LU3ME003 : Equations aux dérivées partielles 2 Examen du 17 Mars 2020

Durée de l'épreuve : 2 heures.

Travail personnel.

La rigueur et la clarté de la rédaction seront prises en compte dans la note finale.

Exercice

Soit $L^2(]0,1[)$ l'espace des fonctions de carré intégrable sur $]0,1[,L^2(]0,1[)=\{f:]0,1[\rightarrow \mathbb{R},\int_0^1|f(x)|^2dx<\infty\}$, muni de sa norme naturelle $\|.\|_{L^2}$ définie par :

$$||f||_{L^2} = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}.$$

Soit \mathcal{L} l'application définie de $L^2(]0,1[)$ dans $L^2(]0,1[)$ par :

$$\mathcal{L}(f)(x) = \int_0^x f(t) dt, \quad \forall f \in L^2(]0,1[).$$

1. Vérifier que pour toute fonction f continue sur [0,1], $f \in L^2(]0,1[)$ et $\mathcal{L}(f)$ est aussi une fonction de $L^2(]0,1[)$.

Indication: On montrera d'abord que $|\mathcal{L}(f)(x)| \leq ||f||_{L^2}, \forall x \in]0,1[$.

- 2. Montrer que ${\mathcal L}$ est une application linéaire .
- 3. Montrer que \mathcal{L} est continue par rapport à la norme $L^2(]0,1[)$.
- 4. Si f est une fonction continue, $\mathcal{L}(f)$ est-elle une fonction de $H^1(]0,1[)$? Pour vérifier cela on rappelera la définition de $H^1(]0,1[)$.
- 5. Donnez un exemple de fonction de $L^2(]0,1[)$ qui n'est pas dans $H^1(]0,1[)$.

Problème:

On considère le problème de transport de la chaleur dans une barre homogène, sur une distance finie. La température u(x) peut vérifier une équation sans dimension du type :

$$(\mathbf{PC})_{\varepsilon} \begin{cases} -\frac{d^2u}{dx^2}(x) + u(x) = f(x), & x \in]0, 1[\\ \frac{du}{dx}(0) - ku(0) = \varepsilon \frac{du}{dx}(1) \\ u(1) = \varepsilon u(0) \end{cases}$$
 (1)

où f est une fonction donnée telle que $f \in L^2(]0,1[), k>0$ et $0<\varepsilon \ll 1$ sont des constantes réelle, données aussi.

2 EDP-2

1. On rappelle que l'espace $H^1(]0,1[)$ est muni de la norme définie par :

$$||v||_{H^1} = \sqrt{\int_0^1 v(x)^2 dx + \int_0^1 v'(x)^2 dx} = \sqrt{||v||_{L^2}^2 + ||v'||_{L^2}^2}.$$
 (2)

Montrer que $\exists C > 0$ tel que $|v(0)| \leq C||v||_{H^1}, \forall v \in H^1$.

Pour cela on utilisera la caractérisation des fonctions de $H^1(]0,1[)$:

$$\forall v \in H^1(]0,1[), \forall x, y \in [0,1], \quad v(x) = v(y) + \int_y^x v'(t)dt$$
 (3)

2. On désigne par V_{ε} , le sous espace de $H^1(]0,1[)$, défini par :

$$V_{\varepsilon} = \{ v \in H^1(]0, 1[)/v(1) = \varepsilon v(0) \}$$

- i) Montrer que V_{ε} est un sous-espace vectoriel de l'espace $H^1(]0,1[)$.
- ii) L'espace V_{ε} est muni de la norme usuelle de $H^1(]0,1[)$. En utilisant les propriétés précédentes, montrer que $(V_{\varepsilon}, <\cdot, \cdot>_{H^1}, \|\cdot\|_{H^1})$ est un espace de Hilbert.
- 3. Ecrire la formulation variationnelle $(\mathbf{PV})_{\varepsilon}$ associée au problème $(\mathbf{PC})_{\varepsilon}$: on montrera que si u est solution du $(\mathbf{PC})_{\varepsilon}$ alors u est solution de :

$$(\mathbf{PV})_{\varepsilon} \quad \begin{cases} \text{Trouver } u \text{ appartenant à } V_{\varepsilon}, \text{ solution de :} \\ a(u, v) = L(v), \forall v \in V_{\varepsilon} \end{cases}$$

$$(4)$$

$$a(u,v) = \int_0^1 \frac{du}{dx}(x) \frac{dv}{dx}(x) dx + \int_0^1 u(x)v(x) dx + ku(0)v(0),$$
 (5)

$$L(v) = \int_0^1 f(x)v(x)dx. \tag{6}$$

- 4. Montrer que a(.,.) est une application bilinéaire et symétrique sur V_{ε} .
- 5. Montrer que a(.,.) est continue sur V_{ε} par rapport à la norme $\|\cdot\|_{H^1}$.
- 6. Montrer que a(.,.) est coercive sur V_{ε} , $\forall k > 0$.
- 7. Montrer que L(.) est une application linéaire et continue sur V_{ε} .
- 8. Montrer l'existence et l'unicité de la solution du problème variationnel $(\mathbf{PV})_{\varepsilon}$. Précisez le résultat mathématique (théorème) que vous appliquez.
- 9. On notera u_{ε} la solution du problème variationnel $(\mathbf{PV})_{\varepsilon}$. Montrer qu'il existe une constante $\tilde{C} > 0$ indépendante de ε , telle que

$$||u_{\varepsilon}||_{H^1} \le \tilde{C}||f||_{L^2} \tag{7}$$

- 10. Bonus : On suppose que u_ε converge dans $H^1(]0,1[)$ quand $\varepsilon\to 0$. On note u cette limite.
 - (a) En utilisant la convergence de u_{ε} vers u et l'inégalité (7) montrer que u(1) = 0.

Par conséquent, l'espace dans lequel on cherchera à écrire le problème variationnel pour u sera l'espace $V = \{v \in H^1(]0,1[)/v(1) = 0\}.$

(b) En partant de l'équation différentielle vérifiée par u_{ε} et en multipliant par $v \in V$, montrer que

$$\int_0^1 \frac{du_{\varepsilon}}{dx}(x) \frac{dv}{dx}(x) dx + \int_0^1 u_{\varepsilon}(x) v(x) dx + k \frac{du_{\varepsilon}}{dx}(0) v(0) = \int_0^1 f(x) v(x) dx.$$

- (c) Lorsque $\varepsilon \to 0$, trouver les limites sur \mathbb{R} de chaque terme de l'égalité précédente (en s'appuyant sur la convergence de u_{ε} vers u). En déduire la formulation variationnelle pour u.
- (d) Quel est le problème continu dont u est solution?