Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2015

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I1

Profesores : Ricardo Aravena C. y Ricardo Olea O.

Problema 1

El SII tiene sospechas que una pequeña empresa mediante facturas o boletas ideológicamente falsas ha evadido el pago de impuestos. El SII realizará una auditoría, seleccionando al azar el 20% de las boletas o facturas recibidas el último año. Suponga que la empresa recibió una proporción p, con p > 0, de boletas o facturas ideológicamente falsas entre las cien que declaró recibir el último año.

- (a) [3.0 Ptos.] Expresen en términos de p la probabilidad que el SII detecte al menos una de estas boletas o facturas idelológicamente falsas durante la auditoría.
- (b) [1.5 Ptos.] Si p = 5%, evalué la expresión obtenida en (a).
- (c) [1.5 Ptos.] ¿Cuál sería el mínimo valor para la proporción p que aseguré al SII una probabilidad mayor a 0.9 de detectar la menos una boleta o factura ideológicamente falsa?

Solución

(a) Definamos como A al evento en que el SII detecta al menos una boleta o factura ideológicamente falsas.

Por ley del complemento se tiene que

$$P(A) = 1 - P(\overline{A})$$
 [0.5 Ptos.]

donde \overline{A} representa el evento donde el SII no detecta boletas o facturas ideológicamente falsas.

Como la selección es al azar, entonces la idea clásica de probabilidad (casos favorables sobre casos totales) es adecuada para esta situación.

Los casos totales, están dados por todas las muestras distintas posibles correspondiente al $20\,\%$ entre las cien boletas o facturas recibidas:

$$\#S = \binom{100}{20}$$
 [1.0 Ptos.]

Por otra parte, los casos favorables del evento \overline{A} están dados por:

$$\#\overline{A} = \begin{pmatrix} 100 - 100 \cdot p \\ 20 \end{pmatrix}$$
 [1.0 Ptos.]

Luego

$$P(A) = 1 - \frac{\binom{100 - 100 \cdot p}{20}}{\binom{100}{20}}$$
 [0.5 Ptos.]

(b) Se pide

$$P(A) = 1 - \frac{\binom{100 - 100 \cdot 0.05}{20}}{\binom{100}{20}} = 0.6806906$$
 [1.5 Ptos.]

- (c) Tenemos que
 - Si p = 9%, entonces P(A) = 0.8780904. [0.5 Ptos.]
 - Si p = 10%, entonces P(A) = 0.9048837. [0.5 Ptos.]

Es decir, si la fracción de boletas o facturas ideológicamente falsas fuese mayor o igual a un 10%, entonces la probabilidad que el SII detecte al menos una de ellas sería mayor a 0.9. [0.5 Ptos.]

Problema 2

Frente a los accidentes aéreos es de suma importancia la ubicación del avión siniestrado. Basado en un centenar de accidentes aéreos (no olvide que es el medio más seguro para viajar) el tiempo, en minutos, que pasa desde el último contacto con la torre y su caída presentan una media de 50 y una desviación estándar de 15.

Asumiendo que los tiempos distribuyen de acuerdo a un modelo Normal:

- (a) [1.5 Ptos.] ¿Qué porcentaje de estos tiempo fluctúan entre los 30 y 60 minutos?
- (b) [1.5 Ptos.] ¿Cuál seria el tiempo máximo para el 35 % de los vuelos que más pronto han caído?

Asumiendo ahora que los tiempos distribuye de acuerdo a un modelo Log-Normal de igual media y desviación estándar:

- (c) [1.5 Ptos.] ¿Qué porcentaje de estos tiempo son mayores a 30 minutos?
- (d) [1.5 Ptos.] ¿Cuál seria el tiempo mínimo para 40 % de los vuelos que más han demorado en caer?

Solución

Definamos como T al tiempo transcurrido entre el último contacto y la caída del avión.

(a) Si $T \sim \text{Normal}(\mu, \sigma)$, entonces

$$\mu = \mu_T = 50$$
 v $\sigma = \sigma_T = 15$ [0.4 Ptos.]

Se pide

$$\begin{split} P(30 < X \leq 60) &= F_T(60) - F_T(30) & \textbf{[0.2 Ptos.]} \\ &= \Phi\left(\frac{60 - 50}{15}\right) - \Phi\left(\frac{30 - 50}{15}\right) & \textbf{[0.2 Ptos.]} \\ &= \Phi(0, 667) - \Phi(-1, 333) & \textbf{[0.2 Ptos.]} \\ &= \Phi(0, 667) - [1 - \Phi(1, 333)] & \textbf{[0.2 Ptos.]} \\ &\approx 0.7486 - (1 - 0.9082) & \textbf{[0.2 Ptos.]} \\ &= 0.6568 & \textbf{[0.1 Ptos.]} \end{split}$$

Nota: Si el alumno interpola el valor de $\Phi(0,667)=0,747$ y $\Phi(1,333)=0,9085$, obteniendo como valor final 0,6555, asignar todo el puntaje.

(b) Se pide el valor k correspondiente al percentil 35 %.

[1.0 Ptos.]
$$\Phi^{-1}(0.35) = -\Phi^{-1}(0.65) \approx -0.385 = \frac{k-50}{15} \rightarrow k = 44.21$$
 [0.5 Ptos.]

(c) Si $T \sim \text{Log-Normal}(\lambda, \zeta)$, entonces

[0.4 Ptos.]
$$\zeta = \sqrt{\ln(1 - \delta_T^2)} = 0.2935604$$
 y $\lambda = \ln(\mu_T) - \frac{\zeta^2}{2} = 3.868934$ [0.4 Ptos.]

Se pide

[0.3 Ptos.]
$$P(T > 30) = 1 - \Phi\left(\frac{\ln(30) - \lambda}{\zeta}\right) = 1 - \Phi(-1.593324) = \Phi(1.593324) \approx 0.9441$$
 [0.4 Ptos.]

Nota: Si el alumno aproxima el valor de ζ por el coeficiente de variación $\delta_T = 0.3$, asignar todo el puntaje, el valor de $\lambda = 3.867023$ y la respuesta final sería 0.9394.

(d) Se pide el valor k correspondiente al percentil 60 %.

[0.5 Ptos.]
$$\Phi^{-1}(0.60) \approx 0.25 = \frac{\ln(k) - \lambda}{\zeta} \rightarrow k = 51.53825$$
 [1.0 Ptos.]

Nota: Si el alumno aproxima el valor de ζ por el coeficiente de variación $\delta_T=0.3$, asignar todo el puntaje y la respuesta final sería 51.52273.

Problema 3

Producto del lamentable aluvión que sucedió la semana pasada, usted realiza una revisión de las estadísticas históricas (últimos 10 años) respecto a las lluvias en la región y encuentra que sólo en el 15 % de los días hubo lluvia. Además, en una de cada tres veces la cantidad de agua caída revistió peligro de aluvión (digamos lluvia sobre lo estándar).

Por otra parte, al revisar las comunicaciones entre la dirección de meteorología y la Onemi de los últimos 200 días encuentra que, la dirección de meteorología, en 35 de ellos se envió una alerta de lluvias a la Onemi y 15 de ellas indicaba lluvia sobre lo estándar. De los 15 avisos de lluvias sobre lo estándar, aún cuando llovió en las 15, sólo en 10 de ellas fue realmente llovió sobre lo estándar. Además, en 10 de los 35 días no cayó ni una gota (de hecho, nunca llovió más de lo indicado). En cambio, en los días que no alertó de lluvias, sólo en uno de los 5 días que llovió fue sobre lo estándar.

Finalmente, como una componente relevante en el manejo de emergencias los expertos de Onemi levantan información en terreno respecto al riesgo que presentan los cauces y quebradas. Suponga que se ha asignado un riesgo del $5\,\%$ de sufrir un aluvión cuando las lluvias son moderadas, riesgo que se multiplica por 4 cuando las lluvias son sobre lo estándar.

- (a) [3.0 Ptos.] Determine la probabilidad de sufrir un aluvión.
- (b) [3.0 Ptos.] Conocida la ocurrencia del aluvión a causa de lluvias sobre lo estándar, ¿cuál es la probabilidad que la dirección de meteorología haya enviado una alerta de lluvia sobre lo estándar?

Solución

- (a) Definamos los siguientes eventos:
 - A: Aluvión.
 - B_1 : No hay lluvia.
 - B_2 : Lluvia moderada.
 - B₃: Lluvia sobre lo estándar.

A partir de datos históricos (10 años) se tiene que

$$P(B_1) = 0.85,$$
 $P(B_2) = 0.10,$ $P(B_3) = 0.05$ [1.0 Ptos.]

Además, del modelo de riesgo se tiene

$$P(A \mid B_1) = 0.00, \qquad P(A \mid B_2) = 0.05, \qquad P(A \mid B_3) = 0.20$$
 [1.0 Ptos.]

Aplicado el teorema de probabilidades totales tenemos que

$$P(A) = 0.00 \times 0.85 + 0.05 \times 0.10 + 0.20 \times 0.05 = 0.015$$
 [1.0 Ptos.]

- (b) A los eventos definidos en (a) consideremos los siguientes tres:
 - C_1 : No se avisa lluvia
 - C_2 : Se avisa lluvia moderada.
 - C_3 : Se avisa lluvia sobre lo estándar.

Se pide

$$P(C_3 | A \cap B_3) = \frac{P(C_3 \cap B_3 \cap A)}{P(A \cap B_3)}$$
 [0.5 Ptos.]

Por probabilidades totales tenemos que

$$P(A \cap B_3) = P(C_1 \cap B_3 \cap A) + P(C_2 \cap B_3 \cap A) + P(C_3 \cap B_3 \cap A)$$
 [0.5 Ptos.]

A partir de la información de los últimos 200 días tenemos que

$$P(C_1) = \frac{165}{200}, \qquad P(C_2) = \frac{20}{200}, \qquad P(C_3) = \frac{15}{200}$$
 [0.4 Ptos.]

además

$$P(B_3 \mid C_1) = \frac{1}{165}, \qquad P(B_3 \mid C_2) = \frac{0}{20}, \qquad P(B_3 \mid C_3) = \frac{10}{15}$$
 [0.4 Ptos.]

y por último

$$P(A | B_3 \cap C_1) = 0.20, \qquad P(A | B_3 \cap C_2) = 0.00, \qquad P(A | B_3 \cap C_3) = 0.20$$
 [0.4 Ptos.]

Como

$$P(C_i \cap B_3 \cap A) = P(A \mid B_3 \cap C_i) \cdot P(B_3 \mid C_i) \cdot P(C_i)$$

al reemplazar tenemos que

$$P(A \cap B_3) = 0.20 \times \frac{1}{165} \times \frac{165}{200} + 0.00 \times \frac{0}{20} \times \frac{20}{200} + 0.20 \times \frac{10}{15} \times \frac{15}{200} = 0.0010 + 0.01 = 0.011 \qquad \textbf{[0.4 Ptos.]}$$

Por lo tanto

$$P(C_3 \mid A \cap B_3) = \frac{0.01}{0.011} = 0.9090909$$
 [0.4 Ptos.]

Nota: Si los alumnos/as hacen un árbol y evaluan correctamente las asignaciones de probabilidad a las ramas y obtiene bien la probabilidad pedida, dar puntaje respectivo

Problema 4

En los últimos día se ha discutido en los medios que tan factible es pronosticar el comportamiento del clima y prever hechos extremos como los ocurridos la semana pasada en el norte del país. Un modelo de probabilidad muy utilizado para describir fenómenos extremos, como por ejemplo el máximo caudal X que puede traer un río, esta descrito por la siguiente función de probabilidad acumulada

$$F_X(x) = 1 - \exp\left[-(x - \gamma)^{\beta}\right], \quad x \ge \gamma, \quad \gamma > 0, \quad \beta > 1$$

- (a) [2.0 Ptos.] Obtenga la mediana de X.
- (b) [2.0 Ptos.] Obtenga la moda de X.
- (c) [2.0 Ptos.] Obtenga el valor esperado y varianza de X. Puede dejar expresado en términos de la función $\Gamma(\cdot)$.

Solución

(a) Sea k la mediana de X, entonces

$$F_X(k) = 1/2$$
 [0.5 Ptos.]

Reemplazando tenemos que

$$1 - \exp\left[-(k - \gamma)^{\beta}\right] = \frac{1}{2} \qquad [\textbf{0.3 Ptos.}]$$

$$\rightarrow \exp\left[-(k - \gamma)^{\beta}\right] = \frac{1}{2} \qquad [\textbf{0.3 Ptos.}]$$

$$\rightarrow -(k - \gamma)^{\beta} = -\ln(2) \qquad [\textbf{0.3 Ptos.}]$$

$$\rightarrow k - \gamma = [\ln(2)]^{1/\beta} \qquad [\textbf{0.3 Ptos.}]$$

$$\rightarrow k = \gamma + [\ln(2)]^{1/\beta} \qquad [\textbf{0.3 Ptos.}]$$

(b) En el caso continuo la moda corresponderá al valor k que maximiza la función de densidad la cual está dada por

$$f_X(x) = \frac{d}{dx} F_X(x) = \beta (x - \gamma)^{\beta - 1} \exp \left[-(x - \gamma)^{\beta} \right], \qquad [\textbf{0.6 Ptos.}]$$
 con $x \ge \gamma, \gamma > 0$ y $\beta > 0$.

Derivando con respecto a x, se tiene que

$$f_X'(x) = \beta (\beta - 1) (x - \gamma)^{\beta - 2} \exp \left[-(x - \gamma)^{\beta} \right] - \beta^2 (x - \gamma)^{2(\beta - 1)} \exp \left[-(x - \gamma)^{\beta} \right]$$
 [0.6 Ptos.]

Al igualar a cero obtenemos que

$$\beta (\beta - 1) (x - \gamma)^{\beta - 2} \exp \left[-(x - \gamma)^{\beta} \right] = \beta^{2} (x - \gamma)^{2 (\beta - 1)} \exp \left[-(x - \gamma)^{\beta} \right]$$
$$\rightarrow (\beta - 1) (x - \gamma)^{-1} = \beta (x - \gamma)^{(\beta - 1)}$$
$$\rightarrow \left(1 - \frac{1}{\beta} \right)^{1/\beta} + \gamma = x \qquad [\textbf{0.6 Ptos.}]$$

La segunda derivada de $f_X(x)$ esta dada por

$$f_X''(x) = \beta (\beta - 1) (\beta - 2) (x - \gamma)^{\beta - 3} e^{-(x - \gamma)^{\beta}} - \beta^2 (\beta - 1) (x - \gamma)^{2\beta - 3} e^{-(x - \gamma)^{\beta}}$$
$$- 2 \beta^2 (\beta - 1) (x - \gamma)^{2\beta - 2} e^{-(x - \gamma)^{\beta}} + \beta^3 (x - \gamma)^{3\beta - 3} e^{-(x - \gamma)^{\beta}}$$
 [0.1 Ptos.]

Evaluando

$$f_X''\left[\left(1-\frac{1}{\beta}\right)^{1/\beta}+\gamma\right]<0$$
 [0.1 Ptos.]

Se confirma que es un máximo.

(c) Se pide

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx \qquad [\textbf{0.2 Ptos.}]$$

$$= \int_{\gamma}^{\infty} x \cdot \beta (x - \gamma)^{\beta - 1} \exp \left[-(x - \gamma)^{\beta} \right] dx \qquad [\textbf{0.2 Ptos.}]$$

$$= \int_{0}^{\infty} \left(u^{1/\beta} + \gamma \right) e^{-u} du, \qquad \text{con } u = (x - \gamma)^{\beta} \qquad [\textbf{0.2 Ptos.}]$$

$$= \int_{0}^{\infty} u^{(1/\beta + 1) - 1} e^{-u} du + \gamma \int_{0}^{\infty} e^{-u} du \qquad [\textbf{0.2 Ptos.}]$$

$$= \Gamma \left(\frac{1}{\beta} + 1 \right) + \gamma \qquad [\textbf{0.2 Ptos.}]$$

у

$$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\Gamma\left(\frac{1}{\beta} + 1\right) + \gamma\right]^{2} \quad [\mathbf{0.2 \ Ptos.}]$$

$$= \int_{\gamma}^{\infty} x^{2} \cdot \beta (x - \gamma)^{\beta - 1} \exp\left[-(x - \gamma)^{\beta}\right] dx - \left[\Gamma\left(\frac{1}{\beta} + 1\right) + \gamma\right]^{2} \quad [\mathbf{0.2 \ Ptos.}]$$

$$= \int_{0}^{\infty} \left(u^{1/\beta} + \gamma\right)^{2} e^{-u} du - \left[\Gamma\left(\frac{1}{\beta} + 1\right) + \gamma\right]^{2} \quad [\mathbf{0.2 \ Ptos.}]$$

$$= \Gamma\left(\frac{2}{\beta} + 1\right) + 2\gamma\Gamma\left(\frac{1}{\beta} + 1\right) + \gamma^{2} - \left[\Gamma\left(\frac{1}{\beta} + 1\right) + \gamma\right]^{2} \quad [\mathbf{0.2 \ Ptos.}]$$

$$= \Gamma\left(\frac{2}{\beta} + 1\right) - \left[\Gamma\left(\frac{1}{\beta} + 1\right)\right]^{2} \quad [\mathbf{0.2 \ Ptos.}]$$

