Random Permutation Codes Lossless Source Coding of Non-Sequential Data

Daniel Severo

Advisors: Ashish Khisti and Alireza Makhzani

October 7, 2024

Outline

- 1. Motivation
- 2. Problem setting
- 3. Random Order Coding
- 4. Multisets as Equivalence Classes
- 5. Combinatorial Random Variables
- 6. Applications

Papers

	Bits-Back Coding.
(Under Review)	<u>Severo</u> , Su, Liu, Johnson, Karrer, Van den Broeck, Muckley, Ullrich. <i>Enhancing and Evaluating Probabilistic Circuits for High-Resolution Lossless Image Compression</i> .
(NeurIPS 2024)	Kunze, <u>Severo</u> , Zani, van de Meent, Townsend. <i>Entropy Coding of Large Unordered Data Structures</i> .
(ICLR 2024)	$\underline{\textbf{Severo}}, \textbf{Theis}, \textbf{Ball\'e}. \ \textit{The Unreasonable Effectiveness of Linear Prediction as a Perceptual Metric}. \\ \textbf{https://arxiv.org/abs/2310.05986}$
(ICLR 2024)	Kunze, <u>Severo</u> , Zani, van de Meent, Townsend. <i>Entropy Coding of Unordered Data Structures</i> . Oral (top 12% of accepted papers at ICML NCW Workshop). https://openreview.net/forum?id=afQuNt3Ruh
(ICML 2023)	Neklyudov, Brekelmans, <u>Severo</u> , Makhzani. Action Matching: A Variational Method for Learning Stochastic Dynamics from Samples. https://arxiv.org/abs/2210.06662
(ICML 2023)	<u>Severo</u> , Townsend, Khisti, Makhzani. <i>Random Edge Coding: One-Shot Bits-Back Coding of Large Labeled Graphs</i> . https://arxiv.org/abs/2305.09705
(JSAIT 2023)	<u>Severo</u> , Townsend, Khisti, Makhzani, Ullrich. <i>Compressing Multisets with Large Alphabets using Bits-Back Coding.</i> Best Paper Award at NeurIPS DGM Workshop 2021. https://arxiv.org/abs/2107.09202
(ICASSP 2022)	Domanovitz, <u>Severo</u> , Khisti, Yu. <i>Data-Driven Optimization for Zero-Delay Lossy Source Coding with Side Information</i> . https://ieeexplore.ieee.org/document/9747823

(ICML 2021) Ruan*, Ullrich*, <u>Severo*</u>, Townsend, Khisti, Doucet, Makhzani, Maddison. *Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding*. <u>Long Talk (top 15% of accepted papers)</u>.

(BSC 2021) Severo, Elad Domanovitz, Ashish Khisti. Regularized Classification-Aware Quantization.

https://arxiv.org/abs/2102.11086

https://arxiv.org/abs/2107.09716

(NeurIPS 2024) Severo, Khisti, Makhzani. Random Cycle Coding: Lossless Compression of Cluster Assignments via

Papers

(NeurIPS 2024)	<u>Severo</u> , Khisti, Makhzani. Random Cycle Coding: Lossless Compression of Cluster Assignments via Bits-Back Coding.
(Under Review)	<u>Severo</u> , Su, Liu, Johnson, Karrer, Van den Broeck, Muckley, Ullrich. <i>Enhancing and Evaluating Probabilistic Circuits for High-Resolution Lossless Image Compression</i> .
(NeurIPS 2024)	Kunze, <u>Severo</u> , Zani, van de Meent, Townsend. <i>Entropy Coding of Large Unordered Data Structures</i> .
(ICLR 2024)	$\underline{\textbf{Severo}}, \textbf{ Theis}, \textbf{ Ball\'e}. \ \textit{The Unreasonable Effectiveness of Linear Prediction as a Perceptual Metric}. \\ \textbf{https://arxiv.org/abs/2310.05986}$
(ICLR 2024)	Kunze, <u>Severo</u> , Zani, van de Meent, Townsend. <i>Entropy Coding of Unordered Data Structures</i> . Oral (top 12% of accepted papers at ICML NCW Workshop) . https://openreview.net/forum?id=afQuNt3Ruh
(ICML 2023)	Neklyudov, Brekelmans, <u>Severo</u> , Makhzani. Action Matching: A Variational Method for Learning Stochastic Dynamics from Samples. https://arxiv.org/abs/2210.06662
(ICML 2023)	<u>Severo</u> , Townsend, Khisti, Makhzani. <i>Random Edge Coding: One-Shot Bits-Back Coding of Large Labeled Graphs</i> . https://arxiv.org/abs/2305.09705
(JSAIT 2023)	
	Coding. Best Paper Award at NeurIPS DGM Workshop 2021. https://arxiv.org/abs/2107.09202
(ICASSP 2022)	Domanovitz, Severo, Khisti, Yu. Data-Driven Optimization for Zero-Delay Lossy Source Coding with Side Information. https://ieeexplore.ieee.org/document/9747823
(ICASSP 2022) (ICML 2021)	Domanovitz, <u>Severo</u> , Khisti, Yu. <i>Data-Driven Optimization for Zero-Delay Lossy Source Coding with Side Information</i> . https://ieeexplore.ieee.org/document/9747823

Motivation

Non-sequential data is everywhere

Given data modelled by a discrete random variables $X \sim P_X$, with a large alphabet \mathcal{X} ,

Given data modelled by a discrete random variables $X \sim P_X$, with a large alphabet \mathcal{X} , find a lossless code

$$C: \mathcal{X} \mapsto \{0, 1, 00, 01, \dots\},\$$

Given data modelled by a discrete random variables $X \sim P_X$, with a large alphabet \mathcal{X} , find a lossless code

$$C: \mathcal{X} \mapsto \{0, 1, 00, 01, \dots\},\$$

such that the **single-letter** code-length is close to the information content for all $x \in \mathcal{X}$

$$|C(x)| \approx -\log P_X(x).$$

Given data modelled by a discrete random variables $X \sim P_X$, with a large alphabet \mathcal{X} , find a lossless code

$$C: \mathcal{X} \mapsto \{0, 1, 00, 01, \dots\},\$$

such that the **single-letter** code-length is close to the information content for all $x \in \mathcal{X}$

$$|C(x)| \approx -\log P_X(x).$$

Later, X will be a non-sequential data type (e.g., set, graph).

Given data modelled by a discrete random variables $X \sim P_X$, with a large alphabet \mathcal{X} , find a lossless code

$$C: \mathcal{X} \mapsto \{0, 1, 00, 01, \dots\},\$$

such that the **single-letter** code-length is close to the information content for all $x \in \mathcal{X}$

$$|C(x)| \approx -\log P_X(x).$$

Later, X will be a non-sequential data type (e.g., set, graph). Assume $\mathcal X$ is too large to be held in memory.

Random Order Coding

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X=\mathcal{M}=\{Z_1,\ldots,Z_n\},$$

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X = \mathcal{M} = \{Z_1, \dots, Z_n\},\$$

with single-letter code-length

$$C(\mathcal{M}) \approx -\log P_{\mathcal{M}}(\mathcal{M}) = -\log P_{Z^n}(z^n) - \log M,$$
 (1)

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X=\mathcal{M}=\{Z_1,\ldots,Z_n\},$$

with single-letter code-length

$$C(\mathcal{M}) \approx -\log P_{\mathcal{M}}(\mathcal{M}) = -\log P_{Z^n}(z^n) - \log M,$$
 (1)

where the constant M is known as the multinomial coefficient of ${\mathcal M}$

$$M = \frac{n!}{\prod_{z \in \mathcal{Z}} \mathcal{M}(z)!} \le n!. \tag{2}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until ${\mathcal M}$ is depleted.

 $\{a,b,b\}$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until ${\cal M}$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_Z(b)}$$

- 1. Decode sample (w.o. replacement) from \mathcal{M}
- 2. Encode sampled element using P_Z until ${\mathcal M}$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_Z(b)} - \log \frac{1}{1/2}$$

- 1. Decode sample (w.o. replacement) from \mathcal{M}
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_Z(\mathtt{b})} - \log \frac{1}{1/2} + \log \frac{1}{P_Z(\mathtt{a})}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until ${\mathcal M}$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_Z(\mathtt{b})} - \log \frac{1}{1/2} + \log \frac{1}{P_Z(\mathtt{a})} - \log \frac{1}{1/1}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon - \log \frac{1}{2/3} + \log \frac{1}{P_Z(\mathbf{b})^2} - \log \frac{1}{1/2} + \log \frac{1}{P_Z(\mathbf{a})} - \log \frac{1}{1/1}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until ${\cal M}$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_Z(\mathbf{b})^2 P_Z(\mathbf{a})} - \log \frac{1}{(2/3)(1/2)(1/1)}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_{Z^n}(\mathsf{bab})} - \log M$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until $\mathcal M$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_{\mathcal{M}}(\{\mathtt{a},\mathtt{b},\mathtt{b}\})}$$

- 1. Decode sample (w.o. replacement) from ${\mathcal M}$
- 2. Encode sampled element using P_Z until ${\cal M}$ is depleted.

$$L(\mathcal{M}) = \varepsilon + \log \frac{1}{P_{\mathcal{M}}(\{\mathtt{a},\mathtt{b},\mathtt{b}\})} \qquad \mathsf{Complexity:} \, \mathcal{O}(n \cdot P_Z + n \cdot \log m)$$

How many initial bits ε do we need?

How many initial bits ε do we need?

Let z^n be the sequence generated by ROC (e.g., $z^n = bab$)

How many initial bits ε do we need?

Let z^n be the sequence generated by ROC (e.g., $z^n = bab$)

Problem: the stack can deplete at any decoding/sampling step!

How many initial bits ε do we need?

Let z^n be the sequence generated by ROC (e.g., $z^n = bab$)

Problem: the stack can deplete at any decoding/sampling step!

However, the average increase at any step is positive:

$$\mathbb{E}\left[\Delta_{i} \mid \mathcal{M}\right] = \mathbb{E}\left[\log P_{Z_{i} \mid \overline{\mathcal{M}}_{i}}(Z_{i} \mid \overline{\mathcal{M}}_{i}) - \log P_{Z}(Z_{i}) \middle| \mathcal{M}\right]$$
 (3)

$$= D_{\mathrm{KL}}(P_{Z_i \mid \overline{\mathcal{M}}_i}(\cdot \mid \overline{\mathcal{M}}_i) \parallel P_Z) \tag{4}$$

$$\geq 0 \tag{5}$$

Multisets as Equivalence Classes

Multisets as Equivalence Classes

Recall the problem statement ...

Multisets as Equivalence Classes

Recall the problem statement ...

Given a sequence of i.i.d. discrete random variables

$$Z^n=(Z_1,\ldots,Z_n),$$

perform lossless coding of the multiset

$$X = \mathcal{M} = \{Z_1, \dots, Z_n\},\$$

Recall the problem statement ...

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X=\mathcal{M}=\{Z_1,\ldots,Z_n\},$$

Let \mathbb{Z}^n be the alphabet of \mathbb{Z}^n .

Recall the problem statement ...

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X = \mathcal{M} = \{Z_1, \dots, Z_n\},\$$

Let \mathbb{Z}^n be the alphabet of \mathbb{Z}^n .

Partition \mathbb{Z}^n into subsets $x \subset \mathbb{Z}^n$ of equivalent sequences.

Recall the problem statement ...

Given a sequence of i.i.d. discrete random variables

$$Z^n = (Z_1, \dots, Z_n),$$

perform lossless coding of the multiset

$$X=\mathcal{M}=\{Z_1,\ldots,Z_n\},\,$$

Let \mathbb{Z}^n be the alphabet of \mathbb{Z}^n .

Partition \mathbb{Z}^n into subsets $x \subset \mathbb{Z}^n$ of equivalent sequences.

Each x can be mapped uniquely to some \mathcal{M} such that

$$P_{\mathcal{M}}(\mathcal{M}) = P_X(x).$$

Formally, ...

Given any two $z^n, w^n \in \mathcal{Z}^n$,

Formally, ...

Given any two $z^n, w^n \in \mathcal{Z}^n$, let $z^n \sim w^n$ if, and only if, there exists a permutation σ such that

Formally, ...

Given any two $z^n, w^n \in \mathcal{Z}^n$, let $z^n \sim w^n$ if, and only if, there exists a permutation σ such that

$$(z_1,\ldots,z_n)=(w_{\sigma(1)},\ldots,w_{\sigma(n)}).$$

Formally, ...

Given any two $z^n, w^n \in \mathcal{Z}^n$, let $z^n \sim w^n$ if, and only if, there exists a permutation σ such that

$$(z_1,\ldots,z_n)=(w_{\sigma(1)},\ldots,w_{\sigma(n)}).$$

In the equivalence class view, a multiset $X=\mathcal{M}$ is a random variable with alphabet equal to the **quotient set**: $\mathcal{X}=\mathcal{Z}^n/\sim$.

Let $\mathcal{Z} = \{ \blacktriangle, \bigstar, \square \}, n = 3.$

Let $\mathcal{Z} = \{ \blacktriangle, \bigstar, \square \}, n = 3.$

Let
$$\mathcal{Z} = \{ \blacktriangle, \bigstar, \square \}, n = 3.$$

Multiset	Equivalence class in $\mathcal{Z}^3/\!\!\sim$
$\{f A, f A, f A\}$	$\{\blacktriangle\blacktriangle\}$
$\{\bigstar, \bigstar, \bigstar\}$	{★★★ }
$\{\Box,\Box,\Box\}$	$\{\Box\Box\Box\}$

Let
$$\mathcal{Z} = \{ \blacktriangle, \bigstar, \square \}, n = 3.$$

Multiset	Equivalence class in $\mathcal{Z}^3/\!\!\sim$
$\overline{\{f A, f A, f A\}}$	$\overline{\{ \blacktriangle \blacktriangle \}}$
$\{\bigstar, \bigstar, \bigstar\}$	{★★★}
$\{\Box,\Box,\Box\}$	$\{\Box\Box\Box\}$
$\{lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle$	$\{\blacktriangle \blacktriangle \bigstar, \blacktriangle \bigstar \blacktriangle, \bigstar \blacktriangle \blacktriangle\}$

Let
$$\mathcal{Z} = \{ \blacktriangle, \bigstar, \square \}, n = 3.$$

Multiset	Equivalence class in $\mathcal{Z}^3/\!\!\sim$
$\{lacktrlacklacklacklacklacklacklacklack$	$\{lacklacklacklacklacklacklacklack$
$\{\bigstar, \bigstar, \bigstar\}$	{★★★}
$\{\Box,\Box,\Box\}$	$\{\Box\Box\Box\}$
$\{lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle$	$\{lacktriangle lacktriangle lacktriangle$
$\{lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle$	$\{lacklacklacklacklacklacklacklack$
$\{lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle,lacktriangle$	$\{ extstyle \bigstar \bigstar, \bigstar \bigstar \bigstar \}$
$\{\bigstar, \bigstar, \Box\}$	$\{\bigstar \bigstar \Box, \bigstar \Box \bigstar, \Box \bigstar \bigstar\}$
$\{\bigstar,\Box,\Box\}$	$\{\bigstar\Box\Box,\Box\bigstar\Box,\Box\Box\bigstar\}$
$\{lacktriangle, \Box, \Box\}$	$\{ \blacktriangle \Box \Box, \Box \blacktriangle \Box, \Box \Box \blacktriangle \}$
$\{lacktriangle,lacktriangle,lacktriangle,\Box\}$	$\{ \blacktriangle \bigstar \Box, \blacktriangle \Box \bigstar, \bigstar \blacktriangle \Box, \bigstar \Box \blacktriangle, \Box \blacktriangle \bigstar, \Box \bigstar \blacktriangle \}$

Let $[z^n] \subset \mathcal{Z}^n$ be the equivalence class of z^n .

Let $[z^n] \subset \mathcal{Z}^n$ be the equivalence class of z^n .

For any $[z^n] \subset \mathcal{Z}^n$ the multinomial coefficient M is equal $|[z^n]|$.

Let $[z^n] \subset \mathcal{Z}^n$ be the equivalence class of z^n .

For any $[z^n] \subset \mathcal{Z}^n$ the multinomial coefficient M is equal $|[z^n]|$.

The information content of the multiset \mathcal{M} ,

$$-\log P_{\mathcal{M}}(\mathcal{M}) = -\log P_{Z^n}(z^n) - \log M,$$

Let $[z^n] \subset \mathcal{Z}^n$ be the equivalence class of z^n .

For any $[z^n] \subset \mathcal{Z}^n$ the multinomial coefficient M is equal $|[z^n]|$.

The information content of the multiset \mathcal{M} ,

$$-\log P_{\mathcal{M}}(\mathcal{M}) = -\log P_{Z^n}(z^n) - \log M,$$

can be rewritten as,

$$-\log P_X([z^n]) = -\log P_{Z^n}(z^n) - \log|[z^n]|.$$

Different \sim result in different non-sequential objects.

 $\label{eq:different} \mbox{Different non-sequential objects}.$

Restricting the class of \sim allows for efficient algorithms! (see thesis)

Restricting the class of \sim allows for efficient algorithms! (see thesis)

 \sim' is finer than \sim if any eq. class under \sim' is a subset of some eq. class under \sim

Restricting the class of \sim allows for efficient algorithms! (see thesis)

 \sim' is finer than \sim if any eq. class under \sim' is a subset of some eq. class under \sim

Definition (Combinatorial Random Variables - CRVs)

A CRV is a random variable with alphabet equal to the quotient set $\mathcal{Z}^n/\!\!\sim$

Restricting the class of \sim allows for efficient algorithms! (see thesis)

 \sim' is finer than \sim if any eq. class under \sim' is a subset of some eq. class under \sim

Definition (Combinatorial Random Variables - CRVs)

A CRV is a random variable with alphabet equal to the quotient set \mathbb{Z}^n/\sim , where the equivalence relation is *finer* than that of multisets.

Random Permutation Codes optimally code CRVs.

Random Permutation Codes optimally code CRVs.

Sets and multisets \mapsto Random Order Coding (ROC)

Random Permutation Codes optimally code CRVs.

Sets and multisets \mapsto Random Order Coding (ROC)

Graphs, hyper-graphs, multigraphs \mapsto Random Edge Coding (REC)

Random Permutation Codes optimally code CRVs.

Sets and multisets \mapsto Random Order Coding (ROC)

Graphs, hyper-graphs, multigraphs \mapsto Random Edge Coding (REC)

Partitions and cluster assignments \mapsto Random Cycle Coding (RCC)

Savings, compared to coding a sequence, are bounded by

$$\log|[z^n]| \le \log n!$$

Savings, compared to coding a sequence, are bounded by

$$\log|[z^n]| \le \log n!$$

This quantity is non-negligible if the cost of coding Z_i is small.

Savings, compared to coding a sequence, are bounded by

$$\log|[z^n]| \le \log n!$$

This quantity is non-negligible if the cost of coding Z_i is small.

Most fruitful application so far: compressing vector database indices.

Savings, compared to coding a sequence, are bounded by

$$\log|[z^n]| \le \log n!$$

This quantity is non-negligible if the cost of coding Z_i is small.

Most fruitful application so far: compressing vector database indices. e.g., FAISS: https://github.com/facebookresearch/faiss

Savings, compared to coding a sequence, are bounded by

$$\log|[z^n]| \le \log n!$$

This quantity is non-negligible if the cost of coding Z_i is small.

Most fruitful application so far: compressing vector database indices. e.g., FAISS: https://github.com/facebookresearch/faiss Between 15% and 70% savings in realistic use cases!

Random Edge Coding

We want to losslessly compress a (large) labeled graph ${\cal G}$ at the one-shot rate

 $\log 1/P(G)$

Random Edge Coding

We want to losslessly compress a (large) labeled graph ${\cal G}$ at the one-shot rate

$$\log 1/P(G)$$

Graphs can be represented as sequences of vertices

We want to losslessly compress a (large) labeled graph ${\cal G}$ at the one-shot rate

$$\log 1/P(G)$$

Graphs can be represented as sequences of vertices

We want to losslessly compress a (large) labeled graph ${\cal G}$ at the one-shot rate

$$\log 1/P(G)$$

Graphs can be represented as sequences of vertices

Equivalent sequences $\mathbf{v} \sim \mathbf{w}$ map to the same graph

$$53\ 33 \sim 33\ 53 \sim 33\ 35 \sim 35\ 33$$

Graphs are equivalence classes over sequences

Definition (Graphs as Equivalence Classes)

Let $V = \{1, \dots, n\}$ be the set of nodes,

Graphs are equivalence classes over sequences

Definition (Graphs as Equivalence Classes)

Let $V=\{1,\ldots,n\}$ be the set of nodes, and $\mathbf{v},\mathbf{w}\in V^{2k}$ sequences of 2k elements.

Graphs are equivalence classes over sequences

Definition (Graphs as Equivalence Classes)

Let $V=\{1,\ldots,n\}$ be the set of nodes, and ${\bf v},{\bf w}\in V^{2k}$ sequences of 2k elements. A graph is an element of V^{2k}/\sim ,

Graphs are equivalence classes over sequences

Definition (Graphs as Equivalence Classes)

Let $V=\{1,\ldots,n\}$ be the set of nodes, and $\mathbf{v},\mathbf{w}\in V^{2k}$ sequences of 2k elements. A graph is an element of V^{2k}/\sim , where $\mathbf{v}\sim\mathbf{w}$ if we can permute edges, and vertices within an edge, of \mathbf{v} to get \mathbf{w} .

Graphs are equivalence classes over sequences

Definition (Graphs as Equivalence Classes)

Let $V = \{1, \ldots, n\}$ be the set of nodes, and $\mathbf{v}, \mathbf{w} \in V^{2k}$ sequences of 2k elements. A graph is an element of V^{2k}/\sim , where $\mathbf{v} \sim \mathbf{w}$ if we can permute edges, and vertices within an edge, of \mathbf{v} to get \mathbf{w} .

If $P(\mathbf{v}) = P(\mathbf{w})$ for any $v \sim w$,

If
$$P(\mathbf{v}) = P(\mathbf{w})$$
 for any $v \sim w$, then
$$\log 1/P(G) = \log 1/P(\mathbf{v}) - \underbrace{\log \left(\# \text{ of equivalent sequences}\right)}_{\text{excess bits}}$$

If
$$P(\mathbf{v}) = P(\mathbf{w})$$
 for any $v \sim w$, then
$$\log 1/P(G) = \log 1/P(\mathbf{v}) - \underbrace{\log \left(\# \text{ of equivalent sequences}\right)}_{\text{excess bits}}$$

Given \mathbf{v} , how many equiv. seqs. are there for non-simple graphs?

