Z6597084

HIMADRI MANDAL

November 19, 2021

§1 Solution

Solution.

$$Q(x) \stackrel{\text{def}}{=} P(x)P(x+1) - P(x^2 + x + 1)$$

Q is a polynomial and is =0 for all reals, this means $Q(x)\equiv 0$. So, $P(x)P(x+1)=P(x^2+x+1)\ \forall\ x\in\mathbb{C}$ Let α be a root of P, then clearly $\alpha^2+\alpha+1, \alpha^2-\alpha+1$ are also roots.

Claim — Only possible root is $\pm i$.

Proof. Assume FTSOC, there exists a root which is not $= \pm i$ We know $|x^2 - x + 1| = |-x^2 + x - 1|$, so using triangle inequality,

$$|x^2 + x + 1| + |-x^2 + x - 1| \ge 2|x|$$

Unless $|x^2 + x + 1| = |x^2 - x + 1| = |x|$, we run into problems. It is easy to see that this happens only for $x = \pm i$. So, the only possible roots are $\pm i$.

Let $P = (x - i)^a (x + i)^b$ which always works. So, $P = \{\{(x - i)^a (x + i)^b : a, b \ge 0\}, 0, 1\}$ are the only solutions.