MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

1. Los Números Reales

1.1. Algunas de estas afirmaciones son ciertas otras falsas. Decide de que tipo es cada una de ellas y justifica la respuesta.

Para cualesquiera enteros positivos p y n se tiene:

- a) n^2 es par si y solo si n es par.
- b) $(n+p)^2$ es par si y solamente si $(n-p)^2$ es par.
- c) si np es impar, entonces n + p es par.
- d) si $n^2 + np + p^2$ es par, entonces np es par.
- e) si $n^2 + np + p^2$ es par, entonces n y p son pares.
- 1.2. Demuesta por inducción que:

1)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 2) $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ 3) $\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$.

4)
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$
 5) $\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}$, si $r \neq 1$.

6)
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} \ge 1 + \frac{n}{2}$$
.

- 1.3. Sea $p \in \mathbb{Q}$,: $p \neq 0$ y sea $x \in \mathbb{R} \setminus \mathbb{Q}$. Prueba que p + x y px son irracionales, es decir que pertenecen a $\mathbb{R}\setminus\mathbb{Q}$.
- 1.4. Demuestra que $\sqrt{2} \sqrt{3}$ es irracional y que $1 \sqrt[3]{2 + \sqrt{5}}$ es algebraico.
- 1.5. Halla todos los números reales x que satisfacen, en cada caso, las siguientes relaciones:
- a) |2x+3|-1 < |x| b) |x(x-4)| < |x-4|-|x|.
- 1.6. Resuelve la ecuación: |2 |x|| = 2 + |x|.
- 1.7. Demuestra lo siguiente:
- a) Si ax = a para algún número $a \neq 0$, entonces x = 1.
- b) $(x+y)^2 = x^2 + 2xy + y^2$ c) $x^2 y^2 = (x+y)(x-y)$.
- d) Si $x^2 = y^2$, entonces x = y o bien x = -y.
- e) $x^3 y^3 = (x y)(x^2 + xy + y^2)$. f) $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$.
- 1.8. Si 0 < a < b son dos números reales, prueba que se verifica que:

$$\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}}.$$

- 1.9. Si $a \le b$ y para todo $\epsilon > 0$ se verifica que $a \le b \le a + \epsilon$, prueba que a = b. Del mismo modo prueba que si para todo $\epsilon > 0$ se verifica que $b - \epsilon \le a \le b$, entonces a = b.
- 1.10. Sea A un subconjuto no vacío y acotado de \mathbb{R} . Sea $A_0 \subseteq A$ con $A_0 \neq \emptyset$. Prueba que A_0 está acotado y que:

$$\inf A \le \inf A_0 \le \sup A_0 \le \sup A$$

1.11. Sean $A, B \subseteq \mathbb{R}$, no vacíos y sea $\alpha \in \mathbb{R}$. Se definen los siguientes subconjuntos de \mathbb{R} :

$$A + B = \{x \in \mathbb{R} ::: x = a + b \text{ donde } a \in A \text{ y } b \in B\}$$

У

$$\alpha A = \{ x \in \mathbb{R} ::: x = \alpha a \text{ donde } a \in A \}$$

Prueba que:

- i) $\sup A + B = \sup A + \sup B$ ii) $\inf A + B = \inf A + \inf B$.
- iii) inf $\alpha A = \alpha$ inf A y sup $\alpha A = \alpha$ sup A siempre que $\alpha > 0$.
- iv) inf $\alpha A = \alpha \sup A$ y $\sup \alpha A = \alpha$ inf A siempre que $\alpha < 0$.
- 1.12. Calcula cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo (si existen) de los siguientes conjuntos:
- 1) $\{2, 2'2, 2'22, 2'222, \ldots\}$ 2) \mathbb{Z} 3) $\{x \in \mathbb{R} : x^2 + 5x 6 \le 0\}$
- 4) $\{r \in \mathbb{Q} : 2r^3 1 < 15\}$ 5) $\{x \in \mathbb{R} \setminus \mathbb{Q} : x^2 + x < 2\}$ 6) $\{x \in \mathbb{R} : x^2 2x < 0\}$

(NOTA: El sup A se llama máximo si sup $A \in A$. Si ínf $A \in A$, se le llama mínimo).

1.13. Calcula:

a)
$$\bigcap_{n=1}^{\infty} (1 + \frac{1}{n}, 2 + \frac{1}{n})$$
 b) $\bigcup_{n=1}^{\infty} (1 - \frac{1}{n}, 2 + \frac{1}{n})$ c) $\bigcap_{n=1}^{\infty} (-n, n)$

d)
$$\bigcap_{n=2}^{\infty} [1 + \frac{1}{n}, 2 - \frac{1}{n}]$$
 e) $\bigcup_{n=1}^{\infty} (-n, n)$ f) $\bigcap_{n=2}^{\infty} (1 + \frac{1}{n}, 2 - \frac{1}{n})$

- 1.14. Determina el interior, adherencia y frontera de los siguientes conjuntos de \mathbb{R} . Decide si son abiertos, cerrados o/y compactos:

1)
$$\{1/n : n \in \mathbb{N}\}\$$
 2) $[0,1] \setminus \{1/n : n \in \mathbb{N}\}\$ 3) $[1,3)$ 4) $\{x \in \mathbb{Q} : x^2 < 2\}\$ 5) $\{(-1)^n + \frac{1}{m}, \qquad n, m \in \mathbb{N}\}.$ 1.15. Representa en \mathbb{R}^2 los siguientes conjuntos:

1)
$$\{(x,y) \in \mathbb{R}^2 : |x| < 1\}$$
 2) $\{(x,y) \in \mathbb{R}^2 : |3x-1| \ge y\}$ 3) $\{(x,y) \in \mathbb{R}^2 : |x^2-x| + x > y\}$.

- 1.16. Decide si los siguientes conjuntos son abiertos, cerrados y/o acotados. determina su interior y su frontera. (Haz previamente un dibujo de cada uno).

 - 1) $\{(x,y) \in \mathbb{R}^2 : x > 0\}$ 2) $\{(x,y) \in \mathbb{R}^2 : |x| > 0 \text{ y } |y| > 2\}$ 3) $\{(x,y) \in \mathbb{R}^2 : x = 1/n, n \in \mathbb{N}\}$ 4) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
 - 5) $\{(x,y) \in \mathbb{R}^2 : x^2 + 2y^2 < 2\} \setminus \{(0,0)\}.$