PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-182267

(43) Date of publication of application: 12.07.1996

(51)Int.Cl.

H02K 15/03 H02K 1/27 H02K 21/14

(21)Application number: 06-336480

(71)Applicant: YASKAWA ELECTRIC CORP

(22)Date of filing:

22.12.1994

(72)Inventor: KAJIMOTO KOJI

(54) PERMANENT MAGNET TYPE ROTOR

(57)Abstract:

PURPOSE: To divide a magnetic circuit created by the reaction of armature and form a smooth curve shape for the magnetic flux distribution of the gap magnetic flux created by slits by providing an angle of deviation in a peripheral direction between slits of adjacent core magnetic pole portions, which is equal to a value obtained by dividing the pitch (electrical angle) of slits inside one pole by the number of core magnetic pole portions.

CONSTITUTION: When providing five (N=5) slits 13 respectively in each core magnetic pole portion in a perpendicular direction to the outer periphery of a stator 1 along a magnetic circuit ϕm created from a magnetic pole surface of a permanent magnet 2, a pitch p of the slit 13 inside the one pole becomes 180 degrees/(N+1)=30 degrees in electrical angle. Here, if the number of the core magnetic pole portions 12 is given by P=8, then said portions are arranged by deviating by $\Delta\theta=p/P=30$ degrees/8=3.75 degrees in

electrical angle for neighboring pole respectively. By doing this, the magnetic circuit ϕa created by the reaction of the armature is divided, magnetic flux distribution of gap magnetic flux is formed to a smooth curve shape in order to avoid the overlap of the position of slits 13 of each core magnetic pole portion 12 by the same electrical angle, and higher harmonics components of induced voltage waveform are reduced.

LEGAL STATUS

[Date of request for examination]

28.02.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3424774

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-182267

(43)公開日 平成8年(1996)7月12日

(51) Int.Cl. ⁶	酸別	配号	庁内整理番号	FΙ	技術表示箇所
H02K 15/0		A 1 A			
21/		М			

審査請求 未請求 請求項の数3 FD (全 4 頁)

(21)出顧番号	特顯平6-336480	(71)出顧人	000006622
	-		株式会社安川電機
(22)出顧日	平成 6 年(1994)12月22日		福岡県北九州市八幡西区黒崎城石2番1号
		(72)発明者	梶本 浩二
			福岡県北九州市八幡西区黒崎城石2番1号
			株式会社安川電機内

(54) 【発明の名称】 永久磁石形回転子

(57)【要約】

【目的】 磁束分布の歪みを小さくし、トルクリップルの少ない永久磁石形回転子を提供する。

【構成】 回転子鉄心1の円周方向に等間隔に回転子の極数の個数設けた装着穴11と、装着穴11に装着した永久磁石2と、永久磁石2の磁極面と回転子鉄心1の外周との間に形成した鉄心磁極部12と、永久磁石2の外周側の磁極面から生じる磁気回路に沿って鉄心磁極部12に形成したスリット13とを備えた永久磁石形回転子において、永久磁石2の磁極面を径方向に向けて配置し、極ピッチを θ_0 、1極のスリット数をN、1極内のスリットのピッチをp(電気角)、鉄心磁極部の数をp、隣接する鉄心磁極部のスリットとの周方向のずれ角を $\Delta\theta$ (電気角)、隣接する鉄心磁極部のスリットとの極間のスリットピッチを θ_1 としたとき、

 $\theta_1 = \theta_0 + \Delta \theta$

ただし、 $\Delta\theta=p/P=180^{\circ}/\{(N+1)\cdot P\}$ の関係になる位置にスリット13を設けたものである。

1

【特許請求の範囲】

 $\theta_1 = \theta_0 + \Delta \theta$

【請求項1】 回転子鉄心の円周方向に等間隔に回転子の極数の個数設けた装着穴と、前記装着穴に装着した永久磁石と、前記永久磁石の磁極面と前記回転子鉄心の外周との間に形成した鉄心磁極部と、前記永久磁石の外周側の磁極面から生じる磁気回路に沿って前記鉄心磁極部に形成したスリットとを備えた永久磁石形回転子において、前記永久磁石の磁極面を径方向に向けて配置し、極ピッチを θ_0 、1極のスリット数をN、1極内のスリットのピッチをp(電気角)、鉄心磁極部の数をp、隣接 10 する鉄心磁極部のスリットとの周方向のずれ角を $\Delta\theta$ (電気角)、隣接する鉄心磁極部のスリットとの極間のスリットピッチを θ_1 としたとき、

ただし、 $\Delta \theta = p/P = 180°/{(N+1) \cdot P}$ の関係になる位置に前記スリットを設けたことを特徴とする永久磁石形回転子。

【請求項2】 前記装着穴の個数を回転子の極数の1/ 2として、隣接する前記装着穴の間に永久磁石を有しな い鉄心磁極部を設け、前記装着穴に装着した永久磁石の ²⁰ 内側の磁極面から磁気回路に沿って湾曲して隣接する前 記永久磁石を有しない鉄心磁極部の外周に向かうスリッ トを設けた請求項1記載の永久磁石形回転子。

