## Claims

1. A method of modulating ABC transporter activity comprising the step of contacting said ABC transporter with a compound of formula (I):

or a pharmaceutically acceptable salt thereof; wherein:

A and B are independently selected from aryl, heterocyclic, heteroaryl, or cycloaliphatic ring;

C is H, aryl, heterocyclic, heteroaryl, cycloaliphatic, aliphatic, C(O)  $R^2$ , C(O)  $R^3$ , C(O)  $NH_2$ , C(O)  $NH_2$ , C(O)  $NH_2$ , C(O)  $NH_2$ , C(O)  $N(R^3)_2$ ;

 $x \text{ is H, } (CH_2)_n-y, R^2, R^3, R^4, R^5, \text{ or } R^6;$ 

wherein each of A, B, C, and X optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup> or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1,~{\rm R}^2,~{\rm R}^4$  or  ${\rm R}^5;$ 

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(OR^5)R^6$ ,  $C(0)N(OR^6)R^5$ ,  $C(0)N(OR^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)$ ;

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\bf R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\bf R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\bf C}_1-{\bf C}_6)$  - straight or branched alkyl,  $({\bf C}_2-{\bf C}_6)$  straight or branched

alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $(CH_2)_n-Z$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $^{8}$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

 $R^8$  is an amino protecting group.

- 2. The method according to claim 1, wherein each of C and X is H.
- 3. The method according to claim 2, wherein A and B are independently optionally substituted aryl or heteroaryl.
- 4. The method according to claim 3, wherein A and B are independently selected from optionally substituted phenyl, pyrazolyl, pyridyl, thiazolyl, oxazolyl, thiophenyl, or furanyl.
- 5. The method according to claim 1, wherein B is selected from optionally substituted ring systems:





6. The method according to claim 1, wherein said formula (IA):

$$(R^1)_m$$
OH
 $N$ 
 $N$ 
 $N$ 
 $B_1$ 
 $(IA);$ 

wherein:

m is 0 to 3;

 $B_1$  is selected from:

$$(R^1)_m$$

$$(B^1)_m$$



wherein  $B_1$  and ring Z are substituted with up to 2 substituents selected from  $R^2$ ,  $R^3$ , or  $R^4$ .

- 7. The method according to any one of claims 6, wherein  $R^1$  is selected from halo,  $CF_3$ ,  $NH_2$ , NH(C1-C6 alkyl),  $NHC(O)CH_3$ , OH, O(C1-C6 alkyl), OPh, O-benzyl, S-(C1-C6 alkyl), C1-C6 alkyl,  $NO_2$ , CN, methylenedioxy, ethylenedixoy,  $SO_2NH(C1-C6$  alkyl), or  $SO_2N(C1-C6$  alkyl)<sub>2</sub>.
- 8. The method according to claim 1, wherein said compound is selected compounds IA-1 to IA-139 in Table 1 compound I-1 to I-21 in Table 2.
- 9. The method according to claim 1, wherein said compound has formula (II):

$$A$$
 $C_1$ 
 $F_3C$ 
 $B$ 
OH
 $C_1$ 
 $C_1$ 
 $C_2$ 
 $C_3$ 
 $C_4$ 
 $C_5$ 
 $C_5$ 
 $C_7$ 
 $C_7$ 

or a pharmaceutically acceptable salt thereof, wherein:

 $C_1$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_3$ ;

 $X_1$  is selected from halo,  $R^2$ ,  $CF_3$ , CN, COOH, COOR, C(O)R,  $C(O)NH_3$ , C(O)NHR, or  $C(O)N(R)_3$ ;

each R is independently  $R^2$  or  $R^3$ ;

wherein each of ring B, optionally including  $X_1$  and OH, and  $C_1$  optionally comprises up to 4 substituents, and ring A optionally comprises up to 3 substituents, wherein said substituents are independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO2, CF3, CHF2, CH2F,

OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup> or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 $\rm R^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  $\rm R^1$ ,  $\rm R^2$ ,  $\rm R^4$  or  $\rm R^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\sf R}^{\sf 5}$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\sf R}^{\sf 1}$  substituents:

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN,  $NO_2$ ,  $CHF_2$ ,  $CH_2F$ ,  $CF_3$ ,  $OCF_3$ , OH,  $SCHF_2$ , S-aliphatic, S(O)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , N-aliphatic,  $N(aliphatic)_2$ ,

 $N(aliphatic)R^8$ , COOH, C(0)O(-aliphatic), or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- 10. The method according to claim 9, wherein  $C_1$  is H.
- 11. The method according to claim 10, wherein  $X_1$  is selected from (C1-C4)-aliphatic, or C(0)-NH<sub>2</sub>.
- 12. The method according to claim 1, wherein said compound has formula provides a compound having formula (III):

$$X_2$$
 $HN-N$ 
 $X_3$ 
 $OH$ 
 $(III)_i$ 

or a pharmaceutically acceptable salt thereof, wherein:

 $X_2$  is selected from halo,  $R^2$ ,  $CF_3$ , CN, COOH,  $COOR^2$ ,  $COOR^3$ ,  $C(O)R^2$ ,  $C(O)R^3$ ,  $C(O)NH_3$ ,  $C(O)NH_7$ , or  $C(O)NR^2$ ;

X, is selected from H, halo, CF, or NO;

each R is independently  $R^2$  or  $R^3$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH,  $SCHF_2, SR^6, S(0)R^6, SO_2R^6, NH_2, NHR^6, N(R^6)_2, NR^6R^8,$  COOH, COOR<sup>6</sup> or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\tt R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\tt R}^1$ ,  ${\tt R}^2$ ,  ${\tt R}^4$  or  ${\tt R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^{5})R^{6}$ ,  $C(0)N(0R^{6})R^{5}$ ,  $C(0)N(0R^{5})R^{5}$ ,  $C(NOR^{6})R^{6}$ .  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(O) (OR^6)N(R^6)_2$ ,  $P(O) (OR^6)N(R^5R^6)$ ,  $P(O) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)$ ;

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\bf R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\bf R}^7$  optionally comprising up to 2

substituents independently chosen from H,  $(C_1-C_6)$ -straight or branched alkyl,  $(C_2-C_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $(CH_2)_n-Z$ ;

Z is selected from halo, CN, NO $_2$ , CHF $_2$ , CH $_2$ F, CF $_3$ , OCF $_3$ , OH, SCHF $_2$ , S-aliphatic, S(O)-aliphatic, SO $_2$ -aliphatic, NH $_2$ , N-aliphatic, N(aliphatic) $_2$ ,

 $N(aliphatic)R^8$ , COOH, C(0)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group; provided that:

- (i) when  $X_3$  is H, then  $X_2$  is not methyl, chloro, or bromo;
- (ii) when  $X_2$  is chloro, then  $X_3$  is not fluoro, chloro, or nitro;
- (iii)when  $\mathbf{X_2}$  is methyl, then  $\mathbf{X_3}$  is not nitro or chloro.
- 13. The method according to claim 12, said compound has one or more of the features selected from the group:
  - (a)  $X_3$  is halo,  $CF_3$ , or  $NO_2$ ; and
  - (b)  $X_2$  is halo,  $CF_3$ , methyl, ethyl, propyl, or  $CONH_2$ .
- 14. The method according to claim 1, wherein said compound has formula (IV):

$$X_6$$
 $X_8$ 
 $X_8$ 
 $X_9$ 
 $X_9$ 

or a pharmaceutically acceptable salt thereof;

wherein:

B, is selected from:

 $C_2$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ , C(0)NH  $R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_2$ ;

each of  $X_4$ ,  $X_5$ ,  $X_6$ ,  $X_7$ , and  $X_8$  is selected from  $(CH_2)_n$ - Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ;

wherein each of  $B_2$  and  $C_2$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\tt R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\tt R}^1$ ,  ${\tt R}^2$ ,  ${\tt R}^4$  or  ${\tt R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(O)OR^5$ ,  $OC(O)N(R^6)_2$ ,  $OC(O)N(R^5)_2$ ,  $OC(O)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(O)R^6$ ,  $S(O)R^5$ ,  $SO_2R^6$ ,  $SO_2R^5$ ,  $SO_2N(R^6)_2$ ,  $SO_2N(R^5)_2$ ,

 $So_{2}NR^{5}R^{6}, So_{3}R^{6}, So_{3}R^{5}, C(0)R^{5}, C(0)OR^{5}, C(0)R^{6}, C(0)OR^{6}, C(0)OR^{6}, C(0)N(R^{6})_{2}, C(0)N(R^{5})_{2}, C(0)N(R^{5}R^{6}), C(0)N(OR^{6})R^{6}, C(0)N(OR^{5})R^{6}, C(0)N(OR^{5})R^{6}, C(0)N(OR^{5})R^{5}, C(NOR^{6})R^{6}, C(NOR^{5})R^{6}, C(NOR^{5})R^{5}, C(NOR^{6})R^{6}, C(NOR^{5})R^{5}, N(R^{6})_{2}, N(R^{5})_{2}, N(R^{5}R^{6}), NR^{5}C(0)R^{5}, NR^{6}C(0)R^{6}, NR^{6}C(0)R^{5}, NR^{6}C(0)OR^{6}, NR^{5}C(0)OR^{6}, NR^{5}C(0)OR^{5}, NR^{6}C(0)N(R^{6})_{2}, NR^{6}C(0)NR^{5}R^{6}, NR^{6}C(0)N(R^{5})_{2}, NR^{5}C(0)N(R^{6})_{2}, NR^{5}C(0)NR^{5}R^{6}, NR^{5}C(0)N(R^{5})_{2}, NR^{6}So_{2}R^{6}, NR^{6}So_{2}N(R^{5})_{2}, NR^{5}So_{2}NR^{5}R^{6}, NR^{6}So_{2}N(R^{5})_{2}, NR^{5}So_{2}N(R^{5})_{2}, NR^{5}So_{2}N(R^{5})_{2},$ 

 $R^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  $R^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN,  $NO_2$ ,  $CF_3$ ,  $OCF_3$ , OH,  $SCHF_2$ , S-aliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , N-aliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R^8$ , COOH, C(0)O(-aliphatic), or O-aliphatic; and

R<sup>8</sup> is an amino protecting group;
provided that:

(i) when  $B_2$  is structure (a),  $X_5$ ,  $X_6$ , and  $C_2$  are H, then  $X_4$  is not H, Cl,  $CH_3$ , or  $OCH_3$ ;

(ii) when  $B_2$  is structure (c),  $X_5$ ,  $X_6$ , and  $C_2$  is H, then  $X_4$  is not H or  $CH_3$ ;

(iii) when  $B_2$  is structure (a),  $X_4$  is Cl or  $CH_3, \\ X_5$  and  $C_2$  are H, then  $X_6$  is not  $NO_2,$  Cl, or Br;

(iv) when  $B_2$  is structure (a),  $X_4$  is Cl,  $X_5$  and  $X_6$  are H, then  $C_2$  is not Ph, -C(0)CH3, -C(0)Ph, or -C(0)NHPh;

(v) when  $\rm B_2$  is structure (a),  $\rm X_4$  is  $\rm CH_3$ ,  $\rm X_5$  and  $\rm X_6$  is H; then  $\rm C_2$  is not Ph;

(vi) when  $B_2$  is structure (a),  $X_4$ ,  $X_5$ , and  $X_6$  is H, then  $C_2$  is not  $CH_3$ ,  $C(0)CH_3$ , or -C(0)-NHPh;

(vii) when  $B_2$  is structure (c),  $X_4$ ,  $X_5$ , and  $X_6$  is H, then  $C_2$  is not  $CH_3$  or  $C(O)CH_3$ ;

(viii) when  $B_2$  is structure (a),  $X_4$  is Cl,  $X_5$  is H,  $X_6$  is  $NO_2$  or Br, then  $X_7$  is not Ph,  $C(O)CH_3$ , or C(O)Ph.

15. The method according to claim 14, wherein  $B_2$  is

- 16. The method according to claim 15, wherein  $X_8$  and  $C_2$  are H.
- 17. The method according to claim 16, wherein compounds of formula (IV) have one or more of the features selected from the group:
  - (a)  $B_2$  is:

5-(3'-trifluoromethylphenyl)-furan-2-yl;
5-trifluoromethyl-2-methyl-furan-3-yl;
5-t-butyl-2-methyl-furan-3-yl;
5-methyl-2-trifluoromethyl-furan-3-yl; or

5-(4'-methylsulfonylphenyl)-furan-2-yl;

- (b) C<sub>2</sub> is H or phenyl;
- (c)  $X_4$  is halo, (C1-C4)alkyl, CF<sub>3</sub>, CN, or NO<sub>2</sub>;
- (d)  $X_5$ ,  $X_6$ , and  $X_7$  are H; and

- (e)  $X_8$  is H.
- 18. The method according to claim 16, wherein X<sub>4</sub>, X<sub>5</sub>, X<sub>6</sub>, and X<sub>7</sub>, taken together with the hydroxyphenyl group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-fluorophenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl 2-hydroxy-5-methylsulfonylphenyl, or 2-hydroxy-5-amidophenyl.
- 19. The method according to claim 1, wherein said compound has formula (V):

or a pharmaceutically acceptable salt thereof; wherein:

 $C_3$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_3$ ;

X, is selected from  $(CH_2)_n$ -Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring P, optionally including the hydroxyl group, and ring Q optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ; n is 0, 1 or 2; Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH,  $SCHF_2, SR^6, S(0)R^6, SO_2R^6, NH_2, NHR^6, N(R^6)_2, NR^6R^8,$  COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\tt R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\tt R}^1$ ,  ${\tt R}^2$ ,  ${\tt R}^4$  or  ${\tt R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $s(0)R^6$ ,  $s(0)R^5$ ,  $so_2R^6$ ,  $so_2R^5$ ,  $so_2N(R^6)_2$ ,  $so_2N(R^5)_2$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)_7$ 

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents:

 $R^6$  is H or aliphatic; wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\bf R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\bf R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\bf C}_1-{\bf C}_6)$  - straight or branched alkyl,  $({\bf C}_2-{\bf C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\bf CH}_2)_n-{\bf Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $\mathbb{R}^8$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- 20. The method according to claim 19, wherein  $X_9$  and  $C_7$  are  $H_8$ .
- 21. The method according to claim 20, wherein, said compound has one or more of the features selected from the group:
  - (a)  $C_3$  is H or phenyl;
  - (b) ring Q is isoxazol-3-yl or 5-methyl-isoxazol-3yl;
  - (c)  $X_9$  is H; and
  - (d) ring P together with the hydroxy substituent is selected from:
    - 2-hydroxy-5-methoxyphenyl,
    - 2-hydroxy-5-methylphenyl,
    - 2-hydroxy-5-fluorophenyl,
    - 2-hydroxy-5-ethylphenyl,
    - 2-hydroxy-5-propylphenyl,

- 2-hydroxy-5-chlorophenyl,
- 2-hydroxy-5-isopropylphenyl,
- 2-hydroxy-5-tetrazol-2H-3-ylphenyl,
- 2-hydroxy-5-bromophenyl,
- 2-hydroxy-5-methylsulfonylphenyl, or
- 2-hydroxy-5-amidophenyl.
- 22. The method according to claim 1, wherein said compound has formula (VI):

$$C_4$$
OH
 $N$ 
 $N$ 
 $B_3$ 
 $(VI)$ ;

or a pharmaceutically acceptable salt thereof; wherein:

B<sub>3</sub> is selected from:

$$N-C_4$$
 or  $N$ 

$$C_4$$
(a)
(b)

 $\text{C}_4$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $\text{C(O)R}^2, \; \text{C(O)R}^3, \; \text{C(O)NH}_2, \; \text{C(O)NH} \; \text{R}^2, \; \text{C(O)NHR}^3, \; \text{C(O)N(R}^2)_2, \\ \text{C(O)N(R}^3)_2;;$ 

 $X_{10}$  is selected from  $(CH_2)_{\,\mathrm{n}}-Y$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring M, optionally including the hydroxyl group,  $C_4$ , and  $B_3$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ; n is 0, 1 or 2;

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1,~{\rm R}^2,~{\rm R}^4$  or  ${\rm R}^5;$ 

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\sf R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\sf R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)-{\tt Straight}$  or branched alkyl,  $({\tt C}_2^{\rm i}-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, Saliphatic, S(0)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, Naliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $^{8}$ , COOH, C(0)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- $23\,.$  The method according to claim 22, wherein  $X_{10}$  and  $C_4$  are H.
  - 24. The method according to claim 23, wherein B, is

optionally substituted ring 
$$N-C_4$$

- 25. The method according to claim 24, wherein, ring M, together with the 2-hydroxy group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-fluorophenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl, 2-hydroxy-5-methyl sulfonylphenyl, or 2-hydroxy-5-amidophenyl.
- 26. The method according to claim 1, wherein said compound has formula (VII):

or a pharmaceutically acceptable salt thereof; wherein:

B4 is selected from:

 $C_5$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_2$ ;

 $X_{11}$  is selected from  $(CH_2)_n-Y$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring N, optionally including the hydroxyl group,  $C_s$ , and  $B_4$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ; n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 $R^2$  is aliphatic, wherein each  $R^2$  optionally comprises up to 2 substituents independently selected from  $R^1$ ,  $R^4$ , or  $R^5$ ;

 ${\tt R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\tt R}^1$ ,  ${\tt R}^2$ ,  ${\tt R}^4$  or  ${\tt R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^5SO_2N(R^5)_2$ ,  $N(OR^6)R^6$ ,  $N(OR^6)R^5$ ,  $N(OR^5)R^5$ ,  $N(OR^5)R^6$ ,  $P(O) (OR^6)N(R^6)_2$ ,  $P(O) (OR^6)N(R^5R^6)$ ,  $P(O) (OR^6)N(R^5)_2$ ,  $P(O) (OR^5)N(R^5R^6)$ ,  $P(O) (OR^5)N(R^6)_2$ ,  $P(O) (OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)_7$ 

 ${\rm R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\rm R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H, (C1-C6)-straight or branched alkyl, (C2-C6) straight or branched

alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $(CH_2)_n$ -Z;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , N-aliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R^8$ , COOH,  $C(0)O(-aliphatic)_3$ , or O-aliphatic; and

 ${\bf R}^{\bf 8}$  is an amino protecting group; provided that:

- (a) when  $C_5$  is H,  $X_{11}$  is H, ring N is 2-hydroxy-4-methoxyphenyl, then  $B_4$  is not 2-methylthiazol-4-yl;
- (b) when  $C_5$  is H,  $X_{11}$  is H, ring N is 2-hydroxy-4,5-dimethylphenyl, then  $B_4$  is not 2-methylthiazol-4-yl.
- 27. The method according to claim 26, wherein  $X_{11}$  and  $C_5$  are H.
  - 28. The method according to claim 27, wherein  $B_4$  is



- 29. The method according to claim 27, wherein ring N, together with the 2-hydroxy group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl, 2-hydroxy-5-methylsulfonylphenyl, 2-hydroxy-5-amidophenyl, 2-hydroxy-6-methoxyphenyl, 2-hydroxy-4,6-dimethylphenyl, 2-hydroxy-4,5-dimethylphenyl, 2-hydroxy-4-methylphenyl, or 2-hydroxy-4-fluorophenyl.
- 30. The method according to claim 1, wherein said compound has formula (VIII):

$$C_6$$
 $C_6$ 
 $C_6$ 

or a pharmaceutically acceptable salt thereof, wherein:  $B_5$  is optionally substituted aryl, heteroaryl, cycloaliphatic, or heterocyclyl;

 $C_6$  and  $X_{13}$  each is independently selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_2$ ;

 $X_{12}$  is selected from  $(CH_2)_n$ -Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ;

wherein each of ring L, including the hydroxyl group,  $C_s$ , and  $B_s$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Yis halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ :

 ${\bf R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3

substituents, independently selected from  $R^1$ ,  $R^2$ ,  $R^4$  or  $R^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^6$ ,  $S(0)R^5$ ,  $SO_2R^6$ ,  $SO_2R^5$ ,  $SO_2N(R^6)_2$ ,  $SO_2N(R^5)_2$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(O)(OR^6)_2$ ,  $P(O)(OR^5)_2$ , or  $P(O)(OR^6)(OR^5)$ ;

 $R^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  $R^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\rm R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\rm R}^7$  optionally comprising up to 2 substituents independently chosen from H, (C1-C6)-straight or branched alkyl, (C2-C6) straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or (CH2)\_n-Z;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , N-aliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R^8$ , COOH,  $C(0)O(-aliphatic)_3$ , or O-aliphatic; and  $R^8$  is an amino protecting group.

- 31. The method according to claim 30, wherein  $X_{12}$ ,  $X_{13}$ , and  $C_6$  is phenyl.
- 32. The method according claim 31, wherein  $B_5$  is optionally substituted phenyl.
- 33. The method according to claim 31, wherein B<sub>5</sub> is selected from 2-methoxyphenyl, 3-methoxyphenyl, 4methoxyphenyl, 2,4-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxy-phenyl, 4-hydroxyphenyl, 3hydroxyphenyl, 2-hydroxyphenyl, 2-chloro-phenyl, 4chloro-phenyl, 2,6-dichloro-phenyl, 4-fluoro-phenyl, 3fluoro-phenyl, 2-fluoro-phenyl, 3,4-difluoro-phenyl, 2,6difluoro-phenyl, phenyl, 4-butoxy-phenyl, 2-ethoxyphenyl, 2-nitro-phenyl, 3-nitro-phenyl, 4-nitro-phenyl, 2-trifluoromethoxy-phenyl, 3-trifluoromethoxy-phenyl, 4trifluoromethoxy-phenyl, 2-trifluoromethyl-phenyl, 4trifluoromethyl-phenyl, 5-(3-trifluoromethyl-phenyl)furan-2-y1, 4-benzyloxy-phenyl, 3-methyl-4trifluoromethyl-phenyl, 2-methyl-phenyl, 3-methyl-phenyl, 4-methyl-phenyl, benzo[1,3]dioxol-5-yl, pyridin-3-yl, pyridin-4-yl, thiophen-2-yl, 2-pyridin-4-yl-phenyl, 2benzonitrile, 1-phenyl-4-trifluoromethyl-1H-pyrazolyl, 4bromophenyl, 2-methylsulfanyl-pyridin-3-yl, 2ethylsulfanyl-pyridin-3-yl, 2-propylsulfanyl-pyridin-3yl, 2-benzoic acid methyl ester, N-3-phenyl-acetamide, 2methyl-5-trifluoromethyl-furan-3-yl, 5-Methyl-2trifluoromethyl-furan-3-yl), 5-tert-butyl-2-methyl-furan-

3-yl, 3-chloro-4-fluoro-phenyl, 2,3-dimethyl-phenyl, 2,6difluoro-3-methyl-phenyl, 2-(4-nitro-phenyl)-5trifluoromethyl-pyrazolyl-5-yl, 4-tert-butyl-phenyl, 4dimethylamino-phenyl, cyclohexyl, 4-methoxy-3trifluoromethyl-phenyl; 2-methyl-3-trifluoromethylphenyl, 2-amino-phenyl, 5-(4-methanesulfonyl-phenyl)furan-2-yl, 2-phenoxy-pyridin-3-yl; 2difluoromethylsulfanyl-phenyl, N,N-diethyl-4benzenesulfonamide, 2-phenoxy-phenyl, 2,4,6-trimethylphenyl, 2-(4-chloro-phenylsulfanyl)-pyridin-3-yl], 5-chloro-2-trifluoromethyl-phenyl, 5-methyl-2trifluoromethyl-furan-3-yl, 5-(2,3-dihydro-benzofuran-6yl)-4-methyl-thiazol-2-yl, 2-fluoro-4-trifluoromethylphenyl, 2-fluoro-4-methoxy-phenyl, 2-ethoxy-pyridin-3-yl, 5-methyl-isoxazol-3-yl), 4-benzoic acid, 2,2-difluorobenzo[1,3]dioxol-5-yl, benzoic acid 2-benzyl ester, 5-benzo[1,3]dioxol-4-yl.

34. The method according to claim 1, wherein said compound has formula (IX):

$$C_7$$
 $OH$ 
 $N$ 
 $N$ 
 $N$ 
 $B_6$ 
 $X_{15}$ 
 $X_{14}$ 
 $X_{15}$ 
 $X_{15}$ 
 $X_{15}$ 

or a pharmaceutically acceptable salt thereof, wherein:  $B_6$  is phenyl;

C, is selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_2$ ;

 $X_{14}$  is  $R^2$ ,  $R^3$ ,  $NHR^2$ ,  $NHR^3$ ,  $NR^2R^3$ ,  $N(R^2)_2$ ;  $X_{15}$  is selected from  $(CH_2)_n$ -Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring K, optionally including the hydroxyl group,  $C_7$ , and  $B_6$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ :

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_{n}-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\tt R}^2$  is aliphatic, wherein each  ${\tt R}^2$  optionally comprises up to 2 substituents independently selected from  ${\tt R}^1,~{\tt R}^4,~{\tt or}~{\tt R}^5;$ 

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1$ ,  ${\rm R}^2$ ,  ${\rm R}^4$  or  ${\rm R}^5$ ;

 $R^4 \text{ is } OR^5, OR^6, OC(0)R^6, OC(0)R^5, OC(0)OR^6, \\ OC(0)OR^5, OC(0)N(R^6)_2, OC(0)N(R^5)_2, OC(0)N(R^6R^5), \\ OP(0)(OR^6)_2, OP(0)(OR^5)_2, OP(0)(OR^6)(OR^5), SR^6, SR^5, \\ S(0)R^6, S(0)R^5, SO_2R^6, SO_2R^5, SO_2N(R^6)_2, SO_2N(R^5)_2, \\ SO_2NR^5R^6, SO_3R^6, SO_3R^5, C(0)R^5, C(0)OR^5, C(0)R^6, C(0)OR^6, \\ C(0)N(R^6)_2, C(0)N(R^5)_2, C(0)N(R^5R^6), C(0)N(OR^6)R^6, \\ C(0)N(OR^5)R^6, C(0)N(OR^6)R^5, C(0)N(OR^5)R^5, C(NOR^6)R^6, \\ C(NOR^6)R^5, C(NOR^5)R^6, C(NOR^5)R^5, N(R^6)_2, N(R^5)_2, N(R^5R^6), \\ NR^5C(0)R^5, NR^6C(0)R^6, NR^6C(0)R^5, NR^6C(0)OR^6, NR^5C(0)OR^6, \\ NR^6C(0)N(R^5)_2, NR^5C(0)N(R^6)_2, NR^5C(0)NR^5R^6, \\ NR^6C(0)N(R^5)_2, NR^5C(0)N(R^6)_2, NR^5C(0)N(R^6)_2, NR^5C(0)N(R^6)_2, NR^5C(0)N(R^6)_2$ 

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${
m R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${
m R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({
m C}_1-{
m C}_6)$  - straight or branched alkyl,  $({
m C}_2-{
m C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({
m CH}_2)_n-{
m Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $R^8$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

 ${\tt R}^{\tt 8}$  is an amino protecting group.

- $35\,.$  The method according to claim  $34\,,$  wherein  $X_{15}$  and  $C_7$  are phenyl.
- 36. The method according to claim 35, wherein  $X_{14}$  is selected from optionally substituted (C1-C6)aliphatic, aryl, NH(C1-C6)aliphatic, NH(aryl), or NH<sub>2</sub>. Preferred  $X_{14}$  include optionally substituted (C1-C4)-alkyl, phenyl, NH[(C1-C4)-alkyl], NH(phenyl), or NH<sub>2</sub>.
- 37. The method according to claim 36, wherein  $B_6$  is selected from 2-methoxyphenyl, 3-methoxyphenyl, 4-

methoxyphenyl, 2,4-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxy-phenyl, 4-hydroxyphenyl, 3hydroxyphenyl, 2-hydroxyphenyl, 2-chloro-phenyl, 4chloro-phenyl, 2,6-dichloro-phenyl, 4-fluoro-phenyl, 3fluoro-phenyl, 2-fluoro-phenyl, 3,4-difluoro-phenyl, 2,6difluoro-phenyl, phenyl, 4-butoxy-phenyl, 2-ethoxyphenyl, 2-nitro-phenyl, 3-nitro-phenyl, 4-nitro-phenyl, 2-trifluoromethoxyphenyl, 3-trifluoromethoxy-phenyl, 4-trifluoromethoxyphenyl, 2-trifluoromethyl-phenyl, 4-trifluoromethylphenyl, 5-(3-trifluoromethyl-phenyl)-furan-2-yl, 4-benzyloxy-phenyl, 3-methyl-4-trifluoromethyl-phenyl, 2-methyl-phenyl, 3-methyl-phenyl, 4-methyl-phenyl, benzo[1,3]dioxol-5-yl, pyridin-3-yl, pyridin-4-yl, 2-benzonitrile, 1-phenyl-4-trifluoromethyl-1H-pyrazolyl, 4-bromophenyl, 2-benzoic acid methyl ester, N-3-phenylacetamide, 3-chloro-4-fluoro-phenyl, 2,3-dimethyl-phenyl, 2,6-difluoro-3-methyl-phenyl, 4-tert-butyl-phenyl, 4dimethylamino-phenyl, 4-methoxy-3-trifluoromethyl-phenyl, 2-methyl-3-trifluoromethyl-phenyl, 2-amino-phenyl, 5-(4methanesulfonyl-phenyl)-furan-2-yl, 2-difluoromethyl sulfanyl-phenyl, N,N-diethyl-4-benzenesulfonamide, 2phenoxy-phenyl, 2,4,6-trimethyl-phenyl, 5-chloro-2trifluoromethyl-phenyl, 2-fluoro-4-trifluoromethylphenyl, 2-fluoro-4-methoxy-phenyl, 4-benzoic acid, 2,2difluoro-benzo[1,3]dioxol-5-yl, benzoic acid 2-benzyl ester.

38. The method according to claim 1, wherein said compound has formula (X):

or a pharmaceutically acceptable salt thereof; wherein:

 $C_8$  is selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)$ ,  $C(0)N(R^3)$ ;

 $X_{16}$  is selected from selected from (CH<sub>2</sub>)<sub>n</sub>-Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ;

 $x_{17}$  is CN, tetrazolyl,  $SO_2R^2$ ,  $SO_2R^3$ ,  $SO_2NHR^2$ ,  $SO_2NHR^3$ ,  $SO_2NR^2R^3$ ,  $SO_2N(R^2)_2$ ;

wherein each of ring G, optionally including the hydroxyl group,  $C_{\text{B}}$ , and ring H optionally comprises up to 4 substituents independently selected from  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$ ,  $R^{4}$ , or  $R^{5}$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\sf R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3

substituents, independently selected from  ${\rm R}^1$ ,  ${\rm R}^2$ ,  ${\rm R}^4$  or  ${\rm R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ .  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6) N(R^6)_2$ ,  $P(0) (OR^6) N(R^5R^6)$ ,  $P(0) (OR^6) N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\rm R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\rm R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $R^8$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

 $R^8$  is an amino protecting group.

- 39. The method according to claim 38, wherein  $X_{16}$  and  $C_{8}\ \mbox{are H}\,.$
- 40. The method according to claim 39, wherein  $X_{17}$  is CN,  $SO_2[(C1-C6)aliphatic]$ ,  $SO_2(phenyl)$ ,  $SO_2NH[(C1-C6)aliphatic]$ , or  $SO_2NH(phenyl)$ .
- 41. The method according to claim 1, wherein said ABC-transporter or a fragment thereof is *in vivo*.
- 42. The method according to claim 1, wherein said ABC-transporter or a fragment thereof is *in vitro*.
- 43. The method according to claim 41 or 42, wherein said ABC-transporter is CFTR.
- 44. A method of treating an ABC transporter mediated disease in a mammal, comprising the step of administering to said mammal a composition comprising the step of administering to said mammal a composition comprising a compound according to any one of claims 1-40.
- 45. The method according to claim 44, wherein said disease is selected from immunodeficiency disorder, inflammatory disease, allergic disease, autoimmune disease, destructive bone disorder, proliferative disorder, infectious disease or viral disease.

- 46. The method according to claim 45, wherein said disease is selected from Tangier's disease, stargardt disease 1, age related macular dystrophy 2, retinintis pigmentosa, dry eye disease, bare lymphocyte syndrome, PFIC-3, anemia, progressive intrahepatic cholestasis-2, Dublin-Johnson syndrome, Pseudoxanthoma elasticum, cystic fibrosis, familial persistent hyperinsulinemic hyproglycemia of infancy, adrenolecukodystrophy, sitosterolemia, chronic obstructive pulmonary disease, asthma, disseminated bronchiectasis, chronic pancreatitis, male infertility, emphysema, or pneumonia.
- 47. The method according to claim 46, wherein said disease is cystic fibrosis.
- 48. The method according to claim 45, wherein said disease is secretory diarrhea or polycystic kidney disease in a mammal.
  - 49. A pharmaceutical composition comprising:
    - (i) a compound according to claim 1;
    - (ii) a pharmaceutically acceptable carrier; and
- (iii) an additional agent selected from a mucolytic agent, bronchodialator, an anti-biotic, an anti-infective agent, an anti-inflammatory agent, CFTR corrector, or a nutritional agent.
- 50. A kit for use in measuring the activity of a ABC transporter or a fragment thereof in a biological sample in vitro or in vivo, comprising:
- (i) a composition comprising a compound of formula(I); and
  - (ii) instructions for:

- a) contacting the composition with the biological sample;
- b) measuring activity of said ABC transporter or a fragment thereof.
- 51. The kit according to claim 26, wherein aid ABC transporter is CFTR.

## 52. A compound of formula (II):

$$X_1$$
 $C_1$ 
 $F_3C$ 
 $B$ 
OH
 $(II)_{\tilde{F}}$ 

or a pharmaceutically acceptable salt thereof, wherein:

 $C_1$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_3$ ;

 $X_1$  is selected from halo,  $R^2$ ,  $CF_3$ , CN, COOH, COOR, C(O)R,  $C(O)NH_2$ ,  $C(O)NH_3$ , or  $C(O)N(R)_3$ ;

each R is independently  $R^2$  or  $R^3$ ;

wherein each of ring B, optionally including  $X_1$  and OH, and  $C_1$  optionally comprises up to 4 substituents, and ring A optionally comprises up to 3 substituents, wherein said substituents are independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN,  $NO_2$ ,  $CF_3$ ,  $CHF_2$ ,  $CH_2F$ ,

OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup> or OR<sup>6</sup>; or

two  $R^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1,~{\rm R}^2,~{\rm R}^4$  or  ${\rm R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^5SO_2N(R^5)_2$ ,  $N(OR^6)R^6$ ,  $N(OR^6)R^5$ ,  $N(OR^5)R^5$ ,  $N(OR^5)R^6$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(O)(OR^5)N(R^5R^6)$ ,  $P(O)(OR^5)N(R^6)_2$ ,  $P(O)(OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)_3$ ;

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic)R<sup>8</sup>, COOH, C(O)O(-aliphatic), or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- 53. The compound according to claim 52, wherein  $C_1$  is H.
- 54. The compound according to claim 53, wherein  $X_1$  is selected from (C1-C4)-aliphatic, or C(0)-NH<sub>2</sub>.
  - 55. A compound having formula (III):

$$X_2$$
 $HN-N$ 
 $OH$ 
 $(III)$ ;

or a pharmaceutically acceptable salt thereof, wherein:  $\begin{array}{c} x_2 \text{ is selected from halo, } R^2\text{, CF}_3\text{, CN, COOH, COOR}^2\text{,} \\ \text{COOR}^3\text{, C(O)R}^2\text{, C(O)R}^3\text{, C(O)NH}_2\text{, C(O)NHR, or C(O)NR}^2\text{;} \\ x_3 \text{ is selected from H, halo, CF}_3\text{, or NO}_2\text{;} \\ \text{each R is independently } R^2\text{ or } R^3\text{;} \\ R^1 \text{ is oxo, } R^6\text{ or } (\text{CH}_2)_n\text{-Y;} \\ \text{n is 0, 1 or 2;} \end{array}$ 

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(0)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup> or OR<sup>6</sup>; or

two  $R^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\sf R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\sf R}^1$ ,  ${\sf R}^2$ ,  ${\sf R}^4$  or  ${\sf R}^5$ ;

 $R^4$  'is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^{5})R^{6}$ ,  $C(0)N(0R^{6})R^{5}$ ,  $C(0)N(0R^{5})R^{5}$ ,  $C(NOR^{6})R^{6}$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(O) (OR^6)N(R^6)_2$ ,  $P(O) (OR^6)N(R^5R^6)$ ,  $P(O) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\rm R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\rm R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\bf R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\bf R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\bf C}_1-{\bf C}_6)$  - straight or branched alkyl,  $({\bf C}_2-{\bf C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\bf CH}_2)_n-{\bf Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N'(aliphatic) $\frac{1}{2}$ , N(aliphatic)R<sup>8</sup>, COOH, C(O)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group;
provided that:

- (i) when  $X_3$  is H, then  $X_2$  is not methyl, chloro, or bromo;
- (ii) when  $X_2$  is chloro, then  $X_3$  is not fluoro, chloro, or nitro;
- (iii)when  $X_2$  is methyl, then  $X_3$  is not nitro or chloro.
- 56. The compound according to claim 55, wherein said compound has one or more of the features selected from the group:
  - (a)  $X_3$  is halo,  $CF_3$ , or  $NO_2$ ; and
  - (b)  $X_2$  is halo,  $CF_3$ , methyl, ethyl, propyl, or  $CONH_2$ .
  - 57. A compound of formula (IV):

$$X_6$$
 $X_6$ 
 $X_7$ 
 $X_8$ 
 $X_8$ 
 $X_9$ 
 $X_9$ 

or a pharmaceutically acceptable salt thereof; wherein:

B, is selected from:

$$(a)$$
  $(b)$   $(c)$   $(d)$ 

 $\text{C}_2$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $\text{C(O)R}^2, \; \text{C(O)R}^3, \; \text{C(O)NH}_2, \; \text{C(O)NH} \; \text{R}^2, \; \text{C(O)NHR}^3, \; \text{C(O)N(R}^2)_2, \\ \text{C(O)N(R}^3)_2;$ 

each of  $X_4$ ,  $X_5$ ,  $X_6$ ,  $X_7$ , and  $X_8$  is selected from (CH<sub>2</sub>)<sub>n</sub>-Y, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> or R<sup>6</sup>;

wherein each of B, and C, optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_{n}-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1,~{\rm R}^2,~{\rm R}^4$  or  ${\rm R}^5;$ 

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^6$ ,  $S(0)R^5$ ,  $SO_2R^6$ ,  $SO_2R^5$ ,  $SO_2N(R^6)_2$ ,  $SO_2N(R^5)_2$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ;  $C(0)N(OR^6)R^6$ ,  $C(0)N(OR^5)R^6$ ,  $C(0)N(OR^6)R^5$ ,  $C(0)N(OR^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^5SO_2N(R^5)_2$ ,  $N(OR^6)R^6$ ,  $N(OR^6)R^5$ ,  $N(OR^5)R^5$ ,  $N(OR^5)R^6$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H, (C1-C6)-straight or branched alkyl, (C2-C6) straight or branched

alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $(CH_2)_n-Z$ ;

Z is selected from halo, CN,  $NO_2$ ,  $CF_3$ ,  $OCF_3$ , OH,  $SCHF_2$ , S-aliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , N-aliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R^8$ , COOH, C(0)O(-aliphatic), or O-aliphatic; and

 ${\bf R}^{\bf 8}$  is an amino protecting group; provided that:

(i) when  $B_2$  is structure (a),  $X_5$ ,  $X_6$ , and  $C_2$  are H, then  $X_4$  is not H, Cl, CH, or OCH,;

(ii) when  $B_2$  is structure (c),  $X_5$ ,  $X_6$ , and  $C_2$  is H, then  $X_4$  is not H or  $CH_3$ ;

(iii) when  $B_2$  is structure (a),  $X_4$  is Cl or  $CH_3$ ,  $X_5$  and  $C_2$  are H, then  $X_6$  is not  $NO_2$ , Cl, or Br;

(iv) when  $B_2$  is structure (a),  $X_4$  is C1,  $X_5$  and  $X_6$  are H, then  $C_2$  is not Ph, -C(0)CH3, -C(0)Ph, or -C(0)NHPh;

(v) when  $B_2$  is structure (a),  $X_4$  is  $CH_3$ ,  $X_5$  and  $X_6$  is H; then  $C_2$  is not Ph;

(vi) when  $B_2$  is structure (a),  $X_4$ ,  $X_5$ , and  $X_6$  is H, then  $C_2$  is not  $CH_3$ ,  $C(0)CH_3$ , or -C(0)-NHPh;

(vii) when  $B_2$  is structure (c),  $X_4$ ,  $X_5$ , and  $X_6$  is H, then  $C_2$  is not  $CH_3$  or  $C(O)CH_3$ ;

(viii) when  $B_2$  is structure (a),  $X_4$  is Cl,  $X_5$  is H,  $X_6$  is NO<sub>2</sub> or Br, then  $X_2$  is not Ph, C(O)CH<sub>3</sub>, or C(O)Ph.

58. The compound according to claim 57, wherein  $B_2$ 



 $59\,.$  The compound according to claim  $58\,,$  wherein  $X_8$  and  $C_2$  are H.

- 60. The compound according to claim 59, wherein said compound has one or more of the features selected from the group:
  - (a)  $B_2$  is:

5-(3'-trifluoromethylphenyl)-furan-2-yl;
5-trifluoromethyl-2-methyl-furan-3-yl;
5-t-butyl-2-methyl-furan-3-yl;
5-methyl-2-trifluoromethyl-furan-3-yl; or
5-(4'-methylsulfonylphenyl)-furan-2-yl;

- (b) C2 is H or phenyl;
- (c)  $X_4$  is halo, (C1-C4)alkyl, CF<sub>3</sub>, CN, or NO<sub>2</sub>;
- (d)  $X_5$ ,  $X_6$ , and  $X_7$  are H; and
- (e)  $X_8$  is H.
- 61. The compound according to claim 60, wherein X<sub>4</sub>, X<sub>5</sub>, X<sub>6</sub>, and X<sub>7</sub>, taken together with the hydroxyphenyl group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-fluorophenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl 2-hydroxy-5-methylsulfonylphenyl, or 2-hydroxy-5-amidophenyl.
  - 62. A compound of formula (V):

$$C_3$$
 $OH$ 
 $N$ 
 $Q$ 
 $Q$ 
 $Q$ 
 $(V)$ ;

or a pharmaceutically acceptable salt thereof; wherein:

C<sub>3</sub> is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2,\ C(0)R^3,\ C(0)NH_2,\ C(0)NH\ R^2,\ C(0)NHR^3,\ C(0)N(R^2)_2, \\ C(0)N(R^3)_2;$ 

X, is selected from  $(CH_2)_n-Y$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring P, optionally including the hydroxyl group, and ring Q optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1$ ,  ${\rm R}^2$ ,  ${\rm R}^4$  or  ${\rm R}^5$ ;

$$\begin{split} & \text{NR}^6\text{C}(0) \, \text{N}(\text{R}^5)_{\,2} \,, \ \text{NR}^5\text{C}(0) \, \text{N}(\text{R}^6)_{\,2} \,, \ \text{NR}^5\text{C}(0) \, \text{NR}^5\text{R}^6 \,, \\ & \text{NR}^5\text{C}(0) \, \text{N}(\text{R}^5)_{\,2} \,, \ \text{NR}^6\text{SO}_{\,2}\text{R}^6 \,, \ \text{NR}^6\text{SO}_{\,2}\text{R}^5 \,, \ \text{NR}^5\text{SO}_{\,2}\text{R}^5 \,, \\ & \text{NR}^6\text{SO}_{\,2}\text{N}(\text{R}^6)_{\,2} \,, \ \text{NR}^6\text{SO}_{\,2}\text{NR}^5\text{R}^6 \,, \ \text{NR}^6\text{SO}_{\,2}\text{N}(\text{R}^5)_{\,2} \,, \ \text{NR}^5\text{SO}_{\,2}\text{NR}^5\text{R}^6 \,, \\ & \text{NR}^5\text{SO}_{\,2}\text{N}(\text{R}^5)_{\,2} \,, \ \text{N}(\text{OR}^6) \, \text{R}^6 \,, \ \text{N}(\text{OR}^6) \, \text{R}^5 \,, \ \text{N}(\text{OR}^5) \, \text{R}^5 \,, \ \text{N}(\text{OR}^5) \, \text{R}^6 \,, \\ & \text{P}(\text{O}) \, (\text{OR}^6) \, \text{N}(\text{R}^6)_{\,2} \,, \ \text{P}(\text{O}) \, (\text{OR}^6) \, \text{N}(\text{R}^5\text{R}^6) \,, \ \text{P}(\text{O}) \, (\text{OR}^6) \, \text{N}(\text{R}^5)_{\,2} \,, \\ & \text{P}(\text{O}) \, (\text{OR}^5) \, \text{N}(\text{R}^5\text{R}^6) \,, \ \text{P}(\text{O}) \, (\text{OR}^5) \, \text{N}(\text{R}^6)_{\,2} \,, \ \text{P}(\text{O}) \, (\text{OR}^5) \, \text{N}(\text{R}^5)_{\,2} \,, \\ & \text{P}(\text{O}) \, (\text{OR}^6)_{\,2} \,, \ \text{P}(\text{O}) \, (\text{OR}^5)_{\,2} \,, \ \text{Or} \ \text{P}(\text{O}) \, (\text{OR}^6) \, (\text{OR}^5) \,; \end{split}$$

 $$\rm R^{5}$$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  $\rm R^{1}$  substituents;

 $\mathbb{R}^6$  is H or aliphatic, wherein  $\mathbb{R}^6$  optionally comprises a  $\mathbb{R}^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $^{8}$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- 63. The compound according to claim 62, wherein  $X_9$  and  $C_7$  are H.
- 64. The method according to claim 63, wherein, said compound has one or more of the features selected from the group:
  - (a)  $C_3$  is H or phenyl;

- (b) ring Q is isoxazol-3-yl or 5-methyl-isoxazol-3yl;
- (c)  $X_9$  is H; and
- (d) ring P together with the hydroxy substituent is selected from:
  - 2-hydroxy-5-methoxyphenyl,
  - 2-hydroxy-5-methylphenyl,
  - 2-hydroxy-5-fluorophenyl,
  - 2-hydroxy-5-ethylphenyl,
  - 2-hydroxy-5-propylphenyl,
  - 2-hydroxy-5-chlorophenyl,
  - 2-hydroxy-5-isopropylphenyl,
  - 2-hydroxy-5-tetrazol-2H-3-ylphenyl,
  - 2-hydroxy-5-bromophenyl,
  - 2-hydroxy-5-methylsulfonylphenyl, or
  - 2-hydroxy-5-amidophenyl.
- 65. A compound of formula (VI):

$$C_4$$
 $M$ 
 $X_{10}$ 
 $(VI)$ ;

or a pharmaceutically acceptable salt thereof; wherein:

 $B_3$  is selected from:

$$N$$
 $N$ 
 $C_4$ 
 $C_4$ 
 $C_4$ 
 $C_4$ 
 $C_4$ 

 $C_4$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_2$ ;

 $X_{10}$  is selected from  $(CH_2)_{\,\mathrm{n}}-Y$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring M, optionally including the hydroxyl group,  $C_4$ , and  $B_3$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ :

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ; n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 $\rm R^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  $\rm R^1$ ,  $\rm R^2$ ,  $\rm R^4$  or  $\rm R^5$ ;

 $R^4 \text{ is } OR^5, \ OR^6, \ OC(O)R^6, \ OC(O)R^5, \ OC(O)OR^6, \\ OC(O)OR^5, \ OC(O)N(R^6)_2, \ OC(O)N(R^5)_2, \ OC(O)N(R^6R^5), \\ OP(O)(OR^6)_2, \ OP(O)(OR^5)_2, \ OP(O)(OR^6)(OR^5), \ SR^6, \ SR^5, \\ S(O)R^6, \ S(O)R^5, \ SO_2R^6, \ SO_2R^5, \ SO_2N(R^6)_2, \ SO_2N(R^5)_2, \\ SO_2NR^5R^6, \ SO_3R^6, \ SO_3R^5, \ C(O)R^5, \ C(O)OR^5, \ C(O)R^6, \ C(O)OR^6, \\ C(O)N(R^6)_2, \ C(O)N(R^5)_2, \ C(O)N(R^5R^6), \ C(O)N(OR^6)R^6, \\ C(O)N(OR^5)R^6, \ C(O)N(OR^6)R^5, \ C(O)N(OR^5)R^5, \ C(NOR^6)R^6, \\ C(NOR^6)R^5, \ C(NOR^5)R^6, \ C(NOR^5)R^5, \ N(R^6)_2, \ N(R^5)_2, \ N(R^5R^6), \\ NR^5C(O)R^5, \ NR^6C(O)R^6, \ NR^6C(O)R^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)NR^5R^6, \\ NR^6C(O)OR^5, \ NR^5C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)NR^5R^6, \\ NR^6C(O)OR^5, \ NR^5C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)NR^5R^6, \\ NR^6C(O)OR^5, \ NR^6C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)NR^5R^6, \\ NR^6C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)NR^5R^6, \\ NR^6C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)N(R^6)_2, \ NR^6C(O)N(R^6)_2, \\ NR^6C(O)OR^5, \ NR^6C(O)N(R^6)_2, \ NR^6C($ 

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)-$  straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z};$ 

Z is selected from halo, CN,  $NO_2$ ,  $CF_3$ ,  $OCF_3$ , OH, Saliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , Naliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R$ , N(aliphati

R<sup>8</sup> is an amino protecting group.

66. The compound according to claim 65, wherein B,

is optionally substituted ring 
$$N-C_4$$

67. The compound according to claim 66, wherein, ring M, together with the 2-hydroxy group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-fluorophenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl, 2-hydroxy-5-methyl sulfonylphenyl, or 2-hydroxy-5-amidophenyl.

## 68. A compound of formula (VII):

or a pharmaceutically acceptable salt thereof; wherein:

B<sub>4</sub> is selected from:

 $\text{C}_{\scriptscriptstyle{5}}$  is H, aryl, heterocyclic, heteroaryl, aliphatic,  $\text{C(O)R}^2, \; \text{C(O)R}^3, \; \text{C(O)NH}_2, \; \text{C(O)NH} \; \text{R}^2, \; \text{C(O)NHR}^3, \; \text{C(O)N(R}^2)_2, \\ \text{C(O)N(R}^3)_2;$ 

 $X_{11}$  is selected from  $(CH_2)_{\,n}^{-}Y$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring N, optionally including the hydroxyl group,  $C_s$ , and  $B_4$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n-Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(O)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\tt R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\tt R}^1,\ {\tt R}^2,\ {\tt R}^4$  or  ${\tt R}^5;$ 

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^{6})_{2}$ ,  $OP(O)(OR^{5})_{2}$ ,  $OP(O)(OR^{6})(OR^{5})$ ,  $SR^{6}$ ,  $SR^{5}$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^{6}SO_{2}N(R^{6})_{2}$ ,  $NR^{6}SO_{2}NR^{5}R^{6}$ ,  $NR^{6}SO_{2}N(R^{5})_{2}$ ,  $NR^{5}SO_{2}NR^{5}R^{6}$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(O) (OR^5)N(R^5R^6)$ ,  $P(O) (OR^5)N(R^6)_2$ ,  $P(O) (OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)_7$ 

 ${\tt R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 $R^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  $R^7$  optionally comprising up to 2 substituents independently chosen from H,  $(C_1-C_6)$ -straight or branched alkyl,  $(C_2-C_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $(CH_2)_n-Z$ ;

Z is selected from halo, CN,  $NO_2$ ,  $CF_3$ ,  $OCF_3$ , OH, Saliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , Naliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R$ , COOH, C(0)O(-aliphatic), or O-aliphatic; and

R<sup>8</sup> is an amino protecting group; provided that:

- (a) when  $C_5$  is H,  $X_{11}$  is H, ring N is 2-hydroxy-4-methoxyphenyl, then  $B_4$  is not 2-methylthiazol-4-yl;
- (b) when  $C_s$  is H,  $X_{11}$  is H, ring N is 2-hydroxy-4,5-dimethylphenyl, then  $B_4$  is not 2-methylthiazol-4-yl.
- 69. The compound according to claim 68, wherein  $\ensuremath{X_{11}}$  and  $\ensuremath{C_5}$  are H.
  - 70. The compound according to claim 69, wherein  $B_4$



is optionally substituted

71. The compound according to claim 70, wherein ring N, together with the 2-hydroxy group, is selected from 2-hydroxy-5-methoxyphenyl, 2-hydroxy-5-methylphenyl, 2-hydroxy-5-fluorophenyl, 2-hydroxy-5-ethylphenyl, 2-hydroxy-5-propylphenyl, 2-hydroxy-5-chlorophenyl, 2-

hydroxy-5-isopropylphenyl, 2-hydroxy-5-tetrazol-2H-3-ylphenyl, 2-hydroxy-5-bromophenyl, 2-hydroxy-5-methylsulfonylphenyl, 2-hydroxy-5-amidophenyl, 2-hydroxy-6-methoxyphenyl, 2-hydroxy-4,6-dimethylphenyl, 2-hydroxy-4,5-dimethylphenyl, 2-hydroxy-4-methylphenyl, or 2-hydroxy-4-fluorophenyl.

## 72. A compound of formula (VIII):

or a pharmaceutically acceptable salt thereof, wherein:

 $B_5$  is optionally substituted aryl, heteroaryl, cycloaliphatic, or heterocyclyl;

 $C_6$  and  $X_{13}$  each is independently selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ , C(0)NH, C(0)NH  $R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)$ ,  $C(0)N(R^3)$ ;

 $X_{12}$  is selected from  $(CH_2)_n$ -Y,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  or  $R^6$ ; wherein each of ring L, including the hydroxyl group,  $C_6$ , and  $B_5$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n$ -Y; n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH, SCHF<sub>2</sub>, SR<sup>6</sup>, S(0)R<sup>6</sup>, SO<sub>2</sub>R<sup>6</sup>, NH<sub>2</sub>, NHR<sup>6</sup>, N(R<sup>6</sup>)<sub>2</sub>, NR<sup>6</sup>R<sup>8</sup>, COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1$ ,  ${\rm R}^2$ ,  ${\rm R}^4$  or  ${\rm R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(0)R^5$ ,  $C(0)OR^5$ ,  $C(0)R^6$ ,  $C(0)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^{5})R^{6}$ ,  $C(0)N(0R^{6})R^{5}$ ,  $C(0)N(0R^{5})R^{5}$ ,  $C(NOR^{6})R^{6}$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0) (OR^6)_2$ ,  $P(0) (OR^5)_2$ , or  $P(0) (OR^6) (OR^5)$ ;

 ${\bf R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\bf R}^1$  substituents;

 ${\tt R}^6$  is H or aliphatic, wherein  ${\tt R}^6$  optionally comprises a  ${\tt R}^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(0)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $^{8}$ , COOH, C(0)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

- 73. The compound according to claim 72, wherein  $X_{12}$ ,  $X_{13}$ , and  $C_6$  is phenyl.
- 74. The compound according claim 73, wherein  $B_5$  is optionally substituted phenyl.
- The compound according to claim 74, wherein  $B_5$ is selected from 2-methoxyphenyl, 3-methoxyphenyl, 4methoxyphenyl, 2,4-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxy-phenyl, 4-hydroxyphenyl, 3hydroxyphenyl, 2-hydroxyphenyl, 2-chloro-phenyl, 4chloro-phenyl, 2,6-dichloro-phenyl, 4-fluoro-phenyl, 3fluoro-phenyl, 2-fluoro-phenyl, 3,4-difluoro-phenyl, 2,6difluoro-phenyl, phenyl, 4-butoxy-phenyl, 2-ethoxyphenyl, 2-nitro-phenyl, 3-nitro-phenyl, 4-nitro-phenyl, 2-trifluoromethoxy-phenyl, 3-trifluoromethoxy-phenyl, 4trifluoromethoxy-phenyl, 2-trifluoromethyl-phenyl, 4trifluoromethyl-phenyl, 5-(3-trifluoromethyl-phenyl)furan-2-yl, 4-benzyloxy-phenyl, 3-methyl-4trifluoromethyl-phenyl, 2-methyl-phenyl, 3-methyl-phenyl, 4-methyl-phenyl, benzo[1,3]dioxol-5-yl, pyridin-3-yl, pyridin-4-yl, thiophen-2-yl, 2-pyridin-4-yl-phenyl, 2-

benzonitrile, 1-phenyl-4-trifluoromethyl-1H-pyrazolyl, 4bromophenyl, 2-methylsulfanyl-pyridin-3-yl, 2ethylsulfanyl-pyridin-3-yl, 2-propylsulfanyl-pyridin-3yl, 2-benzoic acid methyl ester, N-3-phenyl-acetamide, 2methyl-5-trifluoromethyl-furan-3-yl, 5-Methyl-2trifluoromethyl-furan-3-yl), 5-tert-butyl-2-methyl-furan-3-yl, 3-chloro-4-fluoro-phenyl, 2,3-dimethyl-phenyl, 2,6difluoro-3-methyl-phenyl, 2-(4-nitro-phenyl)-5trifluoromethyl-pyrazolyl-5-yl, 4-tert-butyl-phenyl, 4dimethylamino-phenyl, cyclohexyl, 4-methoxy-3trifluoromethyl-phenyl; 2-methyl-3-trifluoromethylphenyl, 2-amino-phenyl, 5-(4-methanesulfonyl-phenyl)furan-2-yl, 2-phenoxy-pyridin-3-yl; 2difluoromethylsulfanyl-phenyl, N,N-diethyl-4benzenesulfonamide, 2-phenoxy-phenyl, 2,4,6-trimethylphenyl, 2-(4-chloro-phenylsulfanyl)-pyridin-3-yl], 5-chloro-2-trifluoromethyl-phenyl, 5-methyl-2trifluoromethyl-furan-3-yl, 5-(2,3-dihydro-benzofuran-6yl)-4-methyl-thiazol-2-yl, 2-fluoro-4-trifluoromethylphenyl, 2-fluoro-4-methoxy-phenyl, 2-ethoxy-pyridin-3-yl, 5-methyl-isoxazol-3-yl), 4-benzoic acid, 2,2-difluorobenzo[1,3]dioxol-5-yl, benzoic acid 2-benzyl ester, 5-benzo[1,3]dioxol-4-yl.

## 76. A compound of formula (IX):

or a pharmaceutically acceptable salt thereof, wherein:  $B_6$  is phenyl;

C, is selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_2$ ,  $C(0)N(R^3)_3$ ;

 $\mathrm{X_{14}}$  is  $\mathrm{R^2}$ ,  $\mathrm{R^3}$ ,  $\mathrm{NHR^2}$ ,  $\mathrm{NHR^3}$ ,  $\mathrm{NR^2R^3}$ ,  $\mathrm{N(R^2)_2}$ ;

 $\rm X_{15}\,is$  selected from (CH<sub>2</sub>)<sub>n</sub>-Y, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> or R<sup>6</sup>;

wherein each of ring K, optionally including the hydroxyl group,  $C_7$ , and  $B_6$  optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n - Y$ ;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH,  $SCHF_2, SR^6, S(0)R^6, SO_2R^6, NH_2, NHR^6, N(R^6)_2, NR^6R^8,$  COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two  $\mathbb{R}^1$  on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 ${\rm R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from  ${\rm R}^1$ ,  ${\rm R}^2$ ,  ${\rm R}^4$  or  ${\rm R}^5$ :

 $C(NOR^{6})R^{5}, \ C(NOR^{5})R^{6}, \ C(NOR^{5})R^{5}, \ N(R^{6})_{2}, \ N(R^{5})_{2}, \ N(R^{5}R^{6}), \\ NR^{5}C(O)R^{5}, \ NR^{6}C(O)R^{6}, \ NR^{6}C(O)R^{5}, \ NR^{6}C(O)OR^{6}, \ NR^{5}C(O)OR^{6}, \\ NR^{6}C(O)OR^{5}, \ NR^{5}C(O)OR^{5}, \ NR^{6}C(O)N(R^{6})_{2}, \ NR^{6}C(O)NR^{5}R^{6}, \\ NR^{6}C(O)N(R^{5})_{2}, \ NR^{5}C(O)N(R^{6})_{2}, \ NR^{5}C(O)NR^{5}R^{6}, \\ NR^{5}C(O)N(R^{5})_{2}, \ NR^{6}SO_{2}R^{6}, \ NR^{6}SO_{2}R^{5}, \ NR^{5}SO_{2}R^{5}, \\ NR^{6}SO_{2}N(R^{6})_{2}, \ NR^{6}SO_{2}NR^{5}R^{6}, \ NR^{6}SO_{2}N(R^{5})_{2}, \ NR^{5}SO_{2}NR^{5}R^{6}, \\ NR^{5}SO_{2}N(R^{5})_{2}, \ N(OR^{6})R^{6}, \ N(OR^{6})R^{5}, \ N(OR^{5})R^{5}, \ N(OR^{5})R^{6}, \\ P(O)(OR^{6})N(R^{6})_{2}, \ P(O)(OR^{6})N(R^{5}R^{6}), \ P(O)(OR^{5})N(R^{5})_{2}, \\ P(O)(OR^{5})N(R^{5}R^{6}), \ P(O)(OR^{5})N(R^{6})_{2}, \ P(O)(OR^{5}), \\ P(O)(OR^{6})_{2}, \ P(O)(OR^{5})_{2}, \ Or \ P(O)(OR^{6})(OR^{5}); \\ P(O)(OR^{6})_{2}, \ P(O)(OR^{6})_{2}, \ Or \ P(O)(OR^{6})(OR^{5}); \\ P(O)(OR^{6})_{2}, \ P(O)(OR^{6})_{2}, \ Or \ P(O)(OR^{6})(OR^{6}); \\ P(O)(OR^{6})_{2}, \ P(O)(OR^{6})_{2}, \ OR$ 

 ${\tt R}^{\tt 5}$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\tt R}^{\tt 1}$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN, NO<sub>2</sub>, CF<sub>3</sub>, OCF<sub>3</sub>, OH, S-aliphatic, S(O)-aliphatic, SO<sub>2</sub>-aliphatic, NH<sub>2</sub>, N-aliphatic, N(aliphatic)<sub>2</sub>, N(aliphatic) $R^8$ , COOH, C(O)O(-aliphatic, or O-aliphatic; and

R<sup>8</sup> is an amino protecting group.

77. The compound according to claim 76, wherein  $X_{15}$  and  $C_7$  are phenyl.

- 78. The compound according to claim 77, wherein  $X_{14}$  is selected from optionally substituted (C1-C4)-alkyl, phenyl, NH[(C1-C4)-alkyl], NH(phenyl), or NH<sub>2</sub>.
- The compound according to claim 78, wherein B6 is selected from 2-methoxyphenyl, 3-methoxyphenyl, 4methoxyphenyl, 2,4-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3,5-dimethoxy-phenyl, 4-hydroxyphenyl, 3hydroxyphenyl, 2-hydroxyphenyl, 2-chloro-phenyl, 4chloro-phenyl, 2,6-dichloro-phenyl, 4-fluoro-phenyl, 3fluoro-phenyl, 2-fluoro-phenyl, 3,4-difluoro-phenyl, 2,6difluoro-phenyl, phenyl, 4-butoxy-phenyl, 2-ethoxyphenyl, 2-nitro-phenyl, 3-nitro-phenyl, 4-nitro-phenyl, 2-trifluoromethoxy-phenyl, 3-trifluoromethoxy-phenyl, 4trifluoromethoxy-phenyl, 2-trifluoromethyl-phenyl, 4trifluoromethyl-phenyl, 5-(3-trifluoromethyl-phenyl)furan-2-yl, 4-benzyloxy-phenyl, 3-methyl-4trifluoromethyl-phenyl, 2-methyl-phenyl, 3-methyl-phenyl, 4-methyl-phenyl, benzo[1,3]dioxol-5-yl, pyridin-3-yl, pyridin-4-yl, 2-benzonitrile, 1-phenyl-4-trifluoromethyl-1H-pyrazolyl, 4-bromophenyl, 2-benzoic acid methyl ester, N-3-phenyl-acetamide, 3-chloro-4-fluoro-phenyl, 2,3dimethyl-phenyl, 2,6-difluoro-3-methyl-phenyl, 4-tertbutyl-phenyl, 4-dimethylamino-phenyl, 4-methoxy-3trifluoromethyl-phenyl, 2-methyl-3-trifluoromethylphenyl, 2-amino-phenyl, 5-(4-methanesulfonyl-phenyl)furan-2-yl, 2-difluoromethyl sulfanyl-phenyl, N,Ndiethyl-4-benzenesulfonamide, 2-phenoxy-phenyl, 2,4,6trimethyl-phenyl, 5-chloro-2-trifluoromethyl-phenyl, 2fluoro-4-trifluoromethyl-phenyl, 2-fluoro-4-methoxyphenyl, 4-benzoic acid, 2,2-difluoro-benzo[1,3]dioxol-5yl, benzoic acid 2-benzyl ester.
  - 80. A compound of formula (X):

or a pharmaceutically acceptable salt thereof; wherein:

 $C_8$  is selected from H, aryl, heterocyclic, heteroaryl, aliphatic,  $C(0)R^2$ ,  $C(0)R^3$ ,  $C(0)NH_2$ ,  $C(0)NH R^2$ ,  $C(0)NHR^3$ ,  $C(0)N(R^2)_3$ ,  $C(0)N(R^3)_3$ ;

 $\rm X_{16}$  is selected from selected from (CH<sub>2</sub>)<sub>n</sub>-Y, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> or R<sup>6</sup>;

 $\rm X_1$ , is CN, tetrazoly1,  $\rm SO_2R^2$ ,  $\rm SO_2R^3$ ,  $\rm SO_2NHR^2$ ,  $\rm SO_2NHR^3$ ,  $\rm SO_2NR^2R^3$ ,  $\rm SO_2N(R^2)_2$ ;

wherein each of ring G, optionally including the hydroxyl group,  $C_s$ , and ring H optionally comprises up to 4 substituents independently selected from  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ , or  $R^5$ ;

 $R^1$  is oxo,  $R^6$  or  $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Y is halo, CN, NO<sub>2</sub>, CHF<sub>2</sub>, CH<sub>2</sub>F, CF<sub>3</sub>, OCF<sub>3</sub>, OH,  $SCHF_2, SR^6, S(0)R^6, SO_2R^6, NH_2, NHR^6, N(R^6)_2, NR^6R^8,$  COOH, COOR<sup>6</sup>, or OR<sup>6</sup>; or

two R<sup>1</sup> on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$  is aliphatic, wherein each  ${\bf R}^2$  optionally comprises up to 2 substituents independently selected from  ${\bf R}^1$ ,  ${\bf R}^4$ , or  ${\bf R}^5$ ;

 $\mathbb{R}^3$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3

substituents, independently selected from  $\mathbb{R}^1$ ,  $\mathbb{R}^2$ ,  $\mathbb{R}^4$  or  $\mathbb{R}^5$ ;

 $R^4$  is  $OR^5$ ,  $OR^6$ ,  $OC(O)R^6$ ,  $OC(O)R^5$ ,  $OC(O)OR^6$ ,  $OC(0)OR^5$ ,  $OC(0)N(R^6)_2$ ,  $OC(0)N(R^5)_2$ ,  $OC(0)N(R^6R^5)$ ,  $OP(O)(OR^6)_2$ ,  $OP(O)(OR^5)_2$ ,  $OP(O)(OR^6)(OR^5)$ ,  $SR^6$ ,  $SR^5$ ,  $S(0)R^{6}$ ,  $S(0)R^{5}$ ,  $SO_{2}R^{6}$ ,  $SO_{2}R^{5}$ ,  $SO_{2}N(R^{6})_{2}$ ,  $SO_{2}N(R^{5})_{2}$ ,  $SO_2NR^5R^6$ ,  $SO_3R^6$ ,  $SO_3R^5$ ,  $C(O)R^5$ ,  $C(O)OR^5$ ,  $C(O)R^6$ ,  $C(O)OR^6$ ,  $C(0)N(R^6)_2$ ,  $C(0)N(R^5)_2$ ,  $C(0)N(R^5R^6)$ ,  $C(0)N(OR^6)R^6$ ,  $C(0)N(0R^5)R^6$ ,  $C(0)N(0R^6)R^5$ ,  $C(0)N(0R^5)R^5$ ,  $C(NOR^6)R^6$ ,  $C(NOR^6)R^5$ ,  $C(NOR^5)R^6$ ,  $C(NOR^5)R^5$ ,  $N(R^6)_2$ ,  $N(R^5)_2$ ,  $N(R^5R^6)$ ,  $NR^{5}C(0)R^{5}$ ,  $NR^{6}C(0)R^{6}$ ,  $NR^{6}C(0)R^{5}$ ,  $NR^{6}C(0)OR^{6}$ ,  $NR^{5}C(0)OR^{6}$ ,  $NR^{6}C(0)OR^{5}$ ,  $NR^{5}C(0)OR^{5}$ ,  $NR^{6}C(0)N(R^{6})_{2}$ ,  $NR^{6}C(0)NR^{5}R^{6}$ ,  $NR^{6}C(0)N(R^{5})_{2}$ ,  $NR^{5}C(0)N(R^{6})_{2}$ ,  $NR^{5}C(0)NR^{5}R^{6}$ ,  $NR^{5}C(0)N(R^{5})_{2}$ ,  $NR^{6}SO_{2}R^{6}$ ,  $NR^{6}SO_{2}R^{5}$ ,  $NR^{5}SO_{2}R^{5}$ ,  $NR^6SO_2N(R^6)_2$ ,  $NR^6SO_2NR^5R^6$ ,  $NR^6SO_2N(R^5)_2$ ,  $NR^5SO_2NR^5R^6$ ,  $NR^{5}SO_{2}N(R^{5})_{2}$ ,  $N(OR^{6})R^{6}$ ,  $N(OR^{6})R^{5}$ ,  $N(OR^{5})R^{5}$ ,  $N(OR^{5})R^{6}$ ,  $P(0) (OR^6)N(R^6)_2$ ,  $P(0) (OR^6)N(R^5R^6)$ ,  $P(0) (OR^6)N(R^5)_2$ ,  $P(0) (OR^5)N(R^5R^6)$ ,  $P(0) (OR^5)N(R^6)_2$ ,  $P(0) (OR^5)N(R^5)_2$ ,  $P(0)(OR^6)_2$ ,  $P(0)(OR^5)_2$ , or  $P(0)(OR^6)(OR^5)$ ;

 ${\bf R}^5$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3  ${\bf R}^1$  substituents;

 $R^6$  is H or aliphatic, wherein  $R^6$  optionally comprises a  $R^7$  substituent;

 ${\tt R}^7$  is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each  ${\tt R}^7$  optionally comprising up to 2 substituents independently chosen from H,  $({\tt C}_1-{\tt C}_6)$  - straight or branched alkyl,  $({\tt C}_2-{\tt C}_6)$  straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or  $({\tt CH}_2)_n-{\tt Z}$ ;

Z is selected from halo, CN,  $NO_2$ ,  $CF_3$ ,  $OCF_3$ , OH, Saliphatic, S(0)-aliphatic,  $SO_2$ -aliphatic,  $NH_2$ , Naliphatic,  $N(aliphatic)_2$ ,  $N(aliphatic)_R$ , N(aliphati

R<sup>8</sup> is an amino protecting group.

- 81. The compound according to claim 80, wherein  $X_{\rm 16}$  and  $C_{\rm 8}$  are H.
- 82. The compound according to claim 81, wherein  $X_{17}$  is CN,  $SO_2[(C1-C6)aliphatic]$ ,  $SO_2(phenyl)$ ,  $SO_2NH[(C1-C6)aliphatic]$ , or  $SO_2NH(phenyl)$ .
- 83. A compound selected from IA-6, IA-7, IA-20, IA-26, IA-31, IA-42, IA-50, IA-54, IA-61, IA-64, IA-76, IA-92, IA-95, or IA-107.
- 84. A pharmaceutical composition comprising a compound according to any one of claims 40-83, and a pharmaceutically acceptable carrier or adjuvant.