Code Template for ACM-ICPC

wodesuck SYSU_ArthasMenethil Sun Yat-sen University

September 17, 2014

Contents

1	Gra	ph/Tree Theory
	1.1	Shortest Path
		1.1.1 Dijkstra
		1.1.2 SPFA
		1.1.3 Minimum-weight Cycle(Folyd)
	1.2	Bridge/Cutvertex-Finding(Tarjan)
	1.3	Strongly Connected Components(Tarjan)
	1.4	Lowest Common Ancestor(Tarjan)
	1.5	Network Flow
		1.5.1 Maximum Flow(Improved-SAP)
		1.5.2 Minimum Cost Maximum Flow(Primal-Dual)
	1.6	Matching
	1.0	1.6.1 Maximum Bipartite Matching(Hungarian)
		1.6.2 Maximum Weight Perfect Biparite Matching(KM)
		1.6.3 Maximum Matching on General Graph(Blossom Algorithm)
		1.6.4 Maximum Weight Perfect Matching on General Graph(Randomize Greedy Matching)
	1 7	
	1.7	_ ~
	1.8	· · · · · · · · · · · · · · · · · · ·
	1.9	Heavy-Light Decomposition
2	Dat	a Structures
_	2.1	Segment Tree
		2.1.1 zkw Segment Tree
		2.1.2 Functional Segment Tree
	2.2	Self-balancing BST
	2.2	2.2.1 Size Balanced Tree
		2.2.2 Splay
		2.2.3 Functional Treap
		-
	0.0	
	2.3	Leftist Tree
	2.4	Dynamic Tree
		2.4.1 Link-cut Tree
	~ ~	2.4.2 Euler Tour Tree
	2.5	KD Tree
	2.6	Sparse Table
3	Stri	ngology
•	3.1	ingology KMP Algorithm
	$\frac{3.1}{3.2}$	ě
	$\frac{3.2}{3.3}$	
		Aho-Corasick Automation
	3.4	Suffix Array
	3.5	Suffix Automation
	3.6	Longest Palindorme Substring(Manacher)
	3.7	Minimum Representation

	Con	nputational Geometry	31
	4.1	Basic Operations	31
		4.1.1 Line	31
		4.1.2 Triangle	32
		4.1.3 Circle	33
	4.2	Point in Polygon Problem	34
	4.3	Convex Hull(Gramham)	35
	4.4	Half-plane Intersection	35
	4.5	Closest Pair(Divide and Conquer)	35
	4.6	Farthest Pair(Rotating Caliper)	36
	4.7	Minimum Distance Between Convec Hull(Rotating Caliper)	36
	4.8	Union Area of a Circle and a Polygon	37
	4.9	Union Area of Circles	37
	4.10		38
		Minimum Enclosing Circle(Randomized Incremental Method)	38
	4.12	3D Computational Geometry	39
		4.12.1 Line	40
		4.12.2 Sphere	41
	4.13	Convex Hull in 3D	41
5	Nur	mber Theory	43
5		mber Theory Fast Fourier Transform	43
5	5.1	Fast Fourier Transform	43
5	5.1 5.2	Fast Fourier Transform	43 43
5	5.1 5.2 5.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44
5	5.1 5.2 5.3 5.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44 44
5	5.1 5.2 5.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44
6	5.1 5.2 5.3 5.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44 44
	5.1 5.2 5.3 5.4 5.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44 44 44
	5.1 5.2 5.3 5.4 5.5 Oth	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43 43 44 44 44 46
	5.1 5.2 5.3 5.4 5.5 Oth 6.1	Fast Fourier Transform	43 43 44 44 44 46 46
	5.1 5.2 5.3 5.4 5.5 Oth 6.1 6.2	Fast Fourier Transform	43 43 44 44 44 46 46 47
	5.1 5.2 5.3 5.4 5.5 Oth 6.1 6.2 6.3	Fast Fourier Transform	43 43 44 44 44 46 46 47 48
6	5.1 5.2 5.3 5.4 5.5 Oth 6.1 6.2 6.3 6.4 6.5	Fast Fourier Transform	43 43 44 44 44 46 46 47 48 48
6 A	5.1 5.2 5.3 5.4 5.5 Oth 6.1 6.2 6.3 6.4 6.5	Fast Fourier Transform	43 43 44 44 44 46 46 47 48 48 49

Chapter 1

Graph/Tree Theory

1.1 Shortest Path

1.1.1 Dijkstra

```
void dijkstra(int s)
 2
3
            typedef pair<int, int> T;
            priority_queue <T, vector <T>, greater <T> > h;
 4
5
            memset(d, 0x3f, sizeof(d));
6
            memset(v, 0, sizeof(v));
7
            h.push(T(d[s] = 0, s));
 8
            while (!h.empty()) {
 9
                     int w = h.top().first, u = h.top().second;
10
                     h.pop();
                     if (w > d[u]) continue;
11
12
                     for (edge *i = e[u]; i; i = i->next) {
13
                              int dis = d[u] + i \rightarrow w;
                              if (dis < d[i->t]) h.push(T(d[i->t] = dis, i->t));
14
                     }
15
16
            }
17
```

1.1.2 SPFA

```
void spfa(int s)
1
2
3
            queue < int > q;
4
            memset(d, 0x3f, sizeof(d));
5
            memset(v, 0, sizeof(v));
            q.push(s); d[s] = 0; v[s] = true;
 6
7
            while (!q.empty()) {
8
                     int u = q.front(); q.pop(); v[u] = false;
9
                     for (edge *i = e[u]; i; i = i \rightarrow next) {
10
                              if (d[u] + i->w < d[i->t]) {
                                       d[i->t] = d[u] + i->w;
11
12
                                       if (!v[i->t]) {
13
                                                q.push(i->t);
14
                                                v[i->t] = true;
15
                                       }
16
                              }
17
                     }
            }
18
19
```

1.1.3 Minimum-weight Cycle(Folyd)

```
1
   // for undirected graph
   const int INF = 0x2a2a2a2a;
3
4
   int folyd()
5
6
            int ans = INF;
7
            for (int k = 0; k < n; ++k) {
8
                    for (int i = 0; i < k; ++i) {
9
                             for (int j = 0; j < i; ++ j) {
10
                                      ans = min(ans, f[i][j] + g[j][k] + g[k][i]);
11
                             }
12
                    }
13
                    for (int i = 0; i < n; ++i) {
                             for (int j = 0; j < n; ++ j) {
14
15
                                      f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
16
                             }
17
                    }
18
19
            return ans;
20
   }
21
22
23
   Initialize:
24
            memset(g, 0x2a, sizeof(g));
            memset(f, 0x2a, sizeof(f));
26
   */
```

1.2 Bridge/Cutvertex-Finding(Tarjan)

```
void tarjan(int u, int f)
1
2
            dfn[u] = low[u] = ++stamp;
3
            int ch = 0;
4
            for (edge *i = e[u]; i; i = i->next) {
5
6
                     int v = i -> t;
7
                    if (!dfn[v]) {
8
                             tarjan(v, u);
9
                             low[u] = min(low[u], low[v]);
10
                             if (u ? low[v] >= dfn[u] : ++ch > 1) cut[u] = true;
                             if (low[v] > dfn[u]) bridge[u][v] = true;
11
                    } else if (v != f) {
12
                             low[u] = min(low[u], dfn[v]);
13
14
                    }
15
            }
16 | }
```

1.3 Strongly Connected Components(Tarjan)

```
1
   void tarjan(int u)
2
3
             dfn[u] = low[u] = ++stamp;
             sta[top++] = u; ins[u] = true;
4
5
             for (edge *i = e[u]; i; i = i \rightarrow next) {
                      int v = i \rightarrow t;
6
                      if (!dfn[v]) {
7
8
                               tarjan(v);
9
                               low[u] = min(low[u], low[v]);
                      } else if (ins[v]) {
10
11
                               low[u] = min(low[u], dfn[v]);
12
                      }
```

```
13
14
            if (dfn[u] == low[u]) {
15
                      int v;
                      do {
16
17
                               v = sta[--top];
18
                               ins[v] = false;
19
                               grp[v] = cnt;
20
                      } while (v != u);
21
                      ++cnt;
22
            }
23
   }
```

1.4 Lowest Common Ancestor(Tarjan)

```
void dfs(int u)
1
2
3
            anc[u] = u; v[u] = 1;
            for (edge *i = e[u]; i; i = i->next) {
4
5
                     if (!v[i->t]) {
6
                              dfs(i->t);
7
                              join(u, i->t);
8
                              anc[find(u)] = u;
9
                     }
10
            }
            v[u] = 2;
11
            for (quest *i = q[u]; i; i = i \rightarrow next) {
12
13
                     if (v[i->t] == 2) lca[i->id] = anc[find(i->t)];
14
15 | }
```

1.5 Network Flow

1.5.1 Maximum Flow(Improved-SAP)

```
1
   int esz, psz, s, t;
 2
   int h[MAXV], vh[MAXV + 1];
3
4
   int aug(int u, int m)
5
6
            if (u == t) return m;
7
            int d = m;
            for (edge *i = e[u]; i; i = i \rightarrow next) {
8
                     if (i->u && h[u] == h[i->t] + 1) {
9
10
                              int f = aug(i->t, min(i->u, d));
11
                              i->u -= f; i->pair->u += f; d -= f;
12
                              if (h[s] == esz || !d) return m - d;
13
                     }
14
            }
            int w = d < m ? min(esz, h[u] + 2) : esz;
15
16
            for (edge *i = e[u]; i; i = i \rightarrow next) {
                     if (i->u) w = min(w, h[i->t] + 1);
17
18
19
            ++vh[w];
20
            --vh[h[u]] ? h[u] = w : h[s] = esz;
            return m - d;
21
22
23
24
   /*
25
   Initialize:
            psz = 0; memset(e, 0, sizeof(e));
26
```

1.5.2 Minimum Cost Maximum Flow(Primal-Dual)

```
1
   int esz, psz, s, t;
   int cost, dist, d[MAXV];
3
   bool v[MAXV];
4
5
   int aug(int p, int m)
6
7
            if (p == t) return cost += dist * m, m;
8
            int d = m; v[p] = true;
9
            for (edge *i = e[p]; i; i = i \rightarrow next) {
10
                     if (i->u && !i->c && !v[i->t]) {
11
                              int f = aug(i->t, min(d, i->u));
                              i->u -= f; i->pair->u +=f; d -= f;
12
                              if (!d) break;
13
                     }
14
15
16
            return m - d;
17
   }
18
   bool modlabel()
19
20
21
            deque < int > q;
22
            memset(v, 0, sizeof(v));
23
            memset(d, 0x3f, sizeof(d));
24
            q.push_back(s); d[s] = 0; v[s] = true;
25
            while (!q.empty()) {
26
                     int u = q.front(); q.pop_front(); v[u] = false;
27
                     for (edge *i = e[u]; i; i = i->next) {
28
                              if (i->u && d[u] + i->c < d[i->t]) {
29
                                       d[i->t] = d[u] + i->c;
30
                                       if (!v[i->t]) {
31
                                               if (q.empty() || d[i->t] < d[q.front()])
32
                                                        q.push_front(i->t);
33
                                               } else {
                                                        q.push_back(i->t);
34
35
36
                                               v[i->t] = true;
                                       }
37
38
                              }
39
                     }
40
41
            if (d[t] == inf) return false;
42
            for (int i = 0; i < esz; ++i) {
                     for (edge *j = e[i]; j; j = j \rightarrow next) {
43
                              j->c += d[i] - d[j->t];
44
45
                     }
46
47
            dist += d[t];
48
            return true;
49
   }
50
51
```

```
52
   Initialize:
53
            psz = 0; memset(e, 0, sizeof(e));
54
            cost = dist = 0;
55
   Usage:
            while (modlabel()) {
56
                     do memset(v, 0, sizeof(v));
57
                     while (aug(s, INT_MAX));
58
59
60
```

