Permutations and Combinations

The Pigeonhole Principle.

A typical situation

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

A typical situation

A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Four is enough.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Pigeonhole Principle

If you have 10 pigeons in 9 boxes, at least one box contains two birds.

The pigeonhole principle. If k is a positive integer and k+1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Pigeonhole Principle

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

What is the minimum number of students required in a class to be sure that at least two will receive the same grade, if there are five possible grades, A, B, C, D, and F?

The Pigeonhole Principle

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

What is the minimum number of students required in a class to be sure that at least two will receive the same grade, if there are five possible grades, A, B, C, D, and F?

5 + 1 = 6 students.

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Ceiling function:

$$\lceil x \rceil$$
 = the smallest integer not less that that x

So, for example,

$$\lceil 2.0 \rceil = 2$$

 $\lceil 0.5 \rceil = 1$
 $\lceil -3.5 \rceil = -3$

The Pigeonhole Principle

Permutations Combinations

Pascal's Triangls

The Binomial Theorem

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

The Pigeonhole Principle

Permutations

Combinations
Pascal's Triangls

Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle. If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N/k \rceil$ objects.

Example: How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

"Birds" are cards. "Boxes" are suits, k = 4.

How many cards, N, should we take to guarantee that at least three of them fall in the same "box" (suit):

$$\left\lceil \frac{N}{k} \right\rceil = \left\lceil \frac{N}{4} \right\rceil \ge 3 > 2.$$

The smallest possible $N = 2 \cdot 4 + 1 = 9$.

The Pigeonhole Principle

Permutations

Combinations
Pascal's Triangls

Solve

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Assume that in a group of six people, each pair of individuals consists of two friends or two enemies. Show that there are either three mutual friends or three mutual enemies in the group.

Count the number of ways to arrange the elements of this set:

$${a, b, c, d, e, f}$$

- There are 6 ways to select the first element,
- 5 ways to select the second element,
- 4 ways to select the third ...
- ...continue the process
- In the end, the only remaining element takes the last position.

$$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$
 ways!

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Factorial

How large this number is?

$$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

This function is called *factorial* and denoted by *n*!:

$$1! = 1$$

$$2! = 2 \cdot 1$$

$$3! = 3 \cdot 2 \cdot 1$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot 1$$
and by convention,
$$0! = 1$$

The Pigeonhole Principle

Permutations
Combinations

Pascal's Triangls

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls
The Binomial
Theorem

Def. A *permutation* of a set of distinct objects is an ordered arrangement of these objects.

A finite set of 6 elements has

$$P(6) = 6! = 720$$
 permutations.

A finite set *A* with cardinality |A| = n has

$$P(n) = n!$$
 permutations.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

What if we want to arrange only r elements?

Def. An ordered arrangement of r elements of a set is called an r-permutation.

Can we get the formula the the number of r-permutations?

Count the number of ways to arrange 4 elements of the set:

$${a, b, c, d, e, f}$$

- There are 6 ways to select the first element,
- 5 ways to select the second element,
- 4 ways to select the third ...
- 3 ways to select the fourth ...

$$6 \cdot 5 \cdot 4 \cdot 3$$
 ways!

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

Multiply and divide by $(n-r) \cdot (n-r-1) \cdot \ldots \cdot 2 \cdot 1$,

$$P(n,r) = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1}{(n-r) \cdot (n-r-1) \cdot \dots \cdot 2 \cdot 1} = \frac{n!}{(n-r)!}$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

The number of r-permutations of the set of n elements:

$$P(n,r) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

$$P(n,r) = \frac{n!}{(n-r)!}$$

The formula makes sense only for $0 \le r \le n$, otherwise the notion of r-permutation does not make sense.

How many ways are there to select a first-prize winner, a secondprize winner, and a third-prize winner from 100 different people who have entered a contest? The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

How many ways are there to select a first-prize winner, a secondprize winner, and a third-prize winner from 100 different people who have entered a contest?

$$P(100,3) = 100 \cdot 99 \cdot 98 = 970200.$$

Alternatively,

$$P(100,3) = \frac{100!}{(100-3)!} = \frac{1 \cdot 2 \cdot \dots \cdot 100}{1 \cdot 2 \cdot \dots \cdot 97} = 98 \cdot 99 \cdot 100 = 970200.$$

What if the order does not matter?

You are given all r-permutations of a set.

Now, let's say that you don't really care about the ordering in each r-permutation.

