```
import pandas as pd
 In [1]:
          hatecrime = pd.read_csv("hate_crime.csv")
 In [2]:
          hatecrime.head()
 In [3]:
 Out[3]:
             incident_id data_year
                                          ori pug_agency_name pub_agency_unit agency_type_name
          0
                    43
                             1991 AR0350100
                                                      Pine Bluff
                                                                                             City
                                                                           NaN
          1
                    44
                             1991 AR0350100
                                                      Pine Bluff
                                                                           NaN
                                                                                             City
          2
                    45
                             1991 AR0600300
                                                 North Little Rock
                                                                                             City
                                                                           NaN
          3
                    46
                             1991 AR0600300
                                                 North Little Rock
                                                                           NaN
                                                                                             City
          4
                     47
                             1991 AR0670000
                                                         Sevier
                                                                           NaN
                                                                                           County
         5 rows × 28 columns
 In [4]:
          hatecrime.shape
          (241663, 28)
 Out[4]:
In [37]:
          hatecrime = hatecrime[hatecrime['data_year'] >= 2013]
In [38]:
          hatecrime.shape
          (78609, 28)
Out[38]:
In [39]:
          agency = hatecrime['pug_agency_name'].unique()
          hatecrime_nyc = hatecrime[hatecrime['pug_agency_name'] == 'New York']
In [104...
In [105...
          hatecrime_nyc.head()
```

| [105]: | :.                                                                | امان فممانية                                                   | -4                                            |                                                    |                  |                                                                    |                                         |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------|--------------------------------------------------------------------|-----------------------------------------|
|        |                                                                   | ncident_id da                                                  | ata_year                                      | ori pu                                             | ig_agency_name   | pub_agency_unit ag                                                 | gency_type                              |
|        | 167031                                                            | 166896                                                         | 2013                                          | NY0303000                                          | New York         | NaN                                                                |                                         |
|        | 167032                                                            | 166897                                                         | 2013                                          | NY0303000                                          | New York         | NaN                                                                |                                         |
|        | 167033                                                            | 166898                                                         | 2013                                          | NY0303000                                          | New York         | NaN                                                                |                                         |
|        | 167034                                                            | 166899                                                         | 2013                                          | NY0303000                                          | New York         | NaN                                                                |                                         |
|        | 167035                                                            | 166900                                                         | 2013                                          | NY0303000                                          | New York         | NaN                                                                |                                         |
|        | 5 rows × 28                                                       | 8 columns                                                      |                                               |                                                    |                  |                                                                    |                                         |
|        | hatecrime                                                         | _nyc.shape                                                     |                                               |                                                    |                  |                                                                    |                                         |
| :      | (3756, 28                                                         | 8)                                                             |                                               |                                                    |                  |                                                                    |                                         |
|        | <pre>agg_hcnyc = hatecrime_nyc.groupby('data_year').count()</pre> |                                                                |                                               |                                                    |                  |                                                                    |                                         |
|        | agg_nenye                                                         | - Haccerin                                                     | ic_iiy c i 9                                  | . caps) ( aaca_                                    | year /reduite(/  |                                                                    |                                         |
|        | agg_hcnyc                                                         |                                                                | ic_nyerg                                      |                                                    | year / result( / |                                                                    |                                         |
|        | agg_hcnyc                                                         |                                                                |                                               |                                                    |                  | : agency_type_name                                                 | e state_ak                              |
|        |                                                                   | .head(11)                                                      |                                               |                                                    |                  | : agency_type_name                                                 |                                         |
|        | agg_hcnyc                                                         | .head(11) incident_id                                          | ori pu                                        | g_agency_name                                      | pub_agency_unit  | : agency_type_name                                                 | ļ.                                      |
|        | agg_hcnyc  data_year  2013                                        | .head(11) incident_id                                          | ori pu                                        | g_agency_name                                      | pub_agency_unit  | agency_type_name                                                   | ļ :                                     |
|        | agg_hcnyc data_year 2013 2014                                     | .head(11) incident_id  314 307                                 | ori pu                                        | g_agency_name 314 307                              | pub_agency_unit  | 314<br>307                                                         | ·                                       |
|        | agg_hcnyc  data_year 2013 2014 2015                               | .head(11) incident_id  314 307 307                             | ori pu<br>314<br>307<br>307                   | g_agency_name<br>314<br>307<br>307                 | pub_agency_unit  | 314<br>307<br>307<br>367                                           | ; 3<br>; 3<br>; 3                       |
|        | agg_hcnyc  data_year 2013 2014 2015 2016                          | .head(11) incident_id  314 307 307 361                         | ori pu<br>314<br>307<br>307<br>361            | g_agency_name  314  307  307  361                  | pub_agency_unit  | 314<br>307<br>307<br>307<br>307<br>318                             | 3 3 3 3 3 3                             |
|        | agg_hcnyc  data_year 2013 2014 2015 2016 2017                     | .head(11) incident_id  314 307 307 361 318                     | ori pu<br>314<br>307<br>307<br>361<br>318     | g_agency_name  314 307 307 361 318                 | pub_agency_unit  | 314<br>307<br>307<br>307<br>307<br>318<br>357                      | 3 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
|        | agg_hcnyc  data_year 2013 2014 2015 2016 2017 2018                | .head(11) incident_id  314 307 307 361 318 351                 | 314<br>307<br>307<br>361<br>318<br>351        | g_agency_name  314 307 307 361 318 351             | pub_agency_unit  | 314<br>307<br>307<br>307<br>363<br>318<br>354<br>423               | 3 3 3 4 4                               |
|        | agg_hcnyc  data_year 2013 2014 2015 2016 2017 2018 2019           | .head(11) incident_id  314 307 307 361 318 351 423             | 314<br>307<br>307<br>361<br>318<br>351<br>423 | g_agency_name  314 307 307 361 318 351 423         | pub_agency_unit  | 314<br>307<br>307<br>307<br>307<br>307<br>318<br>357<br>423        | 3 3 3 3 3 4 3 3 4 2 2                   |
|        | agg_hcnyc  data_year 2013 2014 2015 2016 2017 2018 2019 2020      | .head(11) incident_id  314 307 307 361 318 351 423 270         | 314 307 307 361 318 351 423 270 513           | g_agency_name  314 307 307 361 318 351 423 270     | pub_agency_unit  | 314<br>307<br>307<br>307<br>307<br>307<br>318<br>357<br>423<br>270 | 3 3 3 3 3 4 3 3 3 4 3 5 5 5 5 5 5 5 5 5 |
| 22     | agg_hcnyc  data_year 2013 2014 2015 2016 2017 2018 2019 2020 2021 | .head(11) incident_id  314 307 307 361 318 351 423 270 513 592 | 314 307 307 361 318 351 423 270 513           | g_agency_name  314 307 307 361 318 351 423 270 513 | pub_agency_unit  | 314<br>307<br>307<br>307<br>307<br>307<br>318<br>357<br>423<br>270 | 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |

Mean = 375.60 Standard deviation = 103.52 1 percentile = 273.33 5 percentile = 286.65 25 percentile = 308.75 50 percentile = 334.50 75 percentile = 407.50 95 percentile = 556.45 99 percentile = 584.89

/var/folders/tr/bl8c\_0g517nfbgrdbn8f2b2w0000gn/T/ipykernel\_25207/2988630648.p
y:29: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(x1, hist=True, kde=vis\_curve,



Out[292]: (375.6, 98.20814630161797)

In [111... hcnyc\_count = hatecrime\_nyc.groupby('data\_year')['incident\_id'].count().reset\_:
In [112... hcnyc\_count.head()

| Out[112]: |   | data_year | incident_count |
|-----------|---|-----------|----------------|
|           | 0 | 2013      | 314            |
|           | 1 | 2014      | 307            |
|           | 2 | 2015      | 307            |
|           | 3 | 2016      | 361            |
|           | 4 | 2017      | 318            |

fig, ax = plt.subplots() #get axis to plot on
hcnyc\_count.plot(ax=ax,kind='scatter',x='data\_year', y='incident\_count') #show
ax.plot(hcnyc\_count['data\_year'],hcnyc\_count['incident\_count'],'r-'); #show the



```
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'Times New Roman'

plt.figure(figsize=(10, 6))
plt.plot(hcnyc_count['data_year'], hcnyc_count['incident_count'], marker='o', plt.title('Hate Crime Incidents Over the Decade in NYC', fontname='Times New Roman', fontsize=14)
plt.xlabel('Year', fontname='Times New Roman', fontsize=14)
plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14)
plt.grid(True)

# Set x-axis ticks to display each year
plt.xticks(hcnyc_count['data_year'])
```

```
([<matplotlib.axis.XTick at 0x144ff3850>,
Out[113]:
             <matplotlib.axis.XTick at 0x144ffe790>,
             <matplotlib.axis.XTick at 0x145015890>,
             <matplotlib.axis.XTick at 0x1461fac50>,
             <matplotlib.axis.XTick at 0x146204250>,
             <matplotlib.axis.XTick at 0x146207510>,
             <matplotlib.axis.XTick at 0x146209910>,
             <matplotlib.axis.XTick at 0x146204550>,
             <matplotlib.axis.XTick at 0x146210890>,
             <matplotlib.axis.XTick at 0x146212710>],
            [Text(2013, 0, '2013'),
            Text(2014, 0, '2014'),
            Text(2015, 0, '2015'),
            Text(2016, 0, '2016'),
             Text(2017, 0, '2017'),
             Text(2018, 0, '2018'),
            Text(2019, 0, '2019'),
            Text(2020, 0, '2020'),
            Text(2021, 0, '2021'),
            Text(2022, 0, '2022')])
```

## Hate Crime Incidents Over the Decade in NYC



```
In [98]: hatecrime_sfo = hatecrime[hatecrime['pug_agency_name'] == 'San Francisco']
hatecrime_sfo = hatecrime_sfo[hatecrime['state_abbr'] == 'CA']

/var/folders/tr/bl8c_0g517nfbgrdbn8f2b2w0000gn/T/ipykernel_25207/1066112706.p
y:2: UserWarning: Boolean Series key will be reindexed to match DataFrame inde
x.
    hatecrime_sfo = hatecrime_sfo[hatecrime['state_abbr'] == 'CA']
The [00]: hatecrime_sfo_bood()
```

In [99]: hatecrime\_sfo.head()

incident\_id data\_year

Out[99]:

|                       | 163972           | 164006                                     | 2013                                    | 3 CA0380100                   | San Francisco                         | NaN                             |                   |
|-----------------------|------------------|--------------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------|---------------------------------|-------------------|
|                       | 163973           | 164007                                     | 2013                                    | 3 CA0380100                   | San Francisco                         | NaN                             |                   |
|                       | 163974           | 164008                                     | 2013                                    | 3 CA0380100                   | San Francisco                         | NaN                             |                   |
|                       | 163975           | 164009                                     | 2013                                    | 3 CA0380100                   | San Francisco                         | NaN                             |                   |
|                       | 163976           | 164010                                     | 2013                                    | 3 CA0380100                   | San Francisco                         | NaN                             |                   |
|                       | 5 rows ×         | 28 columns                                 |                                         |                               |                                       |                                 |                   |
| [n [100               | sf_age<br>sf_age |                                            | rime_sfo                                | ['pug_agenc                   | y_name'].unique(                      | ()                              |                   |
| Out[100]:             | array            | (['San Fran                                | cisco'],                                | dtype=obje                    | ct)                                   |                                 |                   |
| In [167               |                  |                                            | -                                       | (vertically tecrime_nyc       | , hatecrime_sfo,                      | hatecrime_px],                  | ignore_ind        |
|                       |                  |                                            |                                         |                               |                                       |                                 |                   |
| In [168               | concat           | _hc.head()                                 |                                         |                               |                                       |                                 |                   |
| In [168…<br>Out[168]: |                  | _hc.head()                                 | _year                                   | ori puç                       | յ_agency_name pul                     | b_agency_unit age               | ncy_type_nam      |
|                       |                  |                                            | _ <b>year</b><br>2013 NY                |                               | <b>j_agency_name pu</b> l<br>New York | <b>b_agency_unit age</b><br>NaN |                   |
|                       | inci             | dent_id data                               |                                         | 0303000                       |                                       |                                 |                   |
|                       | inci<br>0        | <b>dent_id data</b><br>166896              | 2013 NY                                 | 0303000                       | New York                              | NaN                             | Cit               |
|                       | 0<br>1           | dent_id data<br>166896<br>166897           | 2013 NY<br>2013 NY                      | 0303000<br>0303000<br>0303000 | New York<br>New York                  | NaN<br>NaN                      | Cit               |
|                       | 0<br>1<br>2      | dent_id data<br>166896<br>166897<br>166898 | 2013 NY 2013 NY 2013 NY                 | 0303000<br>0303000<br>0303000 | New York  New York  New York          | NaN<br>NaN<br>NaN               | Cit<br>Cit        |
|                       | inci 0 1 2 3 4   | dent_id data<br>166896<br>166897<br>166898 | 2013 NY 2013 NY 2013 NY 2013 NY 2013 NY | 0303000<br>0303000<br>0303000 | New York  New York  New York          | NaN<br>NaN<br>NaN               | Cit<br>Cit<br>Cit |

ori pug\_agency\_name pub\_agency\_unit agency\_type\_



## Out[336]:

## bias\_desc incident\_count

| melaent_count | bid5_dc3c                                      |     |
|---------------|------------------------------------------------|-----|
| 24            | Anti-American Indian or Alaska Native          | 0   |
| 1             | Anti-American Indian or Alaska Native;Anti-Bla | 1   |
| 33            | Anti-Arab                                      | 2   |
| 405           | Anti-Asian                                     | 3   |
| 1             | Anti-Asian;Anti-Female                         | 4   |
|               |                                                | ••• |
| 3             | Anti-Protestant                                | 64  |
| 3             | Anti-Sikh                                      | 65  |
| 133           | Anti-Transgender                               | 66  |
| 2             | Anti-Transgender;Anti-White                    | 67  |
| 300           | Anti-White                                     | 68  |

69 rows × 2 columns

```
In [172... concat_target_sorted = concat_target.sort_values(by='incident_count', ascending)
          top_10_bias = concat_target_sorted.head(10)
          top_10_bias
```

### Out[172]:

|    | bias_desc                          | incident_count |
|----|------------------------------------|----------------|
| 42 | Anti-Jewish                        | 1832           |
| 7  | Anti-Black or African American     | 961            |
| 26 | Anti-Gay (Male)                    | 917            |
| 3  | Anti-Asian                         | 405            |
| 68 | Anti-White                         | 300            |
| 34 | Anti-Hispanic or Latino            | 293            |
| 39 | Anti-Islamic (Muslim)              | 222            |
| 59 | Anti-Other Race/Ethnicity/Ancestry | 211            |
| 66 | Anti-Transgender                   | 133            |
| 48 | Anti-Lesbian (Female)              | 111            |

```
In [173... plt.figure(figsize=(12, 6))
         plt.bar(top_10_bias['bias_desc'], top_10_bias['incident_count'], color='purple
         # Angle x-axis labels
         plt.xticks(rotation=45, ha='right')
         plt.title('Hate Crime Incidents by Bias', fontname='Times New Roman', fontsize:
         plt.xlabel('Bias', fontname='Times New Roman', fontsize=14)
         plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14)
         plt.tight_layout() # Ensures the plot layout is adjusted to prevent clipping
         plt.show()
```



In [346...
concat\_target\_2 = concat\_hc.groupby(['bias\_desc','pug\_agency\_name'])['incident\_concat\_target\_sorted\_2 = concat\_target\_2.sort\_values(by='incident\_count', ascertop\_10\_bias\_2 = concat\_target\_sorted\_2.head(15)
top\_10\_bias\_2

| $\sim$ |     | F - 4 | 0.7 |  |
|--------|-----|-------|-----|--|
| ( )    | 114 | 1 2/1 | 61  |  |
| w      | u i | 1.) 🕂 | U I |  |

|     | bias_desc                          | pug_agency_name | incident_count |
|-----|------------------------------------|-----------------|----------------|
| 62  | Anti-Jewish                        | New York        | 1659           |
| 38  | Anti-Gay (Male)                    | New York        | 576            |
| 14  | Anti-Black or African American     | Phoenix         | 572            |
| 13  | Anti-Black or African American     | New York        | 327            |
| 5   | Anti-Asian                         | New York        | 281            |
| 39  | Anti-Gay (Male)                    | Phoenix         | 234            |
| 51  | Anti-Hispanic or Latino            | Phoenix         | 174            |
| 57  | Anti-Islamic (Muslim)              | New York        | 168            |
| 90  | Anti-Other Race/Ethnicity/Ancestry | New York        | 153            |
| 107 | Anti-White                         | New York        | 142            |
| 63  | Anti-Jewish                        | Phoenix         | 136            |
| 108 | Anti-White                         | Phoenix         | 132            |
| 40  | Anti-Gay (Male)                    | San Francisco   | 107            |
| 7   | Anti-Asian                         | San Francisco   | 104            |
| 103 | Anti-Transgender                   | New York        | 95             |

```
In [347... pivot_df = top_10_bias_2.pivot(index='bias_desc', columns='pug_agency_name', va
# Set font to Times New Roman
plt.rcParams['font.family'] = 'Times New Roman'
# Plotting the stacked column chart
plt.figure(figsize=(12, 6))
```

```
pivot_df.plot(kind='bar', stacked=True, colormap='viridis')
plt.title('Hate Crime Incidents by Bias Description and City', fontname='Times
plt.xlabel('Bias Description', fontname='Times New Roman', fontsize=14)
plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14)
plt.legend(title='Agency', loc='upper right')
plt.xticks(rotation=45, ha='right')
plt.show()
```

<Figure size 1200x600 with 0 Axes>





Bias Description

```
In [150...
         hatecrime_sfo.shape
         sfo_target = hatecrime_sfo.groupby(['bias_desc'])['incident_id'].count().reset
         sfo_target_sorted = sfo_target.sort_values(by='incident_count', ascending=False
         top_10_bias_sfo = sfo_target_sorted.head(10)
          top_10_bias_sfo
```

### Out[150]:

12

#### bias\_desc incident\_count 7 Anti-Gay (Male) 107 1 Anti-Asian 104 62 4 Anti-Black or African American 9 Anti-Hispanic or Latino 44 11 Anti-Jewish 37 21 Anti-White 26 20 23 Anti-Transgender Anti-Other Race/Ethnicity/Ancestry 19 10 Anti-Islamic (Muslim) 15

Anti-Lesbian (Female)

```
In [174... plt.figure(figsize=(12, 6))
    plt.bar(top_10_bias_sfo['bias_desc'], top_10_bias_sfo['incident_count'], color:

# Angle x-axis labels
    plt.xticks(rotation=45, ha='right')

plt.title('Hate Crime Incidents by Bias in SFO', fontname='Times New Roman', for plt.xlabel('Bias', fontname='Times New Roman', fontsize=14)
    plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14)
    plt.tight_layout() # Ensures the plot layout is adjusted to prevent clipping of plt.show()
```

12



```
In [157... hatecrime_nyc.shape
    nyc_target = hatecrime_nyc.groupby(['bias_desc'])['incident_id'].count().reset_
    nyc_target_sorted = nyc_target.sort_values(by='incident_count', ascending=Falsot
    top_10_bias_nyc = nyc_target_sorted.head(10)
    top_10_bias_nyc
    plt.rcParams['font.family'] = 'Times New Roman'

# Plotting the bar graph
```

```
plt.figure(figsize=(12, 6))
plt.bar(top_10_bias_nyc['bias_desc'], top_10_bias_nyc['incident_count'], color=

# Angle x-axis labels
plt.xticks(rotation=45, ha='right')

plt.title('Top 10 Hate Crime Incidents by Bias Description in NYC', fontname='-
plt.xlabel('Bias Description', fontname='Times New Roman', fontsize=14)
plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14)
plt.tight_layout() # Ensures the plot layout is adjusted to prevent clipping oplt.show()
```



```
hatecrime px = hatecrime[hatecrime['pug agency name'].str.contains('Phoenix')]
In [165...
         hatecrime_px = hatecrime_px[hatecrime['agency_type_name'] == 'City']
         hatecrime_px = hatecrime_px[hatecrime['state abbr'] == 'AZ']
         hatecrime px.shape
         /var/folders/tr/bl8c 0g517nfbgrdbn8f2b2w0000gn/T/ipykernel 25207/3050034670.p
         y:2: UserWarning: Boolean Series key will be reindexed to match DataFrame inde
         Χ.
           hatecrime px = hatecrime px[hatecrime['agency type name'] == 'City']
         /var/folders/tr/bl8c 0g517nfbgrdbn8f2b2w0000gn/T/ipykernel 25207/3050034670.p
         y:3: UserWarning: Boolean Series key will be reindexed to match DataFrame inde
         Χ.
           hatecrime px = hatecrime px[hatecrime['state abbr'] == 'AZ']
          (1621, 28)
Out[165]:
         top_10_bias_px = px_target_sorted.head(10)
```

```
plt.title('Top 10 Hate Crime Incidents by Bias Description in Phoenix', fontname plt.xlabel('Bias Description', fontname='Times New Roman', fontsize=14) plt.ylabel('Incident Count', fontname='Times New Roman', fontsize=14) plt.tight_layout() # Ensures the plot layout is adjusted to prevent clipping oplt.show()
```



```
In [177...
          import geopandas as gpd
          import urllib.request
          import os
          import numpy as np
          from scipy import stats
          import matplotlib.pyplot as plt
          import warnings
          stats.ttest ind(hc count.loc[hc count['pug agency name']=='New York']['inciden
In [178...
          Ttest indResult(statistic=9.636031586405965, pvalue=1.5752538463642976e-08)
Out[178]:
          stats.ttest_ind(hc_count.loc[hc_count['pug_agency_name'] == 'New York']['inciden'
In [179...
          Ttest_indResult(statistic=6.000008555980327, pvalue=1.1269773625052149e-05)
Out[179]:
          np.log(hcnyc_count['incident_count']).hist(bins=5)
In [185...
          <Axes: >
Out[185]:
```



```
In [247... MHI = pd.read_csv("MHI 2022.csv")
```

In [248... MHI.head()

| Out[248]: |   | City            | State   | МНІ     | Year |
|-----------|---|-----------------|---------|---------|------|
|           | 0 | Auburn city     | Alabama | 54,839  | 2022 |
|           | 1 | Birmingham city | Alabama | 39,326  | 2022 |
|           | 2 | Dothan city     | Alabama | 53,929  | 2022 |
|           | 3 | Hoover city     | Alabama | 103,194 | 2022 |
|           |   |                 |         |         |      |

4 Huntsville city Alabama 68,930 2022

```
In [244... unique_agency_names = concat_hc['pug_agency_name'].unique()
In [245... MHI_nyc = MHI[MHI['City'].str.contains('New York', case=False, regex=True, na=I MHI_sfo = MHI[MHI['City'].str.contains('San Francisco', case=False, regex=True MHI_phx = MHI[MHI['City'].str.contains('Phoenix', case=False, regex=True, na=Fi)
In [249... MHI_scope = pd.concat([MHI_nyc, MHI_phx, MHI_sfo], ignore_index=True)
In [219... MHI_scope = pd.concat([MHI_nyc, MHI_phx, MHI_sfo], ignore_index=True)
In [250... MHI_scope
```

Out[250]:

|    | City                     | State        | МНІ     | Year |
|----|--------------------------|--------------|---------|------|
| 0  | New York city            | New York     | 74,694  | 2022 |
| 1  | New York city            | New York     | 52996   | 2014 |
| 2  | New York city            | New York     | 55752   | 2015 |
| 3  | New York city            | New York     | 58856   | 2016 |
| 4  | New York city            | New York     | 60879   | 2017 |
| 5  | New York city            | New York     | 63799   | 2018 |
| 6  | New York city            | New York     | 69407   | 2019 |
| 7  | New York Mills city      | Minnesota    | 45000   | 2020 |
| 8  | West New York town       | New Jersey   | 64378   | 2020 |
| 9  | New York city            | New York     | 67046   | 2020 |
| 10 | New York Mills village   | New York     | 41549   | 2020 |
| 11 | New York city            | New York     | 67,997  | 2021 |
| 12 | New York city            | New York     | 52223   | 2013 |
| 13 | Phoenix city             | Arizona      | 75,969  | 2022 |
| 14 | Phoenix city             | Arizona      | 47929   | 2014 |
| 15 | Phoenix city             | Arizona      | 48452   | 2015 |
| 16 | Phoenix city             | Arizona      | 52062   | 2016 |
| 17 | Phoenix city             | Arizona      | 56696   | 2017 |
| 18 | Phoenix city             | Arizona      | 57957   | 2018 |
| 19 | Phoenix city             | Arizona      | 60931   | 2019 |
| 20 | Phoenix city             | Arizona      | 60914   | 2020 |
| 21 | Phoenix Lake CDP         | California   | 56641   | 2020 |
| 22 | Phoenix village          | Illinois     | 30455   | 2020 |
| 23 | Phoenix village          | New York     | 52159   | 2020 |
| 24 | Phoenix city             | Oregon       | 35641   | 2020 |
| 25 | Phoenixville borough     | Pennsylvania | 85550   | 2020 |
| 26 | Phoenix city             | Arizona      | 68,435  | 2021 |
| 27 | Phoenix city             | Arizona      | 46601   | 2013 |
| 28 | San Francisco city       | California   | 136,692 | 2022 |
| 29 | San Francisco city       | California   | 85070   | 2014 |
| 30 | South San Francisco city | California   | 86191   | 2014 |
| 31 | San Francisco city       | California   | 92094   | 2015 |
| 32 | South San Francisco city | California   | 96822   | 2015 |
| 33 | San Francisco city       | California   | 103801  | 2016 |
| 34 | South San Francisco city | California   | 90545   | 2016 |

|    | City                     | State      | МНІ     | Year |
|----|--------------------------|------------|---------|------|
| 35 | San Francisco city       | California | 110816  | 2017 |
| 36 | South San Francisco city | California | 94459   | 2017 |
| 37 | San Francisco city       | California | 112376  | 2018 |
| 38 | South San Francisco city | California | 102365  | 2018 |
| 39 | San Francisco city       | California | 123859  | 2019 |
| 40 | South San Francisco city | California | 120573  | 2019 |
| 41 | San Francisco city       | California | 119136  | 2020 |
| 42 | South San Francisco city | California | 106005  | 2020 |
| 43 | San Francisco city       | California | 121,826 | 2021 |
| 44 | San Francisco city       | California | 77485   | 2013 |
| 45 | South San Francisco city | California | 81361   | 2013 |

Out[255]:

|    | City          | State      | МНІ     | Year |
|----|---------------|------------|---------|------|
| 0  | New York      | New York   | 74,694  | 2022 |
| 1  | New York      | New York   | 52996   | 2014 |
| 2  | New York      | New York   | 55752   | 2015 |
| 3  | New York      | New York   | 58856   | 2016 |
| 4  | New York      | New York   | 60879   | 2017 |
| 5  | New York      | New York   | 63799   | 2018 |
| 6  | New York      | New York   | 69407   | 2019 |
| 9  | New York      | New York   | 67046   | 2020 |
| 11 | New York      | New York   | 67,997  | 2021 |
| 12 | New York      | New York   | 52223   | 2013 |
| 13 | Phoenix       | Arizona    | 75,969  | 2022 |
| 14 | Phoenix       | Arizona    | 47929   | 2014 |
| 15 | Phoenix       | Arizona    | 48452   | 2015 |
| 16 | Phoenix       | Arizona    | 52062   | 2016 |
| 17 | Phoenix       | Arizona    | 56696   | 2017 |
| 18 | Phoenix       | Arizona    | 57957   | 2018 |
| 19 | Phoenix       | Arizona    | 60931   | 2019 |
| 20 | Phoenix       | Arizona    | 60914   | 2020 |
| 24 | Phoenix       | Oregon     | 35641   | 2020 |
| 26 | Phoenix       | Arizona    | 68,435  | 2021 |
| 27 | Phoenix       | Arizona    | 46601   | 2013 |
| 28 | San Francisco | California | 136,692 | 2022 |
| 29 | San Francisco | California | 85070   | 2014 |
| 30 | San Francisco | California | 86191   | 2014 |
| 31 | San Francisco | California | 92094   | 2015 |
| 32 | San Francisco | California | 96822   | 2015 |
| 33 | San Francisco | California | 103801  | 2016 |
| 34 | San Francisco | California | 90545   | 2016 |
| 35 | San Francisco | California | 110816  | 2017 |
| 36 | San Francisco | California | 94459   | 2017 |
| 37 | San Francisco | California | 112376  | 2018 |
| 38 | San Francisco | California | 102365  | 2018 |
| 39 | San Francisco | California | 123859  | 2019 |
| 40 | San Francisco | California | 120573  | 2019 |
| 41 | San Francisco | California | 119136  | 2020 |

|    | City          | State      | MHI     | Year |
|----|---------------|------------|---------|------|
| 42 | San Francisco | California | 106005  | 2020 |
| 43 | San Francisco | California | 121,826 | 2021 |
| 44 | San Francisco | California | 77485   | 2013 |
| 45 | San Francisco | California | 81361   | 2013 |

```
In [257... MHI_scope2['year_city'] = MHI_scope2['Year'].astype(str).str.cat(MHI_scope2['C: MHI_scope2
```

 $/var/folders/tr/bl8c\_0g517nfbgrdbn8f2b2w0000gn/T/ipykernel\_25207/1747338192.py:1: SettingWithCopyWarning:$ 

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy
MHI\_scope2['year\_city'] = MHI\_scope2['Year'].astype(str).str.cat(MHI\_scope2
['City'].astype(str), sep='\_')

Out[257]:

|    | City          | State      | МНІ     | Year | year_city          |
|----|---------------|------------|---------|------|--------------------|
| 0  | New York      | New York   | 74,694  | 2022 | 2022_New York      |
| 1  | New York      | New York   | 52996   | 2014 | 2014_New York      |
| 2  | New York      | New York   | 55752   | 2015 | 2015_New York      |
| 3  | New York      | New York   | 58856   | 2016 | 2016_New York      |
| 4  | New York      | New York   | 60879   | 2017 | 2017_New York      |
| 5  | New York      | New York   | 63799   | 2018 | 2018_New York      |
| 6  | New York      | New York   | 69407   | 2019 | 2019_New York      |
| 9  | New York      | New York   | 67046   | 2020 | 2020_New York      |
| 11 | New York      | New York   | 67,997  | 2021 | 2021_New York      |
| 12 | New York      | New York   | 52223   | 2013 | 2013_New York      |
| 13 | Phoenix       | Arizona    | 75,969  | 2022 | 2022_Phoenix       |
| 14 | Phoenix       | Arizona    | 47929   | 2014 | 2014_Phoenix       |
| 15 | Phoenix       | Arizona    | 48452   | 2015 | 2015_Phoenix       |
| 16 | Phoenix       | Arizona    | 52062   | 2016 | 2016_Phoenix       |
| 17 | Phoenix       | Arizona    | 56696   | 2017 | 2017_Phoenix       |
| 18 | Phoenix       | Arizona    | 57957   | 2018 | 2018_Phoenix       |
| 19 | Phoenix       | Arizona    | 60931   | 2019 | 2019_Phoenix       |
| 20 | Phoenix       | Arizona    | 60914   | 2020 | 2020_Phoenix       |
| 24 | Phoenix       | Oregon     | 35641   | 2020 | 2020_Phoenix       |
| 26 | Phoenix       | Arizona    | 68,435  | 2021 | 2021_Phoenix       |
| 27 | Phoenix       | Arizona    | 46601   | 2013 | 2013_Phoenix       |
| 28 | San Francisco | California | 136,692 | 2022 | 2022_San Francisco |
| 29 | San Francisco | California | 85070   | 2014 | 2014_San Francisco |
| 30 | San Francisco | California | 86191   | 2014 | 2014_San Francisco |
| 31 | San Francisco | California | 92094   | 2015 | 2015_San Francisco |
| 32 | San Francisco | California | 96822   | 2015 | 2015_San Francisco |
| 33 | San Francisco | California | 103801  | 2016 | 2016_San Francisco |
| 34 | San Francisco | California | 90545   | 2016 | 2016_San Francisco |
| 35 | San Francisco | California | 110816  | 2017 | 2017_San Francisco |
| 36 | San Francisco | California | 94459   | 2017 | 2017_San Francisco |
| 37 | San Francisco | California | 112376  | 2018 | 2018_San Francisco |
| 38 | San Francisco | California | 102365  | 2018 | 2018_San Francisco |
| 39 | San Francisco | California | 123859  | 2019 | 2019_San Francisco |
| 40 | San Francisco | California | 120573  | 2019 | 2019_San Francisco |
| 41 | San Francisco | California | 119136  | 2020 | 2020_San Francisco |

|    | City          | State      | МНІ     | Year | year_city          |
|----|---------------|------------|---------|------|--------------------|
| 42 | San Francisco | California | 106005  | 2020 | 2020_San Francisco |
| 43 | San Francisco | California | 121,826 | 2021 | 2021_San Francisco |
| 44 | San Francisco | California | 77485   | 2013 | 2013_San Francisco |
| 45 | San Francisco | California | 81361   | 2013 | 2013_San Francisco |

```
In [228... hc_count.rename(columns={'pug_agency_name': 'City'}, inplace=True)
hc_count.rename(columns={'data_year': 'Year'}, inplace=True)
hc_count['year_city'] = hc_count['Year'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str).str.cat(hc_count['City'].astype(str)
```

Out[228]:

|    | Year | City          | incident_count | year_city          |
|----|------|---------------|----------------|--------------------|
| 0  | 2013 | New York      | 314            | 2013_New York      |
| 1  | 2013 | Phoenix       | 123            | 2013_Phoenix       |
| 2  | 2013 | San Francisco | 24             | 2013_San Francisco |
| 3  | 2014 | New York      | 307            | 2014_New York      |
| 4  | 2014 | Phoenix       | 183            | 2014_Phoenix       |
| 5  | 2014 | San Francisco | 22             | 2014_San Francisco |
| 6  | 2015 | New York      | 307            | 2015_New York      |
| 7  | 2015 | Phoenix       | 231            | 2015_Phoenix       |
| 8  | 2015 | San Francisco | 28             | 2015_San Francisco |
| 9  | 2016 | New York      | 361            | 2016_New York      |
| 10 | 2016 | Phoenix       | 174            | 2016_Phoenix       |
| 11 | 2016 | San Francisco | 36             | 2016_San Francisco |
| 12 | 2017 | New York      | 318            | 2017_New York      |
| 13 | 2017 | Phoenix       | 219            | 2017_Phoenix       |
| 14 | 2017 | San Francisco | 43             | 2017_San Francisco |
| 15 | 2018 | New York      | 351            | 2018_New York      |
| 16 | 2018 | Phoenix       | 107            | 2018_Phoenix       |
| 17 | 2018 | San Francisco | 68             | 2018_San Francisco |
| 18 | 2019 | New York      | 423            | 2019_New York      |
| 19 | 2019 | Phoenix       | 151            | 2019_Phoenix       |
| 20 | 2019 | San Francisco | 64             | 2019_San Francisco |
| 21 | 2020 | New York      | 270            | 2020_New York      |
| 22 | 2020 | Phoenix       | 187            | 2020_Phoenix       |
| 23 | 2020 | San Francisco | 54             | 2020_San Francisco |
| 24 | 2021 | New York      | 513            | 2021_New York      |
| 25 | 2021 | Phoenix       | 140            | 2021_Phoenix       |
| 26 | 2021 | San Francisco | 114            | 2021_San Francisco |
| 27 | 2022 | New York      | 592            | 2022_New York      |
| 28 | 2022 | Phoenix       | 106            | 2022_Phoenix       |
| 29 | 2022 | San Francisco | 36             | 2022_San Francisco |

```
In [266... common_column = 'year_city'
merged_df = pd.merge(MHI_scope2, hc_count, on=common_column, how='left')
merged_df.dtypes
```

```
object
          City_x
Out[266]:
          State
                             object
          MHI
                             object
          Year_x
                              int64
          year_city
                             object
          Year_y
                              int64
                             object
          City_y
          incident_count
                              int64
          dtype: object
         merged_df['MHI'] = pd.to_numeric(merged_df['MHI'], errors='coerce').astype('in')
In [310...
         merged_df = merged_df.dropna(subset=['MHI'])
In [311...
          merged_df
```

Out[311]:

|    | City_x           | State      | МНІ    | Year_x | year_city             | Year_y | City_y             | incident_count |  |
|----|------------------|------------|--------|--------|-----------------------|--------|--------------------|----------------|--|
| 1  | New York         | New York   | 52996  | 2014   | 2014_New<br>York      | 2014   | New York           | 307            |  |
| 2  | New York         | New York   | 55752  | 2015   | 2015_New<br>York      | 2015   | New York           | 307            |  |
| 3  | New York         | New York   | 58856  | 2016   | 2016_New<br>York      | 2016   | New York           | 361            |  |
| 4  | New York         | New York   | 60879  | 2017   | 2017_New<br>York      | 2017   | New York           | 318            |  |
| 5  | New York         | New York   | 63799  | 2018   | 2018_New<br>York      | 2018   | New York           | 351            |  |
| 6  | New York         | New York   | 69407  | 2019   | 2019_New<br>York      | 2019   | New York           | 423            |  |
| 7  | New York         | New York   | 67046  | 2020   | 2020_New<br>York      | 2020   | New York           | 270            |  |
| 9  | New York         | New York   | 52223  | 2013   | 2013_New<br>York      | 2013   | New York           | 314            |  |
| 11 | Phoenix          | Arizona    | 47929  | 2014   | 2014_Phoenix          | 2014   | Phoenix            | 183            |  |
| 12 | Phoenix          | Arizona    | 48452  | 2015   | 2015_Phoenix          | 2015   | Phoenix            | 231            |  |
| 13 | Phoenix          | Arizona    | 52062  | 2016   | 2016_Phoenix          | 2016   | Phoenix            | 174            |  |
| 14 | Phoenix          | Arizona    | 56696  | 2017   | 2017_Phoenix          | 2017   | Phoenix            | 219            |  |
| 15 | Phoenix          | Arizona    | 57957  | 2018   | 2018_Phoenix          | 2018   | Phoenix<br>Phoenix | 107            |  |
| 16 | Phoenix          | Arizona    | 60931  | 2019   | 2019_Phoenix          | 2019   |                    | 151            |  |
| 17 | Phoenix          | Arizona    | 60914  | 2020   | 2020_Phoenix          | 2020   | Phoenix            | 187            |  |
| 18 | Phoenix          | Oregon     | 35641  | 2020   | 2020_Phoenix          | 2020   | Phoenix            | 187            |  |
| 20 | Phoenix          | Arizona    | 46601  | 2013   | 2013_Phoenix          | 2013   | Phoenix            | 123            |  |
| 22 | San<br>Francisco | California | 85070  | 2014   | 2014_San<br>Francisco | 2014   | San<br>Francisco   | 22             |  |
| 23 | San<br>Francisco | California | 86191  | 2014   | 2014_San<br>Francisco | 2014   | San<br>Francisco   | 22             |  |
| 24 | San<br>Francisco | California | 92094  | 2015   | 2015_San<br>Francisco | 2015   | San<br>Francisco   | 28             |  |
| 25 | San<br>Francisco | California | 96822  | 2015   | 2015_San<br>Francisco | 2015   | San<br>Francisco   | 28             |  |
| 26 | San<br>Francisco | California | 103801 | 2016   | 2016_San<br>Francisco | 2016   | San<br>Francisco   | 36             |  |
| 27 | San<br>Francisco | California | 90545  | 2016   | 2016_San<br>Francisco | 2016   | San<br>Francisco   | 36             |  |
| 28 | San<br>Francisco | California | 110816 | 2017   | 2017_San<br>Francisco | 2017   | San<br>Francisco   | 43             |  |
| 29 | San<br>Francisco | California | 94459  | 2017   | 2017_San<br>Francisco | 2017   | San<br>Francisco   | 43             |  |
| 30 | San              | California | 112376 | 2018   | 2018_San              | 2018   | San                | 68             |  |

|    | City_x           | State      | МНІ    | Year_x | year_city             | Year_y | City_y           | incident_count |
|----|------------------|------------|--------|--------|-----------------------|--------|------------------|----------------|
|    | Francisco        |            |        |        | Francisco             |        | Francisco        |                |
| 31 | San<br>Francisco | California | 102365 | 2018   | 2018_San<br>Francisco | 2018   | San<br>Francisco | 68             |
| 32 | San<br>Francisco | California | 123859 | 2019   | 2019_San<br>Francisco | 2019   | San<br>Francisco | 64             |
| 33 | San<br>Francisco | California | 120573 | 2019   | 2019_San<br>Francisco | 2019   | San<br>Francisco | 64             |
| 34 | San<br>Francisco | California | 119136 | 2020   | 2020_San<br>Francisco | 2020   | San<br>Francisco | 54             |
| 35 | San<br>Francisco | California | 106005 | 2020   | 2020_San<br>Francisco | 2020   | San<br>Francisco | 54             |
| 37 | San<br>Francisco | California | 77485  | 2013   | 2013_San<br>Francisco | 2013   | San<br>Francisco | 24             |
| 38 | San<br>Francisco | California | 81361  | 2013   | 2013_San<br>Francisco | 2013   | San<br>Francisco | 24             |

## In [312... merged\_df.describe()

Out[312]:

|  |       | МНІ           | Year_x      | Year_y      | incident_count |
|--|-------|---------------|-------------|-------------|----------------|
|  | count | 33.000000     | 33.000000   | 33.000000   | 33.000000      |
|  | mean  | 77306.030303  | 2016.606061 | 2016.606061 | 148.212121     |
|  | std   | 25318.444257  | 2.370910    | 2.370910    | 123.277826     |
|  | min   | 35641.000000  | 2013.000000 | 2013.000000 | 22.000000      |
|  | 25%   | 56696.000000  | 2015.000000 | 2015.000000 | 43.000000      |
|  | 50%   | 69407.000000  | 2017.000000 | 2017.000000 | 107.000000     |
|  | 75%   | 96822.000000  | 2019.000000 | 2019.000000 | 231.000000     |
|  | max   | 123859.000000 | 2020.000000 | 2020.000000 | 423.000000     |

# In [313... merged\_df[['Year\_x','incident\_count','MHI']].corr()

Out[313]:

|                | Year_x   | incident_count | MHI       |
|----------------|----------|----------------|-----------|
| Year_x         | 1.000000 | 0.090213       | 0.269927  |
| incident_count | 0.090213 | 1.000000       | -0.662141 |
| МНІ            | 0.269927 | -0.662141      | 1.000000  |

```
#introduce a custom function performing distribution analysis
import seaborn as sns
def distribution_analysis(x, log_scale = False, fit_distribution = 'None', bins
#x - array of observations
#log_scale - analyze distribution of log(x) if True
#fit_distribution - fit the distribution ('normal', 'gev' or 'pareto') or of
#bins - how many bins to use for binning the data
#vis_means - show mean and std lines if True
#vis_curve - show interpolated distribution curve over the histogram bars
```

```
#print_outputs - print mean, std and percentiles
if log scale:
    x1 = np.log10(x) #convert data to decimal logarithms
    xlabel = 'log(values)' #reflect in x labels
else:
    x1 = x #leave original scale
    xlabel = 'values'
mu = x1.mean() #compute the mean
if log_scale: #if logscale, output all three - log mean, its original scale
    print('Log mean = {:..2f}({:..2f}), mean = {:..2f}'.format(mu,10**mu,x.me)
else:
    print('Mean = {:.2f}'.format(mu)) #otherwise print mean
sigma = x1.std() #compute and output standard deviation
print('Standard deviation = {:.2f}'.format(sigma))
for p in [1,5,25,50,75,95,99]: #output percentile values
    print('{:d} percentile = {:.2f}'.format(p,np.percentile(x,p)))
#visualize histogram and the interpolated line (if vis_curve=True) using so
sns.distplot(x1, hist=True, kde=vis curve,
    bins=bins,color = 'darkblue',
    hist_kws={'edgecolor':'black'},
    kde kws={'linewidth': 4})
#show vertical lines for mean and std if vis means = True
if vis means:
    plt.axvline(mu, color='r', ls='--', lw=2.0)
    plt.axvline(mu-sigma, color='g', ls='--', lw=2.0)
    plt.axvline(mu+sigma, color='g', ls='--', lw=2.0)
ylim = plt.gca().get_ylim() #keep the y-range of original distribution den
#(to make sure the fitted distribution would not affect it)
h = np.arange(mu - 3 * sigma, mu + 3 * sigma, sigma / 100) #3-sigma visual.
pars = None #fitted distribution parameters
#fit and visualize the theoretic distribution
if fit_distribution == 'normal':
    pars = norm.fit(x1)
    plt.plot(h,norm.pdf(h,*pars),'r')
elif fit_distribution == 'gev':
    pars = gev.fit(x1)
    plt.plot(h,gev.pdf(h,*pars),'r')
elif fit distribution == 'pareto':
    pars = pareto.fit(x1)
    plt.plot(h,pareto.pdf(h,*pars),'r')
plt.xlabel(xlabel) #add x label
plt.ylim(ylim) #restore the y-range of original distribution density value
plt.show()
return pars
```

```
from scipy.stats import norm #normal
from scipy.stats import genextreme as gev #generalized extreme value
from scipy.stats import pareto
```

In [316... distribution\_analysis(merged\_df.incident\_count, fit\_distribution='normal', bin

Mean = 148.21 Standard deviation = 123.28 1 percentile = 22.00 5 percentile = 23.20 25 percentile = 43.00 50 percentile = 107.00 75 percentile = 231.00 95 percentile = 355.00 99 percentile = 403.16

/var/folders/tr/bl8c\_0g517nfbgrdbn8f2b2w0000gn/T/ipykernel\_25207/2988630648.p
y:29: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(x1, hist=True, kde=vis\_curve,



Out[316]: (148.2121212121222, 121.3956111172507)

```
In [317... from sklearn.linear_model import LinearRegression
In [318... lm = LinearRegression(fit_intercept=False).fit(merged_df[['Year_x']], merged_dfin [319... lm.coef_
Out[319]: array([0.07350201])
```

```
import statsmodels.formula.api as smf
In [320...
         lm = smf.ols(formula='Year_x~incident_count', data = merged_df).fit()
In [321...
         print(lm.summary())
                                     OLS Regression Results
         Dep. Variable:
                                        Year x
                                                 R-squared:
                                                                                 0.008
         Model:
                                           0LS
                                                 Adj. R-squared:
                                                                                -0.024
         Method:
                                 Least Squares
                                                 F-statistic:
                                                                                0.2544
         Date:
                              Sun, 10 Dec 2023
                                                 Prob (F-statistic):
                                                                                 0.618
         Time:
                                      11:49:42
                                                 Log-Likelihood:
                                                                               -74.670
         No. Observations:
                                            33
                                                 AIC:
                                                                                 153.3
         Df Residuals:
                                            31
                                                 BIC:
                                                                                  156.3
         Df Model:
                                             1
         Covariance Type:
                                     nonrobust
         ====
                              coef
                                      std err
                                                       t
                                                             P>|t|
                                                                         [0.025
                                                                                    0.
         975]
         Intercept
                         2016.3489 0.659
                                               3059.397
                                                             0.000
                                                                      2015.005
                                                                                  201
         7.693
                                                             0.618
         incident_count
                            0.0017
                                      0.003
                                                   0.504
                                                                        -0.005
         0.009
                                         7.595
                                                 Durbin-Watson:
         Omnibus:
                                                                                  0.935
         Prob(Omnibus):
                                         0.022
                                                 Jarque-Bera (JB):
                                                                                  2.164
         Skew:
                                        -0.024
                                                 Prob(JB):
                                                                                  0.339
         Kurtosis:
                                         1.746
                                                 Cond. No.
                                                                                  302.
         Notes:
         [1] Standard Errors assume that the covariance matrix of the errors is correct
         ly specified.
In [322...
        lm2 = LinearRegression(fit_intercept=False).fit(merged_df[['MHI']], merged_df[
In [323...
         lm2.coef_
          array([0.00143284])
Out[323]:
         lm2 = smf.ols(formula='incident_count~MHI', data = merged_df).fit()
In [349...
```

print(lm2.summary())

In [350...

## OLS Regression Results

| Dep. Variab<br>Model:<br>Method:<br>Date:       | le:                 | incident_co<br>Least Squa<br>Sun, 10 Dec 20 | OLS<br>res                 | Adj.<br>F-sta                   | =========<br>uared:<br>R-squared:<br>atistic:<br>(F-statistic) | :                 | 0.438<br>0.420<br>24.20<br>2.70e-05 |  |
|-------------------------------------------------|---------------------|---------------------------------------------|----------------------------|---------------------------------|----------------------------------------------------------------|-------------------|-------------------------------------|--|
| Time: No. Observations: Df Residuals: Df Model: |                     | 15:04                                       |                            | Log-Likelihood:<br>AIC:<br>BIC: |                                                                | -                 | -195.67<br>395.3<br>398.3           |  |
| Covariance Type:                                |                     | nonrob                                      | ust                        |                                 |                                                                |                   |                                     |  |
|                                                 | coe                 | f std err                                   | =====                      | t                               | P> t                                                           | [0.025            | 0.975]                              |  |
| Intercept<br>MHI                                | 397.4486<br>-0.0032 |                                             | 7.<br>-4.                  |                                 | 0.000<br>0.000                                                 | 288.882<br>-0.005 | 506.015<br>-0.002                   |  |
| Omnibus:<br>Prob(Omnibu<br>Skew:                | s):                 | 0.                                          | =====<br>278<br>194<br>690 |                                 | =========<br>in-Watson:<br>ue-Bera (JB):<br>(JB):              |                   | 0.495<br>2.626<br>0.269             |  |

### Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

2.926

[2] The condition number is large, 2.65e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

In [ ]:

2.65e+05