University of British Columbia Department of Mechanical Engineering

MECH468 Modern Control Engineering MECH522 Foundations in Control Engineering Midterm exam

Examiner: Dr. Ryozo Nagamune February 8 (Friday), 2019, 1-1:50pm

Last name, First name	
Name:	Student #:
Signature:	

Exam policies

- Allowed: One-page letter-size hand-written cheat sheet (both front side and back side)
- Not-allowed: PC, calculators.
- Write all your answers on this booklet. No extra sheet will be provided.
- Motivate your answers properly. (No chance to defend your answers orally.)
- 20 points in total.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone.
- No eating.
- Questions are NOT allowed.

If you finish early ...

• Please stay at your seat until the end of exam, i.e., 1:50pm. (You are not allowed to leave the room before the end of exam, except going to washroom.)

To be filled in by the instructor/marker

Problem #	Mark	Full mark
1		5
2		10
3		5
Total		20

- 1. Answer the following true-or-false questions. Write (True) or (False). No need to motivate your answers. (0.5pt each)
 - (a) Linear state-space control theory was established around 2010 (i.e., about 10 years ago), and that is why it is called "modern" control theory.
 - (b) When a linear time-invariant system is not observable, it is possible to recover the observability by adding actuators.
 - (c) Any asymptotically stable linear time-invariant system is controllable.
 - (d) A symmetric matrix which is not positive definite is negative definite.
 - (e) All eigenvalues of a real symmetric matrix are real numbers.
 - (f) If we discretize a continuous-time controllable model with zero-order hold, the discretized model is guaranteed to be controllable.
 - (g) Minimum energy control is useful in controlling unstable systems.
 - (h) If a system is not controllable and not observable, by the Kalman decomposition, there are always some states $z_{\bar{c}\bar{o}}$ which are uncontrollable and unobservable.
 - (i) A continuous-time system $\dot{x}=\begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 0\\ 0 & 0 & 0 \end{bmatrix}x$ is marginally stable.
 - (j) If a linear time-invariant system $(\dot{x} = Ax + Bu, y = Cx)$ is BIBO stable, then it is always asymptotically stable.

Question	Write (True) or (False)
(a)	
(b)	
(c)	
(d)	
(e)	
(f)	
(g)	
(h)	
(i)	
(j)	

2. Consider the following continuous-time state space model.

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t). \end{cases}$$

- (a) Check the stability of the system by using the Lyapunov method. (2pt)
- (b) Check the controllability and the observability. (2pt)
- (c) Find the Kalman decomposition. Write explicitly which state is controllable/uncontrollable and observable/unobservable. (2pt)
- (d) Obtain the transfer function from the input u to the output y. (2pt)
- (e) Compute the matrix exponential e^{At} . (2pt)

3. Consider the following system of nonlinear equations:

$$\ddot{p}(t) + \sin(\theta(t)) - (\dot{\theta}(t))^2 = 0,$$

$$\ddot{\theta}(t) + p(t)\dot{p}(t)\dot{\theta}(t) + p(t)\cos\theta(t) = \tau(t).$$

(This model is a simplified one for a ball and beam system, but you don't need to know this fact to solve the following questions.)

(a) By considering the input u and the output y respectively as

$$u(t) := \tau(t), \quad y(t) := p(t),$$

and by introducing the state variables as

$$x_1(t) := p(t), \quad x_2(t) := \dot{p}(t), \quad x_3(t) := \theta(t), \quad x_4(t) := \dot{\theta}(t),$$

derive a nonlinear state-space model.

(2pt)

- (b) Prove that a point $(x_0, u_0, y_0) = (0, 0, 0)$ is an equilibrium point. (1pt)
- (c) Around the equilibrium point $(x_0, u_0, y_0) = (0, 0, 0)$, linearize the non-linear state-space model obtained in (a). Do NOT use the small angle approximations $(\sin \theta \approx \theta, \cos \theta \approx 1 \text{ for small } |\theta|.)$ (2pt)

----- (END OF MIDTERM EXAM)