Исследование метода ветвления траекторий для оценки вероятностей редких событий

Силантьев Михаил Александрович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., проф. Мелас В.Б. Рецензент: к.ф.-м.н. Шпилёв П.В.

Санкт-Петербург 2009г

Что такое редкие события?

События, вероятность которых имеет порядок $10^{-8} - 10^{-12}$.

Когда они происходят? В каких областях?

- Катастрофы
- Компьютерные сети
- Телекоммуникации
- Страховые компании
- Теория массового обслуживания

Эффективность оценок вероятностей редких событий на основе моделирования

- ullet Пусть A интересующее нас маловероятное событие
- $\theta = P(A)$
- T время моделирования траектории, тогда
- Эффективность $R(\hat{\theta}) = \theta^2/(\mathbf{E}T\mathbf{D}\hat{\theta})$

Эффективность оценок вероятностей редких событий на основе моделирования

- ullet Пусть A интересующее нас маловероятное событие
- $\theta = P(A)$
- T время моделирования траектории, тогда
- Эффективность $R(\hat{\theta}) = \theta^2/(\mathbf{E}T\mathbf{D}\hat{\theta})$
- При непосредственном моделировании для малых значений θ эта величина пропорциональна θ
- \bullet В методе ветвления траекторий R пропорционально $1/(\ln(1/\theta))^3$

Эффективность оценок вероятностей редких событий на основе моделирования

- ullet Пусть A интересующее нас маловероятное событие
- $\theta = P(A)$
- T время моделирования траектории, тогда
- Эффективность $R(\hat{\theta}) = \theta^2/(\mathbf{E}T\mathbf{D}\hat{\theta})$
- При непосредственном моделировании для малых значений θ эта величина пропорциональна θ
- \bullet В методе ветвления траекторий R пропорционально $1/(\ln(1/\theta))^3$
- ullet Общее время моделирования пропорционально ${f E} T$
- В дальнейшем эффективность будем оценивать величиной $R_t(\hat{ heta}) = heta^2/(T_{ms} \mathbf{D}\hat{ heta})$
- ullet где T_{ms} общее время моделирования в миллисекундах

Постановка задачи

Решение многих практических задач приводит к СМО $GI/G/1/\infty$:

- ullet V_i промежутки времени между заявками
- U_i время обслуживания заявок
- $X_i = U_i V_i$, $\mathbf{E}X_i < 0$

Постановка задачи

Решение многих практических задач приводит к СМО $GI/G/1/\infty$:

- ullet V_i промежутки времени между заявками
- U_i время обслуживания заявок
- $X_i = U_i V_i$, $\mathbf{E}X_i < 0$
- ullet $W_1=0$, $W_n=\max\{0,W_n+X_n\}$ процесс ожидания
- ullet $W_n o W$ по распределению

Постановка задачи

Решение многих практических задач приводит к СМО $GI/G/1/\infty$:

- ullet V_i промежутки времени между заявками
- U_i время обслуживания заявок
- $X_i = U_i V_i$, $\mathsf{E} X_i < 0$
- ullet $W_1=0$, $W_n=\max\{0,W_n+X_n\}$ процесс ожидания
- ullet $W_n o W$ по распределению
- $\bullet \ \theta = \mathbf{P}\{W \ge x\}$
- ullet В общем случае распределение heta не известно
- ullet Хотим оценить heta по результатам моделирования $\{W_n\}$

- ullet На интервале $[0,\infty)$ задана функция eta(z):
- ullet eta(0)=1, $eta(u) \leq eta(t)$ при u < t, $eta(t) \equiv eta(x)$ при $t \geq x$

- ullet На интервале $[0,\infty)$ задана функция eta(z):
- ullet eta(0)=1, $eta(u) \leq eta(t)$ при u < t, $eta(t) \equiv eta(x)$ при $t \geq x$
- ullet На каждом шаге моделируем η_n траекторий $\{W_n\}$, $\eta_1=1$
- Пусть $W_n = t$, $W_{n+1} = u$, тогда:
 - если $u \geq t$, то образуется дополнительно $r_{t,u}-1$ траекторий, начинающихся в u
 - если u < t, то моделирование траектории прекращается с вероятностью $1 \beta(u)/\beta(t)$

- ullet На интервале $[0,\infty)$ задана функция eta(z):
- ullet eta(0)=1, $eta(u) \leq eta(t)$ при u < t, $eta(t) \equiv eta(x)$ при $t \geq x$
- ullet На каждом шаге моделируем η_n траекторий $\{W_n\}$, $\eta_1=1$
- Пусть $W_n = t$, $W_{n+1} = u$, тогда:
 - если $u \geq t$, то образуется дополнительно $r_{t,u}-1$ траекторий, начинающихся в u
 - если u < t, то моделирование траектории прекращается с вероятностью $1 \beta(u)/\beta(t)$
- Все траектории моделируются до попадания в нулевое состояние, если они не обрываются в ходе указанного процесса

- ullet На интервале $[0,\infty)$ задана функция eta(z):
- ullet eta(0)=1, $eta(u) \leq eta(t)$ при u < t, $eta(t) \equiv eta(x)$ при $t \geq x$
- ullet На каждом шаге моделируем η_n траекторий $\{W_n\}$, $\eta_1=1$
- ullet Пусть $W_n=t$, $W_{n+1}=u$, тогда:
 - если $u \geq t$, то образуется дополнительно $r_{t,u}-1$ траекторий, начинающихся в u
 - если u < t, то моделирование траектории прекращается с вероятностью $1 \beta(u)/\beta(t)$
- Все траектории моделируются до попадания в нулевое состояние, если они не обрываются в ходе указанного процесса
- ullet Обозначим $d = \lfloor eta(u)/eta(t) \rfloor$ и q = eta(u)/eta(t) d
- Определим $r_{t,u}$ как случайную величину:

$$r_{t,u} = \begin{cases} d & \text{с вероятностью } 1 - q, \\ d + 1 & \text{с вероятностью } q. \end{cases}$$
 (1)

Продолжение

На каждом шаге перенумеруем существующие траектории $\alpha=1,2,\ldots,\eta_n.$ Промоделируем вышеописанную процедуру m раз, положим

$$\tilde{\theta}_{\beta} = \frac{\sum_{i=1}^{m} \tilde{b}_{\beta,i}^{(1)}}{\sum_{i=1}^{m} \tilde{b}_{\beta,i}^{(2)}}$$
(2)

$$\tilde{b}_{\beta,i}^{(1)} = \sum_{n=1}^{\infty} \sum_{\alpha=1}^{\eta_n} \frac{\chi(W_n^{(i,\alpha)} \ge x)}{\beta(x)}, \tilde{b}_{\beta,i}^{(2)} = \sum_{n=1}^{\infty} \sum_{\alpha=1}^{\eta_n} \frac{1}{\beta(W_n^{(i,\alpha)})}$$
(3)

где $W_n^{(i,\alpha)}$ — одна из траекторий, образуемых в i-м цикле, каждый цикл начинается с $\eta_1=1,\,W_1^{(i)}=0$ и обрывается после обрыва всех траекторий.

Случайное блуждание Бернулли

Пример

Оценим этим методом вероятность того, что значение случайного блуждания Бернулли с параметром p когда-нибудь достигнет значения 10:

p	Теор.	Числ.	относ.	время	кол-во	эфф.
	ответ	ответ	погр.(%)	(мс)	шагов	
0.15	2.93e-8	2.88e-08	6	376	2.17e5	0.68
0.2	9.54e-7	9.62e-07	6	328	2.26e5	0.90
0.25	1.69e-5	1.67e-05	5	374	2.32e5	0.96
0.3	2.09e-4	2.14e-04	6	389	2.43e5	0.82
0.35	2.05e-3	1.94e-03	6	360	2.33e5	0.89

Показательные распределения

Пример

Та же самая задача для случайного блуждания с разностью показательных распределений с параметрами $\lambda=2$ и μ :

μ	Теор.	Числ.	относ.	время	кол-во	эфф.
	ответ	ответ	погр.(%)	(мс)	шагов	
2.5	5.39e-3	5.52e-03	5	2453	1.16e6	0.16
3	3.03e-5	3.01e-05	5	2281	1.11e6	0.17
3.5	1.75e-7	1.80e-07	6	2655	1.24e6	0.10
4	1.03e-9	1.02e-09	7	2609	1.30e6	0.08

