Chapitre I.

Configuration du plan

Les savoir-faire du parcours

- Savoir utiliser le théorème de M. Pythagore et sa réciproque.
- Savoir utiliser le théorème de M. Thalès et sa réciproque.
- Savoir utiliser la trigonométrie.
- · Savoir calculer des périmètres.
- · Savoir calculer des aires.
- · Savoir calculer des volumes.

Les mathématiciennes et mathématiciens

Compétence.

1

Géométrie euclidienne

Théorème 1: Théorème de M. Pythagore.

Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Traduction en langage mathématiques : Si ABC est un triangle rectangle en A alors on a l'égalité : $BC^2 = \overline{AB^2 + AC^2}$

Théorème 2: réciproque du Théorème de M. Pythagore.

Si dans un triangle, le carré du plus grand côté est égal à la somme des carrés des deux autres côtés alors on peut affirmer que le triangle rectangle.

<u>Traduction en langage mathématiques</u> : Si $BC^2 = AB^2 + AC^2$ alors on peut affirmer que le triangle ABC est rectangle en A.

Théorème 3: Théorème de M. Thalès.

Si les points A, B, C, M et N forment une configuration de Thalès, alors les triangles ABC et AMN ont les longueurs de leurs côtés proportionnelles.

 $\frac{\text{Traduction en langage mathématiques}}{\text{et }(MN) \text{ sont parallèles alors :}} : \text{Si les droites }(BM) \text{ et }(CN) \text{ sont sécantes en } A \text{ et les droites }(BC)$

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}$$

Théorème 4: Réciproque du Théorème de Thalès.

Si les points A, M, B et A, N, C sont alignés dans le même ordre et si $\frac{AB}{AM} = \frac{AC}{AN}$ alors on peut affirmer que les droites (BC) et (MN) sont parallèles.

Définition 5: Trigonométrie.

Dans un triangle rectangle,

- le cosinus d'un angle aigu est le quotient : longueur du coté adjacent à cet angle longueur de l'hypoténuse
- le sinus d'un angle aigu est le quotient : $\frac{\text{longueur du coté opposé à cet angle}}{\text{longueur de l'hypoténuse}}$
- la tangente d'un angle aigu est le quotient : longueur du coté opposé à cet angle longueur du coté adjacent à cet angle

Premier SF Compétence. **Deuxième SF** Compétence. 3 **Troisième SF** Compétence.

Grandeurs et mesures

Définition 6: Unités de longueur.

Le système métrique est un système décimal :

$$1 m = 10 dm$$

$$1 dm = 10 cm$$

$$1 \, cm = 10 \, mm$$

Méthode 7.

On peut se servir d'un tableau de conversion.

kilomètre	hectomètre	décamètre	mètre	décimètre	centimètre	millimètre
km	hm	dam	m	dm	cm	mm
1km = 1000m	1hm = 100m	1dam = 10m	1m	1dm = 0, 1m	1cm = 0,01m	1mm = 0,001m

Définition 8: Unités d'aires.

L'unité de mesure des aires est le mètre carré, on le note m^2 , c'est l'aire d'un carré de 1 m de côté.

Propriété 9.

Dans un carré de $1\,cm$ de côté, on peut construire $10 \times 10 = 100$ carrés de 1 mm de côté. Donc $1 cm^2 =$ $100mm^{2}$.

Définition 10: Volume.

Le volume est la mesure de l'intérieur d'un solide. L'unité de mesure des volumes est le mètre cube, on note m^3 , c'est le volume d'un **cube** de $1\,m$ d'**arête**. On note :

- $1\,dm^3$ le volume d'un cube de $1\,dm$ d'arête.
- $1 cm^3$ le volume d'un cube de 1 cm d'arête.
- $1 mm^3$ le volume d'un cube de 1 mm d'arête.

Propriété 11.

Dans un cube de $1\,cm=10\,mm$ de côté, on peut construire $10\times10\times10=1000$ cubes de $1\,mm$ de côté. Donc $1 cm^3 = 1000mm^3$.

Définition 12: Contenance.

Quantité de ce qu'un récipient peut contenir. Son unité est le **litre** (*L*).

$$1L = 1 \, dm^3$$

Propriété 13.

 $1\,L$ est la contenance d'un cube de $1\,dm$ d'arête, donc $1\,L=1\,dm^3$.

Premier SF Compétence. 5 **Deuxième SF** Compétence. 6 **Troisième SF** Compétence.

3 Formulaire

1 Aires des figures usuelles

Rectangle

Parallélogramme

Disque

Carré

Losange

Triangle

Trapèze

2 Volumes des solides usuels

Cube

 $V=c^3$

P

Parallélépipède rectangle

V=hxlxL

Prisme droit

V=Bxh

Pyramide

 $V = \frac{Bxh}{3}$

Cône

$$V = \frac{Bxh}{3}$$

Boule

$$V = \frac{4}{3} \pi r^3$$

Premier SF Compétence. 8 **Deuxième SF** Compétence. 9 **Troisième SF** Compétence. 10

Compétence.