School of Mathematical and **Computational Sciences**

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 13

Polynomial Rings and UFDs

We have seen that if A is an integral domain, then A[x] is also an integral domain. If Q is the field of fractions of A, then $A[x] \subseteq Q[x]$, and Q[x] is an Euclidean Domain, a PID, and a UFD. Then all polynomials in A[x] can be uniquely factored over Q[x].

Therefore, we want to know how a factorization in Q[x] can help us to factor over A[x]although A[x] is not always a UFD. For this, we shall need the famous Gauss's Lemma.

[10.6] Let I be an ideal of the ring A and let I[x] denote the ideal of A[x] generated by I, i.e., the set of polynomials with coefficients in *I*. Then,

$$\frac{A[x]}{I[x]} \cong \left(\frac{A}{I}\right)[x].$$

Proof. Let's define the surjective ring homomorphism

$$\theta: A[x] \to \left(\frac{A}{I}\right)[x]$$

by reducing each of the coefficients of a polynomial modulo *I*. It is clear that the kernel of θ is the set of polynomials each of whose coefficients is an element of *I*, i.e.,

$$Ker(\theta) = I[x].$$

Then, by the first theorem of isomorphism, we have that

$$\frac{A[x]}{I[x]} \cong \left(\frac{A}{I}\right)[x].$$

[10.3] Proposition 10.6 implies that if I is a prime ideal of A, then I[x] is a prime ideal of A[x].

[10.2 (Gauss's Lemma)] Let A be a UFD and Q the field of fractions of A. If p(x) is reducible in Q[x], then p(x) is reducible in A[x]. Moreover, if p(x) = r(x)s(x) for some non-constant polynomials r(x), $s(x) \in Q[x]$, then there are nonzero elements A, $B \in Q$ such that Ar(x) = a(x)and Bs(x) = b(x) and

$$a(x) \in A[x], \quad b(x) \in A[x], \quad p(x) = a(x)b(x).$$

Therefore, a(x)b(x) is a factorization of p(x) in A[x].

Proof. In the equality p(x) = r(x)s(x), the coefficients of the term r(x)s(x) are elements of Q by hypothesis. Then, it is possible to obtain the equality

$$dp(x) = a'(x)b'(x),$$

where *d* represents the common denominator of all the coefficients of r(x)s(x) and $a'(x),b'(x) \in A[x]$.

- 1. If *d* is invertible, then take $a(x) = d^{-1}a'(x)$ and $b(x) = d^{-1}b'(x)$ and the proof is complete.
- 2. If d is not invertible, since A is a UFD and $d = p_1 \cdots p_n$, it follows that p_1 is irreducible and $\langle p_1 \rangle$ is a prime ideal. Therefore, by Proposition 10.6, the ring $(A/p_1A)[x]$ is an integral domain and $p_1A[x]$ is prime in A[x]. Reducing modulo p_1 over the quotient ring $(A/p_1A)[x]$, the equality dp(x) = a'(x)b'(x) becomes

$$0 = a'(x)b'(x),$$

where the bars denote the equivalence class in this quotient ring. Since this ring is an integral domain, one of the factors must be 0. Say, a'(x) = 0. Therefore, all the coefficients of a'(x) are divided by p_1 , so $\frac{1}{p_1}a'(x) \in A[x]$. Thus we can simplify the factor p_1 from the factorization of d in the equality dp(x) = a'(x)b'(x). Proceeding in the same way with each of the remaining factors of d, we can cancel d in the equation dp(x) = a'(x)b'(x) and obtain a factorization

$$p(x) = a(x)b(x),$$

where a(x), $b(x) \in A[x]$ are multiples of r(x) and s(x) by elements of Q, respectively.

[10.2] Let A be a UFD and Q be its field of fractions, and let $p(x) \in A[x]$. If the greatest common divisor of p(x) is 1, then p(x) is irreducible in A[x] if and only if it is irreducible in Q[x]. In particular, every monic polynomial that is irreducible in A[x] is also irreducible in Q[x].