Topic 9 – Separation and Purification

Learning outcome:

- 1. describe methods of separation and purification for the components of mixtures, to include:
 - (i) use of a suitable solvent, filtration and crystallisation or evaporation
 - (ii) sublimation
 - (iii) distillation and fractional distillation
 - (iv) use of a separating funnel
 - (v) paper chromatography
- 2. suggest suitable separation and purification methods, given information about the substances involved in the following types of mixtures:
 - (i) solid-solid
 - (ii) solid-liquid
 - (iii) liquid-liquid (miscible and immiscible)

- 3. interpret paper chromatograms including comparison with 'known' samples and the use of R_f values
- 4. explain the need to use locating agents in the chromatography of colourless compounds (knowledge of specific locating agents is not required)
- deduce from given melting point and boiling point data the identities of substances and their purity
- 6. explain that the measurement of purity in substances used in everyday life, e.g. foodstuffs and drugs, is important.

Separation techniques

Separation technique	Purpose	Example
1. Filtration	Separate insoluble solid from liquid + solid mixture	Separate sand from water + sand mixture
2. Evaporation to dryness	Separate soluble solid from solution	Separate salt from seawater
3. Crystallisation	Separate pure solid from impure solution	Separate sugar from cane syrup
4. Sublimation	Separate pure solid from mixture of solids	Separate iodine from iodine + sand mixture
5. Simple distillation	Separate pure liquid from solution containing dissolved solids	Separate pure water from impure water (seawater)
6. Fractional distillation	Separate miscible liquids with different boiling points	Separate different oil fractions from crude oil
7. Separating funnel	Separate immiscible liquids	Separate oil from water
8. Paper chromatography	Separate substances in a mixture based on their solubility in solvent	Separate and identify various chemicals in a drug

3.1 Obtaining Pure Substances from Mixtures

Pure substance

made up of **one single** element / compound, not mixed with any other substance

Mixture

made up of **two or more** substances that are not chemically combined

3.2 Separating a Solid from a Liquid Filtration

Filtration

separate insoluble solid particles from liquid

Procedure

- 1. Pour the mixture into a filter funnel that is lined with filter paper.
- 2. Collect the filtrate in a conical flask.
- 3. Collect the residue and dry it on filter paper.

Substance Definition		Explanation
1. Residue	solid remains on filter paper	large particles trapped by pores
2. Filtrate	liquid / solution passes through filter paper	smaller particles passed through pores

Evaporation to dryness

Evaporation to dryness

obtain soluble solid from a solution

Process: (sand + sodium chloride)

Procedure	Purpose	
1. Add excess distilled water to mixture	completely dissolve sodium chloride	
2. Filter the mixture	remove sand as residue	
3. Evaporate salt solution (filtrate) to dryness	obtain sodium chloride	

Crystallisation

Crystallisation

obtain a pure solid sample from its solution

Process: (glass + copper(II) sulfate)

Procedure	Purpose
1. Add excess distilled water to mixture	completely dissolve copper(II) sulfate
2. Filter the mixture	remove glass as residue
3. Heat the filtrate	obtain a saturated solution of copper(II) sulfate
4. Cool the saturated solution	solution crystallise and form crystals
5. Filter the mixture	obtain crystals, dry crystals between sheets of filter paper

Test whether a solution is saturated: dip a clean glass rod into the solution

- There will be a small amount of solution on the rod
- Small crystals form on the rod as solution cools \rightarrow solution is saturated (at saturation point / crystallisation point)

Crystals

give off water when heated powder

3.3 Separating Solids

Using a suitable solvent

- To separate a mixture of two solids, the solvent:
 - 1. only one solid is soluble
 - 2. the other solid is insoluble
- Common solvents
 - (a) water
 - (b) ethanol

Using a magnet

Using a magnet

separate a magnetic substance from a non-magnetic substance

- Metals with magnetic property:
 - 1. Iron (Fe)
 - 2. Nickel (Ni)
 - 3. Cobalt (Co)
 - 4. Steel (Fe + C)
- Place the magnet above the mixture

Iron + Sulphur

Sublimation

Sublimation

separate a solid that sublimes from one that does not sublime

Sublime upon heating

- (a) iodine (I)
- (b) ammonium chloride (NH₃)

Process: (iodine + sodium chloride)

Procedure Purpose	
1. Heat the mixture	Iodine: black solid → purple vapour directly
2. Vapour condenses	changes back to solid directly on a cold surface
3. Sodium chloride	does not sublime – remains in evaporating dish

3.4 Separating a Liquid from a Solution

Simple distillation

Simple distillation

separate pure solvent (liquid) from solution

Apparatus

- 1. Distillation flask (solution boils)
- 2. Thermometer (temperature of vapour)
- 3. Condenser (vapour cools)4. Receiver (collect solvent)

Physical changes

- 1. **Boiling** a liquid
- 2. **Condensing** the vapour

Cooling water out Vapour condenses in the condenser Pure water vapour Salty water Heat

Procedure (salt solution)

Process	Explanation
1. In distillation flask, solution boils	Boiling chips → ensure smooth boiling (heat evenly distributed) Water vaporises, rises and enters condenser
2. In condenser, water vapour cools	Vapour condenses → pure water
3. Pure water collected	as distillate the receiver (conical flask)
4. Solution in distillation flask becomes more concentrated as distillation continues	If distillation is allowed to carry on, a solid residue of salt will be left in the flask.

Procedures to note

	1 Toccadics to note		
Apparatus	Procedure to note	Reason	
Thermometer	Bulb placed beside side arm of distillation flask (should not be dipped into solution)	Measures boiling point of distilled substance	
Condenser	Slope downwards	• Pure solvent formed <u>runs downwards</u> → receiver (a conical flask)	

	 Two tubes: inner tube + outer water jacket. Cold running water – water jacket 1. enter from bottom 2. leave from top 	<u> </u>
	Put into large container filled with	
Receiver	ice if distillate is volatile	→ remains in <u>liquid</u> state

Graph of temperature change:

- As solution is heated, temperature increases
- When solution finally boils, thermometer records temperature of steam (100°C)
- Temperature remains unchanged until all water boiled off

3.5 Separating Liquids

Using a separating funnel

Separating funnel

separate immiscible liquids

Procedure (mixture of oil + water)

- 1. Pour the mixture into the separating funnel (tap closed)
- 2. Support separating funnel using retort stand. Place clean beaker below separating funnel.
- 3. Allow liquids to separate completely (denser liquid at bottom)
- 4. Open tap of the funnel \rightarrow bottom layer drain into beaker. Close tap before top layer runs out.
- 5. Place another beaker below the funnel. Open the tap to allow a little of the top layer of liquid into the beaker and dispose it. Now the separating funnel contains only oil; the beaker contains only water.

Fractional distillation

Fractional distillation

separate a mixture of miscible liquids with different boiling points

Fractionating column: surface for continuous evaporation & condensation of vapours

- Packed with glass beads
 - → increase surface area for
 - 1. evaporation
 - 2. condensation
- When flask is heated, mixture of vapour from two liquids evaporate up the column

Procedure (water + ethanol)

Process	Explanation	
1. Solution is heated	Ethanol vapour + water vapour rise up fractionating column	
2. Fractionating column (thermometer shows constant	Water vapour (high <i>bp</i>)	condense in fractionating columnfall back into distillation flask
temperature of 78°C – boiling point of ethanol)	Ethanol vapour (low bp)	reach upper part of fractionating columndistil over
3 Condenser	hot ethanol vapour	condense as running water cools it
3. Condenser	liquid ethanol	flows down inner tube of condenser → receiver
4. Ethanol collected	as distillate in receiver	
5. All ethanol distilled over	 Temperature rises rapidly → 100°C (boiling point of water) Water distils over, collect it separately 	

Change of state

Substance	Physical change Process		
Liquid (low bp)	Evaporate	Distil over into condenser	
Vapour of liquid (high bp)	Condense	Fall back into round-bottomed flask	

Precautions

1 Todata One		
Measure	Explanation	
1. Bulb of thermometer: positioned at opening of	Accurately measure temperature of vapour passing	
side arm	into condenser	
2. Cooling water enter the condenser jacket	Ensure water at lower temp. than vapours – complete	
through lower tube & leave by upper tube	condensation of vapours take place more efficiently	

Graph of temperature change:

- As solution is heated, temperature increases
- Solution boils \rightarrow thermometer records temperature of steam (100°C)
- Temperature remains unchanged until all water boils off

Industrial applications (different boiling points)

- 1. Obtain nitrogen, argon and oxygen from air
- 2. Separate petroleum into useful fractions
- 3. Obtain ethanol produced by fermentation of glucose solution

Typical problems

Problem	Typical problems	Solution
Distillation result is poor: fractions obtained are not pure.	condensation cycles for good separation	Certain amount of time is also required. Allowing the mixture to gently reflux for a while (30 minutes) before gradually increasing the energy supplied to the system through heating is typically a good strategy.
2. Collect distillate but temperature reading does not correspond to boiling point. Temperature reading is much lower.	 Thermometer is not of high quality. It should be calibrated by reading boiling distilled water. location of thermometer bulb is essential. If it is too high, vapor condenses before thermometer can read 	The bulb should rest right above the lowest part of the adapter
3. Even though liquid in the still pot is boiling, no distillate is being collected.	beneficial. Vapour must beat the glassware to the	
4. Nothing distils but amount of liquid in the still pot decreases.	Leaks in the system. Vapour escapes	Make sure all joints are properly sealed.

3.6 Chromatography

Paper chromatography

Procedure

- 1. Draw a line (starting line) with pencil near the bottom of filter paper / chromatography paper
- 2. Put a drop of food colouring on pencil line. Allow it to dry.
- 3. Dip the paper into a glass tank containing the solvent, in this case, ethanol. Ethanol that is soaked up by the paper will dissolve the dyes. (pencil line should be above the solvent level, or else the dye would wash out into the solvent)
- 4. Leave apparatus to stand for a while. Ethanol travels up the paper, carrying the dyes along. The more soluble a dye is in ethanol, the further it will move up the paper.

Things to take note:

- Use <u>pencil</u> to draw the start line. The sample will be dotted onto the start line using a capillary tube. A pencil is used because the pencil line will not dissolve in the solvent or be separated together with the sample. The ink from a pen dissolves and interferes with the samples.
- The beaker is **covered with a lid** during the experiment to prevent evaporation of the solvent from the beaker and the paper. Volatile solvents (ethanol, acetone) evaporate quickly.
- Start line must be higher than solvent level. If it is lower, sample dissolves in solvent before chromatography begins.
- Chosen solvent must be able to dissolve sample
 - → change it if sample still remains on start line (insoluble in solvent)

Solvent front: position reached by the solvent

Chromatogram: chromatography paper with separated components

R_f values

Retention factor (affected by solubility of substance in solvent)

Ratio between the distance travelled by the substance and the distance travelled by the solvent is a constant

Calculation:

 $R_f = \frac{\text{distance travelled by the substance}}{\text{distance travelled by the solvent}}$

 R_f value of substance does not change under same conditions (same solvent and same temperature)

→ easily identify a substance on chromatogram

Analysis of a sample – identify components present

Analyse a sample to

Government bodies → analyse samples of food colouring (ensure dyes used are safe for consumption)

Identifying banned substance present in food colouring

- 1. Paper chromatography separate the dyes in the sample.
- 2. Identify each dye by comparing:
 - (a) its position in chromatogram with a known dye on same chromatogram
 - (b) its R_f value with the R_f value of a known dye

Colourless substances

Spray **locating agent** on chromatogram → colourless substances show up as coloured spots

Steps

- 1. Separate mixture of amino acids by chromatography using suitable solvent
- 2. Stop chromatography before solvent reaches top of paper. Dry the paper
- 3. Spray a locating agent (ninhydrin) onto the paper
- 4. Locating agent **reacts** with amino acids \rightarrow **coloured spots** on paper. Check R_f value of each coloured spot to identify the different amino acids

<u>Uses</u>

Usages of chromatography

- 1. Separate components in a sample (dyes in ink, pigments in plants, amino acids in proteins)
- 2. **Identify components** present in sample (traces of banned substances in food)
- 3. **Identify substances** (poisons, pesticides, drugs)
- 4. Determine **purity** of sample (pure / impure)

Ninhydrin: react with amino acids

→ deep blue / purple colouration
(detect fingerprints)

3.7 Determining Purity

Importance of purity

importance of parity	
Importance	Example
1. Detect harmful impurities	 Impurities in drugs & medicines → undesirable side effects Chemicals (preservatives, dyes) → make food last longer / taste better / look attractive (safe for consumption)
2. Products meet quality standards	Production of silicon chips for electronic industry → small amount of impurities make component in electronic device less efficient

Ways to determine purity

- 1. Melting point
- 2. **Boiling point**
- 3. Chromatography

Physical properties	Impurities	Pure substance	Impure substance
1. Melting point (solid)	decrease	awaat and agnetant	over a range of temperatures
2. Boiling point (liquid)	increase	exact and constant	

Chromatography carries out if:

- (a) substance cannot be melted / boiled easily (non-volatile)
- (b) amount of substance is very small

Purity	Chromatogram		
Pure	A single spot (always)		
Impure	More than one spot		

3.8 Select Suitable Apparatus for Experiments

Methods for collecting gases

Depends on the physical properties of the gas:

- 1. **solubility** in water
- 2. **density** compared to air

Mathad	Physical property		Emanual
Method	Solubility	Density	Examples
1. Displacement of water	insoluble / slightly soluble		(a) carbon dioxide(b) hydrogen(c) oxygen
2. Downward delivery	soluble	denser	(a) chlorine (b) hydrogen chloride (collect poisonous gases in a fume cupboard)
3. Upward delivery	soluble	less dense	(a) ammonia

Some gases:

Gas	Solubility	Density	Method of collection	
(a) hydrogen	not soluble	less dense		
(b) oxygen	very slightly soluble	slightly denser	Displacement of water	
(c) carbon dioxide	slightly soluble	denser		
(d) chlorine	soluble	denser		
(e) hydrogen chloride	very soluble	denser	Downward delivery	
(f) sulfur dioxide	very soluble	denser		
(g) ammonia	extremely soluble	less sense	Upward delivery	

<u>Dry gases</u> – removing water

DITY SUBSECTION TO THE WATER		
Drying agent	Dry	Examples
1. Concentrated sulfuric acid	Most gases	(a) chlorine(b) hydrogen chlorine* ammonia (neutralisation reaction)
2. Quicklime (calcium oxide)	Ammonia	
3. Fused calcium chloride	Most gases	

Typical questions

Separating technique

1. Paul accidentally spilled some nickel nails into a solid mixture of ammonium chloride and sodium chloride. Some properties of these substances are listed in the table below.

Substance	Thermal stability	Solubility in water	Attracted to magnet
nickel nails	heat stable	insoluble	yes
ammonium chloride	sublimes when heated	soluble	no
sodium chloride	heat stable	soluble	no

Describe and explain what Paul should do in order to obtain two substances, dry nickel nails and pure, dry sodium chloride from the mixture separately.

- 1 Add excess water to the mixture, and stir well to completely dissolve the ammonium chloride and sodium chloride.
- 2 Filter the mixture to obtain the residue (nickel nails). Dry the nickel nails between filter paper.
- 3 Heat the mixture in an evaporating dish. Ammonium chloride will sublime, leaving sodium chloride in the evaporating dish.

(Separation techniques used: filtration + sublimation)