5.6 习题

2024年12月4日

5.6.1

证明:

(a)

仿照命题 5.5.12 的证明过程。

令 $E=\{z\in R:z\geq 0$ 且 $z^n\leq x\}$,由定义 5.6.4 可知 $y=x^{1/n}:=\sup(E)$ 。

利用反证法, 我们要证明 $y^n < x$ 和 $y^n > x$ 都会导致矛盾。

首先假设 $y^n < x$,假设 $0 < \epsilon < 1$ 是一个较小的正数。由于 $\epsilon^n < \epsilon$ 。如果 $0 < y \le 1$,那么,

$$(y+\epsilon)^n = \epsilon^n + k_0 y \epsilon^{n-1} + k_1 y^2 \epsilon^{n-2} + \dots + y^n$$
 (1)

$$<\epsilon + y^n + max(k_0, k_1, ...,)y\epsilon$$
 (2)

$$< y^n + \epsilon [1 + \max(k_0, k_1, ...,)y]$$
 (3)

设 $\delta = x - y^n$,取 $\epsilon < \delta/[1 + max(k_0, k_1, ...,)y]$,就可以保证 $(y + \epsilon)^n < x$,所以 $(y + \epsilon) \in E$,从而与 $y \in E$ 的上确界矛盾。

如果 y > 1, 那么,

$$(y+\epsilon)^n = \epsilon^n + k_0 y \epsilon^{n-1} + k_1 y^2 \epsilon^{n-2} + \dots + y^n$$
(4)

$$<\epsilon + y^n + \max(k_0, k_1, ...,)y^{n-1}\epsilon \tag{5}$$

$$< y^n + \epsilon [1 + \max(k_0, k_1, ...,)y^{n-1}]$$
 (6)

设 $\delta = x - y^n$, 取 $\epsilon < \delta/[1 + max(k_0, k_1, ...,)y^{n-1}]$, 就可以保证 $(y + \epsilon)^n < x$, 所以 $(y + \epsilon) \in E$,从而与 $y \in E$ 的上确界矛盾。

现在假设 $y^n > x$,假设 $0 < \epsilon < 1$ 是一个较小的正数。如果 $0 < y \le 1$,那么,

$$(y - \epsilon)^n > y^n - \epsilon^n - \max(|k_0|, |k_1|, ...,)y\epsilon$$
(7)

$$> y^n - \epsilon [1 - max(|k_0|, |k_1|, ...,)y]$$
 (8)

设 $\delta=y^n-x$,取 $\epsilon<\delta/[1-max(|k_0|,|k_1|,...,)y]$,就可以保证 $(y-\epsilon)^n>x$, 所以 $(y-\epsilon)$ 也是上界,这与 y 是 E 的最小上界矛盾。

如果 y > 1, 那么,

$$(y - \epsilon)^n > y^n - \epsilon^n - \max(|k_0|, |k_1|, ...,)y\epsilon$$
(9)

$$> y^n - \epsilon [1 - max(|k_0|, |k_1|, ...,)y^{n-1}]$$
 (10)

设 $\delta = y^n - x$,取 $\epsilon < \delta/[1 - max(|k_0|, |k_1|, ...,)y^{n-1}]$,就可以保证 $(y - \epsilon)^n > x$,所以 $(y - \epsilon)$ 也是上界,这与 y 是 E 的最小上界矛盾。

根据这两个矛盾, 我们得到 $y^n = x$, 命题得证。

证明过程中 k_n 具体的值是什么不重要,这里是定性分析。

(b)

该命题说明了 y 的唯一性,即: 只有 $y = x^{1/n}$,才能使得 $y^n = x$ 。 假设存在 y' 使得 $(y')^n = x$,那么 $(y')^n = y^n$,对 n 进行归纳,可知 y' = y,存在矛盾,所以 y = y',即 $y = x^{1/n}$ 是唯一的。

(c)

定义 5.6.4 就保证了任何 $E = \{y \in R : y \ge 0 \le y^n \le x\}$ 的上界 $M \ge 0$,因为上界要大于 E 中的任意元素。所以,E 的最小上界 $\sup(E) \ge 0$,所以 $x^{1/n}$ 是非负实数。

(d)

必要性: 因为 $x^{1/n} > y^{1/n}$, 且由命题 5.6.3 (c) 可知,

$$(x^{1/n})^n > (y^{1/n})^n$$

$$\Rightarrow x > y$$

充分性: 反证法, 假设 x>y 时, $x^{1/n} \le y^{1/n}$ 。而通过 5.6.3 (c) 可知,

$$(x^{1/n})^n \le (y^{1/n})^n$$

$$\Rightarrow x \le y$$

这与x>y矛盾。所以假设不成立,命题得证。

(e) (1) x > 1

首先证明 x>1 时, $x^{1/n}>1$ 。由(d)可知,x>1 于是 $x^{1/n}>1^{1/n}$,又因为 $1^n=1$,由(b)可知 $1=1^{1/n}$,于是,

$$x^{1/n} > 1^{1/n} = 1$$

现在证明 x>1 时, x^n 是严格递增的。只需证明对任意自然数 $k,x^k< x^{k+1}$ 。由于,

$$x^{k+1} - x^k = x^k(x-1) > 0$$

所以 x^n 是严格递增的。

不妨设 $k_0 < k_1$, 由(a)可知,

$$(x^{1/k_0})^{k_0} = x (11)$$

$$(x^{1/k_1})^{k_1} = x (12)$$

由于 $x > 1, x^{1/k_1} > 1$,于是 $(x^{1/k_1})^n$ 是严格递增的,且 $k_0 < k_1$,所以 $(x^{1/k_1})^{k_0} < (x^{1/k_1})^{k_1} = x$,由此可知,

$$x = (x^{1/k_0})^{k_0} > (x^{1/k_1})^{k_0}$$
(13)

由 5.6.3 (c) 可知, $x^{1/k_0} > x^{1/k_1}$, 所以 $x^{1/k}$ 是关于 k 的减函数得证。

- (2) x < 1 证明略
- (3) x = 1 证明略

(f)

按照消去律,只需证明,等式两端的 n 次幂是相等的即可。

由(a)可知

$$[(xy)^{1/n}]^n = xy$$

由命题 5.6.3 (a) 可知,

$$(x^{1/n}y^{1/n})^n = (x^{1/n})^n (y^{1/n})^n$$
$$= xy$$

(g)

按照消去律,只需证明,等式两端的 mn 次幂是相等的即可。 由(a)可知

$$[(x)^{1/mn}]^m n = x$$

有 5.6.3 (a) 可知,

$$[(x^{1/n})^{1/m}]^{mn} = \{[(x^{1/n})^{1/m}]^m\}^n$$
$$= (x^{1/n})^n$$
$$= x$$

5.6.2

证明:

记 q = a/b, r = c/d, 其中 a, c 是整数且 b, d 是正整数。

(a)

 $x^q=(x^{1/b})^a$,由定义 5.6.4 可知 $x^{1/b}\geq 0$,现在只需证明 $x^{1/b}\neq 0$,假设 $x^{1/b}=0$,那么,

$$x^{1/b} = 0$$
$$(x^{1/b})^b = 0^b$$
$$x = 0$$

这与 x > 0 矛盾, 所以 $x^{1/b} > 0$ 。

 $(x^{1/b})^a$ 的正实数性, 通过对 a 进行讨论来完成证明。

(1) $a \le 0$ 时,可以对 a 进行归纳。

$$a=1$$
 时, $(x^{1/b})^0=1>0$;

归纳假设 a = k 时, $(x^{1/b})^k > 0$ 。

a = k + 1 时,

$$(x^{1/b})^{k+1} = (x^{1/b})^k (x^{1/b})$$

由命题 5.4.4 可知 $(x^{1/b})^k(x^{1/b}) > 0$;

至此, 归纳完成。

(2)a < 0 时,由于 -a > 0,所以 $(x^{1/b})^a = 1/[(x^{1/b})^{-a}]$,由于 $[(x^{1/b})^{-a}] > 0$, 所以 $1/[(x^{1/b})^{-a}] > 0$, 即: $(x^{1/b})^a > 0$ 。

(b)

(1.1)

$$x^{q+r} = x^{(ad+bc)/bd}$$

对 $x^{(ad+bc)/bd}$ 进行 bd 次幂,

$$(x^{(ad+bc)/bd})^{bd} = (x^{1/bd})^{(ad+bc)bd}$$
$$= x^{ad+bc}$$

(1.2)

$$x^{q}x^{r} = x^{a/b}x^{c/d}$$

= $(x^{1/b})^{a}(x^{1/d})^{c}$

对 $(x^{1/b})^a(x^{1/d})^c$ 进行 bd 次幂,

$$[(x^{1/b})^a(x^{1/d})^c]^{bd} = (x^{1/b})^{abd}(x^{1/d})^{bcd} = x^{ad}x^{bc} = x^{ad+bc}$$

