Surface Characteristic Prediction Of Grinding Process

Anil Kharde
IIT BBS

Need of Data Science

- In order to know the outcome of the process before undergoing it we need to take help of past data of process.
- By analyzing the data we can put forward model equation which governs the process.
- Parameters affecting the response can be controlled to get desired output.
- This can be achieved by Data Science...

What is Data Science...?

- Scientific process of converting raw data into knowledge to support decision making.
- Science which deals with collecting, processing and analyzing the data to draw some insights which helps in decision making.
- Applications:

Manufacturing	Defense
Healthcare	Banking
Supply chain	Sports
E- commerce	Airlines
Tourism	Retail

- Goal of data science is to make business more competitive and improve it.
- Data analytics approaches provide an automated and cost-effective way to
- assure quality in manufactured products
- Manage nation's engineering and information assets

Classification

- Descriptive Analytics- It describes the data and gives information about the past.
- Predictive Analytics- Next step to descriptive analytics. It predicts the future outcome from the past data.
- Prescriptive analytics- Next step of predictive analytics. It involves the decision making and deciding the course of action.

Case study: Surface Roughness Prediction in Grinding process

- We have a data for various speed and feed
- Accelerometers, voltage and current sensors are mounted to check vibration and power parameters.
- Total 38 workpiece are grinded using various combination of controllable parameters in four stages.
- Wheel speed= 25, 35, 45 rpm
- Work speed= 100,200,300 rpm
- Feed rate=0.01, 0.05, 0.2, 0.4, 1.2 mm/rev
- Surface profilometer measures the surface roughness in μm.
- From power and accelerometer sensors various parameters are extracted

Objective

- To design a Regression model by analyzing the collected data set which can predict the surface roughness (Ra Value) of a randomly chosen work piece.
- Dependent variable: Roughness(Ra)
- Independent variables are 24
- <u>Data</u>
- Data visualization

Choosing the Right ones

• An analysis was done to judge the better prediction terms among all the given parameters using Decision Trees.

Summary of the plot

Number of terminal nodes: 6

Residual mean deviance: 0.0115 = 1.081 / 94

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.2429000 -0.0633100 0.0004025 0.0000000 0.0531300 0.4226000

Pruning as an option

- Pruning is done to ensure the decision tree has a better performance. It makes some changes in the tree structure only for the better.
- So through Cross Validation we decide the size which will be best suited for pruning the tree.

Summary of Cross Validation

```
cv.grinding
$size
[1] 6 5 4 3 2 1
$dev
[1] 2.462333 2.489448 2.503179 2.853785 3.314332 6.226398
$k
[1] -Inf 0.1483040 0.1657847 0.4142310 0.7798620 3.5092065
$method
[1] "deviance"
attr(,"class")
[1] "prune" "tree.sequence"
```

So it is to be noted that 6 is the size which we initially got. Hence no changes are to be made. We go for MSE next.

Calculations of MSE

```
yhat=predict(tree.grinding,newdata=Final1[-train,])
grinding.test=Final1[-train,"Ra"]
mean((yhat-grinding.test)^2)
```

MSE: 0.01275293

Random Forest...

- This method is far more popular and advanced.
- randomForest(formula = Ra ~ ., data = Final1, mtry = 5, importance = TRUE, subset = train)
- Type of random forest: regression
- Number of trees: 500
- No. of variables tried at each split: 5
- Mean of squared residuals: 0.01500107
- % Var explained: 75.4

Importance of each variable

rf.grinding

Building the Model...

Iteration no.	Upgradation	Residual SE	Multiple R sq	Adjusted R sq
1	All the predictors	0.101	0.8523	0.8239
2	First 5 important parameters (all linear relations)	0.1273	0.7301	0.7207
3	kurtosisP (non linearity of 3 rd and 5 th order)	0.1177	0.7708	0.7612
4	Work_speed*meanAT (polynomial 2 nd order)	0.1144	0.7866	0.7745
5	Interaction between Work_Speed*EnergyBand1AT (poly, degree=3) and Work_speed*EnergyBand1AN	0.1125	0.7994	0.7818
6	Interaction between Wheel_speed*KurtosisP	0.107	0.8306	0.8028
7	Interaction between Wheel_speed*EnergyBand1A T	0.1043	0.8403	0.8126

Iteration no.	Upgradation	Residual SE	Multiple R sq	Adjusted R sq
8	Interaction between Wheel_speed*pe ak_magAT	0.1003	0.8556	0.8265
9	Interaction between SkewnessAT*Ene rgyBand1AN	0.09609	0.8707	0.8408
10	Interaction between EnergyBand1AN* MeanAT	0.09413	0.877	0.8473

Im.fit=Im(Ra~meanAT+I(kurtosisP^3)+I(kurtosisP^5)+energy_band1AT+energy_band1AN+peak_magAT+poly(work_speed*meanAT,2)+poly(work_speed*energy_band1AT,3)+work_speed*energy_band1AN+poly(feed_rate*peak_magAT,5)+poly(wheel_speed*meanAT,3)+wheel_speed:kurtosisP+wheel_speed:energy_band1AT+wheel_speed*energy_band1AN+poly(wheel_speed*peak_magAT,2)+poly(skewnessAT*energy_band1AN,3)+energy_band1AN*meanAT, data=Final1)

REGRESSION MODEL

How to decide which order polynomial will help?

Why use interaction of predictors?

Why reject some predictors?

R implementation...

```
##validation set approach
library(boot)
##By taking sample
Im.fit=lm(Ra~meanAT+I(kurtosisP^3)+I(kurtosisP^5)+energy band1AT+energy band1AN+peak
magAT+poly(work speed*meanAT,2)+poly(work speed*energy band1AT,3)+I(work speed*energy band1AT
gy_band1AN)+poly(feed_rate*peak_magAT,5)+poly(wheel_speed*meanAT,3)+wheel_speed:kurt
osisP+wheel_speed:energy_band1AT+I(wheel_speed*energy_band1AN)+poly(wheel_speed*pea
k magAT,2)+poly(skewnessAT*energy band1AN,3)+I(energy band1AN*meanAT),data=Final1,su
bset=train)
mean((Ra-predict(lm.fit,Final1))[-train]^2)
##LOOCV
glm.fit=glm(Ra~meanAT+I(kurtosisP^3)+I(kurtosisP^5)+energy band1AT+energy band1AN+peak
magAT+poly(work speed*meanAT,2)+poly(work speed*energy band1AT,3)+I(work speed*ene
rgy band1AN)+poly(feed rate*peak magAT,5)+poly(wheel speed*meanAT,3)+wheel speed:kur
tosisP+wheel speed:energy band1AT+I(wheel speed*energy band1AN)+poly(wheel speed*pe
ak magAT,2)+poly(skewnessAT*energy band1AN,3)+I(energy band1AN*meanAT),data=Final1)
cv.error=cv.glm(Final1,glm.fit)
cv.error$delta
##K fold cross validation
cv.error.KNN=cv.glm(Final1,glm.fit,K=5)
cv.error.KNN$delta
```

Validation

Validation Method	Test Error
Train & Test Validation set Approach	0.01362
LOOCV	27.54

Bootstrapping

##Bootstrap

boot.fn=function(Final1,index)return(coef(Im(Ra~meanAT+I(kurtosisP^3)+I(kurtosisP^5)+ene rgy_band1AT+energy_band1AN+peak_magAT+poly(work_speed*meanAT,2)+poly(work_speed d*energy_band1AT,3)+I(work_speed*energy_band1AN)+poly(feed_rate*peak_magAT,5)+pol y(wheel_speed*meanAT,3)+wheel_speed:kurtosisP+wheel_speed:energy_band1AT+I(wheel_speed*energy_band1AN)+poly(wheel_speed*peak_magAT,2)+poly(skewnessAT*energy_band1AN,3)+I(energy_band1AN*meanAT),data=Final1,subset=index)))
boot.fn(Final1,1:150)

boot.fn(Final1,sample(150,150,replace=T)) boot(Final1,boot.fn,1000)

summary(lm(Ra~meanAT+I(kurtosisP^3)+I(kurtosisP^5)+energy_band1AT+energy_band1AN+peak_magAT+poly(work_speed*meanAT,2)+poly(work_speed*energy_band1AT,3)+I(work_speed*energy_band1AN)+poly(feed_rate*peak_magAT,5)+poly(wheel_speed*meanAT,3)+wheel_speed:kurtosisP+wheel_speed:energy_band1AT+I(wheel_speed*energy_band1AN)+poly(wheel_speed*peak_magAT,2)+poly(skewnessAT*energy_band1AN,3)+I(energy_band1AN*meanAT),data=Final1))\$coef

