Bhoris Dhanjal

Calculus IV

Contents

1	Fun	ctions of several variables	1
	1.1	Examples of functions of several variables	1
	1.2	Non-existence of limit by 2 path test	1
	1.3	Existence of limit with ε, δ definition	2
	1.4	Continuity	3
	1.5	Polar Coordinates	4
		1.5.1 Limits in Polar coordinates	5
		1.5.2 Epsilon-delta with polar coordinates	5
	1.6	Algebra of limits	5
	1.7	General multivariate limit	6
	1.8	Iterated (Repeated) limits	6
	1.9	Limits in 3 variables	9
		1.9.1 Two path test for non-existence of limit	9
	1.10	Partial derivatives	10
2	Diff	erentiation	12
3	App	olications	13

Chapter 1

Functions of several variables

1.1 Examples of functions of several variables

$$f(x,y) = x + y \log x$$
 $f: \mathbb{R}^2 \to \mathbb{R}$ Scalar valued function $f(x,y) = (x^2y,\cos x,e^x - 9)$ $f: \mathbb{R}^2 \to \mathbb{R}^3$ Vector valued function

Clearly, $f: \mathbb{R} \to \mathbb{R}$ is a particular case of scalar valued function.

1.2 Non-existence of limit by 2 path test

For a function $f: \mathbb{R} \to \mathbb{R}$ the limit exists if limit value is the same along all possible paths, i.e. left hand and right hand limit are equivalent.

For a multivariate function the 2 path test can be used to show non existence of a limit.

Example 1.1. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2}$ doesn't exist.

Proof. Consider $x = my^2$ and let $y \to 0$, then

$$\lim_{y \to 0} f(my^2, y) = \lim_{y \to 0} \frac{2my^4}{(m^2 + 1)y^2} = \frac{2m}{1 + m^2}$$

Therefore, the limit value varies for different values of m.

Example 1.2. Show that $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ doesn't exist.

Proof. Consider first along x axis (i.e. y = 0)

$$\lim_{x \to 0} \frac{x}{x} = 1$$

Consider now along y axis (i.e. x = 0)

$$\lim_{y \to 0} \frac{y}{-y} = -1$$

Since the limit is not path independent we can say the limit does not exist. \Box

Example 1.3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ doesn't exist.

Proof. Along x and y axis the limits are both zero. Consider instead the path $y = x^2$

$$\lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

Since the limit is not path independent it does not exist.

Example 1.4. Show that the $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2-2x}$ doesn't exist.

Proof. Along x, y axis the limit is 0. Consider the path $y = \sqrt{2x}$

$$\lim_{x \to 0} \frac{x^2}{x^2} = 1$$

Since the limit is not path independent it does not exist.

1.3 Existence of limit with ε, δ definition

Recall the single variable definition of a limit,

Definition 1.5 (Limit of a single valued function). For a function $f: \mathbb{R} \to \mathbb{R}$, $\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that } 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon$

Definition 1.6 (Limit of a multivariate function). For a function $f: \mathbb{R}^2 \to \mathbb{R}$, $\lim_{(x,y)\to(a,b)} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that}$

$$0<||(x,y)-(a,b)||_2<\delta\implies|f(x,y)-L|<\varepsilon$$

, alternatively

$$\sqrt{(x-a)^2 + (x-b)^2} < \delta \implies |f(x,y) - L| < \varepsilon$$

Example 1.7. Show that $\lim_{(x,y)\to(0,0)} \frac{x-y}{1+x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = |f(x,y)| = \left| \frac{x - y}{1 + x^2 + y^2} \right|$$

= $\frac{|x - y|}{1 + x^2 + y^2}$

since $1 + x^2 + y^2 \ge 1$

$$\leq |x - y|$$

$$\leq |x| + |y|$$

$$\leq \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2} = 2\sqrt{x^2 + y^2}$$

Therefore, if $2\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$ so take $\delta=\varepsilon/2$.

Example 1.8 (H.W). Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = \left| \frac{xy^2}{x^2 + y^2} - 0 \right| = \frac{|x|y^2}{x^2 + y^2}$$

$$= \frac{|x|}{\frac{x^2}{y^2} + 1}$$

$$\leq |x|$$

$$\leq \sqrt{x^2 + y^2} < \varepsilon \implies |f(x,y) - L| < \varepsilon$$

So we can just pick $\delta = \varepsilon$.

