重庆大学课程设计报告

课程设计题目: MIPS SOC设计与性能优化 计算机学院 学 院: 专业班级: 计算机科学与技术01班 年 级: 2019 学 生: 姓名1 姓名2 号: 学 学号1 学号2 完成时间: 2019年 12月 30日 绩: 成 90 钟将 指导教师:

重庆大学教务处制

3*项	3*分	优秀	良好	中等	及格	不及格	3*评
目	值						分
		$100 > x \ge 90$	$90 > x \ge 70$	$80 > x \ge 70$	$70 > x \ge 60$	<i>x</i> < 60	
		参考标准					
学 习	15	学习态度认真,	学习态度比较	学习态度尚	学习态度尚	学习马虎,	
态度		科学作风严谨,	认真,科学作	好,遵守组织	可,能遵守	纪律涣散,	
		严格保证设计	风良好,能按	纪律,基本保	组织纪律,	工作作风不	
		时间并按任务	期圆满完成任	证设计时间,	能按期完成	严谨,不能	
		书中规定的进	务书规定的任	按期完成各	任务	保证设计时	
		度开展各项工	务	项工作		间和进度	
		作					
技术	25	设计合理、理论	设计合理、理	设计合理,理	设计基本合	设计不合	
水 平		分析与计算正	论分析与计算	论分析与计	理,理论分	理,理论分	
与 实		确,实验数据准	正确,实验数	算基本正确,	析与计算无	析与计算有	
际能		确,有很强的实	据比较准确,	实验数据比	大错,实验	原则错误,	
力		际动手能力、经	有较强的实际	较准确,有一	数据无大错	实验数据不	
		济分析能力和	动手能力、经	定的实际动		可靠,实际	
		计算机应用能	济分析能力和	手能力,主要		动手能力	
		力,文献查阅能	计算机应用能	文献引用、调		差, 文献引	
		力强、引用合	力,文献引用、	查调研比较		用、调查调	
		理、调查调研非	调查调研比较	可信		研有较大的	
		常合理、可信	合理、可信			问题	
创新	10	有重大改进或	有较大改进或	有一定改进	有一定见解	观念陈旧	
		独特见解,有一	新颖的见解,	或新的见解			
		 定实用价值	 实用性尚可				
论	50	结构严谨,逻辑	结构合理,符	结构合理,层	结构基本合	内容空泛,	
文(计		 性 强,层 次 清	合逻辑,文章	 次较为分明,	 理,逻辑基	 结 构 混 乱,	
算		 晰,语言准确,	 层次分明,语	文理通顺,基	 本清楚, 文	文字表达不	
书、图		 文字流畅,完全	言准确,文字	 本达到规范	字 尚 通 顺,	 清,错别字	
纸)撰		符合规范化要	流畅,符合规	化要求,书写	 勉强达到规	较多, 达不	
写 质		求,书写工整或	 范化要求, 书	比较工整;图	范化要求;	到规范化要	
量		用计算机打印	写工整或用计	纸比较工整、	图纸比较工	求;图纸不	
		成文;图纸非常	算机打印成	清晰	整	工整或不清	
		工整、清晰	文;图纸工整、			断	
			清晰				
			112 411				

指导教师评定成绩:

指导教师签名:

MIPS SOC设计报告

姓名1、姓名2

1 设计简介

本次硬件综合实训设计了一个基于经典五级流水线可以上板运行 57 条 MIPS 指令并通过 axi 总线连接了 cache 的 CPU。实验的最初代码来自于小组成员在计算机组成原理课程实验 4 中设计的可以运行 10 条 MIPS 指令的 CPU 和实验五实现的写回 cache。在此基础上经过以下 5 个阶段的修改,我们逐步完成了最终的 CPU 设计。

