

Chapter 3, Part 1 – Logic Gates

Yan Cui

ycui4@scu.edu

Transistors and Logic Gates

- ▶ Transistors are the physical foundation of computer chips
- Logic gates are the building bricks

▶ Goal:

To understand how digital a computer can work, at the lowest level.

Basic Logic Gates

Logic Gates

- Input and Output signals are binary.
 - binary: always in one of two possible states;
 - typically treated as:
 - On / Off (electrically)
 - 1 / 0
 - True / False
- There is a delay between when a change happens at a logic gates inputs and when the output changes, called gate switching time.
- ▶ The True or False view is most useful for thinking about the meaning of the basic logic gates.

Gate – An Electric Perspective

- What does it mean for a hardware device to represent a Boolean function (or truth table), say AND gate?
 - ▶ Place on the two input lines voltages representing logical values (T or F).
 - After a short delay, the output line will stabilize to a voltage representing the logical result of the inputs.

Truth Table - Recap

- Used to describe behavior of a digital circuit
- Show all possible combinations of inputs as a separate row in the table
 - N inputs \rightarrow 2^N combinations or rows
- For each row, show the output value
- Example: A 2-bit input and 1-bit output truth table

Three Logic Operations

▶ OR

- ▶ A + B
- ▶ 1 if either of the inputs is 1
- A.k.a. logical sum

AND

- ► A * B or AB
- ▶ 1 only if both input signal are 1
- ▶ A.k.a. logical product

NOT

- ► A or A' or ~A
- ▶ 1 only if the inputs is 0
- A.k.a. inversion or negation

Truth Tables and Logic Gates

NOT
$$Z = X'$$
 or \overline{X} or $\sim X$

AND
$$Z = X \cdot Y$$

$$X \longrightarrow Z$$

OR
$$Z = X + Y$$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

Inverted Signals

- A small circle on either the input or output of a gate means that that signal is inverted.
 - That is, it's as if there were an inverter (not) gate there

$$\begin{array}{c}
A \longrightarrow \\
B \longrightarrow \\
A \longrightarrow \\
B \longrightarrow \\
A \longrightarrow$$

Seven Basic Gates

Truth Tables for Basic Gates

Input	Output
I	F
0	1
1	0

Inputs		Output
Α	В	F
0	0	0
1	0	0
0	1	0
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	1
0	1	1
1	1	0

Inputs		Output
Α	В	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
Α	В	F
0	0	1
1	0	0
0	1	0
1	1	0

Inputs		Output
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

EXCLUSIVE NOR

XNOR

Inputs		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

EXCLUSIVE OR

NAND

NAND (Not AND)

$$F(x,y) = (x y)'$$

Table 4.9 Truth table for NAND.

ху	F(x,y)
0 0	1
0 1	1
1 0	1
1 1	0

Figure 4.4 Logic symbol for NAND gate.

$$x' = (x x)'$$

$$x y = [(x y)']' \qquad x + y = (x' y')'$$

$$x + y = (x' y')'$$

Implementation of NOT, AND, OR using NAND gates

NOR

$$F(x,y) = (x + y)'$$

Table 4.10 Truth table for NOR.

x y	F(x,y)
0 0	1
0 1	0
1 0	0
1 1	0

Figure 4.6 Logic symbol for NOR gate.

$$\mathbf{x'} = (\mathbf{x} + \mathbf{x})'$$

$$x + y = [(x + y)']'$$
 $x y = (x' + y')'$

$$x y = (x' + y')'$$

XOR Gate

EXCLUSIVE-OR (XOR)

$$F(x, y) = x \oplus y$$

Table 4.11 Truth table for EXCLUSIVE-OR.

x y	F(x,y)
0 0	0
0 1	1
1 0	1
1 1	0

Figure 4.8 Logic symbol for EXCLUSIVE-OR gate.

The *Output* signal from an **XOR** gate is *True* (on, 1) if **either** *Input* signal are *True* (on, 1).

The *Output* signal from an **XOR** gate is *False* (off, 0) if **both** *Input* signals are *False* (off, 0) or **both** input signals are True(on, 1).

XNOR

EQUIVALENCE, Exclusive-NOR (XNOR) $F(x, y) = (x \oplus y)' = x \odot y$

$$F(x, y) = (x \oplus y)' = x \odot y$$

Table 4.12 Truth table for EXCLUSIVE-NOR.

х у	F(x,y)
0 0	1
0 1	0
1 0	0
1 1	1

Figure 4.9 Logic symbol for EXCLUSIVE-NOR gate.

$$x \odot y = (x \oplus y)' = x'y' + xy = (x' + y)(x + y')$$

3-Input Versions of Basic Gates

- Some gates allow multiple inputs.
 - For example, a 3-input AND is essentially just a cascade of two 2-input ANDs.
- What else gates can have 3 inputs?
 - ▶ AND, NAND, OR, NOR
- What gates cannot have 3 inputs?
 - XOR, XNOR, NOT

A Complex Function

- Primitive boolean functions may be implemented by logic gates
- More complex functions can be implemented by combinations of gates.

$$Z = !A | | (B \&\& C);$$
 $Z = A' + BC$

Α	В	С	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

What Does This Logic Do?

Boolean Expression: F = AB + AC + BC

- ▶ This is called *Majority Circuit*.
 - The output F will be 1 (true, on), whenever more than half of its inputs are 1 (True, on)

Circuit Equivalence 1.a

▶ AB + AC

Α	В	С	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Circuit Equivalence 1.b

▶ A(B + C)

Α	В	С	Α	B+C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

(b)

Useful Laws of Boolean Algebra

Name	AND form	OR form
Identity law	$A \cdot 1 = 1$	A + 0 = A
Zero/one law	$A\cdot 0=0$	A + 1 = 1
Inverse law	A A' = 0	A + A' = 1
Commutative law	$A \cdot B = B \cdot A$	A + B = B + A
Associative law	$A \cdot (B \cdot C) = (A * B) * C$	A + (B + C) = (A + B) + C
Distributive laws	A * (B + C) = (A * B) + (A * C)	A + (B * C) = (A + B) + (A * C)
Idempotency law	A * A = A	A + A = A
Absorption law	A * (A + B) = A	A + (A * B) = A
Double negation	(A')' = A	

Reference Readings

- ▶ Patterson, "Computer Organization and Design"
 - Appendix A.1, A.2
- ▶ Tanenbaum, "Structured Computer Organization"
 - ▶ Sec 3.1