

Chapter 2
Basic Structures Set, Functions,
Sequences and Sums

MAD101

Ly Anh Duong

duongla3@fe.edu.vn

Table of Contents 1 Sets

- ➤ Sets
- Set operations
- ▶ Functions
- ► Sequences
- Summations
- ▶ Problems

1 Sets

Definitions and notation

Definition. A set is an **unordered** collection of elements. **Examples.**

- $\{1,2,3\}$ is the set containing "1" and "2" and "3."
- $\{1, 1, 2, 3, 3\} = \{1, 2, 3\}$ since repetition is irrelevant.
- $\{1, 2, 3\} = \{3, 2, 1\}$ since sets are unordered.
- $\{1, 2, 3, ...\}$ is a way we denote an infinite set (in this case, the natural numbers).
- \emptyset = is the empty set, or the set containing no element.

Note. $\emptyset \neq \{\emptyset\}$

Definitions and notation

1 Sets

- $x \in S$ means "x is an element of set S."
- $x \notin S$ means "x is not an element of set S."
- $A \subseteq B$ means "A is a subset of B."
 - or, "B contains A."
 - or, "every element of A is also in B."
 - or, $\forall x ((x \in A) \to (x \in B))$

Definitions and notation

• $A \subseteq B$ means "A is a subset of B."

1 Sets

- $A \supseteq B$ means "A is a superset of B."
- A = B if and only if A and B have exactly the same elements

Iff, $A \subseteq B$ and $B \subseteq A$

Iff, $A \subseteq B$ and $A \supset B$

Iff, $\forall x ((x \in A) \leftrightarrow (x \in B))$

Note. To show equality of sets A and B, show: $A \subseteq B$ and $B \subseteq A$

Definitions and notation

1 Sets

 $A \subset B$ means "A is a proper subset of B." That means

$$A \subseteq B$$
 and $A \neq B$

$$\forall x((x \in A) \to (x \in B)) \land \exists x((x \in B) \land (x \notin A))$$

1 Sets

- $\{1,2,3\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,3\} \subset \{1,2,3,4,5\}$
- $\emptyset \subseteq \{1, 2, 3\}$
- Is $\emptyset \in \{1, 2, 3\}$
- Is $\emptyset \subseteq \{\emptyset, 1, 2, 3\}$
- Is $\emptyset \in \{\emptyset, 1, 2, 3\}$

Example. 1 Sets

- Is $\{x\} \subseteq \{x\}$
- Is $\{x\} \in \{x, \{x\}\}$
- Is $\{x\} \subseteq \{x, \{x\}\}$
- Is $\{x\} \in \{x\}$

Ways to define sets

- Explicitly: {John, Paul, George, Ringo}
- Implicitly: $\{1, 2, 3, \dots\}$, $or\{2, 3, 5, 7, 11, 13, 17, \dots\}$
- Set builder: $\{x : x \text{ is prime}\}, \{x | x \text{ is odd}\}$
- In general $\{x: P(x)\}$, where P(x) is some predicate. We read "the set of all x such that P(x)"

Cardinality 1 Sets

If S is finite, then the **cardinality** of S, |S|, is the number of distinct elements in S. **Example.**

$$\begin{split} S &= \{1,2,3\} \to |\mathbf{S}| {=} 3 \\ S &= \{2,4,1,7\} \to |\mathbf{S}| {=} 4 \\ S &= \emptyset \to |\mathbf{S}| {=} 0 \\ S &= \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \ |\mathbf{S}| {=} 3 \\ S &= \{1,2,3,\ldots\} \to |\mathbf{S}| \ \text{is infinite.} \end{split}$$

Power sets

1 Sets

If S is a set, then the power set of S is $P(S) = 2^S = \{x : x \subseteq S\}$. We say, "P(S) is the set of all subsets of S."

Example.

