Entity-based Sentiment Classifier for Social Media Analysis

Master Thesis Seminar

Presented by
Cristobal Leiva
Supervisor

Dr. Simon Scerri

Evaluators

Prof. Dr. Sören Auer Prof. Dr. Jens Lehmann

Motivation

- Social media networking services such as Twitter provide a massive amount of valuable data.
- Core business processes such as market-sensing, customer acquisition and customer relationship management (CRM).
- Cross domain applications: Politics, Sociology and others.

Motivation - SentiTrack

- Linked Data-based Social Media Analysis for Stock Market Tracking
 - ReSA (Real-time Sentiment Analysis) by Dr. Ali Khalili
 - Find correlation between public sentiments and intra-day stock prices

Problem definition

State-of-the-art approaches

- Entities are usually ignored
- Only document-level analysis
- Not designed for tweets
- Presence of multiple entities
- Real-Time Systems
 - Performance issues

Objective

"Classify the sentiment of tweets according to the opinion expressed towards a target entity"

"my iPhone is better than your Nexus 4"

Entity

Entity

Solution Proposed

- Entity-based Sentiment Classifier
 - 3-Class Machine Learning approach
 - Identify and categorize entities
 - Entity context extraction
 - Entity-based features
- Datasets for training
 - Collection of target-labeled tweets

Background - Sentiment Analysis

Extracting Opinions

- NLP / IR Task
- Analysis levels (3)

Classifiers

- Supervised / Unsupervised
- Classification classes
- Polarity / Subjectivity

Background - Twitter

Features

- Short and concise
- Slang / Abbr.
- Unique elements

Twitter API

- Real-Time analysis
- Query based search

Approach - Overview

Approach - Workflow

Approach - Entity Identification

DBpedia Spotlight

- Input labeled entities (Company / Person / Product) from SentiTrack
- Forward array of entities (Target and Others) to Tokenizer module

```
Tweet: Samsung is a great company but not as good as LG

Entity

'@URI': 'http://dbpedia.org/resource/LG_Corp',
'@support': '692',
'@types': 'DBpedia:Agent,Schema:Organization,DBpedia:Organisation,DBpedia:Company',
'@surfaceForm': 'LG',
'@offset': '46',
'@similarityScore': '0.9339616587926485',
'@percentageOfSecondRank': '0.06881123322259425'
```

Approach - Tokenizer

Tokenization process

- Splitting of tweets into tokens using Regex
- Identify sentence finalization tokens to for sentence separation (Regex)
- Replace HTML elements with real values
- Entities are replaced by placeholders to reduce sparsity of feature vectors.

Approach - Normalizer

Normalization process

- Fix tokens with more than two repeated letters
- Replace slang and abbreviations with correct form (Urban Dictionary)
- Replace URLs and @Mentions with placeholders
- Tag tokens with "_NEG" that follow a negated word (not, never, none, etc...)
- Remove numbers and symbols (Except Emojis)

Approach - Example Normalizer / Tokenizer

	${f Target}$	(1) Google		
-	Other	(1) Nexus		
	Entities	(1) Nexus		Tok
-	Tweet	Thanks google!! Just got my new Nexus <3		
	Result Tokens	(1) {Thanks, TargetEntity!!}		
		(2) {Just, got, my, new, OtherEntity, <3}	•	

Tokenized

Normalized

Tokens	Normalization Result		
(1) {not, their, best, !}	(1){not, their_NEG, best_NEG, !}		
(2){ http://t.co, @Muse, #LiveMuse}	(2){ someURL, someUser, #LiveMuse}		

Approach - Pos Tagger

Part-of-speech tags on tokens

- Twitter ARK POS Tagger (Carnegie Mellon Uni) java-based
- Most relevant tags are: Nouns / Adjectives / Verbs / Adverbs

Normalized Tokens	POS Tagging	
(1){not, their_NEG, best_NEG}	{R/not, O/their_NEG, A/best_NEG}	
(2) { someURL, someUser, $\#$ Live}	$\{ \text{ someURL, someUser, } \#/\#\text{Live} \}$	

Approach - Feature Vector Generator

FVG / Document - Binary Bag-of-words

Boolean term frequency

- Vector space reduced by removal of Stopwords
- Values can only be 1 or 0, present or not

Tweets	Binary Bag-of-words		
happy birthday friend! :)	{1,1,1,1,0,0,0}		
always be happy;)	{1,0,0,0,1,1,1}		

FVG / Document - POS Tags / Content

POS Tags Features

No. of Nouns / Adjectives / Verbs / Adverbs

Content Features

No. of all-caps, hashtags, elongated words, negation context, punctuation.

FVG / Entity - Context Extraction

Sentence separation

Ignore non-target sentences (Outside Neighborhood) for Entity features

"But" clause and conditions

Rules for condition expression ("except that, but, better than")

FVG / Entity - Lexicon

Lexicons	Score Range	Words	
MaxDiff	Real-values	1,500	
AFINN	-5 to 5	2,477	
BingLiu	Pos / Neg	6,785	
SentiWordNet	-1 to 1	147,292	
MPQA	Pos / Neg	6,886	
NRC Hashtag	Real-values	54,129	
Sentiment140	Real-values	62,468	

Lexical Resources

- Different score ranges
- All 3 types of lexicons

Calculations

- No. sentiment tokens
- Total score
- Max score
- Last token score

FVG / Entity - Emoticons / Example

Emoticon Features

- Resource Pos / Neg emojis (SentiStrength)
- No. of Pos / No. of Neg

Target-entity context tokens	Feature Vectors		
{my, TargetEntity, is, awesome,	(BingLiu) $\{2, 2, 1, 1\}$		
best, day, ever, :D }	$(\text{Emoji})\{1,0\}$		

Approach - Support Vector Machine / SentiTrack

Node-SVM (LibSVM)

- Linear kernel with default parameters
- No class weighting (balanced training data)
- Active sparse format to ignore 0 in vector space

SentiTrack - common technologies

- Node-js implementations
- Modular integration with .npmjs (Node Package Manager)

Evaluation Results - Datasets

Collection

- Semeval 2015 (Semantic Evaluation) Task 10 Training data
- Semeval 2016 Task 4 Training data
- Twitter Sanders Analytics Corpus
- STS Gold (Saif M. Mohammad)

Data Summary

- 4900 entity-based annotated tweets (balanced classes)
- 70% 30% SVM Training / Eval ratio

Evaluation Results - Quality

Evaluation Metrics

- F-Score / Accuracy
- 4-fold cross validation
- Features quality test
- 70% 30% training / eval ratio

Evaluation Results - Quality

Feature Contributions

Evaluation Results - Comparison

Comparison with other solutions

Evaluation Results - Performance

Evaluation environment

- Intel Core i5-2320 CPU @ 3.00GHz
- 8 GB RAM
- 64 bits Windows 7

Results for 1000 tweets processed

- Former SentiTrack Classifier: 323 ms
- CompendiumJS: 2357 ms
- Entity-based Classifier: 3447 ms

Conclusions

- This thesis presented the research, solution and evaluation of an entity-based sentiment classifier for social media analysis
- Implemented sentiment classifier was fully integrated to SentiTrack and ReSA. Which proves its compatibility with real-time systems
- Proposed approach achieved satisfactory results with 20% accuracy improvement over former SentiTrack classifier

Future Work

- Expand the sentiment classifier with a dependency parser module capable of performing real time analysis
- Improve the quality of the classifier by including higher level n-grams and a better Named Entity Recognition module
- Develop a graphical user interface that allows users to classify tweets
- Enhance Support Vector Machine module by the inclusion of distant supervision methods

SentiTrack...

Thank You

Presented by

Cristobal Leiva

Supervised by

Dr. Simon Scerri

Prof. Dr. Sören Auer

Prof. Dr. Jens Lehmann