Project plan Mini FLUFFY project

Omar Idoum

Version

Version	Date	Author(s)	Amendments	Status
1.0	28/03/2024	Team	Sprint 1 version	Draft
2.0	05/04/2024	Team	Sprint 2 version	Draft
2.1	12/04/2024	Team	*Requirements transformed into functional and non-functional requirements; *Research questions added. *Communication Updated. *Added a risk	Draft
2.2	19/04/2024	Team	*HMI requirements added. *Research questions answered. *Configuration management updated. *Digital Twin Requirements split up	Draft
3.0	03/05/2024	Team	Sprint 3 version	Draft
3.1	17/05/2024	Team	*Use cases added.	Draft
4.0	21/06/2024	Team	Final Draft	Closed

Content

1.Project Overview:		3
1.1 Goal of the proj	ject:	3
	nt:	
1.2.1 Requireme	ents:	3
1.2.1.1Function	nal requirements:	3
1.2.1.2 Non-fu	nctional requirements:	3
1.3 Scope		4
1.4 Conditions:		4
	cts	
1.6 Research ques	tions:	5
2. Approach and F	Planning:	7
2.2 Research meth	nods	7
2.3 Breakdown of tl	he project	7
3. Project Organiz	ration	8
3.1 Team members	s	8
3.2 Communication	1	8
3.3 Testing approach	ch and Test environment	8
3.4 Configuration m	nanagement	9
4. Finance and Ris	sks	10
4.1 Risks and fall-b	pack activities	10
5. Use cases		11

1. Project Overview:

The company responsible is the mechatronics department of Fontys University of Applied science. They developed a system called "FLUFFY", which stands for flexible automated future factory. The "FLUFFY" system is a modular industrial automatic conveyor system which is designed to be a self-contained factory where students can practice with.

1.1 Goal of the project:

Since the original "FLUFFY" was too big to transport to any other locations, there was a demand for a smaller form version of the "FLUFFY" system. Mechatronic made the smaller system called "Mini FLUFFY". Not only does this solve the transport issue with the system, but it can also be used to showcase the system at different events in case there is a potential buyer. The Mini FLUFFY has already been mechanically and electronically built. The goal of this project is to program the complete system.

1.2 The assignment:

Our assignment is to set up the modular software for the Mini FLUFFY that can be used to run the system. The Definition of Done for the "Mini FLUFFY" project is: The pallet needs to go endlessly around the "Mini FLUFFY" system and stop at the designated points (stations) for a chosen amount of time (5 sec).

1.2.1 Requirements:

For the "Mini FLUFFY" project we also got a list of functional- and non-functional requirements:

1.2.1.1 Functional requirements:

ID	Requirements	MoSCoW
F1	Stopper is pushed up, stops pallet	Must
F2	Stopper is pushed down, let pallet through	Must
F3	Pusher pushes pallet up	Must
F4	Pusher pushes pallet down	Must
F5	Switch sensor detects pallet	Must
F6	Switch lifts pallet	Must
F7	Switch moves pallet	Must
F8	Switch detects pallet	Must
F9	Switch lowers pallet	Must
F10	The status light is configured	Must
F11	The system tracks the pallet	Should
F12	HMI has system input functionality	Must
F13	HMI displays system status	Must

1.2.1.2 Non-functional requirements:

ID	Requirements	MoSCoW
NF1	Code should follow general conventions, such as comments and consistent	Must
	variable names.	
NF2	System needs to be modular and reusable	Must

Mini-FLUFFY Projectplan page 3 of 14

NF3	System needs to do error handling	Must
NF4	System needs to do logging	Must
NF5	The pallet needs to stop at every station for a predefined amount of time	Must
NF6	An HMI dashboard to show status of the system	Must
NF7	The system needs some type of logic (specify later)	Must
NF8	Working Digital Twin of the system	Could
NF9	An HMI dashboard to control the system	Must
NF10	An HMI dashboard that shows the location of the pallet	Should
NF11	Save data from the machine in a database of some kind	Should
NF12	3D Mini Fluffy imported into Solidworks.	Could

1.3 **Scope**

Figure 1: Context Diagram Mini-FLUFFY

1.4 Conditions:

Upon the Project beginning, we are met with a few conditions that are not negotiable. These are the following:

- Hardware needs to be delivered by the product owner.
- We are not allowed to change any of the electronic systems without discussing it with the product owner.
- License for Siemens PLC we need to receive from Fontys' ICT department.
- 3D design files needed to make a digital twin of the system are provided by the product owner.