1.6 Matching

1.6.1 Maximum Bipartite Matching(Hungarian)

```
int n, m;
1
 2
   bool g[MAXN][MAXM];
 3
   int match[MAXM];
   bool v[MAXN];
4
 5
6
   bool dfs(int i)
7
8
            for (int j = 0; j < m; ++j) {
                     if (g[i][j] && !v[j]) {
9
10
                              v[j] = true;
11
                              if (match[j] < 0 \mid \mid dfs(match[j])) {
12
                                       match[j] = i;
13
                                       return true;
14
                              }
                     }
15
            }
16
17
            return false;
18
19
   int hungarian()
20
21
22
            int c = 0;
23
            memset(match, -1, sizeof(match));
            for (int i = 0; i < n; ++i) {
24
                     memset(v, 0, sizeof(v));
25
26
                     if (dfs(i)) ++c;
27
            }
28
            return c;
29
   }
```

1.6.2 Maximum Weight Perfect Biparite Matching(KM)

```
1
   int n;
   int w[MAXN][MAXN];
 2
   int lx[MAXN], ly[MAXN], match[MAXN], slack[MAXN];
 3
   bool vx[MAXN], vy[MAXN];
 5
6
   bool dfs(int i)
7
8
            vx[i] = true;
9
            for (int j = 0; j < n; ++j) {
10
                     if (lx[i] + ly[j] > w[i][j]) {
                             slack[j] = min(slack[j], lx[i] + ly[j] - w[i][j]);
11
12
                    } else if (!vy[j]) {
13
                             vy[j] = true;
                             if (match[j] < 0 \mid \mid dfs(match[j])) {
14
                                      match[j] = i;
15
```

```
16
                                      return true;
17
                             }
                    }
18
            }
19
20
            return false;
21
22
   void km()
23
24
   {
25
            memset(match, -1, sizeof(match));
26
            memset(ly, 0, sizeof(ly));
27
            for (int i = 0; i < n; ++i) lx[i] = *max_element(w[i], w[i] + n);
28
            for (int i = 0; i < n; ++i) {
29
                    for (;;) {
30
                             memset(vx, 0, sizeof(vx));
31
                             memset(vy, 0, sizeof(vy));
32
                             memset(slack, 0x3f, sizeof(slack));
33
                             if (dfs(i)) break;
34
                             int d = inf;
35
                             for (int i = 0; i < n; ++i) {
36
                                      if (!vy[i]) d = min(d, slack[i]);
37
38
                             for (int i = 0; i < n; ++i) {
                                      if (vx[i]) lx[i] -= d;
39
40
                                      if (vy[i]) ly[i] += d;
                             }
41
42
                    }
43
            }
44
```

1.6.3 Maximum Matching on General Graph(Blossom Algorithm)

```
1
   int n;
   int next[MAXN], match[MAXN], v[MAXN], f[MAXN];
 2
 3
   int que[MAXN], head, tail;
4
   int find(int p)
5
6
7
            return f[p] < 0 ? p : f[p] = find(f[p]);
8
   }
9
10
   void join(int x, int y)
11
   {
            x = find(x); y = find(y);
12
            if (x != y) f[x] = y;
13
14
15
16
   int lca(int x, int y)
17
18
            static int v[MAXN], stamp = 0;
19
            ++stamp;
20
            for (;;) {
21
                    if (x >= 0) {
22
                             x = find(x);
                             if (v[x] == stamp) return x;
23
24
                             v[x] = stamp;
25
                             if (match[x] >= 0) x = next[match[x]];
26
                             else x = -1;
27
                    }
28
                    swap(x, y);
            }
29
```

```
30
  |}
31
32
   void group(int a, int p)
33
34
            while (a != p) {
35
                     int b = match[a], c = next[b];
36
                     if (find(c) != p) next[c] = b;
                     if (v[b] == 2) v[que[tail++] = b] = 1;
37
38
                     if (v[c] == 2) v[que[tail++] = c] = 1;
39
                     join(a, b); join(b, c);
40
                     a = c;
            }
41
42
43
44
   void aug(int s)
45
46
            memset(v, 0, sizeof(v));
47
            memset(f, -1, sizeof(f));
            memset(next, -1, sizeof(next));
48
            que[0] = s; head = 0; tail = 1; v[s] = 1;
49
50
            while (head < tail && match[s] < 0) {
51
                     int x = que[head++];
52
                     for (edge *i = e[x]; i; i = i \rightarrow next) {
53
                              int y = i -> t;
54
                              if (match[x] == y \mid \mid v[y] == 2 \mid \mid find(x) == find(y)) {
55
                                       continue;
                              \} else if (v[y] == 1) {
56
57
                                       int p = lca(x, y);
58
                                       if (find(x) != p) next[x] = y;
59
                                       if (find(y) != p) next[y] = x;
60
                                       group(x, p);
61
                                       group(y, p);
62
                              } else if (match[y] < 0) {
63
                                       next[y] = x;
                                       while (^{\circ}y) {
64
65
                                                int z = next[y];
66
                                                int p = match[z];
67
                                                match[y] = z; match[z] = y;
68
                                                y = p;
69
                                       }
70
                                       break;
71
                              } else {
72
                                       next[y] = x;
                                       v[que[tail++] = match[y]] = 1;
73
74
                                       v[y] = 2;
75
                              }
76
                     }
77
            }
78
79
   void blossom()
80
81
   {
82
            memset(match, -1, sizeof(match));
83
            for (int i = 0; i < n; ++i) {
                     if (match[i] < 0) aug(i);
84
85
86
   }
```

1.6.4 Maximum Weight Perfect Matching on General Graph(Randomize Greedy Matching)

```
1 | int n;
   int w[MAXN][MAXN];
 3
   int match[MAXN], p[MAXN], d[MAXN];
   int path[MAXN], len;
 4
   bool v[MAXN];
 6
   const int inf = 0x3f3f3f3f;
7
   bool dfs(int i)
8
9
10
            path[len++] = i;
            if (v[i]) return true;
11
12
            v[i] = true;
13
            for (int j = 0; j < n; ++j) {
14
                     if (i != j && match[i] != j && !v[j]) {
15
                             int k = match[j];
16
                             if (d[k] < d[i] + w[i][j] - w[j][k]) {
17
                                      d[k] = d[i] + w[i][j] - w[j][k];
18
                                      if (dfs(k)) return true;
19
                             }
                     }
20
21
22
            --len;
23
            v[i] = false;
24
            return false;
25
26
27
   int matching()
28
29
            for (int i = 0; i < n; ++i) p[i] = i, match[i] = i^1;
30
            int cnt = 0;
31
            for (;;) {
32
                     len = 0;
33
                     bool flag = false;
34
                     memset(d, 0, sizeof(d));
35
                     memset(v, 0, sizeof(v));
36
                     for (int i = 0; i < n; ++i) {
37
                             if (dfs(p[i])) {
38
                                      flag = true;
39
                                      int t = match[path[len - 1]], j = len - 2;
40
                                      while (path[j] != path[len - 1]) {
                                              match[t] = path[j];
41
42
                                               swap(t, match[path[j]]);
43
                                              --j;
44
45
                                      match[t] = path[j];
46
                                      match[path[j]] = t;
47
                                      break;
48
                             }
49
                     }
50
                     if (!flag) {
                             if (++cnt >= 3) break;
51
52
                             random_shuffle(p, p + n);
                     }
53
54
            }
  | }
```

1.7 2-SAT

```
1 | int n; // n vars
2 | struct edge {
```

```
3
            int t;
4
            edge *next;
   epool[CONDITIONS * 2], *e[MAXN * 2], *e2[MAXN * 2];
5
   // sat variable Bi and !Bi are encoded as i << 1 and i << 1^1
6
7
   int psz;
   int stamp, dfn[MAXN * 2], low[MAXN * 2];
8
   int top, sta[MAXN * 2];
9
   bool ins[MAXN * 2];
10
11
   int cnt, grp[MAXN * 2];
   int deg[MAXN * 2], con[MAXN * 2], mrk[MAXN * 2];
12
13
   int head, tail, que[MAXN * 2];
   // Bi is true if mrk[grp[i << 1]] == 1
14
15
16
   bool chk()
17
   {
18
            cnt = 0; stamp = 0; top = 0;
19
            memset(dfn, 0, sizeof(dfn));
20
            memset(low, 0, sizeof(low));
21
            memset(ins, 0, sizeof(ins));
            memset(grp, 0, sizeof(grp));
22
23
            for (int i = 0; i < (n<<1); ++i) if (!dfn[i]) tarjan(i);
24
            for (int i = 0; i < n; ++i) {
25
                    int u = grp[i <<1], v = grp[(i <<1)^1];
26
                    if (u == v) return false;
27
                    con[u] = v; con[v] = u;
28
29
            return true;
30
31
32
   void group()
33
34
            memset(e2, 0, sizeof(e2));
35
            memset(deg, 0, sizeof(deg));
36
            for (int i = 0; i < (n << 1); ++i) {
                    for (edge *j = e[i]; j; j = j->next) {
37
38
                             int x = grp[i], y = grp[j->t];
39
                             if (x == y) continue;
40
                             add_edge2(y, x);
41
                             ++deg[x];
42
                    }
43
            }
44
45
46
   void tsort()
47
48
            memset(mrk, 0, sizeof(mrk));
49
            for (int i = 0; i < cnt; ++i) if (!deg[i]) que[tail++] = i;
50
            while (head < tail) {
51
                    int u = que[head++];
                    if (!mrk[u]) mrk[u] = 1, mrk[con[u]] = -1;
52
                    for (edge *i = e2[u]; i; i = i->next) {
53
54
                             if (!--deg[i->t]) que [tail++] = i->t;
55
                    }
56
            }
57
   }
58
59
60
   Initialize:
61
            psz = 0; memset(e, 0, sizeof(e));
62
            add\_edge(i << 1, j << 1^1); for Bi -> !Bj
63
   Usage:
```

```
64 | if (chk()) {
65 | group();
66 | tsort();
67 | } else {
68 | // No solution
69 | }
70 | */
```

1.8 Divide and Conquer for Tree

poj 1741 Tree 1 #include <stdio.h> 2 #include <string.h> 3 #include <algorithm> 4 using namespace std; 5 6 7 int n, k; const int MAXN = 10001; 8 9 struct edge { 10 int t, w; 11 edge *next; 12 epool[MAXN * 2], *e[MAXN];13 int psz; int rec[MAXN], tot; 1415int size[MAXN], msize[MAXN], dist[MAXN]; 16 bool del[MAXN]; 17 int w[MAXN], c[MAXN]; 18 int ans; 19 20 void getsize(int p, int fa) 2122rec[tot++] = p; size[p] = 1; msize[p] = 0;23 for (edge $*i = e[p]; i; i = i \rightarrow next$) { 24if (i->t == fa || del[i->t]) continue; 25 getsize(i->t, p); 26 size[p] += size[i->t];msize[p] = max(msize[p], size[i->t]); 27 } 28 29 30 31 int centroid(int p) 32 { 33 tot = 0; 34 getsize(p, 0); 35 int k = rec[0];36 for (int i = 0; i < tot; ++i) { 37 int t = rec[i]; 38 msize[t] = max(msize[t], tot - size[t]); 39 if (msize[t] < msize[k]) k = t;</pre> 40 41 return k; 4243 44void getdist(int p, int fa) 4546 for (edge *i = e[p]; i; i = i->next) { 47 if (i->t == fa || del[i->t]) continue; w[tot++] = dist[i->t] = dist[p] + i->w;4849getdist(i->t, p);

```
50
             }
51
    }
52
    void add(int p, int x)
53
54
55
             for (; p <= tot; p += p & -p) c[p] += x;
56
    }
57
58
    int sum(int p)
59
60
             int s = 0;
             for (; p; p -= p & -p) s += c[p];
61
62
             return s;
63
64
65
    void dfs1(int p, int fa)
66
             ans += sum(upper_bound(w, w + tot, k - dist[p]) - w);
67
             for (edge *i = e[p]; i; i = i->next) {
68
                      if (i->t != fa && !del[i->t]) dfs1(i->t, p);
69
70
71
    }
72
73
    void dfs2(int p, int fa)
74
75
             add(upper_bound(w, w + tot, dist[p]) - w, 1);
76
             for (edge *i = e[p]; i; i = i \rightarrow next) {
77
                      if (i->t != fa && !del[i->t]) dfs2(i->t, p);
78
79
    }
80
81
    void solve(int p)
82
83
             p = centroid(p);
             del[p] = true;
84
85
             dist[p] = 0; tot = 0;
86
87
             getdist(p, 0);
88
             sort(w, w + tot);
89
             tot = unique(w, w + tot) - w;
             fill(c, c + tot + 1, 0);
90
91
92
             for (edge *i = e[p]; i; i = i \rightarrow next) {
93
                      if (del[i->t]) continue;
94
                      dfs1(i->t, p);
95
                      dfs2(i->t, p);
96
             }
97
             ans += sum(upper_bound(w, w + tot, k) - w);
98
99
             for (edge *i = e[p]; i; i = i->next) {
100
                      if (!del[i->t]) solve(i->t);
             }
101
102
103
104
    void add_edge(int u, int v, int w)
105
    {
106
             edge *tmp = epool + psz++;
107
             tmp \rightarrow t = v; tmp \rightarrow w = w; tmp \rightarrow next = e[u]; e[u] = tmp;
108
109
110 void init()
```

```
111 | {
112
             psz = 0; ans = 0;
113
             memset(e, 0, sizeof(e));
             memset(del, 0, sizeof(del));
114
115
             for (int i = 1; i < n; ++i) {
116
                      int u, v, w;
117
                      scanf("%d%d%d", &u, &v, &w);
118
                      add_edge(u, v, w);
119
                      add_edge(v, u, w);
120
             }
121
122
123
    int main()
124
125
             while (scanf("%d%d", &n, &k) != EOF && (n || k)) {
126
                      init();
127
                      solve(1);
128
                      printf("%d\n", ans);
129
             }
    }
130
```

1.9 Heavy-Light Decomposition

```
void dfs1(int p)
1
2
3
            size[p] = 1; h[p] = -1;
            for (edge *i = e[p]; i; i = i->next) {
4
5
                     if (i->t == f[p]) continue;
6
                     f[i->t] = p;
7
                     d[i->t] = d[p] + 1;
8
                     dfs1(i->t);
9
                     size[p] += size[i->t];
10
                     if (h[p] < 0 \mid | size[i->t] > size[h[p]]) h[p] = i->t;
            }
11
12
13
   void dfs2(int p, int anc)
14
15
16
            top[p] = anc;
17
            if (h[p] >= 0) dfs2(h[p], anc);
            for (edge *i = e[p]; i; i = i->next) {
18
                     if (i->t != f[p] \&\& i->t != h[p]) dfs2(i->t, i->t);
19
20
21
   }
22
23
   int lca(int u, int v)
24
25
            while (top[u] != top[v]) {
26
                     if (d[top[u]] < d[top[v]]) swap(u, v);</pre>
27
                     u = f[top[u]];
28
29
            if (d[u] > d[v]) swap(u, v);
30
            return u;
31
32
33
   /*
34
   Data:
                    -- father
35
            f []
36
            d []
                    -- depth
37
            size[] -- substree size
```

```
38 | h[] -- heavy child

39 | top[] -- head node of chain

40 | Initalize:

41 | f[1] = -1;

42 | d[1] = 0;

43 | */
```

Chapter 2

Data Structures

2.1 Segment Tree

2.1.1 zkw Segment Tree

```
2
   // where the range of query indexes is [1, n]
3
  int T[M<<1];
4
  void change(int p, int x)
5
6
7
          v[p += M] = x;
          while (p>>=1) T[p] = max(T[p<<1], T[p<<1^1]);
8
9
  }
10
  int query(int s, int t)
11
12
13
          int l = INT_MIN, r = INT_MIN;
          for (s += m - 1, t += m + 1; s^t^1; s>>=1, t>>=1) {
14
                 if (s\&1) l = max(w, T[s^1]);
15
16
                 if ( t\&1) r = max(w, T[t^1]);
17
18
          return max(1, r);
19
```

2.1.2 Functional Segment Tree

```
1
    struct sgt {
 2
               int sum;
               sgt *left, *right;
 3
    }tpool[PSZ];
4
5
    int tpsz;
 6
7
    sgt *new_node(int sum)
8
9
               sgt *p = tpool + tpsz++;
               p \rightarrow sum = sum;
10
               p \rightarrow left = p \rightarrow right = 0;
11
12
               return p;
13
14
15
    sgt *merge(sgt *1, sgt *r)
16
17
               sgt *p = tpool + tpsz++;
               p \rightarrow sum = 1 \rightarrow sum + r \rightarrow sum;
18
19
               p \rightarrow left = 1; p \rightarrow right = r;
```

```
20
            return p;
21
   }
22
   sgt *build(int 1, int r)
23
24
25
            if (l == r) return new_node(0);
26
            int mid = (1 + r) >> 1;
27
            return merge(build(1, mid), build(mid + 1, r));
28
   }
29
30
   sgt *add(sgt *p, int 1, int r, int x)
31
32
            if (l == r) return new_node(p->sum + 1);
33
            int mid = (1 + r) >> 1;
34
            return x <= mid ? merge(add(p->left, 1, mid, x), p->right)
35
                             : merge(p->left, add(p->right, mid + 1, r, x));
36
   }
37
   int kth(sgt *a, sgt *b, int 1, int r, int k)
38
39
40
            if (1 == r) return 1;
41
            int mid = (1 + r) >> 1;
42
            int lsum = a->left->sum - b->left->sum;
43
            return k <= lsum ? kth(a->left, b->left, l, mid, k)
                              : kth(a->right, b->right, mid + 1, 1, k - lsum);
44
45
   }
```

2.2 Self-balancing BST

2.2.1 Size Balanced Tree

```
struct sbt {
 1
 2
              int k, sz;
 3
              sbt *ch[2];
 4
    }pool[MAXN], *null;
 5
    int psz;
 6
 7
    sbt *new_sbt(int v)
8
9
              sbt *t = pool + psz++;
10
              t -> k = v; t -> sz = 1;
11
              t - ch[0] = t - ch[1] = null;
12
              return t;
13
14
15
    void rot(sbt *&t, int i)
16
              sbt *k = t->ch[i^1];
17
              t \rightarrow ch[i^1] = k \rightarrow ch[i]; k \rightarrow ch[i] = t;
18
19
              k \rightarrow sz = t \rightarrow sz; t \rightarrow sz = t \rightarrow ch[0] \rightarrow sz + t \rightarrow ch[1] \rightarrow sz + 1;
20
              t = k;
21
    }
22
23
    void maintain(sbt *&t, int i)
24
25
              if (t->ch[i]->ch[i]->sz > t->ch[i^1]->sz) {
26
                        rot(t, i^1);
27
              } else if (t->ch[i]->ch[i^1]->sz > t->ch[i^1]->sz) {
                        rot(t->ch[i], i), rot(t, i^1);
28
29
              } else return;
30
              maintain(t->ch[0], 0);
```

```
31
            maintain(t->ch[1], 1);
32
            maintain(t, 0);
            maintain(t, 1);
33
34
35
36
   void insert(sbt *&t, int v)
37
   {
             if (t == null) { t = new_sbt(v); return; }
38
39
             ++t->sz;
             insert(t->ch[v > t->k], v);
40
41
   }
42
43
   int erase(sbt *&t, int v)
44
45
             --t->sz:
46
            if (v == t->k \mid | t->ch[v > t->k] == null) {
47
                     v = t -> k;
                      if (t->ch[0] == null) t = t->ch[1];
48
                      else if (t->ch[1] == null) t = t->ch[0];
49
                      else t\rightarrow k = erase(t\rightarrow ch[0], v + 1);
50
51
                      return v;
52
            return erase(t->ch[v > t->k], v);
53
54
55
56
   sbt *find(sbt *t, int v)
57
58
             if (t == null) return 0;
59
             if (v == t->k) return t;
60
            return find(t->ch[v > t->k], v);
61
62
63
   int rank(sbt *t, int v)
64
65
             if (t == null) return 0;
66
             else if (v < t->k) return rank(t->ch[0], v);
67
             else return t\rightarrow ch[0]\rightarrow sz + 1 + rank(t\rightarrow ch[1], v);
68
   }
69
70
   sbt *select(int t, int k)
71
   {
72
            if (k == t \rightarrow ch[0] \rightarrow sz + 1) return t;
            else if (k \le t - ch[0] - sz) return select(t - ch[0], k);
73
74
             else return select(t->ch[1], k - t->ch[0]->sz - 1);
75
   2.2.2
          Splay
1
   void zig(int t)
 ^2
3
            int p = parent[t], g = parent[p];
4
            if (right[t]) parent[right[t]] = p;
            left[p] = right[t]; right[t] = p;
5
            parent[p] = t; parent[t] = g;
 6
7
            update(p); update(t);
 8
            if (g) p == left[g] ? left[g] = t : right[g] = t;
9
10
11
   void zag(int t)
12
   {
13
             int p = parent[t], g = parent[p];
```

```
14
            if (left[t]) parent[left[t]] = p;
15
            right[p] = left[t]; left[t] = p;
16
            parent[p] = t; parent[t] = g;
17
             update(p); update(t);
             if (g) p == left[g] ? left[g] = t : right[g] = t;
18
19
20
21
   void splay(int t, int header = 0) // header = parent[root]
22
23
             int p = parent[t], g = parent[p];
24
             for (; p != header; p = parent[t], g = parent[p]) {
25
                      if (g == header) t == left[p] ? zig(t) : zag(t);
                      else if (p == left[g]) t == left[p] ? zig(p) : zag(t), zig(t);
26
27
                      else t == right[p] ? zag(p) : zig(t), zag(t);
28
            }
29
   }
   2.2.3
          Functional Treap
   struct node {
1
2
            int k, w; // key, weight
3
            node *1, *r;
 4
   }pool[PSZ];
5
   int psz;
6
7
   node *new_node(int key, int weight, node *left, node *right)
8
9
            node *t = pool + psz++;
10
            t\rightarrow k = key; t\rightarrow w = weight; t\rightarrow l = left; t\rightarrow r = right;
11
            return t;
12
13
14
   node *split_l(node *t, int key)
15
16
            return !t ? 0 : (key < t->k ? split_l(t->l, key) :
                    new_node(t\rightarrow k, t\rightarrow w, t\rightarrow l, split_l(t\rightarrow r, key)));
17
18
19
20
   node *split_r(node *t, int key)
21
   {
22
            return !t ? 0 : (key \ge t - k ? split_r(t - r, key) :
23
                    new_node(t->k, t->w, split_r(t->l, key), t->r));
24
   }
25
26
   node *merge(node *a, node *b)
27
28
            return (!a || !b) ? (a ? a : b) : (a->w < b->w ?
29
                    new_node(a->k, a->w, a->l, merge(a->r, b)):
30
                    new_node(b\rightarrow k, b\rightarrow w, merge(a, b\rightarrow l), b\rightarrow r));
31
   }
32
33
   node *insert(node *t, int key)
34
             return merge(merge(split_1(t, key), new_node(key, rand(), 0, 0)),
35
36
                           split_r(t, key));
37
   }
           Functional Treap(Range Operation)
```

```
struct node {
1
          int v, w, sz; // value, weight, size
2
```

```
3
             node *1, *r;
   }pool[PSZ];
4
5
   int psz;
6
   inline int sz(node *t) { return t ? t->sz : 0; }
7
8
9
   node *new_node(int val, int weight, node *left, node *right)
10
11
             node *t = pool + psz++;
             t \rightarrow v = val; t \rightarrow w = weight; t \rightarrow l = left; t \rightarrow r = right;
12
13
             t\rightarrow sz = sz(left) + sz(right) + 1;
14
             return t;
15
16
17
   node *split_l(node *t, int k) // get the first k elements
18
19
             return !t ? 0 :
20
                       (k \le sz(t->1) ? split_1(t->1, k) :
21
                        new_node(t->v, t->w, t->l, split_l(t->r, k - sz(t->l) - 1)));
22
   }
23
24
   node *split_r(node *t, int k)
25
   {
26
             return !t ? 0 :
27
                       (k > sz(t->1) ? split_r(t->r, k - sz(t->1) - 1) :
28
                        new_node(t\rightarrow v, t\rightarrow w, split_r(t\rightarrow l, k), t\rightarrow r));
29
30
31
   node *merge(node *a, node *b)
   {
32
33
             return (!a || !b) ? (a ? a : b) :
34
                       (a->w < b->w ?
35
                        new_node(a\rightarrow v, a\rightarrow w, a\rightarrow 1, merge(a\rightarrow r, b)):
36
                        new_node(b\rightarrow v, b\rightarrow w, merge(a, b\rightarrow l), b\rightarrow r));
37
   }
38
39
   node *insert(node *t, int pos, int *val, int n) // insert before pos
40
             node *l = split_l(t, pos), *r = split_r(t, pos);
41
42
             for (int i = 0; i < n; ++i) {
                       1 = merge(1, new_node(val[i], rand(), 0, 0));
43
44
             return merge(1, r);
45
46
47
   node *fetch(node *t, int 1, int r) // fetch [l, r]
48
49
50
             return split_l(split_r(t, 1), r - 1 + 1);
51
   }
52
   // index from 0
53
   2.3
         Leftist Tree
1
   int key[MAXN], left[MAXN], right[MAXN], dist[MAXN];
 2
 3
 4
   int merge(int a, int b)
 5
   {
 6
             if (!a) return b;
```

```
7
            if (!b) return a;
8
            if (key[b] > key[a]) swap(a, b);
            right[a] = merge(right[a], b);
9
            if (dist[left[a]] < dist[right[a]]) swap(left[a], right[a]);</pre>
10
11
            dist[a] = dist[right[a]] + 1;
12
            return a;
13
   }
14
   /*
15
   Initialize:
16
17
            memset(left, 0, sizeof(left));
            memset(right, 0, sizeof(left));
18
19
            dist[0] = -1;
20
   */
```

2.4 Dynamic Tree

2.4.1 Link-cut Tree

```
1
   int left[MAXN], right[MAXN], parent[MAXN], size[MAXN];
2
   bool rev[MAXN];
 3
4
   void update(int t)
5
   {
6
            size[t] = size[left[t]] + size[right[t]] + 1;
7
8
   void revsub(int t)
9
10
   {
11
            swap(left[t], right[t]);
12
            rev[t] ^= 1;
13
14
   void sink(int t)
15
16
   {
17
            if (rev[t]) {
                     if (left[t]) revsub(left[t]);
18
19
                    if (right[t]) revsub(right[t]);
20
                    rev[t] = false;
            }
21
22
23
24
   void sinkdown(int t)
25
   {
26
            static int path[MAXN];
27
            int n = 0;
28
            for (;;) {
29
                    path[n++] = t;
30
                    int p = parent[t];
31
                    if (t != left[p] && t != right[p]) break;
32
                    t = p;
33
            while (n) sink(path[--n]);
34
35
   }
36
   void zig(int t)
37
38
39
            int p = parent[t], g = parent[p];
40
            if (right[t]) parent[right[t]] = p;
41
            left[p] = right[t]; right[t] = p;
42
            parent[p] = t; parent[t] = g;
```

```
43
             update(p); update(t);
44
             if (p == left[g]) left[g] = t;
45
             else if (p == right[g]) right[g] = t;
46
    }
47
48
    void zag(int t)
49
50
             int p = parent[t], g = parent[p];
51
             if (left[t]) parent[left[t]] = p;
             right[p] = left[t]; left[t] = p;
52
             parent[p] = t; parent[t] = g;
53
             update(p); update(t);
54
55
             if (p == left[g]) left[g] = t;
56
             else if (p == right[g]) right[g] = t;
57
    }
58
59
    void splay(int t)
60
61
             sinkdown(t);
62
             for (;;) {
63
                     int p = parent[t], g = parent[p];
64
                     if (t == left[p]) {
65
                              if (p == left[g]) zig(p), zig(t);
                              else if (p == right[g]) zig(t), zag(t);
66
67
                              else zig(t);
68
                     } else if (t == right[p]) {
69
                              if (p == left[g]) zag(t), zig(t);
                              else if (p == right[g]) zag(p), zag(t);
70
71
                              else zag(t);
72
                     } else break;
             }
73
74
    }
75
76
    int expose(int t)
77
78
             int u = 0;
79
             for (; t; u = t, t = parent[t]) {
80
                     splay(t);
81
                     right[t] = u;
82
                     update(t);
83
84
            return u;
85
86
    void link(int t, int p) // link subtree t to p
87
88
    {
89
             parent[expose(t)] = p;
90
             expose(t);
91
92
    void cut(int t)
93
94
95
             expose(t);
96
             splay(t);
97
             parent[left[t]] = 0;
98
             left[t] = 0;
99
             update(t);
100
101
    void setroot(int t)
102
103 | {
```

```
104
             revsub(expose(t));
105
    }
106
107
    void query(int u, int v) // query path u \rightarrow v
108
109
             expose(u);
110
             int t = expose(v); // t == lca(u, v)
             // analysis node t
111
112
             // analysis right[t]
             if (u != t) {
113
114
                      splay(u);
115
                      // analysis u
             }
116
117
118
119
    void change(int u, int v) // path change
120
121
             expose(u);
122
             int t = expose(v); // t == lca(u, v)
123
             // change node t
124
             if (right[t]) // change right[t]
125
             if (u != t) {
126
                     splay(u);
127
                      // change u
128
             }
129
    }
          Euler Tour Tree
 1
   int n;
    int left[MAXN * 2], right[MAXN * 2], parent[MAXN * 2], size[MAXN * 2];
 2
 3
    // each node split into 2 nodes. i \longrightarrow (i << 1) \& (i << 1)^1
 4
    void update(int t) { size[t] = size[left[t]] + size[right[t]] + 1; }
 5
 6
    int root(int t) { while (parent[t]) t = parent[t]; return t; }
 7
    int minnode(int t) { while (left[t]) t = left[t]; return t; }
 8
    int maxnode(int t) { while (right[t]) t = right[t]; return t; }
 9
10
11
    int prev(int t)
12
    {
13
             if (left[t]) return maxnode(left[t]);
14
             int p = parent[t];
             while (p && t == left[p]) t = p, p = parent[t];
15
16
             return p;
17
18
    int succ(int t)
19
20
21
             if (right[t]) return minnode(right[t]);
22
             int p = parent[t];
23
             while (p \&\& t == right[p]) t = p, p = parent[t];
24
             return p;
25
26
27
    void cut(int t)
28
29
             int x = prev(t << 1), y = succ(t << 1^1);
30
             splay(x); splay(y, x);
31
             parent[left[y]] = 0; left[y] = 0;
```

32

update(y); update(x);

2.5 KD Tree

```
1
   const int K = 2;
2
   struct kd {
3
            double x[K];
4
            int id;
5
   }t[MAXN];
6
7
   double sqr(double n) { return n * n; }
8
9
   double dis(kd a, kd b)
10
   {
11
            double s = 0;
12
            for (int i = 0; i < K; ++i) s += sqr(a.x[i] - b.x[i]);
13
            return sqrt(s);
14
15
16
   struct cmpk {
17
            int k;
18
            cmpk(int k): k(k) {}
19
            bool operator()(const kd &a, const kd &b)
20
            { return a.x[k] < b.x[k]; }
21
   };
22
23
   void build(int 1, int r, int d)
24
   {
25
            if (r - 1 <= 1) return;
            int mid = (1 + r) >> 1;
26
27
            nth_element(t + 1, t + mid, t + r, cmpk(d));
28
            if (++d == K) d = 0;
29
            build(1, mid, d); build(mid + 1, r, d);
30
31
32
   typedef priority_queue<pair<double, int> > heap;
33
   void knn(int 1, int r, int d, kd p, size_t k, heap &h)
34
   {
35
            if (r - 1 < 1) return;
36
            int mid = (1 + r) >> 1;
37
            h.push(make_pair(dis(p, t[mid]), t[mid].id));
38
            if (h.size() > k) h.pop();
39
            double dx = p.x[d] - t[mid].x[d];
            if (++d == K) d = 0;
40
            if (dx < 0) {
41
42
                    knn(l, mid, d, p, k, h);
43
                    if (h.top().first > dx) knn(mid + 1, r, d, p, k, h);
44
            } else {
45
                    knn(mid + 1, r, d, p, k, h);
46
                    if (h.top().first > dx) knn(l, mid, d, p, k, h);
            }
47
48
   }
```

2.6 Sparse Table

```
int f[MAXN][LOGN];
1
2
3
   void st_init(int *a, int n)
4
5
           for (int i = 0; i < n; ++i) f[i][0] = a[i];
6
           for (int j = 1; (1<<j) <= n; ++j) {
7
                    for (int i = 0; i + (1 << j) <= n; ++i) {
8
                             f[i][j] = min(f[i][j - 1], f[i + (1 << (j-1))][j - 1]);
9
                    }
           }
10
11
12
13
   int rmq(int 1, int r)
14
15
            int k = 0;
16
           while ((1 << (k+1)) <= r - l + 1) ++k;
            return min(d[1][k], d[r - (1 << k) + 1][k]);
17
18
```

Chapter 3

Stringology

3.1 KMP Algorithm

```
1
   void getf(char *s, int *f)
2
3
            int n = strlen(s);
4
            f[0] = 0; f[1] = 0;
            for (int i = 1; i < n; ++i) {
5
                    int j = f[i];
6
7
                    while (j \&\& s[i] != s[j]) j = f[j];
8
                    f[i + 1] = s[i] == s[j] ? j + 1 : 0;
9
            }
10
   }
11
   int match(char *s, char *p, int *f)
12
13
            int n = strlen(s), m = strlen(p);
14
15
            int j = 0;
            for (int i = 0; i < n; ++i) {
16
17
                    while (j \&\& s[i] != p[j]) j = f[j];
18
                    if (s[i] == p[j]) ++j;
19
                    if (j == m) return i - m + 1;
20
            }
   }
21
```

3.2 Extend-KMP Algorithm

```
void getf(char *s, int *f)
1
2
3
            int n = strlen(s), j = 0, k = 1;
4
            while (j + 1 < n \&\& s[j] == s[j + 1]) ++j;
            f[0] = n; f[1] = j;
5
            for (int i = 2; i < n; ++i) {
6
7
                    int len = k + f[k] - 1, t = f[i - k];
8
                    if (i + t <= len) {
9
                             f[i] = t;
10
                    } else {
                             j = max(0, len - i + 1);
11
12
                             while (i + j < n \&\& s[i + j] == s[j]) ++j;
13
                             f[i] = j; k = i;
14
                    }
            }
15
16
17
18
   void match(char *s, char *p, int *f, int *ex)
19 | {
```

```
20
            int n = strlen(s), j = 0, k = 0;
21
            while (j < n \&\& s[j] == p[j]) ++j;
22
            ex[0] = j;
            for (int i = 1; i < n; ++i) {
23
24
                    int len = k + ex[k] - 1, t = f[i - k];
25
                    if (i + t <= len) {
26
                             ex[i] = t;
27
                    } else {
28
                             j = max(0, len - i + 1);
29
                             while (i + j < n \&\& s[i + j] == p[j]) ++j;
                             ex[i] = j; k = i;
30
                    }
31
            }
32
33
```

3.3 Aho-Corasick Automation

```
const int PSZ = MAXN * LEN;
2
   struct trie {
3
             trie *ch[SIGMA], *f;
4
             // trie *last;
5
             int val;
6
   }pool[PSZ], *dict;
7
   int psz;
   int head, tail;
8
   trie *que[PSZ];
9
10
11
   void insert(trie *t, const char *s)
12
   {
13
             for (; *s; ++s) {
14
                      int c = *s - 'a';
                      if (!t->ch[c]) memset(t->ch[c] = pool + psz++, 0, sizeof(trie));
15
16
                      t = t - ch[c];
17
18
             ++t->val;
19
20
21
   void build_fail(trie *t)
22
23
             head = tail = 0;
             for (int i = 0; i < SIGMA; ++i) {
24
25
                      if (t->ch[i]) (que[tail++] = t->ch[i])->f= t;
26
                      else t \rightarrow ch[i] = t \rightarrow f \rightarrow ch[i];
27
28
             while (head < tail) {
29
                      t = que[head++];
30
                      // t -> val += t -> f -> val;
                                                                           # method 1
31
                      // t - > last = t - > f - > val ? t - > f : t - > f - > last; # method 2
                      for (int i = 0; i < SIGMA; ++i) {</pre>
32
                                if (t-ch[i]) (que[tail++] = t->ch[i])->f = t->f->ch[i];
33
34
                                else t\rightarrow ch[i] = t\rightarrow f\rightarrow ch[i];
35
                      }
36
             }
37
38
39
   int find(trie *t, const char *s)
40
41
             int sum = 0;
42
             for (; *s; ++s) {
                      int c = *s - 'a';
43
```

```
t = t - ch[c];
44
45
                     // sum += i->val; # method 1
46
                     // for (trie *i = t; i \&\& i -> val; i = i -> last) {
47
                             sum += i -> val, i -> val = 0;
                     // }
48
                                         # method 2
49
50
            return sum;
51
   }
52
53
54
   Initialize:
            psz = 1; memset(dict = pool, 0, sizeof(trie));
55
56
   Method 1: counting appearance times
57
   Method 2: counting appear patterns
58
   ** pattern that appear more than once counted once in method 2
59 | */
```

3.4 Suffix Array

```
1
  int n;
2
   char s[MAXN];
   int sa[MAXN], rank[MAXN], height[MAXN];
3
4
   int c[MAXN], wx[MAXN], wy[MAXN];
5
   void build_sa(int m)
6
7
8
            int *x = wx, *y = wy;
            for (int i = 0; i < m; ++i) c[i] = 0;
9
10
            for (int i = 0; i < n; ++i) ++c[x[i] = s[i]];
           for (int i = 1; i < m; ++i) c[i] += c[i - 1];
11
12
           for (int i = n - 1; i \ge 0; --i) sa[--c[x[i]]] = i;
           for (int k = 1; k <= n; k <<= 1) {
13
                    int p = 0;
14
                    for (int i = n - k; i < n; ++i) y[p++] = i;
15
16
                    for (int i = 0; i < n; ++i) if (sa[i] >= k) y[p++] = sa[i] - k;
17
                    for (int i = 0; i < m; ++i) c[i] = 0;
18
                    for (int i = 0; i < n; ++i) ++c[x[y[i]]];
19
                    for (int i = 1; i < m; ++i) c[i] += c[i - 1];
20
                    for (int i = n - 1; i \ge 0; --i) sa[--c[x[y[i]]]] = y[i];
21
                    swap(x, y);
22
                    p = 1; x[sa[0]] = 0;
23
                    for (int i = 1; i < n; ++i) {
24
                            x[sa[i]] = y[sa[i - 1]] == y[sa[i]] &&
25
                                        y[sa[i - 1] + k] == y[sa[i] + k] ?
26
                                        p - 1 : p++;
27
28
                    if (p == n) break;
29
                    m = p;
30
           }
31
32
33
   void build_height()
34
35
           for (int i = 0; i < n; ++i) rank[sa[i]] = i;
36
           for (int i = 0, k = 0; i < n; ++i) {
37
                    if (k) --k;
38
                    if (!rank[i]) continue;
39
                    int j = sa[rank[i] - 1];
40
                    while (s[i + k] == s[j + k]) ++k;
41
                    height[rank[i]] = k;
```

3.5 Suffix Automation

```
1
   struct sam {
2
            int 1;
3
            sam *f, *ch[SIGMA];
4
   }pool[LEN * 2], *root, *tail;
5
   int psz;
6
7
   sam *init_node(sam *p)
8
9
            memset(p->ch, 0, sizeof(p->ch));
            p -> f = 0; p -> 1 = 0;
10
11
            return p;
12
   }
13
   void sam_add(int v)
14
15
16
            sam *p = init_node(pool + psz++), *i;
17
            p->1 = tail->1 + 1;
            for (i = tail; i && !i->ch[v]; i = i->f) i->ch[v] = p;
18
19
            if (!i) {
20
                     p \rightarrow f = root;
21
            } else if (i->ch[v]->l == i->l + 1) {
22
                     p \rightarrow f = i \rightarrow ch[v];
            } else {
23
24
                     sam *q = pool + psz++, *r = i->ch[v];
25
                     *q = *r;
26
                     q->1 = i->1 + 1;
                     p - f = r - f = q;
27
28
                     for (; i && i->ch[v] == r; i = i->f) i->ch[v] = q;
29
30
            tail = p;
31
   }
32
33
   int match(sam *root, char *s)
34
35
            int k = 0, ret = 0;
36
            sam *p = root;
37
            for (; *s; ++s) {
38
                     int c = *s - 'a';
                     if (p->ch[c]) {
39
40
                              ++k, p = p->ch[c];
                     } else {
41
42
                              while (p \&\& !p->ch[c]) p = p->f;
43
                              if (p) k = p->1 + 1, p = p->ch[c];
44
                              else p = root; k = 0;
45
46
                     ret = max(ret, k);
47
                     // p->match = max(p->match, k);
48
49
            return ret;
50
51
   // Initalize: init_node(root = tail = pool); psz = 1;
```

3.6 Longest Palindorme Substring(Manacher)

```
char s[MAXN], t[MAXN + MAXN + 3];
   int rad[MAXN + MAXN + 3];
3
4
   void manacher(char *s)
5
            int n = strlen(s), len = 0;
6
7
           t[len++] = '^'; t[len++] = '#';
           for (int i = 0; i < n; ++i) {
8
9
                    t[len++] = s[i];
10
                    t[len++] = '#';
11
12
           t[len] = 0;
            int i = 1, j = 1, k;
13
14
            while (i < len) {
                    while (t[i - j] == t[i + j]) ++j;
15
                    rad[i] = j;
16
17
                    for (k = 1; k < j \&\& rad[i - k] != rad[i] - k; ++k) {
18
                            rad[i + k] = min(rad[i - k], rad[i] - k);
19
20
                    i += k; j = max(j - k, 1);
           }
21
22
   }
23
   /*
24
25
   s: abaaba
        ^ # a # b # a # a # b # a # \0
   t:
27
   rad: 0 1 2 1 4 1 2 7 2 1 4 1 2 1
28
   */
```

3.7 Minimum Representation

```
int minrep(char *s, int n)
2
            int i = 0, j = 1, k = 0, t;
3
            while (i < n && j < n && k < n) {
4
5
                    t = s[(i + k) \% n] - s[(j + k) \% n];
6
                    if (!t) { ++k; continue; }
7
                    if (t > 0) i = i + k + 1;
8
                    else j = j + k + 1;
9
                    if (i == j) ++ j;
10
                    k = 0;
11
12
           return min(i, j);
13
```

Chapter 4

Computational Geometry

4.1 Basic Operations

```
typedef complex < double > point;
   typedef point vec;
   #define X real()
3
   #define Y imag()
4
5
6
   const double eps = 1e-8;
7
       dcmp(double x) { return x < -eps ? -1 : x > eps;
8
9
                      { return !dcmp(v.X) && !dcmp(v.Y); }
   bool zero(vec v)
10
11
   double sqr(double x)
                                 { return x * x;
12
   double dis(point a, point b) { return abs(a - b); }
13
14
   double cross(vec a, vec b)
                                             { return a.X * b.Y - a.Y * b.X; }
   double cross(point a, point b, point c) { return cross(b - a, c - a);
15
   double dot(vec a, vec b)
                                            { return a.X * b.X + a.Y * b.Y; }
16
17
   double dot(point a, point b, point c)
                                            { return dot(b - a, c - a);
18
19
   vec dir(line ln) { return ln.t - ln.s;
   vec normal(vec v) { return vec(-v.Y, v.X); }
20
21
   vec unit(vec v)
                     { return v / abs(v);
22
23
         proj(vec v, vec n)
                                    { return n * dot(v, n) / norm(n);
24
   point proj(point p, line ln)
                                    { return ln.s + proj(p - ln.s, dir(ln));
         reflect(vec v, vec n)
                                    { return proj(v, n) * 2. - v;
   point reflect(point p, line ln) { return ln.s + reflect(p - ln.s, dir(ln)); }
26
27
28
          rotate(vec v, double a) { return v * polar(1., a); }
   double angle (vec a, vec b)
                                   { return arg(b / a);
   4.1.1 Line
1
   double dis(point p, line ln) { return fabs(cross(p, ln.s, ln.t)) / len(ln); }
2
3
   bool onseg(point p, line ln)
4
   { return dcmp(cross(p, ln.s, ln.t)) == 0 && dcmp(dot(p, ln.s, ln.t)) <= 0; }
5
6
   double dtoseg(point p, line ln)
7
8
           if (dcmp(dot(ln.s, ln.t, p)) \le 0) return dis(p, ln.s);
9
           if (dcmp(dot(ln.t, ln.s, p)) <= 0) return dis(p, ln.t);</pre>
10
           return dis(p, ln);
11 | }
```

```
12
13
   bool inter(line a, line b, point &p)
14
           double s1 = cross(a.s, a.t, b.s);
15
16
           double s2 = cross(a.s, a.t, b.t);
           if (!dcmp(s1 - s2)) return false;
17
18
           p = (s1 * b.t - s2 * b.s) / (s1 - s2);
19
           return true;
20
   }
21
22
   bool seginter(line a, line b, point &p) // segment intersection(strict)
23
24
           double s1 = cross(a.s, a.t, b.s);
25
           double s2 = cross(a.s, a.t, b.t);
           if ((dcmp(s1) ^ dcmp(s2)) != -2) return false;
26
27
           double s3 = cross(b.s, b.t, a.s);
28
           double s4 = cross(b.s, b.t, a.t);
29
           if ((dcmp(s3) ^dcmp(s4)) != -2) return false;
           p = (s1 * b.t - s2 * b.s) / (s1 - s2);
30
31
           return true;
32
   4.1.2
          Triangle
   double area(double a, double b, double c) // Heron's Formula
1
2
3
           double p = (a + b + c) * 0.5;
           return sqrt(p * (p - a) * (p - b) * (p - c));
4
5
   }
6
7
   double angle(double a, double b, double c) // Law of Cosines
8
9
           return acos((sqr(a) + sqr(b) - sqr(c)) / (2 * a * b));
10
   }
11
12
   point center(point A, point B, point C) // Circumcenter
13
           double d1 = dot(A, B, C), d2 = dot(B, C, A), d3 = dot(C, A, B);
14
15
           double c1 = d2 * d3, c2 = d1 * d3, c3 = d1 * d2, c = c1 + c2 + c3;
           if (!dcmp(c)) return A; // coincident
16
17
           return ((c2 + c3) * A + (c1 + c3) * B + (c1 + c2) * C) / (2 * c);
18
19
20
   point incenter(point A, point B, point C)
21
   {
           double a = abs(B - C), b = abs(C - A), c = abs(A - B);
22
23
           if (!dcmp(a + b + c)) return A; // coincident
24
           return (a * A + b * B + c * C) / (a + b + c);
25
   }
26
27
   point centroid(point A, point B, point C)
28
   {
           return (A + B + C) / 3;
29
30
   }
31
32
   point orthocenter(point A, point B, point C)
33
34
           double d1 = dot(A, B, C), d2 = dot(B, C, A), d3 = dot(C, A, B);
35
           double c1 = d2 * d3, c2 = d1 * d3, c3 = d1 * d2, c = c1 + c2 + c3;
```

if (!dcmp(c)) return A; // coincident

return (c1 * A + c2 * B + c3 * C) / c;

36 37

```
38
  | }
39
   point fermat(point A, point B, point C)
40
41
42
            double a = abs(B - C), b = abs(C - A), c = abs(A - B);
            if (dot(A, B, C) / b / c < -.5) return A;
43
44
            if (dot(B, C, A) / c / a < -.5) return B;
           if (dot(C, A, B) / a / b < -.5) return C;
45
46
           if (cross(A, B, C) < 0) swap(B, C);
           point CC = (B - A) * polar(1., -pi / 3) + A;
47
           point BB = (C - A) * polar(1., pi / 3) + A;
48
           return inter(line(B, BB), line(C, CC));
49
50
         Circle
   4.1.3
   double adjust(double a)
1
 2
3
           while (a < -pi) a += 2 * pi;
4
           while (a >
                       pi) a -= 2 * pi;
5
           return a;
6
   }
7
8
   bool inter(circle c, line ln, point &p1, point &p2)
9
10
           point p = proj(c.c, ln);
11
           double d = dis(p, c.c);
12
           if (dcmp(d - c.r) > 0) return false;
13
           vec v = sqrt(c.r * c.r - d * d) * unit(dir(ln));
            p1 = p - v; p2 = p + v;
14
15
           return true;
16
17
18
   bool inter(circle c, line ln, double &a1, double &a2)
19
20
            point p = proj(c.c, ln);
            double d = dis(p, c.c);
21
22
            if (dcmp(d - c.r) > 0) return false;
23
            double alpha = arg(p - c.c), beta = acos(d / c.r);
24
            a1 = adjust(alpha - beta); a2 = adjust(alpha + beta);
25
           return true;
26
27
28
   bool inter(circle a, circle b, point &p1, point &p2)
29
   {
30
            double d = dis(a.c, b.c);
31
            if (dcmp(d - (a.r + b.r)) > 0) return false;
                                                                            // disjoint
32
           if (!dcmp(d) \mid | dcmp(d - fabs(a.r - b.r)) < 0) return false; // include
33
           double d1 = (sqr(d) + sqr(a.r) - sqr(b.r)) / (2 * d), d2 = d - d1;
34
           point p = (d1 * b.c + d2 * a.c) / d;
35
           vec v = sqrt(sqr(a.r) - sqr(d1)) * unit(normal(b.c - a.c));
36
           p1 = p - v; p2 = p + v;
37
            return true;
38
39
40
   bool inter(circle a, circle b, double &a1, double &a2)
41
42
            double d = dis(a.c, b.c);
43
            if (dcmp(d - (a.r + b.r)) > 0) return false;
                                                                            // disjoint
            if (!dcmp(d) \mid | dcmp(d - fabs(a.r - b.r)) < 0) return false; // include
44
            double alpha = arg(b.c - a.c), beta = angle(a.r, d, b.r);
45
```

```
a1 = adjust(alpha - beta); a2 = adjust(alpha + beta);
46
47
           return true;
48
   }
49
50
   bool tan(circle c, point p, point &p1, point &p2)
51
52
           double d = dis(p, c.c);
53
            if (dcmp(d - c.r) < 0) return false;
54
           double d1 = c.r * c.r / d, d2 = d - d1;
           point p0 = (d1 * p + d2 * c.c) / d;
55
56
           vec v = sqrt(sqr(c.r) - sqr(d1)) * unit(normal(p - c.c));
           p1 = p0 - v; p2 = p0 + v;
57
58
           return true;
59
60
61
   bool tan(circle c, point p, double &a1, double &a2)
62
63
           double d = dis(p, c.c);
           if (dcmp(d - c.r) < 0) return false;
64
            double alpha = arg(p - c.c), beta = acos(c.r / d);
65
            a1 = adjust(alpha - beta); a2 = adjust(alpha + beta);
66
67
           return true;
68
   }
69
70
   bool outertan(circle a, circle b, double &a1, double &a2)
71
72
            double d = dis(a.c, b.c);
73
            if (!dcmp(d) \mid | dcmp(d - fabs(a.r - b.r)) < 0) return false; // include
74
           double alpha = arg(b.c - a.c), beta = acos((a.r - b.r) / d);
75
           a1 = adjust(alpha - beta); a2 = adjust(alpha + beta);
76
           return true;
77
78
79
   bool innertan(circle a, circle b, double &a1, double &a2)
80
81
           double d = dis(a.c, b.c);
            if (!dcmp(d) \mid | dcmp(d - (a.r + b.r)) < 0) return false;
82
                                                                            // disjoint
83
           double alpha = arg(b.c - a.c), beta = acos((a.r + b.r) / d);
           a1 = adjust(alpha - beta); a2 = adjust(alpha + beta);
84
85
           return true;
86
   }
```

4.2 Point in Polygon Problem

```
bool inpoly(point a, point *p, int n)
1
2
   {
3
            int wn = 0;
            for (int i = 0; i < n; ++i) {
4
                     point p1 = p[i], p2 = p[(i + 1) % n];
5
                     int d = dcmp(cross(a, p1, p2));
6
                    if (!s && dot(a, p1, p2) <= 0) return true;
7
                    int d1 = dcmp(p1.Y - a.Y);
8
                    int d2 = dcmp(p2.Y - a.Y);
9
10
                    if (d > 0 \&\& d1 \le 0 \&\& d2 > 0) ++wn;
11
                    if (d < 0 \&\& d2 \le 0 \&\& d1 > 0) --wn;
12
13
            return wn != 0;
14
```

4.3 Convex Hull(Gramham)

```
bool cmpx(point a, point b) { return dcmp(a.X - b.X) ? a.X < b.X : a.Y < b.Y; }
1
2
3
   int gramham(point p[], int n, point h[])
4
5
            int m = 0;
6
            sort(p, p + n, cmpx);
7
            for (int i = 0; i < n; ++i) {
                    while (m > 1 & dcmp(cross(h[m - 2], h[m - 1], p[i])) <= 0) --m;
8
9
                    h[m++] = p[i];
            }
10
11
            int k = m;
12
            for (int i = n - 2; i \ge 0; --i) {
                    while (m > k \&\& dcmp(cross(h[m - 2], h[m - 1], p[i])) <= 0) --m;
13
14
                    h[m++] = p[i];
15
16
            if (n > 1) --m;
17
            return m;
   }
18
```

4.4 Half-plane Intersection

```
bool inhp(point p, line hp) { return dcmp(cross(hp.s, hp.t, p)) >= 0; }
1
2
3
   bool cmpang(line a, line b)
4
   { return dcmp(a.a - b.a) ? a.a < b.a : cross(a.s, a.t, b.s) < 0; }
5
   int hpinter(line q[], int n, point h[])
6
7
8
            int head = 0, tail = 0, m = 0;
9
            for (int i = 0; i < n; ++i) q[i].a = arg(dir(q[i]));
10
            sort(ln, ln + n, cmpang);
11
           for (int i = 1; i < n; ++i) {
12
                    if (!dcmp(q[i].a - q[i - 1].a)) continue;
                    while (head < tail && !inhp(h[tail - 1], q[i])) --tail;
13
14
                    while (head < tail && !inhp(h[head], q[i])) ++head;
                    q[++tail] = q[i];
15
16
                    if (head < tail) h[tail - 1] = inter(q[tail - 1], q[tail]);</pre>
17
18
           while (head < tail && !inhp(h[tail - 1], q[head])) --tail;
           if (head < tail) h[tail] = inter(q[tail], q[head]);</pre>
19
20
           for (int i = head; i \le tail; ++i) h[m++] = h[i];
21
            return m;
22
23
24
   line makehp(double a, double b, double c) // ax + by + c > 0
25
26
           point p1 = fabs(a) > fabs(b)? point(-c / a, o) : point(0, -c / b);
27
           point p2 = p1 + vec(b, -a);
28
           return line(p1, p2);
29
   }
```

4.5 Closest Pair(Divide and Conquer)

```
bool cmpx(point a, point b) { return a.X < b.X; }
bool cmpy(point a, point b) { return a.Y < b.Y; }
double mindis(point p[], int l, int r)</pre>
```

```
5
   |{
6
            static point t[MAXN];
7
            if (r - l <= 1) return inf;</pre>
            int mid = (1 + r) >> 1, m = 0;
8
9
            double x = p[mid].X;
10
            double d = min(mindis(1, mid), mindis(mid, r));
11
            inplace_merge(p + 1, p + mid, p + r, cmpy());
12
            for (int i = 1; i < r; ++i) {
13
                    if (fabs(x - p[i].X) < d) t[m++] = p[i];
14
15
            for (int i = 0; i < m; ++i) {
                    for (int j = i + 1; j < m; ++j) {
16
                             if (t[j].Y - t[i].Y >= d) break;
17
                             d = min(d, abs(t[i] - t[j]));
18
19
                    }
20
            }
21
            return d;
22
23
24
25
   Initialize: sort(p, p + n, cmpx())
26
   Usage: mindis(0, n)
27
```

4.6 Farthest Pair(Rotating Caliper)

```
1
   double maxdis(point *p, int n)
 2
3
            gramham(p, n, h, m);
4
            if (m == 2) return abs(h[0] - h[1]);
5
            h[m] = h[0];
6
            double d = 0;
7
            for (int i = 0, j = 1; i < m; ++i) {
                    while (dcmp(cross(h[i + 1] - h[i], h[j + 1] - h[j])) > 0) {
8
9
                             j = (j + 1) \% m;
10
                    d = max(d, abs(h[i] - h[j]));
11
12
13
            return d;
14
   }
```

4.7 Minimum Distance Between Convec Hull(Rotating Caliper)

```
1
   void mindis(point *p1, int n, point *p2, int m)
 ^2
3
            int i = 0, j = 0;
4
            for (int k = 1; k < n; ++k) if (cmpx()(p1[k], p1[i])) i = k;
            for (int k = 1; k < m; ++k) if (cmpx()(p2[j], p2[k])) j = k;
5
 6
            for (int t = n + n; t--;) {
7
                    if (dcmp(cross(p1[i + 1] - p1[i], p2[j + 1] - p2[j])) < 0) {
8
                             ans = min(ans, dtoseg(p2[j], line(p1[i], p1[i + 1])));
9
                             i = (i + 1) \% n;
10
                    } else {
                             ans = min(ans, dtoseg(p1[i], line(p2[j], p2[j + 1])));
11
12
                             j = (j + 1) \% m;
                    }
13
            }
14
15 | }
```

4.8 Union Area of a Circle and a Polygon

```
double area(circle c, point a, point b)
1
2
3
           a -= c.c; b -= c.c;
4
           if (zero(a) || zero(b)) return 0;
           double s1 = .5 * arg(b / a) * sqr(c.r);
5
           double s2 = .5 * cross(a, b);
6
7
            return fabs(s1) < fabs(s2) ? s1 : s2;
8
9
10
   double unionarea(circle c, point p[], int n)
11
12
           double s = 0;
           for (int i = 0; i < n; ++i) {
13
                    point A = p[i], B = p[(i + 1) \% n], p1, p2;
14
                    line AB = line(A, B);
15
                    if (inter(c, AB, p1, p2) && (onseg(p1, AB) || onseg(p2, AB))) {
16
17
                            s += area(c, A, p1) + area(c, p1, p2) + area(c, p2, B);
18
                    } else {
19
                            s += area(c, A, B);
20
21
22
           return fabs(s);
23
```

4.9 Union Area of Circles

```
bool incir(circle a, circle b)
   { return dcmp(abs(a.c - b.c) + a.r - b.r) <= 0; }
3
   void unionarea(circle c[], int n, double tot[])
4
5
6
           static pair <double, int > a[MAXN * 2];
7
           memset(tot, 0, sizeof(tot));
8
           for (int i = 0; i < n; ++i) {
9
                    int m = 0, k = 0;
10
                    for (int j = 0; j < n; ++j) if (i != j) {
                             double a1, a2;
11
12
                            if (incir(c[i], c[j])) { ++k; continue; }
13
                            if (!inter(c[i], c[j], a1, a2)) continue;
                            a[m++] = make_pair(a1, 1);
14
15
                            a[m++] = make_pair(a2, -1);
16
                            if (a1 > a2) ++k;
17
18
                    sort(a, a + m);
                    double a1 = a[m - 1].first - 2 * pi, a2, rad;
19
                    for (int j = 0; j < m; ++j) {
20
21
                            a2 = a[j].first, rad = a2 - a1;
22
                            tot[k] += .5 * sqr(c[i].r) * (rad - sin(rad));
23
                            tot[k] += .5 * cross(c[i].p(a1), c[i].p(a2));
24
                            k += a[j].second;
25
                            a1 = a2;
26
27
                    if (!m) tot[k] += pi * sqr(c[i].r);
28
           }
29
30
31
   tot[0]
                      = the aera of union
```

```
33 | tot[n-1] = the aera of intersection

34 | tot[k-1] - tot[k] = the aera covered k times

35 | */
```

4.10 Union Area of Polygons

```
double pos(point p, line ln)
1
   { return dot(p - ln.s, dir(ln)) / norm(dir(ln)); }
 3
   void unionarea(vector<point> p[], int n, double tot[])
4
5
            memset(tot, 0, sizeof(tot));
6
7
            for (int i = 0; i < n; ++i)
8
            for (int ii = 0; ii < p[i].size(); ++ii) {
                    point A = p[i][ii], B = p[i][(ii + 1) \% p[i].size()];
9
10
                    line AB = line(A, B);
11
                    vector<pair<double, int> > c;
                    for (int j = 0; j < n; ++ j) if (i != j)
12
                    for (int jj = 0; jj < p[j].size(); ++jj) {
13
14
                             point C = p[j][jj], D = p[j][(jj + 1) \% p[j].size()];
                             line CD = line(C, D);
15
16
                             int f1 = dcmp(cross(A, B, C));
17
                             int f2 = dcmp(cross(A, B, D));
                             if (!f1 && !f2) {
18
19
                                     if (i < j && dcmp(dot(dir(AB), dir(CD))) > 0) {
20
                                              c.push_back(make_pair(pos(C, AB), 1));
21
                                              c.push_back(make_pair(pos(D, AB), -1));
22
23
                                     continue;
24
25
                             double s1 = cross(C, D, A);
                             double s2 = cross(C, D, B);
26
27
                             double t = s1 / (s1 - s2);
28
                             if (f1 >= 0 && f2 < 0) c.push_back(make_pair(t, 1));
29
                             if (f1 < 0 \&\& f2 >= 0) c.push_back(make_pair(t, -1));
30
31
                    c.push_back(make_pair(0., 0));
32
                    c.push_back(make_pair(1., 0));
33
                    sort(c.begin(), c.end());
34
                    double s = .5 * cross(A, B), z = min(max(c[0].s, 0.), 1.);
35
                    for (int j = 1, k = c[0].second; <math>j < c.size(); ++j) {
36
                             double w = min(max(c[j].first, 0.), 1.);
37
                             tot[k] += s * (w - z);
38
                            k += c[j].second;
39
                             z = w;
40
                    }
           }
41
42
   }
43
44
   /*
45
   tot[0]
                      = the aera of union
   tot[n-1]
46
                      = the aera of intersection
47
   tot[k-1] - tot[k] = the aera covered by k times
48
```

4.11 Minimum Enclosing Circle(Randomized Incremental Method)

```
1 | circle mincir(point *p, int n)
2 | {
3 | point c;
```

```
4
            double r;
5
            random_shuffle(p, p + n);
6
            c = p[0]; r = 0;
            for (int i = 1; i < n; ++i) {
7
8
                    if (dcmp(abs(p[i] - c) - r) \le 0) continue;
9
                    c = p[i]; r = 0;
10
                    for (int j = 0; j < i; ++j) {
                             if (dcmp(abs(p[j] - c) - r) \le 0) continue;
11
12
                             c = (p[i] + p[j]) * 0.5; r = dis(p[j], c);
13
                             for (int k = 0; k < j; ++k) {
14
                                     if (dcmp(abs(p[k] - c) - r) \le 0) continue;
                                     c = center(p[i], p[j], p[k]); r = dis(p[k], c);
15
                             }
16
17
18
19
           return circle(c, r);
20
```

4.12 3D Computational Geometry

```
bool zero(vec3 v)
1
   { return !dcmp(v.x) && !dcmp(v.y) && !dcmp(v.z); }
2
3
   double dot(vec3 a, vec3 b)
4
   { return a.x * b.x + a.y * b.y + a.z * b.z; }
5
6
7
   double abs(vec3 v)
8
   { return sqrt(dot(v, v)); }
9
   vec3 unit(vec3 v)
10
11
   { return v / abs(v); }
12
   vec3 cross(vec3 a, vec3 b)
13
14
15
           return vec3(a.y * b.z - a.z * b.y,
16
                        a.z * b.x - a.x * b.z,
17
                        a.x * b.y - a.y * b.x);
18
19
20
   double area2(point3 a, point3 b, point3 c)
21
   { return abs(cross(b - a, c - a)); }
22
   double vol6(point3 a, point3 b, point3 c, point3 d)
23
24
   { return dot(cross(b - a, c - a), d - a); }
25
26
   double len(line3 ln)
27
   { return abs(ln.s - ln.t); }
28
29
   vec3 dir(line3 ln)
30
   { return ln.t - ln.s; }
31
32
   vec3 proj(vec3 v, vec3 d)
   { return d * dot(v, d) / dot(d, d); }
33
34
35
   point3 proj(point3 p, line3 ln)
36
   { return ln.s + proj(p - ln.s, dir(ln)); }
37
38
   point3 proj(point3 p, point3 p0, vec3 n) // projection on plane
39
   { return p - proj(p - p0, n); }
40
```

```
41
   |vec3 reflect(vec3 v, vec3 n)
42
   { return proj(v, n) * 2 - v; }
43
   point3 reflect(point3 p, line3 ln)
44
45
   { return ln.s + reflect(p - ln.s, dir(ln)); }
46
47
   point3 reflect(point3 p, point3 p0, vec3 n) // reflection to plane
48
   { return p - proj(p - p0, n) * 2; }
49
   double angle(vec3 a, vec3 b)
50
   { return acos(dot(a, b) / abs(a) / abs(b)); }
51
52
53
   vec3 rotate(vec3 v, vec3 n, double a)
54
55
           n = unit(n);
56
           double cosa = cos(a), sina = sin(a);
57
           return v * cosa + cross(n, v) * sina + n * dot(n, v) * (1 - cosa);
58
   }
          Line
   4.12.1
  double dis(point3 p, line3 ln)
1
   { return area2(p, ln.s, ln.t) / len(ln); }
2
 3
   double dtoseg(point3 p, line3 ln)
4
5
6
           if (dcmp(dot(p - ln.s, dir(ln))) <= 0) return dis(p, ln.s);</pre>
7
           if (dcmp(dot(p - ln.t, dir(ln))) >= 0) return dis(p, ln.t);
8
           return dis(p, ln);
9
   }
10
   bool onseg(point3 p, line3 ln)
11
12
   {
           return zero(cross(p - ln.s, p - ln.t))
13
14
                && dcmp(dot(p - ln.s, p - ln.t)) \le 0;
15
   }
16
   bool inter(line3 ln, point3 p0, vec3 n, point3 &p) // line & plane intersection
17
18
19
           double d1 = dot(ln.s - p0, n);
20
           double d2 = dot(ln.t - p0, n);
21
           if (!dcmp(d1 - d2)) return false;
22
           p = (ln.t * d1 - ln.s * d2) / (d1 - d2);
23
           return true;
24
   }
25
26
   double dis(line3 a, line3 b)
27
   {
28
           vec3 n = cross(dir(a), dir(b));
29
           if (zero(n)) return dis(a.s, b);
30
           return fabs(dot(a.s - b.s, n)) / abs(n);
31
   }
32
33
   bool approach (line3 a, line3 b, point3 &p) // clost approach point of 2 lines
34
35
            vec3 u = dir(a), v = dir(b), w = a.s - b.s;
36
           double d = dot(u, u) * dot(v, v) - dot(u, v) * dot(u, v);
37
           if (!dcmp(d)) return false; // parallel
38
           double c = dot(u, v) * dot(v, w) - dot(v, v) * dot(u, w);
39
           p = a.s + u * (c / d);
40
           return true;
```

```
41 | }
```

4.12.2 Sphere

```
1
   struct sphere {
2
           point3 c;
3
            double r;
4
            sphere() {}
            sphere(point3 c, double r): c(c), r(r) {}
5
6
   };
7
   bool inter(sphere s, line3 ln, point3 &p1, point3 &p2)
8
9
10
            point3 p = proj(s.c, ln);
11
            double d = abs(p - s.c);
12
            if (dcmp(d - s.r) > 0) return false;
            vec3 v = unit(dir(ln)) * sqrt(s.r * s.r - d * d);
13
14
            p1 = p - v; p2 = p + v;
15
            return true;
16
   }
```

4.13 Convex Hull in 3D

```
struct face {
1
2
            int v[3];
3
            face(int a, int b, int c) { v[0] = a; v[1] = b; v[2] = c; }
4
            int operator[](int i) const { return v[i % 3]; }
5
   };
6
7
   bool visible(point3 p[], face f, int i)
8
   { return dcmp(vol6(p[f[0]], p[f[1]], p[f[2]], p[i])) > 0; }
9
   vector < face > ch3d(point3 p[], int n)
10
11
12
            static bool v[MAXN][MAXN];
13
            int i, j, k;
            for (i = 2; i < n \&\& !dcmp(area2(p[0], p[1], p[i])); ++i) {}
14
15
            swap(p[2], p[i]);
            for (i = 3; i < n && !dcmp(vol6(p[0], p[1], p[2], p[i])); ++i) {}
16
17
            swap(p[3], p[i]);
18
            vector < face > cur;
19
            cur.push_back(face(0, 1, 2));
20
            cur.push_back(face(2, 1, 0));
21
            for (i = 3; i < n; ++i) {
22
                    vector < face > next;
23
                    for (j = 0; j < cur.size(); ++j) {
                             face f = cur[j];
24
25
                             bool vis = visible(p, f, i);
26
                             if (!vis) next.push_back(f);
27
                             for (int k = 0; k < 3; ++k) v[f[k]][f[k + 1]] = vis;
28
29
                    for (j = 0; j < cur.size(); ++j) {
30
                             for (k = 0; k < 3; ++k) {
31
                                     int a = cur[j][k], b = cur[j][k + 1];
32
                                     if (v[a][b] && !v[b][a]) {
33
                                              next.push_back(face(a, b, i));
34
                                     }
                             }
35
36
37
                    cur.swap(next);
            }
38
```

 $\left. \begin{array}{c|c} 39 & \text{return cur;} \\ 40 & \end{array} \right\}$

Chapter 5

Number Theory

5.1 Fast Fourier Transform

```
typedef complex < double > cp;
   void fft(cp *a, int n, int f)
 2
3
4
            static cp b[MAXN];
            double arg = pi;
5
            for (int k = n >> 1; k; k >>= 1, arg *= 0.5) {
 6
                    cp wm = polar(1.0, f * arg), w(1, 0);
7
                    for (int i = 0; i < n; i += k, w *= wm) {
8
9
                             int p = i << 1;
10
                             if (p \ge n) p -= n;
11
                             for (int j = 0; j < k; ++j) {
12
                                     b[i + j] = a[p + j] + w * a[p + k + j];
13
14
15
                    for (int i = 0; i < n; ++i) a[i] = b[i];
            }
16
17
18
19
   /*
20
   Usage:
   fft(a, n, 1); -- dft
21
   fft(a, n, -1); for(i) a[i]/=n; -- idft
22
23
   n should be 2^k
24
   */
```

5.2 Primality Test(Miller-Rabin)

```
1
   bool Witness(ll n, ll a)
 2
3
         11 m=(n-1), j=0;
         while(!(m&1)) m>>=1,j++;
 4
 5
         11 ans=Make_Power(a,m,n);
 6
         while(j--)
7
 8
             11 tmp=Make_Multi(ans,ans,n);
9
             if(tmp==1 && ans!=1 && ans!=n-1) return 1;
10
             ans=tmp;
11
12
         if(ans!=1) return 1;
13
         return 0;
14
15
   bool Miller_Rabin(ll n)
16 | {
```

5.3 Integer Factorization(Pollard's ρ Algorithm)

```
11 Pollard_Rho(ll n,ll c)
2
         ll i=1, k=2, x=rand()\%(n-1)+1, y=x, d;
3
4
         while (1)
5
         {
6
             i++;
7
             x=(Make_Multi(x,x,n)+c)%n;
8
             d=Gcd(n,y-x);
9
              if(d>1&&d<n) return d;
10
              if(y==x) return n;
              if(i==k) k <<=1, y=x;
11
12
         }
13
```

5.4 Extended Euclid's Algorithm

```
int exgcd(int a, int b, int &x, int &y)
1
2
3
            if (b == 0) {
4
                     x = 1; y = 0;
5
                     return a;
6
            } else {
7
                     int g = exgcd(b, a \% b, y, x);
8
                     y -= (a / b) * x;
9
                     return g;
10
            }
11
   }
```

5.5 Euler's φ Function

```
void phi_table()
1
 2
3
            for (int i = 2; i * i < MAX; ++i) {
                     if (!phi[i]) {
4
                             for (int k = (MAX - 1) / i, j = i * k;
5
                                   k \ge i; --k, j -=i) {
6
7
                                      if (!phi[k]) phi[j] = i;
8
                                      // i is a prime factor of j
9
                             }
10
                     }
11
12
            phi[1] = 1;
            for (int i = 2; i < MAX; ++i) {</pre>
13
14
                     if (!phi[i]) {
15
                             phi[i] = i - 1;
16
                     } else {
17
                              int j = i / phi[i];
18
                             if (j % phi[i] == 0) phi[i] = phi[j] * phi[i];
```

Chapter 6

Others

6.1 Exact Cover(DLX)

```
int N, S[COL + 1], L[NODE], R[NODE], U[NODE], D[NODE], row[NODE], C[NODE];
1
2
3
   void dlxinit(int c) // c Cumns, numbered from 1
4
            for (int i = 0; i <= c; ++i) {
5
                    U[i] = D[i] = i;
6
                    L[i] = i - 1; R[i] = i + 1;
7
8
                    S[i] = 0;
9
10
            L[0] = c; R[c] = 0; N = c + 1;
11
12
   void addrow(const vector<int> &c)
13
14
15
            int h = N;
16
            for (int i = 0; i < c.size(); ++i) {
17
                    U[N] = U[c[i]]; D[N] = c[i];
18
                    D[U[N]] = U[D[N]] = N;
                    L[N] = N - 1; R[N] = N + 1;
19
                    ++S[C[N++] = c[i]];
20
21
            L[h] = N - 1; R[N - 1] = h;
22
23
   }
24
25
   void remove(int c)
26
   {
27
            L[R[c]] = L[c];
28
            R[L[c]] = R[c];
29
            for (int i = D[c]; i != c; i = D[i]) {
30
                    for (int j = R[i]; j != i; j = R[j]) {
31
                             U[D[j]] = U[j];
32
                             D[U[j]] = D[j];
33
                             --S[C[j]];
34
                    }
35
            }
36
37
   void resume(int c)
38
39
40
            for (int i = U[c]; i != c; i = U[i]) {
41
                    for (int j = L[i]; j != i; j = L[j]) {
                             U[D[j]] = j;
42
43
                             D[U[j]] = j;
```

```
44
                             ++S[C[j]];
45
                    }
46
            }
47
            L[R[c]] = c;
48
            R[L[c]] = c;
49
50
   bool dance(int d)
51
52
   {
53
            if (R[0] == 0) return true;
54
            int c = R[0];
            for (int i = R[0]; i; i = R[i]) {
55
                     if (S[i] < S[c]) c = i;
56
57
58
            remove(c);
59
            for (int i = D[c]; i != c; i = D[i]) {
60
                     // select row[i]
61
                     for (int j = R[i]; j != i; j = R[j]) remove(C[j]);
62
                     if (dance(d + 1)) return true;
63
                     for (int j = L[i]; j != i; j = L[j]) resume(C[j]);
64
65
            resume(c);
66
            return false;
67
  |}
```

6.2 Fuzzy Cover(DLX)

```
1
   void remove(int i)
2
3
            for (int j = D[i]; j != i; j = D[j]) {
4
                     R[L[j]] = R[j];
5
                     L[R[j]] = L[j];
6
            }
7
   }
8
9
   void resume(int i)
10
   {
11
            for (int j = U[i]; j != i; j = U[j]) {
12
                     R[L[j]] = j;
13
                     L[R[j]] = j;
            }
14
15
16
17
   int h()
18
   {
            static int v[COL + 1], m;
19
20
            int s = 0; ++m;
21
            for (int i = R[0]; i; i = R[i]) {
22
                     if (v[i] == m) continue;
23
                     ++s; v[i] = m;
24
                     for (int j = D[i]; j != i; j = D[j]) {
25
                              for (int k = R[j]; k != j; k = R[k]) {
26
                                      v[C[k]] = m;
27
                              }
28
                     }
29
            }
30
            return s;
31
32
33 | bool dance(int d)
```

```
34 \mid \{
35
            if (!R[0]) return true;
36
            if (d + h() > limit) return false;
            int c = R[0];
37
38
            for (int i = R[c]; i; i = R[i]) {
39
                    if (S[i] < S[c]) c = i;
40
            for (int i = D[c]; i != c; i = D[i]) {
41
42
                    remove(i);
                    for (int j = R[i]; j != i; j = R[j]) remove(j);
43
44
                    if (dance(d + 1)) return true;
                    for (int j = L[i]; j != i; j = L[j]) resume(j);
45
46
                    resume(i);
47
48
            return false;
49
   }
```

6.3 Power of Matrix

```
class matrix {
   private:
 2
3
            int row, col;
4
            vector < int > val;
   public:
5
            matrix(int r, int c): row(r), col(c), val(r * c) {}
6
            matrix(int r, int c, int *v): row(r), col(c), val(v, v + r * c) {}
7
8
            int rows() const { return row; }
9
            int cols() const { return col; }
10
            int get(int r, int c) const { return val[r * col + c]; }
            void set(int r, int c, int v) { val[r * col + c] = v; }
11
12
   };
13
14
   matrix operator*(const matrix &lhs, const matrix &rhs)
15
16
            matrix ret(lhs.rows(), rhs.cols());
            for (int i = 0; i < lhs.rows(); ++i) {</pre>
17
18
                    for (int j = 0; j < rhs.cols(); ++j) {
19
                             int s = 0;
20
                             for (int k = 0; k < lhs.cols(); ++k) {
21
                                     s += lhs.get(i, k) * rhs.get(k, j);
22
23
                             ret.set(i, j, s);
24
25
26
            return ret;
27
28
29
   matrix pow(const matrix &mat, int k)
30
            if (k == 1) return mat;
31
32
            matrix ret = pow(mat, k >> 1);
33
            return k & 1 ? ret * ret * mat : ret * ret;
34 | }
```

6.4 Cantor Pairing Function

```
5
            for (int i = 0; i < n; ++i) {
6
                    int t = 0;
                    for (int j = i + 1; j < n; ++j) if (a[j] < a[i]) ++t;
7
                    s = (s + t) * (n - i - 1);
8
9
10
           return s;
11
   }
12
   int uncantor(int s)
13
14
15
            memset(u, 0, sizeof(u));
            for (int i = 0; i < n; ++i) {
16
                    int t = s / fac[n - i - 1];
17
18
                    s = t * fac[n - i - 1];
19
                    int 1 = 0;
                    for (int j = 0; 1 \le t; ++j) if (!u[j]) ++1;
20
21
                    u[a[i] = --j] = true;
22
           }
23
   }
```

6.5 Adaptive Simpson's Method

```
double simpson(double a, double b)
3
           return (b - a) / 6 * (f(a) + 4 * f((a + b) * 0.5) + f(b));
   }
4
5
6
   double rsimpson(double a, double b)
7
8
           double m = (a + b) * 0.5;
9
           double s = simpson(a, b);
10
           double s1 = simpson(a, m);
           double s2 = simpson(m, b);
11
12
           if (fabs(s1 + s2 - s) < ESP) return s;
           return rsimpson(a, m) + rsimpson(m, b);
13
14 | }
```

Appendix A

Snippets

Appendix B

Java Example

```
|import java.util.Scanner;
   import java.util.Arrays;
   import java.math.BigInteger; // or BigDecimal
   public class Main {
5
       public static void main(String[] args) {
6
            Scanner cin = new Scanner(System.in);
7
8
            int n = cin.nextInt();
9
            System.out.print(n);
10
            System.out.println(n);
11
12
            int[] arr = new int[5];
            int[] arrr = {1, 2, 3, 4, 5};
13
            int[][] f = new int[n][n];
14
15
            Arrays.sort(arrr);
16
            BigInteger a = cin.nextBigInteger();
17
18
            BigInteger b = BigInteger.valueOf(2);
19
            a = a.add(b);
                                 a = a.subtract(b);
                                                        a = a.negate();
20
            a = a.multiply(b); a = a.divide(b);
                                                        a = a.mod(b);
            a = a.shiftLeft(1); a = a.shiftRight(1);
21
22
            if (a.compareTo(b) < 0) System.out.println("a_{\sqcup} <_{\sqcup} b");
23
       }
24 | }
```

Appendix C

Vim Configuration