

IEEE Custom Integrated Circuits Conference

An In-Memory-Computing Charge-Domain Ternary CNN Classifier (Best Student Paper Candidate)

Xiangxing Yang¹, Keren Zhu¹, Xiyuan Tang¹, Meizhi Wang¹, Mingtao Zhan², Nanshu Lu¹, Jaydeep P. Kulkarni¹, David Z. Pan¹, Yongpan Liu², Nan Sun^{1,2}

¹University of Texas at Austin, Austin, TX

²Tsinghua University, Beijing, China

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

Quest for Energy Efficient Edge Computing System

Increasing need from various applications:

Pattern Recognition

Image Classification

Object recognition

Challenges on Energy Efficient NN Inference

High computation energy

High memory access energy

[V. Sze, Proceedings of the IEEE 105.12 2017]

Challenges on Energy Efficient NN Inference

$$h = g \left[\left(\sum_{i=1}^{m} w_i * x_i + b \right) \right]$$

 x_i : Input activation

 w_i : Weight b: Bias

h: Output to next layer

g: Activation function

Challenges on Energy Efficient NN Inference

Solutions to Energy Efficient NN Inference

Conventional computing:

Memory access can easily dominate energy/throughput

• In-memory-computing:

Minimized data movement from distributed memory

Solutions to Energy Efficient NN Inference

Reduced Resolution Network:

32b Floating point \rightarrow ?

Multiplying energy cost

Solutions to Energy Efficient NN Inference

Reduced Resolution Network:

CIFAR-10, ResNet-56
Activations are quantized to 1/2/3/4/8/32b

[Y. Dong, IJCV 2019]

Visualization of filters from binary neural network

[M. Courbariaux, arXiv 2016]

Energy Cost of NN Inference

$$Power = Rate \times \frac{Energy}{Inference} = Rate \times \frac{Operations}{Inference} \times \frac{Energy}{Operation}$$

[B. Murmann, ISSCC 19 Tutorial]

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

Existing works

• Digital Domain:

- Bit error free ©
- High power from digital adder tree 🖰
- Low throughput 🕾

[K. Ando, JSSC 18]

Existing works

- Current Domain:
 - High throughput ©
 - PVT-robustness 🙈
 - Consumes static current 🕾

 x_1

 x_2

 x_i

[J. Zhang, JSSC 17]

ADC

Existing works

Charge Domain:

- High throughput [©]
- No static current ©
- Large operations/inference 😕

[D. Bankman, JSSC 18]

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

Comparison of Model Size

Baseline test: 98% Accuracy on MNIST

Layer	Туре	Size Channel		Filter Size	
1	CONV-TN	30x30	1(input)		
2	CONV-TN	28x28	128		
2p	MAX POOL	26x26	128	2x2	
3	CONV-TN	13x13	64		
3р	MAX POOL	12x12	04		
4	FC	(Flatten 6x6x64) 2304 - 10			

1b Resolution 1.38x10⁸ OPs

~4x Bigger model size

Layer	Туре	Size	Channel	Filter Size	
1	CONV-TN	30x30	1(input)		
2	CONV-TN	28x28			
2p	MAX POOL	26x26	32	2x2	
3	CONV-TN	13x13			
3р	MAX POOL	12x12			
4	FC	(Flatten 6x6x32) 1152 - 10			

1.5b Resolution 3.57x10⁷ OPs {w,x from -1,0,1}

Mixed Signal BNN vs TNN

SAR ADC with V_{CM} based switching

Mixed Signal BNN vs TNN

	Hardware Complexity	Operations Inference (@same accuracy)	Energy χ Operation = (CDAC signal swing)	Energy Inference
BNN			<u> </u>	<u> </u>
TNN		©		©

OPs/Inference ↓ 75% Energy/Operation ↓ 31% Energy/Inference ↓ 82%

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

On-chip Neural Network Model

Layer	Type	Size	Channel	Filter Size	Dilated
1	CONV-TN	30x30	1(input)		2
2	CONV-TN	28x28		2x2	2
2p	MAX POOL	26x26	32		1
3	CONV-TN	13x13	32		1
3р	MAX POOL	12x12			1
4	FC	(Flatte			

Chip Architecture

CONV1 – Example of One-Channel Convolution

Filter0 2x2 Dilated L = 2

Ternarized Input Image 1ch

$$X_{011} = STEP(W_{11} * X_{i11} + W_{12} * X_{i13} + W_{21} * X_{i31} + W_{22} * X_{i33})$$

$$X_{012} = STEP(W_{11} * X_{i12} + W_{12} * X_{i14} + W_{21} * X_{i32} + W_{22} * X_{i34})$$

Output Image 1ch

 $W,X \in \{-1,0,1\}$

CONV1 – Example of 32-Channel Convolution

W,X ∈ {-1,0,1}

CONV1 – Digital Implementation

CONV1 – Digital Implementation

CONV2 – Example of 32-Channel Convolution

CONV2 – Implementation of One-Channel SC Neuron

$$C_{Total} \approx 160 C_u$$

$$(\mathbf{W_i} * \mathbf{X_i})$$
, Bias $\in \{ \mathbf{V_{REFP}}, \mathbf{V_{CM}}, \mathbf{V_{REFN}} \}$

CONV2 – Synapse Design

DEC	BIN	Voltage
1	10	V_{REFP}
-1	11	V _{REFN}
0	ОХ	V _{CM}

Encoding for simplicity:

1.5b Multiplier
$$\rightarrow$$

$$|N1_{H} \longrightarrow OUT_{H}$$

$$|N1_{L} \longrightarrow OUT_{L}$$

$$|N2_{L} \longrightarrow OUT_{L}$$

CONV2 – Comparator Design

CONV2 – Effect of Comparator Offset

$$Dout = STEP(Vx)$$

CONV2 – Foreground Comparator Offset Calibration

CONV2 – Foreground Comparator Offset Calibration

CONV2 – Maxpooling

Datapath from CONV2 to CONV3

FC Layer Operation

CONV3 Output Image 6x6x32

FC Layer Implementation

(Single-ended shown)

FC Layer Implementation

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

Die Photo

40nm LP CMOS

Active Area: 0.98mm²

• Supply: 0.8V/0.7V/0.9V

Measurement Results

Comparison table

	This	s work	JSSC'18 K. Ando [1]	ISSCC'18 D. Bankman [2]	JSSC'20 Y. Cheng [3]	CICC'20 C. Yu [4]	JSSC'19 H. Valavi [5]
Technology	4	0nm	65nm	28nm	55nm	65nm	65nm
Circuit Type	1	d-Signal e-domain	Digital	Mixed-Signal Charge-domain	Mixed-Signal Current-domain	Mixed-Signal Current-domain	Mixed-Signal Charge-domain
Bit Precision	1	1.5b	1/1.5b	1b	1-8b	1-5b	1b
Area(mm2)	().98	3.9	4.6	5.85	0.055	12.6
Area Eff.(GOPS/mm2)	4	169 ¹	105	67	N/A	N/A	1498
Operating VDD(V)	0.8/	0.7/0.9	0.55-1.0	0.8/0.8	0.9	0.8/0.45	0.94/0.68/1.2
Energy Eff.(TOPS/W)	5	556 ²	2.3-6.0	532	40.2	490-15.8	866
Dataset	М	NIST	MNIST	CIFAR-10	MNIST	MNIST	MNIST
Accuracy	97	7.1%³	90.1%	86.05%	98.56%	96.2%	98.6%
FPS	,	549	N/A	237	N/A	N/A	651
Power(mW)	0	.096	N/A	0.899	N/A	N/A	N/A
Operations / Inference	TNN	BNN (simu)	N/A	N/A	N/A	N/A	5.3x10 ⁸
	3.57x10 ⁷	1.38x10 ⁸					
MACs Energy / Inference	0.09uJ	0.52uJ	N/A	N/A	N/A	N/A	0.8uJ
Total Energy / Inference	0.18uJ	0.7uJ	N/A	3.8uJ	N/A	N/A	N/A
All operations on chip	,	Yes	No	Yes	No	No	No

¹Based on SC neuron

³10 runs average on 10,000 test set images.

²Based on MACs energy efficiency

Outline

- Motivations
- Existing Works
- Theoretical Concept of the Proposed Work
- Circuit Implementation
- Measurement results
- Summary

Summary

- A 1.5b charge domain ternary CNN classifier is proposed:
 - Fully on-chip NN with lowest energy/inference reported for >97% MNIST accuracy
 - Compared to BNN with same accuracy:

82%
$$\downarrow \frac{Energy}{Inference}$$

Energy / Inference

