Machine Learning Homework 02 Due on 12/18/2023

Min-Kuan Chang minkuanc@nchu.edu.tw EE, College of EECS

Problem 01 (Regression)

Suppose we have the following dataset

$x = (x_1, x_2)$	(1,1)	(1,3)	(5,2)	(7,4)	(9,2)
у	2	5	3	4	8

use Ridge to determine the best predicted model when

$$\hat{y}(x, w_0, w_1) = w_0 + w_1 x_1 + w_2 x_2$$

• use Lasso to determine the best predicted model when

$$\hat{y}(x, w_0, w_1) = w_0 + w_1 x_1 + w_2 x_2$$

Write your own program and don't use the toolboxes of Ridge and Lasso

Problem 02 (Ridge)

- This is a programming problem
- Suppose $y=3+2x+0.2x^2+n$ in which n is a zero-mean Gaussian noise with variance σ_N^2
- Suppose the predicted model is $\hat{y}(x, w_0, w_1) = w_0 + w_1 x + w_2 x^2$
- Determine the optimal weights when
 - 1. $\sigma_N = 0.01$
 - 2. $\sigma_N = 0.1$
 - 3. $\sigma_N = 1$
 - 4. $\sigma_N = 2$

Write your own program and don't use the toolboxes of Ridge

Problem 02 (Ridge)

- Procedure to generate your own dataset
 - step 1: uniformly generate a random variable between 0 and 8 and let this be x
 - step 2: generate a zero-mean Gaussian noise with variance σ_N^2 and let this be n
 - step 3: let $y = 3 + 2x + 0.2x^2 + n$
 - step 4: add (x, y) to your own dataset
 - use this procedure to have a dataset containing 30 pairs of x and y

Note that

Please plot the regression function along with the data

points on the same graph

Problem 03 (Lasso)

- This is a programming problem
- Suppose $y=3+2x+0.2x^2+n$ in which n is a zero-mean Gaussian noise with variance σ_N^2
- Suppose the predicted model is $\hat{y}(x, w_0, w_1) = w_0 + w_1 x + w_2 x^2$
- Determine the optimal weights when
 - 1. $\sigma_N = 0.01$
 - 2. $\sigma_N = 0.1$
 - 3. $\sigma_N = 1$
 - 4. $\sigma_N = 2$

Write the your own program and don't use the toolboxes of Lasso

Problem 03 (Lasso)

- Procedure to generate your own dataset
 - step 1: uniformly generate a random variable between 0 and 8 and let this be x
 - step 2: generate a zero-mean Gaussian noise with variance σ_N^2 and let this be n
 - step 3: let $y = 3 + 2x + 0.2x^2 + n$
 - step 4: add (x, y) to your own dataset
 - use this procedure to have a dataset containing 30 pairs of x and y

Note that

Please plot the regression function along with the data

points on the same graph

- Suppose we have data in the left graph
- Use support vector machine to determine support vectors and the decision boundary

Write the your own program and don't use the toolboxes of Ridge and Lasso

- Suppose we have data in the left graph
- Use logistic regression to determine the decision boundary

Write the your own program and don't use the toolboxes of Ridge and Lasso

x_1	x_2	x_3	y
1	0	0	0
0	1	0	1
1	0	1	1
0	0	1	1
1	1	0	0
0	0	1	0

Question: Suppose now we have a new input $(x_1, x_2, x_3) = (1,1,1)$, which class will be assigned to this input if naive Bayes classifier is adopted?

- Generation the data of each class
 - Class 1:
 - the data follows two-dimensional Gaussian distribution with mean $[1,1]^T$ and covariance matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - Class 2:
 - the data follows two-dimensional Gaussian distribution with mean $[-3,-3]^T$ and covariance matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - Class 3:
 - the data follows two-dimensional Gaussian distribution with mean $[-6,2]^T$ and covariance matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

• Use Multi-class logistic regression to determine the decision boundary

Note that

- 1. Write your own program and don't use the toolboxes of Logistic regression
- 1. Please plot the decision boundary along with the data points on the same graph

- Suppose two-dimensional input data x_n together with $y_n \in \{0,1\}$ for $n=1,2,\cdots,N$ (no transformation to feature space)
- Show how to derive the logistic regression in two-class classification