Exercice 1. Une preuve du théorème de Darboux.

Soient deux réels a et b tels que a < b et une fonction f dérivable sur [a, b]. On considère un réel y entre f'(a) et f'(b). On souhaite prouver que y possède un antécédent par f':

$$\exists c \in [a, b] \quad y = f'(c).$$

On aura alors établi le *théorème de Darboux*, qui énonce qu'une fonction dérivée possède la propriété des valeurs intermédiaires.

Considérons les fonctions

$$\varphi: \left\{ \begin{array}{ccc}]a,b] & \to & \mathbb{R} \\ x & \mapsto & \frac{f(x)-f(a)}{x-a} \end{array} \right. \quad \psi: \left\{ \begin{array}{ccc} [a,b[& \to & \mathbb{R} \\ x & \mapsto & \frac{f(b)-f(x)}{b-x} \end{array} \right. .$$

- 1. Justifier que φ et ψ sont prolongeables par continuité respectivement en a et en b. On continue de noter φ et ψ leurs prolongements.
- 2. On suppose dans cette question que y est entre $\varphi(a)$ et $\varphi(b)$.
 - (a) Justifier que y possède un antécédent par φ dans [a,b]. Soit γ un tel nombre.
 - (b) Conclure dans le cas $\gamma = a$.
 - (c) Conclure dans le cas $\gamma > a$ à l'aide des accroissements finis.
- 3. On suppose dans cette question que y n'est pas entre $\varphi(a)$ et $\varphi(b)$. Prouver qu'alors y est entre $\psi(a)$ et $\psi(b)$ et conclure (sans tout détailler)

Exercice 2. Entropie de Shannon.

- 0. Soit la fonction $L: x \mapsto x \ln(x)$, définie sur]0,1].
 - (a) Justifier que L est convexe sur]0,1].
 - (b) Montrer que L est prolongeable par continuité en 0 mais pas dérivable en 0. On continuera de noter L la fonction ainsi prolongée $sur\ [0,1]$ et on admettra $sa\ convexité\ sur\ tout\ [0,1].$
 - (c) Esquisser le graphe de la fonction L sur [0,1] (s'appliquer au voisinage de 0).

Dans tout cet exercice, n est un entier naturel supérieur à 2. On note

$$\Pi_n = \left\{ (p_1, \dots, p_n) \in [0, 1]^n \mid \sum_{i=1}^n p_i = 1 \right\}.$$

On notera aussi Π_n^* l'ensemble des n-uplets de Π_n à coordonnées strictement positives.

Pour $(p_1, \ldots, p_n) \in \Pi_n$, on appelle **entropie** du *n*-uplet le réel positif

$$H_n(p_1, \dots, p_n) := -\sum_{i=1}^n L(p_i).$$

- 1. (a) Donner un exemple de n-uplet dans Π_n dont l'entropie vaut 0.
 - (b) Donner un exemple de n-uplet dans Π_n dont l'entropie vaut $\ln(n)$.
- 2. Inégalité de Gibbs.

On fixe dans cette question un *n*-uplet $(p_1, \ldots, p_n) \in \Pi_n^*$.

(a) Redémontrer rapidement à l'aide d'un argument de convexité. l'inégalité

$$\forall x \in \mathbb{R}_+^* \ \ln(x) \le x - 1.$$

(b) En déduire que

$$\forall (q_1, \dots, q_n) \in \Pi_n^* \quad \sum_{i=1}^n p_i \ln \left(\frac{q_i}{p_i}\right) \le 0.$$

(c) En déduire l'inégalité de Gibbs :

$$\forall (q_1, \dots, q_n) \in \Pi_n^* - \sum_{i=1}^n p_i \ln(p_i) \le -\sum_{i=1}^n p_i \ln(q_i).$$

(d) En déduire la majoration

$$H_n(p_1,\ldots,p_n) \le \ln(n).$$

- (e) (* un peu délicat à rédiger) Justifier que l'inégalité précédente demeure vraie lorsque $(p_1, \ldots, p_n) \in \Pi_n \setminus \Pi_n^*$.
- $\frac{\text{3. }}{\text{Retrouver l'inégalité}}.$

$$\forall (p_1, \dots, p_n) \in \Pi_n \quad H_n(p_1, \dots, p_n) \le \ln(n)$$

établie à la question précédente, cette fois en appliquant l'inégalité de Jensen à L.

4. <u>Une minoration</u>.

Établir

$$\forall (p_1,\ldots,p_n) \in \Pi_n \quad H_n(p_1,\ldots,p_n) \ge -\ln\left(\sum_{i=1}^n p_i^2\right).$$

On justifiera que le minorant est bien défini.

Problème. Une fonction et une suite de polynômes.

Dans ce problème, on considère la fonction f définie sur \mathbb{R}_+ par

$$f(0) = 0$$
 et $\forall x \in]0, +\infty[$ $f(x) = \frac{1}{x^2} \times \exp\left(-\frac{1}{x}\right).$

1. Représentation de la fonction f.

- (a) Établir la continuité de f en 0.
- (b) En utilisant le théorème de la limite de la dérivée, établir la dérivabilité de f en 0 et préciser la valeur de f'(0).
- (c) Dresser le tableau de variations complet de f.

2. Dérivées successives de la fonction f et polynômes associés.

- (a) Justifier brièvement que f est de classe \mathcal{C}^{∞} sur $]0, +\infty[$.
- (b) Démontrer que, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n à coefficients réels tel que

$$\forall x \in]0, +\infty[\quad f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}} \times \exp\left(-\frac{1}{x}\right).$$

(c) Démontrer l'unicité du polynôme P_n pour un entier $n \in \mathbb{N}$ donné.

Si on ne l'a pas établi en question (b), on admettra que la suite de polynômes (P_n) satisfait la relation de récurrence

$$\forall n \in \mathbb{N} \quad P_{n+1} = X^2 P'_n + (1 - 2(n+1)X) P_n.$$

- (d) Calculer P_n pour $n \in [0, 3]$.
- (e) Déterminer, pour tout $n \in \mathbb{N}$, le degré, le coefficient dominant et le terme constant de P_n .
- (f) Pour tout $n \in \mathbb{N}$, étudier la limite à droite en 0 de $f^{(n)}$. Par récurrence et à l'aide du théorème de la limite de la dérivée, on pourrait se convaincre que f est de classe C^{∞} sur $[0, +\infty[$.

3. Nouvelles relations entre les polynômes P_n .

On considère la fonction $g: x \mapsto x^2 f(x)$, définie sur \mathbb{R}_+ , et on fixe $n \in \mathbb{N}^*$.

- (a) Démontrer l'égalité $q^{(n+1)} = f^{(n)}$.
- (b) En utilisant la formule de Leibniz pour calculer $g^{(n+1)}$, démontrer que

$$\forall x \in]0, +\infty[P_{n+1}(x) = (1 - 2(n+1)x)P_n(x) - n(n+1)x^2P_{n-1}(x).$$

- (c) En déduire que : $\forall x \in]0, +\infty[$ $P'_n(x) = -n(n+1)P_{n-1}(x).$
- (d) En déduire l'égalité entre polynômes $P'_n = -n(n+1)P_{n-1}$.

4. Etude des racines du polynôme P_n .

Pour $n \in \mathbb{N}^*$, on note $p_n : \mathbb{R} \to \mathbb{R}$ la fonction polynomiale associée au polynôme P_n .

(a) À l'aide de la relation établie à la question 3 - c), montrer par récurrence que

$$\forall n \in \mathbb{N}^* \quad \forall x \in]0, +\infty[\quad p_n(x) \neq 0 \text{ ou } p_{n-1}(x) \neq 0.$$

- (b) En déduire que, pour $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$, si la fonction p_n s'annule en x, alors $p'_n(x) \neq 0$. En déduire que la fonction p_n change de signe au point x.
- (c) Justifier que la fonction p_n s'annule un nombre <u>fini</u> de fois sur $]0, +\infty[$.

Notons k ce nombre et plaçons-nous dans le cas où $k \ge 2$; notons $x_1 < \ldots < x_k$ ces $z\acute{e}ros$: points où p_n s'annule.

- (d) i. Déterminer le signe de p_n sur les intervalles $[0, x_1[,]x_1, x_2[, \dots,]x_{k-1}, x_k[$.
 - ii. Montrer que $p'_n(x_i)$ est du signe de $(-1)^i$.
 - iii. Étudier le signe de p_{n+1} en chacun des x_i .
 - iv. Étudier la limite de p_{n+1} en $+\infty$
 - v. Supposons ici $\underline{k=n}$. Établir que la fonction p_{n+1} s'annule au moins n+1 fois.
- (e) Montrer que pour tout $n \in \mathbb{N}^*$, P_n possède au moins n racines dans $]0, +\infty[$.
- (f) En déduire que pour tout $n \in \mathbb{N}^*$, le polynôme P_n est scindé sur \mathbb{R} .