

# Fakultät für Mathematik Institut für Algebra und Geometrie

Wintersemester 2022/23 Prof. Dr. Alexander Lytchak

# Lineare Algebra 1

Übungsblatt 5



Die Abgabe ist bis zum 05.12.2022 um 12 Uhr möglich.

Bitte beachten Sie die Vorgaben zur Abgabe auf Merkblatt 1 im Ilias.

## Aufgabe 1 (2+8 Punkte)

Wir betrachten

$$V := \left\{ \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathbb{C}^{2 \times 2} \middle| a + d \in \mathbb{R} \right\}$$

zusammen mit der üblichen Addition und skalaren Multiplikation auf  $\mathbb{C}^{2\times 2}$ .

- a) Zeigen Sie, dass V kein  $\mathbb{C}$ -Vektorraum ist.
- b) Wir schränken nun die Menge der Skalare auf  $\mathbb{R}$  ein. Zeigen Sie, dass V dann ein  $\mathbb{R}$ -Vektorraum ist.

### **Aufgabe 2 (6+4 Punkte)**

Entscheiden Sie, ob es möglich ist, den Nullvektor nichttrivial als Linearkombination der folgenden Vektoren darzustellen, und beweisen Sie Ihre Antwort:

- a) Die Vektoren  $(\tilde{3}, \tilde{2}, \tilde{1}), (\tilde{4}, \tilde{1}, \tilde{2}), (\tilde{1}, \tilde{2}, \tilde{4}) \in (\mathbb{Z}/5\mathbb{Z})^3$ .
- b) Die Vektoren  $\sqrt{2}, \sqrt{3}, \sqrt{5}$  im  $\mathbb{Q}$ -Vektorraum  $\mathbb{R}$ .

#### Aufgabe 3

Sei M eine nichtleere Menge. Wir betrachten  $\mathbb{R}^M$  zusammen mit der üblichen punktweisen Addition und der punktweisen Multiplikation definiert durch:

$$(f \cdot g)(x) := f(x)g(x)$$
 ,  $\forall f, g \in \mathbb{R}^M, x \in M$ .

- a) Zeigen Sie, dass  $\mathbb{R}^M$  ein kommutativer Ring mit Eins ist.
- b) Sei  $f \in \mathbb{R}^M$  mit  $f \neq 0$ . Zeigen Sie, dass f genau dann ein Nullteiler ist, wenn f kein multiplikatives Inverses besitzt.