COM-711 SELECTED TOPICS IN COMPUTER VISION 2D TRACKING PART 2/2

Course update

Lectures

Course update

- Final mark
 - 50% homework
 - 50% presentation

- Homework mark
 - Considers only the best(N-2) scores from N total assignments

Oral presentations

- Each student will present a published paper on topics covered in the course to the rest of the class
 - Each student has approx 20 minutes to speak (including questions)
 - A list of papers you may select from will be posted on the web site http://cvlab.epfl.ch/teaching/topics/index.php
 - Alternatively, you may propose a paper to present (subject to approval)
 - Instructors and other students will ask questions about the work
 - Presentations will be held during on Nov 18, Nov 25, Dec 2, Dec 9, Dec 16. Time slots will be assigned on a first-come-first serve basis, after the list is posted. A web site will be made available to sign up with your selected paper and time slot

Course update

Homework: 7 total assignments

- Only the best N-2 scores from N total assignments will be considered (you can "skip" two assignments)
- First 4 assignments available on course web site http://cvlab.epfl.ch/teaching/topics/index.php

Outline

Introduction to the tracking problem

- What is tracking?
- Approaches, assumptions, & applications
- State of the art & challenges

Recursive Bayesian filtering

- Background & formulation
- Kalman filter
- Particle filter

Recap: approaches to tracking

Non-probabilistic

- + quick convergence*
- + efficient
- stuck in local max/min
- modeling multiple objects

Probabilistic

- + flexible, principled
- + multi-modal
- slower
- interpretation

Recap: approaches to tracking

Sequential

- (recursive, online)
- + Inexpensive → real-time
- no future information
- cannot revisit past errors

Batch Processing

- (offline)
- - Expensive → not real-time*
- + considers all information
- + can correct past errors

$$t=1,...,T$$

Recap: approaches to tracking

Parallel trackers

- several single-object trackers
- computationally less expensive
- ad-hoc interaction

Joint state

- single multi-object representation
- computationally expensive
- explicit principled interaction

Probabilistic Formulation

Sequential

Multiple Objects

Filtering equation

Definitions

- State from 1 to time t: $X_t = \{\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t\}$
- Observations from 1 to time t: $Z_t = \{\mathbf{z}_1, \dots, \mathbf{z}_{t-1}, \mathbf{z}_t\}$

Key idea 1. PDFs represent our belief as to the state of the object

- **Key idea 2:** Recursive cycle
 - 1. Predict from motion model
 - 2. Measurement from image
 - Correct the prediction...repeat

Recap: state definition

- lacksquare State vector \mathbf{X}_t describes object(s) at an instant in time
- Defines solution space

$$X_t = \{\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t\}$$

Recap: dynamic model

Predicts new state x, based on previous state X_{t-1}

$$p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) = N(\mathbf{F}_{t}\mathbf{x}_{t-1}, \Sigma_{F_{t}})$$

Gaussian noise $\mathbf{w}_{t} \sim N(0, \mathbf{Q}_{t})$

Previous state time *t-1*

Recap: observation model

■ Models the likelihood that a state estimate \mathbf{X}_t gave rise to the observed image data \mathbf{Z}_t

Probability distribution to model belief in object location

Tracking faces in frame t

Probability distribution to model belief in object location

Posterior or target distribution – models belief as to the state of the system given the observations up to t

A point (dirac)

$$p(\mathbf{x}_{t} | Z_{t}) = \begin{cases} 1 & \text{if } \mathbf{x}_{t} = \mu \\ 0 & \text{otherwise} \end{cases}$$

Gaussian $p(\mathbf{x}_t | Z_t) = N(\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}_t - \mu)^T \Sigma^{-1}(\mathbf{x}_t - \mu)\right)$

lacktriangle Mixture of Gaussians $\{(\mu_1, \Sigma_1), (\mu_2, \Sigma_2), \ldots\}$

$$p(\mathbf{x}_t \mid Z_t) \propto \sum_{i} \frac{1}{\sqrt{(2\pi)^n \mid \Sigma_i \mid}} \exp\left(-\frac{1}{2}(\mathbf{x}_t - \mu_i)^{\mathrm{T}} \Sigma_i^{-1}(\mathbf{x}_t - \mu_i)\right)$$

