Zahlendarstellung IEEE-P 754-FLOATING-POINT-STANDARD

Benjamin Tröster

Hochschule für Technik und Wirtschaft Berlin

15. Dezember 2021

Fahrplan

IEEE-P 754

Beispiele

Rundung

IEEE-P 754

- Standardisierung von Gleitkommazahlen via IEEE Standard
- ➤ Original: [85]
- ► Aktuell: [Cor09]
- ► Schönes Paper: [Gol91]

Normierung (IEEE-Standard)

- In vielen Programmiersprachen lassen sich Gleitkomma-Zahlen mit verschiedener Genauigkeit darstellen
 - **►** C:
 - float
 - double
 - long double
 - Java
 - ► float
 - double
- ▶ Der IEEE-Standard definiert mehrere Darstellungsformen
 - ▶ IEEE single: 32 Bit
 - ► IEEE double: 64 Bit
 - ► IEEE extended: 80 Bit

IEEE-P 754-Floating-Point-Standard

Maschinenformate des IEEE-Standards

Eigenschaften des IEEE-P 754

- ▶ Die Basis q ist gleich 2
- ▶ Das erste Bit der Mantisse wird implizit zu 1 angenommen, wenn die Charakteristik nicht nur Nullen enthält
- ► Normalisierung: das erste Bit der Mantisse (die implizite 1) steht vor dem Komma
- ▶ Ist die Charakteristik gleich 0, entspricht dies dem gleichen Exponenten wie die Charakteristik 1
 - Für die Darstellung der Subnormals und der Null
 - Normalisierte Zahlen kommen nur bis Minreal: Werte kleiner Darstellbar, aber nicht normalisiert
- Das erste Bit der Mantisse wird aber dann explizit dargestellt
- ► Auch die Null ist darstellbar

Eigenschaften des IEEE-P 754

- ➤ Sind alle Bits der Charakteristik gleich 1, signalisiert dies eine Ausnahmesituation
- Wenn zusätzlich die Mantisse gleich Null ist, wird die Situation "overflow" (bzw. die "Zahl" $\pm\infty$) kodiert
- Dies erlaubt es dem Prozessor, eine Fehlerbehandlung einzuleiten
- ► Intern arbeiten Rechner nach dem IEEE-Standard mit 80 Bit, um Rundungsfehler unwahrscheinlicher zu machen
- Charakteristik gleich 1 und Mantisse ungleich 0: NaN

Zusammenfassung der Parameter des IEEE-P 754

Parameter	Single	Double
Bits Gesamt	32	64
Bits Mantisse	23(+1)	52(+1)
Bits Charakteristik	8	11
Exponent Bias	+127	+1023
E_{max}	+127	+1023
E_{min}	-126	-1022

Der Bias ist $2^{n-1}-1$ anstatt 2^{n-1}

Zusammenfassung des 64-Bit-IEEE-Formats

Charakter.	Zahlenwert	Bemerkung
0	$(-1)^{Vz}0$, Mantisse $\cdot 2^{-1022}$	Subnormalisiert
1	$(-1)^{Vz}1$, Mantisse $\cdot 2^{-1022}$	Normalisiert
	$(-1)^{Vz}1$, Mantisse $\cdot 2^{-1023}$	Normalisiert
2046	$(-1)^{\emph{Vz}}1, \emph{Mantisse} \cdot 2^{1023}$	Normalisiert
2047	$Mantisse = 0: (-1)^{Vz} \infty$	Overflow
2047	Mantisse $\neq 0$:	NaN

Beispiel: $4, 4_{10}$

Übersicht: Umrechnung $4, 4_{10} \rightarrow X_2$

- ► Vorgehen via Horner-Schema:
 - ▶ Ganzzahliger Teil: $4_{10} = 100_2$
 - Nachkommateil: $0, 4 = 0, \overline{0110}_2$
- Normalisierung: $100, \overline{0110}_2 \cdot 2^0 = 1,00\overline{0110}_2 \cdot 2^2$
- ▶ Verrechnen mit Bias: 2 Bits Shifted: 127 + 4 = 129
- ► Charakteristik: $129_{10} = 010000001_2$
- ▶ $01000000100\overline{0110}_2 = 01000000100011001100110011001100_2 \approx 4,3999996185302734375$

