

G L O B A L I S S U E MONITORING

일본 반도체 산업정책 동향과 시사점

2025. 07.

도 쿄 무 역 관

- 반도체 산업의 부침을 겪은 일본은 경제안보 위협과 기술패권 경쟁 속에서 자국 중심의 공급망 구축과 첨단반도체 기술을 확보하기 위한 단계별 산업정책을 전개 중
- ◈ 첨단기술 확보와 글로벌 가치사슬 주도권 확보를 위해 일본정부는 정책지원을 강화 중, 한국도 실용·맞춤형 기업지원정책과 기능중심·상호보완 관점의 생태계 조성이 요구

Ⅰ. 일본 반도체 산업의 최근 50년 간 동향

- □ (`70~`90년대) 정부의 전폭적 지원과 높은 기술력으로 <u>황금기</u> 진입
 - 美 Intel의 DRAM 개발 성공(`70년) 이후, 일본은 후발주자로 나서며 전자 대기업*을 중심으로 **DRAM 자체 개발 및 사업화**를 추진 * 파나소닉, 히타치, NEC, 도시바, 후지쓰, 미쓰비시전기
 - 특히 오일쇼크로 美기업들이 반도체 투자를 줄여가는 시기에, 일본은 정부의 전폭적 지원과 기업들의 기술력 확보로 `80년대 들어 시장을 장악
 - (정부) 초LSI기술연구조합을 중심으로 △반도체 기업의 R&D 중복
 투자 방지, △노하우 공유, △소·부·장 중소기업 육성 등을 지원
 - (기업) 정부 지원으로 반도체 투자를 지속하여 우수한 공정 수율과 저렴한 단가로 경쟁력을 확보하고 엔저를 이용해 시장점유율을 제고
 - `90년 기준 세계 상위 10개사 중 6개사 차지, 생산액은 `70년도 대비
 8배 이상으로 확대되어 절정기 향유

세계	세계 반도체 제조사 매출 10위권 변동 추이			日 반도체 생산액 추이(1961~2017)
순위	1971년	1990년	2022년	- (단위 : 조 엔) 6 ↑
1	TI(□)	NEC(일)	삼성전자(한)	
2	모토로라(미)	도시바(일)	인텔(미)	● 혼성집적회로
3	페어차일드(미)	히타치(일)	SK하이닉스(한)	4 반도체소자
4	NS(□)	모토로라(미)	마이크론(미)	반도체집적회로
5	Signetics(□)	인텔(미)	퀄컴(미)	3
6	NEC(일)	후지쓰(일)	브로드컴(미)	
7	히타치(일)	TI(□)	미디어텍(대만)	2
8	AMI(□)	미쓰비시(일)	TI(□)	
9	미쓰비시(일)	필립스(네)	엔비디아(미)	
10	Unitrode(□)	마쓰시타(일)	AMD(□)	0 1961년 1971년 1981년 1991년 2001년 2011년 2017년

* 주 : TSMC는 '반도체 제조 서비스기업'에 포함되어 제조사 매출 순위에 미포함

* 자료원: Gartner, 경제산업성「기계통계연보」, 일본반도체역사관

- □ (`90~`10년대) 대내외 환경변화로 <u>쇠퇴기</u> 진입
 - 통상여건의 변화와 버블경제 붕괴로 **정부의 정책적 지원과 민간투자가** 모두 **후퇴**하여 일본 반도체의 글로벌 경쟁력이 약화된 시기

구분	현황
시장	ず.IE. 자동차 등 반도체 소비 확대로 비용절감을 위해 '팹리스-파운드리' 글로벌 분압체제 형성
통상	◆ 미-일 반도체협정과 플라자합의로 인해 일본 반도체산업의 美 시장 점유율 상실◆ 비용 상승, 투자·R&D 지연 등 상황 발생
대내	◆ 버블경제 붕괴로 반도체 부문 투자 동력이 상실 및 산업 침체기 지속◆ 자체기술 및 내부거래에 집중하여 파운드리 전환 등 산업경쟁력 재창출 기회를 놓침

- 구조조정 실패와 해외기업의 인수·합병*으로 `19년 일본의 세계 반도체 시장점유율은 10%대 이하로 추락**
 - * 엘피다 파산(`12년), 도시바 반도체부문 매각(`17년), 후지쓰 반도체공장 매각(`19년)
 - ** `19년 세계 반도체기업 상위 10개사 중 日 기업은 키옥시아 1개사가 유일(Gartner)
- 다만, ^①구형 메모리반도체와 ^②비메모리반도체, ^③제조장비·소재 등 **후방기업을 중심으로 산업계가 재편**되어 글로벌 경쟁력을 보유
 - **※ 부문별 일본의 세계시장 점유율** (자료원 : 경제산업성, 블룸버그)
 - ^①(^{23년}NAND 플래시) ^{1위}삼성(32.8%), ^{2위}SK하이닉스(19.0%), ^{3위}키옥시아(18.4%) 등
 - ^{②(21년}전력반도체) ^{1위}인피니온(26%), ^{2위}미쓰비시전기-도시바(15%), ^{3위}온세미컨덕터(11%) 등
 - ③(^{21년}제조장치) ^{1위}미국(35%), <u>**2위일본(31%)**</u>, / (^{21년}소재) <u>**1위일본(48%)**, ^{2위}대만(16%) ^{3위}한국(13%) 등</u>
- □ (`10~`20년대) 코로나 팬데믹, 미중 무역 분쟁 등으로 **공급망 단절을 경험**, 산업대전환의 핵심으로 반도체 산업에 다시 집중해 재도약 계기 마련
 - 반도체를 경제안보 전략물자로 지정하고 「반도체·디지털 산업전략」을 개정, 제조역량 부활을 위한 국내외 기업 불문 단계별 정책 지원계획 수립

① 미국,EU,대만 등 우방국과의 협력 강화에 방점

지난 정책 대비 차이점 * 제조기업 유치를 통한 첨단 제조기업 확보를 우방국에 의존하길 희망

- ② 실패한 기업이 아닌 우수한 기업과의 협력
 - * 라피더스 투자(출자)기업은 주요 반도체 수요기업 중심으로 도요타, 소프트뱅크, NTT, 미쓰비시UFJ은행 등 8개사 참여, 출자액 73억 엔
- 일본의 강점인 소재·부품·장비 기업을 대상으로도 공급망 확보와 생산설비 구축 등 보조금을 지원하며 자국 내 투자 확대를 유도

□ 일본 반도체산업의 현 위치

- (시장 점유율) 日의 글로벌 시장 점유율은 `23년 4위(9.0%)로 추정,`23년, `24년 매출액 기준 상위 10대 기업에도 일본기업은 전무
 - * `23년 세계 반도체시장점유율(%) : ^{1위}美 50.2, ^{2위}韓 **13.8**...^{4위}日 **9.0,** ^{5위}臺 7.0 (美SIA)

<2024년 세계 반도체 제조사 매출 상위 10대 기업 (자료원 : Gartner)>

순위	기어머/그기며\	`24	`23년도 대비	
正刊	기업명(국가명)	매출액(\$백만)	시장점유율(%)	순위 증감
1	엔비디아 (미국)	76,692	11.7	+2
2	삼성전자 (한국)	65,697	10.0	-
3	인텔 (미국)	49,804	7.6	△2
4	SK하이닉스 (한국)	44,186	6.7	+2
5	퀄컴 (미국)	32,976	5.0	△1
6	브로드컴 (미국)	27,801	4.2	△1
7	마이크론 (미국)	27,619	4.2	+5
8	AMD (미국)	24,127	3.7	△1
9	애플 (미국)	20,510	3.1	△1
10	미디어텍 (대만)	15,934	2.4	+3
***************************************	전 세 계	655,882	100.0	

- * 주 : TSMC는 '반도체 제조 서비스기업'에 포함되어 제조사 매출 순위에 미포함. 다만 TSMC가 자체 발표한 <u>'24년 연 매출액은 886억 달러</u>로, <u>사실상 세계 반도체기업 1위로 추정</u>
 - (비메모리) 하지만 비메모리 부문*에선 한국보다 앞선 4위를 기록 * 세계 비메모리 반도체 점유율(22년 %) : ^{1위}美 54.5. ^{3위}臺 10.3. ^{4위}日 8.6. ^{6위}韓 3.3
 - ①(이미지센서) 저노이즈, 고감도기술 등 성능면에서 소니가 선두 유지 * 출하실적 순위(22년 %): ^{1위}소니세미컨덕터 22.2, ^{2위}삼성전자 19.7, ^{3위}옴니비전 14.3 (경산성)
 - ^②(MCU) 차재 MCU를 중심으로 르네사스가 시장점유율 3위(13.3%) 기록 * 출하실적 순위(22년, %): ^{1위}ST마이크로 17.8, ^{2위}마이크로칩 16.7, ^{3위}르네사스 13.3 (경산성)
 - ③(전력반도체) `22년 기준 **일본계 기업이 25.5% 점유율**을 기록*
 - * 미쓰비시전기(7.7%), 후지전기(6.1%), 도시바(5.1%), 르네사스(3.3%), 로움(3.3%) (경산성)
 - (메모리) 키옥시아가 낸드플래시 생산, 세계시장 점유율 `^{23년}3위

기업	삼성	SK하이닉스	키옥시아	WD	마이크론	기타
(국가)	(한국)	(한국)	(일본)	(미국)	(미국)	
점유율(%)	32.8	19.0	18.4	14.7	11.0	4.1

