In den kubischen α -Phasen von CuJ über $440\,^{\circ}$ C nimmt die Signalbreite weiter ab: $\tau_{Cu^+} < 10^{-8}$ sec. Halogen-Signale waren weder in den β -Phasen noch in der α -Phase von CuJ zu beobachten.

[GDCh-Ortsverband Göttingen, am 14. Dezember 1967]

[VB 139]

Kooperative Konformationsumwandlungen der Helix-Strukturen von Biopolymeren und analogen Modellsubstanzen in Lösung

Von Th. Ackermann[*]

Polypeptide und Polynucleotide bilden bei geeigneten Versuchsbedingungen (Temperatur, Lösungsmittelzusammensetzung, pH-Wert) auch im gelösten Zustand eine Sekundärstruktur aus, die weitgehend dem Modell der Paulingschen α-Helix und dem Watson-Crick-Modell der DNS-Doppelhelix entspricht. Durch Veränderung der Versuchsbedingungen werden die Moleküle der gelösten Biopolymeren aus dem geordneten Helix-Zustand in den Zustand eines statistisch ungeordneten Knäuels übergeführt; diese Umwandlung der Sekundärstruktur wird in der Literatur häufig als Helix-Coil-Umwandlung (helix-random coil transition) bezeichnet.

Untersuchungen an einer Reihe von Modellsystemen (z.B. Poly-Y-benzyl-L-glutamat, gelöst in einem Gemisch aus Dichloressigsäure und 1,2-Dichloräthan oder äquimolare Mischungen von Salzen der Polyribouridylsäure und der Polyriboadenylsäure in einer wäßrigen Pufferlösung) haben gezeigt, daß die Helix-Coil-Umwandlung ein reversibler, kooperativer Prozeß ist, der in einem verhältnismäßig kleinen Temperaturbereich nahezu vollständig abläuft. Die

Umwandlung macht sich in einer charakteristischen Veränderung der physikalischen Eigenschaften der Lösungen deutlich bemerkbar; zu ihrer Untersuchung eignen sich z.B. Messungen des optischen Drehvermögens, der Viscosität, der UV-Absorption, der IR-Absorption und der chemischen Verschiebung der Kernresonanzsignale von α-CH-Protonen der Polypeptide in Abhängigkeit von der Temperatur oder der Lösungsmittelzusammensetzung.

Die Stabilität der Helix-Strukturen wird im gelösten Zustand nicht nur durch die intramolekularen Wasserstoff-Brückenbindungen, sondern auch durch Solvatationseffekte und durch die energetischen Wechselwirkungen zwischen den Ringsystemen der heterocyclischen Basen in den Polynucleotiden beeinflußt. Zur Bestimmung der thermodynamischen Parameter derartiger Systeme eignen sich genaue Messungen des Temperaturverlaufes der Wärmekapazität mit registrierenden adiabatischen Kalorimetern.

Durch solche Messungen konnten nicht nur die Umwandlungsenthalpien, sondern auch die charakteristischen Kooperativparameter ermittelt werden. Vergleichende Messungen an DNS-Proben unterschiedlicher Basenzusammensetzung lassen Aussagen über den Einfluß der Basenpaare Adenin-Thymin, Adenin-Uracil und Guanin-Cytosin auf die thermische Stabilität der Helixstrukturen zu [1-3].

[GDCh-Ortsverband Köln, am 19. Januar 1968] [VB 142]

[*] Doz. Dr. Th. Ackermann Institut für Physikalische Chemie der Universität 44 Münster, Schloßplatz 4

[1] Th. Ackermann u. H. Rüterjans, Ber. Bunsenges. physik. Chem. 68, 850 (1964).

[2] Th. Ackermann u. E. Neumann, Biopolymers 5, 649 (1967).
 [3] E. Neumann u. Th. Ackermann, J. physic. Chem. 71, 2377 (1967).

RUNDSCHAU

Die Photolyse von N-(2,4-Dinitrophenyl)-α-aminosäuren (1) (DNP-Aminosäuren) ergibt 4-Nitro-2-nitroso-anilin (2) und oder 2-substituierte 6-Nitro-benzimidazol-1-oxide (3). D. J. Neadle und R. J. Pollit untersuchten die aus der Proteinchemie gut bekannte Lichtempfindlichkeit von DNP-Aminosäuren und fanden, daß sich (2) allgemein aus DNP-Aminosäuren mit einem α-Wasserstoffatom bildet. DNP-α-alanin ergibt bei der Photolyse (3), R = CH₃, in einer vom pH-Wert der Lösung kompliziert abhängenden Ausbeute.

Bei der Photolyse von DNP-Threonin werden wie erwartet (3) mit R = CHOH-CH₃ und zusätzlich (3) mit R = H gebildet; für die Entstehung der letzten Verbindung nehmen die Autoren eine retroaldolartige Reaktion an. / J. chem. Soc. (London) C 1967, 1764 / -DK. [Rd 797]

Eine neue Synthese von γ-Ketosäureestern und β-Acylacrylsäureestern beschreiben H.-J. Bestmann, G. Graf und H. Hartung. Triphenylphosphin-acyl-methylene (β-Oxoalkylidentriphenylphosphorane) (1) reagieren mit Bromessigsäuremethylester im Molverhältnis 2:1 zu den Triphenylphosphinacyl-methoxycarbonylmethyl-methylphosphoranen) (2) in einer Ausbeute von etwa 70 %. Die alkalische Hydrolyse von (2) in wäßrigem Methanol führt unter Abspaltung von Triphenylphosphinoxid und Methanol glatt zu γ -Ketosäuren (3) (R = CH₃, 69 %; R = C₃H₇, 45 %; R = C₆H₅, 94 %). In

den Yliden (2) sind die H-Atome der Methylen-Gruppe durch die benachbarte Ester-Gruppe aktiviert. Beim Erhitzen auf 150–180 °C zerfällt (2) daher in Triphenylphosphin und β -Acrylsäureester (4) (R = CH₃, 30 %; R = C₃H₇, 62 %; R = C₆H₅, 85 %). / Liebigs Ann. Chem. 706, 68 (1967) / -DK. [Rd 798]

Den Austausch von Wasserstoff- und Sauerstoff-Atomen in o-Nitrotoluol beobachteten E. K. Fields und S. Meyerson. Bei der Pyrolyse einer Lösung von o-Nitrotoluol in Methanol bei 600 °C, 11 sec Kontaktzeit, entstand als Hauptprodukt Anthranilsäure-methylester in 48 Mol-% Ausbeute. Es wird dem-

nach durch intramolekulare Oxidation und Reduktion Anthranilsäure gebildet, die in Abwesenheit von Methanol durch Verlust der COOH-Gruppe in Anilin übergeht. Kernsubstituierte o-Nitrotoluole, wie 4-Fluor-2-nitrotoluol, 4-Chlor-2-nitrotoluol, 3-Nitro-o-xylol und Nitro-p-xylol geben 4-Fluor-, 4-Chlor-, 3-Methyl- bzw. 4-Methylanthranilate (Ausbeute ca. 35 Mol-%). Tetrahedron Letters 1968, 1201 / -Ma. [Rd 851]

Dimethylamino-trimethylstannan (1) ist ein wirksames Dehydrochlorierungsmittel, wie D. J. Cardin und M. F. Lappert fanden:

$$(CH_3)_3Sn-N(CH_3)_2 + Cl-A-H \rightarrow (CH_3)_3SnCl\cdot HN(CH_3)_2 + A$$
(1) (2)

Die Reaktion verläuft unter milden Bedingungen und nahezu quantitativ. (2) ist aufgrund seiner Schwerlöslichkeit leicht abtrennbar. Die Wirksamkeit des Reagens soll u.a. auf der schwachen, aber stark polaren Sn-N-Bindung, der hohen Basizität von (1), der großen Bildungswärme von kristallisiertem (2) und, bei anorganischen Reaktionen, der intermediären Bildung von Metall-Sn-Bindungen beruhen. Weitere Amidoverbindungen, z.B. [(CH₃)₃Sn]₃N und Derivate der stärker elektropositiven Elemente, dürften sich gleichartig verhalten. Beispiele: IrHCl₂(PPh₃)₃ und IrH₂Cl(PPh₃)₃ werden in Xylol bei 80-100°C in 2 Std. bzw. 1,5 Std. zu IrCl(PPh₃)₃ bzw. IrH(PPh₃)₃ dehydrochloriert. n-C₄H₉Cl geht bei 40°C in 5,2% cis- und 88,5% trans-CH₃-CH=CH-CH₃ sowie 6,3% CH₃-CH₂-CH=CH₂ über. / Chem. Commun. 1967, 1034 / -Ma. [Rd 819]

LITERATUR

Infrared Spectra of Adsorbed Species. Von L. H. Little, mit ergänzenden Kapiteln von A. V. Kiselev und V. I. Lygin. Academic Press, London-New York 1966. XII, 428 S., zahlreiche Abb., geb. 100 s.

Infrared Spectroscopy in Surface Chemistry. Von M. L. Hair. Marcel Dekker Inc., New York 1967. XIII, 315 S., mehrere Abb.. \$ 15.75.

Die Chemie der Festkörper-Oberflächen findet seit mehreren Jahren zunehmende Beachtung. Einen wesentlichen Anstoß gab die Frage nach den Reaktionsmechanismen und Zwischenprodukten bei der heterogenen Katalyse. Abgesehen vom rein wissenschaftlichen Interesse wird die Kenntnis des Zustandes der Oberfläche und ihrer Reaktionen auch für viele andere Untersuchungen, z.B. über das Verhalten von Pigmenten oder die Einarbeitung von Füllstoffen in Polymere, immer wichtiger. Durch 1R-Spektroskopie kann man viele Informationen über die funktionellen Gruppen auf der Oberfläche, ihre Wechselwirkung mit adsorbierten Molekeln und die dabei entstehenden Gruppierungen gewinnen. Die Methode läßt sich auch auf dünne Metallfilme und feinverteilte, auf Trägern niedergeschlagene Metalle anwenden.

Nahezu gleichzeitig sind zwei Bücher erschienen, die eine Beschreibung der Methodik, ihrer Möglichkeiten und Grenzen geben wollen, sowie einen Überblick über das bisher Erreichte. Das Buch von Little ist im Vergleich zu dem von Hair sehr viel inhaltsreicher als der nur rund hundert Seiten größere Umfang vermuten läßt. Das wird durch engeren Zeilenabstand und vollständigere Ausnutzung des Formats erreicht; allerdings ermüdet man auch schneller beim Lesen. Little gibt die Literatur vollständiger wieder und zitiert viele Arbeiten, die ohne IR-spektroskopische Messungen zur Kenntnis der Oberflächenchemie beitragen. Sein Buch enthält auch wesentlich mehr Wiedergaben der Spektren. Hair bemüht sich hingegen unter Verzicht auf Vollständigkeit, einen zusammenhängenden Überblick zu geben, wobei er die Literatur entsprechend seinen eigenen Vorstellungen bewertet. Das Buch liest sich daher flüssiger. Über einige Formulierungen, z.B. covalente -Al=O-Doppelbindungen (Hair, S. 166), sollte man hinwegsehen.

Wie leider so oft, wurde von beiden Autoren die Literatur des außerenglischen Sprachbereiches recht unvollständig zur Kenntnis genommen. Es ist deshalb sehr zu begrüßen, daß Little die sowjetischen Forscher A. V. Kiselev und V. I. Lygin gewinnen konnte, die ihre eigenen vielfältigen Erfahrungen beschreiben und die reichhaltige russische Literatur bearbeiten. Die Anwendung der IR-Spektroskopie für Oberflächenuntersuchungen geht auf Arbeiten von Terenin Anfang der vierziger Jahre zurück.

Hair bringt zur Einführung einige Kapitel über Adsorption und IR-Spektroskopie, die Little als bekannt voraussetzt. Die experimentelle Methodik ist bei Little ausführlicher und gründlicher beschrieben. Beide Autoren behandeln besonders die OH-Gruppen an Oxid-Oberflächen, vor allem am Siliciumdioxid, sowie die Oberflächen-Acidität von SiO₂-Al₂O₃-Mischoxiden, die Adsorption an Zeolithen und die Chemisorption von Kohlenmonoxid an Metallen und Metalloxiden. *Little* geht ausführlich auf die Adsorption von Wasserstoff und Kohlenwasserstoffen ein. Die Literatur ist bis etwa 1966 berücksichtigt, wobei *Little* in einem Anhang eine Liste der wichtigsten, während der Drucklegung erschienenen Veröffentlichungen anfügt.

Beide Bücher sind empfehlenswert. Wer einen Überblick über die Methode und die mit ihr erzielten Ergebnisse gewinnen will, ist mit dem Buch von *Hair* gut bedient; wer jedoch Informationen über spezielle Probleme sucht, sollte eher zum *Little* greifen, der zudem preiswerter ist.

H. P. Boehm [NB 719]

Soil Biochemistry. Herausgeg. von A. D. McLaren und G. H. Peterson. Marcel Dekker Inc., New York 1967. 1. Aufl., XIII, 509 S., zahlr. Abb., geb. \$ 22.75.

Diese Monographie ist eine Gemeinschaftsarbeit 25 angelsächsischer Wissenschaftler. Sie ist in drei Teile gegliedert: I. Isolierung und Charakterisierung biochemischer Komponenten des Bodens. In diesem Kapitel werden Stickstoff-Verbindungen, Nucleinsäuren und Derivate, organische Phosphate, Kohlenhydrate, organische Säuren und freie Radikale des Bodens behandelt. Der II. Teil, Metabolismus, behandelt energetische Beziehungen wie Photosynthese, Atmung, enzymaktive und chemoautotrophe Reaktionen, Stickstoff-, Phosphat- und Schwefelzyklen, Ligninabbau und Huminsäurebildung, mikrobiellen Metabolismus von Phenolen sowie Abbau von Herbiziden; schließlich werden oberflächenaktive Agentien und Enzymreaktionen im Boden besprochen. Im III. Teil werden mikrobiologische und biochemische Aspekte der Rhizosphäre dargestellt und abschließend sogar Gedanken zur Oberflächenerforschung von Planeten entwickelt.

Die Zahl der Veröffentlichungen, Versuchsergebnisse und Anschauungen auf dem komplexen Gebiet der Biochemie des Bodens ist so umfangreich geworden, daß sie von einem Einzelnen nicht mehr zu übersehen ist. Den Autoren ist zu danken, daß sie sich der Mühe unterzogen haben, die Literatur der vergangenen 70 Jahre (in einzelnen Teilen des Buches unterschiedlich, teilweise bis 1966) zu sichten und mit insgesamt 2147 referierten Veröffentlichungen zusammenfassend und interpretierend darzustellen. Dabei ist besonders hervorzuheben, daß nicht nur die angelsächsische, sondern erfreulicherweise auch wichtige Literatur aus anderen Sprachen erfaßt wurde. Das Buch, das dem neuesten Wissensstand entspricht, führt in kurzer, prägnanter Form an die Problematik heran.

Die Einzelkapitel sind trotz des persönlichen Stils ihrer Autoren im großen und ganzen sehr aufeinander abgestimmt,