Итоговый конспект стр. 1 из 59

1 Определения

1.1 Мультииндекс и обозначения с ним

Мультииндекс — вектор $\alpha = (\alpha_1, \alpha_2 \dots \alpha_n), \alpha_i \in \mathbb{Z}_+$

1.
$$|\alpha| \stackrel{\text{def}}{=} \alpha_1 + \alpha_2 + \ldots + \alpha_n$$

2.
$$x^{\alpha} \stackrel{\text{def}}{=} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \quad (x \in \mathbb{R}^n)$$

3.
$$\alpha! \stackrel{\text{def}}{=} \alpha_1! \alpha_2! \dots \alpha_n!$$

4.
$$f_{(x)}^{(\alpha)} \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \stackrel{\text{def}}{=} \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_m^{\alpha_m}}$$

1.2 ! Формула Тейлора (различные виды записи)

$$f(a+h) = \sum_{k=0}^r \frac{d^k f(a,h)}{k!} + \frac{1}{(r+1)!} d^{r+1} f(a+\Theta h,h)$$

$$f(a+h) = \sum_{k=0}^r \frac{d^k f(a,h)}{k!} + o(|h|^r)$$

$$f(x) = \sum_{\alpha:0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^\alpha + \sum_{\alpha:|\alpha| = r+1} \frac{f^{(\alpha)}(a+t(x-a))}{\alpha!} (x-a)^\alpha$$
 Остаток в форме Лагранжа

1.3 n-й дифференциал

$$\sum_{\alpha:|\alpha|=k}k!\frac{f^{(\alpha)}}{\alpha!}h^{\alpha}\stackrel{\mathrm{def}}{=}k$$
-й дифференциал функции f в точке $a\stackrel{\mathrm{def}}{=}d^kf(a,h)$

1.4 ! Норма линейного оператора

$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \quad ||A|| \stackrel{\text{def}}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ |x| = 1}} |Ax|$$

1.5 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Определение. Квадратичная форма $Q:\mathbb{R}^m o \mathbb{R}$

$$Q(h) = \sum_{1 < i, j < m} a_{ij} h_i h_j$$

Итоговый конспект стр. 2 из 59

Определение. Положительно определенная кв. форма: $\forall h \neq 0 \;\; Q(h) > 0$

Определение. Отрицательно определенная кв. форма: $\forall h \neq 0 \;\; Q(h) < 0$

Определение. Незнакоопределенная кв. форма: $\exists \overline{h}: Q(h) < 0, \exists \tilde{h}: Q(h) > 0$

Определение. Полуопределенная (положительно определенная вырожденная) кв. форма: $Q(h) \geq 0 \;\; \exists \overline{h} \neq 0 : Q(\overline{h}) = 0$

1.6 Локальный максимум, минимум, экстремум

 $f:E\subset\mathbb{R}^m o\mathbb{R},a\in E$ — локальный максимум, если

$$\exists U(a) \subset E \ \forall x \in U(a) \ f(x) \le f(a)$$

Аналогично определяется строгий локальный максимум, локальный минимум и строгий локальный минимум

1.7 Диффеоморфизм

 $F: \underbrace{O}_{ ext{oбласть}} \subset \mathbb{R}^m o \mathbb{R}^m$ — диффеоморфизм, если:

- F обратимо
- Г дифференцируемо
- F^{-1} дифференцируемо

1.8 Формулировка теоремы о локальной обратимости

- $T \in C^r(O, \mathbb{R}^m)$
- $x_0 \in O$
- $\det T'(x_0) \neq 0$

Тогда $\exists U(x_0): T\Big|_{U}$ — диффеоморфизм, т.е. $\exists T^{-1}$

1.9 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1 \dots x_m) = y_1 \\ f_2(x_1 \dots x_m) = y_2 \\ \vdots \\ f_m(x_1 \dots x_m) = y_m \end{cases}$$

Пусть (x^0,y^0) — решение этой системы, $F=(f_1\dots f_m)$

Итоговый конспект стр. 3 из 59

 $\det F'(x^0) \neq 0.$ Тогда $\exists U(y^0): \forall y \in U(y^0)$ система имеет решение, C^r гладко зависящее от y.

1.10 Формулировка теоремы о неявном отображении в терминах систем уравнений

Дана система из n функций, $f_i \in C^r$.

$$\begin{cases} f_1(x_1 \dots x_m, y_1 \dots y_n) = 0 \\ \vdots \\ f_n(x_1 \dots x_m, y_1 \dots y_n) = 0 \end{cases}$$

$$\frac{\partial F}{\partial y} = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial y_1} & \cdots & \frac{\partial F_n}{\partial y_n} \end{pmatrix}$$

Пусть $(a,b) = (a_1 \dots a_m, b_1 \dots b_n)$ — решение системы и $\det \left(\frac{\partial F}{\partial y}(a,b) \right) \neq 0$. Тогда $\exists U(a) \subset \mathbb{R}^m$ и $\exists ! \ \Phi : P \to Q \in C^r : \forall x \in P \ F(x,\Phi(x)) = 0$ такие, что $\forall x \in U(a) \ x, \Phi(x)$ — тоже решение системы.

1.11 ! Простое k-мерное гладкое многообразие в \mathbb{R}^m

 $M \subset \mathbb{R}^m$ — простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m , если:

- $\exists \Phi : O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\Phi(O) = M$
- $\Phi \in C^r$
- $\forall x \in O \operatorname{rg}\Phi'(x) = k$

1.12 Касательное пространство к k-мерному многообразию в \mathbb{R}^m

- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\Phi \in C^r$
- Φ параметризация многообразия $U(p) \cap M$, где $p \in M$, M гладкое k-мерное многообразие $\Rightarrow U(p) \cap M$ простое многообразие
- $\Phi(t^0) = p$

Тогда образ $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ есть k-мерное линейное подпространство в \mathbb{R}^m . Оно не зависит от Φ .

 $\Phi'(t^0)$ — касательное пространство к M в точке p, обозначается T_pM .

Итоговый конспект стр. 4 из 59

1.13 Относительный локальный максимум, минимум, экстремум

- $f: O \subset \mathbb{R}^{m+n} \to \mathbb{R}$
- $M_{\Phi} \subset O := \{x : \Phi(x) = 0\}$
- $x_0 \in M_{\Phi}$

 x_0 — точка локального относительного max, min, строгий max, строгий min, экстремума, если $\exists U(x_0) \subset \mathbb{R}^{m+n}: \forall x \in U(x_0) \cap M_\Phi \ f(x_0) \geq f(x)$, остальные — аналогично.

Уравнения $\Phi(x) = 0$ называются уравнениями связи.

1.14 ! Формулировка достаточного условия относительного экстремума

Выполняется условие теоремы о необходимом условии экстремума, то есть:

- $f: O \subset \mathbb{R}^{m+n} \to \mathbb{R}$ гладкое в O
- $M_{\Phi} \subset O := \{x : \Phi(x) = 0\}$ гладкое в O
- $a \in O$ точка относительного локального экстремума
- $\Phi(a) = 0$
- $\operatorname{rg}\Phi'(a) = n$

 $orall h=(h_x,h_y)\in\mathbb{R}^{m+n}$: если $\Phi'(a)h=0$, то можно выразить $h_y=\Psi(h_x)$.

Рассмотрим квадратную форму $Q(h_x) = d^2G(a, (h_x, \Psi(h_x))).$

Тогда:

- 1. Если Q(h) положительно определена, a точка минимума
- 2. Если Q(h) отрицательно определена, a точка максимума
- 3. Если Q(h) незнакоопределена, a не экстремум
- 4. Если Q(h) положительно определена, но вырождена, недостаточно информации

1.15 Поточечная сходимость последовательности функций на множестве

Пусть $E \subset X$. Последовательность f_n сходится поточечно к f на множестве E, если $\forall x \in E \quad f_n(x) \to f(x)$, т.е.:

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \ |f_n(x) - f(x)| < \varepsilon$$

1.16 Равномерная сходимость последовательности функций на множестве

 f_n равномерно сходится к f на $E\subset X$, если $M_n:=\sup_{x\in E}|f_n(x)-f(x)|\xrightarrow{n\to +\infty}0.$

$$\forall \varepsilon \ \exists N \ \forall n > N \ 0 \leq M_n < \varepsilon \text{ r.e. } \forall x \in E \ |f_n(x) - f(x)| < \varepsilon$$

Обозначается $f_n \underset{E}{\Longrightarrow} f$

1.17 Равномерная сходимость функционального ряда

- X произвольное множество
- $u_n: X \to Y$ нормированное пространство

$$\sum_{n=0}^{+\infty}u_n(x)$$
сходится к $S(x)$ равномерно на $E\subset X:S_N\xrightarrow[E]{N\to +\infty}S$

1.18 Формулировка критерия Больцано-Коши для равномерной сходимости

Остаток ряда: $R_N(x) = \sum_{n=N+1}^{+\infty} u_n(x), S(x) = S_N(x) + R_N(x)$

Ряд сходится на $E \Leftrightarrow R_N \rightrightarrows_E \mathbf{0}$ — тождественный ноль.

1.19 ! Степенной ряд, радиус сходимости степенного ряда, формула Адамара

Степенной ряд: $\sum_{n=0}^{+\infty}a_n(z-z_0)^n$, где $z_0\in\mathbb{C}, a_n\in C, z$ — переменная $\in C$

 $\sum a_n(z-z_0)^n$, тогда число $R=rac{1}{\overline{\lim}_n \sqrt[n]{|a_n|}}$. Это формула Адамара.

1.20 Признак Абеля равномерной сходимости функционального ряда

???

1.21

???

1.22

???

Итоговый конспект стр. 6 из 59

1.23 Кусочно-гладкий путь

Путь — непрерывное отображение $\gamma:[a,b] \to \mathbb{R}^m$

Кусочно-гладкое отображение - отображение, имеющее не более, чем счётное число точек разрыва, все точки разрыва - І рода и $\gamma\Big|_{[t_{k-1},t_k]}$ — гладкое $\forall k$, где t_k — точка разрыва.

1.24 Векторное поле

Векторное поле — непрерывное отображение $V: E \subset \mathbb{R}^m \to \mathbb{R}^m$ $\forall x \in E \ V(x) \in \mathbb{R}^m$ — вектор, "приложенный к точке x".

1.25 Интеграл векторного поля по кусочно-гладкому пути

Интеграл векторного поля по кусочно-гладкому пути

$$I(V,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \int_{a}^{b} \sum_{i=1}^{m} V_{i}(\gamma(t)) \cdot \gamma'_{i}(t) dt$$

$$= \int_{a}^{b} V_{1} d\gamma_{1} + \dots + V_{m} d\gamma_{m}$$

$$(1)$$

Также используется обозначение $I(V,\gamma)=\int_{\gamma}V_1d\gamma_1+\cdots+V_md\gamma_m$

1.26 ! Потенциал, потенциальное векторное поле

 $V: \underbrace{O}_{\text{область}} \subset \mathbb{R}^m o \mathbb{R}^m$ — векторное поле **потенциально**, если оно имеет потенциал:

$$\exists f \in C^1(O), \nabla f = V$$

1.27 Локально потенциальное векторное поле

V — локально потенциальное векторное поле в O, если $\forall x \in O \ \exists U(x) : V$ — потенциально в U(x)

1.28 Интеграл локально-потенциального векторного поля по произвольному пути

Возьмём $\delta > 0$ из леммы 2.47.

Пусть $\tilde{\gamma}-\delta$ -близкий кусочно-гладкий путь, т.е. $\forall t \ |\gamma(t)-\tilde{\gamma}(t)|<\delta$.

Итоговый конспект стр. 7 из 59

Полагаем $I(V, \gamma) := I(V, \tilde{\gamma}).$

Корректность (нет произвольности) следует из лемм 2.47 и 2.46

1.29 Гомотопия путей связанная и петельная

Гомотопия двух (*непрерывных*) путей $\gamma_0,\gamma_1:[a,b]\to O\subset\mathbb{R}^m$ это непрерывное отображение $\Gamma:\underbrace{[a,b]}_{}\times\underbrace{[0,1]}_{}\to O$, такое что:

- $\Gamma(\circ,0)=\gamma_0$
- $\Gamma(\circ,1)=\gamma_1$

Гомотопия связанная (не связная), если:

- $\gamma_0(a) = \gamma_1(a)$
- $\gamma_0(b) = \gamma_1(b)$
- $\forall u \in [0,1] \Gamma(a,u) = \gamma_0(a), \Gamma(b,u) = \gamma_1(b)$

Рис. 1: Связанная гомотопия. Пунктиром — $\Gamma(\circ,u)$ для различных u

Гомотопия петельная, если:

- $\gamma_0(a) = \gamma_0(b)$
- $\gamma_1(a) = \gamma_1(b)$
- $\forall u \in [0,1] \ \Gamma(a,u) = \Gamma(b,u)$

Итоговый конспект стр. 8 из 59

Рис. 2: Петельная гомотопия. Пунктиром — $\Gamma(\circ,u)$ для различных u

1.30 Односвязная область

Область $O \subset \mathbb{R}^m$ — односвязная, если любой замкнутый путь в ней гомотопен постоянному пути.

Простыми словами — в O нет дырок, иначе путь вокруг дырки нельзя было бы стянуть.