자료원 : 블룸버그

○ (소·부·장) 日기업의 반도체 관련 소재·부품 점유율은 48%로 압도적, 장비부문에서도 미국에 이어 30%대 점유율로 세계 2위를 유지

자료원: 경제산업성,「半導体・デジタル産業戦略」

<참고 - 반도체 소재·부품·장비 부문 주요 기업 (2022년 기준)>

그ㅂ	ᄌᄋ 프모		세계 상위 기업	
구분	주요 품목	1위	2위	3위
	· 실리콘웨이퍼	신에츠화학	SUMCO	Global Wafers
	· 포토블랭크마스크	HOYA	ULVAC	신에츠화학
	· 포토레지스트(g선, i선)	도쿄오카공업	듀폰	스미토모화학
	・포토레지스트(KrF)	도쿄오카공업	듀폰	신에츠화학
소	・포토레지스트(ArF)	JSR	신에츠화학	도쿄오카공업
재	· 포토레지스트(EUV)	도쿄오카공업	JSR	신에츠화학
· 부	· CMP슬러리	인테그리스	후지필름	듀폰
' 품	· 세정액(레지스트박리액)	듀폰	도쿄오카공업	Merck
_	· 폴리머 제거용 세정액	인테그리스	Merck	듀폰
	· 백그라인드테이프	미쓰이화학히가시세로	린텍	닛토덴코
	· 다이싱테이프	린텍	닛토덴코	후루카와전기공업
	· 다이 어태치 필름	레조낙	닛토덴코	LG화학
	· 노광장치	ASML	캐논	니콘
	· 드라이에칭장비	램리서치	도쿄일렉트론	Applied Materials
장	・반도체연마장치(CMP)	Applied Materials	에바라제작소	Hwatsing Technology
	· 세정장치(매엽식)	도쿄일렉트론	SCREEN	램리서치
비	· 세정장치(배치식)	SCREEN	도쿄일렉트론	
'	· 웨이퍼검사장치	나노시스템솔루션즈	옵티마	코벨코과연
	· 마스크외관검사장치	레이저텍	KLA	

자료원: 후지키메라총연,「2024 先端/注目半導体関連市場の現状と将来展望」/ 음영은 일본기업

Ⅱ. 일본의 반도체 산업정책

- □ 일본 반도체 산업정책의 최근 흐름
 - (배경) 공급망 교란, 지정학 갈등 등 대내외 위협으로부터 일본의 경제안보를 공고히 하기 위한 반도체 산업의 전략적 육성 필요
 - (1단계 19~21) 경제안보 위기 해소와 코로나 팬데믹이 촉발한 디지털 전환(DX)에 대응하기 위해 국내 공급망 구축 및 강화를 전개
 - (2단계^{'22-현재}) 첨단산업 주도권 확보를 통한 중장기 성장전략에 반도체 산업의 중요성이 높아지면서 국제협력·인재양성·R&D로 범위 확대
 - (과거와의 차이점) ¹과거 경쟁국과의 전략적 협력. ²국내·해외기업 유치를 위한 정부의 공격적 지원. ⁶글로벌 정세변화와 기술트렌드 지속 점검

<일본의 반도체 산업정책 추진 흐름>

과거 (70년~`19년

세계시장 제패했던 일본 반도체 산업, `19년 점유율 10% 미만으로 추락

실패 원인

- · 글로벌 반도체산업 변화(팹리스-파운드리 분업) 트렌드 대응에 실패
- · B 반도체 산업성장 경계한 미국의 견제 (미-일 반도체협정, 플라자합의)
- · 버블경제 붕괴로 자체적인 반도체 산업 투자·R&D 동력 상실

(1단계) (19년~21년)

추진배경

●디지털전환(DX) 트렌드에 대응

- ◆ 반도체 부문 경쟁력 제고 필요성 증가

❷경제안보 확보 필요성 대두

 코로나 팬데믹으로 빨라진 디지털전환 │ < 미-중 갈등, 코로나 팬데믹, 르네사스 공장 화재 등으로 반도체 공급망 단절

결과

「반도체・디지털 산업전략」발표 (21년 6월), 디지털청 개청 (21년 9월)

- ☞ **반도체**는 '산업의 쌀', 경제안보 핵심자원으로 인식 전환
- **☞ 국내 반도체 생산기반 강화로 산업경쟁력 확보, 안정적 공급망 구축**

(2단계) (22년~현재)

추진배경

♠첨단산업 주도권 확보

- ◆ 기술 주도권 확보를 통한 첨단 디지털 산업 육성 필요성 (디지털열도진화론)
- ◆ 日 소부장 기업 활용한 반도체 GVC 확대필요

2일본의 경제안보 공고화

- ◀ 핵심광물 이용한 중국의 경제적 위압
- ◀ 러-우 전쟁 발발, 수에즈 운하 이슈 등 지정학 문제로 인한 공급망 혼란 재발

결과

「경제안전보장추진법」제정(22년 5월),「반도체・디지털 산업전략」갱신 (23년 6월)

