Introduction to Reinforcement Learning

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
 - $\quad http://webdocs.cs.ualberta.ca/{\sim} sutton/book/ebook/the-book.html$
 - Bible in this area.
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

David Silver:

(the leader of the AlphaGo team)

"DL+RL =
$$AI$$
"

Many Faces of Reinforcement Learning

- Computer Science
 - Machine Learning
- Engineering
 - Optimal Control
- Mathematics
 - Operations Research
- Economics
 - Bounded Rationality
- Psychology
 - Classical/Operant Conditioning
- Neuroscience
 - Reward System

Branches of Machine Learning

- Supervised Learning (SL)
 - learning from a training set of labeled examples provided by a knowledgeable external supervisor.
- Unsupervised Learning (UL)
 - typically about finding structure hidden in collections of unlabeled data.
- Reinforcement Learning (RL)
 - learning from interaction

What are different from others?

• Characteristics:

- No supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters
- Agent's actions affect the subsequent data

• UL vs. RL:

- RL is learning from interaction.
- RL does not rely on examples of correct behavior.
- RL is trying to maximize a reward signal, instead of trying to find hidden structure.

Successful Examples

- In AI, it has been used to defeat human champions at games of skill.
 - Backgammon (Tesauro, 1994).
 - Connect6/2048/Threes! (Wu et al., 2015). Reach the top levels.
 - Go programs, used in the past 10 years. (Monte-Carlo Tree Search)
 - AlphaGo, using deep reinforcement learning (2016)
- In robotics, fly stunt maneuvers in robot-controlled helicopters (Abbeel et al.) and make a humanoid robot walk.
- In economics, manage an investment portfolio (Choi et al.).
- In neuroscience, model the human brain (Schultz et al.);
- In psychology, predict animal behavior (Sutton and Barto).
- In systems, control a power station
- In engineering, it has been used to allocate bandwidth to mobile phones and to manage complex power systems (Ernst et al.).

Board Game: Go

• Game 1: AlphaGo vs. 李世石

Stochastic Game: 2048 (lab)

The First Game Reaching 65536 in the World (in 10,000 Trials)

http://2048.aigames.nctu.edu.tw/replay.php

Video Games: Flappy Bird (lab)

Open AI: Gym (lab)

Demo

Another Demo

[Deisenroth et al, 2011] Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning

Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Robotic Manipulator using Data-Efficient Reinforcement Learning

R:SS 2011

Nvidia Autonomous Car Video

Reinforcement Learning

- A computational approach to learning from interaction
 - Explore designs for machines that are effective in
 - solving learning problems of scientific or economic interest,
 - evaluating the designs through mathematical analysis or computational experiments.
 - Focus on goal-directed learning from interaction, when compared with other approaches to machine learning.
 - The learner must discover which actions yield the most reward by trying them.
 - ► Two characteristics: most important distinguishing features of reinforcement learning.
 - trial-and-error search
 - delayed reward

Agent-Environment Interaction Framework

- Agent: The learner and decision-maker.
- Environment: The thing it interacts with, comprising everything outside the agent.
- State: whatever information is available to the agent.
- Reward: single numbers.

States and Actions in the Framework

Environment: reaction

Agent: action

Environment: reaction

Agent: action

Environment: reaction

Agent: action

2048

Robot

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

Markov Decision Processes (MDP)

A Markov Decision Process is a tuple

$$<\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma>$$

- S is a finite set of states
- $-\mathcal{A}$ is a finite set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Markov Property

- An episode: (assuming finite and MDP here for simplicity)
 - States: S_i
 - ▶ Initial state: S_1
 - Current state: S_t
 - ightharpoonup End state: S_T (not necessarily required)
 - Actions: A_i
 - History: $H_t = (S_1, A_1, R_2, S_2, A_2, R_3, S_3, ..., R_t)$
- Markov Property:
 - "The future is independent of the past given the present"
 - A state S_t is Markov if and only if $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,...,S_t]$

