Q1.

a)

P_1	\mathbf{P}_2	P_3	P_4	P_5	P_6	\mathbf{P}_7	P_8	P_9	P_{10}	P ₁ '	P ₂ '
a	С	a	b	a	С	b	С	b	a	b	a
b	b	С	С	b	a	a	a	a	С	a	b
С	a	b	a	С	b	С	b	С	b	С	С

 $f(P_1,P_2)=a$ (given)

 $f(P_3,P_4)=a$ (monotonicity) The position of a is getting weakly better from (P_1,P_2) to (P_3,P_4) .

 $f(P_5,P_6)$ =a (monotonicity) The position of a is getting weakly better from $(P_3 P_4)$ to $(P_5 P_6)$

 $f(P_7, P_8)$ can only be b or c as $f(P_7, P_8)$ can be either be $P_7(1)$ or $P_8(1)$.

But if $f(P_7 P_8) = c$ then P_7 can manipulate to P5 and get A elected.

Hence, $f(P_{7}, P_{8}) = b$.

 $f(P_9, P_{10}) = b$ (monotonicity)

The position of b is getting weakly better from $(P_7 P_8)$ to $(P_9 P_{10})$.

 $f(P_1',P_2')=b$ (monotonicity)

The position of b is getting weakly better from $(P_9 P_{10})$ to $(P_1 P_2)$.

b)

No. the earlier conclusion does not hold in this case as the profiles P_3 , P_6 will not be allowed in single peaked preferences. There is restriction on the preferences.

Mechanism such that $f(P_1'P_2')=a$:

P _x (1)	P _y (1)	$f(P_x, P_y)$
a	a	a
a	b	a
a	С	a
С	a	a
С	С	С
С	b	b
b	a	a
b	С	b
b	b	b

Since preferences are single peaked , only 4 preference profiles P_1 ' , P_2 '= P_1 , P_2 and P_4 are possible. Showing that the above mechanism is strategyproof:

Case 1: $f(P_x, P_y)$ =c it is possible only when both $P_x(1)$ = $P_y(1)$ =c. Hence, none of them have any motivation to manipulate.

Case 2: $f(P_x, P_y)$ =a it is possible if $P_x(1)$ =a or $P_y(1)$ =a or $P_x(1)$ = $P_y(1)$ =a

If $P_x(1)=P_y(1)=a$, then none of them have any motivation to manipulate.

If $P_x(1)$ =a and $P_y(1)$ <>a, then no matter what $P_y(1)$ is $f(P_x, P_y)$ =a. Hence, none of them have any motivation to manipulate.

Similarly , we can argue for $P_x(1) \le a$ and $P_y(1) = a$.

Case 3: $f(P_x, P_y)=b$, it is possible only in the following cases:

- 1.) $P_x(1)=P_y(1)=b$ In this case, none of them have any motivation to manipulate.
- 2.) $P_x(1)$ =b and $P_y(1)$ =c .In this case, $P_y(2)$ =b (because of the restriction caused by single peaked preference). Therefore, none of them have any motivation to manipulate.
- 3.) $P_x(1)=c$ and $P_v(1)=b$

Similar to the above argument.

Q2. Let X be the set of projects.

Let S be the set of all the non-empty subsets of X.

Now, for any agent i with preference P_i over the projects , the preference over the elements of S would always have X (i.e. the subset having all the projects) as $P_i(1)$.

Hence, the preference profiles have a restriction and hence Gibbard-Satterthwaite result will not apply here.

Q3. We need to consider only the peak preferences of all the agents. So let us denote $P = (P_1(1), ..., P_i(1), ..., P_n(1))$ and let $f(P) = a \in A$ is the median of these peaks where A is set of agents.

Consider a group of agents K , such that $K \subseteq A$.

Now if agents try to manipulate, then there are three cases possible:

Case 1: If $P_i(1) = a$ for all $i \in K$, then there is no reason for the agents to manipulate.

Case 2: If $P_i(1) < a$ for all $i \in K$,

Then if the agents shift their preference to any position left of a, the median will not change. If they shift their preference towards right of a, i.e. $(P_i, P_{-i}) \rightarrow (P_i', P_{-i})$ s.t. $a < P_i'(1)$ for all $i \in K$, since P_i is a single-peaked preference the median will move further towards right and they would be worse off.

Hence, they have no profitable manipulation.

Case 3: If $P_i(1) \le a$ for all $i \in K$, then by arguments similar to case 2, there is no profitable manipulation.

Note that only these three are the only cases possible as an agent with $P_i(1) \le a$ will never collude with $P_i(1) \le a$ as this collusion can not be beneficial for both at the same time.

Hence, f is group strategyproof.