Algebra 1R

Contents

1	DEFINICJA GRUPY 1.1 Działania 1.2 Przykłady grup 1.3 Podgrupy 1.4 Grupa cykliczna	3
2	HOMOMORFIZMY 2.1 Rodzaje	4 4
3	PERMUTACJE 3.1 Transpozycje	5 5
	WARSTWY, DZIELNIK NORMALNY 4.1 Warstwa, grupa ilorazowa	66
5	PRODUKT PÓŁPROSTY 5.1 Twierdzenie Lagrange'a 5.2 Produkt prosty 5.3 Produkt półprosty grup	7 7 7
6	TWIERDZENIE SYLOWA 6.1 I twierdzenie Sylowa	8 8
7	KLASYFIKACJA MAŁYCH GRUP 7.1 Grupy rzędu ???	9
8	GRUPY TORSYJNE 8.1 Torsje	10
9	9.1 Komutator i komutant	11 11
10	LEMAT O MOTYLU 10.1 Ciąg kompozycyjny w grupie 10.2 Lemat motyla 10.3 Twierdzenie Schreiera	12

11 GRUPY WOLNE 11.1 Grupy wolne 11.2 Własności 11.3 Przykłady	13		
12 PIERŚCIENIE 14			
12.1 Definicja	14		
12.2 Dzielnik zera	14		
12.3 Grupa elementów odwracalnych pierścienia			
12.4 Dziedzina			
12.5 Ciało	14		

1 DEFINICJA GRUPY

1.1 Działania

DZIAŁANIE w zbiorze A to funkcja

$$\star: A \times A \to A$$
$$(x, y) \mapsto x \star y$$

Algebrą nazywamy niepusty zbiór A ze wszystkimi działaniami na nim określonymi, to znaczy zestawienie $(A, f_1, ..., f_k)$. Mówimy, że dwie algebry $A = (A, f_1, ..., f_k)$ i $B = (B, g_1, ..., g_k)$ są podobne, jeśli dla każdego i \leq k arność (czyli liczba argumentów) f_i jest równa arności g_i , czyli liczbie l_i .

Dwie algebry są izomorficzne, jeżeli istnieje F : A $\xrightarrow[na]{1-1}$ B takie, że

$$(\forall \ i \leq k)(\forall \ a_1,...,a_{l_i} \in A) \ F(f_i(a_1,...,a_{l_i})) = g_i(F(a_1),...,F(a_{l_i}))$$

Struktury izomorficzne oznaczamy A \cong B. Warto zauważyć, że \cong ma własności relacji równoważności, to znaczy jest zwrotny, symetryczny i przechodni.

SŁOWNICZEK:

- \hookrightarrow epi-morfizm -> "na"
- \hookrightarrow mono-morfizm -> 1-1
- \hookrightarrow endo-morfizm -> w samego siebie
- → auto-morfizm -> endomorfizm który jest bijekcją.

Działanie jest łączne [≋ assosiative], jeżeli

$$(\forall a, b, c \in A) a(bc) = (ab)c$$

a przemienne [see commutative], gdy

$$(\forall a, b \in A)$$
 ab = ba

- 1.2 Przykłady grup
- 1.3 Podgrupy
- 1.4 Grupa cykliczna

2 HOMOMORFIZMY

- 2.1 Rodzaje
- 2.2 Jądro, obraz
- 2.3 Zasadnicze twierdzenie o homomorfizmie

3 PERMUTACJE

- 3.1 Transpozycje
- 3.2 Permutacje parzyste

4 WARSTWY, DZIELNIK NORMALNY

- 4.1 Warstwa, grupa ilorazowa
- 4.2 Orbita
- 4.3 Stabilizator
- 4.4 Orbit-stabilizer theorem
- 4.5 Dzielnik normalny

5 PRODUKT PÓŁPROSTY

- 5.1 Twierdzenie Lagrange'a
- 5.2 Produkt prosty
- 5.3 Produkt półprosty grup

6 TWIERDZENIE SYLOWA

6.1 I twierdzenie Sylowa

I twierdzenie Sylowa:

Jeżeli p jest liczbą pierwszą, a G jest grupą skończoną rzędu |G| = p^k m dla k ≥ 1 i p∤m, to istnieje podgrupa H \leq G mająca p^k elementów. Taka grupa nazywa się podgrupą Sylowa.

DOWÓD:

Niech G będzie grupą rzędu |G| = p^k m taką jak w twierdzeniu. Niech X będzie zbiorem wszystkich p^k elementowych podzbiorów grupy G. Możemy teraz określić działanie ψ grupy G na zbiór X. Jeśli H = $\{h_1,...,h_{p^k}\}\in X$, a $g\in G$, to

$$\psi(H) = \{gh_1, gh_2, ..., gh_{p^k}\}.$$

Wiemy, że

$$\begin{split} |H| &= \binom{p^k m}{p^k} = \frac{(p^k m)!}{(p^k m - p^k)!(p^k)!} = \\ &= \frac{p^k m(p^k m - 1)...(p^k m - p^k + 1)}{(p^k)!} = \prod_{i=1}^{p^k} p^k m - i + 1 \end{split}$$

6.2 Twierdzenie Cauchy'ego

Twierdzenie Cauchy'ego:

Jeżeli liczba pierwsza p dzieli rząd grupy G, to G zawiera element rzędu p.

6.3 p-grupy Sylowa

6.4 Twierdzenia Sylowa

7 KLASYFIKACJA MAŁYCH GRUP

7.1 Grupy rzędu ???

8 GRUPY TORSYJNE

- 8.1 Torsje
- 8.2 Grupy torsyjne
- 8.3 Skończone grupy abelowe

9 GRUPY ROZWIĄZALNE

- 9.1 Komutator i komutant
- 9.2 Grupy rozwiązalne
- 9.3 Rozszerzenia grup rozwiązalnych
- 9.4 Używanie twierdzeń Sylowa
- 9.5 Grupy nilpotentne

10 LEMAT O MOTYLU

- 10.1 Ciąg kompozycyjny w grupie
- 10.2 Lemat motyla
- 10.3 Twierdzenie Schreiera

11 GRUPY WOLNE

- 11.1 Grupy wolne
- 11.2 Własności
- 11.3 Przykłady

12 PIERŚCIENIE

- 12.1 Definicja
- 12.2 Dzielnik zera
- 12.3 Grupa elementów odwracalnych pierścienia
- 12.4 Dziedzina
- 12.5 Ciało