$\begin{array}{c} {\bf Chap.14: Isom\'etries\ d'un\ espace}\\ {\bf euclidien} \end{array}$

Table des matières

1	Ison	nétries	2
	1.1	Groupe orthogonal	2
	1.2	Symétrie orthogonale	4
	1.3	Matrices orthogonales	4
	1.4	Lien entre isométrie et matrice orthogonale	7
2	Description du groupe orthogonal en dimension 2 et 3		
		cription du groupe of thogonal en difficusion 2 et o	8
		Orientation d'un espace vectoriel	_
	2.1		8
	2.1 2.2	Orientation d'un espace vectoriel	8

Dans tout ce chapitre $(E, \langle . | . \rangle)$ désigne un espace euclidien de dimension $n \geq 1$, c'est-à-dire E est un \mathbb{R} -espace vectoriel de dimension finie n et $\langle . | . \rangle$ est un produit scalaire sur E. On notera de plus $\|.\|$ la norme euclidienne associée au produit scalaire $\langle . | . \rangle$.

1 Isométries

1.1 Groupe orthogonal

Définition 1.1. Soit $f \in \mathcal{L}(E)$. On dit que f est une **isométrie** de E si et seulement si f "conserve la norme", c'est-à-dire :

$$\forall \vec{x} \in E, \quad \|f(\vec{x})\| = \|\vec{x}\|$$

Application 1.2. Soit f l'endomorphisme de \mathbb{R}^3 (muni de son produit scalaire canonique) défini par f(x, y, z) = (z, x, y). Montrer que f est une isométrie de \mathbb{R}^3 .

Proposition 1.3. Soit $f \in \mathcal{L}(E)$. f est une isométrie de E si et seulement si f "conserve le produit scalaire", c'est-à-dire :

$$\forall (\vec{x}, \vec{y}) \in E^2, \quad \langle f(\vec{x}) \mid f(\vec{y}) \rangle = \langle \vec{x} \mid \vec{y} \rangle$$

Proposition 1.4. Les affirmations suivantes sont équivalentes :

- 1. f est une isométrie de E;
- 2. f est un endomorphisme de E transformant toute base orthonormée de E en une base orthonormée de E;
- 3. f est un endomorphisme de E et il existe une base orthonormée de E que f transforme en une base orthonormée.

Méthode 1.5. Dans un espace euclidien, pour montrer qu'un endomorphisme est une isométrie on dispose donc pour l'instant de trois méthodes :

• montrer qu'il conserve la norme :

$$\forall \vec{x} \in E, \quad \|f(\vec{x})\| = \|\vec{x}\|;$$

• montrer qu'il conserve le produit scalaire :

$$\forall (\vec{x}, \vec{y}) \in E^2, \quad \langle f(\vec{x}) \mid f(\vec{y}) \rangle = \langle \vec{x} \mid \vec{y} \rangle;$$

• montrer qu'il transforme une base orthonormée (on peut choisir une base ou en prendre une quelconque) en une base orthonormée.

Définition 1.6. L'ensemble de toutes les isométries de E s'appelle le **groupe** orthogonal de E et se note $\mathcal{O}(E)$

Proposition 1.7. Soient f et g deux isométries de E.

- $f \circ g$ est une isométrie de $E.(\mathscr{O}(E)$ est stable par composée.)
- f est un automorphisme de E (c'est-à-dire f est bijectif) et f^{-1} est aussi une isométrie.

Preuve:

Proposition 1.8. Soit f une isométrie de E et F un sous-espace vectoriel de E. Si F est stable par f (c'est-à-dire $f(F) \subset F$) alors F^{\perp} est stable par f.

Preuve:

1.2 Symétrie orthogonale

Définition 1.9. Soit F un sous-espace vectoriel de E.

Comme $E = F \oplus F^{\perp}$ (car E de dimension finie), pour tout $\vec{x} \in E$, il existe un unique vecteur $\vec{y} \in F$ et un unique vecteur $\vec{z} \in F^{\perp}$ tels que $\vec{x} = \vec{y} + \vec{z}$. L'application s_F qui à tout vecteur \vec{x} de E associe le vecteur $\vec{y} - \vec{z}$ s'appelle la symétrie orthogonale par rapport à F.

