Ekspertski sistemi

Lekcija 1: Uvod

Osnovne informacije

- Sajt predmeta: ri4es.etf.bg.ac.rs
- Literatura: "Zbirka zadataka iz Ekspertskih sistema"
 Bojić, Gligorić, Nikolić
- S. Russell, P. Norvig *Artificial Intelligence: A Modern Approach,* Prentice Hall
- 20% projekat,
 80% pismeni deo ispita (kolokvijum 40%)
- Projekat se definiše do polovine semestra, odbrana 7 dana pre junskog ispita
- Projekat se može zameniti teorijskim pitanjem

Ciljevi kursa

- Upoznavanje studenata sa ekspertskim sistemima i njihovom ulogom u okviru oblasti veštačke inteligencije
- Razumevanje različitih strategija pretraživanja
- Upoznavanje studenata sa predstavljanjem znanja u formalnoj i neformalnoj logici
- Rad u neizvesnim okruženjima
- Mašinsko učenje
- Različiti načini rešavanja problema
- Osposobljavanje studenata za samostalnu izradu inteligentnih sistema

Sadržaj kursa

- Uvod u ekspertske sisteme
- Strategije pretraživanja
- Teorija igara
- Predstavljanje znanja u formalnoj logici.
- Semantičke mreže. Okviri. Produkcioni sistemi. Analitički (dedukcioni) sistemi.
- Rad u neizvesnom okruženju rasplinuta logika.
 Bajesove mreže
- Strategije rešavanja problema.
- Planiranje. STRIPS algoritam. Klasifikacioni model. Model školske table. Indukcioni sistemi.
- Mašinsko učenje
- Podsistemi za objašnjavanje.

Al

Veštačka inteligencija

Osnovni ciljevi:

Razmišljati humano	Razmišljati racionalno
Delovati humano	Delovati racionalno

Delovati humano: Turing Test

- Turing (1950) "Computing machinery and intelligence"
- "Da li mašina zna da misli?" → "Da li mašina može da se ponaša inteligentno?"
- Odgovori na pitanja da li odgovara mašina ili čovek

- Predviđanja da će do 2000. god, mašine imati uspešnost od 30% da prevare sagovornika u roku od 5 minuta
- Prošle godine Eugene je bio blizu prevario je 10 od 30 sudija Royal Society, to nije tačno ono što je Turing predvideo
- Pretvrao se da je 13ogodišnji Ukrajniski dečak, kome engleski nije maternji jezik

Delovati humano

- Obrada prirodnog jezika
- Prezentacija znanja
- Automatsko rezonovanje
- Mašinsko učenje
- Dodatno: robotika i vid
- Ptice i let

Razmišljati humano: cognitive model

- 1960s "cognitive revolution": računarski modeli iz veštačke inteligencije i eksperimentalne tehnike iz psihologije
- Potrebne su naučne teorije o internim aktivnostima mozga
- Kako potvrditi saznanja:
 - 1) Predviđanjem i testiranjem ponašanja ljudi (top-down)
 - 2) Direktnom identifikacijom dobijenih podataka (bottomup)

Razmišljati racionalno

- Aristotel: koji je korektan proces razmišljanja?
- Nekoliko Grčkih filozofskih škola su razvile različite forme logike: notacije i pravila porekla misli
- Postoji direktna veza od matematike i filozofije do oblasti veštačke inteligencije
- Problemi
 - 1. Nije uvek ljudsko ponašanje po određenim pravilima
 - Koja je svrha razmišljanja?
- Ne mora ljudsko ponašanje da bude neracionalno, ali nisu svi šahisti velemajstori, niti svi dobiju 10 na ispitu

Delovati racionalno: racionalni agenti

- Racionalno ponašanje: raditi ispravnu stvar
- Ispravna stvar: od koje se očekuje da maksimizuje cilj, na osnovu trenutnih informacija
- Nije neophodno uključivati i razmišljanje refleksno ponašanje – ali proces razmišljanja treba da bude u funkciji racionalnog ponašanja

Racionalni agenti

- Agent je entitet koji prima informacije i deluje
- Apstraktno, agent je funkcija preslikavanja od skupa primljenih informacija na skup akcija:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- Za svaku klasu okruženja i zadataka, potrebno je pronaći agenta (ili klasu agenata) sa najboljim perfomansama
- Nedostatak: limit sistema dovodi do nemogućnosti realizacije perfektne racionalnosti
 - → projektovati najbolji program za date računarske resurse

Veštačka inteligencija

Oblast veštačke inteligencije proučava mogućnost formalizacije procesa mišljenja i zaključivanja:

- teoriju igara,
- dokazivanje teorema,
- rešavanje opštih problema,
- percepcija slike i govora,
- prevođenje prirodnih jezika,
- rešavanje ekspertskih problema (simbolička matematika, medicinska dijagnoza, hemijske analize, inženjersko projektovanje, itd).

VI predistorija

Filozofija Logika, methodi razmišljanja

Matematika
 Formalna reprezentacija i algoritmi

dokazivanja, teorija verovatnoće

Ekonomija dobit, teorija odlučivanja

Neuronauke fizičko objašnjenje mentalnih aktivnosti

Psihologija fenomeni percepcije i kontrole aktivnosti,

eksperimentalne tehnike

Računari brži računarski sistemi

Kontrolna teorija projektovanje sistema koji maksimizuje

funkciju u vremenu

Lingvistika reprezentovanje znanja, gramatika

Istorijat veštačke inteligencije

- Početak konferencija održana u mestu Dartmouth 1958.
- U ranim godinama je postignut brz uspeh sa aplikacijama iz oblasti teorije igara, dokazivanja matematičkih teorema, uobičajenog rezonovanja, itd.
- Ovaj uspeh je obećavao brz progres prema praktičnoj mašinskoj inteligenciji.
- Nije bio ispraćen i brzom i efikasnom implementacijom teorijskih osnova. Uspeh u početnim godinama, nikada nije ponovljen, pa je pojam veštačke inteligencije sve više povezivan sa nedostacima i preteranim očekivanjima od tehnologija

Istorijat veštačke inteligencije

- WIMP (windows, icon, mouse, pointer) korisnički interfejs, koji trenutno dominira među personalnim računarima.
- Objektno orijentisana tehnika programiranja, koja se najviše koristi u današnjim komercijalnim alatima za razvoj softvera.
- Ideja inteligentnih softverskih agenata koji pomažu korisniku da dođe do određenih informacija kroz mrežu
- Danas su u ovoj oblasti najinteresantnija polja prepoznavanja govora, razumevanja prirodnih jezika, i prepoznavanje optičkih slika karaktera

Istorijat veštačke inteligencije I faza

- Većina radova je obuhvatila formalne probleme koji su bili strukturirani i imali detaljno definisane granice.
- Prvenstveno dokazivanje teorema, razna izračunavanja, igre (šah).
- U ovoj fazi, naglasak je bio na razvoju generalne «mašine koja misli» i koja bi bila u stanju da rešava čitav niz različitih problema

Veštačka inteligencija II faza

- Većina uspešnih projekata su veoma usko specijalizovani i imaju veoma specifično znanje o problemu koji rešavaju.
- U generalni sistem rezonovanja uvodi se znanje iz određene specifične oblasti – ekspertski sistemi
- Ekspertski sistemi zasnovani na pravilima su razvijani u različite svrhe: hemijske analize, konfigurisanje računarskih sistema, davanje dijagnoze pacijenata.
- Istraživanja su se obavljala u okviru prezentacije znanja, obrade znanja i naprednim tehnikama rezonovanja, koja su dovela do primene veštačke inteligencije u komercijalnim aplikacijama.
- Paralelno, računarske radne stanice su imale mogućnost da pokreću programe pisane na jezicima kao što su Lisp, Prolog, Smaltalk, čime je dobijeno moćno integrisano okruženje za razvoj aplikacija.

Veštačka inteligencija III faza

- Početkom 90-ih: rešenje problema mašinskog govora i prepoznavanja, razumevanja i prevođenja prirodnih jezika, ljudskog rezonovanja i upravljanjem robota.
- Razvijen je veliki broj komercijalnih aplikacija koje koriste neuronske mreže za data mining i adaptivnu kontrolu.
- Metode iz biologije, kao što su genetički algoritmi, sa alternativnim logičkim sistemima, kao što je fuzzy logika, su počele da se koriste.
- Razvoj Interneta i distribuiranih sistema je doveo do ideje agenata, koji se kreću kroz mrežu, komuniciraju sa drugim agentima i izvršavaju određene zadatke za korisnika. Inteligentni agenti koriste poslednje tehnike veštačke inteligencije da bi izvršavali autonomne, inteligentne i mobilne zadatke.

Veštačka inteligencija - danas

- neuronske mreže (neural networks, connectionism)
- manje se zasniva na formalnoj matematičkoj logici i radu sa simbolima, a više na načinima ljudskog ili prirodnog razmišljanja
- U poređenju sa sistemima koji se zasnivaju na obradi simbola neuronske mreže izvršavaju relativno jednostavne funkcije
- sposobnost neuronskih mreža da zaista uče i da se adaptiraju dobijenim zaključcima je najvažnija funkcija današnjih inteligentnih sistema

Veštačka inteligencija pregled

- **Gestation (43-56):** automata theory, neural networks, checkers, theorem proving.
- Shannon, Turing, Von Neumann, Newell and Simon, Minsky, McCarthy, Dartmouth Workshop.
- Great expectations (52-69): computers can do more than just arithmetic! General Problem Solver (GPS), better checkers LISP (LISt Processing language)
- A dose of reality (66-74): ELIZA: human-like conversation. limitations of neural networks, genetic algorithms, machine evolution. acting in the real world: robotics.
- Knowledge-based systems (69-79): domain focus: experts systems vs. General Problem Solvers. DENDRAL, MYCIN, XCON, etc.
- Commercial AI: the '80s boom (80-90) DEC's R1 computer configuration program
- many expert systems tools companies (mostly defunct): Symbolics, Teknolwedge, etc.Japan's 5th generation project: PROLOG. limited success in autonomous robotics and vision systems.
- The 90's and now: specialization, quiet progress; AI becomes a science neural networks, genetic algorithms probabilistic reasoning and uncertainty learning planning and constraint solving agents autonomous robotics: NAV autonomous driving van, crater exploration, robot soccer IBM's Deep Blue beats Kasparov!

History of Al

•	1943	McCulloch & Pitts: Boolean circuit model of brain
•	1950	Turing's "Computing Machinery and Intelligence"
•	1956	Dartmouth meeting: "Artificial Intelligence" adopted
•	1952—69	Look, Ma, no hands!
•	1950s	Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
•	1965	Robinson's complete algorithm for logical reasoning
•	1966—73	Al discovers computational complexity Neural network research almost disappears
•	1969—79	Early development of knowledge-based systems
•	1980	Al becomes an industry
•	1986	Neural networks return to popularity
•	1987	Al becomes a science
•	1995	The emergence of intelligent agents

Pojam ekspertskih sistema

- Ekspertski sistemi se koriste za rešavanje komplikovanih zadataka koji su primereni visoko obučenim ekspertima.
- Cilj je da programi dejstvuju inteligentno, a ne mehanički.
- Ekspertski sistemi se mogu definisati kao računarske aplikacije kojima se rešavaju problemi visokog stepena složenosti uz primenu nekih opštih principa postavljenih u oblasti veštačke inteligencije

Pojam ekspertskih sistema

- British Computer Society je definisalo ekspertski sistem na sledeći način:
- An expert system is regarded as the embodiment within the computer of knowledge based component from an expert skill, in such a form that the system can offer intelligent advice or take an intelligent decision about a processing function. Adesirable additional characteristic, which many would consider fundamental, is the capability of the system, on demand, to justify its own line of reasoning in a manner directly intelligible to an enquirer. The style adopted to attain these characteristics is rule based programming.

Idealni ekspertski sistem

- velika specifična znanja iz oblasti od interesa,
- primena tehnike pretraživanja,
- podrška heurističkoj analizi,
- sposobnošću sticanja novih znanja iz postojećih simboličkom obradom,
- sposobnošću objašnjenja sopstvenih zaključaka

Osnove ekspertskog rešavanja problema

Osnove ekspertskog rešavanja problema

- Pre svega, mora se shvatiti osnovna procedura u pristupu problemu.
- Savremenija forma ekspertize koja se primenjuje zasniva se na znanjima specifičnim za posmatranu oblast.
- Princip 1: Snaga eksperta proizilazi iz njegovog velikog znanja u posmatranoj oblasti, a ne iz razumevanja izvedenog ekspertskog ponašanja

Analiza znanja - komponente

- fakta stavovi (iskazi) koji povezuju elemente u istinitu tvrdnju nezavisno od oblasti (na primer Zemlja je okrugla)
- proceduralna pravila precizno definisana neprimenljiva ravila koja opisuju osnovni niz događaja i relacije koje se odnose na oblast. Na primer pri intervenciji na nekom električnom uređaju,najpre treba isključiti napajanje.
- heuristička pravila opšta pravila u obliku koja sugerišu postupke koje treba slediti u slučajevima kada nepromenljiva proceduralna pravila nisu raspoloživa. Stoga su ovakva pravila aproksimativna, i u opštem slučaju, proizilaze iz iskustva eksperta sakupljena tokom niza godina.

Baza znanja

Korisnik:

- tester korisnik pokušava da verifikuje valjanost ponašanja sistema
- tutor korisnik snabdeva sistem dodatnim znanjima ili modifikuje postojeća znanja
- učenik korisnik uči, želi da brzo razvija svoju ličnu ekspertizu u odnosu na posmatranu oblast, izdvajajući organizovana i prečišćena znanja iz sistema
- korisnik korisnik primenjuje ekspertizu sistema na određeni zadatak

- Sprega sa korisnikom treba da omogući prihvatanje informacije od korisnika i da ih prevede u oblik prihvatljiv od preostalog dela sistema ili da prihvati informaciju od sistema i transformiše je u oblik koji korisnik može da razume
- U najboljem slučaju sprega bi se sastojala od sistema za obradu prirodnog jezika koji prihvata i vraća informacije u bitno istoj formi kao što je prihvata ili obezbeđuje sam ekspert
- Sprežni sklop sistema se često projektuje tako da prepoznaje način na koji korisnik radi, nivo korisničke stručnosti i prirodu obrade

- Baza znanja predstavlja skladište primitivnih znanja (osnovna fakta, proceduralna pravila, itd.) raspoloživih sistemu.
- U opštem slučaju znanje je smešteno u obliku fakta i pravila, ali sama organizacija tog znanja značajno varira.
- Projektovanje šeme predstavljanja znanja utiče i na projektovanje softverske mašine za zaključivanje, procesa ažuriranja znanja i objašnjenja, kao i ukupnu efikasnost sistema.
- Princip 2. Izbor načina za predstavljanje znanja je jedna od najkritičnijih odluka u projektovanju ekspertskih sistema.

- Mašina za zaključivanje Sposobnost da se odgovori na promenljive situacije zavisi od mogućnosti da se izvede novo znanje iz postojećeg.
 - Petar je otac Zoranu
 - Zoran je otac Milanu
 - Petar je deda Milanu
- Da bi odgovorio na datu situaciju, ekspertski sistem mora da primeni odgovarajuće znanje.
- Primena odgovarajućeg znanja znači ili nalaženje zahtevanog znanja kao postojećeg ili njegovo izvođenje iz postojećeg znanja.

- Princip 3. Proces traženja odgovarajućeg znanja i izvođenje iz njega novog znanja je ključni element ekspertskog sistema.
- Čak i mali broj primitiva se može povezati u veliki broj jedinstvenih kombinacija -kombinatorna eksplozija.
- U cilju rešavanja ovog problema, većina ekspertskih sistema se oslanja na ugrađeno znanje - znanje koje je generisano na osnovu dugogodišnjeg iskustva, a ne na radu sa primitivama.

- Mašina za zaključivanje je softverski sistem koji pronalazi znanje i izvodi novo znanje iz osnovnog znanja.
- Strategija pretraživanja razvijanje zahtevanog znanja.
- Dva osnovna koncepta: povratno ulančavanje, koje predstavlja proces rezonovanja s vrha ka dnu, i direktno ulančavanje zasnovano na procesu rezonovanja od dna ka vrhu.
- Princip 4. Izbor paradigme zaključivanja, uz moguću kombinatorijalnu eksploziju, jako utiče na ukupne perfomanse ekspertskog sistema.

- Tehnika znanja je proces sticanja znanja specifičnih za neku oblast i njihovu ugradnju u bazu znanja
- Inženjer znanja (IZ) je osoba koja sakuplja znanje od eksperta i prebacujega u bazu znanja. Ekpsertski sistem zahteva da znanje u bazi znanja bude smešteno saglasno sistemskom dogovoru za predstavljanje znanja, IZ mora da izvrši transformaciju predstave znanja
- Sakupljanje znanja je često najsloženija funkcija u razvoju ekspertskih sistema - intezivna komunikacija između eksperta i IZ.

Ažuriranje znanja:

- ručno ažuriranje izvodi IZ koji interpretira informacije dobijene od eksperata i ažurira bazu znanja koristeći ograničeni sistem ažuriranja znanja.
- ažuriranje direktno od strane eksperata. U ovom slučaju sistem za ažuriranje je znatno složenije.
- mašinsko učenje nova znanja se generišu automatski i zasnivaju se na generalizaciji izvedenoj iz iskustva. Sistem uči iz iskustva i idealno gledajući je samoažurirajući.
- **Princip 5.** U idealnom ekspertskom sistemu mašina za zaključivanje nikad ne bi trebala (zahtevala) modifikaciju.

- **Sistem objašnjenja** u mogućnosti da da objašnjenje rezonovanja (razmišljanja) koje je dovelo do tog zaključka.
- Ekspertski sistem treba da bude projektovan tako da obezbedi sličnu mogućnost.
- Objašnjenje se uglavnom sastoji u identifikaciji koraka u procesu razmišljanja i davanje obrazloženja za svaki korak. Saopštavanje ovih podataka je u suštini podskup problema obrade prirodnih jezika. Sistem mora da pristupi znanjima koja su korišćena u zaključivanju, i da ih prevede u oblik prilagođen i shvatljiv za korisnika.
- Princip 6. Poverenje koje se stiče u ekspertskom sistemu zavisi od sposobnosti ekspertskog sistema da objasni sopstveni proces razmišljanja.

- Radna memorija je deo ekspertskog sistema koji sadrži sve informacije o problemu koje su dobijene bilo od korisnika, bilo da su izvedena od sistema. Celokupne informacije dobijene za vreme konsultacije se često nazivaju kontekst sesije.
- Za vreme konsultacije ekspertskog sistema, korisnik unosi informacije o tekućem problemu u radnu memoriju. Sistem uparuje ove informacije sa znanjem sadržanim u bazi znanja da bi se došlo do novih činjenica. Sistem zatim unosi ove nove činjenice u radnu memoriju i proces uparivanja se nastavlja. Eventualno, sistem dolazi do nekog zaključka koji se takođe unosi u radnu memoriju.

Programski jezici

- Pogramski jezik IPL je bio prvi simbolički jezik za obradu lista koji je korišćen u oblasti veštačke inteligencije.
- LISP je razvijen 1958. godine od strane John McCarthy.
- Lisp je konceptualno funkciolana jezik, svaki iskaz u jeziku je opis funkcije.
- Prolog je konceptualno logički jezik, svaki iskaz u jeziku je izraz u formalnoj logičkoj sintaksi.

Programski jezici

- Simbolička obrada je važna u ekspertskim sistemima.
 Zato je potrebno da odabrani programski jezik kombinuje funkcionalne i logičke karakteristike.
- Kasnije C je preuzeo dominantnu ulogu.
- Danas, sa razvojem Interneta, objektno orijentisane tehnologije razvoja, Java sa svojim ugrađenim klasama je je programski jezik koji u najvećoj meri zadovoljava sve potrebe za razvojem kompleksnih ekspertskih sistema.

Proces razvoja

- identifikacija problema
- konstrukcija prototipa
- formalizacija
- realizacija
- vrednovanje
- dugoročni razvoj

Stanje ekspertskih sistema

- asistent mali sistem koji obavlja ekonomski vredan, ali tehnički ograničen podskup ekspertskih zadataka. Mnogi od njih su zasnovani na primeni ličnih računara.
- kolega sistem srednje veličine koji obavlja značajan podskup ekspertskih zadataka, realizuju se na PC i većim sistemima.
- ekspert veliki sistem, čije se mogućnosti približavaju mogućnostima eksperta u posmatranom domenu. realizuju se na složenijim sistemima primenom posebnih sredstava za razvoj.