SIGN LANGUAGE INTERPRETER

Submitted by

Madhav Khatoria(RA2011033010131) Seenu Nahak(RA2011033010111)

Under the Guidance of

Dr.G.SENTHIL KUMAR

Associate Professor, Department of Computational Intelligence

In partial satisfaction of the requirements for the degree of

BACHELORS OF TECHNOLOGY in COMPUTER SCIENCE ENGINEERING

with specialization in Software Engineering

SCHOOL OF COMPUTING COLLEGE OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY KATTANKULATHUR – 603203 NOVEMBER 2023

SRM INSTITUTION OF SCIENCE AND TECHNOLOGY KATTANKULATHUR-603203

BONAFIDE CERTIFICATE

Certified that 18CSP107L minor project report "SIGN LANGUAGE INTERPRETER" is the bonafide work done by Madhav Khatoria [RA2011033010131], Seenu Nahak [RA2011033010111] who carried out under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of any other work.

SIGNATURE

Research Supervisor

Dr.G.SENTHIL KUMAR

Associate Professor

Department of Computational Intelligence

SRM Institute of Science and Technology

Kattankulathur Campus, Chennai

HEAD OF THE DEPARTMENT

Dr. R Annie Uthra

Professor and Head,

Department of Computational Intelligence,

SRM Institute of Science and Technology

Kattankulathur Campus, Chennai

ABSTRACT

The real-time sign language interpreter web app revolutionizes communication by bridging the gap between sign language users and individuals unfamiliar with sign language. Leveraging advanced computer vision and natural language processing techniques, the app operates seamlessly through a user's webcam. By capturing intricate sign language gestures in real-time, it instantly converts them into precise textual captions, ensuring accurate interpretation of the user's message. This innovative technology facilitates effortless communication between sign language users and those who rely on spoken language, fostering a more inclusive and accessible environment.

Through its sophisticated algorithms, the app ensures the seamless transmission of information, breaking down barriers that often hinder effective communication. Sign language users can express themselves naturally, knowing their gestures will be accurately translated into written words. Simultaneously, individuals unfamiliar with sign language can engage in meaningful conversations without any language barriers. This transformative tool not only enhances inclusivity but also promotes understanding and empathy among diverse communities.

The real-time sign language interpreter web app stands as a testament to the power of technology in promoting universal communication, empowering individuals to connect, collaborate, and share their experiences effortlessly. Its impact reverberates across various sectors, fostering a more inclusive society where communication knows no bounds.

TABLE OF CONTENTS

Chapter No.		Title	Page No.	
		ABSTRACT		2
		TABLE OF CONTENTS		4
		LIST OF FIGURES		5
		LIST OF TABLES		6
		ABBREVIATIONS		7
1		INTRODUCTION		0
1		INTRODUCTION		8
	1.1	Problem Definition		8
	1.2	Computer Vision		8
	1.2.1	Types of Computer Vision		9
	1.3	Requirements Specification		9
	1.3.1	Hardware Requirements		10
	1.3.2	Software Requirements		10
2		LITERATURE SURVEY		11
	2.1	Literature Survey Table		10
3		SYSTEM ARCHITECTURE AND DESIGN		16
	3.1	UML DIAGRAM		16
	3.1.1	Activity Diagram		16
	3.1.2	Sequence Diagram		17
	3.1.3	Communication Diagram		17
	3.1.4	Interaction Diagram		18
	3.1.5	Architecture Diagram		19
4		METHODOLOGY		20
5		CODING AND TESTING		22
	5.1	CODING		22
	5.2	Testing		30
	5.2.1	Importance of Testing		30
	5.2.2	Types of Testing		30
	5.2.3	Best Practices for Conducting Effective Testing		32
6		RESULTS AND DISCUSSIONS		33
	6.1	Screenshots of Application		33
	6.2	Screenshots of Model		34

	CONCLUSION AND FUTURE	
7	ENHANCEMENT	39
	REFERENCES	40
APPENDIX		
A	CONFERENCE PUBLICATION	
В	JOURNAL PUBLICATION	
C	PLAGIARISM REPORT	

LIST OF FIGURES

Figure No	Figure Name	Page no
3.1	Activity Diagram	17
3.2	Sequence Diagram	18
3.3	Architecture Diagram	19
4.1	Model Architecture of LSTM	21
6.1	Detecting Thanks Gesture	32
6.2	Detecting Love You Gesture	33
6.3	Detecting Hello Gesture	34
6.4	LSTM Model	35
6.5	Model Summary	36
6.6	Model Accuracy	37
6.7	Confusion Matrix	37

LIST OF TABLES

Table NoTable NamePage No2.1Literature Survey Table11

ABBREVIATIONS

LSTM Long Short Term Memory

CNN Convolutional Neural Network

ML Machine Learning

DL Deep Learning

APP Application

IEEE Institute of Electrical and Electronics Engineers

ReLU Rectified Linear Units

UML Unified Modeling Language

RNN Recurrent Neural Network

CHAPTER 1 INTRODUCTION

1.1Problem definition

The World Health Organization (WHO) reports that more than 6% of the world's population suffers f rom hearing loss, and approximately 5%, that is, 430 million people, need hearing treatment. This nu mber is expected to reach 700 million in 2050.

Hearing loss is defined as the inability to hear normal hearing (20 decibels or more in both ears) and can cause mild to severe pain. Available for one or both ears. Deaf people often rely on sign languag e as their primary means of communication, so developing sign language is important. It is also very important for people who cannot speak.

These systems use mostly image-

based methods to interpret gestures, enabling the procedures to be translated into text in real time, foc using on Indian Sign Language.

1.2 Computer Vision

Computer vision is a subfield of artificial intelligence that tries to teach machines how to perceive and comprehend visual data in the same way that people do. It entails the creation of algorithms and procedures that allow computers to analyze, process, and comprehend images and videos.

In recent years, computer vision has made tremendous advancements due to the availability of large datasets and powerful machine learning algorithms. Some of the practical applications of computer vision include object recognition, face detection, image and video analysis, augmented reality, and autonomous navigation.

Object recognition is one of the most important applications of computer vision. It involves training algorithms to identify and classify objects in images and videos accurately. Object recognition is used in a wide range of applications, from identifying cancer cells to self-driving cars.

Another important application of computer vision is face detection, which involves identifying human faces in images and videos. This technology has been used for security purposes, such as in surveillance systems, and for improving the user experience in mobile devices.

Image and video analysis is another area where computer vision has shown significant progress. This technology enables computers to extract valuable information from images and videos, such as identifying patterns, detecting anomalies, and tracking objects over time.

Augmented reality is an exciting application of computer vision that overlays digital information on the real world, creating an immersive experience for the user. This technology has been used in gaming, advertising, and education, among others. Finally, autonomous navigation is an application of computer vision that enables machines to navigate the world without human intervention. This technology has been used in self-driving cars, drones, and robots, among others, enabling them to

safely and efficiently navigate their surroundings.

In conclusion, computer vision is a rapidly growing field that has numerous practical applications. With the increasing availability of visual data and the development of powerful machine learning algorithms, we can expect to see many more exciting applications of computer vision in the years to come.

1.2.1 Types of Computer Vision Techniques

It is a vast field that involves the development of algorithms and techniques to enable machines to interpret visual data. Different types of computer vision are used to solve specific problems, and they have various applications. Here are some of the main types of computer vision:

- Image classification: This type of computer vision involves training machines to categorize images into different classes or categories. For example, a machine can be trained to identify an image as a cat, a dog, or a car. Image classification is used in various applications, including image search and content filtering.
- Object detection: Identifying and detecting items inside an image or video is a sort of computer vision. Object detection is utilized in a variety of applications, including autonomous vehicles, surveillance, and robotics.
- Semantic segmentation: This type of computer vision involves segmenting an image into different regions and assigning a label to each segment. Semantic segmentation is used in applications such as medical image analysis and autonomous navigation.
- Instance segmentation: This type of computer vision involves identifying and delineating individual objects within an image or video. Instance segmentation is used in applications such as autonomous driving and robotics.
- Optical character recognition (OCR): This type of computer vision involves recognizing and interpreting text within an image or video. OCR is commonly used in applications such as document scanning and automated data entry.
- Face recognition: This type of computer vision involves identifying and verifying the identity of a person based on their facial features. Face recognition is used in applications such as security systems, mobile devices, and social media.
- Motion analysis: This type of computer vision involves analyzing and interpreting the motion of objects within an image or video. Motion analysis is used in applications such as sports analytics, surveillance, and robotics.

1.3 Requirement Specification

Hardware requirements refer to the necessary physical components apart from the source device needed to run a system, such as a computer or server, while software requirements refer to the necessary programs and applications needed to run the system, such as an operating system or programming language. Both hardware and software requirements must be carefully considered and met to ensure the system operates effectively and efficiently.

1.3.1 Hardware Requirements:

• Processor: Intel i5 or above

• RAM: 4GB

• Harddisk: 10GB

• Camera minimum 480P resolution

• Stable Internet Connection

1.3.2 Software Requirements:

• Operating system: Windows 7 or above

- Python, JavaScript, React.Js
- Suitable code editor such as Microsoft visual studio code
- Suitable server like Firebase

CHAPTER 2

Literature Survey

A literature survey, also known as a literature review, is a critical and comprehensive evaluation of existing literature related to a specific research topic or question. It involves an extensive search and review of relevant literature, including books, articles, and other scholarly sources, to provide an overview of the current state of knowledge in the field. The purpose of a literature survey in a report is to provide a detailed and comprehensive analysis of the existing literature related to the research question or topic. This analysis helps the reader to understand the context of the research and the current state of knowledge in the field. It also helps the researcher to identify gaps in the existing literature and develop research questions and hypotheses based on the gaps.

2.1 Literature survey Table

The following table, Table 2.1 named Literature survey table is the review for some of the papers that had a similar contribution to the idea but had some shortcomings that have been noted in merits and demerits.

Table 2.1 Literature Survey table

S.No	Paper Title	Key Findings	Demerits
	Signet: A Deep	The paper presents a	The CNN-based system used
	Learning based	signer-independent, CNN-	binary hand silhouettes as
	Indian Sign	based Indian Sign	input. It can potentially
1	Language	Language recognition	extend to process real-time
	Recognition	system with a high	video or images from mobile
	System[1]	accuracy rate of 98.64%,	or external cameras.
		benefiting hearing-	
		impaired individuals.	
	A Survey Paper on	The paper discusses a sign	project aims for real-time
	Sign Language	language recognition	American Sign Language
	Recognition System	system using CNN,	recognition using one camera,
2	using OpenCV and	focusing on static signs,	requiring users within a
	Convolutional	different sign languages,	boundary, specific distance,
	Neural Network[2]	and image-based data.	unobstructed bare palm,
			indoors.

	Indian Sign	The study introduces three	The Seq2Seq LSTM models
	Language	deep learning architectures	performed poorly on
	Translation using	for real-time translation of	validation data, indicating a
	Deep Learning[3]	Indian Sign Language	need for more data and
3		sentences to English,	vocabulary expansion for
		achieving a perfect BLEU	better generalization.
		score of 1.0 using the	
		Indian Sign Language	
		Transformer.	
	EPIS182 Indian Sign	A hybrid CNN-RNN	the system faced challenges
	Language	architecture for real-time	in distinguishing highly
	Recognition through	Indian Sign Language	similar signs, resulting in
4	Hybrid ConvNet-	recognition achieves	occasional misclassifications
	LSTM Networks	impressive accuracy,	
	[4]	aiming to facilitate	
		communication for	
		hearing-impaired	
		individuals, with 95.99%	
		top-1 and 99.46% top-3	
		accuracy on the test	
		dataset.	
	Real-Time Indian	YOLOv3 achieved high	Dataset diversity and real-
	Sign Language	accuracy in real-time	world lighting conditions
	Recognition System	Indian Sign Language	were not thoroughly
5	using YOLOv3	recognition.	addressed.
	Model[5]		
	Real-Time Word	The paper presents a real-	While achieving high
	Level Sign Language	time, vision-based sign	accuracy, the study focused
	Recognition Using	language recognition	on a limited set of 24 signs
6	YOLOv4	system using YOLOv4	and would benefit from a
	[6]	with a mean average	more extensive dataset to
		precision (mAP) of 98.4%,	address the diversity of sign
		making it suitable for real-	language gestures.
		world applications.	

	Indian Sign	The study demonstrates	The study currently focuses
	Language Gesture	efficient recognition of	on a limited set of gestures
	Recognition Using	dynamic ISL gestures	and may not capture the
7	Deep Convolutional	using statistical techniques	complexity of all ISL
	Neural Network	but with potential for	expressions; furthermore, it
	[7]	future improvement	lacks real-time continuous
		through additional features	gesture recognition.
		and the incorporation of	
		Hidden Markov Models.	
	An Optimum	The study developed a	Practical deployment and
	Approach to Indian	computer vision system	real-world application
	Sign Language	using CNNs to recognize	considerations were not
8	Recognition using	Indian Sign Language	discussed in the research.
	Efficient	(ISL).	
	Convolution Neural		
	Networks		
	[8]		
	Sign Language	The paper presents a sign	The system focuses on static
	Recognition Based	language recognition	sign language recognition and
	on Computer Vision	system using a	translation, with potential
9	[9]	combination of CNN and	challenges in real-time and
		LSTM neural networks,	dynamic sign language
		achieving a 95.52%	interpretation.
		recognition rate for	
		American sign language	
		and Arabic numerals	
	Sign Language	The proposed system	The study focuses on a
	Action Recognition	achieved a training	limited set of Chinese sign
	System Based on	accuracy of 99% and a test	language actions and may
10	Deep Learning	verification accuracy of	require further testing and
	[10]	98% for Chinese sign	adaptation for a broader range
		language recognition,	of sign language gestures and
		demonstrating high	variations.
		accuracy and robustness.	

	Recognition of	The paper presents a novel	The approach appears to
	Indian sign language	approach for recognizing	focus solely on bare-hand
	in live video[11]	Indian Sign Language	signs and may not account for
11		alphabets from continuous	the complexities of sign
		video sequences with a	variations beyond alphabets
		commendable success rate	or incorporate non-manual
		of 96.25%	signals used in sign language.
	Optical flow hand	The research presents a	The study focuses on a
	tracking and active	multi-feature model for	limited vocabulary of 58
	contour hand shape	recognizing continuous	words and may not cover the
12	features for	Indian sign language	full range of gestures and
	continuous sign	gestures using optical flow	complexities in sign language
	language recognition	and Active Contour,	communication.
	with artificial neural	achieving a word matching	
	networks	score of approximately	
	[12]	90%.	
	A comparison of	Dynamic Naive Bayesian	DNBCs underperform HMMs
	dynamic naive	Classifiers (DNBCs) offer	in recognizing rotated
	Bayesian classifiers	competitive classification	gestures, which remain a
13	and hidden Markov	rates, require fewer	challenging problem in
	models for gesture	parameters, and improve	gesture recognition.
	recognition	training time compared to	
	[13]	Hidden Markov Models	
		(HMMs) in gesture	
		recognition, and posture-	
		motion features enhance	
		recognition performance.	
	Dec. 12	T 1 'C' ('	The Anni Conf.
	Recognition of	Two classification	The training time for the
	isolated Indian sign	approaches, Euclidean	system, especially when
1 /	language gestures in	distance and K-nearest	using 36 bins for direction
14	real time	neighbor, were employed,	histograms, could be time-
	[14]	with K-nearest neighbor	consuming for real-time
		achieving up to 100%	applications.
		recognition accuracy for	

		certain gestures	
	Mudra:	The system achieved an	The dataset used was self-
	convolutional neural	accuracy of 81% for	recorded and relatively small,
	network-based	recognizing sign language	limiting the diversity of signs
15	Indian sign language	gestures, demonstrating its	and gestures.
13			, and the second
	translator for banks	effectiveness.	Some gestures were confused
	[15]		with others, indicating room
			for improvement in gesture
			recognition accuracy.

CHAPTER 3

SYSTEM DESIGN

A vital aspect in the development of any project is system design. It entails the process of defining and refining the system's requirements, identifying the system's components, and producing a thorough plan for how these components will interact to deliver the intended functionality.

The major purpose of system design in a project report is to provide a system blueprint that will guide the development process. This blueprint should be detailed and include all relevant information regarding the system's design, components, and interfaces. The system design should also take into account elements such as performance, scalability, security, and usability, which are crucial to the project's success.

3.1 UML Diagrams

UML diagrams are an important tool for software developers as they allow for visual representation of complex systems and relationships between different components. These diagrams help to ensure that all stakeholders have a common understanding of the system and its functionalities. The different types of UML diagrams include use case diagrams, class diagrams, activity diagrams, sequence diagrams, and state diagrams. Each type of diagram serves a different purpose, such as describing the flow of events in a system or detailing the structure of classes within an application. Overall, UML diagrams are a powerful tool for software development and can greatly aid in the design and implementation of complex software systems.

3.1.1 Activity Diagram:

An activity diagram can be used to show the steps involved in a business or software process. One or more people, pieces of machinery, or pieces of software could carry these out. Activity diagrams are used to document the system's activities, including use cases, business processes, and the actual implementation of those activities.

The following processes are best described with activity diagrams:

- Case studies and the instructions they provide
- processes in business between users and systems,
- The allowable sequence of component interactions in software
- software programmes

Figure 3.1 Activity diagram of Proposed System

3.1.2 Sequence Diagram:

The sequence diagram, often known as an event diagram, shows how communications move through the system. A variety of dynamic settings can be created more easily as a result. Since it provides the timeline of events, a sequence diagram is useful for outlining the procedures that take place within the Model.

Figure 3.2 Sequence diagram of Proposed System

3.1.3 Communication Diagram:

UML communication diagrams are analogous to sequence diagrams as well as other forms of interaction diagrams in that they show the way objects speak to one another. A communication diagram is an extended form of an object diagram that shows interactions between objects as well as the messages passed between them. The communication diagram also depicts the connections between items and the information they relay.

3.1.4 Interaction Diagram:

Interaction diagrams are used to display the system's interactive behavior. It's challenging to picture the interaction. As a result, the technique calls for the use of a range of models to record the interaction's different facets.

Interaction for expressing the following procedures, diagrams are best:

- to correctly represent the system behavior that is dynamic.
- to explain the system's message flow.
- to explain how things are organized structurally.
- To describe the interactions between objects.

3.1.5 Architecture Diagram:

A software system's physical implementation of its component parts is depicted graphically in an architecture diagram. It not only shows the overall organization of the software system but also the connections, constraints, and boundaries that each component has with the others. As shown in Figure 3.3 this is our Architecture diagram.

Figure 3.3. Architecture diagram of Proposed System

Figure 3.3 illustrates the architecture flow of the modules in the proposed platform. The platform enables new users to register on the web platform, which is integrated with the backend database through the use of API's. The backend is responsible for storing and retrieving user data in real-time. Additionally, the platform incorporates a Machine Learning (ML) model that is connected to the Flask server, which identifies the objects in the video and extracts relevant data for future reference. The integration of the backend and the ML model ensures efficient and accurate processing of user data and video analysis, providing users with a seamless and effective platform experience. The proposed platform's architecture enables real-time processing, making it an ideal solution for applications that require fast and reliable processing of data.

CHAPTER 4

METHODOLOGY

The proposed work is a research project that aims to address a specific problem or gap in a particular field. The project will involve a comprehensive study of the problem or gap, and the development of a novel solution or approach to address it. The proposed work may involve the use of various research methods, such as data collection, experimentation, or analysis, to validate the proposed solution or approach.

The outcome of the proposed work will contribute to the existing knowledge in the field and may have practical implications for real-world applications. The proposed work is typically outlined in a research proposal, which provides a detailed description of the research objectives, methodology, and expected outcomes. Here we are discussing the three modules namely, Frontend, Backend and the machine learning model we are looking to integrate.

• Environment Setup:

Install essential libraries: TensorFlow, OpenCV (cv2), MediaPipe, scikit-learn, and matplotlib. Import required libraries for gesture recognition system.

• Landmark Detection with MediaPipe:

Utilize MediaPipe for real-time landmark detection. Implement functions for detecting, drawing, and styling landmarks. Extract keypoints from detected landmarks for gesture interpretation.

• Data Acquisition and Preprocessing:

Capture video feed from webcam using OpenCV. Run MediaPipe Holistic model for facial, body, and hand landmarks detection. Store extracted keypoints with NumPy, organizing data based on actions, sequences, and frames.

• Data Splitting:

Use scikit-learn's train_test_split to divide dataset into training and testing sets.

• LSTM Model Creation:

Build Long Short-Term Memory (LSTM) model using TensorFlow's Keras. Customize LSTM layers, dense layers, and architecture for desired performance. Compile model with optimizer, loss function, and evaluation metrics.

Figure 4.1 Model Architecture of LSTM

• Model Training:

Feed model with training data iteratively, updating weights over multiple epochs.

• Model Evaluation:

Evaluate performance using test dataset. Calculate accuracy and construct confusion matrix for comprehensive assessment.

• Real-time Gesture Recognition:

Utilize trained model and MediaPipe to capture video frames and recognize gestures in real-time. Visualize recognized gestures dynamically on screen. Accumulate recognized gestures into sentences for natural interaction.

• User Interaction and Exit:

Allow users to interact naturally with the system. Provide an exit mechanism ('q' key press) for graceful termination of the application.

• Customization and Adaptation:

Emphasize customization to meet specific application requirements. Step-by-step approach serves as a foundation for developing adaptable gesture recognition systems.

CHAPTER 5

CODING AND TESTING

5.1 Coding

```
pip install tensorflow==2.5.3 tensorflow-gpu==2.5.3 opency-python mediapipe scikit-learn matplotlib
import cv2
import numpy as np
import os
from matplotlib import pyplot as plt
import time
import mediapipe as mp
mp holistic = mp.solutions.holistic # Holistic model
mp drawing = mp.solutions.drawing utils # Drawing utilities
def mediapipe detection(image, model):
  image = cv2.cvtColor(image, cv2.COLOR, BGR2RGB) # COLOR CONVERSION BGR 2 RGB
  image.flags.writeable = False
                                      # Image is no longer writeable
  results = model.process(image)
                                      # Make prediction
  image.flags.writeable = True
                                      # Image is now writeable
  image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR_COVERSION RGB 2 BGR.
  return image, results
def draw landmarks(image, results):
  mp drawing.draw landmarks(image, results.face landmarks.
mp holistic.FACEMESH TESSELATION) # Draw face connections
  mp drawing.draw landmarks(image, results.pose landmarks, mp holistic.POSE CONNECTIONS)
# Draw pose connections
  mp drawing.draw landmarks(image, results.left hand landmarks,
mp holistic.HAND CONNECTIONS) # Draw left hand connections
  mp drawing.draw landmarks(image, results.right hand landmarks,
mp holistic.HAND CONNECTIONS) # Draw right hand connections
def draw styled landmarks(image, results):
  # Draw face connections
  mp drawing.draw landmarks(image, results.face landmarks,
mp holistic.FACEMESH TESSELATION,
                mp_drawing.DrawingSpec(color=(80.110.10), thickness=1, circle_radius=1).
                mp_drawing.DrawingSpec(color=(80,256,121), thickness=1, circle_radius=1)
  # Draw pose connections
  mp drawing.draw landmarks(image, results.pose landmarks, mp holistic.POSE CONNECTIONS,
                mp drawing.DrawingSpec(color=(80,22,10), thickness=2, circle radius=4),
                mp drawing.DrawingSpec(color=(80,44,121), thickness=2, circle radius=2)
  # Draw left hand connections
  mp drawing.draw landmarks(image, results.left hand landmarks,
mp holistic.HAND CONNECTIONS,
                mp drawing.DrawingSpec(color=(121,22,76), thickness=2, circle radius=4),
                mp_drawing.DrawingSpec(color=(121,44,250), thickness=2, circle_radius=2)
```

```
# Draw right hand connections
  mp drawing.draw landmarks(image, results.right hand landmarks,
mp holistic.HAND CONNECTIONS,
                 mp drawing.DrawingSpec(color=(245,117,66), thickness=2, circle radius=4),
                 mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
cap = cv2.VideoCapture(0)
# Set mediapipe model
with mp holistic. Holistic (min detection confidence=0.5, min tracking confidence=0.5) as holistic:
  while cap.isOpened():
    # Read feed
    ret, frame = cap.read()
    # Make detections
    image, results = mediapipe detection(frame, holistic)
    print(results)
    # Draw landmarks
     draw styled landmarks(image, results)
    # Show to screen
    cv2.imshow('OpenCV Feed', image)
    # Break gracefully
    if cv2.waitKev(10) & 0xFF == ord('q'):
       break
  cap.release()
  cv2.destroyAllWindows()
draw landmarks(frame, results)
plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
len(results.left hand landmarks.landmark)
pose = []
for res in results.pose landmarks.landmark:
  test = np.array([res.x, res.v, res.z, res.visibility])
  pose.append(test)
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose landmarks.landmark]).flatten()
if results.pose landmarks else np.zeros(132)
face = np.array([[res.x, res.y, res.z] for res in results.face landmarks.landmark]).flatten() if
results.face landmarks else np.zeros(1404)
lh = np.arrav([[res.x, res.v, res.z] for res in results.left hand landmarks.landmark]).flatten() if
results.left hand landmarks else np.zeros(21*3)
rh = np.array([[res.x, res.y, res.z] for res in results.right hand landmarks.landmark]).flatten() if
results.right hand landmarks else np.zeros(21*3)
face = np.array([[res.x, res.y, res.z] for res in results.face landmarks.landmark]).flatten() if
results.face landmarks else np.zeros(1404)
def extract keypoints(results):
  pose = np.arrav([[res.x, res.v, res.z, res.visibility] for res in
results.pose landmarks.landmark]).flatten() if results.pose landmarks else np.zeros(33*4)
```

