Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 19-20

- Problema del trasporto

R. Cerulli – F. Carrabs

Problema del flusso a costo minimo: Formulazione

$$\min \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{j \in FS(i)} x_{ij} - \sum_{k \in BS(i)} x_{ki} = b_i \quad i = 1, ..., n$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A$$

 x_{ij} = quantità di flusso che transita sull'arco (i,j)

 c_{ij} = costo di trasporto di una unità di flusso sull'arco (i,j)

 b_i = valore intero associato al nodo i (ne definisce il **ruolo** nel problema):

 $b_i > 0$: nodo di offerta

 $b_i < 0$: nodo di domanda

 $b_i = 0$: nodo di passaggio

Problema del Flusso a Costo Minimo: Formulazione

In forma matriciale:
$$\min \underline{c}^T \underline{x}$$

$$A\underline{x} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

Osservazioni:

1. La matrice A è la matrice di incidenza nodo-arco con dimensione $\mathbf{n} \times \mathbf{m}$. Ogni colonna \underline{a}_{ij} è associata all'arco (i,j), ed in particolare abbiamo che: $\underline{a}_{ij} = \underline{e}_i - \underline{e}_j$

(e_i vettore colonna con tutti 0 eccetto un 1 nella posizione i-ma)

2. Il rango di questa matrice è: r(A) = n - 1

Un particolare problema di flusso a costo minimo: Il Problema del Trasporto

m fornitori producono $o_1,...,o_m$ quantità di un certo prodotto

n clienti richiedono d_1, \dots, d_n quantità di prodotto

il prodotto può essere trasportato da ogni fornitore ad ogni cliente

Il grafo sottostante è un grafo bipartito dove i nodi origine (fornitori) hanno solo archi uscenti ed i nodi destinazione (clienti) hanno solo archi entranti.

oxdot Ad ogni arco (*i,j*) è associato un costo c_{ii} positivo.

Problema del Trasporto: Obiettivo

Determinare la quantità di merce da trasportare su ogni arco (i,j) (fornitorecliente) affinchè ogni fornitore i invii la merce o_i prodotta, ogni cliente j riceva la quantità d_i richiesta ed il costo complessivo di trasporto sia minimizzato.

Il problema del trasporto: Formulazione

Le variabili:

$$x_{ij} \ge 0$$
 $i = 1, ..., m; j = 1, ..., n$

la quantità di prodotto trasportata sull'arco (i,j). Sono variabili continue e non negative.

La funzione obiettivo:

il costo del trasporto complessivo

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Il problema del trasporto: Formulazione

I vincoli

 la quantità totale di prodotto fornita da ciascun fornitore deve essere uguale alla disponibilità del fornitore stesso

$$\sum_{j=1}^{n} x_{ij} - 0 = o_i \quad i = 1, ..., m$$
 (1)

 la quantità totale di prodotto ricevuta da ciascun cliente deve essere uguale a quella richiesta

$$0 - \sum_{i=1}^{m} x_{ij} = -d_j \quad j = 1, \dots, n$$
 (2)

Il problema del trasporto: Formulazione

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} - 0 = o_i \qquad i = 1, ..., m \tag{1}$$

$$0 - \sum_{i=1}^{m} x_{ij} = -d_j \quad j = 1, \dots, n$$
 (2)

$$x_{ij} \ge 0$$
 $i = 1, ..., m; j = 1, ..., n$ (3)

Ipotesi di ammissibilità (condizioni di bilanciamento)

Affinchè il problema possa ammettere una soluzione deve essere verificata la seguente condizione sui dati:

$$\sum_{i=1}^{m} o_i - \sum_{j=1}^{n} d_j = 0$$

ossia, la quantità totale di prodotto disponibile deve essere uguale alla richiesta totale del prodotto stesso.

