

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170705102

FCC REPORT

(WIFI)

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE Indoor CPE

Model No.: EG2030C-M2

Trade mark: BaiCells

FCC ID: 2AG32EG2030CM2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 11 July, 2017

Date of report issued: 11 July, 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	11 Jul., 2017	Original

(grey (hen Test Engineer Tested by: Date: 11 Jul., 2017

Reviewed by: Date: 11 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		IERAL INFORMATION	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	23
	6.5	POWER SPECTRAL DENSITY	41
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	51
	6.6.2		
	6.7	Spurious Emission	73
	6.7.1	Conducted Emission Method	73
	6.7.2	Radiated Emission Method	82
7	TES	T SETUP PHOTO	92
R	FUT	CONSTRUCTIONAL DETAILS	93

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.	
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China	
Manufacturer:	Baicells Technologies Co., Ltd.	
Address of Manufacturer:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China	

5.2 General Description of E.U.T.

Product Name:	LTE Indoor CPE
Model No.:	EG2030C-M2
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	5dBi
Power supply:	DC 5V
AC adapter:	Model: ADS-12G-06 05010EPCU Input: AC100-240V, 50/60Hz, 0.5 A Output: DC 5V, 2000 mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCISE170705102

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Took mode.	

Test mode:

Operation mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	07-22-2017	07-21-2020		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018				
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018				
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	Test Method: ANSI C63.10: 2013				
Test Method:					
Test Frequency Range:					
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 k	 Hz			
Limit:	Frequency range	Limit (d	dBuV)		
Cirriit.	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the log	arithm of the frequency.			
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	AUX Equipment Test table/Insula Remark E U.T. Equipment Under LISN Line Impedence St Test table height=0.8m	E.U.T EMI Receiver	Ilter — AC power		
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Notes.

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Lowest	TX0	13.87	,	30	Pass
		TX1	14.25	,		
802.11b	Middle	TX0	13.49	/	30	Pass
002.116	Middle	TX1	13.98	,		
	Highest	TX0	13.09	,	30	Pass
	riigiicst	TX1	14.15	,		1 433
	Lowest	TX0	14.15	/	30	Pass
	LOWCSt	TX1	14.39	,		
802.11g	Middle	TX0	13.69	/	30	Pass
002.119		TX1	14.10			
	Highest	TX0	13.38	/	30	Pass
		TX1	14.18			
	Lowest	TX0	14.16	17.21	30	Pass
		TX1	14.24			
802.11n(H20)	Middle	TX0	13.91	17.18	30	Pass
002.1111(1120)	wildale	TX1	14.42	17.10		
	Llighoot	TX0	13.32	16.01	6.81 30	Pass
	Highest	TX1	14.23	10.01		
	Lowest Middle	TX0	13.67	16.75	30	Pass
		TX1	13.80			
802.11n(H40)		TX0	13.25	16.50	30	Page
002.1111(1140)		TX1	13.71		30	Pass
	Highest	TX0	13.17	16.48	30	Pass
		TX1	13.75			

Remark: Because the transmit signals are completely uncorrelated, so the Directional gain = G_{ANT} .

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Toot Instruments:			
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Antenna port: TX0								
Test CH		6dB Emission	Limit/IdLIm	Dogult				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	10.24	16.56	17.52	36.64				
Middle	10.24	16.52	17.76	36.68	>500	Pass		
Highest	10.24	16.56	17.76	36.64				
Test CH		99% Occupy	Limit(kHz)	Result				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	12.32	16.56	17.60	36.32				
Middle	12.32	16.56	17.60	36.32	N/A	N/A		
Highest	12.32	16.56	17.60	36.32				

	Antenna port: TX1								
Toot CU		6dB Emission	:: t/ -	Decult					
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result			
Lowest	10.24	16.56	17.76	36.64		Pass			
Middle	10.24	16.52	17.72	36.64	>500				
Highest	10.24	16.56	17.76	36.64					
Test CH		99% Occupy	Limit(kHz)	Result					
Test Cn	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result			
Lowest	12.32	16.56	17.60	36.32					
Middle	12.32	16.48	17.60	36.32	N/A	N/A			
Highest	12.24	16.56	17.60	36.32					

Test plot as follows:

Date: 28.JUN.2017 21:56:02

Highest channel

Date: 28.JUN.2017 21:55:01

Highest channel

Date: 28.JUN.2017 21:47:40

Highest channel

Date: 28.JUN.2017 23:29:35

Highest channel

Highest channel

Date: 28.JUN.2017 23:13:16

Highest channel

Date: 28.JUN.2017 23:20:38

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

leasurement Da	ata:					
Mode	Test Channel	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result
802.11b	Lowest	TX0	3.27	,	0.00	Pass
		TX1	3.28	/	8.00	
	Middle	TX0	2.98	,	8.00	Pass
		TX1	2.99	,	6.00	
	Highest	TX0	3.16	,	8.00	Pass
		TX1	3.15	/	6.00	
802.11g	Lowest	TX0	1.92	,	8.00	Pass
		TX1	1.46	/		
	Middle	TX0	1.80	1	8.00	Pass
		TX1	1.76	/		F d 5 5
	Highest	TX0	1.42	,	8.00	Pass
		TX1	1.16	/		
802.11n(H20)	Lowest	TX0	1.79	4.85	8.00	Pass
		TX1	1.88	4.60	6.00	
	Middle	TX0	1.84	4.85	8.00	Pass
		TX1	1.84	4.65	8.00	
	Highest	TX0	1.72	4.70	8.00	Pass
		TX1	1.66	4.70	8.00	
802.11n(H40)	Lowest	TX0	-1.84	1.30	8.00	Pass
		TX1	-1.58	1.30	6.00	
	Middle	TX0	-1.62	1.40	9.00	Page
		TX1	-1.60	1.40	8.00	Pass
	Highest	TX0	-2.06	0.96	9.00	Pass
		TX1	-2.05	0.90	8.00	

Date: 29.JUN.2017 00:25:43

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Toot Doggingment	FOC Dort 45 C Continue 45 247 (d)				
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

 .2 Nadiated Lilission Method								
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector		RBW V		VBW Remark		
receiver setup.	Above 1GHz	Peak		1MHz		лНz	Peak Value	,
		RMS		1MHz	31	ИНz	Average Valu	ıе
Limit:	Frequency	у	Lim	it (dBuV/m @	3m)		Remark	
	Above 1GF	17		54.00		Average Value		
			_	74.00			Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						es na es	
Test setup:	wassi was a same	AE EU (Turntable)	ļ.	3m	rn Antenna Pre- Pre- Pre- Pre	Antenna Tov	wer	
Test Instruments:	Refer to section	5.7 for de	etails					_
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							
	1							

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor .
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 1	5.209 a	and 15.205				
Test Method:	ANSI C63.10:201	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark							
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Valu							
	Above 1GHz Peak 1MHz 3MHz Peak Value							
	RMS 1MHz 3MHz Average Val							
Limit:	Frequency		Limit	t (dBuV/m @3	m)		Remark	
	30MHz-88MH			40.0			uasi-peak Value	
	88MHz-216MH			43.5			uasi-peak Value	
	216MHz-960M			46.0			uasi-peak Value	
	960MHz-1GH	Z		54.0			uasi-peak Value	
	Above 1GHz	<u>.</u> -		54.0		,	Average Value	
Test Procedure:	1. The EUT wa	n place	d on th	74.0 e top of a rot	otio a	toble C	Peak Value	
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the median and the meters and the meters and to find the mind to find the mind to find the meters and the meters and the find the meters and the limit specified Basis	as rotate ation. as set 3 rich was a height is o determinatal and reasurem spected en the araximum eiver system determination level cified, the would be margin w	meters mount is varied in the vertical tent. emissing tenna table we readire stem we with Moof the ten tester vould be a second of the vould of the v	away from the don the top ed from one re maximum of polarization on, the EUT was turned from the set to Peadaximum Hole EUT in peak ting could be ted. Otherwise re-tested of the set of the could be ted. Otherwise re-tested of the set of the could be ted. Otherwise re-tested of the could be ted.	he into of a meter value s of the was a being om 0 of a mode stopped the ne by	erferer variable to four of the enter ante degree tect Fude. See was a cone union of the enter arrange of the enter fude.	meter chamber. e position of the nce-receiving le-height antenna r meters above field strength. enna are set to ed to its worst em 1 meter to 4 es to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi- orted in a data	

Above 1GHz:

			Test mo	de: 802.11b	for TX0							
Test channel: Lowest channel												
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	50.12	36.06	6.81	41.82	51.17	74.00	-22.83	Vertical				
4824.00	46.71	36.06	6.81	41.82	47.76	74.00	-26.24	Horizontal				
			А	verage Value	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	40.57	36.06	6.81	41.82	41.62	54.00	-12.38	Vertical				
4824.00	36.89	36.06	6.81	41.82	37.94	54.00	-16.06	Horizontal				

	Test channel: Middle channel										
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	54.35	36.32	6.85	41.84	55.68	74.00	-18.32	Vertical			
4874.00	48.76	36.32	6.85	41.84	50.09	74.00	-23.91	Horizontal			
			А	verage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	44.67	36.32	6.85	41.84	46.00	54.00	-8.00	Vertical			
4874.00	38.14	36.32	6.85	41.84	39.47	54.00	-14.53	Horizontal			

	Test channel: Highest channel											
	Peak Value											
Fraguenov	Read	Antenna	Cable	Preamp	Level	Limit Line	Over					
Frequency	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.				
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubuv/III)	(dB)					
4924.00	52.07	36.58	6.89	41.86	53.68	74.00	-20.32	Vertical				
4924.00	48.68	36.58	6.89	41.86	50.29	74.00	-23.71	Horizontal				
			А	verage Value)							
Fraguenov	Read	Antenna	Cable	Preamp	Level	Limit Line	Over					
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.				
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)					
4924.00	42.64	36.58	6.89	41.86	44.25	54.00	-9.75	Vertical				
4924.00	38.67	36.58	6.89	41.86	40.28	54.00	-13.72	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test mo	de: 802.11b 1	for TX1						
Test channel: Lowest channel											
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	51.25	36.06	6.81	41.82	52.30	74.00	-21.70	Vertical			
4824.00	47.62	36.06	6.81	41.82	48.67	74.00	-25.33	Horizontal			
			А	verage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	41.52	36.06	6.81	41.82	42.57	54.00	-11.43	Vertical			
4824.00	37.96	36.06	6.81	41.82	39.01	54.00	-14.99	Horizontal			

	Test channel: Middle channel										
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	54.89	36.32	6.85	41.84	56.22	74.00	-17.78	Vertical			
4874.00	48.63	36.32	6.85	41.84	49.96	74.00	-24.04	Horizontal			
			А	verage Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	44.55	36.32	6.85	41.84	45.88	54.00	-8.12	Vertical			
4874.00	39.63	36.32	6.85	41.84	40.96	54.00	-13.04	Horizontal			

	Test channel: Highest channel											
Peak Value												
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over					
Frequency	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.				
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(dBuV/m)	(dB)					
4924.00	53.69	36.58	6.89	41.86	55.30	74.00	-18.70	Vertical				
4924.00	48.65	36.58	6.89	41.86	50.26	74.00	-23.74	Horizontal				
			А	verage Value)							
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over					
Frequency	Level	Factor	Loss	Factor			Limit	Polar.				
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)					
4924.00	42.85	36.58	6.89	41.86	44.46	54.00	-9.54	Vertical				
4924.00	37.28	36.58	6.89	41.86	38.89	54.00	-15.11	Horizontal				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test mode	e: 802.11g fc	or TX0						
Test channel: Lowest channel											
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	48.92	36.06	6.81	41.82	49.97	74.00	-24.03	Vertical			
4824.00	46.87	36.06	6.81	41.82	47.92	74.00	-26.08	Horizontal			
			Ave	erage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	38.16	36.06	6.81	41.82	39.21	54.00	-14.79	Vertical			
4824.00	36.63	36.06	6.81	41.82	37.68	54.00	-16.32	Horizontal			

	Test channel: Middle channel										
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	48.53	36.32	6.85	41.84	49.86	74.00	-24.14	Vertical			
4874.00	48.94	36.32	6.85	41.84	50.27	74.00	-23.73	Horizontal			
			Ave	erage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4874.00	38.29	36.32	6.85	41.84	39.62	54.00	-14.38	Vertical			
4874.00	38.41	36.32	6.85	41.84	39.74	54.00	-14.26	Horizontal			

