AI 2002 Artificial Intelligence Lecture 10

Mahzaib Younas
Lecturer Department of Computer Science
FAST NUCES CFD

Al 2002

Forward Checking

 Keep track of remaining legal values for unassigned variables

 Whenever a variable is assigned a value, the forward-checking process establishes arc consistency for it:

Initial domains After WA=redAfter Q=greenAfter V=blue

WA	NT	Q	NSW	V	SA	T
RGB	RGB	R G B	RGB	RGB	RGB	RGB
®	GВ	RGB	RGB	RGB	G B	RGB
®	В	©	R B	RGB	В	RGB
®	В	G	R	B		RGB

Al 2002 2

Forward Checking

 Hence, forward checking has detected that the partial assignment {WA=red, Q=green, V =blue} is <u>inconsistent</u> and the algorithm will therefore backtrack immediately.

Initial domains
After WA=red
After Q=green
After V=blue

WA	NT	Q	NSW	V	SA	T
RGB						
®	GВ	RGB	RGB	RGB	G B	RGB
®	В	G	R B	RGB	В	RGB
®	В	G	R	B	51	RGB

- Keep track of remaining legal values for unassigned variables
- Whenever a variable is assigned a value, the forwardchecking process establishes arc consistency for it:

	<i>V</i> ₁	V_2	V ₃	V ₄	V ₅	<i>V</i> ₆
R	?	?	?	?	?	?
В	?	?	?	?	?	?
G	?	?	?	?	?	?

Al 2002

	<i>V</i> ₁	V_2	V_3	V_4	<i>V</i> ₅	V ₆
R	0	X	?	X	X	?
В		?	?	?	?	?
G		?	?	?	?	?

	<i>V</i> ₁	V_2	V ₃	V_4	V ₅	V ₆
R	0		?	X	X	?
В		0	X	?	X	?
G			?	?	?	?

	<i>V</i> ₁	V_2	V ₃	V_4	<i>V</i> ₅	V ₆
R	0		0	X	X	X
В		0		?	X	?
G				?	?	?

	<i>V</i> ₁	V_2	V_3	V_4	V ₅	V ₆
R	0		0		X	X
В		0		0	X	X
G					?	?

At this point, it is already obvious that this branch will not lead to a solution because there are no consistent values in the remaining domain for V_5 and V_6 .

- Forward checking does not detect all the inconsistencies, only those that can be detected by looking at the constraints which contain the current variable.
- Can we look ahead further?

Arc consistency is not enough in general

Arc consistent but NO solutions

Arc consistent but TWO solutions

B, R, G

B, **G**, **R**

Need to do search to find solutions (if any)

Al 2002

- V = variable being assigned at the current level of the search

 Forward
- Set variable V to a value in D(V)
- For every variable V' connected to V:
 - \circ Remove the values in D(V') that are <u>inconsistent</u> with the assigned variables
 - For every variable V" connected to V':
 Remove the values in D(V") that are no longer possible candidates
 - -until no more values can be discarded

Constraint Propagation

Checking

Arc examined	Value deleted
$V_1 - V_2$	None
$V_1 - V_3$	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
$V_1 - V_2$	V ₁ (R)

Arc examined	Value deleted
$V_1 - V_2$	None
$V_1 - V_3$	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
$V_1 - V_2$	V ₁ (R)
$V_1 - V_3$	None
$V_2 - V_3$	None

12002

V₁ assignments
V₂ assignments
V₃ assignments

Al 2002 15

V₁ assignments
V₂ assignments
V₃ assignments

V₁ assignments
V₂ assignments
V₃ assignments

We have a conflict whenever a domain becomes empty.

When backing up, need to restore domain values, since deletions were done to reach consistency with tentative assignments considered during search.

Al 2002 18

V₁ assignments
V₂ assignments
V₃ assignments

No need to check previous assignments

- Traditional backtracking uses fixed ordering of variables & values.
- The simplest strategy for selecting unassigned variable is to choose the next unassigned variable in order, $\{X_1, X_2, \dots\}$.
- Other is the <u>random order</u> or place variables with many constraints first.
- Can be modified by choosing an order dynamically as the search proceeds.

Most Constrained Variable (Minimum Remaining Values (MRV)):

- when doing forward-checking, pick variable with fewest "legal" values to assign next (minimizes branching factor)
 - The MRV heuristic usually performs better than a random or static ordering, sometimes by a factor of 1,000 or more.

Al 2002 29

Degree Heuristic:

- It attempts to reduce the branching factor on future choices by selecting the variable that is involved in the largest number of constraints.
 - SA is the variable with highest degree, 5.

- choose value that rules out the smallest number of values in variables connected to the chosen variable by constraints.
- We have generated the partial assignment for WA=red and NT =green.
 What would be our next choice for Q. Blue would be a bad choice because it eliminates the last legal value left for Q's neighbor, SA. The least-constraining-value heuristic therefore prefers red to blue. (eliminates fewest values from neighbouring domains)

Colors: R, G, B, Y

- Which country should we colour next
- What colour should we pick for it?

E most-constrained variable (smallest domain)

RED least-constraining value (eliminates fewest values from neighbouring domains)

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 6.