GAME THEORY 1

Exercise 3

The exercise is due 2/5/2021 at 22:00.

- 1. Let G_1 and G_2 be two progressively bounded impartial games and recall the definition of $G_1 \oplus G_2$ from the Tirgul.
 - (a) Let G be the game of Nim with n piles. Let G_1 be the game of Nim which corresponds to the first m piles in G and G_2 be the game of Nim which corresponds to the last n-m piles in G. Prove that $G = G_1 \oplus G_2$.
 - (b) Suppose that $x \in N_{G_1}$ and $y \in P_{G_2}$. Prove by induction that $(x, y) \in N_{G_1 \oplus G_2}$.
 - (c) Suppose that $x \in P_{G_1}$ and $y \in P_{G_2}$. Prove by induction that $(x, y) \in P_{G_1 \oplus G_2}$.
 - (d) Give an example of games G_1 and G_2 and positions $x \in N_{G_1}$ and $y \in N_{G_2}$ such that $(x,y) \in P_{G_1 \oplus G_2}$.
 - (e) Give an example of games G_1 and G_2 and positions $x \in N_{G_1}$ and $y \in N_{G_2}$ such that $(x,y) \in N_{G_1 \oplus G_2}$.
- 2. Look at the game of Nim with piles of sizes 9, 10, 11, 12.
 - (a) Use the Nim sum and prove that this position is in N.
 - (b) Describe a move which ends in a position in P. Are there any more moves like that?
 - (c) Answer (a) and (b) with the new position (9, 12, 14, 15).
- 3. Consider the game Chomp on a table of size $2 \times \infty$. With coordinates (i, n) for $1 \le i \le 2$ and $-\infty < n \le 1$ (see the figure below).

Answer the following questions:

- (a) Is this game finite?
- (b) Prove that the game is not progressively bounded and yet there is no infinite sequence of legal moves.
- (c) Which of the players has a winning strategy? Describe it.
- (d) If instead the size of the table is $m \times \infty$. Which of the players has a winning strategy? Describe it. (Hint: Use the case $2 \times \infty$).
- 4. Let G_1 be the game of Nim with one pile of two coins. Let G_2 be the game of chomp (without the poision as in the Tirgul) of size 2×2 . Draw the graph of $G_1 \oplus G_2$. Which player has a winning strategy?