

Instantiate and run the Gibbs sampler
sampler = Gsampler()
sampler.set_target(joint_mvn)
sampler.sample(x0=np.array([10., 10.]), n=50_000)
Burn-in and thinning

sampler.autocorr_time()

Plot joint and marginals

Optional: trace + autocorr

sampler.plot_trace()

sampler.plot_autocorr()

Extract x1, x2

plt.show()

plt.show()

plt.show()

3

1

0

-1

-2 -

0.30

0

sampler efficiently explores the joint distribution.

2

 χ_2

100%|

samples_gibbs = sampler.final_samples()

plot_marginals(samples_gibbs, "Gibbs Sampling")

print("Gibbs Sampling 95% Credible Intervals:")

ci_x1_gibbs = credible_interval(x1_gibbs)
ci_x2_gibbs = credible_interval(x2_gibbs)

x1_gibbs, x2_gibbs = samples_gibbs[:, 0], samples_gibbs[:, 1]

plot_joint_contour(samples_gibbs, "Gibbs Sampling", plt.gca())

print(f" X1: [{ci_x1_gibbs[0]:.3f}, {ci_x1_gibbs[1]:.3f}]")
print(f" X2: [{ci_x2_gibbs[0]:.3f}, {ci_x2_gibbs[1]:.3f}]")

50000/50000 [00:20<00:00, 2457.91it/s]

Gibbs Sampling

 X_1

Marginal of X_1 (Gibbs Sampling)

0.4

Marginal of X_2 (Gibbs Sampling)