Deep Learning: Day 2

chyld @ galvanize

Topics

- Packages to Install
- Gradient Descent Review
- Tensorflow
- Keras
- Regression in Keras (Simple & Multiple)
- Convolutional Neural Networks
 - Digit Recognition
 - Clothing Recognition
 - Large Image Recognition
- Amazon Web Services
- Kaggle

Packages to Install

pip install -U keras tensorflow scikit-learn

Gradient Descent Review

$$w_{t+1} = w_t - \gamma
abla_w \ell(f_w(x), y)$$

Tensorflow

- https://www.tensorflow.org/
- An open source machine learning framework for everyone

Keras

- https://keras.io/
- Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.
 Keras: The Python Deep Learning library

Keras: The Python Deep Learning library

Simple Linear Regression with Keras

Multiple Linear Regression with Keras

Applications of Convolutional Neural Networks

https://lobe.ai/tour

lobe

Teach your app to see emotions.

Build, train, and ship custom deep learning models using a simple visual interface.

Watch Tour Doin Beta

Convolutional Neural Networks (CNN)

CNN Architecture

CNN Architecture

CNN Architecture

Filter convolving over an image creates feature map

Filter convolving over an image creates feature map

Padding & Stride

Sum of the products

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	
3	

Convolved Feature

Dot Product

Stacking Convolutional Layers

Visualizing CNN Filters

Layer 3

Layer 2

Layer 1

Max Pooling Layer

Rectified Feature Map

Interactive Network Visualizer

http://www.cs.cmu.edu/~aharley/vis/

3D convolutional network visualization

This network has 1024 nodes on the bottom layer (corresponding to pixels), six 5x5 (stride 1) convolutional filters in the first hidden layer, followed by sixteen 5x5 (stride 1) convolutional filters in the second hidden layer, then three fully-connected layers, with 120 nodes in the first, 100 nodes in the second, and 10 nodes in the third. The convolutional layers are each followed by downsampling layer that does 2x2 max pooling (with stride 2).

2D fully-connected network visualization

This is the same as the first visualization, but with the nodes flattened on a plane so that they are easier to see all at once.

2D convolutional network visualization

This is the same as the second visualization, but with the nodes flattened on a plane so that they are easier to see all at once.

CNN: Handwritten Digit Recognition

CNN: Clothing Recognition

CNN: CIFAR-100 Image Recognition

Amazon Web Services

Deep Learning AMI (Ubuntu) Version 10.0 - ami-e580c79d

Select

Free tier eligible

Comes with latest binaries of deep learning frameworks pre-installed in separate virtual environments: MXNet, TensorFlow, Caffe, Caffe2, PyTorch, Keras, Chainer, Theano and CNTK. Fully-configured with NVidia CUDA, cuDNN and NCCL as well as Intel MKL-DNN

64-bit

Root device type: ebs

Virtualization type: hvm

ENA Enabled: Yes

Model	NVIDIA Tesla V100 GPUs	GPU Memory	NVIDIA NVLink	vCPUs	Main Memory	Network Bandwidth	EBS Bandwidth
p3.2xlarge	1	16 GiB	n/a	8	61 GiB	Up to 10 Gbps	1.5 Gbps
p3.8xlarge	4	64 GiB	200 GBps	32	244 GiB	10 Gbps	7 Gbps
p3.16xlarge	8	128 GiB	300 GBps	64	488 GiB	25 Gbps	14 Gbps

Kaggle

- https://www.kaggle.com
 - Register for account
- Get API key
 - o https://www.kaggle.com/<username>/account
 - mv kaggle.json ~/.kaggle
- Install Kaggle CLI
 - pip install -U kaggle

Download Dogs vs Cats Images from Kaggle

- https://www.kaggle.com/c/dogs-vs-cats
- Accept rules
- https://www.kaggle.com/c/dogs-vs-cats/rules
- Download images using CLI/Terminal
- "kaggle competitions download -c dogs-vs-cats"