Bayesian Optimisation for Likelihood Free Inference

Make model parameterisation go brrr

Jacob Cumming

University of Melbourne

April 2024

Notation

- Model is considered a (random) function $f(\theta)$ that maps θ (a vector of parameters) to a model output, that can be transformed into \mathbf{X} , that has the same shape as:
- ➤ X_{obs}, a vector of outputs given to us usually in the forms of summary statistics (incidence, prevalence, hospitalisations etc).

▶ An explicit form for the likelihood: $\mathcal{L}(\theta|\mathbf{X}_{obs}) := \Pr(\mathbf{X}_{obs}|\theta)$

- ▶ An explicit form for the likelihood: $\mathcal{L}(\theta|\mathbf{X}_{obs}) := \Pr(\mathbf{X}_{obs}|\theta)$
- ▶ Or even $\mathcal{L}(\theta|S(\mathbf{X}_{obs})) := \Pr(S(\mathbf{X}_{obs})|\theta)$, where $S(\mathbf{X}_{obs})$ is a (vector of) summary statistic(s)

- ▶ An explicit form for the likelihood: $\mathcal{L}(\theta|\mathbf{X}_{obs}) := \Pr(\mathbf{X}_{obs}|\theta)$
- ▶ Or even $\mathcal{L}(\theta|S(\mathbf{X}_{obs})) := \Pr(S(\mathbf{X}_{obs})|\theta)$, where $S(\mathbf{X}_{obs})$ is a (vector of) summary statistic(s)
- $oldsymbol{\hat{ heta}} = \mathsf{arg}\,\mathsf{max}_{oldsymbol{ heta}}\,\mathcal{L}(oldsymbol{ heta}|\mathcal{S}(\mathbf{X}_\mathsf{obs}))$

- ▶ An explicit form for the likelihood: $\mathcal{L}(\theta|\mathbf{X}_{obs}) := \Pr(\mathbf{X}_{obs}|\theta)$
- ▶ Or even $\mathcal{L}(\theta|S(\mathbf{X}_{obs})) := \Pr(S(\mathbf{X}_{obs})|\theta)$, where $S(\mathbf{X}_{obs})$ is a (vector of) summary statistic(s)
- $m{\hat{ heta}} = \mathsf{arg}\,\mathsf{max}_{m{ heta}}\,\mathcal{L}(m{ heta}|S(\mathbf{X}_\mathsf{obs}))$
- $\blacktriangleright \ \mathsf{Pr}(\theta|S(\mathbf{X}_{\mathsf{obs}})) \propto \mathsf{Pr}(S(\mathbf{X}_{\mathsf{obs}})|\theta) \, \mathsf{Pr}(\theta)$

The Sad Truth

As models become more complicated, explicit likelihoods don't exist (think agent based models).

A Standard Bayesian Solution

- Approximate Bayesian Computation (ABC)
 - 1. Sample from prior
 - 2. Run model
 - Accept or reject parameters run based on how well X 'matches' X_{obs}.

What is 'matches'

- ▶ Discrepency function $D: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 - Can be a norm such as $||S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})||_p := (\sum_{i=1}^d |S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})|^p)^{1/p}$

What is 'matches'

- ▶ Discrepency function $D: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 - Can be a norm such as $||S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})||_p := (\sum_{i=1}^d |S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})|^p)^{1/p}$
 - Care should be taken to rescale $S(\mathbf{X}_{obs})$ and $S(\mathbf{X})$ appropriately (ie via a covariance matrix).

What is 'matches'

- ▶ Discrepency function $D: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 - Can be a norm such as $||S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})||_p := (\sum_{i=1}^d |S(\mathbf{X}) S(\mathbf{X}_{\text{obs}})|^p)^{1/p}$
 - Care should be taken to rescale $S(\mathbf{X}_{obs})$ and $S(\mathbf{X})$ appropriately (ie via a covariance matrix).
- ▶ $D(S(\mathbf{X}), S(\mathbf{X}_{obs}))$, gives acceptance probability of θ .

Acceptance Probability

Attempt 2

Overall Idea of my Research

► What if we could 'predict' discrepency values we hadn't seen before?

Overall Idea of my Research

- ► What if we could 'predict' discrepency values we hadn't seen before?
- ► For parameters 'close' to parameters we've already tried it should be easy.

Gaussian Processes

- A class of random functions
- Common examples Brownian motion, Ornstein Uhlenbeck process
- ► Model the mean discrepency using one of these (kriging)

Sample frame title

