

Lahore University of Management Sciences BIO 531 - Computational Biology

Fall 2023

Instructor	Dr Safee Ullah Chaudhary
Room No.	9-314
Office Hours	2:30 pm – 3:30 pm (Fridays)
Email	safee.ullah.chaudhary@gmail.com
Telephone	8352
Secretary/TA	Maham Hamid & Zainab Nasir
TA Office Hours	TBA
Course URL (if any)	

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	1hr 15 mins
Recitation (per week)	Nbr of Rec (s) Per		Duration	
	Week			
Lab (if any) per week	Nbr of Session(s) Per		Duration	
	Week			
Tutorial (per week)	Nbr of Tut(s) Per		Duration	
	Week			

Course Teaching Methodology

- Teaching Methodology: In person
- Lecture details: 100% live interaction lectures

Course Distribution		
Core	Yes	
Elective		
Open for Student Category	Any	
Closed for Student Category		

COURSE DESCRIPTION

This course provides introduction to computational biology introducing the tools and techniques important to study and analyze genomic data. This course emphasises on the fundamentals of nucleic acid and protein sequence analysis, phylogenetic analysis and the analysis of biological networks.

COURSE PREREQUISITE(S)		
•	Graduate standing	

COURSE OBJECTIVES			
• 1	To provide introduction to computational biology and bioinformatics To introduce tools and techniques useful for DNA and protein sequence analysis To enable students to program and solve problems in bioinformatics		

Have knowledge of key computational biology/bioinformatics concepts and techniques. Understand the inner working of some of the most widely-used bioinformatics methods, such as sequence analysis and comparison, and protein structure and function analysis. Be able to solve moderate complexity problems related to bioinformatics

Lahore University of Management Sciences

Grading Breakup and Policy

Assignment(s): 20% (4 assignments, equal weightage)

Home Work:

Quiz(s): 20% (4 quizzes, equal weightage)

Class Participation: Attendance: 5%

Midterm Examination: 25%

Project:

Final Examination: 30%

Examination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Combine Duration: 2 hrs Preferred Date: Exam Specifications:	
Final Exam	Yes/No: Yes Combine Separate: Combine Duration: 2 hrs Exam Specifications:	

COURSE OV	/ERVIEW		
Lecture/ Module	Topics	Recommended Readings	Objectives/ Application
1	Introduction, Analysing DNA Sequences – GC Content, Base Frequencies, Codon Bias		
Module 1:	Sequence Comparison and Alignment		
2	Pairwise Alignment – Global		
3	Pairwise Alignment - Local, Overlap		
4	Pairwise Alignment - Affine Gap, Scoring Matrices		
5	Multiple Sequence Alignment		
6	Markov Chains/Hidden Markov Models		
7	Probability Calculations in HMMs		
8	Sequence Alignment using Pair HMM – Global/Local		
9	Profile HMM		
Module 3:	Phylogenetics		
10	UPGMA		
11	Parsimony, Evolution Models		
12	Estimating the Number of Substitutions between DNA		
	Sequences		
13	Maximum Likelihood		
Module 4:			
14	RNA Secondary Structure Prediction I		
15	RNA Secondary Structure Prediction II		
Module 5:			
16	From DNA to Protein Sequences		
17	Protein Secondary Structures		
18	Protein Structure Visualization		

Lahore University of Management Sciences

19	Protein Structure Classification			
20	Protein Structure Comparison I			
21	Protein Structure Comparison II			
22	Protein Structure Prediction			
Module 6:	Module 6: Biological Networks			
23	Introduction to Biological Networks			
24	Representing Biological Networks			
25	Boolean Networks			
26	Biological Networks in Diseases I			
27	Biological Networks in Diseases II			
28	Revision			

Textbook(s)/Supplementary Readings

- Bioinformatics, Sequence and Genome Analysis, Second Edition, David W Mount, Cold Spring Harbor Laboratory Press, 2004.
- Developing Bioinformatics Computer Skills, Cynthia Gibas and Per Jambeck, O'Reilly, 2001
- Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison. Cambridge University Press, 1998.
- Inferring Phylogenies, 2nd Ediition, Joseph Felsenstein. Sinauer Associates, 2003.
- Introduction to Computational Biology. An Evolutionary Approach. Bernhard Haubold, Thomas Wiehe. Birkhauser, Verlag 2006.