String similarity

Why useful?

deal with out of vocab

correcting user input mistakes

propose alternative but similar possibilities

Jaccard similarity

similar letters / # total letters

Jaccard distance

1 - Jaccard similarity

not ideal for stings not ordered

Panmpi similar to mapping?

easy and fast to compute

Edit distance

not fast (recursive)

can use BK-trees to reduce search space

Perhaps more intuitive for NLP

$$C(i,j) = \begin{cases} C(i-1,j-1) & \text{if } a_j = b_i \\ \min(ins_{i,j}, del_{i,j}, sub_{i,j}) & \text{if } a_j \neq b_i \end{cases}$$

Fill in edit distance table

K nearest neighbors

Don't need to calculate distance for every document in corpus?**

Unlike nearest neighbor?

Euclidean distance/weighted distance

Cosine similarity

Choose whether to normalize for length of document

Ask yourself: is document length relevant to the problem?

KD tree

Split along widest dimension

Split at value = median of the column

Stop when less than M points in node

Often wise to use different distances for different features

BK trees

Useful to minimize search space when searching for most similar word (for out of vocab word)

Allows efficient use of a single core

Don't need to search through all N words to find most similar word Select any word to be root node, add all remaining words

V = [book, books, cake, boo] Ad

Adding [cape, cart, boon, cook]

Vector representations for documents

word_to_vec > bag of words

word_to_vec: ordered dictionary; keys are words and values are indices in the feature count vector (bag of words, for example)

bag of words can be a count or a boolean (indicating presence/absence of word)

Emphasize most relevant words in the documents assignment "importance" or weight to each word unique words (idf, in corpus) and more frequent (tf, in a document) are weighted

more

TFIDF

TFIDF = TF * idf

TF: term frequency (document level)

IDF: inverse document frequency (corpus level)

TF and IDF are both vectors

raw count
$$f_{t,d}$$
 term frequency $f_{t,d} igg/\sum_{t' \in d} f_{t',d}$

$$idf(w; X) = log\left(\frac{|X|}{1 + |X_w|}\right)$$

Hidden Markov models

"Go to"/baseline model for sequential models: easy to compute Trellis diagram:

Parameters: initial, transition, and emission probabilities

Initial probabilities

 $p(hidden_state_1 = z)$

Vector of length M (M is # of hidden states)

Example: init_tag:det

Transition probabilities

p(hidden_state_1 to hidden_state_2)

M x M stochastic matrix

Example: prev_tag:det::adj

Emission probability

p(observed_state_i given hidden_state_i)

Vector of length M (for each observed value in sequence)

Example: id:The::det

Joint probability:

$$p(x_1,...,x_n,z_1,...,z_n) = p(z_1)p(x_1|z_1) \prod_{k=2}^{n} p(z_k|z_{k-1})p(x_k(z_k))$$

Example:

Forward-Backward Algorithm

Textbook example of dynamic programming

Goal: compute p(z_k given all x)

Notation:

F/B: Compute
$$p(z_k|x)$$
.

Fals: Compute $p(z_k,x_{i:k})$ $\forall k=1,...,n$.

Bals: Campute: $p(x_{k+1:n}|z_k)$ $\forall k=1,...,n$.

$$p(\exists k \mid x) \propto p(\exists k, x) = p(x_{k+1:n} \mid \exists k) p(\exists k, x_{1:k})$$

Then divide by normalizing constant Now we can do the following:

difference between viterbi and posterior how/when forward and backward algorithms used? how to fit an HMM

Structured Perceptron

Structured Prediction for Natural Language Processing

Language models (how to compute probabilities) n-grams

Structured output is...

A predefine structure

Predicate	A0	A1	Location
Head	The bus	Nairobi in Kenya	-

Can be represented as a graph

NLP application

Problem: find compositional phrases from the whole sentence down to the words

Hints/previous exam questions

Structured prediction: it needs the label of the class, if not it can't be structured prediction

What should be the output of a neural system in a classification model? softmax or log_softmax → not sigmoids cause is not normalizing

- Sigmoid: every value between 0 and 1 (for classification is good, not for multiclass classification)
 - Softmax / Log softmax: one high value for a class and the rest close to 0

Given this vector what is the softmax of this vector?

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Convert vector into probabilities

Exponential deals with negative values Can make it weighted

Does idf change for 2 documents? NO

'And': [0.9]

Does tf change for 2 documents? YES

'And': [0.1, 0.2, 0.03, 0.07]; 4 documents

Log sum exp trick

In machine learning, arithmetic underflow can become a problem when multiplying together many small probabilities. In many models it can be useful to calculate the log sum of exponentials.

$$\log \sum_{i=1}^n \exp(x_i)$$

If x_i is sufficiently large or small, this will result in an arithmetic overflow/underflow. To avoid this we can use a common trick called the Log Sum Exponential trick.

$$\log \sum_{i=1}^{n} \exp(x_i) = \log \exp(b) \sum_{i=1}^{n} \exp(x_i - b)$$
$$= b + \log \sum_{i=1}^{n} \exp(x_i - b)$$

Where b is $\max(x)$.

forward quantity definition

$$f(1,x,c) := P_{\text{init}}(c \mid \text{start}) \times P_{\text{emiss}}(x_1 \mid c)$$

 $f(i,x,c) := P(X_1 = x_1, ..., X_i = x_i, Y_i = c)$

$$b(N, x, c) := P_{\text{final}}(\text{stop} \mid c)$$

 $b(i, x, c) := P(X_{i+1} = x_{i+1}, ..., X_N = x_N \mid Y_i = c)$

compute edit distance

	*	k	n	i	t	t	i	n	g
*	0	1	2	3	4	5	6	7	8
k	1	0	1	2	3	4	5	6	7
i	2	1	1	1	2	3	4	5	6
t	3	2	2	2	1	2	3	4	5
t	4	3	3	3	2	1	2	3	4
е	5	4	4	4	3	2	2	3	4
n	6	5	4	5	4	3	3	2	3

Tupu tamadre - revélate quien eres wey Rosa Melano Elverga Larga