

Fakultät Fahrzeugtechnik

Projekt Tierfutter/Mini-Zoo

Aufgaben:

- Projektrahmen
- Anforderungen an die Software
- Entity-Relationship-Modell (ERM)
- Relationales Modell
- Normalisierung

Projektrahmen

- Verwendung der Software über Benutzeroberfläche
- Anlegen von Benutzern mit unterschiedlichen Rechten
- Fokus auf Funktionalität der DB (Inhalt + Queries)
- Implementierung der Benutzeroberfläche wird nicht vorgenommen
- Anforderungen werden aus funktionaler Sicht gestellt
- > Benutzeroberfläche wird im Ausblick kurz thematisiert

Anforderungen an die Software

- Unterteilung in Anwendungsfälle:
 - > Tierpfleger
 - Zooverwaltung
- Enthaltene Informationen:
 - > Eigenschaften jedes Tiers
 - Lagerinformationen zu jederFuttersorte
 - > Fütterungen mit Zeitangabe

Anwendungen:

Tierpfleger

- > Erstellung von Fütterungsplänen nach Wochentagen
- Suchfunktion: nach bestimmter Tierart suchen (kann erweitert werden)
- darf die DB-Einträge nicht bearbeiten können

Zooverwaltung

- ➤ Einträge bearbeiten, hinzufügen und löschen
- Einkaufsliste generieren
- Systemwarnung bei zu niedrigem Lagerbestand einer Futtersorte

Entity-Relationship-Modell (ERM)

- Konzeptioneller Entwurf
- Relevanten Ausschnitt aus der realen Welt bestimmen und darstellen
- Erstellung eines ER-Diagramms aus den gegebenen
 Sachverhalten und Anforderungen
- Darstellung mittels Chen-Notation
- Entitätstypen identifizieren
- Attribute der Entitätstypen (Schlüsselattribut festlegen)
- > Beziehungen (Relationen) zwischen den Entitätstypen
- Kardinalitäten (maximal/minimal)

Relationales Modell

- Logischer Entwurf
- Überführung des ER-Diagramms in Relationenschemata
- Berücksichtigung von Qualitätskriterien
- Erzeugte Schemata sind Grundlage der DB-Tabellen
- Übersetzung in 7 Schritten

Tier

<u>TierID</u>	Art	Name	Geschlecht	Geburtsdatum
---------------	-----	------	------------	--------------

Fuetterung

FuetterungID	Wochentag	Uhrzeit	Menge	TierID	Sorte
--------------	-----------	---------	-------	--------	-------

Futterlager

Sorto	Maximum	Minimum	Anzahl Einheiten	Mongo/Einhoit	Roschroibung
Solite	IVIANITIUITI	wiii iii ii iu ii	Alizaili Lillileitell	Wenge/Limen	Describering

Normalisierung

- Untersuchung der erzeugten Schemata hinsichtlich ihrer Qualität (Normalformen, Gütekriterien)
- Betrachtung der funktionalen Abhängigkeiten von Attributmengen
- Reduzierung von Redundanzen und NULL-Werten
- Vermeidung der Erzeugung von unechten Tupeln bei der Ausführung von JOINs
- Qualitätskriterien möglichst schon bei der Modellierung einbeziehen
- Normalformtests
- ➤ Boyce-Codd-Normalform

