1.1

$$H^T = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

2

$$dG =$$

$$rH^T =$$

 $[1\ 1\ 1\ 1]+$

 $[1\ 1\ 1\ 0]+$

 $[1\ 1\ 0\ 1] +$

 $[1\ 0\ 1\ 0] +$

 $[1\ 0\ 0\ 1] +$

 $[1\ 0\ 0\ 0]+$

 $[0\ 1\ 1\ 0]+$

 $[0\ 1\ 0\ 0] +$

 $[0\ 0\ 1\ 0]+$

 $[0\ 0\ 0\ 1]$

 $= [0 \ 1 \ 1 \ 0]$

可知,第 10 位有误,纠错后 $r=[1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1]$,进而可知译码结果为 $d=[1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0]$ 。

(4)

误码组概率为 $P_B=1-(1-arepsilon)^{15}-C_{15}^1arepsilon(1-arepsilon)^{14}pprox 0.0353$ 。

2.(1)

 $t+e+1 \leq d_H^{\min}=5$,可得 $e \leq 3$,故而重量不超过 3 的误码图案一定能被检出。

②(以下认为许用码字的分布比较均匀,相邻之间的码距基本都为 d_H^{\min})

检出错误的概率大约为 $p=C_{15}^2 arepsilon^2 (1-arepsilon)^{13}+C_{15}^3 arepsilon^3 (1-arepsilon)^{12} pprox 0.0352$ (认为该概率就是发生一次重传的概率)。那么每个信息数据块平均传输次数为 $\bar{N}=\sum\limits_{n=1}^{\infty}n(1-p)p^{n-1}=rac{1}{1-p}pprox 1.0364$ 。

3

正确概率: $P_C = (1-\varepsilon)^{15} + C_{15}^1 \varepsilon^1 (1-\varepsilon)^{14} \approx 0.9647$

检错概率: $P_D \approx C_{15}^2 \varepsilon^2 (1-\varepsilon)^{13} + C_{15}^3 \varepsilon^3 (1-\varepsilon)^{12} \approx 0.0352$ (出现更多错误的概率小到可以忽略)

漏检概率: $P_M = 1 - P_C - P_D \approx 0.000183$

4

平均每次信道使用可传输的信息 bit 数为 $\overline{N_{bit}}=rac{7}{ar{N}}pprox 6.754$ 。

(5)

当t取0时,每个信息数据块的平均传输次数为 $ar{N}=rac{1}{1-P_D}pprox 1.3539$,正确概率为 $P_C=(1-arepsilon)^{15}pprox 0.7386$,检错概率为 $P_Dpprox C_{15}^1arepsilon(1-arepsilon)^{14}+C_{15}^2arepsilon^2(1-arepsilon)^{13}+C_{15}^3arepsilon^3(1-arepsilon)^{12}+C_{15}^4arepsilon^4(1-arepsilon^{11})pprox 0.2614$,漏检概率为 $P_M=1-P_C-P_Dpprox 8.13 imes 10^{-6}$ 。

当t取2时,每个信息数据块的平均传输次数为 $ar{N}=rac{1}{1-P_D}pprox 1.003$,正确概率为 $P_C=(1-arepsilon)^{15}+C_{15}^1arepsilon(1-arepsilon)^{14}+C_{15}^2arepsilon^2(1-arepsilon)^{13}pprox 0.9970$,检错概率为 $P_Dpprox 0$,漏检概率为 $P_M=1-P_C-P_Dpprox 0.00304$ 。

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

2

$$H^T = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

3

标准阵列为:

000000	100110	010111	001000	011111	101110	110001	111001
000100	100010	010011	001100	011011	101010	110101	111101
000010	100100	010101	001010	011101	101100	110011	111011
000001	100111	010110	001001	011110	101111	110000	111000
000011	100101	010100	001011	011100	101101	110010	111010
000101	100011	010010	001101	011010	101011	110100	111100
000110	100000	010001	001110	011001	101000	110111	111111
000111	100001	010000	001111	011000	101001	110110	111110

(4)

 H^T 中存在零行向量,故而该码的 $d_H^{\min}=1$ 。

(5)

分别对应于 $[0\ 0\ 1]$, $[1\ 0\ 0]$, $[1\ 1\ 1]$ 。 (此处认为题目中 $\tilde{G}=[I;Q]P$,这样有 $d=d'A^{-1}$,否则按题干 $\tilde{G}=[I;Q]$ 算,好像不存在对应的d)

生成矩阵为:
$$G=\begin{bmatrix}1&0&0&1&0&0\\0&1&0&0&1&0\\0&0&1&0&0&1\end{bmatrix}$$
 校验矩阵为 $H^T=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\\1&0&0\\0&1&0\\0&0&1\end{bmatrix}$

2

标准阵列为:

000000	100100	010010	001001	011011	101101	110110	111111
100000	000100	110010	101001	111011	001101	010110	011111
010000	110100	000010	011001	001011	111101	100110	101111
001000	000101	011010	000001	010011	100101	111110	100111
101000	001100	111010	100001	110011	000101	011110	010111
110000	010110	100010	111001	101011	011101	000110	001111
011000	111100	001010	010001	000011	110101	101110	100111
111000	011100	101010	110001	100011	010101	001110	000111

3

计算校正子 $s=rH^T=[1\ 1\ 1]$,可知r应位于标准阵列的最后一行,查询标准阵列最后一行可知, $r=[1\ 1\ 1\ 0\ 0\ 0]$ 在最左下角,因而可判定发送的信息为 $[0\ 0\ 0]$ (实际上可能的发送内容为 $[1\ 1\ 1]$, $[1\ 1\ 0]$, $[0\ 1\ 1]$, $[0\ 1\ 1]$, $[0\ 0\ 1]$, $[0\ 0\ 1]$, $[0\ 0\ 0]$)。