1. Mikrosilnik krzemowy 8/12

1.1. Analiza budowa mikrosilnika krzemowego 8/12

W silniku krzemowym można wyróżnić następujące elementy (warstwy):

Rys. 1-1 Warstwy w mikrosilniku krzemowym.

Ponadto występują warstwy izolacyjne elektrod stojana i zębów wirnika. Warstwy te ze względu na to że są bardzo cienkie (napylane) można pominąć w modelowaniu.

Mikrosilnik krzemowy typu 8/12 zbudowany jest z 8 zębów wirnika i 12 elektrod umieszczonych na stojanie. Wymiary zębów wirnika i elektrod stojana pokazano na Rys. 1-2 i Rys. 1-3.

Rys. 1-2 Wymiary elektrod stojana i zębów wirnika w mikrosilniku krzemowym 8/12 – widok z góry.

Rys. 1-3 Wymiary warstw mikrosilnika krzemowego 8/12 w widoku przekroju.

Na podstawie powyższych danych zostanie utworzony model polowy mikrosilnika krzemowego.

1.2. Budowa modelu polowego

Model polowy mikrosilnika krzemowego typu 8/12 zostanie utworzony w programie Modeller pakietu Opera 3D.

1.2.1. Tworzenie warstw izolacyjnych

W pierwszym etapie tworzenia modelu zostaną narysowane warstwy izolacyjne mikrosilnika. Warstwy izolacyjne to walce o wymiarach:

Tab. 1-1 Wymiary warstw izolacyjnych w mikrosiliniu.

Warstwa izolacyjna	Promień [µm]	Wysokość [µm]
1 – silikon	100	10
2 – azotek krzemu	100	1
3 – dwutlenek krzemu	100	2
4 – polisilikon	52	0.5

Tworzenie warstwy izolacyjnej 1:

z menu górnego wybrać: Create → Object → Cylinder/Cone

lub z paska narzędziowego: <

A następnie wypełnić okno dialogowe:

Wysokość walca została określona przez współrzędne x dolnej i górnej podstawy.

W analogiczny sposób utworzyć warstwy 2, 3 i 4:

Utworzonym warstwom zostaną przypisane etykiety materiałów, z których są wykonane oraz parametry siatki jaka ma zostać wygenerowana w tych warstwach, a także parametry określające ich ważność.

Etykiety materiałów przypisywane są do komórek, dlatego też należy ustawić tryb zaznaczania komórek:

z menu górnego wybrać: Picking → Pick Cells – tryb wyboru komórek (Cells) oraz: Picking → Pick Entity – tryb zaznaczania

lub z pasków narzędziowych ikony: 🏙 i 🗾

Zaznaczyć warstwę izolacyjną 1 i wybrać z menu górnego: Properties \rightarrow Cell properties

lub nacisnąć prawy przycisk myszy i z menu podręcznego wybrać: **Cell properties** – Rys. 1-4

Rys. 1-4 Okno menu podręcznego przy zaznaczonej komórce.

Dla komórki warstwy 2:

Dla komórki warstwy 3:

Dla komórki warstwy 4:

Tab. 1-2 Zestawienie etykiet materiałów i kolorów dla poszczególnych warstw.

Warstwa	Etykieta materiału	Kolor
1	Silikon	
2	Azotek krzemu	
3	Dwutlenek krzemu	
4	Polisilikon	

Uwaga: Dla poszczególnych etykiet mogą zostać wygenerowane inne kolory niż te przedstawione w Tab. 1-2.

1.2.2. Tworzenie stojana mikrosilnika

Drugim etapem tworzenia modelu mikrosilnika jest narysowanie stojana. Na stojanie modelowanego mikrosilnika umieszczone są elektrody.

Zostaną narysowane dwa prostokąty o wymiarach przedstawionych na Rys. 1-3, a następnie zostaną one wyciągnięte po łuku o kąt 21°. Tak utworzona jedna elektroda zostanie skopiowana.

Prostokaty tworzące elektrodę mają parametry przedstawione w Tab. 1-3.

Tab. 1-3 Parametry prostokątów tworzących elektrodę.

