Task-agnostic Continual Learning with Hybrid Probabilistic Models

Polina Kirichenko ¹ Mehrdad Farajtabar ² Dushyant Rao ² Balaji Lakshminarayanan ³ Nir Levine ² Ang Li ² Huivi Hu² Andrew Gordon Wilson ¹ Razvan Pascanu ²

¹New York University

²DeepMind

³Google Brain

August 15, 2021

Outline

- 1 Introduction
- 2 Background and Notation
- 3 HCL
- 4 Experiments
- 5 Discussion

Existing Approaches

- re-sample the data or design specific loss functions that better facilitate learning with imbalanced data
- enhance recognition performance of the tail classes by transferring knowledge from the head classes

Title of

hi

Our Contribution

- Hybrid Continual Learning (HCL) a normalizing flow-based approach.
- Generative replay and a novel functional regularization are employed to alleviate forgetting. The functional regularization is shown to be better than generalize replay.
- HCL achieves strong performance on split MNIST, split CIFAR. SVHN-MNIST and MNIST-SVHN datasets.
- HCL can detect task boundaries and identify new as well as recurring tasks.

- A CL model $g_{\theta}: \mathcal{X} \to \mathcal{Y}$.
- A sequence of τ supervised tasks: $T_{t_1}, T_{t_2}, \ldots, T_{t_{\tau}}$. τ is not known in advance.
- Each task $T_i = \{(x_j^i, y_j^i)\}_{j=1}^{N_i}$, where $x_j^i \in \mathcal{X}^i$ and $y_j^i \in \mathcal{Y}^i$.
- The corresponding data distribution of task T_i is $p_i(x, y)$.
- **Constraint**: While training on a task T_i the model cannot access to the data from previous T_1, \ldots, T_{i-1} or future tasks $T_{i+1}, \ldots, T_{\tau}$.
- **Objective**: Minimize $\sum_{i=1}^{M} \mathbb{E}_{x,y \sim p_i(\cdot,\cdot)} l(g_{\theta}(x),y)$ for some risk function $l(\cdot,\cdot)$ and generalize well on all tasks after training.

HCL ●0000

• $p_t(x, y)$: the joint distribution of the data x and the class label y conditioned on a task t.

$$p_t(x, y) \approx \hat{p}(x, y|t) = \hat{p}_X(x|y, t)\hat{p}(y|t)$$

• $\hat{p}_X(x|y,t)$ is modeled by a normalizing flow f_{θ} with a base distribution $\hat{p}_Z = \mathcal{N}(\mu_{y,t},I)$.

$$\hat{p}_X(x|y,t) = f_{\theta}^{-1} \left(\mathcal{N}(\mu_{y,t}, I) \right)$$

- $\mu_{y,t}$ is the mean of the latent distribution corresponding to the class y and task t.
- $\hat{p}(y|t)$ is assumed to be a uniform distribution over the classes for each task: $\hat{p}(y|t) = 1/K$.

HCL 00000

Task Identification

■ log-likelihood

$$S_1(B, t) = \sum_{(x_j, y_j) \in B} \hat{p}_X(x_j | y_j, t)$$

log-likelihood of the latent variable

$$S_2(B, t) = \sum_{(x_j, y_j) \in B} \hat{p}_Z(f_{\theta}(x_j)|y_j, t)$$

log-determinant of the Jacobian

$$S_3(B, t) = S_1(B, t) - S_2(B, t)$$

00000

Theoretical Analysis

Discussion