Homework #6 due December 28 before recitation

Question 1

Consider the CFG $G = (V, \Sigma, R, S)$ where $V = \{S, A, B, C, D, E\}$, $\Sigma = \{a, b, c\}$ and R is as given below

R:

 $S \rightarrow AE \mid EB \mid C$

 $A \rightarrow aA \mid a$

 $B \rightarrow Bb \mid b$

 $C \rightarrow Cc$

 $D \rightarrow aCb \mid a \mid b \mid c$

 $E \rightarrow aEb \mid e$

- (a) Remove all the null productions of G, if any, and call the result G_1 .
- **(b)** Remove all the unitary productions of G_1 , if any, call the result G_2
- (c) Remove all the non-generative and non-reachable symbols of this grammar, if any, and call the result G_3 .
- (d) Compute the Chomsky Normal Form of G_3 using your results above.
- (e) State in the simplest possible way the language generated by G

Question 2

Show that the languages L_1 , $L_2 \subseteq \{a,b,c,d\}^*$ given below are context-free languages (CFL):

$$L_1 = \{a^n b^n c^m d^m; n, m \ge 0\}; L_2 = \{a^n b^m c^m d^n; n, m \ge 0\}$$

Is the language $\mathbf{L} = (\boldsymbol{\omega} \in \{a,b,c,d\}^* \mid \text{in } \boldsymbol{\omega} : \#a's = \#b's \land \#c's = \#d's \}$ a CFL ? If so find a CFG that generates \mathbf{L} or a PDA that accepts \mathbf{L} ; if not prove your claim using the pumping lemma for CFGs.

Question 3

A CFG is called right linear if **all** productions are of the form $A \to a B$ or $A \to e$ and called left linear if **all** productions are of the form $A \to B a$ or $A \to e$ where $A, B \in V$ and $a \in T$ and e is the empty string. Show that both right linear and left linear grammars generate regular languages. Specify finite state machines corresponding respectively to right and left linear grammars.

Main Text: Exercise 6.4.1 (a), (c); 6.4.2, 7.1.3, 7.1.4, 7.2.1 (b), (c), 7.4.3(b), (c)