Assay for Transposase-Accessible Chromatin – sequencing (ATAC-seq)

Epigenomics Data Analysis Workshop

Stockholm, 25 October 2021

Agata Smialowska
NBIS, SciLifeLab, Stockholm University

Functional genomics techniques to probe chromatin states

Functional genomics techniques to identify open chromatin regions

Assay for Transposase-Accessible Chromatin (ATAC)-seq

The method published recently in bulk (Buenrostro et al., 2015) and single cell (Buenrostro et al., 2015)

Current Protocols in Molecular Biology / Volume 109, Issue 1

UNIT

ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide

Jason D. Buenrostro, Beijing Wu, Howard Y. Chang, William J. Greenleaf

First published: 05 January 2015

https://doi.org/10.1002/0471142727.mb2129s109

Citations: 696

- It probes access to chromatin by using Tn5
 transposase to insert sequencing adapters into DNA
 which allows simultaneous fragmentation of
 chromatin and integration of those adapters into
 open chromatin regions
- Significantly fewer cells needed (~ 50,000 cells for ATAC-Seq compared to millions of cells for the other methods (DNase-Seq or FAIRE-Seq)
- Two step process, one day of work

Published: 17 June 2015

Single-cell chromatin accessibility reveals principles of regulatory variation

Jason D. Buenrostro, Beijing Wu, Ulrike M. Litzenburger, Dave Ruff, Michael L. Gonzales, Michael P. Snyder, Howard Y. Chang ☑ & William J. Greenleaf ☑

Nature 523, 486-490(2015) | Cite this article

21k Accesses | 600 Citations | 100 Altmetric | Metrics

Functional genomics techniques to probe chromatin states

Analysis workflow

Special considerations for ATAC-seq data analysis

- Paired end (PE) sequencing is recommended
- QC: fragment length distribution mononucleosome peak should be evident
- QC: fraction of Mt reads it can be high (up to 40%) calculate sequencing depth accordingly
- For current <u>data quality standards</u>, refer to ENCODE; currently 25 million non-duplicate, non-mitochondrial aligned read pairs (i.e. 50M PE reads); non-redundant fraction >0.9; fraction of reads in called peak regions (FRiP) >0.3; TSS enrichment observed

Peak calling

- Genrich peak caller dedicated to ATAC-seq data (has an ATAC-seq mode); PE data only
- MACS2 can be used BUT some adjustments are required to center fragments on the Tn5 insertion sites

Special considerations for ATAC-seq differential accessibility analysis: effect of normalisation

Methodology Open Access | Published: 22 April 2020

ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation

Jake J. Reske, Mike R. Wilson & Ronald L. Chandler □

Epigenetics & Chromatin 13, Article number: 22 (2020) | Cite this article

doi: https://doi.org/10.1186/s13072-020-00342-y

Normalization benchmark of ATAC-seq datasets shows the importance of accounting for GC-content effects

- © Koen Van den Berge, Hsin-Jung Chou, © Hector Roux de Bézieux, © Kelly Street, © Davide Risso,
- 🔟 John Ngai, 🔟 Sandrine Dudoit

doi: https://doi.org/10.1101/2021.01.26.428252

This article is a preprint and has not been certified by peer review [what does this mean?].

- GC-content effects are omnipresent in ATAC-seg datasets;
- Since the GC-content effects are sample-specific, they can bias downstream analyses such as clustering and differential accessibility analysis;
- We introduce a GC aware normalization method:
- Our work clearly shows that accounting for GC-content effects in the normalization is crucial for common downstream ATAC-seq data analyses.

 doi: https://doi.org/10.1101/2021.01.26.428252

Special considerations for ATAC-seq differential accessibility analysis: effect of normalisation

Differential accessibility log-fold change in bins by GC content

A bias for peaks with low and high GC-content (in a null setting, LFC should be centered around zero)

GC aware normalisation

Resources

R/Bioconductor workflows

- https://seandavi.github.io/AtacSeqWorkshop/articles/Workflow.html
- https://rockefelleruniversity.github.io/RU ATAC Workshop.html
- https://github.com/databio/awesome-atac-analysis

Galaxy workflows

https://training.galaxyproject.org/training-material/

Biocondutor packages

- ATACseqQC
- esATAC
- ALPS