SOT-23 TRANSISTORS & DIODES INCLUDING OTHER SURFACE MOUNT PRODUCTS

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

©Zetex plc 1992
Printed in England, HK&R Ltd.

Publication No. Z1066, Issue 3 March 1992

SOT-23 TRANSISTORS & DIODES TECHNICAL HANDBOOK

This guide contains comprehensive information on all SOT-23 transistors and diodes, together with selected information of our SOT-223, SOT-89, E-line 'SM' and E-line 'M1' products available in the Zetex Discrete Semiconductor Range.

	CO	NTE	NTS						Page
GENERAL INFORMATION	٠					<i>:</i> .			4 4
PACKAGE OUTLINE									5
PIN CONNECTIONS									6
THERMAL DATA									7
PRODUCT LIST/MARKING									8
APPROVED PRODUCTS LIS	т								12
CONVERSION LIST (Conver	ntional	I/Surf	ace I	Mour	nt)				13
SELECTION GUIDE									17
INDUSTRY STANDARD CRO	SS R	EFER	ENC	E LIS	Т				25
ENVIRONMENTAL INFORMA	NOITA	٠						٠.	28
TAPE & REEL INFORMATION	۱								29
ELECTRICAL SPECIFICATION	NS								33
OTHER SURFACE MOUNT (ОМР	ONE	NTS						275
SOT-223									276
SOT-89									283
E-LINE (CENTRE COLLEC	TOR/D	RAIN	۱) ''S	M′′					287
E-LINE (CENTRE BASE/GA	(TE) ''	MI''					٠		291

GENERAL INFORMATION

SOT-23 is the internationally standardised semiconductor package for hybrid and surface mountable assembly of transistors and diodes. Designed specifically for use in thick and thin film hybrid circuits, these devices offer considerable advantages over other packages and chip and wire assembly techniques. With the progression of SMT (Surface Mount Technology), the new optimum profile SOT-23 design makes this package ideal for surface mounting on PCBs (Printed Circuit Boards).

The wide range of bipolar and MOSFET transistors, together with a large variety of SOT-23 diodes gives the circuit designer maximum flexibility in designing new circuits, and minimum redesign time in translating conventional printed circuit board layouts to surface mountable printed circuit boards.

This micro-miniature package provides the optimum cost/real estate solution to high volume hybrid and PCB manufacture, whether in commercial, industrial or military applications.

NEW PRODUCTS

The continual evolution of new products means that our range is being constantly updated. If your particular requirement is not covered herein, please do not hesitate to contact us for new product information.

Customer Specifications

Devices may be supplied against 'in-house' specifications to suit individual customer requirements for:

- a). Non-standard Electrical or Environmental specifications.
- b). Customer Procurement Specification.

Device pricing will be dependant on the basic type, additional work involved, test yield and the quantity required.

'R' Reverse Joggled Types

These are available as standard product on a variety of the transistor types in our range. 'R' joggle transistors are identified by a suffix R after the type number.

e.g. BCW33R

'R' Joggle devices are simply conventional SOT-23s with the emitter and base connections reversed.

MAXIMUM THERMAL RATINGS

Junction Temperature	150°C
Operating and Storage Temperature	-55°C to +150°C

PACKAGE OUTLINE DETAILS

Dimensions are shown thus: mm

	Millin	netres	Inches		
DIM	Min.	Max.	Min.	Max.	
Α	2.67	3.05	0.105	0.120	
В	1.20	1.40	0.047	0.055	
С	_	1.10	_	0.043	
D	0.37	0.53	0.0145	0.021	
F	0.085	0.15	0.0033	0.0059	
G	NOM	1 1.9	NOM	0.075	
К	0.01	0.10	0.0004	0.004	
L	2.10	2.5	0.0825	0.0985	
N	NOM	0.95	NOM	0.037	

PIN CONNECTIONS

THERMAL DATA

The power dissipation is dependant on many factors that must be taken into consideration in the initial board design. The board material, the board surface, metal thickness, pad area and the proximity to other heat generating components all have a bearing on the device dissipation capability.

Thermal Ratings and Power Dissipation

	FR-5	Alumina
θJA (°C/W)	430	290
θJC (°C/W)	130	130
θCA (°C/W)	300	160
PD (mW)	290	431

Typical Example: Die Size = 30 × 30 mils

 $= 1'' \times 0.75'' \times 0.062''$

Alumina = $0.4" \times 0.3" \times 0.024"$ (99.5% Alumina)

 $P_D = T_{J(max.)} - TA/R\theta JA$

Our new high performance SOT-23's are capable of offering power handling up to 500 mW when mounted on a ceramic substrate measuring $15\,\text{mm}\times15\,\text{mm}\times0.6\,\text{mm}$.

TRANSISTORS			TRANSISTORS			
Device Type	Standard Marking	Reverse Joggle Marking	Device Type	Standard Marking	Reverse Joggle Marking	
BC846A BC846B BC847A BC847B BC847C BC848A BC848B BC849B BC849C BC856A BC856A BC856A BC857A BC857B BC857C BC858A BC857B BC857C BC858B BC859B BC859C BC860A BC858B BC859A BC859B BC859C BC860A BC859B BC859C BC860A BC860B BC860C BCV27 BCW27 BCW27 BCW27 BCW30 BCW31 BCW32 BCW33 BCW31 BCW32 BCW33 BCW60A BCW60B BCW60C BCW61A BCW61B BCW61C BCW61B BCW65C BCW65A BCW65B BCW65C BCW65B BCW66G	1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3		BCW67B BCW67C BCW68F BCW68B BCW68B BCW69 BCW70 BCW71 BCW72 BCW89 BCX17 BCX18 BCX19 BCX20 BCX41 BCX70G BCX70H BCX70J BCX70J BCX70J BCX70J BCX70J BCX70B BCX71B BCX70B BCX70	DDDDH121231212KGHJKGHJKS41>X3316723EFHJLMPASSHIGWMNCE	5WTTN45456451WPX9GP8K35	

TRANSISTO	ORS		TRANSISTORS			
Device Type	Standard Marking	Reverse Joggle Marking	Device Type	Standard Marking	Reverse Joggle Marking	
FMMTA43	1E	5E	FMMT2369A	P5	9A	
FMMTA55	2H	NB	FMMT2484	4G	_	
FMMTA56	2G	MB	FMMT2907	2B	4P	
FMMTA63	Z2U	-	FMMT2907A	2F	5P	
FMMTA64	Z2V	_	FMMT3903	1W	_	
FMMTA70	2C	_	FMMT3904	1A	_	
FMMTA92	4E	8E	FMMT3905	2W	_	
FMMTA93	2E	6E	FMMT3906	2A	_	
FMMT38A	4J	_	FMMT4123	ZB	_	
FMMT38B	5J	_	FMMT4124	zc		
FMMT38C	7J	_	FMMT4125	ZD	_	
FMMT415	415	-	FMMT4126	ZE	_	
FMMT449	449	_	FMMT4400	1K		
FMMT451	451	_	FMMT4401	1L	_	
FMMT455	455	_	FMMT4402	2K	_	
FMMT489	489	_	FMMT4403	2L		
FMMT491	491	_	FMMT5087	2M	ЗМ	
FMMT491A	41A	_	FMMT5088	1Q	_	
FMMT493	493	_	FMMT5089	1R		
FMMT494	494	_	FMMT5209	20		
FMMT495	495	_	FMMT5210	2R	. —	
FMMT497	497		FMMT5400	1L		
FMMT549	549	_	FMMT5401	2L		
FMMT549A	59A	_	FMMT5550	1F		
FMMT551	551		FMMT5551	G1		
FMMT555	555		HT2	2T		
FMMT576	576	_	HT3	3T	_	
FMMT589	589		VN10LF	MY		
FMMT591	591	_	ZVN3306F	МC	_	
FMMT591A	91A	_	ZVN3310F	MF	_	
FMMT593	593	_	ZVN3320F	MU	_	
FMMT596	596	_	ZVN4106F	MZ		
FMMT597	597	_	ZVP1320F	MT	_	
FMMT918	3B	_	ZVP3306F	ML	_	
FMMT2222	1B	2P	ZVP3310F	MR	_	
FMMT2222A	1P	3P	2N7002	702	_	
FMMT2369	1J	9R	2147002	702	_	

DIOI	DES	DIODES		
Device Type	Standard Marking	Device Type	Standard Marking	
BAL74	JC .	FMMD2838	A6	
BAL99	E2	FMMD6050	5A	
BAR74	JB	FMMD6100	5B	
BAR99	E3	FMMD7000	5C	
BAS16	A3	FMMV105G	4E 4A	
BAS19	A8	FMMV109	6R	
BAS20	A81	FMMV2101	6F	
BAS21	A82	FMMV2102 FMMV2103	6G	
BAS70-04	2Z	FMMV2103	6H	
BAS70-05	2Z5	FMMV2105	6J	
BAS70-06	1Z A4	FMMV2106	6K	
BAV70		FMMV2107	6L	
BAV74	JA A7	FMMV2108	6M	
BAV99	A7 A1	FMMV2109	6N	
BAW56	S1	FMMV3102	4C I	
BBY31	\$1 \$2	FMMZ5232	8G	
BBY40 BZX84C2V7	W4	FMMZ5233	8H	
BZX84C3V0	W5	FMMZ5234	8J	
BZX84C3V3	W6	FMMZ5235	8K	
BZX84C3V6	W7	FMMZ5236	8L	
BZX84C3V9	w8	FMMZ5237	8M	
BZX84C4V3	we	FMMZ5238	8N	
BZX84C4V7	Ž1	FMMZ5239	8P	
BZX84C5V1	Z2	FMMZ5240	28	
BZX84C5V6	Z3	FMMZ5241	8R	
BZX84C6V2	Ž4	FMMZ5242	8S	
BZX84C6V8	Z 5	FMMZ5243	8T	
BZX84C7V5	Z 6	FMMZ5244	8U	
BZX84C8V2	Z7	FMMZ5245	8V	
BZX84C9V1	Z8	FMMZ5246	8W	
BZX84C10	Z9	FMMZ5247	8X	
BZX84C11	Y1	FMMZ5248	8Y	
BZX84C12	Y2	FMMZ5249	8Z	
BZX84C13	Y3	FMMZ5250	81A	
BZX84C15	Y4	FMMZ5251	81B	
BZX84C16	Y5	FMMZ5252	81C 81D	
BZX84C18	Y6	FMMZ5253	81E	
BZX84C20	Y7	FMMZ5254	81F	
BZX84C22	Y8	FMMZ5255	81G	
BZX84C24	Y9	FMMZ5256 FMMZ5257	81H	
BZX84C27	X1	HD2A	5D	
BZX84C30	X2	HD3A	4D	
BZX84C33	X3	HD4A	7D	
BZX84C36	X4	ZC830	J Ji	
BZX84C39	X5 X6	ZC830A	l ŭi	
BZX84C43	X7	ZC830B	Ji	
BZX84C47	5D	ZC831	J3	
FMMD914	A9	ZC831A	J3	
FMMD2835	A9 A2	ZC831B	J3	
FMMD2836	A5	ZC832	J4	
FMMD2837	A5		L	

DIC	DDES	DIODES		
Device Type	Standard Marking	Device Type	Standard Marking	
ZC832A ZC832B ZC833 ZC833A ZC833B ZC834 ZC834A ZC834B ZC834B	J4 J4 J2 J2 J5 J5 J5 J5	ZC835A ZC835B ZC836 ZC836A ZC836B ZC2800E ZC2810E ZC2811E ZC5800E	J6 J6 J7 J7 J7 E6 E7 E8 E9	

APPROVED PRODUCTS

Device	BS/CECC	Approval	Device	BS/CECC	Approval
Туре	Number	Status	Type	Number	Status
DIODES					
BAL74	50001-063	Α	BSS63	PTT-022	Α
BAR74	50001-064	A	BSS64 (R)	PTT-027	A
BAS16	PTD-008	A	BSS66-67	50004-156	A
BAS19	PTD-007	Α	BSS69-70	50004-157	Α
BAS20	PTD-007	Α	BSV52	50004-158	Α
BAS21	PTD-007	Α	BSV52 (R)	PTT-007	Α
BAV70	50001-065	Α	FMMT2222/A	50004-159	Α
BAV70	PTD-004	Α	FMMT2222/A	PTT-006	Α
BAV74	50001-066	Α	FMMT2369/A	50004-160	Α
BAV74	PTD-005	Α	FMMT2907/A	PTT-029	Α
BAV99	50001-067	A	FMMT3903/4	50004-161	Α
BAV99	PTD-001	Α	FMMT3905/6	50004-162	A
BAW56	50001-068	A	FMMT3905/6	PTT-020	A
BAW56	PTD-006	A	FMMTA05/6	50002-240	A
BZX84 Series	50005-022	Α	FMMTA05/6	PTT-008	A
BZX84 Series	PTD-003	Α	FMMTA12/A13/A14	50002-241	A
FMMD914	50001-069	Α	FMMTA20	50002-242	A
FMMD914	PTD-002	Α	FMMTA42/43	50002-243	A
HD2A	50001-070	Α	FMMTA42/43	PTT-021	A
HD3A	50001-071	Α	FMMTA55/56	50002-244	A
HD3A	PTD-009	A	FMMTA92/93	50002-245	A
HD4A	50001-072	A	FMMTA92/93	PTT-002	A
			HT2	50002-246	A
TRANSISTORS			HT2	PTT-001	A
BCV71-72	50002-230	l a	HT3	50002-247	A
BCV71-72 (R)	PTT-026		HT3	PTT-024	Α
BCW29-30	50002-229	l a			
BCW31-33	50002-230	A			
BCW31-33 (R)	PTT-026	A			
BCW60 Series	50002-231	A			
BCW61 Series	50002-232	A			
BCW61 Series(R)	PTT-028	A			
BCW65-66	50002-233	A			
BCW67-68	50002-234	A			
BCW67-68 (R)	PTT-019	A			
BCW69-70	50002-229	A			
BCW69-70 (R)	PTT-009	A			
BCW71-72	50002-230	A			
BCW89	50002-229	A			
BCW89 (R)	PTT-030	A			
BCX17-18	50002-235	Α			
BCX19-20	50002-236	A			
BCX70 Series	50002-237	A			
BCX71 Series	50002-238	Α			
BFQ31/31A	50002-239	Α			
I	1	1	1	1	

PTD and PTT references are Zetex internal specifications designed to meet the long life requirements (D3007).

Conventional Type	
Type	
BAV19 BAS19 BC178B BCW61B/C BC213A BCW61A BCW29 BAS20 BAS21 BAS16 BC178C BCW61D BC213B BCW61C	alent
BAV20 BAV21 BAS21 BAW62 BAS21 BAV62 BAV70 BAV70 BAV99 BAV99 BAW56 BC179 BAW56 BC179B BC859B FMMT5087 BC213B BC857B BC857B BC858C BC859B FMMT5087 BC213C BC857C BC857C BC857C BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BCW61D BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D	
BAV20 BAV21 BAW62 BAS21 BAW62 BAS16 HD3A BAV70 BAV70 BAV99 BAW56 HD2A BAW56 HD2A BC179 BCW30 BC858B BCW61D BC858C BC858C BC858C BCW61D BC857B BC858C BCW61D BC858C BCW61D BC857C BC858C BCW61D BC857C BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D BC857C BCW61D	
BAW62 BAS16 BC178C BCW61D BC857B BC858C BC858C BC859 BAV99 BAW56 BC179 BC859B FMMT5087 BC859B FMMT5087 BC859B FMMT5087	
HD3A BAV70 BAV99 BAW56 HD2A BC858C BC858C BC858C BC858C BC859C FMMT5087 BC213C BC857C BC859C	
BAV70 BC179 BC859 FMMT5087 BCW30 BC857C BCW61D BCW6	
BAV99 BAW56 BC179B BC859B HD2A BC179B BC857C BCW61D BCW61D BCW61D	
BAW56 BC179B BC859B BCW61D BCW61D	
HD2A FMMT5087 -	
BB405 ZC831A _ _ FMMT509	7
BB809 ZC833A BC182 BCV71/72 BC214B BC860B	•
BC107 BC847 BC846 FMMT508	7
BCW71/72 BCX70 BC182A BCV71 BC214C BC860C	
LDC1074 D00474	
BOUTA BC547	
DOX/700	
BC107B BCX70G BC182B BCV72 BC847B BC846B BC237A BC847A	<u> </u>
BCW72 BCX70J BCX70G	
BCX70H/J BC183 BC847 BCW71	
BC108 BC848 BCW60 BC237B BC847B	
BCW31-33 BCW31/32/33 BCX70H/S	
BCW60 BC183A BC847A BCW72	
BC108A BC848A BCW31 BCW60A/B BC238 BC848 BCW60	
I BOWOO	
1 DC100D DC040D 10.000 DCW31/32	/33
BC108B BC848B BCW60C BC238A BC848A BCW60A	
BCW60B/C BC183C BC847C BCW31	
BC108C BC848C BCW60D BC238B BC848B	
BCW33 BCW33 BCW60B/0	:
BCW60D BC184 BC850 BCW32	
BC109 BC849 FMMT5210 BC238C BC848C	
FMMT5209/10 BC184B BC850B BCW60D BC849B BCW60D BCW33	
FMATTERS AND THE PROPERTY OF T	
1004000 000000 000000 000000	"_ l
FIVINIT 5009	
BC177 BCX71 BC200/01 BC859B FMMT5088 BC200/02 BC859B/C BC239B BC849B	/89
BCW69/70 BC200/03 BC859C EMMT520	_{1/10}
BC857 BC212 BCW89	,, 10
BC177A BCX71G BC856 BC239C BC849C	
BCW69 BCX71 FMMT5088	/89
BC857A BC212A BCW89 BCX71H/J BC257	
BC050A BC057	
BCA71	
PC179 PCW61 PCCW09//C	- 1
BCW20/20 BCZ12B BCX713 BC307A BC857A	
BC858 BCW70 BCW69	
BC178A BCW61A BC213 BC857 BC307B BC857B	. 1
BCW29 BCW61 BCX71H/1	
BC858A BCW29/30 BCW70	

Conventional Type	SOT-23 Equivalent/ Nearest Equivalent	Conventional Type	SOT-23 Equivalent/ Nearest Equivalent	Conventional Type	SOT-23 Equivalent/ Nearest Equivalent
BC308	BC858 BCW61	BC414C	BC850C FMMT5089	BC549B	BC849B FMMT5209/10
BC308A	BCW29/30 BC858A BCW61A	BC415	- BC859 FMMT5087	BC549C BC550	BC849C FMMT5089 BC850
BC308B	BCW29 BC858B BCW61B/C	BC415B	 BC859B FMMT5087	BC550B	FMMT5209/10 BC850B FMMT5209/10
BC308C	BCW30 BC858C	BC415C	BC859C	BC550C	BC850C BC856
	BCW61D —	BC416	 _ BC860	BC556 BC556A	BC856 BC856A
BC309	BC859 FMMT5087		FMMT5087 —	BC556B	BCW89 BC856B
вс309в	BC859B FMMT5087	BC416B	BC860B FMMT5087	BC557	BC857 BCW69/70
всзоэс	BC859C —	BC416C	BC860C 	BC557A	BCX71 BC857A BCW69
BC327 BC327A	BCX17 BCW68F	BC546	BC846 BCV71/72	BC557B	BCX71G BC857B BCW70
BC327B BC327C	BCW68G BCW68H	BC546A BC546B	BC846A BCV71 BC846B	BC557C	BCX71H/J BC857C
BC328 BC328A BC328B	BCX18 BCW67A BCW67B	BC547	BCV72 BC847	BC558	BCX71K BC858 BCW61
BC328C BC337	BCW67C BCX19 BCW66F	BC547A	BCW71/72 BCX70 BC847A	BC558A	BCW29/30 BC858A BCW61A
BC337A BC337B BC337C	BCW66G BCW66H	BC547B	BCW71 BCX70G BC847B	BC558B	BCW29 BC858B BCW61B/C
BC338 BC338A BC338B	BCX20 BCW65A BCW65B		BCW72 BCX70H/J BC847C	BC558C	BCW30 BC858C
BC338C BC413	BCW65C BC849	BC547C BC548	BCX70K BC848	BC559	BCW61D BC859 FMMT5087
BC413B	FMMT5209/10 FMMT5088/89 BC849B	BC548A	BCW31/32/33 BCW60 BC848A	BC559A	BC859A BC859B
	FMMT5209/10 —	BC346A	BCW31 BCW60A	BC559B BC559C	FMMT5087 BC859C
BC413C	BC849C FMMT5089	BC548B	BC848B BCW32 BCW60B/C	BC560	BC860 FMMT5087
BC414	BC850 FMMT5209/10	BC548C	BC848C BCW33	BC560A	BC860A
BC414B	FMMT5088/89 BC850B FMMT5210	BC549	BCW60D BC849 FMMT5088/89 FMMT5209/10	BC560B BC560C	BC860B FMMT5087 BC860C
I	_		1 1411411 0200/10	1	

	20722				
	SOT-23		SOT-23		S0T-23
Conventional	Equivalent/	Conventional	Equivalent/	Conventional	Equivalent/
Туре	Nearest Equivalent	Туре	Nearest Equivalent	Туре	Nearest Equivalent
BCX38A	FMMT38A	MPS2222	FMMT2222	ZTX108	BC848
BCX38B	FMMT38B	MPS2222A	FMMT2222A	217100	BCW31-33
BCX38C	FMMT38C	MPS2369	FMMT2369		BCW60
BCX58	BCW60	MPS2369A	FMMT2369A	ZTX108A	BC848A
BCY58A/VII	BCW60A	MPS2907	FMMT2907		BCW31
BCY58B/VIII	BCW60B	MPS2907A	FMMT2907A		BCW60A
BCY58C/IX	BCW60C	MPSA05	FMMTA05	ZTX108B	BC848B
BCY59D/X	BCW60D	MPSA06	FMMTA06		BCW32
BCY59	BCX70	MPSA12	FMMTA12		BCW60B/C
BCY59A/VII BCY59B/VIII	BCX70G	MPSA13	FMMTA13	ZTX108C	BC848C
BCY59C/IX	BCX70H BCX70J	MPSA14	FMMTA14		BCW33
BCX59D/X	BCX70K	MPSA20 MPSA42	FMMTA20 FMMTA42	7TV100	BCW60D
BCY65E	BCV71/72	MPSA43	FMMTA43	ZTX109	BC849
50.002	BC846	MPSA55	FMMTA55	ZTX109B	FMMT5209/10 BC849B
BCY65EA	BCV71	MPSA56	FMMTA56	2171096	FMMT5209/10
	BC846A	MPSA70	FMMTA70	ZTX109C	BC849C
BCY65EB	BCV72	MPSA92	FMMTA92	2171030	FMMT5088/89
	BC846B	MPSA93	FMMTA93	ZTX114	FMMT5210
BCY65EC	BC846C	ZC820	ZC830	2177114	FMMT5088/89
		ZC820A	ZC830A	ZTX212	BCW89
BCY70	FMMT3906	ZC820B	ZC830B		BC856
	BSS70	ZC821	ZC831		BCX71
BCY71	FMMT3906	ZC821A	ZC831A	ZTX212A	BCW89
1	BSS70	ZC821B	ZC831B		BC856A
BCY72	FMMT3906	ZC822	ZC832		BCX71G
DOV/77	FMMT4126	ZC822A	ZC832A	ZTX2121B	BCX71J
BCY77	BCW89	ZC822B	ZC832B		BC856B
BCY77A	BC856 BCW89	ZC823	ZC833		BCW70
BCT//A	BC856A	ZC823A	ZC833A	ZTX213	BC857
BCY77B	BC856B	ZC823B	ZC833B		BCW61
501775	DC030D	ZC824	ZC834		BCW29/30
BCY77C	BC856C	ZC824A	ZC834A	ZTX213A	BC857A
	_	ZC824B	ZC834B		BCW61A
BCY78	BCW61	ZC825	ZC835		BCW29
BCY78A/VII	BCW61A	ZC825A	ZC835A	ZTX213B	BC857B
BCY78B/VIII	BCW61B	ZC825B	ZC835B		BCW61C
BCY78C/IX	BCE61C	ZC826	ZC836		BCW30
BCY78D/X	BCW61D	ZC826A	ZC836A	ZTX213C	BC857C
BCY79	BCX71	ZC826B	ZC836B		BCW61D
BCY79A/VII	BCX71G	ZC2800	ZC2800E	771/044	
BCY79B/VIII	BCX71H	ZC2810	ZC2810E	ZTX214	BC860
BCY79C/IX	BCX71J	ZC2811	ZC2811E	7TV014D	FMMT5087
BFS59	BCW65A	ZC5800	ZC5800E	ZTX214B	BC860B
BFS60	BCW66F	ZTX107	BC847	7TV2140	FMMT5087
BFS61 BFS96	FMMTA05		BCW71/72 BCX70	ZTX214C	BC860C
BFS97	BCW67A BCW68F	ZTX107A	BCX70 BC847A	7TV222	PCW6ED/C
BFS98	FMMTA55/56	21X10/A	BCW71	ZTX223	BCW65B/C
BF420	FMMTA42		BCX70G	ZTX223A ZTX223B	BCW65B
BF421	FMMTA92	ZTX107B	BC847B	ZTX235	BCW65C BC847
BF422	FMMTA43		BCW72	217237	BCX70
BF423	FMMTA93		BCX70H/J		BCX / 0 BCW 71/72
			55/7/01/1/5		DC VV / 1//2

Conventional	SOT-23 Equivalent/	Conventional	SOT-23 Equivalent/	Conventional	SOT-23 Equivalent/
Туре	Nearest Equivalent	Туре	Nearest Equivalent	Туре	Nearest Equivalent
ZTX237A	BC847A	ZTX382B	BCX70J	ZTX556	FMMT596
	BCX70G		BC860B	ZTX557	FMMT597
	BCW71	ZTX382C	BC860C	ZTX576	FMMT576
ZTX237B	BC847B	774000	I	IN914	FMMD914
	BCX70H/J	ZTX383	BCW60 BC859	IN4148	BAS16 HD3A
ZTX238	BCW72 BC848	7TV202D	BC859B		BAV70
217230	BCW60	ZTX383B	BCW60C		HD2A
	BCW31/32/33	ZTX383C	BC859C		BAV99
ZTX238A	BC848A	Z1X303C			BAW56
ZINZOON	BCW60A	ZTX384	BC859		HD4A
	BCW31	217.001	FMMT5210	2N918	FMMT918
ZTX238B	BC848B		FMMT5088/89	2N2218	BSS79B
	BCW60B/C	ZTX384B	BC859B	2N2219	FMMT2222
	BCW32		FMMT5210	2N2221	BSS79B
ZTX238C	BC848C	ZTX384C	BC859C	2N2222	FMMT2222
	BCW60D		FMMT5089	2N2218A	BSS79B
	BCW33	ZTX415	FMMT415	2N2219A	FMMT2222A
ZTX239	BC849	ZTX449	FMMT449		BSS79C
	FMMT5009/10		FMMT489	2N2221A	BSS79B
	FMMT5088/89	ZTX450	FMMT491	2N2222A	FMMT2222A
ZTX239B	BC849B	ZTX451	FMMT451		BSS79C
	FMMT5209/10	ZTX452	FMMT493	2N2368	BSV52 FMMT2369
ZTX239C	BC849C	ZTX453	FMMT493	2012260	FMMT2369
7TV200	FMMT5088/89 BCW60A/B	ZTX454	FMMT494 FMMT495	2N2369 2N2369A	FMMT2369A
ZTX300 ZTX301	BCW60A/B	ZTX455 ZTX500	BCW61A/B	2N2303A 2N2484	FMMT2484
ZTX301 ZTX302	BCX70H	ZTX500 ZTX501	BCW61A/B	2N2894	BSS65
ZTX302 ZTX303	BCX70G/H	ZTX501 ZTX502	BCX71H	2N2904	BSS80B
ZTX304	BCV71	ZTX502	BCX71G/H	2N2905	FMMT2907
ZTX310	BSV52	ZTX504	BCW89	2.1.2000	BSS80C
ZTX311	FMMT2369A	ZTX510	BSS65	2N2906	BSS80B
ZTX312	FMMT2369	ZTX530	BCW61D	2N2907	FMMT2907
ZTX313	FMMT2369A	ZTX531	BCX71G		BSS80C
ZTX314	FMMT2369A	ZTX537	BCX17	2N2904A	BSS82B
ZTX320	FMMT918	ZTX537A	BCW68F	2N2905A	FMMT2907A
ZTX321	FMMT918	ZTX537B	BCW68G		BSS82C
ZTX322	BFQ31	ZTX537C	BCW68H	2N2906A	BSS82B
ZTX323	BFQ31A	ZTX538	BCX18	2N2907A	FMMT2907A
ZTX330	FMMT5209	ZTX538A	BCW67A	0110000	BSS82C
	BCW60D	ZTX538B	BCW67B	2N3903	FMMT3903 FMMT3904
ZTX331	BCX70G	ZTX538C	BCW67C	2N3904 2N3905	FMMT3905
ZTX337	BCX19	ZTX541	HT3	2N3905 2N3906	FMMT3906
ZTX337A	BCW66F	ZTX542	BSS63	2N4123	FMMT4123
ZTX337B ZTX337C	BCW66G BCW66H	ZTX549	FMMT549 FMMT589	2N4124	FMMT4124
ZTX337C ZTX338	BCX20	ZTX549A	FMMT589	2N4125	FMMT4125
ZTX338A	BCW65A	ZTX549A ZTX550	FMMT591	2N4126	FMMT4126
ZTX338B	BCW65B	ZTX550 ZTX551	FMMT591	2N4400	FMMT4400
ZTX338C	BCW65C	217001	FMMT551	2N4401	FMMT4401
ZTX341	HT2	ZTX552	FMMT593	2N4402	FMMT4402
ZTX342	BSS64	ZTX553	FMMT593	2N4403	FMMT4403
ZTX382	BCX70	ZTX554	FMMT595	2N5087	FMMT5087
l	BC860	ZTX555	FMMT555		

GENERAL PURPOSE TRANSISTORS (NPN)

			T	1	h _l		T		f _T
_	V _{CBO}	V _{CEO}	I _C	P _{tot} mW	min./max.	at I _C /V _{CE}	max	CE(sat) . at I _C /I _B	typ.
Туре	voits	Voits	mĀ	mW		mA/volts	Volts	mA	MHz
BC846A	80	65	100	330	110/220	2/5	0.25	10/0.5	300
BC846B	80	65	100	330	200/450	2/5	0.25	10/0.5	300
BCV71	80	60	100	330	100/220	2/5	0.25	10/0.5	300
BCV72	80	60	100	330	200/450	2/5	0.25	10/0.5	300
FMMT2484	60	60	50	330	100/500	0.01/5	0.35	1/0.1	200
FMMT3903	60	40	200	330	50/150	10/1	0.2	10/1	250
FMMT3904	60	40	200	330	100/300	10/1	0.2	10/1	300
FMMT5209	50	50	50	330	100/300	0.1/5	0.7	10/1	30 min
FMMT5210	50	50	50	330	200/600	0.1/5	0.7	10/1	30 min
BC850B	50	45	100	330	200/450	2/5	0.25	10/0.5	300
BC850C	50	45	100	330	420/800	2/5	0.25	10/0.5	300
BC847A	50	45	100	330	110/220	2/5	0.25	10/0.5	300
BC847B	50	45	100	330	200/450	2/5	0.25	10/0.5	300
BC847C	50	45	100	330	420/800	2/5	0.25	10/0.5	300
BCW71	50	45	100	330	110/220	2/5	0.25	10/0.5	300
BCW72	50	45	100	330	200/450	2/5	0.25	10/0.5	300
BCX70G	45	45	200	330	120/220	2/5	0.35	10/0.25	250
BCX70H	45	45	200	330	180/310	2/5	0.35	10/0.25	250
BCX70J	45	45	200	330	250/460	2/5	0.35	10/0.25	250
BCX70K	45	45	200	330	380/630	2/5	0.35	10/0.25	250
BCW60A	32	32	200	330	120/220	2/5	0.35	10/0.25	250
BCW60B	32	32	200	330	180/310	2/5	0.35	10/0.25	250
BCW60C	32	32	200	330	250/460	2/5	0.35	10/0.25	250
BCW60D	32	32	200	330	380/630	2/5	0.35	10/0.25	250
FMMT4123	40	30	200	330	50/150	2/1	0.3	50/5	250
FMMT5088	35	30	50	330	300/900	0.1/5	0.5	10/1	50 min
FMMT5089	30	25	50	330	400/1200	0.1/5	0.5	10/1	50 min
BC848A	30	30	100	330	110/220	2/5	0.25	10/0.5	300
BC848B	30	30	100	330	200/450	2/5	0.25	10/0.5	300
BC848C	30	30	100	330	420/800	2/5	0.25	10/0.5	300
BC849B	30	30	100	330	200/450	2/5	0.25	10/0.5	300
BC849C	30	30	100	330	420/800	2/5	0.25	10/0.5	300
FMMT4124	30	25	200	330	120/360	2/1	0.3	50/5	300
BCW31	30	20	100	330	110/220	2/5	0.25	10/0.5	300
BCW32	30	20	100	330	200/450	2/5	0.25	10/0.5	300
BCW33	30	20	100	330	420/800	2/5	0.25	10/0.5	300
FMMTA20	40	40	100	330	40/400	5/10	0.25	10/1	125

GENERAL PURPOSE TRANSISTORS (PNP)

				<u> </u>	h _F	:E	V	CE(sat) at I _C /I _B	f _T
Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	min./max.	at I _C /V _{CE} mA/volts	max. Volts	at I _C /I _B mA	typ. MHz
BC856A	80	65	100	330	110/220	2/5	0.3	10/0.5	150
BC856B	80	65	100	330	200/450	2/5	0.3	10/0.5	150
BCW89	80	60	100	330	120/260	2/5	0.3	10/0.5	150
FMMT3905	60	40	200	330	50/150	10/1	0.2	10/1.0	250
FMMT3906	60	40	200	330	100/300	10/1	0.2	10/1.0	300
FMMTA70	50	50	100	330	40/400	5/10	0.3	10/1.0	150
FMMT5087	50	50	100	330	250/800	0.1/5	0.3	10/1.0	100
BCW69	50	45	100	330	120/260	2/5	0.3	10/0.5	150
BCW70	50	45	100	330	215/500	2/5	0.3	10/0.5	150
BC857A	50	45	100	330	110/220	2/5	0.3	10/0.5	150
BC857B	50	45	100	330	200/450	2/5	0.3	10/0.5	150
BC857C	50	45	100	330	420/800	2/5	0.3	10/0.5	150
BC860A	50	45	100	330	110/220	2/5	0.25	10/0.5	300
BC860B	50	45	100	330	200/450	2/5	0.25	10/0.5	300
BC860C	50	45	100	330	420/800	2/5	0.25	10/0.5	300
BCX71G	45	45	200	330	120/220	2/5	0.25	10/0.25	180
всх71Н	45	45	200	330	180/310	2/5	0.25	10/0.25	180
BCX71J	45	45	200	330	250/460	2/5	0.25	10/0.25	180
BCX71K	45	45	200	330	380/630	2/5	0.25	10/0.25	180
BCW61A	32	32	200	330	120/220	2/5	0.25	10/0.25	180
BCW61B	32	32	200	330	180/310	2/5	0.25	10/0.25	180
BCW61C	32	32	200	330	250/460	2/5	0.25	10/0.25	180
BCW61D	32	32	200	330	380/630	2/5	0.25	10/0.25	180
FMMT4125	30	30	200	330	50/150	2/1	0.4	50/5	200
BC858A	30	30	100	330	110/220	2/5	0.3	10/0.5	150
BC858B	30	30	100	330	200/450	2/5	0.3	10/0.5	150
BC858C	30	30	100	330	420/800	2/5	0.3	10/0.5	150
BC859A	30	30	100	330	110/220	2/5	0.25	10/0.5	300
ВС859В	30	30	100	330	200/450	2/5	0.25	10/0.5	300
BC859C	30	30	100	330	420/800	2/5	0.25	10/0.5	300
FMMT4126	25	25	200	330	120/360	2/1	0.4	50/5	250
BCW29	30	20	100	330	120/260	2/5	0.3	10/0.5	150
BCW30	30	20	100	330	215/500	2/5	0.3	10/0.5	150
I	1			l					l

LOW NOISE TRANSISTORS

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _F min./max.	at I _C /V _{CE} mA/volts	V max Volts	CE(sat) . at I _C /I _B mA	f _T typ. MHz
NPN FMMT5209 FMMT5210 BC850B BC850C FMMT5088 BC849B BC849C FMMT5089	50 50 50 50 35 30 30	50 50 45 45 30 30 30 25	50 50 100 100 50 100 100 50	330 330 330 330 330 330 330 330	100/300 200/600 200/450 420/800 300/900 200/450 420/800 400/1200	0.1/5 0.1/5 2/5 2/5 0.1/5 2/5 2/5 0.1/5	3 2 3 3 4 4 2	0.2/5 0.2/5 0.2/5 0.2/5 0.1/5 0.2/5 0.2/5 0.1/5	30 30 300 300 50 300 300 50
BC860A BC860B BC860C BC859A BC859B BC859C	50 50 50 30 30 30	45 45 45 30 30 30	100 100 100 100 100 100	330 330 330 330 330 330	125/250 220/475 420/800 125/250 270/475 420/800	2/5 2/5 2/5 2/5 2/5 2/5	3 3 4 4 4	0.2/5 0.2/5 0.2/5 0.2/5 0.2/5 0.2/5	300 300 300 300 300 300

AVALANCHE TRANSISTOR (NPN)

			h _{FE} at		Peak† Collector Current	P _{tot} at	I _{SB} *		f _T at	
Type	V _{CBO}	V _{CEO}	Min	I _C mA	I _{СМ} А	T _{amb} = 25°C mW	Α	V _C	MHz	I _C mA
FMMT415	260	100	25	10	60	680	25	250	40	10

^{*}Current in second breakdown.

Specifically designed to operate in the avalanche mode. Suitable for pulsing laser diodes and other applications requiring very fast edges.

SWITCHING TRANSISTORS (PNP)

CITITOTING TITALIO		,.	,						
	V _{CBO}	V _{CEO}	Ic	P _{tot}	h _f min./max.	at I _C /V _{CE}	V ₀ max.	CE(sat) at I _C /I _B	f _T typ.
Туре	Volts	Volts	mA	mŴ		mA/volts	Volts	mA	MHz
BSS82B	60	60	800	330	40/120	150/10	0.4	150/15	200
BSS82C	60	60	800	330	100/300	150/10	0.4	150/15	200
FMMT2907A	60	60	600	330	100/300	150/10	0.4	150/15	200
FMMT2907	60	40	600	330	100/300	150/10	0.4	150/15	200
BSS80B	60	40	800	330	40/120	150/10	0.4	150/15	200
BSS80C	60	40	800	330	100/300	150/10	0.4	150/15	200
FMMT3905	60	40	200	330	50/150	10/1	0.2	10/1.0	250
FMMT3906	60	40	200	330	100/300	10/1	0.2	10/1.0	300
FMMT4402	40	40	600	330	50/150	150/1	0.4	150/15	200
FMMT4403	40	40	600	330	100/300	150/1	0.4	150/15	200
BSS69	40	40	100	330	50/150	10/1	0.25	10/1	200
BSS70	40	40	100	330	100/300	10/1	0.25	10/1	250
FMMT4125	30	30	200	330	50/150	2/1	0.4	50/5	200
FMMT4126	25	25	200	330	120/360	2/1	0.4	50/5	250
BSS65	12	12	100	330	40/150	30/0.5	0.15	10/1	400

VHF TRANSISTORS (NPN)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _r min./max.	at I _C /V _{CE}	Ty dB	N p.atf MHz	f _T typ. MHz
FMMT918	30	15	100	330	20/ –	3/1	6.0	60	600
BFQ31A	30	15	100	330	100/ –	3/1	6.0	60	600
BFQ31	30	15	100	330	20/ –	3/1	6.0	60	600
BFS17	30	15	25	330	25/150	2/1	4.5	500	1300

[†]Maximum pulse width 20nsec.

