Courbes elliptiques — 4TMA902U

Mid Term Exam — October 25, 2019

1h30, Documents are not allowed, Answer the two parts on separate sheets

D. Robert's Part

I Let E be the curve defined over \mathbf{F}_{11} by the long Weierstrass equation $y^2 + xy = x^3 + x + 1$.

- (a) Find a short Weierstrass equation $E': y^2 = x^3 + ax + b$ for E.
- **(b)** Show that E is an elliptic curve.
- (c) Let P = (3, 10). Check that P is a point on E.
- (d) Recall the formulae for the addition law on E'.
- (e) Compute 2P. (Hint: use the change of variable to E').

Let E: $x^2 + y^2 = 1 + dx^2y^2$ be a curve over a field k of characteristic different from 2, such that d is different from 0 or 1.

- (a) · Show that E is a smooth affine curve.
- **(b).** Show that E has two points at infinity.
- (c). Show that the points at infinity are not smooth.

We admit that there is a change of formula from E to an elliptic curve, defined everywhere apart from the two points at infinity. From this we deduce that there is an addition law on the affine points:

$$(x_1,y_1)+(x_2,y_2)=\left(\frac{x_1y_2+y_1x_2}{1+dx_1x_2y_1y_2}\,,\,\frac{y_1y_2-x_1x_2}{1-dx_1x_2y_1y_2}\right).$$

(e) Show that we can rewrite the addition law as

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1y_1 + x_2y_2}{x_1x_2 + y_1y_2}, \frac{x_1y_1 - x_2y_2}{x_1y_2 - y_1x_2}\right).$$

- (f) Show that $0_E = (0,1)$ and that -(x,y) = (-x,y).
- (g) Show that P = (1, 0) is a point of 4-torsion.
- (h) Show that if we work over $k = \mathbf{F}_q$ and d is not a square in \mathbf{F}_q , then the addition law is always defined, meaning that the denominators are never zero.

Hint: let $\epsilon = dx_1y_1x_2y_2$ and suppose by contradiction that $\epsilon = \pm 1$. Show that $dx_1^2y_1^2(x_2^2+y_2^2) = x_1^2 + y_1^2$ and then that $(x_1 + \epsilon y_1)^2 = dx_1^2y_1^2(x_2 + y_2)^2$. Conclude that d is a square.

(i) Now suppose that $k = \mathbb{R}$ and d = 0, so we are working on the real circle $x^2 + y^2 = 1$. Show that the addition law is still valid.

(j) Still when d=0 and $k=\mathbb{R}$, writing $(x_1,y_1)=(\sin\theta_1,\cos\theta_1)$ and $(x_2,y_2)=(\sin\theta_2,\cos\theta_2)$ (warning: here we exchange the usual roles of x and y), then show that $(x_1,y_1)+(x_2,y_2)=(\sin(\theta_1+\theta_2),\cos(\theta_1+\theta_2))$. So we recover the "standard angle addition" on the circle.

G. Castagnos' Part

3 We recall the ECDSA signature scheme:

Global Public Parameters:

Pa point of order n of an elliptic curve E defined over \mathbb{F}_p , $\mathbb{H}: \{0,1\}^* \to \{1,\dots,n-1\}$ a cryptographic hash function

- **Key Generation:** pk := Q := xP with x random 0 < x < n, sk := x
- Signing a message m with the key x:

r random, 0 < r < n, $R := (x_R, y_R) := rP$, If $x_R \equiv 0 \pmod{n}$, restart with another r. $s :\equiv r^{-1}(x(x_R \mod n) + H(m)) \pmod{n}$. If $s \equiv 0 \pmod{n}$, restart with another r. The signature is $\sigma := (\sigma_1, \sigma_2) := (x_R \mod n, s)$.

• Verifying a signature (σ_1, σ_2) of m with the key pk = Q

Verify that Q is on the curve, and that Q has order n and that $1 < \sigma_i < n$, for i = 1, 2. $u_1 :\equiv H(m)\sigma_2^{-1} \pmod{n}$; $u_2 :\equiv \sigma_1\sigma_2^{-1} \pmod{n}$; $(x_1, y_1) := u_1P + u_2Q$ Signature is correct if $\sigma_1 \equiv x_1 \pmod{n}$

- (a) What is the goal of a signature algorithm? Why using a signature algorithm with elliptic curves instead of a similar algorithm with finite fields?
- **(b)** In this question, we consider a bad implementation of ECDSA where r is not random but fixed with an unknown value. Suppose that you have two different messages m and m' and their signatures σ and σ' computed with this implementation with the same secret key x. Show that you can recover x.
- (c) Suppose in this question, that you have found a message m such that H(m) = 0. Show how it is possible to compute efficiently (in polynomial time) a valid signature with ECDSA of m without knowing the secret key sk.
- (d) Suppose in this question that in the ECDSA scheme, H is replaced by the identity: H = Id: $\{1, ..., n-1\} \rightarrow \{1, ..., n-1\}$. Show that it is possible to compute efficiently (in polynomial time) a signature of an uncontrolled message $m \in \{1, ..., n-1\}$ without knowing the secret key (Hint: set R = aP + bQ for some a, b and then choose well the values of s and m).

Let (G, \times) be a cyclic group of prime order n. Let g be a generator of G. Let a, b and x be three integers such that 1 < a < x < b < n. We denote $h = g^x$.

Give a detailed algorithm (in pseudo code) that outputs x given G, n, a, b, g, h, knowing that a < x < b. This algorithm must use at most $\mathcal{O}(\sqrt{b-a})$ exponentiations in the group G and storage of $\mathcal{O}(\sqrt{b-a})$ elements of the group G in memory. Explain why your algorithm gives a correct output.