Вопрос 1. Кратный интеграл Римана на п-мерном промежутке. Необходимое условие интегрируемости.

 \cdot Определение. Координатным параллелепипедом (промежутком) в \mathbb{R}^n будем называть множество

$$I = I_{a,b} = \{x = (x_1, \dots, x_n) | a_i \le x_i \le b_i, i = \overline{1, n} \}$$

- \cdot Определение. Число $\mu = \prod_{i=1}^n (b_i a_i)$ будем называть мерой параллелепипеда или его объемом.
- · Определение. Пусть $P = \{I_j\}_{j=1}^k$ разбиение промежутка I_j . Если в каждом промежутке I_j выбрана точка $\xi^{(j)} = (\xi_1^{(j)}, \cdots, \xi_n^{(j)})$, то мы получаем разбиение с отмеченными точками. Будем такое разбиение обозначать (P, ξ) .
 - · Определение. Мелкостью разбиения промежутка называется следующее число

$$\lambda(P) = \max_{1 \leq j \leq k} \left(\sup_{x,y \in I_j} \rho(x,y)\right)$$
, где $\sup_{x,y \in I_j} \rho(x,y)$ - диаметр промежутка I_j

- · Определение пусть на промежутке I задана функция $f:I\to R$ и (P,ξ) произвольное разбиение с отмеченными точками промежутка I.
- Сумма $\sigma(f, P, \xi) = \sum_{j=1}^{k} f(\xi^{(j)}) \cdot \mu(I_j)$ называется интегральной суммой Римана функции f, соответствующей разбиению (P, ξ) промежутка I.
 - \cdot Определение. Число A называется интегралом Римана от функции f по промежутку I, если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall (P,\xi), \ \lambda(p) < \delta \implies |A - \sigma(f,P,\xi)| < \varepsilon$$

В этом случае пишут $A = \lim_{\lambda(P) \to 0} \sigma(f, P, \xi)$.

· Обозначение для интеграла Римана: $\int_I f(x) dx$ или $\int_I \int \cdots \int f(x1, \cdots, x_n) dx_1 \cdots dx_n$. Это число называют так же кратным интегралом.

Если интеграл (число A) конечен, то функция f называется интегрируемой на I. Множество интегрируемых на I функций будем обозначать R(I).

· Теорема (необходимое условие интегрируемости). Если $f \in R(I)$, то f ограничена на I.

Вопрос 2. Множества лебеговой меры нуль. Критерий Лебега интегрируемости функции по Риману.

- · Определение. множество $E \subset R^n$ имеет n-мерную меру нуль, если для любого числа $\varepsilon > 0$ существует такое покрытие $\{I_1, \dots, I_s, \dots\}$ этого множества промежутками, т.е. $E \subset \bigcup_j I_j$, что $\sum_i \mu(I_j) < \varepsilon$.
- · Теорема (критерий Лебега). Пусть функция $f: I \to R$ ограничена на промежутке I и B множество ее точек разрыва. Тогда f интегрируема на I в том и только в том случае, когда B множество меры нуль.

Вопрос 3. Критерий Дарбу интегрируемости вещественнозначной функции. Интеграл по множеству. Мера Жордана множества.

• Определение. Введём в рассмотрение, соответственно, нижнюю и верхнюю суммы Дарбу

$$s(f, P) = \sum_{i=1}^{k} m_i \mu(I_i), \quad S(f, P) = \sum_{i=1}^{k} M_i \mu(I_i)$$

где

$$m_i = \inf_{x \in I_i} f(x), \quad M_i = \sup_{x \in I_i} f(x)$$

- \cdot Определение. $J_* = \sup_{P} s(f, P)$ называется верхним интегралом Дарбу
- Определение. $J^* = \inf_P S(f,P)$ называется нижним интегралом Дарбу
- Теорема (Дарбу). Имеют место равенства

$$J_* = \lim_{\lambda(P)\to 0} s(f, P), \quad J^* = \lim_{\lambda(P)\to 0} S(f, P)$$

- · Теорема (критерий Дарбу). Определенная на промежутке $I \subset R^n$ функция $f: I \to R$ интегрируема на нем тогда и только тогда, когда f ограничена на промежутке I и $J_* = J^*$
- · Определение. Пусть $E \subset \mathbb{R}^n$. Характеристическая функция χ_E множества E определяется следующим образом: $\chi_E(x) = 1, x \in E$, и = 0 в противном случае.
- · Определение. Если $E \subset I$ и функция $f: I \to R$ ограничена, то под интегралом $\int\limits_E f(x)dx$ по множеству E от функции f будем понимать слудующий интеграл $\int\limits_I f(x)\chi_E(x)dx$. Если последний интеграл не существует, то говорят, что функция f не интегрируема по Риману на множестве E. В противном случае f интегрируема на E.
 - Определение. Назовем Назовем внутренностью множества Е следующее множество

$$Int(E) = \{x \in E | \exists U(x) \subset E\}$$

- · Определим границу множества ∂E , как слудющую разность $\partial E = \overline{E} \setminus Int(E)$
- · Теорема. Характеристическая функция χ_E принадлежит R(E) тогда и только тогда, когда ∂E множество меры нуль.
- · Определение. Ограниченное множество E, граница которого есть множество меры нуль, называется измеримым по Жордану. Число $\mu(E) = \int\limits_E dx$ называется мерой Жордана множества E.

Вопрос 4. Общие свойства интеграла. Важные для экзамена моменты обозначены (!)

· Теорема. Множество R(E) - линейное пространство, относительно стандартных операций (+,*).

- · Теорема. Если $f \in R(E)$ и $\mu(\{x \in E | f(x) \neq 0\}) = 0$, то $\int_{\mathbb{R}} f(x) dx = 0$.
- \cdot (!) следствие. Если $f,g\in R(E)$ и $\mu(\{x\in E|\ f(x)\neq g(x)\})=0,$ то $\int\limits_E f(x)dx=\int\limits_E g(x)dx$
- \cdot (!) Теорема. Пусть множества E_1 , E_2 измеримы по Жордану, а функция f интегрируема на E_1 , E_2 . Тогда существует интеграл $\int\limits_{E_1\cup E_2} f(x)dx = \int\limits_{E_1} f(x)dx + \int\limits_{E_2} f(x)dx$, конечно, если $\mu(E_1\cap E_2)=0$
 - · Теорема. Если $f \in R(E)$, то $|f| \in R(E)$ и $\left| \int\limits_E f(x) dx \right| \leq \int\limits_E \left| f(x) \right| dx$
 - ·(!) Теорема. Если $f \in R(E)$ и $f(x) \ge 0$ на E, то $\int\limits_E f(x) dx \ge 0$
- $\cdot (!)$ Теорема (о среднем). Если $f \in R(E)$ и $m = \inf_E f, \quad M = \sup_E f,$ то существует число $\Theta \in [m,M]$ такое, что $\int_E f(x)dx = \Theta \cdot \mu(E)$

Вопрос 5. Сведение кратного интеграла к повторному (теорема Фубини). Замена переменных в кратном интеграле.

- · Данные для теоремы Фубини:
- A и B промежутки в R^n и R^m соответственно
- На множестве $A \times B$ определена функция f
- Зафиксируем $x \in A$ для функции $g_x : B \to R$ так, что $g_x(y) = f(x,y)$
- Зафиксируем $y \in B$ для функции $g_y : A \to R$ так, что $g_y(x) = f(x,y)$

- \rightarrow Пусть $J_*(x) = \sup_{P_B} s(g_x, P_B)$ \rightarrow Пусть $J^*(x) = \inf_{P_B} S(g_x, P_B)$ \rightarrow Пусть $J_*(y) = \sup_{P_A} s(g_y, P_A)$ \rightarrow Пусть $J^*(y) = \inf_{P_A} S(g_y, P_A)$
- · Тогда справедлива теорема Фубини. Если $f \in R(A \times B)$, то функции $J_*(x)$ и $J^*(x)$ интегрируемы на Aи имеют место равенства

$$\int \int_{A \times B} f(x, y) dx dy = \int_{A} J_{*}(x) dx = \int_{A} J^{*}(x) dx$$

Аналогичный результат имеет место и для функций $J_*(y)$, $J^*(y)$.

· Замечание. Если функиця g_x интегрируема на B, то $J_*(x) = J^*(x) = \int_{\mathcal{D}} f(x,y) dy$. Поэтому равенство в теореме Фубини можно записать в виде

$$\int \int_{A \times B} f(x, y) dx dy = \int \int_{A} \left(\int_{B} f(x, y) dy \right) dx = \int \int_{A} dx \int_{B} f(x, y) dy$$

· Определение. Говорят, что отображение $f:U\to R^n, U\subset R^m, \ f(x)=(f_1(x_1,\cdots,x_m),\cdots,f_n(x_1,\cdots,x_m))$ принадлежит классу C^1 , если все частные производные $\frac{\partial f_i}{\partial x_i}$ существуют и непрервывны всюду на U.

• Обозначение. Введем в рассмотрение матрицу из частных производных

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix}$$

Данная матрица называется матрицей Якоби отображения f. Если m=n, то определитель матрицы Якоби называется якобианом отображения f и обозначается

$$\frac{\partial(f_1,\ldots,f_n)}{\partial(x_1,\ldots,x_n)}$$

- · Определение. Пусть $V_1,V_2\subset R_n$ открытые подмножества пространства R_n . Отображение $f:V_1\to V_2$ называется диффеоморфизмом, если оно биективно и $f,f^{-1}\in C^1$
- · Теорема. Пусть $g:G\to U,\,g(t_1,\ldots,t_n)=(g_1(t_1,\ldots,t_n),\ldots,g_n(t_1,\ldots,t_n))$ отображение измеримого (по Жордану) множества $G\subset R^n$ на такое же множество $U\subset R^n$, причём, можно указать такие множества A_G и A_U меры нуль, что $G\setminus A_G$ и $U\setminus A_U$ открытые множества и $g:(G\setminus A_G)\to (G\setminus A_U)$ диффеоморфизм и имеет ограниченный якобиан. Тогда для функции $f\in R(U\setminus A_U)$ функция $(f\circ g)\cdot\left|\frac{\partial (g_1,\ldots,g_n)}{\partial (t_1,\ldots,t_n)}\right|$ принадлежит $R(G\setminus A_G)$ и имеет равенство

$$\int_{U} f dx = \int_{G} (f \circ g)(t) \left| \frac{\partial (g_1, \dots, g_n)}{\partial (t_1, \dots, t_n)} \right| dt$$

- 1. Полярные координаты $x = \rho \cos(\varphi), y = \rho \sin(\varphi)$
- 2. Цилинидрические координаты: "полярные" + "z=z"
- 3. Сферические координаты

Вопрос 6. Векторные функции скалярного аргумента. Операции анализа над векторными функциями. Кривая. Основные понятия, связанные с кривой. Гладкие кривые. Натуральная параметризация. Касательная к кривой. Длина кривой.

- · Определение. Будем говорить, что на промежутке T определена вектор-функция, если каждому элементу $r \in T$ поставлен в соответствие вектор $\vec{a}(t)$.
- · Определение. Назовём вектор \vec{b} пределом вектор-функции $\vec{a}(t)$ при $t \to t_0$, если $\lim_{t \to t_0} \left| \vec{a}(t) \vec{b} \right| = 0$. При выполнении последнего условия, будем писать $\lim_{t \to t_0} \vec{a}(t) = \vec{b}$.
 - · Теорема. Если $\lim_{t \to t_0} \vec{a}(t) = \vec{b}$, то $\lim_{t \to t_0} \left| \vec{a}(t) \right| = \left| \vec{b} \right|$
 - · Определение. Будем называть вектор-функцию $\vec{a}(t)$ непрерывной в точке t_0 , если $\lim_{t \to t_0} \vec{a}(t) = \vec{a}(t_0)$.
 - \cdot Определение. Назовём вектор $\vec{a'}(t_0)$ производной вектор-функции $\vec{a'}$ в точке t_0 , если

$$\lim_{t \to t_0} \frac{\vec{a}(t) - \vec{a}(t_0)}{t - t_0} = \vec{a}'(t_0)$$

- \cdot Теорема. Аддитивность и однородность пределов (+, *)
- · Теорема. Производная суммы равна сумме производных.

- · Теорема. Пусть вектор-функции $\vec{a}(t)$, $\vec{b}(t)$ непрерывны в точке t_0 и имеют в этой точке производные. Тогда функция $f(t) = \left(\vec{a}(t), \vec{b}(t)\right)$ имеет производную в точке t_0 и справедлива равенство $f'(t_o) = \left(\vec{a}'(t_0), \vec{b}(t_0)\right) + \left(\vec{a}(t_0), \vec{b}'(t_0)\right)$.
- · Теорема. Пусть функция g(t) и вектор-функция $\vec{a}(t)$ имеют производную в точке t_0 . Тогда вектор функция $g(t) \cdot \vec{a}(t)$ имеет производную в точке t_0 и справедливо равенство

$$(g(t), \vec{a}(t))'\Big|_{t=t_0} = g'(t_0) \cdot \vec{a}(t) + g(t_0) \cdot \vec{a'}(t_0)$$

· Определение. Задана декартова система координат Oxyz и непрерывная вектор функция $\vec{r}=\vec{r}(t),\ t\in[a;b]$. Будем при всех значениях t откладывать вектор $\vec{r}(t)$ от точки O. При каждом значении t мы получаем определенный вектор $OM=\vec{r}(t)$, начало которого в точке O, а конец зависит от выбора значения t. При изменении t на промежутке [a;b] точка M описывает геометрическое место точек, которое мы будем называть параметрически заданной кривой. Сама вектор-функция $\vec{r}=\vec{r}(t),\ t\in[a;b]$ называется векторным параметрическим представлением кривой. При задании кривой будем использовать следующее обозначение: $\gamma:\vec{r}(t),\ t\in[a;b]$.

