Иррациональные числа

Число называется payиональным, если оно представимо в виде дроби p/q, где числа p и q целые и $q \neq 0$. Множество рациональных чисел обозначается через \mathbb{Q} , таким образом, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. Вещественные числа, не являющиеся рациональными, называются uppayuohanbhumu.

- 1. Докажите иррациональность числа $\sqrt{2025}$.
- 2. Докажите иррациональность числа $\sqrt{2} + \sqrt{3}$.
- 3. Докажите, что каждое рациональное число p/q представимо в виде конечной либо бесконечной периодической десятичной дроби, причём длина периода меньше q.
- 4. Докажите, что всякая бесконечная периодическая десятичная дробь является рациональным числом.

Сопряжённые числа

Пусть числа a и b рациональные, а d — натуральное число, не являющееся полным квадратом. Числа $a + b\sqrt{d}$ и $a - b\sqrt{d}$ называются conpsженными.

- 5. Докажите, что число вида $a + b\sqrt{d}$ однозначно определяет коэффициенты a и b (т. е. такое представление единственно).
- 6. Докажите, что, если $(a+b\sqrt{d})^n=A+B\sqrt{d}$, то $(a-b\sqrt{d})^n=A-B\sqrt{d}$.

Задачи

- 7. Докажите иррациональность числа $\sqrt{2} + \sqrt{3} + \sqrt{5}$.
- 8. Докажите иррациональность числа $\sqrt{2} + \sqrt[3]{3}$.
- 9. Найдите 1012-ую цифру после запятой числа $(2+\sqrt{3})^{2024}$.
- 10. Докажите, что равенство $(x+y\sqrt{2})^2+(z+t\sqrt{2})^2=5+4\sqrt{2}$ не может выполняться ни при каких рациональных $x,\,y,\,z$ и t.
- 11. Докажите, что равенство $(5+3\sqrt{2})^m=(3+5\sqrt{2})^n$ не может выполняться ни при каких натуральных m и n.
- 12. Числа $x,y\in\mathbb{R}$ удовлетворяют равенству $x\sqrt{y^2+1}+y\sqrt{x^2+1}=\frac{3}{4}$. Найдите все возможные значения выражения $\sqrt{x^2+1}\cdot\sqrt{y^2+1}+xy$.
- 13. Докажите, что для любых натуральных чисел m и n найдётся натуральное число k такое, что $(\sqrt{m}-\sqrt{m-1})^n=\sqrt{k}-\sqrt{k-1}$.
- 14. Докажите, что $v_2(\lfloor (1+\sqrt{3})^{2n+1} \rfloor) = n+1$ для всех натуральных n.
- 15. **Теорема Дирихле.** Докажите, что для любых вещественного числа x и натурального числа n существуют такие целые числа a и b, $1 \le b \le n$, что $|x \frac{a}{b}| < \frac{1}{bn}$.
- 16. Пусть α и β положительные вещественные числа. Докажите, что каждое натуральное число ровно один раз встречается среди чисел $\lfloor \alpha \rfloor$, $\lfloor \beta \rfloor$, $\lfloor 2\alpha \rfloor$, $\lfloor 2\beta \rfloor$, $\lfloor 3\alpha \rfloor$, $\lfloor 3\beta \rfloor$, ..., если и только если $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ и $\alpha, \beta \notin \mathbb{Q}$.