Esistenza di una soluzione ammissibile

Sia
$$x_{ij} = \frac{o_i d_j}{\Delta} \ con \ i = 1, ..., m \ ; j = 1, ..., n \ e \ \Delta = \sum_{i=1}^m o_i = \sum_{j=1}^n d_j$$

Vogliamo dimostrare che la precedente soluzione è ammissibile per il problema del trasporto.

Per farlo bisogna dimostrare che i vincoli del problema siano soddisfatti.

$$\sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} \frac{o_i d_j}{\Delta} = \frac{o_i}{\Delta} \sum_{j=1}^{n} d_j = \frac{o_i}{\Delta} \Delta = o_i$$

$$-\sum_{i=1}^{m} x_{ij} = -\sum_{i=1}^{m} \frac{o_i d_j}{\Delta} = -\frac{d_j}{\Delta} \sum_{i=1}^{m} o_i = -\frac{d_j}{\Delta} \Delta = -d_j$$

Problema del Trasporto: Esempio

Soluzione ottima: $x_{11}=5$, $x_{12}=0$, $x_{21}=2$, $x_{22}=8$

con $z^*=1370$

A partire dal valore ottimo z^* appena calcolato, è possible che, aumentando la domanda e l'offerta (di una stessa quantità), il nuovo valore ottimo z_1^* sia minore di z^* ?

In alcuni casi è possibile!!!

Il Paradosso del Trasporto

Soluzione ottima: $x_{11}=5$, $x_{12}=0$, $x_{21}=2$, $x_{22}=8$

con z*=1370

Soluzione ottima: $x_{11}=6$, $x_{12}=0$, $x_{21}=1$, $x_{22}=9$

 $con z^* = 1160$

Il problema del trasporto

Sottocaso particolare del flusso a costo minimo

- Non esistono nodi di passaggio.
- E' possibile andare da **ogni nodo offerta** (insieme **O**) a **ogni nodo richiesta** (insieme **D**).
- Il grafo sottostante è un grafo bipartito.

$$\min 6x_{14} + 2x_{15} + x_{24} + 4x_{25} + 2x_{34} + 6x_{35}$$
soggetto ai vincoli

$$x_{14} + x_{15} = 5$$

$$x_{24} + x_{25} = 2$$

$$x_{34} + x_{35} = 3$$

$$-x_{14} - x_{24} - x_{34} = -6$$

$$-x_{15} - x_{25} - x_{35} = -4$$

$$x_{ij} \ge 0$$

Il problema del trasporto

Consideriamo la **matrice di incidenza nodo-arco A** per il problema del trasporto

Α	(1	l,4)	(1,5)	(2	2,4)	(2,5)	(3	3,4)	(3,5)
1		1	1		0	0		0	0
2		0	0		1	1		0	0
3		0	0		0	0		1	1
4		-1	0		-1	0		-1	0
5		0	-1		0	-1		0	-1
			-I		ı	-I			[

Struttura della matrice dei vincoli

Rango della matrice dei vincoli

Eliminando l'ultima riga della matrice e selezionando le seguenti m+n-1 colonne: n, 2n, 3n,...,mn,1,2,3,...,n-1 (nell'ordine indicato) otteniamo la seguente sottomatrice quadrata (triangolare superiore):

	n	2n	3n	 mn	1	2		n-1
1	1	0	0	 0	1	1		1
2	0	1	Q	 0	0	0		0
:	0	0	1	 0	0	0		0
	:			\ <u>`</u>				:
m	0	0	0	 1	Q	0		0
1	0	0	0	 0	-1	0		0
:	0	0	0	 0	0	-1	\(0
	:			:				_:
n-1	0	0	0	 0	0	0		-1

Th: Se A è una matrice diagonale o triangolare superiore o triangolare inferiore allora il determinante di A è dato dal prodotto degli elementi sulla diagonale principale.

Quindi la sottomatrice costruita è invertibile ed il rango di A è pari ad m+n-1

Problema del trasporto: Risoluzione

Possiamo rappresentare il problema tramite due tabelle, una relativa alle variabili l'altra relativa ai costi:

									\			
		2						1	2	•••	•••	n
1	x_{11}	<i>x</i> ₁₂	•••	•••	x_{1n}	O_1	1	c_{11}	c_{12}	•••	• • •	C_{1n}
2	x_{21}	x_{22}	•••	•••	x_{2n}	$egin{array}{c} O_1 \ O_2 \ & \cdots \ & O_m \end{array}$	2	$c_{21}^{}$	$c_{22}^{}$	•••	•••	c_{1n} c_{2n} \cdots c_{mn}
•••	•••	• • •	•••	•••	• • •	•••	•••	•••	•••	• • •	•••	•••
•••		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
m	x_{m1}	x_{m2}	•••	•••	\mathcal{X}_{mn}	O_m	m	C_{m1}	C_{m2}	•••	•••	C_{mn}
	$\overline{d_1}$	d_2	• • •	• • •	\overline{d}_n	•						

Utilizziamo queste due tabelle per risolvere il problema

Problema del trasporto: Risoluzione

Definizione (ciclo). In un problema del trasporto, si dice che una successione di variabili della tabella forma un ciclo se è possibile congiungere tali variabili con una successione di segmenti alternativamente orizzontali e verticali, aventi come estremi due di tali variabili. Inoltre partendo da una qualunque di queste variabili è possible ritornare ad essa, tramite questa successione, senza passare mai due volte per una stessa variabile.

Teorema. Condizione necessaria e sufficiente affinchè una soluzione ammissibile per il problema del trasporto sia di base è che essa abbia al più *m+n-1* componenti non nulle tali che nessun loro sottoinsieme formi cicli.

Problema del trasporto: Risoluzione

Per risolvere il problema dobbiamo:

1. Trovare una soluzione di base ammissibile iniziale:

METODO DELL'ANGOLO DI NORD-OVEST

2. Migliorare la soluzione di base ammissibile corrente trovata fino a soddisfare le condizioni di ottimalità:

REGOLA DEL CICLO

Metodo dell'Angolo di Nord-Ovest

Passo 0: Poni x_{ij} =0 per ogni i e per ogni j

Passo 1: *i=1*, *j=1*

Passo 2: x_{ij} =minimo { o_i , d_j } Se il minimo è uguale a o_i allora vai al passo 3 Se il minimo è uguale a d_i allora vai al passo 4

Passo 3: Poni i = i+1; $d_j = d_j - o_i$ e vai al passo 2

Passo 4: Poni j = j+1; $o_i = o_i - d_j$ e vai al passo 2

Metodo dell'Angolo di Nord-Ovest: Esempio

Consideriamo la seguente tabella dei costi:

	1	2	3	4	
1	10	5	6	7	25
2	8	2	7	6	25
3	9	3	4	8	50
	15	20	30	35	

NOTA:

m=3, n=4 quindi il rango della matrice A è r(A)=3+4-1=6. Quindi dobbiamo selezionare 6 variabili per ottenere una soluzione di base

Le iterazioni dell'algoritmo danno luogo alle seguenti tabelle di variabili:

Metodo dell'Angolo di Nord-Ovest: Esempio

Metodo dell'Angolo di Nord-Ovest: Esempio

Le variabili di base della soluzione ammissibile iniziale sono:

$$x_{11}$$
, x_{12} , x_{22} , x_{23} , x_{33} , x_{34}

Ora dobbiamo verificare se questa soluzione è ottima; se non è ottima cerchiamo un'altra soluzione con la regola del ciclo.

Condizioni di ottimalità del simplesso:

$$z_j - c_j \le 0 \quad \forall j \in N$$

$$z_j - c_j = c_B^T A_B^{-1} a_j - c_j \le 0 \quad \forall j \in N$$

Moltiplicatori del simplesso

Coefficiente di costo della variabile x_i

Colonna della matrice corrispondente alla variabile x_j

Duale del problema del trasporto

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$(u_i)$$
 $\sum_{j=1}^n x_{ij} = o_i$ $i = 1, ..., m$ (1)

$$(v_j)$$
 $-\sum_{i=1}^m x_{ij} = -d_j$ $j = 1, ..., n$ (2)

$$x_{ij} \ge 0$$
 $i = 1, ..., m; j = 1, ..., n$ (3)

$$\max \sum_{i=1}^m o_i u_i - \sum_{j=1}^n d_j v_j$$

$$u_i - v_j \le c_{ij} \qquad i=1,\dots,m, \qquad j=1,\dots,n$$

Dobbiamo verificare i valori z_{ij} - c_{ij} per ogni x_{ij} non in base.

Il calcolo di queste differenze si riduce al calcolo delle differenze dei valori delle variabili duali associate ai vincoli:

$$\mathbf{z}_{ij} - \mathbf{c}_{ij} = \mathbf{u}_i - \mathbf{v}_j - \mathbf{c}_{ij}$$

dove:

- u_i è la variabile duale associata all'i-simo vincolo di offerta e
- v_i è la variabile duale associata al j-simo vincolo di domanda.

Consideriamo la matrice dei costi iniziali e la matrice delle variabili corrispondente alla soluzione di base trovata:

	1	2	3	4				2			
1	10	5	6	7	25	1	15	10	0	0	25
2	8	2	7	6	25	2	0	10	15	0	25
3	9	3	6 7 4	8	50	3	0	10 10 0	15	35	50
			30					20			

Le variabili duali sono 7 (4 associate ai vincoli di destinazione: v_1, v_2, v_3, v_4 e 3 associate ai vincoli di origine: u_1, u_2, u_3).

Possiamo determinare questi valori sapendo che $z_{ij} - c_{ij} = 0$ per ogni variabile x_{ii} in base. Per cui otteniamo:

$$x_{11} \Rightarrow u_1 - v_1 = c_{11} = 10$$

 $x_{12} \Rightarrow u_1 - v_2 = c_{12} = 5$
 $x_{22} \Rightarrow u_2 - v_2 = c_{22} = 2$
 $x_{23} \Rightarrow u_2 - v_3 = c_{23} = 7$
 $x_{33} \Rightarrow u_3 - v_3 = c_{33} = 4$
 $x_{34} \Rightarrow u_3 - v_4 = c_{34} = 8$

Questo è un sistema di 6 equazioni in 7 incognite, per cui fissando a zero il valore di una variabile otteniamo i valori delle altre.

Fissando u₁=0 otteniamo:

$$v_1 = -10$$
, $v_2 = -5$, $v_3 = -10$, $v_4 = -14$, $u_2 = -3$, $u_3 = -6$

Da cui otteniamo:

$$z_{13} - c_{13} = u_1 - v_3 - c_{13} = 10 - 6 = 4$$

$$z_{14} - c_{14} = u_1 - v_4 - c_{14} = 14 - 7 = 7$$

$$z_{21} - c_{21} = u_2 - v_1 - c_{21} = -3 + 10 - 8 = -1$$

$$z_{24} - c_{24} = u_2 - v_4 - c_{24} = -3 + 14 - 6 = 5$$

$$z_{31} - c_{31} = u_3 - v_1 - c_{31} = -6 + 10 - 9 = -5$$

$$z_{32} - c_{32} = u_3 - v_2 - c_{32} = -6 + 5 - 3 = -4$$

La soluzione non è ottima, quindi dobbiamo scegliere una variabile non in base da introdurre in base. Facciamo entrare in base la variabile con coefficiente di costo ridotto massimo ossia x_{14} .

Variabile Uscente: Regola del Ciclo

Supponiamo di avere la seguente tabella in cui le x rapresentano le variabili di base e la y la nuova variabile entrante.

La variabile entrante forma un ciclo con le variabili x_{24} , x_{34} , x_{33} . Tra queste dobbiamo selezionarne una da far uscire dalla base. La scelta viene effettuata nel seguente modo:

- 1. Consideriamo le variabili in base che formano un ciclo con la variabile entrante;
- I segni + e sono assegnati in modo alternato negli angoli del ciclo partendo dalla variabile fuori base y a cui viene assegnato il + perchè deve essere incrementata di un nuovo valore ∆ ≥ 0;
- 3. Le variabili di base che si trovano negli angoli del ciclo verranno incrementate di Δ , se hanno segno positivo, e decrementate di Δ , se hanno segno negative;
- 4. La variabile uscente sarà quella che si azzererà per prima.

Nella matrice incrementiamo y, decrementiamo x_{24} , incrementiamo x_{34} e decrementiamo x_{41} . Quanto vale Δ ?

 Δ = minimo{ x_{ii} : x_{ii} è coinvolta nel ciclo con segno meno }

Ritorniamo al nostro esempio. Scegliamo come variabile entrante x_{14} . Il ciclo introdotto da y è disegnato in figura e Δ = 10.

Esce la variabile x₁₂

Poichè $z_{ij} - c_{ij} = 0$ per ogni variabile x_{ij} in base abbiamo:

$$x_{11} \Rightarrow u_1 - v_1 = c_{11} = 10$$
 $x_{14} \Rightarrow u_1 - v_4 = c_{14} = 7$
 $x_{22} \Rightarrow u_2 - v_2 = c_{22} = 2$
 $x_{23} \Rightarrow u_2 - v_3 = c_{23} = 7$
 $x_{33} \Rightarrow u_3 - v_3 = c_{33} = 4$
 $x_{34} \Rightarrow u_3 - v_4 = c_{34} = 8$

Fissato $u_1 = 0$ otteniamo:

$$v_1 = -10$$
, $v_4 = -7$, $u_3 = 1$, $v_3 = -3$, $u_2 = 4$, $v_2 = 2$

$$u_1 = 0$$
 $v_1 = -10$, $v_4 = -7$, $u_3 = 1$, $v_3 = -3$, $u_2 = 4$, $v_2 = 2$

$$z_{12} - c_{12} = u_1 - v_2 - c_{12} = 0 - 2 - 5 = -7$$

$$z_{13} - c_{13} = u_1 - v_3 - c_{13} = 0 + 3 - 6 = -3$$

$$z_{21} - c_{21} = u_2 - v_1 - c_{21} = 4 + 10 - 8 = 6$$

$$z_{24} - c_{24} = u_2 - v_4 - c_{24} = 4 + 7 - 6 = 5$$

$$z_{31} - c_{31} = u_3 - v_1 - c_{31} = 1 + 10 - 9 = 2$$

$$z_{32} - c_{32} = u_3 - v_2 - c_{32} = 1 - 2 - 3 = -4$$

La soluzione non è ottima, quindi dobbiamo scegliere una variabile non in base da introdurre in base. Facciamo entrare in base la variabile con coefficiente di costo ridotto massimo ossia x_{21} .

Quale è il ciclo generato da y? Quanto vale Δ ?

 Δ = 5 e la nuova base è:

_	1	2	3	4	
1	10	0	0	15	0
2	5	20	0	0	0
3	0	0	30	20	0
•	0	0	0	0	_

Metodo del simplesso per il problema del trasporto

Passo 1: Trova una soluzione di base ammissibile con la regola dell' angolo di Nord-Ovest

Passo 2: Calcola z_{ij} - c_{ij} per ogni variabile non in base (con z_{ij} - c_{ij} = u_i - v_j - c_{ij})

- Se z_{ij} $c_{ij} \le 0$ per ogni variabile non in base: STOP;
- Altrimenti seleziona la variabile entrante con il massimo $z_{ij} c_{ij}$;

Passo 3: Determina la variabile uscente applicando la regola del ciclo;

Passo 4: Ricalcola la nuova soluzione di base ammissibile e torna al passo 2;