DISCRETE FIXPOINT APPROXIMATION METHODS IN PROGRAM STATIC ANALYSIS

P. Cousot

Département de Mathématiques et Informatique École Normale Supérieure – Paris <cousot@dmi.ens.fr> <http://www.dmi.ens.fr/~cousot>

NACSA'98 P. Cousot

- !! denotes inevitable error when the invariant is violated

 $\begin{array}{ll} 3 & +\infty = 1073741823, \; -\infty = -1073741824. \\ 4 & \text{This questionmark indicates possible uninitialization} \end{array}$

NACSA'98 P. Cousot

STATIC PROGRAM ANALYSIS

- Automatic determination of runtime properties of infinite state programs
- Applications:
 - compilation (dataflow analysis, type inference),
 - program transformation (partial evaluation, parallelization/vectorization, ...)
 - program verification (test generation, abstract debugging, ...)
- Problems:
 - text inspection only (excluding executions or simulations)
 - undecidable
 - necessarily approximate

Abstract interpretation

Abstract interpretation [1, 2]:

- design method for static analysis algorithms;
- effective approximation of the semantics of programs;
- often, the semantics maps the program text to a model of computation obtained as the least fixpoint of an operator on a partially ordered semantic domain;
- effective approximation of fixpoints of posets;

- [1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Conference Record of the $Fourth\ Annual\ ACM\ SIGPLAN\text{-}SIGACT\ Symposium\ on$ Principles of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, New York,
- [2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269-282, San Antonio, Texas, 1979. ACM Press, New York, New York, USA.

NACSA'98

NACSA'98

FIXPOINT SEMANTICS

Program semantics can be defined as least fixpoints [3]:

 $\operatorname{lfp}^{\sqsubseteq} \mathcal{F}$

where

$$\mathcal{F}(\operatorname{lfp}^{\sqsubseteq} \mathcal{F}) = \operatorname{lfp}^{\sqsubseteq} \mathcal{F}$$
$$\mathcal{F}(x) = x \Longrightarrow \operatorname{lfp}^{\sqsubseteq} \mathcal{F} \sqsubseteq x$$

of amonotonic operator $\mathcal{F} \in \mathcal{L} \xrightarrow{m} \mathcal{L}$ on a complete partial order (CPO):

$$\langle \mathcal{L}, \sqsubseteq, \perp, \sqcup \rangle$$

where $\langle \mathcal{L}, \sqsubseteq \rangle$ is a poset with infimum \bot and the least upper bound (lub) \sqcup of increasing chains exists.

___ Reference

[3] P. Cousot. Design of semantics by abstract interpretation, invited address. In Mathematical Foundations of Programming Semantics, Thirteenth Annual Conference (MFPS XIII), Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 23–26 March 1997.

NACSA'98 5 P. Cousot

KLEENIAN FIXPOINT THEOREM 5

• A map $\varphi \in L \xrightarrow{c} L$ on a cpo $\langle L, \sqsubseteq, \bot, \sqcup \rangle$ is upper-continuous iff it preserves lubs of increasing chains $x_i, i \in \mathbb{N}$:

$$\varphi(\bigsqcup_{i\in\mathbb{N}} x_i) = \bigsqcup_{i\in\mathbb{N}} \varphi(x_i) ;$$

• The least fixpoint of an <u>upper-continuous</u> map $\varphi \in L \stackrel{c}{\longmapsto} L$ on a cpo $\langle L, \sqsubseteq, \perp, \sqcup \rangle$ is:

$$\operatorname{lfp}\varphi = \bigsqcup_{n\geq 0} \varphi^n(\bot)$$

where the iterates $\varphi^n(x)$ of φ from x are:

-
$$\varphi^0(x) \stackrel{\text{def}}{=} x$$
;

$$-\varphi^{n+1}(x) \stackrel{\text{def}}{=} \varphi(\varphi^n(x))$$
 for all $x \in L$.

NACSA'98 7 P. Cousot

TARSKI'S FIXPOINT THEOREM

A monotonic map $\varphi \in L \longmapsto L$ on a complete lattice:

$$\langle L, \, \Box, \, \bot, \, \top, \, \Box, \, \Box \rangle$$

has a least fixpoint:

$$\operatorname{lfp}\varphi = \sqcap\{x \in L \mid \varphi(x) \sqsubseteq x\}$$

and, dually, a greatest fixpoint:

$$\operatorname{gfp}\varphi = \sqcup \{x \in L \mid x \sqsubseteq \varphi(x)\}$$

CHAOTIC/ASYNCHRONOUS ITERATIONS

• Convergent iterates $L = \bigsqcup_{n \ge 0} F^n(P)$ of a monotonic system of equations on a poset:

$$X = F(X) \qquad \begin{cases} X_1 = F_1(X_1, \dots, X_n) \\ \dots \\ X_n = F_n(X_1, \dots, X_n) \end{cases}$$

starting from a prefixpoint $(P \sqsubseteq F(P))$ always converge to the same limit L whichever chaotic or asynchronous iteration strategy is used.

