Kurzdarstellung Vorlesung 23.4

Peter Nejjar

Hier wird in kurzer Form der Inhalt der Vorlesung vom 23.4 wiedergegeben. Insofern sich die Vorlesung an [1] orientierte, werden die Inhalte anhand der dortigen Bezeichnungen/Nummern nur kurz genannt.

Kapitel 2 - Beispiele von Wahrscheinlichkeitsräumen

2.1 Diskrete Wahrscheinlichkeitsräume

Wir behandeln Satz 2.1.1, den Teil (i) mit Beweis. Dies führt zu einem allgemeinen Prinzip, Wahrscheinlichkeitsmaße auf höchstens abzählbare unendlichen Mengen Ω zu "bauen": Seien $(\tilde{p}_{\omega}, \omega \in \Omega)$ irgendwelche Zahlen mit der Eigenschaft, dass

$$\tilde{p}_{\omega} \ge 0, \quad 0 < \sum_{\omega \in \Omega} \tilde{p}_{\omega} < +\infty.$$
 (1)

Dann könen wir, in der Bezeichnung von Satz 2.1.1, definieren

$$p_{\omega} := \frac{\tilde{p}_{\omega}}{\sum_{\omega \in \Omega} \tilde{p}_{\omega}},$$

und die so definierten $(p_{\omega}, \omega \in \Omega)$ erfüllen die Voraussetzungen von Satz 2.1.1 (ii), und definieren also ein Wahrscheinlichkeitsmaß auf Ω .

Beispiele:

- Bernoulliverteilung
- Gleichverteilung/Laplaceraum
- geometrische Verteilung mit Parameter $q \in [0, 1)$, hier ist $\Omega = \mathbb{N} = \{1, 2, 3, ...\}$, und $\tilde{p}_{\omega} = \omega^{n-1}$. Es ist $\sum_{\omega \in \Omega} \tilde{p}_{\omega} = 1/(1-q)$. Daher ergibt sich nach (1) insgesamt ein Wahrscheinlichkeitsmaß \mathbb{P} , sodass für $\omega = k$ gilt $\mathbb{P}(\{k\}) = q^{k-1}(1-q)$.
- Poissonverteilung mit Parameter $\lambda \geq 0$, hier ist $\Omega = \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ und $\tilde{p}_{\omega} = \frac{\lambda^{\omega}}{\omega!}$. Es ist $\sum_{\omega \in \Omega} \tilde{p}_{\omega} = e^{\lambda}$. Daher ergibt sich nach (1) insgesamt ein Wahrscheinlichkeitsmaß \mathbb{P} , sodass für $\omega = k$ gilt $\mathbb{P}(\{k\}) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Informelle Herleitung der geometrischen Verteilung

Wir würfeln solange, bis zum ersten Mal eine "6" kommt. Wir suchen ein Wahrscheinlichkeitsmaß \mathbb{P} , sodass

 $\mathbb{P}(\{k\}) = '$ Wahrscheinlichkiet, dass beim k-ten Wurf zum ersten Mal 6 kommt'

gilt. Es ist dann sicher $\mathbb{P}(\{1\}) = 1/6$. Mit Wahrscheinlichkeit 5/6 kommt beim ersten Wurf keine 6. In einem Sechstel dieser Fälle kommt beim zweiten Wurf dann eine

Sechs, also sollte $\mathbb{P}(\{2\}) = 5/6 * 1/6$ sein. In 5/6 der Fälle, in denen schon beim ersten Wurf keine 6 kam, kommt auch beim zweiten Wurf keine, und in einem Sechstel dieser Fälle kommt dann aber beim dritten Wurf eine: Daher sollte $\mathbb{P}(\{3\}) = 5/6 * 5/6 * 1/6$ sein. Allgemein ergibt sich, dass $\mathbb{P}(\{k\}) = (5/6)^{k-1} * 1/6$ sein sollte, und das ist gerade die geometrische Verteilung mit q = 5/6.

Informelle Herleitung der Poisson Verteilung

Unterteile das Intervall [0,1] in n gleich lange Teilintervalle der Länge 1/n. In jedem Teilintervall befindet sich mit Wahrscheinlichkeit 1/n ein Teilchen, das Auftreten der Teilchen in verschiedenen Teilntervallen geschehe unabhängig. Die Wahrscheinlichkeit, dass es insgesamt k Teilchen in [0,1] gibt, kann man durch $\binom{n}{k}(1/n)^k(1-1/n)^{n-k}$ angeben - das ist die Wahrscheinlichkeit $(1/n)^k(1-1/n)^{n-k}$, dass genaue in den ersten k Teilintervallen ein Teilchen ist, und in allen anderen Teilintervallen kein Teilchen ist, mal die Anzahl der Möglichkeiten $\binom{n}{k}$, k Teilchen auf n Intervalle zu verteilen. Es gilt dann

$$\lim_{n \to \infty} \binom{n}{k} (1/n)^k (1 - 1/n)^{n-k} = \frac{1}{k!} \lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k} \lim_{n \to \infty} (1 - 1/n)^n \lim_{n \to \infty} (1 - 1/n)^{-k}$$

$$= \frac{1}{k!} * 1 * e^{-1} * 1$$

$$= \frac{e^{-1}}{k!},$$

und das ist gerade die Poissonverteilung mit Parameter 1.

Die Menge \mathbb{R}^n

Wiederholung: Der $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ als Menge (n-Tupel reeller Zahlen), Einheitsquadrat, Einheitswürfel. Es gibt ein Maß - kein Wahrscheinlichkeitsmaß- dass Teilmengen vom \mathbb{R}^n ihr Volumen zuordnet - das sogenannte Lebesguemaß.

References

[1] E. Behrends. Elementare Stochastik. Vieweg+Teubner Verlag, 2013, https://link.springer.com/book/10.1007/978-3-8348-2331-1.