

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2011

Métodos Quantitativos

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

Métodos Quantitativos

2

Correlação e Regressão

- Correlação e Regressão
 - Técnicas relacionadas
 - Fazem uma estimação
 - Correlação e Regressão
 - Estimam relações que possam existir entre variáveis da população
 - Analisam dados amostrais buscando
 - Existência e a forma de relação de uma variável com outra
 - Técnicas anteriores
 - Fazem estimação relativas a um parâmetro populacional

Correlação e Regressão

- Análise de Correlação
 - Avalia se há relacionamento entre variáveis
 - Encontra/calcula um número que exprime o grau de relacionamento entre duas variáveis
 - Fundamental em trabalho exploratório
 - Permite uma visão geral de relacionamentos entre variáveis
 - Avalia importância de variáveis no contexto
 - Identifica potenciais relações e respectivas "forças"

Métodos Quantitativos 3 Métodos Quantitativos 4

Correlação e Regressão

- Análise de Regressão
 - Ênfase na natureza do relacionamento
 - Busca uma Equação matemática
 - Capaz de descrever o relacionamento entre variáveis
 - Equação pode ser usada para estimar valores de uma variável com base em valores de outra(s)
 - De relevante importância em
 - Economia, administração, contabilidade

Métodos Quantitativos

Análise de Regressão

- Correlação e Regressão
 - Dados são emparelhados
 - Cada observação tem duas ou mais variáveis
 - Exemplos
 - Amostra de pessoas
 - Nome, consumo, renda, escolaridade
 - Nome, idade, altura, peso
 - Amostra de alunos
 - Nome, indicador_desempenho, horas_estudo_semanal,
 - Amostra de empresas
 - Empresa, RSC, endividamento, rentabilidade, tangibilidade

Correlação e Regressão

- Correlação e Regressão
 - Dados são emparelhados
 - Cada observação tem duas ou mais variáveis
 - Exemplos
 - Amostra de pessoas
 - Nome, consumo, renda, escolaridade
 - Nome, idade, altura, peso
 - Amostra de alunos
 - Nome, indicador desempenho, horas estudo semanal
 - Amostra de empresas
 - Empresa, RSC, endividamento, rentabilidade, tangibilidade

Métodos Quantitativos 6

Análise de Correlação

- Análise de Correlação
 - Estudo investigativo correlacional
 - Correlação ≈ Correlacionamento ≈ Co-relacionamento
 - Grau de associação entre valores de duas variáveis
 - Exemplos
 - Idade e renda?
 - Escolaridade e renda?
 - rentabilidade e qualidade da gestão da empresa?
 - Desempenho acadêmico e horas de estudo?
 - Consumo e renda?
 - Temperatura e dedicação ao trabalho?
 - Estrutura de propriedade e endividamento da empresa?

Métodos Quantitativos 7 Métodos Quantitativos 8

- Análise de Correlação
 - Exemplos
 - Inflação na Alemanha e criminalidade na Colômbia?
 - Renda per capta em países desenvolvidos e nível de pobreza em países pobres?
 - Satisfação do trabalhador e produtividade?
 - Nível salarial e produtividade?
 - Inflação e consumo?
 - Temperatura e venda de casacos de frio?
 - Preço e nível de venda de um bem?
 - Empreendedorismo e crescimento econômico do país?
 - Investimento empresarial e nível de emprego?

Métodos Quantitativos 9

Análise de Correlação

- Análise de Correlação
 - O Coeficiente de Correlação r de Pearson
 - Matemático Karl Pearson
 - Requisitos/supostos para validade do *r* de Pearson
 - As duas variáveis aleatórias e contínuas
 - Distribuição de freqüência conjunta
 - das duas variáveis, i.e., pares (x, y) é normal
 - Distribuição normal bivariada

Análise de Correlação

- Análise de Correlação
 - Avalia possíveis associações (ou correlacionamentos) entre variáveis
 - O resultado da análise é um indicador
 - Um Coeficiente de Correlação
 - Valor que exprime o grau de correlação entre as duas variáveis analisadas
 - Correlação entre variáveis com dados contínuos
 - Forma mais usada de análise de correlação
 - O Coeficiente I de Pearson
 - Expressa o grau de relacionamento entre duas variáveis com dados contínuos

Métodos Quantitativos 10

Análise de Correlação

- Análise de Correlação
 - Coeficiente de Correlação r de Pearson
 - Propriedades do *r* de Pearson
 - Magnitude
 - [0; 1]
 - · Indica o grau de correlacionamento entre as variáveis
 - Quão próximo de uma reta estão os pontos (x, y)
 - Sinal (+ ou -)
 - Equivale ao coeficiente angular de uma reta imaginária

Métodos Quantitativos 11 Métodos Quantitativos 12

■ Fraca Correlação: *r* = 0,067

Quase ausência de relacionamento entre variáveis

Métodos Quantitativos 13

■ Forte Correlação Negativa: *r* = -1,0

■ Relacionamento negativo, perfeito

15

■ Forte Correlação Positiva: *r* = +1,0

Relacionamento positivo, perfeito

Métodos Quantitativos 14

■ Correlação Positiva: **r** = +0,714

Relacionamento positivo, moderado

Métodos Quantitativos 16

■ Correlação Negativa: r = -0,798

Relacionamento negativo, moderado

Métodos Quantitativos 17

Análise de Correlação

■ Coeficiente de Correlação r de Pearson

- Verifica se posição, ou situação, relativa
 - das observações de um grupo estão relacionadas com
 - as posições do outro grupo
- Cálculo/medição da posição relativa em um grupo
 - Função da média e desvio padrão (DP)

- Padroniza cada um dos valores de cada variável
- Assim, tornam-se comparáveis os grupos/variáveis
- Valores padronizados (z)
 - Usados para calcular valor que meça uma situação combinada
 - Usados para calcular valor que meça posição relativa em ambos os grupos

Métodos Quantitativos

18

Análise de Correlação

■ Coeficiente de Correlação r de Pearson

- Valores padronizados (z) de cada variável
 - Usados para calcular valor que meça uma situação combinada
 - Valores efetivos acima da média geram mais altos z que são positivos
 - Valores efetivos abaixo da média geram mais baixos z que são negativos

Produto dos dois escores padronizados

Análise de Correlação

- Coeficiente de Correlação r de Pearson
 - Produto dos dois escores padronizados
 - z_x X z_v
 - Se variáveis estão correlacionadas positivamente
 - Escores de x (z_x) estão emparelhados com escores de y (z_y) progressivamente
 - Mais baixo z_x está emparelhado com mais baixo z_y
 - Mais alto z_x está emparelhado com mais alto z_y
 - Tendência
 - $z_x X z_y > 0$

Métodos Quantitativos 19 Métodos Quantitativos 20

- Coeficiente de Correlação r de Pearson
 - Produto dos dois escores padronizados
 - z_x X z_y
 - Se variáveis estão correlacionadas negativamente
 - Escores de x (z_x) estão emparelhados com escores de y (z_y) inversamente
 - Mais baixo z_x está emparelhado com mais alto z_v
 - Mais alto z_x está emparelhado com mais baixo z_y
 - Tendência

•
$$z_x X z_y < 0$$

Métodos Quantitativos

21

Métodos Quantitativos

Análise de Correlação

- Coeficiente de Correlação r de Pearson
 - O Coeficiente Correlação <u>r de Pearson</u>
 - É a média dos produtos dos dos escores padronizados das duas variáveis (z_x X z_y)
 - Calcula-se a soma dos produtos (z_x X z_y)
 - Divide-se pelo número de produtos
 - Observe-se
 - Valores emparelhados geram produto (z_x X z_v) positivo
 - Isto ocasiona
 - · maior valor da soma dos produtos e assim
 - maior valor da média, que é o coeficiente de correlação

22

Análise de Correlação

- Resumo do cálculo do Coeficiente Correlação <u>r</u>
 de Pearson
- Correlação entre variáveis x e y
 - Padronizar todos os valores (observações)

$$z_{x} = \frac{(x_{i} - \overline{x})}{s_{x}} \qquad \qquad z_{y} = \frac{(y_{i} - \overline{y})}{s_{y}}$$

 Calcular somatório dos produtos dos valores padronizados emparelhados e o Coeficiente Correlação r de Pearson

$$r = \frac{\sum_{i=1}^{n} Z_x Z_y}{n-1}$$

xi - med_x zx=(xi-med_x)/dp yi - med_y zy=(yi-med_y)/dp zx X zy x . y 7056 -1,1 119 7225 0 311,5 7921 12,25 279 8100 276 8464 13 1,4 366,6 8836 15,21 1.54 345.6 9216 12.96 2,7 392 9604 12,6 0.9

Métodos Quantitativos 23 Métodos Quantitativos 24

- Resumo do cálculo do Coeficiente Correlação
 r de Pearson
- Fórmula alternativa que dispensa padronização

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2) - (\sum y)^2}}$$

Métodos Quantitativos 25

Análise de Correlação

- Teste de Significância do Coeficiente de Correlação <u>r de Pearson</u>
 - r : coeficiente de correlação amostral
 - ρ: coeficiente de correlação populacional
 - Hipóteses
 - H_0 : $\rho = 0$
 - Não há correlação entre as variáveis
 - H_1 : $\rho \neq 0$
 - Há correlação entre as variáveis

Métodos Quantitativos 26

Análise de Correlação

- Teste de Significância do Coeficiente Correlação <u>r de Pearson</u>
 - Hipóteses
 - H_0 : $\rho = 0$
 - H_1 : $\rho \neq 0$
 - Estatística de teste:

$$t = \frac{r - 0}{\sqrt{\frac{(1 - r^2)}{(n - 2)}}}$$

- Graus de Liberdade: (n 2)
- Teste bilateral de t

Análise de Correlação

■ Exemplo

■ n = 16; r = 0,714; GL = 14;
$$t = 3,82056292^{***}$$

$$\blacksquare$$
 n = 16; r = 0,798; GL = 14; $t = -4,961748894^{***}$

28

Pontos Percentuais da Distribuicao t

Probabilidades na cauda								
Uma Cauda		0,100	0,050	0,025	0,010	0,005	0,001	0,0005
Duas Caudas		0,200	0,100	0,050	0,020	0,010	0,002	0,001
D	1	3,078	6,314	12,710	31,820	63,660	318,300	637,000
E	2	1,886	2,920	4,303	6,965	9,925	22,330	31,600
G	3	1,638	2,353	3,182	4,541	5,841	10,210	12,920
R	4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
E	5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
E	6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
S	7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
	8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
0	9	1,383	1,833	2,262	2,821	3,250	4,297	4,781
F	10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
	11	1,363	1,796	2,201	2,718	3,106	4,025	4,437
F	12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
R	13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
E	14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
E	15	1,341	1,753	2,131	2,602	2,947	3,733	4,073
D	16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
0	17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
M	18	1,330	1,734	2,101	2,552	2,878	3,610	3,922
Métodos Quantitativos								29

■ Fraca Correlação: *r* = 0,067

- n = 16; r = 0.067; t = 0.2506 => aceitação de H0 (<math>p = 0)
 - t menor que t crítico
- Quase ausência de relacionamento entre variáveis

30 Métodos Qu

■ Forte Correlação Positiva: *r* = +1,0

- n = 16; r = +0,99999999; t = 26.457,51 => rejeição de H0 e aceitação de H1 (p ≠ 0)
 - t supera t crítico

■ Forte Correlação Negativa: *r* = -1,0

- n = 16; r = -0,999999999; t = -26.457,51 => rejeição de H0 e aceitação de H1 (p ≠ 0)
- Relacionamento negativo, perfeito

v1 Μ 32

■ Correlação Positiva: *r* = +0,714

- n = 16; r = 0,714; t = 3,82056292 => rejeição de H0 e aceitação de H1 (p ≠ 0)
- Relacionamento positivo, moderado

■ Correlação Negativa: r = -0,798

- n = 16; r = 0,798; t = -4,961748894 => rejeição de H0 e aceitação de H1 (p ≠ 0)
- Relacionamento negativo, moderado

Análise de Correlação

■ Dados por Postos: <u>r de Spearman</u>

Dados Nominais: <u>Coeficiente de Contingência</u>

Análise de Correlação

- Quando os dados forem medidos somente no nível ordinal eles são chamados de nãoparamétricos e a correlação de Pearson não é apropriada
- Dados por Postos: <u>r de Spearman</u>

33

- Dados por Postos: <u>r de Spearman</u>
- Coeficiente de correlação de Spearman
 - estatística não-paramétrica
 - pode ser usado quando os dados violarem suposições paramétricas, tais como dados não-normais
- Teste de Spearman
 - Classifica os dados em primeiro lugar e então aplicando a equação de Pearson aos dados ordenados
 - Categorias que podem ser ordenadas de maneira significativa, os dados são ordinais

Análise de Correlação

- Dados por Postos: <u>r de Spearman</u>
- Coeficiente de correlação de Spearman
 - estatística não-paramétrica
 - pode ser usado quando os dados violarem suposições paramétricas, tais como dados não-normais
- Teste de Spearman
 - Classifica os dados em primeiro lugar e então aplicando a equação de Pearson aos dados ordenados
 - Categorias que podem ser ordenadas de maneira significativa, os dados são ordinais

Métodos Quantitativos 37 Métodos Quantitativos 38