B03902062 資工二 董文捷

Problem 1

1.

To calculate C_m^n , we can use Pascal's triangle. For the n-th item, we can choose it (C_{m-1}^{n-1}) or don't choose it (C_m^{n-1}), so $C_m^n = C_{m-1}^{n-1} + C_m^{n-1}$ Build a two dimensional array to store all C_m^n by this equation. To build the array, for $n = 0 \sim N$, find the value of C_m^n for all $m \leq n$ by C_{m-1}^{n-1} and C_m^{n-1} , notice for m = 0 and m = n, the value should be set to 1.

2.

$$n > m$$

 $f(n, m) = f(n, m - 1) + f(n - 1, m)$
 $n = m$
 $f(n, m) = f(n, m - 1)$
 $n < m$
 $f(n, m) = 0$

Use the recurrence relation to build a two dimensional array to store all f(n, m), and f(n, n) is the C_n we want. To build the array, for $n = 0 \sim N$, find the value of f(n, m) for all $m \le n$ by f(n, m - 1) and f(n - 1, m) (since value for n < m is not used, we need not to deal with them), notice for m = 0, the value should be set to 1, and for m = n, the value should be set to f(n, m - 1)

3.

$$f(n, m) = \sum_{k=0}^{k_m ax} f(n - k * m, m - 1)$$
 where k_max is the max k satisfying $n - k * m \ge 0$. For $f(n, m)$, there can be $0 \sim k_m$ group of size m, we can get different partitions by increasing the number of size m group and partition $n - k * m$ into groups of size at most $m - 1$. To build up a two dimensional array to store $f(n, m)$, initialize all $f(0, x)$ with $1 (x \le N)$, then for $n = 1 \sim N$, set $f(n, 0)$ to 0 , choose m from 1 to N , get $f(n, m)$ by the above equation. $f(n, n)$ is the P_n we want. Time complexity:

To get every value in the table, we need to find at most k_max values to sum up, while k_max \leq n_max / m_min = N So T(N) \leq (N * N) * N = O(N³)

Problem 2

- **1.** The same as 2.2. (O(n) is also $O(n^2)$)
- 2. To calculate the number, I use two variables end_0 and end_1 to record the distinct subsequences number end with 0 and 1. Set end_0 and end_1 to 0 initially. Run a for loop to increase length from 1 to N. Each time a new character is added, for example a new character 1 is added to 101 and new string is 1011. end_0 will not be adjust since the new added character is '1', end_1 will be adjust to end_0 + end_1 + 1. The meaning of end_0 + end_1 is to add new '1' to every subsequence, since sequences in end_0 and end_1 are distinct, after adding '1', they will be distinct, too. The meaning of 1 is '1'. We need not to consider subsequences end with 1 and do not add the new '1' because if S'1' is a subsequence, S is also a subsequence, we can add the new '1' to let it become S'1', so actually it is already counted in case adding '1'. (101 is a subsequence of 1011, we can also form it by adding '1' to 10, which is also a subsequence of 101) The only exception is '1' (single character), since empty is not a subsequence, '1' is not counted in case adding new '1'.

```
end_0 = 0

end_1 = 0

for i = 0 ~ (N-1)

If string[i] = '1'

end_1 = end_0 + end_1 + 1

else

end_0 = end_0 + end_1 + 1

ans = end_0 + end_1
```

Time complexity : O(n)

3. Use two array end_0[K + 1] and end_1[K + 1] to record number of distinct subsequence end with 0 and 1 of length $1 \sim K$. Initialize them with 0. Like 2.2, if a new '1' is added, we can get end_1[length + 1] by adding the new '1' to end_0[length] and end_1[length] (end_1[length + 1] = end_0[length] + end_1[length]), and don't need to adjust end_0 array. '1' is also a special case, so end_1[1] should be set to 1. Similarly, if '0' is added, we can get end_0[length + 1] by add the new '0' to end_0[length] and end_1[length], and don't need to adjust end_1 array. end_0[1] should be set to 1. By running through the string from 0 to (N - 1), we can find out end_0[K] and end_1[K], the sum of them is the final

answer.

Time complexity:

$$k * n = O(kn)$$

Problem 3

(1)

1. To calculate A^n , we can use divide and conquer to divide A^n into $A^{n/2} * A^{n/2}$, $T(n) = T(n/2) + m^3$ (matrix multiplying), so $T(n) = O(m^3 \log_2 n)$

By mathematical induction, we can find that if $M = \begin{bmatrix} A & I \\ 0 & I \end{bmatrix}$

$$\mathbf{M}^{\mathbf{n}} = \begin{bmatrix} A^n & \sum_{i=0}^{n-1} A^i \\ 0 & I \end{bmatrix}$$
, to calculate $\sum_{i=0}^n A^i$, we only need to calculate $\mathbf{M}^{\mathbf{n}+1}$ and can use divide and consum too. $\mathbf{T}(\mathbf{n}) = \mathbf{T}(\mathbf{n}/2) + 8 \mathbf{m}^3$

 M^{n+1} and can use divide and conquer, too. $T(n) = T(n/2) + 8 \text{ m}^3$ $T(n) = O(m^3 \log_2 n)$

2.

Set a K * K matrix A and initialize its value with 1, for Q pairs can not appear consecutively, set both A(β_{i1} , β_{i2}) and A(β_{i2} , β_{i1}) to 0. **dp**_T(**L**) represents number of permutation of length L end with **n**_T.

$$\begin{bmatrix} dp_1(L) \\ dp_2(L) \\ \vdots \\ dp_{n-1}(L) \\ dp_n(L) \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 1 & 1 \\ 0 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \end{bmatrix} \begin{bmatrix} dp_1(L-1) \\ dp_2(L-1) \\ \vdots \\ dp_{n-1}(L-1) \\ dp_n(L-1) \end{bmatrix}$$

For $\mathbf{dp_1}(\mathbf{L})$, if n_1 can not appear consecutively with n_2 , we can add n_1 to $dp_1(L-1) dp_3(L-1) \dots dp_n(L-1)$ to get it, so $dp_1(L) = dp_1(L-1) + dp_3(L-1) + \dots + dp_n(L-1)$

Sort a_j and swap b_j simultaneously, then we can divide the DNA sequence to P+1 subsequences with the P fixed position, notice that the last subsequence's length may vary from $L-a_P$ to $R-a_P$

Fill the P subsequence by the order. For the first subsequence, set $dp_1(0)$ $dp_2(0)$... to 1, and multiply dp column matrix with A^{a1} to get $dp_1(a_1)$ $dp_2(a_1)$ Since a_1 is set to b_1 , only $dp(a_1)$ end with b_1 is remained, other impossible $dp(a_1)$ should be set to 0. For other subsequence, multiply dp column matrix with $A^{an-a(n-1)}$ to get $dp(a_n)$, only keep $dp(a_n)$

which end with b_n and set other impossible $dp(a_n)$ to 0.

Finally, the sequence's length may vary from L to R, so we need to multiply dp column matrix with $(A^{L\text{-ap}} + A^{L\text{-ap+1}} + \dots + A^{R\text{-ap}})$, the final answer is $dp_1(R) + dp_2(R) + \dots + dp_n(R)$

Time complexity:

Set matrix : O(Q)

Sort a : O(PlogP)

Fill all subsequence to get ans:

($O(K^3log_2R) + O(K)$) * P ($a_n - a_{n-1} < R$) (The last matrix sum can also be get in $O(K^3log_2R)$ by 3.1.1) (O(K) is the time need to set impossible dp to 0)

Total:

$O(K^3 P log_2 R)$

(2)

- **1.** x(j, k) is the intersect point of $f_j(x)$ and $f_k(x)$, so $x(j, k) = \frac{b_k b_j}{a_j a_k}$
- **2.** At first, α_0 is set to $-\infty$ and α_1 is set to ∞ , j_1 is set to 0, $dp(1) = f_0(x_0)$. Each time when adding a new line f_n , move ∞ to the rightmost α , find the intersect point of f_n and f_n , α_n , and g_{n+1} is set to g_n , push_back them into the deque. If α_n is smaller than α_{n-1} , we need not to keep g_{n-1} anymore, so we can swap g_n , g_{n-1} , g_n , and then pop_back out g_n , g_n (g_n) should be kept carefully), update g_n , repeat the process to pop_back out unused line until g_n become the biggest number. We can find g_n (g_n) by the maintained deque and a variable recording choosing position of g_n), if g_n , g_n , g_n , g_n , is the best answer, else the position should be equal or become bigger, find g_n , g_n , and g_n , g_n , and g_n , g_n ,

Time complexity:

Build deque:

A line will be insert and delete at most one time, so the time complexity is O(n)

Find dp(i):

 α and j will be pop out and traverse at most one time, so the time complexity is $O(\ n\)$

Total:

O(**n**)

3.

j is the nearest west position Manaka put food, i is the current position,

and dp(i) represent minimal sum of the physical power consumed by Manaka and fish from 0 to i. Si is the fish number sum east. (All of Si can be calculated in O(n) by adding ai from the east)

$$dp(i) = min 0 \le j < i (dp(j) + c_j + \sum_{k=j}^{i} (k - j) * ak)$$

= min 0 \le j < i (dp(j) + c_j +
$$\sum_{k=j}^{i} (k * ak - j * ak)$$
)

= min 0 \le j < i (dp(j) + c_j +
$$\sum_{k=j}^{i} k * ak - j * Sj$$
)

Which can use result of 2 and is therefore O(n)

Reference: b03902044 b03902061