and as In the previous section I study the CONVERDINA the jutt-ofthe dependance. CHAPTER 3. RESULTS of rulew current. 3.2Helium photodisintegration Three brewly Molium augyst 4Hp 3.2.13N photodisintegration On the left we It has to In this section I will discuss results for  ${}^{3}\text{He} \rightarrow p + p + n$  process: In the Fig. 3.26 I demonstrate a differential cross section  $\frac{d^5\sigma}{d\Omega_1 d\Omega_2 dS}$  as a function of the S be discused: arc length! The photon energy is  $E_{\gamma} = 30 \,\mathrm{MeV}$ ; and the kinematic configuration  $\theta_1 = 15^{\circ}$ , 1) why these  $\phi_1 = 0^{\circ}, \ \theta_2 = 15^{\circ}, \ \phi_2 = 180^{\circ};$  predictions have been obtained without 3NF. We see that Eastiguitions. only NLO and N<sup>2</sup>LO introduce relatively large truncation error. The maximal width of a band for NLO is 37.6 % at  $S = 10 \,\text{MeV}$ , for N<sup>2</sup>LO it is 12.4 % at the same, point and it and energles is gradually decreasing coming to 0.13% at N<sup>4</sup>LO<sup>+</sup>. The cutoff spread around maxima values is less than 3% and it is 0.78% at the minimum point  $(S = 10 \,\text{MeV})$ . s valve reaches but remains below  $\theta_1 = 15^{\circ}$ ,  $\phi_1 = 0^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 180^{\circ}$ 2.5 2). why only 2.0 NN force. 1.5 15 3Me borns 1.0 N2LO ofthe also N3LO culculated witho 0.5 3NF. 2 15 200 10 15 Do ve how, what S [MeV] will thank after the sms inclusion of MF? Figure 3.26: The five-fold differential cross section for the photon energy  $E_{\gamma} = 30 \,\mathrm{MeV}$ for the kinematic configuration  $\theta_1 = 15^{\circ}$ ,  $\phi_1 = 0^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 180^{\circ}$ . The left figure presents truncation error bands obtained using potential with chiral orders from NLO to N<sup>4</sup>LO<sup>+</sup>, and with cutoff parameter  $\Lambda = 450\,\mathrm{MeV}$ . The right figure presents a cutoff dependence at N4LO+. Results are obtained with two-nucleon force only and \_\_\_ current would, for the name Ex=111 MAY for which predictions are With larger energy  $E_{\gamma} = 100 \,\mathrm{MeV}$  demonstrated in the Fig. 3.27, both truncation error and cutoff spread become larger. The truncation band at the maximum point  $S = 10 \,\mathrm{MeV}$  for NLO is 55.0% decreasing to 2.2% at N<sup>4</sup>LO<sup>+</sup> which is around 3 times larger than it was in predictions with  $E_{\gamma} = 30 \,\mathrm{MeV}$ . The cutoff spread also becomes larger with increasing energy value: 9.0% at the same (maximum) point which is also  $\sim 3$  times bigger than the one we observed for the lower energy. Reults for other angular configurations at  $\theta_1 = 75^{\circ}$ ,  $\phi_1 = 75^{\circ}$ ,  $\theta_2 = 75^{\circ}$ ,  $\phi_2 = 105^{\circ}$ SIVUR are demonstrated in Fig. 3.28. The top row shows results obtained with 2NF only, while predictions obtained with 3NF are shown on the bottom row. It seems that 3NF does not change much the convergence with respect to the chiral order: truncation error band at the point of maximum  $S=35\,\mathrm{MeV}$  (N<sup>4</sup>LO<sup>+</sup>) is 1.11 % and 1.16 % with and without 3NF, respectively. Sold is almost the same, meaning that 3NF contribution arising starting from N2LO order does not affect chiral order convergence, much. Note, 3NF at N210 has been The cutoff dependence, in turn, is affected by the 3NB presence Predictions with 2NF only have 13/7% spread at the same maximum point  $S=35\,\mathrm{MeV}$ , while predictions with 3NF have only 1.23% relative spread, so the difference is tremendous. I conclude that including 3NF printiculty 43 Used for all NN forus above NLO.

For giving directions of two moments for and fe For three nickons in the final state it is conviendent to introloce, the are a hinematical vanishe, the are-bright of the S-curre, in the the s-curre to spanso in the plane defined by energies of this a nucleons, E, and Ez. For three partides and known mentury and mentur the five hirenthand variable are regularly to define the . aitmonth board footnote of among describing find other footnote of among viole of 1,82,83 min four can be fixed from oranger and momentum conservation love.} Le choose four Variables as directions of outgoing povilesons on I and 2:  $\theta_1, Y_1, \theta_2$  and  $Y_2, Light$ the & axis defined by intent photon momentum. Chrosing En as the first variable world introduce some cases to the Values of E2 could be allowed. Instead, the store location on the S-come defines the Minential configurations unambiguously. The various possible locations of the S-curre in En-tz place, as will as the convention on choosing the 5=0 point is given in Fig... of Ref. [Glöchle\_ruport]. I I'm now not over if there is an introduction of the S-curve in other phapters. If it is so maybe

above description is not needed.



Figure 3.27: The same as in Fig. 3.26 but for the photon energy  $E_{\gamma} = 100 \text{ MeV}$ 

Similar trends are present also in other configurations, demonstrated for the compar-

ison: Figs.3.29, Figs.3.30 and Figs.3.31.

I menul 2

The semi-inclusive differential cross section  $\frac{d^3\sigma}{d\Omega_p dE_p}$  as a function of the outgoing protons energy  $E_p$  is demonstrated on the Fig. 3.32 (for  $E_{\gamma}=30\,\mathrm{MeV}$ ) and Fig. 3.33 (for  $E_{\gamma}=100\,\mathrm{MeV}$ ). Each figure consists of subfigures where each row presents results for approton angles  $\theta_p=10^\circ, 50^\circ, 90^\circ, 130^\circ$  and 170°. The left part of each subfigure shows a chiral order dependence while the right scutoff dependence.

At the photon energy 30 MeV the chiral dependence is relatively weak: at the maximum point  $(E_p \simeq 3.8 \,\mathrm{MeV})$  the relative difference varies between 12% and 28% at LO for different angles. This difference decreases with each subsequent order resulting in 0.15% at  $N^4LO+$ . At the energy  $E_{\gamma}=100\,\mathrm{MeV}$  truncation errors are larger: at the  $E_p\simeq 1.46\,\mathrm{MeV}$  the discrepancy is around 40% (NLO), 15% (N2LO), coming to 1.5% at  $N^4LO^+$ .

The cutoff uncertainty at  $E_{\gamma} = 30 \, \text{MeV}$  is around 2% and at  $E_{\gamma} = 100 \, \text{MeV}$  is around 8% for all angles and at the same values of  $E_p$  as regarded above.

Atypical water in stables aiming on pin-down the datails of the third force. Do us have prediction with other curat?

The exclusive <del>recurrenceds</del> show attracte above, in Figs 3.26-3.31 are small and infortrapitly below the possibilities of current experimental techniques. The somi-inclusive measurement is more library to be performed, thus in Figs 3.33 and 3.33 more library to be performed, thus in Figs 3.33 and 3.33





Figure 3.29: The same as in the Fig. 3.28 but for the different kinematic configuration,



Figure 3.30: The same as in the Fig. 3.29 but for the different kinematic configuration.



Figure 3.31: The same as in the Fig. 3.30 but for the different kinematic configuration.



Figure 3.32: The semi-inclusive differential cross section  $\frac{d^3\sigma}{d\Omega_p dE_p}$  at  $E_{\gamma}=30\,\mathrm{MeV}$  as a function of outgoing proton energy  $E_p$ . Each row represents predictions for different values of the outgoing proton's momentum polar angle  $\theta_p$ : 10°, 50°, 90°, 130° and 170°. Each column has similar curves and bands definitions as it was for exclusive cross section in Fig. 3.26. Predictions have been obtained with the SMS NN potential but neglecting 3NF.

