Exercice 4:

1) Poocus 2,=b-10, 2=m-3 et 23 = d notre poblème d'optimisation devient alors: Min 3 = 02 + 10 02 + 502 + 40

Solo-containtes $\begin{cases} \alpha_1 + 3 \alpha_2 + 0, 2 \alpha_3 & \leq 61 \\ 4\alpha_1 + 2\alpha_2 + \alpha_3 & \geq 274 \\ \alpha_1 > 0 & \alpha_2 > 0 & \alpha_3 > 0 \end{cases}$

2) sous forme standard: Max Z-z-a, -10 x2 - 503 - 40 Mex (-3-01, -10, n_2 -3

Solo-containtes $\begin{cases}
\alpha_1 + 3 & \alpha_2 + 0, 2 & \alpha_3 + e_1 = 61 \\
4 & \alpha_1 + 2 & \alpha_2 + 2 & \alpha_3 - e_2 = 274
\end{cases}$ $\alpha_1 > 0 \quad \alpha_2 > 0 \quad \alpha_3 > 0 \quad e_1 > 0 \quad e_2 > 0$

3) Problème auxiliaire:

Mas W = -a = 6a, + 2ar + az - ez - 274

Remier tableau du simplexe:

		ı		\checkmark					1	
_		2	W	RI	x z	or 3	e	ez	٥_	
_	- e,	0	0	(1)	ر م	0,2	1	0	0	61
	a	0	0	4	2	1	0	0 -1	1	274
	Z	1	0	1	10	2	0	0		-40
	W	0	1	-4	-2	-1	0	1	0	-274

	1							ı		
	2	W	oc,	N 2	a 3	ور	ez	<u>a</u>		
2,	0	0	1	3	0,2	1	0	0	61	 L ₁
 a	0	0	0	-10	0,2	_4	– I	1	30	L=12-44
2	1	0	0	7	4,8	0	0		-101	L36 k3 + L1
W	0	1	0	10	-0,2	4	1	0	- 30	C=L+4L
	ح	W	α_{1}	n z	ar 3	, ح	ez	<u>a</u>		
OCI	0	0	1	13	0	5	1	1	31	Lx1,-12
R ₃	0	0	0	-50	1	-20	-5	5	150	Lestz
Z	1	0	0	247	0	36	24		-821	L361-246
W	0	1	0	0	0	0	0	1	0	Lel+12

Nous avons bren trouve une pase réalisable: n_1, x_2 avec course solution de base correspondante. $a_1=31$, $a_2=0$, $x_3=150$, $e_1=e_2=0$.

4) Tous les ternes our la ligne de z cont postifs nous avons donc la me solution optimale. La salution du problème sot:

Acheten: $\alpha_1 + 10 = 41$ café into $\alpha_2 + 3 = 3$ café de grande marque et $\alpha_3 = 150$ cafés de distributeur pour une quantité de dishets totale de 821 g.

Remarque: sans la contrante des 3 cafés grande marque, il aurait êté possible d'office 1 café bio à chacun pour une quantité de déchet totale de 80g.

Ceci det les cheffres de cet exercise ne sont pas crédibles.