SBML Model Report

Model name: "Leloup1999_CircClock"

August 10, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Bruce Shapiro² at June 29th 2005 at 10:27 a.m. and last time modified at February 25th 2015 at 1:16 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	10
events	0	constraints	0
reactions	24	function definitions	0
global parameters	4	unit definitions	2
rules	2	initial assignments	0

Model Notes

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.

For more information see the terms of use.

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006)

¹EMBL-EBI, lenov@ebi.ac.uk

²NASA Jet Propulsion Laboratory, bshapiro@jpl.nasa.gov

BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomole (default)

Definition nmol

2.2 Unit time

Name hour (default)

Definition 3600 s

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Cell	cytoplasm		3	1	litre		
compartment_0000002	nucleus		3	1	litre		Cell

3.1 Compartment Cell

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment compartment_0000002

This is a three dimensional compartment with a constant size of one litre, which is surrounded by Cell (cytoplasm).

Name nucleus

Produced by SBML2ATEX

4 Species

This model contains ten species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
PO	PER Protein (unphosphorylated)	Cell	$nmol \cdot l^{-1}$		
TO	TIM Protein (unphosphorylated)	Cell	$nmol \cdot l^{-1}$		\Box
P1	PER Protein (mono-phosphorylated)	Cell	$nmol \cdot l^{-1}$		\Box
T1	TIM Protein (mono-phosphorylated)	Cell	$nmol \cdot l^{-1}$		\Box
P2	PER Protein (bi-phosphorylated)	Cell	$nmol \cdot l^{-1}$		\Box
T2	TIM Protein (bi-phosphorylated)	Cell	$nmol \cdot l^{-1}$		\Box
CC	Cytosolic PER-TIM Complex	Cell	$nmol \cdot l^{-1}$		\Box
Cn	Nuclear PER-TIM Complex	$compartment_0000002$	$nmol \cdot l^{-1}$		\Box
Mp	PER mRNA	Cell	$nmol \cdot l^{-1}$		\Box
Mt	TIM mRNA	Cell	$nmol \cdot l^{-1}$		

5 Parameters

This model contains four global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Pt	Total Per	0.0	
Tt	Total Tim	0.0	
V_mT		0.7	\square
$V_{-}dT$		2.0	\checkmark

6 Rules

This is an overview of two rules.

6.1 Rule Pt

Rule Pt is an assignment rule for parameter Pt:

$$Pt = [CC] + [Cn] + [P0] + [P1] + [P2]$$
 (1)

Derived unit $nmol \cdot l^{-1}$

6.2 Rule Tt

Rule Tt is an assignment rule for parameter Tt:

$$Tt = [CC] + [Cn] + [T0] + [T1] + [T2]$$
 (2)

Derived unit $nmol \cdot l^{-1}$

7 Reactions

This model contains 24 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	PO_to_P1	First Phosphorylation of PER	P0 → P1	
2	TO_to_T1	First Phosphorylation of TIM	$T0 \longrightarrow T1$	
3	P1_to_P0	Dephosphorylation of PER (1st P)	$P1 \longrightarrow P0$	
4	$T1_to_T0$	Dephosphorylation of TIM (1st P)	$T1 \longrightarrow T0$	
5	P1_to_P2	Second Phosphorylation of PER	$P1 \longrightarrow P2$	
6	$T1_to_T2$	Second Phosphorylation of TIM	$T1 \longrightarrow T2$	
7	P2_to_P1	Dephosphorylation of PER (2nd P)	$P2 \longrightarrow P1$	
8	T2_to_T1	Dephosphorylation of TIM (2nd P)	$T2 \longrightarrow T1$	
9	PO_{-} degradation	PER degradation	$P0 \longrightarrow \emptyset$	
10	${\tt T0_degradation}$	TIM degradation	$T0 \longrightarrow \emptyset$	
11	$P1_degradation$	PER-1 degradation	$P1 \longrightarrow \emptyset$	
12	$T1_degradation$	TIM-1 degradation	$T1 \longrightarrow \emptyset$	
13	$P2_degradation$	PER-2 degradation	$P2 \longrightarrow \emptyset$	
14	$T2_degradation$	TIM-2 degradation	$T2 \longrightarrow \emptyset$	
15	PT_complex- _formation	PER-TIM complex formation	$P2 + T2 \Longrightarrow CC$	
16	PT_complex- _nucleation	PER-TIM complex nucleation	CC ← Cn	
17	PT_complexdegradation	PER-TIM complex degradation (cytosol)	$CC \longrightarrow \emptyset$	
18	PTnucl_complex- _degradation	PER-TIM complex degradation (nuclear)	$Cn \longrightarrow \emptyset$	

