110 學年度普通型高級中學數學科能力競賽(決賽)

筆試 (一) 試題卷

始贴	•	1	飷	ıL.	4	咕	١
編號	•	 . (宇	王	日	填	J

注意事項:

(1) 時間:2小時(13:30~15:30)

(2) 配分:每題皆為7分

(3) 不可使用計算器

(4) 請將答案依序寫在答案卷內

(5) 學生自評預估得分(每題 0~7分)

一、試求所有不小於1的實數x, y, z,滿足

$$\min\left\{\sqrt{x+xyz}, \sqrt{y+xyz}, \sqrt{z+xyz}\right\} = \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1},$$

其中 $min\{p,q,r\}$ 表示 p,q,r 三數的最小值。

二、如圖, $\triangle ABC$ 的內心為I,其內切圓與 \overline{BC} , \overline{CA} , \overline{AB} 的切點分別是D,E,F。 直線 \overline{CI} , \overline{DF} 交於點P,點Q在 \overline{BI} 的延長線上,它與B在直線 \overline{PC} 的相反兩側,且滿足 \overline{PQ} + \overline{BC} =s,其中s是 $\triangle ABC$ 的半周長。令 \overline{AH} 垂直 \overline{BC} 於點H。試證: (1) A,I,F,P 四點共圓; (2) P,Q,D,H 四點共圓。

三、設 $\langle a_n \rangle$ 及 $\langle b_n \rangle$ 為公比不相等的兩個等比數列,而 $c_n = \alpha a_n + \beta b_n$ 都不等於 0,其中 α , β 為非零實數。令 n 次多項式 $f_n(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$ 。已知對於正整數 $n \geq 2$,多項式 $f_n(x) + x^2 f_{n-2}(x)$ 除以 $x f_{n-1}(x)$ 的餘式皆為次數小於或等於 1 的多項式,試證:乘積 $a_n b_n$ 是一與 n 無關的常數。

110 學年度普通型高級中學數學科能力競賽(決賽)

筆試 (二) 試題卷

始贴	•	1	飷	ıL.	4	占	1
編號	•	 (字	王	目	填	j

注意事項:

(1) 時間:2小時(16:00~18:00)

(2) 配分:每題皆為7分

(3) 不可使用計算器

(4) 請將答案依序寫在答案卷內

(5) 學生自評預估得分(每題 0~7分)

一、在平行四邊形 ABCD 中,點 E 在 \overline{BC} 上,點 F 在 \overline{CD} 上,且 \overline{AE} 交 \overline{BD} 於點 P, \overline{AF} 交 \overline{BD} 於點 Q。設 C_p 是以 P 為圓心、 \overline{BP} 為半徑的圓,而 C_Q 是以 Q 為圓心、 \overline{QD} 為半徑的圓,且兩圓的交點為 R, R'。試證: $\overline{BE} \times \overline{DF} = \overline{CE} \times \overline{CF}$ 的充要條件為 $\angle BRD = 120^\circ$ 。

二、試問有多少組整數數對(a,b),滿足 $1 \le a \le b \le 2021$,且 $\frac{ab^2 + a + b}{a^2b + a + 9}$ 為整數?

三、用 0 和 1 排成的 n 項數列中,滿足連續兩項為 0,0 的組數與連續兩項為 1,1 的組數相等之數列稱為「n 項的平衡數列」。例如: 8 項數列 0,0,0,1,1,0,1,1 中,連續兩項為 0,0 的有 2 組,連續兩項為 1,1 的也有 2 組;因此,數列 0,0,0,1,1,0,1,1為「 8 項的平衡數列」。試問對任意的正整數 n ,有多少種 n 項的平衡數列?

110 學年度普通型高級中學數學科能力競賽(決賽)口 試 試 題

注意事項:

- (1) 試卷共2題,參賽者可先在本試卷上作答,思考時間20分鐘;
- (2) 攜帶本試卷到口試教室應試,答辯時間20分鐘,並繳回本試卷;
- (3) 口試完成後由助理引導至 M212 教室,繼續作答獨立研究。

與儿仙贴	•
學生編號	•

一、 設有 n 張牌,分別寫上 $1,2,3,\cdots,n$ 。對任意牌型 a_1,a_2,a_3,\cdots,a_n ,進行以下操作:若 a_n 為奇數,則將 a_n 置於最前面,即得新牌型 $a_n,a_1,a_2,\cdots,a_{n-1}$; 若 a_n 為偶數,則將 a_n 置於 a_1 與 a_2 之間,即得新牌型 $a_1,a_n,a_2,\cdots,a_{n-1}$ 。 試證:當 a_1 為奇數時,經過連續操作多次後可回到原牌型,並求此最少的操作次數。

【解答】

二、 如圖,在 $\triangle ABC$ 的邊 \overline{AB} 與 \overline{AC} 的外側分別作兩正三角形 $\triangle ABE$ 及 $\triangle ACF$ 。 已知 $\overline{AC}=1$ 且 $\overline{EF}=2$ 。試求 $\triangle ABC$ 面積的最大可能值。

【解答】

110 學年度普通型高級中學數學科能力競賽(決賽)獨立研究(一)試題卷

注意事項:

- (1) 三題中自選兩題作答,並請註明題號
- (2) 時間:1.5 小時(8:30~10:00)
- (3) 配分:每題皆為7分
- (4) 不可使用計算器
- (5) 請將答案寫在答案卷內

朗儿伯贴	•	
學生編號	•	
1 —		

- 一、設D, E, F 分別是 ΔABC 三邊 $\overline{BC}, \overline{CA}, \overline{AB}$ 上的點。試證: 在 $\Delta AEF, \Delta BDF,$ ΔCDE 中,至少有一個三角形的面積不大於 ΔDEF 的面積。
- 二、將 3,4,5,6,...,1155 這 1153 個正整數重新排成一個數列 $\langle a_k \rangle$,使得對每一個 k=1,2,3,...,1153 ,第 k 項 a_k 都是 k 的倍數。試問共有多少種不同的排法?
- 三、有一群人,人數至少100人,其中任意兩人或者彼此認識,或者彼此不認識。現在想將這群人分組(每一組至少一人,各組人數可以不相等)。如果每一組中的任意兩人都彼此不認識,稱為「好分組」。已知不管怎麼分,都無法分成99組的「好分組」,但是可以有分成100組的「好分組」。試證:在分成100組的「好分組」中,都可以在第k組中選出一個人 v_k ,使得對每一個 $k=1,2,3,\cdots,99$,都有 v_k 認識 v_{k+1} 。

110 學年度普通型高級中學數學科能力競賽(決賽)獨立研究(二)試題卷

注意事項:

- (1) 三題中自選兩題作答,並請註明題號
- (2) 時間:1.5 小時(10:20~11:50)
- (3) 配分:每題皆為7分
- (4) 不可使用計算器
- (5) 請將答案寫在答案卷內

朗儿伯贴	•	
學生編號	•	
1		

- 一、試求滿足下列條件的最小正整數n:當整係數多項式函數 f(x) 有n 個相異整數 x_1,x_2,\cdots,x_n ,滿足 $f(x_1)=f(x_2)=\cdots=f(x_n)=1$ 時,方程式 f(x)=3 就不會有整 數解。
- 二、 試證:不存在任何的正整數解(x,y,z,w),滿足下列方程式:

$$4x^4 + 9y^4 = 11(z^4 + w^4)$$
 °

三、將邊長為3的正三角形分成九個全等的單位三角形。一開始每個單位三角 形裡都填0。每次操作可以選擇兩個相鄰的單位三角形(相鄰意為有共同邊) 而將這兩個三角形內的數字都同時加1或同時減1。已知經由若干次操作後, 九個數恰好形成連續的正整數 n,(n+1),...,(n+8) ,試求所有可能的 n 值。

題目:

試求所有不小於 1 的實數 x, y, z , 滿足

 $\min\left\{\sqrt{x+xyz}, \sqrt{y+xyz}, \sqrt{z+xyz}\right\} = \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}, \qquad (1)$ 其中 $\min\{p,q,r\}$ 表示 p,q,r 三數的最小值。

解	類型	■ 代數(A) □ 數論(N) □ 幾何(G) □ 組合(C)
析	試題出處	■ 自編 □ 改編於:
17/	難易度	□難 ■中等 □易 編號 筆試一(1)

解答:

先考慮 $z = \min\{x, y, z\}$, 並令 $x = 1 + a^2$, $y = 1 + b^2$, $z = 1 + c^2$, 其中 $a \ge c \ge 0, b \ge c \ge 0$ 。 在這些設定條件下,(1)式等價於

$$(1+c^2)(1+(1+a^2)(1+b^2)) = (a+b+c)^2$$
 (2)

由柯西不等式

$$(c^{2}+1)(1+(a+b)^{2}) \ge (a+b+c)^{2}$$
 (3)

由(2)式與(3)式可得

$$(a+b)^{2} \ge (1+a^{2})(1+b^{2}) \circ \tag{4}$$

另一方面,由柯西不等式 $(a^2+1)(1+b^2) \ge (a+b)^2$; 因此,上面的不等式均為 等號。所以 ab=1 ,且 c(a+b)=1 。

反之,若
$$ab = 1$$
 且 $c(a+b) = 1$,則 $c = \frac{1}{a+b} < \frac{1}{b} = a$, $c = \frac{1}{a+b} < \frac{1}{a} = b$ 。

故,此情況下問題之解為

$$x=1+a^2$$
, $y=1+\frac{1}{a^2}$, $z=1+(\frac{a}{1+a^2})^2$, 其中 a 可以是任意不小於 1 的正數。

當然x, y, z 重排也是解 (因為也可設b 或a 是a, b, c 中最小的)。

題目:

如圖, $\triangle ABC$ 的內心為I,其內切圓與 \overline{BC} , \overline{CA} , \overline{AB} 的切點分別是D, E, F。直線 \overrightarrow{CI} , \overrightarrow{DF} 交於點P,點Q在 \overline{BI} 的延長線上,它與B在直線 \overrightarrow{PC} 的相反兩側,且滿足 \overline{PQ} + \overline{BC} = s ,其中s 是 $\triangle ABC$ 的半周長。令 \overline{AH} 垂直 \overline{BC} 於點H 。試證:

- (1) A, I, F, P四點共圓;
- (2) *P*, *Q*, *D*, *H* 四點共圓。

解	類型	□ 代數(A) □	數論(N)	■ 幾何(C	G) □ 組合(C)
肝析	試題出處	■自編	改編於:		
171	難易度	□ 難 ■ 中等	□易	編號	筆試一(2)

解答:

1. 設M, N分別為 $\overline{AB}, \overline{AC}$ 的中點,且 $\overline{BC} = a, \overline{CA} = b, \overline{AB} = c \quad onumber 因為$ $\angle DPC = \angle PDB - \frac{1}{2}\angle C = \angle FIB - \frac{1}{2}\angle C$ $= 90^{\circ} - \frac{1}{2}\angle B - \frac{1}{2}\angle C = \frac{1}{2}\angle A,$

即 $\angle FPI = \angle FAI$,得 A, I, F, P 共圓, 所以 $\angle API = \angle AFI = 90^{\circ}$ 。

令L為 \overrightarrow{AP} 與 \overrightarrow{BC} 的交點,因 \overrightarrow{CI} 是分角線,

P為 \overline{AL} 的中點,故P是在 \overrightarrow{MN} 上。

2. 設過 A 與 \overrightarrow{BC} 平行的直線與 \overrightarrow{BI} , \overrightarrow{CI} 分别交於 B' , C' 。因 $\angle AB'B = \angle B'BC = \angle ABB'$,

$$\overline{AB'} = \overline{AB} = c \; ; \; \overline{\Box} = \overline{AC'} = \overline{AC} = b \circ \text{所以} \; , \; \overline{\partial} = \overline{B'C'} = b + c \circ \text{由此可得}$$

$$\frac{\overline{C'I}}{\overline{CI}} = \frac{\overline{B'C'}}{\overline{BC}} = \frac{b + c}{a} \; , \; \; \frac{\overline{CP}}{\overline{CI}} = \frac{\overline{CC'}/2}{\overline{CI}} = \frac{1}{2} \cdot \frac{\overline{C'I} + \overline{CI}}{\overline{CI}} = \frac{1}{2} \cdot \frac{(b + c) + a}{a} = \frac{s}{a} \circ \overline{CC'} = \frac{1}{2} \cdot \frac{c}{\overline{CI}} = \frac{1}{2}$$

設Q' 是 \overrightarrow{BI} 與 \overrightarrow{MN} 的交點,則 $PQ' \parallel BC$, $\frac{\overline{PQ'}}{\overline{BC}} = \frac{\overline{PI}}{\overline{CI}} = \frac{\overline{CP} - \overline{CI}}{\overline{CI}} = \frac{s - a}{a} = \frac{\overline{PQ}}{\overline{BC}}$ 。所以,

 $\overline{PQ'} = \overline{PQ}$;得Q' 與Q 重合(因BFID是筝形,得 $PD \perp BI$,且Q' 與B 在 \overline{CI} 的相反兩側)。

3. 因 Q 是在 \overrightarrow{MN} 及分角線上,用與 1. 同樣的證明可得 $\angle AQB = 90^\circ$. 所以 P, Q 是在以 \overrightarrow{AI} 為直徑的圓(記為 K)上(此圓也通過 E, F)。設 \overrightarrow{DI} 與 $\overrightarrow{B'C'}$ 交於點 D',則 D' 是在圓 K 上。因 H, D 分別是 A, D' 對 MN 的對稱點,且 P, Q, D', A 共圓,所以, P, Q, D, H 也共 圓。

題目:

設 $\langle a_n \rangle$ 及 $\langle b_n \rangle$ 為公比不相等的兩個等比數列,而 $c_n = \alpha a_n + \beta b_n$ 都不等於0,其中 α, β 為非零實數。令n次多項式 $f_n(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$ 。已知對於正整數 $n \geq 2$, 多項式 $f_n(x) + x^2 f_{n-2}(x)$ 除以 $x f_{n-1}(x)$ 的餘式皆為次數小於或等於1的多項式,試證: 乘積 $a_n b_n$ 是一與n 無關的常數。

解	類 型	■ 代數(A) □ 數論(N) □ 幾何(G) □ 組合(C)
	試題出處	■ 自編 □ 改編於:
析	難易度	■難 □中等 □易 編號 筆試一(3)

解答: 對於整數 $n \ge 2$,

$$f_n(x) + x^2 f_{n-2}(x) = c_0 + c_1 x + \sum_{i=2}^n (c_i + c_{i-2}) x^i$$

而
$$x f_{n-1}(x) = \sum_{i=0}^{n-1} c_i x^{i+1}$$
 。 由於

$$\deg(f_n(x)+x^2f_{n-2}(x)) \leq \deg(xf_{n-1}(x)),$$

因此, $f_n(x) + x^2 f_{n-2}(x) = \lambda_n x f_{n-1}(x) + r_n(x)$,其中 $r_n(x) = 0$ 或 $\deg r_n(x) < \deg (x f_{n-1}(x))$ 。比較 x^{n-1} 項的係數,得 $c_{n-1} + c_{n-3} = \lambda_n c_{n-2}$ 。

同理,由 $f_{n-1}(x)+x^2f_{n-3}(x)=\lambda_{n-1}xf_{n-2}(x)+r_{n-1}(x)$,再比較 x^{n-1} 項的係數,得知 $c_{n-1}+c_{n-3}=\lambda_{n-1}c_{n-2} \text{ 。因此,} \lambda_n=\lambda_{n-1}\text{ ,故} \lambda_1=\lambda_2=\lambda_3=\dots=\lambda_n=\lambda\text{ ,其中 }\lambda\text{ 為常數 } \circ$ 由題目所給的條件 $\deg r_n(x)\leq 1$,可知

$$r_n(x) = f_n(x) + x^2 f_{n-2}(x) - \lambda x f_{n-1}(x) = c_0 + (c_1 - \lambda c_0) x$$
,

且對於所有大於或等於 2 的整數 n 皆有 $c_n + c_{n-2} = \lambda c_{n-1}$ 。

調整條件中的 α , β , 不失一般性, 可假設 $a_n = r_1^n$, $b_n = r_2^n$, 其中 r_1 , r_2 為非零實數。注意: $c_n = \alpha r_1^n + \beta r_2^n = \left(\alpha r_1^2\right) r_1^{n-2} + \left(\beta r_2^2\right) r_2^{n-2}$, 且

$$\lambda c_{n-1} - c_{n-2} = \alpha (\lambda r_1 - 1) r_1^{n-2} + \beta (\lambda r_2 - 1) r_2^{n-2}$$

由數列 c_n 的遞迴式 $c_n = \lambda c_{n-1} - c_{n-2}$, 得

$$(\alpha r_1^2) r_1^{n-2} + (\beta r_2^2) r_2^{n-2} = \alpha (\lambda r_1 - 1) r_1^{n-2} + \beta (\lambda r_2 - 1) r_2^{n-2} , \forall n \ge 2 .$$
 (1)

以下我們要證明: $r_i^2 = \lambda r_i - 1$, i = 1, 2。這可以分兩種情況討論如下:

(B)
$$\left| \frac{r_1}{r_2} \right| = 1$$
: 則 $r_2 = r_1$ 或 $-r_1$. 我們有 $c_n = (\alpha + \beta) r_1^n$ 或 $c_n = (\alpha + (-1)^n \beta) r_1^n$, $\forall n \ge 0$ 。
再由 c_n 的遞迴式 $c_n = \lambda c_{n-1} - c_{n-2}$,亦可得出 $r_1^2 = \lambda r_1 - 1$ (此時必然是 $r_2 = r_1 = 1$)。

綜合以上的討論得知: r_1 , r_2 是二次方程 $x^2-\lambda x+1=0$ 的兩個根,再由根與係數的關係知道: $r_1r_2=1$ 。所以, $a_nb_n=r_1^nr_2^n=1$ 為一個與n 無關的常數。

題目:

在平行四邊形 ABCD中,點 E在 \overline{BC} 上,點 F在 \overline{CD} 上,且 \overline{AE} 交 \overline{BD} 於點 P, \overline{AF} 交 \overline{BD} 於點 Q。設 C_P 是以 P 為圓心、 \overline{BP} 為半徑的圓,而 C_Q 是以 Q 為圓心、 \overline{QD} 為半徑的圓,且兩圓的交點為 R,R'。試證: $\overline{BE} \times \overline{DF} = \overline{CE} \times \overline{CF}$ 的充要條件為 $\angle BRD = 120^\circ$ 。

解	類 型	□ 代數(A)□ 數論(N)■ 幾何(G)□ 組合(C)
	試題出處	■ 自編 □ 改編於:
析	難易度	□ 難 □ 中等 ■ 易 編 號 筆試二(1)

解答:

為了簡潔,令 $\overline{BP}=a$, $\overline{PQ}=c$, $\overline{QD}=b$ 。

因為 $\overline{BP}=\overline{RP}$,所以 $\angle PBR=\angle PRB\equiv lpha$ 。同理,因為 $\overline{QR}=\overline{QD}$,所以

 $\angle QRD = \angle QDR \equiv \beta \circ$

由 ΔBDR 內角和為 180° ,得知 $2\alpha + 2\beta + \angle PRQ = 180^{\circ}$,故 $\alpha + \beta = 90^{\circ} - \frac{1}{2} \angle PRQ$ 。因此,

 $\angle BRD = \alpha + \beta + \angle PRQ = 90^{\circ} + \frac{1}{2} \angle PRQ$ 。由此可知: $\angle BRD = 120^{\circ} \Leftrightarrow \angle PRQ = 60^{\circ}$ 。

再由餘弦定理,得知:上式也等價於

$$\frac{a^2 + b^2 - c^2}{2ab} = \cos \angle PRQ = \frac{1}{2} , \text{ Rp } c^2 = a^2 + b^2 - ab , \text{ if } PRQ = \frac{a}{b+c} + \frac{b}{a+c} = 1$$

另一方面,利用 $\Delta PBE \sim \Delta PDA$,得 $\frac{a}{b+c} = \frac{\overline{BE}}{\overline{AD}} = \frac{\overline{BE}}{\overline{BC}} = 1 - \frac{\overline{CE}}{\overline{BC}}$ 。同理,由 $\Delta QFD \sim \Delta QAB$,

得到
$$\frac{b}{a+c} = \frac{\overline{DF}}{\overline{AB}} = \frac{\overline{DF}}{\overline{CD}}$$
。因此,

$$\frac{a}{b+c} + \frac{b}{a+c} = 1 \iff \frac{\overline{CE}}{\overline{BC}} = \frac{\overline{DF}}{\overline{CD}} \iff \frac{\overline{CE}}{BE} = \frac{\overline{DF}}{\overline{CF}} \iff \overline{BE} \times \overline{DF} = \overline{CE} \times \overline{CF} \circ \stackrel{\text{\tiny BB}}{=} \frac{1}{\overline{CF}}$$

題目:

試問有多少組整數數對(a,b),滿足 $1 \le a \le b \le 2021$,且 $\frac{ab^2 + a + b}{a^2b + a + 9}$ 為整數?

解	類型	□ 代數(A)■ 數論(N)□ 幾何(G)□ 組合(C)
析	試題出處	□ 自編 ■ 改編於:IMO shortlisted problem
<i>1</i> 71	難 易 度	□難 ■中等 □易 編號 筆試二(2)

解答:

設 $A = a^2b + a + 9$, $B = ab^2 + a + b$ 。 由題意知: A 能整除 $aB - bA = a^2 - 9b$ 。

- (1) 若 $a^2 9b \ge 0$,則因 $A > a^2 9b$,可知 $a^2 9b = 0 \Rightarrow 9 | a^2$ 。 設 a = 3k , $b = k^2$ 分別代入 A, B ,可得 $A = 3(3k^4 + k + 3)$, $B = k(3k^4 + k + 3)$ 。 又 $A | B \Leftrightarrow 3 | k$,可令 k = 3m ,其中 m 為正整數 。因此, $a = 9m, b = 9m^2$ 。 又 $1 \le a \le b \le 2021$,得 $m = 1, 2, 3, \cdots, 14$ 。
- (2) 若 $a^2 9b < 0$,則 $9b a^2 \ge A$,即 $(9 a^2)b \ge a^2 + a + 9 \implies a^2 < 9$,故 a = 1 或 2 。

 (i) $a = 1 \implies A = b + 10$, $b + 10 \mid 9b 1$,
 又 $9b 1 = 9(b + 10) 91 \implies b + 10 \mid 91$ 。

由 $91=1\times 91=7\times 13$,可得 b=3或 81。 檢驗 (1,3),(1,81) 均能使 $A\mid B$ 。

(ii) $a=2 \Rightarrow A=4b+11$, 4b+11|9b-4,
又 $4(9b-4)=9(4b+11)-115 \Rightarrow 4b+11|115$ 。
由 $115=1\times115=5\times23$,可得 b=3或 26。
檢驗 (2,3),(2,26) 均能使 A|B。

因此,可能的數對 (a,b) 為 $(9m,9m^2)$,其中 $m=1,2,3,\cdots,14$,以及 (1,3),(1,81),(2,3), (2,26) ,共18 組 。

題目:

用 0 和 1 排成的 n 項數列中,滿足連續兩項為 0,0 的組數與連續兩項為 1,1 的組數 相等之數列稱為「n 項的平衡數列」。例如: 8 項數列 0,0,0,1,1,0,1,1 中,連續 兩項為 0,0 的有 2 組,連續兩項為 1,1 的也有 2 組;因此,數列 0,0,0,1,1,0,1,1 為「 8 項的平衡數列」。試問對任意的正整數 n,有多少種 n 項的平衡數列?

解	類 型	□ 代數(A)□ 數論(N)□幾何(G)■ 組合(C)	
析	試題出處	■ 自編 □ 改編於:	
171	難易度	■ 難 □ 中等 □ 易 編 號 筆試二(3)	

解答:

設有 a_n 種「n 項的平衡數列」。顯然, $a_1 = 2$;以下考慮 $n \ge 2$ 。

對一個「n 項的平衡數列」, 令 p_{ι} 表示數列中第k 個 0 區塊數字 0 的個數,

而 q_k 表示數列中第 k 個 1 區塊數字 1 的個數;例如: $\lceil 8$ 項的平衡數列 \rceil

0,0,0,1,1,0,1,1 中, $p_{\scriptscriptstyle 1}=3,p_{\scriptscriptstyle 2}=1$;而 $q_{\scriptscriptstyle 1}=q_{\scriptscriptstyle 2}=2$ 。則該數列連續兩項為 0,0 的

組數為
$$\sum_{k=1}^{r}(p_k-1)$$
,而連續兩項為 $1,1$ 的組數為 $\sum_{k=1}^{s}(q_k-1)$,其中

s=r (當首項與末項的數字不同) 或 |s-r|=1 (當首項與末項的數字相同)。

因此,數列是「n 項的平衡數列」的充要條件為 $\sum_{k=1}^{r} (p_k - 1) = \sum_{k=1}^{s} (q_k - 1)$,

即
$$\sum_{k=1}^{r} p_k - \sum_{k=1}^{s} q_k = r - s$$
 。又 $\sum_{k=1}^{r} p_k + \sum_{k=1}^{s} q_k = n$,解得:

$$\sum_{k=1}^{r} p_k = \frac{n}{2} + \frac{r-s}{2} , \sum_{k=1}^{r} q_k = \frac{n}{2} - \frac{r-s}{2} \circ$$

- (i) 當 n 為偶數時, $r-s=2\sum_{k=1}^{r}p_{k}-n$ 亦為偶數,故 s=r ;由此可得:每一個 「 n 項的平衡數列」的首項與末項的數字不同,且數字 0 與數字 1 各出現 $\frac{n}{2}$ 次。其中,首項為 0 與末項為 1 的「 n 項的平衡數列」有 $C_{\frac{n-2}{2}}^{n-2}$ 種,而首項為 1 與末項為 0 的「 n 項的平衡數列」也有 $C_{\frac{n-2}{2}}^{n-2}$ 種;故 $a_{n}=2C_{\frac{n-2}{2}}^{n-2}$ 。
- (ii) 當 n 為奇數時, $r-s=2\sum_{k=1}^{r}p_{k}-n$ 亦為奇數,故 |s-r|=1 ;由此可得:每一個「n 項的平衡數列」的首項與末項的數字相同,且數字 0 與數字 1 出現的次數相差 1 次。因此, $a_{n}=2C_{\frac{n-1}{2}}^{n-2}$ 。

合併上述的結果,可得對任意正整數 n , $a_n = 2C_{\left\lceil \frac{n}{2} \right\rceil^{-1}}^{n-2}$ 。

題目:

設D, E, F 分別是 ΔABC 三邊 $\overline{BC}, \overline{CA}, \overline{AB}$ 上的點。試證: $\Delta AEF, \Delta BDF, \Delta CDE$ 中至少有一個三角形的面積不大於 ΔDEF 的面積。

解	類 型	■ □ 代數(A) □ 數論(N) 幾何(G) □ 組合(C)
析	試題出處	■ 自編 □ 改編於:
171	難 易 度	□ 難 □ 中等 ■ 易 編 號 獨立研究一(1)

解答:

設
$$\alpha = \frac{\Delta AEF}{\Delta ABC}$$
 , $\beta = \frac{\Delta BDF}{\Delta ABC}$, $\gamma = \frac{\Delta CDE}{\Delta ABC}$, $\delta = \frac{\Delta DEF}{\Delta ABC}$, 可知 $\alpha + \beta + \gamma + \delta = 1$ 。

不失一般性,可設 $\alpha \ge \beta \ge \gamma$ 。

(1) 若
$$\alpha \le \frac{1}{4}$$
,則有 $\delta = 1 - \alpha - \beta - \gamma \ge 1 - \frac{1}{4} \times 3 = \frac{1}{4} \ge \alpha$,

故得到 $\delta \geq \min\{\alpha, \beta, \gamma\}$ 。

(2) 若
$$\alpha > \frac{1}{4}$$
,令 $\frac{\overline{BD}}{\overline{BC}} = \lambda$, $\frac{\overline{CE}}{\overline{CA}} = \mu$, $\frac{\overline{AF}}{\overline{AB}} = \nu$,所以 $0 \le \lambda$, μ , $\nu \le 1$ 。

利用
$$\frac{\Delta AEF}{\Delta ABC} = \frac{\overline{AF} \times \overline{AE}}{\overline{AB} \times \overline{AC}} = v \times (1-\mu)$$
 , 可得到 $\alpha = v(1-\mu)$ °

同理,
$$\beta = \lambda(1-\nu)$$
 , $\gamma = \mu(1-\lambda)$ 。

由此可知

$$\delta = 1 - \alpha - \beta - \gamma = 1 - \nu(1 - \mu) - \lambda(1 - \nu) - \mu(1 - \lambda)$$

= 1 - \nu + \nu\mu + \lambda + \lambda\nu + \mu + \mu\lambda + \lambda\nu + (1 - \mu)(1 - \nu)(1 - \lambda) \cdot \c

再利用不等式
$$(k_1+k_2)^2 \ge 4k_1k_2$$
, $\alpha > \frac{1}{4}$,以及 $\alpha \ge \beta \ge \gamma$,可進一步得到
$$\delta^2 \ge 4\lambda\mu\nu(1-\mu)(1-\nu)(1-\lambda) = 4\alpha\beta\gamma > \beta\gamma \ge \gamma^2$$
,

亦即
$$\delta \geq \gamma$$
,故 $\delta \geq \min \{\alpha, \beta, \gamma\}$,證畢!

HI		
48	Н	
71-24	\mathbf{r}	

將 3,4,5,6,…,1155 這 1153 個正整數重新排成一數列 $\langle a_k \rangle$,使得對每一個 $k=1,2,3,\cdots,1153$,第 k 項 a_k 都是 k 的倍數。試問共有多少種不同的排法?

解	類型	□ 代數(A)□ 數論(N)□ 幾何(G)■ 組合(C)
肝	試題出處	□ 自編 ■ 改編於:大陸競賽試題
171	難易度	□ 難 □ 中等 ■ 易 編 號 獨立研究一(2)

解答:

因為 a_k 為 k 的倍數,故 1154 及 1155 只能排在以自己因數為號碼的位置上。 又 1155 = $3 \times 5 \times 7 \times 11$,1154 = 2×577 ,所以,

 $1155 = a_m$, $1154 = a_n$,其中m為 $3\times5\times7\times11$ 的因數,n為 2×557 的因數。 注意: $1155 \neq a_{1153}$ 且 $1154 \neq a_{1153}$ 。又1153 為質數,故 $1153 = a_1$ 或 $1153 = a_{1153}$ 。 當排好1155的位置後,1154 只能排在第2 號位置,否則會發生小數排在大號碼的情形,則不符合條件。因此,僅需考慮 1155 的因數排法。

為方便算法,我們以符號 (a,b,c,\cdots) 記錄 1155 的因數排法。例如: $1155=a_{385}$ 、 $385=a_{77}$ 、 $77=a_{11}$ 、 $11=a_1$,記為 (3,5,7,11) ;而 $1155=a_{385}$ 、 $385=a_{55}$ 、 $55=a_{11}$ 、 $11=a_1$ 時,記為 (3,7,5,11) ;又如: $1155=a_{385}$ 、 $385=a_{77}$ 、 $77=a_1$ 時,記為 $(3,5,7\times11)$ 。

- (1) 若 1155 排第 1 號位置,即 $1155 = a_1$,則 $1154 = a_2$,其他的數只能排在以自己為號碼的位置上,否則會發生小數排在大號碼的情形。
- (2) 以 3 為首的排列共有 13 種:即 (3,5,7,11) 有 3!=6 種、 $(3,5,7\times11)$ 有 $C_1^3=3$ 種、 $(3,5\times7,11)$ 有 $C_1^3=3$ 種、 $(3,5\times7\times11)$ 有 $C_3^3=1$ 種。同理,分別以 5,7,11 為首的 也各有 13 種。因此共有 $13\times4=52$ 種。
- (3) 形如 3×5 為首有 3 種:即 $(3 \times 5,7,11)$, $(3 \times 5,11,7)$, $(3 \times 5,7 \times 11)$ 。故此類型共有 $C_2^4 \times 3 = 18$ 種。
- (4) 形如 $3\times5\times7$ 為首有 1 種:即 $(3\times5\times7,11)$,故此類型共有 $C_3^4\times1=4$ 種。 所以,共有 1+52+18+4=75 種。

題目:

有一群人,人數至少100人,其中任意兩人或者彼此認識,或者彼此不認識。現在想將這群人分組(每一組至少一人,各組人數可以不相等)。如果每一組中的任意兩人都彼此不認識,稱為「好分組」。已知不管怎麼分,都無法分成99組的「好分組」,但是可以有分成100組的「好分組」。試證:在分成100組的「好分組」中,都可以在第k組中選出一個人 v_k ,使得對每一個k=1,2,3,...,99,都有 v_k 認識 v_{k+1} 。

解	類型	□代數(A)□ 數論(N)□ 幾何(G)■ 組合(C)
析	試題出處	■ 自編 □ 改編於:
171	難易度	□ 難 ■ 中等 □ 易 編 號 獨立研究一(3)

解答:

考慮圖G(V,E),以這群人為頂點(vertex),當中彼此認識時連一條邊(edge)。 已知著色數(chromatic number) $\chi(G)=100$,我們要證明:

對於著色數 $\chi(G)=n$ 的圖形(色彩種類 c_1,c_2,\cdots,c_n),給定任何一種著色方式, 總是可以找到一條路徑(path) $v_1v_2,\cdots v_n$,其中頂點 v_k 的著色為 c_k 。

以非空集合 V_1 表示著上色彩 c_1 的頂點集合,並以 V_k 表示著上色彩 c_k 且至少有一個鄰點(neighbour)著上色彩 c_{k-1} 的頂點所成的集合。我們肯定 $V_k \neq \varnothing$,對 $2 \le k \le n$ 皆如此。事實上,如果首先出現空集合的 V_k 的標號為m,從 $1 \le k \le m-1$,逐一將 V_k 中的頂點著上色彩 c_{k+1} ,這樣的著色方式將只需要n-1種色彩,與 $\chi(G)=n$ 矛盾。現在,從 V_n 的某個頂點 v_n 開始,從 V_{n-1} 中挑選 v_{n-1} ,使得 $v_{n-1}v_n$ 相鄰,再從 v_{n-2} 中挑選 v_{n-2} ,使得 $v_{n-2}v_{n-1}$ 相鄰,以此類推,即可得到一條路徑 $v_1v_2\cdots v_n$ 。

題目:

試求滿足下列條件的最小正整數n:

當整係數多項式函數 f(x) 有 n 個相異整數 x_1, x_2, \dots, x_n ,滿足 $f(x_1) = f(x_2) = \dots = f(x_n) = 1$ 時,方程式 f(x) = 3 就不會有整數解。

解	類 型	■ 代數(A) □ 數論(N) □ 幾何(G) □ 組合(C)
析	試題出處	■ 自編 □ 改編於:
<i>1</i> 71	難易度	□難 □中等 ■易 編號 獨立研究二(1)

解答:

n=1,2 時,顯然不合題意。

n = 3 時 ,取 f(x) = (x+1)(x-1)(x-2)+1 , 則 f(-1) = f(1) = f(2) = 1 ,而 f(0) = 3 。

故n=3也不滿足題意之條件。

對 $n \ge 4$ 時 ,可設 $f(x) = (x - x_1)(x - x_2)\cdots(x - x_n)g(x) + 1$,其中 g(x) 是整係數多項式

函數。假設存在某個整數m,使得f(m)=3,則

$$(m-x_1)(m-x_2)\cdots(m-x_n)g(m)=2 \circ$$

由
$$|g(m)| \ge 1$$
,可得 $|(m-x_1)(m-x_2)\cdots(m-x_n)| \le 2$ 。 (*)

這些 $m-x_1, m-x_2, \cdots, m-x_n$ 均非零且都相異,但4個以上非零的相異整數乘積的絕對值至少為4,此與(*)矛盾。因此,最小正整數n=4。

題目	:					
	試證:不存在化	任何的正整數解 4x ⁴ +9y	-		列方程式:	(1)
<i>ኳክ</i>	類 型	□ 代數(A)		數論(N)	□ 幾何	(G)
解析	試題出處	■自編		改編於:		
171	難 易 度	□ 難 ■	中等	□易	編 號	獨立研究二(2)
解答	:					
1.	首先證明:下列	方程式沒有任何	的正整	數解(x,y,z,	w)	
	$x^2 + y^2 =$	$11(z^2+w^2) \circ$				(2)
	令					
		z, w) (x, y, z, w			,	
	假設 S 不為空集	-				
	$m = \min_{(x,y,z,y)}$	$_{w)\in S}(x+y+z+$	w) = x	$\mathbf{z}_1 + \mathbf{y}_1 + \mathbf{z}_1 + \mathbf$	$+$ $w_1 > 0$	(3)
	且 $x_1^2 + y_1^2 =$	$11(z_1^2 + w_1^2).$				(4)
	由(4)式我們容易	·得到 11 都必須	整除 X ₁	與 y ₁ 。		
	可設 $x_1 = 11x_2$	$y_1 = 11y_2 \circ$				(5)
	從 (4)與(5),我	們得到				
	$z_1^2 + w_1^2 = 11$	$(x_2^2 + y_2^2)$ •				(6)
	由 (6) 得知					
	(z_1, w_1, x_2, y_2)	2)∈S且0 <x2< td=""><td>2 + y₂ +</td><td>$-z_1 + w_2 < 1$</td><td>m °</td><td>(7)</td></x2<>	2 + y ₂ +	$-z_1 + w_2 < 1$	m °	(7)
	從(3)與(7)得到才	予盾,因此,S 為	為空集台	` •		
	若(1)中有一組解 (a,b,c,d) 满足 (2					

題目:

將邊長為3的正三角形分成九個全等的單位三角形。一開始每個單位三角形裡都填0。每次操作可以選擇兩個相鄰的單位三角形(相鄰意為有共同邊)而將這兩個三角形內的數字都同時加1或同時減1。已知經由若干次操作後,九個數恰好形成連續的正整數 $n,(n+1),\dots,(n+8)$,試求所有可能的n值。

解	類 型	□代數(A)□ 數論(N)□ 幾何(G)■ 組合(C)	
肝析	試題出處	■ 自編 □ 改編於:	
171	難易度	□難 ■ 中等 □ 易 編 號 獨立研究二(3)	

解答: n=2 是唯一的可能。

從數字總和的奇偶性,得知不可能n=1。當n=2時,很容易寫出例子,如下:

假設n>2辦得到。把各個單位三角形用 $1,2,3,\cdots,9$ 加以編號(左下角是1, 右下角是5)。將編號2,4,7的單位三角形塗色,並以 $S_{2,4,7}$ 表示在這3個單位三角形內的數字總和, $S_{1,3,5,6,8,9}$ 也是類似的定義。顯然,在操作過程中,總是有 $S_{2,4,7}=S_{1,3,5,6,8,9}$,因此,當數字 $n,(n+1),\cdots,(n+8)$ 填入各單位三角形時,此式子也成立。但是,

$$S_{2,4,7} \le (n+8) + (n+7) + (n+6) = 3n+21$$
,

而

$$S_{1,3,5,6,8,9} \ge n + (n+1) + \dots + (n+5) = 6n + 15 > 3n + 21 \ge S_{2,4,7}$$

因此, $S_{2,4,7} < S_{1,3,5,6,8,9}$,這是錯的。因此,答案僅有n=2。

題目:

設有 n 張牌,分別寫上 $1,2,3,\cdots,n$ 。對任意牌型 a_1,a_2,a_3,\cdots,a_n ,進行以下操作:若 a_n 為奇數,則將 a_n 置於最前面,即得新牌型 $a_n,a_1,a_2,\cdots,a_{n-1}$;若 a_n 為偶數,則將 a_n 置於 a_1 與 a_2 之間,即得新牌型 $a_1,a_n,a_2,\cdots,a_{n-1}$ 。試證:當 a_1 為奇數時,經過連續 操作多次後可回到原牌型,並求此最少的操作次數。

解	類 型	□ 代數(A)□ 數論(N)□ 幾何(G)■ 組合(C)	
析	試題出處	■ 自編 □ 改編於:大陸競賽試題	
171	難易度	□ 難 □ 中等 ■ 易 編 號 □試一	

解答: 先將原牌型分組如下:

$$\underline{a_{1}}, \underline{a_{2}, a_{3}, \cdots, a_{i_{1}}}, \underline{a_{i_{1}+1}, a_{i_{1}+2}, \cdots, a_{i_{\underline{2}}}}, \cdots \cdots, \underline{a_{i_{j}+1}, a_{i_{j}+2}, \cdots, a_{i_{j+1}}}, A \quad ,$$

其中 $a_1,a_{i_1},a_{i_2},\cdots,a_{i_{j+1}}$ 均為奇數,其他都是偶數,而末端A中的數均為偶數或無。設|A|=r,即A由r個偶數所組成。

(1) 若 $r \ge 1$, 則經過連續 r 次操作後 , 牌型變成

$$\underline{a_{1}}, \underline{A}, a_{2}, a_{3}, \cdots, a_{i_{\underline{l}}}, \underline{a_{i_{\underline{l}+1}}}, \underline{a_{i_{\underline{l}+2}}}, \cdots, \underline{a_{i_{\underline{2}}}}, \cdots \cdots, \underline{a_{i_{j+1}}}, \underline{a_{i_{j+2}}}, \cdots, \underline{a_{i_{j+1}}} \circ$$

設此時最後一組 $a_{i_j+1},a_{i_j+2},\cdots,a_{i_{j+1}}$ 有 k 張牌,即 $k=i_{j+1}-i_j$ 。則再經過 k 次操

作後,牌型變成

$$a_{i_{j+1}},\,a_{i_{j}+1},a_{i_{j}+2},\cdots,a_{i_{j+1}-1},a_{1},\,A,a_{2},a_{3},\cdots,a_{i_{1}},\,a_{i_{1}+1},a_{i_{1}+2},\cdots,a_{i_{2}},\cdots\cdots$$

依此下去,不難發現:原牌型經過n-1次操作後,牌型變成

$$\underline{a_{i_1}}, \underline{a_2}, \underline{a_3}, \cdots, \underline{a_{i_2}}, \underline{a_{i_1+1}}, \underline{a_{i_1+2}}, \cdots, \underline{a_{i_3}}, \cdots, \underline{a_{i_{j+1}}}, \underline{a_{i_j+2}}, \cdots, \underline{a_1}, A$$

即牌型僅有奇數作一次輪換,而偶數位置不變。由此分析,可知:

當 n 為奇數時,原牌型有 $\frac{n+1}{2}$ 個奇數,故經過 $\frac{n+1}{2}$ 回的 $^{n-1}$ 次操作後,所有奇數就

會輪換到原位置。此時,最少的操作次數為 $\frac{n+1}{2}$ ×(n-1)= $\frac{n^2-1}{2}$ 。當 n 為偶數時,原

牌型有 $\frac{n}{2}$ 個奇數,故經過 $\frac{n}{2}$ 回的n-1次操作後,所有奇數就會輪換到原位置。此

時,最少的操作次數為
$$\frac{n}{2} \times (n-1) = \frac{n^2 - n}{2}$$
。

(2) 若 r=0 ,同情况(1)的分析,結果亦同。

題目:

如圖,在 $\triangle ABC$ 的邊 \overline{AB} 與 \overline{AC} 的外側分別作正三角形 $\triangle ABE$ 及 $\triangle ACF$ 。已知 $\overline{AC}=1$ 且 $\overline{EF}=2$ 。 試求 $\triangle ABC$ 面積的最大可能值。

解	類 型	□ 代數(A)□ 數論(N)■ 幾何(G)□ 組合(C)
析	試題出處	■ 自編 □ 改編於:
171	難易度	□ 難 □ 中等 ■ 易 編 號 □試二

解答:

 $\diamondsuit \angle BAC = \theta$, $\overline{AB} = c$,則 $\angle EAF = 240^{\circ} - \theta$ 。

由餘弦定理:

$$\overline{EF}^2 = \overline{AE}^2 + \overline{AF}^2 - 2\overline{AE} \times \overline{AF}\cos(240^\circ - \theta) ,$$

所以,

$$3 = c^{2} - 2c\cos(240^{\circ} - \theta)$$

= $c^{2} - 2c(\cos 240^{\circ}\cos \theta + \sin 240^{\circ}\sin \theta)$
= $c^{2} + c\cos \theta + \sqrt{3}c\sin \theta$.

$$x^2 + y^2 + x + \sqrt{3}y = 3.$$

配方得
$$(x+\frac{1}{2})^2+(y+\frac{\sqrt{3}}{2})^2=4$$
。因此,

$$\triangle ABC$$
 面積 = $\frac{1}{2} \cdot 1 \cdot c \cdot \sin \theta = \frac{y}{2} \le \frac{1}{2} (2 - \frac{\sqrt{3}}{2}) = 1 - \frac{\sqrt{3}}{4}$ (此為最大值)。

以下說明:任給 0° < θ < 180° ,都有滿足條件的 ΔABC :

如圖所示,固定平面上邊長為1的正三角形 ΔACF 。考慮以F為中心作半徑為2的圓,設E為圓上的動點,且從射線 \overrightarrow{AC} 逆時針旋轉至射線 \overrightarrow{AE} 的角度是在 60° 至 180° 的範圍,在 \overrightarrow{AE} 下側作正三角形 ΔABE ;此時,點B與點F在 \overrightarrow{AC} 的相反兩側,又這兩個正三角都在 ΔABC 的外部,所以, θ 可任意在 0° 至 180° 間變化。