Comigé: Examen 2015

1 5 SEP. 2015

$$(3) \begin{cases} 3-d_1-2d_2=0 \\ d_1^2+d_2^2-2d_1-d_2+1=0 \end{cases} (3) \begin{cases} d_1=3-1d_2 \\ (3-1d_2)^2+d_2^2-2(3-1d_2)-d_2+1=0 \end{cases}$$

(=)
$$\begin{cases} d_{1} = 3 - 2d_{2} \quad (1) \\ 9 - 12d_{2} + 4d_{2}^{2} + d_{2}^{2} - 6 + 4d_{2}^{2} - d_{2} + 1 = 0 \end{cases} (2)$$

$$(=)$$
 $d_2 = \frac{9-1}{10} = \frac{4}{5}$ sou $d_2 = \frac{9+1}{10} = 1$

$$P_{1+i}(-1) = -4 + (1+i) - 2(1-i) + i - 2 = -5 + 5i$$
, $d = 1 + i$ which the lacondition

Il existe un polynôme Q(Z) du 2nd degré en Z tel que
$$P(Z)=(Z+i)Q(Z)$$
.

Utilisons le schéma de Horner pour calculer les coefficients de Q(Z)

P(z)	1	-2+2	2-li	25
- <i>i</i>		- <i>i</i> :	يد ا	- ئەن
Q(z)	1	-2	2	10

$$P(z) = (z+i)Q(z)$$

avec
 $Q(z) = z^2 - 2z + 2$

$$\Delta_{\alpha}' = \lambda - 2 = -\lambda = \lambda^2$$

Les racines de Q(z) sont: Z=1+i et ==1-i.

$$(\vec{OH}, \vec{OC}) = \arg \frac{\vec{Z}_1 - \vec{Z}_3}{\vec{Z}_0 - \vec{Z}_3} (\vec{DM})$$

 $= \arg \frac{1+i}{-i} (\vec{DM})$
 $= \arg (-1+i) (\vec{DM})$
 $= \arg (\sqrt{2} (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i)] (\vec{DM})$
 $= \frac{3\pi}{4} (2\pi)$

e)
$$C(n+i) = (h_{(0,k)} \circ \pi_{(0,\beta)}) (A(-i))$$
, où $h_{(0,k)}$ est l'homdhétie de centre 0 et de rapport positif k et $\pi_{(0,\beta)}$ la rotation de centre 0 et d'angle $\beta (\exists) \not\equiv_{c} = (kais \beta) : \not\equiv_{A}$

(\Rightarrow) $kais \beta = \underbrace{1+i}_{-i} (\exists) kais \beta = V2 : cis \underbrace{3\pi}_{4} (voird))$

(\Rightarrow) $k = V2$ et $\beta = \underbrace{3\pi}_{4} (2\pi)$

Donc $C = (h_{(0,\sqrt{2})} \circ \pi_{(0,\frac{3\pi}{4})}) (A)$

2)
$$z = x + yi$$
, and $x, y \in \mathbb{R}$ at $z = 2 - \frac{1}{2}$ and $z \neq 0$

a) $\forall z \in \mathbb{C}^{+}$, $z = x + yi - \frac{1}{x + yi} = \frac{(x + yi)^{2} - 1}{x + yi}$

$$= \frac{[(x^{2} - y^{2} - 1) + 2xyi](x - yi)}{x^{2} + y^{2}}$$

$$= \frac{(x(x^{2} - y^{2} - 1) + 2xy^{2}) + [2x^{2}y - (x^{2} - y^{2} - 1)y]i}{x^{2} + y^{2}}$$

$$= \frac{x(x^{2} + y^{2} - 1)}{x^{2} + y^{2}} + \frac{y(x^{2} + y^{2} + 1)}{x^{2} + y^{2}}.i$$

ZeiR, avec $2 \neq 0$ (=) $\times (x^2 + y^2 - 1) = 0$ (=) $\times = 0$ ou $\times^2 + y^2 = 1$ iq. carkésienne de (0y) iq. contésienne du cercle (0,1) $E = ((0y) - \{0\}) \cup ((0,1))$

(a) Les lettres me sont pas fordment slistinctes. On a donc 3 possibilités pour choisir chaque des lettres. Ainsi on a $B_3^3=3^3=27$ possibilités pour choisir les 3 lettres.

hes chiffres étant distincts, on a $A_g^5 = \frac{9!}{4!} = 15120$ possibilités pour choisir les 5 chiffres ordonnés.

On peut définir: B3. A5 = 408240 codes.

b) Prour les lettres, on a 2 cas:

-3 fois la lettre A: 1 possibilité

-2 fois la lettre A: C2. C1 = 3.2=6 possibilités nhre de positions (nhre de choix des 2 lettres A) pour la 3 lettre

Pour les chiffres, on a A² · A³ = 20 · 210 = 4200

nhre de positions

possibilités

ales chiffres 1et 6 | pour les 3 chiffres

restant.

Nombre de codes : (1+6).4200=29400

3) a est l'ensemble des dix mots de la plurase.

a)
$$\Omega \longrightarrow \mathbb{R}$$
 $rien \longrightarrow -20$
 $re \longrightarrow 10$
 $Sert \longrightarrow 10$
 $de \longrightarrow 10$
 $courin \longrightarrow 20$
 $re \longrightarrow 10$
 $fourt \longrightarrow -20$
 $partin \longrightarrow -20$
 $re \longrightarrow 10$
 $re \longrightarrow 10$

Ecant-type
$$S(X) = \sqrt{V(X)}$$

Loi de probabilité
$$f(10) = P(X=10) = \frac{5}{10} = \frac{1}{2}$$

$$f(20) = P(X=20) = \frac{1}{10}$$

$$f(-20) = P(X=-20) = \frac{4}{10} = \frac{2}{5}$$
Espérance mathématique;

$$E(X) = \sum_{i} x_{i} p_{i}$$
, où $p_{i} = P(X = x_{i})$
 $= 10 \cdot \frac{1}{2} + 20 \cdot \frac{1}{10} + (-20) \cdot \frac{2}{5}$
 $= 5 + 2 - 8 = -120$
Le jeu est défavorable au
joueur.

où
$$V(X) = \sum_{i} p_{i}(x_{i} - E(X))^{2}$$

 $= \frac{1}{2} (10 + 1)^{2} + \frac{1}{10} (20 + 1)^{2} + \frac{1}{5} (-20 + 1)^{2}$
 $= \frac{1}{2} \cdot 121 + \frac{1}{10} \cdot 441 + \frac{1}{5} \cdot 361$
 $= 249$
 $(X) = \sqrt{249} \sim 15,78$

b) Le jeu est équilibre (=)
$$E(X)=0$$

(=) $10 \cdot \frac{1}{2} + 20 \cdot \frac{1}{10} + x \cdot \frac{2}{5} = 0$ $x=$ perte pour un mot contenant $(=)$ $\frac{2}{5}x=-7$ (=) $x=-\frac{35}{2}=-17,5$ 2 voyelles

ha perte devrait être de-17,5 points.

|| 1) a)
$$\Gamma: 4x^2 + y^2 + 24x - 4y + 36 = 0$$

(=) $4(x^2 + 6x + 9) + (y^2 - 4y + 4) - 4 = 0$

(=) $4(x + 3)^2 + (y - 2)^2 = 4$

(=) $\frac{(x + 3)^2}{4} + \frac{(y - 2)^2}{4} = 1$

(*) $\frac{(x + 3)^2}{4} + \frac{(x + 3)^2}{4} = 1$

(*) est une ellipse de centre $\Omega(-3, 2)$.

 $a^2 + 4, b^2 = 1$

Donc $a = 2, b = 1$ et $c = \sqrt{3}$

Exentraité: $E = \frac{c}{a} = \frac{\sqrt{3}}{2}$.

b) Posons
$$\begin{cases} X = X+3 \end{cases}$$
 système d'équations olu $Y = y-2$ changement de repères $(0, \vec{v}, \vec{j}) \rightarrow (\Omega, \vec{v}, \vec{j})$.

Dans le repère (2, 2,3),

$$P: \frac{Y^2}{4} + \frac{X^2}{4} = 1$$

	Dans (52, 2', 7')	Dans (0, 2, 7)
axe fooal D	X = 0	x=-3
Sommets sur l'axe focal	$S_{1}(0, \alpha) = S_{1}(0, 2)$ $S_{2}(0, -\alpha) = S_{2}(0, -2)$	5, (-3, 4) S ₂ (-3, 0)
Sommets sur l'axe non focal	S3(b,0)=S3(1,0) S4(-b,0)=S4(-1,0)	S3 (-2,2) S4 (-4,2)
foyers	$F_{1}(0,c) = F_{1}(0,\sqrt{3})$ $F_{2}(0,-c) = F_{2}(0,-\sqrt{3})$	$F_{1}(-3, 2+\sqrt{3})$ $F_{2}(-3, 2-\sqrt{3})$

2) He est une hyperbole de centre O(0,0).

L'une de ses directuas da pour équation $X = \frac{32}{5}$.