【請求項3】 前記スリットの湾曲した最も回転子の中心に近い部分に、隣接する鉄心磁極部を接続する接続部を設けた請求項2記載の永久磁石形回転子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、回転子鉄心の中に永久 磁石を備えた電動機の永久磁石形回転子に関する。

[0002]

【従来の技術】従来、回転子鉄心の中に複数の永久磁石 を備えた電動機の永久磁石形回転子は、円筒状の回転子 鉄心の外周付近の円周方向に等間隔に装着穴を設け、そ の装着穴に永久磁石を装着してある。永久磁石のN,S の両磁極面または一方の磁極面に密着する鉄心部分に鉄 心磁極部を形成し、回転子鉄心の外周に永久磁石が生成 するN、Sの鉄心磁極部を円周方向に交互に形成してあ る。鉄心磁極部には空隙を介して対向する電機子の磁束 によって電機子反作用の磁気回路が生じる。この電機子 40 反作用により、鉄心磁極部を通る磁束の流れが歪めら れ、電動機の出力トルクにトルクリップルを発生する。 この電機子反作用を弱めるため、例えば8極の回転子で は図5に示すように構成されている。1は回転子鉄心、 11は回転子鉄心1に円周方向に等間隔に設けた8個の 装着穴、12は装着穴11と回転子鉄心1の外周との間 に形成した鉄心磁極部 (磁極番号Φ~8) である。2は 装着穴11に装着した永久磁石である。13は鉄心磁極 部12に設けられ、永久磁石2の磁極面から生じる磁気 回路Φ』に沿って、回転子鉄心1の外周に対してほぼ直 50 2

角方向に伸びるスリットで、電機子反作用によって生じる破線で示すような磁気回路 Φ_a を分断するように、同数のスリットをほぼ等間隔に設けてある。(例えば、実開昭 62-104560号、実開平 5-9147号)。 【0003】

【発明が解決しようとする課題】ところが、従来技術では、各鉄心磁極部に設けたスリットが磁極間で同じ位置に設けてあるため、スリットのある同じ電気角の位置で空隙磁束密度が低下し、図6に示すように、磁束分布に歪みが生じる。したがって、誘起電圧波形に高調波成分が生じ、トルクリップルの原因となり、電動機の応答性やトルク特性が低下するという問題があった。本発明は、スリットの配置を改善して磁束分布の歪みを小さくし、トルクリップルの少ない永久磁石形回転子を提供することを目的とするものである。

[0004]

【課題を解決するための手段】上記問題を解決するため、本発明は、回転子鉄心の円周方向に等間隔に回転子の極数の個数設けた装着穴と、前記装着穴に装着した永久磁石と、前記永久磁石の磁極面と前記回転子鉄心の外周との間に形成した鉄心磁極部と、前記永久磁石の外周側の磁極面から生じる磁気回路に沿って前記鉄心磁極部に形成したスリットとを備えた永久磁石形回転子において、前記永久磁石の磁極面を径方向に向けて配置し、極ビッチを θ_0 、1極のスリット数をN、1極内のスリットのビッチをp(電気角)、鉄心磁極部の数をP、隣接する鉄心磁極部のスリットとの個方向のずれ角を $\Delta \theta$ (電気角)、隣接する鉄心磁極部のスリットとの極間のスリットビッチを θ_1 としたとき、

$\theta_1 = \theta_0 + \Delta \theta$

ただし、 $\Delta\theta=p/P=180^\circ$ / $\{(N+1)\cdot P\}$ の関係になる位置に前記スリットを設けたものである。また、前記装着穴の個数を回転子の極数の1/2として、隣接する前記装着穴の間に永久磁石を有しない鉄心磁極部を設け、前記装着穴に装着した永久磁石の内側の磁極面から磁気回路に沿って湾曲して隣接する前記永久磁石を有しない鉄心磁極部の外周に向かうスリットを設けたものである。また、前記スリットの湾曲した最も回転子の中心に近い部分に、隣接する鉄心磁極部を接続する接続部を設けたものである。

[0005]

【作用】上記手段により、回転子鉄心の中に設けた永久 磁石から生じる磁気回路に沿って、永久磁石の磁極面か ら回転子鉄心の外周に向かって伸びるスリットを鉄心磁 極部に設け、そのスリットの極間のピッチをずらしてあ るので、電機子反作用によって生じる磁気回路を分断す るとともに、各鉄心磁極部のスリットの位置が同じ電気 角で重なることがなく、スリットによって生じる磁束の 歪みは同じ電気角で重畳されずに円周方向に分散され、 スリットによって生じる空隙磁束の磁束分布は、円滑な

曲線状となり、歪みが極めて小さくなる。

[0006]

