Universidad de Granada

Modelos Matemáticos II

Doble Grado en Ingeniería Informática y Matemáticas

Prueba de clase & soluciones

26 de abril de 2021

Apellidos:		Firma:
		J
Nombre:	D.N.I. o pasaporte:	
		7

Ejercicio 1 (1 punto). Razona si las siguientes afirmaciones son ciertas o no:

1. No hay ningún valor de $\lambda \in \mathbb{R}$ para el cual la ecuación

$$y''(t) + ty'(t) + \lambda \cos(t)y(t) = 0,$$
 $y(0) = y(\pi/4) = 0$

tiene soluciones no triviales $y: [0, \pi/4] \to \mathbb{R}$.

- 2. Sea $C \subseteq \mathbb{R}^d$ un conjunto cerrado y $F \colon C \to \mathbb{R}$ una función estrictamente convexa que alcanza su mínimo en un punto de C. Entonces F no puede alcanzar su mínimo en ningún otro punto de C.
- 3. Sea $U \subseteq \mathbb{R}^d$ un conjunto abierto y $F \colon U \to \mathbb{R}$ una función estrictamente convexa que alcanza su mínimo en un punto de U. Entonces F no puede alcanzar su mínimo en ningún otro punto de U.
- 4. El coeficiente de sen(3x) en la serie de Fourier en $[-\pi, \pi]$ de la función $f(x) := x^2 + sen(x)$ es
- **Solución 1.** 1. Falsa. El problema dado es de tipo Sturm-Liouville (observa que $\cos(t)$ es estrictamente positivo en $[0, \pi/4]$), y por tanto siempre tiene infinitos valores propios.
 - 2. Falsa. Si $C \subseteq \mathbb{R}$ es por ejemplo $C := \{0,1\}$ (un conjunto con dos puntos) entonces la función $F \colon C \to \mathbb{R}$, F(x) = 0 alcanza su mínimo en 0 y en 1, y es estrictamente convexa. (Observa que es estrictamente convexa de forma trivial, ya que no existe ningún $\theta \in (0,1)$ tal que $\theta \cdot 0 + (1-\theta) \cdot 1 \in D$.) Otro contraejemplo es $F : (-\infty, -1] \cup [1, +\infty)$ dada por $F(x) = x^2$, que alcanza mínimo en -1 y en 1. Cualquier contraejemplo requiere que el dominio de definición no sea convexo.
 - 3. Verdadera. Si F es estrictamente convexa y alcanza su mínimo valor m en dos puntos $x, y \in D$ entonces F(x) = F(y) = m. Como U es abierto, siempre podemos encontrar $\theta \in (0,1)$ tal que $\theta x + (1-\theta)y \in D$ (por ejemplo tomando θ cerca de 0) y tenemos

$$m \le F(\theta x + (1 - \theta)y) < \theta F(x) + (1 - \theta)F(y) = \theta m + (1 - \theta)m = m,$$

lo cual es una contradicción.

4. Verdadera. La integral

$$\int_{-\pi}^{\pi} \sec(3x)(x^2 + \sec(x)) dx = \int_{-\pi}^{\pi} \sec(3x)x^2 dx + \int_{-\pi}^{\pi} \sec(3x) \sec(x) dx$$

se anula porque el primer término es la integral de una función antisimétrica, y el segundo es 0 porque sen(3x) es perpendicular a sen(x) en el producto escalar usual de $L^1(-\pi,\pi)$. (Las integrales también se pueden calcular explícitamente.)

Ejercicio 2 (1 punto). Consideramos el funcional

$$\mathcal{F}(y) = \int_0^1 e^{-t} ((y'(t))^2 + 2y(t)^2) dt$$

definido en el dominio

$$D := \{ y \in \mathcal{C}^2[0,1] \mid y'(1) = e^2 - 1/e \}.$$

Demuestra que \mathcal{F} alcanza un único mínimo en su dominio, y encuentra la función donde lo alcanza.

Solución 2. Calculando la ecuación de Euler-Lagrange de \mathcal{F} obtenemos

$$y'' - y' - 2y = 0,$$

con las condiciones de contorno $y'(1) = e^2 - 1/e$, junto con y'(0) = 0 debido a que el dominio no tiene ninguna condición en t = 0. Las soluciones de la ecuación diferencial son

$$y(t) = Ae^{2t} + Be^{-t},$$

y para cumplir las condiciones de contorno debe ocurrir que

$$2A - B = 0,$$
 $2Ae^2 - \frac{B}{e} = e^2 - \frac{1}{e}.$

Se puede ver que la única solución es A=1/2, B=1, luego el único punto crítico de \mathcal{F} es

$$y(t) = \frac{1}{2}e^{2t} + e^{-t}.$$

Por otra parte, \mathcal{F} es un funcional estrictamente convexo porque la función asociada $F(t, y, z) = e^{-t}(z^2 + 2y^2)$ es estrictamente convexa en (y, z). Por tanto, el único punto crítico de \mathcal{F} tiene que ser también el único punto donde \mathcal{F} alcanza su mínimo.

Ejercicio 3 (1 punto). Consideramos el funcional

$$\mathcal{F}(y) := \int_a^b F(y(t), y'(t)) \, \mathrm{d}t,$$

definido en el dominio $D:=\mathcal{C}^2[a,b]$, donde $a< b\in \mathbb{R}$ y $F\colon \mathbb{R}\times \mathbb{R}\to \mathbb{R}$ es una función de clase \mathcal{C}^2 cuyas variables denotamos por F=F(y,z). Para cualquier función $y\colon [a,b]\to \mathbb{R}$ definimos su energía asociada $E_y\colon [a,b]\to \mathbb{R}$ como

$$E_{y}(t) := y'(t) \partial_{z} F(y(t), y'(t)) - F(y(t), y'(t)), \qquad t \in [a, b].$$

Demuestra que si y es un punto crítico del funcional \mathcal{F} entonces E_y es una función constante en [a,b].

Ejercicio 4. Los puntos críticos de \mathcal{F} deben cumplir la ecuación de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} (\partial_z F(t, y(t), y'(t))) = \partial_y F(t, y(t), y'(t)).$$

Si y cumple esta ecuación, entonces derivando $E_y(t)$ en t obtenemos

$$\frac{\mathrm{d}}{\mathrm{d}t}E_y(t) = y''(t)\,\partial_z F(y(t),y'(t)) + y'(t)\,\frac{\mathrm{d}}{\mathrm{d}t}\partial_z F(y(t),y'(t)) - y'(t)\partial_y F(y(t),y'(t)) - y''(t)\partial_z F(y(t),y'(t)),$$

que es 0 porque el primer término y el último se cancelan, y los otros dos también gracias a la ecuación de Euler-Lagrange.