Mini-FLUFFY Projectplan page 4 of 14

1.5 Finished products

Project Documentation: Regarding the project documentation, it is expected to turn in all the documentation that was made for the project. This will include all the information about the project for example, requirements, risks, approach and planning and project organization. Three subproduct will be delivered, HMI research, Digital Twin research and S-88 research.

Mini-Fluffy System: Regarding the project system, it is expected to turn in the full system, tested and functional. The system can run for hours without any problems. Included with this delivery, the documentation and logic behind the program will also be provided to the stakeholder as the subproduct.

HMI Dashboard: Regarding the project dashboard, it is expected to turn in the HMI dashboard with the functionality to control the system, show the status of the system and track the pallet location on the system. This includes two subproducts: System control to control the system without being physically near the system. Data visualization to see both the status and the location of the pallet.

Figure 2: Finished products diagram

1.6 Research questions:

Some research questions that were thought of from the start are the following (this list is susceptible to change):

ISA-88

How to work with Siemens PLC using the ISA-88 standard?

- What is ISA-88?
- What is the use case of ISA-88?

Digital Twin

How can we create a digital twin for the system which emulates the hardware?

- What is a digital twin?
- What software is available to make a digital twin?
- How can we emulate hardware in a digital twin?
- How can we program a digital twin?

нмі

How can we create an HMI for the Mini-FLUFFY project that uses a Siemens PLC that can monitor and control the system remotely?

- How to create a dashboard for a Siemens PLC?
- How to retrieve the data from the system?
- What do we do with retrieved data?
- How to control the system from the HMI?

TIA Portal

- What is the difference between a function and function block?
- What are instances?

Mini-FLUFFY Projectplan page 6 of 14

2. Approach and Planning:

2.1 Approach:

For planning during this project, we make use of Trello and planning documents. Additionally, we make use of the scrum method. What is meant by this is that tasks are set up on a board of tasks ready to be used. The team will have standups on every project day to discuss what they have done and what they plan on doing for the day/week/sprint.

2.2 Research methods

We plan to implement the Fontys DOT framework for research to be conducted:

- Library: To utilize the library aspect, we want to use existing research or work that has already
 been done using the software and similar projects. This is done for both the PLC software and
 the HMI software.
- Lab: To utilize the lab aspect, we plan on performing multiple experiment son the machine itself to helps us both understand it and improve it. The same can be said for the software of the HMI and the PLC.
- **Showroom:** To utilize the showroom aspect, we plan on showcasing the different working versions of the system to both the Fontys as well as the product stakeholders. This is done in hopes that they can give feedback on what went well, improvements that can be made and what was not as desired as the rest.

2.3 Breakdown of the project

Sprint 1

Get acquainted with each other and learn more about the project. Set the definition of done and make the corresponding requirement.

Sprint 2

Our goal of sprint 2 is: Basic movement. This means that we want to learn the environment of Siemens PLC and make basic parts move like the pushers, stoppers and switchers.

Work on the project plan documentation (improve the requirements and set some risk with this project). And beginning research on HMI and Siemens PLC programming.

Make progress with getting and learning the Siemens PLC program. Make basic movements and begin implementing simple logic.

Sprint 3

Finish research on S-88 programming standard, HMI dashboards, and most documentation. Finish implementing the basic logic of moving the system.

Begin thinking about the advanced logic for the system.

Finish implementing a basic HMI dashboard to handle simple button controls.

Sprint 4

Look into the digital twin and define tests.

Finish implementing advanced version of HMI dashboard.

Finish implementing the advanced logic for the system.

Update documentation according to progress.

Sprint 5

Ensure the system is modular.

Make sure the system passes all predefined tests.

3. Project Organization

3.1 Team members

Name + Contact details	Abbr.	Role/tasks	Availability
Johnson Domacasse		Contact person for group	Mon-Fri from 9:00 – 16:00
Milan Kapitein			Mon-Fri from 9:00 – 16:00
Kevin Geurts			Mon-Fri from 9:00 – 16:00
Thijs Geus			Mon-Fri from 9:00 – 16:00
Mats Daamen			Mon-Fri from 9:00 – 16:00
Omar Idoum		Product owner	On request
Ben Schreur		Fontys Stakeholder	Fridays from 9:00 – 9:30, on request

3.2 Communication

For communication with both our stakeholders, we use Teams and email. The team has a standup meeting on each day the project takes place. The Fontys stakeholder is present on the standups on Friday. Every sprint meeting we will have a meeting with the Product owner, this takes place on Friday every three weeks.

