Grafi: introduzione, rappresentazione

Corso di Algoritmi e strutture dati Corso di Laurea in Informatica Docenti: Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

1/39

3/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Sommario

Obiettivo:

- ▶ introdurre la definizione
- ► imparare la terminologia
- confrontare diversi modi di rappresentare un grafo

Indice

- 1. Definizione
- 2. Terminologia
- 3. Rappresentazione

1. Definizione

- **definizione astratta**: un grafo G = (V, E) consiste in
 - ▶ un insieme *V* di vertici (nodi)
 - un insieme E di coppie di vertici (archi, spigoli): ogni arco connette due vertici
- ► V rappresenta un insieme di oggetti
- ► E rappresenta relazione tra questi oggetti
- due tipi di grafi:
 - orientati
 - non orientati (non diretti)

2/39

1. Esempi

► Esempio I:

 $V = \{\text{persone che vivono in Italia}\},$

 $E = \{\text{coppie di persone che si sono strette la mano}\}\$

► Esempio II:

 $V = \{\text{persone che vivono in Italia}\},$

 $E = \{(x, y) \text{ tale che } x \text{ ha inviato una mail a } y\}$

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

5/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

6/39

2. Terminologia

► relazione simmetrica (coppie non ordinate) → grafo non orientato (esempio I)

- $V = \{A, B, C, D, E, F\}$
- \triangleright $E = \{(A, B), (A, D), (B, C), (C, D), (C, E), (D, E)\}$
- \blacktriangleright (A, D) e (D, A) denotano lo stesso arco

1. Storia

Ponti di Königsburg - 1736:

È possibile partire da A e ritornare in A attraversando tutti i ponti esattamente una volta?

Euler dimostrò che la passeggiata non era possibile. (Il grafo è un *multigrafo* perché ci sono due archi fra *A* e *C* e fra *A* e *B*.)

2. Terminologia

ightharpoonup relazione non simmetrica (coppie ordinate) ightarrow grafo orientato (esempio II)

- $V = \{A, B, C, D, E, F\}$
- $ightharpoonup E = \{(A, B), (A, D), (B, C), (D, C), (E, C), (D, E), (D, A)\}$
- ► (A, D) e (D, A) denotano due archi diversi

2. Terminologia

in un grafo orientato, un arco (x, y) è incidente da x in y

- ► (A, B) è incidente da A a B
- ► (A, D) è incidente da A in D
- ► (D, A) è incidente da D in A

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Terminologia

▶ in un grafo non orientato, la relazione di adiecenza è simmetrica

- ▶ B è adiacente ad A e viceversa
- ► A è adiacente a D e viceversa
- F non è adiacente ad alcun vertice

2. Terminologia

▶ un vertice x si dice adiacente a y se e solo se $(y, x) \in E$

- ▶ B è adiacente ad A
- C è adiacente a B, a D e ad E
- ► A è adiacente a D e viceversa
- ► B non è adiacente a D
- F non è adiacente ad alcun vertice

2. Grado

- in un grafo non orientato:
 - li grado di un vertice è il numero di archi che da esso si dipartono
- in un grafo orientato:
 - li grado entrante (uscente) di un vertice è il numero di archi incidenti in (da) esso
 - ▶ il grado di un vertice è la somma del suo grado entrante e del suo grado uscente

2. Peso

associamo ad ogni arco un peso

▶ grafo pesato: (*G*, *W*) dove

► Gè un grafo

 \blacktriangleright W è la funzione peso: $W: E \rightarrow R$ dove R è l'insieme dei numeri reali

• W((A,B)) = 3, W((D,E)) = -2.3, $W((C,F)) = \infty$

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

13/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Sottografo

▶ sia G = (V, E) un grafo

▶ un sottografo di G è un grafo $H = (V^*, E^*)$ tale che $V^* \subseteq V$ e $E^* \subseteq E$

▶ poichè H è un grafo, deve valere che $E^* \subseteq V^* \times V^*$

 $V^* = \{A, C, D, E\}, E^* = \{(A, D), (D, E), (E, C)\}$

2. Cammino in grafo non orientato

▶ sia G = (V, E) un grafo

▶ un cammino nel grafo G è una sequenza di vertici $v_1, v_2, ..., v_n$ tale che $(v_i, v_{i+1}) \in E$ per $1 \le i < n$

la lunghezza del cammino è il numero totale di passaggi ad un vertice al altro (uno in meno del numero di vertici)

► A, D, C, B, A, D, E è un cammino nel G di lunghezza 6

2. Cammino in grafo orientato

ightharpoonup sia G = (V, E) un grafo orientato

▶ un cammino nel grafo G è una sequenza di vertici $v_1, v_2, ..., v_n$ tale che $(v_i, v_{i+1}) \in E$ per $1 \le i < n$

ightharpoonup D, E, C, D, A, D è un cammino nel G

► D, E, C, B, A, D non è un cammino nel G

2. Cammino in grafo non orientato

▶ un cammino è un cammino semplice se tutti suoi vertici sono distinti (compaiono una sola volta nella sequenza) eccetto al più il primo e l'ultimo che possono essere lo stesso

- ► A, D, C, B, A, D, E è un cammino non semplice
- ► A, D, C, B, A è un cammino semplice

