Тема: динамическое программирование.

Что нужно знать:

- динамическое программирование это способ решения сложных задач путем сведения их к более простым задачам того же типа
- с помощью динамического программирования решаются задачи, которые требуют полного перебор вариантов:
 - о «подсчитайте количество вариантов...»
 - о «как оптимально распределить...»
- о «найдите оптимальный маршрут...»
- динамическое программирование позволяет ускорить выполнение программы за счет использования дополнительной памяти; полный перебор не требуется, поскольку запоминаются решения всех задач с меньшими значениями параметров

Пример задания:

P-08 (демо-вариант 2018 г.). Исполнитель M17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Прибавить 2
- 3. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая – увеличивает его на 2, а третья – умножает его на 2. Программа для исполнителя М17 – это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 12 и при этом траектория вычислений содержит числа 8 и 10?

Решение:

1) запишем рекуррентную формулу для вычисления $K_{\scriptscriptstyle M}$ – количества возможных программ для получения числа N из некоторого начального числа:

$$K_{N} = K_{N\!-\!1} + K_{N\!-\!2}$$
 , если N не делится на 3

$$K_{N} = K_{N-1} + K_{N-2} + K_{N/3}$$
 , если N делится на 3

- 2) все допустимые программы можно разбить на 3 части:
 - переход от 2 до 8
 - переход от 8 до 10
 - переход от 10 до 12

3) обозначим через $K_{a o b}$ количеств возможных программ получения числа b из числа a

1

- 4) очевидно, что $K_{a o b} = K_{a o c} \cdot K_{c o b}$ для любого c, такого что a < c < b
- 5) поэтому $K_{2\to 12} = K_{2\to 8} \cdot K_{8\to 10} \cdot K_{10\to 12}$
- 6) вычисляем эти значения отдельно стандартным способом по рекуррентным формулам п. 1:

N	2	3	4	5	6	7	8
K_N	1	1	2	3	6	9	15

N	8	9	10	10	11	12
K_N	1	1	2	1	1	2

- 7) и перемножаем: 15 · 2 · 2 = 60
- 8) Ответ: <mark>60</mark>.

Тема 27 2018

Ещё пример задания:

Р-07. Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 29 и при этом траектория вычислений содержит число 14 и не содержит числа 25?

Решение:

- 1) у нас в задании две особые точки числа 14 (через которое должна проходить траектория) и 25 (а сюда она попасть НЕ должна)
- 2) сначала, так же, как и в задачах, рассмотренных ниже, составляем рекуррентную формулу, по которой будем вычислять количество $K_{\scriptscriptstyle N}$ обозначить количество разных программ для получения числа N из начального числа:
- 3) число N могло быть получено одной из двух операций:
 - увеличением на 1 числа N-1:
 - умножением на 2 числа N/2 (только для N. которые делятся на 2):

$$K_{N} = K_{N-1}$$
 для нечётных чисел

$$K_N = K_{N-1} + K_{N/2}$$
 для чётных чисел

- 4) для начального числа 2 количество программ равно 1: существует только одна пустая программа, не содержащая ни одной команды; $K_1 = 1$
- 5) составляем таблицу до первой особой точки числа 14:

											12		
K_N	1	1	2	2	3	3	5	5	7	7	10	10	13

6) поскольку число 14 должно обязательно войти в траекторию, начинаем составлять вторую часть таблицы (до второй контрольной точки, 25) с этого числа заново, считая, что все ячейки лля меньших чисел – нулевые

Α,,,		· · · · · · · · · · · · · · · · · · ·	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
N	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
K_N	13	13	13	13	13	13	13	13	13	13	13	0				

- 7) поскольку траектория не может проходить через 25, для N=25 принимаем $K_N=0$ (в таблице эта ячейка выделена красным цветом)
- 8) дальше заполняем оставшиеся ячейки второй части таблицы обычным способом (см. задачи

нил	Kej.															
N	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
K_N	13	13	13	13	13	13	13	13	13	13	13	0	0	0	13	13

9) Ответ: 13.

Ещё пример задания:

Р-06. У исполнителя Удвоитель две команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Удвоитель - это последовательность команд. Сколько существует программ, преобразующих число 4 в число 24, предпоследней командой которых является команда «1»?

Решение:

1) итак, мы знаем предпоследнюю команду – 1, при этом последняя команда может быть любая – 1 или 2

2

Тема 27 2018

- 2) выходит, что нужно получить количество всех программ вида «*11» и «*12», где звёздочка обозначает любые команды
- 3) если программа заканчивается на «<mark>11</mark>», то до выполнения цепочки «11» у нас было число 24 - 1 - 1 = 22: поэтому нужно найти число программ для преобразования 4 в 22
- 4) для начального числа 1 количество программ равно 1: существует только одна пустая программа, не содержащая ни одной команды; если через $K_{\scriptscriptstyle \mathrm{M}}$ обозначить количество разных программ для получения числа N из начального числа 1, то $K_1=1$.
- 5) теперь рассмотрим общий случай, чтобы построить рекуррентную формулу, связывающую $K_{\scriptscriptstyle N}$ с предыдущими элементами последовательности $K_{\scriptscriptstyle 1}, K_{\scriptscriptstyle 2}, ..., K_{\scriptscriptstyle N-1}$, то есть с решениями таких же задач для меньших N
- 6) число N могло быть получено одной из двух операций:
 - увеличением на 1 числа N-1:
 - умножением на 2 числа N/2 (только для N, которые делятся на 2, и таких, что N/2 ≥ 4); $K_{N} = K_{N-1}$ для нечётных чисел

$$K_{N} = K_{N-1} + K_{N/2}$$
 для чётных чисел, таких, что N/2 \geq 4

7) составляем таблицу:

														17					
K_N	1	1	1	1	2	2	3	3	4	4	5	5	7	7	9	9	12	12	<mark>15</mark>

- 8) теперь рассматриваем случай, когда программа заканчивается на «12», это значит, что до выполнения цепочки «12» у нас было число (24/2) - 1 = 11; поэтому нужно найти число программ для преобразования 4 в 11, берём его из таблицы: 3
- 9) ответ к задаче сумма двух значений, выделенных жёлтым маркером: 15 + 3 = 18, поскольку мы рассмотрели все варианты программ, в которых предпоследняя команда – 1
- 10) Ответ: 18.

Ещё пример задания:

Р-05. Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь 15 - это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 21 и при этом траектория вычислений содержит число 10? Траектория вычислений программы – это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 16, 17.

Решение (вариант 1):

- 1) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 2) для начального числа 1 количество программ равно 1: существует только одна пустая программа, не содержащая ни одной команды; если через $K_{\scriptscriptstyle M}$ обозначить количество разных программ для получения числа N из начального числа 1, то $K_1=1$.
- 3) теперь рассмотрим общий случай, чтобы построить рекуррентную формулу, связывающую K_{N} с предыдущими элементами последовательности $K_{1}, K_{2}, ..., K_{N-1}$, то есть с решениями таких же задач для меньших N
- 4) число N могло быть получено одной из двух операций:
 - увеличением на 1 числа N-1;
 - умножением на 2 числа N/2 (только для N. которые делятся на 2):

$$K_{\scriptscriptstyle N}=K_{\scriptscriptstyle N-1}$$
 для нечётных чисел

$$K_{N} = K_{N-1} + K_{N/2}$$
 для чётных чисел

5) поскольку траектория должна проходить через число 10. сначала выясняем, сколькими способами можно получить 10 из 1, а затем будем считать, сколько есть способов получить 21

Тема 27 2018

6) заполняем таблицу от 1 до 10 по полученным формулам:

		2								
K_N	1	2	2	4	4	6	6	10	10	14

7) второй этап – определяем таким же образом (и по таким же формулам!), сколько есть способов получить конечное число 21 из 10, только левую часть таблицы (от 1 до 10) мы уже не рассматриваем:

								17				
K_N	14	14	14	14	14	14	14	14	14	14	28	28

8) Ответ: 28.

Решение (вариант 2, А.Н. Носкин):

- 1) первый этап (п. 1-6) такой же, как и в первом варианте (см. выше);
- 2) на втором этапе используем такую идею: если мы знаем количество команд, с помощью которых из начального числа 1 можно получить 10 и определим количество команд, с помощью которых из 10 можно получить конечное значение 21, останется только перемножить эти два числа – это и будет ответ
- 3) составляем таблицу для получения 21 из 10, используя те же рекуррентные формулы:

	-			_		_	_	17	-	_	-	
K_N	1	1	1	1	1	1	1	1	1	1	2	2

- 4) $peзультат 14 \times 2 = 28$
- 5) Ответ: 28.

Ещё пример задания:

Р-04. Исполнитель Калькулятор преобразует число, записанное на экране. У исполнителя три команды, которым присвоены номера:

- 1. прибавь 1
- 2. прибавь 2
- 3. прибавь следующее

Первая из них увеличивает число на экране на 1, вторая увеличивает это число на 2, а третья прибавляет к числу на экране число. большее на 1 (к числу 3 прибавляется 4. к числу 9 прибавляется 10 и т. д.). Программа для исполнителя Калькулятор- это последовательность команд. Сколько есть программ, которые число 2 преобразуют в число 10?

Решение (1 способ, составление таблицы):

- 1) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 2) для начального числа 2 количество программ равно 1: существует только одна пустая программа, не содержащая ни одной команды; если через $K_{\scriptscriptstyle N}$ обозначить количество разных программ для получения числа N из начального числа 2, то $K_2 = 1$.
- 3) теперь рассмотрим общий случай, чтобы построить рекуррентную формулу, связывающую $K_{\scriptscriptstyle N}$ с предыдущими элементами последовательности $K_{\scriptscriptstyle 1}, K_{\scriptscriptstyle 2}, \ldots, K_{\scriptscriptstyle N-1}$, то есть с решениями таких же задач для меньших N
- 4) число N могло быть получено одной из трёх операций сложения:
 - увеличением на 1 числа N-1;
 - увеличением на 2 числа N-2;
 - из некоторого числа X увеличением на X+1 (следующее число), так что N = X + X + 1, откуда X = (N - 1) / 2: так могут быть получены только нечетные числа:

$$K_{N} = K_{N-1} + K_{N-2}$$
 для чётных чисел

$$K_N = K_{N-1} + K_{N-2} + K_{(N-1)/2}$$
 для нечётных чисел

N	2	3	4	5	6	7	8	9	10
K_N	1	1	2	4	6	11	17	30	47

6) ответ – 47.

Ещё пример задания:

P-03. Исполнитель Май4 преобразует число, записанное на экране. У исполнителя три команды, которым присвоены номера:

- 1. прибавь 1
- 2. прибавь 2
- 3. прибавь 4

Первая из них увеличивает число на экране на 1, вторая увеличивает это число на 2, а третья— на 4. Программа для исполнителя Май4— это последовательность команд. Сколько есть программ, которые число 21 преобразуют в число 30?

