Dijkistra's algorithm

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The problem of finding shortest paths from a source vertex *v* to all other vertices in the graph.

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs.

Input: Weighted graph G={E,V} and source vertex *v*∈V, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Example

Pre	Α	В	С	D	E
	-	-	-	-	-

Pre	A	В	С	D	E
	-	-	-	-	-

$$S: \{A\}$$

Pre	A	В	C	D	E
	A	A	A	-	-

|--|

A	В	С	D	E
Α	Α	Α	-	-

Dijkstra Animated Example

Pre

A	В	С	D	E
Α	C	Α	C	C

A	В	С	D	E
Α	С	Α	С	С

Pre
Pre

A	В	С	D	E
Α	С	Α	С	С

Pre

A	В	С	D	E
Α	С	Α	С	С

Dijkstra Animated Example

Pre

A	В	С	D	E
Α	С	Α	В	С

Pre

Α	В	С	D	E
Α	C	Α	В	С

Dijkstra's algorithm - Pseudocode

Dijkstra(G,s)

```
dist[s] \leftarrow o
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                   (set all other distances to infinity)
          Pre[v] ← '-'
S←Ø
                                   (S, the set of visited vertices)
Q \leftarrow V[G]
                                   (Q, initially contains all nodes )
while Q ≠Ø
                                   (while the queue is not empty)
do u \leftarrow mindist(Q, dist)
                                   (select element of Q with min. dist )
                                   (add u to list of visited vertices)
    S \leftarrow S \cup \{u\}
     for all v \in Adj[u]
          do if dist[v] > dist[u] + w(u, v)
                  then d[v] \leftarrow d[u] + w(u, v)
                            Pre[v] \leftarrow u
return S, dist
```

Implementations and Running Times

The simplest implementation is to store vertices in an array or linked list. This will produce a running time of

 $O(|V|^2)$

For sparse graphs, or graphs with very few edges and many nodes, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of

 $O((|E|+|V|)\log |V|)$

CONCLUSION

- Dijkstra's algorithm calculates the shortest path to every vertex.
- However, it is about as computationally expensive to calculate the shortest path from vertex u to every vertex using Dijkstra's as it is to calculate the shortest path to some particular vertex v.
- Therefore, anytime we want to know the optimal path to some other vertex from a determined origin, we can use Dijkstra's algorithm.