Automata and Reactive Systems

Lecture No. 7

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

Non-counting Property

 $L \subseteq \Sigma^{\omega}$ ia called non-counting if

$$\exists n_0 \ \forall n \geq n_0 \ \forall u, v \in \Sigma^* \ \forall \beta \in \Sigma^\omega : uv^n \beta \in L \Leftrightarrow uv^{n+1} \beta \in L$$

Two claims are shown:

- 1. $L = (00)^*1^\omega$ does not have this property
- 2. Each LTL-definable ω -language has this property

Hence $L = (00)^*1^\omega$ is Büchi recognizable but not LTL-definable.

3.4 Proposition: Each LTL-definable ω -language L is non-counting:

$$\exists n_0 \ \forall n \geq n_0 \ \forall u, v \in \Sigma^* \ \forall \beta \in \Sigma^\omega : uv^n \beta \in L \Leftrightarrow uv^{n+1} \beta \in L$$

Proof: by induction on LTL-formulas φ

$$\varphi = p_i$$
: Take $n_0 = 1$.

Whether $uv^n\beta \in L$ only depends only on first letter. This is the same letter as in $uv^{n+1}\beta$.

 $\varphi = \neg \psi$: The claim is trivial.

$$\varphi = \psi_1 \wedge \psi_2$$
:

 ψ_1, ψ_2 define non-counting L_1, L_2 (with n_1, n_2) by ind.hyp.

Take $n_0 = \max(n_1, n_2)$.

Then the claim is true for $L_1 \cap L_2$, defined by $\psi_1 \wedge \psi_2$.

$$\varphi = X\psi$$
:

By ind.hyp. assume ψ defines non-counting L with n_1 .

Take $n_0 := n_1 + 1$, at least $n_0 \ge 2$.

For $n \ge n_0$ we have to show: $uv^n\beta \models X\psi$ iff $uv^{n+1}\beta \models X\psi$

If $u \neq \varepsilon$, say u = au', then use ind.hyp

$$u'v^n\beta \models \psi \text{ iff } u'v^{n+1}\beta \models \psi$$

If $u = \varepsilon$ and v = av' then use (for $n \ge n_0$)

$$v^n\beta \models X\psi \text{ iff } v'v^{n-1}\beta \models \psi \text{ iff } v'v^n\beta \models \psi \text{ iff } v^{n+1}\beta \models X\psi$$

$$\varphi = \psi_1 \mathbf{U} \psi_2$$
:

 ψ_1, ψ_2 defining non-counting L_1, L_2 (with n_1, n_2) by ind.hyp.

Take $n_0 = 2 \cdot \max(n_1, n_2)$.

Show: For $n \geq n_0$:

$$uv^n\beta \models \psi_1 U\psi_2 \text{ iff } uv^{n+1}\beta \models \psi_1 U\psi_2$$

More precisely:

for some j: $(uv^n\beta)^j \models \psi_2$ and for i < j: $(uv^n\beta)^i \models \psi_1$ iff

for some $j: (uv^{n+1}\beta)^j \models \psi_2$ and for $i < j: (uv^{n+1}\beta)^i \models \psi_1$

Look at the direction from left to right:

if for some j: $(uv^n\beta)^j \models \psi_2$ and for i < j: $(uv^n\beta)^i \models \psi_1$

then for some $j: (uv^{n+1}\beta)^j \models \psi_2$ and for $i < j: (uv^{n+1}\beta)^i \models \psi_1$

Case 1: $(uv^n\beta)^j$ contains $\geq n_0 v$ -segments

Case 2: $(uv^n\beta)^j$ contains $< n_0 v$ -segments

Then the prefix before position j has $\geq n_0 v$ -segments.

S1S

We introduce a more flexible logic than LTL:

S1S (second-order theory of one successor)

Idea: Use

- variables s, t, \ldots for time-points (positions in ω -words)
- variables X, Y,... for sets of positions
- the constant 0 for position 0, the successor function ',
 equality = and less-than relation <
- the usual boolean connectives and the quantifiers ∃, ∀

Example formulas

LTL-formulas and their translation to S1S:

 $\mathbf{GF} p_1 \qquad \qquad : \quad \forall s \exists t (s \leq t \land X_1(t))$

 $\mathbf{XX}(p_2 \to \mathbf{F}p_1)$: $X_2(0'') \to \exists t(0'' \le t \land X_1(t))$

 $F(p_1 \wedge X(\neg p_2Up_1)) : \exists t_1(X_1(t_1) \wedge \exists t_2(t'_1 \le t_2 \wedge X_1(t_2) \wedge t'_1)$

 $\forall t((t_1' \leq t \land t < t_2) \rightarrow \neg X_2(t))))$

A definition of $L = (00)^*1^{\omega}$:

$$0.1234$$

$$\wedge \forall s (s < t \to \neg X_1(s)) \wedge \forall s (t \le s \to X_1(s)))$$

Plan

- 1. Syntax and semantics of S1S
- 2. Expressive power: Büchi recognizable ω -languages are S1S-definable
- 3. S1S-definable ω -languages are Büchi recognizable (Preparation)

Syntax of S1S

Variables:

- first-order variables $s, t, \ldots, x, y, \ldots$ (ranging over natural numbers, i.e. positions in ω -words)
- second-order variables $X, X_1, X_2, Y, Y_1, \ldots$ (ranging over sets of natural numbers)

Terms are

- the constant 0 and the first-order variables
- with any term τ also τ' (the successor of τ)

Examples of terms: t, t', t'', 0, 0', 0''

Syntax of S1S

- Atomic formulas: $X(\tau)$, $\sigma < \tau$, $\sigma = \tau$ for terms σ , τ
- First-order formulas (S1S₁-formulas) are built up from atomic formulas using boolean connectives and quantifiers
 ∃, ∀ over first-order variables
- S1S-formulas are built up from atomic formulas using boolean connectives and quantifiers ∃, ∀ over first-order variables and second-order variables,
- Existential S1S formulas are S1S₁-formulas preceded by a block $\exists Y_1 \dots \exists Y_m$ of existential second-order quantifiers.

Examples

First-order formulas:

$$\begin{array}{lll} \varphi_{1}(X) & : & \forall s \exists t (s < t \land X(t)) \\ \varphi_{2}(X_{1}, X_{2}) & : & X_{2}(0'') \to \exists t (0'' \le t \land X_{1}(t)) \\ \varphi_{3}(X_{1}, X_{2}) & : & \exists t_{1}(X_{1}(t_{1}) \land \exists t_{2}(t_{1}' \le t_{2} \land X_{1}(t_{2}) \land \forall t ((t_{1}' \le t \land t < t_{2}) \to \neg X_{2}(t)))) \end{array}$$

An existential second-order formula:

$$\varphi_4(X_1)$$
: $\exists X \, \exists t (X(0) \land \forall s (X(s) \leftrightarrow \neg X(s')) \land X(t)$
 $\land \forall s (s < t \rightarrow \neg X_1(s)) \land \forall s (t \le s \rightarrow X_1(s)))$

Notation: $\varphi(X_1, \ldots, X_n)$ indicates that at most the variables X_1, \ldots, X_n occur free in φ , i.e. not in the scope of a quantifier.

Semantics of S1S

- Use N as universe for the first-order variables
- Use $2^{\mathbb{N}}$ (the powerset of \mathbb{N}) as universe for the second-order variables
- Apply the standard semantics for boolean connectives and quantifiers

Write $(\mathbb{N}, 0, +1, <, P_1, \ldots, P_n) \models \varphi(X_1, \ldots, X_n)$ if φ is true in this semantics with $P_1 \subseteq \mathbb{N}, \ldots, P_n \subseteq \mathbb{N}$ as interpretations of X_1, \ldots, X_n .

We need only specify $P = P_1, \ldots, P_n$:

This can be coded by the ω -word $\alpha(P) \in ((\mathbb{B}^n)^\omega$ defined by

$$i \in P_k \iff (\alpha(i))_k = 1$$

We write simply: $\alpha(P) \models \varphi(X_1, \dots, X_n)$

Example

$$\varphi_3(X_1, X_2) : \exists t_1(X_1(t_1) \land \exists t_2(t_1' \le t_2 \land X_1(t_2) \land \forall t((t_1' \le t \land t < t_2) \rightarrow \neg X_2(t))))$$

Let P_1 be the set of even numbers, P_2 be the set of prime

numbers. + 0 1 2 3 4 5 6

We have $\alpha \models \varphi_3(X_1, X_2)$

An ω -language $L \subseteq (\mathbb{N}^n)^\omega$ is S1S-definable if for some S1S-formula $\varphi(X_1, \ldots, X_n)$ we have

$$L = \{\alpha \in (\mathbb{B}^n)^\omega \mid \alpha \models \varphi(X_1, \dots, X_n)\}$$

