WSI - Regresja i klasyfikacja

Marcin Szymczak 314910

1 Opis badanej metody

SVM jest metoda klasyfikacji, która polega na znalezieniu hiperpłaszczyzny odzielającej klasy marignesem. Pseudokod dla przypadku liniowo separowalnego:

- Powtarzaj przez zadaną maksymalną liczbę iteracji:
 - Dla każdej próbki treningowej:
 - * Oblicz warunek marginesu: $y_i(w^Tx_i + b)$.
 - * Jeśli próbka nie narusza marginesu:
 - · Zaktualizuj wagi, minimalizując wpływ regularyzacji.
 - * Jeśli próbka narusza margines:
 - · Zaktualizuj wagi, biorąc pod uwagę wpływ tej próbki na granicę decyzyjną.
 - · Zaktualizuj przesunięcie marginesu.

Natomiast gdy przypadek nie jest liniowo separowalny należy zastosować SVM z funkcjami jądrowymi. Dzięki funkcją jądrowym, dane są przekształcane do wyższej wymiarowości, gdzie mogą być liniowo separowalne. Pseudokod:

- Powtarzaj przez zadaną maksymalną liczbę iteracji:
 - Dla każdej próbki treningowej:
 - * Oblicz wartość funkcji decyzyjnej z użyciem funkcji jądrowej: $f(x_i) = \sum_{j=1}^N \alpha_j y_j k(x_j,x_i) + b$, gdzie $k(x_j,x_i)$ to funkcja jądrowa
 - * Oblicz warunek marginesu: $y_i f(x_i)$.
 - $\ast\,$ Jeśli próbka nie narusza marginesu:
 - · Nie aktualizuj mnożników α ani przesunięcia b.
 - * Jeśli próbka narusza margines:
 - · Zaktualizuj mnożnik Lagrange'a α_i , uwzględniając błędy klasyfikacji i regularyzację.
 - · Zaktualizuj przesunięcie marginesu b.
- Liniowe: $k(u, v) = u^T v$

- Wielomianowe: $k(u, v) = (1 + u^T v)^d$, d > 0
- Gaussowskie/Radialne (RBF): $k(u, v) = \exp\left(-\frac{\|u-v\|^2}{2\sigma^2}\right)$

2 Planowane eksperymenty numeryczne

2.1 Cel eksperymentów

Celem jest zbadanie wpływu wybranych hiperparametrów na dokładność klasyfikacji modeli SVM.

- 1. Klasyczny SVM badanie wpływu zmiany hiperparametrów.
- 2. SVM z funkcjami jądrowymi (RBF i wielomianowe, liniowe) sprawdzenie jedynie jednej konfiguracji, ponieważ zaimplementowane przezemnie modele tręnują się bardzooo długo.

3 Warunki eksperymentów numerycznych

3.1 Data set

- Zbiór danych: Wine Quality Data set (red wine),
- Zmienna objaśniająca dodanie nowej kolumny "quality_binary" na podstawie kolumny "quality", gdzie wartości większe bądź równe 6 dają wartość 1, a pozostałe -1.
- Podział danych 80% dane treningowe, 20% dane testowe

3.2 Eksperymenty dla klasycznego SVM

Hiperparametry:

- learning rate: {0.0001, 0.001, 0.1},
- Liczba iteracji : {10, 100, 1000},
- Parametr regularyzacji (λ): {0.01, 0.1, 1}.
- Porównanie dokładności.

3.3 Eksperymenty dla SVM z różnymi funkcjami jądrowymi

• Porównanie dokładności.

4 Otrzymane Wyniki

Learning Rate	Accuracy (%)
0.0001	44.06
0.001	44.06
0.1	55.94

Tabela 1: Wpływ wartości learning rate na dokładność.

Iterations	Accuracy (%)
10	55.62
100	44.06
1000	44.06

Tabela 2: Wpływ liczby iteracji na dokładność.

Lambda	Accuracy (%)
0.01	44.06
0.1	44.06
1	55.94

Tabela 3: Wpływ wartości parametru lambda na dokładność.

Kernel	Accuracy (%)
Liniowy	44.06
RBF	63.75

Tabela 4: Dokładność modeli SVM dla różnych jąder

Kernel	Accuracy (%)
Liniowy	73.12
RBF	68.44

Tabela 5: Dokładność modeli SVM dla różnych jąder w scikit-learn.

5 Wnioski

 Wpływ learning rate - większy learning rate spowodował poprawę dokładności, natomiast jeszcze większy ten współczynnik mógłby spowodować niestabilność modelu.

- Liczba iteracji Zwiększenie iteracji nie poprawiło dokładności a nawet przyniosło odwrotny efekt.
- Parametr regularyzacji zwiększenie go dało zwiększenie dokładności.
- Z podpunktów powyżej można wywnioskować, że data set zastosowany do treningu nie jest liniowo separowalny.
- W data set jak zmieniłem warunek "quality_binary" na większe równe 7 to nieważne jakie parametry miał model, zawsze dawał dokładność 85,31%
- Zaimplementowane przeze mnie modele z funkcjami jądrowymi trenują się bardzo długi czas przez co nie byłem w stanie ich zbadać dla sensownej ilości iteracji. Dlatego posłużyłem się gotową implementacją z scikit-learn do sprawdzenia jaką dokładność rzeczywiście jesteśmy w stanie otrzymać dla takich SVM dla takiego data setu.
- Nawet dla małej liczby iteracji SVM z RBF dał dużo lepszą dokładność od zwykłego SVM.
- Wyniki są dużo lepsze co daje wniosek taki że przygotowany data set jest liniowo nieseparowalny.