

Санкт-Петербургский государственный университет Кафедра системного программирования

Artificial Intelligence Guided Symbolic Execution

Максим Владиславович Нигматулин, 22.М07-мм

Научный руководитель: д. ф.-м. Д.А. Мордвинов, доцент кафедры системного

программирования

Консультант: к.ф.-м. С.В. Григорьев, доцент кафедры информатики

Санкт-Петербург 2023

Введение

- Символьное исполнение техника анализа ПО, позволяющая понять, какие данные вызывают выполнение каждой части программы
- Одна из проблем "взрыв" путей, которые нужно исследовать

Существующие решения: Q-KLEE¹

Согласно бенчмаркам, исследует в 10 раз меньше путей, исполняет в 10 раз меньше инструкций за незначительно большее время

¹J. Wu, C. Zhang and G. Pu, "Reinforcement Learning Guided Symbolic Execution."2020

Существующие решения: Learch 2

- KLEE as symbolic execution engine
- Возможность обучать свои модели
- Возможность генерировать датасет на своих данных

² Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev, "Learning to Explore Paths for Symbolic Execution"

Существующие решения: PettingZoo

- Мультиагентное обучение с подкреплением
- Поддержка нескольких игровых окружений
- Запуск параллельно почти из коробки

Существующие решения

- Q-KLEE можно улучшить
- Learch не позвояет работать с Reinforcement Learning
- PettingZoo сложно портировать

Постановка задачи

Цель работы: реализовать среду для обучения с подкреплением при взаимодействии с V# как игровой средой

Поставленные задачи:

- Поддержать протокол общения с V#
- Запустить обучение
- Распараллелить обучение

Игровая аналогия

Какую фишку подвинуть?

Игровая аналогия

Какую фишку подвинуть?

Процесс обучения

Эпоха

Структура решения

Обучение

- Вектор из весов, умножается на выходные данные нейронной сети
- Состояния ранжируются по сумме компонентов

Обучение: дополнительный слой

Положительная динамика наблюдается, но об однозначных результатах говорить рано

Epoch 1/20

	BinarySearch_Method_0
agent1	coverage %: 100.00, steps: 352
agent2	coverage %: 88.24, steps: 600
agent3	coverage %: 100.00, steps: 362
agent4	coverage %: 100.00, steps: 278
agent5	coverage %: 64.71, steps: 600
agent6	coverage %: 70.59, steps: 600
agent7	coverage %: 64.71, steps: 600

Fnoch 3/20

Epoon o/20	
	BinarySearch_Method_0
agent1	coverage %: 100.00, steps: 353
agent2	coverage %: 100.00, steps: 284
agent3	coverage %: 100.00, steps: 338
agent4	coverage %: 100.00, steps: 284
agent5	coverage %: 100.00, steps: 355
agent6	coverage %: 100.00, steps: 346
agent7	coverage %: 82.25, steps: 600

Параллелизм: CPU

- "Игры" в одном поколении передаются в пул потоков для обработки
- Взаимодействие с несколькими игровыми серверами
- Работает быстрее

Результаты

- Реализован протокол передачи данных с V# через сокеты
- Запущено обучение
- Реализован параллелизм на СРИ

ML > Эвристики³

Figure 3: Limitations of existing manually designed heuristics and how LEARCH outperforms them for our coreutils test set.

³ Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev, "Learning to Explore Paths for Symbolic Execution"