Zillow® Regression

Regression Modeling

Amanda Gomez Junior Data Scientist

March 24, 2021

Agenda

ES

Executive Summary

Discuss the affects of features to our home value target, goals, and recommendations to minimize error in predictive models.

Data Analysis

Review findings discovered while building a predictive model for home values, and how beneficial the use of my model will be.

Conclusion

Wrap up analysis with reflections on the predictive model.

Appendix

Goals

Provide insight into the creation of my home value predictive value for single unit properties, data was based on properties that sold during the realty "hot" months.

ExecutiveSummary

Use features to predict the future!

Implementation of valuable features greatly improve models!

Predicted Error DECREASE

My final predictive model decreased the amount of errors by 77%!

We have a big data set, and some equally sized holes.

Data Acquisition

My data was gathered from our Zillow SQL database.

- I filtered my query using:
 - o transactiondate between
 "2017-05-01" and "2017-0831"
 - o propertylandusetypeid IN
 ('260', '261', '263',
 '264', '265', '266',
 '269', '275')
 - o unitcnt = 1

Data

Data Acquisition

- I also filtered my query's columns as requested to :
 - taxvaluedollarcnt
 - calculatedfinishedsquarefeet
 - bedroomcnt
 - bathroomcnt
 - parcelid

Nulls

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24923 entries, 0 to 24922
Data columns (total 5 columns):
    Column
                                  Non-Null Count Dtype
    parcelid
                                   24923 non-null
     calculatedfinishedsquarefeet
                                  24921 non-null
                                                  float64
    bedroomcnt
                                   24923 non-null
                                  24923 non-null
                                                  float64
    bathroomcnt
    taxvaluedollarcnt
                                  24923 non-null
                                                  float64
dtypes: float64(4), int64(1)
```

Outliers

sns.boxplot(x="home_value", data=df)
5-8 major outliers skewing the data
<AxesSubplot:xlabel='home_value'>

Without home_value outliers
sns.boxplot(x="home_value", data=df)

<AxesSubplot:xlabel='home_value'>

Repercussions

Although home_value outlier removal improved the distribution of data, due to the minimal features, my correlation coefficients suffered greatly.

Hypothesis Testing

Since all of my features were quantitative, I used correlation tests.

```
#assign your null hypothesis
nullh = "No correlation between square footage and home value."
#and your alternative hypothesis
alth = "There IS a correlation between square footage and home value."
#the feature you are testing
x1 = train_scaled.square_feet
#against your target
y1 = train_scaled.home_value
exp.correlation_test(nullh, alth, x1, y1)
Reject null statment: No correlation between square footage and home value.
There is a linear relationship.
Although, it is a positive weak one.
    Correlation Coefficient: 0.42675216032970326
```

Feature Engineering

Interesting findings!

```
f_feature = mo.select_kbest(X_train_scaled, y_train, 3)
f feature
['square_feet', 'bedrooms', 'bathrooms']
rfe_feature = mo.rfe(X_train_scaled, y_train, 3)
rfe feature
['square_feet', 'bedrooms', 'bathrooms']
Interestingly, bathrooms seems to hold the most weight!
```

Modeling 2

Identifying the Baseline

RMSE using Median Train/In-Sample: 236389.0 Validate/Out-of-Sample: 234776.68

Model Ran on Train/Validate Sets

Testing the Best Model

First iteration: RMSE degree 2 Polynomial Regressor

```
y_test = pd.DataFrame(y_test)
y_test['home_value_pred_lm2'] = lm2.predict(X_test_degree2)
rmse_test = mean_squared_error(y_test.home_value, y_test.home_value_pred_lm2)**(0.5)
    RMSE for Polynomial Regressor degrees=2
   Test/Out-of-Sample Performance: {round(rmse_test, 2)}
```

RMSE for Polynomial Regressor degrees=2 Test/Out-of-Sample Performance: 201740.36

This amount of error definitely calls for a second iteration!

Data Acquisition

I brought in a few more features for the second iteration, and created a new feature 'bdrm_3' to represent 3 bedroom homes.

		bathrooms	bedrooms	square_feet	fips	lotsizesquarefeet	yearbuilt	home_value	taxes	bdrm_
	parcelid									
	11721753	2.0	3.0	1316.0	6037	5672.0	1923	205123.0	2627.48	
	11289917	2.0	3.0	1458.0	6037	8284.0	1970	136104.0	2319.90	

Exploration

As I introduced more features, my correlation coefficients increased

Feature Engineering

Not too surprising.

```
f_feature = mo.select_kbest(X_train_scaled, y_train, 3)
f_feature

['bathrooms', 'square_feet', 'taxes']

rfe_feature = mo.rfe(X_train_scaled, y_train, 3)
rfe_feature

['bathrooms', 'bedrooms', 'taxes']
```

Identifying the Baseline

Median has less errors again and will be used.

BASELINE:

RMSE using Median
Train/In-Sample: 232113.75

Validate/Out-of-Sample: 235030.88

Model Ran on Train/Validate Sets

County Tax Rates

Performance

The model I have presented to you out performs the baseline by 77%

Next Steps

- We have the technology!
 - Given more time and resources, an even more accurate predictive model can be created to make our Zestimates® reign over our competitors.

GitHub

https://github.com/o0amandagomez0o/regression_project

Data Dictionary

column_name	description	key	dtype
bathrooms / bathroomcnt	Number of bathrooms in home including fractional bathrooms		float64
bedrooms / bedroomcnt	Number of bedrooms in home		float64
<pre>square_feet / calculatedfinishedsquarefeet</pre>	Calculated total finished living area of the home		float64
fips	Federal Information Processing Standard code - see https://en.wikipedia.org/wiki/FIPS_county_code for more details		float64 / int64
lotsizesquarefeet	Area of the lot in square feet		float64
parcelid	Unique identifier for parcels (lots)		int64
yearbuilt	The Year the principal residence was built		float64 / int64
home_value / taxvaluedollarcnt	The total tax assessed value of the parcel		float64
taxes / taxamount	The total property tax assessed for that assessment year		float64
county	The county the property is located.		object
state	The state the property is located.		object
bdrm_3	Identifies if property is a 3 bedroom home.	1: 3 bedroom home 0: not a 3 bdrm home	int64
tax_rates	Calculated tax rate = taxes / home_value		float64

Thank you for your time!

Questions