NACSA'98 6 P. Cousot

ACSA'98 8 P. Cousot

⁵ Can be generalized to monotonic non-continuous maps by considering transfinite iterates

EXAMPLE: REACHABILITY ANALYSIS

• Program:

• System of equations:

$$\begin{cases} X_1 = \{\Omega\} \\ X_2 = \{1\} \cup X_4 \\ X_3 = \{x \in X_2 \mid x < 1000\} \\ X_4 = \{x + 1 \mid x \in X_3\} \\ X_5 = \{x \in X_2 \mid x \ge 1000\} \end{cases}$$

• Reachable states:

$$\begin{cases} X_1 = \{\Omega\} \\ X_2 = \{x \mid 1 \le x \le 1000\} \\ X_3 = \{x \mid 1 \le x < 1000\} \\ X_4 = \{x + 1 \mid x \in X_3\} \\ X_5 = \{1000\} \end{cases}$$

NACSA'98 9 P. Cousot

DEFINITION OF GALOIS CONNECTIONS

Given posets $\langle \mathcal{P}, \sqsubseteq \rangle$ and $\langle \mathcal{Q}, \preceq \rangle$, a Galois connection is a pair of maps such that:

$$\begin{split} \alpha &\in \mathcal{P} \longmapsto \mathcal{Q} \\ \gamma &\in \mathcal{Q} \longmapsto \mathcal{P} \\ \forall x \in \mathcal{P} : \forall y \in \mathcal{Q} : \alpha(x) \preceq y \Leftrightarrow x \sqsubseteq \gamma(y) \end{split}$$

in which case we write:

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{ \stackrel{}{ \stackrel{}{ \longleftarrow} }} \langle \mathcal{Q}, \preceq \rangle$$

NACSA'98 11 P. Cousot

EFFECTIVE FIXPOINT APPROXIMATION

- Simplify the fixpoint system of semantic equations: Galois connections;
- Accelerate convergence of the iterates: widening/narrowing;

EQUIVALENT DEFINITION OF GALOIS CONNECTIONS

$$\begin{array}{c} \langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \mathcal{Q}, \preceq \rangle \quad \text{Galois connection} \\ \Longleftrightarrow \\ \left[\alpha \in \langle \mathcal{D}^{\natural}, \sqsubseteq \rangle \stackrel{\text{m}}{\longleftrightarrow} \langle \mathcal{Q}, \preceq \rangle \right] \quad \wedge \\ \qquad \qquad \alpha \quad \text{monotone} \\ \left[\gamma \in \langle \mathcal{Q}, \preceq \rangle \stackrel{\text{m}}{\longleftrightarrow} \langle \mathcal{P}, \sqsubseteq \rangle \right] \quad \wedge \\ \qquad \qquad \gamma \quad \text{monotone} \\ \left[\forall x \in \mathcal{P} : x \sqsubseteq \gamma \circ \alpha(x) \right] \quad \wedge \\ \qquad \qquad \gamma \circ \alpha \quad \text{extensive} \\ \left[\forall y \in \mathcal{Q} : \alpha \circ \gamma(y) \preceq y \right] \\ \qquad \qquad \alpha \circ \gamma \quad \text{reductive} \end{array}$$

NACSA'98 10 P. Cousot

NACSA'98 12 P. Cousot

DUALITY PRINCIPLE

- We write \leq^{-1} or \geq for the inverse of the partial order \leq .
- Observe that:

if and only if
$$\mathcal{Q}(\succeq) \xleftarrow{\gamma} \mathcal{P}(\mathrel{\sqsubseteq})$$

$$\mathcal{Q}(\succeq) \stackrel{\alpha}{\longleftrightarrow} \mathcal{P}(\supseteq)$$

• duality principle: if a theorem is true for all posets, then so is its dual obtained by substituting \geq , >, \top , \perp , \vee , \wedge , α , γ etc. respectively for \leq , <, \perp , \top , \wedge , \vee , γ , α , etc.

