

Finding Similar Sets

Vassilis Christophides

christop@csd.uoc.gr http://www.csd.uoc.gr/~hy562 University of Crete, Fall 2019

lnria

Motivation

Fall 2019

- Many Web-mining problems can be expressed as finding "similar" sets:
 - ◆Pages with similar words, e.g., for classification by topic
 - ◆NetFlix users with similar tastes in movies for recommendation systems
 - Dual: movies with similar sets of fans
 - Images of related things
- The best techniques depend on whether you are looking for items that are very similar or only somewhat similar
 - ◆Special cases are easy, e.g., identical documents, or one document contained character-by-character in another
 - ◆General case, where many small pieces of one document appear out of order in another, is very hard

loria

Comparing Documents for Near Duplicates

- Applications: Given a body of documents, find pairs of documents with a lot of text in common, e.g.:
 - Mirror Web sites, or approximate mirrors
 - Application: Don't want to show both in a search
 - ◆Plagiarism, including large quotations
 - ◆Similar news articles at many news sites
 - Application: Cluster articles by "same story"

- Simple IR approaches are not suited:
 - Document = set of words appearing in document
 - ◆Document = set of "important" words

Why? we need to account for ordering of words!

Main Issues

Fall 2019

- What is the right representation of the document when we check for similarity?
 - ◆E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option
 - ◆We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?

(nria

Three Essential Techniques for Detecting Similar Documents

Fall 2019

- Shingling: convert documents, emails, etc., to sets
- Minhashing: convert large sets to short signatures, while preserving similarity
- Locality-sensitive hashing: focus on pairs of signatures likely to be similar

Caria

Fall 2019

Shingles

- ** A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document
 - ◆Represent a document by its set of k-shingles
- Example: k=2; doc= abcab. Set of 2-shingles = {ab, bc, ca}
 - Option: regard shingles as a bag (multiset), and count ab twice
- Working Assumption: Documents that have lots of shingles in common have similar text, even if the text appears in different order
 - What if two documents differ by a word?
 - Affects only k-shingles within distance k from the word
 - What if we reorder paragraphs?
 - Affects only the 2k shingles that cross paragraph boundaries

Inria

- Example: k=2;
 - •doc1 = abcab. 2-shingles = {ab, bc, ca}
 - •doc2 = cabc. 2-shingles = {ab, bc, ca}
- Careful decision: you must pick k large enough, or most documents will have most shingles
 - ◆k = 5 is OK for short documents
 - ♦k = 10 is better for long documents

Fall 2019

Shingles: Compression Option

- How about space overhead?
 - Each character can be represented as a byte
 - ◆k-shingle requires k bytes
- If k=9, to compare shingles we need to compare 9 bytes
- To improve efficiency, we can compress long shingles:
 - hash them to (say) 4 bytes, and
 - ◆represent a document by the set of hash values of its k-shingles

(aaabbbccc) (abcabcabc) → h(aaabbbccc)h(abcabcabc)

18 bytes → 8 bytes

 Working Assumption: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared

Caria

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
 - ◆There are many more possible shingles, this reduces the likelihood that documents that share many shingles are not similar
- Hint: How random are the 32-bit sequences that result from 4-shingling?
 - ◆Assuming 20 characters are common in English, there are (20)⁴ = 160000 4-shingles < 2³²
 - ◆Using 9-shingles there are (20)⁹>> 2³²

Fall 2019

MinHashing

Basic Data Model: Sets

- Many similarity problems can be couched as finding subsets of some universal set that have significant intersection
- Examples include:
 - Documents represented by their sets of shingles (or hashes of those shingles): C_i=S(D_i)
 - ◆Similar customers or products
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - ◆Each unique shingle is a dimension
 - ◆Vectors are very sparse
- Interpret set intersection as bitwise AND, and set union as bitwise OR

Jaccard Similarity of Sets

Fall 2019

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union
 - \bullet Sim (C₁, C₂) = |C₁ \cap C₂|/|C₁ \cup C₂|
- Example:

3 in intersection 8 in union Jaccard similarity = 3/8

Motivation for Min-Hash

- Suppose we need to find near-duplicate documents among N=1 million (10⁶) documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - N(N-1)/2 ≈ 5*10¹¹ comparisons
 - ◆At ≈ 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N=10 million (10⁷), it takes more than a year...

Fall 2019

From Sets to Boolean Matrices

Rows = elements (shingles) of the universal set

- Columns = sets (documents)
 - ◆1 in row e and column S if and only if e is a member of S
 - ◆Column similarity is the Jaccard similarity of the sets of their rows with 1
- the sets of their rows with 1
 Typical matrix is sparse (most rows are of type d, see later)
 - Sparse matrices are usually better represented by the list of places where there is a non-zero value
 - But the boolean matrix picture is conceptually useful

	1	1	1	0
	1	1	0	1
0	0	1	0	1
OI III IBIGS	0	0	0	1
5	1	0	0	1
	1	1	1	0
	1	0	1	0

Documents

Caria

Example: Jaccard Similarity of Columns

```
C_1 C_2

a0 1 * * b1 0 * c1 1 * * Sim (C_1, C_2) = 2/5 = 0.4 d0 0 e1 1 * * d(C_1, C_2) =1 - (Jaccard similarity) = f 0 1 * * 0.6
```

Caria

Outline: Finding Similar Columns

- Naïve approach:
 - Compute signatures of columns = small summaries of columns
 - Examine pairs of signatures to find similar columns
 - Requirement: similarities of signatures and columns are related
 - 3 Optional: check that columns with similar signatures are really similar
- This scheme works but ...
 - •What if the set of signatures (or k-shingles) is too large to fit in the memory?
 - Or the number of documents are too large?
- Idea: Find a way to hash a document (column) to a single (small size)
 value! and similar documents to the same value!
 - Warning: These methods can produce false negatives, and even false positives (if the above optional check is not made)

loria

Signatures

- Key idea: "hash" h(⋅) each column C to a small signature, such that:
 - h(C) is small enough that we can fit a signature in main memory for each column
 - 2 $Sim(C_1, C_2)$ is the same as the "similarity" of $h(C_1)$ and $h(C_2)$
- By hashing columns into buckets we expect that "most" pairs of near duplicate documents hash into the same bucket!
- Goal: Find a hash function h(⋅) such that:
 - ♦ If $sim(C_1, C_2)$ is high, then with high probability $h(C_1) = h(C_2)$
 - ♦ If $sim(C_1, C_2)$ is low, then with high probability $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function!
 - There is a suitable hash function for the Jaccard similarity:
 - It is called Min-Hashing!

Minhashing

- History: invented by Andrei Broder in 1997 (AltaVista) to detect near duplicate web pages
- Imagine the rows of the Boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order
 - π) row in which column C has value 1:
 - $h_{\pi}(C) = min_{\pi} \pi(C)$

(nria_

Min-hashing Example

2nd element of the permutation is the first to map to a 1 in col 1

Surprising Property

Fall 2019

- The probability (over all permutations of the rows) that $h(C_1)=h(C_2)$ is the same as $Sim(C_1, C_2)$:
 - $\bullet Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- With multiple signatures we get a good approximation
- Use several independent hash functions to create a signature of a column
 - ◆The similarity of signatures is the fraction of the hash functions in which they agree
 - Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

(nria

0

0

1

0

1

0

0

0

1

0

0

1

Why?

- Let X be a column (set of shingles), y ∈ X is a shingle
- Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - ◆It is equally likely that any shingle y∈X is mapped to the min element

Let	y be s.t. π(y) = min($(\pi(C_1 \cup C_2))$	2))	One of the two
-----------------------	---------------	----------	-----------------------	-----	----------------

- Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or cols had to have $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$ 1 at position y
- So the prob. that **both** are true is the prob. $y \in C_1 \cap C_2$
- $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1\cap C_2|/|C_1\cup C_2|=$ $sim(C_1,C_2)$

Fall 2019

Four Types of Rows

Given columns C₁ and C₂, rows may be classified as:

	<u>C</u> ₁	<u>C</u> 2	
а	1	1	1 in both columns
b	1	0	columns are different
С	0	1	
d	0	0	0 in both columns

- Also, a = # rows of type a, etc.
- The ratio of type a, b, and c that determine the similarity and the probability that h(C₁) = h(C₂)

$$\bullet \text{Note } Sim(C_1, C_2) = a / (a + b + c)$$

♦Then:
$$Pr[h(C_1)=h(C_2)] = Sim(C_1,C_2)$$

- Look down the permuted columns C₁ and C₂ until we see a 1
 - •If it's a type-a row, then $h(C_1)=h(C_2)$
 - ◆If a type-b or type-c row, then not

Min Hashing – Example

Signature matrix M

Input matrix

1	4	3	1	0	1	0
3	2	4	1	0	0	1
7	1	7	0	1	0	1
6	3	6	0	1	0	1
2	6	1	0	1	0	1
5	7	2	1	0	1	0
4	5	5	1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

		2-4		3-4	
Col/Col	0.75	0.75	0	0	1
Sig/Sig	0.67	1.00	0	0	

MinHash – False Positive/Negative

Fall 2019

- Instead of comparing sets, we now compare only 1 bit!
- False positive?
 - False positive can be easily dealt with by doing an additional layer of checking (treat minhash as a filtering mechanism)
- False negative?
 - Requiring full match of signature is strict, some similar sets will be lost
- High error rate! Can we do better?

Minhash Signatures

- •Pick (say) 100 random permutations of the rows
- Think of Sig(C) as a column vector
- •Let $Sig(C)[i] = min(\pi_i(C))$

according to the $\it i$ th permutation, the number of the first row that has a 1 in column $\it C$

- Note: The sketch (signature) of column C is small ~400 bytes!
 - We achieved our goal! We "compressed" long bit vectors into short signatures

Fall 2019

Implementation Trick

ermuting rows even once is prohibitive

- ◆Suppose 1 billion rows
- ◆Hard to pick a random permutation from 1...billion
 - Sorting would take a long time
 - Representing a random permutation requires 1 billion entries
- A good approximation to permuting rows: pick 100 (?) hash functions h_i
 - ◆Simulate the effect of a random permutation by a random hash function that maps row numbers to as many buckets as there are rows
 - ◆Row hashing: ordering under h_i gives a random row permutation!
- One-pass implementation
 - ◆For each column C and each hash function h_i, keep a "slot" M(i,C) for the min-hash value
 - ◆Intent: M(i,C) will become the smallest value of h_i(r) for which column C has 1 in row r
 - •i.e., $h_i(r)$ gives order of rows for i th permutation

Caria

Implementation

```
M(i,C) = \infty
for each row r
   for each column C
    if C has 1 in row r // Scan rows looking for 1s
        for each hash function h_i do
        // Suppose row r has 1 in column C
        if h_i(r) is a smaller value than M(i,C) then
        M(i,C) := h_i(r);
```

How to pick a random hash function h(x)? Universal hashing:

```
h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N where:
a,b... random integers
p... prime number (p > N)
```

(nría_

Example

Fall 2019

					Sig1	Sig	2
				h(1) = 1	1	00	
				g(1) = 3	3	∞	
Row	C1	C2		h(2) = 2	1	2	
1	1	0		g(2) = 0	3	0	
2	0	1	Jaccard=1/5				
3	1	1		h(3) = 3	1	2	
4	1	0		g(3) = 2	2	0	
5	0	1					
				h(4) = 4	1	2	
	= <i>x</i> m			g(4) = 4	2	0	M(i,C)
g(x):	= 2 <i>x</i> +	1 mod	15	h(5)=0	1	0	
				g(5) = 1	2	0	

loria

So far ...

- Represent a document as a set of hash values (of its k-shingles)
- Transform set of k-shingles to a set of minhash signatures
- Use Jaccard to compare two documents by comparing their signatures
- Is this method (i.e., transforming sets to signature) necessarily "better"??

Fall 2019

Locality-Sensitive Hashing

The BIG Picture (All-pair comparison)

- Suppose, in main memory, a representation of a large number of objects
 - May be signatures of documents as in minhashing
- We want to pair-wise compare each for finding those pairs that are sufficiently similar

lnria

Finding Similar Pairs

Fall 2019

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns
- Naïve solution
 - ◆For each document, compare with the other N-1 documents
 - Takes N-1 comparisons
 - Can be optimized using filter-and-refine mechanisms
 - ◆Requires N*(N-1)/2 comparisons
- Example:
 - ◆10⁷ columns implies ~ 10¹⁴ column-comparisons
 - ◆At 1 µs/comparison 108 (~ 3 years!)

Inria

Locality-Sensitive Hashing

- Use a function f(x,y) that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- With only one hash function on one entire column of signature, likely to have many false negatives
- Key idea: Apply the hash function on the columns of signature matrix M multiple times, each on a partition of the column
 - Arrange that (only) similar columns are likely to hash (i.e., with high probability) to the same bucket
 - ◆Each pair of columns that hashes at least once into the same bucket is a candidate pair

Fall 2019

andidate Generation from Minhash Signatures

- Pick a similarity threshold s, a fraction 0 < s < 1
- A pair of columns x and y is a candidate pair if their signatures agree in at least fraction s of the rows
 - ◆i.e., M(i,x) = M(i,y)
 for at least fraction s
 values of i
 - we expect documents x and y to have the same (Jaccard) similarity as their signatures

(nria

Partition Into Bands

Divide matrix M into b bands of r rows

Partition into Bands

Fall 2019

- For each band, hash its portion of each column (i.e., the concatenated values) to a hash table with k buckets
 - this has the "same" effect as ensuring all columns have the same values
 - make k as large as possible to minimize collision
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

loria

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
 - ◆Hereafter, we assume that "same bucket" means "identical in that band"
 - Assumption needed only to simplify analysis, not for correctness of algorithm
- Finding all pairs within a bucket become computationally cheaper!
 - ◆Declare all pairs within a bucket to be "matching" OR
 - ◆Perform pair-wise comparisons for those documents that fall into the same bucket
 - Much smaller than pair-wise over all documents

(nria

Fall 2019

Example: Effect of Bands

- Suppose 10⁵ columns of M (100k docs)
- Signatures of 10² integers (rows)
- If each signature is represented as a 4 byte integer value, we need only 10^{2*}4*10⁵ = 40Mb of memory!
- 5*109 pairs of signatures can take a while to compare
- Choose 20 bands of 5 integers/band
- Goal: Find pairs of documents that are at least s = 0.8 similar

Caria

Suppose C₁, C₂ are 80% Similar

- Find pairs of $\geq s=0.8$ similarity, set b=20, r=5
- Assume: $sim(C_1, C_2) = 0.8$
 - ♦ Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are *not* similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - ◆i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

Fall 2019

Suppose C₁, C₂ are 30% Similar

- Find pairs of $\geq s=0.8$ similarity, set b=20, r=5
- Assume: $sim(C_1, C_2) = 0.3$
 - ◆Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
 - •Probability C_1 , C_2 identical in at least 1 of 20 bands: $1-(1-0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - ◆They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

Probability of sharing a bucket

- How to get a step-function?
- Pick:
 - ◆The number of Min-Hashes (rows of M)
 - ◆The number of bands b, and
 - ◆The number of rows r per band

to balance false positives/negatives

 Example: if we had only 20 bands of 5 rows, the number of false negatives would go down, but the number of false positives would go up

Similarity $t=sim(C_1, C_2)$ of two sets

Inria

What One Band Gives You

Single hash signature

Similarity $t=sim(C_1, C_2)$ of two sets

This is what 1 hash-code gives you

$$Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$$

loria

What b Bands of r Rows Gives You

• The S-curve is where the "magic" happens

Inria

Example: b = 20; r = 5

Fall 2019

Figure 3.7: The S-curve

loría

S-curves as a Function of b and r

Fall 2019

Fall 2019

Given a fixed threshold s

We want choose r and b such that the Pr(Candidate pair) has a "step" right around

Similarity

lnría

Picking r and b: The S-Curve

Picking r and b to get the best S-curve

Blue area: False Negative rate These are pairs with sim > s but the X fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation! Green area: False Positive rate These are pairs with sim < s but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.

lnría

icking *r* and *b* to Get Desired Performance

• 50 hash-functions (r * b = 50)

Limitations of Minhash

Fall 2019

- Minhash is great for near-duplicate detection
 - Set high threshold for Jaccard similarity
- Limitations:
 - Jaccard similarity only
 - Set-based representation, no way to assign weights to features
- Random projections:
 - Works with arbitrary vectors using cosine similarity
 - Same basic idea, but details differ
 - Slower but more accurate: no free lunch!

Caria

LSH Generalizations

Multiple Hash Functions

Fall 2019

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- So far, we have assumed only one hash function (even applied multiple times)
 - ◆Shorthand: h(x)=h(y) implies "h says x and y are equal"
- We could have used a family of hash functions
 - ◆A (large) set of related hash functions generated by some mechanism
 - We should be able to efficiently pick a hash function at random from such a family

Locality-Sensitive (LS) Families

- Consider a space S of points with a distance measure d
- A family H of hash functions is said to be (d₁, d₂, p₁, p₂)- sensitive if for any x and y in S:
 - ♦ If $d(x,y) \le d_1$, then prob over all h in H that h(x)=h(y) is at least p_1
 - •If $d(x,y) \ge d_2$, then prob over all h in H that h(x)=h(y) is at most p_2

Small distance, high probability of hashing to the same value

Large distance, low probability of hashing to the same value

Example of LS Family: MinHash

Fall 2019

- Let
 - S = space of all sets,
 - d = Jaccard distance,
 - ◆H is family of Min-Hash functions for all permutations of rows
- Minhashing gives a (d₁, d₂, p₁, p₂)-sensitive family for any d₁ < d₂
 - ◆E.g., H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d
 - ♦ If distance $\leq 1/3$ (i.e., similarity $\geq 2/3$), then probability that minhash values agree is $\geq 2/3$
 - ◆This is because for any hash function $h \in H$ Pr(h(x)=h(y))=1-d(x,y)
- Simply restates theorem about Min-Hashing in terms of distances rather than similarities!

Example of LS Family: MinHash

• Claim: Min-hash H is a (1/3, 2/3, 2/3 1/3)-sensitive family for S and d

If distance < 1/3 (so similarity ≥ 2/3)

Then probability that Min-Hash values agree ≥ 2/3

- For Jaccard similarity, Min-Hashing gives a $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any $d_1 < d_2$
- Theory leaves unknown what happens to pairs that are at distance between d₁ and d₂
 - ◆Consequence: No guarantees about fraction of false positives in that range

Amplifying a LS-family

- Can we reproduce the "S-curve" effect we saw before for any LS family?
- The "bands" technique we learned for signature matrices carries over to this more general setting
 - ◆So we can do LSH with any (d1, d2, p1, p2)-sensitive family
- Two constructions:
 - ◆AND construction like "rows in a band"
 - ◆OR construction like "many bands"

AND Construction of Hash Functions

- Given family H, construct family H' consisting of r functions from H
- For $h=[h_1,...,h_r]$ in **H**', h(x)=h(y) if and only if $h_i(x)=h_i(y)$ for all i, $1 \le i \le r$
- Note this has the same effect as "r signatures"
 - •x and y are considered a candidate pair if every one of the r rows say that x and y are equal
- Theorem: If **H** is (d_1, d_2, p_1, p_2) -sensitive, then **H'** is (d_1, d_2, p_1^r, p_2^r) -sensitive
 - ◆That is, for any p, if p is the probability that a member of H will declare (x,y) to be a candidate pair, then the probability that a member of H' will so declare is p^r
 - ◆Proof: Use the fact that h_i 's are independent

OR Construction of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h=[h_1,...,h_b]$ in H', h(x)=h(y) if and only if $h_i(x)=h_i(y)$ for at least one i, $1 \le i \le b$
- Mirrors the effect of combining "b bands":
 - x and y become a candidate pair if any set makes them a candidate pair
- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive
 - ◆That is, for any p, if p is the probability that a member of H will declare (x,y) to be a candidate pair, then (1-p) is the probability that it will not declare so
 - ◆(1-p)^b is the probability that none of the family h₁, h_b will declare (x,y) a candidate pair
 - ◆1-(1-p)^b is the probability that at least one h_i will declare (x,y) a candidate pair, and therefore that H' will declare (x,y) to be a candidate

Effect of AND & OR Constructions

- AND makes all probabilities shrink, but by choosing r correctly, we can
 make the lower probability approach 0 while the higher does not
- OR makes all probabilities grow, but by choosing b correctly, we can
 make the upper probability approach 1 while the lower does not

(nría_

Fall 2019

Composing Constructions: AND-OR Composition

- r-way AND construction followed by b-way OR construction
 - Exactly what we did with minhashing
 - If b bands match in all r values hash to same bucket
 - Columns that are hashed into ≥ 1 common bucket -> candidate
- Take points x and y s.t. Pr[h(x)=h(y)] = p
 - ◆H will make (x,y) a candidate pair with probability p
- Construction makes (x,y) a candidate pair with probability 1-(1-p^r)^b
 ◆The S-Curve!

Caria

Example

- Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H" by the OR construction with b = 4
- E.g., transform a (0.2, 0.8, 0.8, 0.2)sensitive family into a (0.2, 0.8, 0.8785, 0.0064)-sensitive family

p	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

Fall 2019

Composing Constructions: OR-AND Composition

- b-way OR construction followed by r-way AND construction
- Transforms probability p into (1-(1-p)b)r
 - ◆The same S-curve, mirrored horizontally and vertically

Example

- the **OR** construction with b = 4. Then, from **H**', construct **H**" by the **AND** construction with r = 4
- E.g., transform a (0.2, 0.8, 0.8, 0.2)-sensitive family into a (0.2, 0.8, 0.9936, 0.1215)-sensitive family

p	(1-(1-p) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

(nría_

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family
 - ◆Note this family uses 256 (= 4*4*4*4) of the original hash functions

(nria_

Applications of LSH

Inria-

Application 2: A LHS Family for Fingerprint Matching

Fall 2019

- By overlaying a grid on the fingerprint image, we can extract the grid squares where the minutiae are located
- Two fingerprints are similar if the set of grid squares significantly overlap
 - ◆Jaccard distance and minhash can be used, but ...
- Let F be a family of functions
 - •f ∈ F is defined by, say 3, grid squares such that f returns the same bucket whenever the fingerprint has minutiae in all three grid squares
 - ◆f sends all fingerprints that have minutiae in all three of f's grid points to the same bucket
 - ◆Two fingerprints match if they are in the same bucket

Inria

LSH for Fingerprint Matching

- Suppose probability of finding a minutiae in a random grid square of a random finger is 0.2
- And probability of finding one in the same grid square of the same finger (different fingerprint) is 0.8
- Prob two fingerprints from different fingers match=(0.2)³x (0.2)³= 0.000064
- Prob two fingerprints from the same finger match=(0.2)3x (0.8)3= 0.004096
- Use more functions from F!
- Take 1024 functions and do a OR construction
 - ◆Prob putting the fingerprints from the same finger in at least one bucket is 1 – (1-0.004096)¹⁰²⁴ = 0.985
 - ◆Prob two fingerprints from different fingers falling into the same bucket is 1 – (1-0.000064)¹024 = 0.063
 - ◆We have 1.5% false negatives and 6.3% false positives
- Using AND construction will
 - ◆Greatly reduce the prob of a false positive
 - ◆Small increase in false-negative rate

References

- CS9223 Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
- CS246: Mining Massive Datasets Jure Leskovec, Stanford University, 2014
- CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014

ania