T-Statistics

```
Prediction terms
                                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                      3.336925e-02 1.630400e-01 0.2046691 8.381774e-01
                                      1.360546e+00 5.681839e-01 2.3945520 1.818847e-02
meanAT
I(kurtosisP^3)
                                      2.187780e-03 9.565892e-04 2.2870635 2.394439e-02
I(kurtosisP^5)
                                     -1.428913e-05 8.444362e-06 -1.6921507 9.321231e-02
energy_band1AT
                                      3.519608e-10 2.077994e-10 1.6937531 9.290638e-02
energy_band1AN
                                     -3.039573e-10 8.667912e-11 -3.5066961 6.390766e-04
peak_magAT
                                     -1.420527e-02 7.256045e-02 -0.1957715 8.451201e-01
poly(work_speed * meanAT, 2)1
                                     -6.586234e-01 7.173191e-01 -0.9181735 3.603698e-01
poly(work_speed * meanAT, 2)2
                                      6.641240e-01 3.384097e-01 1.9624853 5.202031e-02
poly(work_speed * energy_band1AT, 3)1 -2.209709e+00 1.510211e+00 -1.4631792 1.460327e-01
poly(work_speed * energy_band1AT, 3)2 1.689080e+00 5.316178e-01 3.1772452 1.890785e-03
poly(work_speed * energy_band1AT, 3)3 1.257785e-01 2.259181e-01 0.5567438 5.787393e-01
I(work_speed * energy_band1AN)
                                      6.058552e-13 1.730340e-13 3.5013661 6.507767e-04
poly(feed_rate * peak_magAT, 5)1
                                      8.597668e-02 4.624705e-01 0.1859074 8.528313e-01
poly(feed_rate * peak_magAT, 5)2
                                      6.628270e-01 2.691303e-01 2.4628482 1.520293e-02
poly(feed_rate * peak_magAT, 5)3
                                      3.999004e-01 1.971681e-01 2.0282202 4.475181e-02
poly(feed_rate * peak_magAT, 5)4
                                      4.870610e-02 1.875995e-01 0.2596281 7.955955e-01
poly(feed_rate * peak_magAT, 5)5
                                      9.250714e-02 1.718965e-01 0.5381560 5.914661e-01
poly(wheel_speed * meanAT, 3)1
                                     -9.657315e-01 2.630368e+00 -0.3671469 7.141561e-01
poly(wheel_speed * meanAT, 3)2
                                      7.370640e-01 5.833318e-01 1.2635416 2.088438e-01
poly(wheel_speed * meanAT, 3)3
                                     -5.298450e-01 1.911535e-01 -2.7718306 6.463545e-03
I(wheel_speed * energy_band1AN)
                                      7.708471e-12 2.290698e-12 3.3651183 1.027990e-03
poly(wheel_speed * peak_magAT, 2)1
                                     -3.210185e-01 1.921859e+00 -0.1670354 8.676233e-01
poly(wheel_speed * peak_magAT, 2)2
                                     -1.207514e+00 4.204559e-01 -2.8719172 4.825164e-03
poly(skewnessAT * energy_band1AN, 3)1 -1.050139e+00 2.496081e-01 -4.2071501 5.014776e-05
poly(skewnessAT * energy_band1AN, 3)2 -2.055776e+00 5.027815e-01 -4.0888051 7.877960e-05
poly(skewnessAT * energy_band1AN, 3)3 -1.071476e+00 3.301953e-01 -3.2449779 1.522174e-03
I(energy_band1AN * meanAT)
                                     -9.703458e-11 3.928192e-11 -2.4702100 1.490876e-02
wheel_speed:kur.tosisP.
                                     -2.376067e-03 8.001043e-04 -2.9696971 3.600786e-03
energy_band1AT:wheel_speed
                                     -8.983363e-13 7.259787e-12 -0.1237414 9.017270e-01
```

Conclusion

- The final model presented above has 29 prediction terms.
 - $\circ R^2$ value = 0.877 Adjusted R^2 = 0.8473
 - Residual Standard Error = 0.09413
 - Mean Square Error = 0.01362

Recap...

Surface Roughness Prediction in Grinding process

Response- Surface roughness

Factors(24)- Process parameter(4), Acceleration and power signal(20) parameters

- Model R^2 was 87%, even then process parameter where not significant.
- Need to rebuild the model

- Phenomenon of "causation"
- Quote-

"Torture the data, and it will confess to anything."- Ronald Coase,
British economist and author

An attempt is made to rebuild the model

Case 1: considering only process parameters

Case 2: considering process, acceleration and power signal parameter.

Case 1: a] Linear model

Roughness	=
+0.934089	
-0.008455	wheel speed
-0.000127	work speed
+0.242923	feed rate
-0.076451	stage

Std. Dev.	0.1628	R²	0.5691
Mean	0.4984	Adjuste d R²	0.5610
C.V. %	32.66		

Source	Term df	Error df	F-value	p-value	
Subplot	4	315.39	105.13	< 0.0001	significant
a-wheel speed	1	318.97	74.21	< 0.0001	
B-work speed	1	291.31	1.37	0.2420	
C-feed rate	1	317.27	37.13	< 0.0001	
D-stage	1	317.15	32.08	< 0.0001	

A, C, D significant

- Linear model is significant as all data points lie near the line plotted on predicted vs actual data points.
- Outliers in the normal probability plot are the significant factors
- Optimized factors to minimize roughness:

Feed rate: 0 to 0.3

Wheel speed: 35 rpm

Work speed: 200 rpm

Stage: 4

2] Quadratic:

Std. Dev.	0.1392	R ²	0.6941
Mean	0.4984	Adjusted R ²	0.6782
C.V. %	27.94		

Roughness	=
+3.77855	
-0.206723	wheel speed
+0.006080	work speed
-0.089405	feed rate
-0.240050	stage
-0.000018	wheel speed * work speed
-0.013116	wheel speed * feed rate
+0.000379	wheel speed * stage
-0.000124	work speed * feed rate
-0.000154	work speed * stage
+0.432729	feed rate * stage
+0.002926	wheel speed ²
-0.000013	work speed ²
+0.241883	feed rate ²
+0.030276	stage ²

A, C, AB, AC, A², B² are significant

Source	Term df	Error df	F-value	p-value	
Subplot	14	309.00	50.08	< 0.0001	significant
a-wheel speed	1	309.00	76.75	< 0.0001	
B-work speed	1	309.00	1.92	0.1671	
C-feed rate	1	309.00	9.96	0.0018	
D-stage	1	309.00	2.35	0.1264	
аВ	1	309.00	4.42	0.0363	
aC	1	309.00	13.52	0.0003	
aD	1	309.00	0.0990	0.7533	
ВС	1	309.00	0.1191	0.7303	
BD	1	309.00	1.58	0.2094	
CD	1	309.00	3.37	0.0674	
a²	1	309.00	47.11	< 0.0001	
B ²	1	309.00	11.71	0.0007	
C ²	1	309.00	0.7085	0.4006	
D ²	1	309.00	1.20	0.2745	

3] Cubic

Std. Dev.	0.1363	R ²	0.7210
Mean	0.4984	Adjusted R ²	0.6914
C.V. %	27.36		

A, AB, A², ABC are significant

Externally Studentized Residuals

Comparison of various models

Α	Wheel speed				
В	work :	speed			
	feed				
С	rate				
D	Stage				
MODEL		adj.	Significant	Total	Significant
TYPE	R^2 %	R^2 %	terms	terms	factors
Linear	56.91	56.1	3	4	A, C, D
					A, C, AB, AC, A^2,
Quadratic	69.41	67.82	6	14	B^2
Cubic	72.1	69.14	4	34	A, AB, A^2, ABC
Quartile	72.52	68.64	4	54	A, AB, A^2, ABC
fifth	72.52	68.53	4	130	A, AB, A^2, ABC
sixth	72.52	68.53	4	250	A, AB, A^2, ABC

- Cubic model is the best model as it gives best R^2 value
- As model level increases more number of insignificant terms are added with no improvement in R^2 and significant terms.

Comparision of Models

Optimization

wheel speed	work speed	feed rate	stage
40.2699	296.959	1.02722	1.71848

Desirability = 1.000 Solution 1 out of 100

Case 2

rf.grinding

Conclusion

Model	Significant Parame	eters		
Only process parameter	Wheel speed, (wheel speed) ²			
	Wheel speed* work speed			
	Wheel speed* work speed*feed rate			
Process, Acceleration and Power Parameters	Process	Acceleration	Power	
	Work speed	Mean AT	Kurtosis	
	Feed rate	Energy band AN	Mean power	
	Stage	Mean AN		
	Wheel speed	Energy band AN		

Quotes

- Every company has big data in its future and every company will eventually be in the data business."- Thomas H. Davenport
- "Big data will replace the need for 80% of all doctors"- Vinod Khosla
- "Information is the oil of the 21st century, and analytics is the combustion engine" - Peter Sondergaard, Senior Vice President at Gartner
- "Data are becoming the new raw material of business." Craig Mundie, Senior Advisor to the CEO at Microsoft.

Learnings

- Implementation of algorithms in R and Python
- Modelling in design expert
- Optimization
- Approach to solve the big data problem

Thank you