Algoritmos de Machine Learning

Análise Descritiva - Mostra o passado Análise Preditiva - Prever o futuro

O que é exatamente o aprendizado de máquina? É buscar uma função matemática dentro de um espaço de hipóteses, ou seja encontrar uma função matemática dentre algumas possíveis funções matemáticas.

Modelos

Generativos - Naive Bayes

Discriminativos - Arvores de Decisão, Redes Neurais, KNN

Métodos de Aprendizagem

Métodos Baseados em Instancia

Armazena os exemplos de treinamento e os utiliza quando tiver que classificar um novo dado por comparação direta. A computação ocorre no momento da classificação, ou seja, não ocorre a construção de um modelo de classificação explícito. Para conjuntos de dados discretos, utiliza como cálculo a distância Euclidiana. Para dados continuos atribui 0 para mesmo valor e 1

para valores diferentes, para esses casos temos que normalizar os dados.

Métodos Probabilísticos - Baseado no Teorema de Bayes: Assume que a probabililidade de um evento A, que pode ser uma classe, dado em um evento B, poder o conjunto dos valores dos aatributos de entrada, não depender apenas da relação entre A e B, mas também da probabilidade de observar A independemente de B.

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

O classificador Naive Bayes é baseado na suposição simplificadora de que os valores dos atriubutos são condicionalmente independentes dado o valor alvo.

Métodos Baseados em Procura - Árvores de Decisão. Ex. Algoritmo ID3 (1986) e C4.5 (1993).

Modelos Baseados por Reforço

Modelos Conexionistas

Perceptrons

Perceptrons de Multiplas Camadas

Redes Neurias Convulocionais

Redes Neurais Recorrentes

Rede de Kohonen

Rede de Hopfield

Métodos baseados em Otimização

Máquinas de Vetores de Suporte (SVM) - Uilizado para classificação binária.

Support Vector Machine

Clustering

Normalização

Min-Max

Z-score

Desvio absoluto médio

Grupos

Hard Clustering

Soft Clustering - Atribuido por probabilidade

Principais Algoritmos

Modelos de Conectividade Modelos Centroide Modelos de Distribuição Modelos de Densidade

Métodos Utilizados para Clusterização

Métodos Hierárquicos

Metodos de Particionamento

Métodos Ensemble - Combinação de preditores. Une a saída de vários modelos e pesa através de votos de cada um deles.

Métodos

Os algoritmos seguem duas abordagens principais para criar seu próprio ensemble.

Bootstrap Aggregation ou Bagging

Nessa abordagem treina-se vários modelos, geralmente do mesmo tipo, em diferentes amostras de dados. Principais algoritmos:

- Bagged CART
- Random Forest

Boosting

Nessa abordagem treinamos vários modelos, geralmente do mesmo tipo, sendo que cada um tenta corrigir o erro do outro. Os principais algoritmos são:

- C5.0
- Stochastic Gradient Boosting
- AdaBoost

Bootsrap Aggregating (Bagging)

Bootstraps (amostras diferentes da base de dados que são usadas para aprender hipóteses diferentes)

Gradiating Boosting Voting

Redução de Dimensionalidade

Extração de Atributos - Principal Component Analysis, Multidimensional Scaling e o FastMap.

Seleção de Atributos - Algoritmos de Aprendizado de Máquina, cálculo de dimensão fractal e wrapper.

7 Técnicas de Redução de Dimensionalidade

Missing Values Ratio

Low Variance Filter

High Correlation Filter

Random Forests / Ensemble Trees

Forward Feature Construction

Backward Feature Elimination

Principal Component Analysis (PCA) - Inventado em 1901 por Carl Pearson.

Precisa ser alimentado com dados normalizados.

Simulação

Modelos Determinísticos - Segue uma lei definida pré-determinada em função dos dados de entrada. Ex.: Se uma pessoa tem 16 anos ela pode tirar carteira de motorista. Se tiver menos de 16, não pode.

Modelos Estocásticos - Segue a lei das probabilidades. Ex: Modelo para prever a reação das pessoas em um shopping numa situação de emergência. Um modelo probabilístico tenta descrever o comportamento "aleatório" das entidades. Método Montecarlo.

Aprendizado

Aprendizado = Representação + Avaliação + Otimização

Processo de Aprendizagem de Máquina

As técnicas de Machine Learning empregam o princípio de inferência denomindo indução, no qual se obtém uma formulação genérica a partir de um grupo particular de exemplos (dados de treinamento).

O aprendizado pode ser divido em supervisionado e não supervisionado.

Um requisito importante para as técnicas de Machine Learning é que elas sejam capazes de lidar com dados imperfeitos, denominados ruídos.

Uma maneira de alcaçar esse objetivo é não fixar a obtenção dos classificadores sobre esse tipo de caso específico. Deve-se também aliminar a presença de outlier durante o processo de indução.

Os conceitos referentes na geração de um classificador a partir do aprendizado supervisionado são representados de maneira simplificada na figura abaixo:

Temos nessa figura um conjunto com n dados. Cada dado possui m atributos enquanto que as variáveis y representam as classes, ou seja, as variáveis de saída ou preditiva.

A partir dos exemplos e suas respectivas classes o algoritmo extrai um classificador. Podemos dizer que o modelo gerado fornece uma descrição compacta dos dados fornecidos. A obtenção de um classificador para um algoritmo de ML a partir de uma amostra de dados, também pode ser considerado um processo de busca. Procura-se entre todas as hipóteses que o algoritmo é capaz de gerar a partir dos dados, àquela com maior capacidade de descrever o dominio em que ocorre o aprendizado.

Para estimar a taxa de predições corretas ou incorretas, divide-se o dataset em dois sub conjuntos: treinamento e teste.

Outro importante conceito empregado em ML é a generalização do classificador, definida como a sua capacidade de prever corretamente a classe de novos conjuntos de dados.

Generalization

