DataFrames

- A Data frame is a two-dimensional data structure
- Data is aligned in a tabular fashion in rows and columns

```
import pandas as pd
statsDF = pd.read_csv('C:\\.....\\file1.csv')
```

DataFrames

- A Data frame is a two-dimensional data structure
- Data is aligned in a tabular fashion in rows and columns

```
import pandas as pd
statsDF = pd.read_csv('C:\\.....\\file1.csv')
```

Exploring DataSet

Standard Deviation

Customer ID	Name	Surname	Gender	Age	Age Group	Height	tegion	Job Classification	Tenure Months	Balance	Spend On Groceries
200000262	Zoe	Clarkson	Female	59	5	62	cotland	Other	24	23550.89	70.77
200001214	Carolyn	McDonald	Female	58	5	61.2	cotland	Other	24	69027.62	67.1
400000497	Anna	Chapman	Female	26	2	65.1	forthern Ireland	White Collar	46	5789.63	46.23
400001939	Richard	Dowd	Male	21	2	70.9	Forthern Ireland	White Collar	23	10248.59	36.48
300002298	Phil	Arnold	Male	37	31	70.4	Vales	Blue Collar	15	80824.89	36.11

{ 61.2, 62, 65.1, 70.4, 70.9 }

Mean =
$$\frac{61.2 + 62 + 65.1 + 70.4 + 70.9}{5} = 65.92$$

$$\mu$$
 Mean = $\frac{61.2 + 62 + 65.1 + 70.4 + 70.9}{5} = 65.92$

Variance =
$$\frac{(61.2 - 65.92)^{2} + (62 - 65.92)^{2} + (65.1 - 65.92)^{2} + (70.4 - 65.92)^{2} + (70.9 - 65.92)^{2}}{5}$$

Variance =
$$\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} = 16.64$$

Std. Dev. =
$$\sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} = 4.08$$

BoxPlot

 boxplot(), shows the distribution of quantitative data in a way that facilitates comparisons between variables

vis2 = sns.boxplot(data=DF, x="IncomeGroup", y="BirthRate")

Quartiles

The extra pointers plotted indicate outliers (e.g. few high income rate class having high birthrate)

Task: Confirm the outliers and the plotted density values by using appropriate functions

Implot

- BirthRate Vs Internet Users
- scatter_kws is a wrapper for plt.scatter
 (matplotlib.pyplot.scatter), so to size the markers we need to
 pass value to the scatter_kws as a dictionary(key:value),
 where s is the size of the marker

swarmplot

Pearson Coefficient

- The Pearson correlation coefficient measures the linear relationship between two datasets
- Varies between -1 and +1 with 0 implying no correlation
- Correlations of -1 or +1 imply an exact linear relationship
- Positive correlations imply that as x increases, so does y
- Negative correlations imply that as x increases, y decreases

Pearson Coefficient

p-Value

- The p-value roughly indicates the probability of an uncorrelated system
- The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so
- p-value is measured with a significance level of 0.05
- p-value below 0.05 indicate correlation
- p-value above 0.05 indicate no correlation

pearsonr

from scipy.stats.stats import pearsonr pearsonr([1,2,3,4,5], [2,4,6,8,10])

Result => (1.0)

There is a **perfect linear rel** x & y

pearsonr

pearsonr([0,7,11,1,-5],[-2,2000,-1000,-11,0])

Result => (0.008211472)

No linear relationship

between x & y

