

SolucionesFinal2023.pdf

msm_EPS

Algoritmia y Estructuras de Datos Avanzadas

2º Grado en Ingeniería Informática

Escuela Politécnica Superior Universidad Autónoma de Madrid

TEMA 1

- Elige "Pagar con Bizum'
- Introduce tu número
- Valida tu compra

Soluciones Final 2023

Parcial 1

Problema (2a)

El menor número posible de bits promedio por caracter está dado por la entropía

$$H = -\sum \rho i \cdot \log_2 \rho i$$

siendo *pi*

la probabilidad del i-ésimo caracter.

En el problema, las frecuencias de los caracteres valen [23,2,22,22,23,22,2]

y, por tanto, sus probabilidades $1/25 \cdot [23,2,22,22,23,22,2]$

. Aplicando la fórmula anterior, el valor de la entropía será:

 $H=-1/25\cdot(23\cdot\log_2(23/25)+2\cdot\log_2(2/25)+22\cdot\log_2(22/25)+22\cdot\log_2(22/25)+23\cdot\log_2(23/25)+22\cdot\log_2(22/25)+22\cdot\log_2(2/25)+22\cdot\log_2(2/25)=-(1/2)\cdot\log_2(1/22)-3\cdot(1/23)\cdot\log_2(1/23)-(1/23)\cdot\log_2(1/24)=1+98+48=218=2.625$ bits

Problema (2b)

Sea el grafo G=(V,E)

donde V es un conjunto de nodos y E el conjunto de aristas $(u,v) \forall u,v \in V$

- , el siguiente algoritmo utiliza el TaD Conjunto Disjunto para hallar las componentes conexas de un grafo no dirigido:
 - Inicializar el conjunto disjunto. Se crearán tantos subconjuntos como nodos tenga el grafo.
 - Iterar sobre la lsta de aristas. Cada vez que se procesa una arista (u,v)

se invoca a la función union(u, v) del conjunto disjunto donde los parámetros de la función son los nodos u, v que forman la arista. (*Nota:* asumimos que union(u, v) sobre dos elementos cualesquiera $u \in v$

- invoca a find(u) y a find(v), sino fuese así en el algoritmo había que invocar a la función con los parámetros union(find(u), find(v)))
- Al finalizar del algoritmo habrá tantas componentes conexas como subconjuntos en el Conjunto Disjunto.


```
def connected_components (G: Grafo) -> DS:
    ''' Devuelve un Subconjunto Disjunto con las componentes
conexas del grafo G'''

# Generar un subconjunto por cada nodo del grafo
ds = DS_init (V)
# Procesar todas las aristas del grafo
for u, v in E:
    DS_union (u, v, ds) # DS_union (find(u), find(v))
return ds
```

• Evolución del algoritmo anterior *paso a paso*. En negrita se indica el representante de cada subconjunto disjunto.

Primitive DS edge processed disjoin subsets Sx

```
S = init (G[V]) \cdots
```

• Tal y como se observa en la tabla anterior al finalizar el algoritmo tenemos un único subconjunto y, por tanto, una única componente conexa.

Problema 2(c)

Codificación de Huffman

El árbol de Huffman anterior podemos representarlo, según el mismo convenio que el empleado en las transparencias, como:

Quando creías que lo habías visto tem

en internet_

LLEGA BIZUM Y TE PASA UNOS APUNTES PARA QUE APRENDAS CÓMO COMPRAR ONLINE

TEMA 1

- Elige "Pagar con Bizum"
 - Introduce tu número
 - Valida tu compra

Algoritmia y Estructuras de...

Banco de apuntes de la

Comparte estos flyers en tu clase y consigue más dinero y recompensas

- Imprime esta hoja
- 2 Recorta por la mitad
- Coloca en un lugar visible para que tus compis puedan escanar y acceder a apuntes
- Llévate dinero por cada descarga de los documentos descargados a través de tu QR

La profundidad de cada una de las code-words será su tamaño en bits. Por tanto el tamaño del archivo ${\it F}$

codificado con el código anterior será $\tau(F)h=15\cdot 1+8\cdot 2+4\cdot 3+2\cdot 4+2\cdot 5+1\cdot 5=66$

bits

Codificación de Shanon:

El siguiente algoritmo genera un código de Shanon:

- Crear una lista con los símbolos del alfabeto ordenados por frecuencias decrecientes
- Dividir iterativamente la lista con los caracteres ordenados en parte *superior e inferior* de tal manera que la suma de las probabilidades de los caracteres en ambas partes sea aproximadamente la misma.
 - Asignar un bit 0 a los caracteres de la parte superior y un bit 1 a los de la inferior
- Iterar el procedimiento sobre las partes superior e inferior mientras estas tengan un tamaño superior a uno.

Evolución paso a paso del algoritmo (se ha seguido la misma notación que los ejemplos de las transparencias).

abcdef15842211523272931328121416174689245230111110111 1011101101

Breve explicación

En la primera iteración la parte de arriba estará formada por un único caracter $\{a\}$

con frecuancia acumulada 15 y la parte de abajo por los caractres $\{b,c,d,e,f\}$ con frecuencia acumulada 32-15=17. Al caracter a se le asigna el bit a y al resto el bit a. El proceso se repite sobre las partes cuya tamaño sea superior a uno, en este caso, por tanto, **solo** la *parte inferior*. En la segunda iteración del algoritmo, la *parte de arriba* estará formada por un único caracter a0 con frecuencia acumulada a0 y la parte de abajo por los caractres a0 con frecuencia acumulada a17-8=9. Al caracter a1 se le asigna el bit a2 y al resto el bit a3

TEMA 1

- Elige "Pagar con Bizum'
- Introduce tu número
- Valida tu compra

. Como la longitud de la *parte inferior* es superior a 1, continua la iteración sobe esta parte....

Tamaño del archivo codificado con el código anterior $\tau(F)s=15\cdot 1+8\cdot 2+4\cdot 3+2\cdot 4+2\cdot 5+1\cdot 5=66$

bits

Parcial 2

Problema (1a), 2 pts

Solución:

Dada una tabla con los tiempos de descubrimiento y finalización de los nodos del grafo, el **teorema del paréntesis** nos permite hallar de que tipo es cada una de arista del grafo con complejidad O(1)

:

• Arista (4,5)

: Los intervalos de tiempo descubrimiento/finalización de los nodos 4 y 5, I_4 =[9,10] y I_5 =[2,7] respectivamente, son disjuntos. Es decir, $I_4 \cap I_5$ = \emptyset

- . Por tanto, los nodos 5 y 4 pertenecen a árboles (o sub-árboles) dfs diferentes. Al conectar la arista (4,5) nodos de diferentes árboles dfs, es una arista **de cruce**.
- Arista (5,3): El íntervalo de tiempo del nodo $5,I_5=[2,7]$, está incuído en el inetervalo de tiempo del nodo $3,I_3=[1,8]$, es decir, $I_5 \subset I_3$
 - . Por tanto, el nodo 5 es descendiente del nodo 3 en un árbol dfs siendo la arista (5,3) hacia atrás (ascendente o backward)

Problema 1(b), 4 pts.

Solución

• Al ser G

un grafo **no dirigido** hay que aplicar el **algoritmo DFS**. Tras su ejecución, **cada uno de los árboles del bosque dfs representará una componente conexa**. En este caso

tendremos 3 árboles dfs y, por tanto, tres componentes conexas $\{1,2,4\}$, $\{5\}$ y $\{3,6,7\}$. Entre paréntesis se muestran los tiempos de descubrimiento y finalización de los nodos de G

• Las aristas se han procesado en orden lexicográfico.

• Para que la matriz de ayaciencia sea diagonal se deberá crear un grafo G^\prime

isomorfo a G tal que los nodos que pertenezcan a una misma componente conexa tengan índices consecutivos. Por ejemplo, el grafo no dirigido $G'=\{V,E\}$ tal que $V=\{1,2,3,4,5,6\}$ y $E=\{(1,2),(1,3),(2,3),(5,6),(5,7),(6,7)\}$ es isomorfo a G

:
1 ---- 2
| /
| /
| /
| /
3 4 6

</pre> El grafo G'

Problema 1(c)

Aplicar los algoritmos QuickSelect y QuickSelect5 a la tabla inferior para buscar su úndecimo elemento

Solución:

Sea la taba S=[6,4,14,8,13,2,10,7,11,1,9,15,12,5,3]

y k el undécimo elemento (k=11) en la ordenación de la tabla. En la solución que presentamos se ha seguido el criterio de Python donde los índices de las tablas 0,...,(n-1) siendo n

es el tamaño de la tabla.

QuicKSelect:

```
[4, 2, 1, 5, 3], 6,
                     [14, 8, 13, 10, 7, 11, 9, 15, 12]
pivot = 6
index_pivot = 5
Como k > (index pivot + 1), (11 > 6), se actualiza el valor de k = 11
- (5+1) = 5, y se ejecuta la recursión sobre la segunda sub-tabla
[8, 13, 10, 7, 11, 9, 12] , 14,
                                [15]
pivot = 14
index pivot = 7
k < (index pivot + 1), (5 < 8)
         [13, 10, 11, 9, 12]
[7] , 8,
pivot = 8
index pivote = 1
k > (index pivot + 1), (5 < 2), se actualiza el valor de <math>k = 3
Como el tamaño de la sub-tabla [13, 10, 11, 9, 12] es \leq 5 (cutoff),
se sale de la recursión, la tabla se ordena [9, 10, 11, 12, 13] y se
devuelve el valor correspondiente a la posición indicda por k.
En este caso la tercera posición (k=3), cuyo valor es 11
```

QuickSelect5:

```
k = 11
Cálculo del pivote: [6, 4, 14, 8, 13,
                                         2, 10, 7, 11, 1,
                                                            9, 15, 12,
medianas=8, 7, 9
Medaiana de medianas = 8
[6, 4, 2, 7, 1, 5, 3], 8, [14, 13, 10, 11, 9, 15, 12]
pivote = 8
index pivot = 7
k > (index pivot + 1), (11 > 8). Se actualiza el valor de k = 3
Calculo del pivote: [14, 13, 10, 11, 9, 15, 12]
medianas = 11, 12(*)
Mediana de medianas = 11
[10, 9], 11,
             [14, 13, 15, 12]
pivote = 11
index pivot = 2
Como k == (index pivot + 1), (3 == 3), se develeve el pivote
```

