

STTA1206D/DI/G

TURBOSWITCH ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	12A
V _{RRM}	600V
t _{rr} (typ)	28ns
V _F (max)	1.5V

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERATIONS: FREEWHEEL OR BOOSTER DIODE.
- ULTRA-FAST AND SOFT RECOVERY.
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR.
- HIGH FREQUENCY OPERATIONS.
- INSULATED PACKAGE: TO-220AC Electrical insulation: 2500V_{RMS} Capacitance < 7 pF

DESCRIPTION

TURBOSWITCH, family, drastically cuts losses in both the diode and the associated switching IGBT or MOSFET in all "freewheel mode" operations and is particularly suitable and efficient in motor control freewheel applications and in booster

diode applications in power factor control circuitries.

Packaged in TO-220AC, isolated TO-220AC and D²PAK, these 600V devices are particularly intended for use on 240V domestic mains.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
V_{RRM}	Repetitive peak reverse voltage			600	V
V_{RSM}	Non repetitive peak rev	Non repetitive peak reverse voltage			V
I _{F(RMS)}	RMS forward current	TO-220AC / D2PAK	30	Α	
		TO-220AC ins.	20	Α	
I _{FRM}	Repetitive peak	TO-220AC/D2PAK tp=5µs F=5kHz square		160	Α
	forward current			120	Α
I _{FSM}	Surge non repetitive forward current tp=10 ms sinusoidal			110	Α
Tj	Maximum operating junction temperature			150	°C
T _{stg}	Storage temperature range			-65 to 150	°C

TM: TURBOSWITCH is a trademark of STMicroelectronics

May 2002 - Ed: 5B

STTA1206D/DI/G

THERMAL AND POWER DATA

Symbol	Parameter	Test condition	Value	Unit	
R _{th(j-c)}	Junction to case thermal resistance	TO-220AC / D ² PAK TO-220AC ins.		1.9 3.0	°C/W
P ₁	Conduction power dissipation $I_{F(AV)} = 12A \delta = 0.5$	TO-220AC / D ² PAK TO-220AC ins.	Tc= 108°C Tc= 84°C	22	W
P _{max}	Total power dissipation Pmax = P1 + P3 (P3 = 10% P1)	TO-220AC /D ² PAK TO-220AC ins.	Tc= 104°C Tc= 78°C	24	W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
V _F *	Forward voltage drop	I _F =12A	Tj = 25°C Tj = 125°C		1.25	1.75 1.5	V V
I _R **	Reverse leakage current	$V_R = 0.8 x$ V_{RRM}	Tj = 25°C Tj = 125°C		2	100 5	μA mA
V_{to}	Threshold voltage	Ip < 3.I _{AV}	Tj = 125°C			1.15	V
rd	Dynamic resistance					29	mΩ

Test pulse :

To evaluate the maximum conduction losses use the following equation : $P = V_{to} \times I_{F(AV)} + rd \times I_{F^2(RMS)}$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{rr}	Reverse recovery time	$Tj = 25^{\circ}C$ $I_F = 0.5 A$ $I_R = 1A$ $Irr = 0.25A$		28		ns
		$I_F = 1 \text{ A} dI_F/dt = -50 \text{A}/\mu \text{s} V_R = 30 \text{V}$			55	
I _{RM}	Maximum reverse recovery current	$Tj = 125^{\circ}C$ $VR = 400V$ $I_F = 12A$ $dI_F/dt = -96$ $A/\mu s$			7.5	А
		dI _F /dt = -500 A/μs		16		
S factor	Softness factor	$Tj = 125^{\circ}C \ V_R = 400V \ I_F = 12A$ $dI_F/dt = -500 \ A/\mu s$		0.45		-

TURN-ON SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{fr}	Forward recovery time	$Tj = 25^{\circ}C$ $I_F = 12$ A, $dI_F/dt = 96$ A/ μ s measured at, $1.1 \times V_F$ max			500	ns
V _{Fp}	Peak forward voltage	$Tj = 25^{\circ}C$ $I_F = 12A$, $dI_F/dt = 96 A/\mu s$			10	V

2/9

^{*} tp = 380 μ s, δ cycle < 2%

^{**} tp = 5 ms, δ cycle < 2%

Fig. 1: Conduction losses versus average current.

