(참고자료) 커패시터와 인덕터

과정: 환경차용 전기전자공학 이해

강사: 이주상

커패시터의 구조 및 원리

- 커패시터 (capacitor): 전기 에너지를 전장의 형태로 임시 저장할 수 있는 소자 (전하를 저장하는 통 → 물을 저장하는 물통에 비유)
 - → 커패시턴스 (정전용량) C 는 얼마나 많은 전하를 저장할 수 있는가를 나타냄
 - → 커패시턴스의 단위는 [F]
- 커패시터의 구조 및 원리

•
$$Q = CV$$
 [C]

•
$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$
 [F], where $\varepsilon_0 = 8.85 \times 10^{-12}$ [F/m]

 ε_0 : 진공일 때의 유전율 (permittivity)

< 여러 물질의 비유전율 >

물질	비유전율
진공	1
공기	1.0006
파라핀	2.1
변압기 기름	2.2
고무	2 ~ 3.5
종이	3.7
유리	4 ~ 6
운모	6
물 (H ₂ O)	80

 ε_r : 비유전율 or 상대 유전율 (relative permittivity) o 물질(절연체)의 유전율과 ε_0 와의 비(比), 물질 고유의 상수값

유전체의 분극 현상

- 유전체 (절연체)의 유전율: 동일한 전기장에 얼마나 분극 현상이 일어나는 정도를 표현
 - → 유전율이 클수록 분극 현상이 잘 일어남을 의미 → 유전체 내부에 형성된 전기장이 커짐
 - → 유전율이 클수록 외부 전기장의 크기 감소 → 더 많은 전하가 쌓여야 커패시터 전압이 최종 V에 도달 가능
 - → 유전율이 큰 절연체를 이용한 커패시터가 더 많은 전하를 저장 가능!

커패시터의 종류 (1)

커패시터의 종류: 전해 커패시터, 세라믹 커패시터, 마일러 커패시터, MLCC (Multi-Layer Ceramic Capacitor) 등 🤣

커패시터의 종류(2)

종류	알루미늄 전해 커패시터	적층 세라믹 커패시터	탄탈 커패시터	필름 커패시터
유전체	산화 알루미늄	각종 세라믹	오산화 탄탈	플라스틱 필름
사용전압	4~400V	6.3~250V	2.5~50V	50~1600V
정전용량	47∼10000µF	0.001~100µF	0.47∼1000µF	0.001∼10µF
1 산전 1	내압·용량에 따른 풍부한 라인업 저가		소형, 대용량 안정적인 용량	고내압 무극성
	전해액 누출로 수명이 있다 사이즈가 크다 유극성	용량 변화가 크다 Crack· Chipping이 있다	쇼트 가능성이 있다 유극성	용량이 적다 패키지 품종이 없다
형상				

(알루미늄) 전해 커패시터

커패시터의 특성(1)

● 허용 오차 : 저항에 비해서 큼, ±5%(J), ±10%(K), ±20%(M) 등으로 표시 (세라믹 ±20%, 운모 ±1% 등)

허용오차 (10pF을 초과하는 컨덴서의 경우)

	20	No	22						
기호	В	С	D	F	G	J	K	М	Ν
허용오차(%)	±0.1	±0.25	±0.5	±1	±2	±5	±10	±20	±30
기호	Р	Q	Т	U	V	W	Χ	Υ	Z
허용오차(%)	+100	+30	+50	+75	+25	+100	+40	+150	+80
Q & T \(\(\(\(\(\(\(\)\)\)	0	-10	-10	-10	-10	-10	-20	-10	-20

허용오차 (10pF이하 컨덴서의 경우)

기호	В	С	D	F	G
허용오차(%)	±0.1	±0.25	±0.5	±1	±2

● 정격 전압 (Rated Voltage)

- 커패시터 유전체를 파괴하지 않고 극판 사이에 인가될 수 있는 최대 동작 전압 → 커패시터 부품의 신뢰성과 관련!
- 커패시터 양단 전압이 DC, DC+AC, AC, 펄스 등 어떤 형태이든 정격 전압을 넘지 않아야 함
- 직접 값을 표기 or 하나의 숫자와 하나의 알파벳으로 표시

