

7 行動価値関数

■ 状態 s で行動 a したときの期待

■ Q_π(s,a) = r(s,c)

▼状態 s で行動 α をとった後に, 政策 π に従って行動 したときの期待累積報酬

 $Q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} p(s,a,s') V(s',\pi)$

10/10/2022

Q

状態価値, 行動価値を最大にする政策

- $V(s,\pi) = r(s,\pi(s)) + \gamma \sum_{s'} p(s,\pi(s),s') V(s',\pi)$
- $Q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} p(s,a,s') V(s',\pi)$
- ★状態価値を最大にする政策(最適政策)をπ*とすると,
 - $V(s, \pi^*) = r(s, \pi^*(s)) + \gamma \sum_{s'} p(s, \pi^*(s), s') V(s', \pi^*)$ $= \max_{a} \{r(s, a) + \gamma \sum_{s'} p(s, a, s') V(s', \pi^*)\}$ $= \max_{a} Q_{\pi^*}(s, a)$
 - $Q_{\pi^*}(s,a) = r(s,a) + \gamma \sum_{s'} p(s,a,s') V(s',\pi^*)$ $= r(s,a) + \gamma \sum_{s'} p(s,a,s') \max_{a'} Q_{\pi^*}(s',a')$ $= r(s,a) + \gamma \max_{a'} E[Q_{\pi^*}(s',a')] \leftarrow E[x] : x の期待値$

↓ 状態 s で行動 a をとったときの報酬

+ 遷移先の s' で最適行動を行った時の期待報酬

10/19/2023

9

Q学習(Watkins'89)

- ■π* を求めるために、各状態・行動のQ値を更新していく方法
 - 1. 各状態 s, 行動 a について Q(s,a) を初期化, t=0 とする.
 - 2. Q値が収束していれば終了. そうでなければ 3. へ.
 - 3. 現在の状態 s_t で行動 a_t を選ぶ. その結果状態が s_{t+1} になり, 報酬 $r(s_t, a_t)$ を受け取ったとする.
 - 4. $Q(s_t, a_t) \leftarrow (1 \alpha_t)Q(s_t, a_t) + \alpha_t(r(s_t, a_t) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}))$
 - 5. 2. へ戻る.

期待値の代わりに現在のQ値を使う

以上のようにQ値を更新すると、 $\sum_{t=0}^{\infty}\alpha_t=\infty$ かつ $\sum_{t=0}^{\infty}\alpha_t^2<\infty$ の条件下でQ値が $Q_{\pi^*}(s,a)$ に収束する.

10

学習時(ステップ3.)の行動の選び方

- ランダム法
 - ランダムに行動を選ぶ
 - 収束は早いが学習途中の報酬は少ない可能性がある
- ▶グリーディ法
 - 常にQ値が最大の行動を選ぶ
 - 最適の行動を獲得できない可能性がある
- **▶** ε-グリーディ法

 - ▶ 学習中の報酬もそこそこ得つつ,最適行動の獲得も保証される

10/19/2023

11

深層強化学習: Deep Q Network

- ■Q学習の最適政策を深層学習で求める方法
 - Q学習のステップ4.

$$\begin{aligned} &Q(s_t, a_t) \leftarrow \\ &(1 - \alpha_t)Q(s_t, a_t) + \alpha_t(r(s_t, a_t) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})) \\ &= Q(s_t, a_t) + \alpha_t(r(s_t, a_t) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)) \end{aligned}$$

TD(Temporal Difference)誤差

■ 誤差の最小化にニューラルネットを用いる $\frac{1}{2}(r(s_t,a_t)+\gamma\max_{a_{t+1}}Q(s_{t+1},a_{t+1})-Q(s_t,a_t))^2$ を誤差関数とするニューラルネットを作り、誤差を最小化する

10/19/2023

12

APV-MCTS

(非同期政策・価値モンテカルロ木探索)

- a-碁で使われた探索法
 - ▶深層強化学習+モンテカルロ法+セルフプレイ
 - ■モンテカル□法: ミニマックス法のような手法でなく,確率的に 手を選択する.
 - ▶セルフプレイ: 自分同士で対戦して強化する
 - ■政策ネットワーク, 価値ネットワーク: CNN+ReLU (13~15層)

10/19/2023

