Számítógépes Grafika

Bán Róbert robert.ban102+cg@gmail.com

Eötvös Loránd Tudományegyetem Informatikai Kar

2021-2022. tavaszi félév

Tartalom

- Raycasting
 - Motiváció
 - Raycasting
 - Sugarak indítása
 - Metszések

Tartalom

- Raycasting
 - Motiváció
 - Raycasting
 - Sugarak indítása
 - Metszések

Motiváció

• Tekintsünk minden pixelre úgy, mint egy kis ablakra a világra

Motiváció

- Tekintsünk minden pixelre úgy, mint egy kis ablakra a világra
- Milyen színértéket vegyen fel ez a pixel?

Motiváció

- Tekintsünk minden pixelre úgy, mint egy kis ablakra a világra
- Milyen színértéket vegyen fel ez a pixel? → Nézzük meg, mi látszik onnan a világból és az alapján rendeljünk hozzá a pixelhez egy színt!

- Raycasting
 - Motiváció
 - Raycasting
 - Sugarak indítása
 - Metszések

Raycasting

Minden pixelre:

Indítsunk egy sugarat a színtérbe

Minden objektumra a színtérben:

Nézzük meg, hogy metszi-e a sugár az objektumot

A legközelebbi metszett objektum színével színezzük ki a pixelt

- A sugárnak van
 - egy **p**₀ kiindulási pontja
 - és egy v iránya

Sugár

- A sugárnak van
 - egy **p**₀ kiindulási pontja
 - és egy **v** iránya
- A parametrikus sugár:

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v},$$

ahol t > 0 (félegyenes!).

• t = 0?, t < 0?

- A sugárnak van
 - egy p₀ kiindulási pontja
 - és egy v iránya
- A parametrikus sugár:

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v},$$

ahol t > 0 (félegyenes!).

ullet t=0?, t<0? sugár kezdőpontja, sugár mögötti részek

Kérdés

• Honnan indítsuk a sugarat?

Kérdés

- Honnan indítsuk a sugarat?
- Milyen irányba küldjük a sugarat?

Kérdés

- Honnan indítsuk a sugarat?
- Milyen irányba küldjük a sugarat?
- Hogyan metsszük el a sugarat akármivel?

Tartalom

- Raycasting
 - Motiváció
 - Raycasting
 - Sugarak indítása
 - Metszések

 A szempozícióból indítunk sugarakat minden pixel középpontján keresztül

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek

Sugarak indítása

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),

Sugarak indítása

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),
 - egy pont amire néz (center),

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),
 - egy pont amire néz (center),
 - felfele irányt megadó vektor a világban (up),

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),
 - egy pont amire néz (center),
 - felfele irányt megadó vektor a világban (up),
 - nyílásszög, amekkora szögtartományt lát (fovx, fovy).

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),
 - egy pont amire néz (center),
 - felfele irányt megadó vektor a világban (up),
 - nyílásszög, amekkora szögtartományt lát (fovx, fovy).
 - (vetítővászon mérete. Most legyen adott: $2\tan\left(\frac{fovx}{2}\right) \times 2\tan\left(\frac{fovy}{2}\right)$ nagyságú)

- A szempozícióból indítunk sugarakat minden pixel középpontján keresztül
- Most: középpontosan szeretnénk vetíteni egy szembe, a vetítési sík egy négyszögletes részét megfeleltetve a képernyőnek
- Szem/kamera tulajdonságok:
 - szempozíció (eye),
 - egy pont amire néz (center),
 - felfele irányt megadó vektor a világban (up),
 - nyílásszög, amekkora szögtartományt lát (fovx, fovy).
 - (vetítővászon mérete. Most legyen adott: $2\tan\left(\frac{fovx}{2}\right) \times 2\tan\left(\frac{fovy}{2}\right)$ nagyságú)
- Ezek segítségével fogjuk megadni az (i, j) pixel világbeli koordinátáit

Keressük a kamera saját **u**, **v**, **w** (jobbkezes!) koordináta-rendszerét!

• Nézzen a kamera -Z irányba!

$$\mathbf{w} = \frac{\mathbf{eye} - \mathbf{center}}{|\mathbf{eye} - \mathbf{center}|}$$

Keressük a kamera saját **u**, **v**, **w** (jobbkezes!) koordináta-rendszerét!

• Nézzen a kamera -Z irányba!

$$\mathbf{w} = \frac{\mathbf{eye} - \mathbf{center}}{|\mathbf{eye} - \mathbf{center}|}$$

• Az X tengely legyen merőleges mind w-re, mind az up irányra!

$$\mathbf{u} = \frac{\mathbf{up} \times \mathbf{w}}{|\mathbf{up} \times \mathbf{w}|}$$

Keressük a kamera saját $\mathbf{u}, \mathbf{v}, \mathbf{w}$ (jobbkezes!) koordináta-rendszerét!

• Nézzen a kamera -Z irányba!

$$\mathbf{w} = \frac{\mathbf{eye} - \mathbf{center}}{|\mathbf{eye} - \mathbf{center}|}$$

Az X tengely legyen merőleges mind w-re, mind az up irányra!

$$\mathbf{u} = \frac{\mathbf{up} \times \mathbf{w}}{|\mathbf{up} \times \mathbf{w}|}$$

Az Y tengely merőleges u-ra és w-re is:

$$\mathbf{v} = \mathbf{w} \times \mathbf{u}$$

(i, j) pixel koordinátái

 Legyen p az i, j pixel középpontja, a vetítősík egységnyi távolságra a nézőponttól! Ekkor

$$\mathbf{p}(i,j) = \mathbf{eye} + (\alpha \mathbf{u} + \beta \mathbf{v} - \mathbf{w}).$$

(i, j) pixel koordinátái

 Legyen p az i, j pixel középpontja, a vetítősík egységnyi távolságra a nézőponttól! Ekkor

$$\mathbf{p}(i,j) = \mathbf{eye} + (\alpha \mathbf{u} + \beta \mathbf{v} - \mathbf{w}).$$

Ahol

$$\alpha = \tan\left(\frac{\textit{fovx}}{2}\right) \cdot \frac{\textit{i} - \textit{width}/2}{\textit{width}/2},$$

$$\beta = \tan\left(\frac{\text{fovy}}{2}\right) \cdot \frac{\text{height}/2 - j}{\text{height}/2}.$$

A sugár egyenlete

 A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg.

A sugár egyenlete

- A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg.
- Legyen \mathbf{p}_0 a sugár kezdőpontja, \mathbf{v} pedig az irányvektora, ekkor

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v},\quad t\geq 0$$

megadja a sugár összes pontját.

A sugár egyenlete

- A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg.
- Legyen \mathbf{p}_0 a sugár kezdőpontja, \mathbf{v} pedig az irányvektora, ekkor

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v},\quad t\geq 0$$

megadja a sugár összes pontját.

 Most a sugarak kezdőpontját az előbbieknek megfelelően számoljuk, azaz $\mathbf{p}_0 = \mathbf{p}(i, j)$

A sugár egyenlete

- A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg.
- Legyen \mathbf{p}_0 a sugár kezdőpontja, \mathbf{v} pedig az irányvektora, ekkor

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v},\quad t\geq 0$$

megadja a sugár összes pontját.

- Most a sugarak kezdőpontját az előbbieknek megfelelően számoljuk, azaz $\mathbf{p}_0 = \mathbf{p}(i, j)$
- A sugár irányvektora pedig $\mathbf{v} = \frac{\mathbf{p}(i,j) \mathbf{e}\mathbf{y}\mathbf{e}}{|\mathbf{p}(i,i) \mathbf{e}\mathbf{v}\mathbf{e}|}$

Tartalom

- Raycasting
 - Motiváció
 - Raycasting
 - Sugarak indítása
 - Metszések

 A sugárkövető programok futásidejük döntő részében metszéseket fognak végezni

- A sugárkövető programok futásidejük döntő részében metszéseket fognak végezni
- Nézzük meg néhány egyszerű geometriai elemmel vett metszetét a sugárnak

- A sugárkövető programok futásidejük döntő részében metszéseket fognak végezni
- Nézzük meg néhány egyszerű geometriai elemmel vett metszetét a sugárnak
- A sugarunk mindig a korábban is látott $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú, ahol feltesszük a továbbiakban, hogy $|\mathbf{v}| = 1$

- A sugárkövető programok futásidejük döntő részében metszéseket fognak végezni
- Nézzük meg néhány egyszerű geometriai elemmel vett metszetét a sugárnak
- A sugarunk mindig a korábban is látott $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú, ahol feltesszük a továbbiakban, hogy $|\mathbf{v}| = 1$
- Ekkor a t sugárparaméter éppen a $\mathbf{p}(t)$ pont távolsága \mathbf{p}_0 -tól!

• Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket ($\mathbf{x} \in \mathbb{R}^3$)

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket ($\mathbf{x} \in \mathbb{R}^3$)
- A sugarunk egyenlete $\forall t \in [0, \infty)$ -re meghatároz egy pontot a térben

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket ($\mathbf{x} \in \mathbb{R}^3$)
- A sugarunk egyenlete $\forall t \in [0, \infty)$ -re meghatároz egy pontot a térben \rightarrow helyettesítsük be ezt a képletet az implicit egyenletbe!

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket ($\mathbf{x} \in \mathbb{R}^3$)
- A sugarunk egyenlete $\forall t \in [0, \infty)$ -re meghatároz egy pontot a térben \rightarrow helyettesítsük be ezt a képletet az implicit egyenletbe!
- Tehát a következő egyenletet kell megoldanunk *t*-re:

$$f(\mathbf{p}(t)) = 0$$

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket $(\mathbf{x} \in \mathbb{R}^3)$
- A sugarunk egyenlete $\forall t \in [0,\infty)$ -re meghatároz egy pontot a térben \to helyettesítsük be ezt a képletet az implicit egyenletbe!
- Tehát a következő egyenletet kell megoldanunk *t*-re:

$$f(\mathbf{p}(t))=0$$

• A kapott t-től függően a következő esetek állhatnak fenn:

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket $(\mathbf{x} \in \mathbb{R}^3)$
- A sugarunk egyenlete $\forall t \in [0, \infty)$ -re meghatároz egy pontot a térben \rightarrow helyettesítsük be ezt a képletet az implicit egyenletbe!
- Tehát a következő egyenletet kell megoldanunk *t*-re:

$$f(\mathbf{p}(t))=0$$

- A kapott t-től függően a következő esetek állhatnak fenn:
 - ullet Ha t>0, akkor a sugarunk előtt van a felület és metszi

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket ($\mathbf{x} \in \mathbb{R}^3$)
- A sugarunk egyenlete $\forall t \in [0, \infty)$ -re meghatároz egy pontot a térben \rightarrow helyettesítsük be ezt a képletet az implicit egyenletbe!
- Tehát a következő egyenletet kell megoldanunk *t*-re:

$$f(\mathbf{p}(t)) = 0$$

- A kapott t-től függően a következő esetek állhatnak fenn:
 - Ha t > 0, akkor a sugarunk előtt van a felület és metszi
 - Ha t = 0 a sugár kezdőpontja a felületen van

- Legyen adva egy $f(\mathbf{x}) = f(x, y, z) = 0$ implicit egyenlet, ami meghatározza a metszeni kívánt felületünket $(\mathbf{x} \in \mathbb{R}^3)$
- A sugarunk egyenlete $\forall t \in [0,\infty)$ -re meghatároz egy pontot a térben \to helyettesítsük be ezt a képletet az implicit egyenletbe!
- Tehát a következő egyenletet kell megoldanunk *t*-re:

$$f(\mathbf{p}(t))=0$$

- A kapott t-től függően a következő esetek állhatnak fenn:
 - ullet Ha t>0, akkor a sugarunk előtt van a felület és metszi
 - ullet Ha t=0 a sugár kezdőpontja a felületen van
 - Ha t < 0, akkor a sugár "mögött" van a felület és metszi a sugár egyenese a felületet (de nekünk t > 0 kell!)

• Legyen adva egy $\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]^T$ parametrikus felület

Metszések: parametrikus sugár – parametrikus felület

- Legyen adva egy $\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]^T$ parametrikus felület
- Kell: találni egy olyan t sugárparamétert, amihez létezik (u, v), hogy

$$\mathbf{p}(t)=\mathbf{r}(u,v)$$

Metszések: parametrikus sugár – parametrikus felület

- Legyen adva egy $\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]^T$ parametrikus felület
- Kell: találni egy olyan t sugárparamétert, amihez létezik (u, v), hogy

$$\mathbf{p}(t)=\mathbf{r}(u,v)$$

• Ez három ismeretlenes (t, u, v), három egyenletes (x, y, z)koordinátánként egy) egyenletrendszer

Metszések: parametrikus sugár – parametrikus felület

- Legyen adva egy $\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]^T$ parametrikus felület
- Kell: találni egy olyan t sugárparamétert, amihez létezik (u, v), hogy

$$\mathbf{p}(t)=\mathbf{r}(u,v)$$

- Ez három ismeretlenes (t, u, v), három egyenletes (x, y, z) koordinátánként egy) egyenletrendszer
- A t ugyanúgy ellenőrizendő, mint előbb, de most az (u, v)-re is figyeljünk, hogy a felületünk paramétertartományának megengedett részén van-e (általában $(u, v) \in [0, 1]^2$ kell)!

