15

20

25

30

35

Patentansprüche

Triazolopyrimidine der Formel I 1.

in der die Substituenten folgende Bedeutung haben: 5

> C2-C12-Alkenyl oder C2-C12-Alkinyl, wobei die Kohlenstoffketten unsubstitu- R^1 iert sind oder eine bis drei gleiche oder verschiedene Gruppen Ra und/oder R^b tragen;

oder

C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₁-C₆-Alkoxy-C₂-C₁₂-alkenyl oder C₁-C₆-Alkoxy-C₂-C₁₂-alkinyl, wobei die Kohlenstoffketten eine bis drei gleiche oder verschiedene Gruppen Ra tragen;

Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkylthio, C₃-C₁₂-Alkenyloxy, Ra C₃-C₁₂-Alkinyloxy, oder

C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen Rb tragen kann;

C₁-C₄-Alkyl, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkyl-Rb thio, C₃-C₆-Alkenyloxy und C₃-C₆-Alkinyloxy;

wobei die Kohlenstoffketten der Gruppen Ra ihrerseits halogeniert sein können;

- C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffket- R^2 ten durch eine bis drei Gruppen Rc substituiert sind:
 - Cyano, Nitro, Hydroxy; oder C₃-C₆-Cycloalkyl, welches eine bis vier Rc gleiche oder verschiedene Gruppen C1-C4-Alkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy oder C₃-C₆-Alkinyloxy tragen kann.
- Verbindungen der Formel I gemäß Anspruch 1, worin 2.
- C₁-C₁₄-Halogenalkyl, C₁-C₁₂-Halogenalkoxy-C₁-C₁₂-alkyl, C₁-C₁₂-Alkoxy-C₁- R^1 C₁₂-halogenalkyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-Halogenalkenyl, C₂-C₁₂-Alkinyl o-40

10

15

20

25

30

40

der C₂-C₁₂-Halogenalkinyl, wobei die Kohlenstoffketten eine bis drei Gruppen R^a tragen können:

R^a Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₁₂-Alkinyloxy, oder

C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen tragen kann;

R^b C₁-C₄-Alkyl, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkythio, C₃-C₆-Alkenyloxy und C₃-C₆-Alkinyloxy;

wobei die Kohlenstoffketten der Gruppen Ra ihrerseits halogeniert sein können;

3. Verbindungen der Formel I gemäß Anspruch 1 oder 2, worin

R² C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten durch eine bis drei Gruppen R^c substituiert sein können:

Cyano, Nitro, Hydroxy; oder C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen C₁-C₄-Alkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy oder C₃-C₆-Alkinyloxy tragen kann.

4. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 3, worin

R¹ C₁-C₁₄-Alkyl, wobei die Kohlenstoffketten eine bis drei gleiche oder verschiedene Gruppen Cyano oder Halogen tragen;

bedeutet.

5. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 3, worin

R¹ C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten unsubstituiert sind oder eine bis drei gleiche oder verschiedene Gruppen R^a und/oder R^b tragen;

bedeutet.

6. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, worin R¹ und R² gemeinsam nicht mehr als 14 Kohlenstoffatome aufweisen.

35

- Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, worin R1 für 7. Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 5 2,2,2-Trichlorethyl, Pentafluorethyl, 1,1,1-Trifluorprop-2-yl, 1-Chlorpropyl, 1-Fluorpropyl, 3-Chlorpropyl, 3-Fluorpropyl, 3,3,3-Trifluorpropyl, 1-Chlorbutyl, 1-Fluorbutyl, 4-Chlorbutyl, 4-Fluorbutyl, 4,4,4-Trifluorbutyl, 1-Chlorpentyl, 1-Fluorpentyl, 5,5,5-Trifluorpentyl, 5-Chlorpentyl, 5-Fluorpentyl, 1-Chlorhexyl, 1-Fluorhexyl, 6-Chlorhexyl, 6-Fluorhexyl, 6,6,6-Trifluorhexyl, 1-Chlorheptyl, 10 1-Fluorheptyl, 7-Chlorheptyl, 7-Fluorheptyl, 7,7,7-Trifluorheptyl, 1-Chloroctyl, 1-Fluoroctyl, 8-Fluoroctyl, 8,8,8-Trifluoroctyl, 1-Chlornonyl, 1-Fluornonyl, 9-Fluornonyl, 9,9,9-Trifluornonyl, 9-Chlornonyl, 1-Fluordecyl, 1-Chlordecyl, 10-Fluordecyl, 10,10,10-Trifluordecyl, 10-Chlordecyl, 1-Chlorundecyl, 1-Fluorundecyl, 11-Chlorundecyl, 11-Fluorundecyl, 11,11,11-Trifluorundecyl, 1-Chlor-15 dodecyi, 1-Fluordodecyi, 12-Chlordodecyi, 12-Fluordodecyi oder 12,12,12-Trifluordodecyl steht.
- 8. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 7, worin R² für 20 Methyl, Ethyl, iso-Propyl, n-Propyl oder n-Butyl steht.
- Verbindungen der Formel I gemäß Anspruch 1:

 6-(3-Brompropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 6-(3-Chlorpropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

 6-(7-Amino-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-hexannitril;
 6-(7-Amino-5-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 5-Ethyl-6-hex-5-enyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 6-Hex-5-enyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 5-Methyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin.

10. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man ß-Ketoester der Formel II,

in der R für C₁-C₄-Alkyl steht, mit 3-Amino-1,2,4-triazol der Formel III

$$N \longrightarrow NH_2$$

zu 7-Hydroxytriazolopyrimidinen der Formel IV

umsetzt, welche zu Verbindungen der Formel V,

in der Hal für Chlor oder Brom steht, halogeniert werden, und V mit Ammoniak umgesetzt wird.

11. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Acylcyanide der Formel VI,

$$\begin{array}{c|c}
 & \text{VI} \\
 & \text{O} \\
 & \text{R}^2
\end{array}$$

mit 3-Amino-1,2,4-triazol der Formel III gemäß Anspruch 10 umsetzt.

- 12. Verbindungen der Formeln IV und V gemäß Anspruch 10.
- Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, in der R¹ durch Halogen substituiertes C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl bedeutet, durch Halogenierung von Triazolopyrimidinen der Formel VII,

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R \\
N & R^2
\end{array}$$
VII

in der R für C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-20

Alkinyl steht, wobei die Kohlenstoffketten eine bis drei Gruppen R^a gemäß Anspruch 1 tragen können, mit einem Halogenierungsmittel in Gegenwart eines Radikalstarters oder einer Säure.

- 14. Fungizides Mittel, enthaltend einen festen oder flüssigen Träger und eine Verbin-25 dung der Formel I gemäß einem der Ansprüche 1 bis7.
 - 15. Saatgut, enthaltend eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 in einer Menge von 1 bis 1000 g pro 100 kg.
- 30 16. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 behandelt.

We claim:

1. A triazolopyrimidine of the formula I

in which the substituents are as defined below:

 R^1 is C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkynyl, where the carbon chains are unsubstituted or carry one to three identical or different groups R^a and/or R^b :

10 or

20

25

30

35

 C_1 - C_{14} -alkyl, C_1 - C_{12} -alkoxy- C_1 - C_{12} -alkyl, C_1 - C_6 -alkoxy- C_2 - C_{12} -alkynyl, where the carbon chains carry one to three identical or different groups R^a ;

15 $R^a \quad \text{is halogen, cyano, nitro, hydroxyl, } C_1-C_6-alkylthio, } C_3-C_{12}-alkenyloxy, \\ C_3-C_{12}-alkynyloxy, \text{ or }$

C₃-C₆-cycloalkyl which may carry one to four identical or different groups R^b;

 R^b is C_1 - C_4 -alkyl, cyano, nitro, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_6 -alkenyloxy and C_3 - C_6 -alkynyloxy;

where the carbon chains of the groups R^a for their part may be halogenated;

 R^2 is C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkynyl, where the carbon chains are substituted by one to three groups R^c :

is cyano, nitro, hydroxyl; or C_3 - C_6 -cycloalkyl which may carry one to four identical or different groups C_1 - C_4 -alkyl, halogen, cyano, nitro, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_6 -alkenyloxy or C_3 - C_6 -alkynyloxy.

2. The compound of the formula I according to claim 1 in which

10

15

25

- R¹ is C_{1} - C_{14} -haloalkyl, C_{1} - C_{12} -haloalkoxy- C_{1} - C_{12} -alkyl, C_{1} - C_{12} -alkoxy- C_{1} - C_{12} -haloalkyl, C_{2} - C_{12} -alkenyl, C_{2} - C_{12} -haloalkenyl, C_{2} - C_{12} -alkynyl or C_{2} - C_{12} -haloalkynyl, where the carbon chains may carry one to three groups R^{a} :
 - R^a is cyano, nitro, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_{12} -alkenyloxy, C_3 - C_{12} -alkynyloxy, or

C₃-C₆-cycloalkyl which may carry one to four identical or different groups;

R^b is C_1 - C_4 -alkyl, cyano, nitro, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_6 -alkenyloxy and C_3 - C_6 -alkynyloxy

where the carbon chains of the groups R^a for their part may be halogenated.

