The Sparks Foundation Grip Internship July 2022

Data Science and Business Analytics Tasks

Intern Information::

Name: Garima Sharma

Domain: Python and Data Science

Qualification: Master of Engineering in Computer Science and Engineering.

Scource: LinkedIn

→ Task 1

Prediction Using Supervised ML (Level: Begineer)

Problem Statement:

1) To predict the percentage of a student based on the study hours.

2) Algorithm : Linear Regression [2 variables]

3) Language : Python

4) Predict: What will be predicted score if a student studies 9.25/hrs a day??

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
%matplotlib inline

df = pd.read_csv("/content/drive/MyDrive/studentscores.csv")
print("File read successful!!")
df
```

File read successful!!

File	read s	uccessful!!
	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35

print("Shape of file = ",df.shape)
print("Size of file = ",df.size)

Shape of file = (25, 2) Size of file = 50

total_columns=pd.DataFrame(df.columns)
total_columns.T

0 1 0 Hours Scores

print("Transpose structure rows to columns and columns to rows transformation")
df.T

Transpose structure rows to columns and columns to rows transformation

	0	1	2	3	4	5	6	7	8	9	• • •	15	16	17
Hours	2.5	5.1	3.2	8.5	3.5	1.5	9.2	5.5	8.3	2.7		8.9	2.5	1.9
Scores	21.0	47.0	27.0	75.0	30.0	20.0	88.0	60.0	81.0	25.0		95.0	30.0	24.0
2 rows × 2	25 colu	mns												•

describe = pd.DataFrame(df.describe())
print("The satistical description :")
describe

The satistical description :

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

→ Data Visulization

dtype: int64

Scores

0

```
x = df["Hours"]
y = df["Scores"]
plt.title("Hours Vs Scores")
plt.xlabel("Hours")
plt.ylabel("Scores")
plt.plot(x,y,"*")
plt.grid()
plt.show()
```



```
#student studyin for hours
x = df["Hours"]
y = df["Scores"]
plt.title("Hours")

plt.hist(x)
plt.grid()
plt.show()
```



```
x = df["Scores"]
plt.title("Scores")
plt.hist(y)
plt.grid()
plt.show()
```


	Hours	Scores	1
0	2.5	21	
1	5.1	47	
2	3.2	27	
3	8.5	75	
4	3.5	30	

```
y = df_1["Hours"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels =[2.5,5.1,3.2,8.5,3.5]
plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()
```


y = df_1["Scores"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels =[21,47,27,75,30]

plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()

df_2 = pd.DataFrame(df[5:11])
df_2

	Hours	Scores	1
5	1.5	20	
6	9.2	88	
7	5.5	60	
8	8.3	81	
9	2.7	25	
10	7.7	85	

```
y = df_2["Hours"]
myexplode = [0.1,0.1,0.1,0.1,0.1,0.1]
mylabels =[1.5,9.2,5.5,8.3,2.7,7.7]
```


y = df_2["Scores"]
myexplode = [0.1,0.1,0.1,0.1,0.1,0.1]
mylabels = [20,88,60,81,25,85]

plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()

df_3 = pd.DataFrame(df[11:16])
df_3

	Hours	Scores	1
11	5.9	62	
12	4.5	41	
13	3.3	42	
14	1.1	17	
15	8.9	95	

```
y = df_3["Hours"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels =[5.9, 4.5, 3.3, 1.1, 8.9]
```


y = df_3["Scores"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels = [62, 41, 42, 17, 95]

plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()

df_4= pd.DataFrame(df[16:21])
df_4

	Hours	Scores	1
16	2.5	30	
17	1.9	24	
18	6.1	67	
19	7.4	69	
20	2.7	30	

```
y = df_4["Hours"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels =[2.5, 1.9, 6.1, 7.4, 2.7]
```


y = df_4["Scores"]
myexplode = [0.1,0.1,0.1,0.1,0.1]
mylabels =[30, 24, 67, 69, 30]

plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()

df_5 = pd.DataFrame(df[21:26])
df_5

	Hours	Scores	1
21	4.8	54	
22	3.8	35	
23	6.9	76	
24	7.8	86	

y = df_5["Hours"]
myexplode = [0.1,0.1,0.1,0.1]
mylabels =[4.8, 3.8, 6.9, 7.8]


```
y = df_5["Scores"]
myexplode = [0.1,0.1,0.1,0.1]
mylabels =[54, 35, 76, 86]
```

plt.pie(y,labels=mylabels, explode = myexplode, shadow = True,autopct='%.2f%%')
plt.show()


```
import matplotlib.pyplot as plt
import numpy as np

#plot 1:
    x = df_1["Scores"]
    y = df_1["Hours"]

plt.subplot(1, 2, 1)
    plt.scatter(x,y)
    plt.grid()

#plot 2:
    x = df_2["Scores"]
    y = df_2["Hours"]

plt.subplot(1, 2, 2)
    plt.scatter(x,y)
    plt.grid()
```

plt.show()


```
#plot 3:
x = df_3["Scores"]
y = df_3["Hours"]

plt.subplot(1, 2, 1)
plt.scatter(x,y)
plt.grid()

#plot 4:
x = df_4["Scores"]
y = df_4["Hours"]
```

plt.subplot(1, 2, 2)
plt.scatter(x,y)
plt.grid()#


```
#plot 5:
x = df_5["Scores"]
y = df_5["Hours"]

plt.plot(1, 2, 1)
plt.scatter(x,y)
plt.grid()
```


import matplotlib.pyplot as plt
import seaborn as sns
sns.displot(df["Hours"])
plt.show()

sns.displot(df["Scores"])
plt.show()

```
5 -
```

```
## Percentiles
x = np.percentile(df["Scores"], 10)
print("Score 10 or below =",x)
x = np.percentile(df["Scores"], 20)
print("Score 20 or below =",x)
x = np.percentile(df["Scores"], 30)
print("Score 30 or below =",x)
x = np.percentile(df["Scores"], 40)
print("Score 40 or below =",x)
x = np.percentile(df["Scores"], 50)
print("Score 50 or below =",x)
x = np.percentile(df["Scores"], 60)
print("Score 60 or below =",x)
x = np.percentile(df["Scores"], 70)
print("Score 70 or below =",x)
x = np.percentile(df["Scores"], 80)
print("Score 80 or below =",x)
x = np.percentile(df["Scores"], 90)
print("Score 90 or below =",x)
x = np.percentile(df["Scores"], 100)
print("Score 100 or below =",x)
     Score 10 or below = 22.200000000000003
     Score 20 or below = 26.6
     Score 30 or below = 30.0
     Score 40 or below = 38.60000000000001
     Score 50 or below = 47.0
     Score 60 or below = 60.8
     Score 70 or below = 68.6
     Score 80 or below = 77.00000000000001
     Score 90 or below = 85.6
     Score 100 or below = 95.0
y = np.percentile(df["Hours"], 1)
print("Study 1 hour or below =",y)
y = np.percentile(df["Hours"], 2)
print("Study 2 hour or below =",y)
y = np.percentile(df["Hours"], 3)
print("Study 3 hour or below =",y)
y = np.percentile(df["Hours"], 4)
print("Study 4 hour or below =",y)
y = np.percentile(df["Hours"], 5)
print("Study 5 hour or below =",y)
y = np.percentile(df["Hours"], 6)
print("Study 6 hour or below =",y)
y = np.percentile(df["Hours"], 7)
print("Study 7 hour or below =",y)
```

y = np.percentile(df["Hours"], 8)

→ Linear Regression

Use of scipy library

```
import matplotlib.pyplot as plt
from scipy import stats

x = df["Scores"]
y = df["Hours"]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def relation(x):
    return slope * x + intercept

linear = list(map(relation, x))

plt.scatter(x, y)
plt.plot(x, linear)
plt.show()
```



```
import matplotlib.pyplot as plt
from scipy import stats
x = df["Hours"]
y = df["Scores"]
slope, intercept, r, p, std_err = stats.linregress(x, y)
def relation(x):
    return slope * x + intercept
linear = list(map(relation, x))
plt.scatter(x, y)
plt.plot(x, linear)
plt.show()
      90
      80
      70
      60
      50
      40
      30
      20
      10
                    ż
X = df.iloc[:, :-1].values
y = df.iloc[:, 1].values
X_train, X_test, y_train, y_test = train_test_split(X, y,train_size=0.80,test_size=0.20,ra
from sklearn.linear_model import LinearRegression
linearRegressor= LinearRegression()
linearRegressor.fit(X_train, y_train)
y_predict= linearRegressor.predict(X_train)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
print("Sucessfull")
     Sucessfull
print('Score of student who studied for 9.25 hours a dat', regressor.predict([[9.25]]))
     Score of student who studied for 9.25 hours a dat [92.38611528]
```

✓ 0s completed at 1:29 AM

×