3-9 Connectivity

Hengfeng Wei

hfwei@nju.edu.cn

November 26, 2018

5.10 5.34 5.22 5.26

5.10 5.34 5.22 5.26

Menger's Theorem (Theorem 5.16; Theorem 5.21)

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

 \iff

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

Proof.

 $``\Longrightarrow"$

G is nonseparable

 $\implies u, w$ lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

 $\implies \exists \text{ cycle } u - v - w \sim u$

A connected graph G with $m \geq 2$ is nonseparable

$$\leftarrow$$

any two adjacent edges of G lie on a common cycle of G.

Proof.

"←

By Contradiction.

A connected graph G with $m \geq 2$ is nonseparable

$$\iff$$

any two adjacent edges of G lie on a common cycle of G.

Proof.

By Contradiction.

Suppose v is a cut-vertex of G

$$\implies G - v \text{ contains } \geq 2 \text{ comps } G_1, G_2, \cdots$$

$$\implies \exists u \in G_1, w \in G_2 : v - u \land v - w$$

$$\implies v - u, v - w$$
 lie on a common cycle

 $\implies \exists \text{ path } u \sim w \text{ that does not contain } v$

$$\forall G_i \ \exists v_i \in G_i \ v - v_i$$

$$\forall G_i \ \exists v_i \in G_i \ v - v_i$$

$$\forall G_i \; \exists v_i \in G_i \; v - v_i$$

$$\forall v \in S \ \forall G_i \ \exists v_i \in G_i \ v - v_i$$

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

A connected graph G with $m \geq 2$ is nonseparable

any two adjacent edges of G lie on a common cycle of G.

2-Connectivity (Extended Problem)

A connected graph G with $m \geq 2$ is nonseparable

any two edges of G lie on a common cycle of G.

Office 302

Mailbox: H016

hfwei@nju.edu.cn