Assignment

Let \$K=2\$, show that (b1, b2) in p. 29 of slides in Ch 5 reduces to the formula of (b1, b2) in (2.7) - (2.8)

Let \$K=2\$, show that cov(b1, b2) in p. 30 of slides in Ch 5 reduces to the formula of in (2.14) - (2.16).

$$2.7: b_2 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

$$2.14: Var(b_1|X) = 6^2 \left[\frac{I \times x^2}{N I (x - x)^3} \right]$$

$$2.15 : Var(b_2|X) = \frac{6^2}{\Sigma(x-\overline{x})^2}$$

2.16:
$$COV(b_1,b_2|X) = 6^2 \left[\frac{-\overline{X}}{\overline{L}(x_i-\overline{x})^2} \right]$$

5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol WALC to total expenditure TOTEXP, age of the household head AGE, and the number of children in the household NK.

$$WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$$

This model was estimated using 1200 observations from London. An incomplete version of this output is provided in Table 5.6.

TABLE 5.6 Output for Exercise 5.3

Dependent Variable: WALC Included observations: 1200				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.4515	2.2019	0.6591907	0.5099
ln(TOTEXP)	2.7648	0.4842	5.7103	0.0000
NK	-1455	0.3695	-3.9376	0.0001
AGE	-0.1503	0.0235	-6.4019	0.0000
R-squared	0.0575	Mean dependent var		6.19434
S.E. of regression	6.22	S.D. dependent var		6.39547
Sum squared resid	46221.62			

- a. Fill in the following blank spaces that appear in this table.
 - i. The t-statistic for b.
 - ii. The standard error for b_2 .
 - iii. The estimate b_3 .
- iv. R^2 .
- **b.** Interpret each of the estimates b_2 , b_3 , and b_4 .
- c. Compute a 95% interval estimate for β₄. What does this interval tell you
- d. Are each of the coefficient estimates significant at a 5% level? Why?
- e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points

coess = t-statistic

R=1- SSE =1- SSE 11995

the mean WALC will decrease (resp. increase) 1.455.

64 = -0.1503, when AGE increase (resp. decrease) 1 unit,

the mean WALC will decrease (resp. increase) 0,1503.

$$\Rightarrow \text{ the interval is } [-0.1503 - 1.962 \times 0.0235, -0.1503 + 1.962 \times 1.0235]$$

$$= [-0.1964, -0.1042]$$

d. since t (0.95,1196)=1.962, all the absolute value of test-statistic are greater. Thus, They are significant at 5% level.

e. Ho:
$$\beta_3 = -2$$

H₁: $\beta_3 \neq -2$

the test-statistic = -

the test-statistic =
$$\frac{-1.455}{0.3695} = 1.474$$

Since | 1.474 | < t(0.05, 1196)

=) We fail to reject Ho

Coefficients: (Intercept) 90.84669

quant -0.05997

qual 0.11621

> summary_mod1<-summary(mod1)

> summary_mod1\$r.squared [1] 0.50965

5.23 The file cocaine contains 56 observations on variables related to sales of cocaine powder in northeastern California over the period 1984–1991. The data are a subset of those used in the study Caulkins, J. P. and R. Padman (1993), "Quantity Discounts and Quality Premia for Illicit Drugs," Journal of the American Statistical Association, 88, 748-757. The variables are

> PRICE = price per gram in dollars for a cocaine sale QUANT = number of grams of cocaine in a given sale QUAL = quality of the cocaine expressed as percentage purity TREND = a time variable with 1984 = 1 up to 1991 = 8Consider the regression model

$$PRICE = \beta_1 + \beta_2 QUANT + \beta_3 QUAL + \beta_4 TREND + e$$

- **a.** What signs would you expect on the coefficients β_2 , β_3 , and β_4 ?
- b. Use your computer software to estimate the equation. Report the results and interpret the coefficient estimates. Have the signs turned out as you expected?
- c. What proportion of variation in cocaine price is explained jointly by variation in quantity, quality,
- d. It is claimed that the greater the number of sales, the higher the risk of getting caught. Thus, sellers are willing to accept a lower price if they can make sales in larger quantities. Set up H_0 and H_1 that would be appropriate to test this hypothesis. Carry out the hypothesis test.
- e. Test the hypothesis that the quality of cocaine has no influence on expected price against the alternative that a premium is paid for better-quality cocaine.
- f. What is the average annual change in the cocaine price? Can you suggest why price might be changing in this direction?

a. I expect that B2<0,, B370, B4<0.

b. since B2 = -006, when QUANT increase 1 unit, the price will

decrease 0.06

Since B3= 21162, when QUAL increase 2 unit, the price will

increase 01/62

Since B4=-2.35, When TREND increase 1 unit, the price will

decreuse 2-35.

All of the sign are same as my expectation.

Approximately 50 % variation incocaine price is

explain jointly. d. Ho: B2 30

H1: B2<0

 \Rightarrow test-statistic $t = \frac{-0.06}{50.01} = \frac{-0.06}{0.01} = -6 < -t_{(0.95, 52)}$

=> We reject Ho.

H₁: $\beta_3 > 0$ => fest-startistic t= $\frac{0.162}{0.2032}$ =0.5718 < $\frac{1}{2}$ (0.95,52) => fail to reject H₀ e. Ho: B3 =0

S. B4. As the time past, is we produce more cocaine than before (

higher technology or more people are willing to produce), then the supplement exceed demand => price lower