Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 7

Matr.nr.:		
Nachname:		
Vorname:		
Tutorium:	Nr. Name des Tutors	•
Ausgabe:	4. Dezember 2013	
Abgabe:	13. Dezember 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34	5
rechtzeitin Ihrer	rerden nur korrigiert, wenn sie tig, eigenen Handschrift, er Seite als Deckblatt und	
	oeren linken Ecke zusammengetacker	t
Vom Tutor au	ıszufüllen:	
erreichte Pu	nkte	
Blatt 7:	/ 19	
Blätter 1 – 7:	: / 131	

Aufgabe 7.0 (keine Punkte; man freut sich auch so ;-))

Gehen Sie hin:

Die Fachschaft Mathe/Info & Forum InWi laden ein zum

Am Freitag den 13. Dezember 2013 im Infobau

Beginn 17:30 Uhr draußen 19:00 Uhr drinnen

Aufgabe 7.1 (2+3=5 Punkte)

Für $n \in \mathbb{N}_+$ seien gerichtete Graphen $G_n = (V_n, E_n)$ wie folgt definiert:

- $V_n = \{x \mid x \in \mathbb{N}_+ \land x \le n\}$ und
- $E_n = E_{\infty} \cap V_n \times V_n$.
- Dabei sei $E_{\infty} = \{(x \operatorname{div} 2, x) \mid x \in \mathbb{N}_{+}\}.$

Aufgaben:

- a) Zeichnen Sie G_6 und G_9 . Benennen Sie dabei bitte alle Knoten.
- b) Geben Sie für jedes $n \in \mathbb{N}_+$ und jeden Knoten von G_n seinen Eingangsund Ausgangsgrad an.

Lösung 7.1

a)

b) In G_n gibt es von jedem inneren Knoten i Kanten zu den Knoten 2i und unter Umständen 2i + 1. Also sind genau die Knoten b Blätter, für die 2b > n, also b > n/2, ist. Und höchstens ein innerer Knoten hat nur einen Nachfolger, nämlich dann, wenn zwar $2i \le n$ ist, aber 2i + 1 > n.

Anders gesagt: Für jedes $n \in \mathbb{N}_+$ hat in G_n Knoten i den

Ausgangsgrad
$$\begin{cases} 0 & \text{falls } i > n/2 \\ 1 & \text{falls } i \le n/2 \land i > (n-1)/2 \\ 2 & \text{sonst} \end{cases}$$

Der Eingangsgrad von Knoten 1 (Wurzel) ist immer 0. Der Eingangsgrad aller anderen Knoten ist immer 1.

Aufgabe 7.2 (1+1+2=4 Punkte)

Beweisen Sie durch vollständige Induktion, dass in jedem gerichteten Graphen die Summe der Eingangsgrade aller Knoten gleich der Summe aller Ausgangsgrade aller Knoten ist.

Lösung 7.2

Vollständige Induktion über die Knotenzahl *n* geht, ist aber mühsam. Einfacher ist vollständige Induktion über die Kantenzahl *m*:

Induktionsanfang: m=0: In einem Graphen ohne Kanten hat jeder Knoten Eingangs- und Ausgangsgrad 0, also sind die Summen auch beide gleich 0.

Induktionsvoraussetzung: Für ein beliebiges aber festes *m* gelte: In allen (!) Graphen mit *m* Kanten ist die Summe der Eingangsgrade aller Knoten gleich der Summe aller Ausgangsgrade aller Knoten.

Induktionsschluss: $m \rightsquigarrow m+1$: Zu zeigen: Für alle Graphen mit m+1 Kanten gilt: Die Summe der Eingangsgrade aller Knoten ist gleich der Summe aller Ausgangsgrade aller Knoten.

Zum Beweis sei G = (V, E) ein beliebiger aber Graph mit m + 1 Kanten. Zeige: In G ist die Summe der Eingangsgrade aller Knoten gleich der Summe aller Ausgangsgrade aller Knoten.

Sei $e \in E$ eine beliebige Kante von G und $G' = (V, E \setminus \{e\})$ der «Graph G ohne die Kante e».

Dann ist in G' nach Induktionsvoraussetzung die Summe der Eingangsgrade aller Knoten gleich der Summe aller Ausgangsgrade aller Knoten. Sei e = (x, y) Dann wird durch Hinzufügen der Kante e der Ausgangsgrad von x um 1 erhöht und der Eingangsgrad von y um 1 erhöht, sonst ändert sich nichts. Es wird also sowohl die Summer aller Eingangsgrade als auch die Summe aller Ausgangsgrade um 1 erhöht. Da diese Summen in G' nach Induktionsvoraussetzung gleich waren, sind sie in G auch gleich.

Es seien $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ zwei gerichtete Graphen mit $V_2 \subseteq V_1$ und $E_2 = E_1 \cap V_2 \times V_2$.

a) Ist die Aussage

«Wenn G_1 streng zusammenhängend ist, dann ist auch G_2 streng zusammenhängend.»

richtig oder falsch?

b) Beweisen Sie Ihre Antwort aus Teilaufgabe a).

Lösung 7.3

- a) falsch
- b) Betrachte das "Dreieck" $G_1 = (\{0,1,2\}, \{(0,1), (1,2), (2,0)\})$, das streng zusammenhängend ist. Für $V_2 = \{0,1\}$ ist $G_2 = (V_2, \{(0,1)\})$ und das ist offensichtlich *nicht* streng zusammenhängend (man kommt nicht von 1 nach 0).

Aufgabe 7.4 (1+1=2 Punkte)

- a) Was kann man über den größten Eingangsgrad eines Knotens eines gerichteten Graphen mit mindestens 3 Knoten sagen, dessen Knoten alle Ausgangsgrad 3 haben?
- b) Was kann man über den größten Ausgangsgrad eines Knoten eines gerichteten Graphen mit $n \ge 3$ Knoten und $m \ge 1$ Kanten sagen?

Lösung 7.4

- a) Der größte vorkommende Eingangsgrad ist mindestens 3.
 - Begründung (nicht verlangt): Da man mindestens 3*n* Kanten hat, können nicht alle Knoten Eingangsgrad echt kleiner als 3 haben (vergleiche Aufgabe 7.2).
- b) Der größte vorkommende Ausgangsgrad ist mindestens $\lceil m/n \rceil$.

 Begründung (nicht verlangt): Die Summe der n Ausgangsgrade der K

Begründung (nicht verlangt): Die Summe der n Ausgangsgrade der Knoten muss m ergeben.

Aufgabe 7.5 (1+1+1+1+1=5 Punkte)

Für $n \in \mathbb{N}_+$ seien gerichtete Graphen $G_n = (V_n, E_n)$ wie folgt definiert:

- $V_n = \mathbb{G}_n$ und
- $E_n = \{(x,y) \mid x,y \in V_n \text{ und es gibt eine Primzahl } p$, die sowohl x als auch y teilt $\}$ Hinweis: Zur Definition von «Primzahl» siehe Aufgabe 3.3.

Aufgaben:

a) Für welche n ist G_n streng zusammenhängend?

- b) Für welche n enthält G_n Schlingen und welche?
- c) Zeichnen Sie G₉.
- d) Geben Sie für alle $n \in \mathbb{N}_+$ die Relation E_n^* an.
- e) Es seien x und y zwei Knoten, so dass in G_n ein gerichteter Pfad von x nach y führt. Wie lang sind die kürzesten Pfade von x nach y höchstens?

Lösung 7.5

- a) Nur für n = 1. (Andernfalls hat man den isolierten Knoten 1.)
- b) Für alle $n \in \mathbb{N}_+$ hat G_n Schlingen, nämlich an allen Knoten außer der 1 (sofern die zu G_n gehört, also falls $n \ge 2$).

- d) Für alle $n \in \mathbb{N}_+$ ist $E_n^* = \{(x,y) \mid x,y \in \mathbb{G}_n \land x \neq 1 \land y \neq 1\} \cup \{(1,1)\}$ oder anders hingeschrieben: $E_n^* = (\mathbb{G}_n \setminus \{1\}) \times (\mathbb{G}_n \setminus \{1\}) \cup \{(1,1)\}$
- e) Die Pfade haben höchstens Länge 2.