Scalable Attention-based Reinforcement Learning Method for Multi-asset Control

Seyed Soroush Karimi Madahi, Giuseppe Gabriele, Bert Claessens, Chris Develder Al4E Team, IDLab, Ghent University – imec

Energy Transition – Supply

FUTURE EUROPEAN ELECTRICITY MIX

Energy Transition – (Residential) Demand

HISTORICAL AND FORECASTED DEMAND IN BELGIUM

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Source: Adequacy & flexibility study for Belgium (2024-2034), ELIA

We need algorithms for multi-asset control

- We need algorithms for multi-asset control
- Challenge: Achieve global objective + Joint constraints + Individual constraints
- Candidate algorithms:

	Optimization	- Centralized	Distributed
Requirements	based	RL	RL
View	Global V	Global V	Local X
Scalable to large pools	No 🗙	No 🗶	Yes V
System model req'd	Yes 🗶	No 🗸	No 🗸
Forecaster req'd	Yes 🗶	No 🗸	No 🗸
Inference time	High 🗶	Low V	Low V

- We need algorithms for multi-asset control
- Challenge: Achieve global objective + Joint constraints + Individual constraints
- Candidate algorithms:

Requirements	Optimization- based	Centralized RL	Distributed RL	??
View	Global V	Global V	Local 🗙	Global 🗸
Scalable to large pools	No 🗙	No 🗙	Yes 🗸	Yes 🗸
System model req'd	Yes 🗙	No 🗸	No 🗸	No 🗸
Forecaster req'd	Yes 🗙	No 🗸	No 🗸	No 🗸
Inference time	High 🗙	Low V	Low V	No 🗸

- We need algorithms for multi-asset control
- Challenge: Achieve global objective + Joint constraints + Individual constraints
- Candidate algorithms:

Requirements	Optimization- based	Centralized RL	Distributed R <u>L</u>	— ??
View	Global V	Global 🗸	Local X	Global 🗸
Scalable to Jarge pools	No ¥	No ¥	Voc 1	Yes 🗸
Syste Our contribut	No 🗸			
Fore 1. Attention-	asset pool	No 🗸		
Infer 2. Proof-of-p		No 🗸		
		J		

Attention-Based RL

- Construct state representation combining own asset + relative to other assets + global state
- Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

- Construct state representation combining own asset + relative to other assets + global state
- Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

- Construct state representation combining own asset + relative to other assets + global state
- Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

- Construct state representation combining own asset + relative to other assets + global state
- Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

Idea:

Construct state representation combining own asset + relative to other assets + global state

Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

- Construct state representation combining own asset + relative to other assets + global state
- Use state representation as input representation in conventional RL (e.g., to map to Q-value, action, ...)

Case study: EV charging

MDP Formulation for EV Problem

At each timestep t the agent

• Gets state observation
$$s_t = \bigoplus_{i=1}^{N_t} (\underbrace{t_{i,t}^{\text{arr}}, t_{i,t}^{\text{dep}}, E_{i,t}^{\text{req}}}_{\text{local info}}, \underbrace{t, N_t}_{\text{global info}})$$

- Decides to take action $a_t = \bigoplus a_{i,t}, \quad a_{i,t} \in \{0, P_i^{\max}\}$
- The environment
 - Receives action a_t

• Transitions to **state**
$$S_{t+1}r_t = -\left(\sum_{i=1}^{N_t} a_{i,t}\right)^2 - \alpha \sum_{i=1}^{N_t} \mathbb{1}\left\{E_{i,t}^{\text{req}} > t_{i,t}^{\text{dep}} \cdot P_i^{\text{max}}\right\}$$

• Returns scalar reward

RL goal: learn policy to flatten the load of the whole parking, while satisfying the needs of EV users

Simulation Setup

Datasets

- Historical real-world dataset from 20 EVs
 - Belgian residential charging sessions
 - Data split: 40d train / 5d eval / 5d test
- Scaled dataset from 100 EVs
 - Fit Gaussian mixture model on historical dataset
 - Data split: 30d train / 7d eval / 7d test

Benchmark controllers

- Business-as-usual (BAU): Start charging upon arrival
- Optimal: MPC optimization with perfect foresight over full day

Simulation Results – Our RL outperforms BAU

Attention-based RL

Flattens load (peak reduced by 27%)*

Simulation Results – Our RL outperforms BAU

Attention-based RL

- Flattens load (peak reduced by 27%)*
- Performs close to optimization based on perfect foresight

*: 27% is the average over full test set

Simulation Results – Our RL learns to prioritize EVs correctly

Wrap-up

Conclusion

- Introduced a scalable centralized RL method to jointly control a fleet of flexible assets
 - Asset-specific info aggregation using attention layer
 - Model parameter size independent of number of assets
- Case study: load flattening of EV parking lot
 - Outperforms BAU by 28%
 - Average peak reduction of 27%

Future work

- Application to other asset types in multi-agent energy problems
- Joint control of a fleet of <u>heterogeneous</u> flexible assets

Thank you! Any questions?

Thank you! Any questions?

