Euler's formula

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

 $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$

Chapter 1

1.2.2 Bounded signals

A continuous-time signal x(t) is bounded if there exists an M such that $0 < M < \infty$ and $\forall t \ |x(t)| \leq M$ (has an upper and lower $\operatorname{sinc}\left(\frac{t}{T}\right)$: range limit)

1.2.3 Absolutely integrable signals

A continuous-time signal x(t) is absolutely integrable if

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

1.2.4 Periodc and aperiodic signals

Periodic: there is a non-zero positive value, T, satisfying

$$x(t) = x(t+T) \ \forall t \tag{1.1}$$

Aperiodic: not periodic

1.2.6 Energy and Power Signals

Energy signals

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \qquad (1.3a)$$

$$J_{-\infty}$$
 $x(t)$ is an energy signal $\iff 0 < E < \infty$

Power signals

$$P = \lim_{\tau \to \infty} \frac{1}{2\tau} \int_{-\tau}^{\tau} |x(t)|^2 dt \qquad (1.4a)$$

$$x(t)$$
 is a power signal $\iff 0 < P < \infty$
(1.4b)

If x(t) is a periodic signal, average power may be computed by

$$\frac{1}{T} \int_0^T |x(t)|^2 dt$$

- Energy signals have 0 average power, bc E = finite implies P = 0
- Power signals have infinite total energy, bc P = finite implies $E = \infty$
- All bounded periodic signals are power signals

u(t):

sgn(t):

 $rect(\frac{t}{T})$:

 $\mathbf{tri}(\frac{t}{T})$:

 $e^{-\alpha t}u(t)$:

Sinusoidal signals

al signals
$$x(t) = \mu \cos(\omega_0 t + \phi)$$

$$= \mu \cos(2\pi f_0 t + \phi)$$

$$= \mu \cos(\frac{2\pi t}{T} + \phi)$$

$$T_0 = \frac{2\pi}{\omega_0} = \frac{1}{f_0}$$

Chapter 2

2.1 Time-domain Operations

2.1.1 Time-Scaling

 $x(\alpha t)$: Scale x-axis by a factor of $\frac{1}{2}$ x(-t): Reflect about x-axis

2.1.2 Time-Shifting

 $x(t-\beta)$:

 $\beta > 0$: Delaying x(t) by β units of time (translate right along x-axis)

 $\beta > 0$: Advancing x(t) by β units of time (translate left along x-axis)

2.1.5 Convolution of 2 Signals Properties of convolutions

1. Commutative: f * g = g * f

2. Associative: f * (q * h) = (f * q) * h

3. Distributive: f * (g+h) = (f*g) + (f*h)2.2 Dirac- δ function

$$(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases}$$

Properties:

$$\delta(t) = \delta(-t) \tag{2.3}$$

2. Sampling:

$$x(t)\delta(t-\lambda) = x(\lambda)\delta(t-\lambda)$$
 (2.4)

$$\int_{-\infty}^{\infty} x(t)\delta(t-\lambda)dt$$

$$= x(\lambda) \int_{-\infty}^{\infty} \delta(t-\lambda)dt = x(\lambda) \quad (2.5)$$

2.2.1 Dirac- δ Comb function

$$\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$= \ldots + \delta(t+T) + \delta(t) + \delta(t-T) + \ldots$$

Convolution with Dirac- δ Comb func-

$$x_p(t) = x(t) * \sum_{n} \delta(t - nT)$$
$$= \sum_{n} x(t - nT)$$

x(t) is known as the generating function.

Multiplication with the Dirac- δ Comb function

Used for sampling

$$x_s(t) = x(t) \times \sum_n \delta(t - nT)$$
$$= \sum_n x(t) \times \delta(t - nT)$$
$$= \sum_n x(nT)\delta(t - nT)$$

Chapter 3

3.2 Spectrum of a Sinusoid

Spectrum of a Complex Exponential

 $\tilde{x}(t) = \mu e^{j(2\pi f_0 t + \phi)} = \mu e^{j\phi} \times e^{j2\pi f_0 t},$ where μ : magnitude spectrum, ϕ : phase spectrum, f_0 : frequency

Spectrum of a Cosine Signal

$$\mu\cos(2\pi f_0 t + \phi)$$

$$= \frac{\mu}{2} e^{j\phi} e^{j2\pi f_0 t} + \frac{\mu}{2} e^{j(-\phi)} e^{j2\pi(-f_0)t}$$

$$\begin{split} \text{Spectrum of a Sine Signal} \\ \mu \sin(2\pi f_0 t + \phi) &= \frac{\mu}{2} e^{j(\phi - 0.5\pi)} e^{j2\pi f_0 t} \\ &+ \frac{\mu}{2} e^{j(-\phi + 0.5\pi)} e^{j2\pi(-f_0)t} \end{split}$$

Complex exponential Fourier Series

$$x_p(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi kt/T_p}$$
$$= \sum_{k=-\infty}^{\infty} c_k e^{j2\pi kf_p t}$$
(3.1a)

$$c_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) e^{-j2\pi kt/T_p} dt, \ \forall k \in \mathbb{Z} \quad \begin{array}{c} \text{Convolution in the Time Domain / Multiplication in the Frequency Domain} \\ (3.1b) \quad x_1(t) \times x_2(t) \end{array}$$

Trigonometric Fourier Series

$$x_p(t) = a_0 + 2 \sum_{k=1}^{\infty} [a_k \cos(2\pi kt/T_p)]$$

$$= x(\lambda) \int_{-\infty}^{\infty} \delta(t - \lambda) dt = x(\lambda) \qquad (2.5) \qquad a_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) \cos(2\pi kt/T_p) dt; k \ge 0$$
eplication

$$b_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x_p(t) \sin(2\pi kt/T_p) dt; k > 0$$

Chapter 4

Dirichlet Conditions

Conditions for existence of Fourier Trans-

- 1. x(t) has only a finite number of maxima and minima in any finite time interval
- 2. x(t) has only a finite number of discontinuities in any finite time interval
- 3. x(t) is absolutely integrable
- 3 is weak Dirichlet condition: satisfied by most energy signals, violated by all power signals.

4.1 Fourier Transform

Forward Fourier Transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \qquad (4.1a)$$

Inverse Fourier Transform
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df \qquad (4.1b)$$

4.2 Properties of Fourier Transform

- $X(f) = \Im\{x(t)\}\$ denotes the Fourier transform of x(t)
- $x(t) = \Im^{-1}\{X(f)\}\$ denotes the inverse Fourier transform of X(f)
- $x(t) \rightleftharpoons X(f)$ denotes a Fourier transform pair with the time-domain on the LHS and frequency-domain on the RHS.

Linearity

If $x_1(t) \rightleftharpoons X_1(f)$ and $x_2(t) \rightleftharpoons X_2(f)$, then $\alpha x_1(t) + \beta x_2(t) \rightleftharpoons \alpha X_1(f) + \beta X_2(f)$ (4.2)

Time Scaling

$$x(\beta t) \rightleftharpoons \frac{1}{|\beta|} X\left(\frac{f}{\beta}\right)$$
 (4.3)

Duality

$$X(t) \rightleftharpoons x(-f) \tag{4.4}$$

Time Shifting

$$x(t-t_0) \rightleftharpoons X(f)e^{-j2\pi f t_0}$$
 (4.5)

Frequency Shifting (Modulation)

$$x(t)e^{j2\pi f_0 t} \rightleftharpoons X(f - f_0) \tag{4.6}$$

Differentiation in the Time Domain
$$\frac{d}{d}x(t) \rightleftarrows j2\pi f \cdot X(f) \eqno(4.7)$$

Integration in the Time Domain

(3.1a)
$$\int_{-\infty}^{t} x(\tau) d\tau \rightleftharpoons \frac{1}{j2\pi f} X(f) + \frac{1}{2} X(0) \delta(f)$$

tiplication in the Frequency Domain

$$= \int_{-\infty}^{\infty} x_1(\alpha) x_2(t-\alpha) \ d\alpha \rightleftharpoons X_1(f) X_2(f)$$
(4.9a)

Multiplication in the Time Domain / Convolution in the Frequency Domain

$$x_1(t)x_2(t) \rightleftarrows \int_{-\infty}^{\infty} X_1(\alpha)X_2(f-\alpha) d\alpha$$

$$=X_1(f)*X_2(f)$$
 (4.9b)
4.3 Spectral properties of a REAL sig-

- If x(t) is **REAL** $(x^*(t) = x(t))$, then - X(f) is conjugate symmetric $(X^*(f) =$

 - |X(f)| is even (|X(f)| = |X(-f)|)
- $\angle X(f)$ is odd $(\angle X(f) = -\angle X(-f))$ • If x(t) is **REAL** and **EVEN** $(x^*(t) =$
- $x(t) \wedge x(-t) = x(t)$, then
- X(f) is real $(X^*f = X(f))$
- X(f) is even (X(-f) = X(f))• If x(t) is **REAL** and **ODD** $(x^*(t)) =$
- $x(t) \wedge x(-t) = -x(t)$, then - X(f) is imaginary $(X^*(f) = -X(f))$

- X(f) is odd (X(-f) = -X(f))The above can apply to Fourier series coefficients of periodic signals too:

- $x_n(t)$ is **REAL**
- c_k is conjugate symmetric $(c_k^* = c_{-k})$
- $|c_k|$ has even symmetry $(|c_k| = |c_{-k}|)$ $- \angle c_k$ has odd symmetry ($\angle c_k =$
- $-\angle c_{-k}$ x_n(t) is REAL and EVEN
- $-c_k$ is real $(c_k^* = c_k)$
- $-c_k$ is even $(c_k = c_{-k})$
- $x_p(t)$ is **REAL** and **ODD**
- c_k is imaginary $(c_k^* = -c_k)$
- $-c_k$ is odd $(c_k = -c_{-k})$

4.4 Spectrum of Signals that are not Absolutely Integrable

$$\Im\{K\delta(t)\} = \int_{-\infty}^{\infty} K\delta(t)e^{-j2\pi ft}dt = K$$
(4.13)

By duality, $\Im\{K\} = K\delta(f)$

4.4.1 Spectrm of Unit Step and Signum function

$$\Im\{u(t)\} = \frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$$

$$\Im\{\operatorname{Sgn}(t)\} = \frac{1}{j\pi f}$$

4.4.2 Continuous-Frequency Spectrum of Periodic Signals

The following make use of the fact that $\Im\{k\} = K\delta(f)$ (4.14)

DC

$$x_{dc}(t) = K$$
$$X_{dc}(f) = \Im\{k\} = K\Im\{1\} = K\delta(f)$$

Complex Exponential

$$\tilde{x}(t) = Ke^{j2\pi f_0 t}$$

$$\tilde{X}(f) = \Im\{Ke^{j2\pi f_0 t}\} = K\delta(f - f_0)$$

Cosine

$$\Im\{K\cos(2\pi f_0 t)\}$$

$$= \frac{K}{2}\delta(f - f_0) + \frac{K}{2}\delta(f + f_0)$$

Sine

$$\begin{split} &\Im\{K\sin(2\pi f_0t)\}\\ &=\frac{K}{j2}\delta(f-f_0)-\frac{K}{j2}\delta(f+f_0)\\ &\left\{|X_s(f)|\right. &=\frac{K}{2}\delta(f-f_0)\\ &+\frac{K}{2}\delta(f+f_0) \end{split}$$

where
$$\begin{cases} |X_s(f)| &= \frac{K}{2}\delta(f - f_0) \\ &+ \frac{K}{2}\delta(f + f_0) \\ & &\text{the signal.} \end{cases}$$

$$\angle X_s(f) &= \begin{cases} -\pi/2, & f = f_0 \\ \pi/2, & f = -f_0 \end{cases}$$

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 dt = \int_{$$

Arbitrary periodic signals

Let $x_p(t)$ be a periodic signal with period T_p and fundamental frequency f_p

$$X_p(f) = \sum_{k=-\infty}^{\infty} c_k \delta(f - kf_p)$$
 (4.16) Power Spectral Density
$$P_x(f) = \lim_{W \to \infty} \frac{1}{2W} |X_W(f)|^2 \text{ Watts Hz}^{-1}$$

4.4.2.1 Spectrum of Dirac- δ Comb func-

$$c_{k} = \frac{1}{\lambda}$$

$$c_{k} = \frac{1}{\lambda}$$

$$\cdots \qquad \downarrow^{1/\lambda} \qquad \cdots$$

$$\Im\{\operatorname{comb}_{\lambda}(t)\} = \operatorname{COMB}_{\lambda}(f)$$

$$= \frac{1}{\lambda} \sum \delta(f - k/\lambda)$$

Chapter 5

5.1 Energy Spectral Density (ESD)

Total energy of a signal x(t) is defined as $E = \int_{-\infty}^{\infty} |x(t)|^2 dt \text{ (Joules)}$

Rayleigh Energy Theorem

Example of Energy Theorem
$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df,$$

where $X(f) = \Im\{x(t)\}\$ is the spectrum of

$$E_x(f) = |X(f)|^2 \text{ Joules Hz}^{-1}$$
 (5.3)

Properties of $E_x(f)$

- 1. $E_x(f)$ is a real function of f
- 2. $E_x(f) > 0 \quad \forall f$
- 3. $E_x(f)$ is an even function of f if x(t) is 5.3.2 Signals with Unrestricted Band

5.2 Power Spectral Density (PSD)

In the time-domain, the average power of a signal x(t) is defined as

$$P = \lim_{\tau \to \infty} \frac{1}{2\tau} \int_{-\tau}^{\tau} |x(t)|^2 dt \qquad (5.4)$$

$$x_W(t) = x(t)\operatorname{rect}(\frac{t}{2W})$$
 (5.5)

Parseval Power Theorem
$$P = \lim_{W \to \infty} \frac{1}{2W} \int_{-W}^{W} |x(t)|^2 dt$$

$$= \int_{-\infty}^{\infty} \lim_{W \to \infty} \frac{1}{2W} |X_W(f)|^2 df \qquad (5.9)$$

$$P_x(f) = \lim_{W \to \infty} \frac{1}{2W} |X_W(f)|^2 \text{ Watts Hz}^{-1}$$
(5.10)

Properties of $P_x(f)$

- 1. $P_x(f)$ is a real function of f
- 2. $P_x(f) \ge 0 \quad \forall f$
- 3. $P_x(f)$ is an even function of f if x(t) is

5.2.1 PSD of Periodic Signals

From chapter 4 equation 4.16:

$$X_p(f) = \sum_{k=-\infty}^{\infty} c_k \delta(f - kf_p)$$

PSD of $x_p(t)$

$$P_x(f) = \sum_{k=-\infty}^{\infty} |c_k|^2 \delta(f - kf_p) \qquad (5.12)$$

Average power of $x_p(t)$

$$P = \int_{-\infty}^{\infty} P_x(f)df = \sum_{k=-\infty}^{\infty} |c_k|^2 \quad (5.13)$$

5.3 Bandwidth

5.3.1 Bandlimited Signals

Lowpass signal

A signal x(t) is said to be a bandlimited lowpass signal if its magnitude spectrum is concentrated around 0 Hz, and at the same time satisfies

$$|X(f)| = 0; |f| > B$$
 (5.14)

where B is defined as the bandwidth of the

Bandpass signal

A signal x(t) is said to be a bandlimited bandpass signal if its magnitude spectrum is concentrated around a non-zero center frequency f_c , and at the same time satisfies

$$|X(f)| = 0;$$
 $||f| - f_c| > B/2$ (5.15) where B is defined as the bandwidth of the signal

5.3.2.1 3dB bandwidth

3dB bandwidth is defined as the frequency where $|X(f)| = |X(0)|/\sqrt{2}$ first occurs when f is increased from 0 Hz