Решение (1 способ, составление таблицы):

- 7) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 8) все числа, меньшие начального числа 21, с помощью этого исполнителя получить нельзя, для них количество программ будет равно 0
- 9) для начального числа 21 количество программ равно 1: существует только одна пустая программа, не содержащая ни одной команды; если через $K_{_N}$ обозначить количество разных программ для получения числа N из начального числа 21, то $K_{_{21}}=1$.
- 10) теперь рассмотрим общий случай, чтобы построить рекуррентную формулу, связывающую $K_{\scriptscriptstyle N}$ с предыдущими элементами последовательности $K_{\scriptscriptstyle 1}, K_{\scriptscriptstyle 2}, \ldots, K_{\scriptscriptstyle N-1}$, то есть с решениями таких же задач для меньших N
- 11) любое число N > 21 могло быть получено одной из трёх операций сложения соответственно из чисел N-1, N-2 и N-4, поэтому

$$K_N = K_{N-1} + K_{N-2} + K_{N-4}$$

12) остается по этой формуле заполнить таблицу для всех значений от 21 до 30:

							27		29	30
K_N	1	1	2	3	6	10	18	31	55	96

13) ответ – <mark>96</mark>.

Ещё пример задания:

Р-02. У исполнителя Утроитель две команды, которым присвоены номера:

- 1. прибавь 1
- 2. умножь на 3

Первая из них увеличивает число на экране на 1, вторая – утраивает его.

Программа для Утроителя – это последовательность команд.

Сколько есть программ, которые число 1 преобразуют в число 20?

Решение (1 способ, составление таблицы):

- 1) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 2) начнем с простых случаев, с которых будем начинать вычисления: для чисел 1 и 2, меньших, чем 3, существует только одна программа, состоящая только из команд сложения; если через K_N обозначить количество разных программ для получения числа N из 1, то $K_1=K_2=1$.
- 3) теперь рассмотрим общий случай, чтобы построить рекуррентную формулу, связывающую K_N с предыдущими элементами последовательности K_1,K_2,\ldots,K_{N-1} , то есть с решениями таких же задач для меньших N
- 4) если число N не делится на 3, то оно могло быть получено только последней операцией сложения, поэтому $K_{_{N-1}}$

Тема 27, 2018

- 5) если N делится на 3, то последней командой может быть как сложение, так и умножение
- 6) поэтому для получения K_N нужно сложить K_{N-1} (количество программ с последней командой сложения) и $K_{N/3}$ (количество программ с последней командой умножения). В итоге получаем:

если N не делится на 3: $K_{_{N}}=K_{_{N-1}}$

если N делится на 3: $K_N = K_{N-1} + K_{N/3}$

7) остается заполнить таблицу для всех значений от 1 до N:

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
K_N	1	1	2	2	2	3	3	3	5	5	5	7	7	7	9	9	9	12	12	12

8) Заметим, что количество вариантов меняется только в тех столбцах, где N делится на 3, поэтому из всей таблицы можно оставить только эти столбцы:

				9 12 15				
K_N	1	2	3	5	7	9	12	15

- 9) заданное число 20 попадает в последний интервал (от 18 до 21), поэтому ...
- 10) ответ <mark>12</mark>.

Решение (2 способ, подстановка – вычисления по формулам «с конца»):

 п. 1-6 выполняются так же, как и при первом способе; главная задача – получить рекуррентную формулу:

если N не делится на 3: $K_N = K_{N-1}$

если N делится на 3: $K_N = K_{N-1} + K_{N/3}$

с начальными условиями $K_1 = K_2 = 1$

2) начинаем с заданного конечного числа 20; применяем первую формулу ($K_{\scriptscriptstyle N}=K_{\scriptscriptstyle N-1}$), пока не дойдем до числа, делящегося на 3 (это 18):

$$K_{20} = K_{10} = K_{18}$$

3) далее применяем вторую формулу ($K_{\scriptscriptstyle M}=K_{\scriptscriptstyle M,\,1}+K_{\scriptscriptstyle M,\,2}$):

$$K_{20} = K_{10} = K_{17} + K_{6}$$

4) применяем первую формулу для 17:

$$K_{17} = K_{16} = K_{15} \implies K_{20} = K_{15} + K_{6}$$

5) применяем вторую формулу для обоих слагаемых:

$$K_{20} = (K_{14} + K_5) + (K_5 + K_2) = K_{14} + 2K_5 + 1$$

где учтено, что $K_{2} = 1$

6) с помощью первой формулы переходим в правой части к числам, делящимся на 3:

$$K_{20} = K_{12} + 2K_3 + 1$$

а затем применяем вторую формулу для каждого слагаемого

$$K_{20} = (K_{11} + K_4) + 2(K_2 + K_1) + 1 = K_{11} + K_4 + 2(1+1) + 1 = K_{11} + K_4 + 5$$

7) снова используем первую формулу

$$K_{20} = K_9 + K_3 + 5$$

а затем – вторую:

$$K_{20} = (K_8 + K_3) + (K_2 + K_1) + 5 = K_8 + 2(K_2 + K_1) + 5 = K_8 + 9$$

8) и еще раз

$$K_{20} = K_6 + 9 = K_5 + K_2 + 9 = K_5 + 10 = K_3 + 10 = 2 + 10 = 12$$

9) ответ – <mark>12</mark>.

Решение (3 способ. О.В. Шецова, лицей № 6. г. Дубна):

1) будем составлять таблицу из трех столбцов: в первом записывается получаемое число от 1 до 20, во втором – какой последней командой может быть получено это число, а в третьем вычисляем количество различных программ для получения этого числа из 1

6

Число	Как можно получить?	Количество программ
1		1

3) число 2 не делится на 3, поэтому его можно получить только командой сложения (+1), значит, количество программ для 2 совпадает с количеством программ для 1:

Число	Как можно получить?	Количество программ
1		1
2	+1	= 1

4) число 3 делится на 3, поэтому его можно получить с помощью двух команд: +1 (из 2) и *3 (из 1):

Число	Как можно получить?	Количество программ
1	•	1
2	+1	1
3	+1 *3	1 + 1 = 2

5) числа 4 и 5 не делятся на 3, поэтому их можно получить только с помощью команды +1, а число 6 может быть получено двумя командами:

Число	Как можно получить?	Количество программ
1		1
2	+1	1
3	+1 *3	1 + 1 = 2
4	+1	2 4
5	+1	2
6	+1 *3	2 + 1 = 3

7

6) следующая группа – 7, 8 (не делятся на 3) и 9 (делится на 3):

Тема 27, 2018

Число	Как можно получить?	Количество программ
1		1
2	+1	1
3	+1 *3	1 + 1 = 2
4	+1	2
5	+1	2
6	+1 *3	2 + 1 = 3
7	+1	34
8	+1	3
9	+1 *3	₹ 3 + 2 ← 5

7) далее – 10, 11 и 12:

Число	Как можно получить?	Количество программ
1		1
2	+1	1
3	+1 *3	1 + 1 = 2
4	+1 •	2
5	+1	2
6	+1 *3	2 + 1 = 3
7	+1	3
8	+1	3
9	+1 *3	3 + 2 = 5
10	+1	5
11	+1 🔻	5
12	+1 *3	5 + 2 = 7

8) и так далее, вот полностью заполненная таблица (до конечного числа 20):

٠,	n ran Ac	mee, bor nomineerbie sam	элпеннал таолица (до коне
	Число	Как можно получить?	Количество программ
	1		1
	2	+1	1
	3	+1 *3	1 + 1 = 2
	4	+1	2
	5	+1	2
	6	+1 *3	2 + 1 = 3
	7	+1	3
	8	+1	3
	9	+1 *3	3 + 2 = 5
	10	+1	5
	11	+1	5
	12	+1 *3	5 + 2 = 7
	13	+1	7 /
	14	+1	7 /
	15	+1 *3	7 + 2' = 9/
	16	+1	9 /
	17	+1	9 🗸
	18	+1 *3	9 + 3 = 12
	19	+1	12
	20	+1	12

- ответ количество программ, с помощью которых можно получить число 20 из 1, считываем из последней ячейки третьего столбца
- 10) ответ <mark>12</mark>.

Решение (4 способ, М.В. Кузнецова и её ученики, г. Новокузнецк):

- 1) пусть N искомое конечное число, K(N) количества программ получения числа N
- 2) тогда для построения рекуррентной формулы определения K(N), нужно знать 2 факта:
 - а) какой может быть последняя команда и сколько есть видов этого последнего действия?

8

Тема 27, 2018

- 6) для каждого «последнего» действия нужно знать число программ получения предыдущего числа, сумма этих количеств и есть искомое значение K(N) число программ получения числа N.
- Например, общее количество программ получения числа 6 с помощью Утроителя равно K(6) = K(5) + K(2), т.к. есть ДВА способа завершения программ получения этого значения: 6=5+1 и $6=2\cdot3$.
- 3) число программ получения числа N зависит от числа программ получения предыдущего значения, и что программы получения чисел, кратных 3-м могут завершаться 2-мя способами: (N-1)+1 или $(N/3)\cdot 3$, а все остальные числа получают только первым способом: (N-1)+1.
- 4) составим рекуррентную формулу для определения числа программ получения числа N :

при
$$N=1$$
 имеем $K(1)=1$ если N не кратно 3: $K(N)=K(N-1)$ если N делится на 3: $K(N)=K(N-1)+K(N/3)$

- 5) с помощью это формулы заполняем таблицу следующим образом:
 - в первом столбце записываем все натуральные числа от 1 до заданного N ;
 - во втором столбце числа, на единицу меньшие (из которых может быть получено N последней операцией сложения с 1);
 - в третьем столбце для чисел, кратных 3-м, записываем частное от деления числа, записанного в первом столбце, на 3 (из этого числа может быть получено $\,N\,$ последней операцией умножения на 3);
 - в последнем столбце вычисляем K(N), складывая соответствующие значения для тех строк, номера которых записаны во втором и третьем столбцах:

N	N-1	N/3	K(N)					
1_			, 1					
2	- 1	X	1					
3	2	1	1+1=/2					
4	3		2					
5	4		2					
6	5	2	2+1=3					
7	6		3					
8	7		3					
9	8	3	3 + 2= 5					
10	9		5					
11	10		5					
12	11	4	5 + 2 = 7					
13	12		7					
14	13		7					
15	14	5	7 + 2 = 9					
16	15		9					
17	16		9					
18	17	6	9+3 = 12					
19	18		12					
20	19		12					

6) ответ – <mark>12</mark>.

Решение (5 способ, А. Сидоров):

)

Тема 27 2018

- основная идея число программ, преобразующих начальное число 1 в конечное 20 с помощью заданных в условии команд, равно числу программ, преобразующих конечное число 20 в начальное 1 с помощью обратных команд: «вычти 1» и «раздели на 3»
- 2) будем строить «обратное дерево» дерево всех способов преобразования конечного числа в начальное; это лучше (в сравнении с построением «прямого» дерева, от начального числа к конечному), потому что операция умножения необратима каждое число можно умножить на 3, но не каждое можно разделить на 3; из-за этого сразу отбрасываются тупиковые ветви, не дающие новых решений
- рисуем сокращенное дерево, в котором черные стрелки показывают действие первой команды («прибавь 1»), а красные – действие второй команды («умножь на 3»); красные стрелки подходят только к тем числам, которые делятся на 3:

- чтобы получить количество программ для каждого числа из верхней строки, нужно сложить соответствующие количества программ для всех чисел из нижнего ряда, которые не больше данного (программы с умножением), и добавить 1 (программа, состоящая из одних сложений)
- 5) очевидно, что для получения 1 существует одна (пустая) программа; тогда для числа 2 тоже получается одна программа, а для числа 3 две программы:

6) далее, для чисел 4 и 5 получаем 2 программы (после числа 3 нет «разветвлений» – подходящих красных стрелок), а для числа 6 – 3 программы, так как «подошло» еще одно разветвление (6 можно получить умножением 2 на 3), а для числа 2 мы уже подсчитали количество программ – оно равно 1:

- 7) находить число программ для следующих чисел нам уже не понадобится, потому что при умножении на 3 они дают числа, большие, чем заданное конечное число 20
- 8) запишем полученные результаты в самой нижней строке для всех множителей от 1 до 6:

 теперь остается сложить все числа в скобках в нижнем ряду (количество программ с командами умножения) и добавить 1 (одна программа, состоящая только из команд сложения):

10) ответ – <mark>12</mark>.

Тема 27, 2018

Возможные проблемы:

- неверно определенные начальные условия
- неверно выведенная рекуррентная формула
- ошибки при заполнении таблицы (невнимательность)
- ullet второй способ (подстановка), как правило, приводит к бОльшему количеству вычислений; конечно, можно отдельно выписывать все полученные ранее значения $K_{\scriptscriptstyle N}$, но тогда мы

фактически придем к табличному методу

Еще пример задания:

Р-01. У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. прибавь 1
- 2. увеличь вторую с конца цифру на 1

Первая из них увеличивает число на экране на 1, вторая – увеличивает на 1 число десятков.

Если перед выполнением команды 2 вторая с конца цифра равна 9. она не изменяется.

Программа для Калькулятора – это последовательность команд.

Сколько есть программ, которые число 15 преобразуют в число 28?

Решение (1 способ, составление таблицы):

- 1) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 2) при заданных командах очередное число N может быть получено двумя способами:
- 3) увеличением на 1 (для всех чисел, больших начального числа)
- увеличением числа десятков на 1 (то есть, фактически командой «+10») для всех чисел, больших или равных 25; например, число 24 не может быть получено этой командой (14 + 10 = 24), потому что число 14 меньше, чем начальное значение 15
- 5) таким образом, рекуррентные формулы принимают вид

$$K_{N} = K_{N-1}$$
 для всех чисел, меньших, чем 25

$$K_{N}=K_{N-1}+K_{N-10}\;\;$$
 для чисел, больших или равных 25

- других способов получения числа с помощью исполнителя с заданными командами нет, то есть мы таким образом рассматриваем все возможные программы
- 7) начальное значение: $K_{15} = 1$ (число 15 можно получить единственной пустой программой)
- 8) далее заполняем таблицу:

N														
K_N	1	1	1	1	1	1	1	1	1	1	2	3	4	5

9) Ответ: <mark>5</mark>

Еще пример задания:

Р-00. У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. прибавь 1
- 2. увеличь две младшие цифры на 1

Первая из них увеличивает число на экране на 1, вторая — увеличивает на 1 число десятков и число единиц. Если перед выполнением команды 2 какая-либо из двух младших цифр равна 9, она не изменяется. Программа для Калькулятора — это последовательность команд.

Сколько есть программ, которые число 23 преобразуют в число 48?

Решение (1 способ, составление таблицы):

- 1) заметим, что при выполнении любой из команд число увеличивается (не может уменьшаться)
- 2) при заданных командах очередное число N может быть получено двумя способами:

11

3) увеличением на 1 (для всех чисел, больших начального числа)

- 4) увеличением обеих цифр на 1 в результате выполнения команды 2 (то есть, фактически командой «+11») для всех чисел, больших или равных 23 + 11 = 34, которые НЕ оканчиваются на 0:
- 5) увеличением *только младшей* цифры на 1 в результате выполнения команды 2 (то есть, фактически командой «+1») для всех чисел от 91 до 99, но в нашем диапазоне (23..48) таких нет

Тема 27 2018

- 6) увеличением *только старшей* цифры на 1 в результате выполнения команды 2 (то есть, фактически командой «+10») для всех чисел, больших 34 и имеющих 9 на конце; в нашем случае под этот вариант подходит только число 39
- 7) таким образом, рекуррентные формулы принимают вид

$$K_{_N}=K_{_{N-1}}$$
 для всех чисел, меньших, чем 34, а также для всех чисел, оканчивающихся на 0 $K_{_N}=K_{_{N-1}}+K_{_{N-11}}\,$ для чисел, больших или равных 34, кроме 39

$$K_{\scriptscriptstyle N} = K_{\scriptscriptstyle N-1} + K_{\scriptscriptstyle N-11} + K_{\scriptscriptstyle N-10}$$
 для числа 39

- 8) других способов получения числа с помощью исполнителя с заданными командами нет, то есть мы таким образом рассматриваем все возможные программы
- 9) начальное значение: $K_{23} = 1$ (число 23 можно получить единственной пустой программой)
- 10) далее заполняем таблицу:

	Да,,с,																	
ſ	N	23	 33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
	K_N	1	 1	2	3	4	5	6	8	8	9	10	11	12	14	17	21	26

здесь многоточия означают, что для всех чисел от 23 до 33 включительно количество

12

11) например, для числа 47 количество программ вычисляется как

$$K_{47} = K_{46} + K_{36} = 17 + 4 = 21$$

а для числа 39 -как

$$K_{39} = K_{38} + K_{28} + K_{29} = 6 + 1 + 1 = 8$$

12) Ответ: <mark>26</mark>

Тема 27, 2018

Задачи для тренировки¹:

- 1) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2

Сколько есть программ, которые число 1 преобразуют в число 16?

- 2) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 55?

- 3) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2
 - 3. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 18?

- 4) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2
 - 3. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 17?

- 5) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 3
 - 3. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 25?

- 6) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 2
 - 3. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 12?

- 7) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3
 - 3. умножь на 2

Сколько есть программ, которые число 1 преобразуют в число 15?

- 8) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3
 - 3. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 15?

- 9) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3
 - 3. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 18?

