Introduction to Machine Learning (with Scikit-Learn)

Andreas Müller (Columbia University, scikit-learn) @amuellerml

Download Material: https://github.com/amueller/odsc-masterclass-2017-morning

What is machine learning?

Types of machine learning:

- supervisedunsupervisedreinforcement

Supervised Learning

$$(x_i,y_i) \propto p(x,y)$$
 i.i.d. $x_i \in \mathbb{R}^n$ $y_i \in \mathbb{R}$

 $f(x_i) \approx y_i$

Classification and Regression

Classification:

Regression:

y discrete

y continuous

Will you pass?

How many points will you get in the exam?

Generalization

Not only

$$f(x_i) \approx y_i$$

Also for new data:

$$f(x) \approx y$$

Classification Regression Clustering Semi-Supervised Learning **Feature Selection** Feature Extraction Manifold Learning **Dimensionality Reduction Kernel Approximation** Hyperparameter Optimization **Evaluation Metrics** Out-of-core learning

agramfort

Alexandre Gramfort

AlexanderFabisch Alexander Fabisch

alextp

Alexandre Passos

amueller Andreas Mueller

arjoly Arnaud Joly

bdholt1 Brian Holt

bthirion bthirion

chrisfilo Chris Filo Gorgole...

cournape

duchesnay Duchesnay

David Warde-Farley

fabianp

Fabian Pedregosa

GaelVaroquaux

Gael Varoquaux

glouppe Gilles Louppe

jakevdp Jake Vanderplas

jaquesgrobler Jaques Grobler

jnothman

kastnerkyle Kyle Kastner

kuantkid Wei LI

larsmans Lars

lucidfrontier45 Shiqiao Du

mblondel Mathieu Blondel

MechCoder Manoj Kumar

ndawe Noel Dawe

NelleV Varoquaux

ogrisel Olivier Grisel

paolo-losi Paolo Losi

pprett Peter Prettenhofer

robertlayton Robert Layton

ronw Ron Weiss

satra Satrajit Ghosh

sklearn-ci

vene Vlad Niculae

VirgileFritsch Virgile Fritsch

vmichel Vincent Michel

yarikoptic Yaroslav Halchenko

Get the notebooks!

https://github.com/amueller/odsc-masterclass-2017-morning

Documentation of scikit-learn 0.17

Quick Start

learn

A very short introduction into machine learning problems and how to solve them using scikit-learn. Introduced basic concepts and conventions.

User Guide

The main documentation. This contains an in-depth description of all algorithms and how to apply them.

Other Versions

- scikit-learn 0.18 (development)
- scikit-learn 0.17 (stable)
- scikit-learn 0.16
- scikit-learn 0.15

Tutorials

Useful tutorials for developing a feel for some of scikit-learn's applications in the machine learning field.

API

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed features for all functions, and all parameters available for the algorithms.

Additional Resources

Talks given, slide-sets and other information relevant to scikit-learn.

Contributing

Information on how to contribute. This also contains useful information for advanced users, for example how to build their own estimators.

Flow Chart

A graphical overview of basic areas of machine learning, and guidance which kind of algorithms to use in a given situation.

FAQ

Frequently asked questions about the project and contributing.

Hi Andy,

I just received an email from the first tutorial speaker, presenting right before you, saying he's ill and won't be able to make it.

I know you have already committed yourself to two presentations, but is there anyway you could increase your tutorial time slot, maybe just offer time to try out what you've taught? Otherwise I have to do some kind of modern dance interpretation of Python in data :-)
-Leah

Hi Andreas,

I am very interested in your Machine Learning background. I work for X Recruiting who have been engaged by Z, a worldwide leading supplier of Y. We are expanding the core engineering team and we are looking for really passionate engineers who want to create their own story and help millions of people.

Can we find a time for a call to chat for a few minutes about this?

Thanks

Representing Data

one sample	1.1	2.2	3.4	5.6	1.0		1.6	
	6.7	0.5	0.4	2.6	1.6		2.7	
	2.4	9.3	7.3	6.4	2.8		4.4	
X =	1.5	0.0	4.3	8.3	3.4	y =	0.5	
	0.5	3.5	8.1	3.6	4.6		0.2	
	5.1	9.7	3.5	7.9	5.1		5.6	
	3.7	7.8	2.6	3.2	6.3		6.7	

one feature

outputs / labels

Training and Testing Data

training set

test set

IPython Notebook: Part 0 – Data Loading

Supervised Machine Learning

clf = RandomForestClassifier() Training Data clf.fit(X_train, y_train) Model Training Labels y_pred = clf.predict(X_test) Prediction **Test Data** clf.score(X_test, y_test) Test Labels **Evaluation**

