Retificação do Gabarito da AD1 da Disciplina Probabilidade e Estatística

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo 01.2007

Conhece-se os resultados de pesquisas aplicadas aos funcionários do setor de contabilidade de duas empresas, apresentados a seguir, onde n_i é a freqüência de ocorrência de cada valor e, para a variável escolaridade temos que:

- 1 significa que o funcionário tem o curso fundamental completo
- 2 significa que o funcionário tem o curso médio completo
- 3 significa que o funcionário tem o curso superior completo

Empresa A

Tabela A-1

	X (salário = X *500,00		
	reais)	n _i	escolaridade
1	1	24	1
2	2	8	1
3	3	18	2
4	4	12	2
5	5	5	3
6	6	2	3
7	7	2	3
8	8	1	3
9	9	3	3
10	10	1	3
11	11	1	3
12	12	2	3
13	13	5	3
14	14	7	3
Total		91	

Empresa B

Tabela B-1

	faixa salarial		
	(em reais)	n _i	escolaridade
1	300,00 - 800,00	6	1
2	800,00 - 1.300,00	4	1
3	1.300,00 - 1.800,00	2	2
4	1.800,00 - 2.300,00	2	2
5	2.300,00 - 2.800,00	2	2
6	2.800,00 - 3.300,00	1	3
7	3.300,00 - 3.800,00	1	3
8	3.800,00 - 4.300,00	1	3
9	4.300,00 - 4.800,00	1	3
10	4.800,00 - 5.300,00	1	3
Total		21	_

a) (0,5 pontos) Faça os histogramas da distribuição dos salários de cada uma das empresas. (Sugestão: utilize para a Empresa A a mesma faixa de salários da Empresa B)

Solução:

Passo 1: Inicialmente construir, para a Empresa A, uma tabela com os salários e depois outra tabela com as mesmas faixas salariais que a empresa B (utilizando como modelo a tabela B-1):

Passo 2: Calcular a densidade:

$$Densidade_{(i)} = \frac{f_i}{comp.faixa_{(i)}}$$
 i = 1, 2, ..., n (n úmero de faixas)

- por exemplo, a densidade da primeira faixa (800,00 | 1300,00), temos:

Frequência relativa (f_1) = 0,26374

Comp.faixa₍₁₎=500,00

Então:

$$Densidade_{(2)} = \frac{0,26364}{500} = 0,00053$$

- a densidade da segunda faixa (1300,00 | 1800,00), temos:

Frequência relativa $(f_5) = 0.08791$

Comp.faixa₍₅₎=500,00

Então:

$$Densidade_{(3)} = \frac{0,08791}{500} = 0,00018$$

Tabela A1

	X (salário = X *500,00 reais)	n _i	escolaridade	Salário
1	1	24	1	500,00
2	2	8	1	1.000,00
3	3	18	2	1.500,00
4	4	12	2	2.000,00
5	5	5	3	2.500,00
6	6	2	3	3.000,00
7	7	2	3	3.500,00
8	8	1	3	4.000,00
9	9	3	3	4.500,00
10	10	1	3	5.000,00
11	11	1	3	5.500,00
12	12	2	3	6.000,00
13	13	5	3	6.500,00
14	14	7	3	7.000,00
Total		91		

Tabela A por faixa de valor

Faixas	Freq	Comp. Faixa	Freq. Relativa	Freq. Acumulada	Densidade
		Taixa	(fi)	(fac)	
300,00 -800,00	24	500,00	0,26374	0,26374	0,000527
800,00 -1.300,00	8	500,00	0,08791	0,35165	0,000176
1.300,00 -1.800,00	18	500,00	0,19780	0,54945	0,000396
1.800,00 -2.300,00	12	500,00	0,13187	0,68132	0,000264
2.300,00 -2.800,00	5	500,00	0,05495	0,73626	0,00011
2.800,00 -3.300,00	2	500,00	0,02198	0,75824	4,4E-05
3.300,00 -3.800,00	2	500,00	0,02198	0,78022	4,4E-05
3.800,00 -4.300,00	1	500,00	0,01099	0,79121	2,2E-05
4.300,00 -4.800,00	3	500,00	0,03297	0,82418	6,59E-05
4.800,00 -5.300,00	1	500,00	0,01099	0,83516	2,2E-05
5.300,00 -5.800,00	1	500,00	0,01099	0,84615	2,2E-05
5.800,00 -6.300,00	2	500,00	0,02198	0,86813	4,4E-05
6.300,00 -6.800,00	5	500,00	0,05495	0,92308	0,00011
6.800,00 -7.300,00	7	500,00	0,07692	1,00000	0,000154
Total	91		1		

Passo 2: Montar histograma da empresa B utilizando a tabela B-1 a seguir.

Tabela B-3

	Tabela B-3						
Faixas	Freq	Comp. Faixa	Freq. Relativa (fi)	Freq. Acumulada (fac)	Densidade		
300,00 -800,00	6	500,00	0,28571	0,28571	0,00057		
800,00 -1.300,00	4	500,00	0,19048	0,47619	0,00038		
1.300,00 -1.800,00	2	500,00	0,09524	0,57143	0,00019		
1.800,00 -2.300,00	2	500,00	0,09524	0,66667	0,00019		
2.300,00 -2.800,00	2	500,00	0,09524	0,76190	0,00019		
2.800,00 -3.300,00	1	500,00	0,04762	0,80952	0,00010		

3.300,00 -3.800,00	1	500,00	0,04762	0,85714	0,00010
3.800,00 -4.300,00	1	500,00	0,04762	0,90476	0,00010
4.300,00 -4.800,00	1	500,00	0,04762	0,95238	0,00010
4.800,00 -5.300,00	1	500,00	0,04762	1,00000	0,00010
	21		1		

Histograma da empresa B baseado na tabela B-3

b) (0,5 pontos) Verifique como é a distribuição dos funcionários em relação à escolaridade nas 2 empresas (proporção de funcionários de nível fundamental, médio e superior). Faça um gráfico para cada empresa. Calcule qual tem a maior proporção de funcionários que não concluíram o nível superior.

Solução:

Passo 1: Construir tabela de freqüência de escolaridade da Empresa A:

Empresa A					
Escolaridade	Freq	Freq. Rel. (Fi)			
Fundamental	32	0,3516			
Médio	30	0,3297			
superior	29	0,3187			
Total	91	1,0000			

Passo 2: Construir tabela de freqüência de escolaridade da Empresa B:

Empresa B					
Escolaridade Freq Freq. Rel. (Fi)					
Fundamental	10	0,4762			

Médio	6	0,2857
superior	5	0,2381
Total	21	1,0000

Comparando essas tabelas de Escolaridade das empresas A e B e observando a freqüência relativa de ambas as empresas podemos comparar a variável Escolaridade, ou seja:

Escolaridade	Empresa A	Empresa B	
	Freq. Relativa (f_i)	Freq. Relativa (f_i)	
Fundamental	0,3516	0,4762	
Médio	0,3297	0,2857	
Superior	0,3187	0,2381	
Total	1,0	1,0	

Comparação:

Quanto a escolaridade nas 2 empresas: verificamos que em ambas a maioria dos funcionários é de nível fundamental entretanto, em relação a distribuição dos funcionários, podemos notar que os da Empresa A têm uma distribuição mais homogênea.

Passo 3 – Para trabalhar com esta variável, Escolaridade, o melhor gráfico é o de pizza.

OBS: Dois tipos diferentes de gráficos de pizza foram construídos para que o aluno possa perceber que embora diferentes possuem a mesma informação.

Gráfico de pizza da empresa A – 3d

Gráfico de pizza da empresa B - 2d

Passo 5: Para determinar qual a empresa tem a maior proporção de funcionários que não concluíram o ensino superior é necessário montar as tabelas de fregüências acumuladas de cada empresa.

Empresa A						
Escolaridade	Freq	Freq. Rel. (Fi)	Freq. Acum. (Facu)			
Fundamental	32	0,3516	0,3516			
Médio	30	0,3297	0,6813			
superior	29	0,3187	1,0000			
	91	1,0000				

Empresa B						
Escolaridade	Freq	Freq. Rel. (Fi)	Freq. Acum. (Facu)			
Fundamental	10	0,4762	0,4762			
Médio	6	0,2857	0,7619			
superior	5	0,2381	1,0000			
	21	1,0000				

Observando ambas as tabelas é possível verificar que a empresa B tem um percentual maior de funcionários que não têm curso superior, isto é, 76,19% dos funcionários contra 68,13% dos funcionários da empresa A que não têm curso superior.

c) (1,0 ponto) Qual a média, dos salários dos funcionários com curso superior? E em que faixa salarial se encontram a moda e a mediana? (Considere para o cálculo da média, a média de salários da respectiva faixa).

Solução:

Passo 1: Cálculo da média aritmética dos salários dos funcionários de nível superior

$$x_{obs} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
 ou $x_{obs} = \frac{\sum_{i=1}^{n} x_i}{n}$

$$x_{obs} = \frac{n_1 x_1 + n_2 x_2 + n_3 x_3 + \dots + n_n x_n}{n} \text{ ou } x_{obs} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i$$

Solução:

Cálculo da média aritmética

A Empresa A tem duas formas para cálculo da média justificáveis.

a) Uma é utilizando diretamente os dados da Tabela A, contendo somente os funcionários com curso superior:

	Х				
	(salário = X *500,00 reais)	n _i	escolaridade	Salário	ni*salário
6	6	2	3	3.000,00	6.000,00
7	7	2	3	3.500,00	7.000,00
8	8	1	3	4.000,00	4.000,00
9	9	3	3	4500,00	13.500,00
10	10	1	3	5.000,00	5.000,00
11	11	1	3	5.500,00	5.500,00
12	12	2	3	6.000,00	12.000,00
13	13	5	3	6.500,00	32.500,00
14	14	7	3	7.000,00	49.000,00
Total		24		·	134.500,00

$$x_{obs} = \frac{n_1 x_1 + n_2 x_2 + n_3 x_3 + \dots + n_n x_n}{n}$$
$$x_{obs(emp.A)} = \frac{134.500,00}{24} = 5.604,17$$

b) A outra forma é, como se quer comparar com a Empresa B e os dados dessa empresa estão por faixa salarial, pode-se admitir que se trabalhe também dessa forma com a Empresa A, embora perca-se informações. Assim:

			N 4 4 1 1 -	
Faixa salarial	n _i	escolaridade	Média Salário	ni*média salário
2.800,00 -3.300,00	2	3	3.050,00	6.100,00
3.300,00 -3.800,00	2	3	3.550,00	7.100,00
3.800,00 -4.300,00	1	3	4.050,00	4.050,00
4.300,00 -4.800,00	3	3	4.550,00	13.650,00
4.800,00 -5.300,00	1	3	5.050,00	5.050,00
5.300,00 -5.800,00	1	3	5.550,00	5.550,00
5.800,00 -6.300,00	2	3	6.050,00	12.100,00
6.300,00 -6.800,00	5	3	6.550,00	32.750,00
6.800,00 -7.300,00	7	3	7.050,00	49.350,00
	24			135.700,00

Nesse caso, a média será:

$$x_{obs(emp.A)} = \frac{135.700,00}{24} = 5654,17$$

O que significa que calculada da primeira forma, a média será R\$ 5.604,17 e da segunda, R\$5.654,17, (aproximação 0,8% maior)

Empresa B

faixa salarial (em reais)	n _i	escolaridade	Média Salário	ni*média salário
2.800,00 - 3.300,00	1	3	3.050,00	3050,00
3.300,00 - 3.800,00	1	3	3.550,00	3550,00
3.800,00 - 4.300,00	1	3	4.050,00	4050,00
4.300,00 - 4.800,00	1	3	4.550,00	4550,00
4.800,00 - 5.300,00	1	3	5.050,00	5050,00
total	5			20250,00

$$x_{obs(emp.B)} = \frac{20.250,00}{5} = 4050,00$$

Ou seja, a Empresa B tem a média de salários dos funcionários com nível superior menor do que a dos funcionários de mesmo nível da Empresa A.

Moda – valor com maior frequência de ocorrência

Moda da empresa A é salário de R\$500,00, a primeira posição (e primeira faixa). Moda da empresa B é a faixa 300,00|--800,00, a primeira faixa.

Mediana- o valor que está na posição central dos valores colocados em ordem:

Empresa A: 91 funcionários. A mediana será o salário da posição 46

Empresa B: 21 funcionários. A mediana será o salário da posição 11

ou seja,

Empresa A: terceira faixa (1.300,00|-1.800,00) Empresa B: terceira faixa (1.300,00|-1.800,00)

d) (1,0 ponto) Calcule o desvio padrão das 2 empresas. Qual deve ser o aumento salarial da Empresa B para que as duas empresas tenham o mesmo desvio padrão?

Solução:

Passo 1: Desvio Padrão:

Variância:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs})^2$$

Desvio Padrão:

$$dp_{obs} = \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2}$$

Para esses cálculos há a necessidade do cálculo da média, feito com no item anterior, tendo como resultado:

 $x_{obs(empA)} = 2.395,60 \rightarrow (para.tabela.como.originalmente.apre sen tada)$

 $x_{obs(empA)} = 2.445,60 \rightarrow (para.tabela.com.faixa.de.salários)$

 $x_{obs(empB)} = 1.907,14$

O cálculo do desvio padrão dos salários da Empresa A será feito também para as duas possíveis formas:

Salário	Freq.	Freq. Rel.	Média	Salário - Média	(Salário- Média)^2	((Salário- Média)^2)*fi
500,00	24	0,26	2.395,60	-1.895,60	3.593.299,36	86.239.184,64
1.000,00	8	0,09	2.395,60	-1.395,60	1.947.699,36	15.581.594,88
1.500,00	18	0,20	2.395,60	-895,60	802.099,36	14.437.788,48
2.000,00	12	0,13	2.395,60	-395,60	156.499,36	1.877.992,32
2.500,00	5	0,05	2.395,60	104,40	10.899,36	54.496,80
3.000,00	2	0,02	2.395,60	604,40	365.299,36	730.598,72
3.500,00	2	0,02	2.395,60	1.104,40	1.219.699,36	2.439.398,72
4.000,00	1	0,01	2.395,60	1.604,40	2.574.099,36	2.574.099,36
4.500,00	3	0,03	2.395,60	2.104,40	4.428.499,36	13.285.498,08
5.000,00	1	0,01	2.395,60	2.604,40	6.782.899,36	6.782.899,36
5.500,00	1	0,01	2.395,60	3.104,40 9.637.299,36		9.637.299,36
6.000,00	2	0,02	2.395,60	3.604,40	12.991.699,36	25.983.398,72
6.500,00	5	0,05	2.395,60	4.104,40	16.846.099,36	84.230.496,80
7.000,00	7	0,08	2.395,60	4.604,40	21.200.499,36	148.403.495,52
	91	1,00				412.258.241,76

