EXERCICE N°1 (Le corrigé)

Un automobiliste roule pendant une heure à la vitesse constante de $90 \, km \, . \, h^{-1}$, puis pendant encore une heure à la vitesse constante de $120 \, km \, . \, h^{-1}$.

Déterminer à quelle vitesse constante il aurait dû rouler pendant la durée totale du trajet pour effectuer le même nombre de kilomètres.

Notons v la vitesse cherchée.

$$v = \frac{90 + 120}{2} = 105$$

Ainsi, il aurait dû rouler à $105 \text{ km} \cdot \text{h}^{-1}$

EXERCICE N°2 (Le corrigé)

Un élève a participé à deux contrôles. Sa première note est 17 et sa moyenne est 15. Quelle est sa seconde note ?

Notons *n* la note cherchée.

On peut écrire :

$$15 = \frac{17+n}{2}$$

Les équations suivantes sont équivelentes :

$$15 = \frac{17 + 7}{2}$$

$$15\times2 = \frac{17+n}{2}\times2$$

$$30 = 17 + n$$

$$30-17 = 17+n-17$$

$$13 = n$$

On en déduit que sa seconde note est 13

EXERCICE N°3

(Le corrigé)

- (u_n) est la suite arithmétique de premier terme $u_0=4$ et de raison r=2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n et r.

Pour $n \in \mathbb{N}$, $u_{n+1} = u_n + r$ $u_{n+1} = u_n + 2$

- 2) Calculer les termes u_1 , u_2 et u_3 .
- $u_{1} = u_{0} + r = 4 + 2$ $u_{1} = 6$ $u_{2} = u_{1} + r = 6 + 2$ $u_{2} = 8$ $u_{3} = u_{2} + r = 8 + 2$ $u_{3} = 10$
- 3) Pour tout entier n, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}$, $u_n = u_0 + nr$ $u_n = 4 + 2n$

- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .
- $u_{10} = 4+2\times10$ $u_{10} = 24$ $u_{17} = 4+2\times17$ $u_{17} = 38$ $u_{23} = 4+2\times23$ $u_{23} = 50$

EXERCICE N°4 (Le corrigé)

- (u_n) est la suite arithmétique de premier terme $u_1 = -80$ et de raison r = 10.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n et r.

Pour $n \in \mathbb{N}^*$, $u_{n+1} = u_n + r$ $u_{n+1} = u_n + 10$

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_{2} = u_{1} + r = -80 + 10$ $u_{2} = -70$ $u_{3} = u_{2} + r = -70 + 10$ $u_{3} = -60$ $u_{4} = u_{3} + r = -60 + 10$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$, $u_n = u_1 + (n-1)r$

 $u_4 = -50$

Car le premier terme de la suite est u_1

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_7 = -80 + 10 \times (7 1)$ $u_7 = -20$ $u_{10} = -80 + 10 \times (10 1)$ $u_{10} = 10$ $u_{14} = -80 + 10 \times (14 1)$ $u_{14} = 50$
- 5) Quel est le rang du terme égal à 80 ? Justifier.

Notons *n* le rang cherché.

On peut écrire :

$$u_n = 80$$

Les équations suivantes sont équivalentes :

$$u_n = 80$$

$$-80+10(n-1) = 80$$

$$-80+10(n-1)+80 = 80+80$$

$$10(n-1) = 160$$

$$\frac{10(n-1)}{10} = \frac{160}{10}$$

$$n-1 = 16$$

$$n-1+1 = 16+1$$

$$n = 17$$

LES SUITES E01

EXERCICE N°1

Un automobiliste roule pendant une heure à la vitesse constante de $90 \, km \cdot h^{-1}$, puis pendant encore une heure à la vitesse constante de $120 \, km \cdot h^{-1}$.

Déterminer à quelle vitesse constante il aurait dû rouler pendant la durée totale du trajet pour effectuer le même nombre de kilomètres.

EXERCICE N°2

Un élève a participé à deux contrôles. Sa première note est 17 et sa moyenne est 15. Quelle est sa seconde note ?

EXERCICE N°3

- (u_n) est la suite arithmétique de premier terme $u_0=4$ et de raison r=2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n et r.
- 2) Calculer les termes u_1 , u_2 et u_3 .
- 3) Pour tout entier n, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .

EXERCICE N°4

- (u_n) est la suite arithmétique de premier terme $u_1 = -80$ et de raison r = 10.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n et r.
- 2) Calculer les termes u_2 , u_3 et u_4 .
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- 5) Quel est le rang du terme égal à 80 ? Justifier.