Some characterizations of reversibility of quantum channels

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Rényi Institute, Budapest, 2023

Reversible (sufficient) quantum channels

Let ${\mathcal S}$ be a set of quantum states, Φ a quantum channel.

We say that Φ is reversible (sufficient) with respect to $\mathcal S$ if there exists some channel Ψ (recovery channel) such that

$$\Psi \circ \Phi(\rho) = \rho, \qquad \rho \in \mathcal{S}.$$

Reference: Denes Petz's papers

The setting and assumptions

 $B(\mathcal{H})$ - operators on a finite dimensional Hilbert space \mathcal{H}

A set of states

$$S \subset {\rho \in B(\mathcal{H}), \ \rho \ge 0, \ \text{Tr} \ \rho = 1}$$

• A channel $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$, completely positive and trace preserving

Assumptions:

There is a faithful (full rank) state $\sigma \in \mathcal{S}$, its image $\Phi(\sigma) \in B(\mathcal{K})$ is also faithful.

Preservation of the relative entropy

The relative entropy: for states ρ, σ

$$D(\rho\|\sigma) = \begin{cases} \operatorname{Tr}\left[\rho(\log(\rho) - \log(\sigma))\right], & \operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma) \\ \\ \infty, & \text{otherwise}. \end{cases}$$

ullet Data processing inequality: for a channel Φ

$$D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma),$$

• If $D(\rho \| \sigma) < \infty$, then reversibility is equivalent to

$$D(\Phi(\rho)\|\Phi(\sigma)) = D(\rho\|\sigma), \quad \forall \rho \in \mathcal{S}.$$

Petz

Universal recovery map

The Petz dual of Φ with respect to σ

$$\Phi_{\sigma}(\cdot) = \sigma^{1/2} \Phi^* (\Phi(\sigma)^{-1/2} \cdot \Phi(\sigma)^{-1/2}) \sigma^{1/2}$$

• Φ_{σ} is a channel $B(\mathcal{K}) \to B(\mathcal{H})$ such that

$$\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$$

ullet Φ is reversible with respect to ${\cal S}$ if and only if

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho, \quad \forall \rho \in \mathcal{S}$$

Petz

Semigroup of channels preserving ${\mathcal S}$

How to describe all channels reversible with respect to \mathcal{S} ?

Let us consider the set of channels

$$\mathcal{C}_{\mathcal{S}} := \{\Theta : B(\mathcal{H}) \to B(\mathcal{H}), \ \Theta(\rho) = \rho, \ \forall \rho \in \mathcal{S}\}$$

- convex and compact semigroup (closed under composition)
- has a faithful fixed state: $\sigma \in \mathcal{S}$.

By the mean ergodic theorem, there is some $\mathcal{E_S} \in \mathcal{C_S}$ such that

$$\mathcal{E}_{\mathcal{S}} \circ \Theta = \Theta \circ \mathcal{E}_{\mathcal{S}} = \mathcal{E}_{\mathcal{S}}, \quad \forall \Theta \in \mathcal{C}_{\mathcal{S}}.$$

We see that such $\mathcal{E}_{\mathcal{S}}$ is unique and

$$\mathcal{E}_{\mathcal{S}}^2 = \mathcal{E}_{\mathcal{S}}, \qquad \mathcal{E}_{\mathcal{S}}(\rho) = \rho, \quad \forall \rho \in \mathcal{S}.$$

The minimal sufficient subalgebra

The adjoint $\mathcal{E}_{\mathcal{S}}^*$ is a faithful conditional expectation

its range is a subalgebra $\mathcal{M}_{\mathcal{S}} := \mathcal{E}_{\mathcal{S}}^*(B(\mathcal{H})).$

 $\mathcal{M}_{\mathcal{S}}$ is the minimal sufficient subalgebra with respect to \mathcal{S} :

- $\rho \mapsto \rho|_{\mathcal{M}_{\mathcal{S}}}$ is a sufficient channel
- $\mathcal{M}_{\mathcal{S}}$ is contained in any subalgebra with this property.

The range of a conditional expectation

Let $\mathcal{E}: B(\mathcal{H}) \to B(\mathcal{H})$ be such that \mathcal{E}^* is a conditional expectation.