Formulario

Principio de la Multiplicación

Si un experimento está compuesto de k experimentos con tamaños muestrales n_1, \ldots, n_k , entonces

$$S = n_1 \times n_2 \times \cdots \times n_k$$

Permutación

Consideremos un conjunto de objetos

$$C = \{c_1, \dots, c_n\}$$

y queremos seleccionar una muestra de r objetos. ¿De cuántas maneras lo podemos hacer?

- Muestreo Con Reemplazo: n^r .
- $\blacksquare \text{ Muestreo Sin Reemplazo: } n \times (n-1) \times (n-2) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!} \text{ (Bot\'on } \mathbf{nPr} \text{ de la caluladora)}$

Combinación

Consideremos un Muestreo Sin Reemplazo. Si nos interesa una muestra sin importar el orden de ingreso, la cantidad de muestras distintas de tamaño r son

$$\binom{n}{r} = \frac{n!}{r! \times (n-r)!}$$
 (Botón **nCr** de la caluculadora)

Estos "números" se conocen como coeficientes binomiales y tienen la siguiente propiedad

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Ordenamiento Multinomial

Queremos asignar n objetos a k grupos distintos de tamaños n_1, \ldots, n_k , con $\sum_{i=1}^k n_i = n$. El número de grupos distintos con las características dadas son

$$\binom{n}{n_1 \, n_2 \, \cdots \, n_k} = \frac{n!}{n_1! \, \times \cdots \, \times \, n_k!}$$

Estos "números" se conocen como ordenamientos multinomiales y tienen la siguiente propiedad

$$(x_1 + \dots + x_k)^n = \sum_{n_1=0}^n \sum_{n_2=0}^{n-n_1} \dots \sum_{n_k=0}^{n-n_1-\dots-n_{k-1}} \frac{n!}{n_1! \times \dots \times n_k!} x_1^{n_1} \times \dots \times x_k^{n_k}$$

Propiedades función $\Gamma(\cdot)$

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$

Igualdades

$$\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} = (a+b)^{n}, \quad \sum_{k=r}^{\infty} \phi^{k} = \frac{\phi^{x}}{1-\phi} \quad \text{si } |\phi| < 1, \quad \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = \exp(\lambda)$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza, Varianza y fgm
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ,σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M_X(t) = \exp\left(\mu_X t + \frac{1}{2} \sigma_X^2 t^2\right)$
Log-Normal	$\frac{1}{\sqrt{2\pi}} \frac{1}{(x\zeta)} \exp\left\{-\frac{1}{2} \left[\frac{\ln(x) - \lambda}{\zeta}\right]^2\right\}$	$x \ge 0$	λ,ζ	$\mu_X = \exp(\lambda + \zeta^2/2)$ $\sigma_X^2 = \mu_X^2 (e^{\zeta^2} - 1)$ $E(X^k) = \exp(\lambda k) M_Z(\zeta k), \text{ con } Z \sim \text{Normal}(0,1)$

Tabla de Percentiles Normal Estándar

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.6360 0.6664 0.6114 0.5753 0.5832 0.5871 0.5910 0.5948 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6433 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6444 0.6879 0.6 0.7257 0.7291 0.7324 0.7357 0.7399 0.7967 0.7394 0.7574 0.7764 0.7744 0.7764 0.7794 0.7794 0.7823 0.7817 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7794 0.7823 0.7852	S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6114 0.3 0.6179 0.6215 0.6293 0.6331 0.6368 0.6604 0.6430 0.6480 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7673 0.7704 0.7734 0.7764 0.7794 0.7784 0.7794 0.7880 0.8166 0.8212 0.8238 0.8203 0.8051 0.8078 0.8166 0.8212 0.8388 0.8203 0.8515 0.8316 0.8315 0.8340 0.8365 0.8381 0.8413 0.8461 0.8485 0.8508 0.8531 0.8544 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6571 0.4 0.6554 0.6591 0.6628 0.6604 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6955 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7380 0.7422 0.7454 0.77486 0.7517 0.7580 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7811 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8016 0.8136 0.8231 0.8 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8365 0.8686 0.8708 0.8729 0.8740 0.8810 0.8839 1.1	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7589 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7734 0.7764 0.7734 0.7764 0.7734 0.7764 0.7734 0.7764 0.7734 0.7764 0.7784 0.7784 0.7852 0.823 0.8051 0.8081 0.8106 0.8133 0.9032 0.8816 0.8212 0.8238 0.8289 0.8315 0.8365 0.8365 0.8389 0.8021 0.8828 0.8501 0.8870 0.8879 0.8621 0.8211 0.822 0.8949 0.8770 0.8810 0.8830 0.8997 0.9915	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7673 0.7704 0.7734 0.77764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7667 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8365 0.8365 0.8388 1.0 0.8413 0.8488 0.8461 0.8485 0.8508 0.8571 0.8570 0.8599 0.8621 1.1 0.8643 0.8665 0.8886 0.8708 0.8749 0.8770 0.8790 0.8810 0.8831 1.2 0.8849 0.8869 0.8888 0.8909 0.9115	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9909 0.9015 0.9131 0.9147 0.9162 0.9917 1.4 0.9192 0.9207 0.9222 0.9236 0.9295	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8468 0.8485 0.8508 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8799 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9141 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8456 0.8508 0.8531 0.8577 0.8599 0.621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9171 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9463 0.9474	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9444 0.9495 0.9515 0.9525 0.9535 0.9545 1.7 0.9544 0.9564 0.9573	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9564 0.9573 0.9582 0.9591 0.9590 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9566	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9566 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9766 1.9 0.9772 0.9778	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9766 1.9 0.9713 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.0 0.9772 0.9778	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9842 0.9846 0.9850 0.9857 0.9850 2.2 0.9861 0.9864 0.9888 0.9901	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 0.9857 2.2 0.9861 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9918 0.9920 0.9922	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9766 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 2.2 0.9861 0.9868 0.9871 0.9875 0.9878 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9932 0.9934 0.9936 2.4 0.9918 0.9920	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9887 0.9890 2.3 0.9893 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9934 0.9936 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9966 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9973	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9913 0.9914 0.9916 0.9916 0.9914 0.9913 0.9914 0.9913 0.9914 0.9913 0.9914 0.9914 0.9914 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9966 0.9967 0.9968 0.	1.8		0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9984 0.9985 0.9985 0.9986 0.9996	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9996 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9999 0.9993 0.9993	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9971 0.9972 0.9973 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9999 0.9993 0.9993 0.9993 3.1 0.9993 0.9994 0.9994	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9999 0.9990 0.9993 0.9993 0.9993 3.1 0.9993 0.9991 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 </td <td>2.3</td> <td>0.9893</td> <td>0.9896</td> <td>0.9898</td> <td>0.9901</td> <td>0.9904</td> <td>0.9906</td> <td>0.9909</td> <td>0.9911</td> <td>0.9913</td> <td>0.9916</td>	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9993 3.1 0.9993 0.9991 0.9991 0.9991 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 </td <td>2.4</td> <td>0.9918</td> <td>0.9920</td> <td>0.9922</td> <td>0.9925</td> <td>0.9927</td> <td>0.9929</td> <td>0.9931</td> <td>0.9932</td> <td>0.9934</td> <td>0.9936</td>	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9999 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9995 3.2 0.9993 0.9995 0.9994 0.9994 0.9994 0.9994 0.9994 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9995 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997			0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.99		0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 </td <td></td> <td>0.9974</td> <td>0.9975</td> <td>0.9976</td> <td>0.9977</td> <td>0.9977</td> <td>0.9978</td> <td>0.9979</td> <td>0.9979</td> <td>0.9980</td> <td>0.9981</td>		0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997		0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997			0.9991		0.9991		0.9992	0.9992	0.9992	0.9993	
$3.4 \ \ 0.9997 \ \ 0.9997 \ \ 0.9997 \ \ 0.9997 \ \ 0.9997 \ \ 0.9997 \ \ 0.9997 \ \ 0.9998$	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
$3.5 \mid 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998$											
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998