Data Mining (EECS 4412)

Assignment Project Exam Help

Depisipow Foder Learning

Add WeChat powcoder

Parke Godfrey

EECS

Lassonde School of Engineering
York University

Thanks to

Professor Aijun An

Assignment Project Exam Help

for curation & use of these slides.

Add WeChat powcoder

Outline

- Overview of classification
- Basic concepts in decision tree learning
 - ► Data representation in decision tree learning
 - ▶ What is a **hetpsio/ptrve**?oder.com
- Decision tree representation
 Add WeChat powcoder
 How to learn a decision tree from data
- - Basic decision tree learning algorithm
 - ▶ How to select best attribute
 - Pruning decision tree
- Other issues involved in decision tree learning

Classification—A Two-Step Process

- ▶ Model construction (i.e., learning):
 - ► Learn a model from a <u>training set</u> (a set of pre-classified training examples) -- supervised learning
 - The model can be represented as classification rules, decision trees, neural networks, mathematical formulae, etc.
- ► Model usage (i.ehtprediggivorpderctassification):
 - Classify future or unknown objects main purpose
 - ► Test the learned model on a <u>test set</u> (another set of preclassified examples) to estimate accuracy of the model
 - ► The known class label of a test example is compared with the classification result from the model
 - Accuracy rate is the percentage of test examples that are correctly classified by the model
 - ► Test set is independent of training set, otherwise the testing result is not reliable

Classification Process (1): Model Construction

Classification
Learning
Algorithms

Classifier (Model)

NAME	RANK	YOELAN S	Gheat preso	de
Mike	Assistant Prof	3	no	
Mary	Assistant Prof	7	yes	
Bill	Professor	2	yes	_
Jim	Associate Prof	7	yes	
Dave	Assistant Prof	6	no	
Anne	Associate Prof	3	no	

IF rank = 'professor' OR years > 6 THEN tenured = 'yes'

Classification Process (2): Use the Model in Prediction

Unseen Data

(Jeff, Professor, 4)

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Classification Learning Techniques

- Decision tree learning
- ▶ Decision And in the Project Exam Help
- ► Bayesian classification coder.com
- Neural networks WeChat powcoder
- K-nearest neighbor method
- Support vector machines (SVM)
- Genetic algorithms
- etc.

Decision Tree Learning

- Objective of decision tree learning

 - Learn a decision tree from a set of training data
 Assignment Project Exam Help
 The decision tree can be used to classify new examples
- Decision tree leating algorithms
 - ▶ ID3 (Quinlan, 1286) WeChat powcoder
 - ► C4.5 (Quinlan, 1993)
 - ► CART (Breiman, Friedman, et. al. 1983)
 - ► CHAID (Kass, 1980)
 - QUEST(Loh and Shih, 1997)
 - etc.

Representation of Training Examples

			Condition attributes		Class/Target/Decisi attribute	
1						\downarrow
	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
	D2	Assig	nment₀Proje	ct Exam	Help	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rainy ht	ttps://powco	derigom	Weak	Yes
	D5	Rainy	Cool	Normal	Weak	Yes
Training	D6	Rainy A	dd WeChat	pawread	Strong	No
xamples {	D7	Overcast	Cool	Normal	Strong	Yes
or cases	D8	Sunny	Mild	High	Weak	No
Cases	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rainy	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rainy	Mild	High	Strong	No

Decision Tree Representation

▶ A decision tree: representation of classification knowledge

Each non-leaf (internal) node tests an attribute Outlook (Outlook, Humidity, Wind) Each branch corresponds to an Rainy Over¢ast Sunny. attribute value Assignment Project Exam Help Each leaf node assigns a https://powcoder.com Yes Wind classification Add Weighat powooden Strong Weak Classification A new case is classified No Yes No Yes by testing the case against

by testing the case against the nodes from the root to a leaf node. The classification associated with the leaf is returned. For example,

This tree classifies days according to whether or not they are suitable for playing tennis.

 $\langle \text{Outlook} = \text{Sunny}, \text{Temperature} = \text{Mild}, \text{Humidity} = \text{high}, \text{Wind} = \text{Strong} \rangle \rightarrow \text{No}$

Another Example of Training Dataset

This follows an example from Quinlan's ID3

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no -	excellent Exam Help fair	no
3040 ⁸	high	roject	fair Help	yes
>40 h	medium	wcode	fair	yes
>40	low	yes	fair	yes
>40 <u>A</u>	lay We(Chyesno	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys computer"

Outline

- Overview of classification
- Basic concepts in decision tree learning
 - Data representation Projects Exame Hearning
 - What is a decision tree? oder.com
 - Decision tree representation
- ► How to learn a decision tree from data
 - Basic decision tree learning algorithm
 - ▶ How to select best attribute
 - Pruning decision tree
- Other issues involved in decision tree learning

Top-Down Induction of a Decision Tree

Three Issues in Decision Tree Induction

- How to select an attribute for a node
- When to declare a node terminal
 - a naïve, but not robust method: when node is pure, stop growing.

