Diplomado en Evaluación de proyectos de inversión

Módulo III. Valuación y Evaluación: reconocimiento de valores intangibles

3.6.1. MÉTODO DE LA SUMA PONDERADA

Es bastante común en la decisión multicriterio que unos criterios tengan para el decisor, más relevancia que otros.

Se le llama pesos o ponderaciones a estas medidas de importancia relativa que tienen los criterios para el decisor; donde se denominará $W_J(J=1,...,n)$ como el peso asignado al criterio J.

Suponiendo por un momento que tales pesos ya están determinados, el método de Suma Ponderara (lineal), tiene como principal virtud la de ser muy intuitiva y simple de aplicar.

EJEMPLO

La siguiente tabla contiene las evaluaciones del personal junto con una valoración o peso en escala del 0 al 5.

Criterios Alternativas	C1 Rendimiento	C2 Calidad	C3 Edad	C4 Personalidad	C5 Carácter
Alberto	6	5	28	5	5
Blanca	4	2	25	10	9
Daniel	5	7	35	9	6
Emilia	6	1	27	6	7
Germán	6	8	30	7	9
Hilario	5	6	26	4	8
Pesos	5	5	2	4	4
	MAX	MAX	MIN	MAX	MAX

Se suma la información contenida en cada columna (desde Alberto hasta Hilario) para obtener el total, y cada una de las entradas se divide entre este total.

Para el criterio tres (minimizar) se efectúa el mismo procedimiento pero con los inversos multiplicativos o alguna otra transformación. Por último, el renglón que corresponde a los pesos se trabaja igual. Así obtenemos la siguiente tabla:

Criterios Alternativas	C1 Rendimiento	C2 Calidad	C3 Edad	C4 Personalidad	C5 Carácter
Alberto	0.188	0.172	0.168	0.122	0.114
Blanca	0.125	0.069	0.188	0.244	0.205
Daniel	0.156	0.241	0.134	0.220	0.136
Emilia	0.188	0.034	0.174	0.146	0.159
Germán	0.188	0.276	0.156	0.171	0.205
Hilario	0.156	0.207	0.180	0.098	0.182
Pesos	0.25	0.25	0.10	0.20	0.20

El último paso del método de Suma Ponderada consiste en obtener la evaluación global $\mathbf{R}(\mathbf{a}_i)$, multiplicando cada una de las entradas (por renglón), por su correspondiente peso (por columna), es decir:

$$R(Alberto) = (0.188)(0.25) + (0.172)(0.25) + (0.168)(0.1) + (0.122)(0.2) + (0.114)(0.2) = 0.154$$

R(Blanca) = 0.157

R(Daniel) = 0.184

R(Emilia) = 0.134

R(Germán) = 0.207

R(Hilario) = 0.165

Por lo que el candidato a elegir sería Germán.

Asimismo, el método permite dar una ordenación completa final de todos los candidatos. 1º Germán, 2º Daniel, 3º Hilario, 4ª Blanca, 5º Alberto y 6ª Emilia.

❖ 3.6.1. MÉTODO DE ENTROPÍA

Se trata de un método "objetivo" de asignación de pesos, ya que estos se determinan en función de las evaluaciones de la matriz de decisión, sin que influyan las preferencias del decisor.

La idea esencial reside en que la importancia relativa del criterio j en una situación dada de decisión, medida por su peso W_J está directamente relacionada con la cantidad de información intrínsecamente aportada por el conjunto de las alternativas respecto a dicho criterio.

El procedimiento es el siguiente:

- a) Partamos de las evaluaciones $a_{ij}\{(i=1,...,m), (J=1,...,n)\}$ ya normalizadas como fracción de la suma $\Sigma_i a_{ij}$ de las evaluaciones originales de cada criterio j.
- b) Calculemos la Entropía E_J de cada criterio: E_J =-k Σ_i a_{ij} $Loga_{ij}$; con k=1/Logm para que $0 \le E_J \le 1$.
- c) La Entropía E_J de un criterio es tanto mayor cuanto más iguales son sus evaluaciones a_J . Precisamente lo contrario de lo que se desearía que ocurriera si E_J fuese un valor aproximado del peso W_J del criterio. Se utiliza entonces, el complemento que es la medida opuesta llamada diversidad D_J del criterio $D_J = 1 E_J$.
- d) Finalmente, se normalizan a suma uno las diversidades D_J y se obtienen los pesos buscados de la siguiente forma: $W_J = D_J/\Sigma_J \ D_J$.

EJEMPLO

Supóngase la tabla del ejemplo anterior:

Criterios Alternativas	C1 MAX	C2 MAX	C3 MIN	C4 MAX	C5 MAX
Alberto	6	5	28	5	5
Blanca	4	2	25	10	9
Daniel	5	7	35	9	6
Emilia	6	1	27	6	7
Germán	6	8	30	7	9
Hilario	5	6	26	4	8

Se normalizan las evaluaciones como fracción de suma:

Criterios Alternativas	C1	C2	C3	C4	C5
Alberto	0.188	0.172	0.168	0.122	0.114
Blanca	0.125	0.069	0.188	0.244	0.205
Daniel	0.156	0.241	0.134	0.220	0.136
Emilia	0.188	0.034	0.174	0.146	0.159
Germán	0.188	0.276	0.156	0.171	0.205
Hilario	0.156	0.207	0.180	0.098	0.182

Se obtienen las Entropías, las Diversidades y los Pesos normalizados:

Criterios	$E_{J}=-(1/\log 6)\Sigma_{i} a_{ij} Loga_{ij}$	$\mathbf{D}_{\mathrm{J}} = 1 - \mathbf{E}_{\mathrm{J}}$	$\mathbf{W}_{\mathrm{J}} = \mathbf{D}_{\mathrm{J}}/\mathbf{\Sigma}_{\mathrm{J}}\mathbf{D}_{\mathrm{J}}$
C1	0.995	0.005	0.04
C2	0.908	0.092	0.66
C3	0.997	0.003	0.02
C4	0.973	0.027	0.19
C5	0.988	0.012	0.09

Alternativas	$\Sigma_{ m J} a_{ m ij} { m W}_{ m j}$	Ordenación	
Alberto	0.15784	4°	
Blanca	0.11911	5°	
Daniel	0.22202	2°	
Emilia	0.07549	6°	
Germán	0.24374	1°	
Hilario	0.18146	3°	

En este momento todavía es posible modular los pesos W_J obtenidos, multiplicándolos por otros x_J estimados, teniendo en cuenta las preferencias del decisor, con la finalidad de obtener unos resultados $y_J = W_J x_J$, que una vez normalizados constituyen los pesos finales a utilizar.

FUENTES DE CONSULTA

• Estrada, Martín. (2004). Valuación de Derechos, Intangibles y Especiales. Libro de texto para el módulo. México: Publicación Independiente.