# SunnyMinutes – by Peter Komar

#### Problem:

There's no easy way to know how much sunlight an office or apartment in downtown Manhattan will get during the year before renting



# Format: Web application



# SunnyMinutes – by Peter Komar

#### Data:

- OpenStreetMap data of heights of buildings in Manhattan [http://osmbuildings.org/?lat=40.78251&lon=-73.96590&zoom=15]
- native format: OSM, exported into XML with Overpass API
- filtered with ["building"] and '["building:part"] tags

## Simple plot:

- Histogram of building heights



One World Trade Center



## SunnyMinutes – by Peter Komar

### Algorithm to draw the silhouette:

- 1. Group the buildings into larger rectangular blocks
- 2. For each block calculate and store:
  - i. max height
  - ii. 2D coordinates of the 4 vertices of the block
- 3. When rendering the silhouette:
  - o. Exclude all blocks with max height smaller than observer's altitude
  - i. Start with self
  - ii. Continue with the buildings in the same block
  - iii. Continue with the buildings in the neighboring blocks
  - iv. Continue with all remaining buildings
  - v. Exclude blocks that are completely shadowed by the new silhouette





## Algorithm to calculate Sun's path and light curve:

- 1. Minute by minute, calculate the Sun's (phi, theta) as seen by the observer
- 2. For each minute, determine whether the Sun is blocked