Рис. 3: Стягивание замкнутого пути (сплошной линией) к постоянному пути (точке)

1.31 ! Полукольцо, алгебра, сигма-алгебра

 $\mathcal{P} \subset 2^X$ — полукольцо, если:

- $\emptyset \subset \mathcal{P}$
- $\forall A, B \in \mathcal{P} \ A \cap B \in \mathcal{P}$
- $\forall A,A'\in\mathcal{P}\ \exists$ кон. и дизъюнктные $B_1\dots B_n\in\mathcal{P}:A\setminus A'=\bigsqcup_i B_i$

 $\mathfrak{A}\subset 2^X$ — алгебра подмножеств в X, если:

1. $\forall A, B \in \mathfrak{A} \ A \setminus B \in \mathfrak{A}$

Итоговый конспект стр. 9 из 59

 $2. X \in \mathfrak{A}$

 σ -алгебра $\mathfrak{A}\subset 2^X$:

1. 𝔄 − алгебра

2.
$$A_1, A_2, \dots \in \mathfrak{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$$

1.32 ! Объем

 $\mu:\mathcal{P} o\overline{\mathbb{R}}$ — объем, если $\mu\geq 0$ и μ — аддитивная.

1.33 ! Ячейка

Ячейка в \mathbb{R}^m это $[a,b)=\{x\in\mathbb{R}^m: \forall i \;\; x_i\in[a_i,b_i)\}$

Рис. 4: [a,b) — ячейка в \mathbb{R}^2

1.34 Классический объем в \mathbb{R}^m

Классический объем в $\mathbb{R}^m \ \mu: \mathcal{P}^m o \mathbb{R}$

$$\mu[a,b) = \prod_{i=1}^{m} (b_i - a_i)$$

Этот объем не конечный.

1.35 Формулировка теорема о непрерывности снизу

- \mathfrak{A} алгебра
- $\mu:\mathfrak{A} o\overline{\mathbb{R}}$ объем.

Тогда эквивалентно:

1. μ — мера

Итоговый конспект стр. 10 из 59

2. μ — непрерывна снизу:

$$A, A_1, A_2 \cdots \in \mathfrak{A}$$
 $A_1 \subset A_2 \subset \dots, A = \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A = \lim_{i \to +\infty} \mu A_i$

1.36 ! Мера, пространство с мерой

 $\mu:\underbrace{\mathcal{P}}_{\text{полукольцо}}\to\overline{\mathbb{R}}$ — мера, если μ — объем и μ счётно-аддитивна:

$$A, A_1, A_2, \dots \in \mathcal{P} : A = \bigsqcup_{i=1}^{+\infty} A_i \quad \mu A = \sum_i \mu A_i$$

Пространство с мерой — тройка ($\underbrace{X}_{\text{множество}}$, $\underbrace{\mathfrak{A}}_{\sigma\text{-алгебра}}$, $\underbrace{\mu}_{\text{мера на }\mathfrak{A}}$)

1.37 Полная мера

$$\mu:\mathcal{P} \to \overline{\mathbb{R}}$$
 — мера.

 μ — полная в \mathcal{P} , если $\forall A \in \mathcal{P}$ $\mu A = 0$ $\forall B \subset A$ выполняется: $B \in \mathcal{P}$ и (тогда автоматически) $\mu B = 0$ (по монотонности)

Это совместное свойство μ и \mathcal{P} .

1.38 ! Сигма-конечная мера

$$\mu:\mathcal{P}
ightarrow\overline{\mathbb{R}}$$
 — мера, $\mathcal{P}\subset 2^X$

$$\mu-\ \sigma$$
-конечна, если $\exists A_1,A_2\dots\in\mathcal{P}:X=\bigcup A_i,\mu A_i<+\infty$

1.39 Дискретная мера

X — (бесконечное) множество.

 $a_1, a_2, a_3 \dots$ набор попарно различных точек.

 $h_1, h_2, h_3 \ldots$ — положительные числа.

Для
$$A \subset X \ \mu A := \sum_{k: a_k \in A} h_k$$
.

Физический смысл μ : каждой точке a_i сопоставляется "масса" h_i . Объем множества точек есть сумма "масс" точек.

Счётная аддитивность $\mu \Leftrightarrow$ теореме о группировке слагаемых (в ряду можно ставить скобки).

Эта мера называется дискретной.

Итоговый конспект стр. 11 из 59

2 Теоремы

2.1 Лемма о дифференцировании "сдвига"

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $f \in C^r(E)$ это подразумевает, что E открыто
- a ∈ E
- $h \in \mathbb{R}^m : \forall t \in [-1, 1] \quad a + th \in E$
- $\varphi(t) = f(a+th)$

Тогда при $1 \le k \le r$:

$$\varphi^{(k)}(0) = \sum_{i:|j|=k} \frac{k!}{j!} h^j \frac{\partial^k f}{\partial x^j}(a)$$

Доказательство. Как на лекции:

$$\varphi'(t) = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i}(a+th)h_i$$

$$\varphi''(t) = \sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_i}(a+th)\right)' h_i = \sum_{i=1}^{m} \sum_{i_2=1}^{m} \frac{\partial^2 f}{\partial x_i \partial x_{i_2}}(a+th)h_i h_{i_2}$$

$$\varphi''(0) = \frac{\partial^2 f}{\partial x_1^2} h_1^2 + \frac{\partial^2 f}{\partial x_2^2} h_2^2 + \dots + \frac{\partial^2 f}{\partial x_m^2} h_m^2 + 2\left(\frac{\partial^2 f}{\partial x_1 \partial x_2} h_1 h_2 + \frac{\partial^2 f}{\partial x_1 \partial x_3} h_1 h_3 + \dots\right)$$

$$\varphi^{(k)}(0) = \sum_{i_1=1}^{m} \sum_{i_2=1}^{m} \dots \sum_{i_k=1}^{m} \frac{\partial^k f(a)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} h_{i_1} h_{i_2} \dots h_{i_k}$$

Формальное доказательство по индукции:

Индукционное предположение:

$$\varphi^k(t) = \sum_{i_1=1}^m \sum_{i_2=1}^m \dots \sum_{i_k=1}^m \frac{\partial^k f(a+th)}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} h_{i_1} h_{i_2} \dots h_{i_k}$$

База:

$$\varphi'(t) = \sum_{i_1=1}^{m} \frac{\partial f}{\partial x_{i_1}} (a+th) h_{i_1}$$

Переход:

$$\varphi^{(k+1)}(t) = \left(\varphi^k(t)\right)'$$

Итоговый конспект стр. 12 из 59

$$= \left(\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \dots \sum_{i_{k}=1}^{m} \frac{\partial^{k} f(a+th)}{\partial x_{i_{1}} \partial x_{i_{2}} \dots \partial x_{i_{k}}} h_{i_{1}} h_{i_{2}} \dots h_{i_{k}}\right)'$$

$$= \sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \dots \sum_{i_{k}=1}^{m} \left(\frac{\partial^{k} f(a+th)}{\partial x_{i_{1}} \partial x_{i_{2}} \dots \partial x_{i_{k}}}\right)' h_{i_{1}} h_{i_{2}} \dots h_{i_{k}}$$

$$= \sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \dots \sum_{i_{k}=1}^{m} \sum_{i_{k+1}=1}^{m} \frac{\partial^{k+1} f(a+th)}{\partial x_{i_{1}} \partial x_{i_{2}} \dots \partial x_{i_{k}} \partial x_{i_{k+1}}} h_{i_{k+1}} h_{i_{1}} h_{i_{2}} \dots h_{i_{k}}$$

2.2 ! Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)

2.2.1 В форме Лагранжа

• $f \in C^{r+1}(E)$ — это подразумевает $E \subset \mathbb{R}^m, f: E \to \mathbb{R}$

•
$$x \in B(a, R) \subset E$$

Тогда $\exists t \in (0,1)$:

$$f(x) = \sum_{\alpha: 0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha} + \underbrace{\sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a+t(x-a))}{\alpha!} (x-a)^{\alpha}}_{\text{Остаток в форме Лагранжа}}$$

Доказательство. Кажется, это теперь почти очевидно.

$$\varphi(t)=(a+th)$$
, где $h=x-a$. Тогда $\varphi(0)=f(a)$

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!} + \ldots + \frac{\varphi^{(r)}(0)}{r!} t^r + \frac{\varphi^{(r+1)}(\overline{t})}{(r+1)!} t^{r+1}$$

$$f(x) = \underbrace{\sum_{\alpha:0 \leq |\alpha| \leq r} \frac{f^{(\alpha)}(a)}{\alpha!} (x-a)^{\alpha}}_{\text{Многочлен Тейлора}} + \underbrace{\sum_{\alpha:|\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x-a))}{\alpha!} (x-a)^{\alpha}}_{\mathcal{O}(|x-1|^r)}$$

По лемме:

$$f(x) = f(a) + \sum_{k=1}^{r} \sum_{\alpha: |\alpha| = k} \frac{f^{(\alpha)}}{\alpha!} h^{\alpha} + \sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \Theta(x - a))}{\alpha!} h^{\alpha}$$

Итоговый конспект стр. 13 из 59

2.2.2 В форме Пеано

$$f(a+h) = \sum_{\alpha:0 \le |\alpha| \le r} \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + o(|h|^r)$$

Доказательство. Отсутствует

2.3 Теорема о пространстве линейных отображений

- 1. Отображение $A \to ||A||$ в $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ норма, т.е.:
 - (a) $||A|| \ge 0$
 - (b) $||A|| = 0 \Rightarrow A = 0_{n \times m}$
 - (c) $\forall \lambda \in \mathbb{R} \ ||\lambda A|| = |\lambda|||A||$
 - (d) $||A + B|| \le ||A|| + ||B||$
- 2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n), B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k) \Rightarrow ||BA|| \leq ||B|| \cdot ||A||$

Доказательство.

1.
$$||A|| = \sup_{|x|=1} |Ax|$$

а, b, c — очевидно.

$$d: |(A+B)x| = |Ax+Bx| \le |Ax| + |Bx| \le (||A|| + ||B||)|x|$$

По замечанию 3 $||A + B|| \le ||A|| + ||B||$

2.
$$|BAx| = |B(Ax)| \le ||B|| \cdot |Ax| \le ||B|| \cdot ||A||$$

2.4 Лемма об условиях, эквивалентных непрерывности линейного оператора

- X,Y линейные нормированные пространства
- $A \in \mathcal{L}(X,Y)$

Тогда эквивалентны следующие утверждения:

- 1. A ограниченный оператор, т.е. ||A|| конечно
- 2. A непрерывно в нуле
- 3. A непрерывно всюду в X

Итоговый конспект стр. 14 из 59

4. A — равномерно непрерывно

Доказательство.

1. $4 \Rightarrow 3 \Rightarrow 2$ — очевидно.

 $2. 2 \Rightarrow 1$

Непрерывность в 0: $\forall \varepsilon \;\; \exists \delta : \forall x : |x| \leq \delta \quad |Ax| < \varepsilon$ $\lessdot \varepsilon = 1, |x| = 1 : |Ax| = \left|A\frac{1}{\delta}\delta x\right| = \frac{1}{\delta}|A\delta x| \leq \frac{1}{\delta}$

 $3. 1 \Rightarrow 4$

$$\forall \varepsilon > 0 \ \exists \delta := \frac{\varepsilon}{||A||} \ \forall x_1, x_0 : |x_1 - x_0| < \delta$$
$$|Ax_1 - Ax_0| = |A(x_1 - x_0)| \le ||A|| \cdot |x_1 - x_0| < \varepsilon$$

2.5 Теорема Лагранжа для отображений

• E открыто

• $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$

• F дифф. на E

• $a, b \in E$

• $[a, b] \in E$

Тогда $\exists c \in [a, b] \ (c = a + \Theta(b - a)), \Theta \in [0, 1]$:

$$|F(b) - F(a)| \le ||F'(c)|||b - a|$$

Доказательство. $f(t) := F(a + t(b - a)), t \in \mathbb{R}$

$$f'(t) = F'(a + t(b - a))(b - a)$$

Тогда по теореме Лагранжа для векторнозначных функций

$$|f(1) - f(0)| \le |f'(c)||1 - 0|$$

$$|F(b) - F(a)| \le |F'(a + c(b - a))(b - a)| \le ||F'(a + c(b - a))|||b - a|$$

Итоговый конспект стр. 15 из 59

2.6 Теорема об обратимости линейного отображения, близкого к обратимому

- $L \in \Omega_m$ обратимый
- $M \in \mathcal{L}_{m,m}$
- $||L-M||<\dfrac{1}{||L^{-1}||}$, т.е. M "близкий" к L

Тогда:

1. $M \in \Omega_m$, т.е. Ω_m открыто в $\mathcal{L}_{m,m}$

$$2. \ ||M^{-1}|| \leq \frac{1}{||L^{-1}||^{-1} - ||L - M||}$$

3.
$$||L^{-1} - M^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||L - M||} ||L - M||$$

Доказательство. По неравенству треугольника $|a+b| \geq |a| - |b|$:

$$|Mx| = |Lx + (M - L)x|$$

$$\geq |Lx| - |(M - L)x|$$

$$\geq \frac{1}{||L||^{-1}}|x| - ||M - L|| \cdot |x|$$

$$\geq (||L^{-1}||^{-1} - ||M - L||) |x|$$

Это доказало пункты 1 и 2, докажем 3:

Аналогично равенству $\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}$ в $\mathbb R$ выполняется следующее равенство в Ω_m :

$$M^{-1} - L^{-1} = M^{-1}(L - M)L^{-1}$$

Это очевидно доказывается домножением на M слева и на L справа:

Доказательство.

$$M^{-1} - L^{-1} \stackrel{?}{=} M^{-1}(L - M)L^{-1}$$
$$E - L^{-1} \stackrel{?}{=} (L - M)L^{-1}$$
$$L - M = L - M$$

$$||M^{-1} - L^{-1}|| = ||M^{-1}(L - M)L^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||L - M||}||L - M||$$

Итоговый конспект стр. 16 из 59

2.7 Теорема о непрерывно дифференцируемых отображениях

- $F: E \subset \mathbb{R}^m \to \mathbb{R}^l$
- F дифф. на E

Тогда эквивалентны 1 и 2:

- 1. $F \in C^1(E)$, т.е. \exists все $\frac{\partial F_i}{\partial x_j}$ и они непрерывны на E
- 2. $F':E o \mathcal{L}_{m,l}$ непрерывно, т.е.

