======================================
======================================
The empirical mean with X_0 = 5: 0.497711
The empirical standard deviation with $X_0 = 5$: 0.287001
======================================
The built in library uniform distribution mean: 0.497515
The built in library uniform distribution standard deviation: 0.289374
======================================
We see the values are very close, but different.
The absolute difference in the mean is: 0.000195916
The absolute difference in the standard deviation is: 0.00237311
We conclude the LGM algorithm performs very well.
======================================
======================================
Computed the independent Bernoulli distribution
=======================================
======================================
The empirical mean of independent bernoulli: 0.1858
The empirical standard deviation of independent bernoulli: 1.02268
Successfully wrote to text q2 for R plotting
=======================================

======================================
======================================
Generated the 1,000 random numbers of Binomial Distribution.
Successfully wrote to text q3b for R plotting
======================================
Empirical estimates of $P(X \ge 40)$: 0
======================================
======================================
Generated the 10,000 random numbers of the Exponential Distribution.
Successfully wrote to text q4c for R plotting
=======================================
======================================
$P(X \ge 1)$: 0.5111
$P(X \ge 4): 0.0717$
======================================
The empirical mean of exponential: 1.49742
The empirical standard deviation of exponential: 1.52424
=======================================
======================================
======================================
The time (milliseconds) it took to run the Box Muller N(0,1): 15

======================================
The time (milliseconds) it took to run the Polar Marsaglia N(0,1): 11
======================================
Using this many Normally distributed random number: 500000
The time (milliseconds) it took to run the Box Muller N(0,1): 1467
The time (milliseconds) it took to run the Polar Marsaglia N(0,1): 1183
We see that the difference between the two methods is a few milliseconds in our initial run time
to be not siginificantly different. It is within computationally varied speed that we cannot compare.
However, when the sequences get larger, the difference is speed will differ greatly.
Polar Method is shown to be quicker method

R Plots are found below

Computational Method PDF

Redmond Xia April 7, 2020

Problem 2(b)

```
histBern <- read.delim("q2.txt",sep = '\n', header = FALSE)
hist(histBern$V1, main = "Bernoulli Distribution of LGM X_0 = 5" , xlab = "X = {-1,0,1,2}")
```

Bernoulli Distribution of LGM X_0 = 5

Problem 3(b)

```
histBin <- read.delim("q3b.txt",sep = '\n', header = FALSE)
hist(histBin$V1, main = "Binomial Distribution of LGM Algorithm", breaks = 30)
```

Binomial Distribution of LGM Algorithm


```
prob40Greater <- 1 - pbinom(39,size = 44, p = 0.64)
prob40Greater</pre>
```

[1] 4.823664e-05

The Probability for $P(X \ge 40)$ is 4.823664e-05, which is very close to zero This is why we have zero in our C++. None of it passed 40.

Problem 4c

```
histexp <- read.delim("q4c.txt",sep = '\n', header = FALSE)
hist(histexp$V1, main = "Exponential Distribution of LGM Algorithm", breaks = 25)</pre>
```

Exponential Distribution of LGM Algorithm

