AULA 7 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Considere a seguinte relação de recorrência:

$$\mathsf{F}(n) \ = \begin{cases} 1 \ , \ \mathsf{se} \ \mathsf{n} = \ 0 \ \ \mathsf{ou} \ \ \mathsf{n} = 1 \ \mathsf{ou} \ \ \mathsf{n} = 2 \\ \mathsf{F}(n-1) + \mathsf{F}(n-2) + \sum_{k=0}^{n-3} \mathsf{F}(k) \times \mathsf{F} \ (n-3-k) \ , \ \mathsf{se} \ \mathsf{n} \ > \ 2 \end{cases}$$
 Função Recursiva

- Implemente uma função recursiva que use diretamente a relação de recorrência acima, sem qualquer simplificação.
- Construa um programa para executar essa função para **sucessivos valores de n** e que permita **contar o número total de multiplicações efetuadas** para cada valor de n.
- Preencha a as primeiras colunas tabela seguinte com o resultado da função recursiva e o número de multiplicações efetuadas para os sucessivos valores de n.

n	F(n) – Versão Recursiva	Nº de Multiplicações	F(n) – Versão de Programação Dinâmica	Nº de Multiplicações
0	1	0	1	0
1	1	0	1	0
2	1	0	1	0
3	3	1	3	1
4	6	3	6	3
5	12	7	12	6
6	26	16	26	10
7	57	36	57	15
8	125	80	125	21
9	279	177	279	28
10	630	391	630	36
11	1433	863	1433	45
12	3285	1904	3285	55
13	7585	4200	7585	66
14	17611	9264	17611	78
15	41109	20433	41109	91
16	96416	45067	96416	105
17	227088	99399	227088	120
18	536896	219232	536896	136
19	1273763	483532	1273763	153
20	3031485	1066464	3031485	171
21	7235573	2351261	7235573	190
22	17315668	5187855	17315668	210
23	41539777	11442175	41539777	231
24	99877435	25236512	99877435	253
25	240645375	55660880	240645375	276

Nome: Jodionísio da Lucinda João Muachifi

N° MEC: 97147

• Analisando os dados da tabela, estabeleça uma **ordem de complexidade** para a **função recursiva**.

Usando o rácio F(n)/F(n-1), verificamos que tende para um valor constante 2,205..., o que resulta numa ordem de complexidade $O((2,205)^n)$, exponencial.

Obs: a análise pode ser verificada no ficheiro Excel em anexo do file zip

Programação Dinâmica

- Uma forma alternativa de resolver alguns problemas recursivos, para evitar o cálculo repetido de valores, consiste em efetuar esse cálculo de baixo para cima ("bottom-up"), ou seja, de F(0) para F(n), e utilizar um array para manter os valores entretanto calculados. Este método designa-se por programação dinâmica e reduz o tempo de cálculo à custa da utilização de mais memória para armazenar os valores intermédios.
- Usando **programação dinâmica**, implemente uma **função iterativa** para calcular F(n). **Não utilize** um array global.
- Construa um programa para executar a função iterativa que desenvolveu para **sucessivos valores de n** e que permita **contar o número de multiplicações efetuadas** para cada valor de n.
- Preencha as últimas colunas tabela anterior com o resultado da função iterativa e o número de multiplicações efetuadas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para a função iterativa.

Usando o rácio F(2n)/F(n), observamos que tende para um valor constante 4,000..., o que resulta numa ordem de complexidade $O(n^2)$, quadrática.

Conclui-se que, a função iterativa tem um desempenho temporal melhor em relação a função recursiva.

Obs: a análise pode ser verificada no ficheiro Excel em anexo do file zip

Função Recursiva - Análise Formal da Complexidade

• Escreva uma expressão recorrente (direta) para o número de multiplicações efetuadas pela função recursiva F(n). Obtenha, depois, uma expressão recorrente simplificada. Note que $\sum_{k=0}^{n-3} \text{Mult}(k) = \sum_{k=0}^{n-3} \text{Mult}(n-3-k)$. Sugestão: efetue a subtração Mult(n) - Mult(n-1).

NOME: JODIONÍSIO DA LUCINDA JOÃO MUACHIFI

A equação de recorrência obtida é uma equação de recorrência linear não homogénea. Considere
a correspondente equação de recorrência linear homogénea. Determine as raízes do seu
polinómio característico (Sugestão: use o Wolfram Alpha). Sem determinar as constantes
associadas, escreva a solução da equação de recorrência linear não homogénea.

$$M(n) = 1 + 2M(n-1) + M(n-3) \Rightarrow M(n) - 2M(n-1) - M(n-3) = 1$$

$$r^3 - 2r^2 - 1 = 0 \qquad \leftarrow \text{Equação característica}$$
Solução da equação característica usando Wolfram Alpha
$$\begin{cases} r_1 \approx 2,2056 \\ r_2 \approx -0,10278 - 0,66546i & \theta = \tan^{-1}\left(\frac{-0,66546}{-0,10278}\right) \approx 81,22^{\circ} \lor \theta \approx -81,22^{\circ} \because \theta \approx \pm 81,22^{\circ} \\ r_3 \approx -0,10278 + 0,66546i & \theta = \pm \frac{9\pi}{20} \end{cases}$$

$$|\rho| = \sqrt{(-0,10278)^2 + (0,66546)^2} \approx 0,67$$

$$\begin{cases} Z_2 = 0,67 \left[\cos\left(\frac{9\pi}{20}\right) - \sin\left(\frac{9\pi}{20}\right)\right] \\ Z_3 = 0,67 \left[\cos\left(\frac{9\pi}{20}\right) + \sin\left(\frac{9\pi}{20}\right)\right] \end{cases} \Rightarrow Z_{2,3} = 0,67 \left[\cos\left(\frac{9\pi}{20}\right) \pm i\sin\left(\frac{9\pi}{20}\right)\right]$$
usando a fórmula de Moivre, tem-se: $Z_{2,3}^n = (0,67)^n \left[\cos\left(\frac{n9\pi}{20}\right) \pm i\sin\left(\frac{n9\pi}{20}\right)\right]$
A solução particular $e^{-1/2}e^{-1/2}$, a de equação de recorrência linear não homogénea $e^{-1/2}e^{-1/2}$, and $e^{-1/2}e^{-1/2}$, and $e^{-1/2}e^{-1/2}$, and $e^{-1/2}e^{-1/2}$, $e^{-1/2}e^{-1/2}$,

 Usando a solução da equação de recorrência obtida acima, determine a ordem de complexidade do número de multiplicações efetuadas pela função recursiva. Compare a ordem de complexidade que acabou de obter com o resultado da análise experimental.

Na solução de recorrência obtida acima, o termo de maior relevância é $(2,2056)^n$, para $n \ge 0$. Logo, a ordem de complexidade é $O((2,2056)^n)$, exponencial

Comparando a ordem de complexidade do número de multiplicações da função recursiva da análise experimental com a ordem obtida formalmente, nota-se que, em ambos os casos possuem a mesma ordem de complexidade, com pequena diferença na quarta casa decimal.

Programação Dinâmica - Análise Formal da Complexidade

 Considerando o número de multiplicações efetuadas pela função iterativa, efetue a análise formal da sua complexidade. Obtenha uma expressão exata e simplificada para o número de multiplicações efetuadas.

Designando M(n) como número de multiplicações, tem-se:

$$M(n) = \begin{cases} 0, & \text{se } n = 0 \text{ ou } n = 1 \text{ ou } n = 2 \\ \sum_{i=3}^{n} \sum_{k=0}^{i-3} 1, & \text{se } n > 2 \end{cases}$$

$$M(n) = \sum_{i=3}^{n} \sum_{k=0}^{i-3} 1 = \sum_{i=3}^{n} (i-2) = \sum_{i=3}^{n} i - \sum_{i=3}^{n} 2$$

Propriedade
$$\sum_{i=m}^{n} i = \frac{n(n+1)}{2} - \frac{m(m-1)}{2}$$

$$M(n) = \frac{n(n+1)}{2} - \frac{3(3-1)}{2} - 2(n-3+1)$$

$$M(n) = \frac{n(n+1)}{2} - 3 - 2n + 4 = \frac{n(n+1)}{2} - 2n + 4 = \frac{n^2 - 3n}{2} + 1$$

Logo, a expressão do número de multiplicações efetuadas pela função iterativa é:

$$\therefore M(n) = \frac{1}{2} (n^2 - 3n + 2)$$

Exemplo: M(10)=1/2(100-30+2)=1/2(72)=36 (como queríamos confirmar com resultado da tabela)

 Usando a expressão obtida acima, determine a ordem de complexidade do número de multiplicações efetuadas pela função iterativa. Compare a ordem de complexidade que acabou de obter com o resultado da análise experimental.

A ordem de complexidade do número de multiplicações efetuadas pela função iterativa obtida na expressão acima é $O(n^2)$, quadrática.

Comparando a ordem de complexidade do número de multiplicações da função iterativa da análise experimental com a ordem obtida formalmente, nota-se que, em ambos os casos a possuem mesma ordem de complexidade.