

AD-A118 548 PURDUE UNIV LAFAYETTE IN DEPT OF STATISTICS
ON ISOTONIC SELECTION RULES FOR BINOMIAL POPULATIONS BETTER THAN ETC(U)
JUL 82 S S GUPTA & W HUANG
N00014-75-C-0455
UNCLASSIFIED NL
TR-82-22

1 G 1
EU 2
AM-4B
[REDACTED]

END
DATE FILMED
09-82
DTIC

AD A118548

DTRG FILE COPY

PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

DIVISION OF MATHEMATICAL SCIENCES

82 08 24 017

ON ISOTONIC SELECTION RULES FOR BINOMIAL POPULATIONS
BETTER THAN A STANDARD*

by

Shanti S. Gupta
Purdue University

12
Wen-Tao Huang
Institute of Mathematics
Academia Sinica
Taipei, Taiwan

Technical Report #82-22

Department of Statistics

July 1982

Approved for public release;
Distribution Unlimited

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

ON ISOTONIC SELECTION RULES FOR BINOMIAL POPULATIONS
BETTER THAN A STANDARD*

by

Shanti S. Gupta
Purdue University

Wen-Tao Huang
Institute of Mathematics
Academia Sinica
Taipei, Taiwan

0. Introduction

The problem of selecting populations better than a control with respect to a location parameter under ordering prior has been considered in [4]. In this paper we consider the case of binomial populations (important for discrete data) for which the parameters of interest are not the location parameters as was the case studied in [4]. We consider both cases when the parameter of control is known and unknown. For the case of known control, we propose an isotonic procedure which is given in Section 2.1. The results in this section deal with both cases, namely, the sample sizes all equal, and unequal. Some recursive relations are derived for computing the constants required for the proposed procedure. When the control is unknown, a conditional isotonic procedure is proposed in Section 2.2. This procedure provides a conservative solution for the unconditional procedure. Brief tables of associated constants for the proposed procedures are given in Table 1 and Table 2.

1. Notations and Definitions

Assume $\pi_0, \pi_1, \dots, \pi_k$ are all binomial populations such that π_i has density $b(m; p_i)$, $i = 0, 1, 2, \dots, k$. It is assumed that $p_1 \leq p_2 \leq \dots \leq p_k$, however, the actual values of these p_i 's are not known. We

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

consider π_0 as a control and our goal is to select a subset of these k populations so that all "good" populations are included in the subset selected, where π_i is considered "good" if and only if $p_i \geq p_0$. By a correct selection (CS) we mean the selection of any non-trivial subset which contains all good populations.

Let $\Omega = \{(p_0, p_1, \dots, p_k) | 0 < p_1 \leq p_2 \leq \dots \leq p_k < 1, 0 < p_0 < 1\}$. Let us denote the sets $a_i = \{i, i+1, \dots, k\}$, $1 \leq i \leq k$ and $a_0 = \emptyset$ (the empty set). If action a_i is taken, it means the subset $\{\pi_i, \pi_{i+1}, \dots, \pi_k\}$ of the k populations is selected. Since by our assumption that p_i are ordered according to an ascending (simple) ordering prior, it is therefore appropriate to restrict ourselves to the action space $\mathcal{A} = \{a_0, a_1, a_2, \dots, a_k\}$. For given positive integer n_0, n_1, \dots, n_k , we assume n_i independent observations are drawn from π_i ($i = 0, 1, 2, \dots, k$) which are, respectively, denoted by $x_{i1}, x_{i2}, \dots, x_{in_i}$. The sample space is denoted by

$$\mathcal{X} = \{x \in I^{n_0+n_1+\dots+n_k} | x = (x_{01}, x_{02}, \dots, x_{0n_0}, x_{11}, \dots, x_{1n_1}, \dots, x_{k1}, \dots, x_{kn_k})\}$$

where I denote the set of non-negative integers.

We restrict ourselves to isotonic selection procedures δ which satisfy the P^* -condition, i.e. $\inf_{\theta \in \Omega} P_\theta(\text{CS} | \delta) \geq P^*$ where P^* is a preassigned value.

A poset (S, \leq) denotes a non-empty set S with a binary partial order \leq defined on it. A real-valued function f defined on a poset (S, \leq) is called isotonic if f preserves the order on S , i.e. $x \leq y$, implies $f(x) \leq f(y)$. Let g be a real-valued function and let W be a positive-valued function, both defined on a poset (S, \leq) . An isotonic

function g^* on S is called an isotonic regression of g with weight W if

$\sum_{x \in S} [g(x) - g^*(x)]^2 W(x)$ attains its minimum values over set of all

isotonic functions on S . It is well-known (see [2]) that there exists one and only one isotonic regression of a given g with a given weight W defined on S . Some algorithms such as "pool-adjacent-violators" or the so-called "up-and-down blocks" are referred to in [1] and [2].

Let $n_0 = 0$ and $n_1 = n_2 = \dots = n_k = n$ and $m = 1$. Let \bar{x}_i denote the sample mean from π_i , $i = 1, 2, \dots, k$. The isotonic regression of \bar{x}_i with common weight n is a maximum likelihood estimate for $p = (p_1, p_2, \dots, p_k)$ which is given by the following.

Theorem 1.1 ([2] p. 102): The maximum likelihood estimate for

$p = (p_1, p_2, \dots, p_k)$ with $p_1 \leq p_2 \leq \dots \leq p_k$ is given by the isotonic regression of \bar{x}_i with common weight n , i.e. $\hat{x} = (\hat{x}_{1,k}, \hat{x}_{2,k}, \dots, \hat{x}_{k,k})$ minimizes $\sum_{i=1}^k (\bar{x}_i - p_i)^2 n$ where, by the max-min formula of [1], we have

$$(1.1) \quad \hat{x}_{i,k} = \max_{1 \leq s \leq i} \min_{s \leq t \leq k} \{(\bar{x}_s + \bar{x}_{s+1} + \dots + \bar{x}_t)/(t-s+1)\}$$

$$= \max_{1 \leq s \leq i} \hat{x}_{s,k}$$

where

$$(1.2) \quad \hat{x}_{s,k} = \min \{ \bar{x}_s, \frac{1}{2} (\bar{x}_s + \bar{x}_{s+1}), \dots, (\bar{x}_s + \bar{x}_{s+1} + \dots + \bar{x}_k)/(k-s+1) \}.$$

2.1 Isotonic Selection Procedure δ_1 When p_0 is Known.

a. Equal Sample Size Case

Since p_0 is known, we take $n_0 = 0$; assume $n_1 = n_2 = \dots = n_k = n$.

