Job No.:
 2310035 - 2
 Address:
 6 Glenview Road, Takaka, New Zealand
 Date:
 11/13/2023

 Latitude:
 -40.886661
 Longitude:
 172.833037
 Elevation:
 81 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N3	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	40.5 m/s
Wind Pressure	0.98 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.63

For roof CP,e from 0 m To 5 m Cpe = -0.9 pe = -0.60 KPa pnet = -1.10 KPa

For roof CP,e from 5 m To 10 m Cpe = -0.5 pe = -0.33 KPa pnet = -0.83 KPa

For wall Windward Cp, i = 0.63 side Wall Cp, i = -0.52

For wall Windward and Leeward CP,e from 0 m To 18 m Cpe = 0.7 pe = 0.58 KPa pnet = 1.05 KPa

For side wall CP,e from 0 m To 5 m Cpe = pe = -0.53 KPa pnet = -0.06 KPa

Maximum Upward pressure used in roof member Design = 1.10 KPa

Maximum Downward pressure used in roof member Design = 0.68 KPa

Maximum Wall pressure used in Design = 1.13 KPa

Maximum Racking pressure used in Design = 1.06 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4650 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after

First Page

installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.88 S1 Downward =9.63 S1 Upward =15.40

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.82 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	153.66 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.38 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	70.59 %
$M_{0.9D\text{-W}nUp}$	-2.13 Kn-m	Capacity	-1.86 Kn-m	Passing Percentage	87.32 %
V _{1.35D}	0.71 Kn	Capacity	7.24 Kn	Passing Percentage	1019.72 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.05 Kn	Capacity	9.65 Kn	Passing Percentage	470.73 %
$ m V_{0.9D ext{-}WnUp}$	-1.83 Kn	Capacity	-12.06 Kn	Passing Percentage	659.02 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 33.41 mm Limit by Woolcock et al, 1999 Span/240 = 19.17 mm

Deflection under Dead and Service Wind = 46.78 mm Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 2.05 kn Maximum upward = -1.83 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 4800 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.00 S1 Downward =11.27 S1 Upward =Infinity

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Second page

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	0.00 Kn-m	Passing Percentage	NaN %
$ m V_{0.9D ext{-}WnUp}$	0.00 Kn-m	Capacity	16.08 Kn-m	Passing Percentage	Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mm Sag during installation = 32.19 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm Girt's Span = 4615 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.00 S1 Downward =11.27 S1 Upward =Infinity

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity 0.00 Kn-m Passing Percentage NaN % Vo.9D-WnUp 0.00 Kn-m Capacity 16.08 Kn-m Passing Percentage Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al. 1999 Span/100 = 46.15 mm Sag during installation = 27.51 mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	5700 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	5700 mm c/c		

Loads

Total Area over Pole = 44.30769230769231 m2

Dead	11.08 Kn	Live	11.08 Kn
Wind Down	30.13 Kn	Snow	0.00 Kn
Moment wind	13.22 Kn-m		
Phi	0.8	K8	0.49
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	314.47 Kn	PhiMnx Wind	18.83 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	188.68 Kn	PhiMnx Dead	11.30 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.87 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.66 < 1 OK$

Deflection at top under service lateral loads = 36.63 mm < 57.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30)) / (1-\sin(30))$				

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 2500 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 13.22 Kn-m Shear Wind = 3.52 Kn

Pile Properties

Safety Factory 0.55

Hu = 22.27 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 51.50 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.26 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2500)

Skin Friction = 50.48 Kn

Weight of Pile + Pile Skin Friction = 56.21 Kn

Uplift on one Pile = 38.77 Kn

Uplift is ok