

Universidad Tecnológica de la Mixteca

Clave DGP:

Maestría en Inteligencia Artificial

.. 00038

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
VISIÓN COMPUTACIONAL		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los elementos que componen un sistema de visión por computadora, así como las aplicaciones principales de esta en el seguimiento, reconocimiento y la reconstrucción tridimensional de objetos.

TEMAS Y SUBTEMAS

1. Modelado de cámara

- 1.1. Introducción.
- 1.2. Terminología de calibración.
- 1.3. Parámetros geométricos.
- 1.4. Sistema de formación de imágenes.
- 1.5. Modelos de cámaras.
- 1.6. Calibración y técnicas de orientación.
- 1.7. Aplicaciones fotométricas.

2. Transformaciones geométricas de imágenes

- 2.1. Redimensionalización, traslación y rotación.
- 2.2. Transformación afín.
- 2.3. Transformación de perspectiva.
- 2.4. Corrección de distorsión radial.

3. Modelos de visión

- 3.1. Visión estéreo.
- 3.2. El problema de la correspondencia.
- 3.3. Métodos basados en un par de imágenes.
- 3.4. Métodos multi-imagen.
- 3.5. Modelos de visión sin calibrar.
- 3.6. Métodos directos.

4. Vistas múltiples y detección de características

- 4.1. Homografías.
- 4.2. Geometría proyectiva.
- 4.3. Sensores 3D.
- 4.4. Puntos de interés
- 4.5. Correspondencia de puntos de interés
- 4.6. Alineación basada en características

5. Movimiento

- 5.1. Estimación de movimiento.
- 5.2. Modelos de movimiento.

6. Seguimiento

6.1. Modelado de dinámica.

Universidad Tecnológica de la Mixteca

Clave DGP:

Maestría en Inteligencia Artificial

00039

PROGRAMA DE ESTUDIOS

6.2. Filtro de Kalman 6.3. Filtro de partículas 6.4. Seguimiento real

ACTIVIDADES DE APRENDIZAJE

Exposición de temas frente a grupo por parte del profesor utilizando medios digitales. Asignación de lectura de artículos de investigación.

Asignación de prácticas y proyectos donde se desarrollen los conocimientos adquiridos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

El Capítulo II, De las Evaluaciones, del Reglamento General de Posgrado establece que, Artículo 33, la calificación final del alumno se obtendrá de tres evaluaciones parciales (50%) y un examen ordinario (50%), Artículo 32. Para cada evaluación parcial se indicará al inicio de semestre la modalidad de evaluación a utilizar, Artículo 24.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Computer Vision: A Modern Approach. David A. Forsyth & Jean Ponce. Prentice Hall, 2002.
- Algorithms for Image Processing and Computer Vision. J. R. Parker. Wiley, 2010.
- Computer Vision: Algorithms and Applications. Richard Szelisky. 2a ed. Springer, 2021.

Consulta:

- Computer and Machine Vision. E. R. Davies. 4a ed. Academic Press, 2012.
- Emerging Topics in Computer Vision. Gerard Medioni & Sing Bing Kang. IMSC Press Multimedia Series, 2004.
- Programming Computer Vision with Python. Jan Erik Solem. O'Reilly, 2012.

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales, preferencialmente de doctorado en sistemas informáticos o con especialidad en Inteligencia Artificial enfocado en el procesamiento digital de imágenes.

Vo.Bo

DR. JOSÉ ANÍBAL ARIAS AGUILAR ON SION JEFE DE LA DIVISIÓN DE ESTUDIOS DE **POSGRADO**

AUTORIZO DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA **ACADÉMICA**