im Thüringer Becken), Secondary, Temperature distribution, thermal conductivity and heat flow in the Thuringian Basin -(Temperaturverteilung, Wärmeleitfähigkeit und Wärmefluß im Thüringer Becken), 12(11), 40-71, https://doi.org/10.1594/pangaea.809882 Melnikov_etal._1972 Melnikov, P.I.; Balobaev, V.T.; Kutasov, I.M.; Deviatkin, V.N. (1972), Geothermal research in Central Yakutia - (Геотермические исследования в Центральной Якутии), Secondary, Geothermal research in Central Yakutia - (Геотермические исследования в Центральной Якутии), 12), 134-137, Mercier_2009 Mercier, Marion (2009), Relations between oceanic heat flux and seismogenic zone: case of Sumatran subduction - (Relations entre flux de chaleur océanique et zone sismogène: cas de la subduction de Sumatra), Secondary, Relations between oceanic heat flux and seismogenic zone: case of Sumatran subduction - (Relations entre flux de chaleur océanique et zone sismogène: cas de la subduction de Sumatra), Ph.D. Merkushov, V.N.; Podgornykh, L.V.; Smirnov, Ya.B.; Trotsyuk, V.Ya. (1983), Arctic Merkushov_etal._1983 Ocean - (Северный Ледовитый Океан), Secondary, Arctic Ocean - (Северный Ледовитый Океан), Moscow, USSR, Nauka, 181-185, https://doi.org/10.1594/pangaea.809261 Mesecar_1968 Mesecar, Roderick S. (1968), Oceanic vertical temperature measurements across the water-sediment interface at selected stations west of Oregon, Secondary, Oceanic vertical temperature measurements across the water-sediment interface at selected stations west of Oregon, Oregon, Oregon State University, Ph.D. thesis(**MGRC 1989** MGRC (1989), Heat flow measurement for the Jiangsi section of the quanzhou-heisui ggt, Secondary, Heat flow measurement for the Jiangsi section of the quanzhouheisui ggt, Middleton_1979a Middleton, Mike F. (1979), Heat flow in Moomba, Big Lake and Toolachee gas fields of the Cooper Basin and implications for hydrocarbon maturation, Secondary, Heat flow in Moomba, Big Lake and Toolachee gas fields of the Cooper Basin and implications for hydrocarbon maturation, 10(2), 149-155, https://doi.org/10.1071/eg979149 Mienert, Jürgen; Posewang, Jörg; Baumann, M. (1998), Gas hydrates along the north-Mienert_etal._1998 eastern Atlantic Margin: possible hydrate bound margin instabilities and possible release of methane, Secondary, Gas hydrates along the north-eastern Atlantic Margin: possible hydrate bound margin instabilities and possible release of methane,

https://doi.org/10.1016/0040-1951 (91)90005-d

Minier, Jeffrie; Reiter, Marshall (1991), *Heat-Flow on the Southern Colorado Plateau*, Secondary, Heat-Flow on the Southern Colorado Plateau, 200(44256), 51–66,

Minier_Reiter_1991

Miridzhanyan, R.T. (1983), Geothermal conditions of the Arpa-Sevan mine site -Miridzhanyan 1983 (Геотермические Условия Участка Шахты Арпа-Севан), Secondary, Geothermal conditions of the Arpa-Sevan mine site - (Геотермические Условия Участка Шахты Арпа-Севан), 69(3), 41-44, Misener_etal._1951 Misener, A.D.; Thompson, L.G.D.; Uffen, R.J. (1951), Terrestrial heat flow in Ontario and Quebec, Secondary, Terrestrial heat flow in Ontario and Quebec, 32(5), 729-738, https://doi.org/10.1029/TR032i005p00729 Mizutani_etal._1970 Mizutani, Hitoshi; Baba, K.; Kobayashi, N.; Chang, C.C.; Lee, C.H.; Kang, Y.S. (1970), Heat flow in Korea, Secondary, Heat flow in Korea, 10(1), 183-203, https://doi.org/10.1016/0040-1951(70)90106-x Mizutani_Yokokura_1982 Mizutani, Hitoshi; Yokokura, Takanobu (1982), Preliminary heat flow study in Papua New Guinea, Secondary, Preliminary heat flow study in Papua New Guinea, 15(29-43, https://doi.org/10.1594/pangaea.807405 Moiseenko_etal._1971 Moiseenko, U.I.; Duchkov, Albert D.; Sokolova, L.S. (1971), Heat flow of some areas of the Altai-Sayan region - (Тепловой поток некоторых районов Алтае-Саянской области), Secondary, Heat flow of some areas of the Altai-Sayan region - (Тепловой поток некоторых районов Алтае-Саянской области), 45367, Moiseenko_etal._1972 Moiseenko, U.I.; Sokolova, L.S.; Duchkov, Albert D. (1972), Heat flow of the Baikal rift zone and adjacent territories - (Тепловой поток Байкальской рифтовой зоны и смежных территорий), Secondary, Heat flow of the Baikal rift zone and adjacent territories - (Тепловой поток Байкальской рифтовой зоны и смежных территорий), 11), 95-103, Moiseenko_etal._1973 Moiseenko, U.I.; Duchkov, Albert D.; Sokolova, L.S. (1973), Heat flow in some regions of Siberia and the Far Eastern USSR, Secondary, Heat flow in some regions of Siberia and the Far Eastern USSR, 2(1), 17-23, https://doi.org/10.1016/0375-6505 (73)90030-8 Moiseenko_Sokolova_1967a Moiseenko, U.I.; Sokolova, L.S. (1967), Heat flow through the wells of the South Minusinsk depression - geology and geophysics - (Тепловой поток по скважинам южно- минусинской впадины - геология и геофизика), Secondary, Heat flow through the wells of the South Minusinsk depression - geology and geophysics -(Тепловой поток по скважинам южно- минусинской впадины - геология и геофизика), 75-82, Moiseenko_Sokolova_1967b Moiseenko, U.I.; Sokolova, L.S. (1967), Heat flow through two wells of the Stolbovskaya structure of Eastern Kamchatka - (Тепловой поток по двум скважинам Столбовской структуры Восточной Камчатки), Secondary, Heat flow through two wells of the Stolbovskaya structure of Eastern Kamchatka -(Тепловой поток по двум скважинам Столбовской структуры Восточной Камчатки), 6), 106-110, Møller, Mikkel H.; Glombitza, Clemens; Lever, Mark A.; Deng, Longhui; Morono, Yuki; Moller_etal._2018 Inagaki, Fumio; Doll, Mechthild; Su, Chin-chia; Lomstein, Bente A. (2018), D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin, Secondary, D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin, 9(10.3389/fmicb.2018.00967 Molnar_Hodge_1982 Molnar, Paul S.; Hodge, Dennis S. (1982), Correlation of Thermal Conductivity with Physical Properties Obtained from Geophysical Well Logs: ABSTRACT, Secondary, Correlation of Thermal Conductivity with Physical Properties Obtained from Geophysical Well Logs: ABSTRACT, 66(5), 608-609, https://doi.org/10.1306/03b5a02a-16d1-11d7-8645000102c1865d Mongelli_etal._1981 Mongelli, Francesco M.; Loddo, A.; Tramacere, G.; Zito, P.; Perusini, P.; Squarci, L. (1981), Contribution to the map of geothermal flow in Italy: measurements on the pre-Apennine belt of the Marche region - Secondary, Contributo alla mappa del flusso geotermico in Italia: misure sulla fascia pre-appenninica marchigiana., Roma, Italy, CNR, https://doi.org/10.1594/pangaea.809890 Mongelli_etal._1982 Mongelli, Francesco M.; Loddo, M.; Tramacere, Antonio (1982), Heatflow measures -

, Secondary, Misure di flusso di calore

Mongelli, Francesco M.; Ciaranfi, N.; Tramacere, Antonio; Zito, Gianmaria; Perusini, Mongelli_etal._1983 P.; Squarci, P.; Taffi, L. (1983), Contribution to the geothermal flow map in Italy: Measurements from the Marche to Puglia - Secondary, Contributo alla mappa del flusso geotermico in Italia: Misure dalle marche alla Puglia, Proc. 2nd GNGTS annual conference, 737-763 Mongelli Loddo 1974 Mongelli, Francesco M.; Loddo, M. (1974), The present state of geothermal investigations in Italy, Secondary, The present state of geothermal investigations in Italy, 9(449–456, https://doi.org/10.1594/pangaea.808065 Mongelli, Francesco M.; Ricchetti, G. (1970), Heat flow along the Candelaro fault — Mongelli_Ricchetti_1970a Gargano headland (Italy), https://doi.org/10.1016/0375-6505 (70)90043-X Mongelli_Ricchetti_1970b Mongelli, Francesco M.; Ricchetti, G. (1970), The Earth's crust and heat flow in Fossa Bradanica, southern Italy, https://doi.org/10.1016/0040-1951(70)90102-2 Moore_etal._2001 Moore, Gregory F.; Taira, A.; Klaus, A. (2001), Proceedings of the Ocean Drilling Program, Scientific Results, Secondary, Proceedings of the Ocean Drilling Program, Scientific Results, Moran_1985 Moran, Jean Elizabeth (1985), Heat flow and the thermal evolution of the Cascadia Basin, Secondary, Heat flow and the thermal evolution of the Cascadia Basin, Ph.D. Morgan_1973 Morgan, Paul (1973), Terrestrial heat flow studies in Cyprus and Kenya, Secondary, Terrestrial heat flow studies in Cyprus and Kenya, Uk, University of London, Morgan_1975 Morgan, Paul (1975), Porosity determinations and the thermal conductivity of rock fragments with application to heat flow on Cyprus, Secondary, Porosity determinations and the thermal conductivity of rock fragments with application to heat flow on Cyprus, 26(2), 253-262, https://doi.org/10.1016/0012-821x (75)90093-Morgan_1979 Morgan, Paul (1979), Cyprus heat flow with comments on the thermal regime of the eastern Mediterranean, Secondary, Cyprus heat flow with comments on the thermal regime of the eastern Mediterranean, 144-151, https://doi.org/10.1007/978-3-642-95357-6 13 Morgan_etal._1976 Morgan, Paul; Blackwell, David D.; Boulos, Fouad K. (1976), Heat flow measurements in Egypt, Secondary, Heat flow measurements in Egypt, 57(12), 1009, Morgan_etal._1977 Morgan, Paul; Blackwell, David D.; Spafford, Robert E.; Smith, Robert B. (1977), Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone Caldera, Secondary, Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone Caldera, 82(26), 3719-3732, https://doi.org/10.1029/JB082i026p03719 Morgan_etal._1980 Morgan, P.; Swanberg, Chandler A.; Boulos, Fouad K.; Hennin, S.F.; El-Sayed, A.A.; Basta, N.Z. (1980), Geothermal studies in northeast Africa, Secondary, Geothermal studies in northeast Africa, 10(971-987, Morgan, Paul; Boulos, Fouad K.; Swanberg, Chandler A. (1983), Regional Geothermal Morgan_etal._1983 Exploration in Egypt, Secondary, Regional Geothermal Exploration in Egypt, 31(2), 361-376, https://doi.org/10.1111/j.1365-2478.1983.tb01059.x Morgan_etal._1985 Morgan, Paul; Boulos, Fouad K.; Hennin, S.F.; El-Sherif, A.A.; El-Sayed, A.A.; Basta, N.Z.; Melek, Y.S. (1985), Heat flow in Eastern Egypt: The thermal signature of a continental breakup, Secondary, Heat flow in Eastern Egypt: The thermal signature of a continental breakup, 4(1), 107-131, https://doi.org/10.1016/0264-3707 (85)90055-9 Morgan_Swanberg_1979 Morgan, Paul; Swanberg, Chandler A. (1979), Heat flow and the geothermal potential of Egypt, Secondary, Heat flow and the geothermal potential of Egypt, 117(1), 213-226, https://doi.org/10.1007/bf00879748 Morin_etal._2010 Morin, Roger H.; Williams, T.; Henrys, S.A.; Magens, D.; Niessen, F.; Hansaraj, D. (2010), Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica, Secondary, Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica, 6(4), 370-378, https://doi.org/10.1130/Ges00512.1

Morin, Roger H.; Herzen, Richard P. Von (1986), Geothermal measurements at Deep

Morin_VonHerzen_1986

	Sea Drilling Project site 587, Secondary, Geothermal measurements at Deep Sea
Mattacks at 2005	Drilling Project site 587, 90(1317–1324,
Mottaghy_etal2005	Mottaghy, Darius C.; Schellschmidt, Rüdiger; Popov, Yuri A.; Clauser, Christoph;
	Kukkonen, Ilmo T.; Nover, G.; Milanovsky, S.Y.; Romushkevich, Raisa A. (2005), New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical
	variation in heat flow confirmed and attributed to advection, Secondary, New heat
	flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow confirmed and attributed to advection, 401(44228), 119–142,
	https://doi.org/10.1016/j.tecto.2005.03.005
Mullins_Hinsley_1957	Mullins, R.; Hinsley, F.B. (1957), Measurement of geothermic gradients in boreholes,
Mullilis_Hillsley_1937	Secondary, Measurement of geothermic gradients in boreholes, 117(379–93,
	https://doi.org/10.1594/pangaea.808068
Munoz_Hamza_1993	Munoz, Miguel; Hamza, Valiya M. (1993), Heat flow and temperature gradients in
Mulloz_Halliza_1333	Chile, Secondary, Heat flow and temperature gradients in Chile, 37(3), 315–348,
	https://doi.org/10.1007/bf01624604
Munroe_etal1975	Munroe, Robert J.; Sass, John H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y. (1975),
Mainoc_ctan_1373	Basic data for some recent Australian heat-flow measurements, Secondary, Basic
	data for some recent Australian heat-flow measurements, 99,
	https://doi.org/10.1594/pangaea.807454
Muraviev_2004	Muraviev, A.V.; V.G., Matveev (2004), Component parts of the World Heat Flow Data
_	Collection, Secondary, Component parts of the World Heat Flow Data Collection,
	https://doi.org/10.1594/pangaea.809891
Muraviev_etal1988	Muraviev, A.V.; Smirnov, Ya.B.; Sugrobov, V.M. (1988), Heat flow along the
	International Geotraverse through the Philippine Sea at 18°N - (Тепловой поток
	вдоль Международного геотраверса через Филиппинское море на 18° сш),
	Secondary, Heat flow along the International Geotraverse through the Philippine Sea
	at 18°N - (Тепловой поток вдоль Международного геотраверса через
	Филиппинское море на 18° сш), 1), 189–193,
	https://doi.org/10.1594/pangaea.809124
Muraviev_Matveev_2004	Muraviev, A.V.; Matveev, V.G. (2004), Results of the 42nd cruise of R/V Dmitryi
	Mendeleev" in 1988 (personal communication), Secondary, Results of the 42nd cruise
	of R/V Dmitryi Mendeleev" in 1988 (personal communication),
Myhre_etal1995	Myhre, Annik M.; Thiede, Jörn; Firth, J.V. (1995), North Atlantic-Arctic Gateway Sites
	907-913, Secondary, North Atlantic-Arctic Gateway Sites 907-913,
	151(10.2973/odp.proc.ir.151.1995
Nagao_1986	Nagao, Toshiyasu (1986), Heat flow measurements in the Tohoku-Hokkaido regions
	by some new techniques and their geotectonic interpretation, Secondary, Heat flow
	measurements in the Tohoku-Hokkaido regions by some new techniques and their
	geotectonic interpretation, Tokyo, Japan, University of Tokyo, Ph.D.
Name and 2002	thesis (10.1594/pangaea.809895
Nagao_etal2002	Nagao, Toshiyasu; Saki, Takao; Joshima, Masato (2002), Heat flow measurements around the Antarctica - Contribution of R/V Hakurei, Secondary, Heat flow
	measurements around the Antarctica - Contribution of R/V Hakurei, 78(2), 19–23,
	https://doi.org/10.2183/pjab.78.19
Nagao_Kaminuma_1983	Nagao, Toshiyasu; Kaminuma, Katsutada (1983), Heat flow measurements in the
Nagao_Nammama_1909	Lützow–Holm Bay, Antarctica, Secondary, Heat flow measurements in the Lützow–
	Holm Bay, Antarctica, 28(18–26, https://doi.org/10.1594/pangaea.808070
Nagao_Uyeda_1989	Nagao, Toshiyasu; Uyeda, Seiya (1989), Heat flow measurements in the northern part
J -1-7	of Honshu, northeast Japan, using shallow holes, Secondary, Heat flow
	measurements in the northern part of Honshu, northeast Japan, using shallow holes,
	164(2), 301–314, https://doi.org/10.1016/0040-1951 (89)90023-1
Nagaraju_etal2012	Nagaraju, P.; Ray, Labani; Ravi, G.; Akkiraju, Vyasulu V.; Roy, Sukanta (2012),
_	Geothermal investigations in the Upper Vindhyan sedimentary rocks of Shivpuri area,
	central India, Secondary, Geothermal investigations in the Upper Vindhyan
	sedimentary rocks of Shivpuri area, central India, 80(1), 39–47,
	https://doi.org/10.1007/c12504.012.0116.v

https://doi.org/10.1007/s12594-012-0116-x

Nagasaka, Koichi; Francheteau, Jean; Kishii, Toshio (1970), Terrestrial heat flow in the Nagasaka_etal._1970 Celebes and Sulu Seas, Secondary, Terrestrial heat flow in the Celebes and Sulu Seas, 1(1), 99-103, https://doi.org/10.1007/bf00310013 Nagasawa_Komatsu_1979 Nagasawa, Keinosuke; Komatsu, K. (1979), Thermal structure under the ground in Osaka plain, southwest Japan, Secondary, Thermal structure under the ground in Osaka plain, southwest Japan, 22(151–166, https://doi.org/10.1594/pangaea.809897 Nagihara 1987 Nagihara, Seiichi (1987), Heat flow and tectonics of the northwestern Pacific subduction zones -concerning the Yap Trench convergence, Secondary, Heat flow and tectonics of the northwestern Pacific subduction zones -concerning the Yap Trench convergence, Chiba, Japan, Chiba University, Ph.D. thesis(10.1594/pangaea.809900 Nagihara, Seiichi; Kinoshita, Masataka; Fujimoto, Hiromi; Katao, Hiroshi; Kinoshita, Nagihara_etal._1989 Hajimu; Tomoda, Yoshibumi (1989), Geophysical observations around the northern Yap Trench: seismicity, gravity and heat flow, Secondary, Geophysical observations around the northern Yap Trench: seismicity, gravity and heat flow, 163(1), 93-104, https://doi.org/10.1016/0040-1951 (89)90120-0 Nagihara_etal._1992 Nagihara; Seiichi; Sclater; G., John; Beckley; M., Lila; Behrens; E.William; Lawver; A., Lawrence (1992), High heat flow anomalies over salt structures on the Texas Continental Slope, Gulf of Mexico, Secondary, High heat flow anomalies over salt structures on the Texas Continental Slope, Gulf of Mexico, 19(16), 1687-1690, https://doi.org/10.1029/92gl00976 Nagihara_etal._1993 Nagihara, Seiichi; Beckley, Lila M.; Behrens, E.William; Sclater, John G. (1993), Characteristics of heat flow through diapiric salt structures on the Texas continental slope, Secondary, Characteristics of heat flow through diapiric salt structures on the Texas continental slope, 43(269-279, Nagihara_etal._1996a Nagihara, Seiichi; Sclater, John G.; Phillips, Joseph D.; Behrens, E.William; Lewis, Trevor J.; Lawver, Lawrence A.; Nakamura, Yuji; Garcia-Abdeslem, J.; Maxwell, Arthur E. (1996), Heat flow in the western abyssal plain of the Gulf of Mexico: implications for thermal evolution of the old ocean lithosphere, Secondary, Heat flow in the western abyssal plain of the Gulf of Mexico: implications for thermal evolution of the old ocean lithosphere, 101(B2), 2895–2913, https://doi.org/10.1029/95jb03450 Nagihara_etal._1996b Nagihara, Seiichi; Lister, Clive R.B.; Sclater, John G. (1996), Reheating of old oceanic lithosphere: Deductions from observations, Secondary, Reheating of old oceanic lithosphere: Deductions from observations, 139(45293), 91-104, https://doi.org/10.1016/0012-821x (96)00010-6 Nagihara_Lawver_1989 Nagihara, Seiichi; Lawver, Lawrence A. (1989), Heat flow measurments in the King George Basin, Bransfield Strait, Secondary, Heat flow measurments in the King George Basin, Bransfield Strait, 24(5), 123-125, Nakajin_Anma_1972 Nakajin, T.; Anma, M. (1972), Heat flow measurements in the Surga Bay, M. Hoshino, H. Aoki, Secondary, Heat flow measurements in the Surga Bay, Tokyo, Japan, Tokai University Press, 287-300, https://doi.org/10.1594/pangaea.809905 Nakamura_Wakita_1982 Nakamura, Yuji; Wakita, Hiroshi (1982), Terrestrial heat flow around the aseismic front of the Japanese Island Arc, Secondary, Terrestrial heat flow around the aseismic front of the Japanese Island Arc, 81(1), 25–35, https://doi.org/10.1016/0040-1951 Nason_Lee_1962 Nason, R.D.; Lee, W.H.K. (1962), Preliminary Heat-Flow Profile across the Atlantic, Secondary, Preliminary Heat-Flow Profile across the Atlantic, 196(4858), 975-975, https://doi.org/10.1038/196975a0 Nason_Lee_1964 Nason, Robert D.; Lee, William H.K. (1964), Heat-flow measurements in the North Atlantic, Caribbean, and Mediterranean, Secondary, Heat-flow measurements in the North Atlantic, Caribbean, and Mediterranean, 69(22), 4875-4883, https://doi.org/10.1029/JZ069i022p04875 Nathenson_etal._1980 Nathenson, Manuel; Urban, Thomas C.; Diment, William H.; Nehring, N.L. (1980), Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho, Secondary, Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County,

Idaho, 5294453), 29, https://doi.org/10.2172/5294453

Negoita_1970 Negoita, Victor (1970), Study on temperature distribution in Romania - (Etude sur la distribution des températures en Roumanie), Secondary, Study on temperature distribution in Romania - (Etude sur la distribution des températures en Roumanie), 14(10.1594/pangaea.808071 Negraru_etal._2009 Negraru, Petru T.; Blackwell, David D.; Richards, Maria C. (2009), Texas heat flow patterns, Secondary, Texas heat flow patterns, 80048(9), 45300, https://doi.org/10.1594/pangaea.807478 Negrete-Aranda_etal._2021 Negrete-Aranda, Raquel; Neumann, Florian; Contreras, Juan; Harris, Robert N.; Spelz, Ronald M.; Zierenberg, Robert; Caress, David W. (2021), Transport of Heat by Hydrothermal Circulation in a Young Rift Setting: Observations From the Auka and JaichMaa Ja'ag' Vent Field in the Pescadero Basin, Southern Gulf of California, Secondary, Transport of Heat by Hydrothermal Circulation in a Young Rift Setting: Observations From the Auka and JaichMaa Ja'ag' Vent Field in the Pescadero Basin, Southern Gulf of California, American Geophysical Union (AGU), 126(8), e2021JB022300, https://doi.org/10.1029/2021jb022300 Negulic_Louden_2016 Negulic, Eric; Louden, Keith E. (2016), The thermal structure of the central Nova Scotia Slope (eastern Canada): seafloor heat flow and thermal maturation models, Secondary, The thermal structure of the central Nova Scotia Slope (eastern Canada): seafloor heat flow and thermal maturation models, 54(2), 146-162, https://doi.org/10.1139/cjes-2016-0060 Negut_1984 Negut, A. (1984), Implications of the thermal field structure in Mutenia and Oltenia, Secondary, Implications of the thermal field structure in Mutenia and Oltenia, https://doi.org/10.1594/pangaea.808074 Nekrasov_1976 Nekrasov, I.A. (1976), Cryolithozone of North-East and South Siberia and patterns of its development - (Криолитозона Северо-Востока и Юга Сибири и закономерности ее развития), Secondary, Cryolithozone of North-East and South Siberia and patterns of its development - (Криолитозона Северо-Востока и Юга Сибири и закономерности ее развития), 243, Neprimerov_Khodyreva_1987 Neprimerov, N.N.; Khodyreva, E.Ya. (1987), Conductive and Convective Heat-Low Flows in the Pripyat Oil and Gas Basin - (Кондуктивные и конвективные тепловые потоки припыатского нефтегазоносного бассеина - нефтыанаыа промышленност експресс Информатсиыа), Secondary, Conductive and Convective Heat-Low Flows in the Pripyat Oil and Gas Basin - (Кондуктивные и конвективные тепловые потоки припыатского нефтегазоносного бассеина нефтыанаыа промышленност експресс Информатсиыа), 14-17, Neumann_etal._2017 Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio (2017), Systematic heat flow measurements across the Wagner Basin, northern Gulf of California, Secondary, Systematic heat flow measurements across the Wagner Basin, northern Gulf of California, 479(340-353, https://doi.org/10.1016/j.epsl.2017.09.037 Neumann_etal._2023 Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Galerne, Christophe Y.; Peña-Salinas, Manet S.; Spelz, Ronald M.; Teske, Andreas; Lizarralde, Daniel; Höfig, Tobias W.; Scientists, Expedition 385 (2023), Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport, Secondary, Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport, 35(4), 1308-1328, https://doi.org/10.1111/bre.12755 Newstead_Beck_1953 Newstead, G.; Beck, Antje E. (1953), Borehole temperature measuring equipment and the geothermal flux in Tasmania, Secondary, Borehole temperature measuring

equipment and the geothermal flux in Tasmania, 6(4), 480-489,

Nishimura_1990

https://doi.org/10.1071/ph530480

NIED_1995 Nied (1995), Basal structures of the southern Kanto district - Results of drilling and logging of the Chiba, Yokohama, Edosaki, Ichihara and Atsugi observation wells, Secondary, Basal structures of the southern Kanto district - Results of drilling and logging of the Chiba, Yokohama, Edosaki, Ichihara and Atsugi observation wells,

84

Nishimura, Susumu (1990), Thermal gradients of deep wells and their terrestrial heat

flows (2), Secondary, Thermal gradients of deep wells and their terrestrial heat flows (2), 12(3), 283-293, https://doi.org/10.11367/grsj1979.12.283 Nishimura, Susumu; Mogi, Tohru; Katsura, Kyozo (1986), Thermal gradients of deep Nishimura_etal._1986 wells and their terrestrial heat flows in central and southwest Japan, Secondary, Thermal gradients of deep wells and their terrestrial heat flows in central and southwest Japan, 8(4), 347-359, https://doi.org/10.11367/grsj1979.8.347 Nissen_etal._1995 Nissen, Susan Spangler; Hayes, Dennis E.; Bochu, Yao; Zeng, Weijun; Chen, Yongqin; Nu, Xiaupin (1995), Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea, Secondary, Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea, 100(B11), 22447-22483, https://doi.org/10.1029/95jb01868 Noel_1985 Noel, Mark J. (1985), Heat flow, sediment faulting and porewater advection in the Madeira abyssal plain, Secondary, Heat flow, sediment faulting and porewater advection in the Madeira abyssal plain, 73(45326), 398-406, https://doi.org/10.1016/0012-821x(85)90087-1 Noel_Hounslow_1988 Noel, Mark J.; Hounslow, Mark W. (1988), Heat flow evidence for hydrothermal convection in Cretaceous crust of the Madeira Abyssal Plain, Secondary, Heat flow evidence for hydrothermal convection in Cretaceous crust of the Madeira Abyssal Plain, 90(1), 77-86, https://doi.org/10.1016/0012-821x(88)90113-6 Norden_etal._2008 Norden, Ben; Förster, Andrea; Balling, Niels (2008), Heat flow and lithospheric thermal regime in the Northeast German Basin, Secondary, Heat flow and lithospheric thermal regime in the Northeast German Basin, 460(44287), 215-229, https://doi.org/10.1016/j.tecto.2008.08.022 Norvell_etal._2023 Norvell, Benjamin; Kyritz, Thomas; Spinelli, Glenn A.; Harris, Robert N.; Dickerson, Kristin; Tréhu, Anne M.; Carbotte, Suzanne; Han, Shuoshuo; Boston, Brian; Lee, Michelle; Party, The CHINOoK Project Science (2023), Thermally Significant Fluid Seepage Through Thick Sediment on the Juan de Fuca Plate Entering the Cascadia Subduction Zone, Secondary, Thermally Significant Fluid Seepage Through Thick Sediment on the Juan de Fuca Plate Entering the Cascadia Subduction Zone, 24(8), e2023GC010868, https://doi.org/10.1029/2023gc010868 Nouze_etal._2009 Nouzé, Hervé; Cosquer, Emmanuel; Collot, Julien Y.; Foucher, Jean P.; Klingelhoefer, Frauke; Lafoy, Yves; Geli, Louis (2009), Geophysical characterization of bottom simulating reflectors in the Fairway Basin (off New Caledonia, Southwest Pacific), based on high resolution seismic profiles and heat flow data, Secondary, Geophysical characterization of bottom simulating reflectors in the Fairway Basin (off New Caledonia, Southwest Pacific), based on high resolution seismic profiles and heat flow data, 266(44287), 80-90, https://doi.org/10.1016/j.margeo.2009.07.014 Novak_1971 Novák, V. (1971), Ground heat flow in the deep wells Zarosice-1 A 2 in the area of the tax forest - (Zemsky tepelny tok v hlubinnych vrtech Zarosice-1 A 2 v oblasti zdanickeho lesa), Secondary, Ground heat flow in the deep wells Zarosice-1 A 2 in the area of the tax forest - (Zemsky tepelny tok v hlubinnych vrtech Zarosice-1 A 2 v oblasti zdanickeho lesa), 46(277-284, Nurusman_Subono_1995 Nurusman, Suheimi; Subono, Sandjojo (1995), Heat flow measurements in Indonesia, M.L. Yamano, Makoto Gupta, Secondary, Heat flow measurements in Indonesia, Science Publishers, 145-162, https://doi.org/10.1594/pangaea.807522 Nyblade_1997 Nyblade, Andrew A. (1997), Heat flow across the East African Plateau, Secondary, Heat flow across the East African Plateau, 24(16), 2083–2086, https://doi.org/10.1029/97gl01952 Nyblade, Andrew A.; Pollack, Henry N.; Jones, D.L.; Podmore, F.; Mushayandebvu, M. Nyblade_etal._1990 (1990), Terrestrial Heat-Flow in East and Southern Africa, Secondary, Terrestrial Heat-Flow in East and Southern Africa, B11), 17371-17384, https://doi.org/10.1029/JB095iB11p17371 Nyblade_etal._1996 Nyblade, Andrew A.; Suleiman, I.S.; Roy, Robert F.; Pursell, B.; Suleiman, A.S.; Doser, D.I.; Keller, G.Randy (1996), Terrestrial heat flow in the Sirt Basin, Libya, and the

pattern of heat flow across northern Africa, Secondary, Terrestrial heat flow in the Sirt Basin, Libya, and the pattern of heat flow across northern Africa, 101(B8),

17737-17746, https://doi.org/10.1029/96jb01177

Oelsner_1978 Oelsner, Christain (1978), A heat flow anomaly near Freiberg - (Eine

Wärmestromanomalie bei Freiberg), Secondary, A heat flow anomaly near Freiberg -

(Eine Wärmestromanomalie bei Freiberg), 39(139-143,

Omura, Kentaro; Ikeda, Ryuji; Horai, Ki-Iti; Kobayashi, Yoji (1994), Terrestrial heat

flow in an active seismic region: a precise measurement in the Ashio 2km deep borehole, Secondary, Terrestrial heat flow in an active seismic region: a precise

measurement in the Ashio 2km deep borehole, 147,

https://doi.org/10.1594/pangaea.809906

Omura_etal._1995 Omura, Kentaro; Horai, Ki-Iti; Kobayashi, Yoji; Ikeda, Ryuji (1995), A relationship between the cutoff depth of seismicity and the thermal structure in the crust-

measurement of terrestrial heat flow in Neo, Gifu Prefecture, Secondary, A relationship between the cutoff depth of seismicity and the thermal structure in the

crust-measurement of terrestrial heat flow in Neo, Gifu Prefecture,

https://doi.org/10.1594/pangaea.809907

Onuoha_Ekine_1999 Onuoha, K. Mosto; Ekine, Anthony S. (1999), Subsurface temperature variations and

> heat flow in the Anambra Basin, Secondary, Subsurface temperature variations and heat flow in the Anambra Basin, 28(3), 641-652, https://doi.org/10.1016/s0899-

5362 (99)00036-6

ORegan_etal._2016 O'Regan, Matt; Preto, Pedro; Stranne, Christian; Jakobsson, Martin; Koshurnikov,

> Andrey (2016), Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov Ridge, Arctic Ocean, Secondary, Surface heat flow measurements from the East Siberian continental slope and southern Lomonosov

Ridge, Arctic Ocean, 17(5), 1608-1622, https://doi.org/10.1002/2016gc006284

Orilski, Judith; Schellschmidt, Rüdiger; Wonik, Thomas (2010), Temperature progression and thermal conductivity in the subsurface of the Groß Buchholz GT1

borehole in Hanover. Contribution to the Geothermal Energy Congress 2010 "Karlsruhe" - (Temperaturverlauf und Wärmeleitfähigkeit im Untergrund der Bohrung Groß Buchholz GT1 in Hannover. Beitrag Der Geothermiekongress 2010 Karlsruhe), Secondary, Temperature progression and thermal conductivity in the subsurface of

the Groß Buchholz GT1 borehole in Hanover. Contribution to the Geothermal Energy Congress 2010 "Karlsruhe" - (Temperaturverlauf und Wärmeleitfähigkeit im Untergrund der Bohrung Groß Buchholz GT1 in Hannover. Beitrag Der

Geothermiekongress 2010 Karlsruhe), Karlsruhe, Germany,

Oryan, B.; Villinger, Heinrich W.; Lazar, M.; Schwab, M.J.; Neugebauer, I.; Ben-Avraham, Zvi (2019), Heat flow in the Dead Sea from the ICDP boreholes and its implication for the structure of the basin, Secondary, Heat flow in the Dead Sea from

the ICDP boreholes and its implication for the structure of the basin, 210(103-112,

https://doi.org/10.1016/j.quascirev.2019.02.016

Ostrihansky, L. (1980), The structure of the Earth's crust and the heat-flow—heat

generation relationship in the Bohemian Massif, Secondary, The structure of the Earth's crust and the heat-flow—heat generation relationship in the Bohemian Massif, 68(45355), 325-337, https://doi.org/10.1016/0040-1951(80)90182-1

Oxburgh, Ernest R.; Richardson, S.W.; Bloomer, J.R.; Martin, A.; Wright, S.M. (1977), Sub-surface temperatures from heat flow studies in the United Kingdom, Secondary,

Sub-surface temperatures from heat flow studies in the United Kingdom, 1(155-173,

https://doi.org/10.1594/pangaea.805369

Palmason, Gudmundur (1967), On heat flow in Iceland in relation to the Mid-Atlantic Ridge, Secondary, On heat flow in Iceland in relation to the Mid-Atlantic Ridge, Soc.

Sci. Islandica Reykjavik, 38(111–127, https://doi.org/10.1594/pangaea.809922

Palmason, Gudmundur (1971), Crustal Structure of Iceland from Explosion

Seismology, Secondary, Crustal Structure of Iceland from Explosion Seismology, Palmason, Gudmundur (1973), Kinematics and heat flow in a volcanic rift zone, with

application to Iceland, Secondary, Kinematics and heat flow in a volcanic rift zone, with application to Iceland, 33(4), 451-481, https://doi.org/10.1111/j.1365-

246X.1973.tb02379.x

Omura_etal._1994

Orilski_etal._2010

Oryan_etal._2019

Ostrihansky_1980

Oxburgh_etal._1977

Palmason_1967

Palmason_1971

Palmason_1973

Pandey_1981a Pandey, Om Prakash (1981), Terrestrial heat flow in New Zealand, Secondary, Terrestrial heat flow in New Zealand, Wellington, New Zealand, Victoria University of Wellington, Ph.D. thesis(Pandey_1981b Pandey, Om Prakash (1981), Terrestrial heat flow in the North Island of New Zealand, Secondary, Terrestrial heat flow in the North Island of New Zealand, 10(4), 309-316, https://doi.org/10.1016/0377-0273(81)90083-4 Pandey 1991 Pandey, Om Prakash (1991), Terrestrial heat flow and lithospheric geothermal structure in New Zealand, Secondary, Terrestrial heat flow and lithospheric geothermal structure in New Zealand, 338–380, https://doi.org/10.1007/978-3-642-75582-8 17 Pang_1987 Pang, Zhonghe (1987), Zhangzhou Basin Geothermal System: Research on Genesis Model, Thermal Energy Potential and Hot Water Distribution Rules - (漳州盆地地热 系统:成因模式、热能潜力与热水分布规律的研究), Secondary, Zhangzhou Basin Geothermal System: Research on Genesis Model, Thermal Energy Potential and Hot Water Distribution Rules - (漳州盆地地热系统:成因模式、热能潜力与热水分布规 律的研究), Beijing, China, Chinese Academy of Sciences, Ph.D. thesis(Panxi_1989 Bureau, Panxi geological brigade of the Sichuan Geological (1989), Heat flow measurement for sichuan-hunan section of the south china deep geophysical profile, Secondary, Heat flow measurement for sichuan-hunan section of the south china deep geophysical profile, Parasnis_1975 Parasnis, D.S. (1975), Temperature Phenomena and Heat Flow Estimates in Two Precambrian Ore-bearing Areas in North Sweden, Secondary, Temperature Phenomena and Heat Flow Estimates in Two Precambrian Ore-bearing Areas in North Sweden, 43(2), 531-554, https://doi.org/10.1111/j.1365-246X.1975.tb00646.x Parasnis_1982 Parasnis, D.S. (1982), Geothermal flow and phenomena in two Swedish localities north of the Arctic circle, Secondary, Geothermal flow and phenomena in two Swedish localities north of the Arctic circle, 71(3), 545-554, https://doi.org/10.1111/j.1365-246X.1982.tb02782.x Paterson, W.S.B.; Law, L.K. (1966), Additional heat flow determinations in the area of Paterson_Law_1966 Mould Bay, arctic Canada, Secondary, Additional heat flow determinations in the area of Mould Bay, arctic Canada, 2), 237–246, https://doi.org/10.1139/e66-019 Pena-Dominguez_etal._2022 Peña-Domínguez, Juan Gerardo; Negrete-Aranda, Raquel; Neumann, Florian; Contreras, Juan; Spelz, Ronald M.; Vega-Ramírez, Luis Ángel; González-Fernández, Antonio (2022), Heat flow and 2D multichannel seismic reflection survey of the Devil's Hole geothermal reservoir in the Wagner basin, northern Gulf of California, Secondary, Heat flow and 2D multichannel seismic reflection survey of the Devil's Hole geothermal reservoir in the Wagner basin, northern Gulf of California, 103(102415, https://doi.org/10.1016/j.geothermics.2022.102415 Peng_etal._2015 Peng, Tao; Wu, Ji-Wen; Ren, Zi-Qiang; Xu, Sheng-Ping; Zhang, Hai-Chao (2015), Distribution of terrestrial heat flow and structural control in Huainan-Huaibei Coalfield 两淮煤田大地热流分布及其构造控制 - (两淮煤田大地热流分布及其构 造控制), Secondary, Distribution of terrestrial heat flow and structural control in Huainan-Huaibei Coalfield 两淮煤田大地热流分布及其构造控制 - (两淮煤田大地 热流分布及其构造控制), 58(7), 2391-2401, https://doi.org/10.6038/cjg20150716 Perry, L.D.; Costain, John K.; Geiser, P.A. (1979), Heat flow in western Virginia and a Perry_etal._1979 model for the origin of thermal springs in the folded Appalachians, Secondary, Heat flow in western Virginia and a model for the origin of thermal springs in the folded Appalachians, 84(B12), 6875-6883, https://doi.org/10.1029/JB084iB12p06875 Perry_etal._2004 Perry, Hannah K.C.; Jaupart, Claude; Mareschal, Jean-Claude; Rolandone, Frédérique; Bienfait, Gerard (2004), Heat flow in the Nipigon arm of the Keweenawan rift, northwestern Ontario, Canada, Secondary, Heat flow in the Nipigon arm of the Keweenawan rift, northwestern Ontario, Canada, 31(15), https://doi.org/10.1029/2004gl020159 Perry_etal._2006 Perry, Hannah K.C.; Jaupart, Claude; Mareschal, Jean-Claude; Bienfait, Gerard (2006), Crustal heat production in the Superior Province, Canadian Shield, and in North

America inferred from heat flow data, Secondary, Crustal heat production in the

Perusini_etal1982	Superior Province, Canadian Shield, and in North America inferred from heat flow data, 111(B4), https://doi.org/10.1029/2005jb003893 Perusini, P.; Squarci, P.; Taffi, L.; Loddo, M.; Mongelli, Francesco M.; Tramacere, Antonio (1982), Heat flow measurements in the Middle Tuscany Ridge between Monticiano and Roccastrada - (Misure di flusso di calore nella Dorsale Medio Toscana" tra Monticiano e Roccastrada), Secondary, Heat flow measurements in the
Pfister_etal1998	Middle Tuscany Ridge between Monticiano and Roccastrada -, https://doi.org/10.1594/pangaea.807639 Pfister, M.; Rybach, Ladislaus; Simsek, S. (1998), Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension, Secondary, Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension, 291(44287), 77–89, https://doi.org/10.1016/s0040-1951 (98)00032-8
Phillips_etal1969	Phillips, Joseph D.; Thompson, G.E.K.; Herzen, Richard P. Von; Bowen, V.T. (1969), Mid-Atlantic Ridge near 43°N latitude, Secondary, Mid-Atlantic Ridge near 43°N latitude, 74(12), 3069–3081, https://doi.org/10.1029/JB074i012p03069
Pigott_Betis_1996	Pigott, J.D.; Bettis, P.K. (1996), Heat flow and geothermal gradients of Irian Jaya- Papua New Guinea: Implications for regional hydrocarbon exploration, Secondary, Heat flow and geothermal gradients of Irian Jaya-Papua New Guinea: Implications for regional hydrocarbon exploration, 74(CONF-900702-),
Pinet_etal1991	Pinet, Christophe; Jaupart, Claude; Mareschal, Jean-Claude; Gariepy, Clement; Bienfait, Gerard; Lapointe, Raynald (1991), Heat-Flow and Structure of the Lithosphere in the Eastern Canadian Shield, Secondary, Heat-Flow and Structure of the Lithosphere in the Eastern Canadian Shield, 96(B12), 19941–19963, https://doi.org/10.1029/91jb01020
Podugu_etal2017	Podugu, Nagaraju; Ray, Labani; Singh, S.P.; Roy, Sukanta (2017), Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, northcentral India: Implications for thermal regime beneath the Indian shield, Secondary, Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: Implications for thermal regime beneath the Indian
Pollett_etal2019a	shield, 122(7), 5766–5788, https://doi.org/10.1002/2017jb014041 Pollett, Alicia; Hasterok, Derrick P.; Raimondo, Tom; Halpin, Jacqueline A.; Hand, Martin; Bendall, Betina; McLaren, Sandra (2019), Heat Flow in Southern Australia and Connections With East Antarctica, Secondary, Heat Flow in Southern Australia and Connections With East Antarctica, 20(11), 5352–5370,
Pollett_etal2019b	https://doi.org/10.1029/2019gc008418 Pollett, Alicia; Thiel, Stephan; Bendall, Betina; Raimondo, Tom; Hand, Martin (2019), Mapping the Gawler Craton–Musgrave Province interface using integrated heat flow and magnetotellurics, Secondary, Mapping the Gawler Craton–Musgrave Province interface using integrated heat flow and magnetotellurics, 756(43–56,
Polyak_etal1996	https://doi.org/10.1016/j.tecto.2019.02.017 Polyak, Boris G.; Fernandez, M.; Khutorskoy, M.D.; Soto, J.I.; Basov, I.A.; Comas, M.C.; Khain, V.Y.; Alonso, Belén; Agapova, G.V.; Mazurova, I.S.; Negredo, A.; Tochitsky, V.O.; delaLinde, J.; Bogdanov, N.A.; Banda, E. (1996), Heat flow in the Alboran Sea, western Mediterranean, Secondary, Heat flow in the Alboran Sea, western Mediterranean, 263(1), 191–218, https://doi.org/10.1016/0040-1951 (95)00178-6
Poort_etal2007	Poort, Jeffrey; Kutas, R.I.; Klerkx, J.; Beaubien, Se; Lombardi, S.; Dimitrov, L.; Vassilev, A.; Naudts, Lieven (2007), <i>Strong heat flow variability in an active shallow gas environment, Dnepr palaeo-delta, Black Sea</i> , Secondary, Strong heat flow variability in an active shallow gas environment, Dnepr palaeo-delta, Black Sea, 27(44288), 185–195, https://doi.org/10.1007/s00367-007-0072-4
Poort_etal2010	Poort; Jeffrey; Rimi; Abdelkrim; Lucazeau; Francis; Maliki; Ahmed; Bouquerel; Hélène (2010), Low heat flow in the Atlas Mountains and the implications for the origin of the uplift, Secondary, Low heat flow in the Atlas Mountains and the implications for the origin of the uplift, 12(10801,
Poort_etal2020	Poort, Jeffrey; Lucazeau, Francis; Gal, Virginie Le; Cin, Michela Dal; Leroux, Estelle;

Bouzid, Abderrezak; Rabineau, Marina; Palomino, Desirée; Battani, Anne; Akhmanov, Grigory G.; Ferrante, Giulia Matilde; Gafurova, Dina R.; Bachir, Roza Si; Koptev, Alexander A.; Tremblin, Maxime; Bellucci, Massimo; Pellen, Romain; Camerlenghi, Angelo; Migeon, Sébastien; Alonso, Belén; Ercilla, Gemma; Yelles-Chaouche, Abdel Karim; Khlystov, Oleg M. (2020), Heat flow in the Western Mediterranean: Thermal anomalies on the margins, the seafloor and the transfer zones, Secondary, Heat flow in the Western Mediterranean: Thermal anomalies on the margins, the seafloor and the transfer zones, 419(106064, https://doi.org/10.1016/j.margeo.2019.106064 Poort, Jeffrey; Klerkx, J. (2004), Absence of a regional surface thermal high in the Baikal rift - new insights from detailed contouring of heat flow anomalies, Secondary, Absence of a regional surface thermal high in the Baikal rift - new insights from detailed contouring of heat flow anomalies, 383(44289), 217-241, https://doi.org/10.1016/j.tecto.2004.03.011 Popov, Yuri A.; Pimenov, Vyacheslav P.; Pevzner, Lev A.; Romushkevich, Raisa A.; Popov, E.Y. (1998), Geothermal characteristics of the Vorotilovo deep borehole drilled into the Puchezh-Katunk impact structure, Secondary, Geothermal characteristics of the Vorotilovo deep borehole drilled into the Puchezh-Katunk impact structure, 291(44287), 205-223, https://doi.org/10.1016/s0040-1951 (98)00041-9 Popov, Yuri A.; Pevzner, Sergei L.; Pimenov, Vyacheslav P.; Romushkevich, Raisa A. (1999), New geothermal data from the Kola superdeep well SG-3, Secondary, New geothermal data from the Kola superdeep well SG-3, 306(3), 345-366, https://doi.org/10.1016/s0040-1951 (99)00065-7 Popov, Yuri A.; Spasennykh, Mikhail; Shakirov, Anuar; Chekhonin, Evgeny; Romushkevich, Raisa A.; Savelev, Egor; Gabova, Anastasia; Zagranovskaya, Dzhulia; Valiullin, Rim; Yuarullin, Rashid; Golovanova, Inessa; Sal'manova, Raushaniya Y. (2021), Advanced determination of heat flow density on an example of a West Russian oil field, Secondary, Advanced determination of heat flow density on an example of a West Russian oil field, 11(8), 346, https://doi.org/10.3390/geosciences11080346 Popova, A.K. (1974), Results of Measurement of Heat Flow in Water Areas -(Резултаты Измерениыа Теплового Потока На Акваториыакх), Secondary, Results of Measurement of Heat Flow in Water Areas - (Резултаты Измерениыа Теплового Потока На Акваториыакх), Moscow, USSR, 44228(81-86, Potter, Robert M. (1973), Heat flow of the Jemez plateau (abs.): Eos Trans, Secondary, Heat flow of the Jemez plateau (abs.): Eos Trans, Powell, William G. (1997), Thermal state of the lithosphere in the Colorado Plateau-Basin and Range transition zone, Utah, Secondary, Thermal state of the lithosphere in the Colorado Plateau-Basin and Range transition zone, Utah, Salt Lake City, University of Utah, Ph.D. thesis(10.1594/pangaea.805544 Pribnow, Dan F.C.; Kinoshita, Masataka; Stein, Carol A. (2000), Thermal data collection and heat flow recalculations for Ocean Drilling Program Legs 101–180, Secondary, Thermal data collection and heat flow recalculations for Ocean Drilling Program Legs 101-180, 120432), 25, Pribnow, Dan F.C.; Davis, Earl E.; Fisher, Andrew T. (2000), Borehole heat flow along the eastern flank of the Juan de Fuca Ridge, including effects of anisotrpy and temperature dependence of sediment thermal conductivity, Secondary, Borehole heat flow along the eastern flank of the Juan de Fuca Ridge, including effects of anisotrpy and temperature dependence of sediment thermal conductivity, 105(B6), 13449-13456, https://doi.org/10.1029/2000jb900005 Prol-Ledesma, Rosa-Maria; Sugrobov, V.M.; Flores, E.L.; Smirnov, Ya.B.; Gorshkov,

Poort_Klerkx_2004

Popov_etal._1998

Popov_etal._1999

Popov_etal._2021

Popova_1974

Potter_1973

Powell_1997

Pribnow_etal._2000a

Pribnow_etal._2000b

Prol-Ledesma_etal._1989

Prol-Ledesma_etal._2013

A.P.; Bondarenko, V.G.; Rashidov, V.A.; Nedopekin, L.N.; Gavrilov, V.A. (1989), *Heat flow variations along the middle America Trench*, Secondary, Heat flow variations along the middle America Trench, 11(1), 69–76,

https://doi.org/10.1594/pangaea.805577

Prol-Ledesma, Rosa Ma; Torres-Vera, Marco-Antonio; Rodolfo-Metalpa, Riccardo; Ángeles, Catalina; Deveze, Carlos H. Lechuga; Villanueva-Estrada, Ruth Esther;

Shumilin, Evgueni; Robinson, Carlos (2013), High heat flow and ocean acidification at a nascent rift in the northern Gulf of California, Secondary, High heat flow and ocean acidification at a nascent rift in the northern Gulf of California, 4(1), 1388, https://doi.org/10.1038/ncomms2390 Prol-Ledesma_etal._2018 Prol-Ledesma, Rosa-Maria; Cruz, Juan-Luis Carrillo-de la; Torres-Vera, Marco-Antonio; Membrillo-Abad, Akejandra-Selene; Espinoza-Ojeda, Orlando M. (2018), Heat flow map and geothermal resources in Mexico, Secondary, Heat flow map and geothermal resources in Mexico, 2(10.22201/igg.25940694.2018.2.51.105 Prol-Ledesma_etal._2021 Prol-Ledesma, Rosa Maria; Cruz, Juan Luis Carrillo De La; Torres-Vera, Marco-Antonio; Estradas-Romero, Alejandro (2022), High heat flow at the SW passive margin of the Gulf of California, Secondary, High heat flow at the SW passive margin of the Gulf of California, 34(3), 155-162, https://doi.org/10.1111/ter.12569 Puranen etal. 1968 Puranen, M.; Järvimäki, P.; Hämäläinen, U.; Lehtinen, S. (1968), Terrestrial heat flow in Finland, Secondary, Terrestrial heat flow in Finland, 6(3), 151-162, https://doi.org/10.1016/0016-7142 (68)90010-0 Purss_Cull_2001 Purss, M.B.J.; Cull, J.P. (2001), Heat-flow data in western Victoria, Secondary, Heatflow data in western Victoria, 48(1), 44287, https://doi.org/10.1046/j.1440-0952.2001.00840.x Puzankov_etal._1977 Puzankov, Y.M.; Bobrov, V.A.; Duchkov, Albert D.; Mitropol'skiy, A.S.; Gavshin, V.M. (1977), Radioactive elements and the heat flow of the earth's crust of the Kamchatka Peninsula - (Радиоактивные элементы и тепловой поток земной коры полуострова Камчатка), Secondary, Radioactive elements and the heat flow of the earth's crust of the Kamchatka Peninsula - (Радиоактивные элементы и тепловой поток земной коры полуострова Камчатка), Novosibirsk, USSR, Nauka, 128. Pye_Hyndman_1972 Pye, G.D.; Hyndman, Roy D. (1972), Heat-flow measurements in Baffin Bay and the Labrador Sea, Secondary, Heat-flow measurements in Baffin Bay and the Labrador Sea, 77(5), 938-944, https://doi.org/10.1029/JB077i005p00938 Qiu_etal._2022 Qiu, Nan-Sheng; Chang, Jian; Zhu, Chuan-Qing; Liu, Wen; Zuo, Yin-Hui; Xu, Wei; Li, Dan (2022), Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China, Secondary, Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China, 224(103884, https://doi.org/10.1016/j.earscirev.2021.103884 Qui_2003 Qiu, Nan-Sheng (2003), Geothermal regime in the Qaidam basin, northeast Qinghai-Tibet Plateau, Secondary, Geothermal regime in the Qaidam basin, northeast Qinghai-Tibet Plateau, 140(6), 707-719, https://doi.org/10.1017/s0016756803008136 Rabinowitz_Ludwig_1980 Rabinowitz, Philip D.; Ludwig, William J. (1980), Geophysical measurements at candidate drill sites along an east-west flow line in the Central Atlantic Ocean, Secondary, Geophysical measurements at candidate drill sites along an east-west flow line in the Central Atlantic Ocean, 35(1), 243-275, https://doi.org/10.1016/0025-3227 (80)90033-x Rahman_Roy_1981 Rahman, J.L.; Roy, Robert F. (1981), Preliminary heat-flow measurement at the Illinois deep drill hole, Secondary, Preliminary heat-flow measurement at the Illinois deep drill hole, 62(388, Raksaskulwong_Thienprasert_1995 Raksaskulwong, Manop; Thienprasert, Amnuaychai (1995), Heat flow studies and geothermal energy development in Thailand, Secondary, Heat flow studies and geothermal energy development in Thailand, 129-144, https://doi.org/10.1594/pangaea.807641 Ramaekers_1991 Ramaekers, J.J.F. (1991), Catalogue of Heat Flow Density Data: The Netherlands, Secondary, Catalogue of Heat Flow Density Data: The Netherlands, 126–128, https://doi.org/10.1594/pangaea.807603 Rankin, Douglas S. (1974), Heat flow: heat production studies in Nova Scotia, Rankin_1974 Secondary, Heat flow: heat production studies in Nova Scotia, Halifax, Canada, Dalhousie University, Ph.D. thesis(Rankin_Hyndman_1971 Rankin, Douglas S.; Hyndman, Roy D. (1971), Shallow Water Heat Flow

Measurements in Bras D'or Lake, Nova Scotia, Secondary, Shallow Water Heat Flow Measurements in Bras D'or Lake, Nova Scotia, 8(1), 96-101, https://doi.org/10.1139/e71-006 Rao_1970 Rao, R.U.M. (1970), Heat flow studies in Kolar schist belt, Singbhum thrust zone and Godavari valley, India, Secondary, Heat flow studies in Kolar schist belt, Singbhum thrust zone and Godavari valley, India, Waltair, India, Andhra University, Ph.D. thesis(166, Rao_etal._1970a Rao, R.U.M.; Verma, R.K.; Rao, G.Venkateshwar; Hamza, Valiya M.; Panda, P.K.; Gupta, Mohan L. (1970), Heat flow studies in the Godavari Valley (India), Secondary, Heat flow studies in the Godavari Valley (India), 10(1), 165-181, https://doi.org/10.1016/0040-1951 (70)90105-8 Rao_etal._1970b Rao, R.U.M.; Verma, R.K.; Rao, G. Venkateshwar; Gupta, Mohan L. (1970), Heat flow at Damua and Mohapani, Satpura Gondwana basin, India, Secondary, Heat flow at Damua and Mohapani, Satpura Gondwana basin, India, 7(5), 406-412, https://doi.org/10.1016/0012-821x(70)90082-8 Rao_etal._1976 Rao, R.U.M.; Rao, G.Venkateshwar; Narain, H. (1976), Radioactive heat generation and heat flow in the Indian Shield, Secondary, Radioactive heat generation and heat flow in the Indian Shield, 30(1), 57-64, https://doi.org/10.1016/0012-821x(76)90008-x Rao_etal._2013 Rao, Song; Hu, Sheng-Biao; Zhu, Chuan-Qing; Tang, Xiao-Yin; Li, Wei-Wei; Wang, Ji-Yang (2013), Characteristics of Heat Flow and Lithospheric Thermal Structure in the Junggar Basin, Northwestern China, Secondary, Characteristics of Heat Flow and Lithospheric Thermal Structure in the Junggar Basin, Northwestern China, 56(5), 661-673, https://doi.org/10.1002/cjg2.20061 Rao_etal._2016 Rao, Song; Jiang, Guang-Zheng; Gao, Y.J.; Hu, Sheng-Biao; Wang, Ji-Yang (2016), The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin, Secondary, The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin, 59(2176-2190, https://doi.org/10.6038/cjg20160622 Rao_Rao_1974 Rao, R.U.M.; Rao, G.Venkateshwar (1974), Results of some geothermal studies in Singhbhum Thrust Belt, India, Secondary, Results of some geothermal studies in Singhbhum Thrust Belt, India, 3(4), 153-161, https://doi.org/10.1016/0375-6505(74)90014-5 Rao_Rao_1980 Rao, G. Venkateshwar; Rao, R.U.M. (1980), A geothermal study of the Jharia Gondwana basin (India) Heat flow results from several holes and heat production of basement rocks, Secondary, A geothermal study of the Jharia Gondwana basin (India) Heat flow results from several holes and heat production of basement rocks, 48(2), 397-405, https://doi.org/10.1016/0012-821x (80)90204-6 Rao_Rao_1983 Rao, G. Venkateshwar; Rao, R.U.M. (1983), Heat flow in Indian Gondwana basins and heat production in basement rocks, Secondary, Heat flow in Indian Gondwana basins and heat production in basement rocks, 91(45293), 105-117, https://doi.org/10.1016/0040-1951(83)90060-4 Ravnik_1991 Ravnik, D. (1991), Catalogue of Heat Flow Density Data: Yugoslavia, Secondary, Catalogue of Heat Flow Density Data: Yugoslavia, 152-153, https://doi.org/10.1594/pangaea.807608 Ray_2021 Ray, Labani (2021), Heat Flow Studies in India: An Update, Secondary, Heat Flow Studies in India: An Update, 97(1214–1225, https://doi.org/10.1007/s12594-021-1851-7 Ray, Labani; Kumar, P.Senthil; Reddy, G.K.; Roy, Sukanta; Rao, G.Venkateshwar; Ray_etal._2003 Srinivasan, R.; Rao, R.U.M. (2003), High mantle heat flow in a Precambrian granulite province: Evidence from southern India, Secondary, High mantle heat flow in a Precambrian granulite province: Evidence from southern India, 108(B2), https://doi.org/10.1029/2001jb000688 Redfield_1965 Redfield, Alfred C. (1965), Terrestrial Heat Flow through Salt-Marsh Peat, Secondary, Terrestrial Heat Flow through Salt-Marsh Peat, 148(3674), 1219,

https://doi.org/10.1126/science.148.3674.1219

Reiter, Marshall; Clarkson, G. (1983), Relationships between heat flow, Reiter_Clarkson_1983 paleotemperatures, coalification and petroleum maturation in the San Juan Basin, northwest New Mexico and southwest Colorado, Secondary, Relationships between heat flow, paleotemperatures, coalification and petroleum maturation in the San Juan Basin, northwest New Mexico and southwest Colorado, 4), 323-339, https://doi.org/10.1016/0375-6505 (83)90005-6 Reiter_Costain_1973 Reiter, Marshall; Costain, John K. (1973), Heat flow in southwestern Virginia, Secondary, Heat flow in southwestern Virginia, 78(8), 1323-1333, https://doi.org/10.1029/JB078i008p01323 Reiter_etal._1975 Reiter, Marshall; Edwards, C.L.; Hartman, Harold; Weidman, Charles (1975), Terrestrial Heat Flow along the Rio Grande Rift, New Mexico and Southern Colorado, Secondary, Terrestrial Heat Flow along the Rio Grande Rift, New Mexico and Southern Colorado, 86(6), 811-818, https://doi.org/10.1130/0016-7606 (1975)86<811:Thfatr>2.0.Co;2 Reiter_etal._1976a Reiter, Marshall; Simmons, Gene; Chessman, Mary D.; England, T.; Hartman, Harold; Weidman, Charles (1976), Terrestrial heat flow near Datil, New Mexico, Secondary, Terrestrial heat flow near Datil, New Mexico, 33-37, Reiter_etal._1976b Reiter, Marshall; Weidman, Charles; Edwards, C.L.; Hartman, Harold (1976), Subsurface temperature data in Jemez Mountains, New Mexico, Secondary, Subsurface temperature data in Jemez Mountains, New Mexico, NP-22280), https://doi.org/10.1594/pangaea.805616 Reiter_etal._1978 Reiter, Marshall; Shearer, Charles; Edwards, C.L. (1978), Geothermal anomalies along the Rio Grande rift in New Mexico, Secondary, Geothermal anomalies along the Rio Grande rift in New Mexico, 6(2), 85-88, Reiter_etal._1979a Reiter, Marshall; Mansure, Arthur J.; Shearer, Charles (1979), Geothermal characteristics of the Colorado Plateau, Secondary, Geothermal characteristics of the Colorado Plateau, 61(1), 183-195, Reiter_etal._1985 Reiter, Marshall; Minier, Jeffrie; Gutjahr, A. (1985), Variance analysis of estimates and measurements of terrestrial heat flow, Secondary, Variance analysis of estimates and measurements of terrestrial heat flow, 14(4), 499-509, https://doi.org/10.1016/0375-6505(85)90001-x Reiter_etal._1986 Reiter, Marshall; Eggleston, Roberta Eaton; Broadwell, Brenda R.; Minier, Jeffrie (1986), Estimates of terrestrial heat flow from deep petroleum tests along the Rio Grande Rift in central and southern New Mexico, Secondary, Estimates of terrestrial heat flow from deep petroleum tests along the Rio Grande Rift in central and southern New Mexico, 91(B6), 6225-6245, https://doi.org/10.1029/JB091iB06p06225 Reiter_Mansure_1983 Reiter, Marshall; Mansure, Arthur J. (1983), Geothermal studies in the San Juan Basin and the Four Corners area of the Colorado Plateau I. Terrestrial heat-flow measurements, Secondary, Geothermal studies in the San Juan Basin and the Four Corners area of the Colorado Plateau I. Terrestrial heat-flow measurements, 91(3), 233-251, https://doi.org/10.1016/0040-1951(83)90043-4 Reiter_Shearer_1979 Reiter, Marshall; Shearer, Charles (1979), Terrestrial heat flow in eastern Arizona: A first report, Secondary, Terrestrial heat flow in eastern Arizona: A first report, 84(B11), 6115-6120, https://doi.org/10.1029/JB084iB11p06115 Reiter_Smith_1977 Reiter, Marshall; Smith, Roger N. (1977), Subsurface temperature data in the Socorro Peak KGRA, New Mexico, Secondary, Subsurface temperature data in the Socorro Peak KGRA, New Mexico, 5(10), https://doi.org/10.1594/pangaea.807643 Reiter_Tovar_1982 Reiter, Marshall; Tovar, Jorge C. (1982), Estimates of terrestrial heat flow in northern Chihuahua, Mexico, based upon petroleum bottom-hole temperatures, Secondary, Estimates of terrestrial heat flow in northern Chihuahua, Mexico, based upon petroleum bottom-hole temperatures, 93(7), https://doi.org/10.1130/0016-7606(1982)93<613:Eothfi>2.0.Co;2 Reitzel_1961a Reitzel, John S. (1961), Some heat-flow measurements in the North Atlantic, Secondary, Some heat-flow measurements in the North Atlantic, 7), 2267-2268, https://doi.org/10.1029/JZ066i007p02267

Reitzel, John S. (1961), Studies of Heat Flow at Sea, Secondary, Studies of Heat Flow Reitzel_1961b at Sea, Cambridge, Harvard University, Ph.D. thesis(90, Reitzel_1963 Reitzel, John S. (1963), A region of uniform heat flow in the North Atlantic, Secondary, A region of uniform heat flow in the North Atlantic, 68(18), 5191-5196, https://doi.org/10.1029/JZ068i018p05191 Ren 1998 Ren, Zhan-Li (1998), Determination of heat flow in well gincan 1 in Qinshui basin, Shanxi province, Secondary, Determination of heat flow in well qincan 1 in Qinshui basin, Shanxi province, 32(2), 251-253, Ren_etal._2000b Ren, Zhan-Li; Liu, Chi-Yang; Zhang, Xiao-Hui; Wu, Han-Ning; Chen, Gang; Li, Jin-Bu; Ma, Tuan-Xiao (2000), Thermal history recovery and comparative research on Jiuquan basin group, Secondary, Thermal history recovery and comparative research on Jiuquan basin group, 43(5), 672-684, Ren, Zi-Qiang; Peng, Tao; Shen, Shuhao; Zhang, Hai-Chao; Xu, Sheng-Ping; Wu, Ji-Ren_etal._2015 Wen (2015), The Distribution Characteristics of Current Geothermal Field in Huainan Coalfield, Secondary, The Distribution Characteristics of Current Geothermal Field in Huainan Coalfield, 21(1), 147–154, https://doi.org/10.16108/j.issn1006-7493.2014109 Revelle_Maxwell_1952 Revelle, Roger; Maxwell, Arthur E. (1952), Heat Flow through the Floor of the Eastern North Pacific Ocean, Secondary, Heat Flow through the Floor of the Eastern North Pacific Ocean, 170(4318), 199-200, https://doi.org/10.1038/170199a0 Reznik_Bartov_2021 Reznik, Itay J.; Bartov, Yuval (2021), Present Heat Flow and Paleo-Geothermal Anomalies in the Southern Golan Heights, Israel, Secondary, Present Heat Flow and Paleo-Geothermal Anomalies in the Southern Golan Heights, Israel, 8(3), e2020EA001299, https://doi.org/10.1029/2020ea001299 Rhea_etal._1964 Rhea, K.; Northrop, J.; Herzen, Richard P. Von (1964), Heat-flow measurements between North America and the Hawaiian Islands, Secondary, Heat-flow measurements between North America and the Hawaiian Islands, 1(3), 220-224, https://doi.org/10.1016/0025-3227(64)90060-x Richardson, S.W.; Oxburgh, Ernest R. (1978), Heat flow, radiogenic heat production Richardson_Oxburgh_1978 and crustal temperatures in England and Wales, Secondary, Heat flow, radiogenic heat production and crustal temperatures in England and Wales, 135(3), 323-337, https://doi.org/10.1144/gsjgs.135.3.0323 Riedel_etal._2021 Riedel, Michael; Bialas, Joerg; Villinger, Heinrich W.; Pape, Thomas; Haeckel, Matthias; Bohrmann, Gerhard (2021), Heat flow measurements at the Danube Deep-Sea Fan, Western Black Sea, Secondary, Heat flow measurements at the Danube Deep-Sea Fan, Western Black Sea, 11(6), 240, https://doi.org/10.3390/geosciences11060240 Rimi_1990 Rimi, Abdelkrim (1990), Geothermal gradients and heat flow trends in Morocco, Secondary, Geothermal gradients and heat flow trends in Morocco, 19(5), 443-454, https://doi.org/10.1016/0375-6505(90)90057-i Rimi_etal._1998 Rimi, Abdelkrim; Chalouan, Ahmed; Bahi, Lahcen (1998), Heat flow in the westernmost part of the Alpine Mediterranean system (the Rif, Morocco), Secondary, Heat flow in the westernmost part of the Alpine Mediterranean system (the Rif, Morocco), 285(1), 135-146, https://doi.org/10.1016/s0040-1951 (97)00185-6 Rimi_Lucazeau_1987 Rimi, Abdelkrim; Lucazeau, Francis (1987), Heat flow density measurements in northern Morocco, Secondary, Heat flow density measurements in northern Morocco, 6(6), 835-843, https://doi.org/10.1016/0899-5362 (87)90041-8 Rimi_Lucazeau_1991 Rimi, Abdelkrim; Lucazeau, Francis (1991), Catalogue of Heat Flow Density Data: Morocco, E. Hurtig, Vladimir Cermak, Ralph Haenel, Vladimir Zui, Secondary, Catalogue of Heat Flow Density Data: Morocco, Gotha, Germany, Hermann & Haack Verlagsgesellschaft, 60-62, Risk_Hochstein_1974 Risk, G.F.; Hochstein, Manfred P. (1974), Heat flow at arrival heights, Ross Island, Antarctica, Secondary, Heat flow at arrival heights, Ross Island, Antarctica, 17(3), 629-644, https://doi.org/10.1080/00288306.1973.10421586 Ritter_etal._2004 Ritter, Ulrich; Zielinski, Gary W.; Weiss, Hermann M.; Zielinski, Robyn L.B.; Saettem, Joar (2004), Heat flow in the Voring Basin, Mid-Norwegian shelf, Secondary, Heat

flow in the Voring Basin, Mid-Norwegian shelf, 10(4), 353-365, https://doi.org/10.1144/1354-079303-616 Roberts_etal._1984 Roberts, D.G.; Backman, J.; Morton, A.; Murray, John W.; Keene, J.B. (1984), Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the West Margin of Rockall Plateau, Secondary, Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the West Margin of Rockall Plateau, 81(883-911, https://doi.org/10.2973/dsdp.proc.81.139.1984 Roded_2012 Roded, R. (2012), Basal heat flow and hydrothermal regime at the Golan-Ajloun hydrological Basins, Secondary, Basal heat flow and hydrothermal regime at the Golan-Ajloun hydrological Basins, Jerusalem, Israel, Ministry of Energy and Water Resources Geological Survey of Israel, Roded_etal._2013 Roded, R.; Shalev, E.; Katoshevski, D. (2013), Basal heat-flow and hydrothermal regime at the Golan-Ajloun hydrological basins, Secondary, Basal heat-flow and hydrothermal regime at the Golan-Ajloun hydrological basins, 476(200-211, https://doi.org/10.1016/j.jhydrol.2012.10.035 Rolandone_etal._2002 Rolandone, Frédérique; Jaupart, Claude; Mareschal, Jean-Claude; Gariepy, Clement; Bienfait, Gerard; Carbonne, C.; Lapointe, Raynald (2002), Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield, Secondary, Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield, 107(B12), https://doi.org/10.1029/2001jb000698 Rolandone_etal._2003a Rolandone, Frédérique; Mareschal, Jean-Claude; Jaupart, Claude; Gosselin, C.; Bienfait, Gerard; Lapointe, Raynald (2003), Heat flow in the western Superior Province of the Canadian shield, Secondary, Heat flow in the western Superior Province of the Canadian shield, 30(12), https://doi.org/10.1029/2003gl017386 Rolandone_etal._2013 Rolandone, Frédérique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène (2013), New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform, Secondary, New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform, 589(77-89, https://doi.org/10.1016/j.tecto.2012.12.034 Rolandone_etal._2020 Rolandone, Frédérique; Lucazeau, Francis; Poort, Jeffrey; Leroy, Sylvie (2020), Heat flow estimates offshore Haiti in the Caribbean plate, Secondary, Heat flow estimates offshore Haiti in the Caribbean plate, 32(3), 179-186, https://doi.org/10.1111/ter.12454 Rona_etal._1996 Rona, P.A.; Petersen, S.; Becker, Keir; Herzen, Richard P. Von; Hannington, M.D.; Herzig, P.M.; Naka, J.; Lalou, C.; Thompson, G.E.K. (1996), Heat flow and mineralogy of TAG relict high-temperature hydrothermal zones: Mid-Atlantic ridge 26 degrees N, 45 degrees W, Secondary, Heat flow and mineralogy of TAG relict high-temperature hydrothermal zones: Mid-Atlantic ridge 26 degrees N, 45 degrees W, 23(23), 3507-3510, https://doi.org/10.1029/96gl03257 Ross_1971 Ross, Sylvia H. (1971), Geothermal potential of Idaho. Review with 70 references, Secondary, Geothermal potential of Idaho. Review with 70 references, 150(Roy_1963 Roy, Robert F. (1963), Heat flow measurements in the United States, Secondary, Heat flow measurements in the United States, Cambridge, Harvard University, Ph.D. thesis(76. Roy, S. (2008), Heat flow studies in India during the Past Five Decades, Secondary, Roy_2008 Heat flow studies in India during the Past Five Decades, 68(89-122, Roy, Robert F.; Decker, Edward R. (1965), Program: Forty-Sixth Annual Meeting, Roy_Decker_1965 Washington, D. C., April 19–22, 1965, Secondary, Program: Forty-Sixth Annual Meeting, Washington, D. C., April 19-22, 1965, 46(1), 174-175, https://doi.org/10.1029/TR046i001p00005

5221, https://doi.org/10.1029/JB073i016p05207

Roy, Robert F.; Decker, Edward R.; Blackwell, David D.; Birch, Francis S. (1968), *Heat flow in the United States*, Secondary, Heat flow in the United States, 73(16), 5207–

Roy, Robert F.; Blackwell, David D.; Decker, Edward R. (1972), Continental heat flow,

Roy_etal._1968

Roy_etal._1972

Secondary, Continental heat flow, 506-543, Roy_etal._1980 Roy, Robert F.; Taylor, Bruce; Pyron, Arthur J.; Maxwell, James C. (1980), Heat-flow measurements in the state of Arkansas, Secondary, Heat-flow measurements in the state of Arkansas, Roy_etal._1983 Roy, Robert F.; Taylor, Bruce; Miklas Jr, Michael P. (1983), Geothermal exploration in Trans-Pecos, Texas/New Mexico. Final report, Secondary, Geothermal exploration in Trans-Pecos, Texas/New Mexico. Final report, Texas, Texas Energy and Natural Resources Advisory Council Austin (USA), https://doi.org/10.2172/6719351 Roy_etal._2003 Roy, Sukanta; Ray, Labani; Kumar, P.Senthil; Reddy, G.K.; Srinivasan, R. (2003), Heat flow and heat production in the Precambrian gneiss-granulite province of southern India, Secondary, Heat flow and heat production in the Precambrian gneiss-granulite province of southern India, 50(177-191, Roy_etal._2007 Roy, Sukanta; Ray, Labani; Bhattacharya, A.; Srinivasan, R. (2007), New Heat Flow Data From Deep Boreholes In The Greenstonegranite- Gneiss And Gneissgranulite Provinces Of South India, Secondary, New Heat Flow Data From Deep Boreholes In The Greenstonegranite- Gneiss And Gneissgranulite Provinces Of South India, Roy_etal._2008 Roy, Sukanta; Ray, Labani; Bhattacharya, A.; Srinivasan, R. (2008), Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India, Secondary, Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India, 97(2), 245-256, https://doi.org/10.1007/s00531-007-0239-2 Roy_Rao_1999 Roy, Sukanta; Rao, R.U.M. (1999), Geothermal investigations in the 1993 Latur earthquake area, Deccan Volcanic Province, India, Secondary, Geothermal investigations in the 1993 Latur earthquake area, Deccan Volcanic Province, India, 306(2), 237-252, https://doi.org/10.1016/s0040-1951 (99)00051-7 Roy_Rao_2000 Roy, Sukanta; Rao, R.U.M. (2000), Heat flow in the Indian shield, Secondary, Heat flow in the Indian shield, 105(B11), 25587-25604, https://doi.org/10.1029/2000jb900257 Ruppel, Carolyn; Herzen, Richard P. Von; Bonneville, Alain (1995), Heat-Flux through Ruppel_etal._1995 an Old (Approximate-to-175 Ma) Passive Margin - Offshore Southeastern United-States, Secondary, Heat-Flux through an Old (Approximate-to-175 Ma) Passive Margin - Offshore Southeastern United-States, 100(B10), 20037-20057, https://doi.org/10.1029/95jb01860 Ryan_1969 Ryan, William Bradley Frear (1969), The Floor of the Mediterranean Sea, Secondary, The Floor of the Mediterranean Sea, Columbia University, Ph.D. thesis(299, Rybach_Finckh_1979 Rybach, Ladislaus; Finckh, Peter G. (1979), Heat flow data in Switzerland, Secondary, Heat flow data in Switzerland, Heidelberg-Berlin-New York, Springer, 278-282, https://doi.org/10.1007/978-3-642-95357-6 29 Rysgaard_etal._2018 Rysgaard, S.; Bendtsen, J.; Mortensen, J.; Sejr, M.K. (2018), High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream, Secondary, High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream, 8(1), 1344, https://doi.org/10.1038/s41598-018-19244-x Sacks_etal._2000 Sacks, I.S.; Suyehiro, K.; Acton, G.D. (2000), Leg 186 Summary, Secondary, Leg 186 Summary, 186(10.2973/odp.proc.ir.186.101.2000 Saettem_1988 Saettem, Joar (1988), Heat flow measurements in the Barents Sea -(Varmestrømsmaelinger i Barentshavet), Secondary, Heat flow measurements in the Barents Sea - (Varmestrømsmaelinger i Barentshavet), 18(406–408, https://doi.org/10.1594/pangaea.810096 Šafanda, Jan; Kresl, Milan; Čermák, Vladimír; Hasanean, A.R.G.; Deebes, H.A.; Abd-Safanda_etal._1995 Alla, M.A.; Moustafa, S.M. (1995), Subsurface temperature measurements and terrestrial heat flow estimates in the Aswan region, Egypt, Secondary, Subsurface temperature measurements and terrestrial heat flow estimates in the Aswan region, Egypt, 39(2), 162–176, https://doi.org/10.1594/pangaea.805737 Saki_etal._1986 Saki, Takao; Kaneda, Yoshiyuki; Aoyagi, Koichi (1986), Measurement of heat flow in the continental shelf of the Japan Sea, Secondary, Measurement of heat flow in the

continental shelf of the Japan Sea, 15(123-128,

https://doi.org/10.1594/pangaea.807665

Salat_1967 Salat, P. (1967), The measurement of terrestrial heat flow in the Mecsek Mts - (The

> measurement of terrestrial heat flow in the Mecsek Mts), Secondary, The measurement of terrestrial heat flow in the Mecsek Mts - (The measurement of terrestrial heat flow in the Mecsek Mts), Budapest, Hungary, Ph.D. thesis(

Salat, P. (1968), The measurement of terrestrial heat flow at Budapest and Recsk: Unpublished paper, Secondary, The measurement of terrestrial heat flow at

Budapest and Recsk: Unpublished paper,

Salmi_etal._2014 Salmi, Marie S.; Johnson, Paul H.; Tivey, Maurice A.; Hutnak, Michael (2014),

Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences, Secondary, Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge:

Observations and inferences, 119(9), 6841-6854,

https://doi.org/10.1002/2014jb011086

Salnikov_1976a Salnikov, V.E. (1976), Geothermal gradients and heat flows in the Magnitagorsk

> megasynclinorium - (Геотермические градиенты и тепловой поток в Магнитогорском мегасинклинории), Salnikov, V.E., Secondary, Geothermal gradients and heat flows in the Magnitagorsk megasynclinorium - (Геотермические градиенты и тепловой поток в Магнитогорском мегасинклинории), Moscow,

USSR, 36-44,

Salat 1968

Salnikov_1984

Saltus_Lachenbruch_1991

Sanchez-Zamora_etal._1991

Salnikov_1976b Salnikov, V.E. (1976), Heat flows in the Southern Urals - (Тепловые потоки на

Южном Урале), Salnikov, V.E., Secondary, Heat flows in the Southern Urals -

(Тепловые потоки на Южном Урале), Moscow, USSR, 1(45-52,

Salnikov_1982 Salnikov, V.E. (1982), New data on the heat flow distribution in the Southern Urals -

> (Новые данные о распределении теплового потока на Южном Урале), Secondary, New data on the heat flow distribution in the Southern Urals - (Новые данные о распределении теплового потока на Южном Урале), 265(4), 944-947,

Salnikov, V.E. (1984), Geothermal regime of the Southern Urals - (Геотермический режим Южного Урала), Salnikov, V.E., Secondary, Geothermal regime of the Southern Urals - (Геотермический режим Южного Урала), Moscow, USSR, Nauka,

88,

Salnikov_Golovanova_1990 Salnikov, V.E.; Golovanova, I.V. (1990), New data on the distribution of heat flow in

> the Urals - (Новые данные о распределении теплового потока на Урале), Secondary, New data on the distribution of heat flow in the Urals - (Новые данные о

распределении теплового потока на Урале), 12(12), 129-135,

Salnikov_Ogarinov_1977 Salnikov, V.E.; Ogarinov, I.S. (1977), An area of abnormally low heat flows in the

> Southern Urals - (Зона аномально низких тепловых потоков на Южном Урале), Secondary, An area of abnormally low heat flows in the Southern Urals - (Зона

аномально низких тепловых потоков на Южном Урале), 237(6), 1456-1459,

Saltus, R.W.; Lachenbruch, Arthur H. (1991), Thermal Evolution of the Sierra-Nevada -Tectonic Implications of New Heat-Flow Data, Secondary, Thermal Evolution of the

Sierra-Nevada - Tectonic Implications of New Heat-Flow Data, 10(2), 325-344,

https://doi.org/10.1029/90tc02681

Sammel_Craig_1981 Sammel, Edward A.; Craig, Robert W. (1981), The geothermal hydrology of Warner

Valley, Oregon - a reconnaissance study, Secondary, The geothermal hydrology of

Warner Valley, Oregon - a reconnaissance study,

of the Northern Gulf of California: Structural and Thermal Interpretations, J. Paul Dauphin, Bernd R.T. Simoneit, Secondary, Magnetic Anomalies of the Northern Gulf of California: Structural and Thermal Interpretations, American Association of

Sanchez-Zamora, O.; Doguin, P.; Couch, R.W.; Ness, G.E. (1991), Magnetic Anomalies

Petroleum Geologists, 47(0, https://doi.org/10.1306/m47542c19

Sarkar_Singh_2005 Sarkar, R.K.; Singh, O.P. (2005), A note on the heat flow studies at Sohagpur and

Raniganj coalfield areas, India, Secondary, A note on the heat flow studies at

Sohagpur and Raniganj coalfield areas, India, 53(197-204,

https://doi.org/10.1594/pangaea.805742

Sass_1964a Sass, John H. (1964), Heat-flow values from the precambrian shield of western

