Exploratory Analysis with R

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Outline: Exploratory Analysis with R

- Descriptive Statistics
 - Numerical summaries
 - Graphical exploration

^{*}Based on this Course:* [BIMS 8382, University of Virginia School of Medicine (USA)] (https://bioconnector.github.io/workshops/index.html).

What packages we will use today?

Please be sure you have the following packages installed:

- dplyr subletting, sorting, transforming variables, grouping
- ggplot2 system for creating graphics
- readxl reading .xls files

```
# install.packages("dplyr", dependencies = TRUE)
# install.packages("ggplot2", dependencies = TRUE)
# install.packages("readxl", dependencies = TRUE)

library(dplyr)
library(ggplot2)
library(readxl)
```

The Data Science Approach in R

Program

Section 1

Getting started

Getting started (I)

diab[1:4, 1:8]

Load the dataset diabetes:

```
diab <- read_excel("datasets/diabetes_mod.xls")</pre>
```

② Check if we have loaded it correctly:

```
# A tibble: 4 x 8
    numpacie mort tempsviu edat
                                  bmi edatdiag tabac
                                                           sbp
##
       <dhl> <chr>
                     <dbl> <dbl> <dbl>
                                         <dhl> <chr>>
                                                          <dh1>
                      12.4
                              44 34.2
                                                           132
## 1
           1 Vivo
                                            41 No fumador
## 2
           2 Vivo
                      12.4 49 32.6
                                           48 Fumador
                                                           130
           3 Vivo
                       9.6 49 22
                                           35 Fumador
                                                           108
           4 Vivo
                       7.2 47 37.9
                                            45 No fumador
                                                           128
## 4
```

Getting started (II): functions to check a dataframe:

- Content
 - head(name of dataframe): shows the first few rows tail(): shows the last few rows
- Size
 - dim(): returns the number of rows and the number of columns nrow(): returns the number of rows - ncol(): returns the number of columns
- Summary
 - colnames() or names(): returns the column names glimpse(): returns a glimpse of your data: structure, class, length and content of each column

Getting started (III)

head(diab)

```
## # A tibble: 6 x 11
     numpacie mort tempsviu edat
                                      bmi edatdiag tabac
                                                               sbp
                                                                     dbp ecg
                                                                                chd
##
        <dbl> <chr>
                       <db1> <db1> <db1>
                                             <dbl> <chr>
                                                             <dbl> <dbl> <chr> <chr> <chr>
            1 Vivo
                        12.4
                                    34.2
                                                41 No fuma~
                                                               132
                                                                      96 Normal No
## 1
## 2
            2 Vivo
                        12.4
                                49 32.6
                                                48 Fumador
                                                               130
                                                                      72 Normal No.
## 3
            3 Vivo
                         9.6
                                    22
                                                35 Fumador
                                                               108
                                                                      58 Normal Si
            4 Vivo
                        7.2
                                    37.9
                                                45 No fuma~
                                                               128
                                                                      76 Front~ Si
## 4
                        14.1
                                43 42.2
## 5
            5 Vivo
                                                42 Fumador
                                                               142
                                                                      80 Normal No.
## 6
            6 Vivo
                        14.1
                                47 33.1
                                                44 No fuma~
                                                               156
                                                                      94 Normal No
```

Getting started (IV)

```
dim(diab)
## [1] 149 11
nrow(diab)
## [1] 149
colnames(diab)
        "numpacie" "mort"
##
                                "tempsviu" "edat"
                                                        "bmi"
                                                                    "edatdia
##
    [7]
        "tabac"
                    "sbp"
                                "dbp"
                                            "ecg"
                                                        "chd"
```

Getting started (IV)

```
glimpse(diab)
## Rows: 149
## Columns: 11
## $ numpacie <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
                                            <chr> "Vivo", 
## $ mort
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
                                            <dbl> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
## $ edat.
## $ bmi
                                            <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ edatdiag <dbl> 41, 48, 35, 45, 42, 44, 48, NA, 47, 45, 48, 43, 36, 43, 26, 4~
                                            <chr> "No fumador", "Fumador", "Fumador", "No fumador", "Fumador", ~
## $ tabac
## $ sbp
                                           <dbl> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1~
## $ dbp
                                           <dbl> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6~
                                           <chr> "Normal", "Normal", "Frontera", "Normal", "Normal", "
## $ ecg
                                           <chr> "No". "No". "Si". "Si". "No". "No". "Si". "No". "Si". "No". "~
## $ chd
```