Umrechnung: Ganzzahliger & Nachkommateil

Ganzzah	liger	Anteil
---------	-------	--------

	Div	Mod (Remainder)
4:2	2	0
2:2	1	0
1:2	0	1

Nachkommabereich

		Carry
$0, 4 \cdot 2$	0, 8	0
$0, 8 \cdot 2$	1, 6	1
$0, 6 \cdot 2$	1, 2	1
$0, 2 \cdot 2$	0, 4	0
$0, 4 \cdot 2$		

Zusammensetzen und Verrechnung mit Bias

- Normalisierung: $100, \overline{0110}_2 \cdot 2^0 = 1,00\overline{0110}_2 \cdot 2^2$
 - Verschiebung um zwei Bits
 - ▶ 1 vor dem Komma redundant
- ▶ Bias: 8 Bit $2^7 1$, $B = 0111111111_2 = 127_{10}$ -127 -> d.h. Zahlen beginnen nicht bei 0, sonder bei -127
 - Um die Zahlen ohne Zweierkomplement darstellen zu können
- ▶ Einrechnen des Offsets: Daher 127 + 2 = 129 ist der codierte Exponent
- $ightharpoonup 129_{10} = 10000001_2$ ist das Exponent
- ► 10000001₂ 1,00011001100110011001100₂
- Mantisse 1 vor dem Komma kann weg

Float (32 Bit) Minreal, Maxreal, Smallreal

- - **E**xpoent: 2^127 mit Bias: $254_{10} = 1111111101_2$
- $\qquad \qquad \textbf{Minreal: } 1.175494 \cdot 10^{-38} = 0.000000000000000000000000117549393043$

 - ightharpoonup Exponent: 2^{-126} mit Bias: 0, Mantisse voll besetzt
- lacktriangle Smallreal: 1.0000001 als Addition von $1.0+1.0_2\cdot 2^{-22}$

 - ▶ Kleinster Wert der mit +1 darstellbar ist: $1 \cdot 10^{-7} = 0011001111010110101111111110010101_2$

 - ► Fehlerrate: $-1E 8 = -1 \cdot 10^{-8}$

Rundung

- ► IEEE Standard Forderung:
 - ▶ Das Ergebnis, das man durch eine arithmetische Operation mit dem Rechner erhält, soll dasselbe sein, als wenn man exakt rechnet und anschließend entsprechend eines geeigneten Modus rundet
- ► IEEE Standard definiert vier Rundungsmodi:
 - Rundung zum nächstliegenden Gleitkommawert:
 - ► Falls der Abstand zu zwei Gleitkommawerten gleich ist, wird zu jenem Wert gerundet, dessen niederwertigste Stelle eine gerade Ziffer ist ("round-to-even"-Regel)
 - Rundung zum nächsten Gleitkommawert in Richtung 0
 - lacktriangle Rundung zum nächsten Gleitkommawert in Richtung $+\infty$
 - ightharpoonup Rundung zum nächsten Gleitkommawert in Richtung $-\infty$

Rundungen

Rundungen

- ► Am schwierigsten zu implementierende Rundung:
 - Rundung zum nächstliegenden Gleitkommawert
- ▶ Eine Möglichkeit: Summe exakt berechnen und anschließend runden
 - sehr lange Register, sehr aufwändig
- ► Auch mit weniger Hardware-Aufwand möglich?
- Es gibt zwei Fälle für eine Rundung bei Addition und Subtraktion:
 - auftretender Übertrag
 - Exponentenanpassung

