

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@ifor.math.ethz.ch

Mathematical Optimization — Solution 3

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

Exercise 1: Fourier-Motzkin elimination and optimization

a) Introduce a new variable z corresponding to the objective function value and add the constraint $z \leq c^\intercal x$ to the constraints set. Find $\alpha_1 := \arg\max\{z \in \mathbb{R} \colon z \in \operatorname{proj}_z(P)\}$ - if it does not exist, the original polyhedron is empty, if $\alpha_1 = \infty$, the problem is unbounded.

Otherwise, proceed and find $\binom{\alpha_1}{\alpha_2} \in \{\bar{x} \in \mathbb{R}^2 : \bar{x} \in \operatorname{proj}_{x_n,z}(P), \bar{x}_1 = \alpha_1\}$, then find $(\alpha_1, \alpha_2, \alpha_3)^{\mathrm{T}} \in \{\bar{x} \in \mathbb{R}^3 : \bar{x} \in \operatorname{proj}_{x_{n-1},x_n,z}(P), \bar{x}_{1:2} = \binom{\alpha_1}{\alpha_2}\}$ etc. .

b) We perform Fourier-Motzkin-Elimination as follows:

Original System:

Original System.								
(i)	_	x_1	_	x_2	+	z	\leq	0
(ii)	_	$4x_1$	_	x_2			\leq	-8
(iii)	_	x_1	+	x_2			\leq	3
(iv)			_	x_2			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-2
(v)		$2x_1$	+	x_2			\leq	12
Projection on (x_2, z) :								
2(i) + (v)			_	x_2	+	2z	\leq	12
(ii) + 2(v)				x_2			\leq	16
2(iii) + (v)				$3x_2$			- - - - - -	18
(iv)			_	x_2			\leq	-2
Removing redundant constraints:								
(i)			_	x_2	+	2z	\leq	12
(ii)				x_2			\leq	6
(iii)			_	x_2			\leq	-2
Projection on z:								
(i) + (ii)						2z	\leq	18
(ii) + (iii)				0			\leq	4

Thus, $z \leq 9$ implies that the maximal objective function value is 9. Setting z = 9, the constraint $-x_2 + 2z \le 12$ leads us to $-x_2 \le -6$ and together with $x_2 \le 6$ we obtain $x_2 = 6$. If we plug in $x_2 = 6$ and z = 9 into the constraints $-x_1 - x_2 + z \le 0$ and $2x_1 + x_2 \le 12$ we obtain $x_1 = 3$. Indeed, $x = \binom{3}{6}$ is a feasible solution with objective function value 9, so we obtained an optimal solution.

Exercise 2: Farkas Lemma for Standard Form Polyhedra

We transform the system Ax = b, $x \ge 0$ into the equivalent system

$$\left(\begin{array}{c} A \\ -A \\ -I \end{array}\right) x \le \left(\begin{array}{c} b \\ -b \\ 0 \end{array}\right)$$

Applying the Farkas lemma, studied in class, the latter system has a solution if and only if the following system has no solution: $y_1, y_2, y_0 \ge 0$,

1

$$(y_1^T, y_2^T, y_0^T) \begin{pmatrix} A \\ -A \\ -I \end{pmatrix} = 0$$

and

$$(y_1^T, y_2^T, y_0^T) \left(\begin{array}{c} b \\ -b \\ 0 \end{array} \right) < 0.$$

The latter system can be rewritten as $(y_1 - y_2)^T A = y_0$ and $(y_1 - y_2)^T b < 0$. It is solvable if and only if the system $z \in \mathbb{R}^m$, $z^T A \ge 0$ and $z^T b < 0$ is solvable (which can be seen by observing that $y_0 \ge 0$ and by replacing $z = y_1 - y_2$). This finishes the proof.

Exercise 3: Caratheodory's Theorem for Polytopes

Let k be the number of vertices v_1, \ldots, v_k . Without loss of generality, $k \ge n+1$ (so that we can talk of subsets of the vertex set of size n+1). Let $x \in \text{conv}(v_1, \ldots, v_k)$, then x can be written as $x = \sum_{j=1}^k \lambda_j v_j$, with $\lambda_i \ge 0$ and $\sum_i \lambda_i = 1$. Thus,

$$\binom{x}{1} = \sum_{i} \lambda_i \binom{v_i}{1}.$$

Consequently, $\binom{x}{1} \in \text{cone}(\binom{v_1}{1}, \dots, \binom{v_k}{1})$. By Caratheodory's Theorem from the lecture, there are indices $\{i_1, \dots, i_{n+1}\} \subseteq \{1, \dots, k\}$ and $u_1, \dots, u_{n+1} \ge 0$ such that

$$\binom{x}{1} = \sum_{i=1}^{n+1} \mu_j \binom{v_{i_j}}{1}.$$

Therefore, $x = \sum_{j=1}^{n+1} \mu_j v_{i_j}$, $\mu \ge 0$ and $\sum_{j=1}^{n+1} \mu_j = 1$, which implies that $x \in \text{conv}(v_{i_1}, \dots, v_{i_{n+1}})$.

Exercise 4: Iterated Polyhedral Projections

Call $Q := \operatorname{proj}_{(x_1, \dots, x_{n-2})}(P)$, $S := \operatorname{proj}_{(x_1, \dots, x_{n-2})} (\operatorname{proj}_{(x_1, \dots, x_{n-1})}(P))$. Let $\bar{x} \in \mathbb{R}^{n-2}$.

$$\bar{x} \in Q \Leftrightarrow \exists \alpha, \beta \in \mathbb{R} \colon \begin{pmatrix} \bar{x} \\ \alpha \\ \beta \end{pmatrix} \in P \Leftrightarrow \exists \alpha \colon \begin{pmatrix} \bar{x} \\ \alpha \end{pmatrix} \in \operatorname{proj}_{(x_1, \dots, x_{n-1})}(P) \Leftrightarrow \bar{x} \in S.$$

Exercise 5: Projection

Consider the function $f(x) := ||x - y||_2^2$. In an upcoming lecture you will see that since it is convex and continuously differentiable, we have that $\mathcal{PO}(y) \in Q$ minimizes f over Q if and only if

$$\nabla f(\mathcal{PO}(y))^T (z - \mathcal{PO}(y)) \ge 0$$
 for all $z \in Q$.

Therefore

$$2(\mathcal{PO}(y) - y)^T(z - \mathcal{PO}(y)) \ge 0$$
 for all $z \in Q$

or

$$(y - \mathcal{PO}(y))^T (z - \mathcal{PO}(y)) \le 0$$
 for all $z \in Q$.

Note that

$$||z - \mathcal{PO}(y)||_2^2 = ||(z - y) + (y - \mathcal{PO}(y))||_2^2 = ||z - y||_2^2 + 2(z - y)^T(y - \mathcal{PO}(y)) + ||y - \mathcal{PO}(y)||_2^2.$$

Thus

$$\begin{split} ||z - \mathcal{PO}(y)||_2^2 - ||z - y||_2^2 &= 2(z - y)^T (y - \mathcal{PO}(y)) + ||y - \mathcal{PO}(y)||_2^2 \\ &= 2(z - y)^T (y - \mathcal{PO}(y)) + (y - \mathcal{PO}(y))^T (y - \mathcal{PO}(y)) \\ &= (y - \mathcal{PO}(y))^T (2z - \mathcal{PO}(y) - y) \\ &= 2(y - \mathcal{PO}(y))^T (z - \mathcal{PO}(y)) + (y - \mathcal{PO}(y))^T (\mathcal{PO}(y) - y) \\ &\leq (y - \mathcal{PO}(y))^T (\mathcal{PO}(y) - y) = -||y - \mathcal{PO}(y)||_2^2 \leq 0. \end{split}$$