Overheads: - Today's Outline

Quiz 2:

Recap Thursday: Diels-Alder Reaction

Regiochemistry: generally get "ortho/para-like" products.

Other examples of cycloadditions [4+2]:

Dieneophiles:

- can be triple bonds:

$$CO_2CH_3$$
 CO_2CH_3
 CO_2CH_3

- can have other atoms:

Cheletropic Cycloaddition:

- both new π bonds formed to same atom

flammable gas

white solid - stable, easy to store, cheap!
- can be used to generate butadiene in reaction

Another example: (similar to lab #8)

Recap Pericyclic Reactions so far: Woodward-Hoffman Rules

Electrocyclic:
$$4n / \text{even}$$
 $\Delta = \text{con}$
 $hv = \text{dis}$
 $4n+2 / \text{odd}$ $\Delta = \text{dis}$
 $hv = \text{con}$

Cycloaddition:
$$4n / even$$
 $\Delta = antara$
 $hv = supra$
 $4n+2 / odd$ $\Delta = supra$
 $hv = antara$

Sigmatropic Rearrangements:

- σ bond changes position

- similar to electrocyclic, but not fully conjugated (db on ends only)

Numbering/naming system:

- Numbered according to how far σ bond has moved on each end

Another example:

^{**} usually get product that looks similar, but R groups have moved

Woodward-Hoffman Rules

 $4n+2 / \text{ odd } \Delta = \text{supra}$ hv = antara (if goes, is by different mechanism) $4n / \text{ even } \Delta = \text{antara}$ hv = supra $***identical rule as for cycloaddition!}$