

Oct 05, 2018

Working

Nuclei isolation from human kidney for single-nucleus RNA-seq

Ben Humphreys¹, Yuhei Kirita²

¹Washington University in St. Louis, ²The Humphreys Lab

dx.doi.org/10.17504/protocols.io.nahdab6

Human Cell Atlas Method Development Community

ABSTRACT

This protocol is based upon <u>Habib, N et al., Nature Methods 14: 955-958, 2017</u> and <u>Basu et al., Protocol Exchange 2017: DroNc-seq step-by-step</u> with adaptions for adult human kidney including: Tissue mincing, homogenization strokes, addition of protease inhibitor and RNasin and adjustments to strainer size and sequence.

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

This protocol is based upon <u>Habib, N et al., Nature Methods 14:955-958, 2017</u> and <u>Basu et al., Protocol Exchange 2017: Dro Nc-seq step-by-step</u>

Nuclei isolation protocol.pdf

PROTOCOL STATUS

Working

We use this protocol in our group and it is working

GUIDELINES

All steps are performed on ice or in cold room (4 $^{\circ}$ C) to minimize RNA degradation.

Storage temperatures

Reagent	Storage
1x DPBS	4°C
Nuclei EZ Lysis Buffer	4°C
cOmplete ULTRA Tablets, Mini,	4°C
EDT A-free, EAS Ypack	
RNasin Plus Ribonuclease	-20°C
Inhibitors	
SUPERaseIN RNase Inhibitor	-20°C
RNase free H ₂ O	RT
RNaseZap	RT

MATERIALS

NAME ~	CATALOG #	VENDOR ~
1x DPBS	14190144	Gibco - Thermo Fischer
Nuclei EZ Lysis Buffer	N-3408	Sigma

NAME Y	CATALOG #	VENDOR V
cOmplete ULTRA Tablets, Mini, EDTA-free, EASYpack	05 892 791 001	Roche
RNasin Plus Ribonuclease Inhibitors	N2615	Promega
SUPERaseIN RNase Inhibitor	AM2696	Thermo Fisher Scientific
RNase free H2O	AM9938	Thermo Scientific
RNaseZap	AM9780	Ambion
KONTES Dounce Tissue Grinders	KT 885300- 0002	Kimble Chase
pluriStrainer 200 μm	43-50200	pluriSelect
pluriStrainer 40 μm	43-50040	pluriSelect
pluriStrainer 5 µm	43-50005	pluriSelect
Fuchs-Rosenthal disposable hemocytometer	DHC-F015	INCYTO
Falcon 15 mL Polystyrene Conical Tube	352095	Fisher Scientific
RNase-free 50 ml Conical Tubes	AM12502	Ambion
TPP 60mm Tissue Culture Dishes	TP93060	MIDSCI

BEFORE STARTING

Buffers and Solutions

Nuclei lysis buffer 0 (NLB0) working solution

- 10 ml of Nuclei EZ Lysis Buffer
- 1 tablet of cOmplete ULTRA tablets

Nuclei lysis buffer 1 (NLB1) working solution - make 4 ml per $< 8 \text{ mm}^3 \text{ tissue}$

- 4 ml of NLB0
- 20 μl of RNasin Plus
- 20 µl of SUPERaselN

Nuclei lysis buffer 2 (NLB2) working solution - make 4 ml per < 8 mm³ tissue

- 4 ml of Nuclei EZ Lysis Buffer
- 4 μl of RNasin Plus
- 4 μl of SUPERaselN

Nuclei suspension buffer (NSB)

- 2 ml of DPBS
- 2 μl of RNasin Plus
- Precool all instruments and buffers.

NOTE

All steps are performed on ice or in cold room (4°C) to minimize RNA degradation.

2 Start with kidney cubes (either fresh or snap frozen, smaller than 8 mm³) and place on a 60 mm dish.

3 Add 1 ml of NLB1, then mince very well with a fresh razor blade. ■1 ml NLB1 Transfer the minced tissue with NLB1 into a Dounce tissue grinder and add another 1 ml of NLB1. 1 ml NLB1 5 Grind 20-30 times with a loose pestle, then pass the homogenate through a 200 µm strainer and collect in a 50 ml conical tube. **NOTE** To reduce heat caused by friction, homogenization should be performed gently on ice. Transfer the homogenate again into a Dounce tissue grinder. Grind the homogenate 10-15 times with a tight pestle. Add 2 ml of NLB1 and incubate for 5 min on ice. ■2 ml NLB1 (§00:05:00 Incubation on ice Pass the homogenate through a 40 µm strainer into 50 ml conical tube. Transfer the homogenate into a 15 ml conical tube. 10 Centrifuge the tube at 500 G for 5 min at 4°C. 11 A 4 °C Centrifugation © 00:05:00 Centrifugation at 500 G Discard supernatant. 12 13 Carefully suspend the pellet in 4 ml of NLB2. ■4 ml NLB2 Incubate on ice for 5 min. 14 **७**00:05:00 Incubation on ice

15 Centrifuge at 500 G for 5 min at 4°C.

ENOTE

We use a fixed angle rotor.

§ 4 °C Centrifugation

© 00:05:00 Centrifugation at 500 G

- 16 Discard supernatant.
- 17 Carefully suspend the pellet in 2 ml of NSB.

2 ml NSB

- 18 Pass the suspension through a 5 μm strainer into 50 ml conical tube.
- 19 Count nuclei by hemocytometer.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited