Números e Operações

Números

Rever + Praticar – páginas 4 a 13

- 1. Por exemplo, 37,7635.
- **2.** Por exemplo, a = 2 e b = 3. Os números 2 e 3 são números naturais e $\frac{a}{b} = \frac{2}{3}$ é um número racional.
- 3.1. $\frac{9}{21}$ pode ser representada por uma dízima infinita periódica, pois $21 = 7 \times 3$ tem pelo menos um fator primo diferente de 2 e de 5. Repara que

$$\frac{9}{21}$$
 = 0,428571428571 = 0,428571(418571).

- **3.2.** $\frac{7}{50}$ é equivalente a uma fração decimal, pois $50 = 2 \times 5 \times 5$ não tem fatores primos diferentes de 2 e de 5. Repara que $\frac{7}{50} = \frac{7 \times 2}{50 \times 2} = \frac{14}{100}$. Como toda
- a fração decimal é representada por uma dízima finita, temos que $\frac{7}{50}$ corresponde a uma dízima finita.
- **3.3.** $30 = 2 \times 3 \times 5 = 6 = 2 \times 3$, $\log \frac{6}{30} = \frac{1}{5}$.
- Como o denominador da fração irredutível não admite divisores primos diferentes de 2 e de 5, a fração pode ser representada por uma dízima finita.
- **3.4.** $140 = 2 \times 2 \times 5 \times 7 \text{ e } 21 = 7 \times 3$, logo
- $\frac{21}{140} = \frac{7 \times 3}{2 \times 2 \times 5 \times 7} = \frac{3}{2 \times 2 \times 5}.$ Como o denominador não tem fatores primos diferentes de 2 e de 5, a fração pode ser representada por uma dízima finita.
- **4.1.** $10 \times 4.7 = 47$, $\log 6 4.7 = \frac{47}{10}$.
- **4.2.** $1,05 \times 100 = 105$, $\log_{10} 1,05 = \frac{105}{100}$

Como $105 = 3 \times 5 \times 7$ e $100 = 2^2 \times 5^2$, então

$$\frac{105}{100} = \frac{3 \times 5 \times 7}{2^2 \times 5^2} = \frac{3 \times 7}{4 \times 5} = \frac{21}{20}.$$

- **4.3.** $3,(2) \times 10 = 32,(2)$
- Como 32,(32) 3,(2) = 29, então 3,(2) = $\frac{29}{9}$
- **4.4.** 2,(32) × 100 = 232,(32)
- Como 232,(32) 2,(32) = 230, então 2,(32) = $\frac{230}{99}$.
- 5. A área do quadrado [ABCD] é 49 cm². O lado mede $\sqrt{49}$ cm = 7 cm.

$$\overline{AE} = \overline{BF} = \frac{\overline{AB}}{2} = \frac{7}{2} = 3.5 \text{ cm}.$$

$$A_{[AEF]} = \frac{\overline{AE} \times \overline{BF}}{2} = \frac{3.5 \times 3.5}{2} = 6.125 \text{ cm}^2$$

- 6. Como a área da janela é 2 m e a janela tem a forma de um quadrado, conclui-se que a medida do lado é $\sqrt{2}$ metros. Logo, para vedar por completo essa janela, serão necessários 4√2 metros, ou seja, aproximadamente 5,66 metros. Como a loja apenas disponibiliza para venda um número inteiro de metros, será necessário comprar 6 metros de fita. Sabendo que o preço da fita é $5 \in o$ metro, $6 \times 5 = 30$.
- O Sr. Manuel gastará 30 €.
- **7.1.** Por exemplo, $\sqrt{3}$.
- **7.2.** 0
- **7.3.** Por exemplo, $-\sqrt{5}$.
- **7.4.** Por exemplo, $\frac{1}{2}$.
- **7.5.** Por exemplo, 4.
- **7.6.** Por exemplo, $\sqrt{11}$.
- 8.
- 8.1. 4 ∈ \mathbb{Z}
- 8.2. $\sqrt{4}$ ∈ \mathbb{Z}
- 8.3. -√12 ∉ IR+
- **8.4.** 3,(62) ∉ Z
- **8.5.** −7 ∈ IR
- **8.6.** $-\sqrt{11}$ ∉ \mathbb{Q}
- **8.7.** 0 ∈ IR
- 8.8. $\sqrt{25}$ ∈ \mathbb{Z}
- 9. Se a área do quadrado é 10 cm², então a medida do lado será √10 cm. Assim, o perímetro do quadrado é $P = 4 \times \sqrt{10} = 4\sqrt{10}$ cm.
- **10.** $(\sqrt{2} \sqrt{3}) \times (\sqrt{2} + \sqrt{3}) = (\sqrt{2})^2 (\sqrt{3})^2 =$

 $(a - b)(a + b) = a^2 - b^2$

- = 2 3 = -1, que é um número inteiro.
- **11.1.** $3\sqrt{3} + 4\sqrt{3} 5\sqrt{3} = 7\sqrt{3} 5\sqrt{3} =$
- **11.2.** $(\sqrt{2})^2 + 3 (\sqrt{10})^2 = 2 + 3 10 =$

.eYa EDUCAÇÃO

11.3.
$$-3\pi + 5\pi + 8\pi - \pi = 2\pi + 7\pi =$$

$$=9\pi$$

11.4.
$$(\sqrt{5}-1)^2 = (\sqrt{5})^2 + 2 \times \sqrt{5} \times (-1) + (-1)^2 =$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$= 5 - 2\sqrt{5} + 1$$

$$= 6 - 2\sqrt{5}$$

12. Como 7 é um valor aproximado da largura do retângulo a menos de 0,3, então:

$$7 - 0.3 < \ell < 7 + 0.3$$

ou seja:

$$6.7 < \ell < 7.3$$

Como 6 é um valor aproximado do comprimento do retângulo a menos de 0,1, então:

$$6 - 0.1 < c < 6 + 0.1$$

ou seja:

Assim:

$$5.9 \times 6.7 < c \times \ell < 6.1 \times 7.3$$

ou seja:

$$39,53 < c \times \ell < 44,53$$

Se *r* for o erro máximo que se comete, temos:

$$r = |c \times \ell - 6 \times 7| = |c \times \ell - 42|$$

Como 39,53 < $c \times \ell$ < 44,53, temos que:

$$39,53 - 42 < c \times \ell < 44,53 - 42$$

 $-2,47 < c \times \ell < 2,53$

Como |-2,47| < |2,53|, conclui-se que r < 0,06, ou seja, quando se toma 42 como valor aproximado para a área do retângulo, o erro cometido não exce-

de 0,06.

13. Sabe-se que $0.1 = \frac{1}{10}$. Temos, então, que enqua-

drar $17 \times 10^2 = 170$ entre dois quadrados perfeitos consecutivos:

$$144 < 17 \times 10^{2} < 169 \Leftrightarrow 12^{2} < 17 \times 10^{2} < 13^{2}$$
$$\Leftrightarrow \frac{12^{2}}{10^{2}} < 17 < \frac{13^{2}}{10^{2}}$$
$$(12)^{2} = (13)^{2}$$

$$\Leftrightarrow \left(\frac{12}{10}\right)^2 < 17 < \left(\frac{13}{10}\right)^2$$
$$\Leftrightarrow 1.2 < \sqrt{17} < 1.3$$

14. Como o quadrado tem a mesma área do hexágono, a área é 5 m². Assim, o que se pretende é determinar dois valores aproximados da medida do lado de um quadrado cuja área é 5 m², ou seja, dois valores aproximados, um por defeito e um por excesso, com erro inferior a 1 dm de $\sqrt{5}$.

Sabe-se que $2^2 < 5 < 3^2$. Multiplicando as desigualdades por 10^2 , vem que $20^2 < 5 \times 10^2 < 30^2$.

Como $25^2 = (625,22)^2 = 484$ e $23^2 = 529$, conclui-se que:

que.

$$22^2 < 5 \times 10^2 < 23^2 \Leftrightarrow \left(\frac{22}{10}\right)^2 < 5 < \left(\frac{23}{10}\right)^2$$

 $\Leftrightarrow 2,2 < \sqrt{5} < 2,3$

Assim, 2,2 m e 2,3 m são aproximações, respetivamente por defeito e por excesso, da medida do lado do quadrado.

15.

15.1.
$$2^3 \times 2^4 : 2^{-7} = 2^7 : 2^{-7} = 2^{7 - (-7)} = 2^{14} = 16384$$

15.2.
$$[(-1)^{222}]^{-1} \times \left(\frac{1}{2}\right)^{-3} = 1^{-1} \times 2^3 = 1 \times 2^3 = 2^3 = 8$$

15.3.
$$(-18)^2$$
: $\left(-\frac{1}{2}\right)^2 = \left(18 : \frac{1}{2}\right)^2 = (18 \times 2)^2 = 36^2 = 1296$

15.4.
$$\frac{[(8^2)^3:2^6]^2\times 4^{-4}}{(4^2)^4} = \frac{(8^6:2^6)^2\times 4^{-4}}{4^8} =$$

$$=\frac{(4^6)^2\times 4^{-4}}{4^8}=\frac{4^{12}\times 4^{-4}}{4^8}=\frac{4^8}{4^8}=4^0=1$$

16.

16.1.
$$\frac{1}{2} = 2^{-1}$$

16.2.
$$\left(-\frac{2}{7}\right)^{-2} = \left(-\frac{7}{2}\right)^2 = \frac{49}{4}$$

16.3.
$$\left(\frac{1}{5}\right)^{-2} = 5^2 = 25$$

16.4.
$$\left[\left(-\frac{2}{3} \right)^{-1} \right]^5 = \left(-\frac{2}{3} \right)^{-5} = \left(-\frac{3}{2} \right)^5$$

17. Como $\pi \approx 3,14$, $\frac{\pi}{7} \approx 0,45$, $\frac{\pi}{3} \approx 1,05$ e $\pi^2 \approx 9,87$, o único número que não está escrito em notação científica é o $\frac{\pi}{7} \times 10^7$, pois $\frac{\pi}{7} < 1$.

A opção correta é a [B].

18.
$$4,78 \times 10^{12} \times 1000 = 4,78 \times 10^{12} \times 10^{3} = 4,78 \times 10^{15}$$

19.

19.1.
$$3,17 \times 10^2 < 3,17 \times 10^4$$
, pois $10^2 < 10^4$.

19.2.
$$9.8 \times 10^{-4} > 9.81 \times 10^{-5}$$
, pois $10^4 > 10^{-5}$.

19.3.
$$7,4108 \times 10^5 > 7,41 \times 10^5$$
, pois $7,4108 > 7,41$.

20.

20.1.
$$(4 \times 10^{30}) : (2 \times 10^{10}) =$$

= $(4 : 2) \times (10^{30} : 10^{10}) =$
= 2×10^{20}

20.2.
$$(73 \times 10^3) - (4,6 \times 10^4) =$$

= $(7,3 \times 10^4) - (4,6 \times 10^4) =$
= $(7,3 - 4,6) \times 10^4 =$
= $2,7 \times 10^4$
20.3. $(3 \times 10^9) + (2 \times 10^9) =$
= $(3 + 2) \times 10^9 =$
= 5×10^9
20.4. $(3 \times 10^9) \times (2 \times 10^4) =$
= $(3 \times 2) \times (10^9 \times 10^4) =$
= 6×10^{13}

Praticar + - páginas 14 a 26

1.
$$-2 - \left(-\frac{3}{\frac{4}{(\times 3)}} - \frac{4}{\frac{3}{3}}\right) = -2 - \left(-\frac{9}{12} - \frac{16}{12}\right) =$$

$$= -2 - \left(-\frac{25}{12}\right) =$$

$$= -\frac{2}{1} + \frac{25}{12} =$$

$$= -\frac{24}{12} + \frac{25}{12} =$$

$$= \frac{1}{12}$$

O simétrico de $\frac{1}{12}$ é $-\frac{1}{12}$.

2. Se as páginas escritas no outono passado correspondem a $\frac{3}{5}$ do número total de páginas, as páginas escritas há 42 anos correspondem a $\frac{2}{5}$ do número total de páginas, pois $1 - \frac{3}{5} = \frac{5}{5} - \frac{3}{5} = \frac{2}{5}$.

Como 92 páginas correspondem a $\frac{2}{5}$ do número total de páginas, então $92 : \frac{2}{5} = 92 \times \frac{5}{2} = 230$.

3.
$$A \sim \frac{3}{5}$$

4. A medida do lado de cada um dos quadrados mais pequenos é $\ell = \sqrt{16} = 4$ cm.

O novo romance da Paula tem 230 páginas.

Assim, o lado do quadrado maior mede 24 cm $(6 \times 4 = 24)$.

Logo, o perímetro do tabuleiro é $P = 24 \times 4 = 96$ cm.

5. [A]
$$2000 \times 0.1 = 200 \text{ e } 200 < 2000$$

[B] $2 \times 1000 = 2000$

[C] $2000:0.01 = 200\ 000\ e\ 200\ 000 > 2000$

[D] 2:0,001 = 2000

Logo, a opção correta é a [C].

6.
$$2^5 \times 4 \times \frac{1}{2^3} \times \frac{1}{16} = 2^5 \times 2^2 \times 2^{-3} \times \frac{1}{2^4} = 2^7 \times 2^{-3} \times 2^{-4} = 2^7 \times 2^{-7} = 2^0$$

7. A área de um triângulo é igual a $\frac{b \times h}{2}$. No triângulo [ABC], $b = \frac{7}{3}$ e h = a, logo:

$$A_{[ABC]} = \frac{\frac{7}{3} \times a}{2} = 16 \Leftrightarrow \frac{7}{3} \ a = 32$$
$$\Leftrightarrow 7a = 96$$
$$\Leftrightarrow a = \frac{96}{7}$$

8. Escrevendo todos os números sob a forma decimal, obtemos:

$$-1,75; \left(\frac{5}{2}\right)^{-1} = \frac{2}{5} = 0,4;$$

$$-0,1; -1\frac{1}{10} = -\frac{11}{10} = -1,1 \text{ ou seja},$$

$$-1,75 < -1\frac{1}{10} < -0,1 < \left(\frac{5}{2}\right)^{-1}$$

Agora, basta marcar cada número na reta, da esquerda para a direita:

- 9. 9.1. $2^2 \times \left(\frac{1}{2}\right)^{-3} = 2^2 \times 2^3 = 2^5 = 2^3 =$
- **9.2.** $(2^3)^2 \times \left(\frac{7}{5}\right)^0 + \left(\frac{1}{3}\right)^{-1} = 2^6 \times 1 + 3 = 64 + 3 =$
- 9.3. $3^3 \times (-3)^{-2} \left(-\frac{1}{3}\right)^2 = 3^3 \times 3^{-2} \frac{1}{9} = \frac{3}{1} \frac{1}{9} = \frac{27}{9} \frac{1}{9} = \frac{26}{9}$
- 9.4. $-(\sqrt{100})^{-1} \times (-10)^2 + \frac{(-2)^0}{5} =$ $= -10^{-1} \times 10^2 + \frac{1}{5} =$ $= -\frac{10}{1} + \frac{1}{5} =$ $= -\frac{50}{5} + \frac{1}{5} =$ $= -\frac{49}{5}$

9.5.
$$(2^2)^3 \times \left(\frac{1}{6}\right)^{-6} : \left(\frac{1}{12}\right)^{-8} = 2^6 \times 6^6 : 12^8 = 12^6 : 12^8 = 12^{-2}$$

9.6.
$$9 \times 81^3 : (3^2)^8 \times (\sqrt{9})^2 + \left[\left(-\frac{1}{5} \right)^{11} \right]^0 =$$

$$= 3^2 \times (3^4)^3 : 3^{16} \times 3^2 + 1 =$$

$$= 3^2 \times 3^{12} : 3^{16} \times 3^2 + 1 =$$

$$= 3^{14} : 3^{16} \times 3^2 + 1 =$$

$$= 3^{-2} \times 3^2 + 1 =$$

$$= 3^0 + 1 =$$

$$= 1 + 1 =$$

$$= 2$$

10.
$$\frac{1}{125} = \frac{1}{5^3} = 5^{-3}$$

- **11.** A opção correta é a [B], porque 2.3×10^{-2} é igual ao produto de um número superior a 1 e inferior a 10 (2,3) por uma potência de base 10 (10^{-2}).
- **12.** Escrevendo os números de cada uma das opções em notação científica, temos:

[A]
$$3,22 \times 10^5$$

[B]
$$6,46 \times 10^4$$

[C]
$$6120 \times 10^{-2} = 6{,}12 \times 10^{3} \times 10^{-2} = 6{,}12 \times 10$$

[D]
$$0.12 \times 10^8 = 1.2 \times 10^{-1} \times 10^8 = 1.2 \times 10^7$$

Entre números escritos em notação científica, é maior aquele cuja potência de base 10 tem maior expoente. Logo, a opção correta é a [D].

13. Decompondo em fatores primos os números 33 e 75, temos:

$$33 = 3 \times 11$$
 $75 = 3 \times 5^2$

Logo,
$$\frac{33}{75} = \frac{3 \times 11}{3 \times 5^2} = \frac{11}{25}$$
.

Como a decomposição em fatores primos do denominador da fração própria, 25, não tem fatores diferentes de 2 e de 5, $\frac{11}{25}$ representa uma dízima finita.

Decompondo em fatores primos os números 26 e 84, temos:

$$26 = 2 \times 13$$
 $84 = 2^2 \times 3 \times 7$
 $26 = 2 \times 13$ 13

Logo,
$$\frac{26}{84} = \frac{2 \times 13}{2^2 \times 3 \times 7} = \frac{13}{42}$$

Como o denominador, 42, tem fatores diferentes de 2 e de 5, $\frac{13}{42}$ representa uma dízima infinita. Logo, $\frac{33}{75}$ admite uma representação na forma de dízima finita.

14. 3,(72)

Seja
$$r = 3,727272...$$
 Então, $100 \times r = 372,7272...$
 $100 \times r = 99 \times r$, ou seja, $372,(72) - 3,(72) = 369$
 $99 \times r = 369 \Leftrightarrow r = \frac{369}{99}$
 $3,(72) = \frac{369}{99} = \frac{41}{11}$

15.

15.1.
$$(\sqrt{3} - 1)^2 - (3\sqrt{3} + 5) =$$

 $= (\sqrt{3})^2 - 2 \times \sqrt{3} \times 1 + 1^2 - 3\sqrt{3} - 5 =$
 $= 3 - 2\sqrt{3} + 1 - 3\sqrt{3} - 5 =$
 $= 3 + 1 - 5 - 2\sqrt{3} - 3\sqrt{3} =$
 $= -1 - 5\sqrt{3}$
15.2. $2\sqrt{5} - (-3 + \sqrt{5}) - (\sqrt{2} - 1)(\sqrt{2} + 1) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - ((\sqrt{2})^2 - 1^2) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - (2 - 1) =$
 $= 2\sqrt{5} + 3 - \sqrt{5} - 1 =$
 $= 3 - 1 + 2\sqrt{5} - \sqrt{5} =$
 $= 2 + \sqrt{5}$

16. Por exemplo,
$$0.254 = \frac{254}{1000} = \frac{127}{500}$$
 e $0.25(3) = \frac{253 - 25}{900} = \frac{228}{900} = \frac{19}{75}$.

17.

 $\sqrt{3}$ é um número irracional, logo não pertence a \mathbb{Q} .

17.2.
$$-\frac{3}{4}$$
 ∉ \mathbb{Z}

 $-\frac{3}{4}$ não é um número inteiro, logo não pertence a \mathbb{Z} .

17.3.
$$-2$$
,(3) ∈ \mathbb{Q}

-2,(3) é uma dízima infinita periódica, logo é um número racional, ou seja, pertence a \mathbb{Q} .

17.4.
$$\sqrt{16}$$
 ∈ \mathbb{Z}

 $\sqrt{16} = 4$ é um número inteiro, logo pertence a \mathbb{Z} .

18.1.
$$(-3)^7 \times \left(\frac{2}{3}\right)^7 = \left(-3 \times \frac{2}{3}\right)^7 = (-2)^7$$

18.2.
$$\left(-\frac{5}{7}\right)^8 : \left(-\frac{10}{3}\right)^8 = \left[-\frac{5}{7} : \left(-\frac{10}{3}\right)\right]^8 = \left[-\frac{5}{7} \times \frac{3}{10}\right]^8 = \left[-\frac{5}{7} \times \frac{3}{10}\right]^8 = \left[-\frac{15}{70}\right]^8 = \left[-\frac{3}{14}\right]^8$$

18.3.
$$\left(-\frac{2}{3}\right)^3 : \left(-\frac{4}{9}\right)^3 = \left(\frac{2}{3} : \frac{4}{9}\right)^3 =$$

$$= \left(\frac{2}{3} \times \frac{9}{4}\right)^3 =$$

$$= \left(\frac{18}{12}\right)^3 =$$

$$= \left(\frac{3}{2}\right)^3$$

18.4.
$$\left[\left(\frac{7}{10} \right)^2 \right]^5 = \left(\frac{7}{10} \right)^{2 \times 5} = \left(\frac{7}{10} \right)^{10}$$

18.5.
$$\left[\left(-\frac{3}{5} \right)^2 \right]^9 = \left(-\frac{3}{5} \right)^{18}$$

18.6.
$$\left(\frac{1}{2}\right)^5 \times \left(-\frac{2}{5}\right)^5 : \left(-\frac{1}{5}\right)^3 =$$

$$= \left[\frac{1}{5} \times \left(-\frac{2}{5}\right)\right]^5 : \left(-\frac{1}{5}\right)^3 =$$

$$= \left(-\frac{1}{5}\right)^5 : \left(-\frac{1}{5}\right)^3 =$$

$$= \left(-\frac{1}{5}\right)^2$$

19.
$$3,78 \times 10^{x} = 37\ 800\ 000 \Leftrightarrow 10^{x} = \frac{37\ 800\ 000}{3,78}$$

 $\Leftrightarrow 10^{x} = 10\ 000\ 000$
 $\Leftrightarrow 10^{x} = 10^{7}$

20.1.
$$1 - \left(\frac{1}{2} + \frac{4}{9}\right) = 1 - \left(\frac{9}{18} + \frac{8}{18}\right) = 1 - \frac{17}{18} = \frac{1}{18}$$

No 3º dia o João pintou $\frac{1}{18}$ do muro.

20.2. a)
$$\frac{1}{2} \times 216 = 108$$

 $\frac{1}{2}$ × 216 representa a área do muro pintada no primeiro dia, ou seja, 108 m².

b)
$$\frac{4}{9} \times 216 = 96 \text{ m}^2$$

No segundo dia, o João pintou 96 m².

21. [A] $\sqrt{7} \notin \mathbb{Q}$, $\sqrt{7}$ é um número irracional.

[B]
$$\sqrt{4} = 2 \in \mathbb{Q}$$
, $2 \in \mathbb{Z}$ e $2 \in \mathbb{N}$

$$[C]$$
 $-\frac{27}{3} = -9 \in \mathbb{Q}$, $-9 \in \mathbb{Z}$ $e-9 \notin \mathbb{N}$

[D]
$$\frac{11}{2} = 5, 5 \in \mathbb{Q}$$
, $\frac{11}{2} \notin \mathbb{Z}$ e $\frac{11}{2} \notin \mathbb{N}$

Logo a opção correta é a [D].

22.

22.1.
$$2(\sqrt{5} - 1)^2 + (\sqrt{3} - 1)(\sqrt{3} + 1) =$$

= $2(5 - 2\sqrt{5} + 1) + (3 - 1) =$
= $10 - 4\sqrt{5} + 2 + 2 =$

$$= 10 - 4\sqrt{5} + 2 + 2 = 14 - 4\sqrt{5}$$

22.2.
$$(2\sqrt{7})^2 - 3(\sqrt{7} + 2\sqrt{3}) = 4 \times 7 - 3\sqrt{7} - 6\sqrt{3} = 28 - 3\sqrt{7} - 6\sqrt{3}$$

22.3.
$$(\sqrt{5} - 2\sqrt{2})^2 = 5 - 4\sqrt{10} + 4 \times 2 = 5 + 8 - 4\sqrt{10} = 13 - 4\sqrt{10}$$

22.4.
$$(\sqrt{3} - 2)^2 - (5 - \sqrt{3})^2 =$$

= $3 - 4\sqrt{3} + 4 - (25 - 10\sqrt{3} + 3) =$
= $3 + 4 - 4\sqrt{3} - 25 + 10\sqrt{3} - 3 =$
= $4 - 25 - 4\sqrt{3} + 10\sqrt{3} =$
= $-21 + 6\sqrt{3}$

23. [A] Verdadeira, porque $\sqrt{21}$ é um número irracional.

[B] Verdadeira.

[C] Verdadeira, porque $-\sqrt{36} = -6 \in \mathbb{Z}$.

[D] 7,1(43) é uma dízima infinita periódica, ou seja, é um número racional.

Logo, a afirmação falsa é a da opção [D].

24.

24.1. $(-1)^{101} = -1$, porque a base é negativa e o expoente é ímpar.

24.2. $(-1)^{500} = 1$, porque o expoente é par. = 1, porque a base é positiva.

24.3. $(-1)^0 \times (-1)^{32} \times 1^{43} = 1 \times 1 \times 1 = 1$ = 1, porque o expoente é par.

25.1.
$$-\left(-\frac{2}{3} + 0.3\right) - \frac{1}{3} \times \left(-0.1 + \frac{2}{5}\right) =$$

= $-\left(-\frac{2}{3} + \frac{3}{10}\right) - \frac{1}{3} \times \left(-\frac{1}{10} + \frac{2}{5}\right) =$
= $-\left(-\frac{20}{30} + \frac{9}{30}\right) - \frac{1}{3} \times \left(-\frac{1}{10} + \frac{4}{10}\right) =$

$$= \left(-\frac{11}{30}\right) - \frac{1}{3} \times \left(\frac{3}{10}\right) =$$

$$= \frac{11}{30} - \frac{3}{30} =$$

$$= \frac{8}{30} =$$

$$= \frac{4}{15}$$

$$25.2. \ 2 \times \left(\frac{1}{3} - 4\right) + (-1)^{30} - \left(-\frac{1}{4} + 0, 1\right) =$$

$$= 2 \times \left(\frac{1}{3} - \frac{12}{3}\right) + 1 - \left(-\frac{1}{4} + \frac{1}{10}\right) =$$

$$= 2 \times \left(-\frac{11}{3}\right) + 1 - \left(-\frac{5}{20} + \frac{2}{20}\right) =$$

$$= -\frac{22}{3} + 1 - \left(-\frac{3}{20}\right) =$$

$$= -\frac{22}{3} + 1 + \frac{3}{20} =$$

$$= -\frac{440}{60} + \frac{60}{60} + \frac{9}{60} =$$

$$= -\frac{371}{60}$$

- **26.** Como 0,350 kg custa 5,25 €, então $\frac{5,25}{0,350}$ = 15 Cada quilograma de queijo custa 15 €.
- **27.** Temos que $r = 0.2 = \frac{2}{10} = \frac{1}{5}$.

Enquadrando o produto $5^2 \times 5 = 125$ por dois quadrados perfeitos consecutivos (121 < 125 < 144), obtemos:

121 < 125 < 144
$$\Leftrightarrow$$
 11² < 5² × 5 < 12²
 $\Leftrightarrow \left(\frac{11}{5}\right)^2$ < 5 < $\left(\frac{12}{5}\right)^2$
 $\Leftrightarrow \frac{11}{5}$ < $\sqrt{5}$ < $\frac{12}{5}$
 \Leftrightarrow 2,2 < $\sqrt{5}$ < 2,4

28

- **28.1.** Falsa, porque $(-7)^2 = 49$ e $7^2 = 49$, logo $(-7)^2 = 7^2$.
- **28.2.** Falsa, porque $(-13)^3 < (+13)^3$, uma vez que uma potência de base negativa e expoente ímpar é um número negativo e uma potência de base positiva é um número positivo.
- **28.3.** Verdadeira, porque $(-11)^2$ e $(+11)^2$ são números positivos, uma vez que potências de expoente par são números positivos, logo $(-11)^2 > -(+11)^2$.
- **28.4.** Verdadeira, porque $(-13)^2$ é um número positivo, uma vez que é uma potência de expoente par e $(-176)^{133}$ é um número negativo, uma vez que se

trata de uma potência de expoente ímpar, logo $(-13)^2 > (-176)^{133}$.

- **29.** [A] Falsa, pois, por exemplo, 16 é um quadrado perfeito e $\sqrt{16}$ = 4 e 4 é um número par.
- [B] Falsa, pois, por exemplo, 4 é um quadrado perfeito e $4^2 = 16$ e 16 é um número par.
- [D] Falsa, pois, por exemplo, 4 é um quadrado perfeito, o dobro de 4 é 8 e $\sqrt{8} \neq 10$.

A opção correta é a [C].

30.
$$78 \times 10^3 - 35\ 000 = 7.8 \times 10 \times 10^3 - 3.5 \times 10^4 =$$

= $7.8 \times 10^4 - 3.5 \times 10^4 =$
= $(7.8 - 3.5) \times 10^4 =$
= 4.3×10^4

31. $\sqrt{81} - \sqrt{25} = 9 - 5 = 4$

Logo, a opção correta é a [A].

32. 3000 :
$$\left(1 - \frac{3}{5}\right) = 3000 : \frac{2}{5} = 7500$$

O percurso total tem 7,5 km.

33.

- **33.1.** 34 000 000 000 = 3.4×10^{10}
- **33.2.** $0,000\ 089 = 8,9 \times 10^{-5}$
- **33.3.** $416 \times 10^{-6} = 4{,}16 \times 10^{2} \times 10^{-6} = 4{,}16 \times 10^{-4}$
- **33.4.** 0,000 $34 \times 10^4 = 3.4 \times 10^{-4} \times 10^4 = 3.4 \times 10^0$
- **34.** [A] Falsa, pois $(-7)^0 = 1$.
- [B] Falsa, pois $[(-3)^2]^3 = (-3)^6 = 3^6$.
- [C] Verdadeira, pois $[(-5)^2]^3 = (-5)^6 = 5^6$.
- [D] Falsa, pois $\left(\frac{1}{2}\right)^4$: $\left(\frac{1}{4}\right)^4 = \left(\frac{1}{2} \times 4\right)^4 = 2^4$.

Logo, a opção correta é a [C].

25

35.1.
$$(2^4 : 2^5)^2 \times 4^{-2} = (2^{-1})^2 \times (2^2)^{-2} =$$

 $= 2^{-2} \times 2^{-4} =$
 $= 2^{-6} =$
 $= \left(\frac{1}{2}\right)^6 =$
 $= \frac{1}{64}$
35.2. $\left(\frac{2}{3}\right)^{-2} \times \left(\frac{3}{2}\right)^4 \times \left(\frac{2}{3}\right)^6 =$
 $= \left(\frac{3}{2}\right)^2 \times \left(\frac{3}{2}\right)^4 \times \left(\frac{2}{3}\right)^6 =$
 $= \left(\frac{3}{2}\right)^6 \times \left(\frac{2}{3}\right)^6 =$

$$= \left(\frac{3}{2} \times \frac{2}{3}\right)^{6} =$$

$$= 16 =$$

$$= 1$$
35.3. $\left(\frac{1}{3}\right)^{-2} + (-1)^{202} - (2^{2})^{-1} = 3^{2} + 1 - 2^{-2} =$

$$= 9 + 1 - \frac{1}{4} =$$

$$= 10 - \frac{1}{4} =$$

$$= \frac{40}{4} - \frac{1}{4} =$$

$$= \frac{39}{4}$$

35.4.
$$\left(3^{-3} \times \frac{1}{3^2}\right)^3 \times 3^{15} = (3^{-3} \times 3^{-2})^3 \times 3^{15} =$$

= $(3^{-5})^3 \times 3^{15} =$
= $3^{-15} \times 13^{15} =$
= $3^0 =$

36.
$$\frac{3}{2} \neq \frac{1}{2}$$
, logo não é o ponto *B*.
Como $\frac{1}{2} < \frac{3}{5} < \frac{3}{4}$, o ponto de abcissa $\frac{3}{5}$ é o ponto *C*.

37.
$$\frac{3}{2}$$
 < 1,5001 < 1,501 < 1,5011 < 1,51

38. A opção correta é a [D], uma vez que uma dízima infinita não periódica é um número irracional.

39. Como 7
$$\frac{1}{2} = \frac{15}{2}$$
 e 5 $\frac{3}{4} = \frac{23}{4}$, o sr. António comprou $\frac{23}{4}$ metros de arame, e

$$75 \times 10^{-2} = 5,75 \times 10^{2} \times 10^{-2} = 5,75 = \frac{23}{4}$$
, então:
 $\frac{15}{2} - \frac{23}{4} = \frac{30}{4} - \frac{23}{4} = \frac{7}{4}$

Sobrou $\frac{7}{4}$ metros de arame farpado.

40. [A] Falsa, pois,
$$\sqrt{\frac{16}{25}} = \frac{4}{5} e^{\frac{4}{5}} \in \mathbb{Q}$$
.

[B] Falsa, pois,
$$\frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{27}{3}} = \sqrt{9} = 3 \text{ e } 3 \in \mathbb{Q}.$$

[C] Falsa, pois, $\sqrt{100} = 10 \text{ e } 10 \in \mathbb{Q}$.

[D] Verdadeira, pois, $\sqrt{14} \in \{n^{.05} \text{ irracionais}\}\$. Logo, a opção correta é a [D].

41. Como
$$\pi$$
 = 3,141592654...
Por exemplo, 3,1415 < 3,141 53 < π .

42. $\frac{13}{15}$ não pode ser representada por uma dízima finita, uma vez que é uma fração irredutível em que a decomposição em fatores primos do denominador admite um fator diferente de 2 e de 5. Logo, é uma dízima infinita periódica.

43.
43.1.
$$(-1)^{-3} \times \left(\frac{1}{3}\right)^2 + \frac{1}{3} \times (-5)^0 =$$

$$= -1 \times \frac{1}{9} + \frac{1}{3} \times 1 =$$

$$= -\frac{1}{9} + \frac{1}{3} =$$

$$= -\frac{1}{9} + \frac{3}{9} =$$

$$= \frac{2}{9}$$
43.2. $\left(-\frac{1}{2} - \frac{1}{1}\right)^{-2} : \left(-\frac{2}{1} - \frac{1}{2}\right)^{-2} =$

$$= \left(-\frac{1}{2} - \frac{2}{2}\right)^{-2} : \left(-\frac{4}{2} - \frac{1}{2}\right)^{-2} =$$

$$= \left(-\frac{3}{2}\right)^{-2} : \left(-\frac{5}{2}\right)^{-2} =$$

$$= \left(\frac{3}{2} \times \frac{2}{5}\right)^{-2} =$$

$$= \left(\frac{3}{5}\right)^{-2} =$$

$$= \left(\frac{5}{3}\right)^2 =$$

$$= \frac{25}{9}$$

43.3.
$$(5^{-2})^{-1} - (\sqrt{5})^2 + (-5)^{-1} = 5^2 - 5 + \left(-\frac{1}{5}\right) = 25 - 5 - \frac{1}{5} = \frac{20}{1} - \frac{1}{5} = \frac{100}{5} - \frac{1}{5} = \frac{99}{1}$$

44. 44.1. Por exemplo, $\frac{1}{2}$

44.2. Por exemplo, $\sqrt{3}$.

44.3. Por exemplo, π .

- **45.** [A] Falsa, pois $5 \in \mathbb{N}$, $8 \in \mathbb{N}$ e 5 8 = -3 e $-3 \notin \mathbb{N}$.
- [B] Falsa, pois $5 \in \mathbb{Z}$, $2 \in \mathbb{Z}$ e $\frac{5}{2} = 2.5$ e $2.5 \notin \mathbb{Z}$.
- [C] Verdadeira.
- [D] Falsa, pois $\sqrt{7}$ é um número irracional, $\sqrt{7} \times \sqrt{7} =$ = 7 e 7 não é um número irracional.

Logo, a opção correta é a [C].

- 46.
- **46.1.** Por exemplo, $\frac{3}{2}$.

 $\frac{3}{2}$ = 1,5 e, por isso, é uma dízima finita.

46.2. Por exemplo, $\frac{18}{3}$.

 $\frac{18}{3}$ = 6 e, por isso, é um número inteiro.

46.3. Por exemplo, $\frac{47}{9}$.

 $\frac{47}{9}$ = 5,(2) e, por isso, é uma dízima infinita periódica, de período 2.

47. Escrevendo o número de estrelas da nossa galáxia em notação científica, temos:

 $400 \text{ mil milhões} = 400 \times 10^3 \times 10^6 = 400 \times 10^9 =$ $= 4 \times 10^2 \times 10^9 = 4 \times 10^{11}$

Logo, 0,08% dessas estrelas é igual a:

$$4 \times 10^{11} \times 0,0008 = 0,0032 \times 10^{11} =$$

= 3,2 × 10⁻³ × 10¹¹ = 3,2 × 10⁸

48. $(n^2)^3 \times n^{-5} = n^6 \times n^{-5} = n$

Logo, a opção correta é a [B].

49. $x = 2 \frac{3}{4} + 2 \times 1, 1 = \frac{11}{4} + \frac{22}{10} = \frac{11}{10} = \frac{11}{10$ $=\frac{55}{20}+\frac{44}{20}=$ $=\frac{99}{20}=$

$$y = 2 \frac{3}{4} - 2 \times 1, 1 = \frac{11}{4} - 2, 2 =$$

$$= \frac{11}{4} - \frac{22}{10} =$$

$$= \frac{55}{20} - \frac{44}{20} =$$

$$= \frac{11}{20} =$$

$$= 0.55$$

Logo, x = 4.95 e y = 0.55.

50. Como a unidade está dividida em 15 partes iguais, temos:

$$A = \frac{1}{5} + \frac{1}{15} = \frac{3}{15} + \frac{1}{15} = \frac{4}{15}$$

$$B = \frac{3}{\frac{5}{5}} - \frac{1}{15} = \frac{9}{15} - \frac{1}{15} = \frac{8}{15}$$

51.
$$\frac{(-0,3)^0 - \left[\left(\frac{1}{3} \right)^{-2} \times \left(\frac{1}{5} \right)^2 \right]^2 \times \left(\frac{5}{3} \right)^4}{\frac{1}{3} \times \left[2^4 - \left(-\frac{1}{5} \right)^{-2} \right]^3} =$$

$$=\frac{1-\left[3^2\times\left(\frac{1}{5}\right)^2\right]^2\times\left(\frac{5}{3}\right)^4}{\frac{1}{3}\times[16-(-5)^2]^3}=$$

$$=\frac{1-\left[\left(\frac{3}{5}\right)^{2}\right]^{2}\times\left(\frac{5}{3}\right)^{4}}{\frac{1}{3}\times(16-25)^{3}}=$$

$$= \frac{1 - \left(\frac{3}{5}\right)^4 \times \left(\frac{5}{3}\right)^4}{\frac{1}{3} \times (-9)^3} =$$

$$=\frac{1-1^4}{3^{-1}\times(-3^2)^3}=$$

$$=\frac{1-1}{3^{-1}\times(-3^6)}=$$

$$= 0$$

51.2.
$$\frac{-1 + (-7)^{-2} \times \left(-\frac{1}{7}\right)^3 : \left(-\frac{1}{7}\right)^4 - (-1)^{25}}{3 - \left(-\frac{1}{2}\right)^{-2} \times (-3)^0} =$$

$$=\frac{-1+\left(-\frac{1}{7}\right)^2\times\left(-\frac{1}{7}\right)^3:\left(-\frac{1}{7}\right)^4-(-1)}{3-(-2)^2\times 1}=$$

$$=\frac{-1+\left(-\frac{1}{7}\right)^{2+3-4}+1}{3-4}=$$

$$=-\frac{1}{7}:(-1)=$$

$$=\frac{1}{7}$$

51.3.
$$\frac{4^{3} \times 8^{4} : 2^{-7}}{2^{-1} \times 2^{5^{2}}} = \frac{(2^{2})^{3} \times (2^{3})^{4} : 2^{-7}}{2^{-1} \times 2^{25}} =$$

$$= \frac{2^{6} \times 2^{12} : 2^{-7}}{2^{24}} =$$

$$= \frac{2^{6+12} : 2^{-7}}{2^{24}} =$$

$$= \frac{2^{18} : 2^{-7}}{2^{24}} =$$

$$= \frac{2^{25}}{2^{24}} =$$

$$= 2^{25-24} =$$

$$= 2^{1} =$$

$$= 2$$

52. Como é o dobro da diferença entre dois números, as alíneas [A] e [C] não podem ser as corretas. O triplo da raiz guadrada de 11 representa-se por $3(\sqrt{11})$. Logo, a opção correta é a [B].

53.
$$\sqrt{5,29} = \sqrt{\frac{529}{100}} = \frac{\sqrt{529}}{\sqrt{100}} = \frac{23}{10} = 2,3$$

Assim, a = 529, b = 529, c = 23 e d = 2,3. Logo, a opção correta é a [C].

54. Como a área do quadrado é igual a 81 cm², $\overline{AB} = 9 \text{ cm } (\sqrt{81} = 9).$

Como [AB] é um raio da circunferência e $P = 2 \times \pi \times r$, então $P = 2 \times \pi \times 9 = 18\pi$. Logo, o perímetro da circunferência é 18π cm.

55. Como
$$32 = 2^5$$
, então $32^7 = (2^5)^7 = 2^{5 \times 7} = 2^{35}$.

56.

56.1.
$$2^6 = 2^{2 \times 3} = (2^2)^3$$
, então $(2^2)^3 = 2^6$.

56.2.
$$\left(\frac{1}{4}\right)^{-3} = 4^3$$

56.3.
$$\left(\frac{1}{4}\right)^8 = 4^{-8} = 4^{-6} \times 4^{-2} = (4^{-2})^3 \times 4^{-2}$$
, então $(4^{-2})^3 \times 4^{-2} = \left(\frac{1}{4}\right)^8$.

57.
57.1.
$$\left[\left(\frac{5}{2} \right)^2 \right]^3 \times \left(\frac{3}{1} - \frac{1}{2} \right)^4 =$$

$$= \left(\frac{5}{2} \right)^6 \times \left(\frac{6}{2} - \frac{1}{2} \right)^4 =$$

$$= \left(\frac{5}{2} \right)^6 \times \left(\frac{5}{2} \right)^4 =$$

$$= \left(\frac{5}{2} \right)^{10}$$

57.2.
$$\left[-\left(-\frac{3}{5} \right)^4 \right]^3 \times \left(\frac{3}{5} \right)^5 = -\left(\frac{3}{5} \right)^{12} \times \left(\frac{3}{5} \right)^5 =$$

$$= -\left(\frac{3}{5} \right)^{17} =$$

$$= \left(-\frac{3}{5} \right)^{17}$$

$$= \left(-\frac{3}{3} \right)^{17}$$

58. Como o volume do cubo é 216 cm³, a aresta tem comprimento 6 cm $(\sqrt[3]{216} = 6)$.

O perímetro da planificação é igual a 84 cm $(14 \times 6 = 84).$

59.

59.1. Como 1 minuto é igual a 60 segundos então: $300\ 000 \times 60 = 18\ 000\ 000 = 1.8 \times 10^7$

A luz percorre 1.8×10^7 km num minuto.

59.2.
$$\frac{1,35 \times 10^6}{3 \times 10^5} = \frac{1,35}{3} \times \frac{10^6}{10^5} = 0,45 \times 10$$

= 4.5

A luz demora, aproximadamente, 4,5 segundos.

60.
$$10 \times (A + B) = 10 \times (2,24 \times 10^6 + 3,2 \times 10^5) =$$

= $10 \times (22,4 \times 10^5 + 3,2 \times 10^5) =$
= $10 \times 25,6 \times 10^5 =$
= $25,6 \times 10^6 =$
= 2.56×10^7

61. Sabe-se que $0.1 = \frac{1}{10}$. Por sua vez, $7 \times 10^2 = 700$.

Temos, então, que enquadrar 700 entre dois quadrados perfeitos consecutivos.

Pela tabela, $26^2 < 7 \times 10^2 < 27^2$.

$$\left(\frac{26}{10}\right)^2 < 7 < \left(\frac{27}{10}\right)^2 \Leftrightarrow \frac{26}{10} < \sqrt{7} < \frac{27}{10}$$
$$\Leftrightarrow 2.6 < \sqrt{7} < 2.7$$

Assim, um valor aproximado de $\sqrt{7}$ às décimas, por defeito, é 2,6.

- **62.** Por exemplo, 0,0015 = $\frac{3}{2000}$.
- **63.** $\pi \approx 3,14159..., \sqrt{7} \approx 2,6457...$ e $\pi + 1 \approx 4,1415...$ Por exemplo, $a = \sqrt{11} \, e \, b = \sqrt{\frac{171}{10}}$.
- **64.** Como a área do quadrado é igual a 289 cm², o comprimento do lado é $\ell = \sqrt{289} = 17$ cm. Sendo E o ponto médio de [AB], então:

$$\overline{AE} = \overline{EB} = \frac{17}{2} = 8,5 \text{ cm e } \overline{BC} = 17 \text{ cm}$$

$$A_{\triangle} = \frac{b \times h}{2}$$

$$A_{[BEF]} = \frac{\overline{BE} \times \overline{BC}}{2}$$

$$A_{[BEF]} = \frac{8.5 \times 17}{2} = 72.25 \text{ cm}^2$$

65. Como $\frac{18}{30} = \frac{3 \times 6}{3 \times 10} = \frac{6}{10}$ $\frac{6}{10}$ é uma fração decimal porque o denominador é uma potência de 10.

66.1. a) 0;
$$\sqrt{9} = 3$$
; $\frac{12}{3} = 4$

b)
$$-\frac{7}{3} = -2$$
,(3) e 0,(7)

c)
$$-\frac{7}{3}$$
; 0; $\sqrt{9}$; 0,(7) e $\frac{12}{3}$

66.2.
$$-\sqrt{10} < -\frac{7}{3} < 0 < 0,(7) < \sqrt{9} < \frac{12}{3}$$

67. Como 7 é uma aproximação de a com erro inferior a 0,3, então 7 - 0.3 < a < 7 + 0.3.

Como 5 é uma aproximação de b com erro inferior a 0,2, então 5 - 0.2 < b < 5 + 0.2.

Como todas as quantidades são positivas, podemos concluir que:

$$(7 - 0.3) \times (5 - 0.2) < a \times b < (7 + 0.3) \times (5 + 0.2)$$
 ou seja:

$$6.7 \times 4.8 < a \times b < 7.3 \times 5.1$$

$$\Leftrightarrow$$
 32,16 < $a \times b$ < 37,96

Assim, como $7 \times 5 = 35$, temos:

$$32,16 - 35 < a \times b - 35 < 37,96 - 35$$

$$\Leftrightarrow$$
 -2,84 < $a \times b$ - 35 < 2,96

Como |-2,84| < |2,96|, podemos concluir que o erro máximo que se pode cometer ao aproximar $a \times b$ por $7 \times 5 \, \text{\'e} \, 2,96$.

- **68.** Como $p \in]7 0.1; 7 + 0.1[=]6.9; 7.1[e$ $q \in]5 - 0.1; 5 + 0.1[=]4.9; 5.1[, temos:$ 6.9×4.9 \Leftrightarrow 33,81 < $p \times q$ < 36,21 Assim, $p \times q \in]33,81; 36,21[.$
- 69. Como o hexágono regular é um polígono com seis lados de igual comprimento, o perímetro é igual a $P = 6 \times (2\sqrt{3} - 5) = (12\sqrt{3} - 30)$ cm.

70.
$$A_{\square} = \ell^2$$

 $A = (\sqrt{2} - 3)^2 = 2 - 6\sqrt{2} + 9 =$
 $= (11 - 6\sqrt{2}) \text{ cm}^2$
 $= 3 \text{ cm}^2$

Valor aproximado às unidades por excesso.

71.
$$0,(32)$$

 $r = 0,3232...$
 $100 \times r = 32,(32)$
 $100r - r = 99r \Leftrightarrow 32,(32) - 0,(32) = 99r$
 $\Leftrightarrow 99r = 32$
 $\Leftrightarrow r = \frac{32}{99}$

72.
$$100\ 000 \times 4{,}35 \times 10^{-2} = 10^5 \times 4{,}35 \times 10^{-2} = 4{,}35 \times 10^3$$

73.

73.1.
$$(3.6 \times 10^{-7}) \times (2.4 \times 10^{11}) =$$

= $(3.6 \times 2.4) \times (10^{-7} \times 10^{11}) =$

$$= 8.64 \times 10^4$$

73.2.
$$(1,25 \times 10^{-3}) + (2,45 \times 10^{-4}) =$$

$$= 1,25 \times 10^{-3} + 0,245 \times 10^{-3} =$$

$$= 1,495 \times 10^{-3}$$

73.3.
$$(7,44 \times 10^5) - (1,4 \times 10^6) =$$

$$= 7,44 \times 10^5 - 14 \times 10^5 =$$

$$=-6,56\times10^{5}$$

73.4.
$$\frac{4.8 \times 10^6}{2 \times 10^3} + 4.2 \times 10^4 =$$

$$= 2.4 \times 10^3 + 4.2 \times 10^4 =$$

$$= 2.4 \times 10^3 + 42 \times 10^3 =$$

$$= 44.4 \times 10^3 =$$

$$= 4.44 \times 10^4$$

74.
$$4.32 \times 10^{-1} = 0.432$$

[A] 0.4 < 0.432 < 0.44, que é verdadeira.

[B] $4,32 \times 10^{-1}$ não é menor que 0,4312.

[C] $4,32 \times 10^{-1}$ não é maior que 4,3.

[D] $4,32 \times 10^{-1}$ não é maior que 0,432.

Logo, a opção correta é a [A].

75. [A]
$$\frac{2+\sqrt{7}}{2}$$
 não é racional.

[B] π – 1 não é racional.

[C]
$$\sqrt{4} + 0.2 = 2.2$$

[D] 3,1

A opção correta é a [C], uma vez que $3.1 > \sqrt{7}$.

- **76.** Por exemplo, $\sqrt{3} + (-\sqrt{3}) = 0 \in \mathbb{Q}$ e $\sqrt{3}$ e $-\sqrt{3}$ são números irracionais.
- 77. [A] Falsa, pois $\frac{\sqrt{5}}{3}$ é um número irracional.
- [B] Falsa, pois π é um número irracional e π^2 é um número irracional.
- [C] Verdadeira, pois $\frac{\sqrt{28}}{\sqrt{7}} = \sqrt{4} = 2$ e 2 é um número racional.
- [D] Falsa, pois $(1 \sqrt{7})(1 + \sqrt{7}) = 1 7 = -6$ e -6 < 0. Logo, a opção correta é a [C].

78.
$$a = 3 - \sqrt{7}$$

 $\sqrt{7} \times (a - 1) + a^2 = \sqrt{7} \times (3 - \sqrt{7} - 1) + (3 - \sqrt{7})^2 =$
 $= 3\sqrt{7} - 7 - \sqrt{7} + 9 - 2 \times 3\sqrt{7} + 7 =$
 $= -7 + 9 + 7 + 3\sqrt{7} - \sqrt{7} - 6\sqrt{7} =$
 $= 9 - 4\sqrt{7}$

$$\overline{MN} = \frac{5}{4 \atop (x3)} - \frac{5}{6 \atop (x2)} = \frac{15}{12} - \frac{10}{12} = \frac{5}{12}$$

$$\frac{5}{12}$$
: 5 = $\frac{5}{12}$ × $\frac{1}{5}$ = $\frac{1}{12}$, cada espaço.

Então, *B* é igual a
$$\frac{5}{6} + 2 \times \frac{1}{12} = \frac{5}{6} + \frac{2}{12} = \frac{5}{6} + \frac{1}{6} = \frac{6}{6} = 1$$

Logo, a opção correta é a [C].

80. 80.1.
$$\left(-2\frac{1}{2}\right)^2 - \left(-\frac{5}{2}\right)^{-2} = \left(-\frac{2}{5}\right)^2 = \left(\frac{2}{5}\right)^{-2}$$

80.2.
$$\sqrt{2} < \frac{3}{2}$$

80.3.
$$-0$$
,(33) < -0 ,3

80.4.
$$4,35 \times 10^{-2} > 4,35 \times 10^{-3}$$

80.5. $\pi > 3,14$

80.6.
$$\frac{7}{3}$$
 = 2,(3)

81

81.1.
$$-\frac{4}{3} = \frac{5}{3} + ?$$

Como
$$-\frac{4}{3} - \frac{5}{3} = -\frac{9}{3} = -3$$
, então $\frac{5}{3} + (-3) = -\frac{4}{3}$.

Assim, ? = -3.

81.2.
$$-\frac{4}{3} = -\frac{2}{3} \times ?$$

Como
$$-\frac{4}{3}: \left(-\frac{2}{3}\right) = -\frac{4}{3} \times \left(-\frac{3}{2}\right) = +2$$
, então

$$-\frac{4}{3}=-\frac{2}{3}\times 2.$$

Assim, ? = +2.

81.3.
$$-\frac{4}{3}$$
 = ? -?

Por exemplo,
$$-\frac{1}{3} - 1 = -\frac{4}{3}$$
.

Assim,
$$? = -\frac{1}{3} e^{-1}$$
.

82. Como $A_{[ABCD]} = 144 \text{ cm}^2$, então $\ell = \sqrt{144} = 12 \text{ cm}$. O triângulo [DCE] é equilátero, então $\overline{CE} = \overline{BC} = 12 \text{ cm}$. Como o diâmetro da circunferência é $\overline{CE} = 12 \text{ cm}$, então $P = 12 \times \pi = 12\pi \approx 38$.

Assim, o perímetro da circunferência é, aproximadamente, 38 cm.

83.
$$3 \times \left(\frac{1}{3}\right)^{3714} = 3 \times 3^{-3714} = 3^{-3713}$$

- **84.** [A] Se a < 0, então $a^3 < 0$ e $-a^3 > 0$.
- [B] Se a < 0, então -a > 0.
- [C] Se a < 0, então $a^3 < 0$.
- [D] Se a < 0, então $a^2 > 0$.

Logo, a opção correta é a [C].

85. $2^4 \times 11$ e $5^2 \times 11$ não são quadrados perfeitos, ou seja, as opções [C] e [D] não são corretas.

Como $2^2 \times 5^2$ e $4^2 \times 5^2$ são quadrados perfeitos e divisores de P, o maior é $4^2 \times 5^2$. Assim, a opção correta é a [B].

86. Vamos determinar a área, por exemplo, subtraindo à área do retângulo inicial a área das placas retiradas.

$$A_{\square} = c \times \ell$$

$$A_{\Box} = \sqrt{5} \times \sqrt{20} = \sqrt{100} = 10$$

Cada placa retirada é um retângulo com altura $\sqrt{3}$ cm e base $(\sqrt{5} - 2)$ cm.

$$\frac{\sqrt{20-4}}{2} = \frac{2\sqrt{5-4}}{2} = \sqrt{5-2}$$
Logo:
 $A = \sqrt{3} \times (\sqrt{5-2}) = (\sqrt{15-2\sqrt{3}}) \text{ cm}^2$
Logo:
 $A_{\text{pedida}} = 10 - (2\sqrt{15} - 4\sqrt{3}) = (10 - 2\sqrt{15} + 4\sqrt{3}) \text{ cm}^2$

87.1.
$$3 \times \left(2 \frac{1}{3} - \frac{3}{2}\right) + \left(\frac{1}{3} \times 0.25\right) =$$

$$= 3 \times \left(\frac{7}{3} - \frac{3}{2}\right) + \left(\frac{1}{3} \times \frac{1}{4}\right) =$$

$$= 3 \times \left(\frac{14}{6} - \frac{9}{6}\right) + \frac{1}{12} =$$

$$= 3 \times \frac{5}{6} + \frac{1}{12} =$$

$$= \frac{15}{6} + \frac{1}{12} =$$

$$= \frac{30}{12} + \frac{1}{12} =$$

$$= \frac{31}{12}$$
87.2. $\left(\frac{1}{3}\right)^{-1} \times \left(\frac{2}{5} - \frac{1}{4}\right)^{-1} + \left(\frac{5}{4} : 4^{-1}\right)^{2} =$

$$= 3 \times \left(\frac{8}{20} - \frac{5}{20}\right)^{-1} + \left(\frac{5}{4} : \frac{1}{4}\right)^{2} =$$

$$= 3 \times \left(\frac{3}{20}\right)^{-1} + \left(\frac{5}{4} \times 4\right)^{2} =$$

88.
$$1,68 \times 10^{-27} \times 7 \times 10^4 =$$

= $1,68 \times 7 \times 10^{-27} \times 10^4 =$
= $11,76 \times 10^{-23} =$
= $1,176 \times 10^{-22}$

 $= 3 \times \frac{20}{3} + 5^2 =$

= 20 + 25 =

= 45

89
89.1.
$$-1 - 2(\sqrt{7} - 2) + 3\sqrt{7} =$$

 $= -1 - 2\sqrt{7} + 4 + 3\sqrt{7} =$
 $= -1 + 4 - 2\sqrt{7} + 3\sqrt{7} =$
 $= 3 + \sqrt{7}$
89.2. $(1 - \sqrt{3})^2 - (2 - \sqrt{5})(2 + \sqrt{5}) =$
 $= 1 - 2\sqrt{3} + 3 - (4 - 5) =$
 $= 1 + 3 - 2\sqrt{3} - (-1) =$
 $= 1 + 3 + 1 - 2\sqrt{3} =$
 $= 5 - 2\sqrt{3}$

89.3.
$$(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2}) - 5\sqrt{2} =$$

= $7 - 2 - 5\sqrt{2} =$
= $5 - 5\sqrt{2}$
89.4. $(\sqrt{7} - \sqrt{4})^2 - 2 \times (4\sqrt{7} - 3) + (\sqrt[3]{7})^3 =$
= $(\sqrt{7} - 2)^2 - 8\sqrt{7} + 6 + 7 =$
= $7 - 4\sqrt{7} + 4 - 8\sqrt{7} + 6 + 7 =$
= $7 + 4 + 6 + 7 - 4\sqrt{7} - 8\sqrt{7} =$
= $24 - 12\sqrt{7}$
89.5. $3^{-2} \times (2\sqrt{5} - \sqrt{11})(2\sqrt{5} + \sqrt{11}) =$
= $\frac{1}{3^2} \times [(2\sqrt{5})^2 - (\sqrt{11})^2] =$
= $\frac{1}{9} \times (20 - 11) =$
= $\frac{1}{9} \times 9 =$
= 1
89.6. $\sqrt{3} + (2\sqrt{5})^2 \times (3\sqrt{3})^2 \times (2\sqrt{3} - 1) =$
= $\sqrt{3} + 4 \times 5 \times 9 \times 3 \times (2\sqrt{3} - 1) =$
= $\sqrt{3} + 540(2\sqrt{3} - 1) =$
= $\sqrt{3} + 1080\sqrt{3} - 540 =$
= $1081\sqrt{3} - 540$

90. 3% da água é: $0.03 \times 1.4 \times 10^9 = 3 \times 10^{-2} \times 1.4 \times 10^9 =$ $= 3 \times 1.4 \times 10^{-2} \times 10^9 =$ $= 4.2 \times 10^7 \text{ km}^3 \text{ de água doce}$ $\frac{2}{3} \times 4.2 \times 10^7 = 2.8 \times 10^7$

Logo, a quantidade de água retida no gelo glaciar é $2.8 \times 10^7 \text{ km}^3$.

- **91.** [A] $\sqrt{4} = 2 \in \mathbb{Q}$, logo não é irracional. [B] $\sqrt{\frac{1}{4}} = 0.5 \in \mathbb{Q}$, logo não é irracional.
- [C] $4^{-1} = \frac{1}{4} = 0.25 \in \mathbb{Q}$, logo não é irracional.

[D] $\sqrt{0.4} \notin \mathbb{Q}$, logo não é irracional. Logo, a opção correta é a [D].

92. 92.1. $\sqrt{13}$, porque é um número irracional. 92.2. Por exemplo, $\frac{1}{3}$.

92.3. $\sqrt{121}$, porque é igual a 11.

93. √13

$$9 < 13 < 16 \Leftrightarrow 3^2 < 13 < 4^2$$

Multiplicando por 10²:

$$30^2 < 13 \times 10^2 < 40^2$$

$$35^2 = 1225 < 1300$$
, temos $35^2 < 13 \times 10^2 < 40^2$.

$$36^2 = 1296 < 1300$$
, temos $36^2 < 13 \times 10^2 < 40^2$.

$$37^2 = 1369 > 1300$$
, temos $36^2 < 13 \times 10^2 < 37^2$.

Como 36 e 37 são números inteiros consecutivos, então:

$$\left(\frac{36}{10}\right)^2 < 13 < \left(\frac{37}{10}\right)^2 \Leftrightarrow \frac{36}{10} < \sqrt{13} < \frac{37}{10}$$
$$\Leftrightarrow 3,6 < \sqrt{13} < 3,7$$

Logo, os dois primeiros algarismos da representação em dízima de $\sqrt{13}$ são o 3 e o 6.

94. Como o hexágono regular é um polígono com seis lados de igual comprimento, o perímetro é igual a $6 \times (3 - \sqrt{2}) = 18 - 6\sqrt{2} \approx 9,6$. Assim, $P \approx 9,6$ cm.

Assim,
$$I \approx 9,0$$
 cm.

95. Se
$$A_{[ABCD]} = 36$$
, então $\overline{AB} = \sqrt{36} = 6$ cm.

Se
$$A_{[AEFG]} = 4 \text{ cm}^2$$
, então $\overline{AE} = \sqrt{4} = 2 \text{ cm}$.

Como
$$\overline{AB}$$
 = 6 cm e \overline{AE} = 2 cm, então

$$\overline{EB} = 5 - 2 = 4 \text{ cm e } \overline{EF} = 2 \text{ cm.}$$

Logo,
$$A_{[BHFE]} = \overline{EB} \times \overline{EF} = 4 \times 2 = 8 \text{ cm}^2$$
.