

Basic Structures: Sets, Functions, Sequences, and Summation

Chapter 2

Edited by: Dr. Meshal Alfarhood

Sets

Section 2.1

Section Summary

Definition of sets

Describing Sets

- Roster Method
- Set-Builder Notation

Some Important Sets in Mathematics

Empty Set and Universal Set

Subsets and Set Equality

Cardinality of Sets

Cartesian Product

Sets

- A set is an unordered collection of objects.
 - Example: A={1,3,5,7,9}, B={a, 2, Fahad, Riyadh}
 - $1 \in A$ means that 1 is an element of the set A.
 - $1 \notin B$ means that 1 is **not** a member of B.
 - About sets:
 - Order not important.
 - $S = \{a,b,c,d\} = \{b,c,a,d\}$
 - Listing more than once does not change the set.
 - $S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$
 - Sets can be elements of sets.
 - \blacksquare {{1,2,3},a,{b,c}}

Describing a Set

There are two ways to describe sets:

- Roster Method
- 2. Set-Builder Notation

Examples:

- Set of all odd positive integers less than 10
 - 1. $A = \{1,3,5,7,9\}$
 - 2. $A = \{x \mid x \text{ is an odd positive integer less than 10}\}$
- Set of all positive integers less than 100
 - 1. $B = \{1,2,3,...,99\}$
 - 2. $B = \{x \mid x \text{ is a positive integer less than 100}\}$

Some Important Sets

 $N = set of natural numbers = {0,1,2,3....}$

 $Z = set of integers = {...,-3,-2,-1,0,1,2,3,...}$

 Z^+ = set of *positive integers* = {1,2,3,....}

R = set of real numbers

R⁺ = set of *positive real numbers*

Q = set of rational numbers

Universal Set and Empty Set

- The universal set U is the set containing everything currently under consideration.
- The empty set is the set with no elements. Ø, or {}
- The empty set is different from a set containing the empty set. $\emptyset \neq \{\emptyset\}$

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

A and B are equal iff

$$\forall x \big(x \in A \longleftrightarrow x \in B \big)$$

- We write A = B
- Examples:
 - {1,3,5} = {3,5,1}
 - $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set A is a **subset** of B, if and only if every element of A is also an element of B.

• A is a subset of the set B iff

$$\forall x \big(x \in A \to x \in B \big)$$

- We write $A \subseteq B$
- Any set is considered to be a subset of itself.
- Examples:
- 1. $\emptyset \subseteq S$, for every set S.
- 2. $\{1,3,5,7,9\} \subseteq \{1,2,3,4,5,6,7,8,9\}$
- 3. $\{1,3,5,7,9\} \subseteq \{1,3,5,7,9\}$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B.

A is a proper subset of the set B iff

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

- We write $A \subset B$
- No set is a proper subset of itself.
- Examples:
- 1. $\emptyset \subset S$, for every set S, except the empty set.
- 2. $\{1,3,5,7,9\} \subset \{1,2,3,4,5,6,7,8,9\}$

Set Cardinality

Definition: The *cardinality* of a finite set *A* is the number of (distinct) elements of *A*.

We write |A|

Examples:

- 1. $|\emptyset| = 0$
- 2. $|\{\emptyset\}| = 1$
- 3. Let S be the letters of the English alphabet. Then |S| = 26
- 4. $|\{1,2,3\}| = 3$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set *A* is called the *power set* of *A*.

We write P(A)

Examples:

- 1. $P({a,b}) = {\emptyset, {a},{b},{a,b}}$
- 2. $P(\emptyset) = \{\emptyset\}$
- 3. $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

The cardinality of the power set is $\frac{2^n}{n}$, where *n* is #elements.

Cartesian Product

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Examples:

- 1. $A = \{a,b\}, B = \{1,2,3\}$
 - $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$
- 2. $A = \{0,1\}, B = \{1,2\} \text{ and } C = \{0,1,2\}$
 - $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$

Exercise

Suppose $A=\{1,2,\{3,4\},\{5,6,7\}\}$. Determine the truth of the following statements:

2.
$$|P(A)|=16$$

3.
$$\emptyset \in A$$

4.
$$\emptyset \subseteq A$$

5.
$$\{\emptyset\} \subseteq A$$

6.
$$1 \in A$$

7.
$$1 \subseteq A$$

8.
$$\{1\} \subseteq A$$

9.
$$3 \in A$$

10.
$$\{3,4\} \in A$$

11.
$$\{3,4\} \subseteq A$$

12.
$$\{\{3,4\}\}\subseteq A$$

Set Operations

Section 2.2

Section Summary

Set Operations

- Union
- Intersection
- Difference
- Complement

Set Identities

Proving Identities

Union

Definition: The *union* of sets A and B, denoted by

 $A \cup B$, is the set:

$$\big\{x\mid x\in A\vee x\in B\big\}$$

Example: What is $\{1,2,3\} \cup \{3,4,5\}$?

Solution: {1,2,3,4,5}

 $A \cup B$ is shaded.

Intersection

Definition: The *intersection* of sets A and B,

denoted by $A \cap B$, is the set:

$$\{x\mid x\in A\land x\in B\}$$

Example 1: What is $\{1,2,3\} \cap \{3,4,5\}$?

Solution: {3}

Example 2: What is $\{1,2,3\} \cap \{4,5,6\}$?

Solution: 0

Note: if the intersection is empty, then A and B are said to be disjoint.

Difference

Definition: The *difference* of A and B, denoted by A - B, is the set containing the elements of A that are not in B.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$A - B = A \cap \overline{B}$$

Example: What is $\{1,3,5\} - \{1,2,3\}$?

Solution: {5}

A - B is shaded.

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \overline{A} is the set U - A. $|\overline{A} = \{ x \in U \mid x \notin A \}$

Example: If *U* is the set of all positive integers, and A is the set of positive integers greater than 10. what is the complement of A?

Solution: $\overline{A} = \{1,2,3,4,5,6,7,8,9,10\}$

U

Generalized Unions and Intersections

Let $A_1, A_2, ..., A_n$ be an indexed collection of sets.

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

(b) $A \cap B \cap C$ is shaded.

Exercise

- Exercise 1: If A-B = {1,5,7,8}, B-A = {2,10}, and A∩B = {3,6,9}.
 Find sets A and B.
 - Solution: A = {1,3,5,6,7,8,9}B = {2,3,6,9,10}
- Exercise 2: If A = {x,y,z}, B = {1,2}, and C = {x,z}. Find the following sets:
 - 1. A-C = $\{y\}$
 - 2. $|P(A \cup B \cup C)|$ = 32
 - 3. $(A \times B) (B \times C)$ = $\{(x,1),(x,2),(y,1),(y,2),(z,1),(z,2)\}$
 - 4. $\{(a,b,c) \mid a,b,c \in B \land a \neq b \land a \neq c\}$ = $\{(1,2,2), (2,1,1)\}$

Set Identities

Identity laws:

$$A \cup \emptyset = A$$

$$A \cup \emptyset = A$$
 $A \cap U = A$

Domination laws:

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

Idempotent laws: $A \cup A = A$

$$A \cup A = A$$

$$A \cap A = A$$

Complementation law:

$$(\overline{\overline{A}}) = A$$

Set Identities 2

De Morgan's laws:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws:

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Complement laws:

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

Set Identities₃

Commutative laws:

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

Associative laws:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proving Set Identities

Different ways to prove set identities:

- 1. Prove by **applying existing identities**.
- 2. Membership Tables: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity.

 Use 1 to indicate it is in the set and a 0 to indicate that it is not.

Proof Using First Method

Example: Prove that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$.

Solution:

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cap \overline{C})$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Membership Table

Example: Construct a membership table to show that the distributive law holds.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution:

Α	В	С	B∩C	A ∪ (B ∩ C)	A∪B	A∪C	(A∪B) ∩ (A∪C)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0