(1) 포장내부 기체 조성

포장 내부의 산소(O2)와 이산화탄소(CO2)는 필름 표면에 septum을 부착한 뒤 헤드스페이스 가스분석기(Checkmate 9900, PBI Dansensor Co., Denmark)를 이용하여 측정하였다.

(2) 표면 색도

표면 색은 표준백판(L=96.61, a=-0.11, b=2.06)으로 보정된 Chromameter(CR-400, Minolta Co., Japan)를 사용하여 측정하였으며, 시료 절단면의 중심부위를 6반복으로 색도의 표현은 Commission Internationale d'Eclairage(CIE)의 L, a, b값을 이용하여 표현하였다.

(3) 경도

저장기간 중 신선편이 농산물의 경도측정은 4mm의 원형 탐침(probe)이 부착된 Texture Analyser(LLOYD Instrument, Ametek, Inc, UK)를 이용하여 depression limit 5mm, test speed 2mm/sec, trigger 0.98N의 조건에서 측정하였다.

(4) 미생물 오염도 조사

무균적으로 채취한 시료 20g에 멸균된 3차 증류수 180ml을 가하여 2분간 균질화 시킨 후, 시료액을 1mL씩 취하여 9mL의 멸균된 3차 증류수로 단계 희석하였다. 시험용액 1mL과 각 단계 희석액 1mL씩을 일반세균수 측정용 건조필름(petrifilm aerobic count plates, 3M Co., USA)에 무균적으로 취하여 35±1℃에서 48시간, 효모 및 곰팡이 측정용 건조필름(petrifilm yeast and mold count plate, 3M Co., USA)에 무균적으로 취하여 25±1℃에서 72시간 배양시킨 후 형성된 colony 수를 측정하여 log CFU/g으로 나타내었다.

(5) 관능평가

관능평가는 6명의 훈련된 패널을 대상으로 종합신선도, 외관, 이취, 물러짐, 갈변 정도를 평가하였다. 종합신선도와 외관은 신선편이 생강에 대한 전반적 기호도를 9단계의 점수를 부여(9=매우 좋음, 7=좋음, 5=보통, 3=나쁨, 1=매우 나쁨)하여 평가하였고, 이취, 물러짐, 갈변 측정은 패널들이 포장된 신선편이 생강을 개봉 즉시 Lopez-Galvez G et al. 1997.의 방법을 적용하여 5단계의 점수를 부여(0=없음, 1=약간 발생, 2=보통, 3=심함, 4=매우 심함)하였으며, 점수 2를 초과하는 것은 상품성이 없는 것으로 간주하였다.

(6) 총 페놀 함량 분석

총 페놀의 함량은 Folin-Ciocalteau's 방법에 의하여 측정하였다. 동결 건조 시료 0.1g을 80% methanol 2mL을 가하여 50℃에서 1시간 추출 후, 추출액 50μL에 2N Folin-Ciocalteau's 시약 50μL를 가하여 3분간 발색시키고, 20% Na₂CO₃ 10μL를 가하여 30분 동안 실온에서 반응 시켜 725nm에서 흡광도를 측정하였으며, 총 페놀 함량은 garlic acid equivalents (GAE) mg/g DW으로 나타내었다.

(7) 전해질 용출량 분석

전해질 용출량은 2g의 시료를 30mL의 2차 증류수에 침지하여 30분간 상온에서 방치한 후 EC meter(Orion star A215, Thermo Electron CO., USA)를 사용하여 측정 후 24시간 냉각 후 상온에서 완전히 해동 후에 다시 측정한 총 전해질 용출량 값에 대한 백분율로 표현하였다.

2. 연구결과

가. 신선편이 감자, 양파, 양배추의 유통기한 설정 연구(2014, 1년차)

- (1). 신선편이 감자의 유통기한 설정 연구
- (가) 신선편이 감자 제조공정 현장 모니터링