ECE1371 Advanced Analog Circuits

Higher-Order $\Delta\Sigma$ Modulators and the $\Delta\Sigma$ Toolbox

Richard Schreier richard.schreier@analog.com

NLCOTD: Dynamic Flip-Flop

Standard CMOS version

Can the circuit be simplified?
 Is a complementarty clock necessary?

Review: A $\Delta\Sigma$ ADC System

ECE1371

Review: MOD1

ECE1371 4

Review: MOD2

ECE1371

Review Summary

• $\Delta\Sigma$ works by spectrally separating the quantization noise from the signal

Requires oversampling. $OSR \equiv f_s/(2f_B)$. Achieved by the use of *filtering* and *feedback*.

- A binary DAC is *inherently linear*, and thus a binary $\Delta\Sigma$ modulator is too
- MOD1-CT has inherent anti-aliasing
- MOD1 has $NTF(z) = 1 z^{-1}$
 - ⇒ Arbitrary accuracy for DC inputs; 9 dB/octave SQNR-OSR trade-off.
- MOD2 has $NTF(z) = (1 z^{-1})^2$
 - ⇒ 15 dB/octave SQNR-OSR trade-off.

5

MODN [Ch. 4 of Schreier & Temes]

MODN's NTF is the Nth power of MOD1's NTF

ECE1371 7

NTF Comparison

Normalized Frequency (f)

Predicted Performance

In-band quantization noise power

$$IQNP = \int_{0}^{0.5/OSR} |NTF(e^{j2\pi f})|^2 \cdot S_{ee}(f) df$$

$$= \int_{0}^{0.5/OSR} (2\pi f)^{2N} \cdot 2\sigma_e^2 df$$

$$= \frac{\pi^{2N}}{(2N+1)(OSR)^{2N+1}} \sigma_e^2$$

 Quantization noise drops as the (2N+1)th power of OSR— (6N+3) dB/octave SQNR-OSR trade-off

ECE1371 9

Improving NTF Performance— **NTF Zero Optimization**

Minimize the integral of $|NTF|^2$ over the passband

> Normalize passband edge to 1 for ease of calculation:

Need to find the ai which minimize the integral

$$\int_{-1}^{1} (x^{2} - a_{1}^{2})^{2} dx, \quad n = 2$$

$$\int_{-1}^{1} x^{2} (x^{2} - a_{1}^{2})^{2} dx, \quad n = 3$$

$$\int_{-1}^{1} (x^{2} - a_{1}^{2})^{2} (x^{2} - a_{2}^{2})^{2} dx, \quad n = 4$$

$$\vdots$$

Solutions Up to Order = 8

Order	Optimal Zero Placement Relative to f _B	SQNR Improvement
1	0	0 dB
2	±1 / √3	3.5 dB
3	0 , ±√3/5	8 dB
4	$\pm\sqrt{3/7}\pm\sqrt{(3/7)^2-3/35}$	13 dB
5	0, $\pm \sqrt{5/9} \pm \sqrt{(5/9)^2 - 5/21}$ [Y. Yang]	18 dB
6	±0.23862, ±0.66121, ±0.93247	23 dB
7	0, ±0.40585, ±0.74153, ±0.94911	28 dB
8	\pm 0.18343, \pm 0.52553, \pm 0.79667, \pm 0.96029	34 dB

ECE1371 11

Topological Implication

Feedback around pairs integrators:

2 Delaying Integrators

Poles are the roots of $1 + g\left(\frac{1}{1}\right)^2 = 0$

i.e.
$$z = 1 \pm j\sqrt{g}$$

Not quite on the unit circle, but fairly close if g < 1.

Non-delaying + Delaying Integrators (LDI Loop)

Poles are the roots of

$$1+\frac{gz}{(z-1)^2}=0$$

i.e.
$$z = e^{\pm j\theta}$$
, $\cos \theta = 1 - g/2$

Precisely on the unit circle, regardless of the value of g.

Problem: A High-Order Modulator Wants a Multi-bit Quantizer E.g. MOD3 with an Infinite Quantizer and Zero Input

ECE1371 13

Simulation of MOD3-1b (MOD3 with a Binary Quantizer)

MOD3-1b is unstable, even with zero input!

Solutions to the Stability Problem Historical Order

1 Multi-bit quantization

Initially considered undesirable because we lose the inherent linearity of a 1-bit DAC.

2 More general NTF (not pure differentiation)

Lower the NTF gain so that quantization error is amplified less.

Unfortunately, reducing the NTF gain reduces the amount by which quantization noise is attenuated.

- 3 Multi-stage (MASH) architecture
- Combinations of the above are possible

ECE1371 15

Multi-bit Quantization

A modulator with NTF = H and STF = 1 is guaranteed to be stable if $|u| < u_{max}$ at all times, where $u_{max} = nIev + 1 - ||h||_1$ and $||h||_1 = \sum_{i=0}^{\infty} |h(i)|$

- In MODN $H(z) = (1-z^{-1})^N$, so $h(n) = \{1, -a_1, a_2, -a_3, ... (-1)^N a_N, 0...\}, a_i > 0$ and thus $\|h\|_1 = H(-1) = 2^N$
- $nlev = 2^N$ implies $u_{max} = nlev + 1 ||h||_1 = 1$ MODN is guaranteed to be stable with an N-bit quantizer if the input magnitude is less than $\Delta/2 = 1$. This result is quite conservative.
- Similarly, $nlev = 2^{N+1}$ guarantees that MODN is stable for inputs up to 50% of full-scale

M-Step Symmetric Quantizer

$$\Delta$$
 = 2, (nlev = M + 1)

