Homework 2

Aiden Kenny STAT GR5204: Statistical Inference Columbia University

November 26, 2020

Question 1

Suppose that $Y \sim \text{Bin}(100, p)$, and we want to make an inference about the value of p. We test $H_0: p = 0.08$ against $H_A: p < 0.08$, and our test δ will reject H_0 if and only if Y = 6.

(a) The significance α is the probability of making a Type I error,

$$\alpha(\delta) = \Pr(Y = 6 \mid p = 0.08) = {100 \choose 6} (0.08)^6 (0.92)^{94} = 0.123.$$

(b) Suppose that p = 0.04. The probability of a Type II error, β , is

$$\beta(\delta) = \Pr(Y \neq 6 \mid p = 0.04) = 1 - \Pr(Y = 6 \mid p = 0.04) = 1 - \binom{100}{6} (0.04)^6 (0.96)^{94} = 0.895.$$

Question 2

For a random variable $Y \sim \text{Binom}(n, p)$, if n is large enough we can approximate it using a normal distribution with the same mean and variance, i.e. $Y \sim \text{N}(np, np(1-p))$. Then the sample proportion, $\hat{p} = Y/n$, is also normally distributed as $\hat{p} \sim \text{N}(p, p(1-p)/n)$, and standardizing \hat{p} gives us $(\hat{p}-p)/\sqrt{p(1-p)/n} \sim \text{N}(0,1)$. It can then be shown that a $100\gamma\%$ confidence interval for \hat{p} is given by

$$\mathcal{I} = \left(\frac{\hat{p} + z_{\gamma}^{2}/2n}{1 + z_{\gamma}^{2}/2n} - z_{\gamma} \cdot \frac{\sqrt{\hat{p}(1-\hat{p})/n + z_{\gamma}^{2}/4n^{2}}}{1 + z_{\gamma}^{2}/n} \right., \\ \left. \frac{\hat{p} + z_{\gamma}^{2}/2n}{1 + z_{\gamma}^{2}/2n} + z_{\gamma} \cdot \frac{\sqrt{\hat{p}(1-\hat{p})/n + z_{\gamma}^{2}/4n^{2}}}{1 + z_{\gamma}^{2}/n} \right),$$

where $z_{\gamma} = \Phi^{-1}((1+\gamma)/2)$. For this example, we have n = 300 and $\hat{p} = 75/300 = 1/4$, and to get a 90% confidence interval, we have $z_{0.90} = 1.645$. Therefore, a 90% confidence interval for p is (0.212, 0.294).

Question 3

Suppose we have a random sample $X \sim \text{Gamma}(4,\beta)$, so $\mathbb{E}[X_i] = 4\beta$ and $\text{Var}[X_i] = 4\beta^2$. The expected value and variance of the sample mean \bar{X} is then given by $\mathbb{E}[\bar{X}] = 4\beta$ and $\text{Var}[\bar{X}] = 4\beta^2/n$, and from the CLT we have $\sqrt{n}(\bar{X} - 4\beta^2)/2\beta = \sqrt{n}(\bar{X}/2\beta - 2) \sim \text{N}(0,1)$. If $z_{\gamma} = \Phi^{-1}((1+\gamma)/2)$, then we have $\gamma = \Pr(-z_{\gamma} \leq \sqrt{n}(\bar{X}/2\beta - 2 \leq z_{\gamma})$. Rearranging to get β in the middle gives us

$$\mathcal{I} = \left(\frac{\bar{X}}{4(1+z_{\gamma}/\sqrt{n})} , \frac{\bar{X}}{4(1-z_{\gamma}/\sqrt{n})} \right).$$

For this random sample, n=25, and because we want a 95.4% confidence interval (oddly specific), we have $z_{\gamma}=2$, so the confidence interval is given by $\mathcal{I}=(5\bar{X}/28,5\bar{X}/12)$.

Question 9

If $X \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with unknown μ and σ^2 , then a $\gamma\%$ confidence interval for μ is given by

$$\mathcal{I} = \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n} , \bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n} \right),$$

where $t_{\gamma}(n) = T_{n-1}^{-1}((1+\gamma)/2)$ is the $(1+\gamma)/2$ th quantile of the t distribution with df = n-1 and S is the sample standard deviation. The length of this confidence interval is given by

$$\Delta = \max(\mathcal{I}) - \min(\mathcal{I}) = \left(\bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n}\right) - \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n}\right) = 2t_{\gamma}(n) \cdot S / \sqrt{n}.$$

The squared length is then given by $\Delta^2 = 4t_\gamma^2(n) \cdot S^2/n$. Because the sample variance is an unbiased estimator for σ^2 , we have $\mathbb{E}[\Delta^2] = \mathbb{E}[4t_\gamma^2(n) \cdot S^2/n] = 4t_\gamma^2(n) \cdot \sigma^2/n$. We now set $\mathbb{E}[\Delta^2] < \sigma^2/2$, and after some cancellations, we see that we need $t_\gamma^2(n)/n < 1/8$. There is no way to find a closed-form expression for this, so we will have to check the value of $t_\gamma^2(n)/n$ for increasing values of n. I set up a while loop in R to solve for it, and when $\gamma = 0.9$, we find that n = 24 is the smallest value of n such that $\mathbb{E}[\Delta^2] < \sigma^2/2$.

Question 10

Let $\boldsymbol{X} \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$, where θ is unknown and σ^2 is known, and we assume prior that $\theta \sim N(\mu, \nu^2)$, where both μ and ν^2 are known.

(a) Since normal distributions are are conjugate to normal sampling, it follows that $\theta \mid \mathbf{x} \sim N(\tilde{\mu}, \tilde{\sigma}^2)$, where

$$\tilde{\mu} = \frac{\sigma^2 \mu + n \nu^2 \bar{x}}{\sigma^2 n \nu^2}$$
 and $\tilde{\sigma}^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}$.

We also know that $(\theta \mid \mathbf{x} - \tilde{\mu})/\tilde{\sigma} \sim N(0,1)$, and so a 95% confidence interval for $\theta \mid \mathbf{x}$ is given by

$$\mathcal{I} = \Big(\tilde{\mu} - \Phi^{-1}(0.975) \cdot \tilde{\sigma} , \tilde{\mu} + \Phi^{-1}(0.975) \cdot \tilde{\sigma} \Big).$$

(b) We can think of our interval \mathcal{I} as a function of ν^2 . To examine what happens to $\mathcal{I}(\nu^2)$ as $\nu^2 \to \infty$, we will first look at $\tilde{\mu}$ and $\tilde{\sigma}$. Using L'Hopital's rule, we have

$$\begin{split} &\lim_{\nu^2 \to \infty} \tilde{\mu} = \lim_{\nu^2 \to \infty} \frac{\sigma^2 \mu + n \nu^2 \bar{x}}{\sigma^2 n \nu^2} = \lim_{\nu^2 \to \infty} \frac{n \bar{x}}{n} = \bar{x}, \\ &\lim_{\nu^2 \to \infty} \tilde{\sigma} = \lim_{\nu^2 \to \infty} \sqrt{\frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}} = \sqrt{\lim_{\nu^2 \to \infty} \frac{\sigma^2 \nu^2}{\sigma^2 + n \mu^2}} = \sqrt{\lim_{\nu^2 \to \infty} \frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}, \end{split}$$

and so $\mathcal{I}(\nu^2) \to (\bar{x} - \Phi^{-1}(0.975) \cdot \sigma/\sqrt{n} , \bar{x} + \Phi^{-1}(0.975) \cdot \sigma/\sqrt{n})$, which is a 95% confidence interval for θ

Question 11

Let $X \stackrel{\text{iid}}{\sim} \text{Unif}(0,\theta)$, where θ is unknown, and let $Y = X_{(n)}$ be the nth order statistic.

(a) Let $F_i(x) = \Pr(X_i \leq x) = x/\theta$ for all $i \in \{1, ..., n\}$. Then the cdf of Y is $G(y) = \prod_{i=1}^n F_i(y) = (y/\theta)^n$, since all of the X_i 's are independent. The density of Y is then given by $g(y) = ny^{n-1}/\theta^n$ for $y \in [0, \theta]$. By letting $W = Y/\theta$, we have $Y = \theta W$ and $\partial Y/\partial W = \theta$, so the density of Y/θ is given by $h(w) = g(y(w)) \cdot \theta = nw^{n-1}$ for $w \in [0, 1]$. The cdf is then seen to be $H(w) = w^n$, and so the quantile is given by $H^{-1}(w) = \sqrt[n]{w}$.

(b) Since we must have $y \leq \theta$, it is natural that Y will underestimate θ , and is therefore biased. We have

$$\mathbb{E}[Y] = \int_0^\theta y \cdot \frac{ny^{n-1}}{\theta^n} \, \partial y = \frac{n}{\theta^n} \int_0^\theta y^n \, \partial y = \frac{n}{\theta^n} \cdot \frac{y^{n+1}}{n+1} \bigg|_0^\theta = \frac{n}{\theta^n} \cdot \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1},$$

and so the bias is $\operatorname{bias}(Y) = \mathbb{E}[Y] - \theta = -\theta/(n+1)$.

(d) Using the cdf of Y/θ , for any interval involving Y/θ , we have $\Pr(a \leq Y/\theta \leq b) = b^n - a^n$, where $a,b \in (0,1]$. Rearranging the terms inside the interval gives us $\Pr(Y/b \leq \theta \leq Y/a) = b^2 - a^2 \stackrel{\text{set}}{=} \gamma$. That is, as long as we impose the constraint that $b^2 - a^2 = \gamma$, any interval (Y/b, Y/a) is a $\gamma\%$ confidence interval for θ .

Question 12

Suppose that $X \sim P$, where P is an unknown distribution, and we want to test $H_0: P = \text{Unif}(0,1)$ against $H_1: P = N(0,1)$. The densities of both distributions (within their support) are given by $f_0(x) = 1$ for $x \in [0,1]$ and $f_2(x) = (2\pi)^{-1/2} \exp(-x^2/2)$, respectively, and so our test statistics is