

Example Cheat Sheet

1. Temporal Tests

Unicode Tests: $\not\models \models \iiint \oint \oint \propto \partial \sum \sum \Sigma \wedge \wedge, \text{``''} \ \alpha \ \beta \ \mathbb{R} \ \text{a}$

2. Mathematik

2.1. Sinus, Cosinus

Abstandtest

x φ	0 0 0	π/6 30°	π/4 45°	π/3 60°	$\begin{array}{ c c }\hline \frac{1}{2}\pi\\ 90^{\circ}\end{array}$	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\begin{array}{ c c }\hline 1 \\ 0 \\ \pm \infty \end{array}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

2.2. 2×2 Matri

$$\mathbf{\tilde{A}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mathbf{\tilde{A}}^{-1} = \frac{1}{\det \mathbf{\tilde{A}}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad \det(\mathbf{\tilde{A}}) = ad - bc$$
 Sp($\mathbf{\tilde{A}}$) = $a + d$

$$\text{Eigenwerte } \lambda_{1/2} = \frac{\operatorname{Sp} \tilde{\mathcal{A}}}{2} \pm \sqrt{\left(\frac{\operatorname{Sp} \tilde{\mathcal{A}}}{2}\right)^2 - \det \tilde{\mathcal{A}}}$$

Eigenwertzerlegung

- 1. Schritt 1
- 2. Schritt 2

2.3. Fouriertransformation

$$f(t) \underset{\mathsf{Zeithereich}}{\circ} \circ^{\underset{}{\mathcal{F}}} \bullet \ F(\omega) := \int\limits_{-\infty}^{\infty} f(t) \exp(-\imath \omega t) \, \mathrm{d}t$$

Anmerkung: Es gibt unterschiedliche Normungen $(1, \frac{1}{\sqrt{2\pi}})$

3. Physik

Naturkonstanten

ivaturkonstanten	
Lichtgeschwindigkeit	$c_0 \equiv \frac{1}{\sqrt{\varepsilon_0 \mu_0}} := 299792458 \frac{m}{s}$
Elementarladung	$e \approx 1.602177 \times 10^{-19} \mathrm{C}$
Planck-Konst.	$h \approx 6.62606957 \times 10^{-34}\mathrm{Js}$
	$\hbar \equiv \frac{h}{2\pi} \approx 1.05457 \times 10^{-34} \mathrm{J}\mathrm{s}$
Elektr. Feldkonst.	$\varepsilon_0 = 8.854188 \times 10^{-12} \frac{\text{F}}{\text{m}}$
Magn. Feldkonst.	$\mu_0 := 4\pi \times 10^{-7} \frac{\mathrm{H}}{\mathrm{m}}$
Avogadro-Konst.	$N_{A} \approx 6.022141 \times 10^{23} \frac{1}{\text{mol}}$
Atomare Masse	$u \approx 1.660539 \times 10^{-27} \text{ kg}$
Elektronenmasse	$m_{\rm e} \approx 9.109383 \times 10^{-31} {\rm kg}$
Protonenmasse	$m_{\rm p} \approx 1.674927 \times 10^{-27}{\rm kg}$
Neutronenmasse	$m_{\rm n} \approx 1.672622 \times 10^{-27}{\rm kg}$
Gravitationskonst.	$G \approx 6.67384 \times 10^{-11} \frac{\text{kg}}{\text{s}^2}$
BOLTZMANN-Konst.	$k_{\rm B} \approx 1.380655 \times 10^{-23}\frac{\rm J}{\rm K}$

3.1. Einheitpräfixe

10 [±]	21	18	15	12	9	6	3	2	1
+	Z zetta	$\mathop{\rm E}_{exa}$	P peta	$\operatorname*{T}_{tera}$	$_{ m giga}^{ m G}$	$\mathop{\mathrm{M}}_{mega}$	k kilo	h hecto	da deca
-	Z zepto	a atto	f femto	P pico	n nano	$_{micro}^{\mu}$	m milli	C centi	$_{deci}^{\mathrm{d}}$

3.2. Maxwellsche Gleichungen (Naturgesetze)

```
Gaußsches Gesetz: Faradaysches ind. Gesetz \operatorname{div} \vec{D} = \varrho \qquad \operatorname{rot} \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 Quellfreiheit des magn. Feldes \operatorname{div} \vec{B} = 0 \qquad \operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}
```

4. Informatik

4.1. c Programming Language

```
#include <stdio.h>
int main(int argc, char *argv[]){

    // global variables
    float percent = 0.0f;
}

// custom functions
int readIntFromFile(path){
    FILE *fp;
    int i;
    fp=fopen(path, "rb");
    fscanf(fp, "%d\n", &i);
    return i
}
```

5. Chemie

5.1. Bleibatterie

5.1.1. Reaktion an der positiven Elektrode

$$\mathsf{PbO}_2 + 3\,\mathsf{H}^+ + \mathsf{HSO_4}^- + 2\,\mathsf{e}^- \xrightarrow[\mathsf{charge}]{\mathsf{disch.}} \mathsf{PbSO}_4 + 2\,\mathsf{H}_2\mathsf{O}$$

 $\begin{array}{l} {\rm O_2~Entwicklung~(Selbstentladung):~H_2O\longrightarrow \frac{1}{2}~{\rm O_2}+2~{\rm H^+}+2~e^-} \\ {\rm Korrosion~Pb~(Alterung):~Pb}+2~{\rm H_2O}\longrightarrow {\rm PbO_2}+4~{\rm H^+}+4~e^- \end{array}$