Parity Bit Problem solving using RNN

Question 5. [1+4+5 = 10 marks]

Design a recurrent neural network that outputs a parity bit for binary sequences of arbitrary length. The inputs are given as binary sequences from right to left and output of 1 is generated when number of '0's in the string seen so far is even. For instance, the input string 1010010 would generate an output as follows:

There is one input unit corresponding to the input bit, and one output unit. Therefore, the pattern of inputs and outputs for this example would be:

The RNN has one input unit **x**, two hidden units **h**, and one output unit y. All of the units use the hard threshold activation function, i.e., output is 1 if total weighted input is >=bias, else 0.

Note, at time t,
$$\mathbf{h}_t$$
 = step($\mathbf{W}\mathbf{h}_{t-1}$ + \mathbf{U} x - \mathbf{b}_h) and y_t = step($\mathbf{v}\mathbf{h}_t$ - b_y)

$$\begin{aligned}
\mathbf{V} &= \begin{pmatrix} -1 \\ -1 \end{pmatrix} \\
\mathbf{V} &= \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\end{aligned}$$

Let
$$\alpha_t := \text{imput at time ntip } t$$
 $\sigma_t := \text{output at time ntip } t$.

We have
$$y_t = \{ +1 \}$$
 if $y_{t-1} = 1 \}$ $y_t = 0$, $y_{t-1} = 0$, $x_t = 0$

We have $y_t = \{ + \frac{1}{0} | if y_{t-1} = \frac{1}{0} | 4 | 2t = \frac{1}{0} \}$, $y_{t-1} = \frac{1}{0} | 4 | 2t = \frac{1}{0}$, $y_{t-1} = \frac{1}{0} | 4 | 2t = \frac{1}{0}$, $y_{t-1} = \frac{1}{0} | 4 | 2t = \frac{1}{0} | 2t =$

		T
yt-1	$\alpha^{\mathfrak{t}}$	dt.
<u> </u>	0	0
<u> </u>	1 =	=
0=	0 =	<u> </u>
0	<u>_</u>	Ō

[At to the have even zeroes, At the get $\alpha_t = 0$ of we have odd zeroes $\Rightarrow y_t = 0$

At t-1 we have odd zoroon.

At t-1 we have odd zoroon.

$$\alpha_t = 0 \Rightarrow \text{ at time } t \text{ we have } \\
\text{even zoroon.}$$

$$\Rightarrow y_t = 1$$

At t=0 we can have $y_0=0$ or $y_0=1$ [imital starting bount]. If $y_0=1 \Rightarrow$ initially we start with even number of zeroes $y_0=0 \Rightarrow$ initially we start with odd number of zeroes $y_0=0 \Rightarrow$ initially we start with odd number of zeroes

Let us define 3 states (So) S_1 , S_2 . We start with $y_0=1$ (ie, state $0 \rightarrow S_0$ is even)

Two transitions are partialle depending on S_t value (or x_t value)

If $x_t = 0$ it will go to odd state (say S_t)

If $x_t = 1$ it will remain in S_0 .

$$x_t = 0$$
 $x_t = 1$
 x_t

$$x_{t} = 1$$

$$x_{t} = 0$$

$$x_{t} = 0$$

$$x_{t} = 0$$

$$x_{t} = 0$$

$$\frac{t}{S_0} := i \text{mitial dun state}$$

$$\frac{S_1 := o \text{dod state}}{S_2 := e \text{un state}}$$

Lit we more consider a case where
$$y_0 = 0$$
 (So is odd)

Lit we more consider a case where $y_0 = 0$ (So is odd)

 $x_t = 0$
 $x_t = 0$
 $x_t = 0$
 $x_t = 0$

Initial odd state $x_t = 0$
 $x_t = 0$

care where
$$y_0 = 0$$
 (So is odd)

$$x_t = 1$$

Even;
$$S_0 := \text{untial odd ntate}$$

$$S_1 := \text{even ntate}$$

$$S_2 := \text{odd ntate}$$

the actually get some transition diagram with the definition of S_0 , S_1 & S_2 changed.

	A) (1)		\$774500 Professional Profession		X	$k_t = 0$	$\chi_{\underline{t}} = 1$
lili	ansum			$x_{t}=1$	(So)	$X_{t}^{=0}$ X_{1}	= 0
		S, as [0, S, as [1,			X=1	Salv =	= 1
lш	Laur	the trans	ution al	rown hi	lou	V1 (
	3, (t-1)	R3 (t-1)	x_t	y _t	h, (1)	$h_{s}(t)$	$S_0 \rightarrow S_1$
(5	0	=0	<u>o</u>	0	^	=	$S_1 \rightarrow S_1$

		01 -11 0 0 -1	0	0 0	=	$S_{1} \rightarrow S_{1}$ $S_{1} \rightarrow S_{2}$ $S_{2} \rightarrow S_{1}$ $S_{1} \rightarrow S_{1}$
0	1	0)) I	$S_1 \rightarrow S_2$
1	1	1		0	0	$S_{a} \rightarrow S_{0}$

ale will more supresent ye as a reasureme in form of he & the will moun try to represent y_t in terms of $h_t(t)$ of $h_t(t)$ the following distinct combination for h_t , h_s , y_t the get the following distinct combination

At t,

$$\beta_{1}$$
, β_{2} , β_{3} , β_{4} , β_{5} , $\beta_{$

We can pay
$$y_t = h_1(t) + h_2(t)$$

$$= h_1(t) + [1 - h_3(t)]$$

$$= h_1(t) + [1 - h_3(t)]$$
When $b < 0$
We get $h_1(t) - h_3(t) + 0.5$
As decrease boundary.

We can move model the transaction between static for h_1 4 h_2

At we consider first for $h_1(t)$.

So $[0,0]$ $[0,1]$ $[1,1]$

We can say $h_{1}(t) = [1 - h_{1}(t)] + h_{2}(t-1) + [1 - \alpha_{t}] + b$ $[h_{1}(t) = -h(t-1) + h_{3}(t-1) - \alpha_{t} + 3 - b] \sim 0$

How h is a constant which we have to determine.

Let us shown
$$h,(t)$$
 board on $h,(t-1)$, $h,(t-1)$ of x_t of them estimate b .

 $h,(t-1)$ $h_3(t-1)$ x_t $\frac{a_t}{a_t}$ $\frac{b_t}{a_t}$ $\frac{$

Hur we have
$$h_{1}(t) = 1$$
 of $-h_{2}(t-1) + h_{3}(t-1) - x_{4} \ge 0.5$

We can pay $h_{1}(t) = 1$ of $-h_{1}(t-1) + h_{3}(t-1) - x_{4} \ge 0.5$

We can pay $h_{1}(t) = \begin{cases} 1 & \text{if } -h_{1}(t-1) + h_{3}(t-1) - x_{4} \ge 0.5 \\ 0 & \text{other.} \end{cases}$

We have following recovered relations.

$$y_{t} = (h_{1}(t) - h_{3}(t) + 0.5)$$

$$y_{t} = (h_{1}(t) - h_{3}(t) + 0.5)$$

$$y_{t} = \begin{cases} \frac{1}{2} & \text{if } h_{1}(t) - h_{3}(t) + 0.5 > 0 \end{cases}$$

$$y_{t} = \begin{cases} \frac{1}{2} & \text{if } h_{1}(t) - h_{3}(t) + 0.5 > 0 \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{2}(t) \\ h_{3}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{3}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t} = \begin{cases} h_{1}(t) \\ h_{4}(t) \\ h_{4}(t) \end{cases}$$

$$y_{t}$$

$$h_{t} = \begin{pmatrix} h_{1}(t) \\ h_{3}(t) \end{pmatrix}$$

$$h_{y} = -0.5$$
Also,
$$h_{1}(t) = \begin{cases} 1 & \text{if } -h_{1}(t-1) + h_{3}(t-1) - x_{t} - 0.5 \ge 0 \\ 0 & \text{else.} \end{cases}$$

$$h_{3}(t) = \begin{cases} 1 & \text{if } -h_{1}(t-1) + h_{3}(t-1) - x_{t} + 0.5 \ge 0 \\ 0 & \text{else.} \end{cases}$$

$$h(t) = \begin{pmatrix} h_{1}(t) \\ h_{3}(t) \end{pmatrix} = \text{atp} \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} h(t-1) + \begin{pmatrix} -1 \\ -1 \end{pmatrix} x_{t} + \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

$$h(t) = \begin{pmatrix} h_{1}(t) \\ h_{3}(t) \end{pmatrix} = \text{atp} \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} h(t-1) + \begin{pmatrix} -1 \\ -1 \end{pmatrix} x_{t} + \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

$$h(t) = nt\phi \left(ux_{t} + Wh_{t-1} - bh \right)$$
where $u = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $w = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

$$b_{h} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}$$