Домашнее задание №1. Дескриптивный анализ данных

Кадыров Т.И. ИУ6-22М

Цель работы

Приобрести опыт решения практических задач по анализу данных, таких как загрузка, трансформация, вычисление простых статистик и визуализация данных в виде графиков и диаграмм, посредством языка программирования Python.

Рассчет варианта

```
In []: surname = "Кадыров" # Ваша фамилия

alp = 'aбвгдеёжзийклмнопрстуфхцчшщыыьэюя'
w = [1, 42, 21, 21, 34, 6, 44, 26, 18, 44, 38, 26, 14, 43, 4, 49, 45,
7, 42, 29, 4, 9, 36, 34, 31, 29, 5, 30, 4, 19, 28, 25, 33]

d = dict(zip(alp, w))
variant = sum([d[el] for el in surname.lower()]) % 40 + 1

print("Задача № 1, шаг 5 - вариант: ", variant % 5 + 1)
print("Задача № 1, шаг 11 - вариант: ", variant % 2 + 1)

задача № 1, шаг 5 - вариант: 4

задача № 1, шаг 11 - вариант: 2
задача № 2 - вариант: 4
```

Задание 1. Анализ индикаторов качества государственного управления (The Worldwide Government Indicators, WGI)

1.1 Загрузите данные в DataFrame

```
In []: import pandas as pd
In []: # Загружаем data frame, используем двойной заголовок, чтобы сохранить год
df = pd.read_excel('./data/wgidataset.xlsx', sheet_name='ControlofCorrupt
df.head()
```

	0_level_0	1_level_0					
	Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower
0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN
1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.043015
2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.000000

AIA

AGO -1.167702 0.262077

NaN

NaN

9.677420

NaN

4.0

NaN

0.537634

NaN

5 rows × 146 columns

Unnamed: Unnamed:

Angola

Anguilla

Out[]:

3

	1	,
In []:		пбца и приводим все к одинарному заголовку in ['Country/Territory', 'Code'] else f"{
	df.columns = new columns	
	df.head()	

Out[]:		Country/Territory	Code	1996.Estimate	1996.StdErr	1996.NumSrc	1996.Rank	199
	0	Aruba	ABW	NaN	NaN	NaN	NaN	
	1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72
	2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0
	3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0
	4	Anguilla	AIA	NaN	NaN	NaN	NaN	

5 rows × 146 columns

1.2 Отсортируйте данные по убыванию индекса DataFrame

In []:	<pre>df_desc = df.iloc[::-1]</pre>
	<pre>df_desc.head()</pre>

Out[]:		Country/Territory	Code	1996.Estimate	1996.StdErr	1996.NumSrc	1996.Rank	1
	213	Zimbabwe	ZWE	-0.278847	0.244907	5.0	47.849461	
	212	Zambia	ZMB	-0.840641	0.262077	4.0	24.731182	
	211	Congo, Dem. Rep.	ZAR	-1.647852	0.315914	3.0	0.000000	
	210	South Africa	ZAF	0.732927	0.210325	6.0	76.344086	
	209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	

5 rows × 146 columns

1.3 Отобразите данные по индексу WGI за 2022 год в виде горизонтального столбчатого графика

```
In []: import matplotlib.pyplot as plt

In []: # Сортируем по полю 2022.Rank
df_sort = df.sort_values(by='2022.Rank')
# Удаляем те строки, у которых за этот год нет данных
df_sort_dropna = df_sort.dropna(subset=['2022.Rank'])
plt.figure(figsize=(30,60))
plt.barh(df_sort_dropna['Country/Territory'], df_sort_dropna['2022.Rank']
plt.xlabel('Rank')
plt.ylabel('Country')
plt.title('Страны по индексу WGI за 2022 год')
plt.show()
```


1.4 Сформируйте DataFrame из исходного для региона в соответствии с Вашим вариантом

