Pseudocode and Diagrams for Differential Privacy Methods

Contents

1	Intr	oduction	2
2	Pseudocode and Diagrams for Quantitative Methods		3
	2.1	Duchi et al. Mechanism (duchi)	3
	2.2	Laplace Mechanism (laplace)	5
	2.3	Piecewise Mechanism (piecewise)	6
	2.4	Multidimensional Duchi Mechanism (multidimensional_duchi)	8
	2.5	Custom Multidimensional Mechanism (multidimensional)	10
3	Pseu	ndocode and Diagrams for Categorical Methods	12
	3.1	Direct Encoding (direct_encoding)	12
	3.2	Optimized Unary Encoding (OUE) (optimized_unary_encoding)	13
	3.3	RAPPOR (rappor)	15

1 Introduction

This document presents the pseudocode and conceptual diagrams of the differential privacy methods implemented for quantitative and categorical variables. The included algorithms are:

• Quantitative Data:

- Duchi et al. Mechanism (duchi)
- Laplace Mechanism (laplace)
- Piecewise Mechanism (piecewise)
- Multidimensional Duchi Mechanism (multidimensional_duchi)
- Custom Multidimensional Mechanism (multidimensional)

• Categorical Data:

- Direct Encoding (direct_encoding)
- Optimized Unary Encoding (OUE) (optimized_unary_encoding)
- RAPPOR (rappor)

Below, the pseudocode and diagram for each of these methods are presented.

2 Pseudocode and Diagrams for Quantitative Methods

2.1 Duchi et al. Mechanism (duchi)

Algorithm 1 Duchi et al. Mechanism

Require: Input vector t_i with values in [-1, 1], privacy budget ϵ

Ensure: Privatized vector t_i^*

- 1: **for** each element t_i in the input vector **do**
- 2: Clamp t_i to the range [-1, 1]
- 3: Compute e^{ϵ}
- 4: Compute $p = \frac{e^{\epsilon}}{e^{\epsilon} + 1}$
- 5: Compute probability $q = \frac{1}{e^{\epsilon} + 1}$
- 6: Generate uniform random variable u in [0, 1]
- 7: **if** $u < \frac{1 + t_i}{2}$ **then**
- 8: Set $t_i^* = 1$ with probability p, -1 with probability q
- 9: else
- 10: Set $t_i^* = -1$ with probability p, 1 with probability q
- 11: end if
- 12: **end for**
- 13: **return** Vector t_i^*

Figure 1: Diagram of the Duchi et al. Mechanism

2.2 Laplace Mechanism (laplace)

Algorithm 2 Laplace Mechanism

Require: Input vector t_i , privacy budget ϵ , sensitivity s

Ensure: Privatized vector t_i^*

1: **for** each element t_i in the input vector **do**

2: Generate Laplace noise *b* with mean 0 and scale $\frac{s}{\epsilon}$

3: Calculate $t_i^* = t_i + b$

4: end for

5: **return** Vector t_i^*

Figure 2: Diagram of the Laplace Mechanism

Piecewise Mechanism (piecewise) 2.3

Algorithm 3 Piecewise Mechanism

Require: Input vector t_i with values in [-1, 1], privacy budget ϵ

Ensure: Privatized vector t_i^*

1: Compute
$$C = \frac{e^{\epsilon/2} + 1}{e^{\epsilon/2} - 1}$$

2: **for** each element t_i in the input vector **do**

3: Compute
$$l(t_i)$$
 and $r(t_i)$

4:

4: Generate
$$u$$
 uniform in $[0, 1]$
5: **if** $u \le \frac{e^{\epsilon/2}}{e^{\epsilon/2} + 1}$ **then**

Generate t_i^* uniformly in $[l(t_i), r(t_i)]$ 6:

7: else

Randomly select $[-C, l(t_i)]$ or $[r(t_i), C]$ 8:

Generate t_i^* uniformly in the selected interval 9:

end if 10:

11: **end for**

12: **return** Vector t_i^*

Figure 3: Diagram of the Piecewise Mechanism

2.4 Multidimensional Duchi Mechanism (multidimensional_duchi)

Algorithm 4 Multidimensional Duchi Mechanism

Require: Input matrix T of dimension $n \times d$, privacy budget ϵ

Ensure: Privatized matrix T^*

- 1: **for** each row t_i in T **do**
- 2: Generate random vector $v_i \in \{-1, 1\}^d$
- 3: Calculate $s_i = \frac{e^{\epsilon}}{e^{\epsilon} + 1}$
- 4: Generate Bernoulli random variable u_i with probability s_i
- 5: **if** $u_i = 1$ **then**
- 6: Assign $t_i^* = v_i$
- 7: **else**
- 8: Assign $t_i^* = -v_i$
- 9: **end if**
- 10: **end for**
- 11: **return** Matrix T^*

Figure 4: Diagram of the Multidimensional Duchi Mechanism

2.5 Custom Multidimensional Mechanism (multidimensional)

Algorithm 5 Custom Multidimensional Mechanism

Require: Input matrix T of dimension $n \times d$, privacy budget ϵ , unidimensional mechanism M, constant C

Ensure: Privatized matrix T^*

1: Calculate
$$k = \max \left(1, \min \left(d, \left\lfloor \frac{\epsilon}{2.5} \right\rfloor\right)\right)$$

- 2: **for** each row t_i in T **do**
- 3: Select k random indices without replacement from [1, d]
- 4: **for** each selected index j **do**
- 5: Apply mechanism M to element t_{ij} with budget $\frac{\epsilon}{k}$
- 6: Multiply result by $\frac{d}{k}$ and assign to t_{ij}^*
- 7: end for
- 8: end for
- 9: **return** Matrix *T**

Figure 5: Diagram of the Custom Multidimensional Mechanism

3 Pseudocode and Diagrams for Categorical Methods

3.1 Direct Encoding (direct_encoding)

Algorithm 6 Direct Encoding

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

1: Obtain the number of categories k

2: Calculate $p = \frac{e^{\epsilon}}{e^{\epsilon} + k - 1}$

3: Calculate $q = \frac{1}{e^{\epsilon} + k - 1}$

4: **for** each element x_i in X **do**

5: For each category c_i :

6: Assign probability p if $x_i = c_j$, q otherwise

7: Generate category x_i^* based on the assigned probabilities

8: end for

9: **return** Privatized data X^*

Figure 6: Diagram of Direct Encoding

3.2 Optimized Unary Encoding (OUE) (optimized_unary_encoding)

Algorithm 7 Optimized Unary Encoding (OUE)

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

- 1: Obtain the number of categories d
- 2: Represent each data point x_i as a unary vector u_i
- 3: Set p = 0.5
- 4: Calculate $q = \frac{1}{e^{\epsilon} + 1}$
- 5: **for** each unary vector u_i **do**
- 6: **for** each bit u_{ij} in u_i **do**
- 7: **if** $u_{ij} = 1$ **then**
- 8: Perturb u_{ij} with probability p
- 9: **else**
- 10: Perturb u_{ij} with probability q
- 11: **end if**
- 12: end for
- 13: Reconstruct x_i^* from the perturbed vector
- 14: **end for**
- 15: **return** Privatized data X^*

Figure 7: Simplified Diagram of Optimized Unary Encoding (OUE)

3.3 RAPPOR (rappor)

Algorithm 8 RAPPOR

Require: Categorical data X, privacy budget ϵ

Ensure: Privatized data X^*

- 1: Obtain the number of categories d
- 2: Represent each data point x_i as a unary vector u_i
- 3: Calculate $f = \frac{1}{e^{\epsilon} + 1}$
- 4: **for** each unary vector u_i **do**
- 5: **for** each bit u_{ij} in u_i **do**
- 6: **if** $u_{ij} = 1$ **then**
- 7: Perturb u_{ij} with probability 1 f
- 8: else
- 9: Perturb u_{ij} with probability f
- 10: **end if**
- 11: end for
- 12: Reconstruct x_i^* from the perturbed vector
- 13: **end for**
- 14: **return** Privatized data X^*

Figure 8: Simplified Diagram of RAPPOR