Beispiel a: Übertrag bei Addition

Basis 10, drei signifikante Stellen (d.h. Mantisse hat maximal drei Stellen)

$$2,34 \cdot 10^2$$

$$+8,51\cdot 10^2$$

$$10,85 \cdot 10^2$$

wird gerundet zu

$$1,08 \cdot 10^3$$

Beispiel b: ungleiche Exponenten

Basis 10, drei signifikante Stellen

$$2,34 \cdot 10^2 +2,56 \cdot 10^0$$

$$2,34\cdot 10^2$$

$$0,0256 \cdot 10^2$$

$$2,3656 \cdot 10^2$$

$$2,37 \cdot 10^2$$

Beispiel c: Übertrag und ungl. Exponenten

Basis 10, drei signifikante Stellen

beides	$9,51\cdot 10^2$
	$+0,642 \cdot 10^2$
	$10,152\cdot 10^2$
wird gerundet zu	$1,02 \cdot 10^3$

Problem

- ► Für jeden dieser Fälle muss die Summe mit mehr als drei signifikanten Stellen berechnet werden, um eine korrekte Rundung zu ermöglichen
- ► Es gibt auch Fälle, bei denen eine Rechnung mit mehr als drei signifikanten Stellen notwendig ist, obwohl keine Rundung erfolgt
 - Subtraktion nahe beieinanderliegender Zahlen
 - Siehe Beispiel d

Beispiel d: Subtraktion von naheliegenden Zahlen

$$\begin{array}{r}
 1,47 \cdot 10^{2} \\
 -0,876 \cdot 10^{2} \\
 \hline
 0,594 \cdot 10^{2}
 \end{array}$$

- ▶ Bei den bisherigen Beispielen reichte eine zusätzliche Stelle aus
- ► Es gibt aber auch Fälle, bei denen dies nicht genügt

Beispiel e

$$\begin{array}{r}
 1,01 \cdot 10^2 \\
 -0,0376 \cdot 10^2 \\
 \hline
 0,9724 \cdot 10^2
 \end{array}$$

wird gerundet zu

 $0,972 \cdot 10^2$

Wenn die niederwertigste Ziffer 6 von 0,0376 gestrichen würde, wäre das Ergebnis 0,973 anstatt 0,972

Rundungs- und Prüfstelle

- ► Es lässt sich zeigen, dass unter Vernachlässigung der "round-to-even"-Regel zwei weitere Stellen für eine korrekte Rundung stets ausreichend sind
- ▶ Diese beiden Stellen heißen:
 - die Rundungsstelle r und
 - Falls r > 0 ist Runden einfach, da wir nicht in der Mitte sind
 - ightharpoonup Was wenn r = 0?
 - Prüfstelle g
 - Sagt, ob wir r genauer betrachten müssen, wir könnten in der Mitte $(g=5_{10})$ sein
- ▶ Aber: Die "round-to-even"-Regel erfordert zusätzlichen Aufwand.

Beispiel f:

Fünf signifikante Stellen:

- ▶ Rundungsstelle *r* und Prüfstelle *g* genügen nicht
- ► Information: sind alle niederwertigeren Stellen hinter der Rundungsstelle gleich Null, dann nur ein sticky-Bit

Sticky-Bit

- ► Für eine richtige Rundung ist die Information ausreichend, ob alle niederwertigeren Stellen hinter der Rundungsstelle gleich Null sind
- ► Es genügt ein Bit: "sticky"-Bit
- ▶ Wenn eine der Stellen, die durch das Angleichen der Exponenten beider Operanden gestrichen werden, ungleich Null ist, wird das "sticky"-Bit gesetzt
- ► Falls das Ergebnis in gleichem Abstand zum oberen und unteren nächstliegenden Fließkommawert liegt, entscheidet das "sticky"-Bit, ob nach oben oder nach unten gerundet wird

Quellen I

- Cornea, Marius (2009). "IEEE 754-2008 Decimal Floating-Point for Intel® Architecture Processors". In: 2009 19th IEEE Symposium on Computer Arithmetic. IEEE, S. 225–228.
- Goldberg, David (1991). "What every computer scientist should know about floating-point arithmetic". In: ACM computing surveys (CSUR) 23.1, S. 5–48.
- "IEEE Standard for Binary Floating-Point Arithmetic" (1985). In: ANSI/IEEE Std 754-1985, S. 1–20. DOI: 10.1109/IEEESTD.1985.82928.