Electronic Devices and Circuits Lab (EE2301) Experiment 2: Fundamentals of Semiconductors

EE19BTECH11041, Srijith Reddy Pakala

Department of Electrical Engineering IIT Hyderabad

September 24, 2020

1 Aim

Our aim is to Understand the fundamentals semiconductors by plotting some graphs of below questions and understanding their behaviour.

- 1. How does the occupation probability as a function of the energy varies with respect to time? Under what circumstances does the Fermi-Dirac statistics reduce to Maxwell-Boltzmann statistics.
- 2. How the 3D density of states changes with respect to the energy?
- **3.** How the does the position of the Fermi energy changes with respect to doping? (Use Maxwell-Boltzmann statistics) for P-type semiconductor.
- 4. How does the intrinsic carrier concentration changes with respect to the temperature? Assume effective density of states for conduction and valence band to be 2.8E19 cm^3 and 1.8E19 cm^3 . Assume doping to be 1E17 cm^3 and comment on the nature of semiconductor. Plot n_i on a semilog scale versus (1000/T) for P-type semiconductor.
- 5. How does the electron density varies with energy (use Fermi-Dirac distribution)?

2 Procedure

Question 1

• To know How the occupation probability as a function of the energy varies with respect to time. first we need to use the fermi-dirac statistics i.e. the probability of an electron occupying a certain energy level is given by the below equation.

$$F(E) = \frac{1}{1 + exp(\frac{E - E_f}{K_b T})} \tag{1}$$

where E is the energy of the level, E_f is the fermi energy level, K_b is the boltzmann constant, and T is the temperature.

- Now we need to plot the graph using Octave with x-axis as Energy level and the y-axis as probability of occupancy for different temperatures.
- After this we need to understand one more thing i.e. under what conditions does fermi dirac statistics reduce to maxwell-boltzmann statistics.
- Maxwell boltzmann statistics is given by the below equation.

$$f(E) = \frac{1}{exp(\frac{E - E_f}{K_t T})} \tag{2}$$

- To understand maxwell-boltzmann statistics we can plot the graph of f(E) vs E.
- In the above equations for plotting graph the values used are $E \in [-2eV, +2eV]$, $E_f = 0$, $K_b = 8.617 \times e^5 eV/K$, T1 = 100 K, T2 = 200 K, T3 = 300 K, T4 = 400 K.

Question 2

- In this problem we need to plot how 3D Density of states varies with respect to Energy i.e density of states of a 3D semiconductor.
- Density of states with respect to Energy is given by the below equation.

$$D(E) = \left(\frac{1}{2\pi^2}\right) \left(\frac{2m^*}{\hbar^2}\right)^{1.5} \sqrt{E} \tag{3}$$

where E is energy, m^* is the effective mass, \hbar is the reduced plancks constant.

- Now we need to plot the graph of D(E) with respect to E using octave.
- The values used in the density equation are E∈ [0eV, +5eV], $m^* = 9.1 \times 10^{-31}$ Kg, $\hbar = h/2\pi$, h=6.626×10⁻³⁴ J-s.

- In this we need to find position of fermi energy with respect to P-type doping.
- The relation between fermi energy and hole concentration is derived below by approximating fermi-Dirac to maxwell boltzmann equation.

$$P_o = N_v exp\left(\frac{E_v - E_f}{KT}\right) \tag{4}$$

$$E_f = E_v + KT log\left(\frac{N_v}{P_o}\right) \tag{5}$$

where E_f is the fermi energy, E_v is the valance band energy, N_v is the effective density of states function in valance band, P_o is the hole concentration, K is the boltzmann constant, T is the temperature.

- Now we need to plot E_f Vs P_o Using octave.
- The values used in the above equations are K = 1.38 ×10⁻²³, T = 200 K, $E_v = 0.5 \times 1.6 \times 10^{-19} \text{ V}$, $N_v = 3.92 \times 10^{24} \text{ m}^{-3}$, $P_o \in [1 \times 10^{24}, 50 \times 10^{24}]$.

