1 | What are kinetics:

· how fast a reaction proceeds

2 | Why care?

- Real world application: if you want to make a chemical (say some sort of medicine), then you will want to make it faster so you can keep with the demand of the product.
- Kinetics is the study of the speed of reactions, so you can apply it to speeding the production of your medicine

3 | Basis of kinetics:

· collision theory

4 | Collision theory:

- · particles must collide before a reaction can take place
- · not all collisions lead to a reaction
- reactants must posses at least a minimun amount of energy Activation energy
- Steric effect : particles must approach each other in a certain way

5 | Qualitative side to kinetics:

5.1 | according to collision theory, for a faster recation, you want:

5.1.1 | more frequent collisions

- · more speed
- · more particles

5.1.2 | more successful collisions

- · more energy
- lower activation energy

5.2 | what this looks like

5.2.1 | increase the surface area

- · this way more particles are exposed
- · powdered solids react faster than larger lumps

5.2.2 | increase the temperature

- · more kinetic energy to your particles
- · this increases the speed of your particles
- · this increases frequency of collisions
- the extrac kinetic energy also allows the particles to get over the activation energy thershold
 - Boltzman distribution

5.2.3 | shine light

· same as temperature, just a different source of energy

5.2.4 | add a catalyst

5.2.5 | increase the pressure of gases

- when you increase the pressure of the vessel you are essentially decreasing the volume of the vessel
- this means your molecules are going to interact with each other more often
- this will increase the frequency of collisions

5.2.6 | increase the concentration of reactants

• you can also increase the amount of the reactants, this leaves a higher chance of collision which will lead to more collisions and thus a faster reaction

6 | Quantitative side to kinetics:

6.1 | rate of a reaction:

- · the reaction starts off fast and then asymptotically gets slower
- this is because as time goes on there will be less and less reactant particals to collide with and keep the reaction going.
- the rate of the reaction would be the derivative of the C curve
- the initial rate of a reaction is the slope af the very begining of the curve

6.2 | The initial reaction rate equation:

- $r = k[A]^x[B]^y$, where:
 - k is a constant, depends on the reaction
 - [A] is the concentration of A
 - [B] is the concentration of B
 - x is an exponent that change based on the reaction
 - y is an exponent that changes based on the reaction
- unit of the rate of an equation: mol/dm³/s

6.3 | Order of a reaction:

• x+y, where ${\bf x}$ and ${\bf y}$ are what was from the rate equation