Python可视化

- 1. Matplotlib
- 2. Seaborn
- 3. Plotly
- 4. Networkx
- 5. Pandas
- 6. Ggplot
- 7. Bokeh

Python可视化

- 二维曲线的绘制
- 特殊图形绘制
- 三维图形绘制
- 句柄图形

二维曲线的绘制

二维曲线功能很强大, 主要包括

基本绘图命令

用plot(x) 绘制x向量曲线

若x是长度为n的数值向量,则坐标系的**纵坐标为向量x**,横坐标为MATLAB系统 根据x向量的元素序号自动生成的从1开始的向量。

plot(x) 命令用于在坐标系中顺序地**用直线段连接各点**,生成1条折线,当向量的元素充分多时,可以得到1条光滑的曲线。

基本绘图命令

用plot(x, y)命令绘制向量x和y的曲线

若参数x和y都是长度为n的向量,则x、y的长度必须相等,用plot(x,y)命令 绘制纵坐标为向量y、横坐标为向量x的曲线

基本绘图命令

用plot(x)命令绘制矩阵x的曲线

若x是1个mxn的矩阵,则plot(x)命令为矩阵的**每一列画出1条线**,共n条曲线,各曲线自动地用不同颜色表示;每条线的横坐标为向量1:m,m是矩阵的行数,绘制方法与向量相同。

基本绘图命令

用plot(x,y)命令绘制混合式曲线

- If both x and y are 2D, they must have the same shape.
- If only one of them is 2D with shape $(N,\ m)$ the other must have length N and will be used for every data set m.

基本绘图命令

plt.plot(x1, y1, ' -*')

基本绘图命令

用plot()命令绘制复向量曲线

当数据为复向量时,以<mark>实部</mark>作为横坐标,以<mark>虚部</mark>作为纵坐标。

a = np. arange (1, 10) b = np. sin (a) z = a + 1j*b plt.plot(z.real, z.imag)

基本绘图命令

用plot(x1, y1, x2, y2, ···) 命令绘制多条曲线

plot命令还可以同时绘制多条曲线,用多个矩阵对为参数,MATLAB自动以不同的颜色绘制不同曲线。每一对矩阵(Xi, Yi)均按照前面的方式解释,不同的矩阵对之间,其维数可以不同。

绘制曲线的一般步骤

步骤	内 容
1	曲线数据准备: 对于二维曲线,准备横坐标和纵坐标数据变量; 对于三维曲面,准备矩阵参变量和对应的函数值
2	指定图形窗口和子图位置: 默认时,打开Figure No. 1窗口或当前窗口、当前子图; 也可以打开指定的图形窗口和子图
3	设置曲线的绘制方式: 线型、色彩、数据点形
4	设置坐标轴: 坐标的范围、刻度和坐标分格
5	图形注释: 图名、坐标名、图例、文字说明
6	着色、明暗、灯光、材质处理(仅对三维图形使用)
7	视点、三度(横、纵、高)比(仅对三维图形使用)
8	图形的精细修饰(图形句柄操作): 利用对象属性值进行设置; 利用图形窗工具条进行设置

多个图形绘制的方法

指定图形窗口:如果需要多个图形窗口同时打开时,可以使用figure语句。

H = figure(n) % 返回新图形窗口的句柄

同一窗口多个子图:如果需要在同一图形窗口中布置几幅独立的子图,则可以在plot命令前加上subplot命令以便将1个图形窗口划分为多个区域,每个区域1幅子图

H = subplot(m, n, k) % m x n幅子图中,按行顺序第k幅成为当前图 % 返回坐标系的句柄。

subplot (2, 3, 1), subplot (2, 3, 2) subplot (2, 3, 4), subplot (2, 3, 6)

多个图形绘制的方法

同一窗口多次叠绘:在当前坐标系中绘图时,可以多次调用plot函数,最后才 显示。

x1 = 0:0.1:2*pi; plot(x1, sin(x1)) plot(x1, cos(x1)) show()

多个图形绘制的方法

双纵坐标图

twinx(x2, y2) % x1, y1 左y轴, x2, y2 右y轴

plt.plot(t, data1, 'r-') ax2 = plt.gca().twinx() ax2.plot(t, data2, 'g.-')

曲线的线形、颜色和数据点形

颜	色	数据点间连线		数据点形		
类 型	符 号	类型	符号	类 型	符号	
黄色	y (Yellow)	实线(默认)	-	实点标记		
品红色 (紫色)	m (Magenta)	点线	:	圆圈标记	0	
青色	o (Cyan)	点画线		叉号形×	×	
红色	r (Red)	虚线		十字形+	+	
绿色	g (Green)			星号标记*	*	
蓝色	b (Blue)			方块标记□	s	
白色	w(White)			钻石形标记◇	d	
黑色	k (Black)			向下的三角形标记	v	
				向上的三角形标记	^	
				向左的三角形标记	<	
				向右的三角形标记	>	
				五角星标记☆	р	
				六连形标记	h	

设置坐标轴和文字标注

分格线

grid(True) % 显示分格线 grid(False) % 不显示分格线

文字标注

图形的文字标注是指在图形中添加标志性的注释,文字标注包括:

• 图名(Title): title('figure 1')、

• 坐标轴名(Label): xlabel('X'), ylabel('Y')

• 文字注释(Text): text(x,y,string)

• 图例(Legend): legend(['line1','line2'])

设置坐标轴和文字标注

plt.title('y1=sin(x), y2=cos(x)')
plt.xlabel('x')
plt.legend(['sin(x)', 'cos(x)'])
text(pi, sin(pi), 'x=\pi')

设置坐标轴和文字标注

特殊符号:图形中的文字标志使用特殊字符,如希腊字母、数学符号,公式等

类 别	命令	字符	命令	字符	命令	字符	命令	字符
	\ alpha	α	\ eta	η	\ nu	v	upsilon	μ
	\ beta	β	\ theta	θ	\ xi	Š	Upsilon	Т
45-	\ epsilon	3	\ Theta	Θ	\ Xi	E	\ phi	φ
贈	\ gamma	γ	\ iota	1	\ pi	π	\ Phi	Φ
希腊字母	\ Gamma	Γ	\ zeta	ζ	\ Pi	π	\ chi	X
rd.	\ delta	δ	\ kappa	к	\ rho	ρ	\ psi	Ψ
	\ Delta	Δ	\ mu	μ	\ tau	τ	\ Psi	Ψ
	\ omega	Θ.	\ lambda	λ	\ sigma	σ		
	\ Omega	Ω	\ Lambda	Λ	\ Sigma	Σ		
	\approx	≈	\oplus	=	\neq	#	\leq	≤
961	\geq	≥	\pm	±	\times	×	\div	÷
数学符号	\int	1	\exists	oc	\infty	00	\in	€
	\sim	≌	\forall	~	\angle		\perp	1
	\cup	U	\cap	n	\vee	V	\wedge	Λ.
	\surd	V	\otimes		\oplus			
箭头	\uparrow	1	\downarrow	ı	\rightarrow	→	\leftarro w	←
	\leftrightarrow	-	\updownarrow	I				18

设置坐标轴区间

坐标区间:

plt.xlim(0, 12) or plt.gca().set_xlim([0, 12])
plt.ylim(0, 12) or plt.gca().set_ylim([0, 12])

设置坐标轴和文字标注

坐标刻度:默认的刻度是自动等距离分隔的,但有些刻度需要特别标注出来

- ,因此需要使用坐标刻度专门标注。
- 通过设置xtick和ytick属性可以划分坐标刻度。
- · 通过设置xticklabel和yticklabel属性可以标注将坐标刻度的标志

plt.xticks(np.arange(0,12,3), ['a','b','c','d'],
rotation=-20,
fontsize=12,
fontweight='bold')

ax.set_xticks() ax.set_xticklabels()

图形对象的操作

对象句柄的获取

gcf %获取当前图形窗口句柄 gca %获取当前坐标轴句柄

h = plt.figure()
h.axes
h.get_axes()
h.gca()
h.clf()
h.add_axes()
h.add_subplot

图形对象的操作

 $\label{eq:continuous} \begin{tabular}{ll} left, bottom, width, height = 0.2, 0.6, 0.25, 0.25 \\ ax = fig.add_axes([left, bottom, width, height]) \\ ax.plot(y, x, 'b') \end{tabular}$

ax.plot(y, x, 'b')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title_inside 1')

图形对象的操作

查找对象。用命令 findobj可以快速查找所有对象,以及获取指定属性值的对象 句柄。

h=findobj %返回根对象和所有子对象的句柄 h=findobj(h_obj) %返回指定对象的句柄 h=findobj('PropertyName', PropertyValue) %返回符合指定属性值的对象句柄

import matplotlib.text as text
for obj in fig.findobj(text.Text):
 if obj.get_text() == 'x':
 break
 obj.set_color('red')
 obj.set_fontsize(15)

特殊图形绘制

条形图: 常用于对统计的数据进行作图,特别适用于少量且离散的数据

bar(x, height, width=0.8, align='center')

 $\begin{aligned} & \text{plt.bar}(x = [1, 2, 3, 4], \text{height} = [4, 2, 3, 1], \\ & \text{width} = 0.8, \text{ edgecolor='black'}, \\ & \text{linewidth} = 4, \text{ align='center'}, \text{ color='g'}) \end{aligned}$

tick_label=['a','b','c','d']

特殊图形绘制

条形图: 常用于对统计的数据进行作图,特别适用于少量且离散的数据

特殊图形绘制

条形图: 常用于对统计的数据进行作图,特别适用于少量且离散的数据

ax.bar(labels,men_means,width,yer r=men_std,label='men')

ax.bar(labels,women_means,width, yerr=women_std,bottom=men_mea ns,label='Women')

特殊图形绘制

条形图: 常用于对统计的数据进行作图,特别适用于少量且离散的数据

特殊图形绘制

x = [1, 2, 3, 4, 5] y1 = [1, 1, 2, 3, 5] y2 = [0, 4, 2, 6, 8] y3 = [1, 3, 5, 7, 9] labels = ["Geeks1", "Geeks2", "Geeks3"] ax = plt.gca() ax.stackplot(x, y1, y2, y3, labels=labels)

特殊图形绘制

a = [5, 10, 15, 10, 5] b = [5, 5, 10, 15, 10] plt.fill(a, b, 'r') x=np.linspace(0,5*np.pi,1000) y1=np.sin(x) plt.fill(x,y1,color="g",alpha=0.3)

特殊图形绘制

 $matplotlib.pyplot.fill_between(x,\ y1,\ y2=0,\ where=None)$

- · Fill the area between two horizontal curves.
- The curves are defined by the points (x, y1) and (x, y2). This creates
 one or multiple polygons describing the filled area.
- $\bullet\ \ \ \mbox{You may exclude some horizontal sections from filling using where.}$

特殊图形绘制

特殊图形绘制

特殊图形绘制

学形图: pie(x, explode=None, labels=None, colors=None)

| Magnetic of the self-state of the self-state

labels = [娱乐/,育儿,饮食,房贷,交通,其它] sizes = [2,5,12,70,2,9] explode = (0,0,0,0.1,0,0) plt.pie(sizes,explode=explode, labels=labels,startangle=150)

特殊图形绘制

极坐标图

theta = np.arange(0, 2*np.pi, 2*np.pi/N)
ax1 = plt.subplot(121, projection='polar')
ax1.plot(theta,theta/6,'--',lw=2)
ax2.plot(theta,theta/6,'--',lw=2)

离散数据图

练习

- 1、绘制函数 $y = e^x$ 在区间[-2,2]上的图像。
- 2、在同一坐标系上绘制 $y=\cos 2x$ 和 $y=\frac{x}{x+1}$ 在区间 [0, 2π] 上的图像,并要求 $y=\cos 2x$ 用红色***描绘, $y=\frac{x}{x+1}$ 用蓝色虚线描绘。
- 3. 用subplot, 画 sin(x), cos(x), sin(x)+cos(x)
- 4. 有一组测量数据满足y = exp(-at) , t的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线。