

Örnek;

L şeklindeki kiriş A noktasından duvara sabitlenmiştir. AB kolu z yönünde uzamakta ve BC kolu ise negatif x yönünde uzamaktadır. B noktasından negatif yönde 120 N şiddetinde bir P kuvveti uygulanmaktadır. AB ve AC uzunlukları sırasıyla a=20 cm ve b=30 cm olduğuna göre kirişin s<u>abit ucundaki tepkileri hesaplayını</u>z.

Temel Biyomekanik – Nihat Özkaya, Margareta Nordin - Çeviri Teyfik Demir

Sürtünmeli Sistemler

Sürtünme kuvvetini önceki bölümde ayrıntılı olarak incelemiştik. Bu başlık altında, sürtünme kuvvetlerinin önemli bir rol oynadığı bir problemi analiz edeceğiz.

Örnek

Şekilde bloğu yüzeye paralel kuvvet uygulayarak eğimli sürtünmeli bir yüzeyde <u>yukarı</u> doğru ittirmeye çalışan bir <u>adam görülmektedir.</u> Bloğun ağırlığı <u>W</u>, sürtünme katsayısı μ, ve yüzey de yatayla ϑ açısı yapmaktadır. Bloğun <u>sürtünme ve yerçekimi etkilerinin</u> üstesinden gelerek hareket etmeye başlaması için kişinin uygulaması gereken <u>minimum kuvvetin büyüklüğünü (P)'yi W</u>, μ ve ϑ cinsinden belirleyelim.

Windows'u Etkinleştir

Temel Biyomekanik – Nihat Özkaya, Margareta Nordin - Çeviri Teyfik Demir

Sürtünmeli Sistemler

Sürtünme kuvvetini önceki bölümde ayrıntılı olarak incelemiştik. Bu başlık altında, sürtünme kuvvetlerinin önemli bir rol oynadığı bir problemi analiz edeceğiz.

Dördüncü Bölüm

J-tatik Hk. genel bilin verdik Dördüncü Bölüm Ağırlık Merkezi Belirleme

Örnek;

Şekil'de Russel kırık traksiyon cihazı ve bacağın mekanik bir modeli gösterilmektedir. Bacak, iki kabloya bağlı olan iki ağırlık ile gösterilen konumda dengede tutulmaktadır. Bacağın ve alçının toplam ağırlığı W=300N'dur. Kabloların bacağa tutturulduğu A ve B noktaları arasındaki yatay mesafe l'dir. C noktası, A noktasından ölçülen l'nin üçte ikisinde yer alan alçı ve bacağın ağırlık merkezidir. Yatay ile kablo 2 arasındaki açı β=45° olarak ölçülmüştür. Bacağın gösterilen konumda dengede kalması için gereken kablolarda oluşan T₁ ve T₂ çekme kuvvetlerini, W₁ ve W₂'deki ağırlıklarını ve Kablo 1'in yatay ile yaptığı α açısını belirleyiniz.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Ağırlık Merkezi Belirleme

Örnek;

Şekil'de A noktasından duvara menteşelenmiş yatay bir kiriş gösterilmektedir. Kirişin uzunluğu l=2m ve ağırlığı W=150N'dur. C noktası kirişin ağırlık merkezidir ve kirişin iki ucuna eş uzaklıktadır. Halat kirişe B noktasından yatayla α=50° açı yapacak şekilde duvara sabitlenmiştir. Yerçekimi çizgisi C noktasından geçecek şekilde W1=50N yükü uygulanmaktadır. Başka bir yük W2 =50N, B noktasından kirişe eklenmiştir. Halattaki çekme kuvveti T ve A noktasında oluşan tepki kuvvetlerini hesaplayınız.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Temel Biyomekanik – Nihat Özkaya, Margareta Nordin - Çeviri Teyfik Demir

