ЛАБОЛАТОРНАЯ РАБОТА ПО КУРСУ «КВАНТОВЫЙ КОМПЬЮТЕР» Двухкубитовые квантовые схемы

Плотников Антон, A4101 Санкт-Петербург, 2017

1. Цель работы

Изучение работы алгоритма Гровера.

2. Задачи

- 1. Определить номер элемента который ищется в базе.
- 2. Определить количество итераций необходимо в алгоритме для получения вероятности верного ответа близко к 1.
- 3. Найти зависимость количества итераций от количества элементов в базе.
- 4. Сравнить предыдущий результат с самым эффективным классическим алгоритмом (перебор).
- 5. Объяснить, почему при дальнейшем увеличении числа итераций эффективность падает.

3. Ход работы

3

Количество кубитов n=4, число элементов в базе $N=2^n=16$ Номер элемента который ищется в базе — 3.

Рис. 1: Гистограмма работы алгоритма Гровера (R=3)

Количество итераций необходимых для того чтобы ответ был с высокой вероятности для случая 4 кубитов, равен

Рис. 2: Амплитуды вероятностей (R=3)

Верхняя оценка числа итераций равна (M — количество решений удовлетворяющих критерию поиска):

$$R \leqslant \left\lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rceil$$

В нашем случае M=1 и выражение принимает вид:

$$R \leqslant \left[\frac{\pi}{4}\sqrt{N}\right]$$

Эффективность работы алгоритма Гровера $O(\sqrt{N})$, в то время когда классический алгоритм поиска требует O(N) операций. Как мы видим алгоритм Гровера позволяет получить квадратичное улучшение в задаче поиска.

Рис. 3: Амплитуды вероятностей (R=5)

Суть алгоритма заключается в изменении целевого состояния за счет убывания амплитуды всех остальных состояний. В том случае когда мы совершаем дополнительные итерации амплитуды всех остальных состояний становятся отрицательными, а следовательно и среднее значение также отрицательно, а так как амплитуда искомого элемента откладывается от среднего значения, то в результате мы получаем уменьшение амплитуды искомого элемента (рис. 3).

4. Вывод

В ходе выполнения работы изучили работу квантового алгоритма поиска (алгоритм Гровера). Определили количество итераций необходимых для определения искомого элемента с вероятностью близкой к единице R=3, во общем виде зависимость итераций от количества элементов в базе выражается $R\leqslant \left[\frac{\pi}{4}\sqrt{\frac{N}{M}}\right]$. Алгоритм Гровера позволяет получить квадратичное улучшение по сравнению с классическим алгоритмом поиска. Увеличение количества итераций ведет к падению эффективности, что вызвано изменением знака среднего значения амплитуд.