13 In the early part of the 20th century, Rutherford made the first observation of an element being changed into a different element.

Alpha particles were fired at nitrogen atoms.

The nuclear equation for this reaction is:

$${}^{4}_{2}\text{He} + {}^{14}_{7}\text{N} \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}\text{H}$$

(a) Calculate the minimum energy, in MeV, required for the reaction to take place.

(4)

Nuclide	Mass / 10 ⁻²⁷ kg
¹⁷ O	28.2185
¹⁴ N	23.2451
⁴ He	6.64432
¹ H	1.67299

		Minimum energy =	MeV
(b)		t have an energy greater than the minimum	MeV
(b)	Explain why the alpha particle must energy for the reaction to take place	t have an energy greater than the minimum	MeV
(b)		t have an energy greater than the minimum	(2)
(b)		t have an energy greater than the minimum	(2)