Using Polynomials

Table 5 - Continued from previous page

Table 5 – Continued from previous page									
l m	Π_x	Π_y	Π_z						
2 -2	2yz	2xz	2xy						
2 -1	$-\frac{1}{2}xy$	$\frac{1}{4}(x^2 + 3y^2 - 4z^2)$	2yz						
2 0	-xz	-yz	$z^2 - \frac{1}{2}(x^2 + y^2)$						
2 1	$-\frac{1}{4}(3x^2+y^2-4z^2)$	$-\frac{1}{2}xy$	2xz						
2 2	2xz	-2yz	$x^2 - y^2$						
2 3	x^2-y^2	-2xy	0						
3 -4	$3x^2y - y^3$	$x^3 - 3xy^2$	0						
3 -3	6xyz	$3(x^2z - y^2z)$	$3x^2y - y^3$						
3 -2	$-\frac{1}{2}(3x^2y + y^3 - 6yz^2)$	$-\frac{1}{2}(x^3 + 3xy^2 - 6xz^2)$	6xyz						
3 -1	$-rac{3}{2}xyz$	$-\frac{1}{4}(3x^2z + 9y^2z - 4z^3)$	$3yz^2 - \frac{3}{4}(x^2y + y^3)$						
3 0	$\frac{3}{8}(x^3 + xy^2 - 4xz^2)$	$\frac{3}{8}(x^2y + y^3 - 4yz^2)$	$z^3 - \frac{3}{2}z(x^2 + y^2)$						
3 1	$-\frac{1}{4}(9x^2z + 3y^2z - 4z^3)$	$-\frac{3}{2}xyz$	$3xz^2 - \frac{3}{4}(x^3 + xy^2)$						
3 2	$-x^3 + 3xz^2$	$-3yz^2+y^3$	$3(x^2z - y^2z)$						
3 3	$3(x^2z - y^2z)$	-6xyz	$x^3 - 3xy^2$						
3 4	$x^3 - 3xy^2$	$-3x^2y + y^3$	0						
4 -5	$4xy(x^2-y^2)$	$y^4 - 6x^2y^2 + x^4$. 0						

Continued on next page

Bx (measured) = 0.2 - 0.5 gauss

dBy/By

dBy=|By(measured)-By(predicted)|

dBz/Bz

dBz=|Bz(measured)-Bz(predicted)|

Beatrice's B field from April

POS#	X	у	Z	Вх	Ву	Bz
5	0	0	0	-205	24	-43
4	0	-168	0	-235	38	-34
3	0	-168	287	-265	48	-57
2	-222	0	0	-135	72	-49
1	0	0	287	-255	39	-18

Beatrice's B field from April

Position