CIS 4930/6930-002 DATA VISUALIZATION

PERCEPTION

Paul Rosen
Assistant Professor
University of South Florida

slides credits Chris Johnson (U of Utah), Hanspeter Pfister (Harvard), BangWong (Broad Institute), Miriah Meyer (U of Utah)

TOPICS

eye construction
perceptual vulnerabilities
popout
gestalt principles

data

120 million rods

5-6 million cones

CONE RESPONSE

Foveation is relatively easy to see. The key to recognizing the phenomenon is to stair at a single word on the printed page. Then, without moving your gaze, note the blurriness of the surrounding text.

SACCADIC EYE MOVEMENTS

rapid involuntary eye movements

moving: 20-100 ms

fixations: 200-600 ms

BLIND SPOT

Close **left** eye

Stair at +

Move forward and backward until ● disappears

BLIND SPOT

TAKEAWAY

Our vision at any given moment is relatively limited. Our brain "fills in the missing pieces" using a variety of evolved tools.

Be careful placing too much data on the screen. Crisp and clear will result in the best interpretation.

EDGE DETECTION

RECEPTIVE FIELD

100M rods and cones

light hits rods and cones

IM ganglion cells

single neuron fires

luminance L

 $\frac{dL}{dx}$

HERMANN GRID EFFECT

CONSEQUENCES OF EDGE EXTRACTION

CORNSWEET LLUSION

CORNSWEET LLUSION

CORNSWEET LLUSION

CORNSWEET ILLUSION

MACH BANDING

TAKEAWAY

Our visual system is attracted to edges and is sensitive to differences, not absolute values.

Maximize the contrast with the background if the outlines of shapes are important.

WEBER'S LAW

we judge based on relative, not absolute, differences

Unframed Aligned

AXIS OF ALIGNMENT

AXIS OF ALIGNMENT

TAKEAWAY

We have a strong propensity to assume our judgments are absolute, when in fact they are generally relative to the local context.

Do your best to not place data in difficult contexts. Choose position and orientation of objects carefully.

<u>POPOUT</u>

<u>POPOUT</u>

<u>POPOUT</u>

<u>POPOUT</u>

PRE-ATTENTIVE PROCESSING

requires attention, despite name

very fast: <200 ms

what matters most is contrast between features

BASIC POPOUT CHANNELS

PICK THE OUTLIER

PICK THE OUTLIER

PICK THE OUTLIER

<u>CONJUNCTION</u>

or, why to use a single channel at a time

<u>CONJUNCTION</u>

or, why to use a single channel at a time

TAKEAWAY

We can easily see objects that are different in color and shape, or that are in motion.

Use color and shape sparingly to make the important information pop out.

GESTALT PRINCIPLES

German: "Gestalt" = form

patterns transcend the visual stimuli that

produced them

SIMILARITY

SIMILARITY

PROXIMITY

PROXIMITY

CONNECTEDNESS

GROUPING

Similarity

•

Connection

Enclosure

GROUPING

CONTINUITY

CONTINUITY

CLOSURE

FIGURE / GROUND

M.C. Escher: Sky and Water I 1938 woodcut

COMMON FATE

GESTALT PRINCIPLES

similarity: things that look like each other (size, color, shape) are related

proximity: things that are visually close to each other are related

connection: things that are visually connected are related

continuity: we complete hidden objects into simple, familiar shapes

closure: we see incomplete shapes as complete

figure / ground: elements are perceived as either figures or background

common fate: elements with the same moving direction are perceived as a unit

TAKEAWAYS

Gestalt principles give us a conceptual understanding of the way our mind converts shapes into structured thought.

Using the Gestalt principles wisely will lead improve performance in interpretation of visualizations. Poor use may cause users to see things that aren't there...

