Network Flow Control

Segurança em Redes de Comunicações Mestrado em Cibersegurança Mestrado em Engenharia de Computadores e Telemática DETI-UA

Network (micro-)segmentation

- One of the concepts to create a Zero Trust Architecture
- Security strategy that divides a network into smaller and isolated segments.
- Can be achieved by creating data flow boundaries and enforcing strict controls between different segments.

As Published by Cisco Press Book: "Zero Trust Architecture"

Firewalls

- A firewall provides a single point of defense between networks and protects one network from the others.
- It is a system or group of systems that enforces a control policy between two or more networks (access control, flow control and content control).
- It is a network gateway that enforces the rules of network security.
- Minimizes local vulnerabilities.
- Evaluates each network packet against the policies of network security.
- Can monitor all the network traffic and alert to any attempts to bypass security or to any patterns of inappropriate use.
- Can be hardware or software based.

Firewalls Security/Network Services

- NAT (Network Address Translation).
- Authorization
 - Flows (packet filtering).
 - Users (application and circuit level).
- Redirecting.
 - To specif machines.
 - Proxing.
- Content analysis.
- Secure communication.
 - Site-to-site VPN.
 - IPsec.
 - Remote-access VPN.
- DoS and DDoS detection and defense.

Deploying Firewalls

- Zero Trust imposes that network must have microsegmentation.
- Network must be controlled at multiple levels and locations

Firewall Zones/Segments/Groups

- A network must be micro-segmented.
- Must be divided in multiple zones/segments/groups with different security levels.
 - Collections of network ports, IP addresses, IP networks, service ports, Security Group Tags (SGT), other IDs.
 - Some firewalls only allow zones defined by interface name. Other IDs only used to define traffic source/destination.
 - Once created, a group can be referenced by firewall rules as either a source or déstination.
 - Example: a Demilitarized Zone (DMZ) is a perimeter network outside the protected internal/private network
 - Used to place public servers/services.
 - The DMZ is a "semi-protected" Zone.
 - It must be assumed that any machine placed on the DM7 is at risk.

Types of Firewalls

- Network-Level Firewalls (L2/L3)
 - Packet filtering
 - Inspecting packet headers and filtering traffic based on
 - the IP address of the source and the destination, the port and the service (L3)
 - source and the destination MAC addresses (L2)
- Circuit-Level Firewalls (L4)
 - Monitor TCP handshaking between packets to make sure a session is legitimate
 - Traffic is filtered based on specified session rules
- Application-Level Firewalls (L4+)
 - Application-level firewalls are sometimes called proxies
 - Looking more deeply into the application data
 - Consider the context of client requests and application responses
 - Attempt to enforce correct application behavior and block malicious activity
 - Application-level filtering may include protection against Spam and viruses as well, and block undesirable Web sites based on content rather than just their IP address
 - Slow and resources consuming tasks
- Stateful Multi-level Firewalls (L*)
 - Filter packets at the network level and they recognize and process application-level data
 - Since they don't employ proxies, they have reasonably good performance even performing deep packet analysis
- Host Level / Personal Firewalls
 - Act only within a specif host
 - Filter all communication layers
 - Control OS processes/applications

Stateful vs. Stateless Firewalls

Stateless firewalls

- Controls traffic by applying rules to single frames/packets
 - Does not need to track traffic flows/sessions.
- Rules based on specific values on frames/packet available headers.
 - Set of basic permit/deny actions for input and output based on IP addresses, UDP/TCP ports, etc...
 - Usually called ACL (Access List).
- They are fast and consume very low computing resources.
 - Perform well under heavy traffic load.
 - Ideal to defense against DDoS attacks in the first line of network defense.
 - Cost-effective compared with stateful firewall types.

Stateful firewalls

- Monitor all traffic flows/sessions.
- Controls traffic based on the connection state of a flow/session.
 - Automatic bidirectional rules (reflexive rules).
- Connection state is maintained in a state table.
 - * State tables must be synchronized with other firewalls when in a redundant scenario (load balancing) or high-availability scenario (backup upon failure).

Firewall Virtual Instances

- Firewalls may have (theoretical) isolated instances to handle different zones/groups.
- Each instance is a virtual device that can perform flow control, switch, and/or routing.

Firewall placement (with Redundancy)

Firewall placement (with Redundancy)

High-Availability (1)

- Active-Backup Scenario
 - Firewalls share state via a dedicated connection
 - Firewalls share LAN (Virtual) IP addresses.
 - Backup firewall assumes IP and Services upon failure of Active firewall.
 - Usually implemented with Virtual Router Redundancy Protocol (VRRP)
 - * FWs use the same MAC and IP addresses
 - The backup FW assumes addresses and functions upon detection of the active FW failure.

High-Availability / Cluster (2)

- Active-Active Scenario
 - Multiple firewalls (cluster) share state via a dedicated connection/(V)LAN

Active

- Firewalls have their on IP addresses.
- Both work simultaneously.
 - Share load.

Load Balancing Firewall Load

- Load-balancing equipment can distribute traffic by multiple firewalls (cluster).
- When the load balancer routes the traffic from the same flow ALWAYS to the same firewall (depends on the LB algorithm):
 - Firewalls do not have to share connections states!
 - Decrease processing and memory requirements of each firewall.
 - Allow for a scalable growth of traffic.
 - Makes the network less vulnerable to DoS attacks.
 - When its also responsible to distribute policies/rules is called an Orchestrator.

Load Balancing Algorithms

IP Hash

- The IP address (or a set of flow identifiers) of the client is used to determine which server/firewall receives the flow or request.
- Does not require state synchronization (FW or LB). Hash function output determines target.

Round Robin or Random

- Requests are distributed across the group of devices sequentially.
- If firewalls do not share state, load-balancers must "memorize" the interface by witch they received the traffic from firewalls, and use the same interface to route the response traffic.

Least Connections

- A new request is sent to the server/firewall with the fewest current connections.
- The relative computing capacity of each server/firewall is factored into determining which one has the least connections.
- If firewalls do not share state, load-balancers must "memorize" the interface by witch they received the traffic from firewalls, and use the same interface to route the response traffic.

Centralized/"Smart"

Based on an external source of information.

Addressed Firewalls

- Interfaces have IP addresses.
- Load balancers (or routers) route traffic as an IP next-hop.
- Can provide routing services.

Stealth Firewalls

- Interfaces do not have IP addresses.
 - May have multiple layer rules.
- Load balancers (or swicthes) route traffic on a per interface/VLAN basis.
- Can not provide routing or NAT/PAT services.

Load-Balancers Instances

 Load balancers may have (theoretical) isolated instances to handle different zones/groups.

- Physical or virtual partitions.
- Some vendor call it group-ports.

Redundant Load Balancers

Addressed Firewalls

- To avoid FW state synchronizaion Load-Balancers should Sent packets of the same flow always to same firewall.
 - Must lower FW memory overload chance.
- Load-Balancers using IP Hash LB algorithms do nor require routing history synchronization (between LB).
 - Using other LB algorithms, they must share routing history.

Redundant Load Balancers

Stealth Firewalls

Single Load Balancer

Multi-Levels of Defense

- To free resources in the stateful firewalls.
 - To configure black/white lists rules at the stateless firewalls.

Rules (1)

- A Firewall rule (or set of rules, aka as chains) are assigned to the input (or output) of a network interface (or set/group/zone of interfaces).
 - Will be evaluated in respect to all traffic ingressing (or egressing) an interface.
- Firewall rules must specify to which traffic they should match
 - Source and destination may be IP addresses, TCP/UDP ports, set/groups of addresses/ports, etc...
 - Type may be defined in terms of protocol or protocol specifics.
 - Rules may be specified based on the state of a connection (requires a stateful firewall) upon the observatión of a packet:
 - → NEW The observed packet packet is starting a new connection, or it is associated with a connection which has not generated packets in both directions.
 - * ESTABLISHED The observed packet is associated with a connection which has generated packets in both directions.
 - Usually a specif rule only allows traffic from one direction, an ESTABLISHED rule must be defined to dynamically allow the response from the other direction.
 - * RELATED The observed packet is starting a new connection, but is associated with an existing connection, such as an ICMP error (e.g., port unreachable related to an UDP connection)
- A match to a rule determines the action to execute to flow, connection or packet.
 - Some firewalls call the actions targets.
 - Possible actions are accept, drop/reject, test with another set of rules/chain, modify packet, etc...
 - The first match determines the action.
 - The order of the rules is critical.
 - Some firewall allow probabilistic actions based on weights.

Rules (2)

Multi zones scenarios

 Rules in a specific FW must be defined based only on zones known/defined in that firewall.

 For interface based zones, only directed connected zones can be used.

 For other IDs based zones, remote zones can be used.

Users A

Rules (3)

Example 1

 Users A can access Google HTTPS services (defined by IP addresses, and TCP/UDP port 443)

* FW1/FW2

- Has a zone assigned to interface vlanA called UsersA and another zone called Core assigned to all core interfaces.
- Assign a rule to the INPUT of all interfaces in zone UsersA and OUTPUT to any interfaces of zone Core.
- Destiny of flow should be IP addresses/ports of Google Services. May specify source as IP address of specific users of vlan A.
- Reversed rule applied from zone Core to zone UsersA allow all response traffic from established flows allowed by previous rules.

Main Fws

- Has a zone assigned to all internet interfaces called **Internet** and another zone called **Core** assigned to all core interfaces.
- Assign a rule to the INPUT of all interfaces of zone Core and OUTPUT to any interfaces of zone Internet.
- Destiny of flow should be IP addresses/ports of Google Services. May specify source as IP address of specific users of vlan A.
- Reversed rule applied from zone Internet to zone Core allow all response traffic from established flows allowed by previous rules.

Rules (4)

Example 2

 Users B may access VM Cluster A (defined by IP addresses/ports)

→ FW1/FW2

- Has a zone assigned to interface vlanA called UsersA and another zone called Core assigned to all core interfaces.
- Assign a rule to the INPUT of all interfaces in zone **UsersA** and OUTPUT to any interfaces of zone **Core**.
- Destiny of flow should be IP addresses/ports VM Cluster A. May specify source as IP address of specific users of vlan A.
- Reversed rule applied from zone Core to zone UsersA allow all response traffic from established flows allowed by previous rules.

FW5/FW6

- Has a zone assigned to all interfaces/networks of VM Cluster A called VM Cluster A and another zone called Core assigned to all core interfaces.
- Assign a rule to the INPUT of all interfaces of zone Core and OUTPUT to any interfaces of zone VM Cluster A.
- Destiny of flow should be IP addresses/ports of IP addresses/ports VM Cluster A. May specify source as IP address of specific users of vlan A.
- Reversed rule applied from zone VM Cluster A to zone Core allow all response traffic from established flows allowed by previous rules.

Rules (5)

- Best Practices and Recommendations
 - Standardize your security policies.
 - Includes firewalls, network zones relations, devices and users profiles, active services, etc..
 - Define the rules the more specific as possible.
 - Avoid generic rules that may open undesired paths.
 - Blocking all traffic by default.
 - * Remove "Accept All" Rules.
 - Add "Accept" exceptions.
 - Usually Clients to Service direction.
 - -E.g., Internal to Internet, Internet to DMZ, etc...
 - -Add reverse rule base on established /related connections.
 - Maintain documentation of firewall rules:
 - Purpose, relation to security policies, affected devices and users, deployment and expiration dates, identification of the manager.
 - Maintenance and monitoring of rules.
 - Periodically verify validity of rules within current security policies.
 - Analyze usage/match statistics of each rule.
 - Integrate flow control with existing rotting, switching and load balancing policies and services.

IP Spoofing

- IP spoofing refers to the creation of IP packets with a forged source IP address.
 - To hide the identity of the sender or impersonate another network system.
 - Spoofing IP datagrams is a well-known problem.
 - Most spoofing is done for illegitimate purposes.

Preventing IP Spoofing at Layer 3

- Deny external traffic with
 - IP source equal to protected network IP ranges.
 - IP source equal to private addresses.
 - Multicast destinations.
- Reverse Path Verification
 - Deny traffic where the source IP network is not reachable using the interface where the packet arrived.

```
Interface interface-name
  ip access-group 101 in
  ip access-group 199 out
access-list 101 deny ip 209.165.201.0 0.0.0.31 any
access-list 101 deny icmp any any redirect
access-list 101 deny ip 224.0.0.0 31.255.255.255 any
access-list 101 deny ip 240.0.0.0 15.255.255.255 any
access-list 101 deny ip 127.0.0.0 0.255.255.255 any
access-list 101 deny ip host 0.0.0.0 any
access-list 101 deny ip 10.1.1.0 0.0.0.255 any
access-list 101 deny ip 172.16.0.0 0.15.255.255 any
access-list 101 deny ip 192.168.0.0 0.0.255.255 any
access-list 101 permit ip any any
access-list 199 permit ip 209.165.201.0 0.0.0.31 any
access-list 199 deny ip any any
```

Half-Open TCP Connection Problem

- A DoS attack commonly uses half-open TCP connections.
 - Firewall keeps the state of the TCP session in memory.
 - Multiple half-open TCP connections can overrun firewalls.
 - Define timeout values for half-open TCP sessions:
 - -Normal: small/medium values.
 - Under attack (based on traffic thresholds): very small values.
 - May be necessary to use external means to "clean" firewall.
 - -Reseting (half-open) connections from the internal servers.

Linux iptables (1)

- Name of the user space tool by which administrators create rules for the packet filtering and NAT modules.
- Used to set up, maintain, and inspect the tables of IP packet filtering rules within the Linux kernel.
- Has 5 default chains:
 - INPUT, OUTPUT, FORWARD
 - PREROUTING
 - POSTROUTING
- Has 3 default tables,
 - Filter, nat and mangle
- Basic decisions
 - ACCEPT, DROP, QUEUE and RETURN
- Extended decisions
 - LOG, MARK, REJECT, TOS, SNAT, DNAT, MASQUERADE, REDIRECT, etc...
- Multiple state machines
 - Conntrack (connection tracker).

Linux IPTables (2)

- In addition to the built-in chains, the user can create any number of user-defined chains within each table, which allows them to group rules logically.
- Each chain contains a list of rules,
 - When a packet is sent to a chain, it is compared against each rule in the chain in order.
- The rule specifies what properties the packet must have for the rule to match (such as the port number or IP address).
- If the rule does not match, then processing continues with the next rule.
- If, however, the rule does match the packet, then the rule's target instructions are followed (and further processing of the chain is usually aborted).
- Some packet properties can only be examined in certain chains,
 - For example, the outgoing network interface is not valid in the INPUT chain.
- Some targets can only be used in certain chains, and/or certain tables,
 - For example, the SNAT target can only be used in the POSTROUTING chain of the NAT table
- The target of a rule can be the name of a user-defined chain or one of the built-in targets (ACCEPT, DROP, RETURN, DNAT, SNAT and MASQUERADE).
- ' You can think of a target in the same way as a subroutine.

Linux nftables

- nftables replaces iptables.
- Provides a new in-kernel packet classification framework that is based on a network-specific Virtual Machine (VM).
- Uses a new nft userspace command line tool.
 - Userspace command line tool, with no need of kernel upgrades.
 - nftables interface and iptables like interface.
- High performance through maps and concatenations.
- Smaller kernel codebase. The intelligence is placed in userspace nft command line tool.
- Unified and consistent syntax for every support protocol family.

Control By Analysis of Higher Layers

- Traffic flow control based on higher layer data/protocols only works with not ciphered traffic.
- Some firewalls provide decryption and inspection of SSL/TLS traffic.
- Traffic deciphering may be achieved using a root certificate on client machines, acting as Certificate Authority for SSL requests.
 - Firewalls must issue certificates to clients on behalf of the web servers they are connecting to.
 - Firewalls intercept SSL/TLS handshake.
 - Requires client device level changes.
- Implementing this technique is processor-intensive.
 - Results in performance degradation.
 - Can be avoided by off-loading SSL/TLS decryption to a dedicated devices.
- May break privacy/confidentiality laws and rights in some countries.

Firewall Performance Evaluation

Basic Firewall

- IP Throughput
 - Raw capability of the firewall to pass traffic from interface to interface
- Latency
 - Time traffic delay in the firewall
 - Should be measured and reported when the firewall is at its operating load

Traditional Enterprise Firewall

- Connection Establishment Rate
 - Speed at which firewalls can set up connections
- Concurrent Connection Capability
 - Total number of open connections through the firewall at any given moment
- Connection Teardown Rate
 - Speed at which firewalls can teardown connections and free resources

Next Generation Firewall

- Application Transaction Rate
 - Capability of the firewall to secure discrete application-layer transactions contained in an open connection
 - May include application-layer gateways, intrusion prevention, or deep-inspection technology
 - Application transaction rate are highly data dependent

Extra References

- Cisco, Zero Trust Architecture (Networking Technology: Security), Pearson, August 2023, ISBN-13:978-0137899739.
- Palo Alto, High Availability Concepts.
- Palo Alto, HA Clustering Overview.
- A. Lindem, A. Dogra, RFC 9568, Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6, April 2004.