

Chemical kinetics Procida June 2015

Module 3

Module 3

- Developing detailed chemical kinetic models (PG)
 - Approach
 - Experimental validation
 - Analysis tools
- Task 2: Engine exhaust oxidation of unburned hydrocarbons
 - Introduction (AC)
 - -Solving using OpenSMOKE++ (AC, PG)

Developing a detailed chemical kinetic model

- Compile the best available species and reaction specific data
 - Experiment
 - Theory
 - Analogy / empirical
- Compare modeling predictions with the best available non-reaction-specific experimental data
 - Ignition delays, flame speeds, explosion limits
 - Detailed characterization data (species concentrations, etc.)
- Refine
 - Microscopic accuracy (fundamental model)
 - Macroscopic accuracy (engineering model)

Development of chemical kinetic model

Kinetic experiments

- Microscopic
 - Characterization of elementary reaction
 - Determine rate coefficients
 - Identify products
- Macroscopic
 - Characterization of process
 - Identify mechanism
 - Validate model

Macroscopic experimental techniques

- Batch reactor
 - Low to medium temperature, low to medium pressure
- Flow reactor
 - Low to high temperature, low to high pressure
- Jet-stirred reactor
 - Medium to high temperature, medium pressure
- Shock tube.
 - Medium to high temperature, medium to high pressure
- Rapid Compression Machine (RCM)
 - Medium temperature, medium to high pressure
- Laminar, premixed flames
 - Medium to high temperature, low to medium pressure

Experimental techniques for model validation

	Pressure	Temperature	Dilution	Stoichiometry	Transport
Static/batch reactor	atm.	< 1000 K	yes	none	no
Stirred reactor	atm high	800 - 1400 K	yes / no	no (ext. heat) Flammability limits	no
Plug-flow reactor	atm high	800 - 1400 K	yes	none	no
Shock tube	atm high	> 1300 K	yes	none	no
Flames	atm low	800 - 2500 K	no	Flammability limits	yes

Batch reactor

H₂/O₂ explosion limits

Data: Lewis and von Elbe (1987);

Figure: Kee et al. (2003)

Batch reactor - CS₂ ignition

Evaluation limits

Jet-stirred reactor

CH₄ oxidation (1600-2000 K) Experimental data: Bartok et al. (1972)

Shock tube

Rapid Compression Machine

Rapid Compression Machine

Ignition delay for CH₄

13

Low-pressure premixed flames

DTU Chemical Engineering, Technical University of Denmark

Photos: Sandia National Laboratories

Premixed flame

Low-pressure, premixed flame

C₂-amine oxidation

DTU Chemical Engineering, Technical University of Denmark

Lucassen et al. (2012)

Flow reactor

OCS oxidation 1200 K, 0.056 atm

Experimental data:
Homann et al. (1969)
Modeling:
Glarborg and Marshall (2013)

DTU Chemical Engineering, Technical University of Denmark

Flow reactors for high-temperature or high-pressure chemistry

Injector flows 1 atm, 600-1300 K (HCN, N_2)

HCN, 1 atm

400

300

000

1000

1100

1200

1300

1400

1500

T/K

Dagaut et al., 2008

1 atm, 600-1850 K 20-100 atm, 600-925 K

Rasmussen et al., 2008

Flow reactor: Oxidation of CH₄/C₃H₄ mixture

Flow reactor issues

Temperature

Surface reactions

 CH_4 oxidation: 1.0% CH_4 , 0.75% O_2 ; N_2 Quartz reactor (closed symbols) Alumina reactor (open symbols)

The plug-flow approximation: Axial dispersion in the laminar flow regime

Macroscopic experimental techniques - concerns

- Batch reactor
 - Surface reactions, conditioning, temperature
- Flow reactor
 - Surface reactions, conditioning, temperature
- Jet-stirred reactor
 - Mixing, probe system
- Shock tube.
 - Temperature and pressure
- Rapid Compression Machine (RCM)
 - Temperature and pressure
- Laminar, premixed flames
 - Interaction with burner surface, stabilization, probe effects

Development of reaction mechanism

	Known territory	Unknown territory	
Small mechanism	H ₂ oxidation	CH ₄ +H ₂ S oxidation	
Large mechanism	Heptane oxidation	Biofuel(s) oxidation	

Small mechanism: manageable in hand

Known territory: detailed mechanisms available with some predictive reliability

Hierarchichal structure of combustion chemistry

Why are (some) mechanisms so large? Need to predict complex behavior in "real" fuels

Many fuel components

Low temperature chemistry

Soot

Hierarchichal structure of combustion chemistry

Analysis tools for mechanism development

- Sensitivity analysis
- Rate-of-production analysis

High-pressure oxidation of CH₃OH

Stoichiometric, 100 bar

Sensitivity analysis

Figure 4: Linear sensitivity coefficients for CO for sets 1-5 given as $(A_i/Y_j) \cdot (\delta Y_j/\delta A_i)$.

Laminar flame speed for CH₄

CH₄ flame speed – sensitivity analysis

Rate constant for HCO+O₂

- $\dot{C}H_3 + O_2 \rightleftharpoons CH_3\dot{O}_2$
- $\bullet CH_3\dot{O}_2 + \dot{C}H_3 = CH_3\dot{O} + CH_3\dot{O}$

CH₄/air oxidation

Developing a detailed chemical kinetic model

- Compile the best available species and reaction specific data
 - Experiment
 - Theory
 - Analogy / empirical
- Compare modeling predictions with the best available non-reaction-specific experimental data
 - Ignition delays, flame speeds, explosion limits
 - Detailed characterization data (species concentrations, etc.)
- Refine
 - Microscopic accuracy (fundamental model)
 - Macroscopic accuracy (engineering model)

Modeling approaches

Microscopic accuracy

Macroscopic accuracy

Engineering (optimized) models

Do not make changes

- Thermo
- Rate constants

- Often impressive predictive capabilities
- Tend to disguise scientific issues

Fundamental (non-optimized) models

- Scientifically sound
- Represent the present understanding of the chemistry
- Often lower accuracy compared to engineering models (within optimized regime)

Research issues

- Control pollutant formation
 - Unburned hydrocarbons
 - PAH
 - Soot
 - Nitrogen oxides
- Abate global warming
 - Use of biomass and bio-derived fuels
 - Formation of liquid bio-derived fuels
 - Kinetics of bio-derived fuels
 - Use of alcohols such as ethanol in Diesel engines
 - Chemistry of KCl
 - Oxy-fuel combustion
 - Formation and oxidation of soot

The largest challenge: the climate issue

- A dramatic reduction of the CO₂ emission is required, according to UN recommendations
- The power industry, as a major contributor, is dedicated to this challenge

Clean thermal energy: Combustion of hydrogen

$$H_2 + \frac{1}{2}O_2 \square H_2O$$

The cleanest fossil fuel: natural gas

Natural gas is an easy fuel

Yilmaz et al., 2009

Source: Sandia National Laboratories

Pollutant formation - gaseous fuels

Emission control:
Combustion modification
Flue gas cleaning
Change of fuel
Increase efficiency

Solid fuels

Solid fuels are challenging: handling, combustion, emissions, residual products

For coal: also CO₂

Pollutant formation – solid fuels

CM: Combustion modification

FGC: Flue gas cleaning

Sustainable Thermal Processes - Challenges

- Thermal processes remain important:
 - Heat and power production
 - -Transport
 - Industrial processes
- Challenges:
 - Pollutant formation
 - Greenhouse gases
 - Efficiency
 - Fuel switching
 - New thermal processes