Лабораторная работа №2 Численное решение нелинейных уравнений и систем

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

№ варианта определяется как номер в списке группы согласно ИСУ.

Лабораторная работа состоит из двух частей: вычислительной и программной.

1 Вычислительная реализация задачи:

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
 - 2. Определить интервалы изоляции корней.
 - 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $\varepsilon=10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 5.1 Для метода половинного деления заполнить таблицу 1.
 - 5.2 Для метода хорд заполнить таблицу 2.
 - 5.3 Для метода Ньютона заполнить таблицу 3.
 - 5.4 Для метода секущих заполнить таблицу 4.
 - 5.5 Для метода простой итерации заполнить таблицу 5.
 - 6. Заполненные таблицы отобразить в отчете.

Таблица 1

Уточнение корня уравнения методом половинного деления							
№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1							
2							
3							

Таблица 2

Уточнение корня уравнения метолом хорл

		• • •	111011110 110	P1111 J P 41211	•111171 111010	A = 11 = P A	
№ шага	a	b	X	f(a)	f(b)	f(x)	x_{k+1} - x_k
1							
2							
3							

Таблица 3

Уточнение корня уравнения методом Ньютона

№ итера- ции	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_{k+1}-x_k $
1					
2					
3					

Уточнение корня уравнения методом секущих

		1 /1		r 1 .	/ 1
№ итера- ции	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1					
2					
3					

 Таблица 5

 Уточнение корня уравнения методом простой итерации

№ итера- ции	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1				
2				
3				

2 Программная реализация задачи:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 8) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает программа.
- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом), выбор начального приближения (а или b) вычислять в программе.
- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x_1 , x_2 .
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$
- 8. Проверить правильность решения системы нелинейных уравнений.

3 Оформить отчет, который должен содержать:

- 1. Титульный лист.
- 2. Цель лабораторной работы.
- 3. Порядок выполнения работы.
- 4. Рабочие формулы используемых методов.
- 5. Графики функций на исследуемом интервале.
- 6. Заполненные таблицы вычислительной части лабораторной работы (в зависимости от варианта: табл. 1-5).
 - 7. Листинг программы, по крайней мере, коды используемых методов.
 - 8. Результаты выполнения программы при различных исходных данных.
 - 9. Выводы

Таблица 6 Вид нелинейного уравнения для вычислительной реализации

№ вари- анта	Функция	№ вари- анта	Функция
1	$2,74x^3 - 1,93x^2 - 15,28x - 3,72$	21	$1,8x^3 - 2,47x^2 - 5,53x + 1,539$
2	$-1,38x^3 - 5,42x^2 + 2,57x + 10,95$	22	$x^3 - 3,78x^2 + 1,25x + 3,49$
3	$x^3 + 2,84x^2 - 5,606x - 14,766$	23	$-x^3 + 5,67x^2 - 7,12x + 1,34$
4	$x^3 - 1,89x^2 - 2x + 1,76$	24	$x^3 - 2,92x^2 + 1,435x + 0,791$
5	$-2.7x^3 - 1.48x^2 + 19.23x + 6.35$	25	$x^3 - 2,56x^2 - 1,325x + 4,395$
6	$2x^3 + 3,41x^2 - 23,74x + 2,95$	26	$1,62x^3 - 8,15x^2 + 4,39x + 4,29$
7	$x^3 + 2,28x^2 - 1,934x - 3,907$	27	$2,335x^3 + 3,98x^2 - 4,52x - 3,11$
8	$3x^3 + 1,7x^2 - 15,42x + 6,89$	28	$-1,85x^3 - 4,75x^2 - 2,53x + 0,49$
9	$-1,8x^3 - 2,94x^2 + 10,37x + 5,38$	29	$-1,78x^3 - 5,05x^2 + 3,64x + 1,37$
10	$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$	30	$-2,75x^3 - 4,53x^2 + 17,87x - 1,94$
11	$4,45x^3 + 7,81x^2 - 9,62x - 8,17$	31	$-3,64x^3 + 2,12x^2 + 10,73x + 1,49$
12	$x^3 - 4,5x^2 - 9,21x - 0,383$	32	$x^3 + 1,41x^2 - 5,472x - 7,38$
13	$x^3 + 4,81x^2 - 17,37x + 5,38$	33	$x^3 - 0.12x^2 - 1.475x + 0.192$
14	$2,3x^3 + 5,75x^2 - 7,41x - 10,6$	34	$x^3 - 0.77x^2 - 1.251x + 0.43$
15	$-2,4x^3 + 1,27x^2 + 8,63x + 2,31$	35	$x^3 - 0.78x^2 - 0.826x + 0.145$
16	$5,74x^3 - 2,95x^2 - 10,28x - 4,23$	36	$1,7x^3 - 3,45x^2 - 5,31x + 1,123$
17	$-0.38x^3 - 3.42x^2 + 2.51x + 8.75$	37	$x^3 - 3,75x^2 + 2,25x + 3,51$
18	$x^3 + 2,64x^2 - 5,41x - 11,76$	38	$-x^3 + 5{,}32x^2 - 6{,}12x + 0{,}34$
19	$2x^3 - 1,89x^2 - 5x + 2,34$	39	$x^3 - 2,95x^2 + 1,52x + 0,91$
20	$-2,8x^3 - 3,48x^2 + 10,23x + 9,35$	40	$0.5x^3 - 2.56x^2 - 1.35x + 4.39$