- 第一阶段:在原有代码的基础上我们按照逻辑运算指令-> 移位运算指令-> 数据移动指令-> 算术运算指令-> 转移指令的顺序,逐步扩展到 52 条指令。这一部分主要修改了 controller、alu 和 datapath,除此之外还添加了 hilo 寄存器,乘除法器等功能模块。
- 第二阶段: 我们在扩展到 52 条指令过后就通过 sram 接口连接 soc。然后调试了 hazard 模块。
- 第三阶段:这个阶段添加的 5 条指令全部和异常处理有关,包括特权指令和自陷指令,为此我们添加了 cp0 协处理器。
- 第四阶段: 在这个阶段, 我们将 CPU 通过类 sram 接口连接到 axi 总线, 这里参考了计算机组成原理实验 5 的代码, 复用了部分 axi 接口相关的文件和完成的写回 cache, 经过我们的调试后先后通过了 axi 的功能测试和性能测试并上板。
- 第五阶段:尝试优化 CPU 性能,如 cache,除法器。

1.1 小组分工说明

- 邹正强:负责逻辑运算、数据移动指令、连接axi总线。
- 黄优文: 算术运算指令、转移指令、异常处理指令。
- 罗梓元: 移位运算指令、Cache设计、harzard 模块调试与修改。

2 设计方案

2.1 总体设计思路

本次硬件设计主要设计和完善了一个可以基于 AXI 总线协议运行的 SOC 系统。其中,系统内存 (Ram)、外设 (Confreg),以及负责管理和仲裁上述从设备与处理器间的数据交互请

1

求,并进行数据传输的 AXI 1X2 Bridge 模块均已在课程资料包中提供。因此,本次设计的主要目标是构建一个支持 AXI 协议的 MIPS32 架构的 CPU,即下图中的mycpu_top模块。本项目设计的mycpu_top主要包含以下模块组件:

中央处理器MIPS:在计算机组成原理实验四所实现的五级流水线CPU基础上进行拓展,实现了MIPS32指令系统中所有非浮点MIPSI指令以及MIPS32中的ERET指令,还实现了少量CP00寄存器来支持中断和系统调用功能,但未实现TLB、MMU和特权等级。

内存管理单元MMU:采用直接映射方式,通过读取地址高位将CPU需访问的虚拟地址转换成物理地址,并判断数据访问请求是属于内存访问还是外设访问。

桥Bridge 1x2: 依据MMU给出的数据访问请求类型,对内存访问请求和外设访问请求进行分离或合并操作。需要注意的是,仅内存访问请求会经过数据Cache。

高速缓存Cache:旨在弥补CPU与内存之间的速度差异,由指令缓存InstCache和数据缓存DataCache两部分构成。

桥Bridge 2x1: 是Bridge 1x2的逆向工程。与Bridge 1x2不同,Bridge 2x1在某一时刻可能会同时接收到数据Cache发起的内存访问请求和CPU发出的外设访问请求,其内部仲裁策略为优先处理内存访问请求。

AXI接口AXInterface: mycpu_top内部采用类SRAM方式实现数据交互,所有对外的 类SRAM请求均由AXI接口统一转换为AXI请求,同时AXI接口会将外层返回的数据重新 转换为类SRAM格式供内层模块使用,其内部仲裁策略为优先指令访问

2.2 XX模块设计(可选)

对模块内部设计方案进行更进一步描述。可以包含:模块的功能意图,模块的输入输出,模块内部的数据通路和控制逻辑,以及可能的软硬件交互机制。

3 设计过程

3.1 设计流水账

2024年12月25日12:30~15:30

到教室上课,听助教讲解硬件综合设计课程的大致规划和任务目标。

2024年12月25日12:30~15:30

配置了 vivado 2020.1 的环境,并将 vivado 的编辑器连接到了 vscode,这样可以获得更清晰的代码高亮和补正。并选择 lab4 代码作为我们小组的初版代码,将其代码连接到了资料包中的 lab4 工程并成功运行。剩下的时间开始各自学习重庆大学硬件综合设计实验文

