assignment04

May 22, 2019

1 Functional Programming SS19

2 Assignment 04 Solutions

2.1 Exercise 1 (Semantics of Partial Functions)

Consider the following function:

```
plus :: Int -> Int -> Int
plus 0 y = y
plus x 0 = x
plus x y = x + y
```

a) Define the semantics of plus as a function $f_{plus}: \mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}$. Take the evaluation strategy of Haskell into account. In your definition, "+" may only be applied to arguments from \mathbb{Z} .

We can define the semantics of plus by the following function:

$$f_{plus}(x,y) = \left\{ egin{array}{ll} x+y, & x \in \mathbb{Z} \text{ and } y \in \mathbb{Z} \\ \bot & x = \bot_{\mathbb{Z}_{\perp}} \text{ or } y = \bot_{\mathbb{Z}_{\perp}} \end{array} \right.$$

b) Prove or disprove that f_{plus} is strict.

By definition (2.1.6 from the lecture notes), a function f is strict if and only if f is \bot whenever one of its arguments is \bot . The strictness of f_{plus} follows directly from the definition in part (a) since the function returns \bot if at least one of x or y is \bot . \Box

c) Prove that f_{plus} is monotonic. Do not make use of the fact that any Haskell function is computable and hence monotonic.

The monotonicity of f_{plus} is guaranteed by lemma 2.1.8, which states that any strict function is monotonic, but we also can prove the result for f_{plus} specifically.

By definition (2.1.7 from the lecture notes), a function $f: D_1 \to D_2$ is monotonic if, for any $d, d' \in D_1$, we have that $f(d) \sqsubseteq f(d')$ whenever $d \sqsubseteq d'$. For f_{plus} , we have $D_1 = \mathbb{Z}_{\perp} \times \mathbb{Z}_{\perp}$. To show that the function is monotonic, let us consider two inputs d = (x, y) and d' = (x', y'), where $d \sqsubseteq d'$. We now have two cases to consider:

1. d = d': In this case, we either have $x = \bot, y = \bot$ or $x \in \mathbb{Z}, y \in \mathbb{Z}$. In the former case, $f_{plus}(x,y) = \bot$ due to the strictness, while in the latter case, $f_{plus}(x,y) \in \mathbb{Z}$. In both cases, $f_{plus}(x,y) \sqsubseteq f_{plus}(x',y')$ due to the reflexivity of \sqsubseteq .

2. $d \neq d'$: In this case, at least one of x or y must be \bot , but since the function is strict, $f_{plus}(x,y) = \bot$ whenever at least one of x,y is \bot . Thus, we have that either $f_{plus}(x,y) = f_{plus}(x',y') = \bot$ (if x' or y' is \bot) or $f_{plus}(x,y) = \bot$ and $f_{plus}(x',y') \in \mathbb{Z}$. In both cases, $f_{plus}(x,y) \sqsubseteq f_{plus}(x',y')$.

We have thus shown that $f_{plus}(x,y) \sqsubseteq f_{plus}(x',y')$ for any $(x,y) \sqsubseteq (x',y')$, which means that f_{plus} is monotonic. \square .

2.2 Exercise 2 (Monotonicity)

Consider the following total functions (with their usual interpretation):

- a) $-: \mathbb{Z} \mapsto \mathbb{Z}_{\perp}$
- b) *, max : $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}_{\perp}$

Here, "-" denotes the function that maps 2 to -2 or -3 to 3. Moreover, "max" denotes the "maximum" function.

For all $f \in \{-, \max, *\}$, give all monotonic functions f' such that f' is an extension of f, i.e. $f'(x_1, ..., x_n) = f(x_1, ..., x_n)$ for all $x_1, ..., x_n$ different from \bot . The functions f' should map between the following sets:

- a) $-': \mathbb{Z}_{\perp} \to \mathbb{Z}_{\perp}$
- b) *', max' : $\mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$
- a) Let us define as a function f(x). If $x \in \mathbb{Z}$, then all functions of the form $x \mapsto kx (k+1)x$, $k \in \mathbb{N}_0$ are equivalent to f. For an extension $f' : \mathbb{Z}_\perp \to \mathbb{Z}_\perp$ to be monotonic, we need to have $f'(\perp) = \perp$. Thus, any function f' that has the form below is a valid extension of f:

$$f'(x) = \begin{cases} kx - (k+1)x, & x \in \mathbb{Z}, k \in \mathbb{N}_0 \\ \bot, & x = \bot \end{cases}$$

