Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3112 К работе допущен

Студент Берелехис Светлана Михайловна Работа выполнена

Преподаватель Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.02

- 1. Цель работы
 - 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2. Определение величины ускорения свободного падения g.
- 2. Задачи, решаемые при выполнении работы
 - 1. Получение экспериментальных данных
 - 2. Расчет значений и их погрешностей
 - 3. Построение графика
- 3. Объект исследования

Ускорение тележки, скользящей по наклонной поверхности под действием силы тяжести при пренебрежимо малой силе трения

- 4. Метод экспериментального исследования
- 5. Рабочие формулы и исходные данные

$$v_x(t) = v_{0x} + a_x t$$

$$x(t) = x_0 + v_{0_t} + \frac{a_x t^2}{2}$$

$$x_2 - x_1 = \frac{a}{2}(t_2^2 - t_1^2)$$

$$a = g \sin \alpha - \mu g \cos \alpha$$

6. Измерительные приборы

Наименование	Предел	Цена деления	Класс точности	Δ_{H}
	измерения			
Линейка на рельсе	1,3 M	1 см/деление	-	5 mm
Линейка на угольнике	500 mm	1 мм/деление	-	0,5 мм
ПКЦ-3 в режиме	100 c	0,1 c	-	0,1 c
секундомера				

7. Описание установки

По рельсам почти с помощью насоса почти полностью убирают силу трения, наклоняют рельсы и ставят тележку (начальная скорость тележки 0). Тележка скользит по рельсам.

8. Результаты прямых измерений и их обработки

Таблица 2

x, m	x',m	h ₀ , mm	h' ₀ , mm
0,22 += 0,005	1,00 += 0,005	225,0 += 0,5	225,5 += 0,5

Таблица 3

Nº	Измеряемые величины			Рассчитываемые		
					величины	
	<i>x</i> ₁ , м	<i>x</i> ₂ , м	t_1 , c	<i>t</i> ₂ , c	$x_2 - x_1$, m	$\frac{t_2^2-t_1^2}{2}$, c ²
1	$0,15\pm0,005$	$0,40\pm0,005$	1,9±0,1	$3,3\pm0,1$	$0,25\pm0,007$	3,6 <u>±</u> 0,6
2	$0,15\pm0,005$	$0,50\pm0,005$	$1,8\pm0,1$	$3,6\pm0,1$	$0,35\pm0,007$	4,9 <u>±</u> 0,6
3	$0,15\pm0,005$	$0,70\pm0,005$	1,8 <u>±</u> 0,1	4,2 <u>±</u> 0,1	$0,55\pm0,007$	7,2 <u>±</u> 0,7
4	$0,15\pm0,005$	$0,90\pm0,005$	1,9±0,1	4,8±0,1	0,75±0,007	9,7 <u>±</u> 0,8
5	$0,15\pm0,005$	$1,10\pm0,005$	$2,0\pm0,1$	5,5±0,1	$0,95\pm0,007$	13,1 <u>±</u> 0,9

Таблица 4

N _{пл}	h, mm	h', мм	Nº	t ₁ , c	t ₂ , c
1	283,5	275	1	1,9	5,3
			2	1,8	5,2
			3	1,9	5,3
			4	1,3	4,7
			5	1,4	4,9
2	207,0 (293)	274,3	1	1,3	3,6
			2	1,2	3,4
			3	1,3	3,5
			4	1,4	3,7
			5	1,5	3,7
3	198,0 (302)	274,5	1	1,0	2,9
			2	1,1	3,0
			3	1,1	2,9
			4	1,1	2,9
			5	1,2	3,0
4	189,5 (310,5)	222,5 (277,5)	1	1,0	2,7
			2	0,9	2,5
			3	0,9	2,5
			4	0,9	2,5
			5	1,0	2,6
5	180,5 (319,5)	222,5 (277,5)	1	0,8	2,2
			2	0,8	2,2
			3	0,8	2,2
			4	0,8	2,2
			5	0,9	2,3

9. Расчет результатов косвенных изменений Задание 1.

$$a = \frac{\sum Z_i Y_i}{\sum Z_i^2} = 0.074$$

Задание 2.

N (пластин)	sin α	$< t_1 > \pm \Delta t_1$, c	$< t_2 > \pm \Delta t_2$, c	$< a > \pm \Delta a, \frac{M}{c^2}$
1	0,010256	$1,64 \pm 0,1$	5,08 ± 0,1	$0,0685 \pm 0,006$
2	0,023077	$1,32 \pm 0,1$	3,58 ± 0,1	0,14 <u>±</u> 0,02
3	0,034615	$1,10 \pm 0,1$	2,94 ± 0,1	0,21±0,03
4	0,041667	$0,94 \pm 0,1$	2,56 ± 0,1	0,28 <u>+</u> 0,05
5	0,053205	0,82 ± 0,1	2,22 ± 0,1	0,37 <u>+</u> 0,07

$$B = g = \frac{\sum_{i=1}^{N} a_i \sin a_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin a_i}{\sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin a_i)^2} = 8,6$$

$$A = \frac{1}{N} (\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin a_i)$$

10. Расчет погрешностей измерений Задание 1.

$$\Delta_a = 2\sigma_a = 0,002$$

$$\varepsilon_a = \frac{\Delta_a}{a} \ 100\% = 3,3\%$$

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}} = 0,001$$

Задание 2.

di	
-0,0076	
-0,0158	
-0,0352	
0,0630	
-0,0046	

$$D = \sum_{i=1}^{N} \sin a_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin a_i \right)^2 = 0,00066$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{(N-2)D}} = 1,7$$

$$\Delta g = 2\sigma_g = 3,4$$

$$\varepsilon_g = \frac{\Delta_g}{g} 100\% = 39\%$$

11. Графики

График 1 (по заданию 1) Расстояние, пройдённое тележкой от разности квадратов времени, деленных на 2.

График 2 (задание 2). Зависимость ускорения от угла наклона рельсы

12. Окончательные результаты

Задание 1.

$$a = 0.074$$

$$\Delta_a = 0.002$$

$$\varepsilon_a = 3.3\%$$

Задание 2.

$$g_{\text{эксп}} = (8,6 \pm 3,4) \frac{M}{C^2}$$

$$\Delta g = 3.4 \frac{M}{c^2}$$

$$\varepsilon_g = 39\%$$

13. Выводы и анализ результатов работы

Задание 1. $a=(0.74\pm0.02)\frac{\rm M}{\rm c^2}$ Движение тележки равноускоренное. Потому что график – прямая, проходящая через 0.

Задание 2. $g_{_{\rm ЭКСП}}=(8.6\pm3.4)\frac{_{\rm M}}{_{\rm c^2}}$. g в Санкт-Петербурге $(g_{_{\rm Табл}})$ =9,8. $|g_{_{\rm ЭКСП}}-g_{_{\rm Табл}}|=1.2<\Delta_g$. Полученное значение g отличается от табличного в пределах погрешности. Однако мне кажется, что погрешность 39% - это очень много.