FE211

Total No. of Printed Pages:3

F. E. Semester-II (Revised Course 2007-2008) EXAMINATION MAY/JUNE 2019 Applied Mathematics-II

[Max. Marks: 100] [Duration: Three Hours] Please check whether you have got the right question paper. 1. Attempt any five questions, at least one from each module. Instructions: 2. Assume suitable data if necessary **MODULE-I** a) Evaluate $\int_0^\infty \frac{\log_e(1+\alpha t^2)dt}{t^2}$ by applying differentiation under the integral sign. 08 Q.1b) Find the length of $y = 2x^{3/2} + 1$ $1 \le x \le 3$ 06 06 Find the perimeter of the cardiode $r=a(1+\cos\theta)$ a) Find the unit tangent vector, and principal normal of the space curve 06 Q.2 $\bar{r}(t) = 2t^3\bar{\iota} + 2t\,\bar{\iota} + (t+2)\bar{k}$ at t=1. 08 b) Define Curvature and Torsion of a space curve and prove Serret - Frenet formula. 06 c) Solve $\frac{d\bar{r}^2}{dt^2} = 2\bar{\iota} - 3\bar{k}$, $\bar{r}(0) = \bar{2}\bar{\iota} - \bar{j}$ and $\frac{d\bar{r}}{dt}|_{t=0} = \bar{k}$ **MODULE-II** a) Evaluate $\int_0^1 \int_{\gamma}^1 2x + 1 dx dy$. 05 Q.3 b) Change the order of integration and evaluate $\int_0^1 \int_{x^2}^x y + 3dxdy$ 08 c) Evaluate $\iint r^2 + 3 \sin \theta \, dr d\theta$ over the region $r \le 1$ above the initial line. 07 a) Find by double integration the volume of the solid generated by the revolution of the 06 Q.4 region $y^2 \le x$ and $x \le 1$ about the x-axis. b) Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{0}^{(x+y)} 2x \, dz \, dy \, dx$ 06 c) Find the volume of the region $\{(x,y,z)/x^2 + y^2 \le 4, 0 \le z \le 1, y \ge 0\}$. 08

Paper / Subject Code: FE211 / Applied Mathematics-II

FE211

20

20

MODULE-III

- Q.5 a) If $\bar{f}(t)$ is a vector field having constant magnitude show that $\bar{f}(t) \cdot \frac{d}{dt} (\bar{f}(t)) = 0$
 - b) Define Curl of a vector field. Show that if \bar{a} is any constant vector and $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ then show that $curl\ (\bar{a} \times \bar{r}) = 2\bar{a}$.
 - c) In what direction is the directional derivative of $f(x, y, z) = x^2z + 2xy$ at the point (-1,2,1) maximum and what is its magnitude?
 - d) Show that the vector field $\overline{F} = (6xy + 3z)\overline{\iota} + 3x^2\overline{\jmath} + (6z + 3x)\overline{k}$ is irrational find its scalar potential.
- Q.6 a) Find the work done in moving a particle in a force field $\bar{F} = 3y^2 \bar{t} + 2y\bar{j} + xz\bar{k}$ along the curve $x = 3t, y = 2t^2, z = 2t$ from t = 0 to t = 1.
 - b) Verify Green theorem in the plane for $\oint c(x+3y^2)dx + (x^2+2)dy$ where C is the boundary of the region bounded by y=x, x=1 and y=0
 - c) Use Stoke's theorem to evaluate $\int \int_{S} \nabla \times F \cdot \bar{n} ds$ where $F = x^{2}z \,\bar{\iota} + x^{2}\bar{j} + y^{2}\bar{k} \,\bar{n}$ is the unit normal vector to S, the surface of the region bounded by

x = 0, y = 0, z = 0 and x + y + z = 1 excluding the surface in the xy plane

MODULE-IV

Q.7 Solve the following differential equations.

a)
$$\frac{dy}{dx} = e^{x-2y} + xe^{-2y}$$

b) $(x + 2y \cos x)dx + (y + 2\sin x)dy = 0$

$$c) \frac{dy}{dx} = \frac{2y - x - 4}{y - 3x + 3}$$

d)
$$(1+x)\frac{dy}{dx} + y = x^2$$

Q.8 Solve the following differential equations

a)
$$(D^2 + 3D + 2)y = 4e^{-3x}$$

b) $(D^2 + 4)y = 2 \cos^2 x$

FE211

c)
$$(D^2 + 4D + 4)y = 2Sinh2x$$

d)
$$(x+3)^2 \frac{d^2 y}{dx^2} - 4(x+3)\frac{dy}{dx} + 6y = x$$