Chapitre 3 Calculs algébriques (1) : puissances et développements

Table 3.1 – Objectifs. À fin de ce chapitre 3...

	Pour m'entraîner <u>é</u>				
Je dois connaître/savoir faire	۵	•	Ö		
Manipulez les puissances					
définition et calculs de puissances d'exposants dans $\ensuremath{\mathbb{Z}}$	1, 2, 3				
règles opératoires des puissances	4, 5, 6	7, 8, 9	10		
Calculs algébriques					
retour sur la simple et double distributivité	11, 12, 13				
triple distributivité et gestion d'expressions		14, 15,	16		
connaitre et utiliser les identités remarquables		20, 21	26		
justifier si des égalités sont toujours vraies	18,19	22, 23, 24	25		
géométrie et algèbre	17	27, 28, 29	30		

3.1 Puissances de base réelle et d'exposant dans $\mathbb Z$

Figure 3.1 – Vocabulaire et priorités sur opérations et signes : ajouter des parenthèses si ambigüité sur la base!

Notation 3.1 Pour tout $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$:

$$a^0=1$$

$$a^1=a \qquad a^{-1} \quad \text{est $"$ l'inverse de a^1 "} \qquad a^{-1}=\frac{1}{a} \qquad \frac{1}{a^{-1}}=a$$

$$a^2=aa=a\times a \qquad a^{-2} \quad \text{est $"$ l'inverse du carr\'e de a "} \qquad a^{-2}=\frac{1}{a^2}=\left(\frac{1}{a}\right)^2 \qquad \frac{1}{a^{-2}}=a^2$$

$$\text{$"$ le carr\'e de l'inverse de a "} \qquad a^{-3}=\frac{1}{a^3}=\left(\frac{1}{a}\right)^3 \qquad \frac{1}{a^{-3}}=a^3$$

$$\text{$"$ le cube de l'inverse de a "} \qquad a^{-n}=\frac{1}{a^n}=\left(\frac{1}{a}\right)^n \qquad \frac{1}{a^{-n}}=a^n$$

$$\text{$"$ (inverse de a) exposant n "} \qquad a^{-n}=\frac{1}{a^n}=\left(\frac{1}{a}\right)^n \qquad \frac{1}{a^{-n}}=a^n$$

 \bigcirc $a^1 = a$ et a^{-1} sont de même signe car $a \times a^{-1} = 1$. De même a^n et a^{-n} sont de même signe.

■ Exemple 3.1
$$5^{-1} = \frac{1}{5}$$
 $(-2)^{-1} = \frac{1}{-2} = \frac{-1}{2}$ $(-1)^{-1} = \frac{1}{-1} = -1$ $\left(\frac{2}{3}\right)^{-1} = \frac{3}{2}$ $\frac{1}{5^{-1}} = 5$
■ Exemple 3.2 $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$ $\frac{1}{5^{-3}} = 5^3$ $a^{-4} = \frac{1}{a^4}$ $\left(\frac{5}{3}\right)^{-2} = \left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

■ Exemple 3.3
$$-3^2 = -(3^2) < 0$$
; $(-3)^2 = (-3)(-3) > 0$ $(-3)^{-2} = \frac{1}{(-3)^2} > 0$; $(-2)^{-3} = \frac{1}{(-2)^3} < 0$

Théorème 3.1 Pour tous $m, n \in \mathbb{Z}$ et tous $a, b \in \mathbb{R}^*$:

Règle 1 : Multiplication de puissances de même base $a^m \times a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^m \times \frac{1}{a^n} = a^{m-n}$ « je multiplie des puissances, les bases sont les mêmes, j'ajoute les exposants »

Conséquence : Puissance d'une puissance $(a^n)^m=a^{nm}$

Règle 2 : Multiplication de puissances de même exposant « la puissance d'un produit est le produit des puissances ».

$$(ab)^n = a^n b^n$$
 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ en particulier: $(ab)^2 = a^2 b^2$ $\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$

3.2 Classifier les expressions algébriques

Définition 3.1 — monômes et polynôme. Pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$, un terme de la forme ax^n est un monôme (1) de la variable x (2) de degré n (3) et de coefficient a.

Les monômes de même degré sont dit **similaires**.

Un polynôme est une somme de monômes.

- **Exemple 3.4** $5x^2 + 3x + 2$ est un polynome sous forme **ordonnée réduite**.
- 2 est le terme constant
- 3x est le terme linéaire. Il est **similaire** à x.
- $5 \left| \begin{array}{c|c} x^2 \end{array} \right| + \left| \begin{array}{c|c} 3 \end{array} \right| x \left| \begin{array}{c|c} + \end{array} \right| 2$
- $5x^2$ est le monôme de degré 2. Il est similaire à x^2 .
- Exemple 3.5 $\frac{1}{x} = x^{-1}$ n'est pas un monôme (exposant négatif).
- Exemple 3.6 $\frac{1}{x}$ et $\frac{2x-3}{5x+4}$ sont des expressions **fractionnaires**.

Définition 3.2 Réduire une somme de termes c'est regrouper les termes similaires.

3.3 Multiplier des expressions

Développer est une activité qui consiste à exploiter les 2 règles suivantes jusqu'à plus possible pour écrire une expression égale sous forme d'une **somme de termes**.

Règle 1 : Axiome de distributivité : Pour tout a,c et $d \in \mathbb{R}$:

$$a(c+d) = a \times c + a \times d$$

Règle 2: Pour tout $a \in \mathbb{R}$: $-a = (-1) \times a$

La double distributivité Pour tout a,b,c et $d \in \mathbb{R}$: $(a+b)(c+d) = a \times c + a \times d + b \times c + b \times d$

■ Exemple 3.7 Pour $x \in \mathbb{R}$, développer, simplifier, réduire et ordonner les expressions : 1

$$A = (6x+3) - (2x-5)$$

$$B = (-5x + 1)(3x - 1)$$

$$C = 4(5x+6) - 5x(2x-3)$$

solution.

$$A = (6x + 3) \vdots - (2x - 5)$$

$$= 6x + 3 \vdots - 2x + 5$$

$$= 4x + 8$$

$$B = (-5x + 1)(3x - 1)$$

$$= (-15x^2) + 5x + 3x + (-1)$$

$$= (-15x^2) + 5x + 3x + (-1)$$

$$= -10x^2 + 35x + 24$$

$$= -10x^2 + 35x + 24$$

^{1.} Utiliser l'exerciseur en ligne https://www.mathix.org/exerciseur_calcul_litteral/

3.4 Identités et identités remarquables

Une **identité** est une égalité dans laquelle apparaît une ou plusieurs lettres (dites variables) et qui reste vraie quelles que soient les valeurs prises par les variables.

■ Exemple 3.8 L'égalité 2(2+6x) + 6(3x-4) = 10(3x-2) est une identité.

Démonstration. Développer le membre de gauche MG et le membre de droite MD:

Proposition 3.2 — Le carré d'une somme. Pour tout a et $b \in \mathbb{R}$ on a :

$$(a+b)^2 = a^2 + 2ab + b^2 (a-b)^2 = a^2 - 2ab + b^2$$

Démonstration. Développer (a + b)(a + b) et (a - b)(a - b).

Figure 3.2 – Illustration géométrique du carré de la somme pour $a, b \ge 0$

Proposition 3.3 — Différence de deux carrés. Pour tous nombres A et B on a l'égalité suivante :

$$(a-b)(a+b) = (a+b)(a-b) = a^2 - b^2$$

(a-b) et (a+b) sont des termes conjugués.

Démonstration. Développer (a + b)(a - b).

Figure 3.3 – Illustration géométrique de la différence de deux carrés, avec $a \ge b \ge 0$

3.5 Exercices

3.5.1 Exercices : puissance d'exposant dans $\ensuremath{\mathbb{Z}}$

$$a \neq 0, n > 0$$
:
$$a^{n} = \underbrace{a \times a \times \ldots \times a}_{n \text{ facteurs}} \qquad a^{-n} = \frac{1}{a^{n}} = \left(\frac{1}{a}\right)^{n}$$

■ Exemple 3.9 — Priorités des exposants sur les autres opérations et les signes. On peut rajouter des parenthèses pour clarifier l'ambigüité sur les termes à multiplier.

$$3a^{4} \qquad (3a)^{4} \qquad -a^{4} \qquad (-a)^{4} \\ \text{signifie } 3 \times aaaa \qquad \text{signifie } (3a)(3a)(3a)(3a) \qquad \text{signifie } -1 \times aaaa \qquad \text{signifie } (-a)(-a)(-a)(-a) \\ 3a^{-1} \qquad (3a)^{-1} \qquad -a^{-2} \qquad (-a)^{-2} \\ \text{signifie } 3 \times \frac{1}{a} = \frac{3}{a} \qquad \text{signifie } \frac{1}{3a} \qquad \text{signifie } -1 \times \frac{1}{a^{2}} = \frac{-1}{a^{2}} \qquad \text{signifie } \frac{1}{(-a)^{2}} = \frac{1}{a^{2}} \\ \end{cases}$$

Exercice $1 - \mathbf{H}$. Écrire sous forme d'une fraction irréductible ou un nombre décimal

Exercice 2 — 🗹.

1)
$$(-2)^1 = \dots (-2)^0 = \dots (-2)^{-1} = \dots (-2)^{-2} = \dots (-2)^{-3} = \dots (-2)^{-3} = \dots$$
2) Sachant que $2^{15} = 32$ 768, on peut dire $(-2)^{15} = \dots (-2)^{-15} = \dots (-2)^{-15} = \dots$
3) Sachant que $4^5 = 1024$, on peut dire $(-4)^5 = \dots (4^{-5} = \dots (\frac{1}{4})^5 = \dots$

Exercice 3 — \blacksquare . Complétez par > , < ou = :

$$\begin{bmatrix} 6^0 & \dots & 0 & 2^1 & \dots & 1 & 25^0 & \dots & 0 & (-1)^{-1} & \dots & 0 & \frac{1}{7^{-2}} & \dots & 1 \\ 5^{-1} & \dots & 1 & 4^{-2} & \dots & 1 & 1^{100} & \dots & 1 & 10^{-2} & \dots & 1 & (-3)^{-4} & \dots & 0 \end{bmatrix}$$

■ Exemple 3.10 — multiplication et puissances de monômes. Simplifie :

$$(2x^{3})(4x^{7}) = 2 \times 4 \times x^{3}x^{7} = 8x^{3+7} = 8x^{10}$$

$$(-3x^{5})(6x) = -3 \times 6 \times x^{5}x = -18x^{5}x^{1} = -18x^{5+1} = -18x^{6}$$

$$(-x^{2})^{5} = -1 \times x^{2}x^{2}x^{2}x^{2}x^{2} = -x^{2+2+2+2} = -x^{10}$$

$$(3x^{5})^{2} = (3x^{5})(3x^{5}) = 9x^{5+5} = 9x^{10}$$

Exercice 4 Simplifie les expressions suivantes.

$$(x^{2})(x^{4}) = \dots \qquad (-x^{2})^{3} = \dots \qquad (3x)^{3} = \dots \qquad (3x^{2})^{3} = \dots \qquad (3x^{2})^{3} = \dots \qquad (3x^{2})^{3} = \dots \qquad (3x^{2})^{3} = \dots \qquad (-2x^{5})(9x) = \dots \qquad (3x^{2})^{3} = \dots \qquad (-4xy^{2})^{3} = \dots \qquad (-4xy^{2})^{3} = \dots \qquad (-4xy^{2})^{3} = \dots \qquad (-2x^{2})^{6} = \dots \qquad (-(2x^{2})^{3} = \dots \qquad (-(2x^$$

Exercice 5 Compléter pour écrire les expressions suivantes comme puissances de (x - y).

■ Exemple 3.11 — division de puissances. Simplifier et éliminer les exposants négatifs

$$3^{5} \div 3^{2} = 3^{5} \times \frac{1}{3^{2}} = \frac{3^{5}}{3^{2}} = 3^{5-2} = 3^{3}$$

$$8^{7} \div 8^{-4} = \frac{8^{7}}{8^{-4}} = 8^{7-(-4)} = 8^{11}$$

$$\frac{5}{5^{2}} = 5^{1-2} = 5^{-1} = \frac{1}{5}$$

$$\frac{2^{2}}{2^{-3}} = 2^{2-(-3)} = 2^{2+3} = 2^{5}$$

$$\frac{2x^{5}}{3x^{8}} = \frac{2}{3}x^{5-8} = \frac{2}{3}x^{-3} = \frac{2}{3}\frac{1}{x^{3}}$$

$$\frac{5x^{3}}{2x^{-2}} = \frac{5}{2}\frac{x^{3}}{x^{-2}} = \frac{5}{2}x^{3-(-2)} = \frac{5}{2}x^{5}$$

Exercice 6 — 🖬. Simplifiez les expressions suivantes et éliminer les exposants négatifs .

Exercice $7-\blacksquare$. Simplifiez les expressions suivantes en éliminant les exposants négatifs .

$$\frac{x^{7}}{x^{8}x^{-5}} = \dots \qquad \qquad \left(\frac{x}{2}\right)^{3} (5x^{6}) = \dots \\
x^{4}(x^{-2})^{3}x^{5} = \dots \qquad \qquad \left(x^{-4}x^{3}\right)^{3} = \dots \\
\frac{x^{4}x^{-1}}{x^{8}} = \dots \qquad \qquad \left(\frac{2x^{2}}{5}\right)^{-1} = \dots \\
\frac{x^{9}x^{-2}}{x} = \dots \qquad \qquad \left(\frac{5x^{3}}{2}\right)^{-2} = \dots$$

■ Exemple 3.12 Simplifiez les fractions suivantes sous forme d'une somme de multiples d'une

puissance de x:

$$\frac{2x^3 - 5x + 5}{x} = 2\frac{x^3}{x} - 5\frac{x}{x} + \frac{5}{x} = 2x^2 - 6 + \frac{5}{x}$$
$$\frac{5x^2 - 2x + 1}{x^5} = \frac{5x^2}{x^5} - \frac{2x}{x^5} + \frac{1}{x^5} = 5x^{-3} - 2x^{-4} + x^{-5} = \frac{5}{x^3} - \frac{2}{x^4} + \frac{1}{x^5}$$

Exercice 8 Mêmes consignes. Eliminer les exposants négatifs :

$$\frac{-x^{2} + 3x + 1}{x} = \dots$$

$$\frac{3x^{2} - x + 2}{x^{2}} = \dots$$

$$\frac{x^{2} - 1}{x^{4}} = \dots$$

$$\frac{x^{3} - x + 2}{5x^{3}} = \dots$$

Exercice 9 — \blacksquare . Simplifier les expressions suivantes sans utiliser la calculatrice.

$$(-2)^{2022} + (-2)^{2023} = \dots$$

$$2^{2024} - 5 \times 2^{2023} + 6 \times 2^{2022} = \dots$$

$$x^{-2n} \times x^2 = \dots$$

$$\frac{x^5}{(x^3)^n} = \dots$$

$$(2x^{n+2})^3 = \dots$$

Exercice 10 — Je vérifie ma compréhension. Entourez la ou les bonnes réponses.

$1/\frac{1}{10^3} = \dots$	10^{-3}	0,000 1	0,001	1000
2/ $10 \times 10^{-3} \times 10^{5} = \dots$	10^{-8}	10^{-15}	10^{2}	10^{3}
3/ $5^{-3} \times 5 \times 5^6 = \dots$	5^4	5^{5}	5^3	5^{-16}
4/ $\frac{7^{-5}}{7^{-9}} = \dots$	7^{-4}	7^{-14}	7^{14}	7^4
5/ $x^5 + x^5 =$	$2x^5$	x^{10}	x^{25}	$2x^{25}$
6/ $x^6 = \dots$	$(-x)^3 \times (-x)^3$	$\left (-x)^2 \times (-x)^4 \right $	$(-x)^3 \times (-x)^2$	$x^3 \times x^2$
7/ Si $x^n = 2$ alors $3x^{n+1} =$	6	3x	6x	9x
8/ Si $x^{n+5} = 5$ alors $x^{n+6} =$	6	6x	5x	$\frac{5}{x}$
9/ Si $x^{n+3} = 2$ alors $x^{n+2} =$	1	2x	x	$\frac{2}{x}$
10/ Si $x^m = a$ et $y^n = b$ alors	$x^{3m} = 3a$	$y^{2n} = b^2$	$x^{3m}y^{2n} = ab^2$	$x^{3m}y^{2n} = a^3b^2$
11/ Si $x^m = a$ et $x^n = b$ alors	a+2b	2ab	$(ab)^2$	ab^2
$x^{m+2n} =$				
12/ $x^{2n+1}x^{5-n} =$	x^{2n+6}	x^{n+6}	x^{2n-4}	x^{n-4}
13/ $\frac{x^{2n+1}}{x^{5-n}} =$	x^{n+6}	x^{n+6}	x^{3n-4}	x^{n-4}

3.5.2 Exercices : développer simplifier réduire et ordonner

Exercices 11 à 15 : développer simplifier réduire et ordonner les expressions données.

