Vorlesungsskript

Num. Lin. Algebra

Num. Lin. Algebra Konrad Rösler

Inhaltsverzeichnis

1. Einleitung	2
2. Das Gauß-Verfahren I	
2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung	4
2.2. Pivot-Strategien	8
2.3. Polesky-Verfahren für symm. pos. definite A	
3. Fehleranalyse	

Num. Lin. Algebra Inhaltsverzeichnis Konrad Rösler

Definitionen

Num. Lin. Algebra Konrad Rösler

1. Einleitung

Wichtige Aufgabenklassen der linearen Algebra sind lineare Gleichungssysteme.

Gegeben: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Gesucht: Ein/alle $x \in \mathbb{R}^m$ mit Ax = b

Herkunft:

• "direkt" aus der Anwendung, z.B. Beschreibung von Netzwerken, Tragwerk

- "indirekt" als Diskretisierung von stationären Prozessen, z.B. Belastung einer Membran
- "mittelbar" durch die Linearisierung nichtlinearer Modelle, z.B. Newton-Verfahren, Approximation von Lösungen gewöhnlicher DGL, notwendige Optimalitätsbedingungen

Klassifizierung:

• m = n: A quadratisch

Generische Situation: A regulär

⇒ ∃! Lösung

• m < n: "Unterbestimmtes System"

Generische Situation:

$$\begin{split} \operatorname{rg}(A) &= m \text{ (Vollrang)} \\ A & \widehat{=} [A_1 A_2] \quad A_1 \in \mathbb{R}^{m \times m} \end{split}$$

Lösungsmenge:

$$\mathcal{L} = \{x \in \mathbb{R}^n \mid Ax = b\} = \{x = x^+ + h, h \in \ker(A)\}$$

=(n-m)-dimensionale lineare Mannigfaltigkeit

Gesucht ist dann z.B. norm-minimale Lösung (Kap. 5)

• m > n: "Überbestimmtes System"

lösbar
$$\iff b \in \text{im}(A) = \{ y \in \mathbb{R}^m \mid \exists x : Ax = y \}$$

Generisch nicht lösbar!

Sinnvoll: Bestimme $\bar{x} \in \mathbb{R}^m$, so dass

$$\|A\bar{x}-b\|=\min_{x\in\mathbb{R}^m}\|Ax-b\|$$

 $\| \cdot \| =$ geeignete Norm, $\bar{x} =$ Bestapproximierender für diese Norm.

Mögliche Ansätze:

• $\|\ \|_{\infty}$: $\|Ax-b\|_{\infty}=\max_{1\leq i\leq m}\left|\left(Ax-b\right)_i\right|$ Ein nichtglattes Optimierungsproblem auch als lineares

Optimierungsproblem fomulierbar, schwierig zu lösen für m bzw. n groß.

-
$$\|\ \|_1 \colon \|Ax-b\|_1 = \sum_{i=1}^m |Ax-b|$$

Wie bei ∥ ∥ stückweise lineares Optimierungsproblem.

Aber stabil gegen Ausreißer.

≘ lineares Quadratmittelproblem, kleinste Quadrateproblem (Kap. 5)

Verfahren zur Lösung von LGS:

Direkte Verfahren:

- Transformation der Daten (A,b) in endlich viele in ein leichter zu lösendes LGS $\tilde{A}x=\tilde{b} \cong$ CG-Verfahren
- Transformationen lassen sich oftmals als Faktorisierung von A interpretieren

$$A = L \cdot R$$
 bzw. $A = Q \cdot R$

• Dafür i.d.R. Zugriff auf Elemente von $A \Longrightarrow$ limitiert die Größe der Matrix!

Kap. 2-5

Indirekte Verfahren:

- Ausgehend von einem Startvektor x^0 Iteration zur Berechnung von x^k mit $Ax^k \approx b$ Hierbei wird oftmals nur das Matrix-Vektor-Produkt Av benötigt! (Kap. 6)
- Eigenwertprobleme

Stabilitätsanalyse von Bauwerken. Verfahren dazu: numerische Optimierung

2. Das Gauß-Verfahren I

 $\text{Jetzt: } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n, \quad x : Ax = b?$

Satz 2.1: Existenz und Eindeutigkeit einer Lösung

Sei $A\in\mathbb{R}^{m\times n}$ eine Matrix mit $\det(A)\neq 0$ und $b\in\mathbb{R}^n$. Dann existiert genau ein $x\in\mathbb{R}^n$ mit

$$Ax = b$$

Beweis: lineare Algebra

 \Longrightarrow Anwendung von Algorithmen zur Berechnung von xsinnvoll! Wie?