Sass_1964b	Australia, Secondary, Heat-flow values from the precambrian shield of western Australia, 69(2), 299–308, https://doi.org/10.1029/JZ069i002p00299 Sass, John H. (1964), Heat flow values from eastern Australia, Secondary, Heat flow values from eastern Australia, 69(18), 3889–3893,
Sass_1984	https://doi.org/10.1029/JZ069i018p03889 Sass, John H. (1984), <i>Thermal studies at the Brantley Damsite on the Pecos River near Carlsbad, New Mexico</i> , Secondary, Thermal studies at the Brantley Damsite on the
Sass_Behrendt_1980	Pecos River near Carlsbad, New Mexico, https://doi.org/10.3133/ofr84663 Sass, John H.; Behrendt, J.C. (1980), <i>Heat flow from the Liberian Precambrian Shield</i> , Secondary, Heat flow from the Liberian Precambrian Shield, 85(B6), 3159–3162,
Sass_etal1967	https://doi.org/10.1029/JB085iB06p03159 Sass, John H.; Clark Jr, Sydney P.; Jaeger, J.C. (1967), <i>Heat flow in the Snowy Mountains of Australia</i> , Secondary, Heat flow in the Snowy Mountains of Australia, 72(10), 2635–2647, https://doi.org/10.1029/JZ072i010p02635
Sass_etal1968	Sass, John H.; Killeen, P.G.; Mustonen, E.D. (1968), Heat flow and surface radioactivity in the Quirke Lake Syncline near Elliot Lake, Ontario, Canada, Secondary, Heat flow and surface radioactivity in the Quirke Lake Syncline near Elliot Lake,
Sass_etal1971a	Ontario, Canada, 5(6), 1417–1428, https://doi.org/10.1139/e68-141 Sass, John H.; Lachenbruch, Arthur H.; Munroe, Robert J. (1971), Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations, Secondary, Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations, 76(14), 3391–3401,
Sass_etal1971b	https://doi.org/10.1029/JB076i014p03391 Sass, John H.; Lachenbruch, Arthur H.; Jessop, Alan M. (1971), <i>Uniform heat flow in a deep hole in the Canadian Shield and its paleoclimatic implications</i> , Secondary, Uniform heat flow in a deep hole in the Canadian Shield and its paleoclimatic
Sass_etal1971c	implications, 76(35), 8586–8596, https://doi.org/10.1029/JB076i035p08586 Sass, John H.; Lachenbruch, Arthur H.; Munroe, Robert J.; Greene, Gordon W.; Moses Jr, Thomas H. (1971), <i>Heat flow in the western United States</i> , Secondary, Heat flow in the western United States, 7(26), 6376–6413,
Sass_etal1972	Sass, John H.; Nielsen, Bjarne Leth; Wollenberg, Harold A.; Munroe, Robert J. (1972), Heat flow and surface radioactivity at two sites in South Greenland, Secondary, Heat flow and surface radioactivity at two sites in South Greenland, 77(32), 6435–6444, https://doi.org/10.1029/JB077i032p06435
Sass_etal1974	Sass, John H.; Munroe, Robert J.; Moses Jr, Thomas H. (1974), <i>Heat flow from eastern Panama and northwestern Colombia</i> , Secondary, Heat flow from eastern Panama and northwestern Colombia, 21(2), 134–142, https://doi.org/10.1016/0012-821x (74)90046-6
Sass_etal1976a	Sass, John H.; Olmsted, F.H.; Sorey, M.L.; Wollenberg, Harold A.; Lachenbruch, Arthur H.; Munroe, Robert J.; Galanis Jr, S. Peter (1976), <i>Geothermal data from test wells drilled in Grass Valley and Buffalo Valley, Nevada</i> , Secondary, Geothermal data from test wells drilled in Grass Valley and Buffalo Valley, Nevada, https://doi.org/10.2172/7327301
Sass_etal1976b	Sass, John H.; Jaeger, J.C.; Munroe, Robert J. (1976), Heat flow and near surface radioactivity in Australian continental crust, Secondary, Heat flow and near surface radioactivity in Australian continental crust, 76-250), 91, https://doi.org/10.3133/ofr76250
Sass_etal1976c	Sass, John H.; Galanis Jr, S. Peter; Munroe, Robert J.; Urban, Thomas C. (1976), Heat-flow data from southeastern Oregon, Secondary, Heat-flow data from southeastern Oregon,
Sass_etal1976d	Sass, John H.; Wollenberg, Harold A.; Somma, D.E. di; Ziagos, John P. (1976), Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada, Secondary, Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada, USA, Geological Survey Reston VA (USA); California Univ. Berkeley (USA). Lawrence Berkeley Lab., 17, https://doi.org/10.2172/7300767

Sass_etal._1978b

Sass, John H.; Galanis Jr, S. Peter; Marshall, B.Vaughn; Lachenbruch, Arthur H.;

	Munroe, Robert J.; Moses Jr, Thomas H. (1978), Conductive heat flow in the
	Randsburg area, California, Secondary, Conductive heat flow in the Randsburg area,
	California, 41, https://doi.org/10.3133/ofr78756
Sass_etal1979a	Sass, John H.; Kennelly, J.P.; Wendt, W.E.; Moses Jr, Thomas H.; Ziagos, John P.
	(1979), In situ determination of heat flow in unconsolidated sediments, Secondary, In
	situ determination of heat flow in unconsolidated sediments,
Sass_etal1979b	Sass, John H.; Zoback, Mary Lou; Galanis Jr, S. Peter (1979), Heat flow in relation to
	hydrothermal activity in the southern black rock desert, Nevada, Secondary, Heat
	flow in relation to hydrothermal activity in the southern black rock desert, Nevada,
	79-1467), 39, https://doi.org/10.3133/ofr791467
Sass_etal1980	Sass, John H.; Lachenbruch, Arthur H.; Mase, Charles W. (1980), <i>Analysis of thermal</i>
	data from drill holes UE25a-3 and UE25a-1, Calico Hills and Yucca Mountain, Nevada
	Test Site, Secondary, Analysis of thermal data from drill holes UE25a-3 and UE25a-1,
	Calico Hills and Yucca Mountain, Nevada Test Site, 80-826), 25, https://doi.org/10.3133/ofr80826
Sass_etal1981a	Sass, John H.; Blackwell, David D.; Chapman, David S.; Costain, John K.; Decker,
3a33_etai1301a	Edward R.; Lawver, Lawrence A.; Swanberg, Chandler A. (1981), Heat flow from the
	crust of the United States, Y.S. Judd, W.R. Roy, R.F. Touloukian, Secondary, Heat flow
	from the crust of the United States, New York, McGraw-Hill, 11(2), 503–548,
Sass_etal1982a	Sass, John H.; Galanis Jr, S. Peter; Munroe, Robert J. (1982), Measurement of heat
	flow by a downhole probe technique in the San Joaquin Valley, California, Secondary,
	Measurement of heat flow by a downhole probe technique in the San Joaquin Valley,
	California, https://doi.org/10.3133/ofr82819
Sass_etal1982b	Sass, John H.; Stone, Claudia; Bills, D.J. (1982), Shallow subsurface temperatures and
	some estimates of heat flow from the Colorado Plateau of northeastern Arizona,
	Secondary, Shallow subsurface temperatures and some estimates of heat flow from
	the Colorado Plateau of northeastern Arizona, https://doi.org/10.3133/ofr82994
Sass_etal1983a	Sass, John H.; Lachenbruch, Arthur H.; Smith, E.P. (1983), Thermal data from well GD-
	1, Gibson Dome, Paradox Valley, Utah, Secondary, Thermal data from well GD-1,
Cara atal 4003h	Gibson Dome, Paradox Valley, Utah, https://doi.org/10.3133/ofr83476
Sass_etal1983b	Sass, John H.; Lachenbruch, Arthur H.; Smith, E.P. (1983), Temperature profiles from Salt Valley, Utah, thermal conductivity of 10 samples from drill hole DOE 3, and
	preliminary estimates of heat flow, Secondary, Temperature profiles from Salt Valley,
	Utah, thermal conductivity of 10 samples from drill hole DOE 3, and preliminary
	estimates of heat flow, 83(10.3133/ofr83455
Sass_etal1984	Sass, John H.; Galanis Jr, S. Peter; Lachenbruch, Arthur H.; Marshall, B.Vaughn;
	Munroe, Robert J. (1984), Temperature, thermal conductivity, heat flow, and
	radiogenic heat production from unconsolidated sediments of the Imperial Valley,
	California, Secondary, Temperature, thermal conductivity, heat flow, and radiogenic
	heat production from unconsolidated sediments of the Imperial Valley, California,
	https://doi.org/10.3133/ofr84490
Sass_etal1985	Sass, John H.; Lawver, Lawrence A.; Munroe, Robert J. (1985), A heat-flow
	reconnaissance southeastern Alaska, Secondary, A heat-flow reconnaissance
	southeastern Alaska, 22(3), 416–421, https://doi.org/10.1139/e85-040
Sass_etal1986	Sass, John H.; Lachenbruch, Arthur H.; Galanis Jr, S. Peter; Munroe, Robert J.; Moses
	Jr, Thomas H. (1986), An analysis of thermal data from the vicinity of Cajon Pass,
	California, Secondary, An analysis of thermal data from the vicinity of Cajon Pass,
Cara atal 1004	California, 86-468), https://doi.org/10.3133/ofr86468
Sass_etal1994	Sass, John H.; Lachenbruch, Arthur H.; Galanis Jr, S. Peter; Morgan, Paul; Priest, S.S.;
	Moses Jr, Thomas H.; Munroe, Robert J. (1994), Thermal Regime of the Southern Basin and Range Province .1. Heat-Flow Data from Arizona and the Mojave Desert of
	California and Nevada, Secondary, Thermal Regime of the Southern Basin and Range
	Province .1. Heat-Flow Data from Arizona and the Mojave Desert of California and
	Nevada, 99(B11), 22093–22119, https://doi.org/10.1029/94jb01891
Sass_etal1997	Sass, John H.; Williams, Colin F.; Lachenbruch, Arthur H.; Galanis Jr, S. Peter; Grupp,
	F.V. (1997), Thermal regime of the San Andreas fault near Parkfield, California,

	Secondary, Thermal regime of the San Andreas fault near Parkfield, California, B12),
Sacs Colonia 1092	27575–27585, https://doi.org/10.1029/JB102iB12p27575
Sass_Galanis_1983	Sass, John H.; Galanis Jr, S. Peter (1983), Temperatures, thermal conductivity, and
	heat flow from a well in Pierre Shale near Hayes, South Dakota, Secondary,
	Temperatures, thermal conductivity, and heat flow from a well in Pierre Shale near
Coss Labdaura 1003	Hayes, South Dakota, https://doi.org/10.3133/ofr8325
Sass_LeMarne_1963	Sass, John H.; Marne, A.E. Le (1963), Heat Flow at Broken Hill, New South Wales,
	Secondary, Heat Flow at Broken Hill, New South Wales, 4), 477–489,
Cara Mass 1000	https://doi.org/10.1111/j.1365-246X.1963.tb07090.x
Sass_Mase_1980	Sass, John H.; Mase, Charles W. (1980), Heat flow from the western arm of the Black
	Rock Desert, Nevada, Secondary, Heat flow from the western arm of the Black Rock
Casa Mayray 1000	Desert, Nevada, 80(1238, https://doi.org/10.3133/ofr801238
Sass_Morgan_1988	Sass, John H.; Morgan, Paul (1988), Conductive heat flux in VC-1 and the thermal
	regime of Valles Caldera, Jemez Mountains, New Mexico, Secondary, Conductive
	heat flux in VC-1 and the thermal regime of Valles Caldera, Jemez Mountains, New
Casa Murrupa 1070	Mexico, 93(B6), https://doi.org/10.1029/JB093iB06p06027
Sass_Munroe_1970	Sass, John H.; Munroe, Robert J. (1970), Heat flow from deep boreholes on two island
	arcs, Secondary, Heat flow from deep boreholes on two island arcs, 75(23), 4387–
Sacs Sammal 1076	4395, https://doi.org/10.1029/JB075i023p04387
Sass_Sammel_1976	Sass, John H.; Sammel, Edward A. (1976), <i>Heat flow data and their relation to</i>
	observed geothermal phenomena near Klamath Falls, Oregon, Secondary, Heat flow
	data and their relation to observed geothermal phenomena near Klamath Falls,
Cata atal 1094	Oregon, 81(26), 4863–4868, https://doi.org/10.1029/JB081i026p04863
Sato_etal1984	Sato, Shunji; Asakura, Natsuo; Saki, Takao; Oikawa, Nobutaka; Kaneda, Yoshiyuki
	(1984), Preliminary results of geological and geophysical surveys in the Ross Sea and
	in the Dumont d'Urville Sea, off Antarctica, Secondary, Preliminary results of
	geological and geophysical surveys in the Ross Sea and in the Dumont d'Urville Sea,
Saull_etal1962	off Antarctica, 33(66–92, https://doi.org/10.1594/pangaea.807681 Saull, V.A.; Clark, T.H.; Doig, Ronald P.; Butler, R.B. (1962), <i>Terrestrial heat flow in the</i>
Sauli_etal1902	St. Lawrence lowland of Quebec, Secondary, Terrestrial heat flow in the St. Lawrence
	lowland of Quebec, 65(63–66,
Savostin_1979	Savostin, L.A. (1979), Geothermal Research - (Геотермические Исследованиыа),
Savostiii_1379	Secondary, Geothermal Research - (Геотермические Исследованиыа), Moscow,
	USSR, Москва: Институт Океа- Нологии ан Ссср,
	https://doi.org/10.1594/pangaea.808900
Savostin_etal1974	Savostin, L.A.; Bersenev, A.F.; Udintsev, Gleb B. (1974), New data on heat flow
Savostiii_Ctaii_1374	through the bottom in the Sea of Okhotsk - (Новые данные о тепловом потоке
	через дно в Охотском море), Savostin, L.A. Bersenev A.F. Udintsev G.B., Secondary,
	New data on heat flow through the bottom in the Sea of Okhotsk - (Новые данные о
	тепловом потоке через дно в Охотском море), 215(4), 846–849,
Sayin_Guerer_2021	Sayin; Nurdan; Guerer; Aysan (2021), <i>An approach for heat flow determination in the</i>
,	absence of geothermal gradient measurements: west Anatolia example, Secondary,
	An approach for heat flow determination in the absence of geothermal gradient
	measurements: west Anatolia example, 14(5), 01. Okt,
	https://doi.org/10.1007/s12517-021-06753-9
Scattolini_1978	Scattolini, R. (1978), Heat flow and heat production studies in north dakota,
	Secondary, Heat flow and heat production studies in north dakota, North Dakota,
	Grand Forks, Ph.D. thesis(
Schellschmidt_etal2003	Schellschmidt, Rüdiger; Popov, Yuri A.; Kukkonen, Ilmo T.; Nover, G.; Milanovsky,
	S.Y.; Borevsky, L.; Mottaghy, Darius C.; Clauser, Christoph (2003), New heat flow data
	from the immediate vicinity of the Kola superdeep borehole, Secondary, New heat
	flow data from the immediate vicinity of the Kola superdeep borehole,
Schintgen_etal2015	Schintgen, Tom; Förster, Andrea; Förster, Hans-Juergen; Norden, Ben (2015), Surface
-	heat flow and lithosphere thermal structure of the Rhenohercynian Zone in the
	greater Luxembourg region, Secondary, Surface heat flow and lithosphere thermal
	structure of the Rhenohercynian Zone in the greater Luxembourg region, 56(93–109,

https://doi.org/10.1016/j.geothermics.2015.03.007

Schlorholtz_Eckstein_1979 Schlorholtz, M.W.; Eckstein, Yoram (1979), Terrestrial heat flow in Washington

county, southeast Ohio, Secondary, Terrestrial heat flow in Washington county,

southeast Ohio, 11(5), 255-255,

Schmidt_etal._2005 Schmidt, M.; Hensen, C.; Morz, T.; Muller, C.; Grevemeyer, Ingo; Wallmann, K.; Mau,

S.; Kaul, Norbert E. (2005), *Methane hydrate accumulation in Mound 11 mud volcano, Costa Rica forearc*, Secondary, Methane hydrate accumulation in Mound 11

mud volcano, Costa Rica forearc, 216(44228), 83–100,

https://doi.org/10.1016/j.margeo.2005.01.001

Schmidt-Schierhorn_etal._2012 Schmidt-Schierhorn, Friederike; Kaul, Norbert E.; Stephan, Sebastian; Villinger,

Heinrich W. (2012), *Geophysical site survey results from North Pond (Mid-Atlantic Ridge)*, Secondary, Geophysical site survey results from North Pond (Mid-Atlantic

Ridge), 336(10.2204/iodp.proc.336.107.2012

Schoessler_Schwarzlose_1959 Schössler, Klaus; Schwarzlose, Jobst (1959), Geophysical heat flow measurements -

(Geophysikalische Wärmeflussmessungen), Secondary, Geophysical heat flow measurements - (Geophysikalische Wärmeflussmessungen), C75(120,

https://doi.org/10.1594/pangaea.805770

Schoonmaker_Ladd_1984 Schoonmaker, J.E.; Ladd, J.W. (1984), Heat flow, R.C. Speed, G.K. Westbrook,

Secondary, Heat flow, Woods Hole, Marine Science International, 10(Sheet 14),

Schröder, H.; Paulsen, T.; Wonik, Thomas (2011), Thermal properties of the AND-2A

borehole in the southern Victoria Land Basin, McMurdo Sound, Antarctica,

Secondary, Thermal properties of the AND-2A borehole in the southern Victoria Land

Basin, McMurdo Sound, Antarctica, 7(6), 1324-1330,

https://doi.org/10.1130/Ges00690.1

Schubert_Peter_1974 Schubert, Carl E.; Peter, George (1974), Heat flow northeast of Guadeloupe Island,

Lesser Antilles, Secondary, Heat flow northeast of Guadeloupe Island, Lesser Antilles,

79(14), 2139-2140, https://doi.org/10.1029/JB079i014p02139

Schuech_1973 Schuech, J. (1973), Measurements of Heat Flow in the Red Sea between 19 degrees

and 26 degrees northern latitude (region of the brine deeps) - (Measurements of Heat Flow in the Red Sea between 19 degrees and 26 degrees northern latitude (region of the brine deeps)), Secondary, Measurements of Heat Flow in the Red Sea between 19

degrees and 26 degrees northern latitude (region of the brine deeps) -

(Measurements of Heat Flow in the Red Sea between 19 degrees and 26 degrees

northern latitude (region of the brine deeps)), 859-862,

https://doi.org/10.1594/pangaea.809926

Schuetz_etal._2012 Schütz, Felina; Norden, Ben; Förster, Andrea (2012), Thermal properties of sediments

in southern Israel: a comprehensive data set for heat flow and geothermal energy

studies, Secondary, Thermal properties of sediments in southern Israel: a

comprehensive data set for heat flow and geothermal energy studies, 24(3), 357–

376, https://doi.org/10.1111/j.1365-2117.2011.00529.x

Schuetz_etal._2014 Schuetz, Felina; Förster, Hans-Juergen; Förster, Andrea (2014), Thermal conditions of

the central Sinai Microplate inferred from new surface heat-flow values and continuous borehole temperature logging in central and southern Israel, Secondary, Thermal conditions of the central Sinai Microplate inferred from new surface heat-

flow values and continuous borehole temperature logging in central and southern $\,$

Israel, 76(45505, https://doi.org/10.1016/j.jog.2014.02.010

Schuetz_etal._2018 Schütz, Felina; Winterleitner, Gerd; Huenges, Ernst (2018), Geothermal exploration in

a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman, Secondary, Geothermal exploration in a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman,

6(1), https://doi.org/10.1186/s40517-018-0091-6

Schulz_1987 Schulz, Rüdiger (1987), Unpublished work - (Unpublished Work), Secondary,

Unpublished work - (Unpublished Work),

Schulz_1988 Schulz, Rüdiger (1988), Unpublished work - (Unpublished Work), Secondary,

Unpublished work - (Unpublished Work),

Schulz_etal._1991 Schulz, Rüdiger; Haenel, Ralph; Kockel, F. (1991), Catalogue of Heat Flow Density

100

	Data: Federal Republic of Germany (Western Federal States), Secondary, Catalogue
	of Heat Flow Density Data: Federal Republic of Germany (Western Federal States),
	https://doi.org/10.1594/pangaea.807682
ScientificParty_1983	Party, Shipboard Scientific (1983), Leg 87 drills off Honshu and southwest Japan,
	Secondary, Leg 87 drills off Honshu and southwest Japan, 28(1), 15–18,
	https://doi.org/10.1594/pangaea.810015
ScientificParty_1990	Party, Shipboard Scientific (1990), Proceedings of the Ocean Drilling Program,
	Scientific Results, Secondary, Proceedings of the Ocean Drilling Program, Scientific
	Results, Texas, Ocean Drilling Program, 125(
ScientificParty_1997	Party, Shipboard Scientific (1997), Explanatory Notes, Secondary, Explanatory Notes,
	170(10.2973/odp.proc.ir.170.102.1997
Sclater_1966	Sclater, John G. (1966), A discussion concerning the floor of the northwest Indian
	Ocean - Heat flow in the northwest Indian Ocean and Red Sea, Secondary, A
	discussion concerning the floor of the northwest Indian Ocean - Heat flow in the
	northwest Indian Ocean and Red Sea, 259(1099), 271–278,
	https://doi.org/10.1098/rsta.1966.0012
Sclater_Corry_1967	Sclater, John G.; Corry, Charles E. (1967), Heat flow, Hawaiian area, Secondary, Heat
	flow, Hawaiian area, 72(14), 3711–3715, https://doi.org/10.1029/JZ072i014p03711
Sclater_Crowe_1979	Sclater, John G.; Crowe, John (1979), A heat flow survey at anomaly 13 on the
	Reykjanes Ridge: A critical test of the relation between heat flow and age, Secondary,
	A heat flow survey at anomaly 13 on the Reykjanes Ridge: A critical test of the
	relation between heat flow and age, 84(B4), 1593–1602,
	https://doi.org/10.1029/JB084iB04p01593
Sclater_Erickson_1974	Sclater, John G.; Erickson, Albert J. (1974), Geothermal measurements on Leg 22 of
	the D/V Glomar Challenger, C. Von der Borch, J.G. Sclater, S. Gartner, Secondary,
	Geothermal measurements on Leg 22 of the D/V Glomar Challenger, Washington,
	U.S. Government Printing Office, 22(387–396,
	https://doi.org/10.2973/dsdp.proc.22.114.1974
Sclater_etal1970a	Sclater, John G.; Jones, E.J.W.; Miller, S.P. (1970), <i>The relationship of heat flow,</i>
	bottom topography and basement relief in peake and freen deeps, Northeast
	Atlantic, Secondary, The relationship of heat flow, bottom topography and basement
	relief in peake and freen deeps, Northeast Atlantic, 10(1), 283–300,
	https://doi.org/10.1016/0040-1951(70)90111-3
Sclater_etal1970b	Sclater, John G.; Mudie, J.D.; Harrison, C.G.A. (1970), Detailed geophysical studies on
	the Hawaiian Arch near 24°25′N, 157°40′W: A closely spaced suite of heat-flow
	stations, Secondary, Detailed geophysical studies on the Hawaiian Arch near 24°25′N,
	157°40'W: A closely spaced suite of heat-flow stations, 75(2), 333–348,
	https://doi.org/10.1029/JB075i002p00333
Sclater_etal1970c	Sclater, John G.; Vacquier, Victor; Rohrhirsch, J.H. (1970), <i>Terrestrial heat flow</i>
	measurements on lake Titicaca, Peru, Secondary, Terrestrial heat flow measurements
	on lake Titicaca, Peru, 8(1), 45–54,
Sclater_etal1971	Sclater, John G.; Anderson, Roger N.; Bell, M.Lee (1971), Elevation of ridges and
	evolution of the central eastern Pacific, Secondary, Elevation of ridges and evolution
	of the central eastern Pacific, 76(32), 7888–7915,
	https://doi.org/10.1029/JB076i032p07888
Sclater_etal1972	Sclater, John G.; Ritter, Uta G.; Dixon, Fred S. (1972), Heat flow in the southwestern
	Pacific, Secondary, Heat flow in the southwestern Pacific, 77(29), 5697–5704,
	https://doi.org/10.1029/JB077i029p05697
Sclater_etal1974b	Sclater, John G.; Herzen, Richard P. Von; Williams, David L.; Anderson, Roger N.;
	Klitgord, Kim D. (1974), The Galapagos Spreading Centre: Heat-flow low on the North
	Flank, Secondary, The Galapagos Spreading Centre: Heat-flow low on the North
	Flank, 38(3), 609–625, https://doi.org/10.1111/j.1365-246X.1974.tb05432.x
Sclater_etal1976	Sclater, John G.; Crowe, John; Anderson, Roger N. (1976), On the reliability of oceanic
	heat flow averages, Secondary, On the reliability of oceanic heat flow averages,
	81(17), 2997–3006, https://doi.org/10.1029/JB081i017p02997
Sclater_Klitgord_1973	Sclater, John G.; Klitgord, Kim D. (1973), A detailed heat flow, topographic, and

magnetic survey across the Galapagos Spreading Center at 86°W, Secondary, A detailed heat flow, topographic, and magnetic survey across the Galapagos Spreading Center at 86°W, 78(29), 6951-6975, https://doi.org/10.1029/JB078i029p06951 Sebagenzi, M.N.; Vasseur, Guy; Louis, P. (1993), First heat flow density

determinations from Southeastern Zaïre (Central Africa), Secondary, First heat flow density determinations from Southeastern Zaïre (Central Africa), 16(4), 413-423,

https://doi.org/10.1016/0899-5362 (93)90100-5

Seck, Louis (1984), Heat flux in the western part of the Senegalese-Mauritanian basin

- (Flux de chaleur dans la partie occidentale du bassin sénégalo-mauritanien), Secondary, Heat flux in the western part of the Senegalese-Mauritanian basin - (Flux

de chaleur dans la partie occidentale du bassin sénégalo-mauritanien),

Sekiguchi, Kaichi (1986), A method for determining terrestrial heat flow by using

bore-hole data in the oil/gas basinal areas, Secondary, A method for determining terrestrial heat flow by using bore-hole data in the oil/gas basinal areas, 199-208,

https://doi.org/10.1594/pangaea.809927

Sergienko_etal._1974 Sergienko, S.I.; Smirnov, Ya.B.; Stavitsky, B.P. (1974), Geothermal research in Western

> Siberia - (Геотермические исследования в Западной Сибири), Secondary, Geothermal research in Western Siberia - (Геотермические исследования в Западной Сибири), Moscow, USSR, Nauka, 44228(58-62,

Sertsrivanit_1984 Sertsrivanit, S. (1984), Heat flow and tectonics of Thailand, Secondary, Heat flow and

tectonics of Thailand,

Sestini, G. (1970), Heat-flow measurement in non-homogeneous terrains. Its

application to geothermal areas, Secondary, Heat-flow measurement in nonhomogeneous terrains. Its application to geothermal areas, 2(1), 424-436,

https://doi.org/10.1016/0375-6505 (70)90040-4

Shalev, Eyal; Lyakhovsky, Vladimir; Weinstein, Yishai; Ben-Avraham, Zvi (2013), The Shalev_etal._2013

thermal structure of Israel and the Dead Sea Fault, Secondary, The thermal structure

of Israel and the Dead Sea Fault, 602(69-77, https://doi.org/10.1016/j.tecto.2012.09.011

Shankar_Riedel_2013 Shankar, Uma; Riedel, Michael (2013), Heat flow and gas hydrate saturation

estimates from Andaman Sea, India, Secondary, Heat flow and gas hydrate

saturation estimates from Andaman Sea, India, 43(434-449,

https://doi.org/10.1016/j.marpetgeo.2012.12.004

Shastkevich_Zabolotnik_1975 Shastkevich, Yu.G.; Zabolotnik, S.I. (1975), Heat-Flow in the Mongolian Peoples-

> Republic - (Поток Внутриземного тепла в MHP), Secondary, Heat-Flow in the Mongolian Peoples-Republic - (Поток Внутриземного тепла в МНР), 19(2), 197-200,

https://doi.org/10.1594/pangaea.808899

Shcherbakov_Dvorov_1985 Shcherbakov, A.V.; Dvorov, V.I. (1985), Geothermal research in Central Asia and

> Kazakhstan - (Геотермические исследования, в Средней Азии и Казахстане), Secondary, Geothermal research in Central Asia and Kazakhstan - (Геотермические

исследования, в Средней Азии и Казахстане), Moscow, USSR, Nauka, 272, Shearer, Charles; Reiter, Marshall A. (1981), Terrestrial heat flow in Arizona,

Secondary, Terrestrial heat flow in Arizona, 86(B7), 6249-6260,

https://doi.org/10.1029/JB086iB07p06249

Shelyagin, V.A.; Buachidze, I.M.; Buachidze, G.I.; Shaorshadze, M.P. (1973), Heat flow

from the coastal strip of the Black Sea and the adjacent part of the territory of Georgia - (Тепловой поток с прибрежной полосы черного моря и прилегайщей части территории Грузии), V.I. Vlodavets, E.A. Lyubimova, et al., Secondary, Heat flow from the coastal strip of the Black Sea and the adjacent part of the territory of Georgia - (Тепловой поток с прибрежной полосы черного моря и прилегайщей части территории Грузии), 12(39-46, https://doi.org/10.1594/pangaea.808840 Shen, Xianjie (1993), Kinematics and tectonothermal modeling—interpretation of

heat flow observed on the Tibetan Plateau, Secondary, Kinematics and

tectonothermal modeling—interpretation of heat flow observed on the Tibetan Plateau, 225(1), 91-106, https://doi.org/10.1016/0040-1951(93)90251-e

Sebagenzi_etal._1993

Seck_1984

Sekiguchi 1986

Sestini_1970

Shearer_Reiter_1981

Shelyagin_etal._1973

Shen_1993

Shen_etal._1984 Xianjie, Shen; Wenhua, Kang; Delu, Li; Jiaqi, Bai; Hongbing, Wie; Xiaoque, Deng; Franchetau, J.; Jaupart, C.; Lossouarn, H. (1984), Heat flow measurement on Xizhang (Tibetean) Plateau, Secondary, Heat flow measurement on Xizhang (Tibetean) Plateau, 29(10), 1379 - 1381, Shen_etal._1989b Xianjie, Shen; etal (1989), Structure and releated geothermal resources on the Tibetean Plateau, Secondary, Structure and releated geothermal resources on the Tibetean Plateau, Shen_etal._1989c Xianjie, Shen; etal. (1989), New heat flow measurements in tibet, Secondary, New heat flow measurements in tibet, 5), 373-376, Shen_etal._1994 Xianjie, Shen; Guo-Hua, Li; Jian, Wang; Xiao, Deng; Wen-Ren, Zhang; Shu-Zhen, Yang (1994), Terrestrial heat flow measurement and calculation of statistical heat flow in Caidam Basin, Secondary, Terrestrial heat flow measurement and calculation of statistical heat flow in Caidam Basin, 37(1), 56-65, Shevaldin_etal._1987 Shevaldin, Yuri V.; Balabashin, Valery I.; Zimin, Petr S. (1987), New data on geothermics of the Tatar Strait - (Новые данные о геотермике Татарского пролива), Secondary, New data on geothermics of the Tatar Strait - (Новые данные о геотермике Татарского пролива), 6(3), 61-64, https://doi.org/10.1594/pangaea.808905 Shevaldin_etal._1988 Shevaldin, Yuri V.; Balabashin, Valery I.; Matveev, V.G.; Avgustyniak, O.V.; Nikonorov, V.A. (1988), Some results of testing new geothermal equipment - (Некоторые результаты опробования новой геотермической аппаратуры), Secondary, Some results of testing new geothermal equipment - (Некоторые результаты опробования новой геотермической аппаратуры), Moscow, USSR, Nauka, 107-112, https://doi.org/10.1594/pangaea.808904 Shi_1998 Shi, Xiao-Bin (1998), Quantitative method and case analysis of basin thermal history recovery - (盆地热史恢复的定量化方法及实例分析), Secondary, Quantitative method and case analysis of basin thermal history recovery - (盆地热史恢复的定量 化方法及实例分析), Beijing, China, Chinese Academy of Sciences, Ph.D. thesis(Shyu_etal._1998 Shyu, Chuen-Tien; Hsu, Shu-Kun; Liu, Char-Shine (1998), Heat flows off southwest Taiwan: Measurements over mud diapirs and estimated from Bottom Simulating Reflectors, Secondary, Heat flows off southwest Taiwan: Measurements over mud diapirs and estimated from Bottom Simulating Reflectors, 9(4), 795–812, https://doi.org/10.3319/Tao.1998.9.4.795 (Taicrust) Shyu_etal._2006 Shyu, Chuen-Tien; Chen, Yu-Jhong; Chiang, Shaye-Tang; Liu, Char-Shine (2006), Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan, Secondary, Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan, 17(4), 845-869, https://doi.org/10.1594/pangaea.807719 Shyu_Liu_2001 Shyu, Chuen-Tien; Liu, Char-Shine (2001), Heat flow of the southwestern end of the Okinawa Trough, Secondary, Heat flow of the southwestern end of the Okinawa Trough, 12(305-317, https://doi.org/10.3319/Tao.2001.12.S.305 (Odp) Simbolon_1985 Simbolon, B. (1985), Heat flow in the Salawati and Bintuni Basins, Secondary, Heat flow in the Salawati and Bintuni Basins, CCOP Project Office UNDP Technical Support for Regional Offshore Prospecting in East Asia, 136, https://doi.org/10.1594/pangaea.807720 Simmons_Horai_1968 Simmons, Gene; Horai, Ki-Iti (1968), Heat flow data 2, Secondary, Heat flow data 2, 73(20), 6608-6609, https://doi.org/10.1029/JB073i020p06608 Simpson_1987 Simpson, B. (1987), Heat flow measurements on the Bay of Plenty coast, New Zealand, Secondary, Heat flow measurements on the Bay of Plenty coast, New Zealand, 34(45293), 25-33, https://doi.org/10.1016/0377-0273(87)90090-4 Skinner_1985 Skinner, Neville J. (1985), Heat flow in Figi, Secondary, Heat flow in Figi, 28(1), 45295, https://doi.org/10.1080/00288306.1985.10422272 Slagstad, Trond; Balling, Niels; Elvebakk, Harald K.; Midttømme, Kirsti; Olesen, Slagstad_etal._2009 Odleiv; Olsen, Lars; Pascal, Christophe (2009), Heat-flow measurements in Late Paleoproterozic to Permian geological provinces in south and central Norway and a

new heat-flow map of Fennoscandia and the Norwegian-Greenland Sea, Secondary,

south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian-Greenland Sea, 473(44289), 341-361, https://doi.org/10.1016/j.tecto.2009.03.007 Smirnov_etal._1970 Smirnov, Ya.B.; Kashpur, Ya.I.; Pokrovskii, V.A.; Yakovlev, B.A. (1970), Estimates of Heat Flow in the Eastern Part of the Russian Platform - (Оценки теплового потока, в Восточной части Русской платформы), Secondary, Estimates of Heat Flow in the Eastern Part of the Russian Platform - (Оценки теплового потока, в Восточной части Русской платформы), 116-137, Smirnov_etal._1974a Smirnov, Ya.B.; Bezrodnov, V.D.; Volobuev, G.L.; Sergienko, S.I.; Ti-Mareva, S.V. (1974), Deep Heat Flow in the North and Central Parts of the East European Platform - (Глубинный Тепловой поток, В Северной и Центральной Частях Восточно-Европейской платформы. в кн.: Глубинный тепловой поток европейской части СССР), S.I. Subbotin, R.I. Kutas, Secondary, Deep Heat Flow in the North and Central Parts of the East European Platform - (Глубинный Тепловой поток, В Северной и Центральной Частях Восточно-Европейской платформы. в кн.: Глубинный тепловой поток европейской части СССР), 7(Smirnov_etal._1974b Smirnov, Ya.B.; Sugrobov, V.M.; Sugrobova, N.G. (1974), Heat flow, hydrothermal activity and development dynamics of the deep zones of Cenozoic volcanism -(Тепловой поток, гидротермальная активность и динамика развития глубинных зон областей кайнозойского вулканизма), Secondary, Heat flow, hydrothermal activity and development dynamics of the deep zones of Cenozoic volcanism - (Тепловой поток, гидротермальная активность и динамика развития глубинных зон областей кайнозойского вулканизма), 175-196, Smirnov_etal._1976 Smirnov, Ya.B.; Zelenov, K.K.; Paduchikh, V.I.; Turkov, V.P.; Khutorskoy, M.D. (1976), Heat flow investigations within the polygon 44°00'N-44°40'N and 34°00'E-34°40'E in the Black Sea - (Исследования теплового потока, в Пределах полигона 44 ° 00'n-44°40'n и 34°00'e-34°40'е в Черном море), Secondary, Heat flow investigations within the polygon 44°00'N-44°40'N and 34°00'E-34°40'E in the Black Sea -(Исследования теплового потока, в Пределах полигона 44 $^{\circ}$ 00'n-44 $^{\circ}$ 40'n и 34 $^{\circ}$ 00'e-34° 40'e в Черном море), 1(97–99, https://doi.org/10.1594/pangaea.809128 Smirnov_etal._1983a Smirnov, Ya.B.; Ashirov, T.A.; Merkushov, V.N.; Sopiev, V.A.; Dubrovskaya, E.B. (1983), Caspian Sea - In Book: Methodological and experimental - Basic principles of geothermy Moscow, Science - (Каспийское море - В Кн : Методические и эксперимент- Тальные основы геотермии Москва, Наука), Secondary, Caspian Sea - In Book: Methodological and experimental - Basic principles of geothermy Moscow, Science - (Каспийское море - В Кн : Методические и эксперимент-Тальные основы геотермии Москва, Наука), 129-134, Smirnov_etal._1983b Smirnov, Y.B.; Sugrobov, V.M.; Muraviev, A.V.; Savostin, L.A.; Trotsyuk, V.Ya.; Shilovskz, P.P. (1983), Beringovo (Bering Sea), P.N. Kropotkin, Y.B. Smirnov, Secondary, Beringovo (Bering Sea), Moscow, USSR, Nauka, 181-185, Smirnov_etal._1991b Smirnov, Ya.B.; Sugrobov, V.M.; Yanovsky, F.A. (1991), Terrestrial heat flow in Kamchatka, Secondary, Terrestrial heat flow in Kamchatka, 2(41-65, https://doi.org/10.1594/pangaea.809129 Smith_1974 Smith, Douglas L. (1974), Heat flow, radioactive heat generation, and theoretical tectonics for northwestern Mexico, Secondary, Heat flow, radioactive heat generation, and theoretical tectonics for northwestern Mexico, 1), 43-52, https://doi.org/10.1594/pangaea.805923 Smith_1980 Smith, Roger N. (1980), Heat flow of the western Snake River Plain, Secondary, Heat flow of the western Snake River Plain, USA, https://doi.org/10.1594/pangaea.809936 Smith_etal._1979 Smith, Douglas L.; III, C.Edward Nuckels; Jones, Ronald L.; Cook, Gregory A. (1979), Distribution of heat flow and radioactive heat generation in northern Mexico, Secondary, Distribution of heat flow and radioactive heat generation in northern

Heat-flow measurements in Late Paleoproterozic to Permian geological provinces in

Smith_etal._1981

Mexico, B5), 2371–2379, https://doi.org/10.1029/JB084iB05p02371 Smith, Douglas L.; Gregory, Robert G.; Emhof, John W. (1981), *Geothermal*

measurements in the southern Appalachian Mountains and southeastern Coastal

	Plains, Secondary, Geothermal measurements in the southern Appalachian
	Mountains and southeastern Coastal Plains, 281(3), 282–298,
	https://doi.org/10.2475/ajs.281.3.282
Smith_etal1982	Smith, W.L.; Suomi, V.E.; Zhong, F.X.; Menzel, W.P. (1982), Nowcasting applications
	of geostationary satellite atmospheric sounding data Nowcasting, Secondary,
	Nowcasting applications of geostationary satellite atmospheric sounding data
	Nowcasting, 123–135,
Smith_Griffin_1977	Smith, Douglas L.; Griffin, George M. (1977), The geothermal nature of the Floridan
	plateau, Secondary, The geothermal nature of the Floridan plateau, Bureau of
	Geology, 21), 172,
Soinov_1993	Soinov, Veselov (1993), The geothermal survey results, Secondary, The geothermal
	survey results, 228–234, https://doi.org/10.1594/pangaea.809238
Soinov_etal1972b	Soinov, Veselov; Tikhomirov, V.M.; Veselov, O.V.; Eremin, G.D. (1972), Heat flow
	measurements during the Philippine expedition of the Sakhalin complex scientific
	research institute in 1969 - (Измерение теплового потока во время
	Филиппинской экспедиции Сахкнии в 1969), Secondary, Heat flow measurements
	during the Philippine expedition of the Sakhalin complex scientific research institute
	in 1969 - (Измерение теплового потока во время Филиппинской экспедиции
	Сахкнии в 1969), 3(26), 212–215, https://doi.org/10.1594/pangaea.809236
Soinov_etal1984	Soinov, Veselov; Soloviev, V.N.; Vlasenko, V.I.; Salman, A.G. (1984), Heat flows
	through the bottom of the Deryugin depression in the Sea of Okhotsk - (Тепловые
	потоки через дно впадины Дерюгина Охотского моря), Secondary, Heat flows
	through the bottom of the Deryugin depression in the Sea of Okhotsk - (Тепловые
	потоки через дно впадины Дерюгина Охотского моря), Moscow, USSR, Nauka,
	63–66,
Soinov_etal1997	Soinov, Veselov; Veselov, O.V.; Kochergin, A.V.; Sok, B.Ch.; Balabashin, Valery I.;
	Kulinich, R.G. (1997), Heat flow in the Northwest Pacific Ocean - (Тепловой поток
	Северо-Запада Тихого океана), Secondary, Heat flow in the Northwest Pacific
	Ocean - (Тепловой поток Северо-Запада Тихого океана), 3(14–20,
	https://doi.org/10.1594/pangaea.809239
Soinov_Veselov_1975	Soinov, Veselov; Veselov, O.V. (1975), <i>New Heat Flow Data in the Okhotsk Sea</i> -
	(Новые данные о тепловом потоке в Охотском море), Secondary, New Heat
	Flow Data in the Okhotsk Sea - (Новые данные о тепловом потоке в Охотском
	море), 37(5), 243–247, https://doi.org/10.1594/pangaea.809131
Soinov_Veselov_1979	Soinov, Veselov; Veselov, O.V. (1979), High heat flow anomaly near the east coast of
	Sakhalin - (Аномалия высокого теплового потока вблизи в осточного
	побережья Сахалина), Secondary, High heat flow anomaly near the east coast of
	Sakhalin - (Аномалия высокого теплового потока вблизи в осточного побережья
	Сахалина), 75–80,
Sokolova_Duchkov_1982	Sokolova, L.S.; Duchkov, Albert D. (1982), New definitions of heat flow in Siberia -
	(Hew дефинитионс оф Хеат флоw ин Сибериа), Secondary, New definitions of
	heat flow in Siberia - (Неw дефинитионс оф Хеат флоw ин Сибериа), 23(7), 121–
	124,
Sokolova_Duchkov_1993	Sokolova, L.S.; Duchkov, Albert D. (1993), Estimation of heat flow in the wells of the
	Garm test site - (Оценка теплового потока по скважинам Гармского полигона),
	Secondary, Estimation of heat flow in the wells of the Garm test site - (Оценка
	теплового потока по скважинам Гармского полигона), 3), 123–125,
Sokolova_Duchkov_2008	Sokolova, L.S.; Duchkov, Albert D. (2008), Heat flow in the Altai-Sayan Area: new
	data, Secondary, Heat flow in the Altai-Sayan Area: new data, 49(12), 940–950,
	https://doi.org/10.1016/j.rgg.2008.03.007
Sokolova_etal1972	Sokolova, L.S.; Moiseenko, U.I.; Duchkov, Albert D. (1972), <i>Heat flow in some areas of</i>
	South-East Kamchatka - (Тепловой поток на некоторых площадях Юго-
	Восточной Камчатки), Secondary, Heat flow in some areas of South-East
	Катchatka - (Тепловой поток на некоторых площадях Юго-Восточной Камчатки),
	6), 102—105,
	0,, === ===,

Solovyeva, Liudmila N. (1976), Morphology of the permafrost zone of the Sayan-

Solovyeva_1976

Baikal region: (romanized title): using the example of the Buryat Autonomous Soviet Socialist Republic - (Морфология криолитозоны Саяно-Байкальской области: (романизед титле): на примере Бурятский АССР), Secondary, Morphology of the permafrost zone of the Sayan-Baikal region: (romanized title): using the example of the Buryat Autonomous Soviet Socialist Republic - (Морфология криолитозоны Саяно-Байкальской области: (романизед титле): на примере Бурятский АССР), Novosibirsk, USSR, Nauka,

Springer_Foerster_1998

Springer, Michael; Förster, Andrea (1998), *Heat-flow density across the Central Andean subduction zone*, Secondary, Heat-flow density across the Central Andean subduction zone, 291(44287), 123–139, https://doi.org/10.1016/s0040-1951 (98)00035-3

Sroka_1991

Sroka, K. (1991), The new results of a surface heat flow investigations of earth crust prerformed in Polish Carpathians, Secondary, The new results of a surface heat flow investigations of earth crust prerformed in Polish Carpathians, 8(

Staub_Treat_1981

Staub, W.P.; Treat, N.L. (1981), A geothermal resource appraisal of the tennessee valley region, Secondary, A geothermal resource appraisal of the tennessee valley region, Oak Ridge, Tennessee, Inst. Energy Analysis Oak Ridge Assoc. Univ., 132, Steele, John L. (1975), A heat flow study in the Turtle Lake quadrangle, Washington, Secondary, A heat flow study in the Turtle Lake quadrangle, Washington, Dallas, Texas, Southern Methodist University, M.Sc. thesis(60,

Steele_1975

Steele, John L.; Blackwell, David D.; Robison, J.H. (1982), *Heat flow in the vicinity of the Mount Hood volcano, Oregon*, Secondary, Heat flow in the vicinity of the Mount Hood volcano, Oregon, 14/31–42

Steele_etal._1982

Hood volcano, Oregon, 14(31–42,
Stein, Joshua S. (2000), *Multiple scales of hydrothermal circulation in the oceanic*

Stein_2000

crust: studies from the Juan de Fuca ridge crest and flank, Secondary, Multiple scales of hydrothermal circulation in the oceanic crust: studies from the Juan de Fuca ridge crest and flank, San Diego, University of California, Ph.D. thesis(AAI9986052), 147, https://doi.org/10.1594/pangaea.805999

Stein_Abbott_1991

Stein, Carol A.; Abbott, Dallas H. (1991), *Heat-Flow Constraints on the South-Pacific Superswell*, Secondary, Heat-Flow Constraints on the South-Pacific Superswell, 96(B10), 16083–16099, https://doi.org/10.1029/91jb00774

Stein_Cochran_1985

Stein, Carol A.; Cochran, James R. (1985), *The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere*, Secondary, The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere, 81(1), 47–74, https://doi.org/10.1111/j.1365-246X.1985.tb01350.x

Stephen_etal._1986

Stephen, Ralph A.; Romine, Karen; Pearce, Julian A.; Owen, Robert M.; Nishitani, Tadashi; Newmark, Robin L.; Moos, Daniel; Lyle, Mitchell W.; Knüttel, Stephen; Kastner, Miriam; Hobart, Michael A.; Goldsborough, Robert; Goldfarb, Marjorie; Goldberg, David; Gieskes, Joris M.; Erzinger, Jörg; Boulègue, Jacques; Becker, Keir; Anderson, Roger N.; Leinen, Margaret W.; Rea, David K. (1986), *Initial Reports of the Deep Sea Drilling Project*, Secondary, Initial Reports of the Deep Sea Drilling Project, Washington, U.S. Government Printing Office, 42(10.2973/dsdp.proc.92.1986 Studt, F.E.; Thompson, G.E.K. (1969), *Geothermal heat flow in the North Island of New Zealand*, Secondary, Geothermal heat flow in the North Island of New Zealand,

Studt_Thompson_1969

Subono, Sandjojo (1983), Terrestrial heat flow in the south-eastern region of France - (Flux de caleur terrestre dans la region su est de la France), Secondary, Terrestrial heat flow in the south-eastern region of France - (Flux de caleur terrestre dans la region su est de la France), https://doi.org/10.1594/pangaea.809941

Subono_1983

Sugrobov, V. M.; Gorshkov, A.P.; Merkushov, V.N.; Smirnov, L.V. (1983), *Uzhno-Kitayskoe (South-China Sea)*, P.N. Kropotkin, Y.B. Smirnov, Secondary, Uzhno-

12(4), 673-683, https://doi.org/10.1080/00288306.1969.10431105

Sugrobov_etal._1983a

Kitayskoe (South-China Sea), Moscow, USSR, Nauka, 171–173, Sugrobov, V. M.; Gorshkov, A.P.; Smirnov, Y. B. (1983), *Novo-Gvineyskoe (South*

Sugrobov_etal._1983b

Guinea Sea), P.N. Kropotkin, Y.B. Smirnov, Secondary, Novo-Gvineyskoe (South Guinea Sea), Moscow, USSR, Nauka, 173–177,

Sukharev_etal._1969

Sukharev, G.M.; Taranukha, Yu.K.; Vlasova, S.P. (1969), Heat flow from Azerbaijan

	depths - (Тепловой Поток Из недр Азербайджана), Secondary, Heat flow from
	Azerbaijan depths - (Тепловой Поток Из недр Азербайджана), 8), 146–153,
	https://doi.org/10.1594/pangaea.808910
Sukharev_etal1972	Sukharev, G.M.; Vlasova, S.P.; Taranukha, Yu.K.; Kamalova, S.V. (1972), <i>Heat flow</i>
	from the bowels of the Caucasus and the South End of the Russian Platform -
	(Тепловой поток Из Недр Кавказа и Южного Окончания Русской Платформы),
	Secondary, Heat flow from the bowels of the Caucasus and the South End of the
	Russian Platform - (Тепловой поток Из Недр Кавказа и Южного Окончания
	Русской Платформы), 82–87,
Suleiman_1985	Suleiman, S.I. (1985), Gravity and Heat flow studies in the Sirte Basin, Lybia,
	Secondary, Gravity and Heat flow studies in the Sirte Basin, Lybia, USA, University of
6 li l . 2004	Texas at El Paso, B.Sc.,M.Sc.(187,
Sultan_etal2004	Sultan, N.; Foucher, Jean P.; Cochonat, P.; Tonnerre, T.; Bourillet, J.F.; Ondreas, H.;
	Cauquil, E.; Grauls, D. (2004), <i>Dynamics of gas hydrate: case of the Congo continental</i>
	slope, Secondary, Dynamics of gas hydrate: case of the Congo continental slope, 206(44287), 43101, https://doi.org/10.1016/j.margeo.2004.03.005
Sun etal. 2005	Sun, Zhanxue; Zhang, Wen-Ren; Hu, B.Q.; Li, W.J.; Pan, T.Y. (2005), Geothermal field
3411_ctd111303	and its relation with coalbed methane distribution of the Qinshui Basin, Secondary,
	Geothermal field and its relation with coalbed methane distribution of the Qinshui
	Basin, 50(111–117, https://doi.org/10.1007/Bf03184092
Sun_etal2006	Sun, Zhanxue; Zhang, Wen-Ren; Hu, Bao-Qun; Pan, Tian-You (2006), Heat flow and
	geothermal field in the Qinshui Basin, Secondary, Heat flow and geothermal field in
	the Qinshui Basin, 49(1), 123–128, https://doi.org/10.1002/cjg2.819
Sundar_etal1990	Sundar, A.; Gupta, Mohan L.; Sharma, S.R. (1990), Heat-Flow in the Trans-Aravalli
	Igneous Suite, Tusham, India, Secondary, Heat-Flow in the Trans-Aravalli Igneous
	Suite, Tusham, India, 12(1), 89–100, https://doi.org/10.1016/0264-3707(90)90025-p
Sundvor_1986	Sundvor, Eirik (1986), Heat flow measurements on the western Svalbard margin,
	Secondary, Heat flow measurements on the western Svalbard margin, 11,
Sundvor_1987	https://doi.org/10.1594/pangaea.809948 Sundvor, Eirik (1987), <i>Ark-Iv/3</i> , Secondary, Ark-Iv/3,
Sundvor_Eldholm_1991	Sundvor, Eirik (1987), Ark-10/3, Secondary, Ark-10/3, Sundvor, Eirik; Eldholm, Olav (1991), Norway: Off-shore and north-east Atlantic, E.
Juliavoi-Liailoiiii_1331	Hurtig, Vladimir Cermak, Ralph Haenel, Vladimir Zui, Secondary, Norway: Off-shore
	and north-east Atlantic, Gotha, Germany, Hermann & Haack Verlagsgesellschaft, 63–
	65, https://doi.org/10.1594/pangaea.807618
Sundvor_etal1989	Sundvor, Eirik; Myhre, Annik M.; Eldholm, Olav (1989), Heat flow measurements on
	the Norwegian continental margin during the FLUNORGE project, Secondary, Heat
	flow measurements on the Norwegian continental margin during the FLUNORGE
	project, 24, https://doi.org/10.1594/pangaea.807729
Sundvor_etal2000	Sundvor, Eirik; Eldholm, Olav; Gladczenko, Tadeusz P.; Planke, Sverre (2000),
	Norwegian-Greenland Sea thermal field, Secondary, Norwegian-Greenland Sea
Considerate Markets 4007	thermal field, 167(1), 397–410, https://doi.org/10.1144/gsl.Sp.2000.167.01.15
Sundvor_Myhre_1987	Sundvor, Eirik; Myhre, Annik M. (1987), <i>Heatflow measurements: Jan Mayen Ridge and Norway Basin</i> , Secondary, Heatflow measurements: Jan Mayen Ridge and
	Norway Basin, 9(244, https://doi.org/10.1594/pangaea.807725
Surkov_etal1972	Surkov, V.S.; Romenko, V.I.; Zhero, O.G. (1972), Geothermal characteristics of the
	platform cover of the central part of the West Siberian plate and its connection with
	the geological structure of the basement, Secondary, Geothermal characteristics of
	the platform cover of the central part of the West Siberian plate and its connection
	with the geological structure of the basement, 101–109,
Swanberg_etal1974	Swanberg, Chandler A.; Chessman, Mary D.; Simmons, Gene; Smithson, S.B.; Gronlie,
	Gisle; Heier, Knut S. (1974), Heat-flow — heat-generation studies in Norway,
	Secondary, Heat-flow — heat-generation studies in Norway, 23(1), 31–48,
Suranhara atal 4000	https://doi.org/10.1016/0040-1951 (74)90109-7
Swanberg_etal1982	Swanberg, Chandler A.; Mitchell, B.J.; Lohse, Richard L.; Blackwell, David D. (1982),
	Heat flow in the upper Mississippi Embayment, Secondary, Heat flow in the upper Mississippi Embayment, 1(1236), 185–189,
	iviississippi Liiibayiiiciit, 1(1230), 103-103,

Takherist 1991

Takherist, Djilali (1991), Crustal structure, Mesozoic subsidence and heat flow in the North-Saharan basins (Algeria): contribution of gravimetry and well data - (Structure crustale, subsidence mésozoique et flux de chaleur dans les bassins nord-sahariens (Algérie): apport de la gravimétrie et des données de puits), Secondary, Crustal structure, Mesozoic subsidence and heat flow in the North-Saharan basins (Algeria): contribution of gravimetry and well data - (Structure crustale, subsidence mésozoique et flux de chaleur dans les bassins nord-sahariens (Algérie): apport de la gravimétrie et des données de puits),

Takherist_Lesquer_1989

Takherist; Djilali; Lesquer; Alain (1989), *Mise en évidence d'importantes variations régionales du flux de chaleur en Algérie*, Secondary, Mise en évidence d'importantes variations régionales du flux de chaleur en Algérie, 4), 615-626,

Taktikos_1991

Taktikos, S. (1991), *Catalogue of Heat Flow Density Data: Greece*, E. Hurtig, Vladimir Cermak, Ralph Haenel, Vladimir Zui, Secondary, Catalogue of Heat Flow Density Data: Greece, Gotha, Germany, Hermann & Haack Verlagsgesellschaft, 118, https://doi.org/10.1594/pangaea.807620

Talebi_etal._2014

Talebi, B.; Sargent, S.N.; O'Connor, L.K. (2014), An assessment of the geothermal energy potential of northern and eastern Queensland, Coastal Geothermal Energy Initiative, Secondary, An assessment of the geothermal energy potential of northern and eastern Queensland, Coastal Geothermal Energy Initiative, 14(

Talwani_etal._1971

Talwani, Manik; Windisch, Charles C.; Langseth Jr, Marcus G. (1971), *Reykjanes ridge crest: A detailed geophysical study*, Secondary, Reykjanes ridge crest: A detailed geophysical study, 76(2), 473–517, https://doi.org/10.1029/JB076i002p00473
Talwani, Manik; Udinstev, G. (1976), *Initial Reports of the Deep Sea Drilling Project*,

Talwani_Udinstev_1976

Secondary, Initial Reports of the Deep Sea Drilling Project, 38(

Tammemagi_Wheildon_1974

Tammemagi, H.Y.; Wheildon, J. (1974), *Terrestrial heat flow and heat generation in south-west England*, Secondary, Terrestrial heat flow and heat generation in south-west England, 38(1), 83–94, https://doi.org/10.1111/j.1365-246X.1974.tb04110.x

Tammemagi_Wheildon_1977

Tammemagi, H.Y.; Wheildon, J. (1977), Further data on the South-west England heat flow anomaly, Secondary, Further data on the South-west England heat flow anomaly, 49(2), 531–539, https://doi.org/10.1111/j.1365-246X.1977.tb03721.x

Tan, JingQiang; Ju, YiWen; Zhang, Wen-Yong; Hou, QuanLin; Tan, YongJie (2010), Heat flow and its coalbed gas effects in the central-south area of the Huaibei coalfield, eastern China, Secondary, Heat flow and its coalbed gas effects in the central-south area of the Huaibei coalfield, eastern China, 53(5), 672–682,

Tan_etal._2010

Tanaka, Akiko; Yamano, Makoto; Yano, Yusaku; Sasada, Masakatsu (2004), Geothermal gradient and heat flow data in and around Japan (I): Appraisal of heat flow from geothermal gradient data, Secondary, Geothermal gradient and heat flow data in and around Japan (I): Appraisal of heat flow from geothermal gradient data, 56(12), 1191–1194, https://doi.org/10.1186/Bf03353339

Tanaka_etal._2004

Tanaka, Akiko; Ito, Hisao (2002), *Temperature at the base of the seismogenic zone and its relationship to the focal depth of the western Nagano Prefecture area, Zisin,* Secondary, Temperature at the base of the seismogenic zone and its relationship to the focal depth of the western Nagano Prefecture area, Zisin, 55(1), 44470, https://doi.org/10.4294/zisin1948.55.1 1

Tanaka_Ito_2002

Taranukha_Kamalova_1971

Taranukha, Yu.K.; Kamalova, O.V. (1971), Heat flows and oil and gas content on the example of the Dono-Medveditskaya Dislocation System - (Втепловые потоки и Нефтегазоносность на Примере Доно-медведицкой Системы Дислокации), Secondary, Heat flows and oil and gas content on the example of the Dono-Medveditskaya Dislocation System - (Втепловые потоки и Нефтегазоносность на Примере Доно-медведицкой Системы Дислокации), 10), 45640,

Taranukha_Kamalova_1973

Taranukha, Yu.K.; Kamalova, O.V. (1973), Characteristics of the Geothermal Conditions of the Karpinsky Shaft and the Adjacent Part of the Caspian Depression - (Характеристика Геотермических Условий Вала Карпинского И Прилегающей Части Прикаспийской Впадины), Secondary, Characteristics of the Geothermal Conditions of the Karpinsky Shaft and the Adjacent Part of the Caspian Depression -

https://doi.org/10.1007/s11430-010-0050-y

(Характеристика Геотермических Условий Вала Карпинского И Прилегающей Части Прикаспийской Впадины), 2(45357, Taylor_2017 Taylor, D. (2017), Heat flow mapping, Werribee region, Victoria: Victorian Geothermal Atlas Report 5, Secondary, Heat flow mapping, Werribee region, Victoria: Victorian Geothermal Atlas Report 5, Geological Survey of Victoria, Taylor_etal._1986 Taylor, Alan; Judge, Alan S.; Allen, V. (1986), Terrestrial heat flow from project CESAR, Alpha Ridge, Arctic Ocean, Secondary, Terrestrial heat flow from project CESAR, Alpha Ridge, Arctic Ocean, 6(44287), 137-176, https://doi.org/10.1016/0264-3707(86)90037-2 Taylor_etal._2016 Taylor, D.; Li, C.; Nicol, M. (2017), Heat flow mapping, Stavely Region, Victoria: Victorian Geothermal Atlas Report 4, Secondary, Heat flow mapping, Stavely Region, Victoria: Victorian Geothermal Atlas Report 4, Geological Survey of Victoria, Record 2016/40 Taylor_Hayes_1983 Taylor, Brian J.; Hayes, Dennis E. (1983), Origin and history of the South China Sea Basin, Secondary, Origin and history of the South China Sea Basin, 27), 23-56, https://doi.org/10.1029/GM027p0023 Taylor, Alan; Judge, Alan S. (1979), Permafrost studies in northern Quebec, Taylor_Judge_1979 Secondary, Permafrost studies in northern Quebec, 33(44289), 245-251, https://doi.org/10.7202/1000361ar Taylor_Mather_2015 Taylor, D.; Mather, Ben (2015), Geothermal Heat Flow Map of Victoria: Victorian Geothermal Atlas Report 1, Secondary, Geothermal Heat Flow Map of Victoria: Victorian Geothermal Atlas Report 1, Geological Survey of Victoria, Tezcan_Turgay_1991 Tezcan, A.K.; Turgay, M.I. (1991), Catalogue of Heat Flow Density Data: Turkey, Secondary, Catalogue of Heat Flow Density Data: Turkey, https://doi.org/10.1594/pangaea.807627 Thamrin_1986 Thamrin, Mochamad (1986), Terrestrial heat flow map of Indonesian basins, Secondary, Terrestrial heat flow map of Indonesian basins, Indonesia, Indonesian Petroleum Association, https://doi.org/10.1594/pangaea.806036 Thienprasert_etal._1978 Thienprasert, Amnuaychai; Galoung, Wera; Matsubayashi, Osamu; Uyeda, Seiya; Watanabe, Teruhiko (1978), Geothermal gradients and heat flow in northern Thailand, Secondary, Geothermal gradients and heat flow in northern Thailand, 12(17-31, https://doi.org/10.1594/pangaea.807735 Thienprasert, Amnuaychai; Raksaskulwong, Manop (1984), Heat flow in northern Thienprasert_Raksaskulwong_1984 Thailand, Secondary, Heat flow in northern Thailand, 103(1), 217-233, https://doi.org/10.1016/0040-1951 (84)90085-4 Thompson_1977 Thompson, G.E.K. (1977), Temperature gradients within and adjacent to the North Island Volcanic Belt, Secondary, Temperature gradients within and adjacent to the North Island Volcanic Belt, 20(1), 85-97, https://doi.org/10.1594/pangaea.806016 Tomara_etal._1984 Tomara, G.A.; Kalinin, A.V.; Kalinin, V.V.; Krystev, T.I.; Fadeev, V.E. (1984), Heat flux density - (Плотность Теплового потока), Secondary, Heat flux density -(Плотность Теплового потока), Bulgaria, Bulgarian Academy of Sciences, 204–208, Townend_1997 Townend, John (1997), Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand, Secondary, Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand, 141(44287), 209-220, https://doi.org/10.1016/s0025-3227 (97)00073-x Townend_1999 Townend, John (1999), Heat flow through the west coast, South Island, New Zealand, Secondary, Heat flow through the west coast, South Island, New Zealand, 42(1), 21-31, https://doi.org/10.1594/pangaea.806017 Trexler_etal._1984 Trexler, Dennis T.; Flynn, Thomas; Ghusn Jr, George (1984), Drilling and thermal gradient measurements at US Marine Corps Air Ground Combat Center, Twentynine Palms, California: Report by Division of Earth Sciences, Secondary, Drilling and thermal gradient measurements at US Marine Corps Air Ground Combat Center, Twentynine Palms, California: Report by Division of Earth Sciences, Las Vegas,

DE84012803),

Nevada Univ. Las Vegas (USA). Div. of Earth Sciences, DOE/SF/11956-1, ON:

Tsalko_etal._1988 Tsalko, P.B.; Levashkevich, V.G.; Makarenko, V.M. (1988), Geothermal studies of the Barsukovskoye oil field (Pripyat Trough) - (Геотермические исследования Барсуковского нефтяного месторождения (Припятский Прогиб)), Secondary, Geothermal studies of the Barsukovskoye oil field (Pripyat Trough) -(Геотермические исследования Барсуковского нефтяного месторождения (Припятский Прогиб)), 32(5), 441-443, Tsaturyants_etal._1970 Tsaturyants, A.B.; Shabanov, S.F.; Ter-Karapetyants, Zh.N. (1970), Determining the amount of deep heat flow in several parts of the Apsheron oil and gas region -(Определение количества глубокого теплового потока в нескольких частях Апшеронского нефтегазоносного района), Secondary, Determining the amount of deep heat flow in several parts of the Apsheron oil and gas region - (Определение количества глубокого теплового потока в нескольких частях Апшеронского нефтегазоносного района), 26(7), 45-48, Tsukahara_1976 Tsukahara, H. (1976), Terrestrial heat flow at the Iwatsuki deep well observatory and crustal temperature profiles beneath the Kanto district, Japan, Secondary, Terrestrial heat flow at the Iwatsuki deep well observatory and crustal temperature profiles beneath the Kanto district, Japan, 1(21), 45300, https://doi.org/10.1594/pangaea.810097 Tsumuraya, Yuji; Tanahashi, Manabu; Saki, Takao; Machihara, Tsutomu; Asakura, Tsumuraya_etal._1985 Natsuo (1985), Preliminary report of the marine geophysical and geological surveys off Wilkes Land, Antarctica in 1983-1984, Secondary, Preliminary report of the marine geophysical and geological surveys off Wilkes Land, Antarctica in 1983-1984, 37(48-62, https://doi.org/10.1594/pangaea.807736 Tsybulya_etal._1985 Tsybulya, L.A.; Parkhomov, M.D.; Tsalko, P.B.; Zhuk, M.S.; Kozel, V.P. (1985), Geothermal Survey Results in Well - (Результаты Геотермических Исследований, в Скв), Secondary, Geothermal Survey Results in Well - (Результаты Геотермических Исследований, в Скв), 100-105, Tsybulya_Urban_1984 Tsybulya, L.A.; Urban, G.I. (1984), Heat flow in the Volyn-Orsha trough - reports of the USSR Academy of Sciences 1984 - (Тепловой поток, в Волынско-Оршанском прогибе), Secondary, Heat flow in the Volyn-Orsha trough - reports of the USSR Academy of Sciences 1984 - (Тепловой поток, в Волынско-Оршанском прогибе), T.28(9), 843-846. Tsybulya_Urban_1988 Tsybulya, L.A.; Urban, G.I. (1988), Heat flow of the Baltic Syneclise, Some Aspects of Its Relationship with the Deep Structure of the Earth's Core - (Тепловой поток Балтийской СинеклизыИ Некоторые Аспекты Его Связи С Глубинным Строением Земной Кори), Secondary, Heat flow of the Baltic Syneclise, Some Aspects of Its Relationship with the Deep Structure of the Earth's Core - (Тепловой поток Балтийской СинеклизыИ Некоторые Аспекты Его Связи С Глубинным Строением Земной Кори), 28-34, Tsybulya, L.A.; Zhuk, M.S. (1985), Heat flow of the Belarusian anteclise - (Тепловой Tsybulya_Zhuk_1985 поток Белорусской Антеклизы), Secondary, Heat flow of the Belarusian anteclise -(Тепловой поток Белорусской Антеклизы), Т.29(8), 731-734, Tucholke_etal._2001 Tucholke, B.E.; Fujioka, K.; Ishihara, T.; Hirth, G.; Kinoshita, Masataka (2001), Submersible study of an oceanic megamullion in the central North Atlantic, Secondary, Submersible study of an oceanic megamullion in the central North Atlantic, 106(B8), 16145-16161, https://doi.org/10.1029/2001jb000373 Tuezov_etal._1986a Tuezov, I.K.; Gagaev, V.N.; Gornov, P.Yu.; Kanev, S.N.; Korchagin, F.G.; Beskhlebnaya, V.E. (1986), Geothermal studies of the Komsomolsk ore region - (Геотермические исследования Комсомольского рудного района), Secondary, Geothermal studies of the Komsomolsk ore region - (Геотермические исследования Комсомольского рудного района), 1), 123-125, Tuezov_etal._1986b Tuezov, I.K.; Gornov, P.Yu.; Zhigalov, V.P.; Kanev, S.N. (1986), Geothermal research in the Verkhneamurskiy region - (Геотермические исследования в Верхнеамурском районе), Secondary, Geothermal research in the Verkhneamurskiy region -(Геотермические исследования в Верхнеамурском районе), 5(6), 115-117, Udintsev_etal._1971 Udintsev, Gleb B.; Smirnov, Ya.B.; Popova, A.K.; Shekhvatov, B.V.; Suvilov, E.V.

	(1971), New data on heat flow through the floors of the Indian and Pacific Oceans,
	Secondary, New data on heat flow through the floors of the Indian and Pacific
Halistana Laukinana 4072	Oceans, 200(242–244, https://doi.org/10.1594/pangaea.808928
Udintsev_Lyubimova_1973	Udintsev, Gleb B.; Lyubimova, Elena A. (1973), <i>Heat flows near Iceland - (Тепловые потоки В близи Исландии)</i> , Secondary, Heat flows near Iceland - (Тепловые
	потоки В близи Исландии), 11(
Udintsov_etal1971	Udintsev, Gleb B.; Smirnov, Ya.B.; Popova, A.K.; Shekhvatov, B.V.; Suvilov, E.V.
	(1971), New data on heat flow through the floors of the Indian and Pacific Oceans -
	(Новые данные о тепловом потоке через дно Индийского и Тихого океанов),
	Secondary, New data on heat flow through the floors of the Indian and Pacific
	Oceans - (Новые данные о тепловом потоке через дно Индийского и Тихого
	океанов), 200(2), 242–244;453–456, https://doi.org/10.1594/pangaea.808928
Urban_1970	Urban, Thomas C. (1970), Terrestrial Heat Flow in the Middle Atlantic States,
Urban_Tsybulya_1988	Secondary, Terrestrial Heat Flow in the Middle Atlantic States, Ph.D. thesis(398, Urban, G.I.; Tsybulya, L.A. (1988), Thermal Role of Riga Pluto - (Тепловое Роль
Orban_rsybulya_1566	Рижского Плутона), Secondary, Thermal Role of Riga Pluto - (Тепловое Роль
	Рижского Плутона), 37(2), 49–54,
Urlaub_etal2009	Urlaub, Morelia; Schmidt-Aursch, Mechita C.; Jokat, Wilfried; Kaul, Norbert E. (2009),
	Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic
	Ocean, Secondary, Gravity crustal models and heat flow measurements for the
	Eurasia Basin, Arctic Ocean, 30(4), 277–292, https://doi.org/10.1007/s11001-010-
Uhanda atal 1050	9093-x
Uyeda_etal1958	Uyeda, Seiya; Yukutake, Takesi; Tanaoka, Iwao (1958), Sudies of the Thermal State of the Earth. The First Paper: Preliminary Report of Terrestrial Heat Flow in Japan,
	Secondary, Sudies of the Thermal State of the Earth. The First Paper: Preliminary
	Report of Terrestrial Heat Flow in Japan, 36(3), 251–273,
	https://doi.org/10.15083/0000033912
Uyeda_etal1962	Uyeda, Seiya; Horai, Ki-Iti; Yasui, Masashi; Akamatsu, H. (1962), Heat-flow
	measurements over the Japan Trench, Secondary, Heat-flow measurements over the
	Japan Trench, 67(3), 1186–1188, https://doi.org/10.1029/JZ067i003p01186
Uyeda_etal1964	Uyeda, Seiya; Yasui, Masashi; Sato, Toshinori; Akamatsu, H.; Kawada, K. (1964), Heat
	flow measurements during the JEDS-6 and JEDS-7 cruises in 1963, Secondary, Heat flow measurements during the JEDS-6 and JEDS-7 cruises in 1963, 16(44476,
Uyeda_etal1973	Uyeda, Seiya; Watanabe, Teruhiko; Mizushima, Nobuyo; Yasui, Masashi; Horie, Shoji
·	(1973), Terrestrial Heat Flow In Lake Biwa, Central Japan, Secondary, Terrestrial Heat
	Flow In Lake Biwa, Central Japan, 49(5), 341–346,
	https://doi.org/10.1594/pangaea.808077
Uyeda_etal1978a	Uyeda, Seiya; Watanabe, H.; Kausel, E.; Kubo, M.; Yashiro, Y. (1978), Report of Heat
	Flow Measurements in Chile, Secondary, Report of Heat Flow Measurements in Chile,
Uyeda_etal1978b	53(131–163, https://doi.org/10.15083/000033182
Oyeda_etal1378b	Uyeda, Seiya; Watanabe, Teruhiko; Volponi, Fernando (1978), <i>Report of heat flow</i> measurements in San Juan and Mendoza, Argentina, Secondary, Report of heat flow
	measurements in San Juan and Mendoza, Argentina, 53(165–172,
Uyeda_etal1980	Uyeda, Seiya; Watanabe, Teruhiko; Ozasayama, Yoji; Ibaragi, K. (1980), <i>Report of</i>
	Heat Flow Measurements in Peru and Ecuador, Secondary, Report of Heat Flow
	Measurements in Peru and Ecuador, 55(55–74,
	https://doi.org/10.15083/0000033083
Uyeda_etal1982a	Uyeda, Seiya; Eguchi, Takao; Kamal, Sukiman; Modjo, W.Soebroto (1982),
	Preliminary study on geothermal gradient and heat flow in Java, Secondary, Preliminary study on geothermal gradient and heat flow in Java, 15(15–27,
	https://doi.org/10.1594/pangaea.809952
Uyeda_etal1982b	Uyeda, Seiya; Eguchi, Takao; Lum, H.K.; Lee, A.K.; Singh, Joginder (1982), A heat flow
	measurement in Peninsular Malaysia, Secondary, A heat flow measurement in
	Peninsular Malaysia,
Uyeda_Horai_1960	Uyeda, Seiya; Horai, Ki-Iti (1960), 26. Studies of the Thermal State of the Earth : The
	Sixth Paper: Terrestrial Heat Flow at Innai Oil Field, Akita Prefecture and at Three

Earth: The Sixth Paper: Terrestrial Heat Flow at Innai Oil Field, Akita Prefecture and at Three Localities in Kanto-District, Japan, 38(421-436, https://doi.org/10.15083/0000033846 Uyeda_Horai_1963a Uyeda, Seiya; Horai, Ki-Iti (1963), Studies of the Thermal State of the Earth. The Eighth Paper: Terrestrial Heat Flow Measurements in Kanto and Chubu Districts, Japan, Secondary, Studies of the Thermal State of the Earth. The Eighth Paper: Terrestrial Heat Flow Measurements in Kanto and Chubu Districts, Japan, 41(83–107, https://doi.org/10.15083/0000033733 Uyeda_Horai_1963b Uyeda, Seiya; Horai, Ki-Iti (1963), Studies of the Thermal State of the Earth. The Ninth Paper: Terrestrial Heat Flow Measurements in Kinki, Chugoku and Shikoku Districts, Japan, Secondary, Studies of the Thermal State of the Earth. The Ninth Paper: Terrestrial Heat Flow Measurements in Kinki, Chugoku and Shikoku Districts, Japan, 41(109-135, https://doi.org/10.15083/0000033734 Uyeda, Seiya; Horai, Ki-Iti (1964), Terrestrial heat flow in Japan, Secondary, Uyeda_Horai_1964 Terrestrial heat flow in Japan, 69(10), 2121–2141, https://doi.org/10.1029/JZ069i010p02121 Uyeda_Horai_1982 Uyeda, Seiya; Horai, Ki-Iti (1982), Heat flow measurements on Deep Sea Srilling Project Leg 60, Secondary, Heat flow measurements on Deep Sea Srilling Project Leg 60, 60(789-800, https://doi.org/10.2973/dsdp.proc.60.146.1982 Uyeda_Watanabe_1982 Uyeda, Seiya; Watanabe, Teruhiko (1982), Terrestrial heat flow in western South America, Secondary, Terrestrial heat flow in western South America, 83(1), 63-70, https://doi.org/10.1016/0040-1951 (82)90007-5 Vacquier_1981 Vacquier, V. (1981), Calculation of terrestrial heat flow solely from oil well logging records, Secondary, Calculation of terrestrial heat flow solely from oil well logging records. Vacquier 1984 Vacquier, Victor (1984), Oil fields—A source of heat flow data, Secondary, Oil fields— A source of heat flow data, 103(1), 81–98, https://doi.org/10.1016/0040-1951 (84)90076-3 Vacquier_etal._1966 Vacquier, Victor; Uyeda, Seiya; Yasui, Masashi; Sclater, John G.; Corry, Charles E.; Watanabe, Teruhiko (1966), Studies of the thermal state of the Earth. The 19th paper: Heat-flow measurements in the northwestern Pacific, Secondary, Studies of the thermal state of the Earth. The 19th paper: Heat-flow measurements in the northwestern Pacific, 44(4), 1519-1535, https://doi.org/10.15083/0000033502 Vacquier_etal._1967 Vacquier, Victor; Sclater, John G.; Correy, C.E. (1967), Studies of the thermal state of the Earth. The 21st paper: Heat-flow, Eastern Pacific, Secondary, Studies of the thermal state of the Earth. The 21st paper: Heat-flow, Eastern Pacific, 45(375-393, https://doi.org/10.1594/pangaea.807739 Vacquier_Taylor_1966 Vacquier, Victor; Taylor, Patrick T. (1966), Geothermal and magnetic survey off the coast of Sumatra. 1. Presentation of data, Secondary, Geothermal and magnetic survey off the coast of Sumatra. 1. Presentation of data, 44(531-540, https://doi.org/10.15083/0000033573 Vacquier_VonHerzen_1964 Vacquier, Victor; Herzen, Richard P. Von (1964), Evidence for connection between heat flow and the mid-atlantic ridge magnetic anomaly, Secondary, Evidence for connection between heat flow and the mid-atlantic ridge magnetic anomaly, 69(6), 1093-1101, https://doi.org/10.1029/JZ069i006p01093 Gool, Mathijs Van; Huson, Willem J.; Prawirasasra, Rachmat; Owen, T.R. (1987), Heat VanGool_etal._1987 flow and seismic observations in the northwestern Banda Arc, Secondary, Heat flow and seismic observations in the northwestern Banda Arc, B3), 2581-2586, https://doi.org/10.1029/JB092iB03p02581 VanHinte_etal._1987 Hinte, J.E. Van; Wise Jr, S.W.; Biart, Brian N.M. (1987), Leg 93 site 603, Secondary, Leg 93 site 603, Washington, U.S. Government Printing Office, 93(80-81,

Localities in Kanto-District, Japan, Secondary, 26. Studies of the Thermal State of the

Vanneste, M.; Poort, Jeffrey; Batist, M. De; Klerkx, J. (2003), *Atypical heat-flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone*, Secondary, Atypical heat-flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone,

19(10), 1257-1274, https://doi.org/10.1016/s0264-8172 (03)00019-9

Vanneste_etal._2003

Vartanyan_Gordienko_1984 Vartanyan, K.S.; Gordienko, Vadim V. (1984), New Values of Heat Flow in the territory of the Armenian SSR - (Новые значениыа теплового потока на территории армыанскои сср), Secondary, New Values of Heat Flow in the territory of the Armenian SSR - (Новые значениыа теплового потока на территории армыанскои ccp), 37(4), 70-75, Vasseur 1980 Vasseur, Guy (1980), A Critical Study of Heat Flow Data in France, Secondary, A Critical Study of Heat Flow Data in France, 474-484, https://doi.org/10.1007/978-94-009-9059-3 42 Vasseur_1982 Vasseur, Guy (1982), Summary of the results of the geothermal flow in France -(Synthèse des résultats du flux géothermique en France), Secondary, Summary of the results of the geothermal flow in France - (Synthèse des résultats du flux géothermique en France), 38(2), 189-201, https://doi.org/10.1594/pangaea.808081 Vasseur_etal._1983 Vasseur, Guy; Bernard, Ph.; Meulebrouck, J. Van de; Kast, Yves; Jolivet, Jean (1983), Holocene paleotemperatures deduced from geothermal measurements, Secondary, Holocene paleotemperatures deduced from geothermal measurements, 43(45355), 237–259, https://doi.org/10.1016/0031-0182(83)90013-5 Veliciu_Demetrescu_1979 Veliciu, S.; Demetrescu, Crisan (1979), Heat flow in Romania and some relations to geological and geophysical features, Secondary, Heat flow in Romania and some relations to geological and geophysical features, 253-260(10.1594/pangaea.809971 Veliciu_etal._1977 Veliciu, S.; Cristian, M.; Paraschiv, D.; Visarion, M. (1977), Preliminary data of heat flow distribution in Romania, Secondary, Preliminary data of heat flow distribution in Romania, 6(1), 95-98, https://doi.org/10.1016/0375-6505 (77)90044-x Veliciu_Visarion_1984 Veliciu, S.; Visarion, M. (1984), Geothermal models for the East Carpathians, Secondary, Geothermal models for the East Carpathians, 103(1), 157-165, https://doi.org/10.1016/0040-1951 (84)90080-5 Velinov_Bojadgieva_1983 Velinov, T.; Bojadgieva, K. (1983), Heat flow in Bulgaria, Secondary, Heat flow in Bulgaria, https://doi.org/10.1594/pangaea.808906 Verheijen_Ajakaiye_1979 Verheijen, P.J.T.; Ajakaiye, D.E. (1979), Heat flow measurements in the Ririwai Ring Complex, Nigeria, Secondary, Heat flow measurements in the Ririwai Ring Complex, Nigeria, 54(1), 27-32, https://doi.org/10.1016/0040-1951(79)90108-2 Verma_etal._1966 Verma, R.K.; Rao, R.U.M.; Gupta, Mohan L. (1966), Terrestrial heat flow in Mosabani Mine, Singhbhum District, Bihar, India, Secondary, Terrestrial heat flow in Mosabani Mine, Singhbhum District, Bihar, India, 71(20), 4943-4948, https://doi.org/10.1029/JZ071i020p04943 Verma_etal._1967 Verma, R.K.; Gupta, Mohan L.; Rao, R.U.M.; Hamza, Valiya M.; Rao, G.Venkateshwar (1967), Terrestrial heat flow in Khetri Copper Belt, Singhbhum Thrust Zone and Godavari Valley, India, Secondary, Terrestrial heat flow in Khetri Copper Belt, Singhbhum Thrust Zone and Godavari Valley, India, 175-188, Verma_etal._1968a Verma, R.K.; Gupta, Mohan L.; Hamza, Valiya M.; Rao, G.Venkateshwar; Rao, R.U.M. (1968), Heat flow and crustal structure near Cambay, Gujarat, India, Secondary, Heat flow and crustal structure near Cambay, Gujarat, India, 6(6), 153-166, https://doi.org/10.1594/pangaea.807742 Verma_etal._1968b Verma, R.K.; Gupta, M. L.; Rao, G. Venkateshwar; Hamza, Valiya M.; Panda, B.; Rao, U.V. (1968), Annual Report, Secondary, Annual Report, Hyderabad, India, National Geophysical Research Institute, Verma_etal._1969 Verma, R.K.; Rao, R.U.M.; Gupta, Mohan L.; Rao, G. Venkateshwar; Hamza, Valiya M. (1969), Terrestrial heat flow in various parts of India, Secondary, Terrestrial heat flow in various parts of India, 33(1), 69-88, https://doi.org/10.1007/bf02596709 Verma_Narain_1968 Verma, R.K.; Narain, Hari (1968), Terrestrial Heat Flow in India, Secondary, Terrestrial Heat Flow in India, 22-34, https://doi.org/10.1029/GM012p0022 Verma_Rao_1965 Verma, R.K.; Rao, R.U.M. (1965), Terrestrial heat flow in Kolar Gold Field, India, Secondary, Terrestrial heat flow in Kolar Gold Field, India, 70(6), 1353-1356, https://doi.org/10.1029/JZ070i006p01353 Vermeesch_etal._2004 Vermeesch, P.; Poort, Jeffrey; Duchkov, Albert D.; Klerkx, J.; Batist, M. De (2004), Lake Issyk-Kul (Tien Shan): unusually low heat flow in an active intermountain basin -(Озеро Иссык-Куль (Тянь-Шань): необычно низкий тепловой поток в активной

межгорной котповине), Secondary, Lake Issyk-Kul (Tien Shan): unusually low heat flow in an active intermountain basin - (Озеро Иссык-Куль (Тянь-Шань): необычно низкий тепловой поток в активной межгорной котловине), 45(5), 616–625, https://doi.org/10.1594/pangaea.807751

Verzhbitskii_2001

Verzhbitsky, Evgeny V. (2001), Geothermal Studies in the Pechora Sea - (Геотермальные исследования, В.П.ечорском море), Secondary, Geothermal Studies in the Pechora Sea - (Геотермальные исследования, В.П.ечорском море), 41(3), 438–443, https://doi.org/10.1594/pangaea.807764

Verzhbitskii_Zolotarev_1980

Verzhbitsky, Evgeny V.; Zolotarev, V.G. (1980), Heat Flow Studies in the Red Sea Rift Zone - (Исследования Теплового Потока в Рифтовой Зоне Красного Моря), Secondary, Heat Flow Studies in the Red Sea Rift Zone - (Исследования Теплового Потока в Рифтовой Зоне Красного Моря), 20(5), 882–886,

Verzhbitsky etal. 2005

Verzhbitsky, Evgeny V.; Lobkovsky, Leopold I.; Pokryshkin, Alexander A.; Soltanovsky, Igor I. (2005), *Anomalous geothermal regime, seismic, and gravitational landslide activity in the northeastern part of the Black Sea continental slope*, Secondary, Anomalous geothermal regime, seismic, and gravitational landslide activity in the northeastern part of the Black Sea continental slope, 45(4), 580–587, https://doi.org/10.1594/pangaea.807762

Verzhbitsky_etal._2007

Verzhbitsky, Evgeny V.; Kononov, M.V.; Kotelkin, V.D. (2007), Geothermal regime and geodynamics of the North Pacific Ocean - (Геотермический режим и геодинамика северной части Тихого океана), Secondary, Geothermal regime and geodynamics of the North Pacific Ocean - (Геотермический режим и геодинамика северной части Тихого океана), 6(45369,

