

12 ATAR Physics

Electromagnetism Investigation

			4	-		-		=	
2	а	r	r.	7	-	Q	ш	Ī	7
	\sim		•	A COLUMN		_	~	-	

Mark: $\frac{}{50}$

Name:

SOLUTIONS

You should have your Research section of the investigation with you.

1. State what the betatron is mainly used for.

[3 marks]

- · Provides high energy beam electrons around 300 MeV.
- · A source of X-rays and 8-rays when electrons hit a metal plate.
- · X-rays produced com be used in industrial and modical fields.
- · High energy electrons can be used in particle physics.
- · Possible solar flare mechanism.

[Any 3 - I mark each]

2. What is the value of the speed mentioned as $\mathbf{v} = 0.999987 \mathbf{c}$ where \mathbf{c} is the speed of light? Give your answer to 5 significant figures. [2 marks]

$$V = (0.999987)(3.00 \times 10^8)$$
 (1)
= 2.9996 × 108 ms⁻¹. (1)

3. Show that 1 Volt = 1 Weber/second.

[3 marks]

$$EMF = -NA\phi$$
 Δt

Assume N=1,

4.	Explain why an electron-volt can be considered to be a unit of energy. [2 marks]
	· The work done by a potential difference is given by: W=Vq. (1)
	. If an electrons moves through a passential difference of 1.0V,
	then W= 1.0eV.
	=) eV is equivolent to I, a unit of energy. (1)
5.	Can an induced current ever establish a magnetic field B that is in the same direction as the magnetic field inducing the current? Justify your answer. [3 marks]
	· Mo (1)
	· If it was possible, the fields would add together, creating a (1)
	This would were she indured wortent and continue to
	This would increase the induced instent and continue to infinity, which is impossible.
	[lould also mention that this violates the how of conservation of energy.]
C	Suggest a suitable material for the magnetic care of the betatron. Justify your
6.	Suggest a suitable material for the magnetic core of the betatron. Justify your answer. [2 marks]
	· Softwon core, (1)
	· This concentrates the magnetic field.
	· This concentrates the magnetic field. It is easily magnetised and domagnetised. Terther OK. (1)
7.	In the betatron, the magnetic core is made of laminated sheets rather than of solid material. Explain why this is so. [3 marks]
	· Laminaded sheets produce small eddy currents. (1)
	· Power loss is much lower, since Pross = IZR. (1)
	· Solid were, eddy untent is very large, as it the power loss. (1)

8	(a) Explain how the magnetic field guides the electrons in a circular path.
	Magnetic field produces a force acting on the electrons at (1) night angles to the direction of movement.
	right angles to the direction of movement,
	· This pushes the electrons into a curved path, with the force (1) acting dowards the outse.
	(b) Explain how the changing magnetic field produces an induced electric field in the electron chamber. [2 marks]
	· From Faradays daw; EMF = - NAD => EMF \times \frac{\Delta q}{\Delta t} (1)
	· The changing flux (At) induces an EMF in the chamber, creating (1) an electric field.
9.	You want to increase the radius of the circular path by imposing an additional magnetic flux $\Delta\Phi$. Should the lines of \boldsymbol{B} associated with this increase be in the same direction as the lines shown in the figure or in the opposite direction? Explain your answer.
	· Same diséction. (1)
	· This meréases B. (1)
	· Suice $\Delta \phi = \Delta B.A$, $\Delta \phi$ is inexeased. (1)
10.	(a) State the direction of the force acting on the electron on the right-hand side of the betatron (Fig. 1 of Research handout) [1 mark]
	Toward the centre. (1)
	(b) Explain how you arrived at your answer. [2 marks]
	· Field generated by the moving abouton inderacts with the (1)
	· This creates a force towards the untre of the circle. (1)

- 11. In a 100-MeV betatron, the orbit radius R is 84 cm. Assume that the orbit is circular. The magnetic field in the region enclosed by the orbit rises periodically (60 times per second) from zero to a maximum value $B_{max} = 0.8$ T in an accelerating interval of one-fourth of a period, or 4.2 ms.
 - (a) What is the maximum magnetic flux, Φ_{max} , attained during the accelerating interval? [2 marks]

(b) Using the answer to (a), determine the rate of change of flux (induced emf) during the time interval of acceleration. [2 marks]

$$\frac{\Delta \phi}{\Delta t} = \frac{1.77}{4^{\circ} 20 \times 10^{-3}}$$

$$= 421 \text{ Wbs}^{-1} (V) (1)$$

(c) Given that 1.0 eV (electron volt) is the energy gained by an electron moving across a potential difference of 1.0V, show that the number of revolutions required for an electron to reach its final energy of 100 MeV is approximately 238,000 revolutions.

[2 marks]

revolutions =
$$\frac{100 \times 10^6}{421}$$
 (1)
= 2.375 × 10⁵ (1)
 $\approx 238,000$

(d) Find the total distance travelled by an electron along its circular path before reaching its full energy of 100 MeV. [2 marks]

$$d = \# \text{ revolutions } \times 2\pi A$$

$$= (2.375 \times 10^{5}) 2\pi (0.840) \quad (1)$$

$$= 1.25 \times 10^{6} \text{ m} \quad (1)$$

(e) Calculate the average speed of the electron as it travels the total distance needed to reach 100 MeV during the acceleration time interval of 4.2 ms. [2 marks]

$$V = \frac{d}{L} = \frac{1.25 \times 10^{6}}{4.20 \times 10^{3}}$$
 (1)
= 2.98 × 10⁸ ms⁻¹ (1)

12. The varying magnetic field in the betatron can be represented by the graph below.

On the axis below, sketch the shape of a corresponding graph of induced EMF versus time as the B field varies. [3 marks]

13. Once accelerated, the electrons are directed out of the doughnut chamber, or inwards, towards a metal target to produce x-rays. X-rays are a form of electromagnetic radiation. They have a wavelength ranging from 0.0100 to 10.0 nm. What are the highest and lowest frequencies of x-rays? [3 marks]

14. The betatron can be thought of as a transformer. Transformers have a primary and secondary coil. The magnetic field is changed by passing alternating current to the primary coil. A current is induced in the secondary coil by Faraday's Law.

[2 marks]

(a) State which part of the betatron behaves like the primary coil of a transformer.

· loils C (1)

(b) State which part of the betatron behaves like the secondary coil of a transformer.

· Ring of electrons in the sube. (1)

Referring to the values given in Question 11, suggest *TWO* strengths of the design of a betatron as a particle accelerator. [2 marks]

· Small size (1=0.84m) (1)

· Nature of B (0.800T) is small compared to other particle accelerators. (1)

16. Describe **TWO** ways that you can increase the energy of radiation emitted by the betatron? [2 marks]

· Increase the alternating arrent. (1)

· Increase the frequency of injection of electrons. (1)