```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import statsmodels.api as sm
        from sklearn.model selection import train test split
In [2]: data=pd.read csv('E11.csv')
        pd.set option('display.max rows', None)
        pd.set option('display.max columns', None)
        data.describe()
        y=data.nunique()
        w= data.apply(lambda col: col.astype(str).str.count('#REF!')).sum().drop(columns=['c82','c110'])
        x=data.isnull().sum().drop(columns=['c82','c110'])
        z=x+w
        z1=z[z>0]
        y[y<10].plot(kind='bar')</pre>
        <AxesSubplot:>
Out[2]:
```

file:///Users/yashgupta/Downloads/dse11.html Page 1 of 43


```
In [3]: data=pd.read_csv('Ell.csv')
   pd.set_option('display.max_rows', None)
   pd.set_option('display.max_columns', None)
   data.describe()
   y=data.nunique()
   w= data.apply(lambda col: col.astype(str).str.count('#REF!')).sum().drop(columns=['c82','c110'])
   x=data.isnull().sum().drop(columns=['c82','c110'])
   z=x+w
   z1=z[z>0]
   x[x>50].plot(kind='bar')
Out[3]: 
Out[3]:
```



```
In [4]: data=pd.read_csv('Ell.csv')
   pd.set_option('display.max_rows',None)
   pd.set_option('display.max_columns',None)
   data.describe()
   y=data.nunique()
   w= data.apply(lambda col: col.astype(str).str.count('#REF!')).sum().drop(columns=['c82','c110'])
   x=data.isnull().sum().drop(columns=['c82','c110'])
   z=x+w
   z1=z[z>0]
   z1[z<50].plot(kind='bar')</pre>
Out[4]: <AxesSubplot:>
```



```
In [6]: first nan0=[563,548,580,580,580,580,563,563,563,578]
        numberofnan0=[13,33,3,3,3,13,13,13,2]
        coltomanage=['c57','c59','c88','c96','c97','c102','c118','c193','c197','c166']
        for k in range(len(first nan0)):
            manage=[]
            first nan=first nan0[k]
            numberofnan=numberofnan0[k]
            col=coltomanage[k]
            for i in range(numberofnan):
                data[col][first nan+i]=0
            for i in range(numberofnan+2):
                manage.append(float(data[col][first nan-1+i]))
            for i in range(numberofnan):
                data[col][first nan+i]=np.round(manage[0]-(manage[0]-manage[numberofnan+1])/numberofnan*i,9)
        /var/folders/ n/200kljtd2dq7jx4fc971742w0000qn/T/ipykernel 16395/3156396506.py:10: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#retu
        rning-a-view-versus-a-copy
          data[col][first nan+i]=0
        /var/folders/ n/200kljtd2dg7jx4fc971742w0000gn/T/ipykernel 16395/3156396506.py:14: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user quide/indexing.html#retu
        rning-a-view-versus-a-copy
          data[col][first nan+i]=np.round(manage[0]-(manage[0]-manage[numberofnan+1])/numberofnan*i,9)
In [7]: correlation matrix=data[['c51','c52','c53','c54']].corr()
        sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f")
```

```
file:///Users/yashgupta/Downloads/dse11.html
```

plt.show()


```
In [8]: X=data['c53']
    y=data['c54']
    X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=69)
    model=sm.OLS(y_train, X_train).fit()
    print(model.summary())
    yp=model.predict(X_test)
    l=np.arange(1,len(X_test)+1)
    plt.figure(figsize=(13,6))
    plt.plot(1, y_test, 1, yp)
    plt.legend(['Actual', 'Predicted'])
```

OLS Regression Results

==========		========						======
Dep. Variable: c54				R-squa	ared (uncente	ered):		0.9
Model:			OLS	Adj. F	R-squared (ur	ncentered):		0.9
Method:		Least Squa	res	F-stat	tistic:		;	3.684e+
Date:	Mo	n, 13 Nov 2	023	Prob ((F-statistic)	:		0.
Time:		15:45	:27	Log-Li	ikelihood:			-1546
No. Observation	ons:		820	AIC:				309
Df Residuals:			819	BIC:				310
Df Model:			1					
Covariance Typ	pe:	nonrob	ust					
==========		========	=====				=======	
	coef	std err		t	P> t	[0.025	0.975]	
c53	0.9166	0.005	191	.941	0.000	0.907	0.926	
Omnibus:		346.	080	Durbir	 n-Watson:		1.956	
Prob(Omnibus):	:	0.	000	Jarque	e-Bera (JB):		1930.676	
Skew:		-1.	849	Prob(3	JB):		0.00	
Kurtosis:		9.	544	Cond.	No.		1.00	
==========		========	=====					

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified. <matplotlib.legend.Legend at 0x7fe1f8a367f0>

Out[8]:

In [9]: X=data.drop(columns=['c1','c2','c51','c52','c53','c54','c82','c110','c149','c156','c168','c169','c170','c171','c1
y=data['c53'] #Change as desired

```
In [10]: correlation matrix = X.corr()
         corr threshold = 0.99
         high corr pairs = []
         for i in range(len(correlation matrix.columns)):
             for j in range(i+1, len(correlation matrix.columns)):
                  correlation = correlation matrix.iloc[i, j]
                 if (correlation) > corr threshold:
                     pair = (correlation matrix.columns[i], correlation matrix.columns[j], correlation)
                     high corr pairs.append(pair)
         for pair in high corr pairs[:10]: # first 10 pairs are displayed
             print(f"Columns {pair[0]} and {pair[1]} have correlation: {pair[2]}")
         high corr columns = set()
         for pair in high corr pairs:
             high corr columns.add(pair[0])
             high corr columns.add(pair[1])
         plt.figure(figsize=(12, 8))
         for pair in high corr pairs:
             plt.scatter(X[pair[0]], X[pair[1]], label=f'{pair[0]} vs {pair[1]}', alpha=0.7)
         plt.title("Scatter Plot of High Correlation Pairs")
         plt.xlabel("Column X")
         plt.ylabel("Column Y")
         plt.ylim(0,200)
         plt.xlim(0,250)
         plt.show()
         Columns c3 and c148 have correlation: 0.9999930694447685
```

```
Columns c3 and c148 have correlation: 0.9999930694447685
Columns c4 and c69 have correlation: 0.9999966664696086
Columns c4 and c128 have correlation: 0.9999966664696086
Columns c5 and c24 have correlation: 0.999999999999933
Columns c6 and c25 have correlation: 0.999999999999914
Columns c17 and c136 have correlation: 0.9999764852436428
Columns c18 and c138 have correlation: 0.9999999558879929
Columns c19 and c139 have correlation: 0.999999956535309
Columns c28 and c77 have correlation: 0.9991488123567125
Columns c28 and c144 have correlation: 0.9991488133443961
```



```
In [11]: correlated columns=['c148', 'c69', 'c128', 'c24', 'c25', 'c136', 'c138', 'c139', 'c77', 'c144', 'c145', 'c104',
         X=X.drop(columns=correlated columns)
In [12]: X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=5)
         dropped vars = []
         R2 values = []
         dropped vars = []
         R2 values = []
         X=sm.add constant(X)
         X train = X train.apply(pd.to numeric, errors='coerce')
         while len(X train.columns) > 1:
             model = sm.OLS(y train, X train).fit()
             max p value = model.pvalues[1:].max()
             if max p value > 0.05:
                 dropped var = model.pvalues[1:].idxmax()
                 X train = X train.drop(columns=[dropped var])
                 model = sm.OLS(y train, X train).fit()
                 dropped vars.append(dropped var)
                 R2 values.append(model.rsquared)
             else:
                 break
         summary table = pd.DataFrame({
             "Dropped Variable": dropped_vars,
             "R2": R2 values
         print(summary table.head(10))
         print(model.summary())
```

```
X test = X test.apply(pd.to numeric, errors='coerce')
X test = X test[X train.columns]
y pred test = model.predict(X test)
df = pd.DataFrame({'Predicted': y pred test.tolist(), 'Actual': y test.tolist()})
df['error'] = (df['Predicted'] - df['Actual'])
x = np.arange(len(df['Actual']))
plt.figure(figsize=(13, 6))
plt.plot(x, df['Actual'], label='Actual')
plt.plot(x, df['Predicted'], label='Predicted')
plt.legend()
plt.show()
 Dropped Variable
                        R2
0
             c58 0.983364
1
             c30 0.983364
2
             c23 0.983364
3
            c235 0.983364
              c4 0.983364
5
             c32 0.983363
6
            c166 0.983362
7
             c61 0.983361
8
            c196 0.983359
9
            c239 0.983357
                         OLS Regression Results
______
                               c53
Dep. Variable:
                                     R-squared:
                                                                   0.982
Model:
                               OLS Adj. R-squared:
                                                                   0.979
                     Least Squares F-statistic:
Method:
                                                                   419.4
Date:
                   Mon, 13 Nov 2023 Prob (F-statistic):
                                                                    0.00
Time:
                          15:45:35 Log-Likelihood:
                                                                 -1059.6
No. Observations:
                                                                   2307.
                               820
                                   AIC:
                                                                   2750.
Df Residuals:
                               726
                                    BTC:
Df Model:
                                93
Covariance Type:
                         nonrobust
```

======			:=======:	========	-=======	=======
	coef	std err	t	P> t	[0.025	0.975]
c3	-0.2290	0.038	-5.986	0.000	-0.304	-0.154
c 6	-0.6585	0.109	-6.047	0.000	-0.872	-0.445
c 9	-0.2184	0.085	-2.554	0.011	-0.386	-0.051
c12	0.7557	0.120	6.276	0.000	0.519	0.992
c13	0.4730	0.086	5.475	0.000	0.303	0.643
c15	0.4657	0.109	4.292	0.000	0.253	0.679
c16	0.4760	0.115	4.141	0.000	0.250	0.702
c18	-0.1307	0.023	-5.643	0.000	-0.176	-0.085
c21	-0.1509	0.056	-2.679	0.008	-0.261	-0.040
c22	-0.1139	0.047	-2.437	0.015	-0.206	-0.022
c26	-0.3050	0.065	-4.712	0.000	-0.432	-0.178
c28	-4.3331	1.793	-2.416	0.016	-7.854	-0.812
c29	0.2771	0.060	4.600	0.000	0.159	0.395
c31	-4.8853	1.801	-2.712	0.007	-8.421	-1.349
c33	0.4211	0.158	2.669	0.008	0.111	0.731
c34	4.0666	1.481	2.745	0.006	1.158	6.975
c 37	-0.6809	0.294	-2.317	0.021	-1.258	-0.104
c38	-156.6189	11.636	-13.460	0.000	-179.464	-133.774
c40	13.8799	2.830	4.905	0.000	8.324	19.435
c41	204.6175	44.192	4.630	0.000	117.859	291.376
c42	0.7313	0.221	3.307	0.001	0.297	1.165
c44	-0.2605	0.104	-2.515	0.012	-0.464	-0.057
c45	0.3348	0.070	4.760	0.000	0.197	0.473
c46	10.9214	2.435	4.486	0.000	6.141	15.701
c48	-252.2337	41.360	-6.098	0.000	-333.433	-171.034
c49	2.2566	0.263	8.573	0.000	1.740	2.773
c 50	-2.452e+04	3432.686	-7.144	0.000	-3.13e+04	-1.78e+04
c 56	-1.4531	0.252	-5.755	0.000	-1.949	-0.957
c 57	39.5539	4.365	9.062	0.000	30.985	48.123
c59	2.2190	0.863	2.573	0.010	0.526	3.912
c 60	-0.1952	0.053	-3.677	0.000	-0.299	-0.091
c62	-0.5789	0.255	-2.268	0.024	-1.080	-0.078
c63	1.1440	0.327	3.502	0.000	0.503	1.785
c64	-80.3896	14.503	-5.543	0.000	-108.862	-51.917
c 65	-1.9518	0.283	-6.894	0.000	-2.508	-1.396

