Enzimas versus "outros" catalisadores

- Catalisadores proteicos
- Elevados factores de aceleração das reacções
- Grande especificidade para os substratos
- Estereo-especificidade (também absoluta)
- Reduzido número de subprodutos de reacção
- Condições de reacção suaves (temperatura, pH, salinidade,...)
- Capacidade de regulação

Aumento da velocidade de reacção

 As reacções catalisadas enzimaticamente apresentam, factores de aceleração da ordem de 10⁶-10¹⁷ relativamente às reacções não-catalisadas.

 Os incrementos observados são sempre várias ordens de grandezas superiores aos obtidos com catalisadores não-enzimáticos!

Aceleração da velocidade de reacção

Enzima	k _{cat} / k _{uncat}
Ciclofilina	10 ⁵
Anidrase carbónica	107
Triose fosfato isomerase	10 ⁹
Carboxipeptidase A	10 ¹¹
Fosfoglucomutase	1012
Succinil-CoA transferase	10 ¹³
Urease	1014
Ornitinina mono-P decarboxilase	10 ¹⁷

Catálise

Catálise enzimática

Reaction coordinate

$$\Delta G_{\mathrm{cat}}^{\scriptscriptstyle
eq} < \Delta G_{\mathrm{uncat}}^{\scriptscriptstyle
eq}$$

$$\Delta G_{\rm uncat}^{\scriptscriptstyle \neq} = -RT \ln k_{\rm uncat}$$

$$\Delta G_{\rm cat}^{\neq} = -RT \ln k_{\rm cat}$$

$$\Delta G_{\text{uncat}}^{\neq} - \Delta G_{\text{cat}}^{\neq} = \Delta \Delta G^{\neq} = RT \ln(k_{\text{cat}} - k_{\text{uncat}})$$

$$k_{\text{cat}} / k_{\text{uncat}} = \exp(\Delta \Delta G^{\neq} / RT)$$

Factor de aceleração

Condições de reacção suaves

 As reacções catalisadas enzimaticamente dão-se em condições relativamente suaves: temperaturas geralmente muito abaixo dos 100 °C, pressão atmosférica, pH próxima da neutralidade.

 A catálise inorgânica requere geralmente temperaturas elevadas, e valores extremos de pressão e pH!

Especificidade elevada

 Os enzimas podem ser extraordinariamente específicos tanto em relação aos seus substratos, como em relação aos seus produtos – muito mais que os catalisadores químicos.

 As reacções catalisadas enzimaticamente raramente dão origem a produtos alternativos.

Interacção enzima-substrato

- A associação enzima-substrato é estabilizada por forças não-covalentes: interacções electrostáticas, forças de van der Waals, ligações de hidrogénio, efeito hidrofóbico (as mesmas forças que estabilizam a estrutura proteica).
- O estudos estruturais dos enzimas mostram que os centros activos se encontram *largamente preformados* na ausência dos seus substratos.

Estereo-especificidade relativa e absoluta

- Os enzimas são altamente específicos tanto em termos da ligação a substratos quirais como na catálise das suas reacções. Esta estereoespecificidade resulta da complementaridade estrutural entre centro activo e substratos.
- Os enzimas podem distinguir entre átomos *pro-quirais* (estereo-especificidade *absoluta*).

Ex: álcool desidrogenase distingue entre H_{pro-R} e H_{pro-S} da molécula de etanol.

Especificidade enzimática

• A especificidade dos enzimas para os seus substratos pode ser modulada pela variabilidade da sequência de aminoácidos no centro activo e na sua vizinhança

Especificidade enzimática

O mecanismo catalíticos das proteases de serina está dependente do posicionamento preciso dos resíduos catalíticos do centro activo (tríade catalítica).

Especificidade enzimática

Mecanismo catalítico das proteases de serina

• O repertório químico da catálise enzimática pode ser estendido através de **cofactores enzimáticos**, cuja estrutura não-proteica permite a existência de grupos funcionais com novas possibilidades catalíticas.

Cofactores enzimáticos

X = HNicotinamide adenine dinucleotide (NAD+)

Nicotinamide adenine dinucleotide phosphate (NADP+)

Ajuste induzido

• Em 1894, Emil Fischer propõe que o enzima acomoda o seu substrato como uma chave numa fechadura (lock-and-key model)

De acordo com o modelo de **ajuste induzido**, proposto por Koshland em 1954, a estrutura que o enzima acomoda é próxima do *estado de transição*

Catálise no modelo *lock-and-key*

A formação do complexo enzima-substrato leva a uma estabilização com o consequente aumento da energia de activação ∆G≠.
Não consegue explicar a catálise enzimática!

Catálise no modelo de ajuste induzido

A formação do complexo enzima-estado de transição leva a uma estabilização deste, com a consequente diminuição da energia de activação ∆G≠. Consegue explicar a catálise enzimática!

Interação enzima-substrato

Muito do potencial catalítico dos enzimas deriva da energia livre libertada na formação de múltiplas interacções fracas com o substrato

As interacções fracas são maximizadas no estado de transição da reacção - o enzima é complementar do estado de transição e não do substrato!

Estabilização do estado de transição nas protéases de serina

Complexo de Michaelis

Estabilização do estado de transição

Os seres vivos têm necessidade absoluta de regular o fluxo das suas vias metabólicas, de modo a ter controle sobre os processos internos e responder aos estímulos do ambiente. Esta regulação é conseguida operando essencialmente a três níveis:

- Controle da actividade enzimática: A quantidade de enzima disponível num dado instante depende das suas taxas de síntese e degradação, e estas podem ser alteradas em reposta a um estímulo do meio, com seja a presença de determinado metabolito.
- Controlo da actividade enzimática: A actividade enzimática pode ser regulada directamente através de alterações estruturais ou conformacionais. A afinidade do enzima para o substrato(s) pode ser alterada pela ligação de um efector, ou modificador da actividade. Se este efector se ligar a um outro local que não o centro activo, diz-se ser um efector alóstereo.
- Modificação covalente do enzima: A actividade enzimática pode ser alterada por modificação da estrutura covalente do enzima.

O enzima aspartato transcarbamilase (ATCase) catalisa o primeiro passo da biossíntese das pirimidinas.

As subunidades catalíticas da ATCase apresentam actividade máxima e independente da concentração dos efectores quando dissociadas das subunidades reguladoras..

Transição do estado T para o estado S da ATCase pela ligação dos seus dois substratos. Os contactos que impedem a rotação das subunidades catalíticas desaparecem com a ligação dos substratos, permitindo a passagem ao estado R.

Transição do estado T para o estado S da ATCase pela ligação dos seus dois substratos. Os contactos que impedem a rotação das subunidades catalíticas desaparecem com a ligação dos substratos, permitindo a passagem ao estado R.

Classificação dos enzimas

Os enzimas são classificados de acordo com um sistema estabelecido pela *International Comission on Enzymes*, em 1956. Este sistema permite também nomear os enzimas de forma sistemática.

International Classification of Enzymes*

No.	Class	Type of reaction catalyzed
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)
2	Transferases	Group-transfer reactions
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups
5	Isomerases	Transfer of groups within molecules to yield isomeric forms
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to ATP cleavage

EC 1.1.1.1 Alcool desidrogenase

