# DNA Provides Evidence for Evolution



Comparative Genomics
Endogenous Retroviruses
Mitochondrial DNA

| Date:                                                                                                                                                                                                                                                          | Human Biology Year 12 ATAR                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Do Now  Get out equipment  Lesson Agenda 1: Do Now 2: DNA evidence for evolution – ERV and mtDNA 3: Lesson summary and wind-up  Suggested Study  Read through today's notes and textbook section Do review worksheet and mark using the marking key on Connect | <ul> <li>Learning Aims</li> <li>Review DNA, protein production and variation</li> <li>List types of DNA that can be compared to assess relatedness between organisms</li> <li>Define the term "endogenous retrovirus" and describe how these can be used to map relatedness between organisms</li> <li>Define mtDNA, describe how it is inherited and explain how it can be used to determine relatedness between organisms.</li> </ul> |
| NEXT LESSON                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DNA evidence for evolution – Protein sequences, Bioinformatics                                                                                                                                                                                                 | Key Vocabulary DNA Endogenous Retrovirus Mitochondria Haplogroup                                                                                                                                                                                                                                                                                                                                                                        |

#### **Overview**

- Idea of evolution and evidence for it accepted by vast majority of scientists
- Has been controversial for reasons unrelated to the scientific evidence
- Important to look at evidence to support scientific theory
- Recent advances in technology provide further evidence to support the theory of evolution



#### **Evidence for Evolution – Comparing DNA (comparative genomics)**

- DNA
  - Uses sequences of 4 nitrogenous bases
  - Codes for protein production
  - All living things use the same 4 bases, the same DNA code indication of common origin
  - Sequence of bases varies
    - Mutation
    - Natural selection
    - Genetic Drift

• As living things reproduce, code differs over generations among offspring, despite common ancestor, but some stays the same.

- More distantly related: greater variation
- Closely related: more shared

Table 15.1 Relationship between humans and great apes using DNA differences

| Primates being compared | DNA difference (%) |
|-------------------------|--------------------|
| Human – chimpanzee      | 1.2                |
| Chimpanzee – gorilla    | 1.2                |
| Human – gorilla         | 1.6                |
| Chimpanzee – orang-utan | 1.8                |
| Human – orang-utan      | 2.4                |
| Gorilla – orang-utan    | 2.4                |

## **Evidence for Evolution – Comparing DNA**

- Chromosomes also contain sequences of bases that don't appear to code for anything:
  - Non-coding, or "junk DNA"
  - Also varies across generations due to random mutation.
  - Can also be compared for similarities and differences to assess relatedness.
- Other examples of DNA that can be compared to assess relatedness
  - Endogenous retroviruses (ERV)
  - Mitochondrial DNA

### **Comparing DNA - Endogenous Retroviruses**

- Retroviruses are viruses that incorporate their DNA code into the cells of the infected organism. Some don't cause illness.
- Endogenous retroviruses are viral sequences that have become part of the genome in the germline cells of the host organism.
- They are therefore passed on to each new generation
- Make up 8% of human genome
- Other primates have some of the same sequences in the same locations, indicating that we, and they, are descended from a common ancestor who was originally infected with the virus.
- Can map this (see diagram) to show relationships in terms of common ancestors, between modern species.

Note: In order to compare this, we need to sequence the genome using the techniques previously discussed:

- PCR to amplify sample
- Sequencing
- Electrophoresis



Figure 15.1 A simplified example of how endogenous retroviruses could be used to trace common ancestry: the great apes and humans have a more recent common ancestor as they share more endogenous retroviruses

### **Comparing DNA- mtDNA**

• mtDNA = mitochondrial DNA. From mitochondria which has it's own DNA separate to

the nuclear DNA

- Small circular molecules
  - mtDNA: 37 genes, all essential,
  - 24 code for tRNA
- Inherited from mother in cytoplasm of ovum
  - Can therefore trace female ancestral line
  - mtDNA has slowly diverged via random mutation from common female ancestor "Mitochondrial Eve" (note the mutations do not cause impairment of function – they are point mutations that do not change the amino acids produced)
- Can compare level of similarity between individuals to see how long ago their last common ancestor lived.
- Also used to track migration routes of ancient humans



Figure 15.2 A model of a molecule of mtDNA showing the location of some of the genes



mtDNA haplogroup tree and distribution map.<sup>[3]</sup> The numbers are haplogroup labels, reported according to the http://www.phylotree.org/ nomenclature, and give the location of one of the mutations leading to the derived haplotype. (Only a single branch defining marker, preferably from the coding region, is shown.) The main geographic features of haplogroup distribution are highlighted with colour.



#### **EXPANSION TIMES (years ago)**

| Africa             | 100,000, 150,000  |
|--------------------|-------------------|
| Africa             | 120,000 - 150,000 |
| Out of Africa      | 55,000 - 75,000   |
| Asia               | 40,000 - 70,000   |
| Australia/PNG      | 40,000 - 60,000   |
| Europe             | 35,000 - 50,000   |
| Americas           | 15,000 - 35,000   |
| Na-Dene/Esk/Aleuts | 8,000 - 10,000    |

FamilyTree DNA mtDNA Migrations Map

© Capyright 2004 - Genealogy by Genetics, Ltd., Family Tree DNA, All Rights Reserved.

This material may not be reproduced, republished, aftered or reseld without written permission.

- mtDNA: important tool in mapping relationships between species
  - Verifies other evidence
  - eg: examination shows that last common ancestor of modern humans and neanderthals lived around 600 000 years ago.
  - (This does not mean that the last neanderthal was then. Why?)