MAT-269: Análisis de Conglomerados

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Objetivo:

El análisis de conglomerados intenta descubrir grupos (o cluster) de observaciones que son homogéneas dentro de cada grupo.

Problema:

Dividir el análisis en dos pasos fundamentales.

- Elección de la medida de proximidad (similaridad).
- Selección del algoritmo de construcción de grupos.

Nos concentraremos en tres tipos de procedimiento de agrupamiento:

- Métodos jerarquicos aglomerativos.
- Métodos tipo K-means.
- Métodos de clasificación ML.

Estas técnicas operan sobre una matriz $D=(d_{ij})\in\mathbb{R}^{n\times n}$ de distancias 1 entre los puntos de $X\in\mathbb{R}^{n\times p}$,

$$D = \begin{pmatrix} d_{11} & d_{12} & \dots & d_{1n} \\ d_{21} & d_{22} & \dots & d_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \dots & d_{nn} \end{pmatrix}.$$

Por ejemplo, podríamos usar la distancia Euclidiana,

$$d_{ij} = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2 = \left\{ \sum_{k=1}^p (x_{ik} - x_{jk})^2 \right\}^{1/2}, \quad i, j = 1, \dots, n.$$

Note que, si d_{ij} es una distancia, entonces $d'_{ij} = \max_{ij} \{d_{ij}\} - d_{ij}$ es una medida de proximidad.

 $^{^{1}}D$ es construída usando medidas de similaridad o de disimilaridad

Tipo de distancias:

Norma Euclidiana con un métrica A > 0,

$$d(\boldsymbol{x}_i, \boldsymbol{x}_j) = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_A = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_j)^\top \boldsymbol{A} (\boldsymbol{x}_i - \boldsymbol{x}_j)},$$

es usual tomar ${\pmb A}={\pmb S}^{-1}$ o bien ${\pmb A}={
m diag}(s_{11}^{-1},\ldots,s_{pp}^{-1}).$

Métrica de Minkowski

$$d(\mathbf{x}_i, \mathbf{x}_j) = \left\{ \sum_{k=1}^{p} |x_{ik} - x_{jk}|^m \right\}^{1/m}.$$

Métrica Canberra

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^{p} \frac{|x_{ik} - x_{jk}|}{(x_{ik} + x_{jk})}.$$

Coeficiente de Czekanowski

$$d(\mathbf{x}_i, \mathbf{x}_j) = 1 - 2 \frac{\sum_{k=1}^{p} \min(x_{ik}, x_{jk})}{\sum_{k=1}^{p} (x_{ik} + x_{jk})}.$$

Example:

Para los datos de Iris, tenemos:

En este caso, tenemos que D es una matriz simétrica 150×150 .

Suponga dos objetos o grupos P y Q, y sea

$$n_P = \sum_{i=1}^n I(\boldsymbol{x}_i \in P),$$

el número de objetos en P, y análogamente para n_Q . Considere los siguientes procedimientos para agrupar las observaciones:

single linkage:

$$d(P,Q) = \min_{i \in P, i \in Q} \{d_{ij}\},\,$$

complete linkage:

$$d(P,Q) = \max_{i \in P, i \in Q} \{d_{ij}\},\$$

average linkage:

$$d(P,Q) = \frac{1}{n_P n_Q} \sum_{i \in P} \sum_{i \in Q} d_{ij}.$$

Suponga dos objetos o grupos P y Q que están unidos, y deseamos calcular la distancia entre este nuevo grupo P+Q con un grupo R, digamos:

$$d(R, P + Q) = \delta_1 d(R, P) + \delta_2 d(R, Q) + \delta_3 d(P, Q) + \delta_4 |d(R, P) - d(R, Q)|,$$

donde diferentes elecciones de las ponderaciones δ_i 's da origen a distintos tipos de algoritmos aglomerativos.

Sea

$$n_P = \sum_{i=1}^n I(\boldsymbol{x}_i \in P),$$

el número de objetos en P, y análogamente para n_Q y n_R . Por ejemplo,

Linkage	δ_1	δ_2	δ_3	δ_4
single	1/2	1/2	0	-1/2
complete	1/2	1/2	0	1/2
average	1/2	1/2	0	0
median	1/2	1/2	-1/4	0
centroid	$\frac{n_P}{n_P + n_Q}$	$\frac{n_Q}{n_P + n_Q}$	$-\frac{n_P^{n_Q}n_Q}{(n_P\!+\!n_Q)^2}$	0

3

Algoritmo 1: Método Jerárquico Aglomerativo.

```
Entrada: Matriz de datos X = (x_1^\top, \dots, x_n^\top)^\top.
1 begin
      Construir la partición más fina.
      Calcular la matriz de distancias D.
      do
           Hallar dos grupos con la distancia más cercana.
           Agrupar dos grupos en un único grupo.
           Calcular la distancia entre los nuevos grupos y obtener una matriz
7
            reducida D
      until todos los grupos están aglomerados en X
9 end
```


Ejemplo:

Considere

$$\boldsymbol{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{x}_3 = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

El algoritmo inicia con K=3 grupos, $P=\{{\bm x}_1\}$, $Q=\{{\bm x}_2\}$, $R=\{{\bm x}_3\}$. La matriz de distancias ${\bm D}$ es dada por

$$\mathbf{D} = \begin{pmatrix} 0 & 1 & 50 \\ 1 & 0 & 41 \\ 50 & 41 & 0 \end{pmatrix}.$$

La menor distancia en D se encuentra entre los grupos P y Q. De esta forma estos grupos se deben combinar en $P+Q=\{x_1,x_2\}$. Usando single linkage, obtenemos

$$d(R, P+Q) = \frac{1}{2}d(R, P) + \frac{1}{2}d(R, Q) - \frac{1}{2}|d(R, P) - d(R, Q)|$$

= $\frac{1}{2}d_{13} + \frac{1}{2}d_{23} - \frac{1}{2}|d_{13} - d_{23}| = \frac{50}{2} + \frac{41}{2} - \frac{|50-41|}{2} = 41.$

y la matriz de distancias reducida adopta la forma $D_* = \begin{pmatrix} 0 & 41 \\ 41 & 0 \end{pmatrix}$. Detenemos el algoritmo uniendo los grupos R y P+Q para formar el cluster ${\pmb X}$, la matriz de datos original.

K-means busca particionar los n individuos en K grupos, digamos G_1,G_2,\ldots,G_K . El tipo más común de algoritmo halla una partición que minimice la suma de cuadrados dentro-de-grupo,

$$WGSS = \sum_{j=1}^{q} \sum_{r=1}^{K} \sum_{i \in G_r} (x_{ij} - \overline{x}_j^{(r)})^2,$$

donde
$$\overline{x}_j^{(r)} = \frac{1}{n_i} \sum_{i \in G_r} x_{ij}$$
.

\overline{n}	k	Num. de particiones posibles
15	3	2 375 101
20	4	45 232 115 901
25	8	690 223 721 118 368 580
100	5	10 ⁶⁸

Algoritmo 2: Método *K*-medias.

```
Entrada: Matriz de datos \boldsymbol{X} = (\boldsymbol{x}_1^\top, \dots, \boldsymbol{x}_n^\top)^\top.

1 begin

2 | Hallar una partición inicial de los individios en los K grupos.

3 | do | Proceder a través de la lista de elementos y asignar una observación al grupo cuyo centroide (media) sea más cercano.

5 | Recalcular centroides.

6 | until no se pueda hacer más asignaciones.

7 end
```

Observación:

El método de K-medias sufre principalmente de dos problemas:

- No es invariante a transformaciones de escala.
- Impone una estructura "esférica" a los datos.

El procedimiento de agrupamiento por ML es basado en asumir G subpoblaciones

$$f_j(\boldsymbol{x}; \boldsymbol{\theta}_j), \qquad \boldsymbol{\theta} = (\boldsymbol{\theta}_1^{\top}, \dots, \boldsymbol{\theta}_G^{\top})^{\top}.$$

Además, se introduce un vector $\boldsymbol{\gamma}=(\gamma_1,\ldots,\gamma_n)^{\top}$ donde $\gamma_i=k$ si \boldsymbol{x}_i pertenece a la k-ésima población.

De este modo, el problema de agrupamiento resulta de escoger $\pmb{\theta}=(\pmb{\theta}_1^{\top},\ldots,\pmb{\theta}_G^{\top})^{\top}$ y maximizando la verosimilitud:

$$L(\boldsymbol{\theta}, \boldsymbol{\gamma}) = \prod_{i=1}^{n} f_{\gamma_i}(\boldsymbol{x}_i; \boldsymbol{\theta}_{\gamma_i}).$$

Bajo normalidad tenemos $m{ heta}_j=(m{\mu}_j, m{\Sigma}_j)$, $j=1,\dots,G$ y los MLE de $m{\mu}_j$ son

$$\overline{\boldsymbol{x}} = \frac{1}{n_j} \sum_{i \in A_j} \boldsymbol{x}_i,$$

con $A_j=\{i:\gamma_i=j\}$ y n_j es el número de elementos de A_j . En este caso, la función de log-verosimilitud perfilada adopta la forma:

$$\ell(\boldsymbol{\theta}, \boldsymbol{\gamma}) = c - \frac{n}{2} \sum_{i=1}^{G} \Big\{ \operatorname{tr} \boldsymbol{S}_{j} \boldsymbol{\Sigma}_{j}^{-1} + \log |\boldsymbol{\Sigma}_{j}| \Big\}.$$

Una manera de caracterizar este tipo de funciones de densidad es asumiendo una mezcla discreta de densidades, como:

$$f(\boldsymbol{x}; \boldsymbol{\pi}, \boldsymbol{\theta}) = \sum_{j=1}^{G} \pi_j f_j(\boldsymbol{x}; \boldsymbol{\theta}_j),$$

donde x es un vector aleatorio p-dimensional, $\pi=(\pi_1,\ldots,\pi_G)^{\top}$, y $\theta=(\theta_1^{\top},\ldots,\theta_G^{\top})^{\top}$, con π_j siendo las proporciones de la mezcla y f_j las densidades que componen la mezcla. Además,

$$\sum_{j=1}^{G} \pi_j = 1.$$

Una vez estimados los parámetros de la mezcla, las observaciones pueden ser asociadas con un particular cluster en basde de la probabilidad posterior estimada,

$$\widehat{\mathsf{P}}(\mathsf{cluster}\ j|\boldsymbol{x}_i) = \frac{\widehat{\pi}_j f_j(\boldsymbol{x}_i; \widehat{\boldsymbol{\theta}}_j)}{f(\boldsymbol{x}_i; \widehat{\boldsymbol{\pi}}, \widehat{\boldsymbol{\theta}})}, \qquad j = 1, \dots, G. \tag{1}$$

Dada una muestra de observaciones x_1,x_2,\ldots,x_n desde una mezcla discreta de densidades, tenemos la función de log-verosimilitud

$$\ell_n(\boldsymbol{\pi}, \boldsymbol{\theta}) = \sum_{i=1}^n \log f(\boldsymbol{x}_i; \boldsymbol{\pi}, \boldsymbol{\theta}).$$

En el caso de que el j-ésimo componente siga una distribución normal multivariada con media μ_j y covarianza Σ_j , se puede mostrar que

$$\begin{split} \widehat{\pi}_j &= \frac{1}{n} \sum_{i=1}^n \widehat{\mathsf{P}}(j|\boldsymbol{x}_i), \\ \widehat{\boldsymbol{\mu}}_j &= \frac{1}{n \widehat{\pi}_j} \sum_{i=1}^n \widehat{\mathsf{P}}(j|\boldsymbol{x}_i) \boldsymbol{x}_i, \\ \widehat{\boldsymbol{\Sigma}}_j &= \frac{1}{n} \sum_{i=1}^n \widehat{\mathsf{P}}(j|\boldsymbol{x}_i) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_j) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_j)^\top, \end{split}$$

donde $\widehat{\mathsf{P}}(j|\boldsymbol{x}_i)$ son las probabilidades estimadas definidas en (1). Este procedimiento es un caso particular del algoritmo EM para estimación ML en mezclas discretas.