Мы знаем, что $y=f(x)+\epsilon$, где ϵ - независимая с x случайная величина с нулевым математическим ожиданием и некоторой дисперсией σ^2 . Мы строим алгоритм определения y по x $a_X(x)$, обучаясь на данных X. Нам нужно найти $E(a_X(x)-y)^2$. Перейдем от математического ожидания случайной величины к математическому ожиданию условного математического ожидания.

$$E(a_X(x) - y)^2 = EE((a_X(x) - y)^2 | x)$$

Воспользуемся свойствами условного математического ожидания, чтобы преобразовать это выражение:

$$E((a_X(x)-y)^2|x)=E((a_X(x)-f(x)-\epsilon)^2|x)=$$

$$=E((a_X(x)-f(x))^2-2\epsilon(a_X(x)-f(x))+\epsilon^2|x)=$$

$$=(a_X(x)-f(x))^2-2(a_X(x)-f(x))E(\epsilon|x)+\sigma^2=$$

$$=E((a_X(x)-f(x))^2|x)+\sigma^2=$$

$$=E((a_X(x)-Ea_X(x)-(-Ea_X(x)+f(x)))^2|x)+\sigma^2=$$

$$=E((a_X(x)-Ea_X(x))^2+(f(x)-Ea_X(x))^2-2(a_X(x)-Ea_X(x))(f(x)-Ea_X(x))|x)+\sigma^2=$$

$$=(a_X(x)-Ea_X(x))^2+(f(x)-Ea_X(x))^2+\sigma^2$$
 Таким образом, учитывая что $f(x)=E(y|x),\,\sigma^2=E(y-E(y|x))^2,\,$ имеем:
$$E(a_X(x)-y)^2=E(a_X(x)-Ea_X(x))^2+E(E(y|x)-Ea_X(x))^2+E(y-E(y|x))^2=$$

$$=Variance+Bias+Noise$$

Что и требовалось доказать.