由消去律可知, $x^{q+r} = x^q x^r$ 。

相同方法可知 $(x^q)^r = x^{qr}$

(c)

q=0 时, $x^{-0}=1,1/x^0=1/1=1$,所以 $x^{-q}=1/x^q$ 。

q>0 时,此时 a>0, $x^{-q}=(x^{1/b})^{-a}$,由于 -a<0,由定义 5.6.2 可知, $(x^{1/b})^{-a}=1/(x^{1/b})^a=1/x^q$ 。

q<0 时,a<0, $x^{-q}=(x^{1/b})^{-a}$ 。 $1/x^q=1/(x^{1/b})^a$,由于 a<0,由 定义 5.6.2 可知, $1/x^q=1/(x^{1/b})^a=(x^{1/b})^{-a}=x^{-q}$ 。

综上, 命题得证。

说明. $1/(x^{1/b})^a = (x^{1/b})^{-a}$,利用了命题: $(x^{-1})^{-1} = x$,即: x 倒数的

倒数是 x。

该命题不做说明了

(d)

 $x^q=(x^{1/b})^a$, $y^q=(y^{1/b})^a$,由命题 5.6.3 (c)可知,我们只需证明 $(x^{1/b})>(y^{1/b})$,因为 x>y,由命题 5.6.6 (d)可知, $(x^{1/b})>(y^{1/b})$ 。 (e)

$$(x^q)^{bd} = (x^{a/b})^{bd}$$
$$= [(x^{1/b})^a]^{bd}$$
$$= x^{ad}$$

$$(x^r)^{bd} = (x^{c/d})^{bd}$$
$$= [(x^{1/d})^c]^{bd}$$
$$= x^{bc}$$

(1) x > 1

在习题 5.6.1 (e) 的证明过程已说明 $x>1, n\geq 0$ 时, x^n 是严格递增。

2. 在 5.6.1 (e) 中只说明了 $n \ge 0$, 所以 n < 0 也需要证明下: 设 x > 1, n < 0, 那么 x^n 是一个关于 n 的递增函数。

设 $-k_1 < -k_2 < 0$,现在要证明 $x^{-k_1} < x^{-k_2}$ 。

反证法,假设 $x^{-k_1} > x^{-k_2}$,则存在 $\epsilon > 0$ 使得 $x^{-k_1} = x^{-k_2} + \epsilon$ 。 由题设可知,存在 $\delta > 0$ 使得 $x^{k_1} = x^{k_2} + \delta$,所以,

$$x^{k_1}x^{-k_1} = (x^{k_2} + \delta)(x^{-k_2} + \epsilon)$$

$$= x^{k_2}x^{-k_2} + x^{k_2}\epsilon + \delta x^{-k_2} + \delta\epsilon$$

$$= 1 + x^{k_2}\epsilon + \delta x^{-k_2} + \delta\epsilon$$

$$> 1$$

这与 $x^{k_1}x^{-k_1} = 1$ 矛盾。

反证法,假设 $x^{-k_1}=x^{-k_2}$,此时 $x^{k_1}x^{-k_1}=x^{k_2}x^{-k_2}=x^{k_2}x^{-k_1}$,这与 $x^{k_1}>x^{k_2}$, $x^{k_1}x^{-k_1}>x^{k_2}x^{-k_1}$ 矛盾。

(1.1) 充分性:

如果 $x^q > x^r$, 由引理 5.6.9 (d) 可知 $(x^q)^{bd} > (x^r)^{bd}$, 于是,

$$x^{ad} > x^{bc}$$

由 x^n 的严格递增性可知 ad > bc,所以 q - r = (ad - bc)/bd > 0,可得 q > r。

(1.2) 必要性:

q > r,则

$$a/b - c/d = (ad - bc)/bd > 0$$

 $\Rightarrow ad - bc > 0 \Rightarrow ad$ $> bc$

由于 ad > bc 可知, $(x^q)^{bd} > (x^r)^{bd}$, 由引理 5.6.9 (d) 可知, $x^q > x^r$ 。

(2) x < 1 证明类似略

5.6.3

先证明 $x^2 = |x|^2$ 。

如果 x = 0, 显然成立;

如果 x > 0,由于 |x| = x,所以 $|x|^2 = x^2$;

如果 x < 0,不妨设 x = -y, |x| = y, y > 0,则

$$x^{2} = (-y)^{2}$$
$$= (-1)^{2}y^{2}$$
$$= 1 \times y^{2}$$
$$= y^{2}$$

所以 $|x|^2 = x^2 = y^2$ 。

利用引理 5.6.9 (a)

$$(x^2)^{1/2} = (|x|^2)^{1/2}$$

= $|x|^{2 \times (1/2)}$
= $|x|$