PS3 Review Session

Kuan Fang CS231A 02/16/2018

Overview

Space carving

Single Object Recognition via SIFT

Histogram of Oriented Gradients (HOG)

Space Carving

Objective:

Implement the process of space carving.

Lectures:

Active Stereo & Volumetric Stereo

Silhouette 1

Goal of Space Carving

Space carving - overview

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Form the initial voxels as a cuboid
- Iterate over cameras and remove the voxels which project to the dark part of each silhouette

Space carving - (a) (b) (c)

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Form the initial voxels as a cuboid
 - You may find these functions useful: np.meshgrid, np.repeat, np.tile
- Iterate over cameras and remove the voxels which project to the dark part of each silhouette
 - Question: What will the voxels look like after the first, second, ... iteration?

Space carving - (d)

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
- Form the initial voxels as a cuboid
 - Question: What will the cuboid look like after each iteration?
- Iterate over cameras and remove the voxels which project to the dark part of each silhouette

Space carving - (e)

- Estimate silhouettes of images (could be based on some heuristics, e.g. color)
 - Problem: The quality of silhouettes is not perfect.
 - The silhouette from each camera is not perfect, but the result is ok. Why?
 - Experiment: Use only a few of the silhouettes.
- Form the initial voxels as a cuboid
- Iterate over cameras and remove the voxels which project to the dark part of each silhouette

Single Object Recognition Via SIFT - overview

Objective:

- Understand how to use SIFT features for object recognition.
- Implement the RANSAC algorithm.
- Implement the Hough Transform algorithm.
- (Implementation of SIFT is not required.)

Lectures:

- Fitting and Matching
- Detectors and Descriptors

SIFT descriptor

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), 04

- Alternative representation for image regions
- Location and characteristic scale s given by DoG detector

- 1 Compute gradient at each pixel
- 2 N x N spatial bins
- 3 Compute an histogram h_i of M orientations for each bin i
- 4 Concatenate h_i for i=1 to N² to form a 1xMN² vector H
- 5 Gaussian center-weighting
- 6 Normalize to unit norm

Typically M = 8; N= 4 H = 1 x 128 descriptor

Single Object Recognition Via SIFT - (a)

We've implemented SIFT descriptor for you, and your task is using it for object recognition.

Read: **Section 7. Application to object recognition** in Lowe's SIFT paper http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Be sure to understand what does the threshold mean and how to use it.

Single Object Recognition Via SIFT - (b)

RANSAC to refine matching

Basic idea: use RANSAC to fit a homography matrix *H* between two set of key points. Only keep the inliers for matching, remove the outliers.

Question: how many pairs of correspondences do we need in each iteration?

Single Object Recognition Via SIFT - (c)

Theoretical properties about RANSAC: see lecture notes / slides

Understand the relations between:

- N: number of samples
- e: outlier ratio
- s: minimum number of data points to fit the model
- p: probability guaranteed

Single Object Recognition Via SIFT - (d) (e)

Find quantitative relation between two bounding boxes

Input (u1, v1, s1, theta1; u2, v2, s2, theta2; x1, y1, w1, h1) Output (x2, y2, w2, h2, o2)

Keypoint1 Keypoint2 Bbx1 Bbx2 & Orientation

Histogram of Oriented Gradients (HOG) - Overview

Objective:

Implement HOG features.

Lectures:

Detectors and Descriptors

HoG = Histogram of Oriented Gradients

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

- Like SIFT, but...
 - Sampled on a dense, regular grid around the object
 - Gradients are contrast normalized in overlapping blocks

Histogram of Oriented Gradients (HOG) - Online Reference

https://www.learnopencv.com/histogram-of-oriented-gradients/

2	3	4	4	3	4	2	2
5	11	17	13	7	9	3	4
11	21	23	27	22	17	4	6
23	99	165	135	85	32	26	2
91	155	133	136	144	152	57	28
98	196	76	38	26	60	170	51
165	60	60	27	77	85	43	136
71	13	34	23	108	27	48	110

Gradient Magnitude

87 1 76 1 120 7 58 8 30 6	13 70 36 35	1 14 119 157	168 150 98 75	159 145 100 78	22 144 101 165	125 145 133 145	143 143 113 124
76 1 120 7 58 8	13 70 36	1 14 119	168 150 98	159 145 100	22 144 101	125 145 133	143 143 113
76 1 120 7	13	1 14	168 150	159 145	22 144	125 145	143 143
76	13	1	168	159	22	125	143
87 1	36	1/3	39	102	163	152	176
		170	20		1000		
37	9	9	179	78	27	169	166
80 3	36	5	10	0	64	90	73

Gradient Direction

Histogram of Oriented Gradients (HOG) - Overview

- Preprocessing the image.
- Calculate the gradient image.
- Calculate the gradient histogram of each cell.
- Normalize each block.
- Calculate the HOG feature vector.

Histogram of Oriented Gradients (HOG) - (a)

- Preprocessing the image.
- Calculate the gradient image.
- Calculate the gradient histogram of each cell.
- Normalize each block.
- Calculate the HOG feature vector.

Histogram of Oriented Gradients (HOG) - (a)

Compute the gradients of image (angles, magnitudes)

```
The way that the angles and magnitude per pixel are computed as follows:

Given the following pixel grid

P1 P2 P3
P4 P5 P6
P7 P8 P9

We compute the angle on P5 as arctan(dy/dx) = arctan(P2-P8 / P4-P6).
```

```
The magnitude is simply sqrt((P4-P6)^2 + (P2-P8)^2)
```

Histogram of Oriented Gradients (HOG) - (b)

- Preprocessing the image.
- Calculate the gradient image.
- Calculate the gradient histogram of each cell.
 - The output shape is (nbins,).
- Normalize each block.
- Calculate the HOG feature vector.

Histogram of Oriented Gradients (HOG) - (c)

- Preprocessing the image.
- Calculate the gradient image.
- Calculate the gradient histogram of each cell.
- Normalize each block.
 - We use a stride of 50% of the block size.
- Calculate the HOG feature vector.

Thank You