ADVANCED MATH TEST 4

Date

Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! 1. If $\frac{(x^3 - y^3)\sqrt{r^2 - 6}}{5} = \frac{4}{5}(r - 3q)(x^3 - y^3)$, find the value of q(9q - 6r) + 3. **(D)** -1**(E)** 1 2. Evaluate $\frac{m^{j+k+l+h} + 3m^{j+k}}{m^{k+l+h} + 3m^k}$ if m = 2, j = 3, and k = 2. (A) 4 **(D)** 16 **(E)** 32 3. Aubrey had 9p dimes and Grace had 3p nickels. How much more money did Aubrey have than Grace? **(B)** 24p(C) 48p**(D)** 64p (\mathbf{E}) 75 p4. If $-6\left(\frac{x}{y}\right)^2 - 6\left(\frac{x}{y}\right) + 180 = 0$, what is the largest value that $\frac{x}{y}$ could have? **(D)** 5 **(E)** 6 5. If $7x^2 = 20xy + 3y^2 + 3$, find the value of $\left[\frac{(7x+y)(x-3y)+6}{3} - 5 \right]^3$ (C) -27(A) -125**(B)** -64(**D**) -8(E) -66. If $\frac{T}{O} - 3 + \sqrt{R} = 3T - Q$ where Q, C, and R are positive, then simplify $\left(\frac{CT}{O} - 5C + C\sqrt{R}\right) - \left(3T - 4 - Q\right)C$ (A) -9C (\mathbf{B}) $-\mathbf{C}$ **(D)** 2C **(E)** 3C 7. For -3[-2(a+b)+6] < -36, which of the following best describes a? **(B)** a > -7 - b **(C)** a > -4 - b**(D)** a > -3 - b **(E)** a < -3 - b**(A)** a < -7 - b8. If $x^2 + 4x + 7$ is an even number, which of the following must be an odd number? **(B)** $x^2 + x + 60 + 3x - 9$ **(E)** $10x^2 + 4x - 25 - 9x^2 - 40$ (A) $3x^2 - 5x - 33 + 9x - 2x^2$ (C) $6x^2 - 2x - 80 + 6x - 5x^2$ **(D)** $x^2 - 10x - 17 + 14x + 46$ 9. In x more years, you will be $\frac{17}{4}x+1$ years old. How old were you $\frac{3}{4}x-2$ years ago? (A) $\frac{5}{2}x-1$ (B) $\frac{5}{2}x+3$ (C) $\frac{7}{2}x-1$ **(D)** $\frac{7}{2}x + 3$ 10. $(-4x^3 + 6x^3)(-4x^3 - 6x^3) =$ **(B)** $-20x^6$ **(E)** $-20x^{36}$ 11. If $\frac{wy}{xz} + \frac{wv}{xt} - \frac{py}{rz} - \frac{pv}{rt} - 2 = -14$ and $\frac{y}{z} + \frac{v}{t} = -4$, find the value of $\frac{w}{x} - \frac{p}{r} - \left(\frac{y}{z} + \frac{v}{t}\right)$. **(E)** 8 12. If $24-3\sqrt[5]{\frac{a+b}{c}} = 6-6\sqrt[5]{\frac{a+b}{c}}$, find $\frac{2}{3}\sqrt[5]{\frac{a+b}{c}} + 3$ **(C)** 2 **(D)** 3 **(E)** 7 13. You studied for 20 minutes for a quiz and got 16 correct. How many questions would you get correct if you studied for 30 minutes? Assume the amount of time studying is directly proportional to the number of questions that you get correct.

(D) 24

(C) 22

(**A**) 18

(B) 20

14.	For	$y = \sqrt{3}x^2 + 6\sqrt{15}x - $	- ∛ 17 -	$+\sqrt[4]{29}$, which equa	tion	is the axis of syn	nmetry?			
		$x = -3\sqrt{5}$							$=\sqrt{3}$	$\sqrt{5} - \sqrt[3]{17} + \sqrt[4]{29}$
15.	If {	$\begin{cases} x + y = -2 \\ y - z = 7 \\ z - x = -3 \end{cases}$, find the	value o	of $\frac{x+z}{3}$.						
(A)	-3	(B) –	-2	(C)	-1	(D)	1	(E)	2
16.	Wl	hich of the following i	s true?							
		I. 4,111°	I	I. $\frac{137\pi}{6}$ radians		III. 6	6 radian	ıs		
(A)	I < II < III				II < III < I	(D)	III < I < II	(E)	III < II < I
17.	If	$a+3 = \frac{-\cos(x+y)\tan x}{\sin x}$	$\frac{\ln x - \cos}{\ln(x + y)}$	$\frac{\cos(x+y)\tan y}{\cos(x+y)}$ - tan	x tan	y, find the va	lue of	a-6.		
(A)	- 7	(B) –	-5	(C)	-1	(D)	-10	(E)	5
18.	$\frac{4}{3}$	$\cos(-x)\sin y - \frac{2}{3}\sin(x)$	(x+y) i	is equivalent to v	whic	h of the follow	wing?			
(A)	$-\frac{2}{3}\sin(x-y)$	(B) $\frac{2}{3}$	$\frac{2}{3}\sin(x-y)$	(C)	$\frac{1}{3}\sin(x-y)$	(D)	$-\frac{1}{3}\sin(x-y)$	(E)	$-\frac{4}{3}\sin(x-y)$
19.	-2	$2\sin 32^{\circ} \cdot \sin(-14)^{\circ} \cdot \sqrt{3}$	- 3 tan 30°	$^{\circ} + 4\cos 46^{\circ} \cdot \cos^2 60^{\circ}$	o° is	equivalent to wh	ich of th	ne following?		
			(B) co			cos19°		cos 20°	(E)	cos 21°
20.	30	$\frac{5}{\csc\left(\frac{\pi}{2} - \frac{t+w}{2}\right)} \cdot \frac{\cos 18}{\sec \frac{w}{2}}$	$\frac{30^{\circ}}{-t} + \frac{5}{6}$	cos w is equivale	ent to	which of the	follow	ving?		
(A)	$-\frac{5}{6}\cos t$	(B) $\frac{5}{3}$	-cos t	(C)	$\frac{10}{3}\cos t$	(D)	$\frac{5}{6}\cos t$	(E)	$-\frac{10}{3}\cos t$
		$-25f^6 + 7f^3e^6$		-				Ü		J
		$-14f^6 - 5f^3e^4 + 8e^4$					(C)	$-16f^6 + 19f^3e^4 -$	$24e^{8}$	
(D)	$-16f^6 - 5f^3e^4 + 8e$		(E) $-34f^{\circ}$ +	19 <i>f</i> `	3'e ⁴ − 24e°				
		$v-12=4\sqrt{v}$, Which		following is a value	of $$	$\sqrt{v+3}$?				
(A)	2	(B) 3		(C)	4	(D)	5	(E)	6
23.	So	lve $\log_{\frac{1}{64}} \left(2x^3 + 3x^2 \right)$	$-\log_{\frac{1}{64}}$	$5x = -\frac{1}{3}.$						-
(A)	0	(B) 2		(C)	4	(D)	-4	(E)	$\frac{5}{2}$
		u added up the first j n							_	
(A)	$\frac{1 \pm \sqrt{1 - 4(-72,092)}}{2}$		(B) $\frac{-1 \pm \sqrt{1-4}}{2}$	(-36 _.	,046)	(C)	$\frac{-1\pm\sqrt{1-4(-72,092)}}{2}$	<u>2)</u>	
(D)	$\frac{1 \pm \sqrt{1 - 4(72,092)}}{-2}$		$\mathbf{(E)} \frac{1 \pm \sqrt{1 - 4\left(2\right)}}{2}$	36,04	<u>46)</u>				
		travels a total distance					th the di	stance it traveled the	previo	ous second. How
	.y 111 A)	iches will it travel the 60	(B) 63		(C)		(D)	72	(E)	75

ADVANCED MATH TEST 4 ANSWERS

1. B	2. C	3. E	4. D	5. D
6. D	7. E	8. C	9. B	10. B
11. D	12. A	13. D	14. A	15. A
16. E	17. D	18. A	19. B	20. A
21. E	22. B	23. E	24. C	25. E

1.
$$-6 = -6rq + 9q^2 \rightarrow -3$$
 2. $\frac{m^{j+k}(m^{l+h} + 3)}{m^k(m^{l+h} + 3)} = m^j = 8$

3.
$$90p - 15p = 75p$$

4.
$$\frac{x}{y} = 5$$

$$5. \left(\frac{3+6}{3} - 5\right)^3 = -8$$

7.
$$a+b < -3 \rightarrow a < -3-b$$

8.
$$6x^2 - 2x - 80 + 6x - 5x^2$$

10.
$$-20x^6$$

11.
$$3 - 4 = 7$$

12.
$$3x = -18 \rightarrow -4 + 3 = -1$$

13.
$$\frac{20}{16} = \frac{30}{x} \rightarrow x = 24$$

14.
$$y = \sqrt{3}(x + 3\sqrt{5})^2 \dots \rightarrow x = -3\sqrt{5}$$

15.
$$\frac{-3-6}{3} = -3$$
 16. $\frac{137\pi}{6} \cdot \frac{180^{\circ}}{\pi} = 4110^{\circ} \rightarrow \frac{137\pi}{6} = 22\frac{5}{6}\pi$ radians, which is less than 66 radians. Therefore III < II < I

6. $\left(\frac{CT}{O} - 5C + C\sqrt{R}\right) - (3T - 4 - Q)C = -2c + 4c = 2c$

9. $\frac{17}{4}x+1-x-\frac{3}{4}x+2=\frac{5}{2}x+3$

 $a - 6 = (a + 3) - 9 = \frac{-\cos(x + y)(\tan x + \tan y)}{\sin(x + y)} - \tan x \tan y - 9 = -\cot(x + y)[\tan(x + y)(1 - \tan x \tan y)] - \tan x \tan y - 9 = -1(1 - \tan x \tan y) - \tan x \tan y - 9 = -10(1 - \tan x \tan y)$

$$18. \frac{4}{3} \cdot \frac{1}{2} \left[\sin(x+y) - \sin(x-y) \right] - \frac{2}{3} \sin(x+y) = \frac{2}{3} \sin(x+y) - \frac{2}{3} \sin(x-y) - \frac{2}{3} \sin(x+y) = -\frac{2}{3} \sin(x-y)$$

$$2\sin 32^{\circ} \cdot \sin 14^{\circ} \cdot \sqrt{3} \cdot \frac{1}{\sqrt{3}} + 4\cos 46^{\circ} \cdot \frac{1}{4} = -1 \cdot \left[-2\sin \left(\frac{46+18}{2} \right)^{\circ} \sin \left(\frac{46-18}{2} \right)^{\circ} \right] + \cos 46^{\circ} = -1 \left(\cos 46^{\circ} - \cos 18^{\circ} \right) + \cos 46^{\circ} = \cos 18^{\circ}$$

$$20. \quad -\frac{5}{3}\cos\frac{t+w}{2}\cos\frac{w-t}{2} + \frac{5}{6}\cos w = -\frac{5}{3}\cdot\frac{1}{2}\cdot\left(2\cos\frac{w+t}{2}\cos\frac{w-t}{2}\right) + \frac{5}{6}\cos w = -\frac{5}{6}(\cos w + \cos t) + \frac{5}{6}\cos w = -\frac{5}{6}\cos w$$

21.
$$-34f^6 + 19f^3e^4 - 24e^8$$

22.
$$(x-6)(x+2)=0 \rightarrow \sqrt{v}=6 \rightarrow \sqrt{6+3}=3$$

23.
$$\left(\frac{1}{64}\right)^{-\frac{1}{3}} = \frac{2x^3 + 3x^2}{5x} \to 2x^3 + 3x^2 - 20x = 0 \to x(2x - 5)(x + 4) = 0 \to x = 0, -4, \frac{5}{2}$$
 but $x \neq -4$ or 0 .

24.
$$(1+j)\frac{j}{2} = 36,046 \rightarrow j^2 + j - 72,092 = 0 \rightarrow j = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1(-72,092)}}{2}$$

25.
$$80 = \frac{a_1}{1 - \frac{1}{4}} \rightarrow a_1 = 80 \cdot \frac{3}{4} = 60 \rightarrow a_2 = 60 \cdot \frac{1}{4} = 15 \rightarrow a_1 + a_2 = 60 + 15 = 75$$