1 Caracteres

Sea $\rho: G \to Aut(V)$ una representación lineal de un grupo finito G. Para cada $g \in G$ definimos

$$\chi(g) = Tr(\rho(g))$$

esto es, la traza de la aplicación lineal $\rho(g)$ referida a cualquier base de V.

Lemma 1 $\rho(g)$ es diagonalizable y todos sus valores propios son raíces de la unidad.

Proof. Si m es el orden de g, entonces $g^m = 1$, lo que implica que el polinomio mínimo p(x) de $\rho(g)$ divide a x^m-1 . En particular p(x) no tiene raíces multiples, por lo tanto $\rho(q)$ es diagonalizable. Como los valores propios satisfacen la ecuación $x^m - 1 = 0$ tienen norma 1.

Un argumento con la teoría de representaciones es el siguiente. Denotando por H al subgrupo de G generado por g, la restricción de ρ a H es una represenación $\rho: H \to Aut(V)$. Sea $W_1 \oplus ... \oplus W_r$ una descomposición en suma de representaciones irreducibles. Como H es abeliano, cada W_i es unidimensional $W_i = \langle e_i \rangle$. Denotando $\rho_i : H \to Aut(W_i) = \mathbb{C}^*$, se tiene $\rho_i(g) = \lambda_i$ donde λ_i es una raíz m-sima de la unidad. En confusión $\rho(g)$ en la base $\{e_1,...,e_n\}$ tiene por matriz

$$\rho(g) = diag(\lambda_1, ..., \lambda_n).$$

Proposition 2 Si χ es el carácter de una representación ρ de grado n, entonces

- 1. $\chi(1) = n$.
- 2. $\chi(g^{-1}) = \overline{\chi(g)}$. 3. $\chi(hgh^{-1}) = \chi(g)$
- 4. $|\chi(g)| \leq \chi(1)$, la igualdad se cumple si y sólo si $\rho(g)$ es una matriz escalar.

Proof. Tenemos que $\chi(1)$ es la traza de la matriz identidad con ello $\chi(1)$ = $\dim(V)$.

Si los valores propios de la transformación lineal $\rho(g)$ son $\{\lambda_1,...,\lambda_n\}$, los valores propios de $\rho(g^{-1})$ son $\{\lambda_1^{-1},...,\lambda_n^{-1}\}$. Como cada uno de ellos es de módulo 1, se tiene

$$\chi(g^{-1}) = \sum_{i} \lambda_i^{-1} = \sum_{i} \overline{\lambda}_i = \overline{\chi(g)}.$$

Por otra parte, dadas A y B matrices cualesquiera, como el polinomio característico de A y de BAB^{-1} son los mismos, en particular $tr(BAB^{-1}) = tr(A)$.

Por último, si $\chi(g) = \sum_i \lambda_i$, se sigue

$$|\chi(g)| \le \sum_{i} |\lambda_i| = n = \chi(1).$$

Además, si se verifica la igualdad, esto es, $|\sum_i \lambda_i| = \sum_i |\lambda_i| = n$, un sencillo argumento (por ejemplo, geométrico) prueba que todos los λ_i han de ser iguales; en consecuencia, si escribimos $\lambda_i = \lambda$ se tiene que $\rho(g)$ es la matriz escalar y los elementos de la diagonal principal son todos λ .

Proposition 3 Sen $\rho_V: G \to Aut(V)$ y $\rho_W: G \to Aut(W)$ dos representaciones lineales de grupo G y sean χ_V y χ_W sus caracteres respectivos.

- 1. El caracter $\chi_{V \oplus W}$ de la represenatción suma directa $V \oplus W$ es igual a la suma de los caracteres $\chi_V + \chi_W$.
- 2. El caracter $\chi_{V \otimes_{\mathbb{C}} W}$ de la representación producto tensorial $V \otimes_{\mathbb{C}} W$ es igual a $\chi_V \cdot \chi_W$.
- 3. El carácter de la representación inducida por ρ_V en su dual es igual a $\overline{\chi}_V$.
- 4. El carácter de la represenatción inducida por ρ_V y ρ_W en $Hom_{\mathbb{C}}(V,W)$ es $\chi_{Hom_{\mathbb{C}}(V,W)} = \overline{\chi_V}\chi_W$.

Proof. Sea $g \in G$ y consideremos las aplicaciones lineales $\rho_V(g)$ y $\rho_W(g)$. La forma matricial de la representación $V \oplus W$ es

$$\left(\begin{array}{cc} \rho_V(g) & 0 \\ 0 & \rho_W(g) \end{array}\right),\,$$

de donde $\chi_{V \oplus W} \chi(g) = \chi_V(g) + \chi_W(g)$.

Tomemos una base $\{v_1, ..., v_n\}$ en V de vectores propios de $\rho_1(g)$; análogamente se toma una base $\{w_1, ..., w_m\}$ de autovectores para $\rho_2(g)$ en W. Se tiene

$$g(v_j \otimes w_k) = gv_j \otimes gw_k = \lambda_j v_j \otimes \mu_k w_k = \lambda_j \mu_k (v_j \otimes w_k)$$

con lo que $v_j \otimes w_k$ es un vector propio en $V \otimes_{\mathbb{C}} W$ para la acción de $g \in G$. De esta forma

$$\chi_{V \otimes_{\mathbb{C}} W}(g) = \sum_{j,k} \lambda_j \mu_k = \sum_j \lambda_j \sum_k \mu_k = \chi_V(g) \chi_W(g).$$

Para la tercera afirmación, sea $\{v_1^*,...,v_n^*\}$ la base dual en V^* de la base dada anteriormente en V. Entonces

$$g^*v_i^*(v_j) = v_i^*(g^{-1}v_j) = v_i^*(\lambda_j^{-1}v_j) = \lambda_j^{-1}v_i^*(v_j) = \delta_{ij}\lambda_j^{-1},$$

de donde $g^*v_i^* = \lambda_i^{-1}v_i^*$. Por tanto

$$\chi_{V^*}(g) = \sum_i \lambda_i^{-1} = \sum_i \overline{\lambda}_i = \sum_i \overline{\lambda}_i = \overline{\chi_V(g)}.$$

La última afirmación se sigue del hecho de que el \mathbb{C} —espacio $Hom_{\mathbb{C}}(V,W)$ es isomorfo a $V^*\otimes_{\mathbb{C}}W$.

1.1 Producto escalar de caracteres

Sean ρ_V y ρ_W dos representaciones lineales de G y sean χ_V y χ_W sus caracteres. Se define su producto escalar como

$$(\chi_V, \chi_W) = \frac{1}{|G|} \sum_{g_i \in G} \chi_V(g_i) \overline{\chi_W(g_i)}.$$

Se cumplen las siguientes propiedades

- (χ_V, χ_W) es un número real. En efecto, podemos escribir

$$(\chi_V, \chi_W) = \frac{1}{|G|} \sum_{g_i \in G} \chi_V(g_i^{-1}) \overline{\chi_W(g_i^{-1})} = \frac{1}{|G|} \sum_{g_i \in G} \overline{\chi_V(g_i)} \chi_W(g_i) = \overline{(\chi_V, \chi_W)}.$$

- $(\chi, \chi) \ge 0$ para cualquier caracter χ , y $(\chi, \chi) = 0$ si y sólo si $\chi = 0$.

Lemma 4 Sea V un G-espacio, entonces $\dim_{\mathbb{C}} V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$.

Proof. Vimos en la proposición 1 que la aplicación

$$\pi(v) = \frac{1}{|G|} \sum_{g_i \in V} g_i v, \ v \in V$$

es un proyector sobre V^G . Calculemos su traza. Como $V=\ker\pi\oplus\operatorname{Im}\pi=\ker\pi\oplus V^G$, la traza de π coincide con la traza de sus restricción a V^G . Como esta restricción es la identidad, esta traza vale $\dim_{\mathbb{C}}V^G$. Por último, como la traza de la suma de aplicaciones lineales es la suma de las trazas, se concluye el enunciado. \blacksquare

Theorem 5 Te tiene $(\chi_V, \chi_W) = \dim_{\mathbb{C}} Hom_{\mathbb{C}}(V, W)^G = Hom_G(V, W)$.

Proof. Por el lema anterior

$$\dim_{\mathbb{C}} Hom_{\mathbb{C}}(V,W)^G = \frac{1}{|G|} \sum_{g_i \in G} \chi_{Hom_{\mathbb{C}}(V,W)}(g_i) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g_i)} \chi_W(g_i) = (\chi_V, \chi_W).$$

Corollary 6 Si χ_W es el caracter de una representación irreducible W entonces $(\chi_W, \chi_W) = 1$. Si χ_W y $\chi_{W'}$ son los caracteres de dos representaciones irreducibles W, W' no isomorfas entonces $(\chi_W, \chi_{W'}) = 0$.

Proof. En efecto, por el lema de Schur, si W es irreducible los únicos isomorfismos de G-espacios son las constantes, con lo que $\dim_{\mathbb{C}} Hom_G(W,W) = 1$. Por otra parte, que W y W' sean G-espacios no isomorfos quiere decir que $\dim_{\mathbb{C}} Hom_G(W,W') = 0$, con lo que, por el teorema anterior, $(\chi_W,\chi_{W'}) = 0$.

(Esto es, si χ_i,χ_j son caracteres asociados a representaciones irreducibles de G,entonces

$$(\chi_i, \chi_j) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_i(g)} \chi_j(g) = \delta_{ij}$$

según que sean isomorfas o no)

Theorem 7 Sea V una representación de G de carácter φ , y descompongamos V en suma directa de representaciones irreducibles

$$V = W_1 \oplus ... \oplus W_k$$
.

Entonces, si W es una representación irreducible cuyo carácter es χ , el número de las W_i isomorfas a W es igual a (φ, χ) .

Proof. Denotemos con χ_i al carácter de la representación W_i . Se tiene

$$\varphi = \chi_1 + \ldots + \chi_k$$

y por tanto $(\varphi,\chi)=(\chi_1,\chi)+\ldots+(\chi_k,\chi)$. Por el corolario (χ_j,χ) es uno o cero segun que W_j y W sean G-espacios isomorfos o no lo sean.

Corollary 8 El número de las W_i isomorfas a W no depende de la descomposición elegida.

Proof. En efecto, este número coincide con el producto escalar (φ, χ) .

Corollary 9 Dos representaciones del grupo G son isomorfas si y sólo si tienen el mismo carácter.

Proof. En efecto, ambas contienen el mismo número de veces toda represenatción irreducible W dada. \blacksquare

Consideremos la acción de G en $\mathbb{C}G = g_1\mathbb{C} \oplus ... \oplus g_m\mathbb{C}$ definida por la representación regular. Denotemos con φ a su carácter. Fijado $g \in G$, dado que su acción permuta los lementos de la base de $\mathbb{C}G$, se tiene que $\varphi(g)$ es igual al número de índices i tales que

$$g \cdot g_i = g_i$$
.

Como esto implica que g=1, se tiene

$$\varphi(1) = |G|, \ \varphi(g) = 0, \ \text{si } g \neq 1.$$

Proposition 10 Toda representación irreducible W_i de G está contenida en la representación regular $\mathbb{C}G$ un número de veces igual a su grado n_i . En consecuencia se tiene

$$\varphi = \sum n_i \chi_i.$$

Proof. Este número es igual a (φ, χ_i) , ahora bien

$$(\varphi, \chi_i) = \frac{1}{|G|} \sum_{g_j \in G} \varphi(g_j) \overline{\chi_i(g_j)} = \frac{1}{|G|} |G| \overline{\chi_i(1)} = n_i.$$

Corollary 11 Los grados n_i de las representaciones irreducibles verifican $\sum n_i^2 = |G|$.

Proof. Basta aplicar los dos miembros de $\varphi = \sum n_i \chi_i$ a $1 \in G$.

En consecuencia es finito el número de representaciones irreducibles de G, y en lo sucesivo a este conjunto nos referiremos como $Irr(G) = \{\chi_1, ..., \chi_k\}$.

1.1.1 Número de representaciones irreducibles

Una función compleja definida en $G, f: G \to \mathbb{C}$ diremos que es una función de clases si toma el mismo valor sobre cada clase de conjugación, esto es, si cumple que $f(hgh^{-1}) = f(g)$ para cualesquiera elementos $h, g \in G$. El \mathbb{C} -espacio vectorial de todas las funciones centrales será denotado por cf(G). Podemos definir un producto escalar entre dos funciones de clase φ, φ' de forma similar al producto escalar de caracteres:

$$(\varphi, \varphi') = \frac{1}{|G|} \sum_{g_i \in G} \varphi(g_j) \overline{\varphi'(g_j)}.$$

En este caso no se puede afirmar que (φ,φ') sea un número real, sino que se cumple

$$(\varphi, \varphi') = \overline{(\varphi', \varphi)}.$$

Sean $\{g_1,...,g_r\}$ representantes de cada una de las clases de conjugación en G. Para cada i definimos el elemento φ_i de Cf(G) siguiente

$$\varphi_i(g_i) = 1, \ \varphi_i(g_j) = 0 \text{ si } j \neq i.$$

Es claro que en conjunto $\{\varphi_1,...,\varphi_r\}$ genera cf(G). El conjunto $Irr(G) = \{\chi_1,...,\chi_k\}$ es linelamente independiente en cf(G). En efecto, si existiese una combinación lineal igualada a cero

$$\lambda_1 \chi_1 + \dots + \lambda_r \chi_r = 0$$

haciendo producto escalar con χ_i se conluye que $\lambda_i = 0$.

Lemma 12 Sea V una representación irreducible de G de carácter χ y grado n y φ una función central. Consideremos el endomorfismo de V dado por

$$\Phi = \sum_{g_i \in G} \varphi(g_i) g_i.$$

Entonces Φ es una homotecia de razón

$$\lambda = \frac{1}{n} \sum_{g_i \in G_i} \varphi(g_i) \chi(g_i) = \frac{|G|}{n} (\varphi, \overline{\chi}).$$

Proof. Veamos que Φ es un morfismo de G-espacios. Dado $h \in G$ se tiene

$$h\Phi h^{-1} = \sum_{g\in G} \varphi(g)hgh^{-1} = \sum_{g\in G} \varphi(hgh^{-1})hgh^{-1} = \Phi.$$

Con ello, por el lema de Schur, se tiene $\Phi = \lambda \cdot Id$ para cierto número complejo λ . Tomando trazas en la definición de Φ , se tiene

$$n \cdot \lambda = \sum_{g_i \in G} \varphi(g_i) \chi(g_i),$$

con lo que se concluye. ■

Theorem 13 El conjunto $\{\chi_1, ..., \chi_k\}$ de caracteres irreducibles de G forma una base de cf(G). En consecuencia el número de representaciones irreducibles de G concide con el número de clases de conjugación.

Proof. Sea φ una función central en G. Basta ver que $\varphi = \sum_{i=1}^k (\varphi, \chi_i) \chi_i$. Equivalentemente basta ver que la función de clases $\varphi' = \varphi - \sum_i (\chi_i, \varphi) \chi_i$, por ser ortogonal a todos los caracteres $\{\chi_1, ..., \chi_k\}$, es nula. Sea pues V una representación de G. Si V es irreducible, entonces en endomorfismo

$$\Phi = \sum_{g \in G} \varphi'(g)g$$

es nulo por el lema anterior. Si V admite una descomposición en representaciones irreducibles, entonces Φ es nulo sobre cada sumando directo W_i de V, con lo que $\Phi = 0$.

Tomando, en particular, la representación regular $\mathbb{C}G = g_1\mathbb{C} \oplus ... \oplus g_n\mathbb{C}$ y aplicando Φ al elemento neutro $1 \in G$, se tiene

$$\sum_{g \in G} \varphi'(g)g = 0 \text{ en } \mathbb{C}G.$$

Ello implica que todos los coeficientes de esta combinación son nulos, esto es $\varphi'(g) = 0 \ \forall g \in G$, con lo que se concluye. \blacksquare