c 66	3.4583	1.485	2.328	0.020	0.542	6.374
c67	0.2452	0.085	2.889	0.004	0.079	0.412
c72	-0.6442	0.189	-3.408	0.001	-1.015	-0.273
c73	0.5848	0.223	2.617	0.009	0.146	1.023
c74	-112.9854	25.590	-4.415	0.000	-163.225	-62.746
c76	4.8697	1.778	2.739	0.006	1.379	8.361
c78	-3765.2923	583.407	-6.454	0.000	-4910.659	-2619.925
c79	1858.6809	247.805	7.501	0.000	1372.180	2345.181
c80	-86.9993	41.425	-2.100	0.036	-168.327	-5.672
c81	1.059e+04	1420.276	7.458	0.000	7803.415	1.34e+04
c84	-3.696e+04	2994.564	-12.342	0.000	-4.28e+04	-3.11e+04
c85	-559.6237	60.139	-9.305	0.000	-677.691	-441.556
c86	-1343.2570	262.442	-5.118	0.000	-1858.492	-828.022
c88	-234.7921	48.017	-4.890	0.000	-329.061	-140.523
c89	39.3104	7.682	5.117	0.000	24.229	54.392
c90	3615.7699	718.541	5.032	0.000	2205.104	5026.436
c91	-441.1915	89.802	-4.913	0.000	-617.495	-264.888
c92	2324.1207	353.704	6.571	0.000	1629.717	3018.525
c93	-70.3289	27.193	-2.586	0.010	-123.715	-16.942
c94	778.0640	151.339	5.141	0.000	480.949	1075.179
c95	6.3653	2.602	2.446	0.015	1.257	11.474
c96	120.5638	24.378	4.946	0.000	72.705	168.423
c97	18.8536	7.899	2.387	0.017	3.345	34.362
c98	-2758.7118	408.379	-6.755	0.000	-3560.456	-1956.968
c99	780.2489	113.477	6.876	0.000	557.467	1003.031
c100	8.2205	1.800	4.568	0.000	4.687	11.754
c102	-1.1339	0.421	-2.692	0.007	-1.961	-0.307
c103	-39.7705	5.130	-7.752	0.000	-49.842	-29.699
c108	-4263.6659	861.228	-4.951	0.000	-5954.460	-2572.872
c116	250.0350	35.001	7.144	0.000	181.320	318.750
c117	-0.1063	0.015	-6.968	0.000	-0.136	-0.076
c118	-49.3430	11.327	-4.356	0.000	-71.581	-27.105
c124	-0.7585	0.202	-3.760	0.000	-1.155	-0.362
c133	44.8430	9.843	4.556	0.000	25.520	64.166
c140	2.9280	0.389	7.536	0.000	2.165	3.691
c142	-1.7176	0.252	-6.807	0.000	-2.213	-1.222
c143	-0.1092	0.036	-3.072	0.002	-0.179	-0.039
c126	2.454e+04	3432.931	7.149	0.000	1.78e+04	3.13e+04

c131	18.9837	2.914	6.515	0.000	13.263	24.704
c132	-6060.5068	941.898	-6.434	0.000	-7909.676	-4211.337
c150	0.4259	0.104	4.115	0.000	0.223	0.629
c152	127.8454	15.896	8.043	0.000	96.639	159.052
c153	0.1374	0.029	4.748	0.000	0.081	0.194
c154	-1.7962	0.382	-4.697	0.000	-2.547	-1.045
c155	0.1355	0.054	2.521	0.012	0.030	0.241
c164	115.2759	9.346	12.335	0.000	96.928	133.624
c175	2.037e+07	9.56e+06	2.131	0.033	1.6e+06	3.91e+07
c176	1.8925	0.646	2.930	0.003	0.624	3.161
c179	-2.037e+07	9.56e+06	-2.131	0.033	-3.91e+07	-1.6e+06
c180	-1.4198	0.463	-3.065	0.002	-2.329	-0.510
c182	-0.0746	0.027	-2.780	0.006	-0.127	-0.022
c183	2.037e+07	9.56e+06	2.131	0.033	1.6e+06	3.91e+07
c191	13.4818	2.252	5.986	0.000	9.061	17.903
c193	-3.8429	0.662	-5.801	0.000	-5.143	-2.542
c198	0.9769	0.182	5.361	0.000	0.619	1.335
c201	226.3692	63.294	3.576	0.000	102.108	350.630
c205	-0.8236	0.223	-3.699	0.000	-1.261	-0.387
c230	-0.7044	0.223	-3.163	0.002	-1.142	-0.267
c241	-2.9924	0.660	-4.532	0.000	-4.289	-1.696
Omnibus:	=========			======= n-Watson:	=======	1.969
Prob(Omn	ibus):			e-Bera (JB)):	10.276
Skew:	,		115 Prob(, ,		0.00587
Kurtosis		3.	498 Cond.	No.		1.08e+12
======	=========					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.2e-15. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.


```
In [13]: bins = [-np.inf, 5, 10, 20, np.inf]
labels = ['SAFE', 'MODERATE', '!!ALERT!!-HIGH', '!!ALERT!!-CRITICAL']
y_pred_levels = pd.cut(y_pred_test, bins=bins, labels=labels, include_lowest=True)
df_results = pd.DataFrame({'Predicted': y_pred_test, 'Level': y_pred_levels})
print(df_results.head(10))
df_results.groupby('Level').size().plot(kind='bar', title='Count of Predictions in Each Level')
plt.show()
```

Level	Predicted	
SAFE	3.740007	293
!!ALERT!!-CRITICAL	20.847745	697
MODERATE	5.586053	353
MODERATE	7.405671	481
!!ALERT!!-HIGH	19.337790	823
MODERATE	8.985489	462
MODERATE	6.683364	536
!!ALERT!!-HIGH	10.232335	438
SAFE	4.774104	347
MODERATE	5.356615	148


```
In [14]: y1=data['c53'] #change as desired
         X1=data[['c26', 'c27', 'c28', 'c29', 'c30', 'c31', 'c32',
         'c33', 'c39', 'c139', 'c142', 'c143', 'c155', 'c156', 'c157', 'c158', 'c160', 'c161', 'c162', 'c163']]
         X=sm.add constant(X)
         X train, X test, y train, y test = train test split(X1, y1, test size=0.2, random state=1)
         X test = X test.reset index(drop=True)
         y test = y test.reset index(drop=True)
         model = sm.OLS(y train, X train).fit()
         dropped vars = []
         R2 values = []
         while len(X.columns) > 1:
             model = sm.OLS(y train, X train).fit()
             max p value = model.pvalues[0:].max()
             if max p value > 0.05:
                 dropped var = model.pvalues[0:].idxmax()
                 X train = X train.drop(columns=[dropped var])
                 model = sm.OLS(y train, X train).fit()
                 dropped vars.append(dropped var)
                 R2 values.append(model.rsquared)
             else:
                 break
         summary table = pd.DataFrame({
          "Dropped Variable": dropped vars,
          "R2": R2 values
         print(summary table.head(10))
         print(model.summary())
         X test=X test.drop(columns = dropped vars)
         y pred test=model.predict(X test)
         df = pd.DataFrame({'Predicted': y_pred_test.tolist(), 'Actual': y_test.tolist()})
         df['error'] = (df['Predicted']-df['Actual'])
         x=[]
         for i in range(len(df['Actual'])):
             x.append(i)
```

```
plt.plot(x,df['Actual'])
plt.plot(x,df['Predicted'])
plt.show()
sorted_coefficients = model.params.sort_values(ascending=False)
print(sorted_coefficients)
Dropped Variable R2
```

	Dropped	Variable	R2
0		c161	0.948143
1		c32	0.948141
2		c158	0.948107
3		c162	0.947981

OLS Regression Results

Dep. Variable:	c53	R-squared (uncentered):	0.948
Model:	OLS	Adj. R-squared (uncentered):	0.947
Method:	Least Squares	F-statistic:	915.7
Date:	Mon, 13 Nov 2023	Prob (F-statistic):	0.00
Time:	15:45:35	Log-Likelihood:	-1973.4
No. Observations:	820	AIC:	3979.
Df Residuals:	804	BIC:	4054.

Df Model: 16

Covariance Type: nonrobust

=======		=========		========		=======
	coef	std err	t	P> t	[0.025	0.975]
c26	0.3656	0.114	3.197	0.001	0.141	0.590
c27	-1.0321	0.363	-2.840	0.005	-1.745	-0.319
c28	0.3156	0.106	2.977	0.003	0.108	0.524
c29	-0.2846	0.119	-2.397	0.017	-0.518	-0.052
c30	3.6710	1.021	3.595	0.000	1.667	5.675
c31	0.6169	0.092	6.688	0.000	0.436	0.798
c33	0.5778	0.181	3.196	0.001	0.223	0.933
c39	-8.8058	2.616	-3.366	0.001	-13.941	-3.671
c139	-0.3633	0.077	-4.713	0.000	-0.515	-0.212
c142	-1.3709	0.215	-6.370	0.000	-1.793	-0.948
c143	0.4975	0.060	8.311	0.000	0.380	0.615
c155	0.6634	0.023	28.972	0.000	0.618	0.708

c156	-0.9715	0.199	-4.873	0.000	-1.363	-0.580
c157	-0.1277	0.015	-8.517	0.000	-0.157	-0.098
c160	-0.0029	0.001	-2.486	0.013	-0.005	-0.001
c163	0.0504	0.005	9.468	0.000	0.040	0.061
=======	=========	========	-=======	========	========	=======
Omnibus:		7.8	388 Durbin	-Watson:		2.003
Prob(Omnil	bus):	0.0)19 Jarque	Jarque-Bera (JB):		
Skew:		0.1	l96 Prob(J	ГВ):		0.0232
Kurtosis:		2.7	743 Cond.	No.		2.72e+04

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 2.72e+04. This might indicate that there are strong multicollinearity or other numerical problems.


```
c30
                 3.670999
         c155
                 0.663373
         c31
                 0.616908
         c33
                 0.577768
         c143
                0.497452
         c26
                0.365595
         c28
                0.315583
         c163
               0.050352
         c160
                -0.002877
         c157
                -0.127678
         c29
                -0.284599
         c139
              -0.363329
         c156 - 0.971483
         c27
                -1.032121
         c142 -1.370942
         c39
                -8.805813
         dtype: float64
In [15]: bins = [-np.inf, 5, 10, 20, np.inf]
         labels = ['SAFE', 'MODERATE', 'HIGH ALERT!', 'CRITICAL ALERT!']
         y pred levels = pd.cut(y pred test, bins=bins, labels=labels, include lowest=True)
         df results = pd.DataFrame({'Predicted': y pred test, 'Level': y pred levels})
         high alert indices = df results[df results['Level'] == 'HIGH ALERT!'].index.tolist()
         critical alert indices = df results[df results['Level'] == 'CRITICAL ALERT!'].index.tolist()
         print(df results.head(10))
         df results.groupby('Level').size().plot(kind='bar', title='Count of Predictions in Each Level')
         plt.show()
```