How to assign a class to a leaf node How to assign a class to a leaf node Outlook (D1, D2, ..., D14) Assign the most comhttps://poliveadpleciom the node to the node Rainy Or output the probability of the Chart pound of exercist Humidity Yes Wind (D1, D2, D8, D9, D11) (D3, D7, D12, D13) (D4, D5, D6, D10, D14) High Normal Strong Weak Yes No Yes No

(D1-, D2-, D8-)

(D9+, D11+)

(D6-, D14-)

(D4+, D5+, **15**10+)

How to Select Attribute

Which attribute is the best attribute given a set of attributes and a set of examples?

- Many selection criteria, fichating wooder
 - ▶ Information gain (Quinlan, 1983; used in ID3)
 - ▶ Gain ratio (Quinlan, 1986; used in C4.5)
 - ▶ Gini index (Breiman, 1984; used in CART)
 - ▶ Chi-square statistic (Kass,1980; used in CHAID. Mingers, 1989)
 - ▶ Binarization (Bratko & Kononenko, 86)
 - Normalized information gain (Lopez de Mantaras, 91)

Information Gain

Objective:

▶ Select an attribute so that the data in each of the descendant subsets are the "purest".

- Based on the concept of entropy
 - *Entropy* is a measure, commonly used in information theory, that characterizes the impurity (uncertainty, chaos) of an arbitrary collection of examples.

Entropy

Given a set S of examples and k classes $(C_1, ..., C_k)$, the *entropy* of S with respect to the k classes is defined as:

$$Entropy(S) = -\sum_{i=1}^{k} P(C_i) \log_2(P(C_i))$$

where $P(C_i)$ is the grobability of examples in C_i .

- The bigger *Entropy(S)* is, the more impure *S* is.

 https://powcoder.com
- Examples:
 - If all examples in all elements of the first S is pure), S is pure), S is pure).
 - If half of the examples in S belong to class 1 and the other half belong to class 2, Entropy(S)=1.
 - Suppose 9 examples are in class 1 and 5 examples in class 2, $Entropy(S) = -(9/14)\log_2(9/14) - (5/14)\log_2(5/14) = 0.940$
 - ▶ If the examples are uniformly distributed in 3 classes,

$$Entropy(S) = -((1/3)\log_2(1/3)) \times 3 = \log_2 3 = 1.59$$

Information Gain (Cont'd)

- An attribute-selection criterion:
 - ▶ Used to choose an attribute to split a data set
- ► Assume that intente Propert in xumules lp
 - Using A, data set S is split into $S_1, S_2, ..., S_m$.
- ► Information Gain

 Add WeChat powcoder

 Gain(S, A) = expected reduction in entropy due to partitioning S on attribute A

$$Gain(S, A) = Entropy(S) - \sum_{i=1}^{m} \frac{|S_i|}{|S|} Entropy(S_i)$$

where |S| is the number of examples in set S, and $|S_i|$ is the number of examples in S_i .

An illustrative example

► Training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	onment Proje	ect Exan	Strong	No
D3	Overcast	Hot 1 10)	High	Weak	Yes
D4	Rainy	https://how.co	oder.con	n Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Add WeCha	Normal	detrong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

Which attribute is the best for the root?

An illustrative example (Cont'd.)

Which attribute should be tested here, Humidity, Temperature, or Wind?

$$Gain(S_{sunny}, Humidity) = .97095 - (3/5)0.0 - (2/5)0.0 = 0.97095$$

 $Gain(S_{sunny}, Temperature) = .97095 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = 0.57095$
 $Gain(S_{sunny}, Wind) = .97095 - (2/5)1.0 - (3/5).918 = 0.02015$

Therefore, Humidity is chosen as the next test attribute for the left branch.

An illustrative example (Cont'd.)

