DM 5,corrigé

PROBLÈME Théorème de Beatty

Partie I. Sens direct

1)

a) Par définition de la partie entière, on a $k \leq pa < k+1$. Puisque a est irrationnel et que $p \in \mathbb{N}^*$ (et est donc non nul), on en déduit que pa n'est pas entier (sinon on aurait a qui s'écrirait comme un quotient d'entier et qui serait donc rationnel : absurde). On a donc en fait k < pa < k+1. En divisant par a > 1, on obtient alors :

$$\frac{k}{a} .$$

On en déduit que $p - \frac{1}{a} < \frac{k}{a} < p$. Avec le même raisonnement, on montre que $q - \frac{1}{b} < \frac{k}{b} < q$.

b) Additionons ces deux inégalités. On obtient alors :

$$q + p - \frac{1}{a} - \frac{1}{b} < k\left(\frac{1}{a} + \frac{1}{b}\right) < p + q.$$

Puisque $\frac{1}{a} + \frac{1}{b} = 1$, on obtient alors :

$$q + p - 1 < k < p + q$$
.

Ceci entraine que k (qui est entier) est strictement compris entre 2 entiers successifs. C'est absurde!

2)

- a) On a directement $u_0 = 0$. De plus, pour tout $n \in \mathbb{N}$, on a $\lfloor na \rfloor > na 1$. Puisque $\lim_{n \to +\infty} na 1 = +\infty$ (car a > 1 > 0), on en déduit par théorème d'encadrement que $\lim_{n \to +\infty} u_n = +\infty$.
- b) Posons $A = \{n \in \mathbb{N} \mid u_n \leq k\}$. A est non vide (il contient 0) et puisque la suite $(u_n)_{n \in \mathbb{N}}$ tend vers l'infini, elle est plus grande que k à partir d'un certain rang. On en déduit que A est majoré. Puisque $A \subset \mathbb{N}$, il admet donc un maximum que l'on note p. On a alors $u_p \leq k$ (car $p \in A$) et $k < u_{p+1}$ (car $(p+1) \notin A$ sinon p ne serait pas le maximum). On a donc bien l'encadrement voulu.

c)

i) Commençons par montrer que dans l'encadrement précédent, on peut écrire une inégalité stricte à gauche. En effet, si on avait $\lfloor pa \rfloor = k$, alors si p = 0 on a k = 0 ce qui est absurde car $k \in \mathbb{N}^*$ et si $p \in \mathbb{N}^*$, alors on aurait $k \in E_a$ ce qui est également absurde. On a donc :

$$|pa| < k < |(p+1)a|.$$

Puisque l'on manipule des entiers (qui sont donc écartés au minimum de 1), on en déduit que :

$$\lfloor pa \rfloor + 1 \le k \le \lfloor (p+1)a \rfloor - 1.$$

ii) Par définition de la partie entière, on a $pa < \lfloor pa \rfloor + 1$. On en déduit en considérant l'inégalité de gauche que pa < k, ce qui entraine $p < \frac{k}{a}$ puisque a > 0. Pour l'inégalité de droite, on a de même $\lfloor (p+1)a \rfloor \leq (p+1)a$. On peut cependant ici écrire une inégalité stricte car a est irrationnel (sinon on aurait $a = \frac{\lfloor (p+1)a \rfloor}{p+1} \in \mathbb{Q}$ et on a bien $p+1 \neq 0$ car $p \in \mathbb{N}$). On a donc :

$$k < (p+1)a - 1 \Leftrightarrow \frac{k}{a} < p + 1 - \frac{1}{a}$$
.

d) Soit $k \in \mathbb{N}^*$. Supposons par l'absurde que $k \notin E_a \cup E_b$. k n'est donc ni dans E_a , ni dans E_b et d'après la question précédente, il existe $p, q \in \mathbb{N}$ tels que :

$$p < \frac{k}{a} < p + 1 - \frac{1}{a}$$
 et $q < \frac{k}{b} < q + 1 - \frac{1}{b}$.

En additionnant ces encadrements, on obtient $p+q < \frac{k}{a} + \frac{k}{b} < p+q+2 - \frac{1}{a} - \frac{1}{b}$. Puisque $\frac{1}{a} + \frac{1}{b} = 1$, on a donc p+q < k < p+q+1. k est donc un entier compris entre deux entiers successifs : c'est absurde!

3) Dans la première question, on a montré que $E_a \cap E_b = \emptyset$ (on a supposé qu'il y avait un élément commun aux deux et on a trouvé une absurdité). Dans la seconde question, on a montré que $\mathbb{N}^* \subset E_a \cup E_b$. L'inclusion réciproque est directe puisque a > 1 et b > 1 donc $\lfloor na \rfloor \geq 1$ pour tout $n \in \mathbb{N}^*$ (et de même pour $\lfloor nb \rfloor \geq 1$), ce qui entraine que $E_a \cup E_b \subset \mathbb{N}^*$. On a donc bien montré que $E_a \cup E_b = \mathbb{N}^*$ et que $E_a \cap E_b = \emptyset$. E_a et E_b forment donc une partition de \mathbb{N}^* .

Partie II. Ensembles à densité

- 4) Exemple d'ensembles à densité
 - a) En reprenant les notations de l'énoncé, il y a n éléments de \mathbb{N}^* dans [1, n] donc pour tout $n \in \mathbb{N}^*$, $\frac{a_n}{n} = 1$. On en déduit que cette suite tend vers 1. La densité de \mathbb{N}^* est donc 1.

b)

i) Il y a p entiers pairs dans [1, 2p] (en p = 0, on a l'ensemble vide et on a bien 0 entiers pairs dedans) qui sont $2, 4, \ldots, 2p$. Il y a également p entiers pairs dans [1, 2p + 1] (les mêmes entiers pairs).

Supposons n pair et notons n=2p. On a vu qu'il y avait p entiers pairs dans $[\![1,n]\!]$, soit $\frac{n}{2}$. Si n est impair, en notant n=2p+1, on a également $p=\frac{n-1}{2}$ entiers pairs. Dans les deux cas, on remarque que $p=\lfloor n/2\rfloor$. On en déduit que l'on a exactement $\lfloor n/2\rfloor$ entiers pairs dans $[\![1,n]\!]$.

ii) Pour calculer la densité des nombres pairs, on doit donc calculer la limite de $\frac{\lfloor n/2 \rfloor}{n}$ quand n tend vers l'infini. Or, on sait que $\frac{\lfloor x \rfloor}{x} \to 1$ quand x tend vers l'infini. On en déduit que :

$$\frac{\lfloor n/2 \rfloor}{n} = \frac{1}{2} \frac{\lfloor n/2 \rfloor}{n/2}$$

$$\rightarrow \frac{1}{2}.$$

La densité des nombres pairs vaut donc 1/2.

iii) Puisqu'il y a $\lfloor n/2 \rfloor$ nombres pairs dans [1, n] et qu'il y a n entiers, on en déduit qu'il y a exactement $n - \lfloor n/2 \rfloor$ nombres impairs. Ceci entraine en divisant par n et en passant à la limite que la densité des nombres impairs vaut également 1/2.

- c) Soit $K \in \mathbb{N}^*$ un majorant de A. On a donc pour tout $n \in \mathbb{N}^*$, $a_n \leq K$ (puisque A contient moins de K éléments). On en déduit alors que pour n > 0, $0 \leq \frac{a_n}{n} \leq \frac{K}{n}$. Quand n tend vers l'infini, le théorème des gendarmes nous affirme alors que la densité de A vaut 0.
- d) Notons $A = \{k^2, k \in \mathbb{N}^*\}$ l'ensemble des carrés. Soit $n \in \mathbb{N}^*$. Les carrés présents dans [1, n] sont $1,4,\ldots$ Notons k^2 le plus grand carré présent entre 1 et n (on aura donc exactement k carrés dans [1,n]). On a alors $k^2 \leq n < (k+1)^2$, ce qui entraine par stricte croissante de la racine carrée sur \mathbb{R}_+ que $k \leq \sqrt{n} < k+1$. On reconnait alors la définition de la partie entière, ce qui nous assure que $k = |\sqrt{n}|$. On en déduit alors, que pour l'ensemble des carrés :

$$\frac{a_n}{n} = \frac{\lfloor \sqrt{n} \rfloor}{\frac{n}{\sqrt{n}}} \\
= \frac{\lfloor \sqrt{n} \rfloor}{\sqrt{n}} \times \frac{1}{\sqrt{n}}.$$

Le terme de gauche tend vers 1 (toujours puisque $\frac{\lfloor x \rfloor}{x}$ tend vers 1 quand x tend vers l'infini), et le terme de droite vers 0. On en déduit que la densité des carrés vaut 0.

5) Soient A et B deux parties disjointes de \mathbb{N}^* admettant une densité. Notons a_n le nombre d'éléments de A dans $[\![1,n]\!]$ et b_n le nombre d'éléments de B dans $[\![1,n]\!]$. Puisque A et B sont disjoints, on en déduit que le nombre d'éléments de $A \cup B$ dans $[\![1,n]\!]$ est $a_n + b_n$. Pour calculer la densité de $A \cup B$, on doit donc calculer la limite de $\frac{a_n + b_n}{n}$. Puisqu'une somme de deux suites convergentes est convergente vers la somme des limites, on en déduit que $A \cup B$ admet une densité et que $d(A \cup B) = d(A) + d(B)$.

Partie III. Réciproque

- 6) E_a admet une densité.
 - a) Pour $k \in \mathbb{N}^*$, on a $u_{k+1} = \lfloor ka+a \rfloor$. Puisque a > 1, on a ka+a > ka+1 et par croissance de la fonction partie entière, on a donc $u_{k+1} \ge \lfloor ka+1 \rfloor = u_k+1$. On a donc $\forall k \in \mathbb{N}^*$, $u_{k+1}-u_k > 0$, ce qui entraine que la suite $(u_k)_{k \in \mathbb{N}^*}$ est strictement croissante.

Ceci entraine que tous les termes de la suite $(u_k)_{k\in\mathbb{N}^*}$ sont distincts deux à deux. Puisque l'ensemble E_a est l'ensemble des éléments de cette suite, ils sont donc deux à deux distincts.

b)

- i) Si $k \leq \left\lfloor \frac{n}{a} \right\rfloor$, on a alors $k \leq \frac{n}{a}$, donc en multipliant par a > 0 et en prenant la partie entière (qui est une fonction croissante), on a $\lfloor ka \rfloor \leq \lfloor n \rfloor = n$.
- ii) Si $k \ge \left\lfloor \frac{n+1}{a} \right\rfloor + 1$, alors on a $k > \frac{n+1}{a}$ (toujours par définition de la partie entière). On a donc ka > n+1. En prenant la partie entière, on a alors $|ka| \ge n+1 > n$.
- c) Remarquons déjà que tous les éléments de E_a sont dans \mathbb{N}^* puisque a>1 donc $\lfloor a\rfloor\geq 1$ et puisque la suite $(\lfloor ka\rfloor)_{k\in\mathbb{N}^*}$ est strictement croissante à valeurs entières, tous les éléments sont bien dans \mathbb{N}^* . Si on étudie les éléments de E_a entre 1 et n, alors la question 1.b.i montre que tous les termes de la suite de rangs inférieur ou égal à $\left\lfloor \frac{n}{a} \right\rfloor$ sont dans $[\![1,n]\!]$. Puisqu'ils sont tous distincts deux à deux, on en déduit que le nombre d'éléments de E_a dans $[\![1,n]\!]$ est supérieur ou égal à $\left\lfloor \frac{n}{a} \right\rfloor$.

Enfin, la question 1.b.ii prouve au contraire que si les indices k sont plus grands que $\left\lfloor \frac{n+1}{a} \right\rfloor + 1$, alors la suite u_k n'est pas dans $[\![1,n]\!]$. On en déduit qu'il y a donc au plus $\left\lfloor \frac{n+1}{a} \right\rfloor$ éléments de E_a inférieurs ou égaux à n.

d) Par encadrement usuel sur les parties entières, on a $\frac{n}{a} - 1 < \lfloor \frac{n}{a} \rfloor$ et $\lfloor \frac{n+1}{a} \rfloor \leq \frac{n+1}{a}$. On a donc pour n > 0:

$$\frac{1}{a} - \frac{1}{n} \le \frac{a_n}{n} \le \frac{1}{a} + \frac{1}{an}.$$

Par théorème des gendarmes, on a donc $\lim_{n\to+\infty}\frac{a_n}{n}=\frac{1}{a}$ ce qui prouve que E_a admet une densité égale à $\frac{1}{a}$.

- 7) Le premier point. Par le même raisonnement, on montre que E_b admet une densité égale à $\frac{1}{b}$. Puisque A et B sont disjoints, on a d'après la partie précédente que $E_a \cup E_b$ admet une densité égale à $\frac{1}{a} + \frac{1}{b}$. Or, puisque E_a et E_b forment une partition de \mathbb{N}^* , on a $E_a \cup E_b = \mathbb{N}^*$. D'après la partie précédente, la densité de $E_a \cup E_b$ vaut donc 1. On a donc bien $\frac{1}{a} + \frac{1}{b} = 1$.
- 8) La conclusion.
 - a) Supposons par l'absurde que a et b soient tous les deux rationnels. On peut donc écrire $a = \frac{p}{q}$ et $b = \frac{p'}{q'}$ avec $p, p', q, q' \in \mathbb{N}^*$ (car a et b sont strictements plus grand que 1). Pour k = p'q, on a $\lfloor ka \rfloor = \lfloor pp' \rfloor = pp' \in E_a$ et pour k' = pq', on a $\lfloor k'b \rfloor = \lfloor pp' \rfloor = pp'$. On a donc construit un élément commun à E_a et E_b . Ceci est absurde car on a supposé E_a et E_b disjoints.
 - b) Supposons par l'absurde que a soit irrationnel et b rationnel (le cas où a est rationnel et b irrationnel se traite de la même manière). Puisque $\frac{1}{a} + \frac{1}{b} = 1$, on a alors $a = \frac{1}{1 \frac{1}{b}}$, ce qui entraine que a est rationnel : absurde! On en déduit que a et b sont tous les deux irrationnels.

On a bien montré le théorème de Beatty puisque l'on a démontré que a et b étaient irrationnels tels que $\frac{1}{a} + \frac{1}{b} = 1$ si et seulement si $E_a \cup E_b$ formait une partition de \mathbb{N}^* .

PROBLÈME

Théorème de Cantor-Bernstein et dénombrabilité

Partie I. Preuve du théorème

a) Soit $x \in X$. Si $x \in B$, alors on a $v(x) = u(x) \in A$ car u est à valeurs dans A. Si $x \notin B$, alors on a $v(x) = x \notin B$. Puisque $B = \bigcup_{n \in \mathbb{N}} B_n$ et que $v(x) \notin B$, on a en particulier $v(x) \notin B_0 = X \setminus A$. On a donc $v(x) \in A$.

Dans tous les cas, on a montré que $v(x) \in A$.

- b) Soient $x_1, x_2 \in X$ tels que $v(x_1) = v(x_2)$. On a alors trois cas possibles:
- Si $x_1 \in B$ et $x_2 \in B$, alors on a $u(x_1) = u(x_2)$ et donc $x_1 = x_2$ par injectivité de u.
- Si $x_1 \notin B$ et $x_2 \notin B$, alors on a $x_1 = x_2$.

• Si $x_1 \in B$ et $x_2 \notin B$ (le cas $x_1 \notin B$ et $x_2 \in B$ se traite de la même façon), alors on a $u(x_1) = x_2$. En particulier, $u(x_1) \notin B$. Or, puisque $x_1 \in B$, il existe $n \in \mathbb{N}$ tel que $x_1 \in B_n$. On a donc $u(x_1) \in u(B_n) = B_{n+1}$, d'où $u(x_1) \in B$. Ceci est absurde : ce cas ne peut donc pas arriver.

Dans tous les cas possibles, on a montré $x_1 = x_2$. On a donc bien v injective.

- c) Soit $a \in A$. Si $a \notin B$, alors on a v(a) = a donc on a construit un antécédent à a par v dans X (car $A \subset X$). Si $a \in B = \bigcup_{n \in \mathbb{N}} B_n$, on a plusieurs possibilités :
- Si $a \in B_0$, alors on a $a \in A$ et $a \in \overline{A}$: absurde!
- On a donc qu'il existe $n \in \mathbb{N}^*$ tel que $a \in B_n$. Puisque $n \ge 1$, on a $B_n = u(B_{n-1})$ et donc $a \in u(B_{n-1})$. Il existe donc $x \in B_{n-1} \subset B$ tel que u(x) = a. Puisque $x \in B$, on a v(x) = u(x) = a. On a donc bien construit un antécédent à a par v dans X.

On a donc montré que v était surjective de X dans A. v est injective et surjective, elle est donc bijective ce qui prouve le lemme.

- 2)
- a) Soit $x \in X$. On a u(x) = g(f(x)). Or, $f(x) \in Y$ et g est à valeurs dans A (puisque g(A) = Y). On a donc $u(x) \in A$. Puisque f et g sont injectives et qu'une composée d'injections est injective, $u = g \circ f$ est injective.
- b) On a construit $u: X \to A$ injective. D'après la question 1, il existe donc $v: X \to A$ bijective.
- 3) On peut bien calculer g(y) pour $y \in Y$ car Y est l'ensemble de départ de g. De plus, puisque pour tout $y \in Y$, $g(y) \in A$ (car g(Y) = A), h est bien à valeurs dans A. La fonction h est donc bien définie.

Puisque g est injective, alors h est injective (si on prend $y_1, y_2 \in Y$ tels que $h(y_1) = h(y_2)$, alors on a $g(y_1) = g(y_2)$, ce qui entraine $y_1 = y_2$ par injectivité de g). La fonction h est également surjective puisque si on prend $a \in A$, alors puisque A = g(Y), il existe $y \in Y$ tel que a = g(y). Puisque $y \in Y$, on a h(y) = g(y), d'où h(y) = a. On a donc bien h surjective. La fonction h étant injective et surjective, elle est bijective de Y dans A.

4) On a $v: X \to A$ bijective et $h: Y \to A$ bijective. On a donc $h^{-1}: A \to Y$ bijective (h admet une fonction réciproque). Puisque qu'une composée de bijections est bijective, on a donc $h^{-1} \circ v: X \to Y$ qui est bijective (on a bien le droit de composer car l'ensemble d'arrivée de v est l'ensemble de départ de h^{-1}).

Partie II. Ensembles dénombrables

- 5) On vérifie les trois points :
 - Tout d'abord \mathcal{R} est réflexive puisque si A est un ensemble, alors l'application identité est bien bijective de A dans A donc $A\mathcal{R}A$.
 - Soient A, B, C trois ensembles tels que ARB et BRC. Il existe alors $f_1 : A \to B$ bijective et $f_2 : B \to C$ bijective. On a donc $f_2 \circ f_1$ qui est bijective de A dans C (c'est une composée de bijections donc elle est bijective et on peut bien composer car l'ensemble d'arrivée de f_1 est l'ensemble de départ de f_2). On a donc la transitivité.
 - Enfin, si ARB, alors il existe $f: A \to B$ bijective. On a alors $f^{-1}: B \to A$ bijective donc BRA. La relation est donc symétrique.

On a donc bien \mathcal{R} qui est une relation d'équivalence. Ceci nous permet par exemple pour prouver que A est dénombrable de montrer que A est en bijection avec un ensemble dénombrable plutôt qu'avec \mathbb{N} (puisque le fait si A est en bijection avec B et que B est en bijection avec \mathbb{N} , alors A est en bijection avec \mathbb{N} par transitivité de la relation d'équivalence).

6) Premiers ensembles dénombrables.

- a) Posons la fonction $f: \left\{ \begin{array}{ccc} \mathbb{N}^* & \to & \mathbb{N} \\ n & \mapsto & n-1 \end{array} \right.$ Cette fonction est clairement bijective. On a donc bien \mathbb{N}^* dénombrable.
- b) f est bien définie puisque si $x \in \mathbb{Z}$ et que $x \ge 0$, alors $f(x) = 2x \in \mathbb{N}$ et si x < 0, on a $x \le -1$, alors $f(x) = -2x 1 \ge 1$ donc $f(x) \in \mathbb{N}$. f est donc bien à valeurs dans \mathbb{N} .

Soient $x_1, x_2 \in \mathbb{Z}$ tels que $f(x_1) = f(x_2)$. Si x_1 et x_2 sont positifs, on a $2x_1 = 2x_2$ d'où $x_1 = x_2$. Si $x_1 < 0$ et $x_2 < 0$, on a $-2x_1 - 1 = -2x_2 - 1$ d'où $x_1 = x_2$. Les cas restants sont si $x_1 < 0$ et $x_2 \ge 0$ (ou si $x_1 \ge 0$ et $x_2 < 0$). Or, on aurait alors $f(x_1) = f(x_2)$ qui entraine qu'un nombre pair est égal à un nombre impair : absurde! Dans tous les cas possibles, on a montré $x_1 = x_2$ ce qui entraine que f est injective.

Soit $y \in \mathbb{N}$. Si y est pair, on a alors $\frac{y}{2} \in \mathbb{Z}$ et $\frac{y}{2} \geq 0$ donc $f\left(\frac{y}{2}\right) = y$. Si y est impair, alors on a $\frac{-y-1}{2}$ qui est bien dans \mathbb{Z} (car y+1 est pair) et qui est strictement négatif. On a donc :

$$f\left(\frac{-y-1}{2}\right) = y+1-1 = y.$$

Dans tous les cas, on a trouvé un antécédent à y par f dans \mathbb{Z} . La fonction f est donc surjective.

f est injective et surjective donc elle est bijective de $\mathbb Z$ dans $\mathbb N$. On a donc $\mathbb Z$ dénombrable.

c) La fonction $f: \begin{cases} \mathbb{N} \to \mathbb{N}^2 \\ n \mapsto (n,n) \end{cases}$ est bien définie et injective (si $f(n_1) = f(n_2)$, on a $(n_1,n_1) = (n_2,n_2)$ d'où $n_1 = n_2$ donc f est injective).

Soient $(a_1,b_1) \in \mathbb{N}^2$ et $(a_2,b_2) \in \mathbb{N}^2$ tels que $g(a_1,b_1)=g(a_2,b_2)$. On a alors $2^{a_1}3^{b_1}=2^{a_2}3^{b_2}$. On a alors plusieurs cas:

- Si $a_1 < a_2$, alors on a en divisant par $2^{a_1} : 3^{b_1} = 2^{a_2 a_1} 3^{b_2}$. Puisque $a_2 a_1 > 0$, on a alors le nombre de droite de l'égalité qui est pair et celui de gauche qui est impair (un produit de 3 est toujours impair). On a donc une absurdité!
- De la même façon, si $a_1 > a_2$, en divisant par 2^{a_2} , on obtient une absurdité.
- On a donc $a_1 = a_2$. En simplifiant par 2^{a_1} , on obtient $3^{b_1} = 3^{b_2}$. En prenant le logarithme et en simplifiant par $\ln(3) \neq 0$, on obtient $b_1 = b_2$.

On a donc montré que $(a_1, b_1) = (a_2, b_2)$ donc g est injective.

On a construit une injection de \mathbb{N} dans \mathbb{N}^2 et une injection de \mathbb{N}^2 dans \mathbb{N} . On en déduit d'après la partie I (théorème de Cantor-Bernstein) qu'il existe $h: \mathbb{N}^2 \to \mathbb{N}$ bijective : \mathbb{N}^2 est donc dénombrable.

- 7) Des propriétés bien utiles.
 - a) Montrons la surjectivité et l'injectivité de f:

surjectivité. Soit $(n_1, n_2) \in \mathbb{N}^2$. Puisque $\varphi : A \to \mathbb{N}$ et $\psi : B \to \mathbb{N}$ sont bijectives (donc surjectives), il existe $a \in A$ tel que $\varphi(a) = n_1$ et il existe $b \in B$ tel que $\psi(b) = n_2$. On en déduit que $f(a, b) = (n_1, n_2)$. La fonction f est donc surjective.

injectivité. Soient $(a,b) \in A \times B$ et $(a',b') \in A \times B$ tels que f(a,b) = f(a',b'). On a alors par définition de f et en identifiant les coordonnées que $\varphi(a) = \varphi(a')$ et $\psi(b) = \psi(b')$. Puisque φ et ψ sont bijectives (et donc injectives), on en déduit que a = a' et b = b'. Ceci entraine que (a,b) = (a',b'). La fonction f est donc injective.

f est donc bijective. On a donc construit une bijection entre $A \times B$ et \mathbb{N}^2 . Puisque \mathbb{N}^2 est dénombrable, on en déduit d'après le II.1 que $A \times B$ est dénombrable (puisque l'on peut trouver une bijection

entre \mathbb{N}^2 et \mathbb{N} , on peut par transitivité construire une bijection entre $A \times B$ et \mathbb{N}). On en déduit que le produit cartésien de deux ensembles dénombrables est dénombrable.

- b) Soient $x_1, x_2 \in A \cup B$ tels que $g(x_1) = g(x_2)$. On a alors plusieurs cas possibles:
- Si $x_1 \in A$ et $x_2 \in A$, alors on a $(\varphi(x_1), 0) = (\varphi(x_2), 0)$. On a alors $\varphi(x_1) = \varphi(x_2)$. Puisque φ est bijective (et donc injective), on en déduit que $x_1 = x_2$.
- Si $x_1 \in A$ et $x_2 \in B \setminus A$, alors on a $(\varphi(x_1), 0) = (\psi(x_2), 1)$. On a alors une absurdité car les deuxièmes coordonnées ne sont pas égales! De même le cas $x_1 \in B \setminus A$ et $x_2 \in A$ conduit à une absurdité.
- Supposons à présent $x_1 \in B \setminus A$ et $x_2 \in B \setminus A$. On a alors $(\psi(x_1), 1) = (\psi(x_2), 1)$. On en déduit que $\psi(x_1) = \psi(x_2)$ et par injectivité de ψ , on en déduit que $x_1 = x_2$.

On a montré dans tous les cas que $x_1 = x_2$. On en déduit que g est injective.

c) Dans la question II.2.c, on avait une fonction injective de \mathbb{N}^2 dans \mathbb{N} . Puisque la fonction g est injective de $A \cup B$ dans \mathbb{N}^2 , on a donc par composition de fonctions injectives une fonction injective de $A \cup B$ dans \mathbb{N} .

De plus, si on considère la fonction $\varphi^{-1}: \mathbb{N} \to A$, alors cette fonction est bijective. Puisque $A \subset A \cup B$, on peut alors (quitte à faire un abus de notation) considérer la fonction $\varphi^{-1}: \mathbb{N} \to A \cup B$ qui est alors injective (puisque φ^{-1} l'est). On a donc construit une injection de \mathbb{N} dans $A \cup B$.

D'après le théorème de Cantor-Bernstein, il existe donc une bijection de $A \cup B$ dans \mathbb{N} . On en déduit qu'une union d'ensembles dénombrables est dénombrable.

- 8) On procède par récurrence. Pour $k \in \mathbb{N}^*$, on pose $\mathcal{P}(k)$: « \mathbb{N}^k est dénombrable ».
 - La propriété est vraie au rang 1 (rien à montrer) et au rang 2 (c'est la question II.2.c).
 - Soit $k \in \mathbb{N}^*$. Supposons $\mathcal{P}(k)$. Puisque \mathbb{N} est dénombrable et que \mathbb{N}^k aussi par hypothèse de récurrence, on a d'après la question II.3.c que $\mathbb{N}^k \times \mathbb{N} = \mathbb{N}^{k+1}$ est dénombrable.
 - La propriété étant initialisée et héréditaire, elle est vraie à tout rang.
- 9) \mathbb{Q} est dénombrable.
 - a) \mathbb{Z} est dénombrable et \mathbb{N}^* aussi donc d'après le II.2.c, $\mathbb{Z} \times \mathbb{N}^*$ est dénombrable.
 - b) Remarquons que f est bien définie puisqu'à chaque élément de \mathbb{Q} , elle associe bien un unique élément de $\mathbb{Z} \times \mathbb{N}^*$ (car on écrit les éléments de \mathbb{Q} sous forme irréductible et qu'on a unicité de cette écriture). Elle est de plus injective puisque si on a $\frac{p_1}{q_1}$ et $\frac{p_2}{q_2}$ deux rationnels écrits sous

forme irréductible, alors si $f\left(\frac{p_1}{q_1}\right) = f\left(\frac{p_2}{q_2}\right)$, on a $(p_1, q_1) = (p_2, q_2)$ et donc $p_1 = p_2$ et $q_1 = q_2$. On a donc bien $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ donc f est injective.

- c) Puisque $\mathbb{Z} \times \mathbb{N}^*$ est dénombrable, on a une bijection entre cet ensemble et \mathbb{N} . En composant la fonction précédente avec celle-ci, on a une fonction injective de \mathbb{Q} dans \mathbb{N} . De plus, la fonction $g: \begin{cases} \mathbb{N} \to \mathbb{Q} \\ n \mapsto n \end{cases}$ est clairement bien définie et injective. D'après le théorème de Cantor-Bernstein (encore!), on en déduit qu'il existe une bijection de \mathbb{Q} dans \mathbb{N} . On a donc \mathbb{Q} dénombrable.
- 10) Par l'absurde, si $\mathbb{R} \setminus \mathbb{Q}$ était dénombrable, on aurait $\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$ dénombrable d'après la question II.3.c (puisqu'une union d'ensembles dénombrables est dénombrable). Ceci est absurde puisque l'on a admis que \mathbb{R} n'est pas dénombrable!