Name	First corner	Opposite corner
stojan1	x=73	x=100
	y=13	y=15
	z=0	z=0
stojan2	x=53	x=88
	y=15	y=17
	z=0	z=0

Tworzenie pierwszego prostokąta:

z menu górnego wybrać: Create \rightarrow Object - Block,

lub

z pasków narzędziowych ikonę: 💟

A następnie wypełnić okno dialogowe:

Zaznaczyć utworzony prostokąt, a następnie wyciągnąć go z obrotem o kąt 21°:

z menu górnego wybrać:

 $\begin{array}{ll} \textbf{Picking} \ \rightarrow \ \textbf{Pick} \ \textbf{Faces} \\ \textbf{Picking} \ \rightarrow \ \textbf{Pick} \ \textbf{Entity} \end{array}$

lub z pasków narzędziowych ikony: 🖼 i 🗾

Zaznaczyć prostokąt i z menu górnego wybrać: Operations \rightarrow Sweep Face... (lub z menu podręcznego) i wypełnić okno dialogowe:

W analogiczny sposób narysować drugą część elektrody.

Utworzonym komórkom przypisać etykiety materiałów (zgodnie z Rys. 1-1), parametry siatki analogicznie jak dla poprzednich warstw.

Zsumować bryły tworzące elektrodę bez podziału na komórki:

z menu górnego wybrać:

Picking \rightarrow Pick Bodies Picking \rightarrow Pick Entity

lub z pasków narzędziowych ikony: 🕰 i 💆

Zaznaczyć obie części elektrody, z menu górnego wybrać: Operations \rightarrow Combine Bodies \rightarrow Union, without regularization.

Skopiować elektrodę tak aby na stojanie było 12 elektrod:

z menu górnego wybrać:

Picking → Pick Bodies Picking → Pick Entity

lub z pasków narzędziowych ikony: 🗸 i 🗾

Zaznaczyć elektrodę, z menu górnego wybrać: Operations \rightarrow Copy... (lub z menu podręcznego) i wypełnić okno dialogowe.

1.2.3. Tworzenie łożyska wirnika

Łożysko składa się z 3 brył: 2 pierścienie i 1 walec. Bryły te mają parametry (Tab. 1-4) wynikające z wymiarów przedstawionych na Rys. 1-2.

Tab. 1-4 Parametry brył tworzących łożysko.

Name	Centre of base	Centre of top	Radius	Thickness
lozysko1	x=0	x=0	13	-
	y=13.5	y=15.5		
	z=0	z=0		
lozysko2	x=0	x=0	13	5.5
	y=15.5	y=17		
	z=0	z=0		
lozysko3	x=0	x=0	19.5	12
	y=17 z=0	y=18.5		
	z=0	z=0		

Przy pomocy polecenia Cylinder narysować 3 bryły tworzące łożysko.

Komórkom tworzącym łożysko przypisać etykiety materiału, zgodnie z Rys. 1-1, oraz parametry siatki.

1.2.4. Tworzenie wirnika

Wirnik składa się z pierścienia i 8 wycinków koła tworzących zęby. Pierścień i pojedynczy ząb wirnika mają parametry jak Tab. 1-5.

Tab. 1-5 Parametry pierścienia i zęba wirnika.

Name	Centre of base		Centre of top	Radius		Thickness
wirnik1	x=0		x=0	50		35.5
	y=15 z=0		y=16.5 z=0			
	z=0		z=0			
Name	First		corner	Opposite corner		orner
wirnik2	x=25			x=50		
	y=15 z=0		x=50 y=16.5 z=0			
	z=0				z=0	

Pierścień tworzący bryłę **wirnik1** narysować przy pomocy polecenia **Cylinder**, natomiast przy pomocy polecenia **Block** narysować prostokąt i wyciągnąć go z obrotem o kąt 21° tworząc w ten sposób jeden z zębów wirnika. Pozostałe zęby utworzyć jako kopie. Utworzonym komórkom nadać odpowiednie etykiety materiału i ustawić parametry siatki.

Zsumować bryły tworzące wirnik bez podziału na komórki:

z menu górnego wybrać:

 $\begin{array}{ll} \textbf{Picking} \ \rightarrow \ \textbf{Pick} \ \textbf{Bodies} \\ \textbf{Picking} \ \rightarrow \ \textbf{Pick} \ \textbf{Entity} \end{array}$

lub z pasków narzędziowych ikony: 🕰 i 🗾

Zaznaczyć bryły tworzące wirnik, z menu górnego wybrać: Operations \rightarrow Combine Bodies \rightarrow Union, without regularisation.

1.2.5. Tworzenie tła

Tło – obszar powietrza wokół modelu silnika – zostanie utworzone jako 2 walce. Parametry obu walców są przedstawione w Tab. 1-6.

Tab. 1-6 Parametry walców tworzących tło.

