ParkinsonSAT

CDR Bruninga

VUSN (ret)

David Koeppel
Matt Lovick
James Paquette
Brian Piggrem
Jeff Robeson
Kyle Vandegriff

http://www.ew.usna.edu/~bruninga/buoy.html

ParkinsonSAT

- \$50k gift funds from Aerospace Corp.
- Environmental sensor satellite data transponder
- Satellite LaunchOpportunities TBD
- This semester,
 Preliminary Design options --> SRR

Original Project Proposal

- Communicate with simple environmental sensors buoys deployed in the Chesapeake Bay or the Gulf Stream.
- Relay buoy position/status and telemetry about 2 to 4 times a day back to the Naval Academy.
- Including Buoys elsewhere around the world as long as and internet linked ground station was in the footprint.
- Serve as a technology demonstrator for USNA auxiliary payloads such as basic satellite attitude control.

Proposed Mission

- Relay data from simple environmental sensors buoys in the Chesapeake Bay or oceans or onshore. Providing position/ status and telemetry about 2 to 4 times a day to the Internet.
- Including Buoys elsewhere around the world as long as Internet linked ground stations are in the footprint.
- Establish this channel/system as a global resource for other such experiments in the Amateur Satellite Service. Inspire other schools and universities to participate with additional low cost satellite transponders and buoy and sensor systems.
- Serve as a technology demonstrator for various spacecraft subsystems including basic attitude control, follow-ons to PCSAT experiments and other student projects such as the MIDN sensor.
- Support an Ocean Data Telemetry Microsat Link (ODTML) UHF transponder for DOD.

Low Cost Buoy System

USNA Buoy

- Low Cost ~ \$800
- Standard plumbing hardware
- Off-the-shelf radios/modems

 Operates under FCC rules for Amateur Satellite Service

Global Ground Station Network

Micro Dosimeter (MIDN) Requirements

Auxiliary USNA Aerospace Student Project Payload

- Size 2.5" x 2.5" x 6"
- Weight .215 kg
- Power 1W (@ 5v)

Measures radiation dosage in human cell sized detectors

Ocean Data Telemetry Microsat Link, ODTML

PRAXISING

Concept of Operations

- CONOPS: "Internet-Like" Services on Global Basis to Support Ocean Platform Monitoring (e.g., Free-Floating Buoys)
- ***SPACE SEGMENT:**
 - Hosted Aboard TacSat-3 and TacSat-4
 - Autonomous "Router in the Sky" Allows User Commanding and Telemetry Receipt (Peer-to-Peer and Store/Forward)
 - Compatible With Service ARGOS; >50,000 Bits/Day per Buoy; <0.1 Joule/Bit With Global Access and Position Determination
 - UHF Uplink/Downlink With GMSK Modulation
- GROUND SEGMENT: Low-Cost Portable and Fixed Ground Stations Provide Virtual Internet Access

ODTML Space Segment

ONR ODTML Size, Weight and Power

- Size 10" X 10" X 1.8"
- Weight 3.7 kg
- Power

1	Peak (Watts)	40
1	Nominal (Watts)	9.5
1	Average (Watts)	12.5

For a 28v bus regulated down to 5v.

For our 8v bus and with some conservation, maybe 10W average.

Project Variables

- Requirement Options?
- Launch Options?
- Scale options?
- Resource Limitations?

ParkinsonSAT Spiral Design Approach

ParkinsonSAT Link Budget is Known

- Buoy to Satellite (VHF)
 - $Pr (90^{\circ} el) = -101 dBm$
 - $Pr(0^{\circ} el) = -117 dBm$
- Satellite to Buoy (UHF)
 - Pr (90° el) = -110 dBm
 - Pr (20° el) = -117 dBm
 - Satellite to Buoy (VHF) aux TX
 - $Pr(90^{\circ} el) = -101 dBm$
 - $\Pr(0^{\circ} \text{ el}) = -117 \text{ dBm}$
- Satellite to Groundstation (UHF)
 - Pr (90° el) = -110 dBm
 - \Pr (20° el) = -117 dBm
 - Satellite to Trackingstation (UHF) +8 dB
 - $Pr (90^{\circ} el) = -102 dBm$
 - Pr (0° el) = -117 dBm

