Kernelized SVM

Part II

Radial Basis Function (RBF) Kernels

$$f_1 = \text{similarity}(x, l^{(1)}) = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^n (x_j - l_j^{(1)})^2}{2\sigma^2}\right)$$

If $x \approx l^{(1)}$:

If x if far from $l^{(1)}$:

Note: Do perform feature scaling before using the Gaussian kernel.

Radial Basis Function (RBF) Kernels, Cont'd

Example:

$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad f_1 = \exp\left(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2}\right)$$

SVM With Kernels

```
Given (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}), choose l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(m)} = x^{(m)}. Given example x:
f_1 = \text{similarity}(x, l^{(1)})
f_2 = \text{similarity}(x, l^{(2)})
```

Hypothesis: Given x , compute features $f \in \mathbb{R}^{m+1}$ Predict "y=1" if $\theta^T f \geq 0$

Training:

. . .

$$\min_{\theta} C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T f^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T f^{(i)}) + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Parameters for RBF Kernels: Part I

Large C: Lower bias, higher variance.

Small C: Higher bias, lower variance.

Large σ^2 : Features f_i vary more smoothly.

Higher bias, lower variance.

Small σ^2 : Features f_i vary less smoothly.

Lower bias, higher variance.

Parameters for RBF Kernels: Part II

$$k_{\text{rbf}}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$$

Parameters for RBF Kernels: Part III

Choice of Kernels

Note: Not all similarity functions $\operatorname{similarity}(x, l)$ make valid kernels. (Need to satisfy technical condition called "Mercer's Theorem" to make sure SVM packages' optimizations run correctly, and do not diverge).

Common kernel functions include:

Polynomial Kernel (kernel='poly') (quadratic kernels d = 2 are commonly used in NLP.

$$K(x_1, x_2) = (x_1^{\mathsf{T}} x_2 + 1)^d$$

where *d* is a hyperparameter.

Radial Basis Function Kernel (kernel='rbf')

$$K(x_1, x_2) = \exp\left\{-\frac{\|x_1 - x_2\|^2}{2\sigma^2}\right\}$$

where σ is a hyperparameter.

• Sigmoid Kernel (kernel='sigmoid') (hyperbolic tangent function, a rescaling of the sigmoid function)

$$K(x_1, x_2) = \tanh(\kappa x_1^{\top} x_2 + \theta)$$

where κ and θ are hyperparameters.

Kernelized SVM: Pros and Cons

Pros

- Can perform well on a range of datasets
- Versatile: different kernel functions can be specified, or custom kernels can be defined for specific data types.
- Works well for both low-and highdimensional data.

Cons

- Efficiency (runtime speed and memory usage) decreases as training set size increases (e.g., over 50000 samples).
- Needs careful normalization of input data and parameter tuning.
- Does not provide direct probability estimates.
- Difficult to interpret why a prediction was made.

Logistic Regression Versus SVM

n= number of features ($x\in\mathbb{R}^{n+1}$), m= number of training examples If n is large (relative to m):

Use logistic regression, or SVM without a kernel ("linear kernel")

If n is small, m is intermediate: Use SVM with Gaussian kernel

If n is small, m is large:

Create/add more features, then use logistic regression or SVM without a kernel

Neural network likely to work well for most of these settings but may be slower to train.

