

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 576 717 A1

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92111346.0

(61) Int. Cl. 5: F23R 3/08

(22) Anmeldetag: 03.07.92

(23) Veröffentlichungstag der Anmeldung:
05.01.94 Patentblatt 94/01

(24) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU MC
NL PT SE

(71) Anmelder: ABB RESEARCH LTD.

Zürich(CH)

(72) Erfinder: Keller, Jakob, Prof.Dr.
Plattenstrasse 8
CH-5605 Dottikon(CH)

(54) Gasturbinen-Brennkammer.

(57) In einer Gasturbinenbrennkammer ist das Flammrohr auf seiner vom Verbrennungsraum (15) abgewandten Seite einem vom Verdichter der Gasturbine gelieferten Luftstrom ausgesetzt. Das Flammrohr setzt sich im wesentlichen aus Wandteilen (18, 19) zusammen, wobei die dem Verbrennungsraum abgewandten äusseren Wandteile (18) jeweils mehrere, über dem Umfang verteilte Einlassöffnungen (20) aufweisen, über die die Kühlung in einen im Flammrohr angeordneten Zwischenraum (21) eingeleitet wird. Aus dem Zwischenraum wird die Kühlung über Austrittsbohrungen (22) in den dem Verbrennungsraum zugewandten inneren Wandteilen (19) in den Verbrennungsraum eingeleitet.

Der Zwischenraum (21) zwischen den Wandteilen (18, 19) ist zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen (23) angekoppelt, wobei die Einlassöffnungen (20) in den äusseren Wandteilen (18) als Zuführrohre und die Austrittsbohrungen (22) in den inneren Wandteilen (19) als Dämpfungsrohre des Helmholtzresonators ausgebildet sind.

FIG. 2

EP 0 576 717 A1

Technisches Gebiet

Die Erfindung betrifft eine Gasturbinenbrennkammer mit einem Flammrohr, welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum abgewandten Seite einem vom Verdichter der Gasturbine gelieferten Luftstrom ausgesetzt ist, wobei das Flammrohr sich im wesentlichen aus Wandteilen zusammensetzt, und wobei die dem Verbrennungsraum abgewandten äusseren Wandteile jeweils mehrere, über dem Umfang verteilte Einlassöffnungen aufweisen, über die die Kühlluft in einen im Flammrohr angeordneten Zwischenraum eingeleitet wird, aus welchem die Kühlluft über Austrittsöffnungen in den dem Verbrennungsraum zugewandten inneren Wandteilen in den Verbrennungsraum eingeleitet wird.

Stand der Technik

Gasturbinen mit derartigen, luftgekühlten Flammrohren sind bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Dort sind Kühl-systeme für Flammrohre gezeigt und beschrieben, die aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut sind. Das jeweilige Flammrohr weist eine Lippe auf, die sich über den Schlitz erstreckt, durch den der KühlLuftfilm austritt. Dieser KühlLuftfilm soll an der Wand des Flammrohres haften, um für dieses eine kührende Sperrsicht zu bilden.

Moderne hochbelastete Gasturbinen erfordern zunehmend komplexere und wirkungsvollere Kühlmethoden. Um niedrige NO_x-Emissionen zu erzielen, wird versucht, einen zunehmenden Anteil der Luft durch die Brenner selbst zu leiten. Dieser Zwang zur Reduktion der KühlLuftströme ergibt sich aber auch aus Gründen, die mit der zunehmenden Heissgastemperatur beim Eintritt einer modernen Gasturbine in Zusammenhang stehen. Weil auch die Kühlung der übrigen Anlagenteile wie Beschaufelung, Maschinenwelle etc. immer schärferen Anforderungen genügen muss, und weil die Heissgas-temperaturen, die im Interesse eines hohen thermischen Wirkungsgrades immer weiter gesteigert werden, auch direkt zu einer stark erhöhten thermischen Belastung der Brennkammerwände führen, muss mit der BrennkammerKühlLuft sehr sparsam umgegangen werden. Diese Anforderungen führen in aller Regel zu mehrstufigen Kühltechniken, wobei der Druckverlustbeiwert, d.h. der durch die Kühlung verursachte Gesamtdruckabfall dividiert durch einen Staudruck beim KühlLuftteintritt in die Brennkammer, recht hoch sein kann.

