

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta l Kurssikoe 14.3.2016

- 1. Kauppakeskuksen kodinkoneliikkeessä A on 50 työntekijää, joista 50 % on naisia, urheiluliikkeessä B on 75 työntekijää, joista 60 % on naisia, ja elintarvikeliikkeessä C on 100 työntekijää, joista 70 % on naisia. Kaikkien työntekijöiden irtisanoutumiset ovat yhtä todennäköisiä eivätkä riipu sukupuolesta. Yksi työntekijä irtisanoutuu.
 - (a) Laske todennäköisyys, että irtisanoutunut työntekijä on nainen.
 - (b) Irtisanoutunut työntekijä on nainen. Laske todennäköisyys, että hän työskentelee kodinkoneliikkeessä A.
- 2. Yhdessä korttipakassa on 52 korttia, joista neljä on ässiä. Pöydällä on 50 sekoitettua korttipakkaa nurinpäin käännettyinä. Jokaisen pakan päällimmäinen kortti käännetään näkyviin. Näkyviin käännetyistä korteista lasketaan ässien lukumäärä.
 - (a) Esitä tilanteeseen sopiva satunnaismuuttuja ja määritä sen jakauma, odotusarvo ja va-
 - (b) Laske todennäköisyys, että näkyviin käännetyissä korteissa ei ole yhtään ässää.
 - (c) Laske todennäköisyys, että näkyviin käännetyissä korteissa on vähintään viisi ässää. Käytä normaaliapproksimaatiota.
- 3. Olkoon X jatkuvasti jakautunut satunnaismuuttuja, jonka tiheysfunktio on $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} a + bx, & 0 \le x \le 1, \\ 0, & \text{muulloin.} \end{cases}$$

 $f(x)=\begin{cases} a+bx, & 0\leqslant x\leqslant 1,\\ 0, & \text{muulloin.} \end{cases}$ Oletetaan, että $EX=\frac{3}{5}$. Määritä luvut a ja b sekä laske todennäköisyys $P\left(X\geqslant \frac{1}{2}\right)$.

4. Olkoot A, B ja C todennäköisyysavaruuden (Ω, \mathcal{F}, P) tapahtumia. Oletetaan, että A ja B ovat riippumattomia, A ja C ovat riippumattomia, sekä B ja C ovat erillisiä (ts. toisensa poissulkevia). Osoita, että tällöin tapahtumat A ja $B \cup C$ ovat riippumattomia.

Tehtäväpaperin kääntöpuolella on taulukko standardinormaalijakauman kertymäfunktion arvoista sekä lista jakakaumien odotusarvoista ja variansseista.

Standardinormaalijakauman kertymäfunktion Φ arvoja; $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$

					T 004	0.06	0.06	0,07	0,08	0,09
x	0,00	0,01	0,02	0,03	0,04	0,05	0,06		<u> </u>	
0,0	0,500000	0,503989	0,507978	0,511966	0,515953	0,519938	0,523922	0,527903	0,531881	0,535856
0,1	0,539828	0,543795	0,547758	0,551717	0,555670	0,559618	0,563560	0,567495	0,571424	0,575345
0,2	0,579260	0,583166	0,587064	0,590954	0,594835	0,598706	0,602568	0,606420	0,610261	0,614092
0,3	0,617911	0,621720	0,625616	0,629300	0,633072	0,636831	0,640576	0,644309	0,648027	0,651732
0,4	0,655422	0,659097	0,662757	0,666402	0,670031	0,673645	0,677242	0,680822	0,684386	0,687933
0,5	0,691462	0,694974	0,698468	0,702944	0,705402	0,708840	0,712260	0,715661	0,719043	0,722405
0,6	0,725747	0,729069	0,732371	0,735653	0,738914	0,742154	0,745373	0,748571	0,751748	0,754903
0,7	0,758036	0,761148	0,764238	0,767305	0,770350	0,773373	0,776373	0,779350	0,782305	0,785236
0,8	0,788145	0,791030	0,793892	0,796731	0,799546	0,802338	0,805106	0,807850	0,810570	0,813267
0,9	0,815940	0,818589	0,821214	0,823814	0,826391	0,828944	0,831472	0,833977	0,836457	0,838913
1,0	0,841345	0,843752	0,846136	0,848495	0,850830	0,853141	0,855428	0,857690	0,859929	0,862143
1,1	0,864334	0,866500	0,868643	0,870762	0,872857	0,874928	0,876976	0,879000	0,881000	0,882977
1,2	0,884930	0,886861	0,888768	0,890651	0,892512	0,894350	0,896165	0,897958	0,899727	0,901475
1,3	0,903200	0,904902	0,906582	0,908241	0,909877	0,911492	0,913085	0,914656	0,916207	0,917736
1,4	0,919243	0,920730	0,922196	0,923642	0,925066	0,926471	0,927855	0,929219	0,930563	0,931889
1,5	0,933193	0,934478	0,935744	0,936992	0,938220	0,939429	0,940620	0,941792	0,942947	0,944083
1,6	0,945201	0,946301	0,947384	0,948449	0,949497	0,950528	0,951543	0,952540	0,953521	0,954486
1,7	0,955434	0,956367	0,957284	0,958185	0,959070	0,959941	0,960796	0,961636	0,962462	0,963273
1,8	0,964070	0,964852	0,965620	0,966375	0,967116	0,967843	0,968557	0,969258	0,969946	0,970621
1,9	0,971283	0,971933	0,972571	0,973197	0,973810	0,974412	0,975002	0,975581	0,976148	0,976704
2,0	0,977250	0,977784	0,978308	0,978822	0,979325	0,979818	0,980301	0,980774	0,981237	0,981691
2,1	0,982136	0,982571	0,982997	0,983414	0,983823	0,984222	0,984614	0,984997	0,985371	0,985738
2,2	0,986097	0,986447	0,986791	0,987126	0,987454	0,987776	0,988089	0,988396	0,988696	0,988989
2,3	0.989276	0,989556	0,989830	0,990097	0,990358	0,990613	0,990862	0,991106	0,991344	0,991576
2,4	0.991802	0.992024	0,992240	0,992451	0,992656	0,992857	0,993053	0,993244	0,993431	0,993613
2,5	0,993790	0,993963	0,994132	0,994297	0,994457	0,994614	0,994766	0,994915	0,995060	0,995201
2,6	0,995339	0,995473	0,995604	0,995731	0,995855	0,995975	0,996093	0,996207	0,996319	0,996427
2,7	0,996533	0,996636	0,996736	0,996833	0,996928	0,997020	0,997110	0,997197	0,997282	0,997365
2,8	0,997445	0,997523	0,997599	0,997673	0,997744	0,997814	0,997882	0,997948	0,998012	0,998074
2,9	0,998134	0,998193	0,998250	0,998305	0.998359	0,998411	0,998462	0,998511	0,998559	0,998605
3,0	0,998650	0,999032	0,999313	0,999517	0,999663	0,999767	0,999841	0,999892	0,999928	0,999952

Jakaumien odotusarvoja ja variansseja

$$X \sim \text{Bin}(n, p) \implies EX = np \text{ ja } D^2X = np(1-p)$$
 $X \sim \text{Hyperg}(N, K, n) \implies EX = n\frac{K}{N} \text{ ja } D^2X = n\frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1}$
 $X \sim \text{Geom}(p) \implies EX = \frac{1-p}{p} \text{ ja } D^2X = \frac{1-p}{p^2}$
 $X \sim \text{Poisson}(\lambda) \implies EX = \lambda \text{ ja } D^2X = \lambda$
 $X \sim \text{Tas}(a, b) \implies EX = \frac{a+b}{2} \text{ ja } D^2X = \frac{(b-a)^2}{12}$
 $X \sim \text{Exp}(\lambda) \implies EX = \frac{1}{\lambda} \text{ ja } D^2X = \frac{1}{\lambda^2}$
 $X \sim N(\mu, \sigma^2) \implies EX = \mu \text{ ja } D^2X = \sigma^2$