There is a decomposition $\mathcal{H} \equiv \oplus_n \mathcal{H}_n^L \otimes \mathcal{H}_n^R$ such that

$$\mathcal{E}^*(B(\mathcal{H})) \equiv \bigoplus_n B(\mathcal{H}_n^L) \otimes I_{\mathcal{H}_n^R}$$
$$\mathcal{E}(B(\mathcal{H})) \equiv \bigoplus_n B(\mathcal{H}_n^L) \otimes \omega_n$$

for some fixed states $\omega_n \in B(\mathcal{H}_n^R)$.

The Koashi-Imoto decomposition

Applying this to $\mathcal{E}_{\mathcal{S}}$, we obtain

$$\mathcal{M}_{\mathcal{S}} \equiv \bigoplus_{n} B(\mathcal{H}_{n}^{\mathcal{S},L}) \otimes I_{\mathcal{H}_{n}^{\mathcal{S},R}}$$

$$\rho \equiv \bigoplus_{n} \lambda_{n}(\rho) \rho_{n} \otimes \sigma_{n}, \qquad \rho \in \mathcal{S},$$

- $\lambda_n(\rho)$ is a probability dsitribution (classical part of S)
- $\rho_n \in B(\mathcal{H}_n^{\mathcal{S},L})$ are states (depending on ρ)
- $\sigma_n \in B(\mathcal{H}_n^{\mathcal{S},R})$ are fixed states.

Koashi-Imoto, Hayden, etc., Luczak, Kuramochi

Generators of $\mathcal{M}_{\mathcal{S}}$

The minimal sufficient subalgebra is generated by:

• Connes cocycles:

$$\rho^{it}\sigma^{-it}, \qquad \rho \in \mathcal{S}, \ t \in \mathbb{R}.$$

• Radon Nikodym derivatives:

$$\sigma^{it}(\sigma^{-1/2}\rho\sigma^{-1/2})\sigma^{-it}, \qquad \rho \in \mathcal{S}, \ t \in \mathbb{R}.$$

Reversible channels with respect to ${\cal S}$

Assume that Φ is reversible.

• Let Ψ be a recovery channel, then $\Psi \circ \Phi \in \mathcal{C}_{\mathcal{S}}$, so that

$$\mathcal{E}_{\mathcal{S}} \circ (\Psi \circ \Phi) = (\Psi \circ \Phi) \circ \mathcal{E}_{\mathcal{S}} = \mathcal{E}_{\mathcal{S}}.$$

• Note that $\mathcal{E}_{\mathcal{S}} \circ \Psi$ is also a recovery channel, so we may assume

$$\mathcal{E}_{\mathcal{S}} \circ \Psi = \Psi, \qquad \Psi \circ \Phi = \mathcal{E}_{\mathcal{S}}.$$

• We then have $\Phi \circ \Psi = \mathcal{E}_{\mathcal{S}_0}$, where

$$\mathcal{S}_0 := \{ \Phi(\rho), \ \rho \in \mathcal{S} \}.$$

Reversible channels with respect to ${\cal S}$

A channel $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$ is reversible with respect to \mathcal{S} iff

$$\Phi^*|_{\mathcal{M}_{\mathcal{S}_0}}: \mathcal{M}_{\mathcal{S}_0} \xrightarrow{\mathit{iso}} \mathcal{M}_{\mathcal{S}}.$$

Equivalently, there is

- ullet a decomposition $\mathcal{K} \equiv \oplus_n \mathcal{K}_n^L \otimes \mathcal{K}_n^R$
- unitaries $U_n:\mathcal{H}_n^{\mathcal{S},L}\to\mathcal{K}_n^L$
- channels $\Phi_n: B(\mathcal{H}_n^{\mathcal{S},R}) \to B(\mathcal{K}_n^R)$

such that

$$\Phi|_{B(\mathcal{H}_n^{\mathcal{S},L} \otimes \mathcal{H}_n^{\mathcal{S},R})} \equiv U_n^* \cdot U_n \otimes \Phi_n.$$

