Discrete Math (Honor) 2022-Fall Homework-1: Solution

Instructor: Xiang YIN

Problem 1. (8 Points)

Determine whether or not each of the following sentences is a proposition.

- 1. SJTU is better than Fudan.
- $2. \ 2 + 3 = 5.$
- 3. 5 + 6 = 12.
- 4. Answer this question.
- 5. This sentence is wrong.
- 6. Is this sentence true?
- 7. I do not know whether or not what you said is true.
- 8. Given any Turning machine and input, one can determine if it sucks.

Answers: 1.Y 2.Y 3.Y 4.N 5. N 6.N 7.Y 8.Y

A proposition is a declarative sentence/assertion that is **either true or false** (but not both). Sentence in 5 uses self-reference which makes it neither true nor false. Sentence in 7 does not have this situation. Therefore, 5 is not a proposition while 7 is a proposition.

Problem 2. (3 Points)

We define the following propositions

P: I like grape juice Q: Grape juice is expensive R: I will buy grape juice. Express the sentence "If I don't like grape juice and it is expensive, I will not buy grape juice" using the above atomic propositions.

Answers: $\neg P \land Q \rightarrow \neg R$ (answering $Q \land \neg P \rightarrow \neg R$, $\neg P \rightarrow Q \rightarrow \neg R$ or $Q \rightarrow \neg P \rightarrow \neg R$ is also OK)

Problem 3. (8 Points)

Explain intuitively in words under what situation each of the following propositions is true.

- 1. $(P \wedge Q) \vee (\neg P \wedge \neg Q)$
- 2. $P \rightarrow (Q \rightarrow R)$
- 3. $(P \lor \neg Q) \land (Q \lor \neg R) \land (R \lor \neg P)$
- 4. $(P \lor Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$

Answers: Any natural language sentences that is reasonable (or not unreasonable) is OK

- 1. P and Q are both True or both False
- 2. R is True, or P is False, or Q is False (P is False, or P is True and Q is False, or P is True and Q is True and R is True)
- 3. P, Q, R are all True or P, Q, R are all False (P, Q, R are the same)
- 4. P, Q, R are not all True or False at the same time

Problem 4. (8 Points)

Determine if each of the following propositions is tautology, contradiction or satisfiable, and justify your answer.

1.
$$\neg((P \lor Q) \to (Q \lor P))$$

2.
$$(Q \to R) \to ((P \lor Q) \to (P \lor R))$$

3.
$$(Q \to R) \to ((P \to Q) \to (P \to R))$$

4.
$$(P \to Q) \to (\neg Q \to \neg P)$$

Answer:

1. Contradiction.

Since
$$P \vee Q = Q \vee P$$
 and $R \to R$ is tautology, $\neg((P \vee Q) \to (Q \vee P))$ is contradiction.

2. Tautology

If
$$(P \lor Q) \to (P \lor R)$$
 is false, $P \lor Q$ is true and $P \lor R$ is false. Then Q is true, P and R are false. Then $Q \to R$ is false. However, if 2 is false, $(P \lor Q) \to (P \lor R)$ is false and $Q \to R$ is true. Therefore, 2 is tautology.

3. Tautology

Since
$$(P \to Q) \to (P \to R) = P \to (Q \to R)$$
, we consider proposition $(Q \to R) \to (P \to (Q \to R))$. If $P \to (Q \to R)$ is false, $Q \to R$ is false. Then $(Q \to R) \to (P \to (Q \to R))$ is true. Thus $(Q \to R) \to (P \to (Q \to R))$ is tautology.

4. Tautology

Since
$$P \to Q = \neg Q \to \neg P$$
, 4 is tautology.

Problem 5. (8 Points)

Draw the truth table for each of the following propositions. (\oplus means "exclusive or")

1.
$$(P \leftrightarrow Q) \oplus (P \leftrightarrow \neg Q)$$

2.
$$(P \lor Q) \to (P \oplus Q)$$

3.
$$(\neg P \leftrightarrow \neg Q) \leftrightarrow (Q \leftrightarrow R)$$

4.
$$((P \rightarrow Q) \rightarrow R) \rightarrow S$$

Answer: (should discover the answer before instead of after drawing the truth table...think how you finish Problem 3) Free to using 0/1 or T/F

1. It's a tautology

2. The table shows $(P \lor Q) \to (P \oplus Q)$ is F only when P and Q are both T:

Р	Q	$(P \lor Q) \to (P \oplus Q)$
\mathbf{F}	\mathbf{F}	T
\mathbf{F}	\mathbf{T}	T
\mathbf{T}	\mathbf{F}	${ m T}$
Τ	\mathbf{T}	F

3. You should find that the result is T iff P, Q are different and Q, R are also different.

P	Q	R	$(\neg P \leftrightarrow \neg Q) \leftrightarrow (Q \leftrightarrow R)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- 4. You can think like this and draw the table:
 - (a) When S is T, the proposition is always T (save you 50% time)
 - (b) When S is F but R is T (then $(P \to Q) \to R$ is T), the proposition is always F (save you 25% time)
 - (c) When S R are both F, then the proposition is F iff $P \to Q$ is F iff P is T but Q if F

Р	Q	R	S	$((P \to Q) \to R) \to S$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Problem 6. (8 Points)

- 1. Show that conjunction and disjunction can be expressed using \neg and \rightarrow .
- 2. We define "NAND \uparrow " by $P \uparrow Q = \neg (P \land Q)$. Show that negation, conjunction and disjunction can be expressed only using \uparrow .
- 3. We define "NOR \downarrow " by $P \downarrow Q = \neg (P \lor Q)$. Show that negation, conjunction and disjunction can be expressed only using \downarrow .

Answer:

- 1. $\neg P: \neg P; P \lor Q: \neg P \to Q; P \land Q: \neg (P \to \neg Q)$
- 2. $\neg P: P \uparrow P; P \lor Q: (P \uparrow P) \uparrow (Q \uparrow Q); P \land Q: (P \uparrow Q) \uparrow (P \uparrow Q)$
- 3. $\neg P: P \downarrow P; P \lor Q: (P \downarrow Q) \downarrow (P \downarrow Q); P \land Q: (P \downarrow P) \downarrow (Q \downarrow Q)$

Problem 7. (8 Points)

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full-adder adds three one-bit numbers, often written as A, B, and C_{in} ; A and B are the operands, and C_{in} is a bit carried in from the previous less-significant stage. Output carry and sum are represented by the signals C_{out} and S, respectively. The truth table of the full adder is shown as follows.

	Inpu	Outputs		
A	B	C_{in}	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- 1. Can you write C_{out} and S, respectively, using A, B and C_{in} and logical operators? (hint: it is more convenient to use \oplus .)
- 2. Can you combine a half adder and a full adder together to design a circuit that supports the addition of two 2-bits numbers? For example, it can compute 10 + 11 = 101.

Answer:

1.
$$S = (A \oplus B) \oplus C_{in}, C_{out} = (A \wedge B) \vee (A \wedge C_{in}) \vee (B \wedge C_{in}) \text{ (or } (A \wedge (B \vee C_{in})) \vee (B \wedge C_{in}))$$

2. You should show the connection of two adders by drawing a figure or showing in logic expression. Specifically, you can draw like figure below or express like $S_1 = (A_1 \oplus B_1) \oplus C_1$, $C_1 = A_0 \oplus B_0$. If you write $S_1 = (A_1 \oplus B_1) \oplus (A_0 \wedge B_0)$, it just a more complicated logic expression compared with first question. You need to show how two adders work together. It is a thought of building complex system with simple components.

Problem 8. (10 Points)

Prove the following equivalences using any method you like.

1.
$$P \to (Q \land R) = (P \to Q) \land (P \to R)$$

2.
$$(P \leftrightarrow Q) \leftrightarrow ((P \land \neg Q) \lor (Q \land \neg P)) = P \land \neg P$$

3.
$$((P \rightarrow \neg Q) \rightarrow (Q \rightarrow \neg P)) \land R = R$$

4.
$$P \to (Q \to R) = (P \land Q) \to R$$

5.
$$\neg (P \leftrightarrow Q) = (P \land \neg Q) \lor (\neg P \land Q)$$

Answer: You may also use truth table to prove all of them (but might be too trivial). The following proofs use conclusions from logical equivalence:

1.
$$P \rightarrow (Q \land R) = \neg P \lor (Q \land R) = (\neg P \lor Q) \land (\neg P \lor R) = (P \rightarrow Q) \land (P \rightarrow R)$$

2. use truth table might be a more concise way

3.
$$left = ((\neg P \lor \neg Q) \to (\neg Q \lor \neg P)) \land R = ((\neg P \lor \neg Q) \to (\neg P \lor \neg Q)) \land R = \mathbf{T} \land R = R$$

4.
$$left = \neg P \lor (\neg Q \lor R) = (\neg P \lor \neg Q) \lor R = \neg (P \land Q) \lor R = right$$

5. use truth table might be a more concise way