Cryptography Lecture 20

Arkady Yerukhimovich

November 6, 2024

Outline

Lecture 19 Review

Private-Key Crypto from Number Theoretic Assumptions (Chapter 8.4)

3 Public-Key Revolution (Chapter 10)

Lecture 19 Review

- Number-Theoretic Hardness Assumptions
- Assumptions in \mathbb{Z}_N^* : Factoring, RSA
- Assumptions in Cyclic Groups: DLOG, CDH, DDH

Assumptions in \mathbb{Z}_N^*

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

Assumptions in \mathbb{Z}_N^*

Factoring Problem

Given N = pq when p and q are n-bit primes, find p and q

RSA Problem

Given (N=pq,e) s.t. $gcd(e,\phi(N))=1$ and $y\in\mathbb{Z}_N^*$, compute $[y^{1/e} \mod N]$

Assumptions in Cyclic Groups

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

Assumptions in Cyclic Groups

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

Computational Diffie-Hellman (CDH) Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Assumptions in Cyclic Groups

Let G be a cyclic group of order q with generator g

Discrete Log Problem

Given $h \in G$, find $0 \le x \le q-1$ s.t. $g^x = h$. We say $x = \log_g h$

Computational Diffie-Hellman (CDH) Problem

Given $h_1 = g^x$, $h_2 = g^y$, find g^{xy}

Decisional Diffie-Hellman (DDH) Problem

Given $h_1 = g^x$, $h_2 = g^y$, distinguish g^{xy} from g^z for $z \leftarrow \mathbb{Z}_q$

Outline

Lecture 19 Review

Private-Key Crypto from Number Theoretic Assumptions (Chapter 8.4)

3 Public-Key Revolution (Chapter 10)

Let G be a group of order q with generator g

Let G be a group of order q with generator g

Given
$$s = (x, y) \leftarrow \mathbb{Z}_q^2$$
, output $G(s) = (g^x, g^y, g^{xy})$

Let G be a group of order q with generator g

Given
$$s = (x, y) \leftarrow \mathbb{Z}_q^2$$
, output $G(s) = (g^x, g^y, g^{xy})$

- Expansion:
 - s consists of two random integers in \mathbb{Z}_q
 - G(s) outputs 3 field elements in G of order q
 - So |G(s)| > |s|

Let G be a group of order q with generator g

Given
$$s = (x, y) \leftarrow \mathbb{Z}_q^2$$
, output $G(s) = (g^x, g^y, g^{xy})$

- Expansion:
 - s consists of two random integers in \mathbb{Z}_q
 - G(s) outputs 3 field elements in G of order g
 - So |G(s)| > |s|
- Pseudorandomness:

Let G be a group of order q with generator g

Given
$$s = (x, y) \leftarrow \mathbb{Z}_q^2$$
, output $G(s) = (g^x, g^y, g^{xy})$

- Expansion:
 - s consists of two random integers in \mathbb{Z}_q
 - G(s) outputs 3 field elements in G of order g
 - So |G(s)| > |s|
- Pseudorandomness:
 - g^x , g^y are random group elements

Let G be a group of order q with generator g

PRG Construction

Given
$$s = (x, y) \leftarrow \mathbb{Z}_q^2$$
, output $G(s) = (g^x, g^y, g^{xy})$

• Expansion:

egers in \mathbb{Z}_q

- s consists of two random integers in \mathbb{Z}_q .
 G(s) outputs 3 field elements in G of order g .
 So |G(s)| > |s|
- 30 | G(5)| > |5|
- Pseudorandomness:
 - g^x , g^y are random group elements
 - If A_c can distinguish (g^x, g^y, g^{xy}) from random, then A_r just runs A_c to break DDH

Let G be a group of order q with generator g

Let G be a group of order q with generator g

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^s(x,y)=g^xh^y$$

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^s(x,y)=g^xh^y$$

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^{s}(x,y)=g^{x}h^{y}$$

Proof of security:

• Suppose \mathcal{A}_c can find (x,y) and (x',y') such that $g^x h^y = g^{x'} h^{y'}$

8 / 19

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^{s}(x,y)=g^{x}h^{y}=g^{x}g^{a}$$

- Suppose A_c can find (x, y) and (x', y') such that $g^x h^y = g^{x'} h^{y'}$
- Let $h = g^a$, then $H^s(x, y) = g^{x+ay}$ and $H^s(x', y') = g^{x'+ay'}$

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick $h \leftarrow G$
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^{s}(x,y) = g^{x}h^{y}$$

- Suppose A_c can find (x, y) and (x', y') such that $g^x h^y = g^{x'} h^{y'}$
- Let $h = g^a$, then $H^s(x, y) = g^{x+ay}$ and $H^s(x', y') = g^{x'+ay'}$
- Since these are equal, we have x + ay = x' + ay' $x x' = \alpha \left(\frac{1}{2} \frac{1}{2} \right)$

Let G be a group of order q with generator g

CRHF Construction

Gen_H :

- Pick *h* ← *G*
- Output s = (G, q, g, h)

H:

• Given s = (G, q, g, h) and input $(x, y) \in \mathbb{Z}_q^2$, compute

$$H^{s}(x,y)=g^{x}h^{y}$$

- Suppose A_c can find (x, y) and (x', y') such that $g^x h^y = g^{x'} h^{y'}$
- Let $h = g^a$, then $H^s(x, y) = g^{x+ay}$ and $H^s(x', y') = g^{x'+ay'}$
- Since these are equal, we have x + ay = x' + ay'
- So, A_r computes $a = \frac{x x'}{y' y}$ breaking DLog of h

Let G be a group of order q with generator g

Let G be a group of order q with generator g

Let
$$k = (a_0, a_1, \dots, a_n) \leftarrow \mathbb{Z}_q^n \stackrel{\mathsf{t}}{\cdot} \mathsf{On}$$
 input $x \in \{0, 1\}^n$

$$F_k(x) = g^{a_0 \prod_{i=1}^n a_i^{x_i}}$$
 $(x_i = i^{th} \text{ bit of } x)$

Let G be a group of order q with generator g

PRF Construction

Let
$$k = (a_0, a_1, \dots, a_n) \leftarrow \mathbb{Z}_q^n$$
. On input $x \in \{0, 1\}^n$

$$F_k(x) = g^{a_0 \prod_{i=1}^n a_i^{x_i}}$$
 $(x_i = i^{th} \text{ bit of } x)$

Pseudorandomness (Intuition):

Let G be a group of order q with generator g

PRF Construction

Let
$$k = (a_0, a_1, \dots, a_n) \leftarrow \mathbb{Z}_q^n$$
. On input $x \in \{0, 1\}^n$

$$F_k(x) = g^{a_0 \prod_{i=1}^n a_i^{x_i}}$$
 $(x_i = i^{th} \text{ bit of } x)$

Pseudorandomness (Intuition):

• For every new input x', $F_k(x')$ differs from $F_k(x)$ by at least one term in the exponent

Let G be a group of order q with generator g

PRF Construction

Let
$$k = (a_0, a_1, \dots, a_n) \leftarrow \mathbb{Z}_q^n$$
. On input $x \in \{0, 1\}^n$

$$F_k(x) = g^{a_0 \prod_{i=1}^n a_i^{x_i}}$$
 $(x_i = i^{th} \text{ bit of } x)$

Pseudorandomness (Intuition):

- For every new input x', $F_k(x')$ differs from $F_k(x)$ by at least one term in the exponent
- By DDH, we cannot distinguish such terms from random

Outline

Lecture 19 Review

- Private-Key Crypto from Number Theoretic Assumptions (Chapter 8.4)
- 3 Public-Key Revolution (Chapter 10)

Sharing Keys

To use private-key crypto, every pair of parties needs to privately share a secret key.

Sharing Keys

To use private-key crypto, every pair of parties needs to privately share a secret key.

Resulting Challenges:

Key distribution – how to share the keys in the first place

Sharing Keys

To use private-key crypto, every pair of parties needs to privately share a secret key.

Resulting Challenges:

- Key distribution how to share the keys in the first place
- Key storage and management many keys to store

Sharing Keys

To use private-key crypto, every pair of parties needs to privately share a secret key.

Resulting Challenges:

- Key distribution how to share the keys in the first place
- Key storage and management many keys to store
- "Open systems" users don't know each other (e.g., shopping on Amazon)

Solution 1: Key-distribution Centers (KDC)

Assume a trusted KDC that shares a secret-key with each user

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

① A sends authenticated message to KDC (using k_{KDC}^{A})

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

- **1** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{RDC}^A}(k)$ and $\text{Enc}_{k_{RDC}^B}(k)$, and sends both to A.

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

- **1** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{NDC}^A}(k)$ and $\text{Enc}_{k_{NDC}^B}(k)$, and sends both to A.
- **3** A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

- **1** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- **3** A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- $oldsymbol{0}$ A and B now have shared key k

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **1** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- 3 A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- $oldsymbol{4}$ A and B now have shared key k

Pros:

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **①** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- **3** A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- A and B now have shared key k

Pros:

Allows parties to share keys using only private-key crypto

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **①** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- **3** A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- $oldsymbol{0}$ A and B now have shared key k

Pros:

- Allows parties to share keys using only private-key crypto
- Works well in organizations where KDC is centralized admin

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **①** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- **3** A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- $oldsymbol{0}$ A and B now have shared key k

Pros:

- Allows parties to share keys using only private-key crypto
- Works well in organizations where KDC is centralized admin

Cons:

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **①** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- 3 A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- lack A and B now have shared key k

Pros:

- Allows parties to share keys using only private-key crypto
- Works well in organizations where KDC is centralized admin

Cons:

• At some point, all parties need to have a secure channel to KDC

Assume a trusted KDC that shares a secret-key with each user

Needham-Schroeder / Kerberos Protocol

Suppose A wants to talk privately to B:

- **①** A sends authenticated message to KDC (using k_{KDC}^{A})
- ② KDC generates $k \leftarrow \text{Gen}$, produces authenticated encryptions $\text{Enc}_{k_{KDC}^A}(k)$ and $\text{Enc}_{k_{KDC}^B}(k)$, and sends both to A.
- 3 A sends $\operatorname{Enc}_{k_{KDC}^B}(k)$ to B
- \bullet A and B now have shared key k

Pros:

- Allows parties to share keys using only private-key crypto
- Works well in organizations where KDC is centralized admin

Cons:

- At some point, all parties need to have a secure channel to KDC
- Does not work with open systems KDC must know all users

Arkady Yerukhimovich Cryptography November 6, 2024

12 / 19

Goals:

• Two parties A and B do not share any apriori secrets

Goals:

- Two parties A and B do not share any apriori secrets
- A and B run a protocol Π after which both of them output a shared (private) key k

Goals:

- Two parties A and B do not share any apriori secrets
- A and B run a protocol Π after which both of them output a shared (private) key k

Key Exchange Security

Eavesdropper observing Π should not be able to learn anything about the agreed upon private-key k.

Goals:

- Two parties A and B do not share any apriori secrets
- A and B run a protocol Π after which both of them output a shared (private) key k

Key Exchange Security

Eavesdropper observing Π should not be able to learn anything about the agreed upon private-key k.

Observations:

 Since A and B do not share a secret, not clear how to use private-key crypto

Goals:

- Two parties A and B do not share any apriori secrets
- A and B run a protocol Π after which both of them output a shared (private) key k

Key Exchange Security

Eavesdropper observing Π should not be able to learn anything about the agreed upon private-key k.

Observations:

- Since A and B do not share a secret, not clear how to use private-key crypto
- Eavesdropper sees everything sent, no secret channel

Goals:

- Two parties A and B do not share any apriori secrets
- A and B run a protocol Π after which both of them output a shared (private) key k

Key Exchange Security

Eavesdropper observing Π should not be able to learn anything about the agreed upon private-key k.

Observations:

- Since A and B do not share a secret, not clear how to use private-key crypto
- Eavesdropper sees everything sent, no secret channel

The Power of Key Exchange

Key agreement allows generation of shared secrets without private communication.

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{KE}^{eav}_{\mathcal{A},\Pi}(n)$

• $A(1^n)$ and $B(1^n)$ run Π , resulting in transcript trans and output k

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

- $A(1^n)$ and $B(1^n)$ run Π , resulting in transcript trans and output k
- Challenger chooses $b \leftarrow \{0,1\}$
 - If b = 0, he sets $\hat{k} = k$
 - If b = 1, he sets $\hat{k} \leftarrow \{0, 1\}^n$

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

- $A(1^n)$ and $B(1^n)$ run Π , resulting in transcript trans and output k
- Challenger chooses $b \leftarrow \{0,1\}$
 - If b = 0, he sets $\hat{k} = k$
 - If b = 1, he sets $\hat{k} \leftarrow \{0, 1\}^n$
- ullet ${\cal A}$ gets trans, \hat{k} and outputs a guess bit b'

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

- $A(1^n)$ and $B(1^n)$ run Π , resulting in transcript trans and output k
- Challenger chooses $b \leftarrow \{0,1\}$
 - If b = 0, he sets $\hat{k} = k$
 - If b = 1, he sets $\hat{k} \leftarrow \{0, 1\}^n$
- \mathcal{A} gets trans, \hat{k} and outputs a guess bit b'
- We say that $KE_{\mathcal{A},\Pi}^{eav}(n) = 1$ (i.e., \mathcal{A} wins) if b' = b.

Let Π be a protocol between A and B, and let trans be the full transcript of all messages sent by Π .

Consider the following game between an adversary ${\cal A}$ and a challenger:

$\mathsf{KE}^{eav}_{\mathcal{A},\Pi}(n)$

- $A(1^n)$ and $B(1^n)$ run Π , resulting in transcript trans and output k
- Challenger chooses $b \leftarrow \{0,1\}$
 - If b = 0, he sets $\hat{k} = k$
 - If b = 1, he sets $\hat{k} \leftarrow \{0, 1\}^n$
- $\mathcal A$ gets trans, $\hat k$ and outputs a guess bit b'
- We say that $KE_{\mathcal{A},\Pi}^{eav}(n) = 1$ (i.e., \mathcal{A} wins) if b' = b.

Definition: A key exchange protocol Π is secure against an eavesdropper if for all PPT \mathcal{A} it holds that

$$\Pr[\mathsf{KE}^{eav}_{\mathcal{A},\Pi}(n)=1] \leq 1/2 + \mathsf{negl}(n)$$

$$(G,q,g) \leftarrow \mathsf{Gen}(1^n)$$

$$x \leftarrow \mathbb{Z}_q, h_A = g^x$$

Correctness

Easy to see that A and B output the same key k

What A_c sees:

What A_c sees:

• trans = $(G, q, g), g^x, g^y$

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

• A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c
- When A_c outputs a bit b, A_r outputs the same bit.

What A_c sees:

- trans = $(G, q, g), g^{x}, g^{y}$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- \bullet He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c
- When A_c outputs a bit b, A_r outputs the same bit.

Analysis: This is a perfect simulation of the DDH security game

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c
- When A_c outputs a bit b, A_r outputs the same bit.

Analysis: This is a perfect simulation of the DDH security game Observations:

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c
- When A_c outputs a bit b, A_r outputs the same bit.

