Startup Health Scoring Model Documentation

Sakshi Vedi M.Sc. AIML, IIIT Lucknow 24 July 2025

1. Project Overview

This project is part of the ScaleDux AI Internship Task, focused on evaluating and ranking startups using a custom scoring system based on business and financial metrics. Each startup is scored out of 100 based on normalized features and assigned weights to reflect real-world investor logic.

2. Feature Weight Justification

The scoring formula was designed to reflect the most important indicators of a healthy startup. Weights were assigned to each feature as follows:

- Market Size (25%) Indicates the potential of the product; a larger market gives room to grow.
- Monthly Active Users (25%) Represents user traction and adoption.
- Burn Rate (20%) A key risk factor; startups spending too fast may not sustain.
- Team Experience (15%) Strong teams often pivot and execute better.
- \bullet Funds Raised (15%) Helpful for scale, but not always a sign of performance.

3. Handling Burn Rate (Negatively Correlated Metric)

Burn rate is negatively correlated with performance — a higher burn means more cash

outflow, which is typically a risk.

To account for this, we applied **Min-Max normalization** to all features, and then

inverted the normalized burn rate:

 $burn_rate_inverted = 1 - burn_rate_normalized$

This ensures that startups with lower burn get a higher contribution to their final score.

4. Observations and Insights

• Startups with high user traction and large market size consistently scored higher, even

if funding was moderate.

• Some well-funded startups scored low due to high burn rate and poor user engagement.

• Efficient startups with limited funding but strong user growth and team experience

outperformed overfunded peers.

• Correlation heatmaps revealed strong ties between market size and user base, but

burn rate varied independently.

5. Deliverables

• Preprocessed and scored dataset in cleaned_data/

• Visualizations (bar chart, histogram, heatmap) in outputs/

• Colab notebook and modular Python scripts

Submitted by: Sakshi Vedi M.Sc. AIML, IIIT Lucknow

Date: 24 July 2025

2