2Gb D-die Mobile DDR SDRAM

8x13, 90FBGA, 64M x32 VDD / VDDQ = 1.8V / 1.8V

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2012 Samsung Electronics Co., Ltd. All rights reserved.

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>	<u>Editor</u>
0.0	- First version for target specification.	Sep. 20, 2011	Target	J.Y.Bae
0.5	- Preliminary datasheet.	Dec. 15, 2011	Preliminary	J.Y.Bae
0.9	-	Dec. 25, 2011	Preliminary	J.Y.Bae
1.0	- Final datasheet.	Jan. 31, 2012	Final	J.Y.Bae
	- Revised DC characteristics.			
	1. IDD0 : 70 -> 60 [mA]			
	2. IDD2N : 8 -> 6 [mA]			
	3. IDD3N : 15 -> 12 [mA]			
	4. IDD4R : 100 -> 85 [mA]			
	5. IDD4W : 80 -> 65 [mA]			
	6. IDD5 : 160 -> 150 [mA]			

Table Of Contents 2Gb D-die Mobile DDR SDRAM

1.0 FEATURES	4
2.0 OPERATING FREQUENCY	4
3.0 ADDRESS CONFIGURATION	4
4.0 ORDERING INFORMATION	4
5.0 FUNCTIONAL BLOCK DIAGRAM	5
6.0 PACKAGE INFORMATION	6
7.0 FUNCTIONAL DESCRIPTION	9
8.0 MODE REGISTER DEFINITION	10 12
9.0 ABSOLUTE MAXIMUM RATINGS	14
10.0 DC OPERATING CONDITIONS	14
11.0 DC CHARACTERISTICS	15
12.0 AC OPERATING CONDITIONS & TIMMING SPECIFICATION	16
13.0 AC TIMMING PARAMETERS & SPECIFICATIONS	17
14.0 AC OPERATING TEST CONDITIONS (VDD = 1.7V to 1.95V, TC = -25°C to 85°C)	19
15.0 INPUT/OUTPUT CAPACITANCE (VDD=1.8, VDDQ=1.8V, TC = 25°C, f=100MHz)	20
16.0 AC OVERSHOOT/UNDERSHOOT SPECIFICATION FOR ADDRESS & CONTROL PINS	21
17.0 AC OVERSHOOT/UNDERSHOOT SPECIFICATION FOR CK, DQ, DQS AND DM PINS	21
18.0 COMMAND TRUTH TABLE	22
19.0 FUNCTIONAL TRUTH TABLE	23

64Mx32 Mobile DDR SDRAM in 90FBGA 8x13

1.0 FEATURES

- VDD/VDDQ = 1.8V/1.8V
- Double-data-rate architecture; two data transfers per clock cycle.
- · Bidirectional data strobe (DQS).
- · Four banks operation.
- Differential clock inputs (CK and CK).
- MRS cycle with address key programs.
 - CAS Latency (2, 3)
 - Burst Length (2, 4, 8, 16)
 - Burst Type (Sequential & Interleave)
- EMRS cycle with address key programs.
 - Partial Array Self Refresh (Full, 1/2, 1/4 Array)
 - Output Driver Strength Control (Full, 1/2, 1/4, 1/8, 3/4, 3/8, 5/8, 7/8)
- Internal Temperature Compensated Self Refresh.
- · All inputs except data & DM are sampled at the positive going edge of the system clock (CK).
- Data I/O transactions on both edges of data strobe, DM for masking.
- · Edge aligned data output, center aligned data input.
- No DLL; CK to DQS is not synchronized.
- · DM for write masking only.
- · Auto refresh duty cycle.
 - 7.8us for -25 to 85 °C
- · Clock stop capability.

2.0 OPERATING FREQUENCY

	DDR400
Speed @ CL2 1)	83Mhz
Speed @ CL3 1)	200Mhz

NOTE:

1) CAS Latency

3.0 ADDRESS CONFIGURATION

Organization	Bank Address	Row Address	Column Address
64M x 32	BA0, BA1	A0 - A13	A0 - A9

⁻ DM is internally loaded to match DQ and DQS identically.

4.0 ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4X2G323PD-8GD8	200MHz(CL=3,t _{RCD} =3,t _{RP} =3),83MHz(CL=2)	LVCMOS	90FBGA 8x13

⁻ K4X2G323PD-8*GD8: 90FBGA (Pb Free, Halogen Free)

⁻ K4X2G323PD-8 $\underline{\mathbf{G}}$ *D8 : Low Power, Extended Temperature (-25 °C ~ 85 °C)

⁻ K4X2G323PD-8G<u>D8</u>* : 200MHz (CL=3)

5.0 FUNCTIONAL BLOCK DIAGRAM

6.0 PACKAGE INFORMATION

6.1 Package Ballout

				90Ball	(6x15) FBG	A			
	1	2	3	4	5	6	7	8	9
Α	VSS	DQ31	VSSQ				VDDQ	DQ16	VDD
В	VDDQ	DQ29	DQ30				DQ17	DQ18	VSSQ
С	VSSQ	DQ27	DQ28				DQ19	DQ20	VDDQ
D	VDDQ	DQ25	DQ26				DQ21	DQ22	VSSQ
E	VSSQ	DQS3	DQ24				DQ23	DQS2	VDDQ
F	VDD	DM3	NC				A13	DM2	VSS
G	CKE	СК	СК				WE	CAS	RAS
Н	A9	A11	A12				CS	BA0	BA1
J	A6	A7	A8				A10	A0	A1
K	A4	DM1	A5				A2	DM0	A3
L	VSSQ	DQS1	DQ8				DQ7	DQS0	VDDQ
М	VDDQ	DQ9	DQ10				DQ5	DQ6	VSSQ
N	VSSQ	DQ11	DQ12				DQ3	DQ4	VDDQ
Р	VDDQ	DQ13	DQ14				DQ1	DQ2	VSSQ
R	VSS	DQ15	VSSQ				VDDQ	DQ0	VDD

[Top View]

6.2 Package Dimension

6.3 Input/Output Function Description

Symbol	Туре	Description	
CK, CK	Input	Clock : CK and $\overline{\text{CK}}$ are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of $\overline{\text{CK}}$. Internal clock signals are derived from CK / $\overline{\text{CK}}$.	
CKE	Input	lock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and o ut drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle ACTIVE POWER-DOWN (row ACTIVE in any banks). CKE is synchronous for all functions except for disabling outs, which is achieved asynchronously. Input buffers, excluding CK, CK and CKE, are disabled during power-down and refresh mode which are contrived for low standby power consumption.	
CS	Input	Chip Select : $\overline{\text{CS}}$ enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when $\overline{\text{CS}}$ is registered HIGH. $\overline{\text{CS}}$ provides for external bank selection on systems with multiple banks. $\overline{\text{CS}}$ is considered part of the command code.	
RAS, CAS, WE	Input	Command Inputs : \overline{RAS} , \overline{CAS} and \overline{WE} (along with \overline{CS}) define the command being entered.	
DM0,DM1, DM2,DM3	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges of DQS. DM pins include dummy loading internally, to match the DQ and DQS loading. For the x32, DM0 corresponds to the data on DQ0-DQ7; DM1 corresponds to the data on DQ8-DQ15, DM2 corresponds to the data on DQ16-DQ23, DM3 corresponds to the data on DQ24-DQ31	
BA0, BA1	Input	Bank Address Inputs : BA0 and BA1 define to which bank an ACTIVE, READ, WRITE or PRECHARGE command is being applied.	
A [n : 0]	Input	Address Inputs: Provide the row address for ACTIVE commands, and the column address and AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the opcode during a MODE REGISTER SET command. BA0 and BA1 determines which mode register (mode register or extended mode register) is loaded during the MODE REGISTER SET command.	
DQ	I/O	Data Inputs/Outputs : Data bus	
DQS0,DQS1, DQS2,DQS3	I/O	Data Strobes: Output with read data, input with write data. Edge-aligned with read data, centered in write data. it is used to fetch write data. For the x32, DQS0 corresponds to the data on DQ0-DQ7; DQS1 corresponds to the data on DQ8-DQ15,DQS2 corresponds to the data on DQ16-DQ23, DQS3 corresponds to the data on DQ24-DQ31	
NC	-	No Connect : No internal electrical connection is present.	
VDDQ	Supply	DQ Power Supply : 1.7V to 1.95V	
VSSQ	Supply	DQ Ground.	
VDD	Supply	Power Supply : 1.7V to 1.95V	
VSS	Supply	Ground.	

7.0 FUNCTIONAL DESCRIPTION

Figure 1. State diagram

8.0 MODE REGISTER DEFINITION

8.1 Mode Register Set (MRS)

The mode register is designed to support the various operating modes of Mobile DDR SDRAM. It includes Cas latency, addressing mode, burst length, test mode and vendor specific options to make Mobile DDR SDRAM useful for variety of applications. The mode register is written by asserting low on CS, RAS, CAS and WE (The Mobile DDR SDRAM should be in active mode with CKE already high prior to writing into the mode register). The states of address pins A0 ~ A13 and BA0, BA1 in the same cycle as $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$ and $\overline{\text{WE}}$ going low are written in the mode register. Two clock cycles are required to complete the write operation in the mode register. Even if the power-up sequence is finished and some read or write operation is executed afterward, the mode register contents can be changed with the same command and two clock cycles. This command must be issued only when all banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0 ~ A2, addressing mode uses A3, Cas latency (read latency from column address) uses A4 ~ A6, A7 ~ A13 is used for test mode. BA0 and BA1 must be set to low for proper MRS operation

