(19) World Intellectual Property Organization International Bureau

1 (1841) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1 (1866) 1

(43) International Publication Date 4 July 2002 (04.07.2002)

PCT

(10) International Publication Number WO 02/052021 A1

(51) International Patent Classification7: 9/90, 15/63, 1/20, C12P 19/02

C12N 15/61,

(21) International Application Number: PCT/KR01/02243

(22) International Filing Date:

22 December 2001 (22.12.2001)

(25) Filing Language:

Korean

(26) Publication Language:

English

KR

KR

(30) Priority Data: 2000/80608 22 December 2000 (22.12.2000) 2000/80711 18 December 2001 (18.12.2001)

(71) Applicant and

(72) Inventor: PYUN, Yu, Ryang [KR/KR]; 117-14, Yeonheedong, Seodaemun-gu, Seoul 120-114 (KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KIM, Byoung, Chan [KR/KR]; 1007-1201 Hoogok-maul, Ilsan-3-dong, Ilsan-gu, Goyang, Kyonggi-do 411-735 (KR). LEE, Han, Seung [KR/KR]; 791-2137 Mia-1-dong, Gangbook-gu, Seoul 142-821 (KR). LEE, Dong, Woo [KR/KR]; 294-1 Hongeun-3-dong, Seodaemun-gu, Seoul 120-847 (KR). LEE, Yoon, Hee [KR/KR]; 882-24 Bangbae-4-dong, Seocho-gu, Seoul 137-840 (KR).

(74) Agent: LEE, Han-Young; 8th Fl., Seowon Bldg., 1675-1Seocho-dong, Seocho-gu, Seoul 137-070 (KR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- entirely in electronic form (except for this front page) and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERMOSTABLE L-ARABINOSE ISOMERASE AND PROCESS FOR PREPARING D-TAGATOSE THEREBY

(57) Abstract: The present invention relates to a novel gene coding for L-arabinose isomerase derived from Thermotoga neapolitana 5068, a thermostable arabinose isomerase expressed from the said gene, a recombinant expression vector containing the said gene, a microorganism transformed with the said expression vector, a process for preparing thermostable arabinose isomerase from the said transformant and a process for preparing D-tagatose employing the said enzyme. Since the recombinant arabinose isomerase_of the invention is highly thermostable and can produce tagatose with high yield at high temperature, it can be efficiently applied in pharmaceutical and food industries.

THERMOSTABLE L-ARABINOSE ISOMERASE AND PROCESS FOR PREPARING D-TAGATOSE THEREBY

5 BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a thermostable 10 arabinose isomerase and a process for preparing tagatose using the same, more specifically, to a noble gene coding for L-arabinose isomease derived from Thermotoga neapolitana 5068, a thermostable arabinose isomerase expressed from the said gene, a recombinant expression said vector containing the gene, a microorganism transformed with the said expression vector, a process for preparing thermostable arabinose isomerase from the said transformant and a process for preparing D-tagatose employing the said enzyme.

20

35

Background of the Invention

In recent years, growing concerns about health have led much research effort to the development of healthful foods. As one of the above efforts, sugar alcohols have been proposed as sweeteners which can substitute sugar, known to cause adult diseases, and are practically being used. Since the said sweeteners are known to have adverse side effects such as causing diarrhea when ingested more than certain amount, there is an urgent need to develop substitutional sweeteners without harmful effects.

Among substitutional sweeteners which have little side effect, tagatose, a keto-sugar of galactose, has similar sweetness to D-fructose, and has known not to be absorbed or metabolized in the body, making tagatose a safe low-caloric substitutional sweetener for sugar. Also, it has been reported that tagatose can be employed as an

intermediate for the preparation of useful optically active isomers, detergents and cosmetics, also, as an additive or raw material for the synthesis of drugs, especially, its ability to lower blood sugar level renders tagatose a therapeutic and preventive agent for diabetes, and a low caloric diet agent.

Currently, tagatose is mostly prepared via chemical synthesis from galactose(see: USP 5,002,612), which comprises the steps of isomerization of galactose catalyzed by metal hydroxide in the presence of inorganic salts to form an intermediate of metal hydroxide-tagatose complex, and neutralization of the complex by adding acid to yield final product, tagatose.

Alternative method for manufacturing tagatose is an enzymatic method in which galactose is converted into tagatose via conversion of aldose or aldose derivatives into ketose or ketose derivatives. Especially, it has been reported that arabinose isomerase which catalyzes the conversion reaction of L-arabinose into L-ribulose can be employed for production of tagatose in vitro using galactose as a substrate. However, the yield of tagatose produced by arabinose isomerase from galactose is as low as 20%, hindering industrial application of conversion process of galactose into tagarose. Although the method for manufacturing tagatose from milk or cheese has been developed (see: USP 6,057,135), again, low yield is the limitation for its industrial use.

Under the circumstances, there are strong reasons for exploring and developing a novel enzyme which can produce tagatose with high yield.

Summary of the Invention

15

20

25

30

The present inventors have made an effort to develop 35 an enzyme which can produce tagatose with high yield, thus, have found that tagatose can be produced with high yield from galactose by employing a recombinant arabinose

isomerase produced from E. coli transformed with recombinant vector containing arabinose isomerase gene derived from Thermotoga neapolitana 5068.

5 The first object of the present invention is, therefore, to provide arabinose isomerase gene derived from Thermotoga neapolitana 5068.

The second object of the invention is to provide arabinose isomerase expressed from the gene.

The third object of the invention is to provide a recombinant expression vector containing the arabinose isomerase gene.

The fourth object of the invention is to provide a recombinant *E. coli* transformed with the recombinant 15 expression vector.

The fifth object of the invention is to provide a process for preparing recombinant arabinose isomerase using the transformed *E. coli*.

The sixth object of the invention is to provide a 20 process for preparing tagatose from galactose using the enzyme.

BRIEF DESCRIPTION OF THE DRAWINGS

35

25 The above and the other objects and features of the present invention will become apparent from the following descriptions given in conjunction with the accompanying drawings, in which:

30 Figure 1 is a schematic diagram showing the construction strategy of an expression vector containing arabinose isomerase gene of the invention.

Figure 2 is a graph showing activity profile of arabinose isomerase of the invention depending on temperature.

Figure 3 is a graph showing thermostability of arabinose isomerase of the invention.

4

Figure 4 is a graph showing the time course of conversion rate of galactose into tagatose by arabinose isomerase of the invention at various reaction temperatures.

Figure 5 is a graph showing the time course of changes in thermostability of immobilized arabinose isomerase of the invention.

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

5

To prepare thermophilic or thermostable arabinose isomerase for industrial use, the present inventors have cloned a gene coding for arabinose isomerase from genomic DNA of Thermotoga neapolitana 5068 (DSM 5608) and analyzed nucleotide sequence and deduced amino acid sequence from the said gene. The nucleotide sequence and deduced amino acid sequence of the gene encoding arabinose isomerase of the invention (SEQ ID NO: 3) has shown to have 83.2% and 94.8% homology, respectively, to those of the putative arabinose isomerase gene of Thermotoga maritima of which entire nucleotide sequence has been verified via genome project.

expression of the said cloned high level For arabinose isomerase in E. coli, the gene coding for the inserted into an expression enzyme was pET22b(+)(Novagen, U.S.A.). to construct a recombinant expression vector pTNAI, which was then introduced into E. The transformed recombinant E. coli was named coli BL21. BL21/DE3(pTNAI)" deposited coli and international depository authority, the Korean Culture Center of Microorganisms (KCCM, #361-221 Hongje-1-dong, Seodaemun-gu, Seoul, Republic of Korea) on December 4, 2000 as accession no. KCCM-10231.

The said *E. coli* BL21/DE3(pTNAI) was grown to obtain recombinant arabinose isomerase, which was characterized to have optimum pH of 7.0, optimum reaction temperature of 85°C. Furthermore, over 80% of remaining activity was

5

measured after 2 hour heat treatment at 80°C, indicating that the enzyme is exceedingly heat stable.

Tagatose can be produced by employing arabinose isomerase of the invention prepared from *E. coli* transformed with a recombinant expression vector containing the gene for arabinose isomerase derived from *Thermotoga* sp., and galactose as a substrate, under a condition of pH 5 to 8, more preferably pH 6 to 8, most preferably pH 7, and 60 to 100°C, more preferably 70 to 95°C, most preferably 85°C.

Aqueous solution of galactose was subjected to isomerization reaction employing recombinant arabinose isomerase of the invention, and it has been found that conversion rate into tagatose was over 68% at 80°C.

When the said recombinant arabinose isomerase is employed for industrial production of tagatose, soluble form of the enzyme may be employed, nevertheless, it is more preferable to immobilize the enzyme on the beads used in industry. For example, in case of the recombinant arabinose isomerase of the invention immobilized on silica beads, the remaining activity was measured to be over 80% of original activity after 20 day-heat treatment at 90°C, thus, it can be applied for thermal process over 80°C in industry.

25

35

20

10

. 15

The present invention is further illustrated in the following examples, which should not be taken to limit the scope of the invention.

30 Example 1: Cloning of arabinose isomerase gene

Thermotoga neapolitana 5068 (DSM 5068) was grown under an anaerobic condition and cells were harvested by centrifugation at 8000xg for 10 minutes. Genomic DNA isolated from the cells harvested above was partial digested with Sau3AI (TaKaRa Biotechnology, Japan) to obtain 12kb or shorter fragments of DNA. The DNA fragments

10

15

20

were inserted into ZAP Expression Vector(Stratagene, U.S.A.) and packaged to prepare a genomic library of Thermotoga neapolitana 5068. Nucleotide sequences of the conventional thermophilic or thermostable arabinose isomerase were analyzed to prepare primer araAF: 5'-ATGATCGATCTCAAACAGTATGAG-3'(SEQ ID NO: 1) and primer 5'-TCATCTTTTTAAAAGTCCCC-3'(SEQ ID NO: 2), were used in PCR for the preparation of probes for DNA-DNA The genomic library prepared above was hybridization. screened for DNA fragments containing arabinose isomerase gene by DNA-DNA hybridization to obtain a recombinant vector containing a gene encoding arabinose isomerase of Thermotoga neapolitana 5068. The nucleotide sequence of arabinose isomerase gene(SEQ ID No: 3) cloned above and the deduced amino acid sequence (SEQ ID No: 4) from the said gene were compared with those of known arabinose isomerase genes, respectively(see: Table 1).

<u>Table 1</u>: Comparison of homology between arabinose isomerase of the invention and known arabinose isomerases

Strain	Gene Sequence (homology, %)	Amino Acid Sequence (homology, %)				
Thermotoga maritima	83.2	94.8				
Bacillus stearothermophilus	61.9	62.8				
Bacillus halodurans	59.1	59.0				
Bacillus subtilis	58.6	55.5				
Salmonella typhimurium	57.8	54.5				
Escherichia coli	59.0	54.3				
Mycobacterium smegmatis	56.3	50.7				

As shown in Table 1, it has been found that the arabinose isomerase of the invention is a novel enzyme which has 83.2% homology of nucleotide sequence and 94.8%

7

homology of amino acid sequence to the sequences of published putative arabinose isomerase of *Thermotoga* maritima, respectively.

Example 2: Preparation of recombinant expression vector and recombinant E. coli

In order to obtain high level expression of the said thermostable arabinose isomerase in E. coli using the arabinose isomerase gene obtained in Example 1, the said 10 inserted into an expression vector pET gene was 22b(+)(Novagen, U.S.A.) double-digested with NdeI and construct a recombinant expression vector to pTNAI(\underline{see} : Figure 1), which was then introduced into E. coli BL21. The transformed recombinant E. coli was named 15 deposited BL21/DE3(pTNAI)" and with "E. coli international depository authority, the Korean Culture #361-221 Hongje-1-dong, Center of Microorganisms (KCCM, Seodaemun-qu, Seoul, Republic of Korea) on December 4, 2000 as accession no. KCCM-10231.

Example 3: Expression of recombinant arabinose isomerase

The recombinant E. coli BL21/DE3(pTNAI)(KCCM-10231) prepared in Example 2 was inoculated into LB(Luria-25 Bertani) medium(1% v/v) and incubated at 37°C for 2 hours, to which lactose was added to a final concentration of 1mM and expression of recombinant arabinose isomerase was induced for 12 hours. For assay of expressed arabinose isomerase, cells were collected by centrifugation at 8000xg for 10 minutes, resuspended in 10ml of 100mM MOPS buffer(4-morpholinepropanesulfonic acid, pH 7.0), and then disrupted by sonication to obtain crude enzyme, with which isomerization reaction galactose was out. Galactose isomerization was performed by mixing 100µl 35 the said crude enzyme solution with 40mM(final concentration) galactose as a substrate, followed by

8

adding 1ml of enzyme reaction buffer(100mM MOPS buffer, pH 7.0) containing cofactors(1mM MnCl₂, 1mM CoCl₂) and incubating at 85°C for 20 minutes. The product of the above reaction was detected using cysteine-carbazole-sulfuric acid method(see: Dische, Z., and E. Borenfreund., A New Spectrophotometric Method for the Detection and Determination of Keto Sugars and Trioses, J. Biol. Chem., 192:583-587, 1951), and it has been found that normal galactose isomerization has been undergone.

10

20

25

Example 4: Purification of recombinant arabinose isomerase

For purification of recombinant arabinose isomerase expressed by the method described in Example 3, cells were collected by centrifugation at 8000xg for 19 minutes and cell wall of *E. coli* was disrupted by sonication, which was followed by centrifugation at 20,000xg for 20 minutes to obtain supernatant. Then, the said supernatant was heat-treated at 85°C for 20 minutes, centrifuged at 20,000xg for 20 minutes to get rid of precipitate, and the supernatant was further purified by ammonium sulfate-mediated precipitation and finally ion-exchange column chromatography(Q-Sepharose Fast Flow, Pharmacia, Sweden). pH dependancy of the said purified enzyme was analyzed and optimum pH was found to be around 7.0.

Example 5: Optimum pH and optimum temperature of recombinant arabinose isomerase

30 Activity of the purified recombinant arabinose isomerase prepared in Example 4 was analyzed on galactose substrate and optimum pH was found to be around 7.0. Optimum temperature for isomerization reaction was determined using the same method as described in Example 3.

35 The tested reaction temperatures for galactose isomerization were 60, 70, 75, 80, 85, 90 and 100°C, and maximum activity was obtained around 85°C(see: Figure 2).

9

To assess the thermostability of recombinant arabinose isomerase of the invention, crude enzyme prepared in Example 3 was heat-treated at 60, 70, 80 and 90°C for 10, 20, 30, 60, 90 and 120 minutes respectively, and remaining activity of recombinant arabinose isomerase for isomerization was determined as described in Example 3(see: Figure 3). As shown in Figure 3, it has been found that over 80% of enzyme activity was remained after 2 hour heat-treatment at 80°C.

15 <u>Example 7</u>: Conversion rate of galactose into tagatose at various temperature

By employing recombinant arabinose isomerase of the invention, the conversion rate of galactose into tagatose was determined at various temperatures and various time points. Substrate used was 10mM galactose instead of 40mM galactose in enzyme reaction mixture in Example 3. After incubation at 60, 70, 80 and 90°C for 20 hours, tagatose yield was determined employing BioLC(see: Table 2 and Figure 4).

<u>Table 2</u>: Conversion rate of galactose into tagatose at various temperature

Enzyme Reaction Temperature	60°C	70°C	80°C	90°C
Conversion Rate into Tagatose	31.7	40.4	68.1	57.4

30

20

25

As shown in Table 2 and Figure 4, the higher the reaction temperature was, the higher tagatose yield was obtained, and conversion rate into tagatose was as high as 68% at 80° C.

10

Arabinose isomerase was immobilized on silica beads, heat-treated under an aqueous condition at 90°C and the remaining activity was determined at various time points (see: Figure 5). As shown in Figure 5, remaining activity of the immobilized enzyme was over 80% after 20 day-heat treatment at 90°C and over 60% after 30 day-heat treatment, indicating that the immobilized arabinose isomerase of the invention can be applied for thermal process in industry.

As clearly illustrated and demonstrated above, the
present invention provides a noble gene coding for Larabinose isomease derived from Thermotoga neapolitana 5068,
a thermostable arabinose isomerase expressed from the said
gene, a recombinant expression vector containing the said
gene, a microorganism transformed with the said expression
vector, a process for preparing thermostable arabinose
isomerase from the said transformant and a process for
preparing D-tagatose employing the said enzyme. Since the
recombinant arabinose isomerase of the invention is highly
thermostable and can produce tagatose with high yield at
high temperature, it can be efficiently applied in
pharmaceutical and food industries.

11

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorg	ganism or other biological material referred to in description
On page 4 , lines 23-33 and page	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on additional sheet
Name of depositary institution	
Korean Culture Center of Microorganis	sms(KCCM)
Address of depositary institution (including postal code and co	untry)
Korean Culture Center of Microorganisms((KCCM)
361-221, Yurim B/D, Hongje-1-dong, Seod	laemun-gu
Seoul, 120-091, Republic of Korea	
Date of deposit	Accession Number
Dec. 04, 2000	KCCM-10231
C. ADDITIONAL INDICATIONS (leave blank if not applicated)	This information continues on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS AF	RE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blan	ık if not applicable)
The indications listed below will be submitted to the Internation	onal Bureau later (specify the general nature of the indications
e.g., "Accession Number of Deposit")	
<u> </u>	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	☐ This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

12

What is Claimed is:

- A gene coding for arabinose isomerase having a nucleotide sequence of SEQ ID NO: 3 which is derived from
 Thermotoga sp.
 - 2. A gene coding for arabinose isomerase having a nucleotide sequence of SEQ ID NO: 4 which is derived from the nucleotide sequence of claim 1.

10

3. A recombinant expression vector pTNAI represented as a genetic map of Fig. 1 which contains the nucleotide sequence of SEQ ID NO: 3 of a gene derived from *Thermotoga* sp.

15

- 4. E. coli BL21/DE3(pTNAI)(KCCM-10231) transformed with the recombinant expression vector pTNAI of claim 3.
- 5. A process for preparing a recombinant arabinose isomerase which comprises a step of culturing a microorganism transformed with a recombinant expression vector containing the gene for arabinose isomerase derived from Thermotoga sp. of claim 1 to obtain a recombinant arabinose isomerase from the culture.

25

30

- 6. The process for preparing a recombinant arabinose isomerase of claim 5, wherein the microorganism transformed with a recombinant expression vector containing the gene for arabinose isomerase is *E. coli* BL21/DE3(pTNAI)(KCCM-10231).
- 7. A process for preparing tagatose which comprises a step of reacting arabinose isomerase prepared from a microorganism transformed with a recombinant expression vector containing a gene for arabinose isomerase derived from Thermotoga sp. with a substrate of galactose under a condition of pH 5 to 8 and 50 to 100°C to obtain tagatose.

8. The process for preparing tagatose of claim 7, wherein the microorganism transformed with a recombinant expression vector containing a gene for arabinose isomerase derived from *Thermotoga* sp. is *E. coli* BL21/DE3(pTNAI) (KCCM-10231).

9. The process for preparing tagatose of claim 7, wherein the arabinose isomerase is immobilized recombinant 10 arabinose isomerase.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

1

SEQUENCE LISTING

_	<110>	PYUN, YU RYANG, et al.
5	<120>	Thermostable L-Arabinose Isomerase and Process for Preparing D-ta gatose thereby
	<150>	KR 10-2000-0080608
10	<151>	2000-12-22
	<150>	KR 10-2001-0080711
	<151>	2001–12–18
15	<160>	4
	<170>	KopatentIn 1.6
	<210>	1
20	<211>	24
	<212>	DNA
	<213>	Artificial Sequence
	<220>	
25	<223>	primer araAF
	<400>	1
	atgatcga	itc tcaaacagta tgag 24
30		
	<210>	2 4
	<211>	20
	<212>	DNA
	<213>	Artificial Sequence
35		•
	<220>	
	<223>	nrimer aradp

	<400>	2		_			
	tcatcttt	tt aaaagtcccc		•			20
-							
5	<210>	3		•			
	<211>	1491	•				
	<212>	DNA			,		
	<213>	Thermotoga ne	aanolitana <i>l</i>	5069			
10	1213	Thermotoga In	caporitana .	3000			
10	<400>	3					
		tc tcaaacagta	tgagttctgg	tttcttgtcg	gcagccagta	tctctacggt	60
	ctggagac	gt tgaagaaggt	agagcagcag	gcaagcagga	tagttgaggc	actgaacaat	120
15							
	gatcccati	tt ttccctcaaa	gatcgttctg	aaacctgttc	tgaaaaattc	cgccgagatc	180
	agagagat	ct tcgaaaaggc	aaatgcagaa	ccaaaatgcg	ccggtgtcat	cgtgtggatg	240
20	cacacgtt	ct caccttcgaa	gatgtggata	agaggcctct	ccatcaataa	aaaacccctg	300
	cttcacct	cc acacccagta	caacagggag	atcccgtggg	acacgatcga	tatggactac	360
	atgaacctg	ga accaatctgc	ccacggtgac	agggaacacg	gattcattca	cgcgaggatg	420
25	aga at aga			t	~~~~~	~~~~~~ <u>*</u>	400
	agactecea	aa gaaaggtcgt	ggigggacai	igggaagaca	gagaagtcag	ggaaaagatc	480
	gcaaaatga	ga tgagagtggc	rtororoata	raggat ggaa	gaartggara	gategtgaga	- 540
	Soudanss	94 1848481 8 5			PaderPenca	Barcereaga	- 010
30	ttcggcgat	ta acatgagaga	ggttgccagc	accgaagacg	acaaggtgga	ggcacagata	600
						00.	
	aaactcgg	t ggtccataaa	cacctggggt	gtcggagagc	tcgccgaggg	agtgaaggcg	660
						-	
	gttccagaa	aa acgaagtgga	ggaattgttg	aaggagtaca	aagaaaggta	catcatgcca	. 720
35	•						
	gaagacgaa	it acageeteaa	agcgatcaga	gaacaggcga	agat ggagat	tacactaaaa	780

	gagtttctga aagagaagaa tgccatcgcc ttcaccacca ccttcgagga tcttcacgat	840
	cttccccagc ttcccggtct tgcagtccag aggctcatgg aggaagggta tggatttgga	900
5	gcggaaggag actggaaggc agccgggctt gtgagggctt tgaaggtcat gggagctggt	960
	cttcccggtg gtacatcctt catggaggac tacacctacc atctcacacc gggaaacgaa	1020
10	ctcgtgctgg gagcgcacat gctagaggtg tgccccacga tcgctaagga aaagccaaga	1080
10	atagaggtgc atcctctcag catcggtgga aaagcagatc ctgcacgcct tgttttcgat	1140
	ggacaagaag gtcccgctgt caacgcctcc atcgttgaca tgggaaacag gttcaggctg	1200
15	gtagtgaaca gagtgttgtc tgttcccatt gaaaggaaga tgcccaaact tccaacggca	1260
	agagttttgt ggaagccgct tcctgatttc aagagggcga cgactgcgtg gattctcgct	1320
20	ggaggatccc atcatactgc cttctcaaca gcggtggatg tggagtacct catcgactgg	1380
20	gcggaggctt tggagataga gtatcttgtc atcgatgaaa atctggatct ggagaacttc	1440
	aaaaaggaac tgagatggaa cgaactctac tggggacttt taaaaagatg a	1491
25		
•	<210> 4	
	<211> 496	-
	<212> PRT	
	<213> Thermotoga neapolitana 5068	
30	•	
	<400> 4	
	Met Ile Asp Leu Lys Gln Tyr Glu Phe Trp Phe Leu Val Gly Ser Gln	
	1 5 10 15	

35 Tyr Leu Tyr Gly Leu Glu Thr Leu Lys Lys Val Glu Gln Gln Ala Ser

	Arg	Ile	Va I 35	Glu	Ala	Leu	Asn	Asn 40	Asp	Pro	Ile	Phe	Pro 45	Ser	Lys	Ile
5	Val	Leu 50	Lys	Pro	Val	Leu	Lys 55	Asn	Ser	Ala	Glu	Ile 60	Arg	Glu	Ile	Phe
	Glu 65	Lys	Ala	Asn	Ala	Glu 70	Pro	Lys	Cys	Ala	Gly 75	Val	Ile	Val	Trp	Met 80
10	His	Thr	Phe	Ser	Pro 85	Ser	Lys	Met	Trp	Ile 90	Arg	Gly	Leu	Ser	Ile 95	Asn
15	Lys	Lys	Pro	Leu 100	Leu	His	Leu	His	Thr 105	Gln	Tyr	Asn	Arg	Glu 110	Ile	Pro
	Trp	Asp	Thr 115	He	Asp	Met	Asp	Tyr 120	Met	Asn	Leu	Asn	Gln 125	Ser	Ala	His
20	Gly	Asp 130	Arg	Glu	His	Gly	Phe 135	Ile	His	Ala	Arg	Met 140	Ārg	Leu	Pro	Arg
	Lys 145	Val	Val	Val	Gly	His 150	Trp	Glu	Asp	Arg	Glu 155	Val	Arg	Glü	Lys	Ile 160
25	Ala	Lys	Trp	Met	Arg 165	Val	Ala	Cys	Ala	Ile 170	Gln	Asp	Gly	Arg	Thr 175	Gly
30	Gln	Ile	Val	Arg 180	Phe	Gly	Asp	Asn	Met 185		Glu	Val	Ala	Ser 190	Thr	Glu
	Asp	Asp	Lys 195	Val	Glu	Ala	Gln	Ile 200	Lys	Leu	Gly	Trp	Ser 205	Ile	Asn	Thr
35	Trp	Gly 210	Val	Gly	Glu	Leu	Ala 215	Glu	Gly	Val	Lys	Ala 220	Val	Pro	Glu	Asn
	Glu	Val	Glu	Glu	Leu	Leu	Lys	Glu	Tyr	Lys	Glu	Arg	Tyr	Ile	Met	Pro

PCT/KR01/02243

	225					230					235					240
_	Glu	Asp	Glu	Tyr	Ser 245	Leu	Lys	Ala	Ile	Arg 250	Glu	Gln	Ala	Lys	Met 255	Glu
5	Ile	Ala	Leu	Arg 260	Glu	Phe	Leu	Lys	Glu 265	Lys	Asn	Ala	Ile	Ala 270	Phe	Thr
10	Thr	Thr	Phe 275	Glu	Asp	Leu	His	Asp 280	Leụ	Pro	Gln	Leu	Pro 285	Gly	Leu	Ala
	Val	G1n 290	Arg	Leu	Met	Glu	Glu 295	Gly	Tyr	Gly	Phe	Gly 300	Ala	Glu	Gly	Asp
15	Trp 305	Lys	Ala	Ala	Gly	Leu 310	Val	Arg	Ala	Leu	Lys 315	Val	Met	Gly	Ala	Gly 320
20	Leu	Pro	Gly	Gly	Thr 325	Ser	Phe	Met	Glu	Asp 330	Tyr	Thr	Tyr	His	Leu 335	Thr
	Pro	Gly	Asn	Glu 340	Leu	Val	Leu	Gly	Ala 345	His	Met	Leu	Glu	Val 350	Cys	Pro
25	Thr	Ile	Ala 355	Lys	Glu	Lys	Pro	Arg 360	Ile	Glu	Val	His	Pro 365	Leu	Ser	He
	Gly	Gly 370	Lys	Ala	Asp	Pro	Ala 375	Arg	Leu	Val	Phe	Asp 380	Gly	Gln	Glu	Gly
30	Pro 385	Ala	Val	Asn	Ala	Ser 390	Ile	Val	Asp	Met	Gly 395	Asn	Arg	Phe	Arg	Leu 400
35	Val	Val	Asn	Arg	Val 405	Leu	Ser	Val		Ile 410	Glu	Arg	Lys	Met	Pro 415	Lys
	Leu	Pro	Thr	Ala 420	Arg	Val	Leu	Trp	Lys 425	Pro	Leu	Pro	Asp	Phe 430	Lys	Arg

6

Ala Thr Thr Ala Trp Ile Leu Ala Gly Gly Ser His His Thr Ala Phe
435 440 445

5 Ser Thr Ala Val Asp Val Glu Tyr Leu Ile Asp Trp Ala Glu Ala Leu
450 455 460

Glu Ile Glu Tyr Leu Val Ile Asp Glu Asn Leu Asp Leu Glu Asn Phe 465 470 475 480

10

Lys Lys Glu Leu Arg Trp Asn Glu Leu Tyr Trp Gly Leu Leu Lys Arg 485 490 495