Proposition 1.10. Soit F un sous-espace vectoriel de E et s_F la symétrie orthogonale par rapport à F.

Alors s_F est une symétrie vectorielle, c'est-à-dire s_F est un endomorphisme de E tel que $s_F \circ s_F = \mathrm{id}_E$.

Remarque 1.11. Pas de démonstration détaillée ici, mais il suffit de remarquer que l'application s_F définie ci-dessus est une application linéaire et on voit rapidement que :

$$s_F(s_F(\vec{x})) = s_F(\vec{y} - \vec{z}) = \vec{y} - (-\vec{z}) = \vec{x}.$$

Proposition 1.12. Soit F un sous-espace vectoriel de E et s_F la symétrie orthogonale par rapport à F. Alors s_F est une isométrie de E.

Preuve:

Définition 1.13. Soit F un hyperplan de E (c'est-à-dire $\dim(F) = \dim(E) - 1$).

Alors la symétrie orthogonale par rapport à F s'appelle aussi **la réflexion** par rapport à F.

1.3 Matrices orthogonales

Définition 1.14. Soit $M \in \mathcal{M}_n(\mathbb{R})$. On dit que M est une matrice orthogonale si et seulement si elle vérifie

$$M^T \times M = I_n$$

où I_n désigne la matrice identité.

Application 1.15. Montrer que $A=\begin{pmatrix}0&0&1\\-1&0&0\\0&1&0\end{pmatrix}$ est une matrice orthogonale.

Définition 1.16. L'ensemble de toutes les matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ s'appelle le groupe orthogonal d'ordre n et se note $\mathcal{O}(n)$ ou $\mathcal{O}_n(\mathbb{R})$.

Proposition 1.17. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Les affirmations suivantes sont équivalentes :

- 1. M est une matrice orthogonale;
- 2. les colonnes de M forment une base orthonormée de \mathbb{R}^n muni de son produit scalaire canonique;
- 3. les lignes de M forment une base orthonormée de \mathbb{R}^n muni de son produit scalaire canonique;
- 4. M est inversible et $M^{-1} = M^T$.

Méthode 1.18. Voici les méthodes dont nous disposons pour l'instant pour montrer qu'une matrice carrée est orthogonale :

- Vérifier que l'on a $M^T \times M = I_n$.
- Vérifier que les colonnes (ou les lignes) de M, vues comme des nuplets, sont orthogonales deux à deux et sont toutes de norme 1. (Les colonnes formeront donc une famille orthonormée, donc libre, de n vecteurs de \mathbb{R}^n , par conséquent une BON.)
- Si on a déjà calculé M^{-1} , remarquer que $M^{-1} = M^T$. (Assez rarement utilisée)

Remarque 1.19. Pour une matrice orthogonale $M^{-1} = M^T$ donc :

$$M^T \times M = M \times M^T = I_n.$$

Application 1.20. Montrer que la matrice $\frac{1}{3}\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$ est une matrice orthogonale en en déduire M^{-1} .

Proposition 1.21. Soit \mathscr{B} une base orthonormée de E.

La base \mathscr{B}' est une base orthonormée de E si et seulement si la matrice de passage de \mathscr{B} à \mathscr{B}' est une matrice orthogonale.

- Méthode 1.22. Cette propriété nous donne une méthode supplémentaire pour montrer qu'une matrice est orthogonale : si on remarque que la matrice que l'énoncé nous donne est la matrice de passage entre deux bases orthonormée alors on peut conclure que cette matrice est orthogonale.
 - Pour une matrice de passage entre deux bases orthonormées, pas besoin de gros calculs pour avoir P^{-1} :

$$P^{-1} = P^T$$

• Cette propriété nous donne aussi une méthode supplémentaire pour montrer qu'une base \mathcal{B}' est orthonormée : si on sait que \mathcal{B} est une base orthonormée et que la matrice de passage de \mathcal{B} à \mathcal{B}' est orthogonale alors on peut conclure que \mathcal{B}' est une base orthonormée.

