II: NUMERICAL REPRESENTATIONS

COMPI 10 PRINCIPLES OF COMPUTING

WORKSHEETS

- Worksheet 7 (Recursion): due this Wednesday
- Worksheet 8 (Floating point numbers and vectors): due next Wednesday
- Worksheet 9 (TIS-I00): released this Friday, due after xmas break
 - This worksheet will ask you to play through a few levels of TIS-100 (Zachtronics, 2015)
 - TIS-100 is currently in the Steam sale for £2.49 until 1st December (normal price £4.99)

TODAY'S SESSION

- We have seen before how to represent non-negative integers in the digital computer, using binary notation
- Today we extend to two other useful types of numbers
 - Negative integers
 - Real numbers

MODULAR ARITHMETIC

TELLING THE TIME

- On a 12 hour clock, hours wrap around between 1 and 12
- For example, 9pm + 5 hours = 2am

MODULAR ARITHMETIC

- Arithmetic "modulo N"
- Numbers wrap around between 0 and N-1
- For example, modulo 16:

$$12 + 6 = 2$$

$$-4-5=15$$

MODULAR ARITHMETIC AND DIVISION

- \blacksquare Arithmetic modulo N: take the remainder from division by N
- For example:
 - 12 + 6 = 18
 - $18 \div 16 = 1$, remainder 2
 - Equivalently, $18 = 16 \times 1 + 2$
 - Therefore modulo 16, 12 + 6 = 2

THE MODULO OPERATOR

- Most languages (C++, C#, Python, Java, Javascript, ...) have a % operator
- For positive numbers, a% b gives the **remainder** from dividing $a \div b$
- E.g. 18 % 16 = 2
- Useful for calculating wrap-around array indices, screen coordinates etc.

MODULO 10, 100, ...

- The remainder of dividing a positive number by 10 is just the last digit of the number
- E.g. 12 % 10 = 2 327 % 10 = 7
- Similarly, modulo 100, we take the last 2 digits, etc.

MODULO 2, 4, 8, 16, ...

- The same principle applies to powers of 2, but in binary
- Modulo 2 = take the last bit
- Modulo 8 = take the last 3 bits
- Modulo 2^n = take the last n bits

OVERFLOW

- Suppose we add together two 32-bit integers
- What happens if the result is larger than $2^{32} 1$?
- Answer: only the last 32 bits are kept the rest are thrown away
- This is called an overflow
- This means that 32-bit arithmetic is arithmetic modulo 2^{32}

2'S COMPLEMENT

WHAT ABOUT NEGATIVE NUMBERS?

- Negative numbers fit with our "wrapping around" picture as well
- E.g. modulo 16, −1 should correspond to 15
- In general, modulo N, a negative number -k is equivalent to N-k

REPRESENTING SIGNED INTEGERS

- For **unsigned** integers (as we've seen before), N bits are used to represent numbers from 0 to $2^N 1$
- For **signed** integers, we instead represent numbers from -2^{N-1} to $2^{N-1}-1$
- The "second half" of the range is now used to represent negative numbers
- This is called 2's complement

RANGES OF INTEGERS

Bits	Unsigned range		Signed range	
N	0	$2^{N}-1$	-2^{N-1}	$2^{N-1}-1$
8	0	255	-128	127
16	0	65535	-32768	32767
32	0	4294967295	-2147483648	2147483647

WHY 2'S COMPLEMENT?

- Modulo 2^N , subtracting -k is the same as adding $2^N k$
 - E.g. modulo 16:
 - -4-5=-1=15
 - \bullet 4 + (16 5) = 4 + 11 = 15
- This means that the **same circuits** can be used to add and subtract signed and unsigned numbers
- Also, the "second half" of the N-bit numbers are exactly those where the first bit is 1
 therefore the first bit becomes a "sign bit"

SCIENTIFIC NOTATION

INTEGER POWERS

If $a \neq 0$ is a real number and b > 0 is an integer, then

$$a^b = \underbrace{a \times a \times \dots \times a}_{b \text{ times}}$$

$$a^0 = 1$$

$$a^{-b} = \frac{1}{a^b} = \underbrace{\frac{1}{a \times a \times \dots \times a}}_{b \text{ times}}$$

POWERS OF 10

$$10^{6} = 1 \underbrace{000\ 000}_{6\ zeroes}$$

$$10^{1} = 10$$

$$10^{0} = 1$$

$$10^{-1} = \frac{1}{10} = 0.1$$

$$10^{-6} = \frac{1}{1\ 000\ 000} = 0.\underbrace{000\ 00}_{5\ zeroes} 1$$

MULTIPLYING BY POWERS OF 10

- Multiplying by 10^n is the same as moving the decimal point n places to the right (adding zeroes if necessary)
 - $3.14159 \times 10^2 = 314.159$
 - \bullet 4.2 × 10⁵ = 42000
- If *n* is negative, the decimal point moves to the left instead:
 - $123.45 \times 10^{-2} = 1.2345$
 - $42 \times 10^{-4} = 0.0042$

SCIENTIFIC NOTATION

A convenient way of writing very large or very small numbers

Mantissa

A real number, positive or negative, with $1 \le |a| < 10$ (i.e. with a single non-zero digit before the decimal point)

 $-a \times 10^{b}$

Exponent

An integer, can be positive, negative or zero

EXAMPLES

- Light year: 9.461×10^{15} metres
- Planck's constant: 6.626×10^{-34} Joules
- Socrative time! Student login → room code **FALCOMPED**