Example 2 of Galois connection

If

- $\rho \subseteq \mathcal{P} \times \mathcal{Q}$
- $\alpha \in \wp(\mathcal{P}) \longmapsto \wp(\mathcal{Q})$

$$\alpha(X) = \mathrm{post}[\rho]X \qquad \text{post-image}$$

$$\stackrel{\text{def}}{=} \{ y \mid \exists x \in X : \langle x, y \rangle \in \rho \}$$

• $\gamma \in \wp(\mathcal{Q}) \longmapsto \wp(\mathcal{P})$

$$\gamma(Y) = \widetilde{\text{pre}}[\rho]Y$$
 dual pre-image

$$\stackrel{\text{def}}{=} \{x \mid \forall y : \langle x, y \rangle \in \rho \Rightarrow y \in Y\}$$

then

$$\langle \wp(\mathcal{P}), \subseteq \rangle \xrightarrow{\gamma} \langle \wp(\mathcal{Q}), \subseteq \rangle$$

NACSA'98 13 P. Cousot NACSA'98 15 P. Cousot

Example 1 of Galois connection

If

- $\emptyset \in \mathcal{P} \longmapsto \mathcal{Q}$
- $\alpha \in \wp(\mathcal{P}) \longmapsto \wp(\mathcal{Q})$ direct $\alpha(X) \stackrel{\text{def}}{=} \{ \mathbf{Q}(x) \mid x \in X \}$ image
- $\gamma \in \wp(\mathcal{Q}) \longmapsto \wp(\mathcal{P})$ inverse $\gamma(Y) \stackrel{\text{def}}{=} \{x \mid \mathbf{Q}(x) \in Y\}$ image

then

$$\langle \wp(\mathcal{P}), \, \subseteq \rangle \xleftarrow{\gamma} \langle \wp(\mathcal{Q}), \, \subseteq \rangle$$

Example 3 of Galois connections

If S and T are sets then

$$\langle \wp(S \longmapsto T), \subseteq \rangle \xrightarrow{\gamma} \langle S \longmapsto \wp(T), \subseteq \rangle$$

where:

$$\begin{split} \alpha(F) &\stackrel{\text{def}}{=} \lambda x {\boldsymbol{\cdot}} \{ f(x) \mid f \in F \} \\ \gamma(\varphi) &\stackrel{\text{def}}{=} \{ f \in S \longmapsto T \mid \\ \forall x \in S : f(x) \in \varphi(x) \} \end{split}$$

NACSA'98

NACSA'98 P. Cousot

Moore families

- A Moore family is a subset of a complete lattice $\langle L, \sqsubseteq, \perp, \top, \sqcup, \sqcap \rangle$ containing \top and closed under arbitrary glbs \sqcap ;
- If $\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \langle \mathcal{Q}, \preceq \rangle$ and $\langle \mathcal{P}, \sqsubseteq, \bot, \top, \sqcap, \sqcup \rangle$ is a complete lattice then $\gamma(\mathcal{Q})$ is a Moore family.
- A consequence is that one can reason upon the abstract semantics using only \mathcal{P} and the image of \mathcal{P} by the upper closure operator $\gamma \circ \alpha$ (instead of Q).
- Intuition:
 - The upper-approximation of $x \in \mathcal{P}$ is any $y \in \gamma(Q)$ such that $x \sqsubseteq y$;
 - The best approximation of x is γ $\alpha(x)$.

PRESERVATION OF LUBS/GLBS

• If $\langle \mathcal{P}, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{Q}, \preceq \rangle$, then α preserves existing lubs: if $\sqcup X$ exists, then $\alpha(\sqcup X)$ is the lub of $\{\alpha(x) \mid x \in X\}$.

By the duality principle:

• If $\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \langle \mathcal{Q}, \preceq \rangle$ then γ preserves existing glbs: if $Y \subseteq \mathcal{Q}$ and $\sqcap Y$ exists, then $\gamma(\sqcap Y)$ is the glb of $\{\gamma(y) \mid y \in Y\}$.

NACSA'98 P. Cousot NACSA'98 P. Cousot

Unique adjoint

In a Galois connection, one function uniquely

determines the other:

• If $\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\gamma_1} \langle \mathcal{Q}, \preceq \rangle$ and $\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\gamma_2} \langle \mathcal{Q}, \preceq \rangle$, then $(\alpha_1 = \alpha_2)$ if and only if $(\gamma_1 = \alpha_1)$ γ_2).

$$\forall x \in \mathcal{P} : \alpha(x) = \sqcap \{ y \mid x \sqsubseteq \gamma(y) \}$$
$$\forall y \in \mathcal{Q} : \gamma(y) = \sqcup \{ x \mid \alpha(x) \preceq y \}$$

Complete join preserving ABSTRACTION FUNCTION AND COMPLETE MEET PRESERVING CONCRETIZATION FUNCTION

- Let $\langle \mathcal{P}, \sqsubseteq \rangle$ and $\langle \mathcal{Q}, \preceq \rangle$ be posets.
- 1. $\alpha \in \mathcal{P}(\sqcup) \stackrel{a}{\longmapsto} \mathcal{Q}(\sqcup)$
- 2. $\sqcup \{x \mid \alpha(x) \leq y\}$ exists for all $y \in \mathcal{Q}$,

then

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \langle \mathcal{Q}, \preceq \rangle$$

where
$$\forall y \in \mathcal{Q} : \gamma(y) = \sqcup \{x \mid \alpha(x) \leq y\}$$

- By duality, if
 - 1. $\gamma \in \mathcal{Q}(\sqcap) \stackrel{a}{\longmapsto} \mathcal{P}(\sqcap)$
 - 2. $\sqcap \{y \mid x \sqsubseteq \gamma(y)\}$ exists for all $x \in \mathcal{P}$

then

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} \langle \mathcal{Q}, \preceq \rangle$$

where $\forall x \in \mathcal{P} : \alpha(x) = \sqcap \{y \mid x \sqsubseteq \gamma(y)\}$

NACSA'98

NACSA'98 P. Cousot

Galois Surjection & Injection

If
$$\langle \mathcal{P}, \sqsubseteq \rangle \xrightarrow{\alpha} \langle \mathcal{Q}, \preceq \rangle$$
, then:

 α is onto

iff γ is one-to-one

iff $\alpha \circ \gamma$ is the identity

By the duality principle, if $\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{\sqsubseteq} \langle \mathcal{Q}, \preceq \rangle$, then:

 α is one-to-one

iff γ is onto

iff $\gamma \circ \alpha$ is the identity

Notation:

$$\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\frac{\gamma}{\alpha}} \langle \mathcal{Q}, \preceq \rangle$$

$$\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\frac{\gamma}{\alpha}} \langle \mathcal{Q}, \preceq \rangle$$

$$\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\frac{\gamma}{\alpha}} \langle \mathcal{Q}, \preceq \rangle$$

Galois connection

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \mathcal{Q}, \preceq \rangle$$

Galois surjection

$$\langle \mathcal{P}, \sqsubseteq \rangle \xrightarrow{\varphi} \langle \mathcal{Q}, \preceq \rangle$$

Galois injection

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\overset{\sim}{\longleftarrow}}{\xrightarrow{\alpha}} \langle \mathcal{Q}, \preceq \rangle$$

Galois bijection

with \leftarrow denoting 'into' and \rightarrow denoting 'onto'.

NACSA'98 P. Cousot

The image of a complete lattice BY A GALOIS SURJECTION IS A COMPLETE LATTICE

• If $\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{\gamma} \langle \mathcal{Q}, \preceq \rangle$ and $\langle \mathcal{P}, \sqsubseteq, \bot, \top, \sqcap, \sqcup \rangle$ is a complete lattice, then so is $\langle \mathcal{Q}, \preceq \rangle$ with

$$0 = \alpha(\perp)$$

infimum supremum

$$1 = \alpha(\top)$$

$$1 = \alpha(\top)$$

$$1 = \alpha(\top)$$

$$\forall Y = \alpha(\underset{y \in Y}{\sqcup} \gamma(y))$$

$$\land Y = \alpha(\underset{y \in Y}{\sqcap} \gamma(y))$$

NACSA'98 P. Cousot

THE IMAGE OF A CPO BY A GALOIS SURJECTION IS A CPO

• If $\langle \mathcal{P}, \sqsubseteq, \perp, \perp \rangle$ is a cpo, $\langle \mathcal{Q}, \preceq \rangle$ is a poset

$$\langle \mathcal{P}, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{Q}, \preceq \rangle$$

then

$$\langle \mathcal{Q}, \preceq, 0, \vee \rangle$$

is a cpo with:

$$0 \stackrel{\text{def}}{=} \alpha(\bot)$$
$$\forall X \stackrel{\text{def}}{=} \alpha(\underset{x \in X}{\sqcup} \gamma(x))$$

