Part III

FASTEX

LATEX Shortcuts

Appendix: Alphabetical Listing

Appendix A. Alphabetical List of Shortcuts

|y|

avy

0 0,0 in parentheses 00p(0,0)03p(0, 0, 0, 0)0,0,0 in parentheses (0) 0 in parentheses 0pa \',{E} acute E ace ad & ampersand ad& ampersand for aligning = signs in some displays ada &_=_& \'{e} (acute e ae \arg agarument\aleph alealeph angl \angle angle ${\bf bf}_{\sqcup}a}_{\sqcup}+_{\sqcup}{\bf bf}_{\sqcup}b}$ bold a plus bold b aplb \approx approximately apx \mapsto arrow with tail; maps to artl ${\bf \{}bf_{\sqcup}a\}_{\sqcup}$ \times $_{\sqcup}{\bf \{}bf_{\sqcup}b\}$ bold a times bold b atib $(\{\bf_{\sqcup}a\}_{\sqcup}\times_{\sqcup}\{\bf_{\sqcup}b\})$ (bold a times bold b) atibp at symbol ats\mbox{\rm_Aut}(Automorphism universal (in roman) aua absolute value of a ava absolute value of b avb b absolute value of c c avc absolute value of x x avx

absolute value of y

b

~	
ь0	{\bf _⊔ 0}
b1	{\bf _⊔ 1}
b10	{\bf _⊔ 10}
b2	{\bf _⊔ 2}
b3	{\bf _⊔ 3}
b4	{\bf _⊔ 4}
b5	{\bf _⊔ 5}
b6	{\bf _⊔ 6}
b7	{\bf _⊔ 7}
b8	{\bf _⊔ 8}
Ь9	{\bf _⊔ 9}
ba	{\bf _⊔ a}
bac	\begin{acknowledgment}
balg	\begin{algorithm}
bb	{\bf⊔b}
bbca	\Bbb _⊔ A
bbcb	∖Bbb⊔B
bbcc	∖Bbb⊔C
bbcd	∖Bbb⊔D
bbce	∖Bbb⊔E
bbcf	∖Bbb⊔F
bbcg	∖Bbb⊔G
bbch	∖Bbb⊔H
bbci	∖Bbb⊔I
bbcj	∖Bbb⊔J
bbck	∖Bbb⊔K
bbcl	∖Bbb⊔L
$_{ m bbcm}$	\Bbb _⊔ M
bbcn	\Bbb _⊔ N
bbco	\Bbb _⊔ 0

```
bold 0
bold 1
bold 10
bold 2
bold 3
bold 4
\rm bold\ 5
bold 6
bold 7
bold 8
bold 9
bold a
begin acknowledgment environment;
begin algorithm environment;
bold b
blackboard bold A
blackboard bold B
blackboard bold C
blackboard bold D
blackboard bold E
blackboard bold F
blackboard bold G
blackboard bold H
blackboard bold I
blackboard bold J
blackboard bold K
blackboard bold L
blackboard bold M
blackboard bold N
```

blackboard bold O

bbcp	\Bbb _⊔ P	blackboard bold P
bbcq	\Bbb _{LL} Q	blackboard bold Q
bbcr	\Bbb _{Ll} R	blackboard bold R
bbcr1	{\Bbb_R}^1	blackboard bold R to power 1
bbcr2	{\Bbb⊔R}^2	blackboard bold R to power 2
bbcr3	{\Bbb_R}^3	blackboard bold R to power 3
bbcrm	{\Bbb_R}^m	blackboard bold R to power m
bbcrn	{\Bbb _L R}^n	blackboard bold R to power n
bbcs	\Bbb _{LI} S	blackboard bold S
bbct	\Bbb⊔T	blackboard bold T
bbcu	\Bbb⊔U	blackboard bold U
bbcv	\Bbb _{LL} V	blackboard bold V
bbcw	\Bbb _{Ll} ₩	blackboard bold W
bbcx	\Bbb⊔X	blackboard bold X
bbcy	\Bbb⊔Y	blackboard bold Y
bbcz	\Bbb _{Ll} Z	blackboard bold Z
bblk	\begin{quotation}	begin block/quotation
bbu	{\Bbb _{\\}	blackboard bold universal
bbu	{\Bbb _{Ll}	blackboard bold universal
bc	{\bf ₁₁ c}	bold c
bca	{\bf⊔a}	bold A
bcap	\caption{TextuofuCaption}	bottom caption
bcase	\begin{case}	begin case environment;
bcb	{\bf _\ B}	bold B
bcc	{\bf _\ C}	bold C
bcd	{\bf _\ D}	bold D
bce	{\bf _\ E}	bold E
bcf	{\bf _\ F}	bold F
bcg	{\bf⊔G}	bold G
bch	{\bf _\ H}	bold H
bci	{\bf _\ I}	bold I
bcj	{\bf _\ J}	bold J
bck	{\bf _\ K}	bold K
bcl	{\bf ₁₁ L}	bold L
bclm	\begin{claim}	begin claim environment;
bcm	{\bfuM}	bold M
bcmnt	\begin{comment}	begin comment environment
ben	{\bf N}	bold N
benel	\begin{conclusion}	begin conclusion environment;
201101	/2-0	some some about the month of the first

bcnj	bend	\begin{condition}	begin condition environment;
bcor \begin{cor} to begin a Corollary environement bcp {\bf_\psi P} bold P bcq {\bf_\psi Q} bold Q bcr {\bf_\psi R} bold R bcrit \begin{criterion} begin criterion environment; bcs {\bf_\si S} bold S	benj	\begin{conjecture}	begin conjecture environment;
$\begin{array}{llllllllllllllllllllllllllllllllllll$	bco	{\bf _u 0}	bold O
$\begin{array}{lll} bcq & \{\bf_{\sqcup}Q\} & bold \ Q \\ bcr & \{\bf_{\sqcup}R\} & bold \ R \\ bcrit & \begin{criterion} \\ bcs & \{\bf_{\sqcup}S\} & bold \ S \\ \end{array}$	bcor	\begin{cor}	to begin a Corollary environement
bcrit {\bf_R} bold R bcrit \begin{criterion} begin criterion environment; bcs {\bf_S} bold S	ьср	{\bf_P}	bold P
bcrit \begin{criterion} begin criterion environment; bcs {\bf_\subseteq S} bold S	bcq	$\{\bf_{\sqcup}Q\}$	bold Q
bcs $\{\bf_{\sqcup}S\}$ bold S	bcr	$\{\bf_{\sqcup}R\}$	bold R
	bcrit	\begin{criterion}	begin criterion environment;
1 4 () 1 6 m)	bcs	{\bf _u S}	bold S
DCI {\DI _{LI} T}	bct	$\{\bf_{\sqcup}T\}$	bold T
bcu $\{\bf_{\sqcup}U\}$ bold U	bcu	$\{\bf_{\sqcup}U\}$	bold U
bcv $\{\bf_{\sqcup}V\}$ bold V	bcv	{\bf _\ \\}	bold V
bcw $\{\bf_{\sqcup}W\}$ bold W	bcw	{\bf _U W}	bold W
bcx {\bf_\X} bold X	bcx	{\bf _{\\} X}	bold X
bcy $\{\bf_{\sqcup}Y\}$ bold Y	bcy	{\bf _\ Y}	bold Y
bcz {\bf_\Z} bold Z	bcz	{\bf _{\\\\} Z}	bold Z
bd $\{\bf_{\sqcup}d\}$ bold d	bd	$\{\bf_{\sqcup}d\}$	bold d
bdfn \begin{definition} begin definition environment;	bdfn	\begin{definition}	begin definition environment;
bdfn \begin{dfn} to begin a Definition environement	bdfn	\begin{dfn}	to begin a Definition environement
bdmu to begin demo environement (not in LaTeX)	bdmu	•	to begin demo environement (not in LaTeX)
bdo \begin{document} begin text of document	bdo	\begin{document}	begin text of document
bdp \[begin display math: one line formula, unnumbered	bdp	\[begin display math: one line formula, unnumbered
bdpex \[display math equation unnumbered example	bdpex	\[display math equation unnumbered example
bds \begin{description} begin description	bds	\begin{description}	
bea \begin{array}{ccc} begin display aligned at 3 places; see also Section 5.3	bea	\begin{array}{ccc}	begin display aligned t 3 places; see also Section 5.3
bec \begin{center} begin center	bec	\begin{center}	begin center
bee {\bf_e} bold e; (note the extra e)	bee	{\bf _u e}	bold e; (note the extra e)
bel1 $\{\bf_{l}e\}_1$ bold e subscript 1	bel1	${\bf hf_ue}_1$	bold e subscript 1
bel2 $\{\bf_{le}\}_{2}$ bold e subscript 2	bel2	${\bf hf_ue}_2$	bold e subscript 2
bel3 {\bf⊔e}_3 bold e subscript 3	bel3	${\bf hf_ue}_3$	bold e subscript 3
beln {\bf⊔e}_n bold e subscript n	beln	${\bf hf}_{\sqcup}e}_n$	bold e subscript n
ben \begin{enumerate} begin enumerate	ben	\begin{enumerate}	begin enumerate
beq \begin{equation} begin display math: one line formula, numbered	beq	\begin{equation}	begin display math: one line formula, numbered
beqex \begin{equation} display math equation numbered example	beqex	\begin{equation}	display math equation numbered example
beql \begin{equation} begin display math: one line formula, numbered, with label	beql	\begin{equation}	begin display math: one line formula, numbered, with label
bff $\{\bf_{\bot}f\}$ bold f; (note the extra f)	bff	$\{\bf_{\sqcup}f\}$	bold f; (note the extra f)
bfig \begin{figure} begin figure environment	bfig	\begin{figure}	begin figure environment
bfll \begin{flushleft} begin flush left	bfll	\begin{flushleft}	begin flush left
bflr \begin{flushright} begin flush right	bflr	\begin{flushright}	begin flush right

bfu	{\bf	${f boldface}\ {f type}$
bg	{\bf⊔g}	bold g
$\widetilde{\mathrm{bh}}$	{\bf _⊔ h}	bold h
bi	$\{ \setminus bf_{\sqcup}i \}$	bold i
biba	\item_Author_[year]	item description for articles
bibb	\backslash item $_{\sqcup}$ Author $_{\sqcup}$ [year]	item description for books
bibia	\bibitem[]{}	bibitem for articles
bibib	\bibitem[]{}	bibitem for books
$_{ m bints}$	\bigcap	big intersection; cap
$_{ m bitm}$	\begin{itemize}	begin itemize
biu	{\tenbi	start bold italic type; "eit" to finish
bj	$\{ \bf_{\sqcup} j \}$	bold j
bk	$\{ \backslash bf_{\sqcup} k \}$	bold k
bl	- {\bf _u 1}	bold l
blackl	_U \blacklozenge	black lozenge (math mode)
$_{ m blem}$	\begin{lem}	to begin a Lemma environement
$_{ m blskp}$	\baselineskip	reset baselineskip
$_{ m blstr}$	\renewcommand{\baselinestretch}{1.5}	reset baselinestretch
blt	\bullet	bullet
$_{ m bm}$	$\{ \bf_{\sqcup}m \}$	bold m
$_{\mathrm{bmpg}}$	\begin{minipage}{\textwidth}	begin minipage
bn	$\{ \setminus bf_{\sqcup}n \}$	bold n
bnota	\begin{notation}	begin notation environment;
bnote	\begin{note}	begin note environment;
bo	{\bf _⊔ o}	bold o
boxa	$\qquad \qquad $	add text "and" within math formula
boxu	$\qquad \qquad $	use to put roman text within math
bp	{\bf⊔p}	bold p
bpf	\n indent ${\bf_{\sqcup}Proof}$	to begin a Proof environement
bpf	\n indent ${\bf_{\sqcup}Proof}$	to begin a Proof environement
bprf	\n indent $\{\bf_{\sqcup}Proof\}$	to begin a Proof environement
bprob	\begin{problem}	begin problem environment;
bprop	\begin{prop}	to begin a Proposition environement
bq	{\bf⊔q}	bold q
$_{ m bqa}$	\begin{eqnarray}	begin multiline aligned display math array, numbered
$_{ m bqaex}$	\begin{eqnarray}	align equation example, numbered
bqal	\begin{eqnarray}	begin multiline aligned display math array, numbered with label
$_{ m bqas}$	\begin{eqnarray*}	begin multiline aligned display math array star, unnumbered
$_{ m bqasex}$	\begin{eqnarray*}	align equation star example, unnumbered

$_{ m bqm}$	((begin (left) quotation marks
$_{ m bqst}$	\begin{question}	begin question environment;
bqt	\begin{quotation}	begin quotation
br	{\bf⊔r}	bold r
brmk	\begin{Remark}_{\sqcup}	begin remark environment;
bros	\begin{enumerate}	begin roster; enumerate
bs	{\bf⊔s}	bold s
bskp		big skip
bsol	\begin{solution}	begin solution environment;
$_{\mathrm{bsum}}$	\begin{summary}	begin summary environment;
bt	{\bf⊔t}	bold t
btab	\begin{table}	begin table environment
btb	\begin{tabbing}	begin tabbing
btd	_{\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	black triangle down (math mode)
$_{ m bthm}$	\begin{thm}	to begin a Theorem environement
$_{ m bthmt}$	\begin{thm}[Gauss'uTheorem]	to begin a Theorem, with title, environement
btr	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	begin tabular with vertical lines
bu	{\bf⊔u}	bold u
buni	\bigcup	big intersection; cup
bv	{\bf _⊔ v}	bold v
bvrb	\begin{verbatim}	begin the verbatim environment
bw	{\bf⊔w}	bold w
bx	$\{ \bf_{\sqcup}x \}$	bold x
bxca		begin Exercise—body of text; (not in LaTeX)
bxcb		begin Exercises—end chpt. monographs; (not in LaTeX)
bxo	$\label{lem:mbox} $$\mbox{\boldmath\oomega}$$	boldmath omega
bxu	$\mbox{\boldmath}_{\sqcup\sqcup\sqcup}$	boldmath universal
bxu	$\mbox{\boldmath}_{\sqcup\sqcup\sqcup}$	boldmath universal
bxx	\mbox{\boldmath\$\xi\$}	boldmath xi
byy	{\bf⊔y}	bold y; (note the extra y)
bz	{\bf _⊔ z}	bold z

cap	$\colon{Text_Uof_UCaption}$	caption
cau	{\cal	calligraphic univeral; math mode, capital letters only
cau	{\cal	calligraphic univeral; math mode, capital letters only
cbx	%=======%	
cca	${\cal}_{\sqcup}A}$	calligraphic A
ccb	${\tt \{\cal_{\sqcup}B\}}$	calligraphic B
ccc	{\cal _⊔ C}	calligraphic C
ccd	${\cal_{\sqcup}D}$	calligraphic D
cce	${\cal}_{\sqcup} E}$	calligraphic E
ccf	${\cal}_{\sqcup}F}$	calligraphic F
ccg	${\cal}_{\sqcup}G}$	calligraphic G
cch	${\cal}_{\sqcup}{ t H}$	calligraphic H
cci	$\{ \setminus cal_{\sqcup} I \}$	calligraphic I
ccj	$\{\cal_{\sqcup} J\}$	calligraphic $f J$
cck	$\{ \cal_{\sqcup} K \}$	calligraphic K
ccl	$\{\cal_{\sqcup}L\}$	calligraphic L
ccm	${\cal}_{\sqcup}M}$	calligraphic M
ccn	$\{\cal_{\sqcup}N\}$	calligraphic N
CCO	${\cal}_{\sqcup}0}$	calligraphic O
ccp	${\cal}_{\sqcup}P}$	calligraphic P
ccq	${\cal Q}$	calligraphic Q
ccr	${\cal L}_{\cal L}$	calligraphic R
ccs	${\cal L}_{\sf L}$	$\operatorname{calligraphic} \operatorname{S}$
cct	${\cal}_{\sqcup}T}$	calligraphic T
ccu	{\cal _⊔ U}	calligraphic U
ccv	{\cal _⊔ V}	calligraphic V
ccw	{\cal⊔W}	calligraphic W
CCX	${cal}_{\sqcup}X$	calligraphic X
ccy	${cal}_{\sqcup}Y$	calligraphic Y
CCZ	${cal}_{L}Z}$	calligraphic Z
cd	D	capital D
cdo	\cdot	centered dot
cds	\cdots	$\operatorname{centered} \ \operatorname{dots}$
chhdl		change headlines to be justified (not in LaTeX)
cir	\circ	composite (small circle)
cit	\cite{ _{\psi} }	to cite a reference
$_{ m citp}$	$(\text{cite}_{\sqcup} \})$	to cite a reference inside parentheses
citu		to cite a reference universal
cl		centerline

```
cld
cldd
         clin
         \centerline{...}
                                                            centerline
                                                            cosine
         \cos
со
                                                            hyperbolic cosine
coh
         \cosh
                                                            cosine of phi
coph
         \cos<sub>⊔</sub>\phi
         \cos^2
                                                            cosine squared
coq
         \cos<sub>⊔</sub>\theta
\coth
                                                            cosine of theta
         \clearpage
                                                            clear page
ср
         cpct
                                                            copyright symbol
cprt
         \copyright
                                                            third root of 2
cr2
         \sqrt[3]{2}
         \operatorname{crlr}
         %-----
\operatorname{csd}
csdd
         %==========
                                                            SO(3) (in roman)
\cos 3
         \mbox{\rm_{\sqcup}SO(3)}
         \quad
                                                            single character space (width em)
csp
         ^3
c\mathbf{u}
         \begin{picture}(150,180)(-70,10)
                                                            complex commutative diagram 1
cxcd1
```

d

d	\$	dollar symbol; starts and terminates text in math mode
d0	\$0\$	dollar 0
d00p	\$(0,0)\$	dollar 0,0 in parentheses
d03p	\$(0, _{\u0} 0, _{\u0} 0)\$	dollar 0,0,0 in parentheses
d0p	\$(0)\$	dollar 0 in parentheses
d1	\$1\$	dollar 1
d10	\$10\$	dollar 10
d2	\$2\$	dollar 2
d3	\$3\$	dollar 3
d4	\$4\$	dollar 4
d5	\$5\$	dollar 5
d6	\$6\$	dollar 6

17	ሰ ፖ ሰ
d7 $d8$	\$7\$ \$8\$
d9	эоэ \$9\$
da da	
da db	\$a\$ *b*
db0	\$b\$ •(\\\ 0.1 •
db1	\${\bf _{\\} 0}\$ \${\bf _{\\\} 1}\$
db10	\${\bf _\ 10}\$
db2	\${\bf _{\\\\} 2}\$
db3	\${\bf _{\\} 3}\$
db4	\${\bf _\ 4}\$
db5	\${\bf _{\\\} 5}\$
db6	\${\bf _{\\} 6}\$
db7	\${\bf _{\\\} 7}\$
db8	\${\bf _{\\\} 8}\$
db9	\${\bf _{\\} 9}\$
dba	\${\bf _□ a}\$
dbb	\${\bf _□ b}\$
dbbcr1	\${\Bbb _{\\\\} R}^1\$
dbbcr2	\${\Bbb _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}
dbbcr3	\${\Bbb _{\\\\\} R}^3\$
dbbcrm	\${\Bbb _{\\\\} R}^m\$
dbbcrn	\${\Bbb⊔R}^n\$
dbc	\${\bf⊔c}\$
dbca	\${\bf _□ A}\$
dbcb	\${\bf _⊔ B}\$
dbcc	\${\bf _{\\} C}\$
dbcd	\${\bf _□ D}\$
dbce	\${\bf _□ E}\$
dbcf	\${\bf _□ F}\$
dbcg	\${\bf⊔G}\$
dbch	\${\bf⊔H}\$
dbci	\${\bf _□ I}\$
dbcj	\${\bf _⊔ J}\$
dbck	$f \in K$
dbcl	f_L
$_{ m dbcm}$	\${\bf⊔M}\$
dbcn	f_N
dbco	\${\bf _⊔ 0}\$