Question 4

- In this problem we need to find how the intrinsic carrier concentration changes with respect to the temperature.
- Given that the effective density of states for conduction band and valance band to be $2.8E19 \ cm^3$ and $1.8E19 \ cm^3$ and doping to be $1E17 \ cm^3$ for P-type semiconductor.
- The relation between intrinsic carrier concentration and N_v, N_c is given by the below equation.

$$n_i = \sqrt{N_c N_V} exp\left(\frac{-E_g}{2KT}\right) \tag{6}$$

where N_c, N_v are the effective density of states for conduction band and valance band respectively, E_g is the band gap, K is the boltzmann constant, T is the temperature.

• Now we need to plot n_i on a semilog scale with respect to (1000/T) using octave.

 \bullet The values used in the equation are $N_c=2.8\text{E}19~cm^3$, $N_v=1.8\text{E}19~cm^3,$ $E_g=1.14~\text{eV}$, K = $8.617\times\text{e}^5\text{eV/K},$ (1000/T) \in [1, 10]K $^{-1}.$

Question 5

- In this problem we need to how does the electron density varies with energy.
- we need to use the below equation for electron density .

$$n(E) = D(E)F(E)$$
where $f(E) = \frac{1}{exp(\frac{E-E_f}{K_1T})}$, $D(E) = \left(\frac{1}{2\pi^2}\right) \left(\frac{2m^*}{\hbar^2}\right)^{1.5} \sqrt{E}$ (7)

• the values used are $m^*=9.1\times 10^{-31}$ Kg, $\hbar=h/2\pi$, h=6.626×10^{-34} J-s, K = 1.38 $\times 10^{-23},$ T=1000.

3 Results and Understandings

Question 1

Plot: F(E) Vs Energy

- The above plot shows how the occupational probability changes with energy for 4 different temperatures.
- It is pretty clear that as energy increases the probability at first stays constant , then decreases and stays at zero.
- When it comes to temperatures as we increase temperature the plot at the middle becomes less steeper.
- Fermic dirac distribution reduces to maxwell boltzmann when $E-E_f >> KT$ which happens when $E > E_c$.

Plot: D(E) Vs Energy

• The above plot shows how the 3D density of states varies with energy.

- \bullet As we can see density of states increases as the energy increases .
- \bullet Y-axis represents D(E) $\times h^{1.5}$ for better scaling.

Plot: E_f Vs doping

- The above plot shows fermi energy with respect to doping.
- Here we are using a p-type semiconductor.
- ullet As we can see, as doping increases the fermi energy level moves closer to the valence band.
- we have used boltzmann statistics here.

Plot: n_i Vs 1000/T

- The above plot shows n_i with respect to 1000/T.
- According to equation (6) at equilibrium intrinsic carrier concentration is constant i.e. it doesn't depend on doping concentration.
- As we can clearly see as the temperature decreases intrinsic carrier concentration increases.
- we use fermi dirac approximation as maxwell boltzmann statistics.
- This a P-type extrinsic semiconductor.
- The graph on semilog scale looks like straight line.

Plot: Electron density Vs Energy

- The above plot shows Electron density with respect to E.
- As we can see from the graph Electron density increases to a point and then decreases to zero.
- Both occupancy probability and density of states has the impact on electron density.
- \bullet F(E) decreases as Energy increases and D(E) increases as energy increases, when we multiply them there comes a maximum point.

4 Conclusions

- In the question 1 we can conclude that occupational probability Vs energy looks like step function.
- And fermi dirac reduces to maxwell boltzmann when $E > E_C$
- In the question 2 the plot of density of states Vs energy is parabola.
- And as energy increases Density of states increases.
- In the question 3 the fermi energy with respect to doping is also a parabola but in different orientation.
- As doping increases fermi level decreases for p-type and as doping increases fermi level increases for n-type.
- In the question 4 on semilog scale intrinsic carrier concentration with respect to 1000/T is a straight line with negative slope.
- Also n_i remains constant at equilibrium i.e. its value doesn't depend on doping.
- In question 5 the electron density with respect to energy plot looks close to guassian distribution.
- After a certain energy its density becomes zero.

Thank you