Book Recommender using NLP

Carsten Lydeking

Zealand Business College

Oral Exam – AI and ML, 4th Semester

Motivation and Problem

- ► Growing privacy and cost concerns with cloud-based systems
- ► Traditional systems require user profiles and data collection
- ▶ Goal: Build a fully offline, content-based book recommender
- Research Question:

How can a local ML model recommend books based on natural language descriptions?

▶ Key Requirements: No external APIs, no user tracking, semantic understanding

Core Components:

- ▶ Data Pipeline: Clean & augment book metadata
- ► Category Inference: Zero-shot classification + fallback rules
- ► Semantic Embedding: MiniLM sentence transformers
- ▶ Vector Search: FAISS similarity matching
- ► Local UI: Streamlit interface

Key Innovation: Fully local semantic search without cloud dependencies

Data Quality Challenges:

- ► Started with 6,800 books from multiple sources
- Issues found:
 - Missing author/category information
 - ∨ Very short descriptions (< 9 words)
 </p>
 - ▶ Inconsistent categorization across sources

Data Engineering Solutions:

- ► API enrichment: OpenLibrary & Google Books
- ▶ Quality filtering: Remove inadequate descriptions
- ► Final dataset: 5,160 high-quality books

Data inconsistencies across sources required systematic cleaning and validation

Two-Tier Classification Approach:

- ▶ Primary: Zero-shot classification with BART-MNLI
 - No training data required
 - ▶ 13 predefined book categories
 - Confidence scoring for predictions
- ► Fallback: Rule-based keyword matching
 - ▶ When confidence < threshold</p>
 - ▶ Genre-specific keyword patterns

Quality Control:

- ▶ Description length ≥ 200 chars
- ► Average confidence ≥ 0.2
- ▶ Maximum confidence ≥ 0.4

Results focus on high-confidence predictions rather than perfect recall across all categories

Sentence Embedding with MiniLM:

- ► Model: all-MiniLM-L6-v2
- ► Input format:
 "Title: ... Author: ... Description: ..."
- ▶ Output: 384-dimensional vectors
- Advantage: Semantic similarity beyond keywords

Vector Search with FAISS:

- ▶ Index: 5,160 book embeddings
- ► Search: L2 distance (exact search)
- ▶ Performance: < 10ms query time
- ▶ Local: No external dependencies

End-to-end semantic search in < 200ms

Vector Similarity Search with FAISS

- Used Facebook AI Similarity Search (FAISS) library
- Performs L2 distance search in embedding space
- ► Index built with:
 - \triangleright 5160 book embeddings ($\vec{v} \in \mathbb{R}^{384}$)
 - Exact search (IndexFlatL2)
- At runtime:
 - User query is embedded
 - ▶ Top-k nearest neighbors retrieved
 - ▶ Results shown in UI
- ► Fully local, fast search

Implementation Strengths:

- ► Privacy-preserving by design
- Semantic understanding beyond keyword matching
- ► Lightweight runs on consumer hardware
- ► Modular architecture for easy extension

Current Limitations:

- ▶ No personalization stateless by design
- ▶ Dataset scope 5,160 books vs. commercial scale
- ▶ Cold start problem for new books
- No feedback learning static recommendations

Future Research Directions:

- Hybrid approach: Combine content-based with collaborative filtering
- Better embeddings: Experiment with domain-specific models
- Privacy-preserving personalization: Local user preference learning
- Multi-modal features: Include cover images, genre embeddings

"Demonstrates that local-first ML - or using a more popular term - edge AI, can provide meaningful semantic recommendations without compromising user privacy or requiring cloud infrastructure."

Research Question Answered:

How can a local ML model recommend books based on natural language descriptions?

Solution Implemented:

- Semantic embeddings with MiniLM transformers
- ► Vector similarity search using FAISS
- ► Zero-shot classification for categorization
- Privacy-first design fully local processing
- Key Contributions: Proof-of-concept that modern NLP enables practical, privacy-preserving recommendation systems

System Architecture:

Impact & Applications:

- Educational tool for privacy-aware ML
- ► Foundation for local-first recommendation systems
- Demonstrates transformer accessibility on consumer hardware

Thank you for your attention!

Questions?

Backup: Fallback Keywords

- ▶ Fallback used when zero-shot model confidence was low
- Example keywords:
 - ▶ Fantasy: magic, wizard, dragon
 - ▶ Science Fiction: space, AI, dystopia
 - ▶ Love: romance, passion, relationship
 - Mystery: detective, clue, crime

Backup: Performance

- ightharpoonup Embedding time per book: pprox 2 ms (batch embedding)
- ightharpoonup Query embedding: pprox 50-200 ms
- ► FAISS search: < 10 ms
- ightharpoonup UI render time: pprox 1-2 seconds (including image loading)
- ▶ All processing fully local on consumer-grade laptop

Example Query 1:

"Books about artificial intelligence and ethics"

Top Results:

- ▶ "The Alignment Problem" Brian Christian
- ▶ "Life 3.0" Max Tegmark
- "Weapons of Math Destruction" Cathy O'Neil

Example Query 2:

"mystery novels with unreliable narrators"

Top Results:

- "Gone Girl" Gillian Flynn
- "The Girl on the Train" Paula Hawkins
- ▶ "In the Woods" Tana French

What This Demonstrates:

- ► Semantic understanding beyond keywords
- Abstract concept matching (ethics, unreliable narrators)
- ▶ Cross-genre discovery potential

Evaluation Challenges:

- No ground truth for "perfect" recommendations
- Subjective nature of book preferences
- Solution: Focus on semantic relevance rather than prediction accuracy

Discussion Starters:

- How could one evaluate recommendation quality
- Books with sparse descriptions
- Could this approach work for other domains?