Algebraic Structures

Ikhan Choi

May 27, 2022

Contents

Ι	Groups	2
1	Subgroups	3
2	Group actions 2.1 Orbits and stabilizers	4 4 4
3	Symmetry groups 3.1 Cyclic groups	5 5 5
II	Rings	6
4	Ideals	7
5	Integral domains	8
6	Polynomial rings 6.1 Irreducible polynomials	9 9
III	I Modules	10
7	Exact sequences	11
8	Hom functor and tensor products	12
9	Modules over a principal ideal domain	13
IV	Vector spaces	14
10	Multilinear forms	15
11	Normal forms11.1 Finitely generated $\mathbb{F}[x]$ -modules11.2 Conjugacy in matrix groups11.3 Spectral theorems	16 16 16
12	Tensor algebras	17

Part I

Groups

Subgroups

subgroups homomorphisms, image, kernel, inverse images normality, quotient, coset counting direct sum, direct product

Group actions

2.1 Orbits and stabilizers

Invariants on orbit space. The size and number of orbits.

- 2.1 (Transitive actions). stabilizer of an action is well defined
- **2.2** (Free actions). no fixed point, trivial stabilizer for any point, every orbit has 1-1 correspondence to group
- 2.2 Action by conjugation
- 2.3 Action by left multiplication

Symmetry groups

elements by order elements by conjugacy class subgroups by conjugacy class

3.1 Cyclic groups

3.2 Symmetric groups

3.3 Matrix groups

dihedral groups

Exercises

- **3.1.** Let *G* be a finite group. If G/Z(G) is cylic, then *G* is abelian.
- **3.2.** Let G be a finite group. If the cube map $x \mapsto x^3$ is a surjective endomorhpism, then G is abelian.
- **3.3.** Show that a finite symmetric group has two generators.
- **3.4.** Show that a group of order 2p for a prime p has exactly two isomorphic types.
- **3.5.** Show that a group G is abelian if $|G| = p^2$ for a prime p.
- **3.6.** Let G be a finite group of order n and p the smallest prime divisor of n. Show that a subgroup of G of index p is normal in G.
- **3.7.** Find all n such that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic.
- **3.8.** Show that a nontrivial normalizer of a *p*-group meets its center out of identity.
- **3.9.** Show that a proper subgroup of a finite p-group is a proper subgroup of its normalizer. In particular, every finite p-group is nilpotent.
- **3.10.** Show that a finite group *G* satisfying $\sum_{g \in G} \operatorname{ord}(g) \leq 2n$ is abelian.
- **3.11.** Show that the order of a group with trivial automorphism group is at most two.
- **3.12.** Find all homomorphic images of A_4 up to isomorphism.

Part II

Rings

Ideals

Integral domains

Exercises

- **5.1.** Show that a finite integral domain is a field.
- **5.2.** Show that every ring of order p^2 for a prime p is commutative.
- **5.3.** Show that a semiring with multiplicative identity and cancellative addition has commutative addition.
- **5.4.** Show that the complement of a saturated monoid in a commutative ring is a union of prime ideals.

Polynomial rings

6.1 Irreducible polynomials

relation to maximal ideals Irreducibles over several fields

Part III

Modules

Exact sequences

free modules inj, proj

Hom functor and tensor products

hom and duality tensor product algebras?

Modules over a principal ideal domain

invariant factors and elementary divisors

Part IV Vector spaces

Multilinear forms

Duality Adjoints Inner product

Normal forms

11.1 Finitely generated $\mathbb{F}[x]$ -modules

cyclic subspaces

11.2 Conjugacy in matrix groups

GL, SL, PSL?

11.1 (Conjugacy classes of $GL_2(\mathbb{F}_p)$). The conjugacy classes are classified by the Jordan normal forms. There are four cases: for some a and b in \mathbb{F}_p ,

(a)
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
: $\binom{p-1}{2} = \frac{(q-1)(q-2)}{2}$ classes of size $\frac{|G|}{(q-1)^2} = q(q+1)$.

(b)
$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size 1.

(c)
$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size $\frac{|G|}{q(q-1)} = q^2 - 1$.

(d) otherwise, the eigenvalues are in $\mathbb{F}_{p^2}\setminus\mathbb{F}_p$. In this case, the number of conjugacy classes is same as the number of monic irreducible qudratic polynomials over \mathbb{F}_p ; $\frac{|\mathbb{F}_{p^2}|-|\mathbb{F}_p|}{2}=\frac{p(p-1)}{2}$ classes. Their size is $\frac{p(p-1)}{2}$.

11.3 Spectral theorems

Exercises

Tensor algebras

Exterior algebras Symmetric algebras