Título da Apresentação

Subtítulo da Apresentação

Otto Sousa

ottolopes20@gmail.com

Departamento de Engenharia de Teleinformática
Universidade Federal do Ceará

13 de julho de 2022

Sumário

- 1 Seção I
 - Subseção I
 - Subseção II
 - Subseção III
- 2 Multicolunas
- 3 Introdução
- 4 Fundamentação Teórica

- 5 Metodologia
- Subseção I
- 6 Resultados
 - Energia
- 7 Conclusão
 - Subseção I
- 8 Imagens

Explicações

Este é um template que pode ser utilizado para:

- Apresentação de Trabalhos Acadêmicos
- Apresentação de Disciplinas
- Apresentações de Teses e Dissertações

Para utilizar este template corretamente é importante que:

- 1 Tenha conhecimento mínimo sobre LaTeX
- Ler os comentários no template (explicações)
- 3 Ler o README.md (documentação)

Este é um texto de exemplo! Texto de Ênfase!

Otto Sousa UFC short title 13 de julho de 2022

3/55

Criando Blocos

Bloco Padrão

Texto do corpo do bloco.

Bloco de Alerta

Texto do corpo do bloco.

Bloco de Exemplo

Texto do corpo do bloco.

Criando Caixas

testando o success box

Criando Caixas

testando o success box

testando o alert box

Criando Caixas

testando o success box

testando o alert box

testando o simple box

Criando Algoritmos (Pseudocódigo)

```
input :x: float, y: float
  output:r: float
  while True do
     r = x + y;
     if r \ge 30 then
3
         "O valor de r é maior ou iqual a 10.";
4
         break;
5
     else
6
         "O valor de r = ". r:
7
     end
8
9 end
```

Algorithm 1: Algorithm Example

Inserindo Algoritmos

```
def main():
    print("Hello World!")

if __name__ == ',_main__':
    main()
```

code/main.py

Inserindo Algoritmos

```
#include <stdio.h>

int main(){
    printf("Hello World!");
    return 0;
}
```

code/source.c

Otto Sousa UFC short title 13 de julho de 2022

8 / 55

Inserindo Algoritmos

```
public class FirstClass {
    public static void main(String[] args)
    {
        System.out.println("Hello World!");
    }
}
```

code/helloworld.java

Otto Sousa UFC short title 13 de julho de 2022

9/55

Inserindo Algoritmos

code/index.html

Otto Sousa UFC short title 13 de julho de 2022 10 / 55

Seção II - Multicolunas

É possível colocar mais de uma coluna utilizando os comandos de \begin{column}{} e \end{column}

Porém, o espaçamento deve ser proporcional entre as colunas para que estas colunas não entrem em coflito. O espaçamento é dado pelo segundo argumento do \begin.

Otto Sousa UFC short title 13 de julho de 2022 11 / 55

Introdução

Um dispositivo *datalogger* é um sistema embarcado que realiza que realiza e armazena leituras do ambiente em que está presente por meio de sensores.

Otto Sousa UFC short title 13 de julho de 2022 12 / 55

Introdução

Métodos de recuperação dos dados coletados:

- Manual Um operador deve ir ao local de instalação. Preço unitário acessível;
- Automatizada Envio de informações via interface sem fio. Eleva o preço unitário do datalogger.

Otto Sousa UFC short title 13 de julho de 2022 13 / 55

Objetivo geral

Desenvolver os esquemáticos eletrônicos e leiaute da placa de circuito impresso de um *datalogger* de baixo custo, com interfaces Wi-Fi e *Bluetooth*, que possa realizar medições de temperatura, umidade e luminosidade.

Otto Sousa UFC short title 13 de julho de 2022 14 / 55

Objetivos específicos

Os objetivos específicos desse trabalho são:

- Análise de soluções existentes;
- Levantamento de escopo e especificações;
- Criação de arquitetura;
- Seleção de componentes e criação de esquemáticos eletrônicos:
- Desenvolvimento de PCI;
- Mensuração dos custos;
- Definição da autonomia típica;
- Comparativo de mercado.

Otto Sousa UFC short title 13 de julho de 2022 15 / 55

Sistemas Embarcados

São sistemas computacionais que são parte integrante de um produto ou ferramenta e são limitados em tamanho, consumo, poder de processamento e custo.

