Por responder

Nota: 2,00

Marcar

pergunta

Os dados no ficheiro ResiduosPerCapita.xlsx correspondem à produção de resíduos per capita em **30** países europeus, nos anos 2004 e 2018. Com recurso à função ggplot represente, num diagrama de barras lado a lado, a produção de resíduos per capita nos países **SI - Eslovenia**, **IE - Irlanda**, e **BE - Belgica**, nos anos 2004 e 2018.

Hyperlink para o ficheiro ResiduosPerCapita.xlsx:

https://fenix.tecnico.ulisboa.pt/downloadFile/845043405571251/ResiduosPerCapita.xlsx

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. O código em R.
- 2. O diagrama de barras lado a lado.
- 3. Comentários sobre os resultados obtidos.

Pergunta 2

Por responder Nota: 2,00

Marcar pergunta Os dados no ficheiro EsperancaVida.xIsx correspondem aos valores da esperança de vida à nascença (total e por sexo) em **31** países europeus, entre 1960 e 2020. Com recurso à função ggplot represente, num mesmo gráfico temporal, as séries dos valores da esperança de vida à nascença das mulheres e dos homens, entre 2002 e 2019, nos países **CZ - Republica Checa, DK - Dinamarca** e **RO - Romenia**.

Hyperlink para os ficheiros EsperancaVida.xlsx:

https://fenix.tecnico.ulisboa.pt/downloadFile/845043405571252/EsperancaVida.xlsx

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. O código em R.
- 2. O gráfico temporal.
- 3. Comentários sobre os resultados obtidos.

Pergunta 3

Por responder Nota: 2,00 Marcar

pergunta

Os dados no ficheiro QualidadeARO3.xlsx correspondem às observações horárias de níveis de ozono, em microgramas por metro cúbico, recolhidas em 10 estações da rede QUALAR (https://qualar.apambiente.pt), em 2020. Com recurso à função ggplot represente, num único histograma, os valores dos níveis de ozono registados nas estações de Estarreja e Entrecampos em 2020.

Hyperlink para o ficheiro QualidadeARO3.xlsx:

https://fenix.tecnico.ulisboa.pt/downloadFile/845043405571253/QualidadeAR03.xlsx

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. O código em R.
- 2. O histograma.
- 3. Comentários sobre os resultados obtidos.

Por responder Nota: 2,00

Marcar pergunta

O ficheiro Utentes.xlsx contém dados relativos a um conjunto de variáveis (Idade, Colesterol, IMC - Índice de Massa Corporal, TAD - Tensão Arterial Diastólica) associadas a **76** utentes de um serviço de saúde. Construa um gráfico de dispersão entre as variáveis **TAD** e **Colesterol**.

Hyperlink para o ficheiro Utentes.xlsx:

https://fenix.tecnico.ulisboa.pt/downloadFile/845043405571257/Utentes.xlsx

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. O código em R.
- 2. O gráfico de dispersão.
- 3. Comentários sobre os resultados obtidos.

Pergunta 5

Por responder

Nota: 2,00

Marcar pergunta

O tempo de atendimento (em minutos), de doentes graves num determinado hospital, é modelado por uma variável aleatória X com distribuição Exponencial de valor esperado $1/\lambda=1/0.14$, i.e. $X\sim Exp(\lambda=0.14)$.

Usando o R e fixando a semente em 1247, gere uma amostra de dimensão n=637 dessa variável. Para essa amostra, calcule a função de distribuição empírica e com base nessa função estime a probabilidade do tempo de atendimento de um doente grave, selecionado ao acaso, ser maior que 8. Calcule ainda o valor teórico dessa probabilidade.

Indique o valor absoluto da diferença entre o valor teórico e o estimado dessa probabilidade utilizando $\bf 6$ casas decimais.

Resposta:			
-----------	--	--	--

Por responder

Nota: 2,00

▼ Marcar pergunta

Para cada um dos três valores de n=4,28 e 71, fixe a semente de geração em 426 e gere 740amostras de uma população, X, com distribuição Uniforme contínua no intervalo [14,18].

Para cada valor de n:

- 1. Calcule a média de cada uma das amostras obtendo assim valores da distribuição da média \bar{X}_n .
- 2. Faça o histograma de frequência relativa associado aos valores obtidos da distribuição da média $ar{X}_n$. Sobreponha no gráfico uma curva com a distribuição normal com valor esperado E(X) e variância Var(X)/n .

Submeta um ficheiro em formato PDF, com uma única página, que inclua:

- 1. Valores dos parâmetros: semente, dimensões das amostras e os parâmetros da distribuição uniforme.
- 2. O código em R.
- 3. Para cada $oldsymbol{n}$ o gráfico construído.
- 4. Comentários sobres os resultados obtidos.

Pergunta 7 Por responder

Nota: 2,00

▼ Marcar pergunta

Usando o R e fixando a semente em 996 , gere 6100 amostras de dimensão 147 de uma população
X, com distribuição Binomial $(45,0.99)$. Calcule a média de cada uma dessas amostras, obtendo
uma amostra de médias.

Indique o valor absoluto da diferença entre a média da amostra de médias e o valor esperado da distribuição teórica de X utilizando 6 casas decimais.

Resposta:	
-----------	--

Pergunta 8

Por responder

Nota: 2,00

 Marcar pergunta

Usando o R e fixando a semente em 290, gere m=1200 amostras de dimensão n=861 de uma população X, com distribuição Exponencial de valor esperado $1/\lambda=1/1.03$, i.e. $X \sim Exp(\lambda = 1.03)$.

Para cada uma das amostras geradas, construa um intervalo de confiança aproximado para λ . Considere o nível de confiança $1-\alpha=0.999$.

Indique a média da amplitude dos m=1200 intervalos de confiança obtidos utilizando 6 casas decimais.

Resposta:	
-----------	--

Por responder

Nota: 2,00

Marcar pergunta Usando o R e fixando a semente em 819, gere m=1400 amostras de dimensão n, onde $n\in\{100,200,300,\dots,5000\}$, de uma população X, com distribuição Exponencial de valor esperado $1/\lambda=1/1.7$, i.e. $X\sim Exp(\lambda=1.7)$.

Para cada uma das amostras geradas, construa um intervalo de confiança aproximado para λ . Considere o nível de confiança $1-\alpha=0.96$.

Para cada valor de n, calcule a Média da Amplitude dos m=1400 intervalos de confiança obtidos, $\mathrm{MA}(n)$.

Construa um gráfico colocando no eixo dos xx a dimensão da amostra, n, e no eixo dos yy o valor de $\mathrm{MA}(n)$.

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. Valores dos parâmetros: semente, m, λ e $(1-\alpha)$.
- 2. O código em R.
- 3. O gráfico produzido.
- 4. Comentários sobre o gráfico obtido na alínea anterior.

Pergunta 10

Por responder Nota: 2,00

Marcar pergunta

Usando o R e fixando a semente em 378, gere m=1500 amostras de dimensão n, onde $n\in\{100,200,300,\ldots,2500\}$, de uma população X, com distribuição Exponencial de valor esperado $1/\lambda=1/4.07$, i.e. $X\sim Exp(\lambda=4.07)$.

Considere as amostras geradas anteriormente e substitua quaisquer $\epsilon imes 100\% = 25\%$ das observações de cada amostra por outras geradas de uma população que modela a distribuição dos outliers, X_c , tal que $X_c \sim Exp(\lambda_c = 1.37)$.

Para cada uma das amostras geradas sem contaminação (respetivamente, com contaminação), construa um intervalo de confiança aproximado para o inverso do valor esperado. Considere o nível de confiança $(1-\alpha)=0.93$.

Para cada valor de n, calcule a Média da Amplitude dos m=1500 intervalos de confiança: $\mathrm{MA}(n)$, no caso das amostras geradas sem contaminação e $\mathrm{MA}^c(n)$, no caso de haver contaminação.

Construa um gráfico colocando no eixo dos xx a dimensão da amostra, n, e no eixo dos yy os valores de $\mathrm{MA}(n)$ e $\mathrm{MA}^c(n)$.

Submeta um ficheiro com extensão pdf, com uma única página, que inclua:

- 1. Valores dos seguintes parâmetros: semente, m, λ , λ_c , ϵ e $(1-\alpha)$.
- 2. O código em R.
- 3. O gráfico produzido.
- 4. Comentários sobre o gráfico obtido na alínea anterior.