RETAINING THE ROCKS

What makes White Rock's Customers stay and/or go?

BC2406 Seminar Group 3 Team 7

THE

BUSINESS PROBLEM

CUSTOMER RETENTION

One of the key success metrics of organisation

Traditional Collection Method: Customer Satisfaction Survey Time Lag

- - No objective way of verifying data
 - Frequent surveys lead to customer burnout

THE BENEFITS OF RETENTION

High customer retention brings about **GREATER** profits

Higher Revenue: A retained customer is **60-70**% more likely to purchase

Lower Cost: **FREE** marketing through the word-of-mouth

WHY IS THIS RELEVANT?

Retention is particularly poor in the **Finance (Asset Management) Industry**; likely caused by **huge supply of investment firms.**

WHAT AFFECTS IT

INTERNAL VARIABLES

- **Have** control over
- Eg: NumberOfComplaints

EXTERNAL VARIABLES

- No control over
- Eg: Gender

THE BUSINESS PROBLEM

The focus of our analysis and proposed solution will be on...

CUSTOMER RETENTION

and their IMPORTANT FACTORS

for WHITE ROCK

ANALYTICS SOLUTION

AUTOMATED ANALYTICS PROCESS

Increasing trend of companies utilizing data-driven processes to draw meaningful insights

Opportunity: To provide faster and more accurate retention predictions

RETENTION ANALYSIS MODEL

1. Identifies **customers** of White Rock who are at high risk of leaving

1. Identify **factors** that have the greatest impact on customer retention

PROJECT FEASIBILITY

DESIRED BUSINESS OUTCOMES

Identifying Customers for Targeted Retention Efforts

Improving Resource
Allocation and Reducing Cost

DATA EXPLORATION

INSIGHTS

Data Preparation

Original Dataset

10000 rows and 14 columns Primary key attribute = CustomerID

Created Variables

8 variables 7 internal + 1 external

Data Cleaning

1. Outliers in Credit Score

Resolved by correcting the values.

Data Cleaning

2.Redundant Data (HasCreditCr)

Resolved by removing the column

Data Cleaning

3. NAs in variable Financial Literacy and Last Contact by a Banker

Resolved by removing the 3 rows

Distribution of Exited

- Binary output variable
- 20.4% versus 79.6%
- Stratified during train-test split in Logistic Regression model

Findings in the original dataset

 German branch has more customers leaving

 Estimated Salary is uniformly distributed so it should not be an influential factor

Findings in the original dataset

- The only internal variable
 "IsActiveMember" showed that
 Active members have a lower
 chance of leaving, half of that as
 compared to inactive members.
- 26.9% versus 14.3%

THE MODEL:

LOGISTIC REGRESSION

Logistic Regression Overview

- Backward Elimination was run on all the variables
- Final model consisted of only input variables, are statistically significant at 5% $\alpha\,$
- Clustering was performed but no clear cluster was formed

Multicollinearity Issues

The **Adjusted GVIF values** of the final model are all **below 2**, suggesting that there are no multicollinearity issues between the explanatory variables.

Results

Predicted Values

Actual Values

	Retained (Negative)	Exit (Positive)
Retained (Negative)	2339 (78%)	49 (1.6%)
Exit (Positive)	84 (2.8%)	527 (17.6%)

Accuracy: 95.6%

Error: 13.8%

Type I Error: 2.05%

Type II

Insights (Top 5 significant factors)

THE MODEL:

CLASSIFICATION & REGRESSION TREE (CART)

CART Overview

- Utilizes classification & regression to make predictions
- Trains & tests data set via 10 fold cross validation algorithm
- Generating model:

Phase 1: Growing to maximum

Phase 2: Pruning to minimum

CART Phase 1: Growing

- Selecting best split point at each node of CART model
- Each node produces 2 child nodes of the highest possible purity
- Process continues till a lenient stopping condition is met
- Problem: Overfitting!

CART Phase 1: Growing

- Due to the many variables used, problem of overfitting is observed
- CART was grown to its maximum by setting the complexity penalty to 0 units per terminal node
- Hence, CART needs to be pruned to its minimum size
- Problem: Where?

CART Phase 2: Pruning

- Answer: Weakest Link
- Prune the tree at its weakest link to obtain the most optimal tree
- Weakest Link definition: minimum value of complexity penalty that would trigger pruning
- Problem: How?

CART Phase 2: Pruning

CART Phase 2: Pruning

Before:

After:

CART Prediction Results

Predicted Values

Actual Values

	Retained (Negative)	Exit (Positive)
Retained (Negative)	7865 (78.67%)	96 (0.96%)
Exit (Positive)	203 (2.03%)	1833 (18.34)

Accuracy: 97.0%

Error: 9.97%

Type I Error: 1.21%

Type II

THE MODEL

EVALUATION

Model Selection & Evaluation

Model Selection & Evaluation

Accuracy Rate: 97.0%

Error Rate: 3.00%

Type I Error: 1.21%

Type II Error: 9.97%

Accuracy Rate: 95.6%

Error Rate: 4.40%

Type I Error: 2.05%

Type II Error: 13.8%

Model Selection & Evaluation

- 1. Having a personal advisor
- 1. Male gender
- 1. Located in Germany, Spain
- Active member
- 1. High average customer feedback

- 1. Female gender
- 1. Older age
- 1. Lower estimated salary
- 1. High financial literacy
- 1. Low credit score

Literature Review & Expert Opinion

According to a study, the following factors influenced them to continue using their Bank's services:

- 1. Satisfaction with services
- 1. Developing personal friendships with staff
- 1. High financial literacy (Contradiction!)

Overall Evaluation & Conclusion

- 1. CART model has a higher prediction accuracy and its results are quite applicable
- 1. Requires further support from research and industrial knowledge when implementing recommendations from CART

IMPLEMENTING

OUR SOLUTION

Interactive dashboard

- Displays churn prediction of each customer
- Displays significant variables affecting retention
- New factors explored frequently
- Data should be updated regularly

OUR

RECOMMENDATIONS

Identify important business processes

Feedback

Inderstand the reasons for high and low feedback from past and current customers

Address main concerns

Personal Advisor

Invest in more personalised service

<u>Membership</u> <u>usage</u>

Market the benefits of the membership card

Identify favourable customers

Identify favourable customers

Address concerns of less favourable groups

59% of females

"Being able to provide for their family/children and about security and comfort"

Impact of Internal vs External factors

79.3% vs 95%

EXTENDING

OUR SOLUTION

Creating a Personalised Solution

 Understand how the significant internal retention predictors vary with each of the external variables

VS

- "NumberOfComplaints" is a statistically significant predictor
- **Odds Ratio** of "IsActiveMember" more significant

THE

LIMITATIONS

Limitations

- Inaccurate and non-representative data
- Cannot rely purely on statistical model

Future Research Directions

- Explore more predictors
- Include a wider spectrum of categories
- Collate other types of data
- Utilisation of more advanced artificial intelligence models

Q&A