15) 证明: 群岛中的无惠众与复逢无 0~1有相目的所.
21: 沒 1叫=n,则 Qn=e,又(QT)n=(Qn)-1=e-1=e.
二 10~11=n,故岛中元李以与复连元公7有相目的所
3) 新缩环群和足交换群。

(10) 1-7 4的加加表 旅水 仍是

	11			אלך	me	1		
		10	I	2	3	4	5	167
	0	I_0	1	2	3	4	2	16
	1	1	2	3	4	5	6	0
	2	2	3	4	2	6	0	II
	3	3	4	2	6	0	1	2
1	4	4	5	б	D	1	2	3
1	5	5	6	0	1	2	3	4
1	T	6	0	1	2	13	. 4	5
+	-				_	•	_	

•		來 2000						_
i		1	2	3	4	5	6	-1
	1	1	2 3	3	4	7	6	⅃
	2	2	4	6	1	3	5	\rfloor
	3	3	6	2	7	- 1	4	
	4	4	l	7-	2	6	3]
	5	5	3	1	6	4	2	•
	6	6	5	4	3	2	1	
				1			18.4	_

(11)本下23份发表。

99: F23是一个多数域,对各加强和成形成一个23,十分,并且群的 =23,是一个多数阶梯,进而足循环群,其中任于了非单位之 那是经成元。

对于采码(下33/60],23/构成一个条品解, 鹬阶为22根据际限 9份15页 190, g'______ 94的-1)树模 23份简任剩余多, 22为211四个字图台,从2.3.5.6...中试算

 $2^{2}-4$, $2^{11}=1$ (mid 23) $3^{2}-9$, $3^{4}=12$ [mid 23) $5^{2}-9$, $3^{4}=12$ [mid 23) $5^{2}-9$, $5^{4}=4$ $5^{8}=16$, $5^{10}=9$ $5^{12}-1$ (mod 25) -9 78 不成,也为下的 68 个经验系

12. 张明: 圣加多中级河道元对来的指成一个路,设工作多的多大

<u>海红种</u>
新闻生:对于 Ya, be(z/nz)*,我们要发证明 arb世界成
初生:对于 ba, be(z/nz) ⁺ ,我们需要证明 arbtelling, :a.b 为有在文 : {a.a-1=1 (modn) 看房a.b:a.b(b-1.a-1)
= a.b.b-1.a-1 = 1(modn) ni) absa \$256-a-1, Que, abolene)
33程: axb, c EZ/NZ, 有 (a·b)c = Na·(b·c) (mod n)
新言意: 极在军民是人
可声文: 霞 a G(z/nz)*, 別意味着 (a,n)=1, tsaxx+ny=1
小人在模的的多义了,有内X=1 (modn) 超为为自知单位之