1A = 10V, 2A = 100V, 3A = 1000V 1B = 12.5V, 2B = 125V, 3B = 1.25kV 1C = 16V, 2C = 160V, 3C = 1.6kV 1D = 20V, 2D = 200V 1E = 25V, 2E = 250V, 3B = 2.5kV 1G = 40V, 2G = 400V, 3G = 4kV 1H = 50V, 2H = 500V, 3H = 5kV 1J = 63V, 2J = 630V

〈 정격 전압 표기 방법 〉

커패시터의 특성(2)

● 커패시터의 극성: 극성이 구분되는 커패시터 종류 → 전해 커패시터, 탄탈 커패시터 등

< 극성이 구분되어야 하는 전해 커패시터의 소자 기호 >

〈전해 커패시터〉 〈탄탈 커패시터〉

- 사용 시간에 따른 커패시턴스 변화 : 대부분의 커패시터는 사용 시간에 따라 커패시턴스가 변화
 - → 세라믹 커패시터는 사용 1년 만에 약 10% 변화
 - → 전해 커패시터는 사용할 수록 전해액이 증발하므로 세라믹 커패시터보다 변화가 심함

커패시터의 특성 (3)

- 커패시터의 온도 특성
 - 온도에 따라서 커패시턴스 값이 바뀜 → 온도 계수 (temperature coefficient) ppm/℃ 단위로 표시 (ex. 프로필렌 커패시터 N250 → -250 ppm/℃ , 온도 무관 커패시터 NPO 표기)
 - 작동 온도가 높은 지역, 추운 지역에서 사용되는 전자제품에 포함된 커패시터의 경우 반드시 온도 특성을 고려해야 함!
 - 온도에 따라 유전체 내부 구속 전자의 상태가 달라지는 것이 원인임
 - 온도 특성이 양호한 커패시터 : 폴리머 전해 커패시터 (솔리드 커패시터), 필름 커패시터 (마일러), 온도 보상형 MLCC

※ MLCC 온도 특성

- 1) CLASS 1 : 온도 보상형 MLCC (C0G)
 - → 산화티타늄, 지르코네이트칼슘 등의 유전체 사용
 - → 상대적으로 작은 용량의 MLCC
 - → -55 °C ~ +125 °C 범위 내에서 ±30ppm/ °C 로 작은 온도 계수
- 2) CLASS 2: 고유전율형 MLCC (X5R, Y5V 등)
 - → 티탄산바륨 유전체 사용
 - → X5R는 ±15%, Y5V는 +22% ~ -82% 변화하는 등 특히 고온에서 온도에 따른 변화가 큼.
 - → 최근에는 커패시턴스 변화가 좀 더 작은 X5R 사용 비중이 증가

Code	Temperature range	Capacitance change rate
X7R	-55~+125°C	1.450/
X5R	-55~+85°C	± 15%
Z5U	+10~+85℃	+22~-55%
Y5V	-30~+85℃	+22~-82%

(참조) https://article.murata.com

커패시터의 특성 (3)

- 저장 수명
 - 전해 커패시터: 전해액이 건조해지면 특성이 변화 → 사용 온도와 관련한 커패시터 수명 있음
 - 세라믹, 마일러, 탄탈, 솔리드 커패시터 등은 전해액을 사용하지 않으므로 전해 커패시터보다 수명이 길다.
 - 커패시터 양단에 과전압이나 큰 펄스 전압이 계속 인가되면 누설 전류 (leakage current), 돌입 전류 (inrush current) 등이 커져서 커패시터 수명이 감소
 - ※ 리플 전류 (ripple current)에 의한 수명 감소
 - → 커패시터 리플 전류: 각종 신호를 포함하여 커패시터를 통해서 흐르는 교류 성분

