Lectures on Random Matrices (Spring 2025) Lecture 8: Cutting corners and loop equations

Leonid Petrov

Wednesday, February 26, 2025*

Contents

1	Cutting corners: polynomial equations and distribution		
	1.1	Recap: polynomial equations	1
	1.2	Extension to general β	2
	1.3	Distribution of the eigenvalues of the corners	2
2	Loo	op equations	3
	2.1	Formulation	3
	2.2	Proof	3
3	App	plications of loop equations	3
Н	H Problems (due 2025-03-25)		3
	H.1	Cauchy determinant	3
	H.2	Dirichlet density	3

1 Cutting corners: polynomial equations and distribution

1.1 Recap: polynomial equations

Recall the polynomial equation we proved in the last Lecture 7. Fix $\lambda = (\lambda_1 \ge ... \ge \lambda_n)$. Let $H \in \text{Orbit}(\lambda)$ be a random Hermitian matrix defined as

$$H = U \operatorname{diag}(\lambda_1, \dots, \lambda_n) U^{\dagger},$$

where U is Haar-distributed unitary matrix from U(n). This is the case $\beta = 2$, but the statement holds for the cases $\beta = 1, 4$ with appropriate modifications. Let μ_1, \ldots, μ_{n-1} be the eigenvalues of the $(n-1) \times (n-1)$ corner $H^{(n-1)}$.

^{*}Course webpage • Live simulations • TeX Source • Updated at 11:48, Tuesday 25th February, 2025

Lemma 1.1. The distribution of μ_1, \ldots, μ_{n-1} is the same as the distribution of the roots of the polynomial equation

$$\sum_{i=1}^{n} \frac{\xi_i}{z - \lambda_i} = 0, \tag{1.1}$$

where ξ_i are i.i.d. random variables with the distribution χ^2_{β} .

Recall also that this passage from λ to μ works inductively, and the distribution of the next level eigenvalues $\nu = (\nu_1 \geq \ldots \geq \nu_{n-2})$ is given by the same polynomial equation, but with λ replaced by μ . In this way, we can define a *Markov map* from λ to μ , which is then iterated to construct the full array of eigenvalues of the corners of H.

For $\beta = \infty$, this map is deterministic, and is equivalent to successive differentiating the characteristic polynomial of H.

1.2 Extension to general β

We extend the polynomial equations to general β , by declaring (defining) that the general β corners distribution is powered by the passage from $\lambda = (\lambda_1 \geq \ldots \geq \lambda_n)$ to $\mu = (\mu_1 \geq \ldots \geq \mu_{n-1})$, where μ solves (1.1) with ξ_i i.i.d. χ^2_{β} . In this way, μ interlaces with λ . For $\beta = 1, 2, 4$, this definition reduces to the one with invariant ensembles with fixed eigenvalues λ .

1.3 Distribution of the eigenvalues of the corners

Let μ be obtained from λ by the general β corners operation.

Theorem 1.2. The density of μ with respect to the Lebesgue measure is given by

$$\frac{\Gamma(N\beta/2)}{\Gamma(\beta/2)^n} \prod_{1 \le i < j \le n-1} (\mu_i - \mu_j) \prod_{i=1}^{n-1} \prod_{j=1}^n |\mu_i - \lambda_j|^{\beta/2-1} \prod_{1 \le i < j \le n} (\lambda_i - \lambda_j)^{1-\beta}.$$

Proof. Let $\varphi_i = \xi_i / \sum_{j=1}^n \xi_j$. It is well-known¹ the joint density of $(\varphi_1, \dots, \varphi_n)$ is the (symmetric) Dirichlet density

$$\frac{\Gamma(N\beta/2)}{\Gamma(\beta/2)^n} w_1^{\beta/2-1} \dots w_n^{\beta/2-1} dw_1 \dots dw_{n-1}$$

(note that the density is (n-1)-dimensional).

We need to compute the Jacobian of the transformation from φ to μ , if we write

$$\sum_{i=1}^{n} \frac{\varphi_i}{z - \lambda_i} = \frac{\prod_{i=1}^{n-1} (z - \mu_i)}{\prod_{i=1}^{n} (z - \lambda_i)},$$

and compute (as a decomposition into partial fractions):

$$\varphi_a = \frac{\prod_{i=1}^{n-1} (\lambda_a - \mu_i)}{\prod_{i \neq a} (\lambda_a - \lambda_i)}.$$

¹See Problem H.2.

Therefore,

$$\frac{\partial \varphi_a}{\partial \mu_b} = \frac{\prod_{i=1}^{n-1} (\lambda_a - \mu_i)}{\prod_{i \neq a} (\lambda_a - \lambda_i)} \frac{1}{\mu_b - \lambda_a}.$$

The Jacobian is essentially the determinant of the matrix $1/(\mu_b - \lambda_a)$, which is the Cauchy determinant (Problem H.1). The final density is obtained from the symmetric Dirichlet density, but we plug in $w = \varphi$, and also multiply by the Jacobian. This completes the proof.

Corollary 1.3 (Joint density of the corners). The eigenvalues $\lambda^{(k)}_j$, $1 \leq j \leq k \leq n$, of a random matrix from $\text{Orbit}(\lambda)$ form an interlacing array, with the joint density

$$\propto \prod_{k=1}^{n} \prod_{1 \leq i < j \leq k} \left(\lambda_{j}^{(k)} - \lambda_{i}^{(k)} \right)^{2-\beta} \prod_{a=1}^{k+1} \prod_{b=1}^{k} \left| \lambda_{a}^{(k+1)} - \lambda_{b}^{(k)} \right|^{\beta/2-1}.$$

For $\beta = 2$, all factors disappear, and we get the uniform distribution on the interlacing array. This is the *uniform Gibbs property* which is important for other models, including discrete ensembles.

2 Loop equations

Let us write down the *loop equations* for the passage from the eigenvalues λ to the eigenvalues μ . These loop equations are due to [GH24] by a limit from a discrete system (related to Jack symmetric polynomials). Note that despite the name, these are not **equations**, but rather a statement that some expectations are holomorphic.

- 2.1 Formulation
- 2.2 Proof
- 3 Applications of loop equations
- H Problems (due 2025-03-25)

H.1 Cauchy determinant

Prove the Cauchy determinant formula:

$$\det\left(\frac{1}{x_i - y_j}\right)_{1 \le i, j \le n} = \frac{\prod_{i \le j} (x_i - x_j)(y_i - y_j)}{\prod_{i, j} (x_i - y_j)}.$$

H.2 Dirichlet density

Find or prove the first statement in the proof of Theorem 1.2 about the symmetric Dirichlet density arising from normalizing the ξ_i 's to φ_i 's.

References

- [GH24] V. Gorin and J. Huang, Dynamical loop equation, Ann. Probab. **52** (2024), no. 5, 1758–1863. arXiv:2205.15785 [math.PR]. $\uparrow 3$
- L. Petrov, University of Virginia, Department of Mathematics, 141 Cabell Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904, USA E-mail: lenia.petrov@gmail.com