Bapиaнт 4. Middle East and North Africa (MENA)

```
In []: # Исходный датасет
    df_region = pd.read_excel('./data/regions.xlsx')
    # Страны региона MENA
    df_mena = df_region[df_region['Region'] == 'MENA']
    # WGI индексы для стран MENA
    df_wgi_mena = df.merge(df_mena, how='inner', left_on='Code', right_on='Co
    # Удаляем столбец Country/Territory. Выставляем индекс по Country
    df_wgi_mena.set_index('Country', inplace=True)
    df_wgi_mena.drop(columns='Country/Territory', inplace=True)
```

1.5 Выведите данные DataFrame'a

```
In [ ]: df_wgi_mena
```

Out[]:		Code	1996.Estimate	1996.StdErr	1996.NumSrc	1996.Rank	1996.Lower	19
	Country							
	United Arab Emirates	ARE	-0.005579	0.312212	3.0	57.526882	35.483871	7
	Bahrain	BHR	0.328689	0.312212	3.0	63.978493	50.537636	7
	Algeria	DZA	-0.566741	0.262077	4.0	33.333332	16.666666	5
	Egypt	EGY	-0.472254	0.244907	5.0	38.709679	19.892473	5
	Iran	IRN	-0.480607	0.262077	4.0	37.634407	18.817204	5
	Iraq	IRQ	-1.602183	0.262077	4.0	0.537634	0.000000	
	Israel	ISR	1.354008	0.210325	6.0	88.172043	81.182793	9
	Jordan	JOR	-0.035407	0.244907	5.0	55.376343	39.784946	6
	Kuwait	KWT	0.478682	0.262077	4.0	70.430107	59.139786	8
	Lebanon	LBN	-0.659695	0.262077	4.0	31.182796	13.978495	4
	Libya	LBY	-0.871937	0.262077	4.0	20.430107	3.763441	3
	Могоссо	MAR	-0.106927	0.262077	4.0	53.225807	34.946236	6
	Oman	OMN	0.414642	0.262077	4.0	67.741936	56.989246	7
	Qatar	QAT	-0.045596	0.262077	4.0	54.838711	37.634407	6
	Saudi Arabia	SAU	-0.163303	0.262077	4.0	51.075268	32.258064	6
	Syria	SYR	-0.881176	0.262077	4.0	19.892473	3.763441	3
	Tunisia	TUN	-0.533678	0.262077	4.0	35.483871	17.741936	5
	Yemen	YEM	-0.743732	0.262077	4.0	27.419355	8.602151	4

18 rows × 146 columns

1.6 Постройте графики индекса WGI за 1996-2022 для стран своего региона (estimate)

```
In []: # Оставляем только столбцы Estimate и Country
    df_plot_mena = df_wgi_mena.filter(regex='Estimate|Country')
    # Транспонируем датафрейм и отрисовываем график на каждую страну
    df_plot_mena.T.plot(figsize=(35,15), grid=True, marker='o', title='WGI 19
Out[]: <Axes: title={'center': 'WGI 1996-2022'}>
```


1.7 Найдите страны с наибольшим и наименьшим значением WGI Вашего варианта региона за 2022 год

1.8 Определите средние значения региона за каждый год в период с 1996 по 2022

```
In []: # Оставляем только столбцы Estimate
    df_wgi_mena_estimate = df_wgi_mena.filter(regex='Estimate')
    # Считаем среднее по региону за каждый год
    mean = df_wgi_mena_estimate.mean()
    mean.name="mean"
    mean
```

```
Out[]: 1996.Estimate
                       -0.255155
        1998.Estimate -0.214392
        2000.Estimate -0.227920
        2002.Estimate 0.005365
        2003.Estimate -0.110138
        2004.Estimate -0.134619
        2005.Estimate -0.146972
        2006.Estimate -0.205434
        2007.Estimate -0.228394
        2008.Estimate -0.197921
        2009.Estimate -0.200338
        2010.Estimate -0.242790
        2011.Estimate -0.289805
        2012.Estimate -0.269579
        2013.Estimate -0.263348
        2014.Estimate -0.310855
        2015.Estimate -0.337412
        2016.Estimate -0.340242
        2017.Estimate -0.371198
        2018.Estimate -0.402726
        2019.Estimate -0.399918
        2020.Estimate -0.443916
        2021.Estimate -0.416095
        2022.Estimate -0.382464
        Name: mean, dtype: float64
```

