- 1. Find three examples of functors not mentioned above.
- 2. Show that functors preserve isomorphism. That is, prove that if $F: \mathscr{A} \to \mathscr{B}$ is a functor and $A, A' \in \mathscr{A}$ with $A \cong A'$, then $F(A) \cong F(A')$.

Proof: Suppose $F: \mathscr{A} \to \mathscr{B}$ is a functor, and $A \cong A'$ in \mathscr{A} . Then there exists a pair of morphisms $f: A \to A'$ and $g: A' \to A$ with $fg = 1_{A'}$ and $gf = 1_A$. And, the functor F gives another pair of morphisms Ff, Fg. Verify:

$$(Ff)(Fg) = F(fg) = F1_{A'} = 1_{FA'}$$

and likewise:

$$(Fg)(Ff) = F(gf) = F1_A = 1_{FA}$$
.

And so we have $FA \cong FA'$.

- 3. Two categories \mathscr{A} and \mathscr{B} are isomorphic, written as $\mathscr{A} \cong \mathscr{B}$, if they are isomorphic as objects of Cat.
 - (a) Let G be a group, regarded as a one-object category all of whose maps are isomorphisms. Then its opposite G^{op} is also a one-object category all of whose maps are isomorphisms, and can therefore be regarded as a group too. What is G^{op} , in purely group-theoretic terms? Prove that G is isomorphic to G^{op} .

Proof: Take the functors $F: G \to G^{op}$, and $F': G^{op} \to G$. Define, for $g \in G$ and $h^{op} \in G^{op}$:

$$F(g) = (g^{-1})^{op}, F'(h^{op}) = h^{-1}.$$

We first check that these functors compose to identity:

$$FF'(g^{op}) = F(g^{-1})$$

$$= ((g^{-1})^{-1})^{op}$$

$$= g^{op}$$

$$FF' = 1_{G^{op}}$$

$$F'F(g) = F'((g^{-1})^{op})$$

$$= (g^{-1})^{-1}$$

$$= g$$

$$F'F = 1_{G}.$$

And then we check that these mappings are indeed functors. Clearly F, F' map the single object in G to G^{op} , and vice versa. Then we check the morphism identities for F and F'. Let $g, h \in G$;

$$F(gh) = ((gh)^{-1})^{op}$$

$$= (h^{-1}g^{-1})^{op}$$

$$= (g^{-1})^{op} (h^{-1})^{op}$$

$$= F(g)F(h).$$

Then, if g^{op} , $h^{op} \in G^{op}$;

$$F'(g^{op}h^{op}) = F'((hg)^{op})$$

$$= (hg)^{-1}$$

$$= g^{-1}h^{-1}$$

$$= F(g^{op})F(h^{op}).$$

And all that is left to verify is that F, F' send identities to identities. Let $g \in G$, and $g^{op} \in G^{op}$. We wish to show that $F(1_G) = (1_G)^{op} = 1_{G^{op}}$, and that $F'(1_{G^{op}}) = 1_G$. Take $g^{op} \in G^{op}$, which we know to have a preimage g^{-1} under F.

$$(1_G)^{op}g^{op} = F(1_G)g^{op}$$

= $F(1_G)F(g^{-1})$
= $F(1_Gg^{-1})$
= $F(g^{-1})$
= g^{op} .

And so $1_{G^{op}} = (1_G)^{op} = F(1_G)$ (Since identity of right composition follows from the same argument). Now for $g \in G$,

$$F'(1_{G^{op}}) = F'((1_G)^{op})$$

= 1_G^{-1}
= 1_G .

So F and F' are functors which serve as inverses for one another, and $G \cong G^{op}$.

(b) Find a monoid which is not isomorphic to its opposite.

Solution: Take \mathbb{N} ,

- 4. Of the functors appearing in this section, which are faithful and which are full?
- 5. Give an example of a functor that is full, faithful, both, and neither.

Solution:

- (a) The forgetful functor $F: CRing \to Ring$ that forgets commutativity is faithful, for distinct commutative rings will necessarily map to distinct rings. However it is not full; there exist rings which are not commutative $(M_2(\mathbb{R}))$
- (b) For a full but not faithful functor, we can take the categorical representation of the trivial group, and a functor $F : Set \rightarrow \{e\}$, which maps every $X \in Set$ to the single object, and morphisms map to the identity.
- (c) A functor which is neither full nor faithful, we take $F : Set \rightarrow Set$ defined by $F(X) = \emptyset$ for any $X \in Set$, and $F(f) = 1_\emptyset$ for any morphism in Set
- (d) The functors in the group exercise is both full and faithful, being bijections between the set of morphisms in G and G^{op} .
- 6. Let A and B be sets, and denote B^A the set of functions from A to B. Write down:
 - (a) a canonical function $A \times B^A \to B$;

Solution: The God-Given function from $A \times B^A \to B$ is the function $f: A \times B^A \to B$, given by $f(\alpha, g) = g(\alpha)$ where $g: A \to B$.

(b) a canonical function $A \rightarrow B^{(B^A)}$.

Solution: The God-Given function from $A \to B^{(B^A)}$ is the function h(a), which for any $a \in A$ corresponds to a function ev_a , which takes a function from $A \to B$ and outputs its value at a. That is, h(a) gives the evaluation map on B^A at a.

- 7. In this exercise, you will prove Proposition 1.3.18. Let $F: \mathcal{A} \to \mathcal{B}$ be a functor.
 - (a) Suppose that F is an equivalence. Prove that F is full, faithful and essentially surjective on objects. (Hint: prove faithfulness before fullness.)

Proof: Suppose that F is an equivalence. Then there exists a functor $G: \mathcal{B} \to \mathcal{A}$, and natural isomorphisms $\eta: 1_{\mathcal{A}} \to GF$ and $\varepsilon: FG \to 1_{\mathcal{B}}$.

$$\begin{array}{ccc}
A & \xrightarrow{1_{\varnothing J} = J} & A' \\
\downarrow \eta_A & & \downarrow \eta'_A \\
GF(A) & \xrightarrow{GF(f)} & GF(A')
\end{array}$$

$$F(A) \xrightarrow{F(f)} F(A') .$$

$$\alpha_{A} \downarrow \qquad \qquad \downarrow \alpha_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

Faithfulness:

(b) Now suppose instead that F is full, faithful and essentially surjective on objects. For each $B \in \mathcal{B}$, choose an object G(B) of \mathscr{A} and an isomorphism $\varepsilon_B : F(G(B)) \to B$. Prove that G extends to a functor in such a way that $(\varepsilon_B)_{B \in \mathscr{B}}$ is a natural isomorphism $FG \to 1_B$. Then construct a natural isomorphism $1_A \to GF$, thus proving that F is an equivalence.

8. Kristaps' favorite: If you understood the "groupoid with one object" example, determine what functors between two such groupoids correspond to in terms of groups. Then, determine what natural transformations correspond to.

Solution: Let G, H be groupoids with one object, and ϕ, ψ be functors $G \to H$. We know already for any elements g, g' of the group G (Morphisms in the sigle object category),

$$\phi(gg') = \phi(g)\phi(g').$$

Which we know already to be the identity required by a group homomorphism. Then let α be a natural transformation:

$$A_G^F \alpha B$$