2.1. Gaußsche Eliminationsverfahren und LR-Zerlegung

≘ direktes Verfahren für quadratische System

Erste Idee: Systeme spezieller Struktur, z.B.

$$Rx = c, \quad R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ 0 & \ddots & \dots \\ 0 & 0 & r_{mn} \end{pmatrix} \in \mathbb{R}^{n \times n}, \quad c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$

Rx = c

$$\begin{split} r_{nn}x_n &= c_n \Longrightarrow x_n = \frac{c_n}{r_{nn}}, \quad r_{nn} \neq 0 \\ r_{n-1n-1}x_{n-1} + r_{n-1n}x_n &= c_{n-1} \\ x_{n-1} &= \frac{c_{n-1} - r_{n-1n}x_n}{r_{n-1n-1}}, \quad r_{n-1n-1} \neq 0 \end{split}$$

Algorithmus 2.2: Rückwärtssubsitution

$$x_n = \frac{c_n}{r_{nn}} \quad \text{falls } r_{nn} \neq 0$$

$$\vdots$$

$$x_i = \frac{c_i - \sum_{j=i+1}^n r_{ij} x_j}{r_{ii}} \quad \text{falls } r_{ii} \neq 0$$

$$\vdots$$

$$x_1 = \frac{c_1 - \sum_{j=2}^n r_{1j} x_j}{r_{11}} \quad \text{falls } r_{11} \neq 0$$

Algo. 2.2 anwendbar, wenn $\det(R) \neq 0$ (vgl. Theo. 2.1)

Wichtiger Aspekt dieser Vorlesung: Aufwandsabschätzung

Aufwand: i-te Zeile je n-i Additionen und Multiplikationen und 1 Division insgesamt:

$$\sum_{i=1}^n (i-1) = \frac{n(n-1)}{2} = \mathcal{O}\big(n^2\big)$$

Addition und Multiplikationen und n Divsionen.

Landau-Symbol: $\mathcal{O}(.)$

$$f(n) = \mathcal{O}(g(n)) \Longleftrightarrow \exists c > 0: |f(n)| \leq C|g(n)|$$

Für ein lineares Gleichungssystem der Form

$$Lx = z, \quad L = \begin{pmatrix} l_{11} & 0 \\ \vdots & \ddots \\ l_{n1} & \dots & l_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n} \quad z \in \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} \in \mathbb{R}^n$$

gibt es einen analogen Algorithmus:

$$x_1 = \frac{z_1}{l_{11}} \quad l_{11} \neq 0$$

$$\vdots$$

$$x_n = \frac{z_n - \sum_{i=1}^{n-1} l_{ni} x_i}{l_{nn}} \quad l_{nn} \neq 0$$

 \Longrightarrow Vorwärtssubstitution mit gleichem Aufwand $\mathcal{O}(n^2)$

Lösungsidee für ein allgemeines Gleichungssystem:

Faktorisiere $A = L \cdot R$ und berechne die Lösung x von Ax = b durch

$$Ax = L\underbrace{Rx}_{=:z} = b$$

 $Lz=b\Longrightarrow z=L^{-1}b$ Vorwärtssubstitution $Rx=z\Longrightarrow x=R^{-1}z$ Rückwärtssubstitution

Mit Aufwand: $\mathcal{O}(n^2)$

Frage: Wie berechnet man Zerlegun $A = L \cdot R$

Man generiert eine Folge von Matrizen:

$$A = A^{(1)} \longrightarrow A^{(2)} \longrightarrow \dots \longrightarrow A^n = R$$

von Matrizen der Gestalt

$$A^{(k)} = \begin{pmatrix} a_{11}^{(1)} & \dots & \dots & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & \dots & \dots & a_{2n}^{(2)} \\ 0 & \ddots & & \vdots \\ & & 0 & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ & & \vdots & & \vdots \\ & & & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{pmatrix}$$

Wie?

Sei
$$\boldsymbol{x} = (x_1,...,x_n)^T \in \mathbb{R}^n, x_k \neq 0 \ \widehat{=}\ k$$
-Spalte

Definiere: $l_{jk} = \frac{x_j}{x_k}$

$$l_k = \left(\underbrace{0, \dots, 0}_{k \text{ mal}}, l_{k+1k}, \dots, l_{nk}\right)^T$$

 $\boldsymbol{e}_{k}=\boldsymbol{k}$ -ter einheitsvektor

$$L_k = I_n - l_k e_k^T \in \mathbb{R}^{n \times n}$$

Dann gilt

$$L_k x = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ & & -l_{k+1k} & \ddots \\ & & \vdots & \\ & & -l_{nk} & & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Jeder Eliminationsschritt $A^{(k)} \longrightarrow A^{(k+1)}$ lässt sich damit als Multiplikation mit einer Matrix $L_k \in \mathbb{R}^{n \times n}$ von links

$$A^{k+1} = L_k A^{(k)} = \begin{pmatrix} I_k & 0 \\ 0 & * I_{n-k} \end{pmatrix} \begin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ A_{21}^{(k)} & A_{22}^{(k)} \end{pmatrix} = \begin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} \\ 0 & A_{22}^{(k+1)} \end{pmatrix} \quad * \in \mathbb{R}^{n-k,1}$$

Eine Matrix der Gestalt L_k heißt Frobeniusmatrix \to weitere Eigenschaften siehe Übung . Der Eliminationsschritt ist genau dann durchführbar wenn $a_{kk}^{(k)} \neq 0$ gilt. Angenommen, dies gilt, dann erhält man

$$L_n \cdots L_2 L_1 A = R$$

$$A = \underbrace{L_1^{-1} \cdots L_{n-2}^{-1} L_{n-1}^{-1}}_{=:L} R$$

Induktiv beweißt man

$$L = L_1^{-1} \cdots L_{n-1}^{-1} = \begin{pmatrix} 1 & & & 0 \\ l_{21} & \ddots & & \\ \vdots & l_{32} & \ddots & & \\ \vdots & \vdots & & \ddots & \\ l_{n1} & l_{n2} & \dots & l_{nn-1} & 1 \end{pmatrix}$$

Durch diese Struktur kann der Speicherplatz für A zum Speichern von L und R genutzt werden!

Algorithmus 2.3: *LR*-Zerlegung

Gegeben: $A \in \mathbb{R}^{n \times n}$

$$\begin{array}{l} \text{for } i=1,...,n \\ \text{for } j=i,...,n \\ \text{for } k=1,...,i-1 \\ a_{ij}=a_{ij}-a_{ik}*a_{kj} \\ \text{end} \\ \text{end} \\ \text{for } j=i+1,...,n \\ \text{for } k=1,...,i-1 \\ a_{ji}=a_{ji}-a_{jk}*a_{ki} \\ \text{end} \\ a_{ji}=\frac{a_{ji}}{a_{ii}} \\ \text{end} \\ \end{array}$$

Aufwand für die Dreieckszerlegung $A = L \cdot R$

#Operationen =

$$\begin{split} \sum_{i=1}^{n-1} & \Big((n-i)^2 + (n-i) \Big) \frac{1}{3} n^3 - \frac{1}{2} n^2 + \frac{1}{6} + \frac{1}{2} n^3 - \frac{1}{2} n \\ & = \frac{1}{3} n^3 + \mathcal{O}(n^2) = \mathcal{O}(n^3) \end{split}$$

 \implies kubischer Aufwand! Nur akzeptabel für moderates n!

Algorithmus 2.4: Gaußsche Eliminationsverfahren

Gegeben: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$

- 1) Berechne $A = L \cdot R$ $\mathcal{O}(n^3)$
- 2) Berechne z aus Lz = b $\mathcal{O}(n^2)$
- 3) Berechne x aus Rx = z $\mathcal{O}(n^2)$
- \implies Gesamtaufwand (Operationen): $\mathcal{O}(n^3)$, (Speicherplatz): $n^2 + n$

Vorteil der Faktorisierung:

Zerlegung (teuer) kann für mehrere rechte Seiten nachgenutzt werden.