N⁰	Id	Name	Reaction Equation	SBO
19	Mp_production	PER mRNA production	$\emptyset \xrightarrow{Cn} Mp$	
20	$\mathtt{Mt_production}$	TIM mRNA production	$\emptyset \xrightarrow{Cn} Mt$	
21	PO_{-} production	PER production	$\emptyset \xrightarrow{Mp} P0$	
22	$T0_production$	TIM production	$\emptyset \xrightarrow{\mathbf{Mt}} \mathbf{T0}$	
23	$\mathtt{Mp_degradation}$	PER mRNA degradation	$Mp \longrightarrow \emptyset$	
24	${\tt Mt_degradation}$	TIM mRNA degradation	$Mt \longrightarrow \emptyset$	

7.1 Reaction PO_to_P1

This is an irreversible reaction of one reactant forming one product.

Name First Phosphorylation of PER

Notes This phosphorylation is triggered by the protein product of the gene <u>double-time</u> (DBT, <u>DCO_DROME</u>). Not explicitly represented in the model.

Reaction equation

$$P0 \longrightarrow P1$$
 (3)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
PO	PER Protein (unphosphorylated)	

Product

Table 7: Properties of each product.

Id	Name	SBO
P1	PER Protein (mono-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \frac{\text{vol}\left(\text{Cell}\right) \cdot \text{V}_{-}1\text{P} \cdot [\text{P0}]}{\text{K1}_{-}\text{P} + [\text{P0}]} \tag{4}$$

Table 8: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K1_P		2.0	
$V_{-}1P$		8.0	\square

7.2 Reaction TO_to_T1

This is an irreversible reaction of one reactant forming one product.

Name First Phosphorylation of TIM

Reaction equation

$$T0 \longrightarrow T1$$
 (5)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
ТО	TIM Protein (unphosphorylated)	

Product

Table 10: Properties of each product.

Id	Name	SBO
T1	TIM Protein (mono-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}_{-}1\text{T} \cdot [\text{T0}]}{\text{K}_{-}1\text{T} + [\text{T0}]}$$
(6)

Table 11: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_1T		2.0	
$V_{-}1T$		8.0	\checkmark

7.3 Reaction P1_to_P0

This is an irreversible reaction of one reactant forming one product.

Name Dephosphorylation of PER (1st P)

Reaction equation

$$P1 \longrightarrow P0$$
 (7)

Reactant

Table 12: Properties of each reactant.

	rue re reperires or euch reuctum.	
Id	Name	SBO
P1	PER Protein (mono-phosphorylated)	

Product

Table 13: Properties of each product.

	Tueste Text Treperines of each product	
Id	Name	SBO
P0	PER Protein (unphosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}_2\text{P} \cdot [\text{P1}]}{\text{K}_2\text{P} + [\text{P1}]}$$
(8)

Table 14: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_2P		2.0	\overline{Z}
V_2P		1.0	

7.4 Reaction T1_to_T0

This is an irreversible reaction of one reactant forming one product.

Name Dephosphorylation of TIM (1st P)

Reaction equation

$$T1 \longrightarrow T0$$
 (9)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
T1	TIM Protein (mono-phosphorylated)	

Product

Table 16: Properties of each product.

Id	Name	SBO
ТО	TIM Protein (unphosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}.2\text{T} \cdot [\text{T1}]}{\text{K}.2\text{T} + [\text{T1}]}$$
 (10)

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_2T		2.0	$ \mathbf{Z} $
V_2T		1.0	$\overline{\mathbb{Z}}$

7.5 Reaction P1_to_P2

This is an irreversible reaction of one reactant forming one product.

Name Second Phosphorylation of PER

Notes This phosphorylation is triggered by the protein product of the gene <u>double-time</u> (DBT, <u>DCO_DROME</u>). Not explicitly represented in the model.

Reaction equation

$$P1 \longrightarrow P2$$
 (11)

Reactant

Table 18: Properties of each reactant.

Table 10. 110perties of each reactant.			
Id	Name	SBO	
P1	PER Protein (mono-phosphorylated)		

Table 19: Properties of each product.

Id	Name	SBO
P2	PER Protein (bi-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}_{-3}\text{P} \cdot [\text{P1}]}{\text{K}_{-3}\text{P} + [\text{P1}]}$$
(12)

Table 20: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_3P		2.0	
V_3P		8.0	

7.6 Reaction T1_to_T2

This is an irreversible reaction of one reactant forming one product.

Name Second Phosphorylation of TIM

Reaction equation

$$T1 \longrightarrow T2$$
 (13)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
T1	TIM Protein (mono-phosphorylated)	

Table 22: Properties of each product.

