A végpont és meghatározása

Ferenci Tamás tamas.ferenci@medstat.hu

Utoljára frissítve: 2024. május 24.

Végpont

- Mi az, hogy végpont?
- Elsődleges vs. másodlagos
 - "Ami fontos" (klinikailag)
 - Amire a kísérlet ereje tervezve van!

A végpontok jellegei

Mivel írható le? (feltételezzünk az egyszerűség kedvéért kétkarú vizsgálatot)

- Bináris vagy dichotóm végpont (pl. meghalt-e): egy arányt kapunk minden csoportban (p)
- A "természetes" metrikák:
 - RR = p_T/p_C (néha: RRR = 1 RR, pl. a 0,7-es RR-re azt is lehet mondani, hogy 30%-os csökkenés)
 - $-ARR = p_T p_C$
- Ez egyszerűsítés volt (de nekünk most elég lesz):
 - az utánkövetési idő hossza ami eltérhet páciensenként fontos
 - ha okspecifikus (nem all-cause) mortalitási végpontot használunk, vagy nem mortalitási végpontot használunk, a versengő kockázatok fontosak
- A metrikák általában is besorolhatóak "abszolút" vagy "relatív" típusúként, más jellegű végpontokra is

Rothman, Kenneth J., Sander Greenland, Timothy L. Lash. Modern Epidemiology. Philadelphia: Wolters Kluwer Health/Lippinc-ott Wilkins, 2008.

Bináris végpont egy problémája

- Még a legegyszerűbb esetekben is dilemmákhoz vezethet, egy példa: a kontrollcsoportban 2% kapott infarktust, a sztatinnal kezelt csoportban 1%, akkor most...
 - A fantasztikus gyógyszerünk 50%-kal csökkenti a kockázatot!
 - A fantasztikus gyógyszerünk nélkül 100%-kal nagyobb az infarktuskockázatod!
 - 100 emberből 98-at feleslegesen kezelünk, mert amúgy se kapna infarktust, 1-et hiába kezelünk, mert gyógyszerrel együtt is infarktust kap, és csak 1 az, akinél elérünk valamit (viszont közben mind a 100-at kitesszük a mellékhatáskockázatoknak, mind a 100-zal kifizettetjük stb.)!
- Ugye mennyire máshogy hangzik? Pedig csak osztani kell tudni, hogy lássuk: ez a három igazából ugyanaz!

Cook, Richard J., David L. Sackett. The number needed to treat: a clinically useful measure of treatment effect. BMJ. 310.6977 (1995): 452-454. Malenka DJ, Baron JA, Johansen S, et al. The framing effect of relative and absolute risk. J Gen Intern Med. 1993 Oct;8(10):543-8. Gigerenzer G, Wegwarth O, Feufel M. Misleading communication of risk. BMJ. 2010 Oct 12;341:c4830.

A "keretezési" hatás

- Malenka (1993): 10% eséllyel meghalsz kezelés nélkül, az A gyógyszer 80%-kal csökkenti ezt a kockázatot, a B gyógyszerrel 100 embert kezelve 8-at megment, melyiket választanád? \rightarrow A-t 56,8%, B-t 14,7%, mindegy 15,5%, nem tudom 13,0% (a kutatásban betegek vettek részt)
- Bucher (1994): orvosok egy része relatív, más része abszolút formában kapta meg ugyanazon kutatás eredményeit; teljesen máshogy értékelték a gyógyszer jóságát
- Schwartz (1997): az abszolút és relatív információ megértése szorosan összefügg a matematikai alapkészségekkel
- Gigerenzer (2008): "100%-kal növeli a fogamzásgátló a trombóziskockázatot" (1 per 7000 kockázatnövekedés, csak akkora pánik lett belőle Angliában 1995-ben, hogy 13 ezer többlet-terhességmegszakítást hajtottak végre…)

A "keretezési" hatás

• Gigerenzer (2008): "a mammográfia 25%-kal csökkenti az emlőrák-mortalitást" \rightarrow laikusok több mint negyede szerint ez azt jelenti, hogy minden 1000 nőből 250-nel kevesebb hal meg emlőrákban, még nőgyágyasz szakorvosok 15%-a szerint is ez a helyzet

Malenka DJ, Baron JA, Johansen S, et al. The framing effect of relative and absolute risk. J Gen Intern Med. 1993 Oct;8(10):543-8. Bucher HC, Weinbacher M, Gyr K. Influence of method of reporting study results on decision of physicians to prescribe drugs to lower cholesterol concentration. BMJ. 1994 Sep 24;309(6957):761-4. Moynihan R, Bero L, Ross-Degnan D, et al. Coverage by the news media of the benefits and risks of medications. N Engl J Med. 2000 Jun 1;342(22):1645-50. Mason D, Prevost AT, Sutton S. Perceptions of absolute versus relative differences between personal and comparison health risk. Health Psychol. 2008 Jan;27(1):87-92. Schwartz LM, Woloshin S, Black WC, et al. The role of numeracy in understanding the benefit of screening mammography. Ann Intern Med. 1997 Dec 1;127(11):966-72. Gigerenzer G, Wegwarth O, Feufel M. Misleading communication of risk. BMJ. 2010 Oct 12;341:c4830. Gigerenzer G, Gaissmaier W, Kurz-Milcke E, et al. Helping Doctors and Patients Make Sense of Health Statistics. Psychol Sci Public Interest. 2007 Nov;8(2):53-96.

Az NNT koncepciója

- Az előző gondolat elvezet minket az NNT ötletéhez (number need to treat)
- $NNT = \frac{1}{ARR}$
- A kulcskérdés: ez jelenik meg a kockázat-haszon mérlegben! a kockázatokat az NNT-vel kell felszorozni
- Már most észrevehető, hogy az NNT nem csak a gyógyszeren múlik, tehát az NNT nem azért volt ennyire magas itt, mert a gyógyszer "rossz"; a dolog a p_C -n, a baseline rizikón (=kontrollcsoport rizikója) is múlik
- Megjegyzés: az NNT statisztikai értelemben elég rossz mutató, de most a koncepció a fontos, és abban nagyon hasznos
- Összefoglalva: az abszolút különbség a releváns, mert mutatja a klinikai hasznot...
- …a relatív meg a gyógyszergyárak marketing-részlegeinek fontos, hogy feltupírozott számokat tudjanak mutatni??

Az esély

• Esély (odds): "valószínűség osztva 1 mínusz valószínűséggel" avagy "bekövetkezés valószínűsége osztva a be nem következés valószínűségével" (pl. megbetegedők száma osztva a meg nem betegedők számával, nem az alanyok számával):

$$odds = \frac{p}{1 - p}$$

- Furcsának hathat, pedig a sportfogadásból ismert: tényleg ugyanarról van szó
- Az, hogy "3 az 1-hez" adják a hazai csapat győzelmét (3 az 1-hez az oddsa) ugyanaz, mint hogy 25% a valószínűsége
- És fordítva: ahelyett, hogy "10% holnap az eső valószínűsége" nyugodtan mondhatná azt az időjárásjelentés, hogy "9 az 1-hez az eső oddsa"

• Bármelyikből kiszámítható a másik $(p = \frac{\text{odds}}{1 + \text{odds}})$, a használatuk tehát teljes mértékben csak konvenció kérdése, hogy az időjárásjelentésnél ezt szoktuk meg, a sportfogadásnál meg azt

Az esélyhányados

• A két esély hányadosa:

$$OR = \frac{p_T / (1 - p_T)}{p_C / (1 - p_C)}$$

- Tehát teljesen mint a relatív rizikó, csak "időjárásjelentős" szóhasználat helyett "sportfogadó" szóhasználattal kifejezve a valószínűséget
- Miért jó (azon túl, hogy bizonyos statisztikai modellek ezt szolgáltatják, és hogy eset-kontroll elrendezésnél csak ezt lehet kiszámítani)?
- Az RR nem szimmetrikus, sem arra nézve, hogy melyik irányból nézzük az adatainkat, sem arra nézve, hogy mi a kimenet

Az RR aszimmetriája – hogy nézünk rá az adatokra

Ekcéma és szénanátha kapcsolata:

	Szénanáthás	Nem szénanáthás	Összesen
Ekcémás	141	420	561
Nem ekcémás	928	13525	14453
Összesen	1069	13945	15522

- Szénanátha relatív rizikója ekcéma szerint (ha ekcémás vagy, hányszorosára nő a szénanátha valószínűsége) $\frac{141/561}{928/14453}=3,91$, ekcéma relatív rizikója szénánátha szerint (ha szénanáthás vagy, hányszorosára nő az ekcéma valószínűsége) $\frac{141/1069}{420/13945}=4,38$
- Viszont: szénanátha esélyhányadosa ekcéma szerint (ha ekcémás vagy, hányszorosára nő a szénanátha esélye) $\frac{141/420}{928/13525} = 4,89$, ekcéma esélyhányadosa szénanátha szerint (ha szénanáthás vagy, hányszorosára nő az ekcéma esélye) $\frac{141/928}{420/13525} = 4,89$!
- ...miközben a két betegség ebből a szempontból nyilván teljesen szimmetrikus, egyik sem kitüntetett, csak a kapcsolatukra vagyunk kíváncsiak

Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000 May 27;320(7247):1468.

Az RR aszimmetriája – mit nevezünk kimenetnek

Tekintsük a következő egyszerű példát:

	Meghalt	Túlélt
Kezelt	25	75
Kontroll	50	50

- Ha a halálozás rizikóját nézzük: $RR=\frac{25/100}{50/100}=0,5,$ de ha a túlélés "rizikóját": $RR=\frac{75/100}{50/100}=1,5$
- Halálozás esélyhányadosa $OR = \frac{25/75}{50/50} = 1/3$, a túlélésé: $OR = \frac{75/25}{50/50} = 3$
- Tehát az esélyhányados szimmetrikus (ha megfordítjuk a kimenetet, megfordul reciproka lesz az OR), de a relatív rizikó $nem: \frac{1}{0.5} = 2 \neq 1,5!$
- Nyilván teljesen mindegy, hogy a halálozást vagy a túlélést vesszük kimenetnek, hiszen az egyik úgyis meghatározza a másikat, de a relatív rizikó *mégis* függ ettől
- Nagyon zavaró módon nem ugyanazt kapom, ha azt számolom, hogy hányan haltak meg és ha azt, hogy hányan éltek túl (noha ez nyilván teljesen mindegy kellene legyen)!

Cummings P. The relative merits of risk ratios and odds ratios. Arch Pediatr Adolesc Med. 2009 May;163(5):438-45.

További megfontolások ehhez

- Az OR nehezebben értelmezhető
 - "The only way, we are told, that physicians can understand probabilities: odds being a difficult concept only comprehensible to statisticians, bookies, punters and readers of the sports pages of popular newspapers." (Stephen Senn)
- Az OR konstansabb (homogénebb) lehet
 - Egy 10%-os baseline rizikójú populáción valamilyen káros tényező hatása RR=3 mi történik, ha ez a tényező egy 40%-os baseline rizikójú populációban hat?!
 - Az 1-nél nagyobb RR-ek matematikailag lehetetlen, hogy mindig érvényesek tudjanak lenni! (Ellenérv: RR<1-nél nincs ilyen baj, és az mindig elérhető, legfeljebb megcseréljük a kimenetet)
 - OR-nél nincs ilyen baj, hiszen minden további nélkül mehet 1 fölé (a visszaszámolt valószínűség mindig 0 és 1 között lesz)
- Az OR nem "összeönthető" (collapsible)
- A kettő közel van egymáshoz, ha a végpontok ritkák (mert ha $p \to 0$, akkor $\frac{p}{1-p} \to p$)

A végpontok jellegei

Mivel írható le? (feltételezzünk az egyszerűség kedvéért kétkarú vizsgálatot)

- Bináris (meghalt-e): arányt kapunk (p)
 - $RR = p_T/p_C$
 - $-ARR = p_T p_C, NNT = 1/ARR$
 - $\log \mathrm{OR} = \frac{p_T/(1-p_T)}{p_C/(1-p_C)},$ log OR, ésatöbbi
- Folytonos: eloszlásokat kapunk
 - Átlag/medián változott-e
 - Nagyon óvatosan a binarizálással (dichotomizálással)!
- Folytonos, de idő: túlélési görbéket kapunk

Általános szempontok az eltelt idő jellegű végpontokhoz

- Szóhasználat (függetlenül a konkrét helyzettől) egységesen: túlélési idő
- Túlélési görbe: a még életben lévők (végpontot el nem érők) aránya az eltelt idő függvényében
- (Elvileg sokaságban a valószínűség, ezt mintából aránnyal becsüljük)
- A probléma: cenzorálás
- "A beteg a 2 éves viziten még megjelent, de további információt nem tudtunk róla szerezni"
- Naiv logika: nem tudjuk, hogy mikor halt meg (érte el a végpontot), így nyilván nem tudjuk felhasználni ebben a vizsgálatban, akár csak a túlélési görbe meghatározásában, hiszen ahhoz kellene tudnunk, hogy mennyi idő telt el a halálig
- Csakhogy ez nem igaz!

A cenzorálás

- Az igaz, hogy nem tudjuk biztosan, hogy mi a végpontig eltelt idő
- De az nem igaz, hogy nem tudunk semmit!
- Valamit igenis tudunk: azt, hogy bármennyi is ez az idő, de több mint 2 év
- Ezt az információt fel kellene tudnunk használni
- Ezt hívják (jobb oldali) cenzorálásnak: részleges információnk van, csak azt tudjuk, hogy az érték nagyobb mint egy bizonyos szám

- Minimum hatásossági okokból fel kellene minden információt használni, ami rendelkezésre áll, de az ilyenek elhagyása torzítást is okozna
- Fontos: cenzorálás nem csak a fenti esetben van! Két alapeset létezik:
 - Loss to follow-up: mint fent, egyszerűen eltűnik az alany, nincs róla teljes utánkövetésünk
 - Teljes utánkövetésünk van az alanyról, csak épp végetért a kutatás mielőtt elérte volna a végpontot (ez is ugyanúgy cenzorálás!)

Túlélési görbe becslése cenzorálás jelenlétében

- Érdekes módon nem olyan nagyon régen, 1958-ban oldotta meg Edward Kaplan és Paul Meier
- Alapötlet: annak a valószínűsége, hogy valaki megéli a harmadik évet egyenlő annak a valószínűsége, hogy megéli az elsőt szorozva azzal, hogy megéli a másodikat feltéve, hogy megélte az elsőt szorozva azzal, hogy megéli a harmadikat feltéve, hogy megélte az elsőt
- Pl. 100-ból az első évben meghalnak 5-en, a másodikban 2-en, a harmadikban 3-an; mennyi a túlélés a harmadik év végén?
- Egyik logika: túléltek 90-en, összesen voltak 100-an, tehát $\frac{90}{100} = 0.9$, azaz 90%
- Másik logika (a fenti): $\frac{95}{100}\cdot\frac{93}{95}\cdot\frac{90}{93}=0,9,$ tehát ugyanúgy 90%!
- Azaz: cenzorálás nélkül a két számítás ugyanarra jut
- De mi van, ha van cenzorálás, pl. a első évben kicenzorálódik 1, a másodikban 4?

Túlélési görbe becslése cenzorálás jelenlétében

- Itt jön a kulcslépés: a második számításba beépíthető ez!
- Egyszerűen annyit kell tenni, hogy a halálozások számához nem nyúlunk, de alul amivel osztunk, azt lecsökkentjük a cenzorálással!
- Tehát az többé nem a "nem meghaltak", hanem a "nem meghaltak és nem cenzorálódottak" száma
- A cenzorálás révén kisebb lesz a "kockázatnak kitett populáció" (hiszen aki kicenzorálódott, az már nem tud meghalni)
- A példában: $\frac{95}{100} \cdot \frac{92}{94} \cdot \frac{85}{88} = 0,898$, azaz 89,8%
- (Ezt persze le kell vezetni, pl. ML-elven is megtehető)
- Túlélési görbén: tipikus egy apró metsző vonal ott, ahol cenzorálás van
- Ettől még a görbe tovább fut, ugyanúgy vízszintesen mintha mi sem történt volna
 csak épp a következő halálozás már "jobban fog számítani"!

Túlélési görbe

Túlélési görbék

Metrikák a kiértékelésre

- Adott idejű, például 1 éves, túlélés (ezzel lényegében binarizáljuk a végpontot)
- Medián túlélés (szintén levágjuk, csak most "vízszintesen")
- Vagy: hazárd változott-e
- Alternatív mérőszámok (RMST, cure modellek)

Eltelt idő jellegű végpont: a hazárd fogalmának illusztrálása

Eltelt idő jellegű végpont: a hazárd fogalmának illusztrálása

Eltelt idő jellegű végpont: a hazárd fogalmának illusztrálása

Eltelt idő jellegű végpont: és akkor most jöjjön az összehasonlítás

Eltelt idő jellegű végpont: és akkor most jöjjön az összehasonlítás

Eltelt idő jellegű végpont: és akkor most jöjjön az összehasonlítás

A HR definíciója

- Nagyon fontos: nem kell, hogy a hazárdfüggvény ilyen egyenes legyen (ez csak véletlenül volt így az előző ábrákon)...
- ...de erre nincs is szükség!
- Csak annyi a fontos, hogy a kezelt csoport hazárdja minden időpillanatban ugyanannyiszorosa legyen a kontrollcsoportének (a kettő hányadosa minden időpillanatban ugyanannyi legyen)
- Hazárdhányados (hazard ratio, HR): Hányszorosa a kezelt csoport hazárdja a kontrollcsoporténak?

- Na de melyik időpontban?
- Mindegy! (Mert mindegyik időpontban ugyanannyiszorosa)
- Ezt hívjuk úgy, hogy a hazárdok proporcionálisak, a HR csak ilyen esetben értelmezhető egyértelműen

Pár illusztráció proporcionális hazárdokra: HR = 0,7

De: nem-proporcionális hazárdok

A HR interpretációja

- HR = 0.5
- A kezelés felére csökkenti a halálozás kockázatát?
- A kezelés felére csökkenti a halálozás kockázatát adott időtávon belül?
- A probléma a kockázat szó: a hazárd, ha nagyon akarjuk, valóban kockázat, de egy rendkívül speciális értelemben (ami nem egyezik azzal, amit hétköznapilag értünk "kockázat" alatt!)
- Pillanatnyi vs. időintervallumra vonatkozó kockázat

Spruance SL, Reid JE, Grace M, Samore M. Hazard ratio in clinical trials. Antimicrob Agents Chemother. 2004 Aug;48(8):2787-92.

