Solid Modeling 2

Computational Visual Design (CVD-Lab), DIA, "Roma Tre" University, Rome, Italy

Computational Graphics 2012

Sommario

Modellazione dei solidi

Schemi CSG (Constructive Solid Geometry) Schemi al contorno

Sommario

Modellazione dei solidi Schemi CSG (Constructive Solid Geometry) Schemi al contorno

SCHEMI CSG - Constructive Solid Geometry

alberi binari con operazioni booleane o trasformazioni affini nei nodi e solidi primitive nelle foglie

(a) oggetto solido (b) rappresentazione CSG

SCHEMI CSG - esempio PLaSM


```
DEF object = CUBOID:<2,10,10> +
(CUBOID:<12,10,2> - T:<1,2>:<5,5>: (CYLINDER:<1,2,24>)
```


Sommario

Modellazione dei solidi

Schemi CSG (Constructive Solid Geometry)

Schemi al contorno

RAPPRESENTAZIONI AL CONTORNO – introduzione

- il bordo di un solido 3D è rappresentato da una partizione in parti 2D dette facce;
- ogni faccia è rappresentata da una partizione del suo bordo 1D in parti connesse dette spigoli (edges);
- ogni spigolo è rappresentato dagli elementi di bordo 0D, ovvero dai vertici.

RAPPRESENTAZIONI AL CONTORNO

altre entità (oltre V, E, F) sono adottate spesso nelle *b-rep* in pratica

- l'insieme B delle componenti connesse del solido, chiamate corpi (bodies);
- 2. l'insieme *S* delle componenti connesse del bordo del solido, dette *gusci* (*shells*);
- 3. l'insieme *L* delle componenti connesse delle facce di bordo, dette *cicli* (*loops*).

RAPPRESENTAZIONI AL CONTORNO

RAPPRESENTAZIONI AL CONTORNO

	F	Е	V
F	FF	FE	FV
Е	EF	EE	ΕV
٧	VF	VE	VV

	F	Е	V
F	2 <i>e</i>	2 <i>e</i>	2 <i>e</i>
Е	2 <i>e</i>	≥ 4 <i>e</i>	2 <i>e</i>
V	2 <i>e</i>	2 <i>e</i>	2 <i>e</i>

(a) relazioni binarie tra entità di bordo (b) cardinalità delle relazioni di bordo

RAPPRESENTAZIONI AL CONTORNO – esempio

le coppie di vertici e spigoli incidenti in una doppia piramide sono esattamente

$$|VE| = 24 = 2e$$
.

EQUAZIONE DI EULERO-POICARÉ

$$v - e + f = 2(s - g) + h$$

s è il numero delle componenti connesse del bordo g è il genere topologico del solido; h è il numero dei buchi (holes) nelle facce

$$v - e + f = 2(s - g) + h$$
 si specializza in $32 - 48 + 16 = 2(1 - g) + 4$, e quindi $g = 3$

RAPPRESENTAZIONI AL CONTORNO – winged-edge

rappresentazione WE = Winged-Edge di Baumgart

RAPPRESENTAZIONI AL CONTORNO – triango-alata

rappresentazione WT = Winged-Triangle di Paoluzzi et al.

(a) triangolo t_j , con triple di triangoli adiacenti e di vertici incidenti (b) tupla associata con t_j

