ECE161A: Fundamentals of Digital Signal Processing The Fast Fourier Transform (FFT)

Florian Meyer

Electrical and Computer Engineering Department Scripps Institution of Oceanography University of California San Diego

UC San Diego

JACOBS SCHOOL OF ENGINEERING

n

Discrete Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$$

$$= \sum_{n=0}^{N-1} x[n] w_N^{kn}$$

$$w_N = e^{-j\frac{2\pi}{N}}$$

• For every X(k) there are N complex multiply-adds. Thus, for N values of X(k) , there are N^2 multiply-adds.

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} \left[x[2n] w_N^{2nk} + x[2n+1] w_N^{(2n+1)k} \right] \qquad k = 0, 1, \dots, N$$
 even indexed points odd indexed points
$$N/2 \text{ points} \qquad N/2 \text{ points}$$

$$w_N = e^{-j2\pi/8}$$

 $w_N^2 = e^{-j(2)2\pi/8} = e^{-j2\pi/4} = w_{N/2}$

see also Section 9.3 in Oppenheim & Schafer, 1999

2

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] w_{N/2}^{nk} \qquad k = 0, 1, \dots, N-1$$

$$(N/2 \text{ point DFT}) \qquad (N/2 \text{ point DFT})$$

Decimation in Time Algorithm

$$\begin{split} X(k) &= \sum_{n=0}^{\frac{N}{2}-1} x[2n] \, w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] \, w_{N/2}^{nk} \qquad k=0,1,\dots,N-1 \\ &= A(k) + w_N^k B(k) \end{split}$$

Since DFT is periodic in k (or frequency) the value of A(k) and B(k) for k < N/2 repeat for k > N/2 . Thus,

$$X(k+N/2)=A(k)+w_N^{k+N/2}B(k) \qquad k=0,1,\dots,\frac{N}{2}-1$$
 and $w_N^{N/2}=e^{-j\frac{2\pi}{N}\frac{N}{2}}=-1$

4

Decimation in Time Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] w_{N/2}^{nk} + w_N^k \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] w_{N/2}^{nk} \qquad k = 0, 1, \dots, N-1$$
$$= A(k) + w_N^k B(k)$$

$$X(k+N/2) = A(k) - w_N^k B(k)$$
 $k = 0, 1, ..., N/2 - 1$ (i)

$$X(k) = A(k) + w_N^k B(k)$$
 $k = 0, 1, ..., N/2 - 1$ (ii)

Thus, we can synthesize and N-point DFT from the N/2-point DFTs using the synthesized expressions (i) and (ii) and save half of the multiply-adds

Total Number of Operations: $(N/2)^2 + (N/2)^2 + N \approx N^2/2$ multiply adds

→ saving by a factor of two

6

Decimation in Time Algorithm

- Extend this idea to the N/2-point A(k) and B(k) DFTs yields pairs of N/4-points DFTs, etc.
- Data enters full diagram in scrambled order (bit reversed order)

Index	Binary	Bit Reversed	Decimal
	060	Dit neversed 666	•
	001	100	4
Z	010	010	2
3	611	110	
4	100	001	:
5			,
4	1 0 1	101	
7	116	011	
,	1 ' '		

Computational Savings: Instead of N^2 we only perform $N\log_2N$ multiply adds e.g., if

$$N = 1024 = 2^{10} \qquad N^2 = 1,048,526 \qquad N \log_2 N = 10,240$$

_

Figure 9.7 Flow graph of complete decimation-in-time decomposition of an 8-point DFT computation.

Figure 9.8 Flow graph of basic butterfly computation in Figure 9.7.

8

Decimation in Frequency – FFT Algorithm

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} \underbrace{\left[x[n]w_N^{nk} + x[n+N/2]w_N^{(n+N/2)k}\right]}_{k=0,1,\ldots,N-1} \\ = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + w_N^{(N/2)k}x[n+N/2]\right]w_N^{nk}$$

$$w_N^{N/2k} = 1$$
 $k = 0, 2, 4, ..., N - 2$ $w_N^{nk} = w_{N/2}^{nk'}$ $k = 2k'$ $w_N^{N/2k} = -1$ $k = 1, 3, 5, ..., N - 1$

Decimation in Frequency – FFT Algorithm

$$X(2k') = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + x[n+N/2] \right] w_{N/2}^{nk'} \quad k' = 0, \dots, N/2 - 1$$

$$X(2k'+1) = \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] + w_N^{N/2(2k'+1)} x[n+N/2] \right] w_N^{n(2k'+1)}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} \left[x[n] - x[n+N/2] \right] w_N^{nk'} w_{N/2}^{nk'}$$

$$= e^{-j\frac{2\pi}{N}n}$$

10

Flow Graph – Decimation in Frequency

Figure 9.20 Flow graph of complete decimation-in-frequency decomposition of an 8-point DFT computation.