UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TOPOLOGÍA DIFERENCIAL I

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0937**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático I, Topología I.

SERIACIÓN INDICATIVA SUBSECUENTE: Topología Diferencial II.

OBJETIVO(S): Introducir al alumno a los conceptos de variedades diferenciables, funciones diferenciables y transversalidad, y a los resultados más importantes como los teoremas de Sard y Whitney. Se ve también la Teoría de intersección (orientada y no orientada) y sus principales consecuencias. Se repartirán ciertos temas a grupos de dos o tres alumnos para completar el temario, a fin de que los alumnos aprendan a transmitir los temas asignados.

NUM. HORAS	UNIDADES TEMÁTICAS
5	1. Definición de variedad topológica y dimensión y de varie-
	dad diferenciable
	1.1 Ejemplos de variedades no-Hausdorff y no 2º numerables.
	1.2 Atlas y estructuras diferenciables (mencionar las estructuras
	exóticas de S^7).
	1.3 Subvariedades y variedades con frontera.
	1.4 Ejemplos: esfera, espacio proyectivo, bolas cerradas y semiespa-
	cios, matrices de rango constante.
	1.5 Opcional: variedades de Stieffel y Grassman.
10	2. Espacio tangente en un punto por curvas (Opcional: deri-
	vaciones)
	2.1 Espacios tangentes en conjuntos que no necesariamente son sub-
	variedades de \mathbb{R}^n .
	2.2 El haz tangente.
	2.3 Opcional: functores suaves y ejemplos de suma de Whitney, pro-
	ductos multilineales y multilineales alternantes.

10	3. Recordatorio de los teoremas de la función inversa, de la
	función implícita, del rango, y del rango constante en \mathbb{R}^n , y
	prueba de los mismos teoremas en variedades
	3.1 Inmersiones 1 a 1 y encajes.
	3.2 Puntos críticos y puntos regulares, valores críticos y valores re-
	gulares.
	3.3 Transversalidad.
15	4. Los teoremas de Sard: débil y general
	4.1 El Teorema de encaje de Whitney, inmersiones de \mathbb{R}^n a \mathbb{R}^m $(n \ge 1)$
	(2m).
5	5. Clasificación de 1-variedades conexas compactas
	5.1 Teoremas de punto fijo.
	5.2 Matrices cuadradas con entradas no negativas.
5	6. Homotopía y transversalidad
	6.1 Teorema de vecindad tubular.
	6.2 Teoría de intersección no orientada.
	6.3 Teoría de grado y consecuencias: Teorema de Jordan-Brower. Teo-
	rema de Borsuk-Ulam.
15	7. Orientación de variedades conexas
	7.1 Teoría de intersección orientada y sus consecuencias.
15	8. Temas selectos.

BIBLIOGRAFÍA BÁSICA:

- 1. Brocker, T., Jänick, K., *Introduction to Differential Topology*, Cambridge: Cambridge University Press, 1982.
- 2. Guillemin, V.W., Pollack, A., *Topología Diferencial*. Traducción de Óscar Palmas. México: Aportaciones de la SMM, Textos volumen 20, 2003.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups, New York: Springer-Verlag, 1983.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.