

EGZAMIN MATURALNY W ROKU SZKOLNYM 2019/2020

MATEMATYKA

POZIOM PODSTAWOWY

FORMUŁA OD 2015

("NOWA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

ARKUSZ MMA-P1A1P-203

CZERWIEC 2020

Egzaminatorze!

- Oceniaj prace zdających uczciwie i z zaangażowaniem.
- Stosuj przyjęte zasady oceniania w sposób obiektywny. Pamiętaj, że każda merytorycznie poprawna odpowiedź, spełniająca warunki określone w poleceniu, musi zostać pozytywnie oceniona, nawet jeżeli nie została przewidziana w przykładowych odpowiedziach w zasadach oceniania.
- Konsultuj niejednoznaczne rozwiązania zadań z innymi egzaminatorami lub przewodniczącym zespołu egzaminatorów. W przypadku niemożności osiągnięcia wspólnego stanowiska, rozstrzygajcie na korzyść zdającego.
- Przyznając punkty, nie kieruj się emocjami.
- Informuj przewodniczącego o wszystkich nieprawidłowościach zaistniałych w trakcie oceniania, w tym podejrzeń o niesamodzielność w pisaniu pracy.

Wersja A

												~J		_											
Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	С	В	С	D	Α	В	С	Α	D	Α	В	В	D	В	D	Α	В	D	A	С	D	D	С	В	В

Zadanie 1. (0–1)						
Zadanie 2. (0–1)						
Zadanie 3. (0–1)	Zadanie 3. (0–1)					
Zadanie 4. (0–1)						
Zadanie 5. (0–1)						

Zadanie 6. (0–1)

Zadanie 7. (0–1)		
Zadanie 8. (0–1)		
Zadanie 9. (0–1)		
Zadanie 10. (0–1)		
Zadanie 11. (0–1)		

Zadanie 12. (0–1)		
Zadanie 13. (0–1)		
Zadanie 14. (0–1)		
Zadanie 15. (0–1)		
Zadanie 16. (0–1)		
Zadanie 17. (0–1)		

Zadanie 18. (0–1)						
Zadanie 19. (0–1)						
Zadanie 20. (0–1)						
Zadanie 21. (0–1)						
Zadanie 22. (0–1)						
Zadanie 23. (0–1)						

Zadanie 24. (0–1)			
	<u> </u>		
Zadanie 25. (0–1)			
	1	<u> </u>	
Zadanie 26. (0–2)	_		
Zadanie 20. (0–2) Rozwiąż nierówność (2 <i>x</i> + 5	5)(2, 1) > 0		
	$3)(3x-1)\geq 0$.		
Zadanie 26. (0–2)	1		

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania polega na wyznaczeniu pierwiastków trójmianu kwadratowego (2x+5)(3x-1).

Znajdujemy pierwiastki trójmianu kwadratowego $6x^2 + 13x - 5$:

• podajemy je bezpośrednio z postaci iloczynowej: $x_1 = -\frac{5}{2}$, $x_2 = \frac{1}{3}$

albo

• obliczamy wyróżnik tego trójmianu, a następnie stosujemy wzory na pierwiastki: $\Delta = 13^2 - 4 \cdot 6 \cdot (-5) = 289$, $\sqrt{\Delta} = 17$, $x_1 = \frac{-13 - 17}{12} = -\frac{5}{2}$, $x_2 = \frac{-13 + 17}{12} = \frac{1}{3}$.

Drugi etap rozwiązania polega na wyznaczeniu zbioru rozwiązań nierówności $(2x+5)(3x-1) \ge 0$.

Podajemy zbiór rozwiązań nierówności: $\left(-\infty, -\frac{5}{2}\right) \cup \left(\frac{1}{3}, +\infty\right)$ lub $x \in \left(-\infty, -\frac{5}{2}\right) \cup \left(\frac{1}{3}, +\infty\right)$ lub $(x \le -\frac{5}{2})$ lub $x \ge \frac{1}{3}$, np. odczytując go ze szkicu wykresu funkcji $f(x) = 6x^2 + 13x - 5$.

Schemat oceniania

- zrealizuje pierwszy etap rozwiązania i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = -\frac{5}{2}$, $x_2 = \frac{1}{3}$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,
 - zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 6x^2 + 13x 5$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

 realizując pierwszy etap błędnie wyznaczy pierwiastki (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

• poda zbiór rozwiązań nierówności: $\left(-\infty, -\frac{5}{2}\right) \cup \left(\frac{1}{3}, +\infty\right)$ lub $x \in \left(-\infty, -\frac{5}{2}\right) \cup \left(\frac{1}{3}, +\infty\right)$ lub $\left(x \le -\frac{5}{2}\right)$ lub $x \ge \frac{1}{3}$)

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi

- 1. Jeżeli zdający popełnia błąd w przepisywaniu nierówności, np. zapisze $(2x-5)(3x-1) \ge 0$, to może otrzymać **1 punkt**, jeśli konsekwentnie rozwiąże zadanie do końca.
- 2. Jeżeli zdający rozwiązuje układ nierówności $2x + 5 \ge 0$ i $3x 1 \ge 0$ i nie rozpatruje układu $2x + 5 \le 0$ i $3x 1 \le 0$, to może otrzymać **1 punkt** za poprawne wyznaczenie pierwiastków $-\frac{5}{2}$ i $\frac{1}{3}$.
- 3. Zapisanie przedziału domkniętego w nieskończoności traktujemy jako usterkę nie powodującą utraty punktów.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy lub poda pierwiastki trójmianu $x_1 = -\frac{5}{2}$ i $x_2 = \frac{1}{3}$ i zapisze, np., $x \in \left(-\infty, -\frac{5}{2}\right) \cup \left\langle -\frac{1}{3}, +\infty \right)$ popełniając tym samym błędy przy przepisywaniu pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \left(-\infty, \frac{1}{3}\right) \cup \left\langle -\frac{5}{2}, +\infty \right)$, to przyznajemy **2 punkty**.

Zadanie 27. (0-2)

Dane są liczby $a = 3\log_2 12 - \log_2 27$ i $b = (\sqrt{6} - \sqrt{7})(3\sqrt{6} + 3\sqrt{7})$. Wartością a - b jest liczba całkowita. Oblicz tę liczbę.

Zadanie 27. (0–2)

Rozwiązanie

Korzystając z własności działań na logarytmach otrzymujemy

$$a = 3\log_2 12 - \log_2 27 = 3\log_2 12 - 3\log_2 3 = 3(\log_2 12 - \log_2 3) = 3\log_2 4 = 6$$
.

Wykorzystując wzór skróconego mnożenia obliczamy liczbę b

$$b = (\sqrt{6} - \sqrt{7})(3\sqrt{6} + 3\sqrt{7}) = 3(\sqrt{6} - \sqrt{7})(\sqrt{6} + \sqrt{7}) = 3 \cdot (-1) = -3.$$

A zatem liczba a jest większa od liczby b o 9.

Schemat oceniania

Zadanie 28. (0-2)

Wykaż, że jeśli liczby rzeczywiste a i b spełniają warunek a < 4 i b < 4, to ab + 16 > 4a + 4b.

Zadanie 28. (0–2)

Rozwiązanie zadania

Nierówność ab+16 > 4a+4b możemy zapisać w postaci równoważnej

$$ab-4a-4b+16>0$$
,
 $a(b-4)-4(b-4)>0$,
 $(a-4)(b-4)>0$.

Ta nierówność jest prawdziwa, gdyż liczby a-4 i b-4 są ujemne, co z kolei wynika z założenia a<4 i b<4, zaś iloczyn dwóch liczb ujemnych jest liczbą dodatnią. To kończy dowód.

Schemat oceniania

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości a i b, to otrzymuje $\bf 0$ punktów za całe rozwiązanie.

Zadanie 29. (0-2)

Bok AB jest średnicą, a punkt S jest średkiem okręgu opisanego na trójkącie ABC. Punkt D leży na tym okręgu, a prosta SD jest symetralną boku BC trójkąta (zobacz rysunek).

