SEOUL NATIONAL UNIVERSITY

LECTURE NOTE

Introduction to Stochastic Differential Equations

Lecture by Seo Insuk Notes taken by Lee Youngjae

Chapter o

Introduction

E-mail: *insuk.seo@snu.ac.kr*, 27-212 Grading

- Mid-terms 1 (15%, 10/10 or 17)
- Mid-terms 2 (15%, 11/7)
- Fianl-term (40%)
- Assignment (20%, 8-10 times)
- Attendance (10%, absent: -2%, late: -1%)

Let X be a standard normal random variable in \mathbb{R} . i.e., $\mathbb{P}[X \in [a,b]] = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. (Central Limit Theorem) If $x_1, x_2, \dots, x_n \in X$, $E(x_i) = m$, $Var(x_i) = \sigma^2$, then

$$\frac{\frac{x_1-m}{\sigma} + \frac{x_2-m}{\sigma} + \dots + \frac{x_n-m}{\sigma}}{\sqrt{n}} \to X$$

In this class, we study dynamic version of this theorem. If $(W_t)_{t\geq 0}$ be a fluctuation, then $(W_t)_{t\geq 0}$ be a random variable in C[0,T]

Example. $\frac{dX_t}{dt} = rX_t; dX_1 = rX_t dt$. Then, $X_t = X_0 e^{rt}$ (unrisky assets, bank) $dX_t = rX_t dt + \sigma X_t dW_t$, σ : volatility (risky assets, stock)

We will study:

- 1. Probability Space
- 2. Random Variable
- 3. Expectation

Textbooks:

- 1. Stochastic Calculus for Finance II (Shreve), covering chapter 1-3 or 4
- 2. Introduction to Stochastic Integration (Hui-Hsiung Kuo)

Chapter 1

Probability Space

1.1 Measure

There are three elements consisting probability space:

- *S*: Sample space
- \mathcal{E} : Family of events $E \subseteq S$ (σ -algebra in measure theory)
- \mathbb{P} : probability $\Rightarrow \mathbb{P}(E)$ is defined for all $E \subseteq \mathcal{E}$ (μ with $\mu(S) = 1$)

Example.

- 1. Toss a coin twice (H for Head, T for Tail) Then, $S = \{HH, HT, TT, TT\}$
- 2. Uniform random variable in $[0,1]^3$ Then, $S = [0,1]^3$. If $E = [0,\frac{1}{2}]^3$, then $\mathbb{P}(E) = Vol(E) = \frac{1}{8}$

How to define \mathcal{E} ?

In example 2, let $\mathcal{E}=$ family of all subsets of $[0,1]^3$ naively. But Banach-Tarski Paradox says there are disjoint sets E,F with $\mathbb{P}(E\cup F)\neq \mathbb{P}(E)+\mathbb{P}(F)$ in this \mathcal{E} . Therefore we cannot naively set \mathcal{E} (Use measure theory)

In example 1, suppose that we cannot see the second flip. If $\{HH\} \notin \mathcal{E}$ and $\{HT, HH\} \in \mathcal{E}$, then $\mathcal{E} = \{\phi, \{HH, HT\}, \{TH, TT\}, \{HH, HT, TH, TT\}\}$

Definition 1.1 (Measure)

Let Ω be non-empty set and ${\mathcal F}$ be family of subsets of Ω with

1.
$$\phi \in \mathcal{F}$$

2.
$$A \in \mathcal{F} \Rightarrow A^{C} \in \mathcal{F}$$

3.
$$A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$
.

We say \mathcal{F} as σ -albegra or σ -field, $A \subseteq \mathcal{F}$ as measurable, and Ω as measurable space.

Exercises.

- 1) $\Omega \in F$
- 2) $A_1, A_2, \dots \in \mathcal{F}$, then $A_1 \cap A_2 \dots \in \mathcal{F}$
- 3) $A_1, A_2, \dots \in A_n \in \mathcal{F}$, then $A_1 \cup \dots \cup A_n, A_1 \cap \dots \cap A_n \in \mathcal{F}$.
- 4) $A, B \in \mathcal{F}$, then $A B \in \mathcal{F}$

Definition 1.2 (Topological Space)

(See Rudin: *Real and Complex Analysis, Chapter 1.*) Let Θ be non-empty set and τ be family of subsets of Θ with

- 1. $\phi, \Theta \in \tau$
- 2. $V_1, \dots V_n \in \tau \Rightarrow V_1 \cap \dots \cap V_n \in \tau$
- 3. $V_{\alpha} \in \tau \ \forall \alpha \in I \Rightarrow \bigcup_{\alpha \in I} V_{\alpha} \in \tau$.

We say $V \in \tau$ be open set, and (Θ, τ) be topological space.

Definition 1.3 (Measurable Function)

$$f:(\Omega,\mathcal{F}) o (\Theta, au)$$
 is measurable if $f^{-1}(V) \in \mathcal{F} \ \ orall V \in au$

Definition 1.4 (Positive Measure)

Let Ω be non-empty set and \mathcal{F} be σ -algebra. Then $\mu : \mathcal{F} \to [0, \infty]$ is called **measurable** if

- 1. A_1, A_2, \cdots : disjoint members of $\mathcal{F} \Rightarrow \mu(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} \mu(A_i)$
- 2. $\mu(A) < \infty$ for some $A \in \mathcal{F}$,

and $(\Omega, \mathcal{F}, \mu)$ is called **measrue space**.

Definition 1.5 (probability space, random variable)

- 1. $(\Omega, \mathcal{F}, \mathbb{P})$ is called as **probability space** if $\mathbb{P}(\Omega) = 1$.
- 2. *X* is called as **random varaible** if it is a function from $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathbb{R}

Next Class

- Borel sets on \mathbb{R} or \mathbb{R}^d
- Lebesgue Measure
- Lebesgue Integral (Define Expectation of random variable)

Last class, we define a sample space Ω , a σ -algebra \mathcal{F} , and a (positive) measure $\mu: \mathcal{F} \to [0, \infty]$.

Exercises.

•
$$A_1 \subseteq A_2 \subseteq \cdots \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i = \lim_{n \to \infty} \mu(A_n)$$

•
$$A_1 \subseteq A_2 \subseteq \cdots$$
, $\mu(A_1) < \infty \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i = \lim_{n \to \infty} \mu(A_n)$

Theorem 1.6 (Rudin 1.10)

Let \mathcal{F}_0 be a collection of subset of Ω . Then, $\exists ! \mathcal{F}^*$ minimal σ -algebra containing \mathcal{F}_0 .

Proof. Let $\{\mathcal{F}_{\alpha}, \alpha \in I\}$ be family of *σ*-algebra containing \mathcal{F}_0 . Then, $\mathcal{F}^* = \bigcap_{\alpha \in I} F_{\alpha}$ satisfies the three condition: 1) contain \mathcal{F}_0 2) *σ*-algebra 3) minimal (trivial, $\mathcal{F}^* \subseteq \mathcal{F}_{\alpha}$)

Definition 1.7 (Borel measurable)

 \mathcal{B} is called a **Borel** σ -algebra on topological space (Θ, τ) if \mathcal{B} is minimal σ -algebra containing τ , and \mathcal{B} is called **Borel measurable** if $\mathcal{B} \in \mathcal{B}$.

Remark (Completion of measure space, Rudin 1.15).

Consider an extension $(\Omega, \mathcal{F}, \mu) \to (\Omega, \overline{\mathcal{F}}, \mu)$ where

1.
$$\overline{\mathcal{F}} = \{A \cup N : A \in \mathcal{F}, N \subseteq A_0 \subseteq \mathcal{F}, \mu(A_0) = 0\}$$

2.
$$\mu(A \cup N) = \mu(A)$$

Then, (Check!)

1. (well-definedness)
$$A_1 \cup N_1 = A_2 \cup N_2 \Rightarrow \mu(A_1) = \mu(A_2)$$

2.
$$\mu : \overline{\mathcal{F}}$$
 is σ -algebra.

3.
$$\mu: \overline{\mathcal{F}} \to [0, \infty]$$
 is a measure

Example.

1) R

$$\mathcal{F}_{0} = \tau \xrightarrow{1.10} \mathcal{B} \xrightarrow{\text{completion}} \overline{\mathcal{B}}$$

$$\mathcal{L} \xrightarrow{\text{Rudin CH}_{2}} \mathcal{L} \xrightarrow{\text{completion}} \mathcal{L}$$

2) $C[0,T] = \Omega = \{f; f : [0,T] \to \mathbb{R}, \text{continuous} \}.$ Define $\mathcal{F}_0 = \{\bigcup_{t_1,t_2,\cdots,t_k} (A_1,A_2,\cdots,A_k) : 0 \le t_1 < t_2 < \cdots < t_k \le T; A_1,\cdots A_k \in \overline{\mathcal{B}} \}.$ We call $\{f \in C[0,T] : f(t_1) \in A_1, f(t_2) \in A_2,\cdots,f(t_k) \in A_k \}$ as **cylindrical set**. Consider

$$\mathcal{F}_0 \stackrel{1.10}{\longrightarrow} \quad \mathcal{B} \stackrel{completion}{\longrightarrow} \quad \overline{\mathcal{B}}$$

$$\mathbb{P}_{BM} \stackrel{KET}{\longrightarrow} \quad \mathbb{P}_{BM} \stackrel{completion}{\longrightarrow} \quad \mathbb{P}_{BM}^*$$

(KET refers Kolmogorov's Extension Thm)

1.2 Random variable

Definition 1.8

 $f: \Omega \to \mathbb{R}$ is measurable if $f^{-1}(V) \in \mathcal{F}$ for any open set $V \subseteq \mathbb{R}$.

Remark. $\mathcal{B}(\mathbb{R})$ = Borel σ -algebra in \mathbb{R} .

Remark. If f: measurable, then $f^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(\mathbb{R})$.

Proof. Let $G = \{A \subseteq \mathbb{R} : f^{-1}(A) \in \mathcal{F}\}$. Then, $\tau \subseteq G$, $G : \sigma$ -algebra (check!), hence $\mathcal{B}(\mathbb{R}) \subseteq G$.

Definition 1.9

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space if $(\mathbb{P}(\Omega) = 1)$.
- *X* is **random variable** if $X : \Omega \to \mathbb{R}$ is measruable.

Example.

1. Toss a coin Twice.

 $\Omega = \{HH, HT, TH, TT\}, \mathcal{F} = 2^{\Omega} = \{ \text{ all subsets of } \Omega \}, \mathbb{P}(A) = \frac{1}{4}|A|, \ A \in \mathcal{F}.$ Then, X = # of H's is random variable with X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 1.

2. Uniform random variable in [0,1]

 $\Omega = [0,1], \mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq [0,1]\}, \mathbb{P}(B) = \mathcal{L}(B) \ (\mathbb{P}([0,1]) = \mathcal{L}([0,1]) = 1).$ Then, $X : [0,1] \to \mathbb{R}$ with X(x) = x be a (uniform) random variable in [0,1].

Remark. \mathcal{L} : Lebesgue measrue on \mathbb{R} . i.e., $\mathcal{L}(a,b)=b-a$. Then, (a)=0 $(\because \{a\}=\bigcap_{i=1}^{\infty}(a-\frac{1}{n},a+\frac{1}{n})\Rightarrow \mathcal{L}(\{a\})=\lim_{n\to}\mathcal{L}((a-\frac{1}{n},a+\frac{1}{n}))=0)$ Similarly, $\mathcal{L}([a,b])=\mathcal{L}([a,b))=\mathcal{L}((a,b])=b-a$, $\mathcal{L}(\mathbb{Q})=\sum_{q\in\mathbb{Q}}\mathcal{L}(\{q\})=0$.

Return to uniform random variable,

$$\mathbb{P}[X \in (a,b)] = \mathbb{P}[\{x : X(x) \in (a,b)\}] = \mathbb{P}[(a,b)] = b - a.$$

Definition 1.10 (Distribution measure on *X*)

X is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$. μ_X is a **distribution measure on** *X* if μ_X is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$\mu_X(B) = \mathbb{P}[X \in B] \ \forall B \in \mathcal{B}(\mathbb{R}) = \mathbb{P}[\{\omega : X(\omega) \in B\}] = \mathbb{P}[X^{-1}(B)]$$

Definition 1.11 (Probability density function)

f is a **probability density function** of *X* if $\mu_X((a,b)) = \int_a^b f(x) dx$

Remark. Radon-Nikodym-Lebesgue decomposition implies that any measure can be decomposed as density part and non-density part.

Example (Standard Normal random variable).

Let
$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
. Define $F: (0,1) \to \mathbb{R}$ by $F(x) = N^{-1}(x)$ for $N(X) = \int_{-\infty}^{x} \phi(y) dy$.
Let $\Omega = (0,1)$, $\mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq (0,1)\}$, $\mathbb{P}(A) = \mathcal{L}(A) : A \in \mathcal{B}(\mathbb{R})$.

Then, $Y : \Omega \ni x \mapsto F(x) \in \mathbb{R}$ is a random variable with

$$\mathbb{P}[Y \in (a,b)] = \mathcal{P}[\{x : Y(x) \in (a,b)\}]
= \mathbb{P}[\{x \in (N(a), N(b))\}]
= N(b) - N(a) = \int_{a}^{b} \phi(x) dx,$$

and a density function is ϕ .