1 \mathbb{R}/\mathbb{Z} is compact

Suppose $\{U_{\lambda} \mid \lambda \in \Lambda\}$ is an open cover of $\frac{\mathbb{R}}{\mathbb{Z}}$. Define $V_{\lambda} = \pi_{\sim}^{-1}(U_{\lambda})$. Note that $\{V_{\lambda} \cap [0,1] \mid \lambda \in \Lambda\}$ is an open cover of [0,1] with subspace topology. Hence, there exists an open cover $\{V_1 \cap [0,1], \ldots, V_n \cap [0,1]\}$ of [0,1]. Note that saturation of [0,1] is \mathbb{R} and V_{λ} are \sim - saturated. Hence, $\{V_1, \ldots, V_n\}$ is an open cover of \mathbb{R} . Lastly, $\bigcup_{i=1}^n \pi_{\sim}(V_{\lambda_i}) = \bigcup_{i=1}^n U_{\lambda_i} = \pi_{\sim}(\bigcup_{i=1}^n V_{\lambda_i}) = \pi_{\sim}(\mathbb{R}) = \frac{\mathbb{R}}{\mathbb{Z}}$.

Hence, we found a finite subcover.