If
$$P(\mathbf{v})=P(\mathbf{w})$$
 for any $v\sim w$, then
$$\log 1/P(G)=\log 1/P(\mathbf{v})-\underbrace{\log \left(\#\text{ of equivalent sequences}\right)}_{\text{excess bits}}$$

Given v, how many equiv. seqs. are there for non-simple graphs?

We can,

▶ Permute edges $\rightarrow |E|!$

If
$$P(\mathbf{v})=P(\mathbf{w})$$
 for any $v\sim w$, then
$$\log 1/P(G)=\log 1/P(\mathbf{v})-\underbrace{\log \left(\#\text{ of equivalent sequences}\right)}_{\text{excess bits}}$$

Given v, how many equiv. seqs. are there for non-simple graphs?

We can,

- ▶ Permute edges $\rightarrow |E|!$
- lacktriangle Permute vertices within an edge $o 2^{|E|}$

If
$$P(\mathbf{v})=P(\mathbf{w})$$
 for any $v\sim w$, then
$$\log 1/P(G)=\log 1/P(\mathbf{v})-\underbrace{\log \left(\#\text{ of equivalent sequences}\right)}_{\text{excess bits}}$$

Given v, how many equiv. seqs. are there for non-simple graphs?

We can,

- ▶ Permute edges $\rightarrow |E|!$
- ightharpoonup Permute vertices within an edge $ightarrow 2^{|E|}$

Excess bits = $\log(|E|!) + |E|$

What are good choices for $P(\mathbf{v})$?

What are good choices for $P(\mathbf{v})$?

P'olya's Urn
ightarrow 0-parameters, fast, and well-studied

What are good choices for $P(\mathbf{v})$?

 $\textit{P\'olya's Urn} \rightarrow 0\text{-parameters, fast, and well-studied}$

For $\mathbf{v} = (v_1, v_2, \dots, v_{2k})$

What are good choices for $P(\mathbf{v})$?

P'olya's Urn
ightarrow 0-parameters, fast, and well-studied

For
$$\mathbf{v} = (v_1, v_2, \dots, v_{2k})$$

$$P(v_{i+1} | v^i) \propto d_{v^i}(v_{i+1}) + 1,$$
 (6)

where $d_{v^i}(v) = \sum_{j=1}^i 1\{v = v_j\}$ is the count of vertex v in v^i .

What are good choices for $P(\mathbf{v})$?

P'olya's Urn
ightarrow 0-parameters, fast, and well-studied

For $\mathbf{v} = (v_1, v_2, \dots, v_{2k})$

$$P(v_{i+1} | v^i) \propto d_{v^i}(v_{i+1}) + 1,$$
 (6)

where $d_{v^i}(v) = \sum_{j=1}^i 1\{v = v_j\}$ is the count of vertex v in v^i .

The joint distribution can be expressed as

$$P(\mathbf{v}) = \frac{1}{n^{\uparrow k}} \prod_{v \in [n]} d_{v^k}(v)!, \tag{7}$$

	Social Networks				Others	
	YouTube	FourSq.	Digg	GOWALLA	SKITTER	DBLP
# Nodes	3,223,585	639,014	770,799	196,591	1,696,415	317,080
# Edges	9,375,374	3,214,986	5,907,132	950,327	11,095,298	1,049,866
$10^6 \times \text{Density}$	1.8	15.8	19.8	50.2	7.7	20.9
(Ours) PU w/ REC	15.19	9.96	10.62	12.19	14.26	15.92
POOL COMP.	15.38	9.23	11.59	11.73	7.45	8.78
Slashburn	17.03	10.67	9.82	11.83	12.75	12.62
Backlinks	17.98	11.69	12.56	15.56	11.49	10.79
List Merging	15.80	9.95	11.92	14.88	8.87	14.13