

MUROKI etal November 19,2003 BSKB, LLP 703-205-8000 OSOS-1257P 20-12

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月25日

出 願 番 号 Application Number:

特願2002-373676

[ST. 10/C]:

[JP2002-373676]

出 願 人
Applicant(s):

本田技研工業株式会社

2003年 9月25日

特許庁長官 Commissioner, Japan Patent Office

ページ: 1/

【書類名】

特許願

【整理番号】

H102262401

【提出日】

平成14年12月25日

【あて先】

特許庁長官 殿

【国際特許分類】

B60K 17/16

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】

黒木 正宏

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】

▲高▼柳 眞二

【特許出願人】

【識別番号】

000005326

【氏名又は名称】

本田技研工業株式会社

【代理人】

【識別番号】

100067356

【弁理士】

【氏名又は名称】

下田 容一郎

【選任した代理人】

【識別番号】

100094020

【弁理士】

【氏名又は名称】

田宮 寛祉

【手数料の表示】

【予納台帳番号】

004466

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9723773

【包括委任状番号】 0011844

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 車両の動力伝達機構

【特許請求の範囲】

【請求項1】 エンジンのクランクケースに変速機を収納し、この変速機の 出力を差動機構を介して左右の後輪に連結した車両において、

前記クランクケースに、このクランクケースとは別体にしたケースを取付け、 この別体のケースに前記差動機構を収納したことを特徴とする車両の動力伝達機 構。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、他の車両へ流用しやすく、コストダウンが図れる車両の動力伝達機構に関する。

[0002]

【従来の技術】

車両の動力伝達機構として、エンジンのクランクケースに変速機及び差動機構 を収納したものが知られている(例えば、特許文献1参照。)。

[0003]

【特許文献1】

実公平5-39998号公報(第2頁、第2図)

 $[0\ 0\ 0\ 4]$

特許文献1の第2図を以下の図23で説明する。なお、符号は振り直した。

図23は従来の車両の動力伝達機構を示す断面図であり、エンジン301のクランク軸302にVベルト303を介して変速機構304を連結し、この変速機構304に差動機構306を連結し、この差動機構306に左右の駆動軸307,308に後輪(不図示)を連結し、エンジン301のクランクケース311に前述の変速機構304及び差動機構306を収納したことを示す。

[0005]

【発明が解決しようとする課題】

上記の技術では、エンジン301のクランクケース311に変速機構304及び差動機構306を収納する、即ち、変速機構304及び差動機構306を収納するケースとクランクケース311とを一体にしたので、例えば、このような動力伝達機構を他の車両に流用しようとする場合、変速機構304の変速比はそのままでエンジン仕様(シリンダボア径、ピストンストローク等)を変更したいとき、あるいはエンジン301の仕様はそのままで変速機構304の変速比を変更(変速歯車の径を変更することになる。)したいときに、それらの変更の自由度が少なくなり、流用する車両が限られる。これでは、動力伝達機構がほとんど専用化し、コストダウンを図ることが難しい。

[0006]

そこで、本発明の目的は、車両の動力伝達機構を改良することで、動力伝達機構を他の車両へ流用しやすくし、動力伝達機構の大幅なコストダウンを図ることにある。

[0007]

【課題を解決するための手段】

上記目的を達成するために請求項1は、エンジンのクランクケースに変速機を収納し、この変速機の出力を差動機構を介して左右の後輪に連結した車両において、クランクケースに、このクランクケースとは別体にしたケースを取付け、この別体のケースに差動機構を収納したことを特徴とする。

[0008]

変速機を収納するクランクケースに、このクランクケースとは別体にしたケースを取付け、この別体のケースに差動機構を収納したことで、例えば、2輪車用のエンジン及び変速機のユニットに3輪車用又は4輪車用の差動機構を連結することができ、動力伝達機構を流用し易くすることができる。また、ケース内に差動機構と共に、例えば減速機構を収納すれば、2輪車のエンジン及び変速機を流用しつ3輪車用又は4輪車用の減速機構の減速比を各機種に応じて自由に設定することができる。

[0009]

