HW1 – Red Wine Neural Network Classification

INF552 YUNJIE ZHAO

Part1 - Data

Number of Instances:	1599
Number of Attributes:	12

Attribute Information				
Input variables	Output variable			
1 - fixed acidity				
2 - volatile acidity				
3 - citric acid				
4 - residual sugar				
5 - chlorides				
6 - free sulfur dioxide	quality (score between o and 10)			
7 - total sulfur dioxide				
8 - density				
9 - pH				
10 - sulphates				
11 - alcohol				

Part1 - Data

Attribute (units)	Min	Max	Mean
fixed acidity (g(tartaric acid)=dm^3)	4.6	15.9	8.3
volatile acidity (g(acetic acid)=dm^3)	0.1	1.6	0.5
citric acid (g=dm^3)	0.0	1.0	0.3
residual sugar (g=dm^3)	0.9	15.5	2.5
chlorides (g(sodium chloride)=dm^3)	0.01	0.61	0.08
free sulfur dioxide (mg=dm^3)	1	72	14
total sulfur dioxide (mg=dm^3)	6	289	46
density (g=cm ³)	0.990	1.004	0.996
рН	2.7	4.0	3.3
sulphates (g(potassium sulphate)=dm^3)	0.3	2.0	0.7
alcohol (% vol.)	8.4	14.9	10.4

The Physicochemical Data Statistics

Part1 - Data

Part2 - Algorithm

- Application: Scikit-Learn version 0.18
 - Classification: Neural Network Multi-layer Perceptron
 - Given a set of features $X = \{x_1, x_2, ..., x_m\}$ and a target y, it can learn a non-linear function approximator for classification

Part2 - Algorithm

- Step-1 Clean Data
 - Deduplication
 - Number of Instances: 1599 reduced to 1359
- Step-2 Training
 - MLPClassifier
 - a multi-layer perceptron (MLP) algorithm that trains using backpropagation.
 - Training Parameters: hidden layer sizes = 5, max iteration = 200
- Step-3 Prediction
 - Test Data
- Step-4 Evaluation
 - K-fold cross validation

Part2 - Evaluation

- K-fold cross validation
 - Evaluate data with a different K(4 to 10)
 - In each K, do 100 random sampling. make a comparison between MLPClassication and Test data, and get a average score of 100 sampling.

Part2 - Evaluation

- Why accuracy only is about 53%-54%?
 - Quality distribution (K = 5) (Training Size: 1088) (Test Size: 271)

Part3 - Conclusions

Figure references from a relevant same data paper

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties

In Decision Support Systems, Elsevier, 47(4):547-553,

2009.

Inputs importance

Part3 - Conclusions

- Algorithm Analysis
 - Data Sampling
 - Training data distribution is too cohesive to be generalized
 - Data set is too small
 - Feature Engineering
 - 11 inputs features are not relatively independence
 - A complex combination of too many features causes overfitting
 - Overfitting
 - Neural Network is not a simple model
 - We cannot observe the learning process within too many inputs, and the outputs may be difficult to explain