Al for Mobile Robots - CSIP5202 -

Foundation of Robotics

Overview

- Unit teaching plan
- Assessments
- Software
- Overview of robots

Teaching Plan

TOPIC

Foundation of robotics

Environments and simulators

Sensors

Actuators

Low and high level control

Feedback control

Knowledge representation

Vision system

Co-operative robots

Assessment

- Coursework 1 (Lab Portfolios) 44%
 - Implement a robot controller for a given task
 - Write a report and analysis
- Discussion Board 6%
 - Contributions per topic
 - No large piece of code (i.e. assignment) to be submitted, please.

- iRobot Create Toolbox Simulator (MATLAB)
- CoppeliaSim Edu (MATLAB, Python etc)
- Any other you wish to use but please let me know first

- iRobot Create Simulator MATLAB Toolbox
 - Simulates the iRobot Create robot (not available physically)
 - Simulates noise and physics of the environment
 - Has a variety of sensors
 - Simple to use and program in MATLAB

- CoppeliaSim Edu
 - A full, standalone simulator
 - Simulates any type of robot (mobile and non-mobile)
 - Extensible
 - Use a remote API: a wide range of languages can use this
 - MATLAB API is available in the labs
 - Can be used with python

- It's up to you what you want to use
- The labs and assignments are software-agnostic
- You should be able to find the functions in the software (and other libraries of the programming language) to help you achieve the tasks
- For anyone not confident in their ability in programming, then I'd recommend using the iRobot Create Toolbox Simulator

In general

- Any help, queries, questions etc that you require come and see me as soon as possible. I'm here to help you.
- I'm available by email (expect a response in 48 hours, unless it's really urgent).
- For any help with the software, check online first (there's a good community for CoppeliaSim Edu and MATLAB help), but if a group of you have the same problem then I can add additional help on LearningZone for everyone.

Foundations

- Basics
 - Embodiment
 - Simulation
 - Intelligence
- Robots
 - Components
 - Tasks
 - General-purpose robots

Foundations: Motivation

- Why study mobile robots
- Two main reasons:
 - Application
 - To create robots to be used in hostile environments.
 - Underwater
 - Bomb disposal
 - Planetary exploration
 - Nuclear power stations
 - Theory
 - To investigate intelligent behaviour
 - Artificial intelligence
 - Cognitive science
 - Psychology

Foundations: Intelligent Agents

- The word "agent" means "to do"
 - An entity that produces an effect
- "agent" is used to describe both software simulations and/or actual hardware implementations of robots
 - Robot
 - Physical machine
 - A simulation including the physical and geometrical aspects
 - Agent
 - Numerical computer model
 - Physical machine

Foundations: Solution vs. Implementation

- At initial stages, software agents can be used as the primary mechanism to investigate robotics
 - Advantages
 - Duplicable, reliable and repeatable
 - Flexible, configurable and safe
 - Disadvantages
 - Simulations are not the same as physical implementation!
- Many people believe that true intelligent behaviour only emerges when a physical agent interacts with its environment
 - Can that environment be simulated

Foundations: Intelligence

What is Intelligence?

Robots: Tasks to be solved

- Learning
- Interaction
- Cooperation
- Manipulation
- Planning
- Reasoning
- Navigation
- Perception

Robots: Where robotics is heading

- Robotics are evolving to include products in:
 - Medical industries
 - Entertainment
 - Industrial automation
 - Hazardous environments
 - Transportation and Shipping

Robots: Components

- A robot is made of 5 main component classes:
 - Body
 - Sensors
 - Actuators
 - Computing power and software
 - Energy source

Robots: Components vs Disciplines

- As computing people, we don't build or design all components of robotics but we are concerned with all:
 - Body: mechanics, mechatronics
 - Understand the abilities and limitations
 - In the simulator, it involves considering the physics and geometry
 - Sensors: chemistry or materials, electronics
 - Very important
 - Understand the meaning of the data they provide and their limitations
 - Actuators: mechanics, mechatronics, electronics
 - Understand how to drive them and represent their state

Robots: Components vs Discipline

- Computing power: Electronics
 - Understand its architect
- Software: Computer Science, Control Theory, Artificial Intelligence
 - All of it
- Energy Source: Chemistry, electronics
 - How to manage it as a resource
 - How it impacts the components of the robot
- The programmer needs to understand the whole system.

Robot: Mars Curiosity Rover

Robots: Roomba

- 1. Obstacle detection bumper at the front.
- 2. Infrared detector for communicating with lighthouses and docking station.
- 3. Wheel drop sensor.
- 4. Lithium metal-hydride rechargeable battery pack (14.4 volts and 3600mAH)
- 5. "Knobby" treaded wheels
- 6. Wheel sub-assembly.
- 7. Electric motor drives the right wheel.
- 8. Electric motor powers vacuum.
- 9. Handle for removable dust bin.
- 10. Electric motor drives the left wheel.
- 11. Wheel sub-assembly.
- 12. Self-contained brush mechanism.
- 13. Electric motor powers brushes.

Artwork from US patent #6883201: Autonomous floor-cleaning robot by Joseph Jones et al, iRobot Corporation, courtesy of US Patent and Trademark Office. This patent was filed December 16, 2002 and granted April 26, 2005.

Robots: Amazon

Titan

https://spectrum.ieee.org/robotics/robotics-software/three-engineers-hundreds-of-robots-one-warehouse https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center

Robots: Linkage

 A robot, its task and the environment all depend on, and influence, each other

Robots: Linkage

 A robot, its task and the environment all depend on, and influence, each other

Robots: General Purpose vs Multifunctional

- A completely general-purpose robot is not possible... YET!
 - A general-purpose living thing tends not to exist.
 - What about human beings?
 - We are intelligent, versatile in the right environment and adaptable
 - However, we are poor at:
 - Flying
 - Swimming
 - Surviving in extreme conditions

We're great at generalising though!

- A robot's function is defined by its behaviour within an environment performing a task.
 - Only the simultaneous description of a robot, its task and the environment describes the robot completely
 - Yet... a robot by definition is Multi-Functional

Lab Work

- Your task is to:
 - Download and install the iRobot Create Simulator
 - Explore how to load, create and run a program

Questions?