Kholle 22 filière MPSI/MP2I Planche 1

- 1. Théorème du rang : Énoncé et démonstration.
- 2. Soit p et q deux projecteurs.
 - (a) Démontrer l'équivalence : $p \circ q = q \circ p = 0 \iff q + p$ projecteur.
 - (b) Dans ce cas, démontrer que Im(p+q) = Im(p) + Im(q) et $ker(p+q) = ker(p) \cap ker(q)$.
- 3. Soit u un endomorphisme de rang 1 et F un sev de E. Montrer que $u(F) \subset F$ ssi $\text{Im}(u) \subset F$ ou $F \subset \text{ker}(u)$.

Kholle 22 filière MPSI/MP2I Planche 2

- 1. Détermination d'une application linéaire à l'aide d'une base de E : Énoncé et démonstration.
- 2. Soit E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer que la suite des noyaux itérés $(\ker u^n)_{n\in\mathbb{N}}$ est croissante stationnaire.
- 3. Soit E de dimension finie, u, v des endomorphismes de E tels que u + v est bijectif.
 - (a) Montrer que si $v \circ u = 0$, alors rg(u) + rg(v) = dim(E).
 - (b) Montrer que si rg(u) + rg(v) = dim(E), alors il existe un projecteur p tel que

$$u = p \circ (u + v), \quad v = (\mathrm{Id}_E - p) \circ (u + v)$$

Kholle 22 filière MPSI/MP2I Planche 3

- 1. Caractérisation des projecteurs. Énoncé et démonstration.
- 2. Soit E, F deux espaces vectoriels, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ tels que $v \circ u = \mathrm{Id}_E$. Montrer que $\ker v \oplus \mathrm{Im}(u) = F$.
- 3. Soit E de dimension finie, u, v deux endormorphismes de E tels que $u^2 + uv = \mathrm{Id}_E$. Montrer que u et v commutent.

Kholle 22 filière MPSI/MP2I Bonus

1. Soit E un espace vectoriel de dimension finie n. On dit que $u \in \mathcal{L}(E)$ est cyclique lorsqu'il existe un vecteur x de E tel que la famille $(x,u(x),\ldots,u^{n-1}(x))$ est une base de E. Démontrer que pour un tel endomorphisme u, il existe des scalaires (a_0,\ldots,a_{n-1}) tels que

$$u^n + \sum_{k=0}^{n-1} a_k u^k = 0$$

2. Soit $Q \in \mathbb{R}_n[X]$ de degré n. Pour tout entier i dans [[0, n]], on note $Q_i = Q(X + i)$. Montrer que la famille (Q_0, \dots, Q_n) est une base de $\mathbb{R}_n[X]$.