• No-overload range: $|y| \le n lev \Rightarrow |e| \le \Delta/2 = 1$

ECE1371 17

Inductive Proof of ||h||₁ Criterion

- Assume STF = 1 and $(\forall n)(|u(n)| \le u_{max})$
- Assume $|e(i)| \le 1$ for i < n.[Induction Hypothesis]

$$|y(n)| = |u(n) + \sum_{i=1}^{\infty} h(i)e(n-i)|$$

$$\leq u_{max} + \sum_{i=1}^{\infty} |h(i)||e(n-i)|$$

$$\leq u_{max} + \sum_{i=1}^{\infty} |h(i)| = u_{max} + ||h||_{1} - 1$$

Then
$$u_{max} = nlev + 1 - ||h||_1$$

 $\Rightarrow |y(n)| \le nlev$
 $\Rightarrow |e(n)| \le 1$

• So by induction $|e(i)| \le 1$ for all i > 0

More General NTF

• Instead of NTF(z) = A(z)/B(z) with $B(z) = z^n$, use a more general B(z)

Roots of *B* are the poles of the NTF and must be inside the unit circle.

Moving the poles away from z = 1 toward z = 0 makes the gain of the NTF approach unity.

ECE1371 19

The Lee Criterion for Stability in a 1-bit Modulator: $||H||_{\infty} \le 2$ [Wai Lee, 1987]

• The measure of the "gain" of H is the maximum magnitude of H over frequency, aka the *infinity-norm* of H: $\|H\|_{\infty} \equiv \max_{i} |H(e^{j\omega})|$

Q: Is the Lee criterion $\overset{\omega \in [0, 2\pi]}{\text{necessary}}$ for stability? No. MOD2 is stable (for DC inputs less than FS) but $\|H\|_{\infty} = 4$.

Q: Is the Lee criterion <u>sufficient</u> to ensure stability? No. There are lots of counter-examples, but $\|H\|_{\infty} \le 1.5$ often works.

Simulated SQNR vs. $||H||_{\infty}$ 5th-order NTFs; 1-b Quant.; OSR = 32

SQNR Limits— 1-bit Modulation

SQNR Limits for 2-bit Modulators

ECE1371 23

SQNR Limits for 3-bit Modulators

Generic Single-Loop $\Delta\Sigma$ ADC

Linear Loop Filter + Nonlinear Quantizer:

$$Y = L_0U + L_1V$$
 \Longrightarrow $V = STF \cdot U + NTF \cdot E$, where $NTF = \frac{1}{1 - L_1}$ & $STF = L_0 \cdot NTF$ Inverse Relations: $L_1 = 1 - 1/NTF$, $L_0 = STF/NTF$

ECE1371 25

$\Delta\Sigma$ Toolbox

http://www.mathworks.com/matlabcentral/fileexchange Search for "Delta Sigma Toolbox"

ΔΣ Toolbox Modulator Model

Quantizer:

27 ECE1371

NTF Synthesis

synthesizeNTF

- Not all NTFs are realizable Causality requires h(0) = 1, or, in the frequency domain, $H(\infty) = 1$. Recall $H(z) = h(0)z^0 + h(1)z^{-1} + ...$
- Not all NTFs yield stable modulators Rule of thumb for single-bit modulators: $||H||_{\infty} < 1.5$ [Lee].
- Can optimize NTF zeros to minimize the mean-square value of H in the passband
- The NTF and STF share poles, and in some modulator topologies the STF zeros are not arbitrary

Restrict the NTF such that an all-pole STF is maximally flat. (Almost the same as Butterworth poles.)

ECE1371 28

Lowpass Example [dsdemo1] 5th-order NTF, all zeros at DC

Pole/Zero diagram:

Lowpass NTF

Improved 5th-Order Lowpass NTF Zeros optimized for OSR=32

ECE1371 31

Improved NTF

Bandpass Example

ECE1371 33

Bandpass NTF and STF

Summary: NTF Selection

- If OSR is high, a single-bit modulator may work
- To improve SQNR,

Optimize zeros, Increase $\|H\|_{\infty}$, or Increase order.

If SQNR is insufficient, must use a multi-bit design

Can turn all the above knobs to enhance performance.

Feedback DAC assumed to be ideal

ECE1371 35

NTF-Based Simulation [dsdemo2]

```
order=5; OSR=32;
ntf = synthesizeNTF(order,OSR,1);
N=2^17; fbin=959; A=0.5; % 128K points
input = A*sin(2*pi*fbin/N*[0:N-1]);
output = simulateDSM(input,ntf);
spec = fft(output.*ds_hann(N)/(N/4));
plot(dbv(spec(1:N/(2*OSR))));
```

In mex form; 128K points in < 0.1 sec

Simulation Example Cont'd

SNR vs. Amplitude: simulateSNR

MOD2 Expanded

Difference Equations:

$$v(n) = Q(x_2(n))$$

 $x_1(n+1) = x_1(n) - v(n) + u(n)$
 $x_2(n+1) = x_2(n) - v(n) + x_1(n+1)$

ECE1371 39

Example Matlab™ Code

```
function [v] = simulateMOD2(u)
    x1 = 0;
    x2 = 0;
    for i = 1:length(u)
        v(i) = quantize(x2);
        x1 = x1 + u(i) - v(i);
        x2 = x2 + x1 - v(i);
    end
return
function v = quantize( y )
    if y>=0
        v = 1;
    else
        v = -1;
    end
return
```

NLCOTD: True Single-Phase Dynamic FF

- + Clock not inverted anywhere
- + Small
- + Fast

ECE1371 41

TSPFF Operation

TSPFF Gotchas

• Leakage:

Won't work if clock is too slow. Possible high current if clock is stopped.

Need to add devices to hold the dynamic nodes at a safe value.

• No positive feedback

Vulnerable to metastability.