

《算法设计与分析》

8-贪心算法 (Greedy)

杨启哲

上海师范大学信机学院计算机系

2024年10月31日

主要内容

> 什么是贪心算法

> 贪心算法设计

什么是贪心算法

回顾: Dijkstra 算法

回顾一下 Dijkstra 算法, 我们实际上每次在做这样一件事:

· 从 Y 中选取目前距离最近的一个点 u, 并将其加入 X 中。

这其实是一个贪心的策略。

贪心算法

一个贪心算法会一直去选择当前情况下最优的解。

最小生成树-问题回顾(1)

假设你现在需要将一组计算机连接起来,你需要在这些计算机之间铺设光纤,每条光纤的长度是不同的,你需要找到一种铺设方案,使得铺设光纤的总长度最小。

最小生成树-问题回顾(II)

问题 1.

给定一个含权重的无向图 $G = (V, E, \omega)$,我们需要选出足够多的边集 T,使得在其子图 (V, T) 中任何两个顶点之间都有一条路径,且这些边的权重之和最小。

- 由于满足上述要求的子图一定不会存在一个圈,因此我们实际上求的子图是一棵树。 我们称满足上述要求的子图为 G 的最小生成树。
- 我们默认 G 是连通的,否则我们的要求可以单独作用在每个连通的分图上。

最小生成树-例子

下图给出了上述例子对应的带权重无向图。

• 其中红色边集即为对应的最小生成树。

最小生成树-贪心策略

既然要求最小权重的生成树, 那我每次选取当前权重最小的边, 只要保证不成圈就行。

Kruskal 算法

算法: Kruskal

输入: 含权连通无向图 $G = (V, E), V = \{1, 2, ..., n\}$

输出: G 生成的最小生成树所组成的边集 T

1: 按非降序的权重 E 进行排序,得到 E = $\{e_1, e_2, ..., e_m\}$

2: **T** = ∅

3: for i = 1 to m do

4: if $T \cup \{e_i\}$ 不成圈 then

5: $T = T \cup \{e_i\}$

6: return T

补充说明

判断 T∪{e_i} 是否成圈可以使用并查集,即之前讲过的 UnionFind 数据结构。

Kruskal 算法正确性分析(I)

定理 2. Kruskal 算法能够正确的求出最小生成树。

证明. 令算法找到的生成树为 T,其边的加入顺序为 $\{e_1, e_2, \dots e_{n-1}\}$ 。设 T* 为 G 的最小生 成树, 我们来证明 $\omega(T) = \omega(T^*)$ 。

将 T* 的边也按权重从小到大排列为 $\{e'_1, e'_2, \ldots, e'_{n-1}\}$ 。我们对 k 归纳证明:

$$\omega(e_1) + \cdots + \omega(e_k) = \omega(e_1') + \cdots + \omega(e_k'),$$
 $\forall k, \omega(e_k) = \omega(e_k')$

初始情况是 k=1,由选法我们必然有 $\omega(e_1) \leq \omega(e'_1)$ 。反设 $\omega(e_1) < \omega(e'_1)$ 。注意到 $T^* \cup \{e_1\}$ 一定包含一个圈,因此存在一个边 $e_1' \in T^*$,使得 $T^* \cup \{e_1\} - \{e_1'\}$ 依旧是一颗生成 树,且 $\omega(e_1) < \omega(e_i')$,这与 T^* 是最小生成树矛盾。

从而我们有 $\omega(e_1) = \omega(e'_1)$.

Kruskal 算法正确性分析(II)

Kruskal **算法正确性证明续**. 假设 $\leq k-1$ 成立,考察 k 时的情况:

 $e_k' \in \{e_1, \dots, e_{k-1}\}$: 即 e_k' 已经被选中,从而必然存在 $i \in \{1, \dots, k-1\}$ 使得 e_i' 还未被选中,从而:

$$\omega(e_k')\leqslant \omega(e_k)\leqslant \omega(e_i')\leqslant \omega(e_k')$$

从而 $\omega(e_k) = \omega(e'_k)$.

