Алгоритмы на графах

Поиск по графу

Задан граф $G = (V, E), \ A(v), v \in V$ — списки смежности

Найти компоненты связности.

Алгоритм ПОИСК(v)

- 1. $Q := \{v\}$, пометить v.
- 2. До тех пор пока $Q \neq \emptyset$ выполнять
 - 2.1. Пусть $x \in Q$; удалить x из Q;
 - 2.2. Для всех $y \in A(x)$: если у не помечена, то добавить y в Q и пометить y

Утверждение. Алгоритм ПОИСК помечает все вершины графа, достижимые из v, за время O(|E|).

Доказательство. Пусть V_1 — множество вершин, достижимых из v

- 1. Для записи v требуется время O(1).
- 2. Работа с множеством Q. Добавление и удаление элементов производится $2|V_1|$ раз. Если Q очередь или стек, то каждое включение или исключение требует O(1) времени.
- 3. Поиск по спискам смежности. Каждый элемент в списке просматривается не более одного раза. Всего 2|E| элементов.

Суммарная оценка — O(|E|).

Задача о кратчайшем пути

Задан ориентированный граф $G=(V,E), w_e \ge 0, e \in E$ — вес дуги.

Найти кратчайшие расстояния от заданной вершины υ до остальных вершин.

Алгоритм Дейкстры

- 1. Положить $W=\{v\};\; \rho\left(x\right)=\mathrm{o};\; p(v)=\varnothing.$
- 2. Для всех $y \in V \setminus \{v\}$:
 - 2.1 $\rho(y) := w_{vy}$;
 - 2.2 p(y) := v;
- 3. До тех пор пока $W \neq V$ выполнять
 - 3.1 Найти такую вершину $x \in V \setminus W$, что $\rho(x) = \min \{ \rho(y) \mid y \in V \setminus W \}$;
 - 3.2 Положить $W := W \cup \{x\};$
 - 3.3 Для всех $y \in V \setminus W$

$$\{ \ z :=
ho (y);$$
 $ho (y) := \min \{
ho (y),
ho (x) + w_{xy} \};$ если $ho (y) < z$, то $p(y) := x \}.$

Утверждение. Алгоритм Дейкстры находит кратчайшие пути из вершины v до каждой из остальных вершин за время $O(|V|^2)$.

Доказательство. Покажем, что на каждой итерации:

- а) $\forall x \in V$ величина $\rho(x)$ равна длине кратчайшего из путей от v до x, все промежуточные вершины которых принадлежат W.
- б) $\forall y \in W$ величина $\rho(y)$ равна длине кратчайшего из путей от v до y.

Так как в конце работы алгоритма W = V, то из б) следует, что $\rho(x)$ — вектор кратчайших расстояний.

Проводим индукцию по числу шагов алгоритма

- 1. При $W = \{v\}$ утверждения а), б) верны.
- 2. Пусть а), б) верно для некоторого шага.

На шаге 3.1. мы выбираем $x \in V \setminus W$ такую, что $\rho(x) = \min \{ \rho(y) | y \in V \setminus W \}$. Предположим, что \exists путь $(v, v_1, ..., v_t, x)$, длина которого меньше $\rho(x)$. Тогда из а) следует, что в этом пути есть вершина $v_i \notin W$. Если таких несколько, выберем вершину с наименьшим номером. Тогда $\rho(v_i) \leq$ длина $(v, v_1, ..., v_i) \leq$ длина $(v, v_1, ..., v_t) \leq \rho(x)$, что противоречит выбору x. Значит $\rho(x)$ — длина кратчайшего пути от v до x и б) будет выполняться после добавления x к W.

На шаге 3.3 после пересчета $\rho(y) = \min \{ \rho(y), \rho(x) + w_{xy} \}$ получим а), так как любой путь в y идет либо через x, либо мимо x.

Итак а), б) верно. Оценим трудоемкость. Цикл 3 требует O(|V|) итераций. На каждой итерации 3.1 — O(|V|); 3.2 — O(1); 3.3 — O(|V|).

Алгоритм Флойда – Уоршелла

Задан ориентированный граф $G=(V,E), w_e \ge o, e \in E$.

Найти кратчайшее расстояние для каждой пары вершин.

Определение. Для квадратной матрицы (d_{ij}) операцией треугольника относительно j называется пересчет $d_{ik} = \min \{d_{ik}, d_{ij} + d_{jk}\}$ по всем $i,k \neq j$.

Утверждение. Пусть c_{ij} — длина дуг орграфа G=(V,E) и

$$d_{ij} = egin{cases} c_{ij}, & ext{если} & i
etilon j \ 0, & ext{если} & i = j \end{cases}$$
 .

