CO463 - Convex Optimization

University of Waterloo Nicholas Pun Winter 2020

Contents

1 Introduction 2

Lecture 1: Introduction

Definition 1.1. Let $x, y \in \mathbb{R}^n$, $0 \le \lambda \le 1$, $z(\lambda) = \lambda x + (1 - \lambda)y$ is a <u>convex combination</u> of x and y

This simple definition leads to many strong algebraic and topological results.

For this course, we will work in Euclidean space \mathbb{E}^n with inner product $\langle x, y \rangle$ and norm $||x|| = \sqrt{\langle x, y \rangle}$.

On \mathbb{R}^n , we will use the familiar dot product $\langle x,y\rangle=x^{\mathsf{T}}y=\sum_{i=1}^n x_iy_i$ and norm $||x||=\sqrt{\sum_{i=1}^n x_i^2}$.

Definition 1.2. $C \subseteq \mathbb{E}^n$ is <u>convex set</u> if $x, y \in C$ $0 \le \lambda \le 1 \Rightarrow \lambda x + (1 - \lambda)y \in C$ (or equivalently, $x, y \in C \Rightarrow [x, y] \subseteq C$)

Note. We can write $z(\lambda)$ in the following ways:

$$z(\lambda) = \lambda x + (1 - \lambda)y$$

= $y + \lambda(x - y)$
= $x + (1 - \lambda)(y - x)$

The second equation can be interpreted as: "Beginning at y and moving towards x". And, the third equation can be interpreted as: "Beginning at x and moving towards y"

Definition 1.3. Let $C \subseteq \mathbb{E}^n$, C convex set. Then $f: C \to \mathbb{R}$ is a <u>convex function</u> if:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 $\forall x, y \in C, \ \forall 0 \le \lambda \le 1$

Example 1.1.

The line between (x, f(x)) and (y, f(y)) is called the <u>secant line</u>. For convex function, the graph lies <u>below</u> the secant line.

The region above the graph is called the epigraph, denoted epi f. It is defined as:

$$epi f = \{(r, x) \in \mathbb{R} \times \mathbb{E}^n : x \in C, f(x) \subseteq r\}$$

for $f: C \to \mathbb{R}$, C convex.

We will see that:

Theorem 1.1. f is a convex function if and only if epi f is a convex set Suppose we have the following minization problem:

$$p^* = \min f(x)$$

s.t $x \in C$

where $C \in \mathbb{E}^n$ convex, $f: C \to \mathbb{R}^n$ convex function.

We will show that: f convex \Rightarrow (local min <u>iff</u> global min)

Applications:

- Linear Programming
- Convex Relaxation