Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

Contents

1	Demographics	2
2	Meal Liking	4
3	Portion Size Effect 3.1 Total Intake	
	3.2 Intake by Food	6
	3.5 Exploratory Analyses: Effect of BMI	
4	Exploratory Analyses: Individual Foods	15
	4.1 Chicken Nuggets 4.2 Mac and Cheese 4.3 Grapes	$\frac{18}{22}$
5	Exploratory Analyses: Mediated Moderation	30
	5.1 Grams	

1 Demographics

Table 1: Demographics

	Risk	Groups	Overall
Characteristic	Low Risk, $N = 53$	High Risk, $N = 40$	N = 93
Sex			
Male	30 (57%)	18 (45%)	48 (52%)
Female	23 (43%)	22 (55%)	45 (48%)
Age, yr	7.8(0.7)	7.8(0.6)	7.8(0.6)
Ethnicity			
Not Hispanic/Lantinx	53 (100%)	40 (100%)	93 (100%)
Race	` '	, ,	, ,
0	50 (94%)	40 (100%)	90 (97%)
2	3 (5.7%)	0 (0%)	3 (3.2%)
Income			
< \$51,000	4 (7.7%)	8 (21%)	12 (13%)
>\$100,000	26 (50%)	7 (18%)	33 (37%)
\$51,000 - \$100,000	22 (42%)	23 (61%)	45 (50%)
Unknown	1	2	3
BMI %tile	41.7(23.9)	55.7(23.6)	47.7(24.7)
Mother's Education			
> Bachelor Degree	23 (44%)	6 (15%)	29 (32%)
AA/Technical Degree	3 (5.8%)	7 (18%)	10 (11%)
Bachelor Degree	23 (44%)	21 (52%)	44 (48%)
High School/GED	3 (5.8%)	6 (15%)	9 (9.8%)
Unknown	1	0	1
Father's Education			
> Bachelor Degree	29 (55%)	4 (11%)	33 (38%)
AA/Technical Degree	3(5.7%)	11 (31%)	14~(16%)
Bachelor Degree	15~(28%)	14 (40%)	29 (33%)
High School/GED	6 (11%)	5 (14%)	11 (12%)
Other/NA	0 (0%)	1(2.9%)	1 (1.1%)
Unknown	0	5	5

¹ n (%); Mean (SD)

Age - t-test

Welch Two Sample t-test

```
data: age_yr by risk_status_mom
t = 0.44031, df = 89.66, p-value = 0.6608
```

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.1989028 0.3121669

sample estimates:

mean in group Low Risk mean in group High Risk 7.841132 7.784500

##BMI Percentile - t-test

data: bmi_percentile by risk_status_mom t = -2.8098, df = 84.587, p-value = 0.006157

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-23.873036 -4.086775

sample estimates:

mean in group Low Risk mean in group High Risk 41.73509 55.71500

Low Risk High Risk 23.89437 23.64924

Sex - χ^2

Pearson's Chi-squared test with Yates' continuity correction

data: r01_intake\$sex and r01_intake\$risk_status_mom
X-squared = 0.80831, df = 1, p-value = 0.3686

Income - χ^2

Pearson's Chi-squared test

data: r01_intake\$income and r01_intake\$risk_status_mom
X-squared = 10.368, df = 2, p-value = 0.005605

Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01_intake\$mom_ed and r01_intake\$risk_status_mom

p-value = 0.008449

alternative hypothesis: two.sided

2 Meal Liking

Table 2: Regression Table: Portion Size for Liking

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	3.393	0.773	90.323	4.392	0.000
preFF	-0.002	0.001	321.687	-2.381	0.018
bmi	0.025	0.049	89.043	0.500	0.618
sexFemale	0.099	0.121	88.885	0.820	0.415
meal_order	0.014	0.014	267.062	1.011	0.313
risk_status_momHigh Risk ps_prop	$0.029 \\ 0.027$	$0.127 \\ 0.042$	89.401 266.468	$0.227 \\ 0.654$	$0.821 \\ 0.514$

3 Portion Size Effect

Note - Portion Size was coded in ps_prop as the proportion increase in amount served: Portion Size 1=0, Portion Size 2=0.33, Portion Size 3=0.66, and Portion Size 4=0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

3.1 Total Intake

Table 3: Intake by Portion Size

	Risk (Overall	
Characteristic	Low Risk, N = 53	High Risk, N = 40	N = 93
ps1_total_g	407.1 (167.0)	402.2 (164.2)	405.0 (164.9)
$ps1_total_kcal$	475.6 (199.5)	485.2 (196.6)	479.7 (197.2)
$ps1_avg_vas$	3.8(0.6)	3.9(0.6)	3.8(0.6)
ps2_total_g	465.0 (176.3)	404.4 (171.7)	439.8 (176.0)
$ps2_total_kcal$	542.6 (218.3)	513.9 (271.5)	530.7 (240.8)
ps2_avg_vas	3.8 (0.6)	3.9 (0.6)	3.8(0.6)
$ps3_total_g$	488.9 (191.1)	433.1 (191.2)	465.6 (192.1)
ps3_total_kcal	602.7 (271.9)	534.3 (292.1)	574.1 (281.0)
ps3_avg_vas	3.8 (0.6)	3.8 (0.7)	3.8 (0.6)
ps4_total_g	496.4 (189.0)	416.4 (166.6)	462.1 (183.2)
ps4_total_kcal	620.1 (244.9)	556.4 (249.4)	592.8 (247.5)
ps4_avg_vas	3.8 (0.7)	3.9 (0.6)	3.8 (0.6)

¹ Mean (SD)

3.2 Intake by Food

Table 4: High Risk: Intake by Portion Size

Characteristic	PS-1, $N = 40$	PS-2, $N = 40$	PS-3, $N = 40$	PS-4, N = 40
chnug_grams chnug_kcal mac_grams mac_kcal grape_grams	66.3 (45.1)	74.9 (79.3)	77.5 (60.7)	87.0 (63.9)
	165.8 (112.7)	187.3 (198.3)	193.7 (151.8)	217.4 (159.7)
	126.1 (105.4)	132.7 (110.9)	139.4 (134.9)	134.1 (123.9)
	214.3 (179.2)	225.6 (188.5)	237.0 (229.4)	228.0 (210.7)
	85.5 (65.5)	94.8 (75.6)	93.6 (87.4)	103.7 (88.7)
grape_kcal	59.4 (45.5)	65.9 (52.6)	65.1 (60.8)	72.1 (61.7)
broc_grams	31.3 (51.8)	23.7 (29.2)	23.6 (37.3)	22.6 (36.4)
broc_kcal	31.4 (52.0)	23.8 (29.2)	23.7 (37.4)	22.7 (36.5)
mac_vas	4.1 (0.8)	3.9 (1.0)	3.9 (1.1)	3.9 (1.0)
chnug_vas	4.3 (1.0)	4.3 (1.0)	4.2 (1.2)	4.3 (0.9)
broc_vas	2.9 (1.6)	2.8 (1.5)	2.7 (1.4)	2.9 (1.6)
grape_vas	4.2 (0.8)	4.4 (0.9)	4.4 (0.9)	4.4 (0.8)

¹ Mean (SD)

Table 5: Low Risk: Intake by Portion Size

Characteristic	PS-1, $N = 53$	PS-2, $N = 53$	PS-3, $N = 53$	PS-4, N = 53
chnug_grams	69.6 (41.8)	83.2 (51.9)	98.5 (80.8)	104.0 (67.2)
chnug_kcal	174.0 (104.6)	208.0 (129.8)	246.2 (202.1)	260.0 (168.1)
mac_grams	116.5 (90.3)	130.7 (101.9)	143.4 (115.5)	135.0 (108.4)
mac_kcal	198.1 (153.4)	222.2 (173.3)	243.8 (196.3)	229.5 (184.3)
grape_grams grape_kcal broc grams	95.2 (80.9)	102.9 (86.9)	102.0 (92.7)	116.1 (102.9)
	66.1 (56.2)	71.5 (60.4)	70.9 (64.4)	80.7 (71.5)
	27.0 (40.6)	29.2 (54.2)	29.0 (54.0)	35.2 (64.9)
broc_kcal mac_vas chnug_vas	27.1 (40.7)	29.3 (54.4)	29.1 (54.2)	35.3 (65.1)
	3.7 (1.0)	3.8 (1.0)	3.8 (1.1)	3.8 (1.0)
	4.1 (0.9)	4.3 (0.7)	4.2 (0.7)	4.2 (0.9)
broc_vas	3.2 (1.3)	3.0 (1.1)	3.2 (1.2)	3.2 (1.4)
grape_vas	4.2 (0.9)	4.1 (1.0)	4.1 (1.1)	4.1 (1.0)

¹ Mean (SD)

3.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

3.3.1 Grams

Table 6: Regression Table: Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-28.233	280.024	94.218	-0.101	0.920
preFF	-0.318	0.218	330.796	-1.460	0.145
bmi	22.485	12.838	87.621	1.751	0.083
sexFemale	-24.987	32.510	87.866	-0.769	0.444
age_yr	-5.224	26.293	88.324	-0.199	0.843
avg_vas	40.593	15.335	349.845	2.647	0.008
$meal_order$	-4.666	4.136	263.995	-1.128	0.260
ps_prop	149.635	43.457	263.714	3.443	0.001
ps_prop2	-96.593	42.336	264.027	-2.282	0.023

^{*}To calculate effect of portion size by 0.33 proportion increase need to first get total quadratic effect. The β coefficient for a quadratic effect is half the change in the linear slope for a unit increase, so total change in linear slope = 2 x ps_prop2. Since a 1 unit increase = 100% increase in portion, can then multiply the total effect by 0.33. Therefore, change in linear slope for each 33% increase in amount served = (ps_prop2)

x 2) x 0.33. To calculate where the slope switches from positive to negative, need to find the vertex = $-ps_prop/(ps_prop2 \times 2)$

3.3.2 kcal

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_psquad_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + ps_prop2 + (1 | s

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 10 4766.6 4805.5 -2373.3 4746.6

kcal_psquad_mod 11 4767.5 4810.3 -2372.8 4745.5 1.1408 1 0.2855

Table 7: Regression Table: Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-129.987	360.878	94.858	-0.360	0.720
preFF	-0.897	0.324	346.568	-2.765	0.006
$_{ m bmi}$	39.822	16.428	87.241	2.424	0.017
sexFemale	-40.470	41.618	87.605	-0.972	0.334
age_yr	-25.531	33.678	88.191	-0.758	0.450
avg_vas	57.951	22.189	329.776	2.612	0.009
$meal_order$	8.517	6.316	265.300	1.348	0.179
ps_prop	112.868	19.068	264.265	5.919	0.000

3.4 Risk Status x Portion Size (linear effect)

3.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

```
Data: intake_long
Models:
grams_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + ps_prop2 + (1 |
grams_psxrisk_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom *
                               AIC
                                      BIC logLik deviance Chisq Df
                        npar
grams_psquad_mod
                          11 4490.7 4533.5 -2234.4
                        13 4482.5 4533.1 -2228.3
                                                    4456.5 12.178 2
grams_psxrisk_psquad_mod
                        Pr(>Chisq)
grams_psquad_mod
grams_psxrisk_psquad_mod
                         0.002268 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Table 8: Regression Table: Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-99.187	276.591	93.315	-0.359	0.721
preFF	-0.331	0.216	328.787	-1.535	0.126
bmi	30.399	13.179	86.991	2.307	0.023
sexFemale	-16.831	32.161	87.151	-0.523	0.602
age_yr	-10.206	25.915	87.609	-0.394	0.695
avg_vas	39.704	15.127	347.269	2.625	0.009
meal_order	-4.564	4.085	263.151	-1.117	0.265
risk_status_momHigh Risk	-35.761	36.079	111.663	-0.991	0.324
ps_prop	178.857	44.235	262.738	4.043	0.000
ps_prop2	-96.695	41.818	263.170	-2.312	0.022
$risk_status_momHigh~Risk:ps_prop$	-68.500	24.716	262.311	-2.771	0.006

Figure 1: Grams Consumed: Risk Status x Portion Size

Table 9: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk	178.857		263.427	4.043	0.000
High Risk	110.358		263.605	2.444	0.015

Table 10: Estimated Marginal Means: Risk Status x Portion Size for Grams

	Low Risk	High Risk
0	411.393	393.109
0.33	458.768	423.761
0.66	488.546	423.405
0.99	498.740	413.233

data: grams_pred_rxps by risk_status_mom
t = 0.57914, df = 84.923, p-value = 0.564

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-44.48714 81.05440 sample estimates:

```
mean in group Low Risk mean in group High Risk
411.3927 393.1090
```

data: grams_pred_rxps by risk_status_mom
t = 1.0871, df = 79.465, p-value = 0.2803

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-29.08150 99.09491

sample estimates:

mean in group Low Risk mean in group High Risk 458.7678 423.7611

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.9856, df = 78.731, p-value = 0.05056

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.1640152 130.4464035

sample estimates:

mean in group Low Risk mean in group High Risk 488.5457 423.4045

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 2.6926, df = 83.109, p-value = 0.008573

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

22.34566 148.66905

sample estimates:

mean in group Low Risk mean in group High Risk 498.7399 413.2325

3.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 10 4766.6 4805.5 -2373.3 4746.6

kcal_psxrisk_mod 12 4763.2 4809.9 -2369.6 4739.2 7.3876 2 0.02488 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 11: Regression Table: Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-199.070	360.713	93.851	-0.552	0.582
preFF	-0.908	0.324	343.921	-2.805	0.005
bmi	47.183	17.076	86.645	2.763	0.007
sexFemale	-32.866	41.680	86.878	-0.789	0.433
age_yr	-30.249	33.604	87.452	-0.900	0.371
avg_vas	56.824	22.039	327.352	2.578	0.010
meal_order	8.646	6.269	264.368	1.379	0.169
risk_status_momHigh Risk	-22.171	47.917	121.915	-0.463	0.644
ps_prop	149.324	24.939	263.579	5.988	0.000
risk_status_momHigh Risk:ps_prop	-85.760	38.203	263.454	-2.245	0.026

Figure 2: kCal Consumed: Risk Status x Portion Size

Table 12: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk			264.482 264.129	5.987 2.193	0.000 0.029

Table 13: Estimated Marginal Means: Risk Status x Portion Size for kcal

	Low Risk	High Risk
0	485.748	485.751
0.33	534.560	516.052
0.66	588.442	528.555
0.99	632.444	561.650

data: kcal_pred_rxps by risk_status_mom

t = -6.7215e-05, df = 79.276, p-value = 0.9999

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-83.10103 83.09542

sample estimates:

mean in group Low Risk mean in group High Risk 485.7485 485.7513

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 0.44911, df = 75.884, p-value = 0.6546

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.57096 100.58643

sample estimates:

mean in group Low Risk mean in group High Risk 534.5596 516.0519

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.356, df = 72.77, p-value = 0.1793

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.13734 147.91064

sample estimates:

mean in group Low Risk mean in group High Risk 588.4416 528.5550

data: kcal_pred_rxps by risk_status_mom
t = 1.6957, df = 80.359, p-value = 0.09382

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-12.28412 153.87232 sample estimates:

mean in group Low Risk mean in group High Risk 632.4437 561.6496

3.5 Exploratory Analyses: Effect of BMI

After controlling for age and sex, there was a difference in BMI by Risk Status such that the High Risk group had BMI that was 0.73 higher on average.

Table 14: Regression Table: BMI and Risk Status

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	13.615	1.622	8.395	0.000
age_yr	0.241	0.206	1.169	0.245
sexFemale	-0.073	0.258	-0.284	0.777
$risk_status_momHigh Risk$	0.749	0.260	2.877	0.005

Since BMI was associated with both total grams and kcal intake, I tested if adding a BMI x Poriton Size interaction improved the model.

3.5.1 Grams

Adding a BMI x Portion Size interaction did not improve the model for grams

```
Data: intake_long
Models:
grams_psxrisk_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom *
grams_psxrisk_psxbmi_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_statu
                                npar
                                        AIC
                                               BIC logLik deviance Chisq Df
grams_psxrisk_psquad_mod
                                  13 4482.5 4533.1 -2228.3
                                                             4456.5
                                                             4456.4 0.0904 1
grams_psxrisk_psxbmi_psquad_mod
                                  14 4484.4 4538.9 -2228.2
                                Pr(>Chisq)
grams_psxrisk_psquad_mod
grams_psxrisk_psxbmi_psquad_mod
                                    0.7637
```

3.5.2 kcal

Adding a BMI x Portion Size interaction did not improve the model for kcal.

```
Data: intake_long Models: kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + (1 | sub) kcal_psxrisk_psxbmi_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + bmi * ps_prop + ps_prop + (1 | sub) npar AIC BIC logLik deviance Chisq Df kcal_psxrisk_mod 12 4763.2 4809.9 -2369.6 4739.2 kcal_psxrisk_psxbmi_mod 14 4764.6 4819.0 -2368.3 4736.6 2.6742 2 Pr(>Chisq) kcal_psxrisk_mod kcal_psxrisk_psxbmi_mod 0.2626
```

4 Exploratory Analyses: Individual Foods

4.1 Chicken Nuggets

4.1.1 Grams

4.1.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop + (1 |
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop
                                        BIC logLik deviance Chisq Df
                                 AIC
grams_chnug_ps_mod
                            10 3851.5 3890.4 -1915.8
                                                       3831.5
grams_chnug_ps_psquad_mod
                            11 3853.1 3895.9 -1915.5
                                                       3831.1 0.4389 1
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                              0.5076
```

Table 15: Chicken Nugget - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-35.992	77.930	88.011	-0.462	0.645
preFF	-0.251	0.090	347.183	-2.783	0.006
$_{ m bmi}$	4.050	3.533	79.763	1.147	0.255
sexFemale	-14.240	8.931	79.859	-1.594	0.115
age_yr	-4.659	7.273	81.678	-0.641	0.524
chnug_vas	20.431	3.896	285.932	5.245	0.000
$meal_order$	2.880	1.907	260.620	1.510	0.132
ps_prop	29.004	5.756	258.106	5.039	0.000

Table 16: Chicken Nugget - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-51.292	77.922	86.684	-0.658	0.512
preFF	-0.246	0.091	346.026	-2.719	0.007
bmi	5.683	3.673	78.857	1.547	0.126
sexFemale	-12.490	8.951	78.860	-1.395	0.167
age_yr	-5.798	7.260	80.553	-0.799	0.427
chnug_vas	20.372	3.881	281.925	5.249	0.000
$meal_order$	2.869	1.902	259.223	1.509	0.133
ps_prop	36.543	7.545	256.742	4.843	0.000
risk_status_momHigh Risk	-5.441	11.105	147.605	-0.490	0.625
ps_prop:risk_status_momHigh Risk	-17.921	11.607	257.037	-1.544	0.124

4.1.1.2 Risk x Portion Size

4.1.2 kcal

4.1.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_chnug_ps_mod: chnug_kcal ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop + (1 | su
kcal_chnug_ps_psquad_mod: chnug_kcal ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop +
                        npar
                                AIC
                                      BIC logLik deviance Chisq Df
                          10 4514.9 4553.8 -2247.5
kcal_chnug_ps_mod
kcal_chnug_ps_psquad_mod
                         11 4516.5 4559.3 -2247.2
                                                     4494.5 0.4389 1
                        Pr(>Chisq)
kcal_chnug_ps_mod
kcal_chnug_ps_psquad_mod
                             0.5076
```

Table 17: Chicken - Nugget Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept) preFF bmi sexFemale age yr	-89.980	194.824	88.011	-0.462	0.645
	-0.628	0.226	347.183	-2.783	0.006
	10.126	8.832	79.763	1.147	0.255
	-35.599	22.328	79.859	-1.594	0.115
	-11.648	18.182	81.678	-0.641	0.524
chnug_vas	51.077	9.739	285.932	5.245	0.000
meal_order	7.201	4.768	260.620	1.510	0.132
ps_prop	72.509	14.390	258.106	5.039	0.000

Table 18: Chicken - Nugget Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-128.231	194.805	86.684	-0.658	0.512
preFF	-0.616	0.226	346.026	-2.719	0.007
bmi	14.208	9.184	78.857	1.547	0.126
sexFemale	-31.226	22.378	78.860	-1.395	0.167
age_yr	-14.495	18.149	80.553	-0.799	0.427
chnug_vas	50.931	9.703	281.925	5.249	0.000
$meal_order$	7.174	4.755	259.223	1.509	0.133
ps_prop	91.358	18.863	256.742	4.843	0.000
risk_status_momHigh Risk	-13.603	27.764	147.605	-0.490	0.625
ps_prop:risk_status_momHigh Risk	-44.802	29.017	257.037	-1.544	0.124

4.1.2.2 Risk x Portion Size

4.2 Mac and Cheese

4.2.1 Grams

4.2.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 19: Mac and Cheese - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-92.806	163.779	84.777	-0.567	0.572
preFF	-0.115	0.116	316.319	-0.994	0.321
bmi	17.249	7.680	84.009	2.246	0.027
sexFemale	0.674	19.401	83.543	0.035	0.972
age_yr	-17.720	15.679	83.764	-1.130	0.262
mac_vas	21.430	4.564	339.558	4.696	0.000
$meal_order$	2.609	2.168	259.507	1.203	0.230
ps_prop	14.797	6.547	259.007	2.260	0.025

Table 20: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-109.470	165.098	83.553	-0.663	0.509
preFF	-0.113	0.117	313.671	-0.964	0.336
bmi	19.279	8.040	82.717	2.398	0.019
sexFemale	2.781	19.583	82.365	0.142	0.887
age_yr	-18.969	15.770	82.622	-1.203	0.232
mac_vas	21.375	4.592	338.223	4.655	0.000
meal_order	2.608	2.171	258.222	1.201	0.231
ps_prop	16.979	8.647	257.826	1.964	0.051
risk_status_momHigh Risk	-15.217	21.698	101.008	-0.701	0.485
ps_prop:risk_status_momHigh Risk	-5.138	13.295	258.527	-0.386	0.699

4.2.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 21: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-108.895	164.980	83.631	-0.660	0.511
preFF	-0.109	0.116	314.540	-0.940	0.348
bmi	19.270	8.035	82.810	2.398	0.019
sexFemale	2.778	19.570	82.459	0.142	0.887
age_yr	-18.970	15.759	82.716	-1.204	0.232
mac_vas	21.528	4.567	338.897	4.714	0.000
$meal_order$	2.597	2.168	259.313	1.198	0.232
ps_prop	14.800	6.548	258.831	2.260	0.025
$risk_status_momHigh\ Risk$	-17.813	20.617	82.735	-0.864	0.390

4.2.2 kcal

4.2.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake_long

Models:

kcal_mac_ps_mod 10 4434.9 4473.8 -2207.5 4414.9

kcal_mac_ps_psquad_mod 11 4435.2 4478.0 -2206.6 4413.2 1.7597 1 0.1847

Table 22: Mac and Cheese - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-157.770	278.424	84.777	-0.567	0.572
preFF	-0.196	0.197	316.319	-0.994	0.321
bmi	29.324	13.057	84.009	2.246	0.027
sexFemale	1.145	32.981	83.543	0.035	0.972
age_yr	-30.124	26.654	83.764	-1.130	0.262
mac_vas	36.431	7.758	339.558	4.696	0.000
$meal_order$	4.435	3.685	259.507	1.203	0.230
ps_prop	25.155	11.130	259.007	2.260	0.025

Table 23: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-186.099	280.666	83.553	-0.663	0.509
preFF	-0.192	0.199	313.671	-0.964	0.336
bmi	32.774	13.668	82.717	2.398	0.019
sexFemale	4.728	33.291	82.365	0.142	0.887
age_yr	-32.247	26.809	82.621	-1.203	0.232
mac_vas	36.338	7.806	338.223	4.655	0.000
meal_order	4.434	3.691	258.222	1.201	0.231
ps_prop	28.865	14.699	257.826	1.964	0.051
risk_status_momHigh Risk	-25.870	36.887	101.008	-0.701	0.485
ps_prop:risk_status_momHigh Risk	-8.734	22.601	258.527	-0.386	0.699

4.2.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 24: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-185.121	280.466	83.631	-0.660	0.511
preFF	-0.186	0.198	314.540	-0.940	0.348
bmi	32.759	13.659	82.811	2.398	0.019
sexFemale	4.722	33.269	82.459	0.142	0.887
age_yr	-32.249	26.791	82.716	-1.204	0.232
mac_vas	36.597	7.764	338.897	4.714	0.000
meal _order	4.414	3.686	259.313	1.198	0.232
ps_prop	25.161	11.132	258.831	2.260	0.025
$risk_status_momHigh\ Risk$	-30.283	35.049	82.735	-0.864	0.390

4.3 Grapes

4.3.1 Grams

4.3.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_grape_ps_mod: grape_grams ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + (1 |
grams_grape_ps_psquad_mod: grape_grams ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop
                                      BIC logLik deviance Chisq Df
                         npar
                               AIC
                           10 3929.8 3968.7 -1954.9
grams_grape_ps_mod
                           11 3931.8 3974.6 -1954.9
grams_grape_ps_psquad_mod
                                                      3909.8 0.033 1
                         Pr(>Chisq)
grams_grape_ps_mod
grams_grape_ps_psquad_mod
                             0.8558
```

Table 25: Grapes - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	48.418	132.639	86.343	0.365	0.716
preFF	-0.051	0.097	321.469	-0.521	0.603
bmi	-8.872	6.181	83.809	-1.435	0.155
sexFemale	-11.029	15.651	84.010	-0.705	0.483
age_yr	21.132	12.655	84.374	1.670	0.099
$grape_vas$	8.907	3.970	341.834	2.244	0.025
$meal_order$	-4.954	1.817	261.212	-2.727	0.007
ps_prop	16.143	5.489	260.643	2.941	0.004

Table 26: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	44.024	134.162	85.484	0.328	0.744
preFF	-0.051	0.098	318.329	-0.527	0.599
bmi	-8.485	6.493	82.931	-1.307	0.195
sexFemale	-10.650	15.843	83.056	-0.672	0.503
age_yr	20.868	12.768	83.501	1.634	0.106
grape_vas	9.072	4.001	339.767	2.267	0.024
$meal_order$	-4.953	1.820	260.139	-2.721	0.007
ps_prop	18.117	7.230	259.594	2.506	0.013
risk_status_momHigh Risk	-1.167	17.610	103.097	-0.066	0.947
ps_prop:risk_status_momHigh Risk	-4.693	11.159	260.261	-0.420	0.674

4.3.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 27: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	45.403	134.276	85.472	0.338	0.736
preFF	-0.049	0.097	319.243	-0.503	0.615
bmi	-8.473	6.501	83.001	-1.303	0.196
sexFemale	-10.605	15.861	83.124	-0.669	0.506
age_yr	20.884	12.782	83.570	1.634	0.106
grape_vas	8.879	3.979	340.317	2.231	0.026
meal_order	-4.957	1.817	261.209	-2.728	0.007
ps_prop	16.146	5.489	260.673	2.942	0.004
$risk_status_momHigh\ Risk$	-3.486	16.738	83.861	-0.208	0.836

4.3.2 kcal

4.3.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_grape_ps_mod: grape_kcal ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + (1 | su
kcal_grape_ps_psquad_mod: grape_kcal ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + prop + prop
                                                                                                                                      npar
                                                                                                                                                                            AIC
                                                                                                                                                                                                                BIC logLik deviance Chisq Df
                                                                                                                                                10 3666.4 3705.3 -1823.2
kcal_grape_ps_mod
                                                                                                                                           11 3668.4 3711.2 -1823.2
                                                                                                                                                                                                                                                                                                 3646.4 0.033 1
kcal_grape_ps_psquad_mod
                                                                                                                                      Pr(>Chisq)
kcal_grape_ps_mod
kcal_grape_ps_psquad_mod
                                                                                                                                                           0.8558
```

Table 28: Grapes - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	33.651	92.184	86.343	0.365	0.716
preFF	-0.035	0.067	321.469	-0.521	0.603
bmi	-6.166	4.296	83.809	-1.435	0.155
sexFemale	-7.665	10.877	84.010	-0.705	0.483
age_yr	14.687	8.795	84.374	1.670	0.099
$grape_vas$	6.190	2.759	341.834	2.244	0.025
$meal_order$	-3.443	1.263	261.212	-2.727	0.007
ps_prop	11.220	3.815	260.643	2.941	0.004

Table 29: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	30.596	93.243	85.484	0.328	0.744
preFF	-0.036	0.068	318.329	-0.527	0.599
bmi	-5.897	4.513	82.931	-1.307	0.195
sexFemale	-7.402	11.011	83.056	-0.672	0.503
age_yr	14.503	8.873	83.501	1.634	0.106
grape_vas	6.305	2.781	339.767	2.267	0.024
meal_order	-3.442	1.265	260.139	-2.721	0.007
ps_prop	12.591	5.025	259.594	2.506	0.013
$risk_status_momHigh Risk$	-0.811	12.239	103.097	-0.066	0.947
ps_prop:risk_status_momHigh Risk	-3.261	7.756	260.261	-0.420	0.674

4.3.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 30: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	31.555	93.322	85.472	0.338	0.736
preFF	-0.034	0.068	319.243	-0.503	0.615
bmi	-5.888	4.518	83.001	-1.303	0.196
sexFemale	-7.371	11.023	83.124	-0.669	0.506
age_yr	14.514	8.883	83.570	1.634	0.106
grape_vas	6.171	2.765	340.317	2.231	0.026
$meal_order$	-3.445	1.263	261.209	-2.728	0.007
ps_prop	11.221	3.815	260.673	2.942	0.004
$risk_status_momHigh\ Risk$	-2.423	11.633	83.861	-0.208	0.836

4.4 Broccoli

4.4.1 Grams

4.4.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 31: Broccoli - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-51.879	74.007	80.642	-0.701	$0.485 \\ 0.935$
preFF	0.005	0.064	339.887	0.082	
bmi	-1.222	3.429	77.749	-0.356	0.723 0.339 0.105
sexFemale	8.334	8.665	77.619	0.962	
age_yr	11.484	7.011	78.137	1.638	
broc_vas	2.345	2.198	292.808	1.067	0.287
meal_order	-0.997	1.229	255.112	-0.811	0.418
ps_prop	0.786	3.718	255.008	0.211	0.833

Table 32: brocs - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-56.359	75.038	79.370	-0.751	0.455
preFF	-0.001	0.064	335.404	-0.014	0.989
bmi	-0.787	3.616	76.762	-0.218	0.828
sexFemale	8.883	8.819	76.865	1.007	0.317
age_yr	11.123	7.106	77.277	1.565	0.122
broc_vas	1.985	2.203	296.040	0.901	0.368
$meal_order$	-0.982	1.220	253.971	-0.805	0.422
ps_prop	7.366	4.849	254.032	1.519	0.130
risk_status_momHigh Risk	3.370	10.033	105.098	0.336	0.738
ps_prop:risk_status_momHigh Risk	-15.533	7.451	253.531	-2.085	0.038

4.4.1.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 33: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

risk_status_mom p	s_prop.trend	SE	df	t.ratio	p.value
Low Risk	7.366	4.849	265.661	1.519	0.130
High Risk	-8.167	5.670	265.080	-1.440	0.151
contrast	estimate	SE	$\mathrm{d}\mathrm{f}$	t.ratio	p.value
Low Risk - High Ris	k 15.533	7.451	265.198	2.085	0.038

4.4.2 kcal

4.4.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_broc_ps_mod: broc_kcal ~ preFF + bmi + sex + broc_vas + age_yr + meal_order + ps_prop + (1 | sub)
kcal_broc_ps_psquad_mod: broc_kcal ~ preFF + bmi + sex + age_yr + broc_vas + meal_order + ps_prop + ps_
                       npar
                             AIC
                                      BIC logLik deviance Chisq Df
kcal_broc_ps_mod
                          10 3612.0 3650.9 -1796.0
                                                     3592.0
kcal_broc_ps_psquad_mod
                         11 3613.3 3656.1 -1795.7
                                                    3591.3 0.6809 1
                       Pr(>Chisq)
kcal_broc_ps_mod
kcal_broc_ps_psquad_mod
                            0.4093
```

Table 34: Broccoli - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-52.034	74.229	80.642	-0.701	0.485
preFF	0.005	0.064	339.887	0.082	0.935
bmi	-1.225	3.440	77.749	-0.356	0.723
sexFemale	8.359	8.691	77.619	0.962	0.339
$broc_vas$	2.352	2.205	292.808	1.067	0.287
age_yr	11.519	7.032	78.137	1.638	0.105
$meal_order$	-1.000	1.233	255.112	-0.811	0.418
ps_prop	0.788	3.729	255.008	0.211	0.833

Table 35: brocs - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-56.528	75.263	79.370	-0.751	0.455
preFF	-0.001	0.064	335.404	-0.014	0.989
bmi	-0.789	3.627	76.762	-0.218	0.828
sexFemale	8.909	8.846	76.865	1.007	0.317
age_yr	11.156	7.127	77.277	1.565	0.122
broc_vas	1.991	2.209	296.040	0.901	0.368
$meal_order$	-0.985	1.224	253.971	-0.805	0.422
ps_prop	7.388	4.863	254.032	1.519	0.130
risk_status_momHigh Risk	3.380	10.063	105.098	0.336	0.738
ps_prop:risk_status_momHigh Risk	-15.580	7.473	253.531	-2.085	0.038

4.4.2.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 36: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli kcal

risk_status_mom ps	_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.388 -8.191	4.864 5.687		1.519 -1.440	$0.130 \\ 0.151$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Risk	15.58	7.473	265.198	2.085	0.038

5 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

5.1 Grams

lavaan 0.6-9 ended normally after 268 iterations

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	25	
	Used	Total
Number of observations	361	372
Number of clusters [sub]	93	
Model Test User Model:		
	Standard	Robust
Test Statistic	10.688	6.067
Degrees of freedom	4	4
P-value (Chi-square)	0.030	0.194
Scaling correction factor		1.762
Yuan-Bentler correction	(Mplus variant)	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Observed
Observed information based on	Hessian

Regressions:

		Estimate	Std.Err	z-value	P(> z)
grams ~					
sub		-0.519	0.368	-1.410	0.159
preFF		-0.989	0.359	-2.755	0.006
bmi		24.568	13.062	1.881	0.060
sex		-46.264	31.220	-1.482	0.138
age_yr		-32.496	22.436	-1.448	0.148
avg_vas		54.473	25.530	2.134	0.033
${\tt meal_order}$		-4.852	4.364	-1.112	0.266
rsk_stts_m		-25.248	35.142	-0.718	0.472
ps_prop		200.816	49.851	4.028	0.000
psxrisk_nt	(c)	-57.886	23.682	-2.444	0.015
ps_prop2		-124.824	46.449	-2.687	0.007
broc_grams ~					
preFF		-0.078	0.072	-1.086	0.278
bmi		-0.417	2.462	-0.169	0.866
sex		6.230	7.841	0.795	0.427
age_yr		12.671	7.993	1.585	0.113
broc_vas		12.256	2.870	4.271	0.000
${\tt meal_order}$		-0.949	1.431	-0.663	0.507

rsk_stts_m	7.381	7.907	0.934	0.351		
ps_prop	6.061	5.450	1.112	0.266		
psxrisk_nt (a	-14.482	7.155	-2.024	0.043		
grams ~						
broc_grams (b	1.199	0.207	5.786	0.000		
Intercepts:						
•	Estimate	Std.Err	z-value	P(> z)		
.grams	216.029	297.161	0.727	0.467		
.broc_grams	-115.550	66.490	-1.738	0.082		
Variances:						
	Estimate	Std.Err	z-value	P(> z)		
.grams	23259.471	2446.615	9.507	0.000		
.broc_grams	1967.220	683.868	2.877	0.004		
Defined Parameters:						
	Estimate	Std.Err	z-value	P(> z)		
ab	-17.360	8.969	-1.936	0.053		
total	-75.245	25.352	-2.968	0.003		

There was a significant level indirect effect (p = 0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

5.2 kcal

lavaan 0.6-9 ended normally after 241 iterations

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	24	
	Used	Total
Number of observations	361	372
Number of clusters [sub]	93	
Model Test User Model:		
	Standard	Robust
Test Statistic	15.179	6.728
Degrees of freedom	3	3
P-value (Chi-square)	0.002	0.081
Scaling correction factor		2.256
Yuan-Bentler correction (Mplus var	iant)	

${\tt Parameter} \ {\tt Estimates:}$

Standard errors Robust.cluster
Information Observed
Observed information based on Hessian

Regressions:

Estimate Std.Err z-value P(>|z|)

kcal ~					
sub		-0.357	0.534	-0.668	0.504
preFF		-1.529	0.454	-3.367	0.001
bmi		41.413	17.364	2.385	0.017
sex		-55.320	43.797	-1.263	0.207
age_yr		-55.000	31.362	-1.754	0.079
avg_vas		70.058	29.848	2.347	0.019
meal_order		7.533	6.795	1.109	0.268
rsk_stts_m		-16.321	45.944	-0.355	0.722
ps_prop		142.185	22.396	6.349	0.000
psxrisk_nt	(c)	-69.167	37.010	-1.869	0.062
broc_kcal ~					
preFF		-0.078	0.072	-1.086	0.278
bmi		-0.418	2.469	-0.169	0.866
sex		6.248	7.864	0.795	0.427
age_yr		12.709	8.017	1.585	0.113
broc_vas		12.293	2.878	4.271	0.000
meal_order		-0.952	1.436	-0.663	0.507
rsk_stts_m		7.403	7.931	0.934	0.351
ps_prop		6.080	5.466	1.112	0.266
psxrisk_nt	(a)	-14.526	7.176	-2.024	0.043
kcal ~					
broc_kcal	(b)	1.232	0.332	3.713	0.000
Intercepts:					
intercepts.		Estimate	Std.Err	z-value	P(> z)
.kcal		128.447	416.610	0.308	0.758
.broc_kcal		-115.897	66.690	-1.738	0.082
.bloc_kcai		110.007	00.030	1.750	0.002
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.kcal		45174.008		8.233	0.000
.broc_kcal		1979.041	687.977	2.877	0.004
Defined Parameters:					
		Estimate	Std.Err	z-value	P(> z)
ab		-17.895	9.697	-1.845	0.065
total		-87.063	38.089	-2.286	0.022

There was a significant level indirect effect (p=0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.