历届考研真题

班级	姓名	学号	

一、单项选择题

1. $(2014 数三) 若 X_1, X_2, X_3$ 来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,则统计量 $S = \frac{X_1 - X_2}{\sqrt{2} |X_1|}$ 服从的分布为(

A.
$$F(1,1)$$

B.
$$F(2,1)$$
 C. $t(1)$ D. $t(2)$

2. (2015数三)设总体 $X \sim B(m,\theta), X_1, X_2, \dots, X_n$ 为来自总体的简单随机样本,

$$\overline{X}$$
 为样本均值,则 $E\left[\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right]=($).

A.
$$(m-1)n\theta(1-\theta)$$

A.
$$(m-1)n\theta(1-\theta)$$
 B. $m(n-1)\theta(1-\theta)$ C. $(m-1)(n-1)\theta(1-\theta)$ D. $mn\theta(1-\theta)$

3. (2002 数三) 设随机变量 X_1, X_2, \dots, X_n 相互独立, $S_n = X_1 + X_2 + \dots + X_n$, 则 根据列维-林德伯格(Levy-Lindberg)中心极限定理, 当 n 充分大时, S_n 近似服 从正态分布,只要 X_1, X_2, \dots, X_n (

A. 有相同的数学期望

B. 有相同的方差

C. 服从同一指数分布

D. 服从同一离散型分布

4. $(2005 数三) 设 X_1, X_2, \cdots, X_n, \cdots$ 为独立同分布的随机变量列,且均服从参数 为 $\lambda(\lambda > 1)$ 的指数分布,记 $\Phi(x)$ 为标准正态分布函数,则(

A.
$$\lim_{n\to\infty} P\left\{\frac{\sum\limits_{i=1}^n X_i - n\lambda}{\lambda\sqrt{n}} \le x\right\} = \Phi(x)$$
 B. $\lim_{n\to\infty} P\left\{\frac{\sum\limits_{i=1}^n X_i - n\lambda}{\sqrt{\lambda n}} \le x\right\} = \Phi(x)$

C.
$$\lim_{n\to\infty} P\left\{\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x)$$
 D. $\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - \lambda}{\sqrt{\lambda n}} \le x\right\} = \Phi(x)$

5.	(2002	数三)	设随机变量	X	和 Y	都服从标准正态分布,则().

A.X + Y 服从正态分布

B. $X^2 + Y^2$ 服从 χ^2 分布

 $C. X^2$ 和 Y^2 都服从 χ^2 分布

D. X2/Y2 服从 F 分布

6. (2011 数三) 设总体
$$X$$
 服从参数为 $\lambda(\lambda>0)$ 的泊松分布, $X_1,X_2,\cdots,X_n(n>2)$

为来自总体的简单随机样本,则对应的统计量 $T_1 = \frac{1}{n} \sum_{i=1}^{n} X_i, T_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n-1} \sum_{i=1}^{n-1} X_i$

$$\frac{1}{n}X_n$$
, $\overline{q}($).

A.
$$E(T_1) > E(T_2), D(T_1) > D(T_2)$$
 B. $E(T_1) > E(T_2), D(T_1) < D(T_2)$

C.
$$E(T_1) < E(T_2), D(T_1) > D(T_2)$$
 D. $E(T_1) < E(T_2), D(T_1) < D(T_2)$

7. (2012 数三) 设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)$ ($\sigma > 0$) 的简单随机样本、 则统计量 $\frac{X_1 - X_2}{|X_1 + X_2 - 2|}$ 的分布为(

A.
$$N(0,1)$$
 B. $t(1)$

C. $\chi^2(1)$ D. F(1,1)

8. (2005 数一) 设 X_1, X_2, \dots, X_n ($n \ge 2$) 为来自总体N(0,1) 的简单随机样本,X为样本均值,S2 为样本方差,则(

A.
$$n \bar{X} \sim N(0,1)$$

B.
$$nS^2 \sim \chi^2(n)$$

C.
$$\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$

D.
$$\frac{(n-1)X_1^2}{\sum_{i=1}^{n} X_i^2} \sim F(1, n-1)$$

9. 设随机变量 $X \sim t(n)(n > 1), Y = \frac{1}{X^2}, 则(n > 1)$

A.
$$Y \sim \chi^2(n)$$

A.
$$Y \sim \chi^2(n)$$
 B. $Y \sim \chi^2(n-1)$ C. $Y \sim F(n,1)$ D. $Y \sim F(1,n)$

C.
$$Y \sim F(n,1)$$

二、填空题

1. (1997 数三)设随机变量 X 和 Y 相互独立且都服从正态分布 $N(0,3^2), X_1$ X_2, \dots, X_n 。和 Y_1, Y_2, \dots, Y_n 。分别是来自总体 X 和 Y 的简单随机样本,则统计量 $U = \frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}}$ IR M ___分布,参数为_____

- 2. (1998 数三)设 X_1, X_2, X_3, X_4 是正态总体 $N(0,2^2)$ 的简单随机样本, $X = a(X_1 X_2)$ 布,其自由度为
- 3. (2001 数三)设总体 X 服从正态分布 $N(0,2^2)$, 而 X_1, X_2, \dots, X_{15} 是来自总体 X

的简单随机样本,则随机变量 $Y = \frac{X_1^2 + \dots + X_{10}^2}{2(X_{11}^2 + \dots + X_{15}^2)}$ 服从_____分布,参数

- 4. (2003 数三) 设总体 X 服从参数为 2 的指数分布 $,X_{1},X_{2},\cdots,X_{n}$ 为来自总体 X 的简单随机样本,则当 $n\to\infty$ 时 $,Y_{n}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 依概率收敛于______.
- 5. (2004 数三) 设总体 X 服从正态分布 $N(\mu_1, \sigma^2)$,总体 Y 服从正态分布 $N(\mu_2, \sigma^2)$, $X_1, X_2, \cdots, X_{n_1}$ 和 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别是来自总体 X 和 Y 的简单随机样本,

$$\text{III } E\left[\frac{\sum\limits_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum\limits_{j=1}^{n_2} (Y_j - \overline{Y})^2}{n_1 + n_2 - 2}\right] = \underline{\hspace{1cm}}.$$

- 6. (2006 数三) 设总体 X 的概率密度 $f(x) = \frac{1}{2}e^{-|x|}(-\infty < x < +\infty), X_1,$ X_2, \dots, X_n 为总体 X 的简单随机样本,其样本方差 $S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2,$ 则 $E(S^2) = \underline{\hspace{1cm}}$.
- 7. (2009 数三)设 X_1, X_2, \dots, X_n 是来自二项分布总体B(n,p) 的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差,记统计量 $T = \overline{X} S^2$,则E(T) =
- 8. (2010 数三)设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)(\sigma > 0)$ 的简单随机样本,统计量 $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$,则E(T) =_____.
- 9. (2001 数一) 设随机变量的方差为 2, 则根据切比雪夫不等式估计 $P\{ | X E(X) | \ge 2 \}$ _____.

三、解答题

1. (2001 数三)一生产线生产的产品成箱包装,每箱的质量是随机的. 假设每箱平均重 50 kg,标准差为 5 kg. 若用最大载重量为 5 t 的汽车承运,请利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于 0. 977. ($\Phi(2) = 0.977$,其中 $\Phi(x)$ 是标准正态分布函数)

2. (1999 数三) 设 X_1, X_2, \cdots, X_9 是来自正态总体 X 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + \cdots + X_6)$, $Y_2 = \frac{1}{3}(X_7 + X_8 + X_9)$, $S^2 = \frac{1}{2}\sum_{i=7}^9(X_i - Y_2)^2$, $Z = \frac{\sqrt{2}(Y_1 - Y_2)}{S}$,证明统计量 Z 服从自由度为 2 的 t 分布.