

# Introduction to AI for postgraduate students

Lecture Note 3
Optimization





## **Reading Materials**



- http://www.deeplearningbook.org/contents/linear\_algebra.html
- http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/stochastic-gd.pdf

## **Gradient Descent: Univariate**





# At a random point Start Repeat

- Determine a descent direction
- Choose a step size Choose
- Update

**Until** some criterion is satisfied





## **Gradient Descent: Univariate**



#### Choosing the descent direction





Update



Multivariate extension





## **Gradient Descent: Univariate**



#### Choosing the step size



## **Gradient Descent: Multivariate**



#### Definition of a Gradient vector

\*Fig. from http://www.sharetechnote.com/html/Calculus\_Gradient.html



## **Gradient Descent: Multivariate**



- Consider a 3-D function: T(x, y, z)
- Gradient vector is defined by:  $grad T \equiv \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)$ .
- By the chain rule:

$$dT = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz.$$

$$d\mathbf{r} \equiv (dx, dy, dz)$$



$$dT = \textbf{grad}\,T\cdot d\textbf{r}.$$

■ Suppose that dT=0 for some dr:

$$dT = \mathbf{grad} \, T \cdot d\mathbf{r} = 0.$$



## **Gradient Descent: Multivariate**



Illustration of gradient vectors and contours



#### **Limitations of Gradient Descent**







 $\boldsymbol{x}$ 

#### Second Derivation Method: Gradient Descent



- Directional derivative in direction "u" (unit vector)
  - > Slope of the function f in direction **u**

$$\frac{\partial}{\partial \alpha} f(\boldsymbol{x} + \alpha \boldsymbol{u})$$

> By the chain rule:

$$\frac{\partial}{\partial \alpha} f(\boldsymbol{x} + \alpha \boldsymbol{u})$$



$$\frac{\partial}{\partial \alpha} f(\boldsymbol{x} + \alpha \boldsymbol{u})$$
  $\boldsymbol{u}^{\top} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}) \text{ when } \alpha = 0$ 

■ We find the unit vector "u" such that the directional derivative is minimized → for steepest descent

$$\min_{\boldsymbol{u},\boldsymbol{u}^{\top}\boldsymbol{u}=1}\boldsymbol{u}^{\top}\nabla_{\boldsymbol{x}}f(\boldsymbol{x})$$

$$= \min_{\boldsymbol{u}, \boldsymbol{u}^{\top} \boldsymbol{u} = 1} ||\boldsymbol{u}||_2 ||\nabla_{\boldsymbol{x}} f(\boldsymbol{x})||_2 \cos \theta$$

where  $\theta$  is the angle between  $\boldsymbol{u}$  and the gradient



Solution: vector u should be in the opposite direction of the Gradient

#### **Second Derivation Method: Gradient Descent**



Steepest descent update

$$oldsymbol{x}' = oldsymbol{x} - \epsilon 
abla_{oldsymbol{x}} f(oldsymbol{x})$$
 Learning rate or Step size

Analytical discussion on choosing the step size

➤ Read "4.3.1 Beyond the Gradient: Jacobian and Hessian Matrices"



• Suppose that  $\theta$  has two variables  $\{\theta_1, \theta_2\}$ 

Given a point, we want to find the point with the smallest value nearby.





#### Multivariate Taylor series

$$h(x,y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to  $(x-x_0)^2$  and  $(y-y_0)^2$ 

+ .....

When x and y are close to  $x_0$  and  $y_0$ 



$$h(x,y) \approx h(x_0,y_0) + \frac{\partial h(x_0,y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0,y_0)}{\partial y} (y - y_0)$$



#### Based on Taylor Series:

If the red circle is *small enough*, in the red circle

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2} (\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}, v = \frac{\partial L(a,b)}{\partial \theta_2} \qquad \theta_2^{0.5}$$

$$L(\theta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$





#### Based on Taylor Series:

If the red circle is **small enough**, in the red circle s = L(a,b)

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Find  $\theta_1$  and  $\theta_2$  in the red circl

e *minimizing*  $L(\theta)$ 

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

constant

$$s = L(a,b)$$







#### Red Circle:(If the radius is small)

$$L(\theta) \approx s + u(\underline{\theta_1 - a}) + v(\underline{\theta_2 - b})$$

$$\Delta \theta_1 \qquad \Delta \theta_2 \qquad (\Delta \theta_1, \Delta \theta_2)$$
Find  $\theta_1$  and  $\theta_2$  in the rad sirely

Find  $\theta_1$  and  $\theta_2$  in the red circle  $\boldsymbol{minimizing} L(\theta)$ 

$$\frac{\left(\underline{\theta_1} - a\right)^2 + \left(\underline{\theta_2} - b\right)^2 \le d^2}{\Delta \theta_1}$$

$$\Delta \theta_2$$



To minimize  $L(\theta)$ 

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \quad \longrightarrow \quad \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$



#### Based on Taylor Series:

If the red circle is **small enough**, in the red circle s = L(a,b)

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$u = \frac{\partial L(a, b)}{\partial \theta_1}, v = \frac{\partial L(a, b)}{\partial \theta_2}$$

Find  $\theta_1$  and  $\theta_2$  yielding the smallest value of  $L(\theta)$  in the circle

circle 
$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 This is gradient descent.

Not satisfied if the red circle (learning rate) is not small enough You can consider the second order term, e.g. Newton's method.

#### **Stochastic Gradient Descent**



Consider minimizing an average of functions

$$\min_{x} \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Gradient descent would repeat

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

■ In Stochastic Gradient Descent (SGD) (a.k.a. incremental gradient descent)

$$x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f_{i_k}(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

where  $i_k \in \{1, \dots, m\}$  is some chosen index at iteration k

#### **Stochastic Gradient Descent**



- Two rules for choosing *i*<sub>k</sub> at iteration *k*:
  - $\triangleright$  Randomized rule: choose  $i_k$  from {1, ..., m} uniformly at random
  - $\triangleright$  Cyclic rule: choose  $i_k=1, 2, ..., m, 1, 2, ..., m, ...$

#### Main appeal of SGD

- $\triangleright$  Iteration cost is independent of m, the number of functions
- > Can also be a big savings in terms of memory usage

#### **Stochastic Gradient Descent**



Given  $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ , i = 1, ..., n, recall logistic regression:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(-y_i x_i^T \beta + \log(1 + \exp(x_i^T \beta))\right)}_{f_i(\beta)}$$

Standard in SGD is to use diminishing step sizes, e.g.,  $t_k=1/k$ 

Small example with n=10, p=2 to show the "classic picture" for batch versus stochastic methods:



Blue: batch steps, O(np)Red: stochastic steps, O(p)

Rule of thumb for stochastic methods:

- generally thrive far from optimum
- generally struggle close to optimum

#### Mini-Batches Stochastic Gradient Descent



• We choose a random subset  $I_k \subseteq \{1, \dots, m\}$ ,  $|I_k| = b \ll m$ , to repeat

$$x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{b} \sum_{i \in I_k} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \dots$$

Example) Consider the problem

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left( -y_i x_i^T \beta + \log(1 + e^{x_i^T \beta}) \right) + \frac{\lambda}{2} \|\beta\|_2^2$$

Full gradient computation is  $\nabla f(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\beta)) x_i + \lambda \beta$ . Comparison between methods:

- One batch update costs O(np)
- One mini-batch update costs O(bp)
- One stochastic update costs O(p)

# **Comparison of Gradient Descent Methods**



Example with n = 10,000, p = 20, all methods use fixed step sizes:







## **Read More About**



- Constraint optimization and KKT conditions
- Numerical optimization methods
  - ➤ Genetic algorithm
  - ➤ Simulated annealing
  - ➤ Newton-Raphson method