Level		Predicted	
MODERATE	MO	6.984742	0
MODERATE	MO	8.504620	1
SAFE		4.114058	2
H ALERT!	HIGH	14.342545	3
SAFE		3.185929	4
H ALERT!	HIGH	13.140587	5
MODERATE	MO	7.466948	6
MODERATE	MO	6.920808	7
SAFE		4.988905	8
H ALERT!	HIGH	19.671613	9


```
In [16]: epsilon=0.01
         threshold=10 # Change as desired
         for i in high alert indices:
             while (model.predict(X test.iloc[i]) > threshold).any():
                 X test.loc[i, 'c30'] -= epsilon
         for i in critical alert indices:
             while (model.predict(X test.iloc[i]) > threshold).any():
                 X test.loc[i, 'c30'] -= epsilon
In [17]: y pred test=model.predict(X test)
In [18]: bins = [-np.inf, 5, 10, 20, np.inf]
         labels = ['SAFE', 'MODERATE', 'HIGH ALERT!', 'CRITICAL ALERT!']
         y pred levels = pd.cut(y pred test, bins=bins, labels=labels, include lowest=True)
         df results = pd.DataFrame({'Predicted': y pred test, 'Level': y pred levels})
         high alert indices = df results[df results['Level'] == 'HIGH ALERT!'].index.tolist()
         critical alert indices = df results[df results['Level'] == 'CRITICAL ALERT!'].index.tolist()
         print(df results.head(10))
         df results.groupby('Level').size().plot(kind='bar', title='Count of Predictions in Each Level')
         plt.show()
            Predicted
                          Level
         0 6.984742 MODERATE
         1 8.504620 MODERATE
         2 4.114058
                           SAFE
            9.974056 MODERATE
         4 3.185929
                           SAFE
         5 9.983527 MODERATE
```

file:///Users/yashgupta/Downloads/dse11.html

6 7.466948 MODERATE 7 6.920808 MODERATE

9 9.980175 MODERATE

SAFE

8 4.988905

In [19]: X=data.drop(columns=['c1','c2','c82','c110','c149','c156','c168','c169','c170','c171','c188','c189','c190','c199'
y=data['c241']

```
correlated columns=['c148', 'c69', 'c128', 'c24', 'c25', 'c136', 'c138', 'c139', 'c77', 'c144', 'c145', 'c104',
X=X.drop(columns=correlated columns)
X=sm.add constant(X)
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=9)
dropped vars = []
R2 values = []
dropped vars = []
R2 values = []
X=sm.add constant(X)
X train = X train.apply(pd.to numeric, errors='coerce')
while len(X train.columns) > 1:
    model = sm.OLS(y train, X train).fit()
    max p value = model.pvalues[1:].max()
    if max p value > 0.05:
        dropped var = model.pvalues[1:].idxmax()
        X train = X train.drop(columns=[dropped var])
        model = sm.OLS(y train, X train).fit()
        dropped vars.append(dropped var)
        R2 values.append(model.rsquared)
    else:
        break
summary table = pd.DataFrame({
    "Dropped Variable": dropped vars,
    "R2": R2 values
})
print(summary table.head(10))
print(model.summary())
X test = X test.apply(pd.to numeric, errors='coerce')
X test = X test[X train.columns]
y pred test = model.predict(X test)
df = pd.DataFrame({'Predicted': y pred test.tolist(), 'Actual': y test.tolist()})
df['error'] = (df['Predicted'] - df['Actual'])
x = np.arange(len(df['Actual']))
plt.figure(figsize=(13, 6))
```

```
plt.plot(x, df['Actual'], label='Actual')
plt.plot(x, df['Predicted'], label='Predicted')
plt.legend()
plt.show()
sorted coefficients = model.params.abs().sort values(ascending=False)
print(sorted coefficients.head(10))
sorted coefficients[:10].plot(kind='bar')
 Dropped Variable
                        R2
0
              c10 0.999259
1
              c64 0.999259
2
              c60 0.999259
3
              c58 0.999259
              c59 0.999259
5
              c12 0.999259
             c155 0.999259
             c160 0.999259
8
              c31 0.999259
9
             c129 0.999259
                          OLS Regression Results
Dep. Variable:
                               c241
                                      R-squared:
                                                                     0.999
Model:
                                OLS Adj. R-squared:
                                                                     0.999
                      Least Squares F-statistic:
Method:
                                                                     9216.
Date:
                   Mon, 13 Nov 2023 Prob (F-statistic):
                                                                      0.00
Time:
                                     Log-Likelihood:
                                                                    1913.3
                           15:45:41
No. Observations:
                                820
                                                                    -3635.
                                     AIC:
Df Residuals:
                                724
                                      BIC:
                                                                    -3183.
Df Model:
                                 95
Covariance Type:
                          nonrobust
_____
                                              P>|t|
                                                         [0.025
                coef
                       std err
                                       t
                                                                    0.9751
            272.1890
                        56.409
                                    4.825
                                              0.000
                                                        161.445
                                                                   382.933
const
                         0.001
                                    2.510
                                              0.012
                                                          0.000
                                                                     0.003
c3
              0.0017
C4
             -0.1261
                         0.010
                                  -12.825
                                              0.000
                                                         -0.145
                                                                    -0.107
c5
              0.0196
                         0.006
                                    3.404
                                              0.001
                                                          0.008
                                                                     0.031
                                              0.000
              0.0158
                         0.003
                                    5.330
                                                          0.010
                                                                     0.022
c6
```