1.4 Continuity

Definition 1.9 (Continuity). A function $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be continuous at a point (a,b) if $\forall \varepsilon > 0, \exists \delta > 0$ such that,

$$0 < ||(x,y) - (a,b)||_2 < \delta \implies |f(x,y) - f(a,b)| < \varepsilon$$

provided f(a,b) exists. Alternatively,

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Note that, we can show the function is discontinuous if

- 1. f(a,b) doesn't exist.
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist.
- 3. Both exist but are not equal to each other.

Example 1.10. Show that the given function is continuous at (0,0) where,

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Here, f(0,0) = 0. Clearly we have that $|x^2 - y^2| \le |x^2 + y^2|$. Let $\varepsilon > 0$,

$$|f(x,y) - L| = \left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right|$$
$$= |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right|$$
$$\le |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} = x^2 + y^2$$

So when $x^2 + y^2 < \varepsilon \implies |f(x,y) = f(0,0)| < \varepsilon$ so we take $\delta = \sqrt{\varepsilon}$.

Example 1.11. Show that the given function is discontinuous at (0,0) where,

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. content...

1.5 Polar Coordinates

The polar coordinates r(the radial coordinate) and θ (the angular coordinate), are defined in terms of cartesian coordinates as below.

$$x = r\cos\theta, y = r\sin\theta$$
$$r = \sqrt{x^2 + y^2}, \theta = \arctan\left(\frac{y}{x}\right)$$

1.5.1 Limits in Polar coordinates

Use polar coordinates when you are over (0,0)

Example 1.12. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ doesn't exist.

Proof. Put $x = r \cos \theta$ and $y = r \sin \theta$

$$f(x,y) = \frac{2xy}{x^2 + y^2} \iff f(r,\theta) = \frac{2r^2 \cos \theta \sin \theta}{r^2} = 2\cos \theta \sin \theta$$
$$\lim_{r \to 0} f(r,\theta) = \lim_{r \to 0} 2\cos \theta \sin \theta = 2\cos \theta \sin \theta$$

Which depends on θ .

1.5.2 Epsilon-delta with polar coordinates

Definition 1.13. $\lim_{r\to 0} f(r,\theta) = L \iff \forall \varepsilon > 0 \exists \delta > 0 s.t.$

$$0 < |r| < \delta \implies |f(r,\theta) - L| < \varepsilon$$

Example 1.14. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$

Proof.

$$f(r,\theta) = \frac{r^3 \cos^3 \theta}{r^2} = r(\cos \theta)^3 \tag{1.1}$$

Let $\varepsilon > 0$, consider $|f(r,\theta) - L| = |r| |\cos \theta|^3 \le |r|$. So we can set $\delta = \varepsilon$

Example 1.15. Find the domain and range of
$$g(x,y) = \sqrt{9-x^2-y^2}$$

Proof. The sqrt interior must be positive so take $x^2 + y^2 \le 9$, so its a circle of radius 3 centred at 0. So the domain is the circle. The range is $\{z \mid 0 \le z \le 3\} = [0,3]$

1.6 Algebra of limits

Let $f, g: \mathbb{R}^n \to \mathbb{R}, p \in \mathbb{R}^n$ and $k_1, k_2 \in \mathbb{R}$.

Theorem 1.16. If $\lim_{x\to p} f(x) = L_1$, $\lim_{x\to p} g(x) = L_2$, then

- $\lim_{x \to p} (k_1 f(x) + k_2 g(x)) = k_1 L_1 + k_2 L_2$
- $\bullet \lim_{x \to p} (f(x)g(x)) = L_1 L_2$
- For non-zero L_2 , $\lim_{x\to p} (f(x)/g(x)) = L_1/L_2$

1.7 General multivariate limit

Theorem 1.17 (Limit of a function $f : \mathbb{R}^n \to \mathbb{R}$). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < ||x - a||_n < \delta \implies |f(x) - L| < \varepsilon$$

Definition 1.18 (ε - neighbourhood). $B(a, \varepsilon)$ open ball of radius ε around α .

$$0 \le ||x - a||_n < \varepsilon$$

Definition 1.19 (Deleted ε neighbourhood). $B(a, \varepsilon) - \{a\}$

Definition 1.20 (Alternate definition of a limit). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in B * (a, \delta) \implies |f(x) - L| < \varepsilon$$

Definition 1.21 (Bounded function). Let E be a non-empty subset of \mathbb{R}^n . The function $f: E \to \mathbb{R}$ is said to be bounded in some δ -neighbourhood of point $p \in \mathbb{R}^n$ if there exists M > 0 in \mathbb{R} such that

$$|f(x)| \le M \forall x \in B(p, \delta)$$

Definition 1.22 (Relation between bounded function and limit of a function in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. Let f(p) be defined. If $\lim_{x\to p} f(x)$ exists then f is bounded in some neighbourhood of point p.

