ESSENTIALS OF DATA SCIENCE A11 DIVISIONS

Theory Activity No. 1

NAME: KETAN SUNIL RAKHE

DIVISION: ET2

ROLL NO: ET2-02

PRN: 202401070040

SUBJECT: EDS

20 Problem Statements + Solutions using Pandas and NumPy

Pandas and NumPy No Problem Statement Pandas/NumPy Methods Used

What is the total sales

1 amount for the entire df['Total'].sum()

dataset?

Find the average quantity

2 of products sold per

transaction.

df['Quantity'].mean()

3 Identify the product with the highest total revenue.

df. groupby('Product')['Total'].sum().idxmax()

Count how many

4 transactions occurred in each region.

df['Region'].value_counts()

Find the most commonly used payment method.

df['Payment Method'].mode()[0]

6 Show all sales made on or after 1st Jan 2024.

df[df['Date'] >= '2024-01-01']

7 Calculate total revenue generated by each

df.groupby('Salesperson')['Total'].sum()

```
No Problem Statement
```

Pandas/NumPy Methods Used

salesperson.

What is the standard deviation of unit prices?

df['Unit Price'].std()

List the top 5 highest-9 value invoices by total amount.

df. sort values ('Total', ascending=False).head(5)

Count the number of unique products sold.

df['Product'].nunique()

Filter the transactions

11 where quantity sold is greater than 10.

df[df['Quantity'] > 10]

Group sales data by region

12 and show average unit price.

df. groupby('Region')['Unit Price']. mean()

Add a new column showing

13 tax (18%) for each transaction.

df['Tax'] = df['Total'] * 0.18

Create a column showing

total).

14 discounted price (10% off df['Discounted'] = df['Total'] * 0.90

Find the correlation

15 between quantity and total df[['Quantity', 'Total']].corr() sales.

Identify transactions with

16 missing customer

df[df['Customer'].isnull()]

information.

Replace null customer names with "Unknown".

df['Customer'].fillna('Unknown')

Extract transactions where

18 payment was done via Credit Card.

df[df['Payment Method'] == 'Credit Card']

19 Sort transactions by date. df. sort_values('Date')

20 Get the earliest and

df['Date'].min(), df['Date'].max()

latest transaction dates.

Code:

```
import pandas as pd
import numpy as np
# Load the dataset from the correct path
df = pd. read_csv("/content/sample_data/sales_data_sample.csv",
encoding='ISO-8859-1')
# 1. Total sales revenue
total sales = df['SALES'].sum()
print("1. Total Sales Revenue:", total sales)
# 2. Average price per item sold
average price = df['PRICEEACH'].mean()
print("2. Average Price Each:", average price)
# 3. Total quantity sold per product line
quantity_per_productline =
df. groupby('PRODUCTLINE')['QUANTITYORDERED']. sum()
print ("3. Quantity Sold per Product Line: \n", quantity per productline)
# 4. Total revenue by country
revenue by country = df. groupby ('COUNTRY') ['SALES']. sum()
print("4. Revenue by Country:\n", revenue_by_country)
```

```
# 5. Most popular product line (by quantity)
most_popular_productline =
df.groupby('PRODUCTLINE')['QUANTITYORDERED'].sum().idxmax()
print("5. Most Popular Product Line:", most_popular_productline)
# 6. Number of orders per year
orders_per_year = df['YEAR_ID'].value_counts()
print("6. Orders per Year:\n", orders_per_year)
# 7. Unique number of products sold
unique_products = df['PRODUCTCODE'].nunique()
print("7. Unique Products Sold:", unique_products)
# 8. Highest sales per order
highest sale = df['SALES'].max()
print("8. Highest Sale Value:", highest sale)
# 9. Order with the highest quantity
max_quantity_order = df[df['QUANTITYORDERED'] ==
df['QUANTITYORDERED'].max()]
print("9. Max Quantity Order:\n", max_quantity_order[['ORDERNUMBER',
'QUANTITYORDERED', 'PRODUCTLINE']])
# 10. Count orders by deal size
deal size counts = df['DEALSIZE'].value counts()
print("10. Deal Size Counts:\n", deal_size_counts)
# 11. Average sale per order line
average_sale_per_order = df['SALES'].mean()
print("11. Average Sale per Order Line:", average sale per order)
```

