A Book of Abstract Algebra (2nd Edition)

Consider $\cos \alpha, \cos \beta \in D$, then the points $(\cos \alpha, 0), (\cos \beta, 0)$ are constructible from $\{O, I\}$

Comment

Step 3 of 3

Consider the below figure:

If $(\cos \alpha, 0), (\cos \beta, 0)$ are constructible, then $\sin \alpha, \sin \beta$ are constructible, by using the identities

$$\sin \alpha = 1 - \cos^2 \alpha$$

$$\sin \beta = 1 - \cos^2 \beta$$

Consequently,

 $\cos(\alpha + \beta), \cos(\alpha - \beta)$ are also constructible. Since

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

if $\cos(\alpha + \beta), \cos(\alpha - \beta)$ are constructible then $\cos(\alpha + \beta), \cos(\alpha - \beta) \in D$.

Therefore, $\cos(\alpha + \beta), \cos(\alpha - \beta) \in D$, if $\cos \alpha, \cos \beta \in D$.

Hence, proved
Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Chegg Money Learn Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy