TRABAJO PRACTICO Nº4 DE BIG DATA SOBRE MÉTODOS SUPERVISADOS: REGRESIÓN & CLASIFICACIÓN USANDO LA EHP

Integrantes: Tomas Rodríguez Heredia, Diego Exequiel Coria, Rocco Pimenta

Fecha de entrega: Martes 2 de junio

Profesora: Romero Noelia

Introducción:

En este cuarto trabajo estuvimos viendo los distintos métodos supervisados, usamos regresión, logic, vecinos cercanos, matrices de confusión y curvas ROC. Los aplicamos con los datos de la EPH que ya trabajamos en anteriores instancias. En particular vamos a estar tratando mucho con lo referente a "ESTADO" que dice ocupados y desocupados.

A. Enfoque de validación

1)

Siguiendo la consigna de este primer punto usamos nuestro datos para dividir ocupados y desocupados y también si respondieron o no respondieron a la EPH. Luego dividimos nuestra base con test_split teniendo una diferencia entre 70% de entrenamiento y 30% de prueba. Con todo esto podemos hacer la tabla de medias.

	Media (Train)	Desvió (Train)	N (Train)	Media (Test)	Desvió (Test)	N (Test)	T-valor	P-valor
CH04	1,44	0,49	2432	1,4	0,49	1043	-0,04	0.86
СН06	39,71	12,84		39,9			0,189999 99999999	
			2432		13,04	1043	8 0,009999	0.68
CH07	2,89	1,58		2,9			99999999	
			2432		1,59	1043	979	0.79
CH09	1	0,06	2432	1	0,05	1043	0	0.85
							-	
CH12	12,84	4,3		12,77			0,070000 00000000	
			2432		4,24	1043	03	0.66
CH13	0	0	2432	0	0	1043	0	0
CH14	1,53	6,79	2432	1,37	4,63	1043	-0,16	0.48
ESTADO	1,07	0,24	2432	1,06	0,23	1043	-0,01	0.305
PP3E_T OT	32,57	21,45	2432	34,74	21,52	1043	2,17	0.0063

PP3F_T	1,13	4,6		1,2		0,070000 0000000			
OT			2432		5,01	1043	01	0.70	

B.Metodo Supervisado 1: Modelo de Regresión Lineal

2)
En este punto nos pide que con nuestra base de entrenamiento encontremos los coeficientes y la variación estándar de las variables que estuvimos construyendo en los otros trabajos, teniendo de variable dependiente a Salario_semanal.

Como referencia para la construcción de esas variable tenemos:

CH06=Edad Estado+CH06= edad2 CH12+CH13+CH14=educ 2=mujer CH07=estado civil CH09=alfabeto

Importante añadimos un sexto modelo para que se resalte mas fuerte la diferencia que causa su presencia.

Var.Dep: Salario_semanal	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5	Modelo 6
Variables Edad	(1) Coef: 5686.731 Std: 1964.62	(2) Coef: 815.253 Std: 975.30	(3) Coef: 1187.123 Std: 985.90	(4) Coef: 1261.634 Std: 984.367	(5) Coef: 867.838 Std: 1030.26	(6) Coef: 970.192 Std: 1036.54
Edad2		Coef: -1.97e+05 Std: 5.82e+04	Coef: -1.65e+05 Std: 5.95e+04	Coef: -1.50e+05 Std: 5.96e+04	Coef: -1.42e+05 Std: 6.00e+04	Coef: -1.61e+05 Std: 6.37e+04
Educ		3.020 104	Coef: 1.41e+04 Std: 9.82e+03	Coef: 1.75e+04 Std: 9.92e+03	Coef: 1.77e+04 Std: 9.92e+03	Coef: 1.88e+04 Std: 1.00e+04
Mujer			3.020.03	Coef: -1.708e+05 Std: 5.3e+04	Coef: -1.685e+05 Std: 5.3e+04	Coef: -1.704e+05 Std: 5.3e+04
Estado civil				5.50 - 04	Coef: -2.225e+04	Coef: -2.238e+04

Std: Std: 1.72e+04 1.72e+04 Alfabeto Coef: 2.11e+05 Std: 2.34e+05 Ν 2567 2567 2567 2567 2567 2567 (observacione s) R2

3)
Para este punto usamos nuestra base de testeo para sacar salario_semanal sombrerito, para lograr esto nos vamos a apoyar en los coeficientes del anterior punto y estas métricas de testeo:

MSE = Error cuadrático medio o Mean squared error

RMSE= Raíz del error cuadrático medio o Root mean squared error

MAE= Error absoluto medio o Mean absolute error

Enfoque de Validación:

Var. Dep: salario_semanal	Modelo 1	Modelo 2	Modelo 3	Modelo 4	Modelo 5
MSE test	161782357	150602367	1502722060	1495379093	1487648397
MSE lest	4948,76	6753,9	665,09	158,6	078,7
RMSE test	1271936,9	1227201,5	1225855,64	1222856,94	1219691,93
RMSE test	4	6			
MAE test	703918,77	657471,70	664552,19	675634,28	680804,34

4)
Construimos un grafico de dispersión para mostrar nuestra predicción de salarios

El gráfico de dispersión nos permite contemplar la relación existente entre la edad y el salario semanal -tanto real como predicho. En el caso de que los puntos de la predicción, salario_semanal-hat_test, se acercan a los puntos reales, salario_semanal, esto indica que el modelo halla con éxito la relación entre la edad y el salario. Por otro lado, en el caso que hayan desviaciones, éstas pueden evidenciar sesgos o limitaciones del modelo en ciertos rangos de edad. Por ejemplo, sobre predicción en jóvenes y subpredicción en mayores.

C. Métodos de Clasificación y Performance

5)

En este quinto punto buscamos implementar métodos de regresión logística (Logit) y vecinos cercanos (KNN) en nuestra base de entrenamiento y para la de testeo una matriz de confusión y el AUC de curvas ROC.

Tuvimos que hacer una limpieza de datos debido a que los modelos resultaban muy perfectos, para eso utilizamos una matriz de correlación y descubrimos que nuestra variable problemática era "P21" que utilizamos para el salario_semanal. Sabiendo eso pudimos obtener resultados mas lógicos para nuestras predicciones.

Para nuestra base de entrenamiento El método de regresión lineal nos devolvió un accuracy test del: 0,12

Con vecinos cercanos la exactitud del modelo nos dio un: 0,36 en nuestra base de testeo con la matriz de confusión vemos una aproximación de: 0,11 y para nuestro ultimo planteo con curvas ROC al sacar el AUC que nos da 0,81 siendo la mejor aproximación de lejos.

Logit: 0,12 KNN:0.36

Matriz de confusión: 0,11

AUC: 0,81

6)

Para esta ultima consigna nos pide que con nuestra base de "norespondieron" hiciéramos una predicción de los desocupados en la misma. Tuvimos problemas a la hora de llamar estas funciones, para solucionarlo planteamos un nuevo train_split con los problemas filtrados. Al final pudimos llegar a la conclusión de que hay un 83,33% de personas desocupadas en la base de datos "norespondieron"