- ☞ 공급망 안정화뿐만 아니라 **첨단반도체 기술개발, 생산능력 확보로 정책을 확대**
- ☞ 정부의 對반도체산업 재정지원 및 투자 계획 구체화, 지원규모 대폭 확대
- ☞ 미국·대만·EU 등과의 국제협력 강화, 글로벌 반도체 공급망에서 일본 위치 확립
- ☞ **반도체 전문인력 양성**을 위한 대내외 연구기관과 협력, 반도체 생태계 구축 도모

자료원: KOTRA 도쿄무역관

- □ 반도체·디지털 산업전략
 - ① (로드맵) 반도체 산업경쟁력 강화를 위한 단계별 정책방향을 제시
 - (1단계) 반도체 국내 생산기반을 확보, 특히 TSMC 공장 유치로 일본 산업계의 수요가 큰 12~28nm 로직 반도체*를 수급
 - * 자동차, 산업기계, 가전 등에서 수요가 크나, `23년 당시 日은 40nm제조가 대부분
 - **(2단계) 차세대 반도체 개발, 메모리 고성능화**, 특히 2nm 로직 반도체제조거점(라피더스*), Beyond 2nm R&D거점(LSTC**)을 설립
 - * '27년 양산이 목표. 美IBM(나노시트), 벨기에 imec(EUV노광기술) 공동 개발 중
 - ** 최첨단 SoC, 칩렛 고밀도 IF설계, 첨단 패키지 요소 기술 등 연구
 - (3단계) 미래 기술개발, 특히 고도 처리기능과 에너지 절감 성능을 갖춘 광전 융합, 양자 기술 등을 연구해 게임체인저를 확보
 - ② (지원제도) 보조금, 세제지원, 인프라 구축 등 직·간접 지원 진행
 - ⑦ 보조금 (생산설비 투자, R&D 지원)
 - 반도체산업 보조금 지원을 위해 3가지 기금을 마련, 2021년도~2023년도
 누계 기준 약 3.8조 엔(약 36.7조 원) 규모를 조성 (`23년 日 GDP의 0.64%)

<일본의 반도체 지원 보조금 유형 (자료원 : 경제산업성) >

지원제도	개요	지원규모	주요 수혜기업
특정반도체기금 (1.7조 엔)	생산설비 투자 지원(보조금) *첨단반도체(로직, 메모리) 관련	(`21년 보정) 6,170억 엔 (`22년 보정) 1,670억 엔 (`23년 보정) 8,820억 엔	JASM(TSMC) 키옥시아 WD, 마이크론
경제안보기금 (0.9조 엔)	생산설비 투자 지원(보조금) *레거시반도체, 소·부·장 관련	(`21년 보정) 470억 엔 (`22년 보정) 3,686억 엔 (`23년 보정) 4,376억 엔	르네사스, 도시바, 캐논, 로움, SUMCO, 이비덴, 레조낙 등
포스트5G기금 (1.2조 엔)	연구개발 지원 *첨단반도체(로직, 메모리) 관련	(`21년 보정) 1,100억 엔 (`22년 보정) 4,850억 엔 (`23년 보정) 6,461억 엔	라피다스, LSTC, TSMC 3DIC, 삼성 등

- 2024년도 보정예산과 2025년도 본예산에서도 AI 및 반도체 산업지원, 반도체 설계·R&D 및 양산에 **각각 1.5조 엔, 3,328억 엔 예산을 편성**
- 이시바 총리는 「AI·반도체 산업 기반 강화 프레임」을 통해 `30년도까지 10조 엔 이상 공적지원을 추진하겠다고 발표* (`24.11월, 총리재선출 기자회견) * 보조금·위탁비(6조 엔) 및 출자·채무보증(4조 엔) 등 10조 엔 이상 마련

(나) 세액공제 (국내생산·판매 확대)

- 레거시반도체(MCU, 아날로그, 파워반도체) 제조 기업을 대상으로 생산량과 판매량을 비례·계산하여 법인세를 일정 한도 내에서 감세 추진
 - 10년 간 세제 혜택을 부여하고 당해 소진 못한 세액공제액은 최대 3년까지 이월 허용 (세액공제 우대금액은 법인세액의 최대 20%)

<전략물자 국내생산촉진세제 中 '반도체' 부문 공제액>

	품목	공제액	
	마이크로 컨트롤러 (MCU)	28-45nm상당	1.6만 엔/매
		45-65nm상당	1.3만 엔/매
반도체		65-90nm상당	1.1만 엔/매
(200mm 웨이퍼		90nm 이상	7천 엔/매
환산 단위당		파워 (Si)	6천 엔/매
공제액 기준)	아날로그	파워 (SiC, GaN)	2.9만 엔/매
	인도세 (파워반도체 등)	이미지센서	1.8만 엔/매
		기타	4천 엔/매

자료원 : 내각관방, 경제산업성

때 대출 및 이자 지원 (생산설비 투자 촉진)

