Optikai lencsék fókusztávolságának meghatározása

I. A gyakorlat célja:

- Optikai lencsék képalkotásának tanulmányozása;
- Gyűjtő optikai vékonylencsék fókusztávolságának kísérleti meghatározása különböző módszerekkel.

II. Általános alapismeretek az optikai vékonylencse képalkotásáról

A lencsék homogén összetételű, izotróp tulajdonságú, amorf anyagból készülnek. Az optikai lencsék a fény számára átlátszó üvegből készülnek, melynek elsődleges alapanyaga a szilíciumdioxid (SiO_2). Korona üveg esetében az alkáli fémoxid adalékanyagok az üveg törésmutatóját csökkentik (n=1,52), ezért a korona üveg kisebb diszperziós tulajdonságot mutat. A flint üveg ólomoxid (PbO_2) adalékanyagot is tartalmaz, ezáltal az optikai törésmutatója nagy ($n=1,55\dots 2,00$) nagyobb diszperziós tulajdonságot mutat.

Az optikai lencséket határoló törőfelületek alakjuk szerint lehetnek sík- és görbült felületek. Geometriai értelemben a görbült törőfelület középpontját jelölő C és a görbült törőfelület csúcspontját jelölő V betűt összekötő egyenes alkotja a lencse optikai főtengelyét (1. ábra). A lencse vastagságát jelentő d távolság függvényében, amelyet az optikai főtengely mentén mérnek, megkülönböztetünk vékony- és vastag optikai lencséket. Vékonylencsékről beszélünk, amennyiben a lencse vastagsága elhanyagolható a görbületi sugarak R_1 és R_2 méretéhez viszonyítva, d << R. Vastaglencsék esetében a lencse vastagsága összemérhető a görbületi sugarak nagyságával, $d \cong R$.

A lencse optikai főtengelye átmegy a két törőfelület görbületi középpontján és ugyanakkor merőleges a törőfelületekre (1. ábra).

1. ábra. Kétszeresen domború vékonylencse fontosabb geometriai jellemzői

Az optikai vékonylencse vákuumban mért fókusztávolságát az alábbi összefüggéssel határozzuk meg:

$$\frac{1}{f} = (n-1) \cdot \left(\frac{1}{R_1} - \frac{1}{R_2}\right),$$

melyben R_1 és R_2 a törőfelületek görbületi sugarát jelölik, illetve n lencse optikai törésmutatójának értékét.

A lencsék törőfelületére érkező párhuzamos fénysugarakat a lencse összetartó nyalábbá (konvergáló), vagy széttartó nyalábbá (divergáló) alakítja. Ezért megkülönböztetünk gyűjtőlencséket (konvergens lencsék) és szórólencséket (divergens lencsék).

A konvergens lencsék sajátossága, hogy az optikai tengely mentén vastagabbak, míg a divergens lencsék középen vékonyabbak és a széleken vastagabbak.

A gyűjtőlencsék esetében a törőfelületek lehetnek kétszeresen domború (bikonvex), sík-domború (plan-konvex), domborúan homorú (meniszkusz konvergens) felületek. Hasonló módon, a szórólencsék esetében megkülönböztetünk kétszeresen homorú (bikonkáv), sík-konkáv, meniszkuszdivergens (konvex-konkáv) szórólencséket.

A műszaki optikában a lencse 0 középpontját tekintik a koordináta rendszer viszonyítási pontjának. Az 0 optikai középpont a lencse azon pontja, amelyen áthaladó fénysugarak irányváltozás nélkül folytatják útjukat. Általában az optikai főtengellyel párhuzamosan érkező, balról-jobbra haladó sugarak terjedési irányát tekintik pozitív irányban haladó fénysugaraknak.

A főtengellyel párhuzamosan érkező fénysugarak egy F' képoldali fókuszpontban gyűlnek össze (2. ábra).

Ha a párhuzamos fénysugarak ellenkező irányból, tehát jobbról-balra haladnak, az *F tárgyoldali fókuszpontban* gyűlnek össze. A fénysugarak által befutott út független a fény terjedési irányától, ezért, ha a fénysugarak az *F* tárgyoldali fókuszpontból indulnak, a gyűjtőlencsén való áthaladásuk után párhuzamos sugarak formájában távoznak.

Ha a lencse előtt és mögött a környezet azonos optikai tulajdonsággal rendelkezik, akkor a lencse tárgyoldali és képoldali fókusztávolsága abszolút értékben megegyezik, |f'| = |f|.

2. ábra. Gyűjtőlencse képoldali-, illetve tárgyoldali fókuszpontjának értelmezése

értelmében gyakorlatban gyűjtőlencsék Egyezmény használt pozitívnak, szórólencsék fókusztávolságát fókusztávolságát negatívnak tekintik. A műszaki optikában a fókusztávolságok előjelét a lencse optikai 0 középpontjától a fókuszpontig mért f távolság algebrai előjelének figyelembevételével értelmezzük.

III. Gyűjtőlencse fókusztávolságának kísérleti meghatározása

III.1. Közvetlen (direkt) mérési módszer szerint

A gyűjtőlencse fókusztávolságának gyors becslése céljából helyezzük a lencsét egy ernyő elé (a képernyő szerepét betöltheti egy papírlap), amelyre rávetítjük egy távoli tárgy éles képét. Ekkor a lencse és az ernyő közötti távolság megközelítően megegyezik a gyűjtőlencse fókusztávolságával.

A pontos mérések céljából szükséges a képalkotó *elemek optikai centrálása*, vagyis a kísérleti berendezés elemeinek közös optikai tengelyre való központosítása. A kísérleti méréshez az optikai padon elhelyezzük a fényforrást, amellyel megvilágítjuk a tárgyat, valamint a tanulmányozott gyűjtőlencsét és egy ernyőt a kép észlelése céljából. Figyeljünk arra, hogy a rendszer minden eleme legyen azonos vízszintes síkban, vagyis ugyanabban a magasságban.

A gyakorlati mérések során a lencse 0 optikai középpontját képzeletben helyezzük egy derékszögű 0xy koordinátarendszer kezdőpontjába. Ezért a rajzlap síkjában a távolságokat az 0 kezdőponthoz viszonyítva mérjük és a távolságok kifejezésére a szokásos x és y koordináta jelöléseket használjuk (3. ábra).

Egy tetszőleges *tárgypont*, például B(x,y) pont koordinátáit a választott 0x abszcisszatengelyre, illetve az 0y ordinátatengelyre eső vetületpontok segítségével értelmezzük. Hasonló módon értelmezendő a *képpontok* koordinátái.

3. ábra. Optikai sugármenet a konvergens vékonylencse fókusztávolságának kísérleti meghatározásához

A vékonylencsék fókusztávolságának kísérleti megahatározása céljából közvetlen méréssel meghatározzuk az x_1 tárgytávolságot és az x_2 képtávolságot, majd alkalmazzuk a lencsék képalkotásának alapösszefüggését:

$$\frac{1}{f} = \frac{1}{x_2} - \frac{1}{x_1}$$

Ez a módszer lehetővé teszi a fókusztávolság kiszámítását közvetlenül a képalkotási egyenletben szereplő x_1 és x_2 távolságok mérésével. Rendre elhelyezzük az optikai elemeket a 3. ábrán feltüntetett sorrendben.

A tárgy helyzetét és a lencse helyzetét úgy választjuk meg, hogy az x_1 tárgytávolság legyen nagyobb, mint a lencse f fókusztávolsága. Elmozdítjuk az ernyőt addig, amíg az ernyőn meg nem találjuk a tárgy éles rajzolatú képét. Szalagméteressel közvetlenül lemérhetjük az x_1 tárgytávolságot és a hozzátartozó x_2 képtávolságot:

$$x_1 < 0$$

$$x_2 > 0$$

Végezzünk ismételt méréseket! Az ismételt mérések azt jelentik, hogy változatlanul hagyva a tárgy és a lencse helyzetét, tehát x_1 változatlan értéke mellett legalább háromszor ismételjük meg a kép helyzetének pontos mérését. Az ismételt mérések eredményeit felhasználva kiszámítjuk az $\overline{x_2}$ átlagértéket, amely a legvalószínűbb képtávolság.

4. ábra. A kísérleti méréshez használt eszközök fényképe

Ezt követően elmozdítjuk a lencsét, megváltoztatva ezzel a x_1 tárgytávolságot. A fentiekben leírtaknak megfelelően ismét meghatározzuk x_2 képtávolságokat és annak $\overline{x_2}$ átlagértékét. A méréseket ismételjük meg legalább három különböző x_1 tárgytávolság értékre.

Felhasználva az vékonylencsék alapösszefüggését, minden $(x_1, \overline{x_2})$ értékpárossal kiszámítjuk a gyűjtőlencse f fókusztávolságát, majd meghatározzuk ennek \bar{f} átlagértékét. A mérési adatokat az 1.1. táblázatba foglaljuk.

1.1.	Táblázat:	Kísérleti	mérések	adattáblázata

Sor- szám	x_1 (cm)	$\begin{pmatrix} x_2 \\ (cm) \end{pmatrix}$	$\frac{\overline{x_2}}{(cm)}$	f (cm)	$ar{f}$ (cm)	∆f (cm)	$\bar{\Delta}f$ (cm)	$\left \frac{\bar{\Delta}f}{\overline{f}} \cdot 100 \right $	(%)
1.									
2.									
3.									

Az ismételt kísérleti mérések alapján meghatározott *fókusztávolság* legvalószínűbb értékét az alábbi kifejezéssel adjuk meg:

$$f = \bar{f} \pm \bar{\Delta} f$$

III.2. Fókusztávolság meghatározása Besselmódszer szerint

Az optikai padra elhelyezzük sorban a fényforrást, a megvilágított tárgyat, a vizsgált lencsét és az ernyőt, majd a rendszert optikailag központosítjuk. A tárgy és az ernyő közötti távolság legyen nagyobb, mint a lencse fókusztávolságának négyszeres értéke. Amennyiben $l>4\cdot f$, akkor megkereshető a lencse azon két helyzete, melyekre az ernyőn kicsinyített, illetve nagyított éles kép keletkezik (5. ábra). Amikor a lencse közelebb helyezkedik el a tárgyhoz nagyított a kép, amikor pedig közelebb helyezkedik el az ernyőhöz kicsinyített a kép.

A lencse két helyzete közötti távolságot jelölje d. A tárgy és az ernyő közötti l távolság adott értékénél legalább háromszor megismételve meghatározzuk d értékét, majd kiszámítjuk \bar{d} átlagértéket. Az 1.5 összefüggéssel minden l és \bar{d} értékpárosra kiszámítjuk a fókusztávolságot, majd ezekből átlagot számítva meghatározzuk az \bar{f} átlagértéket.

Figyelembe véve az előbbieket következik, hogy:

$$\begin{cases} |x_1| + |x_2| = l \\ |x_2| - |x_1| = d \end{cases}$$

amelyeket behelyettesítve, a fókusztávolságra az alábbi kifejezést kapjuk:

$$f = \frac{l^2 - d^2}{4 \cdot l}$$

5. ábra. Kísérleti elrendezés vázlata a fókusztávolság meghatározáshoz Bessel-módszer szerint

1.2. Tábló	ízat: Kís	érleti m	érések	adattáblázata
------------	-----------	----------	--------	---------------

-	11150 For The Ober determine to Zene										
	Sorszá m	l (cm)	d (cm)	ā (cm)	f (cm)	$ar{f}$ (cm)	Δf (cm)	$\bar{\Delta}f$ (cm)	$\frac{\bar{\Delta}f}{\bar{f}}\%$		
	1.										
	2.										
	3.										

Mivel a kifejezésében csak a két lencsehelyzet közötti d távolság szerepel, a fókusztávolság értékét nem befolyásolja a lencse esetleges nem tökéletes központosítása, vagy a lencse vastagsága. Ez a módszer alkalmazható vastag lencséknél és más összetett lencserendszerek esetében is, mivel a módszer kiküszöböli a központosításból eredő hibákat.

Az ismételt kísérleti mérések alapján meghatározott *fókusztávolság* legvalószínűbb értékét az alábbi kifejezéssel adjuk meg:

$$f = \bar{f} \pm \bar{\Delta} f$$

III.3. 3.3. A fókusztávolság meghatározása Abbémódszer szerint

Az optikai padra sorban elhelyezzük a fényforrást, a tárgyat, a lencsét és az ernyőt. Ellenőrizzük a rendszer optikai centrálását. Rögzítjük a lencsét egy adott helyzetben. Megmérjük a tárgy y_1 vonalas kiterjedését.

Elhelyezzük a tárgyat x_1 távolságra a lencsétől úgy, hogy az ne haladja meg sokkal a 2f távolságot. Meghatározzuk a képtávolság x_2 értékét, majd az ernyőn megmérjük a kép y_2 vonalas kiterjedését. Megtartva a tárgy és a lencse

helyzeteit, legalább három ismételt méréssel meghatározzuk x_2 és y_2 értékeit és kiszámítjuk a képtávolság $\overline{x_2}$ és a nagyítás $\overline{y_2}$ átlagértékét.

6. ábra. Kísérleti elrendezés vázlata Abbé –módszer szerinti fókusztávolság meghatározáshoz

Az 6. ábrán megfigyelhető, hogy a vonalas nagyítás értéke:

$$\frac{y_2}{y_1} = \frac{x_2}{x_1} = \beta \Rightarrow x_1 = \frac{x_2}{\beta}.$$

Behelyettesítve ezt a lencsék képalkotási egyenletébe, majd rendezve a tagokat, a fókusztávolságra az alábbi összefüggést kapjuk:

$$f = x_2 \cdot \frac{1}{1 - \beta}$$

Ezt követően megváltoztatjuk a lencse helyzetét és legalább háromszor elvégezzük a fent leírt méréseket. Minden $\overline{x_2}$ és $\overline{\beta}$ értékpárossal meghatározzuk a fókusztávolságot, majd kiszámítjuk annak \overline{f} átlagértékét.

Az *Abbé-módszernél* a lencse elhelyezése, illetve a lencse vastagsága nem befolyásolja a fókusztávolságra kapott eredményt. Az adatokat az alábbi táblázatba foglaljuk össze:

1.3. Táblázat: Kísérleti mérések adattáblázata

••-	5. I dotaza. Riserten meregen adamatazara											
	Sorszá	x_1 (cm)	$\begin{pmatrix} x_2 \\ (cm) \end{pmatrix}$	$\overline{x_2}$ (cm)	y ₂ (cm)	\bar{y}_2 (cm)	β	f (cm)	<i>f</i> (cm)	Δf (cm)	$\bar{\Delta}f$ (cm)	$\frac{\bar{\Delta}f}{\overline{f}}\%$
	$f = \bar{f} \pm \bar{\Delta} f$											

III.4. Fókusztávolság meghatározása autokollimációs módszer alkalmazásával

Az optikai lencse fókusztávolságának kísérleti meghatározása céljából alkalmazzuk az *autokollimációs módszert*. Helyezzünk a fényforrás és a lencse

közé egy vonalas tárgyat. Jelölje a tárgy végpontjait A és B, illetve a tárgy magasságát y. A tárgy lehet egy átlátszó hordozólemezre filctollal rajzolt négyzetes háló, vagy kb. 0.5mm átmérőjű környílás (ez egy tűhegy nagyságú lyuk, amelyet neveznek még diafragma nyílásnak is, 7. ábra). A tárgyat világítsuk meg egy jól párhuzamosított fény- nyalábbal.

7. ábra. Gyűjtőlencse fókusztávolságának kísérleti meghatározása autokollimációs módszer szerint

A fényforrás által megvilágított tárgyról érkező sugarakat előbb vetítsük a tanulmányozott L gyűjtőlencse segítségével egy képernyőre. A lencsét helyezzük a tárgytól $x_1 = f$ távolságra. Ez esetben a tárgy bármely pontjából kiinduló sugarak a lencsén való áthaladás után párhuzamosak lesznek, ekkor nem keletkezik ernyőn felfogható éles kép.

Tegyünk a képernyő helyébe egy síktükröt, *T*, amely a tárgyról érkező fénysugarakat visszaveri. Az ellentétes irányban haladó sugarak a lencsén áthaladva képet állítanak elő. Mozgassuk a tükröt, közelítve, illetve távolítva a lencsétől, amíg a visszavert sugarak által meghatározott kép mérete egyre jobban megegyezik a tárgy méretével.

Szükség esetén a lencse helyzetét is változtassuk, hogy a kép síkja és annak mérete megegyező legyen a tárgy helyzetével és annak méretével. Mindez akkor valósul meg, amikor a lencse és a tárgy közti távolság éppen egyenlő a lencse fókusztávolságával és a lencse mögött elhelyezett fényvisszaverő tükör között a távolság egyenlő a lencse fókusztávolságának felével, f/2. Ismételjük meg a beállításokat, törekedve az éles rajzolatú kép megvalósítására határozzuk meg pontos mérésekkel a gyűjtőlencse fókusztávolságát.