

ENSEIRB-MATMECA

Telecommunications Semestre 7

Communications numériques : Projet TS-229

Simulation d'un émetteur / récepteur ADS-B et décodage temps réel à l'aide de radio logicielle

Encadrants:

Étudiants:

ELLOUZE Malek

MINIER Pierre

FERRÉ Guillaume

VIRIOT Maël

TAJAN Romain

Octobre 2021

1	Prise en main de la chaîne de communication ADSB			2
	1.1	Théori	e	2
		1.1.1	Réécriture du signal émis $s_l(t)$	2
		1.1.2	Exemple avec le signal [1, 0, 0, 1, 0]	3
1.2 Vérification		eation	6	
		1.2.1	Sur l'exemple de la séquence $[1, 0, 0, 1, 0]$	6
		1.2.2	Probabilité d'erreur binaire théorique P_{eb}	6
		1.2.3	Simulation du taux d'erreur binaire	8
2	Densité spectrale de puissance			9
	2.1	Théori	e	9
		2.1.1	Moment d'ordre 1 du signal $s_l(t)$	9
		2.1.2	Auto-corrélation du signal $s_l(t)$	9
		2.1.3	Auto-corrélation moyennée de $s_l(t)$	10
		2.1.4	Densité spectrale de puissance (DSP)	11
	2.2	Vérific	eation	12
4	Synchronisation en temps			13
	4.1	Théori	e	13
		4.1.1	Ordre de grandeur de l'effet Doppler	13
		4.1.2	Utilisation du carré du module de l'enveloppe du signal reçu	14
		4.1.3	Inégalité de Cauchy	14
	4.2	Vérific	cation	15
5	Synchronisation en fréquence			16
	5.1	Théori	e	16
	5.2	Vérific	cation	17
6	Auti	Autres tâches		

1 Prise en main de la chaîne de communication ADSB

1.1 Théorie

1.1.1 Réécriture du signal émis $s_l(t)$

Tout d'abord, remarquons que :

$$p_{b_k}(t) = \begin{cases} p_0(t) = & p(t) + \frac{1}{2}\Pi_{T_S}\left(t - \frac{T_S}{2}\right) & \text{si } b_k = 0\\ p_1(t) = - & p(t) + \frac{1}{2}\Pi_{T_S}\left(t - \frac{T_S}{2}\right) & \text{si } b_k = 1 \end{cases}$$

en notant $\Pi_{\theta}(t)$ la fonction porte de largeur θ centrée en 0. On a ensuite :

$$\begin{split} s_l(t) &= \sum_{k \in \mathbb{Z}} p_{b_k}(t - kT_S) \\ &= \sum_{\substack{k \in \mathbb{Z} \\ b_k = 0}} \left[p(t) + \frac{1}{2} \Pi_{T_s} \left(t - \frac{T_S}{2} - kT_S \right) \right] + \sum_{\substack{k \in \mathbb{Z} \\ b_k = 1}} \left[-p(t) + \frac{1}{2} \Pi_{T_s} \left(t - \frac{T_S}{2} - kT_S \right) \right] \\ &= \sum_{\substack{k \in \mathbb{Z} \\ b_k = 0}} A_k p(t - kT_S) + \sum_{\substack{k \in \mathbb{Z} \\ b_k = 1}} A_k p(t - kT_S) + \frac{1}{2} \sum_{\substack{k \in \mathbb{Z} \\ b_k = 1}} \Pi_{T_s} \left(t - \frac{T_S}{2} - kT_S \right) + \frac{1}{2} \sum_{\substack{k \in \mathbb{Z} \\ b_k = 1}} \Pi_{T_s} \left(t - \frac{T_S}{2} - kT_S \right) \\ &= \sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} A_k p(t - kT_S) + \frac{1}{2} \sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} \Pi_{T_s} \left(t - \frac{T_S}{2} - kT_S \right) \\ &= \sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} A_k p(t - kT_S) + \frac{1}{2} \end{split}$$

$$s_l(t) = 0.5 + \sum_{k \in \mathbb{Z}} A_k p(t - kT_S)$$

1.1.2 Exemple avec le signal [1, 0, 0, 1, 0]

Représentation de $s_l(t)$

Lorsqu'on applique la formule ci-dessus avec le signal [1, 0, 0, 1, 0] en entrée, on obtient :

$$s_l(t) = \frac{1}{2} - p(t) + p(t - T_S) + p(t - 2T_S) - p(t - 3T_S) + p(t - 4T_S)$$

FIGURE $1.1 - s_l(t)$ avec le signal d'entrée [1 0 0 1 0]

Représentation de $r_l(t)$

Sur $[0, 5T_S]$, on peut réécrire $s_l(t)$ avec des portes :

$$s_l(t) = \Pi_{\frac{T_S}{2}} \left(t - \frac{T_S}{4} \right) + \Pi_{\frac{T_S}{2}} \left(t - \frac{7T_S}{4} \right) + \Pi_{T_S} (t - 3T_S) + \Pi_{\frac{T_S}{2}} \left(t - \frac{19T_S}{4} \right)$$

Avec un bruit $n_l(t)$ nul, on a :

$$\begin{split} r_l(t) &= s_l(t) * p^*(T_S - t) \\ &= s_l(t) * p(t - T_S) \quad \text{car p(t) est réel et composé de portes} \\ &= s_l(t) * \frac{1}{2} \left[-\Pi_{\frac{T_S}{2}} \left(t - \frac{T_S}{4} \right) + \Pi_{\frac{T_S}{2}} \left(t - \frac{T_S}{4} \right) \right] \end{split}$$

On doit alors calculer des produits de convolutions entre des portes de mêmes support ou de support temporel modifié d'un facteur 2. On note :

On obtient finalement:

$$r_{l}(t) = \frac{1}{2} \left[-f_{T_{S}} \left(t - \frac{T_{S}}{2} \right) + f_{T_{S}}(t - T_{S}) - f_{T_{S}}(t - 2T_{S}) + f_{T_{S}} \left(t - \frac{5T_{S}}{2} \right) - g_{\frac{3}{2}T_{S}} \left(t - \frac{13T_{S}}{4} \right) + g_{\frac{3}{2}T_{S}} \left(t - \frac{15T_{S}}{4} \right) - f_{T_{S}}(t - 5T_{S}) + f_{T_{S}} \left(t - \frac{11T_{S}}{2} \right) \right]$$

On représente ces différentes composantes sur un même graphique, puis on les somme pour obtenir $r_l(t)$:

FIGURE 1.2 – Représentation de $r_l(t)$

Représentation de r_m

En échantillonnant à T_S la figure 1.2, on obtient :

$$r_m = \delta(t - T_S) - \delta(t - 2T_S) - \delta(t - 3T_S) + \delta(t - 4T_S) - \delta(t - 5T_S)$$

FIGURE 1.3 – Représentation de r_m

Rôle du bloc de décision

On observe un décalage de T_S avec ces différentes opérations.

En considérant la règle suivante :

$$b_{k-1} = \begin{cases} 1 & \text{si } \delta(t-kT_S) \text{ est port\'e par un signe } + \text{ dans } r_m \\ 0 & \text{si } \delta(t-kT_S) \text{ est port\'e par un signe } - \text{ dans } r_m \end{cases}$$

on retrouve la séquence initiale [1, 0, 0, 1, 0].

1.2 Vérification

1.2.1 Sur l'exemple de la séquence [1, 0, 0, 1, 0]

On retrouve les allures théoriques des figures 1.1 et 1.6. Pour que les pentes de $s_l(t)$ soit plus verticales, il faut augmenter la fréquence d'échantillonage.

FIGURE 1.4 – Vérification des allures

1.2.2 Probabilité d'erreur binaire théorique P_{eb}

Les bits sont identiquement distribués, les symboles A_k conservent donc cette propriété. On notera σ^2 la variance des ces symboles et $R_g(t)$ la fonction d'auto-corrélation du filtre de mise en forme. Calculer la P_{eb} revient à calculer l'air jaune de la figure 1.5.

FIGURE 1.5 – Représentation des densités de probabilité

$$\begin{split} P_{eb} &= \sum_{i \in \Omega_S} \mathbb{P}(\text{erreur}|i) \mathbb{P}(i) \quad \Omega_S \text{ est l'ensemble des symboles} \\ &= \frac{1}{2} \sum_{i \in \Omega_S} \sum_{j \in \Omega_S} \mathbb{P}(j|i) \\ &= \frac{1}{2} \mathbb{P}[R_g(0)| - R_g(0)] + \frac{1}{2} \mathbb{P}[-R_g(0)|R_g(0)] \\ &= \frac{1}{2} \int_0^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x - R_g(0)}{\sigma}\right)^2\right] dx + \frac{1}{2} \int_{-\infty}^0 \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x + R_g(0)}{\sigma}\right)^2\right] dx \\ &= \frac{1}{2} \int_{\frac{R_g(0)}{\sigma}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) dz + \frac{1}{2} \int_{+\infty}^{-\frac{R_g(0)}{\sigma}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) dz \\ &= \frac{1}{2} Q\left(\frac{R_g(0)}{\sigma}\right) + \frac{1}{2} Q\left(\frac{R_g(0)}{\sigma}\right) \quad \text{en utilisant la symétrie de la gaussienne centrée} \\ &= Q\left(\frac{R_g(0)}{\sigma}\right) \quad Q(x) \text{est la fonction queue de gaussienne} \end{split}$$

Exprimons cette P_{eb} en fonction du rapport $\frac{E_b}{N_0}$: Tout d'abord, nous avons :

$$\begin{cases} \sigma^2=\sigma_b^2R_g(0) & \text{avec } \sigma_b \text{la variance des bits \'emis} \\ \sigma_b^2=\frac{N_0}{2} \text{par d\'efinition du mod\`ele du bruit thermique utilis\'e} \end{cases}$$

D'où
$$\sigma^2 = \frac{N_0}{2} R_g(0)$$

Exprimons maintenant $R_g(0)$ en fonction de $\frac{E_b}{N_0}$:

L'énergie binaire est $E_b = P_{moy}T_b$ avec $P_{moy} = \int_{\mathbb{R}} \Gamma_{s_l(t)}(f) df$

On utilise ensuite la formule de Benett :

$$\Gamma_{s_l(t)} = \frac{1}{T_S} |G(f)|^2 \sum_{n \in \mathbb{Z}} R_S(n) exp(-j2\pi f n T_s)$$

$$= \frac{1}{T_S} |G(f)|^2 \sum_{n \in \mathbb{Z}} \delta(n) exp(-j2\pi f n T_s)$$

$$= \frac{1}{T_S} |G(f)|^2$$

Nous avons alors : $E_b = \frac{T_b}{T_S} \int_{\mathbb{R}} |G(f)|^2 df = \frac{1}{1} R_g(0) = R_g(0)$

Finalement :
$$\frac{R_g(0)}{\sigma} = R_g(0) \sqrt{\frac{2}{N_0 R_g(0)}} = \sqrt{\frac{2 R_g(0)}{N_0}} = \sqrt{2 \frac{E_b}{N_0}}$$

$$P_{eb} = Q\left(\sqrt{2\frac{E_b}{N_0}}\right)$$

1.2.3 Simulation du taux d'erreur binaire

FIGURE 1.6 – Simulation et taux d'erreur binaire théorique

2 Densité spectrale de puissance

2.1 Théorie

2.1.1 Moment d'ordre 1 du signal $s_l(t)$

$$\begin{split} m_{s_l}(t) &= \mathbb{E}[s_l(t)] = \frac{1}{2} + \sum_{k \in \mathbb{Z}} p(t - kT_S) \mathbb{E}[A_k] \\ &= \frac{1}{2} + \sum_{k \in \mathbb{Z}} p(t - kT_S) [1 \mathbb{P}(A_k = 1) - 1 \mathbb{P}(A_k = -1)] \\ &= \frac{1}{2} + \sum_{k \in \mathbb{Z}} p(t - kT_S) \left(\frac{1}{2} - \frac{1}{2}\right) \\ &= \frac{1}{2} \end{split}$$

 $m_{s_l}(t)$ est indépendant du temps et vaut $0.5\,$

2.1.2 Auto-corrélation du signal $s_l(t)$

$$R_{s_l}(t) = \mathbb{E}[s_l(t)s_l^*(t+\tau)]$$

$$= \mathbb{E}\left[\left(\frac{1}{2} + \sum_{k \in \mathbb{Z}} A_k p(y - kT_S)\right) \left(\frac{1}{2} + \sum_{l \in \mathbb{Z}} A_l p(t+\tau - lT_S)\right)\right]$$

$$= \frac{1}{4} + 2 \times \left(\frac{1}{2} \times 0\right) + \sum_{(k,l) \in \mathbb{Z}^2} p(t - kT_S) p(t+\tau - lT_S) \mathbb{E}[A_k A_l]$$

Le tableau 2.1 donne la loi de A_kA_l pour $k \neq l$ avec entre parenthèse la probabilité associée. On observe que l'on obtient la même loi que A_k . On en déduit que $\mathbb{E}[A_kA_l]=0$ pour $k \neq l$.

$$\begin{array}{|c|c|c|c|c|c|} \hline A_k & A_k = -1 & (1/2) & A_k = 1 & (1/2) \\ \hline A_l = -1 & (1/2) & A_k A_l = 1 & (1/4) & A_k A_l = -1 & (1/4) \\ \hline A_l = 1 & (1/2) & A_k A_l = -1 & (1/4) & A_k A_l = 1 & (1/4) \\ \hline \end{array}$$

TABLE 2.1 – Lois de $A_k A_l$ pour $k \neq l$

Lorsque k = l, $A_k A_l$ est la loi constante égale à 1. On obtient alors :

$$R_{s_l}(t,\tau) = 0.25 + \sum_{k \in \mathbb{Z}} p(t - kT_S)p(t + \tau - kT_S)$$

2.1.3 Auto-corrélation moyennée de $s_l(t)$

$$\begin{split} \tilde{R}_{s_{l}}(\tau) &= \frac{1}{T_{S}} \int_{0}^{t_{S}} R_{s_{l}}(t,\tau) dt \\ &= \frac{1}{4} + \frac{1}{T_{S}} \sum_{k \in \mathbb{Z}} \int_{0}^{T_{S}} p(t-kT_{S}) p(t+\tau-kT_{S}) dt \\ &= \frac{1}{4} + \frac{1}{T_{S}} \sum_{k \in \mathbb{Z}} \int_{kT_{S}}^{(k+1)T_{S}} p(t) p(t+\tau) dt \\ &= \frac{1}{4} + \frac{1}{T_{S}} \int_{-\infty}^{+\infty} p(t) p(t+\tau) dt \\ &= \frac{1}{4} + \frac{1}{T_{S}} \int_{0}^{T_{S}} p(t) p(t+\tau) dt \end{split}$$

 $\tilde{R}_{s_l}(au)$ est symétrique par rapport à l'axe des ordonnées. Pour la suite du calcule, on considère la figure 2.1.

FIGURE 2.1 – Représentation de p(t) et de p(t+ τ)

- Si $\tau > T_S$, alors $\tilde{R}_{s_l}(\tau) = \frac{1}{4}$
- Sur $[0,T_S/2]$, $\tilde{R}_{s_l}(\tau)$ croît linéairement

On calcule les valeurs clefs :

$$\tilde{R}_{s_l}(0) = \frac{1}{4} + \frac{1}{T_S} \left(\frac{T_S}{4} + \frac{T_S}{4} \right) = \frac{3}{4}$$

$$\tilde{R}_{s_l} \left(\frac{T_S}{2} \right) = \frac{1}{4} + \frac{1}{T_S} \times \frac{1}{2} \times \left(-\frac{1}{2} \right) \times T_S = 0$$

$$\tilde{R}_{s_l}(T_S) = \frac{1}{4} + 0 = \frac{1}{4}$$

En utilisant la continuité de $\tilde{R}_{s_l}(au)$ et les points plus haut, on obtient la figure 2.2.

FIGURE 2.2 – Représentation de $ilde{R}_{s_l}(au)$

2.1.4 Densité spectrale de puissance (DSP)

En reprenant les précédents calculs, on remarque que $\tilde{R}_{s_l}(\tau)$ fait intervenir l'expression de la fonction d'auto-corrélation de p(t) que l'on notera $R_{pp}(\tau)$:

$$\tilde{R}_{s_l}(\tau) = \frac{1}{4} + \frac{1}{T_S} \int_{-\infty}^{+\infty} p(t)p(t+\tau)dt$$
$$= \frac{1}{4} + \frac{1}{T_S} R_{pp}(\tau)$$

On applique la transformée de Fourier : $\Gamma_{s_l}(f)=\frac{1}{4}\delta(f)+\frac{1}{T_S} imes T.F.[R_{pp}(au)]$

On utilise ensuite le théorème de Wiener-Khintchine : $T.F.[R_{pp}(\tau)] = |P(f)|^2$

Une expression de p(t) étant $p(t)=\frac{1}{2}\left[-\Pi_{\frac{T_S}{2}}\left(t-\frac{T_S}{4}\right)+\Pi_{\frac{T_S}{2}}\left(t-\frac{3T_S}{4}\right)\right]$, on a :

$$|P(f)|^{2} = \left| -\frac{1}{2} \frac{T_{S}}{2} sin_{c} \left(f \frac{T_{S}}{2} \right) \exp \left(-j \frac{\pi}{2} f T_{S} \right) + \frac{1}{2} \frac{T_{S}}{2} sin_{c} \left(f \frac{T_{S}}{2} \right) \exp \left(-j \frac{3\pi}{2} f T_{S} \right) \right|^{2}$$

$$= \frac{T_{S}^{2}}{16} sin_{c}^{2} \left(f \frac{T_{S}}{2} \right) |\exp \left(-j \pi f T_{S} \right)| \left| -\exp \left(j \frac{\pi}{2} f T_{S} \right) + \exp \left(-j \frac{\pi}{2} f T_{S} \right) \right|^{2}$$

$$= \frac{T_{S}^{2}}{16} sin_{c}^{2} \left(f \frac{T_{S}}{2} \right) |2j|^{2} \left| sin \left(-\frac{\pi}{2} f T_{S} \right) \right|^{2}$$

$$= \frac{T_{S}^{2}}{16} sin_{c}^{2} \left(f \frac{T_{S}}{2} \right) \times 4 \times \left(\frac{\pi}{2} f T_{S} \right)^{2} sin_{c}^{2} \left(f \frac{T_{S}}{2} \right)$$

$$= \frac{\pi^{2}}{16} T_{S}^{4} f^{2} sin_{c}^{4} \left(f \frac{T_{S}}{2} \right)$$

$$\Gamma_{s_l}(f) = \frac{1}{4}\delta(f) + \frac{\pi^2}{16}T_S^3 f^2 sin_c^4 \left(f\frac{T_S}{2}\right)$$

2.2 Vérification

On observe quelques divergences numériques, mais les courbes se superposent.

FIGURE 2.3 – Comparaison des DSP obtenues

4 Synchronisation en temps

4.1 Théorie

4.1.1 Ordre de grandeur de l'effet Doppler

FIGURE 4.1 – Un avion se déplaçant durant un temps symbole

Si l'on considère la situation décrite par la figure 4.1, alors

- L'onde 1 arrive au récepteur à la date $t1 + \frac{d1}{c}$, avec c la célérité de l'onde
- L'onde 2 arrive au récepteur à la date $t1+T_S+\frac{d1}{c}+\frac{vT_S}{c}$, avec v la vitesse de l'avion

$$\Delta t = \left| t1 + T_S + \frac{d1}{c} + \frac{vT_S}{c} - t1 - \frac{d1}{c} \right|$$

$$= T_S \left(1 + \frac{v}{c} \right)$$

$$f_R = \frac{1}{T_S} \frac{1}{1 + \frac{v}{c}}$$

Avec f_R la fréquence de réception. Le décalage à la réception vaut alors

$$\Delta f = \left| \frac{1}{T_S} - f_R \right|$$
$$= \frac{1}{T_S} \frac{v}{c - v}$$

Le décalage dû à l'effet Doppler est de 3 kHz

4.1.2 Utilisation du carré du module de l'enveloppe du signal reçu

$$|y_{l}(t)|^{2} = [s_{l}(t - \delta_{t})\cos(2\pi\delta_{f}t) + n_{l}(t)]^{2} + [s_{l}(t - \delta_{t})\sin(2\pi\delta_{f}t)]^{2}$$

$$= s_{l}^{2}(t - \delta_{t})\cos^{2}(2\pi\delta_{f}t) + 2s_{l}(t - \delta_{t})\cos(2\pi\delta_{f}t)n_{l}(t) + n_{l}^{2}(t) + s_{l}^{2}(t - \delta_{t})\sin^{2}(2\pi\delta_{f}t)$$

$$= s_{l}^{2}(t - \delta_{t}) + 2s_{l}(t - \delta_{t})\cos(2\pi\delta_{f}t)n_{l}(t) + n_{l}^{2}(t)$$

$$z_{l}(t) = 2s_{l}(t - \delta_{t})\cos(2\pi\delta_{f}n_{l}(t) + n_{l}^{2}(t)$$

 $z_l(t)$ n'est pas un bruit blanc gaussien et est dépendant de $s_l(t)$.

4.1.3 Inégalité de Cauchy

L'inter-corrélation est un produit scalaire. Nous avons donc :

$$\delta_t^{'}, |I_{r_l s_p}(\delta_t^{'}| \leq \sqrt{I_{s_p s_p} \delta_t^{'}} \sqrt{I_{r_l r_l} \delta_t^{'}}$$

Or l'inter-corrélation entre un signal et lui-même est l'auto-corrélation (notée R)

$$\begin{cases} I_{s_p s_p}(\delta'_t) = R_{s_p}(\delta'_t) \ge R_{s_p}(0) \\ I_{r_l r_l}(\delta'_t) = R_{r_l}(\delta'_t) \ge R_{r_l}(0) \end{cases}$$

$$|I_{r_{l}s_{p}}(\delta'_{t}| \leq \sqrt{R_{s_{p}}(0)}\sqrt{R_{r_{l}}(0)}$$

$$\frac{\left|\int_{-\infty}^{+\infty} r_{l}(t)s_{p}^{*}(t-\delta'_{t})dt\right|}{\sqrt{\int_{-\infty}^{+\infty} |s_{p}(t)|^{2}dt}\sqrt{\int_{-\infty}^{+\infty} |r_{l}(t)|^{2}dt}} \leq 1$$

$$\left|\int_{-\infty}^{+\infty} r_{l}(t)s_{p}^{*}(t-\delta'_{t})dt\right|$$

$$\frac{\left| \int_{-\infty}^{+\infty} |s_{p}(t)|^{2} dt \sqrt{\int_{-\infty}^{+\infty} |r_{l}(t)|^{2} dt} \right|}{\sqrt{\int_{0}^{T_{p}} |s_{p}(t)|^{2} dt} \sqrt{\int_{\delta_{t'}}^{\delta_{t}' + T_{p}} |r_{l}(t)|^{2} dt}} \le 1$$

 $\operatorname{Car} r_l(t) \neq 0 \text{ uniquement sur } [\delta_t', \delta_t' + T_p] \text{ et } s_p(t) \neq 0 \text{ et } s_p(t) \neq 0 \text{ uniquement sur } [0, T_p].$

$$\delta_t' \le 1$$

4.2 Vérification

Sur la figure 4.2, on voit que l'on perd 5dB pour un taux d'erreur binaire de 10^{-3} . La moitié est due à l'utilisation du module au carré sur $y_l(t)$ et l'autre moitié est due aux erreurs d'estimation de δ_t .

FIGURE 4.2 – Taux d'erreurs binaires

5 Synchronisation en fréquence

5.1 Théorie

En sortie du canal, nous avons $y_l(t)$, désynchronisé temporellement de δ_t et fréquentiellement de δ_f .

$$y_l(t) = s_l(t - \delta_t) \exp(-j2\pi\delta_f t) + n_l(t)$$

On note Δ_f une fréquence. On définit alors le signal $u_l(t)$ de la manière suivante :

$$u_l(t) = y_l(t) \exp(j2\pi\Delta_f t)$$

$$= s_l(t - \delta_t) \exp[j2\pi(\Delta_f - \delta_f)t] + n_l(t) \exp(j2\pi\Delta_f t)$$

$$= s_l(t - \delta_t) \exp[j2\pi(\Delta_f - \delta_f)t] + \tilde{n}_l(t)$$

On étudie la phase de $u_l(t)$ suivant Δ_f . On notera $\phi_{signal}(\Delta_f,t)$ la phase du signal signal à l'instant t:

$$\phi_{u_l}(\Delta_f, t) = 2\pi(\Delta_f - \delta_f)t + \phi_{\tilde{n}_l}(\Delta_f, t)$$

Lorsque Δ_f est très différent de δ_f , le module de $\phi_{u_l}(\Delta_f,t)$ est important. Et lorsque Δ_f se rapproche de δ_f , le module de $\phi_{u_l}(\Delta_f,t)$ est faible. On exploite cette propriété en sommant sur t. De cette manière, on cherche à minimiser la fonction suivante :

$$\Phi_{u_l}(\Delta_f) = \int |\phi_{u_l}(\Delta_f, t)| dt$$

On obtient ainsi une estimation de δ_f

$$\tilde{\delta}_f = \operatorname*{arg\,min}_{\Delta_f} \Phi_{u_l}$$

5.2 Vérification

FIGURE 5.1 – Sans bruit, l'estimation est sans erreur

Avec du bruit, le pic s'affaisse et les erreurs sont de l'ordre de quelques Hertz pour une variance de 5.

FIGURE 5.2 – Un décalage de 788 Hz estimé à 794 Hz

L'algorithme est robuste si l'on considère l'ensemble du signal $y_l(t)$ mais prend un certains temps à s'exécuter. On peut ne considérer qu'une seule partie du signal pour aller plus rapidement.

6 Autres tâches

Les tâches 3, 6 ont entièrement été réalisées sur Matlab.

La tâche 7 a également été commencée.