	Test channel: Highest channel											
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	48.94	36.58	6.89	41.86	50.55	74.00	-23.45	Vertical				
4924.00	47.32	36.58	6.89	41.86	48.93	74.00	-25.07	Horizontal				
			Ave	erage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	38.69	36.58	6.89	41.86	40.30	54.00	-13.70	Vertical				
4924.00	37.88	36.58	6.89	41.86	39.49	54.00	-14.51	Horizontal				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Test mode: 802.11g for TX1										
Test channel: Lowest channel											
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	48.65	36.06	6.81	41.82	49.70	74.00	-24.30	Vertical			
4824.00	46.99	36.06	6.81	41.82	48.04	74.00	-25.96	Horizontal			
			Av	erage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	37.89	36.06	6.81	41.82	38.94	54.00	-15.06	Vertical			
4824.00	37.98	36.06	6.81	41.82	39.03	54.00	-14.97	Horizontal			
Test channel: Middle channel											
			rest chant	iei: iviidale cr	iannei						

Test channel: Middle channel									
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.65	36.32	6.85	41.84	49.98	74.00	-24.02	Vertical	
4874.00	49.36	36.32	6.85	41.84	50.69	74.00	-23.31	Horizontal	
	Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.65	36.32	6.85	41.84	39.98	54.00	-14.02	Vertical	
4874.00	38.77	36.32	6.85	41.84	40.10	54.00	-13.90	Horizontal	

Test channel: Highest channel									
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.56	36.58	6.89	41.86	50.17	74.00	-23.83	Vertical	
4924.00	48.77	36.58	6.89	41.86	50.38	74.00	-23.62	Horizontal	
	Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.65	36.58	6.89	41.86	40.26	54.00	-13.74	Vertical	
4924.00	37.28	36.58	6.89	41.86	38.89	54.00	-15.11	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		Te	est mode:	802.11n(H20) for MIMO				
Test channel: Lowest channel									
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.41	36.06	6.81	41.82	49.46	74.00	-24.54	Vertical	
4824.00	46.14	36.06	6.81	41.82	47.19	74.00	-26.81	Horizontal	
Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.74	36.06	6.81	41.82	49.79	54.00	-4.21	Vertical	
4824.00	46.82	36.06	6.81	41.82	47.87	54.00	-6.13	Horizontal	
	Test channel: Middle channel								
				Peak Value	Jilaililei				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.94	36.32	6.85	41.84	50.27	74.00	-23.73	Vertical	
4874.00	47.39	36.32	6.85	41.84	48.72	74.00	-25.28	Horizontal	
			А	verage Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.62	36.32	6.85	41.84	39.95	54.00	-14.05	Vertical	
4874.00	37.34	36.32	6.85	41.84	38.67	54.00	-15.33	Horizontal	
Test channel: Highest channel									
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	47.48	36.58	6.89	41.86	49.09	74.00	-24.91	Vertical	
4924.00	47.92	36.58	6.89	41.86	49.53	74.00	-24.47	Horizontal	
Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4004.00	07.44	20.50	0.00	44.00	20.00	F4.00	44.00	Martinal	

4924.00

4924.00

37.41

37.16

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.89

6.89

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

41.86

41.86

39.02

38.77

54.00

54.00

-14.98

-15.23

36.58

36.58

Project No.: CCISE1707051

Vertical

Horizontal

		Te	est mode:	802.11n(H40) for MIMO					
				nnel: Lowest						
Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	48.44	36.06	6.81	41.82	49.49	74.00	-24.51	Vertical		
4844.00	48.14	36.06	6.81	41.82	49.19	74.00	-24.81	Horizontal		
Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	38.68	36.06	6.81	41.82	39.73	54.00	-14.27	Vertical		
4844.00	38.49	36.06	6.81	41.82	39.54	54.00	-14.46	Horizontal		
	Test channel: Middle channel									
			10310114	Peak Value	CHAINICI					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	48.38	36.32	6.85	41.84	49.71	74.00	-24.29	Vertical		
4874.00	47.53	36.32	6.85	41.84	48.86	74.00	-25.14	Horizontal		
				verage Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	38.94	36.32	6.85	41.84	40.27	54.00	-13.73	Vertical		
4874.00	38.34	36.32	6.85	41.84	39.67	54.00	-14.33	Horizontal		
Test channel: Highest channel										
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	47.38	36.45	6.87	41.85	48.85	74.00	-25.15	Vertical		
4904.00	47.46	36.45	6.87	41.85	48.93	74.00	-25.07	Horizontal		
	Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		

4904.00

4904.00

37.38

37.28

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.87

6.87

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

41.85

41.85

38.85

38.75

36.45

36.45

Project No.: CCISE1707051

Vertical

Horizontal

-15.15

-15.25

54.00

54.00