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

17/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Raggiungibilità

▶ se esiste un cammino p tra i vertici x e y, si dice che y è raggiungibile da x e si scrive $x \rightarrow y$

- ► A è raggiungibile da C e viceversa
- ▶ per definizione: A è raggiungibile da A
- ▶ in un grafo non orientato la relazione di raggiungibilità è simmetrica
- non confondere raggiungibilità con adiacenza
- ► (Cormen et alii usa \leadsto invece di \rightarrow)

2. Raggiungibilità

▶ se esiste un cammino p tra i vertici x e y, si dice che y è raggiungibile da x e si scrive $x \rightarrow y$

- ▶ C è raggiungibile da A ma A non è raggiungibile da C
- in un grafo orientato la relazione di raggiungibilità non è simmetrica

2. Grafo connesso

▶ se *G* è un grafo non orientato, definiamo *G* connesso se esiste un cammino da ogni vertice ad ogni altro vertice

questo grafo è connesso

2. Grafo connesso

▶ se *G* è un grafo non orientato, definiamo *G* connesso se esiste un cammino da ogni vertice ad ogni altro vertice

questo grafo non è connesso

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

21/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Grafo fortemente connesso

► se *G* è un grafo orientato, definiamo *G* fortemente connesso se esiste un cammino da ogni vertice ad ogni altro vertice

► questo grafo è fortemente connesso

2. Grafo fortemente connesso

▶ se G è un grafo orientato, definiamo G fortemente connesso se esiste un cammino da ogni vertice ad ogni altro vertice

- questo grafo non è fortemente connesso
- ▶ non esiste cammino da F ad A

2. Grafo debolmente connesso

▶ se *G* è un grafo orientato, definiamo *G* debolmento connesso se il grafo ottenuto da *G* dimenticando la direzione degli archi è connesso

▶ questo grafo è debolmente connesso

2. Ciclo

- in un grafo orientato un ciclo è un cammino $x_1, ..., x_n$ con n > 2 e $x_1 = x_n$
- ▶ in un grafo non orientato un ciclo è un cammino $x_1, ..., x_n$ con n > 2 e $x_1 = x_n$ che non attraversa lo stesso arco due volte di seguito

▶ il cammino A, B, C, D, A è un ciclo

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

25/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

2. Grafo aciclico

▶ un grafo senca cicli è detto aciclico

26/39

2. Grafo completo

▶ un grafo completo è un grafo che ha un arco tra ogni coppia di vertici

questo grafo non è completo

2. Grafo completo

▶ un grafo completo è un grafo che ha un arco tra ogni coppia di vertici

▶ un grafo orientato aciclico è spesso chiamato directed acyclic graph (DAG)

questo grafo non è aciclico perché esiste il ciclo A, D, A

- questo grafo è completo
- ▶ numero di archi in un grafo completo con n vertici: $\binom{n}{2} = \frac{n(n-1)}{2}$

2. Albero libero

▶ un albero libero è un grafo non orientato, connesso, aciclico

▶ libero si riferisce al fatto che non è definito quale vertice è la radice

2. Albero radicato

 un albero radicato è un grafo non orientato, connesso, aciclico con un vertice designato ad essere radice

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

29/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

30/30

2. Foresta

 una foresta è un grafo non orientato, aciclico ma non necessariamente connesso

- questo grafo è una foresta che contiene due alberi
- un albero è una foresta

3. Matrice di adiacenza, grafo non orientato

3. Lista di adiacenza, grafo non orientato

L(x) è la lista di adiacenza del vertice x e contiene ogni y tale che $(x,y) \in E$

3. Matrice di adiacenza, grafo orientato

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

33/39

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

34/30

3. Lista di adiacenza, grafo orientato

L(x) è la lista di adiacenza del vertice x e contiene ogni y tale che $(x,y) \in E$

3. Matrice di adiacenza, grafo pesato

3. Lista di adiacenza, grafo pesato

L(x) è la lista di adiacenza del vertice x e contiene ogni coppia (y, w) tale che $(x, y) \in E$ e w = W((x, y))

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Possibili operazioni, grafo non orientato

in caso di matrice di adiecenza:

operazione	tempo di esecuzione
grado(x)	<i>O</i> (<i>n</i>)
archilncidenti(x)	<i>O</i> (<i>n</i>)
sonoAdiacenti(x, y)	<i>O</i> (1)
aggiungi $Vertice(x)$	$O(n^2)$
aggiungiArco(x, y)	<i>O</i> (1)
rimuoviVertice(x)	$O(n^2)$
rimuoviArco(x, y)	<i>O</i> (1)

39/39

dove *n* è il numero di vertici

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth

3. Possibili operazioni, grafo non orientato

in caso di lista di liste di adiecenza:

operazione	tempo di esecuzione
grado(x)	$O(\delta(x))$
archilncidenti(x)	$O(\delta(x))$
sonoAdiacenti(x, y)	$O(\min(\delta(x),\delta(y)))$
aggiungiVertice(x)	O(1)
aggiungiArco(x, y)	<i>O</i> (1)
rimuoviVertice(x)	<i>O</i> (<i>m</i>)
rimuoviArco(x, y)	$O(\delta(x) + \delta(y))$

dove $\delta(x)$ è il numero degli adiacenti di x, dove n è il numero di vertici e m è il numero di archi

Algoritmi e strutture dati, Ugo de'Liguoro, András Horváth