Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа <u>мз102</u>	К работе допущен
Студент Круглов Георгий Николаевич	Работа выполнена
Преподаватель Герт Антон Впалимирович	Отчёт принят

Рабочий протокол и отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

- 1. Цель работы.
 - Исследование распределения случайной величины
- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 3. Объект исследования.

Промежуток времени 8 сек.

- 4. Метод экспериментального исследования.
 - Проведение 50 измерений
- 5. Рабочие формулы и исходные данные.

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i,$$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

$$\rho_{\rm max} = \frac{1}{\sigma\sqrt{2\pi}}.$$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Механический секундомер	-	0 – 10 сек.	0.1 сек.

7. Схема установки

Механический секундомер, цифровой секундомер

8. Результаты прямых измерений и их обработки.

Номер	t, c	t - <t>n, c</t>	(t - <t>n), c^2</t>	
1	7,92	0,01	0	
2	7,81	-0,10	0,01	
3	7,83	-0,08	0,01	
4	7,73	-0,18	0,03	
5	7,86	-0,05	0	
6	7,66	-0,25	0,06	
7	7,99	0,08	0,01	
8	8,02	0,11	0,01	
9	7,8	-0,11	0,01	
10	7,8	-0,11	0,01	
11	7,98	0,07	0	
12	8,03	0,12	0,01	
13	7,89	-0,02	0	
14	7,92	0,01	0	
15	7,7	-0,21	0,04	
16	8,11	0,20	0,04	
17	7,85	-0,06	0	
18	7,95	0,04	0	
19	7,78	-0,13	0,02	
20	8	0,09	0,01	
21	8	0,09	0,01	
22	7,95	0,04	0	
23	8,1	0,19	0,04	
24	7,98	0,07	0	
25	7,89	-0,02	0	

26	7,95	0,04	0	
27	7,85	-0,06	0	
28	8,05	0,14	0,02	
29	7,73	-0,18	0,03	
30	7,89	-0,02	0	
31	7,65	-0,26	0,07	
32	7,96	0,05	0	
33	7,79	-0,12	0,01	
34	7,94	0,03	0	
35	7,95	0,04	0	
36	7,99	0,08	0,01	
37	7,82	-0,09	0,01	
38	8,23	0,32	0,1	
39	7,75	-0,16	0,03	
40	7,87	-0,04	0	
41	7,7	-0,21	0,04	
42	7,89	-0,02	0	
43	7,7	-0,21	0,04	
44	8	0,09	0,01	
45	8,8	0,89	0,79	
46	7,9	-0,01	0	
47	7,93	0,02	0	
48	8,01	0,10	0,01	
49	7,88	-0,03	0	
50	7,86	-0,05	0	
	<t>N</t>	$\sum (ti - \langle t \rangle N)$		
	7,91	0,14		
			σ n	0,17
			Pmax	14,37

9. Расчет результатов косвенных измерений

Границы	deltaN	$\frac{\Delta N}{N*\Delta t}$, c^{-1}	t, сек	р, 1/сек
7,65		1,69	7,69	1,90
7,73	7			
7,73	6	1,45	7,77	4,82
7,82	0	1,43	7,77	4,02
7,82	12	2,90	7,86	7,70
7,90	12	2,30 7,80	7,80	7,70
7,90	12	2,90	7,94	7,76
7,98	12	2,90 7,5	7,34	7,70
7,98	9	2,17	8,02	4,94
8,06	9	2,17	0,02	4,54
8,06	3	0,72	8,11	1,98
8,15	3	0,72	0,11	1,30
8,15	1	0,24	8,19	0,50

10. Расчет погрешностей измерений.

	Интервал, с				
	От	До	deltaN	deltaN/n	Р
<t>n±σn</t>	7,78	8,02	36	0,72	0,683
<t>n±2<i>σ</i>n</t>	7,66	8,14	48	0,96	0,954
<t>n±3σn</t>	7,53	8,27	50	1	0,997

11. Графики.

12. Окончательные результаты.

ti	7,90
σ n	0,12
Pmax	20,54
σ t	0,02
<i>tα</i> ,n	2,00
Δt	0,03

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были проведены многократные измерения одного промежутка времени, построена гистограмма и график функции Гаусса. В связи с тем, что на распределение случайной величины влиял человеческий фактор, полученная гистограмма отличается от функции Гаусса, но не противоречит ей.

14. Контрольные вопросы

- а. Являются ли, по вашему мнению, случайными следующие физические величины:
 - і. плотность алмаза при $20^{\circ}C$ нет
 - іі. напряжение сети да
 - iii. сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением да
 - iv. число молекул в 1см³ при нормальных условиях да
 - v. выпавшая сторона монеты при подбрасывании
 - vi. скорость света
- b. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких из- мерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?
 - i. Продолжать измерения имеет смысл только в том случае, если остались не измеренные батарейки, не ради измерений(так как разброс минимальный), а ради выявления возможного брака батарейки.

- іі. Стоит повторить эти измерения на другом вольтметре, чтобы убедиться в точности первого.
- с. При обработке результатов измерений емкости партии конденсаторов получено: $\langle C \rangle = 1,1$ мкФ, $\sigma = 0,1$ мкФ. Если взять коробку со 100 конденсаторами из этой партии, то сколько среди них можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1,3 мкФ?
 - і. Взяв за основу нормальное распределение, можем сказать что \sim 70% будут находиться в диапазоне 1-1.2 мкФ (<t> ± σ), \sim 15% будут иметь ёмкость менее 1 мкФ ([...; <t> σ], а \sim 5% будут иметь ёмкость более 1.3 мкФ ([<t> + 2 σ ;...])