Fig. 3: Relative variation of thermal transient impedance junction to case versus pulse duration.

Fig. 5: Reverse recovery time versus dlF/dt.

Fig. 2: Forward voltage drop versus forward current.

Fig. 4: Peak reverse recovery current versus dlF/dt.

Fig. 6: Softness factor (tb/ta) versus dl_F/dt.

Fig. 7: Relative variation of dynamic parameters versus junction temperature (Reference Tj=125°C).

Fig. 8: Transient peak forward voltage versus dI_F/dt.

Fig. 9: Forward recovery time versus dlF/dt.

4/9

APPLICATION DATA

The TURBOSWITCH is especially designed to provide the lowest overall power losses in any "FREEWHEEL Mode" application (Fig.A) considering both the diode and the companion

transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

Fig. A: "FREEWHEEL" MODE.

APPLICATION DATA (Cont'd)

Fig. B: STATIC CHARACTERISTICS

Conduction losses:

$$P1 = V_{t0} \cdot I_{F(AV)} + R_d \cdot I_{F^2(RMS)}$$

Reverse losses:

$$P2 = V_R \cdot I_R \cdot (1 - \delta)$$

Fig. C: TURN-OFF CHARACTERISTICS

Turn-on losses:

(in the transistor, due to the diode)

P5 =
$$\frac{V_R \times I_{RM^2} \times (3 + 2 \times S) \times F}{6 \times dI_F / dt} + \frac{V_R \times I_{RM} \times I_L \times (S + 2) \times F}{2 \times dI_F / dt}$$

Turn-off losses (in the diode):

$$P3 = \frac{V_R \times I_{RM^2} \times S \times F}{6 \times dI_F / dt}$$

P3 and P5 are suitable for power MOSFET and IGBT

Fig. D: TURN-ON CHARACTERISTICS

Turn-on losses:

$$P4 = 0.4 (V_{FP} - V_{F}) \cdot I_{Fmax} \cdot t_{fr} \cdot F$$

PACKAGE DATA

	DIMENSIONS				
REF.	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
Α	4.40	4.60	0.173	0.181	
A1	2.49	2.69	0.098	0.106	
A2	0.03	0.23	0.001	0.009	
В	0.70	0.93	0.027	0.037	
B2	1.14	1.70	0.045	0.067	
С	0.45	0.60	0.017	0.024	
C2	1.23	1.36	0.048	0.054	
D	8.95	9.35	0.352	0.368	
Е	10.00	10.40	0.393	0.409	
G	4.88	5.28	0.192	0.208	
L	15.00	15.85	0.590	0.624	
L2	1.27	1.40	0.050	0.055	
L3	1.40	1.75	0.055	0.069	
М	2.40	3.20	0.094	0.126	
R	0.40	typ.	0.016	6 typ.	
V2	0°	8°	0°	8°	

FOOTPRINT DIMENSIONS (in millimeters)

PACKAGE DATA

TO-220AC (JEDEC outline)

Cooling method : by conduction (C)

■ Recommanded maximum torque value: 0.7m.N

PACKAGE DATA

INSULATED TO-220AC (JEDEC outline)

Cooling method: by conduction (C).

Recommended maximum torque value: 1 m.N

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTA1206D	STTA1206D	TO-220AC	1.86g	50	Tube
STTA1206DI	STTA1206DI	TO-220AC Ins.	1.86g	250	Bulk
STTA1206G	STTA1206G	D ² PAK	1.48g	50	Tube
STTA1206G-TR	STTA1206G	D ² PAK	1.48g	500	Tape & reel

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

