Beliefs and the Net Worth Trap

Goutham Gopalakrishna Toronto - Rotman Seung Joo Lee Oxford - Saïd Theofanis Papamichalis Cambridge

Econometric Society World Congress

June 15, 2024

Resilience and the net worth trap: Brunnermeier (2024)

Figure 1. Panel A depicts the log level of U.S. GDP from 1900 to 2023, while Panel B zooms in level from 1996 onwards. Shaded areas show recession periods. (Color figure can be viewed at wileyonlinelibrary.com)

Motivation

- Budding literature on the interactions between financial frictions and investors' beliefs (Krishnamurthy and Li, 2020; Maxted, 2023; Camous and Van der Ghote, 2023)
- Mostly the focus has been on diagnostic expectations or incomplete information on tail risk to explain pre-crisis frothy periods

What do we do?

- Analyze the role of intermediary's (or expert's) distorted beliefs about the long-term growth prospects on the creation of net worth trap, i.e., perennial crisis
- Build a tractable heterogeneous agent general equilibrium model with financial frictions in which experts hold dogmatic distorted beliefs over long-run output growth
- Net worth trap: optimists never recapitalize due to their expectation error, generating extremely slow-moving capital crisis

Usually, fast recapitalization in the model due to high risk premium during crises:

- hard to generate slow-moving capital

The Model

Setting: experts

Single capital: owned by experts and (rational) households

Experts: produces
$$y_t^O = \gamma_t^O k_t^O$$
, $\forall t \in [0, \infty)$ where
$$\frac{dk_t^O}{k_t^O} = \left(\Lambda^O(\ \iota_t^O\) - \delta^O\right) dt, \ \ \forall t \in [0, \infty)$$
 Investment ratio
$$\text{Their investment} = \iota_t^O y_t^O$$

with technological growth:

$$\frac{d\gamma_t^O}{\gamma_t^O} = \underbrace{\alpha}_{\text{Brownian motion}} dt + \sigma \underbrace{dZ_t}_{\text{Brownian motion}}, \quad \forall t \in [0, \infty)$$
True (expected) growth

Setting: rational households

Households: produces $y_t^H = \gamma_t^H k_t^H$, $\forall t \in [0, \infty)$ where

$$\frac{dk_t^H}{k_t^H} = \left(\Lambda^H \left(\begin{array}{c} \iota_t^H \end{array} \right) - \delta^H \right) dt, \quad \forall t \in [0, \infty)$$
Investment ratio
Their investment = $\iota_t^H \gamma_t^H$

with the same technological growth:

$$\frac{d\gamma_t^H}{\gamma_t^H} = \underset{\text{Brownian motion}}{\alpha} dt + \sigma \underbrace{dZ_t}_{\text{Brownian motion}}, \quad \forall t \in [0, \infty)$$

$$\longrightarrow$$
 Level difference: $\gamma_t^H = I \cdot \gamma_t^O$, $\Lambda^H(\cdot) = I \cdot \Lambda^O(\cdot)$, with $I \leq 1$

• Efficiency in both production and capital formation

Capital price process: (endogenous) p_t follows

$$\frac{dp_t}{p_t} = \mu_t^p dt + \sigma_t^p dZ_t$$

Capital return process:

• Experts' total return on capital:

$$\begin{aligned} dr_t^{Ok} &= \underbrace{\frac{\gamma_t^O \, k_t^O - \iota_t^O \gamma_t^O \, k_t^O}{p_t \, k_t^O}}_{\text{Dividend yield}} dt + \underbrace{\left(\Lambda^O(\iota_t^O) - \delta^O + \mu_t^P\right) dt + \sigma_t^P dZ_t}_{\text{Capital gain}} \\ &= \underbrace{\frac{1 - \iota_t^O}{q_t} dt + \left(\Lambda^O(\iota_t^O) - \delta^O + \mu_t^P\right) dt + \sigma_t^P dZ_t}_{\text{Price-earnings ratio}} \end{aligned}$$

Beliefs of experts

Experts dogmatically believe γ_t^O follows

$$\frac{d\gamma_t^O}{\gamma_t^O} = \alpha^O dt + \sigma \qquad \underbrace{dZ_t^O}_{\text{Experts'}} \quad , \quad \forall t \in [0, \infty)$$

where $\alpha^O > \alpha$ corresponds to optimism and $\alpha^O < \alpha$ corresponds to pessimism

while the true process is given as

$$\frac{d\gamma_t^O}{\gamma_t^O} = \alpha dt + \sigma \underbrace{\frac{dZ_t}{True}}_{\text{Brownian Mot}}$$

With the following consistency in equilibrium:

$$Z_t^O = Z_t - \frac{\alpha^O - \alpha}{\sigma} t$$

Optimization

Financial market: capital and risk-free (zero net-supplied)

