HIMatrix M45

Sicherheitsgerichtete Steuerung

Handbuch M-COM 010

HIMA Paul Hildebrandt GmbH Industrie-Automatisierung

Rev. 1.01 HI 800 656 D

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIMax®, HIMatrix®, SILworX®, XMR® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Weitere Informationen sind in der Dokumentation auf der HIMA DVD und auf unserer Webseite unter http://www.hima.de und http://www.hima.com zu finden.

© Copyright 2014, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Adresse: HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

	Änderungen	Art der Änderung	
index		technisch	redaktionell
1.00	Erstausgabe des Handbuchs HIMatrix M45		
1.01	Redaktionelle Änderungen		Х

M-COM 010 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	9
2.3	Sicherheitsvorkehrungen	9
2.4	Notfallinformationen	9
3	Produktbeschreibung	10
3.1	Sicherheitsfunktion	10
3.1.1	Reaktion im Fehlerfall	10
3.2	Lieferumfang	10
3.3	Typenschild	11
3.4	Aufbau	12
3.4.1	Ethernet-Schnittstellen	12
3.4.2 3.4.3	Feldbus-Schnittstellen Blockschaltbild	13 14
3.4.4	Frontansicht	15
3.4.5	LED-Anzeigen	15
3.4.5.1	Modul-Statusanzeige	16
3.4.5.2	Feldbusanzeige	16
3.4.6	Ethernetanzeige	17
3.5	Produktdaten	18
3.6	Sockel	19
3.6.1	Mechanische Codierung	19
3.6.2	Codierung Modul M-COM 010 und Sockel	20
3.6.2.1	Einstellen der Codierung am Sockel	21
3.6.3	Sockel M-SO COM 01	22

HI 800 656 D Rev. 1.01 Seite 3 von 42

Inhaltsverzeichnis M-COM 010

4	Inbetriebnahme	23
4.1	Montage	23
4.2	Montage von Modul und Sockel	23
4.2.1 4.2.2	Einbau und Ausbau der Sockel Einbau und Ausbau eines Moduls	23 25
4.3	Konfiguration	25
4.3.1 4.3.2 4.3.3	Register Modul Register Routings Register Ethernet-Switch	26 28 28
4.3.4 4.3.4	Register VLAN (port-based VLAN)	29
4.3.5	Register LLDP	29
4.3.6 4.3.7	Register Mirroring Verwendete Netzwerkports für Ethernet-Kommunikation	30 30
5	Betrieb	31
5.1	Bedienung	31
5.2	Diagnose	31
6	Instandhaltung	32
6.1	Fehler	32
6.2	Instandhaltungsmaßnahmen	32
6.2.1 6.2.2	Betriebssystem laden Wiederholungsprüfung	32 32
7	Außerbetriebnahme	33
8	Transport	34
9	Entsorgung	35
	Anhang	37
	Glossar	37
	Abbildungsverzeichnis	38
	Tabellenverzeichnis	39
	Index	40

Seite 4 von 42 HI 800 656 D Rev. 1.01

M-COM 01 1 Einleitung

1 Einleitung

Dieses Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMatrix M45.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Name	Inhalt	Dokumenten-Nr.
HIMatrix M45 Sicherheitshandbuch	Sicherheitsfunktionen des HIMatrix Systems	HI 800 652 D
HIMatrix M45 Systemhandbuch	Hardware-Beschreibung HIMatrix M45	HI 800 650 D
SILworX Kommunikationshandbuch	Beschreibung der Kommunikation und Protokolle	HI 801 100 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	-
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D

Tabelle 1: Zusätzlich geltende Dokumente

Die aktuellen Handbücher befinden sich auf der HIMA Webseite www.hima.de. Anhand des Revisionsindex in der Fußzeile kann die Aktualität eventuell vorhandener Handbücher mit der Internetausgabe verglichen werden.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure und Programmierer von Automatisierungsanlagen sowie Personen, die zu Inbetriebnahme, Betrieb und Wartung der Geräte, Module und Systeme berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsgerichteten Automatisierungssysteme.

HI 800 656 D Rev. 1.01 Seite 5 von 42

1 Einleitung M-COM 010

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können

Kursiv Parameter und Systemvariablen Courier Wörtliche Benutzereingaben

RUN Bezeichnungen von Betriebszuständen in Großbuchstaben Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind. Wird der Mauszeiger darauf positioniert, verändert er seine Gestalt. Bei einem Klick springt das Dokument zur betreffenden

Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Die Sicherheitshinweise im Dokument sind wie folgend beschrieben dargestellt. Um ein möglichst geringes Risiko zu gewährleisten, sind sie unbedingt zu befolgen. Der inhaltliche Aufbau ist

- Signalwort: Warnung, Vorsicht, Hinweis
- Art und Quelle des Risikos
- Folgen bei Nichtbeachtung
- Vermeidung des Risikos

▲ SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung Vermeidung des Risikos

Die Bedeutung der Signalworte ist

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung
- Hinweis: Bei Missachtung droht Sachschaden

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens

Seite 6 von 42 HI 800 656 D Rev. 1.01

M-COM 01 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 800 656 D Rev. 1.01 Seite 7 von 42

2 Sicherheit M-COM 010

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMatrix Komponenten sind zum Aufbau von sicherheitsgerichteten Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMatrix System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Art der Bedingung	Wertebereich
Schutzklasse III nach IEC/EN 61131-2	
Umgebungstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 61131-2
Aufstellhöhe	< 2000 m
Gehäuse	Standard: IP20
Versorgungsspannung	24 VDC

Tabelle 2: Umgebungsbedingungen

Andere als die in diesem Handbuch genannten Umgebungsbedingungen können zu Betriebsstörungen des HIMatrix Systems führen.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Geräten durchführen.