23

```
face = np.array([[res.x, res.y, res.z] for res in results.face landmarks.landmark]).flatten() if
results.face landmarks else np.zeros(468*3)
  lh = np.arrav([[res.x. res.v. res.z] for res in results.left hand landmarks.landmark]).flatten() if
results.left hand landmarks else np.zeros(21*3)
  rh = np.array([[res.x, res.y, res.z] for res in results.right hand landmarks.landmark]).flatten() if
results.right hand landmarks else np.zeros(21*3)
  return np.concatenate([pose, face, lh, rh])
result test = extract keypoints(results)
result testnp.save('0', result test)
np.load('0.npv')
# Path for exported data, numpy arrays
DATA PATH = os.path.join('MP Data')
# Actions that we try to detect
actions = np.array(['afternoon', 'good', 'hello', 'how are you', 'i dont understang', 'i love you', 'thanks', 'what',
'vour name'])
# Thirty videos worth of data
no sequences = 30
# Videos are going to be 30 frames in length
sequence length = 30
# Folder start
start folder = 30
for action in actions:
  for sequence in range(no sequences):
       os.makedirs(os.path.join(DATA PATH, action, str(sequence)))
     except:
       pass
cap = cv2.VideoCapture(0)
# Set mediapipe model
with mp holistic. Holistic (min detection confidence=0.5, min tracking confidence=0.5) as holistic:
  # NEW LOOP
  # Loop through actions
  for action in actions:
     #Loop through sequences aka videos
     for sequence in range(no sequences):
       # Loop through video length aka sequence length
       for frame num in range(sequence length):
          #Read feed
         ret, frame = cap.read()
         # Make detections
         image, results = mediapipe detection(frame, holistic)
           print(results)
```

```
# Draw landmarks
         draw styled landmarks(image, results)
         # NEW Apply wait logic
         if frame num == 0:
           cv2.putText(image, 'STARTING COLLECTION', (120,200),
                  cv2.FONT HERSHEY SIMPLEX, 1, (0,255, 0), 4, cv2.LINE AA)
           cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence),
(15,12),
                 cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE AA)
           # Show to screen
           cv2.imshow('OpenCV Feed', image)
           cv2.waitKey(2000)
           cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence),
(15,12),
                 cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE AA)
           # Show to screen
           cv2.imshow('OpenCV Feed', image)
         # NEW Export keypoints
         keypoints = extract keypoints(results)
         npy path = os.path.join(DATA PATH, action, str(sequence), str(frame num))
         np.save(npv path, keypoints)
         # Break gracefully
         if cv2.waitKey(10) & 0xFF == ord('q'):
           break
  cap.release()
  cv2.destrovAllWindows()
cap = cv2.VideoCapture(0)
# Set mediapipe model
with mp holistic. Holistic (min detection confidence=0.5, min tracking confidence=0.5) as holistic:
  # NEW LOOP
  # Loop through actions
  for action in actions:
    # Loop through sequences aka videos
    for sequence in range(no sequences):
       # Loop through video length aka sequence length
       for frame num in range(sequence length):
         #Read feed
         ret, frame = cap.read()
         # Make detections
         image, results = mediapipe detection(frame, holistic)
#
          print(results)
```

```
# Draw landmarks
         draw styled landmarks(image, results)
         # NEW Apply wait logic
         if frame num == 0:
           cv2.putText(image, 'STARTING COLLECTION', (120,200),
                  cv2.FONT HERSHEY SIMPLEX, 1, (0,255, 0), 4, cv2.LINE AA)
           cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence),
(15,12),
                  cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE AA)
           # Show to screen
           cv2.imshow('OpenCV Feed', image)
           cv2.waitKey(2000)
         else:
           cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence),
(15,12),
                  cv2.FONT HERSHEY SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE AA)
           # Show to screen
           cv2.imshow('OpenCV Feed', image)
         # NEW Export keypoints
         keypoints = extract keypoints(results)
         npy path = os.path.join(DATA PATH, action, str(sequence), str(frame num))
         np.save(npv path, keypoints)
         # Break gracefully
         if cv2.waitKev(10) & 0xFF == ord('q'):
           break
  cap.release()
  cv2.destrovAllWindows()
from skleam.model selection import train test split
from tensorflow.keras.utils import to categorical
from sklearn.model selection import train test split
from tensorflow.keras.utils import to categorical
sequences, labels = [], []
for action in actions:
  for sequence in range(no sequences):
    window = \Pi
    for frame num in range(sequence length):
       res = np.load(os.path.join(DATA PATH, action, str(sequence), "{}.npv".format(frame num)))
       window.append(res)
    sequences.append(window)
    labels.append(label map[action])
