

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

617138591

CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

February/March 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

1 The Pauling electronegativity values of elements can be used to predict the chemical properties of compounds.

Use the information in Table 1.1 to answer the following questions.

Table 1.1

element	Н	Li	С	0	S
Pauling electronegativity value	2.1	1.0	2.5	3.5	2.6
first ionisation energy/kJ mol ⁻¹	1310	519	1090	1310	1000
second ionisation energy/kJ mol ⁻¹	_	7300	2350	3390	2260

(a)	(1)	Define electronegativity.	
	(ii)	O and S are in Group 16.	
		Explain the difference in the Pauling electronegativity values of O and S.	
			[2]
(b)	(i)	LiH is an ionic compound.	
		Draw a dot-and-cross diagram of LiH.	
		Include all electrons.	
			[2]
	(ii)	Suggest the shape of a molecule of H ₂ S.	
			[1]

(c)	(i)	Write an equation that represents the first ionisation energy of H.	
			[1]
	(ii)	Explain why there is no information given in Table 1.1 for the second ionisation ener of H.	gy
			[1]
	(iii)	Give the full electronic configuration of $S^{2+}(g)$.	
			[1]
(d)	CO ₂	and SO ₂ are acidic gases.	
	(i)	Write an equation for the reaction of SO ₂ with H ₂ O.	
			[1]
	(ii)	Write an equation for the reaction of SO ₂ with NaOH.	
			[1]
	(iii)	Construct an equation for the reaction of ${\rm CO_2}$ with ${\rm Mg(OH)_2}$.	
			[1]

(e) (i) Complete Table 1.2 by placing a tick (✓) to show which of the compounds have molecules with an overall dipole moment.

Table 1.2

compound	O=C=O	O=S=O	S=C=S	S=C=O
overall dipole moment				

[2]

(ii) At 150 °C and 103 kPa, all of the compounds listed in Table 1.2 are gases.

Under these conditions, 0.284 g of one of the compounds occupies a volume of 127 cm³.

Use this information to calculate the $M_{\rm r}$ of the compound. Hence, identify the compound from those given in Table 1.2.

Show your working.

[Total: 17]

BLANK PAGE

[2]

2	The Group 2 elements Mg to Ba are all silvery-white reactive metals.													
	(a)	(i)	Draw a labe	lled diagram	to show	the	bonding	and	structure	of the	Group	2	metals	at

room temperature.

		[2]
	(ii) Explain why Mg has a higher electrical conductivity than Na.	
		[1]
(b)	Write an equation for the reaction of magnesium with cold water.	
		[1]
(c)	Identify a single reagent that can be used to distinguish separate samples of dim ${\rm Mg(NO_3)_2(aq)}$ and dilute ${\rm Ba(NO_3)_2(aq)}$.	lute
	Explain your answer.	
	reagent	
	explanation	

(d)	(i)	Describe what is observed when $SrI_2(aq)$ reacts with concentrated sulfuric acid.
		[2]
	(ii)	Compound \mathbf{X} , an anhydrous Group 2 bromide, is dissolved in water and titrated against aqueous silver nitrate.
		A solution containing 0.250 g of X requires $33.65\mathrm{cm^3}$ of 0.0500 mol dm ⁻³ AgNO ₃ (aq) for complete reaction.
		Identify X.
		Show your working.

X =		[3]
------------	--	-----

[Total: 11]

3 Alkenes undergo an addition reaction with a 1:1 mixture of CO and $\rm H_2$ to form aldehydes.

Fig. 3.1 shows the reaction of propene with a 1:1 mixture of CO and H₂.

		Fig. 3.1
(a)	(i)	Define addition reaction.
		[1]
	(ii)	Aldehydes A and B are structural isomers.
		State the type of structural isomerism shown by A and B .
		[1]
	(iii)	Name A.
		[1]
	(iv)	The complete reaction of propene with a 1:1 mixture of CO and $\rm H_2$ produces A and B only. The product mixture contains 96% A and 4% B .
		Calculate the mass of A produced in this reaction when 5.00 × 10 ³ kg of propene is used

- (b) A and B show reactions typical of aliphatic aldehydes.
 - (i) A undergoes a nucleophilic addition reaction with a mixture of HCN and KCN, forming compound C.

Complete the diagram to show the mechanism for this reaction.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Draw the structure of the organic intermediate.

[4]

(ii) Table 3.1 shows information about three experiments involving **B**.

Complete Table 3.1.

Table 3.1

experiment	reagents	observation with B
1		solution turns from orange to green
2		a silver mirror forms on the sides of the reaction vessel
3	Br ₂ (aq)	

[3]

(iii) **B**, C₄H₈O, is oxidised by acidified potassium manganate(VII).

Complete the equation for this reaction. Use [O] to represent one atom of oxygen from the oxidising agent.

$$C_4H_8O + \dots$$
 [1]

(iv) C is a chiral molecule.

Circle any chiral centres in the structure of **C** shown in Fig. 3.2.

C
OHH H H
I I I
H-C-C-C-C-H
C H H H
III
N

Fig. 3.2

[1]

[2]

(c) When propene reacts with CO and an excess of H₂, an alkane and a mixture of alcohols are formed instead. The alcohols are isomers of each other.

Suggest the molecular formulae of the alkane and the alcohols that are formed under these conditions.

(d) The reaction of ethene, C_2H_4 , with a 1:1 mixture of CO and H_2 is shown in equation 1.

equation 1
$$C_2H_4(g) + CO(g) + H_2(g) \rightleftharpoons CH_3CH_2CHO(g)$$

At atmospheric pressure a cobalt-based catalyst is used in this reaction.