A pillanatnyi és a szokásos kockázat

Exponenciális túlélés, baseline hazárd 1%, HR = 0.6

A pillanatnyi és a szokásos kockázat: RR

Időpont	${\bf Kontroll}$	\mathbf{Kezelt}	Relatív rizikó
0	1000	1000	
1	990	994	0,600
2	980	988	0,601
3	970	982	0,602
4	961	976	0,604
5	951	970	0,605
6	941	965	0,606
7	932	959	0,607
:	:	:	:
363	26	113	0,911
364	26	112	0,912
365	26	111	0,912

A pillanatnyi és a szokásos kockázat: ARR

A pillanatnyi és a szokásos kockázat: NNT

A HR interpretációja

• Sokszor valamiféle "sebességként" kezelik (első ránézésre érthető módon, mi is azt mondtuk, hogy "milyen gyorsan" fogynak a betegek), például ilyeneket mondva:

- kétszer hamarabb vagy kétszer gyorsabban halnak meg kezelés nélkül a betegek...
- kétszer annyian halnak meg adott időpontban...
- kétszer annyian halnak meg adott időpontig...
- kétszer valószínűbb, hogy meghalnak kezelés nélkül...
- Ezen megfogalmazások mindegyike hibás!
- A sebesség-analógia félrevezető: a sebesség értelmezhető egy konkrét autóra, de a "milyen gyorsan fogynak" megközelítés csak betegek egy csoportjára: az teljesen értelmezhető, hogy a betegek ezen csoportja ebben az időpontban 1%/nap gyorsasággal fogy, azaz hal meg (mert például 1 nap alatt 100-ból 1 halt meg), de ez egy konkrét betegre értelmetlen, hiszen ő nem tud 1 nap alatt 1%-ig meghalni...

Spruance SL, Reid JE, Grace M, Samore M. Hazard ratio in clinical trials. Antimicrob Agents Chemother. 2004 Aug;48(8):2787-92.

Függés a túlélési görbe alakjától

- A HR a túlélési görbe alakjától is függ
- Végeredményben a klinikailag releváns hatást egyáltalán nem biztos, hogy úgy jellemzi, ahogy azt intuitíve várnánk

Remek kezelés: HR=0,5

Ugyanolyan (???) remek kezelés: HR=0,5

Gyengécske kezelés: HR=0,75

A HR előnyei és hátrányai

- Felhasználja a teljes túlélési görbét (nem csak egy pontját, mint a fix idejű túlélési arány vagy a medián túlélési idő)
- De kérdés, hogy a proporcionalitás teljesül-e

- Figyelni kell az interpretációval, ahogy az előbb láttuk
- Függ a túlélési görbe alakjától is
- A HR relatív mutató problémás, hogy mennyire jellemzi jól a hatánagyságot ("klinikai előny")
- (A fix idejű túlélési arány és a medián túlélési idő abszolút mutató!)

A HR-en túl

Céljaink lehetnek:

- Feloldani a proporcionalitás szükségességét
- Interpretálható (abszolút jellegű) mutatót adni, mely a klinikai hasznot jobban jellemzi, mely lefordítható kézzelfogható klinikai előnyre

Új metrikák: RMST

- Miért nem nézzük az átlagos túlélési időt?
- Először értsük ezt meg: mi az az átlagos túlélési idő? Hol jelenik ez meg?
- Kezdjük az átlag definíciójával: össze kell adni minden betegre, hogy meddig élt (és elosztani a betegek számával)
- Nézzünk egy egyszerű példát: nincs cenzorálás, 0-ba megy a túlélési görbe

Átlagos túlélési idő szemléltetése

Átlagos túlélési idő szemléltetése

Átlagos túlélési idő szemléltetése

Átlagos túlélési idő szemléltetése

Átlagos túlélési idő

- ...azaz az átlagos túlési idő épp a görbe alatti terület!
- (A görbe alatti területet ugyan úgy szokták szemléltetni, hogy függőleges oszlopokat húznak egymás mellé, de a végeredmény szempontjából mindegy)
- Nem kevésbé érdekes a különbség az átlagos túlélési időben: a két túlélési görbe közti terület!
- "Hány hónapot adunk átlagosan a betegeknek ezzel a kezeléssel?"

- Gyakran szokták kérdezni, mert kézenfekvő (klinikai hasznot jól mutató metrika!), de meg szoktak lepődni, hogy ez az átlagos túlélési időre vezet vissza
- A hányados is releváns relatív mutatóként

A nem teljes utánkövetés problémája

Mi van, ha a túlési görbe nem megy 0-ba (mert cenzorálásokkal ér véget)? Úgy szokták ábrázolni, mintha ott "véget érne" a túlélési görbe…

A nem teljes utánkövetés problémája

...valójában persze a görbe nem tud véget érni – az megy tovább, mégpedig vízszintesen!

A nem teljes utánkövetés problémája

Emiatt a görbe alatti terület végtelen lesz!

Az átlagos túlélési idő problémája

- A probléma: ha a túlélési görbe nem megy nullába, akkor az átlagos túlélési idő végtelen!
- Jobbra "kifut végtelenbe" a sáv (a még élő betegek olyan, mintha végtelen túlélési idővel bírnának)
- Pont ezért jó mellesleg a medián: ha a számok 49%-a végtelen, a medián akkor is értelmezett, az átlag már akkor sem, ha csak egyetlen egy végtelen!
- Ötlet: csak egy adott időpontig bezárólag adjuk össze!
- Restricted Mean Survival Time (RMST) fogalma
- Az előzmények régebbiek, de az orvosi irodalomban a 2010-es évek elején jelent igazán meg (Royston és Parmar)

Royston P, Parmar MKB: The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med. 2011, 30: 2409-2421. 10.1002/sim.4274. Royston P, Parmar MK. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med Res Methodol. 2013;13:152.

Az RMST szemléltetése

Az RMTL fogalma

Az átlagos elvesztett idő (RMTL), vagy – két görbe esetén – azok hányadosa szintén releváns lehet:

Hajime Uno, Brian Claggett, Lu Tian et al. Moving Beyond the Hazard Ratio in Quantifying the Between-Group Difference in Survival Analysis. J Clin Oncol. 2014 Aug 1; 32(22): 2380–2385. doi: 10.1200/JCO.2014.55.2208.

Az RMST előnyei

- Nem függ olyan feltevéstől mint a hazárdok proporcionalitása, működik a nélkül is ("modell-mentes")
- Ráadásul ha fennáll, akkor a szignifikanciák nagyon hasonlítanak a hazárdokon alapuló módszerekéhez

