Kravspecifikation

Redaktör: Andreas Kempe

Version 1.0

Status

Granskad	Anders Rehult	2018-01-30
Godkänd	Rickard Armiento	2018-01-30

PROJEKTIDENTITET

2018/VT, Grupp 2 Linköpings Tekniska Högskola, IFM

Gruppdeltagare

Namn	Ansvar	Telefon	E-post
Anders Rehult	Projektledare (PL)	076-3161206	andre449@student.liu.se
Marian Brännvall	Dokumentansvarig (DOK)	070-7280044	marbr639@student.liu.se
Andreas Kempe	Sekreterare (SE)	073-9796689	andke133@student.liu.se
Viktor Bernholtz		073-0386030	vikbe253@student.liu.se

Kund: IFM, Linköpings universitet, 581 83 Linköping

Kontaktperson hos kund: Rickard Armiento, 013-281249, rickard.armiento@liu.se

Kursansvarig: Per Sandström, 013-282902, persa@ifm.liu.se **Handledare**: Johan Jönsson, 013-281176, johan.jonsson@liu.se

Innehåll

Do	kum	enthistorik	iv
1	Inle	dning	1
	1.1	Parter	1
	1.2	Syfte och Mål	1
	1.3	Användning	1
	1.4	Bakgrundsinformation	1
	1.5	Definitioner	2
2	Utfö	rande	3
3	Öve	rsikt av systemet	4
	3.1	Grov beskrivning av produkten	4
	3.2	Produktkomponenter	4
	3.3	Beroenden till andra system	4
	3.4	Ingående delsystem	4
	3.5	Avgränsningar	4
	3.6	Designfilosofi	5
	3.7	Generella krav på hela systemet	6
4	Dels	ystem - Datakonvertering	8
5	Dels	ystem - Datahantering	9
6	Dels	ystem - Visualisering	10
7	Kra	v på vidareutveckling	11
8	Eko	nomi	12
9	Leve	eranskrav och delleveranser	13
10	Dok	umentation	14
11	Utbi	ldning	15
Re	feren	ser	15

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2018-01-24	Första utkast.	Projektgruppen	Marian Brännvall
0.2	2018-01-26	Andra utkast.	Projektgruppen	Anders Rehult
0.3	2018-01-29	Tredje utkast.	PL och DOK	Anders Rehult
1.0	2018-01-30	Slutgiltig version.	PL	Anders Rehult

1 Inledning

I detta dokument beskrivs alla krav med en tabellrad enligt nedan. Kravnummer är löpande genom hela dokumentet. Kolumn 2 anger om kravet är ett originalkrav eller om kravet har reviderats. Vid revidering finns en hänvisning till beslut. I kolumn 3 finns själva lydelsen av kravtexten. I kolumn 4 finns dess prioritet beskriven.

Prioritet *Ska* betyder att kravet är ett av baskraven som projektet måste uppfylla. Prioritet *Bör* betyder att kravet inte är avgörande för projektets fullbordande, men att kravet bör uppfyllas. Prioritet *Kanske* är den lägsta prioriteten, och betyder att kravet inte är avgörande för projektets fullbordande och inte kommer arbetas med förrän alla *Bör*- och *Ska*-krav är uppfyllda.

Krav nr x	Förändring	Kravtext för krav nr x	Prioritet

1.1 Parter

Rickard Armiento är beställare av detta projekt med Johan Jönsson som handledare och Anders Rehult som projektledare. Övriga gruppmedlemmar är Viktor Bernholtz, Andreas Kempe och Marian Brännvall.

1.2 Syfte och Mål

Målet med projektet är att utveckla ett system för visualisering av resultatet av elektronstrukturberäkningar. Detta ska göras i visualiseringsverktyget Inviwo och systemets funktionalitet ska demonstreras genom att använda det för att illustrera resultat från befintliga beräkningar. I och med att den framtagna mjukvaran ämnas användas i forskningssammanhang måste projektet hålla en hög vetenskaplig och teknisk kvalitet.

Utöver det konkreta målet med framtagandet av mjukvara för visualisering ska även projektet ge projektmedlemmarna erfarenhet av att arbeta i projekt och utöka deras förmåga till analytiskt och fysikaliskt tänkande för att ge värdefull erfarenhet inför arbetslivet.

1.3 Användning

Inom teoretisk fysik är elektronstrukturberäkningar ett viktigt verktyg för att förstå hur materials och molekylers egenskaper utifrån kvantmekaniska principer. Denna produkt kommer användas vid Linköpings universitet för att analysera data från sådana beräkningar.

1.4 Bakgrundsinformation

Detta projekt genomförs som en del i kursen TFYA75 vid Linköpings universitet. Visualisering av data från beräkningar kan i vissa fall förenkla, och ofta vara nödvändigt, för att kunna analysera datan och förstå materials och molekylers egenskaper.

Inviwo gör det möjligt att styra visualisering programmatiskt och att konstruera användargränssnitt för interaktiv visualisering.

1.5 Definitioner

Python är ett programmeringsspråk som används i Inviwo för att knyta samman processorer.

C++ är ett programmeringsspråk som är baserat på programspråket C. I Inviwo används det för att skriva programkod till processorer.

Inviwo (Interactive Visualization Workshop) är programvara för visualisering som tillhandahåller en nätverksredigerare för designen av dataflödesnätverk. Noderna i dessa dataflödesnätverk kallas processorer. Indata till nätverket behandlas i dessa processorer och utdata genereras.

BSD 2 är en licens för öppen källkod.

Git är ett versionshanteringsprogram.

Lisam är en lärplattform som används i projektet för att dela och samla information.

HDF5 är ett binärt filformat.

GUI (Graphical Use Interface) är ett grafiskt användargränssnitt.

LIPs är en modell med regler, instruktioner och mallar för att bedriva projekt. Detta projekt utformas utifrån LIPsmodellen.

API (Application Programming Interface) är en specifikation av hur olika applikationer kan använda och kommunicera med en specifik programvara. Detta utgörs oftast av ett dynamiskt länkat bibliotek.

2 Utförande

Här listas krav för utförandet av projektet.

Krav nr 1	Original	Projektet ska drivas enligt LIPS-modellen.	Ska
Krav nr 2	Original	Vid begäran ska projektgruppen skicka en	Ska
		statusrapport till beställaren.	

3 Översikt av systemet

Figur 1: Grov skiss av systemet

Systemet tar in data från elektronstrukturberäkningar och visualiserar egenskaper valda av användaren. Detta illustreras i figur 1.

3.1 Grov beskrivning av produkten

Produkten är ett verktyg för att visualisera viktiga egenskaper från elektronstrukturberäkningar.

3.2 Produktkomponenter

Produkten ska bestå av API:er för att programmatiskt utföra visualisering samt, eventuellt, ett grafiskt användargränssnitt. En demonstration av funktionalitet och en teknisk dokumentation ingår även i slutleveransen, se sektion 8.

3.3 Beroenden till andra system

Projektet använder sig av Inviwo för att behandla indata i form av resultat från elektronstrukturberäkningar och visualisera relevant data på ett interaktivt sätt.

3.4 Ingående delsystem

Systemet består av tre delsystem, ett som hanterar konvertering av data till format som resten av systemet kan arbeta med, ett som hanterar den konverterade datan och ett som hanterar visualiseringen av denna data. Datan som ska visualiseras kommer att kunna väljas av användaren.

3.5 Avgränsningar

Projektet innefattar att visualisera två egenskaper från listan i krav 5, varav den ena som väljs ska vara en som redan påbörjats av 2017 års projektgrupp och den andra ska göras från grunden.

3.6 Designfilosofi

Systemet kommer utvecklas som en påbyggnad av 2017 års projektgrupp. Kod som inte fungerar med den aktuella versionen av Inviwo kommer att uppdateras.

Projektet kommer att drivas med hjälp av versionshanteringssystemet Git och koden kommer vara licensierad med BSD 2, men även utvecklas under Inviwos utvecklaravtal för att, om önskvärt, kunna officiellt integreras i programvaran.

All design av systemet kommer att utgå från en designspecifikation som löpande kommer att uppdateras under projektets gång. I slutändan kommer detta att resultera i teknisk dokumentation som beskriver systemet.

3.7 Generella krav på hela systemet

Här listas krav för det generella systemet.

Krav nr 3	Original	Källkoden i systemet ska vara BSD 2-clauselicensierad.	Ska
Krav nr 4	Original	Kod som integreras med Inviwo ska tillgängliggöras under Inviwos utvecklaravtal.	Ska
Krav nr 5	Original	Systemet ska implementera, alternativt ut- öka befintlig implementation, med visuali- sering av minst två av följande egenskaper:	Ska
		• Elastiska konstanter	
		• Fermi-ytor	
		• ELF (Electron Localization Function)	
		Krafter på atomer	
		Bandstruktur	
		• Total DOS (Density Of States)	
		Parkorrelationsfunktionen	
		• Illustration av partiell elektrondensitet	
Krav nr 6	Original	Projektgruppen ska undersöka och lära sig om samtliga egenskaper ur listan i kravet ovan.	Ska
Krav nr 7	Original	Tillhandahållna python-moduler ska kunna anropas med enkla funktionsanrop.	Ska
Krav nr 8	Original	Tillhandahållna python-moduler ska kunna hantera indata.	Ska
Krav nr 9	Original	En beskrivning av vilka indata en tillhan- dahållen python-modul kräver ska kunna erhållas.	Ska
Krav nr 10	Original	En beskrivning av vilka utdata en till- handahållen python-modul producerar ska kunna erhållas.	Ska
Krav nr 11	Original	En beskrivning av vad en tillhandahållen	Ska
Krav nr 12	Original	python-modul gör ska kunna erhållas. Användaren ska kunna ändra indata till	Ska
**		python-moduler.	
Krav nr 13	Original	Användaren ska kunna välja vilken typ av visualisering som ska visas.	Ska

Krav nr 14	Original	Användaren ska kunna länka samman oli-	Ska
	8	ka python-moduler.	
Krav nr 15	Original	Systemet ska implementeras i Inviwo.	Ska
Krav nr 16	Original	Tillhandahållna python-moduler ska kunna	Ska
		ta emot en eller flera typer av indata.	
Krav nr 17	Original	Tillhandahållna python-moduler ska kunna	Ska
		ge utdata.	
Krav nr 18	Original	Tillhandahållna python-moduler ska inte	Ska
		fortskrida som vanligt vid indata av fel typ.	
Krav nr 19	Original	Tillhandahållna python-moduler ska vid	Ska
		felaktiga indata varna användaren.	
Krav nr 20	Original	Tillhandahållna python-modulers egenska-	Bör
		per bör kunna ändras.	
Krav nr 21	Original	Systemet bör tillhandhålla ett grafiskt	Bör
		gränssnitt (GUI) för vanligt förekomman-	
		de visualiseringsuppgifter.	
Krav nr 22	Original	Uppstart av systemet bör vara enkelt för	Bör
		användaren.	
Krav nr 23	Original	Installation av systemet bör vara enkelt för	Bör
		användaren.	

4 Delsystem - Datakonvertering

Figur 2: Skiss av hur systemet hanterar indata

Här listas krav för hur systemet ska hantera indata och konvertera de till format som resten av systemet kan arbeta med. Datakonverteringsmodulen tar in obehandlade indata från något beräkningsprogram, behandlar dem så att resten av systemet kan hantera dem, och skickar sedan vidare dem. Processen illustreras i figur 2.

Krav nr 24	Original	Systemet ska kunna läsa in resultat från VASP.	Ska
77 07			G1
Krav nr 25	Original	Systemet ska kunna konvertera data från	Ska
		kristallstrukturberäkningar.	
Krav nr 26	Original	Systemet ska kunna konvertera data från	Ska
		elektronstrukturberäkningar.	
Krav nr 27	Original	Systemet ska kunna konvertera data från	Ska
		tillståndstäthetsberäkningar.	
Krav nr 28	Original	Systemet ska översätta input-filer i textfor-	Ska
		mat till det binära filformatet HDF5.	
Krav nr 29	Original	Systemet bör kunna läsa in resultat från nå-	Bör
		got annat beräkningsprogram, t.ex. Elk.	
Krav nr 30	Original	Systemet bör utnyttja befintlig kod för han-	Bör
		tering av inläsning av datafiler.	

5 Delsystem - Datahantering

Här listas krav för hur systemet ska kunna hantera data.

Krav nr 31	Original	Systemet ska kunna hantera data från kri-	Ska
		stallstrukturberäkningar.	
Krav nr 32	Original	Systemet ska kunna hantera data från	Ska
		elektronstrukturberäkningar.	
Krav nr 33	Original	Systemet ska kunna hantera data från till-	Ska
		ståndstäthetsberäkningar.	
Krav nr 34	Original	Systemet bör utnyttja befintlig kod för han-	Bör
		tering av bland annat kristallstrukturer.	
Krav nr 35	Original	Systemet bör effektivt kunna hantera stora	Bör
		filer.	

6 Delsystem - Visualisering

Figur 3: Skiss av hur visualiseringen sker

Här listas krav för hur systemet ska visualisera data. Visualiseringsmodulen tar in indata behandlade av datakonverteringsmodulen, behandlar dem, och ritar sedan upp utdata på skärmen, se figur 3.

Krav nr 36	Original	Systemet ska visualisera projicerad till-	Ska
		ståndstäthet härrörande till varje separat	
		atom i en kristalls enhets-cell.	
Krav nr 37	Original	Systemet ska visualisera kristallstruktur	Ska
		som atompositioner i enhetscellen.	
Krav nr 38	Original	Systemet ska kunna visualisera den	Ska
		elektrontäthet som resulterar från en	
		beräkning.	
Krav nr 39	Original	Användaren ska, vid volymsrendering,	Ska
		kunna reglera en brytpunkt, i form av nå-	
		got specifikt värde av någon egenskap, för	
		vilken full transparens inträder.	
Krav nr 40	Original	Användaren ska, vid volymsrendering,	Ska
		kunna reglera ett intervall av värden av nå-	
		gon egenskap, där full transparens fås för	
		alla värden inom intervallet.	
Krav nr 41	Original	Användaren ska, vid volymsrendering,	Ska
		kunna ändra opaciteten/transparensnivån	
		för valfria värden av någon egenskap.	
Krav nr 42	Original	Systemet bör tillåta dynamisk visualisering	Bör
		baserad på en serie atompositioner från ut-	
		datafiler.	
Krav nr 43	Original	Systemet bör tillåta att visualisering av	Bör
		egenskaper tillhörande atomer bara visas	
		på vissa atomer, som kan väljas dynamiskt	
		med musklick.	

7 Krav på vidareutveckling

Här listas krav för hur systemet ska kunna vidareutvecklas.

Krav nr 44	Original	All kod ska vara välkommenterad alterna-	Ska
		tivt självförklarande.	
Krav nr 45	Original	Koden ska fungera för Inviwo 0.9.9 eller	Ska
		någon efterkommande version.	
Krav nr 46	Original	Den tekniska dokumentationen ska vara	Ska
		tydlig så att det är möjligt att bygga vidare	
		på systemet utifrån denna.	

8 Ekonomi

Projektgruppen har total 1000 timmar för att slutföra projektet, dessa är fördelade jämnt över gruppens medlemmar.

Krav nr 47	Original	Efter godkänd projektplan (BP2) ska projektet maximalt ta 1000 arbetstimmar att slutföra.	Ska
Krav nr 48	Original	Projektgruppen ska utföra kontinuerlig tidsredovisning.	Ska
Krav nr 49	Original	Tidsredovisning ska skickas till beställaren inför varje beslutspunkt.	Ska

9 Leveranskrav och delleveranser

Tisdag 30/1 Kravspecifikationen ska vara klar och godkänd (BP1).

Tisdag 13/2 Första version av projektplan, tidplan och systemskiss ska vara inlämnad till beställaren.

Fredag 16/2 Slutgiltig version av projektplan, tidplan och systemskiss ska vara inlämnad till beställaren, efter detta hålls beslutmöte BP2.

Fredag 2/3 Första version av designspecifikationen ska vara inlämnad till handledaren.

Senast 8/3 Designspecifikationen ska vara godkänd av handledaren vid beslutsmöte BP3.

Senast 11/4 Nuvarande design ska vara presenterad för och godkänd av handledaren vid ett beslutsmöte BP4.

Senast 14/5 Färdig kappa för slutrapport ska vara inskickad till TEMA.

Senast 23/5 Kraven ska vara verifierade (BP5).

Senast 28/5 Teknisk dokumentation, resultat av teknisk/naturvetenskaplig undersökning, användarhandledning och slutrapport för kandidatarbetet ska vara godkända.

Tisdag 5/6 Efterstudien ska vara inlämnad och inkluderad i slutrapporten. Gruppens källkod ska ha lagrats i ett system för källkodshantering och lämnats in i denna form.

Fredag 8/6 All utrustning och lånat material ska vara återlämnat.

En uppdaterad tidrapport ska lämnas till beställare inför varje beslutspunkt.

Här listas krav för leveranser och delleveranser.

Krav nr 50	Original	Vid slutleverans ska det finnas ett funge-	Ska
		rande interaktivt visualiseringssystem.	
Krav nr 51	Original	Vid slutleverans ska det finnas en tek-	Ska
		nisk/naturvetenskaplig rapport.	
Krav nr 52	Original	Projektets delleveranser ska ske senast vid	Ska
		de datum som specificeras på kursens hem-	
		sida.	

10 Dokumentation

Dokumentation av projektet ska utgå från LIPS-mallar. Syftet med dokumentationen är att ha en grund som utgås ifrån när arbetet sätter igång. Krav på systemet specificeras, designen specificeras och en projektplan, tidplan och systemskiss görs. Se tabell nedan för information om vilka dokument som ska skrivas.

Krav nr 53	Original	Projektgruppen ska ta fram en tidsplan.	Ska
Krav nr 54	Original	Dokumentationen ska sparas på kursens	Ska
		hemsida.	
Krav nr 55	Original	Projektets slutleverans ska ske senast vid	Ska
		det datum som finns specificerat på kursens	
		hemsida.	
Krav nr 56	Original	Vid slutleverans ska det finnas en slutrap-	Ska
		port.	
Krav nr 57	Original	Vid slutleverans ska det finnas teknisk do-	Ska
		kumentation med användaranvisning.	
Krav nr 58	Original	Samtliga dokument som projektgruppen	Ska
		tar fram ska godkännas enligt listan med	
		leveranser, se avsnitt 9.	
Krav nr 59	Original	Designspecifikationen ska godkännas av	Ska
		handledaren.	
Krav nr 60	Original	Projektgruppen ska ta fram en kravspecifi-	Ska
		kation.	
Krav nr 61	Original	Projektgruppen ska ta fram en systemskiss.	Ska
Krav nr 62	Original	Projektgruppen ska ta fram en projektplan.	Ska
Krav nr 63	Original	Projektets dokument ska utgå ifrån LIPS-	Ska
		mallar.	

11 Utbildning

Gruppens medlemmar kommer att utbildas i visualiseringsverktyget Inviwo och programmeringsspråket Python. Föreläsningar om relevanta fysikaliska fenomen kommer dessutom att hållas.

Referenser

[1] LIPS – nivå 1. Version 1.0. Tomas Svensson och Christian Krysander. Kompendium, LiTH, 2002.