BIOC4540 Enzymology Problem Set #3 ANSWERS

- 1. At a pH midway between the two pKa values (pH 5.2), the side-chain carboxyl group of Asp⁵², with the lower pKa (4.5), is mainly deprotonated (--COO-), whereas Glu³⁵, with the higher pKa (5.9; the stronger base) is protonated (--COOH). At pH values below 5.2, Asp⁵² becomes protonated and the activity decreases. Similarly, at pH values above 5.2, Glu³⁵ becomes deprotonated and the activity also decreases. The pH-activity profile suggests that maximum catalytic activity occurs at a pH midway between the pKa values of the two acidic groups, when Glu³⁵ is protonated and Asp⁵² is deprotonated.
- 2. (a) Calculate the data according to the Hanes-Woolf plot to determine the kinetic parameters from the linear fit of the plotted data. The transformed data are in parentheses in the table below.

Rate of Formation of PGG ₂			Rate of Formation of PGG
Arachidonic Acid (mM)	(mM/min)	([S]/v ₀ , min)	with 10 mg/mL ibuprofen (mM/min) ([S]/v ₀ , min)
0.5	23.5	(0.0213)	16.67 (0.0300)
1.0	32.2	(0.0311)	25.25 (0.0396)
1.5	36.9	(0.0407)	30.49 (0.0492)
2.5	41.8	(0.0598)	37.04 (0.0675)
3.5	44.0	(0.0795)	38.91 (0.0900)

From the graph A: Y = 0.01165 + 0.01935X \therefore $1/V_{max} = 0.01935$ and $V_{max} = 51.68$ mM/min and $K_M/V_{max} = 0.01165$ so $K_M/51.68 = 0.01165$ and $K_M = 0.602$ mM.

From graph B: Y = 0.01963 + 0.01979X $\therefore 1/V_{max} = 0.01979$ and $V_{max} = 50.53$ mM/min. Thus, the V_{max} is essentially unchanged by the inhibitor. For calculation of K_M , $K_M/V_{max} = 0.01963$ so $K_M/50.53 = 0.01963$ and $K_M = 0.992$ mM. Thus, the K_M has been significantly increased by the presence of the inhibitor, indicating that ibuprofen is a competitive inhibitor of arachidonic acid (an increase in K_M but no change in V_{max}).

- 3. Curve A shows competitive inhibition. V_{max} for A is the same as for the normal curve, as seen by the identical intercepts on the v₀ axis. For every value of [S] (until maximal velocity is reached at saturating substrate levels), v₀ is lower for curve A than for the normal curve, indicating competitive inhibition. Note that as [S] increases, v₀/[S] decreases, so that V_{max}—that is, the v₀ at the highest (saturating) [S]—is found at the intersection of the curve at the y-axis. Curve B has a different y-intercept (V_{max}) than the uninhibited curve (bold line) and therefore can not be competitive inhibition. Curve C, while also having an identical V_{max}, shows higher v₀ values for every [S] (and for every v₀/[S]) than for the normal reaction, which is not indicative of inhibition.
- 4. An equivalency exists:

 $0.342 \times 10^{-3} \text{ mmol} = (1.0 \text{ mg/mL}) (10 \text{ mL})/(\text{minimum M}_r) (\text{mg/mmol})$

Thus, the minimum $M_r = (1.0 \text{ mg/mL})(10 \text{ mL})/(0.342 \text{ x } 10^{-3} \text{ mmol}) = 29,240 \text{ mg/mmol} = 29,240 \text{ g/mol}.$

This calculation assumes that the enzyme contains only one titratable –SH group per molecule. If there were two –SH groups per enzyme molecule then the M_r would be 1/2 x 29,240 g/mol = 14,620 g/mol and so forth.

- 5. First measure the *total* acid phosphatase activity in a blood sample in units of μmol of phosphate ester hydrolysed per mL of serum. Then remeasure this activity in the presence of tartrate ion at a concentration sufficient to completely inhibit the enzyme from the prostate gland. The difference between the two activities represents the activity of acid phosphatase from the prostate gland.
- 6. The graph gives us several pieces of information. First, the inhibitor prevents the enzyme from achieving the same V_{max} as in the absence of inhibitor. Second, the overall shape of the two curves is very similar: at any [S] the ratio of the two velocities (\pm inhibitor) is the same. Third, the velocity does not change very much above [S] = 1 mM, so at much higher [S] the observed velocity is essentially V_{max} for each curve. Fourth, if we estimate the [S] at which $1/2V_{max}$ is achieved, this value is nearly identical for both curves. Noncompetitive inhibition, a special form of mixed inhibition, alters the V_{max} of enzymes but leaves K_M unchanged. Thus, acetazolamide acts as a non-competitive inhibitor (mixed) inhibitor of carbonic anhydrase.
- 7. A competitive inhibitor changes the K_M but not the V_{max} for M-M kinetics. Let v_i represent the velocity in the presence of the inhibitor.

$$\frac{\text{Vi}}{\text{Vmax}} = \frac{[S]}{KM(1 + \frac{[I]}{Ki}) + [S]} = \frac{[S]/(K_{M'} + [S])}{\text{where } K_{M'} = K_{M}(1 + [I]/K_{i})}$$

$$\frac{v_i}{55\mu\text{molL}^{-1}min^{-1}} = \frac{2 \cdot 10^{-4}M}{2 \cdot 10^{-4}M(1 + \frac{2.5 \cdot 10^{-3}M}{2.5 \cdot 10^{-3}M}) + 2 \cdot 10^{-4}M}$$

$$v_i = \frac{55\mu molL^{-1} min^{-1} (2 \cdot 10^{-4} M)}{(2 \cdot 10^{-4} M)(1+1) + 2 \cdot 10^{-4} M} = 18.33 \ \mu molL^{-1} min^{-1}$$

In general: when [S] = K_M and [I] = K_i (competitive inhibition) then $v_i = 1/3 \ V_{max}$.

8. Again,
$$\frac{v_i}{V_{\text{max}}} = \frac{[S]}{K_{M'} + [S]}$$
 where $K_{M'} = K_M(1 + [I]/K_i)$

$$\frac{1.5\mu mol L^{-1} \min^{-1}}{300\mu mol L^{-1} \min^{-1}} = \frac{2 \bullet 10^{-5} M}{K_{M} + 2 \bullet 10^{-5} M};$$

 $1.5 \; \mu mol L^{\text{-1}} min^{\text{-1}} (K_{M'} \;) \; + \; 1.5 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 300 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} min^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100 \; \mu mol L^{\text{-1}} \; (2 \bullet 10^{\text{-5}} M) = 100$

1.5 μ molL⁻¹min⁻¹K_{M'} = 597•10⁻⁵ μ molL⁻¹min⁻¹(M); K_{M'} = 398•10⁻⁵M

Now solve for K_i where $K_{M'} = K_M(1 + [I]/K_i)$

$$398 \bullet 10^{-5} M = 6.7 \bullet 10^{-4} M (1 + \frac{1 \bullet 10^{-5} M}{K_i})$$

$$398 \bullet 10^{-5} M = 6.7 \bullet 10^{-4} M + \frac{6.7 \bullet 10^{-9} M^2}{K_i}$$

$$K_i = \frac{6.7 \cdot 10^{-9} M^2}{33.1 \cdot 10^{-4} M} = 0.202 \cdot 10^{-5} M = 2.02 \cdot 10^{-6} M.$$

9. (a)
$$v_0 = \frac{V_{\text{max}}[S]}{K_{\text{ve}} + [S]}$$
 (calculate v_0 at $2 \cdot 10^{-5}$ M in absence of inhibitor)

$$v_0 = \frac{300 \ \mu mol L^{-1} \min^{-1} (2 \bullet 10^{-5} M)}{(6.7 \bullet 10^{-4} M + 2 \bullet 10^{-5} M)} =$$

$$\frac{600 \bullet 10^{-5} \, \mu mol L^{-1} \, min^{-1} \, M}{69 \bullet 10^{-5} \, M} = 8.7 \, \, \mu mol L^{-1} min^{-1}.$$

 V_i from Question #8 = 1.5 μ molL⁻¹min⁻¹ in the presence of 10⁻⁵M [I]

∴ $v_i/v_o = 1.5 \ \mu mol L^{-1} min^{-1}/8.7 \ \mu mol L^{-1} min^{-1} \ x \ 100\% = 17.24\%$

