# Дебильники по ДА

5 ноября 2017 г.

# 2015 год

### Вариант 1 (июнь 2015)

- 1. Приведите пример семейства 5-элементных множеств, имеющего ровно 2 минимальных системы общих представителей.
- 2. Во скольких связных графах на 20 пронумерованных вершинах с 19 ребрами нет ни одного цикла?
- 3. Сформулируйте критерий наличия в графе эйлерового пути.
- 4. Найдите сумму всех элементов матрицы Адамара размера  $8 \times 8$ , первая строка которой состоит из единиц.
- 5. Нарисуйте связный граф без петель и кратных ребер, в котором нет гамильтонова пути.
- 6. Найдите хроматическое число любого графа на 7 вершинах с 20 ребрами.
- 7. Найдите  $VC(\mathbb{Q},F)$ , где F семейство всех бесконечных подмножеств множества  $\mathbb{Q}$ .
- 8. Приведите пример такой функции f(n), что при  $n \to \infty$  одновременно  $f(n) = o(2^n)$  и  $n^{2\ln n} = o(f(n))$ .

# Вариант 2 (июнь 2015)

- 1. Вычислите R(3,3,2).
- 2. Найдите максимально возможное число ребер в графе с 15 вершинами и кликовым числом 2.
- 3. Напишите формулировку теоремы Эрдеша-Ко-Радо.
- 4. Найдите перманент матрицы  $10 \times 10$ , в которой 99 единиц и один ноль.
- 5. Сколько ребёр может быть у связного графа без петель и кратных рёбер с 50 вершинами, если он нарисован на плоскости, причем его рёбра пересекаются только в вершинах и он делит плоскость на 11 частей?
- 6. Нарисуйте дерево, кодом Прюфера которого является последовательность (7, 6, 7, 6, 1, 1, 1).
- 7. Найдите  $VC(\mathbb{N}, F)$ , где F семейство всех трёхэлементных подмножеств множества  $\mathbb{N}$ .
- 8. Найдите предел при  $n \to \infty$  величины  $\sqrt[n]{C_n^{n/4}}$ .

# Вариант 3 (июнь 2015)

- 1. Какое неравенство связывает хроматическое число  $\chi(G)$  и кликовое число  $\omega(G)$  графа G?
- 2. Сформулировать достаточное условие Дирака гамильтоновости графа.
- 3. Нарисуйте связный граф без петель и кратных рёбер, в котором нет ни эйлерова пути, ни эйлерова цикла.

- 4. Найти перманент матрицы, состоящей из 3 столбцов и 6 строк, у которой первый столбец состоит из единиц, а остальные из двоек.
- 5. Дан случайный граф  $G(100, \frac{1}{3})$ , найти вероятность того, что первые две вершины образуют компоненту связности.
- 6. Найти предел  $\frac{(2n)!\cdot e^{2n}}{2^{2n}\cdot n^{2n}}$  при  $n\to\infty.$
- 7. Пусть  $A = \{1, ..., 10\}$ . Найти  $VC(A, 2^A \setminus \emptyset)$ .
- 8. Какой символ надо дописать в конце последовательности 220010211, чтобы получить последовательность де Брёйна для слов длины 2?

### Вариант 4 (июнь 2015)

- 1. Приведите пример семейства 3-элементных множеств, имеющего ровно 2 минимальных системы общих представителей.
- 2. Во скольких связных графах на 25 пронумерованных вершинах с 24 ребрами нет ни одного цикла?
- 3. Сформулируйте критерий наличия в графе эйлерового пути.
- 4. Найдите сумму всех элементов матрицы Адамара размера  $12 \times 12$ , первый столбец которой состоит из минус единиц.
- 5. Нарисуйте связный граф без петель и кратных ребер, в котором нет гамильтонова пути.
- 6. Найдите хроматическое число любого графа на 8 вершинах с 27 ребрами.
- 7. Найдите  $VC(\mathbb{N}, F)$ , где F семейство всех бесконечных подмножеств множества  $\mathbb{N}$ .
- 8. Приведите пример такой функции f(n), что при  $n \to \infty$  одновременно  $f(n) = o(e^n)$  и  $n^{\ln n} = o(f(n))$ .

