1 Mappings, functions: everywhere defined, injective, surjective, bijective, inverse mapping. Theorem about cardinality of a finite Cartesian product

Определение

Пусть A и B - два множества. Тогда **отображение** f из A в B - это такое подмножество $f \subseteq A \times B$, что для любого $a \in A$ и для любого $b_1, b_2 \in B$:

из
$$(a, b_1) \in f$$
 и $(a, b_2) \in f$ следует, что $b_1 = b_2$

т.е. для любого $a \in A$ существует только один $b \in B$ такой, что $(a,b) \in f$. Факт того, что f - отображение из A в B, обозначается как:

$$f:A \to B$$
 или $A \stackrel{f}{\to} B$

Множество всех отображений из A в B обозначается как

$$B^A = \{f|f: A \to B\}$$

Другое определение

отображение - это *множество пар элементов*, которые удовлетворяют определенным условиям, имеющим однозначный смысл: каждому аргументу должно соответствовать только одно значение. Где $(a,b) \in f$ можно записать как f(a) = b, элемент a называется **аргументом**, а b - **значением** отображения f от аргумента a или **образом** элемента a из отображения f. Факт того, что f(a) = b можно записать следующим образом:

$$f: a \mapsto b$$
 или $a \stackrel{f}{\mapsto} b$

Если f(a) = b, то элемент a называется **прообразом** элемента b из отображения f.

Определение

Для любого отображения $f:A\to B$ можно определить два множества:

- ullet область определения $dom(f) = \{a | (a,b) \in f\}$
- ullet область значений $cod(f)=\{b|(a,b)\in f\}$

Определение

Пусть A - множество, n - натуральное число. Тогда отображение $f:A^n\to A$ называется n-местной функция или операцией на множестве A.

Определение

Для любого множества A можно определить **тождественное отображение** - функцию $id_A: A \to A$. Эта функция определяется как:

$$id_A \rightleftharpoons \{(a,a)|a \in A\}$$

Тождественное отображение id_A также иногда называют **диагональ** множества A.

$$id_A(a) = a$$

Определение

Пусть $f:A\to B$ - некоторое отображение. Тогда это отображение называется

- инъективным ("однозначным"отображением), тогда и только тогда, когда для любых двух разных аргументов $a_1, a_2 \in A$ образы $f(a_1)$ $f(a_2)$ также различны. Обозначается как $f: A \stackrel{1:1}{\to} B$
- сюръективный (отображением "на"), тогда и только тогда, когда для любого элемента $b \in B$ существует такой $a \in A$, что f(a) = b. Обозначается как f: A omes B
- всюду определённым, тогда и только тогда, когда для любого элемента $a \in A$ существует такой $b \in B$, что f(a) = b. Обозначается как $f: A \rightarrowtail B$
- биективным ("взаимно-однозначным" соответствием), тогда и только тогда, когда оно инъективно, сюръективно и всюду определено. Обозначается как $f:A \xrightarrow{1:1} B$

Предложение

Для любого отображения $f: A \to B$:

- 1. $f: A \rightarrow B$ (т.е. f сюръективно) $\Leftrightarrow cod(f) = B$
- 2. $f:A \rightarrow B$ (т.е. f всюду определено) $\Leftrightarrow dom(f) = A$

Доказательство

Очевидно по определению.

Определение

Пусть $f: A \to B$ и $g: B \to A$ - два отображения. Тогда g называется **обратным** к f, тогда и только тогда, когда $f \circ g = id_A$ и $g \circ f = id_B$.

Предложение

Если для некоторого отображения $f: A \to B$ существует обратное отображение, то f сюръективно и всюду определено.

Доказательство

Докажем сюръективность. Если f не сюръективно, то существует такой $b \in B$, что $b \notin cod(f)$. Но по определению $id_B = (g \circ f)(b) = f(g(b)) = b$, т.е. если a = g(b), то $(a,b) \in f$, т.е. $b \in cod(f)$ - противоречие. Всюду определенность доказывается аналогично.

Предложение

Если для отображения $f: A \to B$ существует обратное, то f инъективно.

Доказательство

В противном случае существуют такие $a_1, a_2 \in A$, что $a_1 \neq a_2$ и $f(a_1) = f(a_2) = b \in B$. По условию $f \circ g = id_A$, т.е. $(f \circ g)(a) = a$ для любого $a \in A$. Следовательно, $a_1 = (f \circ g)(a_1) = g(f(a_1)) = g(b) = g(f(a_2)) = (f \circ g)(a_2) = a_2$ - противоречие.

Определение

Пусть A_1, A_2, \ldots, A_n - конечная последовательность множеств. Тогда их **Декартово произведение** определяется как:

$$A_1 \times A_2 \times \ldots \times A_n \rightleftharpoons \{(a_1, a_2, \ldots, a_n) | a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}$$

Лемма 1

Для любых множеств A_1, \ldots, A_n :

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

Доказательство

По определению декартова произведения:

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) | a_i \in A_i\} = \{((a_1, \ldots, a_{n-1}), a_n) | a_i \in A_i\} =$$

= $\{(\bar{a}, a_n) | a_n \in A_n, \bar{a} \in A_1 \times \ldots \times A_{n-1}\} = (A_1 \times \ldots \times A_{n-1}) \times A_n$

Лемма 2

Пусть A, B - множества, A состоит из n элементов, а B состоит из m элементов. Тогда декартово произведение $A \times B$ содержит $n \cdot m$ элементов.

Доказательство

Сколько существует пар вида (a,b), где $a \in A$ и $b \in B$? Существует n вариантов выбора a, и для каждого фиксированного a существует m вариантов выбора b. Отсюда следует, что существует $n \cdot m$ возможных пар $(a,b) \in A \times B$, следовательно, $A \times B$ содержит $n \cdot m$ пар.

Теорема

Пусть A_1, \ldots, A_n - последовательность конечных множеств, A_i содержит k_i элементов (здесь $1 \le i \le n$). Тогда декартово произведение $A_1 \times \ldots \times A_n$ будет содержать $k_1 \cdot \ldots \cdot k_n$ элементов.

Доказательство

Индукция по n. Основание индукции: при n=1 это очевидно, при n=2 это выполняется по лемме 2. Шаг индукции. По предположению индукции, $A_1 \times \ldots \times A_{n-1}$ содержит $k_1 \cdot \ldots \cdot k_{n-1}$ элементов. По лемме 1, $X = A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$, а по лемме 2 X содержит $(k_1 \cdot \ldots \cdot k_{n-1}) \cdot k_n$ элементов.

2 Carrying of a function

Определение

Некоторые функции могут принимать другие функции в качестве аргументов и возвращать функции в качестве результата. Эти функции называются функциями высшего порядка.

Определение

Использование функций высшего порядка позволяет упростить общую теорию, рассматривая только одноместные (функции от одного аргумента) или функции без аргументов. А именно любая двухместная функция f(x,y) может быть представлена как одноместная функция высшего порядка f', принимающая аргумент x и возвращающая функцию которая, в свою очередь, принимает аргумент y:

$$f'(x)(y) = f(x, y)$$

Эта техника называется **каррирование** и может применяться к функциям с произвольным количеством аргументов.

3 Canonical normal forms for propositional formulas: CCNF, CDNF. Theorem about conversion to CCNF

Определение

Формула ϕ , находящаяся в нормальной форме (КНФ или ДНФ), находится в **совершенной** нормальной форме (СКНФ или СДНФ), тогда

и только тогда, когда каждая переменная $v \in V(\phi)$ входит в любую элементарную конъюнкцию/дизъюнкции формулы ϕ (в зависимости от того, КНФ это или ДНФ) ровно один раз.

Примеры

- $(p \land \neg q) \lor (p \land q)$ находится в СДНФ
- $(p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в СКНФ
- $(p \lor \neg q) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в КНФ, но не в СКНФ.

Теорема (приведение к СКНФ/СДНФ)

Пусть ϕ - некоторая формула. Тогда верно следующее:

- 3 Если ϕ не является выводимой, то существует такая формула ϕ' , находящаяся в СКНФ, что $\phi \equiv \phi'$.
- 4 Если ϕ является выполнимой, то существует такая формула ϕ' , находящаяся в СДНФ, что $\phi \equiv \phi'$.

Доказательство

Пусть $\phi'' \equiv \phi$ - формула, находящаяся в КНФ, $\phi'' = \psi_1 \wedge \ldots \wedge \psi_n$, где ψ_i - элементарные дизъюнкции. Тогда конъюнктивная часть $K(\phi'') = \{\psi_i | 1 \leq i \leq n\}$ делится на две части: $K(\phi'') = X \cup Y$. Y состоит из таких элементарных дизъюнкций ψ_i , что некоторая переменная v входит в ψ_i вместе с её отрицанием: $v, \neg v \in D(\psi_i)$, и $X = K(\phi'') \setminus Y$. Тогда для любой элементарной дизъюнкции $\psi_i \in Y$ верно, что $\triangleright \psi_i$, и по леммам о конъюнктивной и дизъюнктивной частях формул, $X \neq \emptyset$, потому что иначе ϕ'' будет выводимой, и, следовательно, ϕ также будет выводимой. Поскольку все элементарные дизъюнкции из Y выводимы по предыдущей лемме

$$\phi'' \equiv \bigwedge_{\psi_i \in X} \psi_i$$

Поэтому, так как $\phi \lor \phi \equiv \phi$, любая переменная $v \in V(\phi)$ входит в любую элементарную дизъюнкцию ψ не более одного раза. Рассмотрим некоторую переменную $v \notin V(\psi_i)$, где $\psi_i \in X$. Если $\psi_i^1 = (\psi_i \lor v)$ и $\psi_i^2 = (\psi_i \lor \neg v)$,

$$\psi_i \equiv \psi_i \wedge (v \vee \neg v) \equiv (\psi_i \vee v) \wedge (\psi_i \vee \neg v) = \psi_i^1 \wedge \psi_i^2$$

Заменяя элементарную дизъюнкцию ψ_i в множестве X на ψ_i^1 и ψ_i^2 , мы получим множество $X'=(X\setminus\{\psi_i\})\cup\{\psi_i^1,\psi_i^2\}$, и

$$\phi'' \equiv \bigwedge_{\psi' \in X'} \psi'$$

Применяя это для всех переменных v, в итоге мы получим СКН Φ . Теорема для СДН Φ доказывается аналогично.