 \therefore D.O.I. (degree of inhibition) = 100% - 17.24% = 82.76%

(b) If [S] increases 10 fold then [S] = 2 x
$$10^{-4}$$
M and using $v_0 = \frac{V_{\text{max}}[S]}{K_M + [S]}$ then

$$V_o = \frac{300 \ \mu mol L^{-1} \min^{-1}(2 \bullet 10^{-4} M)}{(6.7 \bullet 10^{-4} M + 2 \bullet 10^{-4} M)} = \frac{600 \bullet 10^{-4} \ \mu mol L^{-1} \min^{-1} M}{8.7 \bullet 10^{-4} M} = 69 \ \mu mol L^{-1} min^{-1}.$$

In the presence of inhibitor:
$$v_i/V_{max} = \frac{[S]}{K_{M'} + [S]}$$

$$V_{i} = \frac{300 \ \mu molL^{-1} \min^{-1}(2 \bullet 10^{-4} M)}{(39.8 \bullet 10^{-4} M + 2 \bullet 10^{-4} M)} = \frac{600 \bullet 10^{-4} \ \mu molL^{-1} \min^{-1} M}{41.8 \bullet 10^{-4} M} = 14.35 \ \mu molL^{-1} \min^{-1} M = 14.3$$

$$Relative \ velocity = v_i/v_o = \frac{14.35 \, \mu mol L^{-1} \, min^{-1}}{69 \, \mu mol L^{-1} \, min^{-1}} \, x \, \, 100\% = 20.8\%$$

D.O.I. =
$$100\% - 20.8\% = 79.2\%$$

(c) If [S] increases by 100 fold then $[S] = 2 \cdot 10^{-3} M$

$$V_{0} = \frac{300 \ \mu molL^{-1} \min^{-1}(2 \cdot 10^{-3} M)}{(6.7 \cdot 10^{-4} M + 2 \cdot 10^{-3} M)} = \frac{600 \cdot 10^{-3} \ \mu molL^{-1} \min^{-1} M}{2.67 \cdot 10^{-3} M} = 224.5 \ \mu molL^{-1} \min^{-1} M$$

$$V_{i} = \frac{300 \ \mu molL^{-1} min^{-1}(2 \bullet 10^{-3} M)}{(39.8 \bullet 10^{-4} M + 2 \bullet 10^{-3} M)} = \frac{600 \bullet 10^{-3} \ \mu molL^{-1} min^{-1} M}{5.98 \bullet 10^{-3} M} = 100 \ \mu molL^{-1} min^{-1}.$$

$$Relative \ velocity = v_i/v_o = \frac{100 \mu mol L^{-1} \ min^{-1}}{224.5 \mu mol L^{-1} \ min^{-1}} \ x \ 100\% = 44.5\%$$

D.O.I. =
$$100\% - 44.5\% = 55.5\%$$

(d) If $[S] = 2 \bullet 10^{-5} \,\text{M}$ and $[I] = 10^{-6} \,\text{M}$ then $K_{M'}$ changes when [I] changes so must calculate new $K_{M'}$ value.

$$K_{M'} = K_M(1 + [I]/K_i) = (6.7 \bullet 10^{-4} M)(1 + \frac{1 \bullet 10^{-6} M}{2.02 \bullet 10^{-6} M}) = 1.0 \bullet 10^{-3} M$$

Now calculate vi:

$$V_i = \frac{300 \ \mu molL^{-1} \min^{-1}(2 \bullet 10^{-5} M)}{(1.0 \bullet 10^{-3} M + 2 \bullet 10^{-5} M)} = \frac{600 \bullet 10^{-5} \ \mu molL^{-1} \min^{-1} M}{102 \bullet 10^{-5} M} = 5.88 \ \mu molL^{-1} min^{-1}.$$

Relative velocity =
$$v_i/v_o = \frac{5.88 \mu mol L^{-1} min^{-1}}{8.7 \mu mol L^{-1} min^{-1}} \times 100\% = 67.5\%$$

D.O.I. =
$$100\% - 67.5\% = 32.5\%$$

(e) If K_i is increased by 20 fold $(K_i = 20(2.02 \bullet 10^{-6} M) = 4.04 \bullet 10^{-5} M)$

Calculate new K_M: K_M:
$$K_{M} = K_{M}(1 + [I]/K_{i}) = (6.7 \cdot 10^{-4} \text{M})(1 + \frac{1 \cdot 10^{-5} M}{4.04 \cdot 10^{-5} M}) = 8.36 \cdot 10^{-4} \text{M}$$

$$V_i = \frac{300 \ \mu molL^{-1} \min^{-1}(2 \bullet 10^{-5} M)}{(8.36 \bullet 10^{-4} M + 2 \bullet 10^{-5} M)} = \frac{600 \bullet 10^{-5} \ \mu molL^{-1} \min^{-1} M}{85.6 \bullet 10^{-5} M} = 7.01 \ \mu molL^{-1} \min^{-1}.$$

Relative velocity =
$$v_i/v_o = \frac{7.01 \mu mol L^{-1} min^{-1}}{8.7 \mu mol L^{-1} min^{-1}} \times 100\% = 80.5\%$$
.

D.O.I. =
$$100\% - 80.5\% = 19.5\%$$
.

(f) If $[S] = 2 \cdot 10^{-4} \text{M}$ and $[I] = 1 \cdot 10^{-4} \text{M}$ then

$$V_{i} = \frac{300 \ \mu molL^{-1} \min^{-1}(2 \bullet 10^{-4} M)}{(6.7 \bullet 10^{-4} M + (1 + \frac{1 \bullet 10^{-4} M}{2.02 \bullet 10^{-6} M}) + 2 \bullet 10^{-4} M)} = \frac{600 \bullet 10^{-4} \ \mu molL^{-1} \min^{-1} M}{340 \bullet 10^{-4} M}$$

 $= 1.765 \mu mol L^{-1} min^{-1}$.

From part (b): $v_0 = 69 \mu mol L^{-1} min^{-1}$

- ∴ Relative velocity = $v_i/v_o = 1.765 \ \mu mol L^{-1} min^{-1}/69 \ \mu mol L^{-1} min^{-1} \ x \ 100\% = 2.56\%$ D.O.I. = 100% - 2.56% = 97.44%.
- 10. (a) The velocity at $3.5 \cdot 10^{-5} \text{M [S]}$ in the absence of inhibitor is (v_o at 0.03 M [S] = V_{max} = $295 \, \mu \text{molL}^{-1} \text{min}^{-1}$):

$$v_{o} = \frac{V_{\text{max}}[S]}{K_{M} + [S]}; v_{o} = \frac{295 \mu mol L^{-1} \min^{-1} (3.5 \cdot 10^{-5} M)}{(2 \cdot 10^{-4} M + 3.5 \cdot 10^{-5} M)}$$

 $v_o = 1030 \bullet 10^{-5} \ \mu mol L^{-1} min^{-1} M/23.5 \bullet 10^{-5} M = 44 \ \mu mol L^{-1} min^{-1}$.

For noncompetitive inhibition:
$$v_i = \frac{V_{max}[S]}{K_M + [S]}$$
 where $V_{max} = \frac{V_{max}}{1 + \frac{[I]}{K_i}}$

In order to ratio v_i and v_o then ratio the above equation with the equation for v_o where v_o

$$=\frac{V_{\max}[S]}{K_M + [S]}$$

Then:
$$v_i/v_o = \frac{\frac{(\frac{V_{max}}{I + \frac{[I]}{K_i}})[S]}{\frac{K_M + [S]}{K_M + [S]}}}{\frac{V_{max}[S]}{K_M + [S]}} = (\frac{V_{max}[S]}{1 + \frac{[I]}{K_i}})(\frac{K_M + [S]}{V_{max}[S]})(\frac{1}{K_M + [S]}) = \frac{(\frac{V_{max}}{I + \frac{[I]}{K_i}})(\frac{K_M + [S]}{I + \frac{[I]}{K_i}})(\frac{I}{I + \frac{I}{M_i}})(\frac{I}{I + \frac{I}{M_i}})}{\frac{I}{M_i}}$$

$$(\frac{1}{1+\frac{[I]}{K_i}})(\frac{K_i}{K_i}) = \frac{K_i}{K_i + [I]}$$
; Thus for noncompetitive inhibition: $\frac{v_i}{v_o} = \frac{K_i}{K_i + [I]}$

Now apply:
$$v_i = \frac{K_i}{K_i + [I]} v_o$$

$$v_i = \frac{2 \bullet 10^{-5} M}{(2 \bullet 10^{-5} M + 4 \bullet 10^{-5} M)} (44 \mu mol L^{-1} \min^{-1}) = \frac{2 \bullet 10^{-5} M}{6 \bullet 10^{-5} M} (44 \mu mol L^{-1} \min^{-1}) = 14.65 \mu mol L^{-1} \min^{-1}$$

(b) Relative velocity =
$$\frac{v_i}{v_o} = \frac{14.65 \,\mu mol L^{-1} \, min^{-1}}{44 \,\mu mol L^{-1} \, min^{-1}} \times 100\% = 33.3\%$$

D.O.I. = 100% - 33.3% = 66.7%.

11.
$$\frac{v_i}{v_o} = \frac{K_i}{K_i + [I]}$$

D.O.I. = 65% : relative velocity = 35%

So $v_i/v_o = 0.35$ so can substitute into the formula:

$$0.35 = \frac{4 \cdot 10^{-6} M}{4 \cdot 10^{-6} M + [I]} \quad \text{so, [I]} = 7.43 \cdot 10^{-6} M.$$

12. MW for CH₃OH = 32 g/mol then 1.0 mL CH₃OH in 6L of bodily solution has a concentration:

[CH₃OH] =
$$\frac{1.0mL \bullet 0.79 g / mL}{32 g / mol \bullet 6L} = 4.11 \bullet 10^{-3} M$$

CH₃CH₂OH is a competitive inhibitor of CH₃OH with LADH ::

$$v_0 = \frac{V_{\text{max}}[S]}{K_{M'} + [S]}$$
 where $K_{M'} = K_M (\frac{1 + [I]}{K_i})$ and $K_{M(CH3OH)} = 1.7 \cdot 10^{-2} M$

If reduce the LADH activity to 4% of original then $v_i/v_o = 0.04$

$$v_o = \frac{V_{\text{max}}(4.11 \bullet 10^{-3} M)}{(1.7 \bullet 10^{-2} M + 4.11 \bullet 10^{-3} M)}$$

$$V_o = 0.195 V_{max} \ \ \therefore \ \ v_i = 0.04 \ (0.195) V_{max} = 7.8 \bullet 10^{\text{--}3} V_{max}$$

So,
$$v_i/V_{max} = 7.8 \cdot 10^{-3}$$

$$K_i = 0.2(1.3 \bullet 10^{-3} M) = 2.6 \bullet 10^{-4} M$$

$$\frac{v_i}{v_{\text{max}}} = \frac{[S]}{K_M (1 + \frac{[I]}{K_i}) + [S]}$$

$$7.8 \bullet 10^{-3} = \frac{4.11 \bullet 10^{-3} M}{(1.7 \bullet 10^{-2} M)(1 + \frac{[I]}{2.6 \bullet 10^{-4} M}) + (4.11 \bullet 10^{-3} M)}$$

$$4.11 \bullet 10^{-3} M = 1.33 \bullet 10^{-4} M + 0.51[I] + 3.21 \bullet 10^{-5} M$$

$$3.94 \cdot 10^{-3} M = 0.51[I]$$

$$[I] = 7.73 \bullet 10^{-3} M$$

 $MW CH_3CH_2OH = 46 \text{ g/mol}$

 $7.73 \times 10^{-3} \text{ mol/L} \times 6L \times 46g/\text{mol} = 2.13 \text{ g CH}_3\text{CH}_2\text{OH}$ Volume of pure CH}3CH2OH required: $2.13 \text{ g/0.79g mL}^{-1}$ = $2.70 \text{ mL CH}_3\text{CH}_2\text{OH}$

Now, since Molson Canadian is 5% CH₃CH₂OH by volume then the volume of beer required to provide 2.70 mL CH₃CH₂OH is: 2.70 mL/0.05 = 54 mL of beer. I would hope that after being saved from the throws of death by Molson's ale that the child would holler a mighty Canadian Rant!