- (장기·저리대출) 지정금융기관인 일본정책금융공고를 활용하여 민간금융기관과 투-스텝 론 방식의 자금융자 지원*
 - * 사업 예산규모가 50억 엔 이상, 대출기간 5년 이상일 경우
- (대출이자 지원) 첨단반도체 생산·설비투자를 위한 민간사업자의 금융 대출에 대해 정부가 이자보조금을 민간금융기관에 대신 교부

※ 특정반도체이자보급사업

- 첨단 반도체 생산시설 정비 등 공급확보계획에 관한 사업을 정부로부터 인증받은 민간사업자가 자금을 융자한 민간금융기관을 대상으로 NEDO가 이자보조금을 지원

구분	2022년 회계연도	2023년 회계연도	2024년 회계연도	
총 예산액 (관리비 포함)	9천만 엔	3천만 엔	3천만 엔	
실적액	없음			
실시건수	없음			

자료원: 신에너지산업종합기술개발기구(NEDO)

라 인프라 정비 (반도체 기업 간접지원)

○ 반도체 생산거점이 구축되는 지역의 인프라 정비를 위해 해당거점 소재 지역 지자체에 '23~'24년 간 149.5억 엔 교부금*을 지원

<반도체 생산거점 인프라정비 관련 지자체 교부금 지원사항(단위: 백만 엔)>

	지원액	경제산업성 고어요스		국토교통성		
	시원력 (A+B)	경세선립경 (A)	공업용수 정비사업	(B)	하수도정비 사업	도로정비 사업
홋카이도 (라피더스)	4,168	0	0	4,168	2,469	1,699
이와테 (키옥시아)	1,634	653	653	981	760	221
히로시마 (마이크론)	1,050	643	643	407	0	407
구마모토 (JASM)	8,099	594	594	7,505	530	6,975
총 계	14,950	1,890	1,890	13,061	3,759	9,302

자료원 : 내각관방

- ③ (국제연대) 차세대 반도체 협력을 중심으로 미국 등 우호국과 연계
- (미국) 미·일 반도체 연구센터(NSTC, LSTC) 공동으로 차세대 반도체 개발·설계, 인재육성. 중국에 의존하지 않는 반도체 공급망 구축
- (기타) EU, 벨기에, 네덜란드, 영국, 한국*, 대만 등과 차세대반도체 공동 연구개발 및 활용사례(usecase) 창출
 - * 韓 SK하이닉스 美 인텔 日 NTT, 광반도체를 공동 개발 추진 ('24.1월, 닛케이)
- ④ (인재육성) 산·학·관 연계「반도체 인재 육성 컨소시엄^{*}」설치하고 美 Tenstorrent사와 연계해 AI반도체 설계·제조 인재육성사업을 실시^{**}
 - * 규슈, 홋카이도, 간토 등 6개 지역 컨소시엄에서 세미나, 인턴십 등 제공
 - ** 日 엔지니어 약 200명을 모집하여 AI반도체 설계부문 벤처기업인 美 Tenstorrent에 보내 5년간 미국연수 실시 (포스트5G기금 채택사업, 금액비공개)
- ⑤ (친환경 대응) 반도체 필수소재인 PFAS의 미·EU 규제에 대응, 반도체 고집적화, 아키텍처 최적화, 차세대 친환경 소재 개발

< 최신 일본의 반도체 산업전략 체계도 (자료원 : 경제산업성) >

「반도체·디지털산업전략」 목 표 일본의 디지털기반을 구축하여 DX·GX·경제안보를 달성하고 고도 디지털 사회 실현과 부가제품·서비스를 창출해 경제성장

반도체 부문 세부목표

▶ 2030년 日 반도체 생산기업 매출액 합계 15조 엔 이상(20년 5조 엔)▶ 2030년 매출액 기준 세계시장 점유율 14% 이상 회복

①로드맵	STEP 1 생산기반 강화		STEP 2 차세대기술확보	STEP 3 미래기술 연구개발
첨단로직반도체	제조기반 확보	$\overline{}$	차세대기술확보 (Beyond 2nm)	Post-5G 실현 (GX 세계주도권 확보)
첨단메모리반도체	제조기반 확보 (DRAM, 낸드플래시 등)		혁신메모리 개발 (대용량, 고속, 저비용)	혼재메모리 개발 (소형, 고속, 저전력)
산업용특화반도체	제조거점 정비 (MCU, 파워, 아날로그)		차세대기술확보 (SiC파워반도체 등)	GX반도체 실용화 (GaN, Ga2O파워)
첨단패키징	개발거점 설립		차세대기술확보	게임체인저 확보 (광칩렛, 혼재SoC 등)
소재·부품·장비	공급망 강화		부가가치 확대	우위성 공고화

②지원제도	③국제연대	④인재육성	⑤친환경 대응
·보조금(^{21~23년} 3.8조 엔) ·생산판매 비례 세액공제 ·저리대출 및 이자 지원 ·인프라 구축 지원	· 美, EU 등 우호국과 반도체협력, R&D강화	· 차세대 반도체 설계,제조 프로페셔널 육성	· PFAS규제 대응 · 반도체 고성능화

	지원대상	보조금	세액공제	금융지원	인프라 구축
	[●]메모리반도체 (DRAM, 낸드플래시 등)	· 키옥시아 (2,429억 엔)		장기·저리대출	
생산 설비 투자	⁰시스템반도체 (로직, MCU, 아날로그 등)	· JASM(TSMC) (12,080억 엔) · 마이크론 (2,135억 엔)	전략물자 국내생산촉진세제 *도입예정	(투스텝 론) 특정반도체 이자보급사업	4개 지역 (149.5억 엔)
	⁶소재·부품·장비 (희소가스, 실리콘웨이퍼 등)	· 캐논, 레조낙, 키옥시아 등 24건 4,000억 엔		(1.5억 엔)	· 홋카이도 · 이와테 · 히로시마
	● 전공정기술개발	· 첨단반도체 컨소시엄 · 도쿄일렉트론 등			· 구마모토 ※ 지방창생 예산을 활용
R&D 지원	⁰ 후공정기술개발	· 삼성, TSMC, 소니, JSR 등			
	[©] 차세대 반도체 개발 파일럿 생산	· 라피더스 (17,225억 엔) · LSTC, NTT 등			

요약

- ① **대규모 보조금으로 글로벌 반도체 제조기업 유치**해 반도체 생산능력을 강화
- ② 민관 주도 프로젝트(라피더스)를 통해 최첨단 반도체 제조능력 확보
- ③ 日 소·부·장의 우위성을 활용해 **글로벌 반도체 공급망 주도권 확보** * 1번은 2번을 위한 필수 사항으로 인식

Ⅲ. 일본 정책 분석 및 평가

- □ 대규모 재정지원에 초점 맞춘 일본의 정책
 - 반도체산업의 부침을 모두 경험한 일본은 자국 반도체산업 부활을 위해 기업의 국적과 규모를 가리지 않는 對기업 지원정책을 추진*
 - * (日) 반도체 보조금 지원 상한만 명기되어 있으며 국적·기업규모별 차등이 없음
 - 日정부는 **대규모 보조금 지원**과 엔저를 활용, 글로벌 반도체 기업을 유치하고 **자국 기업 경쟁력 확보를 위한 발파**으로 삼기를 희망
 - 또한, 日은 소·부·장과 핵심기술 경쟁력을 전략적 불가결성으로 활용 하여 글로벌 반도체 기업을 자국 공급망으로 끌어들이는 모습
 - * (日) 소니그룹, 미쓰비시전기 등 8개사 `21~`29년까지 5조 엔 설비투자 추진, (해외) TSMC·마이크론 일본 내 생산설비 구축, 삼성도 첨단반도체 R&D센터 설립
 - ※ 한국의 경우, 반도체산업 보조금 규모는 日에 비해 약 1/3 수준으로 추정되며, 직접지원보다는 세제지원, 규제개혁 등 간접 지원형태가 특징
 - * (日) `23년까지 3.8조 엔 지원, `30년까지 10조 엔(**96조 원**) 이상 지원 방침 (韓) 「반도체 재정투자 강화방안(`25.4월)」통해 약 **33조 원** 규모 재정지원 발표
 - ※ 한국은 반도체 산업경쟁력을 확보를 위해 대형 수요기업을 활용한 글로벌 소부장 기업 유인 전략을 더욱 강화할 필요
- □ 제조·생산에만 초점 맞추지 않고 각 공정별 기업*들도 지원
 - * 팹리스(설계), 파운드리(제조), 후공정(OSAT), 소부장 등
 - 일본은 경제안보기금을 활용해 반도체 부문 소·부·장 기업들의 국내 생산설비 현대화 및 확충사업을 직접지원 (*24년 기준 24건 4,000억 엔) * (예) SUMCO (300mm 실리콘웨이퍼, 750억 엔), 미쓰비시화학 (합성석영가루, 37억 엔)
 - 또한 Post-5G기금으로는 설계기술 R&D, 파일럿 생산을 지원 중* * (예) 라피더스 (2nm 로직반도체 전공정-후공정 부문 보조금 지원)
- □ 경제안보상 국가 차원의 반도체산업 지배력 강화 조치 실시
 - (JIC) 정부 펀드자금을 이용해 ¹64억 달러를 들여 포토레지스트 제조기업인
 JSR 인수('244)** ²세계 3위 FC-BGA 제조사인 신코덴키 인수 돌입 ('25.2)
 - * 인수 배경에는 포토레지스트 분야의 경우, 일본기업들의 전 세계 시장점유율이 70%가 넘는 반면, 기업규모 및 매출액이 크지 않아 타국기업의 인수 대상이 될 우려도 감안
 - (라피더스) 법 개정을 통해 라피더스에 대한 정부출자(1천억 엔)를 확대, 민간금융기관을 통한 융자에 정부가 채무보증이 가능하도록 제도 변경('25.4.)