SCIENTIFIC NOTATION IN CODE

- Instead of writing \times 10, we write e (for exponent)
- double lightYear = 9.461e15;
- double planck = 6.626e-34;

FLOATING POINT NOTATION

"DECIMAL" POINTS IN BINARY

- In decimal, the digits after the point represent negative powers of 10
 - **E.g.** $0.45 = \frac{4}{10} + \frac{5}{100}$
- The same principle can be used in binary, but with powers of 2
 - **E.g.** $0.101 = \frac{1}{2} + \frac{0}{4} + \frac{1}{8}$

FLOATING POINT NOTATION

■ Like scientific notation, but in base 2 rather than base 10

Mantissa

A real number, positive or negative, with $1 \le |a| < 2$ (i.e. with a single 1 before the point)

 $a \times 2^b$

Exponent

An integer, can be positive, negative or zero

STORING THE MANTISSA

- **IEEE754** is the most common standard for storing floating point numbers
- Mantissa is a positive or negative number, with a 1 before the point
- Sign is stored as a single bit (0 = positive, I = negative)
- We know the bit before the point is a 1, so it is not actually stored
- Instead we just store the bits after the point

STORING THE EXPONENT

- Exponent is a signed integer
- Not stored in 2's complement!
- Instead, stored as an integer with a bias added
- E.g. bias = 127, we store exponent + 127
- Exponents of 000...0 and III...I are reserved, more on this later

Exponent	Stored as	
-126	00000001 (1)	
•••	•••	
-1	01111110 (126)	
0	01111111 (127)	
I	10000000 (128)	
•••	•••	
127	11111110 (254)	

IEEE754 FLOATING POINT FORMATS

Туре	Sign	Exponent	Mantissa	Total
Single precision	I bit	8 bits Bias 127	23 bits	32 bits
Double precision	I bit	II bits Bias 1023	52 bits	64 bits
Extended precision	I bit	15 bits Bias 16383	64 bits	80 bits

IEEE754 FLOATING POINT FORMATS

- C# (and many other languages) have float and double types for single and double precision, respectively
- Literals are interpreted as float if they end in f, otherwise double
 - 3.14f is a float
 - 3.14 is a double
- Python's float type is actually double precision
- Extended precision is not generally used in programs, but is used internally on the CPU for intermediate calculation results

EXAMPLE (SINGLE PRECISION)

Sign

0, so the number is positive

Exponent

10000001 = 129Bias is 127
So actual exponent is 129 - 127 = 2

Mantissa

1.101000...

Don't forget the 1 in front of the point!

 1.101×2^{2} = 110.1 = 6.5 (decimal)

SPECIAL FLOATING POINT NUMBERS

- Zero is stored by setting the mantissa and exponent to all 0s
- There is a notion of "signed 0" -- +0 and -0 both exist
- An exponent of all Is represents infinity or NaN ("not a number"), depending on the mantissa

INFINITY AND NAN

- float.PositiveInfinity > x is true for all finite x
- float.NegativeInfinity < x is true for all finite x</p>
- float.NaN > x,float.NaN < x,float.NaN == x are false for all x</pre>
- Similarly for double.PositiveInfinity etc
- Can check for these with float.IsNaN, float.IsInfinity etc
- Infinity is useful wherever you want a "very large" value
- Infinity and NaN can also arise from calculations (especially division by 0)

NUMERICAL PRECISION

NUMERICAL PRECISION

- Back to scientific notation for a moment...
- It is common to write the mantissa with a set number of decimal places, rounding as needed
- 3.142 (3 decimal places) can represent any number between 3.1415 and 3.1425 a range of 0.001
- So 3.142×10^6 could be any number between 3141500 and 3142500 a range of 1000
- The larger the exponent, the larger the possible rounding error

FLOATING POINT PRECISION

- Floating point numbers have a limited number of bits for the mantissa
- Therefore they are also subject to rounding error
- And the margin of error gets larger as the exponent gets larger
- This can have real impacts, e.g. physics calculations getting less precise as we move further from the origin

LIMITATIONS OF DECIMALS

- Not all numbers can be represented exactly in decimal notation in a finite number of digits
- The same is true in binary
- In fact, $\frac{1}{b}$ can **only** be represented in a finite number of bits **if** b is a power of 2
- So some numbers which can be represented easily in decimal can't be represented exactly in binary, for example $\frac{1}{10}$

TESTING FOR EQUALITY

- Due to rounding errors, using == or != with floating point numbers is almost always
 a bad idea
- E.g. in most languages, 0.1 + 0.2 == 0.3 is actually false!
- Better to check for approximate equality: calculate the difference between the two numbers, and check it is smaller than some small threshold values
- Unity has this built in: Mathf.Approximately(0.1 + 0.2, 0.3) will return true as you would expect

OTHER REPRESENTATIONS

- **Fixed point**: take an N-bit integer and insert a point at a pre-set position
 - Was much faster on old hardware without dedicated floating point support (think 80s/90s)
 - Can be more precise in some situations
 - Range of numbers that can be stored is typically very narrow
- Decimal type: uses base 10 internally (i.e. stores numbers as arrays of decimal digits rather than as binary)
 - 0.1 + 0.2 does what you would expect
 - No hardware support, so much slower than floating point

SUMMARY

- Modern computers have efficient ways of storing signed integers and real numbers
- IEEE754 gives a good tradeoff between storage space, range and precision
- ... however it is important to understand the limitations of its precision

WORKSHOP