

Informe final:

" Identificación, obtención y mapeamiento de variables ambientales y métricas espaciales para el modelamiento de distribución de especies dulceacuícolas en un escenario de fragmentación ecosistémica en las cuencas hidrográficas de Chile."

Nombre del estudiante:
CRISTIAN CAMILO MARTÍNEZ GONZÁLEZ
ccmartinez2@uc.cl

Nombre del profesor supervisor: PATRICIO PLISCOFF

Curso: UNIDAD DE INVESTIGACIÓN I BIO4015

DOCTORADO EN CIENCIAS BIOLÓGICAS, MENCIÓN EN ECOLOGÍA PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE 2021

RESUMEN

Durante el desarrollo de la Unidad de Investigación I se realizó la identificación y obtención de variables ambientales espacialmente continuas y especificas para los ecosistemas de agua dulce de Chile. Se calcularon métricas espaciales de importancia ecológica para cada una de las ecorregiones de agua dulce de Chile, dichas métricas se relacionaron con las barreras actuales y futuras de proyectos hidroeléctricos, a lo largo de todas las redes fluviales del territorio chileno con el fin de obtener estimadores del estado de la fragmentación ecosistémica en las diferentes ecorregiones de agua dulce de Chile. Tanto las variables ambientales identificadas, como las métricas espaciales calculadas se mapearon en un ambiente SIG coherente y disponible para el modelamiento de los patrones de distribución actuales y futuros de las especies dulceacuícolas en Chile en los escenarios actuales y futuros de fragmentación ecosistémica y cambio global, a desarrollar durante la unidad de investigación II.

INTRODUCCIÓN

Comprender los patrones de distribución espacial de las especies es de gran importancia ecológica teniendo en cuenta las transformaciones en la estructura y la dinámica de los ecosistemas causadas por los actividades humanas (Baessler & Klotz 2019). El actual escenario de escasez hídrica, fragmentación ecosistémica y contaminación de los ecosistemas acuáticos continentales tienen a la mayoría de las cuencas hidrográficas de Chile en un estado de alta vulnerabilidad (MMA 2017). Las poblaciones de peces dulceacuícolas han sido uno de los grupos biológicos más afectados por las modificaciones de los cuerpos de agua, la construcción de represas hidroeléctricas, sumado a la introducción de diferentes especies de exóticas con potencial invasor tienen en estado de amenaza a la mayoría de las especies nativas de agua dulce de Chile (Lacy et al. 2017).

El desarrollo de metodologías que puedan predecir la distribución espacial de especies a gran escala de una manera rápida y precisa son especialmente valiosas en ecología (Jones 2011). La mayoría de los modelos actuales que predicen la distribución espacial de especies de agua dulce son ineficaces y están lejos predecir su distribución real debido la baja detectabilidad y a la alta movilidad de este grupo de organismos (Franklin 2013). Esta problemática metodológica se acrecienta cuando se trata de predecir la distribución de las especies dulceacuícolas en ecosistemas acuáticos fragmentados (Crook *et al.* 2015); este es el caso de la fragmentación de diferentes cuencas hidrográficas en Chile, con 80 represas hidroeléctricas actuales y más de 377 planeadas para el 2050 en los Andes Chilenos (Habit *et al.* 2019a).

Además de las diferentes consecuencias ecológicas sobre las especies nativas causadas por la pérdida de conectividad ecosistémica, como por ejemplo la pérdida de rutas migratorias y áreas de distribución histórica, el aislamiento reproductivo de las poblaciones y la introducción de especies con potencial invasivo, esta fragmentación también puede afectar las predicciones de los modelos de distribución clásicos, ya que la mayoría de estos modelos predicen áreas potenciales de distribución en hábitats con acceso restringido por las barreras antrópicas (Represas), sobreestimando así el rango real de distribución de estas especies (Barbarossa *et al.* 2020). Las predicciones de los modelos de distribución de especies en este tipo de ecosistemas alterados deben mejorarse debido la complejidad y dinámica ecológica de los mismos (Winemiller *et al.* 2016).

Otro factor importante que limita el conocimiento de la distribución de las especies de peces dulceacuícolas es la falta de conocimiento de los factores ambientales que determinan la distribución de estas especies además de la fragmentación ecosistémica y la presencia de especies introducidas (Taylor *et al.* 2018). Si bien se han identificado algunos de los factores que pueden llegar a ser determinantes para la presencia de estas especies (Domisch *et al.* 2015, Lacy *et al.* 2019), dichas variables no siempre se encuentran disponibles en grandes escalas espaciales, ni para todas las cuencas hidrográficas del territorio Chileno. Este

conocimiento es de vital importancia para los planes de conservación o manejo de especies a nivel local y regional, sin embargo los esfuerzos de investigación actuales no están siendo direccionados a evaluar las pérdidas potenciales en las áreas distribución de especies nativas y la relación que guarda esto con el aumento en el área de distribución de las especies introducidas que pueden llegar a ser potencialmente invasoras y afectar no solo los peces dulceacuícolas sino toda la biodiversidad nativa y los servicios ecosistémicos que prestan los ecosistemas acuáticos continentales de Chile (Habit *et al.* 2010).

El objetivo principal de esta investigación es identificar, obtener y mapear las variables ambientales y métricas espaciales parala elaboración de modelos ecológicos que puedan predecir de una manera precisa los patrones de distribución actuales y futuros de las especies dulceacuícolas en un escenario de fragmentación ecológica y pérdida de conectividad ecosistémica causada por proyectos hidroeléctricos en las cuencas hidrográficas de Chile, esto como una herramienta útil para desarrollar estrategias conjuntas de conservación de las especies nativas y manejo de las especies introducidas, entre los diferentes actores de la sociedad chilena como el sector energético, las entidades gubernamentales, las universidades e institutos de investigación y las comunidades locales.

Justificación

Trabajos previos realizados por investigadores en diferentes cuencas hidrográficas sugieren que la selección de las variables relevantes para el modelamiento de distribución de especies aplicados a evaluar el impacto de las represas hidroeléctricas debe realizarse de una manera sistemática y prudente (Nguyen *et al.* 2018, Vicuña *et al.* 2017).

Algunas de las variables predictoras identificadas previamente en SDM como importantes a la hora de determinar el área de distribución de especies de peces dulceacuícolas en las cuencas hidrográficas del territorio chileno, entre estas variables se pueden enumerar:

- La vegetación ribereña y estructuras de origen antrópico dentro de los cuerpos de agua (Captaciones, Puentes, Barreras) (Zamorano *et al.* 2019);
- Los cambios de uso del suelo (minería, urbanización, sequías, efluentes industriales/residenciales y plantas hidroeléctricas) y la introducción de especies exóticas (Fierro *et al.* 2019);
- La pérdida de conectividad (fragmentación) altera el funcionamiento y los patrones de diversidad de la biota a escala local y regional (Diaz *et al.* 2021);
- El área de la cuenca, la elevación máxima, el rango de elevación, la elevación promedio, el área total de los cuerpos de agua, y la precipitación anual total en cada cuenca promedios y máximos de temperatura del aire actuales en cada cuenca, cobertura forestal total en cada cuenca, productividad primaria neta terrestre total en cada cuenca y aridez promedio en cada cuenca. (Lacy et al. 2019);
- El ancho y profundidad del cuerpo de agua (Downing *et al.* 2012, Muehlbauer *et al.* 2014);

• Temperatura del agua (Zorn *et al.* 2009) y la conectividad hidrológica pasada (Clark *et al.* 2001);

Diferentes autores han identificado que también características bióticas propias de cada especie o de interacción con otras especies como por ejemplo tamaño y detectabilidad de cada especie (Zamorano *et al.* 2019); los efectos causados por especies invasoras, en el desarrollo de los modelos (Zamorano *et al.* 2019), el movimiento como un aspecto fundamental de la ecología de los peces y, por lo tanto, representa un rasgo importante a implementar en los modelos (Vivancos *et al.* 2020) y la incorporación de la fragmentación y las especies no nativas en los modelos de distribución para informar el estado de conservación de los peces dulceacuícolas (Taylor *et al.* 2017).

Además de la conectividad fluvial existen otros factores ambientales que puede determinar la distribución de peces de agua dulce en las cuencas extratropicales del hemisferio sur, factores que parecen ser diferentes a los de los trópicos y a los de sus contrapartes del hemisferio norte (Lacy et al. 2019). Para comprender más sobre la ecología de los peces de agua dulce de Chile y ayudar a caracterizar los efectos potenciales de la fragmentación es necesario utilizar en el proceso de modelaje covariables relevantes como el caudal (Xenopoulos & Lodge 2006, Iwasaki et al. 2012), el ancho y profundidad del cauce (Downing et al. 2012, Muehlbauer et al. 2014), la temperatura del agua (Zorn et al. 2009), la conectividad hidrológica pasada (Clark et al. 2001), la pendiente y altitud derivadas de los modelos digitales de elevación (https://earthexplorer.usgs.gov). El modelaje puede incluir información relevante como el porcentaje de bosques riparios adyacente a las cuencas hidrográficas así como también pueden tenerse en cuenta covariables antrópicas como por ejemplo la proximidad a centros urbanos, el uso del suelo para agricultura y ganadería, variables obtenidas de fuentes SIG (Sistemas de Información Geográfica) como: WorldClim (http://www.worldclim.org), CCAFS-Climate (http://ccafs-climate.org), Colección Landsat (https://www.usgs.gov/).

Estado actual de conservación de los ecosistemas de agua dulce de Chile.

En el presente escenario de cambio climático y escasez hídrica (Vargas *et al.* 2020) existe la preocupación por el deterioro creciente de los recursos hidrobiológicos en el país, esto debido al incremento de la actividad humana en las regiones rurales (Martínez-Ruiz 2020). Esta preocupación se acrecienta en torno a las nuevas medidas planteadas en el marco del acuerdo nacional de reactivación económica "Covid-19", que entre otras propuestas perjudiciales al medio ambiente pretende acelerar la puesta en marcha de nuevos proyectos hidroeléctricos, estos proyectos representan una señal de alarma para la conservación de ríos y lagos de Chile (Castillo & Huaico-Malhue 2020).

El inventario más reciente de cuerpos de agua en Chile enumera más de 1.200 ríos y 15.000 lagos y lagunas distribuidos en 101 cuencas hidrográficas dentro del territorio nacional (DGA

(2012). En cada una de estas cuencas confluyen ríos, lagos y humedales con atributos ambientales comunes (características fisicoquímicas naturales del agua) y comunidades biológicas similares (Fuster *et al.* 2014). Por tanto, estas cuencas representan unidades para la gestión ambiental y territorial necesaria para la sustentabilidad de los recursos hídricos continentales de Chile (DCA & RNR. 2010).

La Estrategia Nacional de Biodiversidad 2017-2030 realiza un análisis de los ecosistemas acuáticos continentales e insulares, en donde se destaca la fragilidad y alta vulnerabilidad en la mayoría de las cuencas hidrográficas del país (MMA 2017). En este contexto, las principales actividades humanas que se han identificado como factores estresantes que afectan la calidad de dichas cuencas y que ponen en riesgo la integridad ecológica de las mismas, se relacionan con los cambios históricos en el uso de la tierra, como la agricultura, la megaminería y las plantaciones exóticas, así como también impactos directos en los ecosistemas acuáticos como la descarga de aguas residuales y la subsecuente eutrofización de los cuerpos de agua, las invasiones biológicas (salmonicultura) y el desvío, la acumulación y la modificación en los cursos aguas con fines de hidroeléctricos (Pizarro *et al.* 2010, León-Muñoz *et al.* 2013, Fuster *et al.* 2015, OECD, 2016, Habit *et al.* 2019b, Torremorell *et al.* 2021).

La implementación de proyectos para la producción de energía hidroeléctrica se está expandiendo en el desarrollo de economías locales, regionales y nacionales con la construcción de cientos de represas hidroeléctricas a pequeña y gran escala a lo largo de toda Sur América (Pelicice et al. 2017). Sin embargo, la fragmentación de las redes fluviales por las múltiples barreras de estos proyectos hidroeléctricos y la imposición de nuevos regímenes hidrológicos han afectado la resiliencia de los ecosistemas acuáticos para adaptarse a estos factores estresantes (Habit et al. 2019a). Diferentes estudios a gran escala han cuantificado dicha fragmentación en los paisajes ribereños y aunque estas evaluaciones se han visto limitadas en los países en desarrollo, recientemente se ha comenzado a sintetizar información sobre el grado de alteración de los ecosistemas fluviales por represas en América del Sur (García et al. 2011). Se ha identificado como los proyectos hidroeléctricos alteran la magnitud, frecuencia y duración de los regímenes hidrológicos, afectando la tasa de cambio de la geomorfología fluvial, el modelado de las riberas y la forma de los valles (Poff et al., 2019); Además de perturbar sinérgicamente la biota acuática que está adaptada para sobrevivir y reproducirse en dichos regímenes hidrológicos naturales, por tanto, la alteración de estos regímenes produce efectos en distintas escalas espaciales y temporales, así como también en los distintos niveles de organización de la biodiversidad acuática (Bunn & Arthington 2002, Rolls et al. 2017).

En el caso particular de Chile, la energía hidroeléctrica es una fuente importante de electricidad para el país, según datos obtenidos de la operación de centrales hidroeléctricas, represas, estructuras de desvío de agua y reservorios para riego registrados en las bases de datos del Ministerio de Bienes Nacionales de Chile, del Ministerio de Energía de Chile y del

Ministerio de Obras Públicas de Chile, el 25,1% de la energía de Chile proviene de fuentes hidroeléctricas (Habit *et al.* 2019a).

Actualmente en los ríos provenientes de los de los Andes Chilenos existen 4 barreras naturales (cascadas) con una pendiente suficiente para impedir el flujo de fauna íctica aguas arriba de estas cascadas (Díaz *et al.* 2019). A estas 4 barreras naturales, desde la década de 1990 se le han sumado 70 barreras de origen antropogénico (represas), las cuales para el 2018 ya contabilizaban 80 y se esperan 377 nuevas barreras en un futuro próximo (2050). Este escenario futuro es una aproximación bastante alarmante ya que a medida que aumenta el número de represas, los ecosistemas fluviales de Chile se fragmentan y las principales cuencas hidrográficas se verán afectadas en un futuro cercano afectando los servicios ecosistémicos que prestan (Hall *et al.* 2009, Habit *et al.* 2019b).

Aunque algunos los diseños de energía hidroeléctrica de derivación implementados en Chile pueden tener menos impacto que las instalaciones hidroeléctricas convencionales basadas en represas, estudios indican que estos proyectos hidroeléctricos de derivación también pueden ocasionar cambios en la comunidad de peces dulceacuícolas (Laborde *et al.* 2016). En general, este grupo de organismos presenta una alta vulnerabilidad debido a las modificaciones en los ecosistemas acuáticos en Chile, la alta demanda hídrica de los sectores como la agricultura, la pecuaria y la minería, sumado a la baja en los caudales acotada en época de deshielos, la concentración de lluvias en pocos meses, en conjunto con la fragmentación de ríos, la regulación o alteración del régimen hidrológico natural, son las principales amenazas para la conservación de los peces dulceacuícolas de Chile (Habit *et al.* 2006b).

La incorporación de conceptos de la ecología del paisaje y la macroecología pueden ser de gran utilidad para comprender cómo la fragmentación de los ecosistemas acuáticos puede afectar los procesos ecológicos a diferentes escalas (microcuenca, cuenca y ecorregión) y las respectivas consecuencias sobre las comunidades de peces dulceacuícolas (Dunham *et al.* 2018). La evaluación de la fragmentación de los ecosistemas proporciona una base para futuras investigaciones sobre los posibles impactos de esta en los diferentes componentes de la biodiversidad chilena (Echeverría *et al.* 2006).

Es necesario incorporar la configuración espacial y los atributos de conectividad a nivel de paisaje para estudiar la integridad ecológica de las comunidades biológicas (Piessens *et al.* 2005). Los posibles impactos irreversibles de los proyectos hidroeléctricos sobre los paisajes fluviales y las comunidades hidrobiológicas (Petts 1984) analizados dentro del contexto político, económico y social en uno de los países con mayor potencial hidroeléctrico sin explotar (Bartle 2002), en un escenario de alta vulnerabilidad ambiental (Vörösmarty *et al.* 2010), constituye una problemática que debe ser abordada de manera integral y la perspectiva ecológica se fundamenta como un pilar esencial para ello (García-Nielsen 2019).

METODOLOGÍA

Área de estudio

Se delimito el área de estudio a las ecorregiones de agua dulce dentro del territorio Chileno definidas por Abell *et al.* (2008). Estas ecorregiones de agua dulce están determinadas como grandes áreas que abarcan uno o más sistemas de cuencas y cuerpos de agua dulce; basándose en los patrones de similaridad biogeográfica, filogenética, paleogeografía y ecológica de las comunidades y especies de agua dulce (Dinerstein *et al.* 1995).

Se restringieron los análisis a cuatro ecorregiones de agua dulces: Atacama, Cuencas centrales de los Andes, Región de los Lagos - Valdivia y Patagonia; en estas ecorregiones sus sistemas hídricos drenaran sus caudales hacia el océano (Cuencas exorreicas) (ver Fig. 1); se excluyeron las ecorregiones Titicaca y Mar Chiquita (Cuencas exorreicas), al solo encontrarse una pequeña parte de estas dentro del territorio Chileno.Cada una de estas ecorregiones seleccionadas son una unidad geoespacial que representa los patrones de variables ambientales y ecológicas que se sabe que influyen en la distribución de la biodiversidad a gran escala de los organismos dulceacuícolas (Groves 2002).

Identificación, selección y mapeamiento de variables ambientales

Se realizó la búsqueda e identificación de variables ambientales utilizadas como predictores en estudios de diversidad y en modelos de distribución de especies dulceacuícolas a través de una exhaustiva revisión bibliográfica.

De las variables identificadas en esta etapa, se evaluó su disponibilidad y resolución espacial en

Figura. 1. Ecorregiones de Agua dulce para Chile (Abell et al. 2008). Atacama, South Andean Pacific Slopes (Cuencas Centrales de los Andes), Valdivian lakes (Región de los Lagos - Valdivia) y Patagonia.

cada una de las ecorregiones definidas en el área de estudio; seguido a esto, se realizó un análisis exploratorio de correlación entre dichas variables, una selección dependiendo del carácter explicativo de cada una de estas y posteriormente se realizó el mapeamiento en cada una de las ecorregiones.

Se utilizaron matrices de correlación para indicar las conexión entre diferentes grupos de variables en donde se determinaron los coeficientes de correlación de rango de Spearman (Lehman 2005). Se evaluó la multicolinealidad en el conjunto de variables usando el factor de inflación de la varianza (VIF, Alin 2010). Adicionalmente se realizó un análisis factorial (FA, Harman 1976) para revelar la estructura interna de conjunto de variables, evaluado primero la medida de adecuación muestral de Kaiser-Meyer-Olkin (KMO, Vogt & Johnson 2016) y la prueba de esfericidad de Bartlett (Mason et al. 2003) para evaluar si las relaciones entre las variables generadas en las matrices de correlación eran adecuadas para la detección de estructuras entre las variables.

Finalmente, cada conjunto variables identificadas y seleccionadas se transformó en Rasters-PCA para obtener un entorno viable para el modelado de distribución de especies. Esta transformación ortogonal (Rasters-PCA), es análoga a un Análisis de Componentes Principales convencional, donde los componentes principales (Imágenes con información en cada uno de los píxeles) resumen la mayor varianza posible en la información del conjunto de variables (Leutner *et al.* 2019. los análisis estadísticos y gráficos se realizaron en el entorno de desarrollo integrado RStudio, para el Software en R®, versión 3.6.1, usando los paquetes caret, colorRamps, corrplot, factoextra, FactoMineR, psych, raster, tidyverse, usdm, viridis y dplyr. La conceptualización de los *MLR* realizados se resume en la *Tabla 2*.

Métricas Espaciales y fragmentación ecosistémica en las ecorregiones de agua dulce

Se utilizó la base de datos de datos georreferenciadas en formato vectorial HydroSHEDS, (CITA) para el mapeamiento de la red hídrica de cada una de las ecorregiones; mientras que de la base de datos de datos RiverATLAS (Linke *et al.* 2019) se extrajeron las métricas espaciales de Area, volumen y Grado de regulación de la red hídrica por barreras de origen antrópico (DOR). El conjunto de métricas espaciales estudiadas se resume en la *tabla 1*.

Tabla 1. Métricas espaciales con sus respectivas unidades de medición y como fueron calculadas.

	Métrica espacial	Unidades	Calculo
1	Largo red fluvial	Kilómetros	Largo de los ríos
2	Área	Hectáreas	Sum. Ancho x largo de los ríos
3	Volumen	Miles de metros cúbicos	Sum. Ancho x profundidad x longitud de los ríos
4	Grado de regulación (DOR)	Proentaje (x10)	Relación porcentual entre el volumen de agua almacenado y el volumen de descarga anual total. Índice de la afectación el régimen de flujo natural.

Para obtener la información de las barreras generadoras de fragmentación ecosistémica en las ecorregiones de agua dulce, se mapearon las barreras actuales y futuras con propósitos

hidroeléctricos, utilizando la información proporcionada por la base de datos global georreferenciada de barreras actuales (**GOODD**: GlObal geOreferenced Database of Dams, Mulligan *et al.* 2009) y la base de datos (**FHReD**: Future Hydropower Reservoirs and Dams Database, Zarfl *et al.* 2015) que registra las barreras que se encuentran en construcción o en etapas avanzada de planificación. Se verificó la existencia y ubicación de cada una de estas barreras con imágenes satelitales Landsat de alta resolución (<u>www.landsat.usgs.gov</u>), las cuales posteriormente se mapearon con el software ArcGIS® 10.5 (ESRI 2017).

Se espera que con la metodología que implementada se obtenga un panorama más realista del estado actual y futuro de la fragmentación y pérdida de la conectividad en las diferentes cuencas en todo el territorio chileno, así como también mejorar el entendimiento de las posibles implicaciones sobre los rangos de distribución de las especies dulceacuícolas, esta visión será una herramienta útil para proponer estrategias conjuntas entre el sector energético, entidades gubernamentales, universidades e institutos de investigación de conservación, para el manejo de las ecorregiones hidrográficas de Chile. Se espera obtener herramientas útiles para el modelado y mapeamiento que permitan identificar, proponer y priorizar áreas para la gestión integrada y sustentable de recursos hidrobiológicos, áreas que efectivamente protejan y conserven la biodiversidad nativa, el rol ecológico que esta cumple y los servicios ecosistémicos que presta a la sociedad chilena.

RESULTADOS

Variables ambientales

Se identificaron y seleccionaron las variables hidroclimáticas de *EarthEnv* (www.earthenv.org) como las variables con la resolución espacial más fina (pixeles de 1 km²), además de ser las únicas variables espacialmente continuas y específicas para ecosistemas de agua dulce (Domisch, *et al.* 2015) estas variables exhiben información hidroclimática, topográfica, de cobertura terrestre aledaña a los cuerpos de agua, información geológica y tipos de suelos. Estas variables ambientales están acotadas dentro la red fluvial HydroSHEDS y son compatibles con las métricas espaciales de riverATLAS. Se calcularon dichas variables, primero delineando los límites nacionales (Chile) utilizando un Modelo Digital de Elevación (DEM) (EROS Data Center www.earthexplorer.usgs.gov), la red fluvial y los polígonos de las ecorregiones de agua dulce (Área de estudio) utilizando el software ArcGIS® 10.5 (ESRI 2017); en segundo lugar se extrajeron las variables para cada ecorregión utilizando los scripts de Python ® "r.stream.watersheds" y "r.stream.variables" en el software GRASS GIS® 7.6.1.

Las 50 variables ambientales para cada ecorregión (*Tabla 3*), resultantes del proceso extracción fueron generadas en formato *netCDF-4* (red Common Data Form versión 4) y fueron transformadas a formato *.tif* (Tagged Image File Format) utilizando los scripts de Python® "Raster to TIFF" para hacerlas compatibles con los análisis de las variables y

futuros modelos de distribución de especies. Las variables se agruparon en conjuntos según su tipología en: variables hidroclimáticas, variables topográficas (Conjuntos 1-3, *Tabla 2*), variables de cobertura terrestre, variables geológicas y tipos de suelos. Los análisis de correlación, multicolinealidad y análisis factoriales se realizaron a los conjuntos con mayor número de variables (Conjuntos 4-6, *Tabla 2*).

Tabla 2. Conjuntos de variables por cada ecorregión hidrográfica, con sus respectivos números de variación, unidades y formas de medición.

	Conjuntos de	# de	Unidades	Medición
	variables	Variables		
1	Elevación	2	m.s.n.m	Elevación y grado de inclinación de la superficie del terreno derivados del mde
2	Pendiente media	2	Grados(x10)	elevación digital (DEM CGIAR-CSI SRTM v4.1)
3	Captación de flujo	2	Conteo	# de celdas (1 km²) de la cuadrícula de flujo ascendente, # de celdas (1 km²) de la red hídrica de captación aguas arriba
4	Variables hidroclimáticas	19	°C * 10, mm, *100	Promedio, Sumatoria
5	Cobertura terrestre	12	%	Rango
6	Tipos de Suelos	10	g/kg, pH * 10, %, kg / m3, cmol/kg, cm	Promedio
7	Geología	3	Conteo ponderado	Suma ponderada

Después de los análisis de correlación de Spearman, análisis de multicolinealidad VIF y análisis factoriales (FA) entre los conjuntos de variables para cada ecorregión (Material Suplementario S1-S4), en la *Tabla 3* se muestran las variables que se analizaron y que condensan parte de la heterogeneidad ambiental en las ecorregiones y las características de cada una de las variables, se resaltan las más destacadas en los análisis.

Tabla 3. Variables por cada ecorregión hidrográfica (Códigos y explicación), con sus respectivos tipo de unidad de agregación, unidades de medición y fuentes de datos.

Códig	o de variable		Tipo de inidad de gregación	Unidades	Fuente de datos
1	dem_range	Rango de elevación	Rango	[m]	HydroSHEDS
2	dem_avg	Elevación media	Promedio	[m]	HydroSHEDS
3	slope_range	Rango de pendiente	Rango	[°] * 100	HydroSHEDS
4	slope_avg	Pendiente media	Promedio	[°] * 100	HydroSHEDS
5	flow_length	Número de celdas de la cuadrícula de flujo ascendente	Sumatoria	Conteo	HydroSHEDS
6	flow_acc	Número de celdas de la red de captación aguas arriba	Sumatoria	Conteo	HydroSHEDS
7 - 25	hydro_avg_ 01 - 12	Bioclim 1 - Bioclim 19	Promedio	[°C] * 10	WorldClim

26	lc range 01	Árboles de hoja perenne / caducifolios		[%]	CLC
27	lc range 02	Árboles de hoja perenne		[%]	CLC
28	lc range 03	Árboles de hoja caduca		[%]	CLC
29	lc range 04	Árboles mixtos / otros		[%]	CLC
30	lc_range_05	Arbustos		[%]	CLC
31	lc range 06	Vegetación herbácea		[%]	CLC
32	lc_range_07	Vegetación cultivada y gestionada	Rango	[%]	CLC
33	lc_range_08	Vegetación arbustiva / herbácea regularmente inundada		[%]	CLC
34	lc_range_09	Urbano / edificado		[%]	CLC
35	lc_range_10	Hielo de nieve		[%]	CLC
36	lc_range_11	Tierras estériles / vegetación escasa		[%]	CLC
37	lc_range_12	Cobertura agua		[%]	CLC
38	geo_wsum_27	Hielo			USGS
39	geo_wsum_75	Sal	Suma ponderada	Conteo ponderado	USGS
40	geo_wsum_92	Agua	ponderada	ponderado	USGS
41	soil_avg_01	Carbono orgánico del suelo		[g/kg]	ISRIC
42	soil_avg_02	PH del suelo en H2O		pH * 10	ISRIC
43	soil_avg_03	Fracción de masa de contenido de arena		[%]	ISRIC
44	soil_avg_04	Fracción de masa de contenido de limo		[%]	ISRIC
45	soil_avg_05	Fracción de masa de contenido de arcilla		[%]	ISRIC
46	soil_avg_06	Fragmentos gruesos (fracción > 2 mm)	Promedio	[%]	ISRIC
47	soil_avg_07	Capacidad de intercambio catiónico		[cmol/kg]	ISRIC
48	soil_avg_08	Densidad aparente de la fracción tierra fina		[kg/m3]	ISRIC
49	soil_avg_09	Profundidad al lecho de roca (horizonte R) hasta un máximo de 240 cm		[cm]	ISRIC
50	soil_avg_10	Probabilidad de ocurrencia (0-100%) del horizonte R		[%]	ISRIC

Figura 2. Ráster de rango de elevación (dem_range) (*Tabla 3*).

Todas las variables ambientales seleccionadas fueron mapeadas en resolución espacial de 1km² para cada una de las ecorregiones del área de estudio como se observa en la *Fig. 2*.

Los conjuntos de las variables (4-6, *Tabla 2*): variables hidroclimáticas (7-25, *Tabla 3*), variables de cobertura terrestre (26-37, *Tabla 3*), y tipos de suelos (41-50, *Tabla 3*), se transformaron ortogonalmente en Rasters-PC. Donde los primeros Rasters-PCA capturaron cerca del 90% de la varianza de cada conjunto de variables en cada ecorregión (ver. Tabla 3).

Tabla 4. Conjuntos de variables transformadas en Rasters-PC por cada ecorregión hidrográfica, indicando el número de #PC (Componentes Principales) y porcentaje de variación representada.

	Atacama		Patagonia		South Andean Pacific Slopes		Valdivia	
Rasters-PC	#	% Var.	#	% Var.	#	% Var.	#	% Var.
Variables hidroclimáticas	4	93.7	4	93.9	3	93	3	92.79
Cobertura terrestre	6	90.6	7	89.22	7	92.43	6	89.42
Tipos de Suelos	3	91.8	6	92.77	4	91.64	5	94.17

Tanto los Rasters de las variables ambientales como los Rasters-PC de los conjuntos de variables seleccionados se encuentran disponibles en: <a href="https://gitlab.com/ccmartinezg/_identificacion-obtencion-y-mapeamento-de-variables-ambientales-y-metricas-espaciales-para-el-modelamiento-de-distribucion-de-especies-dulceacuicolas-en-un-escenario-de-fragmentación-ecosistemico-en-las-cuencas-hidrograficas-de-chile.git

Métricas Espaciales y fragmentación ecosistémico en las ecorregiones de agua dulce

Con la georreferenciación de las barreras (actuales y futuras) y las métricas espaciales de área, volumen y grado de regulación de la red hídrica por barreras de origen antrópico (DOR) extrapoladas en la red hídrica, se consiguió calcular los escenario de fragmentación de las ecosistemas de agua dulce en cada una de las ecorregiones. afectadas por la presencia de barreras (*Figura 3*, *Tablas 5-8*).

Tabla 5. Comparación de las métricas espaciales entre los escenarios de fragmentación en la ecorregión: Atacama

Atacama	Largo de los ríos	%	Grado de regulación	Área	%	Volumen de agua	%
Escenario natural	42458.96	100	0	2774.906	100	9063.977	100
Escenario actual	42458.96	100	0	2774.906	100	9063.977	100
Escenario futuro	42458.96	100	0	2774.906	100	9063.977	100

Tabla 6. Comparación de las métricas espaciales entre los escenarios de fragmentación en la ecorregión: Patagonia

Patagonia	Largo de los ríos	%	Grado de regulación	Área	%	Volumen de agua	%
Escenario natural	74615.39	100	0	52647.46	100	451492.666	100
Escenario actual	74615.39	100	0	52647.46	100	451492.666	100
Escenario futuro	72211.82	96.7	36079/1.26	49619.0	94.25	403420.151	89.3

Escenario Actual

Escenario Futuro

Figura 3. Comparación de las escenarios de fragmenta entre los escenarios de fragmentación en la ecorregión.

Tabla 7. Comparación de las métricas espaciales entre los escenarios de fragmentación en la ecorregión: Cuencas centrales de los Andes.

South Andean Pacific Slopes	Largo de los ríos	%	Grado de regulación	Área	%	Volumen de agua	%
Escenario natural	53496.49	100	118444/8.56	55157.71	100	711845.283	100
Escenario actual	43091.46	80.55	26164/2.36	45994.27	83.3	624360.365	87.7
Escenario futuro	39352.3	73.56	18782/1.89	41963.15	76.0	583256.22	81.9

Tabla 8. Comparación de las métricas espaciales entre los escenarios de fragmentación en la ecorregión: de Valdivia.

Valdivian lakes	Largo de los ríos	%	Grado de regulación	Área	%	Volumen de agua	%
Escenario natural	22172.24	100	0	25284.17	100	314427.19	100
Escenario actual	22125.95	99.79	0	25253.37	99.8	314330.391	99.9
Escenario futuro	20041.01	90.38	0	22711.21	89.8	282046.216	89.7

DISCUSIÓN Y CONCLUSIONES

En general, el uso extendido de predictores macroecológicos como la temperatura del aire y la precipitación para el estudio de los patrones de distribución de la diversidad de especies de agua dulce son suficientes para hacer una evaluación general el "panorama general" en una escala espacial gruesa (McGarvey *et al.* 2017); sin embargo, para lograr los objetivos de esta Unidad de Investigación I se decidió obtener resultados a una escala más fina, para ello, fue necesario que la caracterización de los cuerpos de agua se pudiera mejorar aún más usando variables ambientales específicas del agua dulce en la resolución espacial de 1km² (Domisch *et al.* 2015).

Se espera que esta etapa de identificación de las variables y las métricas de importancia ecológica realizadas durante el desarrollo de ésta Unidad de Investigación I, facilite las etapas futuras de la investigación como, por ejemplo, la creación e identificación de los componentes bióticos (Ocurrencia) a realizar durante la Unidad de Investigación II, y que estos componentes se integren durante el modelamiento ecológico de los patrones de distribución actuales y futuros de las especies dulceacuícolas en el escenario de fragmentación ecológico en las cuencas hidrográficas de Chile, también se espera que las variables seleccionadas y las métricas desarrolladas sirvan para mejorar el desempeño predictivo de los modelos en los escenarios actuales de cambio climático y alteraciones antrópicas (IPCC 2014, Lacy et al. 2019).

Los análisis de la fragmentación desarrollados durante esta Unidad de Investigación I muestran que las cuencas centrales de los Andes (*South Andean Pacific Slopes*), será la ecorregión más afectada con una pérdida de red fluvial de entre un 24-27%, un escenario más conservador que el planteado por los escenarios de fragmentación actual (2018) y futura (2050) de Diaz *et al.* (2019), los cuales pronostican un aumento en 155 la fragmentación en los sistemas fluviales chilenos, estas diferencias posiblemente a las diferentes escalas de estudio y a los orígenes de los datos de las barreras hidroeléctricas; sin embargo en ambos casos se espera que fragmentación afecte la conectividad y función ecológica, así como la pérdida de la capacidad de resiliencia a otros factores de estrés antropogénicos de las cuencas hidrográficas centrales de Chile (Thoms *et al.* 2018). Por esta razón la fragmentación debería ser considerada en los modelos de distribución de especies a futuro al menos en esta ecorregión hidrográfica. Las métricas espaciales calculadas serán fundamentales para determinar los Índices de Conectividad Detrítica (DCI, Cote *et al.* 2008): DCId: Para especies Diádromas, DCIp para especies Potádromas y el DCI natural (estados sin barreras antrópicas) (Cote *et al.* 2009), durante el desarrollo de la Unidad de Investigación II.

REFERENCIAS BIBLIOGRAFÍCAS

- Abell, Robin, et al. "Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation." BioScience, vol. 58, no. 5, May 2008, pp. 403–14. DOI.org (Crossref), doi:10.1641/B580507.
- Alin, A. 2010. Multicollinearity: Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 370–374. https://doi.org/10.1002/wics.84
- Baessler, C., & Klotz, S. 2019. Introduction to Part II: Drivers and Their Risks for Ecosystems, Their Functions, and Services. Atlas of Ecosystem Services, 35–38. https://doi.org/10.1007/978-3-319-96229-0
- Baessler, C., & Klotz, S. 2019. Introduction to Part II: Drivers and Their Risks for Ecosystems, Their Functions, and Services. Atlas of Ecosystem Services, 35–38. https://doi.org/10.1007/978-3-319-96229-0
- Barbarossa, V., Schmitt, R. J., Huijbregts, M. A., Zarfl, C., King, H., & Schipper, A.
 M. 2020. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences, 117(7), 3648-3655.
- Barradas, J.R. de S., Silva, L. G., Harvey, B. C., Fontoura, N. F. 2012. Estimating migratory fish distribution from altitude and basin area: A case study in a large Neotropical River. Freshwater Biology, 57(11), 2297–2305. https://doi.org/10.1111/fwb.12003
- Bartle, A. 2002. Hydropower potential and development activities. Energy Policy, 30, 1231–1239. https://doi-org.ezproxy.unal.edu.co/10.1016/S0301-4215(02)00084-8
- Bunn, S. E. & A. H. Arthington. 2002. Basic Principles and Ecological Consequences of Altered Flow Regimes for aquatic Biodiversity. Environmental Management 30(4): 492-507.
- Castillo, E. J., & Huaico-Malhue, A. 2020. COVID-19 en tiempos de escasez hídrica, una mirada hacia las zonas rurales. Geográfica del Sur, 9(1), 6-7.
- Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi & J. T. Teller, 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science 293: 283–287
- Cote, D., Kehler, D. G., Bourne, C., & Wiersma, Y. F. 2008. A new measure of longitudinal connectivity for stream networks. Landscape Ecology, 24(1), 101–113. doi:10.1007/s10980-008-9283-y
- Crook, D. A., Lowe, W. H., Allendorf, F. W., Erős, T., Finn, D. S., Gillanders, B. M.,
 ... & Hughes, J. M. (2015). Human effects on ecological connectivity in aquatic ecosystems: integrating scientific approaches to support management and mitigation.
 Science of the Total Environment, 534, 52-64.
- Crook, D. A., Reich, P., Bond, N. R., McMaster, D., Koehn, J. D., & Lake, P. S. (2010). Using biological information to support proactive strategies for managing

- freshwater fish during drought. Marine and Freshwater Research, 61(3), 379. https://doi.org/10.1071/MF09209
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables. 2010. Clasificación de Cuerpos de Agua. Informe Final. Comisión Nacional del Medio Ambiente. Santiago, Chile. 115 pp.
- DGA. 2012. Estrategia Nacional de Recursos Hídricos 2012 -2025. Chile cuida su agua. Direc-ción General de Aguas Ministerio de Obras Públicas, Santiago. Recuperado el 26 de Febrero de 2019 de http://documentos.dga.cl/ADM5407.pdf
- Díaz, G., Arriagada, P., Górski, K. et al. Fragmentation of Chilean Andean rivers: expected effects of hydropower development. Rev. Chil. de Hist. Nat. 92, 1 (2019). https://doi.org/10.1186/s40693-019-0081-5
- Díaz, G., Arriagada, P., Górski, K. et al. Fragmentation of Chilean Andean rivers: expected ef-fects of hydropower development. Rev. Chil. de Hist. Nat. 92, 1 (2019). https://doi.org/10.1186/s40693-019-0081-5
- Dinerstein E Olson DM Graham DJ Webster AL Primm SA Bookbinder MP Ledec G. 1995.. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Carribean. Washington (DC)World Bank.
- Domisch, S., Amatulli, G., and Jetz, W. 2015. Near-global freshwater-specific environmental vari-ables for biodiversity analyses in 1 km resolution. Scientific Data 2:150073 https://doi.org/10.1038/sdata.2015.73
- Downing, J. A., J. J. Cole, C. M. Duarte, J. J. Middelburg, J. M. Melack, Y. T. Prairie, P. L. Kor-telainen, R. G. Striegl, W. H. McDowell & L. J. Tranvik, 2012. Global abundance and size distribution of streams and rivers. Inland Waters 2: 229–236.
- Dunham, J. B., Angermeier, P. L., Crausbay, S. D., Cravens, A. E., Gosnell, H., McEvoy, J., ... Sanford, T. 2018. Rivers are social-ecological systems: Time to integrate human dimensions into riverscape ecology and management. Wiley Interdisciplinary Reviews: Water, 5(4), e1291. doi:10.1002/wat2.1291
- Echeverria, C., Coomes, D., Salas, J., Rey-Benayas, J. M., Lara, A., & Newton, A. 2006. Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation, 130(4), 481–494. doi:10.1016/j.biocon.2006.01.017
- Elith, J. C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Leahmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M. Overton, A.T. Peterson, S.J. Phillips, K.S. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wisz, N.E. Zimmermann. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, pp. 129-151 https://doi.org/10.1111/j.2006.0906-7590.04596.x
- Fierro, P., Valdovinos, C., Arismendi, I., Díaz, G., Ruiz De Gamboa, M., & Arriagada, L. (2019). Assessment of anthropogenic threats to Chilean Mediterranean freshwater ecosystems: Literature review and expert opinions. Environmental Impact Assessment Review, 77, 114–121. https://doi.org/10.1016/j.eiar.2019.02.010

- Franklin, J. 2013. Species distribution models in conservation biogeography: developments and challenges. Diversity Distrib. 19: 1217-1223. https://doi.org/10.1111/ddi.12125
- Fuster, R., Escobar, C., Lillo, G., & de la Fuente, A. 2014. Construction of a typology system for rivers in Chile based on the European Water Framework Directive (WFD). Environmental Earth Sciences, 73(9), 5255–5268. doi:10.1007/s12665-014-3772-x
- García, A., Jorde, K., Habit, E., Caamaño, D., & Parra, O. 2011. Downstream environmental effects of dam operations: Changes in habitat quality for native fish species. River Research and Applications, 27(3), 312–327. https://doi.org/10.1002/rra.1358
- García-Nielsen J. 2019. River and watersheds restoration in Chile: diagnosis and challenges. Re-vista de Derecho Administrativo Económico, Nº 29 pp. 139-162. DOI: 10.7764/redae.29.6
- Gis mapping software, location intelligence & spatial analytics | esri. (n.d.). Retrieved July 15, 2021, from https://www.esri.com/en-us/home
- Groves, Craig R., et al. "Planning for Biodiversity Conservation: Putting Conservation Science into Practice: A seven-step framework for developing regional plans to conserve biological diversity, based upon principles of conservation biology and ecology, is being used extensively by the nature conservancy to identify priority areas for conservation." BioScience 52.6 (2002): 499-512.
- Habit, E. M., P. Piedra, D. E. Ruzzante et al. 2010. Changes in the Distribution of Native Fishes in Response to Introduced Species and other Anthropogenic effects. Global Ecology and Biogeography 19(5): 697-710
- Habit, E. M., P. Piedra, D. E. Ruzzante et al. 2010. Changes in the Distribution of Native Fishes in Response to Introduced Species and other Anthropogenic effects. Global Ecology and Biogeo-graphy 19(5): 697-710
- Habit, E., Belk, M. C., & Parra, O. 2006. Response of the riverine fish community to the construction and operation of a diversion hydropower plant in central Chile. Aquatic Conservation Marine and Freshwater Ecosystems, 17(1), 37–49. doi:10.1002aqc.774 B)
- Habit, E., Belk, M. C., & Parra, O. 2006. Response of the riverine fish community to the construction and operation of a diversion hydropower plant in central Chile. Aquatic Conservation Marine and Freshwater Ecosystems, 17(1), 37–49. doi:10.1002aqc.774 B)
- Habit, E., Dyer, B., Vila, I., z. 2006 Current state of knowledge of freshwater fishes of Chile. Gayana (1): 100-112. A)
- Habit, E., García, A., Díaz, G., Arriagada, P., Link, O., Parra, O., Thoms, M., 2019. River science and management issues in Chile: hydropower development and native fish communities. River Res. Appl. 35 (5), 489–499. https://doi.org/10.1002/rra.3374 A)

- Habit, E., García, A., Díaz, G., Arriagada, P., Link, O., Parra, O., Thoms, M., 2019.
 River science and management issues in Chile: hydropower development and native fish communities. River Res. Appl. 35 (5), 489–499. https://doi.org/10.1002/rra.3374
 A)
- Habit, E., K. Górski, D. Alò, E. Ascencio, A. Astorga, N. Colin, T. Contador, P. de los Ríos, V. Delgado, C. Dorador, P. Fierro, K. García, O. Parra, C. Quezada-Romegialli, B. Ried, P. Rivera, C. Soto-Azat, C. Valdovinos, I. Vera-Escalona, S. Woelfl. 2019. Biodiversidad de Ecosistemas de Agua Dulce. Mesa Biodiversidad-Comité Científico COP25; Ministerio de Ciencia, Tecnología, Conocimiento e Innovación. 64 páginas. B)
- Habit, E., K. Górski, D. Alò, E. Ascencio, A. Astorga, N. Colin, T. Contador, P. de los Ríos, V. Delgado, C. Dorador, P. Fierro, K. García, O. Parra, C. Quezada-Romegialli, B. Ried, P. Rivera, C. Soto-Azat, C. Valdovinos, I. Vera-Escalona, S. Woelfl. 2019. Biodiversidad de Ecosistemas de Agua Dulce. Mesa Biodiversidad-Comité Científico COP25; Ministerio de Ciencia, Tecnolo-gía, Conocimiento e Innovación. 64 páginas. B)
- Hall, C. J., Jordaan, A., & Frisk, M. G. (2011). The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landscape Ecology, 26(1), 95–107. https://doi.org/10.1007/s10980-010-9539-1
- Hall, C. J., Jordaan, A., & Frisk, M. G. 2011. The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landscape Ecology, 26, 95–107. https://doiorg.ezproxy.unal.edu.co/10.1007/s10980-010-9539-1
- Harman, H. 1976. Modern Factor Analysis. University of Chicago Press. pp. 175, 176. ISBN 978-0-226-31652-9.
- HydroSHEDS. https://www.hydrosheds.org/. Accessed 20 May 2021.
- IPCC, 2014. IPCC Fifth Assessment Report (AR5)—The physical science basis. IPCC.
- Iwasaki, Y., M. Ryo, P. Sui & C. Yoshimura, 2012. Evaluating the relationship between basin-scale fish species richness and ecologically relevant flow characteristics in rivers worldwide. Freshwater Biology 57: 2173–2180.
- Jones, J. P. G. 2011. Monitoring species abundance and distribution at the landscape scale. Jour-nal of Applied Ecology, 48(1), 9–13. https://doi.org/10.1111/j.1365-2664.2010.01917.x
- Laborde, A., González, A., Sanhueza, C., Arriagada, P., Wilkes, M., Habit, E., & Link, O. (2016). Hydropower development, riverine connectivity, and non-sport fish species: Criteria for hydraulic design of fishways: criteria for hydraulic design of fishways. River Research and Applications, 32(9), 1949–1957. https://doi.org/10.1002/rra.3040

- Lacy, S. N., Corcoran, D., Alò, D., Lessmann, J., Meza, F., & Marquet, P. A. 2019. Main drivers of freshwater fish diversity across extra-tropical Southern Hemisphere rivers. Hydrobiologia. https://doi.org/10.1007/s10750-019-04044-9
- Lacy, S. N., Meza, F. J., & Marquet, P. A. 2017. Can environmental impact assessments alone conserve freshwater fish biota? Review of the Chilean experience. Environmental Impact Assess-ment Review, 63, 87-94.
- Latini, A.O., & Petrere Júnior, M. 2018. Efficiency of rapid field methods for detecting non-native fish in Eastern Brazilian lakes. Hydrobiologia, 817(1), 85–96. https://doi.org/10.1007/s10750-018-3624-x
- Lehman, Ann. 2005. Jmp para estadísticas básicas univariadas y multivariadas: una guía paso a paso. Cary, Carolina del Norte: SAS Press. pag. 123. ISBN 978-1-59047-576-8.
- Lehner, B., Linke, S. & Thieme, M. HydroATLAS version 1.0. figshare, https://doi.org/10.6084/m9.figshare.9890531 (2019).
- León-Muñoz, J., Echeverría, C., Marcé, R., Riss, W., Sherman, B., Iriarte, J.L., 2013. The com-bined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8°S) Journal of Environmental Management 128, 283-291.
- Leutner, B.; Horning, N.; E Schwalb-Willmann, J. Rstoolbox: Tools for remote sensing data analysis in r. (n.d.). Retrieved July 31, 2021, from http://bleutner.github.io/RStoolbox/
- Linke, S. et al. Merging connectivity rules and large-scale condition assessment improves conservation adequacy in river systems. J. Appl. Ecol. 49, 1036–1045 (2012).
- Martínez Ruiz, T. 2020. Rojas Hernández, J. y Barra Ríos, R. (eds.). 2020. Seguridad Hídrica. Derechos de agua, escasez, impactos y percepciones ciudadanas en tiempos de cambio climático. Santiago de Chile: RIL Editores, 344 pp. Relaciones Internacionales, (45), 443-446.
- Mason, R. L., Gunst, R. F., & Hess, J. L. 2003. Statistical design and analysis of experiments: With applications to engineering and science (2nd ed). J. Wiley.
- McGarvey, D. J., Menon, M., Woods, T., Tassone, S., Reese, J., Vergamini, M., & Kellogg, E. 2018. On the use of climate covariates in aquatic species distribution models: Are we at risk of throwing out the baby with the bath water? Ecography, 41(4), 695–712. https://doi.org/10.1111/ecog.03134
- Ministerio del Medio Ambiente, Chile. 2017. Estrategia Nacional de Biodiversidad 2017-2030. Disponible en http://bit.ly/34FA8yU.
- Muehlbauer, J. D., S. F. Collins, M. W. Doyle & K. Tockner, 2014. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis. Ecology 95: 44–55.

- Mulligan, M., L. Saenz-Cruz, A. van Soesbergen, V.T. Smith, and L. Zurita.
 2009. Global dams database and geowiki. Version 1.
 http://geodata.policysupport.org/dams. Version 1.
- Nguyen, T., Everaert, G., Boets, P., Forio, M., Bennetsen, E., Volk, M., Hoang, T., & Goethals, P. 2018. Modelling tools to analyze and assess the ecological impact of hydropower dams. Water, 10(3), 259. https://doi.org/10.3390/w1003025
- Pelicice, F. M., Azevedo-Santos, V. M., Vitule, J. R., Orsi, M. L., Lima Junior, D. P., Magalhães, A. L., ... Agostinho, A. A. (2017). Neotropical freshwater fishes imperilled by unsustainable poli-cies. Fish and Fisheries, 18, 1119–1133. https://doiorg.ezproxy.unal.edu.co/10.1111/faf.12228
- Peredo-Parada, M; Martínez-Capel, F; 1, Garófano-Gomez, V; A tenas, M; Riestra F.
 2009. Eco-hydrological database of Chilean rivers: a tool for management of aquatic ecosystems. Gayana 73(1): 119-129, 2009 ISSN 0717-652x
- Perkin, J. S., & Gido, K. B. 2012. Fragmentation alters stream fish community structure in den-dritic ecological networks. Ecological Applications, 22(8), 2176-2187.
- Petts, G. E. 1984. Impounded rivers. Chichester: Wiley.
- Piessens, K., Honnay, O., & Hermy, M. 2005. The role of fragment area and isolation in the con-servation of heathland species. Biological Conservation, 122(1), 61–69. doi:10.1016/j.biocon.2004.05.023
- Pizarro J, Vergara PM, Rodríguez JA, Sanhueza PA, Castro SA. 2010. Nutrients dynamics in the main river basins of the centre-southern region of Chile. Journal of Hazardous Materials. 175(1-3):608-613. http://dx.doi.org/10.1016/j.jhazmat.2009.10.048
- Poff, N. L. 2019. A river that flows free connects up in 4D. Nature, 569 (7755), 201–202. doi:10.1038/d41586-019-01393-2
- Rolls, R. J., J. Heino, D. S. Ryder, B. C. Chessman, I. O. Growns, R. M. Thompson,
 & K. B. Gido. 2017. Scaling Biodiversity Responses to Hydrological Regimes.
 Biological Reviews, 93(2): 971-995
- Taylor, A. T., Papeş, M., & Long, J. M. 2018. Incorporating fragmentation and nonnative species into distribution models to inform fluvial fish conservation. Conservation Biology, 32(1), 171-182.
- Taylor, A. T., Papeş, M., & Long, J. M. 2018. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation. Conservation Biology, 32(1), 171-182.
- Thoms, M. C., Piegay, H., & Parsons, M. 2018. What do you mean, 'resilient geomorphic sys-tems'? Geomorphology, 305, 8–19. https://doiorg.ezproxy.unal.edu.co/10.1016/j.geomorph.2017.09.003
- Torremorell A., Hegoburu C, Brandimarte A.B., Costa Rodrigues E., Pompêo M., Cardoso da Silva S., Moschini-Carlos, V., Caputo L., et al. Present and future threats

- for the ecological quali-ty management of South American freshwater ecosystems. Inland Waters (en prensa)
- Valenzuela-Aguayo, F, McCracken, GR, Manosalva, A, Habit, E, Ruzzante, DE. Human-induced habitat fragmentation effects on connectivity, diversity, and population persistence of an endemic fish, Percilia irwini, in the Biobio River basin (Chile). Evol Appl. 2020; 13: 795–808. https://doi.org/10.1111/eva.12901
- Vargas, C. A., Garreaud, R., Barra, R., Vásquez-Lavin, F., Saldías, G. S., & Parra, O. 2020. Envi-ronmental costs of water transfers. Nature Sustainability. doi:10.1038/s41893-020-0526-5
- Vicuña, S., Hermansen, C., Cerda, J. P., Olivares, M. A., Gomez, T. I., Toha, E., Poblete, D., Mao, L., Falvey, M. J., Pliscoff, P., Melo, O., Lacy, S., Peredo, M., Marquet, P. A., Maturana, J., & Gironas, J. A. (2017). A modeling tool to support decision making in future hydropower development in Chile. AGU Fall Meeting Abstracts, 14. http://adsabs.harvard.edu/abs/2017AGUFM.H14C..06V
- Vila I. & E. Habit. 2015. Current situation of the fish fauna in the Mediterranean region of Ande-an river systems in Chile. FiSHMED Fishes in Mediterranean Environments 1–19.
- Vila L. 2001. La diversidad acuática: estructura, funciones y salud de las cuencas, bases para el Manejo Integrado en Sustentabilidad, Proyecto PMRH, Ministerio de Obras Públicas, Gobierno de Chile.
- Vila, I., & Habit, E. 2015. Current situation of the fish fauna in the Mediterranean region of Andean river systems in Chile. Fishes in Mediterranean Environments, 2015. https://doi.org/10.29094/FiSHMED.2015.002
- Vila, I., Fuentes, L., & Contreras, M. 1999. Peces Límnicos de Chile. Boletín del Museo Nacional de Historia Natural Chile, 48, 61–75.
- Vila, I., S. Scott, M. A. Mendez, F. Valenzuela, P. Iturra y E. Poulin 2011. «Orestias gloriae, a New Species of Cyprinodontid Fish from Saltpan Spring of the Southern High Andes (Teleostei: Cyprinodontidae) ». Ichthyological Exploration of Freshwaters 22(4): 345-353.
- Vivancos, A., Górski, K., Manosalva, A., Toledo, B., Reid, M., & Habit, E. 2021. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). Journal of Fish Biology, 98 (1), 33–43. https://doi.org/10.1111/jfb.14554
- Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., ... & Davies, P. M. 2010. Global threats to human water security and river biodiversity. nature, 467(7315), 555-561.
- Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet- Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, ... L. Sáenz. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351: 128–129. https://doi.org/10.1126/science.aac7082

- Xenopoulos, M. A. & D. M. Lodge, 2006. Going with the flow: using species-discharge relation-ships to forecast losses in fish biodiversity. Ecology 87: 1907–1914
- Zamorano, D., Labra, F. A., Villarroel, M., Lacy, S., Mao, L., Olivares, M. A., & Peredo-Parada, M. 2019. Assessing the effect of fish size on species distribution model performance in southern Chilean rivers. PeerJ, 7, e7771. https://doi.org/10.7717/peerj.7771
- Zarfl, C., Lumsdon, A.E., Berlekamp, J. et al. A global boom in hydropower dam construction. Aquat Sci 77, 161–170 (2015). https://doi.org/10.1007/s00027-014-0377-0
- Zorn, T. G., P. W. Seelbach, & M. J. Wiley, 2009. Relationships between habitat and fish density in Michigan streams. State of Michigan Department of Natural Resources, Fisheries Research Re-port 2091

MATERIAL SUPLEMENTARIO

S1. Análisis ecorregión: Atacama

S1a. Gráficos de la matrices de correlación (Spearman)

• Variables hidroclimáticas

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

límite de correlación absoluta de 0.7

• Cobertura terrestre

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

límite de correlación absoluta de 0.7

• Tipos de Suelos

Correlogramas. Εl tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

límite de correlación absoluta de 0.7

S1b. Factor de inflación de la varianza (VIF)

 Variables hidroclimáticas

VIF<10						
Variables	VIF					
hydro_avg_03	1.922375771					
hydro_avg_07	3.186556853					
hydro_avg_08	2.767881291					
hydro_avg_09	3.294093199					
hydro_avg_13	3.271317856					
hydro_avg_14	3.32372951					
hydro_avg_15	1.720765194					

VIF<2					
Variables	VIF				
hydro_avg_03	1.888968209				
hydro_avg_07	1.768289582				
hydro_avg_08	1.773123154				
hydro_avg_13	1.03843465				
hydro_avg_15	1.701816631				

• Cobertura terrestre

VIF<10						
Variables	VIF					
lc_range_01	4.473088979					
lc_range_02	3.334712828					
lc_range_03	1.681082865					
lc_range_04	2.806217564					
lc_range_05	1.93984237					
lc_range_06	2.347627769					
lc_range_07	3.058123581					
lc_range_08	3.009602498					
lc_range_09	1.821841999					
lc_range_10	3.454074586					
lc range 12	5.100216991					

VIF<2		
Variables	VIF	
lc_range_01	1.200976303	
lc_range_03	1.386954289	
lc_range_05	1.354518918	
lc_range_06	1.652625501	
lc_range_07	1.87745653	
lc_range_09	1.802864266	

• Tipos de Suelos

VIF<10			
Variables	VIF		
soil_avg_01	5.710009585		
soil_avg_03	4.452190197		
soil_avg_04	3.691247741		
soil_avg_05	5.198399908		
soil_avg_06	4.670780386		
soil_avg_09	5.608416909		
soil_avg_10	8.643216537		

VIF<2			
Variables	VIF		
soil_avg_04	1.24904588		
soil_avg_06	1.291887023		
soil avg 09	1.109540045		

S1c. Análisis factorial (FA)

• Variables hidroclimáticas

	MR1	MR2	MR3	MR4
hydro_avg_01	0.9868	0.0861	0.0096	0.1351

hydro avg 02	0.4629	0.0321	0.4221	0.7771
hydro_avg_03	0.425	0.0043	0.2897	0.8231
hydro_avg_04	0.1619	0.0921	0.9516	0.1869
hydro_avg_05	0.9753	0.0805	0.1995	0.0083
hydro_avg_06	0.9148	0.0841	0.2253	0.3245
hydro_avg_07	0.398	0.0487	0.6844	0.5897
hydro_avg_08	0.7604	0.0326	0.4355	0.13
hydro_avg_09	0.896	0.0919	0.2527	0.2144
hydro_avg_10	0.9771	0.0793	0.0711	0.1839
hydro_avg_11	0.9785	0.0938	0.1214	0.1379
hydro_avg_12	0.0518	0.9952	0.0318	0.0347
hydro_avg_13	0.0293	0.9524	0.0772	0.0581
hydro_avg_14	0.1096	0.9321	0.0823	0.0475
hydro_avg_15	0.2382	0.0989	0.5918	0.1272
hydro_avg_16	0.0371	0.9652	0.0661	0.0544
hydro_avg_17	0.1089	0.9386	0.0821	0.0428
hydro_avg_18	0.0371	0.9652	0.0661	0.0544
hydro_avg_19	0.1089	0.9386	0.0821	0.0428

• Cobertura terrestre

Parallel Analysis Scree Plots

	MR1	MR2	MR3	MR4
lc_range_01	0.9325	0.0474	0.0589	0.1058
lc_range_02	0.6021	0.2011	0.5453	0.1975
lc_range_03	0.0054	0.0531	0.6516	0.0748
lc_range_04	0.1964	0.5363	0.2208	0.6031
lc_range_05	0.0976	0.9643	0.2101	0.1277
lc_range_06	0.2568	0.2748	0.3463	0.6984
lc_range_07	0.415	0.2393	0.6166	0.2198
lc_range_08	0.4585	0.2811	0.6361	0.1216
lc_range_09	0.1528	0.188	0.6128	0.2443
lc_range_10	0.7713	0.1206	0.3381	0.1598

lc_range_11				
lc_range_12	0.8523	0.1489	0.2495	0.1375

• Tipos de Suelos

Parallel Analysis Scree Plots

	MR1	MR3	MR2	MR4
soil_avg_01	0.2299	0.8733	0.332	0.2428
soil_avg_02	0.9752	0.21	0.0629	0.032
soil_avg_03	0.8899	0.4003	0.0704	0.0924
soil_avg_04	0.699	0.2244	0.1939	0.5869
soil_avg_05	0.8799	0.1708	0.1931	0.1605
soil_avg_06	0.364	0.7844	0.2075	0.0517
soil_avg_07	0.8758	0.2824	0.0707	0.2657
soil_avg_08	0.9611	0.1659	0.1356	0.101
soil_avg_09	0.003	0.1338	0.912	0.0401
soil avg 10	0.2852	0.3475	0.8776	0.0724

S2. Análisis ecorregión: Patagonia

S2a. Gráficos de la matrices de correlación (Spearman)

• Variables hidroclimáticas

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

• Cobertura terrestre

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

Tipos de Suelos

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

S2b. Factor de inflación de la varianza (VIF)

• Variables hidroclimáticas

VIF<10			
Variables	VIF		
hydro_avg_02	1.53371106		
hydro_avg_03	1.328531505		
hydro_avg_08	2.693141615		
hydro_avg_13	1.03707506		
hydro avg 15	1.813662518		

VIF<2			
Variables	VIF		
hydro_avg_02	1.170926795		
hydro_avg_03	1.014425053		
hydro_avg_13	1.030102597		
hydro_avg_15	1.175154089		

• Cobertura terrestre

VIF<10		
Variables	VIF	
lc_range_01	3.154164365	
lc_range_02	5.31242424	
lc_range_03	4.571725344	
lc_range_04	3.132460015	
lc_range_05	3.521594583	
lc_range_06	2.424105668	
lc_range_07	3.345615713	
lc_range_08	3.29485258	
lc_range_09	1.656713715	
lc_range_10	2.091763823	
lc_range_11	4.06055331	
lc_range_12	3.000629234	

VIF<2		
Variables	VIF	
lc_range_04	1.389326688	
lc_range_05	1.406608254	
lc_range_06	1.660764722	
lc_range_09	1.310528753	
lc range 10	1.331162454	

• Tipos de Suelos

VIF<10		
Variables	VIF	
soil_avg_02	3.833171876	
soil_avg_03	2.960873479	
soil_avg_05	3.161894455	
soil_avg_06	4.098308387	
soil_avg_07	4.158871151	
soil_avg_08	8.248660892	
soil avg 09	2.141612636	

VIF<2		
Variables	VIF	
soil_avg_02	1.387952232	
soil_avg_05	1.115123527	
soil_avg_07	1.164778926	
soil avg 09	1.400525796	

S2c. Análisis factorial (FA)

• Variables hidroclimáticas

Parallel Analysis Scree Plots

	MR1	MR2	MR3	MR4
hydro_avg_01	0.068	0.9955	0.0676	0.0088
hydro_avg_02	0.1253	0.1596	0.9776	0.1494
hydro_avg_03	0.0326	0.3327	0.0743	0.358
hydro_avg_04	0.1509	0.0243	0.9073	0.2215
hydro_avg_05	0.1324	0.7578	0.6396	0.0109
hydro_avg_06	0.021	0.8832	0.4443	0.0434
hydro_avg_07	0.1404	0.0842	0.9788	0.0297
hydro_avg_08	0.0851	0.3454	0.3522	0.6539
hydro_avg_09	0.1266	0.6652	0.5198	0.5144
hydro_avg_10	0.1104	0.9245	0.3543	0.068
hydro_avg_11	0.0134	0.9563	0.2636	0.0889
hydro_avg_12	0.9932	0.0494	0.1041	0.0353
hydro_avg_13	0.9764	0.0651	0.1375	0.0206
hydro_avg_14	0.9816	0.029	0.0593	0.0489
hydro_avg_15	0.1002	0.3335	0.6838	0.283
hydro_avg_16	0.9781	0.0641	0.1333	0.0235
hydro_avg_17	0.9871	0.0318	0.0666	0.0473
hydro_avg_18	0.9781	0.0641	0.1333	0.0235
hydro_avg_19	0.9871	0.0318	0.0666	0.0473

• Cobertura terrestre

Parallel Analysis Scree Plots

	MR1	MR2	MR3	MR4	MR5
lc_range_01	0.7424	0.08464	0.05575	0.45265	0.13644
lc_range_02	0.11952	0.33227	0.03485	0.7567	0.22373
lc_range_03	0.18364	0.27961	0.02865	0.40075	0.65239
lc_range_04	0.457	0.09304	0.16571	0.77142	0.15061
lc_range_05	0.15435	0.61929	0.27865	0.37421	0.18595
lc_range_06	0.53952	0.19242	0.32814	0.19471	0.5075
lc_range_07	0.08936	0.67637	0.13238	0.10468	0.17651
lc_range_08	0.33911	0.61738	0.05155	0.05853	0.28677
lc_range_09	0.0884	0.55544	0.07339	0.12417	0.01334
lc_range_10	0.5771	0.13378	0.30898	0.09302	0.05863
lc_range_11	0.44723	0.44617	0.75343	0.14194	0.10252
lc_range_12	0.63199	0.40512	0.05499	0.15987	0.19324

• Tipos de Suelos

Parallel Analysis Scree Plots

soil_avg_01	0.00924	0.12456	0.05983	0.04388	0.98881
soil_avg_02	0.03733	0.54875	0.35099	0.58479	0.46147
soil_avg_03	0.08596	0.99186	0.12378	0.09582	0.00578
soil_avg_04	0.12004	0.52133	0.06096	0.29697	0.23729
soil_avg_05	0.09104	0.06199	0.91543	0.02653	0.05507
soil_avg_06	0.32665	0.00724	0.17607	0.59172	0.10747
soil_avg_07	0.08724	0.05896	0.12093	0.82207	0.01676
soil_avg_08	0.1055	0.45972	0.46374	0.00522	0.43921
soil_avg_09	0.85205	0.01425	0.06813	0.09291	0.05141
soil_avg_10	0.96666	0.1351	0.09137	0.23779	0.01827

S3. Análisis ecorregión: South Andean Pacific Slopes

S3a. Gráficos de la matrices de correlación (Spearman)

 Variables hidroclimáticas

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

• Cobertura terrestre

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del cólor y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

Tipos de Suelos

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

S3b. Factor de inflación de la varianza (VIF)

 Variables hidroclimáticas

VIF<10		
Variables	VIF	
hydro_avg_02	1.53371106	
hydro_avg_03	1.328531505	
hydro_avg_08	2.693141615	
hydro_avg_13	1.03707506	
hydro_avg_15	1.813662518	

VIF<2		
Variables	VIF	
hydro_avg_	1.1709267	
02	95	
hydro_avg_	1.0144250	
03	53	
hydro_avg_	1.0301025	
13	97	
hydro_avg_	1.1751540	
15	89	

• Cobertura terrestre

VIF<10		
Variables	VIF	
lc_range_01	3.154164365	
lc_range_02	5.31242424	
lc_range_03	4.571725344	
lc_range_04	3.132460015	
lc_range_05	3.521594583	
lc_range_06	2.424105668	
lc_range_07	3.345615713	
lc_range_08	3.29485258	
lc_range_09	1.656713715	
lc_range_10	2.091763823	
lc_range_11	4.06055331	
lc_range_12	3.000629234	

VIF<2		
Variables	VIF	
lc_range_0	1.38932668	
4	8	
lc_range_0	1.40660825	
5	4	
lc_range_0	1.66076472	
6	2	
lc_range_0	1.31052875	
9	3	
lc_range_1	1.33116245	
0	4	

Tipos de Suelos

VIF	<10
Variables	VIF

VIF<2

soil_avg_02	3.833171876
soil_avg_03	2.960873479
soil_avg_05	3.161894455
soil_avg_06	4.098308387
soil_avg_07	4.158871151
soil_avg_08	8.248660892
soil_avg_09	2.141612636

Variables	VIF
soil avg 0	1.38795223
2	2
soil avg 0	1.11512352
5	7
soil avg 0	1.16477892
<u></u>	6
soil avg 0	1.40052579
_ ₉	6

S3c. Análisis factorial (FA)

• Variables hidroclimáticas

Parallel Analysis Scree Plots

	MR1	MR2	MR3	MR4
hydro_avg_01	0.9972	0.0109	0.0535	0.0708
hydro_avg_02	0.3478	0.0489	0.8916	0.2715
hydro_avg_03	0.4496	0.0635	0.3838	0.8035
hydro_avg_04	0.0444	0.0717	0.9033	0.3848
hydro_avg_05	0.8603	0.0737	0.4132	0.2428
hydro_avg_06	0.9462	0.0254	0.2479	0.1258
hydro_avg_07	0.0626	0.0737	0.9785	0.1821
hydro_avg_08	0.9692	0.0011	0.2424	0.0179
hydro_avg_09	0.9626	0.0379	0.181	0.1871
hydro_avg_10	0.9734	0.0298	0.1535	0.169
hydro_avg_11	0.9672	0.003	0.2568	0.0065
hydro_avg_12	0.0079	0.9972	0.0523	0.0174
hydro_avg_13	0.0158	0.9833	0.0648	0.0164
hydro_avg_14	0.0125	0.9863	0.0171	0.0228
hydro_avg_15	0.5785	0.1251	0.2371	0.1937
hydro_avg_16	0.0132	0.9898	0.0604	0.0165
hydro_avg_17	0.0118	0.9856	0.0193	0.0215
hydro_avg_18	0.0132	0.9898	0.0604	0.0165
hydro_avg_19	0.0118	0.9856	0.0193	0.0215

Parallel Analysis Scree Plots

Cobertura terrestre

	MR1	MR5	MR2	MR3	MR4
lc_range_01	0.44827	0.669	0.22527	0.08274	0.14571
lc_range_02	0.89706	0.14003	0.21023	0.19131	0.04113
lc_range_03	0.80108	0.20091	0.12631	0.24628	0.26046
lc_range_04	0.77377	0.22514	0.05144	0.19009	0.07041
lc_range_05	0.0021	0.20157	0.88947	0.12343	0.1339
lc_range_06	0.4172	0.24483	0.33411	0.50753	0.12308
lc_range_07	0.54361	0.09682	0.04153	0.75406	0.28423
lc_range_08	0.6499	0.43164	0.19453	0.12903	0.21556
lc_range_09	0.22024	0.2294	0.18102	0.19241	0.71037
lc_range_10	0.10759	0.63254	0.31854	0.06013	0.14727
lc_range_11	0.17716	0.38483	0.80098	0.05607	0.05972
lc_range_12	0.30587	0.80266	0.20238	0.15227	0.11166

• Tipos de Suelos

Parallel Analysis Scree Plots

	MR1	MR2	MR3	MR4
soil_avg_01				
soil_avg_02	0.2629	0.3223	0.23508	0.88403
soil_avg_03				
soil_avg_04	0.5064	0.32267	0.66332	0.13237

soil_avg_05	0.73308	0.19089	0.24788	0.00856
soil_avg_06				
soil_avg_07	0.55481	0.37011	0.3729	0.36576
soil_avg_08	0.93579	0.19649	0.11236	0.14829
soil_avg_09	0.08545	0.89735	0.13484	0.17435
soil_avg_10	0.01975	0.94425	0.07656	0.17224

S4. Análisis ecorregión: Valdivian lakes

S4a. Matrices de correlación de rango de Spearman

 Variables hidroclimáticas

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

• Cobertura terrestre

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales los a coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

Tipos de Suelos

Correlograma. El tamaño de círculos muestran el valor absoluto de los coeficientes de correlación correspondientes. Las correlaciones positivas se muestran en azul y las correlaciones negativas en rojo. La intensidad del color y el tamaño del círculo son proporcionales a los coeficientes de correlación de Spearman.

Límite de correlación absoluta de 0.7

S4b. Factor de inflación de la varianza (VIF)

• Variables hidroclimáticas

VIF<10				
Variables	VIF			
hydro_avg_03	3.172118			
hydro_avg_08	1.415814			
hydro_avg_09	1.402523			
hydro_avg_14	1.028141			
hydro_avg_15	3.007629			

VIF<2				
Variables VIF				
hydro_avg_08	1.337228			
hydro_avg_09 hydro_avg_14	1.364903			
hydro_avg_14	1.028079			
hydro_avg_15	1.191031			

• Cobertura terrestre

VIF<10				
Variables	VIF			
lc_range_01	5.350205			
lc_range_02	2.736285			
lc_range_03	2.106907			
lc_range_04	3.308274			
lc_range_05	2.981104			
lc_range_06	2.61252			
lc_range_07	2.484033			
lc_range_08	3.749692			
lc_range_09	1.912904			
lc_range_10	2.38127			
lc_range_11	4.140189			
lc_range_12	4.536527			

VIF<2				
Variables	VIF			
lc_range_02	1.674538			
lc_range_03	1.787124			
lc_range_05	1.783079			
lc_range_06	1.623488			
lc_range_09	1.47072			
lc_range_12	1.495148			

• Tipos de Suelos

VIF<10				
Variables	VIF			
soil_avg_01	4.49587			
soil_avg_02	3.846696			
soil_avg_03	2.693198			
soil_avg_04	4.990798			
soil_avg_06	3.153549			
soil_avg_07	6.931939			
soil_avg_08	7.09462			
soil_avg_09	3.816232			
soil_avg_10	6.19336			

VIF<2				
Variables	VIF			
soil_avg_02	1.430579			
soil_avg_03	1.394251			
soil_avg_04	1.667696			
soil_avg_06	1.264231			
soil_avg_09	1.160451			

S4c. Análisis factorial (FA)

• Variables hidroclimáticas

	MR1	MR2	MR3	MR4
hydro_avg_01				
hydro_avg_02	0.0811	0.5754	0.4109	0.7059
hydro_avg_03				0.9092
hydro_avg_04				0.2927
hydro_avg_05	0.1005	0.3046	0.7317	0.6018

hydro avg 06	0.0318	0.9426	0.0015	0.313
hydro_avg_07	0.0844	0.6471	0.5083	0.5616
hydro_avg_08	0.0044	0.9468	0.2616	0.1234
hydro_avg_09	0.1011	0.1601	0.9697	0.1481
hydro_avg_10	0.0935	0.1763	0.9636	0.1741
hydro_avg_11	0.0058	0.9482	0.2755	0.1495
hydro_avg_12	0.9961	0.0186	0.0571	0.056
hydro_avg_13	0.9896	0.0235	0.0586	0.0764
hydro_avg_14	0.9908	0.0142	0.0597	6.00E-04
hydro_avg_15	0.0567	0.157	0.1266	0.847
hydro_avg_16	0.9909	0.0172	0.0544	0.0784
hydro_avg_17	0.9926	0.0191	0.0607	0.0025
hydro_avg_18	0.9909	0.0172	0.0544	0.0784
hydro_avg_19	0.9926	0.0191	0.0607	0.0025

• Cobertura terrestre

Parallel Analysis Scree Plots

	MR4	MR2	MR3	MR1	MR5
lc_range_01	0.77684	0.15333	0.25381	0.37882	0.04522
lc_range_02	0.05108	0.31264	0.81355	0.09024	0.0244
lc_range_03	0.16527	0.56928	0.37151	0.23323	0.16392
lc_range_04	0.30133	0.14726	0.79339	0.23968	0.01848
lc_range_05	0.28952	0.01857	0.60273	0.49868	0.22025
lc_range_06	0.26563	0.49334	0.18465	0.54953	0.28027
lc_range_07	0.04359	0.91167	0.12079	0.05657	0.16679
lc_range_08	0.59186	0.41006	0.25056	0.38805	0.25975
lc_range_09	0.20809	0.59454	0.15103	0.2495	0.21422
lc_range_10	0.34073	0.19934	0.16829	0.6736	0.06459
lc_range_11	0.41945	0.2354	0.31273	0.71725	0.03066
lc_range_12	0.92942	0.10572	0.13754	0.24277	0.04916

• Tipos de Suelos

Parallel Analysis Scree Plots

	MR1	MR5	MR2	MR4	MR3
soil_avg_01	0.50662	0.67786	0.07474	0.27206	0.11579
soil_avg_02	0.20845	0.09807	0.86656	0.02438	0.10504
soil_avg_03	0.00198	0.17021	0.04102	0.03823	0.98223
soil_avg_04	0.85923	0.11657	0.34284	0.11006	0.31453
soil_avg_05	0.8435	0.21465	0.3455	0.16166	0.29119
soil_avg_06	0.06696	0.82763	0.04033	0.18969	0.14114
soil_avg_07	0.44418	0.34285	0.73022	0.15297	0.14169
soil_avg_08	0.57339	0.54324	0.42224	0.21366	0.08444
soil_avg_09	0.10129	0.15071	0.01746	0.9814	0.03485
soil_avg_10	0.23514	0.50065	0.17674	0.71102	0.01607