

ORGANISATION AND SHARING OF NEUROIMAGING DATA

BIDS and pieces – in practice

Tibor Auer

LEARNING OUTCOMES

- Use BIDS
 - Create and validate BIDS data (Thank you, Matias and Joaquin!)

- Query, import, process BIDS data
- Research computing...

MRI

- courtesy to Sue Francis and Denis Schluppeck
- Modalities: structural (T1w), fMRI (rest), ASL, fieldmap (topup)

MEG

- courtesy to Matias Ison and Joaquin Gonzalez
- Modalities: MRI (structural only), MEG, ET
- Task: Hybrid (memory and visual) search task

```
-SUBJECT3
                                                   -CTF DATA
-16893 001
                                                  L----15909001
---scans
                                                       -15909001_MatiasIson_20220530_02.ds
     -1101-sMPRAGEs3 5
                                                       -15909001 MatiasIson 20220530 03.ds
                                                    15909001 MatiasIson 20220530 04.ds
         -DICOM
                                                  ET DATA
       └──files
                                                  15909001
     -301-10minRSfMRI SENSE2 MB3 DE EPI
                                                 -MRI DATA
                                                 L---15909001
     └──DICOM
                                                   L---DICOM
      └---files
    -501-P SE EPI SENSE2 MB3 DE EPI
     ---resources
        —DICOM
       └---files
     -601-A_SE_EPI_SENSE2_MB3_DE_EPI
      -resources
        —DICOM
       └──files
     -801-2dREST_PROD_pCASL_nonorm
       -resources
        -DICOM
       └---files
     -803-WIP_SOURCE___2dREST_PROD_pCASL_nonorm
      -resources
         -DICOM
       └──files
    -901-2dM0 PROD pCASL
      -resources
        -DICOM
      └──files
```

REQUIREMENTS

Environment

• OS: Windows only!

• IDE: MATLAB

- git (GitHub Workshop on how to install and use)
 - retrieve materials
 - install tools
- AWS CLI to get data (<u>getting-started-install</u>)

TOOLS

Tools

- dcm2niix (part of <u>MRIcroGL</u>) to convert MRI images and generate metadata (JSON)
- FieldTrip to create BIDS data for M/EEG and ET
 - git clone https://github.com/fieldtrip/fieldtrip
- SPM: processing MRI data; dependency for FieldTrip; convenience functions; ...
 - git clone https://github.com/spm/spm12
- reproa: managing processing workflow; provide tools (BIDS-MATLAB) and convenience functions; ...
 - git clone https://github.com/reprostat/reproanalysis --recurse-submodules

MATERIALS

Scripts

- Access
 - git clone -b BIDS https://github.com/reprostat/workshops
 - "Scripts" folder
- Convert and query the example data to BIDS
 - bids_mri.m
 - bids_meg_1_mri.m, bids_meg_2_meeg.m, bids_meg_3_et.m
- You can customise them to your data

Validate BIDS

• https://bids-standard.github.io/bids-validator

PROCESSING BIDS

Reproducibility Analysis (reproa)

- Pipeline system for neuroimaging written primarily in OCTAVE/MATLAB
 - Motivated by <u>Automatic Analysis</u>
- Facilitates reproducible and flexible neuroimaging analyses
- (Allows the assessment and optimisation of the reproducibility of such analyses)

Features

- Reproducibility
 - Explicit dependencies
 - Provenance recording
 - Tight control of tools
 - Data diagnostics
 - Data integrity

- Inclusivity
 - MATLAB/OCTAVE
 - Windows/Linux (ubuntu)
 - Integration of tools

- Efficiency
 - Parallel execution
 - Modular design
 - Convenience solutions
 - Download data
 - Install tools

PROCESSING BIDS

reproa init

- addpath <path to reproanalysis>
- reproaSetup();
 - Only for the very first time: initialise environment
 - 1. Select seed parameter set: parameters_windows.xml
 - 2. Search for **SPM12** installation folder
 - 3. Select data directory (data will be downloaded here)
 - 4. Select analysis directory (analysis will create folder and files here)

SPM demo (chapter 30)

Open SPM_CH30.m and save as a different file in the workshop folder

PROCESSING BIDS

SPM demo (chapter 30) - start from line 30

- 1. Define parameters
 - 1. Line 53: Load tasklist (inspect **SPM_CH30.xml**)
 - Line 69: Define DATA_PATH as '<data directory\MoAEpilot>'
 - 3. Line 74: *autodownloadflag = true;*
 - 4. Skip lines 104-106
 - 5. Line 107: Define RESULTS_DIR as 'MoAEpilot'
 - 6. Execute lines 108-152
- 2. Add data (and simple model): line 158
- 3. Specify contrast: line 170
- 4. Run: line 176 (20-30 min)
- 5. Report: line 177

QUESTIONS?

