Sintonia de Ganhos para Leis de Controle Não-Lineares em Robôs Móveis de Tração Diferencial

Matheus Lucas Tavares de Farias

11 de Agosto de 2025

Automação Inteligente

Introdução

Introdução — Contexto

- Navegação autônoma é um dos principais desafios da robótica móvel.
- Controlador Go-to-Goal:
 - Simples e direto
 - Move o robô em linha reta até o objetivo
 - Limitações: falha na presença de obstáculos estáticos ou dinâmicos

Introdução — Estratégias de Desvio

- Para superar as limitações:
 - Campos potenciais
 - Arquiteturas reativas
 - Inferência fuzzy (promissora)
- Vantagens da lógica fuzzy:
 - Combina informações sensoriais
 - Interpretação qualitativa inspirada no raciocínio humano
 - Robustez em ambientes incertos

Introdução — Proposta

- Estratégia baseada em inferência fuzzy do tipo Mamdani
- Aplicada ao robô P3DX no simulador CoppeliaSim
- Uso dos sensores ultrassônicos para construir uma rosa dos ventos
- Definição de virtual goals para guiar a navegação

Lógica Fuzzy

Lógica Fuzzy — Conceito

- Proposta por Lotfi Zadeh (1965)
- Extensão da lógica clássica:
 - Permite lidar com informações imprecisas ou incertas
 - Variáveis recebem graus de pertinência no intervalo [0,1]
- Baseada em conjuntos fuzzy:
 - Cada elemento possui um valor de pertinência
 - Permite descrições qualitativas: "perto", "longe", "rápido", "lento"

Lógica Fuzzy — Sistema de Inferência

Etapas principais de um FIS:

- 1. Fuzzificação: converte entradas numéricas em valores fuzzy
- 2. Base de regras: regras Se-Então
- Inferência: combina regras ativas usando operadores lógicos fuzzy
- 4. **Defuzzificação**: converte a saída fuzzy em valor numérico (crisp)

Método mais comum: Centro de Gravidade (COG)

Lógica Fuzzy — Aplicações em Robótica

- Fusão de informações sensoriais em ambientes incertos
- Dispensa modelos matemáticos exatos
- Utiliza conhecimento heurístico para desviar de obstáculos não modelados
- Exemplo: geração de comandos de velocidade linear e angular
- Variáveis linguísticas: "distância do obstáculo", "ângulo relativo"

Níveis de Controle

Níveis de Controle — Visão Geral

- Controle Go-to-Goal em desvio de obstáculos envolve dois níveis:
 - 1. Controle de baixo nível:
 - Gera velocidades linear e angular
 - Baseado nos erros de posição e orientação
 - 2. Controle de alto nível:
 - Responsável pelo desvio de obstáculos
 - Define alvos intermediários (sub-goals)

Controle de Baixo Nível

- Baseado em [1], com critério de estabilidade de Lyapunov
- Também chamado de goal-seeking
- Lei de controle:

$$\begin{cases} v = \gamma e \cos(\alpha) \\ \omega = \kappa \alpha + \gamma \sin(\alpha) \cos(\alpha) \end{cases}$$

- e: erro de posição
- α : erro de orientação
- Ganhos adotados: $\gamma =$ 0.3, $\kappa = 1$

Controle de Alto Nível

- Implementado via lógica Fuzzy (Mamdani)
- Comportamento denominado Obstacle-Avoidance
- Inspira-se no raciocínio humano para gerar desvios seguros
- Objetivo: criar um alvo fictício (sub-goal)
 - Serve de referência para o controle de baixo nível
 - Facilita o desvio sem perder o rumo do alvo principal

Integração dos Níveis de Controle

- Alto nível:
 - Define posição do sub-goal respeitando o ambiente
- Baixo nível:
 - Calcula velocidades para seguir o sub-goal
 - Garante estabilidade e tempo de resposta adequado
- Resultado: navegação combinando meta global + desvio local

Controle de Alto Nível —

Obstacle-Avoidance

Controle de Alto Nível — Objetivo

- Garantir o desvio de obstáculos durante a navegação.
- Dois componentes principais:
 - 1. Detecção de obstáculos com sensores ultrassônicos do P3DX
 - 2. Posicionamento do sub-alvo usando lógica Fuzzy
- Estratégia: redirecionar o robô a um alvo fictício (sub-goal) para contornar obstáculos.

