

Nonlinearity

Numerical Flow Simulation

École polytechnique fédérale de Lausanne

Edouard Boujo Fall 2024

Linearity

General conservation equation

$$\frac{\partial(\rho\phi)}{\partial t} + div(\rho\phi\mathbf{u}) = div(\Gamma grad(\phi)) + S$$

- Linear in ϕ if:
 - coefficients independent of ϕ ,
 - source term independent of/linear in ϕ .
- Example: steady diffusion $\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + S = 0$ with $\begin{vmatrix} k = cst \text{ or } k(x) \\ S = cst \text{ or } S = S(x) \\ \text{or } S = S_c + S_l T \end{vmatrix}$

Discretization yields a linear algebraic system:

$$\mathbf{A}\phi = \mathbf{b} \quad \rightarrow \quad \phi = \mathbf{A}^{-1}\mathbf{b}$$

Nonlinearity

General conservation equation

$$\frac{\partial(\rho\phi)}{\partial t} + div(\rho\phi\mathbf{u}) = div(\Gamma grad(\phi)) + S$$

- Nonlinear in ϕ if:
 - Coefficients depend on ϕ
 - Other terms nonlinear in ϕ
- Example: Navier-Stokes equations

Nonlinear if compressible (both
$$\rho$$
 and \mathbf{u} unknown)

$$\frac{\partial \rho}{\partial t} + div(\rho \mathbf{u}) = 0$$

Always nonlinear

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + div(\rho\mathbf{u}\mathbf{u}) = div \left[\left(-p - \frac{2}{3}\mu \, div(\mathbf{u}) \right) \mathbf{I} + 2\mu \mathbf{d} \right]$$

- Discretization yield a **nonlinear** system: $\mathbf{A}(\phi) = \mathbf{b} \rightarrow \phi = ?$
- We only know how to solve linear systems → must linearize.

Linearization: Picard's method

$$\mathbf{A}(\boldsymbol{\phi}) = \mathbf{b} \quad \rightarrow \quad \boldsymbol{\phi} = ?$$

- If the system can be written in the "quasi-linear" form $\widetilde{\mathbf{A}}(\phi)\phi = \mathbf{b}$
 - take a guess solution ϕ^* to evaluate the matrix $\widetilde{\mathbf{A}}(\phi^*)$
 - solve $\widetilde{\mathbf{A}}(\phi^*)\phi = \mathbf{b}$
 - take ϕ as new guess,
 - iterate until convergence.

Linearization: Newton's method

$$\mathbf{A}(\boldsymbol{\phi}) = \mathbf{b} \quad \rightarrow \quad \boldsymbol{\phi} = ?$$

Linearize with 1st-order Taylor expansion:

$$\mathbf{A}(\boldsymbol{\phi}^* + \delta \boldsymbol{\phi}) \approx \mathbf{A}(\boldsymbol{\phi}^*) + \left. \frac{\partial \mathbf{A}}{\partial \boldsymbol{\phi}} \right|_{\boldsymbol{\phi}^*} \delta \boldsymbol{\phi} \approx \mathbf{b}$$

• take a guess solution to evaluate the Jacobian matrix $\mathbf{J}(\phi^*) = \left. \frac{\partial \mathbf{A}}{\partial \phi} \right|_{\phi^*}$

- solve for the increment $\delta \phi$
- take $\phi = \phi^* + \delta \phi$ as new guess,
- iterate until convergence.
- Alternatively, can write $\mathbf{A}(\phi^*) + \mathbf{J}(\phi^*)(\phi \phi^*) \approx \mathbf{b}$ and solve directly for ϕ .
- Faster convergence than Picard's method, but more complicated to implement and costly to solve.

Possible problems

- May fail:
 - Can converge to "another" solution (when multiple solutions)
 - Can oscillate / diverge

- Remedies:
 - Choose a good initial guess
 - Use under-relaxation

Smooth step (2 solutions)

Schlichting & Gersten 2005

Under-relaxation

- Instead of taking ϕ or $\phi^* + \delta \phi$ as new guess, take $\omega \phi + (1 \omega)\phi^*$ or $\phi^* + \omega \delta \phi$, with $\omega < 1$
- Can help to stabilize the iterative process.
- Generally, slows down convergence.
- Suitable value of the relaxation factor is case-dependent.

Examples

Nonlinear source term in the steady diffusion eq., for example:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + (4 - 5T^3) = 0$$

$$S(T)$$

Picard

Picard
$$S(T) \approx 4 - (5T^{*2})T$$

Newton

Newton
$$S(T^*+\delta T)\approx 4-5T^{*3}-(15T^{*2})\delta T$$
 or
$$4+10T^{*3}-(15T^{*2})T$$

 \rightarrow Obtain an equation linear in T, to be solved for T knowing the current guess T^* .

Examples

• Convective term $C(\phi) = \rho uu$ in the incompressible Navier-Stokes equations (constant density ρ):

→ Obtain an equation linear in **u**, to be solved for **u** knowing the current guess **u***.

Exercise: what would you obtain for the nonlinear terms in the compressible NS equations?

Hints: (i) work with the full state vector $\phi = (\rho, \mathbf{u})$; (ii) consider the continuity and momentum equations simultaneously.

Summary

Linear system, direct methods

Solve the

linear system

Solution ϕ

Linear system, iterative methods

Converged solution ϕ

Nonlinear system, iterative methods