Az RMST előnyei

Trial (Ref. #)	Treatment	HR Reported	HR p Value	T* (Months)	RMST (95% CI) (Months)	RMTL (95% CI)	RMTL p Value	∆RMST (95% CI)	∆RMS1 p Value
CONSENSUS (24)	Enalapril	0.73†	0.003	12	8.7 (7.9 to 9.5)	0.6 (0.4 to 0.8)	0.001	2.2 (1.0 to 3.4)	<0.00
	Placebo	Ref.		12	6.5 (5.6 to 7.4)	Ref.		Ref.	
SOLVD TREATMENT (35)	Enalapril	0.84‡ (0.74 to 0.95)	0.004	48	38.1 (37.2 to 38.9)	0.8 (0.7 to 0.9)	0.003	1.9 (0.7 to 3.2)	0.003
	Placebo	Ref.		48	36.2 (35.3 to 37.1)	Ref.		Ref.	
RALES (25)	Spironolactone	0.70 (0.60 to 0.82)	0.001	34	26.2 (25.4 to 27.0)	0.8 (0.7 to 0.9)	< 0.001	2.2 (1.1 to 3.4)	< 0.00
	Placebo	Ref.		34	23.9 (23.1 to 24.8)	Ref.		Ref.	
CIBIS-II (26)	Bisoprolol	0.66 (0.54 to 0.81)	< 0.001	24	22.0 (21.7 to 22.3)	0.7 (0.6 to 0.8)	< 0.001	0.9 (0.4 to 1.4)	< 0.00
	Placebo	Ref.		24	21.1 (20.8 to 21.5)	Ref.		Ref.	
MERIT-HF (36)	Metoprolol	0.66 (0.53 to 0.81)	< 0.001	18	17.1 (17.0 to 17.4)	0.7 (0.6 to 0.8)	< 0.001	0.4 (0.2 to 0.7)	< 0.00
	Placebo	Ref.		18	16.7 (16.5 to 16.8)	Ref.		Ref.	
SHIFT (37)	Ivabradine	0.90 (0.80 to 1.02)	0.092	30	27.3 (27.0 to 27.5)	0.9 (0.8 to 1.0)	0.052	0.3 (-0.01 to 0.70)	0.052
	Placebo	Ref.		30	26.9 (26.7 to 27.2)	Ref.		Ref.	
EMPHASIS-HF (38)	Eplerenone	0.76 (0.62 to 0.93)	0.008	36	32.7 (32.2 to 33.2)	0.8 (0.6 to 0.9)	0.010	1.0 (0.2 to 1.7)	0.009
	Placebo	Ref.		36	31.7 (31.1 to 32.2)	Ref.		Ref.	
PARADIGM-HF (39)	Sacubitril/valsartan	0.84 (0.76 to 0.93)	< 0.001	41	36.2 (35.9 to 36.5)	0.9 (0.8 to 0.9)	< 0.001	0.8 (0.3 to 1.3)	0.001
	Enalapril	Ref.		41	35.4 (35.1 to 35.8)	Ref.		Ref.	
DAPA-HF (40)	Dapagliflozin	0.83 (0.71 to 0.97)	NA*	24	22.3 (22.1 to 22.5)	0.8 (0.7 to 0.98)	0.028	0.3 (0.04 to 0.60)	0.028
	Placebo	Ref.		24	22.0 (21.7 to 22.2)	Ref.		Ref.	
VICTORIA (41)	Vericiguat	0.95 (0.84 to 1.07)	0.38	32	26.2 (25.7 to 26.6)	0.95 (0.9 to 1.1)	0.368	0.3 (-0.3 to 0.9)	0.367
	Placebo	Ref.		32	25.9 (25.4 to 26.3)	Ref.		Ref.	

Carlotta Perego, Marco Sbolli Claudia Specchia et al. Utility of Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and Interpretation. JACC: Heart Failure. Volume 8, Issue 12, December 2020, Pages 973-983. doi: 10.1016/j.jchf.2020.07.005

Az RMST előnyei

- Nem függ olyan feltevéstől mint a hazárdok proporcionalitása, működik a nélkül is ("modell-mentes")
- Ráadásul ha fennáll, akkor a szignifikanciák nagyon hasonlítanak a hazárdokon alapuló módszerekéhez
- De közben a számérték jobban értelmezhető ("várható túlélés hossza adott időpontig bezárólag"), klinikai haszonként is (abszolút jellegű mutató!)
- Ebből fakadóan jobban összehasonlítható: értelmezhető a különbség (görbék közötti terület!), szintén abszolút mutató, és relatívvá is jól tehető, mert a kontroll-csoport RMST-je jó viszonyítási alap, így a relatív mutató szemben a HR-rel is jobban értelmezhető klinikai előnyként

Az RMST előnyei

Trial (Ref. #)	Treatment	HR Reported	HR p Value	T* (Months)	RMST (95% CI) (Months)	RMTL (95% CI)	RMTL p Value	∆RMST (95% CI)	∆RMS p Valu
CONSENSUS (24)	Enalapril	0.73†	0.003	12	8.7 (7.9 to 9.5)	0.6 (0.4 to 0.8)	0.001	2.2 (1.0 to 3.4)	<0.00
	Placebo	Ref.		12	6.5 (5.6 to 7.4)	Ref.		Ref.	
SOLVD TREATMENT (35)	Enalapril	0.84‡ (0.74 to 0.95)	0.004	48	38.1 (37.2 to 38.9)	0.8 (0.7 to 0.9)	0.003	1.9 (0.7 to 3.2)	0.00
	Placebo	Ref.		48	36.2 (35.3 to 37.1)	Ref.		Ref.	
RALES (25)	Spironolactone	0.70 (0.60 to 0.82)	0.001	34	26.2 (25.4 to 27.0)	0.8 (0.7 to 0.9)	< 0.001	2.2 (1.1 to 3.4)	< 0.0
	Placebo	Ref.		34	23.9 (23.1 to 24.8)	Ref.		Ref.	
CIBIS-II (26)	Bisoprolol	0.66 (0.54 to 0.81)	< 0.001	24	22.0 (21.7 to 22.3)	0.7 (0.6 to 0.8)	< 0.001	0.9 (0.4 to 1.4)	< 0.0
	Placebo	Ref.		24	21.1 (20.8 to 21.5)	Ref.		Ref.	
MERIT-HF (36)	Metoprolol	0.66 (0.53 to 0.81)	< 0.001	18	17.1 (17.0 to 17.4)	0.7 (0.6 to 0.8)	< 0.001	0.4 (0.2 to 0.7)	< 0.0
	Placebo	Ref.		18	16.7 (16.5 to 16.8)	Ref.		Ref.	
SHIFT (37)	Ivabradine	0.90 (0.80 to 1.02)	0.092	30	27.3 (27.0 to 27.5)	0.9 (0.8 to 1.0)	0.052	0.3 (-0.01 to 0.70)	0.05
	Placebo	Ref.		30	26.9 (26.7 to 27.2)	Ref.		Ref.	
EMPHASIS-HF (38)	Eplerenone	0.76 (0.62 to 0.93)	0.008	36	32.7 (32.2 to 33.2)	0.8 (0.6 to 0.9)	0.010	1.0 (0.2 to 1.7)	0.00
	Placebo	Ref.		36	31.7 (31.1 to 32.2)	Ref.		Ref.	
PARADIGM-HF (39)	Sacubitril/valsartan	0.84 (0.76 to 0.93)	< 0.001	41	36.2 (35.9 to 36.5)	0.9 (0.8 to 0.9)	< 0.001	0.8 (0.3 to 1.3)	0.00
	Enalapril	Ref.		41	35.4 (35.1 to 35.8)	Ref.		Ref.	
DAPA-HF (40)	Dapagliflozin	0.83 (0.71 to 0.97)	NA*	24	22.3 (22.1 to 22.5)	0.8 (0.7 to 0.98)	0.028	0.3 (0.04 to 0.60)	0.02
	Placebo	Ref.		24	22.0 (21.7 to 22.2)	Ref.		Ref.	
VICTORIA (41)	Vericiguat	0.95 (0.84 to 1.07)	0.38	32	26.2 (25.7 to 26.6)	0.95 (0.9 to 1.1)	0.368	0.3 (-0.3 to 0.9)	0.36
	Placebo	Ref.		32	25.9 (25.4 to 26.3)	Ref.		Ref.	

