

Engineering Research & Development Methodology

Basic Concepts in R&D

October 25, 2018

Basic Concepts in R&D

- Engineering
- Engineering & Technology
- Research & Development
- Research & Innovation
- **■** Importance of R&D
- Role of Government in R&D
- Reflective Thinking

Engineering

- The concept of engineering was derived from the dawn of human history
 - Our ancestors developed & designed tools that were essential for their survival.
 - Human beings can be defined by
 - their tool-making, designing & engineering skills, &
 - the socialization & communication that facilitated the invention, innovation & transfer of technology.
 - This activity is similar to the modern idea of engineering where trial & error is an important part of innovation.

- Engineering is the field or discipline, practice, profession & art that
 - relates to the development, acquisition & application of technical, scientific & mathematical knowledge
 - about the understanding, design, development, invention, innovation & use of materials, machines, structures, systems & processes for specific purposes.
- Engineering in the modern sense relates to art
 - appreciated in the creativity & elegance of many engineered objects & structures
 - Example: objects & structures of art exhibitions.

Fields of Engineering closely related with CSE

Computer & Systems Engineering

 Research, design & development of computer, computer systems & devices.

■ Electrical Engineering & Electronic Engineering

 Research, design & development of electrical systems & electronic devices.

Software Engineering

 Research, design & development of computer software systems & programming.

- Engineering connects to the **natural sciences**, & to the **social** & **human sciences**.
 - Engineers use both scientific knowledge & mathematics to create technologies & infrastructure to address human, social & economic issues.
 - Engineers connect social needs with innovation & commercial applications.
 - Technological change & innovation is
 - one of the major drivers of economic, social & human change,
 - so engineering & technology & the social sciences are more closely connected.

- Engineering powered the Industrial Revolution
 - took off in the UK in the 18th C spreading to the world,
 - replacing muscle by machine in a synergistic combination between knowledge & capital.
 - → The 1st Industrial Revolution (1750–1850)
 - focused on the textile industry
 - → The 2nd Industrial Revolution (1850–1900)
 - focused on steam & the railways
 - The 3rd Industrial Revolution (1875–1925)
 - based on steel, electricity & heavy engineering
 - The 4th Industrial Revolution (1900–1950)
 - based on oil, the automobile & mass production
 - The 5th Industrial Revolution (from 1950)
 - based on information & telecommunications

The revolutions happened mainly due to Engineering R & D too

- The great days of engineering were in the past
 - during the era of massive mechanization & urbanization that had its heyday in the 19thC
 - improved the health & well-being of the common person with improvements in water supply & sanitation.
- That era of great engineering enjoyed two advantages:
 - seemingly unlimited sources of power, coal, oil & gas, &
 - boundless capacity in terms of water supply, materials & other resources relative to human need.

- The tasks confronting engineers of the 21st C are:
 - Climate change: engineering the world to avert an environmental crisis caused in part by earlier generations in terms of energy use, greenhouse gas emissions & their contribution to climate change, &
 - Poverty reduction: engineering the large proportion of the world's increasing population out of poverty, & the associated problems encapsulated by the UN MDGs.
- Resolving these issues will require tremendous innovation & ingenuity by engineers.
 - It demands Engineering R&D

Engineering & Technology

Engineering & Technology

- Technology is an enabling package or tool formed of knowledge, devices, systems, processes & other technologies created for a specific purpose.
- It is the engineering process that creates technology, & which makes technology useful to people.
- Technological change is a complex process that must be managed all the way from concept to the market place.
 - Researchers in technology would be well advised to address customer & societal needs & market requirements & not just research for research or technology's sake.

Engineering & Technology

- Thus, questions to be considered include :
 - What is the societal problem?
 - What is the technological challenge?
 - What is the business driver?
 - O How to define the research project?
 - What are the findings/results?
 - What are the potential applications?

"I know R&D feels that the product warrants at least two 'reallys'."

Research & Development (R&D)

- R&D refers to two intertwined processes of
 - research (to identify new knowledge & ideas) &
 - development (turning the ideas into tangible products or processes).
- R&D can be defined as
 - the process of creating new products, processes & technologies that can be used & marketed.
- The OECD defines R&D as
 - "creative work undertaken on a systematic basis in order to increase the stock of knowledge of man, culture & society, & the use of this stock of knowledge to devise new applications."

- In order to provide functional & understandable definitions for various research activities, Science Indicators categorizes R&D activities as efforts in science & engineering as follows:
 - Producing significant advances across the broad front of understanding of natural & social phenomena—basic research
 - Fostering inventive activity to produce technological advances— applied research & development
 - Combining understanding & invention in the form of socially useful & affordable products & processes innovation

■ The National Science Foundation (NSF) classifies research as (Science & Engineering Indicators, 2008):

■ Basic Research

 Objective: "a more complete knowledge or understanding of the subject under study, without specific applications in mind."

Applied Research

- To gain "knowledge or understanding to determine the means by which a specific, recognized need may be met."
- includes investigations "to discovering new scientific knowledge that has specific commercial objectives with respect to products, processes, or services."

■ The National Science Foundation (NSF) classifies ...

Development

- the "systematic use of the knowledge or understanding gained from research, directed toward the production of useful materials, devices, systems or methods, including design & development of prototypes & processes."
- R&D covers many of these activities.

- Innovation is often associated &/or confused with the word *research*.
- Undoubtedly, research & innovation are part of an integrated, iterative feedback loop, where the creation & discovery of knowledge stimulate innovation, which, in turn, produces new stimuli & requirements to drive & enrich the research agenda.
- However, even if strongly related to each other, research & innovation do have specific differences & characteristics that need to be carefully assessed & understood.

- Research is the creation of knowledge, whereas innovation is the application of research results to create new processes, products, & services.
- In research, the focus is on knowledge creation & discovery; in innovation, the focus is on transforming knowledge into something usable by someone operating in a specific market or, in general, in some part of society.

- Edison invented the lightbulb in 1879.
 - It was a brilliant, historic result that has changed our lives forever. However, 19th C towns didn't have a power grid, which was not even a concept at that time.
- To bring it to the market, Edison formulated the electric power distribution grid & a company to build & manage it. Eventually, in 1882 Edison was able to bring his new service to 59 customers in Manhattan.
 - In general, Edison's invention took years to materialize across the whole society, as it demanded the creation of a totally new industry & business sector.

THOMAS EDISON

- (Feb 11, 1847 Oct 18, 1931) was an American inventor & businessman.
- He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, & a longlasting, practical electric light bulb.
- Edison is the fourth most prolific inventor in history, holding 1,093 US patents in his name, as well as many patents in the UK, France, & Germany.

- Edison is known as an inventor, but he was also a great innovator.
 - an invention brings an idea into tangible reality by embodying it as a product or system.
 - An innovation converts a new idea into revenues & profits.
 - For an invention to become an innovation, people must be willing to buy it in high enough numbers that the firm benefits from making it.
 - O Edison's lab was an **applied research** lab, which is a lab that develops & commercializes its research findings.

- In the 1960s, object orientation was a purely research result that had no practical impact.
- In the 1970s, Xerox PARC (Palo Alto Research Center) launched Smalltalk, which had a huge impact in the research community, but a limited market success.
- Eventually, the knowledge accumulated over the years was exploited in the 1990s, with development of a new breed of programming languages & systems, & bringing object orientation to market success with C++ & later with Java.

Source: R&D Magazine Survey 2017

Importance of R&D

Importance of R&D

The Global R&D Outlook

Global R&D spending has continued its steady climb with more than \$2 trillion being invested for the third consecutive year in 2018.

More than two-thirds of all global R&D investments are supported by industrial organizations. Of these industries, ICT is expected to be the main driver of innovations among all of them over the next ten years.

Artificial intelligence, automation & robotics & associated software involved in ICT will change the overall R&D environment—& much of society—by the mid-2020s.

