Networking Autumn 2017

i.g.batten@bham.ac.uk

Check Panopto!

- Is it running?
- Is it running?
- Seriously, is it running?

What this course is

- Some networking theory
- Some networking practice
- Some networking business and reality

What you will learn

- The main components of networking 2017-style, hopefully with an eye to 2027 (or at least 2018).
- Some background to explain why networking today looks like it does, much of which is rather contingent, and how people make money.
- Some theory and science to justify the technology.

The key question

- Both GCHQ and Google lament that when they ask applicants the question "you click on a link, what happens?", people can't really give much of an answer beyond the GUI.
- This course should get you from the click to the wire.

Who are you?

- · I'm expecting people from
 - 3rd/4th years of our BSc/MSci/MEng programmes and parallel joint honours programmes
 - Advanced Computer Science and Cyber Security MSc programmes
 - Is there anyone else? ICY? Conversion MSc?

Programming Skill

- I'd really like you to be able to program, well, in C (ie, Hayo's course, and perhaps be taking Operating Systems in parallel with this)
- However, for Cyber Security Students, I want you to be able to take this course as a pre-requisite for Network Security, which is compulsory, and you might not have C skills.
 - In which case, we can do the 10% programming exercise in other languages, but you might not get the full experience.

Extended Course

 There will be an additional section in the second exercise towards the end of the course for "extended" students, which will look at deeper issues.

Some Basic Assumptions

- Spoiler: Apollo 13 did get back to earth
- Spoiler: The Titanic sinks before the end of the film
- Spoiler: Ethernet lower layers and TCP/IP upper layers have won. There are no serious contenders on the 10–20 year horizon. Everything else is history or weird curiosity.
- So this course is unashamedly Ethernet and TCP/ IP focused, as there are no other games in town.

Week 1:

- This Introduction
- Packet v Circuit Switching, layer models (DoD 4/5, ISO 7), what's in the subnet, transport, application layer.
- Network Hardware: Switches, Routers, data/ control/management plane. Software defined networks.

- Socket Concepts, Threading requirements, old code forks. Socket API.
 - I really want to do this in C, with Java as a distant second choice. Please talk to me if this is going to be a problem for you. There will be an exercise.
- Application: DNS
 - Worth a whole lecture, as it's a critical Internet service.
 I will talk about practical deployment and some security issues as well as how the protocol works.

- Background: LAN/WAN split, Arpanet, X.25, PSS, DEC/XNS/SNA, DoD, OSI. Why OSI Failed.
- Lower Layers: FDDI, Slotted/Token Rings,
 Ethernet (in its various forms). Touch on Transmission (SDH, WDM). ATM in passing.

- IP: addressing, routing, concepts. Why IPv6 is needed.
- IP: address allocation, bootp, DHCP, SLAAC.

Inversion

- In the past few years, I taught the knotty details of TCP at this point.
- Strong knowledge of TCP is important and valuable: there's a real shortage, 35 years after the RFCs, 40 years after Cerf's paper, of people with good understanding of its dynamics
- But I think it needs applications to motivate it, so I'm going to switch to applications at this point and come back down the stack.

- Application: HTTP, SMTP, IMAP, POP3, SNMP, NTP
 - For all the application lectures, I will deal with deployment and server issues as well as the protocol, so you can go out and do stuff with them.
- For the good of everyone's futures, I'm going to spend some time on security issues within these protocols.

- TCP 1: history, basic concepts. Windows, acks.
 - Previously I had a deadline here to meet Network Security, which I was teaching in the same semester. We're more relaxed this time.
- TCP 2: Detailed operation
 - This might take more than one lecture

- TCP 3: Options (scaling, PAWS, etc, timestamps)
- TCP 4: Nagle, silly-window.
- Implementation: how it looks in the kernel.
 - I'm going to assume some familiarity with Unix/ Linux kernels, but I'll try to make it accessible if you don't have that

- UDP, RTSP, other transports
- NAT and its evils. IPv6 as cure. IoT. NAT security / logging / problems.

- Application: Voice (I will try to get Chris Gallon in), 21CN, issues and politics.
- If I can't get Chris, Jim Reid on DNS security, issues and politics
 - Marshall Rose referred to politics as "Layer 8" of the 7 later model.
- Tutorial, Catchup, Exercise feedback and discussion

- Routing inside the enterprise: Interior (RIP, OSPF, IPv6 analogues). VLANs.
- Routing outside the enterprise: Exterior (BGP, tech and politics). PPPoA/E, VLAN stacking

Summary and spare

Assessment

- Exercise set w/c 2/10/2017, due 23/10/2017
 - Will be a programming task, including testing against other people's code for interoperability and bugs
- Exercise set w/c 6/11/2017, due 27/11/2017
 - Will **not** be a programming task, but a bit of shellscripting might help it along.
- Each worth 10% of total marks, so don't sweat them too much.

Office Hours

- Wednesdays, 10–12 in Room 132
- I.G.Batten@bham.ac.uk
 - Or Canvas discussions
- https://igb.batten.eu.org/
- Canvas/Panopto will (I hope) contain full recordings

Books

- "Distributed Systems: Concepts and Designs" by Coulouris, Dollimore, Kindberg and Blair is also used for Distributed Systems and covers a lot (was used in the past when the two courses were combined)
- TCP/IP Illustrated, Volume 1 by W. Richard Stevens is the essential book on TCP/IP
- TCP/IP Illustrated, Volume 2 is **not** necessary (it documents kernel implementations) but is a fascinating read (really)
- I will also expect you to read RFCs as we go along.

Things I've left out

- There is hopefully some spare time in which we can fit in some of the following.
 - Wireless networking (802.11[abgn])
 - Network management (SNMP in more detail)
 - Network design issues