TD3 Notions de Référentiel et Cinématique en une dimension

Objectif: S'entraîner sur les études cinématiques en 1D.

Exercice 1: Rappel de cours

- 1. De quoi se compose un référentiel?
- 2. Pourquoi la notion de référentiel est-elle importante pour l'étude des mouvements?
- 3. Qu'appelle-t-on « référentiel galiléen »?
- 4. Quels sont les référentiels usuels et leurs caractéristiques? Complétez le tableau suivant :

Nom du repère		
Origine		
Axes		
Utilisation courante		

Exercice 2 : Mobile en mouvement rectiligne

Un mobile se déplace en trajectoire rectiligne sur une paillasse de laboratoire. Son mouvement est uniformément accéléré à partir d'une vitesse initiale v_0 = 8 m.s⁻¹. Son accélération est notée a_0 . Il parcourt une distance de $d_{parcourue}$ = 640 m sur un intervalle de temps de Δt = 40 s.

- 1. Dans quel référentiel étudie-t-on ce problème? Faites un schéma de la situation.
- 2. Calculez son accélération, sa vitesse finale et sa vitesse moyenne.

Exercice 3 : Course contre la montre

De bon matin, un étudiant part de chez lui pour prendre le bus. En arrivant au coin de la rue (à 20 m de l'arrêt du bus), il voit ce dernier qui démarre et accélère ($a_{bus} = 2 \text{ m.s}^{-2}$). Dans un esprit de bonne volonté d'être à l'heure, l'étudiant se met à courir à une vitesse constante v_{etu} .

- 1. Dans quel référentiel faut-il étudier ce problème? Faites un schéma de la situation.
- 2. À quelle vitesse l'étudiant doit il courir pour rattraper le bus?
- 3. Au bout de combien de temps rattrape-t-il le bus s'il court à une vitesse v_{etu} = 10 m.s⁻¹.

Exercice 4 : La chute de objets

Galilée se retrouve au sommet de la Tour de Pise (h = 58 m). Il se dispose à laisser tomber une balle afin d'effectuer des observations.

- 1. Établir un tableau qui montre les variables connues pour ce problème.
- 2. Faites un schéma de la situation en s'appuyant des variables précédentes.
- 3. Au bout de combien de temps Galilée observerait l'arrivée de la balle au sol? Écrire l'équation que permettrait de calculer le temps de chute et la résoudre.