NBSIR 74-482

An Automated System for Precision Calibration of Accelerometers

B. F. Payne

Vibration Section, Mechanics Division Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234

April 1974

Final Report

Prepared for

Department of Defense

Calibration Coordination Group

AN AUTOMATED SYSTEM FOR PRECISION CALIBRATION OF ACCELEROMETERS

B. F. Payne

Vibration Section, Mechanics Division Institute for Basic Standards National Bureau of Standards Washington, D. C. 20234

April 1974

Final Report

Prepared for Department of Defense Calibration Coordination Group

FORWORD

The development of the automated calibration system for accelerometers was sponsored by the Department of Defense Calibration Coordination Group (DoD/CCG) consisting of: the Aerospace Guidance and Metrology Center, Newark Air Force Station, Newark, Ohio 43055; the Metrology and Calibration Center, Redstone Arsenal, Alabama 35809; and the Metrology Engineering Center, Bureau of Naval Weapons Representative, Pomona, California 91766. The Atomic Energy Commission was represented by an observer from Sandia Laboratory, Albuquerque, New Mexico 87115. The project was coordinated by the Aerospace Guidance and Metrology Center.

The Dod/CCG project number assigned was CCG 69-13 and work was performed under NBS cost center 2130423.

TABLE OF CONTENTS

			Page
Abs	tract		
1.	Introdu	oction	1-1
2.	Hardwar	e	2-1
	2.1		2-1
	2.2		2-1
	2.3		2-2
	2.4		2-2
	2.5		2-2
	2.5.1	···	2-2
	2.5.2	•	2-3
	2.6		2-12
	2.7		2-12
			2-12 2-12
	2.8.1		2-12
	2.8.3		2-13
	2.8.4	•	2-18
	2.8.5		2-23
	2.9		2-25
	2.7	outilitation of the system is a second of the system is a second of the system is a second of the second of the second of the system is a second of the seco	2 23
3.	Software	e	3-1
	3.1	Computer Capability	3-1
	3.2		3-1
	3.3		3-2
	3.4	,	3-2
	3.5	· · · · · · · · · · · · · · · · · · ·	3-6
	3.6	Provisions for Automatic Selection of Circuits and	
		Automatic Ranging of Test Equipment	3-6
4.	Software	e Program Descriptions	4-1
	4.1	Hexidecimal-to-Decimal Conversion for Test Sensitivity	4-2
	4:2	Range Test for Test Accelerometer	4-7
	4.3	Check for INVERSE FLAG and Set Relays	
	4.4	Check for INVERSE FLAG and Calculate Calibration Factor	•
			4-15
	4.5		4-18
	4.6		4-21
	4.7		4-23
	4.8	, ,	4-26
	4.9		4-28
	4.10		4-29
	4.11		4-30
	4.12 4.13		4-31
	4.13		4-32 4-34
	4.15	Set Relays for Ratio I, Output Oscillator Code, Read	4-34
	70 10	Frequency Counter, Type It on TTY	4-35

TABLE OF CONTENTS

			1 460
4.15.			
4.15.	2 Programming the Decade Oscillator		
4.15.	3 Reading the Frequency Counter	٠	. 4-39
4.16	Set Relays for Ratio II, Calculate Test Accelerometer		
	Sensitivity · · · · · · · · · · · · · · · · · · ·	0	. 4-47
4.16.	1 Programming Relay Banks 1 and 2	•	. 4-47
4.16.3	2 Calculation of Test Accelerometer Calibration Factor .		. 4-47
4.17	Storage Table for Oscillator Code · · · ·		. /. 50
4.18	TTY Printout		
/ 10	Table of Defined Constants		7 33
4.19			
4.20	*Decimal to Hexidecimal Subroutine		_
4.21	*Wait Subroutine for TTY		
4.22	*Decimal Point Typeout		
4.23	Storage Table for Exciter Calibration Factors (Hex.)		
4.24	Shut Off Oscillator, Ring Bell, Start Over		
4.25	*Delay for DVM Subroutine		
4.26	Halt, Stop, or Continue		
4.27	*Constant Acceleration Closed Loop Control Subroutine .		
4.28	*Scope Scaling Subroutine		•4-76
4.29	*Round Off Subroutine (for Constant Acceleration)		.4-77
4.30	*Hexidecimal-to-Decimal Subroutine		
4.31	*Calculate Delta V Subroutine		
4.32	Data Block Control Constants (1400 Tables)		
4.33	*Voltage/Frequency Data Modified to Proper Oscillator Code	•	-4-84
4.34	*Set Slow/Fast Code for ac/dc Converters Subroutine		.4-90
4.35	Store Calibration Data in Ta bles		·4-92
4.36	Decimal to ASCII Routine (5 digits)		
4.37	*Decimal to ASCII Subroutine (1 digit)		·4 - 98
4.38	Check for Correct Range of Signal ac/dc Converter		·4-100
4.39	*Multiple Readings (DVM) and Digital Filter Subroutine .		
4.40	*Read Data Subroutine		·4-109
4.41	*ASCII to Decimal Subroutire	•	•4-116
4.42	Desired Frequency Table		• 4-120
4.43	Desired Frequency Table		·4-12 1
4.44	*Type-Out Subroutine		• 4-124
4.45	*Message Entry Subroutine	•	• 4-130
4.46	Accelerometer Data Block Entry Program		• 4-135
4.47	Storage Table for Type Out -Constants and Save Locations .	•	• 4-142
5.	Discussion	•	.5-1
6.	Acknowledgments		.6-1
7.	References		.7-1

LIST OF TABLES

			Page
2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 4-1. 4-2. 4-3.	Hardware Components	•	. 2-16 . 2-17 . 2-19 . 2-20 . 2-21 . 4-36 . 4-37
	I ICT OF FIGURES		
	LIST OF FIGURES		
1-1.	Oscillator Driving Voltage vs. Frequency for 10 g		
2-1.	Acceleration	٠	• 1-2
2-2.	Block Diagram of Automated Accelerometer System		• 2-4
2-3.	Signal Junction Box Part 1		• 2-6
2-4.	Signal Junction Box Part 2		• 2-7
2-5.	Impedance Matching Capacitor Bank Schematic	•	· 2-8
2-6.	Schematic of Automated Accelerometer System	٠	· 2-9
2-7.	Automated Calibration System		. 2-10
2-8.	Exciters 1 and 2		.2-11
2-9.	Calibration Circuit Schematic	٠	• 2-26
3-1.	Sense Status Loop	٠	· 3-3
3-2.	Data Block Format		
3-3.	Condensed Flow Chart by Program Name · · · · · · · · · · · · · · · · · · ·	٠	· 3-5
3-4.	Summary Flow Chart	•	. *
4-1. 4-2.	nexidecimal-to-Decimal conversion	•	• 4-6
4-2.	Range Test for Test Accelerometer Flowchart	•	• 4-11
	Check for Inverse Flag and Set Relays Flowchart		
4-4.	Check for Inverse Flag and Calculate S _T if Set Flow Chart Five Byte ASCII-to-Decimal Flowchart	•	
4-6.	Teletypewriter Printout Flow Chart	•	• 4-25
4-7.	Decimal-to-Hexidecimal Flowchart	•	• 4-57
4-8.	Halt, Stop, or Continue Flowchart		4-604-68
4-9.	Constant Acceleration Closed Loop Control Subroutine	•	• 4-68
	Flowchart		• 4-75

^{*}Located in the back; after Page 7-1.

LIST OF FIGURES

			P	AGE
	Hexidecimal-to-Decimal Subroutine Flowchart		•	4-81
4-11.	Voltage/Frequency Data Modified to Proper Oscillator			
	Code Flowchart			4-89
4-12.	Decimal to ASCII Flowchart			4-99
4-13.	Multiple DVM Reading and Delay Subroutine Flowchart			4-102
4-14.	Read Data Subroutine Flowchart			
4-15.	ASCII-to-Decimal Subroutine Flowchart	,		4-119
4-16.		,		4-141
5-1.	History of a Control Accelerometer for 1972			
5-2.	History of a Control Accelerometer for 1973			
_	Histogram of a Control Accelerometer for 1972			
5-4.	Histogram of a Control Accelerometer for 1973			

AN AUTOMATED SYSTEM FOR PRECISION CALIBRATION

OF ACCELEROMETERS

bу

B. F. Payne

ABSTRACT

The report describes an automated system for accelerometer calibration under real time control by a small, dedicated digital computer. The hardware components of the system are described and the software programs are given. The software automatically regulates the rate and amount of data collected based on analysis of input data. Printouts of the frequency response of test accelerometers is on a teletypewriter and also the response can be stored on a magnetic tape. Manual operation of the system is also described.

KEYWORDS: Acceleration, automation, calibration, measurements, minicomputer, shakers, standards, transducers, vibration, vibration exciters, vibration pickups.

1. INTRODUCTION

An automated process controller for precision accelerometer calibration has been developed by the Vibration Section of the National Bureau of Standards. The system is composed for the most part of commercially available test equipment. This system was designed to meet the need for an accurate automated calibration system for accelerometers. This final report describes the hardware and gives a complete listing of the software. The system is controlled by a minicomputer with 16,384 bytes of core memory (1 byte - 8 bits) and a Teletype (TTY). Since the physical phenomena involved react relatively slowly, the cycle time of the small computer is more than adequate for this purpose. The system controls two electrodynamic vibration exciters. Unlike some commercial exciters, the NBS standard Dimoff exciters [1,2]* have transfer functions which are easily adapted to closed loop acceleration control. Figure 1-1 shows the driving voltage of a Dimoff Type 200 exciter plotted against frequency with and without a capacitive impedance matching network.

The exciters have built-in standard accelerometers. They are first calibrated by absolute methods from 10 Hz to 10 kHz.[3,4] The automated system stores frequency and voltage ratio data at test acceleration levels. The frequencies and acceleration levels are stored in a Data Block table of values in the core of the computer. For maximum usefulness, the program is written so that changes in frequency and acceleration level can be made quickly at the teletype terminal or by loading paper or magnetic tape with no changes in the operating program required.

This system of accelerometer calibration differs from other automatic systems in that the software includes a selective procedure for screening data to minimize the effects of noise and drift. This program is called Multiple Readings (DVM) and Digital Filter Subroutine and it regulates the quantity of the test measurements to obtain data which lie within the established repeatability criteria (Section 4.38).

^{*} The numbers in brackets refer to references found at the end of this report.

FIGURE 1-1. OSCILLATOR DRIVING VOLTAGE VS. FREQUENCY FOR 10 g ACCELEIATION

2. HARDWARE

The hardware components for the automated system are listed in table 2-1 and are shown in a block diagram in figures 2-1* and 2-2 and manufacturer and model numbers are given in [4]. The internal connections of the signal junction box are shown in figures 2-3 and 2-4. The impedance matching capacitor bank schematic is shown in figure 2-5. The electrical schematic for the automated system is shown in figure 2-6. In this schematic, the relay positions are all shown in the normally closed position. Refer to the software description of program Set Relays for Ratio I, Output Oscillator Code for details in programming the relays for the circuit desired (Sect. 4.15).

The circuitry of this system allows voltage ratios to be taken by either of two circuits. The circuit used is chosen by a program based on data taken from the test accelerometer. For test accelerometers whose sensitivity is <566 mV/g, the circuit used will be called Circuit A. For sensitivities >566 mV/g, the circuit will be called Circuit B. The gain of the power amplifier should be set for approximately 60 percent of full gain for a 250-watt amplifier in order to utilize the full amplitude range of the digital oscillator.

2.1 Circuit A

This is the circuit used for most accelerometer calibrations. Referring to figure 2-6, the relays are set for RI ratio as described in Programming Relay Banks 1 and 2, Section 4.15.1. The program will then cause data to be read with the relays in this position. This is denoted as Ratio I or RI. After this is completed the relays are reset for RII ratio as described in Set Relays for Ratio II, Section 4.16. The program then causes data to be read. This is denoted as Ratio II or RII. The test accelerometer sensitivity can be calculated from these ratios as described in Section 4.16. The data are read under the supervision of the Multiple Readings subroutine, Section 4.39. This program will be described in detail in the Software section of this report.

2.2 Circuit B

This circuit is used for accelerometers whose sensitivity is >566 mV/g. If this circuit is chosen the INVERSE FLAG is set which triggers a program to reset the relays. See Check for INVERSE FLAG and Set Relays, Section 4.3. Referring again to figure 2-6, this program reverses the standard and test signals at the input to the readout circuitry and bypasses the amplifiers. Only Ratio RII is read in this case. See Section 4.3 for details. The sensitivity of the test accelerometer can then be computed as described in Section 4.4.

*This figure is at the end of the report.

2.3 Signal Junction Box

The signal junction box (figures 2-1, 2-3, and 2-4) allows for the test instruments to be connected to a junction box. The back of the junction box is interconnected with the relays controlled by the computer. In this manner the software can control the circuitry in the setup. For example, in circuits A and B described above, the software decides which circuit can be used based upon data taken from the test accelerometer. Once this decision has been made, the software sets the relays for the proper circuit and then proceeds with the calibration. Likewise, the computer can set the range of the ac/dc converters based upon data taken during the test.

Figure 2-7 shows the automated accelerometer calibration system with the associated electronic equipment. Figure 2-8 shows two vibration exciters used with the system.

2.4 Minicomputer

The commuter system has 16,384 bytes of core memory and a Teletype (TTY). It includes High Speed Arithmetic and Read/Write Block Instructions. It includes six interface units to control the digital voltmeter (DVM), oscillator, frequency counter, X-Y plotter, a bank of 32 relays (12 double-pole, and 20 single-pole), and a 9-track magnetic drive unit.

2.5 Patch Panels

The only time the patch panels are used in the automatic mode is for selecting exciter 1 or 2 to be used as the calibration exciter. The plugs should connect points 21-22 for exciter 1 and points 45-46 for exciter 2 on Patch Panel 1 (Figure 2-1).

2.5.1 Patch Panel Circuit A for Manual Operation. The system can also be operated in a manual mode by use of the patch panels. For manual operation, the oscillator is in the manual mode with the desired frequency selected on the front panel of the oscillator. The output should be set for 5 to 10 volts. The acceleration level of the exciter is then controlled by the gain potentiometer of the power amplifier. For the manual equivalent of circuit A described above, additional plugs and patch cords are needed in Patch Panel 1: 1-2*, 7-8, and 22-23 for exciter 1, or 46-47 for exciter 2. To obtain RI use a plug to connect 9-10 and for RII connect 33-34. Cable 36 will have to be disconnected from point J on the junction box, the oscillator switched from auto to manual, switches S1 and S2 opened or their cables disconnected, and the DVM switched to ratio on the front panel. By adjusting the volta divider until the RI equals the magnitude of the standard accelerometer sensitivity, the RII will equal the test accelerometer sensitivity. Example: If the standard accelerometer sensitivity $S_{Std} = 20.09 \text{ mV/g}$, then by adjusting the voltage divider until RI = 20090 on the DVM, RII will be the test accelerometer sensitivity, RII = 18532, and S_{Test} = 18.53 mV/g.

*1-2, etc., indicates a connection between points 1 and 2 in figure 2-1.

2.5.2 Patch Panel Circuit B for Manual Operation. For circuit B manual operation, the plugs and patch cords are removed. Plugs or patch cords are used to connect points 1-10, 32-33, and 22-23 for exciter 1 or 46-47 for exciter 2. Cable 36 will be disconnected from point J and cable 8 will be disconnected from point I of the junction box to take the computer controlled relays out of the circuit. The oscillator will be switched from auto to manual, switches S1 and S2 opened or their cables disconnected, and the DVM switched to ratio on the front panel. The voltage divider is not used in this circuit. This circuit is set up for RII. Only RII data are taken. The test sensitivity must be computed in this case from the following equation

$$S_{Test} = \frac{S_{Std}}{RII}$$
.

TABLE 2-1. Hardware Components

Minicomputer

Teletype

Magnetic Tape Drive

Signal Junction Box (Relay Controlled)

Patch Panels 1 and 2 (Manual)

Test Equipment Controlled by Computer:

- 1 Digital voltmeter
- 1 Digital oscillator
- 1 Frequency counter
- 1 X-Y Plotter

Support Test Equipment:

- 3 Panel voltmeters
- 1 Power amplifier
- 2 dc voltage amplifiers
- 1 Manual capacitor bank
- l Voltage divider
- 1 Cathode follower
- 1 Phase meter

Test Equipment Controlled by Computer Controlled Relays:

- 2 ac/dc converters
- *1 dc power supply
- 1 Capacitor bank (16 capacitor)
- 1 Oscilloscope
- *1 Wave analyzer

^{*}Equipment for future expansion of system to measure distortion.

BLOCK DIAGRAM OF AUTOMATED ACCELEROMETER SYSTEM FIGURE 2-2.

FIGURE 2-4. SIGNAL JUNCTION BOX PART 2

FIGURE 2-5. IMPEDANCE MATCHING CAPACITOR BANK SCHEMATIC 2-ô

FIGURE 2-6. SCHEMATIC OF AUTOMATED ACCELEROMETER SYSTEM

2.6 Magnetic Tape Drive

The digital magnetic tape drive is a nine-track 800-bpi (315-bpc) read after write version. The speed is 25 inches per second (63.5 cm per second) in both the forward and reverse directions. Tape capacity is 2400 feet (731.5 m) of 1/2 inch, 1.5 mil (1.27 cm, 0.038 mm) computer tape on standard 10-1/2 inch (26.67 cm) IBM compatible reels.

2.7 Exciters

Two Dimoff air bearing exciters are shown in figure 2-8. These are described in references 3 and 4. These exciters are calibrated by absolute methods of reciprocity and interferometry as described in references 1, 2, and 5. The exciter 2 has a frequency range of $10~\rm Hz$ to $10,000~\rm Hz$ and the exciter 1 has a frequency range of $10~\rm Hz$ to $5000~\rm Hz$. They employ ceramic moving elements, air bearings, and permanent magnets.

2.8 Interfaces

- 2.8.1 <u>DVM Interface</u>. The interface has the ability, under program control to:
 - 1. Select volt or ratio function,
 - 2. Command DVM to convert, and
 - 3. Read polarity code; five digits, and range code from the DVM. The polarity and data digits are converted, in the interface, to ASCII codes.

A priority interrupt circuit is included which, if enabled, will interrupt the processor when service is required. The Print Command line from the DVM will generate an interrupt when data are available to be read.

Program Notes

- 1. Strap options provide for the selection of any device address from X'00' to X'FF'.
- 2. Control functions are executed via OC (Output Command) instructions:

Bit •	0	1	2	3	4	5	6	7
Command	DIS	EBL	CNVT	CCTR			RATIO	VOLT

- DIS Disables device interrupt from interrupting the processor. This does not prevent an interrupt from being queued up in the ATN (Attention) FF (Flip-Flop).
- EBL Enables device interrupt.

- CNVT Commands the DVM to perform a conversion of its inputs.
- CCTR Clear the Read Steering FF's (This counter controls the sequence of data being read).
- RATIO Selects ratio function of the DVM.
- VOLT Selects the voltage function of the DVM.
- 3. The Print Command line can also be interrogated via an SS (Sense Status) instruction. This function appears on the BSY (Busy) line (bit 4). When set to a "1" the DVM will be in the process of a conversion. When set to a "0" the DVM has completed its conversion and data are available to be read.
- 4. Data can be transferred to the processor via RD (Read Data) instruction. Data are read by five consecutive RD's. The Read Steering flip-flops must be reset before each Data Transfer.

The order of data transfer is as follows:

Polarity
Ten-thousands digit
Thousands digit
Hundreds digit
Tens digit
Units digit
Range code

- 5. The System clear signal will:
 - a. Clear address FF,
 - b. Clear the ATN FF,
 - c. Disable Interrupts,
 - d. Set the BSY FF, and
 - e. Clear the Read Steering FF's.

Hardware Components

1. The DVM Interface consists of:

1 ea. NBS DVM SK-148 2 ea. I/O Cables (14 pr) 17-002F01 1 ea. I/O Cables (8pr) 17-037

Table 2-2 shows the connection pin numbers.

TABLE 2-2. NBS DVM Cabling

2.8.2 Frequency Counter Interface. The counter may be operated in the preset, rate, time or ratio modes by operation of controls on the counter. The interface provides "read into memory" circuitry for the five digits of the display. The "read in" is accomplished by execution of consecutive RD (Read Data) instructions in the program. An "end of count" signal is generated by the counter which is used by the controller to initiate the "read in" sequence or interrupt the processor so that appropriate program strategy may be applied.

Programming Considerations

The following table shows the "Output Command" and status structure of the interface:

Command	Bit	Status
DISABLE INT.	0 1	
*INITIALIZE START COUNT STOP COUNT	3 4 5 6 7	** BUSY

^{*} In the initialize state, the counter is stopped and the display reset.

Hardware Components

The counter interface board may be plugged into any I/O slot in the expansion card file. The strap lead from 214-0 to 114-0 should be removed from the wiring side of the slot chosen. The counter cabling connections are given in Tables 2-3 and 2-4.

^{**} The controller recognizes a busy condition during all counter functions.

TABLE 2-3. Counter Cabling
DIGITAL OUTPUT CONNECTIONS

Desig.	MB Term.	Back Panel	Connection	Counter Digital Output Connection
DIU11 DIU21 DIU41 DIU81 DIT11 DIT21 DIT41 DIT81 DIH11 DIH21 DIH41 DIH41 DIH81 DITH11 DITH21 DITH41 DITH21 DITH41 DITH81 DITH41 DITH81 DITT11 DITT21 DITT41 DITT21 DITT41 DITT81 EOC1 GND	10-40 20- 30- 40- 50- 60- 70- 11- 21- 31- 41- 51- 61- 71-40 10-41 20- 30- 40- 50- 60- 70-41 00-40	J04-1	P04-1	1 2 26 27 3 4 28 29 5 6 30 31 7 8 32 33 9 10 34 35 47 50

REMOTE RESET CABLE

RST1 11-42 J08 P08 EXT. TEST BNC CONN.	RST1	11-42	J08	P08	
--	------	-------	-----	-----	--

TABLE 2-4. Counter Cabling
REMOTE PRESET CONNECTIONS

Desig.	MB Term.	Back Panel	Connection	Remote Preset Connection
U11	10-40	J06 - 1	P06-1	1
U21	20-	-2	-2	2
U41	30-	-3	-3	26
U81	40-	-4	-4	27
T11	50-	-5	-5	3
T21	60-	-6	-6	4
T41	70-	-7	-7	28 .
Т81	11-	-8	-8	. 29
H11	21-	-9	-9	5
H21	31-	-10	-10	6
H41	41-	-11	-11	30
Н81	51-	-12	-12	31
TH11	61-	-13	-13	7
TH21	71-40	J06-14	P06-14	8
TH41	10-41	J07-1	P07-1	32
TH81	20-	-2	-2	33
TT11	30-	-3	-3	9
TT21	40-	-4	-4	10
TT41	50-	-5	-5	34
TT81	60-	-6	-6	35
P10	70-	-7	-7	44
GND	00-41	J07-15	P05-15	50

2.8.3 Relay Interface. This interface provides computer control of 32 relays via two Control Line Modules. The relays to be controlled consist of 20 single-pole normally open contacts and 12 double-pole normally open contacts. The normally closed contacts of all relays are available on a provided cable.

A 32-bit memory location is loaded with the condition of the 32 relay contacts. For normally open operation, a "one" bit in its associated memory bit location will close the contact. The "memory image" of the relay contacts is updated via the program. A "write data" instruction must be issued for each set of eight relays. Therefore, four consecutive WD (Write Data) instructions will update the 32 contacts. An "output command" instruction to one of the Control Line Modules will open all 16 contacts associated with the module. Where normally closed contacts are used, the OC (Output Command) instruction will leave the contact in a closed state. Since 16 relays are controlled by each Control Line Module, two consecutive device numbers have been chosen for the two modules. See tables 2-5 and 2-6.

Mechanical Considerations

The relays are located in a special unit mounted in the system cabinet. Cables connect the control lines to the relay chassis. The relay chassis contains its own power supply (+24V) for coil voltage and the relays are plugged into sockets for ease of replacement. The contact lines are brought to the back panel of the cabinet to 15 pin connectors. (See table 2-5).

The Control Line Modules may be placed in any two adjacent I/O slots. The device numbers chosen for the two modules are X'71' and X'72'.

2.8.4 Oscillator Interface. The Oscillator Controller is a special controller used exclusively with the oscillator for converting four data bytes to the necessary signals to control amplitude and frequency output of the oscillator. The controller uses a general purpose Input/Output Mother Board SK-174, and a general purpose Mother Board SK-175.

The Controller provides 31 data output lines and one clear line to the oscillator. The 31 data lines each have a storage flip-flop which will hold the data for 15ms after the fourth "write data" instruction. The clear line operates in the same manner if cleared by data configuration.

Also provided are one active status line which is active for 15ms following the fourth data byte, and one priority interrupt line which will be activated by an illegal code only.

TABLE 2-5. Relay Banks' Pin Connectors

		N	N	Pools Donal	Dd - No	D4- Na	Dd - No
Relay	Swinger	Norm.	Norm.	Back Panel	Pin No.	Pin No.	Pin No.
		Open	Closed	Connection	Swinger	NO	NC
	, new 1	2701	NO.1	7/42		0	_
R1	DPT1	NO1	NC1	J(A)	1	2	3
	DPT2	NO2	NC2		6	. 5	4
R2	DPT1	NO1	NC1		7	8	9
	DPT2	NO2	NC2		12	11	10
R3	DPT1	NO1	NC1		13	14	15
	DPT2	NO2	_ NC2		18	17	16
R4	DPT1	NO1	NC1		19	20	21
	DPT2	NO2	NC2		24	23	22
R5	DPT1	NO1	NC1		25	26	27
	DPT2	NO2	NC2		30	29	28
R6	DPT1	NO1	NC1		31	32	33
110	DPT2	NO2	NC2		36	35	34
R7	DPT1	NO1	NC1		37	38	39
107	DPT2	NO2	NC2		42	41	40
R8	DPT1	NO1	NC1		43	44	45
KO	DPT2	NO2	NC2		48	47	46
R9	DPT1	NO1	NC1	J(A)	49	1J(B)	2J(B)
K)	DPT2	NO2	NC2	J(B)	5	4J(B)	3J(B)
P10	DPT1	NO1	NC1		6	7	8
R10	DPT2	NO2	NC2		11	10	9
70.4.1	DPT1	NO1	NC1		12	13	14
R11	DPT2	NO2	NC2		17	16	15
710	DPT1	NO1	NC1		18	19	20
R12	DPT2	NO2	NC2		23	22	21
R13	SPT1	NO1	NC1		38	40	39
R14	SPT1	NO1	NC1		41	43	42
R15	SPT1	NO1	NC1		44	46	45
R16	SPT1	NO1	NC1	J(B)	47	49 -	48
R17	SPT1	NO1	NC1	J(C)	1	3	2
R18	SPT1	NOI	NC1		4	6	5
R19	SPT1	NO1	NC1		7	9	8
R20	SPT1	NO1	NC1		10	12	11
R21	SPT1	NO1	NC1		13	15	14
R22	SPT1	NO1	NC1		16	18	17
R23	SPT1	NO1	NC1		19	21	20
R24	SPT1	NO1	NC1		22	24	23
R25	SPT1	NO1	NC1		25	27	26
R26	SPT1	NO1	NC1		28	30	29
R27	SPT1	NO1	NC1		31	33	32
R28	SPT1	NO1	NC1		34	36	35
R29	SPT1	NO1	NC1		37	39	38
R30	SPT1	NOI	NC1		40	42	41
R31	SPT1	NO1	NC1		43	45	44
R32	SPT1	NO1	NC1	J(C)	46	48	47
K)Z	3111	NOI	HCI	3 (0)	40	70	,
		L	L				L

Note: Pin Number 50 of J(A), J(B), and J(C) is ground.

TABLE 2-6. Relay Banks 1 and 2 Coding Format

CONTROL LINE	RELAY		BIT					
	Device X'71'							
CL000 CL010 CL020 CL030 CL040 CL050 CL050 CL060 CL070 CL080 CL090 CL100	R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11	DPDT	0 1 2 3 4 5 6 7 8 9					
CL110 CL120 CL130 CL140 CL150	R12 R13 R14 R15 R16	SPDT +	11 12 13 14 15					
CL000 CL010 CL020 CL030 CL040 CL050 CL060 CL070 CL080 CL090 CL100 CL110 CL120 CL130 CL140 CL150	R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32	SPDT	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15					

TABLE 2-7. Oscillator Cabling

Signal	MB Location	Back Panel Location		Program Input Connection
OSCLRA OPE 311 301 291	50-42	P8-5	J8-5	2-7-12-17-27-32-37
	40-	-4	-4	38
	30-	-3	-3	39
	20-	-2	-2	40
281	10-42	P8-1	J8-1	41
271	71-41	P7-14	J7-14	33
261	61-	-13	-13	34
251	51-	-12	-12	35
241	41-	-11	-11	36
231	31-	-10	-10	28
221	21-	-9	-9	29
211	11-	-8	-8	30
201	70-	-7	-7	31
191	60-	-6	-6	18
181	50-	-5	-5	19
171	40-	-4	-4	20
161 151 141	30- 20- 10-41	-3 -2 P7-1	↓ -3	21 13 14
131	71-40	P6-14	J6-14	15
121	61-	-13	-13	16
111	51-	-12	-12	8
101	41-	-11	-11	9
091	31-	-10	-10	10
081	21-	-9	-9	11
071	11-40	-8	-8	3
061	70-	-7	-7	4
051	60-	-6	-6	5
041	50-	-5	-5	6
031	40-	-4	-4	24
021	30-	-3	-3	23
OPE 011	20-40	-2	-2	22
Ground	81-40	P6-15	J6-15	1
Ground	81-41	P7-15	J7-15	1
Ground	81-42	P8-15	J8-15	1

Oscillator Interface Specifications

Output Signals

Logical zero is $-13.5V \pm 2V$ at 0.0ma. Logical one is $0V \pm 0.5V$ at 4ma.

Input Signals

Logical zero is $0V \pm 0.5V$ at 1.2ma. Logical one is $5V \pm 2V$ at 0.0ma.

Programming Notes

Any command to the controller will clear the controller resulting in no change in device output. Data are transferred to the device via "write data" or write block instruction of four bytes.

First Half-Byte (least significant four bits of first-byte) This half-byte is variable from X'0' to X'9' to control the oscillator amplitude in steps of 0.01V rms per step. X'0' = no output. X'1' = 0.01V rms output. X'9' = 0.09V rms output. Decodes from this half-byte of X'A' through X'F' are illegal and will result in an interrupt being generated. (See byte four most significant bit for exception).

Second Half-Byte (most significant four bits of first-byte) Used to control the amplitude in steps of 0.1V rms per step. X'0' = no output, X'1' = 0.1V output, and X'9' = 0.9V output. Output is additive to first half-byte. X'A' through X'F' have the same properties as described in first half-byte.

Third Half-Byte (least significant four bit of second-byte) Used to control the output in steps of 1.0V. X'0' = 0V output. X'9' = 9V output. Output is additive to the first byte X'A' through X'F', as previously described.

Fourth Half-Byte (most significant four bits of second-byte) Used to control the output frequency in steps of 0.1 Hz per step from X'0' to X'9'. X'A' through X'F', as previously described.

Fifth Half-Byte (least significant four bits of third-byte) Controls output frequency in steps of 1.0 Hz per step as described above.

<u>Sixth Half-Byte</u> (most significant four bits of third-byte) Controls output frequency in steps of 10.0 Hz per step.

Seventh Half-Byte (least significant four bits of fourth-byte) Controls output frequency in steps of 100.0 Hz per step.

<u>Eighth Half-Byte</u> (most significant four bits of fourth-byte) Controls the multiplication factor of the last four half-bytes. X'l' = multiplication factor of 1.0. X'l' = multiplication factor of 100.0. One of these numbers must be used for correct operation.

Any number less than X'8' and not specified here is illegal and will result in an interrupt being generated. If this byte is \ge X'8' (most significant bit = one), none of the illegal codes will be recognized, and the oscillator will be cleared resulting in no output. No interrupt will be generated. This bit may, therefore, be used as a wait bit or clear bit. The device will also be cleared by the console initiate. The device may have an address of X'00' through X'FF' by use of the address strap option.

Hardware Components

l ea.	Oscillator Controller Module	Part SK-174
l ea.	Oscillator Controller Module	Part SK-175
3 ea.	General Purpose I/O Cables	Part 17-002

Table 2-7 shows the oscillator cabling.

2.8.5 $\underline{X-Y}$ Plotter Interface. The SK-149 X-Y plotter interface is designed to interface to the X-Y plotter. The interface has the ability, under program control to:

- 1. Output ± 10 volts to ± 10 volts coordinates on the X and Y inputs to the plotter
- 2. Output Y coordinates, only for the time Y mode
- 3. Output both X and Y coordinates simultaneously in the X-Y mode
- 4. Trigger the trace in the time Y mode, and
- 5. Control the Pen-up/Pen-down function.

The interface also contains a priority interrupt circuit which, if armed, can interrupt the processor for service. Two interrupt functions are provided:

- 1. Internal clock interrupt which can generate an interrupt approximately every 20ms. This interrupt is under control of the ARM function.
- 2. An external interrupt line which will interrupt the processor on the transision from the "0" state (0V \pm 0.5V, 1.2ma) to the "one" state (5V \pm 0.5V).

This interrupt line is not under control of the ARM function; but the function should be put into the DISARM state to prevent multiple interrupts from the internal clock.

Program Notes

- 1. Strap options provide for the selection of any device address from X'00' to X'FF'.
- 2. Control functions are executed via OC (Output Command) instructions. The command structure is as follows:

Bit 0 1 2 4 5 6 7 TIME X-Y TRG INIT DIS Command ARM DOWN UP

TIME - Puts the controller in the Time-Y mode.

X-Y - Puts the controller in the X-Y mode.

TRG - Generates a Trigger Command to the plotter for the Time-Y mode.

INIT - Initializes the controller: lifts pen; disarms interrupts;
 clears the write steering FF; clears the ATN FF; puts controller
 in the T-Y plot mode.

DIS - Disarms internal clock interrupt.

ARM - Arms internal clock interrupt.

DOWN - Lowers the pen to the paper.

UP - Raises the pen from the paper.

3. The X-Y coordinate are controlled by WD (Write Data) instructions. Four consecutive WD instructions (initially the data steering FF must be cleared) are necessary to update the X-Y coordinate:

WD DEV, Y DATA
WD DEV, Y DATA +1

WD DEV, X DATA

WD DEV, X DATA +1

The DATA layout is as follows:

2 3 5 7 0 1 Y/X DATA SIGN MSD -2 3 4 5 7 1 6 0 → LSD Y/X DATA + 1

In the Time-Y mode only two WD's are necessary per point. The ten bit resolution provides plotting steps of 19 millivolts. The DAC is accurate to within the least significant bit.

4. The time interval between the output of points or the pen state changes must be facilitated with the interrupt. For example: the maximum tracking velocity of the plotter is 15 inches per second, or approximately 70 milliseconds per inch. Using the 20-ms interrupt, the pen can traverse approximately 2/7 of an inch per interrupt. If it is desired to plot a line two inches long, it will take eight (7+1, for safety factor) interrupts before the line is completed.

For the pen to go from the down state to the up state, two interrupts are needed for completion. For the pen to go from the up state to the down state, four interrupts are needed.

Hardware Components

1. The SK-149 interface module consists of:

1 ea.	X-Y Plotter Interface Board	SK-149
1 ea.	10 Bit Dual Chan DAC	35-074F04
l ea.	Cable	17-037
2 ea.	Coax Cables	17-055F01

- 2. The two boards may be inserted into any two available adjacent I/O slots in the expansion card file, with the DAC to the left (facing front) of the controller board. Rack/Tack strap must be removed from these slots.
- 3. On the DAC board the upper coaxial connector is the X-Channel and the lower is the Y-Channel.
- 4. X-Y Plotter Cabling

From	То
J9-8	J102A
J9-9	B
J9-11	C
J9-15	D

2.9 Calibration of the System

For calibration of the ratio readout system, plugs connecting points 3-4, 5-6, 11-12, 17-41, 18-42 are removed. Plugs and patch cords for points 41-8, 42-4, 5-12, and 36-53 are connected. This will give a circuit shown in figure 2-9. Cable 36 from point J and cable 8 from point I of the junction box are disconnected. Switch the oscillator to manual and open switch S1.

The following procedure has proven reliable for calibration purposes. Set the oscillator for 100 Hz, 5 V rms output. Adjust the voltage divider for 70 mV rms on the input to the test converter (meter 1). Using some transfer voltmeter such as a high quality differential voltmeter, check the accuracy of the test converter (1 V range) by switching the DVM to the voltage mode. If the ac/dc converter is in error, adjustments can be made by adjusting R37, R35, C18, and C23 as explained in its instruction manual. After the 100 Hz point is checked, switch the oscillator to 10,000 Hz and check the accuracy at this frequency. High and low frequency adjustments can be

FIGURE 2-9. CALIBRATION CIRCUIT SCHEMATIC

made on the ac/dc converter. After this adjustment, switch back again to the 100 Hz point and recheck the accuracy. Switching back and forth between low and high frequency points several times may be necessary as there is some interaction between the two adjustments. After the accuracy has been established at the two extremes, a check should be made at the midpoints and at 10 Hz, 30 Hz, and 50 Hz to ensure accuracy over the entire frequency range. In case adjustment cannot bring the ac/dc converter into 0.1 percent of reading accuracy with these adjustments, converter performance is no longer acceptable and it will be necessary to repair the converter. The errors in the converters are the limiting factors in the overall accuracy of the system.

Now switch to the ratio mode and compare the DVM ratio with the voltage divider setting. Do the same kind of adjustment on the reference converter (10 V range) at 100 Hz and 10,000 Hz to bring the voltage divider settings and the DVM ratio to 0.1 percent agreement.

In addition to the 70 mV rms on the input to the test converter, the accuracy of the system should also be checked at levels from 14 mV to 1 V rms to ensure amplitude linearity. The 14 mV rms lower level is established for a 10 mV/g accelerometer. For a 2 g calibration, the rms voltage will be approximately 14 mV rms. Now the system should be in calibration on the 1 V rms range. Because the 10-V rms range on the signal converter is used occasionally, the 10-V range should be checked also using the same procedure as given above for the 1-V rms range. This calibration need not be done above 4 V rms because for a voltage greater than approximately 4 V rms the inverse circuit (circuit b) is used.

From a user's standpoint, a calibration once a month is good practice. Time involved for a calibration is usually about 20 minutes.

Also, periodically, the input from the standard accelerometer is connected to both the reference and the test input and a calibration run by computer control. The sensitivities typed out should agree with the calibration factors of the standard accelerometer at the test frequencies.

3. SOFTWARE

3.1 Computer Capability

The minicomputer has 16 general purpose registers, each 16 bits in length. These registers are available for use as accumulators and all sixteen can be used as index registers. The computer has high speed arithmetic hardware options of fixed point Multiply/Divide and Read Block/Write Block capabilities.

Two methods of programming I/O (Input/Output) are available:

- 1. Interrupt Controlled by priority level as determined by relative plug position of device mother boards, or
- 2. Sense status basis.

Most of the programming for the I/O in the automated system is of the sense-status type since great speed is not required and the software is somewhat easier to write for this type. In this method the device to be serviced is interrogated for a device busy bit and the program continues in this sense-status loop until the device is available as shown in figure 3-1. In the interrupt method, the computer can be interrupted to service a device instead of waiting in a sense status loop.

In the present program, all coding has been in machine language using hexidecimal notation. This makes for efficient use of core space and for ease in programming I/O instructions.

3.2 Software Philosophy

The basic design philosophy in the automated accelerometer calibration system was twofold; first, to provide an accurate and reliable system for accelerometer calibration utilizing state-of-the-art techniques and equipment. Speed of calibration is of some importance since sufficient data for statistical analysis are desirable. However, accuracy must not be sacrificed for the sake of a quick calibration. Secondly, the design should make use of techniques in such a manner that the software of the system assumes the responsibility for control and decisions as much as possible, leaving the operator of the system free for other tasks. The operation of running the system can be carried out at the technician level. The operator technician should be able to make small changes in the system such as changes in the DATA BLOCK described in the next section. He should be able to reload the core from the magnetic tape, and make use of the HALT and STOP features described below. But, he should not have to make major changes in the operating programs. The software should be flexible enough to accommodate any accelerometers that may need calibration.

The quality of data collected may vary with the accelerometer under test. Variations in accelerometer and signal conditioning circuits may result in varying noise conditions and settling times. In the software for this system, this is taken into account and the quantity of data collected will vary from one accelerometer to another. Details of this procedure are found in the Multiple Readings (Section 4.38) program.

3.3 Data Block

The program has been organized about the current test point as found in the Data Block (core location 1400). This data block consists of control constants for all the test points to be performed. Each test point occupies 6 bytes. The organization of this table is shown in figure 3-2. The first four bytes contain the frequency data. The coding for the four bytes to program the frequency is as follows:

0		1		2	3	
	100 Hz	10 Hz	1 Hz	0.1 Hz		Multiplier

Example: 0010 0001 is the code for 10 Hz. The last digit is the multiplier which is either 1 or 2. Example: 0998 2002 is the code for 9982 Hz.

Bytes 4 and 5 shown in figure 3-2 give the oscillator voltage necessary for this test point in millivolts for exciter 2. This voltage is trimmed each time the program goes through the Acceleration Level Set program. The new voltage value will then replace the old one in this table. Bytes 6 and 7 are the same information for exciter 1. Bytes 8 and 9 give the capacitor coding to set the relay bank 2 for the proper impedance matching network (see Section 4.15.1) for exciter 2. Bytes C and D are the same information for exciter 1. Bytes A and E and E and F give the desired millivolt output from the standard accelerometer for exciter 2 and 1 respectively. These values may easily be changed by use of the monitor to obtain different acceleration levels. Several sets of Data Block constants are saved on paper tape for convenience in quick changeover of desired acceleration levels.

If the total number of test points is to be changed, the contents of the following core locations must be changed. Location OE8E contains a constant for exciter 2 and location OE9O contains a constant for exciter 1. The constant must be four times the number of test points. The constant must be in hexidecimal notation. In the program given in this report, the exciter 1 constant is 0064 (25 test points) and for exciter 2 the constant is 0094 (37 test points).

3.4 Start 1, Start 2

The program for automatic calibration of accelerometers starts with either the Start 1 or Start 2 programs. These correspond to exciter 1 or exciter 2. The summary flow chart for the automated system is shown in figure 3-3. The read Ratio I and Ratio II are handled by the Multiple Readings and Digital Filter Subroutine (see Section 4.39) which regulates the number of readings based upon the scatter in the data. The individual programs are described in the listing at the end of this software section. The more complicated programs have flow charts accompaning them.

FIGURE 3-1. Sense Status Loop.

1400	1	7	9	8	А	ပ	ᄓ
	First Test	Exciter 2	Exciter 2 Exciter 1	Exciter 2 Exciter 1 Exciter 1	Exciter 2	Exciter 1	Exciter 1
Pt. 1	ל חפיים ל	Voltage	Voltage	Capacitor Code	Desired Voltage	Capacitor Code	Desired Voltage
1410 Test	Second Test Frequency						
1					-		

FIGURE 3-2. Data Block Format.

1640 Test Pt. -

3.5 Halt and Stop Features

The HALT feature permits the operator to type an H character on the TTY after a test frequency has been typed by computer control. This activates a program which, after the completion of the current test point, will cause the program to halt but leave the exciter energized. The computer will continue in the HALT mode until the execute button is pushed on the computer console whereupon the program will continue with the next test point.

The STOP feature is similar in that when the S character is typed the computer will halt after completion of the current test point. In this case however, the program will start over with the first test point when the execute button is pressed. Also, an extra line feed is programmed to separate the two sets of data.

3.6 Provisions for Automatic Selection of Circuits and Automatic Ranging of Test Equipment

The voltage ratio circuit can be either circuit a or circuit b as explained in the hardware section. The software selects one of these two circuits to obtain voltage ratio data. The program which selects this circuit is the Check For Inverse Flag and Set Relays. The circuit chosen is based upon the test accelerometer sensitivity as explained in Section 2.

The automatic ranging of the ac/dc voltage converters is also selected by the software. Only the test ac/dc converter range needs to be automatic. The range is normally one volt full scale but switched to ten volts full scale, if needed. The range selection is accomplished by a relay either open or closed (See Section 4.38). The reference converter is always at 10 volts full scale and the DVM is always at 10 volts full scale range.

The ac/dc converters mode (Slow or Fast) is also set by the software. For frequencies greater than 100 Hz, they operate in the Fast mode; otherwise, they operate in the Slow mode.

The DVM function (either ratio or voltage) is selected by the software. The voltage mode is used to monitor accelerometer voltage levels for setting the acceleration levels, whereas the ratio mode is used for all other data collection. The function selection is provided as a part of the DVM interface package (see Section 2.8.1).

4. SOFTWARE PROGRAM DESCRIPTIONS

This section is a listing of programs by core location sequence. A description of each program and a flow chart for the more complicated ones precedes the program listing. The hexidecimal core contents printout was prepared by use of the software monitor. This monitor was developed at NBS for the purpose of programming the subject minicomputer. It occupies approximately 640 bytes of core and is used to enter hexidecimal code directly into core locations. It is also used to punch paper tapes of core locations, read paper tapes, and to type out blocks of core on the TTY.

Figure 3-3 shows a condensed flow chart by program name and location. Figure 3-4*shows a detailed flow chart by type of operation.

The software for the automated system was written in machine language code. At the time this project was started, the higher order languages were not developed for small computers to the extent to make it a practical approach to software. In the present generation of minicomputers, the higher order languages of Fortran and Basic are more fully developed for these machines. In planning for new systems, use of the higher order languages may be practical. However, the system designer should be prepared to invest in larger amounts of memory to handle the higher order languages.

One of the most frequent criticisms of real-time systems using machine language code for programming is poor documentation. Programs written by one person are often quite difficult to understand and modify by another person. For this reason the entire software package is included in this report with documentation for easier understanding of the machine language coding.

The following FLAGS are used throughout the software.

EXCITER (SHAKER) FLAG: This flag tells which exciter is being used for a test. The program must know this in order to know which data to use in the DATA BLOCK since each exciter requires different programming. It is also needed when the test sensitivity is calculated since each exciter has a different calibration for the standard accelerometer sensitivity.

INVERSE FLAG: This flag tells which circuit to use: a or b. For test accelerometers with high sensitivities, circuit b must be used to calibrate the accelerometer.

THRU FLAG: This flag tells the program if the program has cycled "thru" once to check for overranging on the test ac/dc converter. If program has checked for the overrange condition, it does not recheck it again.

LOW/NORM FLAG: If the sensitivity of the test accelerometer is so low that only four digits of significant data can be read (first digit zero on DVM), this flag is set to indicate a LOW signal from the accelerometer. This is used in the computation of the test sensitivity to extend the printout to one extra digit. For example: 9.954 instead of 9.95 mV/g. This feature can be used to regulate the number of digits typed out by adjusting the voltage divider to give only four significant digits on the DVM at the point where an extra digit of typeout is desired.

^{*} This figure is at the end of the report.

STABLE/UNSTABLE FLAG: This flag is set if the data do not meet the program requirements of the Multiple Readings program (see Section 4.39). It indicates the test accelerometer does not meet the stability requirements in this program. In the typeout, it triggers a diagnostic message to be typed beside the sensitivity typeout.

RANGE FLAG: This flag is set for 0001 for a range of one volt on the test ac/dc converter or 0010 for a range of 10 volts on the test ac/dc converter. The range of the converter is needed in the computation of the test sensitivity.

4.1 Hexidecimal-to-Decimal Conversion for Test Sensitivity

This routine takes the test sensitivity in hexidecimal and converts it to decimal for type out. It also calculates where to place the decimal point. Three parameters calculated here are used in the Store Data program. These are:

- 1. Total number of digits to be typed ≡C1 (01A8)
- 2. Number of digits typed before decimal point ≡C2 (01A6)
- 3. C1-C2 = C3 (09E0)

Hexidecimal-to-Decimal Conversion for Test Sensitivity; Set Typeout Constants.

> ON RA, RB, RC, RD, RE

0100	4030	09FA	SAVE	TEST	SENSIT	IVITY		IN ON OUT ON	R3 RA
0104	40E 0	01A4	SAVE	RE				001 011	RC RE
0108	4200	0000	MOP						
0100	C890	2710	LOAD	CONSI	ANTS F	OR CONVE	RSION		
0110	CEEJ	03F8							
0114	CF50	0064							
0118	C270	000A							
0110	0F22		CLEAR	R2 F	OF DIV	ISION US.	E		
011F	0200		NOP						
0120	0029		DIVID	E HEX	. NO. F	Y FIRST	CONST.		
0122	0200		NOP						

PUT QUOT. IN FA (FIRST DECIMAL DIGIT) 0124 08A3 0126 0200 MOP PUT REMAINDER IN R3 0128 0832 012A 0522 CLEAR R2 0120 0028 DIVIDE BY SECOND CONST. 012E 0200 NOP PUT QUOT. IN RB (2 ND. DECIMAL DIGIT) 0130 08B3 0132 0200 NOP PUT PEMAINDER IN R3 0134 0832 0136 OP22 CLEAR R2 0138 4200 0000 NOP DIVIDE REMAINDER BY 3 PD CONST. 0130 0025 NOP 013F 0200 PUT QUOT. IN FC (3 FD. DECIMAL DIGIT) 0140 0803 MOP 0142 0200 PUT REMAINDER IN R3 0144 0932 0146 OP22 CLEAF F2 DIVIDE REMAINDER BY 4 TH. CONST. 0148 0D27 NOP 014A 0200 014C 08D3 PUT QUOT. IN RD (4 TH DECIMAL DIGIT) 014F 0200 NOP PUT REMAINDER IN RE (5 TH DECIMAL DIGIT) 0150 08E2 0152 0B 44 CLEAR R4 0154 4540 09F6 WAS THE FIRST DIGIT IN RII ZERO?

0158 4330 0168 IF SO GO TO 0168

```
IF NOT, LOAD 3 INTO R2
015C C820 0003
                  STORF IN STORAGE LOC. (# DIGITS PRINTED BEFORE
0160 4020 0146
                                                                  DE
                                                                  PT
                 PRANCH
0164 4300 0170
                 LOAD 2 INTO R2
0168 0820 0002
                 STORE (# DIGITS PRINTED PEFORE DEC. PT.)
0160 4020 0146
0170 4200 0000
                  NOP
0174 4200 0000
                  NOP
                 IS FIRST DECIMAL DIGIT ZERO ?
0178 C5A0 0000
               IF SO PRANCH
0170 4330 0180
                 IF NOT LOAD 4 INTO R2
0180 C820 0004
                 STORE THIS NUMBER ( # DIGITS TO BE PRINTED OUT)
0184 4020 01A8
0188 4300 0198
                  BRANCH
0180 0820 0005
                 LOAD 5 INTO R2
0190 4020 0148
                  STORE THIS NUMPER ( # DIGITS TO BE PRINTED OUT)
                  NOP
0194 4200 0000
0198 40E0 01AA STORE 5 TH. DECIMAL DIGIT FOR LATER USE
019C 4830 01A6
                  LOAD # DIGITS BEFORE DECIMAL PT. CODE
01AO 4300 01AC
                 BRANCH
01A4 00P6
                 STOFAGE LOC. (NOT USED)
                 STOPAGE LOC. ( # DIGITS PFFORE DEC. PT.)
01A6 0005
01A8 0005
                  STORAGE LOC. ( # OF DIGITS PRINTED OUT)
                 STORAGE FOR FITH DECIMAL DIGIT
01AA 0005
                 LOAD INVERSE PATIO FLAG
01AC 4880 09EE
01B0 C580 0000 NOT SET?
OIR 4 4330 OICO IF NOT SET, BRANCH TO CONTINUE
```

01B8 C830 0005 IT IS SET, LOAD 5 INTO R3

OIBC 4030 01A6 STORE THIS MUMBER (#DIGITS BEFORE DEC. PT.)

O1CO 4820 01A8 LOAD CODE FOR # DIGITS TO BE PRINTED OUT

01C4 0F23 SUPTRACT THESE 2 NUMBERS

01C6 0200 NOP

0108 4020 09E0 STORE THIS NUMBER (USED IN STORE DATA IN TABLES)

OICC 4300 1800 GO TO STORE DATA IN TAPLES PROGRAM

4.2 Range Test for Test Accelerometer

This routine activates the exciter for 2000 Hz at 2 g, reads the test accelerometer voltage, and compares this reading to an upper limit. For test voltages below this upper limit the INVERSE FLAG is reset (0000 is stored in core location 09EE), and for test voltages above this limit, the INVERSE FLAG is set (0001 in location 09EE). The INVERSE FLAG will be used later on to determine which ratio circuit will be used for the voltage ratio reading of standard-to-test accelerometer output. The upper limit voltage is set to get the maximum accuracy from the voltage ratio circuit. For the present circuit configuration, the upper limit is 800 mV rms for 2 g peak acceleration at 2000 Hz.

Range Test for Test Accelerometer

01D0 C850 0072	LOAD RELAY PANK 2 DEVICE #
01D4 DA50 1408	SET CAPITANCE AT ZERO
01D@ DA50 1409	
01DC C870 000F	LCAD OSCILLATOR DEVICE #
01F0 CE60 0050	SET INDEX FEG. FOP F=2000 HZ.
01F4 4190 16C0	PAL TO SET UP OSC. CODE
0158 9075	SENSE STATUS OF OSC.
015A 0557	FUSY?
01FC 4230 01E8 ·	IF SO SS AGAIN
OIFO DA76 OCEC	WRITE DATA TO OSC.
01F4 CA 60 0001	ADD 1 TO INDEX
CIF9 C550 0054	HAVE 4 PYTES BEEN WRITTEM?
01FC 4230 01F8	IF NOT, WHITE AGAIN
0200 4200 0000	NOP
0204 CFD0 0004	LOAD 4 INTO RD
020E C830 00CA	LOAD DVM DEVICE ADDRESS

020C DE30 0B24 ENABLE INTERUPTS FOR DVM 0210 9F44 CLEAR INTERUPTS 0212 0200 NOP 0214 0800 0002 LOAD VOLTAGE CODE SET DVM FOR VOLTAGE MODE 0218 7530 001A 0200 NOP ' 0210 0240 0071 LOAD PELAY BANK I DEVICE ADDRESS 0220 C840 0000 LOAD I VOLT FANGE CODE FOR SIG. CONVERTER 0224 CESC OOFS LOAD CODE FOR RATIO I. FAST MODE 0228 30A5 SET RELAYS 022A 9AA4 022C / 190 0E78 PELAY 0230 0896 LOAD INDEX INTO R9 0232 0081 MULT INDEX BY 4. STORE IN R9 0234 4090 0904 STORE CAPACITANCE INDEX IN CORE 0238 4140 10F0 PAL TO CONST. G SUP. 0230 0830 00CA RESTORE DVM DEVICE ADDRESS 0240 0800 0071 LOAD RELAY FAND I DEVICE ADDRESS 0244 C840 C00A LOAD TO VOLT MANGE CODE 0248 0820 0002 LOAD RATIO II CODE 024C 9AC2 SET FELAYS ** 024F 9A 04

0250 4190 OFIE PAL TO MULTIPLE REACINGS OF DVN SUP.

C254 4200 0000 NOP

0258 4200 0000 NOP 025C 9F 95 ACKNOWLEDGE INTERUPTS 025F 0539 IS IT THE DVM? 0260 4230 0250 IF NOT LOOK AGAIN CLEAR R7 0264 OB 77 0266 0200 NOP LOAD LIMIT INTO R9 0268 0890 0005 LOAD INCREMENT INTO F8 0260 0880 0001 READ DATA INTO CORE 0270 0837 0258 DELAY 0274 4120 1010 0278 C170 0270 EXLE (LOOP) 0270 4200 0000 NOP 0280 4190 0500 BAL TO DECODE DVN DATA NOP 0284 4200 0000 0298 4800 0554 LOAD I ST DICLI INTO EX COMPASE IT TO O 028C C 526 COGC BRANCH ON NOT = TO SET INVERSE FLAG 0290 4230 02A4 LOAD DIGITS 2-4 INTO F2 0294 4820 0556 COMPARE TO 8000 (800 MV + VOLTS OF FIRST DIGIT) 0298 C520 8000 RPANCH ON NOT + TO RETURN 0290 4320 0208 0240 4200 0000 NOP RESET RE TO DESIRED STARTING FRED. 02A4 C860 0000 CLEAF INDEX STORAGE AFEA

LOAD 1 (SETS INVEESE FLAG)

02A8 40E0 09C4

02AC C820 0001

02BO 4020 09FE STORE IN FLAG LOCATION IN COFE

02B4 4300 08FC FEIUFN

02B8 APRO ROB2 STOPAGE

02FC F 710 0000 STORAGE

0200 0000

0202 0000

02C4 4200 0000 NOP

0208 0820 0000 LOAD 0 INTO 52 (RESETS INVERSE FLAG)

02CC 4020 09EE STORE FLAG

02DO C860 0000 CLEAR R6 (OF SET FOF DESIRED STARTING FREQ.)

02D4 4300 08A0 GO TO SET RELAYS

FIGURE 4-2. RANGE TEST FOR TEST ACCELEROMETER FLOWCHART

4.3 Check for INVERSE FLAG and Set Relays

This routine checks the INVERSE FLAG. If it is not set, the circuit remains in the a position (see Hardware Section). In this case, the relays are set as described in Section 4.15.

If the INVERSE FLAG is set, this is because the output of the test accelerometer is too high for circuit a and circuit b must be used as described in the Hardware Section of this report. In this case, relay eight must be activated (closed) and the binary code for the relays will be:

0000 0000 1110 0001 for "SLOW" mode, and 0000 0000 1110 0011 for "FAST" mode.

This can be seen schematically in figure 2-6. The solid line with the arrow at the end represents an O condition in the binary coding; a l condition in the binary coding is represented with no line connecting the pins. In this case only RII will be read.

Check for Inverse Flag and Set Relays

0300	4820	0 9F E	LOAD INVERSE FLAG
0304	C520	0001	IS IT SET?
0308	4330	0314	PRANCH ON = IO SET RELAY & FOR INVERSE RATIO
0300	CECO	0001	LOAD RATIO CODE
0310	4300	0A 6 A	GO PACK TO MAIN PROGRAM
0314	4200	0000	NOP .
0318	0000	0001	LOAD FATIO CODE
0310	0030	0071	LOAD RELAY PANK I DEVICE ADDRESS
0320	C 8 4 0	0000	LOAD 1 VOLT CODE
0324	2500	0676	RESTORE R2 (FAST/SLOW CODE)
0328	CA 20	0001	ADD 1 TO SET HELAY 8
0320	42(10)	0000	NOP

0330 9402

SET RELAY FANK I

0332 9404

0334 4200 0000

MUB

0338 4200 0000

NOP

033C 4300 CAP4 CO TO RATIO II PROGRAM

0340 0000

0342 0000

0344 0000

0346 0000

0348 0000

034A 0000

0340 0000

034F C000

0350 0000

0352 0000

0354 0000

0356 0000

0358 1000

6354 1000

FIGURE 4-3. CHECK FOR INVERSE FLAG AND SET RELAYS FLOWCHART

4.4 Check for INVERSE FLAG and Calculate Calibration Factor for Test Accelerometer if Set

This routine determines if the INVERSE FLAG is set (circuit b as outlined in the Hardware Section). If set, the program will calculate the test accelerometer sensitivity and then go to Hexidecimal-to-Decimal routine. If the INVERSE FLAG is not set the program will continue at OAD4.

Check for INVERSE FLAG and Calculate Calibration Factor

	Che	eck for INV	ERSE FLAG and Calculate Calibration Factor
0360	4200	0000	NOP
0364	4820	09FF	LOAD INVERSE FLAG
0368	C 520	0000	IS IT NOT SET?
036C	4330	0A D 4	BRANCH IF NOT SET TO RETURN TO MAIN PROG.
03 70	4200	0000	NOP
0374	4830	09F8	LOAD RII
0379	0200		NOP
03 7A	0200		NOP
037C	4200	0000	MOP
0380	487F	OF 54	LOAD CAL. FACTOR OF STANDARD
0384	C850	03F8	LOAD 1000 OF 10000 (THIS IS SET IN DECODING PROG.)
0388	0F'44		CLEAR R4
038A	0200		NOP
0380	OC 47		MULT. CAL OF STANDARD BY CONSTANT ABOVE
038E	0200		NOP
0390	OD 43		DIVIDE THIS BY RII
0392	0200		NOP
0394	0835		SAVE R5 IN R3
0396	0200		NOP
0398	4300	0100	CONVERT TO DECIMAL
0390	4200	0000	NOP

FIGURE 4-4. CHECK FOR INVERSE FLAG AND CALCULATE S_T IF SET FLOW CHART

Table of Constants
Used in Accelerometer Data Block Entry Program

Note: The following code is part of Section 4.46, Accelerometer Data Block Entry Program.

03A	C64E	D44E	FN	TN
03A4	C341	504D	CA	PM
U3 A 8	504E	5053	P.N	PS
03AC	414D	414E	AM	AN
03B C	4153	C355	AS	СП
03B	4 44C	3 C5B1	DC	Εl
03B 8	C 5B 2	53B1	E2	SI
03BC	53B2	4741	S 2	GA
03C 0	D748	41D4	WH	AT
03C 4	3FAO	8D0A	?	CR,LF
0308	D748	C 9C 3	WH	IC
03CC	483F	8DOA	H ?	CR,LF
03D0	5009	C34B	PI	CK
03D4	5550	A04D	UP	M
03D8	CF44	A 0 4 E	OD	N
03DC	CF3F	8DOA	0?	CR,LF
03E0	414D	50A0	AM	P
03E4	4DCF	44A0	MO	D
03E8	4ECF	3F8D	NO	?C R
03EC	OAAO		LF,	
03EE	0000		·	

4.5 Clear Tables for Accelerometer Data Block

The first program on the following pages is used in the PARTIAL entry mode of the Entry Program (3740). When a parameter is called for in the PARTIAL mode, the existing record space is erased (set equal to 0000 for all bytes) for that parameter. The second program is used in the ALL entry mode of the Entry Program (3740). When ALL is typed in response to the question "All or Partial Changes?", the entire record space is cleared for the parameter entry program.

Clear Tables for Accelerometer Data Block

0400	4200	0000	NOP
0404	0B11		CLEAR RI
0406	0B22		CLEAR R2
0408	4200	0000	NOP
040C	4200	0000	NOP
0410	4012	2800	CLEAR LOCATION (2BOO + (R2))
0414	C520	0100	X = 100?
0418	4330	0424	BRANCH ON = TO EXIT
0410	CA20	0002	ADD 2 TO X
0420	4300	0410	CONTINUE
0424	4300	3790	EXIT CLEAR TAPLES ROUTINE
0428	0000		
042A	0000		
042C	0000		
042E	0000		
0430	4843	38A6	LOAD # BYTES TO BE CLEARED
0434	0B 1 1		CLEAR RI

0436	0B 55	CLEAR R5
0438	4823 38A4	LOAD START LOCATION FOR CLEARING
043C	4200 0000	NOP
0440	D212 0000	CLEAR LOCATION ((R2))
0444	CA50 0001	ADD 1 TO COUNTER 1
0448	CA20 0001	ADD 1 TO COUNTER 2
044C	4200 0000	NOP -
0450	0554	COMPARE COUNTER TO # PYTES TO CLEAR
0452	0200	NOP
0454	4230 0440	BRANCH ON NOT = TO CONTINUE CLEARING
0458	4300 37PC	EXIT CLEAR TAPLES ROUTINE

Table of Messages

 $\underline{\text{Note}} \colon$ The following memory locations are a storage area for messages used throughout the software programs.

P

0460 8DOA 4ECF

0464 A041 4444

0468 C9D4 C9CF

046C 4E41 CCAO

0470 0609 0005

0474 A 0C6 CF55

0478 4E44 A0C6

047C CFD2 A0D4

0480 4809 5340

0484 5009 C34P

0488 5550 9DOA

048C 0000

048E 0000

0490 0000

0492 0000

0494 0000

0496 0000

0498 0000

>

4.6 *Round-Off Subroutine

Called on RE

This subroutine is used for data from the digital voltmeter. DVM gives five digits of data, of which four digits would overload registers in certain operations (addition for example).

Five digit decimal number RO, R1 and core location Entry Requirements:

0554, 0556.

Hexidecimal number equivalent to the decimal entry Output:

number rounded to four digits, output in R3 and

0554, 0556

core location 26EC.

*Round-Off Subroutine

IN ON RO, R1 AND OUT ON R3 AND 26EC 049C 40F0 04F4 SAVE RE 04A0 C500 0000 IS FIRST DECIMAL DIGIT ZERO? BRANCH ON = (<9999)04A 4 4330 04E0 04A8 CD00 000C SHIFT LEFT C BITS 04AC CC10 0004 SHIFT RIGHT 4 BITS 04R 0 0A 10 R1+R0=R1 CLEAR RO 04B2 0B00 04B 4 4200 0000 NOP 04P8 4190 0E9A DECIMAL TO HEX (BACK ON R3) LOAD DECIMAL # (LAST 4 DIGITS) 04RC 4850 0556 PICK OFF LAST DIGIT=D 04C0 C450 000F 04C4 CB50 0005 D-5=R5 BRANCH ON NEGATIVE 04C8 4210 04D0 ADD 1 TO HEX. # 04CC CA30 0001

04D0	4030	26EC	SAVE
04D4	C840	000A	LOAD MULTIPLIER CODE
04D8	4040	04F6	SAVE
04DC	4300	04F8	GO TO EXIT
04E0	4190	0E 9A	DECIMAL TO HEX (R3)
04E 4	4030	26EC	SAVE
04E 8	C840	0001	LOAD MULTIPLIER CODE
04E C	4040	04F6	SAVE
04F0	4300	04F8	GO TO EXIT

O4FC O3OE EXIT

4.7 *ASCII-to-Decimal Subroutine

Call on R9

This subroutine converts five bytes of ASCII code to two half-word decimal code.

Input Requirements: ASCII code in core locations 02B9-02BD.

Output: Decimal code in core locations 0554 and 0556.

*ASCII-to-Decimal Subroutine

500	4200 0000	NOP
0504	D3A0 02F9	LOAD DATA INTO REG'S PA TO BE
05.08	D3E,0 02BA	•
0500	D3CO 02PF	**
0510	D3D0 02RC	
0514	73F0 02PN	
0518	C 440 000F	PICK OFF LAST 4 FITS
0510	C4P0 000F	**
0520	C4C0 000F	
0524	C 4PO 000F	
0528	C 4FC 000F	
0520	0000 0970	SMIFT LIFT 12
0530	3000 0002	SMIFT LEFT 8
0534	CDD0 0004	SHIFT LEFT 4
0538	OABC	FB+RC
053A	CAPD	RT +AD
053C	OAPE	FL +RE

STORE RA (FIRST DIGIT)
STORE RP (LAST 4 DIGITS)
FFTUFN
STOPAGE AREA
••
·

FIGURE 4-5. FIVE BYTE ASCII-TO-DECIMAL FLOWCHART 4-25

4.8 Check for UNSTABLE/FLAG and Type Message if Set

This routine checks the STABLE/UNSTABLE FLAG. This flag is set for either 0000 or 0001 in the Multiple Readings program. This flag indicates that the test accelerometer data fall within the stability requirements or that the data do not fall within the requirements. The data must not show a scatter of more than 0.1 percent to meet the requirements in the Multiple Readings program. In the case of unstable data, a diagnostic is typed out after the calibration factor on the TTY.

Check for UNSTABLE/FLAG and Type Message if Set

05B 0 4810 230E	LOAD STABLE/UNSTAPLE FLAG
05B 4 C510 0000	COMPARE TO O (STABLE?)
05B 8 4330 1020	BRANCH ON = TO LOOK FOR H OR S
05BC 41E0 3478	TYPE OUT MESSAGE
05C0 05D0	STARTING ADDRESS OF MESSAGE
05C2 05E7	ENDING ADDRESS OF MESSAGE
0504 0001	CODE INDICATING ASCII FORMAT
0506 0200	NOP
0508 4300 1020	GO LOOK FOR H OR S
05CC A 0A 0 A 0A 0	STORAGE FOR MESSAGE
05D0 A 0A 0 A 0A 0	
05D4 AOAO AOAO	
05D8 554E 53D4	
05DC 4142 CCC5	
05E0 A053 C947	
05E4 4E41 CCA0	
05E8 A 0A 0 A 0A 0	
OSEC AOAO AOAO	

Storage For Save Registers Subroutine

Saves All Registers Except E

Note: The following memory locations are reserved for the Save Registers Subroutine Section 4.9.

0670	8900	1010	STOFACE
0€74	6300	1510	-
0678	3101	3010	
0670	3901	5010	
CEEU	5571	3010	
0684	7670	9910	
0688	3070	9910	
0650	6771	3911	
DE 90	735!	2312	

4.9 *Save Registers Subroutine (Call on RE)

3 d a 0	4200	0000	NOP					
CEDC	4200	0000	MOP					
06F0	4010	0674	SAVE	F1	IN	LOCATI	O N	0674
06F4	4020	0676	FTC.					
06E8	4030	0678						
06EC	4040	0674						
06F0	4050	067C						
06F4	4060	067F						
OKEE	4070	0680						
n6FC	1001	0688						
0700	2030	0684						
0704	4040	0686						
0708	40F 0	0688						
0700	4000	0684						
0710	4000	0680						
0714	40FC	UESE						
0719	4000	0690						
0710	030E		RETUR	N T	0 0	ALL		
C71E	0200							

4.10 *Restore Registers Subroutine (Call on RE)

0720	4800	0630	RESTORE	RO
0724	4910	0674	ETC.	
0728	4820	0676		
0720	4830	0678		
0730	4940	0674		
0734	4950	0670		
0738	4860	067F		
0730	4870	0650		
0740	708U	0680		
9744	4890	0684		
7748	40 V C	0686		
C 74C	48° 0	0688		
0750	45 C O	9830		
0754	4500	0880		

C75C 030F RETURN TO CALL

0758 48F0 068F

4.11 Calibration Factors Exciter 2

```
0760 1009 1009
0764 1009 1009
0768 1009 1009
0760 1009 1009
0770 1009 1009
0774 1009 1009
0778 1009 1009
0770 1009 1009
0780 1010 1010
0784 1010 1010
0788 1010 1010
0780 1010 1010
0790 1011 1011
0794 1012 1012
0798 1012 1012
0790 1013 1013
07A0 1013 1014
07A4 1014 1014
07A8 1014 0300
```

4.12 Calibration Factors Exciter 1

07E0 2004 2004

07E4 2004 2004

07E8 2004 2004

07EC 2004 2004

07F0 2004 2004

07F4 2003 2006

07F8 2008 2010

07FC 2012 2013

0800 2018 2020

0804 2023 2023

0808 2023 2029

0800 2030 2031

0810 2031 2023

4.13 Start 1

Location 081A is the starting location for the automated accelerometer calibration program for exciter 1. The calibration factors for this exciter are converted to hexidecimal and transferred into the working storage area starting at location 0F54. The RANGE FLAG is reset to 0001 and saved in location 09E4. The SHAKER FLAG is set equal to 140C and saved in location 09C0. Register 6 is cleared for starting the program at the initial frequency.

Start 1

081A	OPFF		CLEAR RF
0810	OBAA		CLEAR RA
081E	0B 00		CLEAR RO
0820	481A	07E0	LOAD SHAKER I CAL. FACTOR
0824	4190	0E 9A	CONVERT TO HEX.
0828	403A	OF 54	STORE IN MAIN PROGRAM
082C	CAAO	0002	ADD 2 TO RA
0830	C5A0	0032	COMPARE TO UPPER LIMIT
0834	4230	0820	IF NOT = GO LOAD ANOTHER FACTOR
0838	4820	0E 90	LOAD CUI OFF FREQ. CODE
083C	4020	OE 8C	STORE CODE
0840	C810	0001	1.0AD 1
0844	4010	0 9E 4	SET PANGE FLAG =1
0848	0B22		CLEAR R2

START 1 (SHAKER 1)

084A 4020 0A02 CLEAR THIS LOC. FOR MAG. TAPE PROG

084E 0200 "NOP

0850 C810 140C LOAD SHAKER I FLAG

0854 4010 09CO STORE

0858 0B66 CLEAR R6 TO START AT FIRST TEST FREQ.

085A 4300 01D0 GO TO SET PELAYS PROG.

4.14 Start 2

Location 085E is the starting location for the automated accelerometer calibration program for exciter 2. This program performs the same function as Start 1 except for setting the SHAKER FLAG equal to 1408.

Start 2

****	START 2 (SHAKER 2)
085E OBFF	CLEAR RF
0860 4820 0E8E	LOAD CUT OFF FREQ. CODE
0864 4020 0E8C	STORE IN MAIN PROG.
0868 OBAA	CLEAR RA
086A 0800	CLEAR RO
086C 481A 0760	LOAD SHAKER 2 CALIBRATION FACTOR
0870 4190 0E9A	CONVERT IT TO HEX.
0874 403A OF54	STORE IN MAIN PROG.
0878 CAAO 0002	ADD 2 TO RA
087C C5AO 004A	COMPARE TO UPPER LIMIT
0880 4230 086C	IF NOT = LOAD ANOTHER FACTOR
0884 C810 0001	SET RANGE FLAG = 1 AND SAVE
0888 4010 09E4	
088C 4200 0000	
0890 OB22	CLEAR R2
0892 0200	
0894 C810 1408	LOAD SHAKER 2 FLAG
0898 4010 0900	STORE FLAG
089C 4300 01D0	GO TO RANGE TEST

- 4.15 Set Relays for Ratio I, Output Oscillator Code, Read Frequency Counter, Type it on TTY
- 4.15.1 Programming Relay Banks 1 and 2. This routine sets up relay banks 1 and 2. Relay bank 1 sets up the electrical circuit for either Ratio I or Ratio II (see figure 1-1). In this program, the relays will be set up to read Ratio I. The Ratio I readings will be:

 $RI = \frac{Standard\ Accelerometer\ Voltage}{Standard\ Accelerometer\ Voltage \cdot G.}$

where G = the gain of the amplifying circuit in figure 1-1.

The hexidecimal code, 00EO, is found in location 08B6. Converting this to binary:

0000 0000 1110 0000

Disregarding the first eight bits, because a Write Data statement uses only the last eight bits, the useful part is:

1110 0000.

The first bit on the left represents the position of relay 1, the second bit of relay 2, etcetera up to bit eight which represents the position of relay 8. In figure 1-1, the schematic of the voltage ratio circuit is given. The relays 1 through 14 are shown. The solid line with the arrow at the end represents a 0 condition in the binary coding, and no line represents a 1 condition in the binary coding.

The binary code for relays 9 through 16 is:

0000 0000,

which indicates that in figure 1-1, relays 13 and 14 are set in the solid line position.

The following table summarizes the coding for relays 1 through 16.

TABLE 4-1. Relay Bank 1 Coding

Relay Number		Code 0	Code 1
1	Connects relay 6 to	Ref. signal 2	Ref. signal 1
2	Connects relay 5 to	Test signal 2	Test signal 1
3	Connects test converter to	Test signal	Ref. signal
4	Connects output of test converter to	DVM input	Wave analyzer
5	Connects test signal to	Relay 3	Wave analyzer
6	Connects reference signal to	Relay 6	
7	Sets ac/dc converters to	"Slow" mode	"Fast" mode
8	Connects reference ac/dc converter input to	Output of amp.	Test signal
9	~~~		
10	Controls polarity of power supply output to wave analyzer circuit (see fig. 2-4)	Negative	Positive
11	See figure 2-4 Power Supply	Disconnected	Connected
12			
13	Reference ac/dc converter range	1 Volt	10 Volts
14	Signal ac/dc converter range	1 Volt	10 Volts
15			
16	Contact for "seek" on oscilloscope	Opens	Closes

Relays 17 through 32 control a bank of capacitors. This is for impedance matching of the exciter drive coil to the power amplifier, and is connected in series between the power amplifier output and the exciter drive coil. The following table gives the values of the capacitors which each relay controls.

TABLE 4-2. Relay Bank 2 Coding

Relay Number	Capacitance (μF)*
17	0.1
18	0.2
19	0.3
20	0.4
21	0.5
22	1.0
23	2.0
24	3.0
25	4.0
26	5.0
27	10.0
28	20.0
29	30.0
30	40.0
31	100.0
32	Shunt

^{*}The binary code of 0 disconnects a capacitor; a code of 1 connects a capacitor. (See figure 2-5.)

The following diagram illustrates the binary coding for the two bytes of code which control the capacitance bank. The number in the boxes is the number of the relay.

																	,
-	17	10	10	20	2.1	22	0.0	~ .	0.5	26	07	00	00	20	0.1	00	
	1/	TØ	19	20	21	22	23	24	25	26	21	28	29	30	31	32	1
-					L	<u></u>					1	i .		1			Ĺ

A 0 code disconnects a capacitor; a code of 1 connects a capacitor. The following examples of the capacitor bank coding are found in the 1400 Data Block Control Constants.

Example 1: at core location 140C, the hexidecimal coding is 0001. This code will mean all capacitors except number 32 are disconnected from the circuit. On the previous chart, relay number 32 is a shunt.

Example 2: at location 147C, the hexidecimal coding is 00A6. This converted to binary is 0000 0000 1010 0110. From the diagram above this is found to mean capacitors corresponding to relays 25, 27, 30, 31 are connected. The capacitor bank is wired so that these selected capacitors are connected in parallel. The capacitance is then the sum in the above example which is $154\mu F$. The total available capacitance is $221.5\mu F$, excluding the shunt.

4.15.2 <u>Programming the Decade Oscillator</u>. The oscillator has the following decade controls:

Voltage: 1 volt increments from 1 to 9 volts

0.1 volt increments from 1.0 to 0.9 0.01 volt increments from 0.01 to 0.09

Frequency: 100 Hz increments from 100 to 900

10 Hz increments from 10 to 90
1 Hz increments from 1 to 9

0.1 Hz increments from 0.1 to 0.9

Multiplier of any of the above: X1, X10, X100.

The oscillator is programmed by four successive Write Data instructions. The coding must be in the following format:

First byte of coding: 0.1 volt increment

0.01 volt increment

Second byte: 0.1 Hz increment

1 volt increment

Third byte: 10 Hz increment

1 Hz increment

Fourth byte: Multiplier, 100 Hz increment

The subroutine at 16CO translates the code of the 1400 DATA BLOCK to the previous format. The first two columns in the 1400 DATA BLOCK entitled "FREQ" are reformated for each test frequency prior to programming the oscillator. This routine programs the oscillator initially. The Constant Acceleration Subroutine (see Section 4.27) programs the oscillator for a desired acceleration level.

4.15.3 Reading the Frequency Counter. To read the frequency counter the following operations are required:

- 1. Execute an output command to start the counter, and
- 2. Sense status of counter and, when "not busy" condition is reached, execute six Read Data instructions.
- 3. The counter can be stopped by an output command to stop.

The code read into computer core is in the ASCII format, which is ready to be sent to the teletype. In the present program, it is desirable to start the counter counting after the initial count is finished in order that the operator can see the current test frequency displayed on the counter (see location 0A30).

Set Relays for Ratio I, Output Oscillator Code, Read Frequency Counter, Type it on TTY

08A0 C830 0004	LOAD COUNTER STOP COMMAND
08A4 4060 09C4	CLEAR INDEX STORAGE AREA
08A8 C800 000E	LOAD COUNTER DEVICE ADDRESS INTO RO
08AC 9E03	STOP COUNTER
OEAE OB33	CLEAR R3 FOR RELAY CODE
08B0 C800 0071	LOAD RELAY BANK I DEVICE ADDRESS INTO RO
08B4 C820 00E0	LOAD CODE FOR RELAY BANK 1
08B8 9A02	WRITE DATA TO RELAY BANK I FOR . RI RATIO
08BA 9A03	//
08BC 0B22	CLEAR R2

08BE C870 000F	LOAD OSCILLATOR DEVICE ADDRESS
08C2 9D75	SENSE STATUS OF OSCILLATOR
08C4 0552	BUSY?
08C6 4230 08C2	IF SO, SENSE AGAIN
08CA 48E0 09C0	LOAD SHAKER FLAG INTO RE (TO IDENTIFY WHICH SHAKE
08CE DA 70 0C80	TURN OFF OSCILLATOR
08D2 DA70 0C80	
08D6 DA70 0C80	
08DA DA 70 0C80	
08DE 4020 09E2	STORE 0000 (USED IN CHECK FREQ. ROUTINE)
08E0 0200	
OBE2 OBAA	CLEAR RA (USED TO OUTPUT CODE TO OSCILLATOR)
08E4 4880 09C4	LOAD CAPACITOR INDEX INTO R8
08E8 40E0 08FE	STORE SHAKER FLAG BELOW TO SET RELAYS
08EC C850 0072	LOAD RELAY BANK 2 DEVICE ADDRESS (FOR CAPACITORS)
08F0 C8D0 0001	LOAD 1 INTO RD
08F4 OADE	ADD 1 TO SHAKER FLAG TO SET RELAYS
08F6 40D0 0902	STORE BELOW FOR OUTPUT TO RELAY BANK 2
08 FA 0200	NOP
08FC DA58 1408	WRITE DATA TO RELAY BANK 2 (CAPACITORS)
0900 DA58 1409	00
0904 4190 1600	BAL TO SET UP OSCILLATOR CODE FOR THIS FREQ.
0908 9D75	SENSE STATUS OF OSC
090@ 0552	BUSY?

090C	4230	0908	IF SO, GO SENSE AGAIN	
0910	DA76	0 C8 C	WRITE DATA TO OSCILLATOR	
0914	0888		CLEAR R8	
0916	0800		CLEAR RO	
0918	4560	0E8C	IS THIS THE LAST TEST POINT?	
0910	4330	OF9E	IF SO, GO RING BELLS, ETC.	
0920	CA60	0001	ADD 1 TO INDEX REGISTER	
0924	4200	0000	NOP	
0928	CAAO	0001	ADD 1 TO OSC. COUNTER INDEX	
0920	C5A0	0004	HAVE 4 BYTES BEEN WRITTEN TO OSC?	
0930	4230	0908	IF NOT, GO WRITE ANOTHER BYTE	
0934	0896		LOAD INDEX REG. INTO R9	
0936	C8AO	0004	LOAD 4 INTO RA	
093A	0 C8 A		R9*RA PUT RESULTS INTO R8,R9	
093C	4090	09C4	STORE CAPACITOR INDEX	
0940	C810	0000	LOAD O	
0944	4010	09EA	CLEAR "THRU"FLAG (USED IN RANGE TEST)
0948	C800	000E	LOAD COUNTER DEVICE ADDRESS INTO RO	
094C	C810	0002	LOAD TTW DEVICE ADDRESS INTO RI	
0950	C830	0004	LOAD STOP COMMAND FOR COUNTER INTO R3	
0954	C840	8000	LOAD START COMMAND FOR COUNTER INTO R4	
0958	4190	0E78	BAL TO DELAY ROUTINE FOR COUNTER	
095C	9 EO 4		STARTS COUNTER	
095E	9009		SENSE STATUS OF COUNTER	
0960	4280	095 E	IF BUSY SENSE STATUS AGAIN	

0964 OBBB	CLEAR RB
0966 C8C0 0001	LOAD I INTO RC (INCREMENT REGISTER FOR LOOP)
096A 08D4	LOAD & INTO RD (LIMIT REGISTER FOR LOOP)
096C DBOB 09B6	READ COUNTER INTO MEMORY
0970 CIBO 096C	BXLE
0974 9E03	STOPS COUNTER
0976 4300 2560	BRANCH TO CHECK FOR PROPER FREQ.
097A C8D0 0006	LOAD 6 INTO RD (LIMIT REGISTER FOR TTW LOOP)
097E C880 0006	LOAD 6 INTO RE
0982 0BBB	CLEAR RB (BXLE REGISTER)
	CLEAR RB (BXLE REGISTER) PUT TTW IN WRITE MODE
	PUT TTW IN WRITE MODE
0984 DE10 0982	PUT TTW IN WRITE MODE
0984 DE10 0982 0988 DAIB 0984 098C 9D1E	PUT TTW IN WRITE MODE OUTPUT TO TTW: CR, LF, FREQ. DATA
0984 DE10 0982 0988 DA1B 0984 098C 9D1E 098E 4280 098C	PUT TTW IN WRITE MODE OUTPUT TO TTW: CR, LF, FREQ. DATA SENSE STATUS OF TTW
0984 DE10 0982 0988 DA1B 0984 098C 9D1E 098E 4280 098C	PUT TTW IN WRITE MODE OUTPUT TO TTW: CR, LF, FREQ. DATA SENSE STATUS OF TTW IF BUSY GO SENSE STATUS AGAIN
0984 DE10 0982 0988 DA1B 0984 098C 9D1E 098E 4280 098C 0992 01.0 0988 0996 0830 0002	PUT TIW IN WRITE MODE OUTPUT TO TIW: CR, LF, FREQ. DATA SENSE STATUS OF TIW IF BUSY GO SENSE STATUS AGAIN BYLE (LOOP FOR TIY PRINTOUT)

STORAGE LOCATIONS

OPDE OASE

09A2 09F2 09A4 0000 09A6 F000 0000 09AA 8000 3340 TEMP. STOP COMMAND 09AE 0000 0980 9400 READ MODE CODE FOR ITY 09B2 9898 WRITE MODE CODE FOR ITY 09B4 8D8A B0B0 CODE FOR CR.LF. FREQ DATA STORAGE 0988 BOB5 BOB0 FREQ DATA STORAGE 09BC B0B0 B000 0900 1408 0000 SHAKER FLAG STORAGE 140C=SHAKER 1, 1408=SHAKER 2 STORAGE FOR R9 (TTY DATA) 09C4 0040 STORAGE FOR R9 (INDEX FOR CAPACITOR CODES) STOR. FOR LOOP COUNTER FOR CONST G. ROUTINE 0906 0005 0908 0000 09CA 0014 STOR. FOR R5 IN SUB. CONST G 09CC 0000 09CE 0000 09D0 0000 TEMP. STOP COMMANDS 09D2 8000 2864 09D6 8000 3320 09DA 0000 ADDRESS OF PSW 09DC 0904

STORAGE FOR R4

09E0 0002	STOR. FOR R5 IN DECODE DATA ROUTINE(TELLS WHERE DEC. PT. IS)
09E2 0000	STOR. FOR COUNTER IN CHECK FREQ. ROUTINE
09E4 0001	STOR. FOR RANGE FLAG FOR SIGNAL CONV. 1 OR 10 RANGE
09E6 000A	STOR. FOR RI (RATIO I DECIMAL)
09E8 8677 0000 09EC 055E	STORAGE FOR RII (RATIO II DEC.) STOR. FOR # TIMES THRU RANGE CHECK ROUTINE STOR. FOR RI (RATIO I HEX.)
09EE 0000	INVERSE FLAG (O=NOT INVERSE; I=INVERSE)
09F0 0000	
09F2 00E0	STOR. FOR R2,R4 (FELAY CODES)
09F4 0000	**
09F6 0000	STORAGE FOR ZERO/NON ZERO FLAG(FIRST DIGIT OF RII
09F8 1B8D 2756	RATIO II (HEX) TEST CAL FACTOR(HEX)
09FC 03E8	NOT ASSIGNED
09FE 2710 0000	NOT ASSIGNED NOT ASSIGNED
0A 02 0000	STORAGE FOR COUNTER IN MAG TAPE PROG.
0A 04 A 400 F 000	TTY UNBLOCK, READ STORAGE FOR R3 IN DEC/HEX /H
0A08 1B8F F000	HEX # IN OPEA ROUTINE NOT ASSIGNED
OA OC 0000	NOT ASSIGNED
OA OE F000 0000	
OA12 F000 0000	
DA16 F000 0000	
OA1A F000 0000	
OA 1E F000 0000	
0A22 F000 0000	
0A26 F000 0000	
0A2A F000 0000	
	9.7

0A

0A

OA 1

OA 7

0A 7

0000 3SAO

0A 3 0	9E 04		TURN COUNTER BACK ON (FOR CONTINUOUS DISPLAY)
0A 32	41AO	1200	BAL TO SCOPE SCALE ROUTINE
0A 36	C840	0000	LOAD RELAY CODE IN R4
0A 3A	C800	0071	LOAD RELAY BANK 1 DEVICE ADDRESS
0A 3E	41E0	1784	BAL TO DETERMINE FAST/SLOW FOR AC/DC CONVERTERS (SETS UP R2)
0A 42	4020	09F2	SAVE R2
0A 4 6	4040	09F4	SAVE R4
0 A 4 A	9A02		WRITE DATA TO RELAY BANK 1
0A 4C	9A 04		•
0A 4E	DE 30	OB 2 4	ENABLE INTERUPT FOR DVM
0A 52	9F44	·	CLEAR PENDING INTERUPTS
0A 5 4	C 8C0	0002	LOAD VOLT CODE
0A 58	9E 3C		SET DVM FOR VOLT READ
0A 5 A	4140	10F0	BAL TO SET ACCELERATION LEVEL
0A 5 E	4200	0000	NOP
0A62	C830	OOCA	LOAD DVM DEVICE ADDRESS
0A 6 6	4300	0300	GO CHECK FOR INVERSE FLAG
0A 6A	9E3C		SET DVM FOR RATIO
0A 6C	4190	1A00	BAL TO MULTIPLE READINGS SUBROUTINE
0A 70	4810	230C	LOAD AVERAGE RATIO I (HEX)
0A 74	4010	09EC	SAVE
0A 78	C810	0001	RESET RANGE FLAG = 1

0A7C 4010 09E4

OA 80 4200 0000

NOP

OA84 4300 OAAO GO TO RII PROGRAM

0000 88 AO

0000 A8 A0

0A8C 0000

0A 8E 0000

0A 90 0000

0000 Se AO

0A 94 0000

0A 96 0000

0000 86 VO

0000 APA

0A 9C 0000

OA 9E 0000

4.16 Set Relays for Ratio II, Calculate Test Accelerometer Sensitivity

4.16.1 Programming Relay Banks 1 and 2. This routine sets up relay bank 1 for Ratio II readings.

RII = Test Accelerometer Voltage Standard Accel. Voltage G

where G is the gain of the amplifying circuit in figure 1-1. The binary code for this will be:

0000 0000 1100 0000 for the "SLOW" position of converters, and 0000 0000 1100 0010 for the "FAST" position of converters.

See figure 1-1 and explanation under Programming Relays for RI for explanations.

4.16.2 <u>Calculation of Test Accelerometer Calibration Factor</u>. The calibration factor for the test accelerometer is given by:

 $S_{\text{Test}} = \frac{\text{RII} \cdot S(\text{Standard})}{\text{RI}}$. RANGE FLAG (0001 or 0010) .

The RANGE FLAG is 0001 if test converter was set for 1 volt full scale and 0010 if test converter was set for 10 volts full scale. This converter range is automatically tested at each test point at the routine at 19AO. If the INVERSE FLAG is set (set at Range Test program 01D0) a different formula is used in the computation of the Test Accelerometer Sensitivity. In this case,

 $S_{\text{Test}} = \frac{(1000 \text{ or } 10000) \cdot S(\text{Standard})}{\text{RII}}$

The multiplying constant is set at 1000 if the LOW/NORM FLAG is 1 and is set at 10000 if the LOW/NORM FLAG is 0. The LOW/NORM FLAG is determined when RII is read; a Ratio II with the first digit of zero sets the LOW/NORM FLAG at 0 and a non-zero digit sets the flag at 1-1. (See Read Data Subroutine location 2000).

Set Relays for Ratio II, Read Ratio II, Calculate Test Accelerometer Sensitivity

0A A 0	C800	0071	LOAD RELAY BANK I DEVICE ADDRESS
0A A 4	41E0	17D8	PAL TO DETERMINE FAST/SLOW MODE FOR CONVERTERS
0A A 8	41AO	1 2D 4	BAL TO SCOPE SCALE
OAAC	C840	0000	RELOAD RELAY CODE
OABO	9A02		SET RELAY BANK 1
OAB2	9A 0 4		\$7 09 99
OAB4	C830	OOCA	LOAD DVM DEVICE ADDRESS
OAB8	DE30	0B24	ENABLE INTERUPTS FOR DVM
OABC	9F 44		CLEAR INTERUPTS
OARE	9F 3C		SET DVM FOR RATIO
0A C 0	4190	1000	BAL TO MULTIPLE READINGS SUBROUTINE
0A C 4	4810	230C	LOAD RATIO II (HEX)
OACP	4010	09F8	SAVF
OACC	4200	0000	NOP
OADO	4300	0B 0 4	CHECK FOR INVERSE FLAG
OAD4	48B0	09F8	LOAD RATIO II (HEX)
0A D8	4300	1940	CHECK FOR CORRECT RANGE OF TEST CONVERTER
OADC	4830	09F8	RELOAD RATIO II (HEX)
OAEO	4870	09EC	LOAD FATIO I
OAE 4	485F	OF 5 4	LOAD CAL. FACTOR OF STANDARD
OAE8	CAFO	0002	ADD 2 TO INDEX
OAEC	4890	0 9F 4	LOAD RANGE FLAG (0001 OR 000A)

RATIO II * CAL. FACTOR OF STD. OAFO OC25 DIVIDE BY RATIO I DAF2 OD27 MULT. BY RANGE (0001 OR 000A) 0AF4 0C29 NOP 0AF6 0200 OAF8 4200 0000 NOP NOP OAFC 4200 0000 OB 00 4300 0100 GO CONVERT CAL. FACTOR TO DECIMAL 0B04 4840 09F6 LOAD LOW/NORM FLAG 0B08 C540 0000 EQUAL TO 0? OBOC 4330 OB18 BRANCH ON = OBIO C890 03E8 LOAD CONST. 0314 4300 OB1C BRANCH OP18 C890 2710 LOAD CONST. OPIC 4090 0386 STORE CONST. IN CALCULATION PROGRAM 0B20 4300 0360 CHECK FOR INVERSE FLAG OB24 4030 0000 CODE FOR DEVICE INTERUPT ENAPLE. OUTPUT CONVERT FOR DVM OB28 0000 0B2A 0000 OB 2C 0000 OB2E 0000 OB 30 0000 OB 32 0000 OB 3'4 0000

OB 36 0000

0838 0000

OB 3A 0000

OB 3C 0000

083E 0000

0B 40 0000

0842 0000

0B44 0000

0B46 0000

0B 48 0000

OB 4A 0000

0B 4C 0000

0B 4E 0000

>

Storage Space for Digital Filter Subroutine

Note: The following memory locations are reserved for the Multiple Readings subroutine Section 4.39.

0B50

- •
- .
- OC6E

4.17 Storage Table for Oscillator Code

Note: The following memory locations are reserved for storage for oscillator code as calculated in Section 4.33.

0C80 0C82	0000		
0084	0000		
0086	0000		
0088	0000		
0C8C	4000	1010	
0C 90		1510	
OC 94	4401	3010	
OC 98	4901	5010	
00 90	7071	9910	
OCA 0 OCA 4	8470 33.70	9910 9910	
OCA 8	7371	9911	
OCAC	9751		
OCAE	9912	0013	
OCBO OCB4	1452 3752	9913 9814	
0CB8	5842	9815	
OCBC	8032	9716	
0000	0423		
0CC2	9717 2703	9718	
	5003	0021	
OCCC	7194	4921	
OCDO	0695	7205	
0CD2	6921 9921	7995	
0CD8	85 92	9921	
OCDC	1391	9921	
OCEO	3477	4922	
OCE 4	5276 0867	9922	
OCEA	4923	2767	
OCEE	9923		
OCFO	0010	6101	
OCF2	4924 9924	6101	
55.	, , , ,		

4.18 TTY Printout

This routine types the test accelerometer calibration factor on the teletype. There are three codes which are important here. They are:

Decimal Point Code:

Number of digits to be typed before decimal

point is typed,

Digits to be Printed Code: Total number of digits to be typed,

INVERSE FLAG:

Determined which ratio circuit was used to calculate calibration factor (set in Range Test 01D0). If the flag is set, a different printout routine is used.

The first two codes above were set in the 01D0 Hexidecimal-to-Decimal routine for Test Accelerometer Sensitivity. From TTY Printout routine, the program branches to OB50 to test for STABLE/UNSTABLE condition.

TTY Printout

UDAU DETU U962	FOI III IN WHITE HODE
ODA 4 4180 OEEC	BAL TO WAIT
ODAS DAIO OESC	OUTPUT SPACE
ODAC 4180 OEEC	WAIT
ODBO DAIO OF5C	OUTPUT SPACE
CDE 4 4180 OEEC	WAIT
ODPE 9AIA	OUTPUT FIRST DIGIT
ODBA 0200	NOP
ODBC 4180 OEFC	WAIT
ODCO 9A1B	OUTPUT SECOND DIGIT
ODC2 0200	NOP
ODC4 4180 OEEC	WAIT
ODC8 4820 01A6	LOAD DEC. PT. CODE
ODCC C520 0002	IS IT 2?

ODAO DELO OSBO PUT TTY IN WRITE MODE

ODDO 4330 ODEO IF SO. BRANCH

ODD4 4300 0E20 GO CHECK FOR INVERSE FLAG

ODD8 4190 OEF6 OUTPUT DECIMAL PT.

ODDC 4300 ODEC BRANCH

ODEO 4190 OEF6 OUTPUT DECIMAL PT.

ODE 4 4180 OEEC WAIT

ODE8 9AIC OUTPUT THIRD DIGIT

ODEA 0200 NCP

ODEC 4180 OEEC WAIT

ODFO 9AID OUTPUT FOURTH DIGIT

ODF2 0200 NOP

ODF4 4820 01A8 LOAD # DIGITS TO BE PRINTED CODE

ODF8 C 520 0005 IS IT 5 ?

ODFC 4230 OE10 BRANCH ON NOT =

OEOO 4180 OEEC WAIT

0E04 4200 0000 NOP

0E08 4200 0000 NOP

OEOC 9AIE OUTPUT FIFTH DIGIT

OFOF 0200 NOP

OE10 C870 000F LOAD OSC. DEVICE ADDRESS

OE14 4180 OEEC WAIT

OE18 4300 05B0 LOOK FOR STABLE/UNSTABLE FLAG

OE 1 C 0000

OE 1E 0000

OE20 4820 O9EE LOAD INVERSE FLAG

OE24 C 520 0000 IS IT NOT SET ?

OE28 4330 OE4C BRANCH ON =

OE2C 9A1C OUTPUT THIRD DIGIT

0E2E 0200 NOP

OE30 4180 OEEC WAIT

OE34 9AID OUTPUT FOURTH DIGIT

OE 36 0200 NOP

OE38 4180 OEEC WAIT

OE3C 9AIE OUTPUT FIFTH DIGIT

0E3E 0200 NOP

OE 40 4180 OEEC WAIT

OE44 4190 OEF6 OUTPUT DECIMAL PT.

OE48 4300 OE18 EXIT

OE 4C 9A 1C OUTPUT THIRD DIGIT

0E 4E 0200 NOP

OE 50 4300 ODD8 RETURN

4.19 Table of Defined Constants

0E58 F000 0000

OE 5C A OA O OOOO SPACE, SPACE

OE 60 8700 0000 BELL

0E64 F000 0000

0E68 F000 0000

0E6C F000 0000

OE 70 F 000 0000

OE 74 F 000 0000

DELAY ROUTINE FOR FREQ. COUNTER

OE 78 OPPR CLEAR RB

OF 74 4200 0000 NOP

OE 7E CARO OOO! ADD 1 TO RP

OE 82 C5BO 0800 COMPARE COUNTER TO DESIRED LIMIT

OE86 4230 OE7E IF NOT EQUAL, ADD ONE MORE TO THE COUNT

OE 8A 0309 RETURN

DEFINED CONSTANTS

E8C 0064 CUT OFF FREQ. CODE(PROG. SETS THIS VALUE)

OE 8E 0094 CUT OFF FREQ. CODE FOR SHAKER 2

OE 90 0064 CUT OFF FREQ. CODE FOR SHAKER 1

0E92 F000 0000

0E96 F000 0000

4-56

FIGURE 4-6. TELETYPEWRITER PRINTOUT FLOW CHART

4.20 *Decimal-to-Hexidecimal Subroutine

Call on R9

Input requirements: Decimal number up to five digits in RO and R1.

Example: decimal number: 29345

(R0) = 0002(R1) = 9345

Output requirements: Four digit hexidecimal number in R3.

Decimal-to-Hexidecimal Subroutine (Call on R9 in on R0, R1 Out on R3)

0E 9A	08E 9		LOAD R9 INTO RA TO SAVE IT
0E 9C	0851		LOAD DEC. # INTO R5 (LAST 4 DIGITS)
0E 9E	C450	F000	PICK OFF BITS 0-3
OEA 2	0891		RELOAD DEC. #
OEA 4	0200		NOP
OEA 6	C490	OFOO	PICK OFF BITS 4-7
OEAA	C870	0064	LOAD 64
OEAE	CC 90	8000	SHIFT R9 RIGHT 8 BITS
OEB 2	0C87		MULT THIRD DEC. DIGIT BY 64
OEB 4	C830	03E8	LOAD 03E8
OEB8	CC50	000C	SHIFT RIGHT 12 BITS
OEBC	0 C 25		MULT FOURTH DIGIT BY 03E8
OEBE	0A39		ADD R3 AND R9
0EC0	0200		NOP
OEC2	0891		LOAD DEC. #

OEC4 C490 OOFO PICK OFF BITS 8-11

OECS C870 OOOA LOAD A

OECC CC90 0004 SHIFT RIGHT 4 BITS

OEDO OC87 MULT SECOND DIGIT BY A

OED2 0A39 ADD THIS TO SUM

OED4 0891 LOAD DEC #

OED6 C490 000F PICK OFF BITS 12-15

OEDA 0A39 ADD THIS TO SUM

OEDC C890 2710 LOAD 2710

OEEO OC80 MULT FIFTH DEC. DIGIT BY 2710

OEE2 0A39 ADD THIS TO SUM

OEE4 4030 0A08 SAVE HEX. #

OEE8 030F RETURN

FIGURE 4-7. DECIMAL-TO-HEXIDECIMAL FLOWCHART

4.21 *Wait Subroutine for TTY (Call on R8)

OEEC 9D19 SENSE STATUS OF TTY

OEEE 4280 OEEC IF BUSY SENSE AGAIN

OEF2 0308 IF NOT BUSY RETURN TO CALL

4.22 *Decimal Point Typeout (Call on R9)

0EF6 0200 NOP

OEF8 4090 OFOE SAVE R9

OEFC 4180 OEEC WAIT

OFOO C830 OOAE LOAD DEC. PT. CODE

OF 04 9A13 OUTPUT DEC. PT.

OF 06 0200 NOP

OFO8 4890 OFOE RESTORE R9

OFOC 0309 RETURN

OFOE ODDC STORAGE

4-61

4.23 Storage Table for Exciter Calibration Factors (Hexidecimal)

This table stores the calibration factors for the current exciter performing a calibration. These hexidecimal numbers are stored in this table by either START 1 (Section 4.13) or START 2 (Section 4.14).

Storage Table for Exciter Calibration Factors (Hexidecimal)

OF54 07D4 OF56 07D4 0F58 07D4 OF5A 07D4 OF5C 07D4 OF5E 07D4 0F60 07D4 OF62 07D4 OF64 07D4 0F66 07D4 OF68 07D3 OF6A 07D6 OF6C 07D8 OF6E O7DA OF70 07DC 0F72 07DD OF74 07E2 OF76 07E4 OF78 07E7 OFTA OTET 0F7C 07E7 OFTE OTEE OF80 O7ED OF82 07D2 OF84 07D4 OF86 07D6 OF88 07D8 OF8A O7DB OF8C O7DF OF8E 07E4 0F90 07E9 0F92 07EF 0F94 07F5 0F96 07FC OF98 0803 0F9A 080B OF9C 0813

4.24 Shut Off Oscillator, Ring Bell, Start Over

This routine shuts off the oscillator and rings the teletypewriter bell five times to indicate an end of test. The program is routed here after the last frequency test point in the Data Block has been completed or after a STOP command has been entered on the TTY.

Shut Off Oscillator, Ring Bells, Start Over

OF 9E C810 0002	LOAD TTY	DEVICE	ADDRESS	INTO	R I
-----------------	----------	--------	---------	------	-----

OFA2 DE10 09B2 PUT TTY IN WRITE MODE

OFA6 4200 0000 NOP

OFAA OB22 CLEAR R2

OFAC DA70 OC7A TURN OFF OSCILLATOR

OFBO DA70 OC7B

OFR 4 DA70 OC7C

OFB8 DA70 OC7D

OFBC 4180 OEFC SENSE STATUS UF TTY

OFCO DAIO OEGO FING BELL

OFC4 4180 OEFC S S

OFCE DAID OF60 RING BELL

OFCC 4180 OEFC S S

OFDO DAIO OF60 PING BELL

OFD4 4190 OE78 DELAY

OFD8 4180 OEEC S S

OFDC DAIO 0E60 RING BELL

OFEO 4180 OEEC S S

OFE4 DAIO OE60 RING BELL

OFE8 4180 OEEC S S

OFEC DAIO 0985 OUTPUT LINE FEED TO TTY

OFFO OBFF CLEAR RF

OFF2 OR 66 CLEAR R6

OFF4 4060 09C4 CLEAR STORAGE AREA OF CAPACITOR CODE INDES

OFF8 C200 OFFC LPSW

OFFC 0000 DISABLE INTERUPTS CODE

OFFE 01DO TRANSFER TO RANGE TEST

1000 FFFF FFFF

1004 FFFF FFFF

1008 FFFF FFFF

100C FFFF 0200

4.25 *Delay for DVM Subroutine

Call on R2

This subroutine is used by the Read Data Subroutine (Section 4.39). Its purpose is to delay the sequential Read instructions of the computer. It was found that without this delay between Read instruction, errors would occur in the recorded data. This was due to timing differences (supposedly) between the DVM and the computer.

*Delay for DVM Subroutine (Used by DVM Read Program)

100E 0200

1010 OBBB CLEAR RB

1012 CABO 0001 ADD 1 TO RB

1016 C5BO 0100 COMPARE RB TO 0100

101E 0302 RETURN TO CALL

4.26 Halt, Stop, or Continue

After the completion of each test point, this routine checks for any operator input to the teletypewriter. This routine allows the operator to type an S or H after the frequency has been typed. This is read and stored in core. This routine checks this and alters the direction of the program accordingly.

S: STOP The STOP command halts the program, leaves the exciter energized, and waits for an execute by the operator.

When the execute button is pushed, the program is started over at the first test point in the Data Block.

H: HALT The HALT command halts the program, leaves the exciter energized, and waits for an execute by the operator.

When the execute button is pushed, the program is started at the next test point in line to be executed.

Any character other than H or S is presently ignored by the program. This can be expanded to include other interactions with the operator and computer. For example, a command could be given to go back one or two test points and repeat them.

Halt, Stop, or Continue (Comes Here from OE12)

1020	C830 0002	LOAD TTY DEVICE ADDRESS INTO R3
1024	DE30 09B0	OUTPUT TO TIY: DISABLE, BLOCK, AND READ
1028	4200 0000	NOP
102C	0B88	CLEAR R8
102E	0200	NOP
1030	9D 3 4	SENSE STATUS OF TTY INTO R4
1032	0844	LOAD R4 TO SET CONDITION CODE
1034	4330 1044	IF ANY INPUT GO TO READ
1038	4890 09C2	LOAD ANY TTY DATA TAKEN AFTER FREQ. PRINTOUT
103C	4080 0902	CLEAR OUT STORAGE AREA FOR ITY DATA
1040	4300 1046	GO TO TEST FOR H OR S

1044 9B39 READ DATA FROM TIY 1046 C590 0048 IS IT H? 104A 4330 1062 IF SO, GO TO HALT ROUTINE 104E C 5 90 0053 IS IT S? 1052 4330 1076 IF SO, GO TO STOP ROUTINE 1056 4300 106E IF NEITHER, CONTINUE 105A F000 0000 105E 0B66 CLEAR R6 TO START AT FIRST TEST FREQ. 1060 0200 NOP 1062 C200 1066 LPSW 1066 8000 OBAE RETURN TO OBAE AND STOP 106A FFFF 106C FFFF 106E C200 1072 COMES HERE IF INPUT IS NEITHER H OR S LPSW 1072 0000 1074 OBAE DISABLE INTERUPTS AND GO TO OBAE 1076 OB66 **** STOP ROUTINE **** CLEAR R6 TO START OVER 1078 DE30 0962 PUT TTY IN WRITE MODE 107C DA30 09B5 WRITE DATA TO TTY LINE FEED 1080 0813 LOAD R3 INTO R1 (TO PUT DEVICE ADDRESS IN R1) BAL TO WAIT FOR TTY 1082 4180 OEEC 1086 C200 108A LPSW

108A 8000 OFA6 DISAPLE INTERUPTS, STOP AT OFAC (RING BELLS, ETC.)

FIGURE 4-8. HALT, STOP, OR CONTINUE FLOWCHART 4-68

4.27 *Constant Acceleration Closed Loop Control Subroutine

Call on R4

This is a closed-loop control of acceleration level. The standard accelerometer voltage output is read by the DVM and compared to column 6 (exciter 2) or column 8 (exciter 1) of the 1400 Data Block. These columns give the desired voltage levels for the test point. Any deviation of standard accelerometer voltage from desired level over one millivolt triggers the program to trim the oscillator to obtain the desired value. An upper limit is set on the number of trimming operations to prevent an endless loop in case the desired value cannot be obtained. The trimmed oscillator voltage is stored in the DATA BLOCK at column 4 (exciter 1) or column 3 (exciter 2).

*Constant Acceleration Closed Loop Control

10F0	0588		CLEAR R8
10F2	4080	0906	STORE 0000 IN LOOP COUNTER
10F6	4040	09DE	SAVE R4
10FA	41E0	06D8	BAL TO SAVE REGISTERS
IOFE	0200		NOP
1100	0588		CLEAR R8
1102	OBBB		CLEAR RB
1104	CABO	0001	ADD 1 TO RB
1108	C560	0004	COMPARE RECINDEX COUNTER) TO 4 (10 HZ.)
1100	4330	1118	IF = , GO TO 10 HZ. PROGRAM
1110	4300	13CC	GO TO SET SPEED OF DVM READINGS
1114	4300	111C	
1118	C5B0	0500	COMPARE COUNTER OT 0500
111C	4230	1104	IF NOT = CONTINUE COUNTING
1120	CASC	0001	ADD 1 TO R8

1124	DE30	0B25	OUTPUT CONVERT DVM	
1128	C580	A000	HAS THE DVM TAKEN 10 READINGS?	
1120	4230	1102	IF NOT, GO READ ANOTHER TIME	
1130	9F88		CLEAR INTERUPTS	
1132	4300	1146	BRANCH	
1136	F000	0000		
113A	F000.	0000		
113E	F000	0000		
1142	F000	0000		
1146	9F95		ACKNOWLEDGE INTERUPTS	
1148	0539		IS IT THE DVM?	
114A	4330	1152	IF SO CONTINUE	
114E	4300	1146	IF NOT, GO BACK TO AIR	
1152	OB77		CLEAR R7	
			VOLTAGE INTO CORE, ROUNDS OFF REST MV. LEAVES OPS. MV. IN RI	
1154	4200	0000	·	
1158	C890	0005	LOAD BXLE LIMIT REGISTER FOR READING DAT	Α
115C	C880	0001	LOAD BXLE INCREMENT REGISTER	
1160	DB37	129C	READ DATA INTO CORE STARTING AT 129C	
1164	4120	1010	DELAY	
1168	C170	1160	BXLE	
1160	4200	0000	NOP .	
1170	4200	0000	NOP	
1174	D3A0	129D	LOAD FIRST DIGIT OF DATA INTO RA	
1178	D3B0	129E	2'ND RB	

117C D3CO 129F 3°RD RC 4°TH 1180 D3D0 12A0 RD 5 'TH 1184 D3E0 12A1 RE 1188 4190 1300 BAL TO ROUNDOFF ROUTINE 118C 0B11 CLEAR RI 118E 0B00 CLEAR RO 1190 931A LOAD-FIRST DIGIT INTO RI 1192 C410 COOF PICK OFF' BITS 12-15

1196 CD10 000C SHIFT LEFT 12 BITS

119A OBOO CLEAR RO

119C 0200 NOP

119E 082B LOAD 2'ND DIGIT

11AO C420 000F PICK OFF BITS 12-15

11A4 CD20 0008 SHIFT LEFT 8 BITS

11A8 OA12 ADD FIRST AND SEC. DIGIT, PUT INTO RI

11AA 933C LOAD 3'RD DIGIT INTO R3

11AC C430 000F PICK OFF BITS 12-15

11BO CD3C 0004 SHIFT LEFT 4 BITS

11B4 OA13 ADD ON 3'RD DIGIT TO RI

GETS DESIRED MV FROM TABLE, CALCULATES AMV. CALCULATES AV FOR OSCILLATOR

11B6 CC10 0004 SHIFT RIGHT 4 BITS (MV OBS. NOW IN RI)

11BA 0888 CLEAR R8

LIBC CEAO 0002 LOAD 2 INTO RA

11CO 4190 OE9A BAL TO CONVERT OBS. VALUE TO HEX. (BACK IN R3)

11C4 48C0 09C4	LOAD TABLE OF VALUES INDEX INTO RC
11C8 48PO 09CO	LOAD SHAKER FLAG (ADDRESS OF TABLE) INTO RB
11CC CABO 0002	ADD 2 TO THIS ADDRESS TO GET MV LOCATION
11D0 CBC0 0010	SUBTRACT 10 FROM RC TO GET CORRECT INDEX
11D4 40B0 11DA	STORE MV. TABLE ADDRESS BELOW
11D8 481C 140A	LOAD MV. DESIRED INTO RI
11DC 0843	LOAD OBS. VALUE(HEX.) INTO R4
11DE CB60 0004	SUBTRACT 4 FROM INDEX
11E2 4190 0E9A	BAL TO CONVERT DES. VALUE TO HEX.
11E6 0823	PUT MV. DESIRED IN P2 (HEX.)
11E8 0B24	MV. DESIRED-MV. OBSERVED = △ MV.
11EA 0200	NOP
11EC CB20 0001	SUBTRACT 1 FROM AMV.
11F0 4320 12AC	IF NOT PLUS GO TO TEST FOR O
11F4 4300 1284	GO TEST LOOP COUNTER FOR MAX. NO. OF TRIES
11F8 4190 13E4	BAL TO CALCULATE AV FOR OSCILLATOR (OUT ON R5)
11FC 4810 09C0	LOAD SHAKER FLAG
1200 C510 1408	IS IT SHAKER 2?
1204 4330 1210	IF SO, BRANCH
1208 481C 1406	LOAD OSC. VOLTAGE INTO RI
120C 4300 1214	BRANCH
1210 481C 1404	COMES HERE FOR SHAKER 2 , LOAD OSC. VOLTAGE IN F
1214 4050 09CA	STORE R5 (A V FOR OSCILLATOR)
1218 4080 0906	STORE LOOP COUNTER
121C 4190 0E9A	BAL TO CONVERT VOLTAGE (OLD) TO HEX.
1220 4850 09CA	RESTORE R5 (A V FOR OACILLATOR)

CALCULATES CORRECTED VOLTAGE FOR OSCILLATOR, OUTPUTS CODE TO OSC

1224	CD30 (0004	SHIFT LEFT 4 BITS
1228	0A35		ADD AV TO OLD VOLTAGE VALUE
122A	0200		NOP
1220	CC30 (0004	SHIFT RIGHT 4 BITS
1230	4190	1370	BAL TO CONVERT NEW VOLTAGE TO DECIMAL (BACK IN R2)
1234	4810 0	900	LOAD SHAKER FLAG
1238	C510	1408	IS IT SHAKER 2
123C	4330 1	1248	IF SO GO TO 1248
1240	402C 1	1406	STORE OSC CODE IN TABLE
1244	4300 I	124C	BRANCH
1248	402C I	1404	COMES HERE IF SHAKER 2, STORE OSC CODE IN TABLE
124C	4190 1	1600	BAL TO CONVERT TO ORIGINAL OSC. CODE FORMAT
1250	C870 (DOOF	LOAD OSC DEVICE NO.
1254	0822		CLEAF R2
1256	OPAA		CLEAR FA
1258	9075		SENSE STATUS
125 A	0552		IS OSC. BUSY?
125C	4230 1	1258	IF SO, SENSE AGAIN
1260	DA76 C	D C 8 C	WRITE DATA TO OSC.
1264	CA60 C	1000	ADD 1 TO INDEX REGISTER
1268	CAAO C	1000	ADD 1 TO RA
126C	C5A0 C	0004	HAVE 4 BYTES BEEN WRITTEN?
1270	4230 1	125 A	IF NOT, WRITE AGAIN
1274	4200 C	0000	NOP

1278 C830 OOCA LOAD DVM DEVICE ADDRESS

127C 4300 1100 GO READ VOLTAGE AGAIN

1280 4300 12C4 GO TO RESTORE R4 AND EXIT

1284 CA20 0001 ADD ONE TO R2(TO RESTORE TO ORIG. VALUE)

1288 4880 09C6 LOAD LOOP COUNTER

LOOP COUNTER TEST, AMV TESTED FOR -1 CONDITION, PREPARE TO LEAVE SUB.

128C CA80 0001 ADD 1 TO LOOP COUNTER COMPARE TO UPPER LIMIT 1290 0580 0020 1294 4330 12BC IF = . GO TO EXIT 1298 4300 11F8 GO BACK TO CALCULATE A MV. STORAGE FOR VOLTAGE READINGS OF DVM 129C ABBI BARO 12 AO B1B3 OB11 12A4 0000 12A6 0000 12A8 F000 0000 12AC 4330 12BC IF AMV. =0 EXIT COMPARE AMV. TO -1 12B0 C52C FFFF IF = . EXIT 12B4 4330 12BC 12B8 4300 11F4 IF NOT. CONTINUE 12BC CA60 0004 COMES HERE IF LOOP COUNTER IS IN LIMIT ADD 4 TO INDEX GO TO EXIT 1200 4300 1280 12C4 4840 09DE RESTORE R4 (BAL REGISTER FOR THIS SUBROUTINE) EXIT (RETURN TO CALL) 1208 0304

4.28 *Scope Scaling Subroutine

Call on RA

This subroutine permits a relay (relay 16) in bank 1 to close and thereby activating the "seek" feature of the oscilloscope. This seek feature triggers the scope and automatically sets the time base and amplifier units for a constant display of number of cycles and amplitude of the display.

In this subroutine, the relay closes and opens twice. This is necessary sometimes because the first closing may not get a proper triggering.

Scope Scaling Subroutine

1200	C820 00E	O LOAD	RELAY CODE FOR RATIO I (RATIO I PROG.	ENTERS HERE)
12D4	C800 007	'I LOAF	RELAY BANK 1 DEVICE ADDRESS (RATIO II PROG. ENTERS HERE)	nene)
1208	CA40 000	1 ADD	I FOR SCOPE RELAY	
12DC	9A 02	WRIT	TE DATA TO RELAY BANK I	
12DE	9A 0 4	**		
12E0	4190 OE 7	8 DELA	Y	
12E4	C840 000	O LOAD	RELAY CODE TO DEACTIVATE SCOPE RELAY	
12E8	9002	DEAC	CTIVATE SCOPE RELAY	
IZEA	9A 0 4		•	
12EC	4190 OE 7	8 DELA	Y	
12F0	C840 000	I LOAD	CODE TO ACTIVATE SCOPE RELAY	
12F4	9A02	ACTI	VATE SCOPE RELAY	
12F6	9A 04	**		
12F8	4190 OE 7	8 DELA	Υ	
12FC	030A	RETU	RN TO CALL	

12FE 0B9A

4.29 *Round Off Subroutine (for Constant Acceleration)

Call on R9

This subroutine takes a five digit number (base ten) in registers RA, RB, RC, RD, RE and rounds the number to a four digit number in registers RA, RB, RC, RD. This subroutine is used in the Constant Acceleration routine (Section 4.27).

*Round Off Subroutine

1300	C 4A 0	000F	PICK OFF BITS 12-15 OF	RA
1304	C4B0	000F	00	RB
1308	C4C0	OOOF	99	RC
130C	C4D0	000F	**	RD
1310	C4E0	000F	89	RE
1314	CBDO	0005	SUBTRACT 5 FROM RD	
1318	4220	1320	IF PLUS GO TO 1320	
1310	4210	1354	IF MINUS GO TO 1354	
1320	CE CO	0009	SUBTRACT 9 FROM RC	
1324	4210	1350	IF MINUS GO TO 1350	
1328	СВВО	0009	SUBTRACT 9 FROM RB	
1320	4210	1344	IF MINUS GO TO 1344	
1330	4200	0000	NOP	
1334	CAAO	0001	ADD 1 TO RA	
1338	CSPO	0000	LOAD O INTO RE	
1330	CECO	0000	LOAD O INTO RC	
1340	4300	1354	GO TO 1354	

1344	CABO	000A	ADD A TO RB (! PLUS 9 THAT WAS SUBTRACTED)
1348	CSCO	0000	LOAD O INTO RC
134C	4300	1354	GO TO 1354
1350	CACO	000A	ADD A TO RC
1354	4200	0000	NOP
1358	0309		RETHEN TO CALL

4.30 *Hexidecimal-to-Decimal Subroutine

Call on R9

Input requirements: Hexidecimal number in R3.

Output requirements: Up to four digits decimal number in R2.

Hexidecimal-to-Decimal Subroutine Converts a Four Digit Hex Number to a Decimal Number In on R3, Out on R2

1370 C880 03E8	LOAD 03E8 INTO R8
1374 0850 0064	LOAD 0064 INTO R5
1378 C870 000A	LOAD OOOA INTO RA
137C 0E22	CLEAR R2
137E 0D28	DIVIDE HEX NO. BY 03E8, QUOT IN R3, REM. IN R2
1380 08A3	PUT QUOT. IN RA (1°ST DECIMAL DIGIT)
1382 0832	PUT REM. IN R3
1384 0922	CLEAR R2
1386 OD25	DIVIDE THIS BY 64
1388 08B3	PUT QUOT IN RB (2'ND DIGIT)
138A 0200	NOP
138C 0832	PUT REM. IN R3
138E 0200	NOP
1390 0822	CLEAR R2
1392 OD27	DIVIDE THIS BY A
1394 08E3	PUT QUOT. IN RE (3°RD DIGIT)
1396 08D2	PUT REM. IN RD (4°TH DIGIT)
1398 CDAO 000C	SHIFT RA LEFT 12 PITS

139C CDBO 0008 SHIFT RB LEFT 8 BITS

13AO CDEO 0004 SHIFT RE LEFT 4 BITS

13A4 OAAB ADD RB TO RA

13A6 OAAE ADD RE TO RA

13A8 OAAD ADD RD TO RA

13AA 082A LOAD RA INTO R2

13AC 0309 RETURN TO CALL

4-80

FIGURE 4-10. HEXIDECIMAL-TO-DECIMAL SUBROUTINE FLOWCHART 4-81

4.27(con't) *Constant Acceleration Closed Loop Control Speed Set For DVM

Note: The following is part of Section 4.27, Constant Acceleration Closed Loop Control.

13CC C560 001C	FREQ: 200 HZ.
13D0 4320 13DC	BRANCH ON NEG. (<200 HZ.)
13D4 C5B0 0020	COMPARE COUNTER TO UPPER LIMIT
13D8 4300 1114	RETURN TO MAIN PROG.
13DC C5B0 0200	COMPARE COUNTER TO UPPER LIMIT FOR F < 200 HZ.
13E0 4300 1114	RETURN TO MAIN PROG.

4.31 *Calculate Delta V Subroutine

Call on R9

This subroutine is used by the Constant Acceleration Control subroutine (Section 4.27) to calculate the trimming voltage for output to the oscillator. At present, the delta millivolt of the standard accelerometer is multiplied by a constant to trim the oscillator to approximately 70 percent of the desired value.

From figure 1-1, it can be seen that approximately two volts is needed for an acceleration of 10 g on exciter 2. A typical value for the standard accelerometer voltage output is 140 mV for one NBS exciter and 70 mV for another exciter at 10 g. For the 140 mV exciter, a change of 14 mV of oscillator voltage will produce one millivolt change in accelerometer voltage. The equation used to compute the trim voltage for this exciter is:

Delta V = Delta mV·(10)

where Delta V: amount of trim voltage for oscillator, and

Delta mV: millivolt standard accelerometer differs from desired value.

For the 70 mV exciter (10 g) the equation used is:

Delta V= Delta mV · (8).

The constant in these equations will vary with the exciter being used in the system and the power amplifier gain. A value for this constant should be used to trim the voltage output of the oscillator from 60 to 80 percent of the desired difference per cycle so as not to overshoot the final and desired value.

Calculate Delta V Subroutine

13E4	C850	0004	LOAT A
13 E E	0042	4840	DELTA MV*A LOAD SHAKER FLAG
13EC	0900	C540	IS IT SHAKEE 2?
13FC	1400		
13F2	4230	13FC	IF MCT EQUAL, BRANCH
13F6	0°50	3000	LOAD 8 INTO F5
13F4	0042		DELIA MV 8
13FC	0309		STTUPN .

4.32 Data Block Control Constants (1400 Tables)

This table contains the control parameters for the test points. Each row represents a test point and contains the frequency, oscillator voltage for the first try, code for selecting the proper capacitance match, and the desired millivolt output from the standard accelerometer. This table is set up for two exciters, but could be expanded to contain data for additional exciters that may be added to the setup. The code for the capacitor match is explained in Section 4.15.1.

The program selects the test point corresponding to the data in the first row. After completing this test point, the second test point corresponding to the second row is processed, etcetera, until the last test point is finished. Upon finishing the last test point, the program starts over again at the first test point.

The data in columns 3 and 4 are updated each time a calibration is run, as explained in Section 4.27.

4.33 *Voltage/Frequency Data Modified to Proper Oscillator Code

Call on R9

This subroutine converts the 1400 DATA BLOCK data columns 1, 2, 3, 4 which will program the oscillator. See Section 4.15.2 for a description of the proper oscillator format.

Input requirements: R6 must contain proper index number (in hexidecimal) for the desired frequency. The index number is four (test point number). The test point number starts at zero and ends at N. In the present program N = 38.

Output requirements: The properly coded output is stored in the Storage Table for Oscillator Code (OC8C).

This subroutine is called for each test point processed. It does not set up the entire OC8C table with one call instruction.

Data Block Control Constants

16C0 C8B0 0004	LOAD 4 INTO RB
16C4 OCA6	R6*4 RESULT IN RA, RB
16C6 081B	LOAD RB INTO RI
1608 4200 0000	NOP
16CC 4050 16F8	STORE R5
16D0 4850 09C0	LOAD SHAKER FLAG INTO R5
16D4 C550 1408	IS IT 201?
16D8 4330 16E0	IF SO , GO TO 16E0
16DC 4300 16EC	IF NOT, GO TO 16EC
16E0 4831 1405	LOAD VOLTAGE FROM TABLE INTO R3
16E4 4841 1404	00
16E8 4300 1700	BRANCH
16EC 4831 1407	LOAD VOLTAGE FROM TAPLE INTO R3
16F0 4841 1406	99
16F4 4300 1700	BRANCH
16F8 0072	STORAGE FOR R5
16FA 0000	
16FC 4200 0000	NOP
1700 4200 0000	
1704 0200	
1706 0200	
1708 4200 0000	

170C 08A3 LOAD VOLTAGE INTO RA 170E 0200 1710 C4AO OOFO MASK OFF 3'RD DIGIT (.1 VOLTS) 1714 CDAO 0008 SHIFT LEFT 8 BITS 1718 08BA LOAD VOLTAGE INTO RB LOAD VOLTAGE INTO RA 171A 08A3 1710 0200 NOP 171E C4AO 000F MASK OFF 4'TH DIGIT (.01 VOLTS) 1722 CDAO 0008 SHIFT LEFT 8 BITS ADD THIS TO RB 1726 OABA 1728 D3A1 1402 LOAD FREQ. INFORMATION INTO RA 172C C4AO 00F0 MASK OFF 3'RD DIGIT (.1 HZ.) 1730 OABA ADD THIS TO RB 1732 08A4 LOAD VOLTAGE INTO RA 1734 0200 NOP 1736 C4AO OFOO MASK OFF 2'ND DIGIT (VOLTS) SHIFT RIGHT 8 BITS 173A CCAO 0008 173E OABA ADD THIS TO RE STORE RB IN OC8C (INDEX R6) 1740 40B6 0C8C 1744 4200 0000 NOP 1748 4200 0000 174C 4200 0000 LOAD FREQ. INFOR. INTO RA 1750 D3A1 1401 1754 C4AO OOFO MASK OFF 3'RD DIGIT (10 HZ.)

1758 CDAO 0008 SHIFT LEFT 8 BITS

```
PUT THIS IN RC
175C 08CA
175E D3A1 1401
                 LOAD SOME MORE CODE INTO RA
1762 C4AO 000F
                 MASK OFF 4°TH DIGIT (1 H7.)
1766 CDAO 0008
                 SHIFT LEFT 8 BITS
176A OACA
                 ADD THIS TO RC
176C D3A1 1403 LOAD MORE CODE INTO RA
                 MASK OFF 4'TH DIGIT (MULTIPLIER)
1770 C4AO 000F
1774 CDAO 0004 SHIFT LEFT 4 BITS
                 ADD THIS TO RC
1778 OACA
177A D3A1 1400
                 LOAD MORE CODE INTO RA
                 MASK OFF 4°TH DIGIT (100 HZ.)
177E C4AO 000F
1782 OACA
                 ADD THIS TO RC
1784 40C6 OC8E
                 STORE RC IN OCSE (INDEX R6)
1788 C870 000F
                 LOAD OSC. DEVICE NO. IN R7
178C OBAA
                 CLEAR RA
                 CLEAR RO
178E 0B00
1790 4850 16F8
                 RESTORE R5
1794 4200 0000
                 NOP
1798 4200 0000
1790 4200 0000
17A0 4200 0000
17A4 4200 0000
17A8 4200 0000
17AC 4200 0000
           RETURN TO CALL
17B0 0309
          NEW CODE NOW LOOKS LIKE THIS:
NOTE***
          ( .1V .01V .1HZ 1V 10 HZ 1HZ X
                                                     100HZ
```

)

4.34 *Set Slow/Fast Code for ac/dc Converters Subroutine

Call on RE

This subroutine sets up the code for either slow (frequency <200 Hz) or fast mode (frequency equal to or greater than 200 Hz) for the ac/dc converters. This mode is controlled by relay 7 (see Section 4.15.1). This subroutine has two entry points, one if RATIO I is being taken and one if Ratio II is being taken.

*Set Slow/Fast Code for ac/dc Converters Subroutine

Ratio I Program

178 4 0836	LOAD R6 INTO R3
17B 6 0200	NOP
17B8 CB30 001C	SUBTRACT IC FROM R3 (IC=CODE FOR 200 HZ.)
17BC 4220 17C4	BRANCH ON +
17C0 4300 17CC	CONTINUE IN SLOW MODE
17C 4 C820 00E2	LOAD 'FAST' CODE INTO R2
17C8 4300 17D0	BRA NCH
17CC C820 00E0	LOAD 'SLOW'CODE INTO R2
17D0 C830 OOCA	RESTORE R3
17D4 030E	RETURN
17D6 0200	

PROGRAM FOR RII

1708 08	336	1	OAD	R6	INTO	R3
---------	-----	---	-----	----	------	----

17DA 0200 NOP

17DC CB30 OOIC SUBTRACT IC FROM R3

17EO 4220 17E8 BRANCH ON +

17E4 4300 17FO CONT. IN SLOW MODE

17E8 C820 OOC2 LOAD 'FAST' CODE INTO R2

17EC 4300 17F4 BRANCH TO EXIT

17FO C820 OOCO LOAD 'SLOW' CODE INTO R2

17F4 C830 OOCA RESTORE R3

17F8 030E RETURN

4.35 Store Calibration Data in Tables

This routine stores the calibration frequency and sensitivity in core as the test points are being performed. The locations set aside for this purpose are:

Exciter 1: 2C00-2E00 Exciter 2: 2E00-3000

The following examples illustrate the format of the stored data.

0000 0010 1009 0002 0000 1500 9988 0003 10 Hz, 10.09 mV/g 1500 Hz, 9.988 mV/g

The purpose of this storage is to transfer these data to magnetic tape for storage at the end of a test. Additional storage space is set aside as shown in table 4-3.

The data starting at 2800 are entered into the computer by the Accelerometer Data Block Entry program (see Section 4.45). The data from 2C00-3000 are stored as the calibration program steps through the test points. The summary data starting at 3000 are read in by paper tape or typed in on the TTY. The summary data are these which are reported in a calibration report. It includes all data used to make up a complete calibration. Usually they are prepared by feeding all the data into a time-sharing computer program. This program combines the data by averaging techniques to provide final output report data.

The interferometer data consist of data on three piezoelectric exciters for each accelerometer calibrated. These data are kept on paper tape. It is desirable to keep not only the final summary, but all the data collected on the accelerometer on the magnetic tape files. These data can then easily be recalled for future checking and comparisons.

Store Calibration Data in Tables

1800	41E0 06E0	SAVE REGISTERS
1804	41E0 23FC	BAL TO DECODE FREQ. DATA
1808	0200	NOP
180A	081A	LOAD FIRST DIGIT (CAL. FACTOR OF TEST)
180C	CD10 000C	SHIFT LEFT C BITS
1810	082B	LOAD 2'ND DIGIT

1812 0200 NOP 1814 4880 246C LOAD FIRST FREQ. DIGIT 1818 CD20 0008 SHIFT LEFT 8 BITS 181C 083C LOAD 3'RD DIGIT 181E 0200 NOP 1820 CD30 0004 SHIFT LEFT 4 BITS 1824 OA 12 ADD RI AND R2 1826 OA 13 ADD RI AND R3 1828 082D LOAD 4'TH DIGIT 182A 0200 NOP 182C 0A12. ADD THIS TO ABOVE SUM 182E 0200 NOP 1830 C840 0002 LOAD 2 1834 0836 LOAD FREQ INDEX(R6) 1836 0200 NOP MULT. BY 2 1838 OC24 183A 0200 NOP 183C 4890 246E LOAD FRIQ. DIGITS 2-5 1840 082A RELOAD FIRST DIGIT 1842 0200 NOP

1844 4230 1868 BRANCH ON NOT O

1848 CD10 0004 (RA=0) SHIFT LEFT 4 BITS

184C 4820 OIAA LOAD DIGIT 5

1850 OA 12 ADD IT TO SUM

1852 0200 NOP

1854	4200	0000	NOP	
1858	4200	0000		
185C	4200	0000		
1860	4200	0000		
1864	4200	0000		-
1868	4840	0 9F 0	LOAD DEC. PT. CODE (TELLS WHEPE DEC. PT. IS LOCATED	77
1860	4820	0.900	LOAD SHAKER ID	
1870	C520	1 4 0 C	SHAKER 2?	
1874	4230	. 188C	IF NOT, BRANCH	
1878	4013	2BFC	STORE TEST CAL. FACTOR (FOR SHAKER 1)	
187C	4083	2BF8	STORE FREQ.	
1880	4093	2BFA	ee	
1884	4043	2BFE	STORE DEC. PT. CODE	
1888	4300	18A0	BRANCH	
188C	4013	SDEC	STORE TEST CAL. FACTOR (FOR SHAKER 2)	
1890	4083	2DF8	STORE FREQ. DATA	
1894	4093	2DFA	99	
1898	4043	2DFE	STORE DEC. PT. CODE	
189C	4200	0000	NOP	
18A O	41E0	0720	RESTORE REGISTERS	
18A 4	4300	18FC	GO TO DEC/ASCII ROUTINE	

TABLE 4-3. Data File Format

```
2900
             Interferometer fringe disappearance data
 2AF0
                                  Α
            /file number/test number / xxx
 2B00
            /pickup mfgr. /pickup s.n
 2B10
            /pickup model number / xxx
 2B20
 2B30
            /amp. mfgr. /amp. s.n.
            /amp. model number / xxx
 2B40
 2B50
           /customer
         /date of calib /exciter 1/exciter 2/xxx /
 2B60
 2B70
           /std. 1 /std. 2 /capacitance /
 2B80
            gain
 2BF0
            Exciter 1 data
2C00
               11
2DF0
            Exciter 2 data
2E00
               11
2EFO
3000
            Summary Data (data reported in a calibration)
               11
 31F0
```

4.36 Decimal to ASCII Routine (5 digits)

This routine converts five digits of decimal code to five digits of ASCII code. This routine utilized subroutine Section 4.37.

Decimal to ASCII Routine (5 digits) (In/Out on RA, RB, RC, RD, RE)

18FC 48EO 010A	RESTORE FIFTH DIGIT
1900 080A	LOAD FIRST HEX. #
1902 0200	
1904 4190 1954	BAL TO ASCII CONVERT
1908 08A2	PUT ASCII INTO RA
190A 0200	
190C 080P	SAME FOR 2'ND #
190E 0200	
1910 4190 1954	
1914 08B2	
1916 080C	SAME FOR 3 PD
1918 4190 1954	
1910 0808	
191E 090E	SAME FOR 4 TH
1920 4190 1954	
1924 08D?	
1926 080E	SAME FOR 5 TH
1928 4190 1954	
1920 08E2	

192E 0200

1930 C810 0002 LOAD TTY DEVICE ADDRESS

1934 9D15 SENSE STATUS OF TTY

1936 0855 LOAD TO SET CC

1938 4330 1940 BRANCH ON ZERO

193C 4300 ODAO BRANCH TO PRINTOUT

1940 9B19 READ TTY

1942 4090 09C2 STORE DATA

1946 4300 ODAO BRANCH TO PRINTOUT

194A 0200

4.37 *Decimal -to-ASCII Subroutine (1 Digit)

Call on R9

This subroutine converts a one digit decimal number to ASCII code.

Input requirements: decimal number in RO

196E 0309

Output requirements: ASCII code in R2

*Decimal/ASCII Subroutine (1 Digit)

1940 4200 0000 1950 4200 0000 LOAD 1954 0810 1956 0200 1958 CB10 0009 R1-9=R1 BRANCH ON + 1950 4220 1968 1960 C600 00B0 OR 1964 0820 LOAD 1966 0309 RETURN 1968 C610 OOCO OR, MUST BE ALPHA CHAR. LOAD 1960 0821

RETURN

FIGURE 4-12. DECIMAL TO ASCII FLOWCHART

4.38 Check for Correct Range of Signal ac/dc Converter

This routine checks Ratio II for all nines (out of range) and if this condition if found, the code for the relays is set to program the signal converter for 10-volt range. The RANGE FLAG is set for 000A: the THRU FLAG is set for 000A: the THRU FLAG is set to indicate that this routine has been executed once and should not be repeated on the next pass for this test point. If the converter is set for 10-volt range, the program is transferred to read Ratio II again; if the one-volt range is sufficient, the program continues with the calculation of the test accelerometer sensitivity (0ADC) in Section 4.16.

Check for Correct Range of Signal ac/dc Converter

19A0	4300	1 9E 8	BRANCH TO CHECK "THRU FLAG"
19A4	C 5B 0	2710	ALL 9'S (DEC) IN RII?
19A8	4230	1900	BRANCH ON NOT =
19AC	C840	0004	LOAD CODE FOR 10 VOLT RANGE
19B0	C810	000A	LOAD 10 VOLT RANGE FLAG
1984	4010	0 9E 4	STORE FLAG
19B8	C800	0071	RELOAD RELAY BANK I DEVICE ADDRESS
19BC	4300	1 9D8	BRANCH
1900	C810	1000	SET FLAG FOR I VOLT RANGE
19C4	4010	0 9E 4	STORE RANGE FLAG
1908	C810	0000	LOAD 0000
19CC	4010	09EA	STORE "NOT THRU"FLAG
19D0	4200	0000	NOP
19D4	4300	OADC	CONTINUE WITH MAIN PROG.
1908	C8C 0	1000	RESET RATIO MODE CODE FOR DVM
19DC	C810	1000	LOAD 0001
19E0	4010	09EA	STORE "THRU" FLAG

19E4 4300 19F8 RETURN

19E8 4810 09EA LOAD "THRU"FLAG

19EC C510 0001 HAVE I BEEN HERE BEFORE?

19F0 4230 19A4 BRANCH IF NOT TO CHECK FOR OVERANGE COND.(9999)

19F4 4300 0ADC HAS BEEN THRU, BY PASS THIS ROUTINE

19F8 41EO 17D8 BAL TO FAST/SLOW ROUTINE FOR CONVERTERS(FIXES UP R2)

19FC 4300 0ABO RETURN

4.39 *Multiple Readings (DVM) and Digital Filter Subroutine

Call on R9

This subroutine handles the actual data collection by the DVM. The first part of the subroutine sets up the timing delays for the frequency ranges. The three ranges are:

10 Hz	Typical	delay	constant	223	3000	(1A36)
10 <f<100< td=""><td>***</td><td>**</td><td>11</td><td>=</td><td>500</td><td>(1A2E)</td></f<100<>	***	**	11	=	500	(1A2E)
F>100	11	11	11	=	100	(1A3E)

This delay allows for settling time for the exciter and also for the ac/dc converters. The larger the constant, the longer the delay. COUNTER 1 counts up to the delay constant before a ratio is read by the DVM.

After the timing delay is set up, the program executes three output convert instructions. An output convert instruction triggers the DVM to take a reading but does not read the data into core. The reason for executing these initial output convert instructions is to take care of any transient signals that may occur because of the switching circuitry. These readings are not saved and do not enter into the subsequent calculations.

COUNTER 2 keeps track of the number of ratio readings in the subroutine. Starting with reading number four, the data are stored in a table. Beginning with reading number five, deviations are calculated as shown in the accompanying flow chart (see figure 4-13). As can be seen from this flow chart, deviations are calculated from the current ratios as follows:

$$delta R = R_N - R_{N-3}$$

The reason for going three readings back to calculate the deviations is to catch any slow drift in the system. Since a decision on whether or not to accept a series of readings is based on the percentage deviation of the readings, a slow drift in the readings would not be detected if the deviations were based on a R_N - R_{N-1} deviation calculation. Once seven readings have been taken, the program then has three deviations to look at. These deviations are converted to absolute values, and the maximum of the three is picked out and saved. If this maximum deviation is less than 0.1 percent of the average of the last three readings, this average is saved as the desired ratio and the STABLE/UNSTABLE FLAG is reset (0000). If the deviation is equal or greater than 0.1 percent, another reading is taken. The last three readings are then compared as above. This process is continued until three readings are taken successively which are acceptable or an upper limit is reached of 32 readings. It the upper limit is reached and three acceptable readings

were not found, the average of the last three is used and the STABLE/UNSTABLE FLAG is set (0001). If set, the UNSTABLE FLAG causes a message to be typed after the calibration for this test point: "UNSTABLE SIGNAL".

Important Core Locations:

(2303)	Number of ratios taken to get 0.1 percent maximum del
(2304)	Ratio (N-2)
(2306)	Ratio (N-1)
(2308)	Ratio (N)
(230A)	Maximum deviation of last three ratios tested
(230C)	Average of last three ratios taken
(230E)	STARLE /INSTARLE FLAG (0000 stable: 0001 mstable)

Input Requirements:

DVM must be in ratio mode.

*Multiple Reading (DVM) and Digital Filter Subroutine

1400	4200	0000	NOP
1A 04	4200	0000	NOP
1A 08	0888		CLEAR R8 (TABLE INDEX)
1A OA	0200		NOP
IAOC	C830 (DOCA	LOAD DVM DEVICE ADDRESS
1A 10	OBBB		CLEAR RB (COUNTER INDEX)
1A12	0200		NOP
1A 1 4	4200 0	0000	NOP
1A 18	C560 C	0004	F=10 HZ.?
1A 1C	4330 1	A34	IF SO BRANCH
1A20	0876		IF NOT, LOAD FREQ. INDEX REGISTER (R6) INTO R7
1A22	0200		NOP
1A24	CB70 0	001C	SUBTRACT 1C

1A28 4220 1A3C IF F>100 HZ. BRANCH 1A2C C870 0500 10<F<100 SET T=500 T IS A TIMING PARAMETER 1A30 4300 1A40 BRANCH F=10 HZ., SET T=3000 1A34 C870 3000 1A38 4300 1A40 BRANCH 1A3C C870 0100 F>100 HZ. SET T= 100 RB:R7 COMPARE COUNTER TO T 1A40 05B7 1A42 0200 NOP BRANCH ON = 1A44 4330 1A50 1A48 CABO 0001 ADD 1 TO COUNTER 1A4C 4300 1A40 GO TEST FOR UPPER LIMIT ADD 1 TO # OF READINGS INDEX 1A50 CA80 0001 1A54 DE30 OB25 OUTPUT CONVERT DVM 1A58 0878 LOAD 1A5A 08B8 LOAD 1A5C CB70 0004 SUB. 4 FROM # OF READINGS 1A60 4310 1A68 BRANCH IF #READINGS IS≥4 IF < 4 BRANCH BACK 1A64 4300 1A0C 1A68 C820 0008 LOAD 8 MULT #READINGS * 8 1A6C OCA2 LOAD INTO RA 1A6E 08AB 1A70 4200 0000 NOP SUB. 20 FROM ABOVE PRODUCT 1A74 CBAO 0020 1A78 0878 LOAD #READINGS INTO R7 NOP 1A7A 0200

IA7C CB70 0005	SUBTRACT 5
1A80 4320 1A90	BRANCH ON NOT + (#EQUAL OR LESS THAN 5)
1A84 C580 0006	# READINGS =6?
1A88 4230 1B00	IF NOT BRANCH
1A8C 41C0 2000	# READINGS =6 BAL TO READ DATA SUBROUTINE
1A 90 4830 26EC	RESTORE RATIO
1A 94 4300 1AAC	GO CALCULATE DELTA I
1A 98 4200 0000	NOP
1A 9C 41C 0 2000	BAL TO READ DATA
1AAO 4830 26EC	RESTORE RATIO
1AA4 403A 0B50	STORE RATIO IN TABLE
1AA8 4300 1AOC	GO TAKE ANOTHER RATIO READING
1AAC 403A 0B50	STORE RATIO 6
1ABO 4840 0B58	LOAD RATIO 5
1AB4 4200 0000	NOP
1AB8 4200 0000	NOP
1ABC 4830 0B50	LOAD RATIO 4
1ACO 4200 0000	NOP
1AC4 4200 0000	NOP
1AC8 OB 43	RATIO 5-RATIO 4
IACA 0834	LOAD
IACC 4200 0000	NOP
1ADO 4030 0B5A	STORE DELTA I IN TABLE
1AD4 4200 0000	NOP
1AD8 4840 0B60	LOAD RATIO 6

IADC	4200	0000	NOP
IAEO	4200	0000	NOP
1AE4	4200	0000	NOP
1AE8	4830	0B 50	LOAD RATIO 4
IAEC	4200	0000	NOP
IAFO	4200	0000	NOP
IAF4	0B 43	3	RATIO 6- RATIO 4
IAF6	0200		NOP
IAF8	4200	0000	NOP
IAFC	4040	0B62	STORE DELTA 2
IB 00	4200	0000	NOP
IB 04	4300	2310	GO TO TAKE ABSOLUTE VALUE OF DELTAS
18 08	4300	1 A O C	CONTINUE READINGS
IB OC	0878		LOAD # READINGS
IB OE	0200		NOP
1B 10	CB 70	0023	SUBTRACT OFF UPPER LIMIT OF # READINGS ALLOWED
1B 1 4	4220	22F0	IF MAXIMUM # HAS BEEN REACHED, BRANCH
1818	41C0	2000	IF NOT, BAL TO READ DATA
1B 1C	4830	26EC	RESTORE RATIO N
1B 20	4080	2302	SAVE # TRIES
IDOA	4034	0B 5 0	STORE RATIO N
	4200		NOP
	4200		NOP
10 20	4200	0000	NOP

IB 34	0843		LOAD RATIO N
1B 36	0200		NOP
IB 38	4200	0000	
1B 3C	4200	0000	
1B 40	CBAO	0018	LOAD RATIO(N-3)
18 44	481A	0B 50	00
IB 48	4200	0000	NOP
1B 4C	4200	0000	
IB 50	0B 41		RATIO N- RATIO(N-3)= DELTA N
IB 52	0834		LOAD
IB 54	4310	1B 60	BRANCH ON NOT MINUS
1B 58	C850	FFFF	LOAD -1
IB 5C	OC 44		MULT DELTA N BY -1
IB5E	0845		LOAD
IB 60	CAAO	8100	ADD 18 TO RESTORE INDEX
IB 6 4	404A	0B 56	STORE ABSOLUTE VALUE OF DELTA N
IB 68	4300	2200	GO TO MORE SPACE
IB 6C	0872		STORAGE FOR R8

4.40 *Read Data Subroutine

Call on RC

This subroutine programs the DVM to read one time. The decimal reading is stored in R9 and core locations 0554 and 0556. If the first digit is zero, the LOW/NORM FLAG is set at 0000 and if the first digit is not zero, the flag is reset at 0001. This subroutine also calls the Round Off Subroutine (049C) (see Section 4.29) which gives, as output, a hexidecimal number equivalent to the decimal entry rounded to four digits. This will be stored in 26EC.

Input Requirements: DVM must be set for Ratio or Voltage mode as desired.

Output Requirements: Decimal data will be in core locations 0554, 0556 and R9.

Hexidecimal data equivalent to rounded decimal data

will be in core location 26EC.

*Read Data Subroutine (Data will be in R9 and 0554, 0556)

2000 C830 OOCA	LOAD DVM DEVICE ADDRESS
2004 DE30 OB24	ENABLE INTERUPTS FOR DVM
2008 41E0 06D8	SAVE REGISTERS
200C 9F95	ACKNOWLEDGE INTERUPTS
200E 0539	IS IT DVM?
2010 4330 2018	IF SO, BRANCH TO READ DATA
2014 4300 2008	IF NOT, LOOK AGAIN FOR INTERUPT
2018 OB77	CLEAR R7
201A 0200	NOP
2010 0890 0005	LOAD LIMIT INTO R9
2020 C880 0001	LOAD INCREMENT INTO R8
2024 DB37 02B8	READ DATA INTO CORE
2028 4120 1010	DELAY

2030	4200	0000	NOP
2034	4200	0000	
2038	4190	0500	BAL TO ASCII/DEC. ROUTINE
203C	4870	0554	LOAD FIRST DEC. DIGIT
2040	4230	205C	BRANCH ON NOT O
2044	C840	0000	LOAD O
2048	4040	09F6	SET LOW/NORM FLAG=1
204C	4890	0556	LOAD 2'ND HALFWORD OF DEC. #
2050	4800	0554	LOAD 1 'ST HALFWORD
2054	0819		LOAD
2056	0200		NOP
2058	4300	2608	BRANCH
205C	C840	0001	LOAD 1
2060	4040	09F6	SET LOW/NORM FLAG =1
2064	4800	0554	LOAD FIRST HALFWORD
2068	4810	0556	LOAD SECOND HALFWORD
2060	4200	0000	NOP
2070	4200	0000	NOP
2074	4200	0000	NOP
2078	4300	26D0	BRANCH TO NEW SPACE

FIGURE 4-14. READ DATA SUBROUTINE FLOWCHART 4-111

Multiple Readings and Digital Filter Subroutine Calculate Max Delta of Last Three Deltas

Note: The following is part of Section 4.39, Multiple Readings Subroutine.

2200 4	483A OB56	LOAD DELTA N
2204 0	CBAO 0008	SUB. 8 FROM INDEX
2208 4	182A OB56	LOAD DELTA(N-1)
220C C	CBAO 0008	SUB. 8 FROM INDEX
2210 4	481A OB56	LOAD DELTA(N-2)
2214 0	CAAO 0010	ADD 10 TO INDEX TO RESTORE
2218 0	0512	COMPARE DELTA(N-2):DELTA (N-1)
221A O	200	NOP
221C 4	280 2228	BRANCH ON LOW DELTA(N-2) < DELTA(N-1)
2220 0	1841	LOAD DELTA (N-2) AS MAX 1
2222 0	200	NOP
2224 4	300 222C	SKIP NEXT INSTR.
2228 0	842	LOAD DELTA(N-1) AS MAX I
222A 0	200	NOP
2220 0	543	COMPARE MAXI DELTA N
222E 0	200	NOP
2230 4	280 223 C	BRANCH IF MAX 1 < DELTA N
2234 0	854	SAVE MAX 1 AS MAX DELTA IN R5
2236 0	200	NOP
2238 4	300 2240	SKIP NEXT INST.
223C 0	853	DELTA N IS MAX DELTA, SAVE IN R5

223E 0200 NOP
2240 4050 230A STORE MAX DELTA
2244 4200 0000 NOP

2248 4200 0000

224C 4200 0000

Calculate Average of Last Three Ratios

2250	483A	0B50	LOAD RATIO N	
2254	CBAO	8000	SUB. 8 FROM INDEX	
2258	482A	0B50	LOAD RATIO (N-1)	
225C	CBAO	8000	SUB. 8 FROM INDEX	
2260	481A	0B50	LOAD RATIO (N-2)	
2264	CAAO	0010	ADD 10 TO INDEX TO RESTORE	
2268	4200	0000	NOP	
2260	4200	0000	•	
2270	4010	2304	SAVE RATIO (N-2)	
2274	4020	2306	SAVE RATIO (N-1)	
2278	4030	2308	SAVE RATIO N N WILL BE LAST RATIO READ	١
227C	4200	0000	NOP	
2280	4200	0000		
2284	4200	0000		
2288	4200	0000		
228C	4A 30	2306	N+(N-1)	
2290	4A 30	2304	N+(N-1)+(N-2)	

```
2294 4200 0000
2298 4200 0000
229C C840 0003 LOAD
                 CLEAR R2
22A0 0B22
22A2 0200
                (N+(N-1)+(N-2))/3 QUOT. IN R3 (AVERAGE OF 3 RATIOS
22A4 0D24
22A6 0200
22A 8 4030 230C SAVE AVERAGE
22AC C830 03E8 LOAD CONST.
                 1000*DELTA(MAX)
22B 0 4C 20 230A
228 4 4D20 230C 1000*DELTA(MAX)/AVER. RATIO
                 LOAD TO SET CONDITION CODE
22B8 0833
22BA 0200
22BC 4220 1AOC BRANCH ON + (QUOT. > 0) TO CONTINUE READINGS
                 LOAD O
22C0 C810 0000
22C 4 4010 230E STORE "STABLE" FLAG MAX DELTA < .1% OF RATIO AV
2208 0309
                 RETURN TO CALL
22CA 0000
                LOAD 1
22F0 C810 0001
              STORE "UNSTABLE FLAG"
22F4 4010 230E
22F8 4200 0000
22FC 4200 0000
                 RETURN TO CALL
2300 0309
                 STORAGE # OF RATIOS READ TO GET . 1% MAX DELTA
2302 0008
```

2304	1B 8D	IBSD	••	RATIO (N-2)	RATIO (N-1)	
2308	1B 8E	0001	**	RATIO N	MAX DELTA	
230C	1B 8D	0000	67	AVERAGE RATIO	STABLE/UNST	ABLE FLAG
			Calculate	Absolute Value of	Deltas	
2310	4840	0862	LOAD DE	LTA I		
2314	4200	0000	-		·	
2318	4200	0000	-			
231C	4200	0000				
2320	4310	2320	BRANCH	ON NOT -		
2324	C850	FFFF	LOAD -1			
2328	OC 44		DELTA 1	*(-1)		
232A	0845		LOAD QU	от		
232C	4040	0866	STORE /	DELTA I/ IN TABL	.E	
2330	4200	0000				
2334	4840	OB 72	LOAD DE	LTA 2		
2338	4200	0000				
233C	4200	0000				
2340	4200	0000				
2344	4310	2350	BRANCH	ON NOT +		
2348	C850	FFFF	LOAD -1			
23 4C	OC 44		DELTA 2	* (-1)		
23 4E	0845		LOAD QU	OT.		
2350	4040	OB 76	STORE /	DELTA 2/ IN TABL	E	
2354	4200	0000				
2358	4300	1808	RETURN '	TO MAIN PROG.		

4-115

4.41 *ASCII/Decimal Subroutine

Call on RE

This subroutine converts five bytes of ASCII code to decimal code.

Input Requirements: ASCII code in locations 09B6-09BA

Output Requirements: Decimal data in locations 246C-246F

This subroutine saves all registers except RE (see figure 4-15.)

*ASCII/Decimal Subroutine

23FC	40F0	2470	SAVE RE
2400	41E 0	06E0	BAL TO SAVE REGISTERS
2404	D 3A 0	09B7	LOAD ASCII #'S INTO REGISTERS
2408	D 3B 0	09B8	
240C	D3C0	0989	
2410	D3D0	09EA	
2414	D3E0	09B6	
2418	OB 11		CLEAR RI
241A	OB 77		CLEAR R7
241C	0800		CLEAR RO
241E	0200		
2420	930A		LOAD FIRST ASCII #
2422	0200		
2424	0810		ALSO INTO RI
2426	0200		
2428	C410	00 0 F	PICK OFF BITS 12-15
242C	CD10	0000	SHIFT LEFT 12

2430 930F	LOAD SEC. #
2432 0200	
2434 0820	ALSO IN R?
2436 0200	
2438 C420 000F	PICK OFF BITS 12-15
243C CD20 0008	SHIFT LEFT 8
2440 OA12	ADD R2 TO R1
2442 0200	
2444 933C	LOAD 3 RD # /
2446 0200	
2448 C430 000F	PICK OFF BITS 12-15
244C CD30 0004	SHIFT LEFT 4 BITS
2450 OA 13	ADD R3 TO R1
2452 0200	
2454 933D	LOAD 4 TH #
2456 0200	
2458 C430 000F	PICK OFF BITS 12-15
245C 0A13	ADD R3 TO R1 (R1 NOW CONTAINS FIRST 4 DIGITS)
245E 0200	
2460 93 3 E	LOAD 5 TH DIGIT
2462 0200	
2464 C430 000F	PICK OFF BITS 12-15
2468 4300 2474	BRANCH

2460 0000		STORAGE '
246E 3000	1808	••
2472 0000		
2474 4200	0000	
2478 4200	0000	
2470 4030	246C	STORE FIRST DIGIT
2480 4010	246E	STORE LAST 4 DIGITS
2484 41E0	0720	RESTORE REGISTERS
2488 48E0	2470	RESTORE RE
248C 030E		RETURN

FIGURE 4-15. ASCII-TO-DECIMAL SUBROUTINE FLOWCHART

4.42 Desired Frequency Table

This table gives a set of desired frequency test points which is used to check against the reading of the frequency counter. These desired frequencies are compared to the counter reading in the Check for Proper Frequency program (see Section 4.43).

Desired Frequency Table

2480	0000	24D6	0400		2506	2500	0000
2482	0010	2408	0000		25 OA	3000	0000
2484	0000	24DA	0500		25 OE	3500	0000
24B6	0015	24D C	0000		2512	4000	0000
2488	0000	24DE	0600		2516	4500	0000
24BA	0030	24E0	0000		25 IA	5000	0000
24BC	0000 -	24E2	0700		25 I E	5500	0000
24BE	0050	24E4	0000		2522	6000	0000
24C0	0000	24E6	0800		2526	6500	0000
2402	0100	24E8	0000		25 2A	7000	0000
- 24C 4	0000	24EA	0900		252E	7500	0000
2406	0100	24EC	0000		2532	8000	0000
2408	0000	24EE	1000	0000	2536	8500	0000
24CA	0100	24F2	1500	0000	253A	9000	
24CC	0000	24F6	1700	0000	253C	0000	
24CE	0200	24FA	2000	0000	253E	9500	
24D0	0000	24FE	2000	0000	2540	0001	
24D2	0300	2502	2000	0000	25 42	0000	
24D4	0000				>		

4.43 *Check for Proper Frequency Subroutine

Call on R8

This subroutine compares the frequency counter reading with a desired frequency and if the two do not agree, reprograms the oscillator again and reads the frequency again. This is repeated up to three times. After three tries, the program continues with whatever frequency exists at that time.

*Check for Proper Frequency Subroutine

2560	41E 0	06E0	BAL TO SAVE REGISTERS
2564	4200	0000	
2568	41E0	23FC	BAL TO DECODE FREQ DATA
25 6C	4200	0000	
2570	4880	246C	LOAD FREQ. DATA DIGIT 1
2574	4890	246E	2-5
25 78	4586	24AC	COMPARE FIRST DIGIT WITH TABLE VALUE
257C	4330	2588	BRANCH ON =
2580	4300	25A0	GO TO TRY AGAIN
2584	4200	0000	
2588	4596	24AE	COMPARE DIGITS 2-5
25 8C	4230	25A0	BRANCH ON NOT = TO TRY AGAIN
2590	4200	0000	
2594	4200	0000	
25 98	41E0	0720	BAL TO RESTORE REGISTERS
259C	4300	09 7 A	CONTINUE
25AO	4200	0000	

25A4	4870	0 9E 2	LOAD COUNTER IN F7
25A8	C570	0003	IS IT 3?
25AC	4330	25 98	BRANCH ON = TO RESTORE AND CONT.
25B 0	CA 70	0001	ADD 1 TO R7
25B 4	4070	0 9E 2	STORE COUNTER
25B8	4200	0000	
25B C	41E0	0720	BAL TO RESTORE REGISTERS
2500	C870	000F	LOAD OSC. DEVICE ADDRESS
25C4	C8A0	0000	CLEAR RA
2508	CB 60	0004	SUB. 4 FROM R6
25CC	4300	0908	RETURN

>

*Read Data Subroutine (Continued from Section 4.40)

Note: The following is part of Section 4.40 Read Data subroutine.

26BC	4200	0000	NOP
2600	4200	0000	
26C4	4200	0000	
2608	4200	0000	
26CC	4200	0000 .	
26D0	4200	0000	
26D4	4200	0000	
26D8	4200	0000	
26DC	41E0	0490	BAL TO ROUND OFF, DEC/HEX ROUTINE
26E0	4200	0000	NOP
26E 4	41E0	0720	RESTORE REGISTERS
26E8	030C		RETURN TO CALL
26EA	0000		HEX. STORAGE
26E C	1B8E	6356	STORAGE
26F0	B564	3269	
26F4	3232	3559	
26F8	6935	6435	
26FC	3332	6944	

4.44 *Type-Out Subroutine

Call on RE

This subroutine permits type-out of a message or data by a subroutine call with three transfer parameters. The calling sequence is as follows:

xxxx 41E0 3478

Parameter 1 Parameter 2

Parameter 3

Parameter 1: starting address of type message or data.

Parameter 2: ending address of type message or data.

Parameter 3: either 0000 for binary data or 0001 for ASCII data.

If the data to be typed are in ASCII code, the type-out will be as stored in the core without any additional spaces, carriage returns or line feeds. These must be supplied in the table of constants in core to be typed. Messages to be typed may be entered by using the Message Entry Subroutine (3600), Sect. 4.45

If the data to be typed are in binary, spaces will be placed after every two bytes typed out. A carriage return, line feed will be output after the maximum bytes per line. This constant (maximum bytes per line) is entered in location 340A.

*Type-Out Subroutine

3478	4200	0000	NOP
347C	40E0	3554	SAVE RETURN ADDRESS
3480	488E	0000	LOAD ADDRESS OF START
3484	0B 55		CLEAR
3486	0200		
3488	4050	3558	STORE COUNTER X
348C	4050	355A	STORE COUNTER 1
3490	4050	355C	STORE COUNTER 2
3494	4080	355E	SAVE STARTING ADDRESS
3498	CAEO	0002	ADD 2 TO RETURN ADDRESS
349C	488E	0000	LOAD END ADDRESS

34AO 4300 3598 GO CHECK FOR ASCII CODE 34A4 4870 355E (COMES HERE IF NOT ASCII) LOAD START ADDRESS ADD X 34A8 4A70 3558 34AC D307 0000 LOAD BYTE TO BE TYPED 34B0 0830 LOAD PICK OFF 1 ST. CHARACTER 34B2 C400 00F0 SHIFT RIGHT 34B6 CC00 0004 PICK OFF 2 ND. CHAR. 34BA C430 000F BAL. DEC/ASCII 34BE 4190 1954 TYPE FIRST CHAR. 34C2 41E0 3564 LOAD 2 ND. CHAR. 3406 0803 34C8 4190 1954 DEC/ASCII TYPE 2 ND. CHAR. 34CC 41EO 3564 34D0 4850 355A LOAD COUNTER 1 34D4 CA50 0001 ADD 1 34D8 4050 355A STORE COUNTER 1 34DC C550 0002 COUNTER 2 = 27 34E0 4230 34F4 BRANCH ON NOT = 34E4 D320 0E5C LOAD SPACE CHAR. 34E8 41E0 3564 TYPE IT 34EC 0B 55 CLEAR COUNTER 1 34EE 0200 34F0 4050 355A STORE 34F4 48A0 3558 LOAD COUNTER X 34F8 CAAO 0001 ADD 1

			1
34FC	4850	355C	LOAD COUNTER 2
3500	CA50	0001	ADD 1
3504	4050	355C	STORE COUNTER 2
3508	C550	8000	COUNTER 2 = MAX. BYTES PER LINE?
35 OC	4230	3548	IF NOT BRANCH
3510	D320	0984	LOAD CARRIAGE RETURN CODE
3514	41E0	3564	TYPE OUT
3518	D320	09B 5	LOAD LINE FEED CODE
351C	41E0	3564	TYPE OUT
3520	4200	0000	
3524	4820	35 60	LOAD END ADDRESS
3528	4840	355E	LOAD START ADDRESS
35 2C	0B24		SUBTRACT
352E	0200		
3530	CA20	0001	ADD 1 TO ABOVE DIFFERENCE
3534	OB2A		SUBTRACT OFF # TIMES THRU
3536	0200		
3538	4220	3540	BRANCH ON + (NOT FINISHED)
35 3C	4300	35 7C	BRANCH
3540	0200		
3542	0B77		RETURN
3544	4070	355C	CLEAR COUNTER 2
3548	40A0	3558	SAVE X
35 4C	4200	0000	
3550	4300	34A4	CONTINUE

3554	05C0		STORAGE	FOR	RE		
3556	0000						
3558	0018		••		COUN	ITER	X
355A	0000		••		COUN	TER	1
355C	0000		••		COUN	TER	2
355E	05D0		••		STAR	T	
35 60	05E7		700		END		
35 62	0000						
3564	C810	0002	LOAD TT	Y DE	/ICE	A D D F	RESS
35 68	DEIO	09B2	PUT TTY	IN V	VRITE	MOD	E
35 6C	4180	OEEC	WAIT				
35 70	9A 12		TYPE				
35 72	0200						
35 74	030E		RETURN				
35 76	0200						
35 78	0000						
35 7A	0000						
35 7C	48E0	3554	RESTORE	RE			
3580	CAEO	0006	ADD 6				
3584	030E		RETURN				
3586	0200						
3588	0000						
358A	0000						

3598	4080	3560	SAVE END ADDRESS
35 9C	48E0	3554	RESTORE RE
35 A O	CAEO	0004	ADD 4
35A4	480E	0000	LOAD CODE FOR ASCII OR BINARY IDENTIFICATION
35A8	C500	0000	IS IT 0 ?
35AC	4330	3 4 A 4	BRANCH ON = TO CONTINUE
35B 0	4870	355E	LOAD START ADDRESS
35B 4	4A 7 (3558	ADD COUNTER X
35B8	D327	0000	LOAD BYTE TO BY TYPED
35BC	08B2		SAVE IT IN RB
35B E	0200		
35CO	4,8A0	3558	LOAD COUNTER X
35C4	4200	0000	
35C8	4200	0000	
35CC	4200	0000	
35D0	4820	3560	LOAD END ADDRESS
35D4	4840	355E	LOAD START ADDRESS
3 5D8	0P24		SUBTRACT
35 DA	0200		
35DC	CA20	0001	ADD 1
35E0	0200		
35E2	OB2A		(END -START) - # TIMES THRU
35 E 4	4220	35EC	BRANCH ON + (NOT FINISHED)

35E8 4300 357C GO TO EXIT

35EC 082B LOAD

35EE 0200

35FO 41EO 3564 TYPE BYTE

35F4 CAAO 0001 ADD I TO COUNTER X

35F8 40A0 3558 SAVE COUNTER X

35FC 4300 35B 0 EXIT

4.45 *Message Entry Subroutine

Call on RE

This subroutine permits entry of messages to be typed out by the Type-Out Subroutine (see Section 4.44). This subroutine has two transfer parameters. The calling sequence is as follows:

xxxx 41E0 3600

Parameter 1 Parameter 2

Parameter 1: number of bytes allowed in the message.

Parameter 2: starting address for stored message (core location)

Upon calling this subroutine, a message can be typed and transferred directly into core (ASCII code). Upon reaching the maximum bytes allowed, a message is typed on the TTY: NO MORE MESSAGE SPACE. If end-of-message is reached before all the message space is used, control A will cause the program to terminate and exit to the monitor. If a mistake is made in typing a character or characters the backward arrow < will backspace one character (one ASCII byte) for each < typed. The correct character or characters then may be typed.

*Message Entry Subroutine

3600	4300	36E0	GO TO MORE SPACE
3604	4200	0000	
3608	4200	0000	
360C	0P 00		CLEAR RO
360E	0200		
3610	4000	3608	SAVE COUNTER X
3614	C830	0002	PUT TTY IN READ MODE
3618	DE30	0A 0 4	00
3610	9D34		SENSE STATUS, LOAD COND. CODE
361F	0844		
3620	4230	361C	BRANCH ON BUSY TO SENSE STATUS

624	9P 39		READ DATA
626	0200		
628	4300	3708	GO CHECK FOR < CHARACTER (A < IS TYPED TO ERACE
62C	C590	0081	A CHAR.) IS THE CHAR. A CONTROL A (CHAR. FOR END OF MESSAGE)?
5630	4330	36D0	IF SO, GO TO EXIT
5634	4B 1 0	36CA	HAS MAXIMUM # OF BYTES BEEN TYPED?
3638	4310	3678	IF SO, TYPE OUT "NO MORE MESSAGE SPACE"
363C	C590	0021	IS THE CHAR. "!"?
3640	4330	3664	BRANCH ON =
3644	4810	3608	LOAD COUNTER
3648	D291	3720	STORE BYTE IN CORE
364C	CAIO	0001	ADD 1 TO X
3650	4010	3608	SAVE
3654	4200	0000	
B 65 8	4200	0000	
365C	4300	3610	CONTINUE
5660	4200	υυυυ	
3664	41 E O	3478	COMES HERE IF CHAR IS "1" GO TO TYPE OUT
3668	368E	369F	
366C	0001		
366E	0200		
3670	4300	36D0 -	GO TO EXIT
3674	4200	0000	
3678	41E0	3478	TYPE OUT "NO MORE MESSAGE SPACE"
36,7C	36A8	3601	

3680 000	l						
3682 0200)						
3684 4300	36DO	GO TO EX	ΙT				
3688 0000)						
368A 0000)						
368C 0000							
368E 8D8	C5CE	STORAGE	FOR TIY	CODE	CR,LF	END OF ME	SSAGE
3692 C4A	CFC6						
3696 A OC	C 5D3						
369A D3C	1 C7C5						
369E 8D8	0000 A						
36A2 000	0						
36A4 000	n						
36A6 000	0						F0040F
36A8 8D8	A AOCE	80			CR, LF	NO MORE M SPACE	ESSAGE.
36AC CFA	O CDCF						
36RO D2C	5 AOCD						i
3684 C5D							
36B8 C7C							
36PC DOC	1 C3C5						
3600 8D8	A 0000	STORAGE	FOR ITY	CONSTANT	S		
36C4 000	0						
36C6 000	0						

3608 0003	STORAGE FOR COUNTER
36CA 0003	" MAXIMUM # BYTES ALLOWED IN MESSAGE
36CC 3814 0000	" RF
36D0 48F0 36CC	RESTORE RF
36D4 CAEO 0004	ADD 4
36D8 030F	RETURN
36DA 0000	
36DC 0000	
36DE 0000	
36E0 40F0 36CC	SAVE RE
36E4 488F 0000	LOAD ((RE)) INTO R6
36E8 4080 36CA	SAVE MAXIMUM # OF BYTES
36EC CAEO 0002	ADD 2 TO RE
36F0 488E 0000	LOAD ((RE)) INTO R8
36F4 4080 364A	SAVE STARTING LOCATION
36F8 4300 3604	GO BACK AND CONTINUE
367C 73EE 73EC	
3700 73EC 73EC	
3704 73EC 73EC	
3708 4810 36C8	LOAD COUNTER
370C C590 003C	IS IT "<"?
3710 4230 362C	BRANCH ON NOT =
3714 CB10 0001	SUPTRACT I FROM COUNTER
3718 4010 3608	STORE
371C 4300 361C	CONTINUE

3720	FFD7	D7D4	STORAGE FOR REPLY
3724	C941	CC00	
3728	0000		
372A	73EA	73EC	
372F	73EC	73EC	•
3732	73EC	41E0	SAMPLE PROG FOR USING MESSAGE ENTRY
3736	3600	0020	BAL TO MESSAGE ENTRY
373A	05D0		FIRST PARAMETER* # OF BYTES ALLOWED SECOND PARAMETER* STORAGE PLACE FOR ANSWER
3.7.3.C	4300	1080	GO TO MONITOR

4.46 Accelerometer Data Block Entry Program

This program allows the user of the system to enter data about the accelerometer under test such as manufacturer, model number, serial number, amplifier used, etcetera. The program is started at location 3740 (see figure 4-16). The program then asks the operator a series of questions about the accelerometer and associated equipment. As the answers are typed on the TTY by the operator, the ASCII code is stored in proper locations in core (see Section 4.35).

There are two options at the beginning of the program, the "PARTIAL" and the "ALL" modes. If the operator types "ALL" in response to the question "ALL OR PARTIAL", the program then goes through and asks a series of sixteen questions. At the end of the sixteen questions, the program returns to Monitor. For the "PARTIAL" option, the operator must request which parameter he wishes to enter by typing one of the following two letter codes.

FN	for	file number	AS	for	amplifier serial number
TN		test number	CU		customer
CA		capacitance	DC		data of calibration
PM		accelerometer manufacturer	E1		exciter 1
PN		accelerometer model number	E2		exciter 2
PS		accelerometer serial number	S 1		standard 1
AM		amplifier manufacturer	S2		standard 2
AN		amplifier model number	GA		gain

The operator must enter one of the codes above. The program then asks the question corresponding to the code which was entered. In the "PARTIAL" mode, the program always types "ANOTHER CHANGE?" after each entry. The proper answer is "YES" or "NO".

The data entered by this program together with the data of the calibration factors form a data package located in 2900-3200 (see Section 4.35). This data package can then be entered into a file on magnetic tape by a subroutine call.

Accelerometer Data Block Entry Program

3740	4200	0000	
3744	4200	0000	
3748	41E0	3478	TYPE OUT "ALL OR PARTIAL CHANGES?"
374C	3920	3939	
3750	0001		
3752	0200		
3754	4200	0000	
3758	41F0	3600	BAL TO ENTRY PROGRAM FOR ANSWER
375C	0007		TRANSFER PARAMETERS
375E	3720	D310 ,	" LOAD ENTRY DATA
3762	3720	C 410	PICK OFF LAST 4 PITS
3766	000F		
3768	0811		LOAD RI TO SET CONDITION CODE
376A	0200		
376C	4330	3780	BRANCH IF ANSWEF WAS "PARTIAL"
3770	4200	0000	
3774	C800	0001	LOAD 1
3778	4000	378C	STORE "ALL" FLAG
377C	4300	0400	CLEAR STORAGE TABLES
3780	C800	0000	LOAD O
3784	4000	378C	STORE "PARTIAL" FLAG
3788	4300	3844	BRANCH TO CONTINUE
372C	0000		STORAGE FOR ALL/PARTIAL FLAG
378E	0200		

3790	4100	3888	OUTPUT CR,LF
3794	0B33		CLEAR R3
3796	0200		
3798	4030	389C	CLEAR COUNTER X, SAVE
379C	4823	38A0	LOAD START LOCATION
37A O	4843	38A2	LOAD # BYTES ALLOWED IN ANSWER
37A4	0A42		ADD TO GET FNDING LOCATION
37A6	4020	3 7B2	STORE START LOCATION
37AA	4040	37P4	STORE END LOCATION
37AE	41E0	3478	TYPE QUESTION
37B2	0000		
37P 4	0000)	
37R6	0001		
37B8	4300	0430	CLEAR TABLES
37BC	4823	38A4	LOAD STORAGE LOCATION
3700	4843	38A6	LOAD # PYTES ALLOWED
37C4	4020	37D2	STORE
37C8	4040	3 7D 0	STORE
37CC	41F0	3600	GO TO MESSAGE ENTRY SUPROUTINE
37DO	onnc		•
37D2	2P 78	4810	LOAD ALL/PARTIAL FLAG
37D6	378C	4330	PRANCH ON PARTIAL
37DA	3800	4840	LOAD INDEX X
37DE	389C	4830	**
37E2	389C	4200	

37E6 0000	
37F8 CB40 0078	HAS LAST QUESTION BEEN ASKED?
37FC 4310 1C80	IF SO GO TO MONITOR
37F0 CA30 0008	IF NOT, ADD 8 TO INDEX X
37F4 4030 389C	STORE
37F8 41C0 3888	OUTPUT CR,LF
37FC 4300 379C	CONTINUE
ა800 4200 0000	
3804 41E0 3478	TYPE "ANOTHER CHANGE?" (ANSWER MUST BE YES OR NO
3808 39DC 39EF	
380C 0001	
380F 0200	
3910 41E0 3600	BAL TO MESSAGE ENTRY FOR REPLY
3814 0003	
3816 3720 4830	LOAD REPLY
381A 3720 C530	WAS IT YFS?
381E 59C5 4330	IF SO, BRANCH
3822 3844 4200	
3826 0000	
3828 C530 4FCF	WAS IT NO?
3820 4330 1080	IF SO, GO TO MONITOR
3830 41F0 3478	IF NEITHER YES OR NO TYPE "WHAT?"
3834 0300	

3836 03C5 3838 0001 383A 0200 383C 4300 3810 TRY AGAIN 3840 4200 0000 3844 41E0 3478 TYPE "WHICH?" 3848 0306 384A 03CF 384C 0001 384E 0200 3850 41FO 3600 BAL TO MESSAGE ENTRY FOR REPLY 3854 0003 3856 3720 4830 LOAD REPLY TYPE CR LF 385A 3720 41CO 385E 3888 0B55 CLEAR R5 3862 0200 3864 4535 03A0 COMPARE (R3): (03A0+(R5)) WHICH PARAMETER ? 3868 4230 3878 BRANCH IF THIS IS MOT IT 386C C830 0004 LOAD 4 3870 0025 MULT COUNTER R5 BY 4 3872 0200 3874 4300 379C GO TO TYPE OUT THE QUESTION ADD 2 TO INDEX 3878 CA50 0002 COMPARE COUNTER 55 TO UPPER LIMIT 387C C550 0080

3880	4330	3844	IF	IMPROPER	PARAMET	ER WAS	TYPED,	TYPE	"WHICH?"
3884	4300	3864	CON	TINUF			. 8		
3888	41E0	3478	OUT	PUT CR,L	F SUBROU	TINE			,
328C	03CE								
388F	03CF								
3890	0001								
3892	030C								
3894	0200								
3896	73EC	73EC							
389A	73EA	0079	XXX	X, STORA	GF FOR C	OUNTER	7		
389E	73EC	393A							

4.47 Storage Table for Type-Out Constants and Save Locations

This is a storage table for the Accelerometer Data Block Entry Program (see Section 4.46).

Storage Table for Type-Out Constants and Save Locations

38A0	393A 0009	FN
38A4	2B 00 0004	
38A8	3944 0008	TN
38AC	2B 04 0008	3
38B 0	394E 0009	CAPAC.=?
38B4	2B 78 000C	
38B8	3958 000E	PICKUP MNFG?
38BC	2B10 0006	
3800	03D0	PICKUP MOD NO?
3802	00 0 F	
38C4	2B 2 0 000A	
38C8	3968 000C	PICKUP SN=?
38CC	2B16 000A	
38D0	3976 000B	AMP MNFG=?
38D4	25 30 0006	
38D8	03E0	AMP MOD NO?
38DA	000F	
38DC	2B 40 000A	
38E 0	3982 0009	AMP SN=?
38E4	2B 36 000A	

38E8 398	C 000B	CUSTOMER?
38EC 2B5	0 0010	
38F0 399	8 000F	DATE OF CALIB:?
38F4 2B6	0 0006	
38F8 39A	0000	EXCITER #1=?
38FC 2B6	6 0004	
3900 39R8	8 000D	EXCITER #2=?
3904 2B6	0004	
3908 3908	3 0009	STD #1=?
390C 2B 70	0004	
3910 39D4	4 0009	STD #2=?
3914 2B74	0004	
3918 39F0	0007	GAIN?
391C 2B84	007C	
3020 ALCC	CCAO	ALL OR PARTIAL CHANGES?
		ALL OR PARTIAL CHANGES!
3924 CFD2		
3928 41D2	D 4C 9	
392C 41CC	AOC3	
3930 4841	4E 47	
3934 C553	3F8D	
3938 OAAO		
393A C6C9	CCC5	FILE #=?
393E A 3B D	3F8D	
3942 OAAO		

• 4

3944	D4C5	53D4	TEST #=?
3948	A 3B D	3F8D	
394C	0A A 0		
394E	C341	5041	CAPAC.=?
3952	C32E	BD3F	
3956	8D0A	5 OC 9	PICKUP MNFG=?
395A	C 3 4P	5550	
395E	A 04D	4EÇ6	
3962	47BD	3F8D	
3966	OAAO		
3968	50C9	C34B	PICKUP SN=?
396C	5550	A053	
3970	4EBD	3F8D	
3974	OAAO		
3976	414D	50A0	AMP MNFG=?
397A	4D 4F	C647	
397E	BD3F	8DOA	
39 82	414D	5 0A 0	AMP SN=?
3986	534È	BD3F	
398A	8DOA	C355	CUSTOMER=?
398E	53D4	CF4D	
3992	C5D2	BD3F	
3996	AOGS	4441	DATA OF CALIP=7

399A	D 4C5	AOCF	
399F	C6A0	C341	
39A2	CCC 9	423F	
39A6	SDOA	C5D8	FXCITER #1=?
39AA	0309	N4C5	
39AE	CAST	A 3P 1	_
39P?	PD3F	RDOA	-
39P6	A 0A 0	C5D8	EXCITER #2=?
39PA	C 3C 9	0.405	
39P F	DPAO	A 3P 2	
3902	PD3F	ACUS.	
3906	A OA O	5304	SID #1=?
39CA	442E	A3B1	
39CE	BD3F	8D 0A	
39D2	A OA O	5304	SID #2=?
3.2D6	442E	A 3P 2	
3900	PD3F	8D0A	
39PE	414F	CFD4	ANOTHER CHANGE?
39F2	48C5	D2AO	
39E6	C348	41 4E	
39EA	47C5	3F8D	
39FF	OAAO		
39F0	4741	C 94F	CAIN?
39F4	3F2D	0440	

5. DISCUSSION

Accurate reference accelerometers need to be calibrated with a minimum of time spent in recalibration consistent with accuracy requirements. The automated system for accelerometer calibration was set up to provide a precision calibration facility and to shorten the time required to perform Another advantage of this type of system is that it is possible calibrations. to collect more data on control accelerometers. Those control accelerometers which are known to be reliable are maintained as control units for measuring the repeatability of the system. One of the control accelerometers is calibrated each day the system is in use on two exciters and the results are kept on file. Although deviations from the normal sensitivity may be spotted by the operator, checking the deviations based on data collected over a long time frame is desirable. Data have been collected over a four-year period on the control accelerometers using the automated system. Figures 5-1 and 5-2 show the history at 400 Hz over a two-year time span. All the data in figure 5-1 are from one control accelerometer on one exciter. The data in figure 5-2 are for the same accelerometer (number 1) up to day 256. From day 256 on, the data are for a second control accelerometer (number 2) with the same nominal sensitivity. Figure 5-3 shows a histogram for 1972 for control accelerometer 1 in terms of accumulative average percent deviation from the mean for a frequency of 400 Hz on two exciters. This is based on 131 data points on each exciter. This gives a measure of the probability that a given data point will deviate from the mean sensitivity by a certain amount in percent. For example, figure 5-3 indicates that 90 percent of the time the deviation from the mean at 400 Hz should be 0.5 percent or less. Figure 5-4 shows the same histogram for 1973.

By accumulating data over a long period of time, a data bank can be valuable for quality control of the system. This type of information can be incorporated into a software program in the minicomputer to set upper and lower bands for deviations of the control accelerometer. For data falling outside these bands, the computer can be programmed to respond with messages on the TTY or if desirable, to halt the system. Instead of a go or no go diagnostic, an analysis of the current data from a control accelerometer could give deviations from the mean based on the mean in the data bank for each test frequency. These deviations could then be translated into frequency of occurence as seen in figures 5-3 and 5-4. A diagnostic message can be printed to indicate in what region the current data lie in terms of the probability density of the data bank.

FIGURE 5-3. HISTOGRAM OF A CONTROL ACCELEROMETER FOR 1972

FIGURE 5-4. HISTOGRAM OF A CONTROL ACCELEROMETER FOR 1973

In Section 2 of this report the hardware components listed a wave analyzer and dc power supply as equipment for future expansion of the system. The wave analyzer is tunable by a dc voltage and can be programmed by remotely tuning it to read harmonic distortion. One of the digital to analog converters used with the x-y plotter can be used to tune the analyzer. Since the digital to analog converter has a range of ± 10 volts dc, a dc power supply is needed to supplement it to give \pm 20 volts dc. This can be accomplished by switching in either a +10 volts or a -10 volts in series with the analog to digital converter. The software for the analyzer would tune the analyzer for each harmonic of a given test frequency, one at a time. The output from the analyzer would then be read by the DVM and the percentage distortion calculated for each harmonic. This could be printed out after each test point on the TTY or it could be stored and printed in a summary statement at the end of a test. Such a procedure would slow down the calibration process considerably. However, it would add valuable information regarding the calibration process.

An alternative procedure would be the use of a real time programable analyzer now commercially available. This could be programmed to take a spectrum analysis at each test frequency and the harmonic amplitudes could be stored for analysis and for a summary statement.

The major source of failure in the hardware has been in the interface cards. These cards were not as reliable as the other minicomputer hardware. During the course of over four years of operation, the main frame computer hardware has needed only two service calls. The interface cards needed several service calls during the first two years of operation. Apparently, most of the bugs were removed during these two years. The test instruments which are used by the automated system have proven reliable except for the ac/dc converters which have a fairly high rate of failure. A good procedure is to have a backup instrument for each test instrument used by the system. This is necessary if continuous use is to be made of the system.

6. ACKNOWLEDGMENTS

The sponsorship of this project by the Department of the Defense Calibration Coordination Group is gratefully acknowledged. The success of this project is indebted to the following people whose contributions are gratefully acknowledged: Seymour Edelman, Roscoe Bloss, and John Ramboz for planning and encouragement; Carson Meadors and Benton Durley III for component layout and wiring; Charles Federman for assisting in schematic drawings; Jim Pollard for checkout and testing; Phillip Stein for use of his monitor program and magnetic tape drive software; and Linda Ross for aid in manuscript preparation and typing.

7. REFERENCES

- 1. B. F. Payne, "Absolute Calibration of Vibration Generators with Time-Sharing Computer as Integral Part of System", <u>The Shock and Vibration Bulletin</u>, 36, Part 6, Feb. 1967, pp. 183-194.
- 2. Samuel Levy and Raymond R. Bouche, "Calibration of Vibration Pickups by the Reciprocity Method", <u>Journal of Research NBS 57</u>, pp. 227-243 (1956) RP2714.
- 3. T. Dimoff, "Electrodynamic Vibration Standard with a Ceramic Moving Element", Journal of the Acoustical Society of America, Vol. 40, No. 3, Sept. 1966, pp. 671-676.
- 4. B. F. Payne, "An Automated Precision Calibration System for Accelerometers", 17th National Aerospace Instrumentation Symposium, May 1971.
- 5. V. A. Schmidt, S. Edelman, E. R. Smith, and E. T. Pierce, "Modulated Photoelectric Measurement of Vibration", <u>Journal of the Acoustical Society of America</u>, Vol 34, No. 4, pp. 445-458 (1962).

SULTER TOWN	THE BLEATION OF REPORT NO.	2. Covis Naces in	3. 1. 61, 100	Your Sign No.
ATAG SIHSARDULLEIB TBBHZ	NBSIR 74-482			
. TITLÉ AND SUBTITLE	I NOVAN AT THE		5. Publication	n Date
AN ATTOMATED CVCTF	M FOR PRECISION CALIBRATION		April 1	.974
OF ACCELEROMETERS	W FOR TREOTOTOR CHEEDING		6. Performing	g Organization Cod
AUTHOR(S)			8. Performing	Organ. Report No
PERFORMING ORGANIZA	TION NAME AND ADDRESS		10. Project/7	Task/Work Unit No
DEPARTME	BUREAU OF STANDARDS INT OF COMMERCE DN, D.C. 20234		11. Contract/	Grant No.
2. Sponsoring Organization N	ame and Complete Address (Street, City, S	tate, ZIP)	13. Type of F Covered	Report & Period
			14. Sponsorin	g Agency Code
The report des realtime control by of the system and it	r less factual summary of most significant furvey, mention it here.) scribes an automated system of a small, dedicated digital the software programs are given and amount of data collected.	for acceleromete computer. The ven. The softwa	r calibrat hardware c re automat	ion under omponents ically
Printout of the fre	equency response of test accorded on a magnetic tape. Man	elerometers is o	n a telety	pewrîter
. KEY WORDS (six to twelve name; separated by semico	e entries; alphabetical order; capitalize on lons)	ly the first letter of the	first key word	unless a proper
Acceleration, autor	mation, calibration, measurer tion, vibration exciters, vib	ments, minicompu oration pickups.	ter, shake	rs, standards
3. AVAILABILITY	X Unlimited	19. SECURIT		21. NO. OF PAGE
				1

Order From Sup. of Doc., U.S. Government Printing Office Nashington, D.C. 20402, SD Cat. No. C13

Order From National Technical Information Service (NTIS) Springfield, Virginia 22151 22. Price

20. SECURITY CLASS

UNCLASSIFIED

(THIS PAGE)

FIGURE 3-4. SUMMARY FLOW CHART

