Lecture 21 Hypothesis Testing

Scientific Method

Scientific Method

How to test a hypothesis

Proving a something is "right" is very hard to do

Proving something is "wrong" is much easier

How to test a hypothesis

- The standard approach is to make 2 hypotheses
 - Null hypothesis the "accepted"/"default" hypothesis
 - No signal, no new physics, etc.
 - Alternative hypothesis Your science hypothesis
- Your goal is then to "rule out" or disprove the null hypothesis

Hypothesis Examples

- We want to determine if a source is variable
 - Null hypothesis source has a constant flux
 - Alternative the source flux is not constant

- Is there a source detected or is it just background?
 - Null background fluctuation, follows bkg statistics
 - Alternative there are signal counts + bkg counts

Hypothesis Examples

- Do we need a change to the standard model of particle physics, say a 4th neutrino flavor
 - Null hypothesis standard model
 - Alternative standard model + a 4th neutrino flavor

How to choose a hypothesis?

- It helps to state the hypotheses as math
 - Is there a source? In my N counts
 - Null an expected average of Nbkg counts
 - Alt an expected average of Nbkg + Nsig counts, where Nsig > 0

Then a test needs to be defined that tries to "reject" the null hypothesis

Test Statistic

- A test statistic (TS) is defined
 - Generally chosen such that
 - its distribution under the null hypothesis is known
 - If the alt is true, will give a large value
- Is there a source? In my N counts
 - Let's make our TS a signal to noise ratio
 - TS = (N Nbkg) / σ_{bkg}
 - High with lots of signal counts
 - If there's no signal counts (null is True) it should follow a standard normal

p-value

We then find the probability of observing that TS assuming the null is True

$$P(>=TS) = \int_{TS}^{\infty} PDF(x \mid Null) dx$$
$$= 1 - \int_{0}^{TS} PDF(x \mid Null) dx$$

We pick a predefined threshold, if it surpassed the threshold, reject the null!

Common thresholds are 0.05, 3 sigma (0.003), 5 sigma (~0.00001)

p-value

- Is there a source? In my N counts
 - For counting, we can use the normal distribution.
 - PDF = Normal distribution
 - Say we know the bkg is constant with average Nbkg counts
 - Mu = Nbkg, sigma = sqrt(Nbkg)
 - P-value is the integrated tail at >= measured S/N (our TS)

What if we don't know our PDF(TS | Null)?

- In this case, we have to approximate it
- This is often done by
 - doing many "trials" of existing data where we known the null is true
 - simulations of data where the null is true

p-value

- Is there a source? In my N counts
 - For counting, we can use the normal distribution
 - PDF = Normal distribution
 - Say we know the bkg is constant with average Nbkg counts
 - Mu = Nbkg, sigma = sqrt(Nbkg)
 - P-value is the integrated tail at >= measured S/N (our TS)

