

Next: Quality Factor, Peak Frequency Up: Chapter 3: AC Circuit Previous: AC Circuit Analysis II

Series and Parallel Resonance

Series Resonance

Consider an RCL series circuit consists of a resistor R, an inductor L, and a capacitor C connected in series to a voltage source. The overall impedance of the three elements is

$$Z = R + j\omega L + \frac{1}{j\omega C} = R + j\left(\omega L - \frac{1}{\omega C}\right) = |Z|e^{j\angle Z}$$

where

$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}, \quad \angle Z = tan^{-1} \frac{\omega L - 1/\omega C}{R} = \left\{ \begin{array}{cc} -90^\circ & \omega = 0 \\ 90^\circ & \omega \to \infty \end{array} \right.$$

In particular the **resonant frequency** is defined as

$$\omega_0 \stackrel{\triangle}{=} \frac{1}{\sqrt{LC}}$$

When $\omega=\omega_0$, the impedances of the capacitor and the inductor have the same magnitude but opposite phase:

$$Z_L = j\omega_0 L = j\sqrt{\frac{L}{C}}, \qquad Z_C = \frac{1}{j\omega_0 C} = -j\sqrt{\frac{L}{C}}$$

and they add up to zero $\,Z_L + Z_C = 0\,.$ Now the total impedance is minimized:

$$Z = Z_R + Z_C + Z_L = Z_R = R$$

and the current $\dot{I} = \dot{V}/Z = \dot{V}/R$ is maximized. The current \dot{I} and voltage \dot{V} are in phase. At the resonant frequency $\omega = \omega_0 = 1/\sqrt{LC}$, the ratio of the magnitude of the inductor/capacitor impedance and the resistance is defined as the **quality factor**:

$$Q \stackrel{\triangle}{=} \frac{|Z_L|}{R} = \frac{|Z_C|}{R} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

When $\omega = \omega_0$, the voltages across each of the three components are:

$$\dot{V}_R = \dot{I}Z_R = \dot{I}R = \dot{V}$$
, i.e. $\dot{I} = \frac{\dot{V}}{R}$

1 of 4

$$\dot{V}_L = \dot{I}Z_L = \frac{\dot{V}}{R}j\omega_0 L = jQ\dot{V}$$

$$\dot{V}_C = \dot{I}Z_C = \frac{\dot{V}}{R} \frac{1}{i\omega_0 C} = -jQ\dot{V}$$

The magnitude of V_L and V_C are Q times larger than that of \dot{V}_R , which is equal to the source voltage \dot{V} . But as V_L and V_C are in opposite polarity (180° out of phase), they cancel each other.

The RCL series circuit is a band-pass filter with the passing band centered around the resonant frequency $\omega_0=1/\sqrt{CL}$. The bandwidth is determined by the quality factor Q. The larger Q, the narrower the bandwidth. The impedance $Z=Z_R+R_L+Z_C$ as a function of ω is shown below:

and the admittances Y=1/Z for different $\mathcal{Q}\left(R\right)$ and \mathcal{C} are shown below:

The bandpass effect can be intuitively explained. When ω is high, the inductor's impedance ωL is high, and when ω is low, the capacitor's impedance $1/\omega C$ is high. When $\omega = \omega_0$ the overall impedance is the smallest. If the input is a voltage source v(t), the current through the circuit will reach a maximum value when $\omega = \omega_0$.

Example: In a series RLC circuit, $R=5\Omega$, L=4~mH and $C=0.1~\mu F$. The resonant frequency ω_0 can be found to be $\omega_0=1/\sqrt{LC}=1/\sqrt{4\times 10^{-3}\times 10^{-7}}=5\times 10^4$. The quality factor is

$$Q = \frac{\omega_0 L}{R} = \frac{(5 \times 10^4) \times (4 \times 10^{-3})}{5} = 40$$

2 of 4 27-Dec-11 16:22

or

$$Q = \frac{1}{\omega_0 CR} = \frac{1}{(5 \times 10^4) \times 10^{-7} \times 5} = 40$$

If the input voltage is $V_{rms} = 10V$ at the resonant frequency, the current is I = V/R = 10/5 = 2A, and the voltages across each of the elements are:

- $\dot{V}_R = R\dot{I} = V = 10V$
- $V_L = j\omega L\dot{I} = j5 \times 10^4 \times 4 \times 10^{-3} \times 2 = j400V$
- $\dot{V}_C = \dot{I}/j\omega_0 C = -j2/(5 \times 10^4 \times 0.1 \times 10^{-6}) = -j400V$

Or, more conveniently, the amplitudes of \dot{V}_L and \dot{V}_C can be found by $|V_L| = |V_C| = QV = 40 \times 10V = 400V$. Note that although input voltage is 10V, the voltage across L and C (Q times the input) could be very high (but they are in opposite phase and therefore cancel each other).

Parallel Resonance: A GCL parallel circuit consists of a resistor R = 1/G, an inductor L and a capacitor connected in parallel to input voltage.

In this case, it is much easier to consider the conductance of the admittance Y=1/Z of each of the element. The overall admittance of the three elements in parallel is

$$Y = G + j\omega C + \frac{1}{j\omega L} = G + j(\omega C - \frac{1}{\omega L}) = |Y|e^{j\angle Y}$$

where

$$|Y| = \sqrt{G^2 + (\omega C - \frac{1}{\omega L})^2}, \quad \angle Y = tan^{-1} \frac{\omega C - 1/\omega L}{G}$$

In particular when ω is at the **resonant frequency**

$$\omega_0 \stackrel{\triangle}{=} \frac{1}{\sqrt{LC}}$$

we have

$$Y_C + Y_L = j\omega C + \frac{1}{j\omega L} = j(\omega C - \frac{1}{\omega L}) = j(\sqrt{\frac{C}{L}} - \sqrt{\frac{C}{L}}) = 0$$

the effects of L and C cancel each other, and the complex admittance Y becomes real and its magnitude reaches the minimum

$$|Y| = \sqrt{G^2 + (\omega_0 C - \frac{1}{\omega_0 L})^2} = G, \quad \angle Y = \tan^{-1} \frac{0}{G} = 0$$

and the current \dot{I} reaches a minimum value $\dot{I}=\dot{V}G$. In particular, if the resistor does not exist, i.e., $R=\infty$ and G=0, then the admittance Y=0 and $Z=\infty$.

The Quality Factor Q_p of a parallel resonance circuit is defined as the ratio of the magnitude of the inductor/capacitor susceptance and the conductance:

$$Q_p \stackrel{\triangle}{=} \frac{\omega_0 C}{G} = \frac{1/\omega_0 L}{G} = \frac{1}{\omega_0 L G} = \frac{1}{G} \sqrt{\frac{C}{L}} = R \sqrt{\frac{C}{L}} = \frac{1}{Q_s}$$

Note that Q_p for a parallel RCL circuit is the reciprocal of Q_s for a series RCL circuit. The currents through each of the three components are:

•

$$\dot{I}_R = \dot{V}G = \dot{I}$$

•

$$\dot{I}_C = \dot{V}Y_C = \dot{V}j\omega_0 C|_{\omega_0 = 1/\sqrt{LC}} = j\frac{\dot{I}}{G}\sqrt{\frac{C}{L}} = jQ\dot{I}$$

•

$$\dot{I}_L = \dot{V} Y_L = \dot{V} \frac{1}{j\omega_0 L}|_{\omega_0 = 1/\sqrt{LC}} = -j\frac{\dot{I}}{G}\sqrt{\frac{C}{L}} = -jQ\dot{I}$$

The magnitude of the current I_L through L and I_C through C are Q times larger than the current \dot{V}_R through R which is the same as the current source \dot{I}). But as I_L and I_C are in opposite direction, they form a loop current through L and C with no effect to the rest of the circuit.

The parallel RCL circuit behaves like a bandstop filter which can be intuitively understood. When ω is high, the capacitor's impedance $1/\omega C$ is low, and when ω is low, the inductor's impedance ωL is low. When $\omega = \omega_0$ the overall impedance is the largest. However, if the input is a current source, the voltage across the elements $\dot{V} = \dot{I}Z = \dot{I}/Y$ will reach a maximum value when $\omega = \omega_0$.

🗟 no 🙎 🗟 previo

Next: Quality Factor, Peak Frequency Up: Chapter 3: AC Circuit Previous: AC Circuit Analysis II

Ruye Wang 2011-06-28