รูปทรงเรขาคณิต Geometry

https://play.google.com/store/apps/details?id=com.stevekb.geometry
http://www.tested.com/tech/3d-printing/460456-bits-atoms-3d-modeling-best-practices-3d-printing/

http://tien-trinh.blogspot.com/2012/09/bust-wire-frame-of-body-of-bust.html

พืชคณิตเชิงเส้น (Linear Algebra)

- เวกเตอร์ (vector) และจุด (point)
- เมตริกซ์ (matrix)
- การแปลง (transformation)

เวกเตอร์

- V = (a, b, c, d, e, f) เมื่อ a, b, c, d, e, f เป็นจำนวนจริง
- ในมุมมองของโปรแกรมเมอร์ V[6] = {a, b, c, d, e, f}
- จุด, ทิศทาง ฯลฯ
 - จุดใน 3D (x, y, z)

เวกเตอร์ตั้งฉาก (normal vector)

• อธิบายการวางตัวของพื้นผิวที่จุด P

ระบบพิกัด (Coordinate Systems)

- จุดใน 2D (x, y)
- จุดใน 3D (x, y, z)
- x, y, z เป็นจำนวนจริง
 - วัดจากจุดกำเนิด
 - มีเครื่องหมาย + หรือ –

การเลือกระบบพิกัด

• เลือกวางจุดกำเนิดตรงใหนก็ได้

รู้ตำแหน่งจุด P บนพิกัดสีเขียว (2, 4)
และ รู้ตำแหน่งจุดกำเนิดของพิกัดสีแดง (3, 1)
บนพิกัดสีเขียว

รู้ตำแหน่งจุด P บนพิกัดสีแดง (-1, 3)

การเลือกระบบพิกัด

• เลือกวางจุดกำเนิดตรงใหนก็ได้

รู้ตำแหน่งจุด P บนพิกัดสีเขียว (2, 4)

ระบบพิกัดใน 3D

- เพิ่มแกน z มาจาก 2D
- Euclidean space

© www.scratchapixel.com

ระบบพิกัดมือขวา - มือซ้าย

- 3D Studio Max ใช้ระบบพิกัดมือขวา
- Unity ใช้ระบบพิกัดมือซ้าย

แกนขวา(ซ้าย) บนและชื่ออก (ชี้เข้า)

3D Studio Max

Unity

พิกัดโลก (World Coordinate)

• พิกัดอื่นๆ จะอ้างอิงที่พิกัดโลก

การดำเนินการเวกเตอร์

- บวก ลบ
- ความยาว
- การทำให้เป็นบรรทัดฐาน (normalization)
- dot product
- cross product

บวก ลบ

•
$$W = V + U$$

•
$$W.x = V.x + U.x$$

•
$$W.y = V.y + U.y$$

•
$$W.z = V.z + U.z$$

•
$$W = V - U$$

•
$$W.x = V.x - U.x$$

•
$$W.y = V.y - U.y$$

•
$$W.z = V.z - U.z$$

ความยาวเวกเตอร์

•
$$||V|| = \sqrt{V.x * V.x + V.y * V.y + V.z * V.z}$$

Normalization

• เวกเตอร์หนึ่งหน่วย (unit vector)

•
$$\widehat{V} = \frac{V}{\|V\|}$$

© www.scratchapixel.com

Dot product

- $A \cdot B = A.x * B.x + A.y * B.y + A.z * B.z$
- ullet ถ้า A=B แล้วเราใส่ $\sqrt{A\cdot B}$ จะได้อะไร?
- Dot product มีความเกี่ยวข้องกับ $\cos heta$
 - $A \cdot B = ||A|| ||B|| \cos \theta$
 - ullet ถ้า B เป็นเวกเตอร์หนึ่งหน่วย $A \cdot B = \parallel A \parallel \cos heta$
 - ullet ภาพฉายของ A ในทิศทาง B
 - ullet ถ้า A และ B เป็นเวกเตอร์หนึ่งหน่วยทั้งคู่
 - $A \cdot B = \cos \theta$
 - $\theta = \cos^{-1}(A \cdot B)$

Cross product

- $\bullet C = A \times B$
 - C.x = A.y * B.z A.z * B.y
 - C.y = A.z * B.x A.x * B.z
 - C.z = A.x * B.y A.y * B.x

เส้น (line)

- ullet สมการเส้นตรง y=mx+b
 - m คือความชั้น
 - ullet b คือจุดตัดแกน y (เมื่อ x=0)
- ผลบวกของจุดกับเวกเตอร์

•
$$P = P_1 + \alpha d$$

- ผลรวมสัมพรรค (affine combination) ของ 2 จุด
 - $P=lpha_1P_1+lpha_2P_2$, ធ្វើ១ $lpha_1+lpha_2$ _ 1
 - ullet เมื่อ $0 \leq lpha_1$, $lpha_2 \leq 1$, P จะอยู่ระหว่าง P_1 และ P_2

https://www.mathsisfun.com/equation_of_line.html

ระนาบ (plane) และสามเหลี่ยม

- ระนาบเกิดจากผลรวมของจุดกับอีก 2 เวกเตอร์
 - $P = P_1 + \alpha u + \beta v$
- สามเหลี่ยมเกิดจากผลรวมสัมพรรคของ 3 จุด