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon, x) \ \forall \overline{x} : |\overline{x} - x| < \delta \quad ||F'(x) - F'(\overline{x})|| \le \varepsilon$$

Доказательство.

• $1 \Rightarrow 2$:

Берем
$$x, \varepsilon. \, \exists \delta > 0 : \forall \overline{x} \, \left| \frac{\partial F_i}{\partial x_j}(x) - \frac{\partial F_i}{\partial x_j}(\overline{x}) \right| < \frac{\varepsilon}{\sqrt{ml}}$$
 для всех $i, j.$

$$||F'(x)| - F'(\overline{x})|| < \sqrt{\sum_{i,j} \frac{\varepsilon^2}{ml}} = \varepsilon$$

• $2 \Rightarrow 1$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \overline{x} : |x - \overline{x}| < \delta \quad ||F'(x) - F'(\overline{x})|| < \varepsilon$$

$$|A| = (0, 0, \dots, 0, \underbrace{1}_{j}, 0, \dots, 0)$$

$$|F'(x)h - F'(\overline{x})h| \le ||F'(x) - F'(\overline{x})|| \cdot |h| < \varepsilon$$

$$|F'(x)h - F'(\overline{x})h| = \sqrt{\sum_{i=1}^{l} \left(\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right)^{2}}$$

$$\sqrt{\sum_{i=1}^{l} \left(\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right)^{2}} < \varepsilon \Rightarrow \forall i \ \left|\frac{\partial F_{i}}{\partial x_{j}}(x) - \frac{\partial F_{i}}{\partial x_{j}}(\overline{x})\right| < \varepsilon$$

2.8 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $a \in IntE$
- a точка локального экстремума
- f дифф. в точке a

Тогда
$$\forall u \in \mathbb{R}^m : |u| = 1 \quad \frac{\partial f}{\partial u}(a) = 0$$

Доказательство. Для $f\Big|_{\text{прямая}(a,u)}$ a остается локальным экстремумом, выполняется одномерная теорема Ферма.

Следствие 1 (необходимое условие экстремума). a — локальный экстремум $f \Rightarrow \frac{\partial f}{\partial x_1}(a) \dots \frac{\partial f}{\partial x_m}(a) = 0$

Следствие 2 (теорема Ролля).

- $f: E \subset \mathbb{R}^m \to \mathbb{R}$
- $K \subset E$ компакт
- f дифф. в IntK
- f непрерывно на K
- $f\Big|_{\text{граница}_K} = \text{const}$

Тогда $\exists a \in IntK: f'(a) = \vec{0}$

Доказательство. По теореме Вейерштрасса f достигает минимального и максимального значения на компакте. Тогда либо f на K const, либо $\exists a \in IntK$ — точка экстремума. В первом случае $f' \equiv 0$, во втором по т. Ферма f'(a) = 0

2.9 Лемма об оценке квадратичной формы и об эквивалентных нормах

•
$$p: \mathbb{R}^m \to \mathbb{R}$$
 — норма

Тогда $\exists C_1, C_2 > 0 \ \forall x \ C_2|x| \le p(x) \le C_1|x|$

Доказательство.

$$C_1 := \max_{x \in S^{m-1}} p(x)$$
 $C_2 := \min_{x \in S^{m-1}} p(x)$

$$p(x) = p\left(|x|\frac{x}{|x|}\right) = |x|p\left(\frac{x}{|x|}\right) \begin{cases} \ge C_2|x| \\ \le C_1|x| \end{cases}$$

Существование C_1 и C_2 гарантируется теоремой Вейерштрасса, но она требует непрерывности p(x).

Докажем, что p непрерывна.

Введем базис $\{e_i\}_{i=1}^n$. Тогда

$$p(x - y) = p\left(\sum (x_k - y_k)e_k\right)$$

$$\leq \sum p((x_k - y_k)e_k)$$

$$= \sum |x_k - y_k|p(e_k)$$

$$\leq |x - y|\sqrt{\sum p(e_k)^2}$$

$$\leq |x - y|M$$

2.10 ! Достаточное условие экстремума

• $f: E \subset \mathbb{R}^m \to \mathbb{R}$

• $a \in IntE$

•
$$\frac{\partial f}{\partial x_1}(a) = 0, \dots, \frac{\partial f}{\partial x_m}(a) = 0$$

•
$$Q(h) := d^2 f(a, h)$$

•
$$f \in C^2(E)$$

Тогда:

• Если Q(h) положительно определена, a — локальный минимум

- Если Q(h) отрицательно определена, a — локальный максимум

• Если Q(h) незнакоопределена, a — не экстремум

• Если Q(h) положительно определена, но вырождена, недостаточно информации.

Доказательство.

$$f(a+h) = f(a)$$
$$= \frac{1}{2}d^2f(a+\Theta h, h)$$

Итоговый конспект стр. 19 из 59

$$=\frac{1}{2}\left(Q(h)+\sum_{i=1}^{n}\underbrace{\left(f_{x_{i}x_{i}}''(a+\Theta h)-f_{x_{i}x_{i}}''(a)\right)}_{\rightarrow0}\underbrace{h_{i}^{2}}_{\leq |h|^{2}}+2\sum_{i< j}\underbrace{\left(f_{x_{i}x_{i}}''(a+\Theta h)-f_{x_{i}x_{i}}''(a)\right)}_{\rightarrow0}\underbrace{h_{i}h_{j}}_{\leq |h|^{2}}\right)$$

$$f(a+h) - f(a) \ge \frac{1}{2} \left(\gamma_Q |h|^2 - \frac{\gamma_Q}{2} |h|^2 \right) \ge \frac{1}{4} \gamma_Q |h|^2 > 0$$

П

T.e. $f(a+t\overline{h}) > f(a)$ при t, близких к 0.

Аналогично $f(a+t\overline{\overline{h}}) < f(a)$ при t, близких к 0.

Это доказывает первые три пункта теоремы. Докажем последний пункт примером.

$$f(x_1, x_2 \dots) = x_1^2 - x_2^4 - x_3^4 \dots$$

$$\overline{f}(x_1, x_2 \dots) = x_1^2 + x_2^4 + x_3^4 \dots$$

$$a = (0, 0, \ldots)$$

$$f'_{x_1}(a) = 0, f'_{x_2}(a) = 0, \dots$$

$$d^2f(a,h) = h_1^2$$

$$d^2\overline{f}(a,h) = 2h_1^2$$

Итого f не имеет экстремума в a, но для \overline{f} a — локальный минимум.

2.11 Лемма о "почти локальной инъективности"

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F дифф. в $x_0 \in O$
- $\det F'(x_0) \neq 0$

Итоговый конспект стр. 20 из 59

Тогда $\exists c>0, \delta>0 \ \forall h<\delta \ |F(x_0+h)-F(x_0)|>C|h|$

Доказательство. Если F — линейное отображение:

$$|F(x_0 + h) - F(x_0)| = |F(h)| = |F'(x_0)h| \ge ||F'(x_0)|| \cdot |h| \ge \frac{1}{||(F'(x_0))^{-1}||} |h|$$
$$|F(x_0 + h) - F(x_0)| = |F'(x_0)h + \alpha(h)|h|| \ge c|h| - \frac{c}{2}|h| \ge \frac{c}{2}|h|$$

2.12 Теорема о сохранении области

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F дифф.
- $\forall x \in O \det F'(x) \neq 0$

Тогда F(O) — открыто.

Доказательство. $x_0 \in O \Rightarrow F(x_0) \in F(O)$ — внутренняя? в F(O)

По лемме $\exists c, \delta: \forall h \in \overline{B(0,\delta)} \ |F(x_0+h) - F(x_0)| > C|h|$

В частности $F(x_0+h) \neq F(x_0)$ при $|h|=\delta$

$$r := \frac{1}{2}\rho(y_0, F(S(x_0, \delta)))$$

$$\rho(A,B) \stackrel{\mathrm{def}}{=} \inf_{a \in A, b \in B} \rho(a,b)$$

Т.к. S — компакт, \exists min.

Если $y \in B(y_0, r)$, то $\rho(y, F(S(x_0, \delta))) > r$:

Итоговый конспект стр. 21 из 59

Проверим, что $B(y_0,r)\subset F(O)$, т.е. $\forall y\in B(y_0,r)\ \exists x\in B(x_0,\delta)\ F(x)=y$

Рассмотрим функцию $g(x) = |F(x) - y|^2$ при $x \in \overline{B(x_0, \delta)}$.

Мы хотим показать, что $\exists x: g(x) = 0$. Найдем min g.

$$g(x_0) = |F(x_0) - y|^2 = |y_0 - y|^2 < r^2$$

При $x \in S(x_0,\delta): g(x) > r^2 \Rightarrow \min g$ не лежит на границе шара \Rightarrow он лежит внутри шара.

$$g(x) = (F_1(x) - y_1)^2 + \ldots + (F_m(x) - y_m)^2$$

$$\forall i \quad \frac{\partial g}{\partial x_i} = 0$$

$$2(F_1(x) - y)F'_{1x_i}(x) + \ldots + 2(F_m(x) - y)F'_{mx_i}(x) = 0$$

$$F'_x 2(F(x) - y) = 0$$

$$\forall x \quad \det F' \neq 0 \Rightarrow F(x) - y = 0$$

2.13 Следствие о сохранении области для отображений в пространство меньшей размерности

• $F: O \subset \mathbb{R}^m \to \mathbb{R}^l$

• $F \in C^1(O)$

• *l* < *m*

• $\operatorname{rg} F'(x) = l \ \forall x \in O$

Тогда F(O) открыто.

Доказательство. Зафискируем точку x_0 . Пусть ранг реализуется на столбцах $1\dots l$, т.е. определитель матрицы из столбцов $1\dots l \neq 0$, т.е.:

$$\det \underbrace{\left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1...l}(x_0)}_{A(x_0)} \neq 0$$

Итоговый конспект стр. 22 из 59

И для близких точек тоже $\neq 0$

$$\tilde{F}: O \to \mathbb{R}^m \quad \tilde{F}(x) = \begin{pmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_l(x) \\ x_{l+1} \\ \vdots \\ x_m \end{pmatrix}$$

$$\tilde{F}'(x) = \left[\frac{F'(x)}{0 \mid E_{m-l}} \right]$$

 $\det \tilde{F}'(x) = \det A(x) \det E_{m-l} \neq 0$ в окрестности x_0

Тогда $\tilde{F}\Big|_{U(x_0)}$ удовлетворяет теореме $\Rightarrow \tilde{F}(U(x_0))$ — открытое множество в \mathbb{R}^m

$$F(U(x_0)) = \tilde{F}(U(x_0)) \cap \mathbb{R}^l$$

2.14 Теорема о гладкости обратного отображения

- $T \in C^r(O, \mathbb{R}^m)$
- $O \subset \mathbb{R}^m$
- $r = 1, 2, \ldots + \infty$
- T обратимо
- $\det T'(x) \neq 0 \ \forall x \in O$

Тогда
$$T^{-1}\in C^r(0,\mathbb{R}^m)$$
 и $(T^{-1})'_{y_0}=(T'(x_0))^{-1}$, где $y_0=T(x_0)$

Доказательство. Докажем по индукции по r.

База: r = 1

 $S := T^{-1}$ — непрерывно по теореме о сохранении области. Почему?

f:X o Y непр. $\Leftrightarrow \forall B-$ откр. $\subset Y$ $f^{-1}(B)-$ открыто.

 $T'(x_0) = A$ — невырожденный оператор.

По лемме о локальной иньективности

$$\exists c, \delta : \forall x \in B(x_0, \delta) \ |T(x) - T(x_0)| > C|x - x_0| \quad (*)$$

По определению дифференцируемости $T(x)-T(x_0)=A(x-x_0)+\omega(x)|x-x_0|$

Итоговый конспект стр. 23 из 59

$$T(x) = y$$
 $T(x_0) = y_0$ $x = S(y)$ $x_0 = S(x_0)$

B терминах y и S:

$$S(y) - S(y_0) = A^{-1}(y - y_0) - \underbrace{A^{-1}\omega(S(y))|S(y) - S(y_0)|}_{\stackrel{?}{y \to 0} 0 \text{ быстрее, чем } |y - y_0|}$$

Если действительно $\to 0$, то S дифференцируемо по определению.

Пусть y близко к y_0 , тогда $|x - x_0| = |S(y) - S(y_0)| < \delta$

$$|A^{-1}w(S(y))|S(y) - S(y_0)|| = |S(y) - S(y_0)| \cdot |A^{-1}w(S(y))|$$

$$\leq |x - x_0| \cdot ||A^{-1}|| \cdot |w(S(y))|$$

$$\stackrel{(*)}{\leq} \frac{1}{C} |y - y_0| \cdot ||A^{-1}|| \cdot |w(S(y))|$$

Мы доказали, что S дифференцируемо, теперь необходимо доказать, что S' непрерывно.

$$S'(y_0) = A^{-1}$$

"Алгоритм" получения обратного оператора:

$$y\mapsto T^{-1}(y)=x\mapsto T'(x)=A\mapsto A^{-1}$$

Здесь все шаги непрерывны, поэтому S' непрерывно.

Переход

$$T \in C^{r+1}$$
 $T': O \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ $T' \in C^r$ $?S \in C^{r+1}$

$$y \stackrel{\in C^r \text{ no whd.}}{\mapsto} S(y) \stackrel{\in C^r}{\mapsto} T'(x) \stackrel{\in C^{\infty}}{\mapsto} (S^{-1})'$$

2.15 ! Теорема о неявном отображении

- $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$
- О откр.
- $F \in C^r(O, \mathbb{R}^n)$
- $(a,b) \in O$
- F(a,b) = 0

M3137y2019

Итоговый конспект стр. 24 из 59

•
$$\det F_u'(a,b) \neq 0$$

Тогда:

1.
$$\exists$$
 откр. $P \subset \mathbb{R}^m, a \in P$
 \exists откр. $Q \subset \mathbb{R}^n, b \in Q$
 $\exists ! \Phi : P \to Q \in C^r : \forall x \in P \ F(x, \Phi(x)) = 0$
2. $\Phi'(x) = -\left(F'_y(x, \Phi(x))\right)^{-1} \cdot F'_x(x, \Phi(x))$

Доказательство.

$$1 \Rightarrow 2: \ F(x, \Phi(x)) = 0 \Rightarrow F'_x(x, \Phi(x)) + F'_y(x, \Phi(x))\Phi'(x) = 0$$
$$1: \ \tilde{F}: O \to \mathbb{R}^{m+n}: (x, y) \mapsto (x, F(x, y)), \tilde{F}(a, b) = (a, 0)$$
$$F' = \left(\frac{E_m \mid 0}{F'_x \mid F'_y}\right)$$

Очевидно $\det \tilde{F}' \neq 0$ в (a,b), значит $\exists U(a,b): \tilde{F} \Big|_{U} -$ диффеоморфизм

- 1. $U = P_1 \times Q$ можно так считать
- 2. $V = \tilde{F}(U)$
- 3. $ilde{F}$ диффеоморфизм на $U\Rightarrow\exists\Psi= ilde{F}^{-1}:V o U$
- 4. \tilde{F} не меняет первые m координат $\Rightarrow \Psi(u,v) = (u,H(u,v)), H:V \to \mathbb{R}^n.$
- 5. "Ось x" \Leftrightarrow "ось y", P:= "ось $u''=\mathbb{R}^m\times a\cap V,$ P- откр. в $\mathbb{R}^m,$ $P=P_1$

Итоговый конспект стр. 25 из 59

6.
$$\Phi(x):=H(x,0)$$

$$F\in C^r\Rightarrow \tilde{F}\in C^r\Rightarrow \Psi\in C^r\Rightarrow H\in C^r\Rightarrow \Phi\in C^r$$
 Единственность: $(x,y)=\Psi(\tilde{F}(x,y))=\Psi(x,0)=(x,H(x,0))=(x,\Phi(x))$

2.16 Теорема о задании гладкого многообразия системой уравнений

- $M \subset \mathbb{R}^m$
- $1 \le k \le m$ (случай k = m тривиален)
- $1 < r < \infty$
- $p \in M$

Тогда эквивалентны следующие утверждения:

- 1. $\exists U(p) \subset \mathbb{R}^m$ окрестность p в \mathbb{R}^m : $M \cap U k$ -мерное C^r -гладкое многообразие.
- 2. $\exists \tilde{U}(p) \subset \mathbb{R}^m$ и функции $f_1, f_2 \dots f_{m-k} : \tilde{U} \to \mathbb{R}$, все $f_i \in C^r$ $x \in M \cap \tilde{U} \Leftrightarrow f_1(x) = f_2(x) = \dots = 0$, при этом $\operatorname{grad} f_1(p) \dots \operatorname{grad} f_{m-k}(p) \operatorname{ЛН3}$.

Доказательство.

 $1\Rightarrow 2: \ \Phi$ — параметризация $O\subset\mathbb{R}^k\to\mathbb{R}^m, \Phi\in C^r, p=\Phi(t^0)$

$$\mathrm{rg}\Phi'(t^0)=k$$

Пусть
$$\det \left(\frac{\partial \Phi_i}{\partial t_j}(t^0) \right)_{i,j=1\dots k}
eq 0$$

Пусть $L: \mathbb{R}^m \to \mathbb{R}^k$ — проекция на первые k координат: $(x_1 \dots x_m) \mapsto (x_1 \dots x_k)$

Тогда $(L \circ \Phi)'$ — невырожденный оператор \Rightarrow локальный диффеоморфизм. Тогда если $W(t^0)$ — окрестность точки t^0 , то $L \circ \Phi : W \to V \subset \mathbb{R}^k$ — диффеоморфизм.

Итоговый конспект стр. 26 из 59

Множество $\Phi(W)$ — график некоторого отображения $H:V\to\mathbb{R}^{m-k}$

Пусть
$$\Psi = (L \circ \Phi)^{-1}$$

Берем
$$x' \in V$$
, тогда $(x', U(x')) = \Phi(\Psi(x'))$, т.е. $H \in C^r$

Множество $\Phi(W)$ открыто в $M\Rightarrow \Phi(W)=M\cap \tilde{U}$, где \tilde{U} открыто в \mathbb{R}^m

$$\tilde{U} \subset V \times \mathbb{R}^{m-k}$$

Пусть
$$f_j: \tilde{U} \to \mathbb{R}, x \mapsto H_j(L(x)) - x_{k+j}$$
. Тогда $x \in M \cap \tilde{U} (=\Phi(W)) \Leftrightarrow f_j(x) = 0$

$$\begin{pmatrix} \operatorname{grad} f_1(p) \\ \vdots \\ \operatorname{grad} f_{m-k}(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & 0 & -1 & \dots & \vdots \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial H_{m-k}}{\partial x_k} & 0 & 0 & \dots & -1 \end{pmatrix}$$

$$rg = k \Rightarrow ЛН3$$

$$2 \Rightarrow 1$$
: $F := (f_1 \dots f_{m-k})$

$$I := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \dots & \frac{\partial f_1}{\partial x_k}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m-k}}{\partial x_1}(p) & \dots & \frac{\partial f_{m-k}}{\partial x_k}(p) \end{pmatrix}$$

Градиенты ЛНЗ \Rightarrow rgI = m - k.

Пусть ранг реализуется на последних m-k столбцах, т.е.

$$\det\left(\frac{\partial f_i}{\partial x_{k+j}}(p)\right)_{i,j=1...m-k} \neq 0$$

$$F(x_1 \dots x_k, x_{k+1} \dots x_m) = 0$$
 при $x \in U$

Итоговый конспект стр. 27 из 59

По т. о неявном отображении:

$$\exists P$$
 — окр. $(x_1 \dots x_k)$ в \mathbb{R}^m

$$\exists Q - \text{окр.} (x_{k+1} \dots x_m)$$
 в \mathbb{R}^{m-k}

$$\exists H \in C^r : P \to Q : F(x', H(x')) = 0$$
 для $x' \in P$

Тогда
$$\Phi:P \to \mathbb{R}^m: (x_1\dots x_k) \mapsto (x_1\dots x_k, H_1(x_1\dots x_k), H_2(x_1\dots x_k)\dots H_{m-k}(x_1\dots x_k)$$

 Φ — гомеоморфизм P и $M \cap \tilde{U}, \Phi$ — фактически проекция.

2.17 Следствие о двух параметризациях

- $M \subset \mathbb{R}^m k$ -мерное C^r -гладкое многообразие
- $p \in M$
- \exists две параметризации:

$$\Phi_1: O_1 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m, \Phi_1(t^0) = p$$

$$\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m, \Phi_2(s^0) = p$$

Тогда \exists диффеоморфизм $\Psi: O_1 \to O_2$, такой что $\Phi_1 = \Phi_2 \circ \Psi$

Доказательство.

Частный случай: Пусть $\operatorname{rg}\Phi_1'(t^0), \operatorname{rg}\Phi_2'(s^0)$ достигается на первых k столбцах.

Тогда
$$\Phi_1=\Phi_2\circ\underbrace{(L\circ\Phi_2)^{-1}\circ(L\circ\Phi_1)}_{\Theta$$
 – искомый диффеоморфизм

Общий случай: $\Phi_1 = \Phi_2 \circ (\Phi_2 \circ L_2)^{-1} \circ (L_2 \circ L_1^{-1}) \circ (L_1 \circ \Phi_1)$

$$L_2 \circ L_1^{-1} = L_2 \circ \Phi_1 \circ (L \circ \Phi_1)^{-1} \in C^r$$

Гладкость очевидна в силу гладкости всех элементов.

Невырожденность мы не доказали, поэтому то, что это диффеоморфизм — ещё не доказано. Возможно, это будет на следующей лекции.

2.18 Лемма о корректности определения касательного пространства

- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$
- $\Phi \in C^r$

M3137y2019

Итоговый конспект стр. 28 из 59

• Φ — параметризация многообразия $U(p)\cap M$, где $p\in M, M$ — гладкое k-мерное многообразие $\Rightarrow U(p)\cap M$ — простое многообразие

•
$$\Phi(t^0) = p$$

Тогда образ $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ есть k-мерное линейное подпространство в \mathbb{R}^m . Оно не зависит от Φ .

 $\Phi'(t^0)$ — касательное пространство к M в точке p, обозначается T_pM .

Доказательство. $\operatorname{rg}\Phi'(t^0)=k$ по определению параметризации \Rightarrow искомое очевидно. Если взять другую параметризацию Φ_1 , то

$$\Phi = \Phi_1 \circ \Psi$$

$$\Phi' = \Phi'_1 \Psi'$$

 $\Psi'(t^0)$ — невырожденный оператор \Rightarrow образ Φ' = образ Φ'_1

2.19 Касательное пространство в терминах векторов скорости гладких путей

Пусть $\gamma:[-arepsilon,arepsilon] o M, \gamma(0)=p$ – гладкий путь. Тогда $\gamma'(0)\in T_pM$

Доказательство. Из иллюстрации очевидно:

$$\gamma(s) = \Phi \circ \Psi \circ L \circ \gamma(s)$$
$$\gamma'(0) = \Phi'\Psi'L'\gamma'(0) = \Phi'(\gamma(0)) = \Phi'(p) \in T_pM$$

Итоговый конспект стр. 29 из 59

2.20 Касательное пространство к графику функции и к поверхности уровня

 $f:O\subset\mathbb{R}^m o\mathbb{R},y=f(x)$ — поверхность в \mathbb{R}^{m+1} , задается точками (x,y).

Тогда (аффинная) касательная плоскость в точке (a,b) задается уравнением

$$y - b = f'_{x_1}(a)(x_1 - a_1) + f'_{x_2}(a)(x_2 - a_2) + \dots + f'_{x_m}(a)(x_m - a_m)$$

Доказательство. $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^{m+1}$

$$\Phi(x) = (x, f(x))$$

$$\Phi' = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ f'_{x_1} & f'_{x_2} & \dots & f'_{x_m} \end{bmatrix}$$

Рассмотрим произвольный вектор $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \\ \beta \end{pmatrix}$. В каких случаях он принадлежит образу Φ' ?

$$\Phi'\vec{x} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ f'_{x_1} & f'_{x_2} & \dots & f'_{x_m} \end{bmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \\ x_1 f'_{x_1} + \dots + x_m f'_{x_m} \end{pmatrix}$$

Таким образом, вектор принадлежит образу, если $\beta = \alpha_1 f'_{x_1} + \ldots + \alpha_m f'_{x_m}$

$$\Phi(x_1 \dots x_m) = 0$$

$$\Phi:O\subset\mathbb{R}^m\to\mathbb{R}$$

$$\Phi(a) = 0$$

Тогда уравнение касательной к плоскости $\Phi'_{x_1}(a)(x_1-a_1)+\ldots+\Phi'_{x_m}(a)(x_m-a_m)=0$

Доказательство. γ — путь в $M:\Phi(\gamma(s))=0, \Phi'(\gamma(s))\gamma'(s)=0.$ По предыдущим утверждениям такой путь есть, кроме того, любому вектору x в касательном пространстве можно сопоставить $\gamma:\gamma'(s)=x.$ Поэтому любой касательный вектор от точки a, он должен быть подчинём искомоу отношению.

Итоговый конспект стр. 30 из 59

Альтернативное доказательство:

По определению дифференцируемости Φ в точке a:

$$\Phi(x) = \Phi(a) + \Phi'_{x_1}(x_1 - a_1) + \ldots + \Phi'_{x_m}(x_m - a_m) + \emptyset$$

Мы игнорируем o, потому что оно скомпенсируется тем, что мы берем не с поверхности Φ , а с касательной плоскости. Это нестрогое утверждение.

2.21 ! Необходимое условие относительного локального экстремума

- $f:O\subset\mathbb{R}^{m+n}\to\mathbb{R}$ гладкое в O
- $M_{\Phi} \subset O := \{x : \Phi(x) = 0\}$ гладкое в O
- $a \in O$ точка относительного локального экстремума
- $\Phi(a) = 0$
- $\operatorname{rg}\Phi'(a) = n$

Тогда
$$\exists \lambda=(\lambda_1\dots\lambda_n)\in\mathbb{R}^n: egin{cases} f'(a)-\lambda\Phi'(a)=0 \\ \Phi(a)=0 \end{cases}$$

Второе условие дописано для удобства, оно не содержательно, т.к. оно уже дано.

В координатах:
$$\begin{cases} f'_{x_1} - \lambda_1(\Phi_1)'_{x_1} - \lambda_2(\Phi_2)'_{x_1} - \ldots - \lambda_m(\Phi_m)'_{x_1} = 0 \\ \vdots \\ f'_{x_{m+n}} - \lambda_1(\Phi_1)'_{x_{m+n}} - \lambda_2(\Phi_2)'_{x_{m+n}} - \ldots - \lambda_m(\Phi_m)'_{x_{m+n}} = 0 \\ \Phi_1(a) = 0 \\ \vdots \\ \Phi_n(a) = 0 \end{cases}$$

Здесь неизвестны $a_1 \dots a_{m+n}, \lambda_1 \dots \lambda_n$, поэтому, если уравнения не вырождены, то решение есть.

Доказательство. $rg\Phi'(a) = n$. Пусть ранг реализуется на столбцах $x_{m+1} \dots x_{m+n}$.

Обозначим $y_1 = x_{m+1} \dots y_n = x_{m+n}$.

$$(x_1 \dots x_{m+n}) \leftrightarrow (x,y), a \leftrightarrow (a_x,a_y).$$

 $\det \frac{\partial \Phi}{\partial y}(a) \neq 0.$ Тогда по теореме о неявном отображении $\exists U(a_x) \; \exists V(a_y) \; \exists \varphi : U(a_x) \to V(a_y) : \; \Phi(x,\varphi(x)) \equiv 0$ и отображение $x \mapsto (x,\varphi(x))$ есть параметризация простого гладкого многообразия $M_\varphi \cap (U(a_x) \times V(a_y))$.

Итоговый конспект стр. 31 из 59

a — точка относительного локального экстремума $\Rightarrow a_x$ — точка локального экстремума функции $g(x)=f(x,\varphi(x)),$ потому что $(x,\varphi(x))\in U(a).$

Необходимое свойство экстремума для a_x :

$$(f_x' + f_y' \cdot \varphi')(a_x) = 0 \tag{2}$$

Примечание. Здесь и далее в этом доказательстве в функции и производные операторы подставляется a и a_x , но не записывается ради краткости и запутанности.

$$\Phi(x, \varphi(x)) \equiv 0$$

$$\Phi'_x + \Phi'_y \cdot \varphi' = 0$$

Тогда $\forall \lambda \in \mathbb{R}^n$:

$$\lambda \Phi_x' + \lambda \Phi_y' \cdot \varphi' = 0 \tag{3}$$

$$f_x' + \lambda \Phi_x' + (f_y' + \lambda \Phi_y') \varphi' = 0 \tag{2+3}$$

Пусть $\lambda = -f_y' \cdot (\Phi_y'(a))^{-1}$.

Тогда
$$f_y' + \lambda \Phi_y' = f_y' - f_y' (\Phi_y'(a))^{-1} \Phi_y'(a) = 0$$
 и $f_x' + \lambda \Phi_y' = 0$ в силу (2 + 3).

2.22 Вычисление нормы линейного оператора с помощью собственных чисел

• $A \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^n)$

Тогда $||A|| = \max\{\sqrt{\lambda} : \lambda - \text{собственное число } A^TA\}$

Такое число существует, т.к. $\langle Ax,y\rangle=\langle x,Ay\rangle\Rightarrow\langle A^TAx,x\rangle=\langle Ax,Ax\rangle\geq 0\Rightarrow\lambda\geq 0.$

Доказательство. $\triangleleft x \in S^{m-1}$.

$$|Ax|^2 = \langle Ax, Ax \rangle = \langle \underbrace{A^T A}_{\text{CHMM}} x, x \rangle$$

$$\max |Ax|^2 = \max \langle A^T Ax, x \rangle = \lambda_{\max}$$

2.23 ! Теорема Стокса-Зайдля о непрерывности предельной функции. Следствие для рядов

Теорема 1 (Стокса-Зайдля).

- $f_n, f: X \to \mathbb{R}$
- X метрическое пространство
- $x_0 \in X$
- f_n непрерывна в x_0
- $f_n \underset{X}{\Longrightarrow} f$

Тогда f непрерывна в x_0 .

Доказательство. $|f(x)-f(x_0)| \leq \underline{|f(x)-f_n(x)|} + |f_n(x)-f_n(x_0)| + \underline{|f_n(x_0)-f(x_0)|} -$ верно $\forall x, \forall n$

$$f_n \underset{X}{\Longrightarrow} f \overset{\text{def}}{\Longleftrightarrow} \forall \varepsilon > 0 \ \exists N \ \forall n > N \quad \sup_{X} |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$
 (1)

Берем $\forall \varepsilon>0$ возьмём любой n, для которого выполняется (1). Тогда подчеркнутые слагаемые $\leq \frac{\varepsilon}{3}$. Теперь для этого n подбираем $U(x_0): \forall x \in U(x_0) \ |f_n(x)-f_n(x_0)| < \frac{\varepsilon}{3}$

$$|f(x) - f(x_0)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Теорема 1' (Стокса-Зайдля для рядов).

- $u_n: X \to Y$
- X метрическое пространство
- Y нормированное пространство
- $x_0 \in X$
- u_n непрерывно в x_0
- $\sum u_n(x)$ равномерно сходится на X
- $S(x) := \sum u_n(x)$

Тогда S(x) непрерывно в x_0 .

Доказательство. По теореме 1 $S_n(x) \rightrightarrows S(x), S_n(x)$ — непр. в $x_0 \stackrel{\text{т. 1}}{\Longrightarrow} S(x)$ непр. в x_0

Итоговый конспект стр. 33 из 59

2.24 Метрика в пространстве непрерывных функций на компакте, его полнота

X компакт

•
$$\rho(f_1,f_2) = \sup_{x \in X} |f_1(x) - f_2(x)|$$
, где $f_1,f_2 \in C(X)$

Тогда пространство C(X) — полное метрическое пространство с метрикой ρ .

Доказательство. f_n — фундаментальная в $C(X) \stackrel{\text{def}}{\Longleftrightarrow}$:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \in X \ |f_n(x) - f_m(x)| < \varepsilon \ (*)$$

 $\Rightarrow \forall x_0 \in X$ вещественная последовательность $(f_n(x_0))$ фундаментальная $\Rightarrow \exists \lim_{n \to +\infty} f_n(x_0) = f(x_0)$, тогда f — поточечный предел f_n . Проверим это.

В (*) перейдем к пределу при $m \to +\infty$:

$$\forall \varepsilon > 0 \ \exists N \ \forall n \ \forall x \in X \ |f_n(x) - f(x)| \leq \varepsilon \Rightarrow f_n \underset{X}{\Longrightarrow} f \xrightarrow{\text{C.t. M3 Ctoke}} f \in C(X)$$

2.25 Теорема о предельном переходе под знаком интеграла. Следствие для рядов

- $f, f_n \in C[a, b]$
- $f_n \Longrightarrow f$ на [a,b]

Тогда $\int_a^b f_n o \int_a^b f$

Доказательство.

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \int_{a}^{b} |f_{n} - f| \leq \sup_{[a,b]} |f_{n} - f| (b - a) = \rho(f_{n}, f)(b - a) \to 0$$

2.26 Правило Лейбница дифференцирования интеграла по параметру

- $f:[a,b]\times[c,d]\to\mathbb{R}$
- f, f_y' непр. на $[a,b] \times [c,d]$
- $\Phi(y) = \int_a^b f(x,y) dx$

Тогда Φ дифференцируема на [c,d] и $\Phi'(y)=\int_a^b f_y'(x,y)dx$

Итоговый конспект стр. 34 из 59

Доказательство.

$$\frac{\Phi\left(y+\frac{1}{n}\right) - \Phi(y)}{\frac{1}{n}} = \int_{a}^{b} \frac{f\left(y+\frac{1}{n}\right) - f(x,y)}{\frac{1}{n}} dx \tag{4}$$

$$= \int_{a}^{b} f_{y}'\left(x, y + \frac{\Theta}{n}\right) dx \tag{5}$$

$$= \int_{a}^{b} g_n(x, y) dx \tag{6}$$

5: по т. Лагранжа.

 $g_n(x,y) \xrightarrow{n \to +\infty} f_y'(x,y)$ на $x \in [a,b]$ по теореме Кантора о равномерной непрерывности, и мы считаем y фиксированным.

Таким образом,
$$\Phi'(y) \leftarrow \frac{\Phi\left(y+\frac{1}{n}\right)-\Phi(y)}{\frac{1}{n}} \to \int_a^b f_y'(x,y)dx$$

2.27 Теорема о предельном переходе под знаком производной. Дифференцирование функционального ряда

- $f_n \in C^1\langle a, b \rangle$
- $f_n \to f$ поточечно на $\langle a, b \rangle$
- $f'_n \Longrightarrow_{\langle a,b\rangle} \varphi$

Тогда $f \in C^1\langle a,b \rangle$

То есть пунктирное преобразование верно:

$$\begin{array}{ccc}
f_n & \xrightarrow{n \to +\infty} f \\
\downarrow & & \downarrow \\
f'_n & \longrightarrow \varphi
\end{array}$$

Доказательство. $\forall x_0, x_1 \in \langle a, b \rangle$:

$$f'_n \xrightarrow{[x_0, x_1]} \varphi \xrightarrow{\text{теорема 2}} \int_{x_0}^{x_1} f'_n \xrightarrow{n \to +\infty} \int_{x_0}^{x_1} \varphi$$

$$\int_{x_0}^{x_1} f'_n \xrightarrow{n \to +\infty} \int_{x_0}^{x_1} \varphi$$

Итоговый конспект стр. 35 из 59

$$f(x_1) - f(x_0) \stackrel{n \to +\infty}{\longleftarrow} f_n(x_1) - f_n(x_0) \xrightarrow{n \to +\infty} \int_{x_0}^{x_1} \varphi$$
$$f(x_1) - f(x_0) \to \int_{x_0}^{x_1} \varphi$$

Тогда
$$\begin{cases} f-$$
 первообразная $arphi \\ arphi-$ непр. $\ \Rightarrow f'=arphi$

Дифференцирование функционального ряда?

2.28 !Признак Вейерштрасса равномерной сходимости функционального ряда

- $\sum u_n(x)$
- $x \in X$

Пусть $\exists c_n$ — вещественная:

- $|u_n(x)| \le c_n$ при $x \in E$
- $\sum c_n \text{сходится}$

Тогда $\sum u_n(x)$ равномерно сходится на E

Доказательство. $|u_{n+1}(x) + \ldots + u_{n+p}(x)| \le c_{n+1} + \ldots + c_{n+p}$ — тривиально

 $\sum c_n - \mathsf{cx.} \Rightarrow c_n$ удовлетворяет критерию Больцано-Коши :

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ c_{n+1} + \dots c_{n+p} < \varepsilon$$

Тогда $\sum u_n(x)$ удовлетворяет критерию Больцано-Коши равномерной сходимости. $\ \Box$

2.29 Дифференцируемость Γ функции

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k}$$
$$\Gamma'(x) = -\Gamma(x) \left(\frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k} \right)$$

Изучив равномерную сходимость $\left(\frac{x}{(x+k)k}\right)'$, получаем, что $\Gamma\in C^2(0,+\infty)$ и т.д. \Rightarrow $\Gamma\in C^\infty(0,+\infty)$

Итоговый конспект стр. 36 из 59

2.30 Теорема о предельном переходе в суммах

- $u_n: E \subset X \to \mathbb{R}$
- X метрическое пространство
- x_0 предельная точка E
- $\forall n \; \exists$ конечный $\lim_{x \to x_0} u_n(x) = a_n$
- $\sum u_n(x)$ равномерно сходится на E.

Тогда:

1. $\sum a_n - \text{сходится}$

2.
$$\sum a_n = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$$

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to x_0} u_n(x)$$

Доказательство.

1. $? \sum a_n - \text{сходится}$

$$S_n(x) = \sum_{k=0}^n u_k(x), S_n^a = \sum_{k=1}^n a_k$$

Проверим, что S_n^a — фундаментальная:

$$|S_{n+p}^a - S_n^a| \le |S_{n+p}^a - S_{n+p}(x)| + |S_{n+p}(x) - S_n(x)| + |S_n(x) - S_n^a| \tag{7}$$

Из равномерной сходимости $\sum u_n(x)$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ |S_{n+p} - S_n(x)| < \frac{\varepsilon}{3}$$

(Это критерий Больцано-Коши для равномерной сходимости)

Зададим ε по N, выберем n,n+p и возьмём x близко к $x_0:|S_{n+p}^a-S_{n+p}(x)|<\frac{\varepsilon}{3}$

$$|S_n^a - S_n(x)| < \frac{\varepsilon}{3}$$

Тогда выполнено 7, т.е. $|S_{n+p}-S_n^a|<rac{arepsilon}{3}+rac{arepsilon}{3}+rac{arepsilon}{3}+rac{arepsilon}{3}<arepsilon$

$$2. \sum a_n \stackrel{?}{=} \lim_{x \to x_0} \sum u_n(x)$$

Сведём к теореме Стокса-Зайдля.

Итоговый конспект стр. 37 из 59

$$\tilde{u}_n(x) = \begin{cases} u_n(x), & x \in E \setminus \{x_0\} \\ a_n, & x = x_0 \end{cases}$$
— задано на $U \cup \{x_0\}$, непрерывно в x_0 .

 $\sum \tilde{u}_n(x)$ — равномерно сходится на $E \cup \{x_0\} \Rightarrow$ сумма ряда непрерывна в x_0 .

$$\lim_{x \to x_0} \sum u_n(x) = \lim_{x \to x_0} \sum \tilde{u}_n(x) = \sum \tilde{u}_n(x_0) = \sum a_n$$

$$\sup_{x} \left| \sum_{k=n}^{+\infty} \tilde{u}_k(x) \right| \le \sup_{x \in E \setminus \{x_0\}} \left| \sum_{k=n}^{+\infty} u_k(x) \right| + \left| \sum_{k=n}^{+\infty} a_k \right|$$

2.31 Теорема о перестановке двух предельных переходов

•
$$f_n: E \subset X \to \mathbb{R}$$

• x_0 — предельная точка E

•
$$f_n \xrightarrow[n \to +\infty]{E} S(x)$$

•
$$f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда:

1.
$$\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$$

2.
$$S(x) \xrightarrow[x \to x_0]{} A$$

То есть пунктирное преобразование верно:

$$\begin{array}{c}
f_n & \longrightarrow \\
x \to x_0 \downarrow & \downarrow \\
A_n & \xrightarrow[n \to +\infty]{} A
\end{array}$$

Доказательство. $u_1 = f_1, \dots u_k = f_k - f_{k-1} \dots$

$$a_1 = A_1, \dots a_k = A_k - A_{k-1}$$

Тогда
$$f_n = u_1 + u_2 + \ldots + u_n$$
, $A_n = a_1 + a_2 + \ldots + a_n$

В эти обозначениях $\sum u_k(x)$ равномерно сходится к сумме S(x).

$$u_k(x) \xrightarrow[x \to x_0]{} a_k$$

M3137y2019

Итоговый конспект стр. 38 из 59

Тогда по т. 4' $\sum_{k=1}^n a_k = A_n$ имеет конечный предел при $n \to +\infty$.

$$\lim_{x \to x_0} \sum u_k(x) = \lim_{x \to x_0} S(x) = \sum a_k = A$$

2.32 Признак Дирихле равномерной сходимости функционального ряда

- $\sum a_n(x)b_n(x)$ вещественный ряд.
- $x \in X$
- Частичные суммы ряда $\sum a_n$ равномерно ограничены :

$$\exists C_a \ \forall N \ \forall x \in X \ \left| \sum_{k=1}^n a_k(x) \right| \le C_a$$

• $\forall x$ последовательность $b_n(x)$ — монотонна по n и $b_n(x) \xrightarrow[n \to +\infty]{X} 0$

Тогда ряд $\sum a_n(x)b_n(x)$ равномерно сходится на X

Доказательство. Преобразование Абеля (суммирование по частям)

$$\sum_{M \le k \le N} a_k b_k = A_N b_N - A_{M-1} b_{M-1} + \sum_{M \le k \le N-1} A_k (b_k - b_{k+1})$$

$$\left| \sum_{k=m}^{N} a_{k}(x)b_{k}(x) \right| \leq C_{A}|b_{N}| + C_{A}|b_{M-1}| + \sum_{M \leq k \leq N-1} C_{A}|b_{k} - b_{k+1}|$$

$$\leq C_{A} \left(|b_{N}(x)| + |b_{M-1}(x)| + \sum_{k=M}^{N-1} |b_{k} - b_{k+1}| \right)$$

$$\leq C_{A} \left(2|b_{N}(x)| + |b_{M-1}(x)| + |b_{M}(x)| \right)$$
(8)

8 : Все разности одного знака \Rightarrow телескопически $=\pm(b_M-b_N)$

$$\forall \varepsilon > 0 \ \exists K : \forall l > K \ \forall x \in X \ |b_l(x)| < \frac{\varepsilon}{4C_A}$$

Значит, при $M,N>K \ \, \forall x\in X$:

$$\left| \sum_{k=m}^{N} a_k(x) b_k(x) \right| < \varepsilon$$

Это критерий Больцано-Коши равномерной сходимости ряда.

П

2.33 Теорема о круге сходимости степенного ряда

• $\sum a_n(z-z_0)^n$ — степенной ряд

Тогда выполняется ровно один из трех случаев:

- 1. Ряд сходится при всех $z \in C$
- 2. Ряд сходится только при $z=z_0$
- 3. $\exists R \in (0, +\infty)$:
 - (a) при $|z z_0| < R$ ряд абсолютно сходится
 - (b) при $|z z_0| > R$ ряд расходится

Доказательство. Применим признак Коши: $\overline{\lim} \sqrt[n]{|a_n|} = r$, если r < 1, ряд сходится, если r > 1, ряд расходится.

$$\overline{\lim} \sqrt[n]{|a_n| \cdot |z - z_0|^n} = \overline{\lim} \sqrt[n]{|a_n|} |z - z_0| = |z - z_0| \overline{\lim} \sqrt[n]{|a_n|}$$

- 1. $\overline{\lim} = 0$. Тогда r = 0, есть абсолютная сходимость при всех z.
- 2. $\overline{\lim} = +\infty$. Тогда $r = +\infty$ при $z \neq z_0$. При $z = z_0$ сходимость очевидна.
- 3. $\overline{\lim} \neq 0, +\infty$. Тогда $|z-z_0|\overline{\lim} \sqrt[n]{|a_n|} < 1 \Leftrightarrow |z-z_0| < \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \stackrel{\mathrm{def}}{=} R$

2.34 Теорема о непрерывности степенного ряда

- $\sum a_n(z-z_0)^n$
- $0 < R \le +\infty$

Тогда:

- 1. $\forall r: 0 < r < R$ ряд сходится равномерно на $\overline{B(z_0,r)}$
- 2. $f(z) = \sum a_n (z-z_0)^n$ непрерывна в $B(z_0,r)$

Доказательство.

- 1. Если 0 < r < R, то при z = r ряд абсолютно сходится, т.е. $\sum |a_n| r^n < +\infty$ Признак Вейерштрасса:
 - (a) При $|z z_0| \le r |a_n(z z_0)^n| \le |a_n|r^n$
 - (b) $\sum |a_n| r^n < +\infty$
 - \Rightarrow есть сходимость на $\overline{B(z_0,r)}$

Итоговый конспект стр. 40 из 59

2. Следствие из пункта 1 и теоремы Стокса-Зайдля.

Если z удовлетворяет $|z-z_0| < R$, то $\exists r_0 < R : z \in B(z_0,r_0)$

На $B(z_0, r_0)$ есть равномерная сходимость $\Rightarrow f$ непр. в точке z.

2.35 Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример.

(A)
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n, 0 < R < +\infty$$

(A')
$$\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$$

Тогда:

1. Радиус сходимости (А') равен R

2.
$$\forall z \in B(z_0, R) \; \exists f'(z) \; \mathbf{u} \; f'(z) = \sum n a_n (z - z_0)^n$$

Доказательство.

1. По формуле Адамара.

Ряд (A') сходится при каком-то $z \Leftrightarrow \sum na_n(z-z_0)^n$ — сходится.

$$\frac{1}{\overline{\lim}\sqrt[n]{n|a_n|}} = \frac{1}{1 \cdot \overline{\lim}\sqrt[n]{|a_n|}} = R$$

2. $\forall a \in B(z_0, R), \exists r < R : a \in B(z_0, r)$

$$a = z_0 + w_0, |w_0| < r$$

$$z = z_0 + w$$

$$\frac{f(z) - f(a)}{z - a} = \sum_{n=0}^{+\infty} a_n \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} \underbrace{a_n \frac{w^n - w_0^n}{w - w_0}}_{\text{модуль по лемме}}$$
(9)

Итоговый конспект стр. 41 из 59

 $\sum nr^{n-1}|a_n|$ сходится по пункту 1.

То есть ряд 9 в круге $z \in B(z_0,r)$

$$\lim \frac{f(z) - f(a)}{z - a} = \sum_{n=1}^{+\infty} a_n \lim \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum n a_n (a - z_0)^{n-1}$$

Следствие об интегрировании?

Пример?

2.36 Свойства экспоненты

1. $\exp(0) = 1$

2.
$$\exp(z)' = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = \exp z$$

2.37 Метод Абеля суммирования рядов. Следствие

- $\sum_{n=0}^{+\infty} c_n \text{сходится}$
- $c_n \in \mathbb{C}$
- $f(x) = \sum c_n x^n$
- *R* > 1
- -1 < x < 1

Тогда $\lim_{x \to 1-0} f(x) = \sum c_n$

Доказательство. Ряд $\sum c_n x^n$ равномерно сходится на [0,1] по признаку Абеля при $a_n(x)=c_n,b_n(x)=x^n.$

Функции $c_n x^n$ непрерывны на $[0,1] \xrightarrow{\text{Стокса-Зайдля}} \sum c_n x^n$ — непр. на [0,1]

- $\sum a_n = A$
- $\sum b_n = B$
- $c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$
- $\sum c_n = C$

Tогда C = AB

Итоговый конспект стр. 42 из 59

Доказательство.
$$f(x) = \sum a_n x^n, g(x) = \sum b_n x^n, h(x) = \sum c_n x^n, x \in [0, 1]$$

При
$$x<1$$
 есть абсолютная сходимость $f(x)$ и $g(x)$. Можно перемножать: $f(x)g(x)=h(x)$, при $x\to 1-0$ $A\cdot B=C$

2.38 Единственность разложения функции в ряд

f — разлагается в степенной ряд в окрестности x_0 , если:

$$\exists \varepsilon > 0 \ \exists C_n$$
 — вещ. посл. $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \ f(x) = \sum_{n=0}^{+\infty} C_n (x - x_0)^n$ (10)

Теорема 1 (о единственности). f разлагается в степенной ряд в окрестности x_0 . Тогда разложение единственно.

Доказательство. Выполняется 10.

База:

$$C_0 = f(x_0)$$
 $f'(x) = \sum_{n=1}^{+\infty} nC_n(x - x_0)^{n-1}$

Переход:

$$f^{(k)} = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1)C_n(x-x_0)^{n-k} \Rightarrow C_k = \frac{f^{(k)}(x_0)}{k!}$$

2.39 Разложение бинома в ряд Тейлора

 $\forall \sigma \in \mathbb{R} \ \forall x \in (-1,1)$

$$(1+x)^{\sigma} = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2}x^2 + \dots + {\sigma \choose n}x^n + \dots$$

Доказательство. При |x| < 1 ряд сходится по признаку Даламбера:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{\sigma!}{(n+1)!(n+1-\sigma)!} x^{n+1}}{\frac{\sigma!}{n!(n-\sigma)!} x^n} \right| = \left| \frac{(\sigma-n)x}{n+1} \right| \xrightarrow{n \to +\infty} |x| < 1$$

Обозначим сумму ряда через S(x).

Итоговый конспект стр. 43 из 59

Наблюдение: $S'(x)(1+x) = \sigma S(x)$

$$S'(x) = \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n)}{n!} x^n + \dots$$

$$S(x) = \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} x^n + \dots$$

$$(1 + x)S' = \dots + \left(\frac{\sigma(\sigma - 1) \dots (\sigma - n)}{n!} + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} n\right) x^n + \dots$$

$$= \dots + \frac{\sigma(\sigma - 1) \dots (\sigma - n + 1)}{n!} \sigma x^n + \dots$$

$$f(x) = \frac{S(x)}{(1+x)^{\sigma}} \quad f'(x) = \frac{S'(1+x)^{\sigma} - \sigma(1+x)^{\sigma-1}S}{(1+x)^{2\sigma}} = 0$$

$$\Rightarrow f = \text{const}, f(0) = 1 \Rightarrow f \equiv 1 \Rightarrow S(x) = (1+x)^{\sigma}$$

2.40 Теорема о разложимости функции в ряд Тейлора

$$f \in C^{\infty}(x_0 - h, x_0 + h)$$

Тогда f — раскладывается в ряд Тейлора в окрестности $x_0 \iff$

$$\exists \delta, C, A > 0 \ \forall n \ \forall x : |x - x_0| < \delta \ |f^{(n)}(x)| < CA^n n!$$

Доказательство.

$$\Leftarrow$$
 формула Тейлора в $x_0:f(x)=\sum\limits_{k=0}^{n-1}rac{f^{(k)}(x_0)}{k!}(x-x_0)^k+rac{f^{(n)}(c)}{n!}(x-x_0)^n$

Если

$$\left| \frac{f^{(n)}(c)}{n!} (x - x_0)^n \right| \xrightarrow{n \to +\infty} 0$$

, то f раскладывается в ряд Тейлора. Из условия мы знаем:

$$\left| \frac{f^{(n)}(c)}{n!} (x - x_0)^n \right| \le C|A(x - x_0)|^n$$

Тогда при $C|A(x-x_0)|^n \to 0$ f раскладывается в ряд Тейлора.

$$C|A(x-x_0)|^n \to 0 \Leftrightarrow |x-x_0| < \min(\delta, \frac{1}{4})$$

Таким образом, f раскладывается в ряд Тейлора в области $(x_0-\min(\delta,\frac{1}{A}),x_0+\min(\delta,\frac{1}{A}))$

Итоговый конспект стр. 44 из 59

$$\Rightarrow f(x) = \sum \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Возьмём $x_1 \neq x_0$, для которого разложение верно.

(a) при $x=x_1$, ряд сходится \Rightarrow слагаемые $\to 0 \Rightarrow$ слагаемые ограничены:

$$\left|\frac{f^{(n)}(x_0)}{n!}(x_1-x_0)^n\right|\leq C_1\Leftrightarrow |f^{(n)}(x_0)|\leq C_1 n!B^n$$
 , где $B=\frac{1}{|x_1-x_0|}$

Таким образом, мы оценили производную в x_0 , но нужно уметь оценивать и производную в окрестности x_0 .

(b)

$$f^{(m)}(x) = \sum_{n=m}^{+\infty} \frac{f^{(n)}(x_0)}{n!} n(n-1) \dots (n-m+1)(x-x_0)^{n-m}$$
$$= \sum_{n=m}^{+\infty} \frac{f^{(n)}(x_0)}{(n-m)!} (x-x_0)^{n-m}$$

Пусть $|x - x_0| < \frac{1}{2B}$

$$|f^{(m)}(x)| \leq \sum \left| \frac{f^{(n)}(x_0)}{(n-m)!} | x - x_0|^{n-m} \right|$$

$$\leq \sum \frac{C_1 n! B^n}{(n-m)!} | x - x_0|^{n-m}$$

$$= C_1 B^m \sum \frac{n!}{(n-m)!} \underbrace{\left(B|x - x_0|\right)^{n-m}}_{<\frac{1}{2}}$$

$$= \frac{C_1 B^m m!}{\underbrace{\left(1 - B|x - x_0|\right)^{m+1}}_{>\frac{1}{2}}}$$

$$< C_1 2^{m+1} B^m m!$$

$$= \underbrace{\left(2C_1\right)}_{C} \underbrace{\left(2B\right)^m m!}_{M}$$
(11)

11: по следствию 2.

