Due Jan 30, 1:29 PM IST

Congratulations! You passed!

Grade received 100%

◯ True

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

1.	What is stored in the 'cache' during forward propagation for latter use in backward propagation?	1/1 point
	$egin{array}{c} oldsymbol{W}^{[l]} \ \hline & oldsymbol{\mathcal{Z}}^{[l]} \ \hline & oldsymbol{\mathcal{b}}^{[l]} \ \hline & oldsymbol{A}^{[l]} \ \hline \end{array}$	
	\swarrow^2 Expand \bigcirc Correct Yes. This value is useful in the calculation of $dW^{[l]}$ in the backward propagation.	
2.	During the backpropagation process, we use gradient descent to change the hyperparameters. True/False? False True	1/1 point
	∠ ² Expand	
3.	Correct. During backpropagation, we use gradient descent to compute new values of $W^{[\ell]}$ and $b^{[\ell]}$. These are the parameters of the network. Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?	1/1 point
	Later layers of the deep neural network. Middle layers of the deep neural network.	
	Input layer of the deep neural network.	
	Early layers of the deep neural network.	
	∠ ³ Expand	
	 Correct Correct. The deep layers of a neural network are typically computing more complex features such as the ones shown in the figure. 	
4.	We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False?	1/1 point
	False	

	∠ ⁷ Expand	
	\odot correct Correct. We can use vectorization in backpropagation to calculate $dA^{[l]}$ for each layer. This computation is done over all the training examples.	
5.	Suppose $W[i]$ is the array with the weights of the i-th layer, $b[i]$ is the vector of biases of the i-th layer, and g is the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.	1/1 point
	A[i] = g(Z[i]) (a) for i in range(1, L+1): Z[i] = W[i]*A[-1] + b[i]	
	$A[i] = g(Z[i])$ $for i in range(L):$ $Z[i] = W[i]^*X + b[i]$ $A[i] = g(Z[i])$	
	∠ [™] Expand	
	 Correct Yes. Remember that the range omits the last number thus the range from 1 to L+1 gives the L necessary values. 	
6.	Consider the following neural network:	1/1 point
	x_1 x_2	
	How many layers does this network have? The number of layers L is 2.	
	The number of layers L is 4.	
	The number of layers L is 5.	
	The number of layers L is 6	
	∠ [™] Expand	
	⊙ Correct Yes. The number of layers is the number of hidden layers + 1.	
7.	If L is the number of layers of a neural network then $dZ^{[L]}=A^{[L]}-Y$. True/False?	1/1 point
	True Yes. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.	
	 False No. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values. 	
	∠ ⁷ Expand	
	⊙ Correct	
8.	For any mathematical function you can compute with an L-layered deep neural network with N hidden units there	1/1 point
	is a shallow neural network that requires only $\log N$ units, but it is very difficult to train.	
	False	

○ True

 \bigcirc Correct

Correct. On the contrary, some mathematical functions can be computed using an L-layered neural network and a given number of hidden units; but using a shallow neural network the number of necessary hidden units grows exponentially.

9. Consider the following 2 hidden layers neural network:

1/1 point

Which of the following statements are true? (Check all that apply).

- $\qquad \qquad W^{[1]}$ will have shape (4, 3)
- ${\color{red} {f W}}^{[2]}$ will have shape (4, 3)
- ✓ Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

- $b^{[1]}$ will have shape (3, 1)
- ✓ Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}$, 1).

- $b^{[1]}$ will have shape (4, 1)
- $igwedge W^{[1]}$ will have shape (3, 4)
- ✓ Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},\,n^{[l-1]})$.

- $b^{[1]}$ will have shape (1, 3)

Z Expand

⊘ Correct

Great, you got all the right answers.

10. In the general case if we are training with m examples what is the shape of $A^{[l]}$?

1/1 point

- $\bigcirc \ (m,\, n^{[l]})$
- $\bigcirc \hspace{0.1in} (m, \hspace{0.1in} n^{[l+1]})$
- \bigcirc $(n^{[l]}, m)$
- $\bigcirc \ \ (n^{[l+1]},\,m)$

Expand

Yes. The number of rows in ${\cal A}^{[1]}$ corresponds to the number of units in the l-th layer.