Analysis of the trends of postsecondary education in Singapore

PDS CA2

Done by: Lim Chuan Hao(1922264)

DIT/FT/1B/11

Datasets used

- 1. Enrolment Secondary, By Level and Course (Dataset 1)
 - a. https://data.gov.sg/dataset/enrolment-secondary-by-level
- 2. Enrolment Pre-University, By Level and Course (Dataset 2)
 - a. https://data.gov.sg/dataset/enrolment-pre-university-by-level
- 3. Polytechnics Intake, Enrolment and Graduates by Course (Dataset 3)
 - a. https://data.gov.sg/dataset/polytechnics-intake-enrolment-and-graduates-by-course
- 4. Universities Intake, Enrolment and Graduates by Course (Dataset 4)
 - a. https://data.gov.sg/dataset/universities-intake-enrolment-and-graduates-by-course
- 5. Graduate Employment Survey NTU, NUS, SIT, SMU & SUTD (Dataset 5)
 - a. https://data.gov.sg/dataset/graduate-employment-survey-ntu-nus-sit-smu-sutd

Sub-objectives explained

There are 2 main sub-objectives crafted to analyze the overall objective

- 1. Junior College (JC) or Polytechnic (Datasets 1, 2 and 3)
 - a. Which is more popular?
 - b. Which is harder to graduate?
- 2. Which field of study should I go into (Datasets 3, 4 and 5)
 - a. Which field of study is more popular?
 - b. Which field of study has better job prospects?

Some notes

I will be referring to the figures in the order as shown below

A more detailed explanation of the code and conclusion will be in the notebook.

Example shown below:

```
post sec all = ori post sec all
post sec all = post sec all.replace({'-': '0'})
mf filter = post sec all['sex'].isin(['MF'])
jc_1_filter = jc_1_filter & mf_filter
all jc 1 = post sec all[jc 1 filter]
jc_2_filter = post_sec_all['level'].isin(['Junior College 2'])
jc 2 filter = jc 2 filter & mf filter
all jc 2 = post sec all[jc 2 filter]
grp_jc_1 = all_jc_1.groupby(['year'])['enrolment_preu'].sum().reset_index()
grp_jc_1 = grp_jc_1.rename(columns={'enrolment_preu': 'jc intake'})
grp_jc_2 = all_jc_2.groupby(['year'])['enrolment preu'].sum().reset index()
grp jc 2 = grp jc 2.rename(columns={'e
grp_jc_2['pro
                year'] = grp_jc_2['year'] - pd.offsets.DateOffset(years=1)
grp_jc_2 = grp_jc_2.drop(['year'], axis=1)
df_jc = pd.merge(grp_jc_1, grp_jc_2, how=
                                                ', left_on=['year'], right_on=['promo_year'])
df jc = df jc.drop(['p
                                ], axis=1)
df_jc['promo_per'] = df_jc[';
                                moted'] / df jc['jc intake']
df jc = df jc.drop(['r
df ic.head()
```

Sub-objective 1(Datasets 1, 2 and 3)

- 1. Junior College (JC) or Polytechnic (Datasets 1, 2 and 3)
 - a. Which is more popular?
 - b. Which is harder to graduate?

Some quick analysis of the datasets

- 1. Enrolment Secondary, By Level and Course (Dataset 1)
 - a. 5 Columns
 - i. ['year', 'level', 'course', 'sex', 'enrolment secondary']
 - b. 1318 Rows
- Enrolment Pre-University, By Level and Course (Dataset 2)
 - a. 5 Columns
 - i. ['year', 'level', 'course', 'sex', 'enrolment_preu']
 - b. 1166 Rows
- 3. Polytechnics Intake, Enrolment and Graduates by Course (Dataset 3)
 - a. 6 Columns
 - i. ['year', 'sex', 'course', 'intake', 'enrolment', 'graduates']
 - b. 336 Rows

An example of the output:

How do	es th	e raw data	look like?						
	year	level	course	sex	enrolme	ent_sec	ondary		
0 1980	-01-01	Secondary 1	Express	MF			45489		
1 1980	-01-01	Secondary 1	Express	F			22509		
2 1980	-01-01	Secondary 1	Normal (Acad)	MF			0		
3 1980	-01-01	Secondary 1	Normal (Acad)	F			0		
4 1980	-01-01	Secondary 1	Normal (Tech)	MF			0		
Summar	y of	the data a	t a glance						
		year	level		course	sex	enrolm	ent_secondary	
count		1318	1318		1318	1318		1318.000000	
unique		39	5		4	2		NaN	
top	1980-0	01-01 00:00:00	Secondary 1	Norma	al (Acad)	MF		NaN	
freq		34	310		390	659		NaN	
first	1980-0	01-01 00:00:00	NaN		NaN	NaN		NaN	
last	2018-0	01-01 00:00:00	NaN		NaN	NaN		NaN	
mean		NaN	NaN		NaN	NaN		8017.500000	
std		NaN	NaN		NaN	NaN		8187.688607	
min		NaN	NaN		NaN	NaN		0.000000	
25%		NaN	NaN		NaN	NaN		1978.000000	
50%		NaN	NaN		NaN	NaN		5624.000000	
75%		NaN	NaN		NaN	NaN		12462.750000	
max		NaN	NaN		NaN	NaN		45489.000000	
max NaN NaN NaN NaN NaN Vas 45489.00000 More technical info of the dataset <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1318 entries, 0 to 1317 Data columns (total 5 columns): year 1318 non-null datetime64[ns] level 1318 non-null object course 1318 non-null object sex 1318 non-null object terrolment_secondary dtypes: datetime64[ns] (1), int64(1), object(3) memory usage: 51.6+ K8</class>									

Data manipulation and Cleaning (Dataset 1)

- Mainly for this dataset, I wanted to find out the number of eligible students that can move on to post-secondary education (JC or Poly)
 - a. For this I mainly assumed the Normal (Academic) Secondary 4 and 5 and Express Secondary 4 students that graduated every year were able to move on to post-secondary education
 - b. I filtered for the students and then further filtered it to only be taking the totals of male and females.
 - c. Then I grouped by year and summed up the total graduates, to get the total number of students eligible for post-secondary education.
 - d. Then I offset the year by 1 to make sure the previous year graduates were the total potential intake of next year

Limitations:

- 2. I assumed the total number of students that were eligible for post-secondary education as above
- 3. I also only assumed they could have gone for JC or Poly, there are other options I did not account for.

Data manipulation and Cleaning (Dataset 1)

```
# Displaying before
print('Before')
display(ori sec enrol.head())
# Making sure the original dataset is not touched
sec enrol = ori sec enrol
# Filtering for only Secondary 4 express students and Secondary 5 students
sec 4 filter = sec enrol['level'].isin(['Secondary 4'])
express filter = sec enrol['course'].isin(['Express', 'Normal (Acad)'])
sec 5 grad filter = sec enrol['level'].isin(['Secondary 5'])
sec 4 grad filter = sec 4 filter & express filter
# Only total filter
mf filter = sec enrol['sex'].isin(['MF'])
all sec grad filter = sec 4 grad filter | sec 5 grad filter
all sec grad filter = all sec grad filter & mf filter
all sec grad = sec enrol[all sec grad filter]
# Grouping them by year and getting total grads by years
df sec grad = all sec grad.groupby(['year'])['enrolment secondary'].sum().reset index()
# Getting enrolment year
df sec grad['enrol year'] = df sec grad['year'] + pd.offsets.DateOffset(years=1)
df sec grad = df sec grad.drop(['year'], axis=1)
# Showing the data after the manipulation
print('After')
display(df sec grad.head())
```

Ве	fore	111	197 181		970 970 110
0.	year	level	course	sex	enrolment_secondary
0	1980-01-01	Secondary 1	Express	MF	45489
1	1980-01-01	Secondary 1	Express	F	22509
2	1980-01-01	Secondary 1	Normal (Acad)	MF	0
3	1980-01-01	Secondary 1	Normal (Acad)	F	0
4	1980-01-01	Secondary 1	Normal (Tech)	MF	0
Af	ter				
	enrolment_s	secondary e	enrol_year		
0		32925 1	981-01-01		
1		33931 1	982-01-01		
2		33938 1	983-01-01		
3		38023 1	984-01-01		
4		47677 1	985-01-01		

Data manipulation and Cleaning (Dataset 2)

- 1. I took the enrolled year 1 JC students as that year's intake of students
- 2. I also took the current year 2 students enrolled and took them as having passed promos
 - a. I then compared it to the previous year 'intake' to see the passing %
- 3. I will be using passing promo's to compare with graduating Poly later on
- 4. Filtered similarly to dataset 1, took only total values and drop all null values

Data manipulation and Cleaning (Dataset 2)

```
# Before
print('Before')
display(post sec all.head())
# Making sure the original dataset is not touched
post sec all = ori post sec all
# Seem the data we thought would be int is actually a string
# We realise this is because there is - in some of the values of enrolment preu
# Cleaning these values by setting them to 0
post sec all = post sec all.replace({'-': '0'})
# Changing the type back to int
post sec all = post sec all.astype({'enrolment preu': 'float32'})
# Getting the mf filter to get totals only
mf filter = post sec all['sex'].isin(['MF'])
# Getting only JC 1 data
jc 1 filter = post sec all['level'].isin(['Junior College 1'])
jc 1 filter = jc 1 filter & mf filter
all jc 1 = post sec all[jc 1 filter]
# Getting Only JC 2 data
jc 2 filter = post sec all['level'].isin(['Junior College 2'])
jc 2 filter = jc 2 filter & mf_filter
all jc 2 = post sec all[jc 2 filter]
# Setting up the JC intake first, then calculate the graduate %
# ic 1 arpina
grp ic 1 = all ic 1.groupby(['year'])['enrolment preu'].sum().reset index()
grp jc 1 = grp jc 1.rename(columns={'enrolment preu': 'ic intake'})
# ic 2 arpina
grp jc 2 = all jc 2.groupby(['year'])['enrolment preu'].sum().reset index()
grp jc 2 = grp jc 2.rename(columns={'enrolment preu': 'promoted'})
# Getting the year they promoted from
grp jc 2['promo year'] = grp jc 2['year'] - pd.offsets.DateOffset(years=1)
# Dropping year col
grp jc 2 = grp jc 2.drop(['year'], axis=1)
df jc = pd.merge(qrp jc 1, qrp jc 2, how='inner', left on=['year'], right on=['promo year'])
# Dropping dup promo year
df jc = df jc.drop(['promo year'], axis=1)
df ic['promo per'] = df ic['promoted'] / df ic['ic intake']
df jc = df jc.drop(['promoted'], axis=1)
# After
print('After')
display(df jc.head())
```

Be	fore						
	year	ı	evel	со	urse	sex	enrolment_preu
0	1980-01-01	Junior Colle	ge 1		Arts	MF	1158.0
1	1980-01-01	Junior Colle	ge 1		Arts	F	903.0
2	1980-01-01	Junior Colle	ge 1	Comm	erce	MF	1210.0
3	1980-01-01	Junior Colle	ge 1	Comm	erce	F	995.0
4	1980-01-01	Junior Colle	ge 1	Sci	ence	MF	3301.0
Af	ter year	jc intake	prom	o per			
	ycai	JC_IIIIake	prom	o_per			
0	1980-01-01	5669.0	0.9	53255			
1	1981-01-01	5323.0	1.1	36389			
2	1982-01-01	5709.0	1.0	26449			
3	1983-01-01	6510.0	1.0	61137			
4	1984-01-01	7801.0	1.0	03205			

Data manipulation and Cleaning (Dataset 3)

- 1. Same as the previous 2, I took only the intake and graduates
- 2. I also only filtered it to only have totals of both male and female
- 3. Cleaned up missing values to turn some columns from string back to floats
- 4. Then grouped by year to get intake and graduates by year
- 5. Assumed a normal graduate would graduate in 3 years, thus compared number of graduates to 3 years before