Without loss of generality, we may consider $m = 1$, i.e. π_i is a Bernoulli (p_i). For given positive constants d_1, d_2, \dots, d_k ($0 < d_i < p_0$, to be determined later), we propose the following

unconditional procedure $\delta_1(\underline{x}) = a_{\epsilon(\underline{x})}$, where
 $\epsilon(\underline{x}) = \min\{i | \hat{x}_{i,k} \geq p_0 - d_i\}$ and $\hat{x}_{i,k}$ is defined by (1.1).
 Since $\delta_1(\underline{x})$ depends on vector $\underline{d} = (d_1, d_2, \dots, d_k)$, we may denote it by $\delta_1(\underline{d})$ when there is no confusion.

Determination of \underline{d} for $\delta_1(\underline{d})$

In order to satisfy the basic P*-condition, we need to compute $\inf_{\Omega} P(CS|\delta_1(\underline{d}))$. For notational conveniences, we define

$$\Omega_i = \{\underline{p} \in \Omega | p_{k-i} < p_0 \leq p_{k-i+1}\}, \quad i = 1, 2, \dots, k-1$$

$$\Omega_k = \{\underline{p} \in \Omega | p_0 \leq p_1\}$$

and

$$\Omega_0 = \{\underline{p} \in \Omega | p_k < p_0\}.$$

Then, Ω_i are disjoint and $\Omega = \bigcup_{i=0}^k \Omega_i$. Again for notational convenience, when there is no confusion, we denote, respectively, $\hat{x}_{i,k}$ and $\hat{x}_{j,k}$ by \hat{x}_i and \hat{x}_j for a given fixed k . Then, for any $\underline{p} \in \Omega_i$,

$$(2.1) \quad P_{\underline{p}}(CS|\delta_1(\underline{d})) = P_{\underline{p}}\left\{\bigcup_{j=1}^{k-i+1} \{\hat{x}_j \geq p_0 - d_j\}\right\} \\ = P_{\underline{p}}\left\{\bigcup_{j=1}^{k-i+1} \bigcup_{r=1}^j \{\hat{x}_r \geq p_0 - d_j\}\right\} \\ \geq P_{\underline{p}}\{\hat{x}_{k-i+1} \geq p_0 - d_{k-i+1}\}$$

Since $P_{\underline{p}}(\hat{x}_{k-i+1} \geq p_0 - d_{k-i+1})$ is increasing in p_{k-i+j} for $j = 1, 2, \dots, i$, keeping all other ($i-1$) parameters fixed, hence, the right hand side of (2.1) attains its minimum at $p_{k-i+1} = p_{k-i+2} = \dots = p_k = p_0$. On the other hand, if we take a special vector

$$(2.2) \quad p_0 = (\underbrace{p_0, 0, 0, \dots, 0}_{k-i}, p_0, p_0, \dots, p_0) \in \bar{\Omega}_i, \text{ the closure of } \Omega_i.$$

then, we see that

$$P_{p_0} \left(\bigcup_{j=1}^{k-i+1} \bigcup_{r=1}^j (\hat{X}_r \geq p_0 - d_j) \right) = P_{p_0} (\hat{X}_{k-i+1} \geq p_0 - d_{k-i+1})$$

since $\hat{X}_j = 0$ a.s. when $p_j = 0$ for $j = 1, 2, \dots, k-i$. Hence,

$\inf_{\Omega_i} P(CS|\delta_1(\underline{d}))$ attains at $\underline{p} = p_0$ as defined by (2.2). Again, since

$$(2.3) \quad \inf_{\Omega} P_{\underline{p}} (CS|\delta_1(\underline{d})) = \min_{1 \leq i \leq k} \inf_{\Omega_i} P_{\underline{p}} (CS|\delta_1(\underline{d}))$$

because for $\underline{p} \in \Omega_0$, any action in \mathcal{A} is, according to our definitions, a correct selection. Therefore, if for each i ($1 \leq i \leq k$) $\inf_{\Omega_i} P_{\underline{p}} (CS|\delta_1(\underline{d})) \geq p^*$, then the p^* -condition holds for $\delta_1(\underline{d})$. Now,

$$(2.4) \quad \begin{aligned} \inf_{\Omega_i} P(CS|\delta_1) &= P_{p_0} \{ \hat{X}_{k-i+1} \geq p_0 - d_{k-i+1} \} \\ &= P_{q_0} \{ \hat{X}_{1,i} \geq p_0 - \alpha_i \} \end{aligned}$$

where

$$q_0 = \{p_0, p_0, \dots, p_0\} \in (0,1)^i, \text{ and } \alpha_i = d_{k-i+1}.$$

It follows from (1.2) and (2.4) that

$$(2.5) \quad \begin{aligned} \inf_{\Omega_i} P(CS|\delta_1(\underline{d})) &= P_r \{ Y_1 \geq c_i, \frac{1}{2}(Y_1 + Y_2) \geq c_i, \dots, \\ &\quad \frac{1}{i}(Y_1 + Y_2 + \dots + Y_i) \geq c_i \} \end{aligned}$$

where Y_1, Y_2, \dots, Y_i are i.i.d. with Y_1 being $b(n; p_0)$ and $c_i = n(p_0 - \alpha_i)$. Hence, it suffices to compute

$$(2.6) \quad a_i(\alpha_i) = P_r\{Y_1 \geq e_1, Y_1 + Y_2 \geq e_2, \dots, \sum_{j=1}^i Y_j \geq e_i\}$$

where

$$(2.7) \quad e_j = j c_i = j n(p_0 - \alpha_i), \quad j = 1, 2, \dots, i.$$

Define

$$(2.8) \quad a_j(\alpha_i) = P_r\{Y_1 \geq e_1, Y_1 + Y_2 \geq e_2, \dots, \sum_{r=1}^j Y_r \geq e_j\} \quad j = 1, 2, \dots, i.$$

Letting $\langle \alpha \rangle = -[-\alpha]$, i.e. the smallest integer no less than α , we have the following useful lemma.

