UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		<u> </u>	Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9702	02	
1	(a)	allo	w any	ything in range 20 Hz $ ightarrow$ 20 kHz		B1	[1]
	(b)	allo	w any	ything in range 10 nm $ ightarrow$ 400 nm		В1	[1]
	(c)	allo	w any	ything in range 10 g \rightarrow 100 g		B1	[1]
	(d)	allo	w any	ything in range 0.1 kg m ⁻³ \rightarrow 10 kg m ⁻³		B1	[1]
2	(a)	(i)		the reciprocal of the gradient of the graph $\{32 / (4 \times 10^{-2}) = \} 800 \text{ N m}^{-1}$		C1 A1	[2]
		(ii)	or a	er energy = average force × extension or $\frac{1}{2}kx^2$ area under graph line $\frac{1}{2}x \times 800 \times (3.5 \times 10^{-2})^2$ or $\frac{1}{2}x \times 28 \times 3.5 \times 10^{-2}$ ergy = 0.49 J	2	C1 M1 A0	[2]
	(b)	(i)	0 =	nentum before cutting thread = momentum after 2400 × V – 800 × v / = 3.0		C1 M1 A0	[2]
		(ii)	0.49	rgy stored in spring = kinetic energy of trolleys = $\frac{1}{2} \times 2.4 \times (\frac{1}{3} v)^2 + \frac{1}{2} \times 0.8 \times v^2$		C1 C1	ro1
				0.96 m s ⁻¹ nly one trolley considered, or masses combined, allow h	max 1 mark)	A1	[3]
3	(a)	(i)	1.2^{2}	2as = 2 × a × 1.9 0.38 m s ⁻²		M1 A1	[2]
		(ii)		<i>ma</i> 42 × 0.38 16 N		M1 A0	[1]
	(b)	b) power =		Fv 16 × 1.2		C1	
				19 W		A1	[2]
	(c)	(i)	com	ponent = 42 × 9.8 × sin2.8 = 20.1 N		C1 A1	[2]
		(ii)	acce	elerating force = $20.1 - 16 = 4.1 \text{ N}$ eleration of trolley = $4.1 / 42 = 0.098 \text{ m s}^{-2}$ 1/2at ²		C1 C1	
			3.5	$= \frac{1}{2} \times 0.098 \times t^{2}$ 8.5 s		C1 A1	[4]

Page 3		Mark Scheme	Syllabus	Paper	•
		GCE A/AS LEVEL – May/June 2008	9702	02	
	or or	allows plenty of time to stop runaway trolley speed of trolley increases gradually trolley will travel faster must be unambiguous when read in conjunction with q	uestion)	B1	[1]
4	2. 3.	stress = force / (cross-sectional) area strain = extension / <u>original</u> length Young modulus = stress / strain fos must be clear in each answer)		B1 B1 B1	[1] [1] [1]
	(ii) eithe or or	er fluids cannot be deformed in one direction / cannot fluids can only have volume change no fixed shape	t be stretched	B1	[1]
	(b) either	unless Δp is very large or 2.2×10^9 is a large number ΔV is very small or $\Delta V/V$ is very small, (so 'incompre		M1 A1	[2]
	$h = 9.5$ $\Delta h / h =$	$0^{5} = h \times 1.08 \times 10^{3} \times 9.81$		C1 C1 A1	[3]
5		uency: number of oscillations <u>per</u> unit time of the source / of a point on the wave		M1 A1	[2]
	(ii) spe	ed: speed at which energy is transferred / speed	of wave <u>front</u>	B1	[1]
	(b) (i) doe	s not transfer energy (along the wave)		B1	[1]
	(ii) posi	ition (along wave) where amplitude of vibration is a ma	ximum	B1	[1]
	(iii) all tl	hree positions marked		B1	[1]
	$v = f\lambda$	gth = 2 × 17.8 = 35.6 cm		C1 C1	
	$= 44.$ $44.5^2 =$	5×0.356 $.5 \text{ m s}^{-1}$ 4.00 / m $0 \times 10^{-3} \text{ kg m}^{-1}$		C1 C1 A1	[5]

			GCE A/AS LEVEL – May/June 2008	9702	02	
6	(a)		$P = VI$ and $V = IR$ or $P = V^2 / R$ se = 38.4 Ω		C1 A1	[2]
	(b)	zero 1.5 kW 3.0 kW 0.75 kW 2.25 kW			B1 B1 B1 B1	[5]
7	(a)	β-particle $α$ speed $α$ discrete either or $α$ positive $α$ mass > (any two	e: either helium nucleus or contains 2 protons + 2 or 4_2 He e: either electron or $^0_{-1}$ e $<\beta$ speed e values of speed/energy, β continuous spectrum α ionising power $>>\beta$ ionising power α range $<<\beta$ range e, β negative (only if first two B marks not scored) $>\beta$ mass (only if first two B marks not scored) sensible pairs of statements relevant to differences, allow statements relevant to only α or β , 1 each, max	(1) (1) (1) (1) (1)	B1 B1	[4]
	(b)	(i) ²³⁶ ₉₂ U	$\rightarrow \frac{^{232}}{^{90}}Th$ + $\frac{^{4}}{^{2}}He$		M1 A1	[2]
		` '	correct position for U at $Z = 92$, $N = 145$ correct position for Np relative to U i.e. $Z + 1$ and $N -$	1	B1 B1	[2]

Mark Scheme

Syllabus

Paper

Page 4