Эта оценка выполняется при $|x-x_0|<\delta=\frac{1}{2B}$

2.41 Простейшие свойства интеграла векторного поля по кусочно-гладкому пути

1. Линейность интеграла по полю.

$$\forall \alpha, \beta \in \mathbb{R} \ \forall U, V$$
 — векторные поля $I(\alpha U + \beta V, \gamma) = \alpha I(U, \gamma) + \beta I(V, \gamma)$

Доказательство. Очевидно из формулы 1 в определении.

- 2. Аддитивность при дроблении пути
 - $\gamma:[a,b]\to\mathbb{R}^m$
 - $c \in (a, b)$
 - $\gamma^1 = \gamma \Big|_{[a,c]}$
 - $\gamma^2 = \gamma \Big|_{[c,b]}$

Тогда
$$I(V,\gamma) = I(V,\gamma^1) + I(V,\gamma^2)$$

Доказательство. Очевидно из линейности интеграла в 1.

- 3. Замена параметра
 - $\varphi:[p,q]\to[a,b]$
 - $\bullet \ \varphi \in C^1$
 - $\varphi(p) = a$
 - $\varphi(q) = b$
 - $\gamma:[a,b]\to\mathbb{R}^m$
 - $\tilde{\gamma} = \gamma \circ \varphi$

Тогда $I(V,\gamma)=I(V,\tilde{\gamma})$

Доказательство. Это замена переменной в интеграле.

$$\begin{split} I(V,\tilde{\gamma}) &= \int_{p}^{q} \langle V(\gamma(\varphi(s))), \tilde{\gamma}'(s) \rangle ds \\ &= \int_{p}^{q} \langle V(\gamma(\varphi(s))), \tilde{\gamma}'(\varphi(s)) \rangle \varphi'(s) ds \\ t &:= \varphi(s) \\ &= \int_{a}^{b} \langle V(\gamma(t)), \tilde{\gamma}'(t) \rangle dt \end{split}$$

Итоговый конспект стр. 46 из 59

$$=I(V,\gamma)$$

 $\mbox{$\Pi$pume}$ чание. $\varphi:[a,b]\to \mathbb{R}^m$ — параметризация гладкого одномерного простого многообразия

 $ilde{arphi}:[p,q] o \mathbb{R}^m$ — то же самое

По теореме о двух параметризациях: \exists диффеоморфизм $\varphi:[p,q]\to[a,b]$ $\tilde{\gamma}=\gamma\circ\varphi$

4. Объединение носителей

- $\gamma^1:[a,b]\to\mathbb{R}^m$
- $\gamma^2: [c,d] \to \mathbb{R}^m$
- $\gamma^1(b) = \gamma^2(c)$

Зададим путь
$$\gamma=\gamma^2\gamma^1:[a,b+d-c]\to\mathbb{R}^m,t\mapsto \begin{cases} \gamma^1(t), & t\in[a,b]\\ \gamma^2(t+c-b), & t\in[b+d-c] \end{cases}$$

В точке b возможен излом, т.е. нет $\gamma'(b)$, но есть левосторонняя и правосторонняя производные.

Если γ^1, γ^2 — кусочно-гладкие, то γ — кусочно-гладкое.

Тогда
$$I(V,\gamma^2\gamma^1)=I(V,\gamma^1)+I(V,\gamma^2)$$

Доказательство.

$$\begin{split} I(V,\gamma) &= \int_a^{b+d-c} \langle V(\gamma(t)), \gamma'(t) \rangle dt \\ &= \int_a^b \langle V(\gamma(t)), \gamma'(t) \rangle dt + \int_b^{b+d-c} \langle V(\gamma(t)), \gamma'(t) \rangle dt \\ \tau := t - b + c \\ &= \int_a^b \langle V(\gamma^1(t)), \gamma^{1\prime}(t) \rangle dt + \int_c^d \langle V(\gamma^2(\tau)), \gamma^{2\prime}(\tau) \rangle d\tau \\ &= I(V,\gamma^1) + I(V,\gamma^2) \end{split}$$

5. Противоположный путь

 $\gamma^-:[a,b] o \mathbb{R}^m, t \mapsto = \gamma(a+b-t)$, т.е. мы идём от b к a, а не наоборот.

Тогда
$$I(V,\gamma) = -I(V,\gamma^-)$$

Итоговый конспект стр. 47 из 59

Доказательство.

$$\begin{split} I(V,\gamma^-) &= \int_a^b \langle V(\gamma(a+b-\tau)), -\gamma'(a+b-\tau) \rangle d\tau \\ t &:= a+b-\tau \\ &= \int_b^a \langle V(\gamma(t)), -\gamma'(t) \rangle (-dt) \\ &= -I(V,\gamma) \end{split}$$

6. Оценка интеграла векторного поля пути

$$|I(V,\gamma)| \le \max_{x \in L} |V(x)| \cdot l(\gamma)$$

, где $L=\gamma[a,b]$ — носитель пути.

Доказательство.

$$\left| \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt \right| \leq \int_{a}^{b} \left| \langle V(\gamma(t)), \gamma'(t) \rangle \right| dt$$

$$\leq \int_{a}^{b} \left| V(\gamma(t)) \right| \left| \gamma'(t) \right| dt$$

$$\leq \sup_{x \in L} \left| V(x) \right| \int_{a}^{b} \left| \gamma'(t) \right| dt$$

$$\leq \max_{x \in L} \left| V(x) \right| \int_{a}^{b} \left| \gamma'(t) \right| dt$$

$$\leq \max_{x \in L} \left| V(x) \right| l(\gamma) dt$$

$$(13)$$

12: Неравенство Коши-Буняковского

13:
$$V$$
 — непр., L — компакт \Rightarrow sup достигается

2.42 ! Обобщенная формула Ньютона-Лейбница

- $V: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- V потенциально
- f потенциал V
- $\gamma[a,b] \to O$
- $\gamma(a) = A$
- $\gamma(b) = B$

Итоговый конспект стр. 48 из 59

Тогда

$$\int_{\gamma} \sum v_k dx_k = f(B) - f(A)$$

Доказательство. Рассмотрим случаи:

1. γ — гладкий

$$\Phi(t) = f(\gamma(t))$$

$$\Phi' = \frac{\partial f}{\partial x_1}(\gamma(t))\gamma_1'(t) + \ldots + \frac{\partial f}{\partial x_m}(\gamma(t))\gamma_m'(t)$$
$$= \langle \nabla f(\gamma(t)), \gamma'(t) \rangle$$
$$= \langle V(\gamma(t)), \gamma'(t) \rangle$$

$$\int_{\gamma} \sum v_k dx_k = \int_a^b \Phi'(t) dt$$
$$= \Phi(b) - \Phi(a)$$
$$= f(B) - f(A)$$

2. γ — кусочно-гладкий

 \exists дробление: $a = t_0 < t_1 < \ldots < t_n = b : \gamma \Big|_{[t_{k-1},t_k]}$ — гладкое

$$\int_{\gamma} \sum v_k dx_k = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \langle V(\gamma(t)), \varphi'(t) \rangle dt$$

$$= \sum_{k=1}^n f(\gamma(t_k)) - f(\gamma(t_{k-1}))$$

$$= f(\gamma(t_n)) - f(\gamma(t_0))$$

$$= f(B) - f(A)$$
(14)

14: по пункту 1.

Итоговый конспект стр. 49 из 59

2.43 Характеризация потенциальных векторных полей в терминах интегралов

V — векторное поле в области O. Тогда эквивалентны следующие:

- 1. V потенциально
- 2. $\int_{\gamma} \sum v_i dx_i$ не зависит от пути в O
- 3. $\forall \gamma$ кусочно-гладкий, замкнутый в $O\int_{\gamma}\sum v_i dx_i=0$

Доказательство.

1⇒2 Обобщенная формула Ньютона-Лейбница

 $2\Rightarrow 3\ \gamma$ — петля: [a,b] o O. $\gamma(a) = \gamma(b) = A$

Рассмотрим постоянный путь $\tilde{\gamma}:[a,b]\to 0, t\mapsto A$. По свойству 2: $\int_{\gamma}=\int_{\tilde{\gamma}}\langle V,\gamma'\rangle dt=0$

 $3{\Rightarrow}2~\gamma_1,\gamma_2$ — пути с общим началом и концом. Тогда $\gamma:=\gamma_2^-\gamma_1$ — петля. γ — кусочно гладкий $\Rightarrow\int_{\gamma}=0$

2⇒1 Фиксируем A ∈ O.

 $\forall x\in O$ выберем кусочно-гладкий путь γ_x из A в x. Проверим, что $f(x):=\int_{\gamma_x}\sum v_idx_i$ — потенциал.

Достаточно проверить, что $\dfrac{\partial f}{\partial x_1} = V_1$ в O.

Фиксируем $x \in O$. $\gamma_0(t) = x + the_1, t \in [0,1], \gamma_0'(t) = (h,0\dots 0) = he_1$

$$f(x + he_1) - f(x) = \int_{\gamma_{x+he_1}} - \int_{\gamma_x}$$

Итоговый конспект стр. 50 из 59

 $= hV_1(x_1)$

Таким образом:

$$\frac{f(x+he_1)-f(x)}{h} \xrightarrow{h\to 0} V_1(x_1+ch_1,x_2\dots x_n) \xrightarrow{h\to 0} V_1(x)$$

2.44 ! Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре

V — гладкое, потенциальное в O

Тогда

$$\forall x \in O \ \forall k, j \ \frac{\partial V_k}{\partial x_j}(x) = \frac{\partial V_j}{\partial x_k}(x)$$
 (15)

Доказательство. Непрерывные производные не изменяются при порядке дифференцирования:

$$\frac{\partial V_k}{\partial x_j}(x) = \frac{\partial^2 f}{\partial x_k \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_k}(x) = \frac{\partial V_j}{\partial x_k}(x)$$

Лемма Пуанкаре:

M3137y2019

Итоговый конспект стр. 51 из 59

- $O \subset \mathbb{R}^m$ выпуклая область
- $V:O \to \mathbb{R}^m$ векторное поле
- V удовлетворяет 15, в т.ч. V гладкое.

Тогда V — потенциальное.

Доказательство. Фиксируем $A \in O$

$$\forall x \in O \ \gamma_x(t) := A + t(x - A), t \in [0, 1]$$
$$\gamma'_x(t) = x - A$$
$$f(x) := \int_{\gamma_x} \sum v_i dx_i = \int_0^1 \sum_{k=1}^m V_k (A + t(x - A))(x_k - A_k) dt$$

Проверим, что f — потенциал.

$$\frac{\partial f}{\partial x_{j}}(x) = \text{правило Лейбница}$$

$$= \int_{0}^{1} V_{j}(A + t(x - A)) + \sum_{k=1}^{m} \frac{\partial V_{k}}{\partial x_{j}}(\dots)t(x_{k} - A_{k})dt$$

$$= \int_{0}^{1} V_{j}(A + t(x - A)) + \sum_{k=1}^{m} \frac{\partial V_{j}}{\partial x_{k}}(\dots)t(x_{k} - A_{k})dt$$

$$= \int_{0}^{1} (tV_{j}(A + t(x - A)))'_{t}dt$$

$$= tV_{j}(A + t(x - A))\Big|_{t=0}^{t=1}$$

$$= V_{j}(x)$$
(16)

16: по 15.

Лемма Пуанкаре о локальной потенциальности:

- $O \subset \mathbb{R}^m$ любая область
- $V:O \to \mathbb{R}^m$ векторное поле
- V удовлетворяет 15.

Тогда V — локально потенциально.

Итоговый конспект стр. 52 из 59

Рис. 5: "Гусеница" — покрытие пути шарами

2.45 Лемма о гусенице

• $\gamma: [a,b] \to O \subset \mathbb{R}^m$ — непр.

Тогда \exists дробление $a=t_0 < t_1 < \cdots < t_n = b$ и \exists шары $B_1 \dots B_n \subset O : \gamma[t_{k-1}, t_k] \subset B_k$.

Доказательство. $\forall c \in [a,b]$ возьмём $B_c := B(\gamma(c),\underbrace{r_c}_{\text{произвольн.}}) \subset O.$

 $\overline{\alpha_c} := \inf\{\alpha \in [a, b] : \gamma[\alpha, c] \subset B_c\}$

 $\overline{\beta_c}:=\inf\{\alpha\in[a,b]:\gamma[c,\beta]\subset B_c\}$ — момент первого выхода после посещения точки $\gamma(c)$

Возьмём $(\alpha_c, \beta_c) : \overline{\alpha}_c < \alpha_c < c < \beta_c < \overline{\beta}_c$

Таким образом $c\mapsto (\alpha_c,\beta_c)$ — открытое покрытие [a,b], если для c=a или c=b вместо α_c,β_c брать $[a,\beta_a),(\alpha_b,b]$

$$[a,b]$$
 — компактно $\implies [a,b] \subset \bigcup_{\text{кон.}} (\alpha_c,\beta_c)$

Не умаляя общности ни один интервал не накрывается целиком остальными $\Leftrightarrow \forall (\alpha_c, \beta_c) \exists d_c$, принадлежащая "только этому" интервалу.

Рис. 6: Выбор точек t_k

Точка t_k выбирается на d_k, d_{k+1} и $t_k \in (\alpha_k, \beta_k) \cap (\alpha_{k+1}, \alpha_{k+1})$.

$$\gamma([t_{k-1}, t_k]) = \gamma(\alpha_k, \beta_k) \subset B_k$$

2.46 Лемма о равенстве интегралов по похожим путям

- V- локально-потенциальное векторное поле в $O\subset \mathbb{R}^m$
- $\gamma, \tilde{\gamma}: [a,b] \to O V$ -похожие, кусочно гладкие

Итоговый конспект стр. 53 из 59

•
$$\gamma(a) = \tilde{\gamma}(a), \gamma(b) = \tilde{\gamma}(b)$$

Тогда $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$

Доказательство. Рассмотрим общую V-гусеницу. Пусть f_k — потенциал V в шаре B_k , $a=t_0 < t_1 < \cdots < t_n = b$

Сдвинем потенциалы прибавлением константы, так что $f_k(\gamma(t_k)) = f_{k+1}(\gamma(t_k))$ при $k=1\dots n$

Тогда

$$\int_{\gamma} \sum_{i} V_{i} dx_{i} = \sum_{t_{k-1}, t_{k}} \int_{[t_{k-1}, t_{k}]} \dots$$

$$= \sum_{t_{k}} f_{k}(\gamma(t_{k})) - f_{k}(\gamma(t_{k-1}))$$

$$= f_{n}(\gamma(b)) - f_{1}(\gamma(a))$$
(17)

17: По обобщенной формуле Ньютона-Лейбница.

