数学分析 II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年2月2日

目录

1	第 1 次习题课: 定积分基本概念与可积性	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 定积分的性质与计算	4
	2.1 问题	4
	2.2 解答	4
3	第 3 次习题课: 定积分中值定理与应用	6
	3.1 问题	6
	3.2 解答	6
4	第 4 次习题课: 广义积分	6
	4.1 问题	6
	4.2 解答	6
5	第 5 次习题课: 正项级数	6
	5.1 问题	6
	5.2 解答	6
6	第 6 次习题课: 任意项级数, 数项级数的性质	6
	6.1 问题	6
	6.2 解答	6
7	第7次习题课: 函数项级数的一致收敛性 (1)	6
	7.1 问题	6
	7.2 解答	6
8	20 - 10 - 20 - 20 - 20 - 20 - 20 - 20 -	6
	8.1 问题	6
	8.2 解答	6
9	第 9 次习题课: 幂级数的基本性质	6
	9.1 问题	6
	9.2 解答	6

10) 第 10 次习题课:泰勒展开与多项式逼近	6
	10.1 问题	
	10.2 解答	6
11	第 11 次习题课: 傅里叶级数的基本性质	6
	11.1 问题	
	11.2 解答	6
12	?第 12 次习题课:傅里叶级数的收敛性	6
	12.1 问题	6
	12.2 解答	6
13	3 致谢	6

第 1 次习题课: 定积分基本概念与可积性

1.1 问题

- 1. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x)dx = 0$.
- 2. $f(x) \in R[a,b], \int_a^b f(x) dx > 0$. 证明 $\exists [\alpha,\beta] \subset [a,b], \text{s.t.} \forall x \in [\alpha,\beta], f(x) > 0$.
- 3. $f(x) \in R[a, b]$, 问 |f(x)| 是否一定 $\in R[a, b]$?
- 4. 设非负函数 $f(x) \in C[a,b]$, 证明极限 $\lim_{n \to \infty} \left(\int_a^b f^n(x) dx \right)^{\frac{1}{n}}$ 存在并求之.
- 5. $f(x) \ge 0, f''(x) \le 0, x \in [a, b]$. 证明 $\max_{x \in [a, b]} f(x) \le \frac{2}{b-a} \int_a^b f(x) dx$.
- 6. $n \in \mathbb{N}_{+}, f(x) \in C[a,b], \int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, \cdots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点. 7. 计算极限 $\lim_{n \to \infty} \frac{[1^{\alpha} + 3^{\alpha} + \cdots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \cdots + (2n)^{\beta}]^{\alpha+1}}$.

 8. $\lim_{n \to \infty} \frac{a_{n}}{n^{\alpha}} = 1, \alpha > 0$, 求 $\lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_{1} + a_{2} + \cdots + a_{n})$.

- 9. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a,b], p,q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x)dx \leq \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. 10. $f(x) \in R[a,b], A = \inf_{x \in [a,b]} f(x), B = \sup_{x \in [a,b]} f(x), g(y) \in C[A,B], \text{ if } H = G(x) := g(f(x)) \in R[a,b].$

1.2 解答

- 1. 显然 f(x) 有界, 否则由聚点原理矛盾. 其次 $\forall \epsilon > 0, \forall x \in [a,b], \exists \delta_x > 0, \text{s.t.} \omega_{(x-\delta_x,x+\delta_x)} < \epsilon$. 由于 $\cup_{x \in [a,b]} (x-\delta_x,x+\delta_x)$ $\delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 可 取分割点 $y_i \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1})$, 对于这个分割, $\sum_{i=1}^n \omega_i \Delta x_i < \epsilon(b-a)$, 因此有可积性. 由于 $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx \leq \sum_{i=1}^n \int_{y_{i-1}}^{y_i} |f(x)| dx \leq \epsilon(b-a), \epsilon \text{ 的任意性知} \overline{\int_a^b f(x) dx} = 0.$
- 2. 反证法. 如果每个区间都存在值小于等于 0, 那么任意分割我都取区间内那个小于等于 0 的点, 达布和始终小于等于 0, 其极限, 即积分值不可能大于 0.
- 3. $f(x) = -\text{Riemann}(x) \in R[0,1], |f(x)| = -\text{Dirichlet}(x) \notin R[0,1].$
- 4. 设 $M = \max_{x \in [a,b]} f(x), f(\xi) = M$. 由连续性, $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in (\xi \delta, \xi + \delta), f(x) > M \epsilon$. 因此当 n 足够大时成立

$$M+2\epsilon > ((b-a)M^n)^{\frac{1}{n}} \geq \left(\int_a^b f^n(x)dx\right)^{\frac{1}{n}} \geq \left(\int_{\xi-\delta}^{\xi+\delta} f^n(x)dx\right)^{\frac{1}{n}} > (2\delta(M-\epsilon)^n)^{\frac{1}{n}} > M-2\epsilon \Rightarrow \left(\int_a^b f^n(x)dx\right)^{\frac{1}{n}} \rightarrow M.$$

5. 设
$$f(\xi) = \max_{x \in [a,b]} f(x)$$
. 由题意知 $f(x)$ 是凹函数, 因此成立 $f(x) \ge \begin{cases} \frac{f(\xi) - f(a)}{\xi - a}(x - a) + f(a), & x \in [a,\xi] \\ \frac{f(b) - f(\xi)}{b - \xi}(x - \xi) + f(\xi), & x \in [\xi,b] \end{cases} \Rightarrow \text{RHS} \ge$

$$\frac{2}{b-a} \left(\int_{a}^{\xi} f(x) dx + \int_{\xi}^{b} f(x) dx \right) \ge \frac{2}{b-a} \left((\xi - a) \frac{f(\xi) + f(a)}{2} + (b - \xi) \frac{f(b) + f(\xi)}{2} \right) \ge \frac{2}{b-a} \frac{f(\xi)}{2} (\xi - a + b - \xi) = f(\xi) = \text{LHS}.$$
6. $\int_{a}^{b} f(x) dx = 0 \Rightarrow \exists 1$ 零点,记为 x_1 . $\int_{a}^{b} (x - x_1) f(x) dx = 0 \Rightarrow \exists 2$ 零点,记为 x_2 . $\cdots \int_{a}^{b} \left[\prod_{i=1}^{n} (x - x_i) \right] f(x) dx = 0 \Rightarrow \exists 1$

 $\exists n+1$ 零点.

7.

原式 =
$$2^{\alpha-\beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \stackrel{\text{定积分定义}}{\longrightarrow} 2^{\alpha-\beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha-\beta} \frac{(\beta+1)^{\alpha+1}}{(\alpha+1)^{\beta+1}}$$

8. $\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1-\epsilon) < a_n < n^{\alpha}(1+\epsilon)$. 从而当 n 足够大时, $\frac{1}{n^{1+\alpha}}(1^{\alpha}+2^{\alpha}+\cdots+N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1+a_2+\cdots+a_n)$ $\cdots + a_N) < \epsilon, \left| \frac{1}{n^{1+\alpha}} [(a_{N+1} - (N+1)^{\alpha}) + \cdots + (a_n - n^{\alpha})] \right| \le \frac{\epsilon}{n^{1+\alpha}} [(N+1)^{\alpha} + \cdots + n^{\alpha}] \le \frac{\epsilon}{n^{1+\alpha}} \sum_{i=1}^{n} i^{\alpha} = \frac{\epsilon}{n} \sum_{i=1}^{n} (\frac{i}{n})^{\alpha} \le \frac{\epsilon}{n^{1+\alpha}} [(a_{N+1} - (N+1)^{\alpha}) + \cdots + (a_n - n^{\alpha})]$

$$\epsilon \int_0^1 x^\alpha dx + \epsilon = \frac{\epsilon}{\alpha + 1} + \epsilon \le 2\epsilon. \ \ \dot{\boxtimes} \ \dot{\Xi} \ \dot{\mathbb{R}} \ \dot{\tilde{\mathbb{R}}} \ \left| \frac{1}{n^{1 + \alpha}} \left(\sum_{i = 1}^n a_i - \sum_{i = 1}^n i^\alpha \right) \right| \le 4\epsilon \Rightarrow \ \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ = \lim_{n \to \infty} \frac{1}{n^{1 + \alpha}} \sum_{i = 1}^n i^\alpha = \frac{1}{\alpha + 1}.$$

9. WLOG $\left(\int_a^b f^p(x)dx\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x)dx\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x)dx \le 1$. 由 $\ln x$ 的凹性,我们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^\alpha b^{1-\alpha} \le \alpha a + (1-\alpha)b$. 令 $\alpha = \frac{1}{p}, 1-\alpha = \frac{1}{q}, a = x^p, b = y^q \Rightarrow xy \le \frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)dx \le \int_a^b \frac{f(x)^p}{p} + \frac{g(x)^q}{q}dx = \frac{1}{p} + \frac{1}{q} = 1$.

也可以将积分离散化后使用离散版本的 Hölder 不等式证明.

10. 证法 a: G(x) 的间断点集合是 f(x) 间断点集合的子集, 因此其 Lebesgue 测度为 0, 从而可积.

证法 b: 由于 g(y) 一致连续, 因此 $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall |y_1 - y_2| < \delta, |g(y_1) - g(y_2)| < \frac{\epsilon}{2(b-a)}$. 由于 $f(x) \in R[a,b]$, 因 此 $\exists [a,b]$ 的分割 Δ ,使得 $\sum_{i=1}^n \omega_i(f) \Delta x_i < \frac{\delta \epsilon}{4M}$,其中 $M = \sup_{y \in [A,B]} |g(y)|$.若 $\omega_i(f) < \delta$,则 $\omega_i(G) < \frac{\epsilon}{2(b-a)}$.若 $\omega_i(f) \geq \delta$, 其区间长度 $\sum_{i:\omega_i(f)\geq \delta} \Delta x_i$ 不会超过 $\frac{\epsilon}{4M}$. 因此 $\sum_{i=1}^n \omega_i(G) \Delta x_i = \sum_{i:\omega_i(f)<\delta} \omega_i(G) \Delta x_i + \sum_{i:\omega_i(f)\geq \delta} \omega_i(G) \Delta x_i < \frac{\epsilon}{2} + 2M \frac{\epsilon}{4M} = \epsilon$. 这样对于任意 $\epsilon>0$ 我们都找到了一个分割 Δ 使得 $\sum\limits_{i=1}^n \omega_i(G)\Delta x_i<\epsilon$.

2 第 2 次习题课: 定积分的性质与计算

2.1 问题

- 1. 设函数 f(x) 在 \mathbb{R} 上有定义且内闭可积,证明 $\forall a,b \in \mathbb{R}, \lim_{h \to 0} \int_a^b [f(x+h) f(x)] dx = 0$. 2. (Riemann-Lebesgue 引理). $f \in R[a,b], g \in R[0,T], g(x+T) = g(x),$ 则 $\int_a^b f(x)g(nx) dx \to \int_a^b f(x) dx \cdot \frac{1}{T} \int_0^T g(x) dx$.

2.2 解答

1. WLOG h < 1. 由可积函数性质, 存在 [a,b+1] 上的连续函数 g(x) 使得 $\int_a^{b+1} |f(x) - g(x)| dx < \epsilon$, 且 $\exists \delta > 0$ 使得 $\forall x,y \in [a,b+1], |x-y| < \delta$, 成立 $|g(x) - g(y)| \leq \frac{\epsilon}{b-a}$. 从而 $\left| \int_a^b [f(x+h) - f(x)] dx \right| \leq \int_a^b |f(x+h) - g(x+h)| dx + \int_a^b |g(x+h) - g(x)| dx + \int_a^b |g(x) - f(x)| dx \leq \int_a^{b+1} |f(x) - g(x)| dx + \int_a^b \frac{\epsilon}{b-a} dx + \int_a^{b+1} |f(x) - g(x)| dx \leq 3\epsilon$. 2. WLOG 设 $\int_0^T g(x) dx = 0$, 否则考虑 $h(x) = g(x) - \frac{1}{T} \int_0^T g(x) dx$.

由 Riemann 积分定义, $\forall \epsilon > 0$,存在阶梯函数 $s_{\epsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \dots \\ C_m & x_{m-1} \leq x \leq b \end{cases}$ 使得 $\int_a^b |f(x) - s_{\epsilon}(x)| dx < \epsilon$. 设

 $M = \sup_{x \in [0,T]} |g(x)|. \quad \emptyset \mid \int_a^b f(x)g(nx)dx| = |\int_a^b (f(x) - s_{\epsilon}(x))g(nx)dx + \int_a^b s_{\epsilon}(x)g(nx)dx| \le \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx + \int_a^b s_{\epsilon}(x)g(nx)dx| \le \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx + \int_a^b C_i \int_{x_{i-1}}^{x_i} g(nx)dx < M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i \int_{nx_{i-1}}^{nx_i} g(x)dx \le M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i MT.$ 其中最后一个等式利用了 $\int_0^T g(x)dx = 0$,这意味着 $\int_c^d g(x)dx = \int_c^{c+T} g(x)dx + \int_{c+T}^{c+2T} g(x)dx + \dots + \int_{c+kT}^d g(x)dx$ (设 $c+kT \le d < c+(k+1)T$) = $\int_{c+kT}^d g(x)dx \le MT$. 选择一个足够大的 n,使得 $\frac{1}{n} \sum_{i=1}^m C_i MT < \epsilon$. 从而 $|\int_a^b f(x)g(nx)dx| \le (M+1)\epsilon$.

		3 第 3 次习题课: 定积分中值定理与应用
3.1	问题	
3.2	解答	
		4 第 4 次习题课: 广义积分
4.1	问题	
4.2	解答	
		5 第 5 次习题课: 正项级数
5.1	问题	
5.2	解答	
		6 第 6 次习题课:任意项级数,数项级数的性质
6.1	问题	
6.2	解答	
		7 第7次习题课:函数项级数的一致收敛性(1)
7.1	问题	
7.2	解答	
		8 第8次习题课:函数项级数的一致收敛性(2)
8.1	问题	
8.2	解答	
		9 第 9 次习题课: 幂级数的基本性质
9.1	问题	
9.2	解答	
		10 第 10 次习题课: 泰勒展开与多项式逼近
10.1	问题	
10.2	解答	
		11 第 11 次习题课: 傅里叶级数的基本性质
11.1	问题	
11.2	解答	
		12 第 12 次习题课:6 傅里叶级数的收敛性