Bea Riemschneider Science Editorial Director R&D Magazine www.RDmag.com

Importance of R&D

- Companies undertake R&D in order to develop new products, services, or procedures that will help them grow & expand their operations.
- Companies invest in R&D to gain a pipeline of new products.
 - For a high-tech company like Apple, it means coming up with new types of products as well as newer & better versions of its existing computers & iPhones.
- From investing in R&D, the nation's economy benefits as well
 - o in the long run, growth in GNP per worker is due more to technological progress than to mere capital investment.

- Governments can play a big role in innovation because of their ability to fund R&D.
 - offering grants to universities & research centers or by offering contracts to corporations for performing research.
- Governments can also provide tax incentives for companies that invest in R&D.
 - For example, Australia gave a 125 percent tax deduction for R&D expenses. The Australian government's website noted, "It's little surprise then, that many companies from around the world are choosing to locate their R&D facilities in Australia."

- Governments can promote innovation through investments in infrastructure that will support new technology & by committing to buy the new technology.
 - Since 2000, China has had a policy in place to encourage tech transfer from abroad & to force foreign companies to transfer their R&D operations to China in exchange for access to China's large volume markets.
 - For example, any automobile manufacturer that wants to sell cars in China must enter into a **partnership** with a Chinese company. As a result, General Motors (GM), Daimler, Hyundai, Volkswagen (VW), & Toyota have all formed **joint ventures** with Chinese companies.

- Governments can set high targets that require innovation.
 - In the 1960s, the US Apollo space program launched by President John F. Kennedy inspired US corporations to work toward putting a man on the moon.
 - The government's investments in the Apollo program sped up the development of computer & communications technology & also led to innovations in fuel cells, water purification, freeze-drying food, & digital image processing now used in medical products for CAT scans & MRIs.
- Governments can also play a big role in the protection of intellectual property rights

Research & Technology Transfer

- The GoE considers investment in R&D a necessary precondition for a sustained development not only of ICT but also for scientific progress.
- In recognition of the important role that R&D transfer plays in facilitating the country's socio-economic development process in general & ICT in particular, the Government commits itself to the following specific objectives & strategies.
- Goal: Develop the nation's ICT R & D capacity to support, facilitate & contribute to the development of the nation

Objectives

- To ensure that research projects & programs aimed at solving logical problems, meet national needs & enhance the development of professional skills.
- To support R&D transfer within research-oriented institutions.
- To harness R&D transfer capabilities & global best practices by promoting collaboration between the country's ICT centers of excellence & those of other countries.
- To encourage participation in research undertakings by ICT professionals.

Strategies

- Develop an ICT R&D transfer policy & strategy.
- Allocate adequate resources /budget to R&D transfer for hardware & software development, communications, information networks, technology etc.
- Promote applied & need-based R&D transfer activities so as to increase the levels of technological innovation.
- Promote R&D transfer in areas such as
 - standard character set, language interoperability, electronic dictionaries & thesaurus uses, & multilingual search engines for widely spoken indigenous languages, in order to facilitate accessibility.

Strategies

- Network R&D transfer activities conducted by public & private establishments for sharing best practices from lessons learned across sectors.
- Provide different incentives to the private sector to invest in R&D transfer activities.
- Disseminate information on new development in ICT arising from research findings.

Reflective Thinking

- Check your understanding about Engineering, Technology, Invention, Innovation, Research, R&D, and other related concepts.
- What do you think about the argument "Researchers in technology would be well advised to address customer & societal needs & market requirements & not just research for research or technology's sake."?
- What benefits does a company get by investing in R&D?
- Describe the ways in which government can influence R&D.

References

- UNESCO, 2010. Engineering: Issues Challenges and Opportunities for Development, Paris: UNESCO.
- The Federal Democratic Republic of Ethiopia (2009). The National Information & Communication Technology Policy & Strategy. Addis Ababa Ethiopia
- 2018 Global R&D Funding Forecast: a supplement to R&D Magazine
- Jain, R. K. (2010). Managing research, development and innovation: managing the unmanageable
- Kothari(2004).Research Methodology: methods & techniques