Если существует несколько значений параметра t, при которых $\vec{r}(t)$ принимает одно и тоже значение, то говорят, что кривая имеет точки самопересечения или кратные точки.

Кривая без точек самопересечения называется простой. Если $\vec{r}(a) = \vec{r}(b)$, то кривая называется замкнутой кривой или контуром.

Если у контура кроме точек, соответствующих значениям параметра t=a и t=b других кратных точек нет, то контур называется простым.

- · Определение. Разложим вектор $\vec{r}(t)$ по базису $\vec{i}, \vec{j}, \vec{k}$ декартовой системы координат. $\vec{r}(t) = \varphi(t) \cdot \vec{i} + \psi(t) \cdot \vec{j} + \chi(t) \cdot \vec{k}$. Тогда функции φ, ψ, χ дифференцируемы столько раз, сколько дифференцируема функция $\vec{r}(t)$
- · Определение. Предположим, что задана строго монотонная функция $\lambda: [\alpha; \beta] \to [a; b]$, причём $\lambda([\alpha; \beta]) = [a; b]$. Пусть $\vec{\rho}(\tau) = \vec{r}(\lambda(\tau)), \ \tau \in [\alpha; \beta]$. Введем обозначения $\Gamma_1 = \{M \in R^3 | \ \exists \tau \in [\alpha; \beta], \ \vec{OM} = \vec{\rho}(\tau)\}$ $\Gamma_2 = \{N \in R^3 | \ \exists t \in [a; b], \ \vec{ON} = \vec{r}(t)\}$
- \cdot Теорема. Имеет место равенство $\Gamma_1 = \Gamma_2$ Таким образом, на кривой можно произвольно менять параметризацию, отчего меняется вид параметрического представления.
- · Определение. Предельное положение M_0Q для секущей мы будем называть касательной к кривой в точке M_0
- · Определение. Пусть кривая $\gamma: \vec{r} = \vec{r}(t), \ t \in [a;b]$ является кривой класса C^1 . Длиной кривой называется число $\int\limits_a^b \left| \vec{r'}(t) \right| dt$.
 - Лемма. Длина кривой д не зависит от выбора параметрического представления кривой.
 - \cdot Определение. Кривую $\gamma: \vec{r} = \vec{r}(t), \ t \in [a;b]$ класса C^1 , для которой $\left| \vec{r'}(t) \right| \neq 0$ будем называть гладкой.
 - Определение. Длину дуги можно взять за параметр кривой. Он называется натуральным параметром.
- · Теорема. Пусть $\widehat{AB}: \vec{r} = \vec{r}(t), \ t \in [a;b]$ гладкая кривая. Тогда переменная длина дуги s, отсчитываемая от начала A кривой, является возрастающей, непрерывно дифференцируемой функцией параметра t;

Пусть кривая γ класса C^2 задана параметрическим представлением $\vec{r}=\vec{r}(s),\ s\in[0;L]$, где s - натуральный параметр кривой. Обозначим $\vec{\tau}=\vec{r'}(s)$. Тогда $\vec{\tau}$ - это еденичный касательный вектор кривой. Так как $(\vec{r'}(s),\vec{r'}(s))=1$, то дифференцируя скалярное произведение, находим $(\vec{\tau},\vec{r''})=0$. Будем рассматривать кривые, для которых $\vec{r''}(s)\neq 0$. Таким образом, касательный вектор ортогонален вектору $\vec{r''}(s)$ и эти два вектора определяют плоскость, проходящую через них. Такая плоскость называется соприкасающейся плоскостью.

Вопрос 7. Кривизна кривой. Кручение кривой. Репер Френе. Формулы Френе.

Нормаль в данной точке, лежащую в соприкасающейся плоскости (проходящую через эту точку), мы будем называть главной нормалью, а нормаль, перпендикулярную соприкасающейся плоскости, - бинормалью.

· Определение. Совокупность трех построенных прямоугольных координатных осей и трех координатных плоскостей называется сопровождающим трехгранником кривой в точке М или тройкой Френе.

 $k=|\vec{r''}|\implies \vec{\tau'}=k\cdot \vec{n}$. Число k называется кривизной кривой в данной точке $\vec{b}=[\vec{\tau};\vec{n}]$

Выведем формулы Френе: $\vec{b'} = [\vec{\tau'}; \vec{n}] + [\vec{\tau}; \vec{n'}] = [\vec{\tau}; \vec{n'}] \mid\mid \vec{n} \implies \vec{b'} = -\chi \vec{n}.$ Число χ называется кручением кривой в этой точке $\vec{n'} = [\vec{b'}; \vec{\tau}] + [\vec{b}; \vec{\tau'}] = [-\chi \vec{n}; \vec{\tau}] + [\vec{b}; k\vec{n}] = \chi \vec{b} - k\vec{\tau}.$

Итак:
$$\vec{\tau'} = k \cdot \vec{n}$$

$$\vec{b'} = -chi \cdot \vec{n}$$

$$\vec{n'} = \chi \cdot \vec{b} - k \cdot \vec{\tau}$$

Вопрос 8. Параметризованная поверхность. Первая квадратичная форма поверхности.

При изучении поверхностей, как и при изучении кривых, наиболее целесообразным способом их задания является параметрическое представление.

· Определение. Пусть теперь в пространстве R^2 задана область D. Зафиксируем на плоскости декартову систему координат Ouv. Предположим, что каждой точке (u,v) заданной области поставлен в соответствие некоторый вектор $\vec{r}(u,v)$. Тогда говорят, что на области D задана вектор-функция $\vec{r}(u,v)$.

- · Определение. Назовём вектор \vec{A} пределом вектор-функции $\vec{r}(u,v)$ при $(u,v) \to (u_0,v_0) \in D$, если $\lim_{(u,v)\to(u_0,v_0)} \left| \vec{r}(u,v) \vec{A} \right| = 0$. В этом случае употребляется запись $\lim_{(u,v)\to(u_0,v_0)} \vec{r}(u,v) = \vec{A}$.
- · Определение. Если $\lim_{(u,v)\to(u_0,v_0)} \vec{r}(u,v) = \vec{r}(u_0,v_0)$, то вектор-функция $\vec{r}(u,v)$ называется непрерывной в точке $(u_0,v_0)\in D$. Если вектор-функция непрерывна в каждой точке области D, то она называется непрерывной в области D.
- · Определение. Если существует предел $\lim_{\Delta u \to 0} \frac{1}{\Delta u} (\vec{r}(u + \Delta u, v) \vec{r}(u, v))$, то он называется частной производной вектор-функции $\vec{r}(u, v)$ по аргументу u в точке (u, v) и обозначается $\vec{r_u}(u, v)$ или $\frac{\partial \vec{r}}{\partial u}(u, v)$. Аналогично можно определить частную производную $\vec{r_v}(u, v)$ и частные производные старших порядков.
- · Определение. Пусть нам дана непрерывная вектор-функция двух скалярных аргументов u,v, рассматриваемых в некоторой замкнутой области D их изменения $\vec{r}(u,v)=x(u,v)\cdot\vec{i}+y(u,v)\cdot\vec{j}+z(u,v)\cdot\vec{k}$. Будем откладывать $\vec{r}(u,v)$ из начала координат O. Когда u и v пробегают область своего изменения, конец радиус-вектора $\vec{r}(u,v)$ описывает некоторое геометрическое место точек Σ , которое мы будем называть поверхностью в параметрическом представлении. Аргументы вектор-функции $\vec{r}(u,v)$ называют параметрами или криволинейными координатами на Σ .
- · Определение. Поверхность $\Sigma: \vec{r} = \vec{r}(u,v), \ (u,v) \in \overline{D}$, где D плоская область с границей γ , являющейся кусочно-гладкой кривой, а вектор-функция имеет в \overline{D} непрерывные частные производные и хотя бы один из якобианов $\frac{\partial(x,y)}{\partial(u,v)}, \frac{\partial(x,z)}{\partial(u,v)}, \frac{\partial(y,z)}{\partial(u,v)}$, отличен от нуля при любых значениях u и v, называется элементарным гладким куском поверхности. Поверхность называется кусочно-гладкой, если ее можно разбить на конечное число элементарных гладких кусков. При этом будем считать, что различным точкам (u,v) соответствуют различные точки поверхности.

Пусть элементарный гладкий кусок поверхности S задан параметрическим представлением $\vec{r}=\vec{r}(u,v)$ и пусть $\gamma:\vec{r}=\vec{r}(u(t),v(t)),\ t\in[t_1;t_2]$ кривая на этой поверхности. Предположим, что $u(t),v(t)\in C^1[t_1,t_2].$ Тогда длина s(t) дуги этой кривой, соответствующей отрезку $[t_1;t]$ изменения параметра t, равна

$$s(t) = \int_{t_1}^{t} |\vec{r'}(\tau)| d\tau = \int_{t_1}^{t} \sqrt{\vec{r'_u}u' + \vec{r'_v}v'\vec{r'_u}u' + \vec{r'_v}v'} d\tau = \int_{t_1}^{t} \sqrt{(\vec{r'_u}, \vec{r'_u})u'^2 + 2(\vec{r'_v}, \vec{r'_u})u'v' + (\vec{r'_v}, \vec{r'_v})v'^2} d\tau.$$

Обозначим

$$E = (\vec{r_u}, \vec{r_u}), \quad F = (\vec{r_v}, \vec{r_u}), \quad G = (\vec{r_v}, \vec{r_v}).$$

Тогда

$$s(t) = \int_{t_1}^{t} \sqrt{Eu'^2 + 2Fu'v' + Gv'^2} d\tau.$$

Итак, $ds = \sqrt{Eu'^2 + 2Fu'v' + Gv'^2}d\tau \implies ds^2 = Edu^2 + 2Fdudv + Gdv^2$ - первая квадратичная форма поверхности, положительна определена.

Значение первой квадратичной формы поверхности заключается в том, что она выражает квадрат дифференциала дуги при бесконечно малом смещении по поверхности. При этом коэффициенты первой квадратичной формы поверхности определяются той точкой, из которой производится смещение, а дифференциалы du, dv отвечают данному смещению.

Первая квадратичная форма поверхности позволяет вычислять площадь поверхности

- · Определение. Предел $\mu(\Sigma) = \lim_{\lambda(\tau) \to 0} \sum_{I_j \in \tau} \left| [\vec{r_v'}, \vec{r_u'}] \right| \Delta v \Delta u = \int_D \sqrt{EG F^2} du dv$ называется площадью поверхности Σ
- \cdot Определение. Поверхность называется ориентируемой, если в каждой точке этой поверхности можно выбрать единичный вектор нормали к поверхности $\vec{n}(x,y,z)$, чтобы вектор-функция $\vec{n}(x,y,z)$ была непрерывной на поверхности. Такие поверхности иногда называют двусторонними. Ориентация опредедяется по правилу буравчика.

Вопрос 9 Криволинейные и поверхностные интегралы 1 го и 2 го рода. Независимость криволинейного интеграла 2 го рода от пути интегрирования.

· Определение. Пусть $\gamma: \vec{r}(s) = x(s) \cdot \vec{i} + y(s) \cdot \vec{j} + z(s) \cdot \vec{k}, \ s \in [0;L]$ - гладкая кривая (здесь s — натуральный параметр) и в точках кривой γ задана функция F(x,y,z). Выражение $\int\limits_{\gamma} F(x,y,z) ds$, определённое по формуле

$$\int_{\gamma} F(x, y, z)ds = \int_{0}^{L} F(x(s), y(s), z(s))ds$$

называется криволинйным интегралом первого рода от функции F(x,y,z) по кривой γ .

- Теорема. Криволинейный интеграл первого рода не зависит от ориентации кривой.
- · Теорема. Пусть $\gamma: \vec{r}(t) = \varphi(t) \cdot \vec{i} + \psi(t) \cdot \vec{j} + \chi(t) \cdot \vec{k}, \ t \in [a;b]$ гладкая кривая и функция F(x,y,z) непрерывна на кривой γ . Тогда

$$\int\limits_{\gamma} F(x,y,z)ds = \int\limits_{a}^{b} F(\varphi(t),\psi(t),\chi(t))\sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2} + (\chi'(t))^{2}}dt$$

Пусть \widehat{AB} гладкая ориентированная кривая с параметрическим представлением $\gamma: \vec{r}(s) = x(s) \cdot \vec{i} + y(s) \cdot \vec{j} + z(s) \cdot \vec{k}, \ s \in [0; L]$, где s - натуральный параметр кривой. Обозначим через α, β, γ углы, образованные вектором $\vec{r'}(s)$ или, что то же самое, касательной к кривой \widehat{AB} соответственно с осями Ox, Oy, Oz. Тогда $|\vec{r'}(s)| = 1, \ s \in [0; L]$. Следовательно, $\cos \alpha = x'(s), \ \cos \beta = y'(s), \ \cos \gamma = z'(s)$. Пусть в точках кривой \widehat{AB} определена функция F(x, y, z).

