A. 開門問題

Description

你面前有 n 扇門,而你,則是一個無情的開門機器人,會無止盡的將門給打開。 每扇門都有上鎖,而且需要特殊的鑰匙才能夠打開,編號為 1 的門需要編號 1 的 鑰匙,編號 2 的門需要編號 2 的鑰匙… 以此類推。當你打開第 i 扇門之後,你會獲得 編號為 k_i 的鑰匙,接下來你就會去開啟編號為 k_i 的門。

現在給你編號為s的鑰匙,請問你最多能開啟幾扇門?

Input

第一行為兩個整數 n,s,代表門的數量和初始鑰匙的編號 第二行為 n 個整數 $k_1 \sim k_n$ 各變數範圍如下:

- $1 \le n \le 10^5$
- $1 \le s \le n$
- $\forall k_i \in [0, n]$

Output

請輸出你最多能開啟幾扇門

Sample 1

Input	Output
5 3	4
5 3 4 1 1	

Sample 2

Input	Output
3 1	3
2 3 0	

Sample 3

Input	Output
8 3	4
1 4 2 8 5 7 1 4	

配分

在一個子任務的「測試資料範圍」的敘述中,如果存在沒有提到範圍的變數,則此變數的範圍為 Input 所描述的範圍。

子任務編號	子任務配分	測試資料範圍
1	5%	範例測資
2	20%	n=3
3	75%	$n \le 10^5$

Note

- 第一筆範例測資開門的順序: $3 \rightarrow 4 \rightarrow 1 \rightarrow 5$
- $k_i=0$ 代表該扇門後沒有鑰匙

Source

改編自 Educational Codeforces Round 132(Div.2) problem A