Carlotta Perego, Marco Sbolli Claudia Specchia et al. Utility of Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and Interpretation. JACC: Heart Failure. Volume 8, Issue 12, December 2020, Pages 973-983. doi: 10.1016/j.jchf.2020.07.005

Az RMST hátrányai

- Függ az időbeli cut-off megválasztásától
- Érdemes lehet a legnagyobb szóba jövőt használni, illetve több különbözővel is ellenőrizni az eredményt

Cure modellek: a gyógyulás modellezése

- A klasszikus megközelítés nem "törődik" azzal, ha valaki meggyógyul (precízen: előbb-utóbb mindenki elszenvedi a végpontot)...
- …egyszerűen cenzorálódni fog (miközben a cenzorálás igazából két dolgot jelentene: akik lost to follow-up, és akik még nem érték el a végpontot)
- Ők azonban soha nem fogják elérni
- All-cause mortalitásnál ez logikus, hiszen ott nincs is más lehetőség
- De mi van, ha okspecifikus mortalitást használunk?
- A gyógyulóknak lényegében végtelen a túlélésük (a túlélési görbe nem nullába tart, a cenzoráltak nem tudjuk, hogy hová tartoznak, gyógyulóak, vagy nem, csak szokásos – két – értelemben cenzorálódtak), ezt valahogy kezelni kellene
- A cenzoráltak hovatartozása miatti bizonytalanság következtében nem triviális a matematikai kezelés
- (Az egy külön kérdés, hogy mi van, ha más okból fakadó halálozás is van)

Amico, M., Van Keilegom, I. (2018). Cure Models in Survival Analysis. Annual Review of Statistics and Its Application, 5(1), 311–342. doi:10.1146/annurev-statistics-031017-100101

Cure modellek: keverék (mixture) modellek

- A betegek egy adott hányada meggyógyul (100% valószínűséggel túlél), a többiek túlélését egy szokásos túlélési görbe írja le
- A túlélés adott időpontban tehát a gyógyulók aránya, plusz a nem gyógyulók közül annyi, aki még túlél
- Tehát itt két becsülendő paraméter van: a gyógyulók aránya, és a túlélési görbe a nem gyógyulók körében

Cure modellek: keverék (mixture) modellek

Paul C. Lambert. Modeling of the cure fraction in survival studies. The Stata Journal (2007) 7, Number 3, pp. 351–375. DOI: 10.1177/1536867X0700700304.

Cure modellek: nem keverék modellen alapuló (non-mixture) modellek

- Az alapötlet, hogy a hazárd belefut egy felső határba...
- ...ebből fakadóan a túlélési függvény egy alsóba
- És pont ezt akartuk modellezni
- (A matematikája a proporcionális hazárd modellre emlékeztet)
- Ritkábban használják

Egy általános gondolat a relatív és abszolút metrikákhoz

Az abszolút metrika (ARR, medián túlélési különbség, 1 éves túlélési arány különbség stb.) felfogható származtatott mutatóként: a relatív metrika (RR, OR, HR stb.) és a baseline kockázat szorzata

- Bináris végpontnál egyszerű a helyzet: $ARR = p_C p_T = p_C p_C \cdot RR = p_C \cdot (1 RR) = p_C \cdot RRR$ (tehát szó szerint szorzat)
- Bár esetről esetre meg lehetne vizsgálni, de nagy általánosságban az mondható, hogy
 - az abszolút metrikák fontosak a klinikai döntéshozatalhoz,
 - kutatásban viszont a relatívat érdemes lemérni, mert azok jobban átvihetőek más populációkra is
- (Tehát a relatív eredmény stabilabb: lehet, hogy más populációban eltérő a baseline kockázat, de a tapasztalat az, hogy a relatív viszony ilyenkor is nagyon hasonló lesz ezt többek között az is jól alátámasztja, hogy az alcsoport-analízisekben általában elég konzisztensek szoktak lenni a relatív metrikák)
- Mi a baj a korábbi sztatinos példával?

Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses-sometimes informative, usually misleading. BMJ. 1999 Jun 5;318(7197):1548-51. Ferenci T. Absolute risk reduction may depend on the duration of the follow-up. Expert Rev Clin Pharmacol. 2017 Dec;10(12):1409-1410.

A mutató stabilitásának kérdése: a sztatinok esete

Kísérlet neve	Kontrollcso- port rizikója	Relatív rizikó	Abszolút rizi- kó-különbség	Utánkövetés hossza [év]
JUPITER	0,48%	0,81 (-19%)	0,09 %pont	1,9
AFCAPS/TexCAPS	0.76%	$0,68 \ (-32\%)$	0,24 %pont	5,2
ASCOT-LLA	$1,\!60\%$	0,90 (-10%)	0.16 % pont	3,3
WOSCOPS	$2,\!22\%$	0,68 (-32%)	0.70 %pont	4,9
CARE	$6,\!26\%$	0,86 (-14%)	0.87~%pont	5
HPS	$9,\!13\%$	0,83 (-17%)	1,52 % pont	5
4S	$9,\!31\%$	0,66 (-34%)	3,19 % pont	5,4
LIPID	$9,\!62\%$	0.76 (-24%)	2,28 % pont	6,1
PROSPER	$10{,}06\%$	0,86 (-14%)	1,38 % pont	3,2

Mi volt a baj az első sztatinos példával?

- A kérdés kulcsa az utánkövetési idő: vélhetően nagyon rövid volt!
- (Mindössze 1 meg 2% kapott halálos infarktust?!)
- Itt jön a kritikus kérdés: ha elfogadjuk a relatív mutató stabilitását időben is, akkor azt látjuk, hogy a baseline rizikó akkumulálódásával az ARR egy nagyobb és nagyobb (és így az NNT egyre kisebb és kisebb) lesz

Mi történik időben, stabil RR mellett?

Mi történik időben, stabil RR mellett?

Mi történik időben, stabil RR mellett?

Mi történik időben, stabil RR mellett?

Mi történik időben, stabil RR mellett?

2. számú aspektus: Problémát jelent az RCT-k speciális betegösszetétele?

- A fenti jelenség természetesen nem csak a különböző utánkövetési idők által indukált eltérő kockázatokra igaz, hanem az eltérő betegösszetételből fakadó eltérő kockázatra is!
- Gyakran hallani: "az RCT-kben mindig speciális betegeket vonnak be, így kérdés, hogy az eredményeik mennyire általánosíthatóak az összes betegre (ami ebből fakadóan a megfigyeléses vizsgálatok előnye)"
- Ez igaz, de...
- Fogjuk fel úgy, hogy a táblázat alsó soraiban lévő vizsgálatok a "valódi" betegpopuláción történtek, a felső sorokban lévők a klinikai kísérlet alanyai!

3. számú aspektus: egyéni döntéshozatal

- Egész idáig csoportokról, átlagokról, aggregált adatokról beszéltünk
- De az egész logika változatlanul alkalmazható az egyéni döntéshozatal kontextusában is!
- "Írjak-e fel sztatint ennek a konkrét, előttem ülő páciensnek?"
- A metodika a fentiek alapján:
 - Kiveszem az RR-t a gyógyszervizsgálatból, a p_C -t pedig a beteg jellemzői alapján

- A kettőt összevetve kiszámolom az ARR-t
- Abból kiszámolom az NNT-t
- És ezzel meghatározom a kockázat-haszon mérleget a gyógyszeradási döntéshez – egyedileg, az adott, konkrét betegre!
- Megjegyzés: honnan tudjuk *egyénileg* a baseline rizikót, a p_C -t az adott, konkrét betegre? a jellemzői alapján (életkor, nem, társbetegségek stb.); a különböző risk score-ok pont ezt csinálják

Az abszolút és relatív metrikák használata

- Tehát, az általánosan jó stratégia: a vizsgálatban a relatív metrikát mérni, de aztán a konkrét klinikai szituációban az abszolút metrika kiszámításával kontextusba helyezni azt
- A cél: "additive at the point of analysis but relevant at the point of application" (Stephen Senn)
- Általában is igaz, hogy "le kell fordítani" az eredményeket (klinikailag: az általános információból a konkrét betegre vonatkozóra, figyelembe véve az egyéni információkat; matematikailag: RR-ről ARR-re, figyelembe véve a p_C -t)
- A fenti munkamódszer tehát lehetővé teszi az extrapolációt, időben, vagy különböző páciensek között, de ez igazából ugyanazt jelenti: különböző baseline rizikókra áttérés
- De, mindez úgy működött, hogy feltételeztük, hogy a relatív rizikó állandó
- Ez egy feltételezés (ezért nem lenne rossz például, ha az RCT-knek nem lenne annyira speciális a betegösszetétele, hogy ne nagyon legyen szükség ilyen feltevésekre)

 $Senn\ S.\ At\ odds\ with\ reality.\ \texttt{http://www.bmj.com/rapid-response/2011/10/27/odds-reality}.$

Egy illusztráció az abszolút és relatív metrikákhoz...

ICS-LAMA-LABA vs. LAMA-LABA COPD-ben

The rate of moderate or severe exacerbations during treatment among patients assigned to triple therapy was 0.91 per year, as compared with [...] 1.21 per year among those assigned to uneclidinium-vilanterol (rate ratio with triple therapy, 0.75; 95% CI, 0.70 to 0.81; 25% difference; P<0.001).

- Szokásos sztori: a relatív ("25%-os csökkenés") jó lehet mint kísérletben kimérendő eredménye...
- ...de a klinikai döntéshozatalhoz az abszolút lesz a fontos!

- A másik fontos: a kontextusba helyezés, például a mi betegünknek a baseline kockázata is nagyobb (a vizsgálatban egészségesebb alanyok voltak!), mondjuk 1,6 exacerbáció/év
- Feltéve, hogy a gyógyszer relatív hatása állandó, a tripla kombinációval $1,6\cdot0,75=1,2$ exacerbációja lesz évente

Lipson DA, Barnhart F, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med. 2018 May 3;378(18):1671-1680.

Egy illusztráció az abszolút és relatív metrikákhoz...

- A különbség (1,6-1,2=) 0,4 exacerbáció/év
- Még kifejezőbb ha úgy fogalmazunk: (1/0,4=) 2,5 évig kell egy beteget kezelnünk ezzel ahhoz, hogy egy exacerbációt megelőzzünk
- Biztos megéri 2,5 évnyi kezelés mellékhatásainak kitenni egy beteget egy exacerbáció megelőzése végett? Biztos megéri 2,5 évnyi kezelést kifizettetni egy exacerbáció megelőzése végett?
- Ezek persze már nem statisztikai kérdések, de a "statisztika" segít abban, hogy jól megfogalmazzuk/megértsük, hogy egyáltalán mi a kérdés!

Lipson DA, Barnhart F, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med. 2018 May 3:378(18):1671-1680.

...és egy - nagyon fontos - továbbgondolás

A másik nagy előny ez abszolút metrikáknak, hogy megkönnyíti a különböző kimenetek egymással történő összevetését

ICS-LAMA-LABA vs. LAMA-LABA COPD-ben

[T]he risk of clinician-diagnosed pneumonia was significantly higher with triple therapy than with umeclidinium-vilanterol, as assessed in a time-to-first event analysis (hazard ratio, 1.53; 95% CI, 1.22 to 1.92; P<0.001).

