В моих с Михаилом докладах были следующие системы доказательств:

- 1. Системы Фреге.
- 2. Игры Пудлака и Баса.

Системы Фреге определялись не нами.

Что такое игра Пудлака и Баса?

Есть два игрока: Павел и Сэм, у них есть тавтология ϕ . Сэм говорит, что знает набор значений переменных, при которм ϕ ложно. Павел пытается уличить Сэма и задаёт ему вопросы про значение произвольных формул от переменных формулы ϕ . Сэм отвечает. Павел уличает Сэма, если он получает непосредственное противоречие, это значит, например, он спрашивал ответы для формул $\phi \lor \psi$, ϕ , ψ , но ответы не сошлись. Деревом игры называется такое двоичное дерево, каждая внутреняя вершина которого помечена формулой, одно из рёбер которого помечено 0, другое 1. В каждом листе должно быть непосредственное противоречие (мы всегда считаем, что есть ответ 0 для исходной формулы ϕ).

Мы рассматриваем формулы, в которых используются только бинарные операции \vee и \wedge и унарная операция \neg .

Это две системы доказательств сводятся друг к другу:

Пемма 1. Система Фреге моделирует исчисление секвенций. Древовидная система Фреге моделирует древовидное исчисление секвенций.

Лемма 2. По доказательству формулы ϕ в системе Фреге размера s можно построить дерево игры Пудлака-Баса высоты O(logs) и размера poly(s), где константа зависит только от правил системы Фреге.

Пемма 3. По дереву игры Пудлака-Баса для формулы ϕ высоты h и размера s можно построить древовидный вывод секвенции $\vdash \phi$ высоты h + O(1) и размера poly(s).

Нижняя оценка для систем Фреге ограниченной глубины:

Теорема 1. Пусть F - система Фреге. Тогда для достаточно больших n для любой глубины d доказательство $\neg PHP_n^{n+1}$ в F имеет размер как минимум $2^{n^{\mu}}$ для любого $\mu < \frac{1}{2}(\frac{1}{5})^{d+c}$, где c - это константа, которая зависит только от систем Фреге.