

10/019898

PCT/DE 00/02025

BUNDESREPUBLIK DEUTSCHLAND

3 #2

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED
BUT NOT IN COMPLIANCE WITH
RULE 17.1(a) OR (b)

REC'D	24 AUG 2000
WIPO	PCT

DE 00/2025

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 199 29 933.1

Anmeldetag: 29. Juni 1999

Anmelder/Inhaber: Siemens Aktiengesellschaft, München/DE

Bezeichnung: Kommunikationssystem und Kommunikationsverfahren für ein Automatisierungsgerät mit im Automatisierungsgerät gespeicherten Kommunikationsdaten

IPC: G 05 B, H 04 L, G 06 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. Juli 2000
Deutsches Patent- und Markenamt
Der Präsident

Im Auftrag

Faust

Beschreibung

Kommunikationssystem und Kommunikationsverfahren für ein Automatisierungsgerät mit im Automatisierungsgerät gespeicher-

5 ten Kommunikationsdaten

Die Erfindung betrifft ein Kommunikationssystem sowie ein Kommunikationsverfahren zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung.

10

Ein derartiges Kommunikationssystem wird beispielsweise für die Kommunikation im Bereich der Automatisierungs-Antriebstechnik benötigt. Hierbei besteht beim Projektieren, Parametrieren, bei der Inbetriebnahme, etc. die Notwendigkeit, das

15 Automatisierungsgerät von einer Datenverarbeitungsvorrichtung, beispielsweise einem Personalcomputer oder einem speziellen Programmiergerät aus zu bedienen. Eine derartige Bedienung erfolgt beispielsweise mit Hilfe eines speziellen Anwendungsprogramms, welches Informationen zu dem jeweiligen Auto-

20 matisierungsgerät enthält.

Der Erfindung liegt die Aufgabe zugrunde, ein Kommunikationssystem und -verfahren anzugeben, das eine Kommunikation zwischen Datenverarbeitungsvorrichtung und Automatisierungsgerät möglichst unabhängig vom Anwendungsprogramm ermöglicht.

Diese Aufgabe wird durch ein Kommunikationssystem zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung und einem Automatisierungsgerät gelöst, mit einem im Automatisierungsgerät angeordneten Speicher zur Speicherung von Kommunikationsdaten zur Kommunikation mit einem Kommunikationsprogramm.

Diese Aufgabe wird weiter durch ein Verfahren zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung und einem Automatisierungsgerät gelöst, bei dem in einem Speicher des

Automatisierungsgeräts gespeicherte Kommunikationsdaten vom Automatisierungsgerät zur Datenverarbeitungsvorrichtung übertragen und zur Kommunikation mit einem Kommunikationsprogramm ausgeführt werden.

5

Der Erfahrung liegt die Erkenntnis zugrunde, daß die Bedienung eines Automatisierungsgeräts mit Hilfe eines Anwendungsprogramms, in dem Geräteinformationen eingebunden sind, mit bestimmten Nachteilen behaftet ist. Ein erster Nachteil besteht darin, daß der Anwender das Anwendungsprogramm zunächst installieren muß, damit eine Kommunikation mit dem Automatisierungsgerät ermöglicht wird. Ein weiterer Nachteil besteht darin, daß neue Versionen eines Automatisierungsgerätes erst dem Anwendungsprogramm bekannt gemacht werden müssen, bevor das Automatisierungsgerät mit der neuen Version auch bedient werden kann. Diese Nachteile führen dazu, daß bei Änderungen des Automatisierungsgeräts oder dem Datenaustauschverfahren immer auch das Anwendungsprogramm geändert werden muß. Beim erfahrungsgemäßen Kommunikationssystem sind die Kommunikationsdaten, d. h. die Geräteinformation und die Kommunikationsprotokolle im Automatisierungsgerät selbst gespeichert. Für eine Bedienung werden dann die jeweils erforderlichen Bediendialoge und Kommunikationsprotokolle zur Datenverarbeitungsvorrichtung, beispielsweise zu einem PC oder einem Programmiergerät übertragen. In der Datenverarbeitungsvorrichtung werden die Bediendialoge und Kommunikationsprotokolle dann von Anwendungsprogramm, beispielsweise einem standardisierten Internetbrowser oder einem ähnlichen Programm ausgeführt und dargestellt. Hierdurch wandern die Informationen über das Automatisierungsgerät vom Anwendungsprogramm in das Automatisierungsgerät selbst, wodurch die Bediendialoge und Kommunikationsprotokolle immer zum jeweiligen Automatisierungsgerät passen. Änderungen im Gerät sind damit unabhängig vom Anwendungsprogramm, so daß entsprechende Änderungen im Anwendungsprogramm nicht erforderlich sind.

Eine einheitliche und für eine Vielzahl von Kommunikationsprogrammen geeignete Datenübertragung kann dadurch sichergestellt werden, daß der Speicher zur Speicherung von Bedienialogen und/oder Kommunikationsprotokollen in Form von Java-
5 Objekten vorgesehen ist.

Der im Automatisierungsgerät benötigte Speicherbedarf kann dadurch gering gehalten werden, daß die Kommunikationsdaten in komprimierter Form im Speicher gespeichert werden.

10

Der Aufwand für das Anwendungsprogramm zur Kommunikation mit dem Automatisierungsgerät kann dadurch minimal gehalten werden, daß das Kommunikationsprogramm ein Internet-Browser ist und daß zur Übertragung der Kommunikationsdaten zwischen dem
15 Automatisierungsgerät und dem Kommunikationsprogramm ein Standardprotokoll vorgesehen ist.

Ein sicheres Bedienen des Automatisierungsgeräts wird in der Weise sichergestellt, daß die im Speicher gespeicherten Kommunikationsdaten, insbesondere Bediendialoge und Kommunikationsprotokolle zur Bedienung des Automatisierungsgeräts vom Automatisierungsgerät zur Datenverarbeitungsvorrichtung übertragen werden.

25

Eine zuverlässige Kommunikation zwischen Automatisierungsgerät und Datenverarbeitungsvorrichtung wird dadurch sichergestellt, daß die vom Automatisierungsgerät zur Datenverarbeitungsvorrichtung übertragenen Kommunikationsdaten im Kommunikationsprogramm, insbesondere einem Internet-Browser ausgeführt und in der Datenverarbeitungsvorrichtung dargestellt werden.

35

Im folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.

Es zeigen:

FIG 1 ein Blockschaltbild eines ersten Ausführungsbeispiels eines Kommunikationssystems mit einem Automatisierungsgerät und einer Datenverarbeitungsvorrichtung und

FIG 2 ein Blockschaltbild eines zweiten Ausführungsbeispiels eines Kommunikationssystems mit einem Automatisierungsgerät und einer Datenverarbeitungsvorrichtung.

FIG 1 zeigt ein Blockschaltbild eines ersten Ausführungsbeispiels eines Kommunikationssystems mit einem Automatisierungsgerät 1 und einer Datenverarbeitungsvorrichtung 2. Das Automatisierungsgerät 1 weist einen Speicher 4 zur Speicherung von Geräteinformation und Kommunikationsdaten auf. Die Datenverarbeitungsvorrichtung 2 enthält ein Anwendungsprogramm 5, das einen Datenaustausch über eine Datenverbindung 3 zwischen der Datenverarbeitungsvorrichtung 2 und dem Automatisierungsgerät 1 ermöglicht.

Zentrales Element des in FIG 1 dargestellten Kommunikationssystems ist der Speicher 4 des Automatisierungsgeräts 1. im Speicher 4 sind die Informationen über das Automatisierungsgerät 1 sowie die Kommunikationsprotokolle für das Automatisierungsgerät 1 gespeichert. Hierdurch wandern die bei bisherigen Lösungen im Anwendungsprogramm gespeicherten Geräteinformationen vom Anwendungsprogramm in das Automatisierungsgerät 1. Hierzu sind die Bediendialoge und Kommunikationsprotokolle im Speicher 4 in Form von insbesondere kompilierten Java-Objekten abgelegt. Als Speicher 4 kommt beispielsweise ein RAM, EEPROM, SLASH, etc. -Speicher zum Einsatz. Der Speicherbedarf wird dabei aufgrund einer komprimierten Ablageform so gering wie möglich gehalten. Zum Bedienen werden die jeweils erforderlichen Bediendialoge und Kommunikationsprotokolle vom Speicher 4, d. h. vom Automatisierungsgerät 1 zur Datenverar-

beitungsvorrichtung 2, beispielsweise einem Personalcomputer oder einem Programmiergerät übertragen. Dort werden diese Bediendialoge und Kommunikationsprotokolle im Anwendungsprogramm 5, beispielsweise einem Internet-Browser oder einem ähnlichen Programm ausgeführt und dargestellt. Für den Daten-
5 austausch über die Datenverbindung 3 wird insbesondere ein Standardprotokoll, wie beispielsweise TCP (= Transport Communication Protokoll) oder IP (=Internetprotokoll) verwendet. Die Vorteile des in FIG 1 dargestellten Kommunikationssystems sind: Die Bediendialoge und Kommunikationsprotokolle passen
10 immer zum Automatisierungsgerät, da sie vom Automatisierungs-gerät selbst bereitgestellt werden, was insbesondere auch bei geänderten Gerätetypen von Vorteil ist. Darüberhinaus be-
steht kein oder lediglich ein sehr geringer Aufwand für die
15 Anpassung und/oder Umstellung eines Anwendungsprogramms 5 an ein neues Automatisierungsgerät 1. Durch den konsequenten Einsatz eines einheitlichen Kommunikationsprotokolls entstehen weiter verminderte Aufwendungen für die Pflege. Darüber-
hinaus wird ein verstärkter Einsatz von innovativen Tech-
20 niken, wie beispielsweise internetbasierter Service und Support möglich.

FIG 2 zeigt ein Blockschaltbild eines zweiten Ausführungs-
beispiels eines Kommunikationssystems mit einem Automatisie-
rungsgerät 1, welches über Datenverbindungen 3, 3a mit Daten-
verarbeitungsvorrichtungen 2, 8 kommunizieren kann. Die Da-
tenverarbeitungsvorrichtung 1 weist wiederum einen Speicher 4
zur Speicherung von Kommunikationsdaten und Geräteinformatio-
nen auf. Die erste Datenverarbeitungsvorrichtung 2 enthält
30 wiederum ein Anwendungsprogramm 5 zur Kommunikation mit dem
Automatisierungsgerät 1 über die Datenverbindung 3. Darüber-
hinaus besteht bei dem in FIG 2 dargestellten Kommunikations-
system die Möglichkeit einer Datenkommunikation zwischen ei-
ner zweiten Datenverarbeitungsvorrichtung 8 mit dem Automati-
35 sierungsgerät 1 über eine Datenverbindung 3, 3a, über einen
Internet-Server 6 sowie über eine Internet-Verbindung 7.

Die Kommunikation zwischen der ersten Datenverarbeitungsvorrichtung 2 und dem Automatisierungsgerät erfolgt in der bereits im Zusammenhang mit FIG 1 beschriebenen Art und Weise. Die Kommunikation zwischen der zweiten Datenverarbeitungsvorrichtung 8 und dem Automatisierungsgerät 1 erfolgt mit Hilfe des in der zweiten Datenverarbeitungsvorrichtung vorhandenen Anwendungsprogramms 5a über eine Verbindung mit dem Internet 7 zum Internet-Server 6, von dem wiederum eine Datenverbindung 3, 3a zum Automatisierungsgerät 1 besteht. Auch in diesem Fall greift das Anwendungsprogramm 5a der zweiten Datenverarbeitungsvorrichtung 8 auf die Geräteinformationen und Kommunikationsprotokolle im Speicher 4 des Automatisierungsgeräts 1 zu, wodurch ein Einsatz von Internet-Techniken für Service und Support im Umfeld des Automatisierungsgeräts 1 verstärkt ermöglicht wird.

Zusammenfassend betrifft die Erfindung somit ein Kommunikationssystem zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung 2 und einem Automatisierungsgerät 1. Für ein vereinfachtes Bedienen des Automatisierungsgeräts 1 nahezu unabhängig von einem speziellen Anwendungsprogramm mit speziellen Geräteinformationen über das Automatisierungsgerät 1 wird vorgeschlagen, daß das Automatisierungsgerät 1 einen Speicher 4 zur Speicherung von Kommunikationsdaten zur Kommunikation mit einem insbesondere standardisierten Kommunikationsprogramm 5 aufweist. Dadurch sind die Kommunikationsdaten fest mit dem Automatisierungsgerät 1 verbunden und die Bediendialoge und/oder Kommunikationsprotokolle passen somit immer zum jeweiligen Automatisierungsgerät 1. Dies ermöglicht einen konsequenten Einsatz von einheitlichen Kommunikationsprogrammen 5, beispielsweise in Form von Internet-Browsern. Hierdurch wird ein Einsatz von Internet-Techniken für Service und Support im Umfeld von Automatisierungsgeräten 1 verstärkt möglich.

Patentansprüche

1. Kommunikationssystem zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung (2) und einem Automatisierungsgerät (1), mit einem im Automatisierungsgerät (1) angeordneten Speicher (4) zur Speicherung von Kommunikationsdaten zur Kommunikation mit einem Kommunikationsprogramm (5).
2. Kommunikationssystem nach Anspruch 1,
durch gekennzeichnet,
daß der Speicher (4) zur Speicherung von Bediendialogen und/oder Kommunikationsprotokollen in Form von Java-Objekten vorgesehen ist
3. Kommunikationssystem nach einem der Ansprüche 1 oder 2,
durch gekennzeichnet,
daß die Kommunikationsdaten in komprimierter Form im Speicher (4) gespeichert werden.
4. Kommunikationssystem nach einem der Ansprüche 1 bis 3,
durch gekennzeichnet,
daß das Kommunikationsprogramm (5) ein Internet-Browser ist und daß zur Übertragung der Kommunikationsdaten zwischen dem Automatisierungsgerät (1) und dem Kommunikationsprogramm ein Standardprotokoll vorgesehen ist.
5. Kommunikationssystem nach einem der Ansprüche 1 bis 4,
durch gekennzeichnet,
daß die im Speicher (4) gespeicherten Kommunikationsdaten, insbesondere Bediendialoge und Kommunikationsprotokolle zur Bedienung des Automatisierungsgeräts (1) vom Automatisierungsgerät (1) zur Datenverarbeitungsvorrichtung (2) übertragen werden.

6. Kommunikationssystem nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die vom Automatisierungsgerät (1) zur Datenverarbeitungs-
vorrichtung (2) übertragenen Kommunikationsdaten im Kommuni-
kationsprogramm, insbesondere einem Internet-Browser ausge-
führt und in der Datenverarbeitungsvorrichtung dargestellt
werden.

7. Verfahren zur Kommunikation zwischen einer Datenverarbei-
tungsvorrichtung (2) und einem Automatisierungsgerät (1), bei
dem in einem Speicher (5) des Automatisierungsgeräts (1) ge-
speicherte Kommunikationsdaten vom Automatisierungsgerät (1)
zur Datenverarbeitungsvorrichtung (2) übertragen und zur Kom-
munikation mit einem Kommunikationsprogramm (5) ausgeführt
werden.

8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
daß im Speicher (4) Bediendialoge und/oder Kommunikationspro-
tokolle in Form von Java-Objekten gespeichert sind.

9. Verfahren nach einem der Ansprüche 7 oder 8,
dadurch gekennzeichnet,
daß die Kommunikationsdaten in komprimierter Form im Speicher
(4) gespeichert werden.

10. Verfahren nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet,
daß zur Kommunikation zwischen Automatisierungsgerät (1) und
Datenverarbeitungsvorrichtung (2) als Kommunikationsprogramm
(5) ein Internet-Browser verwendet wird und daß zur Übertra-
gung der Kommunikationsdaten zwischen dem Automatisierungsge-
rät (1) und dem Kommunikationsprogramm ein Standardprotokoll
verwendet wird.

9

11. Verfahren nach einem der Ansprüche 7 bis 10,
d a d u r c h g e k e n n z e i c h n e t ,
daß die im Speicher (4) gespeicherten Kommunikationsdaten,
insbesondere Bediendialoge und Kommunikationsprotokolle zur
5 Bedienung des Automatisierungsgeräts (1) vom Automatisie-
rungsgerät (1) zur Datenverarbeitungsvorrichtung (2) übertra-
gen werden.

12. Verfahren nach einem der Ansprüche 7 bis 11,
10 d a d u r c h g e k e n n z e i c h n e t ,
daß die vom Automatisierungsgerät (1) zur Datenverarbeitungs-
vorrichtung (2) übertragenen Kommunikationsdaten im Kommuni-
kationsprogramm, insbesondere einem Internet-Browser ausge-
führt und in der Datenverarbeitungsvorrichtung dargestellt
15 werden.

Zusammenfassung

Kommunikationssystem und Kommunikationsverfahren für ein Automatisierungsgerät mit im Automatisierungsgerät gespeicherten Kommunikationsdaten

Die Erfindung betrifft ein Kommunikationssystem zur Kommunikation zwischen einer Datenverarbeitungsvorrichtung (2) und einem Automatisierungsgerät (1). Für ein vereinfachtes Bedienen des Automatisierungsgeräts (1) nahezu unabhängig von einem speziellen Anwendungsprogramm mit speziellen Geräteinformationen über das Automatisierungsgerät (1) wird vorgeschlagen, daß das Automatisierungsgerät (1) einen Speicher (4) zur Speicherung von Kommunikationsdaten zur Kommunikation mit einem insbesondere standardisierten Kommunikationsprogramm (5) aufweist. Dadurch sind die Kommunikationsdaten fest mit dem Automatisierungsgerät (1) verbunden und die Bediendialoge und/oder Kommunikationsprotokolle passen somit immer zum jeweiligen Automatisierungsgerät (1). Dies ermöglicht einen konsequenten Einsatz von einheitlichen Kommunikationsprogrammen (5), beispielsweise in Form von Internet-Browsern. Hierdurch wird ein Einsatz von Internet-Techniken für Service und Support im Umfeld von Automatisierungsgeräten (1) verstärkt möglich.

FIG 1

Fig. 1

Fig. 2