ALGO-TRADING Emanuele Regnani

PROBLEM TO SOLVE

		High	24402	24914		
997-12-29	24402	24914	25675	25773		
998-1-5	25734	25961	25731	26683		
98-1-12	25731	26683	26368	26368		
998-1-19	26381	26803	26500	27549		
998-1-26	26500	27549	27525	28389		
998-2-2		28389 Open	28267	28477		
998-2-9	1998-04-12	1122.7	1131.99	2784Ldw T	Close Y	
1998-2-16	1998-04-19	1110.67		1098.21	1110.67	
1998-2-23	998-04-26	1122.72	1122.72	1100.6	1122.72	
1998-3-2	998-05-03	1107.9	1132.98	1104.77	1107.9	325465000
998-3-9	1998-05-10		1121.02	1076.7	1121	
998-3-16	1998-05-17	1121	1130.52	1094.53	1108.14	328092000
998-3-23	1998-05-24	1108.14	1124.03	1102.78	1108.73	289200000
998-3-30	1998-05-31	1108.73	1124.45	1097.99		296564000
1998-4-6	1998-06-07	1110.47	1116.79	1074.39	1110.47	266840000
1998-4-13		1090.82	1113.88	1078.1	1090.82	236913000
		1113.86	1126		1113.86	2848980000
	998-06-21	1098.84	1112.87	1080.83	1098.84	2977180000
	998-06-28	1100.65	1142.04	1074.67	1100.65	3310760000
	998-07-05	1133.2		1099.42	1133.2	3093500000
	1998-07-12	1146.42	1148.56	1131.98	1146.42	2533360000
	998-07-19	1164.33	1166.93	1145.03	1164.33	2986550000
	998-07-26	1186.75	1188.1	1160.21	1186.75	
		1140.9	1190.58	1129.11	1140.8	3294910000
					1120.67	3400280000

Buy/Hold/Sell Recommendations

TRADING INDICATORS

Visual / Analytical tools that help analyze financial markets and make trading decisions by helping to spot trends, patterns, momentum, volatility, ...

Example:

The average closing price of the last n days

FUZZY LOGIC

BINARY LOGIC

Boolean Algebra:

TRUE

or

FALSE

or

FUZZY LOGIC

"Degrees of Truth":

TRUE,

1.

...,

FAIRLY SO,

0.75,

...,

0.5,

MODERATELY,

...,

SOMEWHAT,

0.25,

• •

ALSE

••••

FUZZY LOGIC

Fuzzy Variables Membership Functions

Fuzzy Sets

Fuzzy Rules

Defuzzification

"Water"

hot ...

mild

cold

"Fairly Hot Water"

- 0.8 x "hot"
- 0.2 x "mild"
- 0 x "cold"

Temperatures

- "hot"
- "mild"
- "cold"

IF temperature

- "hot"
- "mild"
- "cold"

THEN heating

- "low"
- "medium"
- "high"

Heating

Low

GENETIC ALGORITHMS

Optimization algorithms:

- Inspired by biological evolution
- Heuristic (vs "Exact"):
 - o faster and more efficient solution needed, despite not necessarily the best one (e.g.: great number of parameters)

GENETIC ALGORITHMS

FITNESS FUNCTION

A function to be minimized or maximized, determining each individual's ability to compete in its environment.

It is evaluated at each iteration of the optimization and used to select the best individuals to survive to the next generation.

SOFTWARE PROGRAM

TRADING INDICATORS

FUZZY LOGIC

GENETIC ALGORITHM

TRADING INDICATORS

• RSI (Relative Strength Index):

momentum indicator measuring the strength of a security's price action

"oversold" – "risky trading" – "overbought"

• MACD:

momentum indicator also showing trend changes
by making use of different weighted averages of the prices and combining them