Variables and data types

- Data managed in R . . .
 - is stored as variables
- Variables can be of distinct types
 - Numerical
 - numeric (13.7)
 - int (3)
 - Character
 - "R is cute"
 - Factors
 - A.B.C.D
 - WT, Mut
 - Logical

Exercise I

- Load the osteoporosis dataset
- Proceed similarly as to what we have done above and obtain information on
 - How many variables and observations
 - How are them

More about factors

- Each data type is what it seems to be, but factors require more explanation.
- Factors are intended to describe categories such as "sex", "blood group", but also "risk" or "stage".
- Factors are useful to describe groups without having to use numeric codes.
- Factors may be created while reading the file or later using the factor and as factor commands.

Create factor while reading

 Import the diabetes dataset from the diabetes.csv file using the Rstudio dialog.

Check variable type

```
diabetes <- read.csv("datasets/diabetes.csv", stringsAsFactors=TRUE)
class(diabetes$mort)
## [1] "factor"
sapply(diabetes, class)
##
   numpacie mort tempsviu edat
                                               bmi
                                                    edatdiag
                                                                taba
## "integer" "factor" "numeric" "integer" "numeric" "integer"
                                                              "factor
        dbp
                            chd
##
                  ecg
## "integer" "factor" "factor"
```

Repeat

 Re-read the file from excel or without setting the "stringsAsFactors" to TRUE

Creating factors directly

[1] "Muerto" "Vivo"

• Use factor or as.factor

```
diabetes <- read.csv("datasets/diabetes.csv", stringsAsFactors=FALSE)
class(diabetes$mort)

## [1] "character"
diabetes$mort <- as.factor(diabetes$mort)
class(diabetes$mort)

## [1] "factor"
levels(diabetes$mort)</pre>
```

Warning! by default alphabetic order is used when creating factor levels.

```
vitalStatus <- factor(diabetes$mort, levels=c("Vivo", "Muerto"))
class(vitalStatus)</pre>
```

Change the levels of a factor

- When humans fill the database... many errors can happen :(
 - An answer like "SI", could be entered like:

```
"SI", "Si", "si", "SI ", "SÍ", .....
```

- All this possible answers will be differents levels for the same variable
- Tis may be solved using recode_factor:

```
diab$mort <- recode_factor(diab$mort, "Muerto" = "muerto")
levels(diab$mort)</pre>
```

```
## [1] "muerto" "Vivo"
```

Changing characters (chr) to factors (Factor)

An alternative way to turn characters into factors is the mutate_if function:

```
library(dplyr)
diab <- diabetes %>% mutate if(is.character, as.factor)
glimpse(diab)
## Rows: 149
## Columns: 11
## $ numpacie <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
              <fct> Vivo, V-
## $ mort
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
## $ edat
              <int> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
             <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ bmi
## $ edatdiag <int> 41, 48, 35, 45, 42, 44, 48, 33, 47, 45, 48, 43, 36, 43, 26, 4~
## $ tabac
              <fct> No fumador, Fumador, Fumador, No fumador, Fumador, No fumador-
## $ sbp
             <int> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1~
              <int> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6~
## $ dbp
              <fct> Normal, Normal, Normal, Frontera, Normal, Normal, Frontera, N-
## $ ecg
             <fct> No. No. Si. Si. No. No. Si. No. No. No. No. No. No. No. S~
## $ chd
```

Section 2

Exploratory Data Analysis: Numerical summaries

Numerical Summaries (I)

• There are many functions to provide numerical summaries

```
#Mean, median and rang
mean(diab$edat)

## [1] 52.16779
median(diab$edat)

## [1] 50
sd(diab$edat)

## [1] 11.77285
var(diab$edat)

## [1] 138.6
range(diab$edat)

## [1] 138.6
```

Numerical Summaries (II)

A general summary of all variables is provided by distinct functions summary(diab[, 2:11])

.862.00

```
##
                     tempsviu
                                                                       edatdiag
        mort.
                                        edat.
                                                         hmi
    Muerto: 25
                         : 0.00
                                          :31.00
                                                           :18.20
                                                                            :26.00
                 Min.
                                   Min.
                                                   Min.
                                                                    Min.
    Vivo :124
                 1st Qu.: 7.30
                                  1st Qu.:43.00
                                                   1st Qu.:26.60
                                                                    1st Qu.:38.00
                                                   Median :31.20
##
                 Median :11.60
                                  Median :50.00
                                                                    Median :45.00
##
                 Mean
                         10.52
                                  Mean
                                          .52.17
                                                   Mean
                                                           .31.78
                                                                    Mean
                                                                            .45 99
                 3rd Qu.:13.90
                                  3rd Qu.:60.00
                                                   3rd Qu.:35.20
                                                                    3rd Qu.:53.00
##
                         :16.90
                                          :86.00
                                                   Max.
                                                           :59.70
                                                                            :81.00
##
                  Max.
                                  Max.
                                                                    Max.
##
                          sbp
                                           dbp
                                                                        chd
           tabac
                                                              ecg
    Ex fumador:41
                            : 98.0
                                      Min.
                                             : 58.00
                                                      Anormal: 11
                                                                       No:99
                     Min.
    Fumador
              :51
                    1st Qu.:124.0
                                      1st Qu.: 74.00
                                                      Frontera: 27
                                                                       Si:50
##
    No fumador:57
                    Median :138.0
                                      Median . 80.00
                                                       Normal :111
##
                            :139.1
                                             : 90.04
                     Mean
                                     Mean
                     3rd Qu.:152.0
                                     3rd Qu.: 88.00
##
```

Max

Max.

.222 0

##

Improving the summary function

- There are many packages to do descriptive statistics.
- See Dabbling with data
- Give a try, for instance to the skimr or summarytools packages.

More complete descriptions (1)

library(summarytools)

```
## Registered S3 method overwritten by 'pryr':
##
    method
                from
##
  print.bytes Rcpp
## For best results, restart R session and update pander using devtools
dfSummary(diabetes)
## Data Frame Summary
## diabetes
## Dimensions: 149 \times 11
## Duplicates: 1
##
## No Variable Stats / Values
                                               Freqs (% of Valid)
    numpacie Mean (sd): 75 (43.2) 148 distinct values
## 1
       [integer] min < med < max:</pre>
##
```

Grouped summeries

If we want to group the descriptive summaries by other variables we can use group_by function:

```
diab %>%
 group_by(tabac, ecg) %>%
 summarize(mean(edat))
## `summarise()` has grouped output by 'tabac'. You can override using the `.groups` argument.
## # A tibble: 9 x 3
## # Groups:
              tabac [3]
                         `mean(edat)`
    tabac
               ecg
    <fct>
               <fct>
                               <dh1>
## 1 Ex fumador Anormal
                               68.5
## 2 Ex fumador Frontera
                               59.8
## 3 Ex filmador Normal
                               51.1
## 4 Fumador Anormal
                                58
## 5 Fumador Frontera
                               44.8
## 6 Fumador
               Normal
                               44.7
## 7 No fumador Anormal
                               66.5
## 8 No fumador Frontera
                               53.8
## 9 No fumador Normal
                                56.0
```

Handling missing data

- What happens if we have missing data in our dataset?
- The file diabetes_mod.xls contains some missings

```
diabetes_mod <- read_excel("datasets/diabetes_mod.xls")
diab <- diabetes_mod %>% mutate_if(is.character, as.factor)
mean(diab$sbp)
```

[1] NA

NA indicates *missing data* in the variable

Let's look the sbp variable:

```
diab$sbp

## [1] 132 130 108 128 142 156 140 144 134 102 142 128 156 102 146 120 142 144

## [19] NA 134 130 122 132 150 134 142 124 102 134 118 192 122 122 112 142 152

## [37] 112 118 152 136 134 130 108 126 132 144 126 128 NA 128 142 132 148 170

## [55] 140 138 112 140 138 130 178 158 168 146 128 132 154 154 152 144 178 162

## [73] 142 120 124 174 142 160 122 162 132 116 152 144 98 138 138 148 158 176

## [91] 118 172 182 144 142 154 122 222 150 142 128 122 162 172 132 112 138 128

## [109] 132 120 140 140 172 136 152 126 104 142 128 122 122 122 122 168 162 NA

## [127] 126 180 132 150 106 154 122 120 120 144 134 148 170 160 154 124 130 156

## [146] 162 132 120 160 146
```

Numerical Summaries (VII)

How to work with *missing data*:

```
?mean
## Help on topic 'mean' was found in the following packages:
##
             Package
##
                                                                          Library
##
              base
                                                                          /usr/lib/R/library
##
             rapportools
                                                                          /home/alex/R/x86 64-pc-linux-gnu-library/4.1
##
##
## Using the first match ...
mean(diab$sbp, na.rm = TRUE)
## [1] 139.2603
is.na(diab$sbp)
             [1] FALSE FALSE
           [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
           [25] FALSE FALSE
           [37] FALSE FALSE
                           TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
           [61] FALSE FALSE
           [73] FALSE FALSE
           [85] FALSE FALSE
           [97] FALSE F
## [109] FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
```

Numerical Summaries (VIII)

How to work with *missing data*:

```
sum(is.na(diab$sbp))
## [1] 3
sum(is.na(diab$dbp))
## [1] 0
diab_noNAS <-na.omit(diab)</pre>
dim(diab)
## [1] 149 11
dim(diab_noNAS)
## [1] 141 11
```

See also: Remove Rows with NA in R Data Frame

EXERCISE

- With the diab dataset
 - Show only the rows from 35 to 98 and columns 5, 7, and from 9 to 11
 - Change the level of the variable tabac, from No Fumador to No_Fumador
 - Display the unique values for the variable bmi. Count how many exist.
 - Display the mean of edatdiag, grouped by ecg

Section 3

Exploratory Data Analysis (EDA): Graphical summaries

Exploratory Data Analysis (EDA): Graphical summaries

- We could dedicate one whole course to Data Visualization (at least see our "Statistical Pill on Data Visualization")
- Here we will only see the most common approaches to visualize data:
 - Histograms
 - Barplots
 - Piecharts
 - Boxplots
 - Scatterplots

R graphics engines

- R is very powerful and flexible at doing graphics.
- This comes at a price: Complex graphics (that we do not show here) may require sonme extra effort.
- Much work has been done to simplify this
 - There exist graphical tools that allow for the interactive construction of plots.
 - There exist new approaches to plotting that try to be more intuitive than "traditional" ones.
- ggplot is one of such approaches.

Histograms

- We will use histograms to plot the frequencies of each range of values in continuous variables.
- These plots provide an approximation to the distribution of the variables being represented.

hist(diab\$edat)

A histogram in ggplot

- Every ggplot has, at least, three components
 - The data used
 - The variables that go in each axis (the "aesthetics")
 - The type of plot
- Plots are built progressively "adding layers"

```
library(ggplot2)
ggplot(data=diab, aes(x=edat))+
  geom_histogram()
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Improving plots with graphic parameters

- Plots can be improved using graphical parameters
- Some parameters are the same in all graphs. Others are specific of one or other graph.

hist(diab\$edat, main="Age at diagnostic", probability = TRUE, xlab="Age

Improving plots in ggplots

- Plots can be improved using graphical parameters
- Some parameters are the same in all graphs. Others are specific of one or other graph.

```
ggplot(data=diab, aes(x=edat))+
geom_histogram(aes(y=..density..))+
ggtitle("Age at diagnostic")+
xlab("Age") + ylab("Percentage")
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Boxplot. A one-dimensional histogram

Boxplot: Decomposing plots by groups

boxplot(edat~tabac, data=diab, main="Age of diabetes onset according sm

Age of diabetes onset according smoking status

Plots for categorical variables

- Some simple principles
 - Use pie charts only with categorical variables in nominal scale
 - Use barplots for any categorical variable
 - Never use 3D-plots

```
t <- table(diab$mort)
pie(t)</pre>
```


Barplots

• Similar to pie charts but, implicitly, suggest ordering

Scatterplots

• For two variables, simply use plot

plot(edat~bmi, data=diab)

EXERCISE

- With the diab dataset
 - Use the best graphic type to plot the relation between sbp and dbp
 - Show graphically the relation between edat and ecg
 - Plot the sbp frequencies

EXERCISE

- Using the osteoporosis.csv dataset
- Load the dataset and check if it is correctly loaded
- Calculate the mean and standard deviation of imc grouped by clasific
- Plot the distribution of edat.