Lemma 2.1. (i) $a_1(\alpha_1) = \sum_{r=r_0}^n \binom{n}{r} p_0^r (1-p_0)^{n-r}$ where

$$r_0 = \langle n(p_0 - \alpha_1) \rangle$$

$$\text{(ii)} \quad a_j(\alpha_i) = \sum_{r_1=\langle c \rangle}^n g(r_1) \{ \sum_{r_2=\langle 2c-r_1 \rangle}^n g(r_2) \{ \sum_{r_3=\langle 3c-r_1-r_2 \rangle}^n g(r_3) \dots \\ \{ \sum_{r_j=\langle jc-r_1-r_2-\dots-r_{j-1} \rangle}^n g(r_j) \}, \quad j = 1, 2, \dots, i$$

where

$$c = n(p_0 - \alpha_1) \quad \text{and}$$

$$g(r) = \binom{n}{r} p_0^r (1-p_0)^{n-r}.$$

Proof: To compute (i) is straightforward. To prove (ii), define

$$A_j(\alpha, \beta) = P_r\{Y_1 \geq \alpha, Y_1 + Y_2 \geq \alpha + \beta, \dots, \sum_{r=1}^j Y_r \geq \alpha + (j-1)\beta\}$$

where Y_1, Y_2, \dots, Y_j are iid $b(n; p_0)$. Conditioning on $Y_1 = r_1$, we obtain

$$\begin{aligned}
 A_j(\alpha, \beta) &= \sum_{r=\lceil \alpha \rceil}^n \binom{n}{r} p_0^r (1-p_0)^{n-r} \Pr\{Y_2 \geq \alpha + \beta - r_1, Y_2 + Y_3 \geq \alpha + 2\beta - r_1, \\
 &\quad \dots, \sum_{r=2}^j Y_r \geq \alpha + (j-1)\beta - r_1\} \\
 &= \sum_{r_1=\lceil \alpha \rceil}^n \binom{n}{r_1} p_0^{r_1} (1-p_0)^{n-r_1} A_{j-1}(\alpha + \beta - r_1, \beta).
 \end{aligned}$$

Taking $\alpha = \beta = n(p_0 - d)$ and using (i) and by mathematical induction, we obtain (ii).

Hence, for given α_i , this lemma gives a direct method of computing $a_i(\alpha_i)$. For some special values of $n (= 5(1)10)$, $p_0 (= 0.1(0.1)0.5)$, $P^* (= 0.90, 0.95)$ and $i (= 1(1)4)$, the smallest values of α_i satisfying $a_i(\alpha_i) \geq P^*$ are tabulated in Table. It is to be noted that $d_{k-i+1} = \alpha_i$ ($i = 1, 2, \dots, k$) in procedure $\delta_1(d)$.

Now define,

$$\begin{aligned}
 a'_j(\alpha, \beta) &= \Pr\{n(p_0 - \alpha) \leq Y_1 \leq n(p_0 - \beta), 2n(p_0 - \alpha) \leq Y_1 + Y_2 \leq 2n(p_0 - \beta), \\
 &\quad \dots, jn(p_0 - \alpha) \leq \sum_{r=2}^j Y_r \leq jn(p_0 - \beta)\}.
 \end{aligned}$$

Then, from analogous arguments as in Lemma 2.1, we have

$$\begin{aligned}
 \text{Corollary 2.1: } a'_j(\alpha, \beta) &= \sum_{r_1=\lceil c_1 \rceil}^{[c_2]} g(r_1) \{ \sum_{r_2=\lceil 2c_1 - r_1 \rceil}^{[2c_2 - r_1]} g(r_2) \{ \sum_{r_3=\lceil 3c_1 - r_1 - r_2 \rceil}^{[3c_2 - r_1 - r_2]} g(r_3) \\
 &\quad \dots \{ \sum_{r_j=r_{0j}}^{r'_{0j}} g(r_j) \},
 \end{aligned}$$

where

$$c_1 = n(p_0 - \alpha)$$

$$c_2 = n(p_0 - \beta)$$

$$r_{0j} = \lceil jc_1 - r_1 - r_2 - \dots - r_{j-1} \rceil, \quad j = 2, 3, \dots$$

$$r'_{0j} = [jc_2 - r_1 - r_2 - \dots - r_{j-1}].$$

b. When the sizes n_i are not necessarily equal. We also take $n_0 = 0$ since p_0 is known, and assume $m = 1$. Then the isotonic estimates in (1.1) and (1.2) become

$$\hat{x}_{i,k} = \max_{1 \leq s \leq i} \hat{\bar{x}}_{s,k}$$

where

$$(2.9) \quad \begin{aligned} \hat{\bar{x}}_{s,k} &= \min\{\bar{x}_s, (n_s \bar{x}_s + n_{s+1} \bar{x}_{s+1})/(n_s + n_{s+1}), \dots, \\ &\quad (n_s \bar{x}_s + n_{s+1} \bar{x}_{s+1} + \dots + n_k \bar{x}_k)/(n_s + n_{s+1} + \dots + n_k)\}. \end{aligned}$$

For our notational simplicity, we define

$$\underline{j} = k - i + 1 \quad \text{and}$$

(2.10)

$$m_{i,j} = n_{i+j} + \dots + n_{i+j-1}.$$

Then (2.5) becomes

$$(2.11) \quad \inf_{\Omega_i} P\{CS|\delta_1\} = P\{Z_1 \geq c_1, Z_1 + Z_2 \geq c_2, \dots, Z_1 + Z_2 + \dots + Z_i \geq c_i\}$$

where

$$(2.12) \quad \begin{aligned} c_1 &= m_{i,1}(p_0 - \alpha_i) \\ c_2 &= m_{i,2}(p_0 - \alpha_i) \\ &\dots \\ c_i &= m_{i,i}(p_0 - \alpha_i) \end{aligned}$$

and Z_1, Z_2, \dots, Z_i are iid with Z_j being $b(n_{k-i+j}; p_0)$. Then, (2.11) can be computed according to the following. Define

$$(2.13) \quad b_{j,i}(\underline{c}) = P\{Z_1 \geq c_1, Z_1 + Z_2 \geq c_2, \dots, \sum_{r=1}^j Z_r \geq c_j\}, \quad j = 1, 2, \dots, i,$$

where $\underline{c} = (c_1, c_2, \dots, c_i)$ and Z_j 's are defined by (2.12). Then, we have

$$\text{Theorem 2.1. } b_{j,i}(c) = \sum_{r_1=c_1}^{n_{k-i+1}} g(n_{k-i+1}, r_1) \{ \sum_{r_2=c_2-r_1}^{n_{k-i+2}} g(n_{k-i+2}, r_2),$$

$$\dots, \sum_{r_j=r_{j0}}^{r_{j1}} g(n_{k-i+j}, r_j) \} \quad j = 1, 2, \dots, i;$$

where

$$g(n; r) = \binom{n}{r} p_0^r (1-p_0)^{n-r}$$

$$r_{j0} = <c_j - r_1 - r_2 - \dots - r_{j-1}>$$

$$r_{j1} = n_{k-i+j}$$

and c_1, c_2, \dots, c_j are defined by (2.12) and (2.10).

Proof: Conditioning on $Z_1 = r_1$ in (2.13) and following analogous arguments as those in Lemma 2.1, we obtain the result.

Corollary 2.2. If for given P^* , the constants $d = (d_1, d_2, \dots, d_k)$ associated with $\delta_1(d)$ are so chosen that $b_{i,i}(c) \geq P^*$ for all $i = 1, 2, \dots, k$, then $P_p(CS|\delta_1(d)) \geq P^* \quad \forall p \in \Omega$, where c and $b_{i,i}(c)$ are defined by (2.12) and (2.13), and $d_{k-i+1} = \alpha_i, i = 1, 2, \dots, k$.

Proof: The result follows from (2.3), (2.11) and (2.13).

Computations of α_i in Table 1

For given n , i , p_0 and P^* , we start by taking $v_1 = p_0 - \frac{1}{in}$. Using Lemma 2.1, we can compute $a_i(v_1)$. If $a_i(v_1) < P^*$, we take

$\alpha_i = v_1 + \frac{1}{in} = p_0$, otherwise, we take $v_2 = v_1 - \frac{1}{in} = p_0 - \frac{2}{in}$. And compute $a_i(v_2)$. If $a_i(v_2) < P^*$, we take $\alpha_i = v_2 + \frac{1}{in} = p_0 - \frac{1}{in}$, otherwise take $v_3 = v_2 - \frac{1}{in}$. This process continues until for the first time $a_i(v_{r-1}) \geq P^*$ and $a_i(v_r) < P^*$. Then, we stop and take $\alpha_i = v_{r-1} = p_0 - \frac{r-1}{in}$. The reason that each time we decrease the amount

of $\frac{1}{in}$ is that (2.5) remains unchanged as long as the value of ic_i changes by an amount less than 1, i.e. $in(p_0 - \alpha_i) < 1$.

For computations of α and β such that $a_i^*(\alpha, \beta) \geq p^*$ given by Corollary 2.1 are analogous.

2.2. Selection Procedure δ_2 and Conditional Selection Procedure δ_3

When p_0 is Unknown.

For simplicity, we assume $m = 1$ and $n_0 = n_1 = \dots = n_k = n$. When p_0 is unknown, we propose the following procedures.

$$\delta_2(\underline{x}; \underline{u}) = a_{\epsilon_1}(\underline{x}; \underline{u}) \quad \text{where}$$

$$\epsilon_1(\underline{x}; \underline{u}) = \min\{i | \hat{x}_{i,k} \geq \bar{x}_0 - u_i\}$$

where

$\hat{x}_{i,k}$ is defined by (1.1) and (1.2).

We also propose a conditional procedure δ_3 as follows.

$$\delta_3(\underline{x}; \underline{v}|\underline{t}) = a_{\epsilon_2}(\underline{x}; \underline{v}|\underline{t}) \quad \text{where}$$

$$\epsilon_2(\underline{x}; \underline{v}|\underline{t}) = \min\{i | \hat{x}_{i,k} \geq \bar{x}_0 - v_i \text{ given that } \sum_{j=0}^i x_j = t_i\}$$

where

$$\underline{t} = (t_1, t_2, \dots, t_k), \quad t_j = \sum_0^j x_r, \quad j = 1, 2, \dots, k.$$

We note that when $(\bar{x}_0, \bar{x}_1, \dots, \bar{x}_k)$ is observed, \underline{t} is automatically known. However, in some situations, the experimenter may have values of $\hat{x}_{i,k} - \bar{x}_0$ without knowing $(\bar{x}_0, \bar{x}_1, \dots, \bar{x}_k)$. For example, the given data might be $\bar{x}_1 - \bar{x}_0, \bar{x}_2 - \bar{x}_0, \dots, \bar{x}_k - \bar{x}_0$.

For our convenience, we denote δ_2 and δ_3 , respectively, by $\delta_2(\underline{u})$ and $\delta_3(\underline{v}|\underline{t})$ when there is no confusion.

For fixed i , and any $p \in \Omega_i$

$$\begin{aligned} P_p(CS|\delta_2(u)) &= P_p\left(\bigcup_{j=1}^{k-i+1} \bigcup_{r=1}^j (\hat{x}_r \geq \bar{x}_0 - u_j)\right) \\ &\geq P_p\{\hat{x}_{k-i+1} \geq \bar{x}_0 - u_{k-i+1}\}. \end{aligned}$$

For fixed p_0 , the right hand side is an increasing function of p_{k-i+1} keeping all p_{k-i+j} ($2 \leq j \leq i$) fixed. By the same arguments as in the last section, we see that the right hand side attains its minimum at $p_{k-i+1} = p_{k-i+2} = \dots = p_k = p_0$. By choosing p_0 defined by (2.2), and applying the analogous arguments, we conclude that

$$(2.14) \quad \inf_{\Omega_i} P_p(CS|\delta_2(u)) = \inf_{0 \leq p_0 \leq 1} P\{Y_1 \geq Y_0 - w_1, Y_1 + Y_2 \geq 2(Y_0 - w_2), \dots, Y_1 + Y_2 + \dots + Y_i \geq i(Y_0 - w_i)\}.$$

where $Y_0, Y_1, Y_2, \dots, Y_i$ are iid such that Y_0 is $b(n; p_0)$ and

$$(2.15) \quad w_j = j n u_i.$$

Now define

$$(2.16) \quad A(i; t_i, u_i) = \{Y_1 \geq Y_0 - w_1, Y_1 + Y_2 \geq 2(Y_0 - w_2), \dots, Y_1 + Y_2 + \dots + Y_i \geq i(Y_0 - w_i), \sum_{j=0}^i Y_j = t_i\}$$

$$(2.17) \quad B(i; u_i) = \{Y_1 \geq Y_0 - w_1, Y_1 + Y_2 \geq 2(Y_0 - w_2), \dots, Y_1 + Y_2 + \dots + Y_i \geq i(Y_0 - w_i)\}$$

where w_i is defined by (2.15). Then, we have

$$\begin{aligned} (2.18) \quad P(B(i; u_i)) &= \sum_{t_i=0}^{n(i+1)} P(B(i; u_i) | \sum_{j=0}^i Y_j = t_i) P(\sum_{j=0}^i Y_j = t_i) \\ &= \sum_{t_i=0}^{n(i+1)} \frac{P(A(i; t_i, u_i))}{\binom{n(i+1)}{t_i} p_0^{t_i} (1-p_0)^{n(i+1)-t_i}} P(\sum_{j=0}^i Y_j = t_i). \end{aligned}$$