Exercice 11 — Simple distributivité.

$$A = 4(x+3) \qquad C = 2x^{2}(3x-5) \qquad E = -(4-3x) \qquad G = 3x(4x+3-\frac{1}{x^{2}})$$

$$B = 5(6x+1) \qquad D = (4-3x) \times 2 \qquad F = 5(2x+4x^{2}-2) \qquad H = \frac{2}{x}(5x^{2}-3x+4)$$

■ Exemple 3.13 — Simple distributivité et réduction.

$$A(x) = 2(x+6) \vdots + 2(x-3)$$
 $B(x) = -5(2x+6) \vdots - 2(3x-4)$ $C(x) = 4(5x+6) - 5x(2x-3)$
 $= 2x + 12 \vdots + 2x - 6$ $= -10x - 30 \vdots - 6x + 8$ $= -16x - 22$ $= -16x - 22$

Exercice 12

$$A = 2(x+4) + 3(x+5)$$

$$B = 5(x+2) + 4(x-2)$$

$$C = 3(4x+2) - 2(x+2)$$

$$D = 7(x-2) - (3x+5)$$

$$E = 5(4x+2) - \frac{6}{x^2}(3x-1)$$

$$F = 3x(4x-5) - 4(x^2+2) + 2x$$

■ Exemple 3.14 — Double distributivité.

$$A(x) = (2x + 4)(x + 5)$$

$$= 2x^{2} + 10x + 4x + 20$$

$$= 2x^{2} + 14x + 20$$

$$= 2x^{2} + 14x + 20$$

$$= 2x^{2} - 7x - 15$$

$$= C(x) = (3x - 4)(4x - 3)$$

$$= 2x^{2} + 3x + (-10x) + (-15)$$

$$= 2x^{2} - 7x - 15$$

Exercice 13

$$A = (2x+3)(x+5) \qquad C = (x-5)(2x-4) \qquad E = (3x-4)(2x-3) \qquad G = (x-\frac{2}{x})(x+\frac{1}{x})$$

$$B = (2x+4)(x-3) \qquad D = (2x+3)+(2x-5) \qquad F = (3x-4)(3+\frac{4}{x}) \qquad H = (2-\frac{1}{x})(5+\frac{2}{x})$$

■ Exemple 3.15 — Triple distributivité.

$$A = (x - 3)(x + 1)(x + 4)$$

$$= (x - 3)((x + 1)(x + 4))$$

$$= (x - 3)(x^{2} + 4x + x + 4)$$

$$= (x - 3)(x^{2} + 5x + 4)$$

$$= (x - 3)(x^{2} + 5x + 4)$$

$$= x^{3} + 5x^{2} + 4x$$

$$- 3x^{2} - 15x - 12$$

$$= x^{3} + 2x^{2} - 11x - 12$$

$$= x^{3} + 2x^{2} - 11x - 12$$

Exercice 14

$$A = x(x+2)(x+3)$$
 $C = (x+4)(x-2)(x+3)$ $E = (x-5)(x-1)(x+3)$
 $B = (x+1)(x+2)(x+2)$ $D = (x-2)^3$ $F = (2x+2)(3x-2)(x+3)$

Exercice 15 — Bilan.

$$A = 2(x-2)(x-4) - (2x+3)$$

$$B = 2x(x-2) + (x-4) - 2(2x-3)$$

$$C = -2(3x-4)(4x+2) - 8(3-2x)$$

$$D = -(3x-2)(x-5) + (2x+3)(x-1)$$

$$E = 5(x^2+4)(2x-3) - (x-5)(2x-3)$$

$$F = 2(x+1)^2 - (x-5)(x+5)$$

Exercice 16 Complétez les développements et simplifications suivantes :

$$A(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + ...x + 24$$

$$= x^{2} + 10x + 24$$

$$= x^{2} + ...x + ...$$

$$C(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + 18$$

$$= x^{2} + 11x + 18$$

$$E(x) = (x + ...)(x - ...)$$

$$= x^{2} - 2x + ...x - 14$$

$$= x^{2} + 5x - ...$$

$$E(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + ...x + ...$$

$$= x^{2} + 13x + ...$$

$$F(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + ...x + ...$$

$$= x^{2} + 13x + ...$$

$$F(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + ...x + ...$$

$$= x^{2} + 13x + ...$$

$$F(x) = (x + ...)(x + ...)$$

$$= x^{2} + ...x + ...x + ...$$

$$= x^{2} + 13x + ...$$

$$= x^{2} + ...x + ...x +$$

Exercice 17 Exprimer l'aire de chaque figure sous forme simplifiée réduite.

Une identité est une égalité qui reste vraie pour tout $x \in \mathbb{R}$.

■ Exemple 3.16 Montrer que 7(x-8) - 3(x-20) = 4(x+1) est une identité.

En effet: MG = 7(x-8) - 3(x-20) = 7x - 56 - 3x + 60 = 4x + 4 et MD = 4(x+1) = 4x + 4.

Exercice 18 Montrer que pour tout $x \in \mathbb{R}$ on a (2x-3)(5x-1) + 3(x+5)(x-5) = x(13x-17) - 72.

Vous développerez **séparément** les membres de gauche et de droite.

Exercice 19 — communiquer.

- 1. Montrer que les valeurs x=1, x=3 et x=5 vérifient l'égalité $x^3-9x^2+23x=15$
- 2. Peut-on affirmer que $x^3 9x^2 + 23x = 15$ est pas une identité? Justifier votre choix.

3.5.3 Exercices : identités remarquables

Exercice 20 Complétez les développements suivants à l'aide d'identités remarquables :

$$A(x) = (5x + 3)^{2} \qquad B(x) = (3x - 4)^{2} \\ = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \qquad = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (\dots)^{2}x^{2} + \dots \dots x + \dots \qquad = (\dots)^{2}x^{2} + \dots x + \dots \\ = \dots x^{2} + \dots x + \dots \qquad = \dots x^{2} + \dots x + \dots \\ = \dots x^{2} + \dots x + \dots \qquad = \dots x^{2} + \dots x + \dots \\ = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \qquad = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \qquad = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (\dots x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \qquad = (\dots x^{2} + \dots x + \dots \\ = \dots x^{2} + \dots x + \dots \qquad = \dots x^{2} + \dots x + \dots \\ E(x) = (\dots x + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (2x)^{2} + 2 \times (\dots \dots) \times (\dots \dots) + (\dots)^{2} \\ = (1 + \dots x)^{2} + 2 \times (\dots \dots) \times (1 + \dots)^{2} \qquad = (1 + \dots x)^{2} \qquad = (1 + \dots x)^{2}$$

Exercice 21 Développer simplifier réduire et ordonner à l'aide d'identités remarquables adaptées :

$$A = (3x+5)^{2}$$

$$B = (3x+5)(3x-5)$$

$$C = \left(\frac{3}{4}x - \frac{4}{5}\right)\left(\frac{3}{4}x + \frac{4}{5}\right)$$

$$D = 2(4x-3)^{2}$$

$$E = -5\left(x - \frac{1}{x}\right)^{2}$$

$$F = -(6x-5)(6x+5)$$

$$G = (6x+9)^{2} - (x-5)(x+5)$$

$$H = \left(5x + \frac{2}{x}\right)^{2} - (2x+3)(2x-3)$$

$$I = (3x+2)(3x-2) - 2(x-5)^{2}$$

Exercice 22 Montrer que pour tout $x \in \mathbb{R}$ on a : $(3x-5)^2 - 49 = 9(x-4)\left(x+\frac{2}{3}\right)$.

Exercice 23 Montrer que pour tout $x \in \mathbb{R}$ on a : $-2(x-1)^2 + 8 = -2(x-3)(x+1)$.

Exercice 24 Montrer que pour tout $x \in \mathbb{R}$ on a : $3(2x+1)^2 - 48 = 12\left(x + \frac{5}{2}\right)\left(x - \frac{3}{2}\right)$.

