1.3.2 Отношения

п-местным отношением R или *п-местным предикатом R* на множествах $A_1, ..., A_n$ называется любое подмножество прямого произведения $A_1 \times ... \times A_n$:

$$R \subseteq A_1 \times ... \times A_n$$
.

Элементы $x_1, x_2, ..., x_n \mid x_i \in A_i \ \forall i = 1, 2, ..., n$ связаны отношением R тогда и только тогда, когда упорядоченный набор $(x_1, x_2, ..., x_n) \in R$.

При n = 1 отношение $R \subseteq A$ и называется унарным отношением или свойством.

При n = 2, $R \subseteq A \times B$, u называется бинарным отношением R из множества A в множество B, или соответствием.

Запись: (*a,b*)∈*R или* aRb

Если $R \subseteq A \times A$, то R называется бинарным отношением на множестве A.

Отношение $R \subseteq A^n$ называется *п-местным* предикатом на множестве A.

Способы описания бинарного отношения такие же, как для множеств.

Варианты графического представления:

Пример: $R = \{(1,1),(2,1),(2,2),(3,2)\}$

3

2

 $R \subset A \times A$, $a,b \in A$

Обратное отношение: $R^{-1} = \{(b,a) \mid (a,b) \in R\}$

Дополнение отношения: $R = \{(a,b) \mid (a,b) \notin R\}$

Тождественное отношение: $I = \{(a,a) \mid a \in A\}$

Универсальное (или полное) отношение:

 $U_A = \{(a,b) \mid a \in A \text{ и } b \in A\}$

область определения $\delta_R = \{x | (x,y) \in R \}$ для некоторого $y\}$,

и множество значений $\rho_R = \{y | (x,y) \in R \}$ для некоторого $x\}$.

Пусть имеются множества A, B, C и отношения $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$.

Определим отношение $R \subseteq A \times C$ следующим образом:

$$R = R_2 \circ R_1 = \{(x,y) \mid \exists z \in B, (x,z) \in R_1, (z,y) \in R_2\}$$

Такое отношение называется составным (

композицией), или произведением отношений

Внимание! В разных источниках обозначения могут отличаться:

$$\{(x,y) \mid \exists z \in B, (x,z) \in R_1, (z,y) \in R_2\} = R_1 \circ R_2$$

1.3.3 Свойства отношений

Теорема 1.1: Для любых бинарных отношений P, Q, R выполняются следующие свойства:

- 1. $(P^{-1})^{-1}=P$;
- 2. $(P \circ Q)^{-1} = Q^{-1} \circ P^{-1}$;
- 3. (P∘Q)∘R=P∘(Q∘R) (ассоциативность композиции)

Желающие доказать теорему могут это сделать и получить 5 баллов

Пусть $R \subseteq A \times A$

- 1. Отношение называется *рефлексивным*, если $\forall a \in A \ aRa$.
- 2. Отношение называется *антирефлексивным*, если $\forall \ a,b \ aRb \Rightarrow a \neq b$.
- 3. Отношение называется *симметричным*, если $\forall \ a, \ b \in A \ \ aRb \Rightarrow bRa.$
- 4. Отношение называется *антисимметричным*, если $\forall \ a, \ b \in A \ \ aRb$ и $bRa \Rightarrow a = b$.
- 5. Отношение называется *транзитивным*, если \forall *a, b, c* ∈ *A* (*aRb* и *bRc*) \Rightarrow *aRc*.
- 6. Отношение называется *полным (линейным)*, если \forall *a*, *b* ∈ *A* | *a≠b* ⇒ *aRb* или *bRa*.

Другое определение антисимметричности: Отношение антисимметрично, если одновременно aRb и bRa невозможно при а ≠ b

Теорема 1.2 (о проверке свойств отношения):

Отношение R на множестве A^2 :

- 1. R рефлексивно \Leftrightarrow I \subseteq R;
- 2. R симметрично \Leftrightarrow R = R⁻¹;
- 3. R транзитивно \Leftrightarrow R \circ R \subset R;
- 4. R антисимметрично \Leftrightarrow R \cap R⁻¹ \subseteq I;
- 5. R полно \Leftrightarrow R \cup I \cup R⁻¹ = U; доказательство теоремы 10 баллов

Матричный способ представления отношений

$$A=\{a_1, a_2, ..., a_m\}, B=\{b_1, b_2, ..., b_n\}, P \subseteq A \times B$$
.

Определим матрицу [Р] = (р_{іј}) бинарного отношения Р по следующему правилу:

$$p_{ij} = \begin{cases} 1, & ecnu(a_i, b_j) \in P, \\ 0, & ecnu(a_i, b_j) \notin P. \end{cases}$$

Пример: $P \subseteq A^2$, где $A = \{1,2,3\}$

$$[P] = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Основные свойства матриц бинарных отношений:

1. Если бинарные отношения $P,Q \subseteq A \times B$,

[P] =
$$(p_{ij})$$
, [Q] = (q_{ij}) , to
$$[P \cup Q] = (p_{ij} + q_{ij}), [P \cap Q] = (p_{ij} \cdot q_{ij}),$$

где умножение осуществляется обычным образом, а сложение — по логическим формулам (т.е. 0+0=0, во всех остальных случаях 1).

$$[P \cup Q] = [P] + [Q], [P \cap Q] = [P] * [Q].$$

- **2.** Если бинарные отношения $P \subseteq A \times B$, $Q \subseteq B \times C$, то $[Q \circ P] = [Q] \cdot [P]$,
- где умножение матриц [P] и [Q] осуществляется по обычному правилу, а произведение и сумма элементов из [P] и [Q] по правилам пункта 1.
- **3.** Матрица обратного отношения P^{-1} равна транспонированной матрице отношения P:

$$[P^{-1}] = [P]^{\mathrm{T}}.$$

- **4.** Если Р \subseteq Q, [Р]=(p_{ij}), [Q]=(q_{ij}),
- To $p_{ij} \le q_{ij}$. $\forall i,j$.
- 5. Матрица тождественного отношения единична:

$$[I_A] = (I_{ij})$$
: $I_{ij} = 1 \Leftrightarrow i = j$.

- 6. Пусть R бинарное отношение на A^2 . Отношение R является рефлексивным, если $\forall x \in A \ (x,x) \in R$, т.е. $I_A \in R$ (на главной диагонали R стоят единицы).
- Отношение R является *симметричным*, если $\forall x,y \in A$ $(x,y) \in R \Rightarrow (y,x) \in R$, т.е. $R^{-1} = R$, или $[R] = [R]^T$ (матрица симметрична относительно главной диагонали).
- Отношение R является антисимметричным, если $R \cap R^{-1} \subseteq I_A$, т.е. в матрице $[R \cap R^{-1}] = [R]^*[R]^T$ вне главной диагонали все элементы равны 0.
- Отношение R является *транзитивным*, если $(x,y) \in R$, $(y,z) \in R \Rightarrow (x,z) \in R$, т.е. $R \circ R \subseteq R$.

Пример:
$$P \subseteq A^2$$
, где $A=\{1,2,3\}$

$$[P] = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 1) не рефлексивно 2) не симметрично

3)
$$[P \cap P^{-1}] = [P]^*[P]^T =$$

$$\begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} * \begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Антисимметрично

$$\begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} * \begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Транзитивно

1.3.4 Отношение эквивалентности

Бинарное отношение *R* на множестве *A* называется *отношением эквивалентности*, если оно является рефлексивным, симметричным и транзитивным.

≡ или ~

Пусть R – отношение эквивалентности на множестве A.

Определим *класс эквивалентности* [x] для $x \in A$: [x] = { $y \mid xRy$ }, т.е. это множество всех элементов A, которые R-эквивалентны x.

Утверждение 1.1.

Всякое отношение эквивалентности на множестве *М* определяет разбиение множества *М*, причем среди элементов разбиения нет пустых;

и обратно: всякое разбиение множества M, не содержащее пустых элементов, определяет отношение эквивалентности на множестве M

Пусть Е – эквивалентность на множестве *М*. Тогда семейство классов эквивалентности множества *М* называется фактормножеством множества *М* по отношению Е

 $M/E = \{E(x) | x \in M\}.$