

Description

The VSM2302C uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

• $V_{DS} = 20V, I_D = 3 A$

 $R_{DS(ON)}$ < $80m\Omega$ @ V_{GS} =2.5V

 $R_{DS(ON)}$ < 50m Ω @ V_{GS} =4.5V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- Battery protection
- Load switch
- Power management

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM2302C-S2	VSM2302C	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Davamatav	Cymphal	Limit	Heit
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	Vgs	±12	V
Drain Current-Continuous	I _D	3.0	Α
Drain Current-Pulsed (Note 1)	I _{DM}	12	Α
Maximum Power Dissipation	P _D	0.8	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	156	°C/W

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	22	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm 12V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.75	1.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =2.8A	-	42	80	mΩ
Dialii-Source Oil-State Resistance		V _{GS} =4.5V, I _D =3A	-	35	50	mΩ
Forward Transconductance	g FS	$V_{DS}=5V,I_{D}=3A$	-	5	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	\/ -40\/\/ -0\/	-	240	-	PF
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, F=1.0MHz	-	45	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	23	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	2.3	-	nS
Turn-on Rise Time	t _r	V_{DD} =10V, R_L =3.3 Ω	-	3.1	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =4.5 V , R_{GEN} =6 Ω	-	20	-	nS
Turn-Off Fall Time	t _f		-	2.5	-	nS
Total Gate Charge	Qg		-	2.7	5	nC
Gate-Source Charge	Q _{gs}	V_{DS} =10V, I_{D} =3A, V_{GS} =4.5V	-	0.4	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} -4.5V	-	0.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	3	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Vgs Gate-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

 T_J -Junction Temperature($^{\circ}\mathbb{C}$)

Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

Vsd Source-Drain Voltage (V)

Figure 12 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance