Clique es NP-Completo

Javier Lima García C-412

La versión de decisión del problema Clique es: ¿existe un clique de tamaño k? De ahora en adelante nos referiremos a este problema como Clique.

Clique $\in NP$

Dado G y k, un certificado de que la respuesta es true son los k-vertices que conforman el clique: uno puede verificar en tiempo polinomial que existen aristas entre cada par de estos vertices.

Clique \in NP-Hard

(Reducción del problema 3-SAT)

Consideremos una instancia arbitraria del problema 3-SAT, con n variables x_1, x_2, \ldots, x_n , y k cláusulas C_1, C_2, \ldots, C_k . Donde cada cláusula C_r contiene exactamente tres literales distintos: l_{r1}, l_{r2}, l_{r3} .

Construiremos el grafo no dirigido G de la siguiente manera: por cada cláusula $C_r = (l_{r1} \vee l_{r2} \vee l_{r3})$, colocaremos los vertices v_{r1}, v_{r2} y v_{r3} y las aristas (v_{ri}, v_{sj}) si:

- v_{ri} y v_{sj} están en triplas distintas $(r \neq s)$, y
- sus literales correspondientes son consistentes, es decir, l_{ri} no es la negación de l_{sj} .

La construcción llevada a cabo puede realizarse en tiempo polinomial, luego demostremos que G tiene un clique de tamaño k si y solo si la instancia de 3-SAT es satisfacible.

Primero, supongamos que la instancia de 3-SAT tiene una asignación válida, entonces al menos un literal l_{ri} tiene valor 1, y cada uno de estos tiene asociado un vértice v_{ri} . Notemos que al seleccionar cada uno de esos v_{ri} formamos un subgrafo completo de tamaño k de G, G' (un k-clique); dado que para cada par de vertices de G', v_{ri} y v_{sj} , donde $r \neq s$, existe una arista entre ambos, al tener asociados literales con valor uno que no son complementarios por ser una asignación válida.

En el otro sentido, supongamos que G contiene clique de tamaño k, G'; entonces no existen aristas entre elementos de la misma tripla, luego G' posee

exactamente un vértice por cada tripla. Si $v_{ri} \in G',$ entonces asignémosle 1 a su literal correspondiente l_{ri} . Dado que G no contiene aristas entre vértices con literales inconsistentes, ningún literal y su complemento reciben ambos 1. Luego, podemos afirmar que la instancia de 3-SAT es satisfacible.