Для $\tilde{\gamma}$ воспользуемся свойством: $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$ и тогда аналогично

$$\int_{\tilde{\gamma}} \sum v_i dx_i = f_n(\tilde{\gamma}(b)) - f_1(\tilde{\gamma}(a))$$

2.47 Лемма о похожести путей, близких к данному

- $\gamma:[a,b]\to O$ непр.
- V локально-потенциальное векторное поле в $O \subset \mathbb{R}^m$

Тогда $\exists \delta>0:$ если $\tilde{\gamma},\tilde{\tilde{\gamma}}:[a,b]\to O$ таковы, что:

$$\forall t \in [a, b] \ |\gamma(t) - \tilde{\gamma}(t)| < \delta, |\gamma(t) - \tilde{\tilde{\gamma}}(t)| < \delta$$

Тогда $\gamma, \tilde{\gamma}, \tilde{\tilde{\gamma}}$ V-похожи.

Доказательство. Берём V-гусеницу для γ .

 δ_k -окрестность множества $A:=\{x:\exists a\in A\ \ \rho(a,x)<\delta\}=\bigcap_{a\in A}B(a,\delta)$

$$orall k \ \exists \delta_k > 0 : (\delta_k$$
-окрестность $\gamma[t_{k_1}, t_k]) \subset B_k$

Это следует из компактности:

M3137y2019

П

Итоговый конспект стр. 54 из 59

Рис. 7: δ_k -окрестность множества $\gamma[t_{k-1},t_k]$

Пусть $B_k=B(w,r)$, функция $t\in [\gamma_{k-1}m\,\gamma_k]\mapsto \rho(\gamma(t),w)$ непрерывна \Rightarrow достигается $\max,\,\rho(\gamma(t),w)\leq r_0< r$

$$\delta_k := \frac{r-r_0}{2}, \delta := \min(\delta_1 \dots \delta_k)$$

2.48 Равенство интегралов по гомотопным путям

- V локально потенциальное векторное поле в $O \subset \mathbb{R}^m$
- γ_0, γ_1 связанно гомотопные пути

Тогда
$$\int_{\gamma_0} \sum V_i dx_i = \int_{\gamma_1} \sum V_i dx_i$$

Доказательство. Пусть Γ — гомотопия γ_0 и γ_1 .

$$\gamma_u(t) := \Gamma(t, u), t \in [a, b], u \in [0, 1]$$

$$\Phi(u) = \int_{\gamma_u} \sum V_i dx_i$$

Мы хотим доказать, что $\Phi(u)=$ const. Докажем более простой факт, что $\Phi-$ локально постоянна, тогда в силу компактности отрезка Φ будет постоянна.

Определение локально постоянной функции:

$$\forall u_0 \in [0,1] \ \exists W(u_0) : \forall u \in W(u_0) \cap [0,1] \ \Phi(u) = \Phi(u_0)$$

 Γ — непр. на $[a,b]\times [0,1]$ — комп. $\Rightarrow \Gamma$ равномерно непрерывна:

$$\forall \delta > 0 \ \exists \sigma > 0 \ \forall t, t' : |t - t'| < \sigma \ \forall u, u' : |u - u'| < \sigma \quad |\Gamma(t, u) - \Gamma(t', u')| < \frac{\delta}{2}$$

Возьмём δ из леммы о похожести близких путей (2.47) для пути γ_{u_0} .

Итоговый конспект стр. 55 из 59

Если $|u-u_0|<\delta$ $|\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2}$ при $t\in[a,b]$, т.е. γ_u и γ_{u_0} похожи по лемме о похожести близких путей. Хочется сказать, что интегралы по γ_u и γ_{u_0} таким образом равны, однако это не обосновано, для этого необходимо, чтобы пути были кусочногладкими.

Построим кусочно-гладкий путь $\tilde{\gamma}_{u_0}$, $\frac{\delta}{4}$ -близкий к γ_{u_0} , т.е.

$$\forall t \in [a, b] \ |\gamma_{u_0}(t) - \tilde{\gamma}_{u_0}(t)| < \frac{\delta}{4}$$

и кусочно-гладкий путь $\tilde{\gamma}_u$, $\frac{\delta}{4}$ -близкий к γ_u . Тогда $\tilde{\gamma}_{u_0}$ и $\tilde{\gamma}_u$ - δ -близкие к $\gamma_{u_0} \Rightarrow$ они V-похожи \Rightarrow

$$\int_{\gamma_u} \sum V_i dx_i \stackrel{\text{def}}{=} \int_{\tilde{\gamma}_u} \dots = \int_{\tilde{\gamma}_{u_0}} \dots \stackrel{\text{def}}{=} \int_{\gamma_{u_0}} \dots$$

Таким образом, $\Phi(u) = \Phi(u_0)$ при $|u - u_0| < \delta$, т.е. Φ — локально постоянна.

2.49 Теорема Пуанкаре для односвязной области

- $O \subset \mathbb{R}^m$ односвязная область
- V локально потенциальное векторное поле в O

Тогда V — потенциальное в O

Доказательство. V — локально потенциально, $<\gamma_0$ — кусочно-гладкая петля, тогда γ_0 гомотопна постоянному пути γ_1 \Rightarrow

$$\int_{\gamma_0} = \int_{\gamma_1} = \int_a^b \langle V(\gamma_1(t)), \underbrace{\gamma_1'(t)} \rangle dt = 0$$

Тогда по теореме о характеризации потенциальных векторных полей в терминах интегралов V потенциально. \Box

2.50 Теорема о веревочке

- $O = \mathbb{R}^2 \setminus \{(0,0)\}$
- $\gamma: [0, 2\pi] \to O, t \mapsto (\cos t, \sin t)$

Тогда эта петля нестягиваема.

Неформальная формулировка: пусть даны две плоскости, соединенные гвоздём, между плоскостями есть зазор. На гвоздь надета веревочка в виде петли. Можно ли снять веревочку с гвоздя?

Итоговый конспект стр. 56 из 59

Рис. 8: Веревочка (жирным), надетая на "гвоздь" (цилиндр)

Доказательство.
$$V(x,y)=\left(\dfrac{-y}{x^2+y^2},\dfrac{x}{x^2+y^2}\right)$$
— векторное поле в \mathbb{R}^2
$$\dfrac{\partial V_1}{\partial y}=\dfrac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2}=\dfrac{y^2-x^2}{(x^2+y^2)^2}$$

$$\dfrac{\partial V_2}{\partial x}=\dfrac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}=\dfrac{y^2-x^2}{(x^2+y^2)^2}$$

Таким образом, $\frac{\partial V_1}{\partial y} = \frac{\partial V_2}{\partial x}$ в области O. Тогда по лемме Пуанкаре V — локально потенциально.

При этом

$$\int_{\gamma} \sum V_i dx_i = \int_0^{2\pi} \frac{-\sin t}{\cos^2 t + \sin^2 t} (-\sin t) dt + \frac{\cos t}{\cos^2 t + \sin^2 t} \cos t dt$$
$$= \int_0^{2\pi} 1 dt = 2\pi$$

Таким образом, если бы существовал постоянный путь $\tilde{\gamma}$, которому γ гомотопен, то $\int_{\gamma}=\int_{\tilde{\gamma}}=0$, но это не так. \Box

2.51 Свойства объема: усиленная монотонность, конечная полуаддитивность

 $\mu:\mathcal{P} o \overline{\mathbb{R}}$ — объем. Тогда μ имеет свойства:

Итоговый конспект стр. 57 из 59

1. Усиленная монотонность

$$\forall A, \underbrace{A_1, A_2, \dots A_n}_{\text{лизъюнктны}} \in \mathcal{P} \quad \bigsqcup_{i=1}^n A_i \subset A \quad \sum_{i=1}^n \mu A_i \leq \mu A$$

2. Конечная полуаддитивность

$$\forall A, A_1, A_2, \dots A_n \in \mathcal{P} \ A \subset \bigcup_{i=1}^n A_i \ \mu A \leq \sum_{i=1}^n \mu A_i$$

3. $\forall A,B\in\mathcal{P}$ пусть ещё известно $A\backslash B\in\mathcal{P},\mu(B)$ — конечно. Тогда $\mu(A\backslash B)\geq \mu A-\mu B$

Доказательство.

1. Усиление аксиомы 3 из определения полукольца:

$$A \setminus \left(\bigcup_{i=1}^{n} A_i\right) = \bigsqcup_{l=1}^{S} B_l$$

Это было доказано ранее. Теорема ??? $A = (\bigsqcup A_i) \cup (\bigsqcup B_l)$ — дизъюнктное объединение конечного числа множеств.

$$\mu A = \sum \mu A_i + \sum \mu B_l \ge \sum \mu A_i$$

2.

$$B_k := A \cap A_k \in \mathcal{P} \ \ A = \bigcup_{\text{koh}} B_k$$

Сделаем это множество дизъюнктным.

$$C_1 := B_1, \dots, C_k := B_k \setminus \left(\bigcup_{i=1}^{k-1} B_i\right) \quad A = \bigsqcup_{\text{koh.}} C_k$$

Но эти C_k вообще говоря $\notin \mathcal{P}$

$$C_k = B_k \setminus \left(\bigcup_{i=1}^{k-1} B_i\right) = \bigsqcup_j D_{k_j} \in \mathcal{P}$$

Тогда
$$A = \bigsqcup_{k,j} D_{k_j} \ \mu A = \sum \mu D_{k_j}$$

При этом
$$\forall k \;\; \sum\limits_{i} \mu D_{k_{j}} = \mu C_{k} \; \stackrel{\text{монот},\mu}{\leq} \; \mu A_{k}$$

Итого
$$\mu A = \sum\limits_k \sum\limits_k \mu D_{k_j} = \sum \mu C_k \le \sum \mu A_k$$

Итоговый конспект стр. 58 из 59

3. (a)
$$B \subset A$$
 $A = B \cup (A \setminus B)$ $\mu A = \mu B + \mu (A \setminus B)$

(b)
$$B \not\subset A$$
 $A \setminus B = A \setminus (A \cap B)$ $\mu(A \setminus B) = \mu A - \mu(A \cap B) \ge \mu A - \mu B$

Примечание. 1. В пунтах 1 и 2 не предполагается, что $\bigcup A_i \in \mathcal{P}$

2. В пункте 3 если \mathcal{P} — алгебра, условие $A\setminus B\in\mathcal{P}$ можно убрать.

2.52 Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности

$$\mu: \underbrace{\mathcal{P}}_{\text{полукольцо}} o \overline{\mathbb{R}}$$
 — объем.

Тогда эквивалентно:

- 1. μ мера, т.е. μ счётно-аддитивна.
- 2. μ счётно-полуаддитивна:

$$A, A_1, A_2, \dots \in \mathcal{P} \ A \subset \bigcup A_i \Rightarrow \mu A \leq \sum \mu A_i$$

Доказательство.

 $1 \Rightarrow 2$ как в предыдущей теореме.

$$2 \Rightarrow 1 \ A = |A_i|^2 \Rightarrow \mu A = \sum \mu A_i$$

$$\forall N \ A \supset \bigsqcup_{i=1}^{N} A_i \ \mu A \ge \sum_{i=1}^{N} \mu A_i$$

$$A\subset\bigcup A_i$$
 (на самом деле $A=\bigsqcup A_i)\Rightarrow \mu A\leq\sum \mu A_i$ $\Rightarrow \mu A=\sum \mu A_i$

2.53 Теоремы о непрерывности сверху

- $\mu:\mathfrak{A} o\mathbb{R}$ объем.
- μ конечный объем.

Тогда эквивалентно:

1. μ — мера, т.е. μ счётно-аддитивная.

Итоговый конспект стр. 59 из 59

2. μ — непрерывна сверху:

$$A, A_1, A_2 \cdots \in \mathfrak{A} \ A_1 \supset A_2 \supset \dots, A = \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A = \lim_{i \to +\infty} \mu A_i$$

Доказательство.

$$1 \Rightarrow 2 \ B_k = A_k \setminus A_{k+1}, A_1 = \coprod B_k \cup A$$
$$\mu A_1 = \sum \mu B_k + \mu A$$

$$A_n = \bigsqcup_{k \ge n} B_k \cup A \quad \mu A_n = \sum_{k \ge n} \mu B_k + \mu A \xrightarrow{n \to +\infty} \mu A$$

 $2\Rightarrow$ 1 Проверим, что $C=\bigsqcup C_i \stackrel{?}{\Rightarrow} \mu C=\sum \mu C_i.$

Пусть $A_k:=\bigsqcup_{i=k+1}^{+\infty}C_i$. Тогда $A_k\in\mathfrak{A}$, т.к. $A_k=C\setminus\bigsqcup_{i=1}^kC_i$ — конечное объединение.

$$A_1 \supset A_2 \supset \dots \quad \bigcap A_k = \emptyset \Rightarrow \mu A_k \xrightarrow{k \to +\infty} 0$$

$$C = \bigsqcup_{i=1}^{k} C_i \sqcup A_k \ \mu C = \sum_{i=1}^{k} \mu C_i + \mu A_k \xrightarrow{k \to +\infty} \sum \mu C_i$$

Какие ещё теоремы?