- A 25% exacerbáció rizikó csökkenés összevethetetlen az 53%-os pneumoniabeli növekedéssel! (hiszen teljesen mások a baseline rizikók)
- Ha azonban jobban megnézzük a kéziratot, akkor láthatjuk, hogy az ICS-LAMA-LABA csoportban a pneumonia rizikója 0,0958 / betegév, a LAMA-LABA csoportban 0,0612 / betegév
- Ez lehetővé teszi, hogy abszolút metrikát számoljunk: a tripla kombináció (0,0958-0,0612=) 0,0346/évvel növeli a pneumonia rizikóját (mondjuk, hogy itt a betegünk baseline rizikója ugyanaz, mint a kutatásban)
- Azaz a szokásos további átszámítással: (1/0,0346=) 28,9 évnyi kezeléssel okozunk egy többlet tüdőgyulladást

Különböző végpontok összevethetősége

- És most már ordít, hogy miért beszélhetünk "összevethetőség megteremtéséről": ez magyarán azt jelenti, hogy kb. 11,5 exacerbációt előzünk meg 1 tüdőgyulladás árán!
- Megint csak: az nyilván nem statisztikai kérdés, hogy ez megéri-e, "ér-e" 11,5 exacerbációt 1 pneumonia de így legalább látjuk, mégpedig klinikailag értelmes, releváns módon, hogy egyáltalán mit kell összevetni! (a százalákos változásokból ez nem derült ki!)
- (Megjegyzés: út az exacerbáció és a pneumonia közös nevezőre hozására: életévveszteség, minőséggel korrigált életév-veszteség...)

Sajnos az abszolút mutatók sem problémamentesek

- Eltelt idő jellegű végpont esetén a két abszolút jellegű mutató (medián túlélés növekedés és fix például 1 éves túlélési arány javulás) sajnos ellentmond egymásnak!
- A következő ábrákon pontosan ugyanolyan a túlélési görbe alakja, pontosan ugyanúgy rögzítetten 0,7 a HR, az egyetlen különbség, hogy a kontrollcsoport milyen gyorsan hal (mekkora a baseline rizikó)

Sajnos az abszolút mutatók sem problémamentesek

Sajnos az abszolút mutatók sem problémamentesek

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Sajnos az abszolút mutatók sem problémamentesek

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Sajnos az abszolút mutatók sem problémamentesek

Sajnos az abszolút mutatók sem problémamentesek

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

A két mutató ellentmondása

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Az ellentmondás egy konkrét illusztrációja

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Az ellentmondás egy konkrét illusztrációja

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Az ellentmondás egy konkrét illusztrációja

Snapinn S, Jiang Q. On the clinical meaningfulness of a treatment's effect on a time-to-event variable. Stat Med. 2011 Aug 30;30(19):2341-8.

Kemény vs. surrogate végpont: ami az optimális

Tételmondat: a jó surrogate-séghez *nem* elég, hogy jól korrelált legyen ("correlate does not a surrogate make")! Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996 Oct 1;125(7):605-13.

Kemény vs. surrogate végpont: ami baj lehet

Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996 Oct 1;125(7):605-13.

Kemény vs. surrogate végpont: pár példa

Table 1. Speculation on Reasons for Failures of Surrogate End Points*

Disease and Intervention	End Point		Settings in Figure 1†				
	Surrogate	Clinical	A	В	C	D	
Cardiologic disorder Arrhythmia	The transfer of the second	THE PERSON NAMED IN	11.		1 1 1 1 1 1	177	
Encainide; flecainide	Ventricular arrhythmias	Survival					
Quinidine; lidocaine	Atrial fibrillation			+		++	
Congestive heart failure	Attachoniation	Survival		+		++	
Milrinone; flosequinan	Cardiac output; ejection fraction	Survival					
Elevated lipid levels	cardiac output, ejection naction	Survival		+		++	
Fibrates; hormones; diet; lovastatin	Cholesterol levels	Survival					
Elevated blood pressure	endesteror revers	Survival		+		++	
Calcium channel blockers	Blood pressure	Myocardial infarction; survival		+		++	
Cancer		Survival					
Prevention							
Finasteride Advanced disease	Prostate biopsy	Symptoms; survival	++‡				
Fluorouracil plus leucovorin	Tumor shrinkage	Survival		1.0		1 - 7 7	
Other diseases		50,1110		-		++	
HIV infection or AIDS							
Antiretroviral agents	CD4 levels; viral load	AIDS events; survival		1	700	5 15 2	
Osteoporosis		, and events, survival		т		+	
Sodium fluoride	Bone mineral density	Bone fractures	+				
Chronic granulomatous disease		- and mactares				-	
Interferon-γ	Bacterial killing; superoxide production	Serious infection			++		

Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996 Oct 1;125(7):605-13.

Végpontok összefogása

- A legfontosabb ok: dúsítja a végpontok számát, ezáltal növeli az erőt (adott mintanagysággal kisebb különbséget is ki tudunk mutatni, illetve ugyanazon különbség kimutatásához elég kisebb mintanagyság is)
- Védelem az ellen, ha a terápia csak konvertálja a végpontot
- De: ugyanazon biológiai jelenség manifesztációit mérjék, de azért ne túlságosan ugyanazt
- Mely komponens változása adta az összesített változást...?
- Extrém széles összefogás kérdései (pl. UKPDS)

Moyé L. Introduction to Composite Endpoints. In: Moyé L. Multiple Analyses in Clinical Trials - Fundamentals for Investigators. Springer, 2003.

Egy példa: UKPDS

^{*} AIDS = acquired immunodeficiency syndrome; HIV = human immunodeficiency virus; + = likely or plausible; ++ = very likely.
† A = surrogate end point not in causal pathway of the disease process; B = of several causal pathways of the disease, the intervention only affects the pathway mediated through the surrogate; C = the surrogate is not in the pathway of the intervention's effect or is insensitive to its effect; D = the intervention has mechanisms of action that are independent of the disease process.
‡ In settings in which only latent disease is prevented.

	Active rx. (n = 2729)	Conv. rx. (n = 1138)	P-value	Rel, risk	95% CI*
Composite endpoints	963	238	0.029	0.88	[0.79 - 0.99]
Fatal endpoints	285	129	0.340	0.90	[0.73 - 1.11]
Fatal MI	207	90	0.630	0.94	[0.68 - 1.30]
Stroke deaths	43	15	0.600	1.17	[0.54 - 2.54]
Renal deaths	8	2	0.530	1.83	[0.21 - 12.49]
Glucose related**	1	1	0.523	0.420***	[0.03 - 6.66]
Sudden death	24	18	0.047	0.54	[0.24 - 1.21]
Death from PVD****	2	3	0.120	0.26	[0.03 - 2.77]
Nonfatal endpoints					
Nonfatal MI	197	101	0.067	0.79	[0.58 - 1.09]
Angina pectoris	177	72	0.910	1.02	[0.71 - 1.46]
Major stroke	114	44	0.720	1.07	[0.68 - 1.69]
Amputation	27	18	0.990	0.81	[0.28 - 1.33]
Blindness	78	38	0.390	0.84	[0.51 - 1.40]
Renal failure	16	9	0.450	0.76	[0.53 - 1.08]
Photocoagulation*****	207	117	0.003	0.71	[0.53 - 0.96]

UKPDS Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):837-53.