TEAM SUPREMUM

Group members: Ziang Zhang Jialun Lyu Haoye Wang Xiaotong Liu

WHAT IS A GOOD OVERALL MEASURE OF FATIGUE?

Monitoring Score?

Is there a way to improve it?

YES! Try "Sscore"!

Principle Component Analysis

	PC1	PC2	PC3	PC4	PC5
stdFatigue	0.5026091	-0.3318190	0.3150899	-0.6702441	-0.29794534
stdSoreness	0.4140121	-0.1342415	0.5684078	0.3853047	0.58225941
stdDesire	0.6392215	0.6287075	-0.1425370	0.2505378	-0.33620929
stdIrritability	0.1967807	0.2561743	-0.4447220	-0.4893164	0.67708487
stdSleepQuality	0.3586799	-0.6410748	-0.5996136	0.3164069	-0.02686898

A CLEAR COMPARISON

sample

Monitoring Score Normality

Sscore Normality

F test to compare two variances

data: ANOVA\$MonitoringScore[ANOVA\$BestOutOfMyself == "Not at all"] and ANOVA\$Monito data: ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not at all"] and ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not at all"] ringScore[ANOVA\$BestOutOfMyself == "Absolutely"] F = 0.77258, num df = 10, denom df = 46, p-value = 0.692 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.3299648 2.4979691 0.3909133 2.9593745 sample estimates: sample estimates: ratio of variances

F test to compare two variances

stOutOfMyself == "Absolutely"] F = 0.91529, num df = 10, denom df = 46, p-value = 0.9449 alternative hypothesis: true ratio of variances is not equal to ${\bf 1}$ 95 percent confidence interval: ratio of variances 0.9152901

Two Sample t-test

0.7725843

ringScore[ANOVA\$BestOutOfMyself == "Absolutely"] t = -0.97797, df = 56, p-value = 0.3323 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.354976 1.153816

theoretical

sample estimates: mean of x mean of y 16.09091 17.19149

15 -

Two Sample t-test

data: ANOVA\$MonitoringScore[ANOVA\$BestOutOfMyself == "Not at all"] and ANOVA\$Monito data: ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not at all"] and ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not all all"] and ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not all all"] and ANOVA\$Sscore[ANOVA\$BestOutOfMyself == "Not all all"] and ANOVA\$Sscore[ANOVABBestOutOfMyself == "Not all all"] and ANOVA\$Sscore[ANOVABBestOutOfMyself == "Not all all"] and ANOVABSscore[ANOVABBestOutOfMyself == "Not all all"] and ANOVABSscore[ANOVABBestOutOfMyself == "Not all stOutOfMyself == "Absolutely"] t = -1.7097, df = 56, p-value = 0.09286 alternative hypothesis: true difference in means is not equal to 095 percent confidence interval: -2.7834244 0.2200434 sample estimates: mean of x mean of y -1.1142097 0.1674807

APPLICATION

SVM classification plot

