UNA REFORMULACIÓN DE LA RELATIVIDAD ESPECIAL

A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires

Argentina

Este artículo presenta una reformulación de la relatividad especial cuyas magnitudes cinemáticas y dinámicas son invariantes bajo las transformaciones generalizadas de Lorentz.

Introducción

A partir de un cuerpo puntual auxiliar (denominado free-point) es posible obtener magnitudes cinemáticas (denominadas absolutas) que son invariantes bajo las transformaciones generalizadas de Lorentz.

El free-point es un cuerpo puntual (partícula masiva) que está siempre libre de fuerzas externas e internas (o que su fuerza resultante está siempre en equilibrio)

El tiempo absoluto $(\check{\mathbf{t}})$, la posición absoluta $(\check{\mathbf{r}})$, la velocidad absoluta $(\check{\mathbf{v}})$ y la aceleración absoluta $(\check{\mathbf{a}})$ de una partícula respecto a un sistema de referencia inercial S, están dados por:

$$\begin{split} & \check{\mathbf{t}} \; \doteq \; \; \gamma \left(t - \frac{\mathbf{r} \cdot \boldsymbol{\psi}}{c^2} \right) \\ & \check{\mathbf{r}} \; \doteq \; \left[\; \mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{\left(\mathbf{r} \cdot \boldsymbol{\psi} \right) \boldsymbol{\psi}}{c^2} - \gamma \, \boldsymbol{\psi} \, t \; \right] \\ & \check{\mathbf{v}} \; \doteq \; \left[\; \mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{\left(\mathbf{v} \cdot \boldsymbol{\psi} \right) \boldsymbol{\psi}}{c^2} - \gamma \, \boldsymbol{\psi} \; \right] \frac{1}{\gamma \left(1 - \frac{\mathbf{v} \cdot \boldsymbol{\psi}}{c^2} \right)} \\ & \check{\mathbf{a}} \; \doteq \; \left[\; \mathbf{a} - \frac{\gamma}{\gamma + 1} \frac{\left(\mathbf{a} \cdot \boldsymbol{\psi} \right) \boldsymbol{\psi}}{c^2} + \frac{\left(\mathbf{a} \times \mathbf{v} \right) \times \boldsymbol{\psi}}{c^2} \; \right] \frac{1}{\gamma^2 \left(1 - \frac{\mathbf{v} \cdot \boldsymbol{\psi}}{2} \right)^3} \end{split}$$

donde $(t, \mathbf{r}, \mathbf{v}, \mathbf{a})$ son el tiempo, la posición, la velocidad y la aceleración de la partícula respecto al sistema de referencia inercial S, (ψ) es la velocidad del free-point respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío. (ψ) es una constante. $\gamma = (1 - \psi \cdot \psi/c^2)^{-1/2}$

Dinámica

Sea una partícula con masa en reposo m_o entonces el momento lineal ${\bf P}$ de la partícula, la fuerza neta ${\bf F}$ que actúa sobre la partícula, el trabajo ${\bf W}$ realizado por la fuerza neta que actúa sobre la partícula y la energía cinética ${\bf K}$ de la partícula, para un sistema de referencia inercial, están dados por:

$$\mathbf{P} \doteq \frac{m_o \, \mathbf{\check{v}}}{\sqrt{1 - \frac{\check{v}^2}{c^2}}}$$

$$\mathbf{F} = \frac{d\mathbf{P}}{d\check{t}} = \frac{m_o \, \mathbf{\check{a}}}{\sqrt{1 - \frac{\check{v}^2}{c^2}}} + \frac{m_o \, \mathbf{\check{v}}}{\left(1 - \frac{\check{v}^2}{c^2}\right)^{3/2}} \frac{(\check{\mathbf{v}} \cdot \check{\mathbf{a}})}{c^2}$$

$$\mathbf{W} \doteq \int_1^2 \mathbf{F} \cdot d\check{\mathbf{r}} = \Delta \, \mathbf{K}$$

$$\mathbf{K} \doteq m_o \, c^2 \left(\frac{1}{\sqrt{1 - \frac{\check{v}^2}{c^2}}} - 1\right)$$

Las fuerzas y los campos deben ser expresados sólo con magnitudes absolutas. Por ejemplo, la fuerza de Lorentz debe ser expresada con la velocidad absoluta $\check{\mathbf{v}}$, el campo eléctrico debe ser expresado con la posición absoluta $\check{\mathbf{r}}$, etc.

Observaciones

§ En este artículo, las magnitudes (\check{t} , $\check{\mathbf{r}}$, $\check{\mathbf{v}}$, $\check{\mathbf{a}}$, \mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) son invariantes bajo las transformaciones generalizadas de Lorentz.

 \S Los sistemas de referencia inerciales no coincidentes en el origen en el tiempo inicial t_o deben sumar una constante en la definición de tiempo absoluto tal que el tiempo absoluto y el tiempo propio del free-point coincidan y también deben sumar otra constante en la definición de posición absoluta tal que la posición absoluta del free-point sea cero.

§ Por último, este artículo considera, por un lado, que sería también posible obtener magnitudes cinemáticas y dinámicas (\check{t} , $\check{\mathbf{r}}$, $\check{\mathbf{v}}$, $\check{\mathbf{a}}$, \mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) que serían invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales y, por otro lado, que las magnitudes dinámicas (\mathbf{P} , \mathbf{F} , \mathbf{W} , \mathbf{K}) estarían dadas también por las ecuaciones de arriba.

Apéndice

Transformaciones Generalizadas de Lorentz

El tiempo (t'), la posición (\mathbf{r}') , la velocidad (\mathbf{v}') y la aceleración (\mathbf{a}') de una partícula respecto a un sistema de referencia inercial S', están dados por:

$$\begin{split} t' &= \gamma \left(t - \frac{\mathbf{r} \cdot \mathbf{V}}{c^2} \right) \\ \mathbf{r}' &= \left[\mathbf{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{r} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V} t \right] \\ \mathbf{v}' &= \left[\mathbf{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{v} \cdot \mathbf{V}) \mathbf{V}}{c^2} - \gamma \mathbf{V} \right] \frac{1}{\gamma \left(1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2} \right)} \\ \mathbf{a}' &= \left[\mathbf{a} - \frac{\gamma}{\gamma + 1} \frac{(\mathbf{a} \cdot \mathbf{V}) \mathbf{V}}{c^2} + \frac{(\mathbf{a} \times \mathbf{v}) \times \mathbf{V}}{c^2} \right] \frac{1}{\gamma^2 \left(1 - \frac{\mathbf{v} \cdot \mathbf{V}}{c^2} \right)^3} \end{split}$$

donde $(t, \mathbf{r}, \mathbf{v}, \mathbf{a})$ son el tiempo, la posición, la velocidad y la aceleración de la partícula respecto a un sistema de referencia inercial \mathbf{S} , (\mathbf{V}) es la velocidad del sistema de referencia inercial \mathbf{S} ' respecto al sistema de referencia inercial \mathbf{S} y (c) es la velocidad de la luz en el vacío. (\mathbf{V}) es una constante. $\gamma = (1 - \mathbf{V} \cdot \mathbf{V}/c^2)^{-1/2}$

Bibliografía

- A. Einstein, Sobre la Teoría de la Relatividad Especial y General.
- E. Mach, La Ciencia de la Mecánica.
- R. Resnick y D. Halliday, Física.
- J. Kane y M. Sternheim, Física.
- B. Russell. ABC de la Relatividad.
- **A. French**, Relatividad Especial.