3D OpenGL : Résumé du cour 1

Clément Barbaste

24 janvier 2014

Première partie Rappel géometrie

Vecteurs

1.1 Rappel des opérations de base sur les vecteurs

1.1.1 Définition d'un vecteur

Un vecteur défini une direction dans l'espace. Un vecteur est défini par 3 coordonnées. Soit le vecteur $\vec{U} = \{U_x, U_y, U_z\}$ définie par 3 coordonnées, avec les points $A = \{A_x, A_y, A_z\}$ et $B = \{B_x, B_y, B_z\}$ à ses extrémitées :

$$\vec{U} = \left| \begin{array}{ccc} U_x & = & B_x - A_x \\ U_y & = & B_y - A_y \\ U_z & = & B_z - A_z \end{array} \right|$$

1.1.2 Addition et Multiplication d'un scalaire

Soit le vecteur \vec{U} .

$$\vec{U}\times 1.5 \quad = \quad \left| \begin{array}{c} U_x\times 1.5 \\ U_y\times 1.5 \\ U_z\times 1.5 \end{array} \right|$$

$$\vec{U} + \vec{V} = \left| \begin{array}{c} U_x + V_x \\ U_y + V_y \\ U_z + V_z \end{array} \right|$$

1.1.3 Norme d'un vecteur

Soit le vecteur \vec{U} avec à ses extrémitées les point A et B tel que $\vec{U}=\vec{AB}$. La norme de \vec{U} noté $\|\vec{U}\|$ vaut :

$$\|\vec{U}\| = \sqrt{U_x^2 + U_y^2 + U_z^2}$$

 $\|\vec{U}\|$ = distance entre A et B.

Si $\|\vec{U}\| = 1$, alors \vec{U} est **normé**.

Pour obtenir un vecteur \overrightarrow{Un} , normé et de même direction que \overrightarrow{U} :

$$\overrightarrow{Un} = \left| \begin{array}{ccc} Un_x & = & \frac{U_x}{\|\overrightarrow{U}\|} \\ Un_y & = & \frac{U_y}{\|\overrightarrow{U}\|} \\ Un_z & = & \frac{U_z}{\|\overrightarrow{U}\|} \end{array} \right|$$

1.1.4 Produit scalaire

Le produit scalaire entre 2 vecteurs \vec{U} et \vec{V} se note : $\vec{U} \cdot \vec{V}$

$$\vec{U} \cdot \vec{V} = U_x \times V_x + U_y \times V_y + U_z \times V_z$$
 ou
$$\vec{U} \cdot \vec{V} = \cos \alpha \times \|\vec{U}\| \times \|\vec{V}\|$$

1.1.5 Produit vectoriel

Le produit vectoriel entre 2 vecteurs \vec{U} et \vec{V} se note : $\vec{U} \wedge \vec{V}$

$$\vec{U} \wedge \vec{V} = \left| \begin{array}{ccc} U_y \times V_z & - & U_z \times V_y \\ U_z \times V_x & - & U_x \times V_z \\ U_x \times V_y & - & U_y \times V_x \end{array} \right|$$

Relation entre le produit vectoriel et l'angle :

$$\|\vec{U} \wedge \vec{V}\| = \sin \alpha \times \|\vec{U}\| \times \|\vec{V}\|$$

1.1.6 Propriétés importantes

$$\begin{array}{cccc} \text{Sym\'etrie} & \to & \vec{U} \cdot \vec{V} = \vec{V} \cdot \vec{U} \\ \text{Distributivit\'e} & \to & \vec{U} \cdot (\vec{V} + \vec{W}) = \vec{U} \cdot \vec{V} + \vec{U} \cdot \vec{W} \\ \text{Homog\'en\'eit\'e} & \to & (\lambda \vec{U}) \cdot \vec{V} = \lambda (\vec{U} \cdot \vec{V}) \\ \text{lien avec la norme} & \to & \vec{U} \cdot \vec{U} = \|\vec{U}\|^2 \\ \text{Orthogonalit\'e} & \Longleftrightarrow & \vec{U} \cdot \vec{V} = 0 \Leftrightarrow \alpha = 90\,^\circ \, \text{ou} \, 270\,^\circ \\ \text{Colin\'earit\'e} & \Longleftrightarrow & \|\vec{U} \wedge \vec{V}\| = 0 \Leftrightarrow \alpha = 0\,^\circ \, \text{ou} \, 180\,^\circ \end{array}$$

Matrices

2.1 Rappel des opérations de base sur les matrices

2.1.1 Définition d'une matrice

Soit A une matrice $m \times n, m$ étant le nombre de **lignes** et n le nombre de **colonnes** :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \dots & a_{3,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & a_{m}m, 3 & \dots & a_{m,n} \end{pmatrix}$$

Une matrice peut être vue comme un vecteur vertical, avec les coordonnées du vecteur. ex :

$$\vec{U} = \begin{pmatrix} U_x \\ U_y \\ U_z \end{pmatrix}$$

2.1.2 Addition et multiplication entre matrices

Soit les matrices A et B.
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} \end{pmatrix}$$

$$A \times B = \begin{pmatrix} a_{1,1} \times b_{1,1} + a_{1,2} \times b_{2,1} & a_{1,1} \times b_{1,2} + a_{1,2} \times b_{2,2} \\ a_{2,1} \times b_{1,1} + a_{2,2} \times b_{2,1} & a_{2,1} \times b_{1,2} + a_{2,2} \times b_{2,2} \end{pmatrix}$$

2.1.3 Multiplication d'une matrice et d'un scalaire

$$\lambda \times A = \begin{pmatrix} \lambda \times a_{1,1} & \lambda \times a_{1,2} \\ \lambda \times a_{2,1} & \lambda \times a_{2,2} \end{pmatrix}$$

Deuxième partie

Géometrie 2D-3D

Projections

Il existe plusieurs types de projection, ellse seront rappellés dans les section à suivre.

3.1 Projection orthogonale

3.1.1 Projection d'un point sur une droite

Soit une droite d définie par 2 points A et B. Ainsi que C, le point à projeter sur la droite d. Le point projeté se nomme C'. Par Pytagore, on sait que :

$$\frac{\|\overrightarrow{AC'}\|}{\|\overrightarrow{AC}\|} = \cos \alpha$$

D'après la section 1.1.4:

$$\frac{\overrightarrow{AC} \cdot \overrightarrow{AB}}{\|\overrightarrow{AC}\| \times \|\overrightarrow{AB}\|} = \cos \alpha$$

On peut en deduire :

$$\|\overrightarrow{AC'}\| = \frac{\overrightarrow{AC} \cdot \overrightarrow{AB}}{\|\overrightarrow{AB}\|}$$

Maintenant qu'on a la norme de $\overrightarrow{AC'}$, il nous faut projeter le point C sur d. Pour cela il suffit de translater A par \overrightarrow{AB} normé, avec une distance $\|\overrightarrow{AC'}\|$. On notera ce vecteur normé \overrightarrow{u} , pour vecteur Unitaire.

$$C'_{x} = A_{x} + Ux \times \|\overrightarrow{AC'}\|$$

$$C'_{y} = A_{y} + Uy \times \|\overrightarrow{AC'}\|$$

$$C'_{z} = A_{z} + Uz \times \|\overrightarrow{AC'}\|$$

3.1.2 Projection d'un point sur un plan

Soit le plan P défini par le point A et le vecteur normal \vec{n} . Ainsi que le point B, à projeter sur le plan. Le point projeté se nomera B'.

$$\frac{\|\overrightarrow{BB'}\|}{\|\overrightarrow{BA}\|} = \cos \alpha$$

D'après la section 1.1.4:

$$\frac{\overrightarrow{BA}\cdot\overrightarrow{n}}{\|\overrightarrow{BA}\|\times\|\overrightarrow{n}\|}=\cos\alpha$$

On en deduit :

$$\|\overrightarrow{BB'}\| = \frac{\overrightarrow{BA} \cdot \overrightarrow{n}}{\|\overrightarrow{n}\|}$$

Maintenant qu'on a la norme de $\overrightarrow{BB'}$, il suffit de translater B par \vec{n} normé (qu'on nommera \vec{u}), avec une distance $||\overrightarrow{BB'}||$.

$$B'_{x} = B_{x} - n_{x} \times \|\overrightarrow{BB'}\|$$

$$B'_{y} = B_{y} - n_{y} \times \|\overrightarrow{BB'}\|$$

$$B'_{z} = B_{z} - n_{z} \times \|\overrightarrow{BB'}\|$$

Transformation

4.1 Translation

On applique une translation avec un vecteur \vec{U} à chaque point de l'objet, les liaisons entre les points restent les mêmes.

4.2 Mise à l'échelle

On choisit un point C dans l'espace, puis on fait une multiplication scalaire, par un ratio r, sur chaque vecteurs avec, C, et un sommet de la figure à mettre à l'échelle, aux extrémitées. Si le point C n'est pas au centre de la figure, celle-ci sera déformée par la mise à l'echelle.

4.3 Rotations

En supposant un point $A = \{A_x, A_y, A_z\}$, et que l'angle de rotation se nomme α .

4.3.1 Rotation par l'axe OX

On considère le point comme une matrice $\{3,1\}$

$$A = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

Puis pour appliquer la rotation, multiplie la matrice A par la matrice de rotation en \overrightarrow{Ox} .

$$A' = rotOx \times A$$

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} A'_x \\ A'_y \\ A'_z \end{pmatrix}$$

4.3.2 Rotation par l'axe OY

Identique que pour OX, sauf pour la matrice de rotation qui est :

$$\begin{pmatrix}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{pmatrix}$$

4.3.3 Rotation par l'axe OZ

Identique que pour OX, sauf pour la matrice de rotation qui est :

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix}$$

4.3.4 Rotation autour d'un axe quelconque

On suppose que l'axe de rotation est le vecteur unitaire \vec{u} . Voici la matrice de rotation :

$$\begin{pmatrix} u_x^2 + (1 - u_x^2)\cos\alpha & u_x u_y (1 - \cos\alpha) - u_z \sin\alpha & u_x u_z (1 - \cos\alpha) + u_y \sin\alpha \\ u_x u_y (1 - \cos\alpha) + u_z \sin\alpha & u_y^2 + (1 - u_y^2)\cos\alpha & u_y u_z (1 - \cos\alpha) - u_x \sin\alpha \\ u_x u_z (1 - \cos\alpha) - u_y \sin\alpha & u_y u_z (1 - \cos\alpha) + u_x \sin\alpha & u_z^2 + (1 - u_z^2)\cos\alpha \end{pmatrix}$$

Troisième partie

Notions de cour

Notions sur les objets 3D

5.1 Etapes de conception

5.2 Différentes formes de 3D

