ACTIVIDAD 1

- 1) Decir de las variables siguientes cuáles representan datos discretos y cuáles datos continuos.
 - a) N° de acciones vendidas c/ día en el mercado de valores
 - b) Temperaturas registradas c/ media hora en un observatorio.
 - c) Período de duración de tubos de TV
 - d) Censos anuales
 - e) Longitud de 100 cerrojos producidos por una fábrica.
- 2) Una moneda cargada que tiene el doble de probabilidades de salir cara, que de salir sello tira 3 veces:
 - a) describir el espacio muestral
 - b) calcular la probabilidad para cada suceso elemental
 - c) si la variable aleatoria es el n° de caras que salen, definir mediante una tabla la f de probabilidades y describir su distribución mediante un diagrama.
- 3) Se lanza un par de dados corrientes. Definir la variable aleatoria que hace corresponder a c/ evento del espacio muestral:

X = el máximo de sus números.

Y = la suma de sus números.

Definir las funciones de probabilidades y representar por tabla y por diagrama.

- 4) Hallar las probabilidades de tener hijos varones y mujeres en familias de 3 hijos. Determinar y representar la distribución de probabilidades.
- 5) En una caja hay 8 artículos de los cuales 2 son defectuosos. Una persona selecciona 3 artículos con reposición. Calcular el número esperado de artículos defectuosos que saca.
- 6) Una persona compra un número de rifa en la que puede ganar un primer premio de \$5000 o un segundo premio de \$2000 con probabilidades de 0,001 y de 0,003 respectivamente. ¿A qué precio debe pagar el número?
- 7) Hallar μ , $Var_{\parallel x \parallel}$, σ de:

a)

X_i	2	3	11
P_{0xi0}	1/3	1/2	1/6

b)

X_i	-5	-4	1	2
$p_{\emptyset_{xi}\emptyset}$	1/4	1/8	1/2	1/8

8) Una compañía propietaria de droguerías desea instalar una nueva sucursal en una de dos localidades A o B. Según un estudio de mercado efectuado se sabe que en A es posible obtener

una ganancia anual de \$2.000.000 si se tiene éxito y una pérdida de \$200.000 si se fracasa. En B la ganancia es de \$2.500.000 y la pérdida de \$500.000. Si la prob1abilidad de tener éxito es de 0,5 en cada localidad; se desea saber dónde se instalará la sucursal, de modo que el beneficio esperado sea máximo.

9) Dada la función de probabilidad:

X_i	- 2	- 1	0	1	2	3
$P(X_i)$	0,1	0,1	0,2	0,2	0,3	0,1

- a) Calcular la esperanza y su desviación estándar.
- b) Construya la función de distribución acumulada F (X) y grafíquela.
- 10) Un jugador tira un dado honrado. Si sale un número par, gana en pesos 3000 veces el número obtenido. Si sale un número impar pierde \$ 4000. ¿Cuánto deberá pagar para poder entrar en el juego y que el mismo le resulte equitativo?
- 11) Se arroja 4 veces una moneda equilibrada. Sea X la variable aleatoria que asigna el número de caras obtenidas. Calcular E(X).
- 12) En un estudio de mercado se está analizando el consumo de pan en una determinada población. La siguiente distribución de frecuencias muestra el número de veces que, por semana, las personas van a una panadería:

X_i	f_i
0	5
1	10
2	25
3	30
5	15

- a) Calcular E (X) y su Var (X) y la desviación estándar.
- b) Hacer el correspondiente diagrama de barras.
- c) Hallar la función de probabilidades acumuladas y graficarla.
- 13) Supongamos la variable tipo histológico de un tumor, con los valores 1, 2, 3, 4. Si la función de probabilidad es:

X_I	1	2	3	4
$P(X_i)$	0,20	0,29	0,31	0,20

- a) Calcular la función de distribuciones acumuladas.
- b) ¿Cuál es el tipo histológico que acumula el 50% de los casos?
- 14) Se selecciona al azar una palabra de la siguiente frase:

EL PRECIO PROMEDIO DE CIERRE EN EL MERCADO DE VALORES FUE SUPERIOR AL DE DÍAS PASADOS

Si X es el número de letras de la palabra seleccionada, ¿Cuál es el valor de E(X)?

15) Si una variable aleatoria X es tal que:
$$E[(x-1)^2]=10$$
 y $E[(x-2)^2]=6$

Determine la esperanza, la varianza y la desviación típica de X

- 16) Si var(x) = 8.6 determinar var(3x+5.6)
- 17) Una variable aleatoria continua en X; que toma solamente valores entre 0 y 4 tiene una función de densidad dada por:

$$f(x) = \begin{cases} \frac{1}{2} - ax \\ 0 \end{cases}$$

- a) Hallar el valor de a.
- b) Hallar $P(1 \le x \le 2)$
- c) Hallar E(X),VAR(X)
- 18) El porcentaje de alcohol en cierto compuesto se puede considerar como una variable, donde

X, tiene la función densidad: $f(x)=ax^3(1-x)$ para 0 < x < 1.

- a) Determinar el valor de la constante a.
- d) Obtener una expresión para la función de distribución acumulada, F(x) y graficarla.
- b) Calcular $P\left(X \leq \frac{2}{3}\right)$.
- 19) Sea X una variable aleatoria con función de densidad dada por:

$$f(x) = \begin{cases} 0,2 & \text{Si } -1 \le x \le 0\\ 0,2 + kx & \text{Si } 0 \le x \le 1\\ 0 & \text{Para cualquier otro valor} \end{cases}$$

16.1 * Determinar el valor k

16.2 * Calcular
$$P(0 \le x \le 0.5)$$

20) Hallar la esperanza matemática y la varianza de la variable aleatoria continua *X* , cuya función de densidad es:

$$f(x) = \begin{cases} 2(x-1) & \text{Si } 1 < x < 2 \\ 0 & \text{Para cualquier otro valor de } x \end{cases}$$

21) La función de distribución acumulada para la variable aleatoria X es

$$F(X) = \begin{cases} 1 - e^{-2x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Hallar:

- a) La función de densidad
- b) La probabilidad de que X > 2
- c) La probabilidad de que -3 < X < 4

ACTIVIDAD 2

- 1) Según el Teorema de Chebyshev, ¿al menos qué porcentaje de cualquier conjunto de observaciones se encontrará a 1,6 desviaciones estándares de la media?
- 2) El ingreso medio para un grupo de empleados estatales es de \$500 y la desviación estándar es de \$30. ¿Cómo mínimo qué porcentajes de ingresos se encontrará entre \$400 y \$600?
- 3) Los siguientes datos representan las comisiones semanales diarias de un grupo de vendedores de productos lácteos:

20,6	22,2	18,2	18,0	28,5	26,0	12,9	22,0
16,4	20,6	26,0	22,4	14,6	10,6	24,5	16,0
22,8	17,4	21,2	19,0	22,2	20,5	11,6	18,2

- a) Elabore la distribución de frecuencias para los datos dados.
- b) Calcule la media y la desviación estándar.
- c) ¿Qué proporción de estas comisiones están dentro de $\pm 1\sigma$ de la media?
- d) ¿Qué proporción de estas comisiones están dentro de $\pm 2\sigma$ de la media?
- e) ¿Qué proporción de estas comisiones están dentro de $\pm 3 \sigma$ de la media?
- 4) La producción diaria de una fábrica es una variable aleatoria discreta con media 120 artículos y desviación estándar de 10 artículos. ¿Cuál es la probabilidad mínima que en cualquier día la producción esté entre 95 y 145 artículos?
- 5) Una variable aleatoria X tiene media 5 y una varianza de 9. Utilizando la desigualdad de Chebyshev, encuentra:
 - a) P(|x-5| > 15)
 - b) P(1 < x < 9)
- 6) Siendo X una variable aleatoria continua con función de densidad:

Variable Aleatoria. Teorema de Chebyshev

$$f(x) = \begin{cases} 6x(1-x) & \text{Si } 0 < x < 1\\ 0 & \text{Si } x \le 0 \lor x \ge 1 \end{cases}$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma)$$

- $P\big(\mu 2\sigma < X < \mu + 2\sigma\,\big)$ mediante cálculo directo.
- b) Comparar el resultado anterior con el obtenido mediante la desigualdad de Chebyshev.
- 7) Dada la probabilidad $P(|x \mu_x| < \varepsilon) \ge 0.9$ y $\sigma_x^2 = 0.09$, hallar ε .
- 8) En una empresa se tiene una ganancia promedio de \$12500, con una desviación estándar de \$700. Aplicando la desigualdad de Chebyshev responder:
 - a) ¿Cuál es el porcentaje mínimo de meses en los que se tendrá una ganancia entre \$9000 y \$16000?
 - b) ¿Qué ganancia tendrá la empresa en, por lo menos, 7 de 16 meses?
- 9) Estimar la probabilidad mínima de que |X E(x)| < 0.2 si $\sigma_x^2 = 0.0004$
- 10) Una variable aleatoria X tiene $E(x)=10\,$ y $\sigma^2=4\,$. Determinar el valor de la constante C tal que: $P(|X-10| \ge C) \le 0.04$

Respuestas a ejercicios

ACTIVIDAD 1

1) A cargo del alumno.

