Asignatura: CONTROL BÁSICO

TEMAS:

- Sistemas de Segundo Orden
- Sistemas de Orden Superior

Facultad de Ingeniería – UNER Carrera: Bioingeniería Plan de estudio: 2008

SISTEMAS de SEGUNDO ORDEN

Función de trasferencia

$$\frac{Vo(s)}{Vi(s)} = \frac{1/LC}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Frecuencia natural

$$\check{S}_n = \frac{1}{\sqrt{LC}}$$

Sistemas de Segundo Orden

 $Y"(t) + 2.\text{'} .wnY'(t) + wn^2 Y(t) = K.wn^2 X(t) \qquad \begin{array}{l} X(t) = entrada \\ Y(t) = salida \end{array}$

Aplicando Laplace y considerando condiciones iniciales nulas:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{K.wn^2}{s^2 + 2'.wn.s + wn^2} = \frac{K}{T^2.s^2 + 2'.T.s + 1}$$
Función de transferencia de segundo orden

Donde: ' = coeficiente de amortiguamiento, normalmente 0< ' <1 **wn**= frecuencia natural no amortiguada

 $T \rightarrow$ Constante de tiempo de un sistema de Seg. Orden T=1/wn K= ganancia del sistema

Sistemas de Segundo Orden

En el denominador de G(s) se encuentran los polos, que dan la estabilidad y características a la respuesta transitoria, para encontrarlos hacemos:

$$D(s) = s^2 + 2 \ ' \ .wn. \ s + wn^2 = 0 \ => \ resolvente \ => ??????????$$

Polos de Segundo Orden
$$\rightarrow$$
 $p_{1, p_2} = -' wn \pm wn \sqrt{'^2 - 1}$

SISTEMAS DE SEGUNDO ORDEN

- Subamortiguado 0< ζ<1
 <p>Respuesta transitoria oscilatoria
- 2.- Amortiguamiento critico $\zeta=1$

Respuesta deja de oscilar

- 3.- Sobreamortiguado $\zeta>1$ Respuesta nunca oscila
- 4.- No amortiguado ζ =0 Respuesta oscilatoria o críticamente estable

Que pasa si ζ <0 ????

Sistemas de Segundo Orden

Polos de Segundo orden en el plano complejo cuando 0 <<<1

$$\dagger = 'wn$$

- ' $wn \pm jwd$

$$wd = wn\sqrt{1 - '^2}$$

$$' = \cos S$$

Sistemas de segundo orden: Respuesta al Escalón

$$\frac{Y(s)}{X(s)} = \frac{K.\tilde{S}_n^2}{s^2 + 2'.\tilde{S}_n s + \tilde{S}_n^2} \quad X(s) = \frac{M}{s}$$

(1) Caso subamortiguado (0 < ' < 1): en este caso C(s)/R(s) se escribe

$$\frac{X(s)}{Y(s)} = \frac{K.\check{S}_n^2}{(s+'\check{S}_n + j\check{S}_d)(s+'\check{S}_n - j\check{S}_d)}$$

donde $\check{S}_d = \check{S}_n \sqrt{1 - \check{r}^2}$ se denomina frecuencia natural amortiguada

$$Y(s) = \frac{K.M.\tilde{S}_{n}^{2}}{(s^{2} + 2'\tilde{S}_{n}s + \tilde{S}_{n}^{2})s} = K.M\left(\frac{1}{s} - \frac{s + '\tilde{S}_{n}}{(s + '\tilde{S}_{n})^{2} + \tilde{S}_{d}^{2}} - \frac{'\tilde{S}_{n}}{(s + '\tilde{S}_{n})^{2} + \tilde{S}_{d}^{2}}\right)$$

Sistemas de segundo orden: Respuesta al Escalón

y conociendo que:

$$\mathsf{L}^{-1}\bigg[\frac{s+\mathsf{'}\,\mathsf{S}_n}{(s+\mathsf{'}\,\mathsf{S}_n)^2+\mathsf{S}_d^2}\bigg] = e^{-\mathsf{'}\,\mathsf{S}_n t}\cos\mathsf{S}_d t \qquad \mathsf{L}^{-1}\bigg[\frac{\mathsf{S}_d}{(s+\mathsf{'}\,\mathsf{S}_n)^2+\mathsf{S}_d^2}\bigg] = e^{-\mathsf{'}\,\mathsf{S}_n t}sen\,\mathsf{S}_d t$$

Se obtiene la salida en el tiempo

$$y(t) = K.M \left[1 - e^{-\zeta \hat{S}_n t} \cdot \left(\cos(\hat{S}_d t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \cdot sen(\hat{S}_d t) \right) \right] \qquad (t \ge 0)$$

Por relaciones trigonométricas se puede expresar también como:

$$y(t) = K.M \left[1 - \frac{e^{-\cdot S_a t}}{\sqrt{1 - \frac{t^2}{2}}} sen\left(\check{S}_a t + \tan^{-1} \frac{\sqrt{1 - \frac{t^2}{2}}}{t} \right) \right] \qquad (t \ge 0)$$

Sistemas de segundo orden: Respuesta al Escalón Para K=1 y M=1

Sistemas de segundo orden: Respuesta al Escalón

• Tiempo pico

$$t_p = \frac{f}{\check{S}_d}$$

• Tiempo de crecimiento

$$t_r = \frac{1}{\tilde{S}_d} \tan^{-1} \left[-\frac{\sqrt{1-g^2}}{g} \right] = \frac{f-S}{\tilde{S}_d}$$

• Máximo Sobreimpulso o Máxima Sobre elongación (Mp)

$$Mp(\%) = e^{-(g/\sqrt{1-g^2})f}.100$$

Sistemas de segundo orden: Respuesta al Escalón

• Tiempo de establecimiento 4

Criterio del 2% $t_s = \frac{4}{g\tilde{S}_n}$

Criterio del 5% $t_s = \frac{3}{g\tilde{S}_n}$

Sistemas de segundo orden con =1 y =0 : Respuesta al Escalón con MATLAB

(3) Caso de amortiguamiento crítico ($^{\prime}=1$)

en este caso se tienen dos polos reales iguales:

$$Y(s) = \frac{K.M.\tilde{S}_n^2}{(s + \tilde{S}_n)^2 s}$$

la transformada inversa: $y(t) = K.M \left(1 - e^{-\tilde{S}_n t} (1 + \tilde{S}_n t)\right)$ $(t \ge 0)$

(4) Caso SIN amortiguamiento (' =0)

en este caso se tienen dos polos imaginarios puros:

$$Y(s) = \frac{K.M.\tilde{S}_n^2}{(s^2 + \tilde{S}_n^2).s}$$

la transformada inversa:

$$y(t) = K.M (1 - \cos \tilde{S}_n t) \qquad (t \ge 0)$$

Sistemas de segundo orden con >1 Respuesta al Escalón

(2) Caso sobreamortiguado ($^{\prime}$ > 1) :

$$Y(s) = \frac{K.M.\tilde{S}_n^2}{(s + \tilde{S}_n + \tilde{S}_n\sqrt{\tilde{S}_n^2 - 1})(s + \tilde{S}_n - \tilde{S}_n\sqrt{\tilde{S}_n^2 - 1})s}$$

Obteniendo Y(s) en fracciones parciales queda:

$$Y(s) = K.M \left(\frac{1}{s} + \frac{{w_n}^2}{p_1.(p_1 - p_2)} * \frac{1}{(s - p_1)} + \frac{{w_n}^2}{p_2.(p_2 - p_1)} * \frac{1}{(s - p_2)} \right)$$

Sistemas de segundo orden con >1 : Respuesta al Escalón

La transformada inversa de Laplace de Y(s) es:

$$y(t) = K.M \left(1 - \frac{w_n}{2\sqrt{e^2 - 1}} \left(\frac{e^{p_1.t}}{p_1} - \frac{e^{p_2.t}}{p_2} \right) \right)$$

Siendo
$$p_1 = -' .w_n - w_n . \sqrt{^{'2} - 1}$$

 $p_2 = -' .w_n + w_n . \sqrt{^{'2} - 1}$

Sistemas de segundo orden: Respuesta al Impulso

(Resolver con Matlab a partir de las respuesta al escalón)

$$\frac{Y(s)}{X(s)} = \frac{K.\mathring{S}_n^2}{s^2 + 2'\mathring{S}_n s + \mathring{S}_n^2} \quad X(s) = M$$

Utilizando transformada inversa obtenemos las siguientes soluciones de C(t)

$$y(t) = \frac{K.M.W_n}{\sqrt{1 - Z^2}} e^{-z \cdot w_n t} sen W_n \sqrt{1 - Z^2} t \quad (t \ge 0)$$

para
$$('=1)$$

$$y(t) = K.M.\tilde{S}_n^2 t e^{-\tilde{S}_n t} \qquad (t \ge 0)$$

$$y(t) = \frac{K.M.\tilde{S}_n}{2\sqrt{t^2 - 1}} \left(e^{-(t^2.\tilde{S}_n - \tilde{S}_n.\sqrt{t^2 - 1})t} - e^{-(t^2.\tilde{S}_n + \tilde{S}_n.\sqrt{t^2 - 1})t}\right) \qquad (t \ge 0)$$

Sistemas de segundo orden: Respuesta al Impulso para distintos 10.8 10.7 10.4 10.7 1

Sistemas de orden superior

 Los sistemas de orden superior contienen ceros y polos adicionales que afectan al comportamiento tanto en régimen transitorio como permanente.

Sistemas de orden superior

 Partimos de una función de transferencia genérica del tipo:

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_l s + b_o}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_o} \qquad H(s) = K \prod_{j=1}^{n-1} (s + p_j)$$

 Separando polos en el origen, polos reales y polos complejos queda:

$$H(s) = K \frac{\prod_{j=1}^{n} (s-z_{j})}{s' \prod_{h=1}^{n} (s-\uparrow_{h})^{-h} \prod_{h=1}^{n} (s-\Gamma_{k} + jS_{k})^{h_{k}} (s-\Gamma_{k} - jS_{k})^{h_{k}}}$$

Sistemas de orden superior

o Descomponiendo en fracciones simples:

$$H(s) = \sum_{u=1}^{l} \frac{A_{u}}{s^{u}} + \sum_{h=1}^{q} \sum_{u=1}^{h} \frac{B_{hu}}{\left(s - \uparrow_{h}\right)^{u}} + \sum_{h=1}^{x} \sum_{u=1}^{h} \frac{C_{hu}}{\left(s - \Gamma_{h} + j\tilde{S}_{h}\right)^{u}} + \frac{C_{hu}^{*}}{\left(s - \Gamma_{h} - j\tilde{S}_{h}\right)^{u}}$$

o Agrupando términos:

$$H(s) = \sum_{n=1}^{\infty} \frac{A_n}{s^n} + \sum_{h=1}^{\infty} \sum_{u=1}^{\infty} \frac{B_{hu}}{\left(s - \frac{1}{h}\right)^u} \sum_{k=1}^{\infty} \sum_{u=1}^{h} \frac{M_{hu}s + N_{hu}}{\left(s^2 - 2\Gamma_k s + \left(\hat{\mathsf{S}}_k^2 + \Gamma_k^2\right)\right)}$$

Con lo que estos sistemas pueden verse como una combinación de sistemas de primer y segundo orden.

Sistemas de orden superior

- o Si agregamos polos:
 - A) Afectan la naturaleza de la respuesta
 - B) A medida que el o los polos adicionales tienen parte real mas negativa que la de los polos dominantes, pierden su efecto en la respuesta temporal.
- o Si adicionamos ceros:
 - A) Afectan la amplitud de la respuesta pero NO su naturaleza (es decir seguirán siendo de tipo amortiguada, sobreamortiguada, etc).
 - B) Si el valor del cero es próximo al del polo dominante tiene mayor efecto.
 - C) Los ceros pueden tener parte real positiva y el sistema seguir siendo estable y de respuesta inversa.

Sistemas equivalentes de orden reducido

- En algunos casos, los sistemas de orden superior pueden simplificarse para dar lugar a sistemas de orden inferior más fáciles de analizar.
- EL SISTEMA APROXIMADO DEBE TENER LA MISMA GANANCIA ESTÁTICA QUE EL SISTEMA ORIGINAL

MÉTODOS DE SIMPLIFICACIÓN:

<u>A) Dominancia</u>: Eliminando Polos y ceros alejados (no dominantes).

<u>B) Cancelaciones</u>: Eliminando Pares de polos y ceros próximos.

Sistemas equivalentes de orden reducido

A) Polos dominantes:

B) Cancelaciones:

Sistemas con Tiempo Muerto

 Se entiende por tiempo muerto una demora en la medición o un retardo en el funcionamiento del accionador.

$$T = \frac{L}{v}$$

Pasará un T tiempo antes de que el termómetro detecte cualquier cambio en la temperatura del horno

Sistemas con Tiempo Muerto

• Aproximación de PADE:

$$e^{-Tt} = \frac{1 - \frac{Ts}{2} + \frac{(Ts)^2}{8} - \frac{(Ts)^3}{48} + \cdots}{1 + \frac{Ts}{2} + \frac{(Ts)^2}{8} + \frac{(Ts)^3}{48} + \cdots}$$

$$e^{-(\ddagger.s)} \cong \frac{1 - (\ddagger/2) s}{1 + (\ddagger/2) s} = \frac{2 - \ddagger.s}{2 + \ddagger.s}$$

FIN !!!!		
Dudas Preguntas ????	00 452400 MMS, 1597 0036 NO FC79 4607000	