

Low Power, Precision Auto-Zero Op Amp

AD8538

FEATURES

Low offset voltage: 13 μV maximum Input offset drift: 0.03 $\mu V/^{\circ}C$

Single-supply operation: 2.7 V to 5.5 V

High gain, CMRR, and PSRR Low input bias current: 25 pA Low supply current: 180 μA

APPLICATIONS

Mobile communications Portable instrumentation Battery-powered devices Sensor interfaces

Temperature measurement

Electronic scales

GENERAL DESCRIPTION

The AD8538 is a very high precision amplifier featuring extremely low offset voltage, low input bias current, and low power consumption. The supply current is less than 180 μA at 5.0 V. Operation is fully specified from 2.7 V to 5.0 V single supply (± 1.35 V to ± 2.5 V dual supply).

The AD8538 operates using very low power making this amplifier ideal for battery-powered devices and portable equipment.

The AD8538 is specified over the extended industrial temperature range (-40°C to +125°C). The AD8538 amplifier is available in 5-lead TSOT-23, and 8-lead, narrow body SOIC packages.

PIN CONFIGURATION DIAGRAMS

Figure 1. 5-Lead TSOT-23 (UJ-5)

Figure 2. 8-Lead SOIC_N (R-8)

AD8538

TABLE OF CONTENTS

Features	1
Applications	1
Pin Configuration Diagrams	1
General Description	1
Revision History	2
Specifications	3
Flectrical Specifications	3

Absolute Maximum Ratings	
Thermal Resistance	
ESD Caution	
Typical Performance Characteristics	6
Outline Dimensions	12
Ordering Guide	12

REVISION HISTORY

10/05—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

@ V_S = 5.0 V, V_{CM} = 2.5 V, V_O = 2.5 V, T_A = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	13	μV
		-40°C ≤ T _A ≤ +125°C			30	μV
Input Bias Current	I _B			15	25	рА
		-40°C ≤ T _A ≤ +85°C		35	100	pА
		-40°C ≤ T _A ≤ +125°C		0.7	1.0	nA
Input Offset Current	los			20	50	pА
·		-40°C ≤ T _A ≤ +125°C			150	pA
Input Voltage Range			0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 5 \text{ V}$	115	150		dB
•		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}; V_{CM} = 0.2 \text{ V to } 4.8 \text{ V}$	100	135		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 10 \text{ k}\Omega, V_O = 0.1 \text{ V to } 4.9 \text{ V}$	115	141		dB
		-40°C ≤ T _A ≤ +125°C	110	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C ≤ T _A ≤ +125°C		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS	2.03,21					'
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	4.99	4.998		V
output voltage riigii	VOH	-40°C ≤ T _A ≤ +125°C	4.98	1.550		v
		$R_L = 10 \text{ k}\Omega \text{ to ground}$	4.95	4.970		v
		-40°C ≤ T _A ≤ +125°C	4.94	1.570		v
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V} +$		1.9	5	mV
output voltage zow	VOL.	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		2.8	7	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		17	20	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		20	30	mV
Short-Circuit Limit	I _{SC}	40 C 3 IA 3 I 125 C		±25	30	mA
POWER SUPPLY	ISC					111/1
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.0 \text{ V}$	105	125		dB
rower supply Rejection Ratio	FJIII	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	100	125		dB
Supply Current/Amplifier	Isy	$I_0 = 0$	100	150	180	μА
Supply Current/Ampliner	ISY	10 − 0 −40°C ≤ T _A ≤ +125°C		190	215	μΑ
DYNAMIC PERFORMANCE		-40 C S IA S T 125 C		190	213	μΛ
Slew Rate	SR	$R_{l} = 10 \text{ k}\Omega$		0.4		V/µs
				10		-
Settling Time 0.01% Overload Recovery Time	t s	$G = \pm 1$, 2 V step, $C_L = 20$ pF, $R_L = 1$ k Ω				μs
	CDD			0.05		ms
Gain Bandwidth Product	GBP	D = 10 kO D = 100 kO C 30 = 5		600 65		kHz
Phase Margin	Øo	$R_L = 10 \text{ k}\Omega, R_L = 100 \text{ k}\Omega, C_L = 20 \text{ pF}$	-	co		Degrees
NOISE PERFORMANCE		f 0111-4-1011-		2.0		
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		2.0		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		50		nV/√Hz

AD8538

@ V_{S} = 2.7 V, V_{CM} = 1.35 V, V_{O} = 1.35 V, T_{A} = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	13	μV
		-40 °C $\leq T_A \leq +125$ °C			30	μV
Input Bias Current	I _B			15	25	pА
		-40 °C $\leq T_A \leq +85$ °C		35	100	pА
		-40°C ≤ T _A ≤ +125°C		0.7	1.0	nA
Input Offset Current	los			20	50	pА
		-40°C ≤ T _A ≤ +125°C			150	рA
Input Voltage Range			0		2.7	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 2.5 V$	110	140		dB
		-40°C ≤ T _A ≤ +125°C	100	135		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega, V_O = 0.1 \text{ V to } 1.7 \text{ V}$	110	140		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	105	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C ≤ T _A ≤ +125°C		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{он}	$R_L = 100 \text{ k}\Omega$ to ground	2.68	2.698		V
. 3 3		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	2.68			V
		$R_L = 10 \text{ k}\Omega$ to ground	2.67	2.68		V
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	2.66			V
Output Voltage Low	VoL	$R_L = 100 \text{ k}\Omega \text{ to V} +$		1.7	5	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		2.4	5	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		14	20	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		20	25	mV
Short-Circuit Limit	Isc			±8		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	105	125		dB
		-40°C ≤ T _A ≤ +125°C	100	125		dB
Supply Current/Amplifier	Isy	$I_0 = 0$		150	180	μΑ
		-40°C ≤ T _A ≤ +125°C		190	215	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.4		V/µs
Settling Time 0.01%	ts	$G = \pm 1$, 1 V step, $C_L = 20$ pF, $R_L = 1$ k Ω		5		μs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			600		kHz
Phase Margin	Øo	$R_L = 10 \text{ k}\Omega, R_L = 100 \text{ k}\Omega, C_L = 20 \text{ pF}$		65		Degrees
NOISE PERFORMANCE		·				
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		2.0		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		50		nV/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

1 4010 51	
Parameter	Rating
Supply Voltage	+6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Differential Input Voltage	±6 V
Output Short-Circuit Duration to GND	Observe derating curve
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply at 25°C, unless otherwise noted.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Characteristics

Package Type	θја	Ө лс	Unit
5-Lead TSOT-23 (UJ-5)	207	61	°C/W
8-Lead SOIC_N (R-8)	158	43	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{SY} = 5 \text{ V}$ or $\pm 2.5 \text{ V}$, unless otherwise noted.

Figure 3. Input Offset Voltage Distribution

Figure 4. Input Offset Voltage Drift Distribution

Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 6. Input Bias Current vs. Temperature

Figure 7. Supply Current vs. Supply Voltage

Figure 8. Supply Current vs. Temperature

Figure 9. Output Saturation Voltage vs. Load Current

Figure 10. Output Saturation Voltage vs. Temperature

Figure 11. Closed-Loop Gain vs. Frequency

Figure 12. Open-Loop Gain and Phase vs. Frequency

Figure 13. CMRR vs. Frequency

Figure 14. PSRR vs. Frequency

Figure 15. Closed-Loop Output Impedance vs. Frequency

Figure 16. Small Signal Overshoot vs. Load Capacitance

Figure 17. Small Signal Transient Response

Figure 18. Large Signal Transient Response

Figure 19. Positive Overload Recovery

Figure 20. Negative Overload Recovery

Figure 21. Voltage Noise Density

Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 23. No Phase Reversal

$V_s = 2.7 \text{ V or } \pm 1.35 \text{ V}.$

Figure 24. Input Offset Voltage Distribution

Figure 25. Input Offset Voltage Drift Distribution

Figure 26. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 27. Output Saturation Voltage vs. Load Current

Figure 28. Output Saturation Voltage vs. Temperature

Figure 29. Small Signal Overshoot vs. Load Capacitance

Figure 30. Large Signal Transient Response

Figure 31. Voltage Noise Density

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.

Figure 32. 5-Lead Thin Small Outline Transistor Package [TSOT_23] (UJ-5) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 33. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8538AUJZ-R2 ¹	-40°C to +125°C	5-Lead TSOT-23	UJ-5	AOC
AD8538AUJZ-REEL ¹	-40°C to +125°C	5-Lead TSOT-23	UJ-5	AOC
AD8538AUJZ-REEL7 ¹	-40°C to +125°C	5-Lead TSOT-23	UJ-5	AOC
AD8538ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8538ARZ-REEL ¹	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8538ARZ-REEL71	-40°C to +125°C	8-Lead SOIC N	R-8	

 $^{^{1}}$ Z = Pb-free part.