Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko bigarren zatia Bilboko IITUE 1,3 puntu Ebazpena 2015-12-10

1 ε -AFED bati dagokion AFED-a kalkulatu (0,300 puntu)

 $A=\{a,b,c\}$ alfabetoaren gainean definitutako honako ε -AFED honen baliokidea den AFED-a kalkulatu klasean aurkeztutako era jarraituz:

 $E \in AFED$ -ari dagokion N AFED-ak egoera-kopuru bera izango du eta gainera $E \in AFED$ -an bi zirkulu dituzten egoerak AFED-an ere bi zirkuludunak izango dira:

Jarraian q_0 egoerak bi zirkulu izango al dituen erabaki behar izaten da. ε sinboloa duten geziak bakarrik jarraituz q_0 -tik bi zirkulu dituen egoeraren batera iristea baldin badago, orduan q_0 -k ere bi zirkulu izango

ditu. Kasu honetan horrela da, izan ere, q_1 eta q_4 egoeretara irits gaitezke ε trantsizioak jarraituz. Beraz, q_0 egoerak ere bi zirkulu izango ditu.

Orain egoera bakoitzetik sinbolo bakoitzarekin zein egoeretara iritsi gaitezkeen kalkulatu beharko da. Hasteko q_0 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_0 -tik bi gezi aterako dira. Gezi horiek q_2 -ra eta q_5 -era joango dira (q_2,ε) eta (q_5,ε) konfigurazioak lortu direlako. Gezi horiek a sinboloa izango dute:

Orain q_1 egoera aztertuko dugu:

$$(q_1, a)$$
 (q_1, b) (q_1, c) \downarrow (q_2, ε)

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_1 -etik gezi bakarra aterako da. Gezi hori q_2 -ra joango da (q_2,ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

Orain q_2 egoera aztertuko dugu:

$$\begin{array}{cccc} (q_2,a) & & (q_2,b) & & (q_2,c) \\ & & | & & \\ & & (q_3,\varepsilon) & & \\ & & | & & \\ & & & (q_1,\varepsilon) & & \end{array}$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_2 -tik bi gezi aterako dira. Gezi horiek q_3 eta q_1 -era joango dira, (q_3, ε) eta (q_1, ε) konfigurazioak lortu baitira. Gezi horiek b sinboloa izango dute:

Orain q_3 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_3 -tik gezi bat aterako da. Gezi hori q_2 -ra joango da (q_2,ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

Orain q_4 egoera aztertuko dugu:

$$\begin{array}{ccc} (q_4,a) & & (q_4,b) & & (q_4,c) \\ | & & | & \\ (q_5,\varepsilon) & & & \end{array}$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_4 -tik gezi bakarra aterako da. Gezi hori q_5 -era joango da (q_5, ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

Orain q_5 egoera aztertuko dugu:

$$\begin{array}{cccc} (q_5,a) & & (q_5,b) & & (q_5,c) \\ & & & | \\ & & (q_6,\varepsilon) \\ & & & | \\ & & & (q_4,\varepsilon) \end{array}$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_5 -etik bi gezi aterako dira. Gezi horiek q_6 eta q_4 egoeretara joango dira (q_6,ε) eta (q_4,ε) konfigurazioak lortu baitira. Gezi horiek c sinboloa izango dute:

Orain q_6 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_6 -tik gezi bat aterako da. Gezi hori q_5 egoerara joango da (q_5,ε) konfigurazioa lortu baita. Gezi horrek a sinboloa izango du:

Eta hori da lortu nahi genuen AFED-a.

2 AFED bati dagokion AFD-a kalkulatu (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFED honen baliokidea den AFD-a kalkulatu klasean aurkeztutako era jarraituz:

Jarraian AFED horri dagokion AFD-a kalkulatuko da. Urratsez urrats egingo da, urrats bakoitzean sortzen diren egoerak azalduz. Bukaeran egoerak berrizendatu egingo dira:

 $\bullet\;$ Beti bezala, hasierako egoera $\{q_0\}$ izango da.

• $\{q_0\}$ egoeratik aterako diren trantsizioak kalkulatuko dira orain: $\nu^*(\{q_0\},a)=\{q_1\}, \nu^*(\{q_0\},b)=arnothing$ eta $\nu^*(\{q_0\},c)=arnothing$

• Lehenengo $\{q_1\}$ egoera aztertuko dugu eta hor alde batetik $\nu^*(\{q_1\},a) = \nu(q_1,a) = \{q_2,q_3\}$ da. Beste aldetik, $\nu^*(\{q_1\},b) = \nu(q_1,b) = \{q_2\}$. Azkenik, $\nu^*(\{q_1\},c) = \nu(q_1,c) = \{q_2,q_3\}$.

• Orain $\{q_2,q_3\}$ egoera hartuz, $\nu^*(\{q_2,q_3\},a) = \nu(q_2,a) \cup \nu(q_3,a) = \{q_2,q_3\} \cup \varnothing = \{q_2,q_3\}$. Bestalde, $\nu^*(\{q_2,q_3\},b) = \nu(q_2,b) \cup \nu(q_3,b) = \{q_2\} \cup \varnothing = \{q_2\}$. Eta c-ren kasuan, $\nu^*(\{q_2,q_3\},c) = \nu(q_2,c) \cup \nu(q_3,c) = \{q_2,q_3\} \cup \varnothing = \{q_2,q_3\}$.

• Jarraian $\{q_2\}$ egoera hartuz, alde batetik $\nu^*(\{q_2\}, a) = \nu(q_2, a) = \{q_2, q_3\}$. Bestalde, $\nu^*(\{q_2\}, b) = \nu(q_2, b) = \{q_2\}$. Gainera, $\nu^*(\{q_2\}, c) = \nu(q_2, c) = \{q_2, q_3\}$.