Verzhbitsky_Zolotarev_1989

Verzhbitsky, Evgeny V.; Zolotarev, V.G. (1989), Heat flow and the Eurasian-African plate boundary in the eastern part of the Azores-Gibraltar fracture zone, Secondary, Heat flow and the Eurasian-African plate boundary in the eastern part of the Azores-Gibraltar fracture zone, 11(3), 267–273, https://doi.org/10.1016/0264-3707(89)90009-4

Veselov_2000

Veselov, O.V. (2000), Structure of Heat Flow in the Sea of Okhotsk Region, Secondary, Structure of Heat Flow in the Sea of Okhotsk Region, 1(107–129, https://doi.org/10.1594/pangaea.808907

Veselov_etal._1974a

Veselov, O.V.; Volkova, N.A.; Eremin, G.D.; Kozlov, N.A.; Soinov, Veselov (1974), Heat flow studies in the Northwest Pacific - (Исследование теплового потока, В Северо-западной части Тихого океана), O.V. Volkova, N. A. Eremin, G.D. Soinov, V.V. Kozlov, N.A.Veselov, Secondary, Heat flow studies in the Northwest Pacific - (Исследование теплового потока, В Северо-западной части Тихого океана), 44228(87–90, https://doi.org/10.1594/pangaea.808995

Veselov_etal._1974b

Veselov, O.V.; Volkova, N.A.; Yeremin, G.D.; Kozlov, N.A.; Soinov, Veselov (1974), Measurement of heat flow in the transition zone from the Asian continent to the Pacific Ocean - (Измерение теплового потока в зоне перехода от Азиатского материка к Тихому океану), Secondary, Measurement of heat flow in the transition zone from the Asian continent to the Pacific Ocean - (Измерение теплового потока в зоне перехода от Азиатского материка к Тихому океану), 217(4), 897–900, https://doi.org/10.1594/pangaea.808994

Veselov_etal._1975a

Veselov, O.V.; Volkova, N.A.; Soinov, Veselov (1975), Geothermal research in the deep-water part of the East China Sea - (Геотермические исследования в глубоководной части В осточно-Китайского моря), O.V. Eremin, G.D. Soinov, V.V. Veselov, Secondary, Geothermal research in the deep-water part of the East China Sea - (Геотермические исследования в глубоководной части В осточно-Китайского моря), 300–302, https://doi.org/10.1594/pangaea.808992

Veselov_etal._1975b

Veselov, O.V.; Yeremin, G.D.; Soinov, Veselov (1975), Heat flow determination during the second complex ocean expedition of the Sakhalin Complex Scientific Research Institute, Secondary, Heat flow determination during the second complex ocean expedition of the Sakhalin Complex Scientific Research Institute, 298–300, https://doi.org/10.1594/pangaea.808993

Veselov_etal._1976a

Veselov, O.V.; Eremin, G.D.; Soinov, Veselov (1976), Determination of the heat flow

during the II complex sea expedition of the Sakhalin Research Institute - (Геотермические исследования на Северном Сахалине), Veselov, O.V. Eremin G.D. Soinov V.V., Secondary, Determination of the heat flow during the II complex sea expedition of the Sakhalin Research Institute - (Геотермические исследования на Северном Сахалине), Vladivostok, Russia, Proceedings / SakhKNII DVNTS AN USSR; Issue 30. Geophysical collection 4), 77–80,

Veselov_etal._1978a

Veselov, O.V.; Volkova, N.A.; Eremin, G.D.; Soinov, Veselov (1978), Geothermal exploration on Moneron Island - (Геотермические исследования на острове Монерон), O.V. Volkova, N.A. Eremin, G.D. Soinov, V.V. Veselov, Secondary, Geothermal exploration on Moneron Island - (Геотермические исследования на острове Монерон), Yuzhno-Sakhalinsk, 48–52,

Veselov_Kozlov_2014

Veselov, O.V.; Kozlov, D.N. (2014), Geothermal and bathymetric studies in Broughton Bay (Uratman Volcano, Simushir Island, Kuril Islands) - (Геотермические и батиметрические исследования в бухте Броутона (вулкан Уратман, о Симушир, Курильские о-ва)), Secondary, Geothermal and bathymetric studies in Broughton Bay (Uratman Volcano, Simushir Island, Kuril Islands) - (Геотермические и батиметрические исследования в бухте Броутона (вулкан Уратман, о Симушир, Курильские о-ва)), 2(4), 54–54,

Veselov_Lipina_1982

Veselov, O.V.; Lipina, E.N. (1982), Catalog of data on heat flow in the east of Asia, Australia and the west of the Pacific Ocean - (Наземные геотермические исследования, проведенные СахКНИИ в южной части Дальнего Востока), Secondary, Catalog of data on heat flow in the east of Asia, Australia and the west of the Pacific Ocean - (Наземные геотермические исследования, проведенные СахКНИИ в южной части Дальнего Востока), 121, https://doi.org/10.1594/pangaea.808927

Veselov_Soinov_1979

Veselov, O.V.; Soinov, Veselov (1979), Heat flow of the Sea of Okhotsk region: methodology, equipment, results - (Тепловой поток Охотоморского региона: методика, аппаратура, результаты), Secondary, Heat flow of the Sea of Okhotsk region: methodology, equipment, results - (Тепловой поток Охотоморского региона: методика, аппаратура, результаты), 134, https://doi.org/10.1594/pangaea.808929

Vidal_etal._1984

Vidal, O.; Vasseur, Guy; Lucazeau, Francis (1984), Geothermal measurements in the Cézallier region - (Mesures géothermiques dans la région du Cézallier), Secondary, Geothermal measurements in the Cézallier region - (Mesures géothermiques dans la région du Cézallier), 153–162,

Vigneresse_etal._1987

Vigneresse, J.L.; Jolivet, Jean; Cuney, M.; Bienfait, Gerard (1987), *Heat flow, heat production and granite depth in western France*, Secondary, Heat flow, heat production and granite depth in western France, 14(3), 275–278, https://doi.org/10.1029/GL014i003p00275

Villinger_1984

Villinger, Heinrich W. (1984), *New Heat-Flow Values Off the West-Coast of Morocco*, Secondary, New Heat-Flow Values Off the West-Coast of Morocco, 79(NOV), 377–381, https://doi.org/10.1594/pangaea.806252

Villinger_etal._2000

Villinger, Heinrich W.; Cruise, Participants (2000), Report and preliminary results of SONNE-cruise SO145/Leg 1, Balboa - Talcahuano, 21.12.1999 - 28.1.2000, Secondary, Report and preliminary results of SONNE-cruise SO145/Leg 1, Balboa - Talcahuano, 21.12.1999 - 28.1.2000, 154(147,

Villinger_etal._2002

Villinger, Heinrich W.; Grevemeyer, Ingo; Kaul, Norbert E.; Hauschild, Jan; Pfender, Marion (2002), *Hydrothermal heat flux through aged oceanic crust: where does the heat escape?*, Secondary, Hydrothermal heat flux through aged oceanic crust: where does the heat escape?, 202(1), 159–170, https://doi.org/10.1016/s0012-821x (02)00759-8

Villinger_etal._2019

Villinger, Heinrich W.; Mueller, P.; Bach, W.; Becker, Keir; Orcutt, B.N.; Kaul, Norbert E.; Wheat, C.G. (2019), Evidence for Low-Temperature Diffuse Venting at North Pond, Western Flank of the Mid-Atlantic Ridge, Secondary, Evidence for Low-Temperature Diffuse Venting at North Pond, Western Flank of the Mid-Atlantic Ridge, 20(6), 2572–2584, https://doi.org/10.1029/2018gc008113

Vitorello, Icaro; Hamza, Valiya M.; Pollack, Henry N.; Araújo, R. (1978), Geothermal Vitorello_etal._1978 investigations in Brazil, Secondary, Geothermal investigations in Brazil, Vitorello_etal._1980 Vitorello, Icaro; Hamza, Valiya M.; Pollack, Henry N. (1980), Terrestrial heat flow in the Brazilian highlands, Secondary, Terrestrial heat flow in the Brazilian highlands, 85(B7), 3778-3788, https://doi.org/10.1029/JB085iB07p03778 Vlasenko_etal._1984a Vlasenko, V.I.; Salman, A.G.; Tomara, G.A.; Baranov, B.A. (1984), Data of heat flow measurements in the Western Arctic Basin, Secondary, Data of heat flow measurements in the Western Arctic Basin, 47-51, https://doi.org/10.1594/pangaea.808996 Vogt_etal._1999 Vogt, Peter R.; Crane, Kathleen; Sundvor, Eirik; Hjelstuen, B.O.; Gardner, J.; Bowles, F.; Cherkashev, G. (1999), Ground-truthing 11- to 12-kHz side-scan sonar imagery in the Norwegian-Greenland Sea: Part I: Pockmarks on the Vestnesa Ridge and Storegga slide margin, Secondary, Ground-truthing 11- to 12-kHz side-scan sonar imagery in the Norwegian-Greenland Sea: Part I: Pockmarks on the Vestnesa Ridge and Storegga slide margin, 19(45293), 97-110, https://doi.org/10.1007/s003670050098 VonHerzen_1959 Herzen, Richard P. Von (1959), Heat-Flow Values from the South-Eastern Pacific, Secondary, Heat-Flow Values from the South-Eastern Pacific, 183(4665), 882–883, https://doi.org/10.1038/183882a0 VonHerzen_1963 Herzen, Richard P. Von (1963), Geothermal Heat Flow in the Gulfs of California and Aden, Secondary, Geothermal Heat Flow in the Gulfs of California and Aden, 140(3572), 1207-8, https://doi.org/10.1126/science.140.3572.1207 VonHerzen_1964 Herzen, Richard P. Von (1964), Ocean-floor heat-flow measurements west of the United States and Baja California, Secondary, Ocean-floor heat-flow measurements west of the United States and Baja California, 1(3), 225-239, https://doi.org/10.1016/0025-3227(64)90061-1 VonHerzen_1973 Herzen, Richard P. Von (1973), Geothermal measurements, Leg 21, Secondary, Geothermal measurements, Leg 21, 21(11), 443-457, https://doi.org/10.2973/dsdp.proc.21.111.1973 Herzen, Richard P. Von; Anderson, Roger N. (1972), Implications of Heat Flow and VonHerzen_Anderson_1972 Bottom Water Temperature in the Eastern Equatorial Pacific, Secondary, Implications of Heat Flow and Bottom Water Temperature in the Eastern Equatorial Pacific, 26(5), 427-458, https://doi.org/10.1111/j.1365-246X.1972.tb05762.x Herzen, Richard P. Von; Simmons, Gene; Folinsbee, A. (1970), Heat flow between the VonHerzen_etal._1970 Caribbean Sea and the Mid-Atlantic Ridge, Secondary, Heat flow between the Caribbean Sea and the Mid-Atlantic Ridge, 75(11), 1973-1984, https://doi.org/10.1029/JB075i011p01973 VonHerzen_etal._1971 Herzen, Richard P. Von; Fiske, R.J.; Sutton, G. (1971), Geothermal measurements on Leg 8, Secondary, Geothermal measurements on Leg 8, 8(837-849, https://doi.org/10.2973/dsdp.proc.8.118.1971 VonHerzen_etal._1974 Herzen, Richard P. Von; Finckh, Peter G.; Hsü, K.J. (1974), Heat flow measurements in Swiss lakes, Secondary, Heat flow measurements in Swiss lakes, 40(2), 141-172, https://doi.org/10.1594/pangaea.807823 VonHerzen_etal._1982a Herzen, Richard P. Von; Detrick, Robert S.; Crough, S.T.; Epp, David; Fehn, U. (1982), Thermal origin of the Hawaiian swell: Heat flow evidence and thermal models, Secondary, Thermal origin of the Hawaiian swell: Heat flow evidence and thermal models, 87(B8), 6711-6723, https://doi.org/10.1029/JB087iB08p06711 VonHerzen_etal._1989 Herzen, Richard P. Von; Cordery, M.J.; Detrick, Robert S.; Fang, Changle (1989), Heat flow and the thermal origin of hot spot swells: The Hawaiian Swell revisited, Secondary, Heat flow and the thermal origin of hot spot swells: The Hawaiian Swell revisited, 94(B10), 13783-13799, https://doi.org/10.1029/JB094iB10p13783 VonHerzen_etal._2001 Herzen, Richard P. Von; Ruppel, Carolyn; Molnar, Paul S.; Nettles, M.; Nagihara, Seiichi; Ekström, G. (2001), A constraint on the shear stress at the Pacific-Australian plate boundary from heat flow and seismicity at the Kermadec forearc, Secondary, A constraint on the shear stress at the Pacific-Australian plate boundary from heat flow and seismicity at the Kermadec forearc, 106(B4), 6817-6833, https://doi.org/10.1029/2000jb900469

Herzen, Richard P. Von; Langseth Jr, Marcus G. (1965), Present status of oceanic VonHerzen_Langseth_1965 heat-flow measurements, Secondary, Present status of oceanic heat-flow measurements, 6(365–407, https://doi.org/10.1016/0079-1946(65)90018-2 VonHerzen_Maxwell_1964 Herzen, Richard P. Von; Maxwell, Arthur E. (1964), Measurement of heat flow at the preliminary Mohole site off Mexico, Secondary, Measurement of heat flow at the preliminary Mohole site off Mexico, 69(4), 741-748, https://doi.org/10.1029/JZ069i004p00741 VonHerzen_Simmons_1972 Herzen, Richard P. Von; Simmons, Gene (1972), Two heat flow profiles across the Atlantic Ocean, Secondary, Two heat flow profiles across the Atlantic Ocean, 15(1), 19-27, https://doi.org/10.1016/0012-821x(72)90024-6 Herzen, Richard P. Von; Uyeda, Seiya (1963), Heat flow through the eastern Pacific VonHerzen_Uyeda_1963 ocean floor, Secondary, Heat flow through the eastern Pacific ocean floor, 68(14), 4219-4250, https://doi.org/10.1029/JZ068i014p04219 VonHerzen_Vacquier_1966 Herzen, Richard P. Von; Vacquier, Victor (1966), Heat Flow and Magnetic Profiles on the Mid-Indian Ocean Ridge, Secondary, Heat Flow and Magnetic Profiles on the Mid-Indian Ocean Ridge, 259(1099), 262-270, VonHerzen_Vacquier_1967 Herzen, Richard P. Von; Vacquier, Victor (1967), Terrestrial heat flow in Lake Malawi, Africa, Secondary, Terrestrial heat flow in Lake Malawi, Africa, 72(16), 4221-4226, https://doi.org/10.1029/JZ072i016p04221 Wang_1987 Wang, Yihua (1987), Geothermics and oil-gas generation in North Jiangsu Basin, Secondary, Geothermics and oil-gas generation in North Jiangsu Basin, Nanjing, China, University of Nanjing, M.Sc. thesis(Wang_1990 Wang, J.A. (1990), Basic characteristics of geotemperature distribution in China, Secondary, Basic characteristics of geotemperature distribution in China, 7(Wang, Ji-Yang; Chen, Mo-Xiang; Wang, Jian; Deng, Xiao; Wang, Jun; Hsiung, Liang-Wang_etal._1981 Ping; Yan, Shu-Zhen; Fan, Zhi-Cheng; Liu, Xiu-Wen; Huang, Ge-Shan; Zhang, Wen-Ren; Shao, Hai-Hui; Zhang, Rong-Yan (1981), Geothermal studies in China, Secondary, Geothermal studies in China, 9(1), 57-76, https://doi.org/10.1016/0377-0273(81)90014-7 Wang_etal._1987 Wang, Andong; Ren, Yuhe; Sun, Wenfu; Yu, Longwei; Liang, Jingming; Cao, Tianqing; Gu, Haoding (1987), Geothermal observation in Liaodong area and Haicheng earthquake area - (辽东地区和海城地震区的地热观测), Secondary, Geothermal observation in Liaodong area and Haicheng earthquake area - (辽东地区和海城地震 区的地热观测), 9(4), 392-405, Wang_etal._1989c Wang, Chi-Yuen; Hwang, Win-Tsuang; Shi, Yao-Lin (1989), Thermal evolution of a rift basin: The Tyrrhenian Sea, Secondary, Thermal evolution of a rift basin: The Tyrrhenian Sea, 94(B4), 3991–4006, https://doi.org/10.1029/JB094iB04p03991 Wang_etal._1990 Wang, J.A.; Xu, Q.; Zhang, Wen-Ren (1990), Geothermal characteristics and deep thermal structure of Yunnan area, SW China (in Chinese with English abstract), Secondary, Geothermal characteristics and deep thermal structure of Yunnan area, SW China (in Chinese with English abstract), 12(4), 367-379, Wang_etal._1995b Wang, Liang-Shu; Li, Cheng Shi; Yangshen, Wang Yihua (1995), Distributions of Geotemperature and Terrestrial Heat Flow Density in Lower Yangtze Area, Secondary, Distributions of Geotemperature and Terrestrial Heat Flow Density in Lower Yangtze Area, 6(14), 56, Wang_etal._1995c Wang, Jun; Wang, J.A.; Shen, Jiying; Qiu, Nan-Sheng (1995), Heat flow in Tarim basins - (塔里木盆地的大地热流), Secondary, Heat flow in Tarim basins - (塔里木盆地的大 地热流), 20(4), 399-404, Wang_etal._2001a Wang, Shejiao; He, Li-Juan; Wang, Ji-Yang (2001), Thermal regime and petroleum systems in Junggar basin, northwest China, Secondary, Thermal regime and petroleum systems in Junggar basin, northwest China, 126(44289), 237-248, https://doi.org/10.1016/s0031-9201 (01)00258-8 Wang_etal._2001b Jiyang, Wang; Shengbiao, Hu; Wencai, Yang; Benhe, Chen; Zhenyan, Chen; Tiejun, Li (2001), Geothermal measurements in the pilot-boreholes of the china continental

scientific drilling, Secondary, Geothermal measurements in the pilot-boreholes of the china continental scientific drilling, 46(20), https://doi.org/10.1007/bf02900665

Wang_etal._2002 Wang, Liang-Shu; Liu, Shao-Wen; Xiao, Weiyong; Li, Cheng; Li, Hua; Guo, Suiping; Liu, Bo; Luo, Yuhui; Cai, Dongsheng (2002), Distribution features of terrestrial heat flow densities in the Bohai Basin, east China, Secondary, Distribution features of terrestrial heat flow densities in the Bohai Basin, east China, 47(10), 857-862, https://doi.org/10.1360/02tb9193 Wang_etal._2003 Wang, Y.; Wang, J.; Hu, Sheng-Biao (2003), Thermal history and tectono-thermal evolution of Eastern Depression, the Liaohe Basin, Secondary, Thermal history and tectono-thermal evolution of Eastern Depression, the Liaohe Basin, 38(2), 220–228, Wang_Huang_1990 Wang, Ji-Yang; Huang, Shao-Peng (1990), Compilation of heat flow data in China continental area (2nd edition), Secondary, Compilation of heat flow data in China continental area (2nd edition), 12(351-366, Wang_Liu_2013 Wang, Wei; Liu, Jian-Gang (2013), Underground temperature calculation of mined bed in pyrite mine of Mawei mountain according to temperature characteristics of surrounding rock, Secondary, Underground temperature calculation of mined bed in pyrite mine of Mawei mountain according to temperature characteristics of surrounding rock, 2013(17), 4893-4897, Wang_Munroe_1982 Wang, Ji-Yang; Munroe, Robert J. (1982), Heat flow and sub-surface temperatures in the Great Valley, California, Secondary, Heat flow and sub-surface temperatures in the Great Valley, California, USGS-OFR-82-844), 102, https://doi.org/10.1594/pangaea.807825 Wang_Wang_1986 Wang, Ji-Yang; Wang, Jian (1986), Heat flow measurements in Liaohe Basin, North China EAT FLOW MEASUREMENTS IN LIAOHE BASIN, Secondary, Heat flow measurements in Liaohe Basin, North China EAT FLOW MEASUREMENTS IN LIAOHE BASIN, 686 -689, Warren, Robert E.; Sclater, John G.; Vacquier, Victor; Roy, Robert F. (1969), A Warren_etal._1969 comparison of terrestrial heat flow and transient geomagnetic fluctuations in the southwestern United States, Secondary, A comparison of terrestrial heat flow and transient geomagnetic fluctuations in the southwestern United States, 34(3), 463-478, https://doi.org/10.1190/1.1440023 Watanabe_1972 Watanabe, Teruhiko (1972), On Heat Flow in the Sagami Bay and Heat Flow distribution around the Izu Peninsula, Secondary, On Heat Flow in the Sagami Bay and Heat Flow distribution around the Izu Peninsula, 277-286, https://doi.org/10.1594/pangaea.809981 Watanabe_etal._1970 Watanabe, Teruhiko; Epp, David; Uyeda, Seiya; Langseth Jr, Marcus G.; Yasui, Masashi (1970), Heat flow in the Philippine Sea, Secondary, Heat flow in the Philippine Sea, 10(1), 205-224, https://doi.org/10.1016/0040-1951 (70)90107-1 Watanabe_etal._1975 Watanabe, Teruhiko; Herzen, Richard P. Von; Erickson, A. (1975), Geothermal studies Leg 31, Secondary, Geothermal studies Leg 31, 31(23), 573-576, https://doi.org/10.2973/dsdp.proc.31.123.1975 Watanabe_etal._1980 Watanabe, Teruhiko; Uyeda, Seiya; A, Guzman Roa Jaime; Cabre, Ramon; Kuronuma, Hiroji (1980), Report of Heat Flow Measurements in Boivia, Secondary, Report of Heat Flow Measurements in Boivia, 55(43-54, https://doi.org/10.15083/0000033082 Watremez_1980 Watremez, Pierre (1980), Heat flow on the Armorican massif and on the continental margin: modeling test of the thermal evolution of the continental margin - (Flux de chaleur sur le massif Armoricain et sur la marge continentale: essai de modélisation de l'évolution thermique de la marge continentale), Secondary, Heat flow on the Armorican massif and on the continental margin: modeling test of the thermal evolution of the continental margin - (Flux de chaleur sur le massif Armoricain et sur la marge continentale: essai de modélisation de l'évolution thermique de la marge continentale), 108, Weber_etal._2011 Weber, R.; Kirkby, Alison L.; Gerner, Edward (2011), Heat Flow Determinations for the Australian Continent: Release 3, Secondary, Heat Flow Determinations for the Australian Continent: Release 3, Wesierska_1973 Wesierska, M. (1973), A study of terrestrial heat flux density in Poland, Secondary, A study of terrestrial heat flux density in Poland, 60(135-144, Wheat_etal._2004 Wheat, C.G.; Mottl, M.J.; Fisher, Andrew T.; Kadko, D.; Davis, Earl E.; Baker, Edward

Secondary, Heat flow through a basaltic outcrop on a sedimented young ridge flank, 5(12), https://doi.org/10.1029/2004gc000700 Wheildon_etal._1977 Wheildon, J.; Francis, M.F.; Thomas-Betts, A.A. (1977), Investigation of the S.W. England thermal anomaly zone, Secondary, Investigation of the S.W. England thermal anomaly zone, 1(175-188, https://doi.org/10.1594/pangaea.807837 Wheildon etal. 1984b Wheildon, J.; King, G.; Crook, C.N.; Thomas-Betts, A.A. (1984), The Lake District granites: heat flow, heat production and model studies, Secondary, The Lake District granites: heat flow, heat production and model studies, British Geological Survey, 34, Wheildon_etal._1985 Wheildon, J.; Gebski, J.S.; Thomas-Betts, A.A. (1985), Further Investigations of the UK Heat Flow Field (1981–1984). Investigation of the Geothermal Potential of the UK, Secondary, Further Investigations of the UK Heat Flow Field (1981–1984). Investigation of the Geothermal Potential of the UK, 19, Wheildon_etal._1994 Wheildon, J.; Morgan, Paul; Williamson, K.H.; Evans, T.R.; Swanberg, Chandler A. (1994), Heat-Flow in the Kenya Rift-Zone, Secondary, Heat-Flow in the Kenya Rift-Zone, 236(44287), 131–149, https://doi.org/10.1016/0040-1951(94)90173-2 White_1978 White, Donald E. (1978), Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming, Secondary, Conductive heat flows in research drill holes in thermal areas of Yellowstone National Park, Wyoming, 6(6), 765-774, White_1989 White, P. (1989), Downhole logging, Secondary, Downhole logging, https://doi.org/10.1594/pangaea.807847 Whiteford_1990 Whiteford, P.C. (1990), Heat flow measurements in the Bay of Plenty, New Zealand, Secondary, Heat flow measurements in the Bay of Plenty, New Zealand, 30, https://doi.org/10.1594/pangaea.806180 Whiteford_1992 Whiteford, P.C. (1992), Heat flow in the sediments of lake rotorua, Secondary, Heat flow in the sediments of lake rotorua, 21(1), 75-88, https://doi.org/10.1016/0375-6505 (92)90069-I Whiteford_1996 Whiteford, P.C. (1996), Heat flow in the sediments of Lake Taupo, New Zealand, Secondary, Heat flow in the sediments of Lake Taupo, New Zealand, 257(1), 81–92, https://doi.org/10.1016/0040-1951 (95)00122-0 Whiteford_Graham_1994 Whiteford, P.C.; Graham, D.J. (1994), Conductive heat flow through the sediments in Lake Rotomahana, New Zealand, Secondary, Conductive heat flow through the sediments in Lake Rotomahana, New Zealand, 23(5), 527-538, https://doi.org/10.1016/0375-6505 (94)90017-5 Wiggins_etal._2002 Wiggins, Sean M.; Hildebrand, John A.; Gieskes, Joris M. (2002), Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging, Secondary, Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging, 195(44289), 239-248, https://doi.org/10.1016/s0012-821x (01)00590-8 Wilhelm_etal._2004 Wilhelm, Helmut; Heidinger, Philipp; Šafanda, Jan; Čermák, Vladimír; Burkhardt, Hans; Popov, Yuri A. (2004), High resolution temperature measurements in the borehole Yaxcopoil-1, Mexico, Secondary, High resolution temperature measurements in the borehole Yaxcopoil-1, Mexico, 39(6), 813-819, https://doi.org/10.1111/j.1945-5100.2004.tb00931.x Williams_1996 Williams, Colin F. (1996), Temperature and the Seismic/Aseismic Transition: Observations from the 1992 Landers Earthquake, Secondary, Temperature and the Seismic/Aseismic Transition: Observations from the 1992 Landers Earthquake, 23(16), 2029-2032, https://doi.org/10.1029/96gl02066 Williams, David L.; Herzen, Richard P. Von; Sclater, John G.; Anderson, Roger N. Williams_etal._1974 (1974), The Galapagos spreading centre: Lithospheric cooling and hydrothermal circulation, Secondary, The Galapagos spreading centre: Lithospheric cooling and hydrothermal circulation, 38(3), 587-608, https://doi.org/10.1111/j.1365-246X.1974.tb05431.x Williams_etal._1977 Williams, David L.; Lee, Tien-Chang; Herzen, Richard P. Von; Green, Kenneth P.; Hobart, Michael A. (1977), A geothermal study of the Mid-Atlantic Ridge near 37°N, Secondary, A geothermal study of the Mid-Atlantic Ridge near 37°N, 88(4), 531-540,

