Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

«Исследование поляризации лазерного луча»

Проверил:		Выполнил:
Пшеничнов В.Е		Студент группы Р3255
« »	2019г.	Федюкович С. А.

Цель работы

Исследование характера поляризации лазерного излучения и экспериментальная проверка закона Малюса.

Теоретические основы лабораторной работы

Поперечные волны обладают особым, присущим только им, свойством, известным под названием поляризация. Под этим понимается пространственное соотношение между направлением распространения светового луча и направлением колебания вектора напряженности электрического \vec{E} (или магнитного \vec{H}) поля. Теория Максвелла для электромагнитной волны утверждает только, что векторы напряженности электрического и магнитного полей лежат в плоскости, перпендикулярной направлению распространения света, но не накладывает никаких ограничений на их поведение в этой плоскости. Друг относительно друга вектора \vec{E} и \vec{H} ориентированы взаимно перпендикулярно. Поэтому для описания колебаний в световой волне достаточно указывать один из них. Исторически таким вектором выбран вектор напряженности электрического поля \vec{E} , который также называют световым.

Если при распространении световой волны направление колебаний электрического вектора \vec{E} бессистемно, хаотически изменяется с равной амплитудой и, следовательно, любое его направление в плоскости, перпендикулярной распространению волны, равновероятно, то такой свет называют неполяризованным, или естественным. Если колебания электрического вектора фиксированы строго в одном направлении, свет называется линейно- или плоскополяризованным.

Плоскость, образованная направлением распространения электромагнитной волны и направлением колебаний вектора напряженности электрического поля, называется плоскостью поляризации электромагнитной волны.

Поляризация света наблюдается при отражении и преломлении света на границе прозрачных изотропных диэлектриков. Если угол падения естественного света на границу раздела двух прозрачных диэлектриков отличен от нуля, то отраженный и преломленный пучки оказываются частично-поляризованными. В отраженном свете преобладают колебания вектора \vec{E} , перпендикулярные к плоскости падения, а в преломленном свете — параллельные плоскости падения. Степень поляризации обеих волн (отраженной и преломленной) зависит от угла падения. Соответствующую зависимость в 1815 г. установил шотландец Дэвид Брюстер. Как показали опыты, при некотором значении угла падения светового луча на границу раздела двух сред с показателями преломления n_1 и n_2 соответственно, угол между отраженным и преломленным лучом становится равен 90° . При таком условии отраженный луч оказывается полностью поляризован (колебания вектора \vec{E} в нем перпендикулярны плоскости падения). Прошедший луч поляризован частично и содержит преимущественно параллельную составляющую вектора \vec{E} . Тогда значение угла, соответствующего полной поляризации отраженного луча, определяется из закона преломления:

$$\frac{n_2}{n_1} = \frac{\sin \alpha}{\sin \beta} = \frac{\sin \alpha}{\sin (90^\circ - \alpha)} = \frac{\sin \alpha}{\cos \alpha} = tg\alpha \tag{1}$$

Степень поляризации преломленной волны при угле падения, равном углу Брюстера, достигает максимального значения, однако эта волна остается лишь частично поляризованной. Так как коэффициент отражения света в данном случае значительно меньше единицы (около 0,15 для границы раздела воздух-стекло), можно использовать преломленный свет, повышая его степень поляризации путем ряда последовательных отражений и преломлений. Это осуществляют с помощью, так называемой стопы, состоящей из нескольких одинаковых и

параллельных друг другу пластинок, установленных под углом Брюстера к падающему свету. При достаточно большом числе пластинок проходящий через эту систему свет будет практически полностью линейно-поляризованным. И интенсивность прошедшего через такую стопу света (в отсутствие поглощения) будет равна половине падающего на стопу естественного света.

Эта идея нашла высокоэффективное использование в лазерах, где торцы разрядной трубки представляют собой плоскопараллельные стеклянные пластинки, расположенные под углом Брюстера к оси трубки. Поэтому излучение, распространяющееся вдоль оси трубки между зеркалами и поляризованное в плоскости падения на пластинки, многократно проходит сквозь них практически беспрепятственно, не испытывая отражения. В результате из лазера выходит луч, поляризованный в этой плоскости, что и показано на рисунке. Другая составляющая излучения, плоскость поляризации которой перпендикулярна плоскости падения, почти полностью удаляется из пучка благодаря отражениям.

Для получения, обнаружения и анализа плоскополяризованного света используют приспособления, называемые поляризаторами. Поляризаторы могут быть сконструированы на основе рассмотренного отражения и преломления света на границе раздела двух сред, также на основе двойного лучепреломления (призмы Николя), на основе явления дихроизма. Поляризаторы свободно пропускают колебания вектора \vec{E} , параллельные плоскости, которую называют плоскостью пропускания поляризатора. Колебания же, перпендикулярные к этой плоскости, задерживаются полностью или частично. Широкое распространение для получения плоскополяризованного света имеют поляризаторы, действие которых основано на явлении дихроизма — селективного поглощения света в зависимости от направления колебаний электрического вектора световой волны. Сильным дихроизмом обладают кристаллы турмалина.

Для получения плоско-поляризованного света применяются также поляроиды — пленки на которые, как правило, наносятся кристаллики герапатита — двоякопреломляющего вещества с сильно выраженным дихроизмом в видимой области. Так, при толщине $\approx 0,1$ мм такая пленка полностью поглощает лучи с перпендикулярными к плоскости падения колебаниями \vec{E} в видимой области спектра, являясь в таком тонком слое хорошим поляризатором. Недостаток поляроидов по сравнению с поляризационными призмами — их недостаточная прозрачность, селективность поглощения при разных длинах волн и небольшая термостой-кость.

Поляризаторы можно использовать и в качестве анализаторов — для определения характера и степени поляризации интересующего нас света. Пусть на анализатор падает линейнополяризованный свет, вектор $\vec{E_1}$ которого составляет угол φ с плоскостью пропускания P. Анализатор пропускает только ту составляющую вектора $\vec{E_1}$, которая параллельна его плоскости пропускания P, т.е. $E_2 = E_1 \cdot \cos \varphi$. Интенсивность пропорциональна квадрату модуля светового вектора ($I \sim E^2$), поэтому интенсивность прошедшего света:

$$I_2 = I_1 \cdot \cos^2 \varphi, \tag{2}$$

где I_1 — интенсивность падающего плоскополяризованного света. Это соотношение было установлено в 1810 г. французским физиком Этьеном Луи Малюсом и носит название закона Малюса.

Ход работы

- 1. Включить источник (лазер) и вольтметр.
- 2. Аккуратно убрать поляроид из хода луча лазера. Записать показания вольтметра (соответствует интенсивности I_0).
- 3. Вставить поляроид в ход луча, зафиксировав его между направляющими стержнями. Вращая поляроид, следить за изменения показаний вольтметра. Найти таким образом положение максимума пропускания и, начиная с него провести измерения интенсивности прошедшего через поляроид излучения в зависимости от угла поворота поляроида. Таким образом, с шагом в 10° , записывать показания вольтметра пока не будет сделан целый оборот поляроида вокруг светового пучка. Данные измерений занести в таблицу (1).
- 4. Проанализировав записанные показания вольтметра, найти максимальное I_{max} , соответствующее углу φ_m , и разделить каждое из экспериментальных значений I на I_{max} . Результаты занести в таблицу (1).
- 5. Построить график зависимости нормированной интенсивности I/I_{max} от угла φ , соединив полученные экспериментальные точки аппроксимирующей кривой. На той же координатной плоскости построить график зависимости $\cos^2\left(\varphi-\varphi_m\right)$ от угла поворота поляроида φ :

Рис. 1: Зависимость интенсивности и квадрата косинуса от угла поворота

Таблица 1: Экспериментальные данные

Угол поворота φ , $^{\circ}$	Интенсивность I , мА	I/I_{max} , MA	$\cos^2\left(\varphi-\varphi_m\right)$	
0,0000	0,0390	0,2617	0,2500	
10,0000	0,0200	0,1342	0,1170	
20,0000	0,0070	0,0470	0,0302	
30,0000	0,0008	0,0054	0,000	
40,0000	0,0020	0,0134	0,0302	
50,0000	0,0120	0,0805	0,1170	
60,0000	0,0310	0,2081	0,2500	
70,0000	0,0540	0,3624	0,4132	
80,0000	0,0780	0,5235	0,5868	
90,0000	0,1010	0,6779	0,7500	
100,0000	0,1230	0,8255	0,8830	
110,0000	0,1350	0,9060	0,9698	
120,0000	0,1440	0,9664	1,0000	
130,0000	0,1420	0,9530	0,9698	
140,0000	0,1320	0,8859	0,8830	
150,0000	0,1150	0,7718	0,7500	
160,0000	0,0920	0,6174	0,5868	
170,0000	0,0670	0,4497	0,4132	
180,0000	0,0430	0,2886	0,2500	
190,0000	0,0220	0,1477	0,1170	
200,0000	0,0080	0,0537	0,0302	
210,0000	0,0007	0,0047	0,0000	
220,0000	0,0020	0,0134	0,0302	
230,0000	0,0120	0,0805	0,1170	
240,0000	0,0300	0,2013	0,2500	
250,0000	0,0540	0,3624	0,4132	
260,0000	0,0820	0,5503	0,5868	
270,0000	0,1060	0,7114	0,7500	
280,0000	0,1290	0,8658	0,8830	
290,0000	0,1430	0,9597	0,9698	
300,0000	0,1490	1,0000	1,0000	
310,0000	0,1440	0,9664	0,9698	
320,0000	0,1340	0,8993	0,8830	
330,0000	0,1160	0,7785	0,7500	
340,0000	0,0930	0,6242	0,5868	
350,0000	0,0670	0,4497	0,4132	
$I_0 = 0,1760 [\text{MA}]; I_{max} = 0,1490 [\text{MA}]; I_{min} = 0,0007 [\text{MA}]; \varphi_m = 300,0000^{\circ}$				

6. Найти коэффициенты пропускания использованного поляроида для параллельной и перпендикулярной ориентации его плоскости пропуская по отношению направлению колебаний вектора \vec{E} в излучении лазера:

$$k_{\parallel} = I_{max}/I_0 = 0,1490/0,1760 = 0,8466$$

$$k_{\perp} = I_{min}/I_0 = 0,0007/0,1760 = 0,0040$$

Вывод

В ходе выполнения данной работы мной был проведён эксперимент по изучению поляризации и проверке закона Малюса, в результате которого я подтвердил свои теоретические знания практическим путём. Также по построенному графику видно, что графики кривых почти совпадают, из чего следует, что закон Малюса верен, а небольшие расхождения вызваны погрешностью измерений.