Problems

- 1. A 0.60-kg block attached to a spring with force constant 130 N/m is free to move on a frictionless, horizontal surface as in Figure 15.1. The block is released from rest when the spring is stretched 0.13 m. At the instant the block is released, find (a) the force on the block and (b) its acceleration.
- 4. In an engine, a piston oscillates with simple harmonic womotion so that its position varies according to the expression

$$x = 5.00 \cos \left(2t + \frac{\pi}{6} \right)$$

where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the particle, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.

- **5.** The position of a particle is given by the expression \mathbf{M} $x = 4.00 \cos (3.00\pi t + \pi)$, where x is in meters and t is in seconds. Determine (a) the frequency and (b) period of the motion, (c) the amplitude of the motion, (d) the phase constant, and (e) the position of the particle at t = 0.250 s.
- 17. A particle moves in simple harmonic motion with a frequency of 3.00 Hz and an amplitude of 5.00 cm. (a) Through what total distance does the particle move during one cycle of its motion? (b) What is its maximum speed? Where does this maximum speed occur? (c) Find the maximum acceleration of the particle. Where in the motion does the maximum acceleration occur?
- 19. A 0.500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.
- 33. While driving behind a car traveling at 3.00 m/s, you notice that one of the car's tires has a small hemispherical bump on its rim as shown in Figure P15.33. (a) Explain why the bump, from your viewpoint behind the car, executes simple harmonic motion. (b) If the radii of the car's tires are 0.300 m, what is the bump's period of oscillation?

Figure P15.33