

ICAI

ICADE

CIHS

MÁSTER EN INGENIERÍA INDUSTRIAL
ASIGNATURA
AUTOMATIZACIÓN INDUSTRIAL

Introducción

Prof. Dr. José Antonio Rodríguez Mondéjar mondejar@comillas.edu

Escuela Técnica Superior de Ingeniería ICAI
Departamento de Electrónica, Automática y Comunicaciones

Enero 2022

Definición de automatización industrial

Conjunto de conocimientos y técnicas orientados a conseguir que un proceso industrial funcione con poca o ninguna intervención humana, de una manera óptima y segura.

Ejemplo de automatización: fabricación de sobres de sopa

Organización de un proceso automatizado: 3 elementos

Sistema de control como bloque (caja negra)

- Entradas
- Salidas
- Caja negra que calcula las salidas a partir de las entradas e informaciones internas

- Salidas y entradas es un concepto relativo
 - Las salidas del control hacia el proceso son las entradas al proceso

Organización interna del sistema de control

- Tiene una organización equivalente a la de cualquier sistema complejo
 - Organización funcional
 - Organización física
- Organización funcional
 - Organizado en bloques funcionales
 - Cada bloque tiene una función concreta
 - Los bloques se comunican entre sí y con el resto de sistemas físicos
- Organización física
 - Organizados en bloques físicos
 - Físicamente independientes entre sí
 - Conexiones físicas entre los bloques físicos y con el resto de sistemas físicos
 - Cada bloque físico implementa uno o varios bloques funcionales
- Dos sistemas pueden tener la misma organización funcional pero diferente organización física

Organización funcional del sistema de control

- Adquisición: capta el estado del proceso
- Interfaz hombre máquina: permitir al operador la operación y supervisión
- Algoritmo de control: calcula las órdenes a ejecutar en el proceso a partir de la información recibida desde adquisición e interfaz hombre máquina
- Ejecución: traduce las órdenes en acciones
 - Conlleva generalmente una conversión o aplicación de la energía

Organización física típica del sistema de control

Sensores

- Transformar las magnitudes físicas en información procesable por el dispositivo de control
- Interfaz hombre máquina (IHM, HMI)
- Unidad de control o simplemente control
- Accionamientos o actuadores
 - Suministrar la energía de forma adecuada al proceso según las órdenes del dispositivo de control

Ejemplo de sensores

- Diferente tipos de sensores para medir la altura en un depósito
 - Fuente: http://www.codisin.com

Ejemplo de accionamiento

- Motor de cinta transportadora
 - fuente: http://www.tecnitude.com

Ejemplo de interfaz hombre máquina

Gráfica

• fuente: Siemens

Elementos discretos

• fuente: http://www.mesta-automation.com

Tipos de unidades de control

- Unidad de control cableada
 - Elemento fundamental: relé
- Unidad de control programada
 - Elemento fundamental: autómata programable (PLC)
 - Uso de otros sistemas digitales

Fuente: www.indarsl.es

Fuente: www.masiste.com

Ejemplo típico de organización física de proceso automatizado

- Usa PLC
- Accionamientos y sensores pueden ser parte del sistema de control o del proceso

Organización física de la fabricación de sobres de sopa

Otras soluciones físicas

PLC + HMI en el mismo dispositivo

PLC+HMI in ONE unit

Múltiples PLCs conectados entre sí y con un centro de control

• SCADA (Supervisory Control And Data Acquisition) en el centro de control: HMI muy sofisticado

Falta algo muy importante: seta de emergencia

Ante un riesgo: llevar al sistema a un estado seguro para el operador, el medio ambiente y el propio sistema

Automatización y seguridad

- La persona en contacto con el sistema automatizado no puede estar expuestos a riesgos
 - Medidas pasivas: protecciones
 - Medidas activas: forma parte de la automatización
 - Setas de emergencia, barreras de seguridad, cierres de seguridad

¿Qué se necesita saber para automatizar?

- Conocimiento del proceso a controlar: mecánico, químico,...
 - · Grupo multidisciplinar en casos complejos
- Conocimientos generales
 - Matemáticas: álgebras de Boole y lógica
 - Regulación automática
 - Programación
 - Gestión de proyectos
- Conocimientos propios de la automatización
 - Metodologías de diseño
 - Lenguajes de programación específicos
- Tecnologías propias de la automatización
 - Mecánica, neumática e hidráulica
 - Eléctrica
 - Electrónica
 - Sistemas digitales: PLC
 - Comunicaciones digitales para el mundo industrial
 - Robótica
- Legislación
 - Seguridad

comillas edu

Y al final del curso el alumno debería ser capaz de automatizar un proceso utilizando ...

¿Cómo se realiza la automatización de un proceso?

Como cualquier proyecto: organización en fases

Fase	Preguntas a responder al final de la fase
Definición de requisitos	¿Qué debe hacer el sistema automatizado? Requisitos funcionales ¿Bajo qué circunstancias lo debe hacer? Requisitos no funcionales
Diseño	¿Cómo se va a realizar la automatización?
Ejecución y puesta en marcha	¿Cómo se ha realizado la automatización? ¿Está el sistema preparado para ser entregado al cliente?
Entrega al cliente	¿Funciona según lo previsto?
Mantenimiento	¿Sigue funcionando según lo previsto?

