Class 8: Machine Learning Mini Project

Patrick Tran

In today's mini-project we will explore a complete analysis using the unsupervised learning techniques covered in class (clustering and PCA for now).

The data itself comes from the Wisconsin Breast Cancer Diagnostic Data Set FNA breast biopsy data.

##Data import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	${\tt texture_mean}$	perimeter_mean	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	smoothness_mean	compa	ctness_mean co	ncavity_mean c	oncave.po	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal	_dimension_mea	n radius_se te	xture_se	perimeter_se
842302	0.2419		0.0787	1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	0.7572	0.7813	5.438
843786	0.2087		0.0761	.3 0.3345	0.8902	2.217

area_se	smoothness_se	e compactness_se	concavity_se	<pre>concave.points_se</pre>
842302 153.40	0.006399	0.04904	0.05373	0.01587
842517 74.08	0.005225	0.01308	0.01860	0.01340
84300903 94.03	0.006150	0.04006	0.03832	0.02058
84348301 27.23	0.009110	0.07458	0.05661	0.01867
84358402 94.44	0.011490	0.02461	0.05688	0.01885
843786 27.19	0.007510	0.03345	0.03672	0.01137
symmetry	y_se fractal_d	limension_se rad	lius_worst tex	ture_worst
842302 0.03	3003	0.006193	25.38	17.33
842517 0.03	1389	0.003532	24.99	23.41
84300903 0.02	2250	0.004571	23.57	25.53
84348301 0.05	5963	0.009208	14.91	26.50
	1756	0.005115	22.54	16.67
843786 0.02	2165	0.005082	15.47	23.75
perimete	er_worst area_	worst smoothnes	s_worst compa	ctness_worst
842302	184.60 2	2019.0	0.1622	0.6656
842517	158.80 1	1956.0	0.1238	0.1866
84300903	152.50 1	1709.0	0.1444	0.4245
84348301	98.87	567.7	0.2098	0.8663
84358402	152.20 1	1575.0	0.1374	0.2050
843786	103.40	741.6	0.1791	0.5249
concavit	• –	ave.points_worst	• • •	st
842302	0.7119	0.2654		
842517	0.2416	0.1860		
84300903	0.4504	0.2430		
84348301	0.6869	0.2575		
84358402	0.4000	0.1625		64
843786	0.5355	0.1741	0.39	85
fractal_	_dimension_wor			
842302	0.118			
842517	0.089			
84300903	0.087			
84348301	0.173			
84358402	0.076			
843786	0.124	140		

Remove the diagnosis column and keep it in a seperate vector for later.

```
diagnosis <- as.factor(wisc.df$diagnosis)
wisc.data <- wisc.df[,-1]
head(wisc.df)</pre>
```

```
diagnosis radius_mean texture_mean perimeter_mean area_mean
842302
                          17.99
                                        10.38
                                                       122.80
                                                                 1001.0
                 М
                 М
                          20.57
                                        17.77
842517
                                                       132.90
                                                                 1326.0
84300903
                 Μ
                          19.69
                                        21.25
                                                       130.00
                                                                 1203.0
84348301
                 Μ
                          11.42
                                        20.38
                                                       77.58
                                                                  386.1
84358402
                 Μ
                          20.29
                                        14.34
                                                       135.10
                                                                 1297.0
843786
                 Μ
                          12.45
                                        15.70
                                                       82.57
                                                                  477.1
         smoothness_mean compactness_mean concavity_mean concave.points_mean
842302
                 0.11840
                                   0.27760
                                                    0.3001
                                                                         0.14710
842517
                 0.08474
                                   0.07864
                                                    0.0869
                                                                         0.07017
84300903
                 0.10960
                                   0.15990
                                                                         0.12790
                                                    0.1974
84348301
                 0.14250
                                   0.28390
                                                    0.2414
                                                                         0.10520
84358402
                 0.10030
                                   0.13280
                                                    0.1980
                                                                         0.10430
843786
                 0.12780
                                   0.17000
                                                    0.1578
                                                                         0.08089
         symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
842302
                0.2419
                                        0.07871
                                                   1.0950
                                                               0.9053
                                                                              8.589
842517
                0.1812
                                        0.05667
                                                   0.5435
                                                               0.7339
                                                                              3.398
84300903
                0.2069
                                        0.05999
                                                   0.7456
                                                               0.7869
                                                                              4.585
84348301
                0.2597
                                        0.09744
                                                   0.4956
                                                               1.1560
                                                                              3.445
84358402
                0.1809
                                        0.05883
                                                   0.7572
                                                               0.7813
                                                                              5.438
843786
                0.2087
                                        0.07613
                                                   0.3345
                                                               0.8902
                                                                              2.217
         area se smoothness se compactness se concavity se concave.points se
                       0.006399
842302
          153.40
                                        0.04904
                                                     0.05373
                                                                         0.01587
842517
           74.08
                       0.005225
                                        0.01308
                                                     0.01860
                                                                         0.01340
84300903
           94.03
                       0.006150
                                        0.04006
                                                     0.03832
                                                                         0.02058
           27.23
84348301
                       0.009110
                                        0.07458
                                                     0.05661
                                                                         0.01867
84358402
           94.44
                       0.011490
                                        0.02461
                                                     0.05688
                                                                         0.01885
843786
           27.19
                       0.007510
                                        0.03345
                                                     0.03672
                                                                        0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                  0.006193
                                                   25.38
                                                                  17.33
                                                   24.99
842517
             0.01389
                                  0.003532
                                                                  23.41
84300903
             0.02250
                                  0.004571
                                                   23.57
                                                                  25.53
84348301
             0.05963
                                  0.009208
                                                   14.91
                                                                  26.50
84358402
             0.01756
                                  0.005115
                                                   22.54
                                                                  16.67
843786
             0.02165
                                  0.005082
                                                   15.47
                                                                  23.75
         perimeter worst area worst smoothness worst compactness worst
842302
                  184.60
                              2019.0
                                                0.1622
                                                                   0.6656
842517
                  158.80
                              1956.0
                                                0.1238
                                                                   0.1866
84300903
                  152.50
                              1709.0
                                                0.1444
                                                                   0.4245
84348301
                   98.87
                               567.7
                                                0.2098
                                                                   0.8663
84358402
                  152.20
                              1575.0
                                                0.1374
                                                                   0.2050
843786
                  103.40
                               741.6
                                                0.1791
                                                                   0.5249
         concavity_worst concave.points_worst symmetry_worst
```

842302	0.7119	0.2654	0.4601
842517	0.2416	0.1860	0.2750
84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
	<pre>fractal_dimension_worst</pre>		
842302	0.11890		
842517	0.08902		
84300903	0.08758		
84348301	0.17300		
84358402	0.07678		
843786	0.12440		

##Exploratory data analysis

The first step of any data analysis, unsupervised or supervised, is to familiarize yourself with the data

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

Q3. How many variables/features in the data are suffixed with _mean?

First find the column names

```
colnames(wisc.data)
```

```
[1] "radius_mean"
                                "texture_mean"
 [3] "perimeter_mean"
                                "area_mean"
 [5] "smoothness_mean"
                                "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
 [9] "symmetry mean"
                                "fractal dimension mean"
[11] "radius_se"
                                "texture se"
[13] "perimeter_se"
                                "area se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
                                "fractal_dimension_se"
[19] "symmetry_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

Next I need to search within the column names for "_mean" pattern. The grep() function might help here.

```
inds <- grep("_mean", colnames(wisc.data))
length(inds)

[1] 10

    Q4. How many dinmensions are in this dataset?

ncol(wisc.data)</pre>
```

Principal Componenet Analysis

[1] 30

First do we need to scale the data before PCA or not.

```
round(apply(wisc.data, 2, sd), 3)

radius_mean texture_mean perimeter_mean
3.524 4.301 24.299
area_mean smoothness_mean compactness_mean
```

351.914	0.014	0.053
concavity_mean	concave.points_mean	symmetry_mean
0.080	0.039	0.027
fractal_dimension_mean	radius_se	texture_se
0.007	0.277	0.552
perimeter_se	area_se	smoothness_se
2.022	45.491	0.003
compactness_se	concavity_se	concave.points_se
0.018	0.030	0.006
symmetry_se	fractal_dimension_se	radius_worst
0.008	0.003	4.833
texture_worst	perimeter_worst	area_worst
6.146	33.603	569.357
smoothness_worst	compactness_worst	concavity_worst
0.023	0.157	0.209
concave.points_worst	symmetry_worst	<pre>fractal_dimension_worst</pre>
0.066	0.062	0.018

Looks like we need to scale.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                           PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                          PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                   PC30
```

Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27%

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs capture 72%

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs capture 91%

PC plot

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

There are too many characters on the plot and they are overlapping each other. This makes it difficult to understand. The x and y axes are difficult to interpret. The plot is too confusing.

We need to make our plot of PC1 vs PC2 (a.k.a score plot, PC-plot, etc.) The main result of PCA...

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col = diagnosis)
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x[,1], wisc.pr$x[,3], col = diagnosis)
```


The y-values on the y-axis for this plot has increased compared to the previous plot. PC2 shows more variance compared to PC3.

```
library(ggplot2)

pc <- as.data.frame(wisc.pr$x)
pc$diagnosis <- diagnosis

ggplot(pc)+
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance explained

We can get this from the output of the summary() function.

```
summary(wisc.pr)
```

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	3.6444	2.3857	1.67867	1.40735	1.28403	1.09880	0.82172
Proportion of Variance	0.4427	0.1897 (0.09393	0.06602	0.05496	0.04025	0.02251
Cumulative Proportion	0.4427	0.6324 (0.72636	0.79239	0.84734	0.88759	0.91010
	PC8	PC9	PC10	PC11	PC12	PC13	PC14
Standard deviation	0.69037	0.6457	0.59219	0.5421	0.51104	0.49128	0.39624
Proportion of Variance	0.01589	0.0139	0.01169	0.0098	0.00871	0.00805	0.00523
Cumulative Proportion	0.92598	0.9399	0.95157	0.9614	0.97007	0.97812	0.98335
	PC15	PC16	PC1	7 PC1	8 PC1	9 PC2	0 PC21
Standard deviation	0.30681	0.28260	0.2437	2 0.2293	9 0.2224	4 0.1765	2 0.1731
Proportion of Variance	0.00314	0.00266	0.0019	8 0.0017	5 0.0016	5 0.0010	4 0.0010
Cumulative Proportion	0.98649	0.98919	5 0.9911	3 0.9928	8 0.9945	3 0.9955	7 0.9966
	PC22	PC23	B PC24	PC25	PC26	PC27	PC28
Standard deviation	0.16565	0.15602	2 0.1344	0.12442	0.09043	0.08307	0.03987

```
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005 Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997 PC29 PC30

Standard deviation 0.02736 0.01153 Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000
```

Calculate the variance of each principal component by squaring the sdev component of wisc.pr (i.e. wisc.pr\$sdev^2).

```
#Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Calculate the variance explained by each principal component by dividing the total variance explained of all principal components

```
pve <- pr.var/ sum(pr.var)
head(pve)</pre>
```

[1] 0.44272026 0.18971182 0.09393163 0.06602135 0.05495768 0.04024522

Examine the PC loadings

How much do the original variables contribute to the new PCs that we have calculated? To get at this data we can look at the **\$rotation** component of the returned PCA object.

```
head(wisc.pr$rotation[,1:3])
```

	PC1	PC2	PC3
radius_mean	-0.2189024	0.23385713	-0.008531243
texture_mean	-0.1037246	0.05970609	0.064549903
perimeter_mean	-0.2275373	0.21518136	-0.009314220
area_mean	-0.2209950	0.23107671	0.028699526
${\tt smoothness_mean}$	-0.1425897	-0.18611302	-0.104291904
compactness mean	-0.2392854	-0.15189161	-0.074091571

Focus in on PC1

```
wisc.pr$rotation[,1]
```

radius_mean texture_mean perimeter_mean

```
-0.21890244
                                    -0.10372458
                                                             -0.22753729
             area_mean
                                smoothness_mean
                                                        compactness_mean
           -0.22099499
                                    -0.14258969
                                                             -0.23928535
        concavity_mean
                            concave.points_mean
                                                           symmetry_mean
           -0.25840048
                                    -0.26085376
                                                             -0.13816696
fractal_dimension_mean
                                                              texture se
                                      radius_se
           -0.06436335
                                    -0.20597878
                                                             -0.01742803
          perimeter_se
                                         area_se
                                                           smoothness se
           -0.21132592
                                    -0.20286964
                                                             -0.01453145
        compactness_se
                                   concavity_se
                                                       concave.points_se
           -0.17039345
                                    -0.15358979
                                                             -0.18341740
           symmetry_se
                           fractal_dimension_se
                                                            radius_worst
           -0.04249842
                                    -0.10256832
                                                             -0.22799663
         texture_worst
                                perimeter_worst
                                                               area_worst
           -0.10446933
                                    -0.23663968
                                                             -0.22487053
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
           -0.12795256
                                    -0.21009588
                                                             -0.22876753
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
           -0.25088597
                                    -0.12290456
                                                             -0.13178394
```

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean" ,1]
```

[1] -0.2608538

There is a complicated mix of variables that go together to make up PC1 - i.e. there are many of the original variables that together contribute highly to PC1.

```
loadings <- as.data.frame(wisc.pr$rotation)
library(ggplot2)
ggplot(loadings) +
   aes(PC1, rownames(loadings)) +
   geom_col()</pre>
```


Q10. What is the minimum number of principal components required to explain 80% of the variance in the data?

5 PCs capture 84.7%.

Hierarchial Clustering

First scale the wisc.data data and assign the result to data.scaled.

```
data.scaled <- scale(wisc.data)
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)

wisc.hclust <- hclust(data.dist)

plot(wisc.hclust)
abline(h=19, col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

At height 19.

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
```

Cut this tree to yield cluster membership

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
table(cutree(wisc.hclust, k=2), diagnosis)
```

```
diagnosis
    В
        М
1 357 210
    0
table(cutree(wisc.hclust, k=10), diagnosis)
  diagnosis
     В
         Μ
1
    12
        86
2
        59
     0
3
     0
         3
4
   331
        39
5
     0
        20
6
     2
         0
7
    12
         0
8
         2
9
         2
10
         1
```

The smaller amount of clusters is better to find simpler similarities. The greater the size of the cluster, the more difficult it is to interpret.

Q13. What is your favorite results for the same data.dist dataset? Explain your reasoning.

```
hc.complete <- hclust(dist(scale(wisc.data)), method="complete")
plot(hc.complete)</pre>
```

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "complete")

hc.single <- hclust(dist(scale(wisc.data)), method="single")
plot(hc.single)</pre>

Cluster Dendrogram

dist(scale(wisc.data))
 hclust (*, "single")

hc.average <- hclust(dist(scale(wisc.data)), method="average")
plot(hc.average)</pre>

Cluster Dendrogram

dist(scale(wisc.data)) hclust (*, "average")

hc.ward <- hclust(dist(scale(wisc.data)), method="ward.D2")
plot(hc.ward)</pre>

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "ward.D2")

I prefer the ward.D2 clustering method because the resulting dendrogram appears the clearest to understand.

Combine methods: PCA and HCLUST

I want to cluster my PCA results - that is use wisc.pr\$x as input to hclust()
Try clustering in 3 PCs, that is PC1, PC2 and PC3 as input

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")</pre>
```

And my tree result figure

```
plot(wisc.pr.hclust)
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Let's cut this tree into two groups/clusters

plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```


How well do the two clusters separate the M and B diagnosis?

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

Q15. How well does the newly created model with four clusters seperate out the two diagnoses?

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=4)
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

diagnosis wisc.pr.hclust.clusters B M 1 0 45 2 2 77 3 26 66 4 329 24

The newly created model with four clusters separates the two diagnoses. However, with two clusters, the separation is more clear.

```
(179+333)/nrow(wisc.data)
```

[1] 0.8998243