2)a)
$$E = \{(c;c;c);(c;c;s);(c;s;c);(s;c;c)(s;s;c)(s;c;s)(c;s;s)(s;s;s)\}$$

b) Probabilidad de salir cara: $p = \frac{2}{3}$ Probabilidad de salir sello: $q = \frac{1}{3}$

c)

Х	0	1	2	3
P(X)	$\frac{1}{27}$	<u>2</u> 9	4 9	$\frac{8}{27}$

Х	1	2	3	4	5	6
P(X)	<u>1</u> 36	$\frac{3}{36}$	$\frac{5}{36}$	7 36	9/36	11 36

Y		2	3	4	5	6	7	8	9	10	11	12
P('	()	<u>1</u> 36	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	<u>5</u> 36	$\frac{6}{36}$	<u>5</u> 36	4 36	$\frac{3}{36}$	$\frac{2}{36}$	<u>1</u> 36

4)

Х	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

5)
$$E(X) = 0.75$$

6)
$$E(X) = $11$$

7) a)
$$\mu_X = 4$$
 $\sigma_X^2 = 10$ $\sigma_X = 3.16$

b)
$$\mu_X = -1$$
 $\sigma_X^2 = 8,25$ $\sigma_X = 2,87$

8) En la ciudad B.

9) a)
$$\mu_X = 0.8$$
 $\sigma_X^2 = 2.16$ $\sigma_X = 1.47$

10)
$$E(X) = $4.000$$

11)
$$E(X) = 2$$

12) a)
$$\mu_X = 2,647$$
 $\sigma_X^2 = 1,877$ $\sigma_X = 1,370$

13)

a)

X_{I}	1	2	3	4
_				

Variable Aleatoria. Teorema de Chebyshev

$P(X_i)$	0,20	0,29	0,31	0,20
F(X)	0,20	0,49	0,80	1

b) Los tipos 1 y 2, aproximadamente.

14)
$$E(X) = \frac{35}{8}$$

15)
$$E(X) = \frac{7}{2} \quad Var(X) = \frac{15}{4} \quad \sigma = \frac{\sqrt{15}}{2}$$

16)
$$Var(3x+5,6) = \frac{387}{5}$$

17) a)
$$a = \frac{1}{8}$$

17) a)
$$a = \frac{1}{8}$$
 b) 31% c) $E(X) = \frac{4}{3} Var(X) = \frac{8}{9}$

18) a)
$$a = 20$$

b)
$$F(X) = 5x^4 - 4x^5$$

18) a)
$$a = 20$$
 b) $F(X) = 5x^4 - 4x^5$ c) $P(X \le 2 \atop 3) = 0,461 \cong 46\%$

19) a)
$$k = 1,2$$
 b) $0,25$

b)
$$0,25$$

$$201 \text{ a) } F(X) - 1.67$$

20) a)
$$E(X) = 1.67$$
 b) $Var(X) = 0.055$

21) a)
$$f(x) =\begin{cases} 2e^{-2x} & \text{Si } x \ge 0\\ 0 & \text{Si } x < 0 \end{cases}$$
 b) $P(X < 2) = e^{-4}$ c) $P(-3 < X < 4) = 1 - e^{-8}$

1) a)
$$f(x) = \begin{cases} 1 & \text{old} \\ 0 & \text{Si } x < 0 \end{cases}$$
 b) $P(X < 2) = e^{-4}$ c) $P(-3 < X)$

ACTIVIDAD 2

- 1) 60,9%
- 2) 91%
- 3) a) A cargo del alumno b) $\mu_X = 19.9$ $\sigma_X = 4.27$ c) 0% d) 75% e) 89%

- 4) 84%
- 5) a) 4% b) 43,75%
- 6) a) P(0.0528 < x < 0.9472) = 0.9838 b) $P(0.0528 < x < 0.9472) \ge 0.75$

Probabilidad y Estadística. Variable Aleatoria. Teorema de Chebyshev

7)
$$\varepsilon = 3,46$$

8) a)
$$k = 5$$
 $P(9000 < x < 16000) \ge 0.96$ b) $k = 1.3$ $P(11567 < x < 13433) \ge 0.4375$

9)
$$\frac{9}{10}$$

10)
$$C = 10$$