【発明の実施の形態】

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。

図1は本発明に係る動力伝達機構を備えた車両の側面図であり、車両としての 揺動機構付き3輪車10(以下「(3輪車10」と記す。)は、ヘッドパイプ1 1に図示せぬハンドル軸を介して操舵可能に取付けたフロントフォーク12と、 このフロントフォーク12の下端に取付けた前輪13と、フロントフォーク12 に一体的に取付けたハンドル14と、ヘッドパイプ11の後部に取付けた車体フ レーム16と、この車体フレーム16の後部に取付けたパワーユニット17と、 このパワーユニット17で駆動する左右の車輪としての後輪18,21(奥側の 後輪21は不図示)と、車体フレーム17の上部に取付けた収納ボックス22と 、この収納ボックス22の上部に開閉可能に取付けたシート23とからなる。

$[0\ 0\ 1\ 0]$

車体フレーム16は、ヘッドパイプ11から後方斜め下方へ延ばしたダウンパイプ25と、このダウンパイプ25の下部から後方更に後方斜め上方へ延ばした左右一対のロアパイプ26,27(奥側のロアパイプ27は不図示)と、これらのロアパイプ26,27の後部に連結したセンタアッパフレーム28と、ダウンパイプ25から後方へ延ばすとともにセンタアッパフレーム28に連結したセンタパイプ31と、上記のロアパイプ26,27の後部及びセンタアッパフレーム28の後部側のそれぞれに連結した側面視J字状のJフレーム32とからなる。

[0011]

センタアッパフレーム28は、収納ボックス22を支持するとともにパワーユニット17を吊り下げる部材である。

Jフレーム32は、後輪18,21を懸架するリヤサスペンション及びこのリヤサスペンション側に対して車体フレーム16側の左右の揺動を許容する揺動機構とを取付ける部材である。これらのリヤサスペンション及び揺動機構については後に詳述する。

$[0\ 0\ 1\ 2]$

パワーユニット17は、車体前方側に配置したエンジン34と、このエンジン

34の動力を後輪18,21に伝達する動力伝達機構35とからなる。

ここで、41は前輪13の上方を覆うフロントフェンダ、42はバッテリ、43はウインカ、44はテールランプ、46はエアクリーナ、47はマフラである。

[0013]

図2は本発明に係る3輪車の要部側面図であり、Jフレーム32の上部とセンタアッパフレーム28の後端とを連結するためにJフレーム32及びセンタアッパフレーム28のそれぞれに連結パイプ52,52(奥側の連結パイプ52は不図示)を渡し、これらの連結パイプ52,52とセンタアッパフレーム28とに補強プレート53,53を取付け、Jフレーム32の後部の内側に側面視がほぼし字状のしパイプ54を取付け、センタアッパフレーム28にブラケット56,56(奥側のブラケット56は不図示)を取付け、これらのブラケット56,56に中継部材57を介してパワーユニット17の前部上部を取付け、補強プレート53,53から支持ロッド58を下方斜め後方へ延ばすことでパワーユニット17の後部を支持し、レパイプ54の前部から前方へ突出部61を延ばすことでパワーユニット17の後端部を取付けたことを示す。なお、32A,32B,32Cは、それぞれJフレーム32においてほぼ水平とした下部水平部、上端側を下端側よりも後方へ移動させた後端傾斜部、前端部を後端部よりも上方へ移動させた上部傾斜部である。

$[0\ 0\ 1\ 4\]$

図3は本発明に係る3輪車の平面図であり、Jフレーム32の後部を1本のパイプで構成し、このJフレーム32にリヤサスペンション63(詳細は後述する。)を取付けたことを示す。なお、65は後輪用のブレーキレバー、66は前輪用のブレーキレバーである。

[0015]

図4は本発明に係る3輪車の要部平面図であり、Jフレーム32の左右にサスペンションアーム71,72を取付け、これらのサスペンションアーム71,72の先端にそれぞれホルダー(不図示)を取付け、これらのホルダーに回転可能にそれぞれ後輪18,21を取付け、これらの後輪18,21をパワーユニット

17の動力伝達機構35を構成するドライブシャフト73,74で駆動する構造にしたことを示す。

[0016]

76はダンパ77と圧縮コイルばね(不図示)とからなる弾性手段としての緩 衝器であり、左右のサスペンションアーム71,72のそれぞれの側に連結した ものである。

[0017]

センタアッパフレーム 2 8 は、ほぼ長円形の部材であり、この上部にほぼ同形 の底を有する収納ボックス 2 2 (図 1 参照)を取付ける。

パワーユニット17の動力伝達機構35は、エンジン34の左部後部から後方へ延ばしたベルト式の無段変速機78と、この無段変速機78の後部に連結した減速装置としてのギヤボックス81と、このギヤボックス81の前側の出力軸に接続したドライブシャフト74及びギヤボックス81の後側の出力軸に接続したドライブシャフト73とからなる。

