Recommender Systems in Large Scale ML

Шугаепов Ильнур

VK.com Performance Advertising Team ilnur.shug@gmail.com

Higher School of Economics, 2020

Recommender Systems

Introduction

RS [16]

Recommender Systems (RSs) are software tools and techniques that provide suggestions for <u>items</u> that are most likely of interest to a particular <u>user</u>

Recommender Systems

Introduction

RS [16]

Recommender Systems (RSs) are software tools and techniques that provide suggestions for <u>items</u> that are most likely of interest to a particular <u>user</u>

Notations

- ► *U* set of subjects (users)
- ► I set of objects (items)
- ▶ $D = \{(u_t, i_t, y_t)\}_{t=1}^m \subset U \times I \times Y$ transactions, where Y set of transactions descriptions

Applications

- E-commerce
 - ▶ *U* clients of online shop
 - ► *I* products (books, movies, music, etc)
 - $ightharpoonup r_{ui} = \mathbb{1}\{u \text{ bought } i\}$

Applications

- E-commerce
 - ▶ *U* clients of online shop
 - ► *I* products (books, movies, music, etc)
 - $ightharpoonup r_{ui} = \mathbb{1}\{u \text{ bought } i\}$
- Social network
 - U users of the site
 - ► *I* posts, communities
 - $ightharpoonup r_{ui} = \mathbb{1}\{u \text{ visited } i\}$

Applications

- E-commerce
 - ▶ *U* clients of online shop
 - ► I products (books, movies, music, etc)
 - $ightharpoonup r_{ui} = \mathbb{1}\{u \text{ bought } i\}$
- Social network
 - ▶ U users of the site
 - ▶ I posts, communities
 - $ightharpoonup r_{ui} = \mathbb{1}\{u \text{ visited } i\}$
- Movies recommendation
 - U clients of the platform
 - ▶ I movies
 - $ightharpoonup r_{ui} = \mathsf{rating}\; u \; \mathsf{gave} \; \mathsf{to} \; i$

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that \boldsymbol{u} interacted with \boldsymbol{i}

Users transactions (feedback) ${\it D}$ can be devided into two types

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that u interacted with i
Gathering		

complexity

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that \boldsymbol{u} interacted with \boldsymbol{i}
Gathering complexity	Hard to collect	Easy to collect

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that \boldsymbol{u} interacted with \boldsymbol{i}
Gathering complexity	Hard to collect	Easy to collect
Amount		

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that \boldsymbol{u} interacted with \boldsymbol{i}
Gathering complexity	Hard to collect	Easy to collect
Amount	Small	Large

Users transactions (feedback) D can be devided into two types

	Explicit	Implicit
r_{ui}	explicit rating for item i by user u	fact (number of times) that \boldsymbol{u} interacted with \boldsymbol{i}
Gathering complexity	Hard to collect	Easy to collect
Amount	Small	Large

Remark

It is straighforward to conver explicit to implicit, for example:

lacksquare if r_{ui} is a movie rating then $p_{ui}=\mathbb{1}\{r_{ui}\geq 3\}$ - implicit feedback

If not stated otherwise we assume explicit feedback

Table of Contents

- 1. Evaluation
- 2. Matrix Completion
- 3. Link Prediction
- 4. Session-based Recommendations
- 5. Learning to Rank
- 6. Resume
- 7. RecSys at VK

Requirements

- System should be able to compute $\rho(u,i), \rho(u,u'), \rho(i,i')$, where ρ similarity (relevance) function
- ▶ Given user u system should be able to rank I according to $\rho(u,\cdot)$

Evaluation Gloal

- We have different formulations of RS problem thus different solutions
- ▶ Main goal is to compare different solutions

Scenario 1

Protocol

- 1. Order all transactions D by time
- 2. Split D into D_{train} / D_{valid} / D_{test} sets by timestamp
- 3. Fit models on D_{train}
- 4. HPO on D_{valid}
- 5. Report resulting metrics on D_{test}

Scenario 1

Protocol

- 1. Order all transactions D by time
- 2. Split D into D_{train} / D_{valid} / D_{test} sets by timestamp
- 3. Fit models on D_{train}
- 4. HPO on D_{valid}
- 5. Report resulting metrics on D_{test}

Problems

- ightharpoonup Cold-start users users which appear only in D_{test} set
- ► Cold-start items items which appear only in D_{test} set

Protocol

- 1. Order all transactions D by time
- 2. Split D into D_{train} / D_{valid} / D_{test} sets by timestamp
- 3. Fit models on D_{train}
- 4. HPO on D_{valid}
- 5. Report resulting metrics on D_{test}

Problems

- ightharpoonup Cold-start users users which appear only in D_{test} set
- Cold-start items items which appear only in D_{test} set

Common solutions

Leave only users and items which appear in all sets

Scenario 2

Protocol

- 1. Split D into set of sessions $S = \{S_u\}_{u \in U}$
- 2. For each user u split S_u into $S_{u,train}, S_{u,valid}, S_{u,test}$ (using timestamp)
- 3. Therefore $D_s = \bigcup_{u \in U} S_{u,s}$ for $s \in \{train, valid, test\}$
- 4. Fit models on D_{train}
- 5. HPO on D_{valid}
- 6. Report resulting metrics on D_{test}

Scenario 2

Protocol

- 1. Split D into set of sessions $S = \{S_u\}_{u \in U}$
- 2. For each user u split S_u into $S_{u,train}, S_{u,valid}, S_{u,test}$ (using timestamp)
- 3. Therefore $D_s = \bigcup_{u \in U} S_{u,s}$ for $s \in \{train, valid, test\}$
- 4. Fit models on D_{train}
- 5. HPO on D_{valid}
- 6. Report resulting metrics on D_{test}

Problems

Peeking into the future

Scenario 2

Protocol

- 1. Split D into set of sessions $S = \{S_u\}_{u \in U}$
- 2. For each user u split S_u into $S_{u,train}, S_{u,valid}, S_{u,test}$ (using timestamp)
- 3. Therefore $D_s = \bigcup_{u \in U} S_{u,s}$ for $s \in \{train, valid, test\}$
- 4. Fit models on D_{train}
- 5. HPO on D_{valid}
- 6. Report resulting metrics on D_{test}

Problems

Peeking into the future

Common solutions

Use previous scenario instead

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \ldots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u = \{r_1, r_2, \dots, r_{Q_u}\}$, in order of decreasing relevance

Шугаепов И. (VK.com)

https://en.wikipedia.org/wiki/Evaluation measures (information retrieval)

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \ldots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u = \{r_1, r_2, \dots, r_{Q_u}\}$, in order of decreasing relevance

Metric	Definition	Notes
Precision@k	$rac{1}{ U }\sum_{u\in U}rac{1}{k}\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (# of recommended items @k)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \ldots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u=\{r_1,r_2,\ldots,r_{Q_u}\}$, in order of decreasing relevance

Metric	Definition	Notes
Precision@k	$rac{1}{ U }\sum_{u\in U}rac{1}{k}\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (# of recommended items @k)
Recall@k	$rac{1}{ U }\sum_{u\in U}rac{1}{ extstyle D_u }\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (total # of relevant items)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \ldots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u=\{r_1,r_2,\ldots,r_{Q_u}\}$, in order of decreasing relevance

Metric	Definition	Notes
Precision@k	$rac{1}{ U }\sum_{u\in U}rac{1}{k}\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (# of recommended items @k)
Recall@k	$rac{1}{ U }\sum_{u\in U}rac{1}{ extsf{D}_u }\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (total # of relevant items)
HR@k	$\frac{1}{ U }\sum_{u\in U}\mathbb{1}\{R_{u,1\colon k}\cap D_u eq\emptyset\}$	(# of times top k contains relevant) / (# of users)

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \ldots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u=\{r_1,r_2,\ldots,r_{Q_u}\}$, in order of decreasing relevance

Metric	Definition	Notes
Precision@k	$rac{1}{ U }\sum_{u\in U}rac{1}{k}\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (# of recommended items @k)
Recall@k	$rac{1}{ U }\sum_{u\in U}rac{1}{ \mathcal{oldsymbol{D}}_u }\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (total # of relevant items)
HR@k	$rac{1}{ U }\sum_{u\in U}\mathbb{1}\{R_{u,1\colon k}\cap D_u eq\emptyset\}$	(# of times top k contains relevant) / (# of users)
MAP	$rac{1}{ U } \sum_{u \in U} rac{1}{N_u} \sum_{i=1}^{Q_u} rac{1}{i} \mathbb{1} \{ r_i \in D_u \}$	how many of the recommended documents are in the set of true relevant documents

¹https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

- For each user u we have a set of N_u ground truth relevant items $D_u = \{i_1, i_2, \dots, i_{N_u}\}$ and
- List of Q_u recommended items (according to $\rho(u,\cdot)$) $R_u=\{r_1,r_2,\ldots,r_{Q_u}\}$, in order of decreasing relevance

Metric	Definition	Notes
Precision@k	$rac{1}{ U }\sum_{u\in U}rac{1}{k}\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (# of recommended items @k)
Recall@k	$rac{1}{ U }\sum_{u\in U}rac{1}{ \mathcal{D}_u }\sum_{i=1}^{\min(k,Q_u)}\mathbb{1}\{r_i\in D_u\}$	(# of recommended items @k that are relevant) / (total # of relevant items)
HR@k	$\frac{1}{ U } \sum_{u \in U} \mathbb{1} \{ R_{u,1: k} \cap D_u \neq \emptyset \}$	(# of times top k contains relevant) / (# of users)
MAP	$rac{1}{ U }\sum_{u\in U}rac{1}{N_u}\sum_{i=1}^{Q_u}rac{1}{i}\mathbb{1}\{r_i\in D_u\}$	how many of the recommended documents are in the set of true relevant documents
NDCG		

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)

Metrics Remarks

- Precision@k, Recall@k, HR@k the order of the recommendations is not taken into account
- MAP, NDCG metric takes into account the order of the recommendations

- Precision@k, Recall@k, HR@k the order of the recommendations is not taken into account
- MAP, NDCG metric takes into account the order of the recommendations

Q: Why not to use ROC AUC?

Table of Contents

- 1. Evaluation
- Matrix Completion
 Formulation
 Singular Value Decomposition
 Alternating Least Squares
 Large Scale Matrix Factorization
- 3. Link Prediction
- 4. Session-based Recommendations
- Learning to Rank
- 6. Resume
- 7. RecSys at VK

Aggregated data:

- $ightharpoonup R = (r_{ui})_{u \in U, i \in I}$ cross-tabulation matrix, where
- $r_{ui} = agg\{(u_t, i_t, y_t) \in D \mid u_t = u \land i_t = i\}$

Aggregated data:

- $ightharpoonup R = (r_{ui})_{u \in U, i \in I}$ cross-tabulation matrix, where
- $ightharpoonup r_{ui} = agg\{(u_t, i_t, y_t) \in D \mid u_t = u \land i_t = i\}$

Task:

Fill missing values r_{ui}

Aggregated data:

- $ightharpoonup R = (r_{ui})_{u \in U, i \in I}$ cross-tabulation matrix, where
- ► $r_{ui} = agg\{(u_t, i_t, y_t) \in D \mid u_t = u \land i_t = i\}$

Task:

ightharpoonup Fill missing values r_{ui}

Examples of r_{ui} :

- rating from user u to movie i
- number of times user u visited page i

Popular Solutions

- Content-based methods
- Collaborative filtering
 - User/Item based
 - Matrix Factorizations (SVD, PMF [12], ALS [8, 9])
- ► Neural Architectures (NCF [7], CB2CF [1])

Definition (Latent Factor Model via Matrix Factorization)

Given data D, our goal is to find matrices $P=(p_{ut})_{|U|\times |T|}$ and $Q=(q_{it})_{|I|\times |T|}$, where T - set of latent factors ($|T|\ll |U|,|T|\ll |I|$) such that

$$R = P\Delta Q^T,$$

$$\Delta = diag(\pi_1, \dots, \pi_{|T|})$$

Singular Value Decomposition (SVD)

Model

Low-rank approximation

$$R_k \equiv P_k \Sigma_k Q_k^T$$
 : $||R - R_k||_F \to \min$,

where k - rank

Singular Value Decomposition (SVD)

Low-rank approximation

$$R_k \equiv P_k \Sigma_k Q_k^T$$
 : $||R - R_k||_F \to \min$,

where k - rank

Remark

 R_k is the best rank-k approximation of the matrix R in terms of F norm (RMSE) a

ahttps://en.wikipedia.org/wiki/Low-rank_approximation

Singular Value Decomposition (SVD)

Model

Low-rank approximation

$$R_k \equiv P_k \Sigma_k Q_k^T$$
 : $||R - R_k||_F \to \min$,

where k - rank

Remark

 R_k is the best rank-k approximation of the matrix R in terms of F norm (RMSE) a

ahttps://en.wikipedia.org/wiki/Low-rank approximation

Q: Before we apply SVD we need to fill unobserved values in *R*. How to do that?

Singular Value Decomposition (SVD)

Model

Low-rank approximation

$$R_k \equiv P_k \Sigma_k Q_k^T$$
 : $||R - R_k||_F \to \min$,

where k - rank

Remark

 R_k is the best rank-k approximation of the matrix R in terms of F norm (RMSE) a

ahttps://en.wikipedia.org/wiki/Low-rank_approximation

Q: Before we apply SVD we need to fill unobserved values in R. How to do that?

A: Popular choices

 $ightharpoonup r_{ui} = 0$ if value is unobserved

Missing values in R are mixture of true negative values and abscence of interactions. Therefore $r_{ui} = 0$ is not best possible choice.

- Missing values in R are mixture of true negative values and abscence of interactions. Therefore $r_{ui} = 0$ is not best possible choice.
- ▶ **Q:** Suppouse that $R_k = R$. Is this model useful for recommendations?

- Missing values in R are mixture of true negative values and abscence of interactions. Therefore $r_{ui} = 0$ is not best possible choice.
- **Q:** Suppouse that $R_k = R$. Is this model useful for recommendations? **A:** No, therefore we need regularization

Probabilistic Matrix Factorization [12]

Likelihood of data

$$\mathbb{P}\left\{R \mid P, Q, \sigma^{2}\right\} = \prod_{u \in U} \prod_{i \in I} \left[\mathcal{N}\left(r_{ui} \mid \mathbf{p}_{u}\mathbf{q}_{i}, \sigma^{2}\right)\right]^{I_{ui}},$$

where $I_{ui} = \mathbb{1}\{r_{ui} \neq 0\}$

Probabilistic Matrix Factorization [12]

Likelihood of data

$$\mathbb{P}\left\{R \mid P, Q, \sigma^{2}\right\} = \prod_{u \in U} \prod_{i \in I} \left[\mathcal{N}\left(r_{ui} \mid \mathbf{p}_{u}\mathbf{q}_{i}, \sigma^{2}\right)\right]^{I_{ui}},$$

where $I_{ui} = 1 \{ r_{ui} \neq 0 \}$

Priors

$$\mathbb{P}\left\{P\mid\sigma_{P}^{2}\right\} = \prod_{u\in U}\mathcal{N}\left(\mathbf{p}_{u}\mid0,\sigma_{P}^{2}\mathbf{I}\right) \quad \mathbb{P}\left\{Q\mid\sigma_{Q}^{2}\right\} = \prod_{i\in I}\mathcal{N}\left(\mathbf{q}_{i}\mid0,\sigma_{Q}^{2}\mathbf{I}\right)$$

Probabilistic Matrix Factorization [12]

Likelihood of data

$$\mathbb{P}\left\{R \mid P, Q, \sigma^{2}\right\} = \prod_{u \in U} \prod_{i \in I} \left[\mathcal{N}\left(r_{ui} \mid \mathbf{p}_{u}\mathbf{q}_{i}, \sigma^{2}\right)\right]^{I_{ui}},$$

where $I_{ui} = \mathbb{1}\{r_{ui} \neq 0\}$

Priors

$$\mathbb{P}\left\{P\mid\sigma_{P}^{2}\right\} = \prod_{u\in U}\mathcal{N}\left(\mathbf{p}_{u}\mid0,\sigma_{P}^{2}\mathbf{I}\right) \quad \mathbb{P}\left\{Q\mid\sigma_{Q}^{2}\right\} = \prod_{i\in I}\mathcal{N}\left(\mathbf{q}_{i}\mid0,\sigma_{Q}^{2}\mathbf{I}\right)$$

Posterior

$$\begin{split} & \ln \mathbb{P}\left\{P,Q \mid R,\sigma^2,\sigma_P^2,\sigma_Q^2\right\} \to \max \quad \iff \\ & \mathcal{L} = \frac{1}{2} \underbrace{\sum_{u \in U, i \in I} \mathbf{I}_{ui} (r_{ui} - \mathbf{p}_u \mathbf{q}_i)^2}_{\text{sum over observer } r_{ui}} + \underbrace{\frac{\lambda_P}{2} \sum_{u \in U} \|\mathbf{p}_u\|_F^2}_{\mathbf{L}_2 \text{ reg}} + \underbrace{\frac{\lambda_Q}{2} \sum_{i \in I} \|\mathbf{q}_i\|_F^2}_{\mathbf{L}_2 \text{ reg}} \to \min \end{split}$$

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

where $\mathbf{x} \in \mathbb{R}^n$ and loss function $\mathcal{L} = \frac{1}{2}(y - \phi_{FM}(\mathbf{w}, \mathbf{x}))^2$

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

where $\mathbf{x} \in \mathbb{R}^n$ and loss function $\mathcal{L} = \frac{1}{2}(y - \phi_{FM}(\mathbf{w}, \mathbf{x}))^2$

Assume that $\mathbf{x} = [\mathbf{u}, \mathbf{i}]$, where

- u one-hot vector for user
- ▶ i one-hot vector for item

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) X_{j_1} X_{j_2},$$

where $\mathbf{x} \in \mathbb{R}^n$ and loss function $\mathcal{L} = \frac{1}{2}(y - \phi_{FM}(\mathbf{w}, \mathbf{x}))^2$

Assume that $\mathbf{x} = [\mathbf{u}, \mathbf{i}]$, where

- ▶ u one-hot vector for user
- ▶ i one-hot vector for item

Therefore, if we skip LM term(Q: what if not?) we will get

$$\phi_{FM}(P, Q, \mathbf{x}) = \sum_{u=1}^{|U|} \sum_{i=1}^{|I|} \mathbb{1}\{\mathbf{u}_u = 1 \wedge \mathbf{i}_i = 1\} \mathbf{p}_u \cdot \mathbf{q}_i$$

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \phi_{LM}(\mathbf{w}, \mathbf{x}) + \sum_{j_1=1}^n \sum_{j_2=j_1+1}^n (\mathbf{w}_{j_1} \cdot \mathbf{w}_{j_2}) x_{j_1} x_{j_2},$$

where $\mathbf{x} \in \mathbb{R}^n$ and loss function $\mathcal{L} = \frac{1}{2}(y - \phi_{FM}(\mathbf{w}, \mathbf{x}))^2$

Assume that $\mathbf{x} = [\mathbf{u}, \mathbf{i}]$, where

- ▶ u one-hot vector for user
- ▶ i one-hot vector for item

Therefore, if we skip LM term(Q: what if not?) we will get

$$\phi_{FM}(P,Q,\mathbf{x}) = \sum_{u=1}^{|U|} \sum_{i=1}^{|I|} \mathbb{1}\{\mathbf{u}_u = 1 \wedge \mathbf{i}_i = 1\}\mathbf{p}_u \cdot \mathbf{q}_i$$

If we plug it in sqare-loss and add L_2 reg. we will obtain exactly loss for PMF

PMF via SGD

- Slow to train when number of observations is very large, therefore
- Slow convergence rate

Alternating Least Squares (ALS) [9]

Let K be a set of (u,i) pairs for which r_{ui} is known, therefore

$$\mathcal{L} = \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u \mathbf{q}_i)^2 + \lambda (\|\mathbf{p}_u\|_F^2 + \|\mathbf{q}_i\|_F^2)$$

Optimization of $\mathcal L$ can be done more efficiently due to the following

Observation

If during optimization we fix P in $\mathcal L$ then optimization problem becomes convex wrt to Q and vice versa. Therefore can be solved in closed-form

Faster than SGD convergence

 $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ — implicit feedback (observed interaction)

- $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ implicit feedback (observed interaction)
- If $p_{ui} = 0$ our beliefs are associated with varying *confidence* levels

- $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ implicit feedback (observed interaction)
- ▶ If $p_{ui} = 0$ our beliefs are associated with varying *confidence* levels
- ightharpoonup Zero values of p_{ui} are associated with low confidence

- $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ implicit feedback (observed interaction)
- ▶ If $p_{ui} = 0$ our beliefs are associated with varying <u>confidence</u> levels
- ightharpoonup Zero values of p_{ui} are associated with low confidence
- ightharpoonup As r_{ui} grows we have a stronger indication that u indeed likes i

- $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ implicit feedback (observed interaction)
- ▶ If $p_{ui} = 0$ our beliefs are associated with varying <u>confidence</u> levels
- ightharpoonup Zero values of p_{ui} are associated with low confidence
- ightharpoonup As r_{ui} grows we have a stronger indication that u indeed likes i

Popular choices for confidence c_{ui}

- $ightharpoonup 1 + \alpha r_{ui}$
- $ightharpoonup 1 + \alpha \log(1 + r_{ui}/\epsilon)$

- $ightharpoonup p_{ui} = \mathbb{1}\{r_{ui} > 0\}$ implicit feedback (observed interaction)
- ▶ If $p_{ui} = 0$ our beliefs are associated with varying *confidence* levels
- \triangleright Zero values of p_{ui} are associated with low confidence
- ightharpoonup As r_{ui} grows we have a stronger indication that u indeed likes i

Popular choices for confidence c_{ui}

- $ightharpoonup 1 + \alpha r_{ui}$
- $ightharpoonup 1 + \alpha \log(1 + r_{ui}/\epsilon)$

We obtain following loss

$$\mathcal{L} = \frac{1}{2} \sum_{(u,i) \in U \times I} c_{ui} (p_{ui} - \mathbf{p}_u \mathbf{q}_i)^2 + \frac{\lambda_P}{2} \sum_{u \in U} \|\mathbf{p}_u\|_F^2 + \frac{\lambda_Q}{2} \sum_{i \in I} \|\mathbf{q}_i\|_F^2$$

Can be solved via ALS (see [9] for details)

Q: How do we usually scale SGD?

Q: How do we usually scale SGD?

A: Parameter Server, Data/Model Parallelism

Q: How do we usually scale SGD?

A: Parameter Server, Data/Model Parallelism

Q: How can we apply them to SGD MF?

Q: How do we usually scale SGD?

A: Parameter Server, Data/Model Parallelism

Q: How can we apply them to SGD MF?

A:

Puc.: Blocks in grey can be processed independently. Z_i-i -th sub-epoch. Z_1,\dots,Z_6 — single epoch

Table of Contents

- 1. Evaluation
- 2. Matrix Completion
- 3. Link Prediction
 Formulation
 Large Scale Link Prediction
- 4. Session-based Recommendations
- 5. Learning to Rank
- 6. Resume
- 7. RecSys at VK

Aggregated data:

- $ightharpoonup G = \langle U \cup I, E \rangle, w \colon E \to \mathbb{R}$ weighted bipartite graph, where
- $E = \{(u,i) \mid \exists t \colon (u_t,i_t,y_t) \in D \land u_t = u \land i_t = i\} \subset U \times I$
- $w(u,i) = r_{ui} = agg\{(u_t,i_t,y_t) \in D \mid u_t = u \land i_t = i\}$

Aggregated data:

- $ightharpoonup G = \langle U \cup I, E \rangle, w \colon E \to \mathbb{R}$ weighted bipartite graph, where
- $E = \{(u,i) \mid \exists t \colon (u_t,i_t,y_t) \in D \land u_t = u \land i_t = i\} \subset U \times I$
- $w(u,i) = r_{ui} = agg\{(u_t,i_t,y_t) \in D \mid u_t = u \land i_t = i\}$

Task:

▶ Predict weight w(u,i) of non-existing edge (u,i)

In more general case G is a Heterogeneous Information Network (HIN)

Definition (Heterogeneous Information Network)

 $G=\langle V,E,\Phi,\Psi,w \rangle$ is a Heterogeneous Information Network (HIN), where $\Phi\colon V \to A$ — mapping from vertex to its type, $\Psi\colon E \to X$ — mapping from edge to its type, such that |A|>1 or |X|>1.

In more general case G is a Heterogeneous Information Network (HIN)

Definition (Heterogeneous Information Network)

 $G=\langle V,E,\Phi,\Psi,w \rangle$ is a Heterogeneous Information Network (HIN), where $\Phi\colon V \to A$ — mapping from vertex to its type, $\Psi\colon E \to X$ — mapping from edge to its type, such that |A|>1 or |X|>1.

HIN example (movies recommendations):

- ▶ $V = Actors \cup Movies \cup Users \cup Genres$, verticies types $A = \{actor, movie, user, genre\}$
- Edges types X = {starred_in, rated, belongs_to}

Popular Solutions

- ▶ DeepWalk [13], Node2Vec [6]
- Graph Representation Learning (GCMC [2])
- ► HINs (metapath2vec [3], HIN2vec [4])

Large Scale LP

- Pytorch BigGraph [10]
- GraphVite [21]

Table of Contents

- 4. Session-based Recommendations

Session-based Recommendations

Aggregated data:

 $ightharpoonup S_u = \langle (i_1, y_1), (i_2, y_2), \dots, (i_{n_u}, y_{n_u}) \rangle$ — u-th user session chronologically ordered

Session-based Recommendations

Aggregated data:

 $S_u = \langle (i_1, y_1), (i_2, y_2), \dots, (i_{n_u}, y_{n_u}) \rangle$ — u-th user session chronologically ordered

Task:

 $ightharpoonup P(i_{n_u+1}=i\mid S_u)$ — probability of the next event given user session S_u

Session-based Recommendations

Popular Solutions

RNN based [18], BERT2Rec [17]

Session-based Recommendations

Popular Solutions

► RNN based [18], BERT2Rec [17]

Remark

But be careful! Most neural achitectures can not outperform simple solutions. See [11].

Table of Contents

- 1. Evaluation
- 2. Matrix Completion
- 3. Link Prediction
- 4. Session-based Recommendations
- 5. Learning to Rank
- 6. Resume
- 7. RecSys at VK

Learning to Rank

Learning to Rank

Popular Solutions

Table of Contents

- 1. Evaluation
- 2. Matrix Completion
- 3. Link Prediction
- 4. Session-based Recommendations
- 5. Learning to Rank
- 6. Resume
- 7. RecSys at VK

Resume

- 1. There are many ways to formulate RecSys problem as ML problem
 - Matrix Completion
 - Link Prediction
 - Session-based
 - Learning to Rank
- Additionaly each formulation can be foother adjusted to deal with different kinds of user feedback
 - Explicit
 - Implicit
- 3. Evaluation (Protocols, Metrics)

Table of Contents

- 1. Evaluation
- 2. Matrix Completion
- 3. Link Prediction
- 4. Session-based Recommendations
- 5. Learning to Rank
- 6. Resume
- 7. RecSys at VK Similar Communities and Domains Search Тематические Ленты

Similar Communities and Domains Search

Тематические Ленты²

References I

- [1] O. Barkan, N. Koenigstein, E. Yogev, and O. Katz. Cb2cf: a neural multiview content-to-collaborative filtering model for completely cold item recommendations. In *Proceedings of the 13th ACM Conference on Recommender Systems*, pages 228–236, 2019.
- [2] R. v. d. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. *arXiv preprint arXiv:1706.02263*, 2017.
- [3] Y. Dong, N. V. Chawla, and A. Swami. metapath2vec: Scalable representation learning for heterogeneous networks. In *Proceedings of* the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pages 135–144, 2017.
- [4] T.-y. Fu, W.-C. Lee, and Z. Lei. Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 1797–1806, 2017.
- [5] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 69–77, 2011.

References II

- [6] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864, 2016.
- [7] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In *Proceedings of the 26th international conference on world wide web*, pages 173–182, 2017.
- [8] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online recommendation with implicit feedback. In *Proceedings of the* 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 549–558, 2016.
- [9] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272. leee, 2008.
- [10] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich. Pytorch-biggraph: A large-scale graph embedding system. *arXiv preprint arXiv:1903.12287*, 2019.

References III

- [11] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach. Performance comparison of neural and non-neural approaches to session-based recommendation. In *Proceedings of the 13th ACM Conference on Recommender Systems*, pages 462–466, 2019.
- [12] A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances in neural information processing systems, pages 1257–1264, 2008.
- [13] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710, 2014.
- [14] S. Rendle. Factorization machines. In 2010 IEEE International Conference on Data Mining, pages 995–1000. IEEE, 2010.
- [15] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. *arXiv preprint arXiv:1205.2618*, 2012.
- [16] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems handbook. In *Recommender systems handbook*, pages 1–35. Springer, 2011.

References IV

- [17] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 1441–1450, 2019.
- [18] Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-based recommendations. In *Proceedings of the 1st Workshop on Deep Learning for Recommender Systems*, pages 17–22, 2016.
- [19] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Advances in neural information processing systems, pages 2643–2651, 2013.
- [20] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In *Twenty-Second International Joint Conference on Artificial Intelligence*, 2011.
- [21] Z. Zhu, S. Xu, J. Tang, and M. Qu. Graphvite: A high-performance cpu-gpu hybrid system for node embedding. In *The World Wide Web Conference*, pages 2494–2504, 2019.