Tarea 4: Lenguajes de Programación

Araujo Chávez Mauricio 312210047 Carmona Mendoza Martín 313075977

1. Considera la siguiente gramatica. Describe todos los marcos de operación

$$e \ := \ x \mid n \mid true \mid false \mid \neg e \mid e + e \mid if \ e \ then \ e \ else \ e \mid let \ x \ = \ e \ in \ e \mid e \ < \ e \mid \lambda x.e \mid e \ e$$

- Tomamos a x, n, true y false como valores, ya que no necesitan un marco.
- 76

$$\overline{not(-) \ marco}$$

• $e_1 + e_2$

$$\overline{suma(-,e_1) \ marco}$$
 $\overline{suma(v_1,-) \ marco}$

• if e then e_1 else e_2

$$\overline{if(-,e_1,e_2)\ marco}$$

• $let x = e in e_2$

$$\overline{let(-, x.e_2) \ marco}$$

• $e_1 < e_2$

$$\overline{menor(-,e_2) \ marco} \quad \overline{menor(v_1,-) \ marco}$$

• $\lambda x.e$

$$\overline{app(\lambda(T.x.e), -) \ marco} \quad \overline{e[x := v_1] \ marco}$$

 \bullet e_1 e_2

$$\overline{app(-,e_2) \ marco} \quad \overline{app(v_1,-) \ marco}$$

- 2. Escribe tres programas y ejecútalos en la máquina \mathcal{K} . Debes usar por lo menos cuatro expresiones distintas en cada programa y entre los tres programas debes haber utilizado todas las expresiones del lenguaje.
 - $p_1 \rightleftharpoons$

$$\square \succ p_1 \rightarrow_{\mathcal{K}}$$

Definimos l como x + (if not(x < 3) then 10 else 30)

$$(-,x.l); \square \succ 2 \rightarrow_{\mathcal{K}}$$

$$(-,x.l); \square \prec 2 \rightarrow_{\mathcal{K}}$$

Obtenemos 2 + (if not(2 < 3) then 10 else 30)

$$(2,-)$$
; $\square \prec (if \ not(2 < 3) \ then \ 10 \ else \ 30) \rightarrow_{\mathcal{K}}$

$$if(-,10,30);(2,-); \square \prec not(2 < 3) \rightarrow_{\mathcal{K}}$$

Al tener valores omitimos pasos triviales de <

$$if(-,10,30); (2,-); \square \prec not \ true \rightarrow_{\mathcal{K}}$$

 $if(-,10,30); (2,-); \square \succ false \rightarrow_{\mathcal{K}}$
 $if(-,10,30); (2,-); \square \prec false \rightarrow_{\mathcal{K}}$
 $(2,-); \square \succ 30 \rightarrow_{\mathcal{K}}$

Trivialmente sumamos 2 + 30

$$\square \prec 32$$

p₂ ⇌

app(if((
$$\lambda x.(\text{not }x)\text{true}$$
)
then $\lambda y.(y+6)$
else $\lambda z(z+0)$
,7)
 $\square \succ p_2 \rightarrow_{\mathcal{K}}$

Definimos l como if($\lambda x.(\text{not }x)$ true) then $\lambda y.(y+x)$ else $\lambda z(z+0)$

$$app(-,7); \square \succ l \rightarrow_{\mathcal{K}}$$

$$if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ (\lambda x.(not\ x))true\rightarrow_{\mathcal{K}}\\app(-,true);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ \lambda x.(not\ x)\rightarrow_{\mathcal{K}}\\app(-,true);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \prec \lambda x.(not\ x)\rightarrow_{\mathcal{K}}\\app(\lambda x.(not\ x),-);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ true\rightarrow_{\mathcal{K}}\\app(\lambda x.(not\ x),-);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \prec true\rightarrow_{\mathcal{K}}\\if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ (not\ x)[x:=true]\rightarrow_{\mathcal{K}}\\if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ not\ true\rightarrow_{\mathcal{K}}\\not(-);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \succ true\rightarrow_{\mathcal{K}}\\not(-);if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \prec true\rightarrow_{\mathcal{K}}\\if(-,\lambda y.(y+x),\lambda z(z+0);app(-,7);\Box \prec true\rightarrow_{\mathcal{K}}\\app(-,7);\Box \succ \lambda z(z+0)\rightarrow_{\mathcal{K}}\\app(-,7);\Box \succ \lambda z(z+0)\rightarrow_{\mathcal{K}}\\app(\lambda z(z+0),);\Box \succ 7\rightarrow_{\mathcal{K}}\\app(\lambda z(z+0),);\Box \leftarrow 7\rightarrow_{\mathcal{K}}\\app(\lambda z(z+0),);\Box \leftarrow 7\rightarrow_{\mathcal{K}}\\\Box \succ (z+0)[z:=7]$$

Trivialmente sumamos 7 + 0

 $\square \succ 7$

• $p_3 \rightleftharpoons$

Definimos l_1 como let y = 7 in if(x < y) then (x+x) + y else 0 end

$$\Box \succ p_3 \to_{\mathcal{K}}$$
$$(-, x.l_1); \Box \succ 4 \to_{\mathcal{K}}$$
$$(-, x.l_1); \Box \prec 4 \to_{\mathcal{K}}$$

Obtenemos: let y = 7 in if(4 < y) then (4+4) + y else 0 end Definimos l_2 como if(4 < y) then (4+4) + y else 0

$$(-, y.l_2); \square \succ 7 \rightarrow_{\mathcal{K}}$$

 $(-, y.l_2); \square \prec 7 \rightarrow_{\mathcal{K}}$

Obtenemos: if (4 ; 7) then (4+4) + 7 else 0

$$\rightarrow_{\mathcal{K}} * (4 < 7) = true$$
$$\rightarrow_{\mathcal{K}} * (4 + 4) + 4$$
$$\rightarrow_{\mathcal{K}} * \square \prec 12$$