dollar 7 dollar 8 dollar 9 dollar a dollar b dollar bold 0: use in text mode dollar bold 1: use in text mode dollar bold 10: use in text mode dollar bold 2; use in text mode dollar bold 3; use in text mode dollar bold 4; use in text mode dollar bold 5; use in text mode dollar bold 6; use in text mode dollar bold 7; use in text mode dollar bold 8; use in text mode dollar bold 9; use in text mode dollar bold a; use in text mode dollar bold b; use in text mode dollar blackboard bold R to power 1 dollar blackboard bold R to power 2 dollar blackboard bold R to power 3 dollar blackboard bold R to power m dollar blackboard bold R to power n dollar bold c; use in text mode dollar bold A: use in text mode dollar bold B; use in text mode dollar bold C; use in text mode dollar bold D; use in text mode dollar bold E; use in text mode dollar bold F; use in text mode dollar bold G; use in text mode dollar bold H; use in text mode dollar bold I; use in text mode dollar bold J; use in text mode dollar bold K; use in text mode dollar bold L; use in text mode dollar bold M; use in text mode dollar bold N; use in text mode dollar bold O; use in text mode

```
dbcp
              ${\bf<sub>||</sub>P}$
                                                                                                dollar bold P: use in text mode
                                                                                                dollar bold Q; use in text mode
dbcq
              ${\bf_Q}$
dbcr
                                                                                                dollar bold R: use in text mode
              ${\bf_R}$
dbcs
                                                                                                dollar bold S; use in text mode
              ${\bf_\S}$
dbct
              ${\bf_T}$
                                                                                                dollar bold T: use in text mode
dbcu
              ${\bf<sub>||</sub>U}$
                                                                                                dollar bold U: use in text mode
dbcv
              ${\bf<sub>!</sub>,V}$
                                                                                                dollar bold V: use in text mode
dbcw
              ${\bf<sub>!</sub>\W}$
                                                                                                dollar bold S
dbcx
                                                                                                dollar bold W: use in text mode
              ${\bf<sub>!</sub>,X}$
dbcv
              ${\bf<sub>\\</sub>Y}$
                                                                                                dollar bold X; use in text mode
dbcz
              ${\bf_Z}$
                                                                                                dollar bold Y: use in text mode
dbd
                                                                                                dollar bold Z; use in text mode
              ${\bf_d}$
dbe
              ${\bfue}$
                                                                                                dollar bold e; use in text mode
dbf
                                                                                                dollar bold f; use in text mode
              ${\bfuf}$
dbg
              ${\bf<sub>\\\</sub>g}$
                                                                                                dollar bold g; use in text mode
dbh
              ${\bfuh}$
                                                                                                dollar bold h; use in text mode
dbi
                                                                                                dollar bold i; use in text mode
              ${\bf_i}$
dbi
              ${\bf_j}$
                                                                                                dollar bold j; use in text mode
dbk
              ${\bf<sub>1.1</sub>k}$
                                                                                                dollar bold k; use in text mode
dbl
                                                                                                dollar bold 1: use in text mode
              ${\bf_1}$
dblackl
              \quad_\$\blacklozenge$
                                                                                                dollar black lozenge (text mode)
dbm
              ${\bf<sub>||</sub>m}$
                                                                                                dollar bold m: use in text mode
dbn
              ${\bf_n}$
                                                                                                dollar bold n: use in text mode
dbo
                                                                                                dollar bold o; use in text mode
              ${\bf,o}$
dbp
                                                                                                dollar bold p: use in text mode
              ${\bf<sub>||</sub>p}$
dbq
              ${\bfuq}$
                                                                                                dollar bold q; use in text mode
dbr
              ${\bfur}$
                                                                                                dollar bold r; use in text mode
dbs
              ${\bfus}$
                                                                                                dollar bold s; use in text mode
dbt
              ${\bfut}$
                                                                                                dollar bold t; use in text mode
dbtd
              \quadu$\blacktriangledown$
                                                                                                dollar black triangle down (text mode)
dbu
              ${\bf_u}$
                                                                                                dollar bold u; use in text mode
dbv
              ${\bf_v}$
                                                                                                dollar bold v; use in text mode
dbw
              ${\bf<sub>!!w</sub>}$
                                                                                                dollar bold w; use in text mode
dbx
              \{ bf_{1}x \}
                                                                                                dollar bold x; use in text mode
dby
                                                                                                dollar bold y; use in text mode
              ${\bf<sub>\_</sub>y}$
dbz
                                                                                                dollar bold z; use in text mode
              ${\bf_z}$
dc
              $c$
                                                                                                dollar c
                                                                                                dollar A
dca
              $A$
                                                                                                dollar B
dcb
              $B$
```

dcc	\$C\$	dollar C
dcca	\${\cal _⊔ A}\$	dollar calligraphic A
dccb	\${\cal _⊔ B}\$	dollar calligraphic B
$_{ m dccc}$	\${\cal _⊔ C}\$	dollar calligraphic C
dccd	\${\cal _⊔ D}\$	dollar calligraphic D
$_{ m dcce}$	\${\cal⊔E}\$	dollar calligraphic E
dccf	\${\cal _⊔ F}\$	dollar calligraphic F
$_{ m dccg}$	\${\cal _⊔ G}\$	dollar calligraphic G
dcch	\${\cal⊔H}\$	dollar calligraphic H
dcci	${\cal I}$	dollar calligraphic I
dccj	${\cal L}_J$	$\operatorname{dollar\ calligraphic\ J}$
$\mathrm{dcc}\mathbf{k}$	${\cal K}$	dollar calligraphic K
dccl	${\cal L}$	dollar calligraphic L
dccm	$\{ cal_{\perp}M \} $	dollar calligraphic M
dccn	$\{ \cal_{\square} N \} $ \$	dollar calligraphic N
$_{ m dcco}$	\${\cal _□ 0}\$	dollar calligraphic O
dccp	${\cal P}$	dollar calligraphic P
dccq	${\cal Q}$	dollar calligraphic Q
dccr	${\cal R}$	dollar calligraphic R
dccs	${\cal S}$	$\operatorname{dollar} \operatorname{calligraphic} \operatorname{S}$
dcct	${\cal I}^{\}$	dollar calligraphic T
dccu	${\cal U}$	dollar calligraphic U
dccv	${\cal V}$	dollar calligraphic V
dccw	\${\cal _⊔ ₩}\$	dollar calligraphic W
dccx	\${\cal _{\\\} X}\$	dollar calligraphic X
dccy	\${\cal _{\\} Y}\$	dollar calligraphic Y
dccz	\${\cal _⊔ Z}\$	dollar calligraphic Z
dcd	\$D\$	dollar D
dcd1	\begin{picture}(150,160)(-80,5)	double commutative diagram 1
dcd2	\begin{picture}(150,160)(-80,5)	double commutative diagram 2
$_{ m dce}$	\$E\$	dollar E
dcf	\$F\$	dollar F
dcg	\$G\$	$\operatorname{dollar} \operatorname{G}$
dch	\$H\$	dollar H
dci	\$I \$	dollar I
dcj	\$ J \$	$\operatorname{dollar}\operatorname{J}$
dck	\$K\$	dollar K
dcl	\$L\$	dollar L
$_{ m dcm}$	\$M\$	dollar M

den	\$N\$	dollar N
dco	\$0\$	dollar O
dcp	\$P\$	dollar P
dcq	\$Q\$	dollar Q
dcr	\$R\$	dollar R
dcs	\$S\$	dollar S
dcso3	\$\mbox{\rm_SO(3)}\$	SO(3) (in roman) with dollar signs around
\det	\$T\$	dollar T
dcu	\$U\$	dollar U
dcv	\$V\$	dollar V
dcw	\$W\$	dollar W
dcx	\$X\$	dollar X
dcy	\$Y\$	dollar Y
dcz	\$ Z \$	dollar Z
$\mathrm{d}\mathrm{d}$	\$d\$	dollar d
dds	\ddots	diagonal dots
de	\$e\$	dollar e
defu	${}$	define a new command macro
$_{ m dep}$	_{\u} \$\blacksquare\$	dollar black square/end proof (text mode)
desq	_{\u} \$\square\$	dollar empty square (text mode)
$\det d$	$ _{\sqcup} $ bigtriangledown \$	dollar empty triangle down (text mode)
$\mathrm{d}\mathrm{f}$	\$f\$	dollar f
dfrbox	$fbox{fbox{parbox{2.0in}{}}}$	double framed box with header and text; edit its size
dg	\$g\$	dollar g
dgmb	$\frac{h}{rak_{\perp}}$	dollar german b
$_{ m dgmca}$	\$\frak⊔A\$	dollar german A
$_{ m dgmcg}$	\$\frak⊔G\$	dollar german G
dgmch	\$\frak⊔H\$	dollar german H
dgmck	\$\frak⊔K\$	dollar german K
dgmct	\$\frak⊔T\$	dollar german T
dgmcx	\$\frak _⊔ X\$	dollar german X
$_{ m dgmg}$	\$\frak⊔g\$	dollar german g
$_{ m dgmgs}$	$\frac{g_{\square}^{\lambda}}$	dollar german g star
dgmh	\$\frak⊔h\$	dollar german h
dgmhs	$\frac{h_{\perp}^{\lambda}}{}$	dollar german h star
dgmk	\$\frak⊔k\$	dollar german k
$_{ m dgmks}$	$\frac{k_{\perp}^{\cdot}}{s}$	dollar german k star
dgmp	\$\frak _⊔ p\$	dollar german p
dgmt	$frak_{\sqcup}t$	dollar german t

dgmu	\$\frak⊔⊔\$	dollar german universal; only in text mode
dh	\$h\$	dollar h
di	\$i \$	dollar i
difu	\mbox{\rm_Diff}(Diffeomorphism universal (in roman)
disu	{\displaystyle	display style; for larger math mode forumlas
divg	\mbox{\rm_div}	divergence, div (in roman)
divi	\div	divide
$\mathrm{d}\mathrm{j}$	\$ j \$	dollar j
$\mathrm{d}\mathbf{k}$	\$k\$	dollar k
dl	\$1\$	dollar l
dlr	\$\$	double dollar
$_{ m dm}$	\$m\$	dollar m
$_{ m dmn}$	\dim	dimension
$\mathrm{d}\mathrm{n}$	\$n\$	dollar n
doo	\$o\$	dollar o
$_{ m dopcc}$	\${\Bbb⊔C}\$	dollar open letter C
dopci	\${\Bbb⊔I}\$	dollar open letter I
$_{ m dopcr}$	\${\Bbb⊔R}\$	dollar open letter R
dopcr1	\${\Bbb⊔R}^1\$	dollar open letter R to power 1
dopcr2	\${\Bbb⊔R}^2\$	dollar open letter R to power 2
dopcr3	\${\Bbb⊔R}^3\$	dollar open letter R to power 3
dopcrm	${\bar m}^{\rm h}\$	dollar open letter R to power m
dopern	\${\Bbb⊔R}^n\$	dollar open letter R to power n
dopct	\${\Bbb⊔T}\$	dollar open letter T
dopcz	\${\Bbb⊔Z}\$	dollar open letter Z
$\mathrm{d}\mathrm{p}$	\$p\$	dollar p
dpdzy	$\scriptstyle \$ partial $_{\sqcup} z/\$ partial $_{\sqcup} y$	dollar partial derivatives z over y
$\mathrm{d}\mathrm{q}$	\$q\$	dollar q
$\mathrm{d}\mathbf{r}$	<pre>\$r\$</pre>	dollar r
ds	\$s\$	$\operatorname{dollar}\mathbf{s}$
dsart	\documents tyle $\{article\}$	document style article
dsartv	$\verb \documentstyle[verbatim]{article} $	document style article
dsbook	\documentstyle{book}	document style article
dslet	$\verb \documentstyle{letter} $	document style letter
dso3	$\infty {\mbox{\rm (3)}}$	so(3) (in roman) with dollar signs around
dsp	\qquad	double space
$_{ m dsrep}$	\documentstyle{report}	document style report
dsu	$\verb \documentstyle \{$	document style universal
dsz	\displaystyle	display size

dszu{\displaystyle dt \$t\$ \$(a 1,,,a 2,,,a 3)\$ dtriap \$T^\ast⊔Q\$ dtsq\$T^{\ast}_{q},Q\$ dtsqq dtt \det du \$u\$ \$v\$ dvdvcpp \$\stackrel{\textstyle \$\stackrel{\textstyle dvcpq dw\$w\$ dx\$x\$ \$\alpha\$ dxadxb \$\beta\$ dxc \$\chi\$ dxcd \$\Delta\$ dxcg \$\Gamma\$ dxcl\$\Lambda\$ dxco\$\Omega\$ dxcp \$\Pi\$ dxcph \$\Phi\$ dxcps \$\Psi\$ dxcs\$\Sigma\$ \$\Theta\$ dxcth dxcu \$\Upsilon\$ Xidxcxdxd\$\delta\$ dxdtdx/dt dxdv $\ \ dx\ dy$ dxdvdz $\, dx \, dy \, dz$ dxe \$\epsilon\$ dxet \$\eta\$ dxg \$\gamma\$ dxio \$\iota\$ \$\kappa\$ dxkdxl \$\lambda\$ dxm\$\mu\$ dxn\$\nu\$

dxo

\$\omega\$

display size universal dollar t dollar triad in parentheses; dollar T superscript-asterisk Q dollar T superscript-asterisk subscript-q Q determinant dollar u dollar v vector arrow above PP with dollar signs (text mode) vector arrow above PQ with dollar signs (text mode) dollar w dollar x dollar greek alpha dollar greek beta dollar greek chi dollar greek Delta dollar greek Gamma dollar greek Lambda dollar greek Omega dollar greek Pi dollar greek Phi dollar greek Psi dollar greek Sigma dollar greek Theta dollar greek Upsilon dollar greek Xi dollar greek delta derivatives x over t derivatives x y derivatives x y z dollar greek epsilon dollar greek eta dollar greek gamma dollar greek iota dollar greek kappa dollar greek lambda dollar greek mu dollar greek nu dollar greek omega

dxp	\$ \pi\$	dollar greek pi
dxph	\$\phi\$	dollar greek phi
dxps	\$\psi\$	dollar greek psi
dxpyq	\$x^2 _{\(\sup + \sup y^2\)\$}	$dollar \times squared + y squared$
dxr	\$\rho\$	dollar greek rho
dxs	\$\sigma\$	dollar greek sigma
dxt	\$\tau\$	dollar greek tau
dxth	<pre>\$\theta\$</pre>	dollar greek theta
dxu	<pre>\$\upsilon\$</pre>	dollar greek upsilon
dxve	\$\varepsilon\$	dollar greek varesilon
dxvp	\$\varpi\$	dollar greek varpi
dxvph	\$\varphi\$	dollar greek varphi
dxvr	\$\varrho\$	dollar greek varrho
dxvs	<pre>\$\varsigma\$</pre>	dollar greek varsigma
dxvth	\$\vartheta\$	dollar greek vartheta
dxx	<pre>\$\xi\$</pre>	dollar greek xi
dxyp	\$(x, _{\u} y)\$	dollar x,y in parentheses
dxyzp	\$(x,_y,_z)\$	dollar x,y,z in parentheses
dxz	\$\zeta\$	dollar greek zeta
dy	\$y\$	dollar y
dydt	dy/dt	derivatives y over t
$\mathrm{d}\mathbf{z}$	\$z\$	dollar z
$\mathrm{d}\mathbf{z}\mathrm{d}t$	dz/dt	derivatives z over t

\mathbf{e}

ea	\end{array}
eabb	\begin{eqnarray*}
eabr	\begin{eqnarray*}
eac	$\end{acknowledgment}$
$_{ m ealg}$	$\end{algorithm}$
eb	}
ebk]
eblk	$\end{quotation}$

end display alignedat
equation array with big brackets
equation array with big braces
end acknowledgment environment;
end algorithm environment;
end (right) brace
end (right) bracket
end block/quotation

```
\end{center}
                                                                                        end center
ec
             \end{case}
                                                                                        end case environment:
ecase
             \begin{picture}(150,60)(5,50)
                                                                                        exact commutaive diagram 1
ecd1
             \end{claim}
                                                                                        end algorithm environment:
eclm
             \end{comment}
ecmnt
                                                                                        end commend enviornment
             \end{conclusion}
                                                                                        end conclusion environment:
ecncl
ecnd
             \end{condition}__
                                                                                        end condition environment:
                                                                                        end conjecture environment;
             ecnj
ecnj
             \end{cor}
                                                                                        to end a Corollary environement
ecor
             \end{criterion}
                                                                                        end criterion environment:
ecrit
ed
             \end{document}
                                                                                        end text of document
edfn
             \end{definition}
                                                                                        end definition environment;
edfn
             \end{dfn}
                                                                                        to end a Definition environement
                                                                                        to end demo universal environement (not in LaTeX)
edmu
edo
             \end{document}
                                                                                        end text of document
edp
             \backslash
                                                                                        end display math: one line formula, unnumbered
             \end{description}
                                                                                        end description
eds
             \end{enumerate}
                                                                                        end enumerate
ee
             \end{array}
                                                                                        end display alignedat
eea
             \end{center}
                                                                                        begin center
eec
             \end{enumerate}
                                                                                        end enumerate
een
             \end{equation}
                                                                                        end display math: one line formula, numbered
eeq
                                                                                        end figure environment
             \end{figure}
efig
efll
             \end{flushleft}
                                                                                        end flush left
eftr
             \end{flushright}
                                                                                        begin flush right
                                                                                       endparagraph (not in LaTeX)
egraf
einf
             \end{figure}
                                                                                        end insert figure
                                                                                        end italic space and (right) brace
eit
             \/}
eitm
             \end{itemize}
                                                                                        end itemize
             \end{lem}
                                                                                        to end a Lemma environement
elem
emp
             \varnothing
                                                                                        empty set; varnothing
             \emptyset
                                                                                        empty set alternative; emptyset
empa
             \end{minipage}
                                                                                        end minipage
empg
                                                                                       start emphasized type; "eb" to finish
             {\em
emu
             \end{notation}
                                                                                        end notation environment:
enota
enote
             \end{note}__
                                                                                        end note environment;
             \in
                                                                                        element of
eo
                                                                                        end (right) parenthesis
ер
                                                                                        to end a Proof environement (not in LaTeX)
epf
```

```
epf
            \quad__\blacksquare
epr
eprf
            \end{problem}
eprob
            \end{prop}
eprop
            \begin{figure}[t]
epsfb
epsfbb
            \begin{figure}[t]
epsfbb2
            \begin{figure}[t]
            \begin{figure}[t]
epsff
            \epsfverbosetrue
epsfv
eq
            \end{eqnarray}
eqa
            \end{eqnarray*}
egas
            \begin{equation}
egbox
            \begin{equation}
egbrc
egbrl
            \begin{equation}
egm
            \begin{eqnarray}
eqng
            \begin{eqnarray*}
eqsp
            \end{question}
eqst
            \end{quotation}
eqt
            \ [
eqtx
            \equiv
eqv
            \Leftrightarrow
eqvt
            \end{Remark}...
ermk
            \end{enumerate}
eros
esol
            \end{solution}
            \quad_\square
esq
            \end{summary}
esum
            \end{table}
etab
            \end{tabbing}
etb
etd
            \quadu\bigtriangledown
            \end{thm}
ethm
            \end{tabular}
etr
            ١Г
eval
            \end{verbatim}
evrb
            \exp
ex
            \noindent{\large_\bf_Example\,}
exa
exca
```

```
to end a Proof environement (not in LaTeX)
black square/end proof (math mode)
to end a Proof environement (not in LaTeX)
end problem environment;
to end a Proposition environement
epsfbox figure template
epsfbox(with bounding box) figure template
epsfbox two figure side by side template
epsffile figure template
epsf verbose true command
equals
end multiline aligned display math array, numbered
end multiline aligned display math array star, unnumbered
equation displayed in a box
equation array example
equation array example
end (right) quotation marks
aligned equations left justified; numbered as a group
equation split star, unnumbered
end question environment;
end quotation
display math equation with text
equivalent
equivalent to; open Left-right arrow
end remark environment:
end roster; enumerate
end solution environment;
empty square (math mode)
end summary environment;
end table environment
end tabbing
empty triangle down (math mode)
to end a Theorem environement
end tabular
evaluation of expression
end the verbatim environment
exponential
Example (title in large bold)
end Exercise in body of text; (not in LaTeX)
```

end Exercises—end chpt. monographs; (not in LaTeX) equals zero

f

f12	\frac{1}{2}	fraction half
f13	\frac{1}{3}	fraction 1 over 3
f14	\frac{1}{4}	fraction 1 over 4
fa	\forall	for all
fddt	\frac{d}{dt}	fraction d over dt
fdudt	\frac{du}{dt}	fraction du over dt
fdxdt	$\frac{dx}{dt}$	fraction dx over dt
fdydt	\frac{dy}{dt}	fraction dy over dt
fdzdt	\frac{dz}{dt}	fraction dz over dt
fig	\begin{figure}	general figure space allocation;
fldtu		folded text inside math (not in LaTeX)
$\mathrm{fl}\mathrm{t}$	\flat	flat; use "hpr" for superscript
fof	\mathcal{H}	function of; "fu fof eb" gives {}
$_{ m fps}$	\frac{\partial^2}	fraction partial squared over partial x partial y
${ m fpt}$	\frac{\partial^3}	fraction partial squared over partial x partial y partial z
fpx	$\frac{\pi c}{partial}{\pi u}$	fraction partial over partial x
fpy	\frac{\partial}{\partial_y}	fraction partial over partial y
fpzx	$\frac{partial_{u}z}{partial_{u}x}$	fraction partial z over partial x
frbox	$\label{large_large_large_large_large_large_large_large_large} $$ \operatorname{large_lbf_ltype_large_large} = \operatorname{large_lbf_ltype_large} $$ \operatorname{large_lbf_ltype_large} = \operatorname{large_lbf_ltype_large} $$$	framed box with header and text; edit its size
frboxn	$\floor{\operatorname{2.0in}}{{\operatorname{con}}}{\operatorname{con}}{\operatorname$	framed box note with in line text; edit its size
frboxt		framed box with header, topfolded text (not in LaTeX)
$_{ m ftn}$		footnote
fu		start fraction

g \gcd greatest common denominator gc \'{E} grave E gce \'{e} ge grave e gij g_{ij} g subscript (lower) ij gmb \frak_ub german b \frak_UA german A gmca \frak_UG german G gmcg gmch \frak_UH Η gmck $\frak_{\sqcup}K$ german K german T gmct $\frak_{\sqcup}T$ $\frak_{\sqcup}X$ german X gmcx \frak_Ug german g gmg \frak_Ug_U^{\ast} german g star gmgs gmh\frak_{||}h german h gmhs $\frac{h_{\sqcup}^{\hat{t}}}{ast}$ german h star gmk\frak_{||}k german k $\frac{k_{\perp}^{\cdot}}{ast}$ german k star gmksgmp \frak_{||}p german p $\frak{so}(3)$ german so(3)gmso3\frak_ut german t gmt \frak_{\sqcup} german universal; only in math mode gmu \frak_{\sqcup} german universal; only in math mode gmu \ss german s gss greater than or equal \geq gte \mathbf{h} h0superscript (higher) 0 ^0 ^1 h1superscript (higher) 1 h10superscript (higher) 10 ^{10}

h2	^2	superscript (higher) 2
h3	^3	superscript (higher) 2
h4	^4	superscript (higher) 4
h5	^5	superscript (higher) 5
h6	^6	superscript (higher) 6
h7	^7	superscript (higher) 7
h8	^8	superscript (higher) 8
h9	^9	superscript (higher) 9
ha	^a	superscript (higher) a
haf	\frac{1}{2}	fraction half
hb	^b	superscript (higher) b
hba	\hbar	Planck's constant; hbar
$^{ m hc}$	^c	$\operatorname{superscript}$ (higher) c
hca	^A	${ m superscript}$ (higher) A
hcb	^B	${ m superscript}$ (higher) ${ m B}$
$_{ m hcc}$	^C	superscript (higher) C
hcd	^D	superscript (higher) D
$_{ m hce}$	^E	superscript (higher) E
hcf	^F	superscript (higher) F
hcg	^G	superscript (higher) G
hch	^H	superscript (higher) H
hci	^I	superscript (higher) I
$_{ m hcj}$	^ J	superscript (higher) J
hck	^K	superscript (higher) K
hcl	^L	superscript (higher) L
hcm	^M	superscript (higher) M
hcn	^N	superscript (higher) N
hco	^0	superscript (higher) O
hcp	^P	superscript (higher) P
hcq	^Q	superscript (higher) Q
hcr	^R	superscript (higher) R
hcs	^S	superscript (higher) S
hct	^T	superscript (higher) T
hcu	^U	superscript (higher) U
hcv	^γ	superscript (higher) V
hcw	^W	superscript (higher) W
hcx	^X	superscript (higher) X
hcy	^Y	superscript (higher) Y
hcz	^Z	superscript (higher) Z

hd	^d	superscript (higher) d
hdg	^\dagger	superscript (higher) dagger
hee	^e	superscript (higher) e
hf	^f	superscript (higher) f
hfi	\hfill	hfill
hflt	^\flat	superscript (higher) flat
hg	^g	superscript (higher) g
hh	^h	superscript (higher) h
hi	^i	superscript (higher) i
hij	^{ij}	superscript (higher) ij
hijk	^{ijk}	superscript (higher) ijk
hj	^j	superscript (higher) j
hjk	^{jk}	superscript (higher) jk
hk	^k	superscript (higher) k
hl	^1	superscript (higher) l
hlin	\hline	horizontal line
hm	^m	superscript (higher) m
hmo	^{-1}	superscript (higher) -1
hn	^n	superscript (higher) n
ho	^o	superscript (higher) o
hp	^p	superscript (higher) p
hpr	^\prime	superscript (higher) prime
hprp	^\perp	superscript (higher) perp
hq	^q	superscript (higher) q
hr	^r	superscript (higher) r
hrl	\hline	horizontal rule; line
hs	^s	superscript (higher) s
hshp	^\sharp	superscript (higher) sharp
hskp	\hskip _⊔ 2in	horizontal skip
hsp	\hspace{0.2in}	horizontal space
hst	^\ast	superscript (higher) asterisk
ht	^t	superscript (higher) t
hu	^{	superscript universal
huu	^u	superscript (higher) u
hv	^v	superscript (higher) v
hvst	^\star	superscript (higher) star
hw	^w	superscript (higher) w
hx	^x	superscript (higher) x
hxa	^\alpha	superscript (higher) greek alpha

hxb	^\beta	superscript (higher) greek beta
hxc	^\chi	superscript (higher) greek chi
hxcd	^\Delta	superscript (higher) greek Delta
hxcg	^\Gamma	superscript (higher) greek Gamma
hxcl	^\Lambda	superscript (higher) greek Lambda
hxco	^\Omega	superscript (higher) greek Omega
hxcp	^\Pi	superscript (higher) greek Pi
hxcph	^\Phi	superscript (higher) greek Phi
$_{ m hxcps}$	^\Psi	superscript (higher) greek Psi
hxcs	^\Sigma	superscript (higher) greek Sigma
$\mathbf{h}\mathbf{x}\mathbf{c}\mathbf{t}\mathbf{h}$	^\Theta	superscript (higher) greek Theta
hxcu	^\Upsilon	superscript (higher) greek Upsilon
hxcx	^\Xi	superscript (higher) greek Xi
hxd	^\delta	superscript (higher) greek delta
hxe	^\epsilon	superscript (higher) greek epsilon
hxet	^\eta	superscript (higher) greek eta
hxg	^\gamma	superscript (higher) greek gamma
hxio	^\iota	superscript (higher) greek iota
hxk	^\kappa	superscript (higher) greek kappa
hxl	^\lambda	superscript (higher) greek lambda
hxm	^\mu	superscript (higher) greek mu
hxn	^\nu	superscript (higher) greek nu
hxo	^\omega	superscript (higher) greek omega
hxp	^\pi	superscript (higher) greek pi
hxph	^\phi	superscript (higher) greek phi
hxps	^\psi	superscript (higher) greek pis
hxr	^\rho	superscript (higher) greek rho
hxs	^\sigma	superscript (higher) greek sigma
hxt	^\tau	superscript (higher) greek tau
hxth	^\theta	superscript (higher) greek theta
hxu	^\upsilon	superscript (higher) greek upsilon
hxve	^\varepsilon	superscript (higher) greek varepsilon
hxvp	^\varpi	superscript (higher) greek varpi
hxvph	^\varphi	superscript (higher) greek varphi
hxvr	^\varrho	superscript (higher) greek varrho
hxvs	^\varsigma	superscript (higher) greek varsigma
hxvth	^\vartheta	superscript (higher) greek vartheta
hxx	^\xi	superscript (higher) greek xi
hxz	^\zeta	superscript (higher) greek zeta

\int^1_0 i10 integral superscript 1 subscript 0 i2xp0 $\int int^{2} |pi|_0$ integral superscript (2 pi) subscript 0 ibaintegral superscript b subscript a \int^b_a \index{ use for index entries idu \int^\infty_{-u\infty} integral infinity: superscript (+infinity) subscript (-infinity) iinf integral lower capital D (subscript D) ilcd \int D illus \begin{figure} special illustration: mac imaginary part alternative ima \Im implies; long Right arrow \Rightarrow imp impb \Leftarrow implied by; long Left arrow imaginary part universal imu \mbox{\rm_Im}($\mbox{\rm_{||}Im}(z)$ imaginary part of zimzinfinity infi \infty infm \inf infimum $\beta_{i,i=1}$ intersection superscript n subscript i=1 ini1 contour integral intc\oint intd\int__\!\!\!_\int double integral intersection ints \cap $\left\langle \operatorname{int}_{\square} \right\rangle \left\langle \left\langle \operatorname{int}_{\square} \right\rangle \left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle \right\rangle \left\langle \left\langle \cdot \right\rangle \right\rangle$ intt triple integral intu \int integral universal; add limits with "hu", "lu" interline text intxtu \mbox{\rm_ \int_{{\Bbb_{\|}R}^3} integral R to power 3 ir3isomorphic; conjugate iso \cong \item itemitmitem entry universal \item[

superscript (higher) y superscript (higher) z

start italic type; "eit" to finish

hу

hz

1

itmu

itu

 ${\dot t}$

^y

^z

\mathbf{k}

kr \kernel

10 _0 11 _1 _{10} 110 12 _2 _3 13 _4 14 _5 15 _6 _7 16 17 18 _8 19 _9 la _a $L_A{}^{\min}$ lam lb _b lbl lbrk \linebreak lc _c _ A lca lcb _B _C lcc _D lcd_E lce lcf $_{\rm F}$ lcg_G _H lch

```
subscript (lower) 0
subscript (lower) 1
subscript (lower) 10
subscript (lower) 2
subscript (lower) 3
subscript (lower) 4
subscript (lower) 5
subscript (lower) 6
subscript (lower) 7
subscript (lower) 8
subscript (lower) 9
subscript (lower) a
staggered varation 1; (subscript-group superscript)
subscript (lower) b
to label an equation, theorem, etc.
linebreak
subscript (lower) c
subscript (lower) A
subscript (lower) B
subscript (lower) C
subscript (lower) D
subscript (lower) E
subscript (lower) F
subscript (lower) G
```

subscript (lower) H

```
lci
               _I
                                                                                                subscript (lower) I
lcj
                                                                                                subscript (lower) J
               _J
lck
               _K
                                                                                                subscript (lower) K
               _L
                                                                                                subscript (lower) L
lcl
               _ M
                                                                                                subscript (lower) M
lcm
                                                                                                subscript (lower) N
lcn
               _N
               _0
                                                                                                subscript (lower) O
lco
                                                                                                subscript (lower) P
               _P
lcp
               _Q
                                                                                                subscript (lower) Q
lcq
                                                                                                subscript (lower) R
lcr
               _R
                                                                                                subscript (lower) S
lcs
               _S
lct
               _T
                                                                                                subscript (lower) T
               _U
lcu
                                                                                                subscript (lower) U
               __V
lcv
                                                                                                subscript (lower) V
               _W
lcw
                                                                                                subscript (lower) W
                                                                                                subscript (lower) X
lcx
               _ X
               _ Y
                                                                                                subscript (lower) Y
lcv
               _Z
                                                                                                subscript (lower) Z
lcz
ld
               _d
                                                                                                subscript (lower) d
                                                                                                left followed by dot
ldo
               \left.
lds
              \ldots
                                                                                                lower dots
le
                                                                                                subscript (lower) e
               _e
lea
              \leftarrow
                                                                                                uparrow
                                                                                                left bracket
lebk
              \left[
                                                                                                left brace
lebr
              \left\{
              \left\langle
lel
                                                                                                large left-angle
lep
              \left(
                                                                                                left parenthesis
              \begin{eqnarray}
                                                                                                numbered equation split over two lines,
lequ
              \begin{eqnarray}
                                                                                                left equation array example
lequex
lequs
               \begin{eqnarray*}
                                                                                                unnumbered equation split over two lines,
letterdef
                                                                                                letter.def; macro for letters; undefined use std letter.stv
lf
               _f
                                                                                                subscript (lower) f
lg
               _g
                                                                                                subscript (lower) g
lgn
               \ln
                                                                                                natural logarithm
lh
               _ h
                                                                                                subscript (lower) h
lhtxt
                                                                                                leftheadtext (not in LaTeX)
li
                                                                                                subscript (lower) i
              \lim_{(x,y)_{\sqcup}} \operatorname{rightarrow}_{\sqcup}(0,0)
li00
                                                                                                limit subscript (x,y) to (0,0)
              \lim_{a<sub>□</sub>\rightarrow<sub>□</sub>\infty}
liai
                                                                                                limit subscript a to infinity
```

lied	\pounds	Lie derivative; pounds
lij	_{ij}	subscript (lower) ij
lijk	_{ijk}	subscript (lower) ijk
limi	\liminf	limit inferior
limm	\lim	limit
lims	\limsup	limit superior
limu		limit universal
lin		line
lixl0	$\lim_{x_{\perp}} x_{\parallel} rightarrow_{\parallel} x_{\parallel} $	limit subscript x to x subscript 0
lj	_j	subscript (lower) j
ljk		subscript (lower) jk
lk	_k	subscript (lower) k
ll	 _1	subscript (lower) l
llb	 \{	left literal brace
lld	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	large left angle doubled
lle	\langle	left angle bracket
llin		leftline
lm	_m	subscript (lower) m
ln	_m	subscript (lower) n
lo	_^-	subscript (lower) o
logg	\log	logarithm
lora	\longrightarrow	longrightarrow
lp	-P	subscript (lower) p
lq	-r -q	subscript (lower) q
lr	-4 _r	subscript (lower) q subscript (lower) r
lra	\leftrightarrow	leftrightarrow
ls	_s	subscript (lower) s
lst	_~ _\ast	subscript (lower) asterisk?
lt	_t	subscript (lower) t
lte	\leq	less than or equal
lu	_{	subscript universal
luu	_u	subscript (lower) u
lv		subscript (lower) v
lvst	_\star	subscript (lower) star
lw	_ W	subscript (lower) w
lx	_X	subscript (lower) x
lxa	 _\alpha	subscript (lower) greek alpha
lxb	_\beta	subscript (lower) greek beta
lxc	_\chi	subscript (lower) greek chi
	- ·	1 - () 0

lxcd	_\Delta	subscript (lower) greek Delta
lxcg	_\Gamma	subscript (lower) greek Gamma
lxcl	_\Lambda	subscript (lower) greek Lambda
lxco	_\Omega	subscript (lower) greek Omega
lxcp	_\Pi	subscript (lower) greek Pi
lxcph	_\Phi	subscript (lower) greek Phi
lxcps	_\Psi	subscript (lower) greek Psi
lxcs	_\Sigma	subscript (lower) greek Sigma
lxcth	_\Theta	subscript (lower) greek Theta
lxcu	_\Upsilon	subscript (lower) greek Upsilon
lxcx	_\Xi	subscript (lower) greek Xi
lxd	_\delta	subscript (lower) greek delta
lxe	_\epsilon	subscript (lower) greek epsilon
lxet	_\eta	subscript (lower) greek eta
lxg	_\gamma	subscript (lower) greek gamma
lxio	_\iota	subscript (lower) greek iota
lxk	_\kappa	subscript (lower) greek kappa
lxl	_\lambda	subscript (lower) greek lambda
lxm	_\mu	subscript (lower) greek mu
lxn	_\nu	subscript (lower) greek nu
lxo	_\omega	subscript (lower) greek omega
lxp	_\pi	subscript (lower) greek pi
lxph	_\phi	subscript (lower) greek phi
lxps	_\psi	subscript (lower) greek psi
lxr	_\rho	subscript (lower) greek rho
lxs	_\sigma	subscript (lower) greek sigma
1xt	_\tau	subscript (lower) greek tau
1xth	_\theta	subscript (lower) greek theta
lxu	_\upsilon	subscript (lower) greek upsilon
lxve	_\varepsilon	subscript (lower) greek varepsilon
lxvp	_\varpi	subscript (lower) greek varpi
lxvph	_\varphi	subscript (lower) greek varphi
lxvr	_\varrho	subscript (lower) greek varrho
lxvs	_\varsigma	subscript (lower) greek varsigma
lxvth	_\vartheta	subscript (lower) greek vartheta
lxx	_\xi	subscript (lower) greek xi
lxz	_\zeta	subscript (lower) greek zeta
ly	_У	subscript (lower) y
1z	_Z	subscript (lower) z

\mathbf{m}

mag1	
magu	
$_{ m mbe}$	
mcor	\newtheorem{cor}{Corollary}
mdfn	\newtheorem{dfn}{Definition}
mgt	\gg
mi	-
$\min f$	\begin{figure}[h]
$_{ m mip}$	\mp
$_{ m mlem}$	\newtheorem{lem}{Lemma}
mlt	\11
mn	\min
mo	-1
mprop	\newtheorem{prop}{Proposition}
$_{ m mskp}$	\medskip
msp	\ :
$_{ m mthm}$	\newtheorem{thm}{Theorem}
mx	\max
mx2b	$\left(\left(\left$
mx2i	$\left(\left(\left$
mx2p	$\left(\left(\left$
mx2s	$\left(\left(\left$
mx3b	$\left(\left(\left$
${ m mx3b35pt}$	$\left(\left(\left$
mx3d	$\left \left \left \right \right \right \leq \left \left \left \left \right \right \right $
mx3i	$\left(\left(\left$
mx3p	$\left(\left(\left$
mxbu	\left[
mxc	$\left(\left(\left$
$_{ m mxcb}$	$\left(\left(\left$
mxcvu	\left\Vert
mxpu	\left(
mxsbu	\small\left[
mxspu	\small\left(

```
magnification magstep 1 (not in LaTeX)
magnification magstep universal (not in LaTeX)
empty box, use at the beginning/end of a line
to make a new series of Corollaries
to make a new series of Definitions
much greater than
minus
midinsert figure
minus-plus
to make a new series of Lemmas
much less than
minimum
minus 1
to make a new series of Propositions
medium skip
medium space; only in math mode
to make a new series of Theorems
maximum
matrix 2x2 with brackets
matrix 2x2 identity
matrix 2x2 with parentheses
matrix 2x2 symplectic
matrix 3x3 with square brackets
matrix 3x3 with square brackets
matrix 3x3 determinant
matrix 3x3 identity
matrix 3x3
matrix 2x2 universal-with brackets
matrix column
matrix column alternate (with square brackets)
matrix 2x2 universal-double vertical bars
matrix 2x2 universal-with parentheses
small matrix 2x2 universal-with brackets
small matrix 2x2 universal-with parentheses
```

mxsu	\small	small matrix 2x2 matrix universal-no delimiters
mxu	\begin{array}{cc}	matrix 2x2 universal-no delimiters
mxvu	\left	matrix 2x2 universal-single vertical bar

\mathbf{n}

na nbb	\nabla
ncmdu ndsp	${}$
ne	\neq
neo	\not\in
nfnttbi	<pre>\newfont{\tenbi}{cmbxti10}</pre>
nfntu	$\newfont{ \dots }{ \dots }$
nl	\\
nlg	
nlin	\newline
nll	\null
noi	\noindent
nonu	\nonumber
np	\newpage
npgno	\pagestyle{empty}
nr2	\sqrt[n]{2}
nrbu	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
nrh	\pagestyle{empty}
nrm	\
nsp	/ !
ntg	\notag

nabla hide line overflow black boxes (not in LaTeX) define a new command macro negative double space; only in math mode not equal not an element of new font ten point bold italic new font definition newline (double backslashes) no AmSTeX logo (not in LaTeX) newline null no indent supress numbering on equation newpage no page numbers nth root of 2 norm bold u no running heads norm; double vertical bars negative space; only in math mode

no tag

00	(0)	of 0
01	(1)	of 1
02	(2)	of 2
03	(3)	of 3
o4	(4)	of 4
$^{\circ 5}$	(5)	of 5
06	(6)	of 6
07	(7)	of 7
08	(8)	of 8
09	(9)	of 9
oa	(a)	of a
ob	{	open (left) brace
obk		open (left) bracket
obp	\bar{p}	over bar p
obq	\bar{q}	over bar q
obr	\bar{r}	over bar r
obs	\bar{s}	over bar s
obu		overbar universal
obx	\bar{x}	over bar x
obxa	\bar{\alpha}	over bar greek alpha
obxb	\bar{\beta}	over bar greek beta
obxg	\bar{\gamma}	over bar greek gamma
oby	\bar{y}	over bar y
obz	\bar{z}	over bar z
ос	(c)	of c
oca	(A)	of A
ocb	(B)	of B
occ	(C)	of C
ocd	(D)	of D
oce	(E)	of E
ocf	(F)	of F
ocg	(G)	of G
och	(H)	of H
oci	(1)	of I
ocj	(J)	of J
ock	(K)	of K
ocl	(L)	of L
ocm	(M)	of M

ocn	(N)	of N
осо	(0)	of O
оср	(P)	of P
ocq	(Q)	of Q
ocr	(R)	of $\overset{\circ}{ m R}$
ocs	(S)	of S
oct	(T)	of T
ocu		over check universal
ocuu	(U)	of u (note: ocuu)
ocv	(V)	of V
ocw	(W)	of W
ocx	(X)	of X
осу	(Y)	of Y
ocz	(Z)	of Z
od	(d)	of d
oddp	\ddot{p}	over double dot p
oddq	\ddot{q}	over double dot q
oddr	\ddot{r}	over double dot 4
odds	\ddot{s}	over double dot s
oddu		over double dot universal
oddx	\ddot{x}	over double dot x
oddxa	\ddot{\alpha}	over double dot greek alpha
oddxb	\ddot{\beta}	over double dot greek beta
oddxg	\ddot{\gamma}	over double dot greek gamma
oddy	\ddot{y}	over double dot y
oddz	\dot{z}	over double dot z
odp	\dot{p}	over dot p
odq	\dot{q}	over dot q
odr	$\det\{r\}$	over dot r
ods	\dot{s}	over dot s
odu		over dot universal
odx	$\det\{x\}$	over dot x
odxa	\dot{\alpha}	over dot greek alpha
odxb	\dot{\beta}	over dot greek beta
odxg	\dot{\gamma}	over dot greek gamma
ody	\dot{y}	over dot y
odz	$\det\{z\}$	over dot z
oe	(e)	e
oeb	(b)	of b

oef	(f)	of f (note: ef)
oen	(n)	of n (note: en)
оер	(p)	of p (note: ep)
oer	(r)	of r (note: er)
og	(g)	of g
oĥ	(h)	of h
ohp	\hat{p}	over hat p
ohq	\hat{q}	over hat q
ohr	\hat{r}	over hat r
$_{ m ohs}$	\hat{s}	over hat s
ohu		over hat universal
ohx	\hat{x}	over hat x
ohxa	\hat{\alpha}	over hat greek alpha
ohxb	\hat{\beta}	over hat greek beta
ohxg	\hat{\gamma}	over hat greek gamma
ohy	\hat{y}	over hat y
ohz	\hat{z}	over hat z
oi	(i)	of i
oj	(j)	of j
ok	(k)	of k
ol	(1)	of l
olp	\overline{p}	over line p
olq	\overline{q}	over line q
olr	\overline{r}	over line r
olra	\Leftrightarrow	open Left-right arrow; equivalent to
ols	\overline{s}	over line s
olu		overline universal
olx	\overline{x}	over line x
olxa	\overline{\alpha}	over line greek alpha
olxb	\overline{\beta}	over line greek beta
olxg	\overline{\gamma}	over line greek gamma
oly	\overline{y}	over line y
olz	\overline{z}	over line z
om	(m)	of m
$_{ m omi}$	\ominus	ominus: direct difference
00	(o)	of o
op	(${ m open} \; ({ m left}) \; { m parenthesis}$
opad	$\mbox{\rm}_{\alpha}$	operatorname ad
opcaut	$\mbox{\rm}_{\mbox{\table}}$	${ m operatorname}\;{ m Aut}$

opcc	{\Bbb⊔C}	open letter C
opccard	\mbox{\rm_Card}	operatorname Card
opccorr	\mbox{\rm_Corr}	operatorname Corr
opcext	\mbox{\rm_Ext}	operatorname Ext
opcfcl	$\mbox{\rm_{L}FL}$	operatorname FL
opcgcl	$-$ \mbox{\rm_GL}	operatorname GL
opchar	\mbox{\rm_char}	operatorname char
opchom	\mbox{\rm_Hom}	operatorname Hom
opci	{\Bbb _u I}	open letter I
opcjac	\mbox{\rm_Jac}	operatorname Jac
opclie	\mbox{\rm_Lie}	operatorname LIe
opcnm	\mbox{\rm_Nm}	operatorname Nm
opcpcgcl	\mbox{\rm_PGL}	operatorname PGL
opcpic	\mbox{\rm_Pic}	operatorname Pic
opcprym	\mbox{\rm_Prym}	operatorname Prym
oper	{\Bbb_R}	open letter R
opcr1	{\Bbb _{\\\} R}^1	open letter R to power 1
opcr2	{\Bbb ₁ R}^2	open letter R to power 2
opcr3	{\Bbb _{\\\} R}^3	open letter R to power 3
opcram	\mbox{\rm_Ram}	operatorname Ram
operank	\mbox{\rm_Rank}	operatorname Rank
operes	\mbox{\rm_Res}	operatorname Res
operm	{\Bbb _{\\\\} R}^m	open letter R to power m
opern	{\Bbb ₁ R}^n	open letter R to power n
opescl	\mbox{\rm_SL}	operatorname SL
opesco	\mbox{\rm_SO}	operatorname SO
opesco	\mbox{\rm_SP}	operatorname SP
opescu	\mbox{\rm_SU}	operatorname SU
opesed	\mbox{\rm_Sp}	operatorname Sp
opcsym	\mbox{\rm_Sym}	operatorname Sym
opet	{\Bbb_T}	open letter T
opetr	\mbox{\rm_Tr}	operatorname Tr
opcz	{\Bbb_Z}	open letter Z
opez	\oplus	oplus: direct sum
opndef	$\label{local_command} $$ \operatorname{mon}_{\ldots}^{\operatorname{mbox}_{\ldots}}$$$	operatorname macro definition
opnu	\rm	operatorname universal
opnu oprank	\mbox{\rm_rank}	operatorname rank
oprank	\mbox{\rm_reg}	operatorname reg
opres	\mbox{\rmures}	operatorname res
opics	/WDOV(/IMITOD)	operatorname res

opsl	\mbox{\rm_sl}	operatorname sl
opsq	$\mbox{\rm}_{\sc}$	operatorname sq
opu	- {\Bbb⊔	open letter universal
opu	- {\Bbb⊔	open letter universal
oq	(q)	of q
os	(s)	of s
ot	(t)	of t
oti	\otimes	otimes
otu		over tilde universal
ou	(u)	of u
ov	(v)	of v
ova	\vec{a}	over vector a
ovb	\vec{b}	over vector b
ovc	\vec{c}	over vector c
ovu		over vector universal
ovv	\vec{v}	over vector v
ovw	\vec{w}	over vector w
ow	(w)	of w
OX	(x)	of x
oy	(y)	of y
OZ	(z)	of z

\mathbf{p}

```
\P
                                                                                                     paragraph symbol
para
               \partial
                                                                                                     partial derivative
_{\mathrm{pd}}
               -
\partial<sub>⊔</sub>z/\partial<sub>⊔</sub>y
pdzy
                                                                                                     partial derivatives z over y
pgno
                                                                                                     set page number (not in LaTeX)
pict
               \begin{figure}
                                                                                                     special picture: mac
                                                                                                     plus
_{\rm pl}
_{\rm plm}
               \pm
                                                                                                     plus-minus
               \frac{1}{\operatorname{prod}^{n}_{i}} = 1
                                                                                                     product superscript n subscript i=1
pni1
                                                                                                     proportional to
ppt
               \propto
prf
               \noindent{\bf_Proof\,}
                                                                                                     Proof (title in bold)
```

```
prind
              \setlength{\parindent}{0em}
                                                                                            set parindent
                                                                                            prime; use "hpr" for superscript
prm
              \prime
              \setlength{\parskip1.5ex_plus_0.5ex_minus_0.5ex}
                                                                                            set parskip
prskp
              %
                                                                                            percent
pt
\mathbf{q}
qd
                                                                                            quad space (width em)
              \quad
                                                                                            qed symbol or empty square (math mode)
              \quad<sub>\(\)</sub>\square
qed
                                                                                            double quad space
ggd
              \qquad
\mathbf{r}
              \rightarrow
                                                                                            right arrow
_{\rm ra}
              \rdot{renewcommand{...}{...}}
                                                                                            redefine a command macro
rcmdu
              \rdot{renewcommand{...}{...}}
                                                                                            redefine a command macro
rdefu
rdo
              \right.
                                                                                            right followed by dot
              \Re
                                                                                            real part alternative
rea
              (\ref{})
                                                                                            to cross reference (put cursor between the {} by hand)
refp
              \ref{
                                                                                            to cross reference an equation, theorem, etc.
refr
              \ni
                                                                                            reverse element of
reo
              \mbox{\rm_Re}(
                                                                                            real part universal
reu
                                                                                            real part of z
              \mbox{\rm_Re}(z)
rez
                                                                                            rightheadtext (not in LaTeX)
rhtxt
              \right]
                                                                                            right bracket
ribk
              \right\}
                                                                                            right brace
_{\rm ribr}
rip
              \right)
                                                                                            right parenthesis
              \right\rangle
                                                                                            large right-angle
rir
                                                                                            right literal brace
_{\rm rlb}
              \}
```

 $_{\rm rle}$

\rangle

right angle bracket

```
\rightline{...}
rlin
                                                                                                  rightline
               \noindent{\large_\bf_Remarks\,}
rmk
                                                                                                 Remarks (title in bold)
               {\rm
                                                                                                 roman type
rmu
               \mbox{\rm_{||}}
                                                                                                  make text roman
rom
              \mbox{\rm__
romu
                                                                                                  make text roman
              \begin{enumerate}
                                                                                                  begin roster: enumerate
ros
              \null\hfill$\square$
                                                                                                 right justified qed symbol
rged
\operatorname{rrd}
               \right\rangle__\!_\right\rangle
                                                                                                 large right-angle doubled
\mathbf{S}
scd1
              \begin{picture}(150,100)(-70,0)
                                                                                                 square commutative diagram 1
              \begin{picture}(150,100)(-70,0)
                                                                                                 square commutative diagram 2
scd2
              \begin{picture}(150,100)(-70,0)
scd3
                                                                                                 square commutative diagram 3
                                                                                                 rectangular CD (same as scd2 with variable width; not in LaTeX)
\operatorname{scd} w
\operatorname{scl}
               \ell
                                                                                                 script 1
                                                                                                 start SMALL CAPS type; "eb" to finish
               {\sc
scu
                                                                                                 small letter d
               d
\operatorname{sd}
\operatorname{sd}
               d
                                                                                                 small letter d
                                                                                                 semi direct product: (circled S)
               \,\circledS\,
sdp
                                                                                                 slanteddown right arrow; southeast arrow
sdr
               \searrow
sds
               \,ds
                                                                                                 spave derivative s
sdt
               \,dt
                                                                                                 space derivative t
\operatorname{sdu}
               \,du
                                                                                                 space derivative u
               \,dv
                                                                                                 space derivative v
\operatorname{sdv}
sdw
               \,dw
                                                                                                 space derivative w
sdx
               \,dx
                                                                                                 space derivative x
               \,dy
sdy
                                                                                                 space derivative y
\operatorname{sdz}
               \,dz
                                                                                                 space derivative z
               \S
                                                                                                 section symbol
sect
              \mbox{\rm_isech}
\operatorname{seh}
                                                                                                 sech (in roman)
               \setcounter{enumi}{
setc
                                                                                                 set counter enumi
              \setcounter{...}{...}
setcu
                                                                                                 set counter universal
```

set length variables universal

\setlength{...}{...}

setlnu

setlu	\left\{_\left\left\right	sized set; for large displays
setm	\setminus	set difference; set-minus
setu	\{\mid\}	in-line set universal
sfu	{\sf	start sans serif type; "eb" to finish
$_{ m sh}$	\heartsuit	(sweet)heart suit
$_{ m shl}$	$A^i_{\{\;a\}}$	staggered high and low (superscript subscript-group)
$_{ m shp}$	\sharp	sharp; use "hfs" for superscript
si	\sin	sine
$_{ m sih}$	\sinh	hyperbolic sine
$_{ m siph}$	\sin _⊔ \phi	sine of phi
$_{ m siq}$	\sin^2	sine squared
sith	$\sin_{\sqcup}\$ theta	sine of theta
$_{ m slu}$	{\sl	slanted type "eit" to finish
$\mathbf{s}\mathbf{n}$		start a numbered section
$\operatorname{sni} 1$	$\sum_{i_{\square}=1}$	sum superscript n subscript i=1
sns	\section*{	start an unnumbered section
so3	$\mbox{\rm}_{\sc}(3)$	so(3) (in roman)
sol	$\noindent{\bf_{\square}Solution}$	Solution (title in bold)
sq	^2	$\operatorname{squared}$
sq10	$\sqrt{10}$	square root of 10
sq2	$\sqrt{2}$	square root of 2
sq3	\sqrt{3}	3
sq5	\sqrt{5}	square root of 5
sq7	\sqrt{7}	square root of 7
squ		square root universal
squ		square root universal
sqxp	\sqrt{\pi}	square root of greek pi
sskp	\smallskip	small skip
ssn		start a numbered subsection
ssns	\subsection*{	start an unnumbered subsection
ssp	,	small space
sube	\subseteq	subet or equals
subs	\subset	susbset
sumu	\sum	sum universal
$_{ m supe}$	\supseteq	superset of equals
supr	\sup	supremum
sups	\supset	superset
sur	\nearrow	slanted up right arrow; northeast arrow

\mathbf{t}

tabex1	\begin{center}	tabular example 1 (5 columns)
${ m tabex}2$	\begin{center}	tabular example 2 (2 columns within a frame)
${ m tabex}3$	\begin{center}	tabular example 3 (3 columns without a frame)
tabex4	\begin{center}	tabular example 4 (2 columns with lines)
${ m tabex}5$	\begin{center}	tabular example 5 (2 columns with lines within a framed box)
tabex6	\begin{center}	tabular example 6 (3 columns with lines)
tabl	$\begin{table}[t]_{uuuuuuuuuuuuuuuuuuuuu}$ %optionalu[t,ubuoruh];	template for table environment
$^{ m tb}$	\>	tab stop
$_{ m tbex}$	\begin{tabbing}	tabbing example
tcap	$\c \sum_{\square} Caption{Text_{\square} of_{\square} Caption}$	top caption
$\operatorname{tcd} 1$	\begin{picture}(150,100)(-70,0)	triangular commutative diagram 1
$\operatorname{tcd} 2$	\begin{picture}(150,100)(-70,0)	triangular commutative diagram 2
te	\exists	there exists
${ m te}2{ m bd}$	\documentclass{article}	template to begin document latex2e;
${ m te}2{ m bdv}$	\documentclass{article}	template for documents using
${ m te}2{ m bdvf}$	\documentclass{article}	template for documents using
${ m te}2{ m book}$	%&latex2ete2book	${ m tebook}$
${ m te2letter}$	%&latex2e⊔⊔⊔⊔ute2letter	m te2 letter
${ m te}2{ m paper}$	%&latex2e _{UUUUU} te2paper	${ m te}2{ m paper}$ latex $2{ m e}$ paper template
${ m teabs}$	\begin{abstract}	template insert for abstracts
${ m teack}$	$\noindent{bracknowledgments}_{\sqcup} We_{\sqcup} thank_{\sqcup} \dots$	template insert for acknowldegments
teaut	$\texttt{\title}\{\texttt{Title}_{\sqcup} \texttt{of}_{\sqcup} \texttt{paper}\}$	template insert for title and author
tebd	\documentstyle{article}	template to begin document;
tebdf	\documentstyle[epsf]{article}	template for documents using article and epsf style files
${ m tebdv}$	\documentstyle[verbatim]{article}	template for documents using
${ m tebdvf}$	\documentstyle[verbatim,epsf]{article}	template for documents using
tebib	$\verb \begin{the bibliography}{} $	template insert for the bibliography
tebook	%&latex2.09tebook	tebook
${ m teletter}$	%&latex2.09 _{ппппп} teletter	teletter
${ m temag}1$		$template\ insert,\ changing\ margin\ size,\ magstep1\ (not\ in\ LaTeX)$
$_{ m temar}$	$\text{textwidth}_{\square}$ 6.5 $_{\square}$ truein	template insert for changing margin size
$_{ m tepaper}$	%latex2.09 _{ппппп} tepaper	tepaper latex2.09 paper template
	vitK&latex2.09tepaper⊔eqnwith	tepaper equivith; paper simple numbering equations with theorems
tepapersimp	$ m le$ %latex2.09 $ m _{LLLLLL}$ tepaper $ m _{L}$ simple	${ m tepapersimple}$

tepapersim	ple % &latex209tepaper⊔simplest	${\it tepapersimplest}$
teref	\section*{References}	template insert for references
tfldtu		top folded text inside math (not in LaTeX)
tfu		text size fraction universal (not in LaTeX)
tg		tag equation; label in parentheses
$_{ m tgs}$	\tag*{}	tag equation; label not in parentheses
$_{ m tgsol}$		tags for equations on left (not in LaTeX)
tgsor		tagst for equations on right (not in LaTeX)
${ m thmsty}$	\newtheorem{thm}{Theorem}[section]	theoremstyle commands with abbreviated names
ti	\times	times
$_{ m tinf}$	\begin{figure}[t]	topinsert figure
tn	\tan	${f tanent}$
tnh	\tanh	hyperbolic tangent
$_{ m triap}$	(a_1, _□ a_2, _□ a_3)	triad in parentheses
trv	\pitchfork	transversal; pitchfork
tskp	$^{ ilde{ t}}$ topskip $_{\sqcup}24$ pt	topskip
tsp	\;	thick space
tsq	T^\ast⊔Q	T superscript-asterisk Q
$_{ m tsqq}$	$T^{\star}_{q}_{q}$	T superscript-asterisk subscript-q Q
$_{ m tsz}$		text size (not in LaTeX)
tszu		text size universal (not in LaTeX)
${ m ttu}$	{\tt	$\verb"typewriter" type"$
txt	$\displaystyle \left(\operatorname{quad}_{\sqcup} \operatorname{mbo}_{X} \right)_{\sqcup} \operatorname{quad}$	use to put roman text with quad spaces within math
txta	$\qquad \qquad $	add text "and" with quad spaces within math
txtu	$\mbox{\rm}$	text inside math mode
\mathbf{u}		
ua	\"{a}	umlaut a
uca	\"{A}	umlaut A
uco	\"{0}	umlaut O
ucu	\"{U}	umlaut U
uhr	\upharpoonright	upharpoonright
uni	\cup	union

 $\begin{array}{lll} unil & & \begin{array}{ll} unil & & \begin{array}{ll} unil & & \\ & & \end{array} \\ uo & & \begin{array}{ll} uo & \\ & \end{array} \\ upa & & \begin{array}{ll} uparrow & \\ & \end{array} \\ uu & & \begin{array}{ll} u \end{array} \\ \end{array}$

 \mathbf{V}

 $v^A{}_{nu}$

vbar \mid

 $\begin{array}{ll} vcpp & \texttt{\textstyle} \\ vcpq & \texttt{\textstyle} \\ \end{array}$

vds \vdots

verbatimdef

vfi \vfill

 $vglu vglue_{\sqcup \sqcup} 2in$

vrb \verb

vrbinp

vskp $\vskip_{\square}12pt$ vsp $\vspace{0.2in}$

 \mathbf{W}

wace accelerate
wacn acceleration
wacs accelerates

wcdmDepartment $_{\square}$ of $_{\square}$ MathematicswcdpDepartment $_{\square}$ of $_{\square}$ Physics

wclecalculatewclncalculationwclscalculates

union superscript n subscript i=1

umlaut o uparrow umlaut u

staggered variation 2; (superscript-group subscript)

vertical bar with spacing

vector arrow above PP (math mode) vector arrow above PQ (math mode)

vertical dots

macro verbatim.def for AmSTeX (not in LaTeX)

vfill vglue

verbatim: usage \verb"phrase in tt font"

verbatim input file (not in LaTeX)

vertical skip vertical space

wder derivative wders derivatives $department_{\sqcup}of_{\sqcup}mathematics$ wdmwdp $department_{\sqcup}of_{\sqcup}physics$ \wedge wed Euler-Poincar\'e wep equation weqn equations wegns example wex wfun function wfuns functions geometry wgm geometric wgmc i.e., wie wig integral wigb integrable wign integration wigs integrals wiie $\{ \forall i.e., \forall \}$ line⊔integral wlig wligs line⊔integrals matrixwmx wneg negative wnlnonlinear wnly nonlinearity \wp wpf positive wpos perpendicular wprp relative wrelwrln relation rotating wrtg wrtnrotation rotations wrtns solution wsn solutions wsns

theorem

theory university

theorems

wtm

 $\begin{array}{c} \text{wtms} \\ \text{wty} \end{array}$

wun

wedge product

Weierstrass p-function

wve	vector
wvel	velocity
wvs	vectors

\mathbf{X}

\alpha xa \beta хb хс \chi \Delta xcd $\backslash Gamma$ xcg \Lambda xcl\Omega хсо \Pi хср \Phi xcph \Psi xcps \Sigma XCS xcth $\$ Theta \Upsilon xcu \Xi XCX xd δ \epsilon хe xet\eta \gamma хg хi \iota xk\kappa xl\lambda $x \ln$ x_n \mu xm\nu xn\omega XO\pi хр \phi xph \psi xps

greek alpha greek beta greek chi greek Delta greek Gamma greek Lambda greek Omega greek Pi greek Phi greek Psi greek Sigma greek Theta greek Upsilon greek Xi greek delta greek epsilon greek eta greek gamma greek iota greek kappa greek lambda x subscript (lower) n greek mu greek nu greek omega greek pi greek phi greek psi

xpyq	x^2 _L + _L y^2	x squared + y squared
xq	x^2	x squared
xr	\rho	greek rho
XS	\sigma	greek sigma
xt	\tau	greek tau
xth	\theta	greek theta
xu	\upsilon	greek upsilon
xve	\varepsilon	${ m greek}$ ${ m varepsilon}$
xvp	\varpi	greek varpi
xvph	\varphi	${ m greek}\ { m varphi}$
xvr	\varrho	greek varrho
XVS	\varsigma	${ m greek}$ ${ m varsigma}$
xvth	\vartheta	${ m greek}$ vartheta
XX	\xi	${ m greek} { m xi}$
хур	(x, y)	x,y in parentheses
xyzp	(x, y, z)	x,y,z in parentheses
XZ	\zeta	${ m greek}$ ${ m zeta}$
V		
\mathbf{y}		
yln	y_n	y subscript (lower) n
yq	y^2	y squared
${f z}$		
1		1 1/1 \
zln	z_n	z subscript (lower) n

z^2

zq

z squared