Theorem (3.2.6). Let f be the function defined by $f(x) = \frac{x^3 + 2x}{2x + 1}$. f(x) is $\mathcal{O}(x^2)$.

Proof. Let g be the function defined by $g(x) = x^2$. If $x \ge 1$, then

$$f(x) = \left(\frac{x^3 + 2x}{2x + 1}\right) \le \left(\frac{x^3 + 2x}{2x} = \frac{x^3}{2x} + 1\right) \le \left(\frac{x^3}{x} + 1\right) \le (x^2 + 1).$$

Clearly, if x > 1, then $x^2 + 1 \le 2x^2$. So $|f(x)| \le 2|g(x)|$, for all x > 1. It follows from the definition that f(x) is $\mathcal{O}(x^2)$ with constant witnesses C = 2, and k = 1.