

Computer-System Architecture, OS Structure and Operations

Chandravva Hebbi

Department of Computer Science

Slides Credits for all PPTs of this course

- The slides/diagrams in this course are an adaptation,
 combination, and enhancement of material from the following resources and persons:
- 1. Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Computer-System Architecture, OS Structure & Operations

Venkatesh Prasad

Department of Computer Science

Computer Architecture and Computer Organization

PES
UNIVERSITY ONLINE

Computer Architecture	Computer Organization
Computer Architecture is concerned with the way hardware components are connected together to form a computer system.	Computer Organization is concerned with the structure and behaviour of a computer system as seen by the user.
It acts as the interface between hardware and software.	It deals with the components of a connection in a system.
Computer Architecture helps us to understand the functionalities of a system.	Computer Organization tells us how exactly all the units in the system are arranged and interconnected.
A programmer can view architecture in terms of instructions, addressing modes and registers.	Whereas Organization expresses the realization of architecture.
While designing a computer system architecture is considered first.	An organization is done on the basis of architecture.
Computer Architecture deals with high-level design issues.	Computer Organization deals with low-level design issues.
Architecture involves Logic (Instruction sets, Addressing modes, Data types, Cache optimization)	Organization involves Physical Components (Circuit design, Adders, Signals, Peripherals)

Computer-System Architecture

PES UNIVERSITY ONLINE

- Most systems use a single general-purpose processor
 - Most systems have other special-purpose processors as well.
 - Device specific processors like disk, keyboard, graphic controller
 - Special-purpose processors run a limited number of instructions
 - Managed by OS.
 - OS monitors the status.
- Example Disk controller microprocessor
 - Receives sequence of requests from CPU.
 - implements its own disk queue and scheduling algorithm
 - relieves the main CPU of the overhead of disk scheduling.
 - special-purpose processors are low-level components built into the hardware

Computer-System Architecture

- Multiprocessors systems growing in use and importance
 - □ Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance Advantages include

Increased reliability is crucial

Multiprocessors

- ☐ Two types of Multiprocessor Systems
 - Asymmetric Multiprocessing each processor is assigned a specific task.
 - 2. Symmetric Multiprocessing each processor performs all tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems

Command to know the number of cores, cache details \$cat /proc/cpuinfo|more

Blade servers

- blade servers are a recent development in which multiple processor boards, I/Oboards, and networking boards are placed in the same chassis.
 - blade-processor board boots independently and runs its own operating system.
 - Some blade-server boards are multiprocessor as well,
 which blurs the lines between types of computers.
 - In essence, these servers consist of multiple independent multiprocessor systems.

Clustered Systems

PES UNIVERSITY

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - ▶ Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
 - Some have distributed lock manager (DLM) to avoid conflicting operations (Ex: when multiple hosts access the same data on shared storage)

Clustered Systems

General structure of a clustered system.

Operating-System Structure - Multiprogramming

- Multiprogramming (Batch system) needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - When it has to wait (for I/O for example),OS switches to another job

Operating-System Structure - Multitasking

PES UNIVERSITY ONLINE

- ☐ Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - □ Response time should be < 1 second</p>
 - □ Each user has at least one program executing in memory
 ⇒ process
 - □ If several jobs ready to run at the same time ⇒ CPU scheduling
 - ☐ If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Operating-System Operations

- Interrupt driven (hardware and software)
 - Hardware interrupt by one of the devices
 - Software interrupt (exception or trap):
 - ▶ Software error (e.g., division by zero)
 - Request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system

Dual-Mode and Multimode Operation

PES UNIVERSITY

- Dual-mode operation allows OS to protect itself and other system components
 - □ User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - □ i.e. virtual machine manager (VMM) mode for guest VMs

Transition from user to kernel mode

- □ When a trap or interrupt occurs, hardware switches from user mode to kernel mode (changes the state of the mode bit to 0).
- When the request is fulfilled, the system always switches to user mode (by setting the mode bit to 1) before passing control to a user program.

Timer

PES UNIVERSITY ONLINE

- ☐ Timer to prevent infinite loop / process hogging resources
 - ☐ Timer is set to interrupt the computer after a specified period (fixed 1/60 sec or variable 1 msec to 1 sec)
 - A variable timer is generally implemented by a fixed-rate clock and a counter.
 - Operating system sets the counter (privileged instruction)
 - □ Every time the clock ticks, the counter is decremented.
 - When counter reaches zero, an interrupt occurs
 - □ Timer can be used to prevent a user program from running too long (terminate the program)

THANK YOU

Venkatesh Prasad
Department of Computer Science Engineering
venkateshprasad@pes.edu