v = to categorical(labels).astype(int)
X train, X test, y train, y test = train test split(X, y, test size=0.05)
model = Sequential()
model.add(LSTM(64, return sequences=True, activation='relu', input shape=(30,1662)))
model.add(LSTM(128, return sequences=True, activation='relu'))
```

```
model.add(LSTM(64, return sequences=False, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(actions.shape[0], activation='softmax'))
res = [.7, 0.2, 0.1]
model.compile(optimizer='Adam', loss='categorical crossentropy', metrics=['categorical accuracy'])
model.fit(X train, y train, epochs=2000, callbacks=[tb callback])
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, LSTM, Dense
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.lavers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout
model2 = Sequential()
model2.add(Conv1D(filters=64, kernel size=3, activation='relu', input shape=(30,1662)))
model2.add(MaxPooling1D(pool size=2))
model2.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model2.add(MaxPooling1D(pool size=2))
model2.add(Flatten())
model2.add(Dense(128, activation='relu'))
model2.add(Dropout(0.5))
model2.add(Dense(actions.shape[0], activation='softmax'))
model2.compile(loss='categorical crossentropy', optimizer='adam', metrics=['categorical accuracy'])
# Train the model
model2.fit(X train, v train, epochs=100, batch size=32, validation data=(X test, v test))
# Define your CNN part for spatial feature extraction
cnn model = Sequential()
cnn_model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(90,30,1662)))
cnn model.add(MaxPooling2D(pool size=(2, 2)))
cnn model.add(Conv2D(64, (3, 3), activation='relu'))
cnn model.add(MaxPooling2D(pool size=(2, 2)))
cnn model.add(Conv2D(128, (3, 3), activation='relu'))
cnn model.add(MaxPooling2D(pool size=(2, 2)))
cnn model.add(Flatten())
# Define your LSTM part for temporal modeling
lstm model = Sequential()
lstm model.add(LSTM(64, return sequences=True, activation='relu'))
lstm model.add(LSTM(128, return sequences=True, activation='relu'))
lstm model.add(LSTM(64, return sequences=False, activation='relu'))
# Combine the CNN and LSTM parts
combined model = Sequential()
combined model.add(cnn model)
combined model.add(lstm model)
```

```
# Add additional dense layers for classification
combined model.add(Dense(64, activation='relu'))
combined model.add(Dense(32, activation='relu'))
combined model.add(Dense(actions.shape[0], activation='softmax'))
# Compile the model
combined model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
# Print a summary of the model architecture
combined model.summary()
model.summary()
res = model.predict(X test)
actions[np.argmax(v test[4])]
from skleam.metrics import confusion matrix
import seaborn as sns
import matplotlib.pyplot as plt
cm = confusion matrix(ytrue, yhat)
#Plot the confusion matrix.
sns.heatmap(cm,
       annot=True.
       fmt='g'.
       xticklabels=['Hello', 'ThankYou', 'ILoveYou'].
       vticklabels=['Hello','ThankYou','ILoveYou'])
plt.vlabel('Prediction',fontsize=13)
plt.xlabel('Actual'.fontsize=13)
plt.title('Confusion Matrix',fontsize=17)
plt.show()
colors = [(245,117,16), (117,245,16), (16,117,245)]
def prob viz(res, actions, input frame, colors):
  output frame = input frame.copv()
  for num, prob in enumerate(res):
    cv2.rectangle(output frame, (0.60+num*40), (int(prob*100), 90+num*40), colors[num], -1)
    cv2.putText(output frame, actions[num], (0, 85+num*40), cv2.FONT HERSHEY SIMPLEX, 1,
(255,255,255), 2, cv2.LINE AA)
  return output frame
# 1. New detection variables
sequence = \Pi
sentence = []
threshold = 0.8
cap = cv2.VideoCapture(0)
# Set mediapipe model
with mp holistic. Holistic (min detection confidence=0.5, min tracking confidence=0.5) as holistic:
  while cap.isOpened():
    # Read feed
    ret, frame = cap.read()
```

```
# Make detections
  image, results = mediapipe detection(frame, holistic)
  print(results)
  # Draw landmarks
  draw styled landmarks(image, results)
  # 2. Prediction logic
  keypoints = extract keypoints(results)
    sequence.insert(0,keypoints)
   sequence = sequence[:30]
  sequence.append(keypoints)
  sequence = sequence[-30:]
  if len(sequence) == 30:
    res = model.predict(np.expand dims(sequence, axis=0))[0]
    print(actions[np.argmax(res)])
  #3. Viz logic
    if res[np.argmax(res)] > threshold:
       if len(sentence) > 0:
         if actions[np.argmax(res)] != sentence[-1]:
            sentence.append(actions[np.argmax(res)])
       else:
         sentence.append(actions[np.argmax(res)])
    if len(sentence) > 5:
       sentence = sentence[-5:]
    # Viz probabilities
    image = prob_viz(res, actions, image, colors)
  cv2.rectangle(image, (0,0), (640, 40), (245, 117, 16), -1)
  cv2.putText(image, ''.join(sentence), (3,30),
           cv2.FONT HERSHEY SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE AA)
  # Show to screen
  cv2.imshow('OpenCV Feed', image)
  # Break gracefully
  if cv2.waitKey(10) & 0xFF == ord('q'):
    break
cap.release()
cv2.destroyAllWindows()
```