[0018]

図5は本発明に係る3輪車の第1斜視図であり、車体フレーム16のロアパイプ26,27の後部にJフレーム32の前部を取付けたことを示す。なお、83はホルダー(奥側のホルダー83は不図示)である。

[0019]

図6は本発明に係る3輪車の背面図であり、Jフレーム32の後端傾斜部32 Bは、3輪車10に乗車しない状態では、ほぼ鉛直となるようにした部分であり、この後端傾斜部32Bにサスペンションアーム71,72の後部を取付ける。なお、85は後端傾斜部32Bにサスペンションアーム71,72の後部をスイング可能に取付けるための後部スイング軸である。

[0020]

図7は本発明に係る3輪車の第2斜視図であり、Jフレーム32から左右にサスペンションアーム71,72を延ばし、これらのサスペンションアーム71,72の先端にそれぞれホルダー83を取付け、サスペンションアーム71,72のそれぞれの上部に取付ブラケット86,87を介して円弧状リンク88,89

をスイング可能に取付け、これらの円弧状リンク88,89の先端に側面視がほぼL字状のベルクランク90,91をスイング可能に取付け、これらのベルクランク90,91の上部端部間に緩衝器76を渡し、ベルクランク90,91の側部端部間にバー状の接続部材92を渡し、この接続部材92を揺動機構93を介してJフレーム32の後端傾斜部32Bに取付けたリヤサスペンション63を示す。

[0021]

円弧状リンク88,89はそれぞれ、中間部に側部突出部95を備え、これらの側部突出部95に、円弧状リンク88,89のスイングを制動するブレーキキャリパ96,96を取付けた部材である。なお、97,97はブレーキキャリパ96を備えたブレーキ装置であり、油圧によってブレーキキャリパ96,96でディスク98,98を挟み込む。ディスク98,98はそれぞれサスペンションアーム71,72に取付けた部材である。100は円弧状リンク88,89のスイング軸となるボルトである。

[0022]

ベルクランク90,91は、それぞれ2枚のクランクプレート102,102からなり、第1ボルト103と、第2ボルト104と、第3ボルト106とを備える。なお、107は緩衝器76の伸縮を規制するストッパピンとした第4ボルト、108…(…は複数個を示す。以下同じ。)は第1ボルト103~第4ボルト107にねじ込むナットである。

[0023]

揺動機構93は、コーナリング時等に、サスペンションアーム71,72に対して車体フレーム16の左右の揺動を許容するとともに、揺動の傾きが大きくなるにつれて、内蔵する弾性体で反力を大きくして元の位置に戻すようにしたものである。

[0024]

図8 (a) \sim (c) は本発明に係る揺動機構の説明図であり、(a) は側面図 (-部断面図)、(b) は(a) のb-b線断面図、(c) は(b) を元にした 作用図である。

(a)において、揺動機構93は、Jフレーム32の後端傾斜部32B及びLパイプ54の後部に取付けたケース111と、このケース111内に収納したダンパラバー112…と、これらのダンパラバー112…を押圧するとともに接続部材92に取付けた押圧部材113と、この押圧部材113及び接続部材92を貫通させるとともに両端部をLパイプ54に設けた先端支持部114及び後端傾斜部32Bで支持した貫通ピン116とからなる、いわゆる「ナイトハルトダンパ」である。なお、117は接続部材92に押圧部材113をボルトで取付けるために押圧部材113に設けた取付部、118は接続部材92のスイング量を規制するために先端支持部114に一体的に設けたスイング規制部である。

[0025]

(b) において、ケース111は、左ケース121及び右ケース122とを合わせた部材であり、内部にダンパ収納室123を設け、このダンパ収納室123の4隅にダンパラバー112…を配置し、これらのダンパラバー112…を押圧部材113の凸状の押圧部124…で押圧する。

[0026]

(c) において、サスペンションアーム側に連結した接続部材 92 に対して、車体フレーム 16 が車体左方(図中の矢印 1e f t は車体左方を表す。)へ揺動し、Lパイプ 54 が角度 θ だけ傾斜すると、揺動機構 93 のケース 111 は、押圧部材 113 に対して相対回転することになり、ケース 111 内に収納したダンパラバー 112 …はケース 111 と押圧部材 113 とに挟まれて圧縮され、ケース 111、ひいては車体フレーム 16 を元の位置((a)の位置)に戻そうとする反力が発生する。