档的内容,修改代码。

2024年12月26日12:30~15:30

邹正强与罗梓元添加了逻辑运算指令和移位指令。

2024年12月28日12:30~15:30

邹正强添加了数据移动指令,小组一起讨论了 hilo 寄存器的放置位置,最终决定将其放置在 MEM流水线级。

2024年12月30日12:30~15:30

黄优文添加了算术运算指令。注意到拓展任务中的除法器的优化,小组开始查阅资料,寻找优化除法器的方法。

2024年12月31日12:30~15:30

黄优文添加了分支跳转指令。

2025年1月1日12:30~15:30

罗梓元添加了访存指令。

2025年1月2日12:30~15:30

邹正强连接了 sram-soc 运行功能测试,发现参考代码中的除法器不能通过功能测试中的除法,经过调试后通过,同时也解决了一些其他冒险模块的 bug 后通过功能测试的大部分测试点。

2025年1月3日12:30~15:30

小组观看了前几届学长录制在 B 站的视频,学习了异常处理有关的知识和注意事项,讨论了异常处理的相关设计思路,小组决定直接调用参考代码中的 cp0。

2025年1月4日12:30~15:30

黄优文完成了异常处理相关的数据通路的添加,开始调试。罗梓元完成了 cp0 相关数据通路的添加,开始调试。

2025年1月5日12:30~15:30

小组在与其他小组互相交流调试心得后,完成了代码的进一步调试。

2025年1月6日12:30~15:30

小组观看了 B 站学长的视频,准备开始连接 axi 总线,但是发现本次实验的资料包中没有提供相关的转接口代码,为了加快进度避免重复的工作,决定复用计算机组成与结构实验 5 的接口代码。

2025年1月7日12:30~15:30

邹正强连接好 axi 总线后开始测试 axi 项目的功能测试。发现优化后的除法器不能通过部分测试点,黄优文开始修改除法器,最后通过了功能测试。

2025年1月8日12:30~15:30

决定采用罗梓元的 cache 代码来进行后续的开发。连接了计组实验 5 中编写的写回 cache,成功通过性能测试并上板得到了性能得分,并继续优化 cache。

2025年1月9日12:30~15:30

在确定代码的大致通路后,邹正强开始用 Viso 绘制数据通路图。罗梓元与黄优文开始编写部分报告内容。罗梓元替换二路组相联写回cache 后发现上不了板,最终决定采用原来的写回cache。

2025年1月10日12:30~15:30 小组现场添加指令和答辩。

2025年1月11日12:30~15:30 小组撰写剩余的报告内容。

3.2 错误记录

3.2.1 错误1

- (1) 错误现象:描述这个错误产生时的现象。
- (2) 分析定位过程:说清楚你碰到这个问题是如何分析定位出错原因的。可能你分析定位过程中经历了多轮尝试,把它们都记录下来。
- (3) 错误原因:给出一个出错原因的正式说明。
- (4) 修正效果:说明你修正这个错误的方法,并说明它是否有效。
- (5) 归纳总结(可选):说说你觉得这个错误是哪种类型的,今后如何提前规避。

3.2.2 错误2

4 设计结果

请不要大篇幅地直接粘贴代码。

4.1 设计交付物说明

说明所提交设计的目录层次,各目录下对应的内容是什么。提供所提交设计进行仿真、综合、上板演示的必要操作提示步骤。

4.2 设计演示结果

以文字、图、表等形式展示设计的演示结果。

5 参考设计说明

如果在提交设计中使用了第三方IP或者借鉴了他人的部分源代码,请在此处逐一列举,并说明出处。所谓"借鉴"是指从模块划分、接口定义、数据通路结构、状态机、关键信号含义这些方面均与原设计存在较高的相似度。

- 6 总结
- 7 供同学们吐槽之用。有什么问题都可以直接写在这。
- 7.1 姓名1

.....

7.2 姓名2

.

8 参考文献

由于Latex有自带的参考文献引用方式,可以直接采用谷歌学术、百度学术搜索论文、课本的方式,选择bib格式的内容合并至一个文件(reference.bib),添加到该目录内,使用下方命令即可自动生成。,提交时请删除本段section