1

First, we have $[F_3(T,S):F_3[X,Y]]=9$. because T and S is algebraic no relation, so is X and Y. X and Y are the prime element of F[T,S]. So X^3-T^3 is the irreducible element of F. So $[F_3(T):F_3[X,Y]]=3$

Also, we have $[F_3(T)(S):F_3[X,Y]]=3$ So $[F_3(T,S):F_3[X,Y]]=9$.

If there exist a element, say heta in F_3 to F is the element. So that

$$heta=rac{f(T,S)}{g(T,S)}.$$
 $f(T,S),g(T,S)\in F_3(T,S)$ So that $heta^3=rac{f(T^3,S^3)}{g(T^3,S^3)}\in F$. Which $[F(heta):F]\leq 3<9$.

2

Let E is the splitting field of $x^7-9\in\mathbb{Q}[x]$. We have the roots in \mathbb{C} : $X=(-3)^{\frac27}$, $-i3^{\frac27}$, $X=(-1)^{\frac37}3^{\frac27}$, $X=(-1)^{5/7}3^{2/7}$ $X=-(-1)^{5/7}3^{2/7}$

And let $lpha=^7\sqrt{9}, \epsilon=cosrac{2\pi}{7}+i\ sinrac{2\pi}{7}.$ We have

$$Irr(lpha,\mathbb{Q})=x^7-9=\prod\limits_{k=0}^7(x-lpha\epsilon^k)$$

$$Irr(\epsilon,\mathbb{Q}) = \prod\limits_{k=0}^{7} (x - \epsilon^k)$$

Notice that let $E=\mathbb{Q}(\alpha,\epsilon), 1
otin \{rac{\epsilon^k-\epsilon}{\alpha(1-\epsilon^i)}| 1 \le i,k \le 4\}$ So that Let $\theta=\alpha+\epsilon$, we have $E=\mathbb{Q}(\theta)$,

Let E_1 be one of the automorphism of E, which have the relation of $E\subset E_1\subset \mathbb{Q}$. $\eta(3^{\frac{2}{7}})=\alpha^k3^{\frac{2}{7}},\ k=0-6$ and $\eta(\alpha)=\alpha^k,\ k=1-6$. Let $E_1=\eta(k=2)$. Because E_1 is the splitting field of $\{Irr(\alpha,\mathbb{Q})|\alpha\in E\}$ and $Irr(\alpha,\mathbb{Q})$ is the polynomial of \mathbb{Q} . Thus E_1 is the splitting field of $\{Irr(\alpha,\mathbb{Q})\in E[x]|\alpha\in E\}$, So that $E_1|\mathbb{Q}$ are normal.

3

The fixed field of $\{e\}$ is K, while the fixed field of $\langle \sigma, \tau \rangle = \operatorname{Gal}(K/\mathbb{Q})$ is \mathbb{Q} by condition (3) of the

characterization of Galois extensions.

For the other fixed fields we can either compute the action explicitly on a basis (which is straightforward, if tedious) or try to identify elements of K that might generate some of these fields, and then exploit the Galois action. For example, observe that σ stabilizes $3^{1/5}$, and since the fixed field corresponding to σ must have degree 4 over $\mathbb Q$, it must be equal to $\mathbb Q\left(3^{1/5}\right)$.

Notice that $\langle \sigma \rangle$ is normal in the Galois group, and indeed $\mathbb{Q}\left(\zeta_3\right)$ is Galois over \mathbb{Q} . Likewise, we can see that τ stabilizes $3^{1/2}$, and since the fixed field of τ must have degree 3 over \mathbb{Q} , it must be $\mathbb{Q}\left(3^{1/2}\right)$.

The normal hull is as follows

4

Intersections of subgroups correspond to joins of fields, and joins of subgroups correspond to intersections of fields.

Proof: Suppose that H_1 and H_2 are subgroups of F with respective fixed fields E_1 and E_2 . Then any element in $H_1\cap H_2$ fixes both E_1 and E_2 hence fixes everything in E_1E_2 (since the elements of the composite field are rational functions of elements of E_1 and E_2). Conversely, any automorphism fixing E_1E_2 must in particular fix both E_1 and E_2 hence be contained in $H_1\cap H_2$. Thus, $H_1\cap H_2=E_2$ corresponds to E_1E_2 .

Similarly, $E_1\cap E_2$ is fixed by any element in H_1 or H_2 , hence also by any word in such elements, so $\langle H_1,H_2\rangle$ fixes $E_1\cap E_2$. Inversely, if σ is any automorphism that does not fix $E_1\cap E_2$, then for any $h\in H_1\cup H_2$ we see that σh also does not fix $E_1\cap E_2$. Then by an easy induction argument on the word length, we see that σ cannot be written as a word in $\langle H_1,H_2\rangle$. Thus, $\langle H_1,H_2\rangle$ corresponds to $E_1\cap E_2=F$.

Thus $|E_1|F| = |E_1E_2|E_2|$.