TANUJ GUPTA

+1 (704) 494-1948 | tgupta@clemson.edu

EDUCATION

Ph.D. in Mechanical Engineering, Clemson University, Clemson, SC, USA

Dec 2024

Dissertation title: Deformation mechanism in gold nanoparticles under compressive loading: Insights from atomistic modelling and unsupervised machine learning

atomistic moderling and unsupervised machine tearning

Advisor: Dr. Huijuan Zhao

M.S. in Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA

May 2019

Thesis title: Stress analysis of a point absorber wave energy converter

Advisor: Dr. Alireza Tabarraei

RESEARCH EXPERIENCE

Postdoctoral Research Associate, Clemson University

Jan 2025-Present

Multi-physics modelling of photo-acoustic non-destructive imaging:

- Developing multi-physics simulation of pulsed laser light absorption, leading to ultrasonic waves due to localized thermal expansion.
- Planning to implement a machine learning model to evaluate defects in materials.

Graduate Research Assistant, Clemson University

Aug 2019-Dec 2024

Deformation mechanisms in gold nanoparticles using molecular dynamics:

- Developed atomistic simulation to understand the deformation mechanism of gold nanoparticles using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).
- Leveraged machine learning techniques to identify and classify deformation mechanisms in gold nanoparticles.
- Collaborated with the experimental team at the University of South Florida and the material development team at the University of Urbana-Champaign to validate experimental work

Multi-physics simulation of a coal-fired boiler for temperature sensor installation:

- Developed a four-stage multi-physics simulation framework using ANSYS to study flue gas temperature, steam panel heat transfer, and stress distribution and support sensor design in industrial-scale boilers.
- Worked closely with interdisciplinary teams, including Advanced Material Research Lab (AMRL) and the Electric Power Research Institute (EPRI), to validate the feasibility of stainless-steel and quartz coaxial cable sensors through computational and experimental field testing, achieving 430 days of accurate temperature monitoring under extreme conditions.

Shock-induced phase transitions in fused silica using molecular dynamics:

- Applied multi-scale shock technique in LAMMPS to analyze structural changes in nano-scale fused silica under extreme strain rate.
- Investigated the influence of shock velocity to analyze the phase transition process, focusing on the nucleation, growth, and crystallinity of stishovite.

Graduate Intern, Idaho National Lab, Idaho Falls, ID, USA

May 2024-Aug 2024

- Created finite element microstructures from experimental EBSD data of 20 tensile specimens to analyze irradiated material behavior, aiding in mechanical performance predictions.
- Developed a workflow to generate structured meshes for metamaterials using CUBIT, facilitating thermomechanical simulations.
- Gained hands-on experience simulating tritium diffusion in metal-ceramic composites .

Graduate Assistant, University of North Carolina at Charlotte (UNCC)

- Jan 2018-May 2019
- Designed and assembled a full-scale 3D multibody ocean wave energy converter model (WEC) to study dynamic structural behaviour using the commercial finite element software ABAQUS.
- Performed parametric and fatigue life analyses to predict the WEC's lifecycle and enhance its design robustness.

PATENT

PCT Patent Application: *Methods and Systems for Preparing Metal Nanostructures*, PCT/US24/41990, WO 2025/035156, filed Aug 2024. https://patents.google.com/patent/WO2025035156A1

JOURNAL PUBLICATIONS

- **Tanuj Gupta**, Micheal Wang and Huijuan Zhao, "Atomistic insights on structural transformation in gold nanoparticles". In preparation
- **Tanuj Gupta** and Huijuan Zhao, "Machine learning assisted classification of deformation mechanism of ultrasmall gold nanoparticles". In preparation
- Tanuj Gupta and Huijuan Zhao, "Shape dependent deformation in gold nanostructures". In preparation
- **Tanuj Gupta**, Mahabubur Rahman, Xinyu Jiao, Yongji Wu, Chethan K. Acharya, Dock R. Houston, Susan Maley, Junhang Dong, Hai Xiao, and Huijuan Zhao. "Four-Stage Multi-Physics Simulations to Assist Temperature Sensor Design for Industrial-Scale Coal-Fired Boiler." Sensors, Volume 24, Issue 1, 2023.
- Md Rubayat-E Tanjil*, **Tanuj Gupta***, Matthew T. Gole*, Keegan Phayden Suero, Zhewen Yin, Donald James McCleeary, Ossie R. T. Douglas, Alissa Brooke Anderson, Catherine J. Murphy, Huijuan Zhao, Michael Cai Wang. "Nanoscale goldbeating: Solid-state transformation of 0D and 1D gold nanoparticles to anisotropic 2D morphologies." PNAS Nexus, Volume 2, Issue 8, 2023.
- Abhinav Mishra, **Tanuj Gupta**, and Bidhubhusan Sahu. "Estimation of Nuclear Separation Energy and Its Relation with Q Value." International Journal of Applied Physics and Mathematics, Volume 6, Issue 1, 2016.

CONFERENCE PROCEEDINGS

- Xinyu Jiao, Yongji Wu, Xuran Zhu, Mahabubur Rahman, **Tanuj Gupta**, D. T. Gravley, Dock Houston, Chethan. K. Acharya, Tuan Nguyen, Susan Maley, Junhung Dong, Huijuan Zhao, Hai Xiao, "Distributed Coaxial Cable Sensors for in-situ Condition Based Monitoring of Coal-Fired Boiler Tubes." International Pittsburgh Coal Conference, 2022.
- **Tanuj Gupta**, Tristan Woods, and Huijuan Zhao. "Multi-Scale Molecular Dynamics Simulation of Fused Silica Under Shock Impact: Parameter Characterizations." ASME International Mechanical Engineering Congress and Exposition(IMECE), Volume 86717, p. V009T12A035, 2022.
- **Tanuj Gupta**, Mahabubur Rahman, Chethan K. Acharya, Susan Maley, Junhang Dong, Dock R. Houston, Hai Xiao, and Huijuan Zhao. "Full Scale 3D Computational Model of the Industrial-Scale Coal Fired Boiler Performance for Temperature Sensor Installation Guidance." In ASME IMECE, Volume 85680, p. V012T12A043, 2021.

TECHNICAL PRESENTATIONS

- **Tanuj Gupta** and Huijuan Zhao. Compressing gold to the atomically thin extreme: characterization of EAM potentials, The Minerals, Metals & Materials Society (TMS) Conference March 19-23, 2024.
- Tanuj Gupta, Huijuan Zhao and Micheal Cai Wang, Uniaxial Compression of Spherical Gold Nanoparticles: A Molecular Dynamics Study in ASME IMECE New Orleans Oct 29th -Nov 2nd, 2023.
- Tanuj Gupta and Huijuan Zhao, Compress Au Nanoparticle towards 2-Dimensional Extreme: A Molecular Dynamics Study, Engineering Mechanics Institute (EMI) Conference Atlanta GA, June 6–9,

2023

- **Tanuj Gupta**, Tristan Woods, and Huijuan Zhao." Multi-scale molecular dynamics simulation of fused silica under shock impact: parameter characterizations." IMECE, Columbus, Ohio, Oct 2022.
- Md Rubayat-E Tanjil, **Tanuj Gupta**, Matthew Gole, Zhewen Yin, Keegan Suero, Donald McCleeary, Ossie Douglas, Alissa Anderson, Catherine Murphy, Huijuan Zhao, Michael Cai Wang, Solid-State Transformation of 0D Metal Nanoparticles to Anisotropic 2D Morphologies, Functional Nanomaterials: Functional Low-Dimensional (0D, 1D,2D) Materials, TMS Annual Meeting & Exhibition, Feb 2022.
- Xinyu Jiao, Yongji Wu, Xuran Zhu, Mahabubur Rahman, **Tanuj Gupta**, Dusting Graveley, Dock Houston, Chethan. K. Acharya, Tuan Nguyen, Susan Maley, Junhung Dong, Huijuan Zhao, Hai Xiao, Distributed Coaxial Cable Sensors for in-situ Condition Based Monitoring of Coal-Fired Boiler Tubes, International Pittsburgh Coal Conference (IPCC), PA, September 2022.
- Tanuj Gupta, Mahabubur Rahman, Chethan K. Acharya, Susan Maley, Junhang Dong, Dock R. Houston, Hai Xiao, and Huijuan Zhao. "Full Scale 3D Computational Model of the Industrial-Scale Coal Fired Boiler Performance for Temperature Sensor Installation Guidance." IMECE, (Online), 2021.