[0027]

図9は本発明に係る3輪車の第3斜視図(車体フレームを斜め後方から見た図)であり、Jフレーム32に、サスペンションアーム71,72(図7参照)の後部をスイング可能に取付けるための後部取付部127と、サスペンションアーム71,72の前部をスイング可能に取付けるための前部取付部128とを設けたことを示す。

[0028]

後部取付部127は、後端傾斜部32Bと、Lパイプ54から下部水平部32E(後述する。)へ下ろした鉛直ブラケット131とからなり、これらの後部傾斜部32B及び鉛直ブラケット131のそれぞれにサスペンションアーム71,72の後部を支持する後部スイング軸(図6参照)を取付ける。

[0029]

前部取付部128は、下部水平部32Eに間隔を開けてそれぞれ立ち上げた前部立上げ部133及び後部立上げ部134からなり、これらの前部立上げ部13 3及び後部立上げ部134のそれぞれにサスペンションアーム71,72の前部を支持する前部スイング軸136を取付ける。

[0030]

ここで、138は燃料タンク、142,143は車体フレーム16にエンジン34を搭載するためのエンジンマウント防振リンク、144はJフレーム32の下部水平部32Eの先端を取付けるためにロアパイプ26,27の後部下部に取付けたU字状のUパイプである。

[0031]

図5では、Y字状に分岐させた下部水平部32Aの前端をロアパイプ26,27に直接取付けた実施の形態を示したが、この図9では、Jフレーム32を、Y字状に分岐させた下部水平部32Eと、後端傾斜部32Bと、上部傾斜部32Cとから構成し、下部水平部32Eの前端をロアパイプ26,27にUパイプ144を介して取付けた別の実施の形態を示す。

[0032]

図10は本発明に係る車体フレームの平面図であり、Jフレーム32の下部水平部32Eを途中でY字状に分岐させてUパイプ144の後部に連結し、また、連結パイプ52,52をJフレーム32の上部傾斜部32Cからセンタアッパフレーム28へY字状に延ばしたことを示す。

[0033]

下部水平部32E(及び下部水平部32A(図5参照))は、詳しくは、1本の長尺の第1パイプ151を途中で曲げ、この第1パイプ151の屈曲部152の近傍に第2パイプ153を接続することで形成した部分である。なお、154

は第1パイプ151に第2パイプ153を接続してY字状に分岐させたY字分岐部、155は上部傾斜部 32Cに連結パイプ52,52を接続してY字状に分岐させたY字分岐部である。

第1パイプ151は、後端傾斜部32B及び上部傾斜部32Cを含む部材であり、Jフレーム32から第2パイプ153を除いたものである。

[0034]

このように、下部水平部32EをY字状に形成することで、Jフレーム32の下部前部とUパイプ144との結合を強固にし、連結パイプ52,52をY字状に配置することで、Jフレーム32の後部上部とセンタアップフレーム28の後部との結合を強固にすることができる。また、図5において、下部水平部32AをY字状に形成することで、Jフレーム32の下部前部とロアパイプ26,27との結合を強固にすることができる。

[0035]

図11は本発明に係るリヤサスペンションの背面図であり、乗員(運転者)1名が乗車した状態(この状態を「1G状態」という。)のリヤサスペンション63を示す。なお、図9に示したJフレーム32の後端傾斜部32B及び上部傾斜部32Cは省略した。また、図8(b)に示した揺動機構93の右ケース122は想像線で示した。このとき、車体フレーム16のLパイプ54はほぼ鉛直の状態にあり、接続部材92はほぼ水平の状態にある。

[0036]

接続部材92は、両端に扇形の扇形状部156,157を備え、これらの扇形状部156,157にそれぞれ円弧状長穴158,159を設けた部材であり、これらの円弧状長穴158,159にストッパピンとした第4ボルト107,107を通すことで、接続部材92に対するベルクランク90,91の傾き角度を規制する。このベルクランク90,91の傾き角度は、サスペンションアーム71,72の傾斜角度即ち後輪18,21の上下移動量によって変化する。換言すれば、円弧状長穴158,159は後輪18,21の上下移動量を規制する部分である。

[0037]

