

Metaheurísticas

• Otimização Estocástica é uma classe de algoritmos e técnicas que utilizam algum grau de aleatoriedade para encontrar um ótimo (o mais perto do ótimo) para problemas difíceis.

Características:

- Iterativamente melhorar um conjunto de soluções
- Pouco conhecimento do problema
- Precisa poder distinguir boas soluções
- Geralmente encontra boas soluções possivelmente não o ótimo
- Adaptáveis : parâmetros ajustáveis

Algoritmos Exatos

- Fundamentação:
 - na matemática
- Vantagem:
 - garantem a solução ótima (menor custo)
- Desvantagens:
 - Modelagem mais complexa
 - Podem gastar um tempo proibitivo para gerar a solução ótima
 - Nem sempre conseguem produzir uma (boa) solução viável rapidamente

Heurísticas

- Fundamentação:
 - na Inteligência Artificial
- Vantagens:
 - De fácil implementação
 - Produzem boas soluções rapidamente
- Desvantagem:
 - Não garantem a otimalidade da solução obtida

- O processo de otimização procura encontrar a melhor solução viável, considerando o objetivo do problema e o conjunto de restrições.
- Usualmente os problemas são modelados com o objetivo de maximizar ou minimizar uma função cujas variáveis estão sujeitas a certas restrições.
- Encontrar soluções ótimas ou mesmo aproximadas para problemas NP-difíceis é um desafio nem sempre fácil de ser alcançado.
- A partir deste cenário, as heurísticas surgem como uma ferramenta eficiente (rápida) para resolver problemas reais.

- Em otimização, heurísticas são definidas como sendo uma técnica que procura boas soluções (próximas do ótimo) a um custo computacional razoável, sem necessariamente garantir a otimalidade, tampouco garantir quão próxima uma determinada solução está da solução ótima.
- A grande desvantagem das heurísticas reside na dificuldade de escapar de ótimos locais. Isto deu origem à outra metodologia, chamada de metaheurística, que possui ferramentas que possibilitam sair destes ótimos locais, permitindo a busca em regiões mais promissoras.
- O grande desafio da Otimização Combinatória é produzir, em tempo competitivo, soluções tão próximas quanto possíveis da solução ótima.

Técnicas metaheurísticas

Solução única

- Hill-Climbing
- Simulated Annealing,
- Busca Tabu,
- GRASP (Greedy Random)
- VNS
- •

População de soluções

- Algoritmos Genéticos e Evolutivos
- Colônia de Formigas,
- Scartter Search,
- •

Hill Climbing

- É uma alusão ao processo de escalar uma montanha em que se procura pelo ponto mais alto no terreno durante a caminhada, dando um passo em cada possível direção e escolhendo aquela em que se sobe mais.
- Isto é, procurar entre os nós próximos por aquele que o deixa mais perto do objetivo
 - Seleciona o filho do nó mais próximo do objetivo, segundo uma medida heurística
 - "Raio de visão" limitado à proximidade do nó atual
- Semelhante à otimização de função
 - Procurar a combinação de valores dos parâmetros que fazem com que a função assuma o maior valor

Hill Climbing

Problema de maximização

```
procedimento Hill-Climbing(Problema, EstadoInicial)
/* retorna um estado que é o máximo local */
inicio
   EstadoAtual ← Problema[EstadoInicial]
   enquanto (não fim) faça
      Vizinho ← SucessorDeMaiorValor(EstadoAtual)
      se (Vizinho[Valor] <= EstadoAtual[Valor]) então</pre>
         retorna EstadoAtual
      senão
         EstadoAtual ← Vizinho
      fim-se
   fim-enquanto
fim-procedimento
```

Problemas

Máximo local

• Existe um pico mais elevado, que não é necessariamente o objetivo

• Planície

 Todos os pontos vizinhos levam ao mesmo valor

Aresta (ponte)

 Existe pelo menos uma direção que aumenta o valor, mas nenhuma das transições possíveis segue esta direção

Simulated Annealing

Simulated Annealing (Recozimento Simulado)

- Proposto por Scoot Kirkpatrick et al. (1983):
 - S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi Optimization by Simulated Annealing, Science, Vol 220, Number 4598, p. 671-680, 1983. http://citeseer.ist.psu.edu/kirkpatrick83optimization.html
- Simular o processo de recozimento de metais;
 - Resfriamento rápido conduz a produtos meta-estáveis, de maior energia interna;
 - Resfriamento lento conduz a produtos mais estáveis, estruturalmente fortes, de menor energia;
- Durante o recozimento o material passa por vários estados possíveis
 - Num tempo suficientemente longo um elemento qualquer do ensemble passa por todos os seus estados acessíveis

