Comparison Sheren (Vahe) to world 9/12/23

Look at QE Peak -RL RT, and Look at QE distribution No corrections

Q2=0 (photoproduction) – RT only RT= $nu*sigma_gamma/(2 Pi^2 Alpha)$

Ready to do RL RT separation

- Make sure all Ex energies converted to Nu
- Include an updated 1.2 GeV data that is more complete
- Provide the following multiplicative corrections in the file
 Use current fit to get
- (1) Data set normalizations
- (2) Coulomb correction
- (3) Bin centering corrections for first try at binning (to bin centers) Every cross section point determine Q2 and find what bin it is in

we to go to lowest Q2, Can also we have a low Q data set:

: all Yamaguchi files, Spamer, deforrest and Goldemberg

Q2=0.03 (0.028-0.039) No E04-001 data)

Data Set	E0	thetea	W2	Baran Yama	Barraau	Bunin
16	0.25	35	0.9250 yamaguchu	30.0550964		
16	0.12	135	0.9252 yamaguchu	10.4898597		
16	0.1	135	0.9254 yamaguchu	8.98760146		
16	0.1	135	0.9254 yamaguchu	8.87485377		
16	0.1	135	0.9254 yamaguchu	8.35943576		
16	0.25	35	0.9254 yamaguchu	28.3833688		
16	0.12	135	0.9256 yamaguchu	10.456386		
16	0.25	35	0.9258 yamaguchu	28.6223145		
16	0.1	135	0.9258 yamaguchu	8.93074861		
16	0.1	135	0.9258 yamaguchu	8.93074861		
16	0.12	135	0.9261 yamaguchu	10.6157025		
16	0.25	35	0.9262 yamaguchu	27.6510888		
1	0.32	36	0.9262 Barrua		33.959282	
16	0.1	135	0.9263 yamaguchu	9.23688833		
16	0.1	135	0.9263 yamaguchu	9.29335839		
16	0.1	135	0.9263 yamaguchu	8.7609264		
16	0.12	135	0.9265 yamaguchu	10.5916154		
16	0.25	35	0.9266 yamaguchu	28.1932296		
16	0.1	135	0.9267 yamaguchu	9.29332809		
16	0.1	135	0.9267 yamaguchu	9.25295742		
18	0.098	135	0.9269 Bunin			6.25916247
16	0.12	135	0.9270 yamaguchu	10.6184108		
16	0.25	35	0.9270 yamaguchu	28.2310786		
16	0.1	135	0.9272 yamaguchu	9.20447611		
16	0.1	135	0.9272 yamaguchu	9.20447611		
16	0.25	35	0.9274 yamaguchu	28.5731889		
16	0.12	135	0.9274 yamaguchu	10.6580207		

Q2=0.05 (0.039-0.060)

Data Set	EO	thetea	W2	Baran	Yama	Barraau	Bunin	Sheren	All	Q2	
18	0.1485	135	0.9200 Bunin				10.3341999		10.3341999	0.0509	
17	0.1506	180	0.9235 Ryan		8.78472754				8.78472754	0.0582	
1	0.24	60	0.9241 Barrow			27.7556447			27.7556447	0.0461	1 Barreau:1983ht
18	0.1485	135	0.9245 Bunin				10.5719148		10.5719148	0.0499	2 O'Connell:1987ag
12	1.2044	10.79	0.9250 Sheren					35.3762927		0.0492	# 3 Sealock:1989nx
12	1.2044	10.79	0.9250 Sheren					35.3762927		0.0492	4 Baran:1988tw
1	0.1999	90	0.9254 Barrow			20.9871137			20.9871137	0.0580	# 5 Bagdasaryan:1988hp
1	0.4	36	0.9258 Barrow			36.5784435			36.5784435	0.0531	# 6 Dai - HallA:2019da
17	0.1506	180	0.9280 Ryan		8.70635335				8.70635335	0.0571	# 7 Arrington:1995hs
1	0.1597	145	0.9281 Barrow			12.3919849			12.3919849	0.0596	8 Day:1993md
18	0.1485	135	0.9295 Bunin				10.9167023		10.9167023	0.0488	9 Arrington:1998psnoCC
17	0.1506	180	0.9332 Ryan		8.6359647				8.6359647	0.0558	10 Gaskell:2008
18	0.1485	135	0.9338 Bunin				10.6861293		10.6861293	0.0479	11 Whitney:1974hr
1	0.24	60	0.9347 Barrow			26.7495412			26.7495412	0.0449	12 AlsamiJan05
12	1.2044	10.79	0.9350 Sheren					34.0411909		0.0489	13 VaheJun07
12	1.2044	10.79	0.9350 Sheren					34.0411909		0.0489	14 E139 0
1	0.4	36	0.9359 Barrow			35.2840329			35.2840329	0.0523	15 Fomin 0
1	0.1999	90	0.9368 Barrow			19.1734019			19.1734019	0.0560	16 Yamaguchi73
18	0.1485	135	0.9383 Bunin				9.43657149		9.43657149	0.0469	17 Ryan84
17	0.1506	180	0.9386 Ryan		8.33694384				8.33694384	0.0545	18 Bounin63
1	0.1597	145	0.9404 Barrow			11.7112587			11.7112587	0.0567	
										0.0520	

Data	Set	E0	thetea	W2	
	4	1.3	11.95	0.9231	Baran
	16	0.25	80	0.9234	yamaguchu
	16	0.25	80	0.9247	yamaguchu
	12	1.2044	13.01	0.9251	Sheren
	12	1.2044	13.01	0.9251	Sheren
	16	0.25	80	0.9259	yamaguchu
	1	0.2411	90	0.9259	Barrow
	1	0.28	60	0.9266	Barrow
	1	0.32	60	0.9269	Barrow
	16	0.25	80	0.9273	yamaguchu
	16	0.25	80	0.9286	yamaguchu
	16	0.25	80	0.9298	yamaguchu
	16	0.25	80	0.9305	yamaguchu
	16	0.25	80	0.9312	yamaguchu
	1	0.48	36	0.9314	Barrow
	18	0.198	135	0.9318	Bunin
	16	0.25	80	0.9325	yamaguchu
	16	0.25	80	0.9337	yamaguchu
		1.2			

No **E04-001** data

Q2

0.26406972

0.2555

0.2744

18.6900345 0.25610398

Barraau

11.6815923

16.0729106

Day

0.8

1

1

0.6

0

0

0.2

0.4

Q2=0.30 (0.28-0.338)

1.2 GeV 28 degrees

Data Set	EO	thetea	W2	Dai	Bagda	Barraau	Sealock	Ibrahim	All	Q2
6	2.222	15.541	0.9210 Dai	15.2270181					15.2270181	0.32901632
1	0.68	60	0.9229 Barrow			13.3716415			13.3716415	0.3281
13	1.2044	28.01	0.9248 Ibrahim					16.0988026		0.28960209
5	1.93	18	0.9288 Bagda		16.4577274				16.4577274	0.3268348
1	0.5193	90	0.9293 Barrow			11.7234286			11.7234286	0.3298
1	0.3997	145	0.9309 Barrow			10.7500105			10.7500105	0.3054
13	1.2044	28.01	0.9334 Ibrahhim					16.4654514		0.28847348
1	0.3601	145	0.9347 Barrow							
5	2.13	16	0.9351 Bagda		15.5931875				15.5931875	0.31866361
1	0.4794	90	0.9365 Barrow			12.7214576			12.7214576	0.2852
3	0.961	37.5	0.9375 Sealock				14.4010197	1	14.4010197	0.30503031
6	2.222	15.541	0.9414 Dai	15.5862817					15.5862817	0.32739155

Q2=0.37 (0.338-0.470) no E04-001 data

			W2	Sealock	Bagda	Barreau	Day	Q2
1	0.5193	90.0000	0.9001 Barrow			10.9187		0.3401
3	1.1080	37.5000	0.9029 Sealock	10.6336				0.4034
5	2.1300	18.0000	0.9137 Bagda		12.0526212			0.3964
1	0.5568	90.0000	0.9160 Barrow			10.0441		0.3758
1	0.4794	145.0000	0.9200 Barrow			8.1767		0.4142
3	1.1080	37.5000	0.9262 Sealock	10.9752				0.3989
8	2.02	20.016	0.9282 Day				10.9761096	0.4307
1	0.4400	145.0000	0.9323 Barrow			9.5982		0.3562
1	0.5568	90.0000	0.9459 Barrow			10.4709		0.3647
5	2.1300	18.0000	0.9492 Bagda		13.7917			0.3928
3	1.1080	37.5000	0.9496 Sealock	11.3199				0.3943
1	0.4794	145.0000	0.9562 Barrow			8.9659		0.3968
8	2.02	20.016	0.9600 Day				11.0591519	0.4270

Q2=0.57 (0.470-0.660)

1.2 GeV 45 deg, 3.49 GeV 14 deg Q2 Bin centering is not so large

Q2=0.75 (0.66-0.90)

Q2 = 0.75 (0.660-0.90) **4.63 GeV 10.65 deg**, **1.2 GeV 55 degn** HERER **Q2 bin centering important**

EO		theta	W2		Sheren	Barreau	Sealock	Q2	all
12	4.6286	10.6500	0.9101	Sheren	5.9588			0.6779	5.9588
12	1.2044	55.0000	0.9101	Sheren	4.1112			0.7890	4.1112
12	3.5950	16.0200	0.9113	Sheren	3.8612			0.8698	3.8612
3	1.5010	37.5000	0.9130	Sealock			4.9704	0.6917	4.9704
3	1.5010	37.5000	0.9380	Sealock			5.1703	0.6855	5.1703
12	3.5950	16.0200	0.9437	Sheren	3.9793			0.8656	3.9793
12	1.2044	55.0000	0.9499	Sheren	4.5475			0.7749	4.5475
12	4.6286	10.6500	0.9500	Sheren	6.2309			0.6748	6.2309
12	1.5010	37.5000	0.9629	Sheren	5.3269			0.6793	5.3269
12	3.5950	16.0200	0.9760	Sheren	4.2318			0.8614	4.2318

Q2=1.1 (0.90-1.4) Q2 =1.0 (0.90-0.1.2) 3.49 GeV 20 deg, 1.2 GeV 70 deg, 2.35 GeV 30 deg HERER Q2 bin centering important

ward and backward), keeping the momentum transfer constant. The forward-angle cross sections corresponding to q values of 0.75, 0.84, 1.04, 1.22, and $1.56 \, \mathrm{F}^{-1}$ were taken at angles of 35, 40, 50, 60, and 80° with an incident electron of 250 MeV, and the backward-angle data were taken at 135° by adjusting the incident electron energy to give the same momentum transfer as above. In our kinematical calculation, q was obtained by assuming an excitation energy of 25 MeV. The values of qwere corrected for the change of wavelength of the incident electron when it passes through the nucleus. This correction factor is $\gamma = (1 + 3Z\alpha/2k_1R)^{46}$ where α is the fine-structure constant and R is the equivalent uniform-nuclear-charge radius. Then, incident electron energies in the backwardangle experiments were selected so that q'(250)MeV, θ) = $q'(\epsilon_1, 135^\circ)$, where $q' = \gamma q$.

R.C. Carrasco, E. Oset / Interaction of real photons

k	7Li	C	Al	Cu	Sn	Pb	Average
[GeV]	$[\mu b/A]$	$[\mu b/A]$	$[\mu b/A]$	$[\mu b/A]$	$[\mu b/A]$	$[\mu \mathbf{b}/\mathbf{A}]$	$[\mu b/A]$
0.301		420±10	397±13	375±16	398±19	387±21	401.5±6.5
0.317		430 ± 7	412 ± 9	430 ± 12	419 ± 14	381 ± 15	419.5 ± 4.6
0.343	440±15	432 ± 6	416 ± 8	403 ± 10	417±11	415 ± 12	421.2 ± 3.6
0.369	389 ± 10	406 ± 6	414 ± 8	413 ± 13	413 ± 10	410 ± 12	407.1 ± 3.6
0.389	351 ± 12	393 ± 6	376 ± 8	376 ± 9	399 ± 11	389 ± 10	383.6 ± 3.4
0.408	324 ± 13	362 ± 7	353 ± 9	358 ± 12	378 ± 13	329 ± 14	354.7 ± 4.1
0.439	282 ± 9	324 ± 6	323 ± 7	317 ± 9	328 ± 10	337 ± 15	317.8 ± 3.3
0.465	257 ± 13	287 ± 5	288 ± 7	294 ± 9	322 ± 10	319 ± 12	292.0 ± 3.2
0.490	244±12	251 ± 5	255 ± 7	252 ± 8	250 ± 9	257 ± 11	251.6 ± 3.2
0.514	223 ± 12	254 ± 4	251 ± 5	247 ± 6	241 ± 8	273 ± 9	250.9 ± 2.5
0.540	194 ± 7	235 ± 3	243 ± 4	236 ± 5	245 ± 6	249 ± 7	235.7 ± 2.0
0.568		216 ± 6	222 ± 7	219 ± 9	228 ± 11	240 ± 13	221.1 ± 3.6
0.598	222 ± 11	218 ± 6	227±7	212 ± 9	222 ± 10	210 ± 12	218.8 ± 3.4
0.616	211 ± 6	200 ± 5	202 ± 6	197 ± 8	210 ± 9	197 ± 8	202.6 ± 2.7
0.636	196 ± 6	210 ± 4	211 ± 5	201 ± 6	203 ± 7	192 ± 8	204.2 ± 2.3
0.664	213 ± 7	207 ± 4	213 ± 5	198 ± 7	207 ± 7	191 ± 7	206.4 ± 2.2
0.684	205 ± 7	190 ± 6	201 ± 8	192 ± 7	181 ± 10	174 ± 9	192.4 ± 3.0
0.717	206 ± 8	185 ± 5	201 ± 6	186 ± 7	171 ± 9	173 ± 9	188.4 ± 2.7
0.751	194 ± 9	181 ± 7	190 ± 9	175 ± 10	207 ± 9	159 ± 12	186.0 ± 3.6
0.768		195 ± 5	191 ± 6	179 ± 8	178 ± 13	187 ± 12	189.8 ± 3.2
0.788	166 ± 7	184 ± 7	183 ± 9	174 ± 12	173 ± 13	173 ± 12	176.3 ± 3.6
0.817	180 ± 9	183 ± 7	185 ± 9	163 ± 12	187 ± 14	178 ± 12	180.3 ± 3.9
0.840	194 ± 8	187 ± 5	178 ± 6	179 ± 8	180 ± 10	182 ± 11	183.7 ± 3.0
0.865		181 ± 8	180 ± 10	172 ± 12	179 ± 16	218 ± 21	181.1 ± 4.9
0.895		182 ± 7	192 ± 10	164 ± 12	169 ± 15	195 ± 14	181.3 ± 4.7
0.908	169 ± 8	162 ± 7	174 ± 9	169 ± 13	182 ± 12	167 ± 15	169.1 ± 3.9
0.936	137 ± 7	166 ± 5	171 ± 7	160 ± 10	162 ± 13	168 ± 12	160.3 ± 3.2
0.973	171 ± 8	178 ± 7	161±9	157 ± 12	151±13	171 ± 12	168.2 ± 3.8
1.044	145 ± 9	167±7	155 ± 9	164 ± 13	158 ± 15	151±14	157.2 ± 4.1
1.081	165 ± 10	147±7	147 ± 10	148 ± 15	148 ± 17	147 ± 15	150.9 ± 4.4
1.119	147 ± 8	156 ± 7	150 ± 10	143 ± 14	154 ± 16	163 ± 15	151.6 ± 4.1
1.163	140±12	144±10	144±13	145±20	120±22	135±20	140.7±5.7

LNF-95/053 (P) 28 Settembre 1995

Total Hadronic Photoabsorption Cross Section on Nuclei in the Nucleon Resonance Region

N. Bianchi, V. Muccifora, E. De Sanctis, A. Fantoni, P. Levi Sandri, E. Polli, A.R. Reolon, P. Rossi

Photoabsorption on nuclei in the shadowing threshold region.

 V. Muccifora*, N. Bianchi*, A. Deppman, E. De Sanctis, M. Mirazita, E. Polli, P. Rossi. *INFN-Laboratori Nazionali di Frascati, C.P. 13, I-00044 Frascati, Italy* R. Burgwinkel, J. Hannappel, F. Klein, D. Menze, W.J. Schwille, F. Wehnes. *Physikalisches Insitut der Universitat Bonn, Nussallee 12, D-53155 Bonn, Germany*

May 6, 2019

Fig. 2 Comparison of the present results of σ_{yA}/A for C (full circles) with previous data on ²³⁸U (open triangles) [9] and C (open circles) [10], with the Daresbury deuteron data (crosses) [5] and with the universal behavior in the Δ region (area between the two curves) calculated from data on Be [15,16], C [17] and

Table 3: Total cross sections $[\mu b]$ and statistical error normalized to the mass number A at the photon energy [GeV]. The average value \overline{A} is calculated weighting each nucleus cross section value with its statistical error.

		Tot	al cross	s section	ı /A	
\boldsymbol{k}	\mathbf{C}	Al	$\mathbf{C}\mathbf{u}$	Sn	${ m Pb}$	\overline{A}
0.53	229±3	240±3	244 ± 4	256 ± 4	271 ± 4	243 ± 2
0.63	197 ± 3	211 ± 3	208 ± 4	215 ± 4	213 ± 5	207 ± 2
0.73	192 ± 1	195 ± 2	195 ± 3	199 ± 2	180 ± 3	193 ± 1
0.87	170 ± 1	$170{\pm}2$	176 ± 2	174 ± 3	160 ± 3	171 ± 1
U U 3	169 ± 2	161 ± 3	169 ± 2	171 ± 3	154 ± 3	167 ± 1
3	150 ± 1	$148{\pm}2$	153 ± 2	152 ± 2	142 ± 2	150 ± 1
1.19	139 ± 2	$134{\pm}3$	142 ± 3	145 ± 3	134 ± 3	139 ± 1
1.32	134 ± 1	$132{\pm}2$	136 ± 2	136 ± 3	133 ± 3	134 ± 1
1.43	126 ± 2	126 ± 3	$134{\pm}4$	137 ± 5	133 ± 5	129 ± 2
1.54	123 ± 1	$125{\pm}2$	$134{\pm}2$	134 ± 3	132 ± 3	127 ± 1
1.70	121 ± 2	120 ± 3	126 ± 3	118 ± 4	130 ± 4	122 ± 1
1.83	112 ± 2	121 ± 3	122 ± 3	119 ± 4	122 ± 4	117 ± 1
1.96	114 ± 2	$112{\pm}3$	$118{\pm}4$	116 ± 4	119 ± 5	115 ± 1
2.06	114 ± 3	$121{\pm}5$	$112{\pm}5$	116 ± 6	110 ± 6	115 ± 2
2.18	116 ± 4	110 ± 5	114 ± 5	122 ± 6	119 ± 7	116 ± 2
2.28	114 ± 4	$100{\pm}6$	$115{\pm}6$	108 ± 7	107 ± 8	110 ± 3
2.39	111 ± 4	98 ± 5	107 ± 6	101 ± 7	109 ± 8	106 ± 2
2.50	122 ± 5	102 ± 7	117 ± 7	$112{\pm}8$	122 ± 9	116 ± 3
2.59	109 ± 5	112±7	101±7	118±9	124 ± 10	111 ± 3

