GRID WORLD PROBLEM/GAME

Bellman Eq

$$V_{i+1}(s) = \max_{a \in \mathbb{A}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

Value iteration algorithm

Algorithm

Start with $V_0(s) = 0 \ \forall s \in \{s_1, s_2, ..., s_{12}\}$

For i=1:1:H

 $\forall s \in \{s_1, s_2, ..., s_{12}\}:$

$$V_{i+1}(s) \leftarrow \max_{a \in \mathbb{A}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

$$\pi_{i+1}(s) \leftarrow arg \max_{\alpha \in \mathbb{A}} \sum_{s'} T(s, \alpha, s') [R(s, \alpha, s') + \gamma V_i(s')]$$

This is called value-update or Bellman-update

 $V_i^st(s)$ = expected sum of rewards accumulated starting from state s, acting optimally for i steps

 $\pi_i^*(s)$ = optimal action when in state s and getting to act for i steps

THE GRID WORLD PROBLEM

i	$V_i(s_1)$	$V_i(s_2)$	$V_i(s_3)$	$V_i(s_4)$	$V_i(s_5)$	$V_i(s_6)$	$V_i(s_7)$	$V_i(s_8)$	$V_i(s_9)$	$V_i(s_{10})$	$V_i(s_{11})$	$V_i(s_{12})$
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	-1	0	0	0	0

For i=2,3,...,H for the terminal states you write the rewards directly

(w/o computing the value using Bellman Eq)

$$R(s_4, a, s_4) = +1$$

$$R(s_8, a, s_8) = -1$$

When i=3:

i	$V_i(s_1)$	$V_i(s_2)$	$V_i(s_3)$	$V_i(s_4)$	$V_i(s_5)$	$V_i(s_6)$	$V_i(s_7)$	$V_i(s_8)$	$V_i(s_9)$	$V_i(s_{10})$	$V_i(s_{11})$	$V_i(s_{12})$
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	-1	0	0	0	0
3				1				-1				

$$V_{i+1}(s) \leftarrow \max_{\alpha \in \mathbb{A}} \sum_{s'} T(s, \alpha, s') [R(s, \alpha, s') + \gamma V_i(s')]$$

$\rightarrow T(s_3, a, s_4)[R(s_3, a, s_4) + (0.9)V_2(s_4)] +$	$\rightarrow 0.8[0 + (0.9)(1)] +$	0.72
\rightarrow : $\uparrow T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_2(s_3)] +$	\rightarrow : $\boxed{\uparrow}$ 0.1[0 + (0.9)(0)] +	
	\downarrow 0.1[0 + (0.9)(0)]	
$\uparrow T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_2(s_3)] +$	$\bigcirc 0.8[0 + (0.9)(0)] +$	0.09
	\uparrow : $\rightarrow 0.1[0 + (0.9)(1)] +$	
$\leftarrow T(s_3, a, s_2)[R(s_3, a, s_2) + (0.9)V_2(s_2)]$	$\leftarrow 0.1[0 + (0.9)(0)]$	
$\leftarrow T(s_3, a, s_2)[R(s_3, a, s_2) + (0.9)V_2(s_2)] +$	$\leftarrow 0.8[0 + (0.9)(0)] +$	0
\leftarrow : $\uparrow T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_2(s_3)] +$	\leftarrow : \bigcirc 0.1[0 + (0.9)(0)] +	
	\downarrow 0.1[0 + (0.9)(0)]	
	$ _ $ $ \boxed{ \downarrow } 0.8[0 + (0.9)(0)] + $	0.09
\downarrow : $\leftarrow T(s_3, a, s_2)[R(s_3, a, s_2) + (0.9)V_2(s_2)] +$	\downarrow : \leftarrow 0.1[0 + (0.9)(0)] +	
$\rightarrow T(s_3, a, s_4)[R(s_3, a, s_4) + (0.9)V_2(s_4)]$	$\rightarrow 0.1[0 + (0.9)(1)]$	

And take my word for it, the values of the other states are zero.

When i=4:

i	$V_i(s_1)$	$V_i(s_2)$	$V_i(s_3)$	$V_i(s_4)$	$V_i(s_5)$	$V_i(s_6)$	$V_i(s_7)$	$V_i(s_8)$	$V_i(s_9)$	$V_i(s_{10})$	$V_i(s_{11})$	$V_i(s_{12})$
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	-1	0	0	0	0
3	0	0	0.72	1	0	0	0	-1	0	0	0	0
4				1		0		-1				

$$V_{i+1}(s) \leftarrow \max_{\alpha \in \mathbb{A}} \sum_{s'} T(s, \alpha, s') [R(s, \alpha, s') + \gamma V_i(s')]$$

For s=2

$\rightarrow T(s_2, a, s_3)[R(s_2, a, s_3) + (0.9)V_3(s_3)] +$	$\rightarrow 0.8[0 + (0.9)(0.72)] +$	0.5184
\rightarrow : $\uparrow T(s_2, a, s_2)[R(s_2, a, s_2) + (0.9)V_3(s_2)] +$	\rightarrow : $0.1[0 + (0.9)(0)] +$	max
	\downarrow 0.1[0 + (0.9)(0)]	
$\uparrow T(s_2, a, s_2)[R(s_2, a, s_2) + (0.9)V_3(s_2)] +$	10.8[0+(0.9)(0)] +	0.0648
$\leftarrow T(s_2, a, s_1)[R(s_2, a, s_1) + (0.9)V_3(s_1)]$	$\leftarrow 0.1[0 + (0.9)(0)]$	
$\leftarrow T(s_2, a, s_1)[R(s_2, a, s_1) + (0.9)V_3(s_1)] +$	$\leftarrow 0.8[0 + (0.9)(0)] +$	0
\leftarrow : $\uparrow T(s_2, a, s_2)[R(s_2, a, s_2) + (0.9)V_3(s_2)] +$	←: ↑ 0.1[0 + (0.9)(0)] +	
	$\downarrow 0.1[0 + (0.9)(0)]$	
	$ _ $ $ \boxed{ \downarrow } 0.8[0 + (0.9)(0)] + $	0.0648
\downarrow : $\leftarrow T(s_2, a, s_1)[R(s_2, a, s_1) + (0.9)V_3(s_1)] +$	\downarrow : \leftarrow 0.1[0 + (0.9)(0)] +	
$\rightarrow T(s_2, a, s_3)[R(s_2, a, s_3) + (0.9)V_3(s_3)]$	\rightarrow 0.1[0 + (0.9)(0.72)]	

For s=3

$\rightarrow T(s_3, a, s_4)[R(s_3, a, s_4) + (0.9)V_3(s_4)] +$	$\rightarrow 0.8[0 + (0.9)(1)] +$	0.7848
\rightarrow : $\uparrow T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_3(s_3)] +$	\rightarrow : $0.1[0 + (0.9)(0.72)] +$	max
$\downarrow T(s_3, a, s_7)[R(s_3, a, s_7) + (0.9)V_3(s_7)]$	\downarrow 0.1[0 + (0.9)(0)]	
$ T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_3(s_3)] + $	0.8[0 + (0.9)(0.72)] +	0.6084
	\uparrow : $\rightarrow 0.1[0 + (0.9)(1)] +$	
$\leftarrow T(s_3, a, s_2)[R(s_3, a, s_2) + (0.9)V_3(s_2)]$	$\leftarrow 0.1[0 + (0.9)(0)]$	
$\leftarrow T(s_3, a, s_2)[R(s_3, a, s_2) + (0.9)V_3(s_2)] +$	$\leftarrow 0.8[0 + (0.9)(0)] +$	0.0648
\leftarrow : $\uparrow T(s_3, a, s_3)[R(s_3, a, s_3) + (0.9)V_3(s_3)] +$	\leftarrow :	
$\downarrow T(s_3, a, s_7)[R(s_3, a, s_7) + (0.9)V_3(s_7)]$	\downarrow 0.1[0 + (0.9)(0)]	
		0.09
	\downarrow : \leftarrow 0.1[0 + (0.9)(0)] +	
$\rightarrow T(s_3, a, s_4)[R(s_3, a, s_4) + (0.9)V_3(s_4)]$	$\rightarrow 0.1[0 + (0.9)(1)]$	

For s=7

$\rightarrow T(s_7, a, s_8)[R(s_7, a, s_8) + (0.9)V_3(s_8)] +$	$\rightarrow 0.8[0 + (0.9)(-1)] +$	-0.2016
\rightarrow : $\uparrow T(s_7, a, s_3)[R(s_7, a, s_3) + (0.9)V_3(s_3)] +$	\rightarrow : \uparrow 0.1[0 + (0.9)(0.72)] +	
$\downarrow T(s_7, a, s_{11})[R(s_7, a, s_{11}) + (0.9)V_3(s_{11})]$	$\downarrow 0.1[0 + (0.9)(0)]$	
$\uparrow T(s_7, a, s_3)[R(s_7, a, s_3) + (0.9)V_3(s_3)] +$	10.8[0 + (0.9)(0.72)] +	0.4284
	$\uparrow: \rightarrow 0.1[0 + (0.9)(-1)] +$	max
$\leftarrow T(s_7, a, s_7)[R(s_7, a, s_7) + (0.9)V_3(s_7)]$	$\leftarrow 0.1[0 + (0.9)(0)]$	
$\leftarrow T(s_7, a, s_7)[R(s_7, a, s_7) + (0.9)V_3(s_7)] +$	$\leftarrow 0.8[0 + (0.9)(0)] +$	0.0648
\vdash : $\uparrow T(s_7, a, s_3)[R(s_7, a, s_3) + (0.9)V_3(s_3)] +$	\leftarrow : \uparrow 0.1[0 + (0.9)(0.72)] +	
	$\downarrow 0.1[0 + (0.9)(0)]$	
	0.8[0+(0.9)(0)] +	-0.09
$ \downarrow : \leftarrow T(s_7, a, s_7)[R(s_7, a, s_7) + (0.9)V_3(s_7)] + $	\downarrow : \leftarrow 0.1[0 + (0.9)(0)] +	
$\rightarrow T(s_7, a, s_8)[R(s_7, a, s_8) + (0.9)V_3(s_8)]$	\rightarrow 0.1[0 + (0.9)(-1)]	

i	$V_i(s_1)$	$V_i(s_2)$	$V_i(s_3)$	$V_i(s_4)$	$V_i(s_5)$	$V_i(s_6)$	$V_i(s_7)$	$V_i(s_8)$	$V_i(s_9)$	$V_i(s_{10})$	$V_i(s_{11})$	$V_i(s_{12})$
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	-1	0	0	0	0
3	0	0	0.72	1	0	0	0	-1	0	0	0	0
4	0	0.5184	0.7848	1	0	0	0.4284	-1	0	0	0	0

s_prime_list_generator(state, action)

For each state-action pair there is a corresponding s-prime-list