Otto Sousa UFC short title 13 de julho de 2022 16 / 55

Sistemas Embarcados

Produtos que possuem um sistema embarcado são:

- Controles remotos;
- Impressoras;
- Eletrodomésticos;
- Automóveis;

Otto Sousa UFC short title 13 de julho de 2022 17 / 55

Sistemas embarcados

Possuem *hardwares* muito diferentes entre si mas há uma estrutura básica que consiste de:

- Unidade de processamento;
- Interfaces de entrada e saída para interação;
- Memórias de dados e de programa;
- Interfaces de comunicação;
- Unidade de fornecimento de energia elétrica;

Otto Sousa UFC short title 13 de julho de 2022 18 / 55

Tecnologias de processamento

Característica chave em um sistema embarcado, categoriza as variadas formas de como a unidade de processamento é organizada para realizar uma dada tarefa.

Otto Sousa UFC short title 13 de julho de 2022 19 / 55

Processadores de uso geral

- Dispositivos programáveis;
- Possuem grande número de instruções;
- Pode executar múltiplos processos simultaneamente;
- Menor tempo de desenvolvimento;
- Maior custo unitário.

Otto Sousa UFC short title 13 de julho de 2022 20 / 55

Processadores especializados

- Número de instruções reduzidos;
- Menor custo e poder de processamento;
- Menor custo unitário;
- Maior tempo de desenvolvimento;
- Podem ser programados;

Otto Sousa UFC short title 13 de julho de 2022 21 / 55

Processadores especializados

Microcontroladores

- CPU, RAM, I/O, UART, I²C e SPI em um mesmo chip;
- Otimizado para aplicações de controle;
- Não lida com grande volume de dados ou cálculos complexos;

Digital Signal Processors

- Semelhante a microcontroladores:
- Realiza operações de adição e multiplicação mais eficientemente;
- Processa grande volume de dados;
- Otimizado para processamento de sinais;

Otto Sousa UFC short title 13 de julho de 2022 22 / 55

Processadores dedicados

- Não programáveis;
- Implementa instruções para uma aplicação em específica;
- Maior custo de desenvolvimento;

Otto Sousa UFC short title 13 de julho de 2022 23 / 55

Processadores dedicados

- Application Specific Integrated Circuit (ASIC)
 - Circuito integrado de aplicação específica;
 - Possui a lógica necessária para execução de tarefas;
 - Não permite reconfiguração da lógica implementada;
- Field Programmable Gate Array
 - Semelhante ao ASIC:
 - Matriz de blocos lógicos reconfiguráveis;
 - Conexões programáveis interligam os blocos da matriz;
 - Permite a reconfiguração da lógica implementada;

Otto Sousa UFC short title 13 de julho de 2022 24 / 55

System-On-A-Chip

- Circuito integrado formado por diversos módulos que compõem um sistema computacional;
- Visa reduzir o número de CIs utilizados em um sistema embarcado:
- Implementa módulos além de CPU, RAM e I/Os;
 - Módulos de comunicação sem fio;
 - Módulos de processamento de sinais.

Otto Sousa UFC short title 13 de julho de 2022 25 / 55

Desafios de Projeto

- Um sistema embarcado deve atingir a dependabilidade;
 - Segurança da informação;
 - Confidencialidade;
 - Operação segura;
 - Confiabilidade;
 - Reparabilidade;
- Realizar uso eficiente dos recursos computacionais disponíveis;

Otto Sousa UFC short title 13 de julho de 2022 26 / 55

Soluções existentes

- Busca de dispositivos com as seguintes propriedades:
 - Leitura de umidade e temperatura;
 - Comunicação sem fio;
 - Opção de alimentação por bateria;
- Análise de custo e propriedades de soluções existentes.

Otto Sousa UFC short title 13 de julho de 2022 27 / 55

Tabela: Dataloggers: Preços e Mercados

Modelo	Fabricante	Preço (R\$)	Mercado	Nível de Proteção	Interface sem Fio	
RCW-360	Elitech	1.499,00	Nacional	IP64/IP65	WiFi	
EL-WiFi-TH	Lascar Electronics	1.305,14	Estrangeiro	IP55	WiFi	
TandD RTR-50	7B TandD	2.242,57	Estrangeiro	IP64	Interface Própria	
160 TH	testo	2.842,00	Nacional	IP20	WiFi	

tiny: o autor

Tabela: Dataloggers: Propriedades

Modelo	Dimensões	Autonomia	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	Não informado	3 meses	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	82 x 70 x 23 mm	6 meses	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	62 x 47 x 19 mm	10 meses	-25 a 70	0,3	0 a 99	2,50
160 TH	76 x 64 x 22 mm	Não informado	-30 a 50	0,1	0 a 100	2

tiny: o autor

Otto Sousa UFC short title 13 de julho de 2022 28 / 55

Escopo de Projeto

Escopo de projeto

Desenvolvimento um datalogger de baixo custo que seja capaz de ler temperatura, umidade relativa e luminosidade de um ambiente em que ele estiver instalado. Deve ser possível que essas leituras sejam realizadas periodicamente de forma que o intervalo mínimo entre cada possa estar na casa dos segundos e devem ser armazenadas em uma mídia de armazenamento de massa removível para facilitar o resgate dessas informações posteriormente.