Name	Centre of base	Centre of top	Radius
tlo1	x=0	x=0	110
	y=-10	y=50 z=0	
	z=0	z=0	
tlo2	x=0	x=0	200
	y=-50 z=0	y=200	
	z=0	z=0	

Narysować oba walce i ustawić w komórkach parametry siatki.

1.2.6. Parametry materialowe

Z Rys. 1-1 wynika, że w modelowanym mikrosilniku krzemowym można wyróżnić 4 rodzaje materiałów oraz powietrze. Z punktu widzenia analizy elektrostatycznej istotną cechą tych materiałów jest przenikalność dielektryczna względna. Przy założeniu liniowości tych materiałów przenikalność dielektryczna jest jak w Tab. 1-7.

Tab. 1-7 Przenikalność dielektryczna materiałów mikrosilnika krzemowego.

Materiał	Przenikalność dielektryczna względna
Silikon	11.7
Polisilikon	1e-3
Azotan krzemu	6
Dwutlenek krzemu	3.9

Parametry materiałowe zostaną przypisane do etykiet materiałów zdefiniowanych w poprzednich krokach.

Pierwszym krokiem jest wybór odpowiedniego solvera – w tym przypadku musi to być solver obliczający pole elektrostatyczne. W pakiecie OPERA 3D jest nim program TOSCA Electrostatic.

Z menu górnego wybrać:

$Model \rightarrow Analysis Type \rightarrow TOSCA Electrostatic$

Następnie przypisać do etykiet materiałów odpowiednie wartości przenikalności dielektrycznej względnej – parametr **Relative permitivity**.

Z menu górnego wybrać:

$\textbf{Model} \ \rightarrow \ \textbf{Set} \ \textbf{Material Properties...}$

a następnie z listy materiałów wybrać etykietę **Azotek krzemu** i w polu **Relative permitivity** wpisać **6** i nacisnąć **Apply** – Rys. 1-5.

Rys. 1-5 Okno dialogowe do definiowania parametrów materiałów.

W analogiczny sposób zdefiniować parametry pozostałych materiałów.

1.2.7. Definiowanie warunków brzegowych

Warunki brzegowe zostaną ustawione na zewnętrznych powierzchniach obszaru tlo2.

Z menu górnego wybrać:

Picking \rightarrow Pick Faces Picking \rightarrow Pick Entity

lub z pasków narzędziowych ikony: 🖼 i 🗾

i zaznaczyć zewnętrzne powierzchnie walca tworzącego komórkę **tlo2**. Z menu górnego wybrać:

Properties → Face Properties...

i uzupełnić okno dialogowe.

Dla etykiety warunek brzegowy zdefiniować odpowiedni warunek brzegowy.

Z menu górnego wybrać:

Model → Set Boundary Conditions...

Z listy etykiet wybrać etykietę **warunek brzegowy**, a następnie z dostępnych warunków brzegowych wybrać warunek **Tangential electric**, a następnie wcisnąć przycisk **Apply** i **OK** – Rys. 1-6.

Rys. 1-6 Okno dialogowe do definiowania warunków brzegowych.

1.2.8. Ustawianie potencjałów

Ponieważ mikrosilnik jest przykryty tłem, pierwszym krokiem jest wyłączenie tego elementu modelu.

Z menu górnego wybrać:

View → Selection... → Volume Label

lub z paska narzędziowego wybrać ikonę:

z listy etykiet odnaleźć **tlo2**, zaznaczyć i nacisnąć przycisk **Hide**. W podobny sposób ukryć **tlo1**.

Ukryć wszystkie komórki poza elektrodami stojana (z klawiszem **Shift** i **Ctrl** można zaznaczyć z listy więcej niż jedną etykietę).

Zaznaczyć wszystkie powierzchnie elektrod stojana poza jedną parą elektrod i we właściwościach powierzchni zdefiniować parametr **Boundary condition label**, a następnie powtórzyć czynności dla niezaznaczonej pary elektrod:

Ukryć stojan oraz wyświetlić wirnik. Dla powierzchni wirnika ustawić parametr **Boundary** condition label.

Dla etykiet **V=0** i **V** przypisać wartości potencjałów.

Z menu górnego:

Model → Set Boundary Conditions...

Z listy etykiet wybrać etykietę V, a następnie z dostępnych warunków brzegowych wybrać warunek Voltage i w polu Functional voltage wpisać wartość 50, a następnie wcisnąć przycisk Apply – Rys. 1-7.

Rys. 1-7 Okno dialogowe do definiowania warunków brzegowych.

