

Philosopher, scientist, mathematician

Considered father of western philisophy

Cogito ergo sum I think therefore I am

Divide each difficulty into as many parts as necessary to solve it

Each problem I solved became a rule I later used to solve other problems

René Descartes 1596 - 1650

A good mind is not enough, the main thing is to use it well

To improve the mind, learn less and contemplate more

Cartesian Coordinates

Tuples and Ordered Pairs

Set

Order and repetition do not matter $\{a, b, c\} = \{b, c, a\}$

Tuple

Both order and repetition matter

 $(a, b, c) \neq (b, c, a)$

 $(a, a, a) \neq (a)$

n-tuple Tuple with n elements

 $(a_1, a_2, ..., a_n)$

Ordered pair

Also real interval Tell from context

Cartesian Products

The cartesian product of A and B is the set $A \times B$ of ordered pairs (a, b) where $a \in A$ and $b \in B$

 $A \times B = \{(a,b): a \in A, b \in B\}$

A × A denoted A²

$$\mathbb{R}^2 = \{ (x,y) \colon x,y \in \mathbb{R} \}$$

Cartesian Plane

A, **B** ⊆ ℝ

 $A \times B \subseteq \mathbb{R}^2$

Rectangle

$$A = [0, 2]$$

$$A \times B = \{ (x, y) : x \in [0, 2], y \in [1, 4] \}$$

Discrete Sets

Similar simpler

$$\{a,b\} \ x \ \{1,2,3\} = \{ (x, y): \ x \in \{a,b\}, \ y \in \{1,2,3\} \}$$

= \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3) \}

1st coordinate vertically, 2nd horizontally

Identities

$$A x \varnothing = \varnothing x A = \varnothing$$

$$Ax(B \cup C) = AxB \cup AxC$$

$$Ax(B \cap C) = AxB \cap AxC$$

$$Ax(B-C) = AxB - AxC$$

Tables

Tables are Cartesian products

Cartesian Product of 3 Sets

A x B

2-dimensional rectangle

AxBxC

3-dimensional "cuboid"

Sequences

Tuples, just without () and sometimes without,

```
\{0,1\}^2 = \{ xy: x, y \in \{0,1\} \} = \{ 00, 01, 10, 11 \}
\{0,1\}^3 = \{ 000, 001, 010, 011, 100, 101, ..., 111 \}
```


Cartesian Product

Use product function in itertools library

```
from itertools import product
Faces = set({'J', 'Q', 'K'})
Suits = { ' \( \phi \) ', ' \( \phi \) '}
for pair in product (Faces, Suits):
 print(pair)
('J', '\\')
('J', '\D')
('Q', '\( \)
('Q', '\( \)
('K', '\)
('K', '\( \)')
```

Cartesian Products

Tuples (a₁,...,a_n) Ordered pairs (a,b)

Sequences

Python product function in itertools library