Otto Sousa UFC short title 13 de julho de 2022 29 / 55

Especificações técnicas

- Possuir a capacidade de ler a temperatura do ambiente;
- Possuir a capacidade de ler a umidade relativa do ambiente;
- Possuir a capacidade de ler o nível de luminosidade do ambiente;
- Possuir alternativa de alimentação direta ou via bateria;
- Leitura de sensores via interfaces I²C, SPI e/ou UART;
- Persistir os dados em um cartão SD para facilitar a recuperação manual dos dados coletados;
- Persistência dos dados coletados por no mínimo 45 dias;
- Possuir interface de interação com o usuário;
- 9 Permitir o envio de dados coletados via interface de comunicação sem fio;

Otto Sousa UFC short title 13 de julho de 2022 30 / 55

Arquitetura de Hardware

- Unidade de processamento;
- Sensor de luminosidade;
- Sensor de temperatura;
- Sensor de umidade;
- Unidade de alimentação;
- Unidade de interface de usuário;
- Unidade de leitura e escrita de dados em cartão SD;

Otto Sousa UFC short title 13 de julho de 2022 31 / 55

Arquitetura de Hardware

Figura: Diagrama de blocos.

Fonte: Elaborado pelo autor (2022)

Otto Sousa UFC short title 13 de julho de 2022 32 / 55

Seleção de Componentes

Critérios

Foram definidos alguns critérios para se escolher um componente:

- Tempo de suporte de ciclo de vida maior 10 anos p/ componentes ativos;
- Selecionar componentes passivos com propriedades que facilitem sua substituição;
- 3 Possuir mais de uma solução para cada componente passivo;

Otto Sousa UFC short title 13 de julho de 2022 33 / 55

Microcontrolador

ESP32-S3-WROOM-1-N8

- Baixo custo unitário;
- 8MB de Flash e 36 GPIOs;
- Wi-Fi 2.4GHz e BLE Radio;
- ADC 10-bits;
- 12 anos de suporte de ciclo de vida.

3V3

40 MHz
Crystal

Antenna

ESP32-S3
ESP32-S3R2
ESP32

Figura: Diagrama de blocos do módulo

Fonte: Espressif Systems

OSPI Flash

Otto Sousa UFC short title 13 de julho de 2022 34 / 55

Sensores

■ TI HDC1080

- ±2% de precisão de umidade relativa:
- ±0.2 °C precisão de temperatura;
- 1.3 μA p/ leitura e 100 nA hibernação;

- Light Dependant Resistor (LDR)
 - Baixo custo;
 - 10 a 10.000 lux;
 - Necessita de ADC;

35 / 55

Interface de usuário e suporte MicroSD

- LEDs e botões táteis
 - LEDs genéricos vermelho e verde:
 - Dois botões táteis;

Suporte microSD

36 / 55

Requisitos

- Fornecer 3,3 V;
- Suportar alimentação por 4 pilhas;
- 3 "Chaveamento" entre pilhas e alimentação direta;

Otto Sousa UFC short title 13 de julho de 2022

37 / 55

- Circuito "chaveador" pilha-alimentação direta:
 - MOSFET Canal P;
 - Resistor 10kΩ;
 - Diodo schottky;
- Schottky ON NSR0320MW2T1
 - Tensão direta típica: 0,3 V;

Regulação de tensão

Quatro pilhas do tipo AA fornecem até 6V de tensão. É preciso reduzi-lá para 3,3 V, nível de tensão operacional dos demais componentes.

- Regulador Linear
 - Baixo custo:
 - Baixa complexidade;
 - Baixa eficiência;
 - Step-down;

- Regulador Chaveado
 - Maior custo;
 - Alta complexidade;
 - Alta eficiência;
 - Step-up ou Step-down;

Regulador linear low-dropout

Reguladores lineares que podem regular a tensão de saída mesmo quando a tensão entrada se aproximar muito da tensão de saída.