$$\begin{aligned} & \mathrm{var}_{obs(empA)} = \frac{1}{n} \sum_{i=1}^k n_i (x_i - \overline{x}_{obs(empA)})^2 = \sum_{i=1}^k f_i (x_i - \overline{x}_{obs(empA)})^2 \\ & \mathrm{var}_{obs(empA)} = 0,2637(500,00 - 2.395,60)^2 + 0,0879(1000,00 - 2.395,60)^2 + ... + 0,0769(7000,00 - 2.395,60)^2 \\ & \mathrm{var}_{obs(empA)} = 4.530.310,35 \\ & dp_{obs(empA)} = \sqrt{\mathrm{var}_{obs(empA)}} = \sqrt{4.530.310,35} = 2.128,45 \end{aligned}$$

Tabela A por faixa de valor

Faixas	v. medio	Freq	Freq. Rel.	Média	salário - média	(salário - média)^2	(salário – media)^2*fi	densidade
300,00 - 800,00	550,00	24	0,2637	2.445,60	-1.895,60	3.593.316,02	947.687,74	0,000527473
800,00 - 1.300,00	1.050,00	8	0,0879	2.445,60	-1.395,60	1.947.711,63	171.227,40	0,000175824
1.300,00 - 1.800,00	1.550,00	18	0,1978	2.445,60	-895,60	802.107,23	158.658,57	0,000395604
1.800,00 - 2.300,00	2.050,00	12	0,1319	2.445,60	-395,60	156.502,84	20.637,74	0,000263736
2.300,00 - 2.800,00	2.550,00	5	0,0549	2.445,60	104,40	10.898,44	598,82	0,00010989
2.800,00 - 3.300,00	3.050,00	2	0,022	2.445,60	604,40	365.294,05	8.028,44	4,3956E-05
3.300,00 - 3.800,00	3.550,00	2	0,022	2.445,60	1.104,40	1.219.689,65	26.806,37	4,3956E-05
3.800,00 - 4.300,00	4.050,00	1	0,011	2.445,60	1.604,40	2.574.085,26	28.286,65	2,1978E-05
4.300,00 - 4.800,00	4.550,00	3	0,033	2.445,60	2.104,40	4.428.480,86	145.993,87	6,59341E-05
4.800,00 - 5.300,00	5.050,00	1	0,011	2.445,60	2.604,40	6.782.876,46	74.537,10	2,1978E-05
5.300,00 - 5.800,00	5.550,00	1	0,011	2.445,60	3.104,40	9.637.272,07	105.904,09	2,1978E-05
5.800,00 - 6.300,00	6.050,00	2	0,022	2.445,60	3.604,40	12.991.667,67	285.531,16	4,3956E-05
6.300,00 - 6.800,00	6.550,00	5	0,0549	2.445,60	4.104,40	16.846.063,28	925.607,87	0,00010989
6.800,00 - 7.300,00	7.050,00	7	0,0769	2.445,60	4.604,40	21.200.458,88	1.630.804,53	0,000153846
	Total	91					4.530.310,35	

$$\text{var}_{obs(empresaA)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs(empresaA)})^2 = \sum_{i=1}^{k} f_i (x_i - \overline{x}_{obs(empresaA)})^2$$

$$\text{var}_{obs(empresaA)} = 0.2637(550,00 - 2.445,60)^2 + 0.0879(1050,00 - 2.445,60)^2 + \dots + 0.0769(7050,00 - 2.445,60)^2$$

$$\text{var}_{obs(empresaA)} = 4.530.310,35$$

$$dp_{obs(empresaA)} = \sqrt{\text{var}_{obs(empresaA)}} = \sqrt{4.530.310,34} = 2.128,45$$

Desvio padrão da empresa B

Faixa	Valor médio	Freq.	Freq. Rel.	F x Ponto Médio	Média	Salário - Média	(Salário-Média)^2	(Salário-Média)^2*fi
300,00 -800,00	550,00	6	0,29	3.300,00	1.907,14	-1.357,14	1.841.836,73	526.239,07
800,00 -1300,00	1.050,00	4	0,19	4.200,00	1.907,14	-857,14	734.693,88	139.941,70
1.300,00 -1.800,00	1.550,00	2	0,10	3.100,00	1.907,14	-357,14	127.551,02	12.147,71
1.800,00 -2.300,00	2.050,00	2	0,10	4.100,00	1.907,14	142,86	20.408,16	1.943,63
2.300,00 -2.800,00	2.550,00	2	0,10	5.100,00	1.907,14	642,86	413.265,31	39.358,60
2.800,00 -3.300,00	3.050,00	1	0,05	3.050,00	1.907,14	1.142,86	1.306.122,45	62.196,30
3.300,00 -3.800,00	3.550,00	1	0,05	3.550,00	1.907,14	1.642,86	2.698.979,59	128.522,83
3.800,00 -4.300,00	4.050,00	1	0,05	4.050,00	1.907,14	2.142,86	4.591.836,73	218.658,89
4.300,00 -4.800,00	4.550,00	1	0,05	4.550,00	1.907,14	2.642,86	6.984.693,88	332.604,47
4.800,00 -5.300,00	5.050,00	1	0,05	5.050,00	1.907,14	3.142,86	9.877.551,02	470.359,57
	Total	21	1,00	40050,00				1.931.972,79

$$\begin{aligned} & \text{var}_{obs(empresaB)} = 0,29(550,00-1.907,14)^2 + 0,19(1.050,00-1.907,14)^2 + ... + 0,05(6.050,00-1.907,14)^2 \\ & \text{var}_{obs(empresaB)} = 1.931.972,789 \\ & dp_{obs(empresaB)} = \sqrt{\text{var}_{obs(empresaB)}} = \sqrt{1.931.972,79} = 1.389,95 \end{aligned}$$

Passo 2:

Para calcular qual deve ser o aumento necessário no salário dos funcionários da Empresa B para que ela tenha o desvio padrão igual ao da Empresa A, basta calcular o percentual de diferença entre os valores do desvio padrão da Empresa B em relação a empresa A e este valor aplicar sobre cada faixa de valor da tabela.

Calculando sobre a tabela A-1

$$p = \frac{dp_{obs(empresaA)}}{dp_{obs(empresaB)}} = \frac{2.128,45}{1.389,95} \cong 1,531$$

Ou seja, cada valor da faixa deve ser multiplicado por 1,531 ou 53,1% de acréscimo nos salários.

Usando a empresa A por faixa de valores deve se aplicar o mesmo cálculo.

$$p = \frac{dp_{obs(empresaA)}}{dp_{obs(empresaB)}} = \frac{2.128,45}{1.389,95} \cong 1,531$$

Ou seja, cada valor da faixa deve ser multiplicado por 1,531 ou 53,31% (acréscimo nos salários.).

Tanto a Tabela A quanto Tabela A por faixa de valor ambas têm o mesmo desvio padrão, portanto as faixas da Tabela B devem ser multiplicados por 1,531 para possuir o mesmo desvio padrão das tabelas A.

Faixa	Ponto Médio	Freq. Rel. (Fi)	Freq. Rel. Fi	F x Ponto Médio	Média	Salário - Média	(Salário- Média)^2	(Salário- Média)^2*fi
300,00*1,531 -800,00*1,531	842,05	6	0,29	5.052,30	2.919,83	-2.077,79	4.317.193,47	1.233.483,85
800,00*1,531 -1300,00*1,531	1.607,55	4	0,19	6.430,20	2.919,83	-1.312,29	1.722.093,80	328.017,86
1300,00*1,531 -1800,00*1,531	2.373,05	2	0,10	4.746,10	2.919,83	-546,79	298.974,62	28.473,77
1800,00*1,531 -2300,00*1,531	3.138,55	2	0,10	6.277,10	2.919,83	218,71	47.835,94	4.555,80
2300,00*1,531 -2800,00*1,531	3.904,05	2	0,10	7.808,10	2.919,83	984,21	968.677,76	92.255,02
2800,00*1,531 -3300,00*1,531	4.669,55	1	0,05	4.669,55	2.919,83	1.749,71	3.061.500,08	145.785,71
3300,00*1,531 -3800,00*1,531	5.435,05	1	0,05	5.435,05	2.919,83	2.515,21	6.326.302,90	301.252,51
3800,00*1,531 -4300,00*1,531	6.200,55	1	0,05	6.200,55	2.919,83	3.280,71	10.763.086,22	512.527,91
4300,00*1,531 -4800,00*1,531	6.966,05	1	0,05	6.966,05	2.919,83	4.046,21	16.371.850,05	779.611,90
4800,00*1,531 -5300,00*1,531	7.731,55	1	0,05	7.731,55	2.0919,83	4.811,71	23.152.594,37	1.102.504,49
	Total	21	1,00	61.316,55				4.528.468,87

Verificação:

$$\operatorname{var}_{obs(empresaB)} = 4.528.468,871$$

 $dp_{obs(empresaB)} = \sqrt{\operatorname{var}_{obs(empresaA)}} = \sqrt{4.528.468,871} = 2.128,02$

e) (0,5 pontos) Classifique cada variável das tabelas A e B (salário e escolaridade).

Solução:

Escolaridade: qualitativa ordinal.

Salário: quantitativa contínua.

f) (1,5 pontos) Mostre o que acontecerá com a média, a variância e o desvio padrão da empresa B se cada funcionário receber um gratificação fixa de "c". Mostre também o que acontecerá se na empresa A essa bonificação for de 20% sobre cada salário. Quanto terá que ser a gratificação "c" da empresa B para que sua média fique igual essa nova média da empresa A?

(Sugestão: reescreva as tabelas das empresas A e B, somando "c" a cada valor da tabela da empresa A e multiplicando cada valor da tabela B por 1,2 – ou seja, 20% de aumento. A seguir calcule as medidas solicitadas. Depois disso, calcule "c").

Passo 1: O aluno pode, para esse caso, somar uma constante "c" aos valores da tabela e fazer os cálculos ou chegar a mesma conclusão analisando as fórmulas, e concluindo:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original,
- no caso da variância o resultado não é alterado,
- e nesse caso, é claro que o desvio padrão também não é alterado.

Para a média

Analisando as formulas:

$$\overline{x} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + c \times n}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \overline{x} + c$$

Para a variância

$$\operatorname{var} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\overline{x} + c)]^2$$

$$\operatorname{var} = \frac{1}{n} \sum_{i=1}^{n} [x_i + c - \overline{x} - c]^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Fazendo as contas

Faixa	Ponto Médio	Freq. Rel. (Fi)	Freq. Rel. Fi	F x Ponto Médio	Média	Salário - Média	(Salário- Média)^2	((Salário- Média)^2)*fi
300,00+c -800,00+c	550,00+c	6	0,29	3.300,00+6c	1.907,14+c	-1.357,14	1.841.836,73	526.239,067
800,00+c -1300,00+c	1.050,00+c	4	0,19	4.200,00+4c	1.907,14+c	-857,14	734.693,88	139.941,691
1300,00+c -1800,00+c	1.550,00+c	2	0,1	3.100,00+2c	1.907,14+c	-357,14	127.551,02	12.147,7162
1800,00+c -2300,00+c	2.050,00+c	2	0,1	4.100,00+2c	1.907,14+c	142,86	20.408,16	1.943,6346
2300,00+c -2800,00+c	2.550,00+c	2	0,1	5.100,00+2c	1.907,14+c	642,86	413.265,31	39.358,6006
2800,00+c -3300,00+c	3.050,00+c	1	0,05	3.050,00+c	1.907,14+c	1.142,86	1.306.122,45	62.196,3071
3300,00+c -3800,00+c	3.550,00+c	1	0,05	3.550,00+c	1.907,14+c	1.642,86	2.698.979,59	128.522,838
3800,00+c -4300,00+c	4.050,00+c	1	0,05	4.050,00+c	1.907,14+c	2.142,86	4.591.836,73	218.658,892
4300,00+c -4800,00+c	4.550,00+c	1	0,05	4.550,00+c	1.907,14+c	2.642,86	6.984.693,88	332.604,47
4800,00+c -5300,00+c	5.050,00+c	1	0,05	5.050,00+c	1.907,14+c	3.142,86	9.877.551,02	470.359,572
	Total	21	1	40.050,00 +21C				1.931.972,79

$$\overline{x}_{obs(empA)} = \frac{1}{n} \sum_{i=1}^{n} n_i (Sal.medios.por.faixa)_i = \frac{1}{21} \times total = \frac{40.050,00 + 21c}{21} = 1.907,14 + c$$

Variância igual a tabela original

Passo 2:

Acrescentar 20% nas faixas salariais da empresa A, significa multiplicar cada valor do salário por 1,2 e pode ser visto também pela fórmula ou fazendo os cálculos. Pela fórmula:

$$\overline{x}_{obs(empA)} = \frac{\sum_{i=1}^{n} 1,2x_{i}}{n} = 1,2 \frac{\sum_{i=1}^{n} x_{i}}{n} = 1,2\overline{x}_{obs(empA)}$$

$$\operatorname{var}_{obs(empA)} = \frac{1}{n} \sum_{i=1}^{k} (1,2x_{i} - \overline{x}_{obs(empA)})^{2} = \frac{1}{n} \sum_{i=1}^{k} [1,2(x_{i} - \overline{x}_{obs(empA)})]^{2}$$

$$\operatorname{var}_{obs(empA)} = \frac{1}{n} \sum_{i=1}^{k} 1,2^{2} (x_{i} - \overline{x}_{obs(empA)})^{2}$$

$$\operatorname{var}_{obs(empA)} = 1,2^{2} \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \overline{x}_{obs(empA)s})^{2} = 1,2^{2} \operatorname{var}_{obs(empA)}$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original), ou seja, R\$2.554,14, o mesmo aplicando-se apara faixa de valores, onde o resultado é R\$2.215,89 Passo 3:

Calculando a nova média salarial, da empresa A, usando a tabela A-1 com acréscimo de 20%

$$\overline{x}_{obs(emp.A)} = \frac{\sum_{i=1}^{n} 1, 2x_i}{n} = 1, 2 \frac{\sum_{i=1}^{n} x_i}{n} = 1, 2 \overline{x}_{obs(emp.A)} = \frac{261.600, 00}{91} = 2.874, 73$$

Calculando o valor gratificação "c" da empresa B para que sua média fique igual essa nova média da empresa A

$$\overline{x}_{obs(emp.A)} \times 1,20 = \overline{x}_{obs(emp.B)} + C$$

$$2874,73 = 1907,14 + C$$

$$C = 2874,73 - 1907,14$$

$$C = 967.59$$

Questão 2) Numa certa população, a probabilidade de um indivíduo gostar de teatro é de 0,29, enquanto que a de gostar de cinema é de 0,50. Determine a probabilidade quando:

- a) Gostar de teatro e gostar de cinema são eventos disjuntos.
- b) Gostar de teatro e gostar de cinema são eventos independentes.
- c) Todos que gostam de teatro gostam de cinema.
- d) A probabilidade de gostar de teatro e de cinema é 1/8.
- e) Dentre os que não gostam de cinema, a probabilidade de não gostar de teatro é de 3/4.

OBS: essa questão ficou incompleta pois está faltando dizer "probabilidade de que" se deseja. Assim, sugiro que o valor da questão (1 ponto) seja distribuído metade na segunda questão e metade na terceira. Caso o aluno tenha escolhido alguma possibilidade, como a do exercício do livro, por exemplo (probabilidade de gostar de teatro e não gostar de cinema), sugiro que ele ganhe meio ponto a mais.

Solução:

Inicialmente vamos definir os eventos. Evento A o evento de gostar de teatro e evento B de gostar de cinema. A probabilidade de gostar de teatro e não gostar de cinema é:

$$P(A \cap B^c)$$
 OU $P(A \cap B^c) = P(A) - P(A \cap B)$

a) Gostar de teatro e gostar de cinema são eventos disjuntos.

Solução: Esse eventos serão disjuntos se $P(A \cap B) = 0$, assim:

$$P(A \cap B^{c}) = P(A) - P(A \cap B)$$

$$P(A \cap B^{c}) = 0.29 - 0$$

$$P(A \cap B^{c}) = 0.29$$

b) Gostar de teatro e gostar de cinema são eventos independentes.

Solução: Se os eventos são independes quer dizer que temos:

$$P(AB^c) = P(A) \times P(B^c)$$

Portanto:
 $P(B^c) = 1 - P(B)$
 $P(B^c) = 1 - 0.50$
 $P(B^c) = 0.50$

$$P(A) \times P(B^{c}) = 0.29 \times 0.50$$

 $P(A) \times P(B^{c}) = 0.45$

c) Todos que gostam de teatro gostam de cinema.

Solução: Se todos os que gostam de teatro gostam também de cinema, isto quer dizer que: $P(A \cap B) = P(A)$

portanto:

$$P(A \cap B^{c}) = P(A) - P(A \cap B)$$

$$P(A \cap B^{c}) = P(A) - P(A)$$

$$P(A \cap B^{c}) = 0$$

d) A probabilidade de gostar de teatro e de cinema é 1/8.

Solução: A probabilidade de gostar de teatro e cinema é de 1/8, isto quer dizer que:

$$P(A \cap B) = \frac{1}{8}$$
 portanto:

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$P(A \cap B^c) = 0.29 - \frac{1}{8} = 0.29 - 0.125$$

$$P(A \cap B^c) = 0.165$$

e) Dentre os que não gostam de cinema, a probabilidade de não gostar de teatro é de 3/4.

<u>Solução</u>

$$P(B^{\mathcal{C}}) = 1 - P(B)$$

$$P(B^{C}) = 1 - 0.50$$

$$P(B^{C}) = 0.50$$

$$P(A^c \cap B^c) = P(B^c) \times \frac{3}{4} = 0,50 \times 0,75 = 0,375$$

portanto:

$$P(A^{\mathcal{C}} \cap B^{\mathcal{C}}) = 1 - P(A \cup B)$$

$$P(A \cup B) = 1 - P(A^{c} \cap B^{c}) = 1 - 0.375$$

$$P(A \cup B) = 0,625$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.625 = 0.29 + 0.50 - P(A \cap B)$$

$$P(A \cap B) = 0.165$$

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

$$P(A \cap B^c) = 0.29 - 0.165 = 0.125$$

$$P(A \cap B^c) = 0.125$$

Questão 3) (2,0) A probabilidade de encontrar gás numa certa região Ω é de 0,15. Três sondas idênticas estão perfurando poçoa de modo independente.

1) Sabendo-se que uma delas (qualquer) não achou gás, qual a probabilidade das outras duas encontrarem?

Solução:

Três sondas: S1, S2 e S3.

Evento A: Uma das sondas encontra gás. Evento A^C: Uma das sondas não encontra gás.

$$P(A^c) = 1 - P(A) = 1 - 0.15$$

$$P(A^{C}) = 0.85$$

Possibilidades para os três poços S1, S2 e S3, para a situação: só um deles não encontrou gas (Ac):

AAA^c ou A A^cA ou A^cAA

Sabe-se que: $P(A)=0,15 e P(A^c)=0,85$, logo

$$P(AAA^{c} \cup A A^{c}A \cup A^{c}AA) = P(AAA^{c}) + P(A A^{c}A) + P(A^{c}AA) = 3 \times 0.85 \times 0.15 \times 0.15 = 0.057375$$

2) Sabendo-se que uma delas (qualquer) não achou gás, qual a probabilidade de encontrar gás na região através dessas perfurações?

Solução:

Neste caso somaremos ao resultado anterior (2 sondas encontraram gás) a probabilidade de somente uma sonda encontrar gás. AA°A° ou A°AA° ou A°AA° a. Assim,

$$P(AA^{c}A^{c}U A^{c}AA^{c}U A^{c}A^{c}A) = P(AA^{c}A^{c}) + P(A^{c}AA^{c}) + P(A^{c}A^{c}A) = 3 \times 0.85 \times 0.85 \times 0.15 = 0.325125$$

Probabilidade de achar gás em pelo menos 1 sonda (sabendo-se que uma delas não encontrou):

$$P(AAA^c \cup A A^c A \cup A^c A A) + P(AA^c A^c \cup A^c A A^c \cup A^c A^c A) = 0,057375 + 0,325125 = 0,382500$$

3) Sabendo-se que não mais de uma delas (qualquer) achou gás, qual a probabilidade de nenhuma encontrar gás?

Solução:

Ou uma ou nenhuma achou. Logo, probabilidade de uma sonda encontrar gás:

$$P(AA^{c}A^{c}U A^{c}AA^{c}U A^{c}A^{c}A) = 0,325125$$

Probabilidade de nenhuma sonda encontrar gás: $P(A^cA^cA^c) = 0,614125$

Logo,
$$P(AA^cA^cUA^cAA^cUA^cA^cA) + P(A^cA^cA^c) = 0.324125 + 0.614125 = 0.93925$$

Questão 4) (2,0) Uma urna contém 3 moedas. Uma tem duas caras, a outra é uma moeda justa, e a terceira é uma moeda viciada com probabilidade de cara igual a 0:75. Uma moeda é selecionada aleatoriamente da urna, lançada com resultado cara. Qual a probabilidade da moeda escolhida ter duas caras? (Sugestão: considerando as variáveis

cara: se o resultado do lançamento for cara;

M1: a moeda justa;

M2: a moeda que tem duas caras;

M3: a moeda viciada com probabilidade de cara 0.75,

defina uma partição do espaço amostral entre os eventos M1, M2 e M3 para determinar a probabilidade P(M2|cara) .

Dados do problema:

$$P(M_1) = \frac{1}{3}, P(cara \mid M_1) = 0,50$$

$$P(M_2) = \frac{1}{3}, P(cara | M_2) = 1$$

$$P(M_3) = \frac{1}{3}, P(cara | M_2) = 0.75$$

O que se quer saber?

$$P(M_2 \mid cara) = \frac{P(M_2 \cap cara)}{P(cara)} = \frac{P(M_2) \cdot P(cara/M_2)}{P(cara)}$$

portanto o que precisamos saber é P(cara). Os eventos M1, M2 e M3, são mutuamente exclusivos, e reunidos formam o espaço amostral completo, portanto o evento cara é a união de três outros eventos mutuamente exclusivos.

$$\begin{split} &P(cara) = P(M_{1} \cap cara) + P(M_{2} \cap cara) + P(M_{3} \cap cara) \\ &P(cara) = P(M_{1}) \cdot P(cara/M_{1}) + P(M_{2}) \cdot P(cara/M_{2}) + P(M_{3}) \cdot P(cara/M_{3}) \\ &P(cara) = \frac{1}{3} \times 0,50 + \frac{1}{3} \times 1 + \frac{1}{3} \times 0,75 \\ &P(cara) = 0,75 \end{split}$$

logo temos:

$$P(M_2 \mid cara) = \frac{P(M_2 \cap cara)}{P(cara)} = \frac{P(M_2) \cdot P(cara \mid M_2)}{P(cara)}$$

$$P(M_2 \mid cara) = \frac{\frac{1}{3} \cdot 1}{0.75}$$

$$P(M_2 \mid cara) = 0.44$$

Boa Prova!