Matemática Discreta | Examen Final - 6 de agosto de 2020

Importante

- Justificá todas tus respuestas.
- No podés usar calculadora, computadora, tablet o celular.
- Copiá todos los enunciados en hojas de papel (o imprimilos). No podrás verlos desde tu celular o computadora durante el examen.
- Para aprobar deberás tener al menos 50 pts. en el total, al menos 10 pts. en la parte teórica y al menos 35 pts. en la parte práctica.
- Escribir con birome o lapicera.
- Al finalizar:
 - En cada hoja que entregues escribí, en forma clara y completa, tu nombre y apellido.
 - Recordá que también tenés que agregar una hoja con la leyenda "Por la presente declaro que la resolución de este examen es obra de mi exclusiva autoría y respetando las pautas y criterios fijados en los enunciados. Asimismo declaro conocer el régimen de infracción de los estudiantes cuyo texto ordenado se encuentra en el apéndice de la Res. Rec. 1554/2018".
 - Tomá fotos de todas las hojas con el celular (o escanea las hojas) y luego hacé un solo pdf con todas las hojas. Debés verificar que el documento esté en el sentido correcto y que su calidad permita que sea leído y corregido.
 - Subí el archivo pdf en el apartado "Tu Trabajo Añadir o crear".
 - Una vez subido el archivo, presioná "Entregar".

Preguntas

- Las preguntas sobre el enunciado podés hacerlas en "Comentarios privados".
- Preguntas relacionadas con el desarrollo del ejercicio podés hacerlas en "Comentarios privados".

Parte Teórica (30 pts.)

- 1. (10 pts.) Enunciar el axioma de buena ordenación.
- 2. (10 pts.) Demostrar que $\sum_{j=0}^{m} {m \choose j} = 2^m$.
- 3. (10 pts.) Probar que si p y q son primos y p|q entonces p=q.

Parte Práctica (70 pts.)

- 4. (24 pts.)
 - a) (7 pts.) Hallar el resto de la división de 93^{417} por 13.
 - b) (7 pts.) Probar que si $n \in \mathbb{Z}$, entonces los números 4n+1 y $3n^2+n$ son coprimos.
 - c) (10 pts.) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0=1,\\ a_1=1,\\ a_n=3a_{n-1}+(n-1)(n-3)a_{n-2}, \text{ para } n\geq 2. \end{cases}$$
 The $a_n=n!$ have todo $n\in\mathbb{N}$

Probar que $a_n = n!$ para todo $n \in \mathbb{N}_0$.

- 5. (16 pts.) Queremos formar comités de entre un grupo de 7 mujeres y 6 hombres. ¿Cuántos comités distintos de 5 personas pueden formarse
 - a) sin restricciones?
 - b) con 1 presidenta/e y 2 secretaria/os?
 - c) con al menos una mujer?
 - d) con exactamente 2 hombres y el Sr. A y la Sra. B no pueden estar ambos en el comité?
- 6. (16 pts.) Dada la ecuación de congruencia

$$6x \equiv 4(34),$$

hallar todas las soluciones en el intervalo [-30, 20]. Hacerlo con el método usado en la teórica. No usar resultados del práctico.

- 7. (14 pts.)
 - a) Probar que los siguientes grafos no son isomorfos.

b) Encontrar una caminata euleriana en el siguiente grafo.

Ejercicios para alumnos libres

(Cada ejercicio mal hecho o no resuelto descuenta 10 pts. del total)

- 1. Calcular el máximo común divisor (23,30) y encontrar enteros $s,t\in\mathbb{Z}$ tales que, (23,30)=s23+t30
- 2. Expresar el número 125234 en base 8.