实验二 路由器的基本配置

路由器

- 路由器:解决不同类型网段间传 输数据的重要设备。
- 对于不同网段的数据,路由器依据IP地址将数据包转发到预期的目的地。
- 路由器工作在网络层,主要任务: 逻辑编址和路由选择。
- 路由器判断、定位并传输数据依 靠逻辑IP 地址来完成。
- 路由器的核心功能:
 - 1) 连接不同网络/段;
 - 2) 确定转发的最优路径。

路由器的工作过程

- 什么是路由?
 - 路由的本质是找路,是在计算机网络中从一个点到另一个点寻找"合理"路径的过程。
- 路由器是计算机网络中为数据传输寻找合理路径的设备。
- 路由器的功能如何实现:
 - 1) 路由=建立图表+指引方向
 - 2) 交换=在接口之间移动信息包

路由表实例

交换与决定路径

- 路由器扮演分组中继或"交换"的工作;
- · 路由协议的本质是创建和维护路由表, 例如:静态路由、RIP、OSPF、BGP、IS-IS等。

路由器的配置途径

• 本地 Console端口配置-----路由器配置的基本方式

将计算机的串口直接通过配置专用反转线与路由器Console 端口相连,在PC上运行终端仿真软件,如Windows XP 系统附件中的超级终端,与路由器进行通信,完成路由器配置。

• 远程AUX端口配置

路由器AUX端口连接Modem,通过电话线与远程终端运行终端仿真软件的PC相连,进行路由器配置。

· TFTP服务器方式

简单文件传输协议TFTP(Tirval File Transfer Protocol)是TCP/IP协议族中的一个文件传输协议。TFTP不需要用户名和口令,使用简单。可将配置文件从路由器传送到TFTP服务器上,也可将配置文件从TFTP服务器传送到路由器上。

• 网络管理工作站方式

当路由器与本地局域网连通以后,可以通过本地SNMP(Simple Network Management Protocol,简单网络管理协议)网络管理工作站对路由器进行配置。

HWIC-2T <----> 2端口串行广域网接口卡

HWIC-4ESW <----> HWIC插槽外型的4端口以太网交换模块

HWIC-8A <----> CISCO模拟器

HWIC-AP-AG-B <----> CISCO模拟器

WIC-1AM <----> 1端口模拟调制解调器广域网接口卡

WIC-1ENET <----> 1端口10M以太网接口

WIC-1T <----> 1端口串行广域网接口卡

WIC-2AM <----> 2端口模拟调制解调器广域网接口卡

WIC-2T <----> 2端口串行广域网接口卡

WIC-Cover <----> CISCO模拟器面板

NM-4A/S <----> 4端口异步/同步串行网络

NM-8A/S <----> 8端口异步/同步串行网络模块

NM-8AM <----> 8端口模拟调制解调器网络模块

NM-1E <----> 1端口10bT以太网网络模块

NM-4E <----> 4端口10bT以太网网络模块

NM-1FE-TX <----> 1端口100bTX快速以太网网络模块

NM-2W <----> 2个WIC插槽网络模块

NM-1FE2W <-----> 1端口100bTX快速以太网端口, 2个WIC插槽网络模块

NM-2FE2W <----> 2端口100bTX快速以太网端口, 2个WIC插槽网络模块

WIC-Cover <----> CISCO模拟器面板

WIC-1AM <----> 1端口模拟调制解调器广域网接口卡

WIC-2AM <----> 2端口模拟调制解调器广域网接口卡

WIC-1T <---->1端口串行广域网接口卡

WIC-2AM <----> 2端口模拟调制解调器广域网接口卡

接口的配置

CLI查看配置文件

设备间的连接方式

设备间的连接线

- 1. Automatically choose connection type: 自动选择
- 2. Console控制线:使用配置专用连线直接连接至计算机的串口,利用终端仿真程序(如Windows下的"超级终端")进行配置。
- 3. Copper straight-through: 思科设备之间的直通连接线缆,在Cisco Packet Tracer中用来连接不同接口类型的设备。如,PC-交换机、PC-集线器、交换机-路由器等。
- 4. Copper Cross-Over 是交叉线,在Cisco Packet Tracer中用来连接相同接口类型的设备。如PC-PC、交换机-交换机、路由器-路由器、PC-路由器、集线器-交换机等。
- 5. Fiber: 光纤
- 6. Phone: 电话连接线
- 7. Coaxial: 同轴电缆
- 8. Serial—DCE:数据通信设备
- 9. Serial—DTE:数据终端设备

DCE和DTE是用于路由器之间的连线,实际当中,你需要把DCE和一台路由器相连,DTE和另一台设备相连。而在这里,你只需选一根就是了,若你选了DCE这一根线,则和这根线先连的路由器为DCE,配置该路由器时需配置时钟

1. CAB-OCTAL-ASYNC:异步一拖八线缆,用于NM-8A/S模块。

与PC机的连接

路由器间的连接

路由器模式间关系

路由器模式间转换

各种工作模式转换

模式	命令提示	进入前的模式	进入时命令	
用户模式	Router>	开机初始化	不需要	
特权模式	Router#	用户模式	En+Tab	
全局配置模式	Router (config)#	特权模式	Conf+Tab ter+Tab	
接口模式	Router (config-if)#	全局配置模式	Int F0/0或Int Vlan 100	
线路模式	Router (config-line)#	全局配置模式	Line console 0	
路由配置模式	Router(config-router)#	全局配置模式	router rip 或router ospf	

路由器常用命令解释

命令	作用
Router>enable	进入交换机特权配置模式
Router#Configure terminal	进入全局配置模式
Router(config)# Interface F0/1	进入接口模式,进入F0/1接口
Router(config)# Line console 0	进入线路配置模式(console 口)
Router(config)# line vty 0 4	进入线路配置模式(虚拟终端)
Router(config)# Router rip 或Router ospf1	进入动态路由协议配置模式
Router(config) #Exit	返回上一层模式
Router(config) #End	直接返回到特权模式
Router# ?	帮助命令
Tab 键	补全命令
Router(config) # Hostname R1	修改路由器名称为R1
Router(config) #show version	显示版本信息
Router(config) #show running-config	显示当前内存中的配置信息
Router(config) #show int F0/0	显示接口F0/0的配置信息
Router(config) #Write	把内存中的配置文件保存到NVRAM
Router(config) #show clock	显示路由时间
Router(config-if)#Clock rate 12800	配置串口上的时钟(DCE)端
Router(config-if)# ip address 172.168.0.100 255.255.255.0	设置IP地址和相应的子网掩码
Router(config-if)#no shutdown	开启接口
Router#show ip interface	查看路由器各个端口情况
Router(config)#ip route 目标网段子网掩码本地端口/下一跳IP地址	配置静态路由
Router(config) #show ip route	查看路由信息
Router(config) #No ip route	删除静态路由
Router(config) #show ip interface brief	查看各接口情况
Router(config)#show interface F0/2	查看某个接口情况
Router(config)#Ip route 0.0.0.0 0.0.0 本地端口/下一跳IP地址	配置默认路由

路由器的配置命令练习

1. 配置主机名: hostname

Router>En

Router # Config t

Router (config)#Hostname "主机名"

2. 配置接口IP地址

主机名(config)#Int F0/0 !进入某一具体接口

主机名(config-if)#Ip address x.x.x.x (IP地址) x.x.x.x (子网掩码) ! 给该接口配置IP地址及相应的子网掩码

主机名(config-if)#no shutdown 开启该端口

主机名(config-if)#no ip address! 删除该接口IP地址及相应的子网掩码

主机名(config)#show ip inter ! 查看路由器某端口的配置信息

3.查看路由表的信息

主机名(config)#Show ip route

主机名(config)#Show ip inter brief

主机名(config)#Show inter 某具体接口

静态路由器的配置

• 静态路由配置语法:

IP route 目标网络子网掩码 本地转发端口/下一跳地址

• 静态路由删除语法

No IP route 目标网络子网掩码 本地转发端口/下一跳地址

静态路由器的配置

静态路由需要解决的问题(如何配置)?

- 去哪儿? →目标网段包括子网掩码
- 走哪儿?→转发端口转发端口可为:
- 1) 本路由器的端口
- 2) 下一跳IP地址,即和本地转发端口连接的另一个 网络设备的IP地址

静态路由器配置实例-PC0

PC机不像路由器有CLI,它只需要在图形界面下配置

静态路由器配置实例-PC1

PC机不像路由器有CLI,它只需要在图形界面下配置

静态路由器配置实例-R1

Router>

Router>enable ———————进入特权模式

Router#configure terminal ——————进入全局配置模式

Router(config)#hostname R1——————更改路由器的名字

R1(config)#interface F0/1-----进入接口e0 / 0

R1(config-if)#ip address 1.0.0.8 255.0.0.0 — — 一配置接口IP地址及相应的子网掩码

R1(config-if)#no shutdown——————激活该接口

R1(config-if)#exit

R1(config)#interface f0/0 -----进入接口f1/0

R1(config-if)#ip address 2.0.0.5 255.0.0.0 ---- 配置接口IP地址及相应的子网掩码

R1(config-if)#no shutdown -----激活接口

静态路由器配置实例-R2

Router>enable

Router#configure terminal ——————————进入特权模式

Router(config)#hostname R2-----更改路由器的名字

R2(config)#Interface f0/1-----进入接口e0 / 0

R2(config-if)#ip address 3.0.0.5 255.0.0.0 —————配置接口IP地址及相应的子网掩码

R2(config-if)#no shutdown

R2(config-if)#exit

R2(config)#interface f0/0

R2(config-if)#ip address 2.0.0.8 255.0.0.0

17410011

P2(config_if)#evit

R1配置过程:

- R1(config)#ip route 3.0.0.0 255.0.0.0 2.0.0.8 — 配置静态路由
- R1(config)#exit

R2配置过程:

- R2(config)#ip route 1.0.0.0 255.0.0.0 2.0.0.5 ——— 配置静态路由
- R2(config)#exit

注意:

- 1. 在为每个路由器配置路由协议前,必须保证路由器各端口处于启动状态!!!
- 2. 检查方法:
- Router#show ip interface brief —————查看接口概要信息
- Router#show ip route -----查看路由协议信息

R1配置过程:

•	Router>
•	Router>enable进入特权模式
•	Router#configure terminal ———————进入全局配置模式
•	Router(config)#hostname R1更改路由器的名字
•	R1(config)#interface e0/0进入接口e0/0
•	R1(config-if)#ip address 1.0.0.8 255.0.0.0 — — — 配置接口IP地址及相应的子网掩码
•	R1(config-if)#no shutdown激活该接口
•	R1(config-if)#exit
•	R1(config)#interface f1/0进入接口f1/0
•	R1(config-if)#ip address 2.0.0.5 255.0.0.0 — — — 配置接口IP地址及相应的子网掩码
•	R1(config-if)#no shutdown ————————激活接口
•	R1(config-if)#exit
•	R1(config)#ip route 3.0.0.0 255.0.0.0 2.0.0.8——— 配置静态路由
•	R1(config)#exit

- R1#show ip interface brief — — 查看接口概要信息
- Interface IP-Address OK? Method Status Protocol
- FastEthernet0/0 1.0.0.8 YES manual up up
- FastEthernet0/1 2.0.0.5 YES manual up up
- R1#show ip route
- Codes: C connected, S static, R RIP, M mobile, B BGP
- D EIGRP, EX EIGRP external, O OSPF, IA OSPF inter area
- N1 OSPF NSSA external type 1, N2 OSPF NSSA external type 2
- E1 OSPF external type 1, E2 OSPF external type 2
- i IS-IS, su IS-IS summary, L1 IS-IS level-1, L2 IS-IS level-2
- ia IS-IS inter area, * candidate default, U per-user static route
- o ODR, P periodic downloaded static route
- Gateway of last resort is not set
- C 1.0.0.0/8 is directly connected, FastEthernet0/0
- C 2.0.0.0/8 is directly connected, FastEthernet0/1
- S 3.0.0.0/8 [1/0] via 2.0.0.8

R2配置过程:

- Router>enable
- Router#configure terminal —————————进入特权模式
- Router(config)#hostname R2-----更改路由器的名字
- R2(config)#interface e0/0-----进入接口e0/0
- R2(config-if)#ip address 3.0.0.5 255.0.0.0---- 配置接口IP地址及相应的子网掩码
- R2(config-if)#no shutdown
- R2(config-if)#exit
- R2(config)#interface f1/0
- R2(config-if)#ip address 2.0.0.8 255.0.0.0
- R2(config-if)#no shutdown
- R2(config-if)#exit
- R2(config)#ip route 1.0.0.0 255.0.0.0 2.0.0.5
- R2(config)#exit
- R2#wr

- R2#show ip interface brief
- Interface IP-Address OK? Method Status Protocol
- FastEthernet0/0 3.0.0.5 YES manual up up
- FastEthernet0/1 2.0.0.8 YES manual up up
- R2#show ip route
- Codes: C connected, S static, R RIP, M mobile, B BGP
- D EIGRP, EX EIGRP external, O OSPF, IA OSPF inter area
- N1 OSPF NSSA external type 1, N2 OSPF NSSA external type 2
- E1 OSPF external type 1, E2 OSPF external type 2
- i IS-IS, su IS-IS summary, L1 IS-IS level-1, L2 IS-IS level-2
- ia IS-IS inter area, * candidate default, U per-user static route
- o ODR, P periodic downloaded static route
- S 1.0.0.0/8 [1/0] via 2.0.0.5
- C 2.0.0.0/8 is directly connected, FastEthernet0/1
- C 3.0.0.0/8 is directly connected, FastEthernet0/0

特殊的静态路由----默认路由

默认路由命令格式:

IP route 目标网段子网掩码本地端口/下一跳端口地址

目标网段固定为: 0.0.0.0

子网掩码固定为: 0.0.0.0

标准格式: IP route 0.0.0.0 0.0.0.0 本地端口/下一条 IP地

址

Router1配置查看

Router#show ip interface brief

Interface	IP-Address	OK? Method Status	Protocol

FastEthernet0/0 20.0.0.3 YES manual up up

FastEthernet0/1 30.0.0.2 YES manual up up

Vlan1 unassigned YES unset administratively down down

Router#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

- S 10.0.0.0/8 is directly connected, FastEthernet0/0
- C 20.0.0.0/8 is directly connected, FastEthernet0/0
- C 30.0.0.0/8 is directly connected, FastEthernet0/1
- S 40.0.0.0/8 is directly connected, FastEthernet0/1

作业内容与要求

- 1.理解并熟练掌握路由器的IOS操作命令;
- 2.使用Cisco Paket Tracer平台,自行设计网络拓扑结构图。网络内至少包含两台路由器设备及若干台终端;
- 3.注明各网段地址和各端口地址;
- 4.配置各终端的网卡地址和网关,并给出图示;
- 5.使用静态路由使全网互通,并给出主要配置过程;
- 6.给出全网联通测试图示。

助助!