Experts: consumption-portfolio problem (price-taker)

$$\max_{l_t^O, x_t^O \ge 0, c_t^O \ge 0} \; \mathbb{E}_0^O \left[\int_0^\infty \mathrm{e}^{-\rho t} \log \left(c_t^O \right) dt \right]$$

Believes dZ_t^O is

subject to

the true Brownian motion

$$dw_t^O = x_t^O w_t^O dr_t^{Ok} + (1 - x_t^O) r_t w_t^O dt - c_t^O dt$$
, and $\underbrace{w_t^O \geq 0}_{\substack{\text{Solvency constraint}}}$

→ Solution

Rational households: solve the similar problem with \mathbb{E}_0 ($\neq \mathbb{E}_0^O$)

• Correctly understanding that dZ_t is the Brownian motion

Market clearing

Total capital $K_t = k_t^O + k_t^H$ evolves with

$$\frac{dK_{t}}{dt} = \underbrace{\left(\Lambda^{O}\left(\iota_{t}^{O}\right) - \delta^{O}\right)k_{t}^{O}}_{\text{From experts}} + \underbrace{\left(\Lambda^{H}\left(\iota_{t}^{H}\right) - \delta^{H}\right)k_{t}^{H}}_{\text{From households}}, \quad \forall t \in [0, \infty)$$

Debt: zero net-supplied

$$\underbrace{\left(w_t^O - p_t k_t^O \right)}_{\begin{array}{c} \text{Experts'} \\ \text{lending} \end{array}} + \underbrace{\left(w_t^H - p_t k_t^H \right)}_{\begin{array}{c} \text{Households'} \\ \text{lending} \end{array}} = 0$$

Good market equilibrium:

$$\underbrace{\frac{x_t^O w_t^O}{p_t} \left(\gamma_t^O - \iota_t^O \gamma_t^O \right)}_{\substack{\text{Experts'} \\ \text{production} \\ \text{net of investment}}} + \underbrace{\frac{x_t^H w_t^H}{p_t} \left(\gamma_t^H - \iota_t^H \gamma_t^H \right)}_{\substack{\text{Households'} \\ \text{production} \\ \text{net of investment}}} = c_t^O + c_t^H$$

Markov equilibrium: experts' wealth share η_t as state variable

(c) Endogenous volatility σ_t^p

(b) Leverage multiple x_t

(d) Perceived-true risk-premium

Ergodic distribution of the state variable η_t (optimism)

Figure: Stationary distribution of η_t and the net worth trap

Net worth trap: perennial crisis

Two countervailing forces

- Once crisis hits, higher optimism of experts higher risk premium helping them to recapitalize faster
- Expectation error of experts preventing them from recapitalizing (stronger)

Proposition (Net Worth Trap)

There exists a threshold level of belief beyond which the economy is trapped at $\eta=0$, and the probability of recapitalization for experts converges to zero. For the **optimistic** case, i.e., $\alpha^O>\alpha$, the threshold is determined by

$$\alpha^{O} - \alpha > \sigma \sqrt{\Gamma_0^2 \sigma^2 + 2\Delta_0},\tag{1}$$

and for the **pessimistic** case, i.e., $\alpha^{O} < \alpha$, the threshold is given by

$$\alpha^{O} - \alpha < -\min\left\{\sigma\sqrt{\Gamma_{0}^{2}\sigma^{2} + 2\Delta_{0}}, \max\left\{\sigma^{2}\left(1 + \Gamma_{0}\right), \Delta_{0} + \frac{1}{2}\sigma^{2}\right\}\right\}. \tag{2}$$

Net worth trap: perennial crisis

Around $\eta \sim 0$:

$$d(\eta) \sim \left(\underbrace{\frac{2\mu^{\eta}(0)}{(\sigma^{\eta})^{2}(0)}}_{\equiv \tilde{D}_{0}} - 1\right) \eta^{\frac{2\mu^{\eta}(0)}{(\sigma^{\eta})^{2}(0)} - 2} \tag{3}$$

(b) Skewness of the distribution around $\eta \sim 0$

From dogmatic to swinging beliefs

Now, the log-run growth rate perceived by experts

$$O_t = 1_{\psi_t < 1} \cdot \alpha^P + 1_{\psi_t = 1} \cdot \alpha^O$$

 Experts are optimistic at the stochastic steady state, but become pessimistic in crisis (similar to diagnostic expectations)

Initially stabilizing (e.g., Maxted (2023)), but stronger pessimism in a crisis becomes destabilizing (e.g., Camous and Van der Ghote (2023))

Thank you very much! (Appendix)

Capital return

Capital return process:

• Households' total return on capital:

$$dr_t^{Hk} = \underbrace{\frac{\gamma_t^H k_t^H - \iota_t^H \gamma_t^H k_t^H}{p_t k_t^H} dt}_{\text{Dividend yield}} + \underbrace{\left(\Lambda^H (\iota_t^H) - \delta^H + \mu_t^p\right) dt + \sigma_t^p dZ_t}_{\text{Capital gain}}$$

$$= \underbrace{I \times \frac{1 - \iota_t^H}{q_t} dt + \left(\Lambda^H (\iota_t^H) - \delta^H + \mu_t^p\right) dt + \sigma_t^p dZ_t}_{\text{Price-earnings ratio}}$$

$$\text{Price-earnings ratio}$$

$$\text{(experts)}$$

₩ Go back

Perceived capital return

Experts' total return on capital:

$$\begin{aligned} dr_t^{Ok} &= \underbrace{\frac{\gamma_t^O \, k_t^O - \, \iota_t^O \, \gamma_t^O \, k_t^O}{p_t \, k_t^O}}_{\text{Dividend yield}} dt + \underbrace{\left(\Lambda^O(\iota_t^O) - \delta^O + \mu_t^P\right) dt + \sigma_t^P dZ_t}_{\text{Capital gain}} & \text{Perceived} \\ &= \underbrace{\frac{\gamma_t^O - \, \iota_t^O \, \gamma_t^O}{p_t} dt + \left(\Lambda^O(\iota_t^O) - \delta^O + \mu_t^P + \frac{\alpha^O - \alpha}{\sigma} \sigma_t^P\right) dt + \sigma_t^P \, dZ_t^O}_{\text{P}} \end{aligned}$$

₩ Go back

Belief premium

Portfolio decisions under belief distortions

Experts' optimal portfolio decision (e.g., Merton (1971))

$$\mathbf{x}_{t}^{O} = \frac{\left(\frac{\gamma_{t}^{O} - \iota_{t}^{O} \gamma_{t}^{O}}{p_{t}} + \Lambda^{O}(\iota_{t}^{O}) - \delta^{O} + \mu_{t}^{p} + \frac{\alpha^{0} - \alpha}{\sigma} \sigma_{t}^{p}\right) - r_{t}^{*}}{\left(\sigma_{t}^{p}\right)^{2}}$$
Additional term

If $\alpha^O > \alpha$ (optimism)

• Given the risk-free r_t^* and the endogenous volatility σ_t^p , optimism raises the leverage and capital demand

 σ_t^p affects leverage x_t^O in two different ways:

- $\sigma_t^p \uparrow$ lowers x_t^O as the required risk-premium level \uparrow
- $\sigma_t^p \uparrow$ raises x_t^O as it raises the degree of belief premium on capital returns

→ Go back

Markov equilibrium

Wealth share of experts as state variable, as in Brunnermeier and Sannikov (2014):

$$\eta_t \equiv \frac{W_t^O}{W_t^O + W_t^H} = \frac{W_t^O}{p_t K_t}$$

which leads to:

$$x_t^O \leq \frac{1}{\eta_t}$$

- When it binds: "normal" (i.e., all capital is owned by experts)
- When it does not bind: "crisis" (i.e., less productive households hold some capital)

Under Markov equilibrium: normalized variables depend only on η_t

$$q_t = q(\eta_t), \ x_t^O = x(\eta_t), \quad \underbrace{\psi_t}_{\ \ \text{Capital share}} = \psi(\eta_t)$$

Specification and calibration

Investment function

$$\Lambda^O(\iota_t^O) = \frac{1}{k} \left(\sqrt{1 + 2k\iota_t^O} - 1 \right), \ \forall t \in [0, \infty)$$

with

$$\Lambda^{P}(\iota_{t}) = I \cdot \Lambda^{O}(\iota_{t}), \quad \forall \iota_{t}$$
 (4)

	Parameter Description	Value	Source (target)
ρ	Discount rate	0.03	Standard: e.g., Brunnermeier and Sannikov (2014).
α	Productivity growth	0.02	2% growth in the long run.
σ	Exogenous TFP volatility	0.0256	Schimitt-Grohé and Uribe (2007)
δ	Depreciation rate (δ^H, δ^O)	0	2% capital growth in the long run (2.5% in the stochastic steady state)
k	Investment function	851.6	Consumption-to-output ratio at 69%
1	Productivity gap	0.7	Most severe recessions: the average output drop from the trend in the Great Depression was $\sim 30\%$ according to Romer (1993)

Endogenous volatility: two channels

Capital price volatility σ_t^p is given by

$$\sigma_{t}^{p}\left(1-\left(\mathbf{x}_{t}^{O}-1\right)\frac{\frac{dq(\eta_{t})}{q(\eta_{t})}}{\frac{d\eta_{t}}{\eta_{t}}}\right) \equiv \sigma_{t}^{p}\left(1-\left(\mathbf{x}_{t}^{O}-1\right)\varepsilon_{q,\eta}\right) = \underbrace{\sigma}_{\text{Exogenous volatility}}$$

• $\varepsilon_{q,\eta}$ is the elasticity of the price-earnings ratio (i.e., normalized capital price) with respect to the experts' wealth share η_t

With optimism, volatility σ_t^p is amplified in a crisis through:

- "Elasticity" effect: optimism $\alpha^O \uparrow \longrightarrow \varepsilon_{q,\eta} \uparrow \longrightarrow \sigma_t^p \uparrow$
- "Leverage" effect: $\alpha^{O} \uparrow \longrightarrow x_t^{O} \uparrow \longrightarrow \sigma_t^{p} \uparrow$

(c) Equilibrium interest rate r_t^*

Behavior of wealth share $\eta_t \sim 0$

Lemma

In the limit $\eta \to 0^+$, the drift $\mu^{\eta}(0^+)$ and diffusion $\sigma^{\eta}(0^+)$ of the wealth share of experts is given by

$$\mu^{\eta}(0^+) \equiv \lim_{\eta \to 0} \mu^{\eta}(\eta) = \Gamma_0(\alpha^O - \alpha) + \Gamma_0^2 \sigma^2 + \Delta_0$$

$$\sigma^{\eta}(0^{+}) \equiv \lim_{\eta \to 0} \sigma^{\eta}(\eta) = \frac{\alpha^{O} - \alpha}{\sigma} + \Gamma_{0}\sigma.$$

where

$$\Gamma_0 = \frac{1}{\sigma^2} \left[(1 - I) \frac{1 - \iota_0}{q_0} + (\delta^H - \delta^O) + (1 - I) \Lambda^O(\iota_0) \right]$$

$$\Lambda_1 = \frac{1 - \iota_0}{r_0} + (\delta^H - \delta^O) + (1 - I) \Lambda^O(\iota_0) = 0$$

$$\Delta_0 = \frac{1 - \iota_0}{q_0} + (\delta^H - \delta^O) + (1 - I)\Lambda^O(\iota_0) - \rho$$

and the quantities $\iota_0 = \lim_{\eta \to 0} \iota(\eta)$ and $q_0 = \lim_{\eta \to 0} q(\eta)$ are given in Appendix B.2.

→ Go back

Drift and volatility of the wealth share

Figure: Wealth share dynamics: drift and volatility

• With higher $\alpha^O \uparrow$, the wealth share drift $\mu_{\eta}(\eta_t) \eta_t \downarrow$ in stochastic steady states: more likely to enter crises

Other cases

Corollary (Without short-sale constraint)

The threshold level of belief that determines the net worth trap in an economy without a short-selling constraint is given by

$$\left|\alpha^{O} - \alpha\right| > \sigma\sqrt{\Gamma_{0}^{2}\sigma^{2} + 2\Delta_{0}},$$
 (5)

Proposition (Complete markets)

Under complete markets with l=1 and $\delta^H=\delta^O$, if $\alpha^O\neq\alpha$, experts lose the entire wealth in the long run and the economy features a net worth trap.

• Similar to "market selection hypothesis" à la Blume and Easley (2006) and Borovička (2020)

N. Ca bask

Does optimism hurt the household's welfare?

$$\text{Welfare Loss} = \mathbb{E}_0 \left[\int_0^\infty \mathrm{e}^{-\rho t} \log c_t^H dt \right] - \mathbb{E}_0 \left[\int_0^\infty \mathrm{e}^{-\rho t} \log c_t^{H,REE} dt \right]$$

ullet $c_t^{H,REE}$: household's consumption in the rational expectations benchmark

Decomposition:

$$\begin{split} \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log c_t^H dt \right] &= \underbrace{\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log (1 - \eta_t) dt \right]}_{\text{Wealth effect}_+} + \underbrace{\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log (1 - \iota_t) dt \right]}_{\text{Investment effect}_+} \\ &+ \underbrace{\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log K_t dt \right]}_{\text{Capital effect}_-} + \underbrace{\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log A(\psi) dt \right]}_{\text{Misallocation effect}_-} \\ &+ \underbrace{\text{t.i.e.}}_{\text{Terms independent of equilibria}} \end{split}$$

• $A(\psi) = \psi_t + I(1 - \psi_t)$: productivity-adjusted aggregate capital share

Figure: Decomposition of the rational household's welfare loss

• Overall, optimism reduces welfare of households