Neural Network model

Neural network layer

source: 'my note'

- Neural Network
 Layers: each neuron
 processes input
 features using logistic
 regression.
- Hidden Layer
 Computation:
 computes activation
 values based on input
 features, producing a
 vector of outputs.
- Output Layer: takes the activation vector from the hidden layer to generate the final prediction.
- Binary Prediction: A thresholding step can convert the output into a binary prediction (e.g., yes/no).

For l layers in the model, consider the prediction's simple model:

$$ec{x}^{[0]}
ightarrow ec{a}^{[1]}
ightarrow \cdots
ightarrow ec{a}^{[l-1]}
ightarrow lpha^{[l]}$$
 input layer $ec{a}^{[l]}
ightarrow ec{a}^{[l-1]}
ightarrow lpha^{[l]}$ output layer activation value $ec{a}^{[l]}
ightarrow ec{a}^{[l]}$

With $\vec{w}_i^{[l]}, b_i^{[l]}$ we can calculate the **activation value of layer** l, unit (**neutron**) j:

$$ec{w}_{j}^{[l]}, b_{j}^{[l]}
ightarrow a_{j}^{[l]} = g(ec{w}_{j}^{[l]} \cdot ec{a}^{[l-1]} + b_{j}^{[l]})$$

ullet $ec{a}^{[l-1]}:$ output of layer l-1 (previous layer)

$$\circ$$
 If $l-1=0:ec a^{[0]}=ec x$

- + $\vec{w}_j^{[l]}, b_j^{[l]}$: parameters w & b of layer l, unit j.
- $g : sigmoid \Rightarrow$ "activation function"

The output a from each neuron in a layer is collected into an activation vector \vec{a} , which then serves as the input to the following layer:

$$ec{a}^{[l]} = [a_1^{[l]} \ \dots \ a_i^{[l]}]$$

In the final output layer, producing a scalar value, then we compare it to a threshold:

is
$$a^{[l]} \ge \text{threshold}$$

Yes:
$$\hat{y} = 1$$

No:
$$\hat{y} = 0$$

Inference: making prediction (foward propagation)

The above steps is Foward Propagation.

Forward propagation is the process of computing the output of a neural network by passing input data through its layers.