ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE ODSEK ZA SIGNALE I SISTEME

1. [10] U kolu sa slike 1 dioda je idealna sa $V_D = 0.6$ V, a poznato je i $\beta_F = 100$, $V_{EB} = V_{\gamma} = V_{EBS} = 0.7$ V, $V_{ECS} = 0.2$ V, $V_A = 12$ V, $R_1 = 2$ k Ω , $R_2 = 500$ Ω i $R_3 = 10$ Ω . Ako se ulazni napon menja u granicama 0 V $\leq v_X \leq 20$ V, odrediti i nacrtati karakteristike $i(v_X)$ i $i_B(v_X)$.

- 2. a) [4] Nacrtati jedinstven strujni izvor sa bipolarnim tranzistorima i dve ulazne struje $(I_1 \text{ i } I_2)$, pri čemu je $I_1 = 2 \cdot I_2$.
 - b) [3] Izračunati odnose obe ulazne struje strujnog izvora i referentne struje (I_1/I_R i I_2/I_R).
 - c) [3] Izračunati odnos izlaznih otpornosti prvog i drugog strujnog ulaza strujnog izvora (R_{i1}/R_{i2}).
- **3.** a) [4] Nacrtati simetrični pojačavač u klasi B (sa dva tranzistora) i transformatorskom spregom na ulazu i izlazu.
 - b) [4] Nacrtati vremenske dijagrame napona na krajevima oba tranzistora, kolektorskih struja oba tranzistora i napona na potrošaču za kolo iz tačke a).
 - c) [2] Nacrtati radnu pravu jednog tranzistora u kolu iz tačke a) i naznačiti mirnu radnu tačku tranzistora.

4. U pojačavaču sa slike 4 parametri tranzistora su: $B = 1 \text{ mA/V}^2$, $V_T = 1 \text{ V}$ i $\lambda = 0.01 V^{-1}$, dok je: $V_{DD} = 12 \text{ V}$, $R_1 = 1 \text{ M}\Omega$, $R_D = 10 \text{ k}\Omega$ i $R_P = 30 \text{ k}\Omega$.

- a) [2] Odrediti otpornosti R_2 i R_S tako da u mirnoj radnoj tački bude $V_{DS} = 4$ V i $I_D = 0,5$ mA. Zanemariti uticaj Early-jevog efekta.
- b) [2] Odrediti naponsko pojačanje pojačavača $a = v_p / v_g$.
- c) [3] Odrediti ulaznu otpornost R_u i otpornost R_i koju vidi potrošač R_P .
- d) [3] Odrediti maksimalnu amplitudu simetričnog neizobličenog napona na potrošaču $V_{pm\, \rm max}$. Zanemariti uticaj Early-jevog efekta.

Slika 1 Slika 4