Basic Decision Tree Learning Algorithm

- 1. Select the "best" attribute A for the root node
- **2.** Create new descendents of the node according to the values of A:
- 3. Sort manignement plesquente lessen den podes.
- 4. For each descendent node der.com
 - if the training examples associated with the node belong to the same class the week samples associated with the class
 - else if there are no remaining attributes on which the examples can be further partitioned, the node is marked as a leaf node and labeled with the most common class among the training cases for classification;
 - else if there is no example for the node, the node is marked as a leaf node and labeled with the majority class in its parent node.
 - ▶ otherwise, recursively apply the process on the new node.

when to terminate the recursive process

Outline

- Overview of classification
- Basic concept in decision tree learning
 - Data representation in decision tree learning
 - ▶ What is a decision tree?
- ► How to Assistant electron to Helpta
 - ► Basic decision tree learning algorithm
 - How to select best attribute
 - ► Information dat WeChat powcoder
 - Gain ratio
 - Gini index
 - Pruning decision tree
 - Pre-pruning
 - Post-pruning
- Other issues involved in decision tree learning

Bias in the Information Gain Measure

► Favor unfairly attributes with large numbers of distinct values at the expense of those with few.

▶ E.g., attribute Date: poor predictor, but has the highest gain because it alone perfectly predicts the target attribute over the training data

Assignment Project Exam Help

		t I TOJC	ot Line		
Day	Outlook	Tempe-	Humi-	Wind	PlayT-
	1-44//	rature	dity		ennis
D1	ngusy.//	рожсс) CleligrC(M eak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	A Het at	High	Weak	Yes
D4	Rainy VV	Milat	PHigh	O <u>der</u> Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

Gain Ratio

- Proposed by Quinlan in 1986 (used in C4.5)
- ▶ Idea:
 - penalizes attributes with many distinct values by dividing information gain by attribute information Assignment. Project Exam Help (entropy of data with respect to the values of attribute):

https://powcoder.com

$$SplitInformation(S, A) \underbrace{Add}_{v_i \in Values(A)} \underbrace{VeChat}_{v_i \in Values(A)} \underbrace{|S_{v_i}|}_{|S|} = -\sum_{v_i \in Values(A)} P(v_i) \log_2 P(v_i)$$

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInformation(S, A)}$$

Gini Index

- Gini diversity index (used by CART)
 - ▶ Another measure that measures the impurity of a data set.
 - ► S is a set of training examples associated with a node
 - ▶ Suppose there are *n* classes: C_i (i = 1, ..., n)
 - $P(C_i)$ is the physicity per taken by the physicity of the physicity o
 - \triangleright The Gini impurity of S with respect to classes can be measured as:

$$i(S) = \sum_{j \neq Add}^{https://powcoder.com} P(C_j) P(C_i) = 1 - \sum_{j \neq Add}^{https://powcoder.com} (P(C_j))^2$$

- Similar to entropy
 - Minimized if classes for all examples are the same
 - Maximized if equal proportion of classes
- ▶ Selection of attribute using Gini index selects an attribute *A* that most reduces the impurity due to partitioning on *A*:

$$\Delta i(S, A) = i(S) - \sum_{v_i \in Values(A)} \frac{|S_{v_i}|}{|S|} i(S_{v_i})$$

Outline

- Overview of classification
- Basic concepts in decision tree learning
 - ► Data representation in decision tree learning
 - ▶ What is a **hetpsio/ptrve**?oder.com
- Decision tree representation
 Add WeChat powcoder
 How to learn a decision tree from data
- - Basic decision tree learning algorithm
 - ▶ How to select best attribute
 - Pruning decision tree
- Other issues involved in decision tree learning

Basic Decision Tree Learning Algorithm (Review)

- 1. Select the "best" attribute A for the root node
- **2.** Create new descendents of the node according to the values of A:
- 3. Sort manignement plesquente lessen den podes.
- 4. For each descendent node der.com
 - if the training examples associated with the node belong to the same class the week samples associated with the class
 - else if there are no remaining attributes on which the examples can be further partitioned, the node is marked as a leaf node and labeled with the most common class among the training cases for classification;
 - else if there is no example for the node, the node is marked as a leaf node and labeled with the majority class in its parent node.
 - ▶ otherwise, recursively apply the process on the new node.

when to terminate the recursive process

Overfitting Problem

- ▶ When to declare a node terminal in the basic algorithm:
 - grow each branch of the tree just deeply enough to classify the training examples as perfectly as possible. Assignment Project Exam Help
- This strategy leads to producing deep branches that cover very few examples.
- This kind of the Washits of the following two situations:
 - ▶ there is noise in the data \rightarrow tree fits the noise.
 - the number of training examples is too small to produce a representative sample of the true target function → tree is too specific to classify future examples well.

Overfitting Problem (Cont'd)

- ▶ A definition of *overfitting*
 - ► Consider the error of a model (e.g., a tree) *h* over

 Assignment Project Exam Help

 training data: *error*_{train}(h)

 - entire distribution/powdaderrom(h)
 - ▶ Model h oxerfitve training vc data if there is an alternative model h' such that

```
error_{train}(h) < error_{train}(h') and
error_D(h) > error_D(h')
```

Overfitting in Decision Tree Learning (An Example Diagram)

Accuracy = 1 - error rate

Preventing Overfitting

- ▶ Pre-pruning: stop growing the tree when data split is not statistically significant
 - ▶ For examplingment Project Exam Help
 - set a threshold $\alpha > 0$ and declare a node terminal if https://powcoder.com percentage of examples in the most common class $> \alpha$, or
 - set a threald We Chart de pleut a threal de la threal
 - ▶ Problems:
 - ▶ Hard to set the threshold value
 - ► The splitting is either stopped too soon or continued too far depending on the threshold
 - Using more complicated stopping rule does not help

Preventing Overfitting (Cont'd)

▶ Post-pruning: grow full tree, allow it to overfit the data, and then remove some subtrees

Assignment Project Exam Help

- More successful in practice
- Criterion is needed to determine what to prune

Post-pruning Functions

- Post-pruning functions are needed to determine which part(s) of the tree should be pruned
- Several posispment Project Form i Helpding:
 - ► Reduced-eprop (Quio la no 87 et .com
 - Error-complexity (CART, 84)
 Add WeChat powcoder
 Pessimistic error (Quinlan, 86)

 - Minimum description length (MDL) (SLIQ by Mehta et al. 1996)
 - Minimum error (Niblett & Bratko, 86)
 - Critical value (Mingers, 87)
- ▶ There is no single best pruning algorithm

Reduced-Error Pruning

- Procedure
 - Split training data into growing and pruning sets
 - Generate an overfitted decision tree using the *growing* set
 - Post-pruning: Do until further pruning is harmful:
 Assignment Project Exam Help
 Consider each of the internal non-root nodes in the tree to be candidates
 - for pruning https://powcoder.com
 Prune a node by removing subtree rooted at this node, making it a leaf node,
 - and assigning it the most componed assigning it at the training examples affiliated with this node
 - ▶ Evaluate impact of pruning this node on the *pruning* set by
 - calculating the classification error rate of the pruned tree on the *pruning* set and comparing it with the error rate of the unpruned tree.
 - Greedily remove the one whose removal most reduces the error on pruning set.
- Aim to produce smallest version of most accurate subtree But may be sub-optimal.
- What if data is limited?

Error-Complexity Pruning

- Similar procedure to the reduced-error pruning
 - Split training data into growing and pruning sets
 - ▶ Generate the decision tree with the *growing* set
 - Post-pruning: Do until further pruning is harmful:
 - ▶ Evaluate impact of pruning each subtree on the *pruning* set
 - Greedily rentitional powered errormal minimizes the following expression on the *pruning* set:

 Add WeChat powcoder

Add WeChat powcoder
$$R_{\alpha}(T) = E(T) + \alpha L(T)$$

where E(T) is the classification error of tree T, L(T) is the number of leaf nodes in T and α is the complexity cost per leaf node.

- $ightharpoonup R_{\alpha}(T)$ is a linear combination of the classification error rate of the tree and its complexity.
- ▶ Similar to reduced-error pruning, not suitable if the size of training data is small. 38

Pessimistic-Error Pruning

- ► This method does not require a separate pruning set.
- Suppose a subtree T_s contains L leaves and J of training Assignplest Praisot-Exact Helpth T_s are misclassified https://powcoder.com
- If we replace T_s with a leaf which misclassifies E of the associated training examples, the pruned tree will be accepted if

$$E + 1/2 < J + L/2$$

- Advantage
 - fast: no need to separate growing and pruning sets.
 - ▶ Tree building makes use of all the training data.

Outline

- Overview of classification
- Basic concepts in decision tree learning
 - ► Data representation in decision tree learning
 - ▶ What is a **hetpsio/ptrve**?oder.com
- Decision tree representation
 Add WeChat powcoder
 How to learn a decision tree from data
- - Basic decision tree learning algorithm
 - ▶ How to select best attribute
 - Pruning decision tree
- Other issues involved in decision tree learning

Some Other Issues in Decision Tree Learning

- Convert decision trees to a set of rules
- How to deal with continuous attributes
- ► How to scale httpde disionothee dearning
- ► Look-ahead approaches powcoder
 - ▶ Search for best sequence of individual tests.
- Multiple attributes per test
 - These approaches tend to have greatly increased complexities (i.e., larger search spaces).

