Билет 12

Участники:

Янченков Дмитрий М3337 Наумов Семён М3337 Фархиев Азамат М3337 Козырев Владислав М3337 Комаров Андрей М3337 Глаголев Михаил М3337

Аппроксимация функций одной переменной

1. Введение

Аппроксимация или приближенное представление одних функций другими, находит применение в алгоритмах информационно-измерительных систем. Оценка эффективности аппроксимации производится мерами различия между аппроксимируемой и аппроксимирующей функциями. Аппроксимироваться могут как детерминированные, так и случайные функции.

Целью аппроксимации является либо получение упрощенного выражения для функции, алгоритм нахождения которой весьма сложен, либо нахождение алгоритма вычисления функции, полученной или получаемой экспериментально.

2. Постановка задачи

- Дано табличное представление некоторой функции f(x), которая задаёт связь между x и y на некотором множестве точек.
- Необходимо найти функцию вида y = F(x), которая в точках x_i принимает значения как можно близкие к y_i , но не обязательно проходящая через эти точки $(i=1,2,\ldots,n)$.
- Тогда функцию F(x) будем называть аппроксимирующей.

3. Практический смысл

В ходе различных экспериментов и расчётов точная зависимость между х и у может быть неизвестна, поэтому она чаще всего представлена в виде таблицы.

Но могут понадобиться и другие значения у, отличные от тех, что представлены в таблице множеством y_i . Для этого и строится такая функция F(x), которая задаёт некоторое приближение.

То есть задача об аппроксимации функции состоит в том, чтобы аппроксимировать функцию, заданную таблицей.

4. Неприменимость интерполяции

Можно найти функцию методом интерполяции, тогда полученная функция будет не просто приближена к табличным значениям, а проходить через все заданные точки.

Но совпадение во всех точках функции, полученной интерполяцией, может вовсе не означать совпадение характеров исходной функции, заданной таблицей, и полученной.

К тому же измерения часто происходят с помощью различных приборов, имеющих определённую погрешность (сглаживание случайных ошибок).

Рис. 1. Графическая интерпретация принципа построения интерполяционного полинома (а) и аппроксимирующей линии (б) для точечно заданной функции

5. Построение эмпирической формулы

1. Подбор общего вида формулы.

Если вид функции неизвестен из физических соображений, то он угадывается геометрически. Точки, заданные в таблице, наносятся на график и угадывается общий вид функции путём сравнения с уже известными.

2. Определение значений параметров аппроксимирующей функции.

Метод наименьших квадратов

Метод наименьших квадратов (МНК) – аппроксимирующую кривую следует провести так, чтобы сумма квадратов её отклонений от табличных значений по всем узловым точкам была минимальна.

Линейный парный регрессионный анализ

Найдём линейную функцию, аппроксимирующую значения в таблице, записав их в следующем виде:

$$y = b_0 + b_1 * x$$

Рассчитаем сумму квадратов отклонений аппроксимирующей функции от табличных значений:

$$U = \sum_{i=1}^n (y_i - y(x_i))^2 = \sum_{i=1}^n (y_i - b_0 + b_1 * x_i)^2$$

Для минимизации U необходимо приравнять нулю частные производные:

$$\frac{\partial U}{\partial b_0} = \frac{\partial U}{\partial b_1} = 0,$$

что эквивалентно

$$egin{split} rac{\partial U}{\partial b_0} &= 2*\sum_{i=1}^n (y_i - b_0 + b_1*x_i)*(-1) \ rac{\partial U}{\partial b_1} &= 2*\sum_i i = 1^n (y_i - b_0 + b_1*x_i)*(-x_i), \end{split}$$

что эквивалентно системе линейных уравнений:

$$\begin{cases} b_0 n + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum x_i y_i \end{cases}$$

Решение системы:

$$b_1 = rac{\sum_{i=1}^n x_i * \sum_{i=1}^n y_i - n * \sum_{i=1}^n x_i * y_i}{(\sum_{i=1}^n x_i)^2 - n * \sum_{i=1}^n x_i^2} \ b_0 = rac{1}{n} * (\sum_{i=1}^n y_i - b_1 * \sum_{i=1}^n x_i)$$

Зная коэффициенты, можно (если нужно) вычислить и величину R (например, для сравнения различных аппроксимирующих функций). Следует помнить, что при изменении даже одного значения исходных данных (или пары значений хі, у, или одного из них) все коэффициенты изменят в общем случае свои значения, так как они полностью определяются исходными данными. Поэтому при повторении аппроксимации с несколько изменившимися данными (например, вследствие погрешностей измерения, помех, влияния неучтенных факторов и т. п.) получится другая аппроксимирующая функция, отличающаяся коэффициентами.

Пример

Пусть n=5

	i=1	i=2	i=3	i=4	i=5	$\sum_{i=1}^{5}$
xi	0	1	2	4	5	12
y_i	2.1	2.4	2.6	2.8	3	12.9
x_iy_i	0	2.4	5.2	11.2	15	33.8
x_i^2	0	1	4	16	25	46

Тогда по формулам (6) и (7):

$$b_1 \approx 0.165$$
 $b_0 \approx 2.184$

Получаем аппроксимирующую функцию y = 0.165x + 2.184

Гиперболическая регрессия

$$y = b_0 + rac{b_1}{x} \ \left\{ egin{aligned} b_0 n + b_1 \sum_{i=1}^n rac{1}{x_i} &= \sum_{i=1}^n y_i \ b_0 \sum_{i=1}^n rac{1}{x_i} + b_1 \sum_{i=1}^n rac{1}{x_i^2} &= \sum rac{y_i}{x_i} \end{aligned}
ight.$$

Степенная регрессия

$$y = b_0 * x^{b_1} \ b_1 = rac{\sum_{i=1}^n \ln x_i * \sum_{i=1}^n \ln y_i - n * \sum i = 1^n \ln x_i * \ln y_i}{(\sum i = 1^n \ln x_i)^2 - n * \sum i = 1^n (\ln x_i)^2} \ b_0 = \exp(rac{1}{n} * (\sum_{i=1}^n \ln y_i - b 1 * \sum_{i=1}^n \ln x_i))$$

Показательная регрессия

$$y = a * b^x$$

$$\begin{cases} n * \lg a + \lg b * \sum_{i=1}^{n} x_i \sum_{i=1}^{n} \lg y_i \\ \lg a * \sum_{i=1}^{n} x_i + \lg b * \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{n} (x_i * \lg y_i) \end{cases}$$

Экспоненциальная регрессия

$$y = b_0 * \exp(b_1 * x)$$
 $b_1 = rac{\sum_{i=1}^n x_i * \sum_{i=1}^n \ln y_i - n * \sum_{i=1}^n x_i * \ln y_i}{(\sum_{i=1}^n x_i)^2 - n * \sum_{i=1}^n (x_i)^2}$ $b_0 = \exp(rac{1}{n} * (\sum_{i=1}^n \ln y_i - b_1 * \sum i = 1^n x_i))$

Логарифмическая регрессия

$$y = a + b * \lg x$$

$$\begin{cases} an + b \sum_{i=1}^n \lg x_i = \sum_{i=1}^n y_i \\ a \sum_{i=1}^n \lg x_i + b \sum_{i=1}^n (\lg x_i)^2 = \sum (y_i * \lg x_i) \end{cases}$$

Параболическая регрессия

$$y = b_0 + b_1 * x + b_2 * x^2$$

$$\begin{cases} b_0 n + b_1 \sum_{i=1}^n x_i + b_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 + b_2 \sum_{i=1}^n x_i^3 = \sum x_i y_i \\ b_0 \sum_{i=1}^n x_i^2 + b_1 \sum_{i=1}^n x_i^3 + b_2 \sum_{i=1}^n x_i^4 = \sum x_i^2 y_i \end{cases}$$

Полиномиальная регрессия

$$y=a_0+a_1*x+a_2*x^2+\cdots+a_m*x^m$$
 $\begin{cases} c_0a_0+c_1a_1+c_2a_2\dots c_ma_m=d_0\ c_1a_0+c_2a_1+c_3a_2\dots c_{m+1}a_m=d_1\ \dots c_ma_0+c_{m+1}a_1+c_{m+2}a_2\dots c_{2m}a_m=d_m \end{cases}$ где $c_j=\sum_{i=1}^n x_i^j, j=0,1,\dots,2m$, $d_k=\sum_{i=1}^n x_i^k*y_i, k=0,1,\dots,m$

Пример:

Представлены данные и необходимые для решения вычисления в виде таблицы: n=2

k	x_k	x_k^2	x_k^3	x_k^4	y_k	$x_k y_k$	$x_k^2 y_k$
1	80.5	6480.5	521660.13	41993640.0625	281	22620.5	1820950.25
2	77	5929	456533	35153041.0000	272	20944	1612688.00
3	70.8	5012.64	354894.91	25126559.7696	259	18337.2	1298273.76
4	56.7	3214.89	182284.26	10335517.7121	224	12700.8	720135.36
5	39.7	1576.09	62570.773	2484059.6881	186	7384.2	293152.74
6	29.9	894.01	26730.899	799253.8801	170	5083	151981.70
Σ	354.6	23106.88	1604673.972	115892072.1124	1392	87069.7	5897181.81

Построив и решив систему уравнений, получим:

$$a_0 = 7.425 * 10^{-3}$$
 $a_1 = 1.408$ $a_2 = 120.184$ $y = 7.425 * 10^{-3} * x^2 + 1.408 * x + 120.184$

Полином степени m < n обеспечивает аппроксимацию с минимальной среднеквадратичной погрешностью (обладает сглаживающими свойствами):

$$E = \sqrt{\sum_{i=1}^n rac{\epsilon_i^2}{n-1}}$$
,где $\epsilon_i = y(x_i) - rac{1}{n} * \sum i = 1^n y_i$

Если m=n среднеквадратичная аппроксимация близка к интерполяции. Можно рассмотреть влияние степени аппроксимирующего полинома на точность аппроксимации:

Дополнение. Общий случай

Пусть дана таблица и линейная комбинация пробных функций $\{\varphi_k\}, k=1...m$.n - количество узлов.

Если m = n, то, как было сказано выше, аппроксимация близка к интерполяции. Если m < n, то используется критерий минимизации суммы квадратов отклонений значений приближённой функции от исходных табличных значений:

$$\sum_{i=1}^n (y_i - \sum_{k=1}^m C_k arphi_k(x_i))^2 = F(C_1, C_2 \dots C_m)$$
 - квадратичная форма относительно $\{C_k\}$.

Необходимые и достаточные условия минимума:

$$\frac{\partial}{\partial C_i}F(C_1,C_2...C_m)=0, j=1...m$$

Дифференцируем:

$$\sum_{i=1}^n (y_i - \sum_{k=1}^m C_k arphi_k(x_i)) arphi_j(x_i) = 0$$

$$\sum_{k=1}^{m} (\sum_{i=1}^{n} \varphi_k(x_i) \varphi_j(x_i)) C_k = \sum_{i=1}^{n} y_i \varphi_j(x_i)$$

Последнее уравнение для каждого j=1...m даёт нам СЛАУ относительно всех $\{C_j\}$.