The converse of 1.22 isn't true.

Theorem 1.23 (Uniqueness of limit in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. If $\lim_{x \to p} f(x)$ exists then it is unique.

1.8 Iterated (Repeated) limits

Let $(a,b) \in E$ and $f: E \to \mathbb{R}$ be a function where $E \subseteq \mathbb{R}^2$,

1. Suppose there exists $\delta > 0$ such that $\forall x$ with $0 < |x - a| < \delta$, we have $\lim_{y \to b} f(x, y)$ exists.

Define a new function $g : \mathbb{R} \to \mathbb{R}$ as $g(x) = \lim_{y \to b} f(x, y)$. If $\lim_{x \to a} g(x)$ exists then this limit is called **iterated limit** which is given by $\lim_{x \to a} g(x) = \lim_{x \to a} \lim_{y \to b} f(x, y)$.

2. Suppose there exists $\delta > 0$ such that $\forall y$ with $0 < |y - b| < \delta$, we have $\lim_{x \to a} f(x, y)$ exists

Theorem 1.24. Existence of double limit does not imply existence of iterated limit.

Proof. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined as,

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & y \neq 0\\ 0 & y = 0 \end{cases}$$

We show that $\lim_{(x,y)\to(0,0)} f(x,y)=0$ i.e. double limit exists. Let $\varepsilon>0$. Consider then

$$|f(x,y) - L| = |x\sin(1/y) - 0| = |x| |\sin(1/y)| \le |x|$$

$$\le \sqrt{x^2}$$

$$\le \sqrt{x^2 + y^2}$$

so $\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$. So choose $\delta=\varepsilon$. We will now check its iterated limit.

$$\lim_{x} \lim_{y} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} x \sin \frac{1}{y} \right]$$
$$= \lim_{x \to 0} x \left[\lim_{y \to 0} \sin \frac{1}{y} \right]$$

The limit inside doesn't exist.

Claim that $\lim_y \phi(y) = \lim_y \sin 1/y$ doesn't exist, Take $a_n = \frac{1}{(4n+1)\pi/2}, b_n = \frac{1}{(4n-1)\pi/2}$. The sequences converge to zero but their sequences $\phi a_n, \phi b_n$ dont converge to the same limit.

Example 1.25 (Both iterated limits exist but double limit doesn't exist). consider $f : \mathbb{R}^2 \to \mathbb{R}$, defined as

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2 - x} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Begin with two part test to show that the double limit does not exist. Consider first the path x = y the limit is 0,

$$\lim_{(x,y)\to(0,0)} \frac{y^2}{y^2 + y^2 - y} = \lim_{(x,y)\to(0,0)} \frac{y}{2y - 1} = 0$$

Then consider the path $x = y^2$

$$\lim_{(x,y)\to(0,0)} \frac{y^4}{y^4 + y^2 - y^2} = \lim_{(x,y)\to(0,0)} \frac{y^4}{y^4} = 1$$

So double limit does not exist.

Now consider the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^2}{x^2 + y^2 - x} \right]$$
$$= \lim_{x \to 0} \frac{x^2}{x^2 - x} = 0$$

Now consider

$$\lim_{y \to 0} \lim_{x \to 0} = \lim_{y \to 0} \frac{0}{y^2} = 0$$

Example 1.26 (Both iterated limits exist (not equal) but double limit doesn't exist). Consider $f: \mathbb{R}^2 \to \mathbb{R}$ definde as,

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. First show that the double limit does not exist.

Consider the bath x=0 the limit is equal to 1. Consider the path x=y we will have the limit equal to 0.

Consider now the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} 1 = 1$$

And now the other direction,

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y \to 0} -1 = -1$$

Theorem 1.27. Suppose $\lim_{(x,y)\to(0,0)} f(x,y)$ exists and is equal to L. If both iterated limits exist then, the iterated limits are both equal to L.

Proof. Given that $\lim_{(x,y)\to(a,b)} f(x,y) = L$. Let $\lim_{y\to b} f(x,y) = g(x)$. Let $\varepsilon > 0$, then there exists $\delta_1 > 0$ s.t.

$$0 < ||(x,y) - (a,b)||_2 < \delta_1 \implies |f(x,y) - L| < \frac{\varepsilon}{2}$$

and there exists $\delta_2 > 0$ such that

$$0 < |y - b| < \delta_2 \implies |f(x, y) - g(x)| < \frac{\varepsilon}{2}$$

Define $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta \leq \delta_1, \delta \leq \delta_2$ which gives

$$0 < |y - b| \le \sqrt{(x - a)^2 + (y - b)^2} < \delta \implies |f(x, y) - L| \frac{\varepsilon}{2}$$
$$0 < |y - b| < \delta \implies |f(x, y) - g(x)| < \varepsilon/2$$

With respect to $0 < |x - a| < \delta$ consider

$$|g(x) - L| = |g(x) + f(x,y) - f(x,y) - L| = |f(x,y) - L) - (f(x,y) - g(x))|$$

$$\leq |f(x,y) - L| + |f(x,y) - g(x)|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Thus $\forall \varepsilon > 0, \exists \delta > 0$ s.t. Complete this later...

Do the same thing for h(y).

1.9 Limits in 3 variables

1.9.1 Two path test for non-existence of limit

Two path can be used for non-existence of a limit in 3 variables. However a single equation is not enough to define a path in \mathbb{R}^3 two Cartesian equations are required for a path in \mathbb{R}^3 .

Example 1.28. Show that

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+y^2-z^2}{x^2+y^2+z^2}$$

Proof. Take y = x, z = x then

$$\lim_{x \to 0} \frac{x^2}{3x^2} = \frac{1}{3}$$

Take other path y = x, z = 0

$$\lim_{x \to 0} \frac{2x^2}{2x^2} = 1$$

Definition 1.29 (Limit of a function $\mathbb{R}^3 \to \mathbb{R}$). For a function $f: \mathbb{R}^3 \to \mathbb{R}$, $\lim_{(x,y,z)\to(a,b,c)} f(x,y,z) = L$ if and only if $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$0 < ||(x, y, z) - (a, b, c)||_3 < \delta \implies |f(x, y, z) - L| < \varepsilon$$

i.e.

$$0<\sqrt{(x-a)^2+(y-b)^2(z-c)^2}<\delta\implies |f(x,y,z)-L|<\varepsilon$$

Definition 1.30 (Continuity of a function $\mathbb{R}^3 \to \mathbb{R}$). Replace L with f(a,b,c).

Example 1.31. Show that

$$\lim_{(x,y,z)\to(1,2,3)} 4x + 2y + z = 11$$

using epsilon delta

Proof. Let $\varepsilon > 0$ consider,

$$|f(x,y,z) - L| = |4x + 2y + z - 11|$$

$$= |(4x - 4) + (2y - 4) + (z - 3)|$$

$$\leq 4|x - 1| + 2|y - 2| + |z - 3|$$

$$\leq 4\sqrt{(x - 1)^2} + 2\sqrt{(y - 2)^2} + \sqrt{(z - 3)^2}$$

$$\leq 7\sqrt{(x - 1)^2 + (y - 2)^2 + (z - 3)^3}$$

So take $\delta = \varepsilon/7$

Example 1.32. Evaluate $\lim_{(x,y)\to(3,3)} \frac{x^2+xy-2y^2}{x^2-y^2}$

Proof. Factorize (x - y) on numerator and denominator then just plug and chug.

1.10 Partial derivatives

Partial derivates are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation. For a function f in n variables x_1, x_2, \ldots, x_n we can define the m^{th} partial derivative as,

$$f_{x_m} = \frac{\partial f}{\partial x_m} = \lim_{h \to 0} \frac{f(x_1, \dots, x_m + h, \dots, x_n) - f(x_1, \dots, x_m, \dots, x_n)}{h}$$

Partial derivatives can be taken with respect to multiple variables and are denoted as follows,

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}$$
$$\frac{\partial^2 f}{\partial x \partial y} = f_{xy}$$
$$\frac{\partial^3 f}{\partial x^2 \partial y} = f_{xxy}$$

Chapter 2

Differentiation

Chapter 3

Applications