We are given a directed and weighted graph G=(V,E,w), where w(e)>0 for each $e\in E$. Additionally, each edge is coloured either red or blue.

- (a) Let onlyRedEdges (u,v,ℓ) denote the weight of the shortest path from u to v that uses only red edges and have length at most ℓ . For a fixed pair of points u and v, describe an $O(n^3 \log k)$ algorithm to compute onlyRedEdges (u,v,k-1).
 - **Hint.** You should only need $O(n^2 \log k)$ subproblems.
 - Hint 2. Alternatively... you can just apply Bellman-Ford.
- (b) Hence, describe an $O(n^3 \log k)$ algorithm that returns a *closed walk* with the smallest weight that contains *at least* one blue edge and does not contain k consecutive red edges.
 - A closed walk is a walk that starts and ends at the same vertex.

Solution.

- (a) We initialise a Dynamic Programming table DP with DP[i][j] to represent the shortest path using only red edges from vertex u to j using at most i edges. Obviously, DP[0][u] = 0. Now, for all i from 1 to k-1, we take each vertex j and set DP[i][j] = DP[i-1][j], then for each vertex v, if there is a red edge (v,j), we update $DP[i][j] = \min\{DP[i][j], DP[i-1][v] + w(v,j)\}$.
- (b) Solution to part (b) goes here...