VEHICLE & LICENSE PLATE DETECTION APP

Course Project:
E9 246 Advanced Image
Processing 2024

Submitted By:
Benjamin Debbarma(22554)
DS Rana(23699)

Objective

Develop an Object Detection Android Application to detect vehicle & license plates in images using Tranfer Learning & Android Studio

Dataset

Selection of Dataset:

- 1. Motivated by ability to demonstrate.
- 2. Vehicle & License Plate Possible to test in real time & Wide range of Applications.
- 3. Dataset from Open Source Domain.
 - (https://public.roboflow.com/object -detection/license-plates-us-eu).
- 4. Splitting of Dataset into Train, Validation & Test subsets:-
 - 1. Train 245
 - 2. Valid 70
 - 3. Test -35
- 5. Labeling in Pascal VOC format

Model Architecture

Pre Trained Backbone for feature extraction – MobileNetV2

 Outputs feature maps at different resolutions.

Feature Pyramid Network

 Integrates multi-level features from the backbone

Object detection predictions - RetinaNet Head

 Generates object detection predictions
 Box & Cl

MobileNetV2 building block

Classification

	S	n	c	t	Operator	Input
Bottle	2	1	32	-	conv2d	$224^2 \times 3$
Input	1	1	16	1	bottleneck	$112^{2} \times 32$
	2	2	24	6	bottleneck	$112^{2} \times 16$
N.	2	3	32	6	bottleneck	$56^{2} \times 24$
	2	4	64	6	bottleneck	$28^2 \times 32$
/1	1	3	96	6	bottleneck	$14^{2} \times 64$
	2	3	160	6	bottleneck	$14^{2} \times 96$
2	1	1	320	6	bottleneck	$7^2 \times 160$
	1	1	1280	=	conv2d 1x1	$7^2 \times 320$
	-	1	-	_	avgpool 7x7	$7^2 \times 1280$
		_	k	2	conv2d 1x1	\times 1 \times 1280

Total params: 2579263 (9.84 MB) Trainable params: 2533631 (9.67 MB) Non-trainable params: 45632 (178.25 KB)

Training & Evaluation

Training

- 1. Hyperparameters:
 - 1. Batch Size: 32
 - 2. Learning Rate: 0.3
 - 3. Epochs: 200.
- 2. Dataset :-Train 245 & Valid 70
- 3. Total Loss comprising of:-
 - 1. Box Loss
 - 2. Cls Loss
- 4. Trained using Mediapipe Library

Evaluation

- 1. Hyperparameters:
 - 1. Batch Size: 4
 - 2. Images: 35
 - 3. Evaluation Metric: Coco.
- 2. Moderate performance on test data, with room for improvement in detecting small objects

Training Results:-

Epoch 200/200
Training Data: total_loss: 0.0698
cls_loss: 0.0101 box_loss: 1.1625e-04
Validation Data: total_loss: 0.8837

cls loss: 0.6999 box loss: 0.0026

Evaluation Results:-

```
total loss: 0.9762 cls loss: 0.8203 -
box loss: 0.0020
  @[IoU=0.50:0.95 \mid area= all] = 0.444
   @[IoU=0.50] | area = all] = 0.613
  @[ IoU=0.75
               | area = all | = 0.501
   @[IoU=0.50:0.95 | area= small] = 0.007
   @[IoU=0.50:0.95 \mid area=medium] = 0.374
   @[IoU=0.50:0.95 | area= large] = 0.689
  @[IoU=0.50:0.95 \mid area= all] = 0.463
AR @[ IoU=0.50:0.95 | area= all] = 0.581
AR @[ IoU=0.50:0.95 | area= all] = 0.584
AR @[ IoU=0.50:0.95
                     area = small = 0.025
                     area=medium] = 0.555
AR @[ IoU=0.50:0.95 |
AR @[ IoU=0.50:0.95
                     area = large] = 0.773
```

Export Model in .tflite format for Android Integration

Android App Development

Step 1: App Setup

Create Layout of App & Grant Camera & Storage Permissions Function for Capturing image using camera & convert to bitmap

Function for Choosing Images from gallery & convert to bitmap

Step 2: Model Integration

Import Mediapipe library and trained model in assets

Set Threshold & call detection function with loaded image as input

Make inference from detection results and display as output

Real Time Test Results

- > There are two modes of op:-
 - Camera Long Press the IISc logo, After doing so, capture an image using camera, and the app will display the results. This operation method with real time demonstration under:-
 - https://drive.google.com/file/d/1n-DqLOzsUCxMzIg2lUaGed5Z8rXWTdqL/view
 - https://drive.google.com/file/d/1n0LktRwfWLvx_HAh_KiO2lQNXuD0QUx X/view
 - Gallery tap the IISc logo to import images from phone's gallery. A real time demonstration of this method is provided below:-
 - https://drive.google.com/file/d/1mzQGT5RyCcS_tk9XUhcjtQkBNhe-6qF9/view

Observations & Challenges

- Good Results in Single Instance
- Performance degraded with Multiple Instances
- Few vehicle like objects detected as false positives
- Few Small size objects not detected
- Struggled in low light environments
- Performed well against rotation in instances

Points for Improvement

- Larger dataset can improve performance
 - Include more images with multiple instances
 - Include more images with smaller instances
 - Augment the existing data with fwg:-
 - Scaling
 - Rotation
 - Blurring
 - Include more images with night/ low light settings
- > Add Image enhancement for better detection
- > Add options of Live footage & Video Stream in App

References

- 1. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H, arXiv:1704.04861, 2017.
- 2. MobileNetV2: Inverted Residuals and Linear Bottlenecks, Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. arXiv preprint. arXiv:1801.04381, 2018.
- 3. http://research.google/blog/mobilenetv2-the-next-generation-of-on-device-computer-vision-networks/
- 4. Focal Loss for Dense Object Detection Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar Facebook AI Research (FAIR) arXiv:1708.02002v2, 2018
- 5. https://developers.google.com/mediapipe/solutions/model_maker
- 6. https://developers.google.com/mediapipe/solutions/vision/object_detector
- 7. Vehicle Object Detection Based on Improved RetinaNet Luyang Zhang, Haitao Wang, Xinyao Wang, Shuai Chen, Huaibin Wang, Kai Zheng and Hailong wang, 2020.
- 8. https://hamzaasif-mobileml.medium.com/android-capturing-images-from-camera-or-gallery-as-bitmaps-d3eb1d68aeb2