My Recent Work

Qian Sitian

2018/7/25

Outline

Parameter Fitting

Preview

Parameters to Obserables

Obserables to Parameters

Reinforcement Learning

Parameter Fitting

- Preview
- Parameters to Obserables
- Obserables to Parameters

Preview

- Basic Information
- ▶ Target
- Data

Basic Information

Basic Information

Model:

Collective ow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions Arxiv:1703.10792

Motivation:

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium Arxiv:1605.03954

Target

Parameters

Data

► Initial:

τ	σ	η/s	T_{sw}	K
0.2	0.2	0.02 0.08	0.15	0.4
0.6	0.6	0.08	0.24	0.8
0.9	1.0	0.12	0.4	1.2

Divide:

$$\textit{Total}: 3^5 = 243 \Rightarrow \begin{cases} \textit{Train}: 220 \\ \textit{Test}: 23 \end{cases}$$

Parameters to Obserables

- Network
- Result

- Optimizer:Adam
- Learning rate: 0.0005
- Loss:The L2 norm of the absolute error between the predictions and the labels
- ▶ Batch size:Randomly choose 44 of 220
- ► Layers' type:FC with dropout(p=0.5),activation function:relu
- ► Training times:200000

Parameter 128 units 128 units 128 units 128 units Obserables

Result

Result: Relative Error

表: Relative Error

Ctr Obs	2.5%	7.5%	15%	25%	35%	45%	55%
$\frac{dN}{d\eta} \ \frac{dN_1}{d\eta}$	0.01	0.01	0.01	0.01	0.02	0.02	0.04
$\frac{dN_1}{dn}$	0.02	0.02	0.03	0.03	0.03	0.05	0.05
$\langle p_T \rangle_1$	0.04	0.02	0.04	0.04	0.06	0.05	0.05
$\langle ho_{T} angle_{2}$	0.04	0.05	0.03	0.03	0.05	0.04	0.04
$\langle {\it p}_{\it T} angle_3$	0.02	0.08	0.03	0.04	0.09	0.10	0.16
$\frac{dN_2}{dn}$	0.01	0.01	0.01	0.01	0.02	0.02	0.04
$\frac{\overline{d\eta}}{dN_3} \over \overline{d\eta}$	0.03	0.05	0.04	0.04	0.06	0.07	0.13
v_2	1.17	1.34	0.63	0.72	0.94	0.36	1.18

Obserables to Parameters

- Network
- Result

- Optimizer:Adam
- ► Learning rate:0.0005
- Loss:The L2 norm of the absolute error between the predictions and the labels
- ▶ Batch size:Randomly choose 44 of 220
- ► Layers' type:FC with dropout(p=0.5),activation function:relu
- ► Training times:200000

Parameter 256 units 256 units 256 units Obserables

Result:Relative Error

表: Relative Rrror

au	σ	η/s	T_{sw}	K
0.053011	0.201948	1.538553	0.065286	0.059904

Reinforcement Learning

Studying something basic like Boltzmann's Equation, Fluid Mechanics...

Thank you for listening!