Выбор метода для вычислительной реализации задачи (табл. 1-5)

- 1 Метод половинного деления
- 2 Метод хорд3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Таблица 7

Методы для вычислительной реализации

№ вари- анта	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень	№ вари- анта	Крайний правый корень	Крайний левый корень	Цен- траль- ный корень
1	3	4	5	21	2	1	5
2	5	2	1	22	5	3	1
3	1	5	3	23	3	5	1
4	5	1	4	24	2	3	5
5	2	5	4	25	5	1	4
6	3	1	5	26	3	2	5
7	1	5	3	27	1	3	5
8	5	2	3	28	2	5	4
9	1	5	4	29	1	3	5
10	3	1	5	30	4	5	1
11	1	2	5	31	2	3	5
12	4	5	1	32	1	5	4
13	5	2	3	33	5	1	3
14	3	5	1	34	2	5	4
15	5	1	2	35	4	2	5
16	2	5	3	36	1	5	3
17	1	4	5	37	2	3	5
18	3	5	2	38	5	2	4
19	5	1	4	39	1	3	5
20	1	3	5	40	2	5	3

Выбор метода для программной реализации задачи

Решение нелинейных уравнений:

- 1 Метод половинного деления
- 2 Метод хорд
- 3 Метод Ньютона
- 4 Метод секущих
- 5 Метод простой итерации

Решение систем нелинейных уравнений:

- 6 Метод Ньютона
- 7 Метод простой итерации

Таблица 8 *Методы, реализуемые в программе*

			1
No	Методы	No	Методы
варианта	в программе	варианта	в программе
1	1, 3, 5, 6	21	1, 4, 5, 6
2	2, 3, 5, 7	22	2, 3, 5, 7
3	1, 4, 5, 6	23	1, 3, 5, 6
4	1, 3, 5, 7	24	2, 4, 5, 7
5	1, 3, 5, 7	25	2, 3, 5, 6
6	2, 4, 5, 6	26	1, 4, 3, 7
7	1, 4, 5, 6	27	2, 4, 5, 6
8	1, 3, 5, 7	28	1, 3, 5, 6
9	2, 3, 5, 7	29	2, 3, 5, 7
10	2, 3, 5, 6	30	1, 4, 5, 7
11	1, 4, 5, 7	31	2, 3, 5, 6
12	1, 3, 5, 6	32	1, 3, 5, 7
13	1, 4, 5, 6	33	1, 4, 5, 6
14	2, 4, 5, 7	34	2, 4, 5, 7
15	1, 4, 5, 6	35	2, 3, 5, 6
16	2, 3, 5, 6	36	1, 3, 5, 6
17	1, 4, 5, 7	37	1, 4, 5, 7
18	2, 3, 5, 6	38	2, 3, 5, 7
19	1, 4, 5, 6	39	1, 3, 5, 6
20	2, 4, 5, 7	40	2, 4, 5, 7

Контрольные вопросы к защите лабораторной работы:

- 1. Понятие точного и приближенного решений нелинейного уравнения.
- 2. Основная идея метода половинного деления?
- 3. Может ли метод половинного деления найти точное значение корня уравнения?
- 4. В чем суть метода Ньютона?
- 5. Как выбирается начальное приближение для метода Ньютона?
- 6. Идея метода хорд?
- 7. Как выбирается начальное приближение для метода хорд с фиксированным концом интервала изоляции корня?
- 8. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?
- 9. Какой из методов является трехшаговым методом? Как запустить этот метод?
- 10. В чем суть метода простой итерации?
- 11. Каковы условия применяемости метода простой итерации?
- 12. Как правильно преобразовать исходное нелинейное уравнение y = f(x) к виду $x = \varphi(x)$?
- 13. Каковы основные критерии окончания итерационного процесса?
- 14. Как оценить необходимое количество итераций в методе биссекции при заданной точности?
- 15. Алгоритм решения системы нелинейных уравнений методом Ньютона?
- 16. Каковы преимущества и недостатки графического метода отделения решения для системы двух нелинейных уравнений?
- 17. В каких случаях можно применить метод простой итерации для решения системы нелинейных уравнений?
- 18. Когда можно считать итерационный процесс законченным при использовании метода простой итерации для решения системы нелинейных уравнений?
- 19. Что такое сходимость и скорость сходимости численных методов?
- 20. Дайте определение устойчивости итерационного метода?