UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TOPOLOGÍA I

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Quinto o sexto

CLAVE: **0765**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Lineal II, Análisis Matemático

I, Ecuaciones Diferenciales I.

SERIACIÓN INDICATIVA SUBSECUENTE: Seminario de Topología (A o B), Topología II, Topología Diferencial I.

OBJETIVO(S): Introducir al alumno a los principales conceptos, resultados y problemas que se abordan en esta área de las matemáticas.

NUM. HORAS	UNIDADES TEMÁTICAS
2	1. Preliminares
	1.1 Motivación y ejemplos de espacios topológicos conocidos. Sub-
	espacios importantes de \mathbb{R}^n .
16	2. Espacios topológicos
	2.1 Topología en un conjunto, conjuntos abiertos y cerrados, vecinda-
	des en un espacio topológico. La topología inducida por una métrica.
	Ejemplos en espacios euclidianos.
	2.2 Bases y subbases de una topología (topología generada por una
	cubierta), bases de vecindades. Opcional: Filtros, convergencia de
	filtros.
	2.3 Interior, cerradura, conjuntos densos.
	2.4 Axiomas de numerabilidad. Opcional: Espacios separables.
	2.5 Comparación de topologías. Ínfimo (intersección) y supremo de
	una familia de topologías.

22	3. Continuidad y topología inducida por funciones
	3.1 Continuidad. Opcional: Redes, convergencia y puntos de acumu-
	lación.
	3.2 Aplicaciones abiertas, cerradas y homeomorfismos.
	3.3 Propiedades topológicas.
	3.4 Topología inducida en un dominio común de una familia de fun-
	ciones.
	3.5 Topología relativa. Ejemplos de subespacios. Subespacios impor-
	tantes de \mathbb{R}^n : la esfera, la bola, etc., vistos con la topología relativa.
	3.6 Producto topológico. Propiedad universal. Producto de aplicacio-
	nes.
	3.7 Topología (co)inducida en un codominio común de una familia
	de funciones.
	3.8 Suma topológica. Propiedad universal. Topología débil.
	3.9 Topología de identificación. Teorema de transgresión. Propiedad
	universal del cociente. Ejemplos de espacios cocientes: la banda de
	Möbius, los espacios proyectivos, etc.
	3.10 Espacios de adjunción. Ejemplos diversos.
18	4. Espacios de Hausdorff y compacidad
10	4.1 Espacios de Hausdorff. Opcional: Su caracterización mediante
	redes.
	4.2 Conjuntos compactos. Propiedades equivalentes a la compacidad.
	Ejemplos de compactos en \mathbb{R}^n . Opcional: El teorema de Heine-Borel
	y el de Bolzano–Weierstrass.
	4.3 Subespacios de espacios compactos. Imágenes continuas de com-
	pactos. Ejemplos de espacios compactos obtenidos como cocientes de
	espacios compactos; nuevamente los proyectivos, etc.
	4.4 Producto de compactos y el teorema de Tychonoff. Opcional:
	aplicando redes o filtros.
	4.5 Compacidad y axiomas de separación.
	4.6 Espacios localmente compactos.
	4.7 Compactación de Alexandroff (por un punto). La esfera como
	compactación de Alexandroff de \mathbb{R}^n –la proyección estereográfica.
8	5. Otros axiomas de separación
	5.1 Espacios regulares y T_3 .
	5.2 Espacios metrizables.
	5.3 Espacios completamente regulares y de Tychonoff. Familia de
	aplicaciones que separa puntos y a puntos de cerrados. Teorema de
	metrización de Urysohn. Opcional: Compactación de Stone-Čech.
	5.4 Espacios normales. Lema de Urysohn.
L	

8	6. Conexidad
	6.1 Conjuntos conexos y conectables por trayectorias.
	6.2 Componentes conexas y por trayectorias. Los conexos de la recta
	real.
	6.3 Espacios localmente conexos y localmente conectables por trayec-
	torias.
	6.4 Producto de espacios conexos, conectables por trayectorias, lo-
	calmente conexos y localmente conectables por trayectorias.
	6.5 Ejemplos y contraejemplos. El espacio peine, la curva del seno
	del topólogo, etc.
6	7. Nociones de homotopía
	7.1 Aplicaciones homotópicas y nulhomotópicas.
	7.2 Equivalencia homotópica. Tipo de homotopía. Propiedades ho-
	motópicas.
	7.3 Deformaciones. Retractos (fuertes) por deformación. Espacios
	contraíbles. La bola euclidiana, la esfera, la bola sin el origen, \mathbb{R}^n
	sin el origen y cómo se comparan.
	7.4 Espacios simplemente conexos. Definición del grupo fundamental.
	Opcional: Los lazos en el círculo unitario.

BIBLIOGRAFÍA BÁSICA:

- 1. Dugundji, J., Topology, Boston: Allyn and Bacon, 1966.
- 2. García-Máynez, A., Tamariz, A. Topología General, México: Porrúa, 1988.
- 3. Hu, S.T., Introduction to General Topology, San Francisco: Holden-Day, 1966.
- 4. Prieto, C., Topología Básica, México: Fondo de Cultura Económica, 2003.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Armstrong, M.A., Basic Topology, New York: Springer-Verlag, 1983.
- 2. Hocking, J.G., Young, G.S., Topology, Reading, Mass.: Addison-Wesley, 1961.
- 3. Kelley, J.L., *General Topology*, New York: Springer-Verlag, 1955 (reimpresión del original de Van Nostrand).
- 4. Salicrup, G., *Introducción a la Topología*, Ed. Rosenblueth, J., Prieto, C. México: Aportaciones Matemáticas, Soc. Mat. Mex., 1993.
- 5. Steen, L.A., Seebach, J.A. Jr., *Counterexamples in Topology*, second edition, New York: Springer-Verlag, 1978.
- 6. Willard, S., General Topology, Reading: Addison-Wesley, 1970.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.