EEE104 – Digital Electronics (I) Lecture 11

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Functions of Combinational Logic Gates
 - Adders
 - Comparators
 - Decoders

2

Basic Adders - The Half-Adder

The half-adder does not add an input carry.

Α	В	Cout	Σ			
0	0	0	0	Input bits		
0	1	0	1			
1	0	0	1			
1	1	1	0			

3

- The sum is 1 only when the inputs are different

 — an XOR operation.
- The output carry is 1 only when both the inputs are 1 an AND operation.

Basic Adders - The Full-Adder

	Σ	Cout	C_{in}	В	Α
Σ	0	0	0	0	0
Input $\begin{cases} $	1	0	1	0	0
B C_{out}	1	0	0	. 1	0
Input carry $$	0	1	1	1	0
	1	0	0	0	1
E (10 P) 0 C	0	1	1	0	1
$\Sigma = (A \oplus B) \oplus C_{in}$	0	1	0	1	1
	1	1	1	1	1

$$\begin{split} C_{out} &= ABC_{in} + AB\overline{C}_{in} + A\overline{B}C_{in} + \overline{A}BC_{in} \\ &= \left(ABC_{in} + AB\overline{C}_{in}\right) + \left(ABC_{in} + A\overline{B}C_{in}\right) + \left(ABC_{in} + \overline{A}BC_{in}\right) \\ &= AB + AC_{in} + BC_{in} \end{split}$$

Comparators — Equality Comparators

1. An XOR gate is a 1-bit comparator.

2. 2-bit comparators

5

Comparators — Inequality Comparators

- 1. Check the highest–order bit first.
- 2. If $A_3 = 1$ and $B_3 = 0$, A > B.
- 3. If $A_3 = 0$ and $B_3 = 1$, A < B.
- 4. If $A_3 = B_3$, examine the next lower bit position.

MSI magnitude comparator: 74HC85, which has three cascade inputs A < B, A = B, A > B.

6

Comparators — Inequality Comparators

Decoders

A decoder is used to detect a specified combination of input bits (code), e.g. to determine when the inputs are 1001.

- The output is 1 only when $A_3A_2A_1A_0 = 1001$.
- Implemented with an AND (NAND) gate and inverters for an active-HIGH (LOW) output.

(

Decoders - The 4-Bit Decoder

The truth table (with active-LOW output)

Decoders - The 4-Bit decoder

- The 4-bit decoder is usually called a *4-line-to-16-line* decoder.
- The 74HC154 is an MSI decoder.
- Both chip select inputs must be LOW to enable the device, otherwise all the outputs are HIGH.

10

Decoders - The 4-Bit decoder

The chip select inputs may be used to expand the decoder to higher orders.

E.g. to decode a 5-bit number.

11

Decoders — BCD-to-7-Segment Decoders

LED Displays

- A 7-segment LED display consists of light-emitting diodes (LED).
- For common-cathode displays, the LED is turned on when a HIGH is applied.

(a) Common-anode

(b) Common-cathode

12

Decoders — BCD-to-7-Segment Decoders

LED Displays

DECIMAL	INPUTS				SEGMENT OUTPUTS						
DIGIT	D	С	В	A	a	ь	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X

Decoders — BCD-to-7-Segment Decoders

Karnaugh map to simplify the segment-a logic.

Decoders — BCD-to-7-Segment Decoders

- LT is for lamp test.
- RBI and RBO are for zero suppression.