SAI MANIKANTA BADIGA

+1(480) 651-7373 | sbadiga@asu.edu | sbadiga24.github.io | badiga-manikanta-2a0948182

SUMMARY

I am a recent graduate with a Master's degree in Robotics and Autonomous Systems from Arizona State University, equipped with a strong portfolio of projects in this domain. I am actively seeking full-time and co-op opportunities in design and development. My areas of interest include robotics engineering, software engineering, machine learning, path planning, and computer vision.

EDUCATION

M.S Robotics and Autonomous Systems

May 2024

Arizona State University, Tempe, AZ

GPA-3.77/4

Relevant Coursework: Human Robot collaboration, Artificial Intelligence, Perception in Robotics, Multi-Robot Systems, Embedded Machine Learning.

Bachelor of Technology in Electronics and Communication Engineering, Specialization in Robotics

Mar 2022

K L Deemed to Be University, India

GPA-8.66/10

Relevant Coursework: Introduction to Robotics, Advance Robotics

TECHNICAL SKILLS

Tools, Frameworks, and OS: Git, JIRA, Mission Planner, ArduPilot, TensorFlow, MATLAB, ROS, RSLogix Emulate,RTOS ,Multi-Threading, CLI, FUSION360,3D , NI Vision Builder, KiCad, OpenCV, Raspberry Pi, Docker, Linux, LabVIEW Real-Time, Microsoft suite

Programming: Python, C, C++, LabVIEW, PLC, HTML, CSS, JavaScript, SQL, C#

Certifications: NI Certified LabVIEW Developer (CLD), NI Certified Associate LabVIEW Developer (CLAD)

PROFESSIONAL EXPERIENCE

Hylio Inc, USA | R&D UAV Engineer Intern:

May 2023-Aug 2023

- Developed a Comprehensive Parameter Management Tool: Designed and implemented a software tool to efficiently
 manage 2,000+ parameters across multiple drone models, streamlining engineering workflows and resulting in
 improved drone performance.
- Optimized Ground Control Station (GCS): Resolved critical issues within the Ground Control Station (GCS), including
 custom command functionality, leading to a 20% increase in production efficiency and a reduction in drone flight
 incidents.
- Enhanced Drone Navigation: Collaborated on drone firmware to enhance the path planning algorithm using the Dijkstra Path-Planner, achieving a 95% optimization rate. This improvement significantly increased drone navigation efficiency, especially in complex terrains, reducing mission times by 30%.

PROJECTS

Adaptive Ball Strike System Development:

Jan 2024 - Apr 2024

- Developed a robust **HSV ball detection** system using computer vision techniques to dynamically identify and track ball for adaptive strike applications.
- Implemented sophisticated **pose estimation** algorithms to ascertain the position of objects, crucial for enhancing interaction in adaptive ball striking systems.
- Engineered **trajectory prediction** solutions with an **Extended Kalman Filter** (EKF) to enhance the accuracy and efficiency of **ball trajectory** forecasting in real-time scenarios.
- Optimized **target location** identification processes, facilitating improved strategic planning and execution in adaptive ball strike environments.

SwarmSync: Autonomous Robotics for Public Health Safety:

Aug 2023 - Dec 2023

- Implemented Boids Flocking Algorithm to optimize Separation tactics in swarm robotics, enhancing autonomous navigation and obstacle avoidance.
- Developed Alignment strategies within the swarm for coordinated movement and efficient task execution, using Python and Robotarium for simulation.
- Achieved **Cohesion** in multi-robot systems, ensuring effective **teamwork** for sanitation tasks, demonstrating **potential** in **public health safety**.

Self-Driving Car Simulation:

Aug 2023 - Dec 2023

- Developed a self-driving car simulation project, resulting in comprehensive driving mechanics, defined environmental variables and simulated sensor functionalities.
- Implemented **collision detection algorithms** and utilized **Neural Networks** to enable **autonomous decision**-making and car control within the simulation.
- Achieved these parameters using Genetic Algorithms with mutation techniques to optimize neural network
 performance, significantly improving the simulation's adaptability and efficiency.

Conveyor Belt Sorting System Simulation

Aug 2023 - Dec 2023

- Conveyor Belt Simulation: Designed and simulated an efficient sorting system with Allen-Bradley RSLogix Emulate.
- PLC Programming: Utilized ladder logic for automated object sorting based on size and type.
- System Testing: Conducted extensive testing and troubleshooting to assure reliability and efficiency.

Visual Tracking Unmanned Vehicle:

Jan 2023 - Apr 2023

EGR 598 - Robotics Systems II (Course Project)

- Developed a high-performance, **low-level flight control algorithm** with integrated **Kalman Filter** for autonomous navigation of the Mambo Drone.
- Integrated an advanced image processing module for various capabilities in a real-world Mambo drone.

CLIPort: What and Where Pathways for Robotic Manipulation:

Jan 2023 - Apr 2023

CSE 598-Perception in Robots (Course Project)

- Implemented safe constraints within the robotic manipulation pathways to avoid hazardous areas.
- Enhanced system safety by **identifying** and **mitigating risk** factors in **real-time**.
- Contributed to the development and **fine-tuning** of **algorithms** that improved the overall reliability and safety of robotic operations.

Autonomous Mobile Robot [AMR]:

Aug 2022 - Dec 2022

- **Designed and Implemented ROS-Based Autonomous Robot:** Developed a cost-effective last-mile delivery robot for university campus tasks, incorporating ROS, SLAM, sensor fusion, ACML, Dynamic Window Approach [DWA] as the local planner, and A* as the global planner, enabling precise navigation and efficient task execution.
- Enhanced Perception with Real-Time Object Detection and Tracking: Implemented real-time object detection and tracking techniques, significantly improving the robot's perception capabilities for seamless navigation.

LabVIEW Certification Projects:

- Developed HVAC, ATM, vending machine, and automobile simulations.
- Utilized **State Machine Architecture** during National Instruments CLD certification to demonstrate **multi-domain** proficiency and advanced state machine design skills.

ACTIVITIES AND ACHIVEMENTS

Awarded for solving problem statement on pick and place with AMR:

Accomplished first-place wins in state and regional AMR competitions by AP State Skill Development Corporation and National Skill Development Corporation in 2018. Achieved runner-up status nationally in 2018 and clinched another state-level victory in 2021.

National Instruments Center of Excellence, Technical Club, at KL University

Aug 2018 - May 2019

- Conducted tutoring sessions for 10-15 undergraduate engineering students weekly, focusing on LabVIEW programming, LabVIEW FPGA, and LabVIEW Real-Time device interfacing.
- Provided guidance and assistance to students in resolving issues related to their projects and assignments.