DoctorAl: Revolutionizing Diagnosis

Integrating AI and Chatbot Technologies in Healthcare

Supervised by DEPI and CLS

Presenter

Our Dedicated Team Members

Meet the experts driving DoctorAI's innovation

Menna Tallah - Chatbot Developer

Menna specializes in designing and implementing **chatbot** systems that assist in early **disease detection**.

Adel Mahmoud - Al Developer

Adel focuses on developing **AI** algorithms that enhance the capabilities of our health detection systems.

Yousef Alaa - Al Developer

Omar contributes to the **AI** model training and optimization for better diagnostic accuracy.

Mostafa Abdo - Al Developer, Full Stack Developer, MLOps Engineer

Mostafa integrates **AI** solutions with full stack development and manages **MLOps** for deployment.

Mohamed Osama - Al Developer

Mohamed works on crafting robust **AI** solutions aimed at early detection of diseases.

Mohamed Ahmed Tolba - Al Developer

Mohamed focuses on research and development within our **AI** frameworks for optimal performance.

EARLY DETECTION

Al for Early Disease Detection

Leveraging AI and chatbot technology for timely medical diagnosis and treatment.

Innovative Al for Early Disease Detection

Leveraging AI and chatbots for prompt disease diagnosis and patient interaction

Deep learning models for diagnosis

Employing multiple deep learning models to enhance disease diagnosis across a variety of medical conditions, ensuring accuracy and efficiency.

Medical chatbot for patients

Integrating a **medical chatbot** to facilitate initial patient interactions, providing timely responses and guidance for further steps.

Comprehensive disease classification

Capabilities for **disease classification** including critical
conditions such as **brain tumors**, **pneumonia**, **anemia**,
and various types of **cancers**.

Focus on early detection

The project emphasizes **early detection** of diseases, which is crucial for timely intervention and improved patient outcomes.

Innovative Chatbot for Health

Enhancing early disease detection through user interaction and AI technology.

User interaction before uploads

This module is designed to interact with users **before** they upload any medical images, ensuring that necessary information is gathered upfront.

Advanced AI architecture

Utilizes **LSTM** with **seq2seq** and **attention** architecture to effectively understand user **symptoms**, allowing for accurate assessments.

Real-time interaction capability

Integrated with **FastAPI**, this chatbot enables real-time interaction, providing immediate responses and support to users.

Al in Brain Tumor Detection

Utilizing AI for accurate CT scan analysis and early detection

Classifies CT scans accurately

The model distinguishes between **Tumor** and **No Tumor** in CT scans, enhancing diagnostic precision.

Preprocessing for optimal results

Involves **resizing** and **normalization** of images to improve the performance of the detection model.

CNN model ensures high accuracy

Employs a **CNN-based model** that achieves a high level of **accuracy**, making it reliable for clinical use.

AI-Powered Pneumonia Detection

Utilizing AI technology for accurate pneumonia diagnosis through chest X-rays

Detects pneumonia via X-ray images

This method leverages **chest X-ray** images to accurately identify cases of **pneumonia**, enhancing early diagnosis.

02

Uses deep CNN model

Employing a **deep CNN model** optimizes performance, ensuring high accuracy in detecting **pneumonia** from X-ray images.

Non-Invasive Anemia Detection Method

Leveraging AI for early disease identification through palm image analysis

Al Classification of Lung and Colon Cancer

Utilizing CNN for Accurate Histopathological Image Analysis

Classifies histopathology images

The model categorizes images into four distinct classes: **Lung Adenocarcinoma**, **Lung Squamous**, **Colon Adenocarcinoma**, and **Colon Benign** lesions, aiding in precise diagnosis.

Trained using CNN model

This classification system is trained on extensive datasets of histopathological images employing a **Convolutional Neural Network (CNN)**, enhancing the accuracy of disease detection.

Input: Dermoscopy Images

Dermoscopy images serve as the primary input for AI systems, enabling accurate assessment of skin lesions.

Output Classifications

The AI system classifies images into categories such as **melanoma** and **benign keratosis-like lesions**, aiding diagnosis.

Data Augmentation Techniques

To combat **overfitting**, data augmentation techniques are employed, enhancing model robustness by diversifying training data.

Al in Skin Cancer Detection

Utilizing AI for early skin cancer identification and diagnosis

Innovative Monkeypox Detection Methods

Utilizing AI for rapid detection of Monkeypox outbreaks

Binary classification system

A **machine learning** approach designed to differentiate between **Monkeypox** and **Non-Monkeypox** cases, enhancing diagnostic accuracy.

Custom CNN for speed

Implementation of a **custom Convolutional Neural Network (CNN)** allows for **fast detection** in outbreak scenarios, enabling swift public health responses.

Classification of Bone Fractures

Utilizing AI for improved fracture diagnosis in medical imaging

Fracture detection in X-rays

This process involves utilizing AI to accurately detect **bone fractures** within **X-ray images**, enhancing diagnostic capabilities.

CNN model application

A **Convolutional Neural Network (CNN)** model is employed, which is trained to identify various fracture types through deep learning techniques.

Contrast enhancement technique

By applying **contrast enhancement**, the model improves the visibility of fractures, leading to more precise diagnoses and treatment plans.

Comprehensive Deployment Overview

Exploring the development of a robust web application

Full web application creation

A **complete** web application designed from **start to finish** to enhance **user experience**.

Modern frontend with React

The **frontend** utilizes **React** to provide a **modern** and **dynamic** interface for users.

FastAPI backend performance

The **backend** is developed using **FastAPI**, ensuring **high-speed** performance and **efficiency** in processing requests.

Key Challenges in Early Disease Detection

Understanding obstacles in AI and chatbot technology for healthcare

Limited and imbalanced datasets.

Difficulties arise from having insufficient or skewed data that can affect model training and accuracy.

Specialized preprocessing per disease.

Each disease may require unique preprocessing techniques to ensure that the AI model can effectively learn relevant patterns.

Preventing overfitting in small datasets.

When datasets are small, there is a high risk of the model learning noise instead of the underlying trend, leading to poor generalization.

AI-Driven Early Disease Detection

Harnessing AI and chatbots for healthcare advancements

AI models with a chatbot interface, enhancing user interaction and data processing.

Integration of AI models

and chatbot

By reducing the **diagnostic workload** in healthcare, this
solution allows professionals to
focus on critical patient care
rather than repetitive tasks.

Lightening the diagnostic load

Accelerating disease detection

The technology enables **fast** and **early disease detection**, leading to timely interventions and better health outcomes.

QUESTIONS & ANSWERS

Engaging Q & A Session

Open floor for questions and discussions

