子鼠迎新赛

2020.1 by dst

一. 题目概况

中文题目名称	膜法石	宝石街	合并妹子
英文题目	mogic	gem	merge
可执行文件名	mogic	gem	merge
输入文件名	mogic.in	gem.in	merge.in
输出文件名	mogic.out	gem.out	merge.out
每个测试点时限	1.0秒	3.0秒	1.0 秒
测试点数目	20	20	20
每个测试点分值	5	5	5
附加样例文件	无	无	无
题目类型	传统	传统	传统
运行内存上限	256MiB	512MiB	256MiB

二. 编译选项

对于 C++语言	-1m
对于 C 语言	-lm
对于 Pascal 语言	

注意事项:

- 1.本次比赛采用标准输入输出。
- 2.C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若题目没有特殊说明,则测试数据中所有在同一行的元素间用一个空格隔开, 无多余空格,且在文件末尾有且只有一行换行。
- 4.结果比较方式为全文比较(过滤行末空格及文末回车)。
- 5.xor是按位异或运算符,在 C++/C 中用^表示,在 Pascal 中用 xor 表示。对于两个整数a和b,a xor b表示a和b的异或和。
- 6.对于实数x,[x]表示对x向上取整。
- 7. mod是取余运算符,在 C++/C 中用%表示,在 Pascal 中用 mod 表示。对于两个整数 $a\pi b$,a mod b表示a除以b的余数。

膜法石 (mogic)

【问题描述】

dst 是一个喜欢研究算法的大膜法师。有一天,他在膜法森林里找到了n棵膜法树,其中第i棵膜法树可以生产无限块抗力为 a_i ,膜力为 b_i 的膜法石。同时,由于 dst 法力强大,他有k次机会,每次可以交换其中两棵膜法树能够产生的膜法石的膜力。

dst 可以吸收膜法石的能量。每吸收一块膜法石的能量,他的抗力就会减少对应膜法石的抗力,膜力就会增加对应膜法石的膜力。他的初始抗力为m,膜力为0。一旦他的抗力小于0,他就没法膜人了。现在,dst 想知道,自己在抗力不小于0的前提下,最大的膜力是多少。

注意,dst 必须先使用完**所有的**交换机会,再吸收膜法石的能量。

【输入格式】

输入共3行。

第1行包含2个正整数n,m和1个非负整数k。

第 2 行包含n个正整数,第i个数表示 a_i 。

第 3 行包含n个正整数,第i个数表示 b_i 。

【输出格式】

输出共1行,包含1个非负整数,表示dst最大的膜力。

【样例1】

mogic.in	mogic.out
2 5 0	7
1 2	
1 3	

【样例1解释】

由于k = 0,所以 dst 并没有交换机会。 吸收膜法树1的1块膜法石,吸收膜法树2的2块膜法石。 此时 dst 的抗力= $5 - 1 - 2 \times 2 = 0$,dst 的膜力= $1 + 2 \times 3 = 7$ 。

【样例 2】

mogic.in	mogic.out
2 5 1	15

1 2	
1 3	

【样例2解释】

dst 使用唯一的交换机会,交换膜法树1,膜法树2能够产生的膜法石的膜力。吸收膜法树1的5块膜法石,吸收膜法树2的0块膜法石。

此时 dst 的抗力= $5-1 \times 5 = 0$,dst 的膜力= $3 \times 5 = 15$ 。

【数据范围】

数据点编号	$n, a_i, m \leq$	<i>k</i> ≤
1-4	10	0
5-10		4
11-12	100	0
13-16	10^{3}	0
17-20	10°	100

对于 100%的数据, $1 < n \le 10^3$; $1 \le m$, $a_i \le 10^3$; $1 \le b_i \le 10^9$; $0 \le k \le 100$ 。

宝石街 (gem)

【问题描述】

在D国S市T镇,坐落着一条长度为n的宝石街。把起点定为原点,以终点方向作为正方向建立数轴,那么对于每个 $i(1 \le i \le n)$,在点i处有 a_i 块宝石。身无分文的 dst 此时就站在原点,径直向终点走去,在行走的过程中经过每一个点,他都可以选择捡起任意块的宝石,或是扔掉任意块的宝石。设他在某一点拥有的宝石数为k,那么他走到下一个点需要的时间也为k。现在,dst 想知道,在行走时间恰好为 t(不需要到达终点)时,他最多可以拥有多少块宝石?

【输入格式】

由于本题部分测试点的数据范围较大,部分测试点的 a_i 将在程序内生成。输入共 2 行。

第1行包含3个正整数n,t,type。

若type = 1,第 2 行包含n个正整数,第i个数表示 a_i 。

若type = 2,第 2 行包含 2 个正整数 a_1 和p。对于每个 $i(2 \le i \le n)$,设 $x = a_{i-1}$ xor $(a_{i-1} \ll 13)$,y = x xor $(x \gg 17)$,则 $a_i = (y \text{ xor } (y \ll 5)) \text{ mod } p + 1$ 。

【输出格式】

输出共1行,包含1个非负整数,表示dst拥有的最多宝石数。

【样例1】

gem.in	gem.out
5 12 1	12
2 5 2 5 2	

【样例1解释】

捡起点 2,3,4 上的所有宝石;不扔宝石。

【数据范围】

数据点编号	$n \leq$	<i>t</i> ≤	type =
1-2	7	10	
3-6		100	
7-10	10^{3}	10^{3}	1
11-13			
14-16	10 ⁵	10^{18}	
17-20	5×10^{7}		2

对于 100%的数据, $1 \le n \le 5 \times 10^7$; $1 \le t \le 10^{18}$; $1 \le a_i, p \le 10^3$ 。

合并妹子 (merge)

【问题描述】

jlb 有n个妹子。他现在要按一定顺序合并她们,使她们全部都合并在一起。合并的规则是,两堆妹子可以合并成一堆,那么显然需要合并n-1次。在合并过程中,合并在一起的一堆妹子叫做妹堆,对于每个妹堆Q,记妹子数为 t_Q ,并且有一个萌值 c_Q 。假设在一次合并中,妹堆A和妹堆B合并为妹堆C,且序号为 $(c_C \bmod n)+1$ 的妹子合并前所在的妹堆为D,则 $c_A=\lceil \frac{c_C+t_D}{t_A} \rceil$, $c_B=\lceil \frac{c_C+t_D}{t_B} \rceil$ 。特殊地,开始时第i个妹子为独立的一个妹堆i。最终妹堆的萌值为m,jlb 想知道每个妹子最初的萌值 c_i 。

【输入格式】

输入共n行。

第 1 行包含两个正整数n,m。

接下来n-1行,第i行包括两个正整数 u_i 和 v_i ,表示第i次合并时,妹子 u_i 所在的妹堆和妹子 v_i 所在的妹堆合并。

【输出格式】

输出共 1 行,包含n个整数,其中第i个整数表示 c_i 。

【样例1】

merge.in	merge.out
4 5	5 5 6 6
1 2	
3 4	
1 4	

【样例1解释】

$$\left\lceil \frac{5+2}{2} \right\rceil = 4 \qquad \left\lceil \frac{5+2}{2} \right\rceil = 4$$

【数据范围】

对于 **10%**的数据,n = 2。

对于 20%的数据, $n \leq 5$ 。

对于 **40%**的数据, $n \leq 500$ 。

对于 60%的数据, $n \le 5 \times 10^3$ 。

对于 100%的数据, $1 \le u_i, v_i \le n \le 10^5; 1 \le m \le 10^9$ 。