•
$$P=\alpha_1P_1+\alpha_2P_2+\alpha_3P_3$$
 เมื่อ $\alpha_1+\alpha_2+\alpha_3=1$ และ $0\leq\alpha_1$, α_2 α_3

ผลรวมสัมพรรค (affine combination)

- ผลรวมสัมพรรคของจุดใดๆ คือ คอนเวกซ์ฮัลล์
 - รูปหลายเหลี่ยมที่ไม่มีส่วนเว้าที่คลุมจุดทั้งหมด

•
$$P=\alpha_1P_1+\alpha_2P_2+\cdots+\alpha_nP_n$$
, เมื่อ $\alpha_1+\alpha_2+\cdots+\alpha_n=1$ และ $0\leq\alpha_i$

เวกเตอร์ตั้งฉากของระนาบ

- ระนาบเกิดจากผลรวมของจุดกับอีก 2 เวกเตอร์
 - $P = P_1 + \alpha u + \beta v$
 - $P P_1 = \alpha u + \beta v$
- เวกเตอร์ตั้งฉากคำนวณได้จาก
 - $\bullet n = u \times v$
- ullet จุด P ใดๆ จะอยู่บนระนาบเมื่อ

$$\bullet \ n \cdot (P - P_1) = 0$$

สมการของระนาบ

สมมติให้
$$n=(a,b,c), P=(x,y,z), P_1=(x_1,y_1,z_1)$$
 จาก $n\cdot(P-P_1)=0$ จะได้ $a(x-x_1)+b(y-y1)+c(z-z_1)=0$ เมื่อเราอยากรู้ว่า P อยู่บนระนาบที่ถูกอธิบายด้วย P_1 และ n ตัวแปรที่เป็นค่าคงที่คือ a,b,c,x_1,y_1,z_1 จะได้ว่า $ax+by+cz+d=0$ โดยมี a,b,c ที่บอกถึงเวกเตอร์ตั้งฉากและ $d=-ax_1-by_1-cz_1$

เวกเตอร์ตั้งฉากของสามเหลี่ยม

เวกเตอร์ตั้งฉากของระนาบสามเหลี่ยม (P_1, P_2, P_3) คือ $n = (P_2 - P_1) imes (P_3 - P_1)$

- การสร้างโมเดลต้องใช้ลำดับของจุดแบบเดียวกัน:
 - ตามเข็มหรือทวนเข็ม
- โดยปกติจะให้เวกเตอร์ตั้งฉากชื้ออกจากตัวโมเดล

เวกเตอร์ตั้งฉากของจุดบนร่างแหสามเหลี่ยม

$$\bullet \ n_v = \frac{(n_1 + n_2 + \dots + n_k)}{k}$$

$$A_{n imes m} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ a_{31} & a_{32} & \cdots & a_{3m} \\ dots & dots & \ddots & dots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$
 ມວກ $C_{n imes m} = A_{n imes m} + B_{n imes m}$

A และ B จะต้องมีมิติเท่ากัน

คูณ
$$C_{n \times p} = A_{n \times m} B_{m \times p}$$
 A และ \mathbf{B} จะต้องมีมิติที่สอดรับกัน $c_{ij} = \sum_{k=1}^m a_{ik} b_{kj}$

$$A_{n\times n}B_{n\times n}\neq B_{n\times n}A_{n\times n}$$

เมตริกซ์เอกลักษณ์
$$I=egin{pmatrix} 1&0&\ddots&0\ 0&1&\ddots&0\ \ddots&\ddots&\ddots&\ddots\ 0&0&\ddots&1 \end{pmatrix}$$
 $IA=AI=A$

- คุณสมบัติการจัดกลุ่ม
 - $T^*(U^*(V^*p)) = (T^*U^*V)^*p$
- คุณสมบัติการกระจาย
 - $T^*(u+v) = T^*v + T^*v$

• การสลับเปลี่ยน (transpose)

$$C_{m \times n} = A^{T}_{n \times m} \qquad (A+B)^{T} = A^{T} + B^{T}$$

$$c_{ij} = a_{ji} \qquad (AB)^{T} = B^{T} A^{T}$$

ถ้า $A^T=A$ แสดงว่า ${\sf A}$ เป็นเมตริกว์แบบสมมาตร

• ตัวกำหนด (determinant)

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$
 \mathbf{A} ต้องเป็นเมตริซ์จตุรัส

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

• การผกผัน (inverse)

$$A_{n \times n} A^{-1}_{n \times n} = A^{-1}_{n \times n} A_{n \times n} = I$$

A ต้องเป็นเมตริซ์จตุรัส

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{21}a_{12}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$