-	Job Scheduling
Input:	· There are n jobs \J_1,,Jn}. · Job Ji takes to time to complete. · Job Ji has deadline di.
Output	: Schedule them on a single server such
	Schedule them on a single server such that the maximum delay is minimized.
	Is this a hard to delay broblem?
	problem;
- Idea	as: 1) Schedule in the order of tils.
	2) " " " di's,
_	Shortest job vs Earliest deadline
	Counterexample for Idea-1:
	{Jz, Jz} above. It is letter if Jz is
	scheduled first.
P	For two jobs, Idea-2 always works.

Proof: Let [J, J,] be the jobs.

If Ji is scheduled first, the delay max(trdn: dr) is tytz-dz.

If Jz is scheduled first, then the delay is $t_1 + t_2 - d_1$.

mat(tradi) => delay is minimized if we schedule according to the earliest deadline. - an: What to do with no2 jobs? - Consider a scheduling in the order (J1, J2,..., Jh). Focus on {Ji, Ji+1}.

• If di > di+1 then swapping them gives us a "better" scheduling, => Thus, in an optimal schedule we have dy & dz < & dn (without loss of generality) Theorem: Job Scheduling (min max delay) can be done in O(nlgn) time.

Greed	y Parad	lig	m
		-)	

- In the last algorithm we wed a local approach to get a global one. (From n=2 to n=2.)

- Given an optimization problem P,

with instance A of size n: Greedy Step identifies an instance

A of size n'<n.

. In the Proof you are required to formally show that:

A lemma = OPT(A') follows from OPT(A), is needed & OPT(A) " " OPT(A'),

This is what gives the pseudocode.

- Greedy paradign is a very powerful technique.

In the end, you only need sorting.

Binary Coding of files

- Suppose a file Fhas m letters & there are n alphabets in the language.
- Pn: How large is the binary coding?
- Ans: At least m.lgn.
 - Additional assumption: Suppose we know the frequency distribution of the alphabets in F.

Can we use the distribution to have a smaller coding of the file?

- Idea	;	More	frequent	alphabets	should
mab	to	shorter	strings.	alphabets	

- This gives an average lit length ABL of: $0.45 \times 1 + 0.18 \times 2 + (0.15 + 0.12 + 0.10) \times 3$ $= 1.92 = \sum_{\alpha \in A} f(\alpha) \cdot |\gamma(\alpha)|$

 \Rightarrow A file of size m has an encoding of size $\approx 1.92 \, \text{m}$, which is smaller than $3 \, \text{m}$.

- But, this coding has ambiguity.
01010111 is abbe

D'b' is a prefix of 'd'.

_	Packy coding, If # x + u ∈ A & +
	Prefix coding: If \$\pi \times \times A s.t. \[\gamma(x) \times a \times \text{prefix of } \gamma(y). \]
	(~) 100 oc processix os (19).
	N N N N N N N N N N N N N N N N N N N

- Algorithmic problem:
Given A of n alphabets with their frequencies, compute a prefix encoding y sit. ABL(q) is minimum.

- Brute-force: A naive aborithm would go over all the n-subsets of [2n] all $\Rightarrow 2^{-2(n)}$ -time taken. (<\(\sign\)-bit strings.

- Instead, we can model a prefix code as a labeled timory tree.

- Ze. the blue leaves paths form a prefix code!

(Exercise)

	Huffman Code - Optimal prefix code
	We make the following observations about the labelled binary tree Tof the optimal prefix code y. 1: T must be a full binary tree, If there is a hode with out-degree \(\leq 1\) then we can shrink it, Then we can shrink it.
Lemma Proof	1: T must be a full binary tree.
	If there is a hode with out-degree <1. then we can shrink it. Then we can shrink it.
	Tis full.
	This full. [] 2: More forequent alphabets are close to the roof.
Broof	of then swapping them reduces $\sum_{a \in A} f(a) \cdot J\gamma(a) I$.

Lemma	3: Let A= {q,,-, an} & f(q,) < < f(an) There is an optimal T where an & az are siblings in the deepest level.
	There is an optimal T where a, & az
	are siblings in the deepest level.
Proof:	
	· Suppose to is a sibling of of 4 france (as)
	=> Whog we can swap & Laz,
getting	· Suppose to is a sibling of and f(an) < f(az) => Wlog we can swap to & az, ≤ f(b). az in the deepest level with an. D
-	
	- By Lemma 3 we can modify the instance
-	A = \(\alpha_1, \alpha_2, \langle a_n \rangle \) to A':= \(\alpha_3, a_4, \langle a_n \rangle \) U\{a'\} by merging the two alphabets an & az
-	to a'.
-	
	DIF we set f(a') := f(a,)+f(a) then
	DIf we set $f(a') := f(a_1) + f(a_2)$ then OPT(A) will also give us OPT(A).
Pf:	$\Lambda'_1 = -$
	A! A: due to due to reduced neduced.
	4011
-	$OPT(A') = \sum_{b \in A'} f(b). \gamma'(b) = OPT(A) - f(a')$
	minimizing ABL(Y).

	_	Developing the algorithm to find T:
store	e the	Developing the algorithm to find T: The Tree of the algorithm to find T: The Where is a'? A leaf in T! Replace it by of a daz
greg'	an AVL	· Where is a'? A leaf in T!
		· Replace it by
_		$a_1 \stackrel{\frown}{=} ba_2$
		· Return this tree T.
_	-	- Time: It takes O(nlgn) time as we
	(1) - T	reduce the alphabet size by one.
	heore	m (Huffman 52): Optimal prefix code can
		be found in O(ngn) time,
	Vote	: AVL tree & labelled binary tree
-		have size O(nlgn).
-	—t	This technique is the mother of all
-		data compression schemes!
_		
-		