3.2. Визначення належності функції f4 до п'яти передцповних класів

- f(1111) = 1 => функція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0011) > f(0100) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4).

KO	K1	K2
<i>0001 (1)</i>	00X1 (1)	1XOX (1)
0010 (1)	X001 (1)	1XOX (1)
<i>0011 (1</i>)	001X (1)	11XX (1)
1000 (1)	100X (1)	11XX (1)
1001 (1)	1X00 (1)	
-1100 (1)	1X01 (1)	
-1101 (1)	110X (1)	
-1110 (1)	11X0 (1)	
-1111 (1)	11X1 (1)	
	-111X (1)	

Рисунок 4.4 Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 Таблиця покриття

	0001(F1)	0010(F1)	0011(F1)	1000(F1)	1001(F1)	1100(F1)	1101(F1)	1110(F1)	1111(F1)
00X1 (1)	+								
X001 (1)									
001X (1)		+	+						
1XOX (1)				+	+				
11XX (1)						+	+	+	+

Зм.	Арк.	№ докум.	Підп.	Дата

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {OOX1; OO1X; 1XOX; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/II}\phi = (\overline{X}4\overline{X}3X1) \ v \ (\overline{X}3\overline{X}2X1) \ v \ (X4\overline{X}2) \ v \ (X4X3)$

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках.
 - 4. Імпліканти, що залишилися, поглинають імпліканти справа від них

Таблиця 4.4 Метод невизначених коефіцієнтів

<i>X</i> ₄	<i>X</i> ₃	X2	X1	X ₄ X ₃	X4X2	X ₄ X ₁	X3X2	X ₃ X ₁	X ₂ X ₁	X4X3X2	X ₄ X ₃ X ₁	$X_4X_2X_1$	X ₃ X ₂ X ₁	X ₄ X ₃ X ₂ X ₁	f_4
θ	Ð	θ	Ð	00	100	00	00	00	00	000	000	000	- 73 7277	-0000	Ð
Ф	Ф	Ә	1	00	00	01	00	<i>0</i> 1	01	-000	001	<i>-001</i>	001	0001	1
Ә	Ф	1	Ә	θθ	01	00	01	00	10	<i>-001</i>	-000	<i>010</i>	-010	0010	1
Ф	Ф	1	1	00	01	01	0 1	01	-11	- 001	001	011	011	0011	1
Ф	1	Ф	Ф	01	-00	<i>00</i>	10	10	00	<i>-010</i>	<i>-010</i>	<i>-000</i>	-100	<i>0100</i>	Đ
Ð	1	Ф	1	0 1	-00	01	<i>10</i>	-11	0 1	<i>-010</i>	011	<i>001</i>	-101	<i>0101</i>	Ә
Ф	1	1	Ф	01	01	<i>00</i>	-1 1	10	10	011	<i>-010</i>	<i>010</i>	-110	<i>0110</i>	Đ
Ә	1	1	1	01	01	01	-1 1	-11	-11	<i>011</i>	<i>011</i>	011	-111	<i>0111</i>	Ә
1	Ф	Ә	Ә	10	10	10	00	00	00	_100	-100	100	000	_1990	1
1	Ф	Ә	1	10	10	-1 1	00	0 1	01	_100	-101	101	001	1001	1
1	Ф	1	Ф	10	-1 1	10	01	00	10	-101	-100	-110	<i>010</i>	1010	Ф
1	Ф	1	1	10	1 1	1 1	01	01	-11	-101	101	-111	011	-1011	Ә
1	1	Ф	Ә	11	10	10	10	10	00	_110	_110	190	<i>-100</i>		1
1	1	Ф	1	11	10	-11	10	-11	01	_110		101	-101		1
1	1	1	Ф	11	-11	10	-1 1	10	10		_110	110	-110	1110	1
1	1	1	1	11	-11	-1 1	-11	-11	-1 1	_111	111	111	-111	1111	1

3M.	Арк.	№ докум.	Підп.	Дата

В ядро финкції входять ті терми, без яких неможливо покрити хоча б одни ІМПЛІКОНТЦ.

Ядро = {OOX1; OO1X; 1XOX; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{LMHIID} = (\overline{X4}\overline{X3}X1) \ v \ (\overline{X3}\overline{X2}X1) \ v \ (X4\overline{X2}) \ v \ (X4X3)$

Метод діаграм Вейча

Метод діаграм Вейча — це графічний метод, призначений для ручної мінімізації. Його наочність зберігається за невеликої кількості аргиментів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить $2^{\!\!\!\!/}$ елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

	λ	(3			
<i>X</i> 4	1	1	1	1	
Λ4	1	1	0	0	<i>X2</i>
	0	0	1	1	ΛΖ
	0	0	1	0	
)	Y1		-

f_{имнлф}= (X4X3X1) v (X3X2X1) v (X4X2) v (X4X3)

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільни мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуемо таблицю покриття (таблиця 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004

KO K1 *K2* 0000 (1,2,3) 000X (1.2) OXXO (1,3) 00X0 (1,2,3) X0X0 (3) 0001 (1,2) 0010 (1,2,3) OXOO (1,3) OXXO (1,3) X000 (1,2,3) XX00 (1,3) 0100 (-1,3) 0110 (1,-2,-3) | 0X10 (1,2,3) | X0X0 (3) 0111 (-1,-2,3) X010 (3) XX00 (1,3) 1000 (1,2,3) 01X0 (1,3) 1010 (3) X100 (1,3) 1100 (1,-2,3) 011X (1,2,3) 1101 (1) X111 (1,2,3) 1111 (1,2,3) 10X0 (3) 1X00 (1,2,3) 110X (1) 11X1 (1)

Рисунок 4.6 Склеювання і поглинання термів системи

	0000lF1)	0001/F1/	0010IF1)	0110/F1J	1000lF1)	1100/F1/	1101/F1)	1111/F1)	0000(F2)	0001lF2)	0010(F2)	1000(F2)	1111/F2)	0000(F3)	0010(F3)	0100lF3/	0111/F3/	1000lF3/	1010IF3/	1100/F3/	1111F3J
000X (1,2)		+							+	+											
00X0 (1,2,3)																					
X000 (1,2,3)												+									
OX10 (1,2,3)											+										
011X (1,2,3)																					
X111 (1,2,3)													+				+				+
1X00 (1,2,3)																					
110X (1)																					
11X1 (1)																					
OXXO (1,3)	+		+	+			+	+						+	+	+					
X0X0 (3)																					
XX00 (1,3)					+	+												+		+	

3M.	Арк.	№ докум.	Підп.	Дата