

离散数学(2023)作业17-子群与群的分解

潘智杰 221900313

2023年5月3日

1 Problem 1

 $a,(H \bigcup K, \circ)$ 不一定是子群。 $b,(H \bigcap K, \circ)$ 是子群。 $c,(K - H, \circ)$ 是子群。 $d,(H - K, \circ)$ 是子群。

2 Problem 2

证明: ea = ae =e, 则 $e \in N(a)$,N(a) 非空 $\forall b, c \in N(a)$,∵ ba = ab, ca = ac, 且 $b, c \in G$ ∴ ba = abbea = ab $b(c^{-1}c)a = ab$

 $bc^{-1}(ca) = ab$ $bc^{-1}ac = ab$

 $bc^{-1}a = abc^{-1}$

故 $bc^{-1} \in N(a)$, 故 N(a) 是 G 的子群。

3 Problem 3

$$= xa(x^{-1}x)b^{-1}x^{-1}$$
$$= xab^{-1}x^{-1}$$

因为 H 是 G 的子群, 显然 $ab^{-1} \in H$, 则 $xab^{-1}x \in xHx^{-1}$, 故 xHx^{-1} 是 G 的子群。

4 Problem 4

证明: 因为 H,K 是 G 的子群,则 $e \in H, e \in K, : e \in H \cap K$ 下面证明 $H \cap K$ 是 H,K 的子群。

 $:: H \cap K \subseteq H, H \cap K \subseteq K, e \in H \cap K, :: H \cap K$ 是非空子集。

 $\forall a, b \in H \cap K$, 易知 $a \in H, a \in K, b \in H, b \in K$, 又因为 H, K 是 G 的子群, $ab^{-1} \in H, ab^{-1} \in K$, $\therefore ab^{-1} \in H \cap K$, 故 $H \cap K$ 是 H,K 的子群。

由拉格朗日定理, $|H| = |H \cap K| * |H : H \cap K|$ 设 m 为 $|H \cap K|$ 的阶数,则 m 是 r 的因子,同理 m 是 s 的因子,因为 gcd(r, s)=1,故 m=1,故 e 是其唯一元素。故 $H \cap K = \{e\}$

5 Problem 5

a 是 G 中唯一的二阶元,即 aa=e,若 $\forall b \in G, ab = ba$,即:a 是唯一二阶元, $\forall b \in G, bab^{-1} = a$ 假设 $\exists b \in G, bab^{-1} \neq a, :: bab^{-1}bab^{-1} = ba(b^{-1}b)ab^{-1} = baab^{-1} = beb^{-1} = e$ 故 bab^{-1} 是 G 的另一个二阶元,矛盾,故假设不成立。故 $\forall b \in G, ab = ba$

6 Problem 6

设 |g|=r,|h|=s,|gh|=m, 故 $g^r=e,h^s=e,(gh)^m=e$ 不妨令 $((gh)^m)^r=e$

 $(gh)^{mr} = e$

因为 gh = hg,满足交换律,

故 $q^{mr}h^{mr}=e$

 $(g^r)^m h^{mr} = e$

 $h^{mr} = e$

因为 gcd(r,s) = 1, 故 m 是 s 的倍数, 使得 $(h^m)^r = e^r = e$

同理可证: m 是 r 的倍数。由阶数的定义可知 m 是 r, s 的最小公倍数, 故 m= rs。

 $\mathbb{EI}\colon |gh| = |g||h|$

7 Problem 7

对于 $\forall g \in G, gH = \{gh|h \in H\}$,因为 H 是正规子群,则若存在 $h_1 \in H$,必有 $gh_1g^{-1} \in H$ 故若 $gh_1 \in gG$,在右陪集中必有 $(gh_1g^{-1}g = gh_1(g^{-1}g) = gh_1 \in Hg$ 故 $\forall gh \in gH$ 必有 $gh \in Hg$,∴ gH = Hg

8 Problem 8

