Shifting the chemical potential to $\mu = \frac{1}{2}J_c$ is equivalent to replacing $\epsilon_q \to \epsilon_q - \frac{1}{2}J_c$.

$$\begin{split} \Delta \epsilon_d &= \sum_q \left[\frac{|V_q^0|^2}{\omega^+ - \epsilon_q + \frac{1}{2}J_c + \epsilon_d} + \frac{|V_q^1|^2}{\omega^- - \epsilon_q + \epsilon_d + U - \frac{1}{2}J_c} - \frac{2|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \right. \\ &\quad + \sum_k \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega^- - \epsilon_q - \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega^- - \epsilon_q + \frac{1}{2}J_z} \right) \right] \\ \Delta U &= \sum_q 2 \left[\frac{|V_q^1|^2}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} - \frac{|V_q^0|^2}{\omega^+ - \epsilon_q + \frac{1}{2}J_c + \epsilon_d} + \frac{|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \right. \\ &\quad - \frac{|V_q^1|^2}{\omega^- - \epsilon_q + \epsilon_d + U - \frac{1}{2}J_c} - \sum_k \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega^- - \epsilon_q - \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega^- - \epsilon_q + \frac{1}{2}J_z} \right) \right] \\ \Delta V_1 &= - \sum_q V_1(q) \left(\frac{\frac{1}{2}J_z + J_t}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} \right) \\ \Delta V_1^* &= - \sum_q V_1^*(q) \left(\frac{\frac{1}{2}J_z + J_t}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} \right) \\ \Delta V_0 &= - \sum_q V_0(q) \frac{\frac{1}{2}J_z + J_t}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \\ \Delta V_0^* &= - \sum_q V_0(q)^* \frac{\frac{1}{2}J_z + J_t}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2}J_z} \\ \Delta J_c &= - J_t^2 \sum_q \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} - \frac{1}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \right) \\ \Delta J_z &= - J_t^2 \sum_q \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \right) \\ \Delta J_t &= - J_z J_t \sum_q \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2}J_z} + \frac{1}{\omega^- - \epsilon_q - \frac{1}{2}J_z} \right) \end{split}$$

1.4 Marginality of J_c

The second fraction in ΔJ_c is in the hole sector, so we need to change $J_z \to -J_z$:

$$\Delta J_c = -J_t^2 \sum_{q} \left(\frac{1}{\omega^+ - \epsilon_q + \frac{1}{2} J_z} - \frac{1}{\omega^- - \epsilon_q + \frac{1}{2} J_z} \right) = 0$$
 (0.102)

This ensures that if there is no off-diagonal term of the form $\hat{n}_d \sum_{kk'\sigma} c_{k\sigma}^{\dagger} c_{k'\sigma}$ in the bare Hamiltonian, it will not be generated along the flow.

1.5 Particle-hole symmetry

The particle-hole asymmetry parameter RG equation is

$$\Delta \left(\epsilon_d + \frac{1}{2} U \right) = \sum_{q} \left[\frac{|V_q^1|^2}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z} - \frac{|V_q^0|^2}{\omega^- - \epsilon_q + \epsilon_d - \frac{1}{2} J_z} \right]$$
(0.103)

Again making the change ϵ_d , $J_z \to -\epsilon_d$, $-J_z$ for the hole term and setting $|V^1|^2 = |V^0|^2$ for a particle-hole symmetric Hamiltonian, we get

$$\Delta\left(\epsilon_d + \frac{1}{2}U\right) = \sum_{q} |V_q|^2 \left[\frac{1}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2}J_z} - \frac{1}{\omega^- - \epsilon_q - \epsilon_d + \frac{1}{2}J_z} \right]$$
(0.104)

This becomes zero when $\epsilon_d = -\epsilon_d - U$.

1.6 Hermiticity

The equations in consideration are those of ΔV_1 and ΔV_1^* . The superscript 1 signifies that $d\overline{\beta}$ is filled. For the moment, we label the ω^+ in ΔV_1^* as ω^{+*} - the quantum fluctuation energy for the process $\hat{n}_{d\overline{\beta}}c_{d\beta}^{\dagger}c_k$ - to distinguish it from the ω^+ that characterizes the process $\hat{n}_{d\overline{\beta}}c_k^{\dagger}c_{d\beta}$. In other words, ω^+ is the fluctuation energy scale for the singly-occupied state, while ω^{+*} is the fluctuation energy scale for the doubly-occupied state. The difference between the two scales is $\epsilon_d + U$, so we can write $\omega^{+*} = \omega^+ + \epsilon_d + U$. Assuming $V_1 = V_1^*$ in the bare model, the two RG equations now becomes

$$\Delta V_1 = -\sum_{q} V_1(q) \left(\frac{\frac{1}{2} J_z + J_t}{\omega^+ - \epsilon_q + \epsilon_d + U + \frac{1}{2} J_z} \right) = \Delta V_1^*$$
 (0.105)

Similarly, if we take the RG equations for ΔV_0 and ΔV_0^* , the two quantum fluctuation scales ω^- and ω^{-*} correspond to those of the singly-occupied and empty states respectively. Since the difference between these states is ϵ_d , we can write $\omega^- - \omega^{-*} = \epsilon_d$.

$$\Delta V_0 = -\sum_q V_0(q) \frac{\frac{1}{2}J_z + J_t}{\omega^- * -\epsilon_q + \epsilon_d - \frac{1}{2}J_z} = \Delta V_0^*$$
 (0.106)

1.7 Scaling equations that satisfy all checks (with appropriate shifts and sign changes)

$$\Delta \epsilon_d = \sum_{q} \left[\frac{|V_q^0|^2}{\omega - \epsilon_q + \frac{1}{2}J_c + \epsilon_d} + \frac{|V_q^1|^2}{\omega - \epsilon_q - \epsilon_d - U + \frac{1}{2}J_c} - \frac{2|V_q^0|^2}{\omega - \epsilon_q - \epsilon_d + \frac{1}{2}J_z} + \sum_{k} \left(\frac{J_t^2 + \frac{1}{4}J_z^2}{\omega - \epsilon_q + \frac{1}{2}J_z} + \frac{\frac{1}{4}J_z^2}{\omega - \epsilon_q - \frac{1}{2}J_z} \right) \right]$$

$$\begin{split} \Delta U &= \sum_{q} 2 \left[\frac{|V_{q}^{1}|^{2}}{\omega - \epsilon_{q} + \epsilon_{d} + U + \frac{1}{2}J_{z}} - \frac{|V_{q}^{0}|^{2}}{\omega - \epsilon_{q} + \frac{1}{2}J_{c} + \epsilon_{d}} + \frac{|V_{q}^{0}|^{2}}{\omega - \epsilon_{q} - \epsilon_{d} + \frac{1}{2}J_{z}} \right. \\ &- \frac{|V_{q}^{1}|^{2}}{\omega - \epsilon_{q} - \epsilon_{d} - U + \frac{1}{2}J_{c}} - \sum_{k} \left(\frac{J_{t}^{2} + \frac{1}{4}J_{z}^{2}}{\omega - \epsilon_{q} + \frac{1}{2}J_{z}} + \frac{\frac{1}{4}J_{z}^{2}}{\omega - \epsilon_{q} - \frac{1}{2}J_{z}} \right) \right] \\ \Delta V_{1} &= - \sum_{q} V_{1}(q) \left(\frac{\frac{1}{2}J_{z} + J_{t}}{\omega - \epsilon_{q} + \epsilon_{d} + U + \frac{1}{2}J_{z}} \right) \\ \Delta V_{0} &= - \sum_{q} V_{0}(q) \frac{\frac{1}{2}J_{z} + J_{t}}{\omega - \epsilon_{q} + \epsilon_{d} - \frac{1}{2}J_{z}} \\ \Delta J_{z} &= -J_{t}^{2} \sum_{q} \left(\frac{1}{\omega - \epsilon_{q} + \frac{1}{2}J_{z}} + \frac{1}{\omega - \epsilon_{q} - \frac{1}{2}J_{z}} \right) \\ \Delta J_{t} &= -J_{z}J_{t} \sum_{q} \left(\frac{1}{\omega - \epsilon_{q} + \frac{1}{2}J_{z}} + \frac{1}{\omega - \epsilon_{q} - \frac{1}{2}J_{z}} \right) \end{split}$$