Projet Scientifique Informatique L2 Informatique Modèle d'évacuation en cas urgence

Romain Kugler & Yann Martin D'Escrienne

Université Nice-Sophia Antipolis

2019

Introduction Contexte

- De quoi s'agit-il ? Modélisation d'évacuation en cas d'urgence
- Qui ? Individus de tout âges et milieux sociaux
- Où ? Salle de cinéma, amphithéâtre, bureaux...
- Quels dangers ? Feu, Fumée, Attentats...

Problématique Identifier les problèmes

Quels enjeux?

Limiter les pertes humaines

Comment optimiser une évacuation?

- ► Identifier les paramètres importants
- Temps d'évacuation minimal

Quelle est la relation entre le temps d'évacuation et ces différents paramètres?

Modélisation

Choix des paramètres et des mesures

Paramètres

- ► Densité d'individus dans la salle
- Nombre de sorties
- Vitesse de déplacement
- Obstacles

Mesures

- ► Temps d'évacuation totale
- ► Pourcentage d'individus évacués au temps T

Modélisation

Hypothèse simplificatrice

- ► Monde en 2D, case par case
- Feu, individus, obstacles,.. occupent une case
- Les individus ont la même vitesse de déplacement

Modélisation

Premier jet sur Netlogo

Figure: Salle de cinéma générée sur Netlogo

Résultats attendus

Mettre en valeur l'importance de certains paramètres

- Nombre et localisation des sorties
- Disposition des obstacles

Faire varier des paramètres

- Capacité limite d'une salle tend vers un nombre fini
- Lien exponentiel entre le temps d'évacuation et les paramètres