Concrete example. You are given a group of 4 students, $\{a, b, c, d\}$. How many groups of 3 students can be formed?

The total number of 3-permutations: $P(4,3) = 4 \cdot 3 \cdot 2 = 24$.

All possible groups: abc, acb, bac, bca, cab, cba the same subset $\{a, b, c\}$ abd, adb, bad, bda, dab, dba the same subset $\{a, b, d\}$ acd, acb, cad, cda, dac, dca the same subset $\{a, c, d\}$ bcd, bcb, cbd, cdb, dbc, dcb the same subset $\{b, c, d\}$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

What if the order does not matter?

Concrete example. You are given a group of 4 students, $\{a, b, c, d\}$. How many groups of 3 students can be formed?

The total number of 3-permutations: $P(4,3) = 4 \cdot 3 \cdot 2 = 24$.

Let x be the number of unordered selections of 3 students, such as, for example: $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

Each such selection can be realized in P(3) = 3! = 6 permutations, e.g. $\{a, b, c\}$ has the following 6 permutations: abc, acb, bac, bca, cab, cba.

$$P(4,3) = x \cdot P(3).$$

Thus, there are only $x = \frac{P(4,3)}{P(3)} = \frac{24}{6} = 4$ unordered selections of 3 students.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Combinations

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Def. An r-combination of elements of a set is an unordered selection of r elements from the set.

The number of r-combinations is

$$\binom{n}{r} = \frac{P(n,r)}{P(r)}$$

This notations reads as "n choose r".

Combinations

Def. An r-combination of elements of a set is an unordered selection of r elements from the set.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

The number of r-combinations is

$$\binom{n}{r} = \frac{P(n,r)}{P(r)}$$

Let's express it in terms of n, r, and their factorials:

$$P(n,r) = \frac{n!}{(n-r)!}$$
 and $P(r) = r!$, therefore

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$\binom{52}{5} = \frac{52!}{(52-5)! \, 5!} = \frac{52!}{47! \, 5!} = \frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!} = 2598960.$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Example with cards

$$\binom{n}{r} = \frac{n!}{(n-r)! \ r!}$$

Counting hands of 5 cards from the deck of 52.

Count the number of ways 5 cards can be dealt from the deck of 52 if their order does not matter.

$$\binom{52}{5} = \frac{52!}{(52-5)! \ 5!} = \frac{52!}{47! \ 5!} = \frac{48 \cdot 49 \cdot 50 \cdot 51 \cdot 52}{5!} = 2598960.$$

More examples:

$$\binom{52}{2} = \frac{51 \cdot 52}{2} = 1326.$$
 $\binom{52}{1} = 52.$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Summary

Given a set with n elements.

The number of *permutations* of the elements the set:

$$P(n) = n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

The number of *r*-*permutations* of the set:

$$P(n,r) = \frac{n!}{(n-r)!} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1)}_{\text{product of } r \text{ numbers}}$$

The number of unordered r-combinations ("n choose r"):

$$\binom{n}{r} = \frac{P(n,r)}{P(r)} = \frac{n!}{(n-r)! \ r!}$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Solve

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Problem 1.

How many permutations of the letters ABCDEFG contain

- (a) the string BCD?
- (b) the string CFGA?
- (c) the strings BA and GF?
- (d) the strings BAC and CED?

Solve

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Problem 2.

Suppose that a department contains 10 men and 15 women. How many ways are there to form a committee with six members if it must have the same number of men and women?

Problem 3.

How many bit strings contain exactly eight 0s and 10 1s if every 0 must be immediately followed by a 1?

Solve: "Knights of the Round Table"

Def. A *circular permutation* of *n* people is their seating around a circular table, where seatings are considered to be the same if they can be obtained from each other by rotating the table.

Def. Similarly, a *circular r-permutation* of n people is a seating of r of these n people around a circular table, where, again, the seatings that can be obtained by rotation are considered to be the same.

Problem 4.

In how many ways can King Arthur seat *n* different knights at his round table?

Problem 5.

