第四章 课后作业

1、对于本章讨论的 DAC 模型,保护状态的另一种表示方法是有向图。保护状态中的每个主体和每个客体都用结点表示(单个结点表示既是主体又是客体的实体)。从主体指向客体的有向线段表示访问权,线上的标记定义访问权。 a.画出对应于下图中访问矩阵的有向图。

		OBJECTS				
		File 1	File 2	File 3	File 4	
	User A	Own Read Write		Own Read Write		
SUBJECTS	User B	Read Write	Own Read Write	Write	Read	
	User C	Read Write	Read		Own Read Write	
		(a) Access matrix				

b.画出对应于下图中访问矩阵的有向图。

		OBJECTS								
		subjects			files		processes		disk drives	
		$\mathbf{S_1}$	S ₂	S_3	$\mathbf{F_1}$	$\mathbf{F_1}$	$\mathbf{P_1}$	P ₂	$\mathbf{D_1}$	D ₂
SUBJECTS	S_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner
	S_2		control		write *	execute			owner	seek *
	S_3			control		write	stop			

* - copy flag set

c.有向图表示与访问矩阵表示是否是一一对应的?解释之。

答:

a.

b.

c.

有向图表示与访问矩阵表示是一一对应的,因为将主体和客体表示为结点,对 于主体结点对自身有控制权限的可连成自身的环,对于主体结点对主体结点或客 体结点有控制权限的可以连接构成单向边,在边上注释权限信息,等同于访问矩 阵中主体对客体的访问权限表示,所以有向图表示与访问矩阵表示是一一对应的。 2、UNIX 将文件目录与文件同等对待,就是说,都用相同类型的数据结构——结点来定义。与文件一样,目录包括 9 位的保护串。如果不注意,就会产生访问控制问题。例如,考虑一个保护模式为 644 的文件,它包含在保护模式为 730 的目录中。这种情况下该文件可能受到怎样的安全威胁?答:

文件: 644 转化为二进制为 110100100

目录: 730 转化为二进制为 111011000

对于属主来说,文件目录可读可写可执行,文件可读可写不可执行,因为是属主,所以不会造成安全威胁。

对于同组用户来说,文件可读不可写不可执行,目录不可读可写可执行,安全威胁是会导致文件目录被篡改,导致正常用户找寻不到文件所在的位置。

对于其他用户来说,文件可读不可写不可执行,目录不可读不可写不可执行。 当攻击者获得其他用户权限之后,如果知道对应文件所在目录位置,或者通过穷 举搜索,可以轻松绕过目录读取文件信息,信息会被盗取。

3、请为下边的各种角色分配对应各个数据表的操作权限(查询、新增、删除、 修改)。

	教师信息表	学生信息表	课程信息表	学生成绩表	
教师	查询	查询	查询	查询、新增、	
				删除、修改	
学生	无	查询	查询	查询	
管理员	查询、新增、	查询、新增、	查询、新增、	查询、新增、	
	删除、修改	删除、修改	删除、修改	删除、修改	
访客	无	无	查询	无	