12. Correlation between quantity ordered and total sales

```
correlation_quantity_sales = df[['QUANTITYORDERED', 'SALES']].corr()
print("12. Correlation Between Quantity and Sales:\n",
correlation quantity sales)
# 13. Earliest order date
df['ORDERDATE'] = pd. to_datetime(df['ORDERDATE'], errors='coerce')
earliest_order_date = df['ORDERDATE'].min()
print("13. Earliest Order Date:", earliest_order_date)
# 14. Count of orders per status
orders_per_status = df['STATUS'].value_counts()
print("14. Orders per Status:\n", orders_per_status)
# 15. Total revenue by status
revenue by status = df. groupby ('STATUS') ['SALES']. sum()
print ("15. Revenue by Status: \n", revenue by status)
# 16. Discounted sales (10% off)
df['DISCOUNTED SALE'] = df['SALES'] * 0.9
print("16. Discounted Sales Sample:\n", df[['SALES',
'DISCOUNTED SALE']].head())
# 17. Profit assuming MSRP - PriceEach
df['PROFIT'] = (df['MSRP'] - df['PRICEEACH']) * df['QUANTITYORDERED']
print("17. Profit Sample:\n", df[['PRICEEACH', 'MSRP', 'QUANTITYORDERED',
'PROFIT']].head())
# 18. Country with highest average sales
highest_avg_country = df.groupby('COUNTRY')['SALES'].mean().idxmax()
print("18. Country with Highest Avg Sales:", highest_avg_country)
```

19. Customers per Country

```
customers_per_country = df['COUNTRY'].value_counts()
print("19. Customers per Country:\n", customers_per_country)
# 20. Orders with negative profit
negative_profit_orders = df[df['PROFIT'] < 0]
print("20. Negative Profit Orders:\n",
negative_profit_orders[['ORDERNUMBER', 'PROFIT', 'PRODUCTLINE']])</pre>
```

Output:

1. Total Sales Revenue: 10032628.85

2. Average Price Each: 83.65854410201914

3. Quantity Sold per Product Line:

PRODUCTLINE

Classic Cars 33992

Motorcycles 11663

Planes 10727

Ships 8127

Trains 2712

Trucks and Buses

Vintage Cars 21069

Name: QUANTITYORDERED, dtype: int64

10777

4. Revenue by Country:

COUNTRY

Australia 630623.10

Austria 202062.53

Belgium 108412.62

Canada 224078. 56

Denmark 245637.15

Finland 329581.91

France	1110916.52
Germany	220472.09
Ireland	57756 . 43
Italy	374674.31
Japan	188167.81
Norway	307463.70
Philippines	94015.73
Singapore	288488.41
Spain	1215686.92
Sweden	210014. 21
Switzerland	117713. 56
UK	478880.46

Name: SALES, dtype: float64

5. Most Popular Product Line: Classic Cars

3627982.83

6. Orders per Year:

YEAR_ID

USA

2004 1345

2003 1000

2005 478

Name: count, dtype: int64

7. Unique Products Sold: 109

8. Highest Sale Value: 14082.8

9. Max Quantity Order:

ORDERNUMBER QUANTITYORDERED PRODUCTLINE

418 10405 97 Classic Cars

10. Deal Size Counts:

DEALSIZE

Medium 1384

Small 1282

Large 157

Name: count, dtype: int64

11. Average Sale per Order Line: 3553.889071909316

12. Correlation Between Quantity and Sales:

QUANTITYORDERED SALES

QUANTITYORDERED 1.000000 0.551426

SALES 0. 551426 1. 000000

13. Earliest Order Date: 2003-01-06 00:00:00

14. Orders per Status:

STATUS

Shipped 2617

Cancelled 60

Resolved 47

On Hold 44

In Process 41

Disputed 14

Name: count, dtype: int64

15. Revenue by Status:

STATUS

Cancelled 194487.48

Disputed 72212.86

In Process 144729.96

On Hold 178979.19

Resolved 150718.28

Shipped 9291501.08

Name: SALES, dtype: float64

16. Discounted Sales Sample:

SALES DISCOUNTED_SALE

0 2871.00 2583.900

1 2765. 90 2489. 310

3 3746.70 3372.030

4 5205. 27 4684. 743

17. Profit Sample:

	PRICEEACH	MSRP	QUANTITYORDERED	PROFIT
0	95.70	95	30	-21.00
1	81.35	95	34	464.10
2	94.74	95	41	10.66
3	83. 26	95	45	528.30
4	100.00	95	49 -	-245. 00

- 18. Country with Highest Avg Sales: Denmark
- 19. Customers per Country:

COUNTRY

USA	1004
Spain	342
France	314
Australia	185
UK	144
Italy	113
Finland	92
Norway	85
Singapore	79
Canada	70
Denmark	63
Germany	62
Sweden	57
Austria	55
Japan	52
Belgium	33
Switzerland	31

Philippines 26

Ireland 16

Name: count, dtype: int64

20. Negative Profit Orders:

	ORDERNUMBER	PROFIT	PRODUCTLINE
0	10107	-21.00	Motorcycles
4	10159	-245.00	Motorcycles
5	10168	-59.76	Motorcycles
7	10188	-240.00	Motorcycles
8	10201	-78 . 54	Motorcycles
	•••		• • •
2818	10350	-920.00	Ships
2819	10373 -	-1334.00	Ships
2820	10386 -	-1978.00	Ships
2821	10397	-280.16	Ships
2822	10414	-541.44	Ships

[843 rows x 3 columns]