- 10) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1

- 1. Демонстрационные варианты ЕГЭ 2012-2016 гг.
- 2. Тренировочные работы МИОО.

13

2. прибавь 2

3. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 13?

- 11) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 4

Сколько есть программ, которые число 1 преобразуют в число 32?

12) (С.Э. Назаренко) У исполнителя Калькулятор две команды, которым присвоены номера:

Тема 27 2018

- 1. прибавь 2
- 2. умножь на 2

Сколько есть программ, которые число 1 преобразуют в число 24?

- 13) (С.Э. Назаренко) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 3

Сколько есть программ, которые число 5 преобразуют в число 49?

- 14) (С.Э. Назаренко) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 3
 - 2. умножь на 3

Сколько есть программ, которые число 5 преобразуют в число 27?

- 15) (С.Э. Назаренко) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3
 - 3. умножь на 2

Сколько есть программ, которые число 3 преобразуют в число 15?

- 16) (Т.В. Белова) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2
 - 3. возведи в квадрат

Сколько есть программ, которые число 2 преобразуют в число 38?

- 17) (Т.В. Белова) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3
 - 3. возведи в квадрат

Сколько есть программ, которые число 2 преобразуют в число 19?

- 18) (Т.В. Белова) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2
 - 3. возведи в квадрат

Сколько есть программ, которые число 2 преобразуют в число 27?

- 19) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь число десятков на 1

Например: при помощи команды 2 число 23 преобразуется в 33. Если перед выполнением команды 2 вторая с конца цифра равна 9, она не изменяется.

Сколько есть программ, которые число 11 преобразуют в число 27?

- 20) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь число десятков на 1

Например: при помощи команды 2 число 23 преобразуется в 33. Если перед выполнением команды 2 вторая с конца цифра равна 9, она не изменяется.

¹ Источники заданий:

Сколько есть программ, которые число 12 преобразуют в число 36?

- 21) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь каждый разряд числа на 1

Например, число 23 с помощью команды 2 превратится в 34, а 29 в 39 (так как младший разряд нельзя увеличить). Если перед выполнением команды 2 какая-либо цифра равна 9, она не изменяется. Сколько есть программ, которые число 25 преобразуют в число 51?

- 22) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь каждый разряд числа на 1

Например, число 23 с помощью команды 2 превратится в 34, а 29 в 39 (так как младший разряд нельзя увеличить). Если перед выполнением команды 2 какая-либо цифра равна 9, она не изменяется. Сколько есть программ, которые число 24 преобразуют в число 46?

- 23) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь каждый разряд числа на 1

Например, число 23 с помощью команды 2 превратится в 34 а 29 в 39 (так как младший разряд нельзя увеличить). Программа для Калькулятора – это последовательность команд. Сколько существует программ, которые число 26 преобразуют в число 49?

- 24) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. увеличь число песятков на 1

Например: при помощи команды 2 число 23 преобразуется в 33. Если перед выполнением команды 2 вторая с конца цифра равна 9, она не изменяется.

Сколько есть программ, которые число 10 преобразуют в число 33?

- 25) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 2
 - 2. умножь на 2

Сколько есть программ, которые число 2 преобразуют в число 40?

- 26) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 3
 - 2. умножь на 2

Сколько есть программ, которые число 3 преобразуют в число 42?

- 27) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3

Сколько есть программ, которые число 1 преобразуют в число 15?

- 28) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 3

Сколько есть программ, которые число 7 преобразуют в число 20?

- 29) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. умножь на 2
 - 3. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 14?

- 30) У исполнителя Калькулятор две команды, которым присвоены номера:
 - 1. прибавь 2
 - 2. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 49?

31) У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. прибавь 2
- 2. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 55?

32) У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. прибавь 1
- 2. умножь на 1,5

Первая из них увеличивает на 1 число на экране, вторая увеличивает это число

в 1.5 раза, если число чётное. К нечётным числам вторая команда неприменима. Сколько есть программ, которые число 1 преобразуют в число 20?

Тема 27 2018

33) У исполнителя Калькулятор две команды, которым присвоены номера:

- 1. прибавь 1
- 2. умножь на 1,5

Первая из них увеличивает на 1 число на экране, вторая увеличивает это число

в 1.5 раза, если число чётное. К нечётным числам вторая команда неприменима. Сколько есть программ, которые число 2 преобразуют в число 22?

34) У исполнителя Калькулятор три команды, которым присвоены номера:

- 1. прибавь 1
- 2. сделай чётное
- 3. сделай нечётное

Первая из них увеличивает на 1 число на экране, вторая умножает это число на 2, третья переводит число х в число 2х + 1. Например, вторая команда переводит число 10 в число 20, а третья переводит число 10 в число 21. Программа для исполнителя – это последовательность команд. Сколько существует программ, которые число 2 преобразуют в число 16?

35) У исполнителя Калькулятор три команды, которым присвоены номера

- 1. прибавь 1
- 2. сделай чётное
- 3. сделай нечётное
- 4. умножь на 10

Первая из них увеличивает на 1 число на экране, вторая умножает это число на 2, третья переводит число х в число 2х + 1, четвертая умножает на 10. Например, вторая команда переводит число 10 в число 20, а третья переводит число 10 в число 21. Программа для исполнителя – это последовательность команд. Сколько существует программ, которые число 1 преобразуют в число

36) У исполнителя Калькулятор три команды, которым присвоены номера:

- 1. прибавь 1
- 2. прибавь 2
- 3. прибавь 5

Программа для исполнителя – это последовательность команд. Сколько существует программ, которые число 21 преобразуют в число 30?

37) У исполнителя Калькулятор три команды, которым присвоены номера:

- 1. прибавь 1
- 2. прибавь 3
- 3. прибавь 6

Программа для исполнителя – это последовательность команд. Сколько существует программ, которые число 21 преобразуют в число 30?

