Solution

(1) Predicate Modification (PM): If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[\![\beta]\!]$ and $[\![\gamma]\!]$ are both type $\langle e, t \rangle$, then

$$\llbracket \alpha \rrbracket = \lambda x \llbracket \beta \rrbracket (x) \& \llbracket \gamma \rrbracket (x) \rrbracket$$

1. Justin Bieber is not from Nashville

[Justin Bieber] =
$$\mathbf{b}$$

[Nashville] = \mathbf{n}
[from] = $\lambda y[\lambda z[\mathbf{from}(z, y)]]$
[not] = $\lambda g_{(e,t)}[\lambda y'[\neg g(y')]]$

[from Nashville]

- = [from]([Nashville])
- $= [from](\mathbf{n})$
- $= \lambda y[\lambda z[\mathbf{from}(z,y)]](\mathbf{n})$
- $= \lambda z [\mathbf{from}(z, \mathbf{n})]$

[not from Nashville]

- = [not]([from Nashville])
- $= \lambda g_{\langle e,t \rangle}[\lambda y'[\neg g(y')]]([from Nashville])$
- $= \lambda y'[\neg [from Nashville](y')]$
- $= \lambda y'[\lambda z[\neg \mathbf{from}(z, \mathbf{n})](y')]$
- $= \lambda y'[\neg from(y', \mathbf{n})]$

[Justin Bieber is not from Nashville]

- = [not from Nashville]([Justin Bieber])
- = [not from Nashville](b)
- $= \lambda y'[\neg from(y', \mathbf{n})](\mathbf{b})$
- $= T \text{ iff } \neg \mathbf{from}(\mathbf{b}, \mathbf{n})$

2. Taylor Swift will pet the fuzzy cat

[Taylor Swift] = t
[fuzzy] =
$$\lambda x$$
[fuzzy(x)]
[cat] = λy [cat(y)]
[pet] = $\lambda x'$ [$\lambda y'$ [pet(y', x')]]
[the] = $\lambda f_{(e,t)}$ [$\iota z'$ [$f(z')$]]

$\llbracket \text{fuzzy cat} \rrbracket$

$$= \lambda z[\llbracket \text{fuzzy} \rrbracket(z) \& \llbracket \text{cat} \rrbracket(z) \rrbracket \qquad \text{(via PM rule)}$$

$$= \lambda z[\lambda x[\texttt{fuzzy}(x)](z) \& \llbracket \text{cat} \rrbracket(z) \rrbracket$$

$$= \lambda z[\texttt{fuzzy}(z) \& \llbracket \text{cat} \rrbracket(z) \rrbracket$$

$$= \lambda z[\texttt{fuzzy}(z) \& \lambda y[\texttt{cat}(y)](z) \rrbracket$$

$$= \lambda z[\texttt{fuzzy}(z) \& \texttt{cat}(z) \rrbracket$$

[the fuzzy cat]

= [[the]]([fuzzy cat]])
=
$$\lambda f_{\langle e,t \rangle}[\iota z'[f(z')]]([fuzzy cat]])$$

= $\iota z'[[fuzzy cat]](z')]$
= $\iota z'[\lambda z[fuzzy(z) \& cat(z)](z')]$
= $\iota z'[fuzzy(z') \& cat(z')]$
= \mathbf{c}

[pet the fuzzy cat]

=
$$[\text{pet}]([\text{the fuzzy cat}])$$

= $[\text{pet}](\mathbf{c})$
= $\lambda x'[\lambda y'[\text{pet}(y', x')]](\mathbf{c})$
= $\lambda y'[\text{pet}(y', \mathbf{c})]$

[Taylor Swift will pet the fuzzy cat]

= [pet the fuzzy cat]([Taylor Swift]])
= [pet the fuzzy cat](t)
=
$$\lambda y'$$
[pet(y' , c)](t)
= T iff pet(t, c)