■ Set of discrete samples (particles) $\left\{x_t^{(n)}, n=1,...,N\right\}$

$$p(\mathbf{x}_{t} \mid Z_{t}) \approx \sum_{n=1}^{N} \delta(x_{t} - x_{t}^{(n)})$$

■ Set of weighted samples (particles) $\left\{x_t^{(n)}, w_t^{(n)}\right\}_{n=1}^N$

$$\left\{\mathcal{X}_t^{(n)}, \mathcal{W}_t^{(n)}\right\}_{n=1}^N$$

$$w_t^{(n)} \in [0,1]$$
 $\sum_{n} w_t^{(n)} = 1$

$$p(\mathbf{x}_{t} | Z_{t}) \approx \sum_{n=1}^{N} w_{t}^{(n)} \delta(x_{t} - x_{t}^{(n)})$$

Recursive Bayesian filtering

■ Models belief about the current state X_t given past and present observed data $Z_{1:t}$.

Kalman filter

exact solution

[1] Kalman, R.E. A new approach to linear filtering and prediction problems. ASME, Journal of Basic Engineering, 1960.

SIR particle filter

discrete approximation

[2] M. Isard and A. Blake. Condensation, International Journal of Computer Vision, 1998.

MCMC particle filter discrete approximation

[3] Z. Khan, T. Balch, and F. Dellaert, An MCMC-based particle filter for tracking multiple interacting targets, ECCV, 2004.

Recursive bayesian filtering

- Kalman filterexact solution
 - Continuous state space
 - Linear dynamics
 - Gaussian observation density

- Particle filterapproximate solution
 - Continuous, discrete, or mixed state space
 - Arbitrary dynamics
 - Arbitrary observation density

Outline

Introduction to the tracking problem

- What is tracking?
- Approaches, assumptions, & applications
- State of the art & challenges

Recursive Bayesian filtering

- Background & formulation
- Kalman filter
- Particle filter

Published in 1960

Kalman, **R. E.** 1960. "A New Approach to Linear Filtering and Prediction Problems," Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).

- Used for many problems
 - Guidance
 - Navigation
 - Autopilots
 - Radar
 - Satellite
 - Weather forecasting

Kalman filter: Gaussians!

- in bayesian filtering terms
 - posterior

$$p(\mathbf{x}_{t} | Z_{t}) = N(\hat{\mathbf{x}}_{t|t}, \mathbf{P}_{t|t})$$

motion model

$$p(\mathbf{x}_{t} | \mathbf{x}_{t-1}) = N(\mathbf{F}_{t}\mathbf{x}_{t-1}, \mathbf{Q}_{t})$$

observation model

$$p(\mathbf{z}_t | \mathbf{x}_t) = N(\mathbf{H}_t \mathbf{x}_t, \mathbf{R}_t)$$

Probability density propagation

Kalman filter uses Gaussians

time step

State vector

$$\mathbf{x}_{t} = \begin{pmatrix} x \\ y \\ \dot{x} \\ \dot{y} \end{pmatrix}$$

Measurement

$$\mathbf{z}_{t} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Initial state

$$\mathbf{x}_{0|0} = \begin{pmatrix} x_0 \\ y_0 \\ \dot{x}_0 \\ \dot{y}_0 \end{pmatrix}$$

$$\mathbf{P}_{0|0} = egin{pmatrix} L & & & & & \ & L & & & \ & & L & & \ & & L & & \ & & L \end{pmatrix}$$

Prediction from the motion model

$$p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) = N\left(\mathbf{F}_{t}\mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$$

Update the mean

$$\hat{\mathbf{x}}_{t|t-1} = \mathbf{F}_t \hat{\mathbf{x}}_{t-1|t-1}$$

Prediction from the motion model

$$p(\mathbf{x}_{t} | \mathbf{x}_{t-1}) = N(\mathbf{F}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t})$$

Update covariance

$$\mathbf{P}_{t|t-1} = \mathbf{F}_t \mathbf{P}_{t-1|t-1} \mathbf{F}_t^{\mathrm{T}} + \mathbf{Q}_{t-1}$$

