Optimization Algorithms on Riemannian Manifold

小泉孝弥

立命館大学大学院修士2年

April 12, 2022

- 1 Introduction
- 2 Riemmannian Manifold and Examples
 - Definition and Gradient
 - Examples
- 3 Extension to Riemannian Manifold
 - Retraction

- Riemannian Gradient Decent Method
- 4 Numerical Experiments
 - Minimation of quadratic form
 - Minimation of Brocket cost function

Introduction

本, 発表では制約空間がリーマン多様体となっている非線形連続 最適化問題を扱う.

minimize
$$f(x)$$
 subject to $x \in M$

制約空間がリーマン多様体となっている場合, f を M に制限することで,制約なしの問題と考えることができる。今回は,勾配降下法をリーマン多様体上に拡張し,数値計算を行なった結果を報告する.

- 1 Introduction
- 2 Riemmannian Manifold and Examples
 - Definition and Gradient
 - Examples
- 3 Extension to Riemannian Manifold
 - Retraction

- Riemannian Gradient
 Decent Method
- 4 Numerical Experiments
 - Minimation of quadratic form
 - Minimation of Brocket cost function

Riemmannian Manifold

Definition (Riemmannian Manifold)

M を可微分多様体とする. 任意の接空間 T_xM に内積 $g:T_xM\times T_xM\to\mathbb{R}$ が定まっているとき, 組 (M,g) をリーマン 多様体 (Riemmannian Manifold) といい, g をリーマン計量と呼ぶ.

Definition (Gradient)

(M,g) をリーマン多様体とし, $f: M \to \mathbb{R}$ を可微分写像とする. $x \in M$ について

$$\forall \xi \in T_x M, g(\operatorname{grad} f(x), \xi) = Df(x)[\xi]$$

を満たす一意な $\operatorname{grad} f(x) \in T_x M$ を f の x での勾配 (Gradient) と呼ぶ.

Sphere

Example (Sphere)

自然数 $n \ge 2$ に対して, 球面 $S^{n-1} := \{x \in \mathbb{R}^n \mid x^\top z = 0\}$ は可微 分多様体となる. また, $x \in S^{n-1}$ での接空間 $T_x S^{n-1}$ は

$$T_x S^{n-1} = \{ z \in \mathbb{R}^n \mid x^\top z = 0 \}$$

となる. ここで, $g_x: T_xS^{n-1} \times T_xS^{n-1} \to \mathbb{R}$ を

$$g_{\mathsf{x}}(\xi,\eta) = \xi^{\mathsf{T}}\eta$$

と定めれば, g_x は T_xS^{n-1} の内積となるので, S^{n-1} はリーマン多様体である.

Stiefel Manifold

Example (Stiefel Manifold)

 $X = [x_1x_2 \cdot x_p] \in \mathbb{R}^{n \times p} (n \ge p)$ で, $\{x_i\}_{i=1}^p$ が正規直交系であるような $n \times p$ 行列全体は可微分多様体となる. この多様体をシュティーフェル多様体 (Stiefel Manifold) といい, $\mathsf{St}(p,n)$ と表す. すなわち

$$\operatorname{St}(p,n) = \{X \in \mathbb{R}^{n \times p} \mid X^{\top}X = \mathbb{I}_p\}.$$

である.

 $X \in St(p, n)$ での接空間 $T_X St(p, n)$ は,

$$T_X \operatorname{St}(p, n) = \left\{ Z \in \mathbb{R}^{n \times p} \mid X^T Z + Z^T X = 0 \right\}$$
$$= \left\{ X\Omega + X_{\perp} K \mid \Omega \in \operatorname{Skew}(p), K \in \mathbb{R}^{(n-p) \times p} \right\}$$

となる. ここで $\mathsf{Skew}(p) = \{\Omega \in \mathbb{R}^{p \times p} \mid \Omega^\top = -\Omega\}$ であり, X_\bot は $\mathsf{span}(X)^\bot = \mathsf{span}(X_\bot)$ を満たす $n \times (n-p)$ 行列である. $g_X : T_X \mathsf{St}(p,n) \times T_X \mathsf{St}(p,n) \to \mathbb{R}$ を,

$$g_X(\xi,\eta) = \operatorname{tr}(\xi^{\top}\eta)$$

と定めれば, g_X は内積となるので, St(p, n) はリーマン多様体である.

Introduction

- Introduction
- Riemmannian Manifold and **Examples**
 - Definition and Gradient
 - Examples
- 3 Extension to Riemannian Manifold
 - Retraction

- Riemannian Gradient
- 4 Numerical Experiments
 - Minimation of quadratic
 - Minimation of Brocket

issue of extension

例として、勾配降下法をリーマン多様体に拡張する. その際に, 勾配の部分をリーマン多様体上の勾配に変更するだけでは, リーマン多様体からはみ出てしまうため, 制約条件を満たすことが出来ない. そこで, はみ出てしまった点をリーマン多様体に戻す写像を考えることで, 制約を満たす点列 $\{x_k\}$ を得ることができる.

Retraction

リーマン多様体 M に対して, 接束を $TM = \bigcup_{x \in M} T_x M$ と表し,

 $R: TM \to M$ の $T_x M$ への制限を $R_x: T_x M \to M$ と表す.

Definition (Retraction)

M をリーマン多様体, $R: TM \to M$ を C^{∞} 関数とする. 任意の $x \in M$ に対して, $R_x: T_xM \to M$ が以下の 2つの条件を満たすとき, R を M 上のレトラクション (Retraction) と呼ぶ.

- $DR_x(0_x) = id_{T_xM}$

Riemannian Gradient Decent

M をリーマン多様体, $R:TM \to M$ をレトラクションとする. リーマン多様体上の勾配降下法 (RGD) を以下のように設計する.

Algorithm 1 Riemannian Gradient Decent(RGD)

Require: f: differentiable function on M **Require:** 0 < t < 1: $x \leftarrow x_0 \in M$ while x not converged do $x \leftarrow R_x(x - t \operatorname{grad} f(x))$ end while
return x

- 1 Introduction
- 2 Riemmannian Manifold and Examples
 - Definition and Gradient
 - Examples
- 3 Extension to Riemannian Manifold
 - Retraction

- Riemannian Gradient Decent Method
- 4 Numerical Experiments
 - Minimation of quadratic form
 - Minimation of Brocket cost function

References

 P.-A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.