

Aula: Modelo de Agentes Inteligentes

Sérgio Queiroz



- Entender o que é um Agente Racional (inteligente)?
- Distinguir entre os vários tipos de ambientes e arquiteturas de agentes
- Compreender o que é lA distribuída
- Conhecer uma metodologia de desenvolvimento



- Qualquer entidade (humana ou artificial) que:
  - o está imersa ou situada em um ambiente
    - físico, virtual/simulado
  - o percebe seu ambiente através de sensores
    - ex. câmeras, microfone, teclado, finger, ...
  - o age sobre ele através de atuadores
    - ex. vídeo, auto-falante, impressora, braços, ftp, ...
  - possui objetivos próprios
    - explícitos ou implícitos
  - escolhe suas ações em função das suas percepções para atingir seus objetivos

### Agente Inteligente

 Agente inteligente, um modelo geral para Inteligência Artificial



### Modelo de Agente – Visão Geral

- O agente é o nosso "ser inteligente"
- O "ser" pode ser material (ex. Robô) ou imaterial (um Software), ex: programa que recomenda livros que você pode gostar numa livraria virtual
- Em ambos os casos, ele está imerso em um ambiente, do qual ele obtém percepções, e realiza ações, baseado em algum "raciocínio". Essas ações interagem com o ambiente (possivelmente modificando-o).
- Nesta disciplina vemos sobretudo alguns tópicos ligados ao componente de raciocínio.





- Agente Racional
  - o faz a melhor coisa possível
  - segue o princípio da racionalidade:
    - dada uma sequência perceptiva, o agente escolhe, segundo seus conhecimentos anteriores sobre o ambiente, as ações que melhor satisfazem seu objetivo
  - ° Racionalidade não é o mesmo que perfeição (onisciência)...
    - Racionalidade maximiza o desempenho esperado! Perfeição quer maximizar o desempenho real
    - Onisciência é impossível de ser projetada, estaríamos construindo deuses e não agentes...
- Podemos ter ações para modificar raciocínio futuro coleta de informações...



- Limitações de:
  - ° sensores
  - atuadores
  - "raciocinador" (conhecimento, tempo, etc.)
- Porém...
  - Um agente racional deve ser o mais autônomo possível
    - Possuir Conhecimento a priori
    - Habilidade de Aprender coisas sobre o ambiente onde está
    - Justamente o aprendizado vai permitir que o agente seja bem sucedido em vários ambientes!

## Cuidado... na computação, nem todo agente é inteligente (racional)!





- Então como vamos medir o "sucesso" do agente?
  - Usando uma "medida de performance"
    - Quando o agente é colocado em um ambiente, ele gera uma seqüência de ações com base nas suas percepções.
    - Essa sequência de ações leva o ambiente a modificar-se passando por uma sequência de estados.
    - Se essa sequência de estados é "desejável", então o agente teve um bom desempenho!

#### Contudo...

- Não existe uma medida de sucesso fixa para todos os agentes
- Depende do ambiente... E do comportamento que queremos!
- Assim sendo, vamos optar por uma medida de performance objetiva, que seja determinada pelo projetista o agente!



- Autonomia de raciocínio (IA):
  - Capacidade de manipular o conhecimento adquirido a fim de gerar novos conhecimentos.
    - Se um agente se baseia no conhecimento anterior de seu projetista e não em suas próprias percepções, ele não tem autonomia.
    - Um agente autônomo deve aprender o que puder para compensar um conhecimento prévio parcial ou incorreto.
  - ° Essencial em sistemas especialistas, controle, robótica, jogos, agentes na internet ...
- Adaptabilidade (IA):
  - Capacidade de adaptação a situações novas, para as quais não foi fornecido todo o conhecimento necessário com antecedência.
  - Duas implementações
    - aprendizagem e/ou programação declarativa
  - Essencial em agentes na internet, interfaces amigáveis ...



- Comunicação & Cooperação (Sociabilidade) (IA):
  - IA + técnicas avançadas de sistemas distribuídos:
    - Protocolos padrões de comunicação, cooperação, negociação
    - Raciocínio autônomo sobre crenças e confiabilidade
    - Arquiteturas de interação social entre agentes
  - ° Essencial em sistemas multi-agente, comércio eletrônico, ...
- Personalidade (IA):
  - IA + modelagem de atitudes e emoções
  - Essencial em entretenimento digital, realidade virtual, interfaces amigáveis ...



- Continuidade temporal e persistência:
  - Requer interface com sistema operacional e banco de dados
  - ° Essencial em filtragem, monitoramento, controle, ...

#### Mobilidade:

- Requer:
  - Interface com rede
  - Protocolos de segurança
  - Suporte a código móvel
- · Essencial em agentes de exploração da internet, ...

#### Resolução de Problemas

- O "problema" para o qual um agente deve encontrar "soluções" é descrito por um ambiente de tarefas.
- Um ambiente de tarefas contém os componentes (PEAS):
  - Performance (desempenho)
  - Enviroment (ambiente)
  - Actuators (atuadores)
  - Sensors (sensores)

#### Performance

- Como medir o desempenho do agente?
- Exemplo: Táxi autônomo
  - Medida de desempenho deve valorizar qualidades desejáveis:
    - chegar ao destino correto
    - minimizar tempo e/ou custo da viagem
    - evitar violações às leis de trânsito
    - evitar perturbações a outros motoristas
    - maximizar a segurança e o conforto dos passageiros
    - maximizar o lucro do táxi
  - Essas qualidades muitas vezes serão conflitantes, o agente terá que fazer escolhas



- Em que tipo de ambiente o agente estará imerso?
  - O Táxi Autônomo:
    - Estradas rurais, avenidas urbanas, rodovias de alta velocidade
    - Outros elementos de tráfego: pedestres, animais, trabalhadores, policiamento, buracos
    - Interação com os passageiros
    - Interação com outros veículos

#### Atuadores

- O que o agente controla para interagir com o ambiente
  - Táxi autônomo:
    - Acelerador, freio, direção
    - Tela de exibição para interação com o cliente
    - Sintetizador de voz para falar com o cliente
    - Formas de comunicação com outros veículos: piscapisca, buzina...
    - Faróis, Limpador de pára-brisas/de câmeras



- Fornecem informações ao agente sobre o ambiente
  - Táxi autônomo:
    - Câmeras para observar a estrada
      - Potencialmente com infra-vermelho ou sensores sonar para detecção de distância
    - Sensor de velocidade
    - Acelerômetro para realização de curvas
    - Sensores habituais: nível de combustível, óleo, chuva
    - Teclado, microfone, tela sensível ao toque

#### Exemplos de Agentes e seus PEAS

| Agente                                            | Performance                                        | E (Ambiente)                                      | Atuadores                                                                                     | Sensores                                                                |  |
|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Agente de<br>Diagnóstico<br>médico                | Paciente<br>saudável,<br>minimizar<br>custos,      | Paciente, hospital, funcionários                  | Auto-falantes<br>(para falar com o<br>paciente), display<br>para mostra textos<br>ao paciente | Câmera, leitora de<br>exames<br>(scanner?),<br>microfone,<br>teclado,   |  |
| Agente de<br>Análise de<br>imagens de<br>satélite | categorizar<br>corretamente as<br>imagens          | Imagens de<br>satélite                            | Display para<br>mostrar o<br>resultado a<br>análise                                           | Equipamento para<br>capturar as<br>imagens                              |  |
| Agente Tutorial<br>de inglês                      | Melhorar o<br>desempenho do<br>estudante           | Conjunto de<br>estudantes,<br>escola              | Impressora,<br>display com<br>exercícios,<br>sugestões e<br>correções,                        | Câmera, para<br>capturar imagens<br>do aluno;<br>Microfone,<br>teclado, |  |
| Agente robô de<br>linha de<br>montagem            | Percentual de<br>peças<br>corretamente<br>montadas | Esteira com<br>peças                              | Braço e mão<br>mecânicos                                                                      | Câmera, sensores<br>de ângluos                                          |  |
| Agente<br>Motorista de<br>taxi                    | Segurança,<br>rapidez,<br>economia,<br>conforto,   | Ruas, pedestres,<br>outros carros,<br>passageiros | Acelerador, freios, espelhos, buzina, etc                                                     | Câmera,<br>velocímetro,<br>GPS,                                         |  |
| Agente Músico<br>de jazz                          | Tocar bem, divertir<br>o público, agradar          | Músicos, público,<br>grades de acordes            | Instrumento de<br>som,<br>computador,                                                         | Microfone,<br>câmera                                                    |  |



#### **Ambientes**



# Tipos de Ambiente de Tarefas

- Um fator determinante para o agente é como o ambiente se comporta na sua visão
  - O que não necessariamente é equivalente a como o ambiente é de fato

#### Completamente observável

- Os sensores do agente permitem acesso ao estado completo do ambiente (em termos do que é relevante) em cada instante.
- O agente não precisa manter um estado interno para guardar as mudanças no ambiente

#### Parcialmente observável

- Sensores ruidosos ou imprecisos
- Partes do estado estão ausentes dos sensores

#### Inobservável

Agente sem sensores

#### Agente único x Multi-agente

- Alguns aspectos sutis: O táxi autônomo (A) deve tratar outros motoristas como outros agentes ou como objetos do ambiente, análogos a folhas espalhadas pelo vento?
  - Regra geral, o comportamento da outra entidade (B) é melhor descrito como a maximização de uma medida de desempenho cujo valor depende do seu comportamento (A)?
- Multiagente: cooperativo? competitivo? comunicação...

- Determinístico: o próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente
- Estocástico: caso contrário
  - o Incerteza (probabilidades)? Risco (não determinístico)?
  - Pode ser estocástico por ser parcialmente observável

- Episódico: experiência dividida em episódios atômicos. Em cada episódio, o agente recebe uma percepção e em seguida executa uma única ação. O episódio seguinte só depende da última ação executada ⇒ a escolha da ação em cada episódio só depende do próprio episódio.
- Sequencial: ações atuais podem surgir efeito no longo prazo

- Estático: o ambiente não se altera enquanto o agente está deliberando.
  - O agente não precisa continuar observando o mundo enquanto delibera, nem precisa se preocupar com a passagem do tempo
- Dinâmico: caso contrário.
  - O ambiente está sempre perguntando ao agente o que ele deseja fazer, se ele não tiver decidido isso será considerado não fazer nada.
    - Semidinâmico: o ambiente não muda enquanto o agente delibera, mas com a passagem do tempo o desempenho do agente muda (ex. xadrez com relógio)



- Discreto: conjunto discreto de percepções e ações
- Contínuo: percepções ou ações assumem valores contínuos (ângulo de rotação do volante no táxi etc.)

- Conhecido: o agente tem conhecimento sobre "as regras" do ambiente. Exemplo: leis da física, regras do pôquer
- Desconhecido: o agente não sabe "como funciona" o ambiente.
- Tecnicamente isso não é uma propriedade do ambiente, mas do grau de conhecimento do agente sobre ele.

### Exemplos: Tipos de Ambiente

| Ambiente de tarefa                | Observável    | Agentes | Determinístico | Episódico  | Estático     | Discreto |
|-----------------------------------|---------------|---------|----------------|------------|--------------|----------|
| Jogo de palavras<br>cruzadas      | Completamente | Único   | Determinístico | Sequencial | Estático     | Discreto |
| Xadrez com relógio                | Completamente | Multi   | Determinístico | Sequencial | Semidinâmico | Discreto |
| Pôquer                            | Parcialmente  | Multi   | Estocástico    | Sequencial | Estático     | Discreto |
| Gamão                             | Completamente | Multi   | Estocástico    | Sequencial | Estático     | Discreto |
| Direção de táxi                   | Parcialmente  | Multi   | Estocástico    | Sequencial | Dinâmico     | Contínuo |
| Diagnóstico médico                | Parcialmente  | Único   | Estocástico    | Sequencial | Dinâmico     | Contínuo |
| Análise de Imagens                | Completamente | Único   | Determinístico | Episódico  | Semi         | Contínuo |
| Robô de seleção<br>de peças (QA)  | Parcialmente  | Único   | Estocástico    | Episódico  | Dinâmico     | Contínuo |
| Controlador de refinaria          | Parcialmente  | Único   | Estocástico    | Sequencial | Dinâmico     | Contínuo |
| Instrutor interativo<br>de inglês | Parcialmente  | Multi   | Estocástico    | Sequencial | Dinâmico     | Discreto |



### Agentes

Algoritmo Básico e Arquiteturas

### Agentes: Algoritmo básico

```
função agenteSimples (percepção) retorna ação memória := atualizaMemória (memória, percepção) ação := escolheMelhorAção(memória,objetivos) memória := atualizaMemória (memória, ação) retorna ação
```



- Agente reativo (Simple Reflex)
- Agente reativo com estado interno (Baseado em Modelos)
- Agente cognitivo (baseado em objetivos)
- Agente otimizador (baseado em utilidade)
- Agente adaptativo

autonomia complexidade

### Agentes: Arquiteturas

De forma bem simplificada, um agente pode ser visto como um mapeamento:

seqüência perceptiva => ação



#### Agente Tabela?

#### Pode ser impossível de construir...



#### Limitações

- Mesmo problemas simples requerem tabelas muito grandes
  - ex. xadrez 30^100
- Nem sempre é possível, por ignorância ou questão de tempo, construir a tabela
- Não tem autonomia nem flexibilidade

#### Ambiente

o acessível, determinista, episódico, estático, discreto e minúsculo!

#### Agente Reativo Simples



#### Vantagens e desvantagens

- Regras condição-ação representação inteligível, modular e eficiente
  - ex. **Se** velocidade > 60 **então** multar
- Não pode armazenar uma seqüência perceptiva, tem pouca autonomia
- Pode entrar em loop
- Só vai funcionar se a decisão correta depender SOMENTE da percepção atual

#### Ambiente

- Acessível, episódico, pequeno
- Reflexo é imprescindível em ambientes dinâmicos

#### Agente Reativo baseado em Modelo do Mundo



- Desvantagem: pouca autonomia
- o não tem objetivo, não encadeia regras
  - Precisamos de conhecimento sobre o mundo (independente do agente)
- E também de conhecimento sobre como as ações do agente afetam o ambiente
  - Ambiente: determinista e pequeno (Tamagotchi)

#### Agente cognitivo - Baseado em Objetivo



- Vantagens e desvantagens
- · Mais complicado e ineficiente, porém mais flexível, autônomo
  - Muda de comportamento mudando o objetivo
- Não trata objetivos conflitantes
  - Ambiente: determinista
  - Ex. de objetivo: xeque-mate no xadrez

## Agente otimizador - baseado em utilidade



- Ambiente: sem restrição
- I Função de Utilidade pode ajudar a tratar conflitos de objetivos!
- Ex. motorista de táxi
- Segurança e velocidade conflito!

### Agente que aprende



- Ambiente: sem restrição
- Vantagem: tem adaptabilidade (aprende)
- Ex. motorista sem o mapa da cidade



# Inteligência Coletiva

IA Distribuída



- Por que pensar a inteligência/racionalidade como propriedade de um único indivíduo?
- Não existe inteligência ...
  - Em um time de futebol?
  - Em um formigueiro?
  - Em uma empresa (ex. correios)?
  - Na sociedade?

Solução: IA Distribuída



- Agentes simples que juntos resolvem problemas complexos
  - o tendo ou não consciência do objetivo global
- O próprio ambiente pode ser modelado como um agente
- Dois tipos de sistemas:
  - · Resolução distribuída de problemas
  - Sistemas Multi-agentes



- Cada agente tem consciência do objetivo global
- Existe uma divisão clara de tarefas
- Exemplos:
  - Robótica clássica, Busca na Web, Gerência de sistemas distribuídos, ...



- Não existe consciência do objetivo global
- Não existe divisão clara de tarefas
- Exemplos:
  - futebol de robôs, balanceamento de carga, robótica, ...



## Agentes em IA

Metodologia para projeto de sistemas e dicas de implementação



- Decompõe o problema em:
  - PEAS dos agentes (Performance, Environment (ambiente), Atuadores e Sensores); &
  - Objetivos (ou função utilidade, se for o caso) dos agentes;
- Decompõe o conhecimento do agente em:
  - Quais são as propriedades relevantes do mundo?
  - Como identificar os estados desejáveis do mundo?
  - Como interpretar as suas percepções?
  - Quais as consequências das suas ações no mundo?
    - Como medir o sucesso de suas ações?
  - Como avaliar seus próprios conhecimentos?
    - São suficientes para resolver o problema?



- O resultado dessa decomposição deve indicar:
  - Arquitetura de agente adequada ao ambiente e ao problema a ser tratado
  - O método de resolução de problema (raciocínio)



#### Projeto:

- Modelar o problema em termos de PEAS e Objetivos (ou função utilidade) dos agentes
- Identificar o tipo de ambiente
- Identificar a arquitetura do(s) agente(s)

### Implementação:

- Componentes do agente
- O simulador de ambientes
- Testar o desempenho com diferentes instâncias do ambiente



- As vezes, é mais conveniente simular o ambiente
  - mais simples
  - permite testes prévios
  - evita riscos, etc...
- O ambiente (pedaço de código...)
  - recebe os agentes como entrada
  - fornece repetidamente a cada um deles as percepções corretas e recebe as ações escolhidas
  - atualiza os dados do ambiente em função dessas ações e de outros processos (ex. dia-noite)
  - é definido por um estado inicial e uma função de atualização
  - deve refletir a realidade



até final

função simulaAmbiente (estado, funçãoAtualização, agentes,final)
repita
para cada agente em agentes faça
Percept[agente] := pegaPercepção(agente,estado)
para cada agente em agentes faça
Action[agente] := Programa[agente] (Percept[agente])
estado := funçãoAtualização(ações, agentes, estado)

scores := avaliaDesempenho(scores, agente, estado) //opcional

Cuidado para não cair em tentação e "roubar" do ambiente a descrição do que aconteceu. Use a memória do agente!



- I)Fornece uma visão unificadora das várias subáreas da IA
- 2)Fornece metodologias de desenvolvimento de sistemas inteligentes estendendo as de engenharia de software
- 3)Ajuda a embutir a IA em sistemas computacionais tradicionais
- 4)Permite tratar melhor a interação com o ambiente
- 5)Permite tratamento natural da IA distribuída