R ² CH ₃ -	Compound R1	R	\mathbb{R}^2 \mathbb{R}^3	R 3
HOTOMORPHI	Alpha (α)	CH ₃	CH, CH, CH,	CH
- T = E &	Beta (β)	CH,	н СН,	CH,
R ² CH ₃	Gamma (γ)	Н	H CH, CH,	CH,
H O Tocotrienol	Delta (δ)	Н	H CH,	CH

Compound	l R ¹	R^2	R ³	R ⁴	5 R
1	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
2	$(CH_2)_2CO_2H$	CH ₃	CH ₃	CH ₃	phytyl
3	$(CH_2)_3CO_2H$	CH ₃	CH ₃	CH ₃	phytyl
4	$(CH_2)_4CO_2H$	CH ₃	CH ₃	CH ₃	phytyl
5	(CH ₂) ₅ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
6	$(CH_2)_7CO_2H$	CH ₃	CH ₃	CH ₃	phytyl
7	СН ₂ СО ₂ Н	CH ₃	Н	CH ₃	phytyl
8	СH ₂ CO ₂ H	CH ₃	Н	CH ₃	phytyl
9	СН ₂ СО ₂ Н	Н	Н	CH ₃	phytyl
10	$\mathrm{CH}_2\mathrm{CONH}_2$	CH ₃	CH ₃	CH ₃	phytyl
11	$\mathrm{CH_2CO_2CH_3}$	CH ₃	CH ₃	CH ₃	phytyl
12	$\mathrm{CH_2CON}\left(\mathrm{CH_2CO2H}\right)_2$	CH ₃	CH ₃	CH ₃	phytyl
13	СН ₂ СН ₂ ОН	CH ₃	CH ₃	CH ₃	phytyl
14	СН ₂ СО ₂ Н	CH ₃	CH ₃	CH ₃	CH ₃
15	RS CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl

Fig. 2A

Compound	R ¹	R ²	R ³	R ⁴	5
16	СH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	СООН
17	R/RS CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
18	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	isoprenyl
19	NH ₃ Cl	CH ₃	CH ₃	CH ₃	phytyl
20	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
21	OSO3NHEt3	CH ₃	CH ₃	CH ₃	phytyl
22	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
23	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
24	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
25	СH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
26	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	other
27	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	other
28	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	ester
29	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	ester

Fig. 2B

R1 = alkyl, alkenyl, akynyl, aryl, and heteroaryl.

alkyl, alkenyl, akynyl, aryl, and heteroaryl carboxylic acids or carboxylates. H \mathbf{R}^1

Fig. 3A

alkyl, alkenyl, akynyl, aryl, and heteroaryl carboxamides and esters H R

= alkyl, alkenyl, akynyl, aryl, and heteroaryl thioamides, thioesters and thioacids. \mathbb{R}^1

Fig. 3B

= alkyl, alkenyl, akynyl, aryl, and heteroaryl thiolesters. **K**

R¹ = saccharides or alkyloxy-linked saccharides

Fig. 3C

alkyl, alkenyl, akynyl, aryl, and heteroaryl amines. 11 \mathbf{R}^1

- alkyl-, alkenyl-, 2)
 alkynyl, aryl-, or
 heteroaryl
 haloamines
- 3) Trifluoracetic acid

= alkyl, alkenyl, akynyl, aryl, and heteroaryl carboxamides. \mathbf{R}^{1}

3) Trifluoracetic acid

Fig. 3D

R¹ = alkyl, alkenyl, akynyl, aryl, and heteroaryl sulfonates.

= alkyl, alkenyl, akynyl, aryl, and heteroaryl sulfates.

1) SO₂Cl₂ 2) NaOH, H₂O

Fig. 3E

 \mathbf{R}^{1}

Fig. 3F

alkyl, alkenyl, alkynyl, aryl, and heteroaryl alcohols, ethers, and nitrites. 11 R

NaOH, H2O

 \mathbb{R}^2 = benzyl carboxylic acid or carboxylate.

CH3 R5

 \mathbb{R}^2 = benzyl carboxamides or esters.

CH3

Fig. 4A

R³, R⁴ = benzyl carboxylic acid or carboxylate.

CH H2

 R^3 , R^4 = benzyl carboxamides or esters.

CH₃

Qr.

Æ

TBSO

Fig. 5A

$$R^{3}, R^{4} = \text{saccharides}.$$

$$R^{3}, R^{4} = \text{saccharides}.$$

$$R^{4} + \begin{pmatrix} C^{4} & 1 \end{pmatrix} RSCI + \begin{pmatrix} R^{4} & C^{4} & 1 \end{pmatrix} RCN + \begin{pmatrix} R^{4} & 1 \end{pmatrix} RCN + \begin{pmatrix} R^{5} & 2 \end{pmatrix} RSCI + \begin{pmatrix} R^{4} & 1 \end{pmatrix} RSCI + \begin{pmatrix} R^{4} & 1$$

R⁵ = alkyl, alkenyl, alkynyl, aryl, and heteroaryl.

alkyl, alkenyl, alkynyl, aryl, and heteroaryl amides and esters. 11 **K** 5

Fig. 6

Fig. 7C

ut = untreated; veh = vehicle control; VES-20 = ester succinated vitamin E at 20 Mean body weights of mice +/- S.D. with an n=5 mg/day; #1 = compound #1 at 20, 10, and 5 mg/day.

MDA MB-435 Human Breast Cancer Cells

FIG. 9A

DU-145 Human Prostrate Cancer Cells

FIG. 9B

FIG. 9C