If for any $0 \leq p_0 \leq 1$, and any t_i ($0 \leq t_i \leq (i+1)n$)

$$(2.19) \quad P(A(i; t_i, u_i)) \geq P\left(\binom{n(i+1)}{t_i} p_0^{t_i} (1-p_0)^{n(i+1)-t_i}\right)$$

holds, then it follows from (2.14), (2.18) and (2.19) that

$$(2.20) \quad \inf_{\Omega_i} P_p(CS | \delta_2(\underline{u})) \geq P^*.$$

Define

$$(2.21) \quad \psi_i(t, s, u) = \{(x_1, x_2, \dots, x_i) | x_1 \geq s-nu, x_1+x_2 \geq 2s-2nu, \\ \dots, \sum_{j=1}^{i-1} x_j \geq (i-1)s-(i-1)nu, \sum_{j=1}^i x_j = t\} \subset I^i$$

$$(2.22) \quad q_i(t, s, u) = \sum_{\psi_i(t, s, u)} \binom{n}{x_1} \binom{n}{x_2} \dots \binom{n}{x_i}$$

$$(2.23) \quad \phi_i(t, u) = \{(x_0, x_1, x_2, \dots, x_i) | x_1 \geq x_0-nu, x_1+x_2 \geq 2x_0-2nu \\ \dots, \sum_{j=1}^i x_j \geq ix_0-inu, \sum_{j=0}^i x_j = t\}$$

$$(2.24) \quad g_i(t, u) = \sum_{\phi_i(t, u)} \binom{n}{x_0} \binom{n}{x_1} \dots \binom{n}{x_i}.$$

Then, we have

$$(2.25) \quad P(A(i; t_i, u)) / \binom{ni+n}{t_i} p_0^{t_i} (1-p_0)^{ni+n-t_i} = g_i(t_i, u) / \binom{ni+n}{t_i}.$$

It follows from (2.19) and (2.25) that in order to find u_i so that $\delta_2(\underline{u})$ satisfies the P^* -condition, it suffices to find u_i such that for all t_i ($0 \leq t_i \leq n(i+1)$)

$$(2.26) \quad g_i(t_i, u_i) \geq P^* \binom{ni+n}{t_i}$$

holds.

To compute $g_i(t, u)$ for given t and u , we may apply the following theorem:

Define

$$(2.27) \quad \xi_i(t, \alpha, \beta) = \{(x_1, x_2, \dots, x_i) | x_1 \geq \alpha, x_1 + x_2 \geq \alpha + \beta, \dots, \sum_{j=1}^{i-1} x_j \geq \alpha + (i-2)\beta, \sum_{j=0}^i x_j = t\} \subset I^i.$$

$$(2.28) \quad \zeta_i(t, \gamma) = \{(x_0, x_1, \dots, x_i) | x_1 \geq x_0 - \gamma, x_1 + x_2 \geq 2(x_0 - \gamma), \dots, \sum_{j=1}^i x_j \geq i(x_0 - \gamma), \sum_{j=0}^i x_j = t\}$$

$$(2.29) \quad u_i(t, \alpha, \beta) = \sum_{\xi_i(t, \alpha, \beta)} \binom{n}{x_1} \binom{n}{x_2} \dots \binom{n}{x_i}$$

$$(2.30) \quad v_i(t, \gamma) = \sum_{\zeta_i(t, \gamma)} \binom{n}{x_0} \binom{n}{x_1} \dots \binom{n}{x_i}.$$

Then, we have the following

$$\text{Theorem 2.2: (i)} \quad u_i(t, \alpha, \beta) = \sum_{r_1=\langle \alpha \rangle}^n \binom{n}{r_1} \{ \sum_{r_2=\langle \alpha+\beta-r_1 \rangle}^n \binom{n}{r_2} \{ \dots \{ \sum_{r_j=\lambda_j}^n \binom{n}{r_j} \dots \{ \sum_{r_{i-1}=\lambda_{i-1}}^{\lambda} \binom{n}{r_{i-1}} \binom{n}{t-r_1-r_2-\dots-r_{i-1}} \} \},$$

where

$$\lambda_j = \langle \alpha + (j-1)\beta - r_1 - r_2 - \dots - r_{j-1} \rangle \quad j = 2, 3, \dots, i-1,$$

$$\lambda = \min\{n, t - r_1 - r_2 - \dots - r_{i-2}\}$$

$$(ii) \quad v_i(t, \gamma) = \sum_{s=s_1}^{s_2} \binom{n}{s} u_i(t-s, \alpha, s-\gamma) \quad \text{where}$$

$$s_1 = \max\{0, t-i\}$$

$$s_2 = \min\{n, t, \lceil \frac{t+i\gamma}{i+1} \rceil\}$$

and $u_i(t-s, \alpha, s-\gamma)$ is given by (i).

Proof: To show (i), we note that by conditioning on $x_1 = r_1$ in the set $\xi_i(t, \alpha, \beta)$, and the lower bound of r_1 is at least α , we thus obtain $u_i(t, \alpha, \beta) = \sum_{r_1=\alpha}^n \binom{n}{r_1} u_{i-1}(t-r_1, \alpha+\beta-r_1, \beta)$. Using mathematical induction and noting that $u_2(t, \alpha, \beta) = \sum_{r=\alpha}^{r_0} \binom{n}{r} \binom{n}{t-r}$ where r_0 should exceed neither n nor $t-s$, we thus obtain (i).

To show (ii), we condition on the value of x_0 by taking $x_0 = s$ in the set $\zeta_i(t, \gamma)$. Then, in the set $\zeta_i(t, \gamma)$, we have simultaneously the conditions $\sum_j^i x_j \geq i(s-\gamma)$ and $\sum_j^i x_j = t-s$. In order that $\zeta_i(t, \gamma)$ is non-empty, we should have $t-s \geq i(s-\gamma)$ and this determines the upper bound of s . On the other hand, we also note that s should exceed neither n or t and this concludes the value s_2 in (ii). For the lower bound, we note that s should not be less than $t-i$ if this is positive. Finally, we note that the two conditions $\sum_j^i x_j \geq i(s-\gamma)$ and $\sum_j^i x_j = t-s$ combine into $\sum_j^i x_j = t-s$ and it concludes (ii).

This completes the proof of the theorem.

Now, by taking $\alpha = s-nu$ and $\beta = s-nu$, $\xi_i(t, s-nu, s-nu) = \psi_i(t, s, u)$, also, taking $\gamma = nu$ we have $\zeta_i(t, nu) = \phi_i(t, u)$. This concludes the following

$$\text{Corollary 2.3: (i)} q_i(t, s, u) = \sum_{r_1=\alpha}^n \binom{n}{r_1} \{ \sum_{r_2=\lambda_{i-1}}^{\lambda} \binom{n}{r_2} \{ \dots \{ \sum_{r_j=\lambda_j}^n \binom{n}{r_j} \dots \{ \sum_{r_{i-1}=\lambda_{i-1}}^{\lambda} \binom{n}{r_{i-1}} (t-r_1-r_2-\dots-r_{i-1}) \} \},$$

where

$$\alpha = s-nu$$

$$\lambda_j = \langle j\alpha - r_1 - r_2 - \dots - r_{j-1} \rangle, \quad j = 1, 2, \dots, i-1.$$

$$\lambda = \min\{n, t-r_1-r_2-\dots-r_{i-2}\}.$$

$$(ii) \quad g_i(t, u) = \sum_{s=s_1}^{s_2} \binom{n}{s} q_i(t-s, s, u)$$

where s_1 and s_2 are defined in (ii) of Theorem 2.2 by taking

$$\gamma = nu.$$

Theorem 2.3. (i) If, for given $P^*(0 < P^* < \frac{1}{k+1})$,

$$g_i(t_i, u_i) \geq P^*(\frac{n^{i+n}}{t_i}) \text{ observing that } \underline{t} = (t_1, t_2, \dots, t_k), \text{ then,}$$

$\delta_3(y|\underline{t})$ satisfies the P^* -condition, where $v_{k-i+1} = u_i$, $i = 1, 2, \dots, k$.

(ii) If, for some given $P^*(0 < P^* < \frac{1}{k+1})$, $g_i(t_i, u_i) \geq P^*(\frac{n^{i+n}}{t_i})$ for all

$t_i = 0, 1, 2, \dots, (i+1)n$ and $i = 1, 2, \dots, k$, then $\delta_2(y')$ satisfies

the P^* -condition where $u'_{k-i+1} = \max_{0 \leq t \leq (i+1)n} u_i(t)$.

Proof: It follows from (2.14), (2.16), (2.25) and the definition of $\delta_3(y|\underline{t})$ that (i) holds. For (ii), we note that $P(A(i; t_i, u_i))$ (defined by (2.16)) is increasing in u_i and (2.26) holds for all $t_i = 0, 1, \dots, (i+1)n$. Finally, it follows from (2.14), (2.18) and (2.2.5).

Finally, we define

$$\xi'_i(t; \alpha_1, \alpha_2; \beta, \gamma) = \{(x_1, x_2, \dots, x_i) | \alpha_1 \leq x_1 \leq \alpha_2, \alpha_1 + \beta \leq x_1 + x_2 \leq \alpha_2 + \gamma, \dots, \alpha_1 + (i-2)\beta \leq \sum_{j=1}^{i-1} x_j \leq \alpha_2 + (i-2)\gamma, \sum_{j=1}^i x_j = t\}$$

$$\xi'_i(t; \gamma, \delta) = \{(x_0, x_1, \dots, x_i) | x_0 - \gamma \leq x_1 \leq x_0 + \delta, 2(x_0 - \gamma) \leq x_1 + x_2 \leq 2(x_0 + \delta), \dots, i(x_0 - \gamma) \leq \sum_{j=1}^i x_j \leq i(x_0 + \delta), \sum_{j=0}^i x_j = t\}$$

$$u'_i(t; \alpha_1, \alpha_2; \beta, \gamma) = \sum_{\xi'_i(t; \alpha_1, \alpha_2; \beta, \gamma)} \binom{n}{x_1} \binom{n}{x_2} \dots \binom{n}{x_i}$$

$$v'_i(t; \gamma, \delta) = \sum_{\xi'_i(t; \gamma, \delta)} \binom{n}{x_0} \binom{n}{x_1} \dots \binom{n}{x_i}.$$

By the analogous arguments, we obtain the following

$$\text{Corollary 2.4: (i)} \quad u_i^*(t; \alpha_1, \alpha_2; \beta, \gamma) = \sum_{r_1=\langle \alpha_1 \rangle}^{[\alpha_2]} \binom{n}{r_1} \{ \sum_{r_2=s_2}^{s'_2} \binom{n}{r_2} \{ \dots \\ \{ \sum_{r_j=s_j}^{s'_j} \binom{n}{r_j} \} \dots \{ \sum_{r_{i-1}=s_{i-1}}^{\lambda} \binom{n}{r_{i-1}} (t-r_1-r_2-\dots-r_{i-1}) \} \}.$$

where

$$s_j = \langle \alpha_1 + (j-1)\beta - r_1 - r_2 - \dots - r_{j-1} \rangle \quad j = 2, 3, \dots, i-1.$$

$$s'_j = [\alpha_2 + (j-1)\gamma - r_1 - r_2 - \dots - r_{j-1}]$$

$$\lambda = \min\{n, t-r_1-r_2-\dots-r_{i-2}\}$$

$$(ii) \quad v_i^*(t; \gamma, \delta) = \sum_{s=s_0}^{s_1} \binom{n}{s} u_i^*(t-s; s-\gamma, s+\delta; s-\gamma, s+\delta)$$

where

$$s_0 = \max\left\{\frac{t+i\gamma}{i+1}, t-n, 0\right\}$$

$$s_2 = \min\left\{\frac{t-i\delta}{i+1}, n, t\right\}.$$

Computations of $v_i(t_i)$ and u_i^*

For given n, i, P^* and t_i ($0 \leq t_i \leq n(i+1)$), we may start by taking $u = 0$, then apply Corollary 2.3 to compute $g_i(t_i, 0)$. If

$g_i(t_i, 0) \geq P^* \left(\frac{n+i\gamma}{t_i} \right)$, then stop and take $u_i(t_i) = 0$. Otherwise, increase u by an amount of $\frac{1}{in}$, i.e. $u = \frac{1}{in}$. Again, using recurrence relation, compute $g_i(t_i, u)$. If $g_i(t_i, u) \geq P^* \left(\frac{i\gamma+n}{t_i} \right)$, then we take $u_i(t_i) = u$.

