SF1914/SF1916: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 9 INFERENSTEORI – KONSTEN ATT DRA SLUTSATSER. PUNKSKATTNINGAR OCH DERAS EGENSKAPER.

Tatjana Pavlenko

21 september 2018

Plan för dagens föreläsning

- ▶ Inledning: skillnaden mellan sannolikhetsteori och statistisk inferens (Kap. 11.1-11.2).
- ▶ Punkskattningar, egenskaper hos en skattning (Kap. 11.3)
- ► Skattning av väntevärde och varians (Kap. 11.4)
- Objektiva metoder att ta fram skattningar: MK- och MLskattningar(Kap. 11.5)

INLEDNING

- ▶ I sannolikhetsteorin har vi arbetat med stokastiska variabler vars fördelningar och deras parametrar varit kända. Utgående från en given sannolikhetsmodell, vill man bestämma sannolikheter för olika intressanta händelser.
- I statistikteorin är förhållandet det omvända; vi har en samling av mätvärden (data) från någon fördelning vars parametrar i regel är okända, vi vill använda mätvärdena för att uppskatta de okända parametrarna på något bra sätt.

Utmaningen är att omsätta data till kunskap!

 I dagens tillämpningar träffar man ofta stora mängder av (komplexa) data.

INLEDNING (FORTS.)

▶ Most everyone now has heard one of the hottest terms today − big data. Big data is a big deal, especially in such data-intensive industries as cybersecurity, finance, healthcare, marketing, transportation, energy, and others. And, many of us are already familiar with the 3V's of big data − volume, velocity, and variety of data. But, the key question is,

"How do we extract big knowledge from big data?"

The new breed of analytics specialists need to have a combination of skills including statistical techniques, applied mathematical methods, advanced machine learning algorithms, data visualization, and business and communications skills.

Cited from the book *Big Data and Business Analytics* (Taylor Francis, 2013) by J. Liebowitz, the Orkand Endowed Chair in Management and Technology at University of Maryland University College.

GRUNDLÄGGANDE BEGREPP

- Vi antar att vi har ett stickprov, x₁,...,x_n som är en samling observationer (uppmätta värden) av stokastiska variabler X₁,...,X_n genom experiment. Fördelningen för X beror av en- eller flerdimensionell okänd parameter θ.
- Parametern kan ta värden i ett *parameterrum*, bet. Ω_{θ} , (t. ex. $\Omega_{\theta} = (0, \infty)$ om vi vet att $\theta > 0$).
- ▶ I allmänhet antas $X_1, ..., X_n$ oberoende och likafördelade, dvs kommer från samma $F_X(x)$.
- Syftet är att *skatta* den okända fördelningsparametern θ med hjälp av *funktion* av data.

EXEMPEL.

- 1. Opinionsundersökning (se Ex i Kap. 11.2) :
 - 1000 personer väljes på måfå ur en stor population, t.ex. Sveriges befolkning (vid halvårsskiftet i år var Sveriges folkmängd 9 793 172 personer, SCB).
 - Fig. En fråga som ska besvaras med Ja eller Nej ställs. Resultat: 350 personer svarat Ja. Data: x=350. Uppskatta andelen Ja-svarare $\theta=p$ i hela populationen.
- 2. Uppskatta medelhastigheten hos hela populationen bilar som passerar korsningen: $\theta = \mu = E(X)$. X_i är hastighet hos bil i. Data: $x_1 = 65, x_2 = 50, \ldots, x_{78} = 56$.
- 3. Hur stor är den förväntade andelen fortkörare? $\theta = p = P(X > 50)$. Data: y = 41.

PUNKTSKATTNING (FORTS.)

▶ Def. En punktskattning θ^* av en parameter θ är en funktion av data (x_1, \ldots, x_n) som ger ett ett värde i parameterrum Ω_{θ} , detta värde ges av

$$\theta_{obs.}^* = \theta^*(x_1,\ldots,x_n).$$

Viktigt!

- ▶ Mätdata $(x_1, ..., x_n)$ ses som utfall av s. v. $(X_1, ..., X_n)$.
- Punktskattningen $\theta^*_{obs.}$ ses som ett utfall (en observation) av den s.v. $\theta^*(X_1, \ldots, X_n)$.
- Om ny mätdata erhålls så får vi ett nytt utfall $\theta^*_{obs.}$ av den s.v. $\theta^*(X_1, \ldots, X_n)$.
- Funktionen $\theta^*(X)$ av motsvarande s. v. $X = (X_1, \ldots, X_n)$ kallas för skattare av θ . $\theta^*(X)$ är också en s. v. med t. ex. fördelning, väntevärde och varians.
- Skilj på θ som är en parameter, dvs okänt tal, och θ^* som är dess skattning. Skattningen varierar med stickprovet, det gör inte θ !
- Tokning: Fördelning för $\theta^*(X)$ talar om vad skattningen kunde blivit istället, om vi gjort om experiment, t ex mäter hastighet hos 78 nya bilar.

EGENSKAPER HOS PUNKTSKATTNINGAR: VÄNTEVÄRDESRIKTIGHET

Önskvärda egenskaper: fördelningen för en s.v. $\theta^*(X)$ har inte något systematiskt fel. Detta kan preciseras i följande

▶ Def. En punktskattning θ_{obs}^* är *väntevärdesriktig* om

$$E(\theta^*) = \theta$$

för varje $\theta \in \Omega_{\theta}$.

Ex på tavlan!

Önskvärda egenskaper:

- ▶ intuitivt, skattningen bör bli *bättre* då man ökar antaler observationer (mätdata) skattningen baseras på. För att tydligare markera att skattningarna beror an n betecknar vi nu stickprovsvariabeln med $\theta_n^*(X)$.
- Fördelning av $\theta_n^*(X)$ koncentreras mer och mer kring det rätta värdet θ då n växer. Detta kan preciseras i följande
 - ▶ Def. Om för varje fixt $\theta \in \Omega_{\theta}$ och för varje givet $\varepsilon > 0$

$$P(|\theta_n^* - \theta| > \varepsilon) \to 0$$

då stickprovsstorleken $n \to \infty$ sägs $\theta^*_{obs.}$ vara konsistent.

▶ *Tolkning*: för ett stort stickprov är det troligt att punktskattningen ligger nära det rätta värdet θ .

Ex på tavlan!

EGENSKAPER HOS PUNKTSKATTNINGAR: EFFEKTIVITET

Önskvärda egenskaper:

- som koncentrationsmått/spridningmått för stickprovsvariabeln θ^* används ofta variansen, $V(\theta^*)$. Vid val mellan två olika väntevärdesriktiga skattningar föredrar man en som har *liten spridning*, vilket leder oss till följande
 - ▶ Def. Om θ^* och $\hat{\theta}$ är två skattningar väntevärdesriktiga och

$$V(\theta^*) \leq V(\hat{\theta})$$

för alla $\theta \in \Omega_{\theta}$, med strikt olikhet för något $\theta \in \Omega_{\theta}$, sägs θ^* vara effektivare än $\hat{\theta}$.

 Tolkning: Man väljer den väntevärdesriktiga skattningen som har lägst varians! Detta kallas för den effektivaste skattningen.

Ex på tavlan!

MEDELKVADRATFEL.

Ett sätt att samtidigt ta hänsyn till både *systematsikt* fel (*bias* på engelska), $E(\theta^*) - \theta$, och *slumpmässigt* fel är att studera *medelkvadratfel*.

▶ Def. En skattnings medelkvadratfel (MSE, Mean Square Error) är

$$MSE = E((\theta^* - \theta)^2).$$

Medelkvadratfel kan skrivas som (se def 11.4 på s. 248 i Blom)

$$MSE = V(\theta^*) + (E(\theta^*) - \theta))^2,$$

dvs som summan av skattningens varians och kvadraten på systematsikt fel.

MEDELKVADRATFEL (FORTS.)

$$MSE = V(\theta^*) + (E(\theta^*) - \theta))^2.$$

För väntevärdesriktig skattning är systematsikt fel lika med noll, $E(\theta^*) - \theta = 0$. Detta innebär att för väntevärdesriktiga skattningar har vi

$$\mathsf{MSE} = V(\theta^*).$$

▶ Obs! När vi talar om väntevärde (varians) för en punktskattning är det väntevärde (varians) för en *skattare*, dvs för s.v. $\theta^*(X)$. Vi skriver $E(\theta^*)$ ist. för omständigare $E(\theta^*(X))$, och $V(\theta^*)$ ist. för omständigare $V(\theta^*(X))$.

SKATTNING AV VÄNTEVÄRDE OCH VARIANS

Låt x_1,\ldots,x_n vara mätdata som ses som observationer av oberoende s.v X_1,\ldots,X_n vilkas fördelning har väntevärde μ och variansen σ^2 , dvs

$$E(X_i) = \mu$$
 och $V(X_i) = \sigma^2$ för alla $i = 1, ..., n$.

- Syftet är att skatta de okända parametrar μ och σ^2 med hjälp av x_1, \ldots, x_n .
- Vi använder stickprovsmedelvärde och stickprovsvarians

$$\mu_{obs.}^* = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i, \quad (\sigma^2)_{obs.}^* = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

som är naturliga (intuitiva) skattningar för μ och σ^2 och ofta har bra teoretiska egenskaper.

▶ Sats: \bar{x} och s^2 är väntevärdesriktiga och konsistenta skattningar för μ resp. σ^2 .

MAXIMUM-LIKELIHOOD-METODEN

 Hittils har vi använt intuition för att konstruera skattningar. Det finns mer rationella sätt att ta fram skattningar för parametrar i olika fördelningar. En av dessa är

Maximum likelihood-, ML-metoden: man väljer som skattningen ett värde, sådant att sannolikhet för den givna mätdatan maximeras.

Def. Funktionen

$$L(\theta) = \left\{ \begin{array}{ll} p_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta) & \text{diskreta fallet} \\ f_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta) & \text{kontinuerliga fallet} \end{array} \right.$$

kallas för likekihood-funktionen (förk. L-funktionen).

▶ Tolkning av ML-metoden: I L-funktionen låter man argumentet θ variera inom Ω_{θ} och ser efter för vilket värde på argumentet $L(\theta)$ maximeras. Detta värde tas som ML-skattning av parametern θ .

MAXIMUM-LIKELIHOOD-METODEN (FORTS.)

- ▶ Def. Det värde $\theta^*_{obs.}$, för vilket $L(\theta)$ antar sitt största värde inom Ω_{θ} kallas för maximum-likelihood-skattningen (ML-skattningen) av θ .
- ▶ Om $x_1, ..., x_n$ är utfall av oberoende, *likaförselade* s.v. $X_1, ..., X_n$ så får vi

$$L(\theta) = \begin{cases} \Pi_{i=1}^{n} p_X(x_i; \theta) & \text{diskr. fallet} \\ \Pi_{i=1}^{n} f_X(x_i; \theta) & \text{kont. fallet} \end{cases}$$

- Produktformen av $L(\theta)$ gör att maximeringen kan bli besvärlig. Det är lämpligt att i stället maximera $\ln L(\theta)$, log-likelihood-funktion, som ger en summa och maximeringen förenklas. Logaritmen är en monotont växande funktion, så $L(\theta)$ och $\ln L(\theta)$ antar maximum i samma punkt.
- ► Ex på tavla!

MAXIMUM-LIKELIHOOD-METODEN (FORTS.)

FIGUR: Plot av log-likelihood-funktionen för Ex om opinionsundersökning.