Tareas típicas en las fases de un proyecto de automatización

Fase	Tareas
Definición de requisitos	Definición de requisitos funcionales Definición de requisitos no funcionales
Diseño	Elección de sensores y accionamientos Diseño de los algoritmos de control Elección de la tecnología de control Diseño eléctrico (neumático, hidráulico)
Ejecución y puesta en marcha	Construcción de armarios y pruebas Programación y pruebas Instalación y pruebas
Entrega al cliente	Pruebas con el cliente
Mantenimiento	Predictivo, correctivo

¿Cómo saber que la automatización es correcta?

• Características de una automatización correcta:

- 1. Sistema seguro
 - Cumplir con la normativa europea y nacional aplicable
 - Criterios en caso de fallo:
 - No afectar a personas
 - No afectar al medio ambiente
 - No afectar al proceso o al dispositivo de control
 - Compromiso entre coste y riesgo asumible
- 2. Cumplir con la especificación del cliente
 - Cliente satisfecho
- 3. Solución ampliable y aplicable en otros contextos
 - Incluir fácilmente modificaciones a posteriori.
 - Aplicar sin muchos cambios la solución en otros contextos
 - Aplicar soluciones contrastadas
 - Bajar costes

- 1. No ir a la cárcel
- 2. Contentar al cliente
- 3. Contentar al jefe

Razones para automatizar

- Incrementar la productividad de la empresa
 - Reducir los costes de producción
 - Aumentar la capacidad de producción
 - Aumentar la calidad del producto
- Satisfacer de manera flexible la demanda de los clientes
 - Reducir tiempo entre la llegada del pedido y el envío del producto
 - Flexibilidad en las características del producto
 - Seguimiento en tiempo real de la evolución del pedido
- Mejorar las condiciones de trabajo del personal
 - Suprimir trabajos con riesgos físicos o psicológicos (tareas repetitivas)
 - Trabajar de forma segura y cumplir con la legislación de riesgos laborales
- Realizar operaciones imposibles de realizar manualmente
 - Precisión espacial, precisión en el tiempo, simultaneidad, peligrosidad
- Simplificar las labores de mantenimiento
 - No se necesita operarios con alta cualificación
- Mejorar el control de calidad

Ejemplos de procesos automatizados

- Sector logística
 - Gestión de maletas en el aeropuerto de Heathrow, Helsinki
 - Almacén flexible

- Sector fabricación de coches
 - Ford Modelo T
 - BMW
- Sector alimentación
 - Colocación de bombones
 - Industria cárnica
- Sector empaquetado
 - Paletizador de cajas
 - Paletizador de bidones
- Otros sectores menos espectaculares
 - Minería

- Carga y descarga de contenedores

Las dudas del alumno

Ejercicio (15 ptos): Busca un ejemplo de proceso industrial automatizado

- La clase se divide en grupos de 4 y 3 alumnos: asignados por el profesor
- Cada miembro tiene un rol asignado por el profesor: Proceso, Sensor, Accionamiento y Control-HMI.
- Cada grupo elige un video en internet sobre un proceso industrial automatizado
 - Keywords: packaging, warehouse, assembly, pharmacy, refinery, substation, logistic, car manufacturing, food, filling, container, oil pipeline, water, device testing, farming, home, building ... + automation
 - Debe ser suficiente para rellenar las plantillas de los roles dentro del grupo
- Cada miembro del grupo rellena la plantilla suministrada por el profesor según su rol
 - Rol Proceso. Descripción del proceso.
 - Rol Sensor. Descripción de 2 sensores del proceso: instante donde aparece, foto y descripción del sensor (tipo, función).
 - Rol Accionamiento. Descripción de 2 accionamientos del proceso: instante donde aparece, foto y
 descripción del accionamiento (tipo, función).
 - Rol Control-HMI. Descripción de 2 dispositivos del proceso del tipo unidad de control o HMI: instante donde aparece, foto y descripción del dispositivo (tipo, función).
 - Ver plantillas en documentación adicional (Moodle)
- Cada alumno entrega por Moodle
 - Si cada grupo ha hecho su trabajo de forma independiente no habrá problemas con Turnitin
 - Evaluación por alumno: completo (15 ptos), incompleto (8 ptos), no entrega/entrega poco/copia (0 ptos). No hay coincidencia en título y/o URL: mitad de los puntos posibles
- Fecha máxima de entrega: 23 de enero del 2022

Resumen

- Definición de automatización industrial
- Elementos principales de un sistema automatizado
 - Proceso, sistema de control, operador
- Sistema de control como caja negra
 - Entradas, salidas, algoritmo de control
- Organización funcional de un sistema automatizado
 - Adquisición, interfaz hombre máquina, algoritmo de control, ejecución
- Organización física genérica de un sistema automatizado
 - Sensores, interfaz hombre máquina, unidad de control o control, accionamientos o actuadores
- Sistemas automatizados seguros
- Fases típicas de un proyecto de automatización
- Requisitos generales de una buen automatización
- Razones para automatizar

Ejemplos de preguntas

- ¿Qué es la automatización industrial?
- Definir las funciones más importantes dentro de un sistema automatizado
- Identificar sobre un proceso automatizado los elementos típicos (accionamientos, sensores, control, proceso, IHM)
- Dar ejemplos de organizaciones físicas diferentes de un sistema automatizado
- ¿Qué criterio básico se debe seguir en la evolución de un proceso en una parada de emergencia?
- Descripción de las fases típicas para automatizar un proceso
- Criterios para calificar una automatización como correcta
- ¿Cuáles son las razones para automatizar un proceso?