Escuela Superior de Cómputo

Ingeniería en Sistemas Computacionales

Matemáticas avanzadas para la Ingeniería

OPERACIONES CON NUMEROS COMPLEJOS

Grupo: 4CV2 Profesor: Zárate Cárdenas Alejandro

Equipo:
Arellano Millán Gabriel
Gómez Tovar Yoshua Oziel
Herrera Tovar Karla Elena
Vazquez Blancas César Said
Zarco Sosa Kevin

28 de Marzo de 2024

$$2i^3 - 3i^2 + 5i$$

Realizamos las operaciones con los números imaginarios:

$$-2(-1) - 3(-1) + 5i = 3 + 3i$$

2 Ejercicio 3

$$i^{8} =$$

Calculamos el valor de i elevado a la octava potencia:

$$i^4 = 1$$
$$i^5 = -i$$
$$i^6 = -1$$

$$i^7 = -$$

$$i^8 = 1$$

3 Ejercicio 5

$$(5-9i) + (2-4i) =$$

Sumamos dos números complejos y realizamos las operaciones correspondientes:

$$(5+2-9i-4i) = 7-13i$$

4 Ejercicio 7

$$i(5 + 7i)$$

Multiplicamos un número imaginario con un número complejo y realizamos las operaciones correspondientes:

$$= 0 - 7 + i(5+0) = -7 + 5i$$

$$(2-3i)(4+i)$$

Multiplicamos los números complejos y realizamos las operaciones correspondientes:

$$= 8 + 3 + i(-12 + 2)$$
$$= 11 - 10i$$

6 Ejercicio 11

$$(2+3i)^2$$

Realizamos la potencia del numero complejo

$$= 4 - 9 + i(6+6)$$
$$= -5 + 12i$$

7 Ejercicio 13

$$\frac{2}{i}$$

Realizamos la division sobre el numero Imaginario.

$$a = 2 \quad b = 0$$

$$c = 0 \quad d = 1$$

$$\frac{0 + 0 + i(0 + 2)}{1} = -2i$$

8 Ejercicio 15

$$\frac{2-4i}{3+5i}$$

Hacemos la division de numeros complejos

$$\begin{split} \frac{6-20+i(-12-10)}{9+25} &= \\ &= \frac{-14-22i}{34} \\ &= -\frac{14}{34} - \frac{22}{34}i \\ &= -\frac{7}{17} - \frac{11}{17}i \end{split}$$

$$\frac{(3-i)(2+3i)}{1+i}$$

Hacemos primero la multiplicacion de numeros complejos

$$\frac{6+3+i(-2+9)}{1+i} = \frac{9+7i}{1+i}$$

Hacemos la divicion de numeros complejos

$$\frac{9+7i}{1+i} = \frac{9+7+i(7-9)}{2} = \frac{6-2i}{2} - 8-i$$

10 Ejercicio 19

$$\frac{(5-4i)-(3+7i)}{(4+2i)+(2-3i)}$$

Hacemos la suma de numeros complejos

$$\frac{2-11i}{6-i}$$

Hacemos la division de numeros complejos

$$\frac{2-11i}{6-i} =$$

$$= \frac{12+11+i(-66+2)}{36+1}$$

$$= \frac{23-64i}{37}$$

$$= \frac{23}{67} - \frac{64}{37}i$$

11 Ejercicio 21

$$i(1-i)(2-i)(2+6i)$$

Hacemo la multiplicacion de (2-i)(2+6i)

$$(2-i)(2+6i) =$$

$$= 4+6+i(-2+12)$$

$$= (10+10i)(0+i)$$

$$= 0-10+i(0+10)$$

$$= -10+10i$$

Multiplicamos -10+10
i y 1-i

$$-(10+10i)(1-i) = = -10+10$$

Multiplicamos i y -10+10

$$i(-10 + 10) =$$
 $= 0 + 20i$
 $= 20i$

12 Ejercicio 23

$$(3+6i) + (4-i)(3+5i) + \frac{1}{2-1}$$

Multiplicamos (4-i)(3+5i)

$$(4-i)(3+5i) = = 12+5+i(-3+20) = 17+17i$$

Hacemos la divicion de $\frac{1}{2-1}$

$$\frac{1}{2-1} = \frac{2+0+i(0+1)}{5}$$
$$= \frac{2+i}{5}$$
$$= \frac{2}{5} + \frac{1}{5}i$$

Sumamos 3+6i, 17+17i y $\frac{2}{5}+\frac{1}{5}i$

$$(3+6i) + (17+17i) + (\frac{2}{5} + \frac{1}{5}i) =$$

= $20 + 23i + (\frac{2}{5} + \frac{1}{5}i)$

Hacemos la conversion de 20+23i

$$\frac{100}{5} + \frac{115}{5}i + (\frac{2}{5} + \frac{1}{5}i) =$$

$$= \frac{102}{5} + \frac{116}{5}i$$

13 Ejercicio 25

$$\left(\frac{i}{3-i}\right)\left(\frac{1}{2+3i}\right)$$

Hacemos la división de $\frac{i}{3-i}$

Hacemos la división de $\frac{1}{2+3i}$

$$\begin{split} \frac{i}{3-i} &= & \frac{1}{2+3i} = \\ &= \frac{0-1+i(3-0)}{9+1} &= \frac{2+0+i(0-3)}{9+4} \\ &= \frac{-1+3i}{10} &= \frac{2-3i}{13} \\ &= -\frac{1}{10} + \frac{3}{10}i &= \frac{2}{13} - \frac{3}{13}i \end{split}$$