• Síkot megadhatunk implicit alakban: Ax + By + Cz + D = 0

- Síkot megadhatunk implicit alakban: Ax + By + Cz + D = 0
- A

$$\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

sugár egyenese metszi a síkot, ha

$$A(x_0 + tx) + B(y_0 + ty) + C(z_0 + tz) + D = 0$$

Ezt t-re átrendezve adódik

$$t(Ax + By + Cz) + x_0 + y_0 + z_0 + D = 0$$
$$t = -\frac{x_0 + y_0 + z_0 + D}{Ax + By + Cz}$$

• Ezt t-re átrendezve adódik

$$t(Ax + By + Cz) + x_0 + y_0 + z_0 + D = 0$$
$$t = -\frac{x_0 + y_0 + z_0 + D}{Ax + By + Cz}$$

• Látható a sík a nézőpontunkból, ha t > 0

• Legyen **q**₀ a sík egy pontja, **n** a normálvektora,

Sugár és normálvektoros sík metszéspontja

- Legyen **q**₀ a sík egy pontja, **n** a normálvektora,
- Legyen \mathbf{p}_0 ez egyenes egy pontja, \mathbf{v} az irányvektora.

- Legyen **q**₀ a sík egy pontja, **n** a normálvektora,
- Legyen \mathbf{p}_0 ez egyenes egy pontja, \mathbf{v} az irányvektora.
- Az egyenes egyenlete:

$$\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$$

- Legyen **q**₀ a sík egy pontja, **n** a normálvektora,
- Legyen \mathbf{p}_0 ez egyenes egy pontja, \mathbf{v} az irányvektora.
- Az egyenes egyenlete:

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v}$$

A sík egyenlete:

$$\langle \mathbf{n}, \mathbf{q} - \mathbf{q}_0 \rangle = 0$$

minden q pontja a síknak kielégíti ezt az egyenletet.

Behelyettesítve p(t)-t a q helyére:

$$\langle \mathbf{n}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{q}_0 \rangle = 0,$$

• Behelyettesítve **p**(*t*)-t a **q** helyére:

$$\langle \mathbf{n}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{q}_0 \rangle = 0,$$

$$\langle \mathbf{n}, \mathbf{p}_0 \rangle + t \langle \mathbf{n}, \mathbf{v} \rangle - \langle \mathbf{n}, \mathbf{q}_0 \rangle = 0,$$

• Behelyettesítve $\mathbf{p}(t)$ -t a \mathbf{q} helyére:

$$\langle \mathbf{n}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{q}_0 \rangle = 0,$$

$$\langle \mathbf{n}, \mathbf{p}_0 \rangle + t \langle \mathbf{n}, \mathbf{v} \rangle - \langle \mathbf{n}, \mathbf{q}_0 \rangle = 0,$$

$$t = \frac{\langle \mathbf{n}, \mathbf{q}_0 \rangle - \langle \mathbf{n}, \mathbf{p}_0 \rangle}{\langle \mathbf{n}, \mathbf{v} \rangle} = \frac{\langle \mathbf{n}, \mathbf{q}_0 - \mathbf{p}_0 \rangle}{\langle \mathbf{n}, \mathbf{v} \rangle},$$

ha $\langle \mathbf{n}, \mathbf{v} \rangle \neq 0$.

Sugár és normálvektoros sík metszéspontja

• Behelyettesítve $\mathbf{p}(t)$ -t a \mathbf{q} helyére:

$$\langle \mathbf{n}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{q}_0 \rangle = 0,$$

$$\langle \mathbf{n}, \mathbf{p}_0 \rangle + t \langle \mathbf{n}, \mathbf{v} \rangle - \langle \mathbf{n}, \mathbf{q}_0 \rangle = 0,$$

$$t = rac{\langle \mathbf{n}, \mathbf{q}_0
angle - \langle \mathbf{n}, \mathbf{p}_0
angle}{\langle \mathbf{n}, \mathbf{v}
angle} = rac{\langle \mathbf{n}, \mathbf{q}_0 - \mathbf{p}_0
angle}{\langle \mathbf{n}, \mathbf{v}
angle},$$

ha $\langle \mathbf{n}, \mathbf{v} \rangle \neq 0$.

• A sugár metszi a síkot, ha: t > 0.

Behelyettesítve p(t)-t a q helyére:

$$\langle \mathbf{n}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{q}_0 \rangle = 0,$$

$$\langle \mathbf{n}, \mathbf{p}_0 \rangle + t \langle \mathbf{n}, \mathbf{v} \rangle - \langle \mathbf{n}, \mathbf{q}_0 \rangle = 0,$$

$$t = rac{\langle \mathbf{n}, \mathbf{q}_0
angle - \langle \mathbf{n}, \mathbf{p}_0
angle}{\langle \mathbf{n}, \mathbf{v}
angle} = rac{\langle \mathbf{n}, \mathbf{q}_0 - \mathbf{p}_0
angle}{\langle \mathbf{n}, \mathbf{v}
angle},$$

ha $\langle \mathbf{n}, \mathbf{v} \rangle \neq 0$.

- A sugár metszi a síkot, ha: t > 0.
- Ha $\langle \mathbf{n}, \mathbf{v} \rangle = 0$, akkor az egyenes párhuzamos a síkkal, és így vagy nincs metszéspontjuk, vagy az egyenes a síkon fut

• Síkot megadhatunk egy **q** pontjával és **i**, **j** kifeszítő vektorokkal is: $\mathbf{s}(u, v) = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$

Sugár és parametrikus sík metszéspontja

- Síkot megadhatunk egy **q** pontjával és **i**, **j** kifeszítő vektorokkal is: $\mathbf{s}(u, v) = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$
- Metszéspont a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ sugár egyenesével: keressük t és u, v-t úgy, hogy

$$\mathbf{p}(t)=\mathbf{s}(u,v)$$

Sugár és parametrikus sík metszéspontja

- Síkot megadhatunk egy **q** pontjával és **i**, **j** kifeszítő vektorokkal is: $\mathbf{s}(u, v) = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$
- Metszéspont a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ sugár egyenesével: keressük t és u, v-t úgy, hogy

$$\mathbf{p}(t)=\mathbf{s}(u,v)$$

• Beírva a képleteket adódik

$$\mathbf{p}_0 + t\mathbf{v} = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$$

Sugár és parametrikus sík metszéspontja

- Síkot megadhatunk egy **q** pontjával és **i**, **j** kifeszítő vektorokkal is: $\mathbf{s}(u, v) = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$
- Metszéspont a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ sugár egyenesével: keressük t és u, v-t úgy, hogy

$$\mathbf{p}(t)=\mathbf{s}(u,v)$$

• Beírva a képleteket adódik

$$\mathbf{p}_0 + t\mathbf{v} = \mathbf{q} + u\mathbf{i} + v\mathbf{j}$$

Átrendezve kapjuk, hogy

$$\mathbf{p}_0 - \mathbf{q} = -t\mathbf{v} + u\mathbf{i} + v\mathbf{j}$$

Sugár és parametrikus sík metszéspontja

 Ez három ismeretlenes, három lineáris egyenletből álló egyenletrendszer, ami megoldható, ha v, i, j lineárisan nem összefüggő

Sugár és parametrikus sík metszéspontja

- Ez három ismeretlenes, három lineáris egyenletből álló egyenletrendszer, ami megoldható, ha v, i, i lineárisan nem összefüggő
- Mátrix alakban:

$$\begin{bmatrix} p_{0x} - q_x \\ p_{0y} - q_y \\ p_{0z} - q_z \end{bmatrix} = \begin{bmatrix} -v_x & i_x & j_x \\ -v_y & i_y & j_y \\ -v_z & i_z & j_z \end{bmatrix} \begin{bmatrix} t \\ u \\ v \end{bmatrix}$$

- Ez három ismeretlenes, három lineáris egyenletből álló egyenletrendszer, ami megoldható, ha v, i, j lineárisan nem összefüggő
- Mátrix alakban:

$$\begin{bmatrix} p_{0x} - q_x \\ p_{0y} - q_y \\ p_{0z} - q_z \end{bmatrix} = \begin{bmatrix} -v_x & i_x & j_x \\ -v_y & i_y & j_y \\ -v_z & i_z & j_z \end{bmatrix} \begin{bmatrix} t \\ u \\ v \end{bmatrix}$$

• Látjuk a síkot, ha t > 0 (most $u, v \in \mathbb{R}$ a felület paramétertartománya, ez teljesülni fog)

• A háromszög egyértelműen megadható három csúcsával.

- A háromszög egyértelműen megadható három csúcsával.
- Ha a, b, c a háromszög csúcsai, akkor a hozzátartozó sík egy parametrikus megadása

$$s(u, v) = a + u(b - a) + v(c - a)$$

- A háromszög egyértelműen megadható három csúcsával.
- Ha a, b, c a háromszög csúcsai, akkor a hozzátartozó sík egy parametrikus megadása

$$s(u, v) = a + u(b - a) + v(c - a)$$

• A korábbi jelölésekkel: $\mathbf{q} = \mathbf{a}$, $\mathbf{i} = \mathbf{b} - \mathbf{a}$ és $\mathbf{j} = \mathbf{c} - \mathbf{a}$.

 Ez egyben egy baricentrikus megadás is, hiszen átrendezve kapjuk, hogy

$$\mathbf{s}(u,v) = (1-u-v)\mathbf{a} + u\mathbf{b} + v\mathbf{c},$$

ahol az együtthatók 1-re összegződnek.

 Ez egyben egy baricentrikus megadás is, hiszen átrendezve kapjuk, hogy

$$\mathbf{s}(u,v) = (1-u-v)\mathbf{a} + u\mathbf{b} + v\mathbf{c},$$

ahol az együtthatók 1-re összegződnek.

 Elvégezve tehát a parametrikus síkkal a metszést, megkapjuk a baricentrikus koordinátáit a sugár síkkal való metszéspontjának.

 Ez egyben egy baricentrikus megadás is, hiszen átrendezve kapjuk, hogy

$$\mathbf{s}(u,v)=(1-u-v)\mathbf{a}+u\mathbf{b}+v\mathbf{c},$$

ahol az együtthatók 1-re összegződnek.

- Elvégezve tehát a parametrikus síkkal a metszést, megkapjuk a baricentrikus koordinátáit a sugár síkkal való metszéspontjának.
- Utolsó lépésként ellenőriznünk kell, hogy a metszéspont a háromszögön belül van-e. Ez pontosan akkor teljesül, ha

$$0 \le u \le 1$$
 és $0 \le v \le 1$.

• A háromszög egyértelműen megadható három csúcsával.

- A háromszög egyértelműen megadható három csúcsával.
- Ha a, b, c a háromszög csúcsai, akkor a hozzátartozó sík pont-normálvektoros implicit megadásához a sík
 - egy pontja **a**, **b**, **c** bármelyike

- A háromszög egyértelműen megadható három csúcsával.
- Ha a, b, c a háromszög csúcsai, akkor a hozzátartozó sík pont-normálvektoros implicit megadásához a sík
 - egy pontja a, b, c bármelyike
 - normálvektora

$$\mathbf{n} = \frac{(\mathbf{c} - \mathbf{a}) \times (\mathbf{b} - \mathbf{a})}{\|(\mathbf{c} - \mathbf{a}) \times (\mathbf{b} - \mathbf{a})\|},$$

ahol \times a vektoriális szorzást jelöli, és ekkor ${\bf n}$ egységnyi hosszúságú.

• Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen **p** (már ha létezik).

- Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen p (már ha létezik).
- Legyenek λ₁, λ₂, λ₃ a p pont a, b, c-re vonatkoztatott baricentrikus koordinátái, úgy hogy

$$\mathbf{p} = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c}$$

- Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen p (már ha létezik).
- Legyenek λ₁, λ₂, λ₃ a p pont a, b, c-re vonatkoztatott baricentrikus koordinátái, úgy hogy

$$\mathbf{p} = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c}$$

p Akkor, és csak akkor van a △-ön belül, ha

$$0 \le \lambda_1, \lambda_2, \lambda_3 \le 1$$
.

• Tudjuk, hogy $\mathbf{p} = [x, y, z]^T = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c}$. Ekkor

$$x = \lambda_1 a_x + \lambda_2 b_x + \lambda_3 c_x$$

$$y = \lambda_1 a_y + \lambda_2 b_y + \lambda_3 c_y$$

$$z = \lambda_1 a_z + \lambda_2 b_z + \lambda_3 c_z,$$

ill.
$$\lambda_1 + \lambda_2 + \lambda_3 = 1 \Rightarrow \lambda_3 = 1 - \lambda_1 - \lambda_2$$

 A gyorsabb számolásért vegyük a fentinek egy síkra vett vetületét

• Tudjuk, hogy $\mathbf{p} = [x, y, z]^T = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c}$. Ekkor

$$x = \lambda_1 a_x + \lambda_2 b_x + \lambda_3 c_x$$

$$y = \lambda_1 a_y + \lambda_2 b_y + \lambda_3 c_y$$

$$z = \lambda_1 a_z + \lambda_2 b_z + \lambda_3 c_z,$$

ill.
$$\lambda_1 + \lambda_2 + \lambda_3 = 1 \Rightarrow \lambda_3 = 1 - \lambda_1 - \lambda_2$$

- A gyorsabb számolásért vegyük a fentinek egy síkra vett vetületét
- A koordinátasíkok közül (XY, XZ vagy YZ) arra vegyük a háromszög 2D vetületét, amelyre a háromszög vetületének területe a legnagyobb!

• Tudjuk, hogy $\mathbf{p} = [x, y, z]^T = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} + \lambda_3 \mathbf{c}$. Ekkor

$$x = \lambda_1 a_x + \lambda_2 b_x + \lambda_3 c_x$$

$$y = \lambda_1 a_y + \lambda_2 b_y + \lambda_3 c_y$$

$$z = \lambda_1 a_z + \lambda_2 b_z + \lambda_3 c_z,$$

ill.
$$\lambda_1 + \lambda_2 + \lambda_3 = 1 \Rightarrow \lambda_3 = 1 - \lambda_1 - \lambda_2$$

- A gyorsabb számolásért vegyük a fentinek egy síkra vett vetületét
- A koordinátasíkok közül (XY, XZ vagy YZ) arra vegyük a háromszög 2D vetületét, amelyre a háromszög vetületének területe a legnagyobb! \rightarrow a háromszög és a sík normálisa leginkább "egyállású"
- A vetülethez egyszerűen elhagyjuk z, y vagy x egyenletét, megfelelően.

Azt tengely kell választani, amelyik mentén a legnagyobb a háromszög normálvektorának abszolút értéke.

(Így biztos nem fordulhat elő, hogy a háromszög merőleges a síkra, és csak egy szakasz marad belőle!)

• Pl. legyen a z a választott tengely. Ekkor

$$x = \lambda_1 a_x + \lambda_2 b_x + \lambda_3 c_x$$
$$y = \lambda_1 a_y + \lambda_2 b_y + \lambda_3 c_y$$

• Pl. legyen a z a választott tengely. Ekkor

$$x = \lambda_1 a_x + \lambda_2 b_x + \lambda_3 c_x$$

$$y = \lambda_1 a_y + \lambda_2 b_y + \lambda_3 c_y$$

• Behelyettesítve $\lambda_3 = 1 - \lambda_1 - \lambda_2$ -t, és rendezve:

$$x = \lambda_1(a_x - c_x) + \lambda_2(b_x - c_x) + c_x y = \lambda_1(a_y - c_y) + \lambda_2(b_y - c_y) + c_y$$

• Rendezve λ_1, λ_2 -re kapjuk:

$$\lambda_1 = \frac{(b_y - c_y)(x - c_x) - (b_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$
$$\lambda_2 = \frac{-(a_y - c_y)(x - c_x) - (a_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$

• Rendezve λ_1, λ_2 -re kapjuk:

$$\lambda_1 = \frac{(b_y - c_y)(x - c_x) - (b_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$
$$\lambda_2 = \frac{-(a_y - c_y)(x - c_x) - (a_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$

A nevező csak degenerált háromszög esetén lehet nulla.

• Rendezve λ_1, λ_2 -re kapjuk:

$$\lambda_1 = \frac{(b_y - c_y)(x - c_x) - (b_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$
$$\lambda_2 = \frac{-(a_y - c_y)(x - c_x) - (a_x - c_x)(y - c_y)}{(a_x - c_x)(b_y - c_y) - (b_x - c_x)(a_y - c_y)}$$

- A nevező csak degenerált háromszög esetén lehet nulla.
- p akkor és csak akkor van a háromszögön belül, ha

$$0 \le \lambda_1, \lambda_2, \lambda_3 \le 1.$$

 Tegyük fel, hogy a poligonunk csúcsai egy síkban vannak, ekkor a metszés két lépésben

- Tegyük fel, hogy a poligonunk csúcsai egy síkban vannak, ekkor a metszés két lépésben
 - A sugarunkat metsszük el a poligon síkjával

- Tegyük fel, hogy a poligonunk csúcsai egy síkban vannak, ekkor a metszés két lépésben
 - A sugarunkat metsszük el a poligon síkjával
 - Döntsük el, hogy a metszéspont a poligonon belül van-e

- Tegyük fel, hogy a poligonunk csúcsai egy síkban vannak, ekkor a metszés két lépésben
 - A sugarunkat metsszük el a poligon síkjával
 - Döntsük el, hogy a metszéspont a poligonon belül van-e
- A másodikat egy síkban érdemes csinálni (vagy a poligon síkjában, vagy a poligon valamely koordinátatengelyre vett vetületének síkjában)

Pont-poligon tartalmazás teszt síkban

 A pont a poligonon belül van, ha tetszőleges irányú, belőle indított sugárnak páratlan számú metszéspontja van a poligon oldalaival (azaz a sugarat a poligon összes oldalszakaszával el kell metszeni)

Pont-poligon tartalmazás teszt síkban

- A pont a poligonon belül van, ha tetszőleges irányú, belőle indított sugárnak páratlan számú metszéspontja van a poligon oldalaival (azaz a sugarat a poligon összes oldalszakaszával el kell metszeni)
- Konkáv és csillag alakú poligonra is működik

• A poligon $\mathbf{d}_i = [x_i, y_i]^T$, $\mathbf{d}_{i+1} = [x_{i+1}, y_{i+1}]^T$ csúcspontjai közötti szakasz parametrikus alakja: $\mathbf{d}_{i,i+1}(s) = (1-s)\mathbf{d}_i + s\mathbf{d}_{i+1} = \mathbf{d}_i + s(\mathbf{d}_{i+1} - \mathbf{d}_i), s \in [0,1]$

• A poligon $\mathbf{d}_i = [x_i, y_i]^T, \mathbf{d}_{i+1} = [x_{i+1}, y_{i+1}]^T$ csúcspontjai közötti szakasz parametrikus alakja:

$$\mathbf{d}_{i,i+1}(s) = (1-s)\mathbf{d}_i + s\mathbf{d}_{i+1} = \mathbf{d}_i + s(\mathbf{d}_{i+1} - \mathbf{d}_i), s \in [0,1]$$

• Ezt kell metszeni a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú sugárral

- A poligon $\mathbf{d}_i = [x_i, y_i]^T$, $\mathbf{d}_{i+1} = [x_{i+1}, y_{i+1}]^T$ csúcspontjai közötti szakasz parametrikus alakja: $\mathbf{d}_{i,i+1}(s) = (1-s)\mathbf{d}_i + s\mathbf{d}_{i+1} = \mathbf{d}_i + s(\mathbf{d}_{i+1} \mathbf{d}_i), s \in [0,1]$
- Ezt kell metszeni a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú sugárral
- Most: a $\mathbf{p}_0 = (x_0, y_0)$ pont az a pont, amiről el akarjuk dönteni, hogy a poligonon belül van-e, \mathbf{v} tetszőleges

- A poligon $\mathbf{d}_i = [x_i, y_i]^T$, $\mathbf{d}_{i+1} = [x_{i+1}, y_{i+1}]^T$ csúcspontjai közötti szakasz parametrikus alakja: $\mathbf{d}_{i,i+1}(s) = (1-s)\mathbf{d}_i + s\mathbf{d}_{i+1} = \mathbf{d}_i + s(\mathbf{d}_{i+1} \mathbf{d}_i), s \in [0,1]$
- Ezt kell metszeni a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú sugárral
- Most: a $\mathbf{p}_0 = (x_0, y_0)$ pont az a pont, amiről el akarjuk dönteni, hogy a poligonon belül van-e, \mathbf{v} tetszőleges
- Legyen $\mathbf{v} = (1,0)!$

- A poligon $\mathbf{d}_i = [x_i, y_i]^T$, $\mathbf{d}_{i+1} = [x_{i+1}, y_{i+1}]^T$ csúcspontjai közötti szakasz parametrikus alakja: $\mathbf{d}_{i,i+1}(s) = (1-s)\mathbf{d}_i + s\mathbf{d}_{i+1} = \mathbf{d}_i + s(\mathbf{d}_{i+1} \mathbf{d}_i), s \in [0,1]$
- Ezt kell metszeni a $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú sugárral
- Most: a $\mathbf{p}_0 = (x_0, y_0)$ pont az a pont, amiről el akarjuk dönteni, hogy a poligonon belül van-e, \mathbf{v} tetszőleges
- Legyen $\mathbf{v} = (1,0)!$
- Így a $\mathbf{p}(t) = \mathbf{d}_{i,i+1}(s)$ egyenletet csak y koordinátára kell megoldani

• Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_y = y_0$?)

- Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_v = y_0$?)
- Azaz $y_0 = y_i + s(y_{i+1} y_i)$

- Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_y = y_0$?)
- Azaz $y_0 = y_i + s(y_{i+1} y_i)$
- s-t kifejezve: $s = \frac{y_0 y_i}{y_{i+1} y_i}$

- Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_y = y_0$?)
- Azaz $y_0 = y_i + s(y_{i+1} y_i)$
- s-t kifejezve: $s = \frac{y_0 y_i}{y_{i+1} y_i}$
- Innen megkapjuk azt az x koordinátát $\mathbf{d}_{i,i+1}(s)$ -be behelyettesítve, ahol a sugár metszi a szakaszt

- Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_y = y_0$?)
- Azaz $y_0 = y_i + s(y_{i+1} y_i)$
- s-t kifejezve: $s = \frac{y_0 y_i}{y_{i+1} y_i}$
- Innen megkapjuk azt az x koordinátát d_{i,i+1}(s)-be behelyettesítve, ahol a sugár metszi a szakaszt
- Ha $s \notin [0,1]$: a sugár nem metszi a szakaszt (csak az egyenesét)

- Keressük meg, hogy hol metszi a $\mathbf{d}_{i,i+1}(s)$ oldal egyenese a sugarat (=melyik s-re lesz $d_{i,i+1}(s)_y = y_0$?)
- Azaz $y_0 = y_i + s(y_{i+1} y_i)$
- s-t kifejezve: $s = \frac{y_0 y_i}{y_{i+1} y_i}$
- Innen megkapjuk azt az x koordinátát d_{i,i+1}(s)-be behelyettesítve, ahol a sugár metszi a szakaszt
- Ha $s \notin [0,1]$: a sugár nem metszi a szakaszt (csak az egyenesét)
- ullet Ha $t \leq 0$: a sugár egybeesik a szakasszal, vagy mögötte van a metszéspont

• Az r sugarú, $\mathbf{c} = (c_x, c_y, c_z)$ középpontú gömb implicit egyenlete:

$$(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2 = 0$$

• Az r sugarú, $\mathbf{c} = (c_x, c_y, c_z)$ középpontú gömb implicit egyenlete:

$$(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 - r^2 = 0$$

Ugyanez skalárszorzattal felírva:

$$\langle \mathbf{p} - \mathbf{c}, \mathbf{p} - \mathbf{c} \rangle - r^2 = 0,$$

ahol $\mathbf{p} = [x, y, z]^T$.

• Legyen \mathbf{p}_0 ez egyenes egy pontja, \mathbf{v} az irányvektora.

- ullet Legyen ${f p}_0$ ez egyenes egy pontja, ${f v}$ az irányvektora.
- Ekkor az egyenes egyenlete:

$$\mathbf{p}(t)=\mathbf{p}_0+t\mathbf{v}$$

- ullet Legyen ${f p}_0$ ez egyenes egy pontja, ${f v}$ az irányvektora.
- Ekkor az egyenes egyenlete:

$$\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$$

Behelyettesítve a gömb egyenletébe, kapjuk:

$$\langle \mathbf{p}_0 + t\mathbf{v} - \mathbf{c}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{c} \rangle - r^2 = 0$$

- ullet Legyen ${f p}_0$ ez egyenes egy pontja, ${f v}$ az irányvektora.
- Ekkor az egyenes egyenlete:

$$\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$$

Behelyettesítve a gömb egyenletébe, kapjuk:

$$\langle \mathbf{p}_0 + t\mathbf{v} - \mathbf{c}, \mathbf{p}_0 + t\mathbf{v} - \mathbf{c} \rangle - r^2 = 0$$

Kifejtve:

$$t^2 \langle \mathbf{v}, \mathbf{v} \rangle + 2t \langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c} \rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c} \rangle - r^2 = 0$$

$$t^2 \langle \mathbf{v}, \mathbf{v} \rangle + 2t \langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c} \rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c} \rangle - r^2 = 0$$

• Ez másodfokú egyenlet *t*-re (minden más ismert).

$$t^2\langle \mathbf{v}, \mathbf{v}\rangle + 2t\langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c}\rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c}\rangle - r^2 = 0$$

- Ez másodfokú egyenlet t-re (minden más ismert).
- Legyen $D = (2\langle \mathbf{v}, \mathbf{p}_0 \mathbf{c} \rangle)^2 4\langle \mathbf{v}, \mathbf{v} \rangle (\langle \mathbf{p}_0 \mathbf{c}, \mathbf{p}_0 \mathbf{c} \rangle r^2)$

$$t^2\langle \mathbf{v}, \mathbf{v} \rangle + 2t\langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c} \rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c} \rangle - r^2 = 0$$

- Ez másodfokú egyenlet t-re (minden más ismert).
- Legyen $D = (2\langle \mathbf{v}, \mathbf{p}_0 \mathbf{c} \rangle)^2 4\langle \mathbf{v}, \mathbf{v} \rangle (\langle \mathbf{p}_0 \mathbf{c}, \mathbf{p}_0 \mathbf{c} \rangle r^2)$
- Ha D > 0: két megoldás van, az egyenes metszi a gömböt.

$$t^2\langle \mathbf{v}, \mathbf{v}\rangle + 2t\langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c}\rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c}\rangle - r^2 = 0$$

- Ez másodfokú egyenlet t-re (minden más ismert).
- Legyen $D = (2\langle \mathbf{v}, \mathbf{p}_0 \mathbf{c} \rangle)^2 4\langle \mathbf{v}, \mathbf{v} \rangle (\langle \mathbf{p}_0 \mathbf{c}, \mathbf{p}_0 \mathbf{c} \rangle r^2)$
- ullet Ha D>0: két megoldás van, az egyenes metszi a gömböt.
- Ha D=0: egy megoldás van, az egyenes érinti a gömböt.

$$t^2\langle \mathbf{v}, \mathbf{v} \rangle + 2t\langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c} \rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c} \rangle - r^2 = 0$$

- Ez másodfokú egyenlet t-re (minden más ismert).
- Legyen $D = (2\langle \mathbf{v}, \mathbf{p}_0 \mathbf{c} \rangle)^2 4\langle \mathbf{v}, \mathbf{v} \rangle (\langle \mathbf{p}_0 \mathbf{c}, \mathbf{p}_0 \mathbf{c} \rangle r^2)$
- Ha D > 0: két megoldás van, az egyenes metszi a gömböt.
- Ha D=0: egy megoldás van, az egyenes érinti a gömböt.
- Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

$$t^2\langle \mathbf{v}, \mathbf{v}\rangle + 2t\langle \mathbf{v}, \mathbf{p}_0 - \mathbf{c}\rangle + \langle \mathbf{p}_0 - \mathbf{c}, \mathbf{p}_0 - \mathbf{c}\rangle - r^2 = 0$$

- Ez másodfokú egyenlet t-re (minden más ismert).
- Legyen $D = (2\langle \mathbf{v}, \mathbf{p}_0 \mathbf{c} \rangle)^2 4\langle \mathbf{v}, \mathbf{v} \rangle (\langle \mathbf{p}_0 \mathbf{c}, \mathbf{p}_0 \mathbf{c} \rangle r^2)$
- Ha D > 0: két megoldás van, az egyenes metszi a gömböt.
- Ha D=0: egy megoldás van, az egyenes érinti a gömböt.
- Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.
- Sugárparamétert ezután ellenőrizni kell (t > 0).

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Elméletileg a megoldás megkapható $a \neq 0$ esetben:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Gyakorlatilag baj van, ha $a \approx 0$

• Elméletileg a megoldás megkapható $a \neq 0$ esetben:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gyakorlatilag baj van, ha $a \approx 0$
 - Átalakítással kapjuk, hogy

$$x_{1,2} = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$

formában felírható a két gyök (Citardaug Formula)

• Elméletileg a megoldás megkapható $a \neq 0$ esetben:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Gyakorlatilag baj van, ha b >> 4ac

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gyakorlatilag baj van, ha b >> 4ac
 - Ekkor $b^2 4ac \approx b^2$ (sőt!), vagyis b előjelétől függően vagy $-b + \sqrt{b^2 - 4ac}$ vagy pedig $-b - \sqrt{b^2 - 4ac}$ elveszti az értékes tizedesjegyeket

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gyakorlatilag baj van, ha b >> 4ac
 - Ekkor $b^2 4ac \approx b^2$ (sőt!), vagyis b előjelétől függően vagy $-b + \sqrt{b^2 - 4ac}$ vagy pedig $-b - \sqrt{b^2 - 4ac}$ elveszti az értékes tizedesjegyeket
 - Számítsuk ki az egyik gyököt azon az ágon, amelyiken nem vonunk ki egymásból két közel azonos pozitív számot, a másik gyököt pedig a Viète-formulákból

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gyakorlatilag baj van, ha b >> 4ac
 - Ekkor $b^2-4ac\approx b^2$ (sőt!), vagyis b előjelétől függően vagy $-b+\sqrt{b^2-4ac}$ vagy pedig $-b-\sqrt{b^2-4ac}$ elveszti az értékes tizedesjegyeket
 - Számítsuk ki az egyik gyököt azon az ágon, amelyiken nem vonunk ki egymásból két közel azonos pozitív számot, a másik gyököt pedig a Viète-formulákból
 - Azaz például ha b>0, akkor $x_1=\frac{-b-\sqrt{b^2-4ac}}{2a}$ és $x_2=\frac{c}{ax_1}$

- Legyen M egy adott objektum transzformációs mátrixa.
- Feladat: Keressük r sugár és az M-mel transzformált objektum metszéspontját!

- Legyen **M** egy adott objektum transzformációs mátrixa.
- Feladat: Keressük r sugár és az M-mel transzformált objektum metszéspontját!
- Probléma: Hogyan transzformálunk egy gömböt?
 Pontonként? Képletet írjuk át? ...

- Legyen **M** egy adott objektum transzformációs mátrixa.
- Feladat: Keressük r sugár és az M-mel transzformált objektum metszéspontját!
- Probléma: Hogyan transzformálunk egy gömböt? Pontonként? Képletet írjuk át? ...
- Megoldás: Transzformáljuk inkább a sugarat!

Tétel

Az \mathbf{r} sugár és az \mathbf{M} -mel transzformált objektum metszéspontja \equiv az \mathbf{M}^{-1} -zel transzformált \mathbf{r} sugár és az objektum metszéspontja.

Tétel

Az **r** sugár és az **M**-mel transzformált objektum metszéspontja \equiv az M^{-1} -zel transzformált **r** sugár és az objektum metszéspontja.

- ullet $\mathbf{M} \in \mathbb{R}^{4 \times 4}$, homogén transzformáció
- Sugár kezdőpontja: $\mathbf{p}_0 = (p_x, p_y, p_z) \rightarrow [p_x, p_y, p_z, 1]^T$
- Sugár iránya: $\mathbf{v} = (v_x, v_y, v_z) \rightarrow [v_x, v_y, v_z, 0]^T$. Így nem hat rá az eltolás.
- Transzformált sugár $\hat{\mathbf{r}}(t) = \mathbf{M}^{-1}\mathbf{p} + t \cdot \mathbf{M}^{-1}\mathbf{v}$

• Metszésvizsgálat: használjuk $\hat{\mathbf{r}}(t)$ -t!

- Metszésvizsgálat: használjuk $\hat{\mathbf{r}}(t)$ -t!
- Metszéspont: **q**, akkor az eredeti térben **M** · **q**.

- Metszésvizsgálat: használjuk $\hat{\mathbf{r}}(t)$ -t!
- Metszéspont: q, akkor az eredeti térben M · q.
- Távolságokat újra kell számolni az eredeti térben!

- Metszésvizsgálat: használjuk $\hat{\mathbf{r}}(t)$ -t!
- Metszéspont: q, akkor az eredeti térben M · q.
- Távolságokat újra kell számolni az eredeti térben!
- Normálvektorok: \mathbf{n} helyett $\mathbf{M}^{-T} \cdot \mathbf{n}$ (inverz-transzponált).

Sugár metszése AAB-vel

• AAB = axis aligned box, olyan téglatest, aminek az oldallapjai a koordinátasíkjainkkal párhuzamosak

- AAB = axis aligned box, olyan téglatest, aminek az oldallapjai a koordinátasíkjainkkal párhuzamosak
- Legyen a sugarunk $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú, ahol $\mathbf{p}_0 = [x_0, y_0, z_0]^T$, $\mathbf{v} = [v_x, v_y, v_z]^T$ a téglatestet pedig adjuk meg átlójának két pontjával, \mathbf{a} és \mathbf{b} segítségével ($\mathbf{a} < \mathbf{b}$)!

- AAB = axis aligned box, olyan téglatest, aminek az oldallapjai a koordinátasíkjainkkal párhuzamosak
- Legyen a sugarunk $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ alakú, ahol $\mathbf{p}_0 = [x_0, y_0, z_0]^T$, $\mathbf{v} = [v_x, v_y, v_z]^T$ a téglatestet pedig adjuk meg átlójának két pontjával, \mathbf{a} és \mathbf{b} segítségével ($\mathbf{a} < \mathbf{b}$)!
- Tegyük fel, hogy a sugár kiindulópontja a doboztól balra helyezkedik el

• Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.

- Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.
- Ha $v_x \neq 0$, akkor legyen $t_n := -\infty, t_f := +\infty$ és $t_1 := \frac{a_x x_0}{v_x}, t_2 := \frac{b_x x_0}{v_x}$

- Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.
- Ha $v_x \neq 0$, akkor legyen $t_n := -\infty, t_f := +\infty$ és $t_1 := \frac{a_x x_0}{v_x}, t_2 := \frac{b_x x_0}{v_x}$
- Ha $t_1 > t_2$: cseréljük meg t_1, t_2 -t!

- Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.
- Ha $v_x \neq 0$, akkor legyen $t_n := -\infty, t_f := +\infty$ és $t_1 := \frac{a_x x_0}{v_x}, t_2 := \frac{b_x x_0}{v_x}$
- Ha $t_1 > t_2$: cseréljük meg t_1, t_2 -t!
- Ha $t_n < t_1$: $t_n := t_1$

- Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.
- Ha $v_x \neq 0$, akkor legyen $t_n := -\infty, t_f := +\infty$ és $t_1 := \frac{a_x x_0}{v_x}, t_2 := \frac{b_x x_0}{v_x}$
- Ha $t_1 > t_2$: cseréljük meg t_1, t_2 -t!
- Ha $t_n < t_1$: $t_n := t_1$
- Ha $t_f > t_2$: $t_f := t_2$

- Ha $v_x = 0$: vízszintes a sugarunk, nincs metszéspont, ha $x_0 \notin [a_x, b_x]$, különben trivi eldönteni.
- Ha $v_x \neq 0$, akkor legyen $t_n := -\infty, t_f := +\infty$ és $t_1 := \frac{a_x x_0}{v_x}, t_2 := \frac{b_x x_0}{v_x}$
- Ha $t_1 > t_2$: cseréljük meg t_1, t_2 -t!
- Ha $t_n < t_1$: $t_n := t_1$
- Ha $t_f > t_2$: $t_f := t_2$
- A fentit végezzük el az y és z koordinátákra is

• Ha $t_n > t_f$: nem találtuk el a dobozt

- Ha $t_n > t_f$: nem találtuk el a dobozt
- Ha $t_f < 0$: a doboz mögöttünk van

- Ha $t_n > t_f$: nem találtuk el a dobozt
- Ha $t_f < 0$: a doboz mögöttünk van
- Minden más esetben a sugarunk metszéspontjai a dobozzal t_n
 és t_f-ben lesznek (sorban a közelebbi és távolabbi
 metszéspontok)