Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Analítica - A

Folha Prática 1

Matrizes

1. Considere as matrizes

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Calcule

- (a) A+B; (b) B - 2A;

- (c) AD; (d) DA; (e) ACD; (f) $\frac{1}{5}(I_2 (DA)^2)$.

2. Considere as matrizes

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 0 & -1 \\ 2 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix}.$$

Calcule 2(A+B)-AB.

3. Escolha uma maneira de ordenar as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

de modo que o produto das quatro matrizes esteja definido e calcule esse produto.

4. Calcule a primeira coluna e a segunda linha do produto

$$\begin{bmatrix} 1 & 1 & -4 & 0 \\ 2 & 0 & 1 & -1 \\ 2 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 1 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}.$$

- 5. Mostre que se os produtos AB e BA estão ambos definidos e A é uma matriz $m \times n$, então B é uma matriz $n \times m$.
- 6. Verifique que o produto de matrizes não é comutativo, calculando EA e AE para

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

Qual o efeito na matriz A após efectuar os produtos EA e AE?

7. Calcule

$$\begin{bmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{bmatrix}^4.$$

8. Considere a matriz

$$A = \left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right].$$

- (a) Mostre que $A^2 = 2A I_2$.
- (b) Mostre que $A^3 = 3A 2I_2$, recorrendo à alínea anterior.

9. Verifique que as identidades algébricas

i.
$$(A+B)^2 = A^2 + 2AB + B^2$$

ii. $(A+B)^2 = A^2 - 2AB + B^2$
iii. $(A+B)(A-B) = A^2 - B^2$
iv. $(AB)^2 = A^2B^2$

nem sempre são verdadeiras quando A e B são matrizes. Considere, por exemplo, as matrizes:

(a)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}$.

Corrija os segundos membros das identidades i – iv de forma a obter identidades verdadeiras para quaisquer A e B matrizes $n \times n$.

10. Indique, justificando, se as afirmações seguintes são verdadeiras ou falsas.

- (a) Se A, B, C são matrizes tais que A + C = B + C, então A = B.
- (b) Se A, B, C são matrizes tais que AB = AC, então A = O (matriz nula) ou B = C.
- (c) Se A é uma matriz tal que $A^2 = I_n$, então $A = I_n$ ou $A = -I_n$.

11. Se A é uma matriz $n \times n$ tal que $AA^T = O$, mostre que A = O (sendo O a matriz nula $n \times n$).

12. Seja A uma matriz quadrada. Mostre que $A + A^T$ é uma matriz simétrica. E o que pode afirmar sobre a matriz $A - A^T$?

13. Seja $A = [a_{ij}]$ uma matriz $m \times n$ e

$$C = \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right]$$

uma matriz $n \times 1$. Verifique que $AC = c_1 \operatorname{col}_1(A) + c_2 \operatorname{col}_2(A) + \cdots + c_n \operatorname{col}_n(A)$, onde

$$col_{i}(A) = \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{bmatrix}$$

designa a coluna i de A.

14. Usando o exercício anterior, calcule AC para

(a)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$
, $C = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e determine C de modo que $AC = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

15. Indique quais das seguintes matrizes são matrizes na forma escalonada por linhas:

Determine matrizes equivalentes por linhas às matrizes dadas que estejam:

i. na forma escalonada por linhas;

ii. na forma escalonada por linhas reduzida.

Sistemas de Equações Lineares

16. Resolva, quando possível, os seguintes sistemas usando o método de eliminação de Gauss (ou Gauss-Jordan).

(a)
$$\begin{cases} 4x_1 + 3x_2 + 2x_3 = 1 \\ x_1 + 3x_2 + 5x_3 = 1 \\ 3x_1 + 6x_2 + 9x_3 = 2 \end{cases}$$
 (b)
$$\begin{cases} x_2 - 4x_3 = 8 \\ 2x_1 - 3x_2 + 2x_3 = 1 \\ 4x_1 - 8x_2 + 12x_3 = 1 \end{cases}$$

(c)
$$\begin{cases} x_1 + x_2 & = 1 \\ x_1 + x_2 + x_3 & = 4 \\ x_2 + x_3 + x_4 & = -3 \\ x_3 + x_4 + x_5 & = 2 \\ x_4 + x_5 & = -1 \end{cases}$$
 (d)
$$\begin{cases} x_1 - 2x_2 + x_3 & = -2 \\ 2x_2 - 8x_3 & = 8 \\ 5x_1 - 5x_3 & = 10 \end{cases}$$

17. Determine os valores de α para os quais o sistema

$$\begin{cases} \alpha x + y = 1 \\ x + \alpha y = 1 \end{cases}$$

- (a) não tem solução; (b) tem exatamente uma solução; (c) tem uma infinidade de soluções.
- 18. Considere o sistema de equações lineares associada à seguintes matriz ampliada:

$$\begin{bmatrix} 1 & \alpha - 1 & \alpha & & \alpha - 2 \\ 0 & \alpha - 1 & 0 & & 1 \\ 0 & 0 & \alpha & & \alpha - 3 \end{bmatrix}.$$

Diga, justificando, para que valores do parâmetro α o sistema é: impossível; possível e determinado; possível e indeterminado.