- If $S = \{a\}$ then $2^S = \{\emptyset, \{a\}\}$
- If $S = \{a, b\}$ then $2^S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- If $S = \emptyset$ then $2^S = \{\emptyset\}$
- If $S = \{\emptyset, \{\emptyset\}\}\$ then $2^S = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

Note. If S finite, then $|2^{S}| = 2^{|S|}$ (If |S| = n, then $|2^{S}| = 2^{n}$)

- If $S = \{a\}$ then $2^S = \{\emptyset, \{a\}\} \to 2^S = 2$
- If $S = \{a, b\}$ then $2^S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \rightarrow |2^S| = 2^2 = 4$
- If $S = \emptyset$ then $2^S = \{\emptyset\} \to |2^S| = 2^0 = 1$
- If $S = \{\emptyset, \{\emptyset\}\}\$ then $2^S = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\} \rightarrow |2^S| = 2^2 = 4$

Cartesian Product 1 Sets

The Cartesian Product of two sets A and B is $A \times B = \{(a, b) : a \in A \land b \in B\}$ Example.

If
$$A = \{L\hat{a}m, B\hat{n}h, Chi\}$$
, and $B = \{Xung, Ca\}$, then $A \times B = \{(L\hat{a}m, Xung), (L\hat{a}m, Ca), (B\hat{n}h, Xung), (B\hat{n}h, C), (Chi, Xung), (Chi, Ca)\}$

Notes.

- (a, b) = (c, d) iff a = c, and b = d
- A,B finite $\rightarrow |A \times B| = |A||B|$

If A = {Lâm, Bình, Chi}
$$\rightarrow$$
 |A|=3, and B = {Xung, Ca} \rightarrow |B|=2 $A \times B$ = {(Lâm, Xung), (Lâm, Ca), (Bình, Xung), (Bình, C), (Chi, Xung), (Chi, Ca)} \rightarrow | $A \times B$ | = 3.2 = 6

1 Sets

Cartesian Product

The Cartesian Product of n sets A_1, A_2, \ldots, A_n is:

$$A_1 \times A_2 \times \times A_n = \{(a_1, a_2, ..., a_n) : a_i \in A_i, \forall i = 1, 2, ..., n\}$$

Note.

$$A^n = A \times A \times A \times ... \times A(n \text{ times}) = \{(a_1, a_2, ..., a_n) : a_i \in A, \forall i = 1, 2, ..., n\}$$

Example.

$$A = \{a,b\}, B = \{1,2,3\}, C = \{0,1\}$$

$$A \times B \times C = \{(a,1,0), (a,1,1), (a,2,0), (a,2,1), (a,3,0), (a,3,1), (b,1,0), (b,1,1), (b,2,0), (b,2,1), (b,2,2), (b,2,2), (b,2,2), (c,2,2), (c,2,2$$

Given $A = \{0, \emptyset\}$. Find the cardinality of P(AxA).

Select one:

- a. 2
- o b. $\{(0,\emptyset),(0,0),(\emptyset,\emptyset),(\emptyset,0)\}$
- c. 4
- d. 16

Given $A = \{0, \emptyset\}$. Find the cardinality of P(AxA).

Select one:

- a. 2
- b. $\{(0,\emptyset),(0,0),(\emptyset,\emptyset),(\emptyset,0)\}$
- c. 4
- d. 16

Ans: d ($|A|=2 \to |A \times A| = 4 \to P(A \times A)=2^4 = 16$)

Table of Contents

- ► Sets
- ▶ Set operations
- ▶ Functions
- Sequences
- **▶** Summations
- ▶ Problems

Union 2 Set operations

The union of two sets A and B is:

$$A \cup B = \{ x : x \in A \lor x \in B \}$$

If $A = \{Charlie, Lucy, Linus\}$, and

 $B = \{Lucy, Desi\}, then$

 $A \cup B = \{Charlie, Lucy, Linus, Desi\}$

Intersection

2 Set operations

The intersection of two sets A and B is:

$$A \cap B = \{ x : x \in A \land x \in B \}$$

If $A = \{Charlie, Lucy, Linus\}$, and

 $B = \{Lucy, Desi\}, then$

$$A \cap B = \{Lucy\}$$

Example. 2 Set operations

If $A = \{x : x \text{ is a US president}\}$, and $B = \{x : x \text{ is in this room}\}$, then $A \cap B = \{x : x \text{ is a US president in this room}\} = \emptyset$.

Complement

2 Set operations

Difference and symmetric difference

The symmetric difference, $A \oplus B$, is: $A \oplus B = \{ x : (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$ $=(A-B)\cup(B-A)$ $= \{ x : x \in A \oplus x \in \overline{B} \}$

2 Set operations

■ Commutativity
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$
■ Associativity $(A \cup B) \cup C = A \cup (B \cup C)$
 $(A \cap B) \cap C = A \cap (B \cap C)$
■ Distributivity
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup \overline{(A \cap C)}$

Computer Representation of Sets 2 Set operations

• Let $U = \{x_1, x_2, \dots, x_n\}$, and choose an arbitrary order of the elements of U, say

$$x_1, x_2, \ldots, x_n$$

• Let $A \subseteq U$. Then the **bit string representation** of A is the bit string of length $n: a_1a_2...a_n$ such that $a_i = 1$ if $x_i \in A$, and 0 otherwise.

Example. Let $U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ and $A = \{x_1, x_3, x_5, x_6\}$. Then the bit string representation of A is 101011

Computer Representation of Sets 2 Set operations

Let $U = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ and $A = \{x_1, x_3, x_5, x_6\}$, $B = \{x_2, x_3, x_6\}$. Then we have a quick way of finding the bit string corresponding to of $A \cup B$ and $A \cap B$

	\boldsymbol{A}	1	0 1	1	0	1	1
	В	0	1	1	0	0	1
Bit-wise OR	$A \cup B$	1	1	1	0	1	1
Bit-wise AND	$A \cap B$	0	0	1	0	0	1

Quizz 2 Set operations

Let $U = \{0,1,2,3,4,5,6,7,8,9\}.$

Given the subsets $A = \{1,2,3,4,8\}$, $B = \{0,5,6,7,9\}$. The bit string representing the subset A - B is ...

Select one:

- a. 00 1110 0010
- b. 01 1110 0110
- o. 01 1110 0010
- d. 00 1011 0010

Quizz 2 Set operations

Let $U = \{0,1,2,3,4,5,6,7,8,9\}.$

Given the subsets $A = \{1,2,3,4,8\}$, $B = \{0,5,6,7,9\}$. The bit string representing the subset A - B is ...

Select one:

- a. 00 1110 0010
- b. 01 1110 0110
- o. 01 1110 0010
- d. 00 1011 0010

Ans: C

Table of Contents

3 Functions

- ▶ Seta
- ► Set operations
- ▶ Functions
- ► Sequences
- **▶** Summations
- ▶ Problems

Introduction

3 Functions

Definition. A function f is a rule that assigns to each element x in a set A exactly **one** element y=f(x) in a set B.

- A is the domain, B is the codomain of f.
- b = f(a) is the **image** of a and a is the **preimage** of b.
- The range of f is the set $\{f(a), a \in A\}$

3 Functions

A = {Michael, Tito, Janet, Cindy, Bobby} $B = \{ \text{Katherine Scruse}, \text{Carol Brady}, \text{Mother} \}$ Teresa} Let $f: A \to B$ be defined as f(a) = mother(a). Katherine Michael Scruse Tito Janet Carol Brady Cindy Mother Teresa Bobby

3 Functions

What are functions?

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to$$

3 Functions

But this is OK in a function

This is NOT OK in a function

What are functions?

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to YES$$

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to YES$$

2. $f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{1}{(x-1)^2} + 5x \to 0$

3 Functions

(one-to-many) This is NOT OK in a function

(many-to-one) But this is OK in a function

What are functions?

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to YES$$

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to \text{YES}$$

2. $f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{1}{(x-1)^2} + 5x \to \text{NO}$
3. $f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to$

3.
$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to \frac{2x+5}{7}$$

3 Functions

This is NOT OK in a function

(many-to-one) But this is OK in a function

What are functions?

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to YES$$

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to \text{YES}$$

2. $f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{1}{(x-1)^2} + 5x \to \text{NO}$
3. $f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to \text{YES}$

3.
$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to YES$$

4.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{(2x+5)^2}{7-2x} \to$$

3 Functions

This is NOT OK in a function

(many-to-one) But this is OK in a function

What are functions?

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to YES$$

1.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = x^2 + 2 \to \text{YES}$$

2. $f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{1}{(x-1)^2} + 5x \to \text{NO}$
3. $f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to \text{YES}$

3.
$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{2x+5}{7} \to YES$$

4.
$$f: \mathbb{Z} \to \mathbb{R}: f(x) = \frac{(2x+5)^2}{7-2x} \to YES$$

Functions as sets of ordered pairs 3 Functions

A function can be defined as a set of ordered pairs: $\{(a,b)|b=f(a), a\in A\}$ **Example.** $\{(2,4),(3,5),(7,3)\}$ is a function that says "2 is related to 4", "3 is related to 5", "7 is related to 3"

Notes.

- The domain is $\{2, 3, 7\}$ (input values)
- The range is $\{4, 5, 3\}$ (output values)

- 1. Ceiling. $f(x) = \lceil x \rceil$ the least integer y so that $x \leq y$. Example.
 - a. [1.2] =

- 1. Ceiling. f(x) = [x] the least integer y so that $x \leq y$. Example.
 - a. [1.2] = 2
 - b. [-1.2] =

- 1. Ceiling. f(x) = [x] the least integer y so that $x \leq y$. Example.
 - a. [1.2] = 2
 - b. [-1.2] = -1
 - c. [1] = 1
- 2. Floor. f(x) = |x| the greatest integer y so that $y \leq x$
 - a. [1.8] =

- 1. Ceiling. f(x) = [x] the least integer y so that $x \leq y$. Example.
 - a. [1.2] = 2
 - b. [-1.2] = -1
 - c. [1] = 1
- 2. Floor. f(x) = |x| the greatest integer y so that $y \leq x$
 - a. |1.8| = 1
 - b. [-1.8] =

- 1. Ceiling. f(x) = [x] the least integer y so that $x \leq y$. Example.
 - a. [1.2] = 2
 - b. [-1.2] = -1
 - c. [1] = 1
- 2. Floor. f(x) = |x| the greatest integer y so that $y \leq x$
 - a. |1.8| = 1
 - b. |-1.8| = -2
 - c. [-5] =

- 1. Ceiling. f(x) = [x] the least integer y so that $x \leq y$. Example.
 - a. [1.2] = 2
 - b. [-1.2] = -1
 - c. [1] = 1
- 2. Floor. f(x) = |x| the greatest integer y so that $y \leq x$
 - a. |1.8| = 1
 - b. $\lfloor -1.8 \rfloor = -2$
 - c. [-5] = -5

Note. $\lfloor x \rfloor \le x \le \lceil x \rceil$. What is $\lceil -1.1 + \lfloor 1.1 \rfloor \rceil$

Note.
$$[x] \le x \le [x]$$
. What is $[-1.1 + [1.1]] = 0$

Let f be floor function and g be ceiling function.

Which of the following is true?

$$\circ$$
 a. $f(-3.1) = -3$

$$\bigcirc$$
 b. g(-4.5) = -4

$$\circ$$
 c. $g(7) = 8$

$$\bigcirc$$
 d. f(5.3) = 6

Let f be floor function and g be ceiling function.

Which of the following is true?

- a. f(-3.1)= 3
- \bigcirc b. g(-4.5) = -4
- \circ c. g(7) = 8
- \bigcirc d. f(5.3) = 6

Study relations in the set of real numbers R:

(i) f: R
$$\rightarrow$$
 R; f(x)= (x+1)/(x² + 3)

(ii) f:R
$$\to$$
 R; f(x) = x/(2x² - 6x - 1)

Select correct statement(s)

- a. (i) is not a function, (ii) is not a function
- b. (i) is a function, (ii) is a function
- o c. (i) is not a function, (ii) is a function
- od. (i) is a function, (ii) is not a function

Study relations in the set of real numbers R:

(i) f: R
$$\rightarrow$$
 R; f(x)= (x+1)/(x² + 3)

(ii) f:R
$$\to$$
 R; f(x) = x/(2x² - 6x - 1)

Select correct statement(s)

- a. (i) is not a function, (ii) is not a function
- b. (i) is a function, (ii) is a function
- oc. (i) is not a function, (ii) is a function
- d. (i) is a function, (ii) is not a function

One-to-One Functions

3 Functions

Definition. A function $f: A \to B$ is **one-to-one** (injective, an injection) if

$$\forall x, y (f(x) = f(y) \to x = y)$$

Remarks.

• A function $f: A \to B$ is **one-to-one** (injective, an injection) iff

$$\forall x, y(x \neq y) \to f(x) \neq f(y)$$

• A strictly increasing (tăng) or strictly decreasing function on an interval I is one-to-one on I

3 Functions

1.
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$$

3 Functions

- 1. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ (No)
- 2. $f:[0,+\infty)\to \mathbb{R}, f(x)=x^2+1$

3 Functions

- 1. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ (No)
- 2. $f:[0,+\infty)\to \mathbb{R}, f(x)=x^2+1 \text{ (Yes)}$
- 3. Function

3 Functions

- 1. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ (No)
- 2. $f:[0,+\infty)\to \mathbb{R}, f(x)=x^2+1 \text{ (Yes)}$
- 3. Function

Onto Functions

3 Functions

Definition. A function $f: A \to B$ is **onto** (surjective, a surjection) if

$$\forall b \in B, \exists a \in A | f(a) = b$$

Example. The following functions are onto or not

1.
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(x) = x^2$

Onto Functions

3 Functions

Definition. A function $f: A \to B$ is **onto** (surjective, a surjection) if

$$\forall b \in B, \exists a \in A | f(a) = b$$

Example. The following functions are onto or not

- 1. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ (No)
- 2. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x + 1$

Onto Functions

3 Functions

Definition. A function $f: A \to B$ is **onto** (surjective, a surjection) if

$$\forall b \in B, \exists a \in A | f(a) = b$$

Example. The following functions are onto or not

- 1. $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ (No)
- 2. $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1 (Yes)

Example. 3 Functions

Example. 3 Functions

Function

(No)

Bijection 3 Functions

Definition. A function $f: A \to B$ is **bijective** if it is **one-to-one and onto**. We also say that f is a **bijection**.

Example. The following functions are bijection or not

1.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 1$$

Bijection 3 Functions

Definition. A function $f: A \to B$ is **bijective** if it is **one-to-one and onto**. We also say that f is a **bijection**.

Example. The following functions are bijection or not

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 1$ (Yes)
- 2. Function

Bijection 3 Functions

Definition. A function $f: A \to B$ is **bijective** if it is **one-to-one and onto**. We also say that f is a **bijection**.

Example. The following functions are bijection or not

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 1$ (Yes)
- 2. Function

Example. 3 Functions

If f:
$$Z \to N$$
; $f(x) = (2 - x)^2$.

Which of the following statements is true?

- (i) f is one-to-one
- (ii) f is onto

Select one:

- a. (i)
- b. Both
- o. (ii)
- d. None

Ans: d $(x = \pm \sqrt{y} + 2, y = 2 \rightarrow \nexists x \in \mathbb{Z})$

How many one-to-one functions are there from the set {1, 2, 3} to the set {1, 2, 3, 4, 5, 6}

- a. 6.5.4
- b. 6³
- c. 0
- d. 18

How many one-to-one functions are there from the set {1, 2, 3} to the set {1, 2, 3, 4, 5, 6}

Select one:

- a. 6.5.4
- b. 6³
- c. 0
- d. 18

Ans: 6.5.4

Let B be the set $\{a, b\}$. How many functions are there from B^2 to B?

- a. 16
- b. 8
- c. 2
- d. 4

Let B be the set $\{a, b\}$. How many functions are there from B^2 to B?

Select one:

- a. 16
- b. 8
- c. 2
- od. 4

Ans: 16 ($|B \times B| = |B||B| = 2.2 = 4$, mỗi phần tử thuộc B^2 có 2 cách chon ảnh)

Inverse Functions

3 Functions

Definition. Let $f: A \to B$ be a **bijection**. Then the **inverse function** of f, denoted by f^{-1} is the function that assigns each element b in B the unique element a in A such that f(a) = b. Thus $f^{-1}(b) = a$. **Example.**

$$f^{-1}(Cinda) = Isaak, f^{-1}(Dee) = Bri, ..., f^{-1}(Dawn) = Evan$$

Example. 3 Functions

- Is the function $f(x) = x^2$ from Z to Z invertible? (i.e. the inverse function exists)

 The function f is not onto. Therefore it is not a bijection, and hence not invertible
- Is the function f(x) = x + 1 from Z to Z invertible? The function f is a bijection so it is invertible.

Example. 3 Functions

Is the function f(x) = x + 1 from Z to Z invertible? What is its inverse?

To find the inverse, let y be any element in \mathbb{Z} , we find the element x in \mathbb{Z} such that y = f(x) = x + 1. Solving this equation we obtain x = y - 1. Hence $f^{-1}(y) = y - 1$.

We also write $f^{-1}(x) = x - 1$.

Compositions of Functions

3 Functions

Definition. The **composition** of a function $g: A \to B$ and a function $f: B \to C$ is the function $f \circ g: A \to C$ defined by

$$f \circ g(x) = f(g(x))$$

Note. The domain of fog is also the domain of g, and the codomain of fog is also the codomain of f.

Arrow diagram for $f \circ g$ 3 Functions

Example.

3 Functions

let $f(x) = x^2$ and g(x) = x - 3 are functions from R to R. Find $f \circ g$ and $g \circ f$

$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^2$$

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 - 3$$

This shows that in general: $f \circ g \neq g \circ f$

Table of Contents

4 Sequences

- ▶ Seta
- ► Set operations
- ▶ Functions
- ► Sequences
- **▶** Summations
- ▶ Problems

Definition.

4 Sequences

A sequence $\{a_i\}$ is a function $f: \mathbb{N} \to \mathbb{R}$, where we write a_i to indicate f(i). Example.

- 1, 1/2, 1/3, ..., 1/n, ...
- Finite sequence $\{a_i\}$, where $a_i = i, i = 0, 1, 2$: $a_0 = 0, a_1 = 1, a_2 = 2$
- Infinite sequence $\{a_i\}$, where $a_i = i^2$: $a_0 = 0, a_1 = 1, a_2 = 4, ...$
- $a_0 = 1, a_n = 2a_{n-1} 3, n = 1, 2, ... \rightarrow a_1 = -1, a_2 = -5...$
- Geometric progression: $a, ar, ar^2, ..., ar^n, ...$
- Arithmetic progression: a, a + d, a + 2d, ..., a + nd, ...

Table of Contents

- ► Sets
- ► Set operations
- ▶ Functions
- ▶ Sequences
- **▶** Summations
- ▶ Problems

Introduction

- Notation. $\sum_{i=1}^{k} a_i = a_1 + a_2 + ... + a_k$
- Properties.

1.
$$\sum_{i=1}^{k} (ca_i + db_i) = c \sum_{i=1}^{k} a_i + d \sum_{i=1}^{k} b_i$$
2.
$$\sum_{i=1}^{k} a = a + a + \dots + a = ka$$

$$\sum_{i=1}^{k} a = a + a + \dots + a = ka$$

Familiar Summation Formulae

•
$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Let
$$S = 1 + 2 + 3 + ... + n$$

Then $S = n + (n-1) + (n-2) + ... + 1$
 $2S = (n+1) + (n+1) + ... + (n+1) = n(n+1)$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

•
$$\sum_{k=0}^{n} ar^k = a \frac{1 - r^{n+1}}{1 - r} (r \neq 1)$$

Some Useful Summation Formulae

TABLE 2 Some Useful Summation Formulae.	
Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Cardinality

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B
- A set that is either finite or has the same cardinality as the set of positive integers is called countable.

- A set that is not countable is called uncountable.
- When a infinite set S is countable, we denote the cardinality of S is |S|= ℵ₀ (aleph null)
- For example, $|\mathbb{N}|=\aleph_0$ because \mathbb{N} is countable and infinite but \mathbb{R} is uncountable and infinite, and we say $|\mathbb{R}|=2^{\aleph_0}$

Let $a_n = -a_{n-2}$ for all n > 1. If $a_0 = 3$ and $a_1 = 5$, find a_7 .

Select one:

- a. 3
 - b. 7
- c. -5
- d. -3

Let $a_n = -a_{n-2}$ for all n > 1. If $a_0 = 3$ and $a_1 = 5$, find a_7 .

Select one:

- a. 3
- b. 7
- c. -5
- d. -3

Suppose a_n is defined recursively by: $a_0=3$, $a_{n+1}=3.a_n$, n>0. What is a_n ?

Select one:

- \bigcirc a. $a_n = 3^n$
- o b. $a_n = 3^{n+1}$
- \circ c. $a_n = 3n$
- \circ d. a_n=3n+3

Ans: b

Find f(2) and f(3) if $f(n) = f(n-1) \times f(n-2) + 1$, and f(0) = 1, f(1) = 4

Select one:

- \bigcirc a. f(2) = 36, f(3) = 60
- b. f(2) = 30, f(3) = 66
- \circ c. f(2) = 5, f(3) = 21
- \bigcirc d. f(2) = 15, f(3) = 20

Study the following sequences:

$$a_n = 3n - 2, n = 1, 2, 3, ...$$

$$b_n = b_{n-1} + 3 \text{ for n>1 and } b_1 = 1$$

Select true statements.

Select one or more:

- $a.b_3 = 7$
- $b.b_3 = 9$
- \Box c. $a_n = b_n$ for all n > 0
- d. We can't compute b for all n > 0

Table of Contents

6 Problems

- ▶ Sets
- ► Set operations
- ▶ Functions
- ► Sequences
- **▶** Summations
- ▶ Problems

- 1. List the members of these sets.
- a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
- b) $\{x \mid x \text{ is a positive integer less than } 12\}$
- c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$
- 2. For each of the following sets, determine whether 2 is an element of that set.
- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$

b) $\{x \in R \mid x \text{ is the square of an integer}\}$

c) $\{2,\{2\}\}$

d) {{2},{{2}}}}

e) {{2},{2,{2}}}

f) {{{2}}}

- 3. Determine whether each of these statements is true or false.
- a) $0 \in \emptyset$

- b) $\emptyset \in \{0\}$ c) $\{0\} \subset \emptyset$ d) $\emptyset \subset \{0\}$

- e) $\{0\} \in \{0\}$ f) $\{0\} \subset \{0\}$ g) $\{\emptyset\} \subseteq \{\emptyset\}$
- 4. Determine whether each of these statements is true or false.

- a) $x \in \{x\}$ b) $\{x\} \subseteq \{x\}$ c) $\{x\} \in \{x\}$
- d) $\{x\} \in \{\{x\}\}\$ e) $\emptyset \subseteq \{x\}$ f) $\emptyset \in \{x\}$

- 5. What is the cardinality of each of these sets?
- a) {a}
- b) {{a}}

- c) {a, {a}} d) {a, {a}, {a, {a}}}
- 6. What is the cardinality of each of these sets?

- 7. Find the power set of each of these sets, where a and b are distinct elements.
- a) {a}

- b) $\{a, b\}$ c) $\{\emptyset, \{\emptyset\}\}$
- 8. How many elements does each of these sets have where a and b are distinct elements?
- a) $P(\{a, b, \{a, b\}\})$ b) $P(\{\emptyset, a, \{a\}, \{\{a\}\}\})$

c) $P(P(\emptyset))$

9 Find A^2 and A^3 if

a)
$$A = \{1, 3\}$$

a)
$$A = \{1, 3\}$$
 b) $A = \{1, a\}$

10. Let $A = \{1, 2, 3\}$ and $B = \{1, a\}$. What is the cardinality of each of these sets?

a)
$$A \times B$$

b)
$$A^2$$

c)
$$P(B)$$

b)
$$A^2$$
 c) $P(B)$ d) $P(B \times A)$ e) $A \cup B$

11. Find the truth set of each of these predicates where the domain is the set of integers.

a) P (x):
$$x^2 < 3$$

a) P (x):
$$x^2 < 3$$
 b) O(x): $x^2 > x$

c)
$$R(x)$$
: $2x + 1 = 0$

Set operations

6 Problems

- 1. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find
- a) $A \cup B$ b) $A \cap B$ c) A B d) B A.

- 2. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find
- a) $A \cup B$ b) $A \cap B$ c) A B d) B A.
- 3. Find the sets A and B if $A B = \{1, 5, 7, 8\}, B A = \{2, 10\}, \text{ and } A \cap B = \{3, 6, 9\}.$
- 4. Let A and B be sets. Show that
- a) $(A \cap B) \subseteq A$ b) $A \subseteq (A \cup B)$ c) $A B \subseteq A$

- d) $A \cap (B A) = \emptyset$ e) $A \cup (B A) = A \cup B$ f) $A \oplus B = (A \cup B) (A \cap B)$.
- 5. Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise.
- a) {3, 4, 5}
- b) {1, 3, 6, 10} c) {2, 3, 4, 7, 8, 9}

Functions

6 Problems

1. Why is f not a function from R to R if

a)
$$f(x) = 1/x$$
?

b)
$$f(x) = \sqrt{x}$$
?

c)
$$f(x) = \pm \sqrt{x^2 + 1}$$
 ?

2. Determine whether f is a function from Z to R if

a)
$$f(n) = \pm n$$

b)
$$f(n) = \sqrt{n^2 + 1}$$

c)
$$f(n) = \frac{1}{n^2 - 4}$$

3. Find these values

b)
$$[-0.1]$$

Functions

6 Problems

- 4. Determine whether each of these functions from {a, b, c, d} to itself is one-to-one (onto)
- a) f(a) = b, f(b) = a, f(c) = c, f(d) = d
- b) f(a) = b, f(b) = b, f(c) = d, f(d) = c
- c) f(a) = d, f(b) = b, f(c) = c, f(d) = d
- 5. Determine whether each of these functions from Z to Z is one-to-one (onto)

- a) f(n) = n 1 b) $f(n) = n^2 + 1$ c) $f(n) = n^3$ d) $f(n) = \left[\frac{n}{2}\right]$

Functions

6 Problems

7. Determine whether each of these functions is a bijection from R to R.

a)
$$f(x) = -3x + 4$$
 b) $f(x) = -3x^2 + 7$ c) $f(x) = (x + 1)/(x + 2)$ d) $f(x) = x^5 + 1$

8. Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if

a)
$$f(x) = 1$$
 b) $f(x) = 2x + 1$ c) $f(x) = \left[\frac{x}{5}\right]$

Functions 6 Problems

9. Let f be the function from R to R defined by $f(x) = x^2$. Find

a)
$$f^{-1}(\{1\})$$

b)
$$f^{-1}(\{x \mid 0 \le x \le 1\})$$
 c) $f^{-1}(\{x \mid x \ge 4\})$

c)
$$f^{-1}(\{x \mid x \ge 4\})$$

Sequences and Summations

6 Problems

- 1. 1. Find these terms of the sequence $\{a_n\}$, where $a_n = 2 (-3)^n + 5n$.
- a) a_0

- b) a₁ c) a₄

- d) as
- 2. What is the term a8 of the sequence {an} if an equals
- a) 2n-1?
- b) 7? c) $1 + (-1)^n$? d) $-(-2)^n$?
- 3. Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.

a)
$$a_n = 6a_{n-1}$$
, $a_0 = 2$

$$a_n = a_{n-1}^2, a_1 = 2$$

a)
$$a_n = 6a_{n-1}$$
, $a_0 = 2$ b) $a_n = a_{n-1}^2$, $a_1 = 2$ c) $a_n = a_{n-1} + 3a_{n-2}$, $a_0 = 1$, $a_1 = 2$

Sequences and Summations

6 Problems

5 What are the values of these sums?

a)
$$\sum_{k=0}^{5} (k+1)^{k}$$

b)
$$\sum_{j=1}^{4} (j+2)^2$$

a)
$$\sum_{k=1}^{5} (k+1)$$
 b) $\sum_{j=1}^{4} (j+2)^2$ c) $\sum_{j=0}^{2} \sum_{j=1}^{3} (2i-3j)$ d) $\sum_{j=1}^{3} \sum_{j=2}^{4} ij$

d)
$$\sum_{i=1}^{3} \sum_{j=2}^{4} ij$$

6. What are the values of these sums, where $S = \{1, 3, 5, 7\}$?

a)
$$\sum_{j \in S} \left(j + \frac{1}{j} \right)$$
 b) $\sum_{j \in S} j^2$ c) $\sum_{j \in S} 2$

b)
$$\sum_{i \in S} j^2$$

c)
$$\sum_{i \in S} 2$$

7. What are the values of the following products?

a)
$$\prod_{i=0}^{10} i$$

a)
$$\prod_{i=0}^{10} i$$
 b) $\prod_{i=0}^{100} (-1)^{i}$ c) $\prod_{i=0}^{4} i!$

c)
$$\prod_{i=1}^{4} i!$$

Q&A

Thank you for listening!