1 Выбор типов артиллерийских установок

Для выполнения составной части опытно-конструкторской работы по теме "Модельер 1", связанной с разработкой программного обеспечения виртуальной имитационной модели артиллерийского выстрела, были выбраны 3 установки.

1. 30-мм авиационная пушка АО-18 (см. рисунок 1.1), выстрелы осколочно-трассирующим (ОТ-30) и осколочно-фугасным (ОФ3) снарядами (см. рисунок 1.2) с зарядом из пороха 6/7фл (см. рисунок 1.3).

Информация о характеристиках установки AO-18, снарядов и заряда приведена в таблицах 1.1 – 1.4.

Таблица 1.1 – Характеристики установки АО-18

Параметр	Обозначение	Размерность	Значение
Диаметр каморы	$D_{_{ m KM}}$	M	0,03987
Диаметр канала ствола	$D_{\scriptscriptstyle m KH}$	M	0,03
Начало уширения	L_1	M	0,027
Конец уширения	L_2	M	0,127
Длина каморы	$L_{_{ m KM}}$	M	0,143
Длина канала ствола	$L_{_{ m KH}}$	M	1,632
Теплоемкость металла установки	$c_{ m ycr}$	Дж·кг/К	462
Теплопроводность металла установки	$\lambda_{ m ycr}$	H/(c·K)	47
Плотность металла установки	$\delta_{ m ycr}$	кг/м ³	7800

Таблица 1.2 – Характеристики осколочно-трассирующего и осколочно-фугасного снарядов

Параметр	Обозначение	Размерность	Значение
Macca	$q_{\scriptscriptstyle \mathrm{CH}}$	КГ	0,386
Дульная скорость	$v_{_{ m I\! I}}$	м/с	890
Максимальное давление	$p_{ m m}$	МПа	350

Таблица 1.3 – Характеристики пороха заряда 6/7фл

Параметр	Обозначение	Размерность	Значение
Macca	ω	КГ	0,118
Число каналов в пороховом элементе	n	ı	7
Внешний диаметр порохового элемента	D_0	M	0,0033
Диаметр канала порохового элемента	d_0	M	0,00021

Продолжение таблицы 1.3

Параметр	Обозначение	Размерность	Значение
Длина порохового элемента	L_0	M	0,00459
Толщина горящего свода	$2e_1$	M	0,0006675
Теплоемкость пороха	C_{Π}	Дж/(кг·К)	1298
Теплопроводность пороха	$\lambda_{_{\Pi}}$	H/(c K)	0,13
Плотность пороха	$\delta_{\scriptscriptstyle \Pi}$	кг/м³	1550
Тепловыделение в к-фазе	Q_{κ}	Дж/кг	3450000
Предэкспонент	Z_{κ}	1/c	6000000000
Энергия активации	$E_{\scriptscriptstyle m K}$	Дж/моль	22000
Сила пороха	f	Дж/кг	1000000
Единичная скорость горения	u_1	$M^3/(H \cdot c)$	7,1e-10
Коволюм	α	$M^3/K\Gamma$	0,00097
Удельная газовая постоянная продуктов горения пороха (ПГП)	$R_{\rm nrn}$	Дж/(кг·К)	346,9
Теплоемкость ПГП при постоянном объеме	c_v	Дж/(кг·К)	1497,4
Теплоемкость ПГП при постоянном давлении	c_p	Дж/(кг·К)	1838,8
Теплопроводность ПГП	$\lambda_{_{\Pi \Gamma \Pi}}$	H/(c K)	0,117
Вязкость ПГП	$\mu_{ ext{nrn}}$	кг/(м·с)	5,18e-05

Таблица 1.4 – Характеристики воспламенителя

Параметр	Обозначение	Размерность	Значение
Macca	$\omega_{_{\mathrm{B}}}$	КГ	0,005
Диаметр зерна воспламенителя	D_0	M	0,001
Теплоемкость пороха воспламенителя	$C_{_{\Pi}}$	Дж/(кг·К)	1555
Плотность пороха воспламенителя	$\delta_{\scriptscriptstyle \Pi}$	кг/м ³	1550
Теплотворная способность пороха воспламенителя	$Q_{\scriptscriptstyle m B}$	Дж/кг	2930000
Коэффициент скорости горения	A_0	$(c \cdot \Pi a^{0,2})^{-1}$	12,65
Удельная газовая постоянная продуктов горения воспламенителя (ПГВ)	R_{nirb}	Дж/(кг·К)	327
Теплоемкость ПГВ при постоянном объеме	c_v	Дж/(кг·К)	1260
Теплопроводность ПГВ	$\lambda_{\text{\tiny III'B}}$	H/(c K)	0,117
Вязкость ПГВ	$\mu_{{}_{\Pi\Gamma B}}$	кг/(м·с)	7,13e-05

Рисунок 1.1 – Эскиз 30-мм авиационной пушки АО-18

Рисунок 1.2 – Эскиз осколочно-трассирующего (осколочно-фугасного) снаряда

Рисунок 1.3 – Эскиз заряда из пороха 6/7фл

2. 152-мм гаубица 2A36 (см. рисунок 1.4), выстрел осколочно-фугасным снарядом ОФ29 (см. рисунок 1.5) с зарядом 4Ж47 (см. рисунок 1.6).

Информация о характеристиках установки 2A36, снарядов и зарядов приведена в таблицах 1.5 - 1.8.

Таблица 1.5 – Характеристики установки 2А36

Параметр	Обозначение	Размерность	Значение
Диаметр каморы	$D_{_{ m KM}}$	М	0,214
Начало уширения 1	L_1	М	0
Конец уширения 1	L_2	М	0,85
Диаметр в конце уширения 1	D_1	М	0,196
Начало уширения 2	L_3	М	0,85
Конец уширения 2	L_4	М	0,960
Диаметр в конце уширения 2	D_2	М	0,164
Начало уширения 3	L_5	М	0,960
Конец уширения 3	L_6	М	1,015
Диаметр в конце уширения 3	D_3	М	0,155
Начало уширения 4	L_7	М	1,015
Конец уширения 4	L_8	M	1,045
Диаметр в конце уширения 4	D_4	М	0,155
Начало уширения 5	L_9	М	1,045
Конец уширения 5	L_{10}	М	1,1225
Диаметр канала ствола	$D_{_{ m KH}}$	M	0,1524
Длина каморы	$L_{_{ m KM}}$	М	1,015
Длина канала ствола	$L_{_{ m KH}}$	М	6,322
Теплоемкость металла установки	$c_{ m ycr}$	Дж·кг/К	462
Теплопроводность металла установки	$\lambda_{ m ycr}$	H/(c K)	47
Плотность металла установки	$\delta_{ m ycr}$	кг/м ³	7800

Таблица 1.6 – Характеристики осколочно-фугасного снаряда ОФ29

Параметр	Обозначение	Размерность	Значение
Macca	$q_{\scriptscriptstyle \mathrm{CH}}$	КГ	46
Дульная скорость	$v_{_{ m I\!\! I}}$	м/с	945
Максимальное давление	$p_{ m m}$	МПа	321,6