W analogiczny sposób dla etykiety **V=0** wprowadzić wartość potencjału **0**.

1.3. Generowanie siatki elementów skończonych

Generowanie siatki elementów skończonych odbywa się w trzech etapach:

1. Tworzenie bryły modelu:

Z menu górnego wybrać:

Model → Create Model Body

2. Generowanie siatki powierzchniowej.

Z menu górnego wybrać:

Model → Generate Surface Mesh...

i w oknie dialogowym wpisać wartości jak na Rys. 1-8 i nacisnąć przycisk OK.

Rys. 1-8 Okno dialogowe do definiowania globalnych parametrów siatki elementów skończonych.

3. Generowanie siatki objętościowej.

Z menu górnego wybrać:

Model → Generate Volume Mesh...

i w oknie dialogowym wpisać wartości jak na rys. 12.

Rys. 1-9 Okno dialogowe do definiowania parametru objętościowej siatki elementów skończonych.

Wygenerowana siatka elementów skończonych przedstawiona jest na Rys. 1-9.

Rys. 1-10 Siatka elementów skończonych.

1.4. Przygotowanie i uruchomienie obliczeń

Przygotowanie bazy do obliczeń:

z menu górnego wybrać

Model → Create Analysis Database...

a następnie wypełnić okno dialogowe jak na Rys. 1-11 i nacisnąć przycisk OK.

Rys. 1-11 Okno dialogowe ustawień analizy.

Plik obliczeniowy zostanie utworzony w domyślnym katalogu roboczym z nazwą przypadek01.op3.

Po zakończeniu tworzenia pliku obliczeniowego pojawi się okno z informacjami o utworzenej bazie obliczeniowej - Rys. 1-12.

Rys. 1-12 Informacje o utworzonym pliku obliczeniowym.

Aby uruchomić obliczenia należy z menu górnego wybrać:

Model → Start Analysis...

a następnie wskazać plik obliczeniowy.

Po zakończeniu obliczeń nacisnąć przycisk Close Window w oknie solvera – Rys. 1-13.

Rys. 1-13 Okno solvera TOSCA Electrostatic.

1.5. Analiza wyników w programie Post-Processor

Wizualizację wyników obliczeń oraz dodatkowe obliczenia można wykonać w programie Post-Processor. Uruchomienie postprocesora możliwe jest z poziomu programu Modeller oraz z poziomu Menadżera pakietu OPERA.

W programie Modeller Post-Processor uruchamiany jest następująco:

z menu górnego wybrać

Model → Launch Post-Processor

Po uruchomieniu postprocesora zostanie wczytany ostatnio policzony plik. Okno programu po uruchomieniu z poziomu Modellera przedstawiono na Rys. 1-14.

Rys. 1-14 Okno programu Post-Processor.

Wyświetlić:

- Rozkład potencjału,
- Rozkład modułu natężenia pola,

Wyświetlanie rozkładu potencjału:

z menu górnego wybrać View → 3D Display...

lub z paska narzędziowego wybrać ikonę 💈

a następnie wprowadzić ustawienia w oknie dialogowym. Dla poprawienia czytelności rysunku można wyłączyć krawędzie i siatkę:

z menu górnego wybrać View \rightarrow Parts of the Display \rightarrow Outline View of Model

lub z paska narzędziowego wybrać ikonę 🕅.

W podobny sposób można wyświetlić rozkład modułu natężenia pola elektrostatycznego.

| V | Digity | V | Digit

Oba rozkłady można także wyświetlić w postaci histogramów.

Z menu górnego wybrać:

Fields → Fields on a Polar Patch...

lub z paska narzędziowego wybrać ikonę 0.

Wypełnić okno dialogowe jak na rys. 18a, nacisnąć przycisk **Set field point local coordinate system** i w kolejnym oknie dialogowym wybrać ustawienie

Vector Fields

LocalXYZ=GlobalZXY – Rys. 1-15b. Nacisnąć przycisk OK, a w oknie z Rys. 1-15a – przycisk Evaluate and Map.

Rys. 1-15 Okno dialogowe polecenia Field on a Polar Patch.

Z menu górnego wybrać:

Fields → Contour or Vector Map...

lub z paska narzędziowego wybrać ikonę ①.

Zaznaczyć opcję Histogram i nacisnąć OK.

Aby wyświetlić histogram potencjału należy:

Z menu górnego wybrać:

Fields → Contour or Vector Map...

lub z paska narzędziowego wybrać ikonę ①.

W polu Component wpisać V i nacisnąć OK.