49

Herribe



CHAPTER 3. RESULTS

# D-p photodisintegration Tho-buly heavy 3.2.2

The differential cross section  $d\sigma/d\Omega_d$  for the  $^3He + \gamma \rightarrow d + p$  reaction is presented In the Fig. 3.34 (for the photon energy  $E_{\gamma} = 30 \,\mathrm{MeV}$ ) and In the Fig. 3.35 (for the photon energy  $E_{\gamma} = 100 \,\mathrm{MeV}$ ). We see that both truncation and cutoff uncertainties are larger with increasing photon energy. The relative spread of the truncation error at the maximum point ( $\theta_p = 105^{\circ}$ ) for the lower energy is 0.05 % at N<sup>4</sup>LO<sup>+</sup>, while for the larger energy similar spread is 0.45 % (at N^4LO^+,  $\theta_p = 120^{\circ}$ ).

The cutoff dependence is also stronger for the larger energy: it is 1.45 % at 30 MeV and 4.01% at 100 MeV (at the points of maximum).



Figure 3.34: Differential cross section for the Da two-body photodisintegration of <sup>3</sup>He as a function of the  $\sqrt{3}$  angle. The initial photon energy  $E_{\gamma} = 30 \,\text{MeV}$ . NN or NN+)NF ?



Figure 3.35: The same as on Fig. 3.34 but for the photon energy  $E_{\gamma} = 100 \,\mathrm{MeV}$ 

Triton photodisintegration 3.3

p + n + n process cut- of dependence.

in the rose to nevtron one ditetel

In this section I will discuss results for  ${}^{3}H \rightarrow p + n + n$  process.

present

In the Fig. 3.36 I demonstrate a differential cross section  $\frac{d^5\sigma}{d\Omega_1 d\Omega_2 dS}$  as a function of the S arc length. The photon energy is  $E_{\gamma} = 30 \,\text{MeV}$  and the kinematic configuration  $\theta_1 = 15^{\circ}$ ,  $\phi_1 = 0^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 180^{\circ}$ ; predictions have been obtained without 3NF. We see that only NLO and N<sup>2</sup>LO introduce relatively large truncation error. The maximal width of a band for NLO is 30.95% at  $S = 10 \,\mathrm{MeV}$ , for N<sup>2</sup>LO it is 6.79% at the same point and it is gradually decreasing coming to 0.10 % at N<sup>4</sup>LO<sup>+</sup>. The cutoff spread around maxima values is 6.25% (at  $S = 4 \,\mathrm{MeV}$ ) and it is 1.81% at  $S = 10 \,\mathrm{MeV}$ .



Figure 3.36: The five-fold differential cross section for the photon energy  $E_{\gamma} = 30 \,\mathrm{MeV}$ for the kinematic configuration  $\theta_1 = 15^{\circ}$ ,  $\phi_1 = 0^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 180^{\circ}$ . The left figure presents truncation error bands obtained using potential with chiral orders from NLO to  $N^4LO^+$ , and with cutoff parameter  $\Lambda = 450\,\mathrm{MeV}$ . The right figure presents a cutoff dependency at N4LO+. Results are obtained with two-nucleon force only.

With larger energy  $E_{\gamma} = 100 \,\text{MeV}$  demonstrated in the Fig. 3.37, the truncation band at the maximum point  $S = 10 \,\mathrm{MeV}$  for NLO is  $50.26 \,\%$  decreasing to  $2.00 \,\%$  at  $\mathrm{N^4LO^+}$ . The cutoff spread also becomes larger with increasing energy value:  $9.52\,\%$  at the same to what was found maximum).

The truncation error bands and cutoff dependance is very similar as it was for the three-body Helium photodisintegration 3.21 and the relative errors have a similar range of values, magnitudes.

