

SEP 23, 2023

# OPEN ACCESS



#### DOI:

dx.doi.org/10.17504/protocol s.io.kqdq3xk41q25/v1

**Protocol Citation:** Elias Adriaenssens 2023. Purification of NAP1 or GST-NAP1. protocols.io https://dx.doi.org/10.17504/p rotocols.io.kqdg3xk41g25/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License. which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

**Protocol status:** Working We use this protocol and it's working

Created: Sep 14, 2023

Last Modified: Sep 23,

2023

# Purification of NAP1 or GST-NAP1

### Elias Adriaenssens<sup>1</sup>

<sup>1</sup>Sascha Martens lab, University of Vienna, Max Perutz Labs - Vienna



#### Elias Adriaenssens

Sascha Martens lab, University of Vienna, Max Perutz Labs - ...

#### **ABSTRACT**

This protocol describes purification of GST-NAP1 and unlabelled NAP1.

#### **ATTACHMENTS**

840-2174.pdf

#### **MATERIALS**

#### **Materials**

- pGEX-4T1 vector
- Glutathione Sepharose 4B beads (GE Healthcare)
- Superose 6 Increase 10/300 GL column (Cytiva)
- Amicon filter (Merck Millipore)

#### Lysis buffer

| A                                              | В      |
|------------------------------------------------|--------|
| Tris-HCl pH 7.4                                | 50 mM  |
| NaCl                                           | 300 mM |
| DTT                                            | 1 mM   |
| MgCl <sub>2</sub>                              | 2 mM   |
| glycerol                                       | 5%     |
| β-mercaptoethanol                              | 2 mM   |
| cOmplete EDTA-free protease inhibitors (Roche) |        |
| DNase (Sigma)                                  |        |

#### Wash buffer

| A               | В     |
|-----------------|-------|
| Tris-HCl pH 7.4 | 50 mM |

#### **PROTOCOL** integer ID:

88168

Keywords: ASAPCRN

| A        | В      |
|----------|--------|
| NaCl     | 300 mM |
| glycerol | 5%     |
| DTT      | 1 mM   |

#### High-salt wash buffer

| A               | В      |
|-----------------|--------|
| Tris-HCl pH 7.4 | 50 mM  |
| NaCl            | 700 mM |
| glycerol        | 5%     |
| DTT             | 1 mM   |

#### **SEC buffer**

| А               | В      |
|-----------------|--------|
| Tris-HCl pH 7.4 | 25 mM  |
| NaCl            | 300 mM |
| DTT             | 1 mM   |

#### **Equipment**

SORVAL RC6+ centrifuge F21S-8x50Y rotor (Thermo Scientific)

## **Purification of NAP1 or GST-NAP1**

18h 46m

- 1 To purify NAP1 or GST-NAP1, synthesize or clone human NAP1 cDNA in a pGEX-4T1 vector with an N-terminal GST tag followed by a TEV cleavage site (RRID:Addgene\_208870).
- For expression of GST-TEV-NAP1 in *E. coli*, transform the pGEX-4T1 vector encoding GST-TEV-NAP1 into *E. coli* Rosetta pLySS cells. Grow the cells in 2xTY medium at  $37 \, ^{\circ}\text{C}$  until an OD<sub>600</sub> of 0.4 and then continue at  $37 \, ^{\circ}\text{C}$ .

3 Once the cells reached an  $OD_{600}$  of 0.8, induce protein expression with [M] 50 micromolar ( $\mu M$ )

IPTG for (5) 16:00:00 at \$ 18 °C.

Collect the cells by centrifugation and resuspend it in lysis buffer.

# **Lysis buffer**

| A                                              | В      |
|------------------------------------------------|--------|
| Tris-HCl pH 7.4                                | 50 mM  |
| NaCl                                           | 300 mM |
| DTT                                            | 1 mM   |
| MgCl <sub>2</sub>                              | 2 mM   |
| glycerol                                       | 5%     |
| β-mercaptoethanol                              | 2 mM   |
| cOmplete EDTA-free protease inhibitors (Roche) |        |
| DNase (Sigma)                                  |        |

- 5 Sonicate cell lysates.
- Sonicate cell lysates for 00:00:30 . (1/2) 5.1

30s

5.2 Sonicate cell lysates for 00:00:30 . (1/2)

30s

Clear the lysates by centrifugation at 18000 rpm, 4°C, 00:45:00 in a SORVAL RC6+ 6 centrifuge with an F21S-8x50Y rotor (Thermo Scientific).

45m



8 Centrifuge the samples to pellet the beads and remove the unbound lysate.



**9** Wash the beads twice with wash buffer, once with high salt wash buffer, and two more times with wash buffer.

#### Wash buffer

| A               | В      |
|-----------------|--------|
| Tris-HCl pH 7.4 | 50 mM  |
| NaCl            | 300 mM |
| glycerol        | 5%     |
| DTT             | 1 mM   |

#### High-salt wash buffer

| A | 1               | В      |
|---|-----------------|--------|
| ٦ | Γris-HCl pH 7.4 | 50 mM  |
| 1 | NaCl            | 700 mM |
| Ç | glycerol        | 5%     |
|   | DTT             | 1 mM   |

10

Incubate beads Overnight at 4 °C with TEV protease (for unlabeled NAP1) or A mL of MI 50 millimolar (mM) reduced glutathione dissolved in wash buffer (for GST-NAP1).

2h

Increase 10/300 GL column (Cytiva).

12 Elute proteins with SEC buffer.

#### **SEC buffer**

| A               | В      |
|-----------------|--------|
| Tris-HCl pH 7.4 | 25 mM  |
| NaCl            | 300 mM |
| DTT             | 1 mM   |

13 Analyze fractions by SDS-PAGE and Coomassie staining.



14 Pool fractions containing purified NAP1 or GST-NAP1 protein.

After concentrating the purified protein, aliquot the protein and snap-freeze in liquid nitrogen.

Store proteins at 8 -80 °C .