Id	Name	SBO
T2	TIM Protein (bi-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}_{-3}\text{T} \cdot [\text{T1}]}{\text{K}_{-3}\text{T} + [\text{T1}]}$$
(14)

Table 23: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_3T		2.0	
$V_{-}3T$		8.0	

7.7 Reaction P2_to_P1

This is an irreversible reaction of one reactant forming one product.

Name Dephosphorylation of PER (2nd P)

Reaction equation

$$P2 \longrightarrow P1$$
 (15)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
P2	PER Protein (bi-phosphorylated)	

Product

Table 25: Properties of each product.

	P P	
Id	Name	SBO
P1	PER Protein (mono-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \frac{\text{vol}\left(\text{Cell}\right) \cdot \text{V}_{\text{-}}4\text{P} \cdot [\text{P2}]}{\text{K}_{\text{-}}4\text{P} + [\text{P2}]} \tag{16}$$

Table 26: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_4P		2.0	
$V_{-}4P$		1.0	\square

7.8 Reaction T2_to_T1

This is an irreversible reaction of one reactant forming one product.

Name Dephosphorylation of TIM (2nd P)

Reaction equation

$$T2 \longrightarrow T1$$
 (17)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
T2	TIM Protein (bi-phosphorylated)	

Product

Table 28: Properties of each product.

Id	Name	SBO
T1	TIM Protein (mono-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{\text{vol}(\text{Cell}) \cdot \text{V}_{-}4\text{T} \cdot [\text{T2}]}{\text{K}_{-}4\text{T} + [\text{T2}]}$$
(18)

Table 29: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K_4T		2.0	\overline{Z}
$V_{-}4T$		1.0	\checkmark

7.9 Reaction PO_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER degradation

Reaction equation

$$P0 \longrightarrow \emptyset \tag{19}$$

Reactant

Table 30: Properties of each reactant.

Tuble 30. I roperties of each reactant.			
Id	Name	SBO	
P0	PER Protein (unphosphorylated)		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{Cell}) \cdot \text{k_d} \cdot [\text{P0}] \tag{20}$$

Table 31: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	

7.10 Reaction TO_degradation

This is an irreversible reaction of one reactant forming no product.

Name TIM degradation

Reaction equation

$$T0 \longrightarrow \emptyset$$
 (21)

Reactant

Table 32: Properties of each reactant.

	I	
Id	Name	SBO
TO	TIM Protein (unphosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{Cell}\right) \cdot \text{k_d} \cdot [\text{T0}] \tag{22}$$

Table 33: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	

7.11 Reaction P1_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER-1 degradation

Reaction equation

$$P1 \longrightarrow \emptyset \tag{23}$$

Reactant

Table 34: Properties of each reactant.

Table 34. I Toperties of each reactant.			
Id	Name	SBO	
P1	PER Protein (mono-phosphorylated)		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{Cell}\right) \cdot k_{-}d \cdot [\text{P1}] \tag{24}$$

Table 35: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	\overline{Z}

7.12 Reaction T1_degradation

This is an irreversible reaction of one reactant forming no product.

Name TIM-1 degradation

Reaction equation

$$T1 \longrightarrow \emptyset$$
 (25)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
T1	TIM Protein (mono-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{Cell}\right) \cdot k_{-}d \cdot [\text{T1}] \tag{26}$$

Table 37: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	\checkmark

7.13 Reaction P2_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER-2 degradation

Reaction equation

$$P2 \longrightarrow \emptyset \tag{27}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
P2	PER Protein (bi-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = vol\left(Cell\right) \cdot k_d \cdot [P2] + \frac{vol\left(Cell\right) \cdot V_dP \cdot [P2]}{K_dP + [P2]}$$
 (28)

Table 39: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
$k_{-}d$		0.01	\square
$V_{-}dP$		2.00	$ \overline{\checkmark} $
$K_{-}dP$		0.20	

7.14 Reaction T2_degradation

This is an irreversible reaction of one reactant forming no product.

Name TIM-2 degradation

Reaction equation

$$T2 \longrightarrow \emptyset$$
 (29)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
T2	TIM Protein (bi-phosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{Cell}\right) \cdot \text{k_d} \cdot [\text{T2}] + \frac{\text{vol}\left(\text{Cell}\right) \cdot \text{V_dT} \cdot [\text{T2}]}{\text{K_dT} + [\text{T2}]}$$
(30)

Table 41: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	
K_dT		0.20	$\overline{\checkmark}$

7.15 Reaction PT_complex_formation

This is a reversible reaction of two reactants forming one product.

Name PER-TIM complex formation

Reaction equation

$$P2 + T2 \Longrightarrow CC$$
 (31)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
P2	PER Protein (bi-phosphorylated)	
T2	TIM Protein (bi-phosphorylated)	

Table 43: Properties of each product.

	Name	SBO
CC	Cytosolic PER-TIM Complex	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{Cell}) \cdot \text{k3} \cdot [\text{P2}] \cdot [\text{T2}] - \text{vol}(\text{Cell}) \cdot \text{k4} \cdot [\text{CC}]$$
(32)

Table 44: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k3		1.2	
k4		0.6	\checkmark

7.16 Reaction PT_complex_nucleation

This is a reversible reaction of one reactant forming one product.

Name PER-TIM complex nucleation

Reaction equation

$$CC \rightleftharpoons Cn$$
 (33)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
CC	Cytosolic PER-TIM Complex	

Product

Table 46: Properties of each product

Table 40. I toperties of each product.			
Id	Name	SBO	
Cn	Nuclear PER-TIM Complex		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = vol\left(Cell\right) \cdot k1 \cdot [CC] - vol\left(compartment_0000002\right) \cdot k2 \cdot [Cn] \tag{34}$$

Table 47: Properties of each parameter.

			•	
Id	Name	SBO Va	lue Unit	Constant
k1		0	.6	
k2		0.	.2	

7.17 Reaction PT_complex_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER-TIM complex degradation (cytosol)

Reaction equation

$$CC \longrightarrow \emptyset$$
 (35)

Reactant

Table 48: Properties of each reactant.

	Name	SBO
CC	Cytosolic PER-TIM Complex	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{Cell}) \cdot \text{k_dC} \cdot [\text{CC}]$$
(36)

Table 49: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k_dC			0.01		

7.18 Reaction PTnucl_complex_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER-TIM complex degradation (nuclear)

Reaction equation

$$Cn \longrightarrow \emptyset$$
 (37)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
Cn	Nuclear PER-TIM Complex	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol} \left(\text{compartment_0000002} \right) \cdot \text{k_dN} \cdot [\text{Cn}]$$
 (38)

Table 51: Properties of each parameter.

Id	Name	SBO Value U	nit Constant
k_dN		0.01	

7.19 Reaction Mp_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name PER mRNA production

Reaction equation

$$\emptyset \xrightarrow{\operatorname{Cn}} \operatorname{Mp} \tag{39}$$

Modifier

Table 52: Properties of each modifier.

ruote 32. I roperties of euch mounter.				
Id	Name	SBO		
Cn	Nuclear PER-TIM Complex			

Product

Table 53: Properties of each product.

Id	Name	SBO
Мр	PER mRNA	_

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \frac{\text{vol}\left(\text{Cell}\right) \cdot \text{v_sP} \cdot \text{K_IP}^{\text{n}}}{\text{K_IP}^{\text{n}} + [\text{Cn}]^{\text{n}}}$$
(40)

Table 54: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
v_sP		1.0	\square
$K_{-}IP$		1.0	
n		4.0	\square

7.20 Reaction Mt_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name TIM mRNA production

Reaction equation

$$\emptyset \xrightarrow{Cn} Mt$$
 (41)

Modifier

Table 55: Properties of each modifier.

Table 33. I roperties of each infounct.				
Id	Name	SBO		
Cn	Nuclear PER-TIM Complex			

Table 56: Properties of each product.

Id	Name	SBO
Mt	TIM mRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \frac{\text{vol}\left(\text{Cell}\right) \cdot \text{V}_{-\text{S}}\text{T} \cdot \text{K}_{-\text{I}}\text{T}^{\text{n}}}{\text{K}_{-\text{I}}\text{T}^{\text{n}} + [\text{Cn}]^{\text{n}}}$$
(42)

Table 57: Properties of each parameter.

		•	•		
Id	Name	SBO	Value	Unit	Constant
V_sT			1.0		
$K_{-}IT$			1.0		\mathbf{Z}
n			4.0		\square

7.21 Reaction PO_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name PER production

Reaction equation

$$\emptyset \xrightarrow{Mp} P0$$
 (43)

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
Мр	PER mRNA	

Table 59: Properties of each product.

	T T T T T T T T T T T T T T T T T T T	
Id	Name	SBO
P0	PER Protein (unphosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{Cell}\right) \cdot k_{-s}P \cdot [Mp] \tag{44}$$

Table 60: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_sP		0.9	Ø

7.22 Reaction TO_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name TIM production

Reaction equation

$$\emptyset \xrightarrow{Mt} T0$$
 (45)

Modifier

Table 61: Properties of each modifier.

Id	Name	SBO
Mt	TIM mRNA	

Table 62: Properties of each product.

Id	Name	SBO
ТО	TIM Protein (unphosphorylated)	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}\left(\text{Cell}\right) \cdot \text{k_sT} \cdot [\text{Mt}] \tag{46}$$

Table 63: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_sT		0.9	

7.23 Reaction Mp_degradation

This is an irreversible reaction of one reactant forming no product.

Name PER mRNA degradation

Reaction equation

$$Mp \longrightarrow \emptyset \tag{47}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
Мр	PER mRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}\left(\text{Cell}\right) \cdot k_d \cdot [\text{Mp}] + \frac{\text{vol}\left(\text{Cell}\right) \cdot V_mP \cdot [\text{Mp}]}{K_mP + [\text{Mp}]}$$
(48)

Table 65: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	$ \mathcal{A} $
V_mP		0.70	
K_mP		0.20	\square

7.24 Reaction Mt_degradation

This is an irreversible reaction of one reactant forming no product.

Name TIM mRNA degradation

Reaction equation

$$Mt \longrightarrow \emptyset$$
 (49)

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
Mt	TIM mRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{Cell}\right) \cdot k_d \cdot [\text{Mt}] + \frac{\text{vol}\left(\text{Cell}\right) \cdot V_mT \cdot [\text{Mt}]}{K_mT + [\text{Mt}]}$$
(50)

Table 67: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_d		0.01	\overline{Z}
K_mT		0.20	

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species P0

Name PER Protein (unphosphorylated)

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in PO_to_P1, PO_degradation and as a product in P1_to_P0, PO_production).

$$\frac{\mathrm{d}}{\mathrm{d}t}P0 = |v_3| + |v_{21}| - |v_1| - |v_9| \tag{51}$$

8.2 Species TO

Name TIM Protein (unphosphorylated)

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in T0_to_T1, T0_degradation and as a product in T1_to_T0, T0_production).

$$\frac{\mathrm{d}}{\mathrm{d}t}T0 = |v_4| + |v_{22}| - |v_2| - |v_{10}| \tag{52}$$

8.3 Species P1

Name PER Protein (mono-phosphorylated)

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in P1_to_P0, P1_to_P2, P1_degradation and as a product in P0_to_P1, P2_to_P1).

$$\frac{\mathrm{d}}{\mathrm{d}t} P1 = |v_1| + |v_7| - |v_3| - |v_5| - |v_{11}| \tag{53}$$

8.4 Species T1

Name TIM Protein (mono-phosphorylated)

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in T1_to_T0, T1_to_T2, T1_degradation and as a product in T0_to_T1, T2_to_T1).

$$\frac{\mathrm{d}}{\mathrm{d}t} T1 = v_2 + |v_8| - |v_4| - |v_6| - |v_{12}| \tag{54}$$

8.5 Species P2

Name PER Protein (bi-phosphorylated)

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in P2_to_P1, P2_degradation, PT_complex_formation and as a product in P1_to_P2).

$$\frac{\mathrm{d}}{\mathrm{d}t}P2 = |v_5| - |v_7| - |v_{13}| - |v_{15}| \tag{55}$$

8.6 Species T2

Name TIM Protein (bi-phosphorylated)

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in T2_to_T1, T2_degradation, PT_complex_formation and as a product in T1_to_T2).

$$\frac{\mathrm{d}}{\mathrm{d}t} T2 = v_6 - |v_8| - |v_{14}| - |v_{15}| \tag{56}$$

8.7 Species CC

Name Cytosolic PER-TIM Complex

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in PT_complex_nucleation, PT_complex_degradation and as a product in PT_complex_formation).

$$\frac{d}{dt}CC = |v_{15}| - |v_{16}| - |v_{17}| \tag{57}$$

8.8 Species Cn

Name Nuclear PER-TIM Complex

Initial concentration $0 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in PTnucl_complex_degradation and as a product in PT_complex_nucleation and as a modifier in Mp_production, Mt_production).

$$\frac{d}{dt}Cn = v_{16} - v_{18} \tag{58}$$

8.9 Species Mp

Name PER mRNA

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Mp_degradation and as a product in Mp_production and as a modifier in P0_production).

$$\frac{d}{dt}Mp = |v_{19}| - |v_{23}| \tag{59}$$

8.10 Species Mt

Name TIM mRNA

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Mt_degradation and as a product in Mt_production and as a modifier in T0_production).

$$\frac{d}{dt}Mt = v_{20} - v_{24} \tag{60}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany