Graph neural networks for urban drainage systems metamodeling

Alexander Garzón et al.

AIAI ADRO ILAB

Urban drainage systems

AASHTO Specs for Storm Water Drainage Pipes, Manholes ETC. | LinkedIn

Drain system house stock illustration. Illustration of plumbing - 25233271 (dreamstime.com)

Infiltrerende stad - HvA

Rioolwater in watergang Hullerweg Nunspeet - Al het nieuws uit Nunspeet (nunspeethuisaanhuis.nl)

Alexander Garzón (J.A.GarzonDiaz@tudelft.nl)

Metamodels

Computer intensive applications require fast simulators

Problem 1: Developing a metamodel can be time-consuming

Problem 2: Metamodels are system specific

Proposal: Inductive biases in Machine Learning algorithms

Case study

- Tuindorp.
 - Utrecht, The Netherlands

- Combined drainage system
 - Storm water drainage for this study

Metamodels

GNN metamodel

~6.000 parameters

MLP metamodel

~700.000 parameters

Same dynamic inputs

Same temporal and physical bias

Results – Test Performanc

Accuracy	y
----------	---

MLP			GNN		
No Flow	Flow	Overall	No Flow	Flow	Overall
1.0	0.908	0.976	0.997	0.924	0.981

Speed

	MLP (CPU) MLP (GPU)		GNN (CPU)	GNN (GPU)	
Speed-up		Speed-up	Speed-up	Speed-up	
Ī	11.96	35.04	3.69	17.39	

Results – Data Efficiency

Size of the training set

Results - Transferability

Limitations – Future work

- Special components (Pumps, tanks, orífices, weirs, etc.)
- Dry weather Flow
- Flow estimation
- Other catchments
- Hyperparameter pre-selection

Thank you for your attention

Alexander Garzón

J.A.GarzonDiaz@tudelft.nl

References

- Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., et al. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv, 1–40. Retrieved from https://arxiv.org/abs/1806.01261
- Garzón, A., Kapelan, Z., Langeveld, J., Taormina, R., 2022. Machine learning-based surrogate modelling for Urban Water Networks: Review and future research directions. Water Resources Research, e2021WR031808URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2021WR031808https://onlinelibrary.wiley.com/doi/full/10.1029/2021WR031808, doi:10.1029/2021WR031808.
- Palmitessa, R., Grum, M., Engsig-Karup, A.P., Löwe, R., 2022. Accelerating hydrodynamic simulations of urban drainage systems with physics guided machine learning. Water Research 223. doi:10.1016/j.watres.2022.118972.

Motivation

Some critical applications require a fast simulator

Optimisation

Uncertainty analysis

Time (s)

Real-time forecast

Problem 1 Developing a metamodel can be time-consuming

Required time

SWMM Execution (N times)

Metamodel

Training ... Training
Hyperoptimization

Proposal: Inductive biases in Machine Learning models

Expression of **assumptions** about either the data-generating process or the space of solutions. It **prioritizes** some solutions over others.

Practical implications:

- → Requires less training examples
 - → Generalization of learned features