- ※ (참고) 일반적인 전해 커패시터의 경우 수명이 1000 시간 (105℃ 기준) 정도 됨(솔리드 커패시터의 경우 105℃에서 대략 2000 ~ 5000 시간)
- → 온도가 10°C 증가하면 수명 ½ 단축
- → 온도가 10℃ 감소하면 수명 2배 증가
- ex) 105℃에서 1000 시간 수명을 가지는 전해 커패시터를 75℃에서 사용
- → 105℃ 기준하면 30℃ 감소
- → 예상 수명은 1000 × 2³ = 8,000 시간

※평균 무고장 시간 (MTBF: mean time between failures)

실제 커패시터의 특성(1)

● 기생 직렬 저항 성분 (ESR), 기생 직렬 인덕턴스 성분 (ESL) 존재 → 고주파에서 커패시터는 등가적으로 RLC 직렬 구조!

<	커패시	터의	고주파	등가	모델〉
---	-----	----	-----	----	-----

Index	Details	Source
ESR	Equivalent Series Resistance	Depends on package type and Electrodes. Smaller SMD better
ESL	Equivalent Series Inductance	Depends on package type and Electrodes Smaller SMD better
R _{LEAK}	Leakage Resistance	Depends on Dielectric type

ESR과 ESL이 작을 수록 특성이 좋은 커패시터!

- → 고주파에서도 동작, 리플 전류에 의한 발열 감소
- → SMD 타입의 커패시터가 고주파 회로에 유리

- 누설 전류 (leakage current)
 - $-R_{LEAK}(R_p)$ 누설 저항 때문에 흐르는 직류 전류
 - 인가 전압 (V)과 커패시턴스 (C)에 비례 (ex) 0.01CV 누설 전류 특성의 $10~\mu$ F 커패시터에 20~V 인가 → 누설 전류 = $0.01 \times 10~\mu$ F× 20V = $2~\mu$ A

실제 커패시터의 특성 (2)

● 주파수 특성: 커패시터가 정상적으로 동작하는 주파수 구간 → 커패시터 종류마다 다름

커패시터로 정상 동작하는 구간 → SRF에 의해서 결정

※ SRF (series resonant frequency : 직렬 공진 주파수)

$$SRF = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{(ESL)\times(C)}}$$

커패시터 종류	직렬 공진 주파수 (SRF)
전해 커패시터	300 kHz
마일러 커패시터	10 MHz
세라믹 커패시터	1 GHz

커패시터의 코딩

- 커패시터의 코딩: 커패시턴스(용량), 허용 오차, 정격 전압, 온도 특성 등을 소자에 표기하는 것
- 1. 전해 커패시터: 커패시턴스, 허용 오차, 정격 전압, 온도 특성, 그리고 극성 등을 직접 표기

용량 22 μF, 정격 전압 450 V, 최대 온도 (high temperature guarantee) 105℃, 허용 오차 M (±20%)

- 2. 세라믹 커패시터
 - 세 자리 숫자로 커패시턴스 값을 표기, 기본 단위는 [pF]
 - 100 pF 미만의 값은 일반적으로 커패시턴스 값을 바로 표기

- 3. 마일러 커패시터 (폴리에스테르 필름 커패시터)
 - 숫자와 하나의 영문자 (용량 & 허용 오차)
 - 기본 단위는 [pF]

정결 정안 21

정격 전압 2A (100 V), 용량 104 (100 nF), 허용 오차 J (±5%) 정격 전압 2E (250 V), 용량 102 (1 nF), 허용 오차 J (±5%)

커패시터의 직·병렬 등가 회로

● 커패시터의 직렬 연결: 저항의 병렬 연결과 동일한 방법으로 계산

$$Q_T = Q_1 = Q_2 = Q_3$$
 and $Q_T = C_S \cdot V$
 $V = V_1 + V_2 + V_3 \iff \frac{Q_T}{C_S} = \frac{Q_1}{C_1} + \frac{Q_2}{C_2} + \frac{Q_3}{C_3}$
 $\therefore \frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$

● 커패시터의 병렬 연결: 저항의 직렬 연결과 동일한 방법으로 계산

$$V = V_1 = V_2 = V_3$$
 and $Q_T = C_S \cdot V$ $Q_T = Q_1 + Q_2 + Q_3 \Leftrightarrow C_S V = C_1 V + C_2 V + C_3 V$ $\therefore C_S = C_1 + C_2 + C_3$

