Optimization in Machine Learning

Bayesian Optimization Multicriteria Bayesian Optimization

Learning goals

- Multicriteria Optimization
- Taxonomy
- ParEGO, SMS-EGO, EHI

MULTICRITERIA BAYESIAN OPTIMIZATION

$$f: \mathcal{S} \to \mathbb{R}^m$$
 $\min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$

• A configuration **x** dominates (\prec) $\tilde{\mathbf{x}}$ if

$$\forall i \in \{1,...,m\}: f_i(\mathbf{x}) \leq f_i(\tilde{\mathbf{x}})$$

and $\exists j \in \{1,...,m\}: f_i(\mathbf{x}) < f_i(\tilde{\mathbf{x}})$

Set of non-dominated solutions:

$$\mathcal{P} := \{ \mathbf{x} \in \mathcal{S} | \nexists \tilde{\mathbf{x}} \in \mathcal{S} : \tilde{\mathbf{x}} \prec \mathbf{x} \}$$

- Pareto set \mathcal{P} , Pareto front $\mathcal{F} = f(\mathcal{P})$
- Goal: Find \hat{P} of non-dominated points that estimates the true Pareto set P

TAXONOMY

Horn, Wagner, Bischl et al. (2014).

PAREGO

Individual models for each objective f_i

Single-objective optimization of aggregating acquisition function: Calculate contribution of the confidence bound of candidate to the current front approximation

- Calculate LCB for each objective
- Measure contribution with regard to the hypervolume improvement
- For ε -dominated (\prec_{ε}) solutions, a penalty is added

Individual models for each objective f_i

Single-objective optimization of aggregating acquisition function: Calculate contribution of the confidence bound of candidate to the current front approximation

- Calculate LCB for each objective
- Measure contribution with regard to the hypervolume improvement
- For ε -dominated (\prec_{ε}) solutions, a penalty is added

Individual models for each objective f_i

Single-objective optimization of aggregating acquisition function: Calculate contribution of the confidence bound of candidate to the current front approximation

- Calculate LCB for each objective
- Measure contribution with regard to the hypervolume improvement
- For ε -dominated (\prec_{ε}) solutions, a penalty is added

OUTLOOK

Many more options exist:

- Expected Hypervolume Improvement
- Multi-EGO
- Entropy based: PESMO, MESMO
- ...