Таблица 1.7 – Характеристики пороха 22/7 заряда 4Ж47

Параметр	Обозначение	Размерность	Значение
Macca	ω	КГ	19
Число каналов в	n		7
пороховом элементе	Ti .	_	1
Внешний диаметр	D_0	M	0,0115
порохового элемента	20	191	0,0115
Диаметр канала	$d_{_0}$	M	0,0009
порохового элемента	0	171	0,0007
Длина порохового	L_0	M	0,019
элемента	0	1.12	0,012
Толщина горящего	$2e_1$	M	0,0022
свода		_	
Теплоемкость пороха	$c_{_{\Pi}}$	Дж/(кг·К)	1298
Теплопроводность	$\lambda_{_{\Pi}}$	Н/(с К)	0,13
пороха			
Плотность пороха	$\delta_{_{\Pi}}$	кг/м ³	1520
Тепловыделение	0	Дж/кг	3450000
в к-фазе	$Q_{\scriptscriptstyle ext{K}}$	дж/кг	3430000
Предэкспонент	$Z_{\scriptscriptstyle ext{ iny K}}$	1/c	6000000000
Энергия активации	$rac{E_{\kappa}}{f}$	Дж/моль	22000
Сила пороха	f	Дж/кг	900000
Единичная скорость	11	$\text{m}^3/(\text{H}\cdot\text{c})$	5,9e-10
горения	u_1		·
Коволюм	α	м ³ /кг	0,00095
Удельная газовая			
постоянная	$R_{ m nrn}$	Дж/(кг·К)	346,9
продуктов горения	T IIIII	Aw (Ki Tt)	310,5
пороха (ПГП)			
Теплоемкость ПГП		H // 10	1.407.4
при постоянном	$C_{_{\mathcal{V}}}$	Дж/(кг·К)	1497,4
объеме			
Теплоемкость ПГП	a	П/(. 10)	1020.0
при постоянном	C_p	Дж/(кг·К)	1838,8
давлении			
Теплопроводность	$\lambda_{ m mm}$	H/(c K)	0,117
ПГП			£ 10 0£
Вязкость ПГП	$\mu_{ ext{nrn}}$	кг/(м⋅с)	5,18e-05

Таблица 1.8 – Характеристики воспламенителя

Попомотп	Обозначе-	Размер-	Воспламе-	Воспламе-	Воспламе-
Параметр	ние	ность	нитель 1	нитель 2	нитель 3
Macca	$\omega_{_{\mathrm{B}}}$	КГ	0,100	0,430	0,280
Диаметр зерна	D_0	M	0,001	0,001	0,001
воспламенителя	D_0	IVI	0,001	0,001	0,001
Теплоемкость пороха	C	Дж/(кг·К)	1555	1555	1555
воспламенителя	$\mathcal{C}_{_{\Pi}}$	дж/(кі к)	1333	1333	1555
Плотность пороха	$\delta_{_{\Pi}}$	кг/м ³	1550	1550	1550
воспламенителя	σ_{π}	K1/M	1330	1330	1330

Продолжение таблицы 1.8

Параметр	Обозначе-	Размер-	Воспламе-	Воспламе-	Воспламе-
	ние	ность	нитель 1	нитель 2	нитель 3
Теплотворная способность пороха воспламенителя	$Q_{\scriptscriptstyle m B}$	Дж/кг	2930000	2930000	2930000
Коэффициент скорости горения	A_0	$(c \cdot \Pi a^{0,2})^{-1}$	12,65	12,65	12,65
Удельная газовая постоянная продуктов горения воспламенителя (ПГВ)	$R_{_{ m III'B}}$	Дж/(кг·К)	327	327	327
Теплоемкость ПГВ при постоянном объеме	C_v	Дж/(кг·К)	1260	1260	1260
Теплопроводность ПГВ	$\lambda_{{}_{\Pi\Gamma B}}$	Н/(с К)	0,117	0,117	0,117
Вязкость ПГВ	μ_{IIIB}	кг/(м·с)	7,13e-05	7,13e-05	7,13e-05

Рисунок 1.4 – Эскиз 152-мм гаубицы 2А36

Рисунок 1.5 – Эскиз осколочно-фугасного снаряда ОФ29

Рисунок 1.6 – Эскиз заряда 4Ж47

3. 125 мм танковая пушка 2A46 (см. рисунок 1.7), выстрелы осколочнофугасным снарядом 3OФ26 (см. рисунок 1.8) с зарядом 4Ж63 (см. рисунок 1.9) и бронебойным подкалиберным снарядом 3БМ42 (см. рисунок 1.10) с дополнительным зарядом (см. рисунок 1.11).

Информация о характеристиках установки 2A46, снарядов и зарядов приведена в таблицах 1.9 - 1.10.

Таблица 1.9 – Характеристики установки 2А46

Параметр	Обозначение	Размерность	Значение
Диаметр каморы	$D_{_{ m KM}}$	M	0,16
Начало уширения 1	L_1	M	0,392
Конец уширения 1	L_2	M	0,482
Диаметр в конце уширения 1	D_1	M	0,13
Начало уширения 2	L_3	M	0,8
Конец уширения 2	L_4	M	0,84
Диаметр канала ствола	$D_{\scriptscriptstyle m KH}$	M	0,125
Длина каморы	$L_{_{ m KM}}$	M	0,84
Длина канала ствола	$L_{_{ m KH}}$	M	5,16
Теплоемкость металла установки	$c_{ m ycr}$	Дж·кг/К	462
Теплопроводность металла установки	$\lambda_{ m ycr}$	Н/(с К)	47
Плотность металла установки	$\delta_{ m ycr}$	кг/м ³	7800

Таблица 1.10 – Характеристики осколочно-фугасного снаряда 3ОФ26

Параметр	Обозначение	Размерность	Значение
Macca	$q_{\scriptscriptstyle \mathrm{CH}}$	КГ	23
Дульная скорость	$v_{_{ m I\!\! I}}$	м/с	870
Максимальное давление	$p_{ m m}$	МПа	324

Таблица 1.11 – Характеристики порохов заряда 4Ж63 к снаряду 3ОФ26

Параметр	Обозначение	Размерность	АПЦ-235П	16/1 тр ВА
			16/1	
Масса сгораемого	(0)	Ter.		0,64
корпуса гильзы	$\omega_{\rm cr}$	КГ		0,04
Масса пороха	ω	КГ	4,6	0,7
Число каналов	10		1	1
в пороховом элементе	n	Ι	1	1
Внешний диаметр	D_0		0,0063	0,0049
порохового элемента	D_0	M	0,0003	0,0049
Диаметр канала	d	M	0,0031	0,0016
порохового элемента	d_0	M	0,0031	0,0010

Продолжение таблицы 1.11

Параметр	Обозначение Размерность		АПЦ-235П	16/1 тр ВА
			16/1	
Длина порохового элемента	L_0	M	0,35	0,35
Толщина горящего свода	$2e_1$	М	0,0016	0,00165
Теплоемкость пороха	$\mathcal{C}_{_{\Pi}}$	Дж/(кг·К)	1298	1298
Теплопроводность пороха	$\lambda_{\scriptscriptstyle \Pi}$	H/(c K)	0,13	0,13
Плотность пороха	$\delta_{_{\Pi}}$	$\kappa\Gamma/M^3$	1620	1520
Тепловыделение в к-фазе	$Q_{\scriptscriptstyle ext{K}}$	Дж/кг	3450000	3450000
Предэкспонент	$Z_{\scriptscriptstyle ext{K}}$	1/c	6000000000	6000000000
Энергия активации	$E_{\scriptscriptstyle m K}$	Дж/моль	22000	22000
Сила пороха	f	Дж/кг	1000000	1000000
Единичная скорость горения	u_1	$M^3/(H \cdot c)$	6,7e-10	6,7e-10
Коволюм	α	${ m m}^3/{ m k}\Gamma$	0,00097	0,00097
Удельная газовая постоянная продуктов горения пороха (ПГП)	$R_{ m nrn}$	Дж/(кг·К)	346,9	346,9
Теплоемкость ПГП при постоянном объеме	C_{v}	Дж/(кг·К)	1497,4	1497,4
Теплоемкость ПГП при постоянном давлении	C_p	Дж/(кг·К)	1838,8	1838,8
Теплопроводность ПГП	$\lambda_{ m nrn}$	H/(c K)	0,117	0,117
Вязкость ПГП	$\mu_{ m mm}$	кг/(м·с)	5,18e-05	5,18e-05

Таблица 1.12 – Характеристики бронебойно-подкалиберного снаряда 3БМ42

Параметр	Обозначение	Размерность	Значение
Macca	$q_{\scriptscriptstyle \mathrm{CH}}$	КГ	7,05
Дульная скорость	$v_{_{ m I\!\! I}}$	м/с	1700
Максимальное давление	$p_{ m m}$	МПа	443,8

Таблица 1.13 – Характеристики порохов дополнительного заряда к снаряду 3БМ42

Параметр	Обозначение	Размерность	16/7 BA	16/1 тр ВА
Масса сгораемого	0	кг	0,845	
корпуса гильзы	$\omega_{ m cr}$	KI		
Масса пороха	ω	ΚΓ	0,45	2,45
Число каналов в	n		7	1
пороховом элементе	n	_	/	1
Внешний диаметр	D_0		0,0068	0,0049
порохового элемента	D_0	M	0,0008	0,0049
Диаметр канала	d	M	0,0006	0,0016
порохового элемента	d_0	M	0,0000	0,0010

Продолжение таблицы 1.13

Параметр	Обозначение	Размерность	16/7 BA	16/1 тр ВА	
Длина порохового элемента	L_0	М	0,00825	0,245	
Толщина горящего свода	$2e_1$	M	0,00125	0,00165	
Теплоемкость пороха	$C_{_{\Pi}}$	Дж/(кг·К)	1298	1298	
Теплопроводность пороха	$\lambda_{\scriptscriptstyle \Pi}$	H/(c K)	0,13	0,13	
Плотность пороха	$\delta_{_{\Pi}}$	кг/м ³	1540	1540	
Тепловыделение в к-фазе	$Q_{\scriptscriptstyle \mathrm{K}}$	Дж/кг	3450000	3450000	
Предэкспонент	$Z_{_{\scriptscriptstyle\mathrm{K}}}$	1/c	6000000000	6000000000	
Энергия активации	$E_{\scriptscriptstyle m K}$	Дж/моль	22000	22000	
Сила пороха	f	Дж/кг	1000000	1000000	
Единичная скорость горения	u_1	$M^3/(H \cdot c)$	6,7e-10	6,7e-10	
Коволюм	α	м ³ /кг	0,00097	0,00097	
Удельная газовая постоянная продуктов горения пороха (ПГП)	$R_{\rm nm}$	Дж/(кг·К)	346,9	346,9	
Теплоемкость ПГП при постоянном объеме	C_{v}	Дж/(кг·К)	1497,4	1497,4	
Теплоемкость ПГП при постоянном давлении	C_p	Дж/(кг·К)	1838,8	1838,8	
Теплопроводность ПГП	$\lambda_{ m nrn}$	H/(c K)	0,117	0,117	
Вязкость ПГП	$\mu_{ m mrn}$	кг/(м·с)	5,18e-05	5,18e-05	

Таблица 1.14 – Характеристики воспламенителя

Параметр	Обозначе-	Размер-	Воспламе-	Воспламе-
	ние	ность	нитель 1	нитель 2
Macca	$\omega_{_{\mathrm{B}}}$	КГ	0,085	0,050
Диаметр зерна воспламенителя	D_0	M	0,001	0,001
Теплоемкость пороха воспламенителя	$\mathcal{C}_{_{\Pi}}$	Дж/(кг·К)	1555	1555
Плотность пороха воспламенителя	$\delta_{_{\Pi}}$	кг/м ³	1550	1550
Теплотворная способность пороха воспламенителя	$Q_{\scriptscriptstyle m B}$	Дж/кг	2930000	2930000
Коэффициент скорости горения	A_0	$(c \cdot \Pi a^{0,2})^{-1}$	12,65	12,65
Удельная газовая постоянная продуктов горения воспламенителя (ПГВ)	R_{nig}	Дж/(кг·К)	327	327
Теплоемкость ПГВ при постоянном объеме	C_v	Дж/(кг·К)	1260	1260
Теплопроводность ПГВ	$\lambda_{_{\Pi\Gamma B}}$	Н/(с К)	0,117	0,117
Вязкость ПГВ	$\mu_{{}_{\Pi \Gamma B}}$	кг/(м·с)	7,13e-05	7,13e-05

Рисунок 1.7 – Эскиз 125-мм танковой пушки 2А46

Рисунок 1.8 – Эскиз осколочно-фугасного снаряда 3ОФ26

Рисунок 1.9 – Эскиз заряда 4Ж63

Рисунок 1.10 – Эскиз бронебойного подкалиберного снаряда 3БМ42

Рисунок 1.11 – Эскиз дополнительного заряда к заряду 4Ж63