Data manipulation and Cleaning (Dataset 3)

```
# Before
print('Before')
display(ori poly all)
# Making sure the original dataset is not touched
poly all = ori poly all
# CLeaning up all missing values
for i in ['intake', 'enrolment', 'graduates']:
    poly all[i] = poly all[i].str.replace(',', '')
    poly all[i] = poly all[i].str.replace('-', '0')
# Changing the type back to int
poly all = poly all.astype({'intake': 'float32', 'enrolment': 'float32', 'graduates': 'float32'})
# Getting the only total filters of MF
mf filter = poly all['sex'].isin(['MF'])
# Filtering out for only totals
all poly = poly all[mf filter]
# Grouping the data by year
grp all poly = all poly.groupby(['year'])['intake', 'graduates'].sum().reset index()
# Calculate when the graduates year intake year was
poly grads = grp_all_poly[['year', 'graduates']].copy()
polv grads['intake year'] = polv grads['year'] - pd.offsets.DateOffset(years=3)
poly grads = poly grads.drop(['year'], axis=1)
# Merging the dataset together
grp all poly = grp all poly.drop(['graduates'], axis=1)
df poly = pd.merge(grp all poly, poly grads, how='inner', left on=['year'], right on=['intake vear'])
df poly = df poly.drop(['intake year'], axis=1)
df poly['graduate per'] = df poly['graduates'] / df poly['intake']
df poly = df poly.drop(['graduates'], axis=1)
# After
print('After')
display(df poly.head())
```

Be:	fore						
	yea	r sex		course	intake	enrolment	graduates
(2005-01-0	1 MF		Applied Arts	1128	2593	550
1	2005-01-0	1 F		Applied Arts	687	1538	302
:	2005-01-0	1 MF	Architectu	re, Building & Real Estate	515	1466	425
3	3 2005-01-0	1 F	Architectu	re, Building & Real Estate	312	870	249
4	4 2005-01-0	1 MF		Business & Administration	3483	10143	3044
331	1 2018-01-0	1 F		Mass Communication	500	1420	437
332	2 2018-01-0	1 MF	Natural, Physical	& Mathematical Sciences	1232	3794	1353
333	3 2018-01-0	1 F	Natural, Physical	& Mathematical Sciences	773	2308	825
334	4 2018-01-0	1 MF		Services	1083	3279	1053
33	5 2018-01-0	1 F		Services	436	1436	541
336	rows × 6 co	olumns					
Af	ter						
	year	intake	graduate_per				
0	2005-01-01	20906.0	0.923993				
1	2006-01-01	22276.0	0.907883				
2	2007-01-01	23362.0	0.917944				
3	2008-01-01	24838.0	0.922699				
4	2009-01-01	25624.0	0.936583				

Final dataframe used here

- 1. Mainly merged all the datasets above into one large dataframe
- 2. Mainly used the time as the matching key to merge
- 3. Carefully removed any columns not being used and also rename columns to not get confused

```
# Renaming some columns to be more specific
df polv = df polv.rename(columns={'intake': 'polv intake'})
df sec grad = df sec grad.rename(columns={'enrolment secondary': 'total sec grads'})
# Making the main DF I would be using
df jc poly = pd.merge(df sec grad, df jc, left on=['enrol year'], right on=['year'], how='inner')
df jc poly = df jc poly.drop(['enrol year'], axis=1)
df jc poly = pd.merge(df jc poly, df poly, how='inner', on='year')
# Calculating ratio that went to ic or poly
df jc poly['jc intake_per'] = df_jc_poly['jc_intake'] / df_jc_poly['total_sec_grads']
df jc poly['poly intake per'] = df jc poly['poly intake'] / df jc poly['total sec grads']
df ic polv['year str'] = df ic polv['year'].dt.strftime('%Y')
df jc poly
                                                 poly intake graduate per jc intake per poly intake per year str
    total sec grads
                        year jc intake promo per
                                                     20906.0
                                                                 0.923993
                                                                              0.325232
                   2005-01-01
                                         0.949091
                                                                                              0.435406
                   2006-01-01
                               14633.0
                                         0.933780
                                                     22276.0
                                                                 0.907883
                                                                              0.310278
                                                                                              0.472339
                                                                                                          2006
                   2007-01-01
                               16435.0
                                         0.904411
                                                     23362.0
                                                                 0.917944
                                                                              0.329306
                                                                                              0.468101
                                                                                                          2007
                   2008-01-01
                               16148.0
                                         0.900855
                                                     24838.0
                                                                 0.922699
                                                                              0.322915
                                                                                              0.496690
                                                                                                          2008
                                                     25624.0
                                                                 0.936583
                                                                              0.325401
                                                                                                          2009
                   2009-01-01
                                        0.913343
                                                                                             0.517218
                                         0.904698
                                                     25707.0
                                                                 0.939705
                                                                              0.323659
                                                                                                          2010
            50445 2010-01-01
                               16327.0
                                                                                              0.509605
                   2011-01-01
                               16195.0
                                         0.905156
                                                     26737.0
                                                                 0.924599
                                                                              0.318229
                                                                                              0.525378
                                                                                                          2011
            54472 2012-01-01
                               16155.0
                                         0.903807
                                                     26754.0
                                                                 0.920647
                                                                              0.296574
                                                                                              0.491151
                                                                                                          2012
            54592 2013-01-01
                               16261.0
                                         0.916364
                                                     26879.0
                                                                 0.933963
                                                                              0.297864
                                                                                              0.492362
                                                                                                          2013
                  2014-01-01
                               15337.0
                                         0.928082
                                                     25777.0
                                                                 0.939209
                                                                              0.300849
                                                                                              0.505640
                                                                                                          2014
                                         0.934202
                                                     24251.0
                                                                 0.932498
                                                                              0.301003
                                                                                             0.519805
                                                                                                          2015
            46654 2015-01-01
                               14043.0
```

1. Figure 1

- We can see that there is a larger majority of people going to poly instead of JC
- We can also see that the people choosing to go to Poly is increasing over the years
- However, note how after 2012, the total number of people that can go into post-secondary education has dropped, so with the total number of JC and Poly intake

2. Figure 2

- a. We can see here that by proportion, JC has been steadily decreasing in intake year by year.
- b. We can also see that in contrast, the proportion choosing to go to poly has been increasing.

Conclusions:

- 3. We can see clearly that Polytechnic is gaining popularity as more people are choosing Polytechnic over JC
- 4. However, the total number of students that can go into post-secondary education has been decreasing in recent years.

1. Figure 1

- a. We can see that mostly poly was much easier to graduate as compared to JC passing promos
- b. Note the axis as the actual difference is about 4% of difference

2. Figure 2

 Snae thing here as we can see the gradients gradually become the same tone of orange at the end

Conclusions:

 We can see that at the start, poly was noticeably easier compared to JC by about 3%, however nowadays, we can see that the difficulty in either institute is about the same.

Final conclusions

Sub-Objective: Junior College (JC) or Polytechnic (Datasets 1, 2 and 3)

- 1. Which is more popular?
 - a. We can see that poly is definitely more popular compared to JCs, both in terms of shear number as well as proportion.
 - b. Both actually take up the majority of the students after they graduate from secondary school. (80% and above)
 - c. Note the limitations

2. Which is harder to graduate?

- a. We can see that poly is slightly easier in the past to graduate, but nowadays it is about the same
- b. Note the limitations of comparing graduating poly to passing promos in JC

Sub-objective 2(Datasets 3, 4 and 5)

- 1. Which field of study should I go into (Datasets 3, 4 and 5)
 - a. Which field of study is more popular?
 - b. Which field of study has better job prospects?

Data manipulation and Cleaning (Dataset 3)

- 1. Firstly, I cleaned up all the missing values as before and took only the total of male and females
- 2. Then I mapped a new column of the course to their field of study
- 3. For this and subsequent datasets I have the following field of studies
 - a. Arts
 - b. Computing
 - c. Engineering
 - d. Medicine
 - e. Science
 - f. Business
 - g. Law
 - h. Education
- 4. I then grouped them by their field of study before getting the totals for things like intake

Data manipulation and Cleaning (Dataset 3)

```
# Before
print('Before')
display(ori poly all)
# Making sure the original dataset is not touched
poly_all = ori_poly all
# CLeaning up all missing values
for i in ['intake', 'enrolment', 'graduates']:
   poly all[i] = poly all[i].str.replace(',', '')
    poly all[i] = poly all[i].str.replace('-', '0')
# Changing the type back to int
poly all = poly all.astype({'intake': 'float32', 'enrolment': 'float32', 'graduates': 'float32'})
# Mapping to find the field based on course
course field map = {
'Applied Arts': 'arts',
'Architecture, Building & Real Estate': 'arts',
'Business & Administration': 'business',
'Education': 'education',
'Engineering Sciences': 'engineering',
'Health Sciences': 'medicine',
'Humanities & Social Sciences': 'arts',
'Information Technology': 'computing'.
'Mass Communication': 'business',
'Natural, Physical & Mathematical Sciences': 'science',
'Services': 'nil'}
poly_all['field'] = poly_all['course'].replace(course_field_map)
# Getting the only total filters of MF
mf filter = poly all['sex'].isin(['MF'])
# Getting only totals
df poly = poly all[mf filter]
# Dropping all nil/na values
df poly = df poly.replace({'nil': None})
df_poly = df_poly.dropna()
# Dropping columns we will not be using
df_poly = df_poly.drop(['sex', 'course'], axis=1)
# Creating the df by grouping
df poly = df poly.groupby(['year', 'field'])['intake', 'enrolment', 'graduates'].sum().reset index()
df poly = df poly.rename(columns={'intake': 'poly intake', 'enrolment': 'poly enrol', 'graduates': 'poly graduates', 'field': 'poly field'})
# Creating the year str column
df poly['year str'] = df poly['year'].dt.strftime('%Y')
print('After')
df_poly.head()
```

Befo	ore					
	year	sex	course	intake	enrolment	graduates
0	2005-01-01	MF	Applied Arts	1128	2593	550
1	2005-01-01	F	Applied Arts	687	1538	302
2	2005-01-01	MF	Architecture, Building & Real Estate	515	1466	425
3	2005-01-01	F	Architecture, Building & Real Estate	312	870	249
4	2005-01-01	MF	Business & Administration	3483	10143	3044
331	2018-01-01	F	Mass Communication	500	1420	437
332	2018-01-01	MF	Natural, Physical & Mathematical Sciences	1232	3794	1353
333	2018-01-01	F	Natural, Physical & Mathematical Sciences	773	2308	825
334	2018-01-01	MF	Services	1083	3279	1053
335	2018-01-01	F	Services	436	1436	541

336 rows × 6 columns

After

	year	poly_field	poly_intake	poly_enrol	poly_graduates	year_str
0	2005-01-01	arts	1724.0	4142.0	975.0	2005
1	2005-01-01	business	3931.0	11569.0	3463.0	2005
2	2005-01-01	computing	4122.0	11607.0	3356.0	2005
3	2005-01-01	education	189.0	484.0	111.0	2005
4	2005-01-01	engineering	7826.0	22462.0	6536.0	2005

Data manipulation and Cleaning (Dataset 4)

- 1. Same as dataset 3, cleaned the values and made columns like intake into floats
- 2. The mapped the course to their field of study
- 3. Only got the totals and grouped them by year and field of study
- 4. Also removed null fields that were not considered

Data manipulation and Cleaning (Dataset 4)

```
# Before
print('Before')
display(ori_uni_all.head())
# Making sure the original dataset is not touched
uni all = ori uni all
# Changing all missing or null values
for i in ['intake', 'enrolment', 'graduates']:
   uni_all[i] = uni_all[i].str.replace(',', '')
   uni_all[i] = uni_all[i].str.replace('-', '0')
# Changing the type back to int
uni all = uni all.astype({'intake': 'float32', 'enrolment': 'float32', 'graduates': 'float32'})
# Getting the only total filters of MF
mf filter = uni all['sex'].isin(['MF'])
# Mapping based on course
course field map = {
'Accountancy': 'business',
'Architecture, Building & Real Estate': 'arts',
'Business & Administration': 'business',
'Dentistry': 'medicine',
'Education': 'education',
'Engineering Sciences': 'engineering'.
'Fine & Applied Arts': 'arts',
'Health Sciences': 'medicine'.
'Humanities & Social Sciences': 'arts',
'Information Technology': 'computing',
'Law': 'law',
'Mass Communication': 'business',
'Medicine': 'medicine',
'Natural, Physical & Mathematical Sciences': 'science',
'Services': 'nil'}
uni all['field'] = uni all['course'].replace(course field map)
# Getting only totals
df uni all = uni all[mf filter]
# Dropping all nil/na values
df uni all = df uni all.replace({'nil': None})
df uni all = df uni all.dropna()
df uni all = df uni all.drop(['sex', 'course'], axis=1)
# Groupping to get df
df uni all = df uni all.groupby(['year', 'field'])['intake', 'enrolment', 'graduates'].sum().reset index()
df uni all = df uni all.rename(columns={'intake': 'uni intake', 'enrolment': 'uni enrol', 'graduates': 'uni graduates', 'field': 'uni field'})
# Getting the year str column
df uni all['year str'] = df uni all['year'].dt.strftime('%Y')
print('After')
```

Ве	fore								
	year	sex			cour	rse	intake e	enrolment	graduates
0	2005-01-01	MF			Accountar	псу	876	2561	706
1	2005-01-01	F			Accountar	псу	530	1732	495
2	2005-01-01	MF	Archite	cture, Buildin	g & Real Est	ate	299	1310	180
3	2005-01-01	F	Archite	cture, Buildin	g & Real Est	ate	175	786	106
4	2005-01-01	MF		Business 8	& Administrat	ion	1545	5013	1256
After									
ΑI	ter								
AI	ter year	un	i_field	uni_intake	uni_enrol	uni	_graduate	s year_stı	r
0		un	i_field arts	uni_intake 2695.0	uni_enrol 8408.0	uni	_graduate		_
	year					uni		0 2005	5
0	year 2005-01-01	bu	arts	2695.0	8408.0	uni	1852.	0 2005	5
0	year 2005-01-01 2005-01-01	bu	arts	2695.0 2593.0	8408.0 8218.0	uni	1852. 2108.	0 2005 0 2005 0 2005	5

Data manipulation and Cleaning (Dataset 5)

- 1. For this, I also had to clean the dataset, removing and replace null values
- 2. Then I was able to turn the columns like employment_rate_overall into floats
- 3. Also made a new field column based on the school degree was from
- 4. Then grouped by year and field, taking the mean of values

Data manipulation and Cleaning (Dataset 5)

```
for i in col change:
   uni grad[i] = uni grad[i].str.replace('.'. '')
   uni grad[i] = uni grad[i].str.replace('-', '0')
   uni grad[i] = uni grad[i].str.replace('na', '0')
# Changing the type back to int
col change map = dict(zip(col change, ['float32']*len(col change)))
uni grad = uni grad.astvpe(col change map)
# Mapping schools to the field of study
school field mapping = {
'College of Business (Nanyang Business School)': 'business'.
'College of Engineering': 'engineering'.
'College of Humanities, Arts & Social Sciences': 'arts',
'College of Sciences': 'science'.
'National Institute of Education (NIE)': 'education',
'Faculty of Arts & Social Sciences': 'arts'.
'NUS Business School': 'business'.
'School of Computing': 'computing'.
'Faculty of Dentistry': 'medicine'.
'School of Design & Environment': 'arts'.
'Faculty of Engineering': 'engineering'.
'Faculty of Law': 'law'.
'YLL School of Medicine': 'medicine'.
'Yong Siew Toh Conservatory of Music': 'arts',
'Faculty of Science': 'science'.
'School of Accountancy (4-years programme) *': 'business'.
'School of Business (4-years programme) *': 'business'.
'School of Economics (4-years programme) *': 'business'.
'School of Information Systems (4-years programme) *': 'computing',
'School of Social Sciences (4-years programme) *': 'arts',
'School of Law (4-years programme) *': 'law',
'School of Accountancy (4-year programme) *': 'business',
'School of Business (4-year programme) *': 'business'.
'School of Economics (4-year programme) *': 'business',
'School of Information Systems (4-year programme) *': 'computing',
'School of Social Sciences (4-year programme) *': 'arts'.
'School of Law (4-year programme) *': 'law',
'DigiPen Institute of Technology': 'computing',
'The Glasgow School of Art': 'arts',
'Newcastle University': 'science',
'Technische Universitt Mnchen': 'science',
'The Culinary Institute of America': 'arts',
'Trinity College Dublin': 'science',
'University of Glasgow': 'computing',
'University of Manchester': 'science',
'University of Nevada, Las Vegas': 'business',
'Wheelock College': 'medicine',
'Multidisciplinary Program': 'nil',
'Singapore Institute of Technology -Trinity College Dublin': 'computing',
'Sports Science and Management': 'arts'
```