Analysis: This is a perfect simulation of the DDH security game Observations:

ullet In KE definition, we chose $\hat{k} \leftarrow \{0,1\}^n$, while here we chose $\hat{k} \leftarrow \mathcal{G}$

What A_c sees:

- trans = $(G, q, g), g^x, g^y$
- \hat{k} which is either g^{xy} or $\hat{k} \leftarrow G$.

Construct A_r breaking DDH:

- A_r receives as input either $(G, q, g, g^x, g^y, c = g^{xy})$ or $(G, q, g, g^x, g^y, c = g^z)$
- He plays the roles of A and B, producing transcript trans, sets $\hat{k}=c$ and gives both to \mathcal{A}_c
- When A_c outputs a bit b, A_r outputs the same bit.

Analysis: This is a perfect simulation of the DDH security game Observations:

- ullet In KE definition, we chose $\hat{k} \leftarrow \{0,1\}^n$, while here we chose $\hat{k} \leftarrow G$
- Can use hash to convert random group element to a random string

Arkady Yerukhimovich Cryptography November 6, 2024 16 / 19

$$\begin{array}{c|c} & & & & & & \\ \hline (G,q,g) \leftarrow \operatorname{Gen}(1^n) & & & & \\ x \leftarrow \mathbb{Z}_q, h_A = g^x & & & & \\ \hline \end{array}$$

Arkady Yerukhimovich

Result

- $k_A \neq k_B A$ and B fail to agree on a key
- ullet ${\cal A}$ has shared keys with both

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

• User A has keys (pk_A, sk_A)

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

Digital signatures

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

• A has keys (pk_A, sk_A)

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

- A has keys (pk_A, sk_A)
- Secret key sk_A is used by A to sign messages

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

- A has keys (pk_A, sk_A)
- Secret key sk_A is used by A to sign messages
- Public key pk_A is used to verify A's signatures

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

- A has keys (pk_A, sk_A)
- Secret key sk_A is used by A to sign messages
- Public key pk_A is used to verify A's signatures
- A publishes pk_A while keeping sk_A secret

	Private-Key	Public-Key
Secrecy	Private-key encryption	Public-key encryption
Integrity	MACs	Digital signatures

Public-Key Encryption

- User A has keys (pk_A, sk_A)
- Public key pk_A is used to encrypt messages to A
- Secret key sk_A is used by A to decrypt
- A publishes pk_A while keeping sk_A secret
- Anybody can encrypt, only A can decrypt

Digital signatures

- A has keys (pk_A, sk_A)
- Secret key sk_A is used by A to sign messages
- Public key pk_A is used to verify A's signatures
- A publishes pk_A while keeping sk_A secret
- Only A can sign, anybody can verify

18 / 19

The development of key-exchange in 1976 revolutionized what we could do with cryptography:

• Can do key distribution over public channels, no need for couriers

- Can do key distribution over public channels, no need for couriers
- Can update keys whenever necessary

- Can do key distribution over public channels, no need for couriers
- Can update keys whenever necessary
- User only needs to store one secret key

- Can do key distribution over public channels, no need for couriers
- Can update keys whenever necessary
- User only needs to store one secret key
- Public keys can be posted online for open systems

The development of key-exchange in 1976 revolutionized what we could do with cryptography:

- Can do key distribution over public channels, no need for couriers
- Can update keys whenever necessary
- User only needs to store one secret key
- Public keys can be posted online for open systems

Drawbacks:

 Public-key crypto is 2-3 orders of magnitude slower than secret-key operations

The development of key-exchange in 1976 revolutionized what we could do with cryptography:

- Can do key distribution over public channels, no need for couriers
- Can update keys whenever necessary
- User only needs to store one secret key
- Public keys can be posted online for open systems

Drawbacks:

 Public-key crypto is 2-3 orders of magnitude slower than secret-key operations

Public-key crypto today

Public-key cryptography enables today's Internet and more:

- When you buy something on Amazon
- When you surf the web
- <u>.</u> . .