2.2. Pivot-Strategien

Beispiel 2.5: Algo 2.4 kann selbst für einfache Schritte scheitern:

$$Ax = b$$
, $x = \begin{pmatrix} w \\ z \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\det(A) = -1$, $b = \begin{pmatrix} c \\ e \end{pmatrix}$

Bei der völlig äquivalenten Formulierung

$$\tilde{A}\tilde{x} = \tilde{b}, \quad \tilde{x} = \begin{pmatrix} w \\ z \end{pmatrix}, \quad \tilde{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \det \left(\tilde{A} \right) = 1, \quad \tilde{b} = \begin{pmatrix} e \\ c \end{pmatrix}$$

funktioniert Algo 2.4 mit

$$\begin{split} \tilde{A} &= I_2 = L \cdot R \\ L &= I_2 \quad R = I_2 \end{split}$$

 \implies Zeilenvertauschung in A und der rechten Seite, **nicht** in x bzw. \tilde{x} !

Die LR-Zerlegung versagt nicht nur bei verschwindenen Diagonalelementen, sondern auch wenn diese betragsmäßig klein im Vergleich zu den restlichen Elementen sind.

→ Praktikum, Fehlertheorie (Kap. III)

Algorithmus 2.6: LR-Zerlegung mit Spaltenpivotisierung

- 1. $k = 1, A^{(1)} = A$
- 2. Spaltenpivotisierung

Bestimme $p \in \{k, ..., n\}$ so, dass

$$\left|a_{pk}^{(k)}\right| \geq \left|a_{jk}^{(k)}\right|$$
 für $j=k,...,n$

3. Vertausche die Zeilen p und k durch

$$A^{(k)} \longrightarrow \tilde{A}^{(k)} \quad \mathrm{mit} \quad \tilde{a}^{(k)}_{ij} = egin{cases} a^{(k)}_{kj} & \mathrm{falls} \ i = p \ a^{(k)}_{pj} & \mathrm{falls} \ i = k \ a^{(k)}_{ij} & \mathrm{sonst} \end{cases}$$

4. Führen der Eliminationsschritte

$$\tilde{A}^{(k)} \longrightarrow A^{(k+1)} \quad \text{setzte } k = k+1$$

5. Falls k = n STOP

Sonst gehe zu 2.

Alternative Pivotisierungsstrategien:

- Zeilenpivotisierung und Spaltentausch
- vollständige Pivotisierung, d.h. Suche des betragsmäßig größten Elements in der Restmatrix

Aufwand:

- Sowohl Spalten- als auch Zeilenpivotisierung: Im schlimmsten Fall $\mathcal{O}(n^2)$ zusätzliche Operationen
- vollständige Pivotisierung: Im schlimmsten Fall $\mathcal{O}(n^3)$ zusätzliche Operationen

Formale Beschreibung von Algo 2.6? Dazu: Permutationsmatrizen $P_{\pi} \in \mathbb{R}^{n \times n}$

Jede Permutation $\pi:\{1,...,n\}\longrightarrow\{1,...,n\}$ der Zahlen 1,...,n bestimmt eine Matrix

$$P_\pi = \begin{pmatrix} e_{\pi(1)} & \dots & e_{\pi(n)} \end{pmatrix}$$

Eine Zeilenvertauschung in A kann dann durch das Produkt $P_\pi A$ beschrieben werden, Spaltenvertauschung durch AP_π . Des Weiteren gilt $P_\pi^{-1}=P_\pi^T$, $\det(P_\pi)=\{-1,1\}$.

Man kann beweisen, dass die LR-Zerlegung mit Spaltenpivotisierung <u>theoretisch</u> nur versagen kann, wenn $\det(A)=0$

Satz 2.7: Durchführbarkeit der LR-Zerlegung

Für jede invertierbare Matrix A existiert eine Permutationsmatrix P derart, dass für PA die LR-Zerlegung mit Spaltenpivotisierung durchgeführt werden kann. D.h., man erhält PA = LR. Dabei kann man P so wählen, dass alle Elemente von L betragsmäßig kleiner gleich 1 sind, also $|L| \leq 1$

Beweis: Da A invertierbar ist, gilt $\det(A) \neq 0$. Damit existiert eine Permutationsmatrix P_{π_1} , so dass das erste Diagonalelement $\tilde{a}_{11}^{(1)}$ der Matrix

$$\tilde{A}^{(1)} = P_{\pi_1} A^{(1)}$$

von Null verschieden ist und das betragsmäßig größte Element in der ersten Spalte ist:

$$0 \neq \left| \tilde{a}_{11}^{(1)} \right| \geq \left| \tilde{a}_{i1}^{(1)} \right| \ \text{für } i = 1,...,n$$

Nach dem ersten Eliminationsschritt erhalten wir

$$A^{(2)} = L_1 ilde{A}^{(1)} = L_1 P_{\pi_1} A = egin{pmatrix} ilde{a}_{11}^{(1)} & * \ 0 & \check{A}_2^{(2)} \end{pmatrix}$$

Wegen (*) gilt für L_1 :

$$|l_{i1}| = \left| rac{ ilde{a}_{i1}^{(1)}}{ ilde{a}_{11}^{(1)}}
ight| \leq 1 \quad i = 2, ..., n$$

$$\Longrightarrow |L_1| \le 1, \quad \det(L_1) = 1$$

$$\begin{split} \det\!\left(A^{(2)}\right) &= \underbrace{\det\!\left(L_1\right)}_{=1} \underbrace{\det\!\left(P_{\pi_1}\right)}_{\in \{-1,1\}} \underbrace{\det\!\left(A\right)}_{\neq 0} \\ &\neq 0 \end{split}$$

$$\det\bigl(\check{A}^{(2)}\bigr) = \overbrace{\frac{\det\bigl(A^{(2)}\bigr)}{\tilde{a}_{11}^{(1)}}}^{\neq 0} \neq 0$$

Induktiv erhält man

$$R=A^{(n)}=L_{n-1}R_{\pi_{n-1}}L_{n-2}P_{\pi_{n-2}}\cdots L_1P_{\pi_1}A$$

mit $|L_k| \le 1$ und P_{π_k} entweder die Identität oder zwei Zeilen $j_1,j_2 \ge k$ vertauschen. Deswegen gilt für die Frobeniusmatrix

$$L_k = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ & & -l_{k+1k} & \\ & & \vdots & \ddots \\ & & -l_{nk} & & 1 \end{pmatrix}, \text{dass}$$

$$\tilde{L}_k = P_{\pi_j} L_k P_{\pi_j^{-1}} = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{\pi_j(k+1)k} & & \\ & & \vdots & & \ddots & \\ & & -l_{\pi_j(n)k} & & 1 \end{pmatrix} \quad \text{für } j > k$$

Durch geschicktes Einfügen von $I = P_{\pi_{k+1}}^{-1} P_{\pi_{k+1}}$

$$\begin{split} R = A^{(n)} = L_{k-1} \Big(P_{\pi_{n-1}} L_{n-2} P_{\pi_{n-1}}^{-1} \Big) \Big(P_{\pi_{n-1}} P_{\pi_{n-2}} L_{k-3} P_{\pi_{n-2}}^{-1} P_{\pi_{n-1}}^{-1} \Big) \\ P_{\pi_{n-1}} P_{\pi_{n-2}} \cdot \ldots \cdot \left(\ldots L_1 P_{\pi_1} \ldots P_{\pi_{n-1}}^{-1} \left(P_{\pi_{n-1}} \ldots P_{\pi_1} A \right) \right) \end{split}$$

$$\Longrightarrow PA = \underbrace{\tilde{L}_1^{-1} \cdots \tilde{L}_{n-1}^{-1}}_{=:L} R \text{ mit}$$

$$L = \begin{pmatrix} 1 & & & 0 \\ l_{\tilde{\pi}_1(l)1} & \ddots & & & \\ & \ddots & \ddots & & \\ \vdots & & & & \\ l_{\tilde{\pi}_1(n)1} & \dots & l_{\tilde{\pi}_{n-1}(n)(n-1)} & 1 \end{pmatrix}$$

und $|L| \leq 1$

Bemerkungen:

• Gilt PA = LR, dann berechnet man

$$Ax = b$$

$$PAx = Pb$$

$$LRx = Pb$$

$$x = R^{-1}L^{-1}Pb$$

• Theoretisch sind die Formulierungen

$$Ax = b$$
 $DAx = Db$

für eine invertierbare Diagonalmatrix D äquivalent. Bei der praktischen Lösung auf dem Rechner haben solche Skalierungen aber u.U. einen **dramatischen** Einfluß, vgl. Kap. III.

 Auf dem Rechner: Verbesserung der unexakten Lösung durch sogenannte Nachiteration möglich, vgl. Kap. IV.

2.3. Polesky-Verfahren für symm. pos. definite A

Gesucht: Asp
d eine $L \in \mathbb{R}^{n \times n}$ ($\det(L) > 0$) s.d. $A = LL^T$ siehe Übungen

Num. Lin. Algebra Fehleranalyse Konrad Rösler

3. Fehleranalyse