GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: April 8, 2005, 20:46:20; Search time 43 Seconds

(without alignments)

289.916 Million cell updates/sec

Title: US-09-668-558B-32

Perfect score: 167

Sequence: 1 MHWGTLCGFLWLWPYLFYVQ.....SRLQGSLQDMLWQLDLSPGC 167

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 513545 segs, 74649064 residues

Word size : 0

Total number of hits satisfying chosen parameters: 513545

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 1000 summaries

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*

3: /cgn2 6/ptodata/1/iaa/6A COMB.pep:*

4: /cgn2 6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2 6/ptodata/1/iaa/PCTUS COMB.pep:*

6: /cgn2 6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	167	100.0	167	 2	US-08-540-242A-4	Sequence 4, Appli
2	167	100.0	167	2	US-08-347-563A-4	Sequence 4, Appli
3	167	100.0	167	2	US-09-003-081-5	Sequence 5, Appli
4	167	100.0	167	3	US-08-292-345B-4	Sequence 4, Appli
5	167	100.0	167	3	US-08-648-262-5	Sequence 5, Appli
6	167	100.0	167	3	US-08-648-263-5	Sequence 5, Appli
7	167	100.0	167	3	US-08-485-942A-4	Sequence 4, Appli
8 .	167	100.0	167	3	US-08-488-214A-4	Sequence 4, Appli
9	167	100.0	167	3	US-08-488-208A-4	Sequence 4, Appli
10	167	100.0	167	3	US-08-759-628-1	Sequence 1, Appli
11	167	100.0	167	3	US-08-688-908-7	Sequence 7, Appli

```
Sequence 4, Appli
12
       167
            100.0
                      167
                               US-08-483-211A-4
                                                            Sequence 4, Appli
13
       167
            100.0
                      167
                            3
                               US-08-488-223A-4
                                                            Sequence 4, Appli
            100.0
                      167
                            3
                               US-09-147-805-4
14
       167
15
            100.0
                      167
                               US-08-438-431A-4
                                                            Sequence 4, Appli
       167
                            4
                               US-08-488-225A-4
                                                            Sequence 4, Appli
16
       167
            100.0
                      167
                            4
17
       167
            100.0
                      167
                               US-09-204-730B-4
                                                            Sequence 4, Appli-
18
       167
            100.0
                      167
                               US-09-316-393-4
                                                            Sequence 4, Appli
19
       167
            100.0
                      167
                               US-09-377-081-17
                                                            Sequence 17, Appl
20
                      167
                               US-09-686-647A-4
                                                            Sequence 4, Appli
       167
            100.0
21
       167
            100.0
                      167
                               PCT-US96-01471-4
                                                            Sequence 4, Appli
22
       167
            100.0
                      397
                            4
                               US-08-775-066-2
                                                            Sequence 2, Appli
23
       146
              87.4
                      146
                           1
                               US-08-398-021-3
                                                            Sequence 3, Appli
24
       146
              87.4
                      146
                               US-08-788-943A-5
                                                            Sequence 5, Appli
25
       146
              87.4
                      146
                            2
                               US-08-823-104-3
                                                            Sequence 3, Appli
26
              87.4
                      146
                            2
                               US-09-003-081-6
                                                            Sequence 6, Appli
       146
27
              87.4
                            3
                               US-08-648-262-6
                                                            Sequence 6, Appli
       146
                      146
28
              87.4
                      146
                            3
                               US-08-648-263-6
                                                            Sequence 6, Appli
       146
29
              87.4
                      146
                            3
                               US-08-914-375C-32
                                                            Sequence 32, Appl
       146
                               US-09-172-644-1
                                                            Sequence 1, Appli
              87.4
                      146
30
       146
31
              87.4
                      146
                               US-09-221-178-1
                                                            Sequence 1, Appli
       146
                               US-09-200-919-1
              87.4
                      146
                                                            Sequence 1, Appli
32
       146
                            4
                               PCT-US96-00952-2
              87.4
                      146
                                                            Sequence 2, Appli
33
       146
                                                            Sequence 3, Appli
34
       146
              87.4
                      146
                               PCT-US96-00952-3
                               US-09-200-919-4
                                                            Sequence 4, Appli
35
       146
              87.4
                      147
                            4
              87.4
                               US-08-429-362-3
                                                            Sequence 3, Appli
       146
                      148
                            1
36
                                                            Sequence 18, Appl
37
       146
              87.4
                      148
                            2
                               US-08-823-104-18
38
       137
              82.0
                      146
                               US-08-788-943A-8
                                                            Sequence 8, Appli
                                                            Sequence 13, Appl
39
       137
              82.0
                      146
                            2
                               US-08-823-104-13
                                                            Sequence 8, Appli
                               US-08-674-774-8
       137
              82.0
                      146
                            3
40
                                                            Sequence 6, Appli
41
       137
              82.0
                      146
                            5
                               PCT-US96-00952-6
                               US-08-788-943A-2
                                                            Sequence 2, Appli
42
              74.3
                      146
       124
                               US-08-823-104-11
                                                            Sequence 11, Appl
                      146
43
       124
              74.3
                                                            Sequence 25, Appl
                               US-08-347-563A-25
44
       119
              71.3
                      119
                      119
                               US-08-485-942A-25
                                                            Sequence 25, Appl
45
       119
              71.3
                               US-08-488-214A-25
                                                            Sequence 25, Appl
                      119
46
       119
              71.3
                                                            Sequence 25, Appl
                      119
                               US-08-488-208A-25
47
       119
              71.3
                                                            Sequence 25, Appl
              71.3
                      119
                               US-08-483-211A-25
48
       119
                                                            Sequence 25, Appl
49
       119
              71.3
                      119
                            3
                               US-08-488-223A-25
                                                            Sequence 25, Appl
                               US-08-438-431A-25
50
       119
              71.3
                      119
                               US-08-488-225A-25
                                                            Sequence 25, Appl
51
       119
              71.3
                      119
                               US-09-686-647A-25
                                                            Sequence 25, Appl
52
       119
              71.3
                      119
              71.3
                               US-08-788-943A-3
                                                            Sequence 3, Appli
53
       119
                      146
                            2
                                                            Sequence 12, Appl
54
       119
              71.3
                      146
                            2
                               US-08-823-104-12
                                                            Sequence 3, Appli
55
       119
              71.3
                      146
                               US-08-674-774-3
                      146
                               US-08-678-369-4
                                                            Sequence 4, Appli
56
       118
              70.7
                            1
                               US-08-788-943A-1
                                                            Sequence 1, Appli.
57
       118
              70.7
                      146
                            2
                                                            Sequence 4, Appli
58
       118
              70.7
                      146
                               US-08-788-943A-4
                               US-08-823-104-5
                                                            Sequence 5, Appli
59
       118
              70.7
                      146
                               US-09-047-243-4
                                                            Sequence 4, Appli
60
       118
              70.7
                      146
                                                            Sequence 1, Appli
61
       118
              70.7
                      146
                               US-08-804-668-1
                                                            Sequence 4, Appli
62
       118
              70.7
                       146
                               US-08-674-774-4
                               US-08-347-563A-6
                                                            Sequence 6, Appli
63
       118
              70.7
                       166
                            2
                            3
                               US-08-292-345B-6
                                                            Sequence 6, Appli
64
       118
              70.7
                       166
                                                            Sequence 6, Appli
65
       118
              70.7
                       166
                            3
                               US-08-485-942A-6
66
       118
              70.7
                       166
                               US-08-488-214A-6
                                                            Sequence 6, Appli
                                                            Sequence 6, Appli
67
       118
              70.7
                       166
                            3
                               US-08-488-208A-6
                                                            Sequence 6, Appli
              70.7
                       166
                            3
                               US-08-483-211A-6
68
       118
```

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: April 8, 2005, 20:34:05; Search time 173 Seconds

(without alignments)

373.347 Million cell updates/sec

Title: US-09-668-558B-32

Perfect score: 167

Sequence: 1 MHWGTLCGFLWLWPYLFYVQ.....SRLQGSLQDMLWQLDLSPGC 167

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 2105692 segs, 386760381 residues

Word size : 0

Total number of hits satisfying chosen parameters: 2105692

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Listing first 1000 summaries

Database: A_Geneseq_16Dec04:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Re	esult No.	Score	% Query Match	Length	DB	ID	Description
•	1	167	100.0	167	2	AAW03694	Aaw03694 Human obe
	2	167	100.0	167	2	AAR99473	Aar99473 Human ob
	3	167	100.0	167	2	AAR92720	Aar92720 Obesity p
	4	167	100.0	167	2	AAW34060	Aaw34060 Human obe
	, 5	167	100.0	167	2	AAW57442	Aaw57442 Human lep
	6	167	100.0	167	3	AAY82110	Aay82110 Human obe
	7	167	100.0	167	3	AAB28448	Aab28448 Human OB
	8	167	100.0	167	3	AAY84190	Aay 84190 Amino aci
	9	167	100.0	167	3	AAY80259	Aay80259 Human obe

10	167	100.0	167	3	AAY87726	Aay87726 Murine OB
11	167	100.0	167	3	AAB28467	Aab28467 Human OB
	167		167	4	AAB59914	Aab59914 Human lep
12		100.0		-		
13	167	100.0	167	4	AAB72927	Aab72927 Human lep
14	167	100.0	167	4	AAE10338	Aae10338 Human lep
15	167	100.0	167	4	AAU02890	Aau02890 Human Ob
16	167	100.0	167	4	AAB70128	Aab70128 Human lep
17	167	100.0	167	5	ABG74164	Abg74164 Human obe
18	167	100.0	167	5	ABB84116	Abb84116 Human Ob
19	167	100.0	167	6	ABU64561 ·	Abu64561 Human obe
20	167	100.0	167	7	ADE56246	Ade56246 Human Pro
21	167	100.0	167	7	ADF15260	Adf15260 Human alb
22	167	100.0	167	7	ADF15253	Adf15253 Human alb
23	167	100.0	167	7	ADF15257	Adf15257 Human alb
				7	ADF15257 ADF15259	Adf15259 Human alb
24	167	100.0	167			
25	167	100.0	167	7	ADH21374	Adh21374 Human lep
26	167	100.0	167	7	ADH21373	Adh21373 Human lep
27	167	100.0	167	7	ADH21372	Adh21372 Human lep
28	167	100.0	167	7	ADH21371	Adh21371 Human lep
29	167	100.0	167	8	ADH17068	Adh17068 Human lep
30	167	100.0	167	8	ADK19923	Adk19923 Human lep
31	167	100.0	167	8	AD024730	Ado24730 Human lep
32	167	100.0	167	8	ADQ19663	Adq19663 Human sof
33	167	100.0	396	2	AAW10534	Aaw10534 Leptin 1-
34	167	100.0	396	2	AAW10535	Aaw10535 Leptin 1-
35	167	100.0	397	2	AAW22722	Aaw22722 Human obe
36	167	100.0	397	2	AAW24060	Aaw24060 Human obe
	167		397	2	ADD29344	Add29344 Human obe
		100.0				
38	167	100.0	397	7	ADC08948	Adc08948 Human OB
39	167	100.0	397	7	ADC78787	Adc78787 Human PRO
40	167	100.0	399	2	AAW10536	Aaw10536 Leptin 1-
41	167	100.0	401	2	AAW10537	Aaw10537 Leptin 1-
42	167	100.0	752	7	ADF15039	Adf15039 Human alb
43	167	100.0	752	7	ADH21302	Adh21302 Human alb
44	155	92.8	167	4	AAU02996	Aau02996 Human Ob
45	154	92.2	167	4	AAU02995	Aau02995 Human Ob
46	150	89.8	167	4	AAU02994	Aau02994 Human Ob
47	148	88.6	167	4	AAU02993	Aau02993 Human Ob
48	147	88.0	167	2	AAW00518	Aaw00518 Human obe
49	147	88.0	167	2		Aaw00519 Human obe
50	146	87.4	146	2	AAW00013	Aaw00013 Acid stab
51	146	87.4	146	2	AAR99490	Aar99490 Chimeric
52	146	87.4	146	2	AAW00539	Aaw00539 Human mat
						Aaw30892 Synthetic
53	146	87.4	146	2	AAW30892	Aaw34482 Human obe
54	146	87.4	146	2	AAW34482	
55	146	87.4	146	2	AAW10151	Aaw10151 Properly
56	146	87.4	146	2	AAW22901	Aaw22901 Biologica
57	146	87.4	146	2	AAW30791	Aaw30791 Obesity p
58	146	87.4	146	2	AAW26194	Aaw26194 Obesity p
59	146	87.4	146	2	AAW34483	Aaw34483 Human obe
60	146	87.4	146	2	AAW32575	Aaw32575 Anti obes
61	146	87.4	146	2	AAW34489	Aaw34489 Obesity p
62	146	87.4	146	2	AAW69682	Aaw69682 Human obe
63	146	87.4	146	2	AAW53342	Aaw53342 Obesity p
64	146		146	2	AAY43311	Aay43311 Human lep
65	146	87.4	146	2	AAY06102	Aay06102 Human obe
66	146	87.4	146	3	AAY92712	Aay92712 Mature le
00	140	0,,4	110	-		

67	146	87.4	146	3	AAY82111	Aay821	l1 Mature hu
68	146	87.4	146	3	AAY80260	Aay802	60 Human mat
69	146	87.4	146	3	AAY83768	Aay837	58 Human OB
70	146	87.4	146	3	AAY97871	Aay978'	71 Mature wi
71	146	87.4	146	3	AAY95786	Aay957	36 Mature re
72	146	87.4	146	3	AAY95531	Aay955	31 Human mat
73	146	87.4	146	3	AAB14265	Aab142	55 Mature hu
74	146	87.4	146	4	AAB70130	Aab701	30 Mature hu
75	146	87.4	146	5	AAE23614	Aae236	l4 Human lep
76	146	87.4	146	5	ABG32264	Abg322	64 Recombina
77	146	87.4	146	5	ABP63579	Abp635	79 Human obe
78	146	87.4	146	5	ADG65529	Adg655	29 Human lep
79	146	87.4	146	6	ABR57162		62 Recombina
80	146	87.4	146	7	ADC06694	Adc066	94 Leptin ta
81	146	87.4	146	7	ADD26675	Add266	75 Human adi
82	146	87.4	146	7	ADD71107	Add711	07 Human lep
83	146	87.4	146	8	ADI80474	Adi804	74 Mature hu
84	146	87.4	146	8	ADL88877	Ad1888	77 Human cyt
85	146	87.4	147	2	AAW34394	Aaw343	94 Human Met
86	146	87.4	147	2	AAW27167	Aaw271	67 Human rec
87	146	87.4	147	2	AAW53328	Aaw533	28 Human obe
88	146	87.4	147	2	AAY43314	Aay433	14 Human lep
89	146	87.4	147	3	AAY92261	Aay922	61 Mature re
90	146	87.4	148	2	AAW07192	Aaw071	92 Human ant
91	146	87.4	148	2	AAW28801	Aaw288	01 Human mas
92	146	87.4	148	2	AAW71849	Aaw718	49 Obesity p
93	146	87.4	166	2	AAW00535	Aaw005	35 Human obe
94	146	87.4	167	2	AAW00516	Aaw005	16 Human obe
95	146	87.4	167	2	AAW00520	- · · · · · · · · · · · · · · · · · · ·	20 Human obe
96	146	87.4	167	2	AAW00521	Aaw005	21 Human obe
97	146	87.4	167	2	AAW00517	Aaw005	17 Human obe
98	146	87.4	374	2	AAW49076	Aaw490	76 Recombina
99	146	87.4	374	2	AAW49075	Aaw490	75 Recombina
100	146	87.4	374	2	AAW83963		63 Recombina
101	146	87.4	379	2	AAW49073	Aaw490	73 Recombina
102	146	87.4	379	2	AAW49074	Aaw490	74 Recombina
103	146	87.4	379	2	AAW83962	Aaw839	62 Recombina
104	146	87.4	755	7	ADF15046	Adf150	46 Human alb
105	146	87.4	755	7	ADF15043	Adf150	43 Human alb
106	146	87.4	755	7	ADF15045	Adf150	45 Human alb
107	146	87.4	755	7	ADH21305	Adh213	05 Human alb
108	146	87.4	755	7	ADH21303	Adh213	03 Human alb
109	146	87.4	755	7	ADH21304		04 Human alb
110	141	84.4	146	8	ADL89348	Ad1893	48 Human mod
111	141	84.4	146	8	ADL89349	Ad1893	49 Human mod
112	141	84.4	158	4	AAU02997	Aau029	97 Human Ob
113	140	83.8	146	8	ADL89347	Ad1893	47 Human mod
114	140	83.8	146	8	ADL89346		46 Human mod
115	138	82.6	138	2	AAW07434		34 Large mon
116	138	82.6	167	4	AAU02895		95 Human Ob
117	137	82.0	146	2	AAW00010		10 Acid stab
118	137	82.0	146	2	AAR99493		93 Chimeric
119	137	82.0	146	2	AAW30897		97 Synthetic
120	137	82.0	146	2	AAW26196		96 Obesity p
121	137	82.0	146	2	AAW18625		25 Obesity p
122	137	82.0	146	2	AAW32577		77 Anti obes
123	137	82.0	146	2	AAW34491	Aaw344	91 Obesity p

.

•

-

979	7	4.2	7	4	AAB59935	Aab59935 Human lep
980	7	4.2	7	5	ABB84134	Abb84134 Murine C5
981	7	4.2	7	6	ABU64579	Abu64579 Obese (ob
982	7	4.2	7	8	AD024731	Ado24731 Human lep
983	7	4.2	8	2	AAW00072	Aaw00072 N-termina
984	7	4.2	8	2	AAW00607	Aaw00607 Small pep
985	7	4.2	15	3	AAY84184	Aay84184 Amino aci
986	7	4.2	15	3	AAY84183	Aay84183 Amino aci
987	7	4.2	15	8	AD024723	Ado24723 Mouse lep
988	7	4.2	15	8	ADO24724	Ado24724 Mouse lep
989	7	4.2	16	5	ABJ04476	Abj04476 BRASIL me
990	7	4.2	16	5	ABJ04475	Abj04475 Mouse lep
991	7	4.2	18	2	AAW00070	Aaw00070 N-termina
992	7	4.2	18	2	AAW01405	Aaw01405 Generic o
993	7	4.2	20	3	AAY95798	Aay95798 Hybrid le
994	7	4.2	21	3	AAY95797	Aay95797 Hybrid le
995	7	4.2	22	4	AAB59947	Aab59947 Murine le
996	7	4.2	63	6	ADA35195	Ada35195 Acinetoba
997	7	4.2	73	4	AA013414	Aao13414 Human pol
998	7	4.2	102	7	ADH85627	Adh85627 Enterococ
999	7	4.2	127	3	AAG00027	Aag00027 Human sec
1000	7	4.2	132	4	AAU39229	Aau39229 Propionib

ALIGNMENTS

```
RESULT 1
AAW03694
     AAW03694 standard; protein; 167 AA.
ΙD
XX
     AAW03694;
AC
XX
DT
     15-JUL-1997 (first entry)
XX
DE
     Human obese (ob) protein.
XX
     Human; obese; ob; body; weight; modulation; defect; mutation; prevention;
KW
     interference; production; function; treatment; control; obesity; disease;
KW
     reduction; food intake; gain; mammal; type II; diabetes; mellitus;
KW
     hypertension; hyperlipidaemia; hyperlipidemia; identification; receptor.
KW
XX
OS
     Homo sapiens.
XX
FH
                     Location/Qualifiers
     Key
FT
                      1. .21
     Peptide
                     /label= sig_peptide
FT
FT
     Peptide
                     22. .167
                     /label= mat_peptide
FT
XX
     EP741187-A2.
PN
XX
     06-NOV-1996.
PD
XX
PF
     24-APR-1996;
                     96EP-00106408.
XX
PR
     05-MAY-1995;
                    95US-00435777.
```

```
07-JUN-1995;
                  95US-00484629.
PR
XX
     (HOFF ) HOFFMANN LA ROCHE & CO AG F.
PA
XX
PΙ
    Campfield A, Devos R, Guisez Y;
XX
DR
    WPI: 1996-487390/49.
    N-PSDB; AAT42168.
DR
XX
PT
    New isolated human and murine obese proteins - and related DNA, used for
PT
    the treatment, prevention and control of obesity and associated diseases.
XX
PS
    Claim 3; Page 28-29; 36pp; English.
XX
CC
    The present sequence is the human obese (ob) protein, a body weight
    modulator, which can be administered to patients suffering from ob gene
CC
CC
    defects or mutations which prevent or interfere with its production
CC
    and/or function. The ob protein can be used to treat, prevent or control
    obesity and associated diseases by reducing food intake and weight gain
CC
    in mammals. It can also be used to treat related conditions such as type
CC
    II diabetes mellitus, hypertension and hyperlipidaemia, and to identify
CC
    ob protein receptors. The human ob gene was isolated by screening a
CC
    lambda phage cDNA library, made from human adipocyte tissue derived RNA,
CC
    with a murine ob gene obtained using the methods of Zhang, Y. et al.,
CC
    Nature 372, 425-432 (1994)
CC
XX
SO
    Sequence 167 AA;
                        100.0%; Score 167; DB 2; Length 167;
  Query Match
                        100.0%; Pred. No. 6.2e-163;
  Best Local Similarity
                             0; Mismatches
                                               0; Indels
 Matches 167; Conservative
           1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Qy
             1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Db
          61 DFIPGLHPILTLSKMDOTLAVYOOILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qу
             61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
         121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Qу
             121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Db
RESULT 2
AAR99473
    AAR99473 standard; protein; 167 AA.
XX
AC
    AAR99473;
XX
DT
    22-OCT-1996 (first entry)
XX
DE
    Human ob protein.
XX
    Obesity; ob gene; ob protein; appetite suppression factor.
KW
XX
```

```
os
    Homo sapiens.
XX
FH
     Key
                    Location/Qualifiers
FT
     Peptide
                    1. .21
FT
                    /label= Sig peptide
FT
     Protein
                    22. .167
FT
                    /label= Mat protein
XX
PN
    WO9622308-A2.
XX
PD
    25-JUL-1996.
XX
    22-JAN-1996;
                   96WO-US001471.
PF
XX
                   95US-00377068.
PR
     20-JAN-1995;
PR
     10-APR-1995;
                   95US-00419214.
                   95US-00486450.
PR
     07-JUN-1995;
                   95US-00486459.
     07-JUN-1995;
PR
PR
     07-JUN-1995;
                   95US-00487111.
                   95US-00540242.
PR
    04-OCT-1995;
XX
     (ZYMO ) ZYMOGENETICS INC.
PA
     (UNIW ) UNIV WASHINGTON.
PA
XX
PΙ
    Weigle DS, Kuijper JL,
                            Bukowski TR;
XX
DR
     WPI; 1996-354476/35.
DR
     N-PSDB; AAT34164.
XX
     Identifying factors that regulate appetite, e.g. for treatment of obesity
PT
     - by administering a test sample to a mammal and determining decrease in
PT
     food consumption.
PT
XX
     Claim 6; Page 76; 90pp; English.
PS
XX
     The human ob protein (appetite suppression factor) amino acid sequence
CC
     (AAR99473) was deduced from a cDNA clone (AAT34164) derived from human
CC
     adipose tissue. The mature ob protein, pref. modified with an N-terminal
CC
     histidine tag, can be obtd. by expression in transformed host (esp.
CC
     yeast) cells. It is used to regulate the appetite of an individual,
CC
     thereby decreasing food consumption. Mouse ob proteins (see also AAR99472
CC
CC
     and AAR99474) were also identified
XX
SQ
     Sequence 167 AA;
                         100.0%; Score 167; DB 2; Length 167;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 6.2e-163;
                               0; Mismatches
                                                 0; Indels
                                                                          0;
  Matches 167; Conservative
            1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Qу
              1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Db
           61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qу
              61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
```

```
121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Qу
              Db
          121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
RESULT 3
AAR92720
     AAR92720 standard; protein; 167 AA.
XX
AC
     AAR92720;
XX
DΤ
     12-SEP-1996 (first entry)
XX
DE
     Obesity protein.
XX
     Obesity; mouse; OBP; leptin; hormone; body weight regulation; diabetes;
KW
     food intake; energy expenditure; high blood pressure; cholesterol; human;
KW
     gene therapy; antibody; cancer; Kobe beef; Foie gras; immunoassay.
KW
XX
os
     Homo sapiens.
XX
                     Location/Qualifiers
FH
     Kev
FT
     Peptide
                     1. .21
                     /note= "signal peptide"
FT
FT
     Protein
                     22. .167
FT
                     /note= "obesity protein"
XX
PN
     GB2292382-A.
XX
     21-FEB-1996.
PD
XX
                    95GB-00016947.
ΡF
     17-AUG-1995;
XX
                    94US-00292345.
PR
     17-AUG-1994;
     30-NOV-1994;
                    94US-00347563.
PR
                    95US-00438431.
PR
     10-MAY-1995;
     07-JUN-1995;
                    95US-00483211.
PR
XX
PA
     (UYRQ ) UNIV ROCKEFELLER.
XX
                   Zhang Y, Proenca R, Maffei M, Halaas JL, Gajiwala K;
PΙ
     Friedman JM,
PΙ
     Burley SK;
XX
     WPI; 1996-099009/11.
DR
     N-PSDB; AAT16373.
DR
XX
     Obesity polypeptide(s) able to modulate body wt. - useful for e.g.
PT
     reducing wt. in treatment of diabetes, high blood pressure and high
PT
     cholesterol and for cosmetic reasons.
PT
XX
PS
     Claim 2; p171-172; 304pp; English.
XX
     This sequence represents the human obesity polypeptide (OBP). OBP (also
CC
     known as leptin) is a hormone involved in the regulation of body weight.
CC
     This sequence has effects on both food intake and energy expenditure. OBP
CC
     and its analogues are useful for modifying body weight (optionally
CC
     combined with known medicaments), for treating diabetes, high blood
CC
```

```
pressure or high cholesterol. The DNA encoding this sequence (and
CC
    sequences complimentary to it) can be used in gene therapy for modifying
CC
    body weight. This protein can be used for reducing weight for health or
CC
    cosmetic reasons in obese humans, or to produce leaner food animals.
CC
    Antagonists of OBP (including antibodies) are useful for increasing body
CC
    weight, e.g. for treating weight loss associated with cancer, or for
    cosmetic reasons in humans, or for production of Kobe beef or Foie gras
CC
CC
    in domestic animals. OBP antibodies (Ab) can also be used in diagnostic
    immunoassays for the presence of OBP. The formation of Ab-OBP complexes
CC
CC
    enables in vitro evaluation of levels of OBP in a sample, especially to
CC
    detect diseases associated with elevated or decreased levels, and to
    monitor treatment of these diseases
CC
XX
SO
    Sequence 167 AA;
                        100.0%; Score 167; DB 2; Length 167;
 Query Match
                        100.0%; Pred. No. 6.2e-163;
 Best Local Similarity
                             0; Mismatches
                                                            0; Gaps
                                                                       0;
 Matches 167; Conservative
                                               0; Indels
           1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Qу
             1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Db
          61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qу
             61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
         121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Qу
             121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Db
RESULT 4
AAW34060
ΤD
    AAW34060 standard; protein; 167 AA.
XX
ÀC
    AAW34060;
XX
DT
    24-APR-1998
                (first entry)
XX
DE
    Human obese (ob) protein.
XX
KW
    Obese protein; ob protein; osteogenic cell; bone-forming activity;
    migration; bone-forming cell; marrow mesenchymal cell; bone repair;
KW
    bone healing; bone loss.
KW
XX
OS
    Homo sapiens.
XX
FH
                   Location/Qualifiers
    Key
FT
    Peptide
                   1. .21
FT
                   /note= "signal peptide"
XX
PN
    WO9739767-A1.
XX
PD
    30-OCT-1997.
XX
    18-APR-1997;
                  97WO-US006892.
PF
```

CC

```
XX
PR
                  96US-0015647P.
    19-APR-1996;
XX
PA
     (ZYMO ) ZYMOGENETICS INC.
     (UNIW ) UNIV WASHINGTON.
PA
XX
PΙ
    Durnam DM, Kuijper JL, Weigle DS, Liu CC;
XX
    WPI; 1997-535577/49.
DR
DR
    N-PSDB; AAT93021.
XX
PT
    Use of obese protein for inducing bone formation - particularly for
PT
    treating osteoporosis, repairing fractures, dental defects or
PΤ
    resectioning due to oncogenesis.
XX
    Disclosure; Page 32; 42pp; English.
PS
XX
CC
    The present sequence represents a human obese (ob) protein. DNA sequence
    was isolated from an adipose tissue cDNA library using a probe derived
CC
CC
    from the mouse obese gene. ob proteins can produce a dramatic increase in
    osteogenic cells or their bone-forming activity. They can enhance
CC
    recruitment or migration of bone-forming cells to the proper bone-forming
CC
    tissues and tissue sites. The ob protein was used in the method of the
CC
    invention, which involves the stimulation of a cell population containing
CC
    marrow mesenchymal cells. The method comprises exposing the cell
CC
    population to an ob protein for expansion of osteogenic cells, a
CC
CC
    biological fluid obtained from an ob protein-treated mammal, or a culture
    medium that has been conditioned by growth of endocrine or CNS cells or
CC
    tissue exposed to ob protein. The method can be used in a mammal for
CC
    promoting bone repair or bone healing, stimulating bone ingrowth into a
CC
    prosthetic device or dental implant that has been inserted into a mammal,
CC
    for treating bone loss, for increasing bone length, for stimulating
CC
    active bone growth, or for inducing bone formation
CC
XX
SQ
    Sequence 167 AA;
                        100.0%; Score 167; DB 2; Length 167;
  Query Match
                        100.0%; Pred. No. 6.2e-163;
  Best Local Similarity
                              0; Mismatches
                                                             0;
                                                                        0;
 Matches 167; Conservative
                                               0; Indels
                                                                Gaps
           1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Qy
             1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Dh
          61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qу
             61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
         121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Qу
             121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Db
RESULT 5
AAW57442
```

AAW57442 standard; peptide; 167 AA.

XX

```
AC
    AAW57442;
XX
DT
    10-AUG-1998 (first entry)
XX
DΕ
    Human leptin sequence.
XX
KW
    Leptin; murine; antagonist; treatment; type II diabetes; insulin; human.
XX
os
    Homo sapiens.
XX
FH
    Key
                   Location/Oualifiers
FT
    Disulfide-bond
                   7. .167
FT
                   /note= "disulphide bridge"
XX
PN
    WO9812224-A1.
XX
PD
    26-MAR-1998.
XX
PF
    15-SEP-1997;
                  97WO-EP005035.
XX
PR
    20-SEP-1996;
                   96DE-01038487.
XX
    (FARH ) HOECHST AG.
PA
XX
PΤ
    Ertl J, Preibisch G, Mueller G;
XX
DR
    WPI; 1998-217209/19.
XX
PT
    Use of leptin antagonists - for restoring or amplifying the physiological
PT
    effect of insulin in the treatment of Type II diabetes.
XX
PS
    Disclosure; Page 19; 30pp; English.
XX
CC
    This is a human leptin protein sequence which is highly homologous to the
    murine leptin sequence. The carboxyl-terminal fragment of the murine
CC
    leptin can act as a leptin antagonist. This can be used in a
CC
    pharmaceutical composition which comprises the murine leptin fragment
CC
CC
    which is therapeutically beneficial for the treatment of Type II
    diabetes. The leptin antagonists include peptides derived from leptin
CC
    fragments and may be obtained by chemically or enzymatically cleaving
CC
CC
    intact leptin or by recombinant expression using microorganisms. This
CC
    fragment can be prepared by digestion of leptin with lysyl endopeptidase.
    The leptin antagonists can restore or amplify the physiological effect of
CC
CC
    insulin by inhibiting leptin-induced insulin resistance
XX
SQ
    Sequence 167 AA;
                        100.0%; Score 167; DB 2; Length 167;
  Query Match
  Best Local Similarity
                        100.0%; Pred. No. 6.2e-163;
                              0; Mismatches
                                                0; Indels
                                                             0; Gaps
                                                                         0;
 Matches 167; Conservative
           1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Qу
             1 MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGL 60
Db
          61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qу
```

```
61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
Qv
          121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
              121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Db
RESULT 6
AAY82110
    AAY82110 standard; protein; 167 AA.
XX
AC
    AAY82110;
XX
DT
     05-JUN-2000 (first entry)
XX
DE
     Human obese protein SEQ ID NO:5.
XX
     Ob gene; ob protein; obesity; body weight; polyethylene; obese protein;
KW
     polypropylene; protein conjugate; anorectic.
KW
XX
os
    Homo sapiens.
XX
    US6025324-A.
PN
XX
    15-FEB-2000.
PD
XX
PF
     15-MAY-1996;
                   96US-00648262.
XX
PR
     15-MAY-1996;
                   96US-00648262.
XX
     (HOFF ) HOFFMANN LA ROCHE INC.
PA
XX
     Bailon PS, Devos R, Campfield A, Guisez Y;
PΙ
XX
     WPI; 2000-222636/19.
DR
     N-PSDB; AAZ95530.
DR
XX
     Polyethylene and polypropylene obese protein conjugates are useful for
PT
     the prevention, treatment and control of obesity and associated diseases
PT
PT
     and conditions.
XX
PS
     Disclosure; Col 35-36; 26pp; English.
XX
     The present invention describes a composition comprising one or more
CC
     polyethylene and polypropylene human obese protein conjugates (I). The
CC
     composition has anorectic activity. The conjugates are used for the
CC
     treatment, prevention and control of obesity and associated conditions in
CC
     humans and animals. The present sequence represents the human obese
CC
CC
     protein
XX
SQ
     Sequence 167 AA;
                         100.0%; Score 167; DB 3; Length 167;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 6.2e-163;
                                                                           0;
  Matches 167; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
```

Qv

```
Db
           1 MHWGTLCGFLWLWPYLFYVOAVPIOKVODDTKTLIKTIVTRINDISHTOSVSSKOKVTGL 60
          61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Qy
             61 DFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP 120
Db
         121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Qy
             121 WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC 167
Db
RESULT 7
AAB28448
    AAB28448 standard; protein; 167 AA.
XX
AC
    AAB28448;
XX
DΤ
    01-FEB-2001 (first entry)
XX
DE
    Human OB polypeptide.
XX
    Human; mouse; OB gene; obesity; adiposity; body weight.
KW
XX
OS
    Homo sapiens.
XX
PN
    US6124448-A.
XX
PD
    26-SEP-2000.
XX
PF
    07-JUN-1995;
                  95US-00488208.
XX
    17-AUG-1994;
                  94US-00292345.
PR
    30-NOV-1994;
                  94US-00347563.
PR
                  95US-00438431.
PR
    10-MAY-1995;
XX
     (UYRQ ) UNIV ROCKEFELLER.
PΑ
XX
    Maffei M, Proenca R, Zhang Y, Friedman JM;
PΙ
XX
DR
    WPI; 2000-601556/57.
    N-PSDB; AAC62566.
DR
XX
PT
    Nucleic acid primers and probes useful for detecting mutations in
    mammalian OB gene associated with regulation of body weight and
PT
PT
    adiposity.
XX
    Example; Fig 3; 153pp; English.
PS
XX
    The present sequence is encoded by a nucleotide sequence used in an
CC
    invention relating to the control of body weight of animals including
CC
    humans. Nucleic acids of at least 10 nucleotides which are hybridisable
CC
    to a non-coding region of an OB nucleic acid have been created. The OB
CC
     gene plays a critical role in the regulation of body weight and
CC
     adiposity. The nucleic acids may be used as probes or as primers for PCR.
CC
    They are useful for evaluating the presence of mutations in the human OB
CC
     gene or for evaluating the level of expression of OB mRNA. Defects
CC
```