geoffreyangus.github.io/CS106R/

CS106R

Logistics Login

Class Information

Schools:

Curitiba, BR Colegio SESC São Jose Colegio Bom Jesus Centro Colegio Bom Jesus Lourdes

Dates:

7 Weeks July 30 to September 14

Teachers:

Sabri Eyuboglu eyuboglu@stanford.edu

Geoffrey Angus gangus@stanford.edu

About:

CS105R is a pioneer, introductory computer science course designed for high-schoolers with no prior computer science experience. Students will learn much of the same material as Stanford's introductory computer science class, CS106A. However, we have tailored the notes, exercises and projects for those who speak English as a second language.

Week 5

Complex Objects

Notes

Complex Objects

Exercises

Caixa Eletrônico

Projects

Connect4

This week we will learn how to use objects made of objects.

Important links:

- Attendance (Week 5)
- The Python Standard Library

Learning Objectives

- 1.) Member Functions
- 2.) Attributes

Slides

Week 5

CS106R

Sabri **Eyuboglu** & Geoffrey **Angus**

Last week on CS106R...

Scope

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

/ariables	Objects

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one:
```

Variables	Objects

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```

Variables	Objects
	3.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```

Variables	Objects
side_1	3.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two:
```

/ariables	Objects
side_1	3.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Memory

CS106R

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

· · · · · · · · · · · · · · · · · · ·	
Variables	Objects
side_1	3.0 float
side_2	4.0

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

viciliory	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + L*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Entex side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

· · · · · · · · · · · · · · · · · · ·	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioi	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioi y	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

· · · · · · · · · · · · · · · · · · ·	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
	25.0 float
hypotenuse	5.0
	float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0
c_squared	25.0 float
hypotenuse	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1	3.0 float
side_2	4.0 float
	25.0 float
hypotenuse	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
5.0
```


This week on CS106R...

Objects

4 Basic Object Classes

string

Sequences of characters – text

Example

"Hello, World!"

int

Integers – whole numbers

Examples

5 3450 0 -17

float

Fractional numbers

Examples

-5.0 0.174 3.14

bool

True or false

Examples

True

False

There are more complex objects out there...

Introducing the

Bot class

Let's make GeoffBot 3.0 ...

Bot("GeoffBot")

geoff_bot =

Slide 31

"GeoffBot" is name 0 Years Old 100 percent charge

Bot

Bot("GeoffBot")

"GeoffBot" is name

0 Years Old

100 percent charge

Bot

geoff_bot = Bot("GeoffBot")


```
geoff_bot = Bot("GeoffBot")
geoff_bot.age = 22
```


Slide 36

```
geoff_bot = Bot("GeoffBot")
```



```
geoff bot = Bot("GeoffBot")
geoff_bot.age = 22
                     95
geoff bot.charge =
                      float
```



```
geoff bot = Bot("GeoffBot")
geoff_bot.age = 22
                     95
geoff bot.charge =
                      float
```

Introducing the

Slide 39

BankAccount class

account_1 =

Slide 41

0 Reais Remaining
Owner is "Geoff"

BankAccount

BankAccount("Geoff")

O Reais Remaining

"Geoff" is owner

O Reais Remaining

"Geoff" is owner

balance

O Reais Remaining

name "Geoff" is owner string

```
account_1 = BankAccount("Geoff")
```


100 Reais Remaining

"Geoff" is the owner

string

Objects

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

    print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

    print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

    print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

    print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

    print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

    account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Geoff's account has R\$100

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Geoff's account has R\$100

Code

```
from util import BankAccount

def main():
    account_1 = BankAccount("Geoff")
    account_1.balance = 100

account_2 = BankAccount("Sabri")
    account_2.balance = 50

print("Geoff's account has R$" + str(account_1.balance))
    print("Sabri's account has R$" + str(account_2.balance))
```

Output

Geoff's account has R\$100 Sabri's account has R\$50

Code

Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

Output

Code

Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

Output

Code

Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

Output

Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```


Memory

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
 transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

Output

Slide 84

```
Geoff has R$100
Sabri has R$75
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

Output

Geoff has R\$100 Sabri has R\$75


```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer?
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

`Geoii" string balance 100 payer account 1 BankAccount int name "Sabri" string balance **75** receiver account 2 BankAccount 10.0 float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
 transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

`Geoii" string balance 100 payer account 1 BankAccount int name "Sabri" string balance **75** receiver account 2 BankAccount 10.0 float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
 transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

`Geoii" string balance 100 payer account 1 BankAccount int name "Sabri" string balance **75** receiver account 2 BankAccount 10.0 transfer amount float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
 payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

`Geoii" string balance 100 payer account 1 BankAccount int name "Sabri" string balance **75** receiver account 2 BankAccount 10.0 transfer amount float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
 payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

`Geoii" string balance 90 payer account 1 BankAccount int name "Sabri" string balance **75** receiver account 2 BankAccount 10.0 transfer amount float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance = payer.balance - transfer_amount
  receiver.balance = receiver.balance + transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

string balance 90 payer account 1 BankAccount int name "Sabri" string balance 85 receiver account 2 BankAccount 10.0 transfer amount

`Geoii"

float

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```

```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance -= transfer_amount
  receiver.balance += transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
```



```
from util import BankAccount, input_float
def transfer(payer, receiver):
  transfer_amount = input_float("How much to transfer?")
  payer.balance -= transfer_amount
  receiver.balance += transfer_amount
def main():
  account_1 = BankAccount("Geoff")
  account_1.balance = 100
  account_2 = BankAccount("Sabri")
  account_2.balance = 75
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
  transfer(account_1, account_2)
  print("Geoff has R$" + str(account_1.balance))
  print("Sabri has R$" + str(account_2.balance))
```

```
Geoff has R$100
Sabri has R$75
How much to transfer? 10
Geoff has R$90.0
Sabri has R$85.0
```


Transfer (Link!)

How do we know what functions and variables are available?

Definition

Documentation - Information about a class describing every usable function and object.

Today's Exercises

Caixa Eletrônico