図12は本発明に係る動力伝達機構を示す要部平面図であり、エンジン34の クランクケース34aの後部に無段変速機78を収納し、クランクケース34a の後部に、クランクケース34aとは別体としたギヤボックス81を取付けた動 力伝達機構35を示す。

[0038]

クランクケース34aは、ケース本体34bと、このケース本体34bの左側を覆う変速機カバー34cと、ケース本体34bの右側を覆う右カバー34dとからなる。

ギヤボックス81は、複数のギヤを収納するケースとしてのギヤケース165 を備え、ギヤケース165は第1ケース166~第4ケース169からなる。

[0039]

図13は本発明に係るギヤボックスを説明する断面図であり、ギヤボックス81は、前述のギヤケース165に、差動機構172と、この差動機構172の出力となる左差動軸173及び右差動軸174にそれぞれ一体成形した左第1ギヤ176及び右第1ギヤ177と、これらの左第1ギヤ176及び右第1ギヤ177にそれぞれ噛み合わせた左第2ギヤ178及び右第2ギヤ181と、複数の軸受とを収納したものであり、ギヤケース165の各ケース166~169をボルト182…,183…で結合する。なお、184,184は第1ケース166及び第4ケース169の開口を塞ぐキャップである。

[0040]

差動機構172は、ケース186と、このケース186に取付けたピン187と、このピン187に回転可能に取付けた一対の第1ベベルギヤ188,188と、これらの第1ベベルギヤ188,188に噛み合わせた一対の第2ベベルギヤ191,191と、これらの第2ベベルギヤ191,191にスプライン結合した前述の左差動軸173及び右差動軸174とからなる。

$[0\ 0\ 4\ 1]$

ケース186は、ケース本体部186aと、このケース本体部186aの開口を塞ぐケースカバー部186bとからなり、ケース本体部186aに、無段変速機78側からの動力を得る大径ギヤ186cを設けたものであって、上記の第1

ベベルギヤ188,188及び第2ベベルギヤ191,191を収納する。

[0042]

ドライブシャフト73は、右第2ギヤ181にスプライン結合した出力軸としての内側シャフト195と、この内側シャフト195に等速ジョイント196を介して連結したセンタシャフト197と、このセンタシャフト197の先端に等速ジョイント198を介して連結するとともに後輪18側のハブにスプライン結合した外側シャフト201とからなる。

[0043]

ドライブシャフト74は、左第2ギヤ178にスプライン結合した出力軸としての内側シャフト205と、この内側シャフト205に等速ジョイント206を介して連結したセンタシャフト207と、このセンタシャフト207の先端に等速ジョイント208を介して連結するとともに後輪21側のハブにスプライン結合した外側シャフト211とからなる。なお、212,212は内側シャフト195,205をそれぞれ左第2ギヤ178、右第2ギヤ181に固定するためのナット、213…は等速ジョイント196,198,206,208を覆うゴムブーツ、214,214はハブに外側シャフト201,211を固定するためのナットである。

[0044]

上記したドライブシャフト73の内側シャフト195は、ギヤボックス81の 左出力軸であり、ドライブシャフト74の内側シャフト205は、ギヤボックス 81の右出力軸である。

このように、本発明では、ギヤボックス81の左右出力軸としての内側シャフト195,205を、車体前後方向に離して設けた。

[0045]

図14は本発明に係るギヤボックスの歯車列を示す側面図であり、ベルト式無段変速機78の従動側プーリの軸(即ち、無段変速機78の出力軸である。)に駆動ギヤ221を取付け、この駆動ギヤ221に減速ギヤ222を構成する大ギヤ223を噛み合わせ、この大ギヤ223に一体成形した小ギヤ224を伝達ギヤ226に噛み合わせ、この伝達ギヤ226に差動機構172の大径ギヤ186

cを噛み合わせ、この大径ギヤ186cと軸心を重ねた左差動軸173 (図13 参照)の左第1ギヤ176を左第2ギヤ178に噛み合わせ、同じく大径ギヤ186cと軸心を重ねた右差動軸174 (図13参照)の右第1ギヤ177を右第2ギヤ181に噛み合わせ、差動機構172、詳しくは、左第1ギヤ176及び右第1ギヤ177を無段変速機78よりも下方に配置したことを示す。なお、231~236は各ギヤの回転中心である。

[0046]

上記の駆動ギヤ221、減速ギヤ222及び伝達ギヤ226は、減速機構23 8を構成する部品である。

即ち、ギヤボックス81は、差動機構172と減速機構238とを備える。

[0047]

また、図14は回転中心234,235,236を直線237上に配置し、この直線237上に前部スイング軸136及び後部スイング軸85を配置し、前部スイング軸136にサスペンションアーム71,72のそれぞれの前部取付部71a,72aを回転可能に取付け、後部スイング軸85にサスペンションアーム71,72のそれぞれの後部取付部71b,72bを回転可能に取付けたことを示す。

即ち、サスペンションアーム 7 1, 7 2 の前部取付部 7 1 a, 7 2 a 及び後部取付部 7 1 b, 7 2 b を差動機構 1 7 2 の前後に配置したことを示す。

[0048]

次に述べたリヤサスペンション63の作用を説明する。

図15は本発明に係るリヤサスペンションの作用を示す第1作用図である。

例えば、左側の後輪18が図11に示した状態から移動量M1だけ上方に移動すると、サスペンションアーム71は後部スイング軸85及び前部スイング軸136(図9参照)を中心にして矢印aのように上方へスイングし、これに伴って、円弧状リンク88が矢印bのように上昇してベルクランク90を第2ボルト104を支点にして矢印cの向きにスイングさせ、緩衝器76を矢印dのように押し縮める。このようにして、左側の後輪18の上昇に伴う車体フレーム16(図10参照)側への衝撃の伝達を和らげる。

このとき、他方のサスペンションアーム72は図11と同じ状態にあるため、接続部材92は図11と同様にほぼ水平な状態にある。

[0049]

図16は本発明に係るリヤサスペンションの作用を示す第2作用図である。

図11の状態から、後輪18,21が共に移動量M2だけ上昇する、又は車体フレーム16が後輪18,21に対して移動量M2だけ下降すると、サスペンションアーム71,72は、後部スイング軸85及び前部スイング軸136(図9参照)を中心にして矢印f,fのように上方へスイングし、これに伴って、円弧状リンク88,89が矢印g,gのように上昇してベルクランク90,91を第2ボルト104を支点にして矢印h,hの向きにスイングさせ、緩衝器76を矢印j,jのように押し縮める。この結果、緩衝器76による緩衝作用がなされる

[0050]

図17は本発明に係るリヤサスペンションの作用を示す第3作用図である。

図11の状態から、後輪18,21が共に移動量M3だけ下降する、又は車体フレーム16が後輪18,21に対して移動量M3だけ上昇すると、サスペンションアーム71,72は、後部スイング軸85及び前部スイング軸136(図9参照)を中心にして矢印m,mのように下方へスイングし、これに伴って、円弧状リンク88,89が矢印n,nのように下降してベルクランク90,91を第2ボルト104を支点にして矢印p,pの向きにスイングさせ、緩衝器76を矢印q,qのように引き伸す。この結果、緩衝器76による緩衝作用がなされる。

[0051]

図18は本発明に係るリヤサスペンションの作用を示す第4作用図である。

図11の状態から、車体フレーム16、ここではLパイプ54が車体左方に角度 ϕ 1だけ揺動すると、Lパイプ54に貫通ピン116で連結した接続部材92 は、矢印sのように左方へ平行移動する。これに伴い、円弧状リンク88,89 は矢印t,tのように傾き、ベルクランク90,91は矢印u,uのように平行移動する。ベルクランク90,91の第3ボルト106,106間の間隔は変化しないので、緩衝器76の伸縮はない。

[0052]

このとき、接続部材92に対して車体フレーム16が揺動するため、図8(c)で示したのと同様に、揺動機構によって車体フレーム16を元の位置(即ち、図11の位置である。)に戻そうとする反力が発生する。

[0053]

図19は本発明に係るリヤサスペンションの作用を示す第5作用図である。

図11の状態から、後輪18が移動量M4だけ上昇し、且つ、車体フレーム16、ここではLパイプ54が車体左方に角度 ϕ 2だけ揺動すると、サスペンションアーム71は後部スイング軸85及び前部スイング軸136(図9参照)を中心にして矢印 v のように上方へスイングするとともに、接続部材92は、矢印w のように左方へ移動する。これに伴って、円弧状リンク88は上昇するとともに左方へ傾斜し、円弧状リンク89は矢印x のように左方へ傾斜して、ベルクランク90は第2ボルト104を支点にして時計回りにスイングするとともに左方へ移動し、ベルクランク91は左方へ移動して、結果的に緩衝器76を押し縮め、緩衝作用をなす。

[0054]

図20(a), (b) はドライブシャフトの全長を比較する背面図であり、(a) は実施例(本実施の形態)、(b) は比較例を示す。

(a) の実施例では、ギヤボックス81の右側に設けた第3・第4ケース168, 169にドライブシャフト73の一端を取付け、ギヤボックス81の左側に設けた第1・第2ケース166, 167にドライブシャフト74の一端を取付ける。図中の〇印は等速ジョイント196, 198, 206, 208を示す。ここで、等速ジョイント196, 198間の距離LL1をドライブシャフト73の全長とする。

[0055]

(b) の比較例では、ギヤボックス351の左側に左ドライブシャフト352の一端を取付け、ギヤボックス351の右側に右ドライブシャフト353の一端を取付ける。図中の〇印は等速ジョイント355, 356, 357, 358を示す。ここで、等速ジョイント355, 356間の距離LL2を左ドライブシャフ

ト352の全長とする。なお、361,362は後輪、363,364はサスペンションアーム、365は車体フレームである。

上記(a), (b) において、LL1>LL2となる。

[0056]

以上に述べたドライブシャフト73,74及び左ドライブシャフト352及び 右ドライブシャフト353の作用を次に説明する。

図21 (a) \sim (c) は本発明に係るドライブシャフト (実施例) の作用を説明する作用図である。

- (a) において、左側の後輪18が移動量M1だけ上方に移動すると、ドライブシャフト73は等速ジョイント196で屈曲し、その屈曲角はα1となる。
- (b) において、車体フレーム 16 が車体左方に角度 ϕ 1 だけ揺動すると、ギヤボックス 8 1 も共に揺動し、ドライブシャフト 7 3 は等速ジョイント 1 9 6 で 屈曲し、その屈曲角は α 2 となる。

[0057]

[0058]

- (a) において、左側の後輪 3 6 1 が移動量M 1 だけ上方に移動すると、左ドライブシャフト 3 5 2 は等速ジョイント 3 5 6 で屈曲し、その屈曲角は β 1 となる。
- (b) において、車体フレーム365が車体左方に角度φ1だけ揺動すると、 ギヤボックス351も共に揺動し、ドライブシャフト352は等速ジョイント3 56で屈曲し、その屈曲角はβ2となる。

[0059]

(c) において、後輪361が移動量M4だけ上昇し、且つ、車体フレーム3

65が車体左方に角度 ϕ 2 だけ揺動すると、ギヤボックス 351 も揺動し、ドライブシャフト 352 は等速ジョイント 356 で屈曲し、その屈曲角は β 3 となる。

[0060]

この屈曲角 β 3 は図 2 1 (c) に示した屈曲角 α 3 と比較すると、 β 3 > α 3 となる。

ここで、屈曲角 β 3が屈曲角 α 3になるようにするためには、ドライブシャフト(符号を352aとする。)の全長をLL3まで大きくしなければならない。即ち、車幅が大きくなる。

[0061]

これに対して本発明では、図13で説明したように、ドライブシャフト73,74のギヤボックス81との連結位置を、後輪18と後輪21とのそれぞれの車軸(即ち、内側シャフト195,205である。)を結ぶ線に対して前後にオフセットさせたことで、ドライブシャフト73,74を車幅方向に対して斜めに配置することができ、ドライブシャフト73,74の全長を大きくしたにもかかわらず、後輪18,21のトレッドを小さくすることができる。

[0062]

以上の図12及び図14で説明したように、本発明は、エンジン34のクランクケース34aに無段変速機78を収納し、この無段変速機78の出力をギヤボックス81内の差動機構172を介して左右の後輪18,21に連結した揺動機構付き3輪車10(図3参照)において、クランクケース34aに、このクランクケース34aとは別体にしたギヤケース165を取付け、この別体のギヤケース165に差動機構172を収納したことを特徴とする。

[0063]

変速機78を収納するクランクケース34aに、このクランクケース34aとは別体にしたギヤケース165を取付け、この別体のギヤケース165に差動機構172を収納したことで、例えば、エンジン34及び無段変速機78を2輪車用に量産されるユニットとし、このユニットに3輪車用の差動機構172を連結することができ、動力伝達機構35のエンジン34と無段変速機78とのユニッ

トを流用しやすくすることができる。従って、揺動機構付き3輪車10に量産の ユニットを搭載することで、大幅なコストダウンを図ることができる。

[0064]

また、ギヤケース165内に差動機構78と共に減速機構238を収納することから、2輪車用のエンジン34及び無段変速機78を流用しつつ3輪車用のギヤボックス81を種々交換することができ、ギヤボックス81の減速機構238の減速比を各機種に応じて自由に設定することができる。上記の2輪車用のエンジン34及び無段変速機78のユニットは、4輪車用のギヤボックスに連結してもよい。

[0065]

【発明の効果】

本発明は上記構成により次の効果を発揮する。

請求項1の車両の動力伝達機構は、クランクケースに、このクランクケースとは別体にしたケースを取付け、この別体のケースに差動機構を収納したので、例えば、2輪車用のエンジン及び変速機のユニットに3輪車用又は4輪車用の差動機構を連結することができ、動力伝達機構を流用しやすくすることができる。従って、大幅なコストダウンを図ることができる。

[0066]

また、ケース内に差動機構と共に、例えば減速機構を収納すれば、2輪車のエンジン及び変速機を流用しつつ3輪車用又は4輪車用の減速機構の減速比を各機種に応じて自由に設定することができる。

【図面の簡単な説明】

【図1】

本発明に係る動力伝達機構を備えた車両の側面図

【図2】

本発明に係る3輪車の要部側面図

【図3】

本発明に係る3輪車の平面図

【図4】

本発明に係る3輪車の要部平面図

【図5】

本発明に係る3輪車の第1斜視図

図6】

本発明に係る3輪車の背面図

【図7】

本発明に係る3輪車の第2斜視図

【図8】

本発明に係る揺動機構の説明図

【図9】

本発明に係る3輪車の第3斜視図

【図10】

本発明に係る車体フレームの平面図

【図11】

本発明に係るリヤサスペンションの背面図

【図12】

本発明に係る動力伝達機構を示す要部平面図

【図13】

本発明に係るギヤボックスを説明する断面図

【図14】

本発明に係るギヤボックスの歯車列を示す側面図

【図15】

本発明に係るリヤサスペンションの作用を示す第1作用図

【図16】

本発明に係るリヤサスペンションの作用を示す第2作用図

【図17】

本発明に係るリヤサスペンションの作用を示す第3作用図

【図18】

本発明に係るリヤサスペンションの作用を示す第4作用図

ページ: 19/E

【図19】

本発明に係るリヤサスペンションの作用を示す第5作用図

【図20】

ドライブシャフトの全長を比較する背面図

【図21】

本発明に係るドライブシャフト(実施例)の作用を説明する作用図

【図22】

比較例のドライブシャフトの作用を説明する作用図

【図23】

従来の車両の動力伝達機構を示す断面図

【符号の説明】

10…車両(揺動機構付き3輪車)、18,21…後輪、34…エンジン、3 4 a…クランクケース、35…動力伝達機構、78…変速機(無段変速機)、1 65…ケース(ギヤケース)、172…差動機構。

【書類名】 図面

図1]

【図2】

【図3】

[図4]

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

(a)実施例

(b) 比較例

【図21】

【図22】

【図23】

ページ: 1/E

【書類名】

要約書

【要約】

【解決手段】 エンジン34のクランクケース34aに無段変速機78を収納し、この無段変速機78の出力を差動機構を介して左右の後輪18,21に連結した揺動機構付き3輪車において、クランクケース34aに、このクランクケース34aとは別体にしたギヤケース165を取付け、この別体のギヤケース165に差動機構172を収納した。

【効果】 例えば、量産の2輪車用のエンジン及び変速機のユニットに3輪車用 又は4輪車用の差動機構を連結することができ、動力伝達機構を流用し易くする ことができる。従って、大幅なコストダウンを図ることができる。また、ケース 内に差動機構と共に、例えば減速機構を収納すれば、2輪車のエンジン及び変速 機を流用しつつ3輪車用又は4輪車用の減速機構の減速比を各機種に応じて自由 に設定することができる。

【選択図】 図12

特願2002-373676

出 願 人 履 歴 情 報

識別番号

[000005326]

 変更年月日 [変更理由]

住所氏名

1990年 9月 6日

新規登録

東京都港区南青山二丁目1番1号

本田技研工業株式会社