Project II Formula Sheet

Hypergeometric Distribution:

$$- \frac{n_A}{n_S} = \frac{\binom{r}{y} \times \binom{N-r}{N-y}}{\binom{N}{n}}$$

$$- \quad \mu = E(Y)$$

$$- \mu = E(Y)$$

$$- V(Y) = n(\frac{r}{N})(\frac{N-r}{n-y})(\frac{N-n}{N-1})$$

Poisson Distribution:

$$- p(y) = \frac{\lambda^{y}}{y!} e^{-x}$$

$$- E[Y] = V[Y] = \lambda$$

ChebyShev's Theorem:

-
$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k_2}$$

Cumulative Distribution Function:

$$- F(y) = P(Y \le y)$$

$$- f(y) = \frac{dF(y)}{dy}$$

Interval Probabilities:

$$- P(a \le x \le b) = \int_a^b f(x) dx$$

Uniform Distribution:

-
$$f(x) = \{\frac{1}{b-a}, a \le x \le b; 0, otherwise\}$$

$$- P(c \le x \le d) = \frac{d-c}{b-a}$$

Expected for Continuous Random variables:

$$- E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

-
$$E(Y) = \int_{-\infty}^{\infty} yf(y)dy$$

- $E(g(Y)) = \int_{-\infty}^{\infty} g(y)f(y)dy$

$$- E(c) = c$$

$$-V(Y) = E(Y^2) - [E(Y)]^2$$

Discrete Bivariate Distributions:

$$- p(x, y) = P(X = x, Y = y)$$

Marginal and Conditional Probability Distributions:

$$- p_1(x) = \sum_{all y} p(x, y)$$

Definition 5.4 a

$$- p_2(y) = \sum_{all \, x} p(x, \, y)$$

$$- f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Definition 5.4 b

$$- f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

-
$$p(x|y) = P(X = x|Y = y) = \frac{p(x,y)}{p_2(y)}$$

Definition 5.5

-
$$F(x|y) = P(X \le x|Y = y)$$

- $f(x|y) = \frac{f(x,y)}{f_2(y)}$

Definition 5.6

$$- f(x|y) = \frac{f(x,y)}{f_2(y)}$$

Definition 5.7

$$- f(y|x) = \frac{f(x,y)}{f_1(x)}$$

Independent Random Variables:

$$- F(x, y) = F_1(x)F_2(y)$$

Definition 5.8

-
$$p(x, y) = p_1(x)p_2(y)$$

Theorem 5.4

$$- f(x,y) = g(x)h(y)$$

Theorem 5.5