

Special Types of Models

- Special linear programming problems
 - Transportation
 - Transshipment
 - Assignment
- Subset of network flow problems

Transportation

- Characteristics of transportation problems
 - Product is being transported from a finite set of sources to a finite set of destinations
 - Sources supply a fixed amount of the product and destinations have a fixed demand for the product
- Balanced when total supply equals total demand
- Unbalanced rule
 - If supply smaller than demand, replace equality demand constraints with ≤
 - If supply larger than demand, replace equality supply constraints with ≤
- Q: How would we modify the linear program to exclude certain routes that are either prohibited?

Transshipment

- Extension of the transportation model
- Diagram of transshipment problem

• Q: What is the difference between transportation and transshipment?

Transshipment

- Transshipment adds intermediate transshipment points between the sources and the destinations
- Possible routes in transshipment models
 - Sources to transshipment points
 - Transshipment points to destinations
 - Sources to destinations
- Book also states routes can exist between sources and between destinations
- Classic example of transshipment points are warehouses

- Farms to grain elevators to flour mills
- Table of locations

Farms	Grain Elevator	Flour Mills
1. Nebraska	3. Kansas City	6. Chicago
2. Colorado	4. Omaha	7. St. Louis
	5. Des Moines	8. Cincinnati

- Nebraska and Colorado have become the sources of the wheat
- Each of the two farms produces 300 tons of wheat
- Kansas City, Omaha, and Des Moines have become our transshipment points

General diagram of transshipment problem

Shipping costs from farms to the grain elevators

	Grain elevator								
Farm	3. Kansas City	4. Omaha	5. Des Moines						
1. Nebraska	\$16	\$10	\$12						
2. Colorado	15	14	17						

• Shipping costs from grain elevators to flour mills

		Mill			
Grain elevator	6. Chicago	7. St. Louis	8. Cincinnati		
3. Kansas City	\$6	\$8	\$10		
4. Omaha	7	11	11		
5. Des Moines	4	5	12		

Demand from flour mills

Mill	Demand
6. Chicago	200
7. St. Louis	100
8. Cincinnati	300
Total	600 tons

- Q: How to transport grain (in tons) from farms to flour mills with minimal costs?
- Decision variables
 - x_{ij} = number of tons of grain to ship from i to j
 - $i, j \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $i \neq j$

Objective function

$$Z = 16x_{13} + 10x_{14} + 12x_{15} + 15x_{23} + 14x_{24} + 17x_{25}$$

+ $6x_{36} + 8x_{37} + 10x_{38} + 7x_{46} + 11x_{47} + 11x_{48} + 4x_{56} + 5x_{57} + 12x_{58}$

- In this problem, total supply (600) equals total demand (600)
- Supply constraints

$$x_{13} + x_{14} + x_{15} = 300$$
 (Nebraska Supply)
 $x_{23} + x_{24} + x_{25} = 300$ (Colorado Supply)

Demand constraints

$$x_{36} + x_{37} + x_{38} = 200$$
 (Chicago Demand)
 $x_{46} + x_{47} + x_{48} = 100$ (St. Louis Demand)
 $x_{56} + x_{57} + x_{58} = 300$ (Cincinnati Demand)

- Transshipment points have constraints that express equality between what goes in and what goes out
- Transshipment constraints

$$x_{13} + x_{23} = x_{36} + x_{37} + x_{38}$$

 $x_{14} + x_{24} = x_{46} + x_{47} + x_{48}$
 $x_{15} + x_{25} = x_{56} + x_{57} + x_{58}$

(Kansas City Transshipment)(Omaha Transshipment(Des Moines Transshipment

Integer constraints

$$x_{ij} \in \{0,1,2,\cdots\}$$

- Download MillsTransship.xlsx from course website from link Sheet 1
- Try to find the solution using Excel Solver

$$x_{15} = 300 \, \& \, x_{24} = 300 \, \& \, x_{48} = 300 \, \& \, x_{56} = 200 \, \& \, x_{57} = 100$$

Assignment

- Similar to the transportation model with slight difference
- In the assignment model, the supply at each source and demand at each destination is exactly one
- Think of the sources as unique units that need to be assigned to specific recipients
- There is cost associated to each pair of source and destination

Ex: ACC Officials

- Four basketball games in the Atlantic Coast Conference (ACC) on a night
- Conference wants to assign four teams of officials to the four games
- Supply is always one team of officials
- Demand is always requiring only one team of officials
- Q: How should we assign the four teams of officials so that distance is minimized?

	Game Sites							
Officials	 Raleigh 	2. Atlanta	3. Durham	4. Clemson				
А	201	90	180	160				
В	100	70	130	200				
C	175	105	140	170				
D	80	65	105	120				

Ex: ACC Officials

- Decision variables
 - x_{ij} = indicator of whether official team i is assigned to game in city j
 - $i \in \{A, B, C, D\}$
 - $j \in \{1,2,3,4\}$
- Objective function

$$Z = 200x_{A1} + 90x_{A2} + 180x_{A3} + 160x_{A4}$$

$$+100x_{B1} + 70x_{B2} + 130x_{B3} + 200x_{B4}$$

$$+175x_{C1} + 105x_{C2} + 140x_{C3} + 170x_{C4}$$

$$+80x_{D1} + 65x_{D2} + 105x_{D3} + 120x_{D4}$$

Use multiple choice constraints to ensure supply fulfills demand

Ex: ACC Officials

Constraints

$$x_{A1} + x_{A2} + x_{A3} + x_{A4} = 1$$

$$x_{B1} + x_{B2} + x_{B3} + x_{B4} = 1$$

$$x_{C1} + x_{C2} + x_{C3} + x_{C4} = 1$$

$$x_{D1} + x_{D2} + x_{D3} + x_{D4} = 1$$

$$x_{A1} + x_{B1} + x_{C1} + x_{D1} = 1$$

$$x_{A2} + x_{B2} + x_{C2} + x_{D2} = 1$$

$$x_{A3} + x_{B3} + x_{C3} + x_{D3} = 1$$

$$x_{A4} + x_{B4} + x_{C4} + x_{D4} = 1$$

$$x_{ij} \in \{0,1\}$$

(Official Team A)

(Official Team B)

(Official Team C)

(Official Team D)

(City 1)

(City 2)

(City 3)

(City 4)

- The Student Government Association (SGA) organizes a recurring event called "Give-Back Weekends" where teams are formed to work on projects for residents in the university community
- This event occurs over four consecutive Saturdays in April
- Coed teams are formed with 3 to 5 students from various dormitory groups, fraternities, sororities, clubs, and organizations
- Residents of the community fill out a form to describe work at their home that needs to be done
- Time to complete a project will vary between teams because of the different number of team members, skills of the team, and physical make-up of the team

• Time estimates (in hours) submitted by the six teams available to work on 12 different projects for the first Saturday of the event

	Jobs											
Team	1	2	3	4	5	6	7	8	9	10	11	12
1	5	1.5	6	4	3.5	3	6	1.5	5	1	3	3.5
2	4	2	5	5	3	3	5.5	2	4	1.5	4	2.5
3	5	1.5	6.5	3.5	2.5	4	4.5	3	3.5	1	3.5	4
4	3.5	2	5.5	4	3.5	2.5	5	2.5	4	1.5	2.5	4
5	3.5	3	5	3	2	4	5	2	5	2	4	3
6	4	2.5	6	5	3	3	6	3	3	2	3	3.5

• The primary objective of SGA is to complete all 12 projects

- Teams can work on multiple projects
- Teams cannot work more than 8 hours on Saturday
- Each team should work on at least one project
- Alternative Questions
 - Q: How can we assign the 6 teams to the 12 projects to maximize the number of jobs completed on Saturday?
 - Q: How can we assign the 6 teams to the 12 projects to minimize the total time required for all 6 teams?

- Consider the jobs as the "sources" or "supply
- Consider the teams as the "destinations" or demand
- Decision variables
 - $x_{ij} = \begin{cases} 1 & \text{if job } j \text{ is assigned to team } i \\ 0 & \text{otherwise} \end{cases}$
 - $i \in \{1,2,3,4,5,6\}$
 - $j \in \{1,2,3,\cdots,12\}$
- Objective function for the number of completed jobs

$$Z = \sum_{i=1}^{6} \sum_{j=1}^{12} x_{ij}$$

• Objective function for the amount of time for the teams to do the jobs

$$Z = \sum_{i=1}^{6} \sum_{j=1}^{12} t_{ij} x_{ij}$$
 where t_{ij} = time required for team i to do job j

- Constraints
 - Each team cannot work more than 8 hours

$$5x_{11} + 1.5x_{12} + 6x_{13} + 4x_{14} + 3.5x_{15} + 3x_{16} + 6x_{17} + 1.5x_{18} + 5x_{19} + x_{110} + 3x_{111} + 3.5x_{112} \le 8$$
 (Team 1)

• Each project can only be assigned to at most one team, which adds a total of 12 constraints, one for each project $j \in \{1,2,\cdots,12\}$

$$\sum_{i=1}^{6} x_{ij} = x_{1j} + x_{2j} + x_{3j} + x_{4j} + x_{5j} + x_{6j} \le 1$$

• Binary constraints for each decision variable

$$x_{ij} \in \{0,1\}$$

See GiveBack.xlsx from link Sheet 2 on course website

The End

