Electricidad y Magnetismo.

Liz Ángel Núñez Torres.

3 de febrero de 2025

Ejercicio 1

Resumen de las analogías entre campos eléctricos y magnéticos:

Campo Eléctrico	Campo Magnético
Es creado por cargas en reposo:	Es creado por cargas en movimiento:
Ley de Coulomb $F_e = K_e \frac{q_1 q_2}{r^2}$.	Fuerza de Lorentz $F_m = q(\vec{v} \times \vec{B})$.
Cargas opuestas generan atracción.	Polos opuestos generan atracción.
Cargas iguales generan repulsión.	Polos iguales generan repulsión.
Las líneas de campo comienzan en cargas	Las líneas de campo se generan por
positivas y terminan en cargas negativas	bucles cerrados de sur a norte magnético
generando interacciones a distancia.	generando interacciones a distancia.
Su comportamiento en el campo es descrito	Su comportamiento en el campo es descrito
por la ley de Gauss $\oint E \cdot dA = \frac{Q}{\varepsilon_0}$	por la ley de Gauss $\oint B \cdot dA = 0$
La permisividad eléctrica mide la respuesta	La permeabilidad magnética mide la
de un material al campo eléctrico,	respuesta de un material al campo magnético,
se representa por (ϵ)	se representa por (μ)
Campo eléctrico variable	Campo magnético variable
crea un campo magnético.	crea un campo eléctrico.

Resumen de las diferencias entre campos eléctricos y magnéticos:

Campo Eléctrico	Campo Magnético
Las líneas son abiertas siendo las cargas	Las líneas son cerradas, saliendo del
positivas fuentes y las negativas sumideros.	norte y entrando por el sur.
Cualquier partícula que entre al campo	Cualquier partícula que entre al campo
con velocidad paralela experimenta	con velocidad paralela no experimentará
una fuerza, y describe un movimiento	ninguna fuerza y su movimiento es
MRUA	descrito por un MRU
Si una partícula entra con	Si una partícula entra con
una velocidad perpendicular al campo,	una velocidad perpendicular al campo,
presentará un movimiento parabólico.	presenterá un movimiento MCU
	en el plano perpendicular al campo.
El flujo no siempre es nulo , según	El flujo siempre es nulo , según
la Ley de Gauss $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{int}}{\varepsilon_0}$.	la Ley de Gauss $\oint \vec{B} \cdot d\vec{A} = 0$.
El campo es conservativo	El campo no es conservativo
Existe potencial eléctrico.	No existe potencial magnético.
Existen monopolos eléctricos.	No existen monopolos magnéticos.
Se genera por cargas en reposo.	Es generado por una carga en movmiento.

Ejercicio 2

Resuelve los siguientes ejercicios.

- 1. Calcula el campo eléctrico que crea una esfera, de radio R=1m y densidad volumétrica de carga de 5 C/m^3 en un punto situado a 10m de su centro.
- 2. Calcula el campo magnético que crea un conductor recto muy largo, por el que circula una intensidad de 5 A en un punto situado a 10m del mismo (se puede suponer que el conductor recto es infinitamente largo).
- 3. Calcula la fuerza que crea el campo eléctrico calculado en (1) sobre una carga de 10 C; y la fuerza que crea el campo magnético calculado en (2) sobre una carga de 10 C que se mueve a 10 m/s.

Solución de los ejercicios.

Punto 1.

Datos:

- Radio $\Rightarrow R = 1 m$.
- Densidad volumétrica $\Rightarrow 5 C/m^3$.
- Distancia donde se calcula el campo $\Rightarrow r = 10 m$.

Para resolver nuestro problema usaremos la fórmula que viene dada por:

$$E = \frac{K \cdot Q}{r^2}.$$

Pero antes definamos la constante de Coulomb K:

$$K = \frac{1}{4 \cdot \pi \epsilon_0} \approx 9 \times 10^9 \ N \cdot m^2 / C^2.$$

A continuación, debemos obtener la carga total del campo (Q), para esto, necesitamos saber que su valor en una esfera es el producto de la densidad volumétrica (ρ) y el volumen de la esfera (V).