Figure 2. Mode Register Set

NOTE

1) RFU (Reserved for future use) should stay "0" during MRS cycle

[Table 1] Burst address ordering for burst length

Burst Length	Starting Address (A3, A2, A1, A0)	Sequential Mode	Interleave Mode
2	xxx0	0, 1	0, 1
2	xxx1	1, 0	1, 0
	xx00	0, 1, 2, 3	0, 1, 2, 3
4	xx01	1, 2, 3, 0	1, 0, 3, 2
4	xx10	2, 3, 0, 1	2, 3, 0, 1
	xx11	3, 0, 1, 2	3, 2, 1, 0
	x000	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7
	x001	1, 2, 3, 4, 5, 6, 7, 0	1, 0, 3, 2, 5, 4, 7, 6
	x010	2, 3, 4, 5, 6, 7, 0, 1	2, 3, 0, 1, 6, 7, 4, 5
8	x011	3, 4, 5, 6, 7, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4
0	x100	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3
	x101	5, 6, 7, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2
	x110	6, 7, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1
	x111	7, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0
	0000	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15
	0001	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 0	1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11,10,13,12,15,14
	0010	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 0, 1	2, 3, 0, 1, 6, 7, 4, 5,10,11, 8, 9, 14,15,12,13
	0011	3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2	3, 2, 1, 0, 7, 6, 5, 4,11,10, 9, 8, 15,14,13,12
	0100	4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3,12,13,14,15, 8, 9, 10,11
	0101	5, 6, 7,8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3, 4	5, 4, 7, 6, 1, 0, 3, 2,13,12,15,14, 9, 8,11,10
	0110	6, 7, 8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3, 4, 5	6, 7, 4, 5, 2, 3, 0, 1,14,15,12,13,10,11, 8, 9
16	0111	7, 8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3, 4, 5, 6	7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8
10	1000	8, 9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3, 4, 5, 6, 7	8, 9,10,11,12,13,14,15, 0, 1, 2, 3, 4, 5, 6, 7
	1001	9, 10, 11, 12, 13, 14,15, 0, 1, 2, 3, 4, 5, 6, 7, 8	9, 8, 11,10,13,12,15,14,1, 0, 3, 2, 5, 4, 7, 6
	1010	10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9	10,11, 8, 9, 14,15,12,13, 2, 3, 0, 1, 6, 7, 4, 5
	1011	11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10	11,10, 9, 8, 15,14,13,12, 3, 2, 1, 0, 7, 6, 5, 4
	1100	12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	12,13,14,15, 8, 9, 10,11, 4, 5, 6, 7, 0, 1, 2, 3
	1101	13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12	13,12,15,14, 9, 8,11,10, 5, 4, 7, 6, 1, 0, 3, 2
	1110	14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13	14,15,12,13,10,11, 8, 9, 6, 7, 4, 5, 2, 3, 0, 1
	1111	15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14	15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

8.2 Extended Mode Register Set (EMRS)

The extended mode register is designed to support for the desired operating modes of DDR SDRAM. The extended mode register is written by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} and high on BA1, low on BA0(The Mobile DDR SDRAM should be in all bank precharge with CKE already high prior to writing into the extended mode register). The state of address pins $AO \sim A13$ in the same cycle as \overline{CS} , \overline{RAS} , \overline{CAS} and \overline{WE} going low is written in the extended mode register. Two clock cycles are required to complete the write operation in the extended mode register. Even if the power-up sequence is finished and some read or write operations is executed afterward, the mode register contents can be changed with the same command and two clock cycles. But this command must be issued only when all banks are in the idle state. AO - A2 are used for partial array self refresh and AS - A7 are used for driver strength control. "High" on BA1 and "Low" on BA0 are used for EMRS. All the other address pins except AO,A1,A2,A5,A6,A7, BA1, BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.

Figure 3. Extended Mode Register Set

NOTE:

1) RFU (Reserved for future use) should stay "0" during EMRS cycle

8.3 Internal Temperature Compensated Self Refresh (TCSR)

- 1. In order to save power consumption, this Mobile DRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the real device temperature.
- 2. TCSR ranges for IDD6 shown in the table are only examples.
- 3. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.

		Self Refresh Current (IDD6)	Unit
Temperature Range	Full Array	1/2 Array	1/4 Array	
85 °C	1700	1400	1200	uA
45 °C	400	270	200	uA

NOTE:

8.4 Partial Array Self Refresh (PASR)

- 1. In order to save power consumption, Mobile DDR SDRAM includes PASR option.
- 2. Mobile DDR SDRAM supports three kinds of PASR in self refresh mode; Full array, 1/2 Array, 1/4 Array.

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

- Full Array

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

- 1/2 Array

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

- 1/4 Array

Partial Self Refresh Area

Figure 4. EMRS code and TCSR, PASR

¹⁾ IDD6 85°C is guaranteed, IDD6 45°C is typical value.

9.0 ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to VSS	V_{IN}, V_{OUT}	- 0.5 ~ 2.7	V
Voltage on VDD supply relative to VSS	VDD	- 0.5 ~ 2.7	V
Voltage on VDDQ supply relative to VSS	VDDQ	- 0.5 ~ 2.7	V
Storage temperature	T _{STG}	- 55 ~ + 150	°C
Power dissipation	P _D	1.0	W
Short circuit current	I _{os}	50	mA

NOTE:

- 1) Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
- 2) Functional operation should be restricted to recommend operation condition.
- 3) Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

10.0 DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to VSS=0V, T_C = -25°C to 85°C)

Parameter		Symbol	Min	Max	Unit	Note
Supply voltage (for device with a nominal VDD of 1.	8V)	VDD	1.7	1.95	V	1
I/O Supply voltage		VDDQ	1.7	1.95	V	1
Input logic high voltage	Address	V _{IH} (DC)	0.8 x VDDQ	VDDQ + 0.3	V	2
put logic flight voltage	Data	VIH(DC)	0.7 x VDDQ	VDDQ + 0.3	V	2
Input logic low voltage	Address	V _{II} (DC)	-0.3	0.2 x VDDQ	V	2
input logic low voltage	Data	V _{IL} (DO)	-0.3	0.3 x VDDQ	V	2
Output logic high voltage	-1	V _{OH} (DC)	0.9 x VDDQ	-	V	I _{OH} = - 0.1mA
Output logic low voltage		V _{OL} (DC)	-	0.1 x VDDQ	V	I _{OL} = 0.1mA
Input leakage current		I _I	-2	2	uA	3
Output leakage current		I _{OZ}	-5	5	uA	

- 1) Under all conditions, VDDQ must be less than or equal to VDD.
 2) These parameters should be tested at the pin on actual components and may be checked at either the pin or the pad in simulation.
- 3) Any input $0V \le VIN \le VDDQ$

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

11.0 DC CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, Tc = -25 to 85°C)

Parameter	Symbol	Test Condition			DDR400	Unit	Note
Operating Current (One Bank Active)	IDD0		RC=tRCmin; tCK=tCKmin; CKE is HIGH; $\overline{\text{CS}}$ is HIGH between valid commands; ddress inputs are SWITCHING; data bus inputs are STABLE			mA	
Precharge Standby Current	IDD2P	all banks idle, CKE is LOW; $\overline{\text{CS}}$ is HIGH, tCK = tCKmin address and control inputs are SWITCHING; data bus	panks idle, CKE is LOW; CS is HIGH, tCK = tCKmin; ress and control inputs are SWITCHING; data bus inputs are STABLE				
in power-down mode	IDD2PS	all banks idle, CKE is LOW; $\overline{\text{CS}}$ is HIGH, CK = LOW, $\overline{\text{C}}$ address and control inputs are SWITCHING; data bus			1.0	mA	
Precharge Standby Current	IDD2N	all banks idle, CKE is HIGH; $\overline{\text{CS}}$ is HIGH, tCK = tCKmin address and control inputs are SWITCHING; data bus	banks idle, CKE is HIGH; $\overline{\text{CS}}$ is HIGH, tCK = tCKmin; dress and control inputs are SWITCHING; data bus inputs are STABLE				
in non power-down mode	IDD2NS	all banks idle, CKE is HIGH; $\overline{\text{CS}}$ is HIGH, CK = LOW, $\overline{\text{C}}$ address and control inputs are SWITCHING; data bus			4	mA	
Active Standby Current	IDD3P	one bank active, CKE is LOW; $\overline{\text{CS}}$ is HIGH, tCK = tCKr address and control inputs are SWITCHING; data bus			6		
in power-down mode	IDD3PS		e bank active, CKE is LOW; $\overline{\text{CS}}$ is HIGH, CK = LOW, $\overline{\text{CK}}$ = HIGH; dress and control inputs are SWITCHING; data bus inputs are STABLE			mA	
Active Standby Current	IDD3N	ne bank active, CKE is HIGH; $\overline{\text{CS}}$ is HIGH, tCK = tCKmin; ddress and control inputs are SWITCHING; data bus inputs are STABLE ne bank active, CKE is HIGH; $\overline{\text{CS}}$ is HIGH, CK = LOW, $\overline{\text{CK}}$ = HIGH; ddress and control inputs are SWITCHING; data bus inputs are STABLE			12	mA	
in non power-down mode (One Bank Active)	IDD3NS				10	IIIA	
Operating Current	IDD4R	1	one bank active; BL=4; CL=3; tCK = tCKmin; continuous read bursts; I _{OUT} =0 mA address inputs are SWITCHING; 50% data change each burst transfer			^	
(Burst Mode)	IDD4W	one bank active; BL = 4; tCK = tCKmin; continuous writaddress inputs are SWITCHING; 50% data change each	,		65	mA	
Refresh Current	IDD5	tRC ≥ tRFC; tCK = tCKmin; burst refresh; CKE is HIGH address and control inputs are SWITCHING; data bus	,		150	mA	1
			TCSR Rai	nge	Values		
			Full Armer	85°C	1700		
		CKE is LOW; t CK = t CKmin;	Full Array	45°C	400	uA	
Self Refresh Current	IDD6	Extended Mode Register set to all 0's; address and control inputs are STABLE;	4/2 A ####	85°C	1400		5
		data bus inputs are STABLE	1/2 Array	45°C	270	uA	
			1/4 Array	85°C	1200	uA	
			1/4 Allay	45°C	200	uA	
Deep Power Down Current	IDD8	Deep Power Down Mode Current		85°C	100	uA	6,7
Doop Fower Down Current	1000	Deep I ower Down Mode Current		45°C	10	u.	0,1

NOTE:

1) IDD5 is measured in the below test condition.

Density	128Mb	256Mb	512Mb	1Gb	2Gb	Unit
t _{RFC}	80	80	110	140	140	ns

- 2) The IDD values need to be measured after devices are properly initialized following all sequences including MRS and EMRS in "Power Up Sequence" section in the specifi-
- 3) Input slew rate is 1V/ns.
- 4) Definitions for IDD: LOW is defined as V $_{IN} \leq 0.1 * VDDQ$;

HIGH is defined as V IN ≥ 0.9 * VDDQ;

STABLE is defined as inputs stable at a HIGH or LOW level;

SWITCHING is defined as: - address and command: inputs changing between HIGH and LOW once per two clock cycles;

- data bus inputs: DQ changing between HIGH and LOW once per clock cycle; DM and DQS are STABLE.

- 5) IDD6 85°C is guaranteed, IDD6 45°C is typical value.
- 6) IDD8 85°C is guaranteed, IDD8 45°C is typical value.
- 7) DPD (Deep Power Down) function is an optional feature, and it will be enabled upon request.

Please contact Samsung for more information.

12.0 AC OPERATING CONDITIONS & TIMMING SPECIFICATION

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input High (Logic 1) Voltage, all inputs	V _{IH} (AC)	0.8 x VDDQ	VDDQ + 0.3	V	1
Input Low (Logic 0) Voltage, all inputs	V _{IL} (AC)	-0.3	0.2 x VDDQ	V	1
Input Crossing Point Voltage, CK and CK inputs	V _{IX} (AC)	0.4 x VDDQ	0.6 x VDDQ	V	2

NOTE:

¹⁾ These parameters should be tested at the pin on actual components and may be checked at either the pin or the pad in simulation.
2) The value of V_{IX} is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same.

13.0 AC TIMMING PARAMETERS & SPECIFICATIONS

Deventor		Obl	DD	R400	11-14	Note
Parameter		Symbol	Min Max		Unit	
Clock cycle time	CL=2	t _{CK}	12.0		ns	1,2
Clock Cycle time	CL=3	CK	5		115	1,2
Row cycle time		t _{RC}	55		ns	
Row active time		t _{RAS}	40	70,000	ns	
RAS to CAS delay		t _{RCD}	15		ns	
Row precharge time		t _{RP}	15		ns	
Row active to Row active delay		t _{RRD}	10		ns	
Write recovery time		t _{WR}	12		ns	
Last data in to Active delay		t _{DAL}	-		-	3
Last data in to Read command		t _{CDLR}	2		tCK	
Col. address to Col. address delay		t _{CCD}	1		tCK	
Clock high level width		t _{CH}	0.45	0.55	tCK	
Clock low level width		t _{CL}	0.45	0.55	tCK	
DQ Output data access time	CL=2		2	8		4
from CK / CK	CL=3	t _{AC}	2	5	ns	4
DQS Output data access time	CL=2	t _{DQSCK}	2	8	ns	
from CK / CK	CL=3	DQSCK	2	5	113	
Data strobe edge to output data edge		t _{DQSQ}		0.4	ns	
Read Preamble	CL=2	t _{RPRE}	0.5	1.1	tCK	
	CL=3	TATAL	0.9	1.1		
Read Postamble		t _{RPST}	0.4	0.6	tCK	
CK to valid DQS-in		t _{DQSS}	0.75	1.25	tCK	
DQS-in setup time		t _{WPRES}	0		ns	5
DQS-in hold time		t _{WPREH}	0.25		tCK	
DQS-in high level width		t _{DQSH}	0.4	0.6	tCK	
DQS-in low level width		t _{DQSL}	0.4	0.6	tCK	
DQS falling edge to CK setup time		t _{DSS}	0.2		tCK	
DQS falling edge hold time from CK		t _{DSH}	0.2		tCK	
DQS-in cycle time		t _{DSC}	0.9	1.1	tCK	
Address and Control	fast slew rate	tio	0.9		ns	7
Input setup time	slow slew rate	t _{IS}	1.1		115	8
Address and Control	fast slew rate	t _{iH}	0.9		ns	7
Input hold time	slow slew rate	7111	1.1			8
Address & Control input pulse width	T	t _{IPW}	2.2			
DQ & DM setup time to DQS	fast slew rate	t _{DS}	0.48		ns	6,7
·	slow slew rate		0.58		1	6,8
DQ & DM hold time to DQS	fast slew rate	t _{DH}	0.48		ns	6,7
DQ & DM input pulse width		+	0.58	+		6,8
		t _{DIPW}	1.2		ns	
DQ & DQS low-impedence time from CK / CK		t _{LZ}	1.0	<u> </u>	ns	1
DQ & DQS high-impedence time from CK / CF	<u> </u>	t _{HZ}		5	ns	
DQS write postamble time		t _{WPST}	0.4	0.6	tCK	

Barranatar	Counch of	DDR40	00	11	Note
Parameter	Symbol	Min	Max	Unit	Note
DQS write preamble time	t _{WPRE}	0.25		tCK	
Refresh interval time	t _{REF}		64	ms	
Mode register set cycle time	t _{MRD}	2		tCK	
Power down exit time	t _{PDEX}	2		tCK	
CKE min. pulse width (high and low pulse width)	t _{CKE}	2		tCK	
Auto refresh cycle time	t _{RFC}	120		ns	9
Exit self refresh to active command	t _{XSR}	120		ns	
Data hold from DQS to earliest DQ edge	t _{QH}	t _{HP} min - t _{QHS}		ns	
Data hold skew factor	t _{QHS}		0.5	ns	
Clock half period	t _{HP}	t _{CL} min or t _{CH} min		ns	
Clock half period	t _{HP}	t _{CL} min or t _{CH} min		ns	
Minimum Deep Power Down Time	t _{DPD}	500		us	

NOTE:

- 1) t_{CK} (max) value is measured at 100ns.
- 2) The only time that the clock Frequency is allowed to be changed is during clock stop, power-down, self-refresh modes.
- 3) In case of below 33MHz (t_{CK} =30ns) condition, SEC could support t_{DAL} (=2*tCK). $t_{\mathsf{DAL}} = (t_{\mathsf{WR}}/t_{\mathsf{CK}}) + (t_{\mathsf{RP}}/t_{\mathsf{CK}})$
- 4) t_{AC} (min) value is measured at the high VDD (1.95V) and cold temperature (-25°C).
 - t_{AC} (max) value is measured at the low VDD (1.7V) and hot temperature (85°C).
 - t_{AC} is measured in the device with half driver strength and under the AC output load condition (Fig.6 in next Page).
- 5) The specific requirement is that DQS be valid (High or Low) on or before this CK edge. The case shown (DQS going from High Z to logic Low) applies when no writes were previously in progress on the bus. If a previous write was in progress, DQS could be High at this time, depending on tooks and tooks.
- 6) I/O Delta Rise/Fall Rate(1/slew-rate) Derating

Data Rise/Fall Rate	ΔtDS	ΔtDH
(ns/V)	(ps)	(ps)
0	0	0
±0.25	+50	+50
±0.5	+100	+100

This derating table is used to increase t_{DS}/t_{DH} in the case where the DQ and DQS slew rates differ. The Delta Rise/Fall Rate is calculated as 1/SlewRate1-1/SlewRate2. For example, if slew rate 1 = 1.0V/ns and slew rate 2 = 0.8V/ns, then the Delta Rise/Fall Rate =-0.25ns/V.

- 7) Input slew rate 1.0 V/ ns.
- 8) Input slew rate 0.5V/ns and < 1.0V/ns.
- 9) Maximum burst refresh cycle: 8

14.0 AC OPERATING TEST CONDITIONS (VDD = 1.7V to 1.95V, TC = -25°C to 85°C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	0.8 x VDDQ / 0.2 x VDDQ	V
Input timing measurement reference level	0.5 x VDDQ	V
Input signal minimum slew rate	1.0	V/ns
Output timing measurement reference level	0.5 x VDDQ	V
Output load condition	See Figure 6	

Figure 5. DC Output Load Circuit

Figure 6. AC Output Load Circuit 1), 2)

1) The circuit shown above represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics). For the half driver strength with a nominal 10pF load parameters t_{AC} and t_{QH} are expected to be in the same range. However, these parameters are not subject to production test but are estimated by design / characterization. Use of IBIS or other simulation tools for system design validation is suggested.

2) Based on nominal impedance at 0.5 x VDDQ.

The impedence for Half(1/2) Driver Strength is designed 55ohm. And for other Driver Strength, it is designed proportionally.

15.0 INPUT/OUTPUT CAPACITANCE (VDD=1.8, VDDQ=1.8V, TC = 25°C, F=100MHz)

Parameter	Symbol	Min	Max	Unit
Input capacitance (A0 ~ A13, BA0 ~ BA1, CKE, CS, RAS, CAS, WE)	CIN1	1.5	3.0	pF
Input capacitance (CK, \overline{CK})	CIN2	1.5	3.5	pF
Data & DQS input / output capacitance	COUT	2.0	4.5	pF
Input capacitance (DM)	CIN3	2.0	4.5	pF

16.0 AC OVERSHOOT/UNDERSHOOT SPECIFICATION FOR ADDRESS & CONTROL PINS

Parameter	Specification
Maximum peak Amplitude allowed for overshoot area	0.9V
Maximum peak Amplitude allowed for undershoot area	0.9V
Maximum overshoot area above VDD	3V-ns
Maximum undershoot area below VSS	3V-ns

Figure 7. AC Overshoot and Undershoot Definition for Address and Control Pins

17.0 AC OVERSHOOT/UNDERSHOOT SPECIFICATION FOR CK, DQ, DQS AND DM PINS

Parameter	Specification
Maximum peak Amplitude allowed for overshoot area	0.9V
Maximum peak Amplitude allowed for undershoot area	0.9V
Maximum overshoot area above VDDQ	3V-ns
Maximum undershoot area below VSSQ	3V-ns

Figure 8. AC Overshoot and Undershoot Definition for CK, DQ, DQS and DM Pins

18.0 COMMAND TRUTH TABLE

С	ommand	CKEn-1	CKEn	cs	RAS	CAS	WE	BA0,1	A10/AP	A13~11, A9~A0	Note	
Register	Mode Re	Н	Х	L	L	L	L	OP CODE			1, 2	
	Auto F	Auto Refresh		Н	L	L	L	Н	X			3
Refresh		Entry	H	L	L	L	_	п	۸			3
Refresh	Self Refresh	Exit	L	Н	L	Н	Н	Н	Х			3
					Н	Х	Х	Х	^			3
Bank Ac	tive & Row Ad	dr.	Н	Х	L	L	Н	Н	V Row Address			
Read &	Auto Prech	arge Disable			_	Н		Н	٧	L	Column Address (A0~A9)	4
Column Address	Auto Prech	arge Enable	Н	X	L		L			Н		4
Write &	Auto Prech	arge Disable	Н						.,	L	Column	4
Column Address	Auto Prech	uto Precharge Enable		Х	L	Н	L	L	V	Н	H Address (A0~A9)	4, 6
Doop Power	Deep Power Down Entry Exit		Н	L	L	Н	Н	L	Х			
Deep Fower			L	Н	Н	Х	Х	Х				
Е	Burst Stop			Х	L	Н	Н	L		Х		7
Precharge	Bank S	Bank Selection		х	L	L	Н	L V	V	L	Х	
recharge	All Banks		H						Х	Н		5
	Entry		Н	L	Н	Х	Х	Х				
Active Power Down		Lifty			L	Н	Н	Н	X			
		Exit	L	Н	Х	Х	Х	Х				
		Entry	Н	L	Н	Х	Х	Х				
Precharge Power Down		Liid y		_	L	Н	Н	Н	X			
		Exit	L	Н	Н	Х	Х	Х		^		
LAIL			L		L	Н	Н	Н				
DM			Н			Х				Х		8
No operation (NOP) : Not defined			Н	X	Н	Х	Х	Х		X		9
110 operation					L	Н	Н	Н		^		

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

- 1) OP Code : Operand Code. A0 ~ A13 & BA0 ~ BA1 : Program keys. (@EMRS/MRS) 2) EMRS / MRS can be issued only at all banks precharge state.

- A new command can be issued 2 clock cycles after EMRS or MRS.

 3) Auto refresh functions are same as the CBR refresh of DRAM.

 The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.
- 4) BA0 ~ BA1 : Bank select addresses.
- 5) If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.
- 6) During burst write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at t_{RP} after the end of burst.
- 7) Burst stop command is valid at every burst length.
- 8) DM sampled at the rising and falling edges of the DQS and Data-in are masked at the both edges (Write DM latency is 0).

 9) This combination is not defined for any function, which means "No Operation(NOP)" in Mobile DDR SDRAM.

19.0 FUNCTIONAL TRUTH TABLE

Current State	cs	RAS	CAS	WE	Address	Command	Action	
	L	Н	Н	L	X	Burst Stop	ILLEGAL ²⁾	
PRECHARGE	L	Н	L	Х	BA, CA, A10	READ/WRITE	ILLEGAL ²⁾	
	L	L	Н	Н	BA, RA	Active	Bank Active, Latch RA	
STANDBY	L	L	Н	L	BA, A10	PRE/PREA	ILLEGAL 4)	
	L	L	L	Н	Х	Refresh	AUTO-Refresh 5)	
	L	L	L	L	Op-Code, Mode-Add	MRS	Mode Register Set 5)	
	L	Н	Н	L	X	Burst Stop	NOP	
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin Read, Latch CA, Determine Auto-Precharge	
ACTIVE	L	Н	L	L	BA, CA, A10	WRITE/WRITEA	Begin Write, Latch CA, Determine Auto-Precharge	
STANDBY	L	L	Н	Н	BA, RA	Active	Bank Active/ILLEGAL 2)	
	L	L	Н	L	BA, A10	PRE/PREA	Precharge/Precharge All	
	L	L	L	Н	X	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	X	Burst Stop	Terminate Burst	
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate Burst, Latch CA, Begin New Read, Determine Auto-Precharge ³⁾	
READ	L	Н	L	L	BA, CA, A10	WRITE/WRITEA	ILLEGAL	
READ	L	L	Н	Н	BA, RA	Active	Bank Active/ILLEGAL 2)	
	L	L	Н	L	BA, A10	PRE/PREA	Terminate Burst, Precharge 10)	
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	X	Burst Stop	ILLEGAL	
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate Burst With DM=High, Latch CA, Begin Read, Determine Auto-Precharge ³⁾	
WRITE	L	Н	L	L	BA, CA, A10	WRITE/WRITEA	Terminate Burst, Latch CA, Begin new Write, Determine Auto-Pre- charge ³⁾	
	L	L	Н	Н	BA, RA	Active	Bank Active/ILLEGAL 2)	
	L	L	Н	L	BA, A10	PRE/PREA Terminate Burst With DM=H Precharge ¹⁰⁾		
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	Х	Burst Stop	ILLEGAL	
	L	Н	L	Н	BA, CA, A10	READ/READA	NOTE6	
READ with AUTO	L	Н	L	L	BA, CA, A10	WRITE/WRITEA	ILLEGAL	
PRECHARGE ⁶⁾	L	L	Н	Н	BA, RA	Active	NOTE6	
(READA)	L	L	Н	L	BA, A10	PRE/PREA	NOTE6	
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	

Current State	cs	RAS	CAS	WE	Address	Command	Action	
	L	Н	Н	L	Х	Burst Stop	ILLEGAL	
	L	Н	L	Н	BA, CA, A10	READ/READA	NOTE7	
WRITE with AUTO	L	Н	L	L	BA, CA, A10	WRITE/WRITEA	NOTE7	
RECHARGE ⁷⁾ (WRITEA)	L	L	Н	Η	BA, RA	Active	NOTE7	
(WINITEA)	L	L	Н	L	BA, A10	PRE/PREA	NOTE7	
	L	L	L	Н	X	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	X	Burst Stop	ILLEGAL ²⁾	
	L	Н	L	Х	BA, CA, A10	READ/WRITE	ILLEGAL ²⁾	
PRECHARGING	L	L	Н	Н	BA, RA	Active	ILLEGAL ²⁾	
(DURING t _{RP})	L	L	Н	L	BA, A10	PRE/PREA	NOP ^{4)} (Idle after t _{RP})	
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	Х	Burst Stop	ILLEGAL ²⁾	
ROW	L	Н	L	Х	BA, CA, A10	READ/WRITE	ILLEGAL ²⁾	
ACTIVATING (FROM ROW ACTIVE TO t _{RCD})	L	L	Н	Н	BA, RA	Active	ILLEGAL ²⁾	
	L	L	Н	L	BA, A10	PRE/PREA	ILLEGAL ²⁾	
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	X	Burst Stop	ILLEGAL ²⁾	
WRITE RECOVERING (DURING t _{WR} OR t _{CDLR})	L	Н	L	Н	BA, CA, A10	READ	ILLEGAL ²⁾	
	L	Н	L	L	BA, CA, A10	WRITE	WRITE	
	L	L	Н	Н	BA, RA	Active	ILLEGAL ²⁾	
	L	L	Н	L	BA, A10	PRE/PREA	ILLEGAL ²⁾	
	L	L	L	Η	X	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
	L	Н	Н	L	X	Burst Stop	ILLEGAL	
	L	Н	L	Х	BA, CA, A10	READ/WRITE	ILLEGAL	
RE- FRESHING	L	L	Н	Н	BA, RA	Active	ILLEGAL	
TRESTING	L	L	Н	L	BA, A10	PRE/PREA	ILLEGAL	
	L	L	L	Н	X	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	
MODE REGISTER SETTING	L	Н	Н	L	X	Burst Stop	ILLEGAL	
	L	Н	L	Х	BA, CA, A10	READ/WRITE	ILLEGAL	
	L	L	Н	Н	BA, RA	Active	ILLEGAL	
	L	L	Н	L	BA, A10	PRE/PREA	ILLEGAL	
	L	L	L	Н	Х	Refresh	ILLEGAL	
	L	L	L	L	Op-Code, Mode-Add	MRS	ILLEGAL	

Current State	CKE n-1	CKE n	cs	RAS	CAS	WE	Add	Action
	L	Н	Н	Х	Х	Х	Х	Exit Self-Refresh
	L	Н	L	Н	Н	Н	Х	Exit Self-Refresh
SELF-	L	Н	L	Н	Н	L	Х	ILLEGAL
REFRESHING 8)	L	Н	L	Н	L	Х	Х	ILLEGAL
	L	Н	L	L	Х	Х	Х	ILLEGAL
	L	L	Х	Х	Х	Х	Х	NOP (Maintain Self-Refresh)
POWER	L	Н	Х	Х	Х	Х	Х	Exit Power Down (Idle after t _{PDEX})
DOWN	L	L	Х	Х	Х	Х	Х	NOP (Maintain Power Down)
DEEP POWER	L	Н	Н	Х	Х	Х	Х	Exit Deep Power Down 10)
DOWN	L	L	Х	Х	Х	Х	Х	NOP (Maintain Deep Power Down)
	Н	Н	Х	Х	Х	Х	Х	Refer to Function Truth Table
	Н	L	L	L	L	Н	Х	Enter Self-Refresh
	Н	L	Н	Х	Х	Х	Х	Enter Power Down
ALL DANKO	Н	L	L	Н	Н	Н	Х	Enter Power Down
ALL BANKS IDLE ⁹⁾	Н	L	L	Н	Н	L	Х	Enter Deep Power Down
IDLL '	Н	L	L	Н	Н	L	Х	ILLEGAL
	Н	L	L	Н	L	Х	Х	ILLEGAL
	Н	L	L	L	Х	Х	Х	ILLEGAL
	L	Х	Х	Х	Х	Х	Х	Refer to Current State = Power Down

(H=High Level, L=Low level, X=Don't Care)

NOTE:

- All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.
 ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of that bank. (ILLEGAL = Device operation and/or data integrity are not guaranteed.)
 Must satisfy bus contention, bus turn around and write recovery requirements.
- 4) NOP to bank precharging or in idle sate. May precharge bank indicated by BA.
- 5) ILLEGAL if any bank is not idle.

- 5) ILEGAL if any bank is not idee.
 6) Refer to "Read with Auto Precharge Timing Diagram" for detailed information.
 7) Refer to "Write with Auto Precharge Timing Diagram" for detailed information.
 8) CKE Low to High transition will re-enable CK, CK and other inputs asynchronously.
 A minimum setup time must be satisfied before issuing any command other than EXIT.
 9) Power-Down, Self-Refresh and Deep Power Down Mode can be entered only from All Bank Idle state.
- 10) The Deep Power Down Mode is exited by asserting CKE high and full initialization is required after exiting Deep Power Down Mode.

