U.E. MAAS, PORTAIL "AVEC MATHS" (CODE Z120BU03TA)

Seconde chance tous portails "Avec Maths", le 16 juin 2021, $13\mathrm{h}30\mathrm{-}15\mathrm{h}00$

Rédacteur du sujet :	Durée de l'épreuve : 1h30.
Équipe pédagogique MAAS	Feuilles de synthèse TCM S1 & MAAS S2 et calculatrices autorisées.
Nb. de pages : 2	Les réponses doivent être justifiées;
	La rédaction sera prise en compte dans l'évaluation de la copie.

Exercice 1

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f(x,y) = x^2 e^{(xy)}$.

On note S la surface représentative de f dans un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$

- 1. Calculer les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- 2. Que vaut le vecteur gradient de f au point (1,0)? Représenter graphiquement le vecteur gradient de f au point (1,0).
- 3. Montrer que le point M de coordonnées (1,0,1) appartient à S.
- 4. Donner une équation cartésienne de la tangente à la ligne de niveau L_1 au point (1,0).
- 5. Donner une équation cartésienne du plan tangent à S au point M.

Exercice 2

- 1. L'accroissement de la population P d'un pays est proportionnel à cette population. On note P(t) la population du pays à l'instant t (l'unité de temps est l'année).
 - (a) On note α ce coefficient de proportionnalité. La population vérifie alors l'équation :

$$P'(t) = \alpha P(t).$$

Résoudre cette équation.

- (b) On sait que la population de ce pays double tous les 50 ans. En déduire la valeur exacte de α . En combien de temps la population de ce pays triple-t-elle?
- 2. Donner toutes les solutions de l'équation $y' 3y = 3x^2e^{3x}$.
- 3. On considère l'équation y'' 4y' + 3y = 0.
 - (a) Résoudre cette équation.
 - (b) Donner la solution de l'équation vérifiant y(0) = 1 et y'(0) = 0.

Exercice 3

- 1. Donner la négation des assertions suivantes et justifier si elles sont vraies ou fausses.
 - $(P) \quad \forall n \in \mathbb{N}, \ \forall m \in \mathbb{N}^*, \exists p \in \mathbb{N}; \ m+p > 2n$
 - $(Q) \quad \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (x < y \Rightarrow x^2 < y^2)$
- 2. Soit $n \in \mathbb{N}$. Donner la contraposée de l'implication suivante :

$$n \ge 4 \Rightarrow 2^n \le n!$$

3. Soit $q \in \mathbb{R} \setminus \{1\}$. Démontrer par recurrence que pour tout entier naturel $n \geq 2$, on a

$$\sum_{k=2}^{n} q^{k} = q^{2} \left(\frac{q^{n-1} - 1}{q - 1} \right)$$

 $\hookrightarrow \texttt{Tournez la page SVP} \hookrightarrow$

- 4. Soient E un ensemble non vide et A et B deux parties de E. Montrer que : $A \subset B \Longrightarrow \mathbb{C}_E B \subset \mathbb{C}_E A$.
- 5. On veut créer un mot de passe de 6 caractères donnant accès à un site sur internet. Le premier caractère est à choisir dans $\{A,B\}$, les deux suivants (distincts ou non) dans $\{a,b,c\}$ puis trois chiffres (distincts ou non) entre 1 et 9 (exemples Abb353, Bbc136 et Bca949).
 - (a) Combien de mots de passe peut-on former?
 - (b) Combien existe-t-il de mots de passe se terminant par 1 ou 9?
 - (c) Combien existe-t-il de mots de passe ne se terminant ni par 1 ni par 9?
 - (d) Combien de mots de passe dont les caractères sont différents deux à deux peut-on former?

Correction de l'examen du 16/06/21

Proposée par Sue Claret, Léo Hahn Lecler, Clément Legrand, Vincent Souveton et Emilien Zabeth

Correction de l'Exercice 1.

1. Les dérivées partielles de f sont données par :

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}(xy+2) \qquad \frac{\partial f}{\partial y}(x,y) = x^3e^{xy}.$$

2.
$$\overrightarrow{\operatorname{grad}}(f)(1,0) = \begin{pmatrix} \frac{\partial f}{\partial x}(1,0) \\ \frac{\partial f}{\partial y}(1,0) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

- 3. $S = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y) = z\}$. Or f(1, 0) = 1, donc $(1, 0, 1) \in S$.
- 4. Une équation de la tangente à la ligne L_1 au point (1,0) est donnée par

$$(x-1)\frac{\partial f}{\partial x}(1,0) + (y-0)\frac{\partial f}{\partial y}(1,0) = 0$$

$$\iff 2(x-1) + y = 0$$

$$\iff 2x + y - 2 = 0.$$

5. Une équation cartésienne du plan tangent à $\mathcal S$ au point M est donnée par

$$(x-1)\frac{\partial f}{\partial x}(1,0) + (y-0)\frac{\partial f}{\partial y}(1,0) - (z-1) = 0$$

$$\iff 2(x-1) + y - z + 1 = 0$$

$$\iff 2x + y - z - 1 = 0.$$

Correction de l'Exercice 2.

1. (a) Les solutions de l'équation différentielle sont de la forme

$$t \mapsto Ke^{\alpha t}$$
,

où $K \in \mathbb{R}$ est une constante.

(b) Par la question précédente, on sait qu'il existe $K \in \mathbb{R}$ tel que $P(t) = Ke^{\alpha t}$ pour tout $t \in \mathbb{R}$. Par l'énoncé on sait que P(50) = 2P(0), ce qui signifie $Ke^{50\alpha} = 2Ke^0$, donc que $e^{50\alpha} = 2$. Mais on a

$$e^{50\alpha} = 2 \iff 50\alpha = \ln(2) \iff \alpha = \frac{\ln(2)}{50}.$$

On cherche ensuite $T \in \mathbb{R}$ tel que P(T) = 3P(0), c'est-à-dire $Ke^{\alpha T} = 3Ke^0$, ou encore $e^{\alpha T} = 3$. Mais

$$e^{\alpha T} = 3 \iff \alpha T = \ln(3) \iff T = \frac{\ln(3)}{\alpha} = 50 \frac{\ln(3)}{\ln(2)}.$$

On a donc $T \approx 79, 3$. La population triple donc au bout d'environ 79, 3 années.

1

2. On commence par résoudre l'équation homogène associée y'-3y=0, pour laquelle les solutions sont de la forme $x\mapsto Ke^{3x}$, où $K\in\mathbb{R}$ est une constante.

Il faut ensuite trouver une solution particulière. Pour cela, on peut utiliser la méthode de variation de la constante: on cherche une solution de la forme $y_p: x \mapsto g(x)e^{3x}$, où g est une fonction à déterminer. On a $y_p'(x) = g'(x)e^{3x} + 3g(x)e^{3x}$, donc

$$y_p'(x) - 3y_p(x) = g'(x)e^{3x} + g(x)e^{3x} - 3y_p(x)$$

= $g'(x)e^{3x} + 3g(x)e^{3x} - 3g(x)e^{3x} = g'(x)e^{3x}$.

On en déduit donc que y_p est solution de l'équation différentielle si et seulement si $g'(x)e^{3x} = 3x^2e^{3x}$, ou autrement dit $g'(x) = 3x^2$. Il suffit donc de poser $g: x \mapsto x^3$.

Les solutions de l'équation différentielle sont donc de la forme

$$x \mapsto Ke^{3x} + x^3e^{3x}$$
.

où $K \in \mathbb{R}$ est une constante.

3. (a) L'équation caractéristique associée est $X^2-4X+3=0$. Le discriminant est $\Delta=4$, donc les solutions de l'équation caractéristique sont

$$\lambda_1 = 1, \ \lambda_2 = 3.$$

Ainsi, les solutions de l'équation différentielle sont de la forme

$$x \mapsto K_1 e^x + K_2 e^{3x},$$

où $K_1, K_2 \in \mathbb{R}$ sont des constantes.

(b) Soit y une solution de l'équation différentielle vérifiant y(0) = 1, y'(0) = 0. Comme y est solution de l'équation, on sait par ce qui précède qu'il existe $K_1, K_2 \in \mathbb{R}$ tels que $y(x) = K_1 e^x + K_2 e^{3x}$ pour tout $x \in \mathbb{R}$. Ainsi

$$y(0) = 1 \iff K_1 e^0 + K_2 e^0 = 1 \iff K_1 + K_2 = 1.$$

D'autre part un simple calcul de dérivée montre que

$$y'(x) = K_1 e^x + 3K_2 e^{3x},$$

d'où

$$y'(0) = K_1 + 3K_2.$$

Ainsi, la condition y'(0) = 0 signifie que $K_1 + 3K_2 = 0$. On cherche donc à résoudre le système

$$\begin{cases} K_1 + K_2 = 1 \\ K_1 + 3K_2 = 0 \end{cases}$$

qui est équivalent à

$$\begin{cases} -2K_2 = 1\\ K_1 = -3K_2. \end{cases}$$

L'unique solution est $(K_1, K_2) = (\frac{3}{2}, \frac{-1}{2})$. Ainsi

$$y(x) = \frac{3}{2}e^x - \frac{1}{2}e^{3x}, \quad \forall x \in \mathbb{R}.$$

Correction de l'Exercice 3.

1. Négation de P:

$$(\text{non}(P)) \quad \exists n \in \mathbb{N}, \ \exists m \in \mathbb{N}^*, \ \forall p \in \mathbb{N}, \ m+p \leq 2n.$$

L'assertion P est vrai. Soient $n \in \mathbb{N}$ et $m \in \mathbb{N}^*$, on pose p = 2n, alors m + p > p = 2n, donc m + p > 2n.

Négation de Q:

$$(\text{non}(Q)) \quad \exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ (x < y \text{ et } x^2 \ge y^2).$$

L'assertion Q est fausse en effet, soient x=-2 et y=1, alors x=-2<1=y et $x^2=4\geq 1=y^2$.

2. Contraposée:

$$2^n > n! \implies n < 4.$$

3. On écrit l'hypothèse de récurrence au rang $n \ge 2$:

$$HR(n)$$
: " $\sum_{k=2}^{n} q^k = q^2 \left(\frac{q^{n-1} - 1}{q - 1} \right)$ ".

Initialisation: pour n=2 on a $\sum_{k=2}^n q^k = \sum_{k=2}^2 q^k = q^2 = q^2 \left(\frac{q^{n-1}-1}{q-1}\right)$, ce qui montre que HR(2) est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: on suppose pour $n \geq 2$, HR(n). Montrons HR(n+1):

$$\begin{split} \sum_{k=2}^{n+1} q^k &= \sum_{k=2}^n q^k + q^{n+1} \\ &= q^2 \left(\frac{q^{n-1} - 1}{q - 1} \right) + q^{n+1} \\ &= \frac{q^{n+1} - q^2}{q - 1} + \frac{q^{n+1}(q - 1)}{q - 1} \\ &= \frac{q^{n+1} - q^2 + q^{n+2} - q^{n+1}}{q - 1} \\ &= \frac{q^{n+2} - q^2}{q - 1} \\ &= q^2 \left(\frac{q^n - 1}{q - 1} \right). \end{split}$$

4. On suppose $A \subset B$, montrons $\mathcal{C}_E B \subset \mathcal{C}_E A$:

- Si $C_E B = \emptyset$, on a bien $C_E B \subset C_E A$.
- Sinon, soit $x \in \mathcal{C}_E B$, alors $x \in E$ et $x \notin B$. Supposons par l'absurde que $x \in A$, alors comme $A \subset B$, on a que $x \in B$ contradiction. D'où $x \in E$ et $x \notin A$, donc $x \in \mathcal{C}_E A$.
- 5. L'ensemble des mots de passe est donnée par :

$$\Omega = \{A, B\} \times \{a, b, c\}^2 \times \{1, 2, \dots, 9\}^3$$

Le nombre de mot de passe que l'on peut former est donc $\operatorname{Card}(\Omega) = 2 \times 3^2 \times 9^3 = 13122$.

Pour faire un mot de passe finissant par 1 ou 9 on choisit :

- La première lettre A ou B: 2 choix.
- Les deux lettres parmi a, b et $c: 3^2$ choix.
- Les deux premiers chiffres entre 1 et $9:9^2$ choix.
- Le dernier chiffre 1 ou 9:2 choix.

Il y a donc $2 \times 3^2 \times 9^2 \times 2 = 2916$ mots de passe finissant par 1 ou 9.

Il y a 13122 - 2916 = 10206 mots de passe se terminant ni par 1 ni par 9.

Pour faire un mot de passe dont les caractères sont différents deux à deux on choisit :

- La première lettre majuscule A ou B: 2 choix.
- La première lettre minuscule $\alpha \in \{a, b, c\}$: 3 choix.
- La deuxième lettre minuscule $\beta \in \{a,b,c\} \setminus \{\alpha\}$: 2 choix.
- Le premier chiffre $x \in \{1, \dots, 9\}$: 9 choix.
- Le deuxième chiffre $y \in \{1, ..., 9\} \setminus \{x\}$: 8 choix.
- Le troisième chiffre $z \in \{1, \dots, 9\} \setminus \{x, y\}$: 7 choix.

Il y a donc $2 \times 3 \times 2 \times 9 \times 8 \times 7 = 6048$ mots de passe dont les caractères sont différents deux à deux.