CS329 Machine Learning

Midterm Exam - 2023 Fall

Exam Setter: Prof. Qi Hao

haoq@sustech.edu.cn

Layout: Site Fan

fanst2021@mail.sustech.edu.cn

Question 1 Least Square

- a) Consider Y = AX + V and $V \sim \mathcal{N}(\mathbf{v}|\mathbf{0}, Q)$, what is the least square solution of X?
- b) If there is a constraint $b^{T}X = c$, what is the optimal solution of X?
- c) If there is an *additional* constraint of $X^{T}X = d$, in addition to the constraint in b), what is the optimal solution of X?
- d) If both A and X are unknown, how to solve A and X alternatively by using two constraints of $X^{T}X = d$ and $\operatorname{Trace}(A^{T}A) = e$?

Question 2 Linear Gaussian System

Consider Y = AX + V, where X and V are Gaussian, $X \sim \mathcal{N}(\mathbf{x}|\mathbf{m}_0, \mathbf{\Sigma}_0)$, $V \sim \mathcal{N}(\mathbf{v}|\mathbf{0}, \beta^{-1}\mathbf{I})$.

Calculate the followings:

- conditional distribution p(Y|X)
- joint distribution p(Y, X)
- marginal distribution p(Y)
- posterior distribution $p(X|Y = \mathbf{y}, \beta, \mathbf{m}_0, \Sigma_0)$
- posterior predictive distribution $p(\hat{Y}|Y=\mathbf{y},\beta,\mathbf{m}_0,\Sigma_0)$
- prior predictive distribution $p(Y|\beta, \mathbf{m}_0, \Sigma_0)$

Question 3 Linear Regression

Consider $y = \mathbf{w}\phi(x) + v$, where v is Gaussian, i.e., $v \sim \mathcal{N}(v|0, \beta^{-1})$, and \mathbf{w} has a Gaussian priori, i.e., $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \alpha^{-1}\mathbf{I})$.

Assume that $\phi(x)$ is known, please derive

- posterior distribution $p(\mathbf{w}|D, \beta, \mathbf{m}_0, \alpha)$
- posterior predictive distribution $p(\hat{y}|\hat{x}, D, \beta, \mathbf{m}_0, \alpha)$
- prior predictive distribution $p(D|\beta, \mathbf{m}_0, \alpha)$

where $D = \{\phi_n, y_n\}, n = 1, ..., N$ is the training dataset and $\phi_n = \phi(x_n)$

Question 4 Logistic Regression

Consider a two-class classification problem with the logistic sigmoid function, $y = \sigma(\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}))$, for a given dataset $D = \{\phi_n, t_n\}$, where $t_n \in \{0, 1\}$, $\phi_n = \phi(\mathbf{x}_n), n = 1, ..., N$.

The likelihood function is given by

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$

where w has a Gaussian priori, i.e., $\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \alpha^{-1}\mathbf{I})$.

Please derive the followings:

- posterior distribution $p(\mathbf{w}|D,\mathbf{m}_0,\alpha)$
- posterior predictive distribution $p(t|x,D,\mathbf{m}_0,\alpha)$

• prior predictive distribution $p(D|\mathbf{m}_0, \alpha)$

Hint: use Delta approximation and Laplace approximation properly.

Question 5 Neural Network

Consider a two-layer neural network described by the following equations:

$$a_1 = w^{(1)}x, \quad a_1 = w^{(2)}z$$

 $z = h(a_1), \quad y = \sigma(a_2)$

where \mathbf{x} and y are the input and output of the neural network, $h(\cdot)$ is a nonlinear function, and $\sigma(\cdot)$ is the sigmoid function.

- 1. Please derive the following gradients: $\frac{\partial y}{\partial w^{(1)}}$, $\frac{\partial y}{\partial w^{(2)}}$, $\frac{\partial y}{\partial a_1}$, $\frac{\partial y}{\partial a_2}$ and $\frac{\partial y}{\partial x}$.
- 2. Please detive the updating rules for $w^{(1)}$ and $w^{(2)}$ given the classification errors between y and t, where t is the ground truth of the output y.

Question 7 Critical Analyses

- 1. Please explain why the dual problem formulation is used to solve the SVM machine learning problem.
- 2. Please explain, in terms of cost functions, constraints and predictions:
 - 1. what are the differences between SVM classification and logistic regression
 - 2. what are the differences between ν -SVM regression and least square regression.
- 3. Please explain why neural network (NN) based machine learning algorithms use logistic activation functions?
- 4. Please explain:
 - 1. what are the differences between the logistic activation function and other activation functions (e.g., relu, tanh)
 - 2. when these activation functions should be used.
- 5. Please explain why Jacobian and Hessian matrices are useful for machine learning algorithms.
- 6. Please explain why exponential family distributions are so common in engineering practice.

 Please give some examples which are **NOT** exponential family distributions.
- 7. Please explain why KL divergence is useful for machine learning? Please provide two examples of using KL divergence in machine learning.
- 8. Please explain why data augmentation techniques are a kind of regularization skills for NNs.
- 9. Please explain why Gaussian distributions are preferred over other distributions for many machine learning models?
- 10. Please explain why Laplace approximation can be used for many cases?
- 11. What are the fundamental principles for model selection (degree of complexity) in machine learning?

- 12. How to choose a new data sample (feature) for regression and classification model training, respectively? How to choose it for testing? Please provide some examples.
- 13. Please explain why the MAP model is usually more preferred than the ML model?

Question 8 Discussions

- 1. What are the generative and discriminative approaches to machine learning, respectively?
 Can you explain the advantages and disadvantages of these two approaches and provide a detailed example to illustrate your points?
- 2. How do you analyze the GAN model from the generative and discriminative perspectives?