Question 1: The depths of fractures

>>a. Which of the following depth intervals contains the highest number of fractures?<< (x) Less than 5400 ft () 5400–5600 ft () 5600–5800 ft () 5800–6000 ft () Greater than 6000 ft
[explanation] Less than 5400 ft. Twelve out of the total 28 fractures are contained within the depth range less than 5400 ft. A second, smaller cluster is present within the interval of 6100–6200 ft. [explanation]
Question 2: The dominant orientation of fractures
a. Which of the following strike intervals contains the highest number of fractures?
() 0° to 90° () 90° to 180° (x) 180° to 270° () 270° to 360°
[explanation] 180° to 270° . There are two sets of dominant fracture strike directions, with the most averaging around ~210° and a few at ~000°. [explanation]
>>b. Which of the following dip intervals contains the highest number of fractures?< () 0° to 15° () 15° to 30° () 30° to 45° () 45° to 60° () 60° to 75° (x) 75° to 90°
[explanation] 75° to 90°. The majority of the fractures dip steeply between ~75-90°. [explanation]
>>c. Which of the following dip direction intervals contains the highest number of fractures?<<

() 90° to 180° () 180° to 270° (x) 270° to 360° [explanation] 270° to 360°, Most dip directions, are at ~310°. [explanation]

Question 3: The dominant aperture of fractures

- a. Which of the following aperture intervals contains the highest number of fractures?
 - (x) 0 mm to 4 mm
 - () 4 mm to 8 mm
 - () Greater than 8 mm

[explanation]

0 mm to 4 mm. Eleven of the 28 picked fractures have apertures between 0 and 4 mm. Eight more have apertures between 4 mm and 8 mm. The remaining 9 have apertures greater than 8 mm. [explanation]

- b. Which of the following aperture intervals contains the highest number of gently dipping fractures of which the dip is less than 45°?
 - () 0 mm to 4 mm
 - () 4 mm to 8 mm
 - (x) Greater than 8 mm

[explanation]

Greater than 8 mm. At shallow dip angles, approximately less than 40°, relatively large aperture fractures predominate. The smaller-aperture fractures generally dip steeply. [explanation]

- c. Which of the following aperture intervals contains the highest number of nearly north-south striking fractures of which the strike is either between 0° and 15°, or between 75° and 105°, or between 345° and 360°?
 - () 0 mm to 4 mm
 - () 4 mm and 8 mm
 - (x) Greater than 8 mm

[explanation]

Greater than 8 mm. The larger aperture fractures generally strike north-south. [explanation]

Question 4: Hydraulic fracturing fundamentals

- a. From the discussion on mini-frac or extended leak-off tests, choose the correct statement:
- () Fracture Breakdown Pressure (FBP) is the best estimate of the least principal stress (S3) magnitude, even if Instantaneous Shut In Pressure (ISIP) measurement is available.
- (x) Correctly interpreted Instantaneous Shut In Pressure (ISIP) is a reasonable estimate of the least principal stress (S3) magnitude.

[explanation]

FBP represents the pressure at which unstable fracture propagation away from the well bore happens (fluid flows into the fracture faster from the wellbore than the pump supplies; hence the pressure drops). Therefore, it tends to overestimate the least principal stress. As discussed in the lectures, a correctly interpreted and well defined ISIP is probably the most reasonable estimate of the least principal stress (s3) magnitude.

[explanation]

- b. Why is the leak-off pressure a reasonable approximation of the magnitude of the least principal stress?
- () The slight decrease in the rate of wellbore pressurization is caused by a decrease in the system volume as a result of the onset of hydraulic fracturing.
- () The pressure-volume curve has reached its summit where the pressure is high enough to propagate a hydraulic fracture.
- (x) The noticeable change in the rate of wellbore pressurization is caused by propagation of a hydraulic fracture, which increases the system volume.

[explanation]

The first option is incorrect because the system volume must <i>increase</i> when a hydraulic fracture develops.

The second option is incorrect because the summit of the pressure-volume curve is the formation breakdown pressure, which is usually significantly greater than the least principal stress.

The final option is correct. The least principal stress is <i>best</i> approximated by the instantaneous shut-in pressure (ISIP). However, the leak-off pressure is a reasonable approximation of the least principal stress because the change in pressure it records represents an increase in system volume, which means that a hydraulic fracture must have formed. [explanation]

