from tensorflow import learn

NITHISH DIVAKAR

nithish.divakar@gmail.com nithishdivakar.github.io

```
|--github.com
|--nithishdivakar
|--Talks-and-Tutorials
|--tfTalk-03June2017
|-- README.md
```

G githiih com/nithishdiva

<u>link</u>

What can something not do?

What can something do?

What can TensorFlow do?

TensorFlowTM is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them.

—tensorflow.org

$$\min_{x}(x-a)^2$$

$$\min_{x}(x-a)^2$$

$$\frac{df}{dx} = 2x - 2a$$

$$\frac{df}{dx} = 0 \implies \mathbf{x} = \mathbf{a}$$

$$\min_{x}(x-a)^2$$

$$x^{new} = x^{old} - \alpha \frac{df}{dx}$$

gradient descent

Doesn't care what f is as long as df/dx is available

Demo: 01aWhatCanBeDone.ipynb

s. t x = b

$$(x-a)^2$$

 $\min (x-a)^2 \quad \text{s. t.} \quad x=b$

$$\min_{x} (x-a)^2 + C(x-b)$$

Demo: 01bWhatCanBeDone.ipynb

TensorFlowTM is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them.

—tensorflow.org

How represent computation?

Graphical Models

$$P[X_1, X_2, \dots X_n] = \prod P[X_i | parents_i]$$

Computational Graph

github.com/nithishdivak

Linear Regression

$$L(y, \hat{y}) = ||y - \hat{y}||^2$$

$$\hat{y} = Wx + b$$

 \mathbf{X}

tf.placeholder()

Demo: 02LinearRegression.ipynb

Logistic Regression

$$P[y = 1|x] = \operatorname{sigmoid}(Wx + b) = \hat{y}$$

$$L(y, \hat{y}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$

Demo: 03LogisticRegression.ipynb

Multi Layer Perceptron

$$x,y=inputs$$
 $z_1=W_1x+b_2$ $a_1=relu(z_1)$ $z_2=W_2a_1+b_2$ $\hat{y}=sigmoid(z_2)$

 $a_1 = relu(z_1)$ $z_2 = W_2 a_1 + b_2$

$$\hat{y} = sigmoid(z_2)$$

$$L(y, \hat{y}) = crossentropy(y, \hat{y})$$

```
x, y = inputs
z_1 = W_1 x + b_2
a_1 = relu(z_1)
z_2 = W_2 a_1 + b_2
\hat{y} = sigmoid(z_2)
L(y, \hat{y}) = crossentropy(y, \hat{y})
```

$$\{W_1,W_2,b_1,b_2\}$$
 tf.Variable

 $\{x,y\}$ tf.placeholder

Things are getting big

Things are getting big

We are getting into deep learning..!!

What are the parts of an ML experiment?

Model - Train - Losses

Demo: 04mlp

Convolutional Neural Networks

What has changed?

Doing convolutions

tf.nn.conv2d(input, filter, strides, padding)

Doing convolutions

tf.nn.conv2d(input, filter, strides, padding)

```
input tensor
tf.nn.conv2d(
  image,
  Theta['w1'],
                                            variable/ learnable filters
  strides=[1, 2, 2, 1],
  padding='SAME'
```

Demo: 05cnn

tensorboard

Demo: 06cnn