# Вариант 5 (июль 2015, пересдача)

- 1. Сформулируйте критерий наличия в графе эйлерового пути.
- 2. Нарисуйте граф, у которого хроматическое число не равно кликовому числу.
- 3. Найдите  $VC(\mathbb{N}^2, F)$ , где F все 10-элементные подмножества  $\mathbb{N}^2$ .
- 4. Придумать такую f(n), что f(n) = o(n), o(f(n)) = n, но при этом f(n) асимптотически не равно cn для действительного c.
- 5. Вычислите R(4, 2, 2, 2).
- 6. Найдите вероятность того, что в случайном графе с вероятностью ребра  $\frac{1}{2}$  и количеством вершин 10 будет ровно 5 ребер.
- 7. [Перечислить?] все матрицы Адамара размера 2, в которых первый столбец состоит из минус единиц.
- 8. Сколько существует минимальных систем общих представителей у системы  $(\{1, 2, 3, 4, 5\}, \{4, 5, 6, 7, 8\})$ ?

# Вариант 6 (июль 2015, пересдача)

- 1. Найти количество попарно неизоморфных графов на 4 вершинах с 2 рёбрами.
- 2. Написать формулу Эйлера для планарных графов.
- 3. Найти хроматическое число графа, представляющего собой простой цикл длины 2015.
- 4. Сформулировать какую-нибудь нижнюю оценку для диагонального числа Рамсея R(n,n), доказанную в курсе и растущую не медленнее, чем  $1,1^n$ .
- 5. Найти перманент матрицы  $3 \times 3$ , состоящую из одной двойки и остальных единиц.
- 6. Найти длину последовательности де Брёйна для слов длины 2 над алфавитом размера 4.
- 7. Найти количество 3-клик в  $K_{8,10}$ .
- 8. Найти асимптотику  $\frac{(n!)^2}{(2n)!}$  при  $n \to \infty.$

# 2016 год

## Вариант 1 (июнь 2016)

- 1. Для каких из перечисленных кодов Прюфера существует дерево с вершинами  $1, 2, \dots, 8$  (нужное обвести): a) 2, 6, 3, 3, 6, 1, 7; b) 4, 4, 4, 4, 4, 4; c) 2, 3, 9, 3, 4, 1; d) 1, 6, 4, 5, 3, 2?
- 2. Сформулируйте теорему Турана о числе ребер в графе с данным числом вершин и числом независимости.
- 3. Чему равен модуль определителя матрицы Адамара  $8 \times 8$ ?
- 4. Приведите нетривиальную нижнюю оценку для биномиального коэффициента  $C_{16}^8$ , получаемую с помощью тождества.
- 5. Чему равно трехцветное число Рамсея R(3, 2, 4)?
- 6. Дайте определение величине m(n, k, t).
- 7. Рассмотрим случайный граф Эрдеша-Реньи  $G(n, \frac{1}{3})$ . С какой вероятностью подграф, порожденный фиксированными k вершинами  $(k \le n)$ , является кликой?
- 8. Сформулируйте теорему Вапника-Червоненкиса.

# Вариант 2 (июнь 2016)

- 1. Чему равна величина  $R(C_3, K_4)$ , где  $C_n$  цикл на n вершинах?
- 2. С.о.п. какого размера наберет жадный алгоритм для гиперграфа со следующей матрицей инцидентностей (строки матрицы вершины, столбцы ребра):

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}?$$

- 3. Известно, что в графе 10 вершин, число независимости равно 4. Что можно сказать о его хроматическом числе?
- 4. Сформулируйте теорему Радона.
- 5. Дайте определение величине  $\chi(\mathbb{R}^n)$ .
- 6. Известно, что у плоского связного графа количество граней равно 4, количество вершин равно 6. Сколько в таком графе ребер?
- 7. Что можно сказать о связности случайного графа Эрдеша-Реньи G(n,p) в случае, когда  $p=\frac{c\ln n}{n}$  при c<1?
- 8. Сформулируйте теорему Эрдеша-Ко-Радо для случая  $2k\leqslant n.$

# Вариант 3 (июнь 2016, пересдача)

- 1. Сформулируйте необходимое и достаточное условие эйлеровости графа.
- 2. Какое максимальное число ребер может иметь граф на 10 вершинах с числом независимости, равным 4?
- 3. Дайте определение гиперграфа t-пересечений.
- 4. Найдите минимальную с.о.п. для набора  $\{1,2,3\},\{1,2,4\},\{4,5,6\},\{1,2,5,7\},\{7,9,10\},\{4,9,10\},\{5,6,9\}$ .
- 5. Расположите в порядке возрастания следующие величины:  $R(K_3, K_3)$ ;  $\alpha(K_{6,9})$ ;  $\chi(C_{11})$ ; где  $C_n$  цикл на n вершинах.
- 6. Сформулируйте локальную лемму Ловаса в симметричном случае.
- 7. Какое минимальное количество множеств должно быть в совокупности, с помощью которой можно раздробить множество  $\{1,3,5,6\}$ ?
- 8. Составьте код Прюфера для следующего дерева:



### Вариант 4 (август 2016, пересдача)

- 1. Сформулируйте необходимое условие существования матрицы Адамара порядка n.
- 2. Чему в точности равно многоцветное число Рамсея  $R_3(3,13,3)$ ?
- 3. Дайте определение дистанционного графа в  $\mathbb{R}^{n}$ .
- 4. Сколько существует различных деревьев на данных 10 вершинах?
- 5. Чему равно число независимости  $\alpha(KG_{10.4})$ , где  $KG_{10.4}$  кнезеровский граф?
- 6. Выпишите, какая с.о.п. будет построена жадным алгоритмом для набора множеств  $\{1,3,6\}$ ;  $\{1,4,7\}$ ;  $\{2,4,6\}$ ;  $\{3,5,6\}$ , и в каком порядке будут включены в с.о.п. соответствующие элементы.
- 7. Исправьте ошибку в формулировке теоремы Эрдеша-Ко-Радо, если она есть. Пусть F любое семейство k-элементных подмножеств n-элементного множества. Если  $2k \geqslant n$  и объединение никаких двух подмножеств из F не есть всё n-элементное множество, то  $|F| \leqslant C_{n-1}^{k-1}$ .
- 8. Вычислите перманент следующей матрицы:

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

# Вариант 5 (сентябрь 2016, пересдача)

- 1. Исправьте ошибки в формулировке теоремы, если они есть. Для плоского графа G справедлива формула Эйлера: |V(G)| - |F(G)| + |E(G)| = 2, где |V(G)| — количество вершин G, |F(G)| — количество граней G, а |E(G)| — количество ребер G.
- 2. Нарисуйте дерево с вершинами  $1, 2, \dots 6$ , которому соответствует код Прюфера 2133.
- 3. Чему равно число Рамсея  $R(K_10, K_2)$ ?

- 4. Какая асимптотика у функции  $f(n) = \ln(n!)$  при  $n \to \infty$ ?
- 5. Чему равно хроматическое число  $\chi(KG_{6,3})$ , где  $KG_{n,k}$  кнезеровский граф?
- 6. Дайте определение матрицы Адамара порядка n.
- 7. Сформулируйте теорему Эрдеша о графах с большим обхватом и большим хроматическим числом.
- 8. Добавьте к совокупности  $\{\{1,3\};\{4,5\};\{1,2,3\};\{1,4,5,6\};\{2,3,4\};\{1,2,4,5\};\{2,3\}\}$  такое множество, чтобы новая совокупность дробила множество  $\{1,2,4\}$ .

# 2017 год

# Вариант 1 (июнь 2017)

- 1. Сформулируйте теорему Холла.
- 2. Чему равно двудольное число Рамсея b(1,7)?
- 3. Дайте определение дистанционного графа в  $\mathbb{R}^n$
- 4. Исправьте ошибку в формулировке теоремы Эрдеша-Ко-Радо, если она есть. Пусть F — любое семейство k-элементных подмножеств n-элементного множества. Если  $2k \leqslant n$  и любые два подмножества из F пересекаются, то  $|F| \leqslant C_n^k$ .
- 5. Приведите пример матрицы Адамара, первый столбец которой есть  $(1, -1, -1, 1)^T$ .
- 6. Приведите асимптотику функции  $\ln n!$  при  $n \to \infty$ .
- 7. Какое максимальное количество вершин может быть в графе с хроматическим числом  $\chi(G)=5$  и числом независимости  $\alpha(G)=5$ ?
- 8. Является ли последовательность 1100010111 последовательностью де Брейна? Если является, то напишите, чему равны ее порядок n и мощность алфавита k, если нет, то обоснуйте, почему.

