Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

ОТЧЁТ по лабораторной работе №46

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛОВ ОТ ТЕМПЕРАТУРЫ

Выполнил студент группы	
Преподаватель кафедры физики	
Отметка о защите	

Лабораторная работа № 46

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛОВ ОТ ТЕМПЕРАТУРЫ

Цель работы — исследовать зависимость электрического сопротивления металлов от температуры, определить температурный коэффициент сопротивления исследуемых материалов.

Приборы и принадлежности: исследуемые проводники, нагреватель, термометр, вольтметр универсальный В7-21А.

Общие положения

Электрическое сопротивление R — скалярная физическая величина, характеризующая свойство проводника противодействовать пропусканию электрического тока и равная отношению напряжения U на концах проводника к силе тока I, протекающего по нему:

$$R = \frac{U}{I}$$
.

Сопротивление проводников, наличие электрического тока в которых приводит к выделению тепла, называется омическим или активным. Сопротивление однородного проводника зависит от материала проводника и его геометрических размеров и может быть рассчитано по формуле:

$$R = \rho \frac{l}{S},\tag{1}$$

где l — длина проводника,

S – площадь поперечного сечения проводника

 ρ – удельное электрическое сопротивление, характеризующее материал проводника.

Электрическое сопротивление измеряют омметрами и измерительными мостами. Единица электрического сопротивления в СИ – Ом.

Электрическое сопротивление металлов связано с рассеянием электронов проводимости на тепловых колебаниях кристаллической решетки и структурных неоднородностях. Поэтому сопротивление металлов зависит от температуры. С большой степенью точности можно считать, что зависимость сопротивления металлов от температуры является линейной:

$$R = R_0 (1 + \alpha t), \tag{2}$$

где R – сопротивление при температуре t°C,

 R_0 – сопротивление при 0°C,

α – температурный коэффициент сопротивления.

Температурный коэффициент сопротивления — это величина, численно равная относительному изменению сопротивления проводника при изменении его температуры на 1°C:

$$\alpha = \frac{\Delta R}{R_0} \cdot \frac{1}{\Delta t}.$$

Для чистых металлов температурный коэффициент представляет величину порядка $\alpha \approx 0,004\ 1/^{\circ}$ С. Для некоторых электротехнических сплавов (манганин, константан) α настолько мало, что им можно пренебречь и в достаточно широком интервале температур считать сопротивление независящим от температуры.

Из формулы (2) следует, что

$$\alpha = \frac{R - R_0}{R_0} \cdot \frac{1}{t},$$

т.е. для определения α необходимо знать сопротивление при 0°C, которое, как правило, неизвестно. Поэтому для определения α можно воспользоваться различными методами.

Первый метод состоит в том, чтобы использовать два значения сопротивления, измеренного при двух различных температурах. В соответствии с формулой (1), можно записать:

$$R_1 = R_0 (1 + \alpha t_1), \tag{3}$$

$$R_2 = R_0 (1 + \alpha t_2). (4)$$

где R_1 — сопротивление проводника при температуре t_1 °C, R_2 — сопротивление этого же проводника при температуре t_2 °C.

Решая систему (3) - (4), получим:

$$\alpha = \frac{R_2 - R_1}{R_1 t_2 - R_2 t_1} \,. \tag{5}$$

Несмотря на кажущуюся простоту, этот метод не очень хорош, т.к. возможные случайные ошибки при измерениях сопротивления и температуры могут дать значительную ошибку в определении α.

Второй метод заключается в нахождении температурного коэффициента

сопротивления с помощью графика зависимости сопротивления проводника от температуры. Теоретическая зависимость должна иметь вид прямой линии.

Температурный коэффициент сопротивления α также рассчитывается по формуле (4), но сопротивления R_1 и R_2 и соответствующие им температуры t_1 и t_2 определяются из графика R = f(t) (см. рис.1).

Этот метод имеет существенные преимущества перед расчётным. При построении графика можно легко обнаружить грубые ошибки и исключить их влияние на результат.

Описание экспериментальной установки

Экспериментальная установка состоит из нагревателя, внутрь которого помещены исследуемые проводники; термометра для измерения температуры и прибора для измерения сопротивления.

Схема установки представлена на рис. 2. На схеме обозначены:

- 1 вольтметр универсальный В7-21А,
- 2 нагреватель,
- 3 переключатель,
- 4 термометр.

Рисунок 2. Электрическая схема установки

Подготовка к работе

(ответы представить в письменном виде)

- 1. В чём состоит цель работы?
- 2. Какие величины Вы будете измерять непосредственно?
- 3. Какой график необходимо построить по результатам эксперимента? Нарисуйте схематический график этой зависимости (по теории).
- 4. Запишите формулу, по которой Вы будете рассчитывать температурный коэффициент сопротивления. Поясните смысл обозначений.

Выполнение работы

- 1. Ознакомиться с инструкцией к универсальному вольтметру.
- 2. Измерить сопротивление каждого из двух исследуемых проводников при комнатной температуре.
- 3. Включить нагреватель и в процессе повышения температуры измерять сопротивление проводников с выбранным шагом (через каждые $5^{\circ}C-10^{\circ}C$) до $60^{\circ}C-70^{\circ}C$.

Оформление отчёта

1. Расчёты

- 1. Построить графики зависимости R = f(t) для каждого проводника.
- 2. Рассчитать температурный коэффициент сопротивления α по формуле (5) для каждого проводника. Значения сопротивлений R_1 и R_2 и соответствующие им температуры t_1 и t_2 определить из графиков R = f(t).

2. Защита работы

(ответы представить в письменном виде)

- 1. Что называется электрическим сопротивлением?
- 2. От чего зависит сопротивление проводника? Запишите формулу для расчёта.
- 3. Как зависит электрическое сопротивление металлов от температуры? Запишите формулу.
- 4. Дайте определение температурного коэффициента сопротивления.
- 5. Сравните полученный экспериментально график с теоретической зависимостью. Сравните найденные значения температурных коэффициентов сопротивления α₁, α₂ с табличными. Сделайте вывод.

ПРОТОКОЛ измерений к лабораторной работе №46

Выпол	Выполнил(а)													Группа																										
	Проводник 1																																							
t, °C																																								
<i>t</i> , °С <i>R</i> , Ом																																								
															_																									
	Проводник 2																						_																	
t, °C																																								
<i>t</i> , °С <i>R</i> , Ом																																								
																											_	_							4	\dashv				
																												-							\dashv	\dashv		+		
																											+	-	-						\dashv	+		+		
																												1							\dashv	+		+		
																																				T				
																																			_	\dashv				
																											_	_							\dashv	\dashv		-		
																											+	_							\dashv	+		+		
																												_							\dashv	+				
																												1							_	\forall				
				Ţ	J														$oxed{\Box}$								\prod	Ţ	Ţ		\prod	J			J	$oldsymbol{\perp}$	\prod	Ţ		
				_												<u> </u>		1	<u> </u>									_	_		_				\dashv	\dashv	-	_		
				\dashv	-													1									\dashv	\dashv	\dashv		\dashv	-			\dashv	\dashv	-	+		
	-			\dashv	-				-							\vdash			 								\dashv	\dashv	\dashv	_	\dashv	-			+	+	\dashv	+		
				\exists	1								T	\vdash	f	\vdash	T		\vdash								\dashv	\dashv	+		\dashv	1			\dashv	\dashv	\exists	\dagger		
																												1	1		1				\exists	\dashv				
																																				\Box				
				Ţ	\Box														$oxed{\Box}$								\prod	Ţ	Ţ		J	\Box			$oldsymbol{\bot}$	ightharpoons	\prod	$oldsymbol{\perp}$		
				4	_							_			<u> </u>	<u> </u>		-	<u> </u>								4	-	_		_	_			4	\dashv	-	\downarrow		
				-	-									1	-	_		-	-								\dashv	\dashv	-	\dashv	-	-			\dashv	+	+	+		
+++				\dashv	\dashv											\vdash			\vdash								\dashv	\dashv	\dashv	\dashv	+	\dashv			+	+	\dashv	+		
Дата_	-					!			<u>I</u>	<u> </u>			!		Пс	' ЭДІ	пи	ICE	• П	pe	пс	ЭД	ав	ат	ел	<u>-</u> Я_		ļ	ļ	_										