#### **PS5841**

### Data Science in Finance & Insurance

# Data Wrangling

Yubo Wang

Autumn 2021



## Numpy ndarray

- ndarray
  - a homogeneous multidimensional array
    - Dimensions are called axes
  - a table of elements of the same type indexed by a tuple of non-negative integers



## Numpy ndarray Indexing

Indexing

- Fancy Indexing
  - Indexing with arrays of indices

Indexing with Boolean arrays

- Indexing with strings
  - Structured Arrays ndarrays whose datatype is a composition of simpler datatypes organized as a sequence of named fields



## Numpy Broadcasting (1)

- Broadcasting rules for working with two ndarrays
- Rule 1 If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side
- Rule 2 If the shape of the two arrays does not match in a particular dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape
- Rule 3 If in any dimension the sizes disagree and neither is equal to 1, an error is raised



## Numpy Broadcasting (2)

np.ones((2,3)) + np.arange(3) 
$${1 \ 1 \ 1 \ 1 \choose 1 \ 1 \ 1}_{(2,3)} + {0 \choose 1 \choose 2}_{(3,)}$$

rule 
$$1 \to \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}_{(2,3)} + (0 \quad 1 \quad 2)_{(1,3)}$$

rule 2 
$$\rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}_{(2,3)} + \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}_{(2,3)}$$



$$\rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}_{(2,3)}$$

#### Pandas DataFrame



UNIVERSITY

## Wide vs Long Format

#### Wide format

```
A B C D
0 jan 1 4 7
1 feb 2 5 8
2 mar 3 6 9
```

#### Long format

|   | A   | variable | value |
|---|-----|----------|-------|
| 0 | jan | В        | 1     |
| 1 | feb | В        | 2     |
| 2 | mar | В        | 3     |
| 3 | jan | С        | 4     |
| 4 | feb | С        | 5     |
| 5 | mar | С        | 6     |
| 6 | jan | D        | 7     |
| 7 | feb | D        | 8     |
| 8 | mar | D        | 9     |



## **Dummy Variables**

- Categorical features are often modeled by binary (dummy) variables in a regression
- For a factor with J levels
  - Need J binary variables if there is no intercept
  - Need (J-1) binary variables if intercept
  - Baseline is the level with no dummy variable
- Example: 1 factor with 3 levels (A,B,C)
  - with baseline A

$$y = \beta_0 + \beta_1 x_B + \beta_2 x_C + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

– How are  $\hat{\beta}_i$ 's interpretated?



## That was



