An Overview of Self-supervised Methods

Qinwei Xu

2019/05/07

What is self-supervised learning?

- > Difference between pure unsupervised learning and self-supervised learning
 - Pure unsupervised learning does not need any supervision signals
 - Self-supervised learning needs supervision signals (using automatically generated pseudo labels)
- Generalized definition
 - As long as the supervision signals are not generated by human annotations, the learning paradigm is self-supervised
- > Significance
 - Target tasks can greatly benefit from self-supervised pre-training when training data (especially labelled training data) are scarce

What is self-supervised learning?

- General pipeline of self-supervised learning
 - The purpose is to transfer features trained from self-supervised pretext tasks to supervised downstream / target tasks;
 - Visual features from only the first several layers are transferred as high-level features contains task-specific signals;
 - Performance of the target task is used to evaluate the quality of self-supervised learning

Self-supervised pretext tasks

Surface Normal

Prediction

Semantic

Segmentation

Correspondence

Verification

Ego-motion

Image feature learning methods

Method	Category	Code	Contribution		
GAN 83	Generation	✓	Forerunner of GAN		
DCGAN [120]	Generation	✓	Deep convolutional GAN for image generation		
WGAN [121]	Generation	✓	Proposed WGAN which makes the training of GAN more stable		
BiGAN [122]	Generation	✓	Bidirectional GAN to project data into latent space		
SelfGAN [123]	Multiple	X	Use rotation recognition and GAN for self-supervised learning		
ColorfulColorization [18]	Generation	✓	Posing image colorization as a classification task		
Colorization [82]	Generation	✓	Using image colorization as the pretext task		
AutoColor [124]	Generation	✓	Training ConvNet to predict per-pixel color histograms		
Split-Brain 42	Generation	✓	Using split-brain auto-encoder as the pretext task		
Context Encoder [19]	Generation	✓	Employing ConvNet to solve image inpainting		
CompletNet 125	Generation	✓	Employing two discriminators to guarantee local and global consistent		
SRGAN [15]	Generation	✓	Employing GAN for single image super-resolution		
SpotArtifacts [126]	Generation	✓	Learning by recognizing synthetic artifacts in images		
ImproveContext [33]	Context	X	Techniques to improve context based self-supervised learning methods		
Context Prediction 41	Context	✓	Learning by predicting the relative position of two patches from an image		
Jigsaw [20]	Context	✓	Image patch Jigsaw puzzle as the pretext task for self-supervised learning		
Damaged Jigsaw [89]	Multiple	X	Learning by solving jigsaw puzzle, inpainting, and colorization together		
Arbitrary Jigsaw 88	Context	X	Learning with jigsaw puzzles with arbitrary grid size and dimension		
DeepPermNet [127]	Context	✓	A new method to solve image patch jigsaw puzzle		
RotNet [36]	Context	✓	Learning by recognizing rotations of images		
Boosting 34	Multiple	X	Using clustering to boost the self-supervised learning methods		
JointCluster 128	Context	✓	Jointly learning of deep representations and image clusters		
DeepCluster 44	Context	✓	Using clustering as the pretext		
ClusterEmbegging [129]	Context	✓	Deep embedded clustering for self-supervised learning		
GraphConstraint [43]	Context	✓	Learning with image pairs mined with Fisher Vector		
Ranking [38]	Context	✓	Learning by ranking video frames with a triplet loss		
PredictNoise 46	Context	✓	Learning by mapping images to a uniform distribution over a manifold		
MultiTask [32]	Multiple	✓	Using multiple pretext tasks for self-supervised feature learning		
Learning2Count [130]	Context	✓	Learning by counting visual primitive		
Watching Move 81	Free Semantic Label	✓	Learning by grouping pixels of moving objects in videos		
Edge Detection 81	Free Semantic Label	✓	Learning by detecting edges		
Cross Domain [81]	Free Semantic Label	✓	Utilizing synthetic data and its labels rendered by game engines		

Generation-based image feature learning

- Pretext tasks
 - Image generation with GAN
 - Image generation with inpainting
 - Image generation with super resolution
- Parameters of the discriminator can be transferred
 - It needs to capture semantic features to distinguish real or fake images
- These tasks are not designed for self-supervised pre-training
 - The main purpose is image generation / inpainting / super resolution
- Only a few works have been done to transfer the features of these tasks

Generation-based image feature learning

- Pretext tasks
 - Image generation with colorization

a FCN structure for colorization [1]

Networks need to recognize objects and to group pixels of the same part together to correctly colorize each pixel

[1] R. Zhang, P. Isola, and A. A. Efros, "Colorful image colorization," in ECCV, pp. 649–666, Springer, 2016.

Context-based image feature learning

Learning with context similarity

Architecture of DeepClustering [2]

- Iteratively cluster the features
- Cluster assignments are used as pseudo labels
- Initial features are generated by hand-designed features (HOG, SIFT or Fisher Vector)

[2] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, "Deep clustering for unsupervised learning of visual features," in ECCV, 2018.

Context-based image feature learning

- > Learning with spatial context structure
 - Predict the relative positions of two patches from same image
 - Predict the correct order of a Jigsaw puzzle
 - Recognize the rotating angles of the whole images

Jigsaw puzzle [3]

- ➤ Learning with Labels Generated by Game Engines
 - Given models of various objects and layouts of environments, game engines can render realistic images with accurate pixel-level labels

 The domain gap between synthetic images and real-world images needs to be addressed when applied to real-world images

- ➤ Learning with Labels Generated by Game Engines
 - utilizing synthetic and real-world images for self-supervised feature learning

[4] Z. Ren and Y. J. Lee, "Cross-domain self-supervised multi-task feature learning using synthetic imagery," in CVPR, 2018

➤ Learning with Labels Generated by Hard-code programs

Employing hard-code programs on images to obtain labels

 Distill knowledge from hard-code detectors, such as foreground object detection, edge detection, relative depth prediction

 Drawback: the semantic labels generated by hard-code detector usually are very noisy which need to specifically cope with

Video feature learning

Mehtod	SubCategory	Code	Contribution		
VideoGAN 85	Generation	✓	Forerunner of video generation with GAN		
MocoGAN [86]	Generation	✓	Decomposing motion and content for video generation with GAN		
TemporalGAN [144]	Generation	✓	Decomposing temporal and image generator for video generation		
Video Colorization [145]	Generation	✓	Employing video colorization as the pretext task		
Un-LSTM 37	Generation	✓	Forerunner of video prediction with LSTM		
ConvLSTM [146]	Generation	✓	Employing Convolutional LSTM for video prediction		
MCNet [147]	Generation	✓	Disentangling motion and content for video prediction		
LSTMDynamics 148	Generation	X	Learning by predicting long-term temporal dynamic in videos		
Video Jigsaw [87]	Context	×	Learning by jointly reasoning about spatial and temporal context		
Transitive 31	Context	×	Learning inter and intra instance variations with a Triplet loss		
3DRotNet [28]	Context	×	Learning by recognizing rotations of video clips		
CubicPuzzles 27	Context	×	Learning by solving video cubic puzzles		
ShuffleLearn [40]	Context	✓	Employing temporal order verification as the pretext task		
LSTMPermute [149]	Context	✓	Learning by temporal order verification with LSTM		
OPN [39]	Context	✓	Using frame sequence order recognition as the pretext task		
O3N [29]	Context	×	Learning by identifying odd video sequences		
ArrowTime 90	Context	✓	Learning by recognizing the arrow of time in videos		
TemporalCoherence [150]	Context	X	Learning with the temporal coherence of features of frame sequence		
FlowNet [151]	Cross Modal	<	Forerunner of optical flow estimation with ConvNet		
FlowNet2 152	Cross Modal	✓	Better architecture and better performance on optical flow estimation		
UnFlow [153]	Cross Modal	✓	An unsupervised loss for optical flow estimation		
CrossPixel 23	Cross Modal	X	Learning by predicting motion from a single image as the pretext task		
CrossModel [24]	Cross Modal	×	Optical flow and RGB correspondence verification as pretext task		
AVTS [25]	Cross Modal	×	Visual and Audio correspondence verification as pretext task		
AudioVisual 26	Cross Modal	✓	Jointly modeling visual and audio as fused multisensory representation		
LookListenLearn 93	Cross Modal	✓	Forerunner of Audio-Visual Correspondence for self-supervised learning		
AmbientSound [154]	Cross Modal	×	Predicting a statistical summary of the sound from a video frame		
EgoMotion [155]	Cross Modal	✓	Learning by predicting camera motion and the scene structure from videos		
LearnByMove 94	Cross Modal	✓	Learning by predicting the camera transformation from a pairs of images		
TiedEgoMotion 95	Cross Modal	X	Learning from ego-motor signals and video sequence		
GoNet 156	Cross Modal	✓	Jointly learning monocular depth, optical flow and ego-motion estimation from video		
DepthFlow [157]	Cross Modal	✓	Depth and optical flow learning using cross-task consistency from videos		
VisualOdometry [158]	Cross Modal	✓	An unsupervised paradigm for deep visual odometry learning		
ActivesStereoNet [159]	Cross Modal	✓	End-to-end self-supervised learning of depth from active stereo systems		

- ➤ Learning from video generation
 - Parameters of discriminator can be transferred
- Learning from video colorization
 - The color coherence between consecutive frames within a short time is a strong supervision signal
 - Given the reference RGB frame and a gray-scale image, colorize the grayscale image
 - Another perspective is directly transform a grayscale video clip to a colorful video clip

- Learning from video prediction
 - Predicting future frame sequences based on a limited number of frames

 No work has been done to study the generalization ability of features learned by video prediction

[5] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, "Decomposing motion and content for natural video sequence prediction," in ICLR, 2017.

Temporal Context-based Learning

- > Temporal order verification: correct or incorrect temporal order
- > Temporal order recognition: recognize the temporal order

- > Frames are sampled according to the magnitude of optical flow
- > Drawback: computation of optical flow is expensive and slow

[6] I. Misra, C. L. Zitnick, and M. Hebert, "Shuffle and learn: unsupervised learning using temporal order verification," in ECCV, pp. 527–544, Springer, 2016

Cross Modal-based Learning

- Learning from RGB-Flow Correspondence
 - Optical flow estimation (e.g., FlowNets)
 - RGB and optical flow correspondence verification
- ➤ Learning from Visual-Audio Correspondence

> Ego-motion: the correspondence between visual signal and motor signal

[7] R. Arandjelovic and A. Zisserman, "Look, listen and learn," in ICCV, pp. 609–617, IEEE, 2017

Comparison

➤ Linear classification on ImageNet and Places datasets using activations from the convolutional layers of an AlexNet as features

		ImageNet				Places					
Method	Pretext Tasks	conv1	conv2	conv3	conv4	conv5	conv1	conv2	conv3	conv4	conv5
Places labels [8]	_						22.1	35.1	40.2	43.3	44.6
ImageNet labels [8]		19.3	36.3	44.2	48.3	50.5	22.7	34.8	38.4	39.4	38.7
Random(Scratch) [8]	_	11.6	17.1	16.9	16.3	14.1	15.7	20.3	19.8	19.1	17.5
ColorfulColorization [18]	Generation	12.5	24.5	30.4	31.5	30.3	16.0	25.7	29.6	30.3	29.7
BiGAN [122]	Generation	17.7	24.5	31.0	29.9	28.0	21.4	26.2	27.1	26.1	24.0
SplitBrain [42]	Generation	17.7	29.3	35.4	35.2	32.8	21.3	30.7	34.0	34.1	32.5
ContextEncoder [19]	Context	14.1	20.7	21.0	19.8	15.5	18.2	23.2	23.4	21.9	18.4
ContextPrediction [41]	Context	16.2	23.3	30.2	31.7	29.6	19.7	26.7	31.9	32.7	30.9
Jigsaw [20]	Context	18.2	28.8	34.0	33.9	27.1	23.0	32.1	35.5	34.8	31.3
Learning2Count 130	Context	18.0	30.6	34.3	32.5	25.7	23.3	33.9	36.3	34.7	29.6
DeepClustering [44]	Context	13.4	32.3	41.0	39.6	38.2	19.6	33.2	39.2	39.8	34.7

conv3 & conv4 features preform better!

- Shallow layers (conv1 & conv2) capture general low-level features
- Deep layers (conv5) capture pretext task-related features

Comparison

> Self-supervised image feature learning

Method	Pretext Tasks	Classification	Detection	Segmentation
ImageNet Labels [8]	_	79.9	56.8	48.0
Random(Scratch) [8]	_	57.0	44.5	30.1
ContextEncoder [19]	Generation	56.5	44.5	29.7
BiGAN [122]	Generation	60.1	46.9	35.2
ColorfulColorization [18]	Generation	65.9	46.9	35.6
SplitBrain [42]	Generation	67.1	46.7	36.0
RankVideo [38]	Context	63.1	47.2	35.4^{\dagger}
PredictNoise [46]	Context	65.3	49.4	37.1^{\dagger}
JigsawPuzzle [<mark>20</mark>]	Context	67.6	53.2	37.6
ContextPrediction [41]	Context	65.3	51.1	_
Learning2Count [130]	Context	67.7	51.4	36.6
DeepClustering [44]	Context	73.7	55.4	45.1
WatchingVideo [81]	Free Semantic Label	61.0	52.2	_
CrossDomain [30]	Free Semantic Label	68.0	52.6	_
AmbientSound [154]	Cross Modal	61.3	_	_
TiedToEgoMotion [95]	Cross Modal	_	41.7	_
EgoMotion [94]	Cross Modal	54.2	43.9	

Comparable to supervised pre-training, especially for object detection and semantic segmentation

Comparison

> Self-supervised video feature learning

Method	Pretext Task	UCF101	HMDB51
Kinetics Labels* [70]		84.4	56.4
VideoGAN [85]	Generation	52.1	_
VideoRank [38]	Context	40.7	15.6
ShuffleLearn [40]	Context	50.9	19.8
OPN [29]	Context	56.3	22.1
RL [35]	Context	58.6	25.0
AOT [90]	Context	58.6	<u> </u>
3DRotNet 28	Context	62.9	33.7
CubicPuzzle* [27]	Context	65.8	33.7
RGB-Flow [24]	Cross Modal	59.3	27.7
PoseAction [48]	Cross Modal	55.4	23.6

Much lower than supervised pre-training, probably due to easy overfitting of 3DConvNets and the complexity of video feature learning

Future directions

- > Learning from synthetic data: bridge the domain gap by GAN
- > Learning web data: handle the noise in web data and their associated metadata
- > Learning spatialtemporal features from videos: more effective pretext tasks
- Learning with data from different sensors: correspondence of data captured by different devices

> Learning with multiple pretext tasks: using different supervision signals