Environment State vs. Agent State

- The environment state S_t^e :
 - the environment's private representation
 - i.e. whatever data the environment uses to pick the next observation/reward
 - The environment state is not necessarily visible to the agent
 - Even if S_t^e is visible, it may contain irrelevant information
- The agent state S_t^a :
 - The agent's internal representation
 - i.e. whatever information the agent uses to pick the next action
 - i.e. it is the information used by reinforcement learning algorithms
 - It can be any function of history:

$$S_t^a = f(H_t)$$

- Partially Observable: (not discussed here)
 - When $S_t^a \neq S_t^e$

Example: Mahjong

Partially observable:

I-Chen Wu

Rewards

- A reward R_t is a scalar feedback signal
 - Indicates how well agent is doing at step t
 - The agent's job is to maximize cumulative reward

 S_t

Reinforcement learning is based on the reward hypothesis

- Example: (2048)

4	8	16	16	Right move Reward = 40	4	8	32
2		4	4			2	8
			2				2
		2		s'_t			2

Definition (Reward Hypothesis)

 All goals can be described by the maximization of expected cumulative reward

Rewards for Previous Examples?

- In AI, it has been used to defeat human champions at games of skill.
 - Backgammon (Tesauro, 1994).
 - Connect6/2048/Threes! (Wu et al., 2015). Reach the top levels.
 - Go programs, used in the past 10 years. (Monte-Carlo Tree Search)
 - AlphaGo, using deep reinforcement learning (2016)
- In robotics, fly stunt maneuvers in robot-controlled helicopters (Abbeel et al.) and make a humanoid robot walk.
- In economics, manage an investment portfolio (Choi et al.).
- In neuroscience, model the human brain (Schultz et al.);
- In psychology, predict animal behavior (Sutton and Barto).
- In systems, control a power station
- In engineering, it has been used to allocate bandwidth to mobile phones and to manage complex power systems (Ernst et al.).

Sequential Decision Making

- Goal:
 - Select actions to maximize total future reward
- Notes:
 - Actions may have long term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more long-term reward

• Examples:

- In 2048, establish a sequence of $(2^t, 2^{t-1}, 2^{t-2}, ...)$
- In chess, block opponent moves to help winning chances many moves from now.
- In a financial investment, may take months to mature
- In robotics, refuel a helicopter to prevent a crash.

Major Components of an RL Agent

- Value function: how good is each state and/or action
- Policy: agent's behavior function
- Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
 - It is a map from state to action,

Policy types:

- Deterministic policy: $a = \pi(s_i)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - ▶ Sometimes, written in $\pi(s, a)$.

• Examples:

- In 2048: Up/down/left/right
- In robotics: angle/force/...

Value Function

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - ▶ therefore to select between actions.
- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma \bar{R}_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- Q-Value function: the expected return from s taking action a. $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$
- Examples:
 - In 2048, the expected score from a board S_t .

Model

- A model predicts what the environment will do next
 - $-\mathcal{P}$ is a state transition probability matrix, $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - predicts the next state
 - $-\mathcal{R}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - predicts the next (immediate) reward
- Examples:
 - In 2048:
 - \triangleright After a move, \mathcal{P} is to generate a tile randomly as follows:
 - 2-tile: with probability of 9/10
 - 4-tile: with probability of 1/10

Categorizing RL Agents (Policy & Value)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function (Implicit)
- Actor Critic
 - Policy
 - Value Function

Categorizing RL Agents (Model)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

Model-free Reinforcement Learning

- Temporal Difference (TD) Learning
 - TD methods learn directly from episodes of experience
 - TD is model-free: no knowledge of MDP transitions / rewards
 - TD learns from incomplete episodes, by bootstrapping
 - TD updates a guess towards a guess
- Monte-Carlo (MC) Learning
 - MC methods learn directly from episodes of experience
 - MC is model-free: no knowledge of MDP transitions / rewards
 - MC learns from complete episodes: no bootstrapping
 - MC uses the simplest possible idea: value = mean return
 - Caveat: can only apply MC to episodic MDPs
 - ▶ All episodes must terminate
 - Monte-Carlo Tree Search (MCTS) is a successful one based on MC learning.

Monte-Carlo Learning

- Incremental Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$
 - α : learning rate, or called step size.
- Unbiased, but high variance.

Temporal-Difference Learning

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - TD target: $R_{t+1} + \gamma V(S_{t+1})$
 - TD error: $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
 - α : learning rate, or called step size.
- Biased, but lower variance