- 3. The compound of the formula 1 according to claim 1 or 2 in which
- is C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkynyl, where the carbon chains may be substituted by one to three groups R^c :
 - R^c is cyano, nitro, hydroxyl; or C_3 - C_6 -cycloalkyl which may carry one to four identical or different groups C_1 - C_4 -alkyl, halogen, cyano, nitro, hydroxyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_6 -alkenyloxy or C_3 - C_6 -alkynyloxy.
 - 4. The compound of the formula I according to any of claims 1 to 3 in which
- R¹ is C₁-C₁₄-alkyl, where the carbon chains carry one to three identical or different groups cyano or halogen.
 - 5. The compound of the formula I according to any of claims 1 to 3 in which
 - is C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkynyl, where the carbon chains are unsubstituted or carry one to three identical or different groups R^a and/or R^b .
 - 6. The compound of the formula I according to any of claims 1 to 5 in which R¹ and R² together do not have more than 14 carbon atoms.
 - 7. The compound of the formula I according to any of claims 1 to 5 in which R¹ is chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, dichlorofluoromethyl, dichlorofluoromethyl, chlorodi-

AMENDED SHEET

fluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 1,1,1-trifluoroprop-2-yl, 1-chloropropyl, 1-fluoropropyl, 3-chloropropyl, 3-fluoropropyl, 3,3,3-trifluoropropyl, 1-chlorobutyl, 1-fluorobutyl, 4-chlorobutyl, 4-fluorobutyl, 4,4,4-trifluorobutyl, 1-chloropentyl, 1-fluoropentyl, 5,5,5-trifluoropentyl, 5-chloropentyl, 5-fluoropentyl, 1-chlorohexyl, 1-fluorohexyl, 6-chlorohexyl, 6-fluorohexyl, 6,6,6-trifluorohexyl, 1-chlorooctyl, 1-fluorooctyl, 8,8,8-trifluorooctyl, 7,7,7-trifluoroheptyl, 1-chlorooctyl, 1-fluorooctyl, 8,9,9-trifluorononyl, 9-chlorononyl, 1-fluorodecyl, 10-fluorodecyl, 10,10,10-trifluorodecyl, 10-chlorodecyl, 1-chlorodecyl, 11-chloroundecyl, 11-fluoroundecyl, 11-fluoroundecyl, 11-fluoroundecyl, 11-fluoroundecyl, 11-fluoroundecyl, 12-fluorododecyl, 12-fluorododecyl, 12-chlorododecyl, 12-fluorododecyl, 12-trifluorododecyl, 12-trifluoro

15

10

5

- 8. The compound of the formula I according to any of claims 1 to 7 in which R² is methyl, ethyl, isopropyl, n-propyl or n-butyl.
- 9. The compound of the formula I according to claim 1:
 6-(3-bromopropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamine;
 6-(3-chloropropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamine;
 6-(7-amino-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-hexanenitrile;
 6-(7-amino-5-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-hexanenitrile;
 5-ethyl-6-hex-5-enyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamine;
 6-hex-5-enyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamine;
 5-methyl-6-(5,6,6-trifluorohex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamine.

10. A process for preparing compounds of the formula I according to any of claims 1 to 9 wherein β-ketoesters of the formula II,

30

in which R is C₁-C₄-alkyl are reacted with 3-amino-1,2,4-triazole of the formula III

$$N \longrightarrow NH_2$$

to give 7-hydroxytriazolopyrimidines of the formula IV

$$N-N$$
 R^1
 N
 N
 R^2

AMENDED SHEET

which are halogenated to give compounds of the formula V

in which Hal is chlorine or bromine and V is reacted with ammonia.

5 11. A process for preparing compounds of the formula I according to any of claims 1 to 9 wherein acylcyanides of the formula VI,

$$R^1$$
 R^2 R^2

are reacted with 3-amino-1,2,4-triazole of the formula III according to claim 10.

- 10 12. A compound of the formula IV or V according to claim 10.
 - 13. A process for preparing compounds of the formula I according to claim 1 in which R^1 is halogen-substituted C_1 - C_{14} -alkyl, C_1 - C_{12} -alkoxy- C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkynyl, by halogenating triazolopyrimidines of the formula VII,

$$N-N$$
 R^2
 N
 N
 R^2

15

in which R is C_1 - C_{14} -alkyl, C_1 - C_{12} -alkoxy- C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, C_2 - C_{12} -alkynyl, where the carbon chains may carry one to three groups R^a as set forth in claim 1, using a halogenating agent in the presence of a free-radical initiator or an acid.

20

30

- 14. A fungicidal composition comprising a solid or liquid carrier and a compound of the formula I according to any of claims 1 to 7.
- 15. Seed comprising a compound of the formula I according to any of claims 1 to 9 in an amount of 1 to 1000 g per 100 kg.
 - 16. A method for controlling phytopathogenic harmful fungi wherein the fungi or the materials, plants, the soil or seed to be protected against fungal attack are treated with an effective amount of a compound of the formula I according to any of claims 1 to 9.