Kinetik

Reaktionskinetik ist die Lehre von der Geschwindigkeit chemischer Reaktionen.

Reaktionsmechanismen sind detaillierte Beschreibungen, wie eine Reaktion abläuft.

Kollision zwischen einem Molekül A₂ und einem Molekül X₂ unter Bildung von zwei Molekülen HX

$$A_2(g) + X_2(g) \longrightarrow 2 AX(g)$$

Reaktionsgeschwindigkeit

$$v(\mathbf{AX}) = \frac{\Delta c(\mathbf{AX})}{\Delta t}$$

$$v(AX) = \frac{dc(AX)}{dt}$$

$$v(\mathbf{A}_2) = v(\mathbf{X}_2) = -\frac{dc(\mathbf{A}_2)}{dt} = -\frac{dc(\mathbf{X}_2)}{dt}$$

$$A_2(g) + X_2(g) \longrightarrow 2 AX(g)$$

$$v(AX) = -2v(A_2) = -2v(X_2)$$

$$\frac{1}{2}\frac{dc(AX)}{dt} = -\frac{dc(A_2)}{dt} = -\frac{dc(X_2)}{dt}$$

Geschwindigkeitsgesetz: Mathematische Gleichung, welche die Reaktionsgeschwindigkeit mit den Konzentrationen der Reaktanden verbindet.

$$A + B \longrightarrow C$$

$$\frac{dc(C)}{dt} = -\frac{dc(A)}{dt} = -\frac{dc(B)}{dt} = k \cdot c^{x}(A) \cdot c^{y}(B)$$

Reaktionsordnung: Summe der Exponenten

Bestimmung von Geschwindigkeitsgesetzen anhand von Anfangsgeschwindigkeiten:

$$A + B \longrightarrow C$$

Folgende Anfangsgeschwindigkeiten wurden bei unter-schiedlichen Ausgangskonzentrationen von A und B gemessen:

Experiment-Nr.	$c_o(A)$ in	$c_o(B)$ in	Anfangsgeschwindigkeit
	mol/L (M)	mol/L (M)	in mol/L·s (M/s)
1	0.100	0.100	4.0 · 10 ⁻⁵
2	0.100	0.200	4.0 · 10 ⁻⁵
3	0.200	0.100	16.0 · 10 ⁻⁵

Aufgaben:

- a) Bestimmung des Geschwindigkeitsgesetzes
- b) Berechnung der Geschwindigkeitskonstante *k* (mit korrekter Masseinheit)
- c) Berechnung der Anfangsgeschwindigkeit für $c_o(A) = 0.050 \text{ M}$ und $c_o(B) = 0.100 \text{ M}$

$$v = k \cdot c^{x}(A) \cdot c^{y}(B)$$

a) Vergleich Exp. 1 mit Exp. 2:

 $c_o(A) = const.$ $c_o(B)$ wird verdoppelt

Die Anfangsgeschwindigkeit ist konstant. Die Reaktionsgeschwindigkeit ist nullter Ordnung bezüglich c(B).

Vergleich Exp. 1 mit Exp. 3:

 $c_0(A)$ = wird verdoppelt. $c_0(B)$ = const.

Die Anfangsgeschwindigkeit ist vervierfacht. Die Reaktionsgeschwindigkeit ist zweiter Ordnung bezüglich c(A).

$$v = k \cdot c^2(\mathbf{A}) \cdot c^0(\mathbf{B}) = k \cdot c^2(\mathbf{A})$$

b) Nutzung der Daten aus Experiment 1

$$k = \frac{v}{c^2(A)} = \frac{4.0 \cdot 10^{-5} M \cdot s^{-1}}{(0.100M)^2} = 4.0 \cdot 10^{-3} M^{-1} \cdot s^{-1}$$

$$v = k \cdot c^2(A) = 4.0 \cdot 10^{-3} M^{-1} \cdot s^{-1} \cdot (0.050M)^2$$

$$v = 1.0 \cdot 10^{-5} M \cdot s^{-1}$$

Reaktionen erster Ordnung: $A \longrightarrow B$

$$v(A) = -\frac{dc(A)}{dt} = k \cdot c(A) = \frac{dc(B)}{dt}$$

$$\frac{dc(A)}{c(A)} = -k \cdot dt$$

$$\int_{c_0(A)}^{c(A)} \frac{dc(A)}{c(A)} = -\int_0^t k \cdot dt$$

$$\ln c(\mathbf{A}) - \ln c_0(\mathbf{A}) = -k \cdot (t - 0)$$

$$\ln c(\mathbf{A}) = -\mathbf{k} \cdot \mathbf{t} + \ln c_0(\mathbf{A})$$

$$\ln \frac{c(\mathbf{A})}{c_0(\mathbf{A})} = -\mathbf{k} \cdot \mathbf{t}$$

$$\frac{c(A)}{c_0(A)} = e^{-k \cdot t}$$

$$c(\mathbf{A}) = c_0(\mathbf{A}) \cdot e^{-k \cdot t}$$

Auftragung von In c(A) gegen t

Auftragung von c(A) gegen t

Halbwertszeit $t_{\frac{1}{2}}$: Reaktionszeit, nach der die Hälfte der Reaktanden umgesetzt ist.

$$c(A) = \frac{1}{2} c_0(A)$$

$$\ln \frac{\frac{1}{2}c_0(A)}{c_0(A)} = -k \cdot t_{\frac{1}{2}} \qquad \qquad -\frac{1}{k} \cdot \ln \frac{\frac{1}{2}c_0(A)}{c_0(A)} = t_{\frac{1}{2}}$$

$$\frac{1}{k} \cdot \ln 2 = t_{\frac{1}{2}} = \frac{0.693}{k}$$

 $t_{\frac{1}{2}}$ ist nicht konzentrationsabhängig.

Beispiel: Umlagerungsreaktion von Methylisonitril in Acetonitril

$$CH_3-N\equiv C \longrightarrow CH_3-C\equiv N$$

Gegeben: Reaktion erster Ordnung

Partialdrücke p(CH₃NC) bei 198°C

Gesucht: k, $t_{\frac{1}{2}}$

Geschwindigkeitsgesetz:

$$-\frac{dc(CH_3NC)}{dt} = k \cdot c(CH_3NC)$$

$$c = \frac{n}{V} = \frac{p}{RT}$$

$$-\frac{dp(CH_3NC)}{RTdt} = k \cdot \frac{p}{RT}(CH_3NC)$$

$$-\frac{dp(\text{CH}_3\text{NC})}{dt} = k \cdot p(\text{CH}_3\text{NC})$$

$$\ln p(\text{CH}_3\text{NC}) = -k \cdot t + \ln p_0(\text{CH}_3\text{NC})$$

Die Steigung der Geraden in Graphik (b) beträgt -k.

$$-k = \frac{3.45 - 5.0}{30000s^{-1}} = -5.2 \cdot 10^{-5}s^{-1}$$

$$k = 5.2 \cdot 10^{-5} s^{-1}$$

$$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{5.2 \cdot 10^{-5} s^{-1}} = 13300s$$

Reaktion zweiter Ordnung

$$-\frac{dc(A)}{dt} = k \cdot c^2(A)$$

$$\frac{dc(A)}{c^2(A)} = -k \cdot dt$$

$$\int_{c_0(A)}^{c(A)} \frac{dc(A)}{c^2(A)} = -\int_0^t k \cdot dt$$

$$-(\frac{1}{c(A)} - \frac{1}{c_0(A)}) = -k \cdot (t - 0)$$

$$\frac{1}{\operatorname{c}(A)} - \frac{1}{c_0(A)} = k \cdot t$$

$$\frac{1}{c(A)} = k \cdot t + \frac{1}{c_0(A)}$$

● 15.**6** Auftragung von 1/c (A) gegen die Zeit t für eine Reaktion 2. Ordnung. Für jede Art Reaktion 2. Ordnung ergibt sich eine Gerade dieser Art

$$\frac{1}{\frac{1}{2}c_0(A)} = k \cdot t_{\frac{1}{2}} + \frac{1}{c_0(A)}$$

$$\frac{2}{\mathbf{c_0}(\mathbf{A})} - \frac{1}{\mathbf{c_0}(\mathbf{A})} = \mathbf{k} \cdot \mathbf{t}_{\frac{1}{2}}$$

$$\frac{1}{k \cdot c_0(A)} = t_{\frac{1}{2}}$$

 $t_{\frac{1}{2}}$ ist konzentrationsabhängig.

Bestimmung der Reaktionsordnung aus dem integrierten Geschwindigkeitsgesetz

$$NO_2(g) \longrightarrow NO(g) + \frac{1}{2}O_2(g)$$

Zeit t (s)	c (NO ₂) (M)	In c (NO ₂)	1/ c (NO ₂)
0.0	0.01000	-4.610	100
50.0	0.00787	-4.845	127
100.0	0.00649	-5.038	154
200.0	0.00481	-5.337	208
300.0	0.00380	-5.573	263

Linearisierung nach erster bzw. zweiter Ordnung

$$\ln c(\mathsf{NO}_2) = -k \cdot t + \ln p_0(\mathsf{NO}_2)$$

$$\frac{1}{c(\mathsf{NO}_2)} = k \cdot t + \frac{1}{c_0(\mathsf{NO}_2)}$$

Die Reaktion ist zweiter Ordnung.

Reaktionen nullter Ordnung

$$-\frac{dc(A)}{dt} = k$$

$$dc(\mathbf{A}) = -\mathbf{k} \cdot dt$$

$$\int_{c_0(\mathbf{A})}^{c(\mathbf{A})} dc(\mathbf{A}) = -\int_0^t k \cdot dt$$

$$c(\mathbf{A}) - c_0(\mathbf{A}) = -\mathbf{k} \cdot (\mathbf{t} - \mathbf{0})$$

$$c(\mathbf{A}) = -\mathbf{k} \cdot \mathbf{t} + c_0(\mathbf{A})$$

$$\frac{1}{2}c_0(A) = -k \cdot t_{\frac{1}{2}} + c_0(A)$$

$$-\frac{1}{2}c_0(\mathbf{A}) = -k \cdot t_{\frac{1}{2}}$$

$$\frac{c_0(\mathbf{A})}{2k} = t_{\frac{1}{2}}$$

 $t_{\frac{1}{2}}$ ist konzentrationsabhängig.

Charakteristische Beziehungen

Ord- nung		Zeitabhängigkeit der Konzentration	Lineare Beziehung	Halbwertszeit
0.	$-\frac{dc(A)}{dt} = k$ (mol·l ⁻¹ ·s ⁻¹ = M· s ⁻¹)	$c(\mathbf{A}) = -\mathbf{k} \cdot \mathbf{t} + c_0(\mathbf{A})$	c(A) gegen t	$\frac{c_0(\mathbf{A})}{2k} = t_{\frac{1}{2}}$
1.	$-\frac{dc(A)}{dt} = k \cdot c(A)$ (s ⁻¹)	$\ln \frac{c(\mathbf{A})}{c_0(\mathbf{A})} = -\mathbf{k} \cdot \mathbf{t}$	In c(A) gegen t	$t_{1/2} = \frac{0.693}{k}$
2.	$-\frac{dc(A)}{dt} = k \cdot c^{2}(A)$ $(\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1} = \mathbf{M}^{-1} \cdot \mathbf{s}^{-1})$	$\frac{1}{\mathrm{c}(\mathrm{A})} = k \cdot t + \frac{1}{c_0(A)}$	1/ <i>c</i> (A) gegen <i>t</i>	$\frac{1}{k \cdot c_0(A)} = t_{\frac{1}{2}}$

Aktivierungsenergie E_a: Differenz der potentiellen Energie der Reaktanden und der potentiellen Energie des aktivierten Komplexes:

Temperaturabhängigkeit der Geschwindigkeitskonstante k

Beispiel: $CH_3-N\equiv C$ \longrightarrow $CH_3-C\equiv N$

Arrhenius-Gleichung

$$k = A \cdot e^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{T}$$

A: reaktionsspezifische Konstante

R: Gaskonstante

Berechnung der Aktivierungsenergie aus zwei Geschwindigkeitskonstanten k_1 und k_2 für zwei Temperaturen T_1 und T_2 :

$$\ln k_1 = \ln A - \frac{E_a}{R} \cdot \frac{1}{T_1} \qquad \qquad \ln k_2 = \ln A - \frac{E_a}{R} \cdot \frac{1}{T_2}$$

$$\ln k_2 - \ln k_1 = \ln A - \frac{E_a}{R} \cdot \frac{1}{T_2} - (\ln A - \frac{E_a}{R} \cdot \frac{1}{T_1})$$

$$\ln k_2 - \ln k_1 = -\frac{E_a}{R} \cdot \frac{1}{T_2} + \frac{E_a}{R} \cdot \frac{1}{T_1}$$

$$\ln k_2 - \ln k_1 = \frac{E_a}{R} \cdot (\frac{1}{T_1} - \frac{1}{T_2})$$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \cdot (\frac{1}{T_1} - \frac{1}{T_2})$$

$$E_a = R \cdot \frac{T_1 \cdot T_2}{T_2 - T_1} \cdot \ln \frac{k_2}{k_1}$$

Beispiel: Umlagerungsreaktion von Methylisonitril in Acetonitril

$$CH_3-N\equiv C \longrightarrow CH_3-C\equiv N$$

Temp. (°C)	k (s ⁻¹⁾	<i>T</i> (K)	1/T (K ⁻¹⁾	In <i>k</i>
189.7	2.52 · 10 ⁻⁵	462.9	2.160 · 10 ⁻³	-10.589
198.9	5.25 · 10 ⁻⁵	472.1	2.118 · 10 ⁻³	-9.855
230.3	6.30 · 10 ⁻⁴	503.5	1.986 · 10 ⁻³	-7.370
251.2	3.16 · 10 ⁻³	524.4	1.907 · 10 ⁻³	-5.757

$$\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{T}$$

Steigung =
$$\frac{\Delta y}{\Delta x} = \frac{-6.6 - (-10.4)}{0.00195K^{-1} - 0.00215K^{-1}} = -1.9 \cdot 10^4 K$$

$$Steigung = -\frac{E_a}{R} = -1.9 \cdot 10^4 K$$

$$E_a = -(Steigung) \cdot R = -(-1.9 \cdot 10^4 K) \cdot 8.314 \frac{J}{mol \cdot K}$$

$$E_a \approx 160kJ \cdot mol^{-1}$$

Berechnung von *k* für eine beliebige Temperatur

ges.: k_2 bei der Temperatur T_2 = 430.0 K

geg.: $k_1 = 2.52 \cdot 10^{-5} \, s^{-1}$ bei $T_1 = 462.9 \, K$ (s.Tabelle), $E_a = 160 \, \text{kJ·mol}^{-1}$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \cdot (\frac{1}{T_1} - \frac{1}{T_2})$$

$$\ln \frac{k_2}{2.52 \cdot 10^{-5} s^{-1}} = \frac{160000 J/mol}{8.314 J/mol \cdot K} \cdot \left(\frac{1}{462.9 K} - \frac{1}{430.0 K}\right) = -3.18$$

$$\frac{k_2}{2.52 \cdot 10^{-5} s^{-1}} = e^{-3.18} = 4.15 \cdot 10^{-2}$$

$$k_2 = 4.15 \cdot 10^{-2} \cdot 2.52 \cdot 10^{-5} s^{-1} = 1.0 \cdot 10^{-6} s^{-1}$$

Da *k* exponentiell von *T* abhängt, bedingt eine kleine Änderung von *T* eine relativ grosse Änderung von *k*.

Bei E_a = 60 kJ/mol führt eine Erhöhung der Temperatur von 300 K auf 310 K zu einer Verdopplung der Reaktionsgeschwindigkeit.

Katalyse

Unkatalysierte Reaktion:

$$A + X \longrightarrow AX$$

Katalysierte Reaktion:

$$A + Kat \longrightarrow AKat$$

$$AKat + X \longrightarrow AX + Kat$$

 \bigcirc 15.**16** Angenommene Reaktionsschritte bei der Zersetzung von N₂O an Gold zu N₂ und O₂

Zersetzung von Wasserstoffperoxid

Unkatalysiert: langsame Reaktion

$$2 H_2O_2(aq) \longrightarrow 2 H_2O(I) + O_2(g)$$

Katalyse mir Bromid-Ionen: schnelle Reaktion

$$2 Br^{-}(aq) + H_2O_2(aq) + 2 H^{+} \longrightarrow 2 H_2O(I) + Br_2(aq)$$

$$Br_2(aq) + H_2O_2(aq) \longrightarrow 2 Br^-(aq) + 2 H^+ + O_2(g)$$

$$2 H_2O_2(aq) \longrightarrow 2 H_2O(I) + O_2(g)$$

Reaktionsweg

Landolt-Reaktion

https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=98&ismovie=-1

Katalytische Oxidation von Ammoniak

https://www.cci.ethz.ch/mainmov.html?picnum=-1&language=0&expnum=59&ismovie=-1