T. (2004), Heat flow through a basaltic outcrop on a sedimented young ridge flank,

https://doi.org/10.1130/0016-7606 (1977)88<531:Agsotm>2.0.Co;2 Williams_etal._1979a Williams, David L.; Becker, Keir; Lawver, Lawrence A.; Herzen, Richard P. Von (1979), Heat flow at the spreading centers of the Guaymas Basin, Gulf of California, Secondary, Heat flow at the spreading centers of the Guaymas Basin, Gulf of California, 84(B12), 6757-6769, https://doi.org/10.1029/JB084iB12p06757 Williams et al. 1979b Williams, David L.; Green, Kenneth E.; Andel, Tjeerd H. Van; Herzen, Richard P. Von; Dymond, Jack R.; Crane, Kathleen (1979), The hydrothermal mounds of the Galapagos Rift: Observations with DSRV Alvin and detailed heat flow studies, Secondary, The hydrothermal mounds of the Galapagos Rift: Observations with DSRV Alvin and detailed heat flow studies, 84(B13), 7467-7484, https://doi.org/10.1029/JB084iB13p07467 Williams_etal._2004 Williams, Colin F.; Grubb, Frederick V.; Galanis Jr, S. Peter (2004), Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault, Secondary, Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault, 31(15), https://doi.org/10.1029/2003gl019352 Williams_Galanis_1994 Williams, Colin F.; Galanis Jr, S. Peter (1994), Heat-flow measurements in the vicinity of the Hayward Fault, California, Secondary, Heat-flow measurements in the vicinity of the Hayward Fault, California, 94-692), 37, https://doi.org/10.3133/ofr94692 Williams_VonHerzen_1983 Williams, David L.; Herzen, Richard P. Von (1983), On the terrestrial heat flow and physical limnology of Crater Lake, Oregon, Secondary, On the terrestrial heat flow and physical limnology of Crater Lake, Oregon, 88(B2), 1094-1104, https://doi.org/10.1029/JB088iB02p01094 Williamson_1975 Williamson, K.H. (1975), Terrestrial heat flow studies in Kenya, Secondary, Terrestrial heat flow studies in Kenya, Uk, University of London, Ph.D. thesis(10.1594/pangaea.807845 Wimbush_Sclater_1971 Wimbush, Mark; Sclater, John G. (1971), Geothermal heat flux evaluated from turbulent fluctuations above the sea floor, Secondary, Geothermal heat flux evaluated from turbulent fluctuations above the sea floor, 76(2), 529-536, https://doi.org/10.1029/JB076i002p00529 Windisch_etal._1962 Windisch, C.C.; Ewing, J.I.; Bryan, G.M. (1962), A precision deep-ocean seismic reflection survey, Secondary, A precision deep-ocean seismic reflection survey, New York, Lamont-Doherty Geological Observatory Columbia University, 38, https://doi.org/10.7916/d8-8m36-km02 Wright_etal._1980 Wright, J.A.; Jessop, Alan M.; Judge, Alan S.; Lewis, Trevor J. (1980), Geothermal measurements in Newfoundland, Secondary, Geothermal measurements in Newfoundland, 17(10), 1370-1376, https://doi.org/10.1139/e80-144 Wronski_1977 Wronski, E.B. (1977), Two heat flow values for Tasmania, Secondary, Two heat flow values for Tasmania, 48(1), 131-133, https://doi.org/10.1111/j.1365-246X.1977.tb01291.x Wu_1990 Wu, Ganfan (1990), Heat flow along the No. 5 China's Geoscience section, Secondary, Heat flow along the No. 5 China's Geoscience section, 126-129, Wu_etal._1985 Wu, Qianfan; Xie, Yizhen; Zu, Xinhua; Wang, Dou (1985), Terrestrial heat flow and seismicity in North China, Secondary, Terrestrial heat flow and seismicity in North China, 133-141, Wu_etal._1988a Wu, Qianfan; Xie, Yizhen; Zu, Jin-Hua; Wang, Du (1988), Study on the geothermal field in North China, Secondary, Study on the geothermal field in North China, 4(1), 41-48, Wu_etal._1988b Wu, Qianfan; Zhu, Jiahua; Xie, Yizhen; Wang, Du (1988), Characteristics of geothermal field in Yunnan region, Secondary, Characteristics of geothermal field in Yunnan region, 10(4), 177-183, Wu_etal._1993 Wu, Qianfan; Zu, Jin-Hua; Lian, Yu-Fang; Xie, Yizhen (1993), Geothermal characteristics and seismological activity in Shanxi Fault Depression Zone - (山西断陷 带地热特征与地震活动性), Secondary, Geothermal characteristics and seismological activity in Shanxi Fault Depression Zone - (山西断陷带地热特征与地 震活动性), 11(2), 42-47, Wu, Shao-bin; Lu, Jinlin; Ou, Ye-Cheng; Quian, Xiao (2005), Exploration and

Wu etal. 2005

Exploration and Assessment of Geothermal Resources at in Hepu Basin in Guangxi, 25(2), 155-160, Wu_etal._2012 Wu, Li; Zhao, Lu; Luo, Xiangan (2012), Geothermal field characteristics and earth heat flow estimation in Wudang District, Guiyang City - (贵阳市乌当区地热田地温场特 征及大地热流估算), Secondary, Geothermal field characteristics and earth heat flow estimation in Wudang District, Guiyang City - (贵阳市乌当区地热田地温场特 征及大地热流估算), 3), 41-43, Wu_etal._2019 Wu, Jyun-Nai; Chiang, Hsieh-Tang; Chiao, Ling-Yun; Shyu, Chuen-Tien; Liu, Char-Shine; Wang, Yunshuen; Chen, Song-Chuen (2019), Revisiting the data reduction of seafloor heat-flow measurement: The example of mapping hydrothermal venting site around Yonaguni Knoll IV in the South Okinawa Trough, Secondary, Revisiting the data reduction of seafloor heat-flow measurement: The example of mapping hydrothermal venting site around Yonaguni Knoll IV in the South Okinawa Trough, 767(228159, https://doi.org/10.1016/j.tecto.2019.228159 Xiao etal. 2004 Xiao, Wei; Liu, Zhen; Du, J.H.; Yi, S.W. (2004), Characteristic of geotherm-geopressure system in Erlian Basin, Secondary, Characteristic of geotherm-geopressure system in Erlian Basin, 25(6), 610-613, Xiao_etal._2013 Xiao, Wentao; Zhang, Tao; Zheng, Yulong; Gao, Jinyao (2013), Heat flow measurements on the Lomonosov Ridge, Arctic Ocean, Secondary, Heat flow measurements on the Lomonosov Ridge, Arctic Ocean, 32(12), 25-30, https://doi.org/10.1007/s13131-013-0384-3 Xu, Jin; Ehara, Sachio; Ping, Xu Hui (1995), Preliminary report of heat flow in the GGT Xu_etal._1995b profile from Manzhouli to Suifenhe, Northeast China, Secondary, Preliminary report of heat flow in the GGT profile from Manzhouli to Suifenhe, Northeast China, 25(79, Xu_etal._2006 Xu, Xing; Shi, Xiao-Bin; Luo, Xian-Hu; Liu, Fang-Lan; Guo, Xing-Wei; Sha, Zhi-Bin; Yang, Xiao-Qiu (2006), Marine heat flow measurements in the Xisha Trough, South China Sea, Secondary, Marine heat flow measurements in the Xisha Trough, South China Sea, 4), 51-58, Xu etal. 2010 Xu, Ming; Zhao, Ping; Zhu, Chuan-Qing; J., Shan; Hu, Sheng-Biao (2010), Borehole temperature logging and terrestrial heat flow distribution in Jianghan basin, Secondary, Borehole temperature logging and terrestrial heat flow distribution in Jianghan basin, 45(317-323, Xu_etal._2011 Xu, Ming; Zhu, Chuan-Qing; Tian, Yun-Tao; Song, Rao; Hu, Sheng-Biao (2011), Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin, Secondary, Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin, 4), 1052-1060, https://doi.org/10.3969/j.issn.0001-5733.2011.04.020 Xu_etal._2019 Xu, Wei; Huang, Shaopeng; Zhang, Jiong; Yu, Ruyang; Zuo, Yinhui; Zhou, Yongshui; Chang, Junhe (2019), Present-day geothermal regime of the Uliastai Depression, Erlian Basin, North China, Secondary, Present-day geothermal regime of the Uliastai Depression, Erlian Basin, North China, 37(2), 770-786, https://doi.org/10.1177/0144598718785970 Xu etal. 2021 Xu, Wei; Huang, Shao-Peng; Zhang, Jiong; Zuo, Yin-Hui; Zhou, Yongshui; Ke, Tingting; Yu, Ruyang; Li, Yi (2021), Geothermal gradient and heat flow of the Erlian Basin and adjacent areas, Northern China: Geodynamic implication, Secondary, Geothermal gradient and heat flow of the Erlian Basin and adjacent areas, Northern China: Geodynamic implication, 102049, https://doi.org/10.1016/j.geothermics.2021.102049 Yamano 1985a Yamano, Makoto (1985), Preliminary Report of the Hakuho Maru cruise KH 84-1 -Heat Flow Measurements, Secondary, Preliminary Report of the Hakuho Maru cruise KH 84-1 - Heat Flow Measurements, Tokyo, Japan, University of Tokyo Ocean Research Institute, 265–271, https://doi.org/10.15083/00038731 Yamano_1985b Yamano, Makoto (1985), Heat flow studies of the circum-Pacific subduction zones, Secondary, Heat flow studies of the circum-Pacific subduction zones, Ph.D.

Assessment of Geothermal Resources at in Hepu Basin in Guangxi, Secondary,

thesis(15-16, https://doi.org/10.1594/pangaea.809995

Yamano_etal._1981 Yamano, Makoto; Fujisawa, Hideyuki; Kinoshita, Hajimu (1981), Heat Flow Measurement, Secondary, Heat Flow Measurement, Tokyo, Japan, Ocean Research Institute, 166-168, https://doi.org/10.1594/pangaea.809986 Yamano_etal._1983 Yamano, Makoto; Fujii, M.; Fujisawa, Hideyuki (1983), Heat Flow Measurements, Secondary, Heat Flow Measurements, 218-225, Yamano etal. 1984 Yamano, Makoto; Honda, Satoru; Uyeda, Seiya (1984), Nankai Trough: A hot trench?, Secondary, Nankai Trough: A hot trench?, 6(2), 187-203, https://doi.org/10.1007/bf00285959 Yamano_etal._1986a Yamano, Makoto; Yyeda, S.; Kinoshita, Hajimu; Hilde, Thomas W.C. (1986), Report on DELP 1984 Cruises in the Middle Okinawa Trough. IV: Heat how measuremnts, Secondary, Report on DELP 1984 Cruises in the Middle Okinawa Trough. IV: Heat how measuremnts, 61(2), 251-267, Yamano_etal._1986b Yamano, Makoto; Uyeda, Seiya; Furukawa, Yoshitsugu; Dehghani, Gholam Ali (1986), Heat flow measurements in the northern and middle Ryukyu Arc area on R/V Sonne in 1984, Secondary, Heat flow measurements in the northern and middle Ryukyu Arc area on R/V Sonne in 1984, 61(2), 311-327, https://doi.org/10.1594/pangaea.807858 Yamano_etal._1987 Yamano, Makoto; Uyeda, Seiya; Uyeshima, Makoto; Kinoshita, Masataka; Nagihara, Seiichi; Boh, Ritsuko; Fujisawa, Hideyuki (1987), Report on DELP 1985 Cruises in the Japan Sea: Part V: Heat flow measurements, Secondary, Report on DELP 1985 Cruises in the Japan Sea: Part V: Heat flow measurements, 62(4), 417-432, https://doi.org/10.1594/pangaea.807859 Yamano_etal._1989 Yamano, Makoto; Uyeda, Seiya; Foucher, Jean P.; Sibuet, Jean-Claude (1989), Heat flow anomaly in the middle Okinawa Trough, Secondary, Heat flow anomaly in the middle Okinawa Trough, 159(3), 307-318, https://doi.org/10.1016/0040-1951(89)90136-4 Yamano_etal._1992 Yamano, Makoto; Foucher, Jean P.; Kinoshita, Masataka; Fisher, Andrew T.; Hyndman, Roy D.; Taira, A.; Hill, I.; Firth, J.V.; Berner, U.; Bruckmann, W.; Byrne, T.; Chabernaud, T.; Gamo, T.; Gieskes, Joris M.; Karig, Dan; Kastner, Miriam; Kato, Y.; Lallemant, Siegfried; Lu, R.; Maltman, A.; Moran, K.; Moore, Gregory F.; Olafsson, G.; Owens, B.; Pickering, K.; Siena, F.; Taylor, Elliott; Underwood, M.; Wilkinson, C.; Zhang, J. (1992), Heat-Flow and Fluid-Flow Regime in the Western Nankai Accretionary Prism, Secondary, Heat-Flow and Fluid-Flow Regime in the Western Nankai Accretionary Prism, 109(44289), 451-462, https://doi.org/10.1016/0012-821x (92)90105-5 Yamano_etal._2003 Yamano, Makoto; Kinoshita, Masataka; Goto, Shusaku; Matsubayashi, Osamu (2003), Extremely high heat flow anomaly in the middle part of the Nankai Trough, Secondary, Extremely high heat flow anomaly in the middle part of the Nankai Trough, 28(44509), 487–497, https://doi.org/10.1016/s1474-7065 (03)00068-8 Yamano_etal._2008 Yamano, Makoto; Kinoshita, Masataka; Goto, Shusaku (2008), High heat flow anomalies on an old oceanic plate observed seaward of the Japan Trench, Secondary, High heat flow anomalies on an old oceanic plate observed seaward of the Japan Trench, 97(2), 345-352, https://doi.org/10.1007/s00531-007-0280-1 Yamano_etal._2014b Yamano, Makoto; Hamamoto, Hideki; Kawada, Yoshifumi; Goto, Shusaku (2014), Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate, Secondary, Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate, 407(196-204, https://doi.org/10.1016/j.epsl.2014.09.039 Yamano_Goto_1999 Yamano, Makoto; Goto, Shusaku (1999), High heat flow anomalies on the seaward slope of the Japan Trench (abstract), Secondary, High heat flow anomalies on the seaward slope of the Japan Trench (abstract), 407(196-204, Yamano_Kinoshita_1998 Yamano, Makoto; Kinoshita, Masataka (1998), Thermal structure of the Shikoku Basin and southwest Japan subduction zone, Secondary, Thermal structure of the Shikoku Basin and southwest Japan subduction zone, 73(105-123, https://doi.org/10.1594/pangaea.807857 Yamano_Uyeda_1990 Yamano, Makoto; Uyeda, Seiya (1990), Heat-flow studies in the Peru Trench

	subduction zone, Secondary, Heat-flow studies in the Peru Trench subduction zone,
	112(653–661, https://doi.org/10.2973/odp.proc.sr.112.171.1990
Yamazaki_1986	Yamazaki, Toshitsugu (1986), Heat flow measurements in the Central Pacific Basin
	(GH81-4 area), Secondary, Heat flow measurements in the Central Pacific Basin
	(GH81-4 area), 49–55(10.1594/pangaea.807863
Yamazaki_1992a	Yamazaki, Toshitsugu (1992), Heat flow in the south of the Nova-Canton Trough,
	central equatorial Pacific (GH82-4 Area), Secondary, Heat flow in the south of the
Yamazaki_1992b	Nova-Canton Trough, central equatorial Pacific (GH82-4 Area), 22(22), 71–83, Yamazaki, Toshitsugu (1992), <i>Heat flow in the Izu-Ogasawara (Bonin)-Mariana Arc</i> ,
Talliazaki_1392b	Secondary, Heat flow in the Izu-Ogasawara (Bonin)-Mariana Arc, 43(4), 207–235,
	https://doi.org/10.1594/pangaea.807880
Yamazaki_1994	Yamazaki, Toshitsugu (1994), Heat flow in the Penrhyn Basin, South Pacific (GH83-3
_	area), Secondary, Heat flow in the Penrhyn Basin, South Pacific (GH83-3 area), 201–
	207, https://doi.org/10.1594/pangaea.807882
Yang_etal2004	Yang, Shuchun; Hu, Sheng-Biao; Cai, Dongsheng; Feng, Xiaojie; Chen, Linlin; Gao, Le
	(2004), Present-day heat flow, thermal history and tectonic subsidence of the East
	China Sea Basin, Secondary, Present-day heat flow, thermal history and tectonic
	subsidence of the East China Sea Basin, 21(9), 1095–1105,
Vesui etal 1063	https://doi.org/10.1016/j.marpetgeo.2004.05.007
Yasui_etal1963	Yasui, Masashi; Horai, Ki-Iti; Uyeda, Seiya; Akamatsu, H. (1963), <i>Heat flow</i> measurement in the Western Pacific during the JEDS-5 and other cruises in 1962
	aboard M/S Ryofu-Maru, Secondary, Heat flow measurement in the Western Pacific
	during the JEDS-5 and other cruises in 1962 aboard M/S Ryofu-Maru, 14(2), 147–156,
	https://doi.org/10.1594/pangaea.808086
Yasui_etal1966	Yasui, Masashi; Kishii, Toshio; Watanabe, Teruhiko; Uyeda, Seiya (1966), Studies of
	the thermal state of the Earth. The 18th paper: Terrestrial heat flow of the Japan Sea
	(2), Secondary, Studies of the thermal state of the Earth. The 18th paper: Terrestrial
	heat flow of the Japan Sea (2), 44(1501–1518, https://doi.org/10.15083/0000033530
Yasui_etal1967	Yasui, Masashi; Kishii, Toshio; Sudo, Ken (1967), Terrestrial heat flow in the Okhotsk
	Sea, 1, Secondary, Terrestrial heat flow in the Okhotsk Sea, 1, 1), 87–94 or 147–156, https://doi.org/10.1594/pangaea.810006
Yasui_etal1968a	Yasui, Masashi; Kishii, Toshiro; Watanabe, Teruhiko; Uyeda, Seiya (1968), <i>Heat Flow</i>
14341_014113004	in the Sea of Japan, Secondary, Heat Flow in the Sea of Japan, 45367,
	https://doi.org/10.1029/GM012p0003
Yasui_etal1968b	Yasui, Masashi; Nagasaka, Koichi; Kishii, Toshio; Halunen Jr, A. John (1968),
	Terrestrial heat flow in the Okhotsk Sea, 2, Secondary, Terrestrial heat flow in the
	Okhotsk Sea, 2, 20(73–86, https://doi.org/10.1594/pangaea.810014
Yasui_etal1970	Yasui, Masashi; Epp, David; Nagasaka, Kiochi; Kishii, Toshio (1970), Terrestrial heat
	flow in the seas round the Nansei Shoto (Ryukyu Islands), Secondary, Terrestrial heat
	flow in the seas round the Nansei Shoto (Ryukyu Islands), 10(1), 225–234,
Yasui_Watanabe_1965	https://doi.org/10.1016/0040-1951 (70)90108-3 Yasui, Masashi; Watanabe, Teriuhiko (1965), Studies of the thermal state of the
rusui_vvutunuse_1505	Earth. The 16th paper: Terrestrial heat flow in the Japan Sea, Secondary, Studies of
	the thermal state of the Earth. The 16th paper: Terrestrial heat flow in the Japan Sea,
	43(549–563, https://doi.org/10.15083/0000033624
Yorath_Hyndman_1983	Yorath, C.J.; Hyndman, Roy D. (1983), Subsidence and thermal history of Queen
	Charlotte Basin, Secondary, Subsidence and thermal history of Queen Charlotte
	Basin, 20(1), 135–159, https://doi.org/10.1139/e83-013
Yuan_etal2006	Yuan, Yu-Song; Ma, Yong-Sheng; Hu, Sheng-Biao; Guo, Tong-Lou; Fu, Xiao-Yue (2006),
	Present-day geothermal characteristics in south China, Secondary, Present-day
	geothermal characteristics in south China, 49(4), 1005–1014, https://doi.org/10.1002/cjg2.922
Zhang_etal1982	Zhang, Ruhui; Xei, Zhengwen; Wu, Jixin; Xei, Yizeng; Liu, Ming (1982), <i>The distribution</i>
6_01301	of heat flow values in Tangshan and its surroundings, Secondary, The distribution of
	heat flow values in Tangshan and its surroundings, 4(4), 57–67,
Zhang_etal1992	Zhang, Ruhui; Wu, Jixin; Zhang, Wanxia (1992), Terrestrial heat flow and the thermal

the thermal structure of the lithosphere in south Liaoning, 6(3), 11-23, Zhang, Chao; Jiang, Guang-Zheng; Shi, Yizuo; Wang, Zhuting; Wang, Yi; Li, Shengtao; Zhang_etal._2018 Jia, Xiaofeng; Hu, Sheng-Biao (2018), Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau, Secondary, Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau, 72(182-192, https://doi.org/10.1016/j.geothermics.2017.11.011 Zhang_etal._2020a Zhang, Jiong; Huang, Shao-Peng; Zuo, Yin-Hui; Zhou, Yongshui; Liu, Zhi; Duan, Wentao; Wei, Xu (2020), Terrestrial heat flow in the baiyinchagan sag, erlian Basin, northern China, Secondary, Terrestrial heat flow in the baiyinchagan sag, erlian Basin, northern China, 86(101799, https://doi.org/10.1016/j.geothermics.2019.101799 Zheng etal. 2016 Zheng, Yong; Li, Haibing; Gong, Zheng (2016), Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): Borehole temperature, thermal conductivity, and well log data, Secondary, Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): Borehole temperature, thermal conductivity, and well log data, 117(23-32, https://doi.org/10.1016/j.jseaes.2015.11.025 Zhevago_1972 Zhevago, V.S. (1972), Crustal geotherms and thermal waters in Kazakhstan -(Коровые геотермы и термальные воды в Казахстане), Secondary, Crustal geotherms and thermal waters in Kazakhstan - (Коровые геотермы и термальные воды в Казахстане), Ziagos_etal._1985 Ziagos, John P.; Blackwell, David D.; Mooser, Federico (1985), Heat flow in southern Mexico and the thermal effects of subduction, Secondary, Heat flow in southern Mexico and the thermal effects of subduction, 90(B7), 5410-5420, https://doi.org/10.1029/JB090iB07p05410 Zielinski, Gary W.; Gunleiksrud, T.; Saettem, Joar; Zuidberg, H.M.; Geise, J.M. (1986), Zielinski_etal._1986 Deep heatflow measurements in Quaternary sediments on the Norwegian continental shelf, Secondary, Deep heatflow measurements in Quaternary sediments on the Norwegian continental shelf, Houston, Texas, 6, https://doi.org/10.4043/5183-ms Zlotnicki_etal._1980 Zlotnicki, V.; Sclater, John G.; Norton, I.O.; Herzen, Richard P. Von (1980), Heat flow through the floor of the Scotia, far South Atlantic and Weddell Seas, Secondary, Heat flow through the floor of the Scotia, far South Atlantic and Weddell Seas, 7(6), 421-424, https://doi.org/10.1029/GL007i006p00421 Zolotarev_1986 Zolotarev, V.G. (1986), Geothermal Model of the Aden Rift - (Геотермическая модель Аденского рифта), Secondary, Geothermal Model of the Aden Rift -(Геотермическая модель Аденского рифта), 26(6), 947-952, Zolotarev_etal._1979a Zolotarev, V.G.; Sochelnikov, V.V.; Malovitskiy, Y.P. (1979), Results of heat-flow measurements in the Black and Mediterranean Sea basins, Secondary, Results of heat-flow measurements in the Black and Mediterranean Sea basins, 19(701–705, https://doi.org/10.1594/pangaea.810098 Zolotarev_etal._1979b Zolotarev, V.G.; Sochelnikov, V.V.; Malovitskiy, Y.P. (1979), Results of Heat-Flow Measurements through the Bottoms of the Black and the Mediterranean Seas -(Результаты измерения теплового потока в бассейнах черного и средиземного морей), Secondary, Results of Heat-Flow Measurements through the Bottoms of the Black and the Mediterranean Seas - (Результаты измерения теплового потока в бассейнах черного и средиземного морей), 19(6), 1059-1065, Zolotarev_etal._1989 Zolotarev, V.G.; Sochelnikov, V.V.; Kondyurin, A.V. (1989), Internal Report -(Внутренний отчет), Secondary, Internal Report - (Внутренний отчет), Zolotarev_Kobzar_1980 Zolotarev, V.G.; Kobzar, V.M. (1980), New measurements of heat flow in the Black Sea - (Новые измерения теплового потока в Черном море), Secondary, New measurements of heat flow in the Black Sea - (Новые измерения теплового потока в Черном море), 20(1), 106-110, Zolotarev_Sochelnikov_1980 Zolotarev, V.G.; Sochelnikov, V.V. (1980), Geothermal Conditions of the African Sicilian Rise - (Геотермическиые Уссловиыа Африканско Сицилианского

structure of the lithosphere in south Liaoning, Secondary, Terrestrial heat flow and

Поднатиыа), Secondary, Geothermal Conditions of the African Sicilian Rise - (Геотермическиые Уссловиыа Африканско Сицилианского Поднатиыа), 16(3), 202–206,

Zolotarev_Sochelnikov_1988

Zolotarev, V.G.; Sochelnikov, V.V. (1988), Thermal field of the Red Sea rift - (Тепловое Поле Красноморского Рифта), Secondary, Thermal field of the Red Sea rift - (Тепловое Поле Красноморского Рифта), Moscow, USSR, Nauka, 41–48, https://doi.org/10.1594/pangaea.808909

Zu_etal._1996

Jin-Hua, Zu; Qianfan, Wu; Yu-Fang, Lian (1996), The Geothermal Study of the Mid-Segment of the Tancheng-Lujiang Fault Zone and Its Neighboring Region, Secondary, The Geothermal Study of the Mid-Segment of the Tancheng-Lujiang Fault Zone and Its Neighboring Region, 3), 37–44,

Zu_etal._1997

Zu, Jin-Hua; Wu, Qianfan; Lian, Yu-Fang (1997), Geothermal study of Yanqin-Huairou Basin and its adjacent area - (延庆-怀来盆地及其邻区地热研究), Secondary, Geothermal study of Yanqin-Huairou Basin and its adjacent area - (延庆-怀来盆地及其邻区地热研究), 19(4), 442–444,

Zuev_etal._1971

Zuev, Yu.N.; Iskander, E.; Muminov, I.A. (1971), On the thermophysical properties of rocks in some areas of the Western and the Southern Tien Shan and the geothermal conditions of the Fergana depression - (О теплофизических свойствах горных пород некоторых районов Западного, и Южного Тянь-Шаня и геотермических условиях Ферганской впадины), E.M. Butovskaya, T.H.E.M. Khamrabaev, Secondary, On the thermophysical properties of rocks in some areas of the Western and the Southern Tien Shan and the geothermal conditions of the Fergana depression - (О теплофизических свойствах горных пород некоторых районов Западного, и Южного Тянь-Шаня и геотермических условиях Ферганской впадины), Tashkent, 47–56,

Zuev_Polikarpov_1982

Zuev, Yu.N.; Polikarpov, A.A. (1982), *New data on heat flow within the southeastern slope of the Kuramin Ridge*, Secondary, New data on heat flow within the southeastern slope of the Kuramin Ridge, 10(43–44,

Zuev_Polikarpov_1984

Zuev, Yu.N.; Polikarpov, A.A. (1984), Results of geothermal research in the Pamirs - (Результаты геотремических исследований на Памире, в: земная кора и верхняя мантия памира, гималаев и южного тянь-шаня), Secondary, Results of geothermal research in the Pamirs - (Результаты геотремических исследований на Памире, в: земная кора и верхняя мантия памира, гималаев и южного тяньшаня), 107—114,

Zuev_Tal-Virsky_1977

Zuev, Yu.N.; Talvirsky, B.B. (1977), Earth's Crust & Upper Mantle of Central Asia - (Земная Кора и Верхняя Мантия Средней Азии), Secondary, Earth's Crust & Upper Mantle of Central Asia - (Земная Кора и Верхняя Мантия Средней Азии), 134–152, Zui, V.I.; Urban, G.I.; Veselko, A.V.; Zhuk, M.S. (1985), Geothermal research in the Kaliningrad region and the Lithuanian usr - (Геотермические исследования в калининградской области и литовской сср), Secondary, Geothermal research in the Kaliningrad region and the Lithuanian usr - (Геотермические исследования в калининградской области и литовской сср), 88–94,

Zui_etal._1985

Zui, V.I.; Zhuk, M.S. (2006), Heat Field of Geological Structures of Belarus - (Тепловое поле геологических структур Беларуси), Secondary, Heat Field of Geological Structures of Belarus - (Тепловое поле геологических структур Беларуси), 2), 111–127,

Zui_Zhuk_2006

Zuo, Yin-Hui; Qiu, Nan-Sheng; Deng, Yi-Xun; Rao, Song; Xu, Shen-Mou; Li, Jian-Guo (2013), *Terrestrial Heat Flow in the Qagan Sag, Inner Mongolia*, Secondary, Terrestrial Heat Flow in the Qagan Sag, Inner Mongolia, 56(5), 559–571, https://doi.org/10.1002/cjg2.20053

Zuo_etal._2013

Zuo, Yinhui; Jiang, Shu; Wu, Shihu; Xu, Wei; Zhang, Jiong; Feng, Renpeng; Yang, Meihua; Zhou, Yongshui; Santosh, M. (2020), *Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen-Ejinaqi Basin, north central China*, Secondary, Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen-Ejinaqi Basin, north central China, 32(6), 1328–

Zuo_etal._2020

1346, https://doi.org/10.1111/bre.12430