Bei konventionellen Brennkammern spielt die Kühlung in der Regel eine äusserst wichtige Rolle für die Schalldämpfung der Brennkammer. Die oben erwähnte Reduktion des KühlLuftmassen-

stroms gepaart mit einem stark erhöhten Druckverlustbeiwert der gesamten Brennkammerwandkühlung führt nun zu einer fast völligen Unterdrückung der Schalldämpfung. Die Folge dieser Entwicklung ist ein zunehmender Vibrationspegel in modernen LOW-NO_x-Brennkammern.

Darstellung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art bei minimalstem KühlLuftverbrauch und hohem Druckverlustbeiwert die Schalldämpfung einer Brennkammerwand wesentlich zu verstärken.

Ausgehend von einem System von aufeinanderfolgenden Kühltechniken, hier PrallKühlung mit anschliessender FilmKühlung, welches System aufgrund der "Sandwichbauweise" mit Zwischenräumen arbeitet, wird diese Aufgabe erfindungsgemäss dadurch gelöst, dass der Zwischenraum zwischen den Wandteilen zwecks Bildung eines Helmholtzresonators, an ein grosses, abgeschlossenes Zusatzvolumen angekoppelt ist, dass die Einlassöffnungen in den äusseren Wandteilen als Zuführrohre und die Austrittsöffnungen in den inneren Wandteilen als Dämpfungsrohre ausgebildet sind.

Das Dämpfungssystem kann damit wirkungsvoll in das KühlSystem integriert werden. Mit der neuer, sehr einfacher Massnahme ist außer einer effizienten Prall/FilmKühlung mit einer möglichst kleinen KühlLuftmenge auch eine hinreichende Dämpfung der Brennkammerschwingungen erreichbar. Da mit grösseren KühlLuftmengen die Resonanz und somit die Dämpfung schwächer werden, wird nur gerade soviel KühlLuft durchströmen lassen, dass ein nennenswertes Aufheizen des Resonators vermieden wird.

Kurze Beschreibung der Zeichnung

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine mit einer ringförmigen Brennkammer dargestellt.

Es zeigen:

- Fig.1 einen Teillängsschnitt der Gasturbine;
- Fig.2 einen Teillängsschnitt durch das Flammrohr;
- Fig.3 das Prinzip des Helmholtzresonators.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.

Weg zur Ausführung der Erfindung

Die Turbine 1, von der in Fig.1 die ersten axialdurchströmten Stufen in Form von je drei Leitrieben 2' und Laufreihen 2'' dargestellt ist, besteht im wesentlichen aus dem beschauelten Turbinenrotor 3 und dem mit Leitschaufeln bestückten Schaufelträger 4. Der Schaufelträger ist im Turbinengehäuse 5 eingehängt. Im dargestellten Fall umfasst das Turbinengehäuse 5 ebenfalls den Sammelraum 6 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt die Brennluft in die Ringbrennkammer 7, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe 2' mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 8 des Verdichters 9. Von letzterem sind lediglich die drei letzten Stufen in Form von je drei Leitreihen 10' und Laufreihen 10'' dargestellt. Die Laufbeschauelungen des Verdichters und der Turbine sitzen auf einer gemeinsamen Welle 11, deren Mittelachse die Längsachse 12 der Gasturbineneinheit darstellt.

In den lediglich beispielsweise dargestellten Brenner 13, von denen 38 Stück am Umfang gleichmäßig verteilt angeordnet sind, tritt die verdichtete Brennluft in Pfeilrichtung aus dem Sammelraum 6 ein. Der Brennstoff wird über eine Brennstoffdüse 14 in den Verbrennungsraum 15 eingespritzt. Die Brennstoffdüse ist in der Ebene der Primärluft einföhrung von einem Drallkörper 16 in Form von Wirbelschaufeln umgeben. Durch die Wirbelschaufeln gelangt die Luft in die Primärzone des Verbrennungsraumes 15, in welcher sich der Verbrennungsvorgang abspielt. Die Wirbelschaufeln bewirken eine Drallströmung mit einem gegen den Brenner gerichteten Luftkern, welcher die Flamme am Brenner verankert, damit sie trotz der hohen Luftgeschwindigkeit nicht abreißt. Gleichsam wird durch die turbulente Strömung eine schnelle Verbrennung gesichert. Anlässlich dieser Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Wandungen des Flammrohres 17 darstellt. Dies gilt insbesondere dann, wenn statt des gezeigten Diffusionsbrenners sogenannte Low NO_x-Brenner, beispielsweise Vormischbrenner zur Anwendung gelangen, welche grosse Flammrohroberflächen und relativ bescheidene KühlLuftmengen erfordern.

Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum 15 bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch das Flammrohr 17. Dieses Flammrohr kann als selbsttragende Struktur konzipiert sein, wobei es vorzugsweise sowohl an seinem Innenring als auch an seinem Außenring aus einer Anzahl von längs angeordneten Wandteilen 18, 19 besteht. Diese Wandteile, welche Gussteile

sein können, sind in Turbinenachsrichtung entsprechend dem Verlauf des durchströmten Verbrennungsraums gebogen und erstrecken sich über die ganze axiale Länge des Flammrohres.

Wie in Fig.1 anhand der das Flammrohr umgebenden Pfeile ersichtlich, ist das Flammrohr an seiner vom Verbrennungsraum abgewandten Seite dem vom Verdichter 9 gelieferten Luftstrom im Sammelraum 6 ausgesetzt. Die äusseren Wandteile 18 weisen mehrere, über dem Umfang verteilte Einlassöffnungen 20 auf, über die die KühlLuft in einen im Flammrohr gebildeten Zwischenraum 21 eingeleitet wird.

Wie aus der Prinzipskizze in Fig. 2 ersichtlich, handelt es sich bei diesen Einlassöffnungen 20 um Prallkühlungsbohrungen, durch welche die einströmende Luft auf die Innenseite des inneren Wandteils 19 aufprallt und dort ihre Kühlfunktion ausübt. Dies gilt als erste Kühlungsstufe.

Die zweite Kühlungsstufe ist als Filmkühlung ausgelegt. Somit gilt für die Austrittsöffnungen im inneren Wandteil 19 ferner die Forderung, dass die KühlLuft zwecks Kühlfilmerhaltung so in den Verbrennungsraum 15 eingeführt wird, dass sie nicht nur gleichsinnig, sondern in ihrer Richtung möglichst mit der Strömungsrichtung der Verbrennungsgase in Wandnähe des Flammrohres übereinstimmt. Im vorliegenden Fall sind diese Austrittsöffnungen 22 der Einfachheit halber als schräge Bohrungen dargestellt. Es könnte sich dabei auch um sich überlappende Ziegel handeln, wie diese aus dem Brennkammerbau bekannt sind.

Soweit sind Flammrohre bekannt. Gemäss der Erfindung soll nunmehr zur Schalldämpfung ein gespülter Helmholtzresonator zur Anwendung gelangen. Es ist ohne weiteres erkennbar, dass der Zwischenraum 21 zwischen den beiden Wandteilen 18 und 19 hierfür allein zu wenig Volumen aufweist, um die richtige Frequenz zu erreichen. Der Zwischenraum 21 wird deshalb an einer hierfür geeigneten Stelle an ein grosses, abgeschlossenes Zusatzvolumen 23 angekoppelt. Die Einlassöffnungen 20 in den äusseren Wandteilen 19 werden als Zuführrohre und die Austrittsbohrungen 22 in den inneren Wandteilen 18 als Dämpfungsrohre des Helmholtzresonators ausgebildet.

Zur Funktionsfähigkeit des Helmholtzresonator sind die Zuführrohre 20 so dimensioniert, dass sie für die KühlLuftströmung einen relativ hohen Druckabfall verursachen. Durch die Dämpfungsrohre 22 hingegen gelangt die KühlLuft bei niedrigem Restdruckabfall in das Brennkammerinnere. Die Begrenzung des Druckabfalls in den Dämpfungsrohren ergibt sich aus der Forderung, dass auch bei ungleichmässiger Druckverteilung auf der Innenseite der Brennkammerwand stets eine ausreichende KühlLuftströmung in die Brennkammer hinein ge-

währleistet bleibt. Selbstverständlich darf an keiner Stelle Heissgas in umgekehrter Richtung in das Kühlssystem eindringen.

Die Wahl der Grösse des Zusatzvolumens 23 ergibt sich aus der Forderung, dass der Phasenwinkel zwischen den Schwankungen der Kühlluftmassenströme durch die Öffnungen der äusseren und inneren Wandteile grösser oder gleich $\pi/2$ sein soll. Für eine harmonische Schwingung mit vorgegebener Frequenz auf der Innenseite der Brennkammerwand bedeutet diese Forderung, dass das Ausgleichsvolumen mindestens so gross sein soll, dass die Helmholtz-Frequenz des Helmholtzresonators, der durch das Zusatzvolumen, das Volumen des Zwischenraumes und die Kühlluftöffnungen gebildet wird, mindestens die Frequenz der zu dämpfenden Brennkammerschwingung erreicht. Daraus folgt ausserdem, dass das Ausgleichsvolumen des verwendeten Helmholtzresonators vorzugsweise auf die tiefste Eigenfrequenz der Brennkammer ausgelegt wird. Möglich ist auch die Wahl eines noch grösseren Volumens. Dadurch wird erreicht, dass eine Druckschwankung auf der Innenseite der Brennkammer zu einer stark gegenphasigen Schwankung des Kühlluftmassenstromes führt, weil ja jetzt die Schwankungen der Kühlluftmassenströme durch die äusseren und inneren Wandteile nicht mehr phasengleich sind. Ausserdem erlaubt der geringe Druckabfall über die Austrittsöffnungen, d.h. die Dämpfungsrohre des Resonators, die Anwendung von grossen offenen Querschnittsflächen für die Kühlluftströmung. Dies gilt auch für den Fall, dass der mittlere Kühlluftmassenstrom sehr klein ist. Beide Faktoren tragen zu einer massiven Verstärkung der schalldämpfenden Wirkung der gekühlten Brennkammer bei.

Die grundsätzlichen Merkmale eines durchströmten Helmholtzresonators, wie er in einer Brennkammer, aber auch überall sonst, Anwendung finden kann, sind in Fig 3. dargestellt. Der Resonator besteht im wesentlichen aus dem Zuführrohr 20a, dem Resonanzvolumen 23a und dem Dämpfungsrohr 22a. Das Zuführrohr 20a bestimmt den Druckabfall. Die Geschwindigkeit am Ende des Zuführrohrs stellt sich so ein, dass der dynamische Druck des Strahles zusammen mit den Verlusten dem Druckabfall über der Brennkammer entspricht. Es wird nur so viel Luft zugeführt, dass das Dämpferinnere sich nicht aufheizt. Eine Aufheizung durch Strahlung aus dem Bereich der Brennkammer hätte zur Folge, dass die Frequenz nicht stabil bleibt. Die Durchspülung soll deshalb lediglich die eingestrahlte Wärmemenge abführen. Soweit sind Helmholtzresonatoren bekannt.

Um die Leistung des Helmholtzresonators wesentlich zu steigern, hat es sich als zweckmässig erwiesen, die beiden Enden des Dämpfungsrohrs 22a nicht scharfkantig auszuführen. Gewährt wird

eine Abrundung, deren Krümmungsradius folgende Bedingung erfüllt:

$$5 \quad \text{Str} = \frac{R \cdot f}{u} \gtrsim 0.5$$

Darin bedeuten:

- 10 Str die Strouhalzahl
- R der Krümmungsradius der Abrundung
- f die Frequenz
- u die Strömungsgeschwindigkeit

Mit dieser Maßnahme wird unter anderm erreicht, dass die Strömung am Eintritt und am Austritt des Dämpfungsrohrs nicht völlig ablöst, wie das bei scharfkantigem Ein- und Austritt der Fall ist. Die Eintritts- und Austrittsverluste werden niedriger, wodurch die pulsierende Strömung wesentlich verlustärmer wird. Diese verlustarme Gestaltung führt zu sehr hohen Schwingungsamplituden, was wiederum zur Folge hat, dass der angestrebte hohe Strahlverlust an den Enden des Dämpfungsrohrs weiter gesteigert wird. Anders ausgedrückt, das Anwachsen der Amplitude überkompeniert die Absenkung des Verlustbeiwertes. Im Ergebnis erzielt man einen Helmholtzresonator, der das zweifache bis dreifache an Dämpfungsleistung aufweist verglichen mit den an sich bekannten durchströmten Resonatoren.

30 Bezugszelichenliste

35	1	Turbine
	2'	Turbinenleitreihe
	2"	Turbinenlaufreihe
	3	Turbinenrotor
	4	Schaufelträger
	5	Turbinengehäuse
	6	Sammelraum
40	7	Brennkammer
	8	Diffusor
	9	Verdichter
	10'	Verdichterleitreihe
	10"	Verdichterlaufreihe
45	11	Welle
	12	Längsachse
	13	Brenner
	14	Brennstoffdüse
	15	Verbrennungsraum
50	16	Drallkörper
	17	Flammrohr
	18	Äusseres Wandteil
	19	Inneres Wandteil
	20, 20a	Einlassöffnung, Zuführrohr
55	21	Zwischenraum
	22, 22a	Austritsbohrung, Dämpfungsrohr
	23, 23a	Zusatzvolumen

Patentansprüche

1. Gasturbinenbrennkammer mit einem Flammrohr (17), welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum (15) abgewandten Seite einem vom Verdichter (11) der Gasturbine gelieferten Luftstrom ausgesetzt ist, wobei das Flammrohr sich im wesentlichen aus Wandteilen (18, 19) zusammensetzt, und wobei die dem Verbrennungsraum abgewandten äusseren Wandteile (18) jeweils mehrere, über dem Umfang verteilte Einlassöffnungen (20) aufweisen, über die die Kühlluft in einen im Flammrohr angeordneten Zwischenraum (21) eingeleitet wird, aus welchem die Kühlluft über Austrittsbohrungen (22) in den dem Verbrennungsraum zugewandten inneren Wandteilen (19) in den Verbrennungsraum eingeleitet wird,
dadurch gekennzeichnet,
dass der Zwischenraum (21) zwischen den Wandteilen (18, 19) zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen (23) angekoppelt ist, dass die Einlassöffnungen (20) in den äusseren Wandteilen (18) als Zuführrohre und die Austrittsbohrungen (22) in den inneren Wandteilen (18) als Dämpfungsrohre des Helmholtzresonators ausgebildet sind.
2. Durchströmter Helmholtzresonator für eine Gasturbinenbrennkammer, im wesentlichen bestehend aus einem Zuführrohr (20a), einem Resonanzvolumen (23a) und einem Dämpfungsrohr (22a),
dadurch gekennzeichnet, dass das Dämpfungsrohr (22a) eintrittsseitig und austrittsseitig abgerundet ist.

5

10

15

20

25

30

35

40

45

50

55

Fig. 1

FIG. 2

FIG. 3

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 1346

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
Kategorie	Beschreibung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Bereit. Ansprech	
A	GB-A-2 225 381 (GENERAL ELECTRIC COMPANY) * Zusammenfassung; Abbildungen 4,5 * * Seite 9, Zeile 30 - Zeile 32; Abbildung 7 *	1	F23R3/08
A,D	US-A-4 077 205 (PANE) * das ganze Dokument *	1	
			RECHERCHIERTE SACHGESETZE (Int. CL.5)
			F23R F02K
Der vorliegende Recherchenbericht wurde für alle Patentsprüche erstellt			
Rechercheort	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	18 JANUAR 1993	SERRANO GALARRAGA J.	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : wissenschaftliche Offenklärung P : Zeitschriftenartikel		T : der Erfindung zugrunde liegende Theorie oder Grundzüge E : älteres Patentschreit, das jedoch erst am oder nach dem Anmeldatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus einem Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	