1.9 Постройте графики индекса WGI за 1996-2022 для стран своего региона и выделите страны с наибольшим и наименьшим значением WGI за 2022 год, а также отобразите среднее значение по региону и РФ.

```
In []: # Γραφικι πο всем странам

ax = df_plot_mena.T.plot(figsize=(35,15), grid=True, marker='o', title='W

# Γραφικι πο странам с наибольшим и наименьшим значениями за 2022 год

df_plot_mena.loc[maxWgi].plot(color='green', marker = 'o', legend=True, a

df_plot_mena.loc[minWgi].plot(color='red', marker = 'o', legend=True, ax

# Γραφικ πο среднему значению

mean.plot(title='mean', marker = 'o', color='blue', legend=True, ax = ax)

# Данные по России

df_wgi_russia = df[df['Code'] == 'RUS']

df_wgi_russia.set_index('Country/Territory', inplace=True)

df_wgi_russia = df_wgi_russia.filter(regex='Estimate')

# Γραφικ πο России

df_wgi_russia.T.plot(color='orange', marker = 'o', legend=True, ax = ax)

Out[]: <Axes: title={'center': 'mean'}>
```


1.11 Определите, как изменилось значение показателя rank с 1996 по 2022

Вариант 2. Americas

```
In [ ]: # Страны региона АМЕ
        df ame = df region[df region['Region'] == 'AME']
        # WGI индексы для стран MENA
        df_wgi_ame = df.merge(df_ame, how='inner', left_on='Code', right_on='Code')
        # Создаем индекс, оставляем только поля Rank за 1996 и 2022
        df_wgi_ame.set_index('Country', inplace=True)
        df_wgi_ame = df_wgi_ame.filter(regex='1996.Rank|2022.Rank')
        # Данные Rank по России
        df wgi russia = df[df['Code'] == 'RUS']
        df_wgi_russia.set_index('Country/Territory', inplace=True)
        df_wgi_russia.rename_axis('Country', inplace=True)
        df_wgi_russia = df_wgi_russia.filter(regex='1996.Rank|2022.Rank')
        # Объединяем два датафрейма
        df_wgi_ame_rus = pd.concat([df_wgi_ame, df_wgi_russia])
        # Вывод промежуточного результата
        df_wgi_ame_rus
```

Country		
Argentina	53.763439	36.320755
Bahamas	83.870964	84.433960
Bolivia	25.268818	20.754717
Brazil	56.989246	32.075470
Barbados	90.860214	89.150940
Canada	96.236557	93.396225
Chile	90.322578	80.660378
Colombia	36.559139	41.037735
Costa Rica	75.268814	66.981133
Cuba	63.440861	52.358490
Dominica	80.107529	69.339622
Dominican Republic	41.397850	37.264153
Ecuador	30.107527	29.716982
Grenada	80.107529	67.452827
Guatemala	23.655914	11.320755
Guyana	52.688171	45.283020
Honduras	14.516129	18.867924
Haiti	9.139785	5.188679
Jamaica	61.827957	54.245281
Saint Lucia	NaN	70.754715
Mexico	36.021507	17.452829
Nicaragua	33.870968	7.547170
Panama	50.537636	28.773584
Peru	41.935482	22.169811
Paraguay	10.215054	15.094339
El Salvador	21.505377	27.830189
Suriname	61.290321	39.150944
Trinidad and Tobago	80.645164	40.566036
Uruguay	82.258064	91.981133
United States of America	91.397850	82.547173
Saint Vincent and the Grenadines	NaN	77.358490
Venezuela	22.580645	1.886792

Russian Federation 15.053763 19.339622

```
df_wgi_changes = df_wgi_ame_rus.copy()
df_wgi_changes['Change procent'] = (df_changes['2022.Rank'] * 100).round(
df_wgi_changes
```

/tmp/ipykernel_36574/3028844007.py:2: FutureWarning: The 'fill_method' and
'limit' keywords in DataFrame.pct_change are deprecated and will be remove
d in a future version. Call ffill before calling pct_change instead.
 df_changes = df_wgi_ame_rus.pct_change(fill_method=None, axis=1)

Country			
Argentina	53.763439	36.320755	-32.44
Bahamas	83.870964	84.433960	0.67
Bolivia	25.268818	20.754717	-17.86
Brazil	56.989246	32.075470	-43.72
Barbados	90.860214	89.150940	-1.88
Canada	96.236557	93.396225	-2.95
Chile	90.322578	80.660378	-10.70
Colombia	36.559139	41.037735	12.25
Costa Rica	75.268814	66.981133	-11.01
Cuba	63.440861	52.358490	-17.47
Dominica	80.107529	69.339622	-13.44
Dominican Republic	41.397850	37.264153	-9.99
Ecuador	30.107527	29.716982	-1.30
Grenada	80.107529	67.452827	-15.80
Guatemala	23.655914	11.320755	-52.14
Guyana	52.688171	45.283020	-14.05
Honduras	14.516129	18.867924	29.98
Haiti	9.139785	5.188679	-43.23
Jamaica	61.827957	54.245281	-12.26
Saint Lucia	NaN	70.754715	NaN
Mexico	36.021507	17.452829	-51.55
Nicaragua	33.870968	7.547170	-77.72
Panama	50.537636	28.773584	-43.07
Peru	41.935482	22.169811	-47.13
Paraguay	10.215054	15.094339	47.77
El Salvador	21.505377	27.830189	29.41
Suriname	61.290321	39.150944	-36.12
Trinidad and Tobago	80.645164	40.566036	-49.70
Uruguay	82.258064	91.981133	11.82
United States of America	91.397850	82.547173	-9.68
Saint Vincent and the Grenadines	NaN	77.358490	NaN
Venezuela	22.580645	1.886792	-91.64
Russian Federation	15.053763	19.339622	28.47

1.12 Выведите таблицу для Вашего варианта (WGI - rank)

```
In [ ]: # Создаем новый датафрейм для заполнения
         rows = ['mean 2022', 'max 2022', 'min 2022', 'Russia 2022'] # Список стро
         cols = ['Регион', 'Страна', 'WGI 1996', 'WGI 2022', 'Изменение'] # Список
         table = pd.DataFrame(index=rows,columns=cols)
         # Заполняем первый столбец (Регион)
         table.loc['mean_2022', 'Peгион'] = "AME"
table.loc['max_2022', 'Peгион'] = "AME"
table.loc['min_2022', 'Peгион'] = "AME"
         table.loc['Russia 2022', 'Регион'] = "ECA"
         # Заполняем второй столбец (Страна)
         minAmeIdx = df wgi ame['2022.Rank'].idxmin()
         maxAmeIdx = df wgi ame['2022.Rank'].idxmax()
         rusIdx = 'Russian Federation'
         table.loc['mean_2022', 'Страна'] = "-"
         table.loc['max_2022', 'Cтранa'] = maxAmeIdx table.loc['min_2022', 'Cтранa'] = minAmeIdx
         table.loc['Russia_2022', 'Страна'] = rusIdx
         # Заполняем третий столбец (WGI 1996)
         table.loc['mean_2022', 'WGI 1996'] = df_wgi_ame['1996.Rank'].mean()
         table.loc['max_2022', 'WGI 1996'] = df_wgi_ame.loc[maxAmeIdx, '1996.Rank'
         table.loc['min_2022', 'WGI 1996'] = df_wgi_ame.loc[minAmeIdx, '1996.Rank'
         table.loc['Russia_2022', 'WGI 1996'] = df_wgi_ame_rus.loc[rusIdx, '1996.R
         # Заполняем четвертый столбец (WGI 2022)
         table.loc['mean_2022', 'WGI 2022'] = df_wgi_ame['2022.Rank'].mean()
table.loc['max_2022', 'WGI 2022'] = df_wgi_ame.loc[maxAmeIdx, '2022.Rank']
         table.loc['min 2022', 'WGI 2022'] = df wgi ame.loc[minAmeIdx, '2022.Rank'
         table.loc['Russia_2022', 'WGI 2022'] = df_wgi_ame_rus.loc[rusIdx, '2022.R
         # Заполняем пятый столбец (Изменение)
         # Для рассчета среднего изменения по региону из таблицы изменений удаляем
         df wgi changes ame = df wgi changes.drop(rusIdx)
         table.loc['mean_2022', 'Изменение'] = df_wgi_changes_ame['Change procent'
         table.loc['max_2022', 'Изменение'] = df_wgi_changes_ame.loc[maxAmeIdx, 'С
         table.loc['min 2022', 'Изменение'] = df wgi changes ame.loc[minAmeIdx, 'С
         table.loc['Russia 2022', 'Изменение'] = df wgi changes.loc[rusIdx, 'Chang
         table
```

Out[]:		Регион	Страна	WGI 1996	WGI 2022	Изменение
	mean_2022	AME	-	53.27957	45.59257	-19.16
	max_2022	AME	Canada	96.236557	93.396225	-2.95
	min_2022		Venezuela	22.580645	1.886792	-91.64
	Russia_2022	ECA	Russian Federation	15.053763	19.339622	28.47

1.13 Отобразите диаграмму размаха индекса WGI за 2022 для всех стран и для каждого региона в отдельности (на одном графике)

```
In []: # Создаем датафрейм со всеми странами и объединяем с датафреймом с назван df_merged = df.merge(df_region, how='inner', left_on='Code', right_on='Co # Оставляем только индекс Country, код региона и WGI за 2022 год df_merged = df_merged.filter(regex='^Country$|2022.Estimate|Region') df_merged.set_index('Country', inplace=True) # Данные по каждому региону. Переименовываем столбец Estimate для отображ df_boxplot_ame = df_merged[df_merged['Region'] == 'AME'].rename(columns={ df_boxplot_eca = df_merged[df_merged['Region'] == 'ECA'].rename(columns={ df_boxplot_eca = df_boxplot_eca =
```

```
df_boxplot_ssa = df_merged[df_merged['Region'] == 'SSA'].rename(columns={df_boxplot_eu = df_merged[df_merged['Region'] == 'WE/EU'].rename(columns=df_boxplot_mena = df_merged[df_merged['Region'] == 'MENA'].rename(columns=df_boxplot_ap = df_merged[df_merged['Region'] == 'AP'].rename(columns={'2 # Данные по всем странам df_boxplot_all = df_merged.rename(columns={'2022.Estimate':'All Countries # Объединяем в общий датафрейм df_boxplot = pd.concat([df_boxplot_ame, df_boxplot_eca, df_boxplot_ssa, df_boxplot.boxplot()
```

Out[]: <Axes: >

Задание 2. Анализ рынка акций

2.1 Загрузите данные в один dataframe из всех файлов в папке /data/stock. Все файлы имеют одинаковую структуру, в том числе наименование столбцов. В качестве значений индекса dataframe'a необходимо указать значения столбца "Date". Название столбцов должные соответствовать названию акций (имя файла без .csv), а их значения - значениям цены закрытия (столбец "Close" в файлах .csv)

```
In []: import glob
import pandas as pd

In []: # Получение списка csv
files = glob.glob('./data/stock/*.csv')
# Загрузка данных по каждой компании в один датафрейм
df = pd.DataFrame()
```

```
for file in files:
    data = pd.read_csv(file, index_col='Date', usecols=['Date','Close'])
    compName = file.split('/')[-1].split('.')[0]
    df[compName] = data['Close']
df.head()
```

ut[]:		TWLO	csco	DBX	AMZN	AAPL	SPOT	N'
	Date							
	2022- 01-01	206.119995	55.669998	24.750000	149.573502	174.779999	196.259995	244.860
	2022- 02-01	174.800003	55.770000	22.690001	153.563004	165.119995	156.190002	243.850
	2022- 03-01	164.809998	55.759998	23.250000	162.997498	174.610001	151.020004	272.859
	2022- 04-01	111.820000	48.980000	21.750000	124.281502	157.649994	101.650002	185.470
	2022- 05-01	105.169998	45.049999	20.840000	120.209503	148.839996	112.769997	186.720
	5 rows	× 25 columns						

2.2 Рассчитайте корреляционную матрицу для всех акций

```
In [ ]: corr = df.corr()
    corr
```

[]:		TWLO	csco	DBX	AMZN	AAPL	SPOT	NVDA	
	TWLO	1.000000	0.383777	-0.113102	0.314869	0.042914	0.059969	-0.244797	-0.
	csco	0.383777	1.000000	0.496982	0.404820	0.589552	0.424007	0.320159	0.4
	DBX	-0.113102	0.496982	1.000000	0.478171	0.740429	0.525305	0.519374	0.6
	AMZN	0.314869	0.404820	0.478171	1.000000	0.665715	0.875779	0.765294	0.7
	AAPL	0.042914	0.589552	0.740429	0.665715	1.000000	0.687415	0.633114	0.7
	SPOT	0.059969	0.424007	0.525305	0.875779	0.687415	1.000000	0.925270	0.9
	NVDA	-0.244797	0.320159	0.519374	0.765294	0.633114	0.925270	1.000000	2.0
	NFLX	-0.102302	0.497727	0.635239	0.735466	0.701937	0.920771	0.910910	1.0
	SHOP	0.657843	-0.144612	0.424923	0.824934	0.465147	0.737909	0.713391	3.0
	ABNB	0.429915	0.594365	0.332740	0.830690	0.617430	0.753797	0.649664	0.6
	PINS	-0.141953	0.384233	0.710191	0.666996	0.640294	0.842858	0.815629	2.0
	HPQ	0.728572	0.214262	-0.177013	0.235247	0.067074	0.005774	-0.160502	-0.2
	XIACY	0.447846	0.474311	0.382992	0.654564	0.408747	0.647331	0.445645	0.!
	MU	0.315313	0.472688	0.440043	0.906932	0.606787	0.902439	0.796707	0.7
	META	-0.072886	0.374998	0.552874	0.830910	0.705358	0.973401	0.961389	3.0
	MSFT	-0.094023	0.391476	0.648164	0.838702	0.790691	0.949380	0.935386	0.9
	тсом	-0.562073	0.257188	0.423136	0.309545	0.439363	0.640120	0.787859	0.7
	ORCL	-0.393536	0.463955	0.667833	0.534556	0.769309	0.763100	0.875089	0.8
	INTC	0.585988	0.420854	0.390625	0.816519	0.507251	0.645555	0.458281	0.4
	GOOGL	0.315410	0.600025	0.669228	0.912332	0.806847	0.821587	0.715287	0.7
	TSLA	0.703872	0.253808	0.037233	0.302321	0.248385	-0.092332	-0.277600	-0.2
	UBER	-0.186828	0.326346	0.595928	0.796897	0.661323	0.933308	0.969790	0.9
	EBAY	0.753732	0.494938	-0.157363	0.434078	0.115591	0.296858	0.087027	0.
	ADBE	0.067604	0.554172	0.816359	0.819614	0.833129	0.863827	0.802739	0.8
	GTLB	0.310273	0.068856	0.402517	0.690644	0.282373	0.540113	0.404702	0.4
2	25 rows ×	25 columns	5						

2.3 Отобразите корреляционную матрицу в виде диаграммы

```
In []: import matplotlib.pyplot as plt
import seaborn as sns

In []: plt.figure(figsize=(15,15))
    sns.heatmap(corr, annot=True, cmap='viridis', fmt=".2f")
    plt.show()
```


2.4 В соответствии с Вашим вариантом определите:

- акцию с максимальной положительной корреляцией (max)
- акцию с максимальной отрицательной корреляцией (min)
- акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none))

Вариант 4. Uber (UBER)

```
In [ ]: # Корелляция акций UBER с другими акциями
uber_corr = corr['UBER']
uber_corr = uber_corr.drop('UBER')
uber_corr
```

```
Out[]: TWLO
               -0.186828
        CSC0
                 0.326346
        DBX
                 0.595928
        AM7N
                 0.796897
                 0.661323
        AAPL
        SP0T
                 0.933308
        NVDA
                 0.969790
        NFLX
                 0.937042
        SH0P
                 0.836565
        ABNB
                 0.680764
        PINS
                0.907751
        HPQ
                -0.180970
        XIACY
                0.495835
        MU
                 0.820809
        META
                 0.954444
        MSFT
               0.939538
        TCOM
               0.754442
               0.832075
        0RCL
        INTC
               0.512572
        G00GL
               0.737311
              -0.221155
        TSLA
        EBAY
                 0.085736
        ADBE
                 0.834611
        GTLB
                 0.521399
        Name: UBER, dtype: float64
In [ ]: # Акция с максимальной положительная корреляция
        max_corr = uber_corr.idxmax()
        max_corr
Out[]: 'NVDA'
In [ ]: # Акция с максимальной отрицательная корреляция
        min_corr = uber_corr.idxmin()
        min_corr
Out[]: 'TSLA'
In [ ]: # Акция с минимальной корреляцией
        none_corr = uber_corr.abs().idxmin()
        none corr
Out[]: 'EBAY'
        2.5 Постройте диаграммы разброса
```

- Ваша компания Компания с min
- Ваша компания Компания с тах
- Ваша компания Компания с none

```
In [ ]: # Диаграмма разброса UBER - min corr
plt.scatter(df['UBER'], df[min_corr])
```

Out[]: <matplotlib.collections.PathCollection at 0x7bfe68a11db0>

In []: # Диаграмма разброса UBER - max corr
plt.scatter(df['UBER'], df[max_corr])

Out[]: <matplotlib.collections.PathCollection at 0x7bfe688a9510>


```
In []: # Диаграмма разброса UBER - none corr
plt.scatter(df['UBER'], df[none_corr])
```

Out[]: <matplotlib.collections.PathCollection at 0x7bfe689261a0>

2.6 Рассчитайте среднюю цену акций для каждого месяца (исходные данные взяты с интервалом в месяц)

```
In [ ]: # Транспонируем исходный датафрейм, чтобы каждый месяц был столбцом, по к
    mean = df.T.mean()
    mean.name='mean'
    mean
```

```
Out[]:
         Date
         2022-01-01
                        154.857167
         2022-02-01
                        140.774723
         2022-03-01
                        145.272287
         2022-04-01
                        115.763514
         2022-05-01
                        112.316034
         2022-06-01
                        99.256929
         2022-07-01
                        114.014999
         2022-08-01
                        107.380833
         2022-09-01
                         94.437083
         2022-10-01
                         97.227501
         2022-11-01
                        100.671666
         2022-12-01
                         92.028958
         2023-01-01
                        108.279540
         2023-02-01
                        108.613126
         2023-03-01
                        120.210832
         2023-04-01
                        115.778799
         2023-05-01
                        131.258401
         2023-06-01
                        145.426799
         2023-07-01
                        153.207200
         2023-08-01
                        152.016000
         2023-09-01
                        141.760400
                        140.454598
         2023-10-01
         2023-11-01
                        159.367601
         2023-12-01
                        164.859599
         2024-01-01
                        174.886801
         2024-02-01
                        189.609962
         2024-03-01
                        196.083201
         2024-03-12
                        196.083201
         Name: mean, dtype: float64
```

2.7 Постройте графики для акций из пункта 4 и средней из пункта 6

```
In []: df['UBER'].plot(figsize=(17,7), marker='o', color='black', legend=True)
    df[max_corr].plot(label=max_corr + ' max', marker='o', color='green', leg
    df[min_corr].plot(label=min_corr + ' min', marker='o', color='red', legen
    df[none_corr].plot(label=none_corr + ' none', marker='o', color='yellow',
    mean.plot(marker='o', color='blue', legend=True)
```


Вывод

В данном домашнее задании были отработаны с использованием языка Python такие навыки и умения, как:

- Решение практических задач по анализу данных
- Загрузка, трансформация, вычисление простых статистик
- Визуализация данных в виде графиков и диаграмм