Proposition 1.23. Soit M une matrice orthogonale. Alors:

$$\det(M) \in \{-1; 1\}.$$

Preuve:

6

Définition 1.24. L'ensemble des matrices orthogonales de déterminant 1 s'appelle **le groupe spécial orthogonal d'ordre** n et se note $\mathscr{SO}(n)$ ou $\mathscr{SO}_n(\mathbb{R})$.

L'ensemble des matrices orthogonales de déterminant -1 se note $\mathcal{O}^-(n)$.

- **Proposition 1.25.** Si M et N sont deux matrices orthogonales d'ordre n, alors MN est une matrice orthogonale d'ordre n.($\mathcal{O}(n)$ est stable par produit)
 - Si M est une matrices orthogonale d'ordre n, alors M^{-1} est une matrice orthogonale d'ordre n. ($\mathcal{O}(n)$ est stable par passage à l'inverse
 - Si M et N appartiennent à $\mathcal{SO}(n)$ alors $MN \in \mathcal{SO}(n)$ et $M^{-1} \in \mathcal{SO}(n) \cdot (\mathcal{SO}(n))$ est stable par produit et passage a l'inverse)
 - Si M appartient à $\mathcal{O}^-(n)$ alors $M^{-1} \in \mathcal{O}^-(n) \cdot (\mathcal{O}^-(n))$ est stable par passage à l'inverse)

Remarque 1.26. $\mathcal{O}^-(n)$ n'est pas stable par produit : si $M \in \mathcal{O}^-(n)$ et $N \in \mathcal{O}^-(n)$ alors

$$\det(MN) = \det(M) \det(N) = (-1) \times (-1) = 1$$

, donc $MN \in \mathscr{SO}(n)$.

1.4 Lien entre isométrie et matrice orthogonale

Proposition 1.27. Soit f un endomorphisme de E. Les affirmations suivantes sont équivalentes :

- 1. f est une isométrie;
- 2. il existe une base orthonormée dans laquelle la matrice associée à f est une matrice orthogonale;
- 3. la matrice associée à f dans toute base orthonormée est une matrice orthogonale.

Remarque 1.28. Attention il est très important que la matrice associée à f soit relative à une base orthonormée!

Méthode 1.29. Cette propriété nous donne une méthode supplémentaire pour montrer qu'un endomorphisme donné est une isométrie : il suffit de montrer que sa matrice dans une base orthonormée est une matrice orthogonale.

Corollaire 1.30. Soit $f \in \mathcal{O}(E)$. Alors $\det(f) \in \{-1, 1\}$.

Définition 1.31. • L'ensemble des isométries vectorielles dont le déterminant vaut 1 se note $\mathscr{SO}(E)$ et est appelé groupe spécial orthogonal ou encore groupe des isométries positives.

- Une isométrie positive s'appelle aussi une rotation.
- L'ensemble des isométries vectorielles dont le déterminant vaut -1 (aussi appelés isométries négatives) se note $\mathcal{O}^-(\mathbf{E})$.

Proposition 1.32. Soit $f \in \mathcal{L}(E)$, \mathcal{B} une base orthonormée de E et $A = \mathcal{M}_{\mathcal{B}}(f)$.

Si A est une matrice orthogonale et symétrique alors f est la symétrie orthogonale par rapport à $\ker(f - \mathrm{id}_E)$.

Preuve:

• Comme A est une matrice orthogonale et symétrique on a : $A \times A = A^T \times A = I_n$.

Ainsi on a $f \circ f = \mathrm{id}_E$, ce qui signifie que f est une symétrie vectorielle.

• Un symétrie vectorielle est une symétrie par rapport à $\ker(f - \mathrm{id}_E)$ et parallèlement à $\ker(f + \mathrm{id}_E)$.

Pour montrer que f est une symétrie orthogonale il nous reste à montrer que $\ker(f - \mathrm{id}_E)$ et $\ker(f + \mathrm{id}_E)$ sont orthogonaux.

