Sylow Theorems (partial converse to lagrange theorem

Lemma if G i's funte abelian and p is a prime dividing 161, Then G contains an element of order p.

Pf induction on |G|. If |G|=1, the lemma holds.

Assume the lemma holds \forall a selion g_{Γ} of order $\langle |G|$.

Let $1 \neq \alpha \in G_{\Gamma}$ if $\Gamma = |\alpha|$ is div by G, then $b = \alpha^{\frac{\Gamma}{\Gamma}} \in G$ has order ρ .

of p/r, turn G/L_{as} has order |G/r| < |G|, and |G/r| = |G/r| = |G|, and |G/r| = |G

Suppose S = |b|. Then $(\overline{b})^s = (b\langle a \rangle)^s = b^s \langle a \rangle = \langle a \rangle = \overline{1}$. So p|s, mening $b^s|e = b^s \langle a \rangle = b^s \langle a \rangle = \overline{1}$.

Theorem (Sylow I) If p is a prime 4 p^k (w/ $k \in \mathbb{Z}_{\geq 0}$) divides |G|, then G contains a subgroup of order p^k .

proof induct on |G| again. By the class equation, $|G| = |Z(G)| + \sum [G:C(y_i)].$

Page

- If $\rho | [Z(G)]$, then by the lemma, Z(G) contains an element z of order ρ .

Since (2) $\leq G$, $G/\langle z \rangle$ is a gp, w/size |G|/p < p. Hence, by induction, $G/\langle z \rangle$ contains a subgroup of order p^{k-1} , call it $H/\langle z \rangle$ where $H \leq G$ contains $\langle z \rangle$. So $|H| = |H/\langle z \rangle| \cdot |\langle z \rangle| = p^{k-1} \cdot p = p^k$.

- suppose pt |Z(G)|. Then pt [G:C(y;)] for some j.

So pk | |C(y;)|. Since |C(y;)| < |G|, C(y;) contains

since on yez(G)

a subg p of order pk, by induction.

Det let p^m be the maxil power of prime p dividing |G|.

Then a subgr of G of order p^m is called a

Sylow p-subgroup of G.

By Sylow I, these subgroups exist.

Consider Λ , the set of all subgrs of G. G C Λ by conjugation.

Page 2

The orbit
$$O_H = \{a \mid a \in G\}$$
 has conditively $|O_H| = \{G : Stab \mid H\} = \{G : N_G(H)\}$.

Let G be finite, let TT cA be the set of all sylow p-subgroups of G.

GCT as a restriction of GCA.

Let Σ be one of the G-orbits in Π . GCT restricts to a transitive action GC Σ .

Let PETT. Then the transitive action GCI restricts to an action PCI.

Theorem (Sylow II)

①
$$\Sigma = \Pi$$
 (so GCT is transitive)
i.e. my two sylow psubgrs are conjugate

2) | divides [G:P], Where P 15 any Sylow P-subgp.

And IT = 1 mod P.

3 Any p-subge of G is contained in some Sylow p-subge.

howing order

pr < pm

Lemma Let $P \leqslant G$ be a sylow p-subgralet $H \leqslant G$ of order p^j s.L. $H \subseteq N_G(p)$. Then $H \leqslant P$.

Pf Since P ≥ N_G(P) and H < N_G(P), HP < N_G(P).

So by an isomorphism thm, HP/P = H/HAP.

So |HP|/|P| = |H|/ So |HP|/|P| is a power of P, so |HP| is a power of P.

So it must be P = |P|. So HP=P, and H < P

Corollary: Pisthe unique Sylow psubge of N6(P).

Proof of Sylow I The action PCI decomposes I into P-orbits.

by Syppose P∈∑. Then {P} is one orbit of PC∑.

many different

things are Moreover, {P} is the only P-orbit of size 1. all other orbits

have size ps for some s=Z>0.

El suppose $\{P'\}$ is another orbit then $P \leq N_G(P')$, so P = P'.

Any or bit has size $\frac{|P|}{|StabQ|}$, which divides |P|.

So | Z | = 1 mod p.

We claim Z=TT, So |TT = 1 no 1 P and |TT | divides [6:P].

Suppose $T \neq \Sigma$. Then $\exists P \in T \setminus \Sigma$. The P-orbits on Σ all have sizes equal to a positive power of P (by lema). So $|\Sigma| \equiv 0$ mod P, a contradiction. So $\Sigma = T$.

For part (3), let H be a p-subgr of G, consider HCTT. The H-arbits in TT have sizes that are powers of P. but $|TT| \equiv 1$ mod P, so there is an H-arbit of size 1, wearing $H \leq N_G(P)$, so $H \in P$ by the lemma.