# SCC0284 / SCC5966 Sistemas de Recomendação

Aula 03: Filtragem Baseada em Conteúdo

(mmanzato@icmc.usp.br)

## Filtragem Baseada em Conteúdo (FBC)

- FC não utiliza nenhuma informação sobre os itens
  - Apenas interações de usuários
  - Problemas de cold-start e esparsidade
- FBC calcula recomendações utilizando:
  - Descrições sobre os itens (metadados)
  - Perfil de usuário contendo o que ele gosta / não gosta

### **FBC**



















Sugestões...

#### Processamento



Banco de dados

Gêneros de interesse: ação (3.0), SciFi (2.5), comédia (5.0) Palavras-chave de interesse: Viagem (1.5), aventura (4.2), carro (3.5)

Histórico de consumo:

(Titanic, 4.0), (Sociedade dos Poetas Mortos, 5.0), ...

#### **FBC**

- Tarefa:
  - Coletar / aprender sobre as preferências do usuário
  - Buscar / recomendar itens que sejam similares às preferências do usuário



#### **FBC**

- Representação de itens
  - Utilização de metadados estruturados, semi-estruturados e/ou nãoestruturados



| Title                | Genre                | Author               | Туре      | Price | Keywords                                                               |  |
|----------------------|----------------------|----------------------|-----------|-------|------------------------------------------------------------------------|--|
| The Night of the Gun | Memoir               | David Carr           | Paperback | 29.90 | Press and journalism, drug<br>addiction, personal memoirs,<br>New York |  |
| The Lace<br>Reader   | Fiction,<br>Mystery  | Brunonia Barry       | Hardcover | 49.90 | American contemporary fiction, detective, historical                   |  |
| Into the Fire        | Romance,<br>Suspense | Suzanne<br>Brockmann | Hardcover | 45.90 | American fiction, murder, neo-<br>Nazism                               |  |

### FBC baseada em vizinhos mais próximos (FBC-kNN)

- Dado um conjunto de itens l<sub>u</sub> já avaliados pelo usuário
- Encontrar os n vizinhos mais próximos de um item i ainda não avaliado
  - Usar métricas de similaridade aplicadas em vetores de características
- Usar esses vizinhos para predizer uma avaliação para i

### FBC-kNN

#### • Exemplo



#### FBC-kNN

#### Exemplo

- Calcular as similaridades entre itens usando os vetores de atributos
  - Métricas possíveis: Cosseno, Pearson, Jaccard, etc.
- Selecionar os k itens mais similares a i que tenham sido avaliados por u
- Calcular a predição usando a mesma estratégia da FC:

$$pred(u,i) = \frac{\sum_{j \in I_{ui}} sim(i,j) * r_{uj}}{\sum_{j \in I_{ui}} sim(i,j)}$$

I<sub>ui</sub>: conj. dos kitens mais similaresa i que foram avaliadospor u

#### FBC-kNN

- Variações
  - Alterar o tamanho de vizinhos (k)
  - Utilizar limiares superiores e inferiores para similaridade
- Vantagens
  - Bom para modelar interesses de curtíssimo-prazo ou itens que formam uma história em sequência
  - Pode ser usado em combinação com outros métodos para modelar preferências de longo-prazo

#### Métodos Probabilísticos

• Calcular a probabilidade condicional de cada item ser relevante ou nãorelevante de acordo com o conjunto de características que ele possui:

$$P(i = relevante \mid X)$$
  
 $P(i = n\tilde{a}o.relevante \mid X)$ 

- onde X é o vetor de características do item i
- Teorema de Bayes:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)} = \frac{\prod_{i=1}^{d} P(X_i \mid Y)P(Y)}{P(X)}$$

#### Métodos Probabilísticos

#### Exemplo

Interações de um único usuário:

| ItemID | recommender | intelligent | learning | school | Label |
|--------|-------------|-------------|----------|--------|-------|
| 1      | 1           | 1           | 1        | 0      | R     |
| 2      | 0           | 0           | 1        | 1      | N     |
| 3      | 1           | 1           | 0        | 0      | R     |
| 4      | 1           | 0           | 1        | 1      | R     |
| 5      | 0           | 0           | 0        | 1      | N     |
| 6      | 1           | 1           | 0        | 0      | ?     |

```
Obs. Para evitar zerar a probabilidade, é possível aplicar
uma suavização de Laplace, como:
      P(t = 1 \mid Label = R) = (qtde + 1) / (total + |V|)
onde:
      t: palavra-chave
      |V| é o no. de palavras-chave
```

```
P(X \mid R) = P(recommender = 1 \mid Label = R)
x P(intelligent = 1 | Label = R)
x P(learning = 0 | Label = R)
x P(school = 0 | Label = R)
= (3+1)/(3+4) \times (2+1)/(3+4) \times (1+1)/(3+4)
x(2+1)/(3+4) = 0.0299
P(R \mid X) = 0.0299 \times 0.6 = 0.01794
```

P(X | R) = P(recommender = 1 | Label = N)  
x P(intelligent = 1 | Label = N)  
x P(learning = 0 | Label = N)  
x P(school = 0 | Label = N)  
= 
$$(0+1)/(2+4) \times (0+1)/(2+4) \times (1+1)/(2+4)$$
  
x  $(0+1)/(2+4) = 0.0015$ 

P(X) → constante  
P(Y):  
P(Y):  
P(Label = R) = 3/5  
P(Label = N) = 2/5

- Recomendação baseada em conteúdo pode ser vista como um problema de classificação/regressão
- Um modelo linear pode discriminar itens entre as classes relevante e não-relevante



#### • Exemplo



#### • Exemplo



Para cada usuário u, queremos aprender um perfil  $\Theta^{(u)} \in \mathbb{R}^{m+1}$  (m = qtde. atributos)

