Discussion 8

Today.

. Project Q&A

. Exercises

$$X^TX = I$$

J(w)= RSS(w) + reg(w)

reg (w) = 12 ||w||2 for ridge reg.

reg (w) = 2, |w| for lasse

Ridge regression:

OWK

Lasso:

Subderivative! $a = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ $b = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ The subdifferential of f at x of (x) [Ela, b] dlwx1 = { C-1, 1) , w= 0 dwx -1, wx 20 Use this in a 5(w) 2WK dJ(w) = (2wx-Gx+1) Be WK >0 [2wk-CK-1, 2WK-CK+1] WK = G wx < 0 2wk-ck-1 ŵk(ck)= (ck-1, qx>1, -1, < Cx < 1, CK+di CK <-di Soft threshold: we = sign(cx) max (0, 19x1-1

Wreg = argmin Ein(w) + 111w112 (2)
Wreg = argmin Ein(w) + 1/1w/12 (*) Eaug(w) Wiin = argmin Ein(w)
Let's assume $ w_{lin} ^2 < w ^2$
Ein (Wlin) & Ein (Wreg)
Using the assumption
Ein (Win) + 1/1 W 112 < Ein (Wreg) + 1/1 Wreg 112

Contradiction

Eavy (Win) < Eavy (Wreg)

(Fin (wreg) + Il wreg H2 < Ein (w) + Illwll tw