Results for other angular configurations at  $\theta_1 = 75^{\circ}$ ,  $\phi_1 = 75^{\circ}$ ,  $\theta_2 = 75^{\circ}$ ,  $\phi_2 = 105^{\circ}$ are demonstrated in Fig. 3.38 with  $E_{\gamma} = 30 \,\text{MeV}$  Both truncation errors and cutoff dependance are lower at this configuration: the relative width of the truncation band at NLO is 9.39% (at the maximum point  $S=8\,\mathrm{MeV}$ ) and drops to only 0.1% at N<sup>4</sup>LO<sup>+</sup>. The relative cutoff spread is 0.93% at the same point. to grows .

At the larger energy  $E_{\gamma} = 100 \,\mathrm{MeV}$  demonstrated in Fig. 3.39 uncertainties have been increased. The truncation bands are 44.42% and 2.09% (at NLO and N4LO+, respectively) and the cutoff spread is 13.04% (all at  $S=35\,\mathrm{MeV}$ ).

Similar trends are present also in other configurations, demonstrated for the comparison, Figs. 3.40, 3.41, 3.42, 3.43, 3.44 and 3.45.

In Figo 3.40-3.45

in muximum

55



Figure 3.37: The same as in the Fig. 3.36 but for the photon energy  $E_{\gamma} = 100 \,\mathrm{MeV}$ .



Figure 3.38: The same as in the Fig. 3.36 but for the different kinematic configuration  $\theta_1 = 75^{\circ}$ ,  $\theta_1 = 75^{\circ}$ ,  $\theta_2 = 75^{\circ}$ ,  $\theta_2 = 75^{\circ}$ . Results obtained with 2NF only.



Figure 3.39: The same as in the Fig. 3.38 but for the photon energy  $E_{\gamma} = 100 \, \text{MeV}$ .



Figure 3.40: The same as in the Fig. 3.38 but for the different kinematic configuration  $\theta_1 = 15^{\circ}$ ,  $\phi_1 = 105^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 75^{\circ}$ . Results obtained with 2NF only:



Figure 3.41: The same as in the Fig. 3.40 but for the photon energy  $E_{\gamma}=100\,\text{MeV}.$ 



Figure 3.42: The same as in the Fig. 3.40 but for the different kinematic configuration  $\Theta_1 = 45^\circ$ ,  $\phi_1 = 75^\circ$ ,  $\theta_2 = 45^\circ$ ,  $\phi_2 = 105^\circ$ . Results obtained with 2NF only.



Figure 3.43: The same as in the Fig. 3.42 but for the photon energy  $E_{\gamma}=100\,\mathrm{MeV}.$ 



Figure 3.44: The same as in the Fig. 3.42 but for the different kinematic configuration  $\theta_1 = 165^{\circ}$ ,  $\phi_1 = 15^{\circ}$ ,  $\theta_2 = 15^{\circ}$ ,  $\phi_2 = 165^{\circ}$ . Results obtained with 2NF only.



Figure 3.45: The same as in the Fig. 3.44 but for the photon energy  $E_{\gamma}=100\,\mathrm{MeV}.$ 

### 3.4 Pion absorption from the lowest atomic orbital

#### 3.4.1 Pion absorption in <sup>2</sup>H



The grandy extrador

Figure 3.46: Absorption rate for the reaction  $\pi^- + {}^2{\rm H} \rightarrow n + n$ . The rates were calculated using the SMS force with different chiral orders and cutoff values. The results were obtained using the single-nucleon transition operator and including two-nucleon contributions at the leading order. The figure shows the results obtained using plane wave (PW) plus two-neutron rescattering (Full) parts. The experimental value is obtained from the hadronic ground-state broadening in pionic deuterium [?,?].

#### 3.4.2 Pion absorption in <sup>3</sup>He

in Fig. 3.47 and 3.48 the pion absorption rates are presented as a function of the chiral order with different values of the cutoff parameter (for  $\pi^- + ^3$  He  $\rightarrow p + n + n$  and  $\pi^- + ^3$  He  $\rightarrow n + d$  reactions, respectively). Both figures show that with fixed chiral order the arrangement of values with respect of the cutoff parameter remains the same, namely with increasing  $\Lambda$ , absorption rate decreases. The only exception in both cases appears at N³LO where prediction with  $\Lambda = 550$  MeV goes above other predictions. At the next order, N⁴LO, it corrects to the normal arrangement. This behavior may be connected to the 3NF used for the calculation and in order to check that I show a similar figure for a proton radius  $r_p$  in Fig. 3.49 calculated with and without 3NF (left and right panels respectively). Results obtained with 3NF show similar deviation at N³LO while data obtained without 3NF does not have that. Nevertheless, the spread of predictions with respect to the cutoff values is much smaller with 3NF and deviation seems to be not crucial as total difference between predictions in this case is very small.

In Figs. 3.50 and 3.51 I show intensity plots for the double differential absorption rates  $d^2\Gamma_{pnn}/dE_1dE_2$  for the  $\pi/+^3{\rm He} \to p+n+n$  process as functions of the nucleons energies (first nucleon is proton) and of correct naming Dalitz coordinates(x and y) respectively.

In Fig. 3.51 coordinates x and y are defined as:

3 per wave forming results from the

CHAPTER 3. RESULTS

Assorption rates obtained

## 3.3 Pion absorption from the lowest atomic orbital

and for

#### 3.3.1 Pion absorption in <sup>3</sup>He

In Fig. 3.36 and 3.37 the pion absorption rates are presented as a function of the chiral order with different values of the cutoff parameter (for  $\pi^- + ^3He \rightarrow p + n + n$  and  $\pi^- + ^3He \rightarrow n + d$  reactions, respectively). Both figures show that with fixed chiral order the arrangement of values with respect of the cutoff parameter remains the same, namely with increasing  $\Lambda$ , absorption rate decreases. The only exception in both cases appears at N<sup>3</sup>LO where prediction with  $\Lambda = 550\,\text{MeV}$  goes above other predictions. At the next order, N<sup>4</sup>LO, it corrects to the normal arrangement. This behavior may be connected to the 3NF used for the calculation and in order to check that I show a similar figure for a proton radius  $r_p$  in Fig. 3.38 calculated with and without 3NF (left and right panels respectively). Results obtained with 3NF show similar deviation at N<sup>3</sup>LO while data obtained without 3NF does not have that. Nevertheless, the spread of predictions with respect to the cutoff values is much smaller with 3NF and deviation seems to be not crucial as total difference between predictions in this case is very small.



Figure 3.36: Absorption rate for  $\pi^- + ^3He \to p + n + n$  reaction as a function of the chiral order with different values of the cutoff parameter  $\Lambda$ . Predictions were obtained with 3NF.

In Figs. 3.39 and 3.40 I show intensity plots for the double differential absorption rates  $d^2\Gamma_{pmn}/dE_1dE_2$  for the  $\pi^-+^3He\to p+n+n$  process as functions of the nucleons energies (first nucleon is proton) and of correct naming Dalitz coordinates (x and y) respectively. In Fig. 3.40 coordinates x and y are defined as:

$$x = 3(E_1 + 2E_2 - E)/E,$$
  

$$y = (3E_1 - E)/E,$$
(3.4)

taking the region where  $r^2 \equiv x^2 + y^2 \le 1$ .

Each of two figures consists of four panels representing predictions obtained with different values of the cutoff parameter  $\Lambda$ . The difference between predictions which can be noticed with the naked eye - is that area of the central region (corresponding to

52 59

My ON ON

sple ralias

Verte

interedictely

(noting it at I in nothin

By its nature the total absorption rates cann't deliver details on distribution of rossons the contributions to the absorption process in the phase-gave

donumical ingredients

Thus, in tollowy, in Figs. 3.39 - ... I show recions intensity plats restains revealing ranger paul phase spaul interesting.

let soo A remaind that in case of aboutin rates
only to himentaid variables are re- necessary to define
exclusive himentaid infiguration. That is, because for
that process share is not full notation of many, as none
of rectors define the 2-axis.