Otherwise, we continue this process until for the first time

$$g_i(t_i, u) \geq P^* \left(\frac{i\gamma+n}{t_i} \right). \text{ Then, we take } v_{k-i+1}(t_{k-i+1}) = u_i(t_{k-i+1}).$$

For the procedure δ_1 , we take $u_i^* = \max_{0 \leq t_i \leq (i+1)n} u_i(t_i)$. Some special values of $u_i(t_i)$ associated with $n (= 5(1)10)$, $P^*(=0.90, 0.95)$ and $i (= 1(1)5)$ are tabulated in Table 2.

3. Some Comments on the Conditional Isotonic Rule δ_2

As it can be seen, the unconditional selection procedure δ_2 defined in section 2.2 always satisfies the P^* -condition. As a matter of fact, it follows from (2.14) that the infimum of the probability of a correct selection attains 1 if $u_i = 1$. On the other hand, when the condition of total sum of observations is imposed on the event $B(i; u_i)$ defined by (2.17), it becomes the event $A(i; t_i, u_i)$ defined by (2.16), and its probability of $A(i; t_i, u_i)$ decreases. It follows from (2.18) and (2.25) that

$$(3.1) \quad P(B(i; u)) = \sum_{t_i=0}^{n(i+1)} \frac{g_i(t_i, u)}{\binom{n+i}{t_i}} P\left(\sum_{j=0}^i Y_j = t_i\right)$$

where Y_0, Y_1, \dots, Y_i are iid such that Y_0 is $b(n; p)$ for some unknown $0 < p < 1$. Let

$$(3.2) \quad h_i(j; u) = g_i(j, u) / \binom{n+i}{j}, \quad j = 0, 1, 2, \dots, (i+1)n$$

where

$$0 < u < 1.$$

Then, (3.1) becomes

$$(3.3) \quad P(B(i; u)) = \sum_{j=0}^{(i+1)n} h_i(j; u) \cdot b(j; (i+1)n, p)$$

where $b(j; n; p)$ is the probability of the event $\{Y_r = j\}$. If

$h_i(j; u) \geq P^*$ for all $j = 0, 1, 2, \dots, (i+1)n$ and for some $0 < u < 1$, then $P(B(i; u)) \geq P^*$. However, it is not true that $h_i(j; u) \geq P^*$ for all j , when the right hand side of (3.3) is not less than P^* . As some computations show, for some j (when j is large), $h_i(j; u)$ never reaches P^* (e.g. $P^* = 0.95$) no matter how large u is. This undesirable situation fortunately, never occurs in the conditional selection procedure proposed in [3].

Table 1 d_i -values ($i = 1(1)5$)

In this table, the smallest d_i -values ($i = 1(1)5$) satisfying $a_i(d_i) \geq P^*$ defined by Lemma 2.1 are tabulated for $p_0 = 0.1(0.1)0.5$. For values of $p_0 = (0.6(0.1)0.9)$, the problem can be treated by considering failures instead of successes. In the table, the upper entry is associated with $P^* = 0.90$ and the lower associated with $P^* = 0.95$. The entries under the column of $(0.a - 0.b)$ mean that the d_i -values are the same for all these p_0 -values in the range $(0.a - 0.b)$. A " - " means the same value as the preceding value in the same column. A " * " means the same value as the preceding value in the same row.

Table 1

	d_1 -values				d_2 -values		d_3 -values **			d_4 -values			
n	p_0	0.2	0.3	0.4	0.5	0.1-0.4	0.5	0.1-0.4	0.4	0.5	0.1-0.3	0.4	0.5
5				0.500		0.100	0.300	0.067	0.067	0.333	0.050	0.100	0.300
				-		-	-	-	0.133	-	-	0.150	0.400
6				0.417		0.083	0.417	0.056	0.111	0.389	0.042	0.125	0.375
				0.500		-	-	-	-	-	-	-	-
7				0.214		0.071	0.214	0.048		0.333	0.036	0.107	0.321
				0.500		-	0.357	-		0.381	-	-	0.393
8			0.063	0.250		0.063	0.250	0.042		0.250	0.031	0.094	0.281
			0.400	-		-	-	-		0.333	-	-	0.313
9			0.056	0.167		0.056	0.278	0.037		0.296	0.028	0.083	0.278
			0.400	0.278		-	-	-		-	-	-	0.333
10			0.050	0.200		0.050	0.200	0.033		0.200	0.025	0.075	0.300
			-	-		-	0.300	-		0.300	-	-	0.325
11		0.045	0.045	0.227		0.045	0.227	0.030		0.242	0.023	0.682	0.250
		0.300	-	-		-	-	-		-	-	-	0.318
12		0.042	0.042	0.167		0.042	0.250	0.028		0.222	0.021	0.833	0.250
		0.300	-	0.250		-	-	-		0.250	-	-	0.292
13		0.038	*	0.192		0.038	0.192	0.026		0.205	0.019	0.577	0.250
		0.300	-	-		-	0.269	-		0.282	-	-	0.269
14		0.036	*	0.143		0.036	0.214	0.024		0.214	0.018	0.536	0.267
		-	-	-		-	-	-		-	-	-	0.286
15		0.033	*	0.167		0.033	0.167	0.022		0.200	0.017	0.050	0.233
		-	-	0.233		-	0.233	-		0.244	-	-	0.250
16		0.031	*	0.188		0.031	0.188	0.021		0.188	0.016	0.047	0.234
		-	-	-		-	0.219	-		0.229	-	-	0.250
17	0.029	*	*	0.147		0.029	0.176	0.020		0.176	0.015	0.059	0.235
	0.200	-	-	0.206		-	0.206	-		0.216	-	-	0.250
18	0.028	*	*	0.167		0.028	0.167	0.019		0.185	0.014	0.042	0.222
	0.200	-	-	-		-	0.222	-		0.222	-	-	0.250
19	0.026	*	*	0.132		0.026	0.184	0.018		0.193	0.013	0.053	0.237
	0.200	-	-	0.184		-	-	-		-	-	-	0.250
20	0.025	*	*	0.150		0.025	0.150	0.017		0.150	0.013	0.038	0.237
	0.200	-	-	0.200		-	0.200	-		0.200	-	-	0.250

*A missing entry in this table means that the value of d_1 is the same as the associated p_0 . And also the values of d_1 in the column of $p_0 = 0.1$ are all 0.1.

