計量分析 2: 宿題 5

村澤 康友

提出期限: 2022年12月22日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例を正確に再現すること(乱数は除く). グループで取り組んでよいが,個別に提出すること.解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない.すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること.

- 1. (教科書 p. 186, 実証分析問題 7-A) データセット「7_1_income.dta」を gretl に読み込み, 教育の収益率の男女差に関する教科書 p. 171 の回帰分析の結果を再現しなさい.
- 2. (教科書 p. 186, 実証分析問題 7-B) データセット「7_3_happy_work.dta」を gretl に読み込み, 以下 の分析を行いなさい.
 - (a) 仕事に対する満足度を通勤時間で説明する単回帰モデルを男女別に推定しなさい.
 - (b) 男女別の単回帰モデルを,女性ダミーを用いて1つの重回帰モデルにまとめて推定しなさい.
 - (c) 男女間で単回帰モデルが等しいかどうかを F 検定で調べなさい.
- 3. (教科書 p. 187, 実証分析問題 7-C) データセット「7_4_minshu.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 民主党への支持感情を年収と修学年数で説明する重回帰モデルを,都市部とそれ以外に分けて推定しなさい.
 - (b) 都市部とそれ以外に分けた重回帰モデルを,都市部ダミーを用いて1つの重回帰モデルにまとめて推定しなさい.
 - (c) 都市部とそれ以外で重回帰モデルが等しいかどうかを F 検定で調べなさい.
- 4. (教科書 p. 187, 実証分析問題 7-D) データセット「7_2_work.dta」を gretl に読み込み,以下の分析を行いなさい.
 - (a) 妻が働いているかどうかを夫の所得と 6 歳以下の子供の有無で説明する教科書 p.~176 の回帰分析の結果を再現しなさい.
 - (b) 15 歳の時に母親が働いていたかどうかを説明変数に加えて回帰分析を実行しなさい.
 - (c) 不均一分散が懸念される場合は、以下の手順で OLS を実行する.
 - i. メニューから「モデル」→「通常の最小二乗法」を選択.
 - ii.「従属変数」を1つ選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「頑健標準誤差を使用する」をチェック.
 - v.「OK」をクリック.

分散不均一に対して頑健な標準誤差を求めなさい.

解答例

1. 教育の収益率の男女差

モデル 1: 最小二乗法 (OLS), 観測: 1–4286 従属変数: lincome

	係数	t S	td. Error	t-ratio	p 値
const	5.346	90 0.	.120920	44.22	0.0000
yeduc	0.024	0947 0	.00853344	2.824	0.0048
female	-2.079	20 0.	.192386	-10.81	0.0000
$female_yeduc$	0.090	2285 0.	.0137996	6.538	0.0000
Mean dependent	var 5	.260657	S.D. dep	endent var	0.936133
Sum squared resid	d 2	899.053	S.E. of r	egression	0.822820
R^2	0	.227977	Adjusted	$d R^2$	0.227436
F(3,4282)	4	21.4896	P-value(F)	6.5 e-240
Log-likelihood	-5	243.723	Akaike c	criterion	10495.45
Schwarz criterion	1	0520.90	Hannan-	-Quinn	10504.44

2. (a) 男性

モデル 1: 最小二乗法 (OLS), 観測: 1–1659 従属変数: happy_work

	係数	Sto	d. Error	t-ratio	p 値
const	2.21810	0.0	523312	42.39	0.0000
commute	-0.00228489	0.00	0129315	-1.767	0.0774
Mean dependent	var 2.140	0446	S.D. dep	endent va	ır 1.157729
Sum squared res	id 2218	.097	S.E. of r	egression	1.156988
R^2	0.00	1881	Adjusted	$d R^2$	0.001278
F(1, 1657)	3.12	1999	P-value((F)	0.077426
Log-likelihood	-2594	.934	Akaike o	criterion	5193.869
Schwarz criterion	n 5204	.697	Hannan-	-Quinn	5197.882

女性

モデル 2: 最小二乗法 (OLS), 観測: 1–1438 従属変数: happy_work

	係数	Std. Error	t-ratio	p 値
const	2.33945	0.0557456	41.97	0.0000
commute	-0.00389770	0.00163848	-2.379	0.0175
Mean dependen	t var 2.2273	399 S.D. dej	pendent va	r 1.132379
Sum squared re	sid 1835.4	108 S.E. of	regression	1.130548
R^2	0.0039	925 Adjuste	$d R^2$	0.003232
F(1, 1436)	5.6589	919 P-value	(F)	0.017497
Log-likelihood	-2215.8	879 Akaike	criterion	4435.758
Schwarz criterio	on 4446.3	300 Hannan	-Quinn	4439.694

(b) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3097 従属変数: happy_work

	係数	Std. Error	t-ratio	p 値
const	2.21810	0.0517794	42.84	0.0000
commute	-0.00228489	0.00127951	-1.786	0.0742
female	0.121348	0.0765993	1.584	0.1133
$female_commute$	-0.00161281	0.00209519	-0.7698	0.4415
Mean dependent va	ar 2.180820	S.D. depen	dent var	1.146664
Sum squared resid	4053.504	S.E. of regr	ression	1.144789
R^2	0.004234	Adjusted F	\mathbb{R}^2	0.003268
F(3,3093)	4.383999	$\operatorname{P-value}(F)$		0.004371
Log-likelihood	-4811.228	Akaike crit	erion	9630.456
Schwarz criterion	9654.609	Hannan-Q	uinn	9639.130

(c) F 検定

モデル 1 についての検定:

帰無仮説:以下の変数の回帰パラメータはゼロである

female, female_commute

検定統計量: F(2, 3093) = 1.78795, p値 0.167476

3. (a) 都市部

モデル 1: 最小二乗法 (OLS), 観測: 1–2476 従属変数: minshu

		係数		Std.	Error	t-ratio	рί	直
CO	nst 3	34.9545		2.79	420	12.51	0.00	000
inc	come	0.00323	3133	0.00	154980	2.085	0.03	372
ye	duc	0.56750	00	0.200	0208	2.835	0.00	046
Mean de _l	pendent	var	43.80	452	S.D. dep	pendent v	var	18.55335
Sum squa	ared resi	d	84680	5.3	S.E. of 1	regression	1	18.50460
\mathbb{R}^2			0.0060	052	Adjuste	$d R^2$		0.005248
F(2, 2473)	3)		7.5289	964	P-value	(F)		0.000550
Log-likeli	ihood	_	10736	5.81	Akaike o	criterion		21479.61
Schwarz	criterion	L	21497	.06	Hannan	–Quinn		21485.95

都市部以外

モデル 2: 最小二乗法 (OLS), 観測: 1–1742 従属変数: minshu

係	数 Sto	d. Error	t-ratio	p 値	
const 40.945	3.1	7985	12.88	0.0000	
income 0.003	389854 0.0	0188894	2.064	0.0392	
yeduc 0.219	9720 0.2	35013	0.9349	0.3500	
Mean dependent var	44.91963	S.D. de	ependent v	var 17.7048	8
Sum squared resid	543857.5	S.E. of	regression	17.6845	0
R^2	0.003447	Adjust	ed \mathbb{R}^2	0.00230	1
F(2,1739)	3.007723	P-value	e(F)	0.04966	1
Log-likelihood	-7474.513	Akaike	criterion	14955.0	3
Schwarz criterion	14971.41	Hanna	n–Quinn	14961.0	9

(b) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	仔	※数	St	d. Error	$t ext{-ratio}$	p 値
const	40.94	51	3.	26724	12.53	0.0000
income	0.00	389854	0.0	00194085	2.009	0.0446
yeduc	0.21	9720	0.3	241472	0.9099	0.3629
city	-5.990	062	4.	26650	-1.404	0.1604
${\it city_income}$	-0.000	0667210	0.0	00246634	-0.2705	0.7868
${\rm city_yeduc}$	0.34'	7780	0.	311380	1.117	0.2641
Mean dependen	t var	44.2650)5	S.D. depe	endent var	18.21389
Sum squared re	sid	139066	33	S.E. of re	gression	18.17049
R^2		0.00593	39	Adjusted	\mathbb{R}^2	0.004759
F(5, 4212)		5.03318	33	P-value(F	7)	0.000133
Log-likelihood		-18213.4	13	Akaike cr	iterion	36438.87
Schwarz criterio	n	36476.9	95	Hannan-0	Quinn	36452.33

(c) F 検定

モデル 1 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

city, city_income, city_yeduc

検定統計量: F(3, 4212) = 2.31357, p値 0.0739713

4. (a) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–1053 従属変数: work

	係数		St	d. Error	t-ratio	p値
const	0.77032	24	0.03	70387	20.80	0.0000
$income_s$	-0.00022	23647	6.23	917e-005	-3.585	0.0004
childu6	-0.20119	96	0.02	99428	-6.719	0.0000
Mean depende	ent var	0.564	103	S.D. deper	ndent var	0.496109
Sum squared	resid	246.1	577	S.E. of reg	gression	0.484186
R^2		0.049	302	Adjusted	R^2	0.047491
F(2, 1050)		27.22	571	P-value(F	')	2.97e-12
Log-likelihood	-	-728.9	134	Akaike cri	terion	1463.827
Schwarz criter	rion	1478.	705	Hannan-C	Quinn	1469.467

(b) 説明変数を追加

モデル 2: 最小二乗法 (OLS), 観測: 1–1053 従属変数: work

	係数	汝	St	d. Error	$t ext{-ratio}$	p 値
const	0.6805	75	0.04	142131	15.39	0.0000
$income_s$	-0.0002	24959	6.20	0262e-005	-3.627	0.0003
childu6	-0.2048	75	0.02	297838	-6.879	0.0000
${\rm mowork} 15$	0.1243	43	0.03	339083	3.667	0.0003
Mean depende	nt var	0.5641	.03	S.D. depen	ident var	0.496109
Sum squared r	esid	243.04	121	S.E. of reg	ression	0.481341
R^2		0.0613	35	Adjusted I	\mathbb{R}^2	0.058650
F(3, 1049)		22.848	803	P-value (F))	2.48e-14
Log-likelihood		-722.20)71	Akaike crit	erion	1452.414
Schwarz criteri	on	1472.2	252	Hannan-Q	uinn	1459.935

(c) 頑健な標準誤差

モデル 3: 最小二乗法 (OLS), 観測: 1–1053

従属変数: work

不均一分散頑健標準誤差, バリアント HC1

	不均一分散與健保! 係数	Std. Error	t-ratio	p 値
const	0.680575	0.0443839	15.33	0.0000
$income_s$	-0.000224959	$6.20314 \mathrm{e}{-005}$	-3.627	0.0003
childu6	-0.204875	0.0297250	-6.892	0.0000
mowork15	0.124343	0.0343364	3.621	0.0003

Mean dependent var	0.564103	S.D. dependent var	0.496109
Sum squared resid	243.0421	S.E. of regression	0.481341
R^2	0.061335	Adjusted \mathbb{R}^2	0.058650
F(3, 1049)	23.38407	P-value (F)	1.18e-14
Log-likelihood	-722.2071	Akaike criterion	1452.414
Schwarz criterion	1472.252	Hannan-Quinn	1459.935