Des No	
Reg. No.	

B. Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

18AUO102T - RENEWABLE SOURCES OF ENERGY

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (1) over to hall invigilator at the end of 40th minute.

(n)	Part - B & Part - C should be answered in ar	iswer booklet.				
Time: 31	nours		Max. N	Mark	cs: 1	00
		35-1-1	Marks	BL	со	PO
	PART – A (20 × 1 = 20 Answer ALL Quest	ions	. 1	1	1	1
1.	Identify the factor responsible for re-	gulating wind turbine speed for				
	(A) Wind adjustment (B)) Pitch control				
	(C) Turbine alignment (D) Yaw control				
2.	Select the approximate value of the cuturbines.	t in speed for most modern wind	1 1	1	1	1
	(A) 2 – 4 mph (B	5 – 9 mph				
	(C) 9 – 10 mph (D) 11 – 13 mph				
2	The used for an anemometer used in the	wind turbine is to	1	1	1	1
3.	(A) Measure wind direction (B)) Measure wind speed				
	(C) Adjust turbine orientation (D) Monitor bladder rotation				
4.	If wind speed doubles, how does it a according to the power generation formu	la?	t ¹	1	1	1
	(A) It quadruples (B) It triples) It increases by eight times				
	Select the material serving as the semico	nductor in solar PV modules	1	1	2	1
5.	(A) Silicon (B)) Aluminum				
	(C) Copper (D) Head				
6.	The function of the anti-reflective of			1	2	1
	(A) To reduce the absorption of (B) To increase the reflection of	f			
	P. L.	Suniight				
	(C) To decrease the reflection of (D sunlight	Sumight				
7.	Which collector type is most cost-eff regions?		y 1	1	2	1
	(A) Evacuated table collector (E	Concentrating dish collector Parabolic trough collector				
	(C) Flat-plate collector (L) Parabolic trough collector				

	com no	fy the type of collector suita tratures, such as in power genera Flat-plate collector	tion.	Air collector				
	(A) I (C)	Parabolic trough collector	(D)	Liquid collector				
9.	Selec	t the type of geothermal resou		hat demands water injection to	1	1	3	1
		Hydrothermal		Enhanced Geothermal Systems (EGS)				
	(C)	Biomass	(D)	Geopressured				
10.	(A)	ose the depth range characterizing 100 - 500 meters 1000 - 3000 meters	(B)	thermal wells. 500 – 1000 meters 3000 – 5000 meters	1	1	3	7
11.	Iden	tify the turbine that is comme	only	used in low head hydropower	1	1	3	1
	(A)	Pelton turbine Francis turbine		Kaplan turbine Cross flow turbine				
12.		does a pumped storage hydrogelectricity demand?	owe	r plant operate during periods of	1	1	3	1
	(A)	It generates electricity and stores excess energy in batteries		It uses surplus electricity to pump water from a lower reservoir to a higher reservoir				
		It shuts down operations until demand increases	(D)	It releases stored water to generate electricity				
13.	Con	version (OTEC) plants.		ployed in Ocean Thermal Energy	1	1	4	1
		Carnot cycle Brayton cycle		Rankine cycle Stirling cycle				
14.	perio	od?		nergy converter vary with wave	1	1	4	7
	(A)	Efficiency increases with longer wave periods	(B)	Efficiency decreases with longer wave periods				
	(C)		(D)	Efficiency is not affected by wave period				
15.	Iden	tify the gasifier type characterize ard flow of gas	ed by	a downward flow of biomass and	1	1	4	1
	-	Downdraft gasifier Cross draft gasifier		Updraft gasifier				
				Fluidized bed gasifier				
16.	gasif	ier?		ites to the formation of tar in a	1	1	4	1
				Low moisture content in the feedstock				
	(C)	Short residence time in the gasifier	(D)	Presence of contaminants in the feedstock				

	State the physical principle behind thermoelectric generator operation (A) Seebeck effect (B) Peltier effect (C) Joule-Thomson effect (D) Faraday's law	1	I	5	1
18.	Which of the following factors is crucial for improving the performance of thermoelectric generators? (A) Thermoelectric material with (B) Increasing thickness of higher seebeck coefficients thermoelectric materials (C) Decreasing the temperature (D) Reducing the electrical gradient across the conductivity of thermoelectric thermoelectric materials	1	1	5	I
19.	Identify the vital parameter for optimizing MHD engine efficiency (A) Magnetic field strength (B) Fluid velocity (C) Temperature gradient (D) Electrical conductivity of the working fluid	1	1	5	1
20	Name the fuel cell type most suitable for Combined Heat and Power (CHP) applications. (A) Solid Oxidic Fuel Cell (SOFC) (B) Alkaline Fuel Cell (AFC) (C) Phosphoric Acid Fuel Cell (D) Direct Methanol Fuel Cell (PAFC) (DMFC)	1	1	5	1
	Marks	BL	со	PO	
21	 Evaluate the functions of cut-in and cut-off speeds in wind turbines and assess their significance in the design process. 	4	2	1	1
22	2. Differentiate between zenith angle, solar altitude angle and azimuth angle.	4	2	2	7
	3. Enumerate the factors to be considered for selecting a solar thermal	4	4	2	1
23	collector for a specific application.				
	collector for a specific application.4. Elucidate the concept of head and its relevance in hydropower generation.	4	2	3	1
2					1
2	4. Elucidate the concept of head and its relevance in hydropower generation. 5. Explain the two thermodynamic cycles commonly employed in ocean	4			

	PART – C ($5 \times 12 = 60$ (Marks) Answer ALL Questions	Marks	BL	co	F
8. a.	Derive the equation to calculate the total power conversion to coefficient and effective power output in the context of wind energy conversion.	12	4	1	
b.	(OR) Write concise explanations for the following parameters concerning wind energy conversion		2	1	
	 (a) Tip speed ration (b) Forces experienced by a wind turbine (c) Wind power density (d) Lanchester – Betz limit 	3 3 3 3			
29. a.	Elucidate the concept of Concentrating Photo Voltaic (CPV) systems and outline their potential benefits compared to conventional solar thermal collectors.	12	4	2	1
b.	(OR) Derive the equation to determine the efficiency of a flat plane collector and explain the factors influencing it.	12	4	2	1
30. a	Explain the various types of turbines employed in hydropower plants and their respective applications.	12	4	3	1
b.	(OR) Compare geothermal and hydropower energy sources, analyzing factors such as resource availability, conversion methods, environmental effects and economic viability.	12	4	3	7
31. a.	Elaborate on the three primary types of ocean thermal energy conversion (OTEC) systems and assess their efficiency, complexity and applicability across diverse oceanic.	12	4	4	1
	(OR)				
b.	Estimate the air requirement for the conversion of coconut shells into syngas in a down draft gasification system, considering the following elemental analysis: Carbon : 53.88% Hydrogen : 6.56% Oxygen : 38.56% Nitrogen : 0.97% Sulfur : 0.03%	12	4	4	1
32. a.	Explain the potential utilization of Thermo Electric Generators [TEGs] in waste heat recovery systems, highlighting their unique advantages and limitations.	12	4	5	7
	(OR)				
b.	Explore the types of fuel cells commonly used in different applications and compare their operating principles and limitations.	12	4	5	7

* * * * *

Page 4 of 4