ME5005/ME4002 DESIGN FOR MANUFACTURE PRODUCTION ENGINEERING

Dr. Bill Wright bill.wright@ucc.ie Room 2.14 Tel: 490 2213 Lecture 5: Casting mechanics

Design for Manufacture: Lecture 5

Energy required for casting

Total energy E required for casting:

$$E = \rho M C_S(T_m - T_o) + H_t + C_L(T_P - T_m)]$$

- · Approximate value of E only as:
- C_s and C_L not constant, vary with temperature
- $\, \rho$ different for solid and liquid phases, varies with temperature
- H_t difficult to calculate for alloys with a $\frac{L_{
 m CMS}}{}$ freezing range
 - Does not include heat loss to ผมบายผม ent
- Gives an indication as to the size/cost of the furnace required

Design for Manufacture: Lecture 5

9

Heating for casting

- All metals to be cast will require energy to:
- Raise the temperature of the raw material to the

med ting pount

- Change phase from solid to liquid (प्रकट्ट भू किर्ग्य) – Increase molten metal temperature to क्रिया कर्
 - decrease in তুল্ল with temperature
- Allows molten metal to flow easily into extremities
- Difference between pouring and freezing temperature known as superheat
 - The rate at which this energy is removed will effect the final microstructure of the casting

Design for Manufacture: Lecture 5

7

Bernoulli's equation for pouring

$$h_1 + \frac{P_1}{\rho} + \frac{V_1^2}{2g} + F_1 = h_2 + \frac{P_2}{\rho} + \frac{V_2^2}{2g} + F_2$$

- where.
- $-h_1$ is the head (height difference), in m
 - $-P_1$ is the pressure on the liquid, in Pa
- · injection pressure or atmospheric pressure
 - $-\rho$ is the molten metal density, in kg.m⁻²
 - g is gravity, in m.s-2
- v is the flow velocity, in m.s-1
- F is the head loss due to friction, in m

Design for Manufacture: Lecture 5

Simplification of Bernoulli's eqn.

- Ignoring friction (not possible in same)
 - Assuming constant pressure (e.g. atmospheric)

$$h_1 + \frac{V_1^2}{2g} = h_2 + \frac{V_2^2}{2g}$$

Assuming an work pressible liquid, the volumetric flow rate Q will be constant:

 $V = \sqrt{2gh}$

Hence:

Mould fill time (MFT)

- Let point 1 be the top of the runner/sprue, and point 2 the base: assume $v_1 = 0$
 - Make point 2 the reference plane, hence $h_2 = 0$
 - h_{τ} is then the height of the _

$$h_1 = \frac{V_2^2}{2g}$$

Design for Manufacture: Lecture 5

Solidification - pure metals

- Pure metals and entection alloys solidify (freeze) at released into surrounding a constant temperature Latent heat of fusion mould
- mould solidifies rapidly Metal in contact with
- Metal in centre of casting cools more slowly
- Produces a characteristic Structure in the cource

Design for Manufacture: Lecture 5

as ν varies with h_1 , the sprue must be *tapered* to prevent \overrightarrow{COM} being aspirated into the liquid The mould fill time may then be estimated: Mould fill time should be occurrence of misruns and cold shuts Design for Manufacture: Lecture 5 $MFT = \frac{V}{Q}$

to reduce

Solidification - alloys

- Most other alloys freeze over a temperature ಗಬ್ಬೂಲ್ಲ
 - Solid rich in one constituent Alloy touching the mould solidifies ਜੁੰਨਤਹ
 - solid to form has different composition Last

Microsegregation occurs

Macrosegregation occurs within individual grains across the casting

Design for Manufacture: Lecture 5

Planar growth

rates that allow <u>ಎಟ್ಟ್ ಬಿಸ್</u> May occur at slow cooling

- Growth direction

Protuberance

Solid

- solid to the surroundings Latent heat of fusion H_f conducts through the
- the freezing temperature by liquid metal ಎಓಲುಲ develops is surrounded Any protuberance that

reczing temperature

1 emperature

Distance from solid-liquid interface

growing until the planar interface <u>cateໃນຈັນ</u>ດ Protuberance stops

Design for Manufacture: Lecture 5

Dendritic segregation

- First solid to form is $\frac{f \in CL}{C}$ one constituent
- Adjacent liquid layer has deficient composition, C_L
 - Liquid bulk has average composition, C_{AV}
- Adjacent liquid layer @ C_L must solidification can occur
 - Dendrites break through this layer and allow liquid in the bulk to to <u>جي احتجا</u> Liquid @ C_L trapped between dendrite branches
 - Constitutional segregation May lead to porce

Dendritic growth

During rapid cooling it is hard for crystals to form

- Growth direction

- First solids to form (embryos) are - poor nacleation
 - small and unstable
- Critical Cadlaco
 Re-melting occurs requiring energy from the surrounding liquid green in NDERCOOLING

