The z-Transform (ch.10)

□ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 □ Geometric evaluation of the Fourier transform from the pole-zero plot
 □ Properties of the z-transform
 □ Some common z-transform pairs
 □ Analysis and characterization of LTI systems using z-transforms
 □ System function algebra and block diagram representations
 □ The unilateral z-transform

Recall

 \Box The response of LTI systems to complex exponentials z^n

$$y[n] = H(z)z^n$$

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n}$$

Definition

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

$$X(z) \triangleq \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

z-plane

Z-transform vs Fourier transform

$$x[n] \xrightarrow{\mathcal{Z}} X(z)$$

$$X(z) \triangleq \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$z = e^{j\omega}$$

$$|z| = 1 //$$

$$\sum z = re^{j\omega}$$

$$\frac{1}{\Re}$$

$$X(z)\Big|_{z=e^{j\omega}}=X\big(e^{j\omega}\big)=\sum\nolimits_{n=-\infty}^{+\infty}x[n]e^{-j\omega n} \qquad X\big(re^{j\omega}\big)=\sum\nolimits_{n=-\infty}^{+\infty}x[n]\big(re^{j\omega}\big)^{-n}$$

$$X(z)\Big|_{z=e^{j\omega}} = \mathcal{F}\{x[n]\}$$

$$X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n](re^{j\omega})^{-n}$$

Unit circle

$$X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} \{x[n]r^{-n}\}e^{-j\omega n}$$
$$X(re^{j\omega}) = \mathcal{F}\{x[n]r^{-n}\}$$

$$X(re^{j\omega}) = \mathcal{F}\{x[n]r^{-n}\}$$

Examples

$$x[n] = a^n u[n] \qquad X(z) = ?$$

$$X(z) = \sum_{n=-\infty}^{+\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \qquad |z| > |a|$$

$$a^{n}u[n] \xrightarrow{\mathcal{Z}} \frac{z}{z-a} \qquad |z| > |a|$$

$$\downarrow a = 1$$

$$u[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - z^{-1}} \qquad |z| > 1$$

Examples

$$x[n] = -a^n u[-n-1] \qquad X(z) = ?$$

$$X(z) = -\sum_{n=-\infty}^{+\infty} a^n u[-n-1]z^{-n}$$

$$= -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$= -\sum_{n=1}^{\infty} a^{-n} z^n$$

$$= 1 - \sum_{n=0}^{\infty} (a^{-1} z)^n$$

$$X(z) = 1 - \frac{1}{1 - a^{-1}z} = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| < |a|$$

Examples

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$
 $X(z) = ?$

$$\left(\frac{1}{3}\right)^n u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{3}z^{-1}} \qquad |z| > \frac{1}{3}$$

$$\left(\frac{1}{2}\right)^n u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}z^{-1}} \qquad |z| > \frac{1}{2}$$

$$7\left(\frac{1}{3}\right)^{n}u[n] - 6\left(\frac{1}{2}\right)^{n}u[n] \xrightarrow{\mathcal{Z}} \frac{7}{1 - \frac{1}{3}z^{-1}} - \frac{6}{1 - \frac{1}{2}z^{-1}} \qquad |z| > \frac{1}{2}$$

$$|z| > \frac{1}{2}$$

Examples

$$x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u[n] = \frac{1}{2j} \left(\frac{1}{3}e^{j\pi/4}\right)^n u[n] - \frac{1}{2j} \left(\frac{1}{3}e^{-j\pi/4}\right)^n u[n] \qquad X(z) = ?$$

Solution

$$X(z) = \sum_{n=-\infty}^{+\infty} \left\{ \frac{1}{2j} \left(\frac{1}{3} e^{j\pi/4} \right)^n u[n] - \frac{1}{2j} \left(\frac{1}{3} e^{-j\pi/4} \right)^n u[n] \right\} z^{-n}$$

$$= \frac{1}{2j} \sum_{n=0}^{+\infty} \left(\frac{1}{3} e^{j\pi/4} \right)^n z^{-n} - \frac{1}{2j} \sum_{n=0}^{+\infty} \left(\frac{1}{3} e^{-j\pi/4} \right)^n z^{-n}$$

$$= \frac{1}{2j} \frac{1}{1 - \frac{1}{3} e^{j\pi/4} z^{-1}} - \frac{1}{2j} \frac{1}{1 - \frac{1}{3} e^{-j\pi/4} z^{-1}}$$

For convergence,

$$\left| \frac{1}{3} e^{j\pi/4} z^{-1} \right| < 1 \ \& \left| \frac{1}{3} e^{-j\pi/4} z^{-1} \right| < 1 \ \implies |z| > 1/3$$

The z-Transform (ch.10)

□ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 □ Geometric evaluation of the Fourier transform from the pole-zero plot
 □ Properties of the z-transform
 □ Some common z-transform pairs
 □ Analysis and characterization of LTI systems using z-transforms
 □ System function algebra and block diagram representations
 □ The unilateral z-transform

Properties

 \square The ROC of X(z) consists of a ring in the z-plane centered about the origin.

ROC of X(z): $x[n]r^{-n}$ converges (absolutely summable)

$$\sum\nolimits_{n=-\infty}^{+\infty} |x[n]| r^{-n} < \infty$$

☐ The ROC does not contain any poles.

X(z) is infinite at a pole

Properties

If x[n] is of finite duration ($x[n] \neq 0$ for $N_1 < n < N_2$), then the ROC is the entire z-plane, except possibly z = 0 and/or $z = \infty$

```
If N_1 < 0 and N_2 > 0

ROC does not include z = 0 or z = \infty

If N_1 \ge 0,

ROC includes z = \infty, not z = 0

If N_2 \le 0,

ROC includes z = 0, not z = \infty
```


Examples

$$\delta[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{+\infty} \delta[n] z^{-n} = 1$$
 ROC = the entire z-plane

$$\delta[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{+\infty} \delta[n-1]z^{-n} = z^{-1}$$
 ROC = the entire z-plane except $z=0$

$$\delta[n+1] \xrightarrow{\mathcal{Z}} \sum_{n=-\infty}^{+\infty} \delta[n+1] z^{-n} = z \qquad \text{ROC = the entire finite z-plane}$$
 (except $z=\infty$)

Properties

If x[n] is a right-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also be in the ROC.

If x[n] is a left-sided sequence, and if the circle $|z|=r_0$ is in the ROC, then all finite values of z for which $0<|z|< r_0$ will also be in the ROC.

Properties

If x[n] is a two-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle $|z| = r_0$.

Examples

$$x[n] = \begin{cases} a^n & 0 \le n \le N - 1, a > 0 \\ 0 & otherwise \end{cases} \qquad X(z) = ?$$

Solution

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n = \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$

The N roots of the numerator polynomial:

$$z_k = ae^{j\left(\frac{2\pi k}{N}\right)}, \qquad k = 0, 1, \dots, N-1$$

When k=0, the zero cancels the pole at z=a

$$z_k = ae^{j\left(\frac{2\pi k}{N}\right)}, \qquad k = 1, \dots, N-1$$

Examples

$$x[n] = b^{|n|}, b > 0$$
 $X(z) = ?$

0 < b < 1

Solution

$$x[n] = b^n u[n] + b^{-n} u[-n-1]$$

$$b^n u[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - bz^{-1}} \qquad |z| > b$$

$$b^{-n}u[-n-1] \xrightarrow{\mathcal{Z}} \frac{-1}{1-b^{-1}z^{-1}} |z| < \frac{1}{b}$$

For convergence, b < 1

$$X(z) = \frac{1}{1 - bz^{-1}} - \frac{1}{1 - b^{-1}z^{-1}} \qquad b < |z| < \frac{1}{b}$$

Properties

- If the z-transform X(z) of x[n] is rational, then its ROC is bounded by poles or extends to infinity.
- ☐ If the z-transform X(z) of x[n] is rational, then if x[n] is right-sided, the ROC is the region in the z-plane outside the outer-most pole. If x[n] is causal, the ROC also includes $z = \infty$.
- If the z-transform X(z) of x[n] is rational, then if x[n] is left-sided, the ROC is the region in the z-plane inside the inner-most nonzero pole. If x[n] is anti-causal, the ROC also includes z=0.

Examples

$$X(z) = \frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)(1 - 2z^{-1})}$$

ROC?

Unit circle

z-plane

Re

Solution

Right-sided sequence

Left-sided sequence

Two-sided sequence

Has no FT

Has no FT

FT converges

The z-Transform (ch.10)

- ☐ The z-transform
- ☐ The region of convergence for the z-transforms
- ☐ The inverse z-transform
- ☐ Geometric evaluation of the Fourier transform from the pole-zero plot
- ☐ Properties of the z-transform
- ☐ Some common z-transform pairs
- ☐ Analysis and characterization of LTI systems using z-transforms
- ☐ System function algebra and block diagram representations
- ☐ The unilateral z-transform

$$X(re^{j\omega}) = \mathcal{F}\{x[n]r^{-n}\}$$

$$x[n]r^{-n} = \mathcal{F}^{-1}\{X(re^{j\omega})\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(re^{j\omega})e^{j\omega n}d\omega$$

$$x[n] = r^n \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) (re^{j\omega})^n d\omega$$

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

Examples

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad |z| > \frac{1}{3} \qquad x[n] = ?$$

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

$$x[n] = x_1[n] + x_2[n]$$

$$x_{1}[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

$$x_{2}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{3}z^{-1}} \quad |z| > \frac{1}{3}$$

$$\Rightarrow x[n] = \left(\frac{1}{4}\right)^{n} u[n] + 2\left(\frac{1}{3}\right)^{n} u[n]$$

Examples

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad \frac{1}{4} < |z| < \frac{1}{3} \qquad x[n] = ?$$

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

$$x[n] = x_1[n] + x_2[n]$$

$$x_{1}[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

$$x_{2}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{3}z^{-1}} \quad |z| < \frac{1}{3}$$

$$\Rightarrow x[n] = \left(\frac{1}{4}\right)^{n} u[n] - 2\left(\frac{1}{3}\right)^{n} u[-n-1]$$

Examples

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad |z| < \frac{1}{4} \qquad x[n] = ?$$

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

$$x[n] = x_1[n] + x_2[n]$$

$$x_{1}[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| < \frac{1}{4}$$

$$x_{2}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{3}z^{-1}} \quad |z| < \frac{1}{3}$$

$$\Rightarrow x[n] = -\left(\frac{1}{4}\right)^{n} u[-n - 1] - 2\left(\frac{1}{3}\right)^{n} u[-n - 1]$$

Examples

$$X(z) = 4z^2 + 2 + 3z^{-1}, \qquad 0 < |z| < \infty \qquad x[n] = ?$$

$$0 < |z| < \infty$$

$$x[n] = ?$$

Solution 1

$$x[n] = \begin{cases} 4, & n = -2\\ 2, & n = 0\\ 3, & n = 1\\ 0, & otherwise \end{cases}$$

$$\delta[n+n_0] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{n_0}$$

$$x[n] = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$$

$$x[n] = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$$

Examples

$$X(z) = \frac{1}{1 - az^{-1}}, \qquad |z| > |a| \qquad x[n] = ?$$

If
$$|z| > |a|$$
,
$$\frac{1}{1 - az^{-1}} = 1 + az^{-1} + a^{2}z^{-2} + \cdots$$

$$x[n] = a^{n}u[n]$$

If
$$|z| < |a|$$
,
$$\frac{1}{1 - az^{-1}} = -a^{-1}z - a^{-2}z^{2} + \cdots$$

$$x[n] = -a^{n}u[-n-1]$$

$$\begin{array}{r}
 1 + az^{-1} + a^{2}z^{-2} + \cdots \\
 1 - az^{-1}) 1 \\
 \underline{1 - az^{-1}} \\
 \underline{az^{-1}} \\
 \underline{az^{-1} - a^{2}z^{-2}} \\
 \underline{a^{2}z^{-2}}
 \end{array}$$

$$-az^{-1} + 1) \frac{-a^{-1}z - a^{-2}z^{2} - \cdots}{1 - a^{-1}z}$$

$$\frac{1 - a^{-1}z}{a^{-1}z}$$

Examples

$$X(z) = \log(1 + az^{-1}), \qquad |z| > |a| \qquad x[n] = ?$$

$$\log(1+v) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}v^n}{n}, \qquad |v| < 1$$

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

$$x[n] = \begin{cases} (-1)^{n+1} a^n / n & n \ge 1\\ 0 & n \le 0 \end{cases}$$
$$= -\frac{(-a)^n}{n} u[n-1]$$

The z-Transform (ch.10)

- □ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 □ Geometric evaluation of the Fourier transform from the pole-zero plot
 □ Properties of the z-transform
 □ Some common z-transform pairs
 □ Analysis and characterization of LTI systems using z-transforms
- ☐ System function algebra and block diagram representations
- ☐ The unilateral z-transform

Geometry evaluation of the Fourier transform from the pole-zero plot

First-order systems

Consider $h[n] = a^n u[n]$

$$H(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \qquad |z| > |a|$$

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

The z-Transform (ch.10)

- □ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 □ Geometric evaluation of the Fourier transform from the pole-zero plot
- ☐ Properties of the z-transform
- ☐ Some common z-transform pairs
- ☐ Analysis and characterization of LTI systems using z-transforms
- ☐ System function algebra and block diagram representations
- ☐ The unilateral z-transform

Linearity

$$x_1[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_1(z) \quad \text{ROC} = R1$$

$$\Rightarrow \quad ax_1[n] + bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z) + bX_2(z)$$

$$x_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_2(z) \quad \text{ROC} = R2 \quad \text{with ROC containing } R_1 \cap R_2$$

Time shifting

Scaling in the z-domain

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) \quad \text{ROC} = R$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Multiplication by $e^{j\omega_0 n} \iff \text{Rotation by } \omega_0 \text{ in the Z-plane}$

Time reversal

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) \quad \text{ROC} = R$$

$$\downarrow \downarrow \\ x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X\left(\frac{1}{z}\right) \quad \text{ROC} = \frac{1}{R}$$

Time expansion

$$x_{(k)}[n] = \begin{cases} x[n/k] & \text{if } n \text{ is a multiple of } k \\ 0 & \text{if } n \text{ is not a multiple of } k \end{cases}$$
$$x[n] \xrightarrow{\mathcal{Z}} X(z) \quad \text{ROC} = R$$

$$\downarrow x_{(k)}[n] \xrightarrow{\mathcal{Z}} X(z^k) \qquad \text{ROC} = R^{1/k}$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X(z^k) = \sum_{n=-\infty}^{+\infty} x[n]z^{-kn}$$

Conjugation

Convolution

$$x_1[n] \xrightarrow{\mathcal{Z}} X_1(z) \qquad \text{ROC} = R_1$$

$$\implies x_1[n]^*x_2[n] \xrightarrow{\mathcal{Z}} X_1(z)X_2(z)$$

$$x_2[n] \xrightarrow{\mathcal{Z}} X_2(z) \qquad \text{ROC} = R_2 \qquad \text{with ROC containing } R_1 \cap R_2$$

First-difference

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 ROC = R
 $x[n] - x[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} (1-z^{-1})X(z)$ ROC = R , possible deletion of $z=0$ and/or addition of $z=1$

Accumulation

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) \quad \text{ROC} = R$$

$$w[n] = \sum_{k=-\infty}^{n} x[k] \xrightarrow{\mathcal{Z}} \frac{1}{(1-z^{-1})} X(z) \qquad \begin{array}{l} \text{ROC} = R \text{, possible deletion of} \\ z = 1 \text{ and/or addition of } z = 0 \end{array}$$

Differentiation in the z-domain

$$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) \quad ROC = R$$

$$\downarrow \downarrow$$

$$nx[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} -z \frac{dX(z)}{dz} \quad ROC = R$$

Examples

$$X(z) = \log(1 + az^{-1})$$
 $|z| > |a|$ $x[n] = ?$

$$nx[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} -z \frac{dX(z)}{dz} = \frac{az^{-1}}{1 + az^{-1}} \qquad |z| > |a|$$

$$a(-a)^n u[n] \xrightarrow{\mathcal{Z}} \frac{a}{1 + az^{-1}} \qquad |z| > |a|$$

$$a(-a)^{n-1}u[n-1] \xrightarrow{\mathcal{Z}} \frac{az^{-1}}{1+az^{-1}} \quad |z| > |a|$$

$$x[n] = -\frac{(-a)^{n-1}}{n}u[n-1]$$

Examples

$$X(z) = \frac{az^{-1}}{(1 - az^{-1})^2} \qquad |z| > |a| \qquad x[n] = ?$$

$$a^n u[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$

$$na^n u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} -z \frac{d}{dz} \left(\frac{1}{1 - az^{-1}} \right) = \frac{az^{-1}}{(1 - az^{-1})^2} \qquad |z| > |a|$$

Properties of the z-transform

The initial-value theorem

lf

$$x[n] = 0 \text{ for } n < 0,$$

Then,

$$x(0) = \lim_{z \to \infty} X(z)$$

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

For
$$n > 0$$
, $z \to \infty \implies z^{-n} \to 0$

For
$$n = 0$$
, $z^{-n} = 1$

□ Examples

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

$$X(z) = \frac{7}{1 - \frac{1}{3}z^{-1}} - \frac{6}{1 - \frac{1}{2}z^{-1}}$$

$$x(0) = 1$$

$$\lim_{z\to\infty}X(z)=1$$

Properties of the z-transform

Summary

Section	Property	Signal	z-Transform	ROC
		x[n]	X(z)	R
		$x_1[n]$	$X_1(z)$	R_1
		$x_2[n]$	$X_2(z)$	R_2
10.5.1	Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
10.5.2	Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except for the possible addition or deletion of the origin
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
		$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R
		$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points $\{ a z\}$ for z in R)
10.5.4	Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)
10.5.6	Conjugation	$x^*[n]$	$X^{*}(z^{*})$	R
10.5.7	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
10.5.7	First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation	nx[n]	$-z\frac{dX(z)}{dz}$	R
10.3.6	in the z-domain	nx[n]	$\frac{dz}{dz}$	A
10.5.9	Initial Value Theorem If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$			

The z-Transform (ch.10)

- □ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 - ☐ Geometric evaluation of the Fourier transform from the pole-zero plot
 - ☐ Properties of the z-transform
 - ☐ Some common z-transform pairs
 - ☐ Analysis and characterization of LTI systems using z-transforms
 - ☐ System function algebra and block diagram representations
 - ☐ The unilateral z-transform

Some z-transform pairs

Signal	Transform	ROC
1. δ[n]	1	All z
$2. \ u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

The z-Transform (ch.10)

□ The z-transform
 □ The region of convergence for the z-transforms
 □ The inverse z-transform
 □ Geometric evaluation of the Fourier transform from the pole-zero plot
 □ Properties of the z-transform
 □ Some common z-transform pairs
 □ Analysis and characterization of LTI systems using z-transforms
 □ System function algebra and block diagram representations
 □ The unilateral z-transform

Causality

Causal \Leftrightarrow ROC of H(z) is the exterior of a circle, including infinity

A system with rational \Leftrightarrow H(z) is causal

- ROC is the exterior of a circle outside the outermost pole;
- With H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot be greater than the order of the denominator.

Examples
$$H(z) = \frac{z^3 - 2z^2 + z}{z^2 + \frac{1}{4}z + \frac{1}{8}}$$
Noncausal

Examples

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}} \quad |z| > 2$$

Solution 1

|z| > 2: ROC is the exterior of a circle outside the outermost pole.

$$H(z) = \frac{2 - \frac{5}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - 2z^{-1})} = \frac{2z^2 - \frac{5}{2}z}{z^2 - \frac{5}{2}z + 1}$$

Solution 2

$$h[n] = [(1/2)^n + 2^n]u[n] \implies h[n] = 0 \text{ for } n < 0 \implies \text{Causal}$$

Stability

For an LTI system,

Stable \iff The ROC of H(z) includes the unit circle, |z|=1

☐ Examples

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}}$$

ROC	Causal	Stable
z > 2	Yes	No
1/2 < z < 2	No	Yes
z < 1/2	No	No

Stability

For a causal LTI system with rational system function H(z),

Stable \iff All of the poles of H(z) lie inside the unit circle. (magnitude smaller than 1)

□ Examples

$$H(z) = \frac{1}{1 - az^{-1}}$$
 is stable \Rightarrow $|a| < 1$

☐ Examples

$$H(z) = \frac{1}{1 - (2r\cos\theta)z^{-1} + r^2z^{-2}}$$

Poles:
$$z_1 = re^{j\theta}$$
 $z_2 = re^{-j\theta}$

Stable
$$\implies r < 1$$

LTI systems characterized by linear constant-coefficient difference equations

Examples

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

$$Y(z) - \frac{1}{2}z^{-1}Y(z) = X(z) + \frac{1}{3}z^{-1}X(z)$$

$$Y(z) = X(z) \left[\frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \right]$$

$$H(z) = \frac{Y(z)}{X(z)} = \begin{bmatrix} \frac{1+\frac{1}{3}z^{-1}}{1-\frac{1}{2}z^{-1}} \end{bmatrix} \Longrightarrow \begin{cases} |z| > \frac{1}{2} & h[n] = \left(\frac{1}{2}\right)^n u[n] + \frac{1}{3}\left(\frac{1}{2}\right)^{n-1} u[n-1] \\ |z| < \frac{1}{2} & h[n] = -\left(\frac{1}{2}\right)^n u[-n-1] - \frac{1}{3}\left(\frac{1}{2}\right)^{n-1} u[-n] \end{cases}$$

45

LTI systems characterized by linear constant-coefficient difference equations

In general

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$Y(z) \sum_{k=0}^{N} a_k z^{-k} = X(s) \sum_{k=0}^{M} b_k z^{-k}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \Longrightarrow$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \implies \begin{cases} \text{Poles at the solution of } \sum_{k=0}^{N} a_k z^{-k} = 0 \\ \text{Zeros at the solution of } \sum_{k=0}^{M} b_k z^{-k} = 0 \end{cases}$$

$$\sum_{k=0}^{M} b_k z^{-k} = 0$$

Examples relating system behavior to the system function

Given the following information about an LTI system, H(z) = ? h[n] = ?

• If
$$x_1[n] = (1/6)^n u[n]$$
, then $y_1[n] = \left[a \left(\frac{1}{2} \right)^n + 10 \left(\frac{1}{3} \right)^n \right] u[n]$

• If
$$x_2[n] = (-1)^n$$
, then $y_2[n] = \frac{7}{4}(-1)^n$

Solution

$$X_1(z) = \frac{1}{1 - \frac{1}{6}z^{-1}}, |z| > \frac{1}{6}$$

$$Y_1(z) = \frac{a}{1 - \frac{1}{2}z^{-1}} + \frac{10}{1 - \frac{1}{3}z^{-1}} = \frac{(a+10) - \left(5 + \frac{a}{3}\right)z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, |z| > \frac{1}{2}$$

$$H(z) = \frac{Y_1(z)}{X_1(z)} = \frac{\left[(a+10) - \left(5 + \frac{a}{3}\right)z^{-1} \right] \left(1 - \frac{1}{6}z^{-1}\right)}{\left(1 - \frac{1}{2}z^{-1}\right) \left(1 - \frac{1}{3}z^{-1}\right)},$$

Examples relating system behavior to the system function

Solution continue

$$\frac{7}{4} = H(-1) = \frac{\left[\left(a+10\right) + \left(5 + \frac{a}{3}\right)\right]\left(\frac{7}{6}\right)}{\left(\frac{3}{2}\right)\left(\frac{4}{3}\right)} \implies a = -9$$

$$H(z) = \frac{(1 - 2z^{-1})\left(1 - \frac{1}{6}z^{-1}\right)}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

ROC of
$$X_1(z)$$
: $|z| > \frac{1}{6}$ \Longrightarrow ROC of $H(z)$: $|z| > \frac{1}{2}$

Examples relating system behavior to the system function

Consider a stable and causal system with impulse response h[n] and rational system function H(z), which contains a pole at z=1/2 and a zero somewhere on the unit circle.

- $\square \mathcal{F}\{(1/2)^n h(t)\}$ converges. True
- $\Box H(e^{j\omega}) = 0$ for some ω True
- \square h[n] has finite duration False
- \square h[n] is real Insufficient information
- $\square g[n] = n[h[n] * h[n]]$ is the impulse response of a stable system True

The z-Transform (ch.10)

- ☐ The z-transform
- ☐ The region of convergence for the z-transforms
- ☐ The inverse z-transform
- ☐ Geometric evaluation of the Fourier transform from the pole-zero plot
- ☐ Properties of the z-transform
- ☐ Some common z-transform pairs
- ☐ Analysis and characterization of LTI systems using z-transforms
- ☐ System function algebra and block diagram representations
- ☐ The unilateral z-transform

System functions for interconnections of LTI systems

$$\frac{Y(z)}{X(z)} = H(z) = \frac{H_1(z)}{1 + H_1(z)H_2(z)}$$

Block diagram representations for causal LTI systems

$$H(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$$
$$y[n] - \frac{1}{4}y[n-1] = x[n]$$

$$y[n] - \frac{1}{4}y[n-1] = x[n]$$

$$w[n] = y[n-1]$$

Or equivalently

Examples: block diagram representations for causal LTI systems

$$H(z) = \frac{1 - 2z^{-1}}{1 - \frac{1}{4}z^{-1}} = \left(\frac{1}{1 - \frac{1}{4}z^{-1}}\right)(1 - 2z^{-1})$$

$$y[n] = v[n] - 2v[n-1]$$

$$w[n] = s[n] = v[n-1]$$

Or equivalently

System function algebra and block diagram representations

Examples: block diagram representations for causal LTI systems

$$H(z) = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}} = \frac{1}{\left(1 + \frac{1}{2}z^{-1}\right)} \frac{1}{\left(1 - \frac{1}{4}z^{-1}\right)} = \frac{2/3}{\left(1 + \frac{1}{2}z^{-1}\right)} + \frac{1/3}{\left(1 - \frac{1}{4}z^{-1}\right)}$$

$$y[n] + \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = x[n]$$

$$y[n] = -\frac{1}{4}y[n-1] + \frac{1}{8}y[n-2] + x[n]$$

Direct form

$$f[n] = y[n-1]$$

 $e[n] = f[n-1] = y[n]$

Parallel form

Examples: block diagram representations for causal LTI systems

$$H(z) = \frac{1 - \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}} = \frac{1}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}} \left(1 - \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}\right)$$

The z-Transform (ch.10)

- ☐ The z-transform
- ☐ The region of convergence for the z-transforms
- ☐ The inverse z-transform
- ☐ Geometric evaluation of the Fourier transform from the pole-zero plot
- ☐ Properties of the z-transform
- ☐ Some common z-transform pairs
- ☐ Analysis and characterization of LTI systems using z-transforms
- ☐ System function algebra and block diagram representations
- ☐ The unilateral z-transform

$$x[n] \stackrel{\mathcal{UZ}}{\longleftrightarrow} \mathcal{X}(z) = \mathcal{U}\mathfrak{L}\{x[n]\}$$

$$\mathcal{X}(z) \triangleq \sum_{n=0}^{\infty} x[n]z^{-n}$$

Examples

$$x[n] = a^n u[n]$$

$$X(z) = \frac{1}{1 - az^{-1}}, |z| > |a|$$

$$x[n] = 0, \text{ for } n < 0$$

$$\int x[n] = 0, \text{ for } n < 0$$

Examples

$$x[n] = a^{n+1}u[n+1]$$

$$X(z) = \frac{z}{1 - az^{-1}}, \quad |z| > |a|$$

$$X(z) = \sum_{n=0}^{\infty} a^{n+1}z^{-n} = \frac{a}{1 - az^{-1}}, \quad |z| > |a|$$
Not equal
$$(x[-1] \neq 0)$$

Examples

$$\mathcal{X}(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

Solution

$$\mathcal{X}(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

$$x[n] = x_1[n] + x_2[n]$$

$$x_1[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{2}$$

$$x_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{2}{1 - \frac{1}{3}z^{-1}} \quad |z| > \frac{1}{3}$$

$$x_{1}[n] \xrightarrow{\mathcal{Z}} \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

$$x_{2}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

$$x_{3}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

$$x_{4}[n] \xrightarrow{\mathcal{Z}} \frac{2}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}$$

Properties of the unilateral Laplace transform

Property	Signal	Unilateral z-Transform
_	x[n]	$\mathfrak{X}(z)$
	$x_1[n]$	$\mathfrak{X}_1(z)$
_	$x_2[n]$	$\mathfrak{X}_2(z)$
Linearity	$ax_1[n] + bx_2[n]$	$a\mathfrak{X}_1(z) + b\mathfrak{X}_2(z)$
Time delay	x[n-1]	$z^{-1}\mathfrak{X}(z)+x[-1]$
Time advance	x[n+1]	$z\mathfrak{X}(z)-zx[0]$
Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$\mathfrak{X}(e^{-j\omega_0}z)$
	$z_0^n x[n]$	$\mathfrak{X}(z/z_0)$
	$a^n x[n]$	$\mathfrak{X}(a^{-1}z)$
Time expansion	$x_k[n] = \begin{cases} x[m], & n = mk \\ 0, & n \neq mk \text{ for any } m \end{cases}$	$\mathfrak{X}(z^k)$
Conjugation	$x^*[n]$	$\mathfrak{X}^*(z^*)$
Convolution (assuming that $x_1[n]$ and $x_2[n]$ are identically zero for	$x_1[n] * x_2[n]$	$\mathfrak{X}_1(z)\mathfrak{X}_2(z)$
-n < 0		
First difference	x[n] - x[n-1]	$(1-z^{-1})\mathfrak{X}(z) - x[-1]$
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{(1-z^{-1})\mathfrak{X}(z) - x[-1]}{\frac{1}{1-z^{-1}}}\mathfrak{X}(z)$
Differentiation in the z-domain	nx[n]	$-z\frac{d\mathfrak{X}(z)}{dz}$
	Initial Value Theorem $x[0] = \lim_{z \to \infty} \mathfrak{X}(z)$	

Convolution Examples

A causal LTI system, initial rest condition

$$y[n] + 3y[n-1] = x[n]$$
 $x[n] = \alpha u[n]$ $y[n] = ?$

$$x[n] = \alpha u[n]$$

$$y[n] = ?$$

Solution

$$\mathcal{H}(z) = \frac{1}{1+3z^{-1}}$$

$$\mathcal{Y}(z) = \mathcal{H}(z)\mathcal{X}(z) = \frac{\alpha}{(1+3z^{-1})(1-z^{-1})} = \frac{(3/4)\alpha}{1+3z^{-1}} + \frac{(1/4)\alpha}{1-z^{-1}}$$

$$y[n] = \alpha \left[\frac{1}{4} + \left(\frac{3}{4} \right) (-3)^n \right] u[n]$$

Shifting property

$$x[n+1] \xrightarrow{\mathcal{UZ}} z\mathcal{X}(z) - zx[0]$$

$$x[n-1] \xrightarrow{\mathcal{UZ}} z^{-1}\mathcal{X}(z) + x[-1]$$

$$x[n-2] \xrightarrow{\mathcal{UZ}} z^{-2} \mathcal{X}(z) + z^{-1} x[-1] + x[-2]$$

Consider y[n] = x[n-1]:

$$y(z) = \sum_{n=0}^{\infty} x[n-1]z^{-n}$$

$$= x[-1] + \sum_{n=1}^{\infty} x[n-1]z^{-n}$$

$$= x[-1] + \sum_{n=0}^{\infty} x[n]z^{-(n+1)}$$

$$= x[-1] + z^{-1}\mathcal{X}(z)$$

Solving differential equations using the unilateral z-transform

$$y[n] + 3y[n-1] = x[n]$$
 $x[n] = \alpha u[n]$ $y[-1] = \beta$
 $y[n] = ?$

Solution

$$y(z) + 3\beta + 3z^{-1}y(z) = \frac{\alpha}{1 - z^{-1}}$$

$$y(z) = \begin{bmatrix} \frac{3\beta}{1 + 3z^{-1}} + \frac{\alpha}{(1 + 3z^{-1})(1 - z^{-1})} \\ \frac{2\text{ero-input}}{\text{response}} \end{bmatrix}$$
Zero-state response

If
$$\alpha = 8$$
, $\beta = 1$, $y[n] = [3(-3)^n + 2]u[n]$, for $n \ge 0$