19. Considere o sistema representado matricialmente por AX = B com

$$A = \begin{bmatrix} \alpha + 2 & 0 & 0 \\ 0 & \alpha + 1 & 1 \\ 0 & 0 & \alpha \end{bmatrix} \qquad \mathbf{e} \qquad B = \begin{bmatrix} 0 \\ \alpha \\ \alpha + 1 \end{bmatrix}.$$

Diga, justificando, para que valores do parâmetro α o sistema é:

impossível; possível e determinado; possível e indeterminado.

20. Seja A uma matriz qualquer. Se B é uma coluna de A, mostre que o sistema AX = B é possível e indique uma solução.

Matriz Inversa

21. Averigue se são singulares as matrizes

$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \qquad e \qquad \begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}.$$

22. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, \qquad C = \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

- (a) Mostre que C = ADB.
- (b) Verifique se B é a matriz inversa de A.
- (c) Calcule C^5 , usando as alíneas anteriores.

23. Determine as inversas das seguintes matrizes:

(a)
$$\begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix}$; (d) $\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 \end{bmatrix}$.

- 24. Se A é uma matriz invertível e $\alpha \in \mathbb{R}$ é não nulo, mostre que a matriz αA é invertível e $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$.
- 25. Sejam A e B matrizes quadradas. Mostre que, se AB é invertível, então A e B também são.
- 26. Seja A uma matriz $n \times n$ qualquer. Suponhamos que existe um número natural k tal que $A^k = O$ (matriz nula $n \times n$). Mostre que, então $I_n A$ é invertível tendo-se

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{k-1}.$$

27. Usando o exercício anterior, calcule

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}.$$

28. Encontre todos os valores de α para os quais

$$\begin{bmatrix}
1 & 2 & 0 \\
1 & 0 & 0 \\
1 & 2 & \alpha
\end{bmatrix}$$

é invertível.

29. Seja A uma matriz $n \times n$ tal que $A^4 = O$ (matriz nula $n \times n$). Mostre que

$$(I_n + A)^{-1} = (I_n - A)(I_n + A^2).$$

30. Resolva a seguinte equação matricial relativamente à matriz X:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} X \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

31. Sabendo que

$$A^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

determine a matriz M que satisfaz a equação matricial AMA = B.

32. Considerando as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 4 & 0 \\ -4 & 8 \end{bmatrix},$$

resolva as seguintes equações matriciais relativamente à matriz X:

(a)
$$((B^{-1})^T X)^{-1} A^{-1} = I_3;$$

(b)
$$(C^T D^T X)^T = E$$
.

33. Considere o sistema de equações lineares

$$\begin{cases} 4x + y + 3z &= 1\\ 3x + y + 3z &= 0\\ 5x + y + 4z &= 1 \end{cases}.$$

- (a) Mostre que a matriz dos coeficientes do sistema é invertível e calcule a sua inversa.
- (b) Justifique que o sistema é possível e determinado. Indique a sua solução.
- 34. Mostre que se A é invertível, então A^T também é invertível e $(A^T)^{-1} = (A^{-1})^T$.
- 35. Uma matriz quadrada diz-se ortogonal se for invertível e a sua inversa coincidir com a sua transposta. Mostre que
 - (a) o produto de duas matrizes ortogonais é ainda uma matriz ortogonal;
 - (b) a inversa de uma matriz ortogonal é ainda uma matriz ortogonal.

Decomposição LU

36. Nos exercícios seguintes, resolva o sistema Ax = b usando uma fatorização LU dada para A, onde

(a)
$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}, b = \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & -6 & 4 \\ -4 & 8 & 0 \\ 0 & -4 & 6 \end{bmatrix}, b = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$$

(c)
$$A = \left[\begin{array}{ccc} 1 & -1 & 2 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{array} \right], b = \left[\begin{array}{c} 0 \\ -5 \\ 7 \end{array} \right].$$