Fancy RNNs

CS114 Lab 9

Kenneth Lai

March 20, 2020

▶ Output \mathbf{y}_i depends on hidden state \mathbf{h}_i (i.e. current word \mathbf{x}_i and history/(past) context \mathbf{h}_{i-1})

- Output y_i depends on hidden state h_i (i.e. current word x_i and history/(past) context h_{i-1})
- What about future context?

Bidirectional RNNs

► Idea: Train two RNNs: passing the input into one forward and one backward

Bidirectional RNNs

- Idea: Train two RNNs: passing the input into one forward and one backward
- ▶ Output \mathbf{y}_i depends on forward hidden state $\mathbf{h}_{f,i}$ and backward hidden state $\mathbf{h}_{b,i}$

Forward RNN

Backward RNN

Bidirectional RNN

ightharpoonup $\mathbf{h}_{f,T}$ encodes the whole text

- $ightharpoonup \mathbf{h}_{f,T}$ encodes the whole text
 - Use $\mathbf{h}_{f,T}$ to predict class \mathbf{y}_T of entire document

- $ightharpoonup \mathbf{h}_{f,T}$ encodes the whole text
 - ▶ Use $\mathbf{h}_{f,T}$ to predict class \mathbf{y}_T of entire document
- ▶ $\mathbf{h}_{b,1}$ also encodes the whole text

- \blacktriangleright **h**_{f,T} encodes the whole text
 - ▶ Use $\mathbf{h}_{f,T}$ to predict class \mathbf{y}_T of entire document
- ▶ **h**_{b.1} also encodes the whole text
 - ▶ Use $\mathbf{h}_{b,1}$ to predict class \mathbf{y}_1 of entire document

▶ Use $\mathbf{h}_{f,T}$ and $\mathbf{h}_{b,1}$ to predict class \mathbf{y} of entire document

▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$

- ▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$
 - ▶ But mostly \mathbf{x}_{i-1} , less \mathbf{x}_{i-2} , even less \mathbf{x}_{i-3} , ..., very little \mathbf{x}_1

- ▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$
 - ▶ But mostly \mathbf{x}_{i-1} , less \mathbf{x}_{i-2} , even less \mathbf{x}_{i-3} , ..., very little \mathbf{x}_1
- Context is local

► Example: subject-verb agreement

- Example: subject-verb agreement
- ▶ The flights the airline was cancelling were full.

- Example: subject-verb agreement
- ▶ The flights the airline was cancelling were full.

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for was is mostly airline

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for was is mostly airline
 - ► The context for were is mostly cancelling, was, airline

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for was is mostly airline
 - ► The context for were is mostly cancelling, was, airline
 - Very little flights

▶ What is $\nabla_{\mathbf{W},1,T}L$?

▶ What is $\nabla_{\mathbf{W},1,T}L$?

- ► For all layers *I*:
- ▶ For an output layer \mathcal{L} :
 - $\qquad \qquad \boldsymbol{\delta}_{\mathcal{L}} = \mathbf{\hat{y}} \mathbf{y}$
- ► For a non-output layer *J* (with next layer *K*):

$$\nabla_{\mathbf{W},1,T} L = \delta_{\mathbf{h}_1} \odot \mathbf{x}_1$$

$$\nabla_{\mathbf{W},1,T} L = \delta_{\mathbf{h}_1} \odot \mathbf{x}_1$$

= $(\mathbf{U}^T \cdot \delta_{\mathbf{h}_2}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1$

$$\begin{split} \nabla_{\mathbf{W},1,\mathcal{T}} \mathcal{L} &= \delta_{\mathbf{h}_1} \odot \mathbf{x}_1 \\ &= (\mathbf{U}^{\mathcal{T}} \cdot \delta_{\mathbf{h}_2}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= (\mathbf{U}^{\mathcal{T}} \cdot ((\mathbf{U}^{\mathcal{T}} \cdot \delta_{\mathbf{h}_3}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}))) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \end{split}$$

$$\begin{split} \nabla_{\mathbf{W},1,\mathcal{T}} \mathcal{L} &= \delta_{\mathbf{h}_1} \odot \mathbf{x}_1 \\ &= \left(\mathbf{U}^{\mathcal{T}} \cdot \delta_{\mathbf{h}_2} \right) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= \left(\mathbf{U}^{\mathcal{T}} \cdot \left(\left(\mathbf{U}^{\mathcal{T}} \cdot \delta_{\mathbf{h}_3} \right) \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}) \right) \right) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= \left(\mathbf{U}^{\mathcal{T}} \cdot \left(\left(\mathbf{U}^{\mathcal{T}} \cdot \left(\left(\mathbf{U}^{\mathcal{T}} \cdot \ldots \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}) \right) \right) \right) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ \end{split}$$

$$\begin{split} \nabla_{\mathbf{W},\mathbf{1},T} L &= \delta_{\mathbf{h}_1} \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot \delta_{\mathbf{h}_2}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot \delta_{\mathbf{h}_3}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}))) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}))) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \end{split}$$

▶ If weights/derivatives are small, vanishing gradient

$$\begin{split} \nabla_{\mathbf{W},\mathbf{1},T} L &= \delta_{\mathbf{h}_1} \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot \delta_{\mathbf{h}_2}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot \delta_{\mathbf{h}_3}) \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}))) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \\ &= (\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot ((\mathbf{U}^T \cdot \odot \sigma'(\mathbf{z}_{\mathbf{h}_2}))) \odot \sigma'(\mathbf{z}_{\mathbf{h}_1}) \odot \mathbf{x}_1 \end{split}$$

- If weights/derivatives are small, vanishing gradient
- ▶ If weights/derivatives are large, exploding gradient

Simple RNN

Simple RNN

Separate memory (cell) state

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates

Source

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ► Each gate contains one or two neural network layers

Source

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ► Each gate contains one or two neural network layers
 - ► State persists across time

Source

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - Each gate contains one or two neural network layers
 - State persists across time
 - May remember information from long ago

Source

- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ► Each gate contains one or two neural network layers
 - State persists across time
 - May remember information from long ago
 - Gradients for memory don't decay with time

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Source

Neural network layer with logistic activation function

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

- Neural network layer with logistic activation function
- Element-wise multiplication of forget gate output with memory state

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Neural network layer with logistic activation function
- Element-wise multiplication of forget gate output with memory state
 - ▶ Mask: What parts of memory to forget/remember?

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Source

Two parts

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - Logistic activation function

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - ► Logistic activation function
 - What parts of memory to update?

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice
 - ▶ Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values
 - Tanh activation function

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values
 - Tanh activation function
 - ▶ How much to update them by?

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Source

► Element-wise multiplication of two outputs

- ► Element-wise multiplication of two outputs
- ► Then element-wise addition with memory state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Source

► Logistic activation function

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- Logistic activation function
 - ▶ What parts of memory to output?

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- Logistic activation function
 - What parts of memory to output?
- ▶ Element-wise multiplication with tanh of memory state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- ► Logistic activation function
 - ▶ What parts of memory to output?
- ▶ Element-wise multiplication with tanh of memory state
 - ► This is the "hidden layer output" that gets passed on to the output layer/next time step