

Balachandar K

Important one....

- Data Types
- Probability & Bayes' Theorem
- Measures of Central Tendency
- Skewness
- Kurtosis
- Measures of Dispersion
- Covariance
- Correlation
- Probability Distributions
- Hypothesis Testing
- Regression

What is data?

Measure of central tendency

Mean

Where you add up all the numbers and then divide by the amount of numbers you added.

Example:

13, 18, 13, 14, 13, 16, 14, 21, 13.

 $(13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13) \div 9 = 15$

Median

It is the "middle" value in the list of numbers.

Example:

13, 18, 13, 14, 13, 16, 14, 21, 13

Arrange the number

13, 13, 13, 13, 14, 14, 16, 18, 21

There are nine numbers in the list. $(9 + 1) \div 2 = 10 \div 2 = 5$ th number.

13, 13, 13, 13, 14, 14, 16, 18, 21 The median is 14.

Mode

The number or numbers that occur most often in a set of numbers.

Example:

13, 18, 13, 14, 13, 16, 14, 21, 13

The number that is repeated more often is 13.

Range

The difference between the highest and the lowest numbers in a set of numbers.

Example:

13, 18, 13, 14, 13, 16, 14, 21, 13

The largest value in the list is 21, and the smallest is 13,

so the range is 21 - 13 = 8.

Height & Average Height (mean)

Variance & SD

Variance
$$\sigma^2 = (206^2 + 76^2 + (-224)^2 + 36^2 + (-94)^2) / 5$$

So the Variance is 21,704

Statistics methods....

```
statistics.mean([1,2,3,4,4])
2.8
```

```
statistics.median([1,3,5])

3

statistics.median([1,3,5,7])

4.0
```

```
statistics.mode([1,1,2,3,3,3,3,4])

statistics.mode(["red","blue","red","red"])
'red'
```

Measures of central tendency

Type of Variable	Best measure of central tendency
Nominal	Mode
Ordinal	Median
Interval/Ratio (not skewed)	Mean
Interval/Ratio (skewed)	Median

Frequency Distribution

- Positive Skewness: It occurs when the Mean > Median < Mode. The tail is skewed to the right in this case, i.e outliers are skewed to the right.
- Negative Skewness: It occurs when the Mean < Median < Mode. The tail is skewed to the left, i.e the outliers are skewed to left

Kurtosis


```
import numpy as np
from scipy.stats import kurtosis
from scipy.stats import skew
import matplotlib.pyplot as plt
plt.style.use('ggplot')
data = np.random.normal(-5, 5, 100000)
plt.hist(data, bins=60)
print("skew : ",skew(data))
print("kurt : ",kurtosis(data))
```

skew: -0.005168246772588942 kurt: 0.010248125871068048

Measures of Dispersion

```
data=[1,2,3,4,5,7,9]
#sample variance
statistics.variance(data)
7.9523809523809526
#population variance
statistics.pvariance(data)
6.816326530612245
#square root of sample variance
statistics.stdev(data)
2.819996622760558
#square root of population variance
statistics.pstdev(data)
```

2.610809554642438

quartiles, deciles, percentiles

These are three common measures used in statistics to divide an ordered data set into equal parts.

Quartiles = 4 equal parts, Deciles = 10 equal parts, Percentiles = 100 equal parts.

five number summary

The five number summary gives the minimum value, lower quartile, median, upper quartile, and the maximum value.

This is often represented in a box or box-and-whisker plot.

- import numpy as np
- arr1= np.array([[12,43,56],[78,88,95],[79,89,43], [101,34,67]])
- arr2 = np.array([5,6,7,12,34,67,89])
- #Mean function
- print("Mean:", np.mean(arr2))
- #Median function
- print("Median:",np.median(arr2))
- #Standard Deviation Function
- print("Standard Deviation:", np.std(arr2))
- #Variance Function
- print("Variance:",np.var(arr2))
- #Average Function
- print("Average:",np.average(arr2))
- #Percentile Function
- print("Percentile:",np.percentile(arr2,5,0))
- #Minimum Function
- print("Minimum element:",np.amin(arr))
- #Maximum Function
- print("Maximum element:",np.amax(arr))

- Mean: 31.428571428571427
- Median: 12.0
- Standard Deviation: 31.409084867994768
- Variance: 986.530612244898
- Average: 31.428571428571427
- Percentile: 5.3
- Minimum element: 12
- Maximum element: 101

Measure of Spread


```
arr = [31, 35, 45, 49, 59, 69, 74, 79, 80, 81, 89, 94, 96, 99, 101, 104, 112,
117,119,127,134]
# First quartile (Q1)
Q1 = np.median(arr[:12])
# Third quartile (Q3)
Q3 = np.median(arr[12:])
# Interquartile range (IQR)
IQR = Q3 - Q1
print(IQR)
```

Continuous Probability Distributions

Covariance

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = {'A': [55,47,52,45,49],
        'B': [48,41,36,38,23],
        'C': [20,25,27,31,22]
df = pd.DataFrame(data,columns=['A','B','C'])
covmtrx = pd.DataFrame.cov(df)
print (covmtrx)
sns.heatmap(covmtrx, annot=True, fmt='g')
plt.show()
A 15.8 12.60 -12.00
B 12.6 83.70 -2.25
C -12.0 -2.25 18.50
 m -
                  83.7
```

Correlation

```
corrmtrx = pd.DataFrame.corr(df)
print (corrmtrx)
sns.heatmap(corrmtrx, annot=True, fmt='g')
plt.show()
                     В
                                C
  1.000000 0.346481 -0.701886
  0.346481 1.000000 -0.057179
C -0.701886 -0.057179 1.000000
                                            -1.0
                                             -0.8
                  0.346481
                               -0.701886
                                             - 0.6
                                             -0.4
                                             -0.2
      0.346481
                              -0.0571787
                                             -0.0
                                             --0.2
                  -0.0571787
                                             -0.4
      -0.701886
                      В
```

Covariance	Correlation			
Measure of how much two random variables vary together	Indicates how strongly two variables are related			
Involves the relationship between two variables or datasets	Involves relationship between multiple variables as well			
Lies between -∞ and +∞	Lies between -1 and +1			
Measure of correlation	Scaled version of covariance			
Provides direction of relationship	Provides direction as well as strength of relationship			
Dependent on scale of variable	Independent of scale of variable			
Has dimensions	Dimensionless			

Type 1 & 2

	- 1	Conclusion	
		Accept the Null	Reject the Null
The True State of the Nature	H ₀ is True	Correct	False Positive Type I Error α
	H ₀ is False	False Negative Type II Error	Correct

Linear Regression


```
import numpy as np
import matplotlib.pyplot as plt
#sample dataset
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12,14])
#scatter plot of dataset
plt.scatter(x,y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```



```
n = np.size(x)
mx = np.mean(x)
my = np.mean(y)
# cross-deviation and deviation about x
SSxy = np.sum(y*x) - n*my*mx
SSxx = np.sum(x*x) - n*mx*mx
# estimating regression coefficients
b1 = SSxy/SSxx
b0 = my - b1*mx
print("Estimated coefficients:\nb_0 = {} \
   \nb_1 = {}".format(b0, b1))
plt.scatter(x, y)
y_pred = b0 + b1*x
# plotting the regression line
plt.plot(x, y_pred, color = "r")
plt.xlabel('x')
plt.ylabel('y')
plt.show()
Estimated coefficients:
b_0 = 1.09090909090909
b_1 = 1.2181818181818183
```


Multiple Regression

