

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA PARA CURSO DE LICENCIATURA EM ENGENHARIA INFORMÁTICA

Regente: Félix Tomo

Assistentes: Bartolomeu Ubisse; Belarmino Matsinhe; Esménio Macassa; Fernando Mucomole;

Graça Massimbe & Valdemiro Sultane

2022-AP # 06- Corrente eléctrica continua & circuítos eléctricos

- 1. Um fio de Cobre de 1.5 mm de diâmetro transporta uma corrente de 1 A. Sabendo que a massa atómica de Cobre é de 63.5 g/mol, a densidade é de 8.92g/m³ e em cada átomo de Cobre existe aproximadamente um electrão de condução. Determine: (i) A densidade de corrente; (ii) A velocidade média dos electrões de condução.
- 2. O fusível de um circuito eléctrico é projectado de tal modo que ele funde, abrindo o circuito, se a corrente ultrapassar um determinado valor. Suponha que o material a ser usado em um fusível funde quando a densidade de corrente for de $400A/cm^2$. Que diâmetro de fio cilíndrico deve ser usado para fazer um fusível que limite a corrente a 0.50A?
- 3. A corrente eléctrica num condutor é dada por $I = 4+2t^2$, com I em amperes e t em segundos. Determine o valor médio e rqm (raiz quadrada média) da corrente entre $t_0 = 0$ e $t_1 = 10s$.
- 4. Demonstrar que a resistência equivalente da rede infinita da fig.1 é igual a $(1+\sqrt{3})R$.

Figura 1:

5. Se a resistência de um fio de cobre a 25^{o} C é 25Ω , determine a sua resistência a uma temperatura de 100^{o} C e o seu coeficiente de temperatura. (Considere a temperatura absoluta inferida de Cobre sendo de $-234,5^{o}$ C)

6. Usando as leis de Kirchhoff, determine as correntes nos resistores do circuito da Fig.2, sendo as resistências iguais a: $R_1 = R_5 = 1\Omega$, $R_2 = R_4 = 2\Omega$ e $R_3 = 3\Omega$.

Figura 2:

7. Determine a corrente e a queda de tensão no resistor de $R = 3\Omega$ da Fig.3 usando o teorema de Thevenin.

Figura 3:

8. Determine A queda de tensão no resistor de carga (R_L) da Fig.4 sabendo que $R_1=3\Omega$, $R_2=6\Omega$, $R_3=24\Omega$, $R_4=12\Omega$, $R_5=10\Omega$ e $R_L=9\Omega$

Figura 4:

9. Para o circuito da Fig.5, determine as a ddp nos terminais do capacitor e a corrente instantânea para t = 2 s sabendo que, no instante em que se liga o interruptor, o capacitor encontrase totalmente descarregado. Considere $\varepsilon=100V$, $R_1=240\Omega$, $R_2=800\Omega$, $R_3=200\Omega$, $R_4=104\Omega$ e $C=50\mu F$

Figura 5:

10. Um grupo de estudantes da FENG-UEM, com vista a comprovar a lei de Ohm, mediu a corrente que passava por uma resistência eléctrica variando-se a diferença de potencial nos terminais do mesmo, conforme a tabela 1.

Tabela 1: Verificação experimental da lei de Ohm ($R = 820\Omega$)

V(V)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
I(A)	0	0	0.001	0.003	0.004	0.006	0.006	0.007	0.009	0.01	0.012	0.013	0.014	0.015	0.017	0.018	0.019	0.02	0.022	0.023	0.025

- (a) Faça dois gráficos (scatter plot e fitting curve) de I = I(V) e determine a magnitude da resistência em questão. Nota: Use uma linguagem de programação a sua disponibilidade, porém, caso deseja usar o Python, para o fitting curve poderá usar a função curve_fit do módulo scipy.optimize.
- (b) Determine o erro relativo
- 11. Em 2019, um grupo dos estudantes de Fisca-2 na FENG-UEM realizou uma experiência de descarga de capacitor. O circuíto usado tinha uma resistência (R=33k) e uma capacitor ($C = 470\mu\text{F}$) e o grupo obteve os seguintes resultados:

Tabela 2: Descarga de capacitor (R = 33k, $C = 470\mu F$)

V(V)	II													
t(s)	0	5	10	15	20	25	30	35	40	45	50	55	60	65

- (a) Faça um gráfico (scatter plot) de Vxt
- (b) Determine o modelo que melhor descreve a distribuição dos dados da experiência e plote a curva de ajuste (fitting curve) juntamente com o scatter plot dos dados experimentais. O gráfico deve ter gridlines, minorticks, legenda no canto superior direito e o título com o valor de capacitância determinada experimentalmente. Os eixos devem ter os seus respectivos nomes e os dados conforme estão na tabela 2.

Recorde que $C = \frac{1}{R\beta}$, sendo β o parámetro do seu modelo.

(c) Determine o erro relativo