Отчёт по лабораторной работе №1

Дисциплина: Основы информационной безопасности

Верниковская Екатерина Андреевна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы 2.1 Создание виртуальной машины	6 8 14 16
3	Домашнее задание	17
4	Контрольные вопросы + ответы	20
5	Выводы	22
6	Список литературы	23

Список иллюстраций

2.1	Установка Коску Linux с саита					6
2.2	Создание виртуалтной машины (1)					6
2.3	Создание виртуалтной машины (2)					7
2.4	Создание виртуалтной машины (3)					7
2.5	Запуск виртуальной машины					8
2.6	Язык интерфейса - английский					8
2.7	Настройка раскладки клавиатуры					9
2.8	Настройка часового пояса					10
2.9	Раздел выбора программ					10
2.10	Место установки ОС					11
2.11	Отключение KDUMP					11
2.12	Сетевое соединение					12
	Пароль для root					12
2.14	Создание пользователя					13
2.15	Выставленные настройки					13
	Установка ОС					14
	Вход в учётную запись					15
2.18	Подключение образ диска дополнений гостевой ОС .					16
2.19	Имя хоста		•			16
3.1	Команда dmesg					17
3.2	Команда dmesg less (1)					17
3.3	Команда dmesg less (2)					18
3.4	Версия ядра Linux					18
3.5	Частота процессора					18
3.6	Модель процессора					18
3.7	Объем доступной оперативной памяти					19
3.8	Тип обнаруженного гипервизора					19
3.9	Тип файловой системы корневого раздела					19
3.10	Последовательность монтирования файловых систем					19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

2.1 Создание виртуальной машины

Скачиваем Rocky Linux (рис. 2.1)

Рис. 2.1: Установка Rocky Linux с сайта

Открываем VirtualBox и создаём новую виртуальную машину

Указываем имя виртуальной машины, определяем тип операционной системы и указываем путь к iso-образу (рис. 2.2)

Рис. 2.2: Создание виртуалтной машины (1)

Далее указываем размер оперативной памяти виртуальной машины - 4096 МБ и число процессоров - 2 (рис. 2.3)

Рис. 2.3: Создание виртуалтной машины (2)

Задаём размер виртуального жёсткого диска - 40 ГБ (рис. 2.4)

Рис. 2.4: Создание виртуалтной машины (3)

Далее запускаем виртуальную машину (рис. 2.5)

Рис. 2.5: Запуск виртуальной машины

2.2 Установка операционной системы

После запуска устанавливаем английский язык интерфейса (рис. 2.6)

Рис. 2.6: Язык интерфейса - английский

Добавляем русскую раскладку клавиатуры (рис. 2.7)

Рис. 2.7: Настройка раскладки клавиатуры

Скорректируем часовой пояс (рис. 2.8)

Рис. 2.8: Настройка часового пояса

В разделе выбора программ указываем в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools (рис. 2.9)

Рис. 2.9: Раздел выбора программ

Далее отключаем KDUMP, а место установки ОС оставляем без изменения (рис. 2.10), (рис. 2.11)

Рис. 2.10: Место установки ОС

Рис. 2.11: Отключение КDUMP

Включаем сетевое соединение и в качестве имени узла указываем user.localdomain, где вместо user имя нашего пользователя в соответствии с соглашением об именовании (рис. 2.12)

Рис. 2.12: Сетевое соединение

Устанавливаем пароль для root, разрешение на ввод пароля для root при использовании SSH (рис. 2.13)

Рис. 2.13: Пароль для root

Затем задаём локального пользователя с правами администратора и пароль для него (рис. 2.14)

Рис. 2.14: Создание пользователя

Начинаем установку операционной системы (рис. 2.15), (рис. 2.16)

Рис. 2.15: Выставленные настройки

Рис. 2.16: Установка ОС

2.3 После установки

После установки ОС и перезапуска ВМ входим в ОС под заданной нами при установке учётной записью (рис. 2.17)

Рис. 2.17: Вход в учётную запись

Далее через терминал подключаем образ диска дополнений гостевой ОС: (рис. 2.18)

- заходим в пользователя root, с помощью sudo-i
- переходим в каталог /run/media/имя_пользователя/VBox_GAs_версия/
- запускаем VBoxLinuxAdditions.run

```
ⅎ
         root@eavernikovskaya:/run/media/eavernikovskaya/VBox_GAs...
                                                                                      Q ≡
bash: sud: command not found...
 [eavernikovskaya@eavernikovskaya ~]$ sudo -i
 [sudo] password for eavernikovskaya:
Sorry, try again.
[sudo] password for eavernikovskaya:
 [root@eavernikovskaya ~]# cd /run/media/eavernikovskaya/VBox_GAs_7.1.6/
[root@eavernikovskaya VBox_GAs_7.1.6]# ./VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.1.6 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.1.6 of VirtualBox Guest Additions...
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
                                      /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions:
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
5.14.0-503.14.1.el9_5.x86_64.
File context for /opt/VBoxGuestAdditions-7.1.6/other/mount.vboxsf already define
d, modifying instead
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 2.18: Подключение образ диска дополнений гостевой ОС

2.4 Установка имени пользователя и названия хоста

При установке виртуальной машины мы задали имя пользователя и имя хоста, удовлетворяющее соглашению об именовании. Поэтому нам не надо ничего исправлять. Я просто посмотрю им хоста с помощью *hostnamectl* (рис. 2.19)

```
[eavernikovskaya@eavernikovskaya ~]$ hostnamectl
Static hostname: eavernikovskaya.localdomain
Icon name: computer-vm
Chassis: vm | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 015 | 0
```

Рис. 2.19: Имя хоста

3 Домашнее задание

В окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg (рис. 3.1)

Рис. 3.1: Команда dmesg

Далее посмотрим вывод этой команды с помошью $dmesg \mid less$ (рис. 3.2), (рис. 3.3)

```
[root@eavernikovskaya VBox_GAs_7.1.6]# dmesg | less
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.2: Команда dmesg | less (1)

Рис. 3.3: Команда dmesg | less (2)

Далее получаем следующую информацию:

- 1. Версия ядра Linux (Linux version) (рис. 3.4)
- 2. Частота процессора (Detected Mhz processor) (рис. 3.5)
- 3. Модель процессора (CPU0) (рис. 3.6)
- 4. Объем доступной оперативной памяти (Memory available) (рис. 3.7)
- 5. Тип обнаруженного гипервизора (Hypervisor detected) (рис. 3.8)
- 6. Тип файловой системы корневого раздела (рис. 3.9)
- 7. Последовательность монтирования файловых систем (рис. 3.10)

```
[root@eavernikovskaya VBox_GAs_7.1.6]# dmesg | grep -i "Linux version"
[ 0.000000] Linux version 5.14.0-503.14.1.el9_5.x86_64 (mockbuild@iadl-prod-build@01.bld.equ.rockylinux.org)
(gcc (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2), GNU ld version 2.35.2-54.el9) #1 SMP PREEMPT_DYNAMIC Fri Nov 15 1
2.04:32 UTC 2024
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.4: Версия ядра Linux

```
[root@eavernikovskaya VBox_GAs_7.1.6]# dmesg | grep -i "Mhz"
[    0.000014] tsc: Detected 1696.810 MHz processor
[    3.527078] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:04:79:90
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.5: Частота процессора

```
[root@eavernikovskaya VBox_GAs_7.1.6]# dmesg | grep -i "CPU0"
[ 0.243101] smpboot: CPU0: AMD Ryzen 7 PRO 4750U with Radeon Graphics (family: 0x17, model: 0x60, stepping: 0
xl)
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.6: Модель процессора

```
[root@eavernikovskaya VBox_GAs_7.1.6]# free -m
total used free shared buff/cache available
Mem: 3914 1339 1095 22 1737 2575
Swap: 4043 0 4043
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.7: Объем доступной оперативной памяти

```
[root@eavernikovskaya VBox_GAs_7.1.6]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[root@eavernikovskaya VBox_GAs_7.1.6]#
```

Рис. 3.8: Тип обнаруженного гипервизора

```
[root@eavernikovskaya VBox_GAs_7.1.6] # dmesg | grep -i "filesystem"
[ 5.306521] XFS (dm-0): Mounting V5 Filesystem 7e838fcb-5353-4aa7-83a9-a0feb1037185
[ 8.955125] XFS (sda1): Mounting V5 Filesystem 0a3a9ec4-6a94-4dba-9095-f0f606a698a3
[root@eavernikovskaya VBox_GAs_7.1.6] #
```

Рис. 3.9: Тип файловой системы корневого раздела

```
[root@eavernikovskaya ~]# dmesg | grep -i "mount"
[ 0 .124901] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 0 .124901] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[ 4 .859089] XFS (dm-0): Mounting V5 Filesystem 7e838fcb-5353-4aa7-83a9-a0feb1037185
[ 6 .593242] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 6 .610808] systemd[1]: Mounting Huge Pages File System...
[ 6 .625073] systemd[1]: Mounting POSIX Message Queue File System...
[ 6 .62205] systemd[1]: Mounting Kernel Debug File System...
[ 6 .6708306] systemd[1]: Starting Remount Root and Kernel File Systems...
[ 8 .8084374] XFS (sdal): Mounting V5 Filesystem 0a3a9ec4-6a94-4dba-9995-f0f606a698a3
[root@eavernikovskaya ~]#
```

Рис. 3.10: Последовательность монтирования файловых систем

4 Контрольные вопросы + ответы

1. Какую информацию содержит учётная запись пользователя?

Учётная запись, как правило, содержит сведения, необходимые для опознания пользователя при подключении к системе, сведения для авторизации и учёта. Это идентификатор пользователя (login) и его пароль.

- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде используют help
- для перемещения по файловой системе используют са
- для просмотра содержимого каталога используют *ls*
- для определения объёма каталога используют du
- для создания/удаления каталогов используют mkdir/rmdir, а для файлов touch/rm
- для задания определённых прав на файл/каталог используют chmod
- для просмотра истории команд используют history
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (англ. file system) — порядок, определяющий способ организации, хранения и именования данных во внешней памяти, и обеспечивающий пользователю удобный интерфейс при работе с такими данными. Простыми словами файловая система - это система хранения файлов и организации каталогов. От файловой системы зависит, как файлы будут кодироваться, храниться на диске и читаться компьютером.

Примеры:

- FAT (англ. File Allocation Table «таблица размещения файлов») классическая архитектура файловой системы, которая из-за своей простоты всё ещё широко применяется для флеш-накопителей. Используется в дискетах, картах памяти и некоторых других носителях информации. Ранее находила применение и на жёстких дисках.
- NTFS (англ. new technology file system «файловая система новой технологии») стандартная файловая система для семейства операционных систем Windows NT фирмы Microsoft.
- Ext4 (англ. fourth extended file system, ext4fs) журналируемая файловая система, используемая преимущественно в операционных системах с ядром Linux, созданная на базе ext3 в 2006 году.
- 4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Следует ввести команду df.

5. Как удалить зависший процесс?

Чтобы удалить зависшй процесс, надо сначала узнать его PID с помощью команды ps. А после этого ввести kill . И всё готово!

5 Выводы

В ходе выполнения лабораторной работы мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

6 Список литературы

- 1. Лаборатораня работа №1 [Электронный ресурс] URL: https://esystem.rudn.ru/pluginfile.php, lab_virtualbox.pdf
- 2. VirtualBox [Электронный pecypc] URL: https://www.virtualbox.org/wiki/Linux_Downloads
- 3. Rocky Linux [Электронный ресурс] URL: https://rockylinux.org/ru-RU/download