-Introduction to Data Science-

Lecturer: Darren Homrighausen, PhD

Principal Components Analysis (PCA)

REMINDER:

Principal components analysis (PCA) is a dimension reduction technique

It estimates a new coordinate axis for the data that

- maximizes the variance of linear combinations
- minimizes \(\ell_2 \) distortions

(These are equivalent)

PCA

In either case, we can compute it easily via the SVD

$$\mathbb{X} - \overline{\mathbb{X}} = (I - M)\mathbb{X} = UDV^{\top}$$

where $M = 11^{\top}/n$

(Note that sometimes the columns of $\mathbb X$ are centered and scaled)

Now, the

- PCA scores are found in the matrix UD
 (These are the of the observations in the PCs)
- PCA loadings are found in the matrix V
 (These are the coordinates of the features in the PCs)

Kernel PCA

Recall: The matrix $\mathbb{X}\mathbb{X}^{\top}$ is of the inner products $\langle X, X' \rangle$

Also, as
$$(I-M)\mathbb{X}=UDV^{\top}$$
, then
$$(I-M)\mathbb{X}\mathbb{X}^{\top}(I-M)=UD^2U^{\top}$$

CONCLUSION: The PCA scores can be computed via XXT

5

Now, to kernelize PCA, we need only replace:

$$XX^{\top} \to K$$

where

$$\mathbb{K} = [k(X_i, X_{i'})]_{1 \leq i, i' \leq n}$$

and then write the decomposition

$$(I-M)XX^{\top}(I-M) \rightarrow (I-M)K(I-M) = \tilde{U}\tilde{D}^2\tilde{U}^{\top}$$

(These \tilde{U} , \tilde{D} are just used to indicate they are different from $(I-M)XX^{\top}(I-M)=UD^2U^{\top}$)

This approach still finds hyperplanes for dimension reduction

However, these hyperplanes are in a transformed space

ightarrow nonlinear dimension reduction in the original space

EXAMPLE: We could make a classifier by doing:

- 1. Specify a k, which produces a \mathbb{K} out of \mathbb{X}
- 2. Find $(I M)\mathbb{K}(I M) = \tilde{U}\tilde{D}^2\tilde{U}^{\top}$
- 3. Form feature matrix $\tilde{W} = \tilde{U}\tilde{D}[,1:m]$ for $m < \min\{n,p\}$
- 4. Now, train g on $\{(\tilde{W}_1, Y_1), \dots, (\tilde{W}_n, Y_n)\}$

(This is a semi-supervised method)

KERNEL PCA AND BEYOND

The kernel PCA idea has strong connections to the nonlinear dimension reduction or manifold learning field:

- Laplacian eigenmaps
- diffusion maps
- locally linear embeddings
- principal curves