OR. Construct minimum state DFA for eq regular exp (a1b) * a (a1b).

 $L = \{ aa, ab, aab, aaa, bbab, \dots \}$ $ab = \{ aa, ab, aab, aaa, bbab, \dots \}$ $ab = \{ aa, ab, aab, aaa, bbab, \dots \}$ $ab = \{ aa, ab, aab, aaa, bbab, \dots \}$

a. Construct NFA for seg esep (011) * 0010

Os. Construct DFA for accepting the following danguage over an alphabet \$0.13.

] accept only I as string, L= {1}

start qo 1

start 60 0 0 0

3) number of 1's is even & number of 0's ois even. $L = \{ 1100, 0011, 00001111, 11110000, ... \}$

Start, (90)

u) number of o's is odd & number of o's is even.

. 1:00

Hally

a. construct NFA for following regular explusing Thomson's rule.

2) (01b) d(01b) (01b)

Q. Nonetrust DFA for following.

i) all strings starting with 011.

-> L= & 011, 0110, 0111, 01101, 01110, ... }

3. Dean a transition diagram to represent relational operators.

Os. construct NFA from a regular esep (alb) * abb. convert into DFA wing subset conste method.

Transition table for NFA is:

			a	F		5		
	0	-	-	_		1,	1	
	1		_		-		214	
			3		-		~	
			-		_		6	
			_		5	-		
			_		_		6	
			_				7/1	,
			g		_		_	
			_		3		_	
	9					0	_	
	10		-	_		-		

```
(5) move (B, b) = E- clasure (\xi 1,2,3,4,8,7,8\xi,b)
                 = E - closure ( 5, 3)
                2 8 5, 6, 1, 7, 2, 4, 39
( move (C, a) = E - closure ( {1,2,4,5,6,7}, 9)
              = E-Noswee (3,8)
(F) move ((, b) = E - clasure ( & 1,2,4,5,6,73, b)
               = E- Mosure (B)
(3) move (D,a) = E- elæsure ( { 1,2,4,5,6,7,9}, a)
                 = 8 - closure (3,8)
(g) move (D,b) = E- clasure (& 1,2,4,5,6,7,93, b)
                = &- closure (5,10)
                = { 5, 6, 7, 1, 2, 4, 10}
(D) move (E1a) = E- clasure (& 1,2,4,5,6,7,103,a)
                = E- Mosure (3,8)
(1) move (E, b) = E- clasure ( & 1,2,4,5,6,7,103, b)
               2 E- Masure (5)
```

 $A = \{0, 1, 2, 4, 7\} \implies \text{starting state}$ $B = \{1, 2, 3, 4, 6, 7, 8\}$ $C = \{1, 2, 4, 5, 6, 7, 9\}$ $D = \{1, 2, 4, 5, 6, 7, 9\}$ $E = \{1, 2, 4, 5, 6, 7, 10\} \implies \text{accepting state}$

Transition diagram for DFA is:

		O .	
	state	a	Ь
\rightarrow	A	В	, C
	B	B	0
	C	B	
	D	В	E
	E	B	C

DFA =

