שיעור 1 מכונות טיורינג

1.1 הגדרה היוריסטית של מכונת טיורינג

הגדרה 1.1 מכונת טיורינג (הגדרה היוריסטית)

הקלט והסרט

מכונת טיורינג (מ"ט) קורא קלט.

הקלט נמצא על סרט אינסופי.

התווים של הקלט נמצאים במשבצות של הסרט.

במכונת טיורינג אנחנו מניחים שהסרט אינסופי לשני הכיוונים.

משמאל לתחילת הקלט לא כתוב כלום, ומימין לסוף הקלט לא כתוב כלום.

אנחנו מניחים שיש תו הרווח _ שנמצא בכל משבצות שאינן משבצות קלט, משמאל לקלט ומימין לקלט.

הראש

במצב ההתחלתי הראש בקצה השמאלי של הקלט.

הראש יכול לזוז ימינה על הסרט וגם שמאלה על הסרט.

הראש יכול לקרוא את התוכן שנמצא במשבצת הסרט שבה הוא נמצא.

הראש יכול לכתוב על המשבצת הסרט שבה הוא נמצא. הכתיבה נעשית תמיד במיקום הראש.

המצבים

 q_0 בהתחלה הראש בקצה השמאלי של הקלט והמ"ט במצב התחלתי

הראש קורא את התו במשבצת הראשונה וכותב עליה לפי הפונקציית המעברים (שנגדיר בהגדרה 1.2). כעת המ"ט במצב חדש q_1

 q_2 חדש קורא את התו במשבצת השניה וכותב עליה לפי הפונקציית המעברים ואז המ"ט במצב חדש התהליך ממשיך עד שהראש מגיע לקצה הימיני של הקלט, ואז הוא ממשיך לקרוא ולכתוב על כל משבצת בכיוון שמאלה, עד שהוא מגיע לקצה השמאלי.

במ"ט ניתן לטייל על הקלט שוב ושוב לשני הכיוונים.

 $q_{
m rej}$ או מצב דוחה מגיע למצב מקבל מסתיים כאשר המ"ט מגיע מגיע מגיע

נבנה מכונת טיורינג אשר מקבלת מילה אם היא בשפה

$$L = \{w \in \{a, b\}^* | \#a_w = \#b_w\}$$
.

bו a אותיות שווה אותיות מספר עם מכל המילים מכל המורכבת מכל המילים אווה אותיות וו

תיאור מילולי

- . נסרוק את הקלט משמאל לימין ולכל a נחשפ b נסרוק את הקלט
 - .√ נסמן עליה, a נניח שראינו במשבצת הראשונה
- שכבר ראינו. a שכבר מתאימה ל b מתאימה ל שכבר ראינו.
 - אם לא מצאנו ,המילה לא בשפה.
 - $\sqrt{}$ אם מצאנו ,נסמן את ה- b התואם ב- $\sqrt{}$
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
- במשבצת הראשונה יש √ מסיבוב הראשון. הראש פשוט כותב עליה √, כלומר משבצת ראשונה נשארת ללא שינוי.
 - \checkmark נסמן במשבצת הבאה. נניח שמצאנו b. ניח שמאלה למשבצת הבאה. ניח שמאלה למשבצת הבאה
 - נסרוק את יתרת הקלט ונחפש אות a מתאימה ל
 - אם לא מצאנו ,המילה לא בשפה.
 - $\sqrt{\ }$ אם מצאנו ,נסמן את ה- a התואם ב- -
 - . בכל משבצת שיש $\sqrt{}$ כותבים עליה $\sqrt{}$ וממשיכים למשבצת הבאה הימני.
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
 - חוזרים על התהליך שוב ושוב.
 - אם היה מעבר שבו לא מצאנו אות תואמת, המילה לא בשפה.
- אם כולן היו תואמות ועשינו מעבר שבו הגכנו מקצה לקצה, מרווח לרווח, בלי לראות שום אות,אז המילה בשפה.

כעת נתאר את המ"ט באמצעות המצבי המכונה והפונקציית המעברים.

מצבי המכונה

q_0	המצב ההתחלתי. אליו נחזור אחרי כל סבב התאמה של זוג אותיות.
q_a	מצב שבו ראינו a ומחפשים b מצב שבו ראינו
q_b	מצב שבו ראינו b מצב שבו ראינו
back	מצב שנשתמש בו כדי לחזור לקצה השמאלי של הקלט ולהתחיל את הסריקה הבאה (סבב ההתאמה הבא).
acc	מצב מקבל.
rej	מצב דוחה.

- כאשר המכונה מגיעה למצב acc כאשר המכונה מגיעה עוצרת. עצירה במצב acc עצירה במצב
- ראטר המכונה מגיעה למצב rej היא עוצרת.עצירה במצב rej משמעותה דחייה.
 - רק בשני מצבים אלו המכונה מפסיקה.
 בכל מצב אחר המכונה בהכרח ממשיכה.

תרשים מצבים

- בכל צעד המכונה מבצעת שתי פעולות:
 - 1. כותבת אות במיקום הראש
- .2 זזה צעד אחד שמאלה או צעד אחד ימינה.
- . בכל צעד המכונה יכולה לעבור למצב אחר או להישאר באותו מצב.

דוגמה 1.2

בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה abbbaa.

b

b

b

a a

а

а

back √ √ b

back	_	\checkmark	\checkmark	b	b	а	a	_
_	q_0	\checkmark	\checkmark	b	b	а	а	_
_	\checkmark	q_0	\checkmark	b	b	а	а	_
_	\checkmark	\checkmark	q_0	b	b	а	а	_
_	\checkmark	\checkmark	\checkmark	q_b	b	а	a	_
_	\checkmark	\checkmark	\checkmark	b	q_b	а	а	
_	\checkmark	\checkmark	\checkmark	back	b	\checkmark	a	_
	\checkmark	\checkmark	back	\checkmark	b	\checkmark	a	_
_	\checkmark	back	\checkmark	\checkmark	b	\checkmark	a	_
_	back	\checkmark	\checkmark	\checkmark	b	\checkmark	a	_
back		\checkmark	\checkmark	\checkmark	b	\checkmark	a	_
_	q_0	\checkmark	\checkmark	\checkmark	b	\checkmark	а	_
	\checkmark	q_0	\checkmark	\checkmark	b	\checkmark	a	_
_	\checkmark	\checkmark	q_0	\checkmark	b	\checkmark	a	_
_	\checkmark	\checkmark	\checkmark	q_0	b	\checkmark	a	_
_	\checkmark	\checkmark	\checkmark	\checkmark	q_b	\checkmark	a	_
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_b	a	_
_	\checkmark	\checkmark	\checkmark	\checkmark	back	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	back	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	back	\checkmark	\checkmark	\checkmark	\checkmark	
_	\checkmark	back	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	back	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
back		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	q_0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
_	\checkmark	q_0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	q_0	\checkmark	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	q_0	\checkmark	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	\checkmark	q_0	\checkmark	\checkmark	_
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_0	\checkmark	_
_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	q_0	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	u	acc

בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה aab.

פתרון:

1.2 הגדרה פורמלית של מכונת טיורינג

הגדרה 1.2 מכונת טיורינג מכונת טיורינג (מ"ט) היא שביעיה $M = (Q, \Sigma, \Gamma, \delta, q_0, \text{acc}, \text{rej})$:כאשר קבוצת מצבים סופיות Q $_ \notin \Sigma$ \sum א"ב קלט סופי $\Sigma \subseteq \Gamma$, $\subseteq \Gamma$ ref Γ א"ב סרט סופי $\delta:(Q\backslash\{\mathrm{rej},\mathrm{acc}\} imes\Gamma o Q imes\Gamma imes\{L,R\}$ פונקציית המעברים מצב התחלתי q_0 מצב מקבל acc מצב דוחה rej

דוגמה 1.4 (המשך דוגמה 1.1)

$$M = (Q, \Sigma, \Gamma, \delta, q_0, acc, rej)$$

$$Q = \{q_0, q_a, q_b, \text{back}, \text{rej}, \text{acc}\}$$
.

$$\Sigma = \{a,b\}, \qquad \Gamma = \{a,b,\bot,\checkmark\}$$

$$\delta\left(q_0,\mathbf{a}\right) = \left(q_a, \checkmark, R\right)$$
,

$$\delta(q_0, b) = (q_b, \checkmark, R) ,$$

$$\delta\left(q_{0},\bot\right)=\left(\operatorname{acc},\bot,R\right) ,$$

$$\delta\left(q_a,\checkmark\right) = \left(q_a,\checkmark,R\right) ,$$

$$\delta\left(q_{a},\mathsf{a}\right)=\left(q_{a},\mathsf{a},R\right)\ ,$$

$$\delta\left(q_a,\mathbf{b}\right) = (\mathrm{back},\checkmark,L) \ ,$$

$$\delta\left(q_b,\checkmark\right) = \left(q_b,\checkmark,R\right) ,$$

$$\delta(q_b, b) = (q_a, b, R) ,$$

$$\delta(q_b, \mathbf{a}) = (\text{back}, \checkmark, L)$$
,

כטבלה: δ כטבלה את פונקציית המעבירים

Γ Q	а	b		√
q_0	(q_a, \checkmark, R)	(q_b, \checkmark, R)	$(acc, _, R)$	(q_0, \checkmark, R)
q_a	(q_a, a, R)	$(\mathrm{back},\checkmark,L)$	$(\mathrm{rej}, _, L)$	(q_a, \checkmark, R)
q_b	$(\mathrm{back},\checkmark,L)$	(q_b, b, R)	$(\mathrm{rej}, _, L)$	(q_b, \checkmark, R)
back	(back, a, L)	(back, b, L)	(q_0, \bot, R)	$(\mathrm{back},\checkmark,L)$

הגדרה 1.3 קונפיגורציה

. מכונת טיורינג מכונת $M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$

קונפיגורציה של M הינה מחרוזת

 $\mu q \sigma \nu$

:כאשר משמעות

$$\mu, \nu \in \Gamma^*$$
, $\sigma \in \Gamma$, $q \in Q$.

- מצב המכונה,
- הסימון במיקום הראש σ
- תוכן הסרט משמאל לראש, μ
 - תוכן הסרט מימין לראש. u

דוגמה 1.5 (המשך של דוגמה 1.3)

μ	q	σ	ν
	q_0	a	ab_
_√	q_a	a	b _
_ √ a	q_a	b	_
_ ✓	back	a	✓ _
_	back	✓	a √ _
_	back	_	✓ a ✓ _
_	q_0	✓	a √ _
_ ✓	q_0	a	✓ _
_ ✓ ✓	q_a	✓	_
_ ✓ ✓ ✓	q_a	_	_
_ ✓ ✓	rej	✓	_

דוגמה 1.6

בנו מכונת טיורינג אשר מקבלת כל מילה בשפה

$$L = \{a^n \mid n = 2^k , k \in \mathbb{N}\}$$

2 אשר חזקה של a אותיות מספר בעלי מספר ז"א מילים בעלי

פתרון:

ראשית נשים לב:

 $rac{n}{2^k}=1$ אם ורק אם אנחנו מקבלים 1 אחרי חילוק של $n=2^k$ אחרי מקבלים אנחנו מקבלים $n=2^k$

לאור המשפט הזה נבנה אלגוריתם אשר מחלק את מספר האותיות במילה ב- 2 בצורה איטרטיבית. אם אחרי סבב מסויים נקבל מספר אי-זוגי גדול מ- 1 אז מספר האותיות a במילה לא יכול להיות חזקה של 2. אם אחרי כל הסבבים לא קיבלנו מספר אי-זוגי גדול מ-1 אז מובטח לנו שיש מספר אותיות a אשר חזקה של 2.

• נתון הקלט

נעבר על סרט הקלט. משמאל לימין.

• מבצעים מחקיה לסירוגין של האות a כלומר אות אחת נמחק ואות אחת נשאיר וכן הלאה.

אם אחרי סבב הראשון

- 2 אין חזקה ב- 2 אין חזקה של ב- אין אותיות האחרון אין מספר אי-זוגי של אותיות האחרון \checkmark של אין אין אותיות בעולה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אחרי אוגי של אותיות \pm פיבלנו מספר \pm אחרי איש \pm
 - הראש חוזר לתו הראשון של הקלט

(אות אחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות

אם אחרי סבב השני

- 2 אין חזקה ב- בתו האחרון האחרון אין חזקה של אותיות מספר אי-זוגי של אין מספר \star אין אין האחרון אותיות אותיות מספר אי-זוגי מספר איותיות במילה.
 - . ונמשיך לסבב הבא. 2 ונמשיך לסבב הבא. a יש a אחרי זוגי של מספר אוגי של האחרון a
 - הראש חוזר לתו הראשון של הקלט

בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות a (אות אחת נמחק ואות אחת נשאיר)

אם אחרי סבב השלישי

- 2 אין חזקה ב- 2 אין חזקה של ב אי-זוגי של אותיות אחרי חילוק ב- 4 אין חזקה של * אותיות ב אירון של היבלנו מספר אי-זוגי של אותיות ב במילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות a אותיות אחרון \Rightarrow קיבלנו מספר אוגי של *
 - הראש חוזר לתו הראשון של הקלט.

בסבב האחרון נשאר רק אות a אחת.

.2 אשר חזקה של a אותיות a אותיות מספר אותיות a אשר חזקה של

המכונת טיורינכ אשר מקבלת מילים בשפה שעובדת לפי האלגוריתם המתואר למעלה מתואר בתרשים למטה.

המצבים:

מצב none: מצב התחלתי. עדיין לא קראנו a בסבב סריקה זה.

מצב one: קראנו a בודד.

. a קראנו מספר זוגי של even מצב

. a קראנו מספר אי-זוגי של odd:

מצב back: חזרה שלמאלה.

דוגמה 1.7

בדקו אם המילה

aaaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

none	a	а	а	а	
 \checkmark	one	а	а	а	_

J	\checkmark	а	even	а	а	_
J	\checkmark	a	\checkmark	odd	a	J
_	\checkmark	а	\checkmark	a	even	L
_	\checkmark	a	\checkmark	back	a	_
J	\checkmark	а	back	\checkmark	a	
J	\checkmark	back	а	\checkmark	а	
J	back	\checkmark	а	\checkmark	а	L
back		\checkmark	а	\checkmark	a	_
J	none	\checkmark	а	\checkmark	a	L
J	\checkmark	none	а	\checkmark	a	L
J	\checkmark	\checkmark	one	\checkmark	а	
u	\checkmark	\checkmark	\checkmark	one	а	
u	\checkmark	\checkmark	\checkmark	a	even	_
	✓ ✓	✓ ✓	✓ ✓	a back	even a]]
	✓ ✓ ✓	✓ ✓ ✓	√ √ back]]]
]	✓ ✓ ✓	√ √ √ back	✓ ✓ back ✓	back	a]]]]
	✓ ✓ ✓ ✓ ✓ back	✓ ✓ ✓ back ✓		back	a a	
i i i i i i i i i i i i i i i i i i i	✓ ✓ ✓ ✓ back			back	a a a	
i i i i i i i i i i i i i i i i i i i	✓ ✓ ✓ ✓ back — none			back	a a a	
Land the state of	u			back	a a a a	
	u	√ √ √		back	a a a a a	
	u	√ √ √ none	✓✓✓✓	back	a a a a a	
)	u	√ √ √ none	✓✓✓✓✓none	back	a a a a a a	

μ	q	σ	ν
]	none	a	aaa _
_ ✓	one	a	aa 🗅
_ √ a	even	a	а 🗕
_ √ a √	odd	a	
_√a√a	even	_	
_ √ a √	back	a	
_ √ a	back	✓	a _

_ ✓	back	a	√ a _
	back	✓	а√а∟
ت ا	back	_	√a√a∟
_	none	✓	а√а∟
	none	a	√ a _
_ ✓ ✓	one	✓	a _
_	one	a	
_ √ √ √ a	even	_	_
_	back	a	_
_ ✓ ✓	back	√ a	
	back	✓	√ a _
	back	✓	√√ a _
_	back	_	√√√ a _
_	none	✓	√ √ a _
	none	✓	√ a _
_ ✓ ✓	none	✓	a _
_	none	a	
_	one	_	_
_	acc	✓	

בדקו אם המילה

aaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

_	none	a	a	a	
_	\checkmark	one	а	a	_
_	\checkmark	a	even	a	J
_	\checkmark	a	\checkmark	odd	J
_	\checkmark	a	\checkmark	_	rej

μ	q	σ	ν
_	none	a	aa _
_ ✓	one	a	а _
_ √ a	even	a	_
_ √ a √	odd	_	_
_ √ a √ _	rej	u]

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- .a עוברים למשבצת הבאה לימין הראש.
- אם אנחנו רואים b, עוברים למשבצת הבהאה לשמאל הראש. *
- ממשיכים כך עד שנגיע לתו רווח, כלומר לסוף המילה, ואז עוברים למשבצת לשמאל הראש, כלומר לתו האחרון של המילה.
 - (.a אם אנחנו רואים a, המילה מתקבלת. (ז"א התו האחרון הינו *
 - אם אנחנו רואים d, המילה נדחית. (ז"א התו האחרון הינו d.) *
 - * אם אנחנו רואים תו-רווח המילה נדחית. (ז"א המילה הינה ריקה.)

תשובה סופית: המכונה מקבלת שפת המילים המסתיימות באות a.

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- * אם אנחנו רואים b, המילה נדחית.
- * אם אנחנו רואים _, המילה מתקבלת.
- q_1 עוברת למצס ,a אם אנחנו רואים ,a אם אנחנו רואים עליה עוברים למשבצת הבאה איט עוברת אנחנו α
 - oxdot במצב q_1 אנחנו ראינו a וכתבנו עליה •
- q_1 אם אנחנו רואים במשבצת הבאה או ל, ממשיכים למשבצת הבאה או המ"ט נשארת *
- אם אנחנו רואים תו רווח (כלומר הגענו לסוף המילה) הראש זז למשבצת השמאלי, כלומר לאות lpha האחרונה של המילה והמ"ט עוברת למצב q_2
 - . בתו האחרון, כתבנו עליה $_$ והראש קורא התו a בתו האחרון. a
 - אם אנחנו רואים a המילה נדחית. *
 - * אם אנחנו רואים _, המילה נדחית.
 - $.q_3$ כותבים עליה $_$ והמ"ט עוברת למצב *
 - . במצב q_3 קראנו b ומחקנו אותה, קראנו a בתו הראשון ומחקנו אותה a
 - q_0 הראש η ז משבצת אחת שמאלה עד שיגיע לתו הרשאון ומ"ט חוזרת למצב התחלת ullet

- המ"ט באופן איטרטיבי, עוברת על הקלט ובכל מעבר:
- , אחרת המילה המילה אותה ומחליפה אותה שם $_{-}$, אחרת המילה מורידה אותה אותה $_{-}$
- . אחרת המילה של המילה מורידה אותה ומחליפה אותה של בסופה של המילה ${\tt tb}$
- אם לאחר מספר מעברים כאלו הסרט ריק, המ"ט מקבלת, וזה יתקיים לכל מילה ורק למילים בשפה

$$\left\{a^n b^n \middle| n \geqslant 0\right\} .$$

תשובה סופית: המכונה מקבלת שפת המילים

$$\left\{a^n b^n \middle| n \geqslant 0\right\} .$$

דוגמה 1.11

μ	q	σ	ν
	q_0	a	aaabbbb
	q_1	a	aabbbb
a	q_1	a	abbbb
aa	q_1	a	bbbb
aaa	q_1	Ъ	bbb
aaab	q_1	Ъ	bb
aaabb	q_1	Ъ	b
aaabbb	q_1	Ъ	
aaabbbb	q_1		_
aaabbb	q_2	Ъ	
aaabb	q_3	Ъ	
aaab	q_3	Ъ	b
aaa	q_3	Ъ	bb_
aa	q_3	a	bbb
a	q_3	a	abbb
	q_3	a	aabbb
ــــــــــــــــــــــــــــــــــــــ	q_3		aaabbb
	q_0	a	aabbb
	q_1	a	abbb

		ı	I
a	q_1	a	bbb
aa	q_1	Ъ	bb
aab	q_1	Ъ	Ъ
aabb	q_1	Ъ	
aabbb	q_1		
aabb	q_2	Ъ	
aab	q_3	Ъ	
aa	q_3	ь	b
a	q_3	a	bb_
	q_3	a	abb_
	q_3		aabb
	q_0	a	abb
	q_1	a	bb
a	q_1	ь	b
ab	q_1	Ъ	
abb	q_1	_	
ab	q_2	Ъ	
a	q_3	Ъ	
	q_3	a	b
	q_3	_	ab
	q_0	a	b
	q_1	ь	
b	q_1		
	q_2	Ъ	
	q_3		
	q_0		

הגדרה 1.4 גרירה בצעד אחד

M של קונפיגורציות פינה c_1 ו- היינה מיורינג, מכונת מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

 $c_1 \vdash_M c_2$

. בודד בעד ברים ל- עוברים ב- כשנמצאים ב- (c_2 אם בצעד בודד.

דוגמה 1.12 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$

הגדרה 1.5 גרירה בכללי

M מכונת טיורינג, ותהיינה c_2 ו- מכונת טיורינג, מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

$$c_1 \vdash_M^* c_2$$

. אם יותר צעדים c_1 ב- c_2 ב- c_2 אם ניתן לעבור מ- c_2 ב- c_3 או יותר צעדים (במילים, גורר את

דוגמה 1.13 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

$$\sqrt{q_0}a\sqrt{a}$$
 $\vdash_M^* \sqrt{\sqrt{q_4}a}$

$$\sqrt{q_0}a\sqrt{a} \vdash_M \sqrt{\sqrt{q_1}\sqrt{a}}$$

$$\vdash_M \sqrt{\sqrt{q_1}a}$$

$$\vdash_M \sqrt{\sqrt{q_4}a}$$

$$\vdash_M \sqrt{\sqrt{q_4}a}$$
.

הגדרה 1.6 קבלה ודחייה של מחרוזת

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \operatorname{acc}, \operatorname{rej})$$

מכונת טיורינג, ו-

$$w \in \Sigma^*$$

מחרוזת. אומרים כי

מקבלת את w אם M

$$q_0w \vdash_M^* u \ \mathrm{acc} \, \sigma \, \mathrm{v}$$

עבור $v,u\in\Gamma^*,\sigma\in\Gamma$ כלשהם,

אם w אם M •

$$q_0w \vdash_M^* u$$
 rej σ v

. עבור $\mathbf{v},u\in\Gamma^*,\sigma\in\Gamma$ כלשהם

הגדרה 1.7 הכרעה של שפה

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \operatorname{acc}, \operatorname{rej})$$

מכונת טיורינג, ו-

$$L\subseteq \Sigma^*$$

שפה. אומרים כי M מכריעה את אם לכל $w \in \Sigma^*$ מתקיים

- w את מקבלת את $M \Leftarrow w \in L$
 - w את דוחה את $M \Leftarrow w \notin L$

הגדרה 1.8 קבלה של שפה

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \mathrm{acc}\,,\,\mathrm{rej})$$

מכונת טיורינג, ו-

$$L \subseteq \Sigma^*$$

שפה. אומרים כי M מקבלת את אם לכל $w \in \Sigma^*$ מתקיים

- w אז M מקבלת את $w \in L$ אז $w \in L$
- w אז M לא מקבלת את $w \notin L$ אם •

במקרה כזה נכתוב ש-

$$L(M) = L$$
.

1.3 טבלת המעברים

דוגמה 1.14

בנו מכונת טיורינג שמכריעה את השפה

$$L = \{w = \{a, b, c\}^* | \#a_w = \#b_w = \#c_w\}$$

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
q.S	σ	$q.(S \cup \{\sigma\})$	✓	R	$\sigma \notin S$
q.S	σ	q.S		R	$\sigma \in S$
$q/\{a,b,c\}$	a,b,c,\checkmark	back		L	
$q.\varnothing$		acc		R	
back	a,b,c,\checkmark	back		L	
back		$q.\varnothing$		R	

בנו מכונת טיורינג שמכריעה את השפה

$$\{x_1 \dots x_k \# y_1 \dots y_k \# z_1 \dots z_k \mid x_i, y_i, z_i \in \{0, \dots, 3\}, \forall i, x_i \geqslant z_i \geqslant y_i\}$$

L={X, X, # Y, Y # = = | X, 1/2, = , e {0,1,2,3} Vi X2=, 2 X;}

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	√	R	
X * *	✓	X * *	√	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$		R	
$X\tau*$	#	$Y\tau *$		R	
$Y\tau *$	σ	$Y\tau\sigma$		R	
$Y\tau *$	✓	$Y\tau *$		R	
Υτσ	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$		R	
$Y \tau_1 \tau_2$	#	$Z au_1 au_2$		R	
$Z\tau_1\tau_2$	✓	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	σ	back	√	L	
Z * *	J	acc		R	
back	$0,1,\ldots,9,\checkmark$	back		L	
back	J	X * *		R	

1.4 חישוב פונקציות

f מכונת טיורינג שמחשבת פונקציה f

מכונת טיורינג. $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ ותהי ותהי ו $f:\Sigma_1^*\to\Sigma_2^*$ אומרים כי M מחשבת את אם:

- $\Sigma_2 \subset \Gamma$ -1 $\Sigma = \Sigma_1$ •
- $.q_0w \vdash \mathrm{acc}f(w)$ מתקיים $w \in \Sigma_1^*$ לכל

דוגמה 1.16 חיבור אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 1^{i} # 1^{j}

ומחזירה את פלט

 1^{i+j} .

דוגמה 1.17 כפל אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 $1^{i}#1^{j}$

ומחזירה את פלט

 $1^{i\cdot j}$.

- .2 לדוגמה, נניח שהקלט הוא 2 כפול הקלט הוא 11#11.
- נרצה להבדיל בין הקלט לבין הפלט. לכן בתחילת הריצה, נתקדם ימינה עד סוף הקלט ונוסיף שם את התו \$. לאחר מכן נחזור לתחילת הקלט.
- .\$ על כל אות במילה השמאלית נעתיק את המילה הימינית לאחר סימן ה-
- לאחר מכן נשאיר רק את התווים שלאחר סימן ה \$. כלומר, נמחק את כל מה שאינו פלט.

μ	q	σ	ν
	q_0	1	1#11_
_11#11	q_1	L	J
_11#11	q_1	\$	J
_	q_1	_	11#11\$
_	q_2	1	1#11\$
	q_3	1	#11\$
1 #	q_4	1	1\$
1 #√	q_5	1	\$
1 #√ 1\$	q_5	_	_
1 #√ 1\$1	q_6		
1#	q_6	✓	1\$1 _
1 # √	q_4	1	\$1 _
1#√√	q_5	\$	1 _
1 #√√ \$1	q_5	J	_
1 # √√\$11	q_6	J	

1#✓	q_6	✓	\$11_
1#√✓	q_4	\$	11_
1#√	back	✓	\$11_
	back]	1#11\$11_
	q_2	1	#11\$11_
	q_3	#	11\$11_
#	q_4	1	1\$11_
_ <i>#√</i>	q_5	1	\$11_
_# √1\$11	q_5]	J
_#√ 1\$111	q_6]	J
#	q_6	✓	1\$111_
#√	q_4	1	\$111_
#√√	q_5	\$	111_
_# √ \$111	q_5]]
_# √ \$1111	q_6]	J
#√	q_4	✓	\$1111
#√√	q_4	\$	1111
_ <i>#√</i>	back	√\$	1111
	back]	#11\$1111
	q_2	#	11\$1111
	q_7	1	1\$1111
	q_7	\$	1111
	acc	1	111