**A missing entry in this table in column of $p_0 = 0.4$ means the value of d_3 is the same as the associated value in column 0.1-0.4.

Table 2 $u_i(t_i)$ -values ($i = 1(1)5$)

Associated with $n = (5(1)10)$, $i = (1(1)5)$ and $P^* = (0.90, 0.95)$

the entries are $u_i(t_i)$ -values satisfying $g_i(t_i, u_i) \geq P^* \binom{(i+1)n}{t_i}$, defined by Corollary 2.3, with $t_i = \sum_0^i x_j$, the total sum of $(i+1)$ populations.

The upper entry is for $P^* = 0.90$ and the lower for $P^* = 0.95$. A " * " means the same as the preceding value in the same row and a " - " means the same value as the preceding value in the same column. The constant $v_i \equiv v_i(t_i)$ needed for the rule δ_3 is given by $v_i(t_i) = u_i(t_i)$. It should be pointed out that missing entries in the table were either not computed or have been dropped for sake of convenience.

Table 2

N = 5

N = 6

Table 2 (cont.)

		N = 7													
	c	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0.286	0.429	0.286	0.429	0.571	0.429	0.571	-	-	-	-	-	-	-	
2	0.214	-	0.571	-	-	*	*	0.429	0.357	0.357	0.500	-	-	-	
3	0.190	* 0.333	0.357	-	0.429	0.500	*	0.500	-	0.500	-	-	-	-	
4	0.179	*	-	0.286	0.238	0.190	*	*	0.238	0.190	0.333	*	*	0.476	
	-	-	-	*	-	-	*	0.286	-	0.333	-	-	0.429	0.619	
	-	-	-	*	0.107	*	0.071	0.036	*	0.107	*	0.179	*	0.321	
	-	-	-	*	*	*	0.071	0.107	-	0.179	-	-	*	0.464	
	-	-	-	*	*	*	*	*	*	*	*	*	*	0.750	

		N = 8																	
	c	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.125	0.250	0.125	0.250	0.375	0.250	0.375	0.250	-	-	-	-	-	-	-	-	-	-	
2	0.125	0.250	*	*	*	*	*	*	0.313	0.375	*	*	*	*	0.500	-	-	-	
3	0.167	*	-	0.313	0.375	*	*	*	0.438	0.375	-	-	*	*	0.625	-	-	-	
4	0.125	0.292	*	0.250	0.292	*	*	0.167	0.250	0.208	0.167	0.292	*	*	0.333	0.417	0.542	-	
5	0.150	*	*	0.094	0.063	0.063	0.031	0.031	*	0.063	*	*	0.125	*	*	0.250	0.375	0.500	
	-	-	*	*	0.225	0.200	0.175	*	0.150	*	0.175	*	*	*	*	0.625	*	*	
	-	-	*	*	0.275	*	0.200	*	*	*	*	*	*	*	*	0.200	0.275	0.275	

Table 2 (cont.)

		N = 9																
	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	-	0.222	0.333	0.444	0.333	0.444	0.333	0.444	0.333	0.444	-	-	-	-	-	-	-	-
2	-	0.167	0.278	*	*	*	*	*	*	*	0.389	*	0.333	0.278	0.389	*	0.500	*
3	-	0.148	*	0.259	*	*	*	*	*	*	0.444	-	*	*	*	*	0.481	*

		N = 10																				
	t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	-	0.200	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	0.400	0.300	
2	-	0.150	0.250	*	*	*	*	*	*	*	0.350	0.300	0.350	*	*	*	*	*	*	*	*	0.450
3	-	0.133	*	0.233	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0.450
4	-	0.125	0.100	0.075	0.050	0.025	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

References

1. Ayer, M., Brunk, H. D., Ewing, G. W., Reid, W. T. and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Ann. Math. Statist., 26, 641-647.
2. Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference under Order Restrictions. John Wiley & Sons, New York.
3. Gupta, S. S. and Huang, D. Y. and Huang, W. T. (1976). On ranking and selection procedures and tests of homogeneity for binomial populations. Essays in Probability and Statistics (ed. by Ikeda etc.) 501-533.
4. Gupta, S. S. and Yang, H. M. (1981). Isotonic procedures for selecting populations better than a control under ordering prior. Department of Statistics Mimeo Series #81-24, Purdue University. To appear in the Proceedings of Golden Jubilee Conference of the Indian Statistical Institute held in Calcutta, India, December, 1981.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report #82-22	2. GOVT ACCESSION NO. <i>A118348</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Isotonic Selection Rules for Binomial Populations better Than a Standard		5. TYPE OF REPORT & PERIOD COVERED Technical
7. AUTHOR(s) Shanti S. Gupta and Wen-Tao Huang		6. PERFORMING ORG. REPORT NUMBER Technical Report #82-22
8. PERFORMING ORGANIZATION NAME AND ADDRESS Purdue University Department of Statistics West Lafayette, IN 47907		9. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS 042-243
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Washington, DC		12. REPORT DATE July 1982
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 25
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Selection Procedure, Binomial Distributions, Subset Selection, Isotonic Estimators, Random Walk .		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The problem of selecting a subset containing all populations better than a standard under a simple prior ordering is considered. Both cases of the standard parameter known and unknown have been considered. When the standard parameter is unknown, the proposed procedure is conservative. Some tables of constants associated with the proposed isotonic procedures are given.		

SECURITY CLASSIFICATION OF THIS PAGE/When Data Entered)

