SEQUENCE LISTING

- <110> Flasinski, Stanislaw
- <120> Methods for Using Artificial Polynucleotides and Compositions thereof to Reduce Transgene Silencing
- <130> 11899.0235.00PC00
- <140> US 60/396,665
- <141> 2002-07-18
- <150> US 06/396,665
- <151> 2002-07-18
- <160> 35
- <170> PatentIn version 3.2
- <210> 1
- <211> 515
- <212> PRT
- <213> Oryza sativa
- <400> 1
- Met Ala Ala Thr Met Ala Ser Asn Ala Ala Ala Ala Ala Ala Val Ser 1 5 10 15
- Leu Asp Gln Ala Val Ala Ala Ser Ala Ala Phe Ser Ser Arg Lys Gln 20 25 30
- Leu Arg Leu Pro Ala Ala Ala Arg Gly Gly Met Arg Val Arg Val Arg. 35 40 45
- Ala Arg Gly Arg Arg Glu Ala Val Val Val Ala Ser Ala Ser Ser Ser 50 55 60
- Ser Val Ala Ala Pro Ala Ala Lys Ala Glu Glu Ile Val Leu Gln Pro 65 70 75 80
- Ile Arg Glu Ile Ser Gly Ala Val Gln Leu Pro Gly Ser Lys Ser Leu 85 90 95
- Ser Asn Arg Ile Leu Leu Leu Ser Ala Leu Ser Glu Gly Thr Thr Val 100 105 110
- Val Asp Asn Leu Leu Asn Ser Glu Asp Val His Tyr Met Leu Glu Ala 115 120 125
- Leu Lys Ala Leu Gly Leu Ser Val Glu Ala Asp Lys Val Ala Lys Arg 130 135 140

1

Ala Val Val Val Gly Cys Gly Gly Lys Phe Pro Val Glu Lys Asp Ala 145 150 155 160

- Lys Glu Glu Val Gln Leu Phe Leu Gly Asn Ala Gly Ile Ala Met Arg 165 170 . 175
- Ser Leu Thr Ala Ala Val Thr Ala Ala Gly Gly Asn Ala Thr Tyr Val 180 185 190
- Leu Asp Gly Val Pro Arg Met Arg Glu Arg Pro Ile Gly Asp Leu Val 195 200 205
- Val Gly Leu Lys Gln Leu Gly Ala Asp Val Asp Cys Phe Leu Gly Thr 210 215 220
- Glu Cys Pro Pro Val Arg Val Lys Gly Ile Gly Gly Leu Pro Gly Gly 225 230 235 240
- Lys Val Lys Leu Ser Gly Ser Ile Ser Ser Gln Tyr Leu Ser Ala Leu 245 250 255
- Leu Met Ala Ala Pro Leu Ala Leu Gly Asp Val Glu Ile Glu Ile Ile 260 265 270
- Asp Lys Leu Ile Ser Ile Pro Tyr Val Glu Met Thr Leu Arg Leu Met 275 280 285
- Glu Arg Phe Gly Val Lys Ala Glu His Ser Asp Ser Trp Asp Arg Phe 290 295 300
- Tyr Ile Lys Gly Gly Gln Lys Tyr Lys Ser Pro Gly Asn Ala Tyr Val 305 310 315 320
- Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Gly Ala Ala Ile 325 330 335
- Thr Gly Gly Thr Val Thr Val Gln Gly Cys Gly Thr Thr Ser Leu Gln 340 345 350
- Gly Asp Val Lys Phe Ala Glu Val Leu Glu Met Met Gly Ala Lys Val 355 360 365
- Thr Trp Thr Asp Thr Ser Val Thr Val Thr Gly Pro Pro Arg Glu Pro 370 375 380

Tyr Gly Lys Lys His Leu Lys Ala Val Asp Val Asn Met Asn Lys Met 390 Pro Asp Val Ala Met Thr Leu Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val Ala Ser Trp Arg Val Lys Glu Thr Glu 425 Arg Met Val Ala Ile Arg Thr Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys Ile Ile Thr Pro Pro Glu Lys Leu Asn Ile Thr Ala Ile Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe 470 Ser Leu Ala Ala Cys Ala Asp Val Pro Val Thr Ile Arg Asp Pro Gly 485 Cys Thr Arg Lys Thr Phe Pro Asn Tyr Phe Asp Val Leu Ser Thr Phe 505 500 Val Arg Asn 515 <210> 2 1548 <211> <212> DNA Oryza sativa <213> <400> 2 atggcggcga ccatggcgtc caacgccgcg gctgcggcgg cggtgtccct ggaccaggcc 60 gtggcggcgt cggcggcgtt ctcgtcgcgg aagcagctgc ggctgcccgc cgcggcgcgc 120 180 ggggggatgc gggtgcgggt gcgggcggcgg gggcggcggg aggcggtggt ggtggcgtcc 240 gcgtcgtcgt cgtcggtggc agcgccggcg gcgaaggcgg aggagatcgt gctccagccc atcagggaga tctccggggc ggttcagctg ccagggtcca agtcgctctc caacaggatc 300 ctcctcctct ccgccctctc cgagggcaca acagtggtgg acaacttgct gaacagtgag 360 420 gatgttcact acatgcttga ggccctgaaa gccctcgggc tctctgtgga agcagataaa gttgcaaaaa gagctgtagt cgttggctgt ggtggcaagt ttcctgttga gaaggatgcg 480 aaagaggaag tgcaactctt cttggggaac gctggaatcg caatgcgatc cttgacagca 540 gccgtgactg ctgctggtgg aaatgcaact tatgtgcttg atggagtgcc acgaatgagg 600

gagagaccga	ttggtgactt	ggttgtcggg	ttgaaacaac	ttggtgcgga	tgtcgactgt	660
ttccttggca	ctgaatgccc	acctgttcgt	gtcaagggaa	ttggaggact	tcctggtggc	720
aaggttaagc	tctctggttc	catcagcagt	cagtacttga	gtgccttgct	gatggctgct ·	780
cctttggccc	ttggggatgt	ggagatcgaa	atcattgaca	aactaatctc	cattccttac	840
gttgaaatga	cattgagatt	gatggagcgt	tttggtgtga	aggcagagca	ttctgatagt	900
tgggacagat	tctatattaa	gggagggcag	aagtacaaat	ctcctggaaa	tgcctatgtt	960
gaaggtgatg	cctcaagcgc	gagctatttc	ttggctggtg	ctgcaatcac	tggaggcact .	1020
gtgacagttc	aaggttgtgg	tacgaccagț	ttgcagggtg	atgtcaaatt	tgctgaggta	1080
cttgagatga	tgggagcaaa	ggttacatgg	actgacacca	gtgtaaccgt	aactggtcca	1140
ccacgtgagc	cttatgggaa	gaaacacctg	aaagctgttg	atgtcaacat	gaacaaaatg	1200
cctgatgttg	ccatgaccct	tgccgttgtt	gcactcttcg	ctgatggtcc	aactgctatc.	1260.
agagatgtgg	cttcctggag	agtaaaggaa	accgaaagga	tggttgcaat	teggacegag .	1320
ctaacaaagc	tgggagcatc	ggttgaagaa	ggtcctgact	actgcatcat	caccccaccg	1380
gagaagctga	acatcacggc	aatcgacacc	tacgatgatc	acaggatggc	catggccttc	1440
tecetegetg	cctgcgccga	cgtgcccgtg	acgatcaggg	accctggttg	cacccgcaag ·	1500,
accttcccca	actacttcga	cgttctaagc	actttcgtca	ggaactga		1548
<210> 3 <211> 154 <212> DNA <213> Ory	•					į
<400> 3 atggctgcaa	ctatggctag	taacgcagcg	gctgccgctg	ccgtttcctt	agaccaagca	60
gtagcagcga	gcgctgcatt	ctcatcacgt	aagcaactac	ggctaccagc	agccgctaga .	120
ggcggcatga	gagttagagt	gagggctaga	ggtaggcggg	aggctgtagt	cgtagcctcc	180
gcttctagca	gttcggtggc	tgcgccggct	gctaaggcag	aggagattgt	tttacaacct	240
attagggaaa	tatcgggggc	cgtacaatta	cctggaagca	agagcctttc	caacaggatt	300.
ctgttgcttt	cagetetete	ggagggaaca	acagttgtgg	ataatctgtt	gaatagtgag	360
gatgtgcact	: atatgctaga	ggctctcaag	gctctagggc	tttctgtaga	agcggataaa	420
gtagcaaaad	gcgcagtggt	tgtaggttgt	ggtgggaagt	tcccagttga	aaaggatgct	480
aaggaagaag	, tacagetett	tctcgggaat	gccgggatcg	ccatgcggag	tttgactgct	540
gcggtcacag	g ccgctggagg	Caacgcaaca	tacgtcctag	atggggtgcc	gagaatgcgt	600
gagcgtccta	ttggtgatct	tgtcgtaggt	ctcaagcaac	tcggcgctga	cgtagattgt	660

ttcctgggta ctgagtg	gtcc gccagtcag	a gttaaaggaa	teggtggget	gccgggcgga	720
aaggtcaagc tgtcgg	gcag tatttcgag	t cagtatettt	ctgctctcct	gatggctgcg	780
ccattagctt tgggaga	atgt tgagatcga	g atcattgata	aacttatatc	tatcccgtat	840
gtcgagatga ctttaa	gact tatggaac	g tttggggtta	aggccgagca	tagcgacagt	900
tgggatcgtt tctaca	taaa gggaggcca	ıg aagtataagt	ctcctgggaa	tgcttatgta	960
gaaggggatg cttcate	ctgc gtcttacti	c cttgcgggag	cggctataac	tggaggaaca	1020
gtcacagttc agggcte	gcgg tacaacaaq	t ttgcaaggtg	acgtgaagtt	tgccgaggta	1080
cttgaaatga tgggtg	ccaa agtaacgto	g acagacacat	cggtgacagt	tactggtcct	1140
ccacgagaac cttacg	gcaa aaagcatct	t aaggeegtgg	atgttaatat	gaataagatg	1200
cctgacgttg ctatga	cact tgccgttg1	t gccctttttg	cagacggccc	aacggcgata	1260
cgcgatgttg catcat	ggcg cgtcaagga	aa acggagagga	tggtggctat	tcgaactgaa	1320
ctcaccaaac ttggtg	cctc tgtagagga	ng ggccctgatt	actgtatcat	tacaccccct	1380
gagaaactta acatca	ctgc tattgatad	ca tacgacgato	atagaatggc	tatggctttc	1440
tcactggccg cttgtg	caga tgttcctg	c acaatcagag	atcctggctg	tactagaaag	1500
acgttcccga actact	ttga tgttcttt	ca acattcgtco	gcaattga	•	1548
<210> 4 <211> 1548 <212> DNA <213> Oryza sati	va				
<400> 4 atggctgcaa ctatgg	ctag taacgcag	eg getgeegetg	ccgtttcctt	agaccaagca	60
gtagcagcga gcgctg	catt ctcatcac	gt aagcaactac	ggctaccagc	agccgctaga	120
ggcggcatga gagtta	gagt gagggcta	ga ggtaggcggg	aggctgtagt	cgtagcctcc	180
gettetagea gttegg	tggc tgcgccgg	ct gctaaggcag	aggagattgt	tttacaacct	240
attagggaaa tatcgg	gggc cgtacaat	a cctggaagca	agagcctttc	caacaggatt	300
ctgttgcttt cagctc	tctc ggagggaa	ca acagttgtgg	, ataatctgtt	gaatagtgag	360
gatgtgcact atatgc	taga ggctctca	ag gctctagggo	: tttctgtaga	agcggataaa	420
gtagcaaaac gcgcag	tggt tgtaggtt	gt ggtgggaagt	tcccagttga	aaaggatgct	480
aaggaagaag tacagc	tett teteggga	at gccgggatcg	ccatgcggag	tttgactgct	540
gcggtcacag ccgctg	gagg caacgcaa	ca tacgtcctag	atggggtgcc	gagaatgcgt	600
gagcgtccta ttggtg	atct tgtcgtag	gt ctcaagcaac	: tcggcgctga	cgtagattgt	660

ttcctgggta ctgagtgtcc gccagtcaga gttaaaggaa tcggtgggct gccgggcgga 720

PCT/US2003/021551 WO 2004/009761

aaggtcaagc	tgtcgggcag	tatttcgagt	cagtatcttt	ctgctctcct	gatggctgcg	780
ccattagctt	tgggagatgt	tgagatcgag	atcattgata	aacttatatc	tatcccgtat	840
gtcgagatga	ctttaagact	tatggaacgg	tttggggtta	aggccgagca	tagcgacagt	900
tgggatcgtt	tctacataaa	gggaggccag	aagtataagt	ctcctgggaa	tgcttatgta	960
gaaggggatg	cttcatctgc	gtcttacttc	cttgcgggag	cggctataac	tggaggaaca	1020
gtcacagttc	agggctgcgg	tacaacaagt	ttgcaaggtg	acgtgaagtt	tgccgaggta	1080
cttgaaatga	tgggtgccaa	agtaacgtgg	acagacacat	cggtgacagt	tactggtcct	1140
ccacgagaac	cttacggcaa	aaagcatctt	aaggccgtgg	atgttaatat	gaataagatg	1200
cctgacgttg	ctatgacact	tgccgttgtt	gccctttttg	cagacggccc	aacggcgata	1260
cgcgatgttg	catcatggcg	cgtcaaggaa	acggagagga	tggtggctat	tcgaactgaa	1320
ctcaccaaac	ttggtgcctc	tgtagaggag	ggccctgatt	actgtatcat	tacaccccct	1380
gagaaactta	acatcactgc	tattgataca	tacgacgatc	atagaatggc	tatggctttc	1440
tcactggccg	cttgtgcaga	tgttcctgtc	acaatcagag	atcctggctg	tactagaaag	1500
acgttcccga	actactttga	tgttctttca	acattcgtcc	gcaattga		1548

