Lecture notes on Schemes I

November 8, 2024

Abstract

Ce cours propose une introduction à la théorie des schémas. Introduite par Grothendieck il y a plus d'un demi-siècle, c'est actuellement le langage commun non seulement de la géométrie algébrique mais également de larges pans de la théorie des nombres et de la théorie des représentations.

Contents

1	Introduction													1					
	1.1	faiseau	itisation														 		1
		1.1.1	Fonctorialité														 		1
\mathbf{A}	Con	Commutative diagrams										4							

1 Introduction

Let C, rappel f est monomorphisme...

Example 1.1. Dans le categorie des prefasioux on X espace toplogique, $f \in Hom_{Pre_X}(F,Y)$, f est un mono, epi, iso ssi par tout ouvert V des X f_V : $F(V) \to Y(V)$ l'est. Dans Faseux, ssi $f_x : F_x \to Y_x$ pour tout $x \in X$ est inective, surjective, bijective.

Si F est un prèfasceaux sur X, $x \in X$ on pose

$$\mathcal{F}_x = \operatorname{colim}_{x \in U, U \text{ouvert}} F(U)$$

avec

$$\mathrm{colim}_{x \in U} F(V) = \prod_{x \in U} F(V) / \sim$$

Proposition 1.2. Si F fasceau, pour tout $V, F(V) \to \prod_{x \in U} F_x$ est injectif.

Supposons F faiseau et pour tout $x \in X$, $\phi_x : \sigma_x \to Y_x$ injectif ssi pout tout V ouvert de X $\phi_V : F(V) \to Y(V)$ injectif.

Si F et Y fasiceaux, $\forall x \in X$, ϕ_x bij ssi $\forall V$, ϕ_V bij.

1.1 faiseautisation

Si F, Y fasiceaux, $\phi = \psi$ ssi $\forall x \in X$, $\phi_x = \psi_x$. F faiseau sur X, on pose ad

On verifie que \tilde{F} est un fasiceau et que $F \mapsto \tilde{F}$ est un foncteur. On a un morphisme canonique $\tau : F \to \tilde{F}$, $s \in F(V) \mapsto (s_x)_{x \in V}$ on verifie que τ es un iso. ssi F est un faiseau.

D'autre part en general $\forall x \in X, \tau_x : F_x \mapsto \tilde{F}_x$ es un iso.

En composant avec τ on a α : $\operatorname{Hom}_{\operatorname{Faseux}}(\tilde{F},G) \to \operatorname{Hom}_{\operatorname{Pre}}(F,\iota(G))$ avec ι : faiseau \to prefasioux l'inclusion naturalle.

On verifie facilment que α est un bijective functorielle en F et G. Autrement dit, le foncteur $F\mapsto \tilde{F}$ est l'adjunt à gauche du functor ι .

1.1.1 Fonctorialité

 $f: X \to Y$ application continue. F prefasioux sur X, on pose $f_*F(V) = F(f^{-1}(V))$, avec V oubert de Y.

 f_*F est un prefasioux $F\mapsto f_*F$ est un functeur et si F est un faiseau f_*F égalment.

On a $g_*(f_*F) = (g \circ f)_*F$. Si G est un prefasioux sur Y, on note f^+Y le prefasioux $f^+G(V) = \operatorname{colim}_{f(V) \in V} G(V)$

En general si F faiseau, f^+F n'est pas un faiseau. on pose $f^{-1}F = f^{\tilde{+}}F$ Si $\iota_x: x \to$, $(\iota_x^+F)_x \equiv (\iota_x^{-1}F)_x = F_x$ $f^+(g^+\mathcal{H}) = (g \circ f)^+\mathcal{H}$ si G sur Y $(f^{-1}G)_x = (f^+G)_x = G_{f(x)}$.

Proposition 1.3. Si $f: X \to Y$ continue, on a une adjunction $Hom_{Faseux_X}(f^{-1}G, F) \sim Hom_{Faseux_Y}(G, f_*F)$ f^{-1} est adjunt à gauche de f_* .

Espaces localment annulés (X, O_X) , avec X espace top., O_X un faiseau d'anneaux sur X t.q. \forall $x \in X$, $O_{X,x}$ est un anneaux **local**.

On va munir SpecA d'une telle structure. Soit M un A-module, V ouvert de SpecA et $S(V)=\{f\in A|V\subset D(f)\}.$

On note $M_P(V)$ le $S(V)^{-1}$ A-module $S(V)^{-1}M$.

 M_P est un prefasioux de A-modules sur $\operatorname{Spec} A.$ Soit $x\in\operatorname{Spec} A,$ correspondait à p_x

$$M_{P,x} = \operatorname{colim}_{x \in U} S^{-1}(V) M = M_{p_x}$$

En fait M_P est un prefasioux de A_P -modules. On note \tilde{M} le faiseautisé de M. Soit $f \in A$, $f \in S(D(f))$ on dispose donc de $M_f \to S(D(f))^{-1}M = M_P(D(f))$, $\frac{m}{f} \mapsto \frac{m}{f}$

(A-linéaire) qui induit por composition avec $M_P(D(f)) \to \tilde{M}(D(f))$.

Theorem 1.4. Pour tout $f \in A$

1. l'application A-linéaire $M_f \to \tilde{M}(D(f))$ est un iso.

Corollary 1.5. $M \to \tilde{M}(SpecA) = \Gamma(SpecA, \tilde{M})$ est un iso. de A-modules.

Proof. On peut identifier D(f) à Spec A_1 . On note $\tau_f:A\to A_f$, le morphisme $a\mapsto \frac{a}{1}$. Si $D(f)\subset D(g)$ il existe $n\geq 1,\,a\in A$ t.q. $f^n=ag$. On en tire $\rho_{f,g}:A_g\tilde{A}_f$, $\frac{1}{g}\mapsto \frac{a}{f^n}$. C'est l'unique morphisme de A-algebras $A_g\to A_f$ t.q. $\rho_{f,g}\circ\tau_f=\tau_g$. Il suit que si $D(f)\subset D(g)$ $\rho_{f,g}\circ\rho_{g,h}=\rho_{f,h}$. En particulier si $D(f)=D(g),\,\rho_{f,g}\circ\rho_{g,f}=\mathrm{Id}$. On peut donc identifier A_f et A_g via $\rho_{f,g}$.

Demonstration OPS f = 1 et $A = A_f$ (on identifie M/D(f) à M_d)

- $M \to \tilde{M}(\operatorname{Spec} A)$ est injective. Soit $m \in M$ dans le noyau. Pour tout $p \in \operatorname{Spec} A$ l'image de m dans M_P est nulle et suet que m = 0 (en effect $\operatorname{Ann} m \cap A \setminus P \neq \emptyset$ pour tout P.)
 - surjectivité

Soit $\sigma \in M(\operatorname{Spec} A)$ por quasi compacité OPS $\operatorname{Spec} A = \bigcup_{i \in I} D(f_i)$ avec I fini. Alors, $\forall i \in I$ $\sigma \|_{D(f_i)}$ por medio de m_i/f_i , $m_i \in M$

 $\sigma_{D(f_if_j)}$ est representablé par $f_jm_i/(f_if_j)$ et par $f_im_j/(f_if_j)$.

Mais par injectivité de $M_{f_if_j} \to \tilde{M}(D(f_if_j))$ il suit que $\frac{f_jm_i}{f_if_j} = \frac{f_im_j}{f_if_j}$ dans $M_{f_if_j}$. Il existe donc $N \geq 1$ indices de (i,j) t.q.

$$(f_i f_j)^{N-1} (f_j f_i f_j m_i - f_i f_j f_i m_j) = 0$$

 $(f_if_j)^N f_j m_i = (f_if_j)^N f_i m_j$. Posons $f_i' = f_i^{N+1}$ et $m_i' = f_i^N m_i$. On peut remplacer f_i par f_i' et m_i par m_i' . $f_j m_i = f_i' m_j' = f_i m_j$ par tout indices.

Pour montré que $m \in M$ a pour image σ il suffit de montrer que l'image de m dans M_{f_i} est $\frac{m_i}{f_i}$.

Comme Spec $A = \cup D...$ il existe $\alpha_i \in A, i \in I$ t.q. $1 = \sum \alpha_i f_i$. On pose $m = \sum_{j \in I} \alpha_j m_j$ On a $f_i m = \sum_{j \in I} \alpha_j f_i m_j = \sum_{j \in I} \alpha_j f_j m_i = m_i$ et l'image de m dans M_{f_i} est bien $\frac{m_i}{f_i}$.

On pose $O_{\text{Spec}A} = \tilde{A}$ on a $O_{\text{Spec}A}(D(f)) = A_f$

$$O_{\operatorname{Spec} A,x} = A_{P_x}$$

de plus $O_{\operatorname{Spec} A,x}$ est l'unique faiseau de A-modules sur $\operatorname{Spec} A.$

Definition 1.6. Un morphisme d'espaces annulés

$$(X, O_X) \rightarrow (Y, O_Y)$$

est un couple (f, f^b) avec $f: X \to Y$ continue et $f^b: O_y \to f_*O_X$ un morphisme de faisaux d'anneaux sur Y $(f^b \iff f^\#: f^{-1}O_Y \to O_X)$

$$(f^b \iff f^\#: f^{-1}O_Y \to O_X)$$

$$f_x^{\#}: (f^{-1}O_Y)_x = O_{Y,f(x)} \to O_{X,x}$$

un morphisme entre espaces localment annelés

$$(X, O_X) \rightarrow (Y, O_Y)$$

est un couple (f, f^b) comme a-desseus t.q. $\forall x \in X$ $f_x^\#: O_{Y, f(x)} \to O_{X, x}$ est un morphisme local $[\phi: (A, m_A) \to (B, m_B)$ t.q. $\phi(m_A) \subset m_B$ i.e. qui equivarent à $\phi^{-1}(m_B) = m_A]$

A Commutative diagrams

Test1

$$F: \mathscr{A} \longrightarrow \mathscr{B}$$

$$A \longmapsto B \quad x$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$A' \longmapsto B' \quad y$$

$$A \longmapsto B$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$A' \longmapsto B'$$

$$X \longmapsto Z$$

$$\uparrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$Y \longmapsto W$$

$$F: \mathscr{A} \longrightarrow \mathscr{B}$$

$$X \longmapsto Z \quad x$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$Y \longmapsto W \quad y$$