Pointwise extension of Galois CONNECTIONS

• If $\langle \mathcal{P}, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{Q}, \preceq \rangle$ then:

$$\langle \mathcal{S} \longmapsto \mathcal{P}, \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \rangle \xrightarrow{\stackrel{\dot{\gamma}}{\dot{\alpha}}} \langle \mathcal{S} \longmapsto \mathcal{Q}, \stackrel{\dot{\prec}}{\preceq} \rangle$$

where:

$$\dot{\alpha}(f) \stackrel{\text{def}}{=} \alpha \circ f$$
$$\dot{\gamma}(g) \stackrel{\text{def}}{=} \gamma \circ g$$

NACSA'98

LIFTING GALOIS CONNECTIONS AT HIGHER-ORDER

If
$$\langle \mathcal{P}_{1}, \sqsubseteq_{1} \rangle \xrightarrow{\gamma_{1}} \langle \mathcal{Q}_{1}, \preceq_{1} \rangle$$

$$\langle \mathcal{P}_{2}, \sqsubseteq_{2} \rangle \xrightarrow{\gamma_{2}} \langle \mathcal{Q}_{2}, \preceq_{2} \rangle$$
then
$$\langle \mathcal{P}_{1} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{P}_{2}, \dot{\sqsubseteq}_{2} \rangle \xrightarrow{\vec{\varphi}} \langle \mathcal{Q}_{1} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{Q}_{2}, \dot{\preceq}_{2} \rangle$$
where
$$\varphi \stackrel{\dot{\sqsubseteq}}{\sqsubseteq} \psi \stackrel{\mathrm{def}}{=} \forall x : \varphi(x) \sqsubseteq \psi(x)$$

$$\vec{\alpha}(\varphi) \stackrel{\mathrm{def}}{=} \alpha_{2} \circ \varphi \circ \gamma_{1}$$

$$\vec{\gamma}(\psi) \stackrel{\mathrm{def}}{=} \gamma_{2} \circ \psi \circ \alpha_{1}$$

NACSA'98 25 P. Cousot

EXAMPLE: INTERVAL ANALYSIS

• Concrete/exact:

 $\begin{array}{l} D \stackrel{\mathrm{def}}{=} \{x \in \mathbb{N} \mid \mathtt{min_int} \leq x \leq \mathtt{max_int}\} \\ D_{\Omega} \stackrel{\mathrm{def}}{=} D \cup \{\Omega\} \quad \text{values \& uninitialization} \\ n \geq 1 \quad \qquad \text{program points} \\ V \quad \qquad \text{variables} \\ S \stackrel{\mathrm{def}}{=} [1, n] \longmapsto (V \longmapsto D_{\Omega}) \quad \text{states} \end{array}$

• Abstract/approximate:

 $I \stackrel{\text{def}}{=} \{[a,b] \mid \{x \in \mathbb{N} \mid a \leq x \leq b\} \text{ intervals} \\ \gamma(\Omega) \stackrel{\text{def}}{=} \{\Omega\} \qquad \text{concretization} \\ \gamma([a,b]) \stackrel{\text{def}}{=} \{x \in \mathbb{N} \mid a \leq x \leq b\} \\ \gamma(\langle \Omega, [a,b] \rangle) \stackrel{\text{def}}{=} \gamma(\Omega) \cup \gamma([a,b]) \\ L \stackrel{\text{def}}{=} [1,n] \longmapsto (V \longmapsto A) \qquad \text{abstract} \\ \text{domain} \\ \gamma \in A \longmapsto \wp(D_{\Omega}) \qquad \text{concretization} \\ \gamma(P) \stackrel{\text{def}}{=} \{\rho \mid \forall i \in [1,n] : \forall v \in V : \\ \rho(i)(v) \in \gamma(P(i)(v))\} \\ P \stackrel{\text{def}}{=} Q \stackrel{\text{def}}{=} \gamma(P) \subseteq \gamma(Q) \qquad \text{ordering}$

• Galois connexion:

$$\langle \wp(S), \; \subseteq \rangle \xleftarrow{\gamma} \langle L, \; \ddot{\sqsubseteq} \rangle$$

NACSA'98 27 P. Cousot

Composition of Galois connections

The composition of Galois connections is a Galois connection:

KLEENIAN FIXPOINT ABSTRACTION

If $\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle$ is a cpo, $\langle \mathcal{Q}, \preceq \rangle$ is a poset, $F \in \mathcal{P} \stackrel{\text{m}}{\longmapsto} \mathcal{D}, F^{\sharp} \in \mathcal{Q} \stackrel{\text{m}}{\longmapsto} \mathcal{Q}$, and

$$F^{\sharp} \circ \alpha = \alpha \circ F$$
$$\langle \mathcal{D}, \sqsubseteq \rangle \xrightarrow{\alpha} \langle \mathcal{D}^{\sharp}, \preceq \rangle$$

then

$$\alpha(\operatorname{lfp}^{\sqsubseteq} F) = \operatorname{lfp}^{\preceq} F^{\sharp}$$

NACSA'98 26 P. Couse

NACSA'98 28 P. Cousot

KLEENIAN FIXPOINT APPROXIMATION

If $\langle \mathcal{D}, \sqsubseteq, \perp, \sqcup \rangle$ is a cpo, $\langle \mathcal{Q}, \preceq \rangle$ is a poset, $F \in \mathcal{P} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}, F^{\sharp} \in \mathcal{A} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{A}$, and

$$F^{\sharp} \circ \alpha \stackrel{\cdot}{\preceq} \alpha \circ F$$
$$\langle \mathcal{D}, \sqsubseteq \rangle \stackrel{\gamma}{\Longleftrightarrow} \langle \mathcal{D}^{\sharp}, \preceq \rangle$$

then

$$\alpha(\operatorname{lfp}^{\sqsubseteq} F) \preceq \operatorname{lfp}^{\preceq} F^{\sharp}$$

NACSA'98 29 P. Cousot

Infinite strictly increasing chains

- Because of infinite (or very long) strictly increasing chains, the fixpoint iterates may not converge (or very slowly);
- Because of infinite (or very long) strictly decreasing chains, the local decreasing iterates may not converge (or not rapidly enough);
- The design strategy of using a more abstract domain satisfying the ACC often yields too imprecise results;
- It is often both more precise and faster to speed up convergence using widenings along increasing chains and narrowings along deceasing ones.

NACSA'98 31 P. Cousot

Interval lattice

NACSA'98 30 P. Cousot

SLOW FIXPOINT ITERATIONS

```
-- program:
0: x := 1;
1: while true do
    2: x := (x + 1)
    3: od {false}
-- forward abstract equations:
XO = (INIT O)
X1 = assign[|x, 1|](X0) U X3
X2 = assert[|true|](X1)
X3 = assign[|x, (x + 1)|](X2)
X4 = assert[|false|](X1)
-- iterations from:
X0 = \{ x:_0_ \}  X1 = _|_  X2 = _|_
X3 = _|_
                  X4 = | | |
X0 = \{ x:_0_ \}
X1 = \{ x: [1,1] \}
X2 = \{ x:[1,1] \}
X3 = \{ x:[2,2] \}
X1 = \{ x:[1,2] \}
X2 = \{ x:[1,2] \}
X3 = \{ x:[2,3] \}
X1 = \{ x:[1,3] \}
X2 = \{ x:[1,3] \}
X3 = \{ x:[2,4] \}
X1 = \{ x: [1,4] \}
X2 = {x:[1,4]}
X3 = \{ x: [2,5] \}
```

NACSA'98 32 P. Cousot

WIDENING

definition: A widening $\nabla \in P \times P \longmapsto P$ on a poset $\langle P, \sqsubseteq \rangle$ satisfies:

- $\forall x, y \in P : x \sqsubseteq (x \nabla y) \land y \sqsubseteq (x \nabla y)$
- For all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \dots$ the increasing chain $y^0 \stackrel{\text{def}}{=} x^0, \dots, y^{n+A} \stackrel{\text{def}}{=} y^n \nabla x^{n+1}, \dots$ is not strictly increasing.

use:

- Approximate missing lubs.
- Convergence acceleration;

NACSA'98 33 P. Cousot

FIXPOINT UPPER APPROXIMATION BY WIDENING

- Any iteration sequence with widening is increasing and stationary after finitely many iteration steps;
- Its limit L[▽] is a post-fixpoint of F, whence an upper-approximation of the least fixpoint lfp F ⁶:

 $\operatorname{lfp}^{\sqsubseteq} F \sqsubseteq L^{\triangledown}$

⁶ if $\operatorname{lfp}^{\sqsubseteq} F$ does exist e.g. if $\langle P, \sqsubseteq, \perp, \cup \rangle$ is a cpo.

NACSA'98 35

P. Cousot

ITERATION SEQUENCE WITH WIDENING

- Let F be a monotonic operator on a poset $\langle P, \sqsubseteq \rangle$;
- Let $\nabla \in P \times P \longmapsto P$ be a widening;
- The iteration sequence with widening ∇ for F from \bot is $X^n, n \in \mathbb{N}$:

-
$$X^0 = \bot$$

-
$$X^{n+1} = X^n$$
 if $F(X^n) \sqsubseteq (X^n)$

-
$$X^{n+1} = X^n \nabla F(X^n)$$
 if $F(X^n) \not\sqsubseteq X^n$

Example of widening for intervals

$$[a,b] \nabla [a',b'] \stackrel{\text{def}}{=} \\ [(a'>=a?a \mid a'>=1?1\\ \mid a'>=0?0 \mid a'>=-1?-1\\ \mid \min_\text{int}), \\ (b'<=b?b \mid b'<=-1?-1\\ \mid b'<=0?0 \mid b'<=1?1\\ \mid \max_\text{int}]$$

$$\begin{array}{ccc}
\bot \nabla y \stackrel{\text{def}}{=} y \\
x \nabla \bot \stackrel{\text{def}}{=} x \\
\Omega \nabla \Omega \stackrel{\text{def}}{=} \Omega \\
\Omega \nabla [a,b] \stackrel{\text{def}}{=} \langle \Omega, [a,b] \rangle \\
\Omega \nabla \langle \Omega, [a,b] \rangle \stackrel{\text{def}}{=} \langle \Omega, [a,b] \rangle \\
[a,b] \nabla \Omega \stackrel{\text{def}}{=} \langle \Omega, [a,b] \rangle \\
\langle \Omega, [a,b] \rangle \nabla \Omega \stackrel{\text{def}}{=} \langle \Omega, [a,b] \rangle \\
[a,b] \nabla \langle \Omega, [a',b'] \rangle \stackrel{\text{def}}{=} \langle \Omega, [a,b] \nabla [a',b'] \rangle \\
\langle \Omega, [a,b] \rangle \nabla [a',b'] \stackrel{\text{def}}{=} \langle \Omega, [a,b] \nabla [a',b'] \rangle \\
\langle \Omega, [a,b] \rangle \nabla \langle \Omega, [a',b'] \rangle \stackrel{\text{def}}{=} \langle \Omega, [a,b] \nabla [a',b'] \rangle
\end{array}$$

NACSA'98 34 P. Cous

NACSA'98 36 P. Cousot

WIDENING FOR SYSTEMS OF EQUATIONS

A very rough idea:

- compute the dependence graph of the system of equations;
- widen at cut-points;
- iterate according to the weak topological ordering

NACSA'98 37 P. Cousot

INTERVAL PROGRAM ANALYSIS EXAMPLE WITH WIDENING

```
labelled program:
0: x := 1;
1: y := 1000;
2: while (x < y) do
3: x := (x + 1)
4 · od
iterations with widening from:
  XO = \{ x: _0; y: _0 \} X1 = _| X2 = _|_
   X3 = |
                           XO = \{ x:_{0}; y:_{0} \}
X1 = \{ x:[1,1]; y:_0_ \}
widening at 2 by { x:[1,1]; y:[1000,1000] }
X2 = { x:[1,1]; y:[1000,1000] }
X3 = { x:[1,1]; y:[1000,1000] }
X4 = \{ x:[2,2]; y:[1000,1000] \}
widening at 2 by { x:[1,2]; y:[1000,1000] }
X2 = { x:[1,+\infty]; y:[1000,1000] }
X3 = \{ x:[1,999]; y:[1000,1000] \}
X4 = \{ x: [2,1000]; y: [1000,1000] \}
X2 = \{ x:[1,1000]; y:[1000,1000] \}
X3 = \{ x: [1,999]; y: [1000,1000] \}
X4 = \{ x:[2,1000]; y:[1000,1000] \}
X5 = \{ x: [1000, 1000]; y: [1000, 1000] \}
```

NACSA'98 39 P. Cousot

EXAMPLE

```
labelled program:
0: x := 1;
1: y := 1000;
2: while (x < y) do
3: x := (x + 1)
4: od
5:
forward abstract equations:
XO = (INIT O)
X1 = assign[|x, 1|](X0)
X2 = assign[|y, 1000|](X1) U X4
X3 = assert[|(x < y)|](X2)
X4 = assign[|x, (x + 1)|](X3)
X5 = assert[|((y < x) | (x = y))|](X2)
forward graph with 6 vertices:
 0 : {1}
 1: {2}
 2: {3, 5}
 3 : {4}
 4: {2}
 5 : {}
forward weak topological order: 0 1 ( 2 3 4 ) 5 \,
forward cut & check points: {2}
```

NACSA'98 38 P. Couse

Narrowing

- Since we have got a postfixpoint L^{∇} of $F \in P \longrightarrow P$, its iterates $F^n(L^{\nabla})$ are all upper approximations of f
- To accelerate convergence of this decreasing chain, we use a narrowing ∇ ∈ P×P → P
 P on the poset ⟨P, □⟩ satisfying:
 - $\textbf{-}\ \forall x,y\in P:y\sqsubseteq x\Longrightarrow y\sqsubseteq x\bigtriangleup y\sqsubseteq x$
 - For all decreasing chains $x^0 \supseteq x^1 \supseteq \dots$ the decreasing chain $y^0 \stackrel{\text{def}}{=} x^0, \dots, y^{n+A} \stackrel{\text{def}}{=} y^n \triangle x^{n+1}, \dots$ is <u>not</u> strictly decreasing.