POSTER PRESENTATIONS/ INVITED TALKS

- **Tanuj Gupta**, The applications of molecular dynamics simulations, Mechanical Engineering Seminar, Clemson University, Aug 31st, 2023.
- **Tanuj Gupta** and Huijuan Zhao, Multi-scale molecular dynamics simulation of fused silica under shock impact, 16th Annual Materials and Optics Poster Symposium, Watt Family Innovation Center, Clemson University, May 10th, 2023.
- **Tanuj Gupta** and Huijuan Zhao, Multi-scale molecular dynamics simulation of fused silica under shock impact, Research Symposium Watt Family Innovation Center, Clemson University, Feb 27th, 2023.
- **Tanuj Gupta**, Can 2D metals be a reality? Three-Minute Thesis Presentation, Clemson University, November 11th, 2022.
- Tanuj Gupta, Molecular dynamics simulation of fused silica under shock impact: parameter characterizations, Graduate Seminar Research series, Mechanical Engineering, Clemson University, September 26th, 2022.

TEACHING EXPERIENCE

Graduate Lab Assistant, Clemson University

Jan 2024-Dec 2024

Mechanical Engineering Lab II (ME 3330), Dr. Daniel Wilson

- Delivered pre-lab lectures twice a week to 2 sections of undergraduate students.
- Supervised 44 students doing lab experiments and writing professional reports.
- Evaluated lab reports and provided feedback for students to track academic progress.

Co-instructor, Clemson University

Aug 2023-Dec 2023

Fundamentals of Atomistic Model (ME 8160), Dr. Huijuan Zhao

• Guided graduate students with a basic understanding of molecular dynamics (MD) simulations with hands-on experience running MD simulations using high-performance computing.

Graduate Grading Assistant, Clemson University

Aug 2019-Dec 2019

Foundations of Mechanical Systems (ME3070), Dr. Pooya Niksiar

- Evaluated and assessed student performance through assignments and exams.
- Designed questions for the assignments and exams to assess and enhance students' understanding of core concepts.

Graduate Teaching Assistant, UNCC

Mechanism (ETME 2102), Dr. Navid Gourdarzi

- Taught course material to a class of 85 students on a bi-weekly basis.
- Evaluated student performance through assignments, exams and projects.

Introduction to Computational Physics (PHYS 3210), Dr. Tino Hoffman

- Evaluated and assessed student performance through assignments, exams, and projects.
- Taught a class on coding ethics on MATLAB.

Physics tutor, Department of Physics

• Guided undergraduate students with their doubts and concepts in physics.

MENTORSHIP EXPERIENCE

Arif Sadik, Ph.D. student

Jan 2024-Present

- Provide guidance in conducting quality research.
- Assist with learning computational tools.

Caroline Mccoy, High school teacher

Jun 2023

- Mentored in using atomistic simulations to study the physical behavior of particles.
- Provided training in high-performance computing applications.
- Assisted in writing MATLAB scripts for data analysis.

