# KUBIG CONTEST

머신리닝 분반 3조

이영신 우유정 유정아

이가영 전지우 하은겸

## 프로젝트 개요

- The dataset consists of data collected from heavy Scania trucks in everyday usage. The system in focus is the Air Pressure system (APS) which generates pressurized air that are utilized in various functions in a truck, such as braking and gear changes. The dataset's positive class consists of component failures for a specific component of the APS system. The negative class consists of trucks with failures for components not related to the APS. The data consists of a subset of all available data, selected by experts.
- Our goal is to minimize the cost associated with:
- 1) Unnecessary checks done by mechanic. (10\$)
- 2) Missing a faulty truck, which may cause breakdown. (500\$)

Objective: Our main objective is to correctly predict if truck needed to be serviced or not and minimize the cost of service.



## 프로젝트 개요

#### <Train set>

|   | Unnamed:<br>0 | class | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | <br>ee_002  | ee_003  | ee_004  | ee_005 | ee_006 | ee_007 | ee_008 |
|---|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|---------|---------|--------|--------|--------|--------|
| 0 | 52803         | neg   | 41386  | NaN    | 508    | 488    | 0      | 0      | 0      | 0      | <br>438088  | 202172  | 383094  | 392838 | 228526 | 104226 | 122526 |
| 1 | 38189         | neg   | 29616  | NaN    | 1616   | 1490   | 0      | 0      | 0      | 0      | <br>145524  | 72858   | 171332  | 308328 | 379466 | 213826 | 5764   |
| 2 | 23291         | neg   | 241352 | NaN    | NaN    | NaN    | NaN    | NaN    | 0      | 0      | <br>3617298 | 2477772 | 3631902 | 997462 | 436380 | 202002 | 173850 |
| 3 | 16862         | neg   | 8100   | NaN    | 86     | 76     | 0      | 0      | 0      | 0      | <br>66980   | 36658   | 91898   | 86634  | 60276  | 23616  | 7518   |
| 4 | 14055         | neg   | 2290   | NaN    | 636    | 448    | 0      | 0      | 0      | 0      | <br>11542   | 7394    | 14206   | 69592  | 3108   | 108    | 6      |

5 rows × 172 columns

### <Test set from *Kaggle*>

|   | class | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | ag_002 | <br>ee_002 | ee_003 | ee_004 | ee_005 | ee_006  | ee_007 | ee_008 | ee_009 |
|---|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|--------|--------|--------|
| 0 | neg   | 60     | 0      | 20     | 12     | 0      | 0      | 0      | 0      | 0      | <br>1098   | 138    | 412    | 654    | 78      | 88     | 0      | 0      |
| 1 | neg   | 82     | 0      | 68     | 40     | 0      | 0      | 0      | 0      | 0      | <br>1068   | 276    | 1620   | 116    | 86      | 462    | 0      | 0      |
| 2 | neg   | 66002  | 2      | 212    | 112    | 0      | 0      | 0      | 0      | 0      | <br>495076 | 380368 | 440134 | 269556 | 1315022 | 153680 | 516    | 0      |
| 3 | neg   | 59816  | na     | 1010   | 936    | 0      | 0      | 0      | 0      | 0      | <br>540820 | 243270 | 483302 | 485332 | 431376  | 210074 | 281662 | 3232   |
| 4 | neg   | 1814   | na     | 156    | 140    | 0      | 0      | 0      | 0      | 0      | <br>7646   | 4144   | 18466  | 49782  | 3176    | 482    | 76     | 0      |

5 rows × 171 columns

## Data Imbalance 확인

### <Training set imbalance>

neg 55934 pos 1066

Name: class, dtype: int64

#### <Test set imbalance>

neg 15625 pos 375

Name: class, dtype: int64

Train data와 Test data imbalanced data

Train data → pos : neg=1:50

Test data → pos : neg=1:40

## 전처리

# Train data를 pos:neg=1:500l 되도록 stratify를 0l용했으며 80:20 비율로 training-validation set을 나누었다.

```
from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val=train_test_split(train, train["class"], test_size=0.2, random_state=42, stratify=train["class"])
```

#### X\_train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 45600 entries, 36627 to 50505
Columns: 172 entries, Unnamed: 0 to eg\_000

dtypes: int64(2), object(170)

memory usage: 60.2+ MB

#### X\_val.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11400 entries, 28199 to 6799
Columns: 172 entries, Unnamed: 0 to eg\_000

dtypes: int64(2), object(170)

memory usage: 15.0+ MB

# 전처리 결과

### <Train set>

|       | Unnamed:<br>0 | class | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | <br>ee_002 | ee_003 | ee_004 | ee_005 | ee_006  | ee_007 | ee_008 |
|-------|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|--------|--------|
| 36627 | 58126         | neg   | 46976  | 0      | 128    | 124    | 0      | 0      | 0      | 0      | <br>176578 | 80224  | 141948 | 164404 | 1438208 | 32222  | 520    |
| 42898 | 72727         | neg   | 39910  | NaN    | 70     | 66     | 0      | 0      | 0      | 0      | <br>291494 | 110406 | 265298 | 254714 | 232414  | 182932 | 309914 |
| 23114 | 60535         | neg   | 43614  | NaN    | 152    | 144    | 0      | 0      | 0      | 0      | <br>314196 | 146948 | 297180 | 274392 | 247178  | 193972 | 320904 |
| 2962  | 58060         | neg   | 60     | NaN    | 0      | NaN    | 0      | 0      | 0      | 0      | <br>578    | 190    | 468    | 732    | 138     | 0      | 0      |
| 45204 | 57687         | neg   | 38938  | NaN    | 460    | 150    | 0      | 0      | 0      | 0      | <br>459428 | 220256 | 413674 | 334330 | 196244  | 92842  | 57548  |

#### <Validation set>

|       | Unnamed:<br>0 | class | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | <br>ee_002  | ee_003  | ee_004  | ee_005  | ee_006 | ee_007 | ee_008 |
|-------|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|---------|---------|---------|--------|--------|--------|
| 28199 | 40348         | neg   | 39034  | NaN    | 132    | 108    | 0      | 0      | 0      | 0      | <br>154734  | 69690   | 165178  | 133902  | 443552 | 691076 | 6636   |
| 49371 | 19970         | pos   | 349286 | NaN    | NaN    | NaN    | NaN    | NaN    | 0      | 26204  | <br>5012822 | 1532928 | 3381640 | 4543016 | 655000 | 207038 | 3480   |
| 56441 | 7008          | neg   | 32400  | NaN    | 714    | 626    | 0      | 0      | 0      | 0      | <br>320846  | 168344  | 408888  | 330388  | 153806 | 65222  | 52630  |
| 13775 | 69658         | neg   | 378224 | NaN    | 36     | 16     | 0      | 0      | 0      | 0      | <br>53412   | 24186   | 43278   | 37390   | 48242  | 293878 | 30980  |
| 38520 | 31183         | neg   | 61174  | NaN    | 0      | NaN    | 0      | 0      | 0      | 0      | <br>417030  | 213806  | 466264  | 560570  | 527686 | 293296 | 224894 |

## 결측치 처리

### Train set, Validation set과 Test set의 결측치를 -1로 대체 Column을 삭제할 경우 정보 손실이 우려

#### <Train set>

```
X_train = X_train.replace(np.nan, -1) #결촉치에 -1 대입
X_train01=X_train.drop(['Unnamed: 0', 'class'], axis=1)
X_train01.reset_index(drop=True, inplace=True)
X_train01
```

#### ⟨Validation set⟩

```
X_val = X_val.replace(np.nan, -1)
X_val01=X_val.drop(['Unnamed: 0', 'class'], axis=1)
X_val01.reset_index(drop=True, inplace=True)
X_val01
```

#### <Test set>

```
test = test.replace("na", -1)
test1 = test.drop(['class'], axis=1)
test1
```

# 결측치 처리 결과

### <Train set>

|   | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | ag_002 | ag_003 | <br>ee_002 | ee_003 | ee_004 | ee_005 | ee_006  | ee_007 | ee_008 |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|--------|--------|
| 0 | 46976  | 0      | 128    | 124    | 0      | 0      | 0      | 0      | 0      | 0      | <br>176578 | 80224  | 141948 | 164404 | 1438208 | 32222  | 520    |
| 1 | 39910  | -1     | 70     | 66     | 0      | 0      | 0      | 0      | 0      | 0      | <br>291494 | 110406 | 265298 | 254714 | 232414  | 182932 | 309914 |
| 2 | 43614  | -1     | 152    | 144    | 0      | 0      | 0      | 0      | 0      | 0      | <br>314196 | 146948 | 297180 | 274392 | 247178  | 193972 | 320904 |
| 3 | 60     | -1     | 0      | -1     | 0      | 0      | 0      | 0      | 0      | 0      | <br>578    | 190    | 468    | 732    | 138     | 0      | 0      |
| 4 | 38938  | -1     | 460    | 150    | 0      | 0      | 0      | 0      | 0      | 0      | <br>459428 | 220256 | 413674 | 334330 | 196244  | 92842  | 57548  |

### <Test set from *Kaggle*>

|   | aa_000 | ab_000 | ac_000 | ad_000 | ae_000 | af_000 | ag_000 | ag_001 | ag_002 | ag_003 | <br>ee_002 | ee_003 | ee_004 | ee_005 | ee_006  | ee_007 | ee_008 |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|---------|--------|--------|
| 0 | 60     | 0      | 20     | 12     | 0      | 0      | 0      | 0      | 0      | 2682   | <br>1098   | 138    | 412    | 654    | 78      | 88     | 0      |
| 1 | 82     | 0      | 68     | 40     | 0      | 0      | 0      | 0      | 0      | 0      | <br>1068   | 276    | 1620   | 116    | 86      | 462    | 0      |
| 2 | 66002  | 2      | 212    | 112    | 0      | 0      | 0      | 0      | 0      | 199486 | <br>495076 | 380368 | 440134 | 269556 | 1315022 | 153680 | 516    |
| 3 | 59816  | -1     | 1010   | 936    | 0      | 0      | 0      | 0      | 0      | 0      | <br>540820 | 243270 | 483302 | 485332 | 431376  | 210074 | 281662 |
| 4 | 1814   | -1     | 156    | 140    | 0      | 0      | 0      | 0      | 0      | 0      | <br>7646   | 4144   | 18466  | 49782  | 3176    | 482    | 76     |

### SMOTE를 이용한 OVERSAMPLING

### minority class였던 pos가 neg와 같은 개수로 맞춰진 상태로 oversampling 되었다.

```
from imblearn.over sampling import SMOTE
print("Before OverSampling, counts of label '1': {}".format(sum(y_train=="pos")))
print("Before OverSampling, counts of label '0': {} \n".format(sum(y train=="neg")))
sm = SMOTE(random_state=2)
X train res. v train res = sm.fit sample(X trainO1, v train)
print('After OverSampling, the shape of train X: {}'.format(X train res.shape))
print('After OverSampling, the shape of train_y: {} \#n'.format(y_train_res.shape))
print("After OverSampling, counts of label '1': {}".format(sum(y_train_res=="pos")))
print("After OverSampling, counts of label '0': {}".format(sum(y_train_res=="neg")))
Before OverSampling, counts of label '1': 853
Before OverSampling, counts of label '0': 44747
After OverSampling, the shape of train_X: (89494, 170)
After OverSampling, the shape of train y: (89494.)
After OverSampling, counts of label '1':
After OverSampling, counts of label '0':
```

## 분석 모델 소개

- 1. random forest
  - 2. Catboost
  - 3. XGBoost
- 4. Logistic Regression
- 5. Softmax Regression
  - 6. Linear SVC

## 분석 모델 1. random forest

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_jobs=4)
rf.fit(X train res, y train res)
RandomForestClassifier(n iobs=4)
result = rf.predict(X_val01)
pd.Series(result).value_counts()
       11157
neg
          243
pos
dtype: int64
from sklearn.metrics import accuracy_score, f1_score
print('f1 score:', f1_score(y_val.replace({'neg': 0, 'pos' : 1}), pd.Series(result).replace({'neg': 0, 'pos' : 1})))
print('accuracy score:', accuracy_score(y_val.replace({'neg': 0, 'pos': 1}), pd.Series(result).replace({'neg': 0, 'pos': 1})))
f1 score: 0.7763157894736843
accuracy score: 0.9910526315789474
```

## 분석 모델 1. random forest

```
df1 = pd.DataFrame({'predicted':result, 'true':y_val})
df1.reset_index(drop=True,inplace=True)
```

```
i = 0
i = 0
false neg = 0
false pos = 0
for predicted, true in df1.values:
    if predicted != true: #예측이 틀렸을 때
       if true == 'neg':
           i = i + 10
          false_pos = false_pos+1
       else :
           i = i + 500
           false_neg = false_neg+1
print('RandomForest 총 비용 :','$',i+j)
print('positive를 negative로 분류 :', '$',false_neg*500)
print('negative를 positive로 분류 :', '$', false_pos*10)
```

## 분석 모델 2. Catboost

```
from catboost import CatBoostClassifier
 cat = CatBoostClassifier()
 cat.fit(X_train_res, y_train_res)
 Learning rate set to 0.070202
 0:
         learn: 0.5707008
                                total: 82.7ms
                                               remaining: 1m 22s
         learn: 0.4675095
                                total: 163ms
                                               remaining: 1m 21s
        learn: 0.3939426
                                total: 239ms
                                               remaining: 1m 19s
        learn: 0.3311132
                                total: 319ms
                                               remaining: 1m 19s
        learn: 0.2797918
                                total: 393ms
                                               remaining: 1m 18s
        learn: 0.2444688
                                total: 510ms
                                               remaining: 1m 24s
                                               remaining: 1m 24s
        learn: 0.2152931
                                total: 594ms
        learn: 0.1924672
                                total: 677ms
                                               remaining: 1m 23s
        Learn: 0.1743603
                                total: 747ms
                                               remaining: 1m 22s
                                total: 814ms
        learn: 0.1579811
                                               remaining: 1m 20s
        learn: 0.1451951
                                total: 890ms
                                               remaining: 1m 20s
 10:
result2 = cat.predict(X val01)
pd.Series(result2).value_counts()
         11159
neg
            241
pos
dtype: int64
```

## 분석 모델 3. XGBoost

```
import xaboost as xab
xgb model = xgb.XGBClassifier(objective="binary:logistic", random state=42)
xgb model.fit(X train res. v train res)
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
              importance type='gain', interaction constraints=''.
              learning rate=0.300000012. max delta step=0. max depth=6.
              min_child_weight=1, missing=nan, monotone_constraints='()',
              n estimators=100, n jobs=0, num parallel tree=1, random state=42,
              reg alpha=0, reg lambda=1, scale pos weight=1, subsample=1,
              tree_method='exact', validate_parameters=1, verbosity=None)
result3 = xgb model.predict(X val01)
pd.Series(result3).value counts()
      11175
neg
        225
pos
dtvpe: int64
```

# 분석 모델 4. Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score, log_loss, confusion_matrix,classification_report
logistic_clf= LogisticRegression(random_state=0, solver='lbfgs',C=1.0).fit(X_train_res, y_train_res)
```

```
result4= logistic_clf.predict(X_val01)
pd.Series(result4).value_counts()
```

neg 10730 pos 670 dtype: int64

# 분석 모델 5. Softmax Regression

```
softmax_reg = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=10)
softmax_reg.fit(X_train_res, y_train_res)

LogisticRegression(C=10, multi_class='multinomial')

result5= softmax_reg.predict(X_val01)
pd.Series(result5).value_counts()

neg 10730
pos 670
dtype: int64
```

## 분석 모델 6. Linear SVC

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import GridSearchCV
from sklearn.metrics import confusion matrix
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
Linear sym clf =Pipeline((
    ("scaler", StandardScaler()).
    ("linear syc", LinearSVC(C=0.1, loss="hinge")).
Linear_svm_clf.fit(X_train_res, y_train_res)
Pipeline(steps=[('scaler', StandardScaler()),
                 ('linear svc', LinearSVC(C=0.1, loss='hinge'))])
result6=Linear_svm_clf.predict(X_val01)
pd.Series(result6).value counts()
       10946
neg
         454
DOS
dtype: int64
```

# 모델 결과 비교-Validation set

| 모델                     | 비용       | 순위 | False<br>Positive | False<br>Negative | F1 score |
|------------------------|----------|----|-------------------|-------------------|----------|
| Random<br>Forest       | \$19,170 | 6  | 67                | 37                | 0.772    |
| CatBoost               | \$17,110 | 4  | 61                | 33                | 0.793    |
| XGBoost                | \$17,460 | 5  | 46                | 34                | 0.817    |
| Logistic<br>Regression | \$13,630 | 2  | 473               | 16                | 0.446    |
| Softmax<br>Regression  | \$13,240 | 1  | 474               | 17                | 0.444    |
| LinearSVC              | \$13,630 | 2  | 473               | 16                | 0.59     |

# 모델 결과 비교-Test set

| 모델                     | 비용       | 순위 | False<br>Positive | False<br>Negative | F1 score |
|------------------------|----------|----|-------------------|-------------------|----------|
| Random<br>Forest       | \$12,810 | 3  | 31                | 25                | 0.926    |
| CatBoost               | \$11,860 | 2  | 36                | 23                | 0.923    |
| XGBoost                | \$10,680 | 1  | 18                | 21                | 0.948    |
| Logistic<br>Regression | \$18,350 | 5  | 635               | 24                | 0.516    |
| Softmax<br>Regression  | \$22,980 | 6  | 648               | 33                | 0.501    |
| LinearSVC              | \$15,310 | 4  | 331               | 24                | 0.664    |

## **XGBoost - Hyper parameter Tuning**

| Scale_pos_<br>weight | 1        | 10      | 20      | 50      | 52      | 52      | 70      |
|----------------------|----------|---------|---------|---------|---------|---------|---------|
| Learning<br>rate     | 0.25     | 0.2     | 0.2     | 0.2     | 0.2     | 0.07    | 0.2     |
| Test set<br>비용       | \$11,180 | \$7,890 | \$7,370 | \$7,550 | \$7,050 | \$7,430 | \$7,610 |
| False<br>Positive    | 18       | 39      | 37      | 55      | 55      | 43      | 61      |
| False<br>Negative    | 22       | 15      | 14      | 14      | 13      | 14      | 14      |

#### XGBoost의 최종 파라미터

→ (learning\_rate=0.2, subsample=0.8, objective="binary:logistic", scale\_pos\_weight=52, random\_state=42)

## **Catboost – What is Catboost?**

### **Catboost**

- -Yandex에 개발된 오픈 소스 Machine Learning
- -Category와 Boosting을 합쳐서 만들어진 이름 Boost는 Gradient boosting machine learning algorithm에서 온 말이며, Gradient boosting을 기반으로 한다.
- -구현하기가 쉬우며, 적은 데이터로도 좋은 결과를 얻을 수 있는 효율적인 방법이다.

## **Catboost – What is Catboost?**

### 특징

#### 1. Level-wise Tree

대칭 트리를 구현. 예측 시간을 줄이는 데 도움이 된다.

### 2. Ordered Boosting

기존의 부스팅 모델이 일괄적으로 모든 훈련 데이터를 대상으로 잔차 계산을 했다면, Catboost는 일부만 가지고 잔차 계산을 한 뒤, 이걸로 모델을 만들고, 그 뒤에 데이터의 잔차는 이 모델로 예측한 값을 사용한다.

## Catboost – What is Catboost?

### 3. Random Permutation

Ordered Boosting을 할 때, 데이터 순서를 섞어 주지 않으면 매번 같은 순서대로 잔차를 예측하는 모델을 만들 가능성 존재. Catboost는 이를 감안하며 데이터를 겨플링하여 뽑아낸다.

### 4. Categorical Feature Combinations

Information gain 이 동일한 두 특성 변수를 하나의 특성 변수로 묶어버림. 데이터 전처리에 있어 feature selection에 대한 부담을 조금 줄여준다.

## Catboost – Hyper Parameter Tuning

### **Hyper Parameter:**

-scale\_pos\_weight

Binary Classification에서 class1에 대한 weight Imbalanced data에 대해, 보통 (sum\_negative/sum\_positive)

-learning rate

## **Catboost – Hyper Parameter Tuning**

1. 대회의 목적은 총 비용을 줄이는 것 f1 score은 낮게 나오더라도 비용이 적게 나오는 hyperparameter 선택

2. false\_negative를 하나라도 더 줄이는 것에 집중 false\_negative의 페널EI=500, false\_positive의 페널EI=10 false\_positive 100개 더 많아지는 것 = false\_negative 2개 많아지는 것

3. 단, validation set의 f1 score이 0.5 밑으로 떨어지지 않도록 방지

## **Catboost – Hyper Parameter Tuning**

| learning rate    | 0.1  | 0.1  | 0.15 | 0.2   | 0.2  | 0.3  |
|------------------|------|------|------|-------|------|------|
| scale_pos_weight | 5    | 20   | 10   | 1     | 10   | 10   |
| 총 비용             | 8410 | 8090 | 6910 | 11810 | 7120 | 5920 |
| false neg        | 12   | 5    | 7    | 23    | 7    | 6    |
| false pos        | 241  | 559  | 341  | 31    | 362  | 292  |

### scale\_pos\_weight: 10, learning\_rate: 0.3 (기존 값: 0.07)

```
from catboost import CatBoostClassifier
cat2 = CatBoostClassifier(learning_rate=0.3, scale_pos_weight=10, verbose=True)
cat2.fit(X_train_res, y_train_res)
```

## Catboost - Result

## Catboost - Result

```
i = 0
i = 0
false_neg = 0
false pos = 0
for predicted, true in t_df8.values:
    if predicted != true: #예측이 틀렸을 때
       if true == 'neg':
           i = i + 10
           false pos = false pos+1
       else :
           i = i + 500
           false_neg = false_neg+1
print('CatBoost 총 비용 :','$',i+j)
print('positive를 negative로 분류 :',false_neg, '개', '$',false_neg*500)
print('negative를 positive로 분류 :',false_pos,'개', '$', false_pos*10)
CatBoost 총 비용 : $ 6450
positive를 negative로 분류 : 7 개 $ 3500
negative를 positive로 분류 : 295 개 $ 2950
```

# **Result - Comparison**

|            |       |    |         |         |        | After Para | ams Tuning | 1  |         |         |        |
|------------|-------|----|---------|---------|--------|------------|------------|----|---------|---------|--------|
| Validation |       |    |         |         |        | Validation | 1          |    |         |         |        |
| Model      | 비용    | 순위 | false p | false n | f1     | Model      | 비용         | 순위 | false p | false n | f1     |
| RF         | 19640 | 5  | 38      | 64      | 0.7743 | RF         | 19640      | 5  | 38      | 64      | 0.7743 |
| Cat        | 17100 | 3  | 33      | 60      | 0.7947 | Cat        | 9570       | 1  | 14      | 257     | 0.5949 |
| XGB        | 17460 | 4  | 34      | 46      | 0.8173 | XGB        | 12660      | 2  | 23      | 116     | 0.7321 |
| L Reg      | 13630 | 2  | 18      | 463     | 0.4477 | L Reg      | 13630      | 4  | 18      | 463     | 0.4477 |
| SM Reg     | 13340 | 1  | 18      | 434     | 0.4631 | SM Reg     | 13340      | 3  | 18      | 434     | 0.4631 |
| SVC        | 13630 | 2  | 18      | 463     | 0.5898 | SVC        | 13630      | 4  | 18      | 463     | 0.5898 |
|            |       |    |         |         |        | Test       | i i        |    |         |         |        |
| Test       |       |    |         |         |        |            |            |    |         |         |        |
| Model      | 비용    | 순위 | false p | false n | f1     | Model      | 비용         | 순위 | false p | false n | f1     |
| RF         | 11760 | 2  | 23      | 26      | 0.9349 | RF         | 11760      | 3  | 23      | 26      | 0.9349 |
| Cat        | 11850 | 3  | 23      | 35      | 0.9238 | Cat        | 5920       | 1  | 6       | 292     | 0.7123 |
| XGB        | 10680 | 1  | 21      | 18      | 0.947  | XGB        | 7050       | 2  | 13      | 55      | 0.9141 |
| L Reg      | 20940 | 5  | 29      | 644     | 0.5069 | L Reg      | 20940      | 5  | 29      | 644     | 0.5069 |
| SM Reg     | 23190 | 6  | 35      | 569     | 0.5295 | SM Reg     | 23190      | 6  | 35      | 569     | 0.5295 |
| SVC        | 15280 | 4  | 24      | 328     | 0.666  | SVC        | 15280      | 4  | 24      | 328     | 0.666  |

## **Final Result**

negative를 positive로 분류 : \$ 3900

```
print('accuracy_score:', accuracy_score(final_test['class'].replace({'neg': 0, 'pos' : 1}), pd.Series(final_pred).replace({'neg': 0, 'pos' : 1}), pd.Series(
accuracy score: 0.9777894736842105
print(confusion matrix(y test, final pred))
 [[18301
                                   390]
                                   277]]
                                                                                                                                                                                                                                                                                            머신러닝 3조 최종 결과
i = 0
i = 0
false neg = 0
false pos = 0
                                                                                                                                                                                                                                                                                Accuaracy
for predicted, true in df.values:
                                                                                                                                                                                                                                                                                                                                                                                       0.97779
            if predicted != true: #예측이 틀렸을 때
                                                                                                                                                                                                                                                                                              Score
                       if true == 'neg':
                                  i = i + 10
                                   false_pos = false_pos+1
                                                                                                                                                                                                                                                                                                                                                                                        $ 19900
                       else
                                                                                                                                                                                                                                                                                                 Cost
                                   i = i + 500
                                   false_neg = false_neg+1
                                                                                                                                                                                                                                                                                Confusion
                                                                                                                                                                                                                                                                                                                                                                     [[18301, 390]
print('Catboost 총 비용 :','$',i+j)
print('positive를 negative로 분류 :', '$',false_neg*500)
print('negative를 positive로 분류 :', '$', false_pos*10)
                                                                                                                                                                                                                                                                                           Matrix
                                                                                                                                                                                                                                                                                                                                                                                                    32, 277]
Catboost 총 비용 : $ 19900
positive를 negative로 분류 : $ 16000
```

# **THANK YOU**