Progressive Meshes

Based on slides by H. Hoppe

Rendering Complex Meshes

And in 2010?

- Fast rendering is done in hardware
 - Prefer GPU processing to CPU processing
 - Discrete LOD more efficient
 - Latest GPUs can handle more than 1G polygons/sec
- So why should we care?
 - Other applications efficient transmission
 - Mobile devices
 - Nice algorithm

Discrete Level-of-Detail

Progressive Meshes

Progressive Meshes

- Different representation of triangular meshes
- Simplify meshes through sequence of edge collapse transformations
- Record sequence of inverse transformations (vertex splits)

Simplifications: Edge Collapse

Progressive Meshes

Progressive Meshes

The PM Representation

The PM Representation

The PM Representation

Application: Continuous-Resolution LOD

• From PM, extract Mⁱ of any desired complexity

Property: Vertex correspondence

Application: Smooth transitions

Correspondence is a surjection:

Smooth transitions

Movie

Mesh Compression

Record deltas:

Encoding of *vspl* records:

- connectivity: ~ good triangle strips
- attributes: excellent delta-encoding

Progressive Transmission

Transmit records progressively:

Receiver displays:

(progressive JPEG, MPEG-4)

Selective refinement

(e.g. view frustum)

PM Benefits

- Optimization process
 - various metrics (speed vs. accuracy)
 - typically performed off-line

View-Independent LOD: Difficulties

View-dependent LOD

29,400 faces

different LOD's coexist over surface

Parent-child Vertex Relations

Vertex Hierarchy

Selective Refinement

Runtime algorithm

Refinement Criteria

- 3 criteria:
 - view frustum
 - surface orientation
 - screen-space geometric error

(1) View Frustum

(1) View Frustum

(2) Surface Orientation

(3) Screen-space Geometric Error

All Three Criteria Together

 $69,473 \text{ faces} \rightarrow 10,528 \text{ faces}$ 1.9 frame/sec $\rightarrow 6.7 \text{ frame/sec}$

Video

```
1m o
            [ GL
                 sne a p
nfaces=213 pixel_tol=0.29
```

Extensions: Progressive Deforming Meshes

Progressive Deforming Meshes

Progressive Deforming Meshes

Video

References

- "Progressive meshes", H. Hoppe, Siggraph '96
- "View-dependent refinement of progressive meshes", H. Hoppe, Siggraph '97
- "Progressive multiresolution meshes for deforming surfaces", Kircher et al., SCA '05