1^a PROVA DE ÁLGEBRA LINEAR

NOME DO ALUNO_____TURMA_____

1^a Questão (2 pontos)

O sistema de equações lineares (*)
$$\begin{cases} x & +2z = 3 \\ 2x & +y & +3z = -2 \\ 4x & +y & +8z = 1 \end{cases}$$

crito como produto matricial da forma AX = B.

Podemos resolvê-lo efetuando a seguinte operação: $X=A^{-1}B,$ desde que A^{-1} exista. Para isto:

- a) Escreva o sistema (*) na forma AX = B.
- b) Mostre que existe A^{-1} , usando determinante.
- c) Encontre A^{-1} .
- d) Resolva o sistema efetuando $X = A^{-1}B$

2^a Questão (2 pontos)

Um comerciante de café vende três misturas de grãos, da seguinte forma: café angolano café brasileiro café colombiano

Mistura da Casa	150 g	50 g	$300~\mathrm{g}$
Mistura Gourmet	50 g	$350 \mathrm{~g}$	100 g
Mistura Especial	100 g	200 g	200 g

O comerciante tem à sua disposição 15 kg de café angolano, 15 kg de café brasileiro e 30 kg de café colombiano.

Suponha que um pacote da Mistura da Casa dê um lucro de R\$ 0,50, um pacote de Mistura Especial dê lucro de R\$ 1,50 e um pacote de Mistura Gourmet produza um lucro de R\$ 2,00.

Quantos pacotes de cada tipo o comerciante deve preparar se ele quer usar todo seu estoque ${\bf e}$ maximizar seu lucro?

3^a Questão (2 pontos)

Seja
$$W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - 2y = 0 \text{ e } t + 3z = 0\}$$
 um subconjunto do \mathbb{R}^4 .

- a) W é subespaço do \mathbb{R}^4 ?
- b) Determine dois subconjuntos distintos geradores de W.

4^a Questão (2 pontos)

Encontre um subconjunto dos vetores $v_1=(1,1,2,4), v_2=(0,1,-3,-2), v_3=(-2,0,-10,-12), v_4=(-1,-2,6,3)$ que forma uma base do espaço gerado por estes vetores; em seguida, expresse cada vetor que não está na base como uma combinação linear dos vetores da base.

5^a Questão (2 pontos)

Sendo
$$\beta_1 = \{(1,2), (-1,1)\}\ e\ \beta_2 = \{(1,0), (0,1)\}\ bases ordenadas do \mathbb{R}^2$$
.

- a) Quais as coordenadas do vetor v = (2, -5) na base β_1 ?
- b) Ache a matriz de mudança da base β_2 para a base β_1 .
- c) Sendo $[w]_{\beta_2}=\left[\begin{array}{c}1\\-2\end{array}\right]$, quais são as coordenadas deste vetor na base β_1 ?