- M+1 барьеров $0 < B_1 < B_2 < \ldots < B_M < B_{M+1} = x$
- Первый шаг:
- ullet Из нуля выходит N_1 частиц

- M+1 барьеров $0 < B_1 < B_2 < \ldots < B_M < B_{M+1} = x$
- Первый шаг:
- ullet Из нуля выходит N_1 частиц
- Когда частица достигает первого барьера, она расщепляется на R_1 частиц
- Когда частица достигает второго барьера, она расщепляется на R_2 частиц и так далее до последнего барьера

- M+1 барьеров $0 < B_1 < B_2 < \ldots < B_M < B_{M+1} = x$
- Первый шаг:
- ullet Из нуля выходит N_1 частиц
- Когда частица достигает первого барьера, она расщепляется на R_1 частиц
- Когда частица достигает второго барьера, она расщепляется на R_2 частиц и так далее до последнего барьера
- ullet $P_i = rac{\mbox{число частиц, достигших } B_i}{\mbox{число частиц, вышедших из } B_{i-1}}$
- Пересчитываем R_i по формуле: $R_i = \sqrt{\frac{1 P_{i+1}}{P_i P_{i+1} (1 P_i)}}$

- M+1 барьеров $0 < B_1 < B_2 < \ldots < B_M < B_{M+1} = x$
- Первый шаг:
- ullet Из нуля выходит N_1 частиц
- Когда частица достигает первого барьера, она расщепляется на R_1 частиц
- Когда частица достигает второго барьера, она расщепляется на R_2 частиц и так далее до последнего барьера
- ullet $P_i = rac{\mbox{число частиц, достигших } B_i}{\mbox{число частиц, вышедших из } B_{i-1}}$
- Пересчитываем R_i по формуле: $R_i = \sqrt{\frac{1 P_{i+1}}{P_i P_{i+1} (1 P_i)}}$
- Начинаем второй шаг аналогично первому с числом частиц $N_2 >> N_1$
- $\tilde{\theta} = \frac{$ число частиц, достигших точки $x}{N_2 R_1 ... R_M}$

Сравнение с методом ветвления

Пример	Метод	Теор.	Числ.	отн.	время	кол-во	эфф.
$p(\mu)$		ответ	ответ	п.(%)	(мс)	шагов	
Берн 0.15	В	2.93e-08	2.98e-08	6.5	250	2.24e5	0.96
Берн 0.15	Р	2.93e-08	2.88e-08	4.3	515	2.42e6	1.06
Берн 0.2	В	9.54e-07	9.86e-07	5.9	250	2.30e5	1.16
Берн 0.2	Р	9.54e-07	9.78e-07	3.8	516	2.31e6	1.34
Exp 3.5	В	1.75e-07	1.78e-07	5.9	1641	1.19e6	0.17
Exp 3.5	Р	1.75e-07	1.70e-07	3.2	3407	8.92e6	0.28
Exp 4	В	1.03e-09	1.00e-09	7.1	1593	1.24e6	0.12
Exp 4	Р	1.03e-09	1.03e-09	3.9	4266	1.18e7	0.16

В МВТ из 250 мс 100 мс занимает вычисление $\beta(z) = e^{\lambda_0 z}$, но в большинстве задач вычисление X_n намного более трудоёмко, чем вычисление $\beta(z)$

Вывод

Оба метода вполне практичны и имеют примерно одинаковую эффективность

Применение к задаче о разорении страховой компании

- Страховые компании получают страховые премии от заключения договоров
- Страховые компании выплачивают страховые выплаты, когда происходят страховые случаи

Применение к задаче о разорении страховой компании

- Страховые компании получают страховые премии от заключения договоров
- Страховые компании выплачивают страховые выплаты, когда происходят страховые случаи
- ullet В начальный момент капитал страховой компании равен U_0
- Изменение капитала случайный процесс

