Ausgabe: 20.03.2023 Abgabe: 26.03.2023

Aufgabe 1

Gegeben sei die Kurve $\overrightarrow{X}(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix}$. Berechnen Sie das Kurvenintegral im Vektorfeldes

$$\overrightarrow{F}(x,y,z) = \begin{pmatrix} x + yz \\ y + x \cdot z \\ z + x \cdot y \end{pmatrix}$$

entlang der Kurve.

Lösung 1

Aufgabe 2

Bestimmen Sie die Potentialfunktion von

a)
$$\overrightarrow{f}(x,y) = \begin{pmatrix} y^2 + 2e^{2x-y} - 1\\ 2x \cdot y - e^{2x-y} + 4y^3 \end{pmatrix}$$

b)
$$\overrightarrow{g}(x,y) = \begin{pmatrix} e^x + 2x \cdot y \cdot \cos(x^2 + y) \\ \sin(x^2 + y) + y \cdot \cos(x^2 + y) + 6y \end{pmatrix}$$

Lösung 2

Aufgabe 3

Zeigen Sie, dass das folgende Vektorfeld

$$\overrightarrow{F}(x,y) = \begin{pmatrix} \frac{y}{x^2+y^2} + y\\ x - \frac{x}{x^2+y^2} \end{pmatrix}$$

kein Potential in $D = \{(x, y) \in \mathbb{R}^2 \mid (x, y) \neq (0, 0)\}$ besitzt.

Lösung 3

Aufgabe 4

Gegeben sei das Vektorfeld

$$\overrightarrow{F} = \begin{pmatrix} 3x + 2y \\ 2x \end{pmatrix}.$$

a) Bestimmen Sie die Arbeit entlang des Weges $\overrightarrow{X}(t) = \begin{pmatrix} \cos(t) \\ 2\sin(t) \end{pmatrix}$ mit $t \in [0, \frac{\pi}{2}]$.

- Ausgabe: 20.03.2023 Abgabe: 26.03.2023
- b) Besitzt \overrightarrow{F} ein Potential? Berechnen Sie dies ggfls.
- c) Welche Arbeit wird unter Verwendung von b) längs des Weges \overrightarrow{X} verrichtet, der die Punkte $P_1 = (1,0)$ und $P_2 = (0,2)$ verbindet?

Lösung 4

Aufgabe 5

Ein Punkt bewege sich entlang der Kurve $\overrightarrow{X}(t) = {t^2 \choose t-1}$ durch das folgende ortsabhängiges Kraftfeld:

$$\overrightarrow{F}(x,y) = \begin{pmatrix} y \\ x - y^2 \end{pmatrix}$$

- a) Gibt es zu diesem Kraftfeld eine Potentialfunktion?
- b) Wenn ja, bestimmen Sie diese.
- c) Berechnen Sie die auf dem Weg von t=0 bis t=3 geleistete Arbeit.

Lösung 5