Every Thursday afternoon and Friday morning to afternoon, we will work on the project. The Thursday will be mostly spent in R10 but when needed we will go to mechatronics. For the Friday's we will be from 9:00 till 16:00 at mechatronics to physically work on the Mini-FLUFFY. Every Friday we also have a standup at 9:00 at mechatronics where our Fontys stakeholder is present.

For our team agreement you can read the details described in the "Collaboration Document". This document can be found in the TEAMS folder with the following path: "Documentation\sprint1\".

3.3 Testing approach and Test environment

The products we are going to test are the Mini-FLUFFY system and HMI dashboard. The products we are going to test by physically testing it using the use cases we set up in chapter 5, documenting each test case with the result. The results will be checked to see if they line up with what is expected. Additionally, we are going to investigate the test suite from TIA portal trying to use this to make some test cases. See the example video below:

https://www.youtube.com/watch?v=3H0Cnyvpcq0

Mini-FLUFFY Projectplan page 8 of 14

3.4 Configuration management

The use of a version control environment was implemented to keep track of the state of the project without any difficulty. The way this project is structured is, it is kept into a private GIT repository with the working version of the program. In the end, on a project date, the project will be saved, reviewed and committed to the repository. The next day of the project, the program will be pulled from the GIT on the machine of the programmer for that day. We will work directly from the repository rather than the user's local machine. Additionally, the project will also be saved on a physical drive separately.

Mini-FLUFFY Projectplan page 9 of 14

4. Finance and Risks

Below are the risks this project contains, and what are plans are to prevent these situations.

4.1 Risks and fall-back activities

Risk	Prevention activities included in plan	Fall-back Activities
Trouble obtaining license Siemens software	Ask around for someone that can give licenses	Ask school to purchase these licenses
2 Hardware breaking	Being careful with the machine	Contacting Omar and/or other mechatronics persons
3 Person with Code not available	Have a USB drive with a backup of the code, that is always located at the system. As well as version control for the project.	Contact the person with the code to get it in another way (OneDrive, WeTransfer); Upload the code on the storage device to a new computer.
4 Shortage of time	Have good planning on which days we will work on the project and which days are free. Also update Trello to know what needs to be done	Plan extra days to work on the project

Mini-FLUFFY Projectplan page 10 of 14

5. Use cases

Use cases were defined down below which will be used for user testing. The following use cases were defined:

Use Case ID: UC_01	Use Case: Start system	
Description:	When the operator wants to start the system, he	
	presses the "start/reset" button	
Actor:	Operator	
Precondition:	System needs to be powered	
	"System safe" needs to be OK	
Postcondition:	System is running safely	
	Green LED on	
Trigger:	"start/reset" button is being pressed	
Standard Process:	Connect system to power	
	2) Press "start/reset" button	
	3) Green LED on	
	System running safely	

Use Case ID: UC_02	Use Case: Start system with error	
Description:	The operator starts the system, but system is not safe so goes into the "error" state	
Actor:	Operator	
Precondition:	System needs to be powered	
Postcondition:	System doesn't start and is in the "error" state	
Trigger:	"start/reset" button is being pressed	
Standard Process:	Connect system to power	
	2) Press "start/reset" button	
	System doesn't start and goes into "error"	
	state	
	4) Red LED on	

Use Case ID: UC_03	Use Case: Pallet enters station and lifted up	
Description:	A pallet on the conveyor arrives to a station where	
	the pallet is being detained and lifted for predefined	
	amount of time, where after that the pallet is being	
	dropped and let through when next station is free	
Actor:	-	
Precondition:	Pallet has been loaded onto the conveyor	
Postcondition:	Pallet goes to the next station	
Trigger:	Magnetic sensor detects the pallet	
Standard Process:	Magnetic sensor detects the pallet	
	Pallet is being lifted up	
	Waits for predefined amount of time	
	Pallet is being dropped down	
	Check of next station is free	
	Stopper goes down and let the pallet through	

Use Case ID: UC_04	Use Case: Pallet enters transfer unit and transferred to another conveyor
Description:	A pallet on the conveyor arrives to a transfer unit where the pallet is being lifted, transferred across to the conveyor on the other side and lifted down. Then let through when next station is free
Actor:	-

Mini-FLUFFY Projectplan page 11 of 14

Precondition:	Pallet has been loaded onto the conveyor	
Postcondition:	Pallet has been moved across to the other conveyor	
Trigger:	Magnetic sensor detects the pallet	
Standard Process:	Magnetic sensor detects the pallet	
	Transfer unit goes up	
	3) Conveyor moves the pallet to the other side	
	Magnetic sensor detects the pallet	
	5) Transfer unit goes down	
	Check of next station is free	
	7) Stopper goes down and let the pallet through	

Use Case ID: UC_05	Use Case: Pallet enters station end is not being lifted
Description:	A pallet on the conveyor arrives to a station where
	the pallet is being detained and hold until the next
	station is free. The pallet is not being lifted up.
Actor:	-
Precondition:	Pallet has been loaded onto the conveyor
Postcondition:	Pallet goes to next station
Trigger:	Magnetic sensor detects the pallet
Standard Process:	Magnetic sensor detects the pallet
	Check of next station is free
	3) Stopper goes down and lets the pallet
	through

Use Case ID: UC_06	Use Case: Pallet enters transfer unit and transferred to another conveyor. Pallet stops at buffer station
Descriptions	
Description:	A pallet on the conveyor arrives to a transfer unit
	where the pallet is being lifted, transferred across
	where the pallet waits for a predefined amount of
	time, then moves to the end and lifted down, then let
	through when next station is free
Actor:	-
Precondition:	Pallet has been loaded onto the conveyor
Postcondition:	Pallet has been moved across to the other conveyor
Trigger:	Magnetic sensor detects the pallet
Standard Process:	Magnetic sensor detects the pallet
	2) Tranfer unit goes up
	3) Conveyor on
	Inductive sensor at buffer station detects the pallet
	·
	5) Conveyor stops at buffer station and waits for predefined of time
	6) Conveyor on and moves pallet to the other side
	7) Magnetic sensor detects the pallet
	8) Transfer unit goes down
	9) Check of next station is free
	10) Stopper goes down and lets the pallet
	l
	through

Use Case ID: UC_07	Use Case: Emergency button pressed
Description:	The emergency button is pressed by the operator.
	The system goes into the "error" state
Actor:	Operator
Precondition:	System needs to be powered
Postcondition:	System is in the "error" state

Mini-FLUFFY Projectplan page 12 of 14

	Operations have been stopped
Trigger:	Emergency button has been pressed
Standard Process:	Emergency button is being pressed
	System stops it operation
	System goes into the "error" state

Use Case ID: UC_08	Use Case: Magnetic sensors show detected pallet in HMI
Description:	In The HMI dashboard the status of the magnetic sensors is shown. If the magnetic sensor detects the pallet this is shown in the HMI dashboard
Actor:	-
Precondition:	System needs to be running
Postcondition:	Magnetic sensor shows detected pallet in HMI
Trigger:	Magnetic sensor detects pallet
Standard Process:	Magnetic sensor detects pallet HMI dashboards show that pallet is detected at magnetic sensor

Use Case ID: UC_09	Use Case: HMI dashboard shows when transfer is
	busy
Description:	In the HMI dashboard the status of the transfer unit is shown. If the transfer unit is busy, it is clearly shown in the HMI dashboard
Actor:	-
Precondition:	System needs to be running
Postcondition:	Transfer unit status is being shown in HMI dashboard
Trigger:	Pallet is being detected at the transfer station magnetic sensor
Standard Process:	Magnetic sensor detects the pallet Transfer unit lift pallet Status is being shown in the HMI dashboard

Use Case ID: UC_010	Use Case: Start the system from the HMI dashboard
Description:	In the HMI dashboard the operator can start the system by pressing the start button
Actor:	Operator
Precondition:	HMI dashboard running
Postcondition:	System is running Green LED on
Trigger:	Start button in HMI pressed
Standard Process:	Start button on HMI dashboard is being pressed by the operator System starts and Green LED is turned on

Mini-FLUFFY Projectplan page 13 of 14

Use Case ID: UC_08	Use Case: Timer variable change
Description:	In the HMI dashboard the operator can change the time variable for deciding for how long the pallet needs to wait at the stations
Actor:	Operator
Precondition:	HMI dashboard running
Postcondition:	Timer variable changed
Trigger:	Operator changes timer variable
Standard Process:	The operator uses a button- or drop-down menu to change the timer variable Timer variable changed

Use Case ID: UC_09	Use Case: Pallet removed from system
Description:	A pallet has been removed from the system. This is registered to the counter and states are reset
Actor:	-
Precondition:	System needs to be running
Postcondition:	Orange light is turned on. Error shown in HMI
Trigger:	Pallet removed
Standard Process:	Pallet is removed
	Error is shown in HMI

Mini-FLUFFY Projectplan page 14 of 14