HIGH VOLTAGE TRANSISTORS

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C	P _{tot} mW	h _r min./max.	e at I _C /V _{CE} mA/volts	V max Volts	CE(sat) at I _C /I _B mA	f _T typ. MHz
NPN									
FMMTA42	300	300	200	330	40/-	30/10	0.5	20/2.0	50
FMMTA43	200	200	200	330	50/200	10/10	0.4	20/2.0	50
FMMT5551	180	160	600	330	80/250	10/5	0.4	50/5	200
FMMT5550	180	140	600	330	60/250	10/5	0.25	50/5	200
FMMT455	160	140	1000	425	100/300	150/10	0.7	150/15	100
BSS64	120	80	100	330	20/-	10/1	0.15	4/0.4	100
HT2	90	80	100	330	50/-	10/1	0.75	50/5	100
PNP									
FMMTA92	300	300	200	330	25/-	30/10	0.5	20/2.0	50
FMMTA93	200	200	200	330	30/150	30/10	0.4	20/2.0	50
FMMT576	200	200	1000	425	50/300	300/10	0.3	100/10	100
FMMT555	160	150	1000	425	50/300	300/10	0.3	100/10	100
FMMT5401	160	150	600	330	60/240	10/5	0.5	50/5	200
FMMT5400	130	120	600	330	40/180	10/5	0.5	50/5	200
BSS63	110	100	100	330	30/-	10/1	0.25	25/2.5	85
нт3	90	80	100	330	50/ –	10/1	0.75	50/5	100

DARLINGTON TRANSISTORS (NPN)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h min.	at I _C /V _{CE} mA/volts	V max Volts	CE(sat) . at I _C /I _B mA	f _T typ. MHz
FMMT38A	80	60	300	330	1K	500/5	1.25	800/8.0	100
FMMT38B	80	60	300	330	4K	500/5	1.25	800/8.0	100
FMMT38C	80	60	300	330	10K	500/5	1.25	800/8.0	100
BCV47	80	60	500	330	2K	500/5	1.0	100/0.1	170
BCV27	40	30	500	330	4K	500/5	1.0	100/0.1	170
FMMTA14	30	30	300	330	10K	10/5	1.5	100/0.1	100
FMMTA13	30	30	300	330	5K	10/5	1.5	100/0.1	100
FMMTA12	20	20	300	330	20K	10/5	1.0	10/0.01	100

DARLINGTON TRANSISTORS (PNP)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C	P _{tot} mW	h _l min.	at I _C /V _{CE}		CE(sat) . at I _C /I _B mA	f _T typ. MHz
BCV46	80	60	500	330	2K	500/5	1.0	100/0.1	200
BCV26	40	30	500	330	4K	500/5	1.0	100/0.1	200
FMMTA63	30	30	500	330	10K	10/5	1.5	100/0.1	150
FMMTA64	30	30	500	330	20K	10/5	1.5	100/0.1	150

HIGH PERFORMANCE TRANSISTORS (NPN)

	V _{CBO}	V _{CEO}	la	P _{tot}	h _i min./max.			CE(sat)	f _T
Туре	Volts	Volts	mA	mW	iiiii./iiiax.	at I _C /V _{CE} mA/volts	Volts	c. at I _C /I _B mA	mın. MHz
FMMT497 FMMT495 FMMT494 FMMT493 FMMT491 FMMT491A FMMT489	300 170 140 120 80 40 50	300 150 120 100 60 40 30	500 1000 1000 1000 1000 1000 1000	500 500 500 500 500 500 500	100/300 100/300 100/300 100/300 100/300 300/900 100/300	100/10.0 250/10.0 250/10.0 250/10.0 500/5.0 500/5.0 1000/2.0	0.2 0.2 0.2 0.25 0.3 0.3	100/10 250/25 250/25 500/50 500/50 500/50 1000/100	75 100 100 150 150 150 150

HIGH PERFORMANCE TRANSISTORS (PNP)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _i min./max.	at I _C /V _{CE} mA/volts		/ _{CE(sat)} <. at I _C /I _B mA	f _T min. MHz
FMMT597	300	300	500	500	100/—	100/10.0	0.25	100/20	75
FMMT596	220	200	500	500	100/300	250/10.0	0.35	250/25	150
FMMT593	120	100	1000	500	100/300	500/10.0	0.3	500/50	150
FMMT591	80	60	1000	500	100/300	500/5.0	0.3	500/50	150
FMMT591A	40	40	1000	500	250/—	500/5.0	0.35	500/20	150
FMMT589	50	30	1000	500	80/—	1000/2.0	0.35	1000/100	100

MEDIUM POWER TRANSISTORS (NPN)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _f min./max.	at I _C /V _{CE} mA/volts	max Volts	/ _{CE(sat)} c. at I _C /I _B mA	f _T typ. MHz
BCX41 FMMTA06 FMMT451 BCW66F BCW66G BCW66H FMMTA05 BCW65A BCW65A BCW65C BCX19 FMMT449 BCX20	125 80 80 75 75 75 60 60 60 50 35 30	125 80 60 45 45 45 60 32 32 32 45 30 25	800 500 1000 800 800 800 500 800 800 800 500 1000 500	330 330 425 330 330 330 330 330 330 330 330 330	63/- 50/- 50/150 100/250 160/400 250/630 50/- 100/250 160/400 250/630 100/600	100/1 100/1 150/10 100/1 100/1 100/1 100/1 100/1 100/1 100/1 500/2 100/1	0.9 0.25 0.35 0.3 0.3 0.25 0.3 0.3 0.62 0.5 0.62	300/30 100/10 150/15 100/10 100/10 100/10 100/10 100/10 500/50 1000/100 500/50	100 100 150 100 100 100 100 100 100 200 150 200

MEDIUM POWER TRANSISTORS (PNP)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _l min./max.	at I _C /V _{CE} mA/volts		/ _{CE(sat)} x. at I _C /I _B mA	f _T typ. MHz
FMMTA56 FMMT551 FMMTA55 BCW68F BCW68G BCW677 BCW67A BCW67B BCW67C FMMT549A FMMT549 BCX18	80 80 60 60 60 50 45 45 35 35 30	80 60 60 45 45 45 30 30 30 30 25	500 1000 500 800 800 800 800 800 800 1000 10	330 425 330 330 330 330 330 330 330 425 425 330	50/- 50/150 50/- 100/250 160/400 250/630 100/600 160/400 250/630 150/500 100/300 100/600	100/1 150/10 100/1 100/1 100/1 100/1 100/1 100/1 100/1 500/2 500/2	0.25 0.35 0.25 0.3 0.3 0.62 0.3 0.3 0.5 0.5 0.62	100/10 150/15 100/10 100/10 100/10 500/50 100/10 100/10 100/10 1000/100 1000/100 500/50	100 150 100 100 100 100 100 100 100 100

SWITCHING TRANSISTORS (NPN)

Туре	V _{CBO} Volts	V _{CEO} Volts	I _C mA	P _{tot} mW	h _F min./max.	at I _C /V _{CE} mA/volts	V max Volts	CE(sat) c. at I _C /I _B mA	f _T typ. MHz
BSS79B BSS79C FMMT2222A FMMT4400 FMMT4401 BSS66 BSS67 FMMT3903 FMMT3903 FMMT2222 FMMT4123 FMMT2222 FMMT4123 FMMT2369A FMMT2369 BSV52	75 75 75 60 60 60 60 60 60 40 40 40 20	40 40 40 40 40 40 40 40 30 30 32 5 15 12	800 800 600 600 100 100 200 200 200 200 200 200 200	330 330 330 330 330 330 330 330 330 330	40/120 100/300 100/300 50/150 100/300 50/150 100/300 50/150 100/300 50/150 120/360 40/120 40/120 40/120	150/10 150/10 150/10 150/1 150/1 10/1 10	0.3 0.3 0.4 0.4 0.2 0.2 0.2 0.4 0.3 0.3 0.2 0.2 5.2 0.25	150/15 150/15 150/15 150/15 150/15 10/1 10/1	250 250 300 200 250 300 250 300 250 250 300 500 500

SMALL SIGNAL MOSFETS (SOTFETs*) (N-Channel)

	T					V			Bass .	
Part Number	BV _{DSS}	I _D mA	I _{DM}	P _D mW	V min.	V _{GS(th)} at max	I _D mA	Ω max. a	R _{DS(on)} I _D t mA	V _{GS}
ZVN3320F BSS123 ZVN3310F ZVN4106F ZVN3306F ZVN3002 VN10LF BS170F BSS138§	200 100 100 60 60 60 60 50	60 170 100 200 150 115 150 150 200	1 · 0.68 2 3 3 2 3 3 0.8	330 360 330 330 330 330 330 330 360	1 0.8 0.8 1.3 0.8 1 0.8 0.8 0.5	3 2.8 2.4 3 2.4 2.5 2.5 3 1.5	1 1 1 1 0.25 1 1	25 6 10 2.5 5 7.5 7.5 3.5	100 100 500 500 500 50 200 200 200	10 10 10 10 5 5 10 5

SMALL SIGNAL MOSFETS (SOTFETs*) (P-Channel)

Part Number	BV _{DSS}	I _D mA	I _{DM} A	P _D mW	V min.	V _{GS(th)} at max	I _D mA	Ω max. a	R _{DS(on)} I _D t mA	V _{GS}
ZVP1320F	- 200	- 35	-0.4	330	-1.5	-3.5	-1	80	-50	- 10
ZVP3310F	- 100	- 75	-1.2	330	-1.5	-3.5	-1	20	-150	- 10
ZVP3306F	- 60	- 90	-1.6	330	-1.5	-3.5	-1	14	-200	- 10
BSS84§	- 50	- 130	-0.52	360	-0.8	-2.0	-1	10	-100	- 5
BS250F	- 45	- 90	-1.6	330	-1.5	-3.5	-1	14	-200	- 10

^{*}SOTFETs is a trademark of Zetex plc

[§]New product information

SCHOTTKY BARRIER DIODES

Туре	V _{BR} at I _R = 10μA min. (Volts)	V _F at I _F =1mA max. (mV)	I _R max. nA a	t V _R (volts)	I _F at V _F =1V min. (mA)	C _{T at V_R=OV f=1MHz max. (pF)}
ZC2800E	70	410	200	50	15	2.0
*ZC2810E	20	410	100	15	35	1.2
ZC2811E	15	410	100	10	20	1.2
ZC5800E	50	410	200	35	15	2.0

^{*}Not recommended for New Design - In (ZC2810E)

DUAL SCHOTTKY BARRIER DIODES

Туре	V _{BR} at I _R =10μA min. (Volts)	V _F at I _F =1mA max. (mV)	I _R max. nA a	t V _R (volts)	I _F at V _F =1V min. (mA)	C _{T at V_R=0V f=1MHz max. (pF)}	Pinning configuration
BAS70-04	70	410	200	50	15	2.0	Series
BAS70-05	70	410	200	50	15	2.0	Common cathode
BAS70-06	70	410	200	50	15	2.0	Common anode

SILICON ION IMPLANTED HYPERABRUPT TUNER DIODES

SECON TON INITERATED TITLENABROLL TONER DIODES									
Туре	Reverse breakdown Voltage V _R Volts max.		nal capac =2V, f= C _{tot} pF		f = 1	nce ratio MHz C ₂₀ max.	Q at V _R =3V f=50MHz min.		
ZC830A ZC831A ZC832A ZC833A ZC834A ZC835A ZC836A	25 25 25 25 25 25 25 25	9.0 13.5 19.8 29.7 42.3 61.2 90.0	10 15 22 33 47 68 100	11.0 16.5 24.2 36.3 51.7 74.8 110.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0	6.0 6.5 6.5 6.5 6.5 6.5	300 300 200 200 200 100		

Devices are also available with 5% and 20% tolerances. No suffix $-~\pm20\%$ (e.g. ZC830) Suffix B $-~\pm5\%$ (e.g. ZC830B)

VARIABLE CAPACITANCE TUNER DIODES

Туре	Reverse Breakdown Voltage V _R Volts		Nominal Capacitance at f=1 MHz C _{tot} pF				citance f=1 MI C ₃ /C ₂₅		Q at V _R =3V f=50MHz
	TH VOILS	Min.	Тур.	Max.	at V _R Volts	Min.	Тур.	Max.	Тур.
BBY31	28	1.8	_	2.8	25	_	5.0	_	_
BBY40	28	26 4.3	_	32 6.0	3 25	5	_	6.5	
FMMV105G	30	1.8	_	2.8	25	4.0	_	6.0	350
FMMV109	30	26	_	32	3	5.0	_	6.5	250
FMMV3102	30	26	_	25	3	4.5	_	-	300

SILICON ABRUPT TUNER DIODES

Туре	Reverse breakdown Voltage V _R Volts max.		nal capac = 2V, f= C _{tot} pF typ.		Capacitance ratio $f=1MHz$ C_2/C_{20} min.	Q at V _R =3V f=50MHz min.
FMMV2101 FMMV2102 FMMV2103 FMMV2104 FMMV2105 FMMV2106 FMMV2107 FMMV2108 FMMV2109	30 30 30 30 30 30 30 30 30 30	6.12 7.4 9.0 10.8 13.5 16.2 19.8 24.3 29.7	6.8 8.2 10.0 12.0 15.0 18.0 22.0 27.0 33.0	7.48 9.1 11.0 13.2 16.5 19.8 24.2 29.7 36.3	2.7 2.7 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8	450 450 400 400 400 350 350 300 200

ZENER DIODES

Туре	Range (V)	Voltage tolerance %	P _{tot} mW	I _{ZRM} mA	I _{FRM} mA
BZX84	2V7 to 47V	5 or 10	330	200	200
FMMZ5232-5257	5V6 to 33V	5	330	200	200

SILICON PLANAR HIGH SPEED SWITCHING DIODES

T	Description	1	ngs	t _{rr}	Max. V _F
Type	Description	V _R	l le	max.	at I _F =mA
		Volts	mA	ns	10 50 100
BAS21	Single diode	200	200	50	-/-/1.0
BAS20	Single diode	150	200	50	-/-/1.0
BAS19	Single diode	100	200	50	-/-/1.0
BAS16	Single diode	75	100.	6	0.855/1.0/-
FMMD914	Single diode	75	75	4/8	1.0/-/-
HD3A	Single diode	75	100	6	1.0/-/-
BAL99	Single diode	70	100	6	0.855/1.1/1.3
BAR99	Single diode	70	100	6	0.855/1.1/1.3
BAL74	Single diode	50	150	4	-/-/1.0
BAR74	Single diode	50	150	4	-/-/1.0
FMMD6050	Single diode	70	100	6	-/-/1.1
FMMD6100	Dual diode with common cathode	70	200	5	0.7/-/1.1
BAV70	Dual diode with common cathode	70	100	6	0.855/1.1/1.3
BAV74	Dual diode with common cathode	50	150	4	-/-/1.0
HD2A	Dual diode with common cathode	75	100	6	1.0/-/-
FMMD2837	Dual diode with common cathode	30	100	- 6	1.0/1.0/1.2
FMMD2838	Dual diode with common cathode	50	100	6	1.0/1.0/1.2
BAV99	Dual diode with series connection	70	100	6	0.855/1.1/1.3
FMMD7000	Dual diode with series connection	70	200	15	0.7/-/1.1
BAW56	Dual diode with common anode	70	100	6	0.855/1.1/1.3
HD4A	Dual diode with common anode	75	100	6	1.0/-/-
FMMD2836	Dual diode with common anode	75	100	6	1.0/1.0/1.2
FMMD2835	Dual diode with common anode	35	100	6	1.0/1.0/1.2

CROSS REFERENCE LIST

This cross reference list is intended as a guide to the selection of a direct or near equivalent device from the extensive range of Ferranti SOT-23 products.

INDUSTRY	ZETEX			1110110771	T
PART NO.	PART NO.	INDUSTRY PART NO.	ZETEX	INDUSTRY	ZETEX
TAITINO.	PANT NO.	PART NO.	PART NO.	PART NO.	PART NO.
1S2835	FMMD2835	BCF32	BC849B	BFN23	FMMTA92
1S2836	FMMD2836	BCF33	BC849C	BFN24	FMMTA42
1S2837	FMMD2837	BCF70	BC860B	BFN25	FMMTA92
1S2838	FMMD2838	BCF81	BC850C	BFN26	FMMTA42
BAL74	BAL74	BCV27	FMMTA14	BFN27	FMMTA92
BAR74	BAR74	BCV47	FMMT38A	BFQ31	BFQ31
BAL99	BAL99	BCV71	BCV71	BFQ31A	BFQ31A
BAR99	BAR99	BCV72	BCV72	BSR13	FMMT2222
BAS16	BAS16	BCW29	BCW29	BSR14	FMMT2222A
BAS19	BAS19	BCW30	BCW30	BSR15	FMMT2907
BAS20	BAS20	BCW31	BCW31	BSR16	FMMT2907A
BAS21	BAS21	BCW32	BCW32	BSR17	FMMT3903
BAS29	BAS19	BCW33	BCW33	BSR17A	FMMT3904
BAS31 BAS35	BAS19 SERIES BAS19 COMMON ANODE	BCW60A	BCW60A	BSR18	FMMT3905
BAS35 BAT17	ZC2811E	BCW60B	BCW60B	BSR18A	FMMT3906
BAT18		BCW60C	BCW60C	BSS63	BSS63
BAV70	BAS16	BCW60D	BCW60D	BSS64	BSS64
BAV74	BAV70 BAV74	BCW61A BCW61B	BCW61A	BSS65	BSS65
BAV99	BAV99		BCW61B	BSS66	BSS66
BAW56	BAW56	BCW61C BCW61D	BCW61C	BSS67	BSS67
BAY84	FMMD7000	BCW65A	BCW61D	BSS69	BSS69
BC807	BCX17	BCW65B	BCW65A	BSS70	BSS70
BC808	BCX18	BCW65C	BCW65B	BSS79B	BSS79B
BC817	BCX19	BCW66F	BCW65C BCW66F	BSS79C	BSS79C
BC818	BCX20	BCW66G	BCW66G	BSS80B	BSS80B
BC846A	BC846A	BCW66H	BCW66H	BSS80C	BSS80C
BC846B	BC846B	BCW67A	BCW67A	BSS82B	BSS82B
BC847A	BC847A	BCW67B	BCW67B	BSS82C	BSS82C
BC847B	BC847B	BCW67C	BCW67C	BSS123 BST82	ZVN3306F
	BC848A	BCW68F	BCW68F	BS182 BS170F	ZVN3310F BS170F
	BC848B	BCW68G	BCW68G	BS250F	BS250F
	BC848C	BCW68H	BCW68H	BSV52	BSV52
	BC849B	BCW69	BCW69	BZX84C10	BZX84C10
	BC849C	BCW70	BCW70	BZX84C11	BZX84C11
	BC850B	BCW71	BCW71	BZX84C12	BZX84C12
	BC850C	BCW72	BCW72	BZX84C13	BZX84C13
	BC856A	BCW89	BCW89	BZX84C15	BZX84C15
	BC856B	BCX17	BCX17	BZX84C16	BZX84C16
BC857A	BC857A	BCX18	BCX18	BZX84C18	BZX84C18
	BC857B	BCX19	BCX19	BZX84C20	BZX84C20
	BC857C	BCX20	BCX20	BZX84C22	BZX84C22
	BC858A	BCX41	BCX41	BZX84C24	BZX84C24
	BC858B	BCX70G	BCX70G	BZX84C27	BZX84C27
BC858C	BC858C	BCX70H	BCX70H	BZX84C30	BZX84C30
	BC859A	BCX70J	BCX70J	BZX84C33	BZX84C33
	BC859B	BCX70K	BCX70K	BZX84C36	BZX84C36
	BC859C	BCX71G	BCX71G	BZX84C39	BZX84C39
	BC860A	BCX71H	BCX71H	BZX84C43	BZX84C43
	BC860B	BCX71J	BCX71J	BZX84C47	BZX84C47
	BC860C	BCX71K	BCX71K	BZX84C2V7	BZX84C2V7
BCF30	BC859B	BFN22	FMMTA42	BZX84C3V0	BZX84C3V0
				· · ·	

CROSS REFERENCE LIST (Cont.)

INDUSTRY PART NO.	ZETEX PART NO.	INDUSTRY PART NO.	ZETEX PART NO.	INDUSTRY PART NO.	ZETEX PART NO.
BZX84C3V3	BZX84C3V3	FMMTA70	FMMTA70	MMBTA13	FMMTA13
BZX84C3V6	BZX84C3V6	FMMTA92	FMMTA92	MMBTA14	FMMTA14
BZX84C3V9	BZX84C3V9	FMMTA93	FMMTA93	MMBTA20	FMMTA20
BZX84C4V3	BZX84C4V3	FMMV2101	FMMV2101	MMBTA42	FMMTA42
BZX84C4V7	BZX84C4V7	FMMV2102	FMMV2102	MMBTA43	FMMTA43
BZX84C5V1	BZX84C5V1	FMMV2103	FMMV2103	MMBTA55	FMMTA55
BZX84C5V6	BZX84C5V6	FMMV2104	FMMV2104	MMBTA56	FMMTA56
BZX84C6V2	BZX84C6V2	FMMV2105	FMMV2105	MMBTA70	FMMTA70
BZX84C6V8	BZX84C6V8	FMMV2106	FMMV2106	MMBTA92	FMMTA92
BZX84C7V5	BZX84C7V5	FMMV2107	FMMV2107	MMBTA93	FMMTA93
BZX84C8V2	BZX84C8V2	FMMV2108	FMMV2108	MMBT918	FMMT918
BZX84C9V1	BZX84C9V1	FMMV2109	FMMV2109	MMBT2222	FMMT2222
FMMD914	FMMD914	FMMZ5232	FMMZ5232	MMBT2222A	FMMT2222A
FMMD2835	FMMD2835	FMMZ5233	FMMZ5233	MMBT2369	FMMT2369
FMMD6050	FMMD6050	FMMZ5234	FMMZ5234	MMBT2484	FMMT2484
FMMD6100	FMMD6100	FMMZ5235	FMMZ5235	MMBT2907	FMMT2907
FMMD7000	FMMD7000	FMMZ5236	FMMZ5236	MMBT2907A	FMMT2907A
FMMT38A	FMMT38A	FMMZ5237	FMMZ5237	MMBT3640	BSS65
FMMT38B	FMMT38B	FMMZ5238	FMMZ5238	MMBT3903	FMMT3903
FMMT38C	FMMT38C	FMMZ5239	FMMZ5239	MMBT3904	FMMT3904
FMMT2222	FMMT2222	FMMZ5240	FMMZ5240	MMBT3906	FMMT3906
FMMT2222A	FMMT2222A	FMMZ5241	FMMZ5241	MMBT4124	FMMT4124
FMMT2369	FMMT2369	FMMZ5242	FMMZ5242	MMBT4125	FMMT4125
FMMT2369A	FMMT2369A	FMMZ5243	FMMZ5243	MMBT4401	FMMT4401
FMMT2484	FMMT2484	FMMZ5244	FMMZ5244	MMBT4403	FMMT4403
FMMT2907	FMMT2907	FMMZ5245	FMMZ5245	MMBT5086	FMMT5086 FMMT5087
FMMT2907A	FMMT2907A	FMMZ5246	FMMZ5246	MMBT5087	FMMT5088
FMMT3903	FMMT3903	FMMZ5247	FMMZ5247	MMBT5088	FMMT5089
FMMT3904	FMMT3904	FMMZ5248	FMMZ5248	MMBT5089 MMBV2101	FMMV2101
FMMT3905	FMMT3905	FMMZ5249	FMMZ5249	MMBV2101	FMMV2102
FMMT3906	FMMT3906	FMMZ5250	FMMZ5250 FMMZ5251	MMBV2102	FMMV2103
FMMT4123	FMMT4123	FMMZ5251 FMMZ5252	FMMZ5251	MMBV2103	FMMV2104
FMMT4124	FMMT4124 FMMT4125	FMMZ5252	FMMZ5252	MMBV2105	FMMV2105
FMMT4125 FMMT4126	FMMT4126	FMMZ5254	FMMZ5254	MMBV2106	FMMV2106
	FMMT4400	FMMZ5254	FMMZ5255	MMBV2107	FMMV2107
FMMT4400 FMMT4401	FMMT4401	FMMZ5256	FMMZ5256	MMBV2108	FMMV2108
FMMT4402	FMMT4402	FMMZ5257	FMMZ5257	MMBV2109	FMMV2109
FMMT4403	FMMT4403	HD2A	HD2A	MMBZ5226	BZX84C3V3
FMMT5087	FMMT5087	HD3A	HD3A	MMBZ5227	BZX84C3V6
FMMT5088	FMMT5088	HD4A	HD4A	MMBZ5228	BZX84C3V9
FMMT5089	FMMT5089	HT2	HT2	MMBZ5229	BZX84C4V3
FMMT5209	FMMT5209	HT3	HT3	MMBZ5230	BZX84C4V7
FMMT5210	FMMT5210	MMBD101	ZC5800E	MMBZ5231	BZX84C5V1
FMMT918	FMMT918	MMBD501	ZC5800E	MMBZ5232	FMMZ5232
FMMTA05	FMMTA05	MMBD914	FMMD914	MMBZ5233	FMMZ5233
FMMTA06	FMMTA06	MMBD2835	FMMD2835	MMBZ5234	FMMZ5234
FMMTA12	FMMTA12	MMBD2836	FMMD2836	MMBZ5235	FMMZ5235
FMMTA13	FMMTA13	MMBD2837	FMMD2837	MMBZ5236	FMMZ5236
FMMTA14	FMMTA14	MMBD2838	FMMD2838	MMBZ5237	FMMZ5237
FMMTA20	FMMTA20	MMBD6050	FMMD6050	MMBZ5238	FMMZ5238
FMMTA42	FMMTA42	MMBD6100	FMMD6100	MMBZ5239	FMMZ5239
FMMTA43	FMMTA43	MMBD7000	FMMD7000	MMBZ5240	FMMZ5240
FMMTA55	FMMTA55	MMBTA05	FMMTA05	MMBZ5241	FMMZ5241
FMMTA56	FMMTA56	MMBTA06	FMMTA06	MMBZ5242	FMMZ5242

CROSS REFERENCE LIST (Cont.)

INDUSTRY	ZETEX	INDUSTRY	ZETEX	INDUSTRY	ZETEX
PART NO.	PART NO.	PART NO.	PART NO.	PART NO.	PART NO.
TAIL NO.	17.111 110.	17.111 110.	TAIL NO.	17111110.	TAIL NO.
MMBZ5243	FMMZ5243	MMT3903	FMMT3903	SO5551	BCX41
MMBZ5244	FMMZ5244	MMT3904	FMMT3904	TMPD914	FMMD914
MMBZ5245	FMMZ5245	MMT3905	FMMT3905	TMPD2835	FMMD2835
MMBZ5246	FMMZ5246	MMT3906	FMMT3906	TMPD2836	FMMD2836
MMBZ5247	FMMZ5247	MMT4123	FMMT4123	TMPD2837	FMMD2837
MMBZ5248	FMMZ5248	MMT4124	FMMT4124	TMPD2838	FMMD2838
MMBZ5249	FMMZ5249	MMT4125	FMMT4125	TMPD6050	FMMD6050
MMBZ5250	FMMZ5250	MMT4126	FMMT4126	TMPD6100	FMMD6100
MMBZ5251	FMMZ5251	MMT4400	FMMT4400	TMPT2222	FMMT2222
MMBZ5252	FMMZ5252	MMT4401	FMMT4401	TMPT2222A	FMMT2222A
MMBZ5253	FMMZ5253	MMT4402	FMMT4402	TMPT2907A	FMMT2907A
MMBZ5254	FMMZ5254	MMT4403	FMMT4403	TMPT3904	FMMT3904
MMBZ5255	FMMZ5255	MMT5086	FMMT5086	TMPT3906	FMMT3906
MMBZ5256	FMMZ5256	MMT5087	FMMT5087	TMPT4403	FMMT4403
MMBZ5257	FMMZ5257	MMT5088	FMMT5088	TMPT5086	FMMT5086
MMST918	FMMT918	MMT5089	FMMT5089	TMPT5087	FMMT5087
MMST2222	FMMT2222	MMT6428	BCX70J	TMPT5088	FMMT5088
MMST2222A	FMMT2222A	MMT6429	BCX70K	TMPT5089	FMMT5089
MMST2907	FMMT2907	MST4123	FMMT4123	TMPT5550	BCX41
MMST2907A	FMMT2907A	MST4124	FMMT4124	TMPT6428	BCX70J
MMST3904	FMMT3904	MSTA55	FMMTA55	TMPT6429	BXC70K
MMST3906	FMMT3906	MSTA56	FMMTA56	TMPTA05	FMMTA05
MMST4125	FMMT4125	MTM3906	FMMT3906	TMPTA06	FMMTA06
MMST4126	FMMT4126	NTM2222A	FMMT2222A	TMPTA13	FMMTA13
MMST4400	FMMT4400	NTM2369	FMMT2369	TMPTA14	FMMTA14
MMST4401	MMST4401	NTM2907A	FMMT2909A	TMPTA20	FMMTA20
MMST4402	FMMT4402	NTM3904	FMMT3904	TMPTA42	FMMTA42
MMST4403	FMMT4403	SMBT2222	FMMT2222	TMPTA43	FMMTA43
MMST5086	FMMT5086	SMBT2222A	FMMT2222A	TMPTA55	FMMTA55
MMST5088	FMMT5088	SMBT2907	FMMT2907	TMPTA56	FMMTA56
MMST5089	FMMT5089	SMBT2907A	FMMT2907A	TMPTA70	FMMTA70
MMST6428	BCX70J	SMBT3904	FMMT3904	TMPTA92	FMMTA92
MMST6429	BCX70K	SMBT3906	FMMT3906	ZC2800E	ZC2800E
MMSTA05	FMMTA05	SMBTA05	FMMTA05	ZC2811E	ZC2811E
MMSTA06	FMMTA06	SMBTA06	FMMTA06	ZC5800E	ZC5800E
MMSTA12	FMMTA12	SMBTA13	FMMTA13	ZC830	ZC830
MMSTA13	FMMTA13	SMBTA14	FMMTA14	ZC831	ZC831
MMSTA14	FMMTA14	SMBTA20	FMMTA20	ZC832	ZC832
MMSTA20	FMMTA20	SMBTA42	FMMTA42	ZC833	ZC833
MMSTA55	FMMTA55	SMBTA43	FMMTA43	ZC834	ZC834
MMSTA56	FMMTA56	SMBTA55	FMMTA55	ZC835	ZC835
MMSTA70	FMMTA70	SMBTA56	FMMTA56	ZC836	ZC836
MMTA05	FMMTA05	SMBTA92	FMMTA92	2N7001	ZVN3320F
MMTA06	FMMTA06	SMBTA93	FMMTA93	2N7002	2N7002
MMTA12	FMMTA12	SO914	FMMD914	, 002	, 002
MMTA13	FMMTA13	SO918	FMMT918		
MMTA20	FMMTA20	SO1711	FMMT2222A		
MMTA55	FMMTA55	SO1893	FMMT2222A		
MMTA56	FMMTA56	SO2221	FMMT2222A		
MMTA70	FMMTA70	SO2221A	FMMT2222A		
MMT918	FMMT918	SO2907	FMMT2907		
MMT2222	FMMT2222	SO2907A	FMMT2907A		
MMT2222A	FMMT2222A	SO3904	FMMT3904		
MMT2907	FMMT2907	SO3906	FMMT3906		
MMT2907A	FMMT2907A	SO5550	BCX41		

ENVIRONMENTAL DATA

We are engaged in on-going reliability exercises to ensure long term reliability of its semiconductor components.

The table below details some of the tests carried out on a periodic basis on the SOT-23 product range, either as part of the on-going BS/CECC and D3007 (20 year life) programmes or as part of the Special Customer Requirement programmes.

The results of these tests can be made available upon request together with results from other tests additional to those in the table below (e.g. Intermittent Operating Life, Thermal Shock, etc.).

Environmental Tests

High Temperature Damp Heat (No Bias)	85°C/85% RH Duration 1000 hours minimum
Electrical Endurance	Duration 1000 hours minimum as per BS/CECC 50000-4.5.2.3
High Temperature Storage	Duration 1000 hours minimum at 150°C as per BS/CECC 50000-4.4.1
High Temperature Storage (20 years life requirement)	Duration 3100 hours minimum at 200°C as per BS/CECC 50000-4.4.1.
Temperature Cycling	400 cycles minimum -55 to +150°C. Method IEC 68-2-14 Test Na
High Temperature Damp Heat (with bias)	85°C/85% RH + Bias Duration 2000 hours minimum.
Autoclave (Pressure Cooker)	Duration 100 hours minimum TA=+121°C, +1 Bar
Temperature Cycling	-40°C to +125°C, 3 mins. ramp Duration 1000 cycles minimum

The methods quoted are compatible with MILSTD750.

Solderability

Meets the requirements of

BS2011

IEC68-2-20T

MIL-STD-202 Method 208

MIL-STD-750 Method 2026

Thickness of composition — Nominal 350 μ inches

Plating material - Tin/lead Sn/Pb

Composition - Nominal 65/35

Including Steam Pre-Age of components

SOT-23 TAPE AND REEL INFORMATION

The complete range of SOT-23 devices is available on 8mm tape for use with automatic placement equipment.

Tape packaging also has special attractions for customers using manual placement since it makes it easier to assemble and orientate these tiny components; stock accounting is also simplified.

Tape Specification

Tape Dimensions (Dimensions in mm)

D ₀	E	P ₀	t(max)	D _{1(min)}	F	K(max)	P ₂	G _{1(min)}	W
1.5 ^{+ 0.05} - 0.00	1.75±0.10	4.0±0.10	0.30	1.0	3.5 ± 0.05	2.40	2.0±0.05	0.75	8.0±0.30

SOT-23 TAPE AND REEL INFORMATION

Reel Specifications

Reel Dimensions (Dimensions in mm)

A(max)	B(min)	C	D(min)	N	G	T(max)
180 or 330	1.5	13.0±0.2	20.2	62±1.5	8.4 ^{+ 1.5} - 0.0	14.4

Leader and Trailer Tape Details

TAPE FEATURES

- Collector Locating Tape (option A only). (This special feature centralises the component in the pocket for improved pick-up).
 Less than 10° Component Rotation

Semi-conductive Carrier Tape Resistivity Values <10⁷Ω/□

- Available in both 7" and 13" diameter reels.
 - 7" 3,000 components (e.g. BAV99TA). 13" - 10,000 components (e.g. BAV99TC).
- Maximum of 0.25% missing devices/Reel.
- There will be no consecutive missing components between the first and the last component
 of the reel.
- Tape complies with both EIA481 and IEC286 Industry Standard Taping Specifications.
- Component Orientation

Option 'A'
"The Industry Standard"

Maximum component rotation

Typical

component cavity center line

Ordering Format

Suffix 'T' followed by 'A' (e.g. FMMT3904TA on 7" reels).

Suffix 'T' followed by 'C' (e.g. FMMT3904TC on 13" reels).

ELECTRICAL SPECIFICATIONS

High speed switching diode

BAL74

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAL74	Unit
Continuous reverse voltage	V _R	. 50	٧
Average output rectified current (t _{AV} = 10ms)	l _o	100	mA
Continuous forward current	I _F	150	mA
Peak forward current (t=15ms)	I _{FM}	200	mA
Forward surge current (t=1μs)	I _{FS}	1	Α

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Breakdown voltage	V _{BR}	51	_	٧	I _R = 5μA
Forward voltage	V _F	-	1.0	V	I _F = 100mA
Reverse current	I _R	- -	0.1 100	μ Α μ Α	V _R = 50V V _R = 50V, T _{amb} = 125°C
Capacitance	C _o	-	2.0	pF	V _R =0
Reverse recovery time	t _{rr}	<u>-</u>	4 2	ns ns	I _F =I _R =10mA, I _{rr} =1mA I _F =10mA, V _R =6V, R _L =100Ω

Pulse is supplied by a generator with the following characteristics:

Output impedance = 50Ω Rise time ≤ 0.5 ns Output is monitored on a sampling oscilloscope with the following characteristics:

Rise time ≤ 0.6 ns Input impedance = 50Ω

High speed switching diode

BAL99

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAL99	Unit
Continuous reverse voltage	V _R	70	V
Repetitive peak reverse voltage	V _{RRM}	70	V
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $\textbf{T}_j\!=\!25\,^{\text{o}}\text{C}$ unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	715 855 1.1 1.3	mV mV V	$I_F = 1 \text{mA}$ $I_F = 10 \text{mA}$ $I_F = 50 \text{mA}$ $I_F = 100 \text{mA}$
Reverse current	I _R	30 2.5 50	μΑ μΑ μΑ	$V_R = 25V, T_j = 150$ °C $V_R = 70V$ $V_R = 70V, T_j = 150$ °C
Diode capacitance	C _d	1.5	pF	V _R =0, f=1MHz
Forward recovery voltage	V _{fr}	1.75	V	Switched to $I_F = 10$ mA, $t_r = 20$ ns
Reverse recovery time	t _{rr}	6	ns	Switched from $I_F = 10 \text{mA}$ to $V_R = 1 \text{V}$ $R_L = 100 \Omega$, $I_R = 1 \text{mA}$

Circuit for measuring switching time

Output waveform

Pulse rise time \leq 0.6ns Pulse duration = 100ns Oscilloscope rise time \leq 0.35ns Adjust V_B for I_F =10mA

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAL99 E2

High speed switching diode

BAR74

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAR74	Unit
Continuous reverse voltage	V _R	50	V
Average output rectified current (t _{AV} = 10ms)	l _o	100	mA
Continuous forward current	I _F	150	mA
Peak forward current (t=15ms)	I _{FM}	200	mA
Forward surge current (t=1μs)	I _{FS}	1	Α

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Breakdown voltage	V _{BR}	51	-	V	I _R = 5μA
Forward voltage	V _F	-	1.0	v	I _F =100mA
Reverse current	I _R	- -	0.1 100		V _R =50V V _R =50V, T _{amb} =125°C
Capacitance	C _o	_	2.0	pF	V _R =0
Reverse recovery time	t _{rr}	_ _	4 2		$I_F = I_R = 10 \text{mA}, I_{rr} = 1 \text{mA}$ $I_F = 10 \text{mA}, V_R = 6 \text{V}, R_L = 100 \Omega$

Pulse is supplied by a generator with the following characteristics:

Output impedance = 50Ω Rise time ≤ 0.5 ns Pulse width = 100ns Output is monitored on a sampling oscilloscope with the following characteristics:

Rise time ≤ 0.6 ns Input impedance = 50Ω

PIN CONFIGURATION	Devices are identified by a code on the body of the device
BAR74/07/86	BAR74 JB

High speed switching diode

BAR99

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAR99	Unit
Continuous reverse voltage	V _R	70	V
Repetitive peak reverse voltage	V _{RRM}	70	V
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	715 855 1.1 1.3	mV mV V	I _F = 1mA I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	30 2.5 50	μΑ μΑ μΑ	V _R =25V, T _j =150°C V _R =70V V _R =70V, T _j =150°C
Diode capacitance	C _d	1.5	pF	V _R =0, f=1 MHz
Forward recovery voltage	V _{fr}	1.75	V	Switched to I _F =10mA, t _r =20ns
Reverse recovery time	t _{rr}	6	ns	Switched from $I_F = 10 \text{mA}$ to $V_R = 1 \text{V}$ $R_L = 100 \Omega$, $I_R = 1 \text{mA}$

Circuit for measuring switching time

Output waveform

Pulse rise time \leqslant 0.6ns Pulse duration = 100ns Oscilloscope rise time \leqslant 0.35ns Adjust V_B for I_F =10mA

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAR99 E3

High speed switching diode

BAS16

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Continuous reverse voltage	V _R	75	V
Repetitive peak reverse voltage	V _{RRM}	85	V
Repetitive peak forward current	I _{FRM}	250	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Maximum	Unit	Conditions
Forward voltage	V _F	715	mV	I _F =1 mA
		855	mV	I _F = 10 mA
		1000	mV	I _F = 50 mA
		1250	mV	I _F = 150 mA
Reverse current	I _R	30	μΑ	V _R =25V, T _j =150°C
		1	μΑ	V _R = 75V
		50	μΑ	$V_R = 75V, T_j = 150$ °C
Diode capacitance	C ^q	2	pF	V _R =0, f=1 MHz
Forward recovery voltage	V_{fr}	1.75	V	Switched to $I_F = 10 \text{ mA}, t_r = 20 \text{ ns}$
Reverse recovery time	t _{rr}	6	ns	I _F = 10 mA, I _{RM} = 10 mA, I _{rr} = 1 mA R _L = 100Ω

High speed switching diode

BAS19 BAS20 BAS21

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAS19	BAS20	BAS21	Unit
Continuous reverse voltage	V _R	100	150	200	V
Repetitive peak reverse voltage	V _{RRM}	120	200	250	V
Average rectified forward current (20ms period)	I _{F(AV)}		200	•	mA
Forward current	I _F		200		mA
Repetitive peak forward current	I _{FRM}		625		mA

CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise specified).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions
Reverse breakdown voltage BAS19 BAS20 BAS21	V _(BR)	120 200 250		- - -	V V V	I _R = 100μA (1) I _R = 100μA (1) I _R = 100μA (2)
Reverse current	I _R	-	_ _	100 100	nΑ μΑ	$V_R = V_{R \text{ max}}$ $V_R = V_{R \text{ max}}$, $T_j = 150$ °C
Static forward voltage	V _F	-	_	1.0 1.25	> >	I _F = 100mA I _F = 200mA
Differential resistance	r _{diff}	-	5	-	Ω	I _F = 10mA
Diode capacitance	C ^q	-	-	5	pF	V _R =0V, f=1MHz
Reverse recovery time (Ref. Figs. 1 and 2)	t _{rr}	-	-	50	ns	$I_F = 30$ mA to $I_R = 30$ mA $R_L = 100\Omega$ measured at $I_R = 3$ mA

Measured under pulse conditions: Pulse width=300μs. Duty cycle ≤2%.