Sumamos los numeros reales y los imaginarios respectivamente

$$-\frac{1}{10} + \frac{2}{13} = \frac{3}{10}i - \frac{3}{13}i = \frac{-13 + 20}{130}$$

$$= \frac{7}{130} = \frac{9}{130}i$$

Hacemos la suma

$$\frac{7}{130} + \frac{9}{130}i$$

$$RE(\frac{1}{z})$$

Tenemos que

$$RE(\frac{1}{x+iy})$$

$$a=1$$
 $b=0$ $c=x$ $d=y$

$$\begin{split} \frac{1}{x+iy} &= \\ &= \frac{x+0+i(0-y)}{x^2+y^2} \\ &= \frac{x-yi}{x^2+y^2} \\ &= \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i \\ RE(\frac{1}{z}) &= \frac{x}{x^2+y^2} \end{split}$$

15 Ejercicio 29

$$Im(2z+4z-4i)$$

Sustituimos z y empezamos a resolver

$$Im(2z + 4z - 4i) =$$

$$= 2(x + iy) + 4(x - iy) - 4i$$

$$= 2x - 0 + i(0 + 2y) + 4x - 0 + i(0 + 4y)$$

$$= 2x + 2yi + 4x - 4yi - 4i$$

$$= 6x - 2yi - 4i$$

$$= 6x + i(-2y - 4)$$

Entonces podemos decir que

$$Im(2z + 4z - 4i) = -2y - 4$$

$$|z - 1 - 3i|$$

Sabemos que z= x+iy Entonces sustituyndo tenemos que

$$|z - 1 - 3i| =$$

$$= |x + iy - 1 - 3i|$$

$$= x - 1 + i(y - 3)$$

$$= \sqrt{(x - 1)^2 + (y - 3)^2}$$

$$= \sqrt{x^2 - 2x + 1 + y^2 - 3y + 9}$$

17 Ejercicio 33

$$2z = i(2+9i)$$

Despejando tenemos que

$$\begin{split} 2z &= i(2+9i) \\ z &= \frac{i(2+9i)}{2} \\ &= \frac{0-9+i(2+0)}{2} \\ &= \frac{-9+2i}{2} \\ &= \frac{-18+0+i(4-0)}{2} \\ &= \frac{-18+4i}{4} \\ &= -\frac{18}{4} + \frac{4}{4}i \\ &= -\frac{9}{2} + i \end{split}$$

18 Ejercicio 35

$$z^2 = 2$$

Sabemos que $z=\sqrt{i}$ y que $r=\sqrt{1^2+0^2}=1$ Tambien que $\theta=\frac{\pi}{2}$ y n=2

Entonces para k=0

$$\begin{split} 1^{\frac{1}{2}}[\cos(\frac{\frac{\pi}{2}+2(0)(\Pi)}{2}+isen(\frac{\frac{\pi}{2}+2(0)(\pi)}{2})] &=\\ &=1[\cos\frac{\pi}{4}+isen\frac{\pi}{4}]\\ &=\frac{\sqrt{2}}{2}+\frac{2}{2}i \end{split}$$

Ahora para k=1

$$\begin{split} 1^{\frac{1}{2}}[\cos(\frac{\frac{\pi}{2}+2(\Pi)}{2}+isen(\frac{\frac{\pi}{2}+2(\pi)}{2})] &= \\ &= 1[\cos\frac{5\pi}{4}+isen\frac{5\pi}{4}] \\ &= -\frac{\sqrt{2}}{2}-\frac{2}{2}i \end{split}$$

Entonces

$$z^2 = i = (\frac{\sqrt{2}}{2} + \frac{2}{2}i, -\frac{\sqrt{2}}{2} - \frac{2}{2}i)$$

19 Ejercicio 37

$$10 + 8i, 11 - 6i$$

Si tomamos en cuenta que a= 10+8
i y b=11-6
i Entonces

$$|a| = \sqrt{10^2 + 8^2}$$

$$= \sqrt{100 + 64}$$

$$= \sqrt{164}$$

$$|b| = \sqrt{11^2 + 6^2}$$

$$= \sqrt{121 + 36}$$

$$= \sqrt{157}$$

Y como podemos ver |a| > |b|Por lo que la respuesta es

$$11 - 6i$$

Demuestre que |z1-z2| es la distancia entre los puntos z
1 y z2 en el plano complejo

Para demostrar que $|z_1 - z_2|$ es la distancia entre los puntos z_1 y z_2 en el plano complejo, consideramos los números complejos $z_1 = x_1 + iy_1$ y $z_2 = x_2 + iy_2$, donde x_1 , y_1 , x_2 , y y_2 son números reales.

La distancia entre z_1 y z_2 en el plano complejo se define como la longitud del segmento de línea que conecta estos dos puntos. Utilizando la fórmula de distancia entre dos puntos en el plano, tenemos:

Distancia entre
$$z_1$$
 y $z_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Ahora, sustituyendo z_1 y z_2 por sus representaciones en términos de partes reales e imaginarias, obtenemos:

$$|z_1 - z_2| = |(x_1 - x_2) + i(y_1 - y_2)|$$
$$= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$