Содержание

1.	Lua	за 15 минут	2
	1.1.	Комментарии	2
	1.2.	Переменные (простые типы)	2
		Логические операторы	
			4
	1.5.	Условный оператор if	4
	1.6.	Циклы	(
		1.6.1 While	(
		1.6.2 Repeat	(
		1.6.3 Числовой for	-
		1.6.4 Общий for	8
	1.7.	Присваивание	8
	1.8	Блоки Глобальные и локальные переменные	(

1. Lua за 15 минут

Данное пособие является адаптацией статьи "Learn Lua in 15 Minutes" с некоторыми дополнениями. Оригинал на английском языке можно найти по адресу: http://tylerneylon.com/a/learn-lua/.

1.1. Комментарии

Комментарии в Lua можно сделать двумя способами:

```
1 -- One line comment
2
3 --[[
4     first line
5     seconde line
6 --]]
```

Первый способ начинает однострочный комментарий, второй — многострочный.

1.2. Переменные (простые типы)

Все числовые переменные являются вещественными (double):

```
1 number = 42
2 another_number = 3.1415
```

Над числами можно проводить следующие операции: сложение (+), вычитание (-), умножение (*), деление (/), возведение в степень (^):

```
1 add = 5 + 3 -- add = 8
2 sub = add - 4 -- sub = 4
3 mult = add * sub -- mult = 32
4 div = add / sub -- div = 2
5 pow = 2^3 -- pow = 8
```

Строки в языка Lua являются *неизменяемыми*, то есть нельзя обратиться к индексу строки и поменять символ. Объявление сток можно сделать тремя способами:

```
1 color = 'black'
2 season = "summer"
3 huge_string = [[ This is
```

```
4 a very-very 5 long string! ]]
```

Для соединения строк (конкатенация строк) используется оператор ..:

```
1 name = "Petr"
2 surname = "Ivanov"
3 pupil = name .. " " .. surname -- pupil = "Petr Ivanov"
```

Если при конкатенации строк будут использоваться числовые переменные, то они автоматически будут приведены к строкам:

```
1 number = 42
2 question = number .. " is good answer for everything!"
3 -- question = "42 is good answer for everything!"
```

Переменные могут принимать логическое значение boolean: **true** (истина) или **ложь**:

```
1 to_be_or_not_to_be = true
```

Переменные также могут принимать значение *nil*. Данный тип означает, что значения у переменной **не существует**!

```
1 aliens_exist = nil
```

1.3. Логические операторы

Существуют следующие логические операторы: and, or и not. Все логические операторы предполагают, что false и nil представляют собой значение false, а все остальные значения — \mathbf{true} .

Оператор and возвращает первый аргумент в том случае, если его значение false, в противном случае возвращается второй аргумент. Оператор ог возвращает первый аргумент в том случае, если его значение true, в противном случае возвращается второй аргумент.

Операторы and и от не вычисляют второй аргумент, если в это нет необходимости. Например, выражение x = x от v эквивалентно следующему выражению:

```
1 if not x then x = v end
```

То есть, если значение х не существует, то ставится значение у.

Ещё один вариант использования условных операторов: реализация тернарного оператора (a ? b : c). В языке Lua его можно реализовать следующим способом:

```
1 a and b or c -- (a and b) or c
```

Пример выбора максимального значения из двух чисел:

```
1 \text{ max} = (x > y) \text{ and } x \text{ or } y
```

Сперва вычисляется выражение x > y. Если оно имеет значение true, то срабатывает (x > y) and x и возвращается x, так как x — число и всегда равен значению true. Если же выражение x > y имеет значение false, то выражение (x > y) and x возвращает false, оно сравнивается c y, и оператор or возвращает значение y.

Оператор not всегда возвращает true или false:

```
1 print(not nil) -- true
2 print(not false) -- true
3 print(not 0) -- false
4 print(not not nil) -- false
```

1.4. Операторы отношений

В языке Lua выделяются следующие операторы отношений, каждый из которых возвращает true или false:

```
1 < > <= >= == ~=
   Oператор == проверяет равенство аргументов, а оператор ~= — неравенство:
1 print(5 == 6) -- false
2 print(52 ~= 0) -- true
```

1.5. Условный оператор if

Условия в языке Lua записываются при помощи условного оператора if:

```
1 if statement then
2 ... -- do something if statement == true
3 end
```

Оператор проверяет условие statement и выполняет операции между ключевыми словами then и end только в том случае, если statement — истинен.

Примеры условий:

```
1 if a < 0 then a = 0 end
2
3 if object == "car" then
4  print("This is car!")
5 end</pre>
```

Можно задавать поведение условного оператора if при помощи ключевого слова else, в случае, если условие statement — ложно:

```
1 if statement then
2 ... -- statement == true
3 else
4 ... -- statement == false
5 end
```

Пример использования:

```
1 if age < 18 then
2  print("You can't go to this movie!")
3 else
4  print("Your age is allowed for this movie")
5 end</pre>
```

Иногда могут понадобится для работы множественные ветвления (elseif) условного оператора if:

```
1 if op == "+" then
2    r = a + b
3 elseif op == "-" then
4    r = a - b
5 elseif op == "*" then
6    r = a*b
7 elseif op == "/" then
8    r = a/b
9 else
10    print("Error!")
11 end
```

Отрицание логического выражения statement задается при помощи ключевого слова not:

```
1 if not end_of_game then ... end
```

Выражение *statement* может содержать в себе сложные логические выражения:

```
1 if age \geq= 14 and age \leq= 18 then ... end
```

1.6. Циклы

Циклы — это управляющая конструкция, которая позволяет многократно исполнять ряд инструкций.

1.6.1 While

Цикл с предусловием (while) — это цикл, который будет выполняться, пока истинно условие (true). То есть если условие истинно, цикл выполняется, иначе он заканчивает свою работу и управление передается коду за ним.

```
1 num = 0
2 while num < 3 do
3 num = num + 1;
4 print(num);
5 end
В результате будет выведено:
```

1.6.2 Repeat

1

2

3

Цикл с предусловием (repeat) — цикл, который так же будет выполняться, пока условие истинно (true), но проверка условия выполняется после прохождеия тела цикла. То есть тело цикла всегда будет выполняться хотя бы один раз, в отличие от цикла while, который может вообще не выполниться.

```
1 num = 3
2 repeat
3  print(num)
4  num = num - 1
5 until num == 0
```

В результате будет выведено:

3 2

1

1.6.3 Числовой for

Счетный цикл или цикл со счетчиком (for) — цикл, в котором некоторая заданная переменная меняет свое значение от заданного начального значения до заданного конечного в соответсвии с указанным шагом.

Синтаксис счетного цикла:

```
1 for var=exp1,exp2,exp3 do
2 something
3 end
```

Действие something будет исполняться для каждого значения управляющей переменной var от начального значения exp1 до конечного значения exp2 с шагом exp3. Указывать шаг **необязательно**, так как по умолчанию шаг равен 1.

```
1 for var=0,6,2 do
2 print(var)
3 end
```

В результате будет выведено:

0 2

4 6

Замечания:

- Управляющая переменная *var* является локальной, то есть видна только в пределах цикла, а в не его не существует.
- Если в качестве одного из *exp* стоит функция, то она будет вызвана всего один раз перед началом цикла, то есть при изменении значения переменных, передаваемых в цикл, граница цикла все равно не изменится.
- Не следует менять значение управляющей переменной, так как тогда поведение будет непредсказуемым. Если есть необходимость остановить цикл, лучше использовать оператор break.

```
1  var = 3
2  for i = 1,10  do
3    if i >= var then
4        break
5    else
6        print(i .. "is less then 3")
7    end
8  end
```

В результате будет выведено:

1 is less then 3

2 is less then 3

1.6.4 Общий for

Совместный цикл или цикл с итератором(for) — цикл, который позволяет обходить все значения, которые возвращаются функцией итератора. Итератор предоставляет нам доступ к элементам коллекции(массива) и обеспечивает навигацию по ней. Говоря простым языком, совместный цикл позволяет нам "пройтись" по всем элементам массива или другого объединения, последовательно получая индексы и/или значения.

```
1 for i,v in ipairs(a) do
2 print(v)
3 end
```

За один шаг цикла в i помещается очередной индекс массива a, а в v значение, ассоциируемое с данным индексом.

Стандартные функции-итераторы:

- io.lines обход строк в файле
- pairs пар в массиве(таблице)
- string.gfind слов в строке
- и т.д.

1.7. Присваивание

Присваивание означает изменение (запись) значения переменной или поля таблицы (массива).

```
1 str = "Hello" .. "World"
2 number = number + 1
```

Lua позволяет проивзодить множественное присваивание, то есть список значений присваивается списку переменных за один шаг. Элементы обоиз списков разделяются запятыми.

```
1 str, number = "Hello" .. "World", number + 1
```

Переменной str будет присвоено значение $Hello\ World$, в то время как значение переменной number увеличится на единицу.

В Lua сначала производится оценка переменных, а затем выполняется присваивание. Благодаря этому, мы можем произвести обмен значениями переменых за один шаг

```
1 x, y = y, x -- swap \emph{x} and \emph{y}
2 a[i], a[j] = a[j], a[i] -- swap \emph{a[i]} and \emph{a[j]}
```

Если количество переменных отлично от количества значений, то:

- 1) если количество переменных больше количества значений, то переменым, которым не представлены значения получат значение nil
- 2) если количество переменных меньше количества значений, то лишние значения будут проигнорированы

```
1
      a, b, c = 1, 2
2
      print(a,b,c)
                               --> 1 2
                                          nil
3
      a, b = 1, 2, 3
                               -- 3 ignores
4
      print(a,b)
      a, b, c = "Hello"
5
      print(a,b,c)
                               --> "Hello" nil
6
                                                    nil
```

1.8. Блоки. Глобальные и локальные переменные.

Блок ограничивает логически сгруппированный набор идущих подряд инструкций и ограничивает область видимости переменных. Блоком является любая управляющая конструкция (циклы, условные констуркции после then и else, функции). Блоки могут быть вложенными. Для создания блока используется конструкция do-end.

Все переменные объявленые в lua в любом блоке являются глобальными, если они не помечены служебным словом *local*. *local* указывает на то, что переменная будет локальна, то есть сущесвтует только в пределах блока, в котором она объявлена.

```
1
    x = 10
2
    i = 1
3
4
    while i <= x do
       local x = i*2
5
                           -- local for "while" body
6
       print(x)
                           --> 2, 4, 6, 8, ...
       i = i + 1
7
8
     end
9
10
    if i > 20 then
11
        local x
                            -- local for "then" body
12
        x = 20
        print(x + 2)
13
                                --> 22
14
    else
15
        print(x)
                           --> 10 (global)
16
    end
17
18
    print(x)
                           --> 10 (global)
```