

数学分析资料

Author: 韦明

Date: March 13, 2025

E-mail: wm31415926535@outlook.com

Contents

Chapte	r 1 数等	萨分析	1
1.1	历年卷	卷	1
	1.1.1	2024-2025 年度数学分析 (下) 冬季学期试卷 (回忆版)	2
	1.1.2	2024-2025 年度数学分析 (上) 秋季学期试卷 (回忆版)	4

Chapter 1 数学分析

1.1 历年卷

1.1.1 2024-2025 年度数学分析 (下) 冬季学期试卷 (回忆版)

一、判断题(10道题,一题2分)

1.
$$r = ae^{\theta}$$
 为阿基米德螺线。 (F)

4.
$$\psi$$
 的读音是" 佛爱 phi"。 (F)

二、计算题 (4 道, 每题 10 分)

- 1. (10 分) 求 dω.(每题五分)
 - (1) R dx dy + P dy dz + Q dz dx
 - (2) Pdx + Qdy + Rdz
- 2. (10 分) 判断 $\sum_{i=1}^{\infty} (1-x)x^{n}$ 在区间 [0,1] 的一致收敛性。

3. (10 分) 求
$$\iint_D \sqrt{\frac{1+x^2+y^2}{1-x^2-y^2}}$$
, 其中 D 为圆 $x^2+y^2=1$ 在第一象限的部分。

4.
$$(10 分) 求 \int_0^{+\infty} \frac{\sin x}{x}$$
。

三、证明题 (4 道, 每题 10 分)

1. (10 分) 对任意在 [a, b] 上有界的函数 f(x), 恒有

$$\lim_{\lambda \to 0} \bar{S}(P) = L.$$

2. (10 分) 设 $\psi(x)$ 在 $[0,+\infty]$ 上连续且单调, $\lim_{x\to\infty} \psi(x) = 0$, 证明

$$\lim_{p \to \infty} \int_0^{+\infty} \psi(x) \sin px dx = 0.$$

3. (10 分) 设函数 f 在 [a,b] 上单调上升且非负,函数 g(x) 在 [a,b] 上可积,则存在 $c \in [a,b]$ 使得

$$\int_{a}^{b} f(x)g(x)dx = f(b) \int_{c}^{b} g(x)dx.$$

4. (10 分) 证明 $\frac{x\mathrm{d}x+y\mathrm{d}y}{x^2+y^2}$ 为某个二元函数的全微分,并求出所有的这种二元函数。

1.1.2 2024-2025 年度数学分析 (上) 秋季学期试卷 (回忆版)

一、判断题 (10 道, 每题 2 分)

1. 有上界的非空数集其上界集合必有最小值。	(T	')	
------------------------	----	----	--

3. 若
$$a_n \le b_n \le c_n$$
, 且 $\{a_n\}$, $\{c_n\}$ 均收敛,则 b_n 也收敛。 (F)

4.
$$\sigma$$
 的读音是 delta。 (F)

二、计算题 (2题, 每题 10分)

- 1. (10 分) 设 $y = (u + v, u v, u^2 v), x = (u, v)$ 求 $\frac{dy}{dx}$ 。
- 2. $(10 \, \text{分})$ 求椭圆 $x^2 + 3y^2 = 12$ 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大。

三、证明题 (6 题, 每题 10 分)

- 1. (10 分) 证明: $\sqrt{2} + \sqrt{5}$ 不是有理数。
- 2. (10分)证明:欧式空间中的紧集等价于有界闭集。
- 3. (10 分) 设 f(x) 在 $(0, +\infty)$ 上连续,且满足 $f(x^2) = f(x), x \in (0, +\infty)$,证明 f(x) 在 $(0, +\infty)$ 上为常数函数。
- 4. (10分)证明:欧式空间中,定义域为紧集的连续函数为一致连续函数。
- 5. (10 分) 已知 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 证明:

$$\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab.$$

6. (10 分) 证明: 函数 $f(x) = \sin(x^2)$ 在区间 [0,1] 上一致连续,在 \mathbb{R} 上不一致连续。