Exercice 1 - (Isométrie)

Soit F un sev d'un espace vectoriel euclidien E, et $f \in O(E)$ telle que $f(F) \subset F$.

Montrer que f(F) = f et $f(F^{\perp}) = F^{\perp}$

Exercice 2 - (Petits résultats)

Chaque question est indépendante.

- 1. Soit A symétrique réelle inversible et semblable à son inverse. Montrer que $tr(A^2) \ge n$.
- 2. Soit E espace euclidien et $x, y \in E$. Montrer que x et y sont orthogonaux ssi $\forall \lambda \in \mathbb{R}, ||x + \lambda y|| \ge ||x||$.
- 3. Soit A matrice carrée de taille n. Montrer que $rg(A^TA) = rg(A)$

Exercice $3 - (Matrice\ orthogonale)$

Soit A une matrice réelle orthogonale.

Montrer que
$$\left| \sum_{i,j=1}^{n} a_{i,j} \right| \le n.$$

Exercice 4 - (Matrices colones)

Soit A une matrice carrée de taille n vérifiant : $\forall X \in \mathbb{R}^n, ||AX|| \leq ||X||$

- 1. montrer que $\forall X \in \mathbb{R}^n, ||A^TX|| \leq ||X||$
- 2. Montrer que si AX = X alors $A^TX = X$
- 3. Montrer que $\mathcal{M}_{n,1}(\mathbb{R}) = Ker(A I_n) \oplus Im(A I_n)$

Exercice 5 - (Endomorphisme de trace nulle)

Soit E un espace euclidien de dimension n. Soit u un endomorphisme symétrique de E tel que tr(u) = 0.

- 1. Démontrer qu'il existe $x \in E$, non nul, tel que (u(x), x) = 0
- 2. Trouver une BON dans laquelle la matrice de u dans cette base a des éléments diagonaux nuls.

Exercice 6 - (Condition d'inversibilité)

Soit A une matrice réelle vérifiant

$$\forall i \in [1; n], a_{i,i} \ge 1, \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} a_{i,j}^{2} < 1$$

- 1. Montrer que $\forall X \in \mathbb{R}^n \setminus \{0\}, X^T A X > 0$
- 2. En déduire que A est inversible.

(Questions de cours)

- A symétique réelle et $(X_1,...,X_n)$ une BON de VEP de A associée à $(\lambda_1,...,\lambda_n),$ alors $A=\sum_{i=1}^n\lambda_iX_iX_i^T$
- p est un projecteur orthogonal ssi c'est un endomorphisme autoadjoint.
- Caractérisation d'une isométrie vectorielle par sa matrice dans une BON.