COMP4434 Group Project

Group 5 Project Presentation

WANG Yuqi -YANG Xikun -CUI Mingyue -

Contents

•	o	o	o	o	o	o	o	o	o	o	o	o	o	o

1	Selected Paper	3
	1.a Basic Information	4
	1.b Challenge	5
	1.c Solution: World Model	
	1.d Dreamer V3	
	1.e Datasets (Environments)	9
2	P. Designed Model	10
	2.a Hypothesized Limitation	11
	2.b Proposed Method - Pipeline Overview	14
	2.c Proposed Method - World Model	
	2.d Proposed Method - RL Agent	16

1 Selected Paper

Mastering Diverse Domains through World Models

Journal: Nature 2025

Author: Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, Timothy Lillicrap Scope: Sample-efficient RL via self-supervised learning (World Models)

Challenge

- Reinforcement Learning is "BAD"
 - Lacked generality and robustness
 - ▶ Sample Inefficiency tremendous trial & error
 - Sparse Reward (Credit Assignment Problem)

Research Problem

- ▶ How can we design a sample efficient RL algorithm?
- ▶ How can we overcome sparse reward + high dimension problem

Solution: World Model

Learning Abstract World Models

Learning a description of how the world works

- Predict future outcomes to enable planning
- Learn **compact representation** of images
- Form **Markov states** in POMDPs

Application

- **Exploration** by planning from expected surprise
- improved generalization from fixed datasets
- Solve many new tasks zero-shot

Main Challenge

- Learning accurate world models is challenging!!!
- DreamerV3: one of the SOTA world model based RL techniques

Figure 1: World Model learning

1. World Model

• Encoder: $x_t \to z_t$ (categorical discrete latent)

• RSSM: $(h_{t-1}, z_{t-1}, a_{t-1}) \to h_t$

• Decoder: $z_t \to \hat{x}_t$ (reconstruction)

• **Purpose**: Generate massive number of imagined rollouts in latent space

Figure 2: Actor-Critic

2. Reinforcement Learning

• Actor-Critic Learning based on the imagined rollouts generated by the world model.

3. Various other tricks

• Symlog, Discrete World Models, KL Balancing etc.

Datasets (Environments)

••••••••

- DeepMind Control Suite
 - ▶ 18 Control tasks based on proprioceptive vector input
 - 20 Continous tasks based on RGB image input
- Atari 26 Atari Games
- **ProcGen** 16 procedually generated games
- DMLab 30 3D environment tasks
- Minecraft Open-world 3D sandbox game

For our project: 18 proprio-control tasks from Deepmind Control Suite

Reason: Least computationally demanding

2 Designed Model

••••••••

DreamerV3 Approach:

RECALL: World Model Definition

- Learning a description of how the world works
- Learn **compact representation** of images
- Form Markov states in POMDPs

DreamerV3 Approach:

Hypothesized Issues:

- Autoencoder inevitably encodes irrelevant details to RL learning
- Pixel uncertainty \rightarrow necessitate **engineering tricks** for uncertainty modeling

Hypothesized Limitation (iii)

Our Assumptions

- If predict at a sufficiently abstract and high-level representation space
- No need for uncertainty modeling!

An Extreme Example:

- You can deterministically predict planetary orbit with 6 variables
 - 3 variables for 3D position
 - 3 variables for velocity vector
- But if predicting planetary orbit at **atomic level**:
 - Tremendous uncertainty!
 - Error accumulation after each particle simulation

Proposed Method - Pipeline Overview

•••••••

Producer:

```
while is_running:
    episode = []
    while not done:
        latent = world_model.encode(obs)
        action = agent.act(latent)
        obs, reward, done = env.step(action)
        episode.append((latent, action, reward))

replay_buffer.add(episode)
```

Consumer:

```
while is_running:
  episode = replay_buffer.sample()
  world_model.train(episode)
  agent.train(episode)
```

Proposed Method - World Model

Components

- Encoder: $x_t \to z_t$
- Predictor: $z_t, a_t \rightarrow z_{t+1}, r_{t+1}$

Given Variables

• Observed trajectory: $[x_0, x_1, ..., x_t]$

...........

• Action sequences: $[a_0, a_1, ..., a_t]$

Contrastive Training Procedure (world_model.train())

- Encoder: encodes trajectory into latents: $[x_0, x_1, ..., x_t] \rightarrow [z_0, z_1, ..., z_t]$
- Predictor: predicts $[\hat{z}_1,\hat{z}_2,...,\hat{z}_t]$ from $[z_0]+[a_0,a_1,...,a_{t-1}]$
- Compute $\cos(z,\hat{z})$ cosine similarity matrix:

$$\begin{pmatrix} \cos(z_1, \hat{z}_1) & \dots & \cos(z_1, \hat{z}_t) \\ \vdots & \ddots & \vdots \\ \cos(z_t, \hat{z}_1) & \dots & \cos(z_t, \hat{z}_t) \end{pmatrix}$$

• F.cross_entropy maximize value on the diagonal, and minimize everything else

Intuition

- This **avoids reconstruction** in autoencoders
- Speeds up training and prevent encoding irrelevant visual details

Proposed Method - RL Agent

Algorithm:

Proximal Policy Optimization (PPO)

During Training

- Data: z_t, a_t, z_{t+1}, r_t (state, action, next state, reward)
- Input: z_t (current observation/state)
- Output: $a_t \sim \pi(\cdot | z_t), V(z_t)$ (sampled action & state value estimate)
- Training objective:

$$L_{\text{total}} = \text{clamp}(L_{\text{CLIP}}, 1 - \varepsilon, 1 + \varepsilon) + c_1 L_{\text{VF}} - c_2 S[\pi(\cdot \mid s_t)]$$

Where:

- $L_{
 m CLIP}$: Clipped policy gradient
- $L_{
 m VF}$: Value function MSE loss
- ightharpoonup S: Entropy regularization

During Inference $z_t \rightarrow a_t \sim \pi(\cdot | z_t)$ (single-step action selection)
