Application 1 Mesure d'inertie – Corrigé

Un classique ...

Mise en situation

La figure ci-contre représente un dispositif conçu pour déterminer le moment d'inertie d'un solide S par rapport à son axe de révolution matérielle, à partir de la mesure de la période de son oscillation sur deux portées cylindriques d'un bâti Σ .

C1-05

C2-08

Soit $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ un repère galiléen lié au bâti Σ . On désigne par $\overrightarrow{g} = g\overrightarrow{x}$ l'accélération de la pesanteur. Les deux portées cylindriques de Σ sont deux éléments de la surface cylindrique de révolution d'axe (O, \overrightarrow{z}) , de rayon r. Le solide S de masse m, de centre d'inertie C, possède deux tourillons de même rayon a (a < r).

L'étude se ramène à celle du problème plan suivant :

- ▶ le tourillon S, de centre C, roule sans glisser au point A sur la portée cylindrique de Σ ;
- ▶ soit $\Re_1\left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}\right)$ le repère, tel que le point C soit sur l'axe $\left(O, \overrightarrow{x_1}\right)$. $\theta = \left(\overrightarrow{x}, \overrightarrow{x_1}\right)$;
- ▶ soit $\Re_2\left(C; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z}\right)$ un repère lié à S. On pose $\varphi = \left(\overrightarrow{x_1}, \overrightarrow{x_2}\right)$. On suppose $\varphi = 0$ lorsque $\theta = 0$.

Notons I le moment d'inertie de S par rapport à son axe de symétrie $\left(C, \overrightarrow{z}\right)$ et f le coefficient de frottement entre S et Σ .

On donne a = 12.3 mm; r = 141.1 mm; $g = 9.81 \text{ m s}^{-2}$; m = 7217 g; f = 0.15.

Question 1 Déterminer la relation entre $\dot{\varphi}$ et $\dot{\theta}$.

Question 2 Appliquer le théorème de l'énergie cinétique à S dans son mouvement par rapport à R. En déduire l'équation différentielle du mouvement sur θ .

Question 3 En supposant que l'angle θ reste petit au cours du mouvement, déterminer la période T des oscillations de S.

Question 4 En déduire le moment d'inertie I de S, sachant que T = 5 s.

En supposant toujours que l'angle θ reste petit, on pose $\theta = \theta_0 \cos(\omega t)$ avec $\omega =$

$$\sqrt{\frac{mg}{(r-a)\left(m+\frac{I}{a^2}\right)}}.$$

On suppose à la date t=0, tel que $\theta=\theta_0$ et $\dot{\theta}=0$.

Question 5 Déterminer la valeur maximale de θ_0 pour que S roule sans glisser sur Σ .

