

MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation

Microsoft® Research

1 Sun Yat-Sen University, Guangzhou, P.R. China

2 Microsoft Research, Beijing, P.R. China

Chi Zhang¹, Zhiwei Li², Rui Cai², Yanhua Cheng², Hongyang Chao¹, Yong Rui²

 $E_{\text{UPPER}} = E_{\text{Alignment}} + E_{\text{SplitPenalty}} + E_{\text{SplitSmooth}}$

 $E_{\text{LOWER}} = E_{\text{Alignment}} + E_{\text{MatchingCost}} + E_{\text{NormalSmooth}}$

Optimize alternatively between

the two layers until convergence

Motivation

- Output high-quality meshes for view interpolation
- Unify depth map estimation and mesh generation

Variables

- A splitting probability for each 2D vertex
- A depth value for each barycenter
 - A normal for each triangle

Optimization

- Quadratic in lpha , has closed-form solution
- $\min_{\mathbf{N},\mathbf{D}} E_{ ext{LOWER}}$ Non-convex, difficult,

Relax it and optimize in another loop

- where $E_{\text{Couple}}(\mathbf{N}, \mathbf{D}, \widetilde{\mathbf{N}}, \widetilde{\mathbf{D}}) = \sum_{i} (\mathbf{\Pi}_{i} \widetilde{\mathbf{\Pi}}_{i})^{\top} \Sigma (\mathbf{\Pi}_{i} \widetilde{\mathbf{\Pi}}_{i})$ where $\mathbf{\Pi}_i = [\mathbf{n}_i^\top, d_i]^\top$, and $\sigma = \text{diag}(\sigma_n, \sigma_n, \sigma_n, \sigma_d)$
- Increase θ from 0 to ∞ , optimize alternatively between blue and green
 - Optimize blue part by PatchMatch Optimize green part in closed-form

Formulation

 $E_{\text{All}}(\mathbf{N}, \mathbf{D}, \boldsymbol{\alpha}) = E_{\text{MatchingCost}} + E_{\text{NormalSmooth}} + E_{\text{Alignment}} + E_{\text{SplitPenalty}} + E_{\text{SplitSmooth}}$

Upper Layer MRF:

Lower Layer MRF:

- $E_{\text{SplitPenalty}}(\boldsymbol{\alpha}) = \sum \alpha_s \cdot \tau_s$
- $\tau_s = \exp(-|\nabla I^3(x_s, y_s)|/\gamma_1)$
- $E_{\text{SplitSmooth}}(\boldsymbol{\alpha}) \sum w_{st}(\alpha_s \alpha_t)^2$
- $w_{st} = \exp(-|k(\mathbf{x}_s) k(\mathbf{x}_t)|/\gamma_2)$ $k(\mathbf{x}) = \arg\max\{|I^l(\mathbf{x}) - I(\mathbf{x})| < 10, \forall l \le j\}$

- Penalize splitting at homogeneous regions
- Encourage similar splitting properties when neighboring vertices have similar 'visual complexity'
- $E_{\text{MatchingCost}}(\mathbf{N}, \mathbf{D}) = \sum \sum \rho(\mathbf{n}_i, d_i, p)$
- Each depth-normal pair induce a disparity plane over that triangle
- Matching cost combines census and gradient features
- $E_{\text{NormalSmooth}}(\mathbf{N}) = \sum_{i=1}^{n} w_{ij} (\mathbf{n}_i \mathbf{n}_j)^{\top} (\mathbf{n}_i \mathbf{n}_j)$

Encouraged Discouraged

- $E_{\mathrm{Alignment}}(\mathbf{N}, \mathbf{D}, \boldsymbol{\alpha}) =$ $\sum (1 - \alpha_s) \cdot \sum w_{ij} \left(\mathcal{D}_i(\mathbf{x}_s) - \mathcal{D}_j(\mathbf{x}_s) \right)^2$
- Require tight alignment at nonsplitting vertices
- Not active at splitting vertices

Stereo Results

Color

SGM

Ours

- Preserve fine structures
- First place on Middlebury 3.0 at submission time

ELAS

Generated Meshes

 $i p \in \text{Tri}_i$