c 7	0.1250	0.027	4.607	0.000	0.072	0.178
c8	-0.0386	0.006	-6.829	0.000	-0.050	-0.028
c 9	-0.0246	0.006	-4.022	0.000	-0.037	-0.013
c11	-0.0922	0.002	-37.979	0.000	-0.097	-0.087
c13	-0.0076	0.002	-3.818	0.000	-0.011	-0.004
c14	0.0174	0.008	2.228	0.026	0.002	0.033
c16	-0.0169	0.004	-4.336	0.000	-0.025	-0.009
c17	-0.0079	0.001	-5.830	0.000	-0.011	-0.005
c18	0.0049	0.001	4.354	0.000	0.003	0.007
c19	-0.0111	0.003	-3.209	0.001	-0.018	-0.004
c23	0.0018	0.001	1.979	0.048	1.43e-05	0.004
c26	-0.0047	0.001	-5.370	0.000	-0.006	-0.003
c27	-0.0237	0.009	-2.687	0.007	-0.041	-0.006
c28	0.0042	0.002	2.451	0.014	0.001	0.008
c37	-0.0446	0.007	-6.763	0.000	-0.058	-0.032
c38	-0.2965	0.051	-5.791	0.000	-0.397	-0.196
c39	-18.4896	2.030	-9.109	0.000	-22.475	-14.504
c40	0.3212	0.040	8.087	0.000	0.243	0.399
c42	-0.0229	0.006	-3.969	0.000	-0.034	-0.012
c43	0.0126	0.004	3.443	0.001	0.005	0.020
c47	0.4690	0.105	4.449	0.000	0.262	0.676
c49	-0.4112	0.093	-4.437	0.000	-0.593	-0.229
c51	0.0059	0.001	5.664	0.000	0.004	0.008
c52	-0.0077	0.002	-4.308	0.000	-0.011	-0.004
c57	-0.5114	0.079	-6.481	0.000	-0.666	-0.356
c62	0.0365	0.007	5.300	0.000	0.023	0.050
c63	-0.0316	0.009	-3.680	0.000	-0.049	-0.015
c 65	0.4847	0.059	8.166	0.000	0.368	0.601
c67	-0.3876	0.052	-7.461	0.000	-0.490	-0.286
c71	-0.0289	0.006	-4.490	0.000	-0.042	-0.016
c74	1.7062	0.776	2.198	0.028	0.183	3.230
c75	0.0049	0.001	9.384	0.000	0.004	0.006
c78	-178.1708	15.107	-11.794	0.000	-207.829	-148.512
c79	-98.6597	14.982	-6.585	0.000	-128.072	-69.247
c81	-148.6193	39.758	-3.738	0.000	-226.675	-70.564
c86	112.8265	29.833	3.782	0.000	54.257	171.396
c87	-8.6546	0.994	-8.703	0.000	-10.607	-6.702
c88	3.9355	0.773	5.094	0.000	2.419	5.452

c90	72.3891	12.664	5.716	0.000	47.526	97.252
c91	4.1834	1.953	2.142	0.033	0.349	8.018
c92	50.6877	3.297	15.373	0.000	44.214	57.161
c93	-6.2011	0.723	-8.575	0.000	-7.621	-4.781
c94	20.8593	4.654	4.482	0.000	11.723	29.996
c95	-2.1456	0.475	-4.520	0.000	-3.077	-1.214
c96	-2.2092	0.392	-5.630	0.000	-2.980	-1.439
c99	-16.3195	3.142	-5.194	0.000	-22.488	-10.151
c100	0.5662	0.048	11.771	0.000	0.472	0.661
c101	0.1366	0.028	4.897	0.000	0.082	0.191
c102	0.0029	0.001	5.102	0.000	0.002	0.004
c103	0.9114	0.141	6.446	0.000	0.634	1.189
c108	-97.7174	12.185	-8.020	0.000	-121.639	-73.796
c116	0.0323	0.004	9.106	0.000	0.025	0.039
c117	-0.0005	0.000	-2.328	0.020	-0.001	-8.45e-05
c118	1.1157	0.559	1.995	0.046	0.018	2.213
c123	105.3647	14.430	7.302	0.000	77.035	133.695
c124	-0.5985	0.076	-7.831	0.000	-0.749	-0.448
c134	-0.4793	0.103	-4.674	0.000	-0.681	-0.278
c135	0.0267	0.005	5.491	0.000	0.017	0.036
c142	0.0292	0.006	4.848	0.000	0.017	0.041
c146	-0.0003	0.000	-3.214	0.001	-0.001	-0.000
c125	-6.9839	0.894	-7.811	0.000	-8.739	-5.228
c126	2.8135	0.336	8.362	0.000	2.153	3.474
c131	0.1322	0.066	2.003	0.046	0.003	0.262
c132	-44.7670	21.898	-2.044	0.041	-87.758	-1.776
c150	-0.0058	0.002	-2.383	0.017	-0.011	-0.001
c152	0.9457	0.463	2.041	0.042	0.036	1.855
c153	-0.0016	0.000	-4.883	0.000	-0.002	-0.001
c157	0.0013	0.001	2.224	0.026	0.000	0.002
c163	-0.0003	6.41e-05	-5.121	0.000	-0.000	-0.000
c175	0.3504	0.026	13.368	0.000	0.299	0.402
c177	0.1541	0.025	6.259	0.000	0.106	0.202
c178	0.1511	0.019	7.884	0.000	0.113	0.189
c180	-0.1503	0.012	-12.159	0.000	-0.175	-0.126
c181	-0.1511	0.020	-7.437	0.000	-0.191	-0.111
c182	-0.1471	0.019	-7.678	0.000	-0.185	-0.110
c183	0.2017	0.013	15.765	0.000	0.177	0.227