HINWEIS

Geräteschaden durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Gerät elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

Seite 8 von 42 HI 800 656 D Rev. 1.01

M-COM 01 2 Sicherheit

2.2 Restrisiken

Von einem HIMatrix M45 System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung
- Fehlern im Anwenderprogramm
- Fehlern in der Verdrahtung

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

2.4 Notfallinformationen

Ein HIMatrix M45 System ist Teil der Sicherheitstechnik einer Anlage. Der Ausfall eines Geräts oder eines Moduls bringt die Anlage in den sicheren Zustand.

Im Notfall ist jeder Eingriff, der die Sicherheitsfunktion der HIMatrix M45 Systeme verhindert, verboten.

HI 800 656 D Rev. 1.01 Seite 9 von 42

3 Produktbeschreibung

Die Kommunikationsmodule M-COM 010 x sind für den Einsatz im HIMatrix M45 System konzipiert.

Es sind insgesamt vier Kommunikationsmodule mit den folgenden Kommunikationsoptionen verfügbar:

Modul	FB1	FB2	FB3
M-COM 010 2	PROFIBUS DP Master	RS485	RS422/RS485
M-COM 010 3	PROFIBUS DP Slave	RS232	RS422/RS485
M-COM 010 7	SSI	RS485	RS422/RS485
M-COM 010 8	CAN-Bus	RS485	RS422/RS485

Tabelle 3: M-COM 010 x Kommunikationsmodule

Die Kommunikationsmodule müssen im HIMatrix M45 System direkt neben dem Prozessormodul M-CPU 01 und dem Powermodul angeordnet werden. Es dürfen maximal 3 Kommunikationsmodule in einem HIMatrix M45 System integriert werden. Die Bedingungen zum Aufbau eines HIMatrix M45 Systems sind zu berücksichtigen, siehe Systemhandbuch HI 800 650 D.

Das Modul ist für den Einsatz im sicherheitsgerichteten HIMatrix M45 System zugelassen und für den Transport sicherheitsgerichteter Protokolle geeignet. Der Sockel des Moduls ist mit Ethernet- und Feldbus-Schnittstellen ausgestattet und dient der Kommunikation mit Systemen über safe**ethernet** und diversen Standardprotokollen.

Informationen zur Konfiguration der Protokolle und zur PIN-Belegung der Feldbus-Schnittstellen, siehe Kommunikationshandbuch HI 801 100 D.

Im Programmierwerkzeug SILworX werden die für die Schnittstellen verfügbaren Protokolle parametriert.

3.1 Sicherheitsfunktion

Das Kommunikationsmodul führt keine Sicherheitsfunktionen aus.

In Bezug auf die Sicherheitstechnik ist das Modul rückwirkungsfrei gegenüber dem HIMatrix M45 System. Dies wird durch geeignete Entkopplungsmaßnahmen an den Schnittstellen gewährleistet.

3.1.1 Reaktion im Fehlerfall

Bei Fehlern nimmt das Modul den temporären Zustand STOP_ERROR ein. Es folgt ein Reboot des Moduls und Neustart aus dem Zustand INIT.

Im Zustand STOP_ERROR werden keine Prozessdaten mit externen Kommunikationspartnern ausgetauscht. Es werden keine Prozessdaten an das Prozessormodul übermittelt.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb einen passenden Sockel M-SO COM 01. Der Sockel gehört nicht zum Lieferumfang des Moduls.

Die Beschreibung des Sockels erfolgt in Kapitel 3.6.

Seite 10 von 42 HI 800 656 D Rev. 1.01

3.3 Typenschild

Das Typenschild enthält folgende Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Betriebsdaten (Power:)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

HI 800 656 D Rev. 1.01 Seite 11 von 42

3.4 Aufbau

Das Kapitel Aufbau enthält:

- Beschreibung der Schnittstellen
- Blockschaltbild
- Frontansicht
- LED-Anzeigen

Das Modul ist ausgestattet mit einem:

- sicherheitsgerichteten 1002D-Prozessorsystem. Dieses überwacht die Funktionen des Moduls durch Selbsttests und führt den Datenaustausch über den Systembus mit dem Prozessormodul M-CPU 01 durch.
- nicht sicherheitsgerichteten Kommunikationsprozessorsystem für Standardprotokolle.

3.4.1 Ethernet-Schnittstellen

Der Sockel ist mit vier Switch-Ports (Eth1...Eth4) ausgestattet. Diese sind über den integrierten Ethernet-Switch des Moduls mit der Ethernet-Schnittstelle des Kommunikationsprozessorsystems verbunden.

Ethernet-Schnittstellen			
Anzahl Ports	4		
Übertragungsstandard	10BASE-T/100BASE-Tx,		
	Halb- und Vollduplex		
Auto Negotiation	Ja		
Auto Crossover	Ja		
Anschlussbuchse	RJ-45		
IP-Adresse	Frei konfigurierbar ¹⁾		
Subnet Mask	Frei konfigurierbar ¹⁾		
Unterstützte Protokolle	safeethernet		
	Standardprotokolle		
Allgemein gültige Regeln für die Vergabe von IP-Adressen und Subnet Masks müssen			

beachtet werden.

Tabelle 4: Eigenschaften Ethernet-Schnittstellen

Bei der Netzwerk-Verdrahtung darauf achten, dass keine Ringe entstehen. Datenpakete dürfen nur auf einem Weg zu einer Steuerung gelangen.

Seite 12 von 42 HI 800 656 D Rev. 1.01

3.4.2 Feldbus-Schnittstellen

Der Sockel ist mit drei Feldbus-Schnittstellen (FB1...FB3) ausgestattet. Für jede Feldbus-Schnittstelle ist jeweils nur ein Protokoll möglich.

Feldbus-Schnittstellen		
Anzahl	3	
Übertragungsstandard	Protokollabhängig	
Anschlussbuchse	D-Sub Buchse, 9-polig	
Unterstützte Protokolle	Standardprotokolle, siehe Kommunikationshandbuch HI 801 100 D.	

Tabelle 5: Eigenschaften Feldbus-Schnittstellen

Es sind insgesamt vier verschiedene Module mit unterschiedlicher Belegung der Feldbus-Schnittstellen verfügbar, siehe Tabelle 3.

Informationen zur Konfiguration der Protokolle und zur PIN-Belegung der Feldbus-Schnittstellen, siehe Kommunikationshandbuch HI 801 100 D.

A WARNUNG

Verschaltung, Busabschlüsse:

- Bei Verwendung der Feldbus-Schnittstellen ist die jeweilige Feldbus-Norm zu beachten.
- Die Feldbusse an physikalischen Enden mit Busabschlüssen abschließen.

HI 800 656 D Rev. 1.01 Seite 13 von 42

3.4.3 Blockschaltbild

Nachfolgendes Blockschaltbild zeigt die Struktur des Moduls:

- 1 Anzeige
- 2 Sicherheitsgerichtetes Prozessorsystem
- 3 Kommunikationsprozessor
- 4 Feldbus-Submodul FB3
- 5 Feldbus-Submodul FB2
- Bild 2: Blockschaltbild

- 6 Feldbus-Submodul FB1
- Ethernet Switch für externe Kommunikation
- 8 Switch
- 9 Systembus

Seite 14 von 42 HI 800 656 D Rev. 1.01

3.4.4 Frontansicht

Nachfolgende Abbildung zeigt exemplarisch die Frontansicht des Moduls M-COM 010 02:

Bild 3: Frontansicht exemplarisch

3.4.5 LED-Anzeigen

Die Leuchtdioden zeigen den Betriebszustand des Moduls an. Die LED-Anzeigen unterteilen sich wie folgt:

- Modul-Statusanzeige
- Feldbusanzeige
- Ethernetanzeige

Beim Zuschalten der Versorgungsspannung erfolgt immer ein Leuchtdioden-Test, bei dem für kurze Zeit alle Leuchtdioden leuchten.

Definition der Blinkfrequenzen:

In der folgenden Tabelle sind die Blinkfrequenzen der LEDs definiert:

Name	Blinkfrequenz
Blinken1	lang (ca. 600 ms) an, lang (ca. 600 ms) aus
Blinken2	kurz (ca. 200 ms) an, kurz (ca. 200 ms) aus, kurz (ca. 200 ms) an, lang (ca. 600 ms) aus
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung

Tabelle 6: Blinkfrequenzen der Leuchtdioden

HI 800 656 D Rev. 1.01 Seite 15 von 42

3.4.5.1 Modul-Statusanzeige

Die LEDs signalisieren folgende Zustände:

LED	Farbe	Status	Bedeutung
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb
		Blinken1	Modul im Zustand
			STOPP / BS WIRD GELADEN oder
			RUN / AP STOPP (nur bei Prozessormodulen)
		Aus	Modul nicht im Zustand RUN,
			weitere Status LEDs beachten.
Err	Rot	Ein	Warnung, z. B.:
			Fehlende Lizenz für Zusatzfunktionen
			(z. B. Kommunikationsprotokolle), Testbetrieb
		Blinken1	Fehler, z. B.:
			 Durch Selbsttest festgestellter interner Fehler des Moduls,
			z. B. Hardware-Fehler oder Fehler der Spannungsversorgung.
		A.1.0	Fehler beim Laden des Betriebssystems. Normalbetrieb
0.	0 "	Aus	
Stop	Gelb	Ein	Modul im Zustand
		Di' i d	STOPP / GÜLTIGE KONFIGURATION
		Blinken1	Modul im Zustand
			STOPP / UNGÜLTIGE KONFIGURATION oder STOPP / BS WIRD GELADEN
		Aus	
		Aus	Modul nicht im Zustand STOPP, weitere Status LEDs beachten.
Init	Gelb	Ein	Modul im Zustand INIT
IIIIC	Gein		
		Blinken1	Modul im Zustand LOCKED oder
			STOPP / BS WIRD GELADEN
		Aus	Modul weder im Zustand INIT noch in LOCKED,
		Aus	weitere Status LEDs beachten.
			Weitere Status LEDS Deathlen.

Tabelle 7: Modul-Statusanzeige

3.4.5.2 Feldbusanzeige

Der Zustand der Kommunikation über die seriellen Schnittstellen wird mit den LEDs FB1...FB3 angezeigt. Die Funktion der LEDs ist abhängig vom verwendeten Protokoll.

Zur Funktionsbeschreibung der LEDs siehe SILworX Kommunikationshandbuch HI 801 100 D.

Seite 16 von 42 HI 800 656 D Rev. 1.01

3.4.6 Ethernetanzeige

Die Leuchtdioden der Ethernetanzeige sind mit Ethernet überschrieben.

LED	Farbe	Status	Bedeutung
14	Grün	Ein	Kommunikationspartner angeschlossen
			Keine Kommunikation auf der Schnittstelle
		Blinken-x	Kommunikation auf der Schnittstelle
		Blinken1	IP-Adresskonflikt festgestellt.
			Alle LEDs der Ethernetanzeige blinken.
		Aus	Kein Kommunikationspartner angeschlossen
H/F	Gelb	Ein	Vollduplex-Betrieb der Ethernet Leitung
		Blinken-x	Kollisionen auf der Ethernet Leitung
		Blinken1	IP-Adresskonflikt festgestellt.
			Alle LEDs der Ethernetanzeige blinken.
		Aus	Halbduplex-Betrieb der Ethernet Leitung

Tabelle 8: Ethernetanzeige

HI 800 656 D Rev. 1.01 Seite 17 von 42

3.5 Produktdaten

Allgemein	
Versorgungsspannung	24 VDC, -15+20 %, w _s ≤ 5 %, SELV, PELV
Maximale Versorgungsspannung	30 V
Stromaufnahme	
M-COM 010 2	370 mA bei 24 VDC
M-COM 010 3	330 mA bei 24 VDC
M-COM 010 7	320 mA bei 24 VDC
M-COM 010 8	300 mA bei 24 VDC
Umgebungstemperatur	0+60 °C
Lagertemperatur	-40+85 °C
Abmessungen ohne Sockel (H x B x T) in mm	105 x 50 x 72
Abmessungen mit Sockel bis Hutschiene (H x B x T) in mm	165 x 75,2 x 90
Masse	
Modul	ca. 185 g
Sockel	ca. 210 g

Tabelle 9: Produktdaten

Seite 18 von 42 HI 800 656 D Rev. 1.01

3.6 Sockel

Sockel und Modul bilden eine funktionale Einheit. Das Modul wird über den Sockel mit dem Systembus, der Spannungsversorgung und der Feldebene verbunden. Die Kommunikationsschnittstellen bestehen aus vier RJ-45 Ports sowie drei D-Sub Ports, siehe Bild 5.

3.6.1 Mechanische Codierung

Module und Sockel sind mechanisch mit Codierstiften und Codierbuchsen codiert, siehe Bild 4. Die Codierung der Module liegt ab Werk durch die Position der Codierstifte fest. Zwei Codierbuchsen in den Sockeln nehmen die Codierstifte auf und müssen auf den gewählten Modultyp eingestellt werden, siehe Kapitel 3.6.2. Insgesamt gibt es sechs unterschiedliche Positionen. Die Codierung verhindert eine falsche Bestückung des Sockels.

- 1 Oberer Codierstift
- 2 Unterer Codierstift

- 3 Obere Codierbuchse
- 4 Untere Codierbuchse

Bild 4: Codierung Modul und Sockel exemplarisch

HI 800 656 D Rev. 1.01 Seite 19 von 42

3.6.2 Codierung Modul M-COM 010 und Sockel

Die Codierbuchsen des Sockels M-SO COM 01 sind zur Aufnahme des Moduls wie folgt einzustellen:

Modul	Anordnung	Codierung Modul (Rückansicht)	Position	Codierbuchse
	Oben		1	12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
M-COM 010 2	Unten		2	
M COM 010 3	Oben		1	100 V
M-COM 010 3	Unten		3	V 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M-COM 010 8	Oben		1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	Unten		4	CALLY A
M-COM 010 7	Oben		1	4 V
	Unten		5	73 55 <

Tabelle 10: Codierung Modul und Sockel

Seite 20 von 42 HI 800 656 D Rev. 1.01

3.6.2.1 Einstellen der Codierung am Sockel

Werkzeug und Hilfsmittel:

Schraubendreher, Schlitz 0,8 x 4,0 mm

Obere und untere Codierbuchse einstellen

- 1. Schraubendreher in die Öffnung der oberen Codierbuchse stecken.
- 2. Schraubendreher drehen bis die gewünschte Codierung eingestellt ist.
- 3. Für die untere Codierbuchse wiederholen.
- 4. Modul zur Probe auf den Sockel stecken.
- 5. Modul entfernen.

HI 800 656 D Rev. 1.01 Seite 21 von 42

3.6.3 Sockel M-SO COM 01

Nachfolgende Abbildung zeigt den Sockel für die Aufnahme der verschiedenen COM-Module.

- Systembus mit Spannungsversorgung
- Riegel (Verbindung zum linken Sockel)
- 3 Ethernet-Switch

- 4 E/A-Stecker
- 5 Feldbus-Schnittstellen
- Riegel (Befestigung an Hutschiene)

Bild 5: Sockel M-SO COM 01

Der Sockel wird mit Hilfe des Riegels 6 an der Hutschiene befestigt und mit dem Riegel 2 mit dem benachbarten linken Sockel verbunden. Über den Systembus werden der Sockel und das Modul mit dem Prozessormodul und der Spannungsversorgung verbunden. Die E/A-Stecker stellen die Verbindung zwischen Modul und Sockel her.

Seite 22 von 42 HI 800 656 D Rev. 1.01

M-COM 01 4 Inbetriebnahme

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls, sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMatrix M45 Systemhandbuch HI 800 650 D.

4.1 Montage

Modul wird auf zugehörigen Sockel aufgesteckt, welcher auf einer Hutschiene 35 mm (DIN) montiert wird.

Bei der Montage von Modul und Sockel folgende Punkte beachten:

- Schraubendreher, Schlitz 0,8 x 4,0 mm
- Entfernen oder Austauschen von Sockeln oder Modulen darf nur im spannungslosen Zustand erfolgen.

A WARNUNG

Ziehen und Stecken des Moduls nur im spannungslosen Zustand erlaubt!

4.2 Montage von Modul und Sockel

Dieses Kapitel beschreibt den Einbau und Ausbau von Modulen und Sockeln. Beim Austausch von Modulen verbleiben die Sockel auf der Hutschiene. Dies vermeidet zusätzlichen Verdrahtungsaufwand, da alle Kommunikationsleitungen auf dem Sockel aufgelegt sind.

4.2.1 Einbau und Ausbau der Sockel

Werkzeuge und Hilfsmittel:

Schraubendreher, Schlitz 1,0 x 5,5 mm

Sockel einbauen

- 1. Sockel auf der Hutschiene aufsetzen 1.
- 2. Sockel einschwenken 2.
- 3. Sockel auf der Hutschiene verschieben und mit weiterem Sockel verbinden 3.
- 4. Riegel der Sockel nach oben schieben 4.
 - ☑ Riegel befestigt Sockel an der Hutschiene und verriegelt sich mit dem links neben ihm liegenden Sockel.
- Montage des Sockels ist abgeschlossen, mit dem Anschluss der Feldleitungen kann begonnen werden.

Sockel ausbauen

Vor dem Ausbau des Sockels ist das Modul auszubauen und die Feldleitungen von den Anschlussklemmen zu lösen.

- 1. Blauen Riegel mit Hilfe des Schraubendrehers nach unten drücken 4.
- 2. Sockel von den benachbarten Sockeln lösen 3.
- 3. Sockel ausschwenken 2.
- 4. Sockel anheben und entnehmen 1.

HI 800 656 D Rev. 1.01 Seite 23 von 42

4 Inbetriebnahme M-COM 010

- 1 Aufsetzen/Anheben
- 2 Einschwenken/Ausschwenken

Bild 6: Montage Sockel exemplarisch

- 3 Sockel verbinden/Sockel trennen
- 4 Riegel schließen/Riegel öffnen

Seite 24 von 42 HI 800 656 D Rev. 1.01

M-COM 01 4 Inbetriebnahme

4.2.2 Einbau und Ausbau eines Moduls

Dieses Kapitel beschreibt den Einbau und Ausbau eines Moduls im M45 System.

Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen.

Modul einbauen

1. Modul auf den Sockel aufstecken, bis die Verriegelung einrastet.

Modul ausbauen

- 1. Riegel 1 bis zum Anschlag nach hinten drücken. Verriegelung ist gelöst.
- 2. Modul aus dem Sockel herausziehen.

Riegel zum Lösen des Moduls

Bild 7: Einbau und Ausbau des Moduls exemplarisch

4.3 Konfiguration

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen diese mit globalen Variablen verbunden werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

HI 800 656 D Rev. 1.01 Seite 25 von 42

4 Inbetriebnahme M-COM 010

4.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter:

Bezeichnung	Beschreibung
Name	Name des Kommunikationsmoduls.
Max. μP-Budget für HH- Protokoll aktivieren	 Aktiviert: Limit der CPU-Last aus dem Feld <i>Max. μP-Budget für HH-Protokoll [%]</i> übernehmen. Deaktiviert: Kein Limit der CPU-Last für IP-Datenverkehr verwenden. Standardeinstellung: Deaktiviert
Max. µP-Budget für HH- Protokoll [%]	Maximale CPU-Last des Moduls, welche bei der Abarbeitung des IP-Datenverkehrs produziert werden darf.
	Die maximale Last muss unter allen verwendeten Protokollen aufgeteilt werden, welche dieses Kommunikationsmodul benutzen.
IP-Adresse	IP-Adresse der Ethernet-Schnittstelle Standardwert: 192.168.0.99
Subnet-Mask	32-Bit-Adressmaske zur Unterteilung einer IP-Adresse in Netzwerk- und Host-Adresse. Standardwert: 255.255.252.0
Standard-Schnittstelle	Aktiviert: Schnittstelle wird als Standardschnittstelle für den System-Login verwendet. Standardeinstellung: Deaktiviert
Default-Gateway	IP-Adresse des Default Gateway Standardwert: 0.0.0.0
ARP Aging Time [s]	Ein COM Modul speichert die MAC-Adressen seiner Kommunikationspartner in einer MAC-/IP Adresse Zuordnungstabelle (ARP-Cache).
	Die MAC-Adresse im ARP-Cache bleibt erhalten, wenn während einer Zeitspanne von 1x2x ARP Aging Time Nachrichten vom Kommunikationspartner eintreffen. Die MAC-Adresse wird aus dem ARP-Cache gelöscht, wenn
	während einer Zeitspanne von 1x2x ARP Aging Time keine Nachrichten vom Kommunikationspartner eintreffen.
	Der typische Wert für die <i>ARP Aging Time</i> in einem lokalen Netzwerk ist 5300 s. Der Inhalt des ARP-Cache kann vom Anwender nicht ausgelesen werden.
	Wertebereich: 13600 s Standardwert: 60 s
	Hinweis: Bei der Verwendung von Routern oder Gateways ARP Aging Time an die zusätzlichen Verzögerungen für Hin- und Rückweg anpassen (erhöhen).
	Ist die ARP Aging Time zu klein, wird die MAC-Adresse des Kommunikationspartners im ARP-Cache gelöscht und die Kommunikation wird nur verzögert ausgeführt oder bricht ab. Für einen effizienten Einsatz muss die ARP Aging Time > der ReceiveTimeouts der verwendeten Protokolle sein.

Seite 26 von 42 HI 800 656 D Rev. 1.01

M-COM 01 4 Inbetriebnahme

Bezeichnung	Beschreibung
MAC Learning	Mit MAC Learning und ARP Aging Time stellt der Anwender ein, wie schnell eine MAC-Adresse gelernt werden soll.
	 Folgende Einstellungen sind möglich: konservativ (Empfohlen): Wenn sich im ARP-Cache bereits MAC-Adressen von Kommunikationspartnern befinden, so sind diese Einträge für die Dauer von mindestens 1 mal ARP Aging Time bis maximal 2 mal ARP Aging Time verriegelt und können nicht durch andere MAC-Adressen ersetzt werden. Dadurch ist sichergestellt, dass Datenpakete nicht absichtlich oder unabsichtlich auf fremde Netzwerkteilnehmer umgeleitet werden können (ARP spoofing). tolerant: Beim Empfang einer Nachricht wird die IP-Adresse in der Nachricht mit den Daten im ARP-Cache verglichen und die gespeicherte MAC-Adresse im ARP-Cache sofort mit der MAC-Adresse aus der Nachricht überschrieben. Die Einstellung Tolerant ist zu verwenden, wenn die Verfügbarkeit der Kommunikation wichtiger ist als der sichere
	Zugriff (authorized access) auf die Steuerung. Standardeinstellung: konservativ
IP Forwarding	Funktion wird nicht unterstützt, muss deaktiviert bleiben. Standardeinstellung: Deaktiviert
ICMP Mode	Das Internet Control Message Protocol (ICMP) ermöglicht den höheren Protokollschichten, Fehlerzustände auf der Vermittlungsschicht zu erkennen und die Übertragung der Datenpakete zu optimieren. Meldungstypen des Internet Control Message Protocol (ICMP), die von dem CPU-Modul unterstützt werden: keine ICMP-Antworten Alle ICMP-Befehle sind abgeschaltet. Dadurch wird eine hohe Sicherheit gegen Sabotage erreicht, die über das Netzwerk erfolgen könnte. Echo Response Wenn Echo Response eingeschaltet ist, antwortet der Knoten auf einen Ping-Befehl. Es ist somit feststellbar, ob ein Knoten erreichbar ist. Die Sicherheit ist immer noch hoch. Host unerreichbar Für den Anwender nicht von Bedeutung. Nur für Tests beim Hersteller. alle implementierten ICMP-Antworten Alle ICMP-Befehle sind eingeschaltet. Dadurch wird eine genauere Fehlerdiagnose bei Netzwerkstörungen erreicht.

Tabelle 11: Konfigurationsparameter, Register Modul

HI 800 656 D Rev. 1.01 Seite 27 von 42

4 Inbetriebnahme M-COM 010

4.3.2 Register **Routings**

Das Register **Routings** enthält die Routing-Tabelle. Diese ist bei neu eingefügten Modulen leer. Es sind maximal 8 Routing-Einträge möglich.

Bezeichnung	Beschreibung
Name	Bezeichnung der Routing-Einstellung
IP Adresse	Ziel IP-Adresse des Kommunikationspartners (bei direktem Host-Routing) oder Netzwerkadresse (bei Subnet-Routing). Wertebereich: 0.0.0.0255.255.255.255 Standardwert: 0.0.0.0
Subnet Mask	Definiert Ziel-Adressbereich für einen Routing-Eintrag. 255.255.255.255 (bei direktem Host-Routing) oder Subnet-Maske des adressierten Subnetzes. Wertebereich: 0.0.0.0255.255.255.255 Standardwert: 255.255.252.0
Gateway	IP-Adresse des Gateways zum adressierten Netzwerk. Wertebereich: 0.0.0.0255.255.255.255 Standardwert: 0.0.0.1

Tabelle 12: Routing Parameter

4.3.3 Register Ethernet-Switch

Bezeichnung	Beschreibung
Name	Nummer des Ports wie Gehäuseaufdruck; pro Port darf nur eine Konfiguration vorhanden sein.
	Wertebereich: 14
Speed [MBit/s]	10: Datenrate 10 Mbit/s
	100: Datenrate 100 Mbit/s
	Autoneg: Automatische Einstellung der Baudrate
	Standardwert: Autoneg
Flow-Control	Vollduplex: Kommunikation in beide Richtungen gleichzeitig
	Halbduplex: Kommunikation in eine Richtung
	Autoneg: Automatische Kommunikationssteuerung
	Standardwert: Autoneg
Autoneg auch bei festen	Das Advertising (Übermitteln der Speed und Flow-Control Eigenschaften) wird auch bei fest eingestellten Werten von Speed und Flow-Control durchgeführt.
Werten	Hierdurch erkennen andere Geräte, deren Ports auf <i>Autoneg</i> eingestellt sind, die Einstellung der HIMatrix Ports.
Limit	Eingehende Multicast- und/oder Broadcast-Pakete limitieren.
	Aus: Keine Limitierung
	Broadcast: Broadcast limitieren (128 kbit/s)
	Multicast und Broadcast: Multicast und Broadcast limitieren (1024 kbit/s)
	Standardwert: Broadcast

Tabelle 13: Ethernet-Switch-Parameter

Seite 28 von 42 HI 800 656 D Rev. 1.01

M-COM 01 4 Inbetriebnahme

4.3.4 Register **VLAN** (port-based VLAN)

Konfiguriert die Verwendung von port-based VLAN.

i Soll VLAN unterstützt werden, muss port-based VLAN abgeschaltet sein, so dass jeder Port mit jedem anderen Port des Switches kommunizieren kann.

Für jeden Port eines Switches kann eingestellt werden, zu welchem anderen Port des Switches empfangene Ethernet Frames gesendet werden dürfen.

Die Tabelle im Register VLAN enthält Einträge, mit denen die Verbindung zwischen zwei Ports aktiv oder inaktiv geschaltet werden kann.

Name	Eth1	Eth2	Eth3	Eth4
Eth1				
Eth2	aktiv			
Eth3	aktiv	aktiv		
Eth4	aktiv	aktiv	aktiv	
COM	aktiv	aktiv	aktiv	aktiv

Tabelle 14: Register VLAN

Standardeinstellung: Alle Verbindungen zwischen den Ports aktiv

4.3.5 Register **LLDP**

LLDP (Link Layer Discovery Protocol) sendet per Multicast in periodischen Abständen Informationen über das eigene Gerät (z. B. MAC-Adresse, Gerätenamen, Portnummer) und empfängt die gleichen Informationen von Nachbargeräten.

Abhängig, ob PROFINET auf dem Kommunikationsmodul konfiguriert ist, werden von LLDP folgende Werte verwendet:

PROFINET auf COM-Modul	ChassisID	TTL (Time to Live)
verwendet	Stationsname	20 s
nicht verwendet	MAC-Adresse	120 s

Tabelle 15: Werte für LLDP

Das Prozessor- und das Kommunikationsmodul unterstützen LLDP auf den Ports Eth1, Eth2, Eth3 und Eth4.

Die folgenden Parameter legen fest, wie der betreffende Port arbeitet:

Aus LLDP ist auf diesem Port deaktiviert

Send LLDP sendet LLDP Ethernet Frames.

empfangene LLDP Ethernet Frames werden

gelöscht, ohne diese zu verarbeiten

Receive LLDP sendet keine LLDP Ethernet Frames, aber

empfangene LLDP Frames werden verarbeitet

Send/Receive LLDP sendet und verarbeitet empfangene LLDP

Ethernet Frames

Standardeinstellung: Aus

HI 800 656 D Rev. 1.01 Seite 29 von 42

4 Inbetriebnahme M-COM 010

4.3.6 Register Mirroring

Konfiguriert, ob das Modul Ethernet-Pakete auf einen Port dupliziert, so dass sie von einem dort angeschlossenen Gerät mitgelesen werden können, z.B. zu Testzwecken.

Die folgenden Parameter legen fest, wie der betreffende Port arbeitet:

Aus Dieser Port nimmt am Mirroring nicht teil.

Egress: Ausgehende Daten dieses Ports werden dupliziert.
Ingress: Eingehende Daten dieses Ports werden dupliziert

Egress/Ingress: Ein- und ausgehende Daten dieses Ports .werden dupliziert.

Dest Port: Duplizierte Daten werden auf diesen Port geschickt.

Standardeinstellung: Aus

4.3.7 Verwendete Netzwerkports für Ethernet-Kommunikation

UDP Ports	Verwendung
123	SNTP (Zeitsynchronisation zwischen PES und Remote I/O, sowie externen Geräten)
502	Modbus Slave (vom Anwender änderbar)
6010	safeethernet und OPC
8000	Programmierung und Bedienung mit SILworX
8001	Konfiguration der Remote I/O durch die PES (SILworX)
34 964	PROFINET Endpointmapper (für Verbindungsaufbau notwendig)
49 152	PROFINET RPC-Server
49 153	PROFINET RPC-Client

Tabelle 16: Verwendete Netzwerkports (UDP Ports)

TCP Ports	Verwendung
502	Modbus Slave (vom Anwender änderbar)
XXX	TCP-SR durch Anwender vergeben

Tabelle 17: Verwendete Netzwerkports (TCP Ports)

Alle oben aufgeführten Ports sind Destination Ports.

Die ComUserTask kann jeden beliebigen Port verwenden, wenn dieser nicht bereits von einem anderen Protokoll belegt ist.

Seite 30 von 42 HI 800 656 D Rev. 1.01

M-COM 01 5 Betrieb

5 Betrieb

Das Modul wird im HIMatrix M45 System betrieben und erfordert keine besondere Überwachung.

Beim Betrieb des Systems ist darauf zu achten, dass die Luftzirkulation ungehindert erfolgen kann.

5.1 Bedienung

Eine Bedienung des Moduls und der HIMatrix M45 während des Betriebs ist nicht erforderlich. Ziehen und Stecken von Modulen im Betrieb ist nicht erlaubt!

5.2 Diagnose

Einen ersten Überblick über den Betriebszustand zeigen die LEDs, siehe Kapitel 3.4.5.

Die Diagnosehistorie des M45 Systems kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden.

HI 800 656 D Rev. 1.01 Seite 31 von 42

6 Instandhaltung M-COM 010

6 Instandhaltung

Im normalen Betrieb sind keine Instandhaltungsmaßnahmen erforderlich.

Bei Störungen das Modul durch einen identischen Typ, oder einen von HIMA zugelassenen Ersatztyp austauschen.

Der Austausch von Modulen darf nur im spannungslosen Zustand erfolgen.

Die Reparatur des Moduls darf nur durch den Hersteller erfolgen.

6.1 Fehler

Zur Fehlerreaktion der Eingänge siehe Kapitel 3.1.1.

Entdecken die Prüfeinrichtungen Fehler im Prozessorsystem, findet ein Reboot statt. Tritt innerhalb einer Minute nach dem Neustart ein weiterer interner Fehler auf, dann geht das Modul in den Zustand STOP_INVALID und bleibt in diesem Zustand. Das bedeutet, dass das Modul keine Eingangssignale mehr verarbeitet und die Ausgänge in den sicheren, stromlosen Zustand übergehen. Die Auswertung der Diagnose gibt Hinweise auf die Ursache.

6.2 Instandhaltungsmaßnahmen

Für das Modul sind selten folgende Maßnahmen erforderlich:

- Betriebssystem laden, falls eine neue Version benötigt wird
- Wiederholungsprüfung durchführen

6.2.1 Betriebssystem laden

Im Zuge der Produktpflege entwickelt HIMA das Betriebssystem der Module weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um die aktuelle Version des Betriebssystems auf das Modul zu laden.

Zuvor anhand der Release-Notes Auswirkungen der Betriebssystem-Version auf das System prüfen!

Das Betriebssystem wird mit Hilfe von SILworX geladen. Dazu muss das HIMatrix M45 System im Zustand STOPP sein. Andernfalls System stoppen.

Weitere Informationen siehe Systemhandbuch HI 800 650 D.

Der aktuelle Versionsstand des Moduls findet sich im Control-Panel von SILworX. Das Typenschild zeigt den Versionsstand bei Auslieferung, siehe Kapitel 3.3.

6.2.2 Wiederholungsprüfung

HIMatrix M45 Module müssen alle 10 Jahre einer Wiederholungsprüfung (Proof-Test) unterzogen werden. Weitere Informationen im Sicherheitshandbuch HI 800 652 D.

Seite 32 von 42 HI 800 656 D Rev. 1.01

M-COM 01 7 Außerbetriebnahme

7 Außerbetriebnahme

Die Außerbetriebnahme des Moduls erfolgt im spannungslosen Zustand. Dazu sind folgende Schritte notwendig:

- 1. HIMatrix M45 System stoppen.
- 2. System von der Spannungsversorgung trennen.
- 3. Modul vom Sockel abziehen.

HI 800 656 D Rev. 1.01 Seite 33 von 42

8 Transport M-COM 010

8 Transport

Zum Schutz vor mechanischen Beschädigungen HIMatrix Komponenten in Verpackungen transportieren.

HIMatrix Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

Seite 34 von 42 HI 800 656 D Rev. 1.01

M-COM 01 9 Entsorgung

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter HIMatrix Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

HI 800 656 D Rev. 1.01 Seite 35 von 42

9 Entsorgung M-COM 010

Seite 36 von 42 HI 800 656 D Rev. 1.01

M-COM 01 Anhang

Anhang

Glossar

Begriff	Beschreibung
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen zu Hardware-Adressen
Al	Analog Input, analoger Eingang
AO	Analog Output, analoger Ausgang
COM	Kommunikationsmodul
CRC	Cyclic Redundancy Check, Prüfsumme
DI	Digital Input, digitaler Eingang
DO	Digital Output, digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	ElectroStatic Discharge, elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
FTZ	Fehlertoleranzzeit
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
MAC-Adresse	Hardware-Adresse eines Netzwerkanschlusses (Media Access Control)
PADT	Programming and Debugging Tool (nach IEC 61131-3), PC mit SILworX
PE	Protective Earth: Schutzerde
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmierbares Elektronisches System
R	Read: Systemvariable/signal liefert Wert, z. B. an Anwenderprogramm
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Es seien zwei Eingangsschaltungen an dieselbe Quelle (z. B. Transmitter) angeschlossen. Dann wird eine Eingangsschaltung <i>rückwirkungsfrei</i> genannt, wenn sie die Signale der anderen Eingangsschaltung nicht verfälscht.
R/W	Read/Write (Spaltenüberschrift für Art von Systemvariable/signal)
SB	Systembus
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction, Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug für HIMatrix Systeme
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Systemvariable wird mit Wert versorgt, z. B. vom Anwenderprogramm
W _S	Scheitelwert der Gesamt-Wechselspannungskomponente
Watchdog (WD)	Zeitüberwachung für Module oder Programme. Bei Überschreiten der Watchdog-Zeit geht das Modul oder Programm in den Fehlerstopp.
WDZ	Watchdog-Zeit

HI 800 656 D Rev. 1.01 Seite 37 von 42

Anhang M-COM 010

Abbildu	ıngsverzeichnis	
Bild 1:	Typenschild exemplarisch	11
Bild 2:	Blockschaltbild	14
Bild 3:	Frontansicht exemplarisch	15
Bild 4:	Codierung Modul und Sockel exemplarisch	19
Bild 5:	Sockel M-SO COM 01	22
Bild 6:	Montage Sockel exemplarisch	24
Bild 7:	Einbau und Ausbau des Moduls exemplarisch	25

Seite 38 von 42 HI 800 656 D Rev. 1.01

M-COM 01 Anhang

Tabellenv	rerzeichnis	
Tabelle 1:	Zusätzlich geltende Dokumente	5
Tabelle 2:	Umgebungsbedingungen	8
Tabelle 3:	M-COM 010 x Kommunikationsmodule	10
Tabelle 4:	Eigenschaften Ethernet-Schnittstellen	12
Tabelle 5:	Eigenschaften Feldbus-Schnittstellen	13
Tabelle 6:	Blinkfrequenzen der Leuchtdioden	15
Tabelle 7:	Modul-Statusanzeige	16
Tabelle 8:	Ethernetanzeige	17
Tabelle 9:	Produktdaten	18
Tabelle 10:	Codierung Modul und Sockel	20
Tabelle 11:	Konfigurationsparameter, Register Modul	27
Tabelle 12:	Routing Parameter	28
Tabelle 13:	Ethernet-Switch-Parameter	28
Tabelle 14:	Register VLAN	29
Tabelle 15:	Werte für LLDP	29
Tabelle 16:	Verwendete Netzwerkports (UDP Ports)	30
Tabelle 17:	Verwendete Netzwerkports (TCP Ports)	30

HI 800 656 D Rev. 1.01 Seite 39 von 42

Anhang M-COM 010

Index

Blockschaltbild	14	Feldbus-Schnittstellen	13
Diagnose	31	Reaktion in Fehlerfall	10
Ethernetanzeige	17	Sicherheitsfunktion	10
Ethernet-Schnittstellen	12		

Seite 40 von 42 HI 800 656 D Rev. 1.01

HIMA Paul Hildebrandt GmbH
Postfach 1261
68777 Brühl
Tel.: +49 6202 709-0

Fax: +49 6202 709-107