<210> 5

<211> 525 <212> PRT

<213> Glycine max

<400> 5

Met Ala Gln Val Ser Arg Val His Asn Leu Ala Gln Ser Thr Gln Ile

Phe Gly His Ser Ser Asn Ser Asn Lys Leu Lys Ser Val Asn Ser Val ، 25

Ser Leu Arg Pro Arg Leu Trp Gly Ala Ser Lys Ser Arg Ile Pro Met 35 40 45

His Lys Asn Gly Ser Phe Met Gly Asn Phe Asn Val Gly Lys Gly Asn 50

Ser Gly Val Phe Lys Val Ser Ala Ser Val Ala Ala Ala Glu Lys Pro 65 70

Ser Thr Ser Pro Glu Ile Val Leu Glu Pro Ile Lys Asp Phe Ser Gly

Thr Ile Thr Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu 100 105 110

Leu Ala Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Tyr 115 120 125

Ser Glu Asp Ile His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu 130 135 140

Arg Val Glu Asp Asp Lys Thr Thr Lys Gln Ala Ile Val Glu Gly Cys 145 150 155 160

Gly Gly Leu Phe Pro Thr Ser Lys Glu Ser Lys Asp Glu Ile Asn Leu 165 170 175

Phe Leu Gly Asn Ala Gly Ile Ala Met Lys Ser Leu Thr Ala Ala Val 180 185 190

Val Ala Ala Gly Gly Asn Ala Ser Tyr Val Leu Asp Gly Val Pro Arg 195 200 205

Met Arg Glu Arg Pro Île Gly Asp Leu Val Ala Gly Leu Lys Gln Leu 210 215 220

Gly Ala Asp Val Asp Cys Phe Leu Gly Thr Asn Cys Pro Pro Val Arg 225 230 235 240

Val Asn Gly Lys Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly 245 250 255

Ser Val Ser Ser Gln Tyr Leu Thr Ala Leu Leu Met Ala Ala Pro Leu 260 265 270

Ala Leu Gly Asp Val Glu Ile Glu Ile Val Asp Lys Leu Ile Ser Val 275 280 285

Pro Tyr Val Glu Met Thr Leu Lys Leu Met Glu Arg Phe Gly Val Ser 290 295 300

Val Glu His Ser Gly Asn Trp Asp Arg Phe Leu Val His Gly Gln 305 310 315 320

Lys Tyr Lys Ser Pro Gly Asn Ala Phe Val Glu Gly Asp Ala Ser Ser 325 330 335

Ala Ser Tyr Leu Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Ile Thr

			340					345					350				
Val	Asn	Gly 355	Cys	Gly	Thr	Ser	Ser 360	Leu	Gln	Gly	Asp	Val 365	Lys	Phe	Ala		
Glu	Val 370	Leu	Glu	Lys	Met	Gly 375	Ala	Lys	Val	Thr	Trp 380	Ser	Glu	Asn	Ser		
Val 385	Thr	Val.	Ser	Gly	Pro 390	Pro	Arg	Asp	Phe	Ser 395	Gly	Arg	Lys	Val	Leu 400		
Arg	Gly	Ile	Asp	Val 405	Asn	Met	Asn	Lys	Met 410	Pro	Asp	Val	Ala	Met 415	Thr		
Leu	Ala	Val	Val 420	Ala	Leu	Phe	Ala	Asn 425	-	Pro	Thr	Ala	Ile 430	Arg	Asp		
Val	Ala	Ser 435	Trp	Arg	Val	Lys	Glu 440	Thr	Glu	Arg	Met	Ile 445	Ala	Ile	Суз		
Thr	Glu 450	Leu	Arg	Lys	Leu	Gly 455	Ala	Thr	Val	Glu	Glu 460	Gly	Pro	Asp	Tyr		
Cys 465	Val	Ile	Thr	Pro	Pro 470	Glu	Lys	Leu	Asn	Val 475	Thr	Ala	Ile	Asp	Thr 480 ··		
Tyr	Asp	Asp	His	Arg 485	Met	Ala	Met	Ala	Phe 490	Ser	Leu	Ala	Ala	Cys 495	Gly		•
Asp	Val	Pro	Val 500	Thr	Ile	Lys	Asp	Pro 505	Gly	Cys	Thr	Arg	Lys 510	Thr	Phe	,	
Pro	Asp	Tyr 515		Glu	Val	Leu	Glu 520	_	Leu	Thr	Lys	His 525					
<210 <211 <212 <213	L> 1 2> I	5 L578 DNA Slyc:	ine r	max													
<400			tgago	caga	at a	cacaa	atcti	t act	caaa	agca	ctc	aaati	ttt '	tgaco	cattct	<u>.</u>	60
															ggggg		120
gcct	caaa	aat d	ctcg	catc	cc ga	atgca	ataaa	a aat	ggaa	agct	tta	tggga	aaa ·	tttta	aatgtg	ſ	180
ggga	aagg	gaa a	attco	egge	gt gi	ttaa	aggti	tct	gcat	cgg	tcg	ccgc	cgc a	agaga	aagccg	r :	240

tcaacgtcgc	cggagatcgt	gttggaaccc	atcaaagact	tctcgggtac	catcacattg	300
ccagggtcca	agtctctgtc	caatcgaatt	ttgcttcttg	ctgctctctc	tgagggaaca	360
actgttgtag	acaacttgtt	gtatagtgag	gatattcatt	acatgcttgg	tgcattaagg	420
acccttggac	tgcgtgtgga	agatgacaaa	acaaccaaac	aagcaattgt	tgaaggctgt	480
gggggattgt	ttcccactag	taaggaatct	aaagatgaaa	tcaatttatt	ccttggaaat	540
gctggtatcg	caatgaagtc	cttgacagca	gctgtggttg	ctgcaggtgg	aaatgcaagc	600
tacgtacttg	atggggtgcc	ccgaatgaga	gagaggccaa	ttggggattt	ggttgctggt	660
cttaagcaac	ttggtgcaga	tgttgattgc	tttcttggca	caaactgtcc	acctgttcgt	720
gtaaatggga	agggaggact	tcctggcgga	aaggtgaaac	tgtctggatc	agttagcagt.	780
caatactiga	ctgctttgct	tatggcagct	cctttagctc	ttggtgatgt	ggaaattgag	840
attgttgata	aactgatttc	tgttccatat	gttgaaatga	ctctgaagtt	gatggagcgt	900
tttggagttt	ctgtggaaca	cagtggtaat	tgggataggt	tcttggtcca	tggaggtcaa	960
aagtacaagt	ctcctggcaa	tgcttttgtt	gaaggtgatg	cttcaagtgc	cagttattta	1020
ctagctggtg	cagcaattac	tggtgggact	atcactgtta	atggctgtgg	cacaagcagt.	1080
ttacagggag	atgtaaaatt	tgctgaagtt	cttgaaaaga	tgggagctaa	ggttacatgg	1140
tcagagaaca	gtgtcactgt	ttctggacca	ccacgagatt	tttctggtcg	aaaagtcttg	1200
cgaggcattg	atgtcaatat	gaacaagatg	ccagatgttg	ccatgacact	tgctgttgtt	1260
gcactatttg	ctaatggtcc	cactgctata	agagatgtgg	caagttggag	agttaaagag	1320
actgagagga	tgatagcaat	ctgcacagaa	ctcagaaagc	taggagcaac	agttgaagaa	1380
ggtcctgatt	actgtgtgat	tactccacct	gagaaattga	atgtcacagc	tatagacaca	1440
tatgatgacc	acagaatggc	catggcattc	tctcttgctg	cttgtgggga	tgttccagta	1500
accatcaagg	atcctggttg	caccaggaag	acatttcctg	actactttga	agtccttgag	1560
aggttaacaa	agcactaa					1578
<210> 7 <211> 1578 <212> DNA <213> Glyo						
<400> 7	tctctcgcgt	tcatastoto	acteananta	cccagatatt	cagacattcc	60
	acaaactaaa					120
_	gccgtatccc					180
	actcaggtgt					240

agtacttctc	ctgaaattgt	tcttgaaccg	ataaaggatt	tctcaggtac	gattacacta	300
cctggatcaa	agagtctctc	taatagaatt	ttgttgctcg	cagctctgtc	cgaaggaacc	360
-actgtagtcg	ataacctcct	ttatagcgaa	gatatacatt	atatgttggg	ggcgctcaga	420
actcttgggc	taagagttga	ggacgataag	actactaaac	aagctatcgt	cgaaggttgt	480
ggcgggttgt	tccctacttc	taaagaaagt	aaagatgaga	taaacttgtt	tcttggcaac	540
gcaggaatcg	caatgaagag	cctcaccgct	gctgtcgttg	cggcgggtgg	taacgctagt	600
tacgtcttag	acggcgtgcc	tagaatgcga	gaaagaccta	tcggtgatct	agtggctggc	660
ctaaaacagc	ttggagcaga	cgtcgattgt	ttcttgggca	caaattgccc	gcccgtgaga	720
gtgaacggga	agggaggctt	gccaggcggt	aaggttaaac	tatccggatc	ggtctcgtca	780
cagtacctaa	ctgcattgct	catggccgcc	ccgctcgctt	tgggggacgt	ggagattgaa	840
atcgtcgata	agttgattag	cgtgccttat	gtggaaatga	ccctcaaatt	gatggagagg	900
ttcggagttt	cggtagaaca	ctccgggaat	tgggatcggt	ttcttgtaca	cggagggcaa	960
aagtacaaaa	gcccaggcaa	tgccttcgtc	gaaggggacg	cttcgagcgc	ttcctatctc	1020
ctcgctggcg	cagccataac	cggtggcacc	ataaccgtga	acggctgcgg	cacctcatcc	. 1080
cttcaaggtg	atgtaaagtt	cgctgaggtc	ttggagaaaa	tgggcgcaaa	ggtcacatgg	1140
tctgagaaca	gcgtaaccgt	gtccggacct	cccagagact	ttcgtggtag	aaaggtcctt	1200
aggggaatag	atgtgaatat	gaataagatg	ccagatgtgg	ctatgacgct	cgctgttgtc	1260.
gccctgttcg	caaacggacc	taccgcaata	agggatgtcg	cttcatggcg	tgttaaggaa.	1320
accgaacgga	tgatcgctat	ttgcaccgag	ttgcgtaagc	tgggtgcaac	ggtggaagaa	: 1380
ggaccagact	attgcgtgat	aacacctcct	gaaaagctca	atgtgaccgc	tattgacact	1440
tatgacgatc	acagaatggc	tatggcattc	tcacttgctg	cttgcggtga	cgtgccggtt	1500
acgatcaagg	acccagggtg	tactaggaag	acattcccag	attactttga	ggtgttggaa	1560
agattgacaa	agcactga					1578

```
<210> 8
<211> 506
<212> PRT
<213> Zea mays
```

<400> 8

Met Ala Ala Met Ala Thr Lys Ala Ala Ala Gly Thr Val Ser Leu Asp 1 5 10 15

Leu Ala Ala Pro Ser Arg Arg His His Arg Pro Ser Ser Ala Arg Pro 20 25 30

Pro Phe Arg Pro Ala Val Arg Gly Leu Arg Ala Pro Gly Arg Arg Val 35 40 45

- Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly Thr Val 65 70 75 80
- Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Leu Ala 85 90 95
- Ala Leu Ser Glu Gly Thr Thr Val Val Asp Asn Leu Leu Asn Ser Glu 100 105 110
- Asp Val His Tyr Met Leu Gly Ala Leu Arg Thr Leu Gly Leu Ser Val 115 120 125
- Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Gly Cys Gly Gly 130 135 140
- Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe Leu Gly 145 150 155 160
- Asn Ala Gly Ile Ala Met Arg Ser Leu Thr Ala Ala Val Thr Ala Ala (165) 170 175
- Gly Gly Asn Ala Thr Tyr Val Leu Asp Gly Val Pro Arg Met Arg Glu 180 185 190
- Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly Ala Asp 195 200 205
- Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val Asn Gly 210 215 220
- Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser Ile Ser 225 230 235 240
- Ser Gln Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Ala Leu Gly 245 250 255
- Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro Tyr Val 260 265 270

Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala Glu His 275 280 285

Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gln Lys Tyr Lys 290 295 300

Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr 305 310 315 320

Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val Glu Gly 325 330 335

Cys Gly Thr Thr Ser Leu Gln Gly Asp Val Lys Phe Ala Glu Val Leu 340 345 350

Glu Met Met Gly Ala Lys Val Thr Trp Thr Glu Thr Ser Val Thr Val 355 360 365

Thr Gly Pro Pro Arg Glu Pro Phe Gly Arg Lys His Leu Lys Ala Ile. 370 375 380

Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu Ala Val 385 390 395 400

Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val Ala Ser 405 410 415

Trp Arg Val Lys Glu Thr Glu Arg Met Val Ala Ile Arg Thr Glu Leu 420 425 430

Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys Ile Ile 435 440 445

Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr Tyr Asp Asp 450 455 460

His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu Val Pro 465 470 475 480

Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro Asp Tyr 485 490 495

Phe Asp Val Leu Ser Thr Phe Val Lys Asn 500 505

<210> 9

<212> DNA <213> Zea mays <400> 9 60 tegegeegee accaeegeee gageteggeg egecegeeet teegeeeege egteegeggg 120 ctgcgggcgc ctgggcgccg cgtgatcgcc gcgccgccgg cggcggcagc ggcggcggcg 180 240 qtqcaqqcqq qtqccqaqqa qatcgtqctq caqcccatca aggagatctc cggcaccgtc aagetgeegg ggteeaagte gettteeaac eggateetee tactegeege eetgteegag 300 360 qqqacaacaq tqgttgataa cctgctgaac agtgaggatg tccactacat gctcggggcc ttgaggactc ttggtctctc tgtcgaagcg gacaaagctg ccaaaagagc tgtagttgtt 420 ggctgtggtg gaaagttccc agttgaggat gctaaagagg aagtgcagct cttcttgggg 480 aatgctggaa tcgcaatgcg gtccttgaca gcagctgtta ctgctgctgg tggaaatgca 540 acttacgtgc ttgatggagt accaagaatg agggagagac ccattggcga cttggttgtc 600 qqattqaaqc aqcttqqtqc aqatqttqat tqtttccttq gcactqactg cccacctqtt 660 720 cqtqtcaatq gaatcggagg gctacctggt ggcaaggtca agctgtctgg ctccatcagc 780 agtcagtact tgagtgcctt gctgatggct gctcctttgg ctcttgggga tgtggagatt gaaatcattg ataaattaat ctccattccg tacgtcgaaa tgacattgag attgatggag 840 900 cqttttqqtq tqaaaqcaga gcattctgat agctgggaca gattctacat taagggaggt · 960 caaaaataca agtcccctaa aaatgcctat gttgaaggtg atgcctcaag cgcaagctat ttcttggctg gtgctgcaat tactggaggg actgtgactg tggaaggttg tggcaccacc 1020 1080 agtttgcagg gtgatgtgaa gtttgctgag gtactggaga tgatgggagc gaaggttaca tqqaccqaqa ctaqcqtaac tqttactqqc ccaccqcqqq agccatttqq qaqqaaacac 1140 ctcaaqqcqa ttgatgtcaa catgaacaag atgcctgatg tcgccatgac tcttgctgtg 1200 gttgccctct ttgccgatgg cccgacagcc atcagagacg tggcttcctg gagagtaaag 1260 1320 gagaccgaga ggatggttgc gatccggacg gagctaacca agctgggagc atctgttgag qaaqqqccqq actactgcat catcacgccg ccggagaagc tgaacgtgac ggcgatcgac 1380 acqtacqacq accacaggat ggccatggcc ttctcccttg ccgcctgtgc cgaggtcccc 1440 gtcaccatcc gggaccctgg gtgcacccgg aagaccttcc ccgactactt cgatgtgctg 1500 1521 agcactttcg tcaagaatta a

<211>

1521

<210> 10 <211> 1521

<212> DNA

PCT/US2003/021551 WO 2004/009761

<213> Zea mays

	10 cta	tggccacgaa	ggcagcggcc	ggtacagtaa	gcctcgattt	ggeggeeece ·	60
tcccgta	ggc	accaccggcc	aagcagtgcg	aggccaccgt	tcaggccagc	agttcgcggt	. 120
cttagag	cgc	ctggtagaag	ggttatcgca	gcgccaccgg	cggctgccgc	tgcggcagcg [.]	180
gtgcagg	ccg	gcgcggaaga	gatcgtccta	cagcctatca	aggaaatctc	tggtacggta	240
aagttac	cag	gcagcaaaag	tcttagcaac	cgaatcctgc	tgttggcggc	actctctgaa	300
gggacca	cgg	tcgtagataa	tctgctcaac	agcgaagacg	tgcactatat	gttgggtgcc ·	360
ctgagga	cgc	taggtctgtc	agtggaagcc	gataaggccg	ccaagcgcgc	tgtcgtcgtt.	420
ggctgcg	gcg	gtaagttccc	cgtggaggac	gcgaaagaag	aggtgcagtt	atttcttggg	480
aacgctg	gca	tcgccatgcg	gtcccttacc	gcagccgtca	ccgctgcggg	aggcaacgca	540
acttacg	tgc	ttgacggtgt	tcctcgtatg	agagagcggc	ccatagggga	tctcgtcgtg	· 600
gggctca	agc	agctcggggc	cgacgttgat	tgcttcctcg	gaaccgactg	ccccctgtg;	. 660
agggtga	acg	gcatcggggg	actgccagga	ggcaaagtca	agttgtccgg	ctcaatttcc	· 720
tcgcagt	acc	tgagtgccct	gcttatggcg	gcccctctgg	ctctgggaga	cgtcgaaatt;	. 780
gagatca	ttg	ataagctgat	ctctatccct	tatgttgaga	tgacactccg	tctgatggaa	840
agattcg	ıaaa	tcaaagctga	gcactccgat	tcctgggaca	ggttctatat	caagggcgga	900 -
cagaaat	ata	agtcaccgaa	gaatgcgtac	gtcgagggag	acgcatcgag	cgcgagttac	960
ttccttg	icaa	gcgctgccat	caccggggga	accgtgacag	tggaaggctg	tgggacaacg ·	1020
agcttgc	agg	gcgacgtcaa	atttgctgag	gtgctagaaa	tgatgggcgc	taaggtgact	1080
tggactg	jaga	cgtccgtgac	cgttacggga	ccgccccgcg	aacctttcgg	ccggaagcat	1140
ctgaaag	gcga	ttgatgtgaa	catgaataag	atgccggacg	tcgctatgac	acttgccgtg	1200
gtggccc	etgt	tcgctgacgg	ccccaccgca	atcagggatg	tcgctagttg	gagggtcaag	1260
gagacag	gagc	gtatggtggc	gatccgaacg	gagctgacta	aactcggggc	cagtgtggag	1320
gagggco	cgg	attactgcat	aatcacacct	ccagagaagt	tgaacgtcac	cgctatcgac	1380
acataco	gacg	atcaccggat	ggcaatggcc	tttagcttgg	cagegtgege	cgaagtacct	1440
gtgacta	ataa	gagatccagg	ttgcacccgc	aaaacgtttc	ccgactattt	cgacgtcctc	1500
tcaacct	tcg	tgaagaactg	a				1521

<210> 11 <211> 76 <212> PRT <213> Arabidopsis thaliana

<400> 11 Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys 70 <210> 12 228 <211> <212> DNA <213> Arabidopsis thaliana <400> 12 atggcgcaag ttagcagaat ctgcaatggt gtgcagaacc catctcttat ctccaatctc 60 togaaatoca gtoaacgcaa atotocotta toggtttoto tgaagacgca gcagcatoca 120 cgagcttatc cgatttcgtc gtcgtgggga ttgaagaaga gtgggatgac gttaattggc 180 tetgagette gteetettaa ggteatgtet tetgttteea eggegtge 228 <210> 13 <211> 228 <212> DNA <213> Arabidopsis thaliana <400> 13 atggcccagg taagtaggat ctgtaacgga gtccaaaacc cttcactaat atcgaacctg 60 tcaaaaagct ctcaaagaaa gtcgccgctt tctgtatcgt tgaaaactca acagcacccg 120 agggettate ceateteaag eteetggggt etaaagaaaa gtggaatgae aetgateggt 180 agcgaactac gaccgctgaa agtcatgtcc tcagtcagca ctgcgtgc 228 <210> 14 <211> 228 <212> DNA <213> Arabidopsis thaliana <400> 14 atggcgcaag taagtagaat ctgcaacggc gtgcagaacc cgtcgctgat ctccaacctc 60 agcaagtcca gccagcggaa gtcgccgctc tcggtcagcc tcaagaccca acagcacccg 120

agggectace etateagete ateetgggge eteaagaaga gtggcatgae getgategge 180 agcgagctgc ggccactcaa ggtgatgtcc tcggtctcaa cggcgtgc 228 <210> 15 <211> 455 <212> PRT <213> Agrobacterium tumefaciens <400> 15 Met Leu His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr . Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met Gln Ala Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile Asp 70 Gly Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr Met Gly Leu Val Gly Val 105 Tyr Asp Phe Asp Ser Thr Phe Ile Gly Asp Ala Ser Leu Thr Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val 135 Lys Ser Glu Asp Gly Asp Arg Leu Pro Val Thr Leu Arg Gly Pro Lys 150 145 Thr Pro Thr Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val 165 Lys Ser Ala Val Leu Leu Ala Gly Leu Asn Thr Pro Gly Ile Thr Thr 180 185

Val Ile Glu Pro Ile Met Thr Arg Asp His Thr Glu Lys Met Leu Gln 200 Gly Phe Gly Ala Asn Leu Thr Val Glu Thr Asp Ala Asp Gly Val Arg Thr Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp Val Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu 250 245 Leu Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile 280 Glu Val Ile Asn Pro Arg Leu Ala Gly Glu Asp Val Ala Asp Leu Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg 320 Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala 325 Phe Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val 🐇 340 Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn 355 360 Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr

His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val
405 410 415

390

385

Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser 420 425 430

Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu

395

435 440 445

Leu Ser Asp Thr Lys Ala Ala 450 455

<210> 16 <211> 1368 <212> DNA

<213> Agrobacterium tumefaciens

<400> 16 atgetteacg gtgcaageag ceggeeegea acegeeegea aateetetgg cettteegga 60 accgtccgca ttcccggcga caagtcgatc tcccaccggt ccttcatgtt cggcggtctc 120 180 gcgagcggtg aaacgcgcat caccggcctt ctggaaggcg aggacgtcat caatacgggc aaggccatgc aggcgatggg cgcccgcatc cgtaaggaag gcgacacctg gatcatcgat 240 300 qqcqtcqqca atqqcqqcct cctqqcqcct gaggcqccgc tcgatttcgg caatqccqcc 360 acqqqctqcc qcctgacqat gggcctcgtc ggggtctacg atttcgacag caccttcatc ggcgacgcct cgctcacaaa gcgcccgatg ggccgcgtgt tgaacccgct gcgcgaaatg 420 ggcgtgcagg tgaaatcgga agacggtgac cgtcttcccg ttaccttgcg cgggccgaag 480 540 acqccqacqc cgatcaccta ccgcgtgccg atggcctccg cacaggtgaa gtccgccgtg ctgctcgccg gcctcaacac gcccggcatc acgacggtca tcgagccgat catgacgcgc 600 -660 gatcatacgg aaaagatgct gcagggcttt ggcgccaacc ttaccgtcga gacggatgcg gacggegtge geaccateeg cetggaagge egeggeaage teaceggeea agteategae 720 gtgccgggcg acccgtcctc gacggccttc ccgctggttg cggccctgct tgttccgggc 780 840 tecgaegtea ceatecteaa egtgetgatg aaccecacee geaceggeet cateetgaeg ctgcaggaaa tgggcgccga catcgaagtc atcaacccgc gccttgccgg cggcgaagac 900 960 gtggcggacc tgcgcgttcg ctcctccacg ctgaagggcg tcacggtgcc ggaagaccgc 1020 gcgccttcga tgatcgacga atatccgatt ctcgctgtcg ccgccgcctt cgcggaaggg 1080 qcqaccqtqa tgaacggtct ggaagaactc cgcgtcaagg aaagcgaccg cctctcggcc qtcqccaatq qcctcaagct caatqqcqtq gattqcgatg agggcgagac gtcgctcgtc 1140 gtgcgtggcc gccctgacgg caaggggctc ggcaacgcct cgggcgccgc cgtcgccacc 1200 catctcgatc accgcatcgc catgagettc ctcgtcatgg gcctcgtgtc ggaaaaccct 1260 gtcacggtgg acgatgccac gatgatcgcc acgagcttcc cggagttcat ggacctgatg 1320 1368 gccgggctgg gcgcgaagat cgaactetee gatacgaagg etgeetga

<210> 17

<211> 1368 <212> DNA <213> Agrobacterium tumefaciens <400> 17 atgetteatg gagetteate taggeeaget actgeeagga agtetagegg geteagtgge 60 120 accqtqcqca tccctqqcqa taaaaqtatt tcacacaqqa gcttcatqtt cqqaqqactt gctagtggag agacgagaat cactggtttg cttgagggcg aagatgttat caacaccggt 180 aaqqcqatqc aaqcaatggg tgccagaatc cgaaaagagg gcgatacgtg gatcatcgac 240 300 qqtqttqqta acggaggatt gctcgctccc gaagcgccac ttgactttgg gaacgcagct acggggtgcc gtcttactat gggactggta ggcgtgtatg actttgactc taccttcatc 360 420 qqtqacqcqa qcctcactaa qaqaccaatg ggacgagtgc tgaatcccct gagggagatg ggtgtccagg tgaaatctga ggatggtgat cgtcttccgg ttactctgcg aggccccaag 480 540 acceccacge caatcacgta cagggtteeg atggegteag cacaggteaa gteageggta 600 ctcctggcgg gcctcaacac acctggaatc acaaccgtga ttgaacccat catgactaga 660 qaccacacqq agaaqatgtt gcagggtttc ggcgctaatc taacggtcga aaccgacgcc gacggcgtga ggacaatccg cttggagggc agaggtaaac tgactggcca agtcatcgat 720 gtgcctggag atccctcgtc cacagcgttt cccctcgtag ctgcgttgct cgtccctgga 780 tctgatgtga cgatcctgaa tgtcctcatg aatccaacta gaaccggcct catcctcaca · 840 ttgcaggaga tgggtgctga catcgaggtt atcaatccta ggttggcagg tggagaggat • 900 960 qtggccgatc tgcgcgtgcg ttctagtaca ctcaaaggcg tgaccgtccc tgaggatcgc gctccatcca tgatcgacga gtaccccatt ctcgccgttg ctgctgcgtt tgccgagggc 1020 1080 qcaactgtaa tgaacggcct tgaggagttg agggttaagg agagtgacag gctgtccgcg gtggcgaatg gcctgaagct aaacggcgtg gactgcgacg aaggtgaaac gtcccttgta 1140 1200 qtccqtqqtc qcccaqacqq gaaqqqqttq qqqaatqctt cqqqaqctqc tqtqqcqacq 1260 caccttgatc atagaatcgc catgtcattt ctggtgatgg gacttgtctc cgagaatccg gtgaccgttg acgatgctac catgategcc acctecttte etgagtteat ggaccteatg 1320 1368 gcaggcttgg gggccaagat cgagctgtct gatactaagg ccgcttga <210> 18 <211> 1368 <212> DNA <213> Agrobacterium tumefaciens <400> atgctacacg gtgcaagcag ccggccggca accgctcgca aatcttccgg cctttcggga 60 acggtcagga ttccgggcga taagtccata tcccaccggt cgttcatgtt cggcggtctt 120

PCT/US2003/021551 WO 2004/009761

gccagcggtg	agacgcgcat	cacgggcctg	cttgaaggtg	aggacgtgat	caataccggg	180
aaggccatgc	aggctatggg	agcgcgtatc	cgcaaggaag	gtgacacatg	gatcattgac	240
ggcgttggga	atggcggtct	gctcgcccct	gaggcccctc	tcgacttcgg	caatgcggcg	300
acgggctgca	ggctcactat	gggactggtc	ggggtgtacg	acttcgatag	cacgttcatc	360
ggagacgcct	cgctcacaaa	gcgcccaatg	ggccgcgttc	tgaacccgtt	gcgcgagatg	420
ggcgtacagg	tcaaatccga	ggatggtgac	cgtttgcccg	ttacgctgcg	cgggccgaag	480
acgcctaccc	cgattaccta	ccgcgtgcca	atggcatccg	cccaggtcaa	gtcagccgtg	540
ctcctcgccg	gactgaacac	tccgggcatc	accacggtga	tcgagcccat	catgaccagg	600
gatcataccg	aaaagatgct	tcaggggttt	ggcgccaacc	tgacggtcga	gacggacgct	660
gacggcgtca	ggaccatccg	ccttgagggc	aggggtaaac	tgactggcca	agtcatcgat	720
gttccgggag	acccgtcgtc	cacggccttc	ccgttggttg	cggcgctgct	cgtgccgggg	780
agtgacgtga	ccatcctgaa	cgtcctcatg	aacccgacca	ggaccggcct	gatcctcacg	840
cttcaggaga	tgggagccga	catcgaggtg	atcaacccgc	gcctggcagg	cggtgaagac	900
gttgcggatc	tgcgcgtgcg	ctcctctacc	ctgaagggcg	tgacggtccc	ggaagatcgc	960
gcgccgtcca	tgatagacga	gtatcctatt	ctggccgtcg	ccgctgcgtt	cgccgaaggg	1020
gccacggtca	tgaacggtct	tgaggaactc	cgcgtgaagg	aatcggatcg	cctgtcggcg	1080
gtggccaatg	gcctgaagct	caacggtgtt	gactgcgacg	agggtgagac	ctcactcgtg	. 1140
gtccgtggcc	ggcctgatgg	caagggcctc	ggcaacgcca	gtggagcggc	cgtcgccacg	1200
cacctcgatc	atcgcatcgc	gatgtccttc	ttggtgatgg	gtctcgtctc	agagaacccg	1260
gtgaccgtcg	atgacgccac	gatgatagcg	acgagcttcc	cagagttcat	ggatctgatg	1320
geggģeeteg	gggccaagat	cgaactgtct	gacacgaagg	ccgcttga		1368

```
<210> 19
<211> 183
```

<400> 19

Met Ser Pro Glu Arg Arg Pro Ala Asp Ile Arg Arg Ala Thr Glu Ala 10 5

Asp Met Pro Ala Val Cys Thr Ile Val Asn His Tyr Ile Glu Thr Ser 20

Thr Val Asn Phe Arg Thr Glu Pro Gln Glu Pro Gln Asp Trp Thr Asp 45 35

<212> PRT

<213> Streptomyces hygroscopicus

Asp Leu Val Arg Leu Arg Glu Arg Tyr Pro Trp Leu Val Ala Glu Val Asp Gly Glu Val Ala Gly Ile Ala Tyr Ala Gly Pro Trp Lys Ala Arg Asn Ala Tyr Asp Trp Thr Ala Glu Ser Thr Val Tyr Val Ser Pro Arg His Gln Arg Thr Gly Leu Gly Ser Thr Leu Tyr Thr His Leu Leu Lys Ser Leu Glu Ala Gln Gly Phe Lys Ser Val Val Ala Val Ile Gly Leu Pro Asn Asp Pro Ser Val Arg Met His Glu Ala Leu Gly Tyr Ala Pro 135 Arg Gly Met Leu Arg Ala Ala Gly Phe Lys His Gly Asn Trp His Asp 150 Val Gly Phe Trp Gln Leu Asp Phe Ser Leu Pro Val Pro Pro Arg Pro 175 170 165 Val Leu Pro Val Thr Glu Ile 180 <210> 20 <211> 552 <212> DNA <213> Streptomyces hygroscopicus atgageccag aaegaegece ggeegaeate egeegtgeea eegaggegga eatgeeggeg 60 gtctgcacca tcgtcaacca ctacatcgag acaagcacgg tcaacttccg taccgagccg 120 caggaaccgc aggactggac ggacgacctc gtccgtctgc gggagcgcta tccctggctc 180 240 qtcqccqaqg tggacggcga ggtcgccggc atcgcctacg cgggcccctg gaaggcacgc 300 aacgcctacg actggacggc cgagtcgacc gtgtacgtct cccccgcca ccagcggacg ggactgggct ccacgeteta cacceacetg etgaagteee tggaggeaca gggetteaag 360 420 agcgtggtcg ctgtcatcgg gctgcccaac gacccgagcg tgcgcatgca cgaggcgctc ggatatgccc cccgcggcat gctgcgggcg gccggcttca agcacgggaa ctggcatgac 480

540

gtgggtttct ggcagctgga cttcagcctg ccggtaccgc cccgtccggt cctgcccgtc

accgagatct	ga					552
<210> 21 <211> 552 <212> DNA <213> Str	eptomyces hy	groscopicus	i	1		
<400> 21 atgagtccag	aaaggagacc	ggctgatatt	cggagagcca	ccgaagctga	tatgcctgct	60
gtttgtacaa	tcgtaaacca	ttatatcgag	acctcgacag	ttaattttcg	cactgagccg	120
caggagccac	aggattggac	ggacgatctg	gtacgtttaa	gagaacgtta	tccgtggcta	180
gttgctgagg	ttgacggaga	agtcgctggt	atagcttacg	ctggaccgtg	gaaagctcgt	240
aacgcttacg	actggacagc	agaatccact	gtctacgtca	gccctcgtca	tcaaagaacc	300
ggattaggga	gcacgttgta	cactcatctt	ttaaagtcac	tggaggcaca	aggcttcaag	360
tctgttgtgg	cagttattgg	attgccaaac	gatccgagtg	ttcgaatgca	cgaagcgctt	420
ggatacgctc	cacgaggtat	gctccgtgct	gccggattca	aacatggaaa	ttggcacgac	· 480
gtaggttttt	ggcaactgga	cttttcactt	cccgttcccc	ctagacctgt	acttccagtt	540
actgaaatct	ag		•			. 552
<210> 22 <211> 552						
<212> DNA <213> Str	eptomyces h	ygroscopicu	S			
<400> 22					antacatact	60
	agcgccgtcc					120
	ttgtgaatca		•			
	aggattggac					180
	tggacggtga					240
aacgcatacg	attggactgc	ggagtccaca	gtctacgtct	cacccagaca	tcaaagaacc	300
gggctcggct	cgaccctcta	tacgcatctc	ctcaagtcct	tagaggcgca	gggcttcaaa	360
tctgtagtgg	g cggtgatcgg	cttgccaaac	gatcccagtg	tgagaatgca	cgaggcactc	420
ggttacgcto	ctagaggaat	gctcagggcg	gctggattca	agcacggtaa	ttggcacgac	480
gttggcttct	ggcaactgga	cttctctttg	ccagttccac	ctcgtcctgt	gctacccgtc	540
accgaaatct	ag ag					552
<210> 23 <211> 136 <212> DNA						

PCT/US2003/021551 WO 2004/009761

<213> Agrobacterium tumefaciens

<400> 23 atgcttcacg	gtgcaagcag	ccgtccagca	actgctcgta	agtcctctgg	tctttctgga	60
accgtccgta	ttccaggtga	caagtctatc	tcccacaggt	ccttcatgtt	tggaggtctc	120
gctagcggtg	aaactcgtat	caccggtctt	ttggaaggtg	aagatgttat	caacactggt	180
aaggctatgc	aagctatggg	tgccagaatc	cgtaaggaag	gtgatacttg	gatcattgat	240
ggtgttggta	acggtggact	ccttgctcct	gaggctcctc	tcgatttcgg	taacgctgca	300
actggttgcc	gtttgactat	gggtcttgtt	ggtgtttacg	atttcgatag	cactttcatt	360
ggtgacgctt	ctctcactaa	gcgtccaatg	ggtcgtgtgt	tgaacccact	tcgcgaaatg	420
ggtgtgcagg	tgaagtctga	agacggtgat	cgtcttccag	ttaccttgcg	tggaccaaag	480
actccaacgc	caatcaccta	cagggtacct	atggcttccg	ctcaagtgaa	gtccgctgtt [.]	540
ctgcttgctg	gtctcaacac	cccaggtatc	accactgtta	tcgagccaat	catgactcgt	600
gaccacactg	aaaagatgct	tcaaggtttt	ggtgctaacc	ttaccgttga	gactgatgct	660
gacggtgtgc	gtaccatccg	tcttgaaggt	cgtggtaagc	tcaccggtca	agtgattgat	720
gttccaġgtg	atccatcctc	tactgctttc	ccattggttg	ctgccttgct	tgttccaggt	780
tccgacgtca	ccatccttaa	cgttttgatg	aacccaaccc	gtactggtct	catcttgact	840
ctgcaggaaa	tgggtgccga	catcgaagtg	atcaacccac	gtcttgctgg	tggagaagac	900
gtggctgact	tgcgtgttcg	ttcttctact	ttgaagggtg	ttactgttcc	agaagaccgt	960
gctccttcta	tgatcgacga	gtatccaatt	ctcgctgttg	cagctgcatt	cgctgaaggt	1020
gctaccgtta	tgaacggttt	ggaagaactc	cgtgttaagg	aaagcgaccg	tctttctgct	1080
gtcgcaaacg	gtctcaagct	caacggtgtt	gattgcgatg	aaggtgagac	: ttctctcgtc	1140
gtgcgtggtc	gtcctgacgg	taagggtctc	ggtaacgctt	: ctggagcagc	tgtcgctacc	1200
cacctcgatc	accgtatcgc	tatgagcttc	ctcgttatgg	gtctcgtttc	tgaaaaccct	1260
gttactgttg	atgatgctac	: tatgatcgct	actagetted	cagagttcat	ggatttgatg	1320
gctggtcttg	gagctaagat	: cgaactctcc	gacactaago	g ctgcttga		1368

16

<210> 24 <211> 16 <212> DNA <213> Artificial sequence

<220>

<223> DNA primer molecule

<400> 24

catggagctt catcta

<210> <211> <212> <213>		
<220> <223>	DNA primer molecule	
<400> gccttt	25 gagt gtacta	16
<210> <211> <212> <213>	16	
<220> <223>	DNA primer moleclule	
<400> gggagc	26 gcgt atccgc	16
<210> <211> <212> <213>	16 DNA	
<220> <223>	DNA primer molecule	
<400> ggatgg	27 tcac gtcact	16
<210> <211> <212> <213>	16 DNA	
<220> <223>	DNA primer molecule	
<400> cggcat	28 cacg acggtc	16
<210> <211> <212> <213>	16 DNA	
<220> <223>	DNA primer molecule	
<400> ggcat	29 cgtcc accgtg	16

```
<210> 30
<210> 36
<211> 16
<212> DNA
<213> Artificial sequence
<220>
<223> DNA primer molecule
<400> 30
                                                                              16
gcaactggtt gccgtt
<210> 31
<211> 16
<212> DNA
<213> Artificial sequence
<220>
<223> DNA primer molecule
<400> 31
                                                                               16
atcacctgga acatca
<210> 32
<211> 22
<212> DNA
<213> Zea mays
<400> 32
                                                                               22
cgtcaagatc ctcttcacct cg
<210> 33
<211> 22
<212> DNA
<213> Zea mays
<400> 33
                                                                               22
acaccctctc caacactctc ta
 <210> 34
 <211> 9
 <212> PRT
 <213> Artificial sequence
 <223> Motif providing glyphosate resistance to a plant EPSPS
 <400> 34
 Gly Asn Ala Gly Ile Ala Met Lys Ser
                   5
 <210> 35
 <211> 1596
<212> DNA
<213> Agrobacterium tumefaciens
```

atggcccaag	ttagccgaat	ctgcaacggt	gtgcagaatc	catcactaat	ctccaacctg	60
		gtcgccatta				120
cgcgcatatc	ctatatcaag	cagttggggt	ttgaagaaat	cgggtatgac	cttgattggt	180
tcggaactta	ggccattgaa	ggtgatgtct	tcagttagta	cagcttgcat	gcttcacggt	240
gcttcttcca	gacccgcaac	ggctagaaag	agttctggct	tgtctggaac	cgtccgtatt	300
ccaggagaca	aaagcattag	tcaccgctct	ttcatgtttg	gtgggctggc	atctggagag	360
acgcgcatca	ctggtcttct	ggaaggagag	gacgtcatca	atacagggaa	ggcaatgcag	420
gctatgggtg	cccgtattcg	caaggaaggt	gatacttgga	tcatagacgg	agttgggaac	480
ggtggcttac	ttgcaccgga	ggctcctctc	gactttggca	acgcagccac	agggtgtaga	540
cttactatgg	gcctcgtggg	tgtttacgat	ttcgattcaa	cctttattgg	ggatgcctct	600
ctcactaaac	gcccaatggg	aagagtcctt	aacccgttga	gggagatggg	cgtacaagtt	660
aagtccgagg	acggcgacag	attgcccgtc	accttgcgcg	gccctaagac	acccacccct	720
attacttaca	gggttccaat	ggcatctgct	caagtgaagt	ccgcagttct	gctcgctgga	780
ttgaacacac	cgggtattac	taccgtgatt	gagccgatca	tgactcgtga	ccacactgag	840
aagatgcttc	agggtttcgg	tgctaacctc	accgttgaaa	cagacgcgga	cggtgtgagg	900
accattcgcc	tggagggaag	gggaaaactc	actggtcaag	tcattgacgt	gcccggtgat	960
ccctccagca	cggcgttccc	actggttgcc	gctcttctcg	taccaggete	cgatgtgaca	1020
attctaaacg	tcctcatgaa	tcctactaga	accggattga	tacttacatt	gcaggaaatg	1080
ggtgctgata	ttgaagttat	caatcctaga	ctagccggag	gtgaggacgt	agctgatttg	1140
cgggtgaggt	cttctacatt	gaaaggtgtt	accgtacctg	aagatagggo	accttcaatg	1200
attgacgagt	atccaattct	tgccgtcgcg	gctgcctttg	ctgagggcgc	gaccgtgatg	1260
aatggactag	aggagttgag	agtgaaggaa	tccgacagat	tgagcgcagt	cgctaacgga	1320
cttaaactca	atggcgttga	ttgtgatgag	ggtgagacta	gcttggtagt	: ccgtgggcga	1380
ccagacggaa	agggtttggg	caacgcttcg	ggtgctgccg	ttgcaactca	cttggatcat	1440
cggatagcga	tgagttttct	: ggtgatgggt	ctcgtaagcg	g agaatcctgt	gacagtcgac	1500
gatgcaacta	tgatcgctac	ttccttccct	gagtttatgg	g atttaatggd	aggactaggt	1560
gcaaagatto	r aactototoa	taccaaagco	gcctaa			1596