Sensoriamento e Rosa dos Ventos

- O P3DX possui **16 sensores ultrassônicos**.
- Para reduzir a complexidade, agrupam-se 2 sensores em 1 direção cardeal.
- Resultado: **8 direções principais** (rosa dos ventos).
- Leitura de cada direção = valor mínimo entre os dois sensores.

Figura 1: Mapeamento dos sensores na rosa dos ventos.

Lógica Fuzzy no Desvio

- ullet Estrutura Fuzzy: fuzzificação o inferência o defuzzificação
- Variáveis de entrada (sensores agrupados):
 - Perto (N), Médio (M), Longe (F)
- Variáveis de saída:
 - Erro de posição: N, M, F
 - Erro de orientação: direções cardeais e colaterais

Figura 2: Função de pertinência dos sensores.

Funções de Pertinência — Saídas

Figura 3: Funções de pertinência para erro de posição (esq.) e orientação (dir.).

Regras Fuzzy

- Conjunto de regras adaptadas de [2].
- Regras adicionais foram criadas neste trabalho para aumentar robustez.

Regras Fuzzy

Tabela 1: Regras Fuzzy adaptadas de [2].

Casos	NW	NO	NE	е	α
Caso 1	N	N	N	N	NO
Caso 2	N	N	М	N	NE
Caso 3	N	N	F	М	NE
Caso 4	N	М	N	N	NO
Caso 5	N	М	М	N	NE
Caso 23	F	М	М	М	NW
Caso 24	F	М	F	М	NW
Caso 25	F	F	N	N	NW
Caso 26	F	F	М	М	NW
Caso 27	F	F	F	F	NO

Regras Fuzzy

Tabela 2: Regras Fuzzy criadas neste trabalho.

Casos	NO	ES	WE	е	α
Caso 1	N	N	М	N	NW
Caso 2	N	N	F	N	WE
Caso 3	N	М	N	N	NE
Caso 4	N	М	F	N	NW
Caso 5	N	F	N	N	ES
Caso 6	N	F	М	N	NE

Ativação do Comportamento

- O comportamento Obstacle-Avoidance é acionado apenas quando:
 - Os sensores frontais detectam um obstáculo.
- Caso contrário:
 - Prevalece o comportamento **Goal-Seeking**.
- Assim, garante-se navegação direta ao alvo, com desvio apenas quando necessário.

Resultados

Resultados — Avaliação do Controle

- Simulações realizadas no CoppeliaSim, com o robô P3DX.
- Controladores de baixo e alto nível implementados em Lua.
- 5 cenários de teste, contendo:
 - Obstáculos (paredes)
 - Ponto inicial (verde)
 - Alvo final (vermelho)
- Objetivo: avaliar a trajetória resultante do robô.

Figura 4: Trajetória do robô no cenário 1.

Figura 5: Trajetória do robô no cenário 2.

Figura 6: Trajetória do robô no cenário 3.

Figura 7: Trajetória do robô no cenário 4.

Figura 8: Trajetória do robô no cenário 5.

Conclusão

Conclusão

- O controle de baixo nível (goal-seeking) mostrou eficiência na condução direta ao alvo, mantendo trajetórias consistentes.
- O controle de alto nível (obstacle-avoidance) executou desvios de forma satisfatória, evitando colisões.
- A atuação combinada dos dois níveis possibilitou:
 - Navegação segura em ambientes parcialmente desconhecidos.
 - Alcance do alvo final mesmo na presença de obstáculos.
- O método proposto se mostrou viável para o controle de robôs móveis em cenários complexos.

Referências

Referências

Breno P de Meneses, Gabriel HV da Silva, Lara R Sobral, Mateus S Marques, Rodrigo T de Araujo, and Antonio MN Lima.

Navigation of a two-wheel differential drive robot in a partially unknown environment.

In Simpósio Brasileiro de Automação Inteligente-SBAI, volume 1, 2023.

Aggrey Shitsukane, Wilson Cheruiyot, Calvin Otieno, and Mgala Mvurya.

Fuzzy logic sensor fusion for obstacle avoidance mobile robot.

In 2018 IST-Africa Week Conference (IST-Africa), pages Page–1. IEEE, 2018.