Determine the input impedance of open and short circuit line.

OR

A lossless RF line has Z_0 of 600Ω and is connected to a resistive load of 75 Ω . Find the position and length of short circuited stub of same construction as line which would enable the main length of a line to be correctly terminated at 150 mHz.

rgpvonline.com

Total No. of Questions: 5]

[Total No. of Printed Pages :4

rgpvonline.com

EC - 505

B.E. V Semester

Examination, December 2015

Communication Network and Transmission Lines

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- For symmetrical T network, show that $\tan h \gamma = \sqrt{\frac{Zsc}{Zoc}}$.
 - For symmetrical network define the characteristic impedance.
 - Design a π -type attenuator with the following specifications. Attenuation = 20 dB, characteristic impedance = 500Ω .
 - Determine the image impedance of an asymmetrical L-network.

rgpvonline.com

rgpvonline.com

OR

What is attenuator? Derive design equations for a π -type attenuator. **rgpvonline.com**

Unit - II

- 2. a) What are the demerits of m-derived filters?
 - b) What is the need of composite filters?
 - c) Explain the variations of characteristic impedance (z₀), attenuation constant (α) and phase constant (β) with frequency (f) with the help of neat sketch in bandpass filters.
 - d) Discuss constant k low pass filter with suitable diagrams.
 Derive expression for cut-off frequency (f_c)

OR

Discuss Butterworth approximation for low pass filter.

Unit - III

- 3. a) What is positive real function?
 - b) Explain maximum modulus theorem.
 - c) Test, whether the polynomial s⁴+s³+2s²+3s+2 is Hurwitz.
 - d) Realize given network in foster I form.

$$z(s) = \frac{2s^2 + s + 1}{s^3 + s^2 + s + 1}$$

OR

Realize the given function in cauer II form

$$z(s) = \frac{2(s^2+1)(s^2+3)}{s(s^2+2)}$$

Unit - IV

- 4. a) What is the difference between lumped parameters and distributed parameters?
 - b) Define attenuation constant and phase constant.
 - c) What is distortionless line? Derive the condition for distortionless line.
 - d) Derive the design equations for full shunt equalizer.

OR

Define input impedance of transmission line. Derive an expression for input impedance of a transmission line in terms of reflection coefficient.

Unit - V

- 5. a) Explain standing wave ratio. rgpvonline.com
 - b) What is step matching?
 - Explain any one method of power measurement on the line.