Donde el volumen de la esfera es: $V = \frac{4}{3} \pi R^3$.

Obtenemos:

$$Q = \rho \cdot V = \rho \cdot \frac{4}{3} \pi R^3.$$

Reemplazando por nuestros datos:

$$Q = 5 \ C/m^3 \cdot \frac{4}{3} \ \pi (1 \ m)^3 \Rightarrow \frac{20 \ C/m^3}{3} \ \text{m}^3 \ \pi = \boxed{20.94 \ C.}$$

Con estos parámetros definidos, procedemos a obtener el campo eléctrico en un punto de la forma:

$$E = \frac{9 \times 10^9 \ N \cdot m^2 / C^2 \cdot 20,94 \ \text{C}}{(10 \ m)^2} = \frac{1,8849 \times 10^{11} \ N \cdot \text{m}^2 / C}{100 \ \text{m}^2}$$

$$E = 1,884 \times 10^9 \ N/C.$$

Punto 2.

Datos:

- Intensidad eléctrica $\Rightarrow I = 5 A$.
- Distancia donde se calcula el campo $\Rightarrow r = 10 \ m$.

Para obtener el campo en un punto de un conductor infinito, usaremos la fórmula:

$$B = \frac{\mu_0 I}{2 \pi r}.$$

Igual que en el punto anterior, definiremos la permeabilidad magnética del vacío μ_0 .

$$\mu_0 = 4 \pi \times 10^{-7} T \cdot m/A.$$

Procedemos entonces a desarrollar nuestra ecuación.

$$B = \frac{4 \pi \times 10^{-7} \ T \cdot \text{m/A} \cdot 5 \ \text{A}}{2 \pi \ 10 \ \text{m}} = \frac{6,2831 \ T}{20 \ \pi}$$

$$B = 1 \times 10^{-7} T.$$

Punto 3

Calcula la fuerza que crea el campo eléctrico calculado en el punto 1 sobre una carga $10\ C.$

Datos:

- Carga $\Rightarrow Q = 10 \ C$.
- Campo Eléctrico $\Rightarrow E = 1,884 \times 10^9 \ N/C$.

Para obtener la fuerza del campo sobre una carga, usamos la fórmula de la fuerza eléctrica.

$$F_e = Q \cdot E$$
.

Obteniendo entonces:

$$F_e = 10 \, \mathcal{Q} \cdot 1{,}884 \times 10^9 \, N/\mathcal{Q}.$$

$$F_e = 1,884 \times 10^{10} \ N.$$

Calcula la fuerza que crea el campo magnético calculado en el punto 2 sobre una carga $10\ C$ que se mueve a $10\ m/s$.

Datos:

- Campo Magnético $\Rightarrow B = 1 \times 10^{-7} T$.
- Carga $\Rightarrow Q = 10 \ C$.
- Velocidad $\Rightarrow v = 10 \ m/s$.

Para obtener la fuerza del campo magnético, usaremos la fuerza de Lorentz:

$$F = q\left(\vec{v} \times \vec{B}\right).$$

Dado que no tenemos información sobre la dirección de la carga, vamos a definirla perpendicular. Además, usaremos la expresión en modulo de la fuerza porque desconocemos el sentido de la velocidad y del campo, por esto, no podemos definir un producto vectorial, pero si el modulo de la fuerza del campo magnético.

$$F = q \cdot v \cdot B \cdot \sin(\theta).$$

Sustituyendo obtenemos:

$$F = 10 C \cdot 10 \ m/s \cdot 1 \times 10^{-7} \ T \cdot \sin(90).$$

$$F = 100 \cdot 1 \times 10^{-7} \ \frac{N}{C \cdot m/s} \ C \cdot m/s$$

$$F = 1 \times 10^{-5} \ N.$$