

Probabilidade: probabilidade da União de Eventos e eventos independentes

Resumo

Já sabemos que podemos representar probabilidade como

$$P(A) = \frac{n(E)}{n(S)} = \frac{n^{\circ} \text{ de casos favoráveis}}{n^{\circ} \text{ de casos possíveis}}$$

Porém existem casos onde um evento onde uma probabilidade depende da outra. Conhecida como probabilidade condicional. Sendo A e B eventos podemos considerar:

Probabilidade da união de dois eventos:

$$p(A \cup B)=p(A)+p(B) - p(A \cap B)$$

Probabilidade condicional

$$P(A/B) = \frac{p(A \cap B)}{p(B)}$$

Eventos independentes

Se A e B forem eventos independentes, então $p(A \cap B) = p(A)$. p(B)

Exercícios

- 1. Um morador de uma região metropolitana tem 50% de probabilidade de atrasar-se para o trabalho quando chove na região; caso não chova, sua probabilidade de atraso é de 25%. Para um determinado dia, o serviço de meteorologia estima em 30% a probabilidade de ocorrência de chuva nessa região. Qual é a probabilidade de esse morador se atrasar para o serviço no dia para o qual foi dada a estimativa de chuva?
 - **a)** 0,075
 - **b)** 0,150
 - **c)** 0,325
 - **d)** 0,600
 - **e)** 0,800
- 2. Um adolescente vai a um parque de diversões tendo, prioritariamente, o desejo de ir a um brinquedo que se encontra na área IV, dentre as áreas I, II, III, IV e V existentes. O esquema ilustra o mapa do parque, com a localização da entrada, das cinco áreas com os brinquedos disponíveis e dos possíveis caminhos para se chegar a cada área. O adolescente não tem conhecimento do mapa do parque e decide ir caminhando da entrada até chegar à área IV.

Suponha que relativamente a cada ramificação, as opções existentes de percurso pelos caminhos apresentem iguais probabilidades de escolha, que a caminhada foi feita escolhendo ao acaso os caminhos existentes e que, ao tomar um caminho que chegue a uma área distinta da IV, o adolescente necessariamente passa por ela ou retorna.

Nessas condições, a probabilidade de ele chegar à área IV sem passar por outras áreas e sem retornar é igual a

- a) $\frac{1}{96}$
- . <u>1</u> ი 64
- **b**) 64
- c) $\frac{3}{24}$
- d) $\frac{1}{4}$
 - 5
- e) 12

3. A figura I abaixo mostra um esquema das principais vias que interligam a cidade A com a cidade B. Cada número indicado na figura II representa a probabilidade de pegar um engarrafamento quando se passa na via indicada. Assim, há uma probabilidade de 30% de se pegar engarrafamento no deslocamento do ponto C ao ponto B, passando pela estrada E4, e de 50%, quando se passa por E3. Essas probabilidades são independentes umas das outras.

Paula deseja se deslocar da cidade A para a cidade B usando exatamente duas das vias indicadas, percorrendo um trajeto com a menor probabilidade de engarrafamento possível. O melhor trajeto para Paula é

- a) E1E3.
- **b)** E1E4.
- **c)** E2E4.
- **d)** E2E5.
- **e)** E2E6.

4. A vida na rua como ela é O Ministério do Desenvolvimento Social e Combate à Fome (MDS) realizou, em parceria com a ONU, uma pesquisa nacional sobre a população que vive na rua, tendo sido ouvidas 31.922 pessoas em 71 cidades brasileiras. Nesse levantamento, constatou-se que a maioria dessa população sabe ler e escrever (74%), que apenas 15,1% vivem de esmolas e que, entre os moradores de rua que ingressaram no ensino superior, 0,7% se diplomou. Outros dados da pesquisa são apresentados nos quadros abaixo

Istoé, 7/5/2008, p. 21 (com adaptações).

No universo pesquisado, considere que P seja o conjunto das pessoas que vivem na rua por motivos de alcoolismo/drogas e Q seja o conjunto daquelas cujo motivo para viverem na rua é a decepção amorosa. Escolhendo-se ao acaso uma pessoa no grupo pesquisado e supondo-se que seja igual a 40% a probabilidade de que essa pessoa faça parte do conjunto P ou do conjunto Q, então a probabilidade de que ela faça parte do conjunto interseção de P e Q é igual a

- a) 12%.
- **b)** 16%.
- **c)** 20%.
- d) 36%.
- **e)** 52%.

5. Para ganhar um prêmio, uma pessoa deverá retirar, sucessivamente e sem reposição, duas bolas pretas de uma mesma urna.

Inicialmente, as quantidades e cores das bolas são como descritas a seguir:

- Urna A Possui três bolas brancas, duas bolas pretas e uma bola verde;
- Urna B Possui seis bolas brancas, três bolas pretas e uma bola verde;
- Urna C Possui duas bolas pretas e duas bolas verdes;
- Urna D Possui três bolas brancas e três bolas pretas.

A pessoa deve escolher uma entre as cinco opções apresentadas:

- Opção 1 Retirar, aleatoriamente, duas bolas da urna A;
- Opção 2 Retirar, aleatoriamente, duas bolas da urna B;
- Opção 3 Passar, aleatoriamente, uma bola da urna C para a urna A; após isso, retirar, aleatoriamente, duas bolas da urna A;
- Opção 4 Passar, aleatoriamente, uma bola da urna D para a urna C; após isso, retirar, aleatoriamente, duas bolas da urna C;
- Opção 5 Passar, aleatoriamente, uma bola da urna C para a urna D; após isso, retirar, aleatoriamente, duas bolas da urna D.

Com o objetivo de obter a maior probabilidade possível de ganhar o prêmio, a pessoa deve escolher a opção

- a) 1.
- **b)** 2.
- **c)** 3.
- **d)** 4.
- **e)** 5.
- **6.** Um casal decidiu que vai ter 3 filhos. Contudo, quer exatamente 2 filhos homens e decide que, se a probabilidade fosse inferior a 50%, iria procurar uma clínica para fazer um tratamento específico para garantir que teria os dois filhos homens. Após os cálculos, o casal concluiu que a probabilidade de ter exatamente 2 filhos homens é
 - a) 66,7%, assim ele não precisará fazer um tratamento.
 - b) 50%, assim ele não precisará fazer um tratamento.
 - c) 7,5%, assim ele não precisará fazer um tratamento.
 - **d)** 25%, assim ele precisará procurar uma clínica para fazer um tratamento.
 - e) 37,5%, assim ele precisará procurar uma clínica para fazer um tratamento.

7. Em um determinado semáforo, as luzes completam um ciclo de verde, amarelo e vermelho em 1 minuto e 40 segundos. Desse tempo, 25 segundos são para a luz verde, 5 segundos para a amarela e 70 segundos para a vermelha. Ao se aproximar do semáforo, um veículo tem uma determinada probabilidade de encontrá-lo na luz verde, amarela ou vermelha. Se essa aproximação for de forma aleatória, pode-se admitir que a probabilidade de encontrá-lo com uma dessas cores é diretamente proporcional ao tempo em que cada uma delas fica acesa.

Suponha que um motorista passa por um semáforo duas vezes ao dia, de maneira aleatória e independente uma da outra. Qual é a probabilidade de o motorista encontrar esse semáforo com a luz verde acesa nas duas vezes em que passar?

- a) 1/25
- **b)** 1/16
- **c)** 1/9
- **d)** 1/3
- **e)** 1/2
- **8.** Um protocolo tem como objetivo firmar acordos e discussões internacionais para conjuntamente estabelecer metas de redução de emissão de gases de efeito estufa na atmosfera. O quadro mostra alguns dos países que assinaram o protocolo, organizados de acordo com o continente ao qual pertencem.

Países da América do Norte	Países da Ásia
Estados Unidos da América	China
Canadá	Índia
México	Japão

Em um dos acordos firmados, ao final do ano, dois dos países relacionados serão escolhidos aleatoriamente, para verificar se as metas de redução do protocolo estão sendo praticadas.

A probabilidade de o primeiro país escolhido pertencer à América do Norte e o segundo pertencer ao continente asiático é

- **a)** 1/9
- **b)** 1/4
- **c)** 3/10
- **d)** 2/3
- **e**) 1

- 9. No próximo final de semana, um grupo de alunos participará de uma aula de campo. Em dias chuvosos, aulas de campo não podem ser realizadas. A ideia é que essa aula seja no sábado, mas, se estiver chovendo no sábado, a aula será adiada para o domingo. Segundo a meteorologia, a probabilidade de chover no sábado é de 30% e a de chover no domingo é de 25%.
 A probabilidade de que a aula de campo ocorra no domingo é de
 - **a)** 5,0%
 - **b)** 7,5%
 - **c)** 22,5%
 - **d)** 30,0%
 - **e)** 75,0%
- **10.** A probabilidade de um empregado permanecer em uma dada empresa particular por 10 anos ou mais é de 1/6. Um homem e uma mulher começam a trabalhar nessa companhia no mesmo dia. Suponha que não haja nenhuma relação entre o trabalho dele e o dela, de que seus tempos de permanência na firma são independentes entre si.

A probabilidade de ambos, homem e mulher, permanecerem nessa empresa por menos de 10 anos é de

- **a)** 60/36
- **b)** 25/36
- **c)** 24/36
- **d)** 12/36
- **e)** 1/36

Gabarito

1. **C**

Calculando a probabilidade de ele se atrasar, com e sem chuva, tem-se:

$$P(\text{chuva}) = 30\% \cdot 50\% = 0, 3 \cdot 0, 5 = 0, 15$$

 $P(\text{ñchuva}) = 70\% \cdot 25\% = 0, 7 \cdot 0, 25 = 0, 175$ $\Rightarrow 0,325$

2. **C**

Existem apenas duas opções favoráveis de percurso, quais sejam: uma no sentido horário e outra no sentido anti-horário. Logo, segue que a resposta é dada por

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{24}.$$

3. **D**

Probabilidade de congestionamento = 1 - probabilidade de não haver congestionamento

D Figura II

sem congestionamento

E2E5 = 1 - 0,3.0,6 = 0,82 (menor probabilidade)

$$E2E_5 = 1 - 0,3.0,4 = 0,88$$

O trajeto E2E4 não existe.

Λ Δ

Queremos calcular P(P∩Q).

Aplicando o Teorema da Soma obtemos

$$P(P \cup Q) = P(P) + P(Q) - P(P \cap Q) \Leftrightarrow$$

$$40\% = 36\% + 16\% - P(P \cap Q) \Leftrightarrow$$

$$P(P \cap Q) = 52\% - 40\% = 12\%.$$

5. **E**

As probabilidades de ganhar o prêmio são dadas pelas equações abaixo:

$$P_1 = \frac{2}{6} \cdot \frac{1}{5} = 0.066$$

$$P_2 = \frac{3}{10} \cdot \frac{2}{9} = 0.066$$

$$P_3 = \frac{3}{7} \cdot \frac{2}{6} + \frac{2}{7} \cdot \frac{1}{6} = 0.19$$

$$P_4 = \frac{3}{5} \cdot \frac{2}{4} + \frac{2}{5} \cdot \frac{1}{4} = 0.4$$

$$P_{\rm S} = \frac{4}{7} \cdot \frac{2}{4} + \frac{3}{7} \cdot \frac{2}{6} = 0.42$$

Logo, a pessoa deve escolher a opção 5 para ter a maior probabilidade possível de ganhar o prêmio.

6. **E**

Os filhos poderão ser:

Homem, homem e mulher ou mulher, homem e homem ou homem, mulher e homem.

Logo a probabilidade será
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8} = 0,375 = 37,5\%$$

7. **B**

Verde: 25s Amarelo: 5s Vermelho: 70s Total: 100s

Logo a probabilidade de se encontrar um sinal verde é 25/100 = 1/4 Nas duas vezes que passar temos: (1/4).(1/4) = 1/16 (princípio multiplicativo)

8. **C**

A probabilidade do primeiro país escolhido pertencer à América do Norte é de $\frac{3}{6}$

A probabilidade do segundo pertencer ao continente asiático é de $\frac{3}{5}$.

A probabilidade de ambos os eventos ocorrerem será: $\frac{3}{6} \cdot \frac{3}{5} = \frac{9}{30} = \frac{3}{10}$.

9. **C**

Para que a aula ocorra no domingo é necessário que chova no sábado e não chova no domingo. Assim, pode-se escrever:

$$P(chover_{sáb}) = 0,30$$

$$P(chover_{dom}) = 0,25$$

$$P(não chover_{dom}) = 1 - P(chuva_{dom}) = 1 - 0.25 = 0.75$$

$$P(\text{chover}_{cab}) \cdot P(\text{não chover}_{dom}) = 0.30 \cdot 0.75 = 0.225 = 22.5\%$$

10. **B**

A probabilidade de um empregado permanecer na empresa por menos de 10 anos é igual a $1-\frac{1}{6}=\frac{5}{6}$. Portanto, a probabilidade de um homem e uma mulher permanecerem por menos de 10 anos é $\frac{5}{6} \cdot \frac{5}{6} = \frac{25}{36}$.