Convert Decision Trees to a Set of Rules

Each branch from the root to a Outlook leaf can be transformed into a Rainy if-then rule. Overcast Sunny Assignment Project Exam P Wind powcoder.com High Weak Normal Strong Add WeChat powcoder Yes No Yes No

- ▶ If (Outlook is Sunny and Humidity is High), then class is No.
- ▶ If (Outlook is Sunny and Humidity is Normal), then class is Yes.
- ▶ If (Outlook is Overcast), then class is Yes.

42

How to deal with continuous attributes

Two ways:

- Discretization before learning decision tree
 - Converts a continuous attribute by partitioning the range of the attribute by partitioning the range of the continuous attribute into intervals.
 - Interval labets de la Verbent pe vise de la replace actual data values.
- Dynamic discretization
 - Dynamically split the value range into two subranges during the tree learning process

Dynamic Discretization

- Dynamically split the value range into two sub-ranges and each descendent node corresponds to a sub-range.
 - ► Choose to split at the middle value between two examples which are in different categories

The possible split points are
$$\frac{48+60}{2} = 54$$
 and $\frac{80+90}{2} = 85$

► Evaluate the binary splitting points using the splitting criterion used for selecting attribute. For example, choose the splitting point that leads to the best information gain.

Dynamic Discretization

Example:

Temperature	PlayTennis?
40	No
48	No
60	Yes
70	Yes
80	Yes
90	No_

Assignment Project Exam Help

The possible split points are $\frac{48+60}{\text{https://powcoder.com}} = 54 \text{ and } \frac{80+90}{2} = 85$

Possible splits:

Add WeChat powcoder

Choose the one that gives the better information gain to compete with other attributes

45

Scalable Decision Tree Learning Methods

- Scalability: deal with millions of examples and hundreds of attributes with reasonable speed
- ► Most algorithms assume data can fit in memory. https://powcoder.com
- Data mining research contributes to the scalability issue, especially for decision trees.
- Successful examples
 - ▶ SLIQ (Mehta *et al.*, 1996)
 - ▶ SPRINT (Shafer *et al.*, 1996)
 - RainForest (Gehrke, et al., 1998)

Some Other Issues in Decision Tree Learning

- Convert decision trees to a set of rules
- How to deal with continuous attributes Assignment Project Exam Help
- ► How to scale prodecision tree dearning
- Look-ahead apple Wellen bat powcoder
 - ▶ Search for best sequence of individual tests.
- Multiple attributes per test/node
 - ► These approaches tend to have greatly increased complexities (i.e., larger search spaces).

Decision Trees: Strengths

- Comprehensibility: Small trees are highly interpretable; and intuitive for humansp
- ► Fast classificatton://powcoder.com
- ► Relatively fast induction Powcoder
- Mature technology

Decision Trees: Weaknesses

- Trees can become incomprehensible when their size grows.
 - Rules converted from a tree
 - are mutative explant. Project Exam Help
 - ▶ share at leasthones attribute (the root)
 - Thus, the size of the tree can grow much larger than the logic needed for overlapping rules.
 - As an example, in a successful application of ID3 to a chess end game (Mitchie, 86), the tree representation could not be understood at all even by the chess experts.
- When using only one attribute at each internal node, trees are limited to axis-parallel partitions of the instance space

Convert Decision Trees to a Set of Rules

Each branch from the root to a Outlook leaf can be transformed into a Rainy if-then rule. Overcast Sunny Assignment Project Exam P Wind powcoder.com High Weak Normal Strong Add WeChat powcoder Yes No Yes No

- ▶ If (Outlook is Sunny and Humidity is High), then class is No.
- ▶ If (Outlook is Sunny and Humidity is Normal), then class is Yes.
- ▶ If (Outlook is Overcast), then class is Yes.

50

Summary of Decision Tree Learning

- Decision tree represents classification knowledge
- Decision tree learning is a top-down recursive partition in process Plojisca Exampliage process if post-pruning is used: https://powcoder.com
 - Tree building
 - An attributed sweethat provided so called splitting criterion) is used: information gain, gain ratio, gini index, etc.
 - Post-pruning tree
 - ▶ Reduced-error (Quinlan, 87)
 - ► Error-complexity (CART, 84)
 - ▶ Pessimistic error (Quinlan, 86)
- Some other issues

Next Class

Data Preprocessing (Chapter 3)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder