Policy gradient

Konpat Preechakul
Chulalongkorn University
October 2019

Recap overview

Model-free	Model-based
Environment is a black box	We know environment (transitions, rewards)
Value-based	Policy-based
We learn value. Use value to improve policy greedily	We directly learn policy (from some value)
On-policy	Off-policy
Experience comes from target policy (interactive experience)	Experience comes from behavior policy (observative experience)

Recap Value-based

Value function approximation

- Monte Carlo
 - Value error
- Temporal difference
 - Semi gradient
 - Poor convergence
 - Tricks
 - Full gradient
 - Better convergence
 - Might not good in practice

Today topic is policy-based

 Model the policy directly (not from the value function)

Value function is used as a guide

Motivation of policy-based

Continuous action space

Optimal policy might not be "deterministic"

 Value-based RL might not give a smooth improvement of the policy

Convergence problems in value based RL

Modeling a policy

• Stochastic policy

• Deterministic policy

How to improve the policy?

• We have neural nets, we want to optimize it with SGD

What is the objective?

What is the gradient?

Policy gradient

Policy gradient (PG)

Objective function

$$J(\theta) = \sum_{s} P_{s_0}(s) V^{\pi}(s)$$

Policy gradient

$$\nabla J(\theta) = \sum_{s} d^{\pi}(s) \sum_{a} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a|s)$$

Discounted state distribution

What does it mean?

- We care less of far away states
- Why?

Policy gradient (PG)

• Another form (REINFORCE; likelihood ratio)

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

Making sense of policy gradient

What does it do?

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

• Gradient for each action is "weighted" based on the goodness

Efficiency of likelihood ratio

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s,a) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

Gradient is "relative"

- To get a useful gradient, you need "many" samples
- Gradient is indirect

Policy collapse

• Stochastic policy

Policy often collapses into deterministic policy

After which, no exploration

Exploration of policy gradient

Entropy

$$H(p) = -\sum_{x} p(x) \log p(x)$$

We want to discourage policy collapse

Revised objective

$$J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s,a) \log \pi_{\theta}(a|s) + \beta H(\pi_{\theta}(s)) \right]$$

Policy gradient pseudocode

for until satisfied do collect episode $(s_0, a_0, r_1, ...)$ using π $J = \sum_i \gamma^i \left(g_i \log \pi_{\theta}(a_i | s_i) + \beta H(\pi_{\theta}(s_i)) \right)$ $\theta \leftarrow \theta + \alpha \nabla J$

end for

 g_i

 $H(\cdot)$

Policy gradient is on-policy

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s,a) \nabla \log \pi_{\theta}(a|s) \right]$$

$$\nabla J(\theta) = \sum_{s} d^{\pi}(s) \sum_{a} \pi(a|s) \left[Q^{\pi}(s, a) \nabla \log \pi_{\theta}(a|s) \right]$$

Proof of policy gradient

$$V^{\pi}(s) \qquad J(\theta) = \sum_{s} P_{s_0}(s) V^{\pi}(s)$$

Policy gradient extensions

Variance of policy gradient

What is the variance?

$$\operatorname{Var}(Q) = \mathbb{E}_{s,a} \left[Q(s,a) - \overline{Q} \right]^2$$

Policy gradient has high variance

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s,a) \nabla \log \pi_{\theta}(a|s) \right]$$

High variance slows down learning!

Variance in picture

Variance reduction

$$f(s,a) = Q(s,a) - b(s)$$

- If b(s) correlates well with Q(s,a)
- f(s,a) could have "lower" variance
- b(s) is called a "baseline"

There is no change in gradient! Why?

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[(Q^{\pi}(s,a) - b(s)) \nabla \log \pi_{\theta}(a|s) \right]$$

Baseline

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[(Q^{\pi}(s,a) - b(s)) \nabla \log \pi_{\theta}(a|s) \right]$$

Baseline

- What if b(s) becomes b(s, a)?
- Can we use the same argument?

• What is a good baseline for Q(s,a)?

Advantage function

$$A(s,a) = Q(s,a) - V(s)$$

Baseline in action

Advantage Actor-critic (A2C)

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[A(s,a) \nabla \log \pi_{\theta}(a|s) \right]$$
$$A(s,a) = Q(s,a) - V(s)$$

- Advantage = Critic
- Policy = Actor
- Need to model either A or Q or V
- How to do it efficiently?

Practical considerations

Parallel environments

N-step exploration

A slew of returns

1. $\sum_{t=0}^{\infty} r_t$: total reward of the trajectory.

4. $Q^{\pi}(s_t, a_t)$: state-action value function.

2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t .

5. $A^{\pi}(s_t, a_t)$: advantage function.

3. $\sum_{t'=t}^{\infty} r_{t'} - b(s_t)$: baselined version of previous formula.

6. $r_t + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$: TD residual.

N-step TD Residual

$$A_t \approx r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots + \gamma^n V(s_{t+n}) - V(s_t)$$

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. "Asynchronous Methods for Deep Reinforcement Learning." arXiv [cs.LG]. arXiv. http://arxiv.org/abs/1602.01783.

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. 2015. "High-Dimensional Continuous Control Using Generalized Advantage Estimation." *arXiv Preprint arXiv:1506.02438*, 1–14.

Generalized Advantage

- Lambda-weighted infinite sum of many-step advantage functions
- Lambda for advantage functions

$$A_t^{(\gamma,\lambda)} = \sum_{i=0}^{\infty} (\gamma \lambda)^i \delta_{t+i}$$
$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

• We only sum to "n" $(n \ge 5)$

A2C pseudocode

for until satisfied do

collect n step
$$(s_0, a_0, r_1, \dots, s_{n-1}, a_{n-1}, r_n, s_n)$$
 using π

$$q_i = \sum_{j=0}^n \gamma^j r_{i+j+1} + \gamma^n V_{\phi}(s_n)$$

$$\nabla J(\theta) = \sum_{i=0}^n \gamma^i \left[q_i - V_{\phi}(s_i) \right] \nabla \log \pi_{\theta}(a_i | s_i)$$

$$\nabla L(\phi) = \sum_{i=0}^n \left[V_{\phi}(s_i) - q_i \right] \nabla V_{\phi}(s_i)$$

$$\theta \leftarrow \theta + \alpha_1 \nabla J$$

$$\phi \leftarrow \phi + \alpha_2 \nabla L$$

end for

Stability of critics

- Semi-gradient could diverge
- One-step return might be unstable
- You might need to use target network in such cases
- Usually N > 5, you don't need (but using might give you even more stable training)

Sample efficiency

Not able to reuse data

Efficiency is not great

Off-policy is much needed

Off-policy actor and critic

Off-policy actor-critic

Off-policy critic

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q_{\phi}(s, a) \nabla \log \pi_{\theta}(a|s) \right]$$

• If Q learns from TD (one or many steps)

How to learn Q off-policy?

• If one step, we could use expected SARSA

Off-policy policy gradient

Objective function (proposed by the paper)

$$J(\theta) = \sum_{s} d^{b}(s) V^{\pi}(s)$$

It is not the same as on-policy one!

$$J(\theta) = \sum_{s} P_{s_0}(s) V^{\pi}(s)$$

Motivation

$$J(\theta) = \sum_{s} d^{b}(s) V^{\pi}(s)$$

We have the distribution already

Reweighting is not that bad

Off-policy policy gradient

$$\nabla_{\theta} J(\theta) \approx \sum_{s} d^{b}(s) \sum_{a} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a|s)$$

• Why approximation?

Proof of off-policy gradient

Approximation vs Oracle

$$\nabla_{\theta} J(\theta) = \sum_{s} d^{b}(s) \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s) + \pi(a|s) \nabla Q^{\pi}(s, a) \right]$$

Oracle:

- Start from S
- Update for S
- Unroll, continue on-policy

• Approximation:

- Start from S
- Update for S

Off-policy gradient

• It gives a "good enough" gradient

It guarantees to improve the policy

 But the fixed point for policy might not be as good (a local minima is not as good)

Deterministic policy gradient (DPG)

Motivation

• Deterministic policy simplifies much of the policy gradient

Gradient has very low variance!

Off-policy is trivial

Potential efficiency gain

Deterministic Policy Gradient

- Deterministic policy $\pi_{\theta}(s) = a$
- Objective function

$$J(\theta) = \sum_{s} P_{s_0}(s) V^{\pi}(s) = \sum_{s} P_{s_0}(s) Q^{\pi}(s, a)|_{a=\pi(s)}$$

Deterministic policy gradient

$$J(\theta) = \sum_{s} d^{\pi}(s) \nabla_{a} Q^{\pi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

Policy improvement = backprop on critic

$$\nabla_{\theta} J(\theta) = \sum_{s} d^{\pi}(s) \nabla_{a} Q_{\phi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

- We use a neural net as Q (critic)
- Critic "tells" what is a better action
- Very low variance
 - Single sample can make progress
- Easy overfit, critic needs to be "ahead"

Needs exploration

Policy during exploration

$$a = \pi_{\theta}(s) + \epsilon$$

Connection with DQN

• DQN = Explicit max over discrete actions

$$\pi(s) = \underset{a}{\operatorname{argmax}} Q_{\phi}(s, a)$$

• DPG = Climb to the local max action

$$J(\theta) = \sum_{s} d^{\pi}(s) \nabla_{a} Q_{\phi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

Off-policy DPG

Objective function

$$J(\theta) = \sum_{s} d^b(s) Q^{\pi}(s, a)|_{a=\pi(s)}$$

Gradient

$$J(\theta) \approx \sum_{s} d^b(s) \nabla_a Q^{\pi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

Same argument with off-policy gradient

Off-policy critic

- Deterministic policy could evaluate from offpolicy using SARSA-like
- (s, a, r, s')

$$\delta = (r + \gamma Q_{\phi}(s', \pi(s'))) - Q_{\phi}(s, a)$$

$$L(\phi) = \frac{1}{2}\delta^2$$

$$\nabla_{\phi} L(\phi) = -\delta \nabla_{\phi} Q_{\phi}(s, a)$$

Proof of DPG

$$J(\theta) = \sum_{s} d^{\pi}(s) \nabla_{a} Q^{\pi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

Deterministic policy gradient extensions

Deep Deterministic Policy Gradient (DDPG)

- DPG uses one-step bootstrapping which is unstable
- DDPG introduces:
 - Target network both actor and critic
 - Replay
- DDPG = DQN for continuous control

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process $\mathcal N$ for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Maximization bias

Maximization bias in DDPG

- Double DQN doesn't work as well
- Because the policy slowly changes, the value functions are not "independent" enough

MISC.

Action dependent baseline

• PG has high variance because it uses "indirect gradient"

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[Q^{\pi}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

 DPG has lower variance because it can "backprop"

$$\nabla J(\theta) = \sum_{s} d^{\pi}(s) \nabla_{a} Q_{\phi}(s, a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s)$$

Action dependent baseline

- Can we combine the two?
- Q-Prop

$$\nabla J(\theta) = \mathbb{E}_{s,a} \left[(Q^{\pi}(s,a) - \overline{Q}(s,a)) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$
$$+ \mathbb{E}_{s} \left[\nabla_{a} Q(s,a)|_{a=\pi(s)} \nabla_{\theta} \pi_{\theta}(s) \right]$$

Taylor expansion (first order)

$$\overline{Q}(s,a) = Q(s,\pi(s)) + \nabla_a Q(s,\pi(s))(a - \pi(s))$$

Policy gradient from minimizing KL

- If we look at Q as "unnormalized" policy
 - A little bit sharper of Q is exp(Q)
 - This is our target policy
- We could use a KL:

$$\pi = \underset{\pi \in \Pi}{\operatorname{argmin}} \ D_{KL} \left(\pi(\cdot|s) \middle\| \frac{\exp(Q(\cdot,s))}{Z} \right)$$

• Minimizing KL is an optimization task

Policy gradient from minimizing KL

KL policy gradient:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s} \left[\nabla_{\theta} D_{KL} \left(\pi(\cdot | s) \middle\| \frac{\exp(Q(\cdot, s))}{Z} \right) \right]$$

- Z is a constant, ignored
- Policy improve to Q
- Policy eval: Q gets even sharper
- Repeat

Assignments

- Pull chula_rl (beware of conflicts; back up)
- A2C with continuous Cartpole
- DDPG with continuous Cartpole