Annealing: Físico vs Simulado

Annealing Físico:

- Sólido é aquecido além do seu ponto de fusão e resfriado lentamente
- Se o resfriamento e suficientemente lento obtêm-se uma estrutura cristalina livre de imperfeições (estado de baixa energia)

Annealing Simulado:

- Algoritmo de Metropolis (Gibbs, 1953) empregado numa sequência de temperaturas decrescentes para gerar soluções de um problema de otimização
 - O processo começa com um valor T elevado e a cada T geram-se soluções ate que o equilíbrio àquela temperatura seja alcançado
 - A temperatura é então rebaixada e o processo prossegue ate o congelamento (ou seja, não se obtêm mais uma diminuição de custo)
 - A sequência de temperaturas empregada, juntamente com o numero de iterações a cada temperatura, constitui uma prescrição de annealing que deve ser definida empiricamente

Analogia com o problema combinatório

Neste algoritmo podemos entender que:

- Os estados possíveis de um metal correspondem a soluções do espaço de busca;
- A energia em cada estado corresponde ao valor da função objetivo;
- A energia mínima (se o problema for de minimização ou máxima, se de maximização) corresponde ao valor de uma solução ótima local, possivelmente global.

A interpretação dos elementos físicos no processo computacional

Termodinâmica	Algoritmo de Simulated Annealing
Estado (configuração)	Solução (factível) do problema. Um ponto no espaço de busca
Energia	Valor retornado pela função de avaliação
Estado de equilíbrio	Ótimo (local)
Estado de equilíbrio máximo	Ótimo global
Temperatura	Parâmetro de controle
Recozimento	Busca através da redução de T
Distribuição de Boltzmann-Gibbs	Probabilidade de seleção de um novo ponto

- A cada iteração do método, um novo estado é gerado a partir do estado corrente por uma modificação aleatória neste;
- Se o novo estado é de energia menor que o estado corrente, esse novo estado passa a ser o estado corrente;
- Se o novo estado tem uma energia maior que o estado corrente em Δ unidades, a probabilidade de se mudar do estado corrente para o novo estado é dada por $e^{-\Delta/(kT)}$, onde k = constante de Boltzmann e T = temperatura corrente.
- Este procedimento é repetido até se atingir o equilíbrio térmico (algoritmo de Metropolis)

• A probabilidade de um dado estado com energia $f_{\rm i}$ ser o estado corrente é:

$$e^{-f_i/(kT)} / \Sigma_j e^{-f_j/(kT)}$$
 (Densidade de Boltzmann)

- A altas temperaturas, cada estado tem (praticamente) a mesma chance de ser o estado corrente;
- A baixas temperaturas, somente estados com baixa energia têm alta probabilidade de se tornar o estado corrente;
- Atingido o equilíbrio térmico em uma dada temperatura, esta é diminuída e aplica-se novamente o passo de Metropolis.
- O método termina quando a temperatura se aproxima de zero

- No início do processo, a temperatura é elevada e a probabilidade de se aceitar soluções de piora é maior;
- As soluções de piora são aceitas para escapar de ótimos locais. A probabilidade de se aceitar uma solução de piora depende de um parâmetro, chamado temperatura;
 - Quanto menor a temperatura, menor a probabilidade de se aceitar soluções de piora;
- Atingido o equilíbrio térmico, a temperatura é diminuída;
- A taxa de aceitação de movimentos de piora é, portanto, diminuída com o decorrer das iterações;
- No final do processo, praticamente não se aceita movimentos de piora e o método se comporta como o método da descida/subida (Hill Climbing);
- O final do processo se dá quando a temperatura se aproxima de zero e nenhuma solução de piora é mais aceita, evidenciando o encontro de um ótimo local.

Simulated Annealing

Problema de minimização

```
procedimento SA(f(.), N(.), \alpha, SAmax, T0, s)
   s* ← s {Melhor solução obtida até então}
   IterT ← 0 {Número de iterações na temperatura T}
   T ← T0 {temperatura corrente}
   enquanto (T > 0.0001)
      enquanto (IterT < SAmax) faça</pre>
         IterT ← IterT + 1
         Gerar um vizinho (s') aleatoriamente na vizinhança N^{k}(s)
         \Delta = f(s') - f(s)
         se (\Delta < \emptyset) então
            S \leftarrow S'
            se (f(s') < f(s^*)) então s^* \leftarrow s'
         senão
            Tome x \in [0,1]
            se (x < e^{-\Delta/T}) então
               S = S'
         fim-se
      fim-enquanto
      T = T \times \alpha
      IterT = 0
   fim-enquanto
   retorne s*
fim-procedimento
```