

(12) NACH DEM VERtrag UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTRECHTS (PCT) VEROFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/004461 A1(51) Internationale Patentklassifikation?: A01N 43/32,
43/54 // (A01N 43/32, 43:54)Randall, Even [US/DE]; Birkenweg 3, 67283 Obrigheim
(DE).

(21) Internationales Aktenzeichen: PCT/EP2003/006887

(74) Gemeinsamer Vertreter: **BASF AKTIENGESELLSCHAFT**; 67056 Ludwigshafen (DE).

(22) Internationales Anmeldedatum:

30. Juni 2003 (30.06.2003)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 30 802.0 8. Juli 2002 (08.07.2002) DE

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **BASF AKTIENGESELLSCHAFT** [DE/DE]; 67056 Ludwigshafen (DE).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

53698
030320

(54) Titel: DITHIANON-BASED FUNGICIDAL MIXTURES

(54) Bezeichnung: FUNGIZIDE MISCHUNGEN AUF BASIS VON DITHIANON

(I)

(II)

(57) Abstract: The invention relates to fungicidal mixtures that contain A) the compound of formula (I), and B) a pyrimidine derivative of formula (II), wherein R represents methyl, cyclopropyl or 1-propinyl, in a synergistically effective amount. The invention also relates to a method for controlling parasitic fungi using mixtures of the compounds (I) and (II) and the use of compounds (I) and (II) in the production of such mixtures.

(57) Zusammenfassung: Fungizide Mischungen, enthaltend A) die Verbindung der Formel (I) und B) ein Pyrimidinderivat der Formel (II), in der R für Methyl, Cyclopropyl oder 1-Propinyl steht, in einer synergistisch wirksamen Menge, Verfahren zur Bekämpfung von Schadpilzen mit Mischungen der Verbindungen I und II und die Verwendung der Verbindungen I und II zur Herstellung derartiger Mischungen.

WO 2004/004461 A1

Fungizide Mischungen auf Basis von Dithianon

Beschreibung

5

Die vorliegende Erfindung betrifft fungizide Mischungen, enthaltend

A) die Verbindung der Formel I

10

I

15 und

B) ein Pyrimidinderivat der Formel II,

20

II

in der R für Methyl, Cyclopropyl oder 1-Propinyl steht, in einer synergistisch wirksamen Menge.

25

Außerdem betrifft die Erfindung Verfahren zur Bekämpfung von Schadpilzen mit Mischungen der Verbindungen I und II und die Verwendung der Verbindungen I und II zur Herstellung derartiger Mischungen.

30

Die Verbindung der Formel I (common name: dithianon) sowie Verfahren zu ihrer Herstellung sind in der GB-A 857 383 beschrieben.

Die Verbindungen der Formel II, ihre Herstellung und ihre Wirkung gegen Schadpilze sind ebenfalls aus der Literatur bekannt:

Verbindung Nr.	R	common name	Literatur
II-1	Methyl	pyrimethanil	DD-A 151 404
II-2	Cyclopropyl	cypredinil	EP-A 310 550
II-3	1-Propinyl	mepanipyrim	EP-A 224 339

Im Hinblick auf eine Senkung der Aufwandmengen einer Verbreiterung des Wirkungsspektrums der bekannten Verbindungen lagen der vorliegenden Erfindungen Mischungen als Aufgabe zugrunde, die bei 45 verringelter Gesamtmenge an ausgebrachten Wirkstoffen eine verbesserte Wirkung gegen Schadpilze zeigen (synergistische Mischungen).

Demgemäß wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, daß sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung der Verbindungen I und II oder bei Anwendung der Verbindungen I und II nacheinander Schadpilze besser 5 bekämpfen lassen als mit den Einzelverbindungen.

Üblicherweise kommen Mischungen der Verbindung I mit einem Pyrimidinderivat II zur Anwendung. Unter Umständen können jedoch Mischungen der Verbindung I mit zwei oder mehreren Pyrimidinderivaten II vorteilhaft sein.
10

Besonders bevorzugt werden die Verbindungen II-1 und II-2.

Die Verbindungen II-1 bis II-3 sind wegen ihres basischen Charakters in der Lage, mit anorganischen oder organischen Säuren oder 15 mit Metallionen Salze oder Addukte zu bilden.