Donc (Ox) est l'axe focal de Je et $H: \frac{x^2}{2^2} - \frac{y^2}{12} = 1$.

L'une de ses asymptotes obliques a pour équation $y = -\frac{3}{4} \times (2)$.

(1) et (2) (=) $\begin{cases} \frac{a^2}{c} = \frac{32}{5} & \text{avec } c^2 = a^2 + b^2 \\ \frac{b}{a} = \frac{3}{4} \end{cases}$

(9)
$$a^{2} = \frac{32}{5}c$$
 (9) $a^{2} = \frac{32}{5}c$ (3) $b^{2} = \frac{9}{16}a^{2}$ (9) $a^{2} = \frac{32}{5}c$ (3) $a^{2} = \frac{32}{5}c$ (4)

(4):
$$6^{\frac{2}{3}} \frac{18}{5}.10=36$$
 (=) $6=6$
 $76: \frac{x^2}{64} - \frac{y^2}{36} = 1$

3) $4^{\frac{1}{2}} \frac{1}{4} - \frac{y^2}{4} = 1$

(a) $4x-8=(4-y)^2$

(b) $4x-8=(4-y)^2$

(c) $4x-8=(4-y)^2$

(d) $4x-8=(4-y)^2$

(e) $4x-8=(4-y)^2$

(f) $4x-8=(4-y)^2$

(g) $4x-8=(4-y)^2$

(g) $4x-8=(4-y)^2$

(g) $4x-8=(4-y)^2$

(g) $4x-8=4$

(g) $4x-8$

(g) 4

(3): $a^2 = \frac{32}{5}$, 10 = 64 (=) a = 8

147

Lieu

L= {H & Ti | H est elorthocentre du DOPQ}

= {H & Ti | {H} = h, nh2 } , ou h, est la hankeur

passant par Q et h2 la handeur passant par P.

Choix of un repère orthonormé direct (0, 2, 3)

·)
$$B(1,0)$$
 =) $\vec{x} = \vec{OB}$ $(\vec{j} = \vec{OB})$

Equation contéssienne du lieu

Dans le répère $(0, \vec{\lambda}, \vec{x})$, on a

·) Equation contésienne de la : 1 cère platration du lieu

$$(=) \left(\begin{array}{c} x \\ \gamma - \underline{nin \Theta} \\ \cos \Theta + 1 \end{array} \right) \cdot \left(\begin{array}{c} \cos \Theta \\ \sin \Theta \end{array} \right) = 0$$

(=)
$$\cos \theta \cdot x + \sin \theta \gamma - \frac{\sin^2 \theta}{\cos \theta + \lambda} = 0$$
 [$\sin \theta = \frac{\sin^2 \theta}{\cos \theta + \lambda} = 0$ [$\sin^2 \theta = \frac{\sin^2 \theta}{\cos \theta + \lambda} = \frac{\sin^2 \theta}{\cos \theta + \lambda}$ (=) $\cos \theta \cdot x + \sin \theta \cdot y + (\cos \theta - \lambda) = 0$

(=)
$$\cos\theta \cdot x + \sin\theta \cdot y + (\cos\theta - x) = 0$$

e) Equation cartésienne de ha: 2° génératice du lien hall (AB) et PEhz. Donc ha: y=Sin O.

·) Coordonnées de H

$$H(x,y) \in h_{\lambda} \cap h_{\lambda}(z) \begin{cases} \cos \theta \cdot x + \sin \theta \cdot y + (\cos \theta - \lambda) = O(\lambda) \\ y = \sin \theta (\lambda) \end{cases}$$

$$\cos\theta \cdot x + \sin^2\theta + \cos\theta - 1 = 0$$
 (=) $\cos\theta \cdot x - \cos^2\theta + \cos\theta = 0$ (3)

Vu que
$$P \neq D$$
 (sinon $Q = D$ et OPQ n'est pas un triangle) et que $P \neq D'$ (sinon $Q = D'$ et Id), $\theta \neq \overline{Q}(T)$, $\cos \theta \neq 0$.

H (cos 0 -1, sin 0)

Remarquer que P#B, car sinon Q=0 et OPQ n'est pas un triangle.

·) Equation contésienne de L

$$H(x,y) \in L(=)$$
 $\begin{cases} x = \cos \theta - 1, \theta \in \mathbb{R} - \{k : \frac{\pi}{2} \mid k \in \mathbb{Z}\} \\ y = \sin \theta \end{cases}$ $(=) (x+1)^2 + y^2 = 1$ eq. carté sienne du ancle $q = \ell(A,1)$

