STAT153 Lab0

Ziyuan Li

8/31/2021

1. Computer exercises:

(a) Install the book's package "astsa".

#install.packages("astsa")

- (b) Load the astsa package into R.
- (c) Plot the Hare time series.

library(astsa)
data(Hare)
ts.plot(Hare)

(d) Plot the ACF correlogram of "Hare".

data(Hare)
acf(Hare)

Series Hare

(e) Describe what you see in the time series plot and ACF plot.

Seasonality: In the time series plot, there is a seasonality about 10 years, which will be more clearly seen in the acf plot. The acf plot shows acf of 5 years lag is about -0.5, which means numbers of hare is nagtive auto-correlated with numbers 5 years ago. The acf plot shows acf of 10 years lag is outlier, which means numbers of hare is positive auto-correlated with numbers 5 years ago

Long-term Trend: Long term trend is not obvious in time series plot and acf plot.

Theoretical exercises

$$X \sim N(1,3)$$
, i.e. $E(X) = 1$ and $Var(X) = 3$.

$$(a)E(5X+1) = 6$$

(b)
$$E(X^2) = (EX)^2 + Var(X) = 4, E(5X^2 + 1) = 5E(X^2) + 1 = 5 \times 4 + 1 = 21$$

$$(c)Var(5X+1) = 25Var(X) = 75$$

$$(d)Cov(5X + 1, 0.5X) = Cov(5X, 0.5X) = 3$$

(e) Now suppose $Cov(X,Y) = \gamma$. What is Cov(5X+1,-2Y) in terms of γ ?

$$Cov(5X + 1, -2Y) = -5 * 2Cov(X, Y) = -10\gamma$$