

# Lab Report

Course Code: CSE 476

Course Title: Data Mining Lab

# Submitted to:

Name: Badhan Chandra Das

Lecturer

Dept. of CSE

at Bangladesh University of Business

and Technology.

# Submitted by:

Name: Syeda Nowshin Ibnat

ID: 17183103020

Intake: 39

Section: 02

Program: B.Sc. in CSE

Semester: Spring 2022

Date of Submission: 27-07-2022

# Lab-1 (NumPy, Pandas)

# **Objective:**

To be familiar with NumPy and Pandas operations.

--- Numpy --(1)

# **Sample Code:**

```
a = np.array([[1, 2], [3, 4],[5,6]])
print(a)
```

a

# **Output:**

```
[[1 2]

[3 4]

[5 6]]

array([[1, 2],

[3, 4],

[5, 6]])
```

**(2)** 

#### **Sample Code:**

```
b = a.reshape(2,3)
print(b.shape)
b
```

**(3)** 

```
Sample Code:
```

x = np.arange(10,20,4)

X

#### **Output:**

```
array([10, 14, 18])
```

**(4)** 

#### **Sample Code:**

```
\begin{split} a &= np.array([[0.0,0.0,0.0],[10.0,10.0,10.0],[20.0,20.0,20.0],[30.0,30.0,30.0]]) \\ b &= np.array([1.0,2.0,3.0]) \end{split}
```

```
print ('First array:')
print (a)
print ('\n')
```

print ('Second array:')

print (b)
print ('\n')

print ('First Array + Second Array') # broadcasting print (a + b)

```
First array:
[[ 0. 0. 0.]
[10. 10. 10.]
[20. 20. 20.]
[30. 30. 30.]]

Second array:
[1. 2. 3.]

First Array + Second Array
[[ 1. 2. 3.]
[11. 12. 13.]
[21. 22. 23.]
[31. 32. 33.]]
```

#### **Sample Code:**

```
a = np.array([[1,2],[3,4]])
print ('First array:')
print (a)
print ('\n')
b = np.array([[5,6],[7,8]])
print ('Second array:')
print (b)
print ('\n')
# both the arrays are of same dimensions
print ('Joining the two arrays along axis 0:')
print (np.concatenate((a,b), axis =0)) #by default axis =0
print ('\n')
print ('Joining the two arrays along axis 1:')
print (np.concatenate((a,b),axis = 1))
```

```
First array:
[[1 2]
  [3 4]]

Second array:
[[5 6]
  [7 8]]

Joining the two arrays along axis 0:
[[1 2]
  [3 4]
  [5 6]
  [7 8]]

Joining the two arrays along axis 1:
[[1 2 5 6]
  [3 4 7 8]]
```

#### **String Operation**

#### **Sample Code:**

```
print (np.char.capitalize('hello world'))
print (np.char.lower('HELLO WORLD'))
print (np.char.upper('hello world'))
print (np.char.split ('hello how are you?'))
```

#### **Output:**

```
Hello world
hello world
HELLO WORLD
['hello', 'how', 'are', 'you?']
```

#### (7) Statistical Function

#### **Sample Code:**

```
a = np.array([1,2,3,4])
print ('Our array is:')
print (a)
print ('\n')
print ('Applying average() function:')
print (np.average(a))
print ('\n')
# this is same as mean when weight is not specified
wts = np.array([4,3,2,1])
print ('Applying average() function again:')
print (np.average(a,weights = wts))
print ('\n')
# Returns the sum of weights, if the returned parameter is set to True.
print ('Sum of weights')
print (np.average([1,2,3,4],weights = [4,3,2,1], returned = True))
```

```
Our array is:
[1 2 3 4]

Applying average() function:
2.5

Applying average() function again:
2.0

Sum of weights
(2.0, 10.0)
```

#### --- Pandas ---

**(1)** 

#### **Sample Code:**

```
data = np.array(['a','b','c','d'])
s = pd.Series(data,index=[100,101,102,103])
print (s)
print() #retrieve the elements
print (s[101])
print() #retrieve the first three element
print (s[:3])
#retrieve from nth element
print()
print (s[2:])
```

```
100 a
101 b
102 c
103 d
dtype: object

b a
100 a
101 b
102 c
dtype: object

102 c
103 d
dtype: object
```

#### (2) Dataframe

#### **Sample Code:**

data = [['Alex',10,25000],['Bob',12,30000],['Clarke',13,20000],['John',20,50000]] df = pd.DataFrame(data,columns=['Name','Age','Salary']) df

#### **Output:**

|   | Name   | Age | Salary |
|---|--------|-----|--------|
| 0 | Alex   | 10  | 25000  |
| 1 | Bob    | 12  | 30000  |
| 2 | Clarke | 13  | 20000  |
| 3 | John   | 20  | 50000  |

**(3)** 

#### **Sample Code:**

# Adding a new column to an existing DataFrame object with column label by passing new series

print ("Adding a new column by passing as Series:") df['three']=pd.Series([10,20,30],index=['a','b','c']) df



**(4)** 

# Sample Code: del df['one']

df

# **Output:**



**(5)** 

**Sample Code:** df = df.drop('b') df



#### Lab -2 Data Visualization (Matplotlib, Seaborn)

#### **Objective:**

To be familiar with data visualization using Matplotlib and Seaborn.

#### **About the dataset:**

• For this lab work we used numeric dataset and dataset format is .csv.

• Name of the dataset: iris.csv

• Total number of data: 150

| 1 | Id | senal length   | sanal width  | petal.length | netal width | variety |
|---|----|----------------|--------------|--------------|-------------|---------|
| • | iu | 3cpai.iciigtii | sepai.widtii | petamengui   | petal.width | variety |
| 2 | 1  | 5.1            | 3.5          | 1.4          | 0.2         | Setosa  |
| 3 | 2  | 4.9            | 3            | 1.4          | 0.2         | Setosa  |
| 4 | 3  | 4.7            | 3.2          | 1.3          | 0.2         | Setosa  |
| 5 | 4  | 4.6            | 3.1          | 1.5          | 0.2         | Setosa  |
| 6 | 5  | 5              | 3.6          | 1.4          | 0.2         | Setosa  |

Figure 1: Dataset view

--- Matplotlib ---

#### 1) Line Graph

#### **Sample Code:**

```
x = np.linspace(0,20)
y= x**2
plt.plot(x, y)
plt.xlabel('x-values')
plt.ylabel('x^2-values')
plt.title('Fig. 1 Line GRaph ')
```

plt.grid(True)

\_

plt.show()

# **Output:**



Figure 2: Line Graph 1

# **Sample Code:**

```
plt.plot(np.sin(x),label='sin(x)',color='orange')
plt.plot(np.cos(x),label='cos(x)',color='green')
plt.xlim(10,50)
plt.legend()
plt.title('math functions')
plt.show()
```



Figure 3: Line Graph 2

# 2) Sub Plot

#### **Sample Code:**

fig, axs = plt.subplots(3, 2,gridspec\_kw={'hspace': 0.5, 'wspace': 0.5}) x = np.linspace(0, 20, 400)y = np.sin(x)z=np.cos(x)m = (x\*\*3)n=(x\*\*2)axs[0, 0].plot(x, y) $axs[0, 0].set\_title('sin(x)')$ axs[0, 1].plot(x, z, 'tab:orange') axs[0, 1].set\_title('cos(x)') axs[1, 0].plot(x, m, 'tab:green') axs[1, 0].set\_title('x\*\*3') axs[1, 1].plot(x,n, 'tab:red') axs[1, 1].set\_title('x\*\*2') plt.show()



Figure 4: Subplot

# 3) Scatter Plots

# **Sample Code:**

```
colours = {'Setosa':'orange', 'Versicolor':'green', 'Virginica':'blue'}
for i in range(len(iris['sepal.length'])):
plt.scatter(iris['petal.length'][i],iris['petal.width'][i], color = colours[iris['variety'][i]])
plt.title('Scatter Plot')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.grid(True)
plt.show()
```



Figure5: Scatter plot

#### 4) Bar plots

#### **Sample Code:**

```
a= iris['variety'].value_counts()
species_types = a.index
count = a.values
plt.bar(species,count,color = 'lightgreen')
plt.xlabel('species_types')
plt.ylabel('count')
plt.show()
```

#### **Output:**



Figure6: Bar plot

# 5) Boxplot

#### **Sample Code:**

 $length\_width = iris[['petal.length', 'petal.width', 'sepal.length', 'sepal.width']] \ \#excluding \ species \ column$ 

length\_width.boxplot()

plt.xlabel('Flower measurements')

```
plt.ylabel('values')
plt.title("Iris dataset analysis")
plt.show()
```



Figure 7: Boxplot

#### 6) Histograms

# **Sample Code:**

```
data_ = np.random.randn(1000)
plt.hist(data_,bins = 40,color='blue')
plt.grid(True)
plt.xlabel('points')
plt.title("Histogram")
plt.show()
```



Figure8: Histogram

#### 7) Pie Charts

# **Sample Code:**

```
a= iris['variety'].value_counts()
species = a.index
count = a.values
colors= ['lightblue','lightgreen','gold']
explode = (0,0.6,0)
plt.pie(count, labels=species,shadow=False,
colors=colors,explode = explode, autopct='%1.1f%%')
plt.xlabel('species')
plt.axis('equal')
plt.show()
```



Figure9: Pie chart

--- Seaborn ---

1) Line Graph

# **Sample Code:**

sns.set\_style('darkgrid')
sns.lineplot(data=iris.drop(['variety'], axis=1))
plt.show()



Figure 10: Line Graph 3

# 2) Scatter Plot

#### **Sample Code:**

plt.show()

# **Output:**



Figure 11: Scatter plot 2

#### 3) Bar Plot

# **Sample Code:**

```
sns.FacetGrid(iris, hue="variety", height=5) \
.map(sns.distplot, "petal.length") \
.add_legend()
plt.show()
```



Figure 12: Bar plot 2

# Lab - 3 Data cleaning (Handling missing values, Outlier)

# **Objective:**

To be familiar with handling missing values of data and outlier.

# **About the Dataset:**

Total number of data: 9576

Datatype: Numerical

Data format: .csv file

| car           | price | body      | mileage | engV | engType | registratio | year | model   | drive |
|---------------|-------|-----------|---------|------|---------|-------------|------|---------|-------|
| Ford          | 15500 | crossover | 68      | 2.5  | Gas     | yes         | 2010 | Kuga    | full  |
| Mercedes-Benz | 20500 | sedan     | 173     | 1.8  | Gas     | yes         | 2011 | E-Class | rear  |
| Mercedes-Benz | 35000 | other     | 135     | 5.5  | Petrol  | yes         | 2008 | CL 550  | rear  |
| Mercedes-Benz | 17800 | van       | 162     | 1.8  | Diesel  | yes         | 2012 | B 180   | front |
| Mercedes-Benz | 33000 | vagon     | 91      | NA   | Other   | yes         | 2013 | E-Class |       |

Figure 13: Dataset view

# 1) Handling missing values

# **Sample Code:**

data\_1=data.copy()

data\_1.isnull().sum()



#### • Eliminating missing values(row)

#### **Sample Code:**

data\_without\_missing\_values=data\_1.dropna(subset=["engV","drive"])
data\_without\_missing\_values

#### **Output:**



#### • Eliminating missing values(columns)

#### **Sample Code:**

data\_1.drop(['engV', 'drive'], axis=1)

#### **Output:**



#### • Estimate missing values

#### **Sample Code:**

data\_1=data\_1.iloc[:,:].values

data\_1

imputer = SimpleImputer(missing\_values=np.nan, strategy='most\_frequent')

imputer=imputer.fit(data\_1[0:,0:10]) #1st portion is for row (start:end): 2nd portion is for columns (start:end)

data\_1[0:,0:10]=imputer.transform(data\_1[0:,0:10])
data\_1[0:,0:10]
data\_1
data\_1
data\_without\_missing\_values\_1=pd.DataFrame(data\_1)
data\_without\_missing\_values\_1



data\_without\_missing\_values\_2=data\_without\_missing\_values\_1.copy()
data\_without\_missing\_values\_2.isnull().sum()



data\_without\_missing\_values\_2



#### Outlier

#### **Sample Code:**

q1=data\_without\_missing\_values\_1[4].quantile(0.998)
q2=data\_without\_missing\_values\_1[4].quantile(0.0013)
data\_without\_outlier\_top=data\_without\_missing\_values\_1[data\_without\_missing\_values\_1[4]<
q1]
data\_without\_outlier=data\_without\_outlier\_top[data\_without\_outlier\_top[4]>q2]
data\_without\_outlier

#### **Output:**



#### **Data Aggregation**

**(1)** 

#### **Sample Code:**

df1=pd.DataFrame({'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3'],},
index=[0,1,2,3])
df1



**(2)** 

# **Sample Code:**

pd.concat([df1,df2])

# **Output:**



Join

#### **Left Outer Join**

pd.merge(left, right, how="left", on=["key1", "key2"])



# **Right Outer Join**

pd.merge(left, right, how="right", on=["key1", "key2"])



#### **Full Outer Join**

pd.merge(left, right, how="outer", on=["key1", "key2"])



#### **Inner Join**

pd.merge(left, right, how="inner", on=["key1", "key2"])



#### Lab - 4 (Decision Tree, Naive Bayes, KNN)

\_\_\_\_\_

# **Objective:**

To be familiar with some algorithms such as Decision Tree, Naive Bayes, and KNN.

#### --- Decision Tree ---

#### **Introduction:**

Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems. It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.

#### **Sample Code:**

import pandas as pd

import numpy as np

from sklearn.datasets import load\_iris

#load in the data

data = load\_iris()

#convert to a dataframe

df = pd.DataFrame(data.data, columns = data.feature\_names)

#create the species column

df['Species'] = data.target

#replace this with the actual names

target = np.unique(data.target)

target\_names = np.unique(data.target\_names)

targets = dict(zip(target, target\_names))

df['Species'] = df['Species'].replace(targets)

df

|   | sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | Species |
|---|-------------------|------------------|-------------------|------------------|---------|
| 0 | 5.1               | 3.5              | 1.4               | 0.2              | setosa  |
| 1 | 4.9               | 3.0              | 1.4               | 0.2              | setosa  |
| 2 | 4.7               | 3.2              | 1.3               | 0.2              | setosa  |
| 3 | 4.6               | 3.1              | 1.5               | 0.2              | setosa  |
| 4 | 5.0               | 3.6              | 1.4               | 0.2              | setosa  |
|   |                   |                  |                   |                  |         |

#extract features and target variables

x = df.drop(columns="Species")

y = df["Species"]

#save the feature name and target variables

 $feature\_names = x.columns$ 

labels = y.unique()

#split the dataset

from sklearn.model\_selection import train\_test\_split

X\_train, test\_x, y\_train, test\_lab = train\_test\_split(x,y, test\_size = 0.4, random\_state = 10)

from sklearn.tree import DecisionTreeClassifier

#import relevant packages

from sklearn import tree

import matplotlib.pyplot as plt

#plt the figure, setting a black background

plt.figure(figsize=(30,10), facecolor ='w')

#create the tree plot

a = tree.plot\_tree(clf,

#use the feature names stored

feature\_names = feature\_names,

#use the class names stored

class\_names = labels,

rounded = True,

filled = True,

fontsize=18)

#show the plot

plt.show()



```
#import relevant functions
from sklearn.tree import export_text
#export the decision rules
tree_rules = export_text(clf,
feature_names = list(feature_names))
#print the result
print(tree_rules)
                                      petal width (cm) <= 0.75
                                      --- class: setosa
                                             petal width (cm) <= 1.60
                                             petal width (cm) > 1.60
test_pred_decision_tree = clf.predict(test_x)
from sklearn import metrics
import seaborn as sns
import matplotlib.pyplot as plt
#get the confusion matrix
confusion_matrix = metrics.confusion_matrix(test_lab, test_pred_decision_tree)
#turn this into a dataframe
matrix_df = pd.DataFrame(confusion_matrix)
#plot the result
```

```
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
#set axis titles
ax.set_title('Confusion Matrix - Decision Tree')
ax.set_xlabel("Predicted label", fontsize =15)
ax.set_xticklabels(["]+labels)
ax.set_ylabel("True Label", fontsize=15)
ax.set_yticklabels(list(labels), rotation = 0)
plt.show()
```



metrics.accuracy\_score(test\_lab, test\_pred\_decision\_tree)
test\_pred\_decision\_tree = clf.predict(test\_x)
metrics.accuracy\_score(test\_lab, test\_pred\_decision\_tree)
#get the precision score

```
precision = metrics.precision_score(test_lab,

test_pred_decision_tree,

average=None)

#turn it into a dataframe

precision_results = pd.DataFrame(precision, index=labels)

#rename the results column

precision_results.rename(columns={0:'precision'}, inplace =True)

precision_results
```



recall = metrics.recall\_score(test\_lab, test\_pred\_decision\_tree,
average =None)

recall\_results = pd.DataFrame(recall, index= labels)

recall\_results.rename(columns ={0:'Recall'}, inplace =True)

recall\_results



f1 = metrics.f1\_score(test\_lab, test\_pred\_decision\_tree, average=None)

f1\_results = pd.DataFrame(f1, index=labels)

f1\_results.rename(columns={0:'f1'}, inplace=True)

f1\_results



print(metrics.classification\_report(test\_lab, test\_pred\_decision\_tree))

#### **Output:**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| setosa       | 1.00      | 1.00   | 1.00     | 18      |
| versicolor   | 1.00      | 0.83   | 0.91     | 24      |
| virginica    | 0.82      | 1.00   | 0.90     | 18      |
|              |           |        |          |         |
| accuracy     |           |        | 0.93     | 60      |
| macro avg    | 0.94      | 0.94   | 0.94     | 60      |
| weighted avg | 0.95      | 0.93   | 0.93     | 60      |

#### #extract importance

importance = pd.DataFrame({'feature': X\_train.columns,

'importance': np.round(clf.feature\_importances\_, 3)})

importance.sort\_values('importance', ascending=False, inplace = True)

print(importance)

```
feature importance
petal width (cm) 0.599
petal length (cm) 0.401
sepal length (cm) 0.000
sepal width (cm) 0.000
```

#### --- Naïve Bayes ---

#### **Introduction:**

Naïve Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and used for solving classification problems.

#### **About the Dataset:**

Total number of data: 400

Datatype: Numerical

Data format: .csv file

#### **Sample Code:**

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import sklearn

 $dataset = pd.read\_csv(r(r'N:\STUDY\University\1-Undergrad\4th-Year\Semester-12\DM-Lab\archive\Social\_Network\_Ads.csv'))$ 

X = dataset.iloc[:, [1, 2, 3]].values

y = dataset.iloc[:, -1].values

dataset

|   | User ID  | Gender | Age | EstimatedSalary | Purchased |
|---|----------|--------|-----|-----------------|-----------|
| 0 | 15624510 | Male   | 19  | 19000           | 0         |
| 1 | 15810944 | Male   | 35  | 20000           | 0         |
| 2 | 15668575 | Female | 26  | 43000           | 0         |
| 3 | 15603246 | Female | 27  | 57000           | 0         |
| 4 | 15804002 | Male   | 19  | 76000           | 0         |
|   |          |        |     |                 |           |

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

 $X[:,0] = le.fit\_transform(X[:,0])$ 

from sklearn.model\_selection import train\_test\_split

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.20, random\_state = 0)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X\_train = sc.fit\_transform(X\_train)

 $X_{\text{test}} = \text{sc.transform}(X_{\text{test}})$ 

from sklearn.naive\_bayes import GaussianNB

classifier = GaussianNB()

classifier.fit(X\_train, y\_train)

y\_pred = classifier.predict(X\_test)

```
y_pred
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
ac
                                           0.925
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score,
f1_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
pr= precision_score(y_test,y_pred)
rc=recall_score(y_test,y_pred)
f1=f1_score(y_test,y_pred)
cm
                             array([[56, 2],
[ 4, 18]], dtype=int64)
print("Accuracy", ac);
print("Precision", pr)
print("Recall", rc)
```

print("F1 Score", f1)

#### **Final Output:**

Accuracy 0.925 Precision 0.9 Recall 0.81818181818182 F1 Score 0.8571428571428572

--- KNN ---

### **Introduction:**

K-Nearest Neighbor is one of the simplest algorithms based on Supervised Learning technique. K-NN algorithm can be used for Regression as well as for Classification but mostly it is used for the Classification problems.

#### **About the dataset:**

• For this lab work we used numeric dataset and dataset format is .csv.

• Name of the dataset: iris.csv

• Total number of data: 150

#### **Sample Code:**

import pandas as pd

import numpy as np

import math

import operator

import pandas as pd

import numpy as np

from sklearn.datasets import load\_iris

#load in the data

data = load\_iris()

#convert to a dataframe

 $data = pd.read\_csv(r"N:\STUDY\University\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}\lab{\Barry}$ 

data

|   | Id | sepal.length | sepal.width | petal.length | petal.width | variety |
|---|----|--------------|-------------|--------------|-------------|---------|
| 0 |    | 5.1          | 3.5         | 1.4          | 0.2         | Setosa  |
| 1 | 2  | 4.9          | 3.0         | 1.4          | 0.2         | Setosa  |
| 2 | 3  | 4.7          | 3.2         | 1.3          | 0.2         | Setosa  |
| 3 | 4  | 4.6          | 3.1         | 1.5          | 0.2         | Setosa  |
| 4 | 5  | 5.0          | 3.6         | 1.4          | 0.2         | Setosa  |
|   |    |              |             |              |             |         |

print(data.describe())

| Id         | sepal.length                                                                             | sepal.width                                                                                                                                                                                                                       | petal.length                                                                                                                                                                                                                                                                                                                                 | petal.width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 150.000000 | 150.000000                                                                               | 150.000000                                                                                                                                                                                                                        | 150.000000                                                                                                                                                                                                                                                                                                                                   | 150.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 75.500000  | 5.843333                                                                                 | 3.057333                                                                                                                                                                                                                          | 3.758000                                                                                                                                                                                                                                                                                                                                     | 1.199333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 43.445368  | 0.828066                                                                                 | 0.435866                                                                                                                                                                                                                          | 1.765298                                                                                                                                                                                                                                                                                                                                     | 0.762238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.000000   | 4.300000                                                                                 | 2.000000                                                                                                                                                                                                                          | 1.000000                                                                                                                                                                                                                                                                                                                                     | 0.100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 38.250000  | 5.100000                                                                                 | 2.800000                                                                                                                                                                                                                          | 1.600000                                                                                                                                                                                                                                                                                                                                     | 0.300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 75.500000  | 5.800000                                                                                 | 3.000000                                                                                                                                                                                                                          | 4.350000                                                                                                                                                                                                                                                                                                                                     | 1.300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 112.750000 | 6.400000                                                                                 | 3.300000                                                                                                                                                                                                                          | 5.100000                                                                                                                                                                                                                                                                                                                                     | 1.800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150.000000 | 7.900000                                                                                 | 4.400000                                                                                                                                                                                                                          | 6.900000                                                                                                                                                                                                                                                                                                                                     | 2.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 150.000000<br>75.500000<br>43.445368<br>1.000000<br>38.250000<br>75.500000<br>112.750000 | 150.000000       150.000000         75.500000       5.843333         43.445368       0.828066         1.000000       4.300000         38.250000       5.100000         75.500000       5.800000         112.750000       6.400000 | 150.000000       150.000000       150.000000         75.500000       5.843333       3.057333         43.445368       0.828066       0.435866         1.000000       4.300000       2.000000         38.250000       5.100000       2.800000         75.500000       5.800000       3.000000         112.750000       6.400000       3.300000 | 150.000000         150.000000         150.000000         150.000000           75.500000         5.843333         3.057333         3.758000           43.445368         0.828066         0.435866         1.765298           1.000000         4.300000         2.000000         1.000000           38.250000         5.100000         2.800000         1.600000           75.500000         5.800000         3.000000         4.350000           112.750000         6.400000         3.300000         5.100000 |

feature\_columns = ['sepal.length', 'sepal.width', 'petal.length', 'petal.width']

 $X = data[feature\_columns].values$ 

y = data['variety'].values

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

```
y = le.fit_transform(y)
```

from sklearn.model\_selection import train\_test\_split

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size = 0.2, random\_state = 0)

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

from pandas.plotting import parallel\_coordinates

plt.figure(figsize=(15,10))

parallel\_coordinates(data.drop("Id", axis=1), "variety")

plt.title('Parallel Coordinates Plot', fontsize=20, fontweight='bold')

plt.xlabel('Features', fontsize=15)

plt.ylabel('Features values', fontsize=15)

plt.legend(loc=1, prop={'size': 15}, frameon=True, shadow=True, facecolor="white", edgecolor="black")

plt.show()



```
# Fitting clasifier to the Training set
# Loading libraries
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import cross_val_score
# Instantiate learning model (k = 3)
classifier = KNeighborsClassifier(n_neighbors=3)
# Fitting the model
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test) # Predicting the Test set results
cm = confusion_matrix(y_test, y_pred)
cm
accuracy = accuracy_score(y_test, y_pred)*100
print('Accuracy of our model is equal '+ str(round(accuracy, 2)) + '%.')
                                  Accuracy of our model is equal 96.67 %.
# creating list of K for KNN
k_list = list(range(1,50,2))
cv_scores = [] # creating list of cv scores
```

```
for k in k_list: # perform 10-fold cross validation
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn, X_train, y_train, cv=10, scoring='accuracy')
cv_scores.append(scores.mean())
MSE = [1 - x \text{ for } x \text{ in } cv\_scores]
plt.figure()
plt.figure(figsize=(15,10))
plt.title('The optimal number of neighbors', fontsize=20, fontweight='bold')
plt.xlabel('Number of Neighbors K', fontsize=15)
plt.ylabel('Misclassification Error', fontsize=15)
sns.set_style("whitegrid")
plt.plot(k_list, MSE)
plt.show()
```

