Quantifiers

Statement	When T?	When F?	
$\forall x \ P(x)$	P(x) is T for every x	One x where P(x) is F	
$\exists x \ P(x)$	One x where $P(x)$ is T	P(x) is F for every x	
$\forall x \ \forall y \ P(x, y)$ $\forall x \ \forall y \ P(x, y)$	P(x, y) is T for every pair x, y	One pair x , y where $P(x, y)$ is F	
$\forall x \exists y P(x,y)$	For every x, P(x, y) is T for one y	One x such that P(x, y) is F for every y	
$\exists x \ \forall y \ P(x, y)$	For one x, P(x, y) is T for every y	For every x, P(x, y) is F for one y	
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	One pair x , y where $P(x, y)$ is T	P(x, y) is F for every pair x, y	

Negating Quantifiers

Negation	Equivalent Statement	When is Negation T?	When is Negation F?
$\neg \exists x \ P(x)$	$\forall x \neg P(x)$	P(x) is F for every x	One x where $P(x)$ is T
$\neg \forall x P(x)$	$\exists x \neg P(x)$	One x where $P(x)$ is F	P(x) is T for every x