

CDRH HPC Clusters

CDRH HPC Team

Stuart Barkley
Dillip Emmanuel
Rusif Eyvazli
Fu-Jyh Luo
Mike Mikailov
Nicholas Petrick

HPC Computational Environments

- CDRH Betsy/Bluefin Environments
 - General purpose HPCs to support a wide array of projects
 - Web-based bioinformatics analysis (Galaxy)
 - Artificial intelligence/machine learning
 - · Genomics, next-generation sequence analysis and alignment,
 - Modeling and simulation
 - Statistical analysis and more

Betsy Cluster

per node

Bluefin Cluster

- Bluefin is a "mobile" computing platform
 - Currently located at CVM facility in Beltsville

Betsy/Bluefin Utilization

Scientific Applications

300 FDA-approved applications:

- Computational Chemistry: Amber, Autodock, Desmond, LAMMPS, ...
- Computational Fluid Dynamics: OpenFoam
- Image Analysis: CellProfiler, Freesurfer, FSL, ImageJ ...
- Linkage/Phylogenetics: CD-HIT, GARLI, Mothur, PHYLOSHOP, POY, QIIME ...
- Mass Spectrometry: TPP (PeptideProphet, ProteinProphet, ASAPRatio, ...)
- Mathematical/Statistics/Modeling & Simulation: R, SAS, Chaste, FluTE, GridMathematica, ...
- **Next-Generation Sequencing:** ABySS, ALLPATHS-LG, Bcl2fastq, Bedtools, Bowtie, Bowtie2, Bwa, CCMpred, Cufflinks, GATK, GNUMAP, HIVE, Kraken, Mira, Picard, Samtools, Tophat
- Sequence Analysis & Alignment: Blast, Blat, Cortex, Dfam, Exonerate, Geneious, GotoBLAS2, HMMER, Jalview, JELLYFISH, Mauve, mpiBLAST, Mugsy, MUMmer, MUSCLE, NovoAlign, ParSNP, Pfam, PRINSEQ, ScalaBLAST, SGA Assembler, SNP Pipeline, SPAdes, SUPERFAMILY, Tablet
- Multi-paradigm environments: Parallel MATLAB, Octave, R, Galaxy, ...

Galaxy Web Annalistic Platform

Open-source platform

- Enables researchers without informatics expertise to perform computational analyses through web
 - Users upload data and define/run analysis pipelines
- Galaxy Tutorials
 - Galaxy 101. How to create workflows.
 - <u>Uploading data</u> How to get data into Galaxy.
 - Learn Galaxy

MATLAB Parallel Server

MATLAB Parallel Server

- Lets users scale MATLAB® and Simulink® programs to HPC cluster
- Runs programs/ simulations as scheduled applications on cluster
- Desktop license profile dynamically enabled on cluster, so no need to supply MATLAB licenses for cluster

HPC Application Scaling

Mike Mikailov CDRH/OSEL/DIDSR

Process Scaling

Before parallelization Single run

```
max=2000
for ( i in 1:max)
{
    [computations]
}
```

[summarization]

[final results]

After parallelization Many parallel runs

i=1
[computations]

[partial results-1]

i=2000

[computations]

[partial results-2000]

Concatenation, summarization within minutes

[partial results concatenation]

[summarization]

[final results]

Data Scaling

Before scaling: Time needed T

After scaling: Time needed ~T/N

Scaling Techniques

Scaling Technique	Advantages	Disadvantages
Multi-threading, OpenMP	 Multiple parallel threads within a node 	 Scaling is limited to cores on one node
MPI	Multiple parallel threads across one or more nodes	Overhead for I/O coordination and load balancing
		 In practice, all requested resources must be available to start
		 No checkpointing Cannot exceed max capacity of the cluster
Scientific workflows,	 Scalable computational or data manipulation tasks on 	 Does not offer integrated approach for scaling multi-level nested loops or random
MapReduce, Spark, Hadoop	one or more nodes	number generation
Single loop parallelization	 Multiple parallel tasks on one or more nodes 	Does not parallelize multilevel nested loops
Array-based parallelization	 Multiple parallel tasks across one or more nodes 	Overhead for setup/convergence phases

HPC DLNN Project

Weizhe Li, Weijie Chen, Mike Mikailov CDRH/OSEL/DIDSR

DLNN AI/ML with WSI data

- DLNN pipeline for digital pathology
- Training
 - Normal/tumor image patches randomly extracted
 - Normal (green)
 - Tumor (red)
 - Patches used to optimize NN using GPUs
 - HPC implementation generates pixel-wise heatmap via a sliding window

DLNN AI/ML with WSI data

- Scaling DDLN testing on HPC
 - Reformat/group patches into HDF5 file format for improved parallel I/O
 - Job splitting/scaling for parallel HPC implementations

DLNN AI/ML with WSI data