IPython Notebook: Part 1 - Introduction to Scikit-learn

Unsupervised Machine Learning

Unsupervised Transformations

IPython Notebook: Part 2 – Unsupervised Transformers

Basic API

estimator.fit(X, [y])

estimator.predict estimator.transform

Classification Preprocessing

Regression Dimensionality reduction

Clustering Feature selection

Feature extraction

Nearest neighbors

$$f(x) = y_i, i = \operatorname{argmin}_j ||x_j - x||$$

Nearest neighbors

Influence of n_neighbors

Model Complexity

Overfitting and Underfitting

Model complexity

Three-fold split

pro: fast, simple

con: high variance, bad use of data.

```
val scores = []
neighbors = np.arange(1, 15, 2)
for i in neighbors:
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X train, y train)
    val scores.append(knn.score(X val, y val))
print("best validation score: {:.3f}".format(np.max(val scores)))
best n neighbors = neighbors[np.argmax(val scores)]
print("best n neighbors: {}".format(best n neighbors))
knn = KNeighborsClassifier(n neighbors=best n neighbors)
knn.fit(X trainval, y trainval)
print("test-set score: {:.3f}".format(knn.score(X_test, y_test)))
best validation score: 0.972
best n_neighbors: 3
```

test-set score: 0.965

Cross-validation

Pro: more stable, more data

con: slower

Cross-validation + test-set


```
from sklearn.model selection import cross val score
X train, X test, y train, y test = train test split(X, y)
cross val scores = []
for i in neighbors:
    knn = KNeighborsClassifier(n neighbors=i)
    scores = cross val score(knn, X trainval, y trainval, cv=10)
    cross val scores.append(np.mean(scores))
print("best cross-validation score: {:.3f}".format(np.max(cross val scores)))
best n neighbors = neighbors[np.argmax(cross val scores)]
print("best n neighbors: {}".format(best n neighbors))
knn = KNeighborsClassifier(n neighbors=best n neighbors)
knn.fit(X train, y train)
print("test-set score: {:.3f}".format(knn.score(X test, y test)))
best cross-validation score: 0.972
```

best cross-validation score: 0.972
best n_neighbors: 3
test-set score: 0.972

IPython Notebook: Part 3 – Cross-validation and grid-search

Preprocessing

<matplotlib.text.Text at 0x7f580303eac8>


```
from sklearn.linear_model import Ridge
X, y = boston.data, boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = transform(X_train)
ridge = Ridge().fit(X_train_scaled, y_train)

X_test_scaled = scaler.transform(X_test)
ridge.score(X_test_scaled, y_test)
```

0.63448846877867426

Categorical Features

Categorical Features

$$\{\text{"red"}, \text{"green"}, \text{"blue"}\} \subset \mathbb{R}^p$$

Categorical Variables

"red"	"green"	"blue"	
1	0	0	
0	1	0	
0	0	1	

IPython Notebook: Part 4 – Preprocessing Linear Models for Regression

Linear Models for Regression

$$\hat{y} = w^T \mathbf{x} + b = \sum_{i=1}^{p} w_i x_i + b$$

Linear Regression Ordinary Least Squares

$$\hat{y} = w^T \mathbf{x} + b = \sum_{i=1}^p w_i x_i + b$$

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^p ||w^T \mathbf{x}_i - y_i||^2$$

Unique solution if $\mathbf{X} = (\mathbf{x}_1,...\mathbf{x}_n)^T$ has full rank.

Ridge Regression

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n ||w^T x_i - y_i||^2 + \alpha ||w||^2$$

Always has a unique solution. Has tuning parameter alpha

IPython Notebook: Part 5 – Linear Models for Regression

Linear Models for Classification

Linear models for binary classfiication

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b) = \operatorname{sign}(\sum_i w_i x_i + b)$$

Logistic Regression

$$\min_{w \in \mathbb{R}^p} - \sum_{i=1}^n \log(\exp(-y_i w^T \mathbf{x}_i) + 1)$$

$$p(y|\mathbf{x}) = \frac{1}{1 + e^{-w^T \mathbf{x}}}$$

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b)$$

Penalized Logistic Regression

$$\min_{w \in \mathbb{R}^p} -C \sum_{i=1}^n \log(\exp(-y_i w^T \mathbf{x}_i) + 1) + ||w||_2^2$$

C is inverse to alpha (or alpha / n_samples)

Multinomial Logistic Regression

Probabilistic multi-class model:

$$p(y = i | \mathbf{x}) = \frac{e^{-\mathbf{w}_i^T \mathbf{x}}}{\sum_{j \in Y} e^{-\mathbf{w}_j^T \mathbf{x}}}$$

$$\min_{w \in \mathbb{R}^p} - \sum_{i=1}^n \log(p(y = y_i | \mathbf{x}_i))$$

$$\hat{y} = \arg\max_{i \in Y} \mathbf{w}_i \mathbf{x}$$

IPython Notebook: Part 6 – Linear Models for Classification

Decision Trees and Tree-based Models

Idea: series of binary questions

Building trees

Continuous features: "questions" are thresholds on single features.

[Other methods are possible but not as common]

For each split: exhaustive search over all features and thresholds!

Minimize "impurity"

Prediction

Traverse tree based on feature tests
Predict most common class in leaf

IPython Notebook: Part 7 – Decision Trees

Random Forests

Randomize in two ways

For each tree:

Pick bootstrap sample of data

For each split:
 Pick random sample of features

More tree are always better

Tuning Random Forests

- Main parameter: max_features
 - around sqrt(n_features) for classification
 - Around n_features for regression
- n_estimators > 100
- Prepruning might help, definitely helps with model size!
- max_depth, max_leaf_nodes, min_samples_split again

Andreas C. Müller & Sarah Guido

Thank you for your attention.

@amuellerml

@amueller

importamueller@gmail.com

http://amueller.github.io