Система управления шестиногим шагающим роботом

Дипломный проект выполнил Карандаев В.Ю.

Техническое задание

- 1. Произвести энергетический расчет, рассчитать и подобрать двигатели для каждого звена ноги робота.
- 2. Произвести частотный синтез и коррекцию следящего привода трехзвенного манипулятора, чтобы обеспечить следующие условия:
 - Длительность переходного процесса $t_{
 m nn} \leq 0.1$ сек;
 - Перерегулирование $\sigma \leq 30\%$;
 - Ошибка вращения элемента $\varepsilon \leq 0.5^\circ$;
- 3. Решить обратную кинематическую задачу для трехзвенного манипулятора с 3-мя степенями свободы.
- 4. Реализовать прохождение кратчайшего пути по заданной карте местности с использованием волнового алгоритма.
- 5. Провести натурный эксперимент и определить ошибки в прохождении заданной траектории.
- 6. Разработать плату стабилизации напряжения.
- 7. Разработать технологический процесс сборки ноги робота.
- 8. Рассчитать затраты на проектирование и изготовление робота.
- 9. Проанализировать опасные и вредные факторы для человека при разработке системы управления роботом. Устранить наиболее опасный фактор.
- 10. Проанализировать влияние на окружающую среду технологического процесса сборки печатной платы для системы управления роботом. Устранить наиболее опасный фактор.

- 1 °— размеры для спрадок 2. Неуказанные предельные отклонения размерод: охбальювающих па Н.д. охбальюваемых па 17 3. Гайки запягивать да упара 4. Винты закручивать отверткой 7810-0976 ГОСТ 10753-86 5. От каждаго сервопривода СП1 идет кабель управления, состоящий из трех жил
- 6. Болт МЗх 14, скрепляющий Д4 и Д7, а так же болт МЗх 14, скрепляющий Д9 и Д7 смазать снаэкой ГОСТ 21150-87
- 7. Проверить все сервопривады СП 1 на работоспосабность с памацью 38М

1003	Обазначение	Has	менование	KON.	Материал	Приме чание	
1		Стана	аертные изделия				
5		Aum 2	-25 x 6 /OCT N-91-70	4		_	
5		Винт М		6		_	
í			3 x 35 FOCT 1491-70	1		-	
7		20-21-2-1-1	M3 /OCT 5915-70	7		_	
3	277.1	Сервапр		3			
		Breds po	градальбаеме изделия:				
7	Д7		Бедра левае	1	Акрилавае стекла		
1	Д5	Б	едра правае	1	Акрильтое стест		
Т	Д4	- /	алень лебая	1	Акриповое стект		
1	Д3	- /i	олень прабая	1	Акриповое стект		
1	П1	300	үитный калпак	1	Резона		
?	Д 12	Крепл	Крепление сербаприбада		Акрипавае стект		
?	П2	Нага			Акрипавае стект		
	Д6		авочная ранка бедра	2	Акрипавае стект		
1	Д 11	Таз верхний Таз левый Таз нижний			Акриливое стект		
7	ПВ				Акриловое стект		
7	Д 10				Акриливае стект		
7	Д9	Д9 Таз правый		1	Акриловое стект		
1							
1							
7			7				
Ξ		\equiv	Диплог	MHE	и проект		
	Arm (local arms) (я Дана	Сбарачный чертеж			21	
=	0.	\pm			льсе ли МГТ9 им. Н. Группа СМТ	 Э. Баунан 121	

ДПТ TowerPro SG92R

$U_{ m дH}$, В	<i>P</i> _н , Вт	$n_{_{ m H}}$, об/мин	$R_{\mathfrak{R}}$, Ом	i _{дв н} , А	$J_p \cdot 10^{-6}$, кг \cdot м 2	$m_{ m дв}$,	$\lambda_{ m KД}$
6±1	0.675	600	13	0.250	0.575	0.009	11

Синтез следящего привода кисти робота

Передаточная функция неизменяемой части

$$W_{\rm HY}(s) = \frac{22.852}{s(0.0043s+1)(0.043s+1)}$$

ЛАЧХ функции неизменяемой части и положение рабочей точки

Передаточная функция Скорректированной системы

$$W_{\text{mu}}(s) = 10 * \frac{(0.0282s + 1)}{(0.0011s + 1)} * \frac{22.852}{s(0.0043s + 1)(0.043s + 1)}$$

ЛАЧХ неизменяемой и желаемой частей

Моделирование синтезированного следящего привода

Структурная схема замкнутой системы

Ошибка скорректированной системы в радианах

Моделирование синтезированного следящего привода

Структурная схема системы с учетом нелинейности

Структурная схема системы с учетом нелинейности и дискретизации

Моделирование синтезированного следящего привода

ЛАЧХ и ЛФЧХ разомкнутой системы

График переходной функции

Решение обратной задачи кинематики

Определив положение конца манипулятора в декартовом пространстве $au_{3\,(0)}^{(0)}$ можем найти $heta_1$

Задача на пересечение двух окружностей для нахождения углов Θ_2 и Θ_3

Моделирование решения обратной задачи кинематики

Блок-схема ноги робота

Modenupobanue производим в графической среде имитационного моделирования Simulink в пакете MATLAB с помощью пакета расширения для физического моделирования SimMechanics

Проверка моделирования решения обратной задачи кинематики

Графики изменения положения звеньев ноги №5

Схема поворота ноги Nº5

Организация движения робота

- Статически устойчивые
 походки походки, при которых
 центр масс системы всегда
 находится внутри
 многоугольника, образованного
 точками опоры системы;
- Статически неустойчивые походки (динамические походки)
 походки, при которых не соблюдается правило устойчивости.

Схема для объяснения походки «трешками»

Программный код для управления движением

Блок — схема алгоритма программы управления движением робота

Реализация Алгоритма Ли для поиска кратчайшего пути по заданной карте местности

Блок-схема работы алгоритма

Реализация Алгоритма Ли для поиска кратчайшего пути по заданной карте местности

Визуализация работы волнового алгоритма Ли

Натурный эксперимент

№ Эксперимента	1000 мм по прямой	90° по часовой	90° против часовой			
Sherieparierima	Результаты эксперимента					
1	1010	86	91			
2	950	88	90			
3	973	86	95			
4	1018	87	94			
5	964	86	89			
6	1068	85	96			
7	1050	89	92			
8	920	86	95			
9	988	88	91			
10	990	85	93			
Среднее значение отклонения	36,1	3,4	2,8			
Среднее значение отклонения в %	3,6	3,8	3,1			

Nº	О поворотов	1 поворот	2 поворота	3 поворота					
Эксперимента	Результаты эксперимента								
1	V	V	~	~					
2	~	~	~	Х					
3	V	V	~	V					
4	V	V	V	V					
5	V	V	~	Х					
6	V	V	V	V					
7	V	V	Х	V					
8	V	V	~	Х					
9	V	V	~	~					
10	~	V	~						
Сумма правильных отработок	10	10	9	7					
Сумма неправильных отработок	0	0	1	3					

Натурный эксперимент. Результаты

- 1. Ошибки в случае движения по прямой 3,6%, в случае движения по часовой стрелке 3,8%, в случае движения против часовой стрелки 3,1%.
- 2. При прохождении простых траекторий с нулем и одним поворотами проблем с прохождением траектории не возникло. При прохождении двух поворотов один раз из десяти робот не отработал траекторию. При прохождении трех поворотов робот трижды неправильно отработал траекторию.
- 3. Для третьей части эксперимента было рассмотрено три случая:
 - В случае полностью заряженного аккумулятора робот полностью отрабатывает траекторию на высокой скорости.
 - В случае напряжения 5,0 В траектория так же выполняется без ошибок, но время исполнения команд увеличивается и робот шагает медленнее.
 - В случае разряженного аккумулятора с напряжением ниже 4,8 В робот продолжает принимать команды, но выполняет их неправильно и не решает поставленной задачи.

Проектирование платы стабилизации напряжения

Номинальные значения и типы выбранных элементов:

- DA1 микросхема LM2596S-3.3
- R1 = 1kOm, ±1% (E96), 1Bm, 2010;
- R2 = 10k0m, ±10%, 1Bm, 3006P–1–103 (Bourns);
- С1 = 470мкФ, 50V, Алюминиевый электролитический (Vishay);
- C2 = 220мкФ F, 35V, Алюминиевый электролитический (Vishay);
- L1 = 68mk[H 3.4A (EPCOS / TDK);
- D1 Диод Шоттки, MBR350 50B 3A (Vishay);
- XP1 Вилка штыревая 2.54мм 2x3 прямая, PLD-6(DS1021–2x3S).

Требования к плате:

- Выходное напряжение 6B ± 5%;
- Диапазон входного напряжения питания 4B-7B;
- Максимальный потребляемый ток 1A (1 канал / 1 сервопривод);
- Диапазон рабочих температур от **-**20 до +40 °C;

Условное обазначение отверстий		Наличие металлизации в атверстиях	Количества отверстий
e	0,6	да	3
•	16	да	8

	Уславное обозначение контактной площавки			Количество контактных площадак
Ì	-	0,4±0,05	2,5±0,1	2
	-	1,45±0,05	2,6±0,1	5
Ī		15:0.05	24:01	4

Технические требования:

- Плату изготовить комбинированным методом;
- Шаг координатной сетки 25 мм;
- Проводники выполнить шириной 0.5 мн;
- Расстаяние между проводниками не менее 0.2 мм;
- Талщина проводящего слоя 0.3 мм;
- Плату изготовить из фольгированного текстолита no FOCT 23762-73;

Ħ					Дипломный і	ηρι	Эе	кт	
\Box					Чертеж проводящих	No	92.	Macca	Haramat
Kim A	ij		/loðn.	Даго	чертеж произилия	П	П		1.4
P030	M.	Kapadad 88			слаев пл аты стабилизации	Ш	Ш		47
Doot		Polynt BX		_	HONOR#EHUR	Щ	Ш		
T_{NON}	90					Aug	v	Aucre	ė.
					Плата стабилизации	Mr.	19	ин Н.Э. і	Бацмана
Short	Н			\vdash	напаяжения	Γρυ	me	1 CM7-12	27

Организационно — экономическая часть

Продолжительность всех стадий работ

			Исполни	Walley was		
Стадия	№ этапа	Содержание этапов в стадиях	Категория	Кал-ва	Прадолжите льность Тож,раб.дн.	
/	1	его характеристик, формирование технического задания и разработка	Вед.инж.	1	12	
Падг.			Инж.	2		
	1	Разработка платы управления	Вед.инж.	1	9	
//	- 63		Инж.	3		
Изгат.	2	? Разработка корпусных элементов	Вед.инж.	1	7	
			Инж.	3	,	
622	1	Сборка карпусных элеметнов	Инж.	2	1	
III Сборка	2	Сборка платы управления	Инж	2	1	
	3	Отладка платы управления	Инж.	2	8	
	1	Оформление чертежей	Вед. инж. Инж.	1	5	
IV Офармл.	2	Оформление расчетно- пояснительной записки	Секр. машинист	2	5	

Общая структура затрат на проектирование

Охрана труда и экологии

Схема расположения светильников

Схема системы вентиляции

Фильтр очистки воздуха

Решенные задачи

- 1. Подобраны двигатели для каждого звена ноги робота.
- 2. Произведен частотный синтез и коррекция следящего привода с соблюдением условий по Т3
- 3. Решена обратная кинематическая задача для ноги робота.
- 4. Реализовано прохождение кратчайшего пути по заданной карте местности.
- 5. Проведены натурные эксперименты и определены ошибки в прохождении заданной траектории.
- 6. Разработана плата стабилизации напряжения.
- 7. Разработан технологический процесс сборки ноги робота.
- 8. Рассчитаны затраты на проектирование и изготовление робота.
- 9. Проведен анализ опасных факторов для человека при разработке системы управления роботом. Предложено решение устранения наиболее опасного фактора.
- 10. Проведен анализ влияния на окружающую среду технологического процесса сборки печатной платы для системы управления роботом. Предложено решение устранения наиболее опасного фактора.

Спасибо за внимание!

