Ayrık Matematik Yüklemler ve Kümeler

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2010

Lisans

©2001-2010 T. Uyar, A. Yayımlı, E. Harmancı

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Konular

- 1 Yüklemler
 - Giriş
 - Niceleyiciler
 - Çoklu Niceleyiciler
- 2 Kümeler
 - Giriş
 - Altküme
 - Küme İşlemleri
 - İçleme-Dışlama

Yüklem

Tanım

yüklem:

- bir ya da birden fazla değişken içeren ve
- bir önerme olmayan ama
- değişkenlere izin verilen seçenekler arasından değer verildiğinde önerme haline gelen

bir bildirim (açık bildirim)

Çalışma Evreni

Tanım

çalışma evreni: ${\cal U}$

izin verilen seçenekler kümesi

- örnek çalışma evrenleri:
 - Z: tamsayılar
 - N: doğal sayılar
 - Z⁺: pozitif tamsayılar
 - Q: rasyonel sayılar
 - R: reel sayılar
 - C: karmaşık sayılar

Yüklem Örnekleri

Örnek

```
\mathcal{U} = \mathbb{N}
```

$$p(x)$$
: $x + 2$ bir çift sayıdır

$$p(5)$$
: Y $p(8)$: D

$$\neg p(x)$$
: $x + 2$ bir çift sayı değildir

Örnek

$$\mathcal{U} = \mathbb{N}$$

$$q(x, y)$$
: $x + y$ ve $x - 2y$ birer çift sayıdır

$$q(11,3)$$
: Y, $q(14,4)$: D

Niceleyiciler

Tanım

varlık niceleyicisi:

yüklem bazı değerler için doğru/yanlış

- simgesi: ∃
- okunuşu: vardır
- simge: ∃!
- okunuşu: *vardır ve tektir*

Tanım

evrensel niceleyici:

yüklem bütün değerler için doğru/yanlış

- simgesi: ∀
- okunuşu: her

Niceleyiciler

varlık niceleyicisi

$$\mathcal{U} = \{x_1, x_2, \cdots, x_n\}$$

$$\exists x \ p(x) \equiv p(x_1) \lor p(x_2) \lor \cdots \lor p(x_n)$$

■ bazı x'ler için p(x) doğru

evrensel nicelevici

$$\mathcal{U} = \{x_1, x_2, \cdots, x_n\}$$

$$\forall x \ p(x) \equiv p(x_1) \land p(x_2) \land \cdots \land p(x_n)$$

• her x için p(x) doğru

Niceleyici Örnekleri

Örnek

$$\mathcal{U}=\mathbb{R}$$

■
$$p(x) : x \ge 0$$

$$q(x): x^2 \ge 0$$

$$r(x): (x-4)(x+1)=0$$

$$s(x): x^2-3>0$$

şeklinde tanımlandıysa yandaki ifadelerin sonuçları ne olur?

$$\exists x [p(x) \land r(x)]$$

Niceleyicilerin Değillenmesi

- \blacksquare \forall yerine \exists , \exists yerine \forall konur
- yüklem değillenir

$$\neg \exists x \ p(x) \Leftrightarrow \forall x \ \neg p(x)$$

$$\neg \exists x \ \neg p(x) \Leftrightarrow \forall x \ p(x)$$

$$\neg \forall x \ p(x) \Leftrightarrow \exists x \ \neg p(x)$$

$$\neg \forall x \ \neg p(x) \Leftrightarrow \exists x \ p(x)$$

Niceleyicilerin Değillenmesi

Teorem

$$\neg \exists x \ p(x) \Leftrightarrow \forall x \ \neg p(x)$$

Tanıt.

$$\neg \exists x \ p(x) \equiv \neg [p(x_1) \lor p(x_2) \lor \cdots \lor p(x_n)]$$

$$\Leftrightarrow \neg p(x_1) \land \neg p(x_2) \land \cdots \land \neg p(x_n)$$

$$\equiv \forall x \ \neg p(x)$$

Niceleyici Eşdeğerlilikleri

Teorem

 $\exists x \ [p(x) \lor q(x)] \Leftrightarrow \exists x \ p(x) \lor \exists x \ q(x)$

Teorem

 $\forall x \ [p(x) \land q(x)] \Leftrightarrow \forall x \ p(x) \land \forall x \ q(x)$

Niceleyici Gerektirmeleri

Teorem

$$\forall x \ p(x) \Rightarrow \exists x \ p(x)$$

Teorem

$$\exists x \ [p(x) \land q(x)] \Rightarrow \exists x \ p(x) \land \exists x \ q(x)$$

Teorem

 $\forall x \ p(x) \lor \forall x \ q(x) \Rightarrow \forall x \ [p(x) \lor q(x)]$

Çoklu Niceleyiciler

- $\exists x \exists y \ p(x,y)$
- $\forall x \exists y \ p(x,y)$
- $\exists x \forall y \ p(x,y)$

Çoklu Niceleyici Örnekleri

Örnek

$$\mathcal{U} = \mathbb{Z}$$
$$p(x, y) : x + y = 17$$

- $\forall x \exists y \ p(x, y)$: her x için öyle bir y bulunabilir ki x + y = 17 olur
- $\exists y \forall x \ p(x,y)$: öyle bir y bulunabilir ki her x için x+y=17 olur
- $\mathbf{U} = \mathbb{N} \text{ olsa}$?

Çoklu Niceleyiciler

Örnek

$$\mathcal{U}_{\mathsf{x}} = \{1,2\} \wedge \mathcal{U}_{\mathsf{y}} = \{A,B\}$$

$$\exists x \exists y \ p(x,y) \equiv [p(1,A) \lor p(1,B)] \lor [p(2,A) \lor p(2,B)]$$

$$\exists x \forall y \ p(x,y) \equiv [p(1,A) \land p(1,B)] \lor [p(2,A) \land p(2,B)]$$

$$\forall x \exists y \ p(x,y) \equiv [p(1,A) \lor p(1,B)] \land [p(2,A) \lor p(2,B)]$$

$$\forall x \forall y \ p(x,y) \equiv [p(1,A) \land p(1,B)] \land [p(2,A) \land p(2,B)]$$

Kaynaklar

Okunacak: Grimaldi

- Chapter 2: Fundamentals of Logic
 - 2.4. The Use of Quantifiers

Yardımcı Kitap: O'Donnell, Hall, Page

■ Chapter 7: Predicate Logic

Küme

Tanım

küme:

- birbirinden ayırt edilebilen
- aralarında sıralama yapılmamış
- yinelenmeyen

elemanlar topluluğu

Küme Gösterilimi

- **a** açık gösterilim elemanlar süslü parantezler içinde listelenir: $\{a_1, a_2, \ldots, a_n\}$
- kapalı gösterilim bir yüklemi doğru kılan elemanlar: $\{x | x \in G, p(x)\}$
- Ø: boş küme
- *S* bir küme, *a* bir nesne ise:
 - $a \in S$: a nesnesi S kümesinin bir elemanıdır
 - $a \notin S$: a nesnesi S kümesinin bir elemanı değildir

Açık Gösterilim Örnekleri

Örnek

 $\begin{aligned} &\{3,8,2,11,5\} \\ &11 \in \{3,8,2,11,5\} \end{aligned}$

Kapalı Gösterilim Örnekleri

Örnek

$$\{x | x \in \mathbb{Z}^+, 20 < x^3 < 100\} \equiv \{3, 4\}$$
$$\{2x - 1 | x \in \mathbb{Z}^+, 20 < x^3 < 100\} \equiv \{5, 7\}$$

Örnek

$$A = \{x | x \in \mathbb{R}, 1 \le x \le 5\}$$

Örnek

$$E = \{n | n \in \mathbb{N}, \exists k \in \mathbb{N} \ [n = 2k]\}$$
$$A = \{x | x \in E, 1 \le x \le 5\}$$

Küme İkilemi

 bir köyde bir berber kendini traş etmeyen herkesi traş ediyor kendisini traş edenleri traş etmiyor

bu berber kendisini traș eder mi?

- etmez: kendisini traş etmeyen herkesi traş ediyor → eder
- $lue{}$ eder. kendisini traş edenleri traş etmiyor ightarrow etmez

Küme İkilemi

- S bir kümeler kümesi
- kendisinin elemanı olmayan kümeler kümesi:

$$S = \{A | A \notin A\}$$

S kendisinin elemanı mıdır?

- evet: yüklemi sağlamaz → hayır
- hayır: yüklemi sağlar → evet

Sonlu Küme

Tanım

sayılabilen küme:

elemanları numaralandırılabilen küme

■ R kümesi sayılamaz

Tanım

sonlu küme:

sayılabilen ve eleman sayısı sonlu olan küme

- N kümesi sayılabilir ama sonlu değildir
- \blacksquare eleman sayısı: kardinalite, gösterilim: |S|

Altküme

Tanım

$$A \subseteq B \Leftrightarrow \forall x \ [x \in A \rightarrow x \in B]$$

- küme eşitliği: $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
- uygun altküme: $A \subset B \Leftrightarrow (A \subseteq B) \land (A \neq B)$
- $A \subseteq B \Leftrightarrow (A \subseteq B) \land (A \neq B)$
- $\blacksquare \ \forall S \ [\emptyset \subseteq S]$

Altküme

altküme değil

$$A \nsubseteq B \Leftrightarrow \neg \forall x \ [x \in A \to x \in B]$$

$$\Leftrightarrow \exists x \ \neg [x \in A \to x \in B]$$

$$\Leftrightarrow \exists x \ \neg [\neg (x \in A) \lor (x \in B)]$$

$$\Leftrightarrow \exists x \ [(x \in A) \land \neg (x \in B)]$$

$$\Leftrightarrow \exists x \ [(x \in A) \land (x \notin B)]$$

Altkümeler Kümesi

Tanım

altkümeler kümesi:

bir kümenin, boş küme ve kendisi dahil, bütün altkümelerinin oluşturduğu küme

- **g**österilimi: $\mathcal{P}(S)$
- n elemanlı bir kümenin altkümeler kümesinin 2ⁿ elemanı vardır

Altkümeler Kümesi Örneği

Örnek

```
\mathcal{P}(\{1,2,3\}) = \{ \\ \emptyset \\ \{1\}, \{2\}, \{3\} \\ \{1,2\}, \{1,3\}, \{2,3\} \\ \{1,2,3\} \\ \}
```

Küme İşlemleri

tümleme

$$\overline{A} = \{x | x \notin A\}$$

kesişim

$$A \cap B = \{x | (x \in A) \land (x \in B)\}$$

■ $A \cap B = \emptyset$ ise A ile B ayrık kümeler

birleşim

$$A \cup B = \{x | (x \in A) \lor (x \in B)\}$$

Küme İşlemleri

fark

$$A - B = \{x | (x \in A) \land (x \notin B)\}$$

- $A B = A \cap \overline{B}$
- bakışımlı fark:

$$A \triangle B = \{x | (x \in A \cup B) \land (x \notin A \cap B)\}$$

Kartezyen Çarpım

Tanım

kartezyen çarpım:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

$$A \times B \times C \cdots \times N = \{(a, b, \dots, n) | a \in A, b \in B, \dots, n \in N\}$$

Kartezyen Çarpım Örneği

Örnek

```
A = \{a_1, a_2, a_3, a_4\}
B = \{b_1, b_2, b_3\}
A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_2), (a_3, b_3), (a_3, b_1), (a_3, b_2), (a_3, b_3), (a_4, b_4), (a_5, b_4), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5, b_5), (a_5,
```

 $(a_4, b_1), (a_4, b_2), (a_4, b_3)$

Esdegerlilikler

çifte tümleme

$$\overline{\overline{A}} = A$$

değişme

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

birleşme

$$(A\cap B)\cap C=A\cap (B\cap C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 $(A \cup B) \cup C = A \cup (B \cup C)$

sabit kuvvetlilik

$$A \cap A = A$$

$$A \cup A = A$$

terslik

$$A \cap \overline{A} = \emptyset$$

$$A \cup \overline{A} = U$$

Eşdeğerlilikler

etkisizlik

$$A \cap U = A$$

$$A \cap \emptyset = \emptyset$$

dağılma $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

yutma
$$A \cap (A \cup B) = A$$

De Morgan

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$A \cup \emptyset = A$

$$A \cup U = U$$

$$A \cup (A \cap B) = A$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

De Morgan Kuralı

Tanıt.

$$\overline{A \cap B} = \{x | x \notin (A \cap B)\}$$

$$= \{x | \neg (x \in (A \cap B))\}$$

$$= \{x | \neg ((x \in A) \land (x \in B))\}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x | (x \notin A) \lor (x \notin B)\}$$

$$= \{x | (x \in \overline{A}) \lor (x \in \overline{B})\}$$

$$= \{x | x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

Eșdeğerlilik Örneği

Teorem

$$A\cap (B-C)=(A\cap B)-(A\cap C)$$

Eşdeğerlilik Örneği

Tanıt.

$$(A \cap B) - (A \cap C) = (A \cap B) \cap \overline{(A \cap C)}$$

$$= (A \cap B) \cap \overline{(A \cup C)}$$

$$= ((A \cap B) \cap \overline{A}) \cup ((A \cap B) \cap \overline{C})$$

$$= \emptyset \cup ((A \cap B) \cap \overline{C})$$

$$= (A \cap B) \cap \overline{C}$$

$$= A \cap (B \cap \overline{C})$$

$$= A \cap (B - C)$$

İçleme-Dışlama İlkesi

- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C|$ = $|A| + |B| + |C| (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|$

Teorem

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i} |A_i| - \sum_{i,j} |A_i \cap A_j|$$

$$+ \sum_{i,j,k} |A_i \cap A_j \cap A_k|$$

$$\dots + -1^{n-1} |A_i \cap A_j \cap \dots \cap A_n|$$

Örnek (Eratosthenes Kalburu)

■ asal sayıları bulmak için bir yöntem

2 18	3 19	4 20			9 25	11 27	13 29	15	16	17
2	3 19		5 21	7 23	9 25	11 27	13 29	15		17
2	3 19		5	7 23	25	11	13 29			17
2	3 19		5	7 23		11	13 29			17

Örnek (Eratosthenes Kalburu)

- 1'den 100'e kadar asal sayıların sayısı
- 2, 3, 5 ve 7'ye bölünemeyen sayılar
 - A₂: 2'ye bölünen sayılar kümesi
 - A₃: 3'e bölünen sayılar kümesi
 - A₅: 5'e bölünen sayılar kümesi
 - A₇: 7'ye bölünen sayılar kümesi
- $\blacksquare |A_2 \cup A_3 \cup A_5 \cup A_7|$

Örnek (Eratosthenes Kalburu)

$$|A_2| = |100/2| = 50$$

$$|A_3| = |100/3| = 33$$

$$|A_5| = |100/5| = 20$$

$$|A_7| = |100/7| = 14$$

$$|A_2 \cap A_3| = |100/6| = 16$$

$$|A_2 \cap A_5| = |100/10| = 10$$

$$|A_2 \cap A_7| = \lfloor 100/14 \rfloor = 7$$

$$|A_3 \cap A_5| = |100/15| = 6$$

$$|A_5 \cap A_7| = \lfloor 100/35 \rfloor = 2$$

Örnek (Eratosthenes Kalburu)

- $|A_2 \cap A_3 \cap A_5| = |100/30| = 3$
- $|A_2 \cap A_3 \cap A_7| = \lfloor 100/42 \rfloor = 2$
- $|A_2 \cap A_5 \cap A_7| = |100/70| = 1$
- $|A_3 \cap A_5 \cap A_7| = \lfloor 100/105 \rfloor = 0$

Örnek (Eratosthenes Kalburu)

$$|A_2 \cup A_3 \cup A_5 \cup A_7|$$
 = $(50 + 33 + 20 + 14)$
- $(16 + 10 + 7 + 6 + 4 + 2)$
+ $(3 + 2 + 1 + 0)$
- (0)
= 78

■ asalların sayısı: (100 - 78) + 4 - 1 = 25

Kaynaklar

Okunacak: Grimaldi

- Chapter 3: Set Theory
 - 3.1. Sets and Subsets
 - 3.2. Set Operations and the Laws of Set Theory
- Chapter 8: The Principle of Inclusion and Exclusion
 - 8.1. The Principle of Inclusion and Exclusion

Yardımcı Kitap: O'Donnell, Hall, Page

■ Chapter 8: Set Theory