DataScience Lab: Training robust neural networks

Nan An, Hangyue Zhao, Lucas Hennecon

PGD L ∞ attack model

PGD attack+ Adversarial training

Randomized Smoothing
$$g(x) = rg \max_{c} \mathbb{P}(f(x+\delta) = c), \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

smooth out the decision boundary

Spectral Normalization

ensures that small perturbations do not cause the model's predictions to overreact

Improved the model's robustness against attacks Effective against L2 perturbations, limited in $L \infty$, like FGSM

Carlini & Wagner Attack

Loss function

$$\mathcal{L} = \|\delta\|_2^2 + c \cdot g(x+\delta)$$

g(x'): An auxiliary function that ensures x', is misclassified.

$$g(x') = \max(Z(x')_t - \max_{i
eq t} Z(x')_i, -\kappa)$$

The C&W attack explicitly optimizes the loss function, allowing it to bypass defenses like defensive distillation.

δ: Optimized perturbation.

c: Hyperparameter, Balances perturbation size and misclassification.

Z(x'): Model logits for x'x'x', before softmax.

t: True label of the input.

k\kappa: Confidence parameter; larger values mean stronger attacks

Analysis Accuracy

PGD attack+ Adversarial training (PGD attack sample) with smooth and Spectral Normalize C&W Attack + Same mechanism but 50% C&W attack samples and 50% PGD attack samples

Table 1. Comparison of Accuracy for Different Models

Model	PGD L ₂ Accuracy (%)	PGD L_{∞} Accuracy (%)
PGD Model	24.79	36.14
C&W Model	2.73	27.49

- Combining L\infty and L2 defenses can lead to conflict if attacks are not complementary.
- Complexity and diversity of attacks do not guarantee improved robustness.
- The key is finding the right adversarial training strategy.

Randomized Adversarial Training

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\|\tau\|_{p} \leq \epsilon} \mathcal{L}\left(\tilde{f}_{\theta}(x+\tau), y\right) \right]$$

	AT	RAT
Natural Accuracy	31.93	38.87
ℓ_2	31.34	38.18
ℓ_{∞}	23.82	24.7

Mixed Adversarial Training

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbb{E}_{p\sim\mathcal{U}(\{2,\infty\})} \max_{\|\tau\|_{p}\leq\epsilon} \mathcal{L}\left(f_{\theta}(x+\tau),y\right) \right].$$

MAT-Rand:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathbb{E}_{p\sim\mathcal{U}(\{2,\infty\})} \max_{\|\tau\|_{p}\leq\epsilon} \mathcal{L}\left(f_{\theta}(x+\tau),y\right) \right].$$

MAT-Max:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{p\in\{2,\infty\}} \max_{\|\tau\|_{p}\leq\epsilon} \mathcal{L}\left(f_{\theta}(x+\tau),y\right) \right].$$

	PDG	MAT
Natural Accuracy	38.87	40.72
ℓ_2	38.18	39.84
ℓ_{∞}	24.7	27.14

MI-FGSM

Accumulate gradient:

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_x J(x_t^*, y)}{\|\nabla_x J(x_t^*, y)\|_1}$$

- <u>Update</u>:

$$x_{t+1}^* = x_t^* + \alpha \cdot \operatorname{sign}(g_{t+1})$$

M-DI²-FGSM

- Variant of MI-FGSM
- Apply transformations (resizing,
 0-padding) with probability p
- -> Less efficient for whitebox attacks

Thank you for listening

