Universidad de Costa Rica

DISTRIBUCIONES DE PÉRDIDAS

MINOR HEADING

Frecuencia y severidad de default crediticio

Autores
David Zumbado
Leonardo Blanco
Ignacio Barrantes

6 de septiembre de 2022

Table of contents

Bitácora 1	1				
Punto 1	1				
1- Nombres de los integrantes	1				
2- Idea	1				
3- Reformulación de la idea de investigación	1				
Sección 5	3				
Sección 7. Descripción detallada de la tabla de datos	4				
Sección 8. Literatura	7				
Referencias para escribir en Quarto					
Metodología	11				
Referencias	12				

List of Figures

1	City and high	way mileage f	for 38 popular	models of cars	
1	Chtv and men	way iiiileage i	ior oo bobular	models of cars.	

List of Tables

Bitácora 1

Punto 1

1- Nombres de los integrantes

El grupo de trabajo estará integrado por:

- Ignacio Barrantes Valerio, carné B50939
- Leonardo Blanco Villalobos, carné B71139
- David Zumbado Fernández, carné B88751

2- Idea

Se buscará modelar las pérdidas ligadas al extravío de equipajes en aeropuertos a partir de su frecuencia y severidad.

3- Reformulación de la idea de investigación

1. £Cómo se puede modelar las pérdidas ligadas al extravío de equipajes en aeropuertos a partir de su frecuencia y severidad?

Justificacin: Las prdidas se pueden modelar utilizando la base proveniente del departamente de seguridad nacional de Estados Unidos, quienes manejan la seguridad en ms de 400 aeropuertos del pas a travs del TSA (transportation security Administration). De esta manera, los datos seran obtenidos directamente del aparato gobernamental de los Estados Unidos. Adems, esta base ha sido en trabajos similares como los de Flores (2022) y Chen (2020) (tica). Segn Flores (2022), se puede encontrar las distribuciones marginales de cada tipo de reclamo utilizando MLE, luego se pueden incorporar en un modelo de cpulas multivariadas, y finalmente se pueden evaluar utilizando las medidas de riesgo como el VaR y el TVaR (lgica). La cantidad de personas que se ven afectadas por extravos o daos al equipaje durante el chequeo en los aeropuertos es significante y representan costos que deben

ser previstos para mantener el buen funcionamiento de la empresa y para que se puedan hacer los pagos correspondientes a los afectados (emocional).

2. £Cuáles distribuciones probabilísticas permiten modelar las pérdidas ligadas al extravío de equipajes en aeropuertos a partir de su frecuencia y severidad?

Justificacin: La base utilizada sera la misma por lo que la justificacin tica se mantiene. Para la parte lgica, se puede seguir una metodologa parecida a la del punto anterior, sin embargo se tendra que hacer ms nfasis en la escogencia de la distribucin para cada variable aleatoria de prdida y frecuencia, y tambin a la hora de escoger la cpula. En Flores (2022), esto se hace a travs de la estimacin del MLE para diferentes distribuciones como la Poisson, Geomtrica, binomial y luego se comparan usando la prueba ² de bondad de ajuste para la frecuencia. Un proceso similar se lleva a cabo con la severidad, comparando Log-Laplace, Johnson SU, Logstica generalizada y Lognormal. Un proceso similar se lleva a cabo con las cpulas al comparar la Frank, Clayton y Gumbel utilizando la mtrica emprica UTDC para compararlas. Entonces Bajo esta pregunta habra un enfsis ms fuerte en la exploracin de estas y otras distribuciones para tratar de hallar la que mejor se ajusta en cada caso. Se puede comparar y contrastar con los hallazgos de otras personas que han hecho un trabajo similar (lgica). La justificacin emocional es la misma.

- 3. £Por qué es importante modelar las pérdidas ligadas al extravío de equipajes en aeropuertos?
- 4. £Cuáles métodos no paramétricos pueden emplearse en la modelación de las pérdidas ligadas al extravío o daños de equipajes en aeropuertos?

