Date_A_Scientist Project by Zoe Chumakova

Age group

```
df['age'] = df['age'].replace(np.nan, '', regex=True)
#df['income'] = df['income'].replace(-1, '', regex=True)
#print(df['income'])
#income = df['income']
#age = df['age']
df['age_group'] = pd.cut(df.age,[0,20,30,40,50,60, 110], labels = ['0-20', '21-30', '31-40', '41-50', '51-60', '60+'])
print(df.age_group.value_counts())
age_group = df['age_group']
21-30
         30017
31-40
        17727
         6745
41-50
51-60
         2618
0-20
         1873
60+
          966
Name: age_group, dtype: int64
```

Age group

0-20

21-30

31-40

Age

41-50

51-60

60+

```
In [80]:
           plt.hist(age_group, bins=10)
           plt.xlabel("Age")
           plt.ylabel("Number of responses")
Out[80]: Text(0,0.5,'Number of responses')
              30000
              25000
            Number of responses
              20000
              15000
              10000
               5000
```

Transformed drinks, drugs, smokes, sex, status into numerical value

```
In [81]: print(df.drinks.value counts())
         drink_mapping = {"not at all": 0, "rarely": 1, "socially": 2, "often" : 3, "very often":4, "desperately": 5}
         df["drinks code"] = df.drinks.map(drink mapping)
         socially
                        41780
         rarely
                         5957
         often
                         5164
         not at all
                         3267
         verv often
                          471
         desperately
                          322
         Name: drinks, dtype: int64
In [82]: print(df.drinks code.value counts())
         2.0
                41780
         1.0
                 5957
         3.0
                 5164
         0.0
                 3267
         4.0
                  471
         5.0
                  322
         Name: drinks_code, dtype: int64
In [83]: #same for smokes
         print(df.smokes.value_counts())
         smokes_mapping = {"no": 0, "sometimes":1, "when drinking": 2, "yes": 3, "trying to quit": 4}
         df["smokes code"] = df.smokes.map(smokes mapping)
```

Transformed drinks, drugs, smokes, sex, status into numerical value

```
#same for smokes
print(df.smokes.value counts())
smokes_mapping = {"no": 0, "sometimes":1, "when drinking": 2, "yes": 3, "trying to quit": 4}
df["smokes code"] = df.smokes.map(smokes mapping)
                 43896
no
sometimes
                  3787
when drinking
                 3040
                  2231
yes
trying to quit
                1480
Name: smokes, dtype: int64
print(df.smokes code.value counts())
0.0
       43896
1.0
       3787
2.0
       3040
3.0
       2231
4.0
       1480
Name: smokes code, dtype: int64
```

Transformed drinks, drugs, smokes, sex, status into numerical value

```
#same for drugs
print(df.drugs.value counts())
drugs_mapping = {"never": 0, "sometimes": 1, "often": 2}
df["drugs code"] = df.drugs.map(drugs mapping)
             37724
never
sometimes
           7732
often
              410
Name: drugs, dtype: int64
print(df.drugs code.value counts())
0.0
       37724
       7732
2.0
      410
Name: drugs code, dtype: int64
print(df.sex.value counts())
     35829
    24117
Name: sex, dtype: int64
```

Creating new data set with necessary columns

```
import statsmodels as sm
import sklearn as skl
import sklearn.preprocessing as preprocessing
import sklearn.linear_model as linear_model
import sklearn.cross_validation as cross_validation
import sklearn.metrics as metrics
import sklearn.tree as tree
import seaborn as sns
import math
future data=df[["age", "sex code", "income", "education", "status", "drinks code", "drugs code", "smokes code", "job"]]
print(future data)
fig = plt.figure(figsize=(30,30))
cols = 3
rows = math.ceil(float(future data.shape[1]) / cols)
for i, column in enumerate(future data.columns):
    ax = fig.add subplot(rows, cols, i + 1)
    ax.set title(column)
    if future data.dtypes[column] == np.object:
        future data[column].value counts().plot(kind="bar", axes=ax)
    else:
        future data[column].hist(axes=ax)
        plt.xticks(rotation="vertical")
plt.subplots adjust(hspace=0.5, wspace=0.2)
```

```
if future_data.dtypes[column] == np.object:
        future_data[column].value_counts().plot(kind="bar", axes=ax)
    else:
        future_data[column].hist(axes=ax)
        plt.xticks(rotation="vertical")
plt.subplots_adjust(hspace=0.5, wspace=0.2)
                         medicine / health
[59946 rows x 9 columns]
                                                                    sex code
                                                25000
                                                20000
                                                                                               30000
                                                15000
                                                                                               10000
                                                5000
```

```
if future_data.dtypes[column] == np.object:
        future_data[column].value_counts().plot(kind="bar", axes=ax)
    else:
        future_data[column].hist(axes=ax)
        plt.xticks(rotation="vertical")
plt.subplots_adjust(hspace=0.5, wspace=0.2)
                                             30000
                                             10000
```

```
if future_data.dtypes[column] == np.object:
        future_data[column].value_counts().plot(kind="bar", axes=ax)
    else:
        future_data[column].hist(axes=ax)
        plt.xticks(rotation="vertical")
plt.subplots_adjust(hspace=0.5, wspace=0.2)
                                                                                                                 drinks_code
                                                                                              30000
                                                                                              20000
                                                                                              10000
```


Correlation between drinks, drugs and smokes

```
Name: status_code, dtype: int64
In [118]: future_data.plot(kind = 'scatter', x = 'drinks_code', y = 'drugs_code', c = 'smokes_code', colormap = 'ocean_r')
Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x1c42a5cfba8>
              2.00
              1.75
              1.50
            9 1.25
sgn 1.00
p 0.75
              0.50
                                                             1.0
              0.25
                                                             0.5
              0.00
```


In [140]: df.corr()

Out[140]:

	age	height	income	drinks_code	smokes_code	drugs_code	sex_code	status_code
age	1.000000	-0.022262	-0.001004	-0.124017	-0.134493	-0.141840	0.041481	0.015221
height	-0.022262	1.000000	0.065049	0.034801	0.041142	0.070707	-0.655448	0.011826
income	-0.001004	0.065049	1.000000	0.042515	0.037264	0.081115	-0.074601	0.016152
drinks_code	-0.124017	0.034801	0.042515	1.000000	0.131600	0.218327	-0.007057	-0.003094
smokes_code	-0.134493	0.041142	0.037264	0.131600	1.000000	0.314700	-0.043324	0.005964
drugs_code	-0.141840	0.070707	0.081115	0.218327	0.314700	1.000000	-0.056780	0.113470
sex_code	0.041481	-0.655448	-0.074601	-0.007057	-0.043324	-0.056780	1.000000	0.001136
status_code	0.015221	0.011826	0.016152	-0.003094	0.005964	0.113470	0.001136	1.000000

