

Iuliu-Octavian Vasilescu 09 Aprilie 2021

Contents

1	Circuit logic N-MOS	3
2	Analiza tensiunii de iesire pentru o poarta N-MOS	5

1 Circuit logic N-MOS

Avem tensiune de 0 volti \Rightarrow tranzistorul este blocat \Rightarrow tensiunea de iesire este $V_{CC} \Rightarrow$ graficul va fi constant.

Daca mai crestem V_T -ul, o sa intre in conductie in continuare dar tensiunea de intrare este mai mica decat V_T iar tensiunea de iesire este mai mare decat V_{GS} - $V_T \Rightarrow$ saturatie.

Figure 1: Inversor cu tranzistorul in regiunea de saturatie

Tensiunea de iesire scade \Rightarrow

$$V_{DS} = V_{out}$$
$$V_{GS} = V_{in}$$

 V_{DS} se intersecteaza cu V_{GS} - $V_T \Rightarrow$ exista un punct unde tranzistorul trece din regiunea de saturatie in regiunea liniara.

O poarta va avea tensiunea de iesire corecta pentru orice tensiune mai mica decat V_T la intrare. V_{IH} tensiunea minima de intrare pentru care poarta interpreteaza 1 logic.

Figure 2: Inversor cu tranzistorul in regiunea liniara

$$V_{1} = \begin{cases} V_{CC} = I_{D} * R + V_{DS} \\ I_{D} = \frac{K}{2} * (V_{GS} - V_{T})^{2} \\ V_{GS} - V_{T} = V_{DS} \end{cases} \begin{cases} V_{T} = 2V \\ V_{CC} = 5V \\ K = 6mA/V^{2} \\ R = 2K \end{cases}$$

$$\begin{split} I_D &= \frac{K}{2} * V_{DS}^2 \\ \frac{R*K}{2} * V_{DS}^2 + V_{DS} &= V_{GC} \\ 4V_{DS}^2 + V_{DS} &= 5V => \\ V_1 &= \left\{ \begin{array}{l} V_{DS} &= 1V \\ V_{GS} &= 3V \end{array} \right. \\ V_{GS} &< V_T &= 2V \qquad T &= BL \\ 2V &< V_{GS} &< 3V \qquad T &= SAT \\ 3 &< V_{GS} \qquad T &= LIM \end{array} \\ V_{IN} &= 5V : I_D &= \frac{K}{2}(V_{GS} - V_T)V_{DS} &= \\ &= \frac{8mA/V^2}{2}(5V - 2V) * V_{DS} &= \\ &= 12m/V * V_{DS} \\ V_{CC} &= RI_D + V_{DS} \\ 5 &= 2K * 12mA/V * V_{DS} + V_{DS} \end{split}$$

$$=>V_{DS}=\frac{5}{13}=0.38V$$

Figure 3

Alegem
$$V_{IH}=3$$
V, $V_{IL}=2$ V, $V_{OH}=5$ V, $V_{OL}=1$ V
$$\Rightarrow \text{MZL}=1$$
V $=V_{IL}-V_{OL}, \text{MZH}=2$ V $=V_{OH}-V_{IH}$

2 Analiza tensiunii de iesire pentru o poarta N-MOS

Figure 4: Poarta NOR

IN_1	IN_2	U_0
0V	0V	V_{CC}
V_{CC}	0V	V_{OL}
0V	V_{CC}	V_{OL}
V_{CC}	V_{CC}	$< V_{OL}$

Figure 5: Poarta NAND

$$V_{GS2}=U_2$$

 $V_{GS1} = U_1 - V$ (unde V este potentialul)

In continuare o sa luam o poarta de tip N-MOS si vom analiza cum arata tensiunea de iesire pentru un impuls ideal la intrare.

Figure 6

Figure 7

Pentru regiunea 1 tranzistorul este BLOCAT (BL) si schema echivalenta va

fi urmatoarea:

Figure 8

$U_0 = V_{CC}$

Pentru regiunea 2:

INITIAL:
$$V_{IN}=V_{GS}=V_{CC},\,U_0=U_C=V_{CC}=V_{DS}$$

$$V_{DS} > V_{CS} - V_T$$

 \Rightarrow Tranzistorul este in regiunea SATURATA (SAT)

$$V_{CCC} > V_{CC} - V_T$$

Se comporta ca o sursa de curent:

Figure 9

$$I_D = \frac{K}{2} * (V_{GS} - V_T)^2 = \frac{K}{2} * (V_{CC} - V_T)^2$$

Facem o echivalenta Thevenin a acestei rezistente cu condensator. Aceasta va deveni o sursa de tensiune si o rezistenta.

Figure 10

Figure 11

$$E_e = V_{CC} - RI_D$$

$$R_e = R$$

Figure 12

$$U_C(0) = V_{CC}$$

$$U_C(\infty) = E_e \qquad \Rightarrow U_C(t) = V_{CC} * e^{-t/\tau} + E_e * (1 - e^{-t/\tau})$$

$$\tau = RC$$

Aceasta este formula graficului in regiunea SAT.

Numim prima parte a comutarii (pana cand tensiunea de iesire U_0 ajunge la $V_{CC}-V_T)\ t_1.$

$$U_C(t_1) = V_{CC} - V_T = V_{CC} * e^{-t_1/\tau} + E_e * (1 - e^{-t_1/\tau})$$

Pentru partea a doua a comutarii tranzistorul este in regiunea 3: LINIARA (LIN)

$$V_{DS} < V_{CC} - V_T$$

$$V_{GS} < V_{CC}$$

 \Rightarrow Tranzistorul este in regiunea LINIARA si se comporta ca o rezistenta $R_{eT}=\frac{1}{\frac{k}{2}(V_{GS}-V_{T})}$

Schema echivalenta:

Figure 13

Figure 14

$$E_{e2} = V_{CC} \frac{R_{eT}}{R + R_{eT}}$$

$$R_{e2} = R \mid\mid R_{eT}$$

$$U_C(0) = V_{CC} - V_T$$

$$U_C(\infty) = E_{e2} = V_{CC} \frac{R_{eT}}{R + R_{eT}}$$

$$\tau_2 = R_{e2}C$$

Astfel ecuatia curbei noastre va fi:

$$U_C(t) = (V_{CC} - V_T)e^{-t/\tau_2} + V_{CC} \frac{R_{eT}}{R + R_{eT}} (1 - e^{-t/\tau_2})$$

Ne intereseaza momentul in care tensiunea de iesire coboara sub $V_{OL},$ adica $t_2.$

$$U_C(t_2) = V_{OL}$$