Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

Лабораторная работа №3

по дисциплине «Методы вычислений»

Численное решение краевых задач для одномерного волнового уравнения

Выполнили студенты группы ФН2-61

Разумов Т.Е. Швечков И.В.

Контрольные вопросы

- 1. Предложите разностные схемы, отличные от схемы "крест", для численного решения задачи (3.1)–(3.4).
- 2. Постройте разностную схему с весами для уравнения колебаний струны. Является ли такая схема устойчивой и монотонной?
- 3. Предложите способ контроля точности полученного решения.
- 4. Приведите пример трехслойной схемы для уравнения теплопроводности. Как реализовать вычисления по такой разностной схеме? Является ли эта схема устойчивой?

Ответы на контрольные вопросы

1) Существует множество методов для решения волнового уравнения. Например, можно использовать трехслойную разностную схему, построенную на девятиточечном шаблоне

$$y_{\bar{t}t} - c^2(\sigma \hat{y}_{\bar{x}x} + (1 - 2\sigma)y_{\bar{x}x} + \sigma \check{y}_{\bar{x}x}) = 0.$$

Данная схема при любом σ имеет порядок аппроксимации по крайней мере $O(\tau^2+h^2)$. Схема устойчива при

$$\sigma \geqslant \frac{1}{4} - \frac{h^2}{4c^2\tau^2}.$$

При $\sigma = \frac{1}{12} - \frac{h^2}{12c^2\tau^2}$ схема имеет погрешность аппроксимации $\psi_h = O(\tau^4 + h^4)$. Так же волновое уравнение можно решать с помощью двухслойных разностных

Так же волновое уравнение можно решать с помощью двухслойных разностных схем. Например, можно ввести скорость по правилу $v=u_t$. Тогда получим систему уравнений

$$u_t = v, \quad v_t = c^2 u_{xx}.$$

Или можно ввести потенциал скоростей $v=\int\limits_0^x u_t d\xi$ и свести исходное уравнение второго порядка по обеим переменным к системе уравнений акустики первого порядка:

$$u_t = v_x, \quad v_t = c^2 u_x.$$

- 2) Разностная схема с весами для уравнения колебания струны была предложена в пункте 1. Так же в пункте 1 было выписано условие устойчивости данной разностной схемы. Выписав разностную схему в виде, удобном для анализа положительности коэффициентов, мы получили, что разностная схему не является монотонной при любых τ , h, σ .
- 3) Для контроля точности решения можно посчиать решение уравнения при h, τ , затем уменьшить шаги и с помощью порядка аппроксимации используемой разностной схемы найти приближенную точность решения.
- 4) Для решения уравнения теплопроводности можно использовать трехслойные разностные схемы. Например, можно использовать разностную схему типа "крест"

$$y_{\underline{Q}} = k y_{\bar{x}x}.$$

Исследуя схему методом гармоник, мы получим квадратное уравнение относительно ρ

$$\rho^{2} + \frac{8\tau k}{h^{2}}\sin(\frac{\varphi}{2})\rho - 1 = 0.$$

С помощью дискриминанта получим выражения на корни квадратного уравнения

$$\rho = -\frac{4\tau k}{h^2} \sin^2 \frac{\varphi}{2} \pm \sqrt{\frac{16\tau^2 k^2}{h^4} \sin^4 \frac{\varphi}{2} + 1}.$$

Как мы видим, при минусе перед корнем у нас получается $|\rho| > 1$, а следовательно, если существует хотя бы корень больше одного, то схема является неустойчивой.

Так же можно воспользоваться трехслойной разностной схемой

$$y_{\hat{t}} = k \frac{y_{+1} - \hat{y} - \check{y} + y_{-1}}{h^2}.$$

Методом гармоник на семинаре была проанализирована данная разностная схема и было доказано, что схема является безусловно устойчивой.

Демонстрация работоспособности программы

Покажем на тестовом примере, имеющем аналитическое решение $\sin(\pi x)\cos(\pi x)$, что полученные численные результаты согласуются с аналитическими расчетами, а именно покажем, как убывает ошибка с уменьшением шагов по пространству и по времени. $\tau = 0.001$, h = 0.01.

Порядок точности методов				
z_1 при h, τ	z_2 при $h/2, \tau/2$	z_3 при $h/4, \tau/4$	z_4 при $h/8, \tau/8$	
$7.39658 * 10^{-5}$	$1.85032 * 10^{-5}$	$0.462517 * 10^{-5}$	$0.115425 * 10^{-5}$	

Таблица 1

Для большей наглядности результатов продемонстрируем таблицу отношения погрешностей

z_1/z_2	z_2/z_3	z_3/z_4
3.99746	4.00054	4.00708
Tahanna 2		

Таблица 2

Как мы можем видеть, численно полученные результаты согласуются с аналитическими прогназами.

Так же продемонстрируем графически полученное решение

Рис. 1. Численное решение