2012-PH-27-39

AI24BTECH11023 - Tarun Reddy Pakala

27) Inverse susceptibility $\left(\frac{1}{\chi}\right)$ as a function of temperature, T for material undergoing paramagnetic to ferromagnetic transition is given in the figure, where O is the origin. The values of the Curie constant, C, and the Weiss molecular field constant, λ , in CGS units, are

- a) $C = 5 \times 10^{-5}$, $\lambda = 3 \times 10^{-2}$
- b) $C = 3 \times 10^{-2}$, $\lambda = 5 \times 10^{-5}$ c) $C = 3 \times 10^{-2}$, $\lambda = 2 \times 10^{4}$
- d) $C = 2 \times 10^4$, $\lambda = 3 \times 10^{-2}$
- 28) A plane polarized electromagnetic wave in free space at time t = 0 is given by $\overrightarrow{E}(x, z) = 10j \exp[i(6x + 8z)]$. The magnetic field $\overrightarrow{B}(x, z, t)$ is given by
 - a) $\overrightarrow{B}(x,z,t) = \frac{1}{c} \left(6k 8\hat{i}\right) \exp\left[i\left(6x + 8z 10ct\right)\right]$
 - b) $\vec{B}(x, z, t) = \frac{1}{c} (6k + 8\hat{i}) \exp[i(6x + 8z 10ct)]$
 - c) $\overrightarrow{B}(x,z,t) = \frac{1}{c} \left(6k 8\hat{i}\right) \exp\left[i\left(6x + 8z ct\right)\right]$
 - d) $\overrightarrow{B}(x, z, t) = \frac{1}{c} (6k + 8\hat{i}) \exp[i(6x + 8z + ct)]$
- 29) The eigenvalues of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ are
 - a) 0, 1, 1
 - b) $0, -\sqrt{2}, \sqrt{2}$ c) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
- 30) Match the typical spectroscopic regions specified in Group I with the corresponding type of transitions in **Group II.**

(ii) nuclear transitions

(i) electronic transitions involving valence electrons

(iii) vibrational transitions of molecules

(iv) transitions involving inner shell electrons

Group I

- Group II
- (P) Infra-red region
- (Q) Ultraviolet-visible region
- (R) X-ray region
- (S) γ -ray region
- a) (P, i); (Q, iii); (R, ii); (S, iv)
- b) (P, ii); (Q, iv); (R, i); (S, iii)
- c) (P, iii); (Q, i); (R, iv); (S, ii)
- d) (P, iv); (Q, i); (R, ii); (S, iii)
- 31) In the following circuit, for the output voltage to be $V_o = \left(-V_1 + \frac{V_2}{2}\right)$, the ratio $\frac{R_1}{R_2}$ is

- a) $\frac{1}{2}$
- b) 1
- c) 2
- d) 3
- 32) The terms $\{j_1, j_2\}_J$ arising from $2s^13d^1$ electronic configuration in j-j coupling scheme are

 - a) $\{\frac{1}{2}, \frac{3}{2}\}_{2,1}$ and $\{\frac{1}{2}, \frac{5}{2}\}_{3,2}$ b) $\{\frac{1}{2}, \frac{1}{2}\}_{1,0}$ and $\{\frac{1}{2}, \frac{3}{2}\}_{2,1}$ c) $\{\frac{1}{2}, \frac{1}{2}\}_{1,0}$ and $\{\frac{1}{2}, \frac{5}{2}\}_{3,2}$ d) $\{\frac{3}{2}, \frac{1}{2}\}_{2,1}$ and $\{\frac{1}{2}, \frac{5}{2}\}_{3,2}$
- 33) In the following circuit, the voltage drop across the ideal diode in forward bias condition is 0.7V. The current passing through the diode is

- a) 0.5 mA
- b) 1.0 mA
- c) 1.5 mA
- d) 2.0 mA
- 34) Choose the CORRECT statement from the following.
 - a) Neutron interacts through electromagnetic interaction
 - b) Electron does not interact through weak interaction
 - c) Neutrino interacts through weak and electromagnetic interaction
 - d) Quark interacts through strong interaction but not through weak interaction
- 35) A rod of proper length l_o oriented parallel to the x-axis moves with speed $\frac{2c}{3}$ along the x-axis in the S-frame, where c is the speed of the light in free space. The observer is also moving along the x-axis with speed $\frac{c}{2}$ with respect to the S-frame. The length of the rod as measured by the observer is
 - a) $0.35l_o$
 - b) $0.48l_o$
 - c) $0.87l_o$
 - d) $0.97l_o$
- 36) A simple cubic crystal with lattice parameter a_c undergoes transition into a tetragonal structure with lattice parameters $a_t = b_t = \sqrt{2}a_c$ and $c_t = 2a_c$, below a certain temperature. The ratio of the interplanar spacings of (1 0 1) planes for the cubic and the tetragonal structure is

- b) $\frac{1}{6}$ c) $\sqrt{\frac{3}{8}}$ d) $\frac{3}{8}$
- 37) Consider the following circuit in which the current gain β_{dc} of the transistor is 100. Which one of

the following correctly represents the load line (collector current I_C with respect to collector-emitter voltage V_{CE}) and Q-point of this circuit?

a)

b)

c)

d)

- 38) Consider a system whose three energy levels are given by 0, ϵ and 2ϵ . The energy level ϵ is two-fold degenerate and the other two are non-degenerate. The partition function of the system with $\beta = \frac{1}{k_B T}$
 - a) $1 + 2e^{-\beta\epsilon}$

 - b) $2e^{-\beta\epsilon} + e^{-2\beta\epsilon}$ c) $(1 + e^{-\beta\epsilon})^2$ d) $1 + e^{-\beta\epsilon} + e^{-2\beta\epsilon}$
- 39) Two infinitely extended homogeneous isotropic dielectric media (medium-1 and medium-2 with dielectric constants $\frac{\epsilon_1}{\epsilon_2} = 2$ and $\frac{\epsilon_2}{\epsilon_0} = 5$, respectively) meet at the z = 0 plane as shown in the figure.

A uniform electric field exists everywhere. For $z \ge 0$, the electric field is given by $\overrightarrow{E_1} = 2\hat{1} - 3j + 5k$. The interface separating the two media is charge free.

The electric displacement vector in the medium-2 is given by

a)
$$\overrightarrow{D_2} = \epsilon_0 \left[10\hat{i} + 15j + 10k \right]$$

b) $\overrightarrow{D_2} = \epsilon_0 \left[10\hat{i} - 15j + 10k \right]$
c) $\overrightarrow{D_2} = \epsilon_0 \left[4\hat{i} - 6j + 10k \right]$
d) $\overrightarrow{D_2} = \epsilon_0 \left[4\hat{i} + 6j + 10k \right]$

b)
$$\vec{D_2} = \epsilon_0 [10\hat{i} - 15j + 10k]$$

c)
$$\overrightarrow{D_2} = \epsilon_0 \left[4\hat{i} - 6j + 10k \right]$$

d)
$$\overrightarrow{D_2} = \epsilon_0 \left[4\hat{i} + 6j + 10k \right]$$