#### **Stacks**

Kuan-Yu Chen (陳冠宇)

2018/09/26 @ TR-212, NTUST

#### Review

- Array
- 2D Array = Matrix
  - Row-Major
  - Column-Major
  - Upper-Triangular
  - Lower-Triangular

#### Stacks.

- A stack is an ordered list in which insertions and deletions are made at one end called the top
  - Given a stack  $S = (a_1, a_2, ..., a_n)$ 
    - $a_1$  is the bottom element
    - $a_n$  is the top element
- $a_i$  is on top of element  $a_{i-1}$ and delete  $a_n$   $a_n$   $a_n$

 $a_{n-1}$   $\vdots$   $a_2$   $a_1$ 

 $\vdots$   $\vdots$   $a_2$   $a_1$   $a_2$   $a_1$ 

#### Stacks..

- By the definition of stack, if we add the elements *A*, *B*, *C*, *D*, *E* to the stack, in that order, then *E* is the first element we delete from the stack
  - Last-In-First-Out



# **Leverage Array to Implement Stack**



#### **Stack Permutation**

- Given a sequence of elements and a empty stack, if a permutation can be generated by these elements and the stack, the permutation is called "stack permutation"
- For a given sequence of elements {*A*, *B*, *C*}, please write down its stack permutation
  - ABC
    - push *A*, pop *A*, push *B*, pop *B*, push *C*, pop *C*
  - ACB
  - BAC
    - Push A, push B, pop B, pop A, push C, pop C
  - BCA
  - CBA
    - Push A, push B, push C, pop C, pop B, pop A

#### **Expressions**

- When pioneering computer scientists conceived the idea of higher-level programming languages, they were faced with many hurdles
  - How to generate machine-language instructions to evaluate an arithmetic expression

$$A \div B - C + D \times E - A \times C$$
 Operator (運算子) Operand (運算元)

- The first problem with understanding the meaning of an expression is to decide in what order the operations are carried out
  - Specify the order by using parentheses

$$A \div (B - C) + D \times (E - A) \times C$$
$$(A \div B) - C + (D \times E) - (A \times C)$$

| priority | operator                |
|----------|-------------------------|
| 1        | unary minus             |
| 2        | not                     |
| 3        | *, /, div, mod, and     |
| 4        | +, -, or, xor           |
| 5        | <, <=, =, <>, >=, >, in |

#### **Infix & Postfix Notations**

- If *e* is an expression with operators and operands, the conventional way of writing *e* is called **infix** 
  - The operators come **in-between** the operands

$$A \div B - C + D \times E - A \times C$$

• The **postfix** form of an expression calls for each **operator to** appear after its operands

$$AB \div C - DE \times +AC \times -$$

| operation          | postfix         |
|--------------------|-----------------|
| $T_1 := A/B$       | $T_1C-DE*+AC*-$ |
| $T_2 := T_1 - C$   | $T_2DE*+AC*-$   |
| $T_3 := D*E$       | $T_2T_3 + AC*-$ |
| $T_4 := T_2 + T_3$ | $T_4AC*-$       |
| $T_5 := A * C$     | $T_4T_5-$       |
| $T_6 := T_4 - T_5$ | $T_6$           |

#### **Infix to Postfix**

- It is simple to describe an algorithm for producing postfix from infix
- (1) Fully parenthesize the expression.
- (2) Move all operators so that they replace their corresponding right parentheses.
- (3) Delete all parentheses.
  - Take  $A \div B C + D \times E A \times C$  for example

• 
$$((((A \div B) - C) + (D \times E)) - (A \times C))$$

• 
$$((((A \div B) - C) + (D \times E)) - (A \times C))$$

• 
$$AB \div C - DE \times +AC \times -$$

#### **Infix & Prefix Notations**

- If *e* is an expression with operators and operands, the conventional way of writing *e* is called **infix** 
  - The operators come **in-between** the operands

$$A \div B - C + D \times E - A \times C$$

- In the prefix form of an expression, the operators precede their operands
  - Take  $A \div B C + D \times E A \times C$  for example

• 
$$((((A \div B) - C) + (D \times E)) - (A \times C))$$

• 
$$(((A \div B) - C) + (D \times E)) - (A \times C))$$

$$-+-ABC \times DE \times AC$$

| infix                   | prefix        |
|-------------------------|---------------|
| A*B/C                   | /*ABC         |
| A/B - C + D * E - A * C | -+-/ABC*DE*AC |
| A*(B+C)/D-G             | -/*A + BCDG   |

### **Examples.**

• Given a infix expression  $A + B \times C - D \div E$ , please write down the prefix and postfix expressions

$$A + B \times C - D \div E$$
$$((A + (B \times C)) - (D \div E))$$

- Prefix

$$((A + (B \times C)) - (D \div E))$$

$$-+A \times BC \div DE$$

- Postfix

$$((A + (B \times C)) - (D \div E))$$

$$ABC \times +DE \div -$$

## Examples..

• Given a infix expression  $(A + B) \times C \div (D - E \div F)$ , please write down the prefix and postfix expressions

$$(((A+B)\times C)\div (D-(E\div F)))$$

- Prefix

$$\div \times +ABC - D \div EF$$

- Postfix

$$AB + C \times DEF \div - \div$$

### Examples...

• Given a infix expression  $A \land \neg (B > C) \lor (D \lor \neg E)$ , please write down the prefix and postfix expressions

$$((A \land (\neg (B > C))) \lor (D \lor (\neg E)))$$

- Prefix

$$((A \land (\neg(B > C))) \lor (D \lor (\neg E)))$$

$$\forall \land A \neg > BC \lor D \neg E$$

Postfix

$$((A \land (\neg(B > C))) \lor (D \lor (\neg E)))$$

$$ABC > \neg \land DE \neg \lor \lor$$

### By Looking!.

• Given a infix expression  $(A + B) \times C \div (D - E \div F)$ , please write down the prefix and postfix expressions



### By Looking!..

- Given a infix expression  $(A + B) \times C \div (D E \div F)$ , please write down the prefix and postfix expressions
  - Prefix



$$\div \times +ABC - D \div EF$$

### By Looking!...

- Given a infix expression  $(A + B) \times C \div (D E \div F)$ , please write down the prefix and postfix expressions
  - Postfix



$$AB + C \times DEF \div - \div$$

### Examples.

- Given a postfix expression  $ABCD + \times E \div -$ , please write down the infix expression
  - The pattern for postfix is  $< operand_1, operand_2, operator >$ =  $operand_1 operator operand_2$

$$ABCD + \times E \div -$$

$$ABCD + \times E \div ABCD + \times E \div B \times (C + D)$$
 $ABCD + \times E \div B \times (C + D) \div E$ 
 $ABCD + \times E \div A - B \times (C + D) \div E$ 

### **Examples...**

- Given a prefix expression  $-A \div \times B + CDE$ , please write down the infix expression
  - The pattern for prefix is < operator, operand<sub>1</sub>, operand<sub>2</sub> >= operand<sub>1</sub> operator operand<sub>2</sub>

$$-A \div \times B + CDE$$

$$B \times (C + D)$$

$$-A \div \times B + CDE$$

$$B \times (C + D) \div E$$

$$-A \div \times B + CDE$$

$$A - B \times (C + D) \div E$$

## **Questions?**



kychen@mail.ntust.edu.tw