

Proton Dose Calculation with LSTM Networks in a Magnetic Field

ICCR 2024 | Lyon | 10.07.2024

<u>Fan Xiao</u>¹, Domagoj Radonic^{1,2}, Niklas Wahl^{3,4}, Luke Voss^{3,4,5}, Ahmad Neishabouri^{4,6}, Nikolaos Delopoulos¹, Stefanie Corradini¹, Claus Belka^{1,7,8}, George Dedes², Christopher Kurz¹, Guillaume Landry¹

¹Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany

²Department of Medical Physics, LMU Munich, Munich, Germany

³Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁴National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.

⁵Ruprecht Karl University of Heidelberg, Institute of Computer Science, Heidelberg, Germany

⁶Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁷German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany

⁸Bavarian Cancer Research Center (BZKF), Munich, Germany

Background

- Proton therapy:
 - Superior dose conformity compared with photon therapy
 - Limitations in achieving high-precision due to range uncertainty

Need for real-time image-guidance during PT

- MRI:
 - High soft tissue contrast, non-ionizing radiation, real-time imaging

Combination of MRI and PT

- Online MR-guided adaptive proton therapy:
 - Treatment plan can be adapted or re-optimized based on the latest patient geometry
 - Improve the target dose coverage and reduce the dose to surrounding normal tissues

Online plan re-optimization based on MRI

Online plan re-optimization needs accurate and fast dose calculation

Images courtesy of Netherlands Cancer Institute, NKI

Background

- Proton dose calculation in a magnetic field:
 - Lorentz force causes charged protons to be deflected
- Monte Carlo (MC) methods:
 - Accurate but speed is usually slow
 - GPU MC methods are still in the level of several seconds
- Analytical algorithms:
 - Speed can be closer to real-time
 - Lack the accuracy of MC methods, especially in inhomogeneous tissues

Ultimate need for accurate real-time plan re-optimization is still unmet!

1.5T B field

Dose calculation with MC accuracy at sub-second speeds

Background: DL dose calculation

Category1: Convert low-cost physical inputs to MC dose

MC denoising^[2]

^[1] Wu C 2021 Improving Proton Dose Calculation Accuracy by Using Deep Learning Mach Learn Sci Technol

Background: DL dose calculation

Category2: Slice sequence modelling from Beam's Eye View

- Models focus on the individual beamlet from BEV
- Extract the beamlet and use LSTM or transformer models to process dose slice sequence modelling

- [3] Neishabouri A 2021 Long short-term memory networks for proton dose calculation in highly heterogeneous tissues *Med Phys*
- [4] Pastor-Serrano O 2022 Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy *Phys Med Biol*

Methods & Materials Dataset

Patients:

- 35 prostate patients treated at MRIdian in LMU Hospital
- Deformed CTs (from planning CT-MRI registration)
- Resampled voxel size: 1.5x1.5x1.5mm³
- Dataset split: training/validation/testing=20/5/10

- Convert CTs to RSPs with respect to water using Geant4
- 1.5T B field within a cylinder of a 30 cm radius
- Number of histories: 1M
- Angular region: [40°, 140°]∪[220°, 320°], Δα=16.6°
- 216 beamlets were simulated per patient
- 3 beamlet datasets for 3 energies (150/175/200 MeV)
- Cuboid extraction from a predefined distance before beamlet origin

Methods & Materials Single energy (SE) model

Methods & Materials Multi-energy (ME) model

Methods & Materials Model training

- Models
 - **3 single energy models** were trained **separately** on 150/175/200 MeV datasets
 - LSTM + two fully connected layers
 - One multi-energy model were trained on a combined 150/175/200 MeV dataset
 - Energy embedding layer + LSTM + two fully connected layers
- Training parameters
 - Optimizer: Adam, Loss: MSE, LR: 1e-5, batchsize: 8
 - Hardware: NVIDIA RTX A6000 GPU (48 GB)
 - Training GPU memory cost: within 1 GB
 - Training time: 5 days

Methods & Materials Metrics

- 10 test patients in 150/175/200 MeV datasets (216 beamlets per patient)
- 3D dose distribution comparison:
 - 3D global gamma passing rate γ_{PR} (2%/2 mm, $D>10\%D_{max}$)
- Dose range comparison:
 - Laterally integrated **dose-depth profiles** of two doses with relative error $\varepsilon_{\rm rel}$
 - Depth difference ΔR_{D80} of the distal dose falloff to 80% of Bragg peak (mm&%)
- Magnetic dose deflection comparison:
 - Lateral profiles of two doses
 - Shift difference in the center of mass F_{COM} at each depth of two doses (mm)

Results

Typical examples of SE models

Results

Metrics comparison between SE models and ME model

		200 MeV									
	100 -	##	##	‡	##	+	##	ŢŢ	++	##	<u> </u>
γ _{PR} (2% 2 mm)[%]	98 - 96 -		•	: :			•	: :		•	
	94 -										
	92 -							•			
	90 -										•
		P029	P031	P033	P034	P035	P037	P038	P039	P040	P041

		γ_{PR}	[%]	ΔR_L	080 [%]	$F_{\rm COM}$ [mm]	
Model	E[MeV] min		mean	max	mean	max	mean
	150	95.28	99.88	2.70	0.28	2.15	0.39
SE	175	94.21	99.87	3.03	0.23	1.84	0.34
	200	94.38	99.88	3.15	0.19	2.03	0.30
·	150	94.78	99.82	4.59	0.29	2.06	0.45
ME	175	94.74	99.83	3.68	0.22	2.09	0.37
	200	89.69	99.78	2.54	0.17	5.36	0.35

• Total runtime:

Measurement device:

an Intel(R) Xeon(R) Gold 6354 3.00GHz CPU & an NVIDIA RTX A6000 GPU

Cuboid extraction time: 55ms

Model inference time:

Model	Mean (SD) [ms]				
SE (150 MeV)	9 (1)				
SE (175 MeV)	9 (1)				
SE (200 MeV)	10 (1)				
ME	10 (2)				

Appendix

Preliminary experiment for an energy range (ER) model

- The previous training/validation dataset for a single energy:
 - 216 beamlets per patient, the energy of each beamlet is fixed (e.g., 150 MeV)
- A larger training/validation dataset for an energy range (based on the same patients):
 - 216×4 beamlets for each patient, the energy of each beamlet is randomly selected from 125-200MeV (76 integers)
 - Test results of the ER model on previous 150/175/200 MeV test datasets:

		γ _{PR} [%]		ΔR_{D80} [%]		F _{COM} [mm]	
Model	E[MeV]	min	mean	max	mean	max	mean
	150	93.32	99.76	3.83	0.35	2.73	0.53
ME	175	92.09	99.68	3.51	0.27	2.04	0.55
(ER)	200	89.89	99.54	3.62	0.28	3.14	0.67

Conclusion

- We developed an LSTM-based method for proton dose calculation in a magnetic field
- An extended LSTM model for multi-energy dose calculation was proposed and showed its feasibility

Outlook

- Full plan test is ongoing
- Extend more sites and spot sizes
- Introduce uncertainties quantifying method into the model, e.g., Bayesian neural networks

Thank you for your attention! Acknowledgements

Contact: Fan.Xiao@med.uni-muenchen.de