□ 차세대 반도체 시장선점을 위한 국제협력 도모

- 일본은 광전융합, 저전력 반도체 소재 개발 등 우위에 있는 기술을 차세대 반도체 시장의 게임체인저로 활용하기 위해 미국 등과 연대^{*}
 - * 일본 최첨단반도체기술센터(LSTC)와 미국 NSTC, 유럽 IMEC 간 R&D 연대
- 차세대 반도체 시장 경쟁력 확보를 위해 한국도 일본·미국 등과의 첨단기술 R&D 협력체계 구축과 대외 기술유출 방지 노력 필요

<참고:韓-日 반도체 지원 정책 비교>

762:## H CZM MC 07 142/		
	한국 💨	일본 ●
재 정 지 원	 '27년까지 첨단전략산업기금 20조 원 조성 첨단소부장中企 투자보조금('24추경 0.7조원) 인재양성, R&D 등에 '27년까지 5조 원 지원 외국인투자기업 대상 현금지원 한시적 상향 	 '21~'23년도 약 3.8조 엔 규모 지원 (특정반도체기금, 경제안보기금, 포스트5G기금) '30년까지 10조 엔 이상 지원방침 확정* (AI·반도체 산업 기반 강화 프레임 공표('24.11.))
금 용 지 원	· 반도체 저리대출 지원 (민관출자 17조 원)* * 첨단전략산업기금 내 포함 · 반도체생태계펀드 1.1조 원 으로 확대	 · 공공-민간금융기관 주도의 투-스텝 론 지원 (대출액 50억 엔 이상, 5년 이상 대출 시 저리대출) · 첨단반도체 생산설비구축사업 대출이자 보조금 1.5억 엔 지원('22~'24 회계연도 기준)
세 제 지 원	· 반도체 생산R&D설비 투자 세액공제(이월공제 10년) 당기분(기본공제) 추가 공제 대기업 중견 중소 공제 국가전략기술 15 25 10 반도체 20 20 30 국가전략기술 R&D 투자 세액공제 당기분(기본공제) 추가 공제 다기업 중견 중소 중소 국가전략기술 30-40 30-40 40-50 35-60	전략물자 국내생산 촉진세제 도입·운영 MCU, 아날로그, 파워반도체 등 대상 생산·판매량에 비례해 10년간 법인세 공제 (회계연도 법인세액 20% 상한, 세액공제액이 남을 경우 최대 3년간 이월 가능) 반도체 및 R&D 시설투자에 직접 관련한 세액공제는 없음
인 프 라 지 원	· 메가클러스터 내 인프라 구축 지원 확대 (지원한도 최대 1천억 원, 비율 최대 50%로 상향)	· 4대 반도체 생산거점 소재지 지자체를 중심으로 2년간 149.5억 엔 교부금 지원 (공업용수 18.9억 엔, 도로·하수도 정비 130.6억 엔)
인 재 양 성	· 반도체 전문대학원 지정·운영 · 해외 고급인재 유치 프로그램 신설 · 석박사 대상 R&D 프로그램 신설 · 전국 단위 반도체 아카데미 운영	· 7개 반도체 거점대학 선정(매년 1억 엔 지원) · 중고등학교, 대학교 내 반도체 커리큘럼 구축 · 미국, 네덜란드 등 우호국과 인재교류

자료원 : (한국) 정책브리핑, (일본) 내각부, 경제산업성

IV. 시사점

- □ (정책) 산업의 쌀이자 경제안보 품목인 반도체, '생존전략' 관점으로 접근
 - 반도체 산업은 특성상 세제혜택보다는 대규모 재정지원이 필수이며 보조금, 저리대출, 인프라 지원 등 장기적 지원전략이 요구
 - 정책지원의 명확한 목표 설정을 비롯해 혹여 실패하더라도 축적된 노하우와 성과를 활용할 수 있는 Fail-Safe 전략 마련도 필요*
 - * 성과달성에 실패하더라도 기술·인재·지식재산이 축적되어 차선책 수립이 가능
- □ (기업) 정책지원과 연계해 '민첩하게' 시장을 확보할 필요
 - 세계시장 선도를 위해 **우리 기업은 정부와 전략 공동체계를 형성**하고 **상호 간의 전략 목표를 공동 설계, 공유, 연계**할 필요*

※ 기업전략 및 정부정책의 연계성

- ^①우리 기업이 필요로 하는 <u>해외기업 투자유치에 관한 정부의 지원</u>
- ②반도체 공급망 중 '약한 고리'로 평가받는 국내외 주요기업은 직접인수 또는 투자
 - ▶ 일본정부는 산업투자혁신기구(JIC)를 활용해 JSR, 신코덴키 등을 인수하여 소·부·장 핵심 기술 유출을 선제적으로 차단
- ^③신규투자를 위한 컨소시엄 구성을 정부와 기업이 공동으로 주도
 - ▶ 라피더스, TSMC(JASM)는 금융-제조-수요기업의 공통투자로 자금력을 확보한 사례
- 특히 반도체 부문 소·부·장 기업을 단기간에 육성하는 것은 불가능 하므로 산업정책과 투자유치를 활용한 공급망 강화 전략이 필요*
 - * <u>日기업과의 전략적 제휴, M&A, JV 등</u>에 나서서 공급망 안정화에 협력할 필요
- □ (산업) 기능중심·상호보완의 '전략적 생태계 연대 모델' 구축
 - 규모와 국적을 불문하고 우리의 반도체 밸류체인에서 핵심기술 개발, 또는 수요에 따라 제 역할을 다할 기업에겐 실용·맞춤형 지원 수행^{*}
 - * <u>일본</u>은 대기업, 외투기업에 대해 <u>구분과 조건 없이 보조금정책을 추진</u>해 생산거점을 확보
 - 지역 반도체 클러스터 기업유치, 인재육성, 인프라 구축으로 우리의 반도체 생태계를 조성^{*}하는 한편, 韓-日 간 전략적 연대로 상호보완^{**}
 - * 설계·후공정·소부장 기업 대상 R&D 지원, 대학 연계 인재육성, 인프라정비 등 동시 추진
 - ** (韓) 메모리·양산기술 (日) 소부장·후공정 강점 보유, 상호 협력기회 가능 <끝>

<출처>

삼성전자, ≪삼성전자 30년사≫ 1999

최영락·이은경, ≪세계 1위 메이드 인 코리아, 반도체≫ 지성사, 2004

신장섭·장성원, ≪삼성 반도체 세계 일등 비결의 해부≫ 삼성경제연구소, 2006

한국무역협회, ≪1980년대 전성기 재연 꿈꾸는 일본 반도체≫, 2022

일본 후지키메라총연, ≪2024 先端/注目半導体関連市場の現状と将来展望」<市場編>≫, 2024

김양팽, ≪일본 반도체산업 부침과 부흥 노력 및 시사점≫ KIET 산업경제 8월호, 2024

미국 반도체산업협회(SIA), «2024 FACTBOOK», 2024

(재)한일산업·기술협력재단, ≪NOW 일본 산업리포트 – 일본정부의 반도체 정책과 반도체 산업의 현 주소≫, 2024

삼일PwC경영연구원, ≪글로벌 패권전쟁의 중심에 선 반도체 산업 – 글로벌 주요국의 반도체 지원 정책 포함≫, 2024

한국무역협회, ≪미-중 전략경쟁, 레거시 반도체로 전이되나? - 주요국의 레거시 반도체 정책 현황 및 시사점≫, KITA 통상리포트 Vol.06, 2024

대한민국 국회 '국회의원 정책자료', ≪반도체 산업경쟁력 강화를 위한 '한국형 반도체 지원정책의 방향과 과제' 토론회≫, 2025

일본 동양경제신보사, ≪주간 동양경제 제7231호(5.10~17.)≫, 2025

일본경제신문, "NTT、光の半導体開発で米韓と連合 政府450億円支援", 2024.1.29., https://www.nikkei.com/article/DGXZQOUC2693V0W4A120C2000000/

연합뉴스, "日이시바, "반도체·AI에 10조 엔 이상 지원", 2024.11.12. https://news.einfomax.co.k r/news/articleView.html?idxno=4331951

블룸버그, "Kioxia Files for Long-Delayed IPO as Samsung's Lead Grows", 2024.11.8., https://www.bloomberg.com/news/articles/2024-11-08/kioxia-files-for-long-delayed-ipo-as-samsung-s-lead-grows

매일경제, "32년만에 '1등' 바뀌었다...반도체 왕국 삼성마저 제친 이 기업은 어디", 2025.4.11., https://www.mk.co.kr/news/it/11289426

연합뉴스, "엔비디아, 삼성전자 제치고 글로벌 반도체 1위... SK하이닉스 4위". 2025.4.11. https://www.yna.co.kr/amp/view/AKR20250411046700003

머니투데이, "자율주행 기술 중국에 넘긴 교수, 매년 22건 '줄줄'... '민감국가' 논란 불러, 2025. 4.30., https://news.mt.co.kr/mtview.php?no=2025042722075334027

한국 산업통상자원부 <u>https://www.motie.go.kr/</u>

한국 정책브리핑 https://www.korea.kr/

일본 내각관방 https://www.cas.go.jp/

일본 경제산업성 https://www.meti.go.jp/

일본 반도체역사박물관 https://www.shmj.or.jp/

일본 신에너지산업종합기술개발기구(NEDO) https://www.nedo.go.jp/

Gatner https://www.gartner.com/en