Label Consistent Fisher Vectors for Supervised Feature Aggregation

Quan Wang Xin Shen Meng Wang Kim L. Boyer Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract

Contribution:

 We add supervised information into Fisher vectors to improve classification performance

Basic idea:

In the training process, we add a discriminative label comparison matrix to the Fisher kernel, and solve for a transformation matrix to be applied on Fisher vectors

Applications:

Content-based image retrieval, scene classification, etc.

Feature Aggregation

Bag-of-Words (BoW): only 0th order statistics

Low-level features, e.g. SIFT

Fisher Vector (FV): also 1st order and 2nd order statistics

Fisher Vector

We have extracted T local features such as SIFT: $X = \{x_t\}_{t=1}^T$

Assume X follows a probabilistic generative process $p_{\theta}(X)$

 θ is the parameter set (e.g. μ and σ for GMM), and the loglikelihood of the gradient describes the contribution of each parameter: $g_{\theta}(X) = \frac{1}{T} \nabla_{\theta} \log p_{\theta}(X) = \frac{1}{T} \sum_{t=1}^{T} \nabla_{\theta} \log p_{\theta}(x_t)$

The Fisher information matrix is $F_{\theta} = E_X[g_{\theta}(X)g_{\theta}(X)^T]$

The Fisher kernel: $K(X_1, X_2) = g_{\theta}(X_1)^T F_{\theta}^{-1} g_{\theta}(X_2) \rightarrow \text{theoretically}$ as good as MAP based on the model

Fisher vector $\mathcal{G}_{\theta}(X) = F_{\theta}^{-\frac{1}{2}} g_{\theta}(X)$, then $K(X_1, X_2) = \mathcal{G}_{\theta}(X_1)^{\mathrm{T}} \mathcal{G}_{\theta}(X_2)$ → linear classifier (fast) on FV = kernel classifier on FK

Fisher kernels and Fisher vectors are obtained without using any supervised information in the training set

Label Consistent Fisher Vector

We define a label comparison matrix $\mathbf{C} = [C_{i,i}]$, where $C_{i,i} = C_{i,i}$ $\delta(c_i = c_j)$, c_i and c_j are class labels

$$\widetilde{K}(X_i, X_j) = K(X_i, X_j) + \alpha C_{i,j}$$
 is a better kernel, where $\alpha > 0$

Let $G = [G_{\theta}(X_1), ..., G_{\theta}(X_N)]$, if we can find a transformation matrix **M** such that $(\mathbf{M}\mathbf{G})^{\mathrm{T}}(\mathbf{M}\mathbf{G}) = \mathbf{G}^{\mathrm{T}}\mathbf{G} + \alpha\mathbf{C}$, then we can apply **M** on the Fisher vector of a testing image, whose class label is unknown

Two approaches:

- LCFV1: M is a square matrix, $W = M^TM = I + B$
- LCFV2: $\mathbf{M} = \begin{bmatrix} \mathbf{I} \\ \mathbf{E} \end{bmatrix}$ is not square, thus adding new features

Overdetermined: minimize the Frobenius norm of the error Underdetermined: minimize the Frobenius norm or rank of B or E

Experiments

We compare LCFV1 and LCFV2 with standard Fisher vectors on three datasets: 15-scene, Graz-02, Corel

 α is tuned by cross-validation on training set. We report average classification accuracy

Dataset	PCA dim	# of GMM	FV (%)	LCFV1 (%)	LCFV2 (%)
15-scene	16	16	65.71	66.34	66.90
	16	64	70.27	70.46	70.52
	16	128	71.76	71.85	71.89
	64	16	66.93	67.26	67.37
	64	64	72.03	72.40	72.39
	64	128	72.86	73.22	73.22
Graz-02	64	16	62.61	62.96	63.08
	64	64	67.11	67.38	67.43
	64	128	68.10	68.28	68.43
Corel	64	16	56.27	56.58	56.70
	64	64	60.53	60.77	60.87
	64	128	61.68	62.03	62.10