Count the number of circular r-permutations of n people.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Let's try to be more systematic

How does $\binom{n}{r}$ change with r?

$$\binom{0}{0} = \frac{0!}{0! \ 0!} = 1.$$

$$\binom{1}{0} = \frac{1!}{1! \ 0!} = 1, \quad \binom{1}{1} = \frac{1!}{0! \ 1!} = 1.$$

$$\binom{2}{0} = \frac{2!}{2! \ 0!} = \frac{1}{1!}, \quad \binom{2}{1} = \frac{2!}{1! \ 1!} = \frac{2}{1!}, \quad \binom{2}{2} = \frac{2!}{0! \ 2!} = \frac{1}{1!}.$$

$$\binom{3}{0} = \frac{3!}{3! \ 0!} = 1, \quad \binom{3}{1} = \frac{3!}{2! \ 1!} = 3, \quad \binom{3}{2} = \frac{3!}{1! \ 2!} = 3, \quad \binom{3}{3} = \frac{3!}{0! \ 3!} = 1.$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	1
$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1 1
$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	1 2 1
$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$	1 3 3 1
$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$	1 4 6 4 1
$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$	1 5 10 10 5 1

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = x + y$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The Pigeonhole Principle

Permutations

Combinations
Pascal's Triangls

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The general formula is

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

The Pigeonhole Principle

Permutations

Combinations
Pascal's Triangls

The numbers in Pascal's Triangle are the coefficients of the polynomials of the form $(x + y)^n$:

$$(x+y)^{1} = 1x + 1y$$

$$(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$$

The general formula is

$$(x+y)^{n} = \binom{n}{0} \cdot x^{n} + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^{2} + \dots + \binom{n}{n} \cdot y^{n}.$$
$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$

The Pigeonhole Principle

Permutations Combinations

Pascal's Triangls

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

$$(x+y)^{n} = \underbrace{(x+y) \cdot (x+y) \cdot \dots \cdot (x+y)}_{n \text{ times}} = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} + \underbrace{(x \cdot \dots \cdot x) \cdot y}_{=x^{n-1}} + \underbrace{(x \cdot \dots \cdot x) \cdot (y \cdot y) + \dots + (y \cdot y) \cdot (x \cdot \dots \cdot x)}_{=x^{n-2}} + \underbrace{(y \cdot y \cdot \dots \cdot y)}_{=x^{n-2}} + \underbrace{(y \cdot y \cdot y \cdot \dots \cdot y)}_{=x^{n-2}} + \underbrace{(y \cdot y \cdot \dots \cdot y)}_{=x^{n-2}$$

The Pigeonhole Principle

Permutations Combinations

Pascal's Triangls

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

The Pigeonhole Principle

Permutations Combinations

Pascal's Triangls

The Binomial Theorem

Coefficients of $(x + y)^n$

Let's prove

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

Principle
Permutations
Combinations

The Pigeonhole

Pascal's Triangls
The Binomial
Theorem

$$(x+y)^n = \underbrace{(x+y)\cdot(x+y)\cdot\ldots\cdot(x+y)}_{n \text{ times}} = \underbrace{\binom{n}{0}\cdot x^n + \binom{n}{1}\cdot x^{n-1}y + \binom{n}{2}\cdot x^{n-2}y^2 + \ldots + \binom{n}{n}\cdot y^n}_{n}.$$

Shorter notation for the same thing:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial

$$(x+y)^n = \binom{n}{0} \cdot x^n + \binom{n}{1} \cdot x^{n-1}y + \binom{n}{2} \cdot x^{n-2}y^2 + \dots + \binom{n}{n} \cdot y^n.$$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

This result is called *The Binomial Theorem*, and this is why the coefficients, $\binom{n}{k}$, are also called the *binomial coefficients*.

Let's prove that

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Let's prove that

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} 1^k = \sum_{k=0}^n \binom{n}{k} \cdot 1 = \sum_{k=0}^n \binom{n}{k}.$$

Therefore,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls
The Binomial
Theorem

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

Results like this are not so obvious.

Recall that

$$\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$$

So,

$$\frac{n!}{n! \ 0!} + \frac{n!}{(n-1)! \ 1!} + \frac{n!}{(n-2)! \ 2!} + \dots + \frac{n!}{0! \ n!} = 2^n.$$

In this form, the result seems to be much harder to prove.

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

Pascal's Triangle Again

$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	1
$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1 1
$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	1 2 1
$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$	1 3 3 1
$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$	1 4 6 4 1
$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$	1 5 10 10 5 1

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial Theorem

Pascal's Identity

The Pigeonhole Principle

Permutations

Combinations

Pascal's Triangls

The Binomial

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Every number in Pascal's triangle is equal to the sum of the two numbers that are immediately above.