

Birla Institute of Technology and Science, Pilani

Instruction Division

First Semester 2015-2016

EEE G512: Embedded System Design

Course Number: EEE G512 Credits: 4

Course Title: Embedded System Design Evaluation marks: Out of 300

Instructor-in-charge: Dr. Anu Gupta/ Dr. Kota Solomon Raju

Scope and Objectives of the Course:

- General introduction of models and processor architecture models used for the embedded system design
- To teach the basic concepts of embedded system design using ARM (LPC 2148) and 8051 processors for various applications.
- Focuses on design issues involved in embedded system and system-on-chip technologies
- Use of standard embedded system development platform tools, analysis techniques, and methods for embedded system design.
- Programming concepts with hands-on experience using ARM LPC 2148 experimental board.
- Current trends in embedded system design.

Text Book (s):

T1. Wolf, Wayne, Computers as Components – Principles of Embedded Computing System Design, Second Edition, Morgan-Kaufmann, 2005.

Reference Books/Journals/Magazines:

- R1. Muhammad Ali Mazidi, Janice Gillespie Mazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Education, 2008.
- R2. Raj Kamal, "Embedded Systems", Tata McGraw Hill, New Delhi, 2003.
- R3. Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide, Designing and Optimizing System Software", Morgan Kaufmann Publishers, Elsevier, 2004.
- R4. Qing Li and Caroline Yao, "Real-Time Concepts for Embedded Systems," Elsevier publications, 2003.

Course Plan:

Lecture Learning 1 No. Objectives		Topics	Reference to Text books/References	
1	Basics of Embedded Systems	Introduction to Embedded Systems, Design Methodology and Research Areas	T1-Chapter 1, +Clas Notes	
2-4	Processors, Memory and I/O Devices, Device Drivers	Processors in Embedded systems. RISC and CISC Architectures. Memories, Exemplary Embedded Systems I/O Devices, Software in Embedded Systems, Device Drive Concepts	T1&R2-Chapter 2,3,4+Class Notes	
5	Microcontrollers	Introduction to 8051 Family of Microcontrollers	R1-Chapter 1+ Class Notes	
6-9	Design of Software Systems	8051 Programming Model, Addressing Modes, Instruction Set, Special Function Registers(SFRs), Memory Maps, C versus Assembly, Embedded Programming in C	R1-Chapter 2- 7+Class Notes	
10-11	32-bit Processor Architecture	Introduction to ARM Architecture & NXP's LPC2148 Microcontroller	R3-Chapter 1,2+Class Notes	
12-15	ARM Instruction Set and Programming	Addressing Modes and Instruction Set Overview ,Overview of Thumb Mode Instruction Set, ARM Assembly Programming And C Programming Concepts	R3-Chapter 3,4,5 +Class Notes	
16	Interfacing Techniques	Methodology , Synchronizing Software and Processor with I/O	Class Notes	
17-19	8051 On-chip Peripherals	8051 Timers, Serial Ports, Programmable Counter Arrays(PCA), Keyboard Interface, Interrupt Vectors and Priority, Threads	R1-Chapter 9- 11(relevant topics)+Class Notes	
20-23	Interfacing External Peripherals	Interfacing of LCDs., Relays, DC motors, Stepper Motors, Sensors, External Memories, 8255 etc.	R1-Chapter 12-15 + Class Notes	
24-25	LPC 2148 Peripherals	System and Power Control, clock module, GPIOs, Timers, Vector Interrupt Controller	Class Notes	
26-29	LPC 2148 Peripherals	UARTs, ADC,DAC and PWM	Class Notes	
30-31	Case Studies	General purpose Processor based design	Class Notes	

32-38	Peripheral Interface	LPC 2148's SPI, I2C and CAN Bus Interface	Class Notes
	Bus Architectures		
39-40	RTOS basics	Introduction to RTOS	R4 + Class Notes
41	RTOS basics on ARM	Introduction to VxWorks	R4 + Class Notes
42	Embedded System:	CPU power Consumption and Optimization , ICE ,	Class Notes
	HW SW Design Issues	Hardware – Software co-simulation and debugging, real	
		time, Design Cycle	

Evaluation scheme:

Component	Duration	Marks	Date
Mid-exam test	90 Min	35	8/10 10:00 - 11:30 AM
(Closed book)			
HW *	Continuous	30	Shall be announced in the class
(Open Book)			
Seminar and Project **	Continuous	80	Report & Presentation
Lab***	Continuous	75	By 30/10/2015; Report
Comprehensive Exam (Open Book)	120 Min	80	8/12 AN
Total		300	

- * This component also includes regularity of the student and any HW given in the class should be submitted within a week.
- ** The seminar and project topic in a prescribed format should be intimated on or before first week of sept. and mid semester presentation in 2nd week of sept 2015, end sem presentation in 3rd week of nov 2015
- ** Final submission of project & seminar includes:
 - Report (Hard Copy and Soft Copy)

- Presentation using power-point (Soft Copy)
- Demonstration of project and presentation will be done on next day of final report submission date along with project directory softcopy.
- *** Please refer Lab handout for more details (will be distributed in the first class)

Evaluation scheme for Seminar and Project

Novelty	Feasibility	Practical implementation of concepts	Impact of the project for the product /society	Presentation (7), report (10) and demonstration (8)
15 marks	10 marks	20 marks	10 marks	25 marks

Students may miss the deadline on their own risk. No compromise on quality.

Consultation Hours: Wednesday, 4.00 pm to 5.30 pm at E-107, DSG, CSIR-CEERI, Pialni (for Dr. K S Raju)

Notices: Course notices, if any, will be displayed on EEE notice board

August 3, 2015

Instructor-in-charge

