Department of Electronic and Telecommunication Engineering

FAC

Memo

465

To: — Dean, Faculty of Engineering

From: Dr. N. W. N. Dayananda, Head of the Department

Date: 17 Sept. 2018

Re: Removal of Pre-Requisite for EN4553

EN2550 Fundamentals of machine vision and Image Processing has been a pre-requisite for EN4553 Pattern Analysis and machine Intelligence. However, the changes in the application areas of pattern analysis and machine intelligence makes it illogical to have EN2550 as a pre-requisite.

In view of this, it is requested to remove EN2550 as a pre-requisite for EN4553.

Approval of the Senate is sought.

Effective from 2014 Intake Onwards.

Head

Dept. of Electronic and

Telecommunication Erroncering
University of Moratuwa
Sri Lanka

Undergraduate Studies Division

17 SEP 2018

Faculty of Engineering University of Moratuwa

Module Code		EN2550	Module Title	Fundamentals of Image Processing and Machine Vision							
Credits GPA/NGPA		2.5 GPA	Hours/Week	Lectures Lab/Assignment	2 3/2	Pre/Co – requisites					
							-				
Learn	ing Outco	mes									
At the	end of th	e module t	he student will be	e able to:							
1.	Apply image processing algorithms for image enhancement										
2.	Apply machine vision algorithms for detection and recognition										
3.	Design machine vision solutions for common industry problems										
Outlir	ne Syllabu	s									
1.	Describe the digital representation of images (2 h): representation of a grayscale digital image as a 2-D array of numbers, representation to color images, concepts of resolution and DPI, interpolation algorithms for image scaling.										
2.	Image processing (6 h): point and neighborhood operations for image enhancement, 2-D Fourie techniques frequency-domain algorithms to replicate spatial domain operations, morphological operations.										
3.		Machine vision (8 h): cameras and fundamental multiple view geometry, basic segmentation algorithms, simple classifiers, detection and recognition.									
4.		Industry applications of image processing (4 h): photo processing for printing, medical image processing.									
5.		Industry application of machine vision (4 h): camera as a measurement device, vision for automation.									
6.	Case stu	udies of ima	nge processing an	nd vision in practice (4 h)						

Module Code		EN4573	Module Title	Pattern Recognition and Machine Intelligence							
Credits GPA/NGPA		3.0 GPA	Hours/Week	Lectures Lab/Assignments	2	Pre/Co – requisites					
					3						
Learr	ning Outco	mes		,							
At the	e end of th	ne module	the student will b	e able to:							
1.	Investig	Investigate the capabilities of classifiers and learning algorithms.									
2.	Recomr	Recommend the best classifier to tackle real life pattern recognition problems.									
3.	Apply p	Apply pattern recognition techniques in solving industry and research problems.									
Outli	ne Syllabu	S	1200000	of historian and							
1.	Introduction (4 h): Basic concepts of pattern recognition, applications of pattern recognition in biomedical engineering, data mining, , signal processing, computer security, natural language processing, and computer vision, probability distributions (binary variable, multinomial variable, Gaussians, the exponential family, non-parametric methods).										
2.		Decision Trees (4 h): Discrete attribute decision trees, continuous attribute decision trees, learning algorithms (ID3, C4.5, CART, Random Forest), cut point selection.									
3.	Linear models for regression and classification (6 h): Linear basis function model, the biasvariance decomposition, Bayesian linear regression, the evidence approximation. discriminant functions, probabilistic generative models, probabilistic discriminative models, the Laplace approximation, Bayesian logistic regression										
4.	Kernel methods and sparse kernel machines (4 h): Dual representations, constructing kernels, radial basis function networks, Gaussian process, maximum margin classifiers, relevance vector machines.										
5.		Graphical methods (2 h): Bayesian networks, Markov random fields, inference in graphical methods.									
6.	Mixture	Mixture models and EM (2 h): k-means clustering, mixture of Gaussians.									
	Commilia	Sampling methods (2 h): basic sampling algorithms, Markov chain Monte Carlo, Gibbs sampling.									
7.	Samplin	g methods	(2 h): basic samp	oling algorithms, Markov	Cildili	Monte Carlo, Gibbs	s sampling.				
7. 8.				oling algorithms, Markov rincipal component ana			s sampling.				