## Введение в математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 22.09.23

## Содержание

## 1 Топология числовой прямой

## 1 Топология числовой прямой

**Def 1.** Пусть E - непустое множество, тогда x называется точкой прикосновения E, если  $\forall \varepsilon > 0$   $U_{\varepsilon}(x) \cap E \neq \varnothing$ .

**Def 2.** Замыканием множества E называется множество всех точек прикосновения E и обозначается clE.

**Def 3.** Множество называется замкнутым, если оно совпадает со своим замыканием.

 $E \subset clE$ .

По опеределнию  $\varnothing$  и  $\mathbb{R}$  считаются замкнутыми. Пример a < b, тогда [a,b] - замкнутое множество

Доказательство. Покажем, что  $\forall c[a,b]$  не является точкой прикосновения.

$$\varepsilon*=mn\left\{\frac{|a-b|}{2},\frac{|a-c|}{2}\right\}.$$

**Def 4.** Пусть  $G \subset \mathbb{R}$  - множестов. Будем оворить, что x - внутреняя точка G, если  $\exists \varepsilon > 0 : U_{\varepsilon}(x) \subset G$ 

**Def 5.** Внутренностью мнжества G называется множество всех его внутрених точек и обозначается intG

**Def 6.** Множество  $G_1 \subset \mathbb{R}$  называется открытым, если оно совподает со своей внутренностью.

 $\varnothing$  и  $\mathbb R$  - открыты по определнию.

 $intG \subset G$ 

Пример открытого множества: (a,b) - открытое множество, a < b

Доказательство.

$$\varepsilon=mn\left\{\frac{|x-a|}{2},\frac{|b-x|}{2}\right\}$$

Полуинтервал (a, b] не является ни открытым ни замкнутым множеством.

Доказательство.

x =

$$aint(a,b]b \in int(a,b].$$

Пример  $cl\mathbb{Q} = \mathbb{R}(1)$ ,  $int\mathbb{Q} = \emptyset(2)$ .

(1). В любом интервале найдется рациональная точка.  $\Box$ 

(2).  $\forall (a,b)$  найдется иррациональная точка.  $\Box$ 

Докажем, что любой интервал содержит рациональную



**Th** (Критерий точки прикосновения). Пусть  $E \neq \emptyset$  - множество. Точка x является точкой прикосновения  $E \Leftrightarrow \exists \{x_n\}_{n=1}^{\infty} \subset E : \lim_{n \to \infty} x_n = x.$ 

 $\{x\}$ , но тогда она предельная.

**St.** Пусть  $\{x_n\}_{n=1}^{\infty}$  -числовая последовательность, тогда  $cl\ \{x_n\} = \{x_n\} \cup PL(\{x_n\}).$ 

Доказательство. Пусть  $\exists \{x_n\}_{n=1}^{\infty} \subset E : \lim_{n \to \infty} x_n = x \Rightarrow \forall \varepsilon > 0 \quad \exists N : \forall n \geq N \hookrightarrow x_n \in U_{\varepsilon}(x) \Rightarrow \forall \varepsilon > 0 \quad \exists x = x_N \in U_{\varepsilon}(x) \cap E$ 

Пусть обратно, x - т. прикосновение множества E.  $\forall k\in\mathbb{N} \text{ по определению } U_\varepsilon(x)\cup E\neq\varnothing, \varepsilon=\tfrac{1}{k} \qquad \square$ 

**Def 9.** Множество  $K \subset \mathbb{R}$  называется компактным, елси из  $\forall$  последовательность точек  $\{x_n\}_{n=1}^{\infty} \subset K$  можно выделить сходящуюся подпоследовательность, т.ч.  $\exists \lim_{k \to \infty} x_{n_k} = x \in K$ .

**Th** (Критерий компактности). *Множество*  $K \subset \mathbb{R}$  - компактно  $\Leftrightarrow$  оно ограничено и замкнуто.

 $\Leftarrow$  . Возьмем произвольную последовательность  $\{x_n\}_{n=1}^{\infty}$ , покажем, что  $\exists$  сходящаяся в K подпоследовательнось.

Т.к.  $\{x_n\}_{n=1}^{\infty}$  - ограничена, то по т. Б-В  $\exists$  подоследовательность, которая сходится куда-то

Пусть  $x*=\lim_{n\to\infty}x_n$ , yj njulf ч\* - частичный предел R, а k - замкнуто  $\Rightarrow x*\in K$ 

 $\Rightarrow$ . Пусть k - компактна, докажем, что она ограничена и замкнута.

Предположим, что K - неограничена  $\Rightarrow \forall j \in N$   $\exists x_j \in K: |x_j| > j \Rightarrow \exists \{x_j\} \subset K \lim_{j \to \infty} |x_j| = +\infty$  - противоречие  $\Rightarrow$  -  $\pi$  = orp.

**Def 10.** Система множеств  $\{U_{\alpha}\}, \alpha \in I$  называется покрытием множества E, если  $E \subset \bigcup_{\alpha \in I} U_{\alpha}$ 

**Def 11.** Система  $\{U_{\alpha}\}_{{\alpha}\in I}$  называется подпокрытием, если  $J\subset I$  и  $E\subset \cup_{p\in J}U_{\beta}$ 

Из  $\forall$  открытого покрытия K можно выделиь конечное подпокрытие.

**Ex 1.** Доказать, что если из  $\forall$  любого открытого множества можно выделить конечное подпокрытие, то это множество компактно.