TRABALHO PRÁTICO DE COMPUTAÇÃO GRÁFICA

SIMULAÇÃO DE BRAÇO MECÂNICO VOADOR

Cristiano Antunes Madeira¹

Frederico Martins Biber Sampaio²

Moisés Henrique Ramos Pereira³ (Professor)

Centro Universitário de Belo Horizonte, Belo Horizonte, MG

{ 1 cristianomad; 2 fredmbs; 3 moiseshrp+unibh} @qmail.com;

Resumo. O presente documento é o relatório que explica como usar o programa elaborado para o trabalho prático.

1. Introdução

O trabalho apresenta um software de computação gráfica baseado em OpenGL que simula movimentos de um braço mecânico capaz de deslocar sobre uma plataforma ou voar em um ambiente limitado. O software possibilita movimentos de câmera, movimentos das partes do braço mecânico e animações. O braço mecânico possui controle de vidas e perde uma vida caso atinja o limite inferior (mínimo Y) do ambiente da simulação.

2. Princípios de funcionamento do simulador

O braço mecânico possui dois modos: (1) sobre a plataforma e (2) voando. Quando sobre a plataforma, a posição do braço mecânico está limitada à área da plataforma e possui apenas movimentos no plano da plataforma (plano XZ). Quando voando, o braço mecânico está limitado ao ambiente da simulação, com controle simples de colisão com a plataforma.

O controle de colisão só corre durante o modo "voando" e verifica apenas uma área retangular em torno do braço mecânico. O simulador destaca essa área caso ocorra uma colisão, impedindo o movimento.

Os movimentos ocorrem por meio de mudança de valores de ângulo e/ou posição usada durante a *renderização* (glRotate*, glTranslate*, glScale*). Por definição, uma transição de estado ocorre por alteração de valores de variáveis, incluindo os atributos de um ou mais objetos. Por exemplo, ocorre uma transição de estado entre o modo "sobre a plataforma" e "voando": os ângulos dos braços devem ficar em uma posição específica, o incremento do ângulo de rotação das hélices deve aumentar e o braço mecânico deve se posicionar a certa altura Y.

Algumas transições de estados são animadas (ocorrem entre várias *renderização* de quadros) por meio de simulação de movimentos. As animações dessas transições de estado são baseadas no princípio da cinemática direta.

A cinemática é o estudo ou especificação da variação de posição em função dos movimentos de um objeto. A cinemática direta especifica como atingir uma posição por meio de movimentos. A cinemática inversa especifica um movimento em função da variação da posição.

As animações definem movimentos que devem acontecer a cada quadro de acordo com um valor destino para o estado (posição, ângulo, cor ou qualquer outra informação). Assim, para cada quadro, obtém-se cada valor atual afetado pela mudança de estado, aproxima-se cada um desses valores aos seus respectivos valores finais desejados (destino). Quando os valores atuais são iguais aos desejados, a animação termina. As aproximações de cada variável podem ocorrer de forma paralela para simular movimentos simultâneos ou aninhadas (em estruturas de controle como "if-then-else") para simular movimentos em sequencia.

O simulador apresenta o número de vidas do braço e uma estimativa do número de quadros *renderizados* por segundo. O simulador também apresenta (opcionalmente) uma grade para visualização do limite do ambiente.

3. Resumo geral das classes do software

As classes definidas no código fonte elaboradas para o trabalho foram dividas nos seguintes grupos:

- Classes de núcleo: controle de aplicação (ambiente de execução). janelas, eventos de entrada e saída (mouse, teclado, etc), eventos (theads e temporização), saída de texto, controle de posicionamento. Além dessas existem uma série de funções matemáticas úteis para definir vetores normais (fundamentais na iluminação), distancia entre elementos geométricos (pontos e retas), operações de transformações, etc.
- Classes de formas: generalização dos objetos visuais, incluindo formas de objetos simples e compostos.
- Classes de formas geométricas: tipos específicos de formas geométricas simples como, por exemplo, retângulos, cilindros, discos e anéis.
- Classes de atributos visuais: classes com objetos de controle de aparência e posicionamento dos objetos visuais como cores, iluminação, posição e mascara de "pontilhamento" de textura (stipple).
- Classes da simulação: Classes específicas da simulação com janela, grade de limite de ambiente para o ambiente e as partes do braço mecânico.

Tabela de comandos

Comandos para todos os modos da simulação

Ações (comando ou grupo de comandos)	Acionamento
Mover em relação ao eixo X	Setas para direita ou para esquerda
Mover em relação ao eixo Z	Setas para cima ou para baixo
Aproxima a câmera (ZOON IN)	Tecla F ou "roda do mouse"
Afasta a câmera (ZOON OUT)	Tecla V ou "roda do mouse"
Girar a câmera	Mover mouse com botão direito pressionado
Alterna (liga/desliga) apresentação da	Tecla P
grade de limite do ambiente.	

Comandos para o modo "sobre a plataforma"

Ações (comando ou grupo de comandos)	Acionamento
Reposiciona o braço mecânico e a câmera (RESET)	Tecla R
Iniciar o modo "voando"	Tecla H
Girar a base do braço	Teclas Z ou C
Fechar a garra	Tecla X
Abrir a garra	Tecla S
Mover o braço (conjunto)	Teclas A ou Q
Mover a mão (conjunto que forma a hélice)	Tecla E ou D
Abrir ângulo entre as hélices (partes da mão)	Tecla I
Abrir ângulo entre as hélices (partes da mão)	Tecla K
Aumentar ângulo de ataque das hélices (partes da mão)	Tecla O
Diminuir ângulo de ataque das hélices (partes da mão)	Tecla L

Comandos para o modo "voando"

Ações (comando ou grupo de comandos)	Acionamento
Reposiciona a câmera (RESET)	Tecla R
Alterna (liga/desliga) a rotação das hélices (RESGATE)	Tecla T
Sobe o braço mecânico	Tecla G
Desce o braço mecânico	Tecla B
Aumenta a aceleração de rotação das hélices	Tecla + ou =
Diminui a aceleração de rotação das hélices	Tecla - ou _
Animação de pouso seguro	Tecla Y

4. Diagrama de classes simplificado do software

powered by astah*