# Вариант 2 (август 2017, пересдача)

- 1. Исправьте ошибки в формулировке теоремы, если они есть.
  - Пусть  $p=\frac{\ln n + c + o(1)}{n}$ , тогда  $P(G_{n,p} \ c$ вязен $) \to e^{-c}$ , при  $n \to \infty$  (где  $G_{n,p} c$ лучайный граф в модели Эрдеша-Реньи).
- 2. Чему равно двудольное число Рамсея b(1,5)?
- 3. Дайте определение кнезеровского графа  $KG_{n,k}$ .
- 4. Сформулируйте критерий эйлеровости графа (вида «граф эйлеров тогда и только тогда, когда ...», а не теорему об эквивалентных условиях).
- 5. Приведите пример графа с числом независимости 5 и хроматическим числом 4.
- 6. С.о.п. какого размера наберет жадный алгоритм для гиперграфа со следующей матрицей инцидентностей (строки матрицы вершины, столбцы ребра):

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}?$$

- 7. Найдите асимптотику функции  $f(n) = C_{\sqrt{n}}^{\ln^2 n}$  при  $n \to \infty$ .
- 8. Какое минимальное количество множеств должно быть в совокупности, с помощью которой можно раздробить множество  $\{2, 8, 13, 21, 35\}$ ?

## Вариант 3 (сентябрь 2017, пересдача)

- 1. Для каких из перечисленных кодов Прюфера существует дерево с вершинами  $1, 2, \dots, 8$  (нужное обвести): a) 2, 6, 3, 3, 6, 1, 7; b) 4, 4, 4, 4, 4, 4; c) 2, 3, 9, 3, 4, 1; d) 1, 6, 4, 5, 3, 2?
- 2. Чему равно число Рамсея  $R(K_10, K_2)$ ?
- 3. Найдите минимальную с.о.п. для набора множеств

$$\{\{1,2,3,4\};\{1,4,5\};\{2,3,6\};\{4,5,6\};\{3,6\};\{2,4,6\};\{1,5\}\}.$$

- 4. Сформулируйте необходимое условие существования матрицы Адамара порядка n.
- 5. Приведите асимптотику g(n) для функции  $f(n) = \sqrt[n]{n!}$  при  $n \to \infty$  (т.е. найдите «явную» функцию g(n), для которой  $f(n) \sim g(n)$  при  $n \to \infty$ ).
- 6. Чему равно число независимости  $\alpha(KG_{6,3})$ , где  $KG_{6,3}$  кнезеровский граф?
- 7. Сформулируйте теорему Эрдеша о графах с большим обхватом и большим хроматическим числом.
- 8. Дайте определение величине  $\chi(\mathbb{R}^n)$ .

# Ответы

В дебильнике требуется только указать ответ. Обратите внимание, что ответы, помеченные звездочкой (\*), предоставлены «сообществом» и не были верифицированы непосредственно на экзамене. Если звездочки нет, значит, за данный ответ в peanbhoù работе был поставлен «+». Сообщайте обо всех найденных ошиб-ках/опечатках!

#### Контакты:

Telegram: @celidos

https://github.com/celidos/TEX https://vk.com/eddie\_mur

#### 2015

#### Вариант 1

**1\*.** Например,  $\{\{1,2,3,4,5\};\{1,2,6,7,8\}\}$ . **2\*.**  $20^{18}$ . Условие подходит к определению дерева, используем формулу Кэли. **3\*.** Связный граф содержит в себе эйлеров путь тогда и только тогда, когда степень каждой его вершины четна. **4\*.** 8. Первая строка состоит из единиц. Все остальные строки ортогональны ей, значит, каждая содержит по 8/2=4 единицы и по 4 минус единицы. Значит, сумма элементов в любой строке, кроме первой, равна 0. **5.** Например, «Y»-образный граф на 4 вершинах. **6.**  $7^*$ .  $\infty$ .  $8^*$ .  $f(n)=1,5^n$ . Напомним, что запись f(n)=o(g(n)) означает, что  $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ . Но  $\lim_{n\to\infty}\frac{1,5^n}{2^n}=\lim_{n\to\infty}\left(\frac{1,5}{2}\right)^n=0\Rightarrow 1,5^n=o(2^n)$ . В то же время  $\lim_{n\to\infty}\frac{n^{2\ln n}}{1,5^n}=\lim_{n\to\infty}\frac{1,5^{2\ln n\cdot\log_{1,5}n}}{1,5^n}=0\Rightarrow n^{2\ln n}=o(1,5^n)$ , т. к.  $2\ln n\cdot\log_{1,5}n$  растет медленнее, чем n.

#### Вариант 2

1. 2. 3. 4. 5??. 59. 6. 7. 8.

#### Вариант 3

1.  $\chi(G) \geqslant \omega(G)$ . 2. Если в связном графе n вершин и степень любой вершины  $\geqslant \frac{n}{2}$ , то этот связный граф — гамильтонов. 3. Например, «Ү»-образный граф на 4 вершинах. 4.  $6 \cdot 5 \cdot 4 \cdot 4 = 480$ . 5.  $\frac{1}{3} \cdot \left(1 - \frac{1}{3}\right)^{98} \left(1 - \frac{1}{3}\right)^{98}$ . 6.  $\infty$ . Применяем формулу Стирлинга, откуда остаётся лишь  $2\sqrt{n\pi}$ , дальше очевидно. 7. 9. Больше 10 мы не получим, т.к. |A| = 10, при этом 10 не достигается, т. к. невозможно высечь пустое множество, для 9 все работает. 8. 2. Здесь можно применить правило «0 лучше 1 лучше 2».

#### Вариант 4

**1.** Например,  $\{\{1,2,3\};\{1,2,4\};\{1,2,5\}\}$ . **2.**  $25^{23}$ . Условие подходит к определению дерева, поэтому считаем по формуле Кэли. **3. 4. 5.** Например, «Y»-образный граф на 4 вершинах. **6. 7.**  $VC(\mathbb{N}, F) = \infty$ . **8.** 

#### Вариант 5

1. 2. 3. 4. 5. 6. 7. 8.

2016 Ответы

#### Вариант 6

**1.** 2. **2\*.** n-e+f=2, где  $n=|V|,\ e=|E|,\ f$  — число граней. **3.** 3. Заметим, что для простых циклов ответ зависит лишь от четности n: если n четно, то  $\chi(G)=2$ , иначе  $\chi(G)=3$ . **4.**  $R(n,n)\geqslant (1+o(1))\frac{\sqrt{2}}{e}n2^{n/2}$  (теорема Спенсера). **5.** 8. Можно выписать любую подходящую матрицу, дальше по формуле разложения по строке. **6.**  $17=4^2+2-1$ . **7.** 0. **8.** 0.

#### 2016

#### Вариант 1

1. «b» и «d». В случае «а» последовательность слишком длинная, «c» — не м.б. вершины с номером 9.

2. Пусть у графа G = (V, E) число вершин |V| = n и  $\alpha = \alpha(G)$ . Тогда в этом графе  $|E| \geqslant n \left[\frac{n}{\alpha}\right] - \left[\frac{n}{\alpha}\right] \left[\frac{n}{\alpha} + 1\right] \cdot \frac{\alpha}{2}$ .

3\*.  $8^4 = \sqrt{8^8}$ . Известно, что  $A \cdot A^T = nE \Rightarrow \det(AA^T) = n^n$ . 4.  $C_{16}^8 \geqslant \frac{2^{16}}{17}$ . 5. R(3, 2, 4) = R(3, 4) = 9.

6.  $m(n, k, t) = \max\{m \in \mathbb{N} : \exists k$ -однородный гиперграф  $H = (V, E), |V| = n, |E| = m, \forall A, B \in E : |A \cap B| \neq t\}$ .

7.  $\left(\frac{1}{3}\right)^{C_k^2}$ . 8.

#### Вариант 2

**1.**  $R(C_3, K_4) = R(3, 4) = 9$ . **2.** 4 (все вершины). *Прим.*: сначала алгоритм возьмет первую вершину, т. к. в первой строке больше всего единиц. **3.**  $\chi \geqslant 3$ ,  $\chi \leqslant 7$ . **4.** Существует такой набор точек A в  $\mathbb{R}^n$ , что |A| = n+2,  $A \subset \mathbb{R}^n$ , и  $\exists U, V: A = U \sqcup V$  и  $\mathrm{conv}(U) \cap \mathrm{conv}(V) \neq \varnothing$ . **5.**  $\chi(\mathbb{R}^n) = \min\{k: \mathbb{R}^n = V_1 \sqcup \ldots \sqcup V_k \text{ и } \forall i \; \forall u, v \in V_i \; \rho(u,v) \neq 1\}$ . **6.** 8. Используйте формулу n-e+f=2. **7.** 8.  $f(n,k,1)=C_{n-1}^{k-1}$  при  $k \leqslant \frac{n}{2}$ , где  $f(n,k,1)=\max\{m \in \mathbb{N}: \exists k$ -однородный гиперграф  $H=(V,E), |V|=n, |E|=m, \forall A, B \in E: |A \cap B| \geqslant 1\}$ . *Прим.*: лучше написать определение f(n,k,t), иначе могут не засчитать.

#### Вариант 3

**1.** G = (V, E) — эйлеров  $\Leftrightarrow G$  связен и  $\forall v \in V$  deg  $v \equiv 0 \pmod{2}$ . Прим.: Связность, связность, связность! **3.** Гиперграф, в котором  $\forall e, f \in E \mid e \cap f \mid \geqslant t$ . **4.**  $\{1, 4, 9\}$ . **5.**  $R(K_3, K_3) = 6$ ,  $\alpha(K_{6,9}) = 9$ ,  $\chi(C_{11}) = 3$ , поэтому  $\alpha(K_{6,9}) > R(K_3, K_3) > \chi(C_{11})$ . **6\*.** Пусть  $A_1, \ldots, A_n$  — события на  $(\Omega, \mathscr{F}, \mathbf{P})$ . Пусть  $\forall i \ \mathbf{P}(A_i) \leqslant p < 1$  и  $\forall i \ A_i$  не зависит от совокупности всех остальных событий, кроме не более d штук, и числа p, d не зависят от i.

Тогда, если ep(d+1) < 1, то  $\mathbf{P}\left(\bigcap_{i=1}^n \overline{A_i}\right) > 0$ . **7.**  $2^4 = 16$ . **8.** 13113.

#### Вариант 4

1. 2. 3. 4. 5. 6. 7. 8.

#### Вариант 5

1. 2. 3. 4. 5. 6. 7. 8.

#### 2017

#### Вариант 1

**1.** Пусть  $S_1, ..., S_m$  — конечные множества.  $\forall i \in \{1, ..., m\}$  можно выбрать  $x_i \in S_i$  так, чтобы  $\forall i, j \ x_i \neq x_j$  при  $(i \neq j)$ , если  $\forall k \in \{1, ..., m\}$  объединение любых k множеств из  $S_1, ..., S_m$  содержит  $\geqslant k$  элементов.

**2.** 7. **3. 4.** 
$$|F|\leqslant C_{n-1}^{k-1}$$
. **5.**  $\begin{pmatrix}1&1&1&1\\-1&1&-1&1\\-1&-1&1&1\\1&-1&-1&1\end{pmatrix}=\begin{pmatrix}1&1\\-1&1\end{pmatrix}\otimes\begin{pmatrix}1&1\\-1&1\end{pmatrix}$ . См. получение матриц Адамара

кронекеровским произведением. **6.**  $\ln n! \sim n \ln n$ . **7.**  $|V| \leqslant 25$ . Используйте  $\chi(G) \geqslant \frac{|V|}{\alpha(G)}$ . **8.** Является, k = 2, n = 3.

2017 Ответы

#### Вариант 2

**1.**  $P(G_{n,p} \text{ связен}) \to e^{-e^{-c}}$  **2.** 5. **3.** Кнезеровским графом  $KG_{n,k} = (V, E)$  называется граф такой, что V — все k-элементные подмножества  $\{1, \ldots, n\}$ , а  $E = \{(A, B) : A \cap B = \emptyset\}$ . **4. 5.** Подойдет «5 $K_4$ » или « $K_4$  и четыре изолированные вершины». **6.** 4. **7. 8.**  $2^5 = 32$ .

#### Вариант 3

**1.** «b» и «d». **2.** 10. **3.** {1,6}. **4.** Если при заданном n существует матрица Адамара порядка n, то n=1 или n=2 или n делится на 4 при n>3.  $\Pi$  рим.: не путать необходимое («если существует, то  $n\ldots$ ») и достаточное условие (гипотеза Адамара – «если  $n\ldots$ , то существует»)! **5.**  $g(n)=\frac{n}{e}$ . **6.**  $\alpha(KG_{6,3})=10=f(6,3,1)=C_{6-1}^{3-1}$ . **7.**  $\forall k,l$  существует граф, у которого обхват  $\geqslant k$ , а хроматическое число  $\geqslant l$ . **8.**  $\chi(\mathbb{R}^n)=\min\{k:\mathbb{R}^n=V_1\sqcup\ldots\sqcup V_k \text{ и } \forall i\;\forall u,v\in V_i\;\rho(u,v)\neq 1\}$ .