ON FAITHFUL MODULAR REPRESENTATIONS

Let A be a complete discrete valuation ring with residue field \mathbb{F}_q and uniformiser π . For $d, r \in \mathbb{Z}_{>0}$, we would like to ask:

Question 0.1. Does $G_r := GL_d(A/\pi^r)$ admit an *n*-dimension faithful \mathbb{F}_q -representation (i.e. a group injection from G_r to $GL_n(\mathbb{F}_q)$), where *n* depends on *d*, *r*, char(*A*), but not on *q*?

Indeed, if $\operatorname{char}(A) > 0$, then this question has a simple affirmative answer and the associated \mathbb{F}_q -representation can be used to link various aspects of the geometric representation theory of G_r . However, as illustrated in the following example, if $\operatorname{char}(A) = 0$, then this question is usually negative beyond the abelian case.

Example 0.2. Let us take $A = W(\mathbb{F}_q)$ and r = 2. Via the Teichmüller lift (see e.g. Fesenko–Vostokov) we know that the multiplicative group of $W_2(\mathbb{F}_q)$ is $C_{q-1} \times C_q$, which is the same with that of $\mathbb{F}_q[[\pi]]/\pi^2$, so there is a group embedding

$$\operatorname{GL}_1(W_2(\mathbb{F}_q)) \longrightarrow \operatorname{GL}_2(\mathbb{F}_q)$$

via

$$\operatorname{GL}_1(W_2(\mathbb{F}_q)) \cong C_{p-1} \times C_p \ni (x,y) \longmapsto \begin{bmatrix} x & xy \\ 0 & x \end{bmatrix}.$$

However, in general we do not have such an embedding for d > 1. Indeed, let q = p be a prime and consider the group $GL_2(W_2(\mathbb{F}_p))$: It has the subgroup

$$\begin{bmatrix} 1 & W_2(\mathbb{F}_p) = \mathbb{Z}/p^2 \\ 0 & 1 \end{bmatrix}$$

which admits p-elements of order p^2 , however, $GL_n(\mathbb{F}_p)$ cannot contain such a p-element for any p > n:

(Sketch of proof.) Suppose g is a matrix in $GL_n(\mathbb{F}_p)$ of order p^2 . Since we are doing computations over \mathbb{F}_p , we have $(x-I)^p = x^p - I$ for any matrix x. So, if $g^{p^2} = I$, then (by letting $x = g^p$) $(g-I)^{p^2} = 0$. By conjugating g into an upper triangular matrix J(g) (for example, take J(g) to be the Jordan normal form) we see this implies that the diagonal of J(g) must be I, so, since p > n, we must have $(g-I)^p = 0$, which implies $g^p = I$, contradicting the requirement that g has order p^2 .

Remark 0.3. We remark that, there is a complete classification of finite groups admitting *irreducible* faithful \mathbb{F}_q -representations, given by Tadasi Nakayama (see e.g. his paper "Note on faithful modular representations of a finite group").