1.	 (1Pkt) Wie groß sind typische Bindungsenergien pro Nukleon im Kern? a. □ keV b. □ MeV c. □ eV d. □ GeV
2.	 (1Pkt) Was sind Isobare? a. □ Nuklide mit gleichem Radius b. □ Nuklide mit gleichem Neutronenüberschuss c. □ Nuklide mit gleicher Neutronenzahl d. □ Nuklide mit gleicher Protonenzahl e. □ Nuklide mit gleicher Nukleonenanzahl
3.	 (2Pkte) Wann läuft eine Kernreaktion von selbst ab? Begründen Sie die Antwort a. □ Die Produkte haben einen größeren Massenüberschuss als die Ausgangskerne b. □ Die Produkte haben einen kleineren Massenüberschuss als die Ausgangskerne c. □ Q > 0 d. □ Q < 0
4.	(1Pkt) Was bedeutet dieses Symbol? a. □ Der Kern ist primordial b. □ Der Kern ist stabil mit einem Alpha-strahlenden Isomer c. □ Der Kern ist ein reiner Alpha-Strahler d. □ Der Kern ist stabil
5.	(2Pkte) Welche Größe ist beim radioaktiven Zerfall <u>nicht</u> erhalten? Begründen Sie die Antwort a. □ Impuls b. □ Drehimpuls c. □ Energie d. □ Masse
6.	 (1Pkt) Was bedeutet es, wenn ein Nuklid radiogen ist? a. □ Seine Mutter ist primordial b. □ Seine Tochter ist primordial c. □ Es wird in Kernprozessen in der Atmosphäre ständig nachgebildet d. □ Es hat eine sehr lange Halbwertszeit
7.	(4Pkt) Bestimmen Sie aus der Weizsäckerschen Massenformel eine Gleichung für das Tal der Stabilität Z=f(A) Bei welcher Masse/Ordnungszahl ist die Bindungsenergie pro Nukleon am größten? Wie groß?
8.	(1Pkt) Wie hängt die Zerfallskonstante mit der HWZ zusammen? a. $\Box 1/T(1/2)=\lambda^*ln(2)$ b. $\Box T(1/2)=\lambda/ln(2)$ c. $\Box ln(2)=\lambda/T(1/2)$ d. $\Box ln(2)/T(1/2)=\lambda$

9. (2Pkte) Was ist der Massendefekt?

10. (9 Pkte) Betrachten Sie eine Kette radioaktiver Zerfälle

Dies lässt sich beschreiben mit den Gleichungen

$$\frac{dN_1}{dt} = -\lambda_1 \cdot N_1$$

$$\frac{dN_2}{dt} = \lambda_1 \cdot N_1 - \lambda_2 \cdot N_2$$

$$N_i: Anzahl Nuklide i$$

$$\lambda_i: Zerfallskonstante Nuklid i$$

$$t: Zeit$$

Lösen Sie die Differentialgleichung für $N_2(t)$: Zerfall des Mutternuklids Z_1 mit Anzahl $N_1(t)$ und Zerfallsrate λ_1 und Bildung einer radioaktiven Tochter mit Zerfallskonstante λ_2 .

Startwertbedingung : keine Töchter zur Zeit t=0 vorhanden $N_2(t=0) = 0$

diskutieren Sie die Lösung für die drei Fälle

(1)
$$\lambda_1 \ll \lambda_2$$
 i.e. $T_{1/2,1} >> T_{1/2,2}$

(2)
$$\lambda_1 \leq \lambda_2$$
 i.e. $T_{1/2,1} \geq T_{1/2,2}$

(3)
$$\lambda_1 > \lambda_2$$
 i.e. $T_{1/2,1} < T_{1/2,2}$

Welche Fälle des radioaktiven Gleichgewichts gibt es? Skizzieren Sie jeweils den Aktivitätsverlauf des Mutter- und Tochternuklids als Funktion der Zeit!