SUPPORT VEXTOR MASCHINEN (SVM) . MASCHIVELLES LEPNEN Das hiel von SVM istes, die optimale Trennlinie (ZD) oder Trennebeue (3D) oder Trennhyperebeue (niehrak 3D) zu finden, welche die Trainingsdaten optimal trennt.

(1) Wir brauchen Trainingsdaten um das SVM Algorytmus anzuwarden. Das heißt, es handelt sich um ein

. wherwachter Lernalgorythmus.

(2) Die Trennung der Daten in Klassen/Groppen ist deshalb optimal, weil der Abstand zu den Daten maximal ist.

(3) SVM ist ein Klassifikationsalgrorythmus. Das bedeutet, dass wir die vorhandenen Daten nutzen um hervorzusagen zu neldrer klasse einen neven Datenpunkt gehört.

BILD-BEISPIEL			y (Gewicht)	
×	Y	klasse	Mogliche Trenlinie	
155	50	9	90	
160	Go	1	80	
158	68	9		
150	58	10	70 +	
170	55	9	Moghane	
165	90	8	50 - Mennhine	
175	85	57	155 160 165 170 175 180 165 170×(GN) 3e)	

18	82	07									
190	75	67	Beide utogliche Trennlinien, trennen die								
		6	2D. Flache in 2 Raume, welche Alle								
	185 72 8 20. Flache in 2 Rayne, welche Alle Daten der Klasse beinhalten.										
4	Allerdings der Abstan zw den Tremhinien und den Punkten										
ist	ist nicht maximal.										
3	Besser ist die linie durch den Punkten [190,0] [0,90]										
W:	Mit 2D und mehrere klassen:										
seis	pp. (jegeben si	nd ogende Punkte:								
	R	ote (nlass	(e + 1) : [1,1],[2,3],[3,2]								
	B	LAUE (Klasse	die optimale Trennlinie (y=mx+b) welche die								
Zje	: a) Findow Sie	die optimale Trennlinie (y=mx+b) melone die								
	_	- 1 - 1/14/	$\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}}$								
	6) Berechne	en sie die Abstante (Margin) der nachst. Punkten zur Trennline								
	0	gelegenen	Punkten zur Trennline								
		E) denti	fizieren die die Support Veltoren								
	11		y=mx+b								
Se	Hink	1. Funkt	re einzeichnen.								
			+ A2 B1 B3								
			25								
			A1 A3								

Schriff 3. Berechnung Pynyet de Trennlinie.

L1.
$$\overline{A2} - \overline{B2}$$
 . $\frac{y-3}{x-2} = \frac{2-3}{6-2} \longrightarrow \frac{y-3}{x-2} = \frac{-1}{4} \longrightarrow y = 3 - \frac{1}{4}(x-2)$

(a)
$$y_1$$

 y_2
 y_1
 y_2
 y_1
 y_2
 y_1
 y_2
 y_2

(-)

L2.
$$\overline{A3}$$
-B1 $\frac{y-2}{x-3} = \frac{3-2}{5-3} \rightarrow \frac{y-2}{x-3} = \frac{1}{2} \rightarrow y = 2 + \frac{1}{2}(x-3)$

 $[x_0,y_0] \rightarrow [4,2^{1}5]$

Schriff 4. Maximieung der Abstande zw. der linie und die Punkte A3 & B1

Abstand zw. linie
$$y = mx + b$$
 und punkt. $[x_1, y_1]$

$$d = \frac{|mx_1 + y_1 + b|}{\sqrt{m^2 + 1}}$$

Abstand Linie und A3:
$$d_{L\cdot A3} = \frac{|m.3+2+b|}{\sqrt{m^2+1}}$$
 Beide Abstandan
Abstand hinie und B1: $d_{L\cdot B1} = \frac{|m.5+3+b|}{\sqrt{m^2+1}}$ Reide Abstandan
Abstand hinie und B1: $d_{L\cdot B1} = \frac{|m.5+3+b|}{\sqrt{m^2+1}}$ Abstand minimal.
 $3m+2+b=5m+3+b \rightarrow 2m=-1 \rightarrow m=\frac{-1}{2}$

Abstand linie and B1:
$$d_L \cdot B1 = \frac{|m.5+3+b|}{\sqrt{m^2+1}}$$

$$3m+2+b = 5m+3+b \rightarrow 2m = -1 \rightarrow m = -\frac{1}{2}$$

 $y = -0.5 \times +0.5$ a)
$$b = 0.5$$

$$d_{1.A3} = \frac{|3.\frac{1}{2} + 2 + 0.5|}{\sqrt{\frac{1}{4} + 1}} = \frac{1}{\sqrt{\frac{5}{4}}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 1_{1.B1}$$

$$(-) \begin{array}{c} 1 : \frac{y-1}{x-5} = \frac{4-1}{1+5} \rightarrow y = 1 - \frac{3}{4}(x-5) \\ (-) \end{array}$$

L2:
$$\frac{y-3}{x-4} = \frac{1-3}{1-4} \rightarrow y=3+\frac{2}{3}(x-4)$$

Bispie.

L1:
$$\frac{y-1}{x-5} = \frac{4-1}{4-5} \rightarrow y=1-\frac{3}{4}(x-5)$$

L2: $\frac{y-3}{x-4} = \frac{1-3}{1-4} \rightarrow y=3+\frac{2}{3}(x-4)$
 $\frac{y-1}{4-5} = \frac{4-1}{4-5} \rightarrow y=1-\frac{3}{4}(x-5)$
 $\frac{y-1}{4-5} = \frac{4-1}{4-5} \rightarrow y=1-\frac{3}{4}(x-5)$
 $\frac{y-1}{4-5} = \frac{4-1}{4-5} \rightarrow y=1-\frac{3}{4}(x-5)$
 $\frac{y-1}{4-5} = \frac{4-1}{4-5} \rightarrow y=1-\frac{3}{4}(x-5)$

$$\rightarrow 0 = -2 - \frac{3}{4}(x-5) - \frac{2}{3}(x-4) \rightarrow 2 = \frac{-3}{4}x + \frac{15}{4} - \frac{2}{3}x + \frac{8}{3} \rightarrow$$

SVoltbren: A3[2,2] B2[4,2] &