

CSE 151A Intro to Machine Kearning

Lecture 04 – Part 01
Bayes with Multiple
Features

Recap

- Bayes Classifier: predict y_i that maximizes $P(Y = y_i | X = x)$
- We have to estimate these probabilities.

Recap

- Approach #1: Estimate $P(Y = y_i | X = x)$ using k neighbors.
- Approach #2: Use Bayes' Rule to write:

$$P(Y = y_i | X = x) = \frac{P(X = x | Y = y_i)P(Y = y_i)}{P(X = x)}$$

Estimate $P(X = x | Y = y_i)$ using histograms or by fitting Gaussians.

Recap

 $P(Y = \text{guard} \mid X = x)P(Y = \text{guard}) \text{ and } P(Y = \text{forward} \mid X = x)P(Y = \text{forward})$

Today

How do we use more than one feature?

Example: predict using height and weight.

Bayes in ≥ 2 Dimensions

Instead of

$$P(Y = y_i | X = x)$$

we have

$$P(Y = y_i | \vec{X} = \vec{x})$$

 \triangleright \vec{x} is the **feature vector**. Here: (height, weight)^T

Approach #1

► Can estimate $P(Y = y_i | X = x_i)$ using k neighbors.

Approach #2: Generative Modeling

► Use Bayes' Rule:

$$P(Y = y_i | \vec{X} = \vec{x}) = \frac{P(\vec{X} = \vec{x} | Y = y_i)P(Y = y_i)}{P(\vec{X} = \vec{x})}$$

Estimate $P(\vec{X} = \vec{x} \mid Y = y_i)$ and $P(Y = y_i)$.

Estimating Density

- We need to estimate $P(\vec{X} = \vec{x} \mid Y = y_i)$ for each class $y_1, ..., y_k$.
- See two methods: histograms and Gaussians.

Estimating with Histograms

Estimating with Histograms

Estimating with Histograms

Predicting with Histograms

To predict the class of an input \vec{x} :

- 1. Use histograms to estimate $P(\vec{X} = \vec{x} \mid Y = y_i)$ for each class independently.
- 2. Predict the class y_i maximizing

$$P(\vec{X} = \vec{x} \mid Y = y_i)P(Y = y_i)$$

Histogram Estimators in d > 2

- With 1 feature, each bin is an interval.
- With 2 features, each bin is a rectangle.
- With 3 features, each bin is a cuboid (box).
- With >4 features, each bin is a hypercuboid.

Curse of Dimensionality

- We need enough bins to "cover" the input space.
- **Problem:** Number of bins is exponential in d.

Example: split each dimension into 10 pieces.

Example

ightharpoonup In 2-d: 10^2 = 100 bins.

Example

- ► In 2-d: 10^2 = 100 bins.
- ► In 100-d: 10¹⁰⁰ bins.
- More bins than atoms in universe.

Highly likely that no bin has more than a few points.

Histogram Estimators

- Histogram density estimators are very general.
- But suffer heavily from curse of dimensionality.
- Then again, so do most things.

Up next...

What about fitting Gaussians?

CSE 151A Intro to Machine Learning

Lecture 04 – Part 02 Multivariate Gaussians

Multivariate Gaussians

- In 1 dimension, a Gaussian seemed to describe distribution of heights.
- Does a multivariate Gaussian describe distribution of heights and weights?

"Deriving" Multivariate Gaussians

- Suppose we have d independent random variables $X_1, ..., X_d$.
- Assume that each is Gaussian; different mean, but same variance:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma^2), \dots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma^2).$$

- ▶ What is $P(x_1, x_2, ..., x_d)$?
- ▶ Since we assumed $X_1, ..., X_d$ are independent:

$$P(x_1, x_2, ..., x_d) = P(x_1)P(x_2) \cdots P(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right)$$

- ► What is $P(x_1, x_2, ..., x_d)$?
- \triangleright Since we assumed $X_1, ..., X_d$ are independent:

$$\begin{split} P(x_1, x_2, \dots, x_d) &= P(x_1) P(x_2) \cdots P(x_d) \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma^2}\right) \\ &= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 + \dots + (x_d - \mu_d)^2}{2\sigma^2}\right) \end{split}$$

- ▶ What is $P(x_1, x_2, ..., x_d)$?
- \triangleright Since we assumed $X_1, ..., X_d$ are independent:

$$\begin{split} P(x_1, x_2, \dots, x_d) &= P(x_1) P(x_2) \cdots P(x_d) \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x - \mu_1)^2/\sigma^2} \right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x - \mu_2)^2/\sigma^2} \right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x - \mu_d)^2/\sigma^2} \right) \\ &= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{(x_1 - \mu_1)^2 + (x_2 - \mu_2)^2 + \dots + (x_d - \mu_d)^2}{2\sigma^2} \right) \\ &= \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|\vec{x} - \vec{\mu}\|^2}{2\sigma^2} \right) \end{split}$$

Setting #1: Spherical Gaussians

$$P(\vec{x}) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{1}{2} \frac{\|\vec{x} - \vec{\mu}\|^2}{\sigma^2}\right)$$

- Contours are (hyper)spheres.
- Every slice through middle gives same Gaussian.

- \triangleright Still assume $X_1, ..., X_d$ are independent, Normal.
- But they now have different variances:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2), \ldots, \quad X_d \sim \mathcal{N}(\mu_d, \sigma_d^2).$$

$$P(x_1, x_2, ..., x_d) = P(x_1)P(x_2) \cdots P(x_d)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2}\right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma_2^2}\right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma_d^2}\right)$$

$$\begin{split} P(x_1, x_2, \dots, x_d) &= P(x_1) P(x_2) \cdots P(x_d) \\ &= \left(\frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2} \right) \cdot \left(\frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{1}{2}(x-\mu_2)^2/\sigma_2^2} \right) \cdots \left(\frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2}(x-\mu_d)^2/\sigma_d^2} \right) \\ &= \frac{1}{(2\pi)^{d/2} \sigma_1 \cdot \sigma_2 \cdots \sigma_d} \exp \left(-\frac{1}{2} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} + \dots + \frac{(x_d - \mu_d)^2}{\sigma_d^2} \right] \right) \end{split}$$

Define

$$C = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \sigma_d^2 \end{pmatrix}$$

Then:

$$P(\vec{x}) = \frac{1}{(2\pi)^{d/2}|C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

Setting #2: Diagonal Gaussians

$$P(\vec{x}) = \frac{1}{(2\pi)^{d/2} |C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

- Contours are axis-aligned (hyper)ellipses.
- C is the covariance matrix.
 - Diagonal.
 - Entries are variances.

Setting #3: General Gaussians

- \triangleright We have assumed that $X_1, ..., X_d$ are independent.
- Now assume that they're not. Define covariance:

$$\mathrm{Cov}(X_i,X_j)=\mathbb{E}[(X_i-\mu_i)(X_j-\mu_j)]$$

Note:

$$Var(X_i) = Cov(X_i, X_i)$$

Setting #3: General Gaussians

Now the covariance matrix has off-diagonal elements:

$$C = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_d) \\ \cdots & \cdots & \cdots & \cdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_d, X_2) & \cdots & \operatorname{Var}(X_d) \end{pmatrix}$$

► Since $Cov(X_i, X_i) = Cov(X_i, X_i)$, C is symmetric.

Setting #3: General Gaussians

$$P(\vec{x}) = \frac{1}{(2\pi)^{d/2}|C|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$

Contours are general (hyper)ellipses. C need not be diagonal.

Fitting Multivariate Gaussians

- ► Given vectors $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$, fit a Gaussian.
- First, choose assumptions. Spherical? Diagonal? General (no assumptions)?
- In each case,

$$\vec{\mu} = \frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}$$

Fitting Spherical Gaussians

- ▶ Only one variance: σ^2 .
- ► In 1 dimension:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

► In *d* dimensions:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n \|\vec{x}^{(i)} - \vec{\mu}\|^2$$

Fitting Spherical Gaussians

Fitting Spherical Gaussians

Fitting Diagonal Gaussians

- ► Variance for each axis: σ_1^2 and σ_2^2 .
- Example:

$$\sigma_1^2$$
 = variance of heights σ_2^2 = variance of weights

Fitting Diagonal Gaussians

Fitting Diagonal Gaussians

Fitting General Gaussians

Must compute covariance for each pair of dimensions.

Empirical covariance:

$$C_{ij} = \left(\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}\right) - \mu_{i} \mu_{j}$$

Computing the Covariance Matrix

Step 1. Make matrix with heights in first column, weights in second:

```
height 1 weight 1 height 2 weight 2 ... height n weight n
```

Computing the Covariance Matrix

Step 2. Subtract mean height, mean weight from each column. Call this matrix X:

$$X = \begin{pmatrix} \text{height 1 - mean height} & \text{weight 1 - mean weight} \\ \text{height 2 - mean height} & \text{weight 2 - mean weight} \\ \dots & \dots \\ \text{height } n \text{ - mean height} & \text{weight } n \text{ - mean weight} \end{pmatrix}$$

Computing the Covariance Matrix

The empirical covariance matrix is then:

$$C = \frac{1}{n}X^TX$$

Fitting General Gaussians

Fitting General Gaussians

Up next...

Making predictions using these fitted Gaussians.

CSE 151A Intro to Machine Learning

Lecture 04 – Part 03 Discriminant Analysis

Bayes Classifier with MV Gaussians

- 1. Fit Gaussian for $P(\vec{X} \mid Y = y_i)$ for each class, y_i .
- 2. For new point, predict y_i maximizing:

$$P(\vec{X} = \vec{X} \mid Y = y_i)P(Y = y_i)$$

Decision Boundary

- For every point in space, we have a classification.
- ► The decision boundary: surface between different classifications.
 - \triangleright On one side, prediction is y_1 ;
 - \triangleright on the other, prediction is y_2 .

- Assume:
 - only two classes (binary classification)
 - covariance matrices identical, spherical

► If $P(Y = y_1) > P(Y = y_2)$:

Choose class 1 if $\vec{w} \cdot \frac{(\vec{\mu}_1 - \vec{\mu}_2)}{\sigma^2} \ge \theta$.

- Assume:
 - only two classes (binary classification)
 - covariance matrices identical, non-diagonal

Predict class 1 if $\vec{x} \cdot \vec{w} \ge \theta$.

- Use to predict position given height and weight.
- How do we get one covariance matrix?
- Don't lump data together...
- Instead, compute covariance matrix for each class, perform weighted average:

$$C = \frac{n_1 C_1 + n_2 C_2}{n_1 + n_2}$$

Linear Discriminant Analysis

- When covariance matrices are equal, decision boundary is linear.
- ► This procedure is called linear discriminant analysis (LDA).

- Assume:
 - only two classes (binary classification)
 - covariance matrices C₁, C₂ different, non-diagonal

- Assume:
 - only two classes (binary classification)
 - ightharpoonup covariance matrices C_1 , C_2 different, non-diagonal

Quadratic Discriminant Analysis

- When covariance matrices are equal, decision boundary is quadratic (ellipsoidal, paraboloidal, hyperoboloidal).
- ► This procedure is called **quadratic discriminant analysis** (QDA).

In practice...

- ► LDA and QDA can work well.
- A full covariance requires estimating $Θ(d^2)$ parameters.
- Gaussian assumption may be poor.