České vysoké učení technické v Praze Fakulta elektrotechnická Katedra počítačů

Bakalářská práce

Kalibrační a ovládací software sítě částicových pixelových detektorů umístěných uvnitř experimentu ATLAS na LHC v CERN

Jakub Begera

Vedoucí práce: Ing. Štěpán Polanský

Studijní program: Otevřená informatika, Bakalářský

Obor: Softwarové systémy

4. května 2016

Poděkování

Zde můžete napsat své poděkování, pokud chcete a máte komu děkovat.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 20.5.2016

Abstract

Translation of Czech abstract into English.

Abstrakt

Abstrakt práce by měl velmi stručně vystihovat její obsah. Tedy čím se práce zabývá a co je jejím výsledkem/přínosem.

Očekávají se cca 1 – 2 odstavce, maximálně půl stránky.

Obsah

1	Úvod 1.1 Motivace	1 1
2	Detektory ionizujícího záření	3
3	Energetická kalibrace	5
4	Atlas TPX	7
5	Závěr	9
Δ	Obsah přiloženého CD	11

Seznam obrázků

SEZNAM OBRÁZKŮ

Seznam tabulek

Úvod

Tato bakalářská práce se zabývá návrhem a implementací software pro ovládání a kalibraci sítě hybridních částicových pixelových detektorů detektorů umístěných uvnitř experimentu Atlas na LHC v CERN - projekt AtlasTPX. Jelikož proces kalibrace je zcela nezávislí na následném řízné činnosti těchto detektorů, je tento software členěn na dvě nezávislé části - energetickou kalibraci částicových pixelových detektorů (viz kapitola 3) a řízení sítě těchto detektorů - AtlasTPX (viz kapitola 4).

TODO

1.1 Motivace

Ionizující záření je spjato s naším světem už od začátku jeho existence. Jeho studium započalo koncem 19. století a pomáhá nám pochopit podstatu hmoty, její interakce s prostředím a další vlastnosti. Tyto poznatky našli své uplatnění v mnoha oborech, jako například v defektoskopii, zdravotnictví, energetice a v mnoha dalších. Spolu s rostoucími poznatky o ionizujících záření a s technických postupem se rozvíjela i detekční technika, která za poslední století prodělala veliký posun. Od prvních bublinových komor, až po nejmodernější polovodičové pixelové detektory, kterými se tato práce zabývá. sssss

Detektory ionizujícího záření

Energetická kalibrace

Atlas TPX

Závěr

Příloha A

Obsah přiloženého CD

Tato příloha je povinná pro každou práci. Každá práce musí totiž obsahovat přiložené CD. Viz dále.

Může vypadat například takto. Váš seznam samozřejmě bude odpovídat typu vaší práce...
[?] fasfassaafsaf

Obrázek A.1: Seznam přiloženého CD — příklad

Na GNU/Linuxu si strukturu přiloženého CD můžete snadno vyrobit příkazem: \$ tree . >tree.txt

Ve vzniklém souboru pak stačí pouze doplnit komentáře.

Z **README.TXT** (případne index.html apod.) musí být rovněž zřejmé, jak programy instalovat, spouštět a jaké požadavky mají tyto programy na hardware.

Adresář **text** musí obsahovat soubor s vlastním textem práce v PDF nebo PS formátu, který bude později použit pro prezentaci diplomové práce na WWW.