Examen de rattrapage d'Algèbre 1 - Durée 01h30

Exercice 1. (04 pts)

Les propositions suivantes sont-elles vraies ou fausses? Justifier vos réponses.

1. Soient \mathcal{P} et \mathcal{Q} deux propositions logiques, alors on a l'équivalence suivante :

$$(\mathcal{P} \Rightarrow \mathcal{Q}) \iff (\overline{\mathcal{Q}} \Rightarrow \overline{\mathcal{P}}).$$

2. Soit $f: E \longrightarrow F$ une application, et A une partie de E alors

$$C_F f(A) \subset f(C_E A)$$

- 3. Sur \mathbb{R} , on définit la relation : $x\mathcal{R}y \Leftrightarrow \cos^2 x + \sin^2 y = 1$, alors \mathcal{R} est anti-symétrique.
- 4. Soit \mathcal{R} une relation d'équivalence sur un ensemble E, si $x\mathcal{R}y$ alors $\overline{x} = \overline{y}$.

Exercice 2. (05 pts)

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{Q}$ une application définie par $f(n) = \frac{1}{n^2}$.

- 1. Calculer Im(f) et $f^{-1}(B)$ tel que $B = \{\frac{1}{2}, 9\}$.
- 2. f est-elle injective, surjective?

Exercice 3. (05 pts)

Soient $\lambda \in \mathbb{R}$ et \mathcal{R} la relation binaire définie par :

$$\forall x, y \in \mathbb{R}: x\mathcal{R}y \iff x^3 - y^3 = \lambda(x^2 - y^2)$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. On pose $\lambda=4$, calculer la classe d'équivalence de 2.

Exercice 4. (06 pts)

Soit $G = \mathbb{R} - \{-2\}$ et * une loi définie sur G par :

$$x * y = xy + 2(x+y) + 2$$

1. Montrer que (G, *) est un groupe commutatif.

Corrigé et barème

Corrigé 1. 0,25 pour chacune des réponses +0,75 pour la justification

1. Vraie la preuve de cette équivalence peut être donnée de deux manières différentes. Soit enn utilisant l'équivalence $(\mathcal{P}\Rightarrow\mathcal{Q})\iff (\mathcal{Q}\vee\overline{\mathcal{P}})$, on obtient :

$$\begin{split} (\overline{\mathcal{Q}} \Rightarrow \overline{\mathcal{P}}) & \Longleftrightarrow (\overline{\mathcal{P}} \vee \overline{\overline{\mathcal{Q}}}) \\ & \Longleftrightarrow (\overline{\mathcal{P}} \vee \mathcal{Q}) \\ & \Longleftrightarrow (\mathcal{Q} \vee \overline{\mathcal{P}}) \\ & \Longleftrightarrow (\mathcal{P} \Rightarrow \mathcal{Q}) \end{split}$$

Soit en utilisant les valeurs de vérité des implications $(\mathcal{P} \Rightarrow \mathcal{Q})$ et $(\overline{\mathcal{Q}} \Rightarrow \overline{\mathcal{P}})$.

- 2. Fausse Il suffit de prendre un contre exemple.
- 3. Fausse \mathcal{R} n'est pas anti-symétrique, cela veut dire

$$\exists x, y \in \mathbb{R}$$
 tels que $x\mathcal{R}y$ et $y\mathcal{R}x$ mais $x \neq y$

On a $0\mathcal{R}2\pi$ car $\cos^2 2\pi + \sin^2 0 = 1$, et aussi $2\pi\mathcal{R}0$ car $\cos^2 0 + \sin^2 2\pi = 1$ mais $0 \neq 2\pi$.

4. Vraie La double inclusion $(\overline{x} \subset \overline{y} \text{ et } \overline{y} \subset \overline{x})$ doit être montrée.

Corrigé 2. Soit $f: \mathbb{N}^* \longrightarrow \mathbb{Q}$ une application définie par $f(n) = \frac{1}{n^2}$.

1.

$$Im(f) = \{f(n)/n \in \mathbb{N}^*\}....0,5$$

= $\{1, \frac{1}{4}, \frac{1}{9}, ...\}....0,75$

$$f^{-1}(B) = \{n \in \mathbb{N}^* / f(n) \in B\} 0,5$$
$$= \{n \in \mathbb{N}^* / f(n) \in \{\frac{1}{2}, 9\}\} = \{\pm \sqrt{2}, \pm \frac{1}{3}\} \cap \mathbb{N}^* = \emptyset 0,75$$

2. f est injective \Leftrightarrow $\Big(\forall x_1, x_2 \in \mathbb{Z}, f(x_1) = f(x_2) \Rightarrow x_1 = x_2\Big)$ 0,75 Soient $n_1, n_2 \in \mathbb{N}^*$, tels que $f(n_1) = f(n_2) \Rightarrow \frac{1}{n_1^2} = \frac{1}{n_2^2} \Rightarrow n_1 = n_2$0,5. D'après la question 1, on peut remarquer que f n'est pas surjective i.e

$$\exists y \in \mathbb{Q}, \forall n \in \mathbb{N}^*, f(n) \neq y....0,75$$

pour
$$y = \frac{1}{2} \in \mathbb{Q}, \forall n \in \mathbb{N}^*, f(n) \neq \frac{1}{2}$$
....0,5

Corrigé 3. 1. \mathcal{R} est une relation d'équivalence.

- Réflexive.0,5
- Symétrique.1pt
- Transitive.1pt
- 2. Soit $\lambda = 4$, déterminons la classe d'équivalence de 2.

$$\overline{2} = \{x \in \mathbb{R}/x\mathcal{R}2\}....0,75$$
pt

$$x \in \overline{2} \Leftrightarrow x\mathcal{R}2 \Leftrightarrow x^3 - 2^3 = 4(x^2 - 2^2)....0,5\mathbf{pt}$$

 $\Leftrightarrow x^3 - 4x^2 + 8 = 0 \Leftrightarrow (x - 2)(x^2 - 2x - 4) = 0....0,75$

Les solutions de l'équation ci-dessus sont $1+\sqrt{5},1-\sqrt{5}$ et 2. Ainsi $\overline{2}=\{2,1+\sqrt{5},1-\sqrt{5}\}.....0,5$

Corrigé 4. Soit $G = \mathbb{R} - \{-2\}$ et * une loi définie sur G par :

$$x * y = xy + 2(x+y) + 2$$

Montrons que (G, *) est un groupe commutatif.

1. * est une loi de composition interne : en effet, $x * y \in \mathbb{R}$ car l'addition et la multiplication sont stables dans \mathbb{R} 0,5pt. Soient maintenant x, y deux réels différents de -2 et supposons par l'absurde que x * y = -2 alors

$$xy + 2(x + y) + 2 = -2 \Rightarrow xy + 2x + 2y + 4 = 0$$
$$\Rightarrow x(y + 2) + 2(y + 2) = 0$$
$$\Rightarrow (x + 2)(y + 2) = 0$$
$$\Rightarrow x = -2 \lor y = -2$$

Ce qui est une contradiction, ainsi $x * y \in \mathbb{R} - \{-2\}$1pt.

2. La commutativité : soient $x, y \in G^2$

$$x * y = xy + 2(x + y) + 2 = yx + 2(y + x) + 2 = y * x$$

d'où * est commutative....0,5pt

3. L'associativité : Soient $x,y,z\in G$: $(x*y)*z\stackrel{?}{=}x*(y*z)$

$$(x*y)*z = (xy+2(x+y)+2)*z = xyz+2z(x+y)+2z+2(xy+2(x+y)+2+z)+2$$

$$= xyz+2xz+2yz+2xy+4x+4y+4z+6 \quad0,5pt$$

$$x*(y*z) = x*(yz+2(y+z)+2) = xyz+2xy+2xz+2x+2(yz+2(y+z)+2+x)+2$$

$$= xyz+2xy+2xz+2yz+4y+4z+6+4x \quad0,5pt$$

4. L'existence de l'élément neutre : $\exists e? \in \mathbb{R} - \{-2\}, \forall x \in \mathbb{R} - \{-2\} : x * e = x \dots 0,5$ on a $x * e = x \Rightarrow xe + 2(x + e) + 2 = x \Rightarrow xe + x + 2e + 2 = 0$

on a
$$x * e = x \Rightarrow xe + 2(x + e) + 2 = x \Rightarrow xe + x + 2e + 2 = 0$$

 $\Rightarrow e(x + 2) = -(x + 2)$ 0,75pt ce qui implique $e = -1 \in \mathbb{R}\{-2\}$ 0,25

5. L'existence du symétrique : $\forall x \in \mathbb{R} - \{-2\}, \exists ?x' \in \mathbb{R} - \{-2\} : x*x' = 0....0,5$

On a
$$x * x' = e = -1 \Rightarrow xx' + 2(x + x') + 2 = -1 \Rightarrow x'(x + 2) = -3 - 2x$$

$$\Rightarrow x' = \frac{-3 - 2x}{x + 2} \stackrel{?}{\in} \mathbb{R} - \{-2\}$$
0,5

On montre que $x' \in \mathbb{R} - \{-2\}$ c'est à dire $x' \neq -2$. On suppose que

$$x' = \frac{-3 - 2x}{x + 2} = -2 \Rightarrow -3 - 2x = -2x - 4 \Rightarrow -3 = -4$$

c'est absurde, d'où $x' \in \mathbb{R} - \{-2\}$0,5