(i) State and explain the effect of using a catalyst on this reaction.

.....

(ii)		why the yield of $\mathrm{CH_3CH_2Ch}$ mixture is increased.	HO(g) increases when the o	verall pressure of the
				[1]
(iii)	Use the	information in Table 3.2 to can	alculate the enthalpy change,	$\Delta H_{\rm r}$, of the reaction in
	equatio	n 1 $C_2H_4(g) + CO(g)$	+ H ₂ (g) ⇌ CH ₃ CH ₂ CHO(g)
		Tabl	e 3.2	
		compound	enthalpy change of formation, $\Delta H_{\rm f}/{\rm kJmol^{-1}}$	
		C ₂ H ₄ (g)	+52	
		CO(g)	-111	
		CH ₃ CH ₂ CHO(g)	-187	
			Δ <i>H</i> _r =	kJmol ^{–1} [2]
(iv)	The rea	ction mixture is cooled to coll	ect CH ₃ CH ₂ CHO as a liquid.	
	Identify CH ₃ CH	all types of van der Waals ₂ CHO.	s' forces that are present b	etween molecules of
				[1]

4 Fig. 4.1 shows some reactions of compound **D**, 2-bromobutane.

Fig. 4.1

(a) (i) State the reagent and conditions used to form E in reaction 1.(ii) Draw the structure of one repeat unit of the addition polymer that forms from E.

(iii) **E** also forms when **F** is heated strongly in the presence of an Al_2O_3 catalyst. Write an equation for this reaction.

(b)	(i)	Predict what is observed in reaction 2.	[1]
	(ii)	Identify the yellow precipitate and the organic ion formed in reaction 3. yellow precipitate	
		organic ion	[2]
(c)	(i)	State the type of reaction that occurs in reaction 4.	[1]
	(ii)	Reaction 5 is similar to the reaction of $LiAlH_4$ with carboxylic acids to form alcohols. Suggest the role of $LiAlH_4$ in reaction 5.	
(d) transn	(i) nittar %	Fig. 4.2 shows the infrared spectrum of one of the compounds D , E , F , G or H .	
		0 1	1
		Fig. 4.2 Use information from Table 4.1 (on page 14) to identify which of the compounds D , E	, F.
		G or H produces the infrared spectrum in Fig. 4.2.	, - ,
		Explain your answer.	

Table 4.1

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
О–Н	carboxyl hydroxy	2500–3000 3200–3600

(ii)	In the mass spectrum of D , the relative abundance of the molecular ion peak is 3.4.
	Predict the relative abundance of the M+2 peak for D .
	Explain your answer.
	[1]
	[Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	8	. 01) <u> </u>	_	Φ	ج ۵	T	_	e e			ng 8:	_	(D)	e e.	<i>"</i>	_	uo	8		RSon		
	18	Ĭ 5	helium 4.0	10	Ž	20 neo	18	⋖	argon 39.9	36		kryp 83.	72	×	xen 131	98	<u>~</u>	rado	11	Ŏ	ogane		
	17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	B	bromine 79.9	53	Н	iodine 126.9	85	¥	astatine -	117	<u>s</u>	tennessine		
	16			80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъо	polonium -	116	_	livermorium		
	15			7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium		
	14					9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	LΙ	flerovium
	13			2	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4	113	R	nihonium		
									12	30	Zu	zinc 65.4	48	g	cadmium 112.4	80	£	mercury 200.6	112	ပ်	copernicium		
									7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Αu	gold 197.0	111	Rg	roentgenium		
dn									10	78	z	nickel 58.7	46	Pd	palladium 106.4	78	പ	platinum 195.1	110	Ds	darmstadtium -		
Group									0	27	ဝိ	cobalt 58.9	45	쩐	rhodium 102.9	77	'n	iridium 192.2	109	Ĭ	meitherium -		
		- エ	hydrogen 1.0						80	56	Pe	iron 55.8	4	Ru	ruthenium 101.1	9/	SO	osmium 190.2	108	Hs	hassium		
				J					7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium		
						Г	s,			9	24	ပ်	chromium 52.0	42	Мо	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	
			Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	q	niobium 92.9	73	<u>a</u>	tantalum 180.9	105	9	dubnium		
					a	ator	relat			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿒	rutherfordium	
							_		ဗ	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids			
	2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	99	Ва	barium 137.3	88	Ra	radium		
	_			3	:	lithium 6.9	1	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ъ́	francium		

7.1	<u> </u>	lutetium 175.0	103	۲	lawrencium	I	
20	Υp	ytterbium 173.1	102	N _o	nobelium	1	
69	T	thulium 168.9	101	Md	mendelevium	1	
89	ш	erbium 167.3	100	Fm	ferminm	I	
29	웃	holmium 164.9	66	Es	einsteinium	_	
99	۵	dysprosium 162.5	86	Ç	californium	1	
65	Д	terbium 158.9	97	Ř	berkelium	1	
64	Вd	gadolinium 157.3	96	Cm	curium	1	
63	En	europium 152.0	92	Am	americium	_	
62	Sm	samarium 150.4	96	Pu	plutonium	1	
61	Pm	promethium —	93	ď	neptunium	I	
09	PZ	neodymium 144.4	92	\supset	uranium	238.0	
69	ሗ	praseodymium 140.9	91	Ра	protactinium	231.0	
58	o	cerium 140.1	06	T	thorium	232.0	
25	Га	lanthanum 138.9	89	Ac	actinium	1	

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.