• Stochastic Oscillator: similar to RSI

```
28.005
```

```
length = int(parameters[25])
df.ta.rsi(close='Close', length=length, append=True)
MACD_fast, MACD_slow, MACD_signal = int(parameters[26]), int(parameters[27]), int(parameters[28])
df.ta.macd(close='Close', fast=MACD_fast, slow=MACD_slow, signal=MACD_signal, append=True)
df["MACD_Crossover"] = np.select(
                        (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'] > 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(1) < 0) & \</pre>
                                 (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_slow}_{MACD_signal}'].shift(-1) > 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(-2) > 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(-3) > 0)
                        (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'] < 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(1) > 0) & \
                                 (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_slow}_{MACD_signal}'].shift(-1) < 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(-2) < 0) & (df[f'MACDh_{MACD_fast}_{MACD_slow}_{MACD_signal}'].shift(-3) < 0)
                 ], choicelist=[1, -1], default=0
STO_k, STO_d = int(parameters[29]), int(parameters[30])
df.ta.stoch(high='High', low='Low', k=STO_k, d=STO_d, smooth_k=STO_d, append=True)
df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'] = df[f'STOCHk_{STO_k}_{STO_d}_{STO_d}'] - df[f'STOCHd_{STO_k}_{STO_d}']
df["STOCH_Crossover"] = np.select(
                 condlist=[
                        (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'] > 0) & (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(1) < 0) & \</pre>
                                 (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(-1) > 0) & (df[f'STOCHh_{STO_k}_{STO_d}'].shift(-2) > 0) & (df[f'STOCHh_{STO_k}_{STO_d}'].shift(-3) > 0),
                         (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'] < 0) & (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(1) > 0) & ( df[f'STOCHh_{STO_k}_{STO_d}].shift(1) > 0) & ( df[f'STOCHh_{STO_k}_{STO_k}].shift(1) & ( df[f'ST
                                 (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(-1) < 0) & (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(-2) < 0) & (df[f'STOCHh_{STO_k}_{STO_d}_{STO_d}'].shift(-3) < 0)
                 ], choicelist=[1, -1], default=0
```

FUZZY VARIABLES

- For each indicator
- For particular combinations of them
- For the trading decision to be made

```
ef fuzzy_variables(parameters):
   variables = {
       "RSI": FuzzyVariable(
           universe_range=(RSI_range[0], RSI_range[1]),
               "Oversold": ('trapmf', 0, 0, parameters[2], parameters[3]),
               "Risky Trading": ('trapmf', 0, parameters[2], parameters[4], 100),
               "Overbought": ('trapmf', parameters[3], parameters[4], 100, 100)
       "MACD_Crossover": FuzzyVariable(
           universe_range=(-1, 1),
               "Positive": ('trimf', -1, -1, -0.5),
               "Stable": ('trimf', -0.5, 0, 0.5),
               "Negative": ('trimf', 0.5, 1, 1)
       "STOCHk": FuzzyVariable(
           universe_range=(STO_range[0], STO_range[1]),
               "Overbought": ('trapmf', parameters[5], parameters[6], 100, 100),
               "Mid": ('trapmf', parameters[7], parameters[8], parameters[6], parameters[9]),
               "Oversold": ('trapmf', 0, 0, parameters[8], parameters[10])
       "STOCHd": FuzzyVariable(
           universe_range=(STO_range[0], STO_range[1]),
               "Overbought": ('trapmf', parameters[11], parameters[12], 100, 100),
               "Mid": ('trapmf', parameters[13], parameters[14], parameters[12], parameters[15]),
               "Oversold": ('trapmf', 0, 0, parameters[14], parameters[16])
       "STOCH_Crossover": FuzzyVariable(
           universe_range=(-1, 1),
               "Positive": ('trimf', -1, -1, -0.5),
               "Stable": ('trimf', -0.5, 0, 0.5),
               "Negative": ('trimf', 0.5, 1, 1)
       "Decision": FuzzyVariable(
           universe_range=(0, 10),
               "Strong Sell": ('trapmf', 0, 0, parameters[17], parameters[18]),
               "Sell": ('trapmf', parameters[17], parameters[18], parameters[19], parameters[20])
               "Hold": ('trapmf', parameters[19], parameters[20], parameters[21], parameters[22])
               "Buy": ('trapmf', parameters[21], parameters[22], parameters[23], parameters[24]),
               "Strong Buy": ('trapmf', parameters[23], parameters[24], 10, 10)
```

```
FuzzyRule(
    premise=
        ("RSI", "Oversold"),
        ("AND", "MACD_Crossover", "Positive")
    consequence=[("Decision", "Strong Buy")],
FuzzyRule(
    premise=
        ("STOCHd", "Oversold"),
        ("AND", "STOCHk", "Oversold"),
        ("AND", "STOCH_Crossover", "Positive")
    consequence=[("Decision", "Strong Buy")],
FuzzyRule(
    premise=
        ("RSI", "Oversold"),
        ("OR", "MACD_Crossover", "Positive"),
        ("OR", "STOCHd", "Oversold"),
        ("OR", "STOCHk", "Oversold")
    consequence=[("Decision", "Buy")],
FuzzyRule(
    premise=
        ("RSI", "Risky Trading"),
        ("OR", "MACD_Crossover", "Stable"),
        ("OR", "STOCHd", "Mid"),
        ("OR", "STOCHk", "Mid"),
        ("OR", "STOCH_Crossover", "Stable")
    consequence=[("Decision", "Hold")],
```

FuzzyRule(

FuzzyRule(

FuzzyRule(

premise=

premise=

premise=

("STOCHd", "Overbought"),

consequence=[("Decision", "Sell")],

("RSI", "Overbought"),

("STOCHd", "Overbought"),

("OR", "STOCHk", "Overbought"), ("OR", "RSI", "Overbought"),

("OR", "MACD_Crossover", "Negative")

("AND", "MACD_Crossover", "Negative")

consequence=[("Decision", "Strong Sell")],

("AND", "STOCHk", "Overbought"),

consequence=[("Decision", "Strong Sell")],

("AND", "STOCH_Crossover", "Negative")

FUZZY RULES

- "Strong Buy"
- "Buy"
- "Hold"
- "Sell"
- "Strong Sell"

DEFUZZIFICATION

```
rolling_window = MACD_slow + MACD_signal - 2

df['Decision'] = np.nan

df['Decision'].iloc[rolling_window:] = df.iloc[rolling_window:].apply(lambda row: round(model(
    variables=fuzzy_variables(parameters),
    rules=rules,
    MACD_Crossover = row['MACD_Crossover'],
    STOCHd = row[f'STOCHd_{STO_k}_{STO_d}_{STO_d}'],
    STOCHk = row[f'STOCHk_{STO_k}_{STO_d}_{STO_d}'],
    STOCH_Crossover = row['STOCH_Crossover'],
    RSI = row[f'RSI_{length}'])[0]['Decision'], 2), axis=1)
```

return df

FITNESS FUNCTION:

- Positions Counter
- Trades Counter

```
def position_size_check(row, thresholds):
    global positions counter
    global trades counter
    direction = np.select(
        condlist=[
            (row['Decision'] <= thresholds[0]) & (positions_counter > 0),
            (row['Decision'] > thresholds[0]) & (row['Decision'] < thresholds[1]),</pre>
            row['Decision'] >= thresholds[1]
        ], choicelist=[-1, 0, 1], default=0 # sell, hold, buy
    positions_counter += direction
    trades_counter += abs(direction)
    return direction, positions_counter, trades_counter
```

FITNESS FUNCTION: Gain Calculation

```
global positions counter
global trades counter
positions_counter, trades_counter = 0, 0
df = df.copy()
df[['Direction', 'Positions_counter', 'Trades_counter']] = df.apply(lambda_row: pd.Series(position_size_check(row, thresholds)), axis=1
df['Enter price'] = df['Close']
df['Enter price'] = df['Enter price'].fillna(0)
df['Long'] = np.select(
        (df['Direction'] == 1)
        ((df["Enter_price"].shift(-1) - df["Enter_price"])/df["Enter_price"])*100
df['Long'] = df['Long'].fillna(0)
df['Short'] = np.select(
        (df['Direction'] == -1)
        ((df["Enter_price"] - df["Enter_price"].shift(-1))/df["Enter_price"])*100
    1, default=0)
df['Short'] = df['Short'].fillna(0)
df['Equity long'] = df['Long'].cumsum()
df['Equity_short'] = df['Short'].cumsum()
df['Gain'] = df['Equity long'] + df['Equity short']
```

FITNESS FUNCTION

```
def fitness(parameters, solution_idx):
    data_frame = Defuzzification(train_frame, parameters)

g = gain(data_frame, parameters[:2])
    g['Date'] = pd.to_datetime(g['Date'])
    date_range = (g['Date'].max() - g['Date'].min()).days # in days
    yearly_trades = g['Trades_counter'].iloc[-1]/(date_range//365)
    #print(g[:][len(data_frame)-2:])

### penalty
    if yearly_trades < 10 and yearly_trades != 0: penalty = (100//yearly_trades)**2
    elif yearly_trades == 0: penalty = 1000000
    else: penalty = 0

cumulative_gain = g['Gain'][len(data_frame)-1] if not math.isnan(g['Gain'][len(data_frame)-1]) else g['Gain'][len(data_frame)-2]
    return cumulative_gain - penalty</pre>
```

GAIN OR LOSS?

HEURISTIC NATURE!

CONSIDERATIONS

- Weekly Data Used
- Optimal parameters tend to approach values similar to the ones commonly suggested
- Interesting adaptations and peculiarities, however more analysis needed:

LIMITATIONS

CODING

- Speed & Efficiency: takes minutes to run
- Data & Testing: it has only been tested on weekly data

STRATEGY:

- Membership Functions: sometimes overly simplistic
- Technical Indicators: more and more varied (mostly momentum ones for now)

OTHER:

• More analysis of parameters found could reveal interesting insights

THANK YOU!