SERVICE TO PROFESSION

• Reviewer for ASME's IMECE

2021-Present

- Judge for Focus on Creative Inquiry (FoCI), a university-wide forum that showcases undergraduate research at Clemson University
 Apr 2023
- Session chair for Modeling of the Fracture, Failure and Fatigue in Solids, IMECE, Columbus, OH, USA
 Oct 2022
- Judge for Undergraduate Expo poster session, IMECE, Columbus, OH, USA

Oct 2022

HONORS AND AWARDS

- Fellowship recipient for the Computational Materials Science Summer School (CMS3), Texas A&M
 University
 Jul 2024
- People's choice award winner for the Science as Art competition, Clemson University Apr 2024
- Second place winner for Graduate Research Symposium (iGRADS) from College of Engineering, Computing, and Applied Sciences (CECAS), Clemson University
 Mar 2024
- Outstanding Graduate Student Government (GSG) Representative, Clemson University May 2023
- One of the candidates' winners of the Three Minute Thesis (3MT) competition from the CECAS, Clemson University

 Nov 2022
- Won election to represent the mechanical engineering department as a student senator in the Graduate Student Government, Clemson University
 Aug 2022
- Best Poster Award in Mechanical Engineering Graduate Student Poster Competition, Clemson University

 Mar 2021
- Excellent Oral Presentation Award at the 6th International Conference on Applied Physics and Mathematics (ICAPM) for the best presentation in the session, Singapore
 Jan 2016

Jan 2018-May 2019

LEADERSHIP EXPERIENCE

Senator: Graduate Student Government, Clemson University

Aug 2022-Aug 2024

• Played a key role in organizing events, including the university-wide 3MT competition and iGRADS symposium.

Executive member: Mechanical Engineering Graduate Student Council (MEGSC), Clemson University Aug 2022-Dec 2023

• Conceptualized, developed, and executed the pi-MT (π -MT) Thesis Competition in the Mechanical Engineering Department, a unique adaptation of the 3MT format.

Vice-president: Nepalese Student Association (NepSA), Clemson University

Aug 2022-May 2023

• I facilitated international students from Nepal to get accustomed to Clemson and assisted with all the cultural and social events organized by the organization.

PROFESSIONAL AFFILIATION

Member: American Society of Mechanical Engineering

Aug 2021-Present

WORKSHOPS

Artificial Intelligence for Materials Science (AIMS) Workshop, National Institute of Standards and Technology (NIST) Jul, 2023

- Explored how artificial intelligence (AI), including machine learning and deep learning, can accelerate materials discovery aligned with the Materials Genome Initiative (MGI).
- Understood the importance of diverse and curated datasets, effective material representations, inverse design, integrating theory and experiments, and choosing suitable AI algorithms.
- Gained insights into AI's potential in force-field development, generative modelling, autonomous experimentation, and even cross-disciplinary applications like natural language processing.

Advanced Materials Characterization workshop, University of Illinois Urbana-Champaign Jun 2023

- The workshop provided an overview and critical comparison of major analytical techniques for materials characterization (AFM, SEM, TEM, XRD, DSC, Raman, XPS, etc.) with an emphasis on practical applications.
- The demonstration included problem-solving strategies, instrument resolution requirements, potential data collection artefacts, and data interpretation tips.

TECHNICAL SKILLS

- Tools: LAMMPS, ANSYS, COMSOL, ABAQUS, DREAM3D, ParaView, CUBIT, MOOSE.
- Programming languages: MATLAB, Python.
- High-Performance computing (HPC): Workflow optimization, job scripting, large-scale simulations.

REFERENCES

Dr. Huijuan (Jane) Zhao

Professor and Graduate Program Director Mechanical Engineering, Clemson University

Office: 201 Fluor Daniel Building

Phone: (864) 656-7190 Email: hzhao2@clemson.edu

Dr. Hai Xiao

Samuel Lewis Bell Distinguished Professor and Department Chair

Electrical and Computer Engineering, Clemson University Office: 209 Riggs Hall, 205 Advanced Material Research Lab

Phone: (864) 656-5912 Email: haix@clemson.edu

Dr. Michael Wang

Assistant Professor

Mechanical Engineering, University of South Florida

Office: 4202 E Fowler Ave, University of South Florida Research and Innovation Park

Phone: 813-974-3780 Email: mcwang@usf.edu