Exercice 25 Trouver deux nombres a et b tel que pour tout $x \in \mathbb{R}$, $(x+a)^2 - b = x^2 + 22x + 71$.

Exercice 26 — 🖬 Bilan.

1. Développer puis simplifier (a + b)(a - 2b) donne :

2. Entourez les expressions qui sont égales à a^2-b^2 :

$$(a+b)(a-b)$$

$$(-a-b)(-a+b)$$

$$(-a+b)(-a+b)$$

$$(-b-a)(b-a)$$

3. Entourez les multiplications qui correspondent à une multiplication de conjuguées :

$$(-x+2)(-x-2)$$
 $(x+2)(-x-2)$

$$(x+2)(-x-2)$$

$$(x-2)(x+2)$$

$$(-x-2)(-x-2)$$

$$(3-4x)(3+4x^2)$$

4.

$$(3x-4)(-3x+4)$$

$$(3x+4)(-3x-4)$$

$$(3+4x^2)(3-4x^2)$$

	Vrai	Faux
$1/(3a+2b)(3a-2b) = 9a^2 - 4b^2$		
2/ $(-3a+2b)(-3a-2b) = 9a^2 - 4b^2$		
3/ $(a+b+c)(a+b-c) = (a+b)^2 - c^2$		
4/ $(a+b+c)(a-b+c) = (a+b)^2 - c^2$		

5. Développer, simplifier et réduire les expressions suivantes :

 $(1+x)(1-x)(1+x^2) = \dots$ $(4+x^2)(2-x)(2+x) = \dots$ $[(x-1)(x+1)]^2 = \dots$ $(x-2y)^2(x+2y)^2 = \dots$ $(3x - y)^2 - (3x + y)^2 = \dots$

6. En appliquant la formule des différences des carrés on peut calculer :

$$91 \times 89 = (90 + \dots)(90 - \dots) = ($$
 $)^2 - ($ $)^2 = \dots$ $49.8 \times 50.2 = (50 - \dots)(50 + \dots) = ($ $)^2 - ($ $)^2 = \dots$ $)^2 = \dots$ $99.9 \times 100.1 = \dots$

Exercice 27

Soit a et b > 0.

- 1. Quelle est l'aire du grand carré? Quelle est l'aire des triangles blancs de la figure?
- 2. Justifier que l'aire de la partie grise ci-contre est égale à 2ab.

Exercice 28

Exercice 29

b

a

b

a

b

Exercice 30

Soit x > 1

- 1. Développer simplifier et réduire $\left(x + \frac{1}{x}\right)^2$ et $\left(x \frac{1}{x}\right)^2$.
- 2. Montrer que pour tout x > 1, le triangle ci-contre est rectangle.

Les 4 rectangles ci-contre sont égaux.

- 1. Développer simplifier et réduire $(a+b)^2 (a-b)^2$.
- 2. Expliquer pourquoi l'identitée obtenue peut être illustrée par le graphique ci-contre.
- 1. Développer simplifier et réduire

$$\left(x + \frac{m}{2}\right)^2 - \left(\frac{m}{2}\right)^2$$

2. Expliquer pourquoi l'identité précédente peut être illustrée par le graphique ci-contre.

3.6 Exercices : solutions et éléments de réponse

solution de l'ex. 11. A(x) = 4x + 12; B(x) = 30x + 5; $C(x) = 6x^3 - 10x^2$; D(x) = 8 - 6x; E(x) = 3x - 4; $F(x) = 20x^2 + 10x - 10$; $G(x) = 12x^2 + 9x - \frac{3}{x}$; $H(x) = 10x - 6 + \frac{8}{x}$;

solution de l'ex. 12. A(x) = 5x + 23; B(x) = 9x + 2; C(x) = 10x + 2; D(x) = 4x - 19; E(x) = 18

$$20x + 10 - \frac{18}{x} + \frac{6}{x^2}; F(x) = 8x^2 - 13x - 8;$$

solution de l'ex. 13. $A(x) = 2x^2 + 13x + 15$; $B(x) = 2x^2 - 2x - 12$; $C(x) = 2x^2 - 14x + 20$; D(x) = 4x - 2;

