Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Рубежный контроль №1

по дисциплине «Методы машинного обучения»

Выполнил: студент группы ИУ5-23М Дин Но

Дополнительные требования по группам:

Для студентов групп ИУ5-23M, ИУ5И-23М - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

```
In [24]: import numpy as np
   import pandas as pd

data = pd.read_csv('Iris.csv')|
   data.head()
   data.describe()
```

Out[24]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
count	150.000000	150.000000	150.000000	150.000000	150.000000	
mean	75.500000	5.843333	3.054000	3.758667	1.198667	
std	43.445368	0.828066	0.433594	1.764420	0.763161	
min	1.000000	4.300000	2.000000	1.000000	0.100000	
25%	38.250000	5.100000	2.800000	1.600000	0.300000	
50%	75.500000	5.800000	3.000000	4.350000	1.300000	
75%	112.750000	6.400000	3.300000	5.100000	1.800000	
max	150.000000	7.900000	4.400000	6.900000	2.500000	

```
import matplotlib.pyplot as plt
box_1, box_2,box_3,box_4= data['SepalLengthCm'], data['SepalWidthCm'],data['PetalLengthCm'],data['PetalWidthCm']
plt.title('People of vaccinations',fontsize=20)
labels = 'SepalLength','SepalWidth','PetalLength','PetalWidth'
plt.boxplot([box_1, box_2,box_3,box_4], labels = labels, sym ="o")
plt.show()
```

People of vaccinations 8 7 6 4 3 2 1

PetalLength

SepalWidth

SepalLength

Задача №17.

Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием преобразования Йео-Джонсона (Yeo-Johnson transformation).

```
from sklearn.preprocessing import PowerTransformer
featured column=['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']
X=data[featured column].values
Y=data['Species'].values
pt = PowerTransformer(method='yeo-johnson', standardize=False)
pt.fit(X)
transformed data = pt.transform(X)
transformed data
array([[1.37158622, 1.51724927, 1.46711008, 0.19710047],
       [1.35283713, 1.39747895, 1.46711008, 0.19710047],
       [1.33322896, 1.44707251, 1.35884371, 0.19710047],
       [1.32308066, 1.42257466, 1.57579675, 0.19710047],
       [1.3623149 , 1.5396171 , 1.46711008, 0.19710047],
       [1.39823725, 1.60394567, 1.79437097, 0.38912251],
       [1.32308066, 1.49438463, 1.46711008, 0.29368755],
       [1.3623149 , 1.49438463, 1.57579675, 0.19710047],
       [1.3020468 , 1.37175529, 1.46711008, 0.19710047],
       [1.35283713, 1.42257466, 1.57579675, 0.09924933],
       [1.39823725, 1.56150937, 1.57579675, 0.19710047],
       [1.34314472, 1.49438463, 1.68488843, 0.19710047],
       [1.34314472, 1.39747895, 1.46711008, 0.09924933],
       [1.2911399 , 1.39747895, 1.14363954, 0.09924933],
       [1.43130947, 1.62452594, 1.25101421, 0.19710047],
       [1.42328684, 1.7029694 , 1.57579675, 0.38912251],
       [1.39823725, 1.60394567, 1.35884371, 0.38912251],
       [1.37158622, 1.51724927, 1.46711008, 0.29368755],
       [1.42328684, 1.582946 , 1.79437097, 0.29368755],
```

Задача №37.

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectPercentile для 5% лучших признаков, и метод, основанный на взаимной информации.

```
from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import mutual_info_classif

data_1=pd.read_csv('heart.csv')
data_1.head()
data_1.describe()
```

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399340	0.729373	2.3
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616226	1.022606	0.€
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	2.0
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.000000	2.0
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000	3.0
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000	3.0
)	

```
X_1 = data_1.drop(['output'],axis = 1)
Y_1 = data_1.output

sp=SelectPercentile(mutual_info_classif, percentile=5).fit(X_1,Y_1)
X_new = sp.fit_transform(X,Y)
X_new.shape
```

```
(150, 1)
```

```
sp.get_support(indices=False)
array([False, False, False, True])
```