

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

Program: SE (DYPU)

End Semester Examination: B.Tech. Semester IV

Course Code: <u>CEC405</u> Course Name: <u>Design and Analysis of Algorithm</u>

Time: 2 hours
Max. Marks: 60

Instructions: 1. All three questions are compulsory

Que. No.	Question	Max. Marks	CO	BT
Q1	Solve any Four			
i)	Solve given recurrence relations applying master method. 1) $T(n) = 8T(n/4) + n^{3/2}$ 2) $T(n) = 3T(n/4) + n \log n$	5	CO1	ВТ3
ii)	Write binary search algorithm and prove that worst case time complexity is $O(\log n)$.	5	CO2	BT4
iii)	Explain greedy approach in detail and differentiate between Prim's and Kruskal's minimum spanning tree algorithm.	5	CO3	BT4
iv)	Given two sequences, calculate the length of longest subsequence present in both of them and print LCS. String 1:10010 String 2:01011	5	CO4	ВТ3
v)	Find the given pattern in the text by applying naïve string matching algorithm and specify the position of the pattern. Text:baabbab Pattern:ab	5	CO5	ВТ3
vi)	Compare NP-hard and NP-complete problem.	5	CO6	BT4

Que. No.	Question	Max. Marks	СО	BT
Q2 A	Solve any Two			
i)	Explain why analysis of algorithms is important? Define time and space complexity. Arrange the following growth rate in increasing order of complexity: n ³ , 1, n ² , nlog(n), n ² log(n), log(n), n ^{0.5}	5	CO1	ВТ3
ii)	Consider the following array: 50, 23, 9, 18, 61, 32 Sort this array in the most efficient manner using Quick sort.	5	CO2	ВТ3
iii)	Find an optimal solution for following knapsack problem by applying Greedy Approach. Number of objects n=4, Knapsack capacity M=5, Weights (W_1, W_2, W_3, W_4) = $(2, 2, 4, 5)$ and Profits (P_1, P_2, P_3, P_4) = $(3, 4, 5, 6)$.	5	CO3	ВТ3
iv)	Prove Travelling Salesman Problem to NP Complete Problem.	5	CO6	BT4

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

(D I Tuth Deemed to be emversity)									
Q 2 B	Solve any One								
i)	Calculate single source	10	CO3	BT4					
	1 to vertex 5 using Dijkstra's algorithm.								
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
ii)	Solve the TSP problem to find optimal tour cost using Dynamic						10	CO4	BT3
	programming where the edge lengths are given as,								
		0	9	8	8				
		12	0	13	6				
		10	9	0	5				
		20	15	10	0				

Que. No.	Question	Max. Marks	СО	BT
Q3	Solve any Two			
i)	Define 15 Puzzle problem. Explain how branch and bound strategy can be used to solve 15-puzzle problem with example.	10	CO5	BT2
ii)	Apply dynamic programming approach and calculate single source shortest path for the given graph from vertex A. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	10	CO4	BT4
iii)	Explain Graph coloring problem using backtracking approach. Write an algorithm for same.	10	CO5	ВТ3

Course Outcomes (CO) -Learner will be able to:

CO1: Analyze the running time and space complexity of algorithms.

CO2: Describe, apply and analyze the complexity of divide and conquer strategy.

CO3: Describe, apply and analyze the complexity of greedy strategy.

CO4: Describe, apply and analyze the complexity of dynamic programming strategy.

CO5: Explain and apply backtracking, branch and bound and string-matching techniques to deal with some hard problems.

CO6: Describe the classes P, NP, and NP-Complete and be able to prove that a certain problem is NP-Complete.

BT1- Remembering, BT2- Understanding, BT3- Applying, BT4- Analyzing, BT5- Evaluating, BT6- Creating