Conduction: Theory of Extended Surfaces

Why extended surface?

$$q = hA(T_s - T_{\infty})$$

Increasing h

Increasing A

Fins as extended surfaces

A **fin** is a thin component or appendage attached to a larger body or structure

In the context of heat transfer also, these are components protruding out of a heated (or cold) surface

What happens in a fin?

An extended surface (combined conduction-convection system) is a solid within which heat transfer by conduction is assumed to be one dimensional, while heat is also transferred by convection (and/or radiation) from the surface in a direction transverse to that of conduction.

What happens in a fin?

An extended surface (combined conduction-convection system) is a solid within which heat transfer by conduction is assumed to be one dimensional, while heat is also transferred by convection (and/or radiation) from the surface in a direction transverse to that of conduction.

Examples of Fins

Question time

- Heat is transferred from hot water flowing inside a tube to cooling air flowing over the tube. To enhance heat transfer rate, which side should the fins be installed?
- Fins are most beneficial where h
 is low
- Fin dimensions and k are critical design parameters

Summary

- Extended surfaces help in enhancing heat dissipation
 - Increases surface area for heat exchange
- Fins: most common embodiment of extended surface
 - Can be of varied shape and forms
- Fin peformance = f (h, material, size)

Fin Analysis

P: the fin perimeter

A_c: the fin cross-sectional area

$$q_{x+dx} = q_x + \frac{dq_x}{dx} dx$$

 $dq_{conv} = h(dA_S)(T - T_{\infty})$, where dA_S is the surface area of the element

Energy balance:
$$q_x = q_{x+dx} + dq_{conv} = q_x + \frac{dq_x}{dx} + hP(T-T_\infty)$$

Fin Analysis (cont.)

$$\frac{d}{dx}(kA_c\frac{dT}{dx}) - hP(T - T_{\infty}) = 0$$

$$A_c = A_c(x)$$

$$\theta = T - T_{\infty} \rightarrow \frac{d}{dx} (A_c \frac{d\theta}{dx}) - \frac{hP}{k} \theta = 0$$

For a constant cross-section A_c

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0, \quad m^2 = \frac{hP}{kA} \longrightarrow \theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

Need two boundary conditions $\theta = \theta_b$ at x = 0 \Rightarrow Tip: 4 scenarios at x = L

$$\Rightarrow$$
 Base: $\theta = \theta_b$ at $x = 0$

Temperature profiles

Case	Tip Condition	Temp. Distribution	Fin heat transfer
A	Convection heat transfer: $h\theta(L) = -k(d\theta/dx)_{x=L}$	$\frac{\cosh m(L-x) + \binom{h}{mk} \sinh m(L-x)}{\cosh mL + \binom{h}{mk} \sinh mL}$	$M\theta_b \frac{\sinh mL + (\frac{h}{mk})\cosh mL}{\cosh mL + (\frac{h}{mk})\sinh mL}$
В	Adiabatic $(d\theta/dx)_{x=L}=0$	$\frac{\cosh m(L-x)}{\cosh mL}$	$M heta_b$ $tanh mL$
С	Given temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh m(L-x) + \sinh m(L-x)}{\sinh mL}$	$M\theta_b \frac{(\cosh mL - \frac{\theta_L}{\theta_b})}{\sinh mL}$
D	Infinitely long fin θ(L)=0	e^{-mx}	M θ_b

$$\theta \equiv T - T_{\infty}, \quad m^2 \equiv \frac{hP}{kA_C}$$

$$\theta_b = \theta(0) = T_b - T_{\infty}, \quad M = \sqrt{hPkA_C}\theta_b$$

Example Problem

An Aluminum pot is used to boil water as shown below. The handle of the pot is 20-cm long, 3-cm wide, and 0.5-cm thick. The pot is exposed to room air at 25° C, and the convection coefficient is $5 W/m^2$ -K. Assume no heat transfer at the end of the handle. Question: can you touch the handle when the water is boiling? (k for Al = 237 W/m-K)

Steps

- Treat handle as fin
- Identify tip condition
 - Adiabatic
- Calculate P, m, M
- Get temp. profile
- Calculate T at x=L= 20 cm

Example (contd...)

Temperature distribution along the pot handle

Temperature at the tip = 87.3 \sim Not safe to touch

Why? What can you do?

Question time?

Triangular fin

How can we get the temp profile?

- 1. What are the boundary conditions?
- 2. How will the temp. profile look like?
- 3. Any other way we can think of?

Fin parameters: Effectiveness (ε_{f})

Fin effectiveness (\mathcal{E}_f): <u>how effective</u> is the fin

• Ratio of heat transferred in presence of fin to in its absence

$$\varepsilon_{f} \equiv \frac{q_{f}}{hA_{c,b}\theta_{b}} \longrightarrow \begin{array}{c} >1 \longrightarrow \text{ fin is effective} \\ <1 \longrightarrow \text{ should not include fin} \\ \varepsilon_{f} \uparrow \text{ with } \downarrow h, \uparrow k \text{ and } \downarrow A_{c}/P \end{array}$$

Remember we wanted fins on the air side!!

Fin parameters: Efficiency (η_f)

Fin efficiency (η_f): <u>how close to ideal scenario</u> is the fin

Ratio of heat transferred to that if entire fin were at base temp

$$\eta_f \equiv \frac{q_f}{q_{f,\text{max}}} = \frac{q_f}{hA_f\theta_b}$$

For a **fin array** with *N fins*,

 A_B : total base area A_b , A_t : base and tip area of fin A_f : surface area of a single fin (excluding tip)

$$q_f = h(A_s - NA_b + N\eta_f(A_f + A_t))\theta_b$$

Fin array in heat sinks

Radial fins

Pin fins

Dovetail fins

Summary

- Solved ODE for 1-D heat conduction to get temp profile
 - 4 different tip conditions
- Fin performance metrics Effectiveness (\mathcal{E}_{f}) & Efficiency (η_{f})
- Fin arrays used to design heat sinks
 - Commonly used in computing products

Thank you!!