 $e_k' \notin \{e_1, \dots, e_{k-1}\}$: 即 e_k' 未被选中。则由选法有 $\omega(e_k) \leqslant \omega(e_k')$ 。反设 $\omega(e_k) < \omega(e_k')$,则 $T^* \cup \{e_k\}$ 一定包含一个有 e_k 的圈 π :

- 若 π 包含边 $e'_t(t \ge k)$, 则删去 e'_t 后会得到一颗权重更小的生成树,矛盾。
- ・ 若 π 的边全由 $e_1', \ldots, e_{k-1}', e_k$ 组成且 e_k 是其中权重最大的边,则对于任意的 $i \in [k-1], T^* \cup \{e_i\}$ 的圈都只包含 $\{e_1', \ldots, e_{k-1}', e_i\}$,从而 e_1, \ldots, e_k 中一定会存在一个 圈,矛盾。

因此命题对 k 也成立,即 $\omega(T) = \omega(T^*)$ 。

Kruskal 算法的时间分析

- Kruskal 算法对边排序需要 O(m log m) 的时间。
- ・ 判断是否有圈可以利用并查集,一共至多执行 2m 次 Find 操作和 n-1 次 Union 操作,因此总共耗费 $O(m \log * n)$ 的时间。
- 一共会往 T 里增加 n − 1 条边。

因此,算法的运行时间为 $O(m \log m) = O(m \log n)$.

定理 3.

Kruskal 算法可以在 $O(m\log n)$ 内求出 G 的最小生成树。

Kruskal 算法正确的另一视角-分割性质

我们换个角度再来理解下 Kruskal 算法的正确性。

假设为了构造最小生成树,我们已经选择了一些边,这些边将图上的顶点划分成了若干个部分,下面性质说明,跨越这些部分中的最短边也是某个最小生成树的一部分。

分割性质

设 $G = (V, E, \omega)$ 是一个含权重的连通无向图, $X \neq G$ 的某个最小生成树的一部分, 令 S 是 V 的一个子集, 满足 X 中没有横跨 S 和 V - S 的边, 设 e 是 G 中连接 T 中的一个顶点的最短边, 则 $X \cup \{e\}$ 是 G 的某个最小生成树的一部分。

最小生成树的另一算法-Prim 算法

算法: Prim

输入: 含权连通无向图 $G = (V, E), V = \{1, 2, ..., n\}$

输出: G 生成的最小生成树所组成的边集 T

1:
$$T = \emptyset$$
, $X = \{1\}$, $Y = \{V\} - \{1\}$

- 2: for $y \leftarrow 2$ to n do
- 3: if $(1, y) \in E$ then
- 4: n(y) = 1
- 5: $c(y) \leftarrow \omega(1, y)$
- else $c(y) \leftarrow \infty$
- 7: for $j \leftarrow 1$ to n 1 do
- 8: 从 Y 中选取 w(y) 最小的点 u
- 9: $T = T \cup \{(\mathfrak{u}, \mathfrak{n}(\mathfrak{u}))\}$
- 10: $X = X \cup \{u\}, Y = Y \{u\}$
- 11: for $w \in Y \land (y, w) \in E$ do
- 12: if $\omega(y, w) < c(w)$ then
- 13: $n(w) \leftarrow y, c(w) \leftarrow \omega(y, w)$
- 14: return T

▷ n(y) 记录当前最短边的另一端点

▷ c(y) 记录当前最短边的权重

Prim 算法分析

- 由分割性质、Prim 算法的正确性是显然的。
- Prim 算法与 Dijstra 算法的流程基本相同,所以其复杂性是一样的,取决于优先队列的实现。
 - ∘ 如果使用普通数组, 时间为 O(n²).
 - ∘ 如果使用二叉堆, 时间为 O(m log n).

定理 4.

使用二分堆作为优先队列的实现时,Prim 算法可以在 $O(m \log n)$ 内求出 G 的最小生成树。

问题 5.

假设现在有一个字符型文件,我们希望将其尽可能的压缩文件,但能很容易的重建文件。我们知道的信息有,文件中一共有 n 个字符,分别为 $\{c_1,\ldots,c_n\}$,每个字符出现的次数为 $f(c_1),f(c_2),\ldots,f(c_n)$ 。我们的目标是找到一种压缩方式 τ ,令该压缩方式下, c_i 转换成的字符长度为 $\tau(c_i)$,使得最后文件的总长度最小,即最小化: $\sum_{i=1}^n f(c_i) \cdot \tau(c_i)$ 的值.

定长压缩

一个很自然的方法是定长编码压缩,比如假设一共有 $n=2^k$ 个不同的编码,则我们可以使用 k 位的 01 串来编码每个字符。比如如果文章有 4 个不同的字符 $\{A,B,C,D\}$,则我们可以使用 00,01,10,11 去表示,

文件压缩

定长编码似乎非常有道理,但我们考虑下面这个情况,两个文件由 4 个字符 {A, B, C, D} 组成,但其出现次数分别是:

- f(A) = 25, f(B) = 25, f(C) = 25, f(D) = 25.
- f(A) = 1, f(B) = 1, f(C) = 1, f(D) = 97.

两种情况此时都会用一个 400 位的 01 串表示。但对于第二种情况, 如果我们令:

A:100, B:101, C:11, D:0

用这种编码的话,第二个文件只需要 105 位的 01 串就可以表达了。

通过选择合适的变长编码可以减小文件表示的数目!

编码-二义性

但变长的编码可能会出现二义性。假设某个文件中的 a,b,c 分别用如下编码:

a:10, b, 100, :0

那么对于字符串 100100100:

- · 其想表达的是 bbb?
- · 还是 acbb?
- ...

为了避免歧义,我们引入前缀码的概念,即任何字符的编码都不是其他字符编码的前缀。

定义 6.

如果一个编码满足前缀码的性质,即任何一个字符的编码不会是其他某个字符编码的前缀,则称其为<mark>前缀码</mark>。

前缀码举例

例 7.

考察下面堆字符的一个编码:

!: 101, A: 11, B: 00, C: 010, D: 100, R: 100

其是一个前缀码,对于任何一个由其编码的字符串,其意义是唯一的。

• 11000111101011100110001111101 对应的字符串为 ABRACADABRA!.

前缀码可以由一棵二叉树来表示, 比如上面的例子对应的二叉树为:

Huffman 编码

接下来我们介绍一种构造前缀码的方法,即 Huffman 编码。

David Huffman

Robert Fano

Claude Shannon

- 其直观的思想是,我们希望出现次数多的字符编码尽可能的短。
- 对于前缀码,所有字符都是对应在叶子节点上的,因此算法**优先选择出现次数少的字** 符、将其合并成父节点。

Huffman 算法

算法: Huffman

输入: 一个 $\mathfrak n$ 个字符的集合 $C=\{c_1,\ldots,c_n\}$ 和其字符对应出现的频度: $\{f(c_1),\ldots,f(c_n)\}$

输出: C 的一个 Huffman 编码对应的树 (V,T)

1: 根据频度将所有字符插入最小堆 H

2:
$$V \leftarrow C$$
, $T = \emptyset$

3: for
$$i = 1$$
 to $n - 1$ do

4:
$$c_1 \leftarrow DeleteMin(H)$$

5:
$$c_2 \leftarrow DeleteMin(H)$$

6:
$$f(v) \leftarrow f(c_1) + f(c_2)$$

 $\triangleright \nu$ 是一个构造出来的 c_1, c_2 的父节点

7: Insert(
$$H, v$$
)

8:
$$V \leftarrow V \cup \{v\}$$

9:
$$T \leftarrow T \cup \{(v, c_1), (v, c_2)\}$$

时间复杂性: $O(n \log n)!$

Huffman 编码的效果

	a	ь	c	d	e	f
频度	45	13	12	16	9	5
定长编码	000	001	010	011	100	101
Huffman 编码	0	101	100	111	1101	1100

假设一共有 100000 个字符。

- · 定长编码需要 300000 位。
- Huffman 编码需要 224000 位。

Huffman 编码是压缩率最高的无损编码。

Huffman 算法的正确性

引理 8.

令 C 是一个字母表。对其中每个字符 c C f(c) 为其频率。令 x, y 是其频率最低的两个字符,则存在一个 C 的最优前缀码,使得 x, y 的编码字符长度相同,且只差最后一个二进制不相同。

引理 9.

令 C 是一个字母表。对其中每个字符 $c \in C$, f(c) 为其频率。令 x,y 是其频率最低的两个字符。令 C' 是字母表 C 去掉 x,y 加入一个新的字符 z 后得到的字母表。C' 也定义了其字符的频率 f', f'(c) 与 f(c) 相同,除了定义 f'(z) = f(x) + f(y)。则对于 C' 的一个最优前缀码对应的编码树 T,将其中代表 z 的叶子节点替换成一个以 x,y 为孩子的内部节点得到新的树 T',则 T' 是 C 的一个最优前缀码对应的编码树。

定理 10.

Huffman 算法可以正确的构造出最优前缀码。

贪心算法

对于贪心算法而言,

- 设计是容易的,因为只要选择当前最优解即可。
- 但证明其正确性往往并不容易,因为局部最优并不一定是全局最优。

关于贪心算法

贪心算法不总是一直能保证获取最优解,但是它总能给出一个算法,且其时间复杂性往 往是很低的。

活动选择问题

我们来看一个调度竞争共享资源的活动选择问题。

问题 11

[活动选择问题].

假设有 \mathfrak{n} 个活动的集合 $S=\{a_1,\ldots,a_n\}$ 。这些活动使用同一个资源,而这个资源在某个时刻只能供一个活动使用。每个活动 a_i 都有一个开始时间 s_i 和结束时间 f_i ,且满足 $0\leqslant s_i< f_i<+\infty$ 。如果两个活动 a_i , a_j 的时间没有重叠,也就是说有 $s_i\geqslant f_j$ 或者 $s_j\geqslant f_i$,则称它们是兼容的。问题是:我们希望选出一个最大兼容活动集合。

补充说明

为了方便起见,我们假设 a_i 是按结束时间单调递增排序的,即 $f_1 \leq f_2 \leq \cdots \leq f_n$ 。

活动选择问题-例子

例 12.

考察下面一个例子:

										10	
si	1	3	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

- {a₃, a₉, a₁₀} 是兼容的。
- {a₁, a₂, a₈, a₁₁} 是不兼容的。
- 一个最大兼容活动集合为 $\{a_1,a_4,a_8,a_{11}\}$,另一个为: $\{a_2,a_4,a_9,a_{10}\}$.

活动选择问题-贪心策略

既然要求最大兼容活动集合、那我每次选取当前结束时间最早的活动就行。

算法 ActivitySelector(S, f)

输入: 活动集合 $S=\{a_1,\ldots,a_n\}$,按结束时间单调递增排序,即 $f_1\leqslant f_2\leqslant\cdots\leqslant f_n$

输出: S 的一个最大兼容活动子集 A

1:
$$A = \{a_1\}$$

2:
$$k = 1$$

3: for
$$i = 2$$
 to n do

4: if
$$s_i \geqslant f_k$$
 then

5:
$$A = A \cup \{a_i\}$$

$$k = i$$

7: return A

时间复杂性: O(n)!

活动选择问题-贪心策略的正确性

引理 13.

令 S_k 表示在 a_k 结束后开始的任务集合。则我们有,若 a_{m_k} 是 S_k 中结束时间最早的活动,则 a_{m_k} 在 S_k 的某个最大兼容活动集中。

证明. 令 A_k 是 S_k 的某个最大兼容活动集,并且 a_{l_k} 是 A_k 中结束时间最早的任务。

- 如果 $a_{m_k} = a_{l_k}$,显然 $a_{m_k} \in A_k$,引理成立。
- 如果 $\mathfrak{a}_{\mathfrak{m}_k} \neq \mathfrak{a}_{\mathfrak{l}_k}$,则考虑 $A_k' = (A_k \{\mathfrak{a}_{\mathfrak{l}_k}\}) \cup \{\mathfrak{a}_{\mathfrak{m}_k}\}$,我们有:

$$\forall \alpha, b \in A_k' \Rightarrow f_\alpha \leqslant s_b \vee f_b \leqslant s_\alpha$$

从而 A'_k 也是 S_k 的某个最大兼容活动子集。

定理 14

算法 ActivitySelector(S, f) 可以正确的求出最大兼容活动子集。

零钱兑换问题

再来考虑零钱兑换问题。

零钱兑换问题

假设你现在手上有面值分别为 $a_1,\ldots,a_n(a_1< a_2<\cdots < a_n)$ 的硬币,现在你需要用这些硬币来凑出一个面值为 M 的钱,问你最少需要多少个硬币?

我们不妨假定 $a_1 = 1$,这能保证我们一定能够凑出面值为 M 的钱。 你的策略是什么?

零钱兑换问题-贪心策略

我们考察如下的一个策略:

· 每次都选择面值最大的硬币 ai。

这个策略是否一定能成功?

1. 面值为: 1,2,5?

2. 面值为: 1,2,7,10?

特殊情况

我们能证明,当面值满足: $1, c, c^2, c^3, \ldots, c^{n-1}$ 的时候贪心策略是成功的。

证明. 令 $M = (m_1, ..., m_n)$ 是一个兑换策略, 若 M 是一个最优解, 则一定有:

对任意的
$$i \in \{1, \dots, n-1\}$$
 我们有 $m_i < c$ (1)

事实上不妨假设 $m_j \geqslant c, j \in \{1, \dots, n-1\}$,注意到 $c \cdot c^j = c^{j+1}$,从而兑换策略 $M' = \{m_1, \dots, m_j - c, m_{j+1} + 1, \dots, m_n\}$ 会是一个更优的策略。

我们再证明,满足条件 1 的策略是唯一的。反设存在两个兑换策略 $M_1=(\mathfrak{m}_{11},\ldots,\mathfrak{m}_{1n})$ 和 $M_2=(\mathfrak{m}_{21},\ldots,\mathfrak{m}_{2n})$ 都满足条件 1 ,则我们有 :

$$\sum_{i=1}^{n-1} (m_{1i} - m_{2i})c^{i} = c^{n}(m_{2n} - m_{1n})$$
 (2)

证明续. 若 $m_{2n} - m_{1n} \neq 0$,不妨令其 ≥ 1 ,则我们有:

$$\sum_{i=1}^{n-1} (m_{1i} - m_{2i}) c^{i} \le \sum_{i=1}^{n-1} (c-1) \cdot c^{i} = (c-1) \cdot \frac{c^{n} - 1}{c-1} = c^{n} - 1 < c^{n}$$
(3)

与 2 矛盾, 从而 $\mathfrak{m}_{2n} - \mathfrak{m}_{1n} = 0$ 。

以相同的方式从大到小逐一考虑 $m_{1i}-m_{2i}$ 的值,我们可以最终得到,等式 2 成立当且仅 当 $M_1=M_2$,从而满足条件 1 的策略是唯一的。

最后注意到由于贪心策略给出的策略满足条件 1,从而贪心策略给出了该情况下的最优解。

零钱兑换问题的回顾

我们通过零钱兑换问题展示了贪心算法的特点。

贪心算法

- 贪心策略并不总能成功。
- 贪心策略可能在一些特殊情况下是可以成功的。

关于更多

要想解决所有情况下的零钱兑换问题,我们需要动态规划的思想。

集合覆盖问题(I)

考虑如下的问题:下图中的点代表一组城镇。我们需要决定在哪些城镇建立学校,需要满足两个要求:

- 1. 学校必须建设在城镇上。
- 2. 从任意一个城镇出发,到最近的学校的距离不超过 30 公里。为了方便表示,我们将可达的城镇用边连接起来。

集合覆盖问题(II)

我们可以利用集合的语言来描述这个问题。

令集合 U 表示所有的城镇,令 S_a 表示学校建在城市 a 的话能在 30 公里能到达的城镇。

- $U = \{a, b, c, \dots, h, i, j\}$.
- $S_{\alpha} = \{b, c, k, i, h\}$,即所有 α 在图中的邻边访问的点。

问题就转化成了,至少挑几个集合 S_x ,使得所有的城镇都被覆盖。这就是<mark>集合覆盖问题</mark>。

问题 15

[集合覆盖问题].

给定一个集合 u 和一些子集 S_1,\ldots,S_n ,求一个最小的子集 T,使得 $\cup_{t\in T} S_t=u$.

集合覆盖问题(III)

集合覆盖问题的贪心策略

• 选取包含未被覆盖元素的最大集合 S_i 。

这是正确的算法么?

很遗憾,并不是。

- 在上述例子中,我们的贪心策略会选择 $\{a,d,g,j\}$.
- 但实际上, {b, e, i} 是最优的选择。

集合覆盖问题 (IV)

幸运的是,贪心算法的解并不是一无是处。

定理 16.

令 u 有 n 个元素,最优解包含 k 个集合,贪心算法的解包含 l 个集合,则 $l \leqslant k \ln n$.

换句话说, 贪心算法的解始终不会超过最优解的 ln n 倍。

证明. 令 n_t 表示贪心算法经过 t 轮后未被覆盖的元素个数, $n_0 = n$,则我们有:

$$n_{t+1}\leqslant n_t-\frac{n_t}{k}\leqslant n_t(1-\frac{1}{k})\leqslant n_0(1-\frac{1}{k})^t\leqslant n_0e^{-t/k}$$

从而 $t = k \ln n$ 时 $n_t < 1$,即不会存在未被覆盖的元素。

这里最后利用了如下的不等式:

$$1 - x \leqslant e^{-x}$$

关于贪心算法的进一步思考

我们已经可以看到、贪心算法并不总能保证最优解。

- 事实上很多情况下,贪心算法能保证得到的解和最优解只有一个特定的比例。
- 这比值可能是一个常数,也可能是一个和问题规模有关的函数,比如在上述的集合覆盖问题中,这个比值和 ln n 有关。
- 事实上,尽管看起来还有很大改进空间,但是在该问题中,已经不存在一个多项式时间的算法能够做到更好的比值了。
- 这也是近似算法的一个初衷,我们会在后续进一步讨论。

本节内容

- 贪心算法
 - 。什么是贪心算法
 - 。 贪心算法的特点
- 贪心算法设计举例
 - 。 最小生成树-Kruskal 算法和 Prim 算法。
 - 。文件压缩-Huffman 编码。
 - 。 活动选择问题。
 - 。零钱兑换问题。
 - 。 集合覆盖问题。