38) У исполнителя Калькулятор три команды, которым присвоены номера:

- 1. прибавь 2
- 2. прибавь 3
- 3. прибавь 5

Программа для исполнителя — это последовательность команд. Сколько существует программ, которые число 20 преобразуют в число 35?

- 39) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 4
 - 3. прибавь 5

Программа для исполнителя – это последовательность команд. Сколько существует программ, которые число 30 преобразуют в число 46?

- 40) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 2
 - 2. прибавь 4
 - 3. прибавь 5

Программа для исполнителя — это последовательность команд. Сколько существует программ, которые число 31 преобразуют в число 51?

- 41) У исполнителя Калькулятор три команды, которым присвоены номера:
 - 1. прибавь 1
 - 2. прибавь 2
 - 3. прибавь предыдущее

Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 2, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и т. д.). Программа для исполнителя — это последовательность команд. Сколько существует программ, которые число 2 преобразуют в число 9?

- 42) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2

Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 5 результатом является число 15 и при этом траектория вычислений содержит число 10?

- 43) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 20 и при этом траектория вычислений содержит число 12?

- 44) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Прибавить 3

Программа для исполнителя Июнь 15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 4 результатом является число 15 и при этом траектория вычислений содержит число 8?

- 45) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Прибавить 3

Программа для исполнителя Июнь15— это последовательность команд. Сколько существует программ, для которых при исходном числе 4 результатом является число 20 и при этом

Тема 27 2018

46) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2

траектория вычислений содержит число 10?

3. Умножить на 3

Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 28 и при этом траектория вычислений содержит число 7?

- 47) Исполнитель A13S преобразует целое число, записанное на экране. У исполнителя три команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Прибавь 3
 - 3. Прибавь предыдущее

Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 3, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и т. д.). Программа для исполнителя A13S – это последовательность команд. Сколько существует программ, которые число 2 преобразуют в число 10?

- 48) Исполнитель A12S преобразует целое число, записанное на экране. У исполнителя три команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Прибавь 2
 - 3. Прибавь предыдущее

Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 2, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и т. д.). Программа для исполнителя A12S — это последовательность команд. Сколько существует программ, которые число 3 преобразуют в число 10?

- 49) Исполнитель A23S преобразует целое число, записанное на экране. У исполнителя три команды, каждой команде присвоен номер:
 - 1. Прибавь 2
 - 2. Прибавь 3
 - 3. Прибавь предыдущее

Первая команда увеличивает число на экране на 2, вторая увеличивает это число на 3, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и т. д.). Программа для исполнителя A23S – это последовательность команд. Сколько существует программ, которые число 2 преобразуют в число 11?

- 50) Исполнитель Калькулятор преобразует целое число, записанное на экране. У исполнителя две команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Умножь на 2

Первая команда увеличивает число на экране на 1, вторая увеличивает это число в 2 раза. Сколько существует программ, которые число 3 преобразуют в число 20 и в которых предпоследняя команда 1?

- 51) Исполнитель Калькулятор преобразует целое число, записанное на экране. У исполнителя две команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Умножь на 2

Первая команда увеличивает число на экране на 1, вторая увеличивает это число в 2 раза. Сколько существует программ, которые число 5 преобразуют в число 32 и в которых предпоследняя команда 1?

- 52) Исполнитель Калькулятор преобразует целое число, записанное на экране. У исполнителя две команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Прибавь 2

Первая команда увеличивает число на экране на 1, вторая увеличивает – на 2. Сколько существует программ, которые число 4 преобразуют в число 14 и в которых предпоследняя команда 1?

- 53) Исполнитель Калькулятор преобразует целое число, записанное на экране. У исполнителя две команды, каждой команде присвоен номер:
 - 1. Прибавь 1
 - 2. Прибавь 2

Первая команда увеличивает число на экране на 1, вторая увеличивает – на 2. Сколько существует программ, которые число 3 преобразуют в число 18 и в которых предпоследняя команда 2?

- 54) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 21 и при этом траектория вычислений содержит число 10?

- 55) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 34 и при этом траектория вычислений содержит число 12?

- 56) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 34 и при этом траектория вычислений содержит число 10 и не содержит число 28?

- 57) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 30 и при этом траектория вычислений содержит число 20 и не содержит число 12?

58) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

19

Тема 27, 2018

- 1. Прибавить 1
- 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 28 и при этом траектория вычислений содержит число 25 и не содержит число 10?

- 59) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 3. Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 4 результатом является число 50 и при этом траектория вычислений содержит число 6 и не содержит число 12?

- 60) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15— это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 40 и при этом траектория вычислений содержит число 20 и не содержит число 8?

- 61) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 2
 - 2. Умножить на 3

Первая команда увеличивает число на экране на 2, вторая умножает его на 3. Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 63 и при этом траектория вычислений содержит число 25 и не содержит число 6?

- 62) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 55 и при этом траектория вычислений содержит число 18 и не содержит число 12?

- 63) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 – это последовательность команд. Сколько существует программ, для которых при исходном числе 5 результатом является число 60 и при этом траектория вычислений содержит число 8 и не содержит число 22?

- 64) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 45 и при этом траектория вычислений содержит число 10 и не содержит число 15?

- 65) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 5

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 5. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 26 и при этом траектория вычислений содержит число 15 и не содержит число 10?

- 66) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 21 и при этом траектория вычислений содержит число 12 и не содержит число 18?

- 67) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 3. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 5 результатом является число 25 и при этом траектория вычислений содержит число 15 и не содержит число 12?

- 68) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 31 и при этом траектория вычислений содержит число 15 и не содержит число 22?

- 69) Исполнитель Июнь15 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2. Программа для исполнителя Июнь15 — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 33 и при этом траектория вычислений содержит число 16 и не содержит число 30?

