Thème: problèmes d'optimisation

Série 10

Exercice 1

Un architecte en herbe veut dessiner les plans de sa maison (Aie ! ça promet). Elle a une base carrée et son volume habitable est un parallélépipède de 768 m³. Selon son estimation, la perte de chaleur par unitÈ de surface est trois fois plus élevée pour le plafond que pour les murs. On suppose qu'il n'y a pas de perte par le plancher. Déterminer les dimensions de la maison pour que la perte de la chaleur soit minimale.

Exercice 2

On dispose de 288 m de clôture grillagée pour construire 6 enclos identiques dans un zoo selon le plan ci-dessous. Déterminer les dimensions à donner à ces enclos de manière à optimiser leur surface.

Exercice 3

Une fenêtre romane comme l'indique la figure ci-dessous a la forme d'un rectangle surmonté d'un demicercle.

Déterminer les dimensions de la fenêtre qui laisse passer le plus de lumière en sachant que le pourtour de la fenêtre mesure 30 m.

Exercice 4

Calculer l'aire du plus grand rectangle qui puisse être inscrit dans un demi-cercle de rayon r.

Exercice 5

Soit un cône droit de 12 cm de haut et dont le rayon de base mesure 4 cm. Parmi tous les cylindres droits inscrits dans ce cône et dont les axes coincident avec celui du cône, trouver le cylindre dont le volume est maximum.