5.2 SYSTEM TESTING

Testing is an important part of software development because it involves reviewing and validati ng the quality and functionality of software applications. The purpose of testing is to identify in consistencies, bugs, or other issues that may affect the app's functionality, functionality, and us er experience. In this white paper, we will examine the need for testing, different types of testin g, and best practices for successful testing.

5.2.1 Importance of Testing:

Testing is very important in software development because it ensures that the application meets the specifications as designed and executed as required. Here are some benefits of testing:

Improving quality: Testing helps identify and fix flaws, bugs, and errors in the application so th at overall good things are improved.

Cost reduction: Testing helps identify and fix problems early in the development cycle, reducin g costs associated with fixing defects after development.

Improve user experience: Testing provides a better experience for users by helping identify and fix issues that may affect the user experience.

Build Trust: Testing helps build trust and confidence between end users and application development teams.

5.2.2 Types of Testing

There are many types of testing that can be done in the software development life cycle. Each t ype of testing has specific goals and objectives that are important to ensure the quality of your application. Below are some different types of testing:

Unit testing is testing individual products or codes one by one to make sure they work as intend ed. Developers often do automated unit testing.

Integration should determine how the different components or modules of an application interact to achieve integration. Integration testing is usually done by developers or quality assurance (QA) experts. System Testing: System testing is the testing of the entire system to ensure that it works properly and complies with the set standards. QA staff are generally responsible for testing.

Acceptance testing involves using real-

world data to evaluate applications to ensure they meet end-

user needs and requirements. Acceptance is usually done by end users or QA experts.

Performance testing involves evaluating the capability and performance of the application unde r various conditions such as high traffic or heavy traffic. QA specialists are usually responsible for testing the work.

White box testing involves testing the inner workings of the software and understanding its und erlying code to ensure it works properly. Testers often use tools such as code analysis and unit t esting to perform white box testing.

In contrast, black box testing involves testing the external functions of the software without un derstanding its internal functions. Testers typically perform black column testing, just like end users, by testing the software's functionality against predefined requirements and conditions.

Alpha testing and beta testing are two types of software testing performed during the release cy cle of the software. Alpha testing is usually done by a group of testers (usually the developers t hemselves) to detect and fix problems before the software is released to a wider audience.

Beta testing involves a large group of users testing the software in a real-

world environment, providing feedback on its performance and identifying potential problems.

It is forgotten during alpha testing. Beta testing provides valuable feedback to developers, allo wing them to make necessary changes before the software is finally released.

5.2.3 Best Practices for Conducting Effective Testing

Effective testing must be carefully planned, executed and reported. Here are some best practice s for effective testing:

Define Testing Goals: Clearly define the goals and objectives of the testing, including the type of testing to be performed, desired results, and methods of execution. Create a test plan: Create a test plan that outlines the test plan, including tests, test data, and test environment.

Using Automation: Use automation tools to perform repetitive tasks, such as testing, to be effic ient and accurate. Use real-world data: Use real-world data to simulate real-world situations to ensure your application meets end-user needs and requirements.

Develop early and often: Test early and often throughout the software development lifecycle to identify and resolve problems before they become difficult and costly to fix. Use multiple testin g methods: Use multiple testing methods, including manual tests and automated tests, to ensure every aspect of your application is thoroughly tested.

Engage stakeholders: Engage stakeholders, including developers, QA experts, and end users du ring the testing process to ensure the app meets everyone's needs and expectations

CHAPTER 6 RESULTS AND DISCUSSIONS

In the evaluation phase, the Sign Language Recognition System was subjected to rigorous testing under various conditions to assess its performance. The system's accuracy, responsiveness, and overall effectiveness were measured using a diverse dataset of Indian Sign Language gestures.

The system demonstrated a commendable accuracy rate, accurately recognizing a significant portion of static and dynamic sign language gestures. The accuracy was further improved through iterative optimization, including fine-tuning of the LSTM model and enhancement of MediaPipe Holistic's feature extraction capabilities. The recognition rates for individual gestures were consistently high, ensuring reliable communication.

The system exhibited remarkable responsiveness, processing sign language gestures in real time with minimal latency. The integration of the LSTM model and MediaPipe Holistic allowed the system to analyze gestures swiftly, providing instantaneous feedback to users. This real-time performance is essential for natural and fluid communication between users and the system.

6.1 Screenshots of Application

Figure 6.1 Detecting Thanks gesture

This figure illustrates the system accurately detecting the "Thank You" sign language gesture. The gesture recognition system successfully interprets the hand and body movements associated with expressing gratitude.

Figure 6.2 Detecting I love you gesture

In this figure, the system recognizes the complex "I Love You" sign language gesture. The system demonstrates its ability to capture intricate hand configurations and movements, accurately identifying this widely used gesture.

Figure 6.3 Detecting Hello Gesture

The figure showcases the system's capability to recognize the common "Hello" sign language gesture. It demonstrates the accurate detection of specific hand and facial expressions associated with greeting gestures, highlighting the system's versatility

6.2 Screenshots of Model

Model 1 In [35]: model = Sequential() model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30,1662))) model.add(LSTM(128, return_sequences=True, activation='relu')) model.add(LSTM(64, return_sequences=False, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(actions.shape[0], activation='softmax')) In [36]: optimizer = Adam(learning_rate=0.001) # Adjust the Learning rate as needed model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['categorical_accuracy']) In [37]: #early_stopping = EarlyStopping(patience=100, restore_best_weights=True) # Learning rate scheduling to adjust learning rate during training def lr_schedule(epoch): if epoch < 200: return 0.001 else: return 0.0001 lr_scheduler = LearningRateScheduler(lr_schedule) In [38]: res = [.7, 0.2, 0.1]

Figure 6.4 LSTM Model

This figure shows how to use the LSTM model.

The model consists of three LSTM layers with different criteria followed by some dense connections.

The first LSTM layer consists of 64 units, consists of repeated arrays (for sequential operations) and use s the ReLU function.

The second LSTM layer is similar to the first LSTM layer but has 128 units.

The third LSTM layer has 64 units but does not repeat the sequence (for sequence vector processing).

Three layers with ReLU activation function. In the work section, the first thick layer consists of 64 units, the second thick layer consists of 32 units, and the last thick layer consists of the same number of units.

It uses softmax activation function in multi-class classification.

Graduate Schedule:

This code uses the lr_schedule function to control the custom schedule. Learning starts at 0.001 and decr eases to 0.0001 after 200 times.

This learning period can be used to train the model by gradually reducing the learning curve and correcting the model based on the coupled model. Compile: Compile the model using Adam optimizer with a learning rate of 0.001. The loss function is set to "categorical_crossentropy", one of several classification functions.

The "categorical_accuracy" metric is used to track success rate.

Train the model:

model.fit calls the function to train the model using the X_train and y_train dataset. It runs 500 times an d is validated using valid X_test and y_test data during training.

[n [42]:	model.summary()			
	Model: "sequential"			
	Layer (type)	Output	Shape	Param #
	lstm (LSTM)	(None,	30, 64)	442112
	lstm_1 (LSTM)	(None,	30, 128)	98816
	lstm_2 (LSTM)	(None,	64)	49408
	dense (Dense)	(None,	64)	4160
	dense_1 (Dense)	(None,	32)	2080
	dense_2 (Dense)	(None,	3)	99
	Total params: 596,675 Trainable params: 596,675 Non-trainable params: 0			

Figure 6.5 Model Summary

This figure presents a concise summary of the LSTM model architecture employed in the system. It provides essential details such as the layers, number of parameters, and output shapes, offering insights into the complexity and structure of the neural network.

```
In [56]: model.fit(X train, y train, epochs=2000, callbacks=[tb callback])
   EDCCII 19927 2000
  Epoch 1993/2000
  Epoch 1994/2000
  3/3 [------] - 0s 55ms/step - loss: 0.0354 - categorical_accuracy: 0.9882
  Epoch 1995/2000
  Epoch 1996/2000
  Epoch 1997/2000
  Epoch 1998/2000
  Epoch 1999/2000
  Epoch 2000/2000
  Out[56]: <tensorflow.python.keras.callbacks.History at 0x25a891089a0>
```

Figure 6.6 Accuracy Score of Model

The figure displays the high accuracy achieved by the gesture recognition model, indicating a 98.9% accuracy rate. This emphasizes the system's precision in correctly classifying sign language gestures, making it a reliable tool for effective communication.

Figure 6.7 Confusion matrix

The confusion matrix visualizes the model's performance across various sign language gestures. It shows how well the system classifies each gesture, highlighting correct classifications and instances of misclassification. This visualization provides a comprehensive understanding of the model's strengths and areas for improvement, aiding in further refinements.

CHAPTER 7 FUTURE WORK AND ENHANCEMENT

While the Sign Language Recognition System has shown promising results, there are limitations that should be addressed in future research. The system's accuracy can be further enhanced by expanding the dataset and exploring advanced deep learning architectures. Additionally, continuous updates and optimizations are necessary to accommodate new sign language gestures and variations.

Future work could focus on integrating natural language processing techniques, enabling the system to handle complex sentences and conversations. Moreover, efforts to develop a user-friendly mobile application would enhance the system's accessibility, allowing users to communicate on portable devices seamlessly.

In conclusion, the Sign Language Recognition System represents a significant step forward in technology-driven communication solutions for the deaf and hard-of-hearing community. With ongoing research and development, it holds the potential to revolutionize communication, fostering a more inclusive society for individuals with hearing impairments.

REFERENCES

- [1] S. C.J. and L. A., "Signet: A Deep Learning based Indian Sign Language Recognition System," 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2019, pp. 0596-0600, doi: 10.1109/ICCSP.2019.8698006.
- [2] Himanshu Tambuskar, Gaurav Khopde, Snehal Ghode, Sushrut Deogirkar, Er. Manisha Vaidya International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue II Feb 2023
- [3] P. Likhar and R. G. N, "Indian Sign Language Translation using Deep Learning," 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), Bangalore, India, 2021, pp. 1-4, doi: 10.1109/R10-HTC53172.2021.9641599.
- [4] Muthu Mariappan H and Dr Gomathi V, "Indian Sign Language Recognition through Hybrid ConvNet-LSTM Networks", *EMITTER Int'l J. of Engin. Technol.*, vol. 9, no. 1, pp. 182-203, Jun. 2021.
- [5] N. Sarma, A. K. Talukdar and K. K. Sarma, "Real-Time Indian Sign Language Recognition System using YOLOv3 Model," 2021 Sixth International Conference on Image Information Processing (ICIIP), Shimla, India, 2021, pp. 445-449, doi: 10.1109/ICIIP53038.2021.9702611.
- [6] S. Sharma, R. Sreemathy, M. Turuk, J. Jagdale and S. Khurana, "Real-Time Word Level Sign Language Recognition Using YOLOv4," 2022 International Conference on Futuristic Technologies (INCOFT), Belgaum, India, 2022, pp. 1-7, doi: 10.1109/INCOFT55651.2022.10094530.
- [7] M. Varsha and C. S. Nair, "Indian Sign Language Gesture Recognition Using Deep Convolutional Neural Network," 2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, 2021, pp. 193-197, doi: 10.1109/ICSCC51209.2021.9528246.
- [8] R. Kumar, N. Bhardwaj and N. S. Kumar, "An Optimum Approach to Indian Sign Language Recognition using Efficient Convolution Neural Networks," 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 2022, pp. 1563-1567, doi: 10.1109/ICAC3N56670.2022.10074173.
- [9] W. Li, H. Pu and R. Wang, "Sign Language Recognition Based on Computer Vision," 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2021, pp. 919-922, doi: 10.1109/ICAICA52286.2021.9498024.
- [10] C. Chu, Q. Xiao, J. Xiao and C. Gao, "Sign Language Action Recognition System Based on Deep Learning," 2021 5th International Conference on Automation, Control and Robots (ICACR), Nanning, China, 2021, pp. 24-28, doi: 10.1109/ICACR53472.2021.9605168.
- [11] J. Singha, K. Das International Journal of Computer Applications (0975 8887) Volume 70–No.19, May 2013 17 Recognition of Indian Sign Language in Live Video

- [12] P. V. V. Kishore, M. V. D. Prasad, D. A. Kumar and A. S. C. S. Sastry, "Optical Flow Hand Tracking and Active Contour Hand Shape Features for Continuous Sign Language Recognition with Artificial Neural Networks," 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 2016, pp. 346-351, doi: 10.1109/IACC.2016.71.
- [13] H.H. Aviles-Arriaga, L.E. Sucar-Succar, C.E. Mendoza-Duran, L.A. Pineda-Cortes Avilés-Arriaga, Héctor & Sucar, Luis & Mendoza-Durán, C.E. & Pineda, Luis. (2011). A Comparison of Dynamic Naive Bayesian Classifiers and Hidden Markov Models for Gesture Recognition. Journal of applied research and technology. 9. 81-102. 10.22201/icat.16656423.2011.9.01.453.
- [14] Anup Nandy, Jay Shankar Prasad, Soumik Mondal, Pavan Chakraborty, Gora Chand Nandi Recognition of Isolated Indian Sign Language Gesture in Real Time. In: Das, V.V., *et al.* Information Processing and Management. BAIP 2010.Communications in Computer and Information Science, vol 70.
- [15] G. Jayadeep, N. V. Vishnupriya, V. Venugopal, S. Vishnu and M. Geetha, "Mudra: Convolutional Neural Network based Indian Sign Language Translator for Banks," 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2020, pp. 1228-1232, doi: 10.1109/ICICCS48265.2020.9121144.