FYZIKÁLNÍ	Jméno a příjmení Tomáš Vavrinec				ID 240893		
	^{Ústav} Fyz i	iky 🎾	Ročník 1	Předmět FY2	Prog./Obor	Stud. skup Kroužek MET3	. Lab. skup. EKT4
Měřeno dne 18.3	Odevz	dáno dne	Spoluprad	coval		,	
Příprava	•	Opravy	Učitel			Hodnocen	
Název úlohy							
Rychlost světla							46

1 Úkol

- 1. Stanovte velikost rychlosti světla ve vzduchu.
- 2. Stanovte velikosti rychlostí světla v kapalinách a zjistěte odpovídající indexy lomu.

2 Teoretický úvod

Z Maxwellových rovnic plyne pro fázovou rychlost šíření světla v daném prostředí vztah.

$$v = \frac{1}{\sqrt{\mu_r \mu_0 \xi_r \xi_0}} \Rightarrow (pro\ vakum)c = \frac{1}{\sqrt{\mu_0 \xi_0}}$$
 (1)

Kde $\mu_r \xi_r$ je relativní permeabilita a permitivita daného prostředí a konstanty permitivita vakua ($\mu_r = 1.257 \cdot 10^{-6} \ H \cdot m^{-1}$) a permeabilita vakua ($\xi_r = 8.854 \cdot 10^{-12} \ F \cdot m^{-1}$). Index lomu prostředí n je podíl rychlosti světla ve vakuu c a rychlosti světla daném prostedí v.

$$n = \frac{c}{v} = \frac{\frac{1}{\sqrt{\mu_0 \xi_0}}}{\frac{1}{\sqrt{\mu_0 \mu_r \xi_0 \xi_r}}} = \sqrt{\frac{\mu_0 \mu_r \xi_0 \xi_r}{\mu_0 \xi_0}} = \sqrt{\xi_r \mu_r}$$
 (2)

Při přechodu mezi dvěma prostředími se mění vlnová délka a samotná rychlost světlo podle vztahu.

$$f = \frac{v}{\lambda} = \frac{c}{\lambda_0} \Rightarrow v = \frac{v\lambda}{\lambda_0} = f\lambda \tag{3}$$

Měřící přístroj generuje paprsek modulovaný na 50 MHz. Aby bylo možné použít pro měření běžný osciloskop, je tento signál následně dělen 10^3 , přístroje tak pracují s frekvencí $50 \ kHz$.

Protože nemůžeme celý měřící přístroj ponořit do kapaliny, použijeme pro měření rychlosti světla v kapalinách trubice naplněné danými kapalinami. Rychlost světla v kapalinách pak můžeme určit na základě znalosti frekvence f a dráhového rozdílu, který musíme způsobit, aby do detektoru dorazilo světlo ve stejné fázi jako v čistém vzduchu. Protože frekvence f je konstantní bez ohledu na prostředí, musí světlo dráhu ve vzduchu a v kombinaci vzduchu a kapaliny urazit za stejný čas, aby do detektoru dorazilo ve stejné fázi. Musí tedy platit

$$\frac{v_1}{l_k} = \frac{v_2}{l_k + \Delta l} \tag{4}$$

3 Měření

Změřená frekvence modulačního signálu 49.98 $kHz \Rightarrow f = 49.98 \; MHz$ Délka trubic s kapalinami 1014 mm

měření rychlosti světla ve vzduchu

		overia i	o vzau	CIIG	
č. m.	1	2	3	4	5
$x_i [cm]$	7.1	6.8	5.5	5.0	5.0
x_i' [cm]	155.6	155.4	154.5	155.0	155.1
$\Delta x_i [cm]$	148.5	148.6	149.0	150.0	150.1

$$\Delta x_{v-str} = \sum \frac{x_i}{5} = 149.24 \ cm$$

měření rychlosti světla v kapalině 2

č. m.		1	2	3	4	5
$x_i [cm]$		108.2	108.2	111.2	111.3	108.4
x_i' [cm]		140.9	141.2	140.8	141.1	140.7
Δx_i [cn	i	32.7	33.0	39.6	29.8	32.3

$$\Delta x_{2-str} = \sum \frac{x_i}{5} = 33.48 \ cm$$

měření rychlosti světla v kapalině 1

č. m.	1	2	3	4	5
$x_i [cm]$	128.9	116.8	116.4	116.4	116.4
$x_i' [cm]$	152.8	142.4	142.2	141.9	141.4
$\Delta x_i [cm]$	23.9	25.6	25.8	25.5	25.0

$$\Delta x_{1-str} = \sum_{i=1}^{\infty} \frac{x_i}{5} = 25.16 \ cm$$

měření rychlosti světla v kapalině 3

č. m.	1	2	3	4	5
$x_i [cm]$	108.1	108.0	108.1	108.1	108.3
x_i' [cm]	128.4	128.9	127.8	128.7	128.8
$\Delta x_i [cm]$	20.3	20.9	19.7	20.6	20.5

$$\Delta x_{3-str} = \sum \frac{x_i}{5} = 20.4 \ cm$$

Rychlost světla ve vzduchu stanovíme úpravou vzorce (3) z Δx_{v-str} a frekvence f jako

$$c = f\lambda = f\Delta x_{v-str} \cdot 2 \cdot 2 = (49.98 \cdot 10^{6} \cdot 149.24 \cdot 10^{-2} \cdot 4) \ m \cdot s^{-1} = 298.4 \cdot 10^{6} \ m \cdot s^{-1}$$

tabulková hodnota je 299.8 · $10^6~m \cdot s^{-1}$ a mé měření má tak odchylku 0.5 %.

Rychlost světla v kapalinách stanovíme ze vztahu (4)

$$v_{k1} = \frac{c \cdot l_k}{l_k + 2\Delta x_{1-str}} = \frac{298.4 \cdot 10^6 \cdot 1.014}{1.014 + 2 \cdot 25.16 \cdot 10^{-2}} \ m \cdot s^{-1} = 199.4 \cdot 10^6 \ m \cdot s^{-1}$$

$$v_{k2} = \frac{c \cdot l_k}{l_k + 2\Delta x_{2-str}} = \frac{298.4 \cdot 10^6 \cdot 1.014}{1.014 + 2 \cdot 33.48 \cdot 10^{-2}} \ m \cdot s^{-1} = 179.7 \cdot 10^6 \ m \cdot s^{-1}$$

$$v_{k3} = \frac{c \cdot l_k}{l_k + 2\Delta x_{2-str}} = \frac{298.4 \cdot 10^6 \cdot 1.014}{1.014 + 2 \cdot 20.4 \cdot 10^{-2}} \ m \cdot s^{-1} = 212.8 \cdot 10^6 \ m \cdot s^{-1}$$

Index lomu n u jednotlivých kapalin určíme podle vzorce (2)

$$n_{k1} = \frac{c}{v_{k1}} = \frac{298.4 \cdot 10^6}{199.4 \cdot 10^6} = 1.496 [-]$$

$$n_{k2} = \frac{c}{v_{k2}} = \frac{298.4 \cdot 10^6}{179.7 \cdot 10^6} = 1.661 [-]$$

$$n_{k3} = \frac{c}{v_{k3}} = \frac{298.4 \cdot 10^6}{212.8 \cdot 10^6} = 1.402 [-]$$

4 Závěr

Na základě meření ve vzduchu jsem stanovil rychlost světla na $298.4 \cdot 10^6 \ m \cdot s^{-1}$ což při porovnání s tabulkovou hodnotou $299.8 \cdot 10^6 \ m \cdot s^{-1}$ znamená odchylku $0.5 \ \%$. Pomocí takto získané hodnoty jsem stanovil rychlost světla ve třech různých kapalinách na $199.4 \cdot 10^6 \ m \cdot s^{-1}$, $179.7 \cdot 10^6 \ m \cdot s^{-1}$ a $212.8 \cdot 10^6 \ m \cdot s^{-1}$. Nakonec jsem pomocí stanovených rychlostí určil indexy lomu pro jednotlivé kapaliny jako 1.496, 1.661 a 1.402. Podle indexu lomu jsem určil první kapalinu n = 1.496 jako roztor cukru (80%), druhou kapalinu n = 1.661 jako těžké flintové sklo a třetí kapalinu n = 1.402 jako jako roztor cukru (30%). Nepřesnost měření byla pravděpodobně způsobena nepřesným odečtem fázového posunu z Lissajousova obrazce a což způsobilo chybu měření vlnové delky.