c191	0.6236	0.153	4.076	0.000	0.323	0.924
c192	0.2277	0.028	8.169	0.000	0.173	0.282
c193	0.0436	0.014	3.113	0.002	0.016	0.071
c194	-0.1784	0.019	-9.274	0.000	-0.216	-0.141
c195	-0.1127	0.010	-11.304	0.000	-0.132	-0.093
c196	-0.0304	0.005	-6.513	0.000	-0.040	-0.021
c198	0.0746	0.012	6.275	0.000	0.051	0.098
c201	-22.2219	2.235	-9.942	0.000	-26.610	-17.834
c205	0.9187	0.061	15.138	0.000	0.800	1.038
c225	-155.2364	10.298	-15.075	0.000	-175.453	-135.020
c230	0.0165	0.005	3.296	0.001	0.007	0.026
c235	-0.8172	0.415	-1.971	0.049	-1.631	-0.003
c237	-0.0082	0.001	-5.532	0.000	-0.011	-0.005
c238	0.0017	0.000	3.550	0.000	0.001	0.003
c239	-0.0029	0.001	-4.170	0.000	-0.004	-0.002
Omnibus:		 337.	616 Durbii	======== n-Watson:		1.972
Prob(Omnibus):		0.	000 Jarque	Jarque-Bera (JB):		8512.547
Skew:		1.	_	Prob(JB):		0.00
Kurtosis	•	18.	573 Cond.	No.		4.35e+08
=======			.========	========		=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.35e+08. This might indicate that there are strong multicollinearity or other numerical problems.

file:///Users/yashgupta/Downloads/dse11.html

dtype: float64

Out[19]: <AxesSubplot:>


```
dropped vars = []
R2 values = []
dropped vars = []
R2 values = []
X=sm.add constant(X)
X train = X train.apply(pd.to numeric, errors='coerce')
while len(X train.columns) > 1:
    model = sm.OLS(y train, X train).fit()
    max p value = model.pvalues[1:].max()
    if max p value > 0.05:
        dropped var = model.pvalues[1:].idxmax()
        X train = X train.drop(columns=[dropped var])
        model = sm.OLS(y train, X train).fit()
        dropped vars.append(dropped var)
        R2 values.append(model.rsquared)
    else:
        break
summary table = pd.DataFrame({
    "Dropped Variable": dropped vars,
    "R2": R2 values
})
print(summary table.head(10))
print(model.summary())
X test = X test.apply(pd.to numeric, errors='coerce')
X test = X test[X train.columns]
y pred test = model.predict(X test)
df = pd.DataFrame({'Predicted': y_pred_test.tolist(), 'Actual': y_test.tolist()})
df['error'] = (df['Predicted'] - df['Actual'])
x = np.arange(len(df['Actual']))
plt.figure(figsize=(13, 6))
plt.plot(x, df['Actual'], label='Actual')
plt.plot(x, df['Predicted'], label='Predicted')
plt.legend()
plt.show()
```

sorced_coerrr	CTencs	•20]•PIOC(KING- D	ar)			
Dropped Var		R2					
0		0.999198					
1							
2							
3	c 53	22 0.999198					
4	c22						
5	c20	0.999198					
6	c41	0.999198					
7	c85	0.999198					
8	c74	0.999198					
9	c80	0.999198					
=======================================	======	OL ========	S Regres		esults =======		
Dep. Variable: c241 R-squared:						0.999	
Model:			OLS	Adj.	Adj. R-squared:		
Method: Least Squares F-statistic:					9162.		
				(F-statisti	.c):	0.00	
Time: 15:45:4			5:45:44	Log-I	Likelihood:		1891.0
No. Observations:			820	AIC:			-3598.
Df Residuals:			728	BIC:			-3165.
Df Model:			91				
Covariance Typ	pe:	no	nrobust				
	coe	ef std e	rr	t	P> t	[0.025	0.975]
const	76.184	4 120.9	67	0.630	0.529	-161.301	313.670
c 3	0.001	.8 0.0	01	2.861	0.004	0.001	0.003
c4	-0.136	0.0	11 -	13.011	0.000	-0.157	-0.116
c 5	0.023	0.0	06	3.919	0.000	0.012	0.035
c 6	0.015	0.0	03	4.799	0.000	0.009	0.022
c7	0.080	0.0	26	3.076	0.002	0.029	0.132
c8	-0.053	0.0		-9.004	0.000	-0.065	-0.041
c 9	-0.038	0.0	06 -	-6.290	0.000	-0.050	-0.026
c11	-0.091	.0 0.0	02 -3	37.429	0.000	-0.096	-0.086

c13	-0.0053	0.002	-2.433	0.015	-0.010	-0.001
c16	-0.0190	0.004	-5.165	0.000	-0.026	-0.012
c17	-0.0055	0.001	-4.156	0.000	-0.008	-0.003
c18	0.0061	0.001	4.317	0.000	0.003	0.009
c19	-0.0069	0.004	-1.975	0.049	-0.014	-4.27e-05
c37	-0.0393	0.007	-5.840	0.000	-0.053	-0.026
c38	-0.2087	0.048	-4.375	0.000	-0.302	-0.115
c42	-0.0221	0.006	-3.904	0.000	-0.033	-0.011
c43	0.0077	0.003	2.249	0.025	0.001	0.014
c47	0.3508	0.129	2.729	0.007	0.098	0.603
c48	-7.4657	0.906	-8.237	0.000	-9.245	-5.686
c49	-0.3071	0.112	-2.731	0.006	-0.528	-0.086
c51	0.0046	0.001	4.650	0.000	0.003	0.007
c52	-0.0080	0.002	-4.312	0.000	-0.012	-0.004
c56	0.0354	0.013	2.639	0.009	0.009	0.062
c57	-0.4149	0.068	-6.083	0.000	-0.549	-0.281
c62	0.0382	0.007	5.604	0.000	0.025	0.052
c63	-0.0339	0.008	-4.171	0.000	-0.050	-0.018
c65	1.4143	0.380	3.724	0.000	0.669	2.160
c67	-0.2074	0.056	-3.733	0.000	-0.316	-0.098
c71	-0.0294	0.007	-4.307	0.000	-0.043	-0.016
c73	0.0173	0.006	2.979	0.003	0.006	0.029
c75	0.0045	0.001	8.812	0.000	0.003	0.005
c78	-206.4913	15.722	-13.134	0.000	-237.357	-175.625
c79	-82.2045	16.457	-4.995	0.000	-114.513	-49.895
c81	-178.9241	46.587	-3.841	0.000	-270.386	-87.463
c86	83.3030	36.517	2.281	0.023	11.612	154.994
c87	-7.6355	1.022	-7.469	0.000	-9.642	-5.629
c88	3.7124	0.639	5.814	0.000	2.459	4.966
c90	307.4082	102.953	2.986	0.003	105.289	509.528
c91	7.4693	2.545	2.935	0.003	2.474	12.465
c92	12.0362	3.948	3.049	0.002	4.285	19.787
c93	-6.9950	0.735	-9.516	0.000	-8.438	-5.552
c94	19.7743	4.714	4.195	0.000	10.521	29.028
c95	-1.8085	0.535	-3.381	0.001	-2.858	-0.758
c 96	-1.9887	0.308	-6.451	0.000	-2.594	-1.383
c98	36.2877	10.505	3.454	0.001	15.665	56.911
c99	-18.5899	3.622	-5.133	0.000	-25.700	-11.480

c100	0.6443	0.050	12.779	0.000	0.545	0.743
c101	0.1202	0.031	3.818	0.000	0.058	0.182
c102	0.0027	0.000	5.870	0.000	0.002	0.004
c103	1.0112	0.167	6.072	0.000	0.684	1.338
c116	0.0286	0.004	7.956	0.000	0.022	0.036
c123	55.9257	15.503	3.607	0.000	25.489	86.362
c124	-0.5896	0.078	-7.516	0.000	-0.744	-0.436
c134	-0.2847	0.089	-3.197	0.001	-0.460	-0.110
c135	0.0137	0.004	3.239	0.001	0.005	0.022
c146	-0.0007	0.000	-2.449	0.015	-0.001	-0.000
c147	-0.0003	0.000	-2.062	0.040	-0.001	-1.56e-05
c125	-5.1375	0.887	-5.792	0.000	-6.879	-3.396
c126	2.4783	0.350	7.083	0.000	1.791	3.165
c129	-0.0132	0.005	-2.540	0.011	-0.023	-0.003
c131	0.0191	0.007	2.712	0.007	0.005	0.033
c132	-40.9655	16.267	-2.518	0.012	-72.901	-9.030
c150	-0.0171	0.003	-5.738	0.000	-0.023	-0.011
c151	2.9536	0.117	25.242	0.000	2.724	3.183
c153	-0.0017	0.000	-5.338	0.000	-0.002	-0.001
c164	0.2440	0.036	6.723	0.000	0.173	0.315
c167	-0.9807	0.322	-3.046	0.002	-1.613	-0.349
c175	0.3951	0.027	14.748	0.000	0.343	0.448
c177	0.1328	0.025	5.334	0.000	0.084	0.182
c178	0.1465	0.020	7.467	0.000	0.108	0.185
c180	-0.1484	0.013	-11.637	0.000	-0.173	-0.123
c181	-0.1453	0.021	-6.979	0.000	-0.186	-0.104
c182	-0.1420	0.020	-7.246	0.000	-0.181	-0.104
c183	0.2501	0.012	20.589	0.000	0.226	0.274
c191	0.6099	0.158	3.858	0.000	0.300	0.920
c192	0.2106	0.030	7.052	0.000	0.152	0.269
c193	0.0961	0.031	3.147	0.002	0.036	0.156
c194	-0.2008	0.022	-9.202	0.000	-0.244	-0.158
c195	-0.1189	0.010	-11.369	0.000	-0.139	-0.098
c196	-0.0262	0.005	-4.925	0.000	-0.037	-0.016
c197	-0.0329	0.015	-2.157	0.031	-0.063	-0.003
c198	0.1024	0.018	5.761	0.000	0.068	0.137
c201	-7.7934	1.371	-5.683	0.000	-10.486	-5.101
c203	0.0733	0.030	2.466	0.014	0.015	0.132

c205	1.0337	0.063	16.405	0.000	0.910	1.157	
c224	-12.2813	5.012	-2.450	0.015	-22.122	-2.441	
c225	-174.8283	10.689	-16.355	0.000	-195.814	-153.843	
c235	-1.0151	0.411	-2.471	0.014	-1.822	-0.209	
c237	-0.0035	0.001	-2.352	0.019	-0.006	-0.001	
c238	0.0014	0.000	2.864	0.004	0.000	0.002	
c239	-0.0020	0.001	-2.711	0.007	-0.003	-0.001	
Omnibus:		323.	======= 266 Durbin	======= -Watson:	=======	2.021	
Prob(Omnibus):		0.	000 Jarque	Jarque-Bera (JB):		9755.766	
Skew:		1.	150 Prob(J	Prob(JB):		0.00	
Kurtosis:		19.	740 Cond.	Cond. No.		9.14e+08	
=======							

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.14e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Out[20]: <AxesSubplot:>