Prediction from the motion model

$$\hat{\mathbf{X}}_{t|t-1} = \mathbf{F}_t \hat{\mathbf{X}}_{t-1|t-1}$$

$$\mathbf{x}_{0|0}, \mathbf{P}_{0|0}$$

$$\mathbf{x}_{t} = \begin{pmatrix} x \\ y \\ \dot{x} \\ \dot{y} \end{pmatrix} \quad \mathbf{F}_t = \begin{pmatrix} 1 & \Delta t \\ 1 & \Delta t \\ 1 & 1 \end{pmatrix}$$
measure

measure

Receive a noisy measurement (observation)

$$\mathbf{z}_1 = \begin{pmatrix} x \\ y \end{pmatrix}$$

Observation model

$$p(\mathbf{z}_{t} | \mathbf{x}_{t}) = N(\mathbf{H}_{t} \mathbf{x}_{t|t-1}, \mathbf{R}_{t})$$

Predicted observation

$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\mathbf{z}_p = \mathbf{H}_t \mathbf{x}_t$$

$$\begin{pmatrix} \mathbf{x}_p \\ \mathbf{y}_p \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \end{pmatrix}$$

$$\mathbf{Z}_p \qquad \mathbf{H}_t \qquad \mathbf{X}_t$$

Observation model – how likely is the observation given the prediction?

■ The residual (innovation), $\tilde{\mathbf{y}}_t$, \mathbf{S}_t

- Correct the prediction using measurement
 - Kalman gain, K specifies how much the correction considers the prediction $\hat{x}_{(t|t-1)}$, $P_{t|t-1}$ or the measurement \widetilde{y}_{tt} , S_t

covariance

Kalman filter

Correct the prediction using measurement

$$\begin{split} \hat{\mathbf{x}}_{t|t} &= \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_t \tilde{\mathbf{y}}_k \\ \hat{\mathbf{x}}_{t|t} &= \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_t \left(\mathbf{z}_t - \mathbf{H} \hat{\mathbf{x}}_{t|t-1} \right) \\ \mathbf{x}_{0|0}, \mathbf{P}_{0|0} \\ \mathbf{P}_{t|t} &= \left(I - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{P}_{t|t-1} \\ \\ \mathbf{predicted} \end{split}$$

covariance

Predict, measure, correct cycle iteratively estimates the state at each time step

Kalman filter smoothing of accelerometer measurements.

Kalman filter tracking an aircraft.

Kalman filter tracking an aircraft.

Kalman filter limitations

Position only $\mathbf{x}_t = \begin{pmatrix} x \\ y \end{pmatrix}$

Constant velocity model

$$\mathbf{x}_{t} = \begin{pmatrix} x \\ y \\ \dot{x} \\ \dot{\mathbf{y}} \end{pmatrix}$$

Kalman limitations

No non-Gaussian observation models

M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, L. Van Gool, Robust Tracking-by-Detection using a Detector Confidence Particle Filter, International Conference on Computer Vision (ICCV), 2009

Kalman limitations

Uni-modal distributions fail for unpredicted motion

Summary: Kalman filter

Pros +

- Gaussian densities easy to work with
- Exact solution
- Well established method

Cons -

- Restricted to Gaussian densities
- Uni-modal distribution: single hypothesis
- Only linear, continuous dynamic model

Outline

Introduction to the tracking problem

- What is tracking?
- Approaches, assumptions, &applications
- State of the art & challenges

Recursive Bayesian filtering

- Background & formulation
- Kalman filter
- Particle filter

Particle filter

D. Klein, D. Schulz, S. Frintrop, and A. Cremers, <u>Adaptive Real-Time Video Tracking for Arbitrary Objects</u>, International Conference on Intelligent Robots and Systems (IROS), 2010

Particle filters

- Go by many names:
 - Sequential Monte Carlo Methods
 - Sequential importance resampling (SIR)
 - Bootstrap filters
 - Condensation trackers
 - Survival of the fittest
- Originally used for problems in
 - Statistics
 - Fluid mechanics
 - Statistical mechanics
 - Signal processing
- Introduced to the Computer Vision community by

Michael Isard and Andrew Blake, <u>CONDENSATION -- Conditional Density Propagation for Visual Tracking</u>, International Journal of Computer Vision (IJCV), 29, 1, 5--28, (1998)

Probability density propagation

■ Gaussian densities → Kalman filter

Probability density propagation

■ General densities → particle filter

Monte Carlo approximation

How can we represent an arbitrary probability density?

FRANCE

Carlo casino ■

A complicated density we'd like to represent with particles

Monte Carlo approximation

Represent the density non-parametrically, as a set of (weighted) samples!

Monte Caro approximation

$$p(x) \approx \sum_{n=1}^{N} w_n \, \delta(x - x_n)$$

Particle approximation

Target distribution

Particle approximation

Monte Carlo approximation — too few samples

Particle approximation

Monte Carlo approx – added samples

SIR particle filter

Implement an SIR Particle filter

- Code hand in electronically [7 pts]
- Results on 3 sequences

■ **Due** on December 9th

- Skeleton code on course web site
 - Mundane tasks are already written
 - Hints provided
- Bonus points possible for
 - Original observation model, or
 - Automatic initialization

Sequence 1 Track the red toy car

Sequence 1 Red toy car — my results

Sequence 2 Track the girl in pink

Sequence 2 Girl in pink- my results

Sequence 3 Track the head of the person on the left

Sequence 3 Head tracking— my results

What is a particle?

A "sample" of the posterior

- Particles contain a
 - state estimate
 - weight

$$S_t^n \triangleq (\mathbf{x}_t^n, w_t^n)$$

 Summing the particles gives an approximation to the target distribution

$$p(\mathbf{x}_{t} | Z_{t}) \approx \sum_{n=1}^{N} w_{t-1}^{n} \delta(\mathbf{x}_{t} - \mathbf{x}_{t}^{n}) - \mathbf{0}$$

What is a particle?

- Each particle contains a
 - state estimate
 - weight

$$s_t^n \triangleq (\mathbf{x}_t^n, w_t^n)$$

$$s_t^n \triangleq \begin{pmatrix} x \\ y \\ \dot{x} \\ \dot{y} \\ a \\ h \end{pmatrix}, w_t$$

SIR particle filter

- **Begin** with weighted samples from t-1
- **Resample:** draw samples according to $\{w_{t-1}\}^{n=1:N}$
- Drift: apply motion model (no noise)
- Diffuse: apply noise to spread particles
- Measure: weights are assigned by likelihood response
- Finish: density estimate

Probability density propagation

Notice similarities to the familiar recursive process

SIR particle filter

- Begin with weighted samples from t-1
- **Resample:** draw samples according to $\{w_{t-1}\}^{n=1:N}$
- Drift: apply motion model (no noise)
- Diffuse: apply noise to spread particles
- Measure: weights are assigned by likelihood response
- Finish: density estimate

SIR particle filter

Begin with weighted samples from t-1

$$p(\mathbf{x}_{t-1} | Z_{t-1}) \approx \sum_{n=1}^{N} w_{t-1}^{n} \delta(\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^{n})$$

Previous estimate

Receive posterior estimate from previous time step $\{\mathbf{x}_{t-1}^n, \mathbf{w}_{t-1}^n\}_{n=1}^N$

$$p(\mathbf{x}_{t-1} | Z_{t-1}) \approx \sum_{n=1}^{N} w_{t-1}^{n} \delta(\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^{n})$$

SIR particle filter

Resample: draw samples according to $\{w_{t-1}\}^{n=1:N}$

N new samples are drawn from the previous set with replacement.

New samples are assigned uniform weights.

Resample

- N new samples are drawn from the previous set with replacement to prevent degeneracy.
- Repeated samples occur by design.

Weighted sampling with replacement

New sample set is given uniform weights

Resample

- N new samples are drawn from the previous set with replacement to prevent degeneracy.
- Repeated samples occur by design.

Weighted sampling with replacement

New sample set is given uniform weights

Degeneracy

- Failing to resample results in degeneracy.
 - Iteratively propagating the particles and assigning weights tends to make a few samples dominate the rest

SIR particle filter: predict

Apply the motion model $p(\mathbf{x}_t|\mathbf{x}_{t-1})$ to every particle!

$$\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{w}_t$$
Innear motion noise model

- Drift: apply motion model (no noise)
- Diffuse: apply noise to spread particles

Motion model

Apply the motion model $p(\mathbf{x}_{t}|\mathbf{x}_{t-1})$ to every particle!

$$\mathbf{x}_{t} = \mathbf{F}_{t} \mathbf{x}_{t-1} + \mathbf{w}_{t}$$
linear motion noise model

$$\begin{pmatrix} x_t \\ y_t \\ \dot{x}_t \\ \dot{y}_t \end{pmatrix} = \begin{pmatrix} 1 & \Delta t & \\ & 1 & \Delta t \\ & & 1 & \\ & & & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \dot{x}_{t-1} \\ \dot{y}_{t-1} \end{pmatrix} + \mathbf{w}_t$$

$$\mathbf{w}_t \sim N(0, \mathbf{Q}_t)$$

SIR particle filter: measure

Obtain an observation \mathbf{Z}_{t} for each state estimate \mathbf{X}_{t} Evaluate likelihood that \mathbf{X}_{i} gave rise to \mathbf{Z}_t using observation model. $p(\mathbf{z}_{t} | \mathbf{x}_{t})$ Measure: weights are proportional to the observation likelihood $p(\mathbf{x}_{t} | Z_{t})$

• Obtain observation \mathbf{Z}_t for each state estimate \mathbf{X}_t .

• Obtain observation \mathbf{Z}_t for each state estimate $\mathbf{X}_{t.}$

• Obtain observation \mathbf{Z}_t for each state estimate \mathbf{X}_t

- Obtain observation
 Z_t for each state
 estimate X_t
- Evaluate likelihood that an X_t gave rise to Z_t using observation model.

$$p(\mathbf{z}_t|\mathbf{x}_t^n) = e^{-\lambda \operatorname{dist}(\mathbf{z}_t,\mathbf{c})}$$

Observation model compares \mathbf{Z}_t to a known color model \mathbf{c} using the **KL divergence**.

- Obtain observation
 Z_t for each state
 estimate X_t
- Evaluate likelihood that an X_t gave rise to Z_t using observation model.

$$p(\mathbf{z}_t|\mathbf{x}_t^n) = e^{-\lambda \operatorname{dist}(\mathbf{z}_t,\mathbf{c})}$$

Observation model compares \mathbf{Z}_t to a known color model \mathbf{c} using the **KL divergence**.

- Obtain observation Z_t for each state estimate X_t
- **Evaluate likelihood** that an X_t gave rise to Z_t using observation model.
- Assign weights are proportional to the likelihood response

$$w_t^n = p(\mathbf{z}_t \mid \mathbf{x}_t^n)$$

- Obtain observation
 Z_t for each state
 estimate X_t
- Evaluate likelihood that an X_t gave rise to Z_t using observation model.
- Assign weights are proportional to the likelihood response

$$w_t^n = p(\mathbf{z}_t \mid \mathbf{x}_t^n)$$

SIR particle filter

- Begin with weighted samples from t-1
- **Resample:** draw samples according to $\{w_{t-1}\}^{n=1:N}$
- Drift: apply motion model (no noise)
- Diffuse: apply noise to spread particles
- Measure: weights are assigned by likelihood response
- Finish: density estimate

Obtaining a solution

So far, we do not have an explicit state estimate, we have a cloud of particles!

- How do we extract an answer? It depends...
 - Compute a mean or median particle
 - Confidence: inverse variance
 - For discrete labels, this does not work!
 - Use the mode?

Particle filter

D. Klein, D. Schulz, S. Frintrop, and A. Cremers, <u>Adaptive Real-Time Video Tracking for Arbitrary Objects</u>, International Conference on Intelligent Robots and Systems (IROS), 2010

Particle filter

D. Klein, D. Schulz, S. Frintrop, and A. Cremers, <u>Adaptive Real-Time Video Tracking for Arbitrary Objects</u>, International Conference on Intelligent Robots and Systems (IROS), 2010

Summary: particle filters

Represents arbitrary (multi-modal) densities

 Converges to true posterior for nonlinear, non-Gaussian systems

Efficient: concentrates particles on interesting regions

Works for many types of state spaces

Summary: particle filters

- Number of samples N is important
 - Use as few as necessary (for efficiency)
 - But use enough to do a good job exploring the state space
- Complexity grows exponentially with dimensionality of the state space

Things to think about...

- Initialization
 - By hand
 - Background subtraction
 - Detection
- Observation models
 - Generative -> render the state on top of the image and compare
 - Discriminative -> classifier or detector score
- Prediction vs Correction
 - If dynamics dominate, cues form the data may be ignored
 - If observation model dominates, tracking is not smooth
- Nonlinear Dynamics
 - Needed for multiple objects, discrete state elements, etc.

Particle filters in action

Michael Isard and Andrew Blake CONDENSATION -- conditional density propagation for visual tracking International Journal of Computer Vision (IJCV), 29, 1, 5--28, (1998)

Particle filters in action

Particle filters in action

tracking a ball