Если выполнить над матрицей (d_{ij}) операцию треугольника последовательно для $j=1,\ 2,...,|V|$, то в полученной матрице каждый элемент d_{ik} равен длине кратчайшего пути из i в k.

Доказательство. Покажем, что для каждого j после выполнения операций треугольника t=1,2,...,j элемент d_{ik} $\forall i,k$ равен длине кратчайшего пути из i в k среди всех путей, промежуточные вершины которых имеют номера не больше j.

Для j = 1 утверждение очевидно.

Пусть оно верно для j=t-1, и проводится операция для t: $d_{ik}=\min \{d_{ik}, d_{it}+d_{tk}\}$. Рассмотрим подграф G' орграфа G на вершинах $\{1, 2, ..., t, i, k\}$. Если кратчайший путь из i в k в G' не проходит через t, то минимум достигается на первом аргументе и утверждение верно. Если же он проходит через t, то $d_{it}+d_{tk}\leq d_{ik}$, а по предыдущему предположению d_{it} и d_{tk} — длины кратчайших путей из i в t и из t в k по вершинам c номерами не более t.

Алгоритм

- 1. Для всех $ij: d_{ij} := c_{ij};$
- 2. Для всех $i: d_{ii} := o;$
- 3. Для всех $ij: e_{ij} := o;$
- 4. Для всех j:

для всех $i\neq j$ и для всех $k\neq i,\ k\neq j$:

- 4.1. $z := d_{ik}$
- 4.2. $d_{ik} := \min \{ d_{ik}; d_{ij} + d_{jk} \}$
- 4.3. если $d_{ik} < z$, то $e_{ik} := j$.

Время $O(|V|^3)$.

Алгоритм работает корректно, даже если есть дуги отрицательной длины, но нет контуров отрицательной длины.

Распределительная задача

Задано:

n — число предприятий;

Y — количество единиц некоторого ресурса;

 $f_k(x)$ — количество продукции, которое будет произведено на k-м предприятии, если в него будет вложено x единиц ресурса (монотонно неубывающая функция).

Требуется: максимизировать объем продукции

$$f_1(x_1) + ... + f_n(x_n) \to \max$$
 (1)

$$x_1 + \ldots + x_n \le Y \tag{2}$$

$$x_i \ge 0$$
, целые, $i = 1,...n$. (3)

Идея динамического программирования (ДП)

Метод ДП (Р. Беллман, В.С. Михалевич, Н.З. Шор) можно трактовать как алгоритмическую версию рассуждений по индукции.

Пусть $s_k(y)$, $1 \le k \le n$, $o \le y \le Y$, — оптимальное значение целевой функции задачи (1) – (3), где n заменено на k, Y заменено на y.

Требуется найти $s_n(Y)$ и набор переменных, на котором достигается это значение.

Теорема 1. Пусть f_1, \dots, f_n — монотонно неубывающие функции.

Тогда справедливы следующие рекуррентные соотношения:

$$s_1(y) = f_1(y), \ 0 \le y \le Y;$$
 (4)

$$s_k(y) = \max \{ s_{k-1}(y-x) + f_k(x) \mid 0 \le x \le y \}, \ 2 \le k \le n, \ 0 \le y \le Y,$$
 (5)

Доказательство: Соотношение (4) очевидно. По определению

$$s_k(y) \ge \max \{s_{k-1}(y-x) + f_k(x) \mid 0 \le x \le y\}.$$

Пусть теперь $(x_1^*,...,x_k^*)$ — такой вектор, что $x_1^*+...+x_k^* \leq y$ и

$$s_k(y) = f_1(x_1^*) + \dots + f_k(x_k^*).$$

Поскольку $s_{k-1}(y-x_k^*) \ge f_1(x_1^*) + ... + f_{k-1}(x_{k-1}^*)$, имеем

$$s_k(y) = f_1(x_1^*) + ... + f_k(x_k^*) \le s_{k-1}(y - x_k^*) + f_k(x_k^*).$$

Алгоритм ДП вычисляет множество $S_k = \{s_k(y) \mid 0 \le y \le Y\}, k = 1,..., n,$ с помощью соотношений (4) и (5), где на каждом шаге оптимизируется ровно одна переменная.

Процесс вычисления $S_1, ..., S_n$ называется *прямым ходом* алгоритма.

Число операций $\approx Y^2 n$ Память $\approx Y n$.

y	$S_1(y)$	$S_2(y)$	•••	$S_n(y)$
0				
1				
2				
•				
Y				$S_n(Y)$

При *обратном ходе* алгоритма вычисляются значения $(x_n^*,...,x_1^*)$, с учетом того, что уже известны $S_k(y)$. Например, x_n^* определяется из уравнения $s_n(Y) = f_n(x_n^*) + s_{n-1}(Y - x_n^*)$ и так далее.

Число операций $\approx Yn$. Память $\approx Yn$.

Характеристики алгоритмов

Для оценки качества алгоритмов будем использовать два параметра:

 $T_A - \tau p y д o e m k o c t b$ (число элементарных операций алгоритма A);

 Π_A — требуемый *объем памяти*.

Элементарная операция — одна из арифметических операций: сложение, вычитание, умножение, деление или логическая операция сравнение двух чисел.

Нас будет интересовать зависимость параметров алгоритма от длины записи исходных данных задачи с точностью до порядка величин.

Пример: При $T = 3/2 \, n^2$, будем писать $T = O(n^2)$ или $T \approx n^2$.

Полиномиальные алгоритмы

Определение. Алгоритм A называют *полиномиальным*, если его трудоемкость T_A ограничена полиномом от длины записи исходных данных, то есть существует константа c > 0 и натуральное число k такие, что $T_A \le c L^k$, где L — длина записи исходных данных.

Пример: Пусть
$$f_i(x_i) = a_i \, x_i$$
, тогда $L = \sum_{i=1}^n \log a_i + \log Y$,

но $T_{\Pi\Pi} = O(Y^2n)$, то есть алгоритм ДП не является полиномиальным.

Обобщим задачу (1)-(3):

$$f_1(x_1) + ... + f_n(x_n) \to \max$$
 (1')

$$h_1(x_1) + ... + h_n(x_n) \le Y$$
 (2')

$$a_i \ge x_i \ge 0$$
, целые, $i = 1,...n$. (3')

Если $h_i(x)$ — целочисленные монотонно неубывающие функции, то вместо (4)–(5) можно использовать следующие рекуррентные соотношения:

$$s_1(y) = f_1(x^*)$$
, где $x^* = \max\{x \le a_1 \mid h_1(x) \le y\}$, $o \le y \le Y$; (4')

$$s(y) = \max_{\{x \le a_k | h_k(x) \le y\}} \{f_k(x) + s_{k-1}(y - h_k(x))\}, \ 2 \le k \le n, \ 0 \le y \le Y.$$
 (5')

Упражнение 1. Доказать справедливость соотношений (4')–(5').

Обратная задача — поиск наименьших затрат на получение заданного количества продукции:

$$h_1(x_1) + ... + h_n(x_n) \to \min$$
 (6)

$$f_1(x_1) + ... + f_n(x_n) \ge D$$
 (7)

$$a_i \ge x_i \ge 0$$
, целые, $i = 1,...n$. (8)

Если $f_k(x)$ — целочисленные монотонно неубывающие функции, то для решения задачи (6)–(8) можно использовать идеи динамического программирования.

Пусть $f_i^{-1}(d) = \min\{o \le x \le a_i \mid f_i(x) \ge d\}.$

Для $1 \le k \le n$, $0 \le d \le D$ обозначим через $t_k(d)$ — оптимальное решение задачи (6)-(8), в которой n заменено на k, а D заменено на d. Требуется найти $t_n(D)$.

Рекуррентные соотношения

$$t_1(d) = \begin{cases} \infty, & \text{если } f_1(a_1) < d, \\ h_1(f_1^{-1}(d)), & \text{если } f_1(a_1) \ge d, \end{cases} \quad 0 \le d \le D, \tag{9}$$

$$t_k(d) = \min\{t_{k-1}(d - f_k(x)) + h_k(x) | 0 \le x \le a_k, x \le f_k^{-1}(d)\},$$

$$k \ge 2, \ 0 \le d \le D.$$
(10)

Упражнение 2. Доказать справедливость соотношений (9)-(10).

Теорема 2: Предположим, что D — наибольшее число, для которого оптимальное значение целевой функции задачи (6)–(8) не превосходит Y. Тогда оптимальное значение целевой функции задачи (1')–(3') равно D.

Доказательство: Пусть D удовлетворяет условию теоремы и $(x_1^*,...,x_n^*)$ — соответствующее решение задачи (6)–(8). Значит

$$f_1(x_1^*) + ... + f_n(x_n^*) \ge D$$
 u $h_1(x_1^*) + ... + h_n(x_n^*) \le Y$.

Следовательно, D не превосходит оптимального решения D_1 задачи (1')–(3'). Если бы D_1 было больше D, то решение задачи (6)–(8), в которой D заменено на D_1 , тоже не превышало бы Y, что противоречит максимальности D.