 $x^{\text{(The Princess Diary)}} = \{1,0,1,0,\frac{1}{1}\}$ 

#### • Exemplo



Para cada usuário u, queremos aprender um perfil  $\Theta^{(u)} \in \mathbb{R}^{m+1}$  (m = qtde. atributos)

A predição é realizada como:

$$\hat{r}_{ui} = (\theta^{(u)})^T x^{(i)}$$

 $x^{\text{(The Princess Diary)}} = \{1,0,1,0,1\}$ 

#### Exemplo

Ação

Sci-Fi

Comédia



1

x<sup>(4)</sup>

**x**(5)

 $x^{(The Princess Diary)} = \{1,0,1,0,1\}$ 

x<sup>(3)</sup>

x<sup>(2)</sup>

Para cada usuário u, queremos aprender um perfil  $\Theta^{(u)} \in \mathbb{R}^{m+1}$  (m = qtde. atributos)

A predição é realizada como:

$$\hat{r}_{ui} = (\theta^{(u)})^T x^{(i)}$$

Por exemplo, se o perfil de Jéssica foi treinado como:  $\Theta^{(Jessica)} = \{1.5, 0, -0.5, 2, 2\}$ , então a predição para "The Princess Diary" será:

pred = 
$$1.5*1+0*0-0.5*1+2*0+2*1 = 3$$

#### • Dados:

- K : conjunto de pares (u,i) cujas notas são conhecidas
- r<sub>ui</sub>: nota dada pelo usuário u para o item i
- x<sup>(i)</sup>: vetor de características do item i
- Predição:  $\hat{r}_{ui} = (\theta^{(u)})^T x^{(i)}$
- m, c, p : no. de características / usuários / itens
- Θ<sup>(u)</sup>: vetor de parâmetros (perfil) do usuário u
  - $\Theta^{(u)} \in \mathbb{R}^{m+1}$

• Aprendizado de  $\Theta^{(u)}$ :

$$\min_{\theta^{(u)}} \frac{1}{2} \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^T (x^{(i)}) - r_{ui} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^m \left( \theta_k^{(u)} \right)^2$$

Aprendizado de Θ<sup>(u)</sup>:

$$\min_{\theta^{(u)}} \frac{1}{2} \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^T (x^{(i)}) - r_{ui} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^m \left( \theta_k^{(u)} \right)^2$$

• Aprendizado de  $\Theta^{(1)}$ ,  $\Theta^{(2)}$ , ...,  $\Theta^{(c)}$ :

$$\min_{\theta^{(1)},\dots,\theta^{(c)}} \frac{1}{2} \sum_{u=1}^{c} \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^{T} (x^{(i)}) - r_{ui} \right)^{2} + \frac{\lambda}{2} \sum_{u=1}^{c} \sum_{k=1}^{m} \left( \theta_{k}^{(u)} \right)^{2}$$

• Função custo:

$$J(\theta^{(1)},...,\theta^{(c)}) = \frac{1}{2} \sum_{u=1}^{c} \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^{T} (x^{(i)}) - r_{ui} \right)^{2} + \frac{\lambda}{2} \sum_{u=1}^{c} \sum_{k=1}^{m} \left( \theta_{k}^{(u)} \right)^{2}$$

Função custo:

$$J(\theta^{(1)},...,\theta^{(c)}) = \frac{1}{2} \sum_{u=1}^{c} \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^{T} (x^{(i)}) - r_{ui} \right)^{2} + \frac{\lambda}{2} \sum_{u=1}^{c} \sum_{k=1}^{m} \left( \theta_{k}^{(u)} \right)^{2}$$

• Derivadas:

$$\frac{\partial J}{\partial \theta_k^{(u)}} = \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^T (x^{(i)}) - r_{ui} \right) x_k^{(i)} + \lambda \theta_k^{(u)}$$
 para k = 1, ..., m 
$$\frac{\partial J}{\partial \theta_k^{(u)}} = \sum_{i:(u,i) \in K} \left( (\theta^{(u)})^T (x^{(i)}) - r_{ui} \right) x_k^{(i)}$$
 para k = m+1 (viés)

• Atualização via Gradiente Descendente Estocástico:

$$\begin{split} \boldsymbol{\varepsilon}_{ui} &= (\boldsymbol{\theta}^{(u)})^T \boldsymbol{x}^{(i)} - \boldsymbol{r}_{ui} \\ \boldsymbol{\theta}_k^{(u)} &= \boldsymbol{\theta}_k^{(u)} - \gamma \Big( \boldsymbol{\varepsilon}_{ui} \boldsymbol{x}_k^{(i)} + \lambda \boldsymbol{\theta}_k^{(u)} \Big) & \text{para k = 1, ..., m} \\ \boldsymbol{\theta}_k^{(u)} &= \boldsymbol{\theta}_k^{(u)} - \gamma \boldsymbol{\varepsilon}_{ui} \boldsymbol{x}_k^{(i)} & \text{para k = m+1 (viés)} \end{split}$$

• Algoritmo

```
inicializar \Theta repita para cada (u,i) com nota conhecida calcular predição calcular erro para cada característica k: atualizar \Theta_{uk} até convergir
```

### Limitações da FBC

- Palavras-chave (características) podem não ser suficientes para julgar a qualidade ou relevância de um item
  - Falta de descrições, semântica, características não textuais, etc.
- Problema do novo usuário
- Sobre-especialização ou filtros bolha

#### Referências

- Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich. *Recommender Systems: An Introduction*. Cambridge University Press, 2010.
- <a href="https://www.coursera.org/learn/machine-learning/lecture/uG59z/content-based-recommendations">https://www.coursera.org/learn/machine-learning/lecture/uG59z/content-based-recommendations</a>