【実施例】以下、本発明を図に示す実施例について説明 する。図1は本発明の第1の実施例を示す正面図で、8 極の永久磁石形回転子を示している。図2はその空隙磁 束の磁束分布を示す説明図である。図において、1は回 転子鉄心、11は回転子鉄心1に円周方向に等間隔に設 けた極数だけ設けた8個の装着穴、12は装着穴11と 回転子鉄心1の外周との間に形成した鉄心磁極部(磁極 番号Φ~®) で、極ビッチθο は電気角で180°であ 10 る。2は装着穴11に装着した永久磁石で、径方向にN またはS磁極が向くように配置してある。13は鉄心磁 極部12に設け、永久磁石2の磁極面から生じる磁気回 路Φ』に沿うように回転子鉄心1の外周に対してほぼ直 角方向に伸びるスリットである。スリット13の数N は、各鉄心磁極部12の中にそれぞれ5本設けてあり、 1極内のスリットのピッチpは電気角で180°/(N +1) で設けてある。この場合、p=180°/(5+ 1) = 30°となっている。また、鉄心磁極部12の数 をPとすると、隣接する極ごとに、電気角ですれ角 $\Delta \theta$ 20 =30°/Pだけずらしてある。この場合、30°/8 =3.75°となっている。したがって、隣接する鉄心 磁極部 12のスリット 13との極間のスリットピッチ θ 1 は、 $\theta_1 = \theta_0 + \Delta \theta = 180 + 3$. 75 = 183. 75°となっている。このようなスリットの構成によ り、電機子反作用によって生じる破線で示すような磁気 回路Φa を分断するとともに、各鉄心磁極部のスリット の位置が同じ電気角で重なることがなく、スリットによ って生じる磁束の歪みは同じ電気角で重畳されずに円周 方向に分散されるので、スリットによって生じる空隙磁 30 束の磁束分布は、図2に示すように、円滑な曲線状とな り、歪みが極めて小さくなる。

【0007】図3は本発明の第2の実施例を示す正面図 で、8個の鉄心磁極部12のうち、一極置きに4個の鉄 心磁極部12に永久磁石2を設け、各永久磁石2の外周 側をNまたはS極の同極とし、他の4個の鉄心磁極部1 2'には永久磁石を設けず、隣接する永久磁石2の内側 から出る磁束を通すようにして、回転子鉄心1の外周に 交互に異極を配列した8極の回転子を形成したものであ る。この場合、永久磁石2を設けた鉄心磁極部12には40 外周に対してほぼ直角方向に伸びるスリット13を設 け、永久磁石2の無い各鉄心磁極部12,には、隣接す る鉄心磁極部12に設けた永久磁石2から出る磁気回路

に沿って、外周から内側に向かって伸び、湾曲して隣接 する永久磁石2の内側の磁極に近づくようにスリット1 3'を設けてある。永久磁石のある鉄心磁極部12と永 久磁石の無い鉄心磁極部12, にそれぞれ設けたスリッ ト13、13,の隣接する鉄心磁極部12のスリット1 3との極間のスリットピッチ θ_1 は、第1の実施例と同 . $\forall < , \theta_1 = \theta_0 + \Delta \theta = 180 + 3.75 = 183.$ **75°となっている。したがって、スリットによって生** じる磁束の歪みは同じ電気角で重畳されずに円周方向に 分散されるので、スリットによって生じる空隙磁束の磁 東分布は、第1の実施例と同じく、円滑な曲線状とな り、歪みが極めて小さくなる。図4は本発明の第3の実 施例を示す正面図で、第2の実施例において、永久磁石 の無い鉄心磁極部12,に設けたスリット13,の湾曲 して最も回転子の中心に近い部分に、隣接する鉄心磁極 部12、12、を接続する接続部14を設けたものであ る。この構成により、永久磁石を設けない鉄心磁極部の 遠心力に対する強度を増すことができる。なお、上記実 施例では8極の場合について説明したが、磁極の数は8 極に限るものではない。

[0008]

【発明の効果】以上述べたように、本発明によれば、回 転子鉄心の中に設けた永久磁石から生じる磁気回路に沿 って、永久磁石の磁極面から回転子鉄心の外周に向かっ て伸びるスリットを鉄心磁極部に設け、そのスリットの 極間のピッチをずらすことにより、空隙磁束の磁束分布 を円滑な曲線状として、歪みを極めて小さくしているの で、誘起電圧波形の高調波成分を減少させ、トルクリッ プルの少ない永久磁石形回転子を提供できる効果があ る。

【図面の簡単な説明】

【図1】 本発明の第1の実施例を示す正面図である。

本発明の実施例の磁束分布を示す説明図であ 【図2】 る。

本発明の第2の実施例を示す正面図である。 【図3】

【図4】 本発明の第3の実施例を示す正面図である。

【図5】 従来例を示す正面図である。

従来例の磁束分布を示す説明図である。 【図6】

【符号の説明】

1 回転子鉄心、11 装着穴、12、12' 鉄心磁 極部、13、13、スリット、14 接続部、 久磁石

