West Nile Virus Classification By Group 3

TABLE OF CONTENTS

Background/Problem Statement & EDA

U2

Model selection and features

Conclusion &

Recommendations

Background

- Epidemic of West Nile Virus in Chicago, a virus transmitted by certain species of mosquito.
- Over 37,000 (underestimated) WNV disease cases have been reported since 1999.
- One in 150 of those infected develop a serious nervous system illness that typically requires hospitalization.
- Hospitalisation cost median \$7,500 (less serious) / \$22,500 (serious) cases.

Problem Statement

- Department of Health wants to reduce the spread of virus which in turn reduces the hefty healthcare cost.
- As data scientists, we will build model to predict whether particular location having WNV-carrying mosquitos.
- Evaluate effectiveness of annual spray program.

Datasets

- Train set (Odd years 07, 09 etc...)
- Test set (Even years 08, 10 etc...)
- Spray data (for year 2011 and 2013 only)
- Weather data (daily)

Data Cleaning Process

EDA: Species vs. West Nile virus present •

- Only 2 species with Wnv presence
- Pipiens > Pipiens / Restuans > Restuans
- Encode species with ordinal values

EDA: Trap vs. West Nile virus present

 Certain trap locations with higher Wnv presence

- Some traps have 0
 Wnv presence
- Encode Trap with ordinal values

EDA: Month vs. West Nile virus present

 Months of Aug & Sep highest Wnv presence

 Summer in Chicago (June - September)

- Year no clear trend
- Spike in Year 2007 and 2013
- Encode only Month with ordinal values

EDA: Tavg/DewPoint vs. West Nile virus present -

- Temperature around 72°F highest Wnv presence
- Too high or too low temperature reduces Wnv presence

- Humidity around 64-70°F Td highest Wnv presence
- Low humidity reduces Wnv presence

EDA: Map plot for WNV present and spray

- Areas sprayed not on areas with high Wnv presence (2011 yellow, 2013 - blue)
- Locations with high Wnv presence (Teal - star)

Feature Engineering

- Encode rain related CodeSum to IsRain (1 if rain else 0)
 - Rain > puddles > stale water > breeding conditions
 - #TS THUNDERSTORM, #GR HAIL, #RA RAIN, #DZ DRIZZLE, #SH SHOWER
- **DayInMins** by taking time of Sunset minus time of Sunrise and convert it into minutes.
 - Higher temperature results in higher Wnv presence
 - Longer daylight increases Wnv presence
- Weather lag by 1, 7, 14 days
 - Follows mosquito life cycle which is 7-14 days
 - o _ Stronger correlation than original date weather?

Feature Selection

- Wnv presence no obvious trend with Lat/Long
- Correlation close to 0
- Drop address related features.

Feature Selection

- Selected features based on highest correlation
- Did not include "lag" features as they do not shower higher correlation

	WnvPresent	
WnvPresent	1.000000	
Month Score	0.186121	
Trap	0.171282	
Species	0.123341	
Sunrise	0.096179	
DewPoint	0.096124	
DewPoint_lag_1	0.095385	
DewPoint_lag_14	0.094724	
WetBulb	0.094166	
WetBulb_lag_1	0.093698	
WetBulb_lag_14	0.092466	
DewPoint_lag_7	0.092253	
WetBulb_lag_7	0.089764	
Tmin	0.086730	
Tmin_lag_1 0.0849		
Tmin_lag_14	_lag_14 0.083847	
Tmin_lag_7	0.081475	
Tavg	0.079215	
Tavg_lag_1	0.078781	
Tavg_lag_14	0.076129	
Cool	Cool 0.075605	
day_in_mins	0.074981	
Tavg_lag_7	0.073997	
Depart	0.063704	

Tmax_lag_1	0.062129	
Tmax	0.061218	
Heat	0.058976	
Sunset	0.058570	
Tmax_lag_14	0.058232	
Tmax_lag_7	0.056318	
ResultSpeed	0.055551	
Year	0.042496	
AvgSpeed	AvgSpeed 0.035324	
is_rain	in 0.030431	
PrecipTotal	0.025936	
ResultDir	ResultDir 0.009709	
StnPressure	0.003302	
SeaLevel	0.002164	

Final Features - multicollinearity

- Collinearity between our features
- Will not be removing them as our model will be able to deal with multicollinearity

Summary of Model score (baseline ROC-AUC 0.5)

Models	ROC-AUC score for train data	ROC-AUC score for val data	ROC-AUC score for Kaggle
Logistic Regression	0.78	0.74	0.70
Random Forest	0.79	0.75	0.71
SVM	0.8	0.78	0.71
XGBoost	0.81	0.80	0.76

 XGBoost model handles colinearity better than logistic regression

Model selection (baseline ROC-AUC 0.5)

 XGBoost model highest Kaggle ROC AUC of 0.75

- Signs of overfitting: 0.85 on train,
 0.75 on validation set
- SVM with RBF kernel second best Kaggle ROC AUC of 0.71

XGBoost - Top features for Predicting

 Sunrise and DayInMins strongest features

- Longer daylight more likely to have Wnv presence
- Features with multicollinearity have been dropped (Heat, Cool)

Cost Benefit Analysis of Spraying

Financial Cost of Spraying:

- Total area of Chicago is 606.1 km2.
- Cost \$140,409 to cover the entire area.

Environmental Cost of Spraying:

Biodiversity issues especially when dealing with natural protected areas.

Cost Benefit:

- Have to prevent at least 19 non-serious case of Wnv to justify the cost. (\$7,500 hospitalisation cost).
- No noticeable decrease in WNV occurrences after spraying.

Conclusion and Recommendations

- Top features contributing to likelihood of virus are:
 - Sunrise
 - Daylight
 - Max temperature
- Current model predicts relatively well (0.76 ROC-AUC score), can possibly predict areas outside Chicago with similar seasons
- Improve features:
 - Learn more about mosquitoes behavior
 - Collect more information about problematic breeding areas
- Reduce spraying, focus on spraying on hot and humid days; the cost does not justify the benefits derived
- More effort in educating citizens to
 - Reduce mosquito breeding habitats: e.g. clear stale water, clean rain gutters
 - Wear protective clothing (long sleeve) during mosquito season

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik Please keep this slide for attribution