Similarly: first-order definable, existential second-order definable

Examples:

1. $L = \{ \alpha \in \mathbb{B}^{\omega} \mid \alpha \text{ has infinitely many 1} \}$ is first-order definable by $\forall s \exists t (s < t \land X_1(t))$

2. $(00)^*1^\omega$ is existential second-order definable by

$$\varphi_4(X_1)$$
 : $\exists X \, \exists t (X(0) \land \forall s (X(s) \leftrightarrow \neg X(s')) \land X(t)$
 $\land \forall s (s < t \rightarrow \neg X_1(s)) \land \forall s (t \le s \rightarrow X_1(s)))$

From LTL to S1S

3.5 Theorem: An LTL-definable ω -language is S1S₁-definable.

Illustration:

$$\mathbf{GF} p_1 \qquad \qquad : \quad \forall s \exists t (s \le t \land X_1(t))$$

$$XX(p_2 \to Fp_1)$$
 : $X_2(0'') \to \exists t(0'' \le t \land X_1(t))$

$$F(p_1 \wedge X(\neg p_2 U p_1)) : \exists t_1(X_1(t_1) \wedge \exists t_2(t'_1 \leq t_2 \wedge X_1(t_2) \wedge t'_1))$$

$$\forall t((t_1' \le t \land t < t_2) \rightarrow \neg X_2(t))))$$

Idea for general translation:

Describe the semantics of the temporal operators in S1S.

Inductive proof in the Exercises.

From Büchi automata to S1S

3.6 Theorem: A Büchi-recognizable ω -language is S1S-definable.

Idea: For Büchi automaton \mathcal{A} over the input alphabet \mathbb{B}^n find an S1S-formula $\varphi(X_1,\ldots,X_n)$ such that

$$\mathcal{A}$$
 accepts α iff $\alpha \models \varphi(X_1,\ldots,X_n)$

We express in $\varphi(X_1, \ldots, X_n)$: "There is a successful run of \mathcal{A} on the input given by X_1, \ldots, X_n "

How to express the existence of a run?

Assume \mathcal{A} has m states q_1, \ldots, q_m (q_1 initial)

Then a run $\rho(0)\rho(1)$... is coded by m sets Y_1,\ldots,Y_m with

$$i \in Y_k \iff \rho(i) = q_k$$

Example

Description of successful run

$$\rightarrow q_1 \rightleftharpoons q_2 \longrightarrow q_3 \rightleftharpoons 1$$

Formula $\varphi(X_1)$:

$$\exists Y_1 Y_2 Y_3 \text{ (Partition}(Y_1, \dots, Y_m) \land Y_1(0) \land \forall t ($$

$$(Y_1(t) \land X_1(t) \land Y_2(t')) \lor (Y_2(t) \land X_1(t) \land Y_1(t'))$$

$$\lor (Y_2(t) \land \neg X_1(t) \land Y_3(t')) \lor (Y_3(t) \land X_1(t) \land Y_3(t')))$$

$$\land \forall s \exists t (s < t \land Y_3(t)))$$

Translation in the general case

Preparation 1:

Partition
$$(Y_1, ..., Y_m) :=$$

$$\forall t \left(\bigvee_{i=1}^m Y_i(t) \right) \land \forall t \left(\neg \bigvee_{i \neq j} (Y_i(t) \land Y_j(t)) \right)$$

Preparation 2:

For $a \in \mathbb{B}^n$, say $a = (b_1, \ldots, b_n)$

we write $X_a(t)$ as an abbreviation for

$$(b_1)X_1(t) \wedge (b_2)X_2(t) \wedge \ldots (b_n)X_n(t)$$

where $(b_i) = \neg$ for $b_i = 0$, and b_i is empty for $b_i = 1$

Given the Büchi automaton
$$\mathcal{A} = (Q, \mathbb{B}^n, 1, \Delta, F)$$
 with $Q = \{1, \ldots, m\}$, define $\varphi(X_1, \ldots, X_n) = \exists Y_1 \ldots Y_m \text{ (Partition}(Y_1, \ldots, Y_m) \land Y_1(0) \land \forall t \left(\bigvee_{(i,a,j) \in \Delta} (Y_i(t) \land X_a(t) \land Y_j(t'))\right) \land \forall s \exists t (s < t \land \bigvee_{i \in F} Y_i(t))$

We conclude: A Büchi recognizable ω -language is existential second-order definable (within S1S).