

digital futures

Guaranteeing Pro-Active and Reactive Safety in intersections through resource management at the Edge

Matthias Becker

DIVERSE — 5th Workshop on Advanced Technologies in Industrial Vehicular Systems 10. September 2024, Padua, Italy.

Challenges for Urban Autonomous Driving

- A majority of AV crashes occur at intersections.
- The most considered influence on accidents in urban intersections is occlusion.
 - Parked vehicles
 - Stopped vehicles
 - Buildings
 - Construction
- Perception of AV alone is not sufficient in urban intersections, or decreases speed/performance

Hornsgatan, Stockholm (Source: Google Maps)

Background

Towards increased safety at smart intersections

- Augmented AV perception
- Pro-active safety through traffic orchestration
- Reactive safety through contingency path planning

Platform support to meet workload demands

- Scheduling reservations to isolate applications
- Request arbitration under different types of timing constraints

Conclusions and future work

Holistic Information at Intersections

- In addition to cameras for perception, various data can be available at intersections
 - Vehicle Class
 - Emission Class
 - Speed
 - Weight
 - etc.
- Active measures exist to influence traffic dynamically

Infrastructure Guided Decision Making Support

Roadside Unit (RSU) provides resources to AVs:

- Augmented AV perception
- Traffic orchestration to avoid congestion at intersection
- Contingency path planning during likely collisions and establish safety zones

Proactive

Reactive

- Path Planning
- Establish Safety Zones
- Scene Perception

Safe Infrastructure Guided
Decision Making Support

- Computational resources for different workloads
- Handle AV requests with timing constraints

Improve AV Perception through Infrastructure Support

Time-to-Collision (TTC)

"The time that remains until a crash between two vehicles would have occurred if the crash course and speed difference are maintained." Hayward, 1972.

Quantify the severity of a conflict as well as its probability.

Take evasive action if a threshold is exceeded.

Utilise SSM for Traffic Orchestration

Orchestrate / support AV planning to arrive at intersection when likelihood of collision is minimal.

→ Reduce the likelihood of encounters that lead to difficult-to-control situations.

- Provide advancing AVs with decision-making support to reduce the likelihood of conflicts at the intersection.
- Consider possible trajectories and their likelihood
- Recommend actions to AV that reduce likelihood of conflict

Support Decision Making in Unavoidable Collisions

- Trajectory library is used to present possible evasive actions of the ego vehicle.
- Parameterized:
 - Initial velocity
 - Weight
 - Size
 - etc.

Problem – Vehicle parameters are typically not known!

 → RSU at the intersection has more accurate data on vehicle parameter, involved actors, etc. than individual AV.

Source: Parseh et al., IEEE T-IV, 2021

Support Decision Making in Unavoidable Collisions

- SSM indicates that the likelihood of collision is above threshold
- Intersection support can include:
 - Safety Zones, areas outside the road that can temporarily be used during crash
 - Planning to minimize the risk of a secondary colission

secondary collision Safe area to utilize during Area must not be collision used during collision DIVERSE 2024

Risk of

- Different services are provided by the RSU
- Runtime interference between services must be avoided
- Computationally heavy data-driven workload
- Different AVs can have different (types of) timing requirements

DIVERSE 2024 10

- Workload Characteristics
 - Data-driven, dynamic workloads
 - Modular updates
- QNX RTOS
 - Preferred base operating system by many automotive OEMs
 - ISO26262 pre-certified at the highest level of assurance (ASIL-D)
 - POSIX-compliant, commercially proven
 - Supports CPU reservations

Adaptive Partitioning Scheduler (APS)

- Secure partitions with guaranteed CPU time
- A partition is a container for a collection of threads
- Configured with budget as percentage of CPU time over a common sliding window (100 ms)
- The highest priority ready threads whose partition has budget is scheduled
- Budget reclamation can be enabled

Analysis vs. Measurements

Priority Partition Task **WCET** Period 20 ms 100 ms 253 P_1 τ_1 254 10 ms P_1 τ_2 10 ms 255 P_2 x ms τ_3

- 3 tasks, 2 event-driven chains
- All tasks on the same core
- Budget P_1 and P_2 is 50%
- budget reclaiming

Compute the latency bound using the analysis

Vary WCET to affect the task utilization

Latency of chain γ_1

Augmented AV perception

Augmented AV perception

considered by the RSU?

→ Thursday 9:00 WIP3

Conclusions and Future Work

- Infrastructure-assisted autonomous driving has the potential to reduce risks at intersections.
- Holistic view of the traffic allows for pro-active and reactive approaches for safety
- Different services for AVs emerge that are subject to timing constraints
- CPU reservations to isolate different applications/services from each other
- Server-based AV request handling considering different types of timing constraints
- Simulation study to:
 - Evaluate effectiveness of Remote-SSM
 - Identify realistic timing constraits for AV traffic at intersection

DIVERSE 2024 15

digital futures

Thank You! Questions?

DIVERSE 2024 16