CHAPTER - 3 Constructions

EE24BTECH11061 - Rohith Sai

1 3.2 Triangle

3.2.8 Draw a triangle *ABC* in which AB = 5cm, BC = 6cm and $\angle ABC = 60^{\circ}$. Solution:

Variable	Description	Value
a	Length of BC	6cm
b	Length of AC	?
c	Length of AB	5cm
∠ABC	Angle B	60°

TABLE 0

Let $\mathbf{k} = \mathbf{b} + \mathbf{c}$,

Using cosine rule, we can find the length of AC, i.e., **b**:

$$b^2 = a^2 + c^2 - 2ac\cos B (1)$$

(2)

On solving, we get b as:

$$\mathbf{b} = \sqrt{31}cm\tag{3}$$

Therefore, we get:

$$\mathbf{k} = \sqrt{31} + 5cm \tag{4}$$

Variable	Description	Value
a	Length of BC	6 <i>cm</i>
b	Length of AC	$\sqrt{31}cm$
c	Length of AB	5cm
k	b + c	$\sqrt{31} + 5cm$
∠ABC	Angle B	60°

TABLE 0

From the above table, we get the following triangle:

1

Fig. 0.1