· Определение. Криволинейные интегралы $\int\limits_{\widehat{AB}} F(x,y,z)dx$, а также dy,dz определяются по формулам:

$$\int\limits_{\widehat{AB}}F(x,y,z)dx=\int\limits_{\widehat{AB}}F(x,y,z)\cos\alpha ds;$$

$$\int_{\widehat{AB}} F(x, y, z) dy = \int_{\widehat{AB}} F(x, y, z) \cos \beta ds;$$

$$\int_{\widehat{AB}} F(x, y, z) dz = \int_{\widehat{AB}} F(x, y, z) \cos \gamma ds.$$

- Теорема. Криволинейный интеграл второго рода меняет знак при изменении ориентации кривой.
- · Теорема. Если $\gamma: \vec{r}(t) = \varphi(t) \cdot \vec{i} + \psi(t) \cdot \vec{j} + \chi(t) \cdot \vec{k}, \ t \in [a;b]$ гладкая кривая, то справедливы формулы:

$$\int_{\widehat{AB}} F(x, y, z) dx = \int_{a}^{b} F(\varphi(t), \psi(t), \chi(t)) \varphi'(t) dt;$$

$$\int\limits_{\widehat{AB}} F(x,y,z) dy = \int\limits_a^b F(\varphi(t),\psi(t),\chi(t)) \psi'(t) dt;$$

$$\int_{\widehat{AB}} F(x, y, z) dz = \int_{a}^{b} F(\varphi(t), \psi(t), \chi(t)) \chi'(t) dt;$$

· Определение. Пусть $\Sigma: \vec{r}(u,v), \ (u,v) \in \overline{D}$ элементарный гладкий кусок поверхности и в точках этой поверхности задана функция F(x,y,z). Интеграл $\int \int_{-\infty}^{\infty} F(x,y,z) dS$, определяемый равенством

$$\int \int_{\sigma} F(x, y, z) dS = \int \int_{\overline{D}} F(x(u, v), y(u, v), z(u, v)) \sqrt{EG - F^2} du dv$$

называется поверхностным интегралом первого рода.

- · Теорема. Если функция F непрерывна на поверхности Σ , то интеграл $\int \int_{\sigma} F(x,y,z) dS$ существует.
- Теорема. Если поверхность Σ имеет одно из следующих параметрических представлений
- a) $\vec{r}(x,y) = (x, y, f(x,y)), (x,y) \in \overline{D};$
- b) $\vec{r}(x,z) = (x, f(x,z), z), (x,z) \in \overline{D};$
- c) $\vec{r}(y,z) = (f(y,z), y, z), (y,z) \in \overline{D},$

т́О

$$\int \int_{\sigma} F(x,y,z)dS = \int \int_{\overline{D}} F(x,y,f(x,y))\sqrt{1 + (f'_x)^2 + (f'_y)^2} dxdy$$

$$\int \int_{\sigma} F(x,y,z)dS = \int \int_{\overline{D}} F(x,f(x,z),z)\sqrt{1 + (f'_x)^2 + (f'_z)^2} dxdz$$

$$\int \int_{\sigma} F(x,y,z)dS = \int \int_{\overline{D}} F(f(y,z),y,z)\sqrt{1 + (f'_y)^2 + (f'_z)^2} dydz$$

· Определение. Пусть Σ : $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$, $(u,v) \in \overline{D}$ - элементарный гладкий кусок поверхности с ориентацией $\vec{n} = (\cos\alpha,\cos\beta,\cos\gamma)$, где α,β,γ - углы, которые вектор \vec{n} образует с осями координат Ox,Oy,Oz соответственно. Кроме того, пусть в точках поверхности Σ определены функции P(x,y,z),Q(x,y,z),R(x,y,z).

Поверхностный интеграл второго рода

$$\int \int_{\Sigma} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy$$

по поверхности Σ с ориентацией $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ определяется следующим равенством:

$$\int \int_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$\int \int_{\Sigma} (P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma) dS$$

Легко видеть, что поверхностный интеграл второго рода меняет знак при изменении ориентации поверхности.

Формула для вычисления поверхностного интеграла второго рода. Выберем в качестве ориентации нормаль $\vec{n} = \frac{[\vec{r_u'}; \vec{r_v'}]}{|[\vec{r_u'}; \vec{r_v'}]|}$. Так как $|[\vec{r_u'}; \vec{r_v'}]| = \sqrt{EG - F^2}$, то нам известны направляющие косинусы нормали, проводя преобразования получаем, что

$$\int \int_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy = \int \int_{D} \begin{vmatrix} P & Q & R \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix} du dv.$$

Вопрос 10. Полилинейные формы. Базис в пространстве полилинейных форм.

Пусть V_1, V_2, \ldots, V_p векторные пространства. U - над \Re (произвольным полем) Отображение $f: V_1 \times V_2 \times \ldots \times V_p \to U$ называется полилинейным (в данном случае p-линейным), если для каждого индекса $i=1,\ldots,p$ и для любых фиксированных векторов $a_j \in V_j, \ 1 \leq j \leq p, \ i \neq j$ отображение

$$f_i: v \longmapsto f(a_1, \ldots, a_{i-1}, v, a_{i+1}, \ldots, a_p)$$

Является линейной формой (линейной функцией), т.е. $f_i(\alpha x + \beta y) = \alpha f_i(x) + \beta f_i(y) \quad \forall x, y \in V_i, \quad \alpha, \beta \in \Re$

Пусть любое полилинейное отображение $V_1 \times, \ldots, \times V_p$ в \Re называется полилинейной формой на $V_1 \times V_2, \ldots, \times V_p$. Если $l^i : v_i \mapsto l^i(v_i), \ i=1,\ldots,p$ - какие-то линейные функции на V_i , то функция f определена отображением

$$f(v_1, v_2, \dots, v_p) = l^1(v_1) \dots l^p(v_p),$$

будет полилинейной формой на $V_1 \times, \dots, \times V_p$. Она называется тензорным произведением линейных функцияй (форм) l^1, \dots, l^p и обозначается $f = l^1 \otimes \dots \otimes l^p$ или просто $l^1 l^2 \dots l^p$ (порядок существен).

Вопрос 11. Альтернация и ее свойства. Антисимметрические тензоры.

• Определение. Отображение

$$A = \frac{1}{p!} \sum_{\pi \in S_p} \varepsilon_{\pi} f_{\pi} : \mathsf{T}^0_p(V) \to \mathsf{T}^0_p(V)$$

называется альтернированием, где знак ε_{π} - чётность перестановки $\pi.$

 \cdot Свойство. Отображение альтернирования является линейным оператором, обладающим следующим свойством: $A^2 = A$.

Вопрос 12. Внешнее произведение тензоров и его свойства.

Вопрос 13. Базис в пространстве антисимметрических тензоров.

Вопрос 14. Дифференциальные формы, операции над дифференциальными формами.

Вопрос 15. Отображение f* и его свойства.

Вопрос 16. Дифференциал формы и его свойства.

Вопрос 17. Интеграл от дифференциальной формы по сингулярному кубу и по цепи. Свойства интеграла.

Вопрос 18 Общая формула Стокса. Классические интегральные формулы Стокса, Остроградского-Гаусса, Грина.

Теорема (Остроградский – Гаусс). Пусть граница ∂G ограниченной области G состоит из конечного числа кусочно-гладких ориентируемых поверхностей, а функции $P(x,y,z),\,Q(x,y,z),\,R(x,y,z)$ непрерывны вместе с частными производными $\frac{\partial P}{\partial x},\,\frac{\partial Q}{\partial y},\,\frac{\partial R}{\partial z}$ на \bar{G} . Тогда

$$\iiint_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dxdydz = \iint_{\partial G} P dydz + Q dzdx + R dxdy,$$

где в качестве нормали на границе ∂G выбрана внешняя нормаль.

Teopema (Стокс). Пусть Σ ориентированная кусочно-гладкая поверхность, а контур Γ охватывает Σ и ориентирован в соответствии с ориентацией поверхности. Если функции $P(x,y,z),\ Q(x,y,z),\ R(x,y,z)$ непрерывны вместе частными производными первого порядка в области G, содержащей поверхность Σ , то

$$\iint_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\Gamma} P dx + Q dy + R dz \ .$$

Teopema (формула Грина). Пусть граница области G состоит из конечного числа простых контуров и область G может быть разбита на конечное число элементарных относительно обеих координатных осей областей с кусочно-гладкими границами. Если в замкнутой области \overline{G} заданы функции P(x,y) и Q(x,y), непрерывные на \overline{G} вместе со

своими частными производными $\frac{\partial P}{\partial y}, \ \frac{\partial Q}{\partial x},$ то справедлива формула

$$\iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial G^{+}} P dx + Q dy.$$
 (8)

Вопрос 19. Дифференциальные операции векторного анализа. Скалярные и векторные поля в областях евклидова пространства. Связь с дифференциальными формами. Дифференциальные операции векторного анализа. Интегральные формулы в векторных обозначениях. Физическая интерпретация div, rot, grad.

Вопрос 20. Потенциальные и соленоидальные векторные поля. Потенциального поля, необходимое условие потенциальности.

Критерий потенциальности векторного поля. Соленоидальные поля.