## Relatório 2º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)



## Descrição do Problema e da Solução

O problema avalia a eficiência da rede de metro, determinando o maior número mínimo de mudanças de linha necessárias entre quaisquer estações conectadas. A rede é representada como um grafo, onde os vértices são estações e as arestas são ligações diretas associadas a linhas de metro. O índice de conectividade (mc) é calculado, retornando –1 se houver estações desconectadas ou 0 se nenhuma mudança de linha for necessária.

O problema pode ser resolvido com algoritmo BFS aplicada às linhas de metro, em vez de às estações, tornando o cálculo mais eficiente. Também é necessário verificar se todas as estações estão em uma única linha, caso em que o resultado é 0.

## **Análise Teórica**

#### Considere:

- **n**: número de estações (O(n)).
- m: número de ligações (O(m)).
- L: número de linhas de metro (O(L)).

### Pseudocódigo e Complexidade

#### 1. Leitura dos dados de entrada

- o Utiliza um loop simples para processar o grafo: O(m).
- Verificação de linhas que contêm todas as estações: O(L).
- o Complexidade total: O(m + L).

## 2. Construção do Grafo

- Cada par de linhas é comparado com outro par de linhas: O(L²).
- o Para cada par, verifica se existe uma estação comum entre as duas linhas: O(n).
- o Complexidade total: O(L<sup>2</sup>\*n).

#### 3. BFS para Determinar Mudanças de Linha

- BFS é executada para cada linha: O(L).
- o execução da BFS processa vértices (linhas do grafo) e suas ligações: O(L²).
- Complexidade total: O(L³).

Complexidade global:  $O(L^3 + L^{2*}n + m + L)$  que vai ser semelhante a  $O(L^3 + L^{2*}n + m)$ .

# Relatório 2º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)



## Avaliação Experimental dos Resultados

Foi feito um gráfico com o "n", "m" e o "L" a começar a partir de f(10000,21000,1000) e adicionando sempre mais 50 até 20 iterações. Resultando na tabela e no gráfico visto em baixo. O resultado foi sempre >= 1 para percorrermos a complexidade toda.

Os dados experimentais confirmam a análise teórica da complexidade O(L³+L²\*n+m), com O(L³) sendo o termo dominante. O aumento nos tempos de execução observado segue o comportamento previsto pela fórmula, especialmente em casos com grandes valores de L.

| n     | m     | L    | f(n,m,L)    | time_taken(ms) |
|-------|-------|------|-------------|----------------|
| 10000 | 21000 | 1000 | 11000021000 | 2276.7262      |
| 10050 | 21050 | 1050 | 12237771050 | 2355.2763      |
| 10100 | 21100 | 1100 | 13552021100 | 2474.4234      |
| 10150 | 21150 | 1150 | 14944271150 | 2593.5159      |
| 10200 | 21200 | 1200 | 16416021200 | 2744.8170      |
| 10250 | 21250 | 1250 | 17968771250 | 2837.0697      |
| 10300 | 21300 | 1300 | 19604021300 | 2999.0292      |
| 10350 | 21350 | 1350 | 21323271350 | 3117.5506      |
| 10400 | 21400 | 1400 | 23128021400 | 3264.8726      |
| 10450 | 21450 | 1450 | 25019771450 | 3405.8566      |
| 10500 | 21500 | 1500 | 27000021500 | 3565.9351      |
| 10550 | 21550 | 1550 | 29070271550 | 3706.6150      |
| 10600 | 21600 | 1600 | 31232021600 | 3874.3894      |
| 10650 | 21650 | 1650 | 33486771650 | 4012.3293      |
| 10700 | 21700 | 1700 | 35836021700 | 4173.3422      |
| 10750 | 21750 | 1750 | 38281271750 | 4340.0731      |
| 10800 | 21800 | 1800 | 40824021800 | 4492.1694      |
| 10850 | 21850 | 1850 | 43465771850 | 4608.2382      |
| 10900 | 21900 | 1900 | 46208021900 | 4791.0061      |
| 10950 | 21950 | 1950 | 49052271950 | 4955.0314      |



Tabela 1

Figura 1 – tempo sobre complexidade