

[Definition 11] VC dimension

The VC dimension of a family of functions H with boolean outputs is the maximum number of points that can be shortered by $H: VC(H) = \sup\{n: s(H, n) = 2^n\}$

Note: To show a class H has VC dimension of,

(i) upper bound: show d+1 points can't be shattered:

(ii) lower bound: show d points can be shattered.

[Theorem 10] finite-dimentional function class

Let $F \subseteq \{f: X \rightarrow IR\}$. Let $H = \{x \mapsto 1\}\{f(x) \ge 0\}$: $f \in F\}$.

Then we have $VC(H) \in dim(F)$

Pf: for any n > dim(F), x_1, \dots, x_n are given.

Consider $M(f) := [f(x_1), \dots, f(x_n)] \in \mathbb{R}^n$

M := {M(f): f ∈ F } is linear space, dim(M) ≤ dim(F).

Since n> dim(f) = dim(IN), = 0 + CCIR" s.t. M(f)-c=0

for all $f \in F$. Without loss of generality, $\{C_i > 0\} \neq \emptyset$. Then $\sum_{C_i > 0} C_i f(x_i) + \sum_{C_i \leq 0} C_i f(x_i) = 0$ for all $f \in F$.

Suppose H shatters (XI) ..., XNY, We could find a heH s.t.

h(Xi) = 1 whenever C: >0 and h(Xi) = 0 whenever C: <0 we have $\sum_{C:>0} C: h(Xi) + \sum_{C:<0} C: h(Xi) >0$, but $h \in F$, which is a contradiction.

Therefore, H can't sheatter Fx1, ..., xn's for any choise of

Application: Half-spaces passing through the origin.

Let $H = \mathcal{E} \times \longrightarrow 1 \mathcal{E} w \times \mathcal{E} \times$

By Th.10, VC(H) ≤ d. The lower bound can be obtained by

construction: creating of points:

$$\chi_1 = [1, 0, 0, \dots 0], \quad \chi_2 = [0, 1, 0, \dots, 0], \quad \dots, \quad \chi_d = [0, 0, 0, \dots, 1]$$

Given any $I \subseteq \{1, ..., d\}$, we can construct W s.t.

$$W_i = 1$$
 if $i \in I$, $W_i = -1$ if $i \notin I$.

Then for any $I_1 \neq I_2$, $I_1, I_2 \subseteq \xi_1, \dots, d_{\frac{1}{2}}$, $w^{(1)}$, $w^{(2)}$ $w^{(i)} \cdot \chi_j = w_j^{(i)} = \begin{cases} 1 & j \in I_i \\ -(, j \in I_i) \end{cases}$

we have $(W^{(1)}X_{j})_{j} \neq (W^{(2)}X_{j})_{j}$, that is, $S(H,d) = 2^{d}$. (Since | 2 t = 2d).

[Lemma 67 Sauer's lemma.

For a class H be a class with VC dimension d.
Then
$$s(H,n) \leq \frac{d}{\frac{d}{d}} \binom{n}{i} \leq \frac{2^n}{d}$$
 if $h \leq d$ $\frac{(en)^d}{d}$ if $n > d$

Pf: Consider such a table

	χι.	ኒ ,	X3,	$\chi_{m{arphi}}$
7	0	1	Þ	1
`	D	0	O	I
	1	1	1	0
	l	0	l	Ð

$$\Rightarrow T' \begin{vmatrix} \chi_1 & \chi_2 & \chi_3 & \chi_4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

OA canonical form:

(i) Pick a column j.

(ii) For each row r with $r_j = 1$, set $r_j = 0$ if the resulting r doesn't exist in the table.

(iii) Repeat until no more changes are possible.

Note: the number of rows is the same and all the rows are distinct, so s(H,n) = s(H',n)

Now we show that VC(H') ≤ VC(H).

The transformations proceed one column at a time: $T \rightarrow T_1 \rightarrow \cdots \rightarrow T_k \rightarrow T_{k+1} \rightarrow \cdots \rightarrow T'$.

Claim: After transforming any column j, if some $S \subseteq \{i,\dots,n\}$ of points is shortered (all $2^{|S|}$ labelings exist on those columns) after transformation, then S was also shattered before transformation.

— Trival when $j \notin S$.

- If jes:

For any row i with I in j, there is a row i' with 0 in column j s.t. $T_{k+1}(i,j') = T_{k+1}(i',j')$ for $j' \neq j$, but $T_{k+1}(i,j) = 1$ and $T_{k+1}(i',j) = 0$

Note that $T_{F}(i,j)=1$, $T_{F}(i',j)=0$ (other-wise $T_{F}(i,j)=T_{F}(i',j)$) Then all $2^{|S|}$ labelings on S existed before transformation.

3 Each row of T' must contain at most dones. Suppose if T' has a row with k ones in $S \subseteq \{1,...,n\}$. Then for each $j \in S$, \exists another row with K-1 ones in $S \setminus \{i\}$? Reasoning recursively, all 2^k subset must exist. \Longrightarrow $k \leq d$. Based on simple counting, we have

 $S(H, n) \leq \frac{d}{10} \binom{n}{i}$ at most dones in a row of l=n.

which completes the first ineq. Observe that for $n \ge d$ $\sum_{i=1}^{d} \binom{n}{i} \le \binom{n}{d}^d \sum_{i=0}^{d} \binom{n}{i} \binom{d}{n}^i$ $\le \binom{n}{d}^d \sum_{i=0}^{d} \binom{n}{i} \binom{d}{n}^i$ $= \binom{n}{d}^d \binom{1+d}{n}^n$ $\le \binom{n}{d}^d e^d$