ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $(D\hat{e} \ g\hat{o}m \ 1 \ c\hat{a}u/1 \ trang)$

$\vec{\rm DE}$ KIỂM TRA THƯỜNG XUYÊN 2 Môn: Toán rời rạc (MAT3500 3, 2022-2023)

Thời gian: 30 phút

- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.

Họ và Tên:			
·			
Mã Sinh Viên:	Lớp:		

Câu:	1	Tổng
Điểm tối đa:	10	10
Điểm:		

1. Chứng minh Định lý cơ bản của số học dựa trên các gợi ý sau:

Định lý 1 (Định lý cơ bản của số học). Mọi số nguyên dương n > 1 có thể được viết một cách duy nhất dưới dạng một số nguyên tố hoặc tích của các ước nguyên tố của nó theo thứ tự tăng dần.

- (a) (5 điểm) Chứng minh bằng quy nạp mạnh: Mọi số nguyên dương n > 1 có thể được biểu diễn dưới dạng một số nguyên tố hoặc tích của các ước nguyên tố của n theo thứ tự tăng dần.
- (b) (4 điểm) Chứng minh rằng nếu $n \ge 1$ và p là một số nguyên tố thỏa mãn $p \mid a_1 a_2 \dots a_n$, trong đó $a_i \in \mathbb{Z}$ với $1 \le i \le n$, thì $p \mid a_i$ với j nào đó thỏa mãn $1 \le j \le n$.
- (c) (1 điểm) Sử dụng phần (b) để chứng minh rằng nếu một số nguyên n > 1 được biểu diễn dưới dạng một số nguyên tố hoặc tích của các ước nguyên tố của n theo thứ tự tăng dần thì biểu diễn đó là duy nhất.

Lời giải:

- (a) Ta chứng minh phát biểu P(n) sau đúng với mọi n > 2 bằng phương pháp quy nap
 - n có thể được biểu diễn dưới dang tích của các ước nguyên tố của n theo thứ tư tăng dần.
 - Bước cơ sở: P(2) đúng, do 2=2.
 - Bước quy nạp: Giả sử P(j) đúng với mọi số nguyên j thỏa mãn $2 \le j \le k$ với $k \ge 2$ nào đó. Ta chứng minh P(k+1) đúng. Thật vậy, nếu k+1 là số nguyên tố thì hiển nhiên P(k+1) đúng. Ngược lại, nếu k+1 là hợp số, ta có $k+1=a\cdot b$ với $2 \le a,b \le k$. Theo giả thiết quy nạp, $a=p_1^{a_1}p_2^{a_2}\dots p_h^{a_h}$ với $a_i \ge 0$ và p_i $(1 \le i \le h)$ là các số nguyên tố thỏa mãn $p_1 \le p_2 \le \dots \le p_h$ và tương tự $b=q_1^{b_1}q_2^{b_2}\dots q_m^{b_m}$ với $b_i \ge 0$ và q_i $(1 \le i \le m)$ là các số nguyên tố thỏa mãn $q_1 \le q_2 \le \dots \le q_m$, trong đó $m,h \ge 1$ là các số nguyên dương nào đó. Do đó, ta có thể viết $k+1=a\cdot b=(p_1^{a_1}p_2^{a_2}\dots p_h^{a_h})\cdot (q_1^{b_1}q_2^{b_2}\dots q_m^{b_m})$. Bằng cách sắp xếp lại các thừa số nguyên tố $p_1,\dots,p_h,q_1,\dots,q_m$ theo thứ tự tăng dần, ta có điều phải chứng minh.

(b) Ta chứng minh phát biểu Q(n) sau đúng với mọi $n \geq 1$ bằng phương pháp quy nạp

Nếu p là một số nguyên tố thỏa mãn $p \mid a_1 a_2 \dots a_n$, trong đó $a_i \in \mathbb{Z}$ với $1 \le i \le n$, thì tồn tại $j \in \{1, 2, \dots, n\}$ sao cho $p \mid a_j$.

- Bước cơ sở: Q(1) đúng, do nếu p | a₁ thì hiển nhiên j = 1 thỏa mãn điều kiện đề ra. Ta chứng minh Q(2) đúng, nghĩa là, nếu p là một số nguyên tố thỏa mãn p | a₁a₂, trong đó a₁, a₂ ∈ ℤ, thì p | a₁ hoặc p | a₂. Thật vậy, giả sử p ∤ a₁ và p ∤ a₂. Theo Định lý Bézout, tồn tại s,t ∈ ℤ thỏa mãn gcd(p,a₁) = 1 = sp+ta₁. Nhân cả hai vế của đẳng thức trên với a₂ cho ta a₂ = spa₂ + ta₁a₂. Do p | a₁a₂, ta cũng có p | (ta₁a₂). Thêm vào đó, p | (spa₂). Do đó, p | (spa₂ + ta₁a₂), nghĩa là p | a₂, mâu thuẫn với giả thiết ban đầu. Tóm lại, ta có Q(2) đúng.
- Bước quy nạp: Giả sử Q(j) đúng với mọi j thỏa mãn $1 \leq j \leq k$ với số nguyên $k \geq 2$ nào đó. Ta chứng minh Q(k+1) đúng. Thật vậy, giả sử $p \mid a_1 a_2 \dots a_k a_{k+1}$ với số nguyên tố p nào đó. Nếu $p \mid a_{k+1}$ thì hiển nhiên Q(k+1) đúng. Nếu $p \nmid a_{k+1}$, do Q(2) đúng, ta có $p \mid a_1 a_2 \dots a_k$. Theo giả thiết quy nạp, tồn tại $j \in \{1, 2, \dots, k\} \subseteq \{1, 2, \dots, k, k+1\}$ sao cho $p \mid a_j$. Do đó, Q(k+1) đúng.
- (c) Ta sử dụng phương pháp phản chứng. Giả sử với các tập số nguyên tố $A = \{p_1, p_2, \dots, p_h\}$ $(p_1 \leq \dots \leq p_h)$ và $B = \{q_1, \dots, q_m\}$ $(q_1 \leq \dots \leq q_m)$ với $A \neq B$, ta có (\star) $n = p_1^{a_1} \dots p_h^{a_h} = q_1^{b_1} \dots q_m^{b_m}$. Nếu $A \cap B = \emptyset$ thì không làm gì. Ngược lại, ta chia cả hai vế của (\star) cho tích các số nguyên tố trong $A \cap B$. Giả sử kết quả thu được là

$$r_1^{c_1} \dots r_u^{c_u} = s_1^{d_1} \dots s_v^{d_v}$$

trong đó $\{r_1,\ldots,r_u\}=A-B$ và $\{s_1,\ldots s_v\}=B-A$. Do $r_1\mid (r_1^{c_1}\ldots r_u^{c_u})$, ta cũng có $r_1\mid (s_1^{d_1}\ldots s_v^{d_v})$. Theo phần (b), tồn tại $j\in\{1,2,\ldots,v\}$ thỏa mãn $r_1\mid s_j^{d_j}$. Do cả r_1 và s_j đều là số nguyên tố, ta có $r_1=s_j$. Điều này mâu thuẫn với giả thiết $r_1\in A-B$ và $s_j\in B-A$. Do đó, ta có điều phải chứng minh.