- 70) Исполнитель Май16 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2. Сколько существует программ, для которых при исходном числе 1 результатом является число 12 и при этом траектория вычислений содержит число 7?

Тема 27 2018

- 71) Исполнитель Май16 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2. Сколько существует программ, для которых при исходном числе 1 результатом является число 13 и при этом траектория вычислений содержит число 7?

- 72) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Сколько существует программ, для которых при исходном числе 3 результатом является число 13 и при этом траектория вычислений содержит число 10?

- 73) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Сколько существует программ, для которых при исходном числе 2 результатом является число 12 и при этом траектория вычислений содержит число 10?

- 74) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 16 и при этом траектория вычислений содержит число 14?

- 75) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Сколько существует программ, для которых при исходном числе 3 результатом является число 13 и при этом траектория вычислений не содержит число 8?

- 76) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Сколько существует программ, для которых при исходном числе 2 результатом является число 12 и при этом траектория вычислений не содержит число 10?

- Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 3

- 78) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 13 и при этом траектория вычислений содержит число 10?

- 79) Исполнитель Июнь16 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 25 и при этом траектория вычислений не содержит число 20?

- 80) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 31 и при этом траектория вычислений не содержит число 25?

- 81) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Сделай нечётное

Выполняя первую команду, исполнитель увеличивает число на 1, а выполняя вторую — из числа x получает число 2x+1. Сколько существует программ, для которых при исходном числе 1 результатом является число 25 и при этом траектория вычислений не содержит число 21?

- 82) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Сделай нечётное

Выполняя первую команду, исполнитель увеличивает число на 1, а выполняя вторую — из числа x получает число 2x+1. Сколько существует программ, для которых при исходном числе 1 результатом является число 31 и при этом траектория вычислений не содержит число 25?

- 83) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Прибавить 3

Сколько существует программ, для которых при исходном числе 3 результатом является число 15 и при этом траектория вычислений не содержит число 8?

- 84) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Прибавить 4

Сколько существует программ, для которых при исходном числе 2 результатом является число 13 и при этом траектория вычислений не содержит число 6?

Тема 27 2018

- 85) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 30 и при этом траектория вычислений содержит число 15?

- 86) Исполнитель Июнь17 преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 28 и при этом траектория вычислений содержит число 12?

- 87) Исполнитель K17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Программа для исполнителя К17 — это последовательность команд. Сколько существует таких программ, которые исходное число 3 преобразуют в число 13 и при этом траектория вычислений программы содержит число 9 и число 11?

- 88) Исполнитель К17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3
 - 3. Умножить на 2

Программа для исполнителя К17 — это последовательность команд. Сколько существует таких программ, которые исходное число 1 преобразуют в число 13 и при этом траектория вычислений программы содержит число 4 и число 9?

- 89) Исполнитель R17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 2

Программа для исполнителя R17 — это последовательность команд. Сколько существует таких программ, которые исходное число 1 преобразуют в число 12 и при этом траектория вычислений программы содержит число 7 и число 10?

- 90) Исполнитель R17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 3

Программа для исполнителя R17 – это последовательность команд. Сколько существует таких программ, которые исходное число 2 преобразуют в число 15 и при этом траектория вычислений программы содержит число 4 и число 11?

91) Исполнитель R17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Прибавить 3
- 3. Умножить на 2

Программа для исполнителя R17 — это последовательность команд. Сколько существует таких программ, которые исходное число 2 преобразуют в число 14 и при этом траектория вычислений программы содержит число 6 и число 10?

- 92) Исполнитель R17 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3
 - 3. Умножить на 2

Программа для исполнителя R17 — это последовательность команд. Сколько существует таких программ, которые исходное число 3 преобразуют в число 20 и при этом траектория вычислений программы содержит число 9 и число 12?

- 93) (А.Е. Гребенкин, Екатеринбург) Исполнитель U18 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Вычесть 1
 - 2. Вычесть 3
 - 3. Разделить нацело на 3

При выполнении команды 3 выполняется деление нацело (остаток отбрасывается). Программа для исполнителя U18 – это последовательность команд. Сколько существует таких программ, которые исходное число 22 преобразуют в число 2?

- 94) (**А.Е. Гребенкин**, Екатеринбург) Исполнитель U18 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Вычесть 1
 - 2. Вычесть 3
 - 3. Взять остаток от деления на 4

Команда 3 выполняется только для чисел, больших, чем 4. Программа для исполнителя U18 – это последовательность команд. Сколько существует таких программ, которые исходное число 22 преобразуют в число 2?

- 95) Исполнитель Май18 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 18 и при этом траектория вычислений содержит число 9 и не содержит число 14?

- 96) Исполнитель Май18 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Сколько существует программ, для которых при исходном числе 2 результатом является число 20 и при этом траектория вычислений содержит число 10 и не содержит число 15?

- 97) Исполнитель Май18 преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 3

Сколько существует программ, для которых при исходном числе 3 результатом является число 20 и при этом траектория вычислений содержит число 15 и не содержит число 10?

98) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2
- 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 3 результатом является число 46 и при этом траектория вычислений содержит число 12 и не содержит число 25?

- 99) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 2
 - 3. Умножить на 3

Сколько существует программ, для которых при исходном числе 5 результатом является число 52 и при этом траектория вычислений содержит число 15 и не содержит число 29?

- 100) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 3
 - 3. Умножить на 4

Сколько существует программ, для которых при исходном числе 2 результатом является число 60 и при этом траектория вычислений содержит число 16 и не содержит число 21?

- 101) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Умножить на 3
 - 3. Умножить на 4

Сколько существует программ, для которых при исходном числе 2 результатом является число 70 и при этом траектория вычислений содержит число 8 и не содержит число 35?