Application/Control Number: 10/803,119

Art Unit: 2800

CLMSPTO

1 FEB 05

RJT

Page 2

Application/Control Number: 10/803,119

Art Unit: 2800

A method for making a molecular electronic device comprising the steps of:
providing a substrate comprising a surface on which is located a first electrode pattern;
depositing molecules having an electrical characteristic onto said substrate surface to form a

Page 3

molecular layer which covers said substrate surface including said first electrode pattern;

depositing an electrically conductive material onto said molecular switching layer to form an electrically conductive protective layer having an exposed surface;

forming a second electrode pattern on the exposed surface of said protective layer wherein said second electrode pattern overlaps said first electrode pattern to form at least one electrode intersection; and

removing said protective layer at locations which remain exposed after formation of said second electrode pattern to form at least one electrode intersection wherein said molecular layer and electrically conductive protective layer are sandwiched between said first and second electrodes.

- 2. A method for making a molecular electronic device according to claim 1 wherein said electrical characteristic of said molecules is bistable switching.
- A method for making a molecular electronic device according to claim 1 wherein said step of forming said second electrode pattern on the exposed surface of said electrically conductive protective layer comprises the steps of:

forming a mask layer covering said electrically conductive protective layer;

removing a sufficient portion of said mask layer to form an electrode location on said electrically conductive protective layer; and

depositing electrode material onto said electrode location to form said second electrode pattern on said protective layer.

- 4. A method for making a molecular electronic device according to claim 1 wherein said molecule is a bistable switching molecule or a molecule exhibiting differential resistance selected from the group consisting of [2]rotoxanes, [2]catenanes, spiropyrans, and [2]pseudorotaxanes.
- 5. A method for making a molecular electronic device according to claim 1 wherein said electrically conductive material which is used to form said protective layer is selected from the group of metals consisting of titanium and chromium.

Application/Control Number: 10/803,119 Page 4

Art Unit: 2800

6. A method for making a molecular electronic device according to claim 1 wherein said

molecular layer is a Langmuir monomolecular layer.

7. A method for making a molecular electronic device according to claim 1 wherein said first

and second electrode patterns are made from a metal selected from the group consisting of

aluminum, gold, silver, cobalt, iron, nickel, tin, copper, platinum, palladium, and alloys thereof.

8. A method for making a molecular electronic device according to claim 1 wherein said first

and second electrode patterns are made from a material selected from the group consisting of

silicon, polysilicon, amorphous silicon, gallium arsenide and electrically conducting doped polymers.

A method for making a molecular electronic device according to claim 1 wherein said device

comprises molecular switch tunnel junctions, molecular switch cross-point memories, molecular

switch logic circuits or molecular-based resonant tunnel diodes which exhibit negative differential

resistance.

10. A method for making a molecular electronic device according to claim 1 wherein said

electrically conductive protective layer is removed by either wet etching or dry etching.

11. A method for making a molecular electronic device according to claim 1 wherein said

second electrode pattern is formed using either electron or photon lithography.

12. A method for making a molecular electronic device according to claim 1 wherein said

second electrode pattern is formed via either a stamping or imprinting technique.

CLAIMS 13-23 CANCELED

24. A molecular electronic device or circuit made according to the method of claim 1.