Part 1i: Geometric interpretation

Textbook: pp. 26-30

Int	rodu	ıctic	n t	o th	e ge	eom	netr	ic ir	iter	pret	tatio	on						
•	The	den	sity	of a	dist	tribu	utior	n in	R^d	corr	espo	nds	to	a set	t in .	R^{d+}	1.	
•	The		-			-										y's s	set.	
•	Sam	•	_ ;						a saı	mple	e fro	m t	he <mark>u</mark>	ınifo	rm			
_	dist							•						م مالا		- f 1	la a	
•	The dens	•		II IS	acce	epte	Q IT	tne	prop	oosa	ii pe	iong	gs to	the	set	οτ τ	ne	
•	This	•		es a	sam	nole	wit	h a l	ınifo	orm	dist	ribu	tion	OVE	r th	ie se	·†	
	of th				Jui	Pic	***		41111		0.130	1100			J. C.			
•	The	first	COC	rdir	nate	s of	a sa	mpl	e fr	om '	the	unif	orm	dist	ribu	ıtior	1	
	ovei					onc	ling	to t	he d	lens	ity p	rod	uce	a sa	mpl	e fro	эm	
	the	distr	ibul	tion														

The uniform distribution (generalization)

Definition 1.29 A random variable X with values in \mathbb{R}^d is uniformly distributed on a set $A \subseteq \mathbb{R}^d$ with $0 < |A| < \infty$, if

$$P(X \in B) = \frac{|A \cap B|}{|A|}$$

for all $B \subseteq \mathbb{R}^d$. As for real intervals, we use the notation $X \sim \mathcal{U}(A)$ to indicate that X is uniformly distributed on A.

Lemma	1.30										
Lemma distribu									∞ . The	n the	uniforn
Proo	£ ;	Pa	(B)	(f	1A	\ B					
Proo			= 1	AI	5	1 _A	(<i>⊋</i> \B	s d a	7		
			= \int_{0}	}	(à) a	√ 1₹	41), d =			
				•							

	Len	nma	1.3	31																	
																					with
										distr distr						con	ditic	ned	on 1	the e	event
	Λ	D	COII	Cluc	28 W		lic u		1111	uisu	10ut	lOII v			ا						
												رد	\overline{C}	ا ۸	<i>2</i> /						
	Pr	80	:		٢	($C \mid$	B		=	-	0)) (-					
									•			T	Cl	3)	. /						
) (B	\wedge	A	1/	14	1				
								=	-	10	13	^	HI	//,	14			•			
											, ,	·									
										۱۲	` /	γ (, b	4 <u>~</u>	16						
								=	=	10		1 6	-0								
										l	B	Λŀ	+ 1								

Geometric interpretation of rejection sampling

Lemma 1.33 Let $f: \mathbb{R}^d \to [0, \infty)$ be a probability density and let

$$A = \{(x, y) \in \mathbb{R}^d \times [0, \infty) \mid 0 \le y < f(x)\} \subseteq \mathbb{R}^{d+1}.$$

Then |A| = 1 and the following two statements are equivalent:

- (a) (X, Y) is uniformly distributed on A.
- (b) X is distributed with density f on \mathbb{R}^d and Y = f(X)U where $U \sim \mathcal{U}[0, 1]$, independently of X.

$$|A| = \int_{A} d\vec{z} dy = \int_{A} (\vec{z}, y) dy d\vec{z}$$

$$= \int_{A} (\vec{z}, y) = \int_{A} (\vec{z}, y) = \int_{A} (\vec{z}, y)$$

$$\int_{A} (\vec{z}, y) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{X} (\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\int_{Y/X} (y|\vec{z}) = \int_{A} (\vec{z}, y) dy = \int_{A} (\vec{z}, y)$$

$$\Rightarrow \frac{y}{f(\vec{z})} = U \wedge U_{n}; f, rm(0, 1)$$

$$(b) \Rightarrow (a) : It is sufficient to prove that
$$P(\vec{x}, y) \in B = |A \cap B|, \text{ for all } B = C \times D, \quad C \subset \mathbb{R}^{d}, \quad D \subset \mathbb{R}$$

$$P(\vec{x}, y) \in B = P(\vec{x} \in C, y \in D)$$

$$= \int_{C} P(y \in D | \vec{x} = \vec{x}) f(\vec{x}) d\vec{x}$$

$$= \int_{C} \frac{|D \cap [0, f(\vec{x})]}{f(\vec{x})} d\vec{x}$$

$$= \int_{C} |D \cap [0, f(\vec{x})] d\vec{x}$$$$

Figure 1.5 Illustration of the rejection sampling method where the graph of the target density is contained in a rectangle $R = [a, b] \times [0, M]$. In this case the proposals are uniformly distributed on the rectangle R and a proposal is accepted if it falls into the shaded region.

$$g(x) = \frac{1}{b-a}, \quad a \leq x \leq b$$

$$c \cdot g(x) = \frac{S}{b-a} = M > f(x)$$

$$Accept \times if \quad Y = U \cdot M \leq f(x), \quad U \wedge Un \cdot form(0,1)$$

$$(=) \quad (x,y) \sim Un \cdot form(a,b) \times (a,b) \times (a,m)$$

Figure 1.3 Illustration of the envelope rejection sampling method from algorithm 1.22. The proposal $(X_k, cg(X_k) U_k)$ is accepted, if it falls into the area underneath the graph of f. In Section 1.4.4 we will see that the proposal is distributed uniformly on the area under the graph of cg.

A=
$$\{(x,y): y \in Cg(x), |A| = C$$

Sample from A and accept (x,y) if
they belong to B= $\{(x,y): y \in f(x)\}$