Weight- and output-stationary reconfigurable 2D systolic array-based Al accelerator and mapping on Cyclone IV GX — ECE 284 Group10

Group Member: Zhongdongming Dai, Jheng-Ying Lin, Kejia Ruan, Yanghe Sun, Hongjie Wang

In order to improve the efficiency and versatility of the 2D systolic array hardware, our group present a reconfigurable approach, with several additional alphas.

- Experimental Results

Quantization Aware Training

	VGG16	Resnet20(alpha)	
Accuracy	92%	88%	
Quant Error	2.257e-07	0.7054	

Mapping on FPGA (Cyclone IV GX)

Cyclone IV GX FPGA Mapping of Vanilla Version			
FMax(MHz)	127.99		
OP	128		
GOPs/s	16.38		
TOPs/W	3.76e-09		
Core Dynamic Power(mW)	34.01		
Logic Elements	22,414		
Registers	12,098		

- Alpha1 Unstructured and Structured Pruning VGG16

	Sparsity	Acc before fine-tuning	Acc after fine-tuning
Unstructured	0.8	10%	89%
Structured	0.8	10%	79%

- Alpha2 Quantization Aware Trained Resnet20 Mapping

layer = list(model.children())[4][1].conv1 # 2nd BasicBlock's 1st Conv2d Layer
layer

QuantConv2d(
 8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 (weight_quant): weight_quantize_fn()
}

Layer Info: Input nij: 18*18 Output nij: 16*16 Kij: 3*3

- P_Mem Address.txt needs 256(o_nij) * 9(kij) = 2304 lines and each line needs 12 bits to represent

- Alpha3 Concurrent OFIFO Read/Write

- Concurrently read/write OFIFO can reduce FIFO depth.
- Reduce required depth from 64 to 18, decreasing hardware complexity and costs.

- Acknowledgements

Verification Process:

This project builds upon contents from Prof. Mingu Kang 's Course ECE 284, VVIP Lab UCSD 24 Fall