If we allow a recursive representation of -, then the following function is also a valid extension of f:

$$f'(x) = \begin{cases} 0, & x = 0\\ -1 \cdot \operatorname{sign}(x) + f'(x - \operatorname{sign}(x)), & x \in \mathbb{Z}, |x| > 0\\ \bot, & x = \bot \end{cases}$$

where sign is the usual sign function that returns -1 if the argument is a negative number, 1 if the argument is positive, and 0 otherwise.

b) In the case of both * and max, which are functions of the form f(x,y), both arguments need to be evaluated for the result to have the desired semantics. * and max are thus strict functions, so any extension f' which is a monotonic function needs to map $f'(x,y) = \bot$ whenever at least one of x and y is \bot .

For *=f(x,y), the following monotonic function $f': \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is a valid extension of f:

$$f'(x,y) = \begin{cases} x \cdot y, & x \in \mathbb{N}, y \in \mathbb{N} \\ \perp, & x = \perp \text{ or } y = \perp \end{cases}$$

If we allow recursive functions to represent *, then the following two monotonic functions are also valid extensions of f:

$$f'(x,y) = \begin{cases} 0, & x \in \mathbb{N}, y = 0 \\ x + f'(x,y-1), & x,y \in \mathbb{N} \\ \bot, & x = \bot \text{ or } y = \bot \end{cases}$$
$$f'(x,y) = \begin{cases} 0, & x = 0, y \in \mathbb{N} \\ y + f'(x-1,y), & x,y \in \mathbb{N} \\ \bot, & x = \bot \text{ or } y = \bot \end{cases}$$

For max = f(x,y), there are two monotonic functions $f' : \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ that can be extensions of f depending on which argument is returned when x = y for $x, y \in \mathbb{N}$, namely f' can return either x or y as a result. The following are thus both valid extensions of max:

$$f'(x,y) = \begin{cases} x, & x \ge y, \ x, y \in \mathbb{N} \\ y, & x < y, \ x, y \in \mathbb{N} \\ \bot, & x = \bot \text{ or } y = \bot \end{cases}$$
$$f'(x,y) = \begin{cases} x, & x > y, \ x, y \in \mathbb{N} \\ y, & x \le y, \ x, y \in \mathbb{N} \\ \bot, & x = \bot \text{ or } y = \bot \end{cases}$$

If we allow max to be represented as a recursive function, then the following monotonic function is also a valid extension of *f*:

$$f'(x,y) = \begin{cases} x, & x \in \mathbb{N}, y = 0\\ y, & x = 0, y \in \mathbb{N}\\ 1 + f'(x - 1, y - 1), & x, y \in \mathbb{N}\\ \bot, & x = \bot \text{ or } y = \bot \end{cases}$$

2.3 Exercise 3 (Completeness)

Consider Theorem 2.1.13 (c) from the lecture:

Let D_1 , D_2 be domains. If \sqsubseteq_{D_2} is complete on D_2 , then $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$.

The other direction of this theorem holds as well:

Let D_1 , D_2 be arbitrary nonempty sets where D_2 is partially ordered with \sqsubseteq_{D_2} . If $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, then \sqsubseteq_{D_2} is complete on D_2 .

To prove this theorem, please prove the following two properties:

a) If $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, then \bot_{D_2} exists.

Hints: You can **not** assume that $\bot_{D_1 \to D_2}(d) = \bot_{D_2}$ for each $d \in D$, as one does not know yet whether \bot_{D_2} exists. Instead, first prove that $\bot_{D_1 \to D_2}$ is a constant function, i.e. that $\bot_{D_1 \to D_2}(d) = \bot_{D_1 \to D_2}(d')$ for each $d, d' \in D_1$.

Based on the definition of completeness (2.1.12 from the lecture notes), since $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, there exists a smallest element that we denote by $\bot_{D_1 \to D_2}$. To show that \bot_{D_2} exists, it suffices to show that $\bot_{D_1 \to D_2}(d) = \bot_{D_2}$ for every $d \in D_1$; however, given that we don't know if \bot_{D_2} exists, we first need to show that $\bot_{D_1 \to D_2}(d) = \bot_{D_1 \to D_2}(d') = k$ for each $d, d' \in D_1$ and then show that $k = \bot_{D_2}$.

Let us take $d,d' \in D_1$ and assume, without loss of generality, that $\bot_{D_1 \to D_2}(d) \neq \bot_{D_1 \to D_2}(d')$ with $\bot_{D_1 \to D_2}(d) \sqsubseteq \bot_{D_1 \to D_2}(d')$. Let us now consider two chains $S = \{\bot_{D_1 \to D_2}(d), f_1(d), f_2(d)...\}$ and $S' = \{\bot_{D_1 \to D_2}(d'), f_1(d'), f_2(d')...\}$, where each f_i is a function $f_i : D_1 \to D_2$, such that we have that $\bot_{D_1 \to D_2}(d) \sqsubseteq f_1(d) \sqsubseteq f_2(d)...$ and similarly $\bot_{D_1 \to D_2}(d') \sqsubseteq f_1(d') \sqsubseteq f_2(d')...$ But if S' is a chain, then $S'' = \{\bot_{D_1 \to D_2}(d), \bot_{D_1 \to D_2}(d'), f_1(d'), f_2(d')...\}$ is also a chain. This however contradicts the notion that $\bot_{D_1 \to D_2}(d)$ is the smallest element for every $e \in D_1$. It thus must be the case that $\bot_{D_1 \to D_2}(d) = \bot_{D_1 \to D_2}(d') = k$.

Let us now take $d=\perp_{D_1}$. Since we know that $\perp_{D_1\to D_2}(\perp_{D_1})=k$, it must be the case that either $k=\perp_{D_2}$ or k=e for some element $e\in D_2$ if \perp_{D_2} does not exist. Let us assume that k=e; then, $S=\{e,f_1(\perp_{D_1}),f_2(\perp_{D_1}),...\}$ can be a chain only if $e\subseteq f_i(\perp_{D_1})$ for every $f_i(\perp_{D_1})$. But if $e\neq \perp_{D_2}$, it can only be the case that $f_i(\perp_{D_1})=e$. This would however exclude all strict and constant functions from consideration. This means that k cannot be equal to e, but must instead equal some smallest element, which we can denote \perp_{D_2} . \square

b) If $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, then for all chains S on D_2 , the least upper bound $\sqcup S$ of S exists in D_2 .

Hints: You may use lemmas and theorems from the lecture before Thm. 2.1.13 for your proof.

Let us consider a chain S on D_2 and suppose that the least upper bound $\Box S$ of S does not exist in D_2 . Now, let us consider a chain $S' = \{f_1, f_2, ...\}$ of functions, where each f_i is a map $f_i : D_1 \to S$. Since S does not have a least upper bound, S' will also not have a least upper bound; however, this contradicts the fact that $\sqsubseteq_{D_1 \to D_2}$ is complete on $D_1 \to D_2$, which means that $\Box S$ of S has to exist in S on S has to exist in S of S has to

2.4 Exercise 4 (Continuity)

In this exercise we will compare topological—continuity from real analysis to continuity as defined in the lecture (Scott¹ –continuity).

Let $a, b \in \mathbb{R}$, then $[a, b] := \{r \mid a \le r \le b\}$. A function $f : [a, b] \to \mathbb{R}$ is topologically-continuous if for every converging sequence $(x_n)_{n \in \mathbb{N}}$ in [a, b] we have

$$f(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}f(x_n)$$

a) Let $a,b \in \mathbb{R}$. Show that the standard ordering \leq on the real numbers is complete on the closed interval [a,b].

Hints: You may use that \mathbb{R} is complete, i.e. every set of real numbers that is bounded from above has a least upper bound.

According to the definition of completeness (2.1.12), a reflexive partial order is complete on a set D if it has a smallest element and every chain S in D has a least upper bound. The standard ordering \leq is indeed a reflexive partial order since reflexivity ($x \leq x$), transitivity ($x \leq y \land y \leq z \implies x \leq z$), and antisymmetry ($x \leq y \land y \leq x \implies x = y$) all hold.

The ordering is continuous on the interval [a,b] if it has a smallest element and any subset S has a least upper bound. Since the interval is closed, the first criterion is clearly satisfied with the smallest element being a. For the second criterion, let us take an arbitrary subset $[c,d] \subseteq [a,b]$. Here, d is an upper bound since $x \le d$ for every $x \in [c,d]$. Furthermore, d is a least upper bound since any other upper bound $y \in [a,b] \setminus [c,d]$ is greater than d (this follows from the completeness of R). The standard ordering \le is thus indeed complete. \square

b) Let $a,b,c,d \in \mathbb{R}$. Show that **not** every topologically-continuous function $f:[a,b] \to [c,d]$ is Scott-continuous.

According to definition 2.1.14 in the lecture notes, a function $f: D_1 \to D_2$ is Scott-continuous if and only if $f(\sqcup S) = \sqcup \{f(d) \mid d \in S\}$ for every chain S in d whenever \sqsubseteq_{D_1} is complete on D_1 and \sqsubseteq_{D_2} is complete on D_2 . As shown in part (a), the ordering \leq is complete on an an interval $[a,b] \in \mathbb{R}$. Given a topologically-continuous function $f: [a,b] \to [c,d]$, we thus have that \leq is complete on both $D_1 = [a,b]$ and $D_2 = [c,d]$.

To show that not every topologically-continuous function f is Scott-continuous, it suffices to find a single counterexample of a topologically-continuous function that is not Scott-continuous. In this case, we can take as an example the function $f(x) = -x^2$ on the interval [-2,2], for which $D_1 = [-2,2]$ and $D_2 = [-4,0]$. Let us now consider the chain $S = [-1,1] \in D_1$. In this case, we have

$$\sup S = \sup[-1, 1] = 1$$

$$\implies f(\sup S) = f(1) = -1$$

On the other hand, we have that

$$\sup\{f(d) \mid d \in S\} = \sup f(d)_{[-1,1]} = 0$$

Since $\sup S \neq \sup\{f(d) \mid d \in S\}$, $f(x) = -x^2$ is not Scott-continuous on [-2,2] despite it being topologically-continuous. \square

c) Let $a, b, c, d \in \mathbb{R}$. Prove that any monotonic and topologically-continuous function $f : [a, b] \to [c, d]$ is Scott-continuous. As usual, f is monotonic if $x \le y$ implies $f(x) \le f(y)$.

Hints: You can use the following lemma: Let $(x_n)_{n\in\mathbb{N}}$ be a monotonically increasing sequence of real numbers which is bounded from above. Then $(x_n)_{n\in\mathbb{N}}$ converges and $\lim_{n\to\infty} x_n = \sup\{x_n \mid n\in\mathbb{N}\}$.

As discussed in part (b), the first condition for Scott-continuity, namely completeness, is fulfilled by the ordering \leq . To show that every monotonic and topologically-continuous function $f:[a,b] \to [c,d]$ is Scott-continuous, we thus have to show that $f(\sqcup S) = \sqcup \{f(d) \mid d \in S\}$ for every chain S in D_1 .

Let us consider an arbitrary interval $M = [i, j] \subseteq [a, b]$. Since [i, j] is complete, we can create a monotonically increasing sequence $S = (x_n)_{n \in \mathbb{N}}$ from M, where $x_0 = i$ and $x_n < x_{n+1}$ for all

n > 0, $n \in \mathbb{N}$. As $S \subseteq [i, j]$, the sequence is bounded from above by j; we can thus apply the given lemma, based on which

$$\lim_{n \to \infty} x_n = \sup S = \sup \{ x_n \mid n \in \mathbb{N} \} = j$$

$$\implies f(\sup S) = f(j)$$

Let us now construct a sequence $S' = f(x_n)_{n \in \mathbb{N}}$ from S. Since f is monotonic, we know that $f(x_n) \le f(x_{n+1}) \le f(j)$ for every $x_n \in S$; thus, it follows that

$$\lim_{n\to\infty} f(x_n) = \sup S' = \sup\{f(x_n) \mid n \in \mathbb{N}\} = f(j)$$

This means that $f(\sqcup S) = \sqcup \{f(d) \mid d \in S\}$ for any S, which is what we wanted to show. \square

d) Let $a,b,c,d \in \mathbb{R}$. Prove or disprove that any Scott-continuous function $f:[a,b] \to [c,d]$ is topologically-continuous.

Not every Scott-continuous function $f:[a,b] \to [c,d]$ is topologically-continuous. To show that, let us consider as an example the following function f, which is defined on the interval [a,b]:

$$f(x) = \begin{cases} x^2, & x \in [a, k) \\ 0.5 + x^2, & x \in [k, b] \end{cases}$$

A visualisation of the function is shown below:

discontinuous_function_example

This function is not topologically continuous on the interval [a,b] since it has a discontinuity at k; however, f is Scott-continuous on [a,b]. For instance, let us take an interval $M=[i,k]\subseteq [a,b]$ and create a monotonically increasing sequence $S=(x_n)_{n\in\mathbb{N}}$ from M just as in part (c). For this interval, we have $\sup S=k$ and $f(\sup S)=f(k)=\sup\{f(x_n)\mid n\in\mathbb{N}\}$. This holds for any chain S in [a,b].

As this example shows, Scott continuity is not a sufficient condition for topological continuity.

6