

CH32V20x 30x Datasheet

FOR CH32V203/303/305/307/208xx

Overview

The CH32Vx series of industrial-grade general-purpose microcontrollers based on 32-bit RISC-V architecture have formed diversified product models through the combination of different cores, peripherals and storage resources. All CH32Vx series are equipped with hardware stack area and fast interrupt entry, which greatly improves the interrupt response speed on the basis of standard RISC-V. CH32V208x is integrated with V4C core, adding memory protection function, and reducing the hardware division cycle at the same time. CH32V303/305/307 is integrated with V4F core, adding single-precision floating-point instruction set, expanding hardware stack area, and having higher computing performance. Product resources: the clock speed can reach 144MHz, independent GPIO voltage (separate from the system power supply). It has up to 8 groups of extended Serial Interface U(S)ART, 4 groups of motor timers, and it supports 1 group of 32-bit general-purpose timer. The CH32Vx contains USB2.0 high-speed interface (480Mbps) and built-in PHY transceiver. Its Ethernet MAC upgrades to Gigabit and is integrated with 10M-PHY module. It also supports Bluetooth BLE5.1 and so on.

Features

• Core:

- 32-bit RISC-V core, support multiple instruction set
- Fast programmable interrupt controller + hardware interrupt stack
- Branch prediction, conflict handling
- Single cycle multiplication, hardware division, hardware FPU
- Up to 144MHz clock speed

• Memory:

- 64KB SRAM
- 256KB user application CodeFlash
- 28KB BootLoader
- 128B non-volatile system configuration memory
- 128B user-defined memory

Power management and low-power mode:

- System power supply VDD: 2.5V or 3.3V
- Independent power supply for GPIO unit VIO: 2.5V or 3.3V
- Low-power mode: sleep, stop, standby
- VBAT independently powers RTC and backup register

Clock & Reset

- Built-in factory-calibrated 8MHz RC oscillator
- Built-in 40KHz RC oscillator
- Built-in PLL, optional CPU clock up to 144MHz
- External support 3~25MHz high-speed oscillator
- External support 32.768KHz low-speed oscillator

- Power on/off reset, programmable voltage monitor
- Real-time clock (RTC): 32-bit independent
 RTC timer
- 2 groups of 18-channels general purpose
 DMA controllers
- 18 channels, support ring buffer
- Support
 TIMx/ADC/DAC/USART/I2C/SPI/I2S/SDIO
- 4 groups of OPAs and comparators:

connected with ADC and TIMx

- 12-bit DAC × 2
- 12-bit ADC × 2
- Analog input range: $V_{SSA} \sim V_{DDA}$
- 16 external signals + 2 internal signals
- On-chip temperature sensor
- Dual conversion mode

• 16-channels TouchKey detection

Timers

- Four 16-bit advanced timers, with dead zone control and emergency brake; can offer PWM complementary output for motor control
- Three 16-bit general-purpose timers input capture/output comparison/PWM/pulse counting/incremental encoder input
- One 32-bit or 16-bit general-purpose timer

- Two basic timers
- Two watchdog timers (independent and window type)
- SysTick: 64-bit counter

• Communication interfaces:

- 8 × USART interfaces (including 5 UARTs)
- 2× I²C interfaces (support SMBus/PMBus)
- 3× SPI interfaces (SPI2, SPI3 for I²S2, I²S3)
- USB2.0 full-speed device interface (full-speed and low-speed)
- USB2.0 full-speed host/device interface
- USB2.0 full-speed OTG interface
- USB2.0 high-speed host/device interface (built-in PHY)
- 2 groups of CAN interfaces (2.0B active)

- SDIO host interface (MMC, SD/SDIO, CE-ATA)
- FSMC memory interface
- Digital image interface DVP
- Gigabit Ethernet controller MAC, 10M PHY transceiver
- Bluetooth Low Energy (BLE) 5.1

• Fast GPIO port

- 80 GPIO ports, with 16 external interrupts
- Security features: CRC unit, 96-bit unique chip ID
- **Debug mode:** serial 2-wire debug interface
- Package: LQFP or QFN

Chapter 1 Series Product Description

CH32Vx series products are industrial-grade general-purpose enhanced MCUs based on 32-bit RISC-V instruction set and architecture. Its products are divided by function resources into categories such as general purpose, connectivity, and wireless. They are extended to each other in terms of package types, peripheral resources and quantities, pin numbers, and device characteristics, but they are compatible with each other in software, functions, and hardware pin configurations. The product iterations and rapid applications provide freedom and convenience for users in product development.

For the features of this series of products, please refer to the data manual "CH32V20x 30xDS0".

For the peripheral function description, usage and register configuration, please refer to "CH32xRM".

The data manuals and reference manuals can be downloaded on the official website of WCH: http://www.wch.cn/

Information about the RISC-V instruction set architecture can be downloaded from: https://riscv.org/

This manual is the data manual of CH32V20x and CH32V30x series.

Table 1-1 Series overview

Small-and-me	dium-capacity	Large-capa	city general	Connection	Interconnection	Wireless
general ty	/pe(V203)	type(V303)	type(V305)	type(V307)	type(V208)
V4B	Core		V4I	F Core		V4C Core
32K Flash	64K Flash	128K Flash	256K Flash	128K Flash	256K Flash	128K Flash
10K SRAM	20K SRAM	32K SRAM	64K SRAM	32K SRAM	64K SRAM	64K SRAM
2*ADC(TKey) ADTM 2*GPTM 2*USART SPI I2C USBD USBHD RTC 2*WDG 2*OPA	2*ADC(TKey) ADTM 3*GPTM 4*U(S)ART 2*SPI 2*I2C USBD USBHD RTC 2*WDG 2*OPA	2*ADC(TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I2C USBHD CAN RTC 2*WDG 4*OPA	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*U(S)ART 3*SPI(2*I2S) 2*I2C USBHD CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*U(S)ART 3*SPI(2*I2S) 2*I2C USB-OTG USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*U(S)ART 3*SPI(2*I2S) 2*I2C USB-OTG USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC DVP ETH-1000MAC 10M-PHY	ADC(TKey) ADTM 3*GPTM GPTM(32) 4*U(S)ART 2*SPI 2*I2C USBD USBHD CAN RTC 2*WDG 2*OPA ETH-10M(+PHY) BLE5.1

Note: The number or functions of some peripherals of the same type of product may be restricted by the package. Please confirm the package when selecting.

Abbreviation

ADTM: Advanced Timer OPA: Operational Amplifier, USBHD: Universal Serial Bus

GPTM: General Purpose Timer Comparator Hold Device

GPTM(32): 32-bit TRNG: True Random Number USBHS: Universal Serial Bus

General-purpose Timer Generator Host Device
BCTM: Basic Timer USBD: Universal Serial Bus

TKey: Touch Key Device

Table 1-2 Overview of Cores

Feature Core Version	Instruction Set	Hardware Stack Level	Interrupt Nesting Level	Number of Fast Interrupt Channels	Period	Vector table mode	Extended instruction	Memory protection
V4B	IMAC	2	2	4	9	Address or instruction	Support	No
V4C	IMAC	2	2	4	5	Address or instruction	Support	Standard
V4F	IMAFC	3	8	4	5	Address or instruction	Support	Standard

Chapter 2 Specification

The CH32Vx series is a 32-bit RISC MCU based on the RISC-V instruction set architecture (ISA), with a maximum clock speed of 144MHz, and built-in high-speed memory. It has multiple buses working synchronously, and provides a wealth of peripheral functions and enhanced I/O ports. This series of products has built-in two 12-bit ADC modules, two 12-bit DAC modules, multiple timers, multi-channel capacitance touch key detection (TKey) and other functions. It also contains standard and dedicated communication interfaces: I²C, I²S, SPI, USART, SDIO, CAN controller, USB2.0 full-speed host/device controller, USB2.0 high-speed host/device controller (built-in PHY transceiver), digital image interface, Gigabit Ethernet controller, Bluetooth Low Energy (BLE), etc. .

The rated working voltage of the product is 2.5V or 3.3V, and the working temperature range is -40°C~85°C in industrial grade. It supports a variety of power-saving operating modes to meet the product's low-power application requirements.

Various models in the series are different in terms of resource allocation, number of peripherals, peripheral functions, etc., and can be selected as needed.

Available in LQFP48/QFN48/LQFP64M/LQFP100 packages. CH32Vx series can be widely used in motor drive and application control, medical and handheld devices, PC game peripherals, GPS platforms, programmable controllers, inverters, printers, scanners, alarm systems, video intercoms, heating, ventilation and air conditioning systems, etc.

2.1 Model comparison

Table 2-1 CH32V general product resource allocation

Table 2-1 C113	Part No.		CH32				CH32	V303x	
Differences	Tare No.	С6Т6	K8T6	C8T6	C8U6	CBT6	RBT6	RCT6	VCT6
Pin nu	mber	48	32	48	48	48	64	64	100
Flash (t	oytes)	32K	64K	64K	64K	128K	128K	256K	256K
SRAM ((bytes)	10K	20K	20K	20K	32K	32K	64K	64K
Number of C	GPIO ports	37	27	37	37	37	51	51	80
GPIO pow	er supply		Sha	ared with V	$V_{ m DD}$		Indepen	dent power	r supply
	Advanced (16 bits)	1	1	1	1	1	1	4	4
	General (16 bits)	2	3	3	3	3	3	4	4
Timer	Basic (16 bits)				_			2	2
	Watchdog	2	2	2	2	2	2	2	2
SysTick (24 bits)					sup	port			
RT	RTC				sup	port			
ADC/TKey (Number of units/channels)		2/10	2/10	2/10	2/10	2/10	2/16	2/16	2/16

DAC (U	Jnit)			-		2	2	2	2	
OPA, com	parator	2	2	2	2	4	4	4	4	
Random numb	er generator			-			-	1	1	
	U(S)ART	2	3	3	3	3	3	8	8	
	SPI	1	2	2	2	2	2	3	3	
	I2S			-			-	2	2	
Communication	I2C	1	2	2	2	2	2	2	2	
Interface	CAN	1	1	1	1	1	1	1	1	
	SDIO			-			-	1	1	
	USB(FS)	2	1(USBD)	2(USBD+	-USBHD)	1(USBHD)				
	FSMC			-			- 1			
CPU clock	k speed	Max: 144MHz								
Rated vo	oltage	2.5V or 3.3V								
Operating ter	mperature	Industrial grade: -40°C~85°C								
Packa	Package		LQFP32	LQFP48	QFN48	LQFP48	LQF	P64M	LQFP100	

Table 2-2 CH32V connection/interconnection/wireless product resource allocation

	Part No.	CH32V305	CH32	V307		СН	32V208	
Differences		RBT6	RCT6	VCT6	GBU6	CBU6	RBT6	WBU6
Pin nu	mber	64	64	100	28	48	64	68
Flash (b	oytes)	128K	256K	256K	128K	128K	128K	128K
SRAM (bytes)	32K	64K	64K	64K	64K	64K	64K
Number of C	Number of GPIO ports		51	80	21	37	49	53
GPIO power supply		Independe	ent power su	pply $ m V_{IO}$	Sl	nared with	$ m V_{DD}$	Independent V _{IO}
	Advanced (16 bits)	4	4	4	1	1	1	1
	General (16 bits)	4	4	4	3	3	3	3
Timer Timer	Basic (16 bits)		-		1	1	1	1
1 iiiiei	Watchdog	2	2 2 2 -					
	SysTick (24 bits)	2	2	2	2	2	2	2
	Advanced (16 bits)				support			
ADC/TKey (units/cha					support			
DAC (U	Unit)	2/16	2/16	2/16	1/8	1/16	1/16	1/16
OPA, com	OPA, comparator		2	2			-	
Random numb	er generator	4	4	4	1	2	2	2
	ADC/TKey (Number of units/channels)		1	1			-	
Communication	Communication U(S)ART		8	8	2	4	4	4

	ı			I			1			
Interface	SPI	3	3	3	1	2	2	2		
	I2S	2	2	2			-			
	I2C	2	2	2	1	2	2	2		
	CAN	2	2	2	1	1	1	1		
	SDIO	1	1 1 1				-			
	DVP	-	1				-			
	USB(FS)		OTG			2 (USB	SBD+USBHD)			
	USB(HS)		1			-				
	Ethernet	-	1G MAC+	10M PHY	10M					
	FSMC	-	-	1			-			
	BLE 5.1	- support								
CPU cloc	k speed	Max: 144MHz								
Rated v	Rated voltage			2	.5V or 3.3	V				
Operating te	mperature			Industrial	grade: -40	°C~85°C				
Packa	age	LQFP64M	LQFP64M	LQFP100	QFN28	QFN48	LQFP64M	QFN68		

Note: The 256K FLASH+64K SRAM product supports one of several combinations of (192K FLASH+128K SRAM), (224K FLASH+96K SRAM), (256K FLASH+64K SRAM), (288K FLASH+32K SRAM).

2.2 System Architecture

The microcontroller is designed based on the RISC-V instruction set architecture (ISA) in which the core, arbitration unit, DMA module, SRAM storage and other parts are interacted through multiple sets of buses. A general-purpose DMA controller is integrated in the chip to reduce the burden on the CPU and improve access efficiency. The application of a multi-level clock management mechanism reduces the operating power consumption of peripherals. At the same time, it has a data protection mechanism and measures such as automatic clock switching protection to increase system stability. The following figure is a block diagram of the overall internal structure of the series of products.

Figure 2-1 System block diagram

2.3 Memory Map

Figure 2-2 Memory address mapping

2.4 Clock tree

Four groups of clock sources are introduced into the system: internal high-frequency RC oscillator (HSI), internal low-frequency RC oscillator (LSI), external high-frequency oscillator (HSE), and external low-frequency oscillator (LSE). Among them, the low-frequency clock source provides the clock reference for RTC and independent watchdog. The high-frequency clock source is directly or indirectly multiplied by the PLL and output as the system clock (SYSCLK). The system clock is then provided by each prescaler to provide the AHB domain, APB1 domain, APB2 domain peripheral control clock and sampling or output clock. Some modules need to be directly provided by the PLL clock.

to independent watchdog LSI RC OSC32 IN 32.768kHz RTCCLK to RTC LSE OSC OSC32 OUT 60MHz ► ETH-PHY /128 PLL3MUI to 1252 interface PLL3CLK to Flash prog IF *8.*9.** to I2S3 interface *16,*20 FLITFCLK PLL3VCO PREDIV2 PLL2MUL PREDIVISCR /1,/2,... *8.*9.... PREDIV1 /15,/16 *16,*20 PLLSCR XTI to MCO /1,/2,... PLL2VCO /15,/16 SW OSC IN 3-25MHz *4,*5,*** PLLCLK HSE OSC OSC_OUT *6.5,*9 /2 PLLMUL SYSCLK HSI RC USB prescaler 48MHz USBCLK PLLCLK /1,/2,/3 /1,/2,... USB CSS CLKFLS48MHz /7,/8 HSPLLSCR **→** USB-PHY OTGFSSCR System clock 144MHz max MCO[3:0] HCLK to AHB bus/core/memory/DMA HSE FCLK Cortex free running clock AHB prescaler /1,/2···/512 to Cortex System timer /8 PLLCLK/2 MCO PLL2CLK AHB prescaler to APB1 peripherals PLL3CLK/2 /1,/2…/512 perpheral clock enable PLL3CLK XTI if(APB1 prescaler=1)*1 TIMxCLK to TIM2,3,4,5,6,7 else *2 MII/RMII interface perpheral clock enable MII TXC MACTXCLK AHB prescaler PCLK2 ► to APB2 peripherals MII_RMII_SEL in AFIO_MAPR /1,/2…/512 MII RXC ► MACRXCLK perpheral clock enable to Ethernet MAC ADC prescaler **GTXC** ADCCLK to ADC1,2 /2,/4,/6,/8 RGMII EN perpheral clock enable GRXC GRXC if(APB2 prescaler=1)*1 TIMxCLK to TIM1,8,9,10 ETH1G EN else *2 EXT 125M ETH1G 125M PLL2VCO perpheral clock enable PLL3VCO ETH1G SRC RGMII interface

Figure 2-3 Clock tree block diagram

Note: When using USB, the CPU clock speed must be 48MHz or 96MHz or 144MHz. When the system wakes up from sleep mode, the system will automatically switch to HSI as the main frequency.

2.5 Function overview

2.5.1 RISC-V4B/4C/4F processor

The product is designed based on the RSIC-V organization specification for cores V4B, V4C, V4F. V4B and V4C support the RISC-V instruction set IMAC subset, and V4F supports the RISC-V instruction set IMAFC subset, which increases the single-precision floating-point budget. The processor internals is managed in a modular way and contains fast programmable interrupt controller (FPIC), memory protection, branch prediction mode, extended instruction support and other units. The external multiple sets of buses are connected with the external unit modules to implement the interaction between the external function modules and the core. Externally, the processor has multiple sets of buses connected to peripherals for interaction.

The processor can be flexibly applied in different scenarios, such as small-area low-power embedded scenarios, high-performance application operating system scenarios, etc., due to its minimal instruction set, multiple working modes, and modular customization extensions.

- Support machine and user privilege mode
- Fast Programmable Interrupt Controller (FPIC)
- Multi-level hardware interrupt stack
- Serial 2-wire debugging interface
- Standard memory protection design
- Static or dynamic branch prediction, efficient jump, conflict detection
- Custom extended instructions

2.5.2 On-chip memory and boot mode

Built-in 32K or 64K bytes SRAM area, used to store data, data will be lost after power failure.

Built-in 128K or 256K bytes program Flash memory (Code FLASH), used for user's application and constant data storage.

Among them, 256K FLASH+64K SRAM products supports one of several combinations (192K FLASH+128K SRAM), (224K FLASH+96K SRAM),(256K FLASH+64K SRAM) and (288K FLASH+32K SRAM).

Built-in 28K byte system memory (System FLASH), used for system boot program storage (manufacturer curing boot loader).128 bytes are used for manufacturer configuration word storage, and 128 bytes are used for user selection word storage.

At startup, one of three boot modes can be selected through the boot pins (BOOT0 and BOOT1):

- Boot from program flash
- Boot from system memory
- Boot from internal SRAM

The bootloader is stored in the system memory, and the contents of the program Flash can be reprogrammed through the USART1 and USB interface.

2.5.3 Power supply scheme

- $V_{DD} = 2.3 \sim 3.6 \text{V}$: Power supply for some I/O pins and internal voltage regulator.
- $V_{IO} = 2.3 \sim 3.6 \text{V}$: It supplies power to most of the I/O pins and the Ethernet module, which

determines the pin output high voltage amplitude. Normal work during operation, the VIO voltage cannot be higher than the VDD voltage.

- V_{DDA} = 2.3~3.6V: It supplies power to the analog part of the high-frequency RC oscillator, ADC, temperature sensor, DAC and PLL. The VDDA voltage must be the same as the VIO voltage (If VDD is powered down and VIO is live, Then VDDA must be live and consistent with VIO). When using ADC ,VDDA must not be less than 2.4V₀
- $V_{BAT} = 1.8 \sim 3.6 \text{V}$: When VDD is turned off, (through the internal power switch) independently powers the RTC, external low-frequency oscillator and backup registers. (Pay attention to VBAT power supply)

2.5.4 Power supply monitor

This product integrates a power-on reset (POR)/power-down reset (PDR) circuit, which is always in working condition to ensure that the system is in supply. It works when the power exceeds 2.3V; when V_{DD} is lower than the set threshold ($V_{POR/PDR}$), the device is placed in the reset state without using an external reset circuit.

In addition, the system is equipped with a programmable voltage monitor (PVD), which needs to be turned on by software to compare the voltage of V_{DD} power supply with the set threshold VPVD

Turn on the corresponding edge interrupt of PVD, and you can receive interrupt notification when V_{DD} drops to the PVD threshold or rises to the PVD threshold. Refer to Chapter 4 for the values of $V_{POR/PDR}$ and V_{PVD} .

2.5.5 Voltage regulator

After reset, the regulator is automatically turned on, and there are three operation modes according to the application mode.

- Open mode: normal operation, providing stable core power.
- Low-power mode: When the CPU enters the stop mode, the regulator can be selected to run with low power consumption.
- Shutdown mode: When the CPU enters the standby mode, it automatically switches the regulator to this mode, the voltage regulator output is in a high-impedance state, and the core power.

The voltage regulator is always in the on mode after reset, and is turned off in the off mode in the standby mode. At this time, it is a high-impedance output.

2.5.6 Low-power mode

The system supports three low-power modes, which can be selected for low power consumption, short start-up time and multiple wake-up events to achieve the best balance.

Sleep mode

In sleep mode, only the CPU clock is stopped, but all peripheral clocks are powered normally and the peripherals are in a working state. This mode is the most shallow Low power mode, but it is the fastest mode to wake-up the system.

Exit condition: any interrupt or wake-up event.

• Stop mode

In this mode, the FLASH enters low power mode, and the PLL, HSI RC oscillator and HSE crystal oscillator are turned off. In the case of keeping the contents of SRAM and registers not lost, the stop mode can achieve the lowest power consumption.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST,

IWDG reset, among which EXTI signal includes one of 16 external I/O ports, PVD output, RTC alarm clock, Ethernet wake-up signal or USB wake-up signal.

Standby mode

In this mode, the main LDO of the system is turned off, the low-power LDO supplies power to the wake-up circuit, all other digital circuits are powered off, and the FLASH is powered off. The system wakes up from standby mode will generate a reset, and SBF (PWR_CSR) will be set at the same time. After waking up, check the SBF status to know the low-power mode before waking up. SBF is cleared by the CSBF (PWR_CR) bit. In the standby mode, the contents of 32KB of SRAM can be kept (depending on the planning and configuration before going to bed), and the contents of the backup registers are kept.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST, IWDG reset, a rising edge on the WKUP pin, where EXTI signal includes one of 16 external I/O ports, RTC alarm clock, Ethernet Wake-up signal, USB.

2.5.7 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit uses a fixed polynomial generator to generate a CRC code from a 32-bit data word. In many applications, CRC-based technology is used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, a means of detecting flash errors is provided. The CRC calculation unit can be used to calculate the signature of the software in real time and compare it with the signature generated when the software is linked and generated.

2.5.8 Fast Programmable Interrupt Controller (FPIC)

The product has a built-in Fast Programmable Interrupt Controller (FPIC), which supports up to 255 interrupt vectors, and provides flexible interrupt management functions with minimal interrupt latency. The current product manages 8 core private interrupts and 88 peripheral interrupt management, and other interrupt sources are reserved. FPIC registers can be accessed in user and machine privileged modes.

- 88+3 individual maskable interrupts
- a non-maskable interrupt NMI
- Support hardware interrupt stack without instruction overhead
- 4 programmable fast interrupt channels, custom interrupt vector address
- Support vector table mode of address or instruction module
- Interrupt nesting level 2 or 8
- Support interrupt tail link

2.5.9 External interrupt/event controller (EXTI)

The external interrupt/event controller contains a total of 19 edge detectors for generating interrupt/event requests. Each interrupt line can independently configure its trigger event (rising edge or falling edge or both edges), and can be individually masked; the suspend register maintains all interrupt request states. EXTI can detect that the pulse width is smaller than the clock period of the internal APB2. Up to 80 general-purpose I/O ports can be connected to 16 external interrupt lines.

2.5.10 Genral DMAController

The system has built-in 2 groups of general-purpose DMA controllers, manages 18 channels in total, and flexibly handles high-speed data transmission from memory to memory, peripherals to memory, and memory to peripherals, and supports ring buffer mode. Each channel has a dedicated hardware DMA request logic to support one or more peripherals' access requests to the memory. The access priority, transfer length, source

address and destination address of the transfer can be configured.

The main peripherals used by DMA include: general/advanced/basic timers TIMx, ADC, DAC, I²S, USART, I²C, SPI, SDIO.

Note: DMA1, DMA2 and CPU access the system SRAM after arbitration by the arbiter.

2.5.11 Clock and Boot

The system clock source HSI is turned on by default. After the clock is not configured or reset, the internal 8MHz RC oscillator is used as the default CPU clock, and then an external 3~25MHz clock or PLL clock can be additionally selected. When the clock security mode is turned on, if the HSE is used as the system clock (directly or indirectly), the system clock will automatically switch to the internal RC oscillator when the external clock is detected to be invalid, and the HSE and PLL will be automatically turned off at the same time; In power consumption mode, the system will automatically switch to the internal RC oscillator after waking up. If the clock interrupt is enabled, the software can receive the corresponding interrupt.

Multiple prescalers are used to configure the frequency of AHB. The high-speed APB (APB2) and low-speed APB (APB1) regions provide peripheral clocks with a maximum frequency of 144MHz. Refer to the clock tree block diagram in Figure 2-3. The clock source of the I²S unit is another dedicated PLL (PLL3), so that the I²S master clock can generate all standard sampling frequencies between 8kHz and 192kHz.

2.5.12 RTC (Real Time Clock) and backup registers

The RTC and the backup register are in the backup power supply area inside the system. When V_{DD} is valid, it is powered by V_{DD} , and when V_{DD} is invalid, the internal power is automatically switched to the V_{BAT} pin.

The RTC real-time clock is a set of 32-bit programmable counters, and the time base supports 20-bit prescaler for measurement in a longer period of time. The clock reference source is a high-speed external clock divided by 128 (HSE/128), external crystal low-frequency oscillator (LSE) or internal low-power RC oscillator (LSI). The LSE also has a backup power supply area, so when the LSE is selected as the RTC time base, the RTC setting and time can remain unchanged after the system resets or wakes up from standby mode.

The backup register contains 42 16-bit registers, which can be used to store 84 bytes of user application data. This data can continue to be maintained after wake-up from standby, or system reset or power reset. When the intrusion detection function is turned on, once the intrusion detection signal is valid, all contents in the backup register will be cleared.

2.5.13 ADC (analog/digital converter) and touch key capacitance detection (TKey)

The product is embedded with two 12-bit analog/digital converters (ADC), sharing up to 16 external channels and 2 internal channels for sampling. The programmable channel sampling time can realize single, continuous, scanning or discontinuous conversion. And supports dual ADC conversion mode. The analog watchdog function is provided to allow very precise monitoring of one or more selected channels for monitoring the signal voltage of the channel. It supports external event trigger conversion, the trigger source includes the internal signal and external pin of the on-chip timer; it also supports the use of DMA operations.

ADC internal channel sampling includes one channel of built-in temperature sensor sampling and one channel of internal reference power sampling. The temperature sensor generates a voltage that varies linearly with temperature. The temperature sensor is internally connected to the IN16 input channel, which is used to convert the output of the sensor to a digital value.

The capacitance touch key detection unit provides up to 16 detection channels, multiplexing the external channels of the ADC module. The detection result is converted and output by the ADC module, and the state of the touch key is recognized by the user software.

2.5.14 DAC (digital/analog converter)

The product is embedded with two 12-bit voltage output digital/analog converters (DAC), converts 2 digital signals into 2 analog voltage signals and outputs them, supports dual DAC channel independent or synchronous conversion, supports external event trigger conversion, trigger sources include Internal signals and external pins of the on-chip timer (EXTI line 9). Triangular wave and noise generation can be realized. It supports the use of DMA operations.

2.5.15 Timer and watchdog

The timers in the system include advanced timers, general timers, basic timers, watchdog timers, and system time base timers. The number of timers included in different products in the series is different, please refer to Table 2-2 for details.

Table 2-2 Timer comparison

Time	er	Resolution	Count Type	Time Base	DMA	Function	
	TIM1 TIM8		Upward	APB2 time		PWM complementary output, single pulse output	
Advanced timer	TIM9	16 bits	Down	domain 16-bit	Support	Input capture	
umer	TIM10		Up/down	divider		Output comparison Timer counting	
	TIM2		Harrand	ADD1 times		Innut continue	
General	TIM3	16 bits	Upward Down	APB1 time domain	Summont	Input capture	
Timer	TIM4		Up/down	16-bit divider	Support	Output comparison Timer counting	
	TIM5 ¹	16/32 bits	Op/down	10-bit dividei		Timer counting	
Basic	TIM6			APB1 time			
Timer	TIM7	16 bits	Up	domain	Support	Timer counting	
1 IIIICI	1 11V1 /			16-bit divider			
				APB1 time			
Wind		7 bits	Darron	domain 4	Not support	Timing	
watch	dog		Down	frequency	11	Reset the system (normal work)	
				divisions			
			Down	APB1 time			
Indepen	Independent watchdog		Down	domain 7	Not support	Timing	
watch				frequency	riot support	Reset the system (normal work)	
				divisions			
SycTick	Timer	64 bits	I Im/doxx	SYSCLK or	Not support	Timing	
Systick	SysTick Timer		Up/down	SYSCLK/8	rioi support	1 mining	

Note 1: TIM5 is a 32-bit general-purpose timer in CH32V208 (wireless type).

Advanced control timer

The advanced control timer is a 16-bit auto-loading up/down counter with a 16-bit programmable prescaler. In addition to the complete general-purpose timer function, it can be regarded as a three-phase PWM generator distributed to 6 channels, with a complementary PWM output function with dead zone insertion, allowing the

timer to be updated after a specified number of counter cycles to repeat Counting cycle, braking function, etc. Many functions of the advanced control timer are the same as the general timer, and the internal structure is also the same. Therefore, the advanced control timer can cooperate with other TIM timers through the timer link function to provide synchronization or event link functions.

General timer

The general timer is a 16-bit or 32-bit auto-loading up/down counter with a programmable 16-bit prescaler and 4 independent channels. Each channel supports input capture, output comparison, and PWM generation and single pulse mode output. It can also work with advanced control timers through the timer link function to provide synchronization or event link functions. In debug mode, the counter can be frozen while the PWM outputs are disabled, thereby cutting off the switches controlled by these outputs. Any general-purpose timer can be used to generate PWM output. Each timer has an independent DMA request mechanism. These timers can also process signals from incremental encoders, as well as digital outputs from 1 to 3 Hall sensors.

Basic timer

The basic timer is a 16-bit auto-load counter that supports a 16-bit programmable prescaler. Digital-to-analog conversion (DAC) can provide a clock and trigger the synchronization circuit of the DAC. The basic timers are independent of each other and do not share any resources with each other.

Independent watchdog

The independent watchdog is a configurable 12-bit down counter that supports 7 frequency division factors. The clock is provided by an internal independent 40KHz RC oscillator (LSI); because the LSI is independent of the main clock, it can run in stop and standby modes. IWDG is outside the main program and can work completely independently. Therefore, it is used to reset the entire system when a problem occurs, or as a free timer to provide timeout management for the application. It can be configured as software or hardware to start the watchdog through the option byte. In debug mode, the counter can be frozen.

Window watchdog

The window watchdog is a 7-bit down counter and can be set to free-running. It can be used to reset the entire system when a problem occurs. It is driven by the main clock and has an early warning interrupt function; in the debug mode, the counter can be frozen.

SysTick timer

This is a 64-bit optional increment or decrement counter that comes with the core controller. It is used to generate SYSTICK anomalies (exception number: 15). It can be dedicated to the real-time operating system (RTOS) to provide a "heartbeat" tick for the system, or it can be used as a standard 64-bit counter. It has an automatic reload function and a programmable clock source.

2.5.16 Communication Interface

2.5.16.1Universal Synchronous/Asynchronous Receiver Transmitter (USART)

The product provides 3 groups of Universal Synchronous/Asynchronous Receiver Transmitters (USART1, USART2, USART3), and 5 groups of Universal Asynchronous Receiver Transmitters (UART4, UART5, UART6, UART7, UART8). It supports full-duplex asynchronous communication, synchronous one-way communication and half-duplex single-wire communication. It also supports LIN (Local Interconnect Network), compatible with ISO7816 smart card protocol and IrDA SIR ENDEC transmission codec specification, and modem (CTS/RTS hardware flow control) operation. It also allows multi-processor communication. It uses a

fractional baud rate generator system and supports DMA operation continuous communication.

2.5.16.2 Serial Peripheral Interface (SPI)

Up to 3 groups of serial peripherals interface (SPI) provide master or slave operation, dynamic switching. Support multi-master mode, full-duplex or half-duplex synchronous transmission, support basic SD card and MMC mode. Programmable clock polarity and phase, data bit width provides 8 or 16-bit selection, reliable communication hardware CRC generation/check, and supports DMA operation continuous communication.

2.5.16.3 I²S (audio) port

The highest two groups of standard I2S interfaces (multiplexed with SPI2 and SPI3) work in master or slave mode. The software can be configured as a 16/32-bit data packet transmission frame, supports audio sampling frequencies from 8kHz to 192kHz, and supports 4 audio standards. In master mode, its master clock can be output to an external DAC or CODEC (decoder) at a fixed 256 times audio sampling frequency, and supports DMA.

2.5.16.4 I²C Bus

Up to 2 I²C bus interfaces can work in multi-master mode or slave mode, perform all I²C Bus specific timing, protocol, arbitration, etc. It supports both standard and fast speed, and is compatible with SMBus2.0.

The I²C interface provides 7-bit or 10-bit addressing, and supports dual slave addressing in 7-bit slave mode. It integrates built-in hardware CRC generator/checker. It also supports DMA operation and supports SMBus bus version 2.0 / PMBus bus.

2.5.16.5 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active), the baud rate is up to 1Mbits/s, and it supports time-triggered communication. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers. It has 3 sending mailboxes and 2 3-level deep receiving FIFOs.

Products with 2 CAN controllers share 28 configurable filters and 512 bytes of SRAM memory resources.

With 1 set of CAN controller products, there are only 14 configurable filters, and share a dedicated 512-byte SRAM memory with the USBD module for data transmission and reception. When USBD and CAN are used at the same time, in order to prevent access to SRAM conflicts, USBD can only use the lower 384 bytes.

2.5.16.6 Universal Serial Bus Device (USBD)

The product is embedded with a USB2.0 full-speed controller, which complies with the USB2.0 Fullspeed standard. USBD provides 16 configurable USB device endpoints, supports low-speed devices and full-speed devices, supports control/batch/synchronization/interrupt transmission, double buffer mechanism, USB suspend/resume operations, and has standby/wake-up functions. The USB dedicated 48MHz clock is directly generated by the internal main PLL frequency division.

2.5.16.7 Universal Serial Bus USB2.0 Full Speed Host/Device Controller (USBHD)

The USB2.0 full-speed host controller and device controller (USBHD) follow the USB2.0 Fullspeed standard. It provides 16 configurable USB device endpoints and a set of host endpoints. Support control/batch/synchronization/interrupt transmission, double buffer mechanism, USB bus suspend/resume operation, and provide standby/wake-up functions. The 48MHz clock dedicated to the USBHD module is

directly generated by the internal main PLL frequency division (the PLL must be 144MHz or 96MHz or 48MHz).

2.5.16.8 Universal Serial Bus USB2.0 Full Speed OTG (OTG-FS)

OTG_FS is a dual-role USB controller that supports the functions of the host side and the device side, and is compatible with the On-The-Go Supplement to the USB2.0 specification. At the same time, the controller can also be configured as a controller that only supports host-side or device-side functions, and is compatible with the USB2.0 full-speed specification. The controller uses a 48MHz clock derived from the PLL frequency division. The main features include:

- Support (the physical layer of the OTG_FS controller) USB On-The-Go Supplement, defined as an optional item OTG protocol in the Revision1.3 specification
- Configure USB full-speed host, USB full-speed/low-speed device, USB dual-role device through software
- Provide power saving function
- Support control transmission, batch transmission, interrupt transmission, real-time/synchronous transmission
- Provide bus reset, suspend, wake up and resume functions

2.5.16.9 Universal Serial Bus USB2.0 High Speed Host/Device Controller (USBHS)

The USB2.0 high-speed controller has the dual roles of a host controller and a device controller, and has an embedded USB-PHY transceiver unit. When used as a host controller, it can support low-speed, full-speed, and high-speed USB devices. When used as a device controller, it can be flexibly set to low-speed, full-speed or high-speed mode to adapt to various applications. The main features include:

- Support for USB 2.0, USB 1.1, USB 1.0 protocol specifications
- Support for control transmission, batch transmission, interrupt transmission, real-time/synchronous transmission
- bus reset, suspend, wake up and resume functions
- Support for high-speed HUB
- 8 groups of upper and lower transmission channels in device mode, and support the configuration of 16 endpoint numbers
- Except for device endpoint 0, all other endpoints support data packets up to 1024 bytes, and double buffering can be used

2.5.16.10 Digital Visual Interface (DVP)

DVP (Digital Video Port) is used to connect the camera module to receive the image data stream. It provides 8/10/12bit parallel interface communication. It supports image data organized in original line and frame formats, such as YUV, RGB, etc., and also supports compressed image data streams such as JPEG format. When receiving, it mainly relies on VSYNC and HSYNC signal synchronization. It also supports image cropping.

2.5.16.11 SDIO host controller

The SDIO host interface provides operation interfaces for multimedia cards (MMC), SD memory cards, SDIO cards, and CE-ATA devices. It supports 3 different data bus modes: 1-bit (default), 4-bit and 8-bit. In 8-bit mode, the interface can make the data transfer rate up to 48MHz. This interface is fully compatible with Multimedia Card System Specification 4.2 (forward compatible), SD I/O Card Specification 2.0, SD Memory Card Specification 2.0, and CE-ATA Digital Protocol Specification 1.1.

2.5.16.12 Flexible Static Memory Controller (FSMC)

The FSMC interface mainly provides a synchronous or asynchronous memory interface, and supports devices such as SRAM, PSRAM, NOR, and NAND. The internal AHB transmission signal is converted into a suitable external communication protocol, allowing continuous access to 8/16/32-bit data. And the sampling delay time can be flexibly configured to meet the timing of different devices.

In addition, FSMC can also be used for most graphics LCD controller interfaces. It supports Intel 8080 and Motorola 6800 modes, making it easy to build a simple graphics application environment or a high-performance solution for dedicated acceleration controllers.

2.5.16.13 Gigabit Ethernet Controller (MAC, +10M PHY)

The product provides a Gigabit Ethernet Media Access Controller (MAC) that meets the IEEE 802.3-2002 standard, which acts as the data link layer. Its Link supports up to 1Gbps, and provides MII/RMII/RGMII interfaces to connect to external PHY (Gigabit /100M/speed self-adaptive, built-in 10M PHY transceiver). The application is combined with TCP/IP protocol stack interface to realize the development of network products. The main features include:

- Complying with IEEE.802.3 standard
- RGMII, RMII, MII interface, connect external Ethernet PHY transceiver
- Support for full-duplex operation, support 10/100/1000Mbps data transmission rate
- The hardware automatically completes IPv4 and IPv6 packet integrity check, IP/ICMP/UDP/TCP packet check and computer frame length filling
- Multiple MAC address filtering modes
- SMI configuring and managing external PHY

2.5.17 General-purpose input and output (GPIO)

The system provides 5 groups of GPIO ports with a total of 80 GPIO pins. Each pin can be configured by software as output (push-pull or open-drain), input (with or without pull-up or pull-down) or multiplexed peripheral function port. Most GPIO pins are shared with digital or analog multiplexed peripherals. Except for ports with analog input functions, all GPIO pins have high current passing capabilities. A locking mechanism is provided to freeze the IO configuration to avoid accidental writing to the I/O register.

Most of the IO pins in the system are provided by V₁₀. Changing the V₁₀ power supply will change the high value of the IO pin output level to adapt to the external communication interface level. Please refer to the pin description for specific pins.

2.5.18 True Random Number Generator (TRNG)

The product is integrated with a true random number generator, which provides a 32-bit true random number through the internal analog circuit.

2.5.19 Operational Amplifier/Comparator (OPA)

The product has built-in 4 groups of operational amplifiers/comparators, and the internal selection is linked to the ADC and TIMx peripherals. Its input and output can be selected by changing the configuration to select multiple channels. It supports to amplify the external analog small signal and send it to the ADC to realize the small signal ADC conversion. It can also complete the signal comparator function. The comparison result is output by GPIO or directly connected to the input channel of TIMx.

2.5.20 Serial 2-wire debug interface (SWD)

The core comes with a serial 2-wire debugging interface, including SWDIO and SWCLK pins. After the system is powered on or reset, the debug interface pin function is enabled by default.

Chapter 3 Pin

3.1 General/connection/interconnection types

Figure 3-1 100-pin LQFP100

Figure 3-2 64-pin LQFP64

Figure 3-3 48-pin LQFP48

Figure 3-4 32-pin LQFP32

3.2 Wireless type

Figure 3-4 68-pin QFN68 X 8

Figure 3-5 64-pin LQFP64M

Figure 3-6 48-pin QFN48×5

Figure 3-7 28-pin QFN28×4

3.3 Pin description

Table 3-1 CH32V303_305_307xx pin definition

Note: The pin function in the table below refer to all functions and do not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

	num	_	1				e viewing inis idole.	
LQFP48	LQFP64M	LQFP100	Pin name	Pin type	I/O Voltage Level	Main function (After reset)	Default multiplexing function	Remapping function
-	-	1	PE2	I/O	FT	PE2	FSMC_A23	TIM10_BKIN
-	-	2	PE3	I/O	FT	PE3	FSMC_A19	TIM10_CH1N
-	-	3	PE4	I/O	FT	PE4	FSMC_A20	TIM10_CH2N
-	-	4	PE5	I/O	FT	PE5	FSMC_A21	TIM10_CH3N
-	-	5	PE6	I/O	FT	PE5	FSMC_A22	
1	1	6	V_{BAT}	P	-	V_{BAT}		
2	2	7	PC13- TAMPER-RTC ⁽	I/O	1	PC13 ⁽³⁾	TAMPER-RTC	TIM8_CH4
3	3	8	PC14- OSC32_IN ⁽²⁾	I/O/ A	-	PC14 ⁽³⁾	OSC32_IN	TIM9_CH4
4	4	9	PC15- OSC32_OUT ⁽²⁾	I/O/ A	-	PC15 ⁽³⁾	OSC32_OUT	TIM10_CH4
-	-	10	$ m V_{SS_5}$	P	ı	V_{SS_5}		
-	-	11	$ m V_{DD_5}$	P	-	V_{DD_5}		
5	5	12	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
6	6	13	OSC_OUT	O/A	-	OSC_OU T		PD1 ⁽⁴⁾
7	7	14	NRST	I/O	-	NRST		
-	8	15	PC0	I/O/ A	1	PC0	ADC_IN10/TIM9_CH1N UART6_TX ETH_RGMII_RXC	
-	9	16	PC1	I/O/ A	-	PC1	ADC_IN11/TIM9_CH2N UART6_RX ETH_MII_MDC ETH_RMII_MDC ETH_RGMII_RXCTL	
-	10	17	PC2	I/O/ A	-	PC2	ADC_IN12/TIM9_CH3N UART7_TX/OPA3_CH1N ETH_MII_TXD2 ETH_RGMII_RXD0	
-	11	18	PC3	I/O/ A	-	PC3	ADC_IN13/TIM10_CH3 UART7_RX/OPA4_CH1N	

							ETH MILTY CLV	
							ETH_MII_TX_CLK	
0	12	10	17	D		3.7	ETH_RGMII_RXD1	
8	12	19	V _{SSA}	P	-	V _{SSA}		
_	-	20	V _{REF} -	P	-	V _{REF} -		
-	-	21	V _{REF+}	P	-	V _{REF+}		
9	13	22	V_{DDA}	P	-	V_{DDA}		
							WKUP/USART2_CTS	
							ADC_IN0/TIM2_CH1	
10	14	23	PA0-WKUP	I/O/	_	PA0	TIM2_ETR/TIM5_CH1	
				A			TIM8_ETR/OPA4_OUT0	
							ETH_MII_CRS_WKUP	
							ETH_RGMII_RXD2	
							USART2_RTS/ADC_IN1	
							TIM5_CH2/TIM2_CH2	
11	15	24	PA1	I/O/	_	PA1	OPA3_OUT0	TIM9_BKIN
				A			ETH_MII_RX_CLK	· <u> </u>
							ETH_RMII_REF_CLK	
							ETH_RGMII_RXD3	
							USART2_TX/TIM5_CH3	
							ADC_IN2/TIM2_CH3	
				I/O/		TIM9_CH1/TIM	TIM9_CH1/TIM9_ETR	
12	16	25	PA2	A	-	PA2		
				11			ETH_MII_MDIO	
							ETH_RMII_MDIO	
							ETH_RGMII_GTXC	
							USART2_RX/TIM5_CH4	
				I/O/			ADC_IN3/TIM2_CH4	
13	17	26	PA3	A	-	PA3	TIM9_CH2/OPA1_OUT0	
				A			ETH_MII_COL	
							ETH_RGMII_TXEN	
-	18	27	$ m V_{SS_4}$	P	ı	V_{SS_4}		
-	19	28	$ m V_{DD_4}$	P	-	V_{DD_4}		
				1/0/			SPI1_NSS/USART2_CK	CDI2 NICC
14	20	29	PA4	I/O/	-	PA4	ADC_IN4/DAC_OUT1	SPI3_NSS
				A			TIM9_CH3/DVP_HSYNC	I2S3_WS
				1/0/			SPI1_SCK/ADC_IN5	TIM10 CHINI
15	21	30	PA5	I/O/	_	PA5	DAC_OUT2/OPA2_CH1N	TIM10_CH1N
				A			DVP_VSYNC	USART1_CK
				1/0/			SPI1_MISO/TIM8_BKIN	TIM1_BKIN
16	22	31	PA6	I/O/	-	PA6	ADC_IN6/TIM3_CH1	UART7_TX
				A			OPA1_CH1N/DVP_PCLK	TIM10_CH2N
				T1= :			SPI1 MOSI/TIM8 CH1N	TIM1_CH1N
17	23	32	PA7	I/O/	-	PA7	ADC IN7/TIM3 CH2	UART7_RX
	7 23 32 PA7 A		PA'/	OPA2 CH1P	TIM10 CH3N			
ь	Ь			1		1		_

_	1					T		
							ETH_MII_RX_DV	
							ETH_RMII_CRS_DV	
							ETH_RGMII_TXD0	
							ADC_IN14/TIM9_CH4	
				I/O/			UART8_TX/OPA4_CH1P	
-	24	33	PC4	A	-	PC4	ETH_MII_RXD0	
				Λ			ETH_RMII_RXD0	
							ETH_RGMII_TXD1	
							ADC_IN15/TIM9_BKIN	
				I/O/			UART8_RX/OPA3_CH1P	
-	25	34	PC5		-	PC5	ETH_MII_RXD1	USART1_RTS
				A			ETH_RMII_RXD1	
							ETH_RGMII_TXD2	
							ADC_IN8/TIM3_CH3	TIM1 CHON
1.0	26	25	DD O	I/O/		DDA	TIM8_CH2N/OPA1_CH1P	TIM1_CH2N
18	26	35	PB0	A	•	PB0	ETH_MII_RXD2	TIM9_CH1N
							ETH_RGMII_TXD3	UART4_TX
							ADC_IN9/TIM3_CH4	
				1/0/			TIM8_CH3N/OPA4_CH0	TIM1_CH3N
19	27	36	PB1	I/O/	-	PB1	N	TIM9 CH2N
				Α			ETH_MII_RXD3	UART4_RX
							ETH RGMII 125IN	_
20	20	27	DD2	1/0	ET	PB2/BOO	ODA 2 CHON	TIMO CHINI
20	28	37	PB2	I/O	FT	T1	OPA3_CH0N	TIM9_CH3N
		20	DE#	I/O/	EÆ	DE7	EGMG DA/ODA2 OLIE1	TD (1 FTD
-	-	38	PE7	A	FT	PE7	FSMC_D4/OPA3_OUT1	TIM1_ETR
		20	DE 0	I/O/	EÆ	DEO	EGMG DC/ODA A OLITA	TIM1_CH1N/UART5_T
-	-	39	PE8	A	FT	PE8	FSMC_D5/OPA4_OUT1	X
-	-	40	PE9	I/O	FT	PE9	FSMC_D6	TIM1_CH1/UART5_RX
		4.1	DE 1.0	1/0	E	DE 10	EGMC DE	TIM1_CH2N/UART6_T
-	-	41	PE10	I/O	FT	PE10	FSMC_D7	X
-	-	42	PE11	I/O	FT	PE11	FSMC_D8	TIM1_CH2/UART6_RX
		42	DE 10	1/0	F/70	DE 10	False Do	TIM1 CH3N/UART7 T
-	-	43	PE12	I/O	FT	PE12	FSMC_D9	
-	-	44	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3/UART7_RX
		4.5		I/O/			EGN (G. D.11/OD (C. CTT)	
-	-	45	PE14	A	FT	PE14	FSMC_D11/OPA2_OUT1	TIM1_CH4/UART8_TX
				I/O/				
-	-	46	PE15	A	FT	PE15	FSMC_D12/OPA1_OUT1	TIM1_BKIN/UART8_RX
				T1= 1			I2C2 SCL/USART3 TX	THE 22 ST-2
21	29	47	PB10	I/O/	FT	PB10	OPA2 CH0N	TIM2_CH3
			-	A			ETH MII RX ER	TIM10_BKIN
				I/O/			I2C2 SDA/USART3 RX	TIM2 CH4
22	30	48	PB11	Α	FT	PB11	OPA1 CH0N	TIM10 ETR
Ь	<u> </u>					<u> </u>	51111_611011	12.117_E110

	ı						T	
							ETH_MII_TX_EN	
							ETH_RMII_TX_EN	
23	31	49	V_{SS_1}	P		V_{SS_1}		
-	32	50	$V_{{ m IO}_1}$	P		V_{IO_1}		
24	-	-	$V_{DD_IO_1}$	P		$V_{DD_IO_1}$		
							SPI2_NSS/I2S2_WS	
							I2C2_SMBA/USART3_C	
				I/O/			K	
25	33	51	PB12	A	FT	PB12	TIM1_BKIN/OPA4_CH0P	
				7 1			CAN2_RX/ETH_MII_TX	
							D0	
							ETH_RMII_TXD0	
							SPI2_SCK/I2S2_CK	
							USART3_CTS/TIM1_CH1	
26	34	52	PB13	I/O/	FT	PB13	N	
			1210	A		1210	OPA3_CH0P/CAN2_TX	
							ETH_MII_TXD1	
							ETH_RMII_TXD1	
				I/O/			SPI2_MISO/TIM1_CH2N	
27	35	53	PB14	A	FT	PB14	USART3_RTS/OPA2_CH0	
							P	
28	36	54	PB15	I/O/	FT	PB15	SPI2_MOSI/I2S2_SD	USART1 TX
				A			TIM1_CH3N/OPA1_CH0P	_
								USART3_TX/TIM9_CH1
_	_	55	PD8	I/O	FT	PD8	FSMC D13	N
								ETH_MII_RX_DV
								ETH_RMII_CRS_DV
								USART3_RX
-	_	56	PD9	I/O	FT	PD9	FSMC D14	TIM9_CH1/TIM9_ETR
							_	ETH_MII_RXD0
								ETH_RMII_RXD0
								USART3_CK/TIM9_CH2
-	_	57	PD10	I/O	FT	PD10	FSMC_D15	N
							_	ETH_MII_RXD1
								ETH_RMII_RXD1
			PD 11	7/6	F-75	PD * *	DOMES AND	USART3_CTS/TIM9_CH
-	-	58	PD11	I/O	FT	PD11	FSMC_A16	2
								ETH_MII_RXD2
			PD 14	7/6	F-75	PD 12	DOMES 1.5	TIM4_CH1/TIM9_CH3N
-	-	59	PD12	I/O	FT	PD12	FSMC_A17	USART3_RTS
							70.50	ETH_MII_RXD3
-	-	60	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2/TIM9_CH3
-	-	61	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3/TIM9_BKIN
-	-	62	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4/TIM9_CH4

							TOGO NEGIZIER EO GILL	
-	37	63	PC6	I/O	FT	PC6	I2S2_MCK/TIM8_CH1 SDIO_D6/ETH_RXP	TIM3_CH1
-	38	64	PC7	I/O	FT	PC7	I2S3_MCK/TIM8_CH2 SDIO D7/ETH RXN	TIM3_CH2
-	39	65	PC8	I/O	FT	PC8	TIM8_CH3/SDIO_D0 ETH TXP/DVP D2	TIM3_CH3
-	40	66	PC9	I/O	FT	PC9	TIM8_CH4/SDIO_D1 ETH TXN/DVP D3	TIM3_CH4
29	41	67	PA8	I/O	FT	PA8	USART1_CK TIM1_CH1/MCO	
30	42	68	PA9	I/O	FT	PA9	USART1_TX/TIM1_CH2 OTG FS VBUS/DVP D0	USART1_RTS
31	43	69	PA10	I/O	FT	PA10	USART1_RX/TIM1_CH3 OTG FS ID/DVP D1	USART1_CK
32	44	70	PA11	I/O/ A	FT	PA11	USART1_CTS/USBDM CAN1_RX/TIM1_CH4 OTG_FS_DM	
33	45	71	PA12	I/O/ A	FT	PA12	USART1_RTS/USBDP CAN1_TX/TIM1_ETR TIM10_CH1N OTG FS DP	
34	46	72	PA13	I/O	FT	SWDIO	TIM10_CH2N	PA13/TIM8_CH1N
-	-	73				•	Unused	
35	47	74	$ m V_{SS_2}$	P	-	V_{SS_2}		
36	48	75	V_{DD_2}	P	-	V_{DD_2}		
37	49	76	PA14	I/O	FT	SWCLK	TIM10_CH3N	TIM8_CH2N/UART8_T X PA14
38	50	77	PA15	I/O	FT	PA15	SPI3_NSS I2S3_WS	TIM2_CH1/TIM2_ETR PA15/SPI1_NSS TIM8_CH3N/UART8_R X
-	51	78	PC10	I/O	FT	PC10	UART4_TX/SDIO_D2 TIM10_ETR/DVP_D8	USART3_TX SPI3 SCK/I2S3 CK
-	52	79	PC11	I/O	FT	PC11	UART4_RX/SDIO_D3 TIM10_CH4/DVP_D4	USART3_RX SPI3 MISO
-	53	80	PC12	I/O	FT	PC12	UART5_TX/SDIO_CK TIM10_BKIN/DVP_D9	USART3_CK SPI3_MOSI/I2S3_SD
-	-	81	PD0	I/O/ A	FT	PD0	FSMC_D2	CAN1_RX/TIM10_ETR
-	-	82	PD1	I/O/ A	FT	PD1	FSMC_D3	CAN1_TX/TIM10_CH1
-	54	83	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD/DVP_D11	

_	_	84	PD3	I/O	FT	PD3	FSMC CLK	USART2_CTS
		٠.		10		123	TSME_CERT	TIM10_CH2
-	-	85	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS
_		86	PD5	I/O	FT	PD5	FSMC NWE	USART2_TX
	_	80	FDS	1/0	Г1	rD3	rswc_nwe	TIM10_CH3
-	-	87	PD6	I/O	FT	PD6	FSMC_NWAIT/DVP_D10	USART2_RX
		88	PD7	I/O	FT	PD7	FSMC_NE1	USART2_CK
-	-	00	FD/	1/0	Γ1	FD/	FSMC_NCE2	TIM10_CH4
39	55	89	PB3	I/O	FT	PB3	SPI3_SCK	TIM2_CH2/SPI1_SCK
39	33	09	rby	1/0	ГІ	rbs	I2S3_CK	TIM10_CH1
								TIM3_CH1
40	56	90	PB4	I/O	FT	PB4	SPI3_MISO	SPI1_MISO/UART5_TX
								TIM10_CH2
							I2C1_SMBA/SPI3_MOSI	TIM3_CH2/SPI1_MOSI
41	57	91	DD 5	I/O		DD 5	I2S3_SD	CAN2_RX
41	57	91	PB5	I/O	-	PB5	ETH_MII_PPS_OUT	TIM10_CH3
							ETH_RMII_PPS_OUT	UART5_RX
							I2C1_SCL/TIM4_CH1	USART1_TX
42	58	92	PB6	I/O	FT	PB6	USBHD_DM/DVP_D5	CAN2_TX
							USBHS_DM	TIM8_CH1
							I2C1_SDA/FSMC_NADV	LICADTI DV
43	59	93	PB7	I/O	FT	PB7	TIM4_CH2/USBHD_DP	USART1_RX
							USBHS_DP	TIM8_CH2
44	60	94	BOOT0	I	-	BOOT0		
				1/0/			TIM4_CH3/SDIO_D4	I2C1_SCL/CAN1_RX
45	61	95	PB8	I/O/	FT	PB8	TIM10_CH1/DVP_D6	UART6_TX
				A			ETH_MII_TXD3	TIM8_CH3
10	62	06	DDO	I/O/	ЕТ	DDO	TIM4_CH4/SDIO_D5	I2C1_SDA/CAN1_TX
46	62	96	PB9	A	FT	PB9	TIM10_CH2/DVP_D7	UART6_RX
-	-	97	PE0	I/O	FT	PE0	TIM4_ETR/FSMC_NBL0	UART4_TX
-	-	98	PE1	I/O	FT	PE1	FSMC_NBL1	UART4_RX
47	63	99	$ m V_{SS_3}$	P	-	V_{SS_3}		
	C 4	10	17	ъ		3.7		
L	64	0	V_{IO_3}	P	ı	V_{IO_3}		
48	-	-	$V_{DD_IO_3}$	P		$V_{DD_IO_3}$		

Table 3-2 CH32V203xx pin definition

Note: The pin function in the table below refer to all functions and do not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

Pi	Pin number			1/0	1/0	Main		
LQFP32	QFN48	LQFP48	Pin name	Pin type ⁽¹⁾	I/O voltage Level	function (After reset)	Default multiplexing function	Remapping function

_	0	_						
_	1	1	V_{BAT}	P	_	V_{BAT}		
_	1	1	PC13-	1		V BAI		
-	2	2	TAMPER-RT $C^{(2)}$	I/O	1	PC13 ⁽³⁾	TAMPER-RTC	
-	3	3	PC14- OSC32_IN ⁽²⁾	I/O/A	-	PC14 ⁽³⁾	OSC32_IN	
-	4	4	PC15- OSC32_OUT ⁽²	I/O/A	-	PC15 ⁽³⁾	OSC32_OUT	
2	5	5	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
3	6	6	OSC_OUT	O/A	1	OSC_OUT		PD1 ⁽⁴⁾
4	7	7	NRST	I/O	-	NRST		
	8	8	V_{SSA}	P	-	V_{SSA}		
5	9	9	V_{DDA}	P	-	V_{DDA}		
6	10	10	PA0-WKUP	I/O/A	-	PA0	WKUP/USART2_CTS ADC_IN0/TIM2_CH1 TIM2_ETR	
7	11	11	PA1	I/O/A	1	PA1	USART2_RTS/ADC_IN 1 TIM2_CH2	
8	12	12	PA2	I/O/A	-	PA2	USART2_TX/ADC_IN2 TIM2_CH3/OPA2_OUT 0	
9	13	13	PA3	I/O/A	-	PA3	USART2_RX/ADC_IN3 TIM2_CH4/OPA1_OUT 0	
10	14	14	PA4	I/O/A	1	PA4	SPI1_NSS/USART2_CK ADC_IN4/OPA2_OUT1	
11	15	15	PA5	I/O/A	-	PA5	SPI1_SCK/ADC_IN5 OPA2_CH1N	USART1_CK
12	16	16	PA6	I/O/A	-	PA6	SPI1_MISO/ADC_IN6 TIM3_CH1/OPA1_CH1 N	TIM1_BKIN
13	17	17	PA7	I/O/A	-	PA7	SPI1_MOSI/ADC_IN7 TIM3_CH2/OPA2_CH1 P	TIM1_CH1N
14	18	18	PB0	I/O/A	ı	PB0	ADC_IN8/TIM3_CH3 OPA1_CH1P	TIM1_CH2N
15	19	19	PB1	I/O/A	-	PB1	ADC_IN9/TIM3_CH4 OPA1_OUT1	TIM1_CH3N
-	20	20	PB2	I/O	FT	PB2/BOOT		
-	21	21	PB10	I/O/A	FT	PB10	I2C2_SCL/USART3_TX	TIM2_CH3

							ODA 2 CHOM	
							OPA2_CH0N	
	22	22	DD 11	T/O/A	P.T.	DD 11	I2C2_SDA/USART3_R	TD 10 CH 1
-	22	22	PB11	I/O/A	FT	PB11	X	TIM2_CH4
1.0	22	22	17	D		3 7	OPA1_CH0N	
16	23	23	V_{SS_1}	P		V _{SS_1}		
17	24	24	$V_{DD_IO_1}$	P		$V_{DD_IO_1}$	CDIA NICC/IACA CA CA	
	25	25	DD 12	T/O/A	P.T.	DD 12	SPI2_NSS/I2C2_SMBA	
-	25	25	PB12	I/O/A	FT	PB12	USART3_CK/TIM1_BK	
							IN	
	26	26	DD 12	I/O/A	ET	DD 12	SPI2_SCK/USART3_CT	
-	26	26	PB13	I/O/A	FT	PB13	S TIME CHIN	
							TIM1_CH1N	
							SPI2_MISO/TIM1_CH2	
-	27	27	PB14	I/O/A	FT	PB14	N	
							USART3_RTS/OPA2_C H0P	
							SPI2 MOSI/TIM1 CH3	
_	28	28	PB15	I/O/A	FT	PB15	N	USART1 TX
_	20	28	rb13	I/O/A	1.1	FB13	OPA1 CH0P	USAKII_IA
							USART1 CK	
18	29	29	PA8	I/O	FT	PA8	TIM1 CH1/MCO	
							USART1 TX/TIM1 CH	
19	30	30	PA9	I/O	FT	PA9	2	USART1_RTS
•	2.1		7.40	7/0		7.10	USART1 RX/TIM1 CH	
20	31	31	PA10	I/O	FT	PA10	3	USART1_CK
2.1	22	22	D. 11	T/O/A	EE	D. 11	USART1 CTS/USBDM	
21	32	32	PA11	I/O/A	FT	PA11	CAN1_RX/TIM1_CH4	
22	22	22	D. 10	T/O/A	EE	DA 10	USART1_RTS/USBDP	
22	33	33	PA12	I/O/A	FT	PA12	CAN1_TX/TIM1_ETR	
23	34	34	PA13	I/O	FT	SWDIO		PA13
-	35	35	V_{SS_2}	P	ı	V_{SS_2}		
-	36	36	V_{DD_2}	P	-	V_{DD_2}		
24	37	37	PA14	I/O	FT	SWCLK		PA14
25	20	20	DA 15	I/O	БТ	DA 15		TIM2_CH1/TIM2_ETR
25	38	38	PA15	I/O	FT	PA15		PA15/SPI1_NSS
26	39	39	PB3	I/O	FT	PB3		TIM2_CH2/SPI1_SCK
27	40	40	PB4	I/O	FT	PB4		TIM3_CH1/SPI1_MISO
28	41	41	PB5	I/O	ı	PB5	I2C1_SMBA	TIM3_CH2/SPI1_MOSI
29	42	42	DD4	I/O	FT	DD4	I2C1_SCL/TIM4_CH1	IICADT1 TV
29	'1 ∠	4 ∠	PB6	1/0	r1 	PB6	USBHD_DM	USART1_TX
20	12	12	DD7	I/O	БТ	DD7	I2C1_SDA	IICADT1 DV
30	43	43	PB7	I/O	FT	PB7	TIM4_CH2/USBHD_DP	USART1_RX
31	44	44	BOOT0	I	ı	BOOT0		
-	45	45	PB8	I/O/A	FT	PB8	TIM4_CH3	I2C1_SCL/CAN1_RX

-	46	46	PB9	I/O/A	FT	PB9	TIM4_CH4	I2C1_SDA/CAN1_TX
32	47	47	$ m V_{SS_3}$	P	1	V_{SS_3}		
1	48	48	$V_{DD_IO_3}$	P	-	$V_{DD_IO_3}$		

表 3-3 CH32V208xx pin definition

Note: The pin function in the table below refer to all functions and do not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

	according to the particular model's resource table before viewing this table. Pin number Main										
QFN28 4		LQFP64 m	g 89N4O	Pin name	Pin type	I/O voltage Level	Main function (After reset)	Default multiplexing function	Remapping function		
0	0	1	0	V_{SS}	P	-	V_{SS}				
28	48	1	1	$ m V_{BAT}$	P	-	V_{BAT}				
-	1	2	2	PC13- TAMPER-RTC ⁽	I/O	-	PC13 ⁽³⁾	TAMPER-RTC			
-	2	3	3	PC14- OSC32_IN ⁽²⁾	I/O/ A	-	PC14 ⁽³⁾	OSC32_IN			
-	3	4	4	PC15- OSC32_OUT ⁽²⁾	I/O/ A	-	PC15 ⁽³⁾	OSC32_OUT			
1	4	5	5	OSC_IN	I/A	-	OSC_IN				
2	5	6	6	OSC_OUT	O/A	-	OSC_OUT				
3	6	7	7	NRST	I/O	-	NRST				
-	1	8	8	PC0	I/O/ A	-	PC0	ADC_IN10			
-	-	9	9	PC1	I/O/ A	-	PC1	ADC_IN11			
-	-	10	10	PC2	I/O/ A	-	PC2	ADC_IN12			
-	1	11	11	PC3	I/O/ A	-	PC3	ADC_IN13			
-	7	12	12	$ m V_{SSA}$	P	-	V_{SSA}				
4	8	13	13	$ m V_{DDA}$	P	-	V_{DDA}				
5	9	14	14	PA0-WKUP	I/O/ A	-	PA0	WKUP/USART2_CTS ADC_IN0/TIM2_CH1 TIM2_ETR/TIM5_CH1			
6	10	15	15	PA1	I/O/ A	-	PA1	USART2_RTS/ADC_IN 1 TIM5_CH2/TIM2_CH2			
7	11	16	16	PA2	I/O/ A	-	PA2	USART2_TX/TIM5_CH 3 ADC_IN2/TIM2_CH3 OPA2_OUT0			

_	_	_	17	$ m V_{IO_4}$	P	-	V_{IO_4}		
_	_	_	18	PD4	I/O	FT	PD4		USART2 RTS
8	12	17	19	PA3	I/O/ A	-	PA3	USART2_RX/TIM5_C H4 ADC_IN3/TIM2_CH4 OPA1_OUT0	55.11.02_1.05
_	-	18		V_{SS_4}	P	_	V_{SS_4}	_	
_	-	19	-	V _{DD_IO_4}	P	_	$V_{DD_IO_4}$		
9	13	20	20	PA4	I/O/ A	-	PA4	SPI1_NSS/USART2_C K ADC_IN4/OPA2_OUT1	
10	14	21	21	PA5	I/O/ A	-	PA5	SPI1_SCK/ADC_IN5 OPA2_CH1N	USART1_CK
11	15	22	22	PA6	I/O/ A	1	PA6	SPI1_MISO/ADC_IN6 TIM3_CH1/OPA1_CH1 N	TIM1_BKIN
12	16	23	23	PA7	I/O/ A	-	PA7	SPI1_MOSI/ADC_IN7 TIM3_CH2/OPA2_CH1 P	TIM1_CH1N
-	1	24	24	PC4	I/O/ A	-	PC4	ADC_IN14	
-	-	25	25	PC5	I/O/ A	-	PC5	ADC_IN15	USART1_RTS
-	17	26	26	PB0	I/O/ A	-	PB0	ADC_IN8/TIM3_CH3 OPA1_CH1P	TIM1_CH2N UART4_TX
-	18	27	27	PB1	I/O/ A	1	PB1	ADC_IN9/TIM3_CH4 OPA1_OUT1	TIM1_CH3N/UART4_R X
-	19	28	28	PB2	I/O	FT	PB2/BOO T1		
-	20	29	29	PB10	I/O/ A	FT	PB10	I2C2_SCL/USART3_T X OPA2_CH0N	TIM2_CH3
-	21	30	30	PB11	I/O/ A	FT	PB11	I2C2_SDA/USART3_R X OPA1_CH0N	TIM2_CH4
-	-	31	-	V_{SS_1}	P		V_{SS_1}		
13	22	32	-	$V_{DD_IO_1}$	P		$V_{DD_IO_1}$		
-	-	-	31	V_{IO_1}	P		V_{IO_1}		
-	-	-	32	V_{DD_1}	P		V_{DD_1}		
-	-	-	33	PD5	I/O	FT	PD5		USART2_TX
-	-	-	34	PD6	I/O	FT	PD6		USART2_RX
-	23	33	35	PB12	I/O/ A	FT	PB12	SPI2_NSS/I2C2_SMBA USART3_CK TIM1_BKIN	

					1			T	
					I/O/			SPI2_SCK	
-	24	34	36	PB13	Α	FT	PB13	USART3_CTS	
								TIM1_CH1N	
								SPI2_MISO	
_	25	35	37	PB14	I/O/	FT	PB14	TIM1_CH2N	
	23	33	37	1511	A		1511	USART3_RTS	
								OPA2_CH0P	
					I/O/			SPI2_MOSI	
-	26	36	38	PB15	A	FT	PB15	TIM1_CH3N	USART1_TX
					A			OPA1_CH0P	
14	1	37	39	PC6	I/O	FT	PC6	ETH_RXP	TIM3_CH1
15	1	38	40	PC7	I/O	FT	PC7	ETH_RXN	TIM3_CH2
16	1	39	41	PC8	I/O	FT	PC8	ETH_TXP	TIM3_CH3
17	-	40	42	PC9	I/O	FT	PC9	ETH_TXN	TIM3_CH4
	٥-	4	4.0	7.10	1/0	F	D. C	USART1_CK	
-	27	41	43	PA8	I/O	FT	PA8	TIM1 CH1/MCO	
				_			_	USART1 TX/TIM1 CH	
-	28	42	44	PA9	I/O	FT	PA9	2	USART1_RTS
								USART1_RX/TIM1_C	
-	29	43	45	PA10	I/O	FT	PA10	H3	USART1_CK
					I/O/			USART1 CTS/USBDM	
18	30	44	46	PA11	Α	FT	PA11	CAN1 RX/TIM1 CH4	
					I/O/			USART1 RTS/USBDP	
19	31	45	47	PA12	A	FT	PA12	CAN1 TX/TIM1 ETR	
20	32	46	48	PA13	I/O	FT	SWDIO		PA13
_	35	-	49	V_{SS_2}	P	-	V_{SS_2}		
21	33	47		V _{INTA}	P	-	V _{INTA}		
22	34			ANT	A	-	ANT		
23	36	49	52	PA14	I/O	FT	SWCLK		PA14
	50	.,	02		1.0	- 1	S W CEIT		TIM2 CH1/TIM2 ETR
24	37	50	53	PA15	I/O	FT	PA15		SPI1 NSS
_	_	51	54	PC10	I/O	FT	PC10	UART4 TX	USART3 TX
_	_	52	55	PC11	I/O	FT	PC11	UART4 RX	USART3 RX
_	-	53	56	PC12	I/O	FT	PC12	O/IRIT_ICA	USART3_KX USART3 CK
-	_	54	57	PD2	I/O	FT	PD2	TIM3 ETR	55/11(15_CK
-	38	55	58	PB3	I/O	FT	PB3	THVI3_ETK	TIM2 CH2/SPI1 SCK
	39	56	59	PB4	I/O	FT	PB4		
-						r 1		I2C1 CMD A	TIM3_CH1/SPI1_MISO
-	40	57	60	PB5	I/O	-	PB5	I2C1_SMBA	TIM3_CH2/SPI1_MOSI
25	41	58	61	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX
								USBHD_DM	-
	40	<i></i> 0		PD 5	1/0	FÆ	PD 5	I2C1_SDA	110 1 271
26	42	59	62	PB7	I/O	FT	PB7	TIM4_CH2/USBHD_D	USART1_RX
	12			DOCT?	-		DOCT?	P	
27	43	60	63	BOOT0	Ī	-	BOOT0		

-	44	61	64	PB8	I/O/ A	FT	PB8	TIM4_CH3	I2C1_SCL/CAN1_RX
-	45	62	65	PB9	I/O/ A	FT	PB9	TIM4_CH4	I2C1_SDA/CAN1_TX
-	-	-	66	PD3	I/O	FT	PD3		USART2_CTS
-	46	63	1	$ m V_{SS_3}$	P	-	V_{SS_3}		
28	47	64	-	$V_{DD_IO_3}$	P	-	V _{DD_IO_3}		
-	-	-	67	V _{IO_3}	P	1	V_{IO_3}		
-	-	-	68	V_{DD_3}	P	-	V_{DD_3}		

Note 1: Abbreviations in the table

I = TTL/CMOS level Schmitt input;

O = CMOS level tri-state output;

A = analog signal input or output;

P = power supply;

FT = 5V tolerance;

ANT = RF signal input and output (antenna);

Note 2: The PC13, PC14 and PC15 pins are powered by the power's switch, and this power's switch can only absorb a limited current (3mA). Therefore, when these three pins are used as output pins, there are the following restrictions: only one pin can be used as an output at the same time. When used as an output pin, it can only work in 2MHz mode. The maximum drive load is 30pF and cannot be used as a current source (Such as driving LED).

Note 3: These pins are in the main function state when the backup area is powered on for the first time. Even after resetting, the state of these pins is controlled by the backup area registers (these registers will not be reset by the main reset system). For specific information on how to control these IO ports, please refer to the relevant chapters of the battery backup area and BKP register in the CH32xRM manual.

Note 4: Pin 5 and pin 6 of LQFP64M package are configured as OSC_IN and OSC_OUT function pins by default after chip reset. Software can reconfigure these two pins as PD0 and PD1. But for the LQFP100 package, since PD0 and PD1 are inherent functional pins, there is no need to re-image settings by software. For more detailed information, please refer to the Multiplex Function I/O Chapter and Debug Setting Chapter of the CH32xRM manual.

Chapter 4 Electrical Specification

4.1 Test conditions

Unless otherwise specified and marked, all voltages are based on V_{SS}.

All minimum and maximum values will be guaranteed under the worst conditions of ambient temperature, supply voltage and clock frequency. Typical values are based on normal temperature and $V_{DD} = 3.3$ environment, which can be used for design guidance.

The data obtained through comprehensive evaluation, design simulation or process characteristics will not be tested on the production line. On the basis of comprehensive evaluation, the minimum and maximum values are statistically obtained after sample testing. Unless were specifically explained, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Room temperature environment: 25°C

Power supply plan:

Figure 4-1 Typical circuit of power supply

4.2 Absolute maximum

Critical or exceeding the absolute maximum value may cause the chip to work abnormally or even be damaged.

Table 4-1 Absolute maximum value parameter table

Symbol	Description	Min	Max	Unit
T_A	Ambient temperature during work	-40	85	°C
T_{S}	Ambient temperature during storage	-40	125	°C
V_{DD} - V_{SS}	External main supply voltage (including V _{DDA} and V _{DD})	-0.3	4.0	V

V _{IO} -V _{SS}	IO domain side supply voltage	-0.3	4.0	V
7.7	Input voltage on the FT (5V tolerant) pin	V_{SS} -0.3	5.5	V
$V_{ m IN}$	Input voltage on other pins		V _{DD} +0.3	
$ \triangle V_{DD_x} $	Voltage difference between different main power supply pins		50	mV
$ \triangle V_{IO_x} $	Voltage difference between power supply pins of different IO terminals		50	mV
$ \triangle V_{SS_x} $	Voltage difference between different ground pins		50	mV
V _{ESD(HBM)}	ESD electrostatic discharge voltage (human body model, non-contact)	4000		V
I_{VDD}^{1}	The total current through the V_{DD}/V_{DDA} power line (supply current)		50	
I _{Vss} ¹	The total current (outgoing current) through the $V_{\rm ss}$ ground wire		50	
T	Sink current on any I/O and control pin		25	
I_{IO}	Output current on any I/O and control pin		-25	4
	NRST pin injection current		+/-5	mA
I _{INJ(PIN)}	HSE's OSC_IN pin and LSE's OSC_IN pin injected current		+/-5	
	Injection current of other pins		+/-5	
$\sum I_{INJ(PIN)}$	Total injection current of all IO and control pins		+/-25	

Note: 1. Normal work can reach the maximum current value.

4.3 Electrical parameters

4.3.1 Working conditions

Table 4-2 General working conditions

Symbol	Parameter	Condition	Min	Max	Unit
F _{HCLK}	Internal AHB clock frequency			144	MHz
F _{PCLK1}	Internal APB1 clock frequency			144	MHz
F _{PCLK2}	Internal APB2 clock frequency			144	MHz
V_{DD}	Standard working voltage		2.3	3.6	V
V_{IO}	Most IO pins output voltage	V_{IO} must be less than V_{DD}	2.3	3.6	V
V	Analog part operating voltage (ADC is not used)	V_{DDA} must be the same as V_{IO} , V_{REF^+} can not be	2.3	3.6	V
$ m V_{DDA}$	Analog part of the working voltage (using ADC)	higher than V_{DDA} , V_{REF-} is equal to V_{SS}	2.4	3.0	V
V_{BAT}^{1}	Backup unit operating voltage	Can not be greater than V _{DD}	1.8	3.6	V
T _A	Ambient temperature		-40	85	°C
TJ	Junction temperature range		-40	85	°C

注: 1.电池到 V_{BAT} 连线要尽可能的短。

表 4-3 上电和掉电条件

Symbol	Parameter	Condition	Min	Max	Unit
4	V _{DD} rising rate		0	8	us/V
$t_{ m VDD}$	V _{DD} falling rate		30	8	us/ V

Note: The connection between the battery and VBAT should be as short as possible.

4.3.2 Features of built-in Reset and Power Control Module

Table 4-4 Reset and voltage monitoring, (PAD_PDR_SEL floats, PDR selects high threshold gear)

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
		PLS[2:0] = 000 (rising edge)		2.39		V
		PLS[2:0] = 000 (falling edge)		2.31		V
		PLS[2:0] = 001 (rising edge)		2.56		V
		PLS[2:0] = 001 (falling edge)		2.48		V
		PLS[2:0] = 010 (rising edge)		2.65		V
		PLS[2:0] = 010 (falling edge)		2.57		V
		PLS[2:0] = 011 (rising edge)		2.78		V
V 1	Programmable voltage	PLS[2:0] = 011 (falling edge)		2.69		V
V_{PVD}^{1}	detector level selection	PLS[2:0] = 100 (rising edge)		2.89		V
		PLS[2:0] = 100 (falling edge)		2.81		V
		PLS[2:0] = 101 (rising edge)		3.05		V
		PLS[2:0] = 101 (falling edge)		2.96		V
		PLS[2:0] = 110 (rising edge)		3.17		V
		PLS[2:0] = 110 (falling edge)		3.08		V
		PLS[2:0] = 111 (rising edge)		3.31		V
		PLS[2:0] = 111 (falling edge)		3.21		V
V _{PVDhyst}	PVD hysteresis			0.1		V
V	Power-on/power-down	Rising edge	1.49	1.59	1.7	V
V _{POR/PDR}	reset threshold	Falling edge	1.46	1.57	1.69	V
V _{PDRhyst}	PDR hysteresis		40	_	110	mV
t _{RSTTEMPO}	Reset duration		5		100	mS

Note: 1. Normal temperature test value.

Table 4-5 Reset and voltage monitoring, (PAD PDR SEL is grounded, PDR selects the low threshold)

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
		PLS[2:0] = 000 (rising edge)		2.18		V
	Programmable voltage detector level selection	PLS[2:0] = 000 (falling edge)		2.11		V
		PLS[2:0] = 001 (rising edge)		2.32		V
		PLS[2:0] = 001 (falling edge)		2.24		V
		PLS[2:0] = 010 (rising edge)		2.37		V
$ m V_{PVD}{}^{1}$		PLS[2:0] = 010 (falling edge)		2.30		V
V PVD		PLS[2:0] = 011 (rising edge)		2.48		V
		PLS[2:0] = 011 (falling edge)		2.40		V
		PLS[2:0] = 100 (rising edge)		2.57		V
		PLS[2:0] = 100 (falling edge)		2.49		V
		PLS[2:0] = 101 (rising edge)		3.69		V
		PLS[2:0] = 101 (falling edge)		2.60		V

		PLS[2:0] = 110 (rising edge)		2.77		V
		PLS[2:0] = 110 (falling edge)		2.68		V
		PLS[2:0] = 111 (rising edge)		2.86		V
		PLS[2:0] = 111 (falling edge)		2.77		V
V _{PVDhyst}	PVD hysteresis			0.1		V
V	Power-on/power-down	Rising edge	1.49	1.60	1.7	V
V _{POR/PDR}	reset threshold	Falling edge	1.46	1.57	1.69	V
V _{PDRhyst}	PDR hysteresis		40		110	mV
t _{RSTTEMPO}	Reset duration		5		100	mS

Note: 1. Normal temperature test value.

4.3.3 Built-in reference voltage

Table 4-6 Built-in reference voltage

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
V_{REFINT}	Built-in reference voltage	$T_A = -40$ °C \sim 85°C	1.17	1.2	1.23	V
$T_{S_vrefint}$	When reading the internal reference voltage, the ADC sampling time				17.1	us

4.3.4 Supply current characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, product software configuration, operating frequency, I/O pin flip rate, and program in memory The location in and the executed code, etc. The current consumption measurement method is as follows:

Figure 4-2 Current consumption measurement

The microcontroller is in the following conditions:

Under normal temperature conditions, VDD = 3.3V, all IO ports are configured with pull-up inputs, enabling or disabling the power consumption of all peripheral clocks, without initializing peripheral functions.

Table 4-7 Typical current consumption in run mode, the data processing code runs from the internal Flash

Symbol	Parameter	Condition	Typical value	Unit

				Enable all peripherals	Disable all peripherals	
$I_{ m DD}$	Supply current in operating mode	Runs on the high-speed internal RC oscillator (HSI), using AHB prescaler to reduce the	$F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$ $F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$ $F_{HCLK} = 500KHz$ $F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$ $F_{HCLK} = 16MHz$ $F_{HCLK} = 8MHz$ $F_{HCLK} = 8MHz$ $F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$			mA
		frequency	$F_{HCLK} = 500 \text{KHz}$			

Note: The above are measured parameters.

Table 4-8 Typical current consumption in sleep mode, data processing code runs from internal Flash or SRAM

$I_{DD} \begin{tabular}{l l} \hline & peripherals & peripherals \\ \hline & F_{HCLK} = 144MHz \\ \hline & F_{HCLK} = 72MHz \\ \hline & F_{HCLK} = 48MHz \\ \hline & F_{HCLK} = 36MHz \\ \hline & F_{HCLK} = 36MHz \\ \hline & F_{HCLK} = 24MHz \\ \hline & F_{HCLK} = 16MHz \\ \hline & F_{HCLK} = 8MHz \\ \hline & F_{HCLK} = 4MHz \\ \hline & F_{HCLK} = 4MHz \\ \hline & F_{HCLK} = 500KHz \\ \hline & F_{HCLK} = 144MHz \\ \hline & F_{HCLK} = 144MHz \\ \hline & F_{HCLK} = 144MHz \\ \hline & F_{HCLK} = 72MHz \\ \hline & F_{HCLK} = 72MHz \\ \hline & F_{HCLK} = 48MHz \\ \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin tabular \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline$					Typica	l value	
$F_{HCLK} = 72 MHz$ $F_{HCLK} = 48 MHz$ $F_{HCLK} = 36 MHz$ $F_{HCLK} = 24 MHz$ $F_{HCLK} = 16 MHz$ $F_{HCLK} = 8 MHz$ $F_{HCLK} = 8 MHz$ $F_{HCLK} = 4 MHz$ $F_{HCLK} = 4 MHz$ $F_{HCLK} = 4 MHz$ $F_{HCLK} = 500 KHz$ $F_{HCLK} = 144 MHz$	Symbol	Parameter	Con	dition			Unit
$ \begin{array}{c} \text{maintained}) & \text{internal} & RC \\ \text{oscillator} \\ \text{(HSI),} & \text{using} \\ \text{AHB prescaler} \\ \text{to reduce the} \\ \text{frequency} \end{array} \begin{array}{c} F_{HCLK} = 36 \text{MHz} \\ F_{HCLK} = 24 \text{MHz} \\ \hline F_{HCLK} = 16 \text{MHz} \\ \hline F_{HCLK} = 8 \text{MHz} \\ \hline F_{HCLK} = 4 \text{MHz} \\ \hline \end{array} $	${ m I_{DD}}$	in sleep mode (At this time, peripheral power supply	Runs on the high-speed internal RC oscillator (HSI), using AHB prescaler to reduce the	$F_{HCLK} = 72 MHz$ $F_{HCLK} = 48 MHz$ $F_{HCLK} = 36 MHz$ $F_{HCLK} = 24 MHz$ $F_{HCLK} = 16 MHz$ $F_{HCLK} = 8 MHz$ $F_{HCLK} = 4 MHz$ $F_{HCLK} = 500 KHz$ $F_{HCLK} = 144 MHz$ $F_{HCLK} = 72 MHz$ $F_{HCLK} = 48 MHz$ $F_{HCLK} = 36 MHz$ $F_{HCLK} = 24 MHz$ $F_{HCLK} = 16 MHz$ $F_{HCLK} = 8 MHz$	periprierais	periprietars	mA

Note: The above are measured parameters

Table 4-9 Typical current consumption in stop and standby mode

Symbol	Parameter	Condition	Typical value	Unit
		The voltage regulator is in run mode, and the low-speed and high-speed internal RC oscillator and external oscillator are both off (no independent watchdog)	85	
$ m I_{DD}$	Supply current in stop mode	The voltage regulator is in a low-power mode, the low-speed and high-speed internal RC oscillators and external oscillators are both off (no independent watchdog, PVD off)	39	
22		Low-speed internal RC oscillator and independent watchdog are on	1.2	uA
	Supply current in standby mode	The low-speed internal RC oscillator is in the on state, and the independent watchdog is in the off state	1.1	
	mode	Low-speed internal RC oscillator and independent watchdog are off, low-speed external oscillator and RTC are off	0.4	
I _{DD_VBAT}	$\begin{array}{cccc} \text{Supply current in backup} \\ \text{area (Remove } V_{DD} & \text{and} \\ V_{DDA}, \text{only powered by } V_{BAT} \end{array}$	Low-speed external oscillator and RTC are on	1.1	

Note: The above are measured parameters.

4.3.5 External clock characteristics

Table 4-10 From external high-speed clock

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
F_{HSE_ext}	External clock frequency		3	8	25	MHz
$V_{\mathrm{HSEH}}{}^{1}$	OSC_IN input pin high level voltage		$0.8 m V_{IO}$		V _{IO}	V
V_{HSEL}^{1}	OSC_IN input pin low-level voltage		0		0.2V _{IO}	V
C _{in(HSE)}	OSC_IN input capacitance			5		pF
DuCy _(HSE)	Duty cycle			50		%
$I_{\rm L}$	OSC_IN input leakage current				±1	uA

Note: 1. Failure to meet this condition may cause level recognition error.

Figure 4-3 External high-frequency clock source circuit

Table 4-11 From external low-speed clock

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
F_{LSE_ext}	User external clock frequency			32.768	1000	KHz
V_{LSEH}	OSC32_IN input pin high level voltage		$0.8 \mathrm{V}_\mathrm{DD}$		V_{DD}	V
V _{LSEL}	OSC32_IN input pin low voltage		0		$0.2V_{DD}$	V
C _{in(LSE)}	OSC32_IN input capacitance			5		pF
DuCy _(LSE)	Duty cycle			50		%
I_{L}	OSC32_IN input leakage current				±1	uA

Figure 4-4 External low-frequency clock source circuit

Table 4-12 High-speed external clock using a crystal/ceramic resonator

Table 4-12 High-speed external clock using a crystal/ceranne resonator							
Symbol	Parameter	Condition	Min	Typical value	Max	Unit	
Fosc_in	Resonator frequency		3	8	25	MHz	
R_{F}	Feedback resistance			250		kΩ	
С	Recommended load capacitance and corresponding crystal series impedance RS	$R_S=60\Omega^1$		20		pF	
I_2	HSE drive current	$V_{DD} = 3.3V$, 20p load		0.53		mA	
g_{m}	Transconductance of the oscillator	Start up		17.5		mA/V	
t _{SU(HSE)}	Start Time	V _{DD} is stable, 8M crystal		2.5		ms	

Note 1: It is recommended that the ESR of 25M crystal should not exceed 60 Ω , and it can be relaxed if it is lower than 25M.

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, $C_{L1}=C_{L2}$, generally $10\sim20 pF$ is recommended.

Figure 4-5 Typical circuit of external 8M crystal

Table 4-13 Use a low-speed external clock generated by a crystal/ceramic resonator (f(LSE)=32.768KHz)

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
R_{F}	Feedback resistance			5		ΜΩ
С	Recommended load capacitance and corresponding crystal serial impedance Rs				15	pF
i_2	LSE drive current	VDD = 3.3V		0.35		uA
g_{m}	Transconductance of the oscillator	start up		25.3		uA/V
t _{SU(LSE)}	Start Time	VDD is stable		800		mS

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, CL1=CL2, generally $10\sim20$ pF is recommended.

Figure 4-6 Typical circuit of external 32.768K crystal

Note: The load capacitance CL is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the capacitance of the pin and the PCB board or PCB-related capacitance. Its typical value is between 2pF and 7pF between.

4.3.6 Internal clock source characteristics

Table 4-14 Internal high-speed (HSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
F_{HSI}	Frequency			8		MHz
DuCy _{HSI}	Duty cycle		45	50	55	%
ACC	A common of HCI agaillatan	$TA = 0$ ° $C \sim 70$ ° C	-1.6		1.6	%
ACC _{HSI}	Accuracy of HSI oscillator	$TA = -40$ °C \sim 85°C	-2.3		2.3	%
$t_{\rm SU(HSI)}$	HSI oscillator start time			10		us
$I_{DD(HSI)} \\$	HSI oscillator power consumption			8		MHz

Table 4-15 Internal low-speed (LSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
--------	-----------	-----------	-----	---------------	-----	------

F_{LSI}	Frequency	25	39	60	KHz
DuCy _{LSI}	Duty cycle	45	50	55	%
$t_{\rm SU(LSI)}$	LSI oscillator start-up time		100		us
$I_{DD(LSI)}$	LSI oscillator power consumption		0.6		uA

4.3.7 PLL characteristics

Table 4-16 PLL characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
E	PLL input clock		3	8	25	MHz
F_{PLL_IN}	PLL input clock duty cycle		40		60	%
F _{PLL_OUT}	PLL multiplier output clock		18		144 ¹	MHz
t_{LOCK}	PLL lock time				200	us

Note 1: The frequency multiplier must be selected to meet the PLL output frequency range.

Table 4-17 PLL2 and PLL3 characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
Г	PLL input clock		3		25	MHz
F _{PLL_IN}	PLL input clock duty cycle1		40		60	%
F _{PLL_OUT}	PLL multiplier output clock		30		75¹	MHz
F _{VCO}	VCO output clock		60		150	MHz
t_{LOCK1}	PLL lock time				200	us

Note 1: The frequency multiplier must be selected to meet the PLL output frequency range.

4.3.8 Time to wake up from low power mode

Table 4-18 Low-power mode wake-up time

Symbol	Parameter	Condition	Typical value	Unit
t _{wusleep}	Wake up from sleep mode	Wake up using HSI RC clock	6.84	us
	Wake up from stop mode (voltage regulator is in run mode)	Wake on HSI RC clock	261	us
$t_{ m wustop}$	Wake up from stop mode (voltage regulator is in low power mode)	Voltage regulator wake-up time from low power mode + HSI RC clock wake up + flash start	261	us
twustdby	Wake up from standby mode	Voltage regulator wake-up time from low power mode + HSI RC clock wake up + flash start	440	us

4.3.9 Memory characteristics

Table 4-19 Flash characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
t_{prog}	16-bit programming time	$T_A = -40$ °C \sim 85°C		2		ms

t _{prog_page}	Page (256 bytes) programming time	$T_A = -40$ °C \sim 85°C		2		ms
t_{erase_page}	Page (256 bytes) erasing time	$T_A = -40$ °C \sim 85°C		16		ms
t_{erase_sec}	Sector (4K bytes) erasing time	$T_A = -40$ °C \sim 85°C		16		ms
V_{prog}	Programming voltage		2.7		3.6	V

Table 4-20 Flash life and data retention period

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
N_{END}	Number of erasing and writing	$T_A = 25$ °C	10K	80K ¹		次
t_{RET}	Data retention period		20			年

Note: The actual measurement of the number of erasing and writing operations non-guaranteed.

4.3.10 I/O Port characteristics

Table 4-21 General I/O static characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
	Standard I/O pin, input high level		0.41*(V _{DD} -		V _{DD} +0.3	V
$V_{ m IH}$	voltage		1.8)+1.3			
	FT IO pin, input high level voltage	$V_{DD} > 2V$	$0.42*(V_{DD}-$		5.5	V
	Trie pin, input ingli iever veituge	$V_{DD} \leq 2V$	1.8)+1		5.2	,
	Standard I/O pin, input low-level		0.2		0.28*(V _{DD} -	3.7
* 7	voltage		-0.3		1.8)+0.6	V
V_{IL}			0.2		0.32*(V _{DD} -	T 7
	FT IO pin, input low-level voltage		-0.3		1.8)+0.55	V
1 77	Standard I/O pin Schmitt trigger voltage hysteresis		200			3 7
$V_{ m hys}$	FT IO pin Schmitt trigger voltage hysteresis		5% V _{DD}			mV
		Standard IO			. 1	
$I_{ m lkg}$		port			±1	uA
3	Input leakage current	FT IO port			3	
R_{PU}	Weak pull-up equivalent resistance	•	30	40	55	ΚΩ
R_{PD}	Weak pull-down equivalent resistance		30	40	55	ΚΩ
C_{IO}	I/O pin capacitance			5		pF

Output drive current characteristics

GPIO (General Purpose Input/Output Port) can sink or output up to $\pm 8mA$ current, and sink or output $\pm 20mA$ current (not strictly to $V_{\text{OL}}/V_{\text{OH}}$). In user applications, the total driving current of all IO pins cannot exceed the absolute maximum ratings given in section 4.2:

Table 4-22 Output voltage characteristics

Symbol	Parameter	Condition	Min	Max	Unit
V_{OL}	Output low level,8 pins sink current	TTL port, $I_{IO} = +8mA$		0.4	V
V_{OH}	Output high level,8 pins sink current	$2.7V < V_{DD} < 3.6V$	V _{DD} -0.4		V

V_{OL}	Output low level,8 pins sink current	CMOS port, I _{IO} = +8mA		0.4	V
V_{OH}	Output high level,8 pins sink current	$2.7V < V_{DD} < 3.6V$	2.3		v
V_{OL}	Output low level,8 pins sink current	$I_{IO} = +20 \text{mA}$		1.3	V
V_{OH}	Output high level,8 pins sink current	$2.7V < V_{DD} < 3.6V$	V _{DD} -1.3		v
V_{OL}	Output low level,8 pins sink current	$I_{IO} = +6mA$		0.4	W
V_{OH}	Output high level,8 pins sink current	$2.3V < V_{DD} < 2.7V$	V _{DD} -1.3		ľ

Note: In the above conditions, if multiple IO pins are driven at the same time, the total current cannot exceed the absolute maximum ratings given in Table 3.2. In addition, when multiple IO pins are driven at the same time, the current on the power/ground point is very large, which will cause the voltage drop to make the internal IO voltage not reach the power supply voltage in the table, resulting in the drive current being less than the nominal value.

Table 4-23 Input and output AC characteristics

MODEx[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit
10	F _{max(IO)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		2	MHz
10 (2MHz)	$t_{f(IO)out}$	Output high to low fall time	CI -50°EV -2.7.2.6V		125	ns
	$t_{r(IO)out}$	Output low to high rise time	- CL=50pF,V _{DD} =2.7-3.6V		125	ns
01	F _{max(IO)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		10	MHz
(10MHz)	t _{f(IO)out}	Output high to low fall time	CI -50 EV -2.7.2.6V		25	ns
(TUMHZ)	t _{r(IO)out}	Output low to high rise time	$CL=50pF, V_{DD}=2.7-3.6V$		25	ns
	E	Maximum frequency	CL=30pF,V _{DD} =2.7-3.6V		50	MHz
	F _{max(IO)out} Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		30	MHz	
11	4		CL=30pF,V _{DD} =2.7-3.6V		20	ns
(50MHz)	$t_{f(IO)out}$	Output high to low fall time	CL=50pF,V _{DD} =2.7-3.6V		5	ns
	_	Out 1 4 - 1 4 - 1 4 - 4 4 4	CL=30pF,V _{DD} =2.7-3.6V		8	ns
	$t_{r(IO)out}$	Output low to high rise time	CL=50pF,V _{DD} =2.7-3.6V		12	ns
		The EXTI controller detects				
	t_{EXTIpw}	the pulse width of the		10		ns
		external signal				

4.3.11 NRST pin characteristics

Table 4-24 External reset pin characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
V _{IL(NRST)}	NRST input low-level voltage		-0.3		0.28*(V _{DD} -1.8)+0.6	V
V _{IH(NRST)}	NRST input high level voltage		0.41*(V _{DD} -1.8)+1.3		$V_{DD}+0.3$	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		200			mV
R_{PU}^{1}	Weak pull-up equivalent resistance		30	40	55	ΚΩ
V _{F(NRST)}	NRST input can be filtered pulse width				100	ns
V _{NF(NRST)}	NRST input cannot filter		300			ns

nulse width			
puisc widui			

Note: 1. The pull-up resistor is a real resistor in series with a switchable PMOS implementation. The resistance of this PMOS/NMOS switch is very small (approximately 10%).

Circuit reference design and requirements:

Figure 4-7 Typical circuit of external reset pin

4.3.12 TIM Timer characteristics

Table 4-25 TIMx characteristics

Symbol	Parameter	Condition	Min	Max	Unit
4	Timer reference clock		1		$t_{TIMxCLK}$
t _{res(TIM)}	Timer reference clock	$f_{TIMxCLK} = 72MHz$	13.9		ns
E	Timer external clock frequency of		0	f _{TIMxCLK} /2	MHz
F_{EXT}	CH1 to CH4	$f_{TIMxCLK} = 72MHz$	0	36	MHz
R _{esTIM}	Timer resolution			16	位
4	When the internal clock is selected,		1	65536	$t_{TIMxCLK}$
tcounter	the 16-bit counter clock cycle	$f_{TIMxCLK} = 72MHz$	0.0139	910	us
4	Mayimum nassible count			65535	$t_{TIMxCLK}$
t _{MAX_COUNT}	Maximum possible count	$f_{TIMxCLK} = 72MHz$		59.6	S

4.3.13 I²C Interface characteristics

Figure 4-8 I²C bus timing diagram

Table 4-26 I²C interface characteristics

Symbol Parameter	Parameter	Standa	ard I ² C	Fast I ² C		T Lait
	Parameter	Min	Max	Min	Max	Unit
$t_{w(SCKL)}$	SCL clock low time	4.7		1.2		us
$t_{\mathrm{w(SCKH)}}$	SCL clock high time	4.0		0.6		us

$t_{SU(SDA)}$	SDA data establishment time	250		100		ns
$t_{h(SDA)}$	SDA data retention time	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA and SCL rise time		1000	20		ns
$t_{f(SDA)}\!/t_{f(SCL)}$	SDA and SCL fall time		300			ns
$t_{h(STA)}$	Start condition hold time	4.0		0.6		us
$t_{SU(STA)}$	Repeated start condition establishment time	4.7		0.6		us
t _{SU(STO)}	Stop condition establishment time	4.0		0.6		us
$t_{w({\rm STO:STA})}$	Time from stop condition to start condition (bus free)	4.7		1.2		us
C _b	Capacitive load of each bus		400		400	pF

4.3.14 SPI interface characteristics

Figure 4-9 Timing diagram of SPI master mode

NSS 输入 $t_{h(NSS)}$ $_{\mathsf{t}_{\mathsf{r}(\mathsf{SCK})}}$ $t_{f(SCK)}$ SCK 输入 $t_{\text{su(NSS)}} \\$ CPHA=0 CPOL=0 CPHA=0. CPOL=1 $t_{\mathsf{a}(\mathsf{SO})}$ t_{v(so)} -t_{h(SO)} t_{dis(SO)} MISO 输出 输出最高位 输出6-1位 输出最低位 _ _ _t_{h(SI)}. _ t_{su(SI)} MOSI 输入 输入最高位 输入6-1位 输入最低位

Figure 4-10 Timing diagram of SPI slave mode (CPHA=0)

Table 4-27 SPI interface characteristics

Symbol	Parameter	Condition	Min	Max	Unit
£ /4	SPI clock frequency	Master mode		36	MHz
f_{SCK}/t_{SCK}		Slave mode		36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capacitance:C = 30pF		20	ns
$t_{\rm SU(NSS)}$	NSS establishment time	Slave mode	$2t_{PCLK}$		ns
$t_{h(NSS)}$	NSS hold time	Slave mode	$2t_{PCLK}$		ns
$t_{\rm w(SCKH)}/t_{\rm w(SCKL)}$	SCK high and low time	Master mode, $f_{PCLK} = 36MHz$, Prescaler factor = 4	40	60	ns
$t_{\rm SU(MI)}$	Data input establishment time	Master mode	5		ns
$t_{\mathrm{SU(SI)}}$	Data input establishment time	Slave mode	5		ns

t _{h(MI)}	Data in mut hald time	Master mode	5		ns
$t_{h(SI)}$	Data input hold time	Slave mode	4		ns
$t_{a(SO)}$	Data output access time	Slave mode, $f_{PCLK} = 20MHz$	0	1t _{PCLK}	ns
$t_{\rm dis(SO)}$	Data output inhibit time	Slave mode	0	10	ns
$t_{V(SO)}$		Slave mode (After enabling edge)		25	ns
t _{V(MO)}	Data output valid time	Master mode (After enabling edge)		5	ns
$t_{h(SO)}$		Slave mode (After enabling edge)	15		ns
$t_{h(MO)}$	Data output hold time	Master mode (After enabling edge)	0		ns

4.3.15 I2S interface features

Figure 4-12 Timing diagram of I²S bus master mode (Philips protocol)

Figure 4-13 Timing diagram of I²S bus slave mode (Philips protocol)

Table 4-28 I²S interface characteristics

Symbol	Parameter	Condition	Min	Max	Unit		
£ /4	T2C -1 -1 - f	Master mode		8	MHz		
f_{CK}/t_{CK}	I ² S clock frequency	Slave mode		8	MHz		
$t_{r(CK)}/t_{f(CK)}$	I ² S clock rise and fall time	Load capacitance: C = 30pF		20	ns		
t _{V(WS)}	WS effective time	Master mode		5	ns		
t _{SU(WS)}	WS establishment time	Slave mode	10		ns		
_	WC 1-114	Master mode	2t _{PCLK}		ns		
$t_{h(WS)}$	WS hold time	Slave mode	2t _{PCLK}		ns		
4 /4	SCK high and low time	Master mode, $f_{PCLK} = 36MHz$,	40	, 40	40	60	***
$t_{w(CKH)}/t_{w(CKL)}$		Prescaler factor =4		60	ns		
t _{SU(SD_MR)}	D-4- in	Master mode	5		ns		
$t_{SU(SD_SR)}$	Data input establishment time	Slave mode	5		ns		
t _{h(SD_MR)}	D. () (1.11/)	Master mode	5		ns		
$t_{h(SD_SR)}$	Data input hold time	Slave mode	4		ns		
		Master mode (After enabling		5			
$t_{h(SD_MT)}$	Data output hold time	edge)		5	ns		
t _{h(SD_ST)}		Slave mode (After enabling edge)		5	ns		
		Master mode (After enabling		_			
$t_{V(SD_MT)}$	Data output valid time	edge))		5	ns		
$t_{v(\mathrm{SD_ST})}$		Slave mode (After enabling edge)		4	ns		

4.3.16 USB interface characteristics

Table 4-29 USB module characteristics

Symbol	Parameter	Condition	Min	Max	Unit
V_{DD}	USB operating voltage		3.0	3.6	V
$ m V_{SE}$	Single-ended receiver threshold	$V_{DD} = 3.3V$	1.2	1.9	V
$ m V_{OL}$	Static output low level			0.3	V
V_{OH}	Static output high level		2.8	3.6	V
$V_{ ext{HSSQ}}$	High-speed suppression information detection threshold		100	150	mV
V _{HSDSC}	High-speed disconnection detection threshold		500	625	mV
V _{HSOI}	High-speed idle level		-10	10	mV
V _{HSOH}	High-speed data high level		360	440	mV
V _{HSOL}	High-speed data low level		-10	10	mV

4.3.17 SD/MMC Interface characteristics

Figure 4-14 Timing diagram of SD high-speed mode

Figure 4-15 Timing diagram of SD default mode

Table 4-30 SD/MMC interface characteristics

Symbol	Parameter	Condition	Min	Max	Unit	
f _{CK} /t _{CK}	Clock frequency in data transfer mode	CL≤30pF	0	48	MHz	
tw(ckl)	Clock low time	CL≤30pF	6			
t _{W(CKH)}	Clock high time	CL≤30pF	6			
t _{r(CK)}	Rise Time	CL≤30pF		4	ns	
t _{f(CK)}	Fall time	CL≤30pF		4		
CMD/DAT In	put (refer to CK)					
$t_{ m ISU}$	Enter the build time	CL≤30pF	7			
$t_{ m IH}$	Enter hold time	CL≤30pF		3	ns	
CMD/DAT ou	itput in MMC and SD high-speed	mode (refer to CK)				
$t_{\rm OV}$	Output valid time	CL≤30pF		5		
$t_{ m OH}$	Output hold time	CL≤30pF	4		ns	
CMD/DAT output in SD default mode (refer to CK)						
$t_{ m OVD}$	Output valid default time	CL≤30pF		8	na	
t _{OHD}	Output hold default time	CL≤30pF	6		ns	

4.3.18 FSMC characteristic

Figure 4-16 Asynchronous bus multiplexing PSRAM/NOR read operation waveform

Table 4-31 PSRAM/NOR read operation timing of asynchronous bus multiplexing

Symbol	Parameter	Min	Max	Unit
tw(NE)	FSMC_NE low time	$7t_{HCLK}$		
tv(NOE_NE)	FSMC_NE as low as FSMC_NOE as low	0		
tw(NOE)	FSMC_NOE low time	$7t_{HCLK}$		
$t_{h(NE_NOE)}$	FSMC_NOE up to FSMC_NE high hold time	0		
$t_{V(A_NE)}$	FSMC_NE as low as FSMC_A valid	0	5	
$t_{V(NADV_NE)}$	FSMC_NE as low as FSMC_NADV	0	5	
t _{W(NADV)}	FSMC_NADV low time	t_{HCLK}		
$t_{h(AD_NADV)}$	FSMC_AD (address) valid hold time after FSMC_NADV is high	$2t_{HCLK}$		ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0		
$t_{h(BL_NOE)}$	FSMC_BL hold time after FSMC_NOE is high	0		
$t_{V(BL_NE)}$	FSMC_NE as low as FSMC_BL valid	0	5	
t _{SU(DATA_NE)}	Settling time from data to FSMC_NE high	$3t_{HCLK}$		
tsu(data_noe)	Data to FSMC_NOE high establishment time	3t _{HCLK}		
$t_{h(DATA_NE)}$	Data retention time after FSMC_NE is high	0		
t _{h(DATA_NOE)}	Data retention time after FSMC_NOE is high	0		

Figure 4-17 Asynchronous bus multiplexing PARAM/NOR write operation waveform

Table 4-32 PARAM/NOR write operation timing of asynchronous bus multiplexing

Symbol	Parameter	Min	Max	Unit
t _{W(NE)}	FSMC_NE low time	5t _{HCLK}		
$t_{V(NEW_NE)}$	FSMC_NE low to FSMC_NWE low	3t _{HCLK}		
$t_{W(NWE)}$	FSMC_NWE low time	2t _{HCLK}		
$t_{h(NE_NWE)}$	FSMC_NWE up to FSMC_NE high hold time	t _{HCLK}		
$t_{V(A_NE)}$	FSMC_NE as low as FSMC_A valid	0	5	
$t_{V(NADV_NE)}$	FSMC_NE as low as FSMC_NADV	0	5	
$t_{W(NADV)}$	FSMC_NADV low time	t _{HCLK}		ns
$t_{h(AD_NADV)}$	FSMC_AD (address) valid hold time after FSMC_NADV is high	2t _{HCLK}		
$t_{h(A_NWE)}$	Address hold time after FSMC_NWE high	t _{HCLK}		
$t_{V(BL_NE)}$	FSMC_NE as low as FSMC_BL valid	0	5	
$t_{h(\mathrm{BL_NWE})}$	FSMC_BL hold time after FSMC_NWE is high	t _{HCLK}		
tv(data_nadv)	FSMC_NADV up to data hold time	2t _{HCLK}		
th(DATA_NWE)	Data retention time after FSMC_NWE high	t _{HCLK}		

Figure 4-18 Synchronous bus multiplexing NOR/PARAM read waveform

Table 4-33 Synchronous bus multiplexing NOR/PSRAM read timing

Symbol	Parameter	Min	Max	Unit
tw(CLK)	FSMC_CLK period	2t _{HCLK}		
$t_{d(CLKL_NEL)}$	FSMC_CLK as low as FSMC_NE	0	5	
t _{d(CLKH_NEH)}	FSMC_CLK is as high as FSMC_NE	0.5t _{HCLK}	0.5t _{HCLK}	
$t_{d(CLKL_NADVL)}$	FSMC_CLK as low as FSMC_NADV as low	0	5	
t _{d(CLKL_NADVH)}	FSMC_CLK as low as FSMC_NADV as high	0	5	
$t_{d(\mathrm{CLKL_AV})}$	FSMC_CLK is as low as FSMC_Ax valid (x = 1623)	0	5	
$t_{d(\mathrm{CLKH_AIV})}$	FSMC_CLK as high as FSMC_Ax is invalid (x = 1623)	0	5	
t _{d(CLKL_NOEL)}	FSMC_CLK as low as FSMC_NOE	2t _{HCLK}		ns
$t_{d(\mathrm{CLKH_NOEH})}$	FSMC_CLK as high as FSMC_NOE	t_{HCLK}		
$t_{d(\mathrm{CLKL_ADV})}$	FSMC_CLK as low as FSMC_AD[15:0] is valid	0	5	
$t_{d(\mathrm{CLKL_ADIV})}$	FSMC_CLK as low as FSMC_AD[15:0] is invalid	0	5	
$t_{\rm SU(ADV_CLKH)}$	FSMC_AD[15:0] valid data before FSMC_CLK is high	8		
t _{h(CLKH_ADV)}	FSMC_AD[15:0] valid data after FSMC_CLK is high	8		
t _{SU(NWAITV_CLKH)}	FSMC_NWAIT is valid before FSMC_CLK is high	6		
t _{h(CLKH_NWAITV)}	FSMC_NWAIT is valid after FSMC_CLK is high	2		

Figure 4-19 Synchronous bus multiplexing PSRAM write waveform

Table 4-34 Synchronous bus multiplexing PSRAM write timing

Symbol	Parameter	Min	Max	Unit
$t_{W(CLK)}$	FSMC_CLK period	$2t_{HCLK}$		
$t_{d(CLKL_NEL)}$	FSMC_CLK as low as FSMC_NE	0	5	
$t_{d(CLKH_NEH)}$	FSMC_CLK is as high as FSMC_NE	0.5t _{HCLK}	$0.5t_{HCLK}$	
$t_{d(CLKL_NADVL)}$	FSMC_CLK as low as FSMC_NADV as low	0	5	
$t_{d(CLKL_NADVH)}$	FSMC_CLK as low as FSMC_NADV as high	0	5	
$t_{d(CLKL_AV)}$	FSMC_CLK is as low as FSMC_Ax valid (x = 1623)	0	5	
$t_{d(CLKH_AIV)}$	FSMC_CLK as high as FSMC_Ax is invalid (x = 1623)	0	5	
$t_{d(CLKL_NWEL)}$	FSMC_CLK as low as FSMC_NWE	0		ns
t _{d(CLKH_NWEH)}	FSMC_CLK is as high as FSMC_NWE	0		
$t_{d(CLKL_ADV)}$	FSMC_CLK as low as FSMC_AD[15:0] is valid	0	5	
$t_{d(CLKL_ADIV)}$	FSMC_CLK as low as FSMC_AD[15:0] is invalid	0	5	
$t_{d(CLKL_DATA)}$	FSMC_AD[15:0] is valid after FSMC_CLK is low	2		
t _{SU(NWAITV_CLKH)}	FSMC_NWAIT is valid before FSMC_CLK is high	6		
th(CLKH_NWAITV)	FSMC_NWAIT is valid after FSMC_CLK is high	2		
t _{d(CLKL_NBLH)}	FSMC_CLK low to FSMC_NBL high	2		

NAND controller waveform and timing

Test conditions: NAND operation area, 16-bit data width is selected, ECC calculation circuit is enabled, 512-byte page size, other timing configurations are setting registers FSMC_PCR2=0x0002005E, FSMC PMEM2=0x01020301, FSMC PATT2=0x01020301.

Figure 4-20 NAND controller read operation waveform

Figure 4-21 NAND controller write operation waveform

Figure 4-22 Read operation waveform of NAND controller in general storage space

Figure 4-23 Write operation waveform of NAND controller in general storage space

Table 4-35 Timing characteristics of NAND Flash read and write cycles

Symbol	Parameter	Min	Max	Unit
$t_{d(D\text{-}NWE)}$	Before FSMC_NWE high to FSMC_D[15:0] data is valid	4t _{HCLK}		
$t_{w(NOE)}$	FSMC_NOE low time	4t _{HCLK}		
$t_{su(D\text{-NOE})}$	Before FSMC_NOE is high until FSMC_D[15:0] data is valid	20		
$t_{h(\text{NOE-D})}$	After FSMC_NOE is high, the data is valid until FSMC_D[15:0]	15		
t _{w(NWE)}	FSMC_NWE low time	4t _{HCLK}		
t _{v(NWE-D)}	FSMC_NWE as low as FSMC_D[15:0] data is valid	0		ns
t _{h(NWE-D)}	FSMC_NWE is as high as FSMC_D[15:0] The data is invalid	2t _{HCLK}		
t _{d(ALE-NWE)}	Before FSMC_NWE is low until FSMC_ALE is valid	2t _{HCLK}		
t _{h(NWE-ALE)}	FSMC_NWE as high as FSMC_ALE is invalid	2t _{HCLK}		
t _{d(ALE-NOE)}	Before FSMC_NOE is low until FSMC_ALE is valid	2t _{HCLK}		
t _{h(NOE-ALE)}	FSMC_NOE as high as FSMC_ALE is invalid	4t _{HCLK}		

4.3.19 DVP Interface characteristics

Figure 4-24 DVP timing waveform

Table 4-36 DVP interface characteristics

Symbol	Parameter	Min	Max	Unit	l
--------	-----------	-----	-----	------	---

f_{PixCLK}/t_{PixCLK}	Pixel clock input frequency		144	MHz
DuCy _(PixCLK)	Pixel clock duty cycle	15		%
$t_{su(DATA)}$	Data establishment time	2		
$t_{h(DATA)}$	Data retention time	1		
$t_{su(HSYNC)}\!/t_{su(VSYNC)}$	HSYNC/VSYNC signal input setup time	2		ns
$t_{h(HSYNC)}/t_{h(VSYNC)}$	HSYNC/VSYNC signal input hold time	1		

4.3.20 Gigabit Ethernet interface features

Figure 4-25 ETH-SMI timing waveform

Table 4-37 SMI signal characteristics of Ethernet MAC

Symbol	Parameter	Min	Max	Unit	Symbol
f_{MDC}/t_{MDC}	MDC clock frequency			12	MHz
$t_{d(\mathrm{MDIO})}$	MDIO write data valid time	0		300	
$t_{\rm su(MDIO)}$	Read data establishment time	10			ns
$t_{h(\mathrm{MDIO})}$	Read data retention time	10			

Figure 4-26 ETH-RMII signal timing waveform

Table 4-38 RMII signal characteristics of Ethernet MAC

		3 51			
Symbol	Parameter	Min	May	Unit	Symbol
Symbol	1 drameter	141111	IVIAA	Cint	Symbol

$t_{\rm su(RXD)}$	Setup time of received data	4			
$t_{ih(RXD)}$	Hold time of received data	2			
$t_{su(CRS_DV)}$	Carrier detect signal establishment time	4			
tih(CRS_DV)	Carrier detect signal hold time	2			ns
$t_{d(TXEN)}$	Transmission enable effective delay time	11	13	16	
t _{d(TXD)}	Data transmission effective delay time	11	13	16	

Figure 4-27 ETH-MII signal timing waveform

Table 4-39 MII signal characteristics of Ethernet MAC

Symbol	Parameter	Min	Max	Unit	Symbol
$t_{su(RXD)}$	Setup time of received data	10			
$t_{ih(RXD)}$	Hold time of received data	10			
$t_{su(DV)}$	Data valid signal establishment time	10			
$t_{ih(\mathrm{DV})}$	Data valid signal hold time	10			
$t_{su(ER)}$	Error signal establishment time	10			ns
$t_{ih(ER)}$	Error signal hold time	10			
$t_{d(TXEN)}$	Transmission enable effective delay time	11	13	16	
$t_{d(TXD)}$	Data transmission effective delay time	11	13	16	

Figure 4-28 ETH-RGMII signal timing waveform

Table 4-40 RGMII signal characteristics of Ethernet MAC

Symbol	Parameter and description		Typical value	Max	Unit
f_{TXC}/t_{TXC}	TXC/RXC clock frequency	7.2	8	8.8	
t_{R}	TXC/RXC rise time			2.0	
$t_{ m F}$	TXC/RXC fall time			2.0	
$t_{su(TDATA)}$	Time to send data establishment	1.2	2.0		ns
$t_{h(TDATA)}$	Send data hold time 1.2 2.0		2.0		
$t_{su(RDATA)}$	Input data creation time	1.2	2.0		
t _{h(RDATA)}	Input data retention time	1.2	2.0		

4.3.21 12- bit ADC characteristics

Table 4-41 ADC characteristics

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
V_{DDA}	Supply voltage		2.4		3.6	V
V _{REF+}	Positive reference voltage		2.4		V_{DDA}	V
I_{VREF}				160	220	uA
I_{DDA}				480	530	uA
f_{ADC}	ADC clock frequency				14	MHz
f_S	Sampling rate		0.05		1	MHz
£	External trice on free extensive	$f_{ADC} = 14MHz$			875	KHz
$ m f_{TRIG}$	External trigger frequency				16	$1/f_{ADC}$
V _{AIN}	Conversion voltage range		0		V_{REF^+}	V
R _{AIN}	External input impedance				50	ΚΩ
R _{ADC}	Sampling switch resistance			0.6	1	ΚΩ
C_{ADC}	Internal sample and hold			8		pF

	capacitor				
4	Calibration time	$f_{ADC} = 14MHz$		0.143	us
t_{CAL}	Canoration time				$1/f_{ADC}$
t -	Injection trigger conversion delay	$f_{ADC} = 14MHz$			us
t_{Iat}	injection trigger conversion delay			2	$1/f_{ADC}$
4	Conventional trigger conversion	$f_{ADC} = 14MHz$		0.143	us
t_{Iatr}	delay			2	$1/f_{ADC}$
4	Sampling time	$f_{ADC} = 14MHz$	0.107	17.1	us
t_{s}			1.5	239.5	$1/f_{ADC}$
t_{STAB}	Power-on time			1	us
$t_{\rm CONV}$	Total conversion time (including	$f_{ADC} = 14MHz$	1	18	us
	sampling time)		14	252	1/f _{ADC}

Formula: Maximum R_{AIN}

$$R_{AIN} < \frac{Ts}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

The above formula is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N=12 (representing 12-bit resolution).

Table 4-42 Maximum RAIN when fADC = 14MHz

T _S (cycle)	t _s (us)	Max R _{AIN} (KΩ)					
1.5	0.11	0.4					
7.5	0.54	5.9					
13.5	0.96	11.4					
28.5	2.04	25.2					
41.5	2.96	37.2					
55.5	3.96	50					
71.5	5.11	Invalid					
239.5	17.1	Invalid					

Table 4-43 ADC error

Symbol	Parameter	Condition	Min	Typical value	Max	Unit
ЕО	Offset error	$f_{PCLK2} = 56 \text{ MHz},$		±2		
ED	Differential nonlinearity error	$f_{ADC} = 14 \text{ MHz},$ $R_{AIN} < 10 \text{ k}\Omega,$		±0.5	±3	LSB
EL	Integral nonlinearity error	$V_{DDA} = 3.3V$		±1	±4	

 C_p represents the parasitic capacitance on the PCB and the pad (about 5pF), which may be related to the quality of the pad and PCB layout. A larger C_p value will reduce the conversion accuracy, the solution is to reduce the f_{ADC} value.

Figure 4-29 ADC typical connection diagram

Figure 4-30 Analog power supply and decoupling circuit reference

4.3.22 Temperature sensor characteristics

Table 4-44 Temperature sensor characteristics

Symbol	Parameters	Condition	Min	Typical value	Max	Unit
Avg_Slope	Average slope			4.3		mV/°C
V_{25}	Voltage at 25°C		1.34	1.43	1.52	V
T_{S_temp}	When reading temperature, ADC sampling time	$f_{ADC} = 14MHz$			17.1	us

4.3.23 DAC characteristics

Table 4-45 DAC characteristics

Symbol	Parameters Condition		Min	Typical value	Max	Unit
V_{DDA}	Supply voltage		2.4	3.3	3.6	V
$V_{ m REF^+}$	Positive reference voltage	2.4	3.3	3.6	V	
$R_{\rm L}$	Load resistance when the buffer is open	5			kΩ	
C_{L}	Load capacitance when the buffer is turned on				50	pF
V _{OUT_MIN}	When the buffer is turned on, the		3			mV
V _{OUT_MAX}	12-bit DAC converts				V _{REF+} -0.01	V
V _{OUT_MIN}	12-bit DAC conversion when the			0		mV
V _{OUT_MAX}	buffer is off				V _{REF+} -0.02	V
т	No load			60		
$\mathbf{I}_{\mathrm{VREF}^+}$	I _{VREF+} No load, when V _{REF+} =3.6V, the input value is 0xF1C			202		uA
т	No load, input value 0x800			211		
I_{DDA}	No load, when V _{REF+} =3.6V, the inp	out value is 0xF1C		193		uA

DNL	Differential nonlinearity error			±1		LSB
INL	ntegral nonlinearity error			±4		LSB
	Offset error (the difference			±8		mV
Offset	between the value measured at code $0x800$ and the ideal value $V_{\text{REF+}}/2$ deviation)			±10		LSB
Gain error		DAC is configured as 12 bits		±0.1		%
Amplifier gain	Amplifier gain in open loop	5kΩ load (max)	80	85		dB
t _{SETTLING}	The gain setting time of the amplifier in open loop (full range: 10-bit input code changes from minimum to maximum, DAC_OUT reaches ±1 LSB of its final value)	C _{LOAD} ≤50pF R _{LOAD} ≥5kΩ				us
更新速率	When the input code has a small change (from the value i to i+1LSB), the maximum frequency of the correct DAC_OUT is obtained	C _{LOAD} ≤50pF R _{LOAD} ≥5kΩ				MS/s
twakeup	Time to wake up from off state(PDV18 changes from 1 to 0)	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ, the input code is between the minimum and maximum possible values				us
PSRR+	Power supply rejection ratio (relative to VDDA) (static DC measurement)	No R _{LOAD} , C _{LOAD} ≤50pF		-100	-75	dB

Chapter 5 Package and Ordering Information

Chip package

Package	Body width	Pin pitch		Package description	Order model
LQFP48	7*7mm	0.5mm	19.7mil	LQFP48 (7*7) patch	CH32V203C6T6
LQFP32	7*7mm	0.5mm	19.7mil	LQFP48 (7*7) patch	CH32V203K8T6
LQFP48	7*7mm	0.5mm	19.7mil	LQFP48 (7*7) patch	CH32V203C8T6
QFN48X7	7*7mm	0.5mm	19.7mil	Square without lead 48-pin	CH32V203C8U6
LQFP48	7*7mm	0.5mm	19.7mil	LQFP48 (7*7) patch	CH32V303CBT6
LQFP64M	10*10mm	0.5mm	19.7mil	LQFP64M (10*10) patch	CH32V303RBT6
LQFP64M	10*10mm	0.5mm	19.7mil	LQFP64M (10*10) patch	CH32V303RCT6
LQFP100	14*14mm	0.5mm	19.7mil	LQFP100 (14*14) patch	CH32V303VCT6
LQFP64M	10*10mm	0.5mm	19.7mil	LQFP64M (10*10) patch	CH32V305RBT6
LQFP64M	10*10mm	0.5mm	19.7mil	LQFP64M (10*10) patch	CH32V307RCT6
LQFP100	14*14mm	0.5mm	19.7mil	LQFP100 (14*14) patch	CH32V307VCT6
QFN48X5	5*5mm	0.35mm	13.8mil	Square without lead 48-pin	CH32V208CBU6
LQFP64M	10*10mm	0.5mm	19.7mil	LQFP64M (10*10) patch	CH32V208RBT6
QFN68X8	8*8mm	0.4mm	15.75mil	Square without lead 68-pin	CH32V208WBU6

Note: The unit of dimensioning is mm (millimeters), the pin center spacing is always the nominal value, there is no error, and the other dimension error is not more than ± 0.4 mm or 15%.

Figure 5-1 QFN48X5 package

Figure 5-2 QFN48X7 package

Figure 5-3 QFN68X8 package

Figure 5-4 LQFP32 package

Figure 5-5 LQFP48 package

Figure 5-6 LQFP64M package

Figure 5-7 LQFP100 package

Series Naming Rules

- $5 = \text{Commercial-grade}, 0^{\circ}\text{C}-70^{\circ}\text{C}$
- 6 = Industrial-grade, -40°C-85°C
- $3 = \text{Automotive-grade}, -40^{\circ}\text{C}-125^{\circ}\text{C}$
- $0 = \text{Wide-temperature-grade}, -55^{\circ}\text{C}-125^{\circ}\text{C}$