MATH2715 - Workshop 4

If X has a uniform distribution over the interval (0,1), prove that $U=-\log X$ has an exponential distribution with mean one.

<u>Hint:</u> X has probability density function $f_X(x) = 1$ for 0 < x < 1. Find the probability density function of U.

Q2.

- (a) If X has a uniform distribution over the interval (0,1), obtain the probability density function of $U = X^2$.
- (b) If X has a uniform distribution over the interval $(-\frac{1}{2}, +\frac{1}{2})$, obtain the probability density function of $U = X^2$.

Hint: Is this a 1-1 mapping?

Q3. A non-negative random variable X has probability density function $f_X(x) = e^{-x}$, x > 0. Derive the probability density function $f_U(u)$ of $U = \log X$. Sketch this function $f_U(u)$. Hint: Don't forget that you should always specify the range of a probability density function. To sketch $f_{U}(u)$ you could look at what happens for large u and small u and check for turning points. You could also try substituting different numerical values for u.

- Q4. Suppose that X has an exponential distribution with parameter $\lambda = \frac{1}{2}$.
- (a) Find the probability density function of $U = +\sqrt{X}$.
- (b) Obtain the mean of U.

<u>Hint:</u> Recall that if $Z \sim N(0,1)$ with probability density function $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$, defined for $-\infty < z < \infty$, then $E[Z^2] = Var[Z] + \{E[Z]\}^2 = 1 + 0^2 = 1$.

(c) Simulate 1000 values of X and hence generate 1000 values of U. What is the mean of your simulated U values?

Hint: R commands:

x=rexp(1000,0.5)# Puts 1000 exponential(lambda=0.5) values into x. u=sqrt(x)

- Q5. Suppose that random variables X and Y are independent standard normal random variables.

(a) If $U = X^2 + Y^2$ and V = X/Y, obtain the joint probability density function $f_{UV}(u, v)$. Hint: To find the Jacobian notice that $J = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \frac{\partial(u,v)}{\partial(x,y)} \right|^{-1}$. Is the mapping $(x,y) \to (u,v)$ a 1-1 mapping?

(b) Prove that U and V are independent.

<u>Hint:</u> Show that $f_{UV}(u, v)$ factorises as $f_{U}(u) f_{V}(v)$ where $f_{U}(u)$ and $f_{V}(v)$ are recognisable probability density functions.