Subject Code: 2110015

Date: 05-01-2015

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - I-II (NEW) • EXAMINATION - WINTER • 2014

Subject Name: Vector Calculus and Linear Algebra Time: 10:30 am - 01:30 pm **Total Marks: 70**

Instructions:

- 1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1

- Choose the appropriate answer for the following MCQs. (a) (07)
 - If $|\vec{a} \times \vec{b}| = \vec{a} \cdot \vec{b}$ then the angle between two vectors \vec{a} and \vec{b} is

(a)
$$30^{0}$$
 (b) 45^{0} (c) 60^{0} (d) 90^{0}

2. If
$$\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k}$$
 then the $|\vec{a}| =$

(a)
$$\sqrt{-4}$$
 (b) $\sqrt{4}$ (c) $\sqrt{13}$ (d) $\sqrt{14}$

3. If \vec{F} is conservative then

(a)
$$\nabla \times \vec{F} = 0$$
 (b) $\nabla \times \vec{F} \neq 0$ (c) $\nabla \vec{F} = 0$ (d) $\nabla \cdot \vec{F} = 0$

- **4.** If $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ then the determinant of A is
 - (a) -2 (b) 1 (c) -1 (d) 0
- 5. If $A = \begin{bmatrix} -5 & -3 \\ 2 & 1 \end{bmatrix}$ then the determinant of A is
 - (a) 0 (b) -1 (c) 1
- The characteristic equation for the matrix $A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix}$

(a)
$$(\lambda - 2)^2 = 0$$
 (b) $\lambda + 2 = 0$ (c) $(\lambda - 2)(\lambda + 2) = 0$ (d) $\lambda - 2 = 0$

- If A is a matrix with 5 columns and nullity of A = 2 then rank(A) is (a) 5 (b) 2 (c) 3 (d) 4
- (b) Choose the appropriate answer for the following MCQs.

(07)

- If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ then the angle between two vectors \vec{a} and \vec{b}
 - (a) 30° (b) 45° (c) 60° (d) 90°
- If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then the divergence of \vec{r} is
 - (a) 2 (b) -2 (c) 3 (d) -3
- **3.** If A and kA have same rank then what can be said about k?
 - (a) zero (b) non-zero (c) positive (d) negative
- If V is a vector space having a basis B with n elements then dim(V) =4.
 - (a) < n (b) > n (c) n (d) none of these
- 5. For a $n \times n$ matrix A, Which one of the following statements does not imply the other?
 - (a) A is not invertible
- (b) $\det(A) \neq 0$ (c) rank(A) = n
- (d) $\lambda = 0$ is not an eigen-value of A
- If a complex number $\lambda \neq 0$ is an eigen value of 2×2 real matrix A, then which one of the following is not true?
 - (a) λ is also an eigen-value of A (b) $\det(A) \neq 0$ (c) rank(A) = 2
 - (d) A is not invertible

- 7. If a 3×3 matrix A is diagonalizable then which one of the following is true?
 - (a) A has 2 distinct eigen-values.
 - (b) A has 2 linearly independent eigen-vectors.
 - (c) A has 3 linearly independent eigen-vectors.
 - (d) none of these

Q.2 (a) Show that
$$A = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is orthogonal. (03)

- (b) Is T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + 3y, y, z + 2x) linear? Is it one-to-one, onto or both? Justify.
- (c) Define rank of a matrix. Determine the rank of the matrix $A = \begin{bmatrix} 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19 \end{bmatrix}$ (07)

Q.3 (a) Find
$$A^{-1}$$
 for $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, if exists. (03)

(b) Obtain the reduced row echelon form of the matrix
$$A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}$$
 and (04)

hence find the rank of the matrix A.

(c) State rank-nullity theorem. Also verify it for the linear transformation T: R^3 $\Rightarrow R^2$ defined by T(x, y, z) = (x + y + z, x + y).

Q.4 (a) If
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
 then find the eigen values of A^{T} and $5A$. (03)

(b) Solve the system of linear equations by Cramer's Rule:
$$3x - y + z = 6$$
 (04)

(c) Verify Green's Theorem in the plane for
$$\iint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$$
, where C is the boundary of the region defined by $y^2 = x$ and $x^2 = y$

Q.5 (a) Find
$$grad(\phi)$$
, if $\phi = \log(x^2 + y^2 + z^2)$ at the point (1, 0, -2). (03)

(b) Find the angle between the surfaces
$$x^2 + y^2 + z^2 = 9$$
 and $x^2 + y^2 - z = 3$ at the point $(2, -1, 2)$

- (c) (1) Let T: $R^2 \rightarrow R^3$ be the linear transformation defined by T(x,y) = (y,-5x+13y,-7x+16y). Find the matrix for the transformation T with respect to the basis $B = \{(3,1)^T, (5,2)^T\}$ for R^2 and $B' = \{(1,0,-1)^T, (-1,2,2)^T, (0,1,2)^T\}$ for R^3 .
 - (2) Find a basis for the orthogonal complement of the subspace W of R^3 defined as $W = \{(x,y,z) \text{ in } R^3 | -2x + 5y z = 0\}$ (02)
- **Q.6** (a) Show that $\vec{F} = (y^2 z^2 + 3yz 2x)\vec{i} + (3xz + 2xy)\vec{j} + (3xy 2xz + 2z)\vec{k}$ is both solenoidal and irrotational. (03)
 - **(b)** A vector field is given by $\vec{F} = (x^2 + xy^2)\vec{i} + (y^2 + x^2y)\vec{j}$. Find the scalar potential. **(04)**
 - (c) (1) Show that the set of all pairs of real numbers of the form (1, x) with the operations defined as $(1, x_1) + (1, x_2) = (1, x_1 + x_2)$ and k(1, x) = (1, kx)
 - (2) Verify Caylay-Hamilton Theorem for the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ (02)
- Q.7 (a) Find a basis for the subspace of P_2 spanned by the vectors (03) 1+x, x^2 , $-2+2x^2$, -3x
 - **(b)** Let R^3 have the Euclidean inner product. Transform the basis **(04)** $S = \{(1,0,0), (3,7,-2), (0,4,1)\}$ into an orthonormal basis using the Gram-Schmidt ortho-normalization process.
 - (c) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} dS$ where $\vec{F} = yz\vec{i} + xz\vec{j} + xy\vec{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.