Beispiele für anorganische Säuren sind Halogenwasserstoffsäuren wie Fluorwasserstoff, Chlorwasserstoff, Bromwasserstoff und Jodwasserstoff, Schwefelsäure, Phosphorsäure, Kohlensäure und Salpetersäure.
20

Als organische Säuren kommen beispielsweise Ameisensäure, und Alkansäuren wie Essigsäure, Trifluoressigsäure, Trichloressigsäure und Propionsäure sowie Glycolsäure, Thiocyanäure, Milchsäure, Bernsteinsäure, Zitronensäure, Benzoësäure, Zimtsäure, Oxalsäure, Alkylsulfonsäuren (Sulfonsäuren mit geradkettigen oder verzweigten Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylsulfonsäuren oder -disulfonsäuren (aromatische Reste wie Phenyl 30 und Naphthyl welche eine oder zwei Sulfonsäuregruppen tragen), Alkylphosphonsäuren (Phosphonsäuren mit geradkettigen oder verzweigten Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylphosphonsäuren oder -diphosphonsäuren (aromatische Reste wie Phenyl und Naphthyl welche eine oder zwei Phosphorsäurereste tragen), 35 wobei die Alkyl- bzw. Arylreste weitere Substituenten tragen können, z.B. p-Toluolsulfonsäure, Salizylsäure, p-Aminosalizylsäure, 2-Phenoxybenzoësäure, 2-Acetoxybenzoësäure etc., in Betracht.

Als Metallionen kommen insbesondere die Ionen der Elemente der 40 zweiten Hauptgruppe, insbesondere Calcium und Magnesium, der dritten und vierten Hauptgruppe, insbesondere Aluminium, Zinn und Blei, sowie der ersten bis achten Nebengruppe, insbesondere Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink und andere in Betracht. Besonders bevorzugt sind die Metallionen der Elemente 45 der Nebengruppen der vierten Periode. Die Metalle können dabei in den verschiedenen ihnen zukommenden Wertigkeiten vorliegen.

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe gegen Schadpilze oder andere Schädlinge wie Insekten, Spinnentiere oder Nematoden, oder auch herbizide oder wachstums-
5 regulierende Wirkstoffe oder Düngemittel beimischen kann.

- Die Mischungen der Verbindungen I und II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindungen I und II zeichnen sich durch eine hervorragende Wirkung gegen ein breites
10 Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten, aus. Sie sind z.T. systemisch wirksam und können daher auch als Blatt- und Bodenfungizide eingesetzt werden.
- 15 Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Baumwolle, Gemüsepflanzen (z.B. Gurken, Bohnen und Kürbisgewächse), Gerste, Gras, Hafer, Kaffee, Mais, Obstpflanzen, Reis, Roggen, Soja, Wein, Weizen, Zierpflanzen, Zuckerrohr und einer Vielzahl von Samen.
20
- Insbesondere eignen sie sich zur Bekämpfung der folgenden pflanzenpathogenen Pilze: *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen, *Podosphaera leucotricha* an Äpfeln, *Uncinula necator* an Reben, *Rhizoctonia*-Arten an Baumwolle, Reis
25 und Rasen, *Ustilago*-Arten an Getreide und Zuckerrohr, *Venturia inaequalis* (Schorf) an Äpfeln, *Septoria nodorum* an Weizen, *Botrytis cinerea* (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben, *Cercospora arachidicola* an Erdnüssen, *Pseudocercospora herpotrichoides* an Weizen und Gerste, *Phytophthora infestans* an Kartoffeln und Tomaten, *Pseudoperonospora*-Arten an Kürbisgewächsen und Hopfen, *Plasmopara viticola* an Reben, *Alternaria*-Arten an Gemüse und Obst sowie *Fusarium*- und *Verticillium*-Arten.
30
- 35 Die Verbindungen I und II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.
- 40 Die Verbindungen I und II werden üblicherweise in einem Gewichtsverhältnis von 10:1 bis 1:100, vorzugsweise 1:1 bis 1:10, insbesondere 1:1 bis 1:5 angewandt.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der
45 Regel bei 5 bis 2000 g/ha, vorzugsweise 10 bis 1000 g/ha, insbesondere 50 bis 750 g/ha.

Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art des gewünschten Effekts für die Verbindungen II bei 5 g/ha bis 500 g/ha, vorzugsweise 50 bis 500 g/ha, insbesondere 50 bis 200 g/ha.

5

Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 0,001 bis 1 g/kg Saatgut, vorzugsweise 0,01 bis 0,5 g/kg, insbesondere 0,01 bis 0,1 g/kg verwendet.

- 10 Sofern für Pflanzen pathogene Schadpilze zu bekämpfen sind, erfolgt die getrennte oder gemeinsame Applikation der Verbindungen I und II oder der Mischungen aus den Verbindungen I und II durch Besprühen oder Bestäuben der Samen, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem
15 Auflaufen der Pflanzen.

Die erfindungsgemäßen fungiziden synergistischen Mischungen bzw. die Verbindungen I und II können beispielsweise in Form von direkt versprühbaren Lösungen, Pulver und Suspensionen oder in Form
20 von hochprozentigen wässrigen, ölichen oder sonstigen Suspensionen, Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten aufbereitet und durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsform ist abhängig vom Verwendungszweck; sie soll in
25 jedem Fall eine möglichst feine und gleichmäßige Verteilung der erfindungsgemäßen Mischung gewährleisten.

Die Formulierungen werden in an sich bekannter Weise hergestellt, z.B. durch Zugabe von Lösungsmitteln und/oder Trägerstoffen. Den
30 Formulierungen werden üblicherweise inerte Zusatzstoffe wie Emulgiermittel oder Dispergiermittel beigemischt.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-,
35 Phenol-, Naphthalin- und Dibutynaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanole oder Fettalkoholglycolethern, Kondensationsprodukte von sulfonierte Naphthalin und seinen Derivaten mit Form-
40 aldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol- oder Tributylphenylpolyglycolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkohol-
45 ethylenoxid- Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylkoholpolyglycoletherace-

tat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der Verbindungen I und II oder der Mischung aus den Verbindungen I und II mit einem festen Trägerstoff hergestellt werden.

Granulate (z.B. Umhüllungs-, Imprägnierungs- oder Homogen-
10 granulate) werden üblicherweise durch Bindung des Wirkstoffs oder der Wirkstoffe an einen festen Trägerstoff hergestellt.

Als Füllstoffe bzw. feste Trägerstoffe dienen beispielsweise Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate,
15 Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Kalzium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, sowie Düngemittel wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl,
20 Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen 0,1 bis 95 Gew.-%, vorzugsweise 0,5 bis 90 Gew.-% einer der Verbindungen I und II bzw. der Mischung aus den Verbindungen I und II. Die Wirkstoffe
25 werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR- oder HPLC-Spektrum) eingesetzt.

Die Verbindungen I und II bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.
35

Beispiele für solche Zubereitungen, welche die Wirkstoffe enthalten, sind:

- I. eine Lösung aus 90 Gew.-Teilen der Wirkstoffe und 10 Gew.-
40 Teilen N-Methylpyrrolidon, die zur Anwendung in Form kleinstter Tropfen geeignet ist;
- II. eine Mischung aus 20 Gew.-Teilen der Wirkstoffe, 80 Gew.-Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5
45 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-

Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion;

III. eine wässrige Dispersion aus 20 Gew.-Teilen der Wirkstoffe, 40

5 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl;

IV. eine wässrige Dispersion aus 20 Gew.-Teilen der Wirkstoffe, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraction vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des An-

10 lagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl;

V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Wirkstoffe; 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-1-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;

VI. eine innige Mischung aus 3 Gew.-Teilen der Wirkstoffe und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 20 3 Gew.-% Wirkstoff;

VII. eine innige Mischung aus 30 Gew.-Teilen der Wirkstoffe, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde; diese Aufbereitung gibt dem Wirkstoff eine 25 gute Haftfähigkeit;

VIII. eine stabile wässrige Dispersion aus 40 Gew.-Teilen der Wirkstoffe, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfon-säure-Harnstoff-Formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden 30 kann;

IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Wirkstoffe, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfon-säure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfon-säure-Harnstoff-35 Formaldehydkondensates und 88 Gew.-Teilen eines paraffini-schen Mineralöls.

Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende Versuche zeigen:

40 Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter 45 Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel: Wirksamkeit gegen die Dürrfleckenkrankheit der Tomate verursacht durch *Alternaria solani*

Blätter von Topfpflanzen der Sorte "Große Fleischtomate St.

- 5 Pierre" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer wässrigen Sporenaufschwemmung von *Alternaria solani* in 2 % Biomalzlösung mit einer Dichte von $0,17 \times 10^6$ Sporen/ml infiziert. Anschließend wurden die 10 Pflanzen in einer wasserdampfgesättigten Kammer bei Temperaturen zwischen 20 und 22°C aufgestellt. Nach 5 Tagen hatte sich die Krautfäule auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

15

Die Auswertung erfolgt durch Feststellung der befallenen Blattflächen in Prozent. Diese Prozent-Werte werden in Wirkungsgrade umgerechnet.

- 20 Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

$$W = (1 - \alpha/\beta) \cdot 100$$

25 α entspricht dem Pilzbefall der behandelten Pflanzen in % und

β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

30 Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen die behandelten Pflanzen keinen Befall auf.

35 Die zu erwartenden Wirkungsgrade der Wirkstoffmischungen werden nach der Colby Formel [R.S. Colby, Weeds 15, 20-22 (1967)] ermittelt und mit den beobachteten Wirkungsgraden verglichen.

Colby Formel:

40

$$E = x + y - x \cdot y / 100$$

E zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den

45 Wirkstoffen A und B in den Konzentrationen a und b

- x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
- 5 y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b.

Tabelle A - Einzelwirkstoffe

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
1	Kontrolle (unbehandelt)	(72 % Befall)	0
2	I (Dithianon)	63 31 16 8	86 79 65 44
3	II-1 (Pyrimethanil)	63 31 16 8	0 0 0 0
4	II-2 (Cyprodinil)	63 16 8	86 72 44

Tabelle B - erfindungsgemäße Kombinationen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
5	I + II-1 63 + 8 ppm 8 : 1	100	86
6	I + II-1 31 + 31 ppm 1 : 1	99	79
7	I + II-1 16 + 16 ppm 1 : 1	93	65
8	I + II-1 8 + 63 ppm 1 : 8	100	44
9	I + II-2 63 + 8 ppm 8 : 1	100	92
45	I + II-2 16 + 16 ppm 1 : 1	100	90

9

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
5 11	I + II-2 8 + 8 ppm 1 : 1	100	69
12	I + II-2 8 + 63 ppm 1 : 8	100	92

10 *) berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen des Versuchs geht hervor, daß der beobachtete Wirkungsgrad in allen Mischungsverhältnissen höher ist, als nach der Colby-Formel vorausberechnet.

15

20

25

30

35

40

45

Patentansprüche

1. Fungizide Mischung; enthaltend
 5 A) die Verbindung der Formel I
 10 O=C1C(=O)c2ccccc2S=C(C#N)C(=C)C#N1
 und
 15 B) ein Pyrimidinderivat der Formel II,
 15 Nc1nc(C)c(C)c2ccccc12
 20 in der R für Methyl, Cyclopropyl oder 1-Propinyl steht,
 in einer synergistisch wirksamen Menge.
2. Fungizide Mischungen nach Anspruch 1, enthaltend als Pyrimidinderivat II die Verbindung II-1.
 25 Nc1nc(C)c(C)c2ccccc12
 30 3. Fungizide Mischungen nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß das Gewichtsverhältnis der Verbindung I zu der Verbindung II 10:1 bis 1:100 ist.
 35 4. Fungizides Mittel, enthaltend einen festen oder flüssigen Trägerstoff und eine Mischung gemäß Anspruch 1.
 40 5. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit der Verbindung der Formel I und einer Verbindung der Formel II gemäß Anspruch 1 behandelt.
 45 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder

11

Räume mit 5 bis 2000 g/ha der Verbindung I gemäß Anspruch 1 behandelt.

7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit 5 bis 500 g/ha mindestens einer Verbindung II gemäß Anspruch 1 behandelt.
- 10 8. Verwendung der Verbindungen der Formeln I und II gemäß Anspruch 1 zur Herstellung einer Mischung gemäß Anspruch 1.

15

20

25

30

35

40

45