

Proponiendo un horario optimizado para Transantiago

Kameron Decker Harris

Marcela Munizaga Antonio Gschwender

December 15, 2010

#### No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

#### No existe ningún horario

#### Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

No existe ningún horario

Por qué nocturno?

- horarios fijos son más importantes cuando hay menos frecuencias, como de noche
- el usuario puede mejor planificar sus viajes

Ahora: frequencias programadas (pero cumplidas a veces)

# Horario "óptimo"

#### Meta

Escoger tiempos de llegada y espera en los paraderos para que

- buses cumplan con demanda
- trasbordos estén sincronizados

Tradicionalmente, horarios escogidos a mano

Algoritmos heurísticos pueden hallar soluciones suficientemente óptimas en redes realisticas

(algoritmos exactos tb. si hay una formulación fuerte)

# Horario "óptimo"

#### Meta

Escoger tiempos de llegada y espera en los paraderos para que

- buses cumplan con demanda
- trasbordos estén sincronizados

Tradicionalmente, horarios escogidos a mano

Algoritmos heurísticos pueden hallar soluciones suficientemente óptimas en redes realisticas

(algoritmos exactos tb. si hay una formulación fuerte)

# Tamaño del problema

|               | entre 1:00 y 5:30 | % muestra total |
|---------------|-------------------|-----------------|
| emisiones GPS | 935 950           | < 1             |
| paraderos     | 4 777             | 43              |
| rutas         | 117               | 18              |
| viajes        | 84 448            | < 1             |

36.056.735 transacciones bip! fueron usadas para calcular viajes (Estas cifras representan una semana, la primera de marzo, 2009)

### Cobertura nocturna

# Red física

Los recorridos ocurren sobre una red dirigida física en la cual

- los vértices son paraderos
- enlaces entre paraderos representan un segmento de un recorrido, tb. tienen estructura espacial.

La optimización no cambia las rutas.



# Caso prueba



Cobertura de red y visualización de trasbordos Sólo 3 servicios (ida y regreso): 107, 401, 504

- Derivación de modelo
  - Primeros pasos

## Formulación básica

En todo problema de optimización, se minimiza la

## Función objetivo

- suma de tiempos (para hacer trasbordo) de espera modelados
- podemos penalizar también tiempos de detención

#### bajo unas

#### Restricciones

- intervalo (frecuencia) asignado a cada servicio
- límites de tiempos de espera, viaje, y trasbordo

Otras suposiciones: determinístico, discreto, condiciones de borde periódicas

# El concepto de eventos

evento 1 corresponde a llegar en un bus de la primera líneaevento 2 corresponde a salir en un bus de la segunda línea



#### Definiciones

 $\pi_i$  tiempo al que occure por primera vez evento i  $P_i$  periodo con que repite evento i

#### Anotar

Escogemos  $\pi_i \in [0, P_i]$ 

 $P_i$  transportistas usualmente anidados, ej.  $P_i \in \{7.5, 15, 30\}$ 

# El concepto de eventos

evento 1 corresponde a llegar en un bus de la primera líneaevento 2 corresponde a salir en un bus de la segunda línea



#### **Definiciones**

 $\pi_i$  tiempo al que occure por primera vez evento i  $P_i$  periodo con que repite evento i

#### Anotai

Escogemos  $\pi_i \in [0, P_i]$ 

 $P_i$  transportistas usualmente anidados, ej.  $P_i \in \{7.5, 15, 30\}$ 

# El concepto de eventos

evento 1 corresponde a llegar en un bus de la primera línea evento 2 corresponde a salir en un bus de la segunda línea



### **Definiciones**

 $\pi_i$  tiempo al que occure por primera vez evento i  $P_i$  periodo con que repite evento i

#### Anotar

Escogemos  $\pi_i \in [0, P_i)$ 

 $P_i$  transportistas usualmente anidados, ej.  $P_i \in \{7.5, 15, 30\}$ 



2 eventos y su tiempo "slack", de Nachtigall 1996



Cada evento i genera una secuencia de tiempos periódicos

$$\pi_i + qP_i$$
;  $q \in \mathbb{Z}$ 

Así que nos interesa la diferencia para nuestro trasbordo

$$(\pi_2 + rP_2) - (\pi_1 + qP_1); \ q, r \in \mathbb{Z}$$



2 eventos y su tiempo "slack", de Nachtigall 1996



 $\Delta t$  entre ocurrencias específicas (q, r) de estos dos eventos

$$(\pi_2 + rP_2) - (\pi_1 + qP_1); \ q, r \in \mathbb{Z}$$

Recorrer todo  $(q, r) \in \mathbb{Z}^2$  equivale recorrer todo  $k \in \mathbb{Z}$  con un solo periodo,

$$\pi_2 - \pi_1 + kP_a$$

donde  $P_a = \gcd(P_1, P_2)$  es el periodo del trasbordo a = (1, 2)



2 eventos y su tiempo "slack", de Nachtigall 1996



$$\Delta t_{\min} = \min_{k \in \mathbb{Z}} \{ \pi_2 - \pi_1 + k P_a | \pi_2 - \pi_1 + k P_a \ge 0 \} = (\pi_2 - \pi_1) \mod P_a$$

$$\Delta t_{\max} = \Delta t_{\min} + \max_{k \in \mathbb{Z}} \{ k P_a | k P_a < P_2 \} = (\pi_2 - \pi_1) \mod P_a + (P_2 - P_a)$$

$$\Delta t_{\max} = (\pi_2 - \pi_1) \mod P_a + \frac{1}{2} (P_2 - P_a)$$



2 eventos y su tiempo "slack", de Nachtigall 1996



$$\Delta t_{\min} = \min_{k \in \mathbb{Z}} \{ \pi_2 - \pi_1 + kP_a | \pi_2 - \pi_1 + kP_a \ge 0 \} = (\pi_2 - \pi_1) \mod P_a$$

$$\Delta t_{\max} = \Delta t_{\min} + \max_{k \in \mathbb{Z}} \{ kP_a | kP_a < P_2 \} = (\pi_2 - \pi_1) \mod P_a + (P_2 - P_a)$$

$$\Delta t_{\text{med}} = (\pi_2 - \pi_1) \mod P_a + \frac{1}{2}(P_2 - P_a)$$



2 eventos y su tiempo "slack", de Nachtigall 1996



$$\Delta t_{\min} = \min_{k \in \mathbb{Z}} \{ \pi_2 - \pi_1 + kP_a | \pi_2 - \pi_1 + kP_a \ge 0 \} = (\pi_2 - \pi_1) \mod P_a$$

$$\Delta t_{\max} = \Delta t_{\min} + \max_{k \in \mathbb{Z}} \{ kP_a | kP_a < P_2 \} = (\pi_2 - \pi_1) \mod P_a + (P_2 - P_a)$$

$$\Delta t_{\text{med}} = (\pi_2 - \pi_1) \mod P_a + \frac{1}{2}(P_2 - P_a)$$



2 eventos y su tiempo "slack", de Nachtigall 1996



$$\Delta t_{\min} = \min_{k \in \mathbb{Z}} \{ \pi_2 - \pi_1 + k P_a | \pi_2 - \pi_1 + k P_a \ge 0 \} = (\pi_2 - \pi_1) \mod P_a$$

$$\Delta t_{\max} = \Delta t_{\min} + \max_{k \in \mathbb{Z}} \{ k P_a | k P_a < P_2 \} = (\pi_2 - \pi_1) \mod P_a + (P_2 - P_a)$$

$$\Delta t_{\text{med}} = (\pi_2 - \pi_1) \mod P_a + \frac{1}{2}(P_2 - P_a)$$



2 eventos y su tiempo "slack", de Nachtigall 1996



$$\Delta t_{\min} = \min_{k \in \mathbb{Z}} \{ \pi_2 - \pi_1 + k P_a | \pi_2 - \pi_1 + k P_a \ge 0 \} = (\pi_2 - \pi_1) \mod P_a$$

$$\Delta t_{\max} = \Delta t_{\min} + \max_{k \in \mathbb{Z}} \{ k P_a | k P_a < P_2 \} = (\pi_2 - \pi_1) \mod P_a + (P_2 - P_a)$$

$$\Delta t_{\text{med}} = (\pi_2 - \pi_1) \mod P_a + \frac{1}{2}(P_2 - P_a)$$

- Derivación de modelo
- Grafos de eventos

# Más que trasbordos





Ejemplo para intersección de 2 trenes, de Liebchen 2006

#### Grafo de eventos

### Expandimos la red física a un grafo abstracto en lo cual

- vértices son eventos (llegada o salida de buses de cierta línea y cierta parada)
- arcos son actividades (viaje, detención, trasbordo)

- Derivación de modelo
- Más que

trasbordos





Ejemplo para intersección de 2 trenes, de Liebchen 2006

#### Grafo de eventos

Expandimos la red física a un grafo abstracto en lo cual

- vértices son eventos (llegada o salida de buses de cierta línea y cierta parada)
- arcos son actividades (viaje, detención, trasbordo)

- Derivación de modelo
- Grafos de eventos

# Más que trasbordos





Ejemplo para intersección de 2 trenes, de Liebchen 2006

#### Grafo de eventos

Expandimos la red física a un grafo abstracto en lo cual

- vértices son eventos (llegada o salida de buses de cierta línea y cierta parada)
- arcos son actividades (viaje, detención, trasbordo)

- Derivación de modelo
  - Grafos de eventos

# Más que trasbordos





Ejemplo para intersección de 2 trenes, de Liebchen 2006

#### Grafo de eventos

Expandimos la red física a un grafo abstracto en lo cual

- vértices son eventos (llegada o salida de buses de cierta línea y cierta parada)
- arcos son actividades (viaje, detención, trasbordo)

# Modelo completo

# "Periodic event scheduling problem" (PESP)

Dado un digrafo de eventos G=(V,E) y dado límites inferior  $I\in\mathbb{Z}^{|A|}$  y superior  $u\in\mathbb{Z}^{|A|}$ , y periodos de actividad  $P\in\mathbb{N}^{|A|}$ , y un vector de costos  $w\in\mathbb{Z}^{|A|}$ , el siguiente programa define el PESP:

$$\min \sum_{(i,j)=a \in E} w_a(\pi_j - \pi_i + k_a P_a) = \min \left\{ w^T (B^T \pi + \operatorname{diag}(P)k) \right\}$$

(B es la matriz de incidencia nodo-arco)

$$B^T \pi + \operatorname{diag}(P)k \le u$$
  $\pi \in [0, P)$   
 $B^T \pi + \operatorname{diag}(P)k \ge I$   $k \in \mathbb{Z}^{|A|}$ 

# Modelo completo

# "Periodic event scheduling problem" (PESP)

Dado un digrafo de eventos G=(V,E) y dado límites inferior  $I\in\mathbb{Z}^{|A|}$  y superior  $u\in\mathbb{Z}^{|A|}$ , y periodos de actividad  $P\in\mathbb{N}^{|A|}$ , y un vector de costos  $w\in\mathbb{Z}^{|A|}$ , el siguiente programa define el PESP:

$$\min \sum_{(i,j)=a \in E} w_a(\pi_j - \pi_i + k_a P_a) = \min \left\{ w^T (B^T \pi + \operatorname{diag}(P)k) \right\}$$

(B es la matriz de incidencia nodo-arco)

$$B^T \pi + \operatorname{diag}(P)k \le u$$
  $\pi \in \{0, \dots, P-1\}^{|V|}$   
 $B^T \pi + \operatorname{diag}(P)k \ge I$   $k \in \mathbb{Z}^{|A|}$ 

# Herramientas computacionales

### Datos

- R: lenguaje estadístico, para procesar todo
- packages importantes: igraph, sp, RdbiPgSQL
- comunica con una base de datos

PostegreSQL + PostGIS (conciencia espacial)

### Optimización

**Gurobi**: solucionador genérico MILP, licencias académicas sin costo

# Resultados caso prueba - 3 líneas

## problema (grafo no-reducida)

IP variables = |V| + |E| = 1024 + 1043 = 2067 arcos de trasbordo: 24 arcos  $a \text{ con } l_a < u_a$ : 50 trasbordos: min 1, max 23, mean 4.12, N=103

#### MIP solucionador

tiempo hasta probar optimalidad 0.91 hr (2 x 2.4 GHz, 2 GB RAM) función objetivo = 27 791 s costo (incl. caminata)  $\approx$  4.5 min/trasbordo (de 5.9 min/trasbordo primera solucion factible, 23% mejor)

# **Gracias!** Preguntas?

Gracias también a Carolina Palma, Mauricio Zuñiga, Daniel Fischer, la División de Transporte, Transantiago, Fulbright, Andrés Moreira, Eric Goles, y el Instituto de Sistemas Complejos de Valparaíso.