NACSA'98 40 P. Cousot

DECREASING ITERATION SEQUENCE WITH NARROWING

- Let F be a monotonic operator on a poset
- Let $\triangle \in P \times P \longmapsto P$ be a narrowing;
- The iteration sequence with narrowing \triangle for F from the postfixpoint P^7 is $Y^n, n \in$
 - $Y^0 = P$ - $Y^{n+1} = Y^n$ if $F(X^n) = X^n$ - $Y^{n+1} = Y^n \triangle F(X^n)$ if $F(X^n) \neq$

EXAMPLE OF NARROWING FOR INTERVALS

if $x \leq x' \leq y' \leq y$ then $[x, y] \triangle [x', y'] =$ narrow x y x' y'let narrow x y x' y' = (if $(x = min_int)$ then x' else x), (if (y = max_int) then y' else y) ;;

Trivially extended to initialization & interval analysis.

NACSA'98

P. Cousot

NACSA'98 P. Cousot

FIXPOINT UPPER APPROXIMATION BY NARROWING

- Any iteration sequence with narrowing starting from a postfixpoint P of F^{s} is decreasing and stationary after finitely many iteration steps;
- if $\operatorname{lfp}^{\sqsubseteq} F$ does exist 9 and $\operatorname{lfp}^{\sqsubseteq} F \sqsubseteq P$ then its limit L^{\triangle} is a fixpoint of F, whence an upper-approximation of the least fixpoint $\operatorname{lfp}^{\sqsubseteq} F$:

 $\operatorname{lfp}^{\sqsubseteq} F \sqsubseteq L^{\triangle} \sqsubseteq P$

NACSA'98

Program analysis example with NARROWING

```
labelled program:
0: x := 1;
1: y := 1000;
2: while (x < y) do
3: x := (x + 1)
4: od \{((y < x) | (x = y))\}
iterations with narrowing from:
XO = \{ x:_{0}; y:_{0} \}
X1 = \{ x:[1,1]; y:_0_ \}
X2 = { x:[1,1000]; y:[1000,1000] }
X3 = \{ x: [1,999]; y: [1000,1000] \}
X4 = \{ x:[2,1000]; y:[1000,1000] \}
X5 = \{ x: [1000, 1000]; y: [1000, 1000] \}
XO = \{ x:_{0}; y:_{0} \}
X1 = \{ x:[1,1]; y:_0_ \}
narrowing at 2 by { x:[1,1000]; y:[1000,1000] }
X2 = \{ x:[1,1000]; y:[1000,1000] \}
X3 = \{ x:[1,999]; y:[1000,1000] \}
X4 = \{ x:[2,1000]; y:[1000,1000] \}
X5 = \{ x: [1000, 1000]; y: [1000, 1000] \}
stable
NACSA'98
```

P. Cousot

⁹ e.g. if $\langle P, \sqsubseteq, \bot, \cup \rangle$ is a cpo.

WIDENINGS AND NARROWINGS ARE NOT DUAL

- The iteration with widening starts from below the least fixpoints and stabilizes above;
- The iteration with narrowing starts from above the least fixpoints and stabilizes above;
- In general, widenings and narrowing are not monotonic.

CONCLUSION

- A very elementary introduction to abstract interpretation;
- For more details, see e.g.

NACSA'98

http://www.dmi.ens.fr/~cousot

P. Cousot

NACSA'98 45 P. Cousot

IMPROVING THE PRECISION OF WIDENINGS/NARROWINGS

- Threshold;
- Widening/narrowing (and stabilization checks) at cut points;
- \bullet Computation history-based extrapolation:

A simple example:

- Do not widen/narrow if a component of the system of fixpoint equations was computed for the first time since the last widening/narrowing;
- Otherwise, do not widen/narrow the abstract values of variables which were not "assigned to" ¹⁰ since the last widening / narrowing.

NACSA'98 46 P. Couso

¹⁰ more precisely which did not appear in abstract equations corresponding to an assignment to these variables.