Wykaż, że odcinek AD jest zawarty w dwusiecznej kąta CAB.

Zada	anie	29	(0_	2)
Lau	ame	47.	(U-	-2

Rozwiązanie (I sposób)

Punkt D leży na symetralnej odcinka BC, zatem odcinki DC i DB mają równe długości. Stąd wynika, że łuki DC i DB mają równe długości. Kąty CAD i BAD są kątami wpisanymi w okrąg, opartymi na łukach równej długości. Zatem kąty te mają równe miary, czyli odcinek AD jest zawarty w dwusiecznej kąta CAB.

Rozwiązanie (II sposób)

Bok *AB* trójkąta jest średnicą okręgu, zatem trójkąt *ABC* jest prostokątny, a kąt *BCA* jest prosty. Oznaczmy przez *K* punkt przecięcia odcinków *SD* i *BC*.

Kąt *BKS* jest prosty, jako kąt wyznaczony przez symetralną odcinka *BC*. Kąt *CBA* jest wspólnym kątem wewnętrznym trójkątów *ABC* i *SBK*. Jako trójkąty prostokątne, mające wspólny kąt wewnętrzny, trójkąty *ABC* i *SBK* są trójkątami podobnymi.

Zatem kąt BSK ma miarę α . Stąd wynika, że kąt rozwarty ASK ma miarę $180^{\circ} - \alpha$.

Kạt DAS, jako jeden z dwóch równych kątów w trójkącie równoramiennym ADS, ma miarę

$$\frac{180^{\circ} - \left(180^{\circ} - \alpha\right)}{2} = \frac{\alpha}{2}$$

Zatem kąt DAS stanowi połowę kąta CAB, czyli odcinek AD jest dwusieczną kata CAB.

Rozwiązanie (III sposób)

Niech $\alpha = | \angle BAD |$ i $\beta = | \angle CAD |$. Oznaczmy przez E punkt przecięcia odcinków AD i BC.

Trójkąt ASD jest równoramienny, więc $| \langle SAD | = | \langle SDA | = \alpha |$.

Bok AB trójkąta ABC jest średnicą okręgu opisanego na tym trójkącie, zatem trójkąt ABC jest prostokątny, a kąt ACB jest prosty. Wobec tego proste AC i SD są równoległe. Stąd z kolei wynika, że kąty naprzemianległe SDA i CAD są równe, czyli $\alpha = \beta$. To kończy dowód,

Schemat oceniania I, II i III sposobu rozwiązania

Zdający otrzymuje 1 p., gdy

- skorzysta z faktu, że symetralna jest zbiorem punktów równoodległych od końców odcinka, którego jest symetralną i zapisze, że łuki BD i CD mają taką samą długość albo
- uzasadni, że kąty *ABC* i *BSD* mają tę samą miarę albo
- uzasadni, że proste *AC* i *SD* są równoległe i na tym poprzestanie lub dalej popełnia błędy.

Zadanie 30. (0-2)

Dany jest trzywyrazowy ciąg (x+2,4x+2,x+11). Oblicz te wszystkie wartości x, dla których ciąg ten jest geometryczny.

Zadanie 30. (0–2)

Rozwiązanie (I sposób)

Z własności ciągu geometrycznego otrzymujemy równanie

$$(4x+2)^{2} = (x+2)(x+11),$$

$$16x^{2} + 16x + 4 = x^{2} + 13x + 22,$$

$$15x^{2} + 3x - 18 = 0,$$

$$5x^{2} + x - 6 = 0,$$

$$(x-1)(5x+6) = 0,$$

$$x = 1 \text{ lub } x = -\frac{6}{5}.$$

Dla x = 1 otrzymujemy ciąg (3,6,12) geometryczny o ilorazie 2, zaś dla $x = -\frac{6}{5}$ otrzymujemy ciąg $(\frac{4}{5}, -\frac{14}{5}, \frac{49}{5})$ geometryczny o ilorazie $-\frac{7}{2}$.

Odp. Dla x = 1 oraz dla $x = -\frac{6}{5}$ otrzymujemy ciąg geometryczny.

Rozwiązanie (II sposób)

Niech q oznacza iloraz ciągu geometrycznego. Wtedy ze wzoru na n-ty wyraz ciągu geometrycznego otrzymujemy układ równań

$$4x+2=(x+2)q$$
 i $x+11=(x+2)q^2$.

Zauważmy, że dla x = -2 otrzymujemy ciąg (0, -6, 9), który nie jest geometryczny. Zatem $x \neq -2$. Wtedy mamy

$$q = \frac{4x+2}{x+2}$$
 i $x+11 = (x+2) \cdot \left(\frac{4x+2}{x+2}\right)^2$

Stad

$$x+11 = \frac{(4x+2)^2}{x+2},$$

$$(x+2)(x+11) = (4x+2)^2,$$

$$16x^2 + 16x + 4 = x^2 + 13x + 22,$$

$$15x^2 + 3x - 18 = 0,$$

$$5x^2 + x - 6 = 0,$$

$$(x-1)(5x+6) = 0,$$

$$x = 1 \text{ lub } x = -\frac{6}{5}.$$

Dla x=1 otrzymujemy ciąg (3,6,12) geometryczny o ilorazie 2, zaś dla $x=-\frac{6}{5}$ otrzymujemy ciąg $(\frac{4}{5},-\frac{14}{5},\frac{49}{5})$ geometryczny o ilorazie $-\frac{7}{2}$.

Odp. Dla x = 1 oraz dla $x = -\frac{6}{5}$ otrzymujemy ciąg geometryczny.

Schemat oceniania rozwiązania

• równanie z niewiadomą x wynikające z własności ciągu geometrycznego, np.: $(4x+2)^2 = (x+2)(x+11)$

albo

• układ dwóch równań z dwiema niewiadomymi, z których jedną z niewiadomych jest x, np.: 4x+2=(x+2)q i $x+11=(x+2)q^2$.

Uwagi

- 1. Jeżeli zdający odgadnie jedną z szukanych wartości x = 1 i zapisze dla tej wartości ciąg geometryczny (3, 6, 12), to otrzymuje **1 punkt**.
- 2. Jeśli zdający zapisze warunek w postaci ilorazowej, ale nie zapisze warunków $x \neq -2$, $x \neq -\frac{1}{2}$ i rozwiąże zadanie do końca, to otrzymuje **2 punkty**.

Zadanie 31. (0–2)

Prosta k jest nachylona do osi Ox pod kątem ostrym α , takim, że $\cos \alpha = \frac{\sqrt{3}}{3}$. Wyznacz współczynnik kierunkowy tej prostej.

Rozwiązanie

Współczynnik kierunkowy prostej jest równy tangensowi kąta α nachylenia prostej k do osi Ox.

Korzystamy z jedynki trygonometrycznej i wyznaczamy $\sin \alpha$.

$$\cos^{2} \alpha + \sin^{2} \alpha = 1$$

$$\sin^{2} \alpha = \frac{2}{3}$$

$$\sin \alpha = \frac{\sqrt{6}}{3} \text{ lub } \sin \alpha = -\frac{\sqrt{6}}{3}$$

Ponieważ z założenia α jest kątem ostrym, więc $\sin \alpha = \frac{\sqrt{6}}{3}$.

Zatem
$$\operatorname{tg}\alpha = \frac{\sqrt{6}}{3} \cdot \left(\frac{3}{\sqrt{3}}\right) = \sqrt{2}$$
.

Współczynnik kierunkowy prostej k jest równy $\sqrt{2}$.

Schemat oceniania	
Zdający otrzymuje	1 p.
gdy wyznaczy $\sin \alpha = \frac{\sqrt{6}}{3}$ i na tym poprzestanie lub dalej popełni błędy.	_
Zdający otrzymuje	2 p.
gdy wyznaczy współczynnik kierunkowy prostej k : $(\sqrt{2})$.	

<u>Uwaga</u> Akceptujemy rozwiązania na przybliżeniach.

Zadanie 31. (0-2)

Zadanie 32. (0-4)

Punkty A = (1,-1), B = (6,1), C = (7,5) i D = (2,4) są wierzchołkami czworokąta ABCD. Oblicz współrzędne punktu przecięcia przekątnych tego czworokąta.

Rozwiązanie

Niech *M* oznacza punkt przecięcia przekątnych czworokąta *ABCD*. Współczynnik kierunkowy prostej *BD* jest równy

$$a_{BD} = \frac{4-1}{2-6} = -\frac{3}{4}$$
.

Punkt D należy do prostej BD o równaniu $y = -\frac{3}{4}x + b$.

Zatem
$$4 = -\frac{3}{4} \cdot 2 + b$$
.

Czyli
$$b = \frac{11}{2}$$
.

Prosta BD ma równanie:

$$y = -\frac{3}{4}x + \frac{11}{2}$$
.

Współczynnik kierunkowy prostej AC jest równy

$$a_{AC} = \frac{5+1}{7-1} = 1$$
.

Punkt A należy do prostej AC o równaniu y = x + b.

Zatem -1 = 1 + b.

Czyli b = -2.

Prosta AC ma równanie:

$$y = x - 2$$
.

Punkt *M* jest punktem przecięcia prostych *AC* i *BD*, więc jego współrzędne obliczymy, rozwiązując układ równań

$$y = x - 2 i y = -\frac{3}{4}x + \frac{11}{2}$$
.

Stąd otrzymujemy

$$x-2 = -\frac{3}{4}x + \frac{11}{2},$$
$$\frac{7}{4}x = \frac{15}{2},$$
$$x = \frac{30}{7} = 4\frac{2}{7}.$$

Zatem $y = 4\frac{2}{7} - 2 = 2\frac{2}{7}$, czyli $M = (4\frac{2}{7}, 2\frac{2}{7})$.

Schemat oceniania

• obliczy lub poda współczynnik kierunkowy prostej *BD*: $a = -\frac{3}{4}$

albo

• obliczy lub poda współczynnik kierunkowy prostej AC: $a_1 = 1$ i na tym poprzestanie lub dalej popełnia błędy.

• zapisze równanie prostej *BD*, np.: $y = -\frac{3}{4}x + \frac{11}{2}$

albo

• zapisze równanie prostej AC, np.: y = x - 2 i na tym poprzestanie lub dalej popełnia błędy.

$$y = x - 2 i y = -\frac{3}{4}x + \frac{11}{2}$$
.

Rozwiązanie pełne 4 p.

Zdający obliczy współrzędne punktu przecięcia przekątnych czworokąta: $M = \left(4\frac{2}{7}, 2\frac{2}{7}\right)$.

Uwaga

Jeżeli zdający realizuje strategię rozwiązania i popełnia jedynie błędy rachunkowe, to może otrzymać **3 punkty**, o ile popełnione błędy nie ułatwiają rozważanego zagadnienia na żadnym etapie rozwiązania.

Zadanie 32. (0–4)

Zadanie 33. (0-4)

Rzucamy 4 razy symetryczną monetą. Oblicz prawdopodobieństwo zdarzenia *A*, polegającego na tym, że liczba otrzymanych orłów będzie różna od liczby otrzymanych reszek.

Rozwiązanie

Sposób I

Zdarzeniami elementarnymi są wszystkie czterowyrazowe ciągi utworzone ze zbioru dwuelementowego.

$$\Omega = \{ (o,o,o,o), (r,o,o,o), (o,r,o,o), (o,o,r,o), (o,o,r,o), (o,o,o,r), (r,r,o,o), (r,o,r,o), (r,o,o,r), (o,r,r,o), (o,r,r,o), (o,r,r,o), (r,r,r,o), (r,r,o,r), (r,r,r,o), (r,r,o,r), (r,r,r,o), (r,r,r,o), (r,r,o,r), (r,r,r,o), (r,r,r,o), (r,r,o,r), (r,r,r,o), (r,r,r,o), (r,r,o,r,o), (r,r,o,o), (r,r,o,o),$$

Liczba wszystkich zdarzeń elementarnych jest równa 16.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(o,o,o,o),(r,o,o,o),(o,r,o,o),(o,o,r,o),(o,o,o,r),$$

 $(r,r,r,o),(r,r,o,r),(r,o,r,r),(o,r,r,r),(r,r,r,r)$
Zatem $|A| = 10$ i stąd $P(A) = \frac{10}{16} = \frac{5}{8}$.

Sposób II

Zdarzeniami elementarnymi są wszystkie czterowyrazowe ciągi utworzone ze zbioru dwuelementowego.

$$\Omega = \{ (o,o,o,o), (r,o,o,o), (o,r,o,o), (o,o,r,o), (o,o,r,o), (r,o,o,o), (r,o,o,r), (r,r,o), (r,r,o), (r,o,o,r), (o,r,r,o), (o,r,r,o), (r,r,r,o), (r,r,o,r), (r,r,r,r), (r,r,r,r) \}$$

Liczba wszystkich zdarzeń elementarnych jest równa 16.

Zdarzenie A' polega na wyrzuceniu tej samej liczby orłów i reszek, zatem sprzyjają mu następujące zdarzenia elementarne:

$$(o,o,r,r),(r,r,o,o),(o,r,o,r),(r,o,r,o),(r,o,o,r),(o,r,r,o).$$

Zatem
$$|A'| = 10$$
 i stąd $P(A) = 1 - P(A') = 1 - \frac{6}{16} = \frac{5}{8}$.

Uwaga

Zbiory: Ω , A i A' mogą być zapisane za pomocą drzewa.

Schemat oceniania

- obliczy liczbę wszystkich zdarzeń elementarnych $|\Omega| = 16$
- narysuje pełne drzewo z 16 gałęziami albo
- wypisze wszystkie zdarzenia elementarne lub wszystkie zdarzenia elementarne sprzyjające zdarzeniu A lub wszystkie zdarzenia elementarne sprzyjające zdarzeniu A' albo

i na tym zakończy lub dalej popełnia błędy.

• obliczy liczbę wszystkich zdarzeń elementarnych $|\Omega|$ = 16 oraz obliczy liczbę wszystkich zdarzeń elementarnych w których liczba orłów jest większa od liczby reszek

albo

- obliczy liczbę wszystkich zdarzeń elementarnych $|\Omega|$ = 16 oraz obliczy liczbę wszystkich zdarzeń elementarnych w których liczba orłów jest mniejsza od liczby reszek albo
- obliczy liczbę wszystkich zdarzeń elementarnych, w których liczba orłów jest różna od liczby reszek |A|=10 albo
- obliczy liczbę wszystkich zdarzeń elementarnych oraz liczbę zdarzeń sprzyjających zdarzeniu przeciwnemu ($|\Omega|=16$, |A'|=6) albo
- zaznaczy na drzewie 10 gałęzi ilustrujących zdarzenie A lub 6 gałęzi ilustrujących zdarzenie A'.

i na tym zakończy lub dalej popełnia błędy.

Pokonanie zasadniczych trudności zadania......3 p.

• Zdający obliczy liczbę wszystkich zdarzeń elementarnych $|\Omega|$ = 16 oraz obliczy liczbę wszystkich zdarzeń elementarnych, w których liczba orłów jest różna od liczby reszek |A| = 10 albo

 zaznaczy na drzewie 10 gałęzi ilustrujących zdarzenie A lub 6 gałęzi ilustrujących zdarzenie przeciwne oraz na co najmniej jednej gałęzi każdego etapu zaznaczy
prawdopodobieństwo $\frac{1}{2}$
albo
• obliczy prawdopodobieństwo zdarzenia przeciwnego $P(A') = \frac{3}{8}$
8
Rozwiązanie pełne 4 p.
Zdający obliczy prawdopodobieństwo zdarzenia A: $P(A) = \frac{5}{8}$.
 Uwagi 1. Jeżeli zdający pomija przypadki (o, o, o, o) lub (r, r, r, r), to może otrzymać co najwyżej 2 punkty. 2. Jeżeli zdający obliczy Ω = 16 i pominie jedno zdarzenie elementarne sprzyjające
zdarzeniu A i nie wypisze niepoprawnego zdarzenia oraz rozwiąże zadanie do końca, to może otrzymać co najwyżej 2 punkty .
3. Jeżeli zdający zapisze tylko $ \Omega = 16$, $ A = 10$, $P(A) = \frac{5}{8}$ bez uzasadnienia, to otrzymuje 1
punkt.
Zadanie 33. (0–4)
Zadanie 34. (0–5) W ostrosłupie prawidłowym sześciokątnym, którego krawędź podstawy ma długość 8, ściana boczna jest nachylona do płaszczyzny podstawy po kątem $\alpha=60^\circ$. Oblicz cosinus kąta między
krawędzią boczną a płaszczyzną podstawy tego ostrosłupa.
Zadanie 34. (0–5)
Zutume 5-16 (V-5)

Rozwiązanie

Wprowadzamy oznaczenia jak na rysunku.

Odcinek PR jest wysokością trójkąta równobocznego o boku a=8, zatem

$$|PR| = \frac{a\sqrt{3}}{2} = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$$
.

Z trójkąta prostokątnego SPR, w którym kąty mają miary 90°, 60°, 30°, obliczamy długość odcinka SR, np. $\frac{|PR|}{|SR|} = \cos 60^{\circ}$. Zatem $|SR| = 8\sqrt{3}$.

Z twierdzenia Pitagorasa dla trójkąta SRB, który jest prostokątny, obliczamy długość krawędzi bocznej.

$$|SB|^2 = |SR|^2 + |RB|^2$$
$$|SB|^2 = (8\sqrt{3})^2 + 4^2$$
$$|SB|^2 = 192 + 16$$

$$\left|SB\right|^2 = 208$$

Zatem $|SB| = \sqrt{208} = 4\sqrt{13}$

Z trójkąta *SPB*, który jest prostokątny, otrzymujemy $\cos \beta = \frac{|BP|}{|SB|} = \frac{8}{4\sqrt{13}} = \frac{2\sqrt{13}}{13}$.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania 1 p. Zdający

prawidłowo zaznaczy na rysunku kat nachylenia ściany bocznej do płaszczyzny podstawy

albo

• obliczy długość odcinka $|PR| = \frac{a\sqrt{3}}{2} = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$.

• obliczy wysokość ściany bocznej (długość odcinka SR, np. $\frac{|PR|}{|SR|} = \cos 60^{\circ}$): $|SR| = 8\sqrt{3}$

albo

• obliczy wysokość ostrosłupa (długość odcinka SP, np. $\frac{|SP|}{|RP|} = \text{tg}60^{\circ}$): |SP| = 12

i na tym zakończy lub dalej popełni błędy.

- obliczy długość krawędzi bocznej ostrosłupa $|SB| = \sqrt{208} = 4\sqrt{13}$ albo
- zapisze, że $tg\beta = \frac{\sqrt{1-\cos^2\beta}}{\cos\beta}$, gdzie β jest kątem między krawędzią boczną i płaszczyzną podstawy i na tym zakończy lub dalej popełni błędy.

Zdający obliczy długość krawędzi bocznej ostrosłupa $|SB| = \sqrt{208} = 4\sqrt{13}$.

• zaznaczy kąt między krawędzią boczną a płaszczyzną podstawy i obliczy cosinus tego kąta $\cos\beta=\frac{2\sqrt{13}}{13}$

albo

• prawidłowo opisze stosunek odpowiednich boków w trójkącie ΔSPB , $\cos\beta = \frac{|BP|}{|SB|} = \frac{8}{4\sqrt{13}} = \frac{2\sqrt{13}}{13}$.

Uwaga

Jeżeli uczeń rozważa graniastosłup lub w ostrosłupie błędnie interpretuje kąty otrzymuje **0 punktów.**