

12/8/9/2 김현수

목차

Table of contents

- Attention (Self-Attention, Multi-head Attention)
- Encoder
- Decoder
- Result

Attention

- Attention (Self-Attention, Multi-head Attention)
- II Encode:
- ____ Decode:
- III Result

Attention?

Attention?

• Attention(Q, K, V) = $Softmax\left(\frac{QK^T}{\sqrt{d}}\right)V$

0.5	0.1	0.0	0.2	0.2	0.0
0.2	0.6	0.0	0.0	0.1	0.0
100	æ	#3	16	*	ж
0.00	10	61	90	++	ж
=+11	-	θE	30	***	Ή
	-	2.6	**		12

$$Softmax\left(\frac{QK^T}{\sqrt{d}}\right)$$

V

0.5	5*I + 0.1*like + 0.2*to + 0.2* movies
	0.2*I + 0.6*like + 0.1*movies

	iii
	m
	26

Attention(Q, K, V)

5

Input

Embedding

Queries

Keys

Values

Score

Thinking

X1

q₁

k₁

V1

q1 • k1 = 112

Machines

X2

Q₂

K₂

V2

 $q_1 \cdot k_2 = 96$

Multi-head Attention

<end>

Multi-head Attention

Multi-head Attention

Visualize Attention

Encoder

- Attention (Self-Attention, Multi-head Attention)
- Encoder
- i in notai
- l Resuli

Encoder

Figure 1: The Transformer - model architecture.

Encoder

Layer Normalization

(How to Positional Encoding>

- 1. 각 time-step(문장에서 단어의 위치)에 대해 고유한 인코딩을 출력해야 합니다.
- 2. 일정 time-step 사이의 거리는 길이가 다른 문장끼리 일정해야 한다.
- 3. test data에서 train data에서보다 더 긴 시퀀스가 들어왔을때도 처리할 수 있어야 한다. (더 긴 문장도 일반화가 가능해야함)
- -> 상한(upper bound)이 필요하다.
- 4. 정확하게 위치를 결정할 수 있어야한다.(확률값 x)

· Training sample

Sentence	Dark	horses	are	faster	than	white	horses
Pos 1	1	2	3	4	5	6	7
Pos 2	0.14	0.28	0.42	0.56	0.70	0.84	1.00

Test sample

Sentence	Dark	horses	might	be	faster	than	white	horses
Pos 1	1	2	3	4	5	6	7	8
Pos 2	0.12	0.25	0.37	0.50	0.62	0.75	0.87	1.00

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases} \quad \omega_k = rac{1}{10000^{2k/d}}$$


```
\sin(\omega_1, t)
                \cos(\omega_1, t)
                 \sin(\omega_2,t)
                \cos(\omega_2, t)
\overrightarrow{p_t} =
              \sin(\omega_{d/2},t)
             \cos(\omega_{d/2},t)
```

```
import math
import matplotlib.pyplot as plt
n = 4 # 단어(word)의 개수
din = E # 임배딩(embedding) 차용
def get_angles(pos, i, din):
   angles = 1 / math, pov(18860, (2 * (i // 2)) / din)
   return cos * angles
def get_positional_encoding(pos, i, dim):
   if i % 2 = 8: # 짝수민 경우 사인 함수
       return math.sin(get_angles(pos, i, din))
   # 홀수만 경우 코사인 함수
   return math.cos(get_angles(pos, i, din))
result = [[8] * dim for _ in range(n)]
for i in range(n):
   for j in range(dim):
       result[i][j] = get_positional_encoding(i, j, dim)
```


- Attention (Self-Attention, Multi-head Attention)
- **II** Encoder
- Decoder

Figure 1: The Transformer - model architecture.

Masked Multi-Head Attention

Encoder attention from "suis"

Decoder attention from "am"

Masked Multi-Head Attention

1.0	0	0	0	0	0
0.3	0.7	0	0	0	0
0.2	0.3	0.5	0	0	0
0.1	0.2	0.1	0.6	0	0
24	in .		4	Var	0
50	740	340	340	ii.	ři.

	1.0*I
	0.3*I + 0.7*like
	0.2*I + 0.3*like + 0.5*going
0.:	1*I + 0.2*like + 0.1*going + 0.6*to
	. da
	44

Reference

- https://arxiv.org/pdf/1706.03762.pdf
- https://kazemnejad.com/blog/transformer_architecture_positional_encodi-ng/#what-is-positional-encoding-and-why-do-we-need-it-in-the-first-place
- https://www.youtube.com/watch?v=AA621UofTUA
- https://www.youtube.com/watch?v=h8avp8yDKV4&list=PLLENHvsRRLjDHll rXj0B8sz5-4xVbisBL&index=24

