Домашнее задание №8-9 (задание пополняется)

Дедлайн: 16 апреля 2019 г., 23:00

Основные задачи

- 1. (2 + 2балла)
 - (i) Найдите произведение многочленов A(x) = 2x + 3 и $B(x) = x^2 1$, используя рекурсивный $O(n \log n)$ -алгоритм БПФ.
 - (ii) Вычислите обратное ДПФ массива $A = [10, 3i\sqrt{2} + 2 + 2i, 0, 3i\sqrt{2} + 2 2i, -2, -3i\sqrt{2} + 2 + 2i, 0, -3i\sqrt{2} + 2 2i].$
- 2. (1+2 балла)
 - (i) Постройте $O(n \log n)$ -БП Φ -флгоритм для поиска подстрок с «джокерами».
 - (ii) Покажите, как понизить трудоёмкость вашей процедуры до $O(n \log m)$.
- 3. (1 балл) Используя ДПФ, найдите решение системы линейных уравнений Cx = b, где C циркулянтная матрица, порождённая столбцом $(1,2,4,8)^{\top}$ и $b^{\top} = (16,8,4,2)^{\top}$.
- 4. (1+2+3+2 балла)
 - (i) Найдите примитивный корень восьмой степени в поле \mathbb{Z}_{41} .
 - (ii) Вычислите ДПФ многочленов A(x) = 2x + 3 и $B(x) = x^2 1$ в поле \mathbb{Z}_{41} .
 - (ііі) Пусть A матрица ДПФ длины $n, \, \omega_n$ соответствующий первообразный корень степени n в поле \mathbb{Z}_{41} . Докажите, что $(A^{-1})_{i,j} \equiv n^{-1} (\omega_n^{-1})^{ji} \pmod{p}$.
 - (iv) С помощью БП Φ найдите произведение многочленов A(x) и B(x) из второго пункта в поле \mathbb{Z}_{41} .

Дополнительные задачи

1. (3 балла) Пусть дано множество различных чисел $A \subseteq \{1, ..., m\}$. Рассмотрим множество A + A, образованное суммами пар элементов A. Докажите или опровергните существование процедур построения A + A, имеющих субквадратичную трудоёмкость $o(n^2)$.