$$E(x) = 6x^2 - 17x + 12$$
; $F(x) = 9x^2 - 12x + 12 - \frac{16}{x}$; $G(x) = x^2 - 2 - \frac{3}{x^2}$; $H(x) = 10 - \frac{1}{x} - \frac{2}{x^2}$;

solution de l'ex.14. $A(x) = x^3 + 5x^2 + 6x$; $B(x) = x^3 + 5x^2 + 8x + 4$; $C(x) = x^3 + 5x^2 - 2x - 24$;

$$D(x) = x^3 - 6x^2 + 12x - 8$$
; $E(x) = x^3 - 3x^2 - 13x + 15$; $F(x) = 6x^3 + 20x^2 + 2x - 12$;

solution de l'ex. 15. $A(x) = 2x^2 - 14x + 13$; $B(x) = 2x^2 - 7x + 2$; $C(x) = -24x^2 + 36x - 8$; $D(x) = -24x^2 + 36x - 8$; D

$$-x^2 + 18x - 13$$
; $E(x) = 10x^3 - 17x^2 + 53x - 75$; $F(x) = x^2 + 4x + 27$;

solution de l'ex. 21. $A = 9x^2 + 30x + 25$; $B = 9x^2 - 25$; $C = \frac{9x^2}{16} - 0.64$; $D = 32x^2 - 48x + 18$;

$$E = -5x^2 + 10 - \frac{5}{x^2}; F = 25 - 36x^2; G = 35x^2 + 108x + 106; H = 21x^2 + 29 + \frac{4}{x^2}; I = 7x^2 + 20x - 54; \blacksquare$$

3.7 Club Maths : identités, et égalités sous conditions

Problème 1 — Identité de Brahmagupta. Montrer que pour a,b,c et $d\in\mathbb{R}$: $(ac+bd)^2+(ad-bc)^2=(a^2+b^2)(c^2+d^2)$

Problème 2

Montrer que pour tout m>n>0 le triangle ci-contre est rectangle.

Un triplet (a, b, c) d'entiers naturels est un **triplet pythagoricien primitif** si les entiers a, b et c sont premiers entre-eux dans leur ensemble, et s'ils vérifient l'égalité de Pythagore $a^2 + b^2 = c^2$.

On peut démontrer que tous les triplets pythagoriciens primitifs avec a **impair** peuvent s'écrire sous la forme $a = m^2 - n^2$, b = 2mn et $c = m^2 + n^2$ ou m > n sont deux entiers (premiers entre eux et de parités différentes).

Ainsi le célèbre triplet vu au collège (3;4;5) s'obtient avec m=2 et n=1.

Problème 3

- 1. Montrer que pour tout $a, b, c \in \mathbb{R}$: $a^3 + b^3 + c^3 3abc = (a + b + c)(a^2 + b^2 + c^2 bc ca ab)$.
- 2. Sachant que a+b+c=0, que vaut $a^3+b^3+c^3$?

Problème 4

- 1. Développer simplifier et réduire $\left(x + \frac{1}{x}\right)^2$
- 2. Montrer que pour tout $x \in \mathbb{R}^*$: $\left(x + \frac{1}{x}\right)^3 = x^3 + 3\left(x + \frac{1}{x}\right) + \frac{1}{x^3}$
- 3. Sachant que $x + \frac{1}{x} = 5$, que vaut $x^2 + \frac{1}{x^2}$ et $x^3 + \frac{1}{x^3}$?

Problème 5 Sachant que x + y = 1, montrer que $x^2 - x = y^2 - y$.

Problème 6 Déterminer les valeurs de a, b et c tel que pour tout $x, y \in \mathbb{R}$ vérifiant x + y = 1 on a $x^2 + axy + y^2 + bx + cy + 1 = 0$

Problème 7 Sachant que a+b+c=0, avec a,b et $c\in\mathbb{R}.$ Montrer que :

- 1. $2a^2 + bc = (b a)(c a)$
- **2.** $a^2 bc = b^2 ca = c^2 ab$

Problème 8 Sachant que $\frac{b}{a} = \frac{c}{b}$, avec a, b et $c \in \mathbb{R}$. Montrer que $(a+b+c)(a-b+c) = a^2+b^2+c^2$.

indication pour les problèmes 5 et 6. y = 1 - x.

indication pour le problème 7. c = -(a+b).