next up previous contents

Next: <u>Alli: multinomial-logistic models</u> Up: <u>BUGS 0.5 Examples Volume</u> Previous: <u>Beetles: logistic probit and</u>

Pines: Bayes factors for selecting regression models

General Formulation

carlin:chib:95 consider the general problem of having K models with parameters $\theta_1, ..., \theta_K$, and wanting to obtain the posterior probability of each model. If the model indicator M is specified as a variable and hence as a node in the graph, M can then be sampled in a Gibbs run, and hence $\hat{p}(M=j|y)$ is obtained as a frequency of M=j in the sample. However, we need to specify a full probability model in order to satisfy MCMC conditions for convergence.

Their approach is to make the following assumptions:

- y is independent of $\theta_{k\neq j}$ given that M=j; i.e. M picks which parameters are relevant to y.
- $\theta_1, ..., \theta_K$ are independent given the model indicator M.

These imply an overall joint distribution

$$\begin{array}{rcl} p(y,\underline{\theta},M=j) & = & p(y|\underline{\theta},M=j) \, p(\underline{\theta}|M=j) \, p(M=j) \\ & = & p(y|\theta_j,M=j) \, \times \prod_k p(\theta_k|M=j) \, p(M=j) \end{array}$$

When it comes to Gibbs sampling, the full conditional distributions are

$$p(M = j | \underline{\theta}, y) \propto p(y, \underline{\theta}, M = j)$$

$$= p(y | \theta_j, M = j) \times$$

$$\prod_k p(\theta_k | M = j) p(M = j)$$

$$\begin{array}{ll} p(\theta_j|\theta_{\neq j},y,M=j) & \propto & p(y|\theta_j,M=j) \, p(\theta_j|M=j) \\ p(\theta_j|\theta_{\neq j},y,M=k) & \propto & p(\theta_j|M\neq j) \end{array}$$

 $p(\theta_{k=j}|M \neq j)$ are known as *pseudo-priors*, and although their form is theoretically arbitrary, it is convenient to have them close to $p(\theta_j|M=j,y)$ so that plausible values are generated even when the model is being assumed false.

Carlin and Chib recommend a two-stage approach to estimation and model choice:

• Run each model separately using `estimation priors'.

- Use an approximation of the resulting posterior distributions as pseudo-priors for other models.
- Run sampler for all models together, monitoring *M*.
- Adjust the prior for *M* to ensure frequent visitation to all models.
- Re-adjust estimate of p(M|y) to allow for the choice of prior on the model.

One of the examples of carlin:chib:95 concerns data of williams:59 on 42 specimens of radiata pine. For each specimen the maximum compressive strength y_i was measured, with its density x_i and its density adjusted for resin content z_i . Part of the data is shown below.

Specimen	strength y_i	density x_i	adjusted z_i
1	3040	29.2	25.4
2	2470	24.7	22.2
3	3610	32.3	32.2
4	3480	31.3	31.0
41	3030	33.2	29.4
42	3030	28.2	28.2

Two alternative models are being considered:

Model 1:
$$y_i \sim \text{Normal}(\alpha + \beta x_i, \tau_1)$$

Model 2:
$$y_i \sim \text{Normal}(\gamma + \delta z_i, \tau_2)$$

The graph for the joint model is shown in Figure 20.

Figure 20: Graphical model for pines example showing the two models being simultaneously handled within a unified framework.

The following BUGS code shows that all variables were standardised to have mean 0 and variance 1 before analysis.

pines: model specification in BUGS

```
model pines;
const
   N = 42, # number of data points
            # number of models
var
   Y[N], Ys[N], # raw and standardised data
   x[N], xs[N],
z[N], zs[N],
                  # means for each model
   mu[M,N],
                  # precisions for each model
   tau[M],
 alpha, mu.alpha[M], tau.alpha[M], # priors for parameters
  beta, mu.beta[M] , tau.beta[M] ,
 gamma, mu.gamma[M], tau.gamma[M],
 delta, mu.delta[M], tau.delta[M],
                                      # prior for model
 p[M]q
                                      # probability of model 2
 pM2,
                                      # true model
  j,
   r1[M], l1[M],
                                      # priors for tau[1]
                                      # priors for tau[2]
   r2[M], 12[M];
data in "pines.dat";
inits in "pines.in";
# standardise data
   for(i in 1:N){
       Ys[i] \leftarrow (Y[i] - mean(Y[]))/sd(Y[]);
       xs[i] \leftarrow (x[i] - mean(x[]))/sd(x[]);
       zs[i] \leftarrow (z[i] - mean(z[]))/sd(z[]);
    }
# model node
       j ~ dcat(p[]);
    p[1] \leftarrow 0.9995; p[2] \leftarrow 0.0005; # use for joint modelling
    p[1] \leftarrow 1; p[2] \leftarrow 0; # include for estimating Model 1
    p[1] \leftarrow 0; p[2] \leftarrow 1; # include for estimating Model 2
     pM2 < - step(j - 1.5);
# model structure
   for(i in 1:N){
       mu[1,i] \leftarrow alpha + beta *xs[i];
       mu[2,i] <- gamma + delta*zs[i];</pre>
                ~ dnorm(mu[j,i],tau[j]);
       Ys[i]
   }
# Model 1
   alpha ~ dnorm(mu.alpha[j],tau.alpha[j]);
         ~ dnorm(mu.beta[j],tau.beta[j]);
   tau[1] ~ dgamma(r1[j],l1[j]);
# estimation priors
   mu.alpha[1]<- 0; tau.alpha[1] <- 1.0E-6;</pre>
   mu.beta[1] <- 0; tau.beta[1] <- 1.0E-4;</pre>
                             11[1] <- 0.0001;
   r1[1]
               <- 0.0001;
# pseudo-priors
   mu.gamma[1] <- 0; tau.gamma[1] <- 400;
   mu.delta[1] <- 1; tau.delta[1] <- 400;
```

```
12[1] <- 4.5;
               <- 46
   r2[1]
# Model 2
   gamma ~ dnorm(mu.gamma[j],tau.gamma[j]);
   delta ~ dnorm(mu.delta[j],tau.delta[j]);
   tau[2] \sim dgamma(r2[j],12[j]);
# estimation priors
   mu.gamma[2] <- 0; tau.gamma[2] <- 1.0E-6;</pre>
   mu.delta[2] <- 0; tau.delta[2] <- 1.0E-4;
                <- 0.0001;
                             12[2] <- 0.0001
   r2[2]
# pseudo-priors
   mu.alpha[2]<- 0; tau.alpha[2] <- 256;
   mu.beta[2] <- 1; tau.beta[2] <- 256;</pre>
              <- 30
                            11[2] <- 4.5;
   r1[2]
                        ;
}
```

Running each of the models separately gave the following within-model parameter estimates (posterior means and standard deviations).

	Model 1 (x)	$\operatorname{Model} 2(z)$
intercept	$0001 \pm .06$	$0002 \pm .05$
gradient	.93 \pm .06	$.95\pm.05$
$ au = \sigma^{-2}$	6.8 ± 1.5	$10.2 \pm\ 2.2$

Approximations to these results are then used as the pseudo-priors for the `wrong' model shown in the BUGS code above: for Model 1 we set priors $\gamma \sim \text{Norm}(0,400)$, $\delta \sim \text{Norm}(1,400)$,

 $\tau \sim \text{Gamma}(46, 4.5)$, while under Model 2 we set priors $\alpha \sim \text{Norm}(0, 256)$, $\beta \sim \text{Norm}(1, 256)$, $\tau \sim \text{Gamma}(30, 4.5)$. The prior on the second model has to be adjusted to p(M=2) = .0005 to ensure M=1 is visited frequently.

A BUGS run of 500 burn-in and 10000 iterations took 1 minute and gave $\hat{p}(M=2|y)=.629$. Hence the Bayes factor is $\frac{.629}{1-.629} \times \frac{.9995}{.0005} = 3389$, compared with Carlin and Chib's estimate of $\hat{p}(M=2|y)=.689$ and their Bayes factor of 4420. The differences in these results could be due to the different estimation priors used in our analysis.

next up previous contents

Next: <u>Alli: multinomial-logistic models</u> Up: <u>BUGS 0.5 Examples Volume</u> Previous: <u>Beetles:</u> logistic probit and

Daniel Farewell Mon Sep 13 16:39:37 BST 1999