Liquid

Solid

Latent heat of fusion conducts into freezing temperature the undercooled_

Distance from solid-liquid interface

- Non-planar growth results
- Tree-like DENDR/TES

Design for Manufacture: Lecture 5

9

Casting shrinkage

Initial Solicification at mold wall

Reduction in level due to liquid confraction

Volumetric contraction

	Solidification shrinkage (%)	Solid thermal confraction (%)	Total
Aluminium (pure)	7.0	5.6	12.6
Aluminium (alloy)	7.0	5.0	12.0
Cast iron	1.8	3.0	4.8
Cast iron, high carbon	0.0	3.0	3.0
Cast steel, low carbon	3.0	7.2	10.2
Copper	4.5	7.5	12.0
Bronze	5.5	6.0	11.5
, .	Design for Manufacture: Lecture 5	Lecture 5	13

Shrinkage types

- Unidirectional shrinkage due to thermal <u>contrection</u>
 - Solidification shrinkage produces:
- Cavity defects (enclosed mould/geometry)
 - Pipe defects (open mould)
- Cavities must be eliminated by good design Pipes may be contained in the
 - _ of molten metal - Adequate Reed

Casting

13

Design for Manufacture. Lecture 5

Riser

- A riser is added to the pattern/mould design
- Supply of extra material to ensure correct final geometry of component
 - May be any shape
- Simple Editional C geometi
- shrinkage cavity (pipe) occurs Designed so that the
 - Must be machined off in the Ruser
- Post-processing cost Material wastage

Design for Manufacture: Lecture 5

7

Solidification sequence

- To prevent shrinkage cavities, a feeding path must exist from the extremities of the mould back to the ______
- in which component sections solidify must be known - ader
- − Extremities must solidify Fast
- supply of molten metal to counteract shrinkage to maintain Riser must solidify_
 - Use Chvorinov's rule to calculate solidification

Chvorinov's rule

$$t_{S} = B \left(\frac{V}{A} \right)^{n}$$
 (usually $n = 2$)

- for the casting • $t_{\rm S}$ is the solidification $\mathcal{L}_{\mathcal{MS}}$
- Mould constant B dictates the rate of heat transfer through the mould and depends on:
- Mould material (sand, metal dies)
- Thermal properties of cast metal (solidified layers)
 - Pouring temperature
 - Ambient condition's
- B must be determined experimentally

Design for Manufacture: Lecture 5

Casting calculations

- Estimate minimum volume of _____
- Use 12% of total volume if metal not specified
 - Divide component into simple primitives - Roughly equal size and shape if possible
- Calculate modulus for each promitive
- Determine solidification sequence and feed path
 - − Lowest modulus solidifies μ
- For one primitive A to feed another primitive B:

 $M_A \ge 1.2 M_B$

 Determine preliminary feeder location(s) - Use minimum number, only one if possible

Design for Manufacture. Lecture 5

Chvorinov's modulus

- Chvorinov's rule may be applied to individual
- of a component of a component Assume mould constant is the same throughout the geometry
- Sections must be designed so that the extremities have the shortest solidification times, the riser the Langest
 - Non-cooling areas of the surface area of each primitive must be accounted for
 - Chvorinov's modulus is calculated for each primitive:

$$M = \frac{V}{A_{\rm S} - A_{\rm NC}}$$

Section with the smallest modulus will solidify μ sC

Design for Manufacture: Lecture 5

Redesign component

- process, provided that the end use is not compromised · Component must be redesigned to suit the casting
 - Finchismelity
- Restrictive geometry
- Eliminate any unnecessary geometry that the process is incapable of producing
 - e.g.: very thin sections
- Reshape to produce desired moduli and feed
 - Reduce sections where possible rather than enlarge (uses less

Design for Manufacture: Lecture 5

Worked example

Feed path calculations

Primitives A and C:

M = 0.490A_{NC} = As=

Primitive B:

A_s=

M = 0.375

B solidifies first

A or C can feed B

Design for Manufacture: Lecture 5

7

22

Design for Manufacture: Lecture 5

Possible feeder locations

Recalculate modulus of B

with new non-cooling

 $M_B = 0.6 \ge 1.2 M_{A,C}$

underside of B be used? Can a single feeder on

A single feeder on A or C has no feed path through

 $V_F = V_T \times 0.12 = 6.84$

Feeder volume:

Feeder check

• Minimum feeder height h_{d} :

$$V_D = V_B + V_F = V_B + V_F = V_B = 0.76$$

- Primitive B plus riser becomes new primitive D
 - Must calculate M_D: V = 15.84

- Must increase M_D to ≥ 0.588 for primitive D to feed primitives A and C $M_D = 0.478$
 - Increase height of D

- New height h_d?

Design for Manufacture; Lecture 5

23

C 0

Effect of material type

- Pure metal/eutectic alloy
- Solidification contours may be predicted by considering direction of port floor
 - Modulus technique relatively accurate
 - Long freezing-range (≥100°C) alloy
- Dendrites grow into each other and may block the feeding path, leading to porosity in sections less than 5cm thick
- Sections should be tapered
- modulus should increase by 3.5% per cm
- Modulus should increase by 1.0% per cm Short freezing-range (≤50°C) alloy

Design for Manufacture: Lecture 5