Justificacin: En la revisión de la literatura se ubican dos fuentes que emplean esta base de datos que la propuesta en la presente investigación y que persiguen el mismo objetivo, modelar la distribución de los costos de los reclamos, que son los trabajos de Flores (2022) y Chen (2020). De esta manera, se comprueba que la fuente de la base de datos ha sido validada antes en investigaciones de corte académico y estrechamente relacionadas, además de estar adecuadamente referenciada y poder consultarse en (datoskelly2020data?) (ética). Se encontró que ambos trabajos utilizan métodos paramétricos; por esta razón, resulta de interés explorar también métodos no paramétricos alternativos que puedan llegar a usarse en el contexto de modelación de pérdidas en una aseguradora, por ejemplo (emocional). Un método no paramétrico que puede utilizarse es la estimación de densidades por medio de kernels (lógica). En Pitt, Guillen, and Bolancé (2011), se advierte que este método suele ser inadecuado en presencia de asimetría, por lo cual, si se llegase a comprobar dicha condición, una manera de proceder es aplicar una transformación previa a los datos, concretamente una perteneciente a la shifted power transformation family y aplicar la estimación por kernels a los datos transformados, obteniéndose la densidad estimada de los datos originales mediante un proceso de inversión explicado en el mismo artículo.

Sección 5.

Fuente de Información:

Los datos se obtuvieron del Department of Homeland Security, un organismo del gobierno de Estados Unidos y se puede encontrar en Homeland Security (2015)

Contexto temporal y espacial de los datos:

La base registra la ocurrencia de reclamos entre 2002 y 2015 en 466 aeropuertos alrededor de Estados Unidos.

Facilidad de obtener la información:

La base fue extraída de la página oficial del departamento de seguridad nacional la cual es accesible por cualquier persona por lo que se considera fácil de obtener.

Población de estudio:

Los aeropuertos

Muestra observada:

Aeropuertos estadounidenses donde se presentaron reclamos por daños ocasionados por seguridad.

Unidad estadística o individuos:

La unidad estadística es el registro de una ocurrencia de un reclamo.

Descripción de las variables de la tabla:

Los datos se conforman por 13 variables: claim_number es el identificador del reclamo, date_received es la fecha que se registró el reclamo, incident_date es la fecha que ocurrió el incidente que ameritó el reclamo, airport_code son las 3 letras que identifican el aeropuerto donde ocurrión el incidente, y airport_name es el nombre del aeropuerto. Claim_type es el tipo de daño ocasionado (daño a propiedad, daño a personas, entre otras), claim_site es el lugar dentro del aeropuerto donde sucedió el incidente. Item es el ítem que sufrió el daño, claim_amount es la cantidad en dólares que la persona pide, status es el estado del reclamo (se llegó a un acuerdo, se negó, etc...), y close_amount fue el monto que efectivamente se pagó.

Sección 7. Descripción detallada de la tabla de datos

Claim Number: Es una variable de tipo *string* que indica el identificador del reclamo, cada vez que una persona procede a efectuar un reclamo se le asigna este.

Date Received: Es una variable de tipo caracter, sin embargo para efectos de estudio debe ser transformada a una variable tipo fecha. El objetivo de esta variable es registrar el momento donde se realiza el reclamo en el siguiente formato: día-mes-año. Hay un total de 263 NA, es decir donde se registro reclamo respectivo pero no así la fecha. Esta variable es importante para nuestro estudio, ya que se debe tomar en cuenta el numero de reclamos al modelar las perdidas por frecuencia.

Incident Date: Se observa una diferencia de fechas desde el momento que se lleva acabo el incidente y el momento de reclamo correspondiente. Por esta razón se registra a fecha del incidente.

Esta es una variable de tipo caracter , la cual para efectos de estudio debe ser transformada a una variable tipo fecha. Esta registra el momento en que se lleva a cabo el incidente siguiendo el siguiente formato: día/mes/año.Hay un total de 2183 NA , es decir , se llevo a cabo el registro del reclamo pero no se tiene información de la fecha en que se llevo a cabo el incidente.

Para efectos del modelado de la perdida por frecuencia la variable de mayor interés para nuestro estudio es la ya mencionada *Date Received*.

Airport Name: Esta variable es una variable de tipo *string* categórica , hay un total de 466 Aeropuertos registrados en la base de datos, un total de 8524 NA y 441 reclamos donde no se especifica el nombre del Aeropuerto (se les establece el símbolo : -).

En esta se registra el nombre del aeropuerto donde se lleva acabo el incidente. Esta variable aleatoria es importante , ya es posible saber cuales son aquellos aeropuertos donde se presenta mayor número de reclamos.

Airport Code: Los códigos de aeropuertos están formados por grupos de tres letras, que designan a cada aeropuerto del mundo y asignadas por la Asociación Internacional de Transporte Aéreo.

Esta variable es de tipo caracter, y registra dicho código del aeropuerto donde se lleva a cabo el incidente por lo que aporta la misma información que la variable aleatoria Airport Name, para efectos del estudio es importante considerar eliminar alguna de estas dos variables.

Airline Name: Es una variable que registra la aerolínea en la que viajaba la persona que sufrió el incidente. Es una variable tipo *string* categórica. Hay un total de 232 aerolíneas registradas en la base de datos, un total de 34374 NA y 4247 reclamos donde no se especifica el nombre de la aerolínea (se les establece el símbolo: -).

Esta variable es de interés para el desarrollo de nuestro estudio ya que es importante saber cuales son las aerolíneas que presentan mayor número de reclamos, y por ende si tienen una mayor impacto en las pérdidas.

Claim type: Esta variable es de tipo *string* categórica, la cual registra el tipo de reclamo realizado por la persona. Hay un total 10 tipos de reclamos registrados en la base de datos:

- Bus Termina: Categoría que registra reclamos relacionados a la terminal de buses, hay un 1 reclamo.
- Complaint: Categoría que registra reclamaciones de forma general, hay un total de 49 reclamos.
- Compliment: Categoría que registra quejas de forma general, hay un total de 3 reclamos.
- Employee Loss (MPCECA): Categoría que registra reclamos por pérdidas de empleados (MPCECA). Es decir, reclamos de perdida realizados por los mismos empleados. Hay un total de 485.
- Motor Vehicle: Categoría que registra reclamos asociados vehiculos automotores, hay un total de 369 reclamos.
- Passenger Property Loss: Categoría que registra reclamos por pérdidas de bienes de los pasajeros. Esta es la categoría con mayor número de reclamos con un total de 117868 reclamos.
- Passenger Theft: Categoría que registra reclamos asociados robos realizados a bienes de los pasajeros , hay un total de 465 reclamos.
- Personal Injury: Categoría que registra reclamos asociados a daños personales (siendo este un término legal para una lesión al cuerpo, la mente o las emociones, en contraposición a una lesión a la propiedad) hay un total de 1465 reclamos.
- Property Damage: Categoría que registra reclamos asociados daños a la propiedad.
 Esta es la segunda categoría con mayor cantidad de reclamos hay un total de 75364 reclamos.
- Wrongful Death: Categoría que registra reclamos asociados a muerte por negligencia, es un reclamo contra una persona que puede ser considerada responsable de la muerte de otra persona. Hay un total de 4 reclamos.

Finalmente, para esta variable hay un total de 7913 NA y 282 reclamos donde no se especifica el tipo de reclamo (se les establece el símbolo : -).

Esta variable es de interés, puesto que puede existir una relación directa con el monto de los reclamos, y por ende tener impacto sobre la perdida por severidad.

Claim Site: Esta variable es de tipo string categórica, la cual indica el sitio del reclamo. Hay un total de 5 categorías registras para esta variable: Bus Station, Checked Baggage, Checkpoint, Motor Vehicle y otra categoría llamada others.

Se observa que las categorías con mayor número de reclamos son: *Checked Baggage* con 159753 reclamos, y *Checkpoint* con 40133 reclamos. Además, hay un total de 740 NA y 276 reclamos donde no se especifica el nombre del Aeropuerto (se les establece el símbolo : -).

Item: Esta variable es de tipo *string*, la cual se encarga de describir el motivo de reclamo (bien material perdido, daño material sufrido, daño personal).

Claim Amount: Esta variable es de tipo numérico, la cual se encarga de registar el monto de reclamo. Es decir, el monto solicitado por la persona que sufrió el incidente. Hay un total de 4043 NA y 12752 reclamos donde no se especifica el monto de reclamo (se les establece el símbolo: -).

Status: Esta variable indica el estado intermedio del reclamo, es de tipo *string* categórica. Al no ser el status final del reclamo cuenta con una cantidad considerable de categorías (14 registradas en la base de datos, 5 NA y 12752 reclamos donde no se especifica el monto de reclamo donde se les establece el símbolo: -) las cuales se terminan asignando en alguna de las tres categorías de la variable *Disposition* que a continuación se describe.

Disposition: Esta variable a diferencia de *Status* muestra la disposición , es decir el acuerdo final sobre el reclamo. Es una variable de tipo string categórica , con tres categorías: *Approve in Full, Deny* y *Settle*. A continuación, se describe cada una de estas:

- Approve in Full: Esta categoría registra aquellos reclamos cuyo Claim Amount (monto reclamado por la persona perjudicada) fue aprobado de forma total, es decir, el monto acordado a pagar (Close Amount) es igual al Claim Amount. Hay un total de 35010 reclamos aprobados de forma completa.
- Deny: Esta categoría registra los reclamos denegados, es decir aquellos reclamos donde no se paga por el reclamo. Hay un total de 68382 reclamos denegados.
- Settle: En esta categoría se registran aquellos reclamos cuyo Close Amount (monto a pagar), es menor al Claim Amount (Monto de reclamo). Es decir, son aquellos reclamos en cuyo acuerdo final se estableció un monto inferior de pago por el incidente.

Close Amount: Esta variable es de tipo numérica, y es el monto final acordado por ambas partes. Es decir, es el monto que debe ser pagado a la persona como producto del reclamo realizado. Es importante señalar que este monto es igual o inferior al *Claim Amount* y depende de la variable disposición que se describió anteriormente. Esta variable es relevante para nuestro estudio pues esta relacionado de forma directa con la severidad, y por ende, con la perdida por severidad.

Sección 8. Literatura

1. **Título**: Modelling Dependencies in Airport Passenger Claim Data Using Copulas Flores (2022) **Autor**: Roberto Carcache Flores

Nombre del tema: Modelación del riesgo utilizando cópulas

Forma de organizarlo:

• Cronológico: Febrero 2022

Metodológico: Cópulas bivariadas y multivariadas y simulaciones

• Temático: Funciones de distribución y dependencia de variables aleatorias

• Teoría: Probabilidad y estadística

Resumen en una oración: Se encuentra la mejor distribución para la severidad y frecuencia de cada reclamo y luego estas distribuciones marginales se incorporan en diferentes modelos de cópulas

Argumento central: En la metodología tradicional del modelamiento del riesgo se asume independencia entre frecuencia y severidad, lo cual no se hace en esta investigación. Además, se utiliza un proceso de eliminación de la tendencia con respecto al tiempo para mejorar los resultados.

Problemas con el argumento o el tema: Las medidas de riesgo utilizando cópulas resultan en medidas de riesgo más altas que en los datos históricos.

Resumen en un párrafo: Se eliminan los reclamos que fueron negados justificando el hecho de que el punto de la investigación es cuantificar los pagos que efectivamente fueron hechos, además del gran volumen de los datos. La agregación de los datos se hace por mes y con suma para la severidad y por frecuencia de los reclamos. El autor nota que hay un tendencia negativa de la frecuencia y severidad con respecto al tiempo por lo que procede a eliminar la tendencia. Luego determina la mejor marginal para cada variable utilizando MLE. Se encuentra que la binomial negativa se ajusta mejor a las frecuencias. Por otro lado la Log-Laplace se ajusta mejor a los reclamos por daños a la propiedad y la lognormal se ajusta mejor a los reclamos por pérdidas de los bienes por lo que se utilizan estas dos para modelar la severidad. Luego se procede a hacer algo similar con los resultados de eliminar la tendencia. Se encuentra que el proceso de eliminación de la tendencia facilita la búsqueda de una distribuciones. Se encuentra que todas las variables pares muestran algún tipo de dependencia en las colas. Finalmente, las cópulas multivariadas se comparan utilizando log verosimilitud y se obtiene que las cópulas elípticas (Gaussiana y t-Student) se ajustan mejor que las arquimedianas (Clayton y Gumbel).

2. **Título**: Aggregate loss model with Poisson - Tweedie loss frequency Chen (2020)

Autor: Si Chen.

Nombre del tema: Modelado perdidas usando la familia de distribuciones Poisson - Tweedie .

Forma de organizarlo:

• Cronológico: Año 2020.

- Metodológico: Modelado de la frecuencia de perdida a partir de una distribución Poisson-Tweedie , simulaciones y modelado de perdida agregada.
- Temático: Modelos de perdida agregada.
- Teoría: Distribuciones de perdidas.

Resumen en una oración: Uso de la familia de distribuciones Poisson-Tweedie con la finalidad de modelar la frecuencia de las perdidas y ver el impacto que tiene este sobre el modelo de perdidas agregadas.

Argumento central: Pese a que el impacto de la perdida por severidad en un modelo de perdida agregada ha sido bien estudiado a través de los años, se ha prestado menos atención a la influencia de la perdida por frecuencia en dichos modelos, esto motiva el estudio de un modelo de perdidas por frecuencias no tradicional.

Problemas con el argumento o el tema: Dado el estudio , no se pudo captar por completo las relaciones entre las perdidas por severidad , perdida por frecuencia y perdida agregada.

Resumen en un párrafo: En este estudio, se modela la perdida por frecuencia usando la familia de distribuciones Poisson-Tweedie, esto bajo el argumento que dichas familias presentan características como: el ajuste de la frecuencia de pérdidas es más flexible, reducen la posibilidad de una especificación errónea del modelo y dichas familias presentan una convolución cerrada. Mediante estudios de simulación, se investiga y encuentra el impacto de una mala especificación de la distribución perdida de la frecuencia al cuantil de perdidas agregadas, así como el sesgo del estimador de máxima verosimilitud del índice de la familia de Poisson-Tweedie.

3. **Título**: Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R Pitt, Guillen, and Bolancé (2011) **Autores**: David Pitt, Montserrat Guillen y Catalina Bolancé

Nombre del tema: Comparación de métodos paramétricos y no paramétricos apra modelar la severidad de reclamos en una aseguradora

Forma de organizarlo:

- Cronológico: mayo de 2011
- Metodológico: estimación de densidades por Kernels modificados,
- Temático: Modelación de reclamos métidos y de seguros de automóviles
- Teoría: Probabilidad y estadística

Resumen en una oración: Se encuentra que la estimación por kernels modificados es adecuada para modelar la distribución tanto de costos médicos como de reclamos en seguros de automóviles.

Argumento central: Se pueden usar métodos no paramétricos para estimar distribuciones de reclamos en seguros de vehículo y de costos médicos.

Problemas con el argumento o el tema: Los métodos clásicos de estimación de densidades por kernels suelen ser inadecaudos en presencia de asimetría, lo cual es común en datos de montos de reclamos en el contexto de seguros.

Resumen en un párrafo: Se utilizan datos de costos de reclamos hechos a una aseguradora española por accidentes ocurridos en el año 2000 y recopilados en 2002, que incluye tanto los ligados a costos por daños a la propiedad como por costos médicos. El tamaño de muestra es de 518 reclamos. Para estimar la densidad para cada uno de los costos (daños a la propiedad y médicos) por separado, se utilizan métodos paramétricos y no paramétricos. Dentro de los paramétricos, se utilizaron aproximaciones normales y log-normales. Dentro de los no paramétricos, se utilizó una aproximación por kernels modificada, donde la modificación consiste en que primero se aplica una transformación a los datos originales para corregir la asimetría, se hace una aproximación con un kernel gaussiano a los datos modificados, y luego se calcula la aproximación de los datos originales a partir de la calculada para los modificados. La transformación aplicada a los datos se enmarca en la shifted power transformation family. Para evaluar la bondad de ajuste de todas las estimaciones propuestas, se utilizan distintas versiones log-verosimilitud tanto la versión clásica como modificaciones ponderadas, mientras que para evaluar solamente los métodos no paramétricos se usan distintas versiones de una aproximación a errores cuadráticos integrados ponderados. Se concluye que la logverosimilitud no es una buena medida de bondad de ajuste para comparar los ajustes no paramétricos, debido a su relación inversa con la magnitud del ancho de banda empleado. En general, de las propuestas paramétricas, la log-normal tuvo un mejor desempeño mientras que la estimación por kernel modificada tuvo un desempeño adecuado y se recomienda para modelar distribuciones con colas pesadas.

Referencias para escribir en Quarto

Según Knuth (1984) el comportamiento mono sí existe

Metodología

```
ggplot(mpg, aes(x = hwy, y = cty, color = cyl)) +
  geom_point(alpha = 0.5, size = 2) +
  scale_color_viridis_c() +
  theme_minimal()
```


Figure 1: City and highway mileage for 38 popular models of cars.

La figura Figure 1 muestra un tendencia positiva en el comportamiento mono

Referencias

- Chen, Si. 2020. "Agrregate Loss Model with Poisson-Tweedie Loss Frequency."
- Flores, Roberto Carcache. 2022. "Modelling Dependencies in Airport Passenger: Claim Data Using Copulas." PhD thesis, Instituto Superior de Economia e Gestão.
- Homeland Security, Department of. 2015. "TSA Claims Data." https://www.dhs.gov/tsa-claims-data.
- Knuth, Donald E. 1984. "Literate Programming." *Comput. J.* 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.
- Pitt, David, Montserrat Guillen, and Catalina Bolancé. 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions: An Approach Using r."