- Diodes AP2114HA-3.3TRG1
 - Suporta até 6,5 V de entrada;
 - 3,3 V fixo como saída;
 - Queda típica de 0,1 V;

Design PCI

Especificações

- Dimensões aproximadas de 50x50 mm;
- Placa de duas camada;

Design PCI

Stackup PCI

Define características e parâmetros do cobre e dielétrico de uma PCI.

Impedância típica: 50Ω

Fonte: Elaborado pelo autor.

Design PCI

Particionamento Funcional

- Posição de componentes;
- Auxílio de roteamento;
- Redução EMI;

Fonte: Elaborado pelo autor.

Design PCI

Posicionamento

Figura: PCB Placement

Fonte: Elaborado pelo autor

Design PCI

Roteamento

- Somente sinais inicialmente;
- Largura 10 mil;

Fonte: Elaborado pelo autor

Design PCI

Roteamento

- Evita ciclos;
- Largura 20 mil;

Fonte: Elaborado pelo autor

Design PCI

Plano de Terra

Propicia o menor caminho de retorno possível

Figura: Top Plane

Figura: Bottom Plane

Fonte: Elaborado pelo autor

Criando Blocos

Produção - Lista de materiais

Tabela: Custo de materiais por unidades

Quantidade	Custo de Materiais
50 100 1000	US\$ 502,60 US\$ 938,41 US\$ 8.736,80

o autor.

Produção - Fabricação - Custo unitário

Tabela: Custos de fabricação e montagem JLCPCB

Quantidade	Fabricação	Montagem	Total
50	US\$ 22,4	US\$ 64,47	US\$ 86,87
100	US\$ 34,4	US\$ 96,97	US\$ 131,37
1000	US\$ 249,70	US\$ 447,92	US\$ 667,62

o autor.

Tabela: Custos de total unitário

Quantidade	Custo Total	Custo Unitário
50	US\$ 582,42	US\$ 11,65
100	US\$ 1048,93	US\$ 10,49
1000	US\$ 9261,29	US\$ 9,26

o autor.

Produção - custo frete

Tabela: Custos de transporte para o Brasil

Quantidade	Valor	
50 100	US\$ 80,36 US\$ 110,52	o autor.
1000	US\$ 524,49	_11

Produção - Custos de Importação

Tabela: Custos de importação para o Brasil

Quantidade	Valor	Frete	IPI	PIS	COFINS	ICI
50	2.576,22	412,35	38,85	62,76	288,40	741
100	4.815,26	567,11	69,97	113,03	519,40	1.33
1000	44.831,14	2.691,32	617,79	997,97	4.585,92	11.79

autor.

Energia

Tabela: Consumo por circuito em uso ativo

		- 11 c c
Circuito	Consumo	
Controle	30 mA	
Sensores	27 mA	o autor.
Circuito microSD	100 mA	
Interface de Usuário	60 mA	

Tabela: Consumo por circuito em sono profundo

Circuito	Consumo	
Controle	8 μ A	
Sensores	0,2 μ A	o autor.
Regulador de tensão	65 μ A	
Circuito microSD	450 μ Α	
Interface de Usuário	$0 \mu A$	

Comparativo de mercado

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informa
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

autor.

Comparativo - Precisão

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Rel
RCW-360	-35 a 80	0,5	0 a 9
EL-WiFi-TH	-20 a 60	0,3	0 a 10
TandD RTR-507B	-25 a 70	0,3	0 a 9
160 TH	-30 a 50	0,1	0 a 10
Hardware Proposto	-20 a 85	0,4	0 a 10

o autor.

Comparativo - Preço Unitário

Tabela: Comparativo: Custo unitário

Modelo	Valor (R\$)
RCW-360	1.499,00
EL-WiFi-TH	1.305,14
TandD RTR-507B	2.242,57
160 TH	2.842,00
Hardware Proposto	65,52
o autor.	

Tabela: Comparativo: Custo unitário revisado

Modelo	Valor (R\$)
RCW-360	1.499,00
EL-WiFi-TH	1.305,14
TandD RTR-507B	2.242,57
160 TH	2.842,00

Otto Sousa UFC short title 13 de julho de 2022

50 / 55

Explicações

Criando Blocos

Seção III - Figures

Figura: Emblema da UFC.

Fonte: Obtido pelo site oficial da UFC [1] [2]

Referências

- [1] Universidade Federal do Ceará. Identidade Visual da UFC. http://www.ufc.br/. Online; acessado em 26 de Dezembro de 2020, 2020.
- [2] Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". Em: Annalen der Physik 322.10 (1905), 891–921. DOI: {http://dx.doi.org/10.1002/andp.19053221004}.

Obrigado(a) pela Atenção!

Contato:

usuario@dominio

