Билет 24. Амортизационный анализ

Курс "Алгоритмы и структуры данных"

Билет 24. Амортизационный анализ

Основная идея: Анализируем не одну операцию, а последовательность операций. "Дорогие" операции компенсируются "дешёвыми"!

Зачем нужен амортизационный анализ?

Проблема: Некоторые операции могут быть дорогими, но выполняются редко.

Решение: Смотрим на среднюю стоимость операции в последовательности.

1. Групповой анализ (Aggregate Method)

Основная идея

Показываем, что для последовательности из n операций общее время T(n) = O(f(n)), тогда амортизированная стоимость одной операции: $\frac{T(n)}{n}$.

Пример: Стек с multipop

- **push:** O(1)
- **pop:** O(1)
- multipop(k): O(k) может быть дорогой!

НЕТ! Амортизированное время != среднему времени работы!

- **Среднее время:** Вероятностный анализ, зависит от распределения входных данных
- **Амортизированное время:** Детерминированный анализ, гарантии для ХУДШЕГО случая

2. Метод бухгалтерского учета | Метод монеток (Accounting Method)

Основная идея

- Назначаем операциям "амортизированную стоимость"
- Если стоимость > реальной накапливаем "кредит"
- Если стоимость < реальной используем накопленный кредит
- **Условие:** Кредит всегда >=0

Пример: Стек с multipop

- push: Амортизированная стоимость = 2
- рор: Амортизированная стоимость = 0
- multipop: Амортизированная стоимость = 0

Пример с динамическим массивом

Шаг 1: Массив размером 1

Шаг 2: Добавляем 2 Шаг 3: Добавляем 3

3. Метод потенциалов (Potential Method)

Основная идея

Вводим **потенциальную функцию** $\phi(S)$, которая характеризует "потенциальную энергию" структуры данных.

$$\hat{c}_i = c_i + \phi(S_i) - \phi(S_{i-1})$$

где:

- ullet \hat{c}_i амортизированная стоимость операции i
- ullet c_i реальная стоимость операции i
- $\phi(S_i)$ потенциал после операции i
- $\phi(S_{i-1})$ потенциал до операции i

Суммируем:

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \phi(S_n) - \phi(S_0)$$

Пример: Динамический массив

Потенциальная функция: $\phi(S) = 2 \cdot \text{size} - \text{capacity}$

Случай 1: Без реаллокации

$$\phi(S_k) - \phi(S_{k-1}) = [2 \cdot (\text{size} + 1) - \text{capacity}] - [2 \cdot \text{size} - \text{capacity}]$$

$$= 2$$

$$\hat{c}_k = 1 + 2 = 3$$

Случай 2: С реаллокацией

$$\phi(S_k) - \phi(S_{k-1}) = [2 \cdot (\text{size} + 1) - 2 \cdot \text{capacity}] - [2 \cdot \text{size} - \text{capacity}]$$
$$= 2 - \text{capacity}$$
$$\hat{c}_k = \text{size} + (2 - \text{capacity}) = 2$$

Сравнение методов

Метод	Преимущества	Недостатки
Групповой анализ	Прост для понимания	Не всегда применим
Бухгалтерский учет	Интуитивный, на-	Нужно угадать стои-
	глядный	мости
Метод потенциалов	Мощный, гибкий	Сложно выбрать
		функцию

Ключевые выводы

- 1. Амортизационный анализ даёт гарантии для ХУДШЕГО случая
- 2. "Дорогие" операции оплачиваются "дешёвыми"
- 3. Все три метода эквивалентны по мощности
- **4.** В динамическом массиве добавление элемента = $\mathrm{O}(1)$ амортизированно
- 5. Амортизированное время != среднему времени!