Применение к задаче о разорении страховой компании

- Страховые компании получают страховые премии от заключения договоров
- Страховые компании выплачивают страховые выплаты, когда происходят страховые случаи
- ullet В начальный момент капитал страховой компании равен U_0
- Изменение капитала случайный процесс
- Когда капитал становится меньше либо равен нуля, то происходит разорение
- Хотим оценить вероятность разорения

• Промежутки времени между страховыми случаями независимы и имеют показательное распределение с параметром λ

- Промежутки времени между страховыми случаями независимы и имеют показательное распределение с параметром λ
- Размер страховых выплат не зависит от промежутков времени между страховыми случаями и имеет показательное распределение с параметром μ

- Промежутки времени между страховыми случаями независимы и имеют показательное распределение с параметром λ
- Размер страховых выплат не зависит от промежутков времени между страховыми случаями и имеет показательное распределение с параметром µ
- ullet Размер страховых премий за время t равен ct

- Промежутки времени между страховыми случаями независимы и имеют показательное распределение с параметром λ
- Размер страховых выплат не зависит от промежутков времени между страховыми случаями и имеет показательное распределение с параметром μ
- ullet Размер страховых премий за время t равен ct
- Получаем рассмотренную выше задачу о превышении случайным блужданием с разностью показательных распределений определённого значения

Примеры

- Промежутки времени между страховыми случаями имеют гамма-распределение с параметрами k_λ и λ
- Размер страховых выплат имеет гамма-распределение с параметрами k_μ и μ

Примеры

- Промежутки времени между страховыми случаями имеют гамма-распределение с параметрами k_λ и λ
- Размер страховых выплат имеет гамма-распределение с параметрами k_μ и μ
- Возьмём c=1, $U_0=10$, $k_{\mu}=1$, $\mu=4$ и будем менять k_{λ} и λ таким образом, чтобы матожидание (оно равно k_{λ}/λ) оставалось постоянным:

k_{λ}	λ	Bep.	относ.	время	кол-во	эфф.
		разор.	погр.(%)	(мс)	шагов	
0.2	0.4	3.34e-04	3.4	5470	1.64e6	0.14
0.4	0.8	2.49e-06	4.6	4766	1.57e6	0.12
0.6	1.2	7.49e-08	5.2	4079	1.42e6	0.10
0.8	1.6	6.54e-09	6.9	3515	1.30e6	0.06
1	2	1.03e-09	8.2	1922	1.36e6	0.09

При постоянном матожидании получаем оценки, отличающиеся на порядки

Примеры

Теперь сделаем то же самое с k_μ и μ при $k_\lambda=1$, $\lambda=2$:

k_{μ}	μ	Вер.	относ.	время	кол-во	эфф.
		разор.	погр.(%)	(мс)	шагов	
0.6	2.4	3.22e-07	7.2	2219	7.76e5	0.06
0.8	3.2	1.30e-08	8.5	2875	1.08e6	0.04
1	4	1.03e-09	6.6	1765	1.23e6	0.12
2	8	1.69e-13	6.4	3093	1.88e6	0.09
3	12	1.56e-15	6.3	4579	2.33e6	0.06

При постоянном матожидании тоже получаем оценки, отличающиеся на порядки

Многоэтапная процедура метода ветвления траекторий

- Пусть $0 < x_1 < x_2 < \ldots < x_{M-1} < x$
- ullet На первом этапе положим $eta(z)\equiv 1$
- ullet N_1 вычислений обычным MBT для случая $x=x_1$

Многоэтапная процедура метода ветвления траекторий

- Пусть $0 < x_1 < x_2 < \ldots < x_{M-1} < x$
- ullet На первом этапе положим $eta(z)\equiv 1$
- ullet N_1 вычислений обычным MBT для случая $x=x_1$
- ullet Получим оценку величины heta=W(x), обозначим ее $ilde{ heta}$
- Положим $\lambda_1 = -\ln(\tilde{\theta})/x_1$

Многоэтапная процедура метода ветвления траекторий

- Пусть $0 < x_1 < x_2 < \ldots < x_{M-1} < x$
- ullet На первом этапе положим $eta(z)\equiv 1$
- ullet N_1 вычислений обычным MBT для случая $x=x_1$
- ullet Получим оценку величины heta=W(x), обозначим ее $ilde{ heta}$
- Положим $\lambda_1 = -\ln(\tilde{\theta})/x_1$
- ullet На втором этапе N_2 вычислений обычным МВТ, полагая $eta(z)=e^{\lambda_1 z},\ x=x_2$
- На следующих шагах действуем аналогично и на M-ом шаге получаем оценку $\theta = W(x)$

Пример

Задача о разорении с гамма-распределениями:

- пусть $k_{\lambda}=1.2$, $\lambda=2.4$, $k_{\mu}=0.8$, $\mu=3.2$
- ullet x=10, M=10, $x_i=i$, $N_i=i*200$ при $1\leq i\leq 9$, $N_{10}=40000$, получаем
- $ilde{ heta}_{eta}$ =4.65e-9, ср. кв. откл. 3.8e-10,эффективность 0.017

Пример

Задача о разорении с гамма-распределениями:

- пусть $k_{\lambda}=1.2$, $\lambda=2.4$, $k_{\mu}=0.8$, $\mu=3.2$
- ullet x=10, M=10, $x_i=i$, $N_i=i*200$ при $1\leq i\leq 9$, $N_{10}=40000$, получаем
- $oldsymbol{ ilde{ heta}}_{eta}=$ 4.65e-9, ср. кв. откл. 3.8e-10,эффективность 0.017
- ullet Теперь возьмём опять одноэтапный алгоритм с оптимальным $\lambda_0 = -\ln{(ilde{ heta}_eta)}/x$, $m=N_1+N_2+\ldots+N_{10}=49000$ и получаем
- $ilde{ heta}_{eta}$ =4.57e-9, ср. кв. откл. 3.5e-10, эффективность 0.025

Пример

Задача о разорении с гамма-распределениями:

- пусть $k_{\lambda} = 1.2$, $\lambda = 2.4$, $k_{\mu} = 0.8$, $\mu = 3.2$
- x = 10, M = 10, $x_i = i$, $N_i = i * 200$ при 1 < i < 9, $N_{10} = 40000$, получаем
- $\hat{\theta}_{\beta} = 4.65$ e-9, ср. кв. откл. 3.8e-10,эффективность 0.017
- Теперь возьмём опять одноэтапный алгоритм с оптимальным $\lambda_0 = -\ln{(\theta_\beta)}/x$, $m=N_1+N_2+\ldots+N_{10}=49000$ и получаем
- $\tilde{\theta}_{\beta} = 4.57$ e-9, ср. кв. откл. 3.5e-10, эффективность 0.025

Вывод

Многоэтапная процедура имеет лишь немного меньшую эффективность чем одноэтапный алгоритм с использованием идеального приближения

Рассмотрим такую сеть Джексона:

Найдём вероятность того, что суммарное количество заявок в сети достигнет определённого значения k. При $\lambda_1=\lambda_2=0.1$, $\mu_1=\mu_2=0.4$, $p_{12}=p_{21}=0.5$ получаются такие результаты:

k	Teop.	Числ.	относ.	время	кол-во
	ответ	ответ	погр.(%)	(c)	шагов
25	6.98e-7	6.95e-7	4	8.7	6.2e6
100	7.76e-29	7.61e-29	9	35.6	2.35e7

Выводы

- Время вычислений в рассмотренных примерах составляло несколько секунд или даже доли секунды
- Следовательно, оба метода вполне практичны

Выводы

- Время вычислений в рассмотренных примерах составляло несколько секунд или даже доли секунды
- Следовательно, оба метода вполне практичны
- Метод ветвления более универсален и может применяться в моделях с общим множеством состояний
- Метод расщепления в том виде, в котором он описан в литературе по моделированию, пригоден только для случая, когда множество состояний является подмножеством вещественной оси

Выводы

- Время вычислений в рассмотренных примерах составляло несколько секунд или даже доли секунды
- Следовательно, оба метода вполне практичны
- Метод ветвления более универсален и может применяться в моделях с общим множеством состояний
- Метод расщепления в том виде, в котором он описан в литературе по моделированию, пригоден только для случая, когда множество состояний является подмножеством вещественной оси
- Метод ветвления траекторий является весьма универсальным и эффективным методом решения задач, в которых требуется оценить вероятность редких событий

