

ULN2003A

新型七路高耐压、大电流达林顿晶体管阵列

描述

引脚排列

ULN2003A 是单片集成高耐压、大电流达林顿管阵列,电路内部包含七个独立的达林顿管驱动单路。电路内部设计有续流二极管,可用于驱动继电器、步进电机等电感性负载。单个达林顿管集电极可输出 500mA 电流。将达林顿管并联可实现更高的输出电流能力。该电路可广泛应用于继电器驱动、照明驱动、显示屏驱动(LED)、步进电机驱动和逻辑缓冲器。

ULN2003A 的每一路达林顿管串联一个 2.7K 的基极电阻,在 5V 的工作电压下可直接与 TTL/CMOS 电路连接,可直接处理原先需要标准逻辑缓冲器来处理的数据。

特点

- 1、500mA 集电极输出电流(单路);
- 2、耐高压(50V);
- 3、输入兼容 TTL/CMOS 逻辑信号;
- 4、广泛应用于继电器驱动;
- 5、静电能力: 8000V (HBM)

典型应用

- 1、继电器驱动;
- 2、指示灯驱动;
- 3、显示屏驱动。

订购信息

型号	封装类型		温度范围
ULN2003A	SOP16	Dla Face	-40°C ~ +85°C
	DIP16	Pb-Free	-40°C ~+ 85°C

电路原理图(单路达林顿)

ULN2003A 单路驱动电路原理图

逻辑图

引脚定义

引脚编号	引脚名称	输入/输出	引脚功能描述
1	1B	1	1 通道输入管脚
2	2B	1	2 通道输入管脚
3	3B	I	3 通道输入管脚
4	4B	1	4 通道输入管脚
5	5B	1	5 通道输入管脚
6	6B	I	6 通道输入管脚
7	7B		7 通道输入管脚
8	E	-	接地
9	COM	ı	钳位二极管公共端
10	7C	0	7 通道输出管脚
11	6C	0	6 通道输出管脚
12	5C	0	5 通道输出管脚
13	4C	0	4 通道输出管脚
14	3C	0	3 通道输出管脚
15	2C	0	2 通道输出管脚
16	1C	0	1 通道输出管脚

绝对最大额定值

(T_A=25℃, 除另有规定外)

参数		符号	值	单位
集电极-发射极电压(10~16 脚)		V _{CE}	-0.5~50	V
COM 端电压 (9 脚)		V _{COM}	50	V
输入电压(1~7 脚)		V_{l}	-0.5~30	V
集电极峰值电流		I _{CP}	500	mA/ch
输出钳位二极管正向峰值电流		I _{OK}	500	mA
总发射极最大峰值电流		I _{ET}	-2.5	Α
最高工作结温(2)		T _J	150	°C
焊接温度			260	°C,10s
储存温度范围		T_{stg}	-60 ~ +150	°C
功耗 ^{(1) (2)}	DIP16封装	P _D	1.47	W
-7444	SOP16 封装	טי	0.54/0.625 ⁽³⁾	

- 注: 1、最大功耗可按照下述关系计算
 - $P_D = \left(T_j T_A\right) / \theta_{JA}$
 - 2、T_i(max)为 150℃, T_A表示电路工作的环境温度;
 - 3、在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

推荐工作条件

(T_A=25℃, 除另有规定外)

参数		符号	条件		最小值	最大值	单位	
集电极-发射极=	集电极-发射极电压				0	50	V	
	DIP16封装	1	TPW=25ms	Duty=10%	0	370	mA/ch	
 输出电流	DIP10到农			Duty=50%	0	130		
柳田 电机	SOP16封装	I _{OUT}	T ₁ =120°C	Duty=10%	0	233		
			1]=120 0	Duty=50%	0	70		
控制信号输入电	压	V_{IN}			0	24	V	
输入电压 (输出开启)			I _{out} =400mA h _{FE} =800		2.8	24	V	
输入电压(输出	输入电压(输出关断)				0	0.7	V	
钳位二极管反向		V_R				50	V	
钳位二极管正向	峰值电流	I _F				350	mA	
工作温度范围	DIP16封装	1			-40	+85	$^{\circ}$	
工作価反花图	SOP16封装	T_A			-40	+85		
功耗	DIP16封装	P _D	T _A = 85°C		·	0.76	W	
	SOP16封装					0.325	VV	

注: 在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

电参数特性表

(T_A=25℃, 除另有规定外)

	参数	测试图		测试	条件	最小	典型	最大	单位
					I _C =200mA		1.9	2.4	
$V_{I(ON)}$	导通状态输入电压	图 4	V _{CE} =2V		I _C =250mA		2.0	2.7	V
					I _C =300mA		2.1	3	
			V _I =2.4V	$I_C=30$	mA		0.78		
			V _I =2.4V	$I_C=60$	mA		0.82		
$V_{CE(SAT)}$	集电极-发射极饱和压降	图 5	V _I =2.4V	I _C =12	0mA		0.9		V
			V₁=2.4V	$I_C=24$	0mA		1.1		
			V _I =2.4V I _C =350mA			1.25			
V_{F}	钳位二极管正向压降	图 8		I _F =35	i0mA		1.4	1.6	V
	 集电极关断漏电流	图 1	V _{CE} =50V I _I =0			-	50		
I _{CEX}	来电极入 <u>断</u> 痛电机	图 2	$V_{CE}=50V$ $T_A=85$ °C $V_I=0V$			-	100	μΑ	
			V _{IN} =12	V			4		
_{I1}	 输入电流	图 4	V _{IN} =6\	$\frac{V_{IN}=6V}{V_{IN}=4.5V}$ I _C =60mA			1.7		mA
!!	一個人でも初に		V _{IN} =4.5				1.1		
			V _{IN} =2.4V			0.35			
I _R	钳位二极管反向电流	图 7	V _R =50V			-	100	μΑ	
C _{IN}	输入电容						15		pF
t _{PLH}	传输延迟 低-高	图 9	VL=12V RL=45Ω			0.15	1	μs	
t _{PHL}	传输延迟 高-低	图 9	VL=	=12V	RL=45Ω		0.15	1	μs

参数测试原理图

图1 I_{CEX}测试电路

图3 I_{I(off)}测试电路

图5 H_{FE},V_{CE(sat)}测试电路

图2 I_{CEX}测试电路

图 4 I₁测试电路

图7 I_R测试电路

图 9 传输延时波形图

备注:图9中电容负载为示波器探头寄生电容

典型应用

图 10 ULN2003A 应用示意图

考虑到目前有些应用采用了带上拉电阻的单片机,在上电时单片机输出状态不定,此时 ULN2003A 输入级会受单片机上拉电阻影响而将负载打开,为了避免负载的误动作建议存在此种应用问题的客户在输入级接 1 个 4K 的对地的下拉电阻,如上图所示

封装外形尺寸图

SOP16:

CVMADOL	MILLMETER				
SYMBOL	MIN	NOM	MAX		
А	-	-	1.77		
A1	0.08	0.18	0.28		
A2	1.20	1.40	1.60		
A3	0.55	0.65	0.75		
b	0.39	-	0.48		
b1	0.38	0.41	0.43		
С	0.21	-	0.26		
c1	0.19	0.20	0.21		
D	9.70	9.90	10.10		
E	5.80	6.00	6.20		
E1	3.70	3.90	4.10		
е	1.27BSC				
L	0.5	0.65	0.80		
L1	1.05BSC				
θ	0°	-	8°		

DIP16:

CVMDOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
Α	3.60	3.80	4.00		
A1	0.51	_	_		
A2	3.10	3.30	3.50		
A3	1.42	1.52	1.62		
b	0.44	_	0.53		
b1	0.43	0.46	0.48		
B1	1.52BSC				
С	0.25	_	0.31		
c1	0.24	0.25	0.26		
D	18.90	19.10	19.30		
E1	6.15	6.35	6.55		
е	2.54BSC				
eA	7.62BSC				
еВ	7.62	_	9.50		
eC	0	_	0.94		
L	3.00	_	_		