Soit $\vec{x} \in \ker(f - \mathrm{id}_E)$ et $\vec{y} \in \ker(f + \mathrm{id}_E)$. On a donc $f(\vec{x}) = \vec{x}$ et $f(\vec{y}) = -\vec{y}$. Cela nous permet d'écrire :

$$\langle \vec{x} \mid \vec{y} \rangle = \langle f(\vec{x}) \mid -f(\vec{y}) \rangle = -\langle f(\vec{x}) \mid f(\vec{y}) \rangle = -\langle \vec{x} \mid \vec{y} \rangle$$

Pour la dernière égalité on a utilisé le fait que f est une isométrie car sa matrice dans une base orthonormée est orthogonale.

On a donc $\langle \vec{x} \mid \vec{y} \rangle = -\langle \vec{x} \mid \vec{y} \rangle$ et ainsi $\langle \vec{x} \mid \vec{y} \rangle = 0$.

On a donc bien montré que $\ker (f - id_E) \perp \ker (f + id_E)$.

En conclusion on a bien montré que f est la symétrie orthogonale par rapport à $\ker(f - \mathrm{id}_E)$.

Remarque 1.33. Attention!!! Si la matrice de f est uniquement symétrique on ne peut pas dire que f est une symétrie!.

2 Description du groupe orthogonal en dimension 2 et 3

2.1 Orientation d'un espace vectoriel

Définition 2.1. On considère un espace euclidien et on choisit une base orthonormée \mathcal{B} que l'on appelle base de référence.

Un base orthonormée \mathscr{B}' est alors dite **directe** lorsque $\det(P_{\mathscr{B},\mathscr{B}'}) > 0$.

Dans le cas contraire la base \mathscr{B}' est dite **rétrograde** ou **indirecte**.

Lorsqu'on choisit la base de référence on dit que l'on oriente E.

Remarque 2.2. Lorsque \mathscr{B} et \mathscr{B}' sont deux bases orthonormées directes, $P_{\mathscr{B},\mathscr{B}'}$ est une matrice orthogonale donc son déterminant vaut 1 et c'est donc une matrice de $\mathscr{SO}(n)$.

 $Si \mathcal{B}'$ est une base rétrograde alors :

$$\det\left(P_{\mathscr{B},\mathscr{B}'}\right) = -1.$$

2.2 En dimension 2

Dans toute cette partie E désigne un espace euclidien orienté de dimension 2 .

Théorème 2.3. • Soit $A \in \mathcal{SO}(2)$. Alors il existe θ tel que :

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

• Soit $A \in \mathcal{O}^-(2)$. Alors il existe θ tel que :

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

Preuve:

Remarque 2.4. On note souvent $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ les matrices de $\mathscr{SO}(2)$.

Proposition 2.5.

Soient θ et α deux réels. Alors :

$$R(\theta) \times R(\alpha) = R(\theta + \alpha)$$
 et $R^{-1}(\theta) = R(-\theta)$.

Preuve:

Théorème 2.6. Soit $f \in \mathscr{SO}(E)$. Alors il existe $\theta \in \mathbb{R}$ tel que dans n'importe quelle base orthonormée directe de E on a:

$$\mathcal{M}(f) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} = R(\theta)$$

On dit alors que f est la **rotation d'angle** θ .

Remarque 2.7.

Il est important de comprendre que la valeur de θ ne change pas même si on change de base orthonormé directe.

Preuve:

Théorème 2.8. Soit $f \in \mathcal{O}^-(E)$. Alors il existe une base orthonormée de E, notée \mathcal{B} , telle que :

$$\mathscr{M}_{\mathscr{B}}(f) = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

f est donc la symétrie orthogonale par rapport à $\ker(f - id_E)$.

Remarque 2.9. Dans une base orthonormée quelconque de E la matrice de $f \in \mathscr{O}^-(E)$ sera de la forme $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$ avec θ qui changera en fonction de la base choisie.

Le théorème affirme qu'en choisissant bien la base orthonormée la matrice de f sera de la forme $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Méthode 2.10. Étude d'une matrice de $\mathcal{O}(2)$

On dispose d'une matrice $A \in \mathcal{M}_2(\mathbb{R})$ et on note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

L'énoncé nous demande de déterminer la nature et les éléments caractéristiques de f.

- 1. Vérifier que A est une matrice orthogonale : les colonnes forment une famille orthonormée ou les lignes forment une famille orthonormée ou encore $A^TA = I_2$.
- 2. Nature de f :
 - (a) Si A est une matrice symétrique alors f est une symétrie orthogonale.
 - (b) Si A n'est pas une matrice symétrique f est une rotation vectorielle.
- 3. **Éléments caractéristiques :** on ne traite que le point correspondant à la nature trouvée pour f.
 - (a) On cherche les invariants de f:

$$f((x,y)) = (x,y) \Leftrightarrow A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \dots$$

 $Donc \ker (f - id_E) = \dots$

- (b) Il nous faut l'angle de la rotation : $on \ sait \ que \ A = \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array} \right) \ donc \ on \ peut \ trouver \ \theta.$
- 4. Conclusion : encore une fois on ne prend en compte que le point correspondant à la nature trouvée pour f.
 - (a) f est la symétrie orthogonale par rapport à... (on met ce que l'on a trouvé pour les invariants de f)
 - (b) f est la rotation vectorielle d'angle ... (on met ce que l'on a trouvé pour θ)

Application 2.11. Déterminer la nature et les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^2 dont la matrice dans la base canonique est :

$$A = \frac{1}{5} \left(\begin{array}{cc} 3 & 4 \\ 4 & -3 \end{array} \right).$$

Application 2.12. Déterminer la nature et les éléments caractéristiques de l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est :

$$B = \frac{1}{5} \left(\begin{array}{cc} 4 & 3 \\ -3 & 4 \end{array} \right).$$

2.3 En dimension 3

Dans cette partie E désigne un espace euclidien orienté de dimension 3.

Théorème 2.13. • Soit $f \in \mathcal{SO}(E)$. Alors il existe une base orthonormée directe $\mathcal{B} = (e_1, e_2, e_3)$ et un réel θ tels que :

$$\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & -\sin(\theta)\\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

On dit que f est la **rotation d'axe dirigé par** e_1 **d'angle** θ .

• Soit $f \in \mathcal{O}^-(E)$. Alors il existe une base orthonormée directe $\mathscr{B} = (e_1, e_2, e_3)$ et un réel θ tels que :

$$\mathcal{M}_{\mathscr{B}}(f) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

f est alors la composée de la rotation d'axe dirigé par e_1 d'angle θ et de la symétrie orthogonale par rapport à $(\text{vect}\,(e_1))^{\perp}$.

Remarque 2.14.

- Lorsque $f \in \mathscr{SO}(E)$ et $\theta = \pi, f$ est la symétrie orthogonale par rapport à la droite vectorielle vect (e_1) .
- Lorsque $f \in \mathcal{O}^-(E)$ et $\theta = 0$, f est tout simplement la symétrie orthogonale par rapport au plan $(Vect\ (e_1))^{\perp}$.
- Lorsque $f \in \mathcal{O}^-(E)$ et $\theta = \pi$, on a $\mathscr{M}_{\mathscr{B}}(f) = -I_3$ et donc $f = -id_E$.

Théorème 2.15. Soit $A \in \mathcal{O}(3)$. Alors il existe une matrice orthogonale P telle que :

$$P^{T}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \quad ou \quad P^{T}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Méthode 2.16. Méthode : Étude d'une matrice de $\mathcal{O}(3)$ On dispose d'une matrice $A \in \mathcal{M}_3(\mathbb{R})$ et on note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. L'énoncé nous demande de déterminer la nature et les éléments caractéristiques de f.

- 1. Vérifier que A est une matrice orthogonale : les colonnes forment une famille orthonormée ou les lignes forment une famille orthonormée ou encore $A^TA = I_3$.
- 2. Nature de f:
 - (a) Si la matrice A est symétrique f est une symétrie orthogonale.
 - (b) Si A n'est pas une matrice symétrique et $A \in \mathscr{SO}(3)$ (pour déterminer cela deux méthodes : on vérifie que $\det(A) = 1$ ou que $C_1 \wedge C_2 = C_3$) alors f est une rotation vectorielle.
 - (c) Si A n'est pas une matrice symétrique et $A \in \mathcal{O}^-(3)$ (pour déterminer cela deux méthodes : on vérifie que $\det(A) = -1$ ou que $C_1 \wedge C_2 = -C_3$) alors f est la composée d'une rotation vectorielle et d'une symétrie orthogonale.
- 3. Éléments caractéristiques :

on ne traite que le point correspondant à la nature trouvée pour f.

(a) On cherche les invariants de f:

$$f((x,y,z)) = (x,y,z) \Leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \dots$$

 $Donc \ker (f - id_E) = \dots$

(b) Il nous faut dans ce cas l'axe de la rotation et l'angle.

ullet Pour trouver l'axe on cherche les invariants de f:

$$f((x, y, z)) = (x, y, z) \Leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \dots$$

 $Donc \ker (f - id_E) = \dots = \operatorname{vect}(\vec{u}).$

- Pour trouver l'angle on utilise deux informations : On sait que $\operatorname{tr}(A) = 1 + 2\cos(\theta)$ donc on peut trouver facilement $\cos(\theta)$. On choisit un vecteur \vec{x} non colinéaire à \vec{u} (en pratique on prend souvent un des vecteurs de la base canonique que \mathbb{R}^3) et on admet que $\sin(\theta)$ est du même signe que $\det_{\mathcal{B}c}(\vec{u}, \vec{x}, f(\vec{x}))$ Avec les informations sur $\cos(\theta)$ et $\sin(\theta)$ on peut donner θ (à 2π près évidemment...)
- (c) Il nous faut ici l'axe de la rotation, l'angle et l'ensemble par rapport auquel on fait la symétrie orthogonale :
 - On applique la méthode précédente à -A: on trouve un axe vect ("u) et un angle θ. La rotation qui compose f est alors la rotation d'axe vect ("u) et d'angle θ + π.
 - La symétrie orthogonale qui compose f est la symétrie orthogonale par rapport à $(\operatorname{vect}(\vec{u}))^{\perp}$.
- 4. Conclusion : on ne traite que le point correspondant à la nature trouvée pour f.
 - (a) f est la symétrie orthogonale par rapport à ... (ce qu'on a trouvé pour les invariants).
 - (b) f est la rotation vectorielle d'axe ... (ce qu'on a trouvé pour les invariants) et d'angle ... (ce qu'on a trouvé pour θ).
 - (c) f est la composée de la la rotation vectorielle d'axe ... (ce qu'on a trouvé pour les invariants de-f) et d'angle ... (ce qu'on a trouvé pour $\theta+\pi$) et de la symétrie orthogonale par rapport à $(\ldots)^{\perp}$ (à la place des pointillés on met les invariants de-f).
- **Remarque 2.17.** Lorsque f est une symétrie orthogonale par rapport à une droite, on dit aussi que f est un demi-tour par rapport à la droite $E_1(f)$.
 - Lorsque f est une symétrie orthogonale par rapport à un plan, on dit aussi que f est une réflexion par rapport au plan $E_1(f)$.

Application 2.18. Déterminer la nature et préciser les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right).$$

Application 2.19. Déterminer la nature et préciser les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \left(\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Application 2.20. Déterminer la nature et préciser les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -\sqrt{2} \end{array} \right).$$

3 Matrices symétriques

On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de son produit scalaire canonique $\langle X \mid Y \rangle = X^T Y$.

Proposition 3.1. Soit A une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. Alors les sous-espaces propres de A sont deux à deux orthogonaux.

Preuve:

Théorème 3.2. Théorème spectral

Soit A une matrice symétrique de $\mathscr{M}_n(\mathbb{R})$.

Alors il existe une matrice P orthogonale et une matrice D diagonale telles que :

$$A = PDP^{-1} = PDP^{T} \iff D = P^{-1}AP = P^{T}AP$$

Autrement dit:

"Toute matrice symétrique réelle est diagonalisable en base orthonormée"

Remarque 3.3. Pour diagonaliser une matrice symétrique en base orthonormée il faut donc faire très attention au choix des vecteurs propres : il faut qu'ils forment une base orthonormée pour que la matrice de passage soit orthogonale.

Application 3.4. On considère la matrice $A = \begin{pmatrix} 5 & -1 & 1 \\ -1 & 1 & -3 \\ 1 & -3 & 1 \end{pmatrix}$.

 $Diagonaliser\ A\ selon\ une\ base\ orthonorm\'ee.$

