Nikki Jackson-Hebson

GEOG 574: Lab 4 - Data Retrieval and Manipulation Using SQL

Section 2.1 Simple Selection

- SELECT * FROM COUNTRY WHERE REGION LIKE 'Ocean%'
- 2. SELECT * FROM COUNTRY WHERE AREA = '0'
- SELECT DISTINCT region FROM country;
- SELECT name, population FROM country WHERE population > '10000000'
- SELECT name, region, population FROM country WHERE population > 10000000 AND region LIKE ('%Asia%') OR region LIKE ('%Europe%') AND population > 10000000

SELECT name, region, population FROM country WHERE REGION IN ('Asia', 'Europe') AND population > 10000000

Section 2.2 Summarization and Aggregation

- SELECT name, area
 FROM country
 WHERE area BETWEEN 500000 AND 1000000
- 21 countries returned from SQL query above.
- SELECT region, count(name), sum(area), avg(area)
 FROM country
 GROUP BY region

```
3. SELECT region, count(*)
   FROM country
   WHERE population > 10000000
   GROUP BY region
   HAVING count(*) >= 5
4. SELECT name, population, area, gdp, population/area AS population
   FROM country
   WHERE area != 0
   ORDER by gdp
5. SELECT region, avg(population) as pop_AVG, avg(gdp) as gdp_AVG, avg(area) as area_AVG,
   avg(population)/avg(area) as avg_popdensity
   FROM country
   WHERE POPULATION > 10000000
   GROUP by region
   ORDER by gdp_avg DESC
Section 2.3 Nested Queries
1. SELECT name, gdp
   FROM country
   WHERE gdp > (
       SELECT sum(gdp)
       FROM country
       WHERE region = 'Africa');
2. SELECT region, SUM(gdp) AS gdp_sum
   FROM country
   GROUP BY REGION
   HAVING SUM(gdp) >= ALL (SELECT SUM(gdp)
                           FROM country
                           GROUP BY REGION);
3. SELECT name
   FROM country
   WHERE population >
   SELECT MAX(population)
   FROM country
   WHERE region = 'North America'
   ) AND region LIKE '%Asia%'
```

```
1. SELECT *
   FROM country
   WHERE area != 0 AND gdp = 0 AND population = 0
   DELETE FROM country
   WHERE area != 0 AND gdp = 0 AND population = 0
2. SELECT region
   FROM country
   WHERE name = 'Mauritius'
   UPDATE country
   SET region = 'Africa'
   WHERE name = 'Mauritius'
3. SELECT gdp
   FROM country
   WHERE name = 'United States'
   UPDATE country
   SET gdp = gdp * POWER(1.05,24)
   WHERE name = 'United States'
4. UPDATE country
   SET population = population + (SELECT population FROM country
                               WHERE name = 'Hong Kong'),
          area = area + (SELECT area FROM country
                        WHERE name = 'Hong Kong'),
           gdp = gdp + (SELECT gdp FROM country
                      WHERE name = 'Hong Kong')
   WHERE name = 'China'
   DELETE from country
   WHERE name = 'Hong Kong'
```

```
5. INSERT INTO country VALUES
       'Korea',
               'Asia',
       (SELECT SUM(area) FROM country
                          WHERE name = 'Korea, North' OR name = 'Korea, South'),
       (SELECT SUM(population) FROM country
                          WHERE name = 'Korea, North' OR name = 'Korea, South'),
       (SELECT SUM(gdp) FROM country
                          WHERE name = 'Korea, North' OR name = 'Korea, South')
       )
       DELETE from country
       WHERE name = 'Korea, South' OR name = 'Korea, North'
2.5 Overall Practice
1. CREATE TABLE Planet
     (Name varchar(10),
     NumMoons int,
     Type varchar(5),
     LengthOfYear decimal(5,2),
     primary key (Name)
     );
   INSERT INTO Planet VALUES ('Mercury',0,'Rocky',0.24);
   INSERT INTO Planet VALUES ('Venus', 0, 'Rocky', 0.62);
   INSERT INTO Planet VALUES ('Earth',1,'Rocky',1);
   INSERT INTO Planet VALUES ('Mars',2,'Rocky',1.88);
   INSERT INTO Planet VALUES ('Jupiter',16,'Gas',11.86);
   INSERT INTO Planet VALUES ('Saturn', 18, 'Gas', 29.46);
   INSERT INTO Planet VALUES ('Pluto',1,'Rocky',247.7);
   COMMIT;
2. CREATE TABLE Sensor
    (name varchar(10),
    year int,
    dest varchar(10),
    primary key (name)
    );
   INSERT INTO Sensor VALUES ('Pioneer 5',1960,'sun');
```

```
INSERT INTO Sensor VALUES ('Mariner 10',1974,'Mercury'); INSERT INTO Sensor VALUES ('Messenger',2008,'Mercury'); INSERT INTO Sensor VALUES ('Zond',1964,'Venus'); INSERT INTO Sensor VALUES ('Viking',1976,'Mars'); INSERT INTO Sensor VALUES ('Cassini',2000,'Jupiter'); INSERT INTO Sensor VALUES ('Galileo',1995,'Jupiter'); COMMIT;
```

3. Result for Planet: Table name of Planet is a table of 7 planet names, number of moons per planet, type of planet, and length of year for each planet.

Result for Sensor: Table name of Sensor is a table of 7 sensor names, the year the sensor was deployed, and the destination planet of the sensor.

4. SELECT name

FROM Planet

5. SELECT sum(nummoons)

FROM Planet

6. SELECT name

FROM Sensor

WHERE dest = 'Mars'

7. SELECT E.name

FROM Sensor E LEFT OUTER JOIN Planet D

ON E.dest = D.name

WHERE nummoons > 0

8. SELECT E.name

FROM Sensor E LEFT OUTER JOIN Planet D

ON E.dest = D.name

WHERE TYPE = 'Rocky'

9. SELECT e.name

FROM Sensor E LEFT OUTER JOIN Planet D

ON E.dest = D.name

WHERE d.lengthofyear = (SELECT

MIN(d.lengthofyear)

FROM Planet D)

10. SELECT name

FROM planet

WHERE lengthofyear = (SELECT MAX(lengthofyear)

FROM planet)

11. SELECT name

FROM Planet

WHERE type = 'Gas'

12. SELECT name

FROM Planet

WHERE nummoons >= 1

13. SELECT E.name, D.name

FROM Sensor E LEFT OUTER JOIN Planet D

ON E.dest = D.name