Lecture 7: Linear Regression (continued)

Reading: Chapter 3

STATS 202: Data mining and analysis

Jonathan Taylor, 10/8 Slide credits: Sergio Bacallado

Potential issues in linear regression

- 1. Interactions between predictors
- 2. Non-linear relationships
- 3. Correlation of error terms
- 4. Non-constant variance of error (heteroskedasticity).
- Outliers
- 6. High leverage points
- 7. Collinearity

Correlation of error terms

We assumed that the errors for each sample are independent:

$$y_i = f(x_i) + \varepsilon_i$$
 ; $\varepsilon_i \sim \mathcal{N}(0, \sigma)$ i.i.d.

What if this breaks down?

The main effect is that this invalidates any assertions about Standard Errors, confidence intervals, and hypothesis tests:

Example: Suppose that by accident, we double the data (we use each sample twice). Then, the standard errors would be artificially smaller by a factor of $\sqrt{2}$.

Correlation of error terms

When could this happen in real life:

- ➤ Time series: Each sample corresponds to a different point in time. The errors for samples that are close in time are correlated.
- ► **Spatial data**: Each sample corresponds to a different location in space.
- ▶ Predicting height from weight at birth: Suppose some of the subjects in the study are in the same family, their shared environment could make them deviate from f(x) in similar ways.

Correlation of error terms

Simulations of time series with increasing correlations between ε_i .

Non-constant variance of error (heteroskedasticity)

The variance of the error depends on the input.

To diagnose this, we can plot residuals vs. fitted values:

Solution: If the trend in variance is relatively simple, we can transform the response using a logarithm, for example.

Outliers

Outliers are points with very high errors.

While they may not affect the fit, they might affect our assessment of model quality.

Possible solutions:

- ▶ If we believe an outlier is due to an error in data collection, we can remove it.
- ► An outlier might be evidence of a missing predictor, or the need to specify a more complex model.

High leverage points

Some samples with extreme inputs have an outsized effect on $\hat{\beta}$.

High leverage points

Some samples with extreme inputs have an outsized effect on $\hat{\beta}$.

This can be measured with the **leverage statistic** or **self influence**:

$$h_{ii} = \frac{\partial \hat{y}_i}{\partial u_i} = (\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)_{i,i} \in [1/n, 1].$$

High leverage points

Some samples with extreme inputs have an outsized effect on $\hat{\beta}$.

This can be measured with the **leverage statistic** or **self influence**:

$$h_{ii} = \frac{\partial \hat{y}_i}{\partial y_i} = (\underbrace{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T}_{\text{Hat matrix}})_{i,i} \in [1/n, 1]$$

Studentized residuals

- ▶ The residual $\hat{\epsilon}_i = y_i \hat{y}_i$ is an estimate for the noise ϵ_i .
- ▶ The standard error of $\hat{\epsilon}_i$ is $\sigma \sqrt{1 h_{ii}}$.
- ▶ A **studentized residual** is $\hat{\epsilon}_i$ divided by its standard error.
- ▶ It follows a Student-t distribution with n p 2 degrees of freedom.

Collinearity

Two predictors are collinear if one explains the other well:

$$limit = a \times rating + b$$

i.e. they contain the same information

Collinearity

Problem: The coefficients become *unidentifiable*. Consider the extreme case of using two identical predictors limit:

$$\begin{split} \text{balance} &= \beta_0 + \beta_1 \times \text{limit} + \beta_2 \times \text{limit} \\ &= \beta_0 + (\beta_1 + 100) \times \text{limit} + (\beta_2 - 100) \times \text{limit} \end{split}$$

The fit $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ is just as good as $(\hat{\beta}_0, \hat{\beta}_1 + 100, \hat{\beta}_2 - 100)$.

Collinearity

If 2 variables are collinear, we can easily diagnose this using their correlation.

A group of q variables is **multilinear** if these variables "contain less information" than q independent variables. Pairwise correlations may not reveal multilinear variables.

The Variance Inflation Factor (VIF) measures how *necessary* a variable is, or how predictable it is given the other variables:

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

where $R^2_{X_j|X_{-j}}$ is the R^2 statistic for Multiple Linear regression of the predictor X_j onto the remaining predictors.

Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method. **KNN regression:** prototypical nonparametric method.

$$\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$$

$$K = 1 \qquad K = 9$$

Comparing Linear Regression to K-nearest neighbors

Linear regression: prototypical parametric method.

KNN regression: prototypical nonparametric method.

Long story short:

- ▶ KNN is only better when the function *f* is not linear.
- ▶ When *n* is not much larger than *p*, even if *f* is nonlinear, Linear Regression can outperform KNN. KNN has smaller bias, but this comes at a price of higher variance.

KNN estimates for a simulation from a linear model

Linear models dominate KNN

Increasing deviations from linearity

When there are more predictors than observations, Linear Regression dominates

When $p\gg n$, each sample has no nearest neighbors, this is known as the *curse of dimensionality*. The variance of KNN regression is very large.

Next time: Classification

Supervised learning with a qualitative or categorical response.

Just as common, if not more common than regression:

- ► Medical diagnosis: Given the symptoms a patient shows, predict which of 3 conditions they are attributed to.
- ▶ Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address, client's history, etc.
- Web searching: Based on a user's history, location, and the string of a web search, predict which link a person is likely to click.
- Online advertising: Predict whether a user will click on an ad or not.