• Jarraian \varnothing egoera hartuz, alde batetik $\nu^*(\varnothing,a)=\varnothing$, beste aldetik, $\nu^*(\varnothing,b)=\varnothing$ eta, bukatzeko, $\nu^*(\varnothing,c)=\varnothing$.

• Trantsizio denak ipini ditugunez, bi zirkulu izango dituzten egoerak zein izango diren zehaztea geratzen da. Hain zuzen ere, hasierako AFED-an bi zirkulu dituen egoeraren bat duten egoerak izango dira bi zirkuludunak AFD honetan. Beraz, $\{q_1\}$ eta $\{q_2,q_3\}$ egoerek bi zirkulu izango dituzte.

 \bullet Bukatzeko, egoerak berrizendatuko ditugu: $r_0=\{q_0\},\ r_1=\{q_1\},\ r_2=\varnothing,\ r_3=\{q_2,q_3\}$ eta $r_4=\{q_2\}$

3 Automata finitu bati dagokion lengoaia erregularra kalkulatu (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AF honi dagokion lengoaia erregularra kalkulatu klasean aurkeztutako metodoa jarraituz:

Lehenengo urrats bezala $q_{\rm hasi}$ eta $q_{\rm bai}$ egoerak ipiniko ditugu. Hasierako automatan bi zirkulu dituen egoera bakoitzetik gezi bat ipini beharko da $q_{\rm bai}$ egoerara.

Orain q_1 ezabatuko dugu:

Orain q_4 ezabatuko da:

Bi egoeren artean bi gezi edo gehiago ditugunean, gezi bakarra ipini ohi dugu, sinboloak komaz bereiziz, beraz, q_0 eta $q_{\rm bai}$ egoeren artean dauden hiru geziren ordez gezi bakarra ipiniko dugu, hiru espresioak komaz bereiziz:

Jarraian q_3 kenduko dugu. q_3 -tik bi bide igarotzen dira: q_2 -tik q_2 -ra doana eta q_0 -tik q_2 -ra doana.

orain q_0 -tik q_2 -ra gezi bakarra ipiniko dugu, espresio biak komaz bereiziz. Era berean, q_2 -tik q_2 -ra ere gezi bakarra ipiniko dugu komaz bereizitako hiru espresiorekin.

Orain q_2 kenduko dugu:

Bi egoeren artean bi gezi edo gehiago ditugunean, gezi bakarra ipini ohi dugu, sinboloak komaz bereiziz:

Azkenik q_0 ezabatuko da:

Beraz, honako lengoaia lortu da:

$$\varepsilon(aa^*\varepsilon + (b+c)(b+c)^*\varepsilon + \varepsilon + (a+(b+c)(b+c)^*a)(b+c+a(b+c)^*a)^*\varepsilon)$$

Espresio hori $\varepsilon\beta$ edo $\beta\varepsilon$ erako espresioak β espresioaz ordezkatuz sinplifika daiteke. Izan ere, $\varepsilon\beta$ edo $\beta\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori β espresioaren baliokidea izango da. Bestalde, $\varepsilon+\beta$ edo $\beta+\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori orokorrean ez da izango β espresioaren baliokidea. Beraz, honako hau geldituko zaigu:

$$aa^* + (b+c)(b+c)^* + \varepsilon + (a+(b+c)(b+c)^*a)(b+c+a(b+c)^*a)^*$$

4 Lengoaia erregularra dela frogatu (0,100 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako lengoaia hau erregularra dela frogatu klasean aurkeztutako bidea jarraituz:

$$\{w \mid w \in A^* \land \exists u, v, x(u \in A^* \land v \in A^* \land x \in A^* \land |u| = 3 \land |u|_a = 0 \land |x| = 3 \land |x|_a = 0 \land w = uvx)\}$$

Adibidez, ccccc, ccbcbb, bccabaabbb eta cbbbbccbcc hitzak lengoaia horretakoak dira baina ε , a, bb, aa, cabbcaa, abcbcabca eta bacbaacba hitzak ez dira lengoaia horretakoak.

Lengoaia hori erregularra da bilkura (+), kateaketa eta itxidura (*) erabiliz adieraz daitekeelako:

$$(b+c)(b+c)(b+c)(a+b+c)*(b+c)(b+c)(b+c)$$

5 Lengoaia erregular bati dagokion automata finitua kalkulatu (0,300 puntu)

 $A = \{a, b, c, d, e\}$ alfabetoaren gainean definitutako honako lengoaia erregular honi dagokion automata finitua kalkulatu klasean aurkeztutako prozedura jarraituz:

$$a(b+c)^*((dd)^* + (ee)^*)$$

Hasteko, q_{hasi} eta q_{bai} egoerak sortu eta bien arteko gezian espresio osoa ipini:

$$a(b+c)^*((dd)^* + (ee)^*)$$

Orain espresio horretan kateatuta dauden hiru zati bereiziko ditugu: a, $(b+c)^*$ eta $(dd)^* + (ee)^*$

Orain $(b+c)^*$ espresioa garatuko dugu:

Orain (b+c) espresioa garatuko dugu:

 $\label{eq:condition} \textit{Jarraian} \ q_2 \ \text{egoeran ditugun} \ \text{bi} \ \text{begiztak begizta bakar batez} \ \text{ordezkatuko ditugu, espresio biak komaz bereiziz:}$

Orain $(dd)^* + (ee)^*$ espresioa garatuko dugu:

Orain $(dd)^*$ eta $(ee)^*$ espresioak garatuko ditugu:

Jarraian dd eta ee espresioak garatuko ditugu, alde batetik d eta d bereiziz eta, beste aldetik, e eta e bereiziz:

