Problem 5.26. Define a *two-headed finite automaton* (2DFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2DFA is finite and is just large enough to contain the input plus two additional blank tape cells, one on the left-hand end and one on the right-hand end, that serve as delimiters. A 2DFA accepts its input by entering a special accept state. For example, a 2DFA can recognize the language $a^nb^nc^n \mid n \geq 0$.

Part a. Let $A_{2DFA} = \{\langle M, x \rangle \mid M \text{ is a 2DFA and } M \text{ accepts } x\}$. Show that A_{2DFA} is decidable.

Proof. First, we define a notation for representing different configurations of a 2DFA, and then we calculate the number of distinct configurations of a 2DFA for an input of length n.

For a state q and two strings u and v over the input alphabet Σ , we write $q \sqcup \circ u \bullet v \sqcup$ for the configuration where the current state is q, the current input is uv, the current first and second head locations are the first symbols of u and v respectively. For a 2DFA with q states, there are exactly $q(n+2)^2$ distinct configurations for an input of length n. Construct decider S for A_{2DFA} as follows.

S = "On input $\langle M, x \rangle$, where M is a 2DFA and x is a string:

- 1. Let n be the length of string x.
- 2. Simulate M on x for $q(n+2)^2$ steps or until it halts.
- 3. If M has halted, accept if it has accepted and reject if it has rejected. If it has not halted, reject."

Part a. Let $E_{2DFA} = \{ \langle M \rangle \mid M \text{ is a 2DFA and } L(M) = \emptyset \}$. Show that E_{2DFA} is not decidable.

Proof Idea. The proof is by reduction from A_{TM} . We show that if E_{2DFA} were decidable, A_{TM} would also be. For a **TM** M and an input w, we can determine whether M accepts w by constructing a certain 2DFA B, such that the language that B recognizes comprises all accepting computation histories for M on w.

We construct B to accept its input x if x is an accepting computation history C_1, C_2, \ldots, C_l for M on w. We assume that the accepting computation history is presented as a single string with the configurations separated from each other by the # symbol, such as $\#C_1\#C_2\#\ldots\#C_l\#$. Given and input x, B determines whether the C_i 's satisfy the three conditions of an accepting computation history.

- 1. C_1 is the start configuration for M on w.
- 2. Each C_{i+1} legally follows from C_i .

1

3. C_l is an accepting configuration for M.

The start configuration C_1 for M on w is the string $q_0w_1w_2...w_n$, where q_0 is the start state for M on w. B has this string directly built in, so it is able to check the first condition. An accepting configuration is one that contains the q_{accept} state, so B can check the third condition by scanning C_l for q_{accept} . To make sure that the second condition is satisfied, B checks on whether C_{i+1} legally follows from C_i . This step involves verifying that C_i and C_{i+1} are identical except for the positions under and adjacent to the head in C_i . These positions must be updated according to the transition function of M.

Proof. Assume that **TM** R decides E_{2DFA} . Construct **TM** S to decide A_{TM} as follows.

S = "On input $\langle M, w \rangle$, where M is a **TM** and w is a string:

- 1. Construct 2DFA B from M and w as described in the proof idea.
- 2. Run R on $\langle B \rangle$.
- 3. If R rejects, M accepts w, so accept. Otherwise, reject."

Thus, if **TM** R exists, we can decide A_{TM} , but we know that A_{TM} is undecidable¹. By virtue of this contradiction, we can conclude that R does not exist. Therefore, E_{2DFA} is undecidable.

¹Theorem 4.11 A_{TM} is undecidable.