Reversible channels with respect to ${\cal S}$

Further conditions for reversibility: preserving the generators

Connes cocycles

$$\Phi^*(\Phi(\rho)^{it}\Phi(\sigma)^{-it}) = \rho^{it}\sigma^{-it}, \qquad \rho \in \mathcal{S}, \ t \in \mathbb{R};$$

Radon-Nikodym derivatives:

$$\Phi^*(\Phi(\sigma)^{-1/2}\Phi(\rho)\Phi(\sigma)^{-1/2}) = \sigma^{1/2}\rho\sigma^{1/2}, \qquad \rho \in \mathcal{S};$$

Petz dual

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho, \qquad \rho \in \mathcal{S}.$$

Conditions on ${\cal S}$

Given a channel Φ , what are the conditions for states in S?

We fix a faithful state $\sigma \in \mathcal{S}$. Then we must have

$$\mathcal{S} \subset \operatorname{Fix}(\Phi_{\sigma} \circ \Phi) := \{ \rho, \ \Phi_{\sigma} \circ \Phi(\rho) = \rho \}.$$

Put

$$\mathcal{F} := \lim_{n} \frac{1}{n} \sum_{k=1}^{n} (\Phi_{\sigma} \circ \Phi)^{k},$$

then \mathcal{F}^* is a conditional expectation and

$$\mathcal{F}(B(\mathcal{H})) = \operatorname{Fix}(\Phi_{\sigma} \circ \Phi).$$

Conditions on ${\cal S}$

There is

- ullet a decomposition $\mathcal{H}\equiv \oplus_n \mathcal{H}_n^{\Phi,\sigma,L}\otimes \mathcal{H}_n^{\Phi,\sigma,R}$
- and states $\omega_n \in B(\mathcal{H}_n^{\Phi,\sigma,R})$

such that Φ is reversible with respect to $\mathcal S$ if and only if all $\rho \in \mathcal S$ have the form

$$\rho \equiv \bigoplus_{n} \mu_n(\rho) \rho_n \otimes \omega_n$$

for some probability distribution $\mu(\rho)$ and states $\rho_n \in B(\mathcal{H}^{\Phi,\sigma,L})$.

Preservation of standard Rényi relative entropies

The standard (Petz-type) Rényi relative entropies, $\alpha > 0$:

$$D_{\alpha}(\rho \| \sigma) = \begin{cases} \frac{1}{\alpha - 1} \log \operatorname{Tr} \, \rho^{\alpha} \sigma^{1 - \alpha} & \alpha \neq 1 \\ \operatorname{Tr} \, \rho(\log \rho - \log \sigma), & \alpha = 1. \end{cases}$$

• satisfy data processing inequality for $\alpha \in (0, 2]$.

 Φ is sufficient with respect to ${\cal S}$ if and only if

$$D_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = D_{\alpha}(\rho\|\sigma), \quad \forall \rho \in \mathcal{S}$$

for some $\alpha \in (0,2)$. Petz, PetzJA, HMPB, HM,H

Preservation of sandwiched Rényi relative entropies

The sandwiched (minimal) Rényi relative entropies, $\alpha > 0$:

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \begin{cases} \frac{1}{\alpha - 1} \log \operatorname{Tr} \left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} & \alpha \neq 1 \\ \operatorname{Tr} \rho(\log \rho - \log \sigma), & \alpha = 1. \end{cases}$$

• satisfy data processing inequality for $\alpha \in [1/2, \infty]$

 Φ is sufficient with respect to ${\cal S}$ if and only if

$$\tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = \tilde{D}_{\alpha}(\rho\|\sigma), \quad \forall \rho \in \mathcal{S}$$

for some $\alpha \in (1/2, \infty)$. JA, JA

Sandwiched Rényi relative entropy

We look at

$$\tilde{Q}_{\alpha}(\rho \| \sigma) := \operatorname{Tr} \left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}} \right)^{\alpha},$$

so that

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \tilde{Q}_{\alpha}(\rho \| \sigma)$$

- For $\alpha > 1$: interpolation L_p -norms
- For $\alpha \in (1/2,1)$: a variational formula, relation to case $\alpha > 1$
- The case $\alpha = 1$ (relative entropy): solved by Petz

An interpolation L_p -norm with respect to a state

Let us define a norm in $B(\mathcal{H})$, for $\alpha \geq 1$:

$$||X||_{\alpha,\sigma} = \left(\operatorname{Tr} |\sigma^{\frac{1-\alpha}{2\alpha}} X \sigma^{\frac{1-\alpha}{2\alpha}}|^{\alpha}\right)^{\frac{1}{\alpha}}$$

We have for any state ρ :

$$\tilde{Q}_{\alpha}(\rho \| \sigma) = \| \rho \|_{\alpha, \sigma}^{\alpha}$$

The norm can be obtained by complex interpolation between

$$||X||_{1,\sigma} = \text{Tr } |X| = ||X||_1, \qquad ||X||_{\infty,\sigma} = ||\sigma^{-\frac{1}{2}}X\sigma^{-\frac{1}{2}}||$$

Hadamard three lines theorem

For any function on
$$S=\{z\in\mathbb{C},\ {\rm Re}(z)\in[0,1]\},$$

$$f:S\to B(\mathcal{H}),\quad \text{continuous, analytic in } {\rm int}(S)$$

• we have for any $\alpha > 1$,

$$||f(1/\alpha)||_{\alpha,\sigma} \le \max_{t \in \mathbb{R}} ||f(it)||_{\infty,\sigma} \max_{t \in \mathbb{R}} ||f(1+it)||_1$$

• If equality holds for some $\alpha>1$, then it holds for all

Hadamard three lines theorem

For any $\rho \geq 0$ and α , we define a function

$$f_{\rho,\alpha}(z) = \|\rho\|_{\alpha,\sigma}^{1-z\alpha} \sigma^{\frac{1-z}{2}} \left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}}\right)^{z\alpha} \sigma^{\frac{1-z}{2}}, \qquad z \in S$$

- $f_{\rho,\alpha}(1/\alpha) = \rho$,
- The equality in Hadamard three lines theorem is attained:

$$||f_{\rho,\alpha}(1/\alpha)||_{\alpha,\sigma} = \max_{t \in \mathbb{R}} ||f_{\alpha,\sigma}(it)||_{\infty,\sigma} \max_{t \in \mathbb{R}} ||f_{\alpha,\sigma}(1+it)||_1$$

Positive trace preserving maps are contractions

Let $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$ be a positive trace preserving linear map:

• For $\alpha = 1$.

$$\|\Phi(X)\|_1 \le \|X\|_1, \qquad X \in B(\mathcal{H})$$

• For $\alpha = \infty$,

$$\|\Phi(X)\|_{\infty,\Phi(\sigma)} = \|\Phi_{\sigma}^*(\sigma^{-1/2}X\sigma^{-1/2})\|_{\infty} \le \|X\|_{\infty,\sigma}$$

• For $\alpha > 1$, by Riesz-Thorin (complex interpolation)

$$\|\Phi(X)\|_{\alpha,\Phi(\sigma)} \le \|X\|_{\alpha,\sigma}, \qquad X \in B(\mathcal{H}).$$

Beigi

The case $\alpha = 2$

Let $\alpha = 2$.

• $\|\cdot\|_{s,\sigma}$ is a Hilbert space norm, with the inner product

$$\langle X, Y \rangle_{\sigma} = \operatorname{Tr} X^* \sigma^{1/2} Y \sigma^{1/2}$$

• For a positive trace preserving map $\Phi: B(\mathcal{H}) \to B(\mathcal{K})$,

$$\langle X, \Phi(Y) \rangle_{\Phi(\sigma)} = \langle \Phi_{\sigma}(X), Y \rangle_{\sigma}, \qquad X \in B(\mathcal{K}), \ Y \in B(\mathcal{H})$$

• Since Φ is a contraction,

$$\|\Phi(Y)\|_{2,\Phi(\sigma)} = \|Y\|_{2,\sigma} \iff \Phi_{\sigma} \circ \Phi(Y) = Y.$$

Preservation and reversibility

Let Φ be a channel and assume that for some $\alpha > 1$,

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma} \bigg(\iff \tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = \tilde{D}_{\alpha}(\rho\|\sigma) \bigg)$$

• For $\alpha=2$, we get

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho, \Longrightarrow \Phi$$
 is reversible.