Before									
year	university	school	degree	employment_rate_overall	employment_rate_ft_pe	rm basic_monthly_me	ean basic_monthly_me	dian gross_monthly_me	an gross_monthly_median
o 2013- 01-01	Nanyang Technological University	College of Business (Nanyang Business School)	Accountancy and Business	97.4	9	6.1 37	701	3200 37	27 3350
1 2013- 01-01	Nanyang Technological University	College of Business (Nanyang Business School)	Accountancy (3-yr direct Honours Programme)	97.1	9:	5.7 28	350	2700 29	38 2700
2 2013- 01-01	Nanyang Technological University	College of Business (Nanyang Business School)	Business (3- yr direct Honours Programme)	90.9	8	5.7 30	053	3000 32	14 3000
3 2013- 01-01	Nanyang Technological University	College of Business (Nanyang Business School)	Business and Computing	87.5	8	7.5 35	557	3400 36	15 3400
4 2013- 01-01	Nanyang Technological University	College of Engineering	Aerospace Engineering	95.3	9	5.3 34	194	3500 35	36 3500
4									
After									
year	field	employment_ra	ate_overall	employment_rate_ft_perm	basic_monthly_mean b	asic_monthly_median	gross_monthly_mean	gross_monthly_median	gross_mthly_25_percentile
o 2013- 01-01	arts		76.538887	66.966667	2626.444336	2582.777832	2689.888916	2626.388916	2362.500000
1 2013- 01-01	business		93.557144	90.885712	3316.428467	3044.142822	3424.071533	3121.000000	2832.142822
2 2013- 01-01	computing		69.125000	63.587502	2625.125000	2434.375000	2662.750000	2457.500000	2265.625000
3 2013- 01-01	education		100.000000	100.000000	3395.000000	3413.000000	3492.000000	3498.000000	3350.000000
4 2013- 01-01	engineering		89.368179	85.445457	3163.409180	3056.818115	3251.136475	3126.590820	2959.681885

1. Figure 1 & 3

- We can see here that the trends for polytechnic and university by fields are quite different
- In polytechnic, engineering is the most popular followed by business
- c. But in University, its engineering followed by arts and business
- We can also see that the trends for different fields are also different.

2. Figure 2 & 3

- Gives a more detailed look, we can see by the gradient, that for poly, it is engineering followed by business then arts, computing and medicine
- b. Uni its, engineering then arts and business, followed by computing, medicine and science

Conclusions:

- 3. The more popular courses are engineering and business by far for both uni and polytechnic.
- 4. However it is hard to tell from the trends as for polytechnic, all of them are decreasing

- 1. Figure 1 & 2
 - We can see here that engineering is indeed the popular field of study
 - However in uni, the popularity is actually decreasing as the proportion of intake is decreasing.
- Figure 3
 - We can also see that the overall increase in intake for uni and decrease of poly
 - Thus even though we saw the downward trend for all fields of study in poly, it is probably due to this

16000

14000

Conclusion:

3. Thus we can conclude that engineering is the most popular field of study, however this may not tru in the future, with business and arts increasing in popularity

- 1. Figure 1, 2, 3 and 4
 - a. Some simple plots, we can see that the gross monthly income is normally distributed
 - b. The scatter plot shows some minor relationships
 - c. The boxplot shows there is a large range and variation

- 1. Figure 1 & 3
 - We can clearly see that for some fields, the employment rate and permanent employment rate is different.
- 2. Figure 2 & 4
 - a. We can see the most secure job is education
 - b. Close seconds are law, medicine and business
 - c. Although business permanent employment rate is much lower

Conclusion:

- 3. The field of study you take can significantly vary you employment rate
- 4. This also changes year after year

- 1. Figure 1 & 2
 - a. We can see that the highest earner by far is law
 - With medicine, education and business coming in together
- 2. Figure 3 & 4
 - We can see there is also a large difference in the income of law students, meaning their pay is very much affected by their school grades
 - b. Same with business to a smaller extent
 - c. Lastly we can see this also affects the other fields, although not as much
 - d. Smallest difference is in the education field.

Conclusion:

- 3. Different fields of study also earn different amounts of income
- 4. School grades also decides how much more you can earn depending on your field. (Law)

Final conclusions

Sub-Objective: Which field of study should I go into (Datasets 3, 4 and 5)

- 1. Which field of study is more popular?
 - a. Most popular is engineering then business
- 2. Which field of study has better job prospects?
 - a. Depending on what you are aiming for, the most stable is education.
 - i. University grades does not really affect your income
 - b. Best income is law
 - i. Deping on how good your grades are you could earn up to 1.6K more than the median