Attempts by Fan

(a)
$$\pm (1+f) \times 2^n$$
, $f = \sum_{i=1}^d b_i \cdot 2^{-i}$

Firer find possible n:

S:
$$0 = -1$$
. $\frac{1}{2} \le CHf \cdot 2^{M} = \frac{Hf}{2} \le 1 \Rightarrow 16$

only when
$$f=0$$
. (7=0)

Total:
$$|b+|b+|b+| = 49$$

(b)
$$1/10 \in [\frac{1}{10}, \frac{1}{2}] = [2^{-4}, 2^{-3}]$$

$$Z=1$$
, $12-0.11=0.0025$
 $Z=10$, $17-0.11=0.0016$, $S=10$ $C1+\frac{10}{16})\times 2^{-4}$

$$\Rightarrow 2^{N} > 2^{4} \Rightarrow n > 7$$

Consider
$$n=5$$
, $chf).2^{S}$

$$f=0, \geqslant 32.$$
 $f=1 \Rightarrow 34$

$$\Rightarrow$$
 $|f(x)-|x|| \leq |f(x)|-|x|| \leq \frac{1}{2} \epsilon_{\text{much}}|x|$

S
$$\exists \ \epsilon, \ \text{St.} \ |\epsilon| \leq \frac{1}{2} \epsilon_{\text{much}}, \ \text{and} \ |f(x)| = (|+\epsilon|)|x|$$

$$f(x) = che) x, since f(x) and x$$
have the same sign

$$\exists \ \ell. \ |2| \leq \frac{1}{2} \ \ell \text{nach}, \quad f(x) = x \ (H \ \ell)$$

$$f(x) \cdot x = x 2$$

$$\Rightarrow \frac{|f(x)-x|}{|x|} = |\xi| \leq \frac{1}{2} \epsilon mae$$

3. (a) exponent:
$$32-23-1=8$$
, [0.255]

significant: $z^{23} \cdot f \cdot f \in \{0, ..., 2^{23}-1\}$

So: it's $1+z^{-23}$

(b) $z^{23} \cdot z^{n} > 1 \Rightarrow n > 23$

let
$$n=24$$
, $(1+z.z^{-23})\cdot 2^{24} = 2^{24} + 23$

$$\int_{0}^{\infty} dt dt = 16777217$$