«Фототерменвокс»

Підготували Лінчаковський Станіслав і Месюра Марина

Частина 1. Ідея

Історична довідка

У 1919 р. радянський фізик Лев Сергійович Термен проводив досліди з вимірювання діелектричної сталої газів. Виявилось, що при внесенні об'єктів у поле приладу, зміни електромагнітного поля викликають «спів» цього предмета.

Інструмент назвали терменвоксом на честь його творця.

Ідея простого терменвоксу на Arduino

Наша варіація терменвоксу базується на схожому принципі. Змінювати ми будемо не електромагнітне поле приладу, а світловий потік, що падає на фоторезистор у схемі.

Внаслідок зміни освітленості змінюється й опір фоторезистора, а це в свою чергу спричиняє падіння напруги на п'єзодинаміку, який видаватиме звуки.

Частина 2. Схема

Принципова схема

Макетна схема

Реальний вид схеми

Частина 3. Код

Setup

```
void setup()
{
   // Запишемо, що пін 3 є піном виводу, а пін А0 — вводу, хоча ми могли
   //цього і не робити, бо всі піни за замовчуванням є пінами входу. X
   pinMode(3, OUTPUT);
   pinMode(A0, INPUT);
   Serial.begin(9600);
}
```

Loop. Зчитування сигналу

```
void loop()
{
  int val, frequency;

  // Зчитаємо рівень освітленості так, як ми робимо це у випадку
  // потенціометра: в вигляді значення від 0 до 1023.
  val = analogRead(A0);
```

Loop. Перехід до частот (нот)

```
// розражуємо частоту п'єзодинаміка в герцах (ноту),
// використовуючи функцію проєкцї (англ. map). Вона відображає значення одного діапазону
// на інший, будуючи пропорцію.
// В нашому імпадку [0; 1023] -> [100; 622]. Тобто від Соль великої октави до Ре дієз другої
frequency = map(val, 0, 1023, 100, 622);
```

Loop. Виведення сигналу (звучання)

```
// Эмусимо пін зі звуковипромінювачем звучати
// (англ. tone) з заданою частотою на 20 мілісекунд. При
// наступних проходах loop, tone буде викликатися знову і знову,
// і ми почуємо неперервний звук тональність, якого
// залежить від кількості світла, що падає на фоторезистор
tone(3, frequency, 20);
Serial.println (frequency);
```

На екран пристрою (в порт Serial) виводиться інформація про частоту, що зараз звучить, для того, щоб можна було визначити ноту

Весь код разом

```
void setup()
  // Запишемо, що пін 3 є піном виводу, а пін A0 - вводу, хоча ми могли б
  //цього і не робити, бо всі піни за замовчуванням є пінами входу.Х
  pinMode (3, OUTPUT);
  pinMode (A0, INPUT);
  Serial.begin (9600);
void loop()
  int val, frequency;
  // Зчитаємо рівень освітленості так, як ми робимо це у випадку
  // потенціометра: в вигляді значення від 0 до 1023.
  val = analogRead(A0);
  //Serial.println (val);
  // розражуємо частоту п'єзодинаміка в герцах (ноту),
  // використовуючи функцію проекцї (англ. map). Вона відображає значення одного діапазону
  // на інший, будуючи пропорцію.
  // В нашому інпадку [0; 1023] -> [100; 622]. Тобто від Соль великої октави до Ре дієз другої
  frequency = map(val, 0, 1023, 100, 622);
  // Эмусимо пін зі звуковипромінювачем звучати
  // (англ. tone) з заданою частотою на 20 мілісекунд. При
  // наступних проходах loop, tone буде викликатися знову і знову,
  // і ми почуємо неперервний звук тональність, якого
  // залежить від кількості світла, що падає на фоторезистор
 tone (3, frequency, 20);
   Serial.println (frequency);
```

Частина 4. Результат:)

Приклад №1.«Щедрик»

Приклад №2. «Ой у лузі червона калина»