⁽²⁾ At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited to 275V

SWITCHING TIME TEST DATA

Input signal total pulse duration	t _{p(tot)}	= 2μs	Oscilloscope rise time	t _r	= 0,35ns
duty factor	δ	= 0,0025	circuit capacitance*	С	< 1pF
rise time of reverse pulse reverse pulse duration	t _r t _p	= 0,6ns =100ns	*C = oscilloscope input ca capacitance.	apacitan	ce + parasitic

Dual schottky barrier diodes

BAS70-04 BAS70-05 BAS70-06

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Breakdown voltage	V _{BR}	70	_	V	Ι _R = 10μΑ
Reverse leakage current	I _R	_	200	nA	V _R = 50V
Forward voltage	V _F	_	410	mV	I _F = 1mA
Forward current	I _F	15	_	mA	V _F = 1V
Capacitance	C _T	_	2.0	pF	V _R = 0V, f = 1MHz
Effective minority lifetime	τ	_	100	ps	Refer to ZC2800E data sheet for test diagram

PIN CONFIGURATIONS

Devices are identified by a code on the body of the device:

BAS70-04 2Z BAS70-05 2Z

BAS70-06 12

High speed switching diode pair common cathode

BAV70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAV70	Unit
Continuous reverse voltage	V _R	70	٧
Repetitive peak reverse voltage	V _{RRM}	70	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	715 855 1.1 1.3	mV mV V	I _F = 1mA I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	60 5.0 100	μΑ μΑ μΑ	$V_R = 25V, T_j = 150$ °C $V_R = 70V$ $V_R = 70V, T_j = 150$ °C
Diode capacitance	C _d	1.5	pF	V _R =0, f=1MHz
Forward recovery voltage	V _{fr}	1.75	V	Switched to I _F =10mA, t _r =20ns
Reverse recovery time	t _{rr}	6	ns	Switched from $I_F = 10 \text{mA}$ to $V_R = 1 \text{V}$ $R_L = 100 \Omega$, $I_R = 1 \text{mA}$

Circuit for measuring switching time

Output waveform

Pulse rise time \leqslant 0.6ns Pulse duration = 100ns Oscilloscope rise time \leqslant 0.35ns Adjust V_B for I_F =10mA

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAV70 A4

High speed switching diode pair common cathode

BAV74

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAV74	Unit
Continuous reverse voltage	V _R	50	V
Average output rectified current (t _{AV} =10ms)	l _o	100	mA
Continuous forward current	I _F	150	mA
Peak forward current (t=15ms)	I _{FM}	200	mA
Forward surge current (t=1µs)	I _{FS}	1	Α

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Breakdown voltage	V _{BR}	51	-	V	I _R = 5μA
Forward voltage	V _F	- .	1.0	٧	I _F =100mA
Reverse current	I _R	<u>-</u>	0.1 100	μΑ μΑ	V _R =50V V _R =50V, T _{amb} =125°C
Capacitance	C _o	_	2.0	pF	V _R =0
Reverse recovery time	t _{rr}	<u>-</u>	4 2	ns ns	$I_F = I_R = 10 \text{mA}, I_{rr} = 1 \text{mA}$ $I_F = 10 \text{mA}, V_R = 6 \text{V}, R_L = 100 \Omega$

Pulse is supplied by a generator with the following characteristics:

Output impedance = 50Ω Rise time ≤ 0.5 ns Pulse width = 100ns Output is monitored on a sampling oscilloscope with the following characteristics:

Rise time ≤ 0.6 ns Input impedance = 50Ω

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAV74 JA

High speed switching series diode pair

BAV99

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAV99	Unit
Continuous reverse voltage	V _R	70	٧
Repetitive peak reverse voltage	V _{RRM}	70	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	715 855 1.1 1.3	mV mV V	I _F = 1mA I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	30 2.5 50	μΑ μΑ μΑ	V _R =25V, T _j =150°C V _R =70V V _R =70V, T _j =150°C
Diode capacitance	C _d	1.5	pF	V _R =0, f=1 MHz
Forward recovery voltage	V _{fr}	1.75	٧	Switched to I _F = 10mA, t _r = 20ns
Reverse recovery time	t _{rr}	6	ns	Switched from $I_F = 10 \text{mA}$ to $V_R = 1 \text{V}$ $R_L = 100 \Omega$, $I_R = 1 \text{mA}$

Circuit for measuring switching time

Output waveform

Pulse rise time \leq 0.6ns Pulse duration = 100ns Oscilloscope rise time \leq 0.35ns Adjust V_B for I_F =10mA

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAV99 A7

High speed switching diode pair (common anode)

BAW56

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BAW56	Unit
Continuous reverse voltage	V _R	. 70	V
Repetitive peak reverse voltage	V _{RRM}	70	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	715 855 1.1 1.3	mV mV V	I _F = 1mA I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	30 2.5 50	μΑ μΑ μΑ	$V_R = 25V, T_j = 150$ °C $V_R = 70V$ $V_R = 70V, T_j = 150$ °C
Diode capacitance	C _d	2	pF	V _R = 0, f = 1 MHz
Forward recovery voltage	V_{fr}	1.75	V	Switched to $I_F = 10$ mA, $t_r = 20$ ns
Reverse recovery time	t _{rr}	6	ns	Switched from $I_F = 10 \text{mA}$ to $V_R = 1 \text{V}$ $R_L = 100 \Omega$, $I_R = 1 \text{mA}$

Circuit for measuring switching time

Output waveform

Pulse rise time \leqslant 0.6ns Pulse duration = 100ns Oscilloscope rise time \leqslant 0.35ns Adjust V_B for I_F = 10mA

PIN CONFIGURATION

Devices are identified by a code on the body of the device

BAW56 A1

Silicon variable capacitance diode

BBY31

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Characteristic	Symbol		Value		Units	Conditions	
Characteristic	Symbol	Min.	Тур.	Max.	Offics	Conditions	
Reverse breakdown voltage	V _{BR}	28	_	_	٧	Ι _R = 10μΑ	
Reverse leakage current	I _R	1 1	_	0.05 1.0	μΑ μΑ	V _R =28V V _R =28V, TA=85°C	

TUNING CHARACTERISTICS (at $T_{amb} = 25$ °C ambient temperature).

Characteristic	Symbol		Value		Units	Conditions
Characteristic	Syllibol	Min.	Тур.	Max.	Offics	Conditions
Diode capacitance	C _d	 - 1.8	17.5 11.5 —	_ _ 2.8	pF pF pF	V_R =1V, f-1MHz V_R =3V, f=1 MHz V_R =25V, f=1 MHz
Capacitance ratio	C _d /C _d	_	5.0	_	_	3V/25V, f=1 MHz
Series resistance	r _D	_	_	1.2	Ω	$f=470\text{MHz}$ at that value of V_R at which $C_d=9\text{pF}$

Silicon variable capacitance diode

BBY40

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

Characteristic	Symbol		Value		Units	Conditions
Characteristic	Symbol	Min.	Тур.	Max.	Units	Conditions
Reverse breakdown voltage	V _{BR}	28	_	_	V	Ι _R = 10μΑ
Reverse leakage current	I _R	-	_	0.05 1.0	μ Α μ Α	V _R =28V V _R =28V, TA=60°C

TUNING CHARACTERISTICS (at $T_{amb} = 25$ °C ambient temperature).

Characteristic	Symbol		Value		Units	Conditions
Characteristic	Symbol	Min.	Тур.	Max.	Office	Conditions
Diode capacitance	C _d	26 4.3	_	32 6.0	pF pF	V _R =3V, f-1MHz V _R =25V, f=1 MHz
Capacitance ratio	C _d /C _d	5.0	_	6.5	_	3V/25V, f=1 MHz
Series resistance	r _D	_	0.4	0.6	Ω	$f=200\text{MHz}$ at that value of V_R at which $C_d=25\text{pF}$

NPN silicon planar general purpose transistors

BC846 BC848 BC850

BC847 BC849

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BC846	BC847	BC848	BC849	BC850	Unit
Collector-base voltage	V _{CBO}	80	50	30	30	50	V
Collector-emitter voltage	V _{CES}	80	50	30	30	50	V
Collector-emitter voltage	V _{CEO}	65	45	30	30	45	V
Emitter-base voltage	V _{EBO}	6	6	5	5	5	V
Collector current	Ic	100	100	100	100	100	mA
Collector current (peak)	I _{CM}	200	200	200	200	200	mA
Base current (peak)	I _{BM}	200	200	200	200	200	mA
Emitter current (peak)	-I _{EM}	200	200	200	200	200	mA

CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

Parameter	Sym	bol	BC846	BC847	BC848	BC849	BC850	Unit	Conditions
Collector cut-off current	I _{CBO}	Max. Max.	15 5	15 5	15 5	15 5	15 5	nΑ μΑ	V _{CB} = 30V V _{CB} = 30V T _{amb} = 150°C
Collector-emitter saturation voltage	V _{CE(sat)}	Typ. Max.	90 250	90 250	90 250	90 250	90 250	mV mV	$\begin{cases} I_{C} = 10mA \\ I_{B} = 0.5mA \end{cases}$
		Typ. Max.	200 600	200 600	200 600	200 600	200 600	mV mV	$\begin{cases} I_{C} = 100\text{mA} \\ I_{B} = 5\text{mA} \end{cases}$
		Typ. Max.	300 600	300 600	300 600	300 600	300 600	mV mV	$\bigg\} I_{C} = 10 \text{mA*}$
Base-emitter saturation voltage	V _{BE(sat)}	Typ. Typ.	700 900	700 900	700 900	700 900	700 900	mV mV	I _C = 10mA I _B = 0.5mA I _C = 100mA I _B = 5mA
Base-emitter voltage	V _{BE}	Min. Typ. Max.	580 660 700	580 660 700	580 660 700	580 660 700	580 660 700	mV mV mV	$\begin{cases} I_C = 2mA \\ V_{CE} = 5V \end{cases}$
		Max.	770	770	770	770	770	mV	I _C = 10mA V _{CE} = 5V

^{*}Collector-emitter saturation voltage at I_C = 10mA for the characteristics going through the operating point I_C = 11mA, V_{CE} = 1V at constant base current.

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

Parameter	Symbol	BC846	BC847	BC848	BC849	BC850	Unit	Conditions
Static forward Group VI current transfer ratio	h _{FE} Min. Typ. Max.	75 110 150	75 110 150	75 110 150	-	-		$\begin{cases} I_C = 2mA \\ V_{CE} = 5V \end{cases}$
Group A	Тур.	90	90	90	_	_		I _C = 0.01mA V _{CE} = 5V
	Min. Тур. Мах.	110 180 220	110 180 220	110 180 220				$ \begin{cases} I_C = 2mA \\ V_{CE} = 5V \end{cases} $
	Тур.	120	120	120	-	-		I _C = 100mA V _{CE} = 5V
Group B	Тур.	150	150	150	150	150		I _C = 0.01mA V _{CE} = 5V
	Min. Typ. Max.	200 290 450	200 290 450	200 290 450	200 290 450	200 290 450		$\begin{cases} I_C = 2mA \\ V_{CE} = 5V \end{cases}$
	Тур.	200	200	200	-	-		I _C = 100mA V _{CE} = 5V
Group C	Тур.	· _	270	270	270	270		I _C = 0.01mA V _{CE} = 5V
	Min. Typ. Max.	-	420 500 800	420 500 800	420 500 800	420 500 800		$\begin{cases} I_C = 2mA \\ V_{CE} = 5V \end{cases}$
	Тур.	_	-	400	-	-		I _C = 100mA V _{CE} = 5V
Transition frequency	f _T Typ.	300	300	300	300	300	MHz	I _C = 10mA V _{CE} = 5V f = 100MHz
Collector-base capacitance	C _{obo} Typ. Max.		2.5 4.5	2.5 4.5	2.5 4.5	2.5 4.5	pF pF	} V _{CB} = 10V } f = 1MHz

CHARACTERISTICS (cont.)

Parameter	Sy	mbol	BC846	BC847	BC848	BC849	BC850	Unit	Conditions
Emitter-base capacitance	C _{ibo}	Тур.	9	9	9	9	9	pF	V _{EB} =0.5V f=1MHz
Noise figure	N	Typ. Max.	2 10	2 10	2 10	1.2 4	1 4	dB dB	$ \begin{cases} V_{CE} = 5V \\ I_C = 200\mu A \\ R_G = 2k\Omega \\ f = 1kHz \\ \triangle f = 200Hz \end{cases} $
		Typ. Max.	-	-	-	1.4 4	1.4 3	dB dB	$\begin{cases} V_{CE} = 5V \\ I_{C} = 200\mu\text{A} \\ R_{G} = 2k\Omega \\ f = 30\text{Hz to} \\ 15\text{kHz at} \\ -3\text{dB points} \end{cases}$
Equivalent noise voltage	e _n	Max.	-	-	-	135	135	nV	$V_{CE} = 5V$ $I_{C} = 200\mu A$ $R_{G} = 2k\Omega$ $f = 10 \text{ to } 50Hz$ $at - 3dB$ $points$
Dynamic Group VI characteristics	h _{ie}	Min. Typ. Max.	0.4 1.2 2.2	0.4 1.2 2.2	0.4 1.2 2.2	-	-	kΩ kΩ kΩ	
Group A		Min. Typ. Max.	1.6 2.7 4.5	1.6 2.7 4.5	1.6 2.7 4.5			kΩ kΩ kΩ	
Group B		Min. Typ. Max.	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	kΩ kΩ	
Group C		Min. Typ. Max.	- - -	- - -	6 8.7 15	6 8.7 15	6 8.7 15	kΩ kΩ kΩ	
Group VI Group A Group B Group C	h _{re}	Typ. Typ. Typ. Typ.	2.5 1.5 2 -	2.5 1.5 2 -	2.5 1.5 2 3	- 2 3	7 1	×10 ⁻⁴ ×10 ⁻⁴ ×10 ⁻⁴ ×10 ⁻⁴	
Group VI	h _{fe}	Min. Typ. Max.	75 110 150	75 110 150	75 110 150	- - -	- - -		V _{CE} = 5V I _C = 2mA f = 1kHz
Group A		Min. Typ. Max.	125 220 260	125 220 260	125 220 260				f=1kHz
Group B		Min. Typ. Max.	240 330 500	240 330 500	240 330 500	240 330 500	240 330 500		
Group C		Min. Typ. Max.	-	450 600 900	450 600 900	450 600 900	450 600 900		
Group VI	h _{oe}	Typ. Max.	20 40	20 40	20 40	_	-	μS μS	
Group A		Typ. Max.	18 30	18 30	18 30			μS μS	
Group B		Typ. Max.	30 60	30 60	30 60	30 60	30 60	μS μS	
Group C		Typ. Max.	-	_	60 110	60 110	60 110	μS μS	

Devices are identified by a code on the body of the device

BC846A	 	 	 	 	 	 1A
BC846B	 	 	 	 	 	 1B
BC847A	 	 	 	 	 	 1E
BC847B	 	 	 	 	 	 1F
BC847C	 	 	 	 	 	 1G
BC848A	 	 	 	 	 	 1J
BC848B	 	 	 	 	 	 1K
BC848C	 	 	 	 	 	 1L
BC849B	 	 	 	 	 	 2B
BC849C	 	 	 	 	 	 2C
BC850B	 	 	 	 	 	 2F
BC850C	 	 	 	 	 	 2G

PNP silicon planar general purpose transistors

BC856 BC857 BC858 BC859 BC860

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BC856	BC857	BC858	BC859	BC860	Unit
Collector-base voltage	V _{CBO}	-80	-50	-30	-30	-50	٧
Collector-emitter voltage	V _{CES}	-80	-50	-30	-30	-50	٧
Collector-emitter voltage	V _{CEO}	-65	-45	-30	-30	-45	٧
Emitter-base voltage	V _{EBO}	-5	-5	-5	-5	-5	٧
Collector current	Ic	-100	-100	-100	-100	-100	mA
Collector current (peak)	Ісм	-200	-200	-200	-200	-200	mA
Base current (peak)	I _{BM}	-200	-200	-200	-200	-200	mA
Emitter current (peak)	-I _{EM}	-200	-200	-200	-200	-200	mA

CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated).

Parameter	Sym	bol	BC856	BC857	BC858	BC859	BC860	Unit	Conditions
Collector cut-off current	I _{CBO}	Max. Max.	-15 -4	-15 -4	-15 -4	-15 -4	-15 -4	nΑ μΑ	$V_{CB} = -30V$ $V_{CB} = -30V$ $T_{amb} = 150 {}^{\circ}\text{C}$
Collector-emitter saturation voltage	V _{CE(sat)}	Typ. Max.	-75 -300	-75 -300	- 75 - 3000	-75 -250	-75 -250	mV mV	
		Typ. Max.	-250 -650	-250 -650	-250 -650	-250 -650	-250 -650	mV mV	$\begin{cases} I_C = -100\text{mA} \\ I_B = -5\text{mA} \end{cases}$
		Typ. Max.	-300 -600	-300 -600	-300 -600	-300 -600	-300 -600	mV mV	} I _C = -10mA*
Base-emitter saturation voltage	V _{BE(sat)}	Тур. Тур.	-700 -850	-700 -850	-700 -850	-700 -850	-700 -850	mV mV	$I_{C} = -10mA$ $I_{B} = -0.5mA$ $I_{C} = -100mA$ $I_{B} = -5mA$
Base-emitter voltage	V _{BE}	Min. Typ. Max.	-600 -650 -750	-600 -650 -750	-600 -650 -750	-580 -650 -750	-580 -650 -750	m∨ m∨ m∨	$\begin{cases} I_C = -2mA \\ V_{CE} = -5V \end{cases}$
		Max.	-820	-820	-820	-820	-820	mV	$I_{C} = -10 \text{mA}$ $V_{CE} = -5 \text{V}$

^{*}Collector-emitter saturation voltage at I_C = 10mA for the characteristics going through the operating point I_C = 11mA, V_{CE} = 1V at constant base current.

 $\textbf{CHARACTERISTICS} \text{ (at } T_{amb} = 25\,^{\circ}\text{C unless otherwise stated)}.$

Parameter	Symbol	BC856	BC857	BC858	BC859	BC860	Unit	Conditions
Static forward Group VI current transfer ratio	h _{FE} Min. Typ. Max.	75 110 150	75 110 150	75 110 150	_ _ _	- - -		$\begin{cases} I_C = -2mA \\ V_{CE} = -5V \end{cases}$
Group A	Тур.	90	90	90	_	-		I _C = -0.01mA V _{CE} = -5V
	Min. Typ. Max.	125 180 250	125 180 250	125 180 250	125 180 250	125 180 250		$\begin{cases} I_{C} = -2mA \\ V_{CE} = -5V \end{cases}$
	Тур.	120	120	120	-	_		I _C = -100mA V _{CE} = -5V
Group B	Тур.	150	150	150	150	150		I _C = -0.01mA V _{CE} = -5V
	Min. Typ. Max.	220 290 475	220 290 475	220 290 475	220 290 475	220 290 475		$\begin{cases} I_C = -2mA \\ V_{CE} = -5V \end{cases}$
	Тур.	200	200	200	_	-		I _C = -100mA V _{CE} = -5V
Group C	Тур.	-	270	270	270	270		I _C = -0.01mA V _{CE} = -5V
	Min. Typ. Max.	_ _ _	420 500 800	420 500 800	420 500 800	420 500 800		$ \begin{cases} I_C = -2mA \\ V_{CE} = -5V \end{cases} $
	Тур.	-	-	400	_	_		I _C = -100mA V _{CE} = -5V
Transition frequency	f _T Typ.	150	150	150	300	300	MHz	I _C = -10mA V _{CE} = -5V f = 100MHz
Collector-base capacitance	C _{obo} Typ.	4.5	4.5	4.5	4.5	4.5	pF	} V _{CB} = −10V f = 1MHz

CHARACTERISTICS (cont.).

Parameter	Symbol	BC856	BC857	BC858	BC859	BC860	Unit	Conditions
Noise figure	N Typ. Max.	2 10	2 10	2 10	1 4	1 4	dB dB	$ \begin{cases} V_{CE} = -5V \\ I_C = -200\mu A \\ R_G = 2k\Omega \\ f = 1kHz \\ \triangle f = 200Hz \end{cases} $
	Typ. Max.	-	_	<u>-</u>	1.2 4	1 3	dB dB	$\begin{cases} V_{CE} = -5V \\ I_{C} = -200\mu\text{A} \\ R_{G} = 2k\Omega \\ f = 30\text{Hz to} \\ 15\text{kHz at} \\ -3\text{dB points} \end{cases}$
Equivalent noise voltage	e _n Max.	_	_	-	-110	-110	nV	$\begin{split} &V_{CE} = -5V \\ &I_{C} = -200\mu\text{A} \\ &R_{G} = 2k\Omega \\ &f = 10 \text{ to } 50\text{Hz} \\ &\text{at } -3\text{dB} \\ &\text{points} \end{split}$
Dynamic Group VI characteristics	h _{ie} Min. Typ. Max.	0.4 1.2 2.2	0.4 1.2 2.2	0.4 1.2 2.2			kΩ kΩ kΩ	
Group A	Min. Typ. Max.	1.6 2.7 4.5	1.6 2.7 4.5	1.6 2.7 4.5	1.6 2.7 4.5	1.6 2.7 4.5	kΩ kΩ kΩ	
Group B	Min. Typ. Max.	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	3.2 4.5 8.5	kΩ kΩ kΩ	
Group C	Min. Typ. Max.	_ _ _	- - -	6 8.7 15	6 8.7 15	6 8.7 15	kΩ kΩ kΩ	
Group VI Group A Group B Group C	h _{re} Typ. Typ. Typ. Typ. Typ.	2.5 1.5 2 -	2.5 1.5 2 -	2.5 1.5 2 3	- 1.5 2 3	- 1.5 2 3	×10 ⁻⁴ ×10 ⁻⁴ ×10 ⁻⁴ ×10 ⁻⁴	
Group VI	h _{fe} Min. Typ. Max.	75 110 150	75 110 150	75 110 150	- - -	-		$V_{CE} = -5V$ $I_{C} = -2mA$
Group A	Min. Typ. Max.	125 220 260	125 220 260	125 220 260	125 220 260	125 220 260		f=1kHz
Group B	Min. Typ. Max.	240 330 500	240 330 500	240 330 500	240 330 500	240 330 500		
Group C	Min. Typ. Max.	- - -	450 600 900	450 600 900	450 600 900	450 600 900		
Group VI	h _{oe} Typ. Max.	20 40	20 40	20 40	-	-	μS μS	
Group A	Typ. Max.	18 30	18 30	18 30	18 30	18 30	μS μS	
Group B	Typ. Max.	30 60	30 60	30 60	30 60	30 60	μS μS	
Group C	Typ. Max.	_	-	60 110	60 110	60 110	μS μS	

Devices are identified by a code on the body of the device

BC856A																							ЗА
BC856B																							ЗВ
BC857A																							3E
BC857B																							3F
BC857C																							3G
BC858A																							3J
BC858B	Ĺ			_																			3K
BC858C	į.								_														3L
BC859A	Ċ						-																4A
BC859B	Ī		Ī		-			i															4B
BC859C	·	•	•	•				Ī				Ī					-						4C
BC860A	•	•	•	•			•	•		•	•	Ī	•	Ī	Ī	Ī		Ī					4E
BC860B	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ċ		Ī			4F
BC860C	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		4G
DCCCCC	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•		. •

PNP silicon Darlington transistors

BCV26 BCV46

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCV26	BCV46	Unit
Collector-Base Voltage	V _{CBO}	- 40	-80	V
Collector-Emitter Voltage	V _{CEO}	- 30	- 60	V
Emitter-Base Voltage	V _{EBO}	_	10	V
Continuous Collector Current	Ic	– {	500	mA
Peak Collector Current	Ісм	-8	300	mA
Base Current	I _B	<i>- ·</i>	100	mA
Peak Base Current	I _{BM}	-2	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

D			BCV2	6		BCV4	6		
Parameter	Symbol			Max.				Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-40	_	_	-80	_	_	٧	$I_C = -100\mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 30	_	_	- 60	-	_	٧	$I_C = -10 \text{mA}, I_B = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	- 10	_	_	- 10	_	_	٧	$I_E = -10\mu A, I_C = 0$
Collector cut-off current	Ісво	-	_	- 100 - 10	_	_	- 100 - 10	nΑ μΑ	$\begin{split} &V_{CB} = -30 \text{V}, \ I_E = 0 \\ &V_{CB} = -60 \text{V}, \ I_E = 0 \\ &V_{CB} = -30 \text{V} \\ &T_A = 150 \text{°C} \\ &V_{CB} = -60 \text{V} \\ &T_A = 150 \text{°C} \end{split}$
Emitter cut-off current	I _{EBO}	_	_	- 100	_	_	- 100	nΑ	$V_{EB} = -4V$

ELECTRICAL CHARACTERISTICS (continued).

Parameter	Symbol		BCV2	6		BCV4	6	Unit	Test Conditions
T dramoto.	C 7D C.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Static forward current transfer	h _{FE} *	4K	-	_	2K	_	_		$I_C = -100 \mu A$ $V_{CF} = -1 V$
ratio		10K	_	_	4K	_	_		$I_C = -10\text{mA}$ $V_{CE} = -5\text{V}$
		20K	-	_	10K	_	_		I _C = - 100mA
		4K	-	-	2K	_	_		$V_{CE} = -5V$ $I_{C} = -500mA$ $V_{CE} = -5V$
Collector-emitter saturation voltage	V _{CE(sat)} *	_	_	-1.0	_	_	- 1.0	>	$I_C = -100mA$ $I_B = -0.1mA$
Collector-base saturation voltage	V _{BE(sat)} *	_	_	- 1.5	_	_	- 1.5	>	$I_C = -100mA$ $I_B = -0.1mA$
Transition frequency	f⊤	_	200	_	_	200		MHz	$I_C = -50\text{mA}$ $V_{CE} = -5V$ $f = 20 \text{ MHz}$
Output capacitance	C _{obo}	_	4.5	_	_	4.5	_	pF	V _{CB} = -10V f = 1 MHz

^{*}Measured under pulsed conditions. Pulse width = $300\mu s$. Duty cycle $\leqslant 2\%$.

De	evice	s are	iden	tified	l by a	a cod	e on	the b	ody	of the	e dev	/ice.	
BCV26												٠	ZFD
BCV46													ZFE

NPN silicon Darlington transistors

BCV27 BCV47

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCV27	BCV47	Unit
Collector-Base Voltage	V _{CBO}	40	80	V
Collector-Emitter Voltage	V _{CEO}	30	60	V
Emitter-Base Voltage	V _{EBO}	1	0	V
Continuous Collector Current	I _C	50	00	mA
Peak Collector Current	I _{CM}	80	00	mA
Base Current	I _B	10	00	mA
Peak Base Current	I _{BM}	20	00	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25 \,^{\circ}\text{C}$ unless otherwise stated).

Parameter	Symbol		BCV2	7		BCV4	7	Unit	Test Conditions
	,	Min.	Тур.	Max.	Min.	Тур.	Max.	0	
Collector-base breakdown voltage	V _{(BR)CBO}	40	_	_	80	1	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	_	_	60	-	-	٧	$I_C = 10mA, I_B = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	10		_	10	_	_	٧	$I_E = 10\mu A, I_C = 0$
Collector cut-off current	Ісво	_	_	100 - 10	-	_	100	nΑ μΑ	$V_{CB} = 30V, I_E = 0$ $V_{CB} = 60V, I_E = 0$ $V_{CB} = 30V, T_A = 150°C$ $V_{CB} = 60V, T_A = 150°C$
Emitter cut-off current	I _{EBO}	_	_	100	_	_	100	nA	V _{EB} = 4V

ELECTRICAL CHARACTERISTICS (continued).

Parameter	Symbol		BCV2	7		BCV4	7	Unit	Test Conditions
, aramoto.	0 ,20.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Static forward current transfer ratio	h _{FE} *	4K 10K 20K 4K	 	_ _ _ _	2K 4K 10K 2K	_ _ _ _	_ _ _ _		$\begin{split} &I_{C} = 100 \mu A, \ V_{CE} = 1V \\ &I_{C} = 10 m A, \ V_{CE} = 5V \\ &I_{C} = 100 m A, \ V_{CE} = 5V \\ &I_{C} = 500 m A, \ V_{CE} = 5V \end{split}$
Collector-emitter saturation voltage	V _{CE(sat)} *	_	_	1.0			1.0	٧	$I_C = 100mA$ $I_B = 0.1mA$
Collector-base saturation voltage	V _{BE(sat)} *	_	_	1.5	_	_	1.5	V	$I_C = 100mA$ $I_B = 0.1mA$
Transition frequency	f _T	_	170	_	_	170		MHz	$I_C = 50 \text{mA}, \ V_{CE} = 5 \text{V}$ f = 20 MHz
Output capacitance	C _{obo}	_	3.5	_	_	3.5		pF	V _{CB} = 10V f = 1 MHz

^{*}Measured under pulsed conditions. Pulse width = $300\mu s$. Duty cycle $\leqslant 2\%$.

ı	Devic	es ar	e ider	ntifie	d by	a coo	le on	the t	oody	of th	e dev	rice.	
BCV2	7												ZFF
BCV4	7.												ZFG

NPN silicon planar small signal transistors

BCV71 BCV72

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCV71 & BCV72	Unit
Collector 3ase Voltage	V _{CBO}	80	V
Collector-Emitter Voltage (I _C = 2 mA)	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	I _C	100	mA
Peak Collector Current	Ісм	200	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

			В	CV71 &	72		
Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector- current	Collector-base cut-off current		_	_	100 10	nA μA	$I_E = 0, V_{CB} = 20V$ $I_E = 0, V_{CB} = 20V$ $T_j = 100$ C
Base-emit	ter voltage	V _{BE}	550	_	750	mV	$I_C = 2 \text{ mA}, V_{CE} = 5 \text{ V}$
Collector- saturation		V _{CE(sat)}	_	120 210	250 —	mV mV	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
Base-emit voltage	ter saturation	V _{BE(sat)}	_	750 850	_	mV mV	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
Static forward current	BCV71	h _{FE}	_ 110	90 -	_ 220		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
transfer ratio	BCV72	h _{FE}	_ 200	150 —	_ 450		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
Transition	frequency	f _T	-	300	_	MHz	I _C =10mA, V _{CE} =5V f=35MHz
Collector	capacitance	C _{Tc}	_	_	4	pF	I _E = I _e = 0, V _{CB} = 10V f = 1 MHz
Noise figu	ire	N	_	-	10	dB	$I_C = 200 \mu A, V_{CE} = 5V$ $R_s = 2 k\Omega, f = 1 kHz$ B = 200 Hz

BCV71	 	 	 	 	 	 K7
BCV72	 	 	 	 	 	 K8
BCV71R	 	 	 	 	 	 K6
BCV72R	 	 	 	 	 	 K9

PNP silicon planar small signal transistors

BCW29 BCW30

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW29 & BCW30	Unit
Collector-Base Voltage	V _{CBO}	-30	٧
Collector-Emitter Voltage	V _{CES}	-30	٧
Collector-Emitter Voltage (-I _C =2mA)	V _{CEO}	-20	٧
Emitter-Base Voltage	V _{EBO}	-5	٧
Collector Current	Ic	-100	mA
Peak Collector Current	Ісм	-200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise stated).

			BCW	29 & B	CW30		O a saliti a sa
Par	ameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector- current	base cut-off	I _{CBO}	_	_	-100 -10	nΑ μΑ	$I_E = 0, V_{CB} = -20V$ $I_E = 0, V_{CB} = -20V$ $T_j = 100 ^{\circ}C$
Base-emit	ter voltage	V _{BE}	-600	-	-750	mV	$I_C = -2.0 \text{ mA}, V_{CE} = -5 \text{ V}$
Collector- saturation		V _{CE(sat)}	_	- 80 - 150	- 300 -	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Base-emit voltage	ter saturation	V _{BE(sat)}	_	- 720 - 810	_	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Static forward current	BCW29	h _{FE}	_ 120	90	_ 260		$I_C = -10 \mu A, V_{CE} = -5V$ $I_C = -2.0 \text{ mA}, V_{CE} = -5V$
transfer	BCW30	h _{FE}	_ 215	150 -	_ 500		$I_C = -10 \mu A, V_{CE} = -5V$ $I_C = -2.0 \text{ mA}, V_{CE} = -5V$
Transition	frequency	f _T	_	150	_	MHz	$I_C = -10 \text{mA}, V_{CE} = -5 \text{V}$ f = 35MHz
Collector	capacitance	C _{Tc}	_	-	7	pF	$I_E = I_e = 0$, $V_{CB} = -10V$ f = 1 MHz
Noise figu	ire	N	_	_	10	dB	$I_{C} = -200 \mu A$, $V_{CE} = -5V$ $R_{s} = 2 k \Omega$, $f = 1 kHz$ B = 200 Hz

BCW29						
BCW30 BCW29R						
BCW29R						

NPN silicon planar small signal transistors

BCW31 BCW32 BCW33

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW31, 32 & 33	Unit
Collector-Base Voltage	V _{CBO}	30	V
Collector-Emitter Voltage (I _C = 2.0 mA)	V _{CEO}	20	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	Ic	100	mA
Peak Collector Current	Ісм	200	mA

CHARACTERISTICS (at T_i = 25°C unless otherwise stated).

romotor	Cumbal	BCV	V31, 32	& 33	11	0 "
rameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
base cut-off	I _{CBO}		_	100	nA ^	I _E =0, V _{CB} =20V
				10	"	$ I_{E} = 0, V_{CB} = 20V$ $ T_{j} = 100 ^{\circ} C$
tter voltage	V _{BE}	550	_	700	mV	$I_C = 2 \text{ mA}, V_{CE} = 5 \text{ V}$
emitter	V _{CE(sat)}	_	120	250	mV	$I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA}$
					mV	$I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
tter saturation	V _{BE(sat)}	-	750	_	mV	I _C =10mA, I _B =0.5mA
			850		mv	$I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
BCW31	h _{FE}	110	90	220		$I_C = 10 \mu A, V_{CE} = 5V$
		110		220		$I_C = 2 \text{ mA}, V_{CE} = 5V$
BCW32	h _{FE}	200	150	450		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
201100		200		450		
RCM33	h _{FE}	420	270 —	800		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
frequency	f_		300		MUZ	
noquency	•	_	300		IVITIZ	$I_C = 10 \text{ mA}, V_{CE} = 5V$ f=35MHz
capacitance	C _{Tc}	_	_	4	pF	I _E = I _e = 0, V _{CB} = 10V f = 1 MHz
ıre	N	-		10	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_s = 2 k \Omega$, $f = 1 kHz$ B = 200 Hz
	emitter voltage emitter voltage ter saturation BCW31 BCW32 BCW33 frequency capacitance	the base cut-off I_{CBO} ter voltage V_{BE} emitter $V_{CE(sat)}$ ter saturation $V_{BE(sat)}$ BCW31 I_{FE} BCW32 I_{FE} BCW33 I_{FE} frequency I_{T} capacitance I_{TC}	Symbol Min. Min.	Symbol Min. Typ.	Min. Iyp. Max.	Symbol Min. Typ. Max. Unit

NPN silicon planar small signal transistor

BCW60

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW60	Unit
Collector-Emitter Voltage	V _{CES}	32	V
Collector-Emitter Voltage	V _{CEO}	32	. V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	I _C	200	mA
Base Current	I _B	50	mA

CHARACTERISTICS (at 25°C unless otherwise stated).

Para	meter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Collector-ei breakdown		V _{(BR)CEO}	32	_	_	٧	I _{CEO} = 2 mA
Emitter-bas voltage	e breakdown	V _{(BR)EBO}	5	_	_	٧	Ι _{ΕΒΟ} = 1 μΑ
Collector-er current	mitter cut-off	I _{CES}	=	-	20 20	nΑ μΑ	V _{CES} = 32V V _{CES} = 32V, T _{amb} = 150°C
Emitter-base cut-off current		I _{EBO}	_	_	20	nA	V _{EBO} = 4V
Collector-emitter saturation voltage		V _{CE(sat)}	_	0.12 0.20	0.35 0.55	V	I _C =10mA, I _B =0.25mA I _C =50mA, I _B =1.25mA
Base-emitter saturation voltage		V _{BE(sat)}	0.60 0.70	0.70 0.83	0.85 1.05	\ \ \	I _C =10mA, I _B =0.25mA I _C =50mA, I _B =1.25mA
Base-emitte	er voltage	V _{BE}	0.55 —	0.52 0.65 0.78	0.75 —	V V	$I_C 10 \mu A$, $V_{CE} = 5V$ $I_C = 2 mA$, $V_{CE} = 5V$ $I_C = 50 mA$, $V_{CE} = 1V$
Static forward current	BCW60A	h _{FE}	120 50	78 170 –	220 —		$I_C = 10 \mu A$, $V_{CE} = 5V$ $I_C = 2 mA$, $V_{CE} = 5V$ $I_C = 50 mA$, $V_{CE} = 1V$
transfer ratio	BCW60B	h _{FE}	20 180 70	145 250 —	310 —		$I_C = 10 \mu A$, $V_{CE} = 5V$ $I_C = 2 mA$, $V_{CE} = 5V$ $I_C = 50 mA$, $V_{CE} = 1V$
	BCW60C		40 250 90	220 350 —	460 —	-	$I_C = 10 \mu A$, $V_{CE} = 5V$ $I_C = 2 mA$, $V_{CE} = 5V$ $I_C = 50 mA$, $V_{CE} = 1V$
	BCW60D		100 380 100	300 500 —	630 –		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 m A, V_{CE} = 5V$ $I_C = 50 m A, V_{CE} = 1V$

CHARACTERISTICS (continued).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Transition frequency	f _T	125	250	_	MHz	I _C =10mA, V _{CE} =5V f=100MHz
Collector-base capacitance	C _{cbo}	_	_	4.5	pF	V _{CBO} = 10V, f = 1 MHz
Emitter-base capacitance	C _{ebo}	_	8	_	pF	$V_{EBO} = 0.5V$, $f = 1 MHz$
Noise figure	N	_	2	6	dB	$I_C = 0.2 \text{ mA}, V_{CE} = 5V$ $R_G = 2 \text{ k}\Omega, f = 1 \text{ kHz}$ $\triangle f = 200 \text{ Hz}$
Switching times Delay time Rise time Turn-on time Storage time Fall time Turn-off time	t _d t _r t _{on} t _s t _f t _{off}		35 50 85 400 80 480	- 150 - - 800	ns ns ns ns ns	$\begin{cases} I_{C}:I_{B1}:-I_{B2}=10:1:1\text{mA} \\ R_{1}=5k\Omega,\ R_{2}=5k\Omega \\ V_{BB}=3.6\text{V},\ R_{L}=990\Omega \end{cases}$

FOUR TERMINAL NETWORK DATA ($I_C = 2 \, \text{mA}$, $V_{CE} = 5 \, \text{V}$, $f = 1 \, \text{kHz}$).

	h _{FE}	Grou	рΑ	h _{Fl}	h _{FE} Group B		h _{FE}	Grou	рС	h _{FE}	Grou	p D	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
h _{11e}	1.6	2.7	4.5	2.5	3.6	6.0	3.2	4.5	8.5	4.5	7.5	12	К
h _{12e}	<u> </u>	1.5	_	_	2	_	_	2	_	_	3	_	10 ⁻⁴
h _{21e}	_	200	_	_	260	_	_	330	_	_	520	_	
h _{22e}	_	18	30	_	24	50	_	30	60	_	50	100	μs

SWITCHING CIRCUIT

BCW60A	 	 	 	 	 	AA
BCW60B	 	 	 	 	 	AB
BCW60C	 	 	 	 	 	AC
BCW60D						
BCW60AR	 	 	 	 	 	CR
BCW60BR						
BCW60CR						AR
BCW60DR	 	 	 	 	 	BR

PNP silicon planar small signal transistor

BCW61

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW61	Unit
Collector-Emitter Voltage	V _{CES}	-32	V
Collector-Emitter Voltage	V _{CEO}	-32	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current	l _c	-200	mA
Base Current	I _B	-50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Para	meter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-e breakdown		V _{(BR)CEO}	-32	_	_	V	$I_{CEO} = -2 \text{mA}$
Emitter-bas voltage	e breakdown	V _{(BR)EBO}	-5	_	_	٧	$I_{EBO} = -1 \mu A$
Collector-er current	mitter cut-off	I _{CES}	_	_ _	-20 -20	nΑ μΑ	V _{CES} = -32V V _{CES} = -32V, T _{amb} =150°C
Emitter-bas current	e cut-off	I _{EBO}	_	ı	- 20	nA	$V_{EBO} = -4V$
Collector-ei saturation		V _{CE(sat)}	_		-0.25 -0.55	>>	$I_C = -10$ mA, $I_B = -0.25$ mA $I_C = -50$ mA, $I_B = -1.25$ mA
Base-emitte voltage	Base-emitter saturation voltage				- 0.85 - 1.05	>>	$I_C = -10$ mA, $I_B = -0.25$ mA $I_C = -50$ mA, $I_B = -1.25$ mA
Base-emitte	er voltage	V _{BE}	-0.6 -	- 0.55 - 0.65 - 0.72	- -0.75 -	<<<	$\begin{split} I_C &= -10\mu\text{A}, \ V_{CE} = -5\text{V} \\ I_C &= -2\text{mA}, \ V_{CE} = -5\text{V} \\ I_C &= -50\text{mA}, \ V_{CE} = -1\text{V} \end{split}$
Static forward current transfer	BCW61A	h _{FE}	120 60	140 170 –	_ 220 _		$\begin{split} I_C &= -10 \mu\text{A}, \ V_{CE} = -5 V \\ I_C &= -2 \text{mA}, \ V_{CE} = -5 V \\ I_C &= -50 \text{mA}, \ V_{CE} = -1 V \end{split}$
ratio	BCW61B	h _{FE}	30 180 80	200 250 —	310 —		$\begin{split} &I_{C} = -10 \mu A, \ V_{CE} = -5 V \\ &I_{C} = -2 mA, \ V_{CE} = -5 V \\ &I_{C} = -50 mA, \ V_{CE} = -1 V \end{split}$
·	BCW61C		40 250 100	270 350 —	460 —		$I_C = -10 \mu A$, $V_{CE} = -5 V$ $I_C = -2 mA$, $V_{CE} = -5 V$ $I_C = -50 mA$, $V_{CE} = -1 V$
	BCW61D		100 380 110	340 500 –	630 		$I_C = -10 \mu A$, $V_{CE} = -5 V$ $I_C = -2 m A$, $V_{CE} = -5 V$ $I_C = -50 m A$, $V_{CE} = -1 V$

CHARACTERISTICS (continued).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Transition frequency	f _T	-	180	_	MHz	$I_C = -10 \text{ mA}, V_{CE} = -5V$ f=100 MHz
Collector-base capacitance	C _{cbo}	-	_	6	pF	$V_{CBO} = -10V$, $f = 1$ MHz
Emitter-base capacitance	C _{ebo}	_	11	_	pF	$V_{EBO} = -0.5V$, $f = 1 MHz$
Noise figure	N	-	2	6	dB	$ \begin{array}{l} I_C = -0.2 \text{mA}, \ V_{CE} = -5 V \\ R_G = 2 k\Omega, \ f = 1 \text{kHz} \\ \triangle f = 200 \text{Hz} \end{array} $
Switching times Delay time Rise time Turn-on time Storage time Fall time Turn-off time	t _d t _r t _{on} t _s t _f t _{off}	_ _ _ _ _	35 50 85 400 80 480	_ 150 _ _ _ 800	ns ns ns ns ns	$\begin{cases} -I_{C}:-I_{B1}:I_{B2}=10:1:1mA\\ R_{1}=R_{2}=5k\Omega\\ V_{BB}=-3.6V,\ R_{L}=990\Omega \end{cases}$

FOUR TERMINAL NETWORK DATA ($I_C = 2 \, \text{mA}$, $V_{CE} = 5 \, \text{V}$, $f = 1 \, \text{kHz}$).

	h _{FE}	Grou	рΑ	h _{FE}	h _{FE} Group B			h _{FE} Group C			Grou	p D	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
h _{11e}	1.6	2.7	4.5	2.5	3.6	6.0	3.2	4.5	8.5	4.5	7.5	12	K
h _{12e}	_	1.5	_		2	_	_	2	_	_	3	-	10 ⁻⁴
h _{21e}	_	200	_	_	260	_	_	330	_	_	520	_	
h _{22e}		18	30	_	24	50	_	30	60	_	50	100	μs

SWITCHING CIRCUIT

BCW61A	 	 	 	 	 	BA
BCW61B	 	 	 	 	 	BB
BCW61C	 	 	 	 		BC
BCW61D	 	 	 	 		BD
BCW61AR	 	 		 	 	. CA
BCW61BR		 	 	 	 	CB
BCW61CR	 	 	 	 		CC
BCW61DR	 					CD

NPN silicon planar medium power transistors

BCW65 BCW66

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW65	BCW66	Unit
Collector-Emitter Voltage	V _{CES}	60	75	V
Collector-Emitter Voltage	V _{CEO}	32	45	V
Emitter-Base Voltage	V _{EBO}	5	5	V
Collector Current	Ic	800	800	mA
Peak Collector Current (10ms)	I _{CM}	1000	1000	mA
Base Current	I _B	100	100	mA

CHARACTERISTICS (at $\rm T_{j}\!=\!25\,^{o}C$ unless otherwise stated).

Parar	neter	Symbol	BCW	65 & B	CW66	Unit	Test Conditions
		, , , , , , , , ,	Min.	Тур.	Max.		
Collector-	BCW65	V _{(BR)CEO}	32	_	_	٧	I _{CEO} = 10 mA
emitter breakdown voltage	BCW66		45	_	_	٧	I _{CEO} = 10 mA
Collector-	BCW65	V _{(BR)CES}	60	_	_	٧	I _C =10 μA
emitter breakdown voltage			75	_	_	V	$I_C = 10 \mu A$
Emitter-base voltage	Emitter-base breakdown voltage		5	_	_	٧	I _{EBO} = 10 μA
Collector- emitter cut-off	BCW65	I _{CES}	_	_	20 20	nΑ μΑ	V _{CES} = 32V V _{CES} = 32V, T _{amb} = 150°C
current	BCW66	I _{CES}	_	_	20 20	nΑ μΑ	V _{CES} = 45V V _{CES} = 45V, T _{amb} = 150°C
Emitter-base cut-off current		I _{EBO}	_	_	20	nA	V _{EBO} = 4V
Collector-emitter saturation voltage		V _{CE(sat)}	_	_	0.3 0.7	V	I _C = 100 mA, I _B = 10 mA I _C = 500 mA, I _B = 50 mA
Base-emitte voltage	Base-emitter saturation voltage		_	_	2.0	V	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$

CHARACTERISTICS (continued).

Parar	neter	Symbol	BCW	65 & B	CW66	Unit	Test Conditions
		7	Min.	Тур.	Max.		
Static forward current transfer	BCW65A BCW66F	h _{FE}	35 75 100 35	- 160 -	_ _ 250 _		$\begin{split} &I_C = 100\mu\text{A}, \ V_{CE} = 10V\\ &I_C = 10\text{mA}, \ V_{CE} = 1V\\ &I_C = 100\text{mA}, \ V_{CE} = 1V\\ &I_C = 500\text{mA}, \ V_{CE} = 2V \end{split}$
ratio	BCW65B BCW66G	h _{FE}	50 110 160 60	_ _ 250 _	- 400 -		$\begin{array}{l} I_C = 100\mu\text{A}, \ V_{CE} = 10\text{V} \\ I_C = 10\text{mA}, \ V_{CE} = 1\text{V} \\ I_C = 100\text{mA}, \ V_{CE} = 1\text{V} \\ I_C = 500\text{mA}, \ V_{CE} = 2\text{V} \end{array}$
	BCW65C BCW66H	h _{FE}	80 180 250 100	- 350 -	- 630 -		$\begin{split} &I_{C}=100\mu\text{A},\ V_{CE}=10V\\ &I_{C}=10\text{mA},\ V_{CE}=1V\\ &I_{C}=100\text{mA},\ V_{CE}=1V\\ &I_{C}=500\text{mA},\ V_{CE}=2V \end{split}$
Transition fr	equency	f _T	100	-	-	MHz	$I_C = 20 \text{ mA}, V_{CE} = 10V$ f = 100 MHz
Collector-ba capacitance	se	C _{cbo}	_	8	12	pF	V _{CBO} =10V, f=1 MHz
Emitter-base	capacitance	C _{ebo}	_	-	80	рF	V _{EBO} = 0.5V, f=1 MHz
Noise figure		N	_	2	10	dB	I_C = 0.2 mA, V_{CE} = 5V R_g = 1 k Ω , f = 1 kHz Δf = 200 Hz
Switching times Turn-on time Turn-off time		t _{on} t _{off}		<u> </u>	100 400	ns ns	$\begin{cases} I_{C} = 150 \text{mA} \\ I_{B1} = -I_{B2} = 15 \text{mA} \\ R_{L} = 150 \Omega \end{cases}$

Devices are identified	by	a code or	n the bod	ly of the device
------------------------	----	-----------	-----------	------------------

EΑ
EB
EC
EF
EG
EΗ
4V
5V
6V
7P
5T
7M

PNP silicon planar medium power transistors

BCW67 BCW68

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW67	BCW68	Unit
Collector-Emitter Voltage	V _{CES}	-45	-60	V
Collector-Emitter Voltage	V _{CEO}	-32	-45	٧
Emitter-Base Voltage	V _{EBO}	-5	-5	٧
Collector Current	I _C	-800	-800	mA
Peak Collector Current (10ms)	I _{CM}	-1000	-1000	mA
Base Current	I _B	-100	-100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parar	neter	Symbol	BCW	67 & B	CW68	Unit	Test Conditions
			Min.	Тур.	Max.		
Collector-	BCW67	V _{(BR)CEO}	-32	_	_	٧	I _{CEO} = -10 mA
emitter breakdown voltage	BCW68		-45	_	_	V	I _{CEO} = -10 mA
Collector- emitter	BCW67	V _{(BR)CES}	-45	_	_	· V	I _C = -10 μA
breakdown voltage	BCW68		-60	_	_	٧	$I_C = -10 \mu\text{A}$
Emitter-base voltage	Emitter-base breakdown voltage		-5	_	_	V	$I_{EBO} = -10 \mu\text{A}$
Collector- emitter cut-off	BCW67	I _{CES}	_	_	-20 -10	nΑ μΑ	V _{CES} = -32V V _{CES} = -32V, T _{amb} =150°C
current	BCW68	I _{CES}	-	-	- 20 - 10	nΑ μΑ	$V_{CES} = -45V$ $V_{CES} = -45V$, $T_{amb} = 150^{\circ}C$
Emitter-base	Emitter-base cut-off current			_	- 20	nA	$V_{EBO} = -4V$
Collector-emitter saturation voltage		V _{CE(sat)}	_	_ _0.7	-0.3 -	V V	$I_C = -100$ mA, $I_B = -10$ mA $I_C = -500$ mA, $I_B = -50$ mA
Base-emitte voltage	r saturation	V _{BE(sat)}	_	_	-2.0	V	$I_C = -500 \text{mA}, I_B = -50 \text{mA}$

CHARACTERISTICS (continued).

Para	meter	Symbol	BCW	67 & B	CW68	Unit	Test Conditions
		Cymbo.	Min.	Тур.	Max.	01111	lest Conditions
Static forward current transfer	BCW67A BCW68F	h _{FE}	75 100 35	_ 170 _	_ 250 _		$ \begin{array}{c} I_C = -10\text{mA},\ V_{CE} = -1V \\ I_C = -100\text{mA},\ V_{CE} = -1V \\ I_C = -500\text{mA},\ V_{CE} = -2V \end{array} $
ratio	BCW67B BCW68G	h _{FE}	120 160 60	250 —	400 –		$ \begin{array}{l} I_C = -10\text{mA},\ V_{CE} = -1V \\ I_C = -100\text{mA},\ V_{CE} = -1V \\ I_C = -500\text{mA},\ V_{CE} = -2V \end{array} $
	BCW67C BCW68H	h _{FE}	180 250 100	350 –	630 —		$ \begin{array}{l} I_C = -10 \text{mA}, \ V_{CE} = -1 V \\ I_C = -100 \text{mA}, \ V_{CE} = -1 V \\ I_C = -500 \text{mA}, \ V_{CE} = -2 V \end{array} $
Transition 1	frequency	f _T	100	_	_	MHz	$I_C = -20 \text{ mA}, \ V_{CE} = -10 \text{V}$ f = 100 MHz
Collector-b capacitance		C _{cbo}	_	12	18	pF	$V_{CBO} = -10V$, $f = 1 MHz$
Emitter-bas	e capacitance	C _{ebo}	_	_	80	pF	$V_{EBO} = -0.5V$, $f = 1 MHz$
Noise figure		N	_	2	10	dB	$\begin{array}{l} I_C = -0.2\text{mA},\ V_{CE} = -5V\\ R_g = 1k\Omega,\ f = 1kHz\\ \Delta f = 200\text{Hz} \end{array}$
Switching times Turn-on time Turn-off time		t _{on} t _{off}	<u>-</u>	_ _ _	100 400	ns ns	$\begin{cases} I_{C} = -150 \text{ mA} \\ I_{B1} = -I_{B2} = -15 \text{ mA} \\ R_{L} = 150 \Omega \end{cases}$

BCW67A	 	 	 	 	 	 DA
BCW67B	 	 • •	 	 	 	 DB

Devices are identified by a code on the body of the device

BCW67C DC BCW68F DF BCW68G DG BCW68H DH BCW67AR 4W BCW67BR **5W** BCW67CR 6W BCW68FR **7T** BCW68GR **6T** BCW68HR **7N**

PNP silicon planar small signal transistors

BCW69 BCW70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW69 & BCW70	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage	V _{CES}	-50	V
Collector-Emitter Voltage (I _C = -2 mA)	V _{CEO}	-45	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current	I _C	-100	mA
Peak Collector Current	Ісм	-200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise stated).

Paramet	ter	Symbol	BCW	69 & B	CW70	Unit	Test Conditions
		7,	Min.	Тур.	Max.		
Collector-base current	Collector-base cut-off current		_		-100 -10	nΑ μΑ	$I_E = 0$, $V_{CB} = -20V$ $I_E = 0$, $V_{CB} = 20V$ $T_j = 100$ °C
Base-emitter	voltage	V _{BE}	-600	_	-750	mV	$I_C = -2.0 \text{ mA}, \ V_{CE} = -5.0 \text{V}$
Collector-emi		V _{CE(sat)}	_	-80 -150	-300 -	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Base-emitter saturation voltage		V _{BE(sat)}	_	-720 -810	_	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Static forward	BCW69	h _{FE}	_ 120	90 -	_ 260		$I_C = -10 \mu A$, $V_{CE} = -5.0 V$ $I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 V$
current transfer ratio	BCW70	h _{FE}	_ 215	150 —	_ 500		$I_C = -10 \mu A$, $V_{CE} = -5.0 V$ $I_C = -2.0 m A$, $V_{CE} = -5.0 V$
Transition fre	quency	f _T	_	150	_	MHz	$I_C = -10 \text{ mA}, V_{CE} = -5.0V$ f = 35 MHz
Collector capacitance		C _{Tc}	_	_	7	pF	$I_E = I_e = 0$, $V_{CB} = -10V$ f = 1 MHz
Noise figure	Noise figure		_	_	10	dB	$I_C = -200 \mu A$, $V_{CE} = -5.0V$ $R_S = 2.0 k\Omega$, $f = 1 kHz$ B = 200 Hz

BCW69	 			 	 		 	H1
BCW70	 			 	 • •		 • •	HZ
BCW69R	 	• •	• •	 • •	 	• •	 • •	H5
BCW70R	 			 	 		 	113

NPN silicon planar small signal transistors

BCW71 BCW72

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCW71 & BCW72	Unit
Collector-Base Voltage	V _{CBO}	50	٧
Collector-Emitter Voltage (I _C = 2.0 mA)	V _{CEO}	45	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	Ic	100	mA
Peak Collector Current	I _{CM}	200	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parame	ter	Symbol	BCW	71 & B	CW72	Unit	Test Conditions
			Min.	Typ.	Max.		
Collector-base current	e cut-off	I _{CBO}	_	-	100 10	nΑ μΑ	$I_E = 0, V_{CB} = 20V$ $I_E = 0, V_{CB} = 20V$ $T_j = 100^{\circ}C$
Base-emitter	voltage	V _{BE}	550	_	700	mV	$I_C = 2.0 \text{ mA}, V_{CE} = 5V$
Collector-emits saturation vol		V _{CE(sat)}	_	120 210	250 -	mV mV	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
Base-emitter saturation voltage		V _{BE(sat)}	_	750 850	_	mV mV	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$
Static forward	BCW71	h _{FE}	110	90 -	_ 220		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
current transfer ratio	BCW72	h _{FE}	200	150 —	_ 450		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$
Transition free	quency	f _T	-	300	_	MHz	I _C =10mA, V _{CE} =5V f=35MHz
Collector capacitance		C _{Tc}	-	_	4	рF	I _E = I _e = 0, V _{CB} = 10V f = 1 MHz
Noise figure	Noise figure		-	_	10	dB	$\begin{array}{l} I_C = 200\mu\text{A}, \ V_{CE} = 5\text{V} \\ R_s = 2k\Omega, \ f = 1\text{kHz} \\ B = 200\text{Hz} \end{array}$

BCW71	 	 	 	 	 	 	K1
BCW72							
BCW71R							
BCW72R	 	 	 	 	 	 	К5

PNP Silicon planar small signal transistor

BCW89

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-80	V
Collector-Emitter Voltage	V _{CES}	-60	V
Collector-Emitter Voltage (I _C = −2 mA)	V _{CEO}	-60	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current	I _C	-100	mA
Peak Collector Current	I _{CM}	-200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base cut-off current	Ісво	-	_	-100 -10	nΑ μΑ	$I_E = 0, V_{CB} = -20V$ $I_E = 0, V_{CB} = -20V$ $T_j = 100 ^{\circ}C$
Base-emitter voltage	V _{BE}	-600	_	-750	mV	$I_C = -2.0 \text{ mA}, \ V_{CE} = -5.0 \text{ V}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-80 -150	-300 -	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	-720 -810	_	mV mV	$I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -2.5 \text{ mA}$
Static forward current transfer ratio	h _{FE}	_ 120	90	_ 260		$I_C = -10 \mu A$, $V_{CE} = -5.0 V$ $I_C = -2.0 mA$, $V_{CE} = -5.0 V$
Transition frequency	f _T	_	150	_	MHz	$I_C = -10 \text{ mA}, V_{CE} = -5.0V$ f=35MHz
Collector capacitance	C _{Tc}	-	-	7	pF	$I_E = I_e = 0$, $V_{CB} = -10V$ f = 1 MHz
Noise figure	N	. –	_	10	dB	$I_C = -200 \mu A$, $V_{CE} = -5.0V$ $R_s = 2.0 k \Omega$, $f = 1 kHz$ B = 200 Hz

BCW89	 	 	 	 	 	H3
BCW89R	 	 	 	 	 	H6

PNP silicon planar medium power transistors

BCX17 BCX18

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCX17	BCX18	Unit
Collector-Emitter Voltage	V _{CES}	-50	-30	V
Collector-Emitter Voltage (I _C = -10 mA)	V _{CEO}	-45	-25	V
Emitter-Base Voltage	V _{EBO}	-5.0	-5.0	V
Collector Current	Ic	-500	-500	mA
Peak Collector Current	Ісм	-1000	-1000	mA
Peak Emitter Current	I _{EM}	-1000	-1000	mA
Base Current	I _B	-100	-100	mA
Peak Base Current	I _{BM}	-200	-200	mA

CHARACTERISTICS (at T_i = 25 °C unless otherwise stated).

Parameter	Symbol	ВСХ	17 & B	CX18	Unit	Test Conditions
		Min.	Тур.	Max.	0,,,,,	loot conditions
Collector-base cut-off current	I _{CBO}	_	_	-100	nΑ	$I_E = 0, V_{CB} = -20V$
		_	_	-200	μΑ	$I_E = 0, V_{CB} = -20V$ $T_j = 150$ °C
Emitter-base cut-off current	I _{EBO}	_	_	-10	μΑ	$I_C = 0, V_{EB} = -5V$
Base-emitter voltage	V _{BE}	_	_	-1.2	V	I _C = -500mA V _{CE} = -50mA
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	-620	mV	I _C = -500mA, I _B = -50mA
Static forward current transfer ratio	h _{FE}	100	_	600		$I_C = -100 \text{ mA}$ $V_{cr} = -1V$
		70	_	-		$V_{CE} = -1V$ $I_{C} = -300 \text{ mA}$ $V_{CE} = -1V$
		40	_	_		$V_{CE} = -1V$ $I_{C} = -500 \text{ mA}$ $V_{CE} = -1V$
Transition frequency	f _T	_	100	_	MHz	$I_C = -10 \text{ mA}$ $V_{CE} = -5V$ $f = 35 \text{ MHz}$
Collector capacitance	C _{Tc}		8.0	_	рF	$I_E = I_e = 0$ $V_{CB} = -10V$ $f = 1 \text{ MHz}$

Devices are identified by a code on the body of the device BCX17 ...

NPN silicon planar medium power transistors

BCX19 BCX20

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCX19	BCX20	Unit
Collector-Emitter Voltage	V _{CES}	50	30	V
Collector-Emitter Voltage (I _C = 10 mA)	V _{CEO}	45	25	V
Emitter-Base Voltage	V _{EBO}	5.0	5.0	V
Collector Current	Ic	500	500	mA
Peak Collector Current	I _{CM}	1000	1000	mA
Peak Emitter Current	I _{EM}	1000	1000	mA
Base Current	I _B	100	100	mA
Peak Base Current	I _{BM}	200	200	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parameter	Symbol	BCX'	19 & BC	CX 20	Unit	Test Conditions
r didinote.	• • • • • • • • • • • • • • • • • • • •	Min.	Тур.	Max.		
Collector-base cut-off current	I _{CBO}	_	_	100	nA	$I_E = 0, V_{CB} = 20V$
		_	_	200	μΑ	I _E =0, V _{CB} =20V T _j =150°C
Emitter-base cut-off current	I _{EBO}	_	_	10	μΑ	$I_C = 0$, $V_{EB} = 5V$
Base-emitter voltage	V _{BE}	_	_	1.2	V	$I_{C} = 500 \text{ mA}$ $V_{CE} = 1V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	620	mV	I _C =500mA, I _B =50mA
Static forward current transfer ratio	h _{FE}	100	-	600		I _C = 100 mA V _{CE} = 1V I _C = 300 mA V _{CE} = 1V
		70	-	_		I _C =300mA V _{os} =1V
		40	_			I _C = 500 mA V _{CE} = 1V
Transition frequency	f _T	_	200	_	MHz	$I_C = 10 \text{ mA}$ $V_{CE} = 5V$ f = 35 MHz
Collector capacitance	C _{Tc}	-	5.0	_	pF	I _E = I _e = 0 V _{CB} = 10V f = 1 MHz

De	vices	are i	denti	fied	by a	code	on t	ne bo	dy of	fthe	devi	ce	
BCX19													U1
BCX20													
BCX19R													U4
BCX20R													U5

NPN silicon planar medium power transistor

BCX41

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCX41	Unit
Collector-Emitter Voltage (I _C =100μA)	V _{CES}	125	V
Collector-Emitter Voltage (I _C =10mA)	V _{CEO}	125	V
Collector Current	lc	800	mA
Peak Collector Current	Ісм	1000	mA
Base Current	I _B	100	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-base cut-off current	I _{CES}	- - -	_ _ _	100 10 10 75	nA µA µA	V _{CE} = 100V V _{CE} = 100V, T _{amb} = 150°C V _{CE} = 100V, T _{amb} = 85°C, V _{BE} = 0.2V V _{CE} = 100V, T _{amb} = 125°C V _{BE} = 0.2V
Emitter-base cut-off current	I _{EBO}	-	_	100	nA	V _{EB} = 4V
Base-emitter saturation voltage	V _{BE(sat)}	-	_	1.4	٧	$I_C = 300 \text{mA}, I_B = 30 \text{mA}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	0.9	V	$I_C = 300 \text{mA}, I_B = 30 \text{mA}$
Static forward current transfer ratio	h _{FE}	25 63 40	- - -	_ _ _		$\begin{split} &I_{C} = 100 \mu A, \ V_{CE} = 1V \\ &I_{C} = 100 mA, \ V_{CE} = 1V \\ &I_{C} = 200 mA, \ V_{CE} = 1V \end{split}$
Transition frequency	f _T	_	100	_	MHz	$I_C = 10$ mA, $V_{CE} = 5$ V, $f = 20$ MHz
Collector-base capacitance	C _{obo}	-	12	_	pF	$V_{CB} = 10V$, $I_E = 0V$, $f = 1MHz$

De	evices a	re ident	ified I	by a d	code	on th	ne bo	dy of	the	devic	e		
BCX41												EK	

NPN silicon planar small signal transistor

BCX70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCX70	Unit
Collector-Emitter Voltage	V _{CES}	45	V
Collector-Emitter Voltage	V _{CEO}	45	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	Ic	200	mA
Base Current	I _B	50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Para	meter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-er breakdown		V _{(BR)CEO}	45	_	_	V	I _{CEO} = 2 mA
Emitter-base voltage	e breakdown	V _{(BR)EBO}	5	_	_	V	I _{EBO} = 1 μA
Collector-emitter cut-off current		I _{CES}	- -	_	20 20	nΑ μΑ	V _{CES} = 45V V _{CES} = 45V, T _{amb} = 150°C
Emitter-base current	e cut-off	I _{EBO}	_	-	20	nA	V _{EBO} = 4V
	Collector-emitter saturation voltage		_	0.12 0.20	0.35 0.55	V	I _C =10mA, I _B =0.25mA I _C =50mA, I _B =1.25mA
Base-emitter saturation voltage		V _{BE(sat)}	0.60 0.70	0.70 0.83	0.85 1.05	V	I _C =10mA, I _B =0.25mA I _C =50mA, I _B =1.25mA
Base-emitte	Base-emitter voltage		0.55 —	0.52 0.65 0.78	0.75 —	V V	$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 m A, V_{CE} = 5V$ $I_C = 50 m A, V_{CE} = 1V$
Static forward current	BCX70G	h _{FE}	120 50	78 170 –	220 —		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 m A, V_{CE} = 5V$ $I_C = 50 m A, V_{CE} = 1V$
transfer ratio	всх70н	h _{FE}	20 180 70	145 250 —	_ 310 _		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 m A, V_{CE} = 5V$ $I_C = 50 m A, V_{CE} = 1V$
BCX70J		h _{FE}	40 250 90	220 350 –	460 —		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 m A, V_{CE} = 5V$ $I_C = 50 m A, V_{CE} = 1V$
	BCX70K		100 380 100	300 500 —	630 —		$I_C = 10 \mu A, V_{CE} = 5V$ $I_C = 2 mA, V_{CE} = 5V$ $I_C = 50 mA, V_{CE} = 1V$

CHARACTERISTICS (continued).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Transition frequency	f _T	125	250	_	MHz	I _C =10 mA, V _{CE} =5V f=100 MHz
Collector-base capacitance	C _{cbo}	_	_	4.5	pF	V _{CBO} = 10V, f = 1 MHz
Emitter-base capacitance	C _{ebo}		8	_	pF	V _{EBO} = 0.5V, f = 1 MHz
Noise figure	N	_	2	6	dB	$I_C = 0.2 \text{ mA}, V_{CE} = 5V$ $R_G = 2 \text{ k}\Omega, f = 1 \text{ kHz}$ $\Delta f = 200 \text{ Hz}$
Switching times Delay time Rise time Turn-on time Storage time Fall time Turn-off time	t _d t _r t _{on} t _s t _f t _{off}	.	35 50 85 400 80 480	_ 150 _ _ _ 800	ns ns ns ns ns	$\begin{cases} I_{C}:I_{B1}:-I_{B2}=10:1:1mA\\ R_{1}=5k\Omega,\ R_{2}=5k\Omega\\ V_{BB}=3.6V,\ R_{L}=990\Omega \end{cases}$

FOUR TERMINAL NETWORK DATA ($I_C = 2 \text{ mA}$, $V_{CE} = 5 \text{V}$, f = 1 kHz).

	h _{FE}	Grou	рG	h _{Fl}	h _{FE} Group H		h _{FI}	h _{FE} Group J			Grou	рΚ	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
h _{11e}	1.6	2.7	4.5	2.5	3.6	6.0	3.2	4.5	8.5	4.5	7.5	12	K
h _{12e}	_	1.5	_	_	2	_	_	2	_	-	3	_	10-4
h _{21e}	_	200	_	_	260	_	_	330	_	_	520	_	
h _{22e}	_	18	30	_	24	50	_	30	60	_	50	100	μs

SWITCHING CIRCUIT

BCX70G	 	 	 	 	 	 AG
BCX70H	 					ΑН
BCX70J	 	 	 	 	 	 ΑJ
BCX70K	 	 	 	 	 	 ΑK
BCX70GR	 	 	 	 	 	 AW
BCX70HR	 	 	 	 	 	 9P
BCX70JR	 	 	 	 	 	 AX
BCX70KR	 	 	 	 	 	 Р9

PNP silicon planar small signal transistor

BCX71

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BCX71	Unit
Collector-Emitter Voltage	V _{CES}	-45	V
Collector-Emitter Voltage	V _{CEO}	-45	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current	I _C	-200	mA
Base Current	I _B	-50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Para	meter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-e breakdown		V _{(BR)CEO}	-45	_	_	٧	I _{CEO} = -2 mA
Emitter-bas voltage	e breakdown	V _{(BR)EBO}	-5	_	-	V	$I_{EBO} = -1 \mu A$
Collector-er current	mitter cut-off	I _{CES}	_	_	-20 -60	nΑ μΑ	V _{CES} = -45V V _{CES} = -45V, T _{amb} =150°C
Emitter-bas current	e cut-off	I _{EBO}	_	-	- 20	nA	$V_{EBO} = -4V$
	Collector-emitter saturation voltage		_	-0.25	-0.25 -0.55	>	$I_C = -10$ mA, $I_B = -0.25$ mA $I_C = -50$ mA, $I_B = -1.25$ mA
Base-emitte voltage	Base-emitter saturation voltage		-0.60 -0.68	- 0.70 - 0.80	-0.85 -1.05	>	$I_C = -10\text{mA}, I_B = -0.25\text{mA}$ $I_C = -50\text{mA}, I_B = -1.25\text{mA}$
Base-emitte	er voltage	V _{BE}	-0.6 -	-0.55 -0.65 -0.72	-0.75	>	$ \begin{array}{l} I_{C} = -10\mu\text{A}, V_{CE} = -5\text{V} \\ I_{C} = -2\text{mA}, V_{CE} = -5\text{V} \\ I_{C} = -50\text{mA}, V_{CE} = -1\text{V} \end{array} $
Static forward current	BCX71G	h _{FE}	- 120 60	140 170 —	_ 220 _		$I_C = -10 \mu A$, $V_{CE} = -5 V$ $I_C = -2 m A$, $V_{CE} = -5 V$ $I_C = -50 m A$, $V_{CE} = -1 V$
ratio	transfer BCX71H		30 180 80	200 250 —	310 —		$\begin{split} I_C &= -10\mu\text{A}, \ V_{CE} = -5\text{V} \\ I_C &= -2\text{mA}, \ V_{CE} = -5\text{V} \\ I_C &= -50\text{mA}, \ V_{CE} = -1\text{V} \end{split}$
	BCX71J		40 250 100	270 350 —	460 –		$\begin{split} I_C &= -10\mu\text{A}, \ V_{CE} = -5\text{V} \\ I_C &= -2\text{mA}, \ V_{CE} = -5\text{V} \\ I_C &= -50\text{mA}, \ V_{CE} = -1\text{V} \end{split}$
	BCX71K	h _{FE}	100 380 110	340 500 —	630 —		$\begin{split} I_C &= -10 \mu \text{A}, V_{CE} = -5 \text{V} \\ I_C &= -2 \text{mA}, V_{CE} = -5 \text{V} \\ I_C &= -50 \text{mA}, V_{CE} = -1 \text{V} \end{split}$

CHARACTERISTICS (continued).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Transition frequency	f _T	-	180	_	MHz	$I_C = -10 \text{ mA}, V_{CE} = -5V$ f=100 MHz
Collector-base capacitance	C _{cbo}	1	_	6	pF	$V_{CBO} = -10V$, $f = 1 MHz$
Emitter-base capacitance	C _{ebo}	_	11	_	pF	$V_{EBO} = -0.5V$, f=1 MHz
Noise figure	N	_	2	6	dB	$I_C = -0.2 \text{ mA}, V_{CE} = -5 \text{V}$ $R_G = 2 \text{ k}\Omega, f = 1 \text{ kHz}$ $\Delta f = 200 \text{ Hz}$
Switching times Delay time Rise time Turn-on time Storage time Fall time Turn-off time	t _d t _r t _{on} t _s t _f t _{off}	- - - -	35 50 85 400 80 480	_ 150 _ _ 800	ns ns ns ns ns	$\begin{cases} -I_{C}:-I_{B1}:I_{B2} = 10:1:1\text{mA} \\ R_{1} = 5k\Omega, R_{2} = 5k\Omega \\ V_{BB} = -3.6\text{V}, R_{L} = 990\Omega \end{cases}$

FOUR TERMINAL NETWORK DATA ($I_C = 2\,\text{mA}$, $V_{CE} = 5V$, $f = 1\,\text{kHz}$).

	h _{FE}	Grou	p G	h _{FE}	h _{FE} Group H			h _{FE} Group J			Grou	рΚ	Linian
	Min.	Typ.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
h _{11e}	1.6	2.7	4.5	2.5	3.6	6.0	3.2	4.5	8.5	4.5	7.5	12	K
h _{12e}	_	1.5	_	_	2	_	_	2	_	_	3	_	10-4
h _{21e}	_	200	_	_	260	_	_	330	_	_	520	_	
h _{22e}	_	18	30	_	24	50	_	30	60	_	50	100	μs

SWITCHING CIRCUIT

BCX71G				 	 	 	 	BG
BCX71H				 	 	 	 	вн
BCX71J				 	 	 	 	B.I
BCX71K								
BCX71GR								
BCX71HR								6P
BCX71JR	• •	• •	• •					10
BCX71KR		• •	• •					20
DCX / IKI				 	 	 	 (しト

NPN silicon planar VHF/UHF transistors

BFQ31A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BFQ31/BFQ31A	Unit
Collector-Base Voltage	V _{CBO}	30	V
Collector-Emitter Voltage	V _{CEO}	15	V
Emitter-Base Voltage	V _{EBO}	3	V
Collector Current	I _C	100	mA
Base Current	I _B	50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

	0 1 1	BF	⊇ 31	BFC	131A	11	Took Conditions
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	30	_	30	_	٧	$I_C = 1.0 \mu\text{A}, I_F = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	15	_	15	-	>	$I_C = 3mA$, $I_B = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	3	_	3	_	V	$I_E = 10 \mu A, I_C = 0$
Collector-base cut-off current	I _{CBO}	_	0.01	_	0.01	μΑ	$V_{CB} = 15V, I_{E} = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.4	_	0.4	>	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	1.0	_	1.0	٧	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Static forward current transfer ratio	h _{FE}	20	_	100	_		$I_C = 3 \text{ mA}, V_{CE} = 1V$
Transition frequency	f _T	600	_	600	_	MHz	$V_{CE} = 10V$, $I_{C} = 4 \text{ mA}$ f = 100 MHz
Output capacitance	C _{obo}	_	1.7	_	1.7	рF	$V_{CB} = 10V$, $f = 1MHz$
Input capacitance	C _{ibo}	_	2.0	_	2.0	pF	$V_{CB} = 0.5V$, $f = 1MHz$
Noise figure	N	_	6.0	_	6.0	dB	$I_C = 1 \text{ mA}, V_{CE} = 6V$ $R_S = 400\Omega, f = 60\text{MHz}$

BFQ31							
BFQ31A							
BFQ31R							
REO 31 A R					 	 	55

NPN silicon planar RF transistor

BFS17

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	25	V
Collector-Emitter Voltage	V _{CEO}	15	V
Emitter-Base Voltage	V _{EBO}	2.5	V
Collector Current	I _C	25	mA
Peak Collector Current	I _{CM}	50	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector cut-off current	І _{СВО}	_	_	10 10	nΑ μΑ	$I_E = 0$, $V_{CB} = 10V$ $I_E = 0$, $V_{CB} = 10V$, $T_j = 100$ °C
Static forward-current transfer ratio	h _{FE}	25 20	_	150 125		$I_C = 2.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 25 \text{ mA}, V_{CE} = 1.0 \text{ V}$
Transition frequency	f _T	_	1.0	_	GHz	$I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$
		_	1.3	_	GHz	$f = 500 \text{ MHz}$ $I_C = 25 \text{ mA}, V_{CE} = 5.0 \text{V}$ $f = 500 \text{ MHz}$
Feedback capacitance	- C _{re}	_	0.85	_	pF	$I_C = 2.0 \text{ mA}, \ V_{CE} = 5.0 \text{V}$ f = 1.0 MHz
Collector capacitance	C _{Tc}	_	_	1.5	pF	$I_E = I_e = 0$, $V_{CB} = 10V$ f = 1.0MHz
Emitter capacitance	C _{Te}	_	_	2.0	pF	$I_C = I_c = 0$, $V_{EB} = 0.5V$ f = 1.0MHz
Noise figure*	N	_	4.5	_	dB	$I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $R_S = 50\Omega, f = 500 \text{ MHz}$
Intermodulation distortion	d _{im}		-45	_	dB	$I_{C} = 10 \text{mA}$, $V_{CE} = 6.0 \text{V}$ $R_{L} = 37.5 \Omega$, $T_{amb} = 25 ^{\circ} \text{C}$ $V_{o} = 100 \text{mV}$ at $f_{p} = 183 \text{MHz}$ $V_{o} = 100 \text{mV}$ at $f_{p} = 200 \text{MHz}$ measured at $f_{(2q \cdot p)} = 217 \text{MHz}$

^{*}Chip mounted in a TO-18 envelope.

Dev	ices are ide	ntified by a co	ode on the body o	of the device:	
BFS17					E1

N-channel enhancement mode vertical DMOS FET

BS170F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	60	٧
Continuous drain current (at T _A = 25°C)	I _D	0.15	Α
Pulse drain current	I _{DM}	3	Α
Gate-source voltage	V _{GS}	± 20	V

CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	60	90	-	٧	$I_D = 100 \mu\text{A}, \ V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	0.8	_	3	>	$I_D = 1 \text{ mA}, \ V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	-	10	nΑ	$V_{GS} = 15V$, $V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	_	0.5	μΑ	$V_{DS} = 25V$, $V_{GS} = 0V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	_	5	Ω	$I_D = 200 \text{mA}, \ V_{GS} = 10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	_	200	_	mS	$V_{DS} = 10V$, $I_D = 200 \text{mA}$
Input capacitance (2)	C _{iss}	-	60	_	рF	$V_{DS} = 10V, V_{GS} = 0V$ f = 1 MHz
Turn-on time (2) (3)	t _(on)	_	_	10	ns	V 45V L 000-A
Turn-off time (2) (3)	t _{off}	_	_	10	ns	$V_{DD} \approx 15V$, $I_D = 600 \mathrm{mA}$

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s, Duty cycle $\leq 2\%$.

(2) Sample test.

De	evices are	identified	d by a code	e on the bo	dy of the devi	се
BS170F						MV

⁽³⁾ Switching times measured with 50Ω source impedance and <5 ns rise time on a pulse generator.

Fig 1. Typical saturation characteristics

Fig 2. Typical voltage saturation characteristics

Fig 3. Typical transfer characteristics

Fig 4. Typical capacitance v drain-source voltage

P-channel enhancement mode vertical DMOS FET

BS250F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	-45	V
Continuous drain current (at T _A = 25°C)	I _D	-0.09	Α
Pulse drain current	I _{DM}	-1.6	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	-45	-70	_	٧	$I_D = -100 \mu\text{A}, \ V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	-1	_	-3.5	V	$I_D = -1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	_	-20	nΑ	$V_{GS} = -15V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	_	-0.5	μΑ	$V_{DS} = -25V$, $V_{GS} = 0V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	9	14	Ω	$I_D = -200 \text{mA}, \ V_{GS} = -10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	_	90	_	mS	$V_{DS} = -10V, I_{D} = -200 \text{ mA}$
Input capacitance (2)	C _{iss}	_	25	_	pF	$V_{DS} = -10V, V_{GS} = 0V$ f = 1 MHz
Turn-on delay time (2) (3)	t _{d(on)}	_	_	10	ns)
Rise time (2) (3)	t _r	_	_	10	ns	N 25V I 200 A
Turn-off delay time (2) (3)	t _{d(off)}	_	_	10	ns	$V_{DD} \approx -25V, I_{D} = -200 \text{ mA}$
Fall time (2) (3)	t _f	_		10	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle ≤ 2%.

(2) Sample test.

De	vices	are	ident	ified	by a	code	on t	the bo	ody c	of the	devi	ice	
BS250F													MX

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

PNP silicon planar high voltage transistor

BSS63

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-110	V
Collector-Emitter Voltage	V _{CEO}	-100	V
Emitter-Base Voltage	V _{EBO}	-6	V
Collector Current	Ic	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-110	_	_	>	$I_C = 10 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	-100	_	_	>	$I_C = 100 \mu A$
Emitter-base breakdown voltage	V _{(BR)EBO}	-6	_	_	<	$I_E = 10 \mu A$
Collector cut-off currents	I _{CBO}	_	_	100	nA	$V_{CB} = 90V, I_{E} = 0$
		_	_	50	μΑ	$V_{CB} = 90V, I_{E} = 0$ $T_{j} = 150$ °C
	I _{EBO}	_	_	200	nA	$V_{EB}=6V$, $I_C=0$
Static forward current transfer ratio	h _{FE}	30 30	_	_		$I_C = 10 \text{ mA}, V_{CE} = 1V$ $I_C = 25 \text{ mA}, V_{CE} = 1V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	250	mV	$I_C = 25 \text{mA}, I_B = 2.5 \text{mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	_	900	mV	$I_C = 25 \text{ mA}, I_B = 2.5 \text{ mA}$
Output capacitance	C _{obo}	_	3	_	pF	$V_{CB} = 10V, I_{E} = 0$ f = 1 MHz
Transition frequency	f _T	50	85	_	MHz	$V_{CE} = 5V, I_{C} = 25 \text{ mA}$ f = 35 MHz

NPN silicon planar high voltage transistor

BSS64

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	120	V
Collector-Emitter Voltage	V _{CEO}	80	V
Emitter-Base Voltage	V _{EBO}	5	٧
Collector Current	Ic	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	120	_	=	V	$I_C = 100 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	80	_	_	٧	$I_C = 4 \text{ mA}$
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	_	٧	$I_E = 100 \mu A$
Collector cut-off currents	I _{CBO}	_	_	100	nA	$V_{CB} = 90V$, $I_E = 0$
	į	_	_	50	μΑ	V _{CB} =90V, I _E =0 T _j =150°C
	I _{EBO}	_	_	200	nA	$V_{EB} = 5V, I_{C} = 0$
Static forward current transfer ratio	h _{FE}	_ 20 _	60 80 55	_ _ _		$I_C = 1 \text{ mA}, V_{CE} = 1V$ $I_C = 10 \text{ mA}, V_{CE} = 1V$ $I_C = 20 \text{ mA}, V_{CE} = 1V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	150 200	mV mV	$I_C = 4 \text{ mA}, I_B = 400 \mu \text{A}$ $I_C = 50 \text{ mA}, I_B = 15 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	_	1.2	V	$I_C = 4 \text{ mA}, I_B = 400 \mu \text{A}$
Output capacitance	C _{obo}	_	3	5	pF	V _{CB} =10V, I _E =0 f=1 MHz
Transition frequency	f _T	60	100	_	MHz	V _{CE} =10V, I _C =4mA f=35MHz

Devices are identified by a code on the body of the device

BSS64	 	 	 	 	 	 	U3
BSS64R	 	 	 	 			U6

PNP silicon planar high speed switching transistor

BSS65

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS65	Unit
Collector-Base Voltage	V _{CBO}	-12	V
Collector-Emitter Voltage	V _{CEO}	-12	V
Emitter-Base Voltage	V _{EBO}	-4	V
Collector Current	l _c	-100	mA
Peak Collector Current (10 ns)	I _{CM}	-200	mA
Base Current	I _B	-50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol		BSS65		Unit	Test Conditions
T didinoto.	0,20.	Min.	Тур.	Max.		
Collector-emitter breakdown voltage	V _{(BR)CEO}	-12	-	_	٧	$I_C = -10 \mathrm{mA}$
Collector-base breakdown voltage	V _{(BR)CBO}	-12	-	_	٧	$I_C = -10 \mu A$
Emitter-base breakdown voltage	V _{(BR)EBO}	-4	-	_	٧	$I_{E} = -10 \mu\text{A}$
Collector base cut-off current	І _{СВО}	_		-100	nA	$V_{CB} = -6V, I_{E} = 0$
Emitter-base cut-off current	I _{EBO}	_	_	-100	nA	$V_{EB} = -4V$, $I_C = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	1	-0.15 -0.25	>>	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -30 \text{ mA}, I_B = -3 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	-0.75 -0.82	-	-0.98 -1.20	>>	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -30 \text{ mA}, I_B = -3 \text{ mA}$
Static forward current transfer ratio	h _{FE}	30 40	<u>-</u>	_ 150		$I_C = -10 \text{ mA}, V_{CE} = -0.3V$ $I_C = -30 \text{ mA}, V_{CE} = -0.5V$
Transition frequency	f _T	400	-	-	MHz	$I_C = -30 \text{ mA}, V_{CE} = -10V$ f=100 MHz
Collector-base capacitance	C _{cbo}	_		6	pF	$V_{CB} = -5V$, $I_E = 0$ f=1 MHz
Emitter-base capacitance	C _{ebo}	_	-	6	pF	$V_{EB} = -0.5V, I_{C} = 0$ f = 1 MHz
Switching times Turn-on time Turn-off time	t _{on} t _{off}	_	23 34	60 90	ns ns	$I_C = -30 \text{ mA}$ $I_{B1} = I_{B2} = -1.5 \text{ mA}$

Devices are identified by a code on the body of the device BSS65 L1 BSS65R L5

NPN silicon planar medium power switching transistors

BSS66 BSS67

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS66 & BSS67	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	٧
Emitter-Base Voltage	V _{EBO}	6	V
Collector Current	Ic	100	mA
Peak Collector Current (10ms)	I _{CM}	200	mA
Base Current	I _B	50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parame	ter	Symbol	BSS	66 & B	SS67	Unit	Test Conditions
		-,	Min.	Тур.	Max.]	isst sentitions
Collector-emi breakdown vo		V _{(BR)CEO}	40	_	_	V	I _C =1 mA
Collector-base breakdown vo		V _{(BR)CBO}	60	-	_	V	$I_C = 10 \mu A$
Emitter-base breakdown vo	oltage	V _{(BR)EBO}	6	-	_	V	I _E = 10 μA
Collector-emi- cut-off curren		I _{CES}	_	_	50	nA	V _{CES} = 30V
Collector-emi- saturation vol		V _{CE(sat)}	_	_	0.20 0.30	V	I _C =10mA, I _B =1 mA I _C =50mA, I _B =5 mA
Base-emitter saturation vol	Base-emitter saturation voltage		0.65 —	_	0.85 0.95	V	I _C =10mA, I _B =1 mA I _C =50mA, I _B =5mA
Static forward current transfer ratio	BSS66	h _{FE}	20 35 50 30 15	- - - -	_ _ 150 _ _		$ \begin{array}{c c} I_C = 100\mu\text{A} \\ I_C = 1\text{mA} \\ I_C = 10\text{mA} \\ I_C = 50\text{mA} \\ I_C = 100\text{mA} \end{array} \right\} V_{CE} = 1V $
	BSS67	h _{FE}	40 70 100 60 30		- 300 - -		$ \begin{array}{c c} I_C = 100\mu\text{A} \\ I_C = 1\text{mA} \\ I_C = 10\text{mA} \\ I_C = 50\text{mA} \\ I_C = 100\text{mA} \end{array} \right\} V_{CE} = 1V $
Transition frequency	BSS66	f _T	250	_	_	MHz	$I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V}$ f = 100 MHz
Collector-base capacitance	BSS67	C _{cbo}	300		4.0	MHz pF	V _{CB} =5V, f=100kHz

CHARACTERISTICS (Continued).

Parameter	Symbol	BSS	66 & B	SS67	Unit	Test Conditions	
	7,56.	Min.	Тур.	Max.	1	isst conditions	
Emitter-base capacitance	C _{ebo}	_	_	8	pF	V _{EB} =0.5V, f=100kHz	
Noise figure	N	_	6	_	dB	$I_C = 100 \mu A$, $V_{CE} = 5V$ $R_S = 1 k\Omega$, $f = 10 Hz$ to 15.7 kHz	
Switching times Delay time Rise time Storage time Fall time	t _d t _r t _s t _f	_ _ _ _	_ _ _ _	35 35 200 50	ns ns ns	$V_{CC} = 3V, I_C = 10 \text{ mA}$ $I_{B1} = I_{B2} = 1 \text{ mA}$	

Devices are identified by a code on the body of the device

BSS66	 	 	 	 	 	 M6
BSS67	 	 	 	 	 	 М7
BSS66R	 	 	 	 	 	 М8
BSS67R	 	 	 	 	 	 М9

PNP silicon planar medium power switching transistors

BSS69 BSS70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS69 & BSS70	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current	Ic	-100	mA
Peak Collector Current (10ms)	Ісм	-200	mA
Base Current	I _B	-50	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parame	ter	Symbol	BSS	69 & B	SS70	Unit	Test Conditions
		7,20.	Min.	Тур.	Max.		
Collector-emi breakdown vo		V _{(BR)CEO}	-40	_		٧	$I_C = -1 \text{ mA}$
Collector-base breakdown vo		V _{(BR)CBO}	-40	-	_	>	$I_C = -10 \mu\text{A}$
Emitter-base breakdown vo	oltage	V _{(BR)EBO}	-5	1	_	٧	$I_E = -10 \mu A$
Collector-emit cut-off curren		I _{CES}	_	_	-50	nA	$V_{CES} = -30V$
Collector-emir saturation vol		V _{CE(sat)}	_	1 1	-0.25 -0.40	>>	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Base-emitter saturation vol	tage	V _{BE(sat)}	-0.65 -	1 1	-0.85 -0.95	>>	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Static forward current transfer ratio	BSS69	h _{FE}	30 40 50 30 15	_ _ _ _	- 150 - -		$ \begin{vmatrix} I_C = -100 \mu A \\ I_C = -1 mA \\ I_C = -10 mA \\ I_C = -50 mA \\ I_C = -100 mA \end{vmatrix} V_{CE} = -1V $
	BSS70	h _{FE}	60 80 100 60 30	_ _ _ _	- 300 - -		$ \begin{vmatrix} I_C = -100 \mu A \\ I_C = -1 mA \\ I_C = -10 mA \\ I_C = -50 mA \\ I_C = -100 mA \end{vmatrix} V_{CF} = -1V $
Transition	BSS69	f _T	200	_	_	MHz	$I_{C} = -10 \text{ mA}, V_{CE} = -20 \text{ V}$
frequency	BSS70		250	_	_	MHz	f=100MHz
Collector-base capacitance	Э	C _{cbo}	_	_	4.5	pF	V _{CB} = -5V, f=100kHz

CHARACTERISTICS (Continued).

Parameter	Symbol	BSS	69 & B	SS70	Unit	Test Conditions		
Tarameter	7	Min.	Тур.	Max.]			
Emitter-base capacitance	C _{ebo}	_	_	10	pF	$V_{EB} = -0.5V$, f=100kHz		
Noise figure	N	_	5	_	dB	$I_C = -100 \mu A$, $V_{CE} = -5V$ $R_S = 1 k \Omega$, $f = 10 Hz$ to 15.7 kHz		
Switching times Delay time Rise time Storage time Fall time	t _d t _r t _s t _f	_ _ _ _	_ _ _ _	35 35 225 75	ns ns ns	$V_{CC} = -3V, I_{C} = -10 \text{ mA}$ $I_{B1} = I_{B2} = -1 \text{ mA}$		

De	vices	are i	denti	fied l	by a c	code	on th	ie bo	dy of	the	devic	ce
BSS69												
BSS70												
BSS69R												• •

NPN silicon planar general purpose switching transistors

BSS79B BSS79C

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS79B, C	Unit
Collector-Base Voltage	V _{CBO}	75	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6	V
Peak Collector Current	Ісм	800	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	75	_	٧	I _C = 10 μA
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	_	V	I _C = 10 mA
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	V	I _E = 10 μA
Collector-base cut-off current	I _{CBO}	_	10 10	nΑ μΑ	V _{CB} =60V V _{CB} =60V, T _A =150°C
Emitter-base cut-off current	I _{EBO}	_	10	nA	V _{BE} = 3.0V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.3 1.0	V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$
Static forward BSS79B current transfer	h _{FE}	40	120		I _C = 150mA, V _{CE} = 10V
ratio BSS79C		100	300		$I_C = 150 \text{ mA}, \ V_{CE} = 10 \text{ V}$
Transition frequency	f _T	250	_	MHz	V _{CE} =20V, I _C =20mA f=100MHz
Collector-base capacitance	C _{cbo}	-	8	pF	V _{CB} = 10V, f = 1 MHz

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Delay time	t _d	_	10	ns	$V_{CC} = 30V, I_{C} = 150 \text{ mA}$
Rise time	t _r	_	10	ns	$\int I_{B1} = I_{B2} = 15 \text{ mA}$
Storage time	t _s	_	225	ns	$V_{CC} = 30V, I_{C} = 150 \text{ mA}$
Fall time	ţ _f	_	60	ns	$\int I_{B1} = I_{B2} = 15 \text{ mA}$

De	vices	are i	denti	fied	by a	code	on th	ne bo	dy o	f the	devi	се	
BSS79B													
BSS79C					٠.								CF

PNP silicon planar general purpose switching transistors

BSS80B BSS80C

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS80B, C	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	٧
Emitter-Base Voltage	V _{EBO}	5	V
Peak Collector Current	Ісм	800	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

Parameter	Symbol -	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	٧	I _C =10μA
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	_	٧	I _C = 10 mA
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	I _E = 10 μA
Collector-base cut-off current	I _{CBO}	1 1	10 10	nΑ μΑ	V _{CB} =50V V _{CB} =50V, T _A =150°C
Emitter-base cut-off current	I _{EBO}	-	10	nA	V _{EB} =3V
Collector-emitter saturation voltage	V _{CE(sat)}	<u> </u>	0.4 1.6	mV V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$
Static forward BSS80B current transfer	h _{FE}	40	120		I _C =150mA, V _{CE} =10V
ratio BSS80C		100	300		I _C = 150 mA, V _{CE} = 10V
Transition frequency	f _T	200	_	MHz	V _{CE} =20V, I _C =50mA f=100MHz
Collector-base capacitance	C _{cbo}	_	8	pF	V _{CB} =10V, f=1 MHz

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Delay time	t _d	_	10	ns	$V_{CC} = 30V, I_{C} = 150 \text{mA}$ $I_{B1} = I_{B2} = 15 \text{mA}$
Rise time	t _r		40	ns	$\int I_{B1} = I_{B2} = 15 \text{ mA}$
Storage time	t _s	_	80	ns	$V_{CC} = 30V, I_{C} = 150 \text{ mA}$
Fall time	t _f	_	30	ns	$\begin{cases} V_{CC} = 30V, I_{C} = 150 \text{ mA} \\ I_{B1} = I_{B2} = 15 \text{ mA} \end{cases}$

De	vices	are i	ident	ified	by a	code	on t	he bo	ody o	f the	devi	ce	
BSS80B													CH
BSS80C	• •	• •	• •	• •		• •	• •	• •	• •	• •	• •	• •	CJ

PNP silicon planar general purpose switching transistors

BSS82B BSS82C

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS82B, C	Unit
Collector-Base Voltage	V _{CBO}	60	٧
Collector-Emitter Voltage	V _{CEO}	60	٧
Emitter-Base Voltage	V _{EBO}	5	V
Peak Collector Current	I _{CM}	800	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	V	I _C =10μA
Collector-emitter breakdown voltage	V _{(BR)CEO}	60	_	٧	I _C = 10 mA
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	I _E = 10 μA
Collector-base cut-off current	I _{CBO}	-	10 10	nΑ μΑ	V _{CB} =50V V _{CB} =50V, T _A =150°C
Emitter-base cut-off current	I _{EBO}	-	10	nA	V _{EB} =3V
Collector-emitter saturation voltage	V _{CE(sat)}	1 1	0.4 1.6	mV V	I _C = 150 mA, I _B = 15 mA I _C = 500 mA, I _B = 50 mA
Static forward BSS82B current transfer	h _{FE}	40	120		I _C = 150 mA, V _{CE} = 10V
ratio BSS82C		100	300		$I_C = 150 \text{ mA}, \ V_{CE} = 10 \text{ V}$
Transition frequency	f _T	200	_	MHz	V _{CE} =20V, I _C =50mA f=100MHz
Collector-base capacitance	C _{cbo}	_	8	pF	V _{CB} =10V, f=1 MHz

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Delay time	t _d	_	10	ns	$V_{CC} = 30V, I_{C} = 150 \text{ mA}$ $I_{B1} = I_{B2} = 15 \text{ mA}$
Rise time	. t _r	_	40	ns	$\int I_{B1} = I_{B2} = 15 \text{ mA}$
Storage time	t _s	_	80	ns	V_{CC} =30V, I_{C} =150mA
Fall time	t _f	_	30	ns	$\int I_{B1} = I_{B2} = 15 \text{ mA}$

De	vices	s are	iden	tified	by a	code	on 1	the b	ody c	of the	devi	ce	
BSS82B													CL
BSS82C													СМ

P-Channel enhancement mode vertical DMOS FET

PROVISIONAL DATA

BSS84

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	– 50	٧
Continuous Drain Current	I _D	– 130	mA
Pulsed Drain Current	I _{DM}	- 520	mA
Gate-Source Peak Voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-source breakdown voltage	BV _{DSS}	- 50	_	_	٧	$V_{GS} = 0V$ $I_D = -0.25 \text{ mA}$
Gate-source threshold voltage	V _{GS(th)}	-0.8	- 1.5	- 2.0	٧	$V_{DS} = V_{GS}$ $I_D = -1 \text{ mA}$
Zero gate voltage drain current	I _{DSS}	<u> </u>	-1 -2	- 15 - 60	μΑ μΑ	$\begin{split} T_j &= 25^{\circ}\text{C} \\ T_j &= 125^{\circ}\text{C} \\ V_{DS} &= -50\text{V}, \ V_{GS} = 0\text{V} \ (2) \end{split}$
		_	_	- 100	nA	$T_j = 25$ °C $V_{DS} = -25$ V, $V_{GS} = 0$ V
Gate-source leakage current	I _{GSS}	_	-1	-10	nA	$V_{GS} = \pm 20V$ $V_{DS} = 0V$
Drain-source on-state resistance (1)	R _{DS(on)}	-	6	10	Ω	$V_{GS} = -5V$ $I_D = -100 \text{ mA}$
Forward transconductance (1) (2)	g _{fs}	0.05	0.07	_	S	$V_{DS} = -25V$ $I_{D} = -100 \text{ mA}$
Input capacitance (2)	C _{iss}	_	40	_	pF	V _{GS} = 0V
Output capacitance (2)	Coss	_	15	_		$V_{DS} = -25V$
Reverse transfer capacitance (2)	C _{rss}	-	6	-		f = 1 MHz
Turn-on time ton	t _{d(on)} .	_	10	_	ns	$V_{DD} = -30V$
$(t_{on} = t_{d(on)} + t_r)$ (2)	t _r	_	10	_		$I_{D} = -0.27A$
Turn-off time toff	t _{d(off)}	_	18	_		V _{GS} = -5V
$(t_{off} = t_{d(off)} + t_f) (2)$	t _f	_	25	_		$R_{GS} = 50\Omega$

Notes (1) Measured under pulsed conditions. Width = $300\mu s$. Duty cycle $\leq 2\%$.

(2) Sample test.

Devices are identified by a code on the body of the device													
BSS84													SP

N-Channel enhancement mode vertical DMOS FET

BSS123

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSS123	Unit
Drain-Source Voltage	V _{DS}	100	V
Drain-gate Voltage	V _{DGR}	100	V
Continuous Drain Current at T _{amb} = 25°C	I _D	170	mA
Pulsed Drain Current	I _{DM}	0.68	Α
Gate-Source Voltage	V _{GS}	±10	V
Peak Gate-source Voltage	V _{GSM}	± 20	V

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Drain-Source breakdown voltage	BV _{DSS}	100	_	_	V	I _D = 0.25 mA, V _{GS} = 0V
Gate-Source threshold voltage	V _{GS(th)}	0.8	2.2	2.8	V	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$
Zero Gate voltage drain current	I _{DSS}	- - -	1 2 -	15 60 10	μΑ μΑ nA	$\begin{aligned} &V_{DS}\!=\!100\text{V},V_{GS}\!=\!0\text{V},T\!=\!25^{\circ}\text{C}\\ &V_{DS}\!=\!100\text{V},V_{GS}\!=\!0\text{V},T\!=\!125^{\circ}\text{C}\\ &V_{DS}\!=\!20\text{V},V_{GS}\!=\!0\text{V},T\!=\!25^{\circ}\text{C} \end{aligned}$
Gate-Body leakage	I _{GSS}	_	10	50	nA	$V_{GS} = 20V, V_{DS} = 0V$
Static Drain-Source on-state resistance (1)	R _{DS(on)}		5	6	Ω	$I_D = 100 \text{mA}, V_{GS} = 10 \text{V}$
Forward transconductance (1) and (2)	g _{fs}	80	120	-	mS	$V_{DS} = 25V, I_D = 100 \text{ mA}$
Input capacitance (2)	C _{iss}	_	20	_	рF	
Common source output capacitance (2)	C _{oss}	-	9	_	pF	$\begin{cases} V_{DS} = 25V, V_{GS} = 0V \\ f = 1 \text{ MHz} \end{cases}$
Reverse transfer capacitance (2)	C _{rss}	_	4	-	pF	

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Turn-on delay time (2) (3)	t _{d(on)}	_	10	_	ns	
Rise time (2) (3)	t _r	_	10	_	ns	
Turn-off delay time (2) (3)	t _{d(off)}	_	15	_	ns	$V_{DD} = 30V, I_D = 280 \text{ mA}$
Fall time (2) (3)	t _f	_	25	_	ns	

Reverse Diode	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Continuous reverse drain current	I _{DR}	_	-	0.17	Α	@T _A = 25°C
Pulsed reverse drain current	I _{DRM}	_	_	0.68	Α	@T _A = 25°C
Diode forward on-voltage	V _{SD}	_	1.1	1.3	٧	$I_F = 2 \times I_{DR}, V_{GS} = 0V, T = 25$ °C

Notes (1) Measured under pulsed conditions. Width = $300\mu s$. Duty cycle $\leq 2\%$.

(2) Sample test.

(3) Switching times measured with 50Ω source impedance and < 5ns rise time on a pulse generator.

Devices	are identified by	y a code on the body of	the device	
BSS123			SA	

N-Channel enhancement mode vertical DMOS FET

PROVISIONAL DATA

BSS138

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	50	v
Continuous Drain Current at T _{amb} = 25°C	I _D	0.2	Α
Pulsed Drain Current	I _{DM}	0.8	Α
Gate-Source Voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Drain-Source breakdown voltage	BV _{DSS}	50	_	٧	$I_D = 250 \mu\text{A}, \ V_{GS} = 0V$
Gate-Source threshold voltage	V _{GS(th)}	0.5	1.5	٧	$I_D = 1 \text{ mA}, \ V_{DS} = V_{GS}$
Gate-Body leakage	I _{GSS}	_	100	nΑ	$V_{GS} = 20V, V_{DS} = 0V$
Zero Gate voltage drain current	I _{DSS}	_ _ _	0.5 5 100		$\begin{split} &V_{DS}\!=\!50\text{V}, \ V_{GS}\!=\!0\text{V}, \ T\!=\!25^{\circ}\text{C} \\ &V_{DS}\!=\!50\text{V}, \ V_{GS}\!=\!0\text{V}, \ T\!=\!125^{\circ}\text{C} \\ &V_{DS}\!=\!25\text{V}, \ V_{GS}\!=\!0\text{V}, \ T\!=\!25^{\circ}\text{C} \end{split}$
Static Drain-Source on-state resistance (1)	R _{DS(on)}	_	3.5	Ω	$I_D = 0.2A, V_{GS} = 5V$
Forward transconductance (1) (2)	g _{fs}	120	_	mS	$V_{DS} = 25V, I_{D} = 0.2A$
Input capacitance (2)	C _{iss}	_	50	pF) \
Common source output capacitance (2)	C _{oss}	_	25	рF	$\begin{cases} V_{DS} = 25V, V_{GS} = 0V \\ f = 1 MHz \end{cases}$
Reverse transfer capacitance (2)	C _{rss}	_	8	pF	

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Turn-on delay time (2) (3)	t _{d(on)}	_	8	ns	
Rise time (2) (3)	tr	_	8	ns	
Turn-off delay time (2) (3)	t _{d(off)}	_	16	ns	$V_{DD} = 30V, I_D = 290 \text{ mA}$
Fall time (2) (3)	t _f	_	25	ns	

- Notes (1) Measured under pulsed conditions. Width = $300\mu s$. Duty cycle $\leq 2\%$.
 - (2) Sample test.
 - (3) Switching times measured with $50\,\Omega$ source impedance and < 5ns rise time on a pulse generator.

De	vices	are i	dent	ified	by a	code	on t	he bo	dy o	f the	devi	ce		
BSS138	• •	• •						• •		• •	٠.		SS	

NPN silicon planar high speed switching transistor

BSV52

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	BSV52	Unit
Collector-Base Voltage	V _{CBO}	20	V
Collector-Emitter Voltage	V _{CES}	20	V
Collector-Emitter Voltage (I _C =10mA)	V _{CEO}	12	V
Emitter-Base Voltage	V _{EBO}	5.0	V
Collector Current	I _C	100	mA
Peak Collector Current	I _{CM}	200	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parameter	Symbol		BSV52		Unit	Test Conditions
l varameter		Min.	Тур.	Max.		
Collector base cut-off current	І _{СВО}	_	_	100 5.0	nΑ μΑ	$I_E = 0$, $V_{CB} = 10V$ $I_E = 0$, $V_{CB} = 10V$, $T_j = 125$ °C
Collector-emitter saturation voltage	V _{CE(sat)}	 		300 250 400	mV mV mV	$I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	700 —	-	850 1.2	mV V	I _C =10mA, I _B =1.0mA I _C =50mA, I _B =5.0mA
Static forward current transfer ratio	h _{FE}	25 40 25	_ _ _	120 —		$ \begin{array}{l} I_C = 1.0 \text{mA}, \ V_{CE} = 1.0 \text{V} \\ I_C = 10 \text{mA}, \ V_{CE} = 1.0 \text{V} \\ I_C = 50 \text{mA}, \ V_{CE} = 1.0 \text{V} \end{array} $
Transition frequency	f _T	400	500	_	MHz	I _C =10 mA, V _{CE} =10V f=100 MHz
Collector capacitance	C _{Tc}	_	_	4.0	pF	$I_E = I_e = 0, V_{CB} = 5.0V$ f=1.0MHz
Emitter capacitance	C _{Te}	-	_	4.5	pF	$I_C = I_c = 0$, $V_{EB} = 1.0V$ f = 1.0 MHz

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Turn-on time	t _{on}	_	12	ns	$V_{CC} = 3V$, $V_{BE(off)} = 1.5V$ $I_{C} = 10 \text{ mA}$, $I_{B1} = 3 \text{ mA}$ (see Fig. 1)
Turn-off time	t _{off}	_	18	ns	$V_{CC} = 3V$, $I_C = 10 \text{ mA}$, $I_{B1} = 3 \text{ mA}$ $I_{B2} = 1.5 \text{ mA}$ (see Fig. 2)
Storage time	t _s	_	13	ns	$I_{B1} = I_{B2} = I_C = 10 \text{ mA} \text{ (see fig. 3)}$

CIRCUITS FOR MEASURING SWITCHING TIMES

TURN-ON TIME

Fig. 1

TURN-OFF TIME

Fig. 2

STORAGE TEST CIRCUIT

Fig. 3

• Total Shunt Capacitance of Test Jig and Connectors

Silicon voltage regulator diodes

BZX84 Series C2V7 to C47

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage range	Vz	2.7 to 47	V
Nominal tolerance	C*	±5	%
Maximum forward current	I _F	250	mA

^{*}As per Pro-Electron coding system.

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature).

Туре		ener Voltag at I _Z =5 m Volts		Differential Resistance r _Z at I _Z =5 mA Ohms	Temperature S %/10		Reverse C I _R at	urrent V _R Volts	Diode Capacitance C _{d(pF)} f = 1 mHz V _R = O
Number	Nom.	Min.	Max.	Max.	Min.	Max.	Max.		Max.
BZX84-C2V7 C3V0 C3V3 C3V6 C3V9 C4V3 C4V7 C5V1 C5V6 C6V2 C6V8 C7V5 C8V2 C9V1 C10 C11 C12 C13 C15 C16 C18 C20 C22	2.7 3.0 3.3 3.9 4.3 4.7 5.1 5.6 6.2 6.2 9.1 10 11 12 13 15 16 18 20 22	2.5 2.8 3.1 3.7 4.0 4.4 5.2 5.8 6.4 7.0 7.7 8.5 9.4 11.4 13.8 15.3 16.8	2.9 3.2 3.5 3.8 4.1 4.6 5.0 6.6 7.9 8.7 9.6 10.6 12.7 14.1 17.1 19.1 21.2 23.3	100 100 100 100 100 90 80 60 40 115 15 15 20 20 25 30 30 40 45 55	- 3.5 - 3.5 - 3.5 - 3.5 - 3.5 - 3.5 - 2.7 - 2.0 0.4 1.2 2.5 3.2 3.8 4.5 6.0 7.0 9.2 10.4 12.4	0 0 0 0 0 0 0.2 1.2 2.5 3.7 4.5 5.3 6.2 7.0 8.0 9.0 11.0 14.0 16.0 18.0 20.0	20 10 5 5 3 3 3 2 1 0.7 0.5 0.1 0.1 0.05 0.05 0.05	1 1 1 1 1 1 1 2 2 2 4 4 5 5 6 6 7 8 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	450 450 450 450 450 180 180 110 100 95 90 90 90 90 90 75 75 70 60
C24	24	20.8 22.8	25.6	55 70	16.4 18.4	22.0	0.05	15 17	55
C27 C30 C33 C36 C39 C43 C47	V _z 27 30 33 36 39 43 47	at I _Z = 2 25.1 28 31 34 37 40 44	mA 28.9 32 35 38 41 46 50	$\begin{array}{c} {\rm r_{Z}~at~I_{Z}} = 2{\rm mA} \\ 80 \\ 80 \\ 80 \\ 90 \\ 130 \\ 150 \\ 170 \\ \end{array}$	S _z at I _z 21.4 24.4 27.4 30.4 33.4 37.6 42.0	= 2mA 25.3 29.4 33.4 37.4 41.2 46.6 51.8	0.05 0.05 0.05 0.05 0.05 0.05 0.05	19 21 23 25 27 30 33	50 50 45 45 45 40 40

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature).

Type Number	Zener Voltage V _Z at I _Z =1mA Volts Min.	Differential Resistance r _z at I _z = 1 Ohms Max.
BZX84		
C2V7	1.9	600
C3V0	2.1	600
C3V3	2.4	600
C3V6	2.7	600
C3V9	3.0	600
C4V3	3.3	600
C4V7	3.7	500
C5V1	4.2	480
C5V6	4.8	400
C6V2	5.6	150
C6V8	6.3	80
C7V5	6.9	80
C8V2	7.6	80
C9V1	8.4	100
C10	9.3	150
C11	10.2	150
C12	11.2	150
C13	12.3	170
C15	13.7	200
C16	15.2	200
C18	16.7	225
C20	18.7	225
C22	20.7	250
C24	22.7	250
BZX84	V_Z at $I_Z = 0.5 \text{mA}$	r _z at I _z = 0.5mA
C27	25.0	300
C30	27.8	300
C33	30.8	325
C36	33.8	350
C39	36.7	350
C43	39.7	375
C47	43.7	375

Devices are identified by a code on the body of the device

Device											Device Code
BZX84-C2V7											W4
	• •	• •		• •		• •		• •	• •	• •	W5
C3V0	• •	• •	• •		• •	• •	• • •	• •	• •	• •	
C3V3			• •	• •		• •		• •	• •	• •	W6
C3V6											W7
C3V9											W8
C4V3											W9
C4V7											Z1
C5V1											Z2
C5V6											Z3
C6V2											Z4
C6V8											Z 5
C7V5											Z6
C8V2											Z7
C9V1											Z8
C10											Z9
C11											Y1
C12											Y2
C13											Y3
C15	• •	• •	• •			•		• •			Y4
C16			٠.	• •	• •	• •	• •	• •	• •	• •	Y5
C18	• •	• •	• •	• •				• •			Y6
C20	• •	٠.	• •	• •	• •	• •	• •	• •	• •	• •	Y7
C20	• •		• •	• •	• •	• •	• •		٠.	• •	
C22	• •		• •	• •	• •	• •	• •	٠.		• •	Y8 Y9
	• •	• •	• •	• •	• •	• •	• •	• •	• •		V.4
C27	• •		• •	• •	• •	• •		• •	• •	• •	
C30	• •		• •		• •	• •		• •	• •	• •	X2
C33				٠.				• •	٠.		X3
C36									٠.		X4
C39											X5
C43											X6
C47											X7

High speed switching diode

FMMD914

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Working peak reverse voltage	V _{RWM}	75	٧
Average rectified forward current at 25°C	I _{F(AV)}	75	mA
Repetitive peak forward current	I _{FRM}	225	mA

CHARACTERISTICS (at 25°C ambient unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Reverse breakdown voltage	V _{BR}	100	-	V	Ι _R = 100μΑ
Static reverse current	I _R '	- -	25 50	nA μA	V _R = 20V V _R = 20V, T _{amb} = 150°C
Static forward voltage	V _F	_	1	V	I _F = 10mA
Total capacitance	Ст	-	4	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	_	8	ns	$I_F = 10$ mA, $I_{RM} = 10$ mA $I_{rr} = 1$ mA, $R_L = 100\Omega$ (See Fig. 1, Condition 1)
		_	4	ns	I_F = 10mA, V_R = 6V I_{rr} = 1mA, R_L 100 Ω (See Fig. 1, Condition 2)
Forward recovery voltage	V _{FM(rec)}	-	2.5	٧	$I_F = 50$ mA, $R_L = 50\Omega$ (See Fig. 2)
Rectification efficiency	$\eta_{\rm r}$	45	-	%	$V_r = 2V$, $R_L = 5k\Omega$ $C_L = 20pF$, $Z_{source} = 50\Omega$ f = 100MHz

PARAMETER MEASUREMENT INFORMATION

NOTE 1: The input pulse is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, $t_r \leqslant 0.5$ ns, $t_W = 100$ ns.

NOTE 2: Output waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leqslant 0.6 \text{ns}, \ Z_{\text{IN}} = 50 \Omega.$

NOTE 3: The input pulse is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, $t_r \leqslant 30$ ns, $t_W = 100$ ns, PRR = 5 to 100kHz.

NOTE 4: The output waveform is monitored on an oscilloscope with the following characteristics:

oscilloscope with the following characteristics: $t_r \le 15 ns$, $R_{IN} \ge 1 M\Omega$, $C_{IN} \ge 5 pF$.

High speed switching diode pair common anode

FMMD2835

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD2835	Unit
Breakdown voltage at I _R =100μA	V _(BR)	35	>
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	1.0 1.0 1.2	> > >	I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	100	nA	V _R = 30V
Diode capacitance	C _d	4.0	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	6.0	ns	$I_F = I_R = 10 \text{mA}, i_{R(REC)} = 1.0 \text{mA} \text{ (Fig. 1)}$

SWITCHING TIME TEST DATA

- 1. A $2.0 k\Omega$ variable resistor adjusted for a forward current (V_F) of 10mA. 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10mA.
- 3. $t_p \gg t_{rr}$

High speed switching diode pair common anode

FMMD2836

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD2836	Unit
Breakdown voltage at I _R =100μA	V _(BR)	75	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	1.0 1.0 1.2	V V V	I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	100	nA	V _R = 30V
Diode capacitance	C _d	4.0	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	6.0	ns	$I_F = I_R = 10 \text{mA}, i_{R(REC)} = 1.0 \text{mA} \text{ (Fig. 1)}$

SWITCHING TIME TEST DATA

NOTES:

- 1. A 2.0k Ω variable resistor adjusted for a forward current (V_F) of 10mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10mA. 3. t_p>> t_{rr}

High speed switching diode pair common cathode

FMMD2837

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD2837	Unit
Breakdown voltage at I _R =100μA	V _(BR)	35	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

. Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	1.0 1.0 1.2	> >	I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	100	nA	V _R = 30V
Diode capacitance	C _d	4.0	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	6.0	ns	$I_F = I_R = 10 \text{mA}, i_{R(REC)} = 1.0 \text{mA} \text{ (Fig. 1)}$

SWITCHING TIME TEST DATA

NOTES:

- 1. A 2.0k Ω variable resistor adjusted for a forward current (V_F) of 10mA.
- 2. Input pulse is adjusted so I_{R(peak)} is equal to 10mA.
- $3. t_p >> t_{rr}$

High speed switching diode pair common cathode

FMMD2838

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD2838	Unit
Breakdown voltage at I _R =100μA	V _(BR)	75	٧
Average rectified forward current (over any 20ms period)	I _{F(AV)}	100	mA
Repetitive peak forward current	I _{FRM}	200	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	Max.	Unit	Test conditions
Forward voltage	V _F	1.0 1.0 1.2	V V	I _F = 10mA I _F = 50mA I _F = 100mA
Reverse current	I _R	100	nA	V _R = 30V
Diode capacitance	C _d	4.0	рF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	6.0	ns	I _F =I _R =10mA, i _{R(REC)} =1.0mA (Fig. 1)

SWITCHING TIME TEST DATA

NOTES:

- 1. A 2.0k Ω variable resistor adjusted for a forward current (V_F) of 10mA.
- 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10mA. 3. $t_p >> t_{rr}$

High speed switching diode

FMMD6050

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Continuous reverse voltage	V _R	70	٧
Peak forward current	l _F	200	mA
Peak forward surge current	I _{FM}	500	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Static forward voltage	V _F	0.5 0.8	0.7 1.1	V	I _F =1.0mA I _F =100mA
Static reverse current	I _R	_	0.1	μΑ	V _R = 50V
Total capacitance	Ст	_	2.5	pF	V _R =0
Reverse recovery time	t _{rr}	_	10	ns	$I_F = 10\text{mA}, I_{RM} = 10\text{mA}$ $I_{rr} = 1\text{mA}, R_L = 100\Omega$ (See Fig. 1, Condition 1)

PARAMETER MEASUREMENT INFORMATION

- **NOTE 1:** The input pulse is supplied by a generator with the following characteristics: $Z_{OUT} = 50\Omega$, $t_r \leqslant 0.5$ ns, $t_W = 100$ ns.
- **NOTE 2:** Output waveforms are monitored on an oscilloscope with the following characteristics: $t_r \leqslant 0.6 ns$, $Z_{IN} = 50\Omega$.

High speed switching diode pair common cathode

FMMD6100

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD6100	Unit
Continuous reverse voltage	V _R	70	V
Peak forward current	I _F	200	mA
Peak forward surge current	I _{FM}	500	mA

CHARACTERISTICS (at $T_j = 25\,^{\circ}\text{C}$ unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Breakdown voltage	V _(BR)	70	_	٧	I _R =10μA
Forward voltage	V _F	0.5 0.8	0.7 1.1	V	I _F = 1.0mA I _F = 100mA
Reverse current	I _R	_	0.1	μА	V _R = 50V
Diode capacitance	С	_	2.5	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	_	5	ns	$I_F = I_R = 10\text{mA}, i_{R(REC)} = 1.0\text{mA}$ (Fig. 1)

SWITCHING TIME TEST DATA

NOTES:

- 1. A 2.0k Ω variable resistor adjusted for a forward current (V_F) of 10mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10mA.
- 3. $t_p >> t_{rr}$

High speed switching series diode pair

FMMD7000

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMD7000	Unit
Continuous reverse voltage	V _R	70	٧
Peak forward current	I _F	200	mA
Peak forward surge current	I _{FM}	500	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise specified).

Parameter	Symbol	Min.	Max.	Unit	Test conditions
Breakdown voltage	V _(BR)	100		٧	I _R =100μA
Forward voltage	V _F	0.5 0.8	0.7 1.1	V	I _F = 1.0mA I _F = 100mA
Reverse current	I _R	_	0.3	μА	V _R =50V
Diode capacitance	С	_	2.5	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	_	15	ns	I _F =I _R =10mA, (Fig. 1)

SWITCHING TIME TEST DATA

NOTES:

- 1. A 2.0k Ω variable resistor adjusted for a forward current (V_F) of 10mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10mA. 3. t_{p>>} t_{rr}

NPN silicon planar medium power transistors

FMMT-A05 FMMT-A06

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT-A05	FMMT-A06	Unit
Collector-Base Voltage	V _{CBO}	60	80	V
Collector-Emitter Voltage	V _{CEO}	60	80	V
Emitter-Base Voltage	V _{EBO}	4.0	4.0	V
Continuous Collector Current	Ic	500	500	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM	T-A05	FMM	T-A06	Unit	Conditions
	,	Min.	Max.	Min.	Max.		
Collector-emitter breakdown voltage	V _{(BR)CEO}	60	_	80	_	٧	I _C =1 mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	4.0		4.0	_	V	I _E = 100 μA
Collector-emitter cut-off current	I _{CEO}	_	0.1	_	0.1	μА	V _{CE} =60V
Collector-base cut-off current	I _{СВО}	_	0.1	_	0.1	μA μA	V _{CB} =60V V _{CB} =80V
Static forward current transfer ratio	h _{FE}	50 50	_ _	50 50	_		$I_{C} = 10 \text{ mA}$ $V_{CE} = 1V *$ $I_{C} = 100 \text{ mA}$ $V_{CE} = 1V *$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.25	_	0.25	V	I _C = 100 mA I _B = 10 mA*
Base-emitter on voltage	V _{BE(on)}	_	1.2	_	1.2	V	I _C = 100 mA V _{CE} = 1V *
Transition frequency	f _T	100	_	100		MHz	$I_C = 10 \text{ mA}$ $V_{CE} = 2V$ f = 100 MHz

^{*}Measured under pulsed conditions. Pulse width= $300 \mu s$. Duty cycle=2%.

Devices are identified by a code on the body of the device

FMMT-A05						1	Н
FMMT-A06							
FMMT-A05R							
FMMT-A06R	 	 	 	 	 	N	IA٠

NPN silicon Darlington transistors

FMMT-A12 FMMT-A13 FMMT-A14

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT-A12	FMMT-A13,A14	Unit
Collector-Emitter Voltage	V _{CES}	20	30	V
Collector-Emitter Voltage	V _{CEO}	_	30	V
Collector-Base Voltage	V _{CBO}	_	30	V
Emitter-Base Voltage	V _{EBO}	10	10	٧
Collector Current (continuous)	I _C	300	300	mA

CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Units	Conditions
Collector-base breakdown voltage FMMT-A12 FMMT-A13, A14	V _{(BR)CES}	20 30	_	V	$I_C = 100 \mu A, V_{BE} = 0$ $I_C = 100 \mu A, V_{BE} = 0$
Collector cut-off current FMMT-A12 FMMT-A13, A14	{ I _{CES} I _{CBO}	_ _ _	100 100 100	nA nA nA	V _{CE} = 15V, V _{BE} = 0 V _{CB} = 15V, I _E = 0 V _{CB} = 30V, I _E = 0
Emitter cut-off current (All types)	I _{EBO}	_	100	nA	$V_{EB} = 10V, I_{C} = 0$
Static forward current transfer ratio FMMT-A12 FMMT-A13 FMMT-A14	h _{FE}	20,000 5,000 10,000 10,000 20,000			$ \begin{aligned} &I_C = 10\text{mA},\; V_{CE} = 5V\\ &I_C = 10\text{mA},\; V_{CE} = 5V\\ &I_C = 100\text{mA},\; V_{CE} = 5V\\ &I_C = 100\text{mA},\; V_{CE} = 5V\\ &I_C = 100\text{mA},\; V_{CE} = 5V \end{aligned} $
Collector-emitter saturation voltage FMMT-A12 FMMT-A13, A14	V _{CE(sat)}		1.0 1.5	V	I _C =10 mA, I _B =0.01 mA I _C =100 mA, I _B =0.1 mA
Base-emitter ON voltage FMMT-A12 FMMT-A13, A14	V _{BE(on)}		1.4 2.0	V	I _C =10mA, V _{CE} =5V I _C =100mA, V _{CE} =5V

NPN silicon planar small signal transistor

FMMT-A20

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	٧
Emitter-Base Voltage	V _{EBO}	4	٧
Continuous Collector Current	I _C	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	_	V	$I_C = 1 \text{ mA}, I_B = 0*$
Base-emitter breakdown voltage	V _{(BR)EBO}	4	_	٧	$I_E = 100 \mu\text{A}, \ I_C = 0$
Collector base cut-off current	I _{CBO}	_	100	nA	$V_{CB} = 30V, I_{E} = 0$
Static forward current transfer ratio	h _{FE}	40	400		$I_C = 5 \text{ mA}, \ V_{CE} = 10 \text{ V}^*$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.25	٧	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Transition frequency	f _T	125	_	MHz	I _C = 5 mA, V _{CE} = 10V* f = 100 MHz
Output capacitance	C _{obo}	_	4	pF	V _{CB} =10V, I _E =0 f=140kHz

^{*}Measured under pulsed conditions. Pulse width = $300\mu s$, Duty cycle = 2%.

Devices are identified by a code on the body of the device

FMMT-A20	 	 	 	 	 	1	С
FMMT-A20R	 	 	 	 	 	3	C

NPN silicon planar high voltage transistors

FMMT-A42 FMMT-A43

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT-A42	FMMT-A43	Unit
Collector-Base Voltage	V _{CBO}	300	200	V
Collector-Emitter Voltage	V _{CEO}	300	200	V
Emitter-Base Voltage	V _{EBO}	5	5	V
Continuous Collector Current	Ι _C	200	200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated)

Parameter	Symbol	FMM	T-A42	FMM	T-A43	Unit	Conditions
		Min.	Max.	Min.	Max.	0,,,,,	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	300	_	200	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	300	_	200	_	٧	$I_C = 1 \text{ mA}, I_B = 0*$
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	6	_	٧	$I_E = 100 \mu A, I_C = 0$
Collector cut-off current	I _{СВО}	_	0.1 —	_	_ 0.1	μA μA	$V_{CB} = 200V, I_{E} = 0$ $V_{CB} = 160V, I_{E} = 0$
Emitter cut-off current	I _{EBO}	_	0.1 —	_ 0.1		μA μA	$V_{EB} = 6V, I_{C} = 0$ $V_{EB} = 4V, I_{C} = 0$
Collector-emitter saturation voltage	V _{CE(sat)}		0.5	_	0.4	٧	I _C = 20 mA I _B = 2 mA
Collector-base saturation voltage	V _{BE(sat)}	_	0.9	-	0.9	٧	I _C = 20 mA I _B = 2 mA
Static forward current	h _{FE}	25	_	25	_		$I_C = 1 \text{ mA } V_{CE} = 10V*$
transfer ratio		40		40	_		$I_C = 10mA \ V_{CE} = 10V*$
		40	-	50	200		I _C =30mA V _{CE} =10V*
Transition frequency	f _T	50	_	50		MHz	$I_C = 10 \text{ mA}$ $V_{CE} = 20 \text{ V}$ $f = 20 \text{ MHz}$
Output capacitance	C _{obo}	_	6	_	8	pF	V _{CB} = 20V f = 1 MHz

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

Devices	are i	denti	fied	by a	code	on t	he bo	ody of	f the	devi	ce	
FMMT-A42												3E
FMMT-A42R												7E
FMMT-A43												1E
FMMT-A43R												5E

PNP silicon planar medium power transistors

FMMT-A55 FMMT-A56

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT-A55	FMMT-A56	Unit
Collector-Base Voltage	V _{CBO}	-60	-80	V
Collector-Emitter Voltage	V _{CEO}	-60	-80	V
Emitter-Base Voltage	V _{EBO}	-4.0	4.0	V
Continuous Collector Current	I _C	-500	-500	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM	T-A55	FMM	T-A56	Unit	Conditions
, aramotor	0,50.	Min.	Max.	Min.	Max.	0	00.14.1.01.0
Collector-emitter breakdown voltage	V _{(BR)CEO}	-60	_	-80	_	V	$I_C = -1 \text{ mA*}$
Emitter-base breakdown voltage	V _{(BR)EBO}	-4.0	_	-4.0	_	V	$I_E = -100 \mu A$
Collector-emitter cut-off current	I _{CEO}	_	-0.1	_	-0.1	μΑ	V _{CE} = -60V
Collector-base cut-off current	ГСВО	_	-0.1	_	-0.1	μΑ μΑ	$V_{CB} = -60V$ $V_{CB} = -80V$
Static forward current transfer ratio	h _{FE}	50 50	<u>-</u>	50 50	_ _		$I_{C} = -10 \text{ mA}$ $V_{CE} = -1V$ $I_{C} = -100 \text{ mA}$ $V_{CE} = -1V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.25	_	-0.25	٧	$I_C = -100 \text{ mA}$ $I_B = -10 \text{ mA*}$
Base-emitter on voltage	V _{BE(on)}	_	-1.2	_	-1.2	V	$I_{C} = -100 \text{ mA}$ $V_{CE} = -1V *$
Transition frequency	f _T	100	_	100	_	MHz	$I_C = -10 \text{ mA}$ $V_{CE} = -2V$ f = 100 MHz

^{*}Measured under pulsed conditions. Pulse width= 300μ s. Duty cycle=2%.

Devices are identified by a code on the body of the device

FMMT-A55	 	 	 	 	 	 2H
FMMT-A56						
FMMT-A55R		 	 	 	 	 NB
FMMT-A56R	 	 	 	 	 	 MB

PNP silicon Darlington transistors

FMMT A63 FMMT A64

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT A63	FMMT A64	Unit
Collector-Base Voltage	V _{CBO}	-30	-30	V
Collector-Emitter Voltage	V _{CEO}	-30	-30	V
Emitter-Base Voltage	V _{EBO}	-10	-10	V
Continuous Collector Current	Ic	- 500	- 500	mA
Peak Collector Current	I _{CM}	- 800	-800	mA
Base Current	I _B	-100	-100	mA
Peak Base Current	I _{BM}	- 200	-200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 30	_	_	٧	$I_C = -10 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 30	_	-	V	$I_C = -10 \mu A, I_B = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	- 10	_	_	V	$I_E = -10 \mu A, I_C = 0$
Collector cut-off current	Ісво	_	_	- 100	nA	$V_{CB} = -30V, I_{E} = 0$
Emitter cut-off current	I _{EBO}	-	_	- 100	nΑ	$V_{EB} = -10V, I_{C} = 0$
Static forward current transfer ratio FMMT A63	h _{FE} *	5K	_	_		$\begin{cases} I_C = -10\text{mA} \\ V_{CE} = -5V \end{cases}$
FMMT A63		18K	_	=		$\begin{cases} I_{C} = -3V \\ I_{C} = -100\text{mA} \\ V_{CE} = -5V \end{cases}$
FMMT A64		20K	_	_		ACE - 24
Collector-emitter saturation voltage	V _{CE(sat)} *	1	-	-1.5	٧	$I_C = -100 \text{mA},$ $I_B = -0.1 \text{mA}$
Base-emitter saturation voltage	V _{BE(sat)} *	_	_	- 2.0	٧	$I_C = -100 \text{ mA},$ $I_B = -0.1 \text{ mA}$
Transition frequency	f _⊤	125	_	_	MHz	$I_C = -50 \text{ mA}, V_{CE} = -5V$ f = 20MHz

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

	Devices	are	ident	ified	by a	code	on t	he be	ody c	of the	dev	ice	
FMMT	A63												Z2U
FMMT	A64												Z2V

PNP silicon planar small signal transistor

FMMT-A70

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-4	V
Continuous Collector Current	I _C	-100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-emitter breakdown voltage	V _{(BR)CEO}	-40	_	٧	$I_C = -1 \text{ mA}, I_B = 0*$
Base-emitter breakdown voltage	V _{(BR)EBO}	-4	_	٧	$I_E = -100 \mu\text{A}, \ I_C = 0$
Collector base cut-off current	I _{CBO}	_	-100	nA	$V_{CB} = -30V$, $I_{E} = 0$
Static forward current transfer ratio	h _{FE}	40	400		$I_C = -5 \text{mA}, \ V_{CE} = -10 \text{V}^*$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.25	٧	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}*$
Transition frequency	f _T	125	_	٧	$I_C = -5 \text{ mA}, V_{CE} = 10 \text{V}^*$ f = 100 MHz
Output capacitance	C _{obo}	_	4	pF	V _{CB} = -10V, I _E = 0 f = 100 kHz

^{*}Measured under pulsed conditions. Pulse duration = $300\mu s$, Duty cycle = 2%.

Devices	are i	identi	fied l	by a	code	on th	ne bo	dy o	fthe	devi	ce	
FMMT-A70					• •	• •					:	2C

PNP silicon planar high voltage transistors

FMMT-A92 FMMT-A93

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT-A92	FMMT-A93	Unit
Collector-Base Voltage	V _{CBO}	-300	-200	V
Collector-Emitter Voltage	V _{CEO}	-300	-200	V
Emitter-Base Voltage	V _{EBO}	-5	-5	V
Continuous Collector Current	Ic	-200	-200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM	T-A92	FMM	T-A93	Unit	Conditions
Laramotor	0,	Min.	Max.	Min.	Max.	0	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-300	_	-200	_	٧	$I_C = -100 \mu\text{A}, \ I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	-300	_	-200	_	V	$I_C = -1 \text{ mA}, I_B = 0*$
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	-5	_	٧	$I_E = -100 \mu A, I_C = 0$
Collector cut-off current	I _{СВО}	_	-0.25 -	_	_ -0.25	μ Α μ Α	$V_{CB} = -200V, I_{E} = 0$ $V_{CB} = -160V, I_{E} = 0$
Emitter cut-off current	I _{EBO}	_	-0.1	_	-0.1	μΑ	$V_{EB} = -3V, I_{C} = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.5	_	-0.4	V	$I_C = -20 \text{ mA}$ $I_B = -2 \text{ mA}$
Collector-base saturation voltage	V _{BE(sat)}	_	-0.9	_	-0.9	V	$I_C = -20 \text{ mA}$ $I_B = -2 \text{ mA}$
Static forward current transfer ratio	h _{FE}	25		25	_		$I_C = -1 \text{ mA}$ $V_{CE} = -10 \text{V}*$
		40	1	40	_		$I_C = -10 \text{ mA}$ $V_{CE} = -10 \text{ V}*$
		25	_	30	150		$I_{C} = -30 \text{ mA}$ $V_{CE} = -10 \text{V}^*$
Transition frequency	f _⊤	50	_	50		MHz	$I_{C} = -10 \text{ mA}$ $V_{CE} = -20 \text{ V}$ f = 20 MHz
Output capacitance	C _{obo}	_	6	_	8	рF	$V_{CB} = -20V$ f=1 MHz

^{*}Measured under pulsed conditions. Pulse width=200µs. Duty cycle=2%.

Devices	are i	denti	ified	by a	code	on th	ne bo	dy of	the	devic	e	
FMMT-A92 FMMT-A92R				٠				٠.			٠.	4E
FMMT-A93												2E
FMMT-A93R												6E

NPN silicon darlington transistors

FMMT38A FMMT38B FMMT38C

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	80	V
Collector-Emitter Voltage	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	10	V
Continuous Collector Current	Ic	300	mA
Peak Collector Current	I _{CM}	800	mA

CHARACTERISTICS (at 25°C ambient temperature)

CHARACTERISTICS (at 25°C ambient temperature).										
Parameter	Symbol	Min.	Max.	Unit	Conditions					
Collector-base breakdown voltage	V _{(BR)CBO}	80	_	٧	$I_C = 10 \mu\text{A}, \ I_E = 0$					
Collector-emitter breakdown voltage	V _{CEO(sus)}	60		٧	$I_C = 10 \text{ mA}, I_B = 0$					
Emitter-base breakdown voltage	V _{(BR)EBO}	10		٧	$I_E = 10 \mu A, I_C = 0$					
Collector base cut-off current	І _{СВО}	_	100	nA	$V_{CB} = 60V, I_E = 0$					
Emitter-base cut-off current	I _{EBO}	_	100	nA	$V_{EB} = 8V, I_{C} = 0$					
Static forward current transfer ratio	h _{FE} FMMT38A	500 1000	-		$I_{C} = 100 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $V_{CE} = 5V*$					
	FММТ38B	2000 4000	_		$I_C = 100 \text{ mA}$ $I_C = 500 \text{ mA}$ $V_{CE} = 5V^*$					
	FMMT38C	5000 10000	_		$I_C = 100 \text{mA}$ $I_C = 500 \text{mA}$ $V_{CE} = 5V^*$					
Collector-emitter saturation voltage	V _{CE(sat)}	_	1.25	٧	$I_C = 800 \text{ mA}, I_B = 8 \text{ mA}*$					
Base-emitter on voltage	V _{BE(on)}	-	1.8	V	$I_C = 800 \text{mA}, V_{CE} = 5V^*$					

^{*}Measured under pulsed conditions. Pulse width = $300\mu s$, Duty cycle = $\leq 2\%$.

Device	s are ident	ified by	a code on	the body of	the devi	ce
FMMT38A						4J
FMMT38B						<u>5</u> J
FMMT38C						7J

Silicon NPN avalanche transistor

FMMT415

The FMMT415 has been specifically developed to operate in the avalanche mode. It is designed for driving pulsed laser diodes. Also it is ideally suited in other applications for the generation of very fast edges.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT415	Unit
Collector-Base Voltage	V _{CBO}	260	V
Collector-Emitter Voltage	V _{CEO}	100	V
Emitter-Base Voltage	V _{EBO}	6	V
Continuous Collector Current	I _C	0.5	Α
Peak Collector Current (Max. pulse width 20nsecs)	Ісм	60	Α

CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-emitter breakdown voltage	V _{(BR)CES}	260	_	٧	I _C =1mA T _{amb} =-55 to +175°C
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	٧	I _E = 10 μA
Collector-base cut-off current	I _{CBO}	_	0.1 10	μA μA	V _{CB} =180V V _{CB} =180V, T=100°C
Emitter-base cut-off current	I _{EBO}	_	0.1	μΑ	V _{EB} =4V
Static forward current transfer ratio	h _{FE}	25	_	_	I _C =10mA, V _{CE} 10V*
Collector-emitter saturation voltage	V _{CE(sat)}		0.5	V	I _C =10mA, I _B =1mA*
Base-emitter saturation voltage	V _{BE(sat)}	_	0.9	V	I _C =10mA, I _B =1mA*
Current in second breakdown (pulsed)	I _{SB}	15 25	_	A A	V _C = 200V V _C = 250V
Collector-base capacitance	C _{cb}	_	8	pF	$V_{CB} = 20V, I_{E} = 0$ f = 100 MHz
Transition frequency	f _T	40	_	MHz	$V_{CE} = 20V, I_{C} = 10\mu A$ f = 20 MHz

^{*}Measured under pulsed conditions: Pulse width =300 μ s, Duty cycle $\leq 2\%$.

Device	es are	iden	tified	by a	code	e on 1	the b	ody o	of the	dev	ice		
FMMT415												415	

FMMT 449

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 449	Unit
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	30	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Collector Current * *	Ісм	2	Α
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	50	_	>	$I_C = 100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	-	>	I _C = 10mA
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	I _E = 100μA
Collector-base cut-off current	I _{CBO}	_	0.1 10	μA μA	$V_{CB} = 40V$ $V_{CB} = 40V$, $T_A = 100$ °C
Emitter-base cut-off current	I _{EBO}	_	0.1	μΑ	$V_{EB} = 4V$
Collector-emitter saturation voltage	V _{CE(sat)} *	=	0.5 1.0	\ \ \	$I_C = 1A$, $I_B = 0.1A$ $I_C = 2A$, $I_B = 0.2A$
Base-emitter saturation voltage	V _{BE(sat)} *	_	1.25	V	$I_C = 1A, I_B = 0.1A$
Base-emitter turn-on voltage	V _{BE(on)} *	_	1.0	V	$I_C = 1A$, $V_{CE} = 2V$
Static forward current transfer ratio	h _{FE} *	70 100 80 40	300 - -		$ \begin{array}{l} I_C = 50 mA, \ V_{CE} = 2V \\ I_C = 500 mA, \ V_{CE} = 2V \\ I_C = 1A, \ V_{CE} = 2V \\ I_C = 2A, \ V_{CE} = 2V \end{array} $
Transition frequency	f _T	150	_	MHz	I _C = 50mA, V _{CE} = 10V f = 100MHz
Output capacitance	C _{obo}		15	pF	V _{CB} = 10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

Devi	ces are iden	tified by a cod	le on the body o	f the device	
FMMT 44	9				449

FMMT 451

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 451	Unit
Collector-Base Voltage	V _{CBO}	80	V
Collector-Emitter Voltage	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	I _{CM}	2	Α
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25 \, ^{\circ}\text{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-emitter sustaining voltage	V _{CEO(sus)}	60	_	V	I _C = 10mA *
Collector-base cut-off current	I _{CBO}	_	0.1	μΑ	V _{CB} = 60V
Emitter-base cut-off current	I _{EBO}	_	0.1	μΑ	V _{EB} = 4V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.35	V	I _C = 150mA * I _B = 15mA
Base-emitter saturation voltage	V _{BE(sat)}	-	1.1	٧	I _C = 150mA * I _B = 15mA
Static forward current transfer ratio	h _{FE}	50	150		I _C = 150mA*
		10	_		$I_{C} = 150 \text{mA}^{*}$ $V_{CE} = 10 \text{V}$ $I_{C} = 1 \text{A}^{*}$ $V_{CE} = 10 \text{V}$
Transition frequency	f _T	150	_	MHz	I _C = 50mA V _{CE} = 10V f = 100MHz
Output capacitance	C _{obo}	_	15	pF	$V_{CB} = 10V$ f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

	Device	s are	ider	ntified	by a	a cod	e on	the b	oody	of th	e dev	/ice	
FMMT	451				٠.						• •		451

NPN silicon planar medium power transistor

FMMT 455

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 455	Unit
Collector-Base Voltage	V _{CBO}	160	V
Collector-Emitter Voltage	V _{CEO}	140	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current	I _{CM}	2	Α
Continuous Direct Current	Ic	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Collector-base cut-off current	І _{СВО}	_	_	0.1	μΑ	V _{CB} = 140V
Emitter-base cut-off current	I _{EBO}	_	_	0.1	μΑ	V _{EB} = 4V
Collector-emitter saturation voltage	V _{CE(sat)}	-	-	0.7	٧	I _C = 150mA I _B = 15mA
Collector-emitter sustaining voltage	V _{CEO(sus)}	140	-	-	٧	I _C = 10mA
Static forward current transfer ratio	h _{FE}	100 —	_ 10	300		$I_C = 150 \text{mA}, V_{CE} = 10 \text{V*}$ $I_C = 1 \text{A}, V_{CE} = 10 \text{V*}$
Transition frequency	f _T	100	-	_	MHz	I _C = 50mA, V _{CE} = 10V f = 100MHz
Output capacitance	C _{obo}	_	_	15	рF	V _{CB} = 10V f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300 μ s. Duty cycle $\leq 2\%$.

Devic	es ar	e ide	ntifie	d by	а со	de or	the	body	of t	he de	vice	
FMMT455												455

FMMT 489

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 489	Unit
Collector-Base Voltage	V _{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	30	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	I _{CM}	4	Α
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25 \, ^{\circ}\text{C}$ unless otherwise stated)

umb							
Parameter	Symbol	Min.	Max.	Unit	Test Conditions		
Collector-base breakdown voltage	V _{(BR)CBO}	50	_	V	I _C = 100μA		
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	_	٧	I _C = 10mA *		
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	V	I _E = 100μA		
Collector cut-off current	I _{CBO}	_	100	nA	V _{CB} = 30V		
Emitter cut-off current	I _{EBO}	_	100	nA	V _{EB} = 4V		
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 30V		
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.3 0.6	V V	$I_C = 1A$, $I_B = 0.1A*$ $I_C = 2A$, $I_B = 0.2A*$		
Base-emitter saturation voltage	V _{BE(sat)}	_	1.1	V	$I_C = 1A$, $I_B = 0.1A*$		
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	٧	$I_C = 1A, V_{CE} = 2V^*$		
Static forward current transfer ratio	h _{FE}	100 100 60 20	300 - -		$\begin{split} &I_C = 1 mA, \ V_{CE} = 2V \\ &I_C = 1A, \ V_{CE} = 2V^* \\ &I_C = 2A, \ V_{CE} = 2V^* \\ &I_C = 4A, \ V_{CE} = 2V^* \end{split}$		
Transition frequency	f _T	150	_	MHz	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz		
Output capacitance	C _{obo}	_	10	pF	V _{CB} = 10V, f = 1MHz		

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

Device	s are	identifie	d by a co	de on th	e body o	f the de	vice	
FMMT 489								489

FMMT 491

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 491	Unit
Collector-Base Voltage	V _{CBO}	. 80	V
Collector-Emitter Voltage	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	I _{CM}	2	Α
Continuous Collector Current	l _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

The state of the s								
Parameter	Symbol	Min.	Max.	Unit	Test Conditions			
Collector-base breakdown voltage	V _{(BR)CBO}	80	_	V	$I_C = 100\mu A$			
Collector-emitter breakdown voltage	V _{(BR)CEO}	60	_	V	I _C = 10mA *			
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	>	$I_E = 100\mu A$			
Collector cut-off current	I _{CBO}	_	100	nA	$V_{CB} = 60V$			
Emitter cut-off current	I _{EBO}	_	100	nΑ	$V_{EB} = 4V$			
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 60V			
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.25 0.5	<<	$I_C = 500\text{mA}, I_B = 50\text{mA*}$ $I_C = 1\text{A}, I_B = 0.1\text{A*}$			
Base-emitter saturation voltage	V _{BE(sat)}	_	1.1	٧	$I_C = 1A$, $I_B = 0.1A*$			
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	V	$I_C = 1A, V_{CE} = 5V^*$			
Static forward current transfer ratio	h _{FE}	100 100 80 30	300 - -		$ \begin{vmatrix} I_C = 1 mA \\ I_C = 500 mA * \\ I_C = 1A * \\ I_C = 2A * \end{vmatrix} V_{CE} = 5V $			
Transition frequency	f _T	150	_	MHz	I _C = 50mA, V _{CE} = 10V f = 100MHz			
Output capacitance	C _{obo}		10	pF	V _{CB} = 10V, f = 1MHz			

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

FMMT 491A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 491A	Unit
Collector-Base Voltage	V _{CBO}	40	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	I _{CM}	2	Α .
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	40	-	V	Ι _C = 100μΑ
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	. –	V	I _C = 10mA *
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	Ι _Ε = 100μΑ
Collector cut-off current	I _{СВО}	_	100	nA	V _{CB} = 30V
Emitter cut-off current	I _{EBO}	_	100	nA	V _{EB} = 4V
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 30V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.3 0.5	V	I _C = 500mA, I _B = 50mA* I _C = 1A, I _B = 0.1A*
Base-emitter saturation voltage	V _{BE(sat)}	-	1.1	٧	I _C = 1A, I _B = 0.1A*
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	V	$I_C = 1A, V_{CE} = 5V*$
Static forward current transfer ratio	h _{FE}	300 300 200 35	900		$ \begin{vmatrix} I_{C} = 1 \text{mA} \\ I_{C} = 500 \text{mA} * \\ I_{C} = 1 \text{A} * \\ I_{C} = 2 \text{A} * \end{vmatrix} $
Transition frequency	f _T	150	_	MHz	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}		10	pF	V _{CB} = 10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

Devices	are ident	ified by	a code	on the b	ody (of the dev	vice	
FMMT 491A							41A	

FMMT 493

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 493	Unit
Collector-Base Voltage	V _{CBO}	120	V
Collector-Emitter Voltage	V _{CEO}	100	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	I _{CM}	2	Α
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

	, at amb					
Parameter	Symbol	Min.	Max.	Unit	Test Conditions	
Collector-base breakdown voltage	V _{(BR)CBO}	120	_	٧	$I_C = 100\mu A$	
Collector-emitter breakdown voltage	V _{(BR)CEO}	100	_	V	I _C = 10mA *	
Emitter-base breakdown voltage	V _{(BR)EBO}	5	-	٧	$I_E = 100\mu A$	
Collector cut-off current	I _{CBO}	_	100	nA	V _{CB} = 100V	
Emitter cut-off current	I _{EBO}	_	100	nA	$V_{EB} = 4V$	
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 100V	
Collector-emitter saturation voltage	V _{CE(sat)}	1 1	0.3 0.6	> >	$I_C = 500 \text{mA}, I_B = 50 \text{mA*}$ $I_C = 1 \text{A}, I_B = 0.1 \text{A*}$	
Base-emitter saturation voltage	V _{BE(sat)}	_	1.15	٧	$I_C = 1A, I_B = 0.1A*$	
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	٧	$I_C = 1A, V_{CE} = 10V*$	
Static forward current transfer ratio	h _{FE}	100 100 60 20	300 - -		$ \begin{vmatrix} I_{C} = 1 \text{mA} \\ I_{C} = 250 \text{mA} * \\ I_{C} = 500 \text{mA} * \\ I_{C} = 1 \text{A} * \end{vmatrix} V_{CE} = 10 V $	
Transition frequency	f _T	150		MHz	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz	
Output capacitance	C _{obo}	_	10	pF	V _{CB} = 10V, f = 1MHz	

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

Devices	s are iden	tified by a	a code on	the body	of the	e dev	rice	
FMMT 493								493

FMMT 494

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 494	Unit
Collector-Base Voltage	V _{CBO}	140	V
Collector-Emitter Voltage	V _{CEO}	120	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	Ісм	2	Α
Continuous Collector Current	I _C	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	140	_	٧	I _C = 100μA
Collector-emitter breakdown voltage	V _{(BR)CEO}	120	_	٧	I _C = 10mA *
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	$I_E = 100\mu A$
Collector cut-off current	I _{CBO}	_	100	nA	V _{CB} = 120V
Emitter cut-off current	I _{EBO}	_	100	nA	V _{EB} = 4V
Collector-emitter cut-off current	I _{CES}	-	100	nA	V _{CES} = 120V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.2 0.3	V V	I _C = 250mA, I _B = 25mA* I _C = 500mA, I _B = 50mA*
Base-emitter saturation voltage	V _{BE(sat)}	_	1.1	٧	$I_C = 500 \text{mA}, I_B = 50 \text{mA}*$
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	٧	$I_C = 500 \text{mA}, V_{CE} = 10 \text{V}^*$
Static forward current transfer ratio	h _{FE}	100 100 60 20	300 - -		$ \begin{vmatrix} I_{C} = 1 mA \\ I_{C} = 250 mA * \\ I_{C} = 500 mA * \\ I_{C} = 1A * \end{vmatrix} V_{CE} = 10V $
Transition frequency	f _T	100	_	MHz	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	_	10	pF	V _{CB} = 10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

	Devices						
FMMT	494	 	 	 	 	 	 494

FMMT 495

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 495	Unit
Collector-Base Voltage	V _{CBO}	170	V
Collector-Emitter Voltage	V _{CEO}	150	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	Ісм	2	Α
Continuous Collector Current	Ic	1	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	170	_	V	$I_C = 100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	150	_	V	I _C = 10mA *
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	V	$I_E = 100\mu A$
Collector cut-off current	I _{CBO}	_	100	nΑ	V _{CB} = 150V
Emitter cut-off current	I _{EBO}	_	100	nA	$V_{EB} = 4V$
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 150V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.2 0.3	V V	$I_C = 250 \text{mA}, I_B = 25 \text{mA*}$ $I_C = 500 \text{mA}, I_B = 50 \text{mA*}$
Base-emitter saturation voltage	V _{BE(sat)}	_	1.0	٧	$I_C = 500 \text{mA}, I_B = 50 \text{mA}*$
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	V	$I_C = 500 \text{mA}, V_{CE} = 10 \text{V}^*$
Static forward current transfer ratio	h _{FE}	100 100 50 10	300 - -		$ \begin{vmatrix} I_{C} = 1 mA \\ I_{C} = 250 mA * \\ I_{C} = 500 mA * \\ I_{C} = 1A * \end{vmatrix} V_{CE} = 10V $
Transition frequency	f _T	100	_	MHz	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	-	10	pF	V _{CB} = 10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

Devices	; are	den	citied	ı by a	a coa	e on	tne t				
FMMT 495								 	 	495	

FMMT 497

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 497	Unit
Collector-Base Voltage	V _{CBO}	300	V
Collector-Emitter Voltage	V _{CEO}	300	V
Emitter-Base Voltage	V _{EBO}	5	V
Peak Pulse Current * *	Ісм	1	Α
Continuous Collector Current	Ic	0.5	Α
Base Current	I _B	200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25 \, ^{\circ}\text{C}$ unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	300	_	V	$I_C = 100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	300	_	V	I _C = 10mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	5		V	Ι _Ε = 100μΑ
Collector cut-off current	Гсво	-	100	nA	V _{CB} = 250V
Emitter cut-off current	I _{EBO}	_	100	nA	V _{EB} = 4V
Collector-emitter cut-off current	I _{CES}	_	100	nA	V _{CES} = 250V
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.2 0.3	V	I _C = 100mA, I _B = 10mA I _C = 250mA, I _B = 25mA*
Base-emitter saturation voltage	V _{BE(sat)}	_	1.0	٧	I _C = 250mA, I _B = 25mA*
Base-emitter turn-on voltage	V _{BE(on)}	_	1.0	V	I _C = 250mA, V _{CE} = 10V*
Static forward current transfer ratio	h _{FE}	100 100 20	300		$ \begin{vmatrix} I_C = 1 mA \\ I_C = 100 mA * \\ I_C = 250 mA * \end{vmatrix} V_{CE} = 10V $
Transition frequency	f _T	75	_	MHz	I _C = 50mA, V _{CE} = 10V f = 100MHz
Output capacitance	C _{obo}	_	5	рF	V _{CB} = 10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300 μ s. Duty cycle \leqslant 2%.

De	vices	are	ident	ified	by a	code	e on	the b	ody	of th	e dev	ice	
FMMT 4	497	• •	• •	٠.									497

FMMT 549 FMMT 549A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 549/A	Unit
Collector-Base Voltage	V _{CBO}	- 35	V
Collector-Emitter Voltage	V _{CEO}	- 30	٧
Emitter-Base Voltage	V _{EBO}	- 5	٧
Peak Collector Current * *	I _{CM}	- 2	Α
Continuous Collector Current	I _C	– 1	Α

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 35	_	V	$I_C = -100 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 30	_	٧	I _C = -10mA,
Emitter-base breakdown voltage	V _{(BR)EBO}	- 5	_	V	$I_E = -100 \mu A$,
Collector cut-off current	I _{CBO}	_	- 0.1 - 10	μA μA	$V_{CB} = -30V$ $V_{CB} = -30V$, $T_A = 100$ °C
Emitter cut-off current	I _{EBO}	_	-0.1	μΑ	$V_{EB} = -4V$
Collector-emitter saturation voltage FMMT 549A	V _{CE(sat)}	_ _ _	-0.5 -0.75 -0.3	V V V	$\begin{split} &I_{C} = -1\text{A}, \ I_{B} = -100\text{mA} ^{*} \\ &I_{C} = -2\text{A}, \ I_{B} = -200\text{mA} ^{*} \\ &I_{C} = -100\text{mA}, \ I_{B} = -1\text{mA} \end{split}$
Base-emitter saturation voltage	V _{BE(sat)}	_	- 1.25	V	$I_C = -1A$, $I_B = -100 \text{mA}*$
Base-emitter turn-on voltage	V _{BE(on)}	_	- 1.0	V	$I_C = -1A, V_{CE} = -2V^*$
Static forward current transfer ratio FMMT 549 FMMT 549A	h _{FE}	70 100 150 80 40	_ 300 500 _ _		$ \begin{aligned} &I_{C} = -50 \text{mA}, \ V_{CE} - 2V \\ &\downarrow I_{C} = -500 \text{mA}^{*} \\ &V_{CE} = -2V \\ &I_{C} = -1 \text{A}, \ V_{CE} = -2V^{*} \\ &I_{C} = -2 \text{A}, \ V_{CE} = -2V^{*} \end{aligned} $
Transition frequency	f _T	100	_	MHz	$I_C = -100 \text{mA}, \ V_{CE} = -5 \text{V}$ f = 100MHz
Output capacitance	C _{obo}		25	pF	$V_{CB} = -10V$, $f = 1MHz$

^{*}Measured under pulsed conditions. Pulse width = $300\mu s$. Duty cycle $\leq 2\%$.

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
	T _{on}	30	O typ	ns	$I_C = -500mA$
Switching times	T _{off}	50	typ	ns	$I_{B1} = I_{B2} = -50 \text{mA}$ $V_{CC} = -10 \text{V}$

	Devices	are	ident	ified	by a	code	on 1	the b	ody o	of the	devi	ce	
	549								-				549
FMMT	549A												59A

FMMT 551

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 551	Unit
Collector-Base Voltage	V _{CBO}	-80	V
Collector-Emitter Voltage	V _{CEO}	- 60	V
Emitter-Base Voltage	V _{EBO}	-5	V
Peak Pulse Current**	Ісм	-2	Α
Continuous Collector Current	I _C	– 1	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-emitter sustaining voltage	V _{CEO(sus)}	-60	_	٧	I _C = -10mA*
Collector-base cut-off current	I _{CBO}	_	-0.1	μΑ	V _{CB} = -60V
Emitter-base cut-off current	I _{EBO}	_	-0.1	μΑ	$V_{EB} = -4V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.35	V	I _C = - 150mA * I _B = - 15mA
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.1	٧	I _C = 150mA * I _B = -15mA
Static forward current transfer ratio	h _{FE}	50 10	150 —		$\begin{split} I_{C} &= -150 \text{mA} * \\ V_{CE} &= -10 \text{V} \\ I_{C} &= -1 \text{A} * \\ V_{CE} &= -10 \text{V} \end{split}$
Transition frequency	f _T	150	_	MHz	$I_C = -50 \text{mA}$ $V_{CE} = -10 \text{V}$ f = 100 MHz
Output capacitance	C _{obo}	_	25	pF	$V_{CB} = -10V$ f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

De	vices	are	ident	ified	by a	code	on	the b	ody (of the	e dev	ice	
FMMT 5	551												551

FMMT 555

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 555	Unit
Collector-Base Voltage	V _{CBO}	- 160	V
Collector-Emitter Voltage	V _{CEO}	– 150	V
Emitter-Base Voltage	V _{EBO}	-5	V
Peak Pulse Current * *	I _{CM}	-2	Α
Continuous Collector Current	I _C	-1	Α
Base Current	I _B	– 200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 160	_	V	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 150	_	٧	I _C = -10mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	V	$I_E = -100 \mu A$
Collector cut-off current	I _{CBO}	_	-0.1 -10	μΑ μΑ	V _{CB} = -140V V _{CB} = -140V T _{AMB} = 100°C
Emitter cut-off current	I _{EBO}	_	-0.1	μΑ	$V_{EB} = -4V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.3	٧	I _C = -100mA* I _B = -10mA
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.0	٧	I _C = -100mA* I _B = -10mA
Base-emitter turn-on voltage	V _{BE(on)}	_	- 1.0	V	I _C = -100mA* V _{CE} = -10V
Static forward current transfer ratio	h _{FE}	50	_		$I_C = -10\text{mA}$ $V_{CE} = -10\text{V}$ $I_C = -300\text{mA}$ *
Tutto		50	300		I _C = -300mA * V _{CE} = -10V
Transition frequency	f _T	100	_	MHz	$I_{C} = -50 \text{mA}$ $V_{CE} = -10 \text{V}$ $f = 100 \text{MHz}$
Output capacitance	C _{obo}	_	10	pF	V _{CB} = -10V f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leq 2\%$.

Device	s are	iden	tified	by a	a cod	e on	the b	ody	of th	e dev	/ice	
FMMT 555												555

FMMT 576

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	- 200	.; V
Collector-Emitter Voltage	V _{CEO}	- 200	٧
Emitter-Base Voltage	V _{EBO}	- 5	٧
Peak Pulse Current * *	I _{CM}	- 2	Α
Continuous Collector Current	I _C	– 1	Α

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

	amb — -				T . O . I''
Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 200	_	V	$I_{C} = -100 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 200	_	>	$I_C = -10 \text{mA}$
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	>	$I_E = -100 \mu A$
Collector cut-off current	I _{CBO}	_	- 100	nΑ	$V_{CB} = -160V$
Emitter cut-off current	I _{EBO}	_	- 100	nΑ	$V_{EB} = -4V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.3	>	$I_C = -100 \text{ mA}, I_B = -10 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.0	٧	$I_C = -100 \text{mA}$, $I_B = -10 \text{mA}$
Static forward current transfer ratio	h _{FE}	50 50	300		$I_C = -10 \text{ mA}, V_{CE} = -10 \text{ V}$ $I_C = -300 \text{ mA}, V_{CE} = -10 \text{ V}$
Base-emitter turn-on voltage	V _{BE(on)}	_	-1.0	٧	$I_C = -100 \text{ mA,*} $ $V_{CE} = -10 \text{ V}$
Transition frequency	f _T	100	_	MHz	$I_C = -50 \text{ mA}, V_{CE} = -10V$ f = 100MHz

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle $\leq 2\%$.

Device	s are iden	tified by a co	ode on the body	of the device	
FMMT 576		•• •• •			576

FMMT 589

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 589	Unit
Collector-Base Voltage	V _{CBO}	- 50	V
Collector-Emitter Voltage	V _{CEO}	- 30	V
Emitter-Base Voltage	V _{EBO}	– 5	V
Peak Pulse Current * *	Ісм	-2	Α
Continuous Collector Current	I _C	– 1	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

					T . O
Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 50	_	٧	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	-30	_	٧	I _C = -10mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	V	$I_E = -100\mu A$
Collector cut-off current	I _{CBO}	_	- 100	nA	$V_{CB} = -30V$
Emitter cut-off current	I _{EBO}	_	- 100	nA	$V_{EB} = -4V$
Collector-emitter cut-off current	I _{CES}	_	- 100	nA	V _{CES} = -30V
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.35 -0.65	V V	$I_C = -1A$, $I_B = -0.1A*$ $I_C = -2A$, $I_B = -0.2A*$
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.2	٧	$I_C = -1A$, $I_B = -0.1A*$
Base-emitter turn-on voltage	V _{BE(on)}	_	-1.1	٧	$I_C = -1A, V_{CE} = -2V^*$
Static forward current transfer ratio	h _{FE}	100 100 80 40	300 - -		$ \begin{vmatrix} I_{C} = -1 \text{mA} \\ I_{C} = -500 \text{mA} * \\ I_{C} = -1 \text{A} * \\ I_{C} = -2 \text{A} * \end{vmatrix} $
Transition frequency	f _T	100	_	MHz	$I_C = -100 \text{mA}, V_{CE} = -5 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	_	15	pF	$V_{CB} = -10V$, $f = 1MHz$

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

FMMT 591

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 591	Unit
Collector-Base Voltage	V _{CBO}	-80	V
Collector-Emitter Voltage	V _{CEO}	- 60	V
Emitter-Base Voltage	V _{EBO}	-5	V
Peak Pulse Current * *	I _{CM}	-2	Α
Continuous Collector Current	Ic	-1	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-80	_	V	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 60	_	٧	I _C = -10mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	- 5	-	V	$I_{E} = -100\mu A$
Collector cut-off current	I _{CBO}	_	- 100	nΑ	$V_{CB} = -60V$
Emitter cut-off current	I _{EBO}	_	- 100	nΑ	$V_{EB} = -4V$
Collector-emitter cut-off current	I _{CES}	_	- 100	nA	$V_{CES} = -60V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.3 -0.6	V V	$I_C = -500\text{mA}, I_B = -50\text{mA}*$ $I_C = -1\text{A}, I_B = -0.1\text{A}*$
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.2	٧	$I_C = -1A$, $I_B = -0.1A*$
Base-emitter turn-on voltage	V _{BE(on)}	-	-1.0	٧	$I_C = -1A$, $V_{CE} = -5V*$
Static forward current transfer ratio	h _{FE}	100 100 80 15	300 - -		$ \begin{vmatrix} I_C = -1 \text{mA} \\ I_C = -500 \text{mA}^* \\ I_C = -1 \text{A}^* \\ I_C = -2 \text{A}^* \end{vmatrix} V_{CE} = -5 V $
Transition frequency	f _T	150	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	_	10	pF	V _{CB} = -10V, f = 1MHz

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

FMMT 591A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 591A	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-5	V
Peak Pulse Current**	I _{CM}	-2	Α
Continuous Collector Current	I _C	-1	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-40	_	V	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	-40	_	V	I _C = -10mA*
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	٧	$I_{E} = -100\mu A$
Collector cut-off current	Ісво	_	- 100	nA	V _{CB} = -30V
Emitter cut-off current	I _{EBO}	_	- 100	nA	$V_{EB} = -4V$
Collector-emitter cut-off current	I _{CES}	_	- 100	nA	V _{CES} = -30V
Collector-emitter saturation voltage	V _{CE(sat)}	-	-0.2 -0.35 -0.5	V V V	$\begin{aligned} & I_{C} = -100\text{mA}, \ I_{B} = -1\text{mA*} \\ & I_{C} = -500\text{mA}, \ I_{B} = -20\text{mA*} \\ & I_{C} = -1\text{A}, \ I_{B} = -100\text{mA*} \end{aligned}$
Base-emitter saturation voltage	V _{BE(sat)}	_	- 1.1	V	$I_C = -1A$, $I_B = -50mA*$
Base-emitter turn-on voltage	V _{BE(on)}	_	- 1.0	٧	$I_C = -1A, V_{CE} = -5V*$
Static forward current transfer ratio	h _{FE}	300 300 250 160 30	800		$ \begin{vmatrix} I_C = -1 mA \\ I_C = -100 mA * \\ I_C = -500 mA * \\ I_C = -1A * \\ I_C = -2A * \end{vmatrix} V_{CE} = -5V $
Transition frequency	f _T	150	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	_	10	рF	$V_{CB} = -10V$, $f = 1MHz$

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

FMMT 593

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 593	Unit
Collector-Base Voltage	V _{CBO}	- 120	V
Collector-Emitter Voltage	V _{CEO}	- 100	V
Emitter-Base Voltage	V _{EBO}	- 5	V
Peak Pulse Current * *	I _{CM}	- 2	Α
Continuous Collector Current	Ic	– 1	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 120	_	V	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 100	_	V	$I_C = -10mA*$
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	V	$I_E = -100\mu A$
Collector cut-off current	I _{CBO}	_	- 100	nΑ	V _{CB} = -100V
Emitter cut-off current	I _{EBO}	_	- 100	nΑ	$V_{EB} = -4V$
Collector-emitter cut-off current	I _{CES}	_	- 100	nA	V _{CES} = -100V
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.2 -0.3	V V	$I_C = -250 \text{mA}, I_B = -25 \text{mA*} $ $I_C = -500 \text{mA}, I_B = -50 \text{mA*} $
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.1	٧	$I_C = -500 \text{mA}, I_B = -50 \text{mA}^*$
Base-emitter turn-on voltage	V _{BE(on)}	_	- 1.0	V	$I_C = -500 \text{mA}, V_{CE} = -5 \text{V}^*$
Static forward current transfer ratio	h _{FE}	100 100 100 50	300 -		$ \begin{vmatrix} I_{C} = -1 \text{mA} \\ I_{C} = -250 \text{mA} * \\ I_{C} = -500 \text{mA} * \\ I_{C} = -1 \text{A} * \end{vmatrix} V_{CE} = -5 V $
Transition frequency	f _T	150	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -10 \text{V}$ f = 100MHz
Output capacitance	C _{obo}	_	10	pF	$V_{CB} = -10V$, $f = 1MHz$

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

	Device	s are	iden	tified	by	a cod	e on	the b	ody	of the	e dev	rice	
FMM	593												593

FMMT 596

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 596	Unit
Collector-Base Voltage	V _{CBO}	- 220	V
Collector-Emitter Voltage	V _{CEO}	- 200	V
Emitter-Base Voltage	V _{EBO}	– 5	V
Peak Pulse Current	Ісм	– 1	Α
Continuous Collector Current	Ic	-0.5	Α
Base Current	I _B	- 200	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Symbol	Min.	Max.	Unit	Test Conditions
V _{(BR)CBO}	- 220	_	٧	$I_C = -100\mu A$
V _{(BR)CEO}	- 200	_	٧	I _C = -10mA*
V _{(BR)EBO}	- 5	_	٧	$I_{E} = -100\mu A$
I _{CBO}	_	- 100	nA	$V_{CB} = -200V$
I _{EBO}	_	- 100	nA	$V_{EB} = -4V$
I _{CES}	-	- 100	nA	$V_{CES} = -200V$
V _{CE(sat)}		-0.2 -0.35	V V	$I_C = -100 \text{mA}, I_B = -10 \text{mA}$ $I_C = -250 \text{mA}, I_B = -25 \text{mA}*$
V _{BE(sat)}	_	-1.0	٧	$I_C = -250 \text{mA}, I_B = -25 \text{mA}*$
V _{BE(on)}	_	-0.9	٧	$I_C = -250 \text{mA}, V_{CE} = -10 \text{V}^*$
h _{FE}	100 100 100 40	300		$ \begin{vmatrix} I_{C} = -1 \text{mA} \\ I_{C} = -100 \text{mA} * \\ I_{C} = -250 \text{mA} * \\ I_{C} = -500 \text{mA} * \end{vmatrix} $
f _T	150	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -10 \text{V}$ f = 100MHz
C _{obo}	_	10	рF	$V_{CB} = -10V$, $f = 1MHz$
	V(BR)CBO V(BR)CBO V(BR)EBO ICBO ICES VCE(sat) VBE(sat) VBE(on) hFE	V(BR)CBO - 220 V(BR)CEO - 200 V(BR)EBO - 5 ICBO - 1 ICES - 2 VCE(sat) - 3 VBE(sat) - 3 VBE(on) - 3 hFE 100 100 100 40 40 fT 150	V(BR)CBO - 220 - V(BR)CEO - 200 - V(BR)EBO - 5 - ICBO 100 - ICES 100 - VCE(sat) 0.2 - 0.35 - - VBE(sat) 0.9 hFE 100 - 100 - - 40 - - fT 150 -	V(BR)CBO -220 - V V(BR)CEO -200 - V V(BR)EBO -5 - V ICBO - -100 nA ICES - -100 nA VCE(sat) - -0.2 V VBE(sat) - -0.35 V VBE(sat) - -0.9 V hFE 100

^{*}Measured under pulsed conditions. Pulse width = 300µs. Duty cycle ≤2%.

D	evice	s are	iden	tified	by a	a cod	e on	the b	ody	of th	e dev	/ice	
FMMT	596										٠.		596

FMMT 597

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 597	Unit
Collector-Base Voltage	V _{CBO}	- 300	V
Collector-Emitter Voltage	V _{CEO}	- 300	V
Emitter-Base Voltage	V _{EBO}	– 5	V
Peak Pulse Current * *	ГСМ	– 1	Α
Continuous Collector Current	l _C	-0.5	Α
Base Current	I _B	- 200	mA

FIFCTRICAL CHARACTERISTICS (at Tomb = 25°C unless otherwise stated)

LECTRICAL CHARACTERISTICS (at T _{amb} = 25°C unless otherwise stated)									
Parameter	Symbol	Min.	Max.	Unit	Test Conditions				
Collector-base breakdown voltage	V _{(BR)CBO}	-300	_	٧	$I_C = -100\mu A$				
Collector-emitter breakdown voltage	V _{(BR)CEO}	-300	_	٧	I _C = -10mA*				
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	_	V	$I_{E} = -100\mu A$				
Collector cut-off current	I _{СВО}	_	- 100	nΑ	$V_{CB} = -250V$				
Emitter cut-off current	I _{EBO}	_	- 100	nΑ	$V_{EB} = -4V$				
Collector-emitter cut-off current	I _{CES}	_	- 100	nA	$V_{CES} = -250V$				
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.25 -0.25	<<	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$ $I_C = -100 \text{mA}, I_B = -20 \text{mA}*$				
Base-emitter saturation voltage	V _{BE(sat)}	-	-1.0	٧	$I_C = -100 \text{mA}, I_B = -20 \text{mA}*$				
Base-emitter turn-on voltage	V _{BE(on)}		-0.85	V	$I_C = -100 \text{mA}, V_{CE} = -10 \text{V}^*$				
Static forward current transfer ratio	h _{FE}	100 100 100	300		$ \begin{vmatrix} I_C = -1 mA \\ I_C = -50 mA \\ I_C = -100 mA * \end{vmatrix} V_{CE} = -10 V $				
Transition frequency	f _T	75	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -10 \text{V}$ f = 100MHz				
Output capacitance	C _{obo}		10	pF	V _{CB} = -10V, f = 1MHz				

^{*}Measured under pulsed conditions. Pulse width = 300μ s. Duty cycle $\leqslant 2\%$.

NPN silicon planar VHF/UHF transistors

FMMT918

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	30	V
Collector-Emitter Voltage	V _{CEO}	15	V
Emitter-Base Voltage	V _{EBO}	3	V
Collector Current	Ic	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	30	-	V	$I_C = 1.0 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	15		V	$I_C = 3 \text{ mA}, I_B = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	3	_	V	$I_E = 10 \mu A, I_C = 0$
Collector-base cut-off current	I _{CBO}	_	0.05	μΑ	V _{CB} =15V, I _E =0
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.4	V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	1.0	V	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$
Static forward current transfer ratio	h _{FE}	20	_		$I_C = 3 \text{ mA}, V_{CE} = 1V$
Transition frequency	f _T	600	_	MHz	I _C =4mA, V _C =10V f=100MHz
Output capacitance	C _{obo}	_	3.0 1.7	pF pF	V _{CB} =0V, f=1 MHz V _{CB} =10V, f=1 MHz
Input capacitance	C _{ibo}	_	1.6	pF	V _{EB} =0.5V, f=1 MHz
Noise figure	N	_	6.0	dB	$V_{CE} = 6V, I_{C} = 1 \text{ mA}$ f = 60 MHz, $R_{G} = 400\Omega$
Common emitter power gain	G _{pe}		ical 5	dB	$I_C = 6 \text{ mA}, V_{CB} = 12V$ f = 200 MHz

Device	s are i	dent	ified	by a	code	on t	he bo	dy o	f the	devi	ce	
FMMT918				• •		• •			• •			3B

NPN silicon planar general purpose switching transistors

FMMT2222 FMMT2222A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT2222	FMMT2222A	Unit
Collector-Base Voltage	V _{CBO}	60	75	V
Collector-Emitter Voltage	V _{CEO}	30	40	V
Emitter-Base Voltage	V _{EBO}	5	6	V
Continuous Collector Current	I _C	600	600	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM	Γ2222	FMMT	2222A	Unit	Conditions
	-,	Min.	Max.	Min.	Max.	-	
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	_	40	_	٧	$I_C = 10 \text{ mA}$ $I_B = 0$
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	75	_	>	$I_C = 10\mu A$ $I_E = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	6	_	٧	$I_E = 10\mu A$ $I_C = 0$
Collector-emitter cut-off current	I _{CEX}	_	_	_	10	nA	$V_{CE} = 60V$ $V_{EB(off)} = 3V$
Collector-base cut-off current	I _{CBO}	_ _ _	10 _ 10	_ _ _	10 -	nΑ nΑ μΑ	$V_{CB} = 50V, I_E = 0$ $V_{CB} = 60V, I_E = 0$ $V_{CB} = 50V, I_E = 0$ $T_{amb} = 150 ^{\circ}C$
		_	-	_	10	μΑ	$V_{CB} = 60V, I_E = 0$ $T_{amb} = 150$ °C
Emitter-base cut-off current	I _{EBO}	_	_	-	10	nA	$V_{EB} = 3V$ $I_C = 0$
Static forward current transfer	h _{FE}	35	_	35	_		$I_{C} = 0.1 \text{ mA}$ $V_{CC} = 10 \text{ V}^*$
ratio		50	_	50	-		V _{CE} = 10V* I _C = 1 mA
		75	_	75	_		$V_{CE} = 10V$ $I_{C} = 10mA$ $V_{CE} = 10V*$
		35	_	35	_		I _C = 10mA V _{CE} = 10V
		100	300	100	300		$T_{amb}^{CE} = -55^{\circ}C$ $I_{C} = 150 \text{ mA}$ $V_{CE} = 10V^{*}$
		50	_	50	_		I _C = 150mA V _{CE} = 1V*
		30	_	40	-		I _C = 500mA V _{CE} = 10V*

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

CHARACTERISTICS (cont.).

Parameter	Symbol	FMM [*]	T2222	FMMT	2222A	Unit	Conditions
		Min.	Max.	Min.	Max.		00.141.151.15
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.4 1.6	_	0.3 1.0	V V	I _C = 150 mA I _B = 15 mA* I _C = 500 mA I _B = 50 mA*
Base-emitter saturation voltage	V _{BE(sat)}	0.6	2.0	0.6	1.2 2.0	V V	I _C = 150 mA I _B = 15 mA* I _C = 500 mA I _B = 50 mA*
Transition frequency	f _T	250	_	300	_	MHz	I _C = 20 mA V _{CE} = 20 V f = 100 MHz
Output capacitance	С _{ОВО}	_	8	_	8	pF	V _{CB} =10V I _E =0 f=140KHz
Input capacitance	C _{ibo}	_	30	_	25	pF	V _{EB} = 0.5V I _C = 0 f = 140 KHz
Noise figure	N	-		-	4	dB	$\begin{array}{l} I_C = 200\mu\text{A} \\ V_{CE} = 5\text{V} \\ R_g = 2\text{k}\Omega \\ \text{f} = 1\text{KHz} \\ \triangle\text{f} = 200\text{Hz} \end{array}$

^{*}Measured under pulsed conditions. Pulse width=300 µs. Duty cycle=2%.

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	FMMT2222	FMMT2222A	Unit	Conditions
		Typical	Maximum]	Conditions
Delay time	t _d	10	10	ns	$V_{CC} = 30V, V_{BE(off)} = 0.5V$ $I_{C} = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$
Rise time	t _r	25	25	ns	See fig. 1)
Storage time	t _s	225	225	ns	$V_{CC} = 30V, I_{C} = 150 \text{ mA}$ $I_{B1} = I_{B2} = 15 \text{ mA}$ (See Fig. 2)
Fall time	t _f	60	60	ns	∫ (See Fig. 2)

CIRCUITS FOR MEASURING SWITCHING TIMES

Devices are identified by a code on the body of the device

FMMT2222		 	 			• •	• •	• •	• •	15
FMMT2222A		 	 • •	• •	• •	• •	• •	• •	• •	25
FMMT2222R	• •	 	 • •	• •	• •	• •	• •	• •	• •	20
FMMT2222AR		 	 							٥r

NPN silicon planar high speed switching transistor

FMMT2369

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	40	V
Collector-Emitter Voltage	V _{CES}	40	V
Collector-Emitter Voltage	V _{CEO}	15	V
Emitter-Base Voltage	V _{EBO}	4.5	V
Continuous Collector Current	I _C	200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter Symbol Min Max Unit Conditions									
Parameter	Symbol	Min.	Max.	Unit	Conditions				
Collector-base breakdown voltage	V _{(BR)CBO}	40	_	٧	$I_C = 10 \mu A, I_E = 0$				
Collector-emitter breakdown voltage	V _{(BR)CEO}	15	_	V	$I_C = 10 \text{ mA}, I_B = 0*$				
	V _{(BR)CES}	40	_	٧	$I_C = 10 \mu A, V_{BE} = 0$				
Emitter-base breakdown voltage	V _{(BR)EBO}	4.5	_	V	$I_E = 10 \mu A, I_C = 0$				
Collector-base cut-off current	I _{CBO}	_	0.4	μΑ	$V_{CB} = 20V, I_{E} = 0$				
Static forward current transfer ratio	h _{FE}	40 20	120 —		$ \begin{array}{l} I_{C} = 10\text{mA}, \ V_{CE} = 1V^{*} \\ I_{C} = 10\text{mA}, \ V_{CE} = 1V \\ T_{amb} = -55^{\circ}\text{C} \\ I_{C} = 100\text{mA} \\ V_{CE} = 2V^{*} \end{array} $				
		20	-		I _C = 100mA V _{CE} = 2V*				
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.25	٧	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}*$				
Base-emitter saturation voltage	V _{BE(sat)}	0.7	0.85	V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA*}$				
Output capacitance	C _{obo}		4	pF	$V_{CB} = 5V, I_{E} = 0$ f = 140kHz				

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Turn-on time	t _{on}	_	12	ns	$V_{CC} = 3V$, $V_{BE(off)} = 1.5V$ $I_C = 10 \text{mA}$, $I_{B1} = 3 \text{mA}$ (See fig. 1)
Turn-off time	t _{off}	_	18	ns	$V_{CC} = 3V$, $I_C = 10$ mA, $I_{B1} = 3$ mA $I_{B2} = 1.5$ mA (See Fig. 2)
Storage time	t _s	_	13	ns	$I_{B1} = I_{B2} = I_C = 10 \text{ mA (See Fig. 3)}$

CIRCUITS FOR MEASURING SWITCHING TIMES

Fig. 1

TURN-OFF TIME

Fig. 2

STORAGE TEST CIRCUIT

Fig. 3

• Total Shunt Capacitance of Test Jig and Connectors

NPN silicon planar high speed switching transistor

FMMT2369A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	40	V
Collector-Emitter Voltage	V _{CES}	40	V
Collector-Emitter Voltage	V _{CEO}	15	V
Emitter-Base Voltage	V _{EBO}	4.5	V
Continuous Collector Current	I _C	200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	40	_	٧	$I_C = 10 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	15	_	٧	$I_C = 10 \text{ mA}, I_B = 0*$
	V _{(BR)CES}	40	_	>	$I_C = 10 \mu A, V_{BE} = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	4.5	_	>	$I_E = 10 \mu A, I_C = 0$
Collector-base cut-off current	I _{CBO}	_	25	nΑ	$V_{CB} = 20V, I_{E} = 0$
Static forward current transfer ratio	h _{FE}	40 20	120 —		$I_C = 10 \text{ mA}, V_{CE} = 1 \text{ V}^*$ $I_C = 100 \text{ mA}, V_{CE} = 1 \text{ V}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.2	٧	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}*$
Base-emitter saturation voltage	V _{BE(sat)}	0.7	0.85	٧	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}*$
Output capacitance	C _{obo}	_	4	pF	$V_{CB} = 5V, I_{E} = 0$ f = 140kHz

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

SWITCHING CHARACTERISTICS (at T_{omb} = 25°C).

01111 0111110 011	otti ottita ottatia tio (at Tamb 25 6).											
Parameter	Symbol	Min.	Max.	Unit	Conditions							
Turn-on time	t _{on}	_	12	ns	$V_{CC} = 3V$, $V_{BE(off)} = 1.5V$ $I_C = 10 \text{mA}$, $I_{B1} = 3 \text{mA}$ (See fig. 1)							
Turn-off time	t _{off}	_	18	ns	$V_{CC} = 3V$, $I_C = 10$ mA, $I_{B1} = 3$ mA $I_{B2} = 1.5$ mA (See Fig. 2)							
Storage time	t _s	_	13	ns	$I_{B1} = I_{B2} = I_C = 10 \text{ mA (See Fig. 3)}$							

CIRCUITS FOR MEASURING SWITCHING TIMES

TURN-OFF TIME

Fig. 2

STORAGE TEST CIRCUIT

Fig. 3

• Total Shunt Capacitance of Test Jig and Connectors

NPN silicon planar small signal transistor

FMMT2484

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT2484	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage (I _C = 2 mA)	V _{CEO}	60	V
Emitter-Base Voltage	V _{EBO}	6	V
Collector Current	Ic	50	mA
Peak Collector Current	I _{CM}	200	mA

CHARACTERISTICS (at $T_j = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	V	$I_C = 10 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	60	_	V	I _C = 10 mA
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	V	I _E = 10 μA
Collector cut-off current	Ісво	_	10 10	nΑ μΑ	V _{CB} = 45V V _{CB} = 45V, T _{amb} = 150°C
Emitter cut-off current	I _{EBO}	_	10	nA	$V_{BE} = 5V$
Static forward current transfer ratio	h _{FE}	30 100 20	500 –		$\begin{aligned} &I_{C} = 1 \mu A, V_{CE} = 5V \\ &I_{C} = 10 \mu A, V_{CE} = 5V \\ &I_{C} = 10 \mu A, V_{CE} = 5V \\ &T_{amb} = 55 ^{\circ} C \\ &I_{C} = 100 \mu A, V_{CE} = 5V \\ &I_{C} = 500 \mu A, V_{CE} = 5V \end{aligned}$
		175 200 250 —	- 800		$I_{C}^{am} = 100 \mu A$, $V_{CE} = 5V$ $I_{C} = 500 \mu A$, $V_{CE} = 5V$ $I_{C} = 1 m A$, $V_{CE} = 5V$ $I_{C} = 10 m A$, $V_{CE} = 5V$
Base-emitter voltage	V _{BE}	_	0.95	٧	$I_C = 1 \text{ mA}, V_{CE} = 5V$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.35	٧	$I_C = 1 \text{ mA}, I_B = 100 \mu A$
Output capacitance	C _{obo}		6	pF	V _{CB} =5V, f=140kHz
Input capacitance	C _{ibo}	_	6	pF	$V_{BE} = 0.5V$, $f = 140 \text{ kHz}$
Noise figure	N	-	3	db	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_g = 2k\Omega$, $f = 1 kHz$ f = 2000 Hz
		_	3	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_g = 2 k \Omega$, $f = 30 Hz$ to 15 k Hz at $-3 dB$ points

Devices	are i	denti	fied I	by a	code	on th	ne bo	dy of	f the	devi	ce		
FMMT2484												4G	

PNP silicon planar general purpose switching transistors

FMMT2907 FMMT2907A

ABSOLUTE MAXIMUM RATINGS

ABOULUTE IIII IVIIII III III III III III III II				
Parameter	Symbol	FMMT2907	FMMT2907A	Unit
Collector-Base Voltage	V _{CBO}	- 60	- 60	V
Collector-Emitter Voltage	V _{CEO}	- 40	- 60	V
Emitter-Base Voltage	V _{EBO}	- 5	- 5	V
Continuous Collector Current	I _C	- 600	- 600	mA

Parameter	Symbol	FMM	2907	FMMT	2907A	Unit	Conditions
r dramoto.	0 ,50.	Min.	Max.	Min.	Max.		
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 40	_	- 60	_	V	$I_{C} = -10 \text{ mA}$ $I_{B} = 0*$
Collector-base breakdown voltage	V _{(BR)CBO}	- 60	_	- 60	_	V	$I_C = -10\mu A$ $I_E = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	- 5	1	- 5	_	V	$I_E = -10\mu A$ $I_C = 0$
Collector-emitter cut-off current	I _{CEX}		- 50	1	- 50	nA	$\begin{array}{c} V_{CE}=-30V \\ V_{BE}=-0.5V \end{array}$
Collector-base cut-off current	I _{CBO}	_	- 20 - 20	<u> </u>	- 10 - 10	nΑ μΑ	$V_{CB} = -50V, I_{E} = 0$ $V_{CB} = -50V, I_{E} = 0$ $T_{amb} = 150^{\circ}C$
Base cut-off current	I _B		- 50	_	- 50	nA	$V_{CE} = -30V$ $V_{BE} = -0.5V$
Static forward current transfer	h _{FE}	35	_	75	_		$I_C = -0.1 \text{ mA}$ $V_{CE} = -10 \text{V}$
ratio		50 75	_	100	_		$\begin{vmatrix} I_{C} = -1 \text{ mA} \\ V_{CE} = -10 \text{ V} \end{vmatrix}$
		100	300	100	300		$I_{C} = -10 \text{mA}$ $V_{CE} = -10 \text{V}$ $I_{C} = -150 \text{mA}$
		30	_	50	_		$ V_{CE} = -10V* I_{C} = -500 \text{ mA} V_{CE} = -10V* $
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.4	_	-0.4	V	$I_C = -150 \text{ mA}$ $I_B = -15 \text{ mA}*$
Saturation voltage		_	-1.6	_	-1.6	V	I _C = -500mA I _B = -50mA*
Base-emitter saturation voltage	V _{BE(sat)}	_	-1.3	_	-1.3	V	I _C = -150mA I _B = -15mA*
Saturation voltage		_	-2.6	_	-2.6	V	$I_{C} = -500 \text{ mA}$ $I_{B} = -50 \text{ mA} *$

^{*}Measured under pulsed conditions. Pulse width = $200 \mu s$. Duty cycle = 1%.

CHARACTERISTICS (cont.).

Parameter	Symbol	FMMT2907		FMMT	2907A	Unit	Conditions
	'	Min.	Max.	Min.	Max.		
Transition frequency	f _T	200	_	200		MHz	$I_C = -50 \text{ mA}$ $V_{CE} = -20 \text{ V}$ f = 100 MHz
Output capacitance	С _{ОВО}	_	8	_	8	pF	$V_{CB} = -10V$ $I_E = 0$ f = 100 KHz
Input capacitance	C _{ibo}	_	30	_	30	pF	$V_{BE} = -2V$ $I_{C} = 0$ $f = 100 \text{ KHz}$

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Typical	Maximum	Unit	Conditions
Turn-on time	t _{on}	26	50	ns	$V_{CC} = -30V$, $I_{C} = -150 \text{ mA}$ $I_{B1} = -15 \text{ mA}$ (See Fig. 1)
Turn-off time	t _{off}	70	110	ns	$V_{CC} = -6V$, $I_{C} = -150 \text{ mA}$ $I_{B1} = I_{B2} = -15 \text{ mA}$ (See Fig. 2)

CIRCUITS FOR MEASURING SWITCHING TIMES

NPN silicon planar general purpose switching transistors

FMMT3903 FMMT3904

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6	V
Continuous Collector Current	I _C	200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM	r3903	FMM1	3904	Unit	Conditions
, a.a.moto.	· · · · · · · · · · · · · · · · · · ·	Min.	Max.	Min.	Max.		
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	60	_	V	$I_C = 10 \mu\text{A}, \ I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	_	40		٧	$I_C = 1 \text{ mA}, I_B = 0 *$
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	6	_	V	$I_E = 10 \mu A, I_C = 0$
Collector cut-off current	I _{CEX}	_	50	_	50	nA	$V_{CE} = 30V$ $V_{EB(off)} = 3V$
Base cut-off current	I _{BEX}	_	50	_	50	nA	$V_{CE} = 30V$, $V_{EB(off)} = 3V$
Static forward current transfer ratio	h _{FE}	20 35 50 30 15	_ 150 _ _	40 70 100 60 30	- 300 - -		$\begin{split} &I_{C} = 0.1\text{mA}, V_{CE} = 1V^{*}\\ &I_{C} = 1\text{mA}, V_{CE} = 1V^{*}\\ &I_{C} = 10\text{mA}, V_{CE} = 1V^{*}\\ &I_{C} = 50\text{mA}, V_{CE} = 1V^{*}\\ &I_{C} = 100\text{mA}, V_{CE} = 1V^{*} \end{split}$
Collector-emitter saturation voltage	V _{CE(sat)}	=	0.2 0.3	_	0.2 0.3	V V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}*$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}*$
Base-emitter saturation voltage	V _{BE(sat)}	0.65	0.85 0.95	0.65	0.85 0.95	V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}*$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}*$
Transition frequency	f _T	250	_	300	_	MHz	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{V}$ f = 100 MHz
Output capacitance	СОВО	-	4	-	4	pF	V _{CB} = 5V, I _E = 0 f = 100 kHz
Input capacitance	C _{ibo}	_	8	_	8	pF	$V_{BE} = 0.5V, I_{C} = 0$ f = 100kHz
Noise figure	N	_	6	_	5	dB	$\begin{array}{l} I_C=200\mu\text{A},\ V_{CE}=5V\\ R_g=2k\Omega\\ f=30\text{Hz to }15\text{kHz}\\ \text{at }-3\text{dB points} \end{array}$

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	FMMT3903 FMMT3904				Unit	Conditions		
		Min.	Max.	Min.	Max.		001141110110		
Delay time	t _d	_	35	_	35	ns	$V_{CC} = 3V$, $V_{BE(off)} = 0.5V$ $I_C = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$ (See fig. 1)		
Rise time	t _r	_	35	_	35	ns			
Storage time	t _s	_	175	_	200	ns	$V_{CC} = 3V, I_C = 10 \text{ mA}$ $I_{B1} = I_{B2} = 1 \text{ mA}$ (See Fig. 2)		
Fall time	t _f	_	50	_	50	ns			

Devices are identified by a code on the body of the device

PNP silicon planar general purpose switching transistors

FMMT3905 FMMT3906

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	- 5	V
Continuous Collector Current	I _C	- 200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	FMM ⁻	r3905	FMM ¹	r3906	Unit	Conditions
, aramoto	0,20.	Min.	Max.	Min.	Max.	0	Somantionis
Collector-base breakdown voltage	V _{(BR)CBO}	-40	1	-40	-	V	$I_C = -10 \mu A, I_E = 0$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 40	_	- 40	_	V	$I_C = -1 \text{mA}, I_B = 0 ^*$
Emitter-base breakdown voltage	V _{(BR)EBO}	- 5	_	– 5	_	٧	$I_E = -10 \mu A, I_C = 0$
Collector cut-off current	I _{CEX}	_	- 50	-	- 50	nA	$V_{CE} = -30V$ $V_{BE(off)} = -3V$
Base cut-off current	I _{BEX}	_	- 50	_	-50	nΑ	$V_{CE} = -30V, \ V_{BE(off)} = -3V$
Static forward current transfer ratio	h _{FE}	30 40 50 30 15	_ 150 _ _	60 80 100 60 30	- 300 - -		$ \begin{aligned} &I_{C} = -0.1\text{mA}, \ V_{CE} = -1V \\ &I_{C} = -1\text{mA}, \ V_{CE} = -1V \\ &I_{C} = -10\text{mA}, \ V_{CE} = -1V \\ &I_{C} = -50\text{mA}, \ V_{CE} = -1V \\ &I_{C} = -100\text{mA}, \ V_{CE} = -1V \end{aligned} $
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.25 -0.4	_	-0.25 -0.4	V V	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	-0.65 	-0.85 -0.95		-0.85 -0.95	V V	$I_C = -10 \text{ mA}, I_B = -1 \text{ mA}$ $I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Transition frequency	f _T	200	_	250	_	MHz	$I_C = -10 \text{ mA}, V_{CE} = -20 \text{V}$ f = 100 MHz
Output capacitance	C _{obo}	_	4.5	_	4.5	pF	$V_{CB} = -5V, I_{E} = 0$ f = 100kHz
Input capacitance	C _{ibo}	_	10	_	10	pF	$V_{BE} = -0.5V, I_{C} = 0$ f = 100kHz
Noise figure	N	_	5	_	4	dB	$\begin{array}{l} I_C = -200\mu\text{A},\ V_{CE} = -5\text{V}\\ R_g = 2k\Omega\\ f = 30\text{Hz to }15\text{kHz}\\ \text{at }-3\text{dB points} \end{array}$

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = 2%.

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	FMM	Г3905	FMM	Г3906	Unit	Conditions
	- ,		Max.				
Delay time	t _d	_	35	_	35	ns	$\begin{cases} V_{CC} = -3V, \ V_{BE(off)} = -0.5V \\ I_{C} = -10\text{mA}, \ I_{B1} = -1\text{mA} \\ \text{(See fig. 1)} \end{cases}$
Rise time	t _r	_	35	_	35	ns	$\int_{0}^{\infty} (\text{See fig. 1})^{-1} (\text{See fig. 1})$
Storage time	t _s	_	200	_	225	ns	$\begin{cases} V_{CC} = -3V, I_C = -10 \text{ mA} \\ I_{B1} = I_{B2} = -1 \text{ mA} \\ \text{(See Fig. 2)} \end{cases}$
Fall time	t _f	_	60	_	75	ns	See Fig. 2)

CIRCUITS FOR MEASURING SWITCHING TIMES

Devices are identified by a code on the body of the device

Total shunt capacitance of test jig and connectors

FMMT3905 2W FMMT3906

NPN silicon planar general purpose switching transistor

FMMT4123

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	40	V
Collector-Emitter Voltage	V _{CEO}	30	V
Emitter-Base Voltage	V _{EBO}	5	V
Continuous Collector Current	Ι _C	200	mA

CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	-	٧	I _C = 1 mA *
Collector-base breakdown voltage	V _{(BR)CBO}	40	_	V	$I_C = 10 \mu A$
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	٧	$I_E = 10 \mu A$
Collector-base cut-off current	I _{CBO}	_	50	nA	$V_{CB} = 20V$
Emitter-base cut-off current	I _{EBO}	_	50	nΑ	$V_{EB} = 3V$
Static forward current transfer ratio	h _{FE}	50 25	150 —		$I_C = 2 \text{ mA}, V_{CE} = 1 \text{ V}^*$ $I_C = 50 \text{ mA}, V_{CE} = 1 \text{ V}^*$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.3	\	$I_C = 50 \text{ mA}, I_B = 5 \text{ mA}*$
Base-emitter saturation voltage	V _{BE(sat)}	_	0.95	٧	$I_C = 50 \text{ mA}, I_B = 5 \text{ mA}*$
Transition frequency	f _T	250	_	MHz	$V_{CE} = 20V, I_{C} = 10 \text{ mA}$ f = 100 MHz
Output capacitance	C _{obo}	_	4	pF	$V_{CB} = 5V$, $f = 140 \text{ kHz}$
Input capacitance	C _{ibo}	_	8	pF	$V_{EB} = 0.5V, f = 140kHz$
Small signal current transfer ratio	h _{fe}	50	200		$I_C = 2 \text{ mA}, \ V_{CE} = 1 \text{ V}, f = 1 \text{ kHz}$
Noise figure	N	_	6	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_0 2k\Omega$, $f = 30 Hz$ to 15 kHz at 3dB points

SWITCHING CHARACTERISTICS (at $T_{amb} = 25$ °C).

Davamatar.	Symbol	Tun	Unit	Conditions
Parameter	Зуптьог	Тур.	Offic	Conditions
Delay time	t _d	24	ns	$V_{CC} = 3V$, $V_{BE(off)} = 0.5V$ $I_{C} = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$
Rise time	t _r	13	ns	$I_{C} = 10 \text{ mA}, I_{B1} = 1 \text{ mA}$
Storage time	t _s	125	ns	$V_{CC} = 3V, I_C = 10 \text{ mA}$ $I_{B_1} = I_{B_2} = 1 \text{ mA}$
Fall time	t _f	11	ns	$I_{B1} = I_{B2} = 1 \text{ mA}$

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = $\leq 2\%$.

Devices are identified by a code on the body of the device FMMT4123 ZB

NPN silicon planar general purpose switching transistor

FMMT4124

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	30	V
Collector-Emitter Voltage	V _{CEO}	25	V
Emitter-Base Voltage	V _{EBO}	5	V
Continuous Collector Current	I _C	200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).							
Parameter	Symbol	Min.	Max.	Unit	Conditions		
Collector-emitter breakdown voltage	V _{(BR)CEO}	25	_	٧	I _C = 1 mA *		
Collector-base breakdown voltage	V _{(BR)CBO}	30	_	V	$I_C = 10 \mu A$		
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	V	$I_E = 10 \mu A$		
Collector-base cut-off current	I _{CBO}	_	50	nΑ	V _{CB} = 20V		
Emitter-base cut-off current	I _{EBO}	_	50	nA	$V_{BE} = 3V$		
Static forward current transfer ratio	h _{FE}	120 60	360 -		$I_C = 2 \text{ mA}, V_{CE} = 1 \text{ V}^*$ $I_C = 50 \text{ mA}, V_{CE} = 1 \text{ V}^*$		
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.3	V	$I_C = 50 \text{ mA}, I_B = 5 \text{ mA} *$		
Base-emitter saturation voltage	V _{BE(sat)}	_	0.95	٧	$I_C = 50 \text{ mA}, I_B = 5 \text{ mA} *$		
Transition frequency	f _T	300	_	MHz	$V_{CE} = 20V, I_{C} = 10 \text{ mA}$ f = 100 MHz		
Output capacitance	C _{obo}	_	4	рF	$V_{CB} = 5V, f = 140 \text{ kHz}$		
Input capacitance	C _{ibo}	_	8	рF	$V_{EB} = 0.5V$, $f = 140 \text{ kHz}$		
Small signal current transfer ratio	h _{fe}	120	480		$I_C = 2 \text{ mA}, \ V_{CE} = 1 \text{ V}, f = 1 \text{ kHz}$		
Noise figure	N	_	6	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ Rg $2k\Omega$, $f = 30Hz$ to 15kHz at $3dB$ points		

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Тур.	Unit	Conditions
Delay time	t _d	24	ns	$V_{CC} = 3V$, $V_{EB(off)} = 0.5V$ $I_{C} = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$
Rise time	t _r	13	ns	$I_{\rm C} = 10 \rm mA$, $I_{\rm B1} = 1 \rm mA$
Storage time	t _s	125	ns	$V_{CC} = 3V, I_C = 10 \text{ mA}$ $I_{B1} = I_{B2} = 1 \text{ mA}$
Fall time	t _f	11	ns	$I_{B1} = I_{B2} = 1 \text{ mA}$

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = $\leq 2\%$.

Devices	are i	identi	fied b	оу а	code	on th	ne bo	dy o	f the	devi	е		
FMMT4124												ZC	

PNP silicon planar general purpose switching transistor

FMMT4125

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	- 30	V
Collector-Emitter Voltage	V _{CES}	- 30	V
Emitter-Base Voltage	V _{EBO}	- 4	V
Continuous Collector Current	Ic	– 200	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).									
Parameter	Symbol	Min.	Max.	Unit	Conditions				
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 30	_	٧	$I_C = -1 \text{ mA}^*$				
Collector-base breakdown voltage	V _{(BR)CBO}	- 30		V	$I_C = -10 \mu A$				
Emitter-base breakdown voltage	V _{(BR)EBO}	-4	-	V	$I_E = -10\mu A$				
Collector-base cut-off current	I _{CBO}	_	- 50	nA	V _{CB} = 20V				
Emitter-base cut-off current	I _{EBO}	_	- 50	nΑ	$V_{BE} = -3V$				
Static forward current transfer ratio	h _{FE}	50 25	150 —		$I_C = -2mA$, $V_{CE} = -1V*$ $I_C = -50mA$, $V_{CE} = -1V*$				
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.4	V	$I_C = -50 \text{ mA}, I_B = -5 \text{ mA*}$				
Base-emitter saturation voltage	V _{BE(sat)}		0.95	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA*}$				
Transition frequency	f _T	200	_	MHz	$V_{CE} = -20V, I_{C} = -10 \text{mA}$ f = 100MHz				
Output capacitance	C _{obo}		4.5	рF	$V_{CB} = -5V, f = 140 \text{kHz}$				
Input capacitance	C _{ibo}	_	10	рF	$V_{EB} = -0.5V$, $f = 140$ kHz				
Small signal current transfer ratio	h _{fe}	50	200		$I_C = -2 \text{ mA}, \ V_{CE} = -1 \text{ V}, \ f = 1 \text{ kHz}$				
Noise figure	N	_	5	dB	$I_C = -200 \mu A$, $V_{CE} = -5V$ Rg $-2k\Omega$, $f = 30 Hz$ to 15 kHz at $-3 dB$ points				

SWITCHING CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Тур.	Unit	Conditions			
Delay time	t _d	25	ns	$V_{CC} = -3V$, $V_{BE(off)} = -0.5V$ $I_{C} = -10 \text{mA}$, $I_{B1} = -1 \text{mA}$			
Rise time	t _r	18	ns	$I_{C} = -10 \text{mA}, I_{B1} = -1 \text{mA}$			
Storage time	t _s	140	ns	$V_{CC} = -3V$, $I_{C} = -10 \text{ mA}$ $I_{B1} = I_{B2} = -1 \text{ mA}$			
Fall time	t _f	15	ns	$I_{B1} = I_{B2} = -1 \text{ mA}$			

^{*}Measured under pulsed conditions. Pulse width = $300 \,\mu s$. Duty cycle $\leq 2\%$.

Devices	are i	denti	fied l	у а	code	on t	he bo	dy o	f the	devi	се	
FMMT4125												ZD

PNP silicon planar general purpose switching transistor

FMMT4126

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	- 25	V
Collector-Emitter Voltage	V _{CEO}	- 25	V
Emitter-Base Voltage	V _{EBO}	-4	V
Continuous Collector Current	Ic	- 200	mA

CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 25	_	V	I _C = -1 mA *
Collector-base breakdown voltage	V _{(BR)CBO}	- 25	_	V	$I_C = -10\mu A$
Emitter-base breakdown voltage	V _{(BR)EBO}	-4	_	V	$I_E = -10\mu A$
Collector-base cut-off current	I _{СВО}	_	- 50	nA	$V_{CB} = -20V$
Emitter-base cut-off current	I _{EBO}	_	- 50	nA	$V_{EB} = -3V$
Static forward current transfer ratio	h _{FE}	120 60	360 —		$I_C = -2 \text{ mA}, V_{CE} = -1 \text{V*} \\ I_C = -50 \text{ mA}, V_{CE} = -1 \text{V*}$
Collector-emitter saturation voltage	V _{CE(sat)}		0.4	V	$I_C = -50 \text{mA}, I_B = -5 \text{mA}^*$
Base-emitter saturation voltage	V _{BE(sat)}	_	0.95	٧	$I_C = -50 \text{mA}, I_B = -5 \text{mA}^*$
Transition frequency	f _T	250	_	MHz	$V_{CE} = -20V, I_{C} = -10mA$ f = 100 MHz
Output capacitance	C _{obo}	-	4.5	pF	$V_{CB} = -5V$, $f = 140$ kHz
Input capacitance	C _{ibo}	-	10	pF	$V_{EB} = -0.5V$, $f = 140$ kHz
Small signal current transfer ratio	h _{fe}	120	480		$I_C = -2 \text{ mA}, \ V_{CE} = -1 \text{ V}, \ f = 1 \text{ kHz}$
Noise figure	N	_	4	dB	$I_C=-200\mu A,\ V_{CE}=-5V$ $R_g=-2k\Omega,\ f=30Hz$ to $15kHz$ at $-3dB$ points

SWITCHING CHARACTERISTICS (at $T_{amb} = 25$ °C).

Parameter	Symbol	Тур.	Unit	Conditions
Delay time	t _d	25	ns	$V_{CC} = -3V$, $V_{BE(off)} = -0.5V$ $I_{C} = -10 \text{mA}$, $I_{B1} = -1 \text{mA}$
Rise time	t _r	18	ns	$I_{C} = -10 \text{ mA}, I_{B1} = -1 \text{ mA}$
Storage time	t _s	140	ns	$V_{CC} = -3V, I_{C} = -10 \text{mA}$ $I_{B_1} = I_{B_2} = -1 \text{mA}$
Fall time	t _f	15	ns	$\int I_{B1} = I_{B2} = -1 \mathrm{mA}$

^{*}Measured under pulsed conditions. Pulse width = $300 \mu s$. Duty cycle = $\leq 2\%$.

Devices	are i	dentif	ied t	у а с	code	on th	e bo	dy o	fthe	devic	e	
FMMT4126												

NPN silicon planar general purpose switching transistors

FMMT4400 FMMT4401

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT4400	FMMT4401	Unit
Collector-Base Voltage	V _{CBO}	60	60	V
Collector-Emitter Voltage	V _{CEO}	40	40	V
Emitter-Base Voltage	V _{EBO}	6	6	V
Continuous Collector Current	I _C	600	600	mA

CHARACTERISTICS (at $T_{amb} = 25 \, ^{\circ}C$ unless otherwise stated).

Parameter	Symbol	FMM	74400	FMMT	4401	Unit	Conditions
1 arameter	Cymbol	Min.	Max.	Min.	Max.		
Collector-emitter breakdown voltage	V _{(BR)CEO}	40	_	40	_	V	$I_C = 1 \text{ mA}$ $I_B = 0$
Collector-base breakdown voltage	V _{(BR)CBO}	60	_	60	_	V	$I_C = 0.1 \text{ mA}, I_E = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	6	_	6		V	$I_E = 0.1 \text{mA}, I_C = 0$
Collector-emitter cut-off current	I _{CEX}	_	0.1	_	0.1	μΑ	$V_{CE} = 35V$ $V_{EB(off)} = 0.4V$
Base cut-off current	I _{BEX}		0.1	_	0.1	μΑ	$V_{CE} = 35V$ $V_{EB(off)} = 0.4V$
Static forward current transfer ratio	h _{FE}	20 40 50 20	_ _ _ 150	20 40 80 100 40	- - 300 -		$\begin{split} &I_C = 0.1\text{mA.} \ \ V_{CE} = 1V \\ &I_C = 1\text{mA,} \ \ V_{CE} = 1V \\ &I_C = 10\text{mA,} \ \ V_{CE} = 1V \\ &I_C = 150\text{mA,} \ \ V_{CE} = 1V^* \\ &I_C = 500\text{mA,} \ \ V_{CE} = 2V^* \end{split}$
Collector-emitter saturation voltage	V _{CE(sat)}	market .	0.4 0.75		0.4 0.75	V	I _C = 150mA, I _B = 15mA* I _C = 500mA, I _B = 50mA*
Base-emitter saturation voltage	V _{BE(sat)}	0.75	0.95 1.2	0.75 —	0.95 1.2	V V	$I_C = 150 \text{mA}, I_B = 15 \text{mA*}$ $I_C = 500 \text{mA}, I_B = 50 \text{mA*}$
Transition frequency	f _T	200	_	250		MHz	$I_C = 20 \text{ mA}, V_{CE} = 10V$ f = 100 MHz
Output capacitance	C _{obo}	-	6.5	-	6.5	pF	$V_{CB} = 5V, I_{E} = 0$ f = 100kHz
Input capacitance	C _{ibo}	-	30	-	30	pF	$V_{EB} = 0.5V, I_{C} = 0$ f = 100 kHz

^{*}Measured under pulsed conditions. Pulse width = $300 \,\mu s$. Duty cycle = 2%.

SWITCHING CHARACTERISTICS (at $T_{amb} = 25$ °C).

Parameter	Symbol	Minimum	Maximum	Unit	Conditions
Turn-on time	t _{on}		35	ns	$V_{CC} = 30V, V_{BB(off)} = 2V$ $I_{C} = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$ (See Fig. 1)
Turn-off time	t _{off}	_	255	ns	V _{CC} =30V, I _C =150mA I _{B1} =I _{B2} =15mA (See Fig. 2)

CIRCUITS FOR MEASURING SWITCHING TIMES

Fig. 1

TURN-OFF TIME

Fig. 2 Oscilloscope Rise Time <4ns

● Total shunt capacitance of test jig, connectors and oscilloscope

PNP silicon planar general purpose switching transistors

FMMT4402 FMMT4403

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT4402	FMMT4403	Ünit
Collector-Base Voltage	V _{CBO}	- 40	-40	V
Collector-Emitter Voltage	V _{CEO}	- 40	-40	V
Emitter-Base Voltage	V _{EBO}	- 5	– 5	V
Continuous Collector Current	I _C	- 600	- 600	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

Parameter	Symbol	FMM	Γ4402	FMM	Г4403	Unit	Conditions
	,	Min.	Max.	Min.	Max.		
Collector-emitter breakdown voltage	V _{(BR)CEO}	-40	_	- 40	_	٧	$I_C = -1 \text{ mA}, I_B = 0$
Collector-base breakdown voltage	V _{(BR)CBO}	-40	_	- 40	_	V	$I_C = -0.1 \text{mA}, \ I_E = 0$
Emitter-base breakdown voltage	V _{(BR)EBO}	– 5	_	- 5	_	>	$I_E = -0.1 \text{mA}, \ I_C = 0$
Collector-emitter cut-off current	I _{CEX}	_	-0.1	_	-0.1	μΑ	$V_{CE} = -35V$ $V_{EB(off)} = -0.4V$
Base cut-off current	I _{BEX}	_	-0.1	_	-0.1	μΑ	$V_{CE} = -35V$ $V_{EB(off)} = -0.4V$
Static forward current transfer ratio	h _{FE}	- 30 50 50 20	- - - 150 -	30 60 100 100 20	 300 		$\begin{array}{l} I_C - 0.1\text{mA}, \ V_{CE} = -1\text{V} \\ I_C = -1\text{mA}, \ V_{CE} = -1\text{V} \\ I_C = -10\text{mA}, \ V_{CE} = -1\text{V} \\ I_C = -150\text{mA}, \ V_{CE} = -2\text{V}^* \\ I_C = -500\text{mA}, \ V_{CE} = -2\text{V}^* \end{array}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-0.4 -0.75		- 0.4 - 0.75	>	$\begin{array}{l} I_{C} = -150 mA, \ I_{B} = -15 mA* \\ I_{C} = -500 mA, \ I_{B} = -50 mA* \end{array}$
Base-emitter saturation voltage	V _{BE(sat)}	- 0 75 	- 0.95 - 1.3	- 0.75 	- 0.95 - 1.3	>	$I_C = -150 \text{mA}, \ I_B = -15 \text{mA*} \\ I_C = -500 \text{mA}, \ I_B = -50 \text{mA*}$
Transition frequency	f _T	150		200	_	MHz	$I_C = -50 \text{mA}, V_{CE} = -20 \text{V}$ f = 100 MHz
Output capacitance	C _{obo}	_	8.5	-	8.5	pF	$V_{CB} = -10V, I_{E} = 0$ f = 100 kHz
Input capacitance	C _{ibo}	_	30	_	30	pF	$I_C = 0$, $f = 100 \text{ kHz}$

^{*}Measured under pulsed conditions. Pulse width \cdot 200 μ s. Duty cycle = 1%.

SWITCHING CHARACTERISTICS (at $T_{amb} = 25$ °C).

Parameter	Symbol	Minimum	Maximum	Unit	Conditions
Turn-on time	t _{on}	_	35	ns	$V_{CC} = -30V$, $V_{BE(off)} = -2V$ $I_C = -150 \text{mA}$, $I_{B1} = -15 \text{mA}$ (See Fig. 1)
Turn-off time	[†] off	_	255	ns	$V_{CC} = -30V$, $I_{C} = -150 \text{ mA}$ $I_{B1} = I_{B2} = -15 \text{ mA}$ (See Fig. 2)

CIRCUITS FOR MEASURING SWITCHING TIMES

TURN-ON TIME -30V -200 -16V -16V

Fig. 1

TURN-OFF TIME

Fig. 2 Oscilloscope Rise Time <4ns

• Total shunt capacitance of test jig, connectors and oscilloscope

PNP silicon planar small signal transistor

FMMT5087

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-50	V
Collector-Emitter Voltage (I _C = -2 mA)	V _{CEO}	-50	V
Emitter-Base Voltage	V _{EBO}	-3	V
Continuous Collector Current	I _C	-100	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base cut-off current	I _{CBO}	=	_	-10 -50	nΑ μΑ	$I_E = 0, V_{CB} = -10V$ $I_E = 0, V_{CB} = -35V$
Emitter-base cut-off current	I _{EBO}	_	_	- 50	nΑ	$V_{EB} = -3V, I_{C} = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	-300	mV	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$
Base-emitter ON voltage	V _{BE(on)}	_	_	-850	mV	$I_C = -1 \text{ mA}, \ V_{CE} = -5 \text{V}$
Static forward current transfer ratio	h _{FE}	250 250 250	_ _ _	800 - -		$\begin{split} I_C &= -100\mu\text{A},\ V_{CE} = -5\text{V} \\ I_C &= -1\text{mA},\ V_{CE} = -5\text{V} \\ I_C &= -10\text{mA},\ V_{CE} = -5\text{V}^* \end{split}$
Transition frequency	f _T	40		-	MHz	$I_C = -500 \mu A, V_{CE} = -5V$ f = 20 MHz
Small signal current transfer ratio	h _{fe}	250	_	900	MHz	$I_C = -1 \text{ mA}, V_{CE} = -5V$ f=1 kHz
Noise figure	N	_	_	2	dB	$\begin{array}{l} I_C = -200\mu\text{A},\ V_{CE} = -5\text{V} \\ R_g = 2k\Omega \\ \text{f} = 30\text{Hz}\ \text{to}\ 15\text{kHz} \\ \text{at}\ 2\text{dB}\ \text{points} \end{array}$
Output capacitance	C _{obo}		_	4	pF	$V_{CB} = -5V, I_{E} = 0$ f = 140 kHz

^{*}Measured under pulsed conditions. Pulse width = 300μ s, Duty cycle = 2%.

Devices are identified by a code on the body of the device

NPN silicon planar small signal transistors

FMMT5088 FMMT5089

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT5088	FMMT5089	Unit
Collector Voltage	V _{CBO}	35	30	V
Collector-Emitter Voltage	V _{CEO}	30	25	V
Emitter-Base Voltage	V _{EBO}	4.5	4.5	V
Collector Current	l _C	50	50	mA

CHARACTERISTICS (at $T_{amb} = 25 \,^{\circ}\text{C}$ unless otherwise stated).

Parameter	Symbol	FMM ²	T5088	FMM [*]	T5089	Unit	Conditions
		Min.	Max.	Min.	Max.	0	Gondinone
Collector-emitter breakdown voltage	V _{(BR)CEO}	30	_	25		V	$I_C = 1 \text{ mA}, I_B = 0$
Collector-base breakdown voltage	V _{(BR)CBO}	35	_	30	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-base cut-off current	І _{СВО}	_	50 —	_	_ 50	nA nA	V _{CB} = 20V, I _E = 0 V _{CB} = 15V, I _E = 0
Emitter-base cut-off current	I _{EBO}	_	50 —	_	100	nA nA	$V_{EB(off)} = 3V, I_C = 0$ $V_{EB(off)} = 4.5V, I_C = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.5	-	0.5	V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	0.8	_	8.0	V	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Static forward	h _{FE}	300	900	400	1200		$I_C = 100 \mu A, V_{CE} = 5V$
current transfer ratio		350	_	450	_		$I_C = 1 \text{ mA}, V_{CE} = 5V$
		300	_	400	_		$I_C = 10 \text{ mA}, \ V_{CE} = 5 \text{ V}$
Transition frequency	f _⊤	50	_	50	_	MHz	$I_C = 500 \mu A, V_{CE} = 5V$ f = 20 MHz
Collector-base capacitance	C _{cbo}		4	-	4	pF	$V_{CB} = 5V$, $f = 1$ MHz, $I_E = 0$
Emitter-base capacitance	C _{ebo}	_	10	-	10	pF	$V_{BE} = 0.5V, f = 1 MHz$ $I_{C} = 0$
Noise figure	N	_	3	_	2	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_g = 10 k\Omega$, $f = 10 Hz$ to 15 kHz
Small signal current transfer ratio	h _{fe}	350	1400	450	1800		$I_C = 1 \text{ mA}, V_{CE} = 5V$ f=1kHz

Devices	are i	identif	ied l	by a	code	on th	ne bo	dy of	the	devic	:e	
FMMT5088												10
FMMT5089												1R

NPN silicon planar small signal transistors

FMMT5209 FMMT5210

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT5209	FMMT5210	Unit
Collector-base Voltage	V _{CBO}	50	50	V
Collector-Emitter Voltage (I _C = 2 mA)	V _{CEO}	50	50	V
Emitter-Base Voltage	V _{EBO}	4.5	4.5	V
Collector Current	Ic	50	50	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified).

Parameter	Symbol	FMM	Г5209	FMM [*]	Γ5210	Unit	Conditions
		Min.	Max.	Min.	Max.		
Collector-base cut-off current	І _{СВО}	_	50	_	50	nA	$V_{CB} = 35V, I_{E} = 0$
Emitter-base cut-off current	I _{EBO}	_	50	_	50	nA	$V_{EB} = 3V$, $I_C = 0$
Collector-emitter saturation voltage	V _{CE(sat)}	_	700		700	mV	$I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$
Base-emitter ON voltage	V _{BE(on)}	_	850	_	850	mV	$I_C = 1 \text{ mA}, V_{CE} = 5V$
Static forward	h _{FE}	100	300	200	600		$I_C = 100 \mu A, V_{CE} = 5V$
current transfer ratio		150	_	250	_		$I_C = 1 \text{ mA}, V_{CE} = 5V$
1.0.0		150	_	250			$I_C = 10 \text{ mA}, V_{CE} = 5V^*$
Transition frequency	f _T	30	-	30	_	MHz	$I_C = 500 \mu A, V_{CE} = 5V$ f = 20 MHz
Small signal current transfer ratio	h _{fe}	150	600	250	900	MHz	I _C = 1 mA, V _{CE} = 5V f = 1 kHz
Noise figure	N	_	3	_	2	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_g = 2 k \Omega$, $f = 30 Hz$ to 15 k Hz at $-3 dB$ points
		_	4		3	dB	$I_C = 200 \mu A$, $V_{CE} = 5V$ $R_g = 2 k\Omega$, $f = 1 kHz$ $\triangle f = 200 Hz$
Output capacitance	C _{obo}	_	4	_	4	pF	$V_{CB} = 5V$, $I_E = 0$ f=140kHz

Devices	are	identi	fied	by a	code	on t	he bo	dy o	f the	devi	e	
FMMT5209												20
FMMT5210												2R

PNP silicon high voltage transistors

FMMT 5400 FMMT 5401

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 5400	FMMT 5401	Unit
Collector-Base Voltage	V _{CBO}	- 130	- 160	V
Collector-Emitter Voltage	V _{CEO}	- 120	- 150	٧
Base-Emitter Voltage	V _{EBO}	– 5	-5	V
Continuous Collector Current	Ic	- 600	- 600	mA

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	FMMT	5400	FMMT	5401	Unit	Test Conditions
i didilictei	Cymbol	Min.	Max.	Min.	Max.	101111	Test conditions
Collector-base breakdown voltage	V _{(BR)CBO}	- 130		- 160	-	V	$I_C = -100\mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	- 120	_	– 150	_	V	I _C = -1mA
Emitter-base breakdown voltage	V _{(BR)EBO}	- 5	_	- 5		٧	$I_E = -10\mu A$
Collector cut-off current	І _{СВО}	_	- 100 - 100		F0	nΑ μΑ	$V_{CB} = -100V$ $V_{CB} = -100V$, $T_A = 100^{\circ}C$
				_	- 50 - 50	nΑ μΑ	$V_{CB}^{A} = -120V$ $V_{CB} = -120V$, $T_{A} = 100^{\circ}C$
Static forward current transfer ratio	h _{FE}	30 40 40	180 –	50 60 50	240 —		$\begin{split} I_{C} &= -1 \text{mA}, V_{CE} = -5 \text{V} \\ I_{C} &= -10 \text{mA}, V_{CE} = -5 \text{V} \\ I_{C} &= -50 \text{mA}, V_{CE} = -5 \text{V} \end{split}$
Collector-emitter saturation voltage	V _{CE(sat)}		-0.2 -0.5	_	-0.2 -0.5	V	$I_C = -10\text{mA}, I_B = -1\text{mA}$ $I_C = -50\text{mA}, I_B = -5\text{mA}$
Base-emitter saturation voltage	V _{BE(sat)}	_	– 1.0 – 1.0	_	- 1.0 - 1.0	V	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$ $I_C = -50 \text{mA}, I_B = -5 \text{mA}$
Transition frequency	f _T	100	400	100	300	MHz	$I_C = -10 \text{mA},$ $V_{CE} = -10 \text{V}$ f = 100 MHz
Output capacitance	C_{obo}	-	6.0	-	6.0	рF	$V_{CB} = -10V, f = 1 MHz$
Small signal current gain	h _{fe}	30	200	40	200		$I_C = -1 \text{mA}, V_{CE} = -10V$ f = 1kHz
Noise figure	NF	_	8.0	_	8.0	dB	$\begin{array}{l} I_C = -250 \mu A, \ V_{CE} = -5 V \\ R_S = 1 K \Omega \\ f = 10 Hz \ to \ 15.7 kHz \end{array}$

	evices						
FMMT							
FMMT	5401	 	 	 	 	 	 2L

NPN silicon high voltage transistors

FMMT 5550 FMMT 5551

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	FMMT 5550	FMMT 5551	Unit
Collector-Base Voltage	V _{CBO}	160	180	V
Collector-Emitter Voltage	V _{CEO}	140	160	٧
Base-Emitter Voltage	V _{EBO}	6	6	٧
Continuous Collector Current	I _C	600	600	mΑ

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25\,^{\circ}\text{C}$ unless otherwise stated)

Parameter	Symbol	FMMT	5550	FMMT	5551	Unit	Test Conditions
T didilictor	Cymbol	Min.	Max.	Min.	Max.		
Collector-base breakdown voltage	V _{(BR)CBO}	160		180	-		I _C = 100μA
Collector-emitter breakdown voltage	V _{(BR)EBO}	140	_	160	-	V	I _C = 1mA
Emitter-base breakdown voltage	V _{(BR)EBO}	6	-	6	_	V	I _C = 10mA
Collector cut-off current	I _{CBO}	_	100 100	_	50 50	nΑ μΑ nΑ μΑ	$\begin{array}{l} V_{CB} = 100V \\ V_{CB} = 100V, \ T_A = 100 ^{\circ}C \\ V_{CB} = 120V \\ V_{CB} = 120V, \ T_A = 100 ^{\circ}C \end{array}$
Static forward current transfer ratio	h _{FE}	60 60 20	250 —	80 80 30	250 —		$I_C = 1 \text{mA}, V_{CE} = 5 \text{V}$ $I_C = 10 \text{mA}, V_{CE} = 5 \text{V}$ $I_C = 50 \text{mA}, V_{CE} = 5 \text{V}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	0.15 0.25	_	0.15 0.20	V	$I_C = 10mA$, $I_B = 1mA$ $I_C = 50mA$, $I_B = 5mA$
Base-emitter saturation voltage	V _{BE(sat)}	_	1.0 1.2	_	1.0 1.2	V	$I_{C} = 10mA, I_{B} = 1mA$ $I_{C} = 50mA, I_{B} = 5mA$
Transition frequency	f _T	100	300	100	300	MHz	I _C = 10mA, V _{CE} = 10V f = 100MHz
Output capacitance	C _{obo}	_	6.0	_	6.0	pF	$V_{CB} = 10V$, $f = 1 MHz$
Small signal current gain	h _{fe}	50	200	50	200		$I_C = 1 \text{mA}, V_{CE} = 10V$ f = 1kHz
Noise figure	NF	_	10	_	8	dB	$I_C = 250\mu A$, $V_{CE} = 5V$ $R_S = 1K\Omega$ f = 10Hz to 15.7kHz

D	Devices	are i	dentif	ied	by a d	ode	on th	e bo	dy of	the	devid	e	
FMMT	5550				٠				٠				IF
FMMT	5551												GI

Silicon variable capacitance diode

FMMV105G

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25 °C unless otherwise specified)

Characteristic	Symbol		Value		Units	Conditions	
	Symbol	Min.	Тур.	Max.	Units	Conditions	
Reverse breakdown voltage	V _{BR}	30	_	_	V	I _R =10μA	
Reverse leakage current	I _R	_	_	0.05	μΑ	V _R =28V	
Series inductance	L _S	_	3.0	_	nH	f=250MHz	
Diode capacitance temperature coefficient	T _{CC}	_	280	_	ppm/°C	V _R =3V, f=1MHz	

TUNING CHARACTERISTICS (at T_{amb} = 25°C ambient temperature).

Characteristic	Symbol		Value		Units	Conditions	
	Symbol	Min.	Тур.	Max.	Onits		
Diode capacitance	C _d	1.8	_	2.8	pF	V _R =25V, f-1MHz	
Capacitance ratio	C _d /C _d	4.0	_	6.0	_	3V/25V, f=1 MHz	
Figure of MERIT	a	250	350	_	_	V _R =3V, f=50MHz	

Silicon variable capacitance diode

FMMV109

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified)

Characteristic	Symbol		Value		Units	Conditions	
Characteristic	Symbol	Min.	Тур.	Max.	Offics	Conditions	
Reverse breakdown voltage	V _{BR}	30	_	_	٧	I _R =10μA	
Reverse leakage current	I _R	_	_	0.02	μΑ	V _R =25V	
Series inductance	L _S	_	3.0	_	nΗ	f=250MHz	
Diode capacitance temperature coefficient	T _{CC}	-	280	_	ppm/°C	V _R =3V, f=1MHz	
Case capacitance	C _C	_	0.1	_	pF	f=1MHz	

TUNING CHARACTERISTICS (at $T_{amb} = 25$ °C ambient temperature).

Characteristic	Symbol		Value		Units	Conditions	
	Symbol	Min.	Тур.	Max.	Units		
Diode capacitance	C _d	26	_	32	pF	V _R =3V, f-1MHz	
Capacitance ratio	C _d /C _d	5.0	_	6.5	_	3V/25V, f=1 MHz	
Figure of MERIT	Q	200	250	_	_	V _R =3V, f=50MHz	

Silicon variable capacitance diodes

FMMV2101-FMMV2109

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Reverse voltage	V _R	30	V
Forward current	I _F	20	mA

CHARACTERISTICS (at $T_{amb} = 25$ °C).

	·-					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions
Reverse breakdown voltage	V _{(BR)R}	30	_	_	V	$I_R = 10\mu A$
Reverse leakage current	I _R	_	_	20	nA	V _R =25V
Inductance	L _S	_	3.0	_	nΗ	f=250MHz lead length ≈ 1.5mm
Capacitance	C _C	_	0.15	_	pF	f=1MHz lead length ≈ 1.5mm
Temperature coefficient of capacitance	TC _C	_	280	400	ppm/°C	V _R =4V, f=1MHz

TUNING CHARACTERISTICS (at $\rm T_{amb}\!=\!25\,^{o}C).$

Type No.		al capacitan = 4V, f=1V		Figure of merit minimum Q (V _R =4V	Tuning ratio, C ₂ /C ₃₀ (f=1MHz)		
	Min.	Nom.	Max.	f=50MHz)	Min.	Max.	
FMMV2101	6.1	6.8	7.5	450	2.5	3.3	
FMMV2102	7.3	8.2	9	450	2.6	3.3	
FMMV2103	9	10	11	400	2.6	3.3	
FMMV2104	10.8	12	13.2	400	2.6	3.3	
FMMV2105	13.5	15	16.5	400	2.6	3.3	
FMMV2106	16.2	18	19.8	350	2.7	3.3	
FMMV2107	19.8	22	24.2	350	2.7	3.3	
FMMV2108	24.3	27	29.7	300	2.7	3.3	
FMMV2109	29.7	33	36.3	280	2.7	3.3	

PIN CONFIGURATION

FMMV2102/06/86

Devices are identified by a code on the body of the device

FMMV2101	 	 	 		 	 	он
FMMV2102	 	 	 		 	 	6F
FMMV2103	 	 	 		 	 	6G
FMMV2104	 	 	 		 	 	6H
FMMV2105	 	 	 		 	 	6J
FMMV2106	 	 	 		 	 	6K
FMMV2107	 	 	 		 	 	6L
FMMV2108	 	 	 	• •	 	 	6M
FMMV2109	 	 	 		 	 	6N

Silicon variable capacitance diode

FMMV3102

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise specified)

Characteristic	Symbol		Value		Units	$I_{R} = 10\mu A$ $V_{R} = 25V$ $f = 250MHz$ $C V_{R} = 3V, f = 1MHz$
Gilardotoristic	Oymbor	Min.	Min. Typ.		Offics	Conditions
Reverse breakdown voltage	V _{BR}	30	_	_	V	$I_R = 10\mu A$
Reverse leakage current	I _R	_	_	0.1	μΑ	V _R = 25V
Series inductance	L _S	_	3.0	L _S	nH	f=250MHz
Diode capacitance temperature coefficient	T _{CC}	_	280	-	ppm/°C	V _R =3V, f=1MHz
Case capacitance	C _C	_	0.1	C _C	pF	f=1MHz

TUNING CHARACTERISTICS (at $T_{amb} = 25$ °C ambient temperature).

Characteristic	Symbol		Value		Units	Conditions V _R =3V, f-1MHz 3V/25V, f=1 MHz		
Characteristic	Symbol	Min.	Тур.	Max.	Offics	Conditions		
Diode capacitance	C _d	20	_	25	pF	V _R =3V, f-1MHz		
Capacitance ratio	C _d /C _d	4.5	_	_	_	3V/25V, f=1MHz		
Figure of MERIT	Q	200	300	_	_	V _R = 3V, f = 50MHz		

Silicon voltage regulator diodes

FMMZ5232-FMMZ5257

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage range	Vz	5.6 to 33	V
Nominal tolerance	C*	±5	%
Forward current	Ι _Ε	250	mA

^{*}As per Pro-Electron coding system.

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C).

	Nominal Zener	Test	Max. imped			ax. rever		Max. Zener voltage
Type No.	Voltage V _Z @l _{ZT}	Current I _{ZT}	Z _{ZT} @I _{ZT}	Z _{ZT} @I _{ZK} =0.25mA	I _R	@	V _R V	temperature coefficient
	V	mA	Ω	Ω	μΑ	Α	В	V _Z (%/°C)
FMMZ5232	5.6	20	11	1600	5	2.9	3	+0.038
FMMZ5233	6	20	7	1600	5	3.3	3.5	+0.038
FMMZ5234	6.2	20	7	1000	5	3.8	4	+0.045
FMMZ5235	6.8	20	5	750	3	4.8	5	+0.050
FMMZ5236	7.5	20	6	500	3	5.7	6	+0.058
FMMZ5237	8.2	20	8	500	3	6.2	6.5	+0.062
FMMZ5238	8.7	20	8	600	3	6.2	6.5	+0.065
FMMZ5239	9.1	20	10	600	3	6.7	7	+0.068
FMMZ5240	10	20	17	600	3	7.6	8	+0.075
FMMZ5241	11	20	22	600	2	8	8.4	+0.076
FMMZ5242	12	20	30	600	1	8.7	9.1	+0.077
FMMZ5243	13	9.5	13	600	0.5	9.4	9.9	+0.079
FMMZ5244	14	9	15	600	0.1	9.5	10	+0.082
FMMZ5245	15	8.5	16	600	0.1	10.5	11	+0.082
FMMZ5246	16	7.8	17	600	0.1	11.4	12	+0.083
FMMZ5247	17	7.4	19	600	0.1	12.4	13	+0.084
FMMZ5248	18	7	21	600	0.1	13.3	14	+0.085
FMMZ5249	19	6.6	23	600	0.1	13.3	14	+0.086
FMMZ5250	20	6.2	25	600	0.1	14.3	15	+0.086
FMMZ5251	22	5.6	29	600	0.1	16.2	17	+0.087
FMMZ5252	24	5.2	33	600	0.1	17.1	18	+0.088
FMMZ5253	25	5	35	600	0.1	18.1	19	+0.089
FMMZ5254	27	4.6	41	600	0.1	20	21	+0.090
FMMZ5255	28	4.5	44	600	0.1	20	21	+0.091
FMMZ5256	30	4.2	49	600	0.1	22	23	+0.091
FMMZ5257	33	3.8	58	700	0.1	24	25	+0.092

 $V_F = 1.1V$ max. @