

CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

- 1 1. A structure, comprising:
 - 2 a nanospecies having a first characteristic and a second detectable
 - 3 characteristic, wherein a second detectable energy is produced corresponding to
 - 4 the second detectable characteristic upon exposure to a first energy; and
 - 5 a porous material having the first characteristic and a plurality of pores,
 - 6 where the first characteristic causes the nanospecies to interact with the porous
 - 7 material and become disposed in the pores of the porous material.
- 1 2. The structure of claim 1, wherein the nanospecies is selected from a
2 semiconductor quantum dot, a metal nanoparticle, a biomolecule, and a magnetic
3 nanoparticle.
- 1 3. The structure of claim 2, wherein the metal nanoparticle is selected from gold
2 nanoparticles, platinum nanoparticles, silver nanoparticles, and copper
3 nanoparticles.
- 1 4. The structure of claim 2, wherein the biomolecule is selected from polypeptides,
2 polynucleotides, proteins, ligands, receptors, antigens, antibodies, and discrete
3 portions thereof.
- 1 5. The structure of claim 1, wherein the porous material is selected from a
2 mesoporous material, a macroporous material, and a hybrid
3 mesoporous/macroporous material.

- 1 6. The structure of claim 1, wherein the porous material is made of a material
2 selected from a polymer, a metal, a silica material, cellulose, ceramic, zeolite, and
3 combinations thereof.

- 1 7. The structure of claim 1, wherein the porous material is silica having a
2 hydrocarbon-derivatized surface.

- 1 8. The structure of claim 1, wherein the first characteristic is selected from a
2 hydrophobic characteristic, a hydrophilic characteristic, an electrostatic
3 characteristic, a biological characteristic, a bioaffinity characteristic, a ligand-
4 receptor characteristic, an antibody-antigen characteristic, and combinations
5 thereof.

- 1 9. The structure of claim 1, wherein the second detectable characteristic is selected
2 from a fluorescent characteristic, a magnetic characteristic, a luminescent
3 characteristic, a light scattering characteristic, and a surface plasmonic
4 characteristic.

- 1 10. The structure of claim 1, wherein the nanospecies is coated with a chemical
2 compound, wherein the nanospecies has the first characteristic after being coated
3 with the chemical compound.

- 1 11. The structure of claim 1, wherein the nanospecies is a hydrophobic coated
2 semiconductor quantum dot, wherein the coating includes a hydrophobic
3 compound substantially disposed on the semiconductor quantum dot.

- 1 12. The structure of claim 11, wherein the hydrophobic compound is selected from a
- 2 O=PR₃ compound, an O=PHR₂ compound, an O=PHR₁ compound, a H₂NR
- 3 compound, a HNR₂ compound, a NR₃ compound, a HSR compound, a SR₂
- 4 compound, and combinations thereof, wherein R is selected from C₁ to C₁₈
- 5 hydrocarbons, and combinations thereof.

- 1 13. The structure of claim 12, wherein R is a saturated linear C₄ to C₁₈ hydrocarbon.

- 1 14. The structure of claim 11, wherein the hydrophobic compound is selected from an
- 2 O=PR₃ compound, a HNR₂ compound, a HSR compound, a SR₂ compound, and
- 3 combinations thereof.

- 1 15. The structure of claim 11, wherein the hydrophobic compound is selected from
- 2 tri-n-octylphosphine, stearic acid, and octyldecyl amine.

- 1 16. The structure of claim 11, wherein the hydrophobic compound includes tri-n-
- 2 octylphosphine.

- 1 17. The structure of claim 11, wherein the hydrophobic compound includes stearic
- 2 acid.

- 1 18. The structure of claim 11, wherein the hydrophobic compound includes octyldecyl
- 2 amine.

- 1 19. The structure of claim 11, wherein the quantum dot comprises a core and a cap.

- 1 20. The structure of claim 11, wherein the core of the quantum dot is selected from
- 2 the group consisting of IIB-VIB semiconductors, IIIB-VB semiconductors, and
- 3 IVB-IVB semiconductors.

- 1 21. The structure of claim 20, wherein the core of the quantum dot is selected from
2 the group consisting of IIB-VIB semiconductors.

- 1 22. The structure of claim 20, wherein the core of the quantum dot is CdS or CdSe.

- 1 23. The structure of claim 20, wherein the cap is selected from the group consisting of
2 IIB-VIB semiconductors of high band gap.

- 1 24. The structure of claim 20, wherein the cap is selected from ZnS and CdS.

- 1 25. The structure of claim 1, further comprising a probe attached directly to the
2 porous material.

- 1 26. The structure of claim 1, further comprising a probe attached indirectly to the
2 porous material via a linking compound.

- 1 27. The structure of claim 26, where the probe is selected from a biomolecule and a
2 biomolecule attached to a fluorophore.

- 1 28. The structure of claim 27, where the probe is selected from a biomolecule and a
2 biomolecule attached to a fluorophore.

- 1 29. The structure of claim 1, further comprising a probe, attached to the porous
2 material, and a fluorophore and a quenching moiety attached to the probe.

- 1 30. A method of preparing a structure, comprising:
 - 2 providing a nanospecies having a first characteristic and a second
 - 3 detectable characteristic, wherein a second detectable energy is produced
 - 4 corresponding to the second detectable characteristic upon exposure to a first
 - 5 energy;
 - 6 providing a porous material having the first characteristic;
 - 7 introducing the nanospecies and the porous material in the presence of a
 - 8 solution; and
 - 9 forming the structure, wherein the structure includes a porous material
 - 10 having a plurality of nanospecies disposed at least within the pores of the porous
 - 11 material, wherein the first characteristic causes the nanospecies to interact with
 - 12 the porous material and become disposed within the pores of the porous material.
- 1 31. The method of claim 30, wherein the nanospecies is selected from a
2 semiconductor quantum dot, a metal nanoparticle, a biomolecule, and a magnetic
3 nanoparticle.
- 1 32. The method of claim 31, wherein the metal nanoparticle is selected from gold
2 nanoparticles, platinum nanoparticles, silver nanoparticles, and copper
3 nanoparticles.
- 1 33. The method of claim 31, wherein the biomolecule is selected from polypeptides,
2 polynucleotides, proteins, ligands, receptors, antigens, antibodies, and discrete
3 portions thereof.
- 1 34. The method of claim 30, wherein the porous material is selected from a
2 mesoporous material, a macroporous material, and a hybrid
3 mesoporous/macroporous material.

- 1 35. The method of claim 30, wherein the porous material is made of a material
2 selected from a polymer, a metal, a silica material, cellulose, ceramic, zeolite, and
3 combinations thereof.

- 1 36. The method of claim 30, wherein the porous material is silica having a
2 hydrocarbon-derivatized surface.

- 1 37. The method of claim 30, wherein the first characteristic is selected from a
2 hydrophobic characteristic, a hydrophilic characteristic, an electrostatic
3 characteristic, a biological characteristic, a bioaffinity characteristic, a ligand-
4 receptor characteristic, an antibody-antigen characteristic, and combinations
5 thereof.

- 1 38. The method of claim 30, wherein the second detectable characteristic is selected
2 from a fluorescent characteristic, a magnetic characteristic, a luminescent
3 characteristic, a light scattering characteristic, and a surface plasmonic
4 characteristic.

- 1 39. The method of claim 30, wherein the nanospecies is coated with a chemical
2 compound, wherein the nanospecies has the first characteristic after being coated
3 with the chemical compound.

- 1 40. The method of claim 30, wherein the nanospecies is a hydrophobic coated
2 semiconductor quantum dot, wherein the coating includes a hydrophobic
3 compound substantially disposed on the semiconductor quantum dot.

1 41. The method of claim 30, wherein the hydrophobic compound is selected from a
2 O=PR₃ compound, an O=PHR₂ compound, an O=PHR₁ compound, a H₂NR
3 compound, a HNR₂ compound, a NR₃ compound, a HSR compound, a SR₂
4 compound, and combinations thereof, wherein R is selected from C₁ to C₁₈
5 hydrocarbons, and combinations thereof.

1 42. The method of claim 41, wherein R is a saturated linear C₄ to C₁₈ hydrocarbon.

1 43. The method of claim 40, wherein the hydrophobic compound is selected from a
2 O=PR₃ compound, a HNR₂ compound, a HSR compound, a SR₂ compound, and
3 combinations thereof.

1 44. The method of claim 40, wherein the hydrophobic compound is selected from tri-
2 n-octylphosphine, stearic acid, and octyldecyl amine.

1 45. The method of claim 30, wherein the porous material includes silica beads and the
2 nanospecieis includes coated hydrophobic semiconductor quantum dots and
3 introducing includes mixing the silica beads and the coated hydrophobic
4 semiconductor quantum dots in a solution of alcohol and chloroform.

1 46. A method of detecting at least one target, comprising:
2 contacting at least one structure of claim 1 with a sample, wherein the
3 sample contains at least one target molecule, wherein each structure corresponds
4 to only one type of target molecule, wherein when the type of target molecule is
5 present in the sample, the structure interacts with the target molecule, and wherein
6 each of the at least one structures has a second detectable characteristic; and
7 detecting at least one of the second detectable characteristics, wherein
8 detection of each second detectable characteristic indicates that the presence of the
9 target in the sample.

1 47. The method of claim 46, further comprising:
2 exposing the at least one structure to a first energy; and
3 detecting at least one second energy corresponding to the second
4 detectable characteristic, wherein the at least one second energy is produced in
5 response to the first energy.

1 48. The method of claim 46, wherein each target molecule includes a third detectable
2 characteristic, and wherein detecting includes:
3 detecting at least one of the second detectable characteristics and the third
4 detectable characteristics, wherein detection of the second detectable
5 characteristic and the third detectable characteristic indicates the presence of the
6 target molecule in the sample.

1 49. The method of claim 48, further comprising:
2 exposing the at least one structure to a first energy; and
3 detecting at least one second energy corresponding to the second
4 detectable characteristic and a third energy corresponding to the third detectable
5 characteristic, wherein the at least one second energy is produced in response to
6 the first energy.

1 50. The method of claim 46, wherein the target molecule is a biomolecule.

1 51. The method of claim 50, wherein the target molecule includes a fluorophore.

1 52. The method of claim 46, wherein the second detectable characteristic is selected
2 from a fluorescent characteristic, a magnetic characteristic, a luminescent
3 characteristic, a light scattering characteristic, and a surface plasmonic
4 characteristic.

1 53. A array system comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.

1 54. A diagnostic library, comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.

1 55. A combinatorial library, comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.

1 56. A fluorescent ink, comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.

1 57. A fluorescent cosmetic, comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.

1 58. A flow cytometry system, comprising:
2 a plurality of structures, including:
3 a nanospecies having a first characteristic and a second detectable
4 characteristic, wherein a second detectable energy is produced
5 corresponding to the second detectable characteristic upon exposure to a
6 first energy; and
7 a porous material having the first characteristic and a plurality of
8 pores, where the first characteristic causes the nanospecies to interact with
9 the porous material and become disposed in the pores of the porous
10 material.