커패시터의 지배 방정식

● 커패시터의 지배 방정식: 커패시터의 전압과 전류 사이의 관계를 나타내는 식

- $-v_c(t)$ 가 시간에 비례해서 변함 $ightarrow i_c(t)$ 가 일정
- $v_c(t)$ 가 시간에 따라 변하지 않으면 $i_c(t) = 0$ → 직류 정상상태에서 커패시터는 개방 (open) 회로

- $v_c(t)$ 가 급격하게 변하려면 $i_c(t)$ 가 ∞ 가 되어야 함 → 커패시터 양단 전압은 급격하게 변할 수 없고 연속적으로 변한다. (연속성의 원리)

● 커패시터에 저장된 에너지

$$w_c(t) = \frac{1}{2}Cv_c^2(t)$$
 [J]

- $v_c(t)$ 가 연속적이므로 저장된 에너지 $w_c(t)$ 도 연속적

RC 방전 회로의 해석

- 시정수 (시상수, time constant) : τ 라고 표기
 - 외부 입력이 없을 때 커패시터에 충전되어있던 초기 전압 V_0 의 36.8% (e⁻¹) 까지 방전 (충전 회로에서는 최종 전압 V_∞ 의 63.2% 까지 충전)하는데 걸리는 시간
 - 회로에 독립적으로 존재하는 커패시터 C 가 있으면 주변 등가 저항 R과 시정수 $\tau = RC$ 를 만든다.
 - -5τ (e⁻⁵) 의 시간이 지나면 완전히 방전 되었다고 생각함

방전 회로 :
$$V_0 = V_S \& V_\infty = 0$$

※ 지수종단법 : 직류 전원 & 1개의 Capacitor로 이루어진 단순 회로에서 적용 가능

$$v(t) = V_{\infty} + (V_0 - V_{\infty}) \cdot e^{-\frac{t}{\tau}}$$

RC 충전 회로의 해석

- RC 회로에서 외부 전원 V_s 가 존재하는 경우
 - t=0 시점에서 충전을 시작하면 충분히 시간이 흐른 뒤 커패시터 전압은 V_s 로 완전 충전됨

인덕터의 구조 및 원리

- 인덕터 (inductor): 전기 에너지를 자장의 형태로 저장할 수 있는 소자
 - → 인덕턴스 (유도용량 or 유도계수) L 은 같은 전류에서 얼마나 많은 자속쇄교 (flux linkage) λ를 만들 수 있는가를 나타냄
 - → 인덕턴스의 단위는 [H]
- 인덕터의 구조 및 원리

- $\lambda = N\Phi = L \times i$ [wb-turn] Φ : 자속 (magnetic flux [wb]), λ : 자속쇄교 (flux linkage)
- $L = \frac{\mu_0 \mu_r N^2 A}{l}$ [H], where $\mu_0 = 4\pi \times 10^{-7}$ [H/m]

 μ_0 : 진공 상태의 투자율 (permeability)

 μ_r : 상대 투자율 (relative permeability) \rightarrow 물질(자성체)의 투자율과 μ_0 와의 비(比), 물질 고유의 상수값

인덕터의 특성

● 허용 오차 : 일반적으로 저항과 커패시터에 비해서 오차가 가장 큼 (보통 ±25% 이상)

- 정격 전류 (Rated Current)
 - 인덕터가 견딜 수 있는 최대 전류 → 인덕터 부품의 신뢰성과 관련!
 - 인덕터 종류나 인덕턴스 값에 따라서 정격 전류가 다름
 - L 값에 반비례

인덕턴스	정격 전류
1 μΗ	920 mA
4.7 μΗ	620 mA
10 μΗ	500 mA
100 μΗ	275 mA
220 μΗ	115 mA
1 mH	40 mA

< 페라이트 인덕터의 정격 전류 >

< 인덕터의 여러 형태 >

- 인덕터의 코딩
 - 저항처럼 색 띠를 이용한 것도 있음
 - 기본 단위 [μH]

인덕터의 정격 전류 규격

- Saturation Current 규격: DCI1 (or IDC1)
 - 인덕터 코일에 흐르는 DC 전류 증가 → 인덕터의 L 값이 감소 → L 값이 30% (또는 10%) 감소할 때의 전류가 포화전류
 - 인덕터 코어의 최대 자속 밀도는 일정한데 전류가 어느 이상 증가하면 투자율 μ 가 감소하여 L 감소 발생하는 것이 원인
- Heat Rating Current 규격: DCI2 (or IDC2)
 - 직류 전류가 흐를 때 DCR 에 의해 발생하는 열 때문에 인덕터 온도가 증가
 - 20℃ 를 기준으로 인덕터 온도가 40℃ 상승한 지점의 직류 전류로 정의함
 - 이 규격을 벗어나면 인덕터 손상 → 중요한 규격!
 - 일반적으로 DCI 과 같거나 조금 작은 편

실제 인덕터의 특성

- 기생 직렬 저항 성분 (DCR), 기생 병렬 커패시턴스 성분 (Cp) 존재 → 고주파에서 인덕터는 등가적으로 RLC 병렬 구조!
 - DCR : 코일을 구성하는 도선의 저항 성분 → 인덕터 전력 손실의 가장 큰 원인, DCR 값을 작게 해야 손실 감소 가능
 - ACR : 코일에 교류 전류를 흘렸을 때의 저항 → skin effect에 의한 저항 성분
 - Rcore: 인덕터 magnetic core의 손실 저항

인덕터의 직·병렬 등가 회로

● 인덕터의 직렬 연결: 저항의 직렬 연결과 동일한 방법으로 계산

$$L_s = L_1 + L_2 + L_3$$

● 인덕터의 병렬 연결: 저항의 병렬 연결과 동일한 방법으로 계산

$$\frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

인덕터의 지배 방정식

● 인덕터의 지배 방정식: 인덕터의 전압과 전류 사이의 관계를 나타내는 식

- $i_L(t)$ 가 시간에 비례해서 변함 ightarrow $v_L(t)$ 가 일정
- $-i_L(t)$ 가 시간에 따라 변하지 않으면 $v_L(t)=0$
- → 직류 정상상태에서 인덕터는 단락 (short) 회로

 $-i_L(t)$ 가 급격하게 변하려면 $v_L(t)$ 가 ∞ 가 되어야 함 \rightarrow 인덕터를 통해서 흐르는 전류는 급격하게 변할 수 없고 연속적으로 변한다. (연속성의 원리)

● 인덕터에 저장된 에너지

$$w_L(t) = \frac{1}{2}Li_L^2(t) [J]$$

 $-i_L(t)$ 가 연속적이므로 저장된 에너지 $w_L(t)$ 도 연속적

RL 방전 회로의 해석

- 시정수 (시상수, time constant) : τ 라고 표기
 - 외부 입력이 없을 때 인덕터에 흐르던 초기 전류 I_0 의 36.8% (e^{-1}) 까지 감소하는데 걸리는 시간 (전류 충전 회로에서는 최종 전류 I_{∞} 의 63.2% 까지 충전하는데 걸리는 시간)
 - 회로에 독립적으로 존재하는 인덕터 L이 있으면 주변 등가 저항 R과 시정수 $\tau = L/R$ 를 만든다.
 - -5τ (e⁻⁵) 의 시간이 지나면 완전히 흐르는 전류가 없다고 생각함

※ 지수종단법 : 직류 전원 & 1개의 Inductor로 이루어진 단순 회로에서 적용 가능

$$i(t) = I_{\infty} + (I_0 - I_{\infty}) \cdot e^{-\frac{t}{\tau}}$$

RL 충전 회로의 해석

- RL 회로에서 외부 전원 V_s 가 존재하는 경우
 - t=0 시점에서 전류를 흘리기 시작하면 충분히 시간이 흐른 뒤 최종 인덕터 전류는 Vs/R 가 됨

$$i_L(t) = \frac{V_s}{R} \left(1 - e^{-\frac{t}{(L/R)}} \right)$$

