

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления» (ИУ)

КАФЕДРА

«Информационная безопасность» (ИУ8)

ОТЧЁТ ПО УЧЕБНОЙ ПРАКТИКЕ

Тип практики: производственная практика

Название предприятия: ФГАУ «ФНФРО»

Студент:	
Веденеев Максим Геннадьевич, группа ИУ8-62	01.0f.21
(3 курс)	(подпись, дата)
Руководитель от предприятия:	Al rel lorge
Начальник отдела Васильев Владлен Николаевич	1 01.08.d
	(подрись, дата)
Руководитель от кафедры:	
доцент кафедры ИУ8 Зайцева Анастасия Владленовна	
	(подпись, дата)

Оценка: Отметив

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления» (ИУ)

КАФЕДРА

«Информационная безопасность» (ИУ8)

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ НА ПРАКТИКУ

Тип практики: производственная практика

Название предприятия: ФГАУ «ФНФРО»

Сроки практики: с 19 июля 2021 г. по 01 августа 2021 г.

Специальность: 10.05.03 «Информационная безопасность автоматизированных систем»

Задачами производственной практики являются:

- Изучение методы контроля ЗИ на предприятии.
- Изучение технических и программных средств ЗИ на предприятии.
- Изучение систем защиты каналов связи на предприятии.
- Обеспечение защищенного соединения между филиалами компании.

(3 курс)

(подпись, дата)

(подпись, дата)

01,08.21

Студент:

Веденеев Максим Геннадьевич, группа ИУ8-62

Руководитель от предприятия:

Начальник отдела Васильев Владлен Николаевич

Руководитель от кафедры:

доцент кафедры ИУ8 Зайцева Анастасия Владленовна

(подпись, дата)

Оглавление

Перечень сокращений	4
Введение	5
Основная часть	
1. Характеристика организации	7
2. Практическая часть	
2.1 Методы контроля ЗИ на предприятии	
2.2 Течнические и программные средства ЗИ н	
предприятии	9
2.3 Системы защиты каналов связи на предприяти	И
Ошибка! Закладка не определена.	0
Заключение1	7
Список использованных источников	8

Перечень сокращений

- Firewall функционал межсетевого экрана;
- IPSec VPN построение частные виртуальных сетей;
- Mobile Access удаленный доступ с мобильных устройств;
- IPS система предотвращения вторжений;
- Anti-Bot защита от ботнет сетей;
- AntiVirus потоковый антивирус;
- AntiSpam & Email Security защита корпоративной почты;
- Identity Awareness интеграция со службой Active Directory;
- Monitoring мониторинг практически всех параметров шлюза (load, bandwidth, VPN статус и т.д.)
- Application Control межсетевой экран уровня приложений (функционал NGFW);
- URL Filtering безопасность Web (+функционал proxy);
- Data Loss Prevention защита от утечек информации (DLP);
- Threat Emulation технология песочниц (SandBox);
- Threat Extraction технология очистки файлов;
- QoS приоритезация трафика.

Введение

Целью данной работы является:

- приобретение профессионального опыта;
- овладение производственными навыками, необходимыми в экспериментально-исследовательской, проектной, организационноуправленческой и эксплуатационной деятельности;
- проверка готовности будущих специалистов к самостоятельной трудовой деятельности.

Основными задачами отдела защиты информации являются:

- разработка единой политики (концепции) обеспечения информационной безопасности организации, определение требований к системе защиты информации организации и документообороту на бумажных и электронных носителях;
- организация мероприятий и координация работ всех подразделений организации по комплексной защите информации на всех этапах технологических циклов ее создания, переноса на носитель (бумажный или электронный), обработки и передачи в соответствии с единой политикой обеспечения информационной безопасности организации;
- контроль и оценка эффективности принятых мер и применяемых средств защиты информации.

Основными функциями отдела защиты информации являются:

- организация и координация действий подразделений организации по вопросам обеспечения информационной безопасности;
- экспертиза договоров организации со сторонними организациями по вопросам ОБИ при передаче (приеме) информации;
- участие в работе технической комиссии по пересмотру Перечня сведений, подлежащих защите
- согласование технических порядков по технологиям, связанным с информационным обменом и документооборотом;

- участие в проектировании, приемке, сдаче в промышленную эксплуатацию программных средств и АС организации (в части требований к средствам защиты информации);
- контроль за соблюдением правил безопасной эксплуатации АС организации;
- контроль за соблюдением требований ТУ и сертификатов на приобретенные программные и аппаратные средства (в том числе средства защиты информации);
- организация и контроль за разрешительной системой допуска исполнителей к работе с защищаемой информацией;
- определение порядка учета, хранения и обращения с защищаемой информацией (документами и носителями информации);
- контроль за сохранностью конфиденциальных документов и носителей информации;
 - генерация ключей шифрования и ЭЦП.

Основная часть

1. Характеристика организации

Фонд новых форм развития образования (ФНФРО) обеспечивает организационную, методическую и информационную поддержку проектов по разработке и внедрению уникальных образовательных методик и педагогических инициатив.

Фонд содействует продвижению приоритетных направлений в образовании, стремится выявлять юные таланты, развивать интеллектуальные и творческие способности детей и молодёжи, а также обеспечивает их адаптацию к жизни в обществе и профориентацию.

Фонд является проектным офисом национального проекта «Образование» федеральным оператором сети детских технопарков «Кванториум», реализует масштабный пилотный проект по повышению доступности образования в России, разрабатывает уникальные образовательные методики.

В числе задач ФНФРО – организация мероприятий, информирующих общественность о передовых практиках в вопросах образования и воспитания.

2. Практическая часть

1. Методы контроля ЗИ на предприятии

Эффективное обеспечение защиты информации возможно только на основе комплексного использования всех известных методов и подходов к решению данной проблемы.

К концепции комплексной защиты предъявляется ряд требований:

- разработка и доведение до уровня регулярного использования всех необходимых механизмов гарантированного обеспечения требуемого уровня защищенности информации;
- существование механизмов практической реализации требуемого уровня защищенности;
- наличие средств рациональной реализации всех необходимых мероприятий по защите информации на базе достигнутого уровня развития науки и техники;
- разработка способов оптимальной организации и обеспечения проведения всех мероприятий по защите в процессе обработки информации.

Функции защиты информации:

- предупреждение возникновения условий, благоприятствующих появлению дестабилизирующих факторов;
- предупреждение непосредственного проявления дестабилизирующих факторов;
 - обнаружение проявившихся дестабилизирующих факторов;
- предупреждение воздействия на защищаемую информацию проявившихся дестабилизирующих факторов;
 - обнаружение воздействия дестабилизирующих факторов;
 - локализация воздействия дестабилизирующих факторов;
- ликвидация последствий локализованного воздействия дестабилизирующих факторов.

Методики контроля ЗИ, используемые на предприятии:

• введение избыточности элементов системы;

- резервирование элементов системы;
- регулирование доступа к элементам системы;
- регулирование использования элементов системы;
- контроль элементов системы;
- маскировка информации;
- уничтожение информации;
- регистрация сведений.

2. Технические и программные средства ЗИ на предприятии

Рассмотрим основные средства, используемые для создания механизмов защиты.

Технические средства реализуются в виде электрических, электромеханических и электронных устройств. Вся совокупность технических средств делится на аппаратные и физические.

Под аппаратными техническими средствами принято понимать устройства, встраиваемые непосредственно в телекоммуникационную аппаратуру, или устройства, которые сопрягаются с подобной аппаратурой по стандартному интерфейсу. Из наиболее известных аппаратных средств можно отметить схемы контроля информации по четности, схемы защиты полей памяти — по ключу и т. п.

Физические средства реализуются в виде автономных устройств и систем. Это могут быть, например замки на дверях помещений, где размещена аппаратура, решетки на окнах, электронно-механическое оборудование охранной сигнализации.

Программные средства представляют собой программное обеспечение, специально предназначенное для выполнения функций защиты информации.

Аппаратные средства, имеющиеся на предприятии:

• устройства для видеонаблюдения

- устройства для воспрепятствования несанкционированного включения рабочих станций и серверов:
- устройства уничтожения информации на магнитных и бумажных носителях:
- устройства сигнализации о попытках несанкционированных действий пользователей:
- устройства идентификации (распознавания) и аутентификации (проверки подлинности) субъектов (пользователей, процессов)
 - устройства разграничение доступа к ресурсам

Программные средства, имеющиеся на предприятии:

- ПО для шифрования информации
- ПО для контроля и фильтрации траффика
- ПО для уничтожения информации
- ПО для идентификации (распознавания) и аутентификации (проверки подлинности) субъектов (пользователей, процессов)
 - ПО для разграничения доступа к ресурсам
 - ПО для обнаружения вредоносных программ
 - ПО для тестового контроля
 - ПО для резервного копирования информации
 - DLP системы
 - SIEM системы

3. Системы защиты каналов связи на предприятии

В условиях нарастающих интеграционных процессов и создания единого информационного пространства проводятся работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности

информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

При межсетевом взаимодействии между территориально удаленными обеспечения безопасности объектами возникает задача компании информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь несанкционированное подключение к каналам рассматривается осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование ІР-пакетов).

В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола HTTP.

средств, установку специальных предполагает Второй вариант осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый ІР-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью любыми прикладными подсистемами, работающими совместимы информационной системе (являются «прозрачными» корпоративной приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо криптографической защиты информации средства что если учитывать, планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.

Для реализации второго варианта и обеспечения конфиденциальности и достоверности информации, передаваемой между объектами компании по каналам связи, можно использовать сертифицированные криптографические шлюзы (VPN-шлюзы). Например, Континент-К, VIPNet TUNNEL, ЗАСТАВА-Офис компаний НИП «Информзащита», Инфотекс, Элвис+. Эти устройства обеспечивают шифрование передаваемых данных (IP-пакетов) в соответствии с ГОСТ 28147-89, а также скрывают структуру локальной сети, защищают от проникновения извне, осуществляют маршрутизацию трафика и имеют сертификаты Гостехкомиссии РФ и ФСБ (ФАПСИ).

Криптошлюзы позволяют осуществить защищенный доступ удаленных абонентов к ресурсам корпоративной информационной системы (рис. 1). Доступ производится с использованием специального программного обеспечения, которое устанавливается на компьютер пользователя (VPN-клиент) для осуществления защищенного взаимодействия удаленных и мобильных пользователей с криптошлюзом. Программное обеспечение криптошлюза (сервер доступа) проводит идентификацию и аутентификацию пользователя и осуществляет его связь с ресурсами защищаемой сети.

Рисунок 1 - «Удаленный доступ по защищенному каналу с использованием криптошлюза»

С помощью криптошлюзов можно формировать виртуальные защищенные

каналы в сетях общего пользования (например, Internet), гарантирующие конфиденциальность и достоверность информации и организовывать виртуальные частные сети (Virtual Private Network - VPN), которые представляют собой объединение локальных сетей или отдельных компьютеров, подключенных к сети общего пользования в единую защищенную виртуальную сеть. Для управления такой сетью обычно используется специальное программное обеспечение (центр управления), которое обеспечивает централизованное управление локальными политиками безопасности VPN-клиентов и криптошлюзов, рассылает для них ключевую информацию и новые конфигурационные данные, обеспечивает ведение системных журналов. Криптошлюзы могут поставляться как программные решения, так и как аппаратно-программные комплексы. К сожалению, большинство из сертифицированных криптошлюзов не поддерживает протокол IPSec и, поэтому они функционально не совместимы с аппаратно-программными продуктами других производителей.

Для начала разберемся, как это все работает. Итак, координатор ViPNet выполняет несколько функций. Во-первых, это криптошлюз (КШ), который позволяет реализовать как Site-to-site, так и RA VPN. Во-вторых, он является сервером-маршрутизатором конвертов, содержащих зашифрованные служебные данные (справочники и ключи) или данные клиентских приложений (файловый обмен, деловая почта). Кстати, именно в справочниках хранятся файлы, содержащие информацию об объектах сети ViPNet, в том числе об их именах, идентификаторах, адресах, связях. Координатор также является источником служебной информации для клиентов. Помимо этого, он может туннелировать трафик от компьютеров сети, где не установлен.

Рисунок 2 - Туннелирование.

В качестве протокола шифрования в ViPNet используется IPlir, также Для инкапсуляции трафика применяются «Инфотексом». разработанный транспортные протоколы ІР/241 (если трафик не покидает широковещательный TCP/80. Для обеспечения полной безопасности UDP/55777 И домен), корпоративной сети необходима установка программного обеспечения ViPNet, которое позволяет защитить не только корреспонденцию, передаваемую по сети, но и весь сетевой трафик, а также информацию, хранящуюся на компьютерах. При этом доступ к защищенному компьютеру с открытых или других защищенных компьютеров может быть в той или иной степени ограничен.

Для организации такой защиты необходимы следующие базовые элементы сети:

Рабочее место администратора ViPNet сети с установленным ПО:

ViPNet Administrator, состоящий из двух компонентов:

Центр управления сетью (ЦУС),

Удостоверяющий и ключевой центр (УКЦ);

ViPNet Client или ViPNet CryptoService для организации обмена служебной информацией с другими узлами сети ViPNet.

Сервер(ы) с установленным ПО ViPNet Coordinator, размещенный на границе сети или на границах участков сети. В зависимости от своей роли в сети координатор может выполнять различные функции.

Компьютеры пользователей с установленным клиентским ПО ViPNet Client или ViPNet CryptoService.

Помимо перечисленных базовых элементов, в сети ViPNet могут присутствовать и другие функциональные компоненты, решающие задачи резервирования, мониторинга, общего доступа к сертификатам и другие. Разновидности ПО ViPNet в зависимости от назначения и роли в сети представлены на схеме ниже.

Для подготовки рабочего места администратора сети ViPNet выполните следующие действия:

- 1. На сервере устанавливается ViPNet Coordinator и подключается к Интернету и локальным сетям
- 2. Установите на рабочем месте администратора ПО ViPNet Administrator. В случае необходимости установите компоненты ViPNet Administrator Центр управления сетью и ViPNet Administrator Удостоверяющий и ключевой центр на разные компьютеры.
- 3. В ЦУС создайте структуру защищенной сети ViPNet. В программе ViPNet Administrator ЦУС создаются сетевые узлы, указываются типы коллективов и создается логическая связть между ними, регистрация узлов в приклыдных задачах
- 4. Создайте необходимое количество координаторов
- 5. На каждом координаторе зарегистрируйте необходимое количество абонентских пунктов.
- 6. Создайте межсерверные каналы для связи координаторов между собой.
- 7. Задать IP-адреса координаторов, туннелируемых узлов и настройки подключения координатора к сети в ЦУС во время регистрации сетевых узлов в прикладных задачах
- 8. Задайте правила трансляции адресов
- 9. В УКЦ сформируйте дистрибутив ключевой информации
- 10. Формируются справочники и создаются дистрибутивы ключей
- 11. На абонентском пункте следует установить один из двух компонентов ПО ViPNet:

ViPNet Client — выполняет функции VPN-клиента сети ViPNet и персонального сетевого экрана.

ViPNet CryptoService — обеспечивает возможность использования криптографических функций в прикладных программах, но не обеспечивает защиту трафика.

12. Настройте параметры межсетевого экрана

Задайте IP-адрес сервера IP-адресов, выбранного для данного абонентского пункта

Настройте интегрированный сетевой экран:

Настройте параметры обработки прикладных протоколов и веб-фильтры

- 13. Чтобы убедиться в том, что сеть ViPNet развернута и настроена правильно, достаточно проверить возможность установления соединений между сетевыми узлами ViPNet.
- 14. Для проверки соединения с выбранными сетевыми узлами в программе ViPNet Монитор нажмите кнопку Проверить соединение
- 15.Для проверки соединения с туннелируемыми узлами можно воспользоваться командой ping.

Для полноценного функционирования сети необходима возможность соединения между всеми координаторами, а также между абонентскими пунктами и их серверами IP- адресов.

После успешного прохождения проверки локальной работоспособности, нужно провести аналогичные действия на других местах, где предполагается использование ViPNet.

Заключение

Знания, умения, навыки, полученные за период прохождения практики, явились отличным стимулом для активной работы в освоении будущей специальности, позволили практически реализовать теоретически изученные моменты, получить первый профессиональный опыт работы и сформировать общее представление о специфике деятельности патентного информационного фонда.

Цель производственной практики, которая заключалась в изучении методов контроля ЗИ на предприятии, изучение работы технических и программных средств ЗИ на предприятии.

Изучение систем защиты каналов связи на предприятии. Обеспечение защищенного соединения между филиалами компании.

В процессе прохождения были изучены информационные системы, меры и средства для их защиты, официальные документы предприятия, нормативная и методическая документация, которые позволили решить многие поставленные задачи. В ходе прохождения преддипломной практики я ознакомился с организационной структурой, рассмотрел информационную систему обработки персональных данных, построил для неё модель угроз и модель нарушителя, определил класс и тип и рассчитал актуальные угрозы ИСПДн. Также ознакомился с новыми программными средствами обеспечения безопасности информации. Осмотрел различное оборудование и получил краткую характеристику по каждому из них. В процессе прохождения практики я влился в рабочий коллектив, почувствовал весь рабочий процесс предприятия.

Немаловажным является тот факт, что в процессе прохождения практики были получены новые теоретические и практические знания в области информационной безопасности, которые несомненно будут использованы при написании дипломной работы:

Исходя из всего вышеизложенного, можно сделать выводы, что все поставленные на преддипломную практику цели и задачи были выполнены.

Список использованных источников

- 1) Информационная безопасность: Защита и нападение [Текст] / А. Бирюков. 2-є изд. ДМК Издательство, 2017. 433 с.
- 2) Сравнение универсальных шлюзов безопасности. [Электронный ресурс]. Режим доступа: https://www.anti-malware.ru/compare/USG-NGFW (Дата обращения: 28.07.2021).
- 3) Построение безопасных сетей на основе VPN. [ссылка]. [просмотрено 16.07.2021] http://www.aitishnik.ru/seti/postroenie-bezopasnich-setey-na-osnove-vpn.html

4