

M.Phil. in Mathematical Finance

Numerical Methods in Finance II 2020

Tutorial 6 (Characteristic Function Pricing, FFT & Stochastic Volatility)

Problems

1. Implement the characteristic pricing method for geometric Brownian motion, to price a call option. Use the same parameters as in the notes, i.e, use stock parameters $S_0=50$, $\sigma=40\%$, T=1, r=6% and K=50 and algorithm specific parameters $u_{\rm max}=30$ and N=100. As in the notes, plot the integrands over the specified interval. Compare this value to the Black-Scholes value. Once you have this working, also price a put option. Note that for a put

 $P(K) = Ke^{-rT}(1 - P_2) - S_0(1 - P_1).$

- 2. Write a function called myFFT which implements the Fast Fourier Transform algorithm as described in the notes. To test your function, apply it to the vector $\mathbf{x} = [\mathbf{zeros}(1,16) \ \text{ones}(1,32) \ \mathbf{zeros}(1,16)]$. In two graphs, plot the real and imaginary components of the discrete Fourier transform of \mathbf{x} .
- 3. (Homework) Reproduce the Heston call option pricing problem in the notes for both the Milstein and characteristic pricing methods. Use option related parameters $S_0=100$, $\nu_0=0.06$, $\kappa=9$, $\theta=0.06$, $\sigma=0.5$, $\rho=-0.4$, T=0.5, r=3% and K=105.
 - For the Mistein approach use $N_{\rm m}=10$ updates (intervals) over the time interval and, for the characteristic pricing method, use $N_{\rm q}=100$ quadrature steps with an upper integration limit of $u_{\rm max}=30$.
 - Plot the Milstein Monte Carlo estimates as a function of sample size, for sample sizes in the range $n=1000,2000,\ldots,50000$, with a three-standard-deviation bound around the characteristic price. Remember to initialize your seed.
- 4. (Homework) Reproduce the Heston smile/skew plots in the notes using the characteristic pricing method.