DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular End Semester Examination – Summer 2022 SE Branch: Computer Engineering/ CSE/ CSE(AI&ML) Course: S.Y B. Tech. Semester: IV Subject Code & Name: BTCOC401 (Design and Analysis of Algorithm) Max Marks: 60 Date: 12/08/2022 Duration: 3.45 Hr. Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q. 1 Solve Any Two of the following A) Define Algorithm? State the main characteristics of Algorithm Knowledge 6 B) Describe Asymptotic notations with expression Understand 6 C) Evaluate 9T(n/3) + nEvaluation 6 Q.2 Solve Any Two of the following. A) Describe an algorithm for Merge Sort and find its time complexity Understand 6 B) Evaluate and write the algorithm for Quick sort describe its best and worst case Evaluation 6 with suitable example $\begin{bmatrix} 6 & 7 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ Solve using Strassen's Matrix Multiplication, and Calculate Analysis 6 its time complexity Q. 3 Solve Any Two of the following. A) Draw a state space tree for finding four queens solutions Understand 6 Apply branch and bound technique to solve travelling salesman problem for Analysis 6 20 30 10 11 15 00 16 2 3 5 00 2 19 6 18 00 3 16 the graph whose matrix is 16 C) Describe Graph Coloring Problem with suitable example Understand 6 Q.4 Solve Any Two of the following. A) Solve the Fractional Knapsack problem Given n = 5 objects and a knapsack Analysis 6 capacity W = 60 profit= (30, 20, 100, 90, 160) Weight = (5, 10, 20, 30, 40)

a: 50 b: 25 c: 15 d: 40 e=75

C) Solve Job sequencing with deadlines n=4, p=(100,10,15,27) and d

Analysis

Analysis

6

6

B) Solve an optimal Huffman code for the following set of frequencies

Q. 5 Solve Any Two of the following.

A) Calculate the shortest path by using Floyd's Warshall Algorithm 0 4 5 2 0 ∞ ∞ -3 0

B) Calculate the longest common subsequence for $X=\{A,B,C,B,D,A,B\}$ Application 6

 $Y=\{B,D,C,A,B,A\}$

C) Differentiate between Dynamic Programming and greedy Approach

*** End ***

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Winter Semester Examination – Nov - 2019

Branch: Computer Science & Engineering

Sem.:- IV

Subject: Design and Analysis of Algorithms (BTCOC401) Marks: 60

Date: - 26/11/2019

Time: - 3 Hrs.

Instructions to the Students

- 1. Each Question carries 12 marks.
- 2. Attempt any Five Questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly
- Q.1)a)Solve the following recurrence relation using master method.
 - (i) T(n) = 4T(n/2) + n
 - (ii) $T(n) = 4T(n/2) + n^2$
 - $(iii)T(n) = 4T(n/2) + n^3$
- Q.1)b) Explain different asymptotic notations.
- Q.2)a)Write Strassen's algorithm to multiply two 2X2 matrices. Apply Strassen's algorithm to multiply following matrices.

A =
$$\begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$$
 B =
$$\begin{cases} 2 & 2 \\ 2 & 2 \end{cases}$$

- Q.2) b) Write an algorithm for merge sort. Apply merge sort on following array A=5 1 2 6 3 7 9 4
- Q.3) a) Write Huffman Coding algorithm . Obtain Huffman tree for following data.

Characters					
	"a"	"b"	"c"	"d"	"e"
Frequency	6	11	19	35	50

- Q.3) b) What are the different elements of greedy strategy? Explain the steps to solve the problem by greedy strategy.
- Q.4) a) Compute Longest Common Subsequence using Dynamic Programming approach for sequences X and Y if X = A, B, C, B, D, A, B and Y = B, D, C, A, B, A. What is the

length of LCS.

- b) Compare Greedy Strategy, Dynamic Programming and Divide and Conquer approach.
- Q.5)a) What is state space tree ?Using state space tree show that there exist an solution to 4-Queens problem .
 - b) Given n=6 weights, w={5,10,12,13,15,18} and M=30 .Find all possible subsets for which sum=M using sum of subsets algorithm.
- Q.6) a) What is P class and NP class? Show relationship between them.

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY LONERE – RAIGAD -402 103

Semester Examination – Summer - 2019

Branch: Computer Engineering

Sem.:- IV

Subject and Subject Code: Design and Analysis of Algorithms (BTCOC401)

Date: - 14/05/2019

Marks: 60

Time:- 3 Hrs.

Instructions to the Students

1. Each Question carries 12 marks.

2. Attempt Any Five Questions of the following.

- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

Q.1. Attempt Any Three from the following questions.

(04*03=12)

a) Define Big O notation? What is total time complexity of following code? int a,b,c,d,i.

for $(i = 0; i \le 11; i + +)$ { a = a + b;} d = c + a;

- b) Define algorithm. What is the need of algorithm analysis? Which factors affect runtime of algorithm?
- c) Solve the following recurrence relation using characteristic polynomial.

$$t_n = \begin{cases} n & \text{if } n=0 \text{ or } n=1\\ t_{n-1} + t_{n-2}, \text{ otherwise} \end{cases}$$

d) Solve the following recurrence using master method. Verify solution using substitution method.

$$T(n) = 2T(n/2) + cn$$

undefined

Q.2. Attempt the following questions

(06*02=12)

6}

a) Write an algorithm of merge sort and illustrate the operation on an array using Merge Sort.

 $A = \{5 \quad 2 \quad 4 \quad 7 \quad 1 \quad 3$

b) Multiply following two matrices using Strassen's matrix multiplication algorithm.

$$Matrix A = \begin{cases} 1 \\ Matrix A \end{cases}$$

Q.3. Solve the following questions

(06*02=12)

- a) What is Greedy method? Explain elements of Greedy method.
- b) Construct an optimal instance of Huffman Code for the following set of frequencies using Greedy method.

Characters	A1 "a"	A2 "b"		A4 "d"	A5 "e"	A6 "f"
Frequency	45	13	12	16	9	5

Q.4. Solve the following questions:

(06*02=12)

a) Determine longest common subsequence using dynamic programming approach for X and Y. What is the length of longest common subsequence?

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $Y = \langle B, D, C, A, B, A \rangle$

b) Find the shortest path using Bellman Ford algorithm for the following graph. Note that vertex z is source vertex.

Q.5. Solve the following questions

(06*02=12)

a) Solve the following 15-Puzzle Problem.

1	2	3	4
5	6		8
9	10	7	11
13	14	15	12

b) How 4- Queens problem is solved by backtracking approach? Explain with the help of state space tree.

Q.6. Attempt any three Questions:

(04*03=12)

- a) Explain Class P, Class NP and Class NPC problems in detail.
- b) Insert the following keys into empty B-Tree with minimum degree 2. Show the configuration of B-Tree after each insertion operation.

 Keys: F S Q K C L H T V W M R N P A B X Y D Z E
- c) What do you mean by Red Black Tree?. What are the characteristics of Red Black tree?
- d) Explain Polynomial time reduction with example.

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY	, LONERE	
	Supplementary Winter-2023		
	Course: B. Tech. Branch: Computer & Allied Engineering	Semester :IV	
	Subject Code & Name: BTCOC401 Design & Analysis of Algorithm	S	
	Max Marks: 60 Date:16-01-24 Duration: 3 H	Ir.	
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Out on which the question is based is mentioned in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	` ′	M
0.1	Calva Any Two of the fellowing	(Level/CO)	Marks
Q. 1	Solve Any Two of the following.	D 1	12
A)	What is Algorithm? Explain criteria of Algorithms.	Remember	6
B)	What is Asymptotic Notations? Explain any three Asymptotic Notations.	Remember	6
C)	Define Max and Min Heap and write algorithm to insert into a heap.	Analysis	6
Q.2	Solve Any Two of the following.		12
A)	Write algorithm for Binary Search and calculate its time complexity.	Application	6
B)	Explain Quick Sort algorithm with its performance analysis.	Analysis	6
C)	Explain Strassen's Matrix Multiplication.	Remember	6
Q. 3	Solve Any Two of the following.		12
A)	Draw a state space tree for finding Four Queens problems solution.	Application	6
B)	Describe Graph Coloring Problem with suitable example	Analysis	6
C)	Explain Branch and Bound with suitable example.	Remember	6
Q.4	Solve Any Two of the following.		12
A)	Find an optimal solution to the knapsack instance $n = 7$, $m = 15$, $(P_1, P_2, P_3, P_4, P_5, P_6, P_7) = (10,5,15,7,6,18,3)$, and $(w_1, w_2, w_3, w_4, w_5, w_6, w_7) = (2,3,5,7,1,4,1)$.	Application	6
B)	What is Minimum Cost Spanning Tree? Explain with suitable example.	Remember	6
C)	Explain Job Sequencing with Deadlines.	Remember	6
Q. 5	Solve Any Two of the following.	A = 01:	12
A)	Analyze Floyd Warshals algorithm for Dynamic Programming.	Analysis	6
B)	Explain complexity class P and complexity class NP.	Remember	6
C)	Differentiate between Dynamic Programming and Greedy Algorithm.	Analysis	6

	DR. BAB	ASAHEI	B AMBE	DKAR TEC	CHNOLOG	ICAL U	NIVERSITY,	LONERE	
		Regula	ar and Si	upplementa	ry Summer	Exami	nation -2024		
				Cours	se: B. Tech.				
			Branch	: Computer	Engineeri	ng and A	Allied		
	Semester :IV								
	Subject Code &	Name: I)esign an	d Analysis	Of Algorith	ms(BTC	COC401)		
	Max Marks: 60		Da	te:12/06/20	24	Dur	ation: 3 Hrs.		
		uestions a l of questi tion is bas on-progra	are compu ion/expect sed is men ammable s	ted answer o ntioned in (, scientific ca) in front of t lculators is a	he quest allowed.			
								(Level/CO)	Marks
Q. 1	Solve Any Two	of the fol	lowing.						
A)	(ii) $T(n)$	0 = 16T(n/n) $0 = T(2n/n)$	(4) + n.	G	Theorem.	<u> </u>	1,57	Apply	6
B)	What are differen				nlain with r	neat gra	nhs. If f(n) =	Analyze	6
D)	sqrt (n) and g(n)		_			icut gru	P110. 11 1(11) —		Ū
C)	What are the di				Cal	factors :	affect runtime	Understand	6
C)	of an algorithm	-	oper ties	or algorith	W . Willen	iuctors	arreet runtime	Chacistana	· ·
	or an argorithm								
Q.2	Solve Any Two	of the following	lowing	00					
A)	,	s matrix	multiplic	cation algor	ithm on foll	lowing n	natrices.	Apply	6
B)	What is best cas Merge Sort on f A = { 13, 4, 22, 1	ollowing	array.	time comple	exity for Me	erge Sor	t ? Apply	Apply	6
C)	Distinguish betwapproach .	veen Divi	de and C	Conquer and	d Dynamic _l	progran	nming	Understand	6
Q. 3	Solve Any Two	of the fol	lowing.						
A)	Apply Huffman character using	Coding a	algorithn			rite the o		Apply	6
	Character	a	b	c	d	e	f		
	Frequency	45	13	12	16	9	5		

B)	Apply greedy apply capacity of knaps	Apply	6			
	Item	Weight(in	Value			
		KG)	(Profit)			
	1	5	30			
	2	10	40			
	3	15	45			
	4	22	77			
	5	25	90			
C)	Caculate shortest	t path from node S	to all nodes for f	following graph using	Apply	6
	Dijkstra's algorit	9 4 B 6				
Q.4	Solve Any Two of	f the following	,	2		
A)		rshall's algorithm	on following gra	nh	Apply	6
	4 4 9	2 1 2				v
B)		est Common Subsective Y= <m a="" j="" th="" w<="" z=""><th>_</th><th>X and Y if X=< x n</th><th>n Apply</th><th>6</th></m>	_	X and Y if X=< x n	n Apply	6
C)	Explain the follow	wing terms.			Understand	6
	(i) P -problem (ii	i) NP problem (iii)	NP complete pro	blem		
Q. 5	Solve Any Two of	f the following.				
A)		oroblem is solved by Queens problem?	y backtracking a	pproach? Draw state	Analyze	6
	C-1 41 f-11	ng travelling salesm			Apply	6

1			30	10			
3	15 3	∞ 5		10 1			
4	19		18	∞			
5	16	4	7	16 (
C) Cor	npare a	nd cor	ntrast	backtr	king and branch and bound approach.	Understand	
					*** End ***		