Challenge: All using OMNI antennas

RX sensitivity -117 dBm

Sensor Buoy

PCSAT2 User Plot 18 Apr 06

Sensor Buoy Baseline

GOES data collection platform container

Our RF prototype on Roof

Sensor Buoy Baseline

Launch Opportunities

Free Flyer (comms orbit) - Desired

Attached Payload – OK

- Space Shuttle too low, no life...
 - Available Launcher 5" picosat (minimum system)
 - Requires a Propulsion system (H₂O₂ man-safe)

H₂/O₂ Man Safe Propulsion

The only practical way to get a student built propulsion system on board Space Shuttle. Inherently SAFE.

ParkinsonSAT H₂ /O₂ Micro-Thruster

Project:

Determine spacecraft mass then delta-V requirement Electrolysis requirements, rates, power required Valve avilability and drive requirements Water/gas separation mechanism (gortex?) Design-Build-Test engineering model Final conceptual design Possible Future Project...

Mission Scale - Channel Capacity

- Time Division Multiple Access (TDMA)
 - Pure ALOHA 18% channel capacity
 - CSMA ALOHA 36% channel capacity (not via sat)
 - Slotted ALOHA 36% (uses GPS timing)

Mission Scale - Receivers

Full-duplex, Crossband

Simplex / In-band

Mission Scale - Options

RX transponder TX 90 deg hybrid RX transponder TX 72% Aloha 144% Slotted

Minimum System:

- ➤ 32 Buoys/footprint
- ▶ 5" Picosat

Maximum system:

- > 144 Buoys/footprint
- > Dual redundant
- > 12" Microsat

AT 1200 BAUD (2 x if 2 RX at 9600)

Mission Scale – Buoy Demographics

Global coverage for 3000 km radius footprints. One footprint is about 5% of area. . Overall global average dutycycle is about 20%.

Theoretical capacity: 2880 144/5%

Expected capacity: 720 144/20%

Architecture

ParkinsonSAT Functional Block Diagram

Small Satellite Structural Options

- Primary factor is solar panel sizing
- Next is Antenna requirements
- Separation System
- Attitude Control requirements

Solar Panel Options

- Available Area
- Efficiency
- Cost
- Attitude
- Bus Voltage

Solar Cell Options

\$500 / Watt

EMCOR University Cells

PCsat Panel

\$20 / Watt

Koeppel

PCSat Solar Panel Data

50

100

Event Count

150

200

250

Emcor University Cell Options

4 cell 8V set

6 cell 12v set

ParkinsonSAT

Shape / size Constraints

Rhombicuboctahedron

Vandegriff

ParkinsonSAT Shape / Size Constraints

			Min	Volume	Surface	
	Solar	Max Power	Power	(in^	Area	
Shape	Panels	(W)	(W)	3)	(in^2)	
5in Cube	<u>6</u>	3.49	2.03	<u>125</u>	<u>150</u>	
7in Cube	12	7.04	4.06	343	294	
9in Cube	24	14.1	8.13	729	486	
Hexagonal	9	6.10	1.67	208.8	252	
Octagonal	12	8.13	2.45	273.5	314	
Rombicub octahedron	18	9.15	7.78	1061	<u>518</u>	

5" DOD Picosat Option

1.5 Watts per side Total Panel cost \$150

ParkinsonSAT

Straw-man Options

7.5" Best Fit (minimum) Internals

3 Watts per side Solar Panel Cost \$300

6" High Efficiency Option

Discrete

sizes

6 Watts Total Panel Cost \$18,000

ParkinsonSAT

Sun Pointing

10" Option with 12 volt Bus

 $^{10 \text{ Watts } $5000}$ X 6 = \$30,000

Straw-man Designs

Sun Pointing

12" Full Size (maximum) Option

18 Watt \$9,000

ParkinsonSAT

Full System Design

12" Side Panel

8.4 volts, 900 mA, 7.5 Watts

ParkinsonSAT Sun Pointing Design

- Full capacity mission transponders
- ➤ODTML Transponder
- >MIDN Payload
- >ADCS advantage

ParkinsonSAT Internal Stack

- Full capacity mission transponders
- ► ODTML Transponder
- >MIDN Payload
- >ADCS advantage

ParkinsonSAT TX-RX Tray

- ►2 VHF receivers
- ▶1 or 2 XMTRS
- >MIDN Payload
- ➤ Support Boards

TX-RX Tray

Representativ e Tray Designs

Layout favors +Z maximum moment of inertia

TNC / Battery Tray

Preliminary Mass Budget

Part Structure	Mass (g)	Quantit y	Total (g)
Side Panel	696	4	2787
PCSAT Solar Panel	77	25	1940
Top/Bottom Panel	796	2	1592
EMCOR Solar Panel	24	24	57
Mounting Tray	669	6	4015
Battery Box	354	1	354
Comms			
VHF RX	78	4	313
Linear RX	78	1	78
VHF TX	80	1	80
UHF TX	80	2	Vandegriff 161

Preliminary Mass Budget (cont)

Payloads	Mass (g)	Quantity	Total (g)
MiDn	529	1	529
ODTML Transponder	3700	1	3700
ADCS			
x-coil	127	1	127
y-coil	127	1	127
z-coil	110	1	110
CPU	62	1	62
Power			
Battery	23	36	856

Overall Total

17. 3 rkggrif

Preliminary Required Power Budget

4 RX / 2 TX	Curren t (mA)	Duty Cycle	Avg (mA)
VHF FM TX1	500	15%	75
VHF FM TX2	500	15%	75
VHF FM RX1	30	100%	30
VHF FM RX2	30	100%	30
VHF FM RX3	30	100%	30
VHF FM RX4	30	100%	30
TNC1	30	100%	40
TNC2	30	100%	40
W/o MiDn/ODTML			
20% Reserve	40		40
Avg (mA)			390

	With MiDn only	Current (mA) 119	Duty Cycle 100%	Avg (mA) 119
	20% Reserve (tot)	64		64
	Avg(mA)			533
		Minir	mum of	4.5W
	With MiDn and with ODTML transponder	119	100%	119
	(10W)	1200	100%	1200
	20% Reserve (tot)			361 2040
<	Avg (mA)	Maxir	num of	17 W

ParkinsonSAT Battery Tests

For a typical COMM orbit at 500 miles, satellite will require 630 mAh. Based on 20% DoD this requires either 27 AA's, 12 C's or 7 D cell NiCads.

Dual Voltage Bus for best efficiency / simplicity

Sun Pointing Attitude Control System

Attitude Vector

- ✓ Reduces solar panel cost, \$54,000 to \$9000.
- ✓ Pointing requirements are relaxed +/- 40 deg
- ✓ Attitude sensing will need simple magnetometer
- ✓ Table derived magnetic field data
- ✓ High precision vector math not required

Sun Pointing Attitude Control System

- ✓ Pointing requirements are relaxed +/- 40 deg
- High precision vector math not required

Magnetic Field Vector

Sensors/ Magneto

http://www.sparkfun.com/commerce/product_info.php?products_id=244

MicroMag 3-Axis Magnetometer SKU#: Sense-Mag3 Price: \$54.95

Description: PNI Corp's 3-axis magnetometer. Ready for the big time? Low noise, large resolution magnetic field sensing all packed into a userfriendly DIP module at your disposal. Stable over a wide temperature range, the MicroMag3 is a must have for orientation sensing and navigation.

Features:

- 500uA @ 3.3V DC
- . Field measurement range +/-1100uT
- Resolution as low as 0.015uT
- · SPI interface no additional circuitry needed

Magnetic Torque Requirement

Worst Case Disturbance Torques:

Gravity Gradient (~balanced MOI from RAFT model)

•
$$T_q = 3*\mu/(2*r^3)*|I_z - I_y|*\sin(2*\theta)$$
 $T_q = 6.30*10^{-25} \text{ N-m} \approx 0 \text{ N-m}$

Solar Radiation

•
$$T_{sp}$$
= $F^*(C_{ps}-C_g)$ w/ $F=F_s/C^*A_s^*(1+q)^*cos(i)$ T_{sp} = $1.03*10^-$
7 N-m

Aerodynamic Drag (Assumed 500 km)

•
$$T_a = 1/2*\rho*C_D*A*V^2*(C_{pa}-C_q)$$
 $T_a = 1.48*10^{-6} N-m$

Total Disturbance Torque

$$\bullet T_d = 1.58*10^{-6} \text{ N-m}$$

Dipole Needed to Cancel Torques (weakest Earth field at 500 km):

Paquette

Magnetic Torque Coils

Torque Lab Experiment

- 200 turns #30
- 42 Ohms, 200 mA
- 1.3 Amp * M²
- 1.4 kg
- Results in 5 deg / sec

Suggests for ParkinsonSAT

- 200 turns #30
- 4 Amp * M²
- 14 kg
- Results in 1.5 deg / sec

Launcher Separation Devices

CPU Design

Adding CPU to basic PCSAT type design for:

- Collect and transmit whole orbit data telemetry
- Event scheduler
- Data logger
- Attitude control system
- Store and Forward

S -5

Includes...

- -Serial port, 9600 or 1200 baud
- -8-bit parallel I/O
- -5 or more analog inputs

CPU Module

Development Board

Prototype Buoy Design

- Design aspects similar to spacecraft:
 - Power System (EPS) (low-power & efficiency)
 - Communications System (link budget)
 - Sensor system (collaborating with Oceanography)
 - Telemetry System
 - Antenna System

(antenna patterns)

- Structure
 - Collaborating with Hydro Lab

Sensor Buoy Baseline

Naval Academy Student Project

- * If free-floating, do not disturb.
- * If aground, move to deep water and advise bruninga@usna.edu
- * If later than 30 Nov 2006, recover and advise above.

See Buoy Location and Telemetry at

http://www.ew.unsa.edu/~bruninga/buoy.html

Buoy Power Budget

Energizer 6V Lantern Battery (No. 529)	Voltage (V)	Resistance (Ω)	Current (mA)	Time On (h)	Capacity (mAh/day)	Published Battery Capactity (Ah)	Battery Life (days)
	6	110	54.55	2.4	130.91	26	199
Component	Current (mA)	Time On (min/hr)	Required Energy (mAm/h)	Required Energy (mAh/Day)	Total Energy (mAh/Day)	Published Battery Capactity (Ah)	Battery Life (days)
Garmin GPS-18	110	2	220	88	128	26	203
Transmitter	500	0.2	100	40			

^{* 2} batteries required to get 12v BOL and 7v EOL

Buoy Power Budget

Buoy Logic Timing Design Prescribed Timing Requirements for Bay Mission

- GPS 1.4 minutes on every 23.4 minutes
- Transmits every 10 minutes
- TNC 11 seconds on every 11 minutes

Prescribed Timing Requirements for Ocean Mission

- TNC 22 seconds on every 2.9 min
- GPS 1.4 minutes every 46.9 minu
- Transmits every 2.9 minutes

Buoy Logic Timing Hardware Integration

- Astable Operating 555 Timer (Clock Input)
- 54HC4040 12-Stage Binary Ripple Counter
- Triple 3-Input Positive Nand Gate Chip
- Quadruple 2-Input Positive Nand Gate Chip

10 Channel Telemetry Multiplexer for the KPC -3 DWG NO:

Buoy Telemetry

Battery Volts
Air Temp
Water Temp
Sun luminosity
Conductivity
Flooding

ParkinsonSAT Thermister Calibration Curve

Upper 1/2 Wave Element Section 39 and 1/2 inches Lower Folded 1/2 Wave Matching Section 18 and 1/2 inches l and 1/4

Buoy Antenna Design

ParkinsonSAT 5" Option microgravity Separation Test

March 30th – April 8th ("Test of Opportunity")

Test 5" cubesat separation system

Questions?

Alternating ISS Pass Geometries for US Naval Academy at 39°N latitude

Two excellent overhead passes per day (2,6) Four OK passes up to 10 deg (1,3,5,7). This pattern occurs every other day.

Four good 30 degree passes per day (2,3,6,7).
Four very low <5 deg passes per day (1,4,5,8).
Pattern occurs every other day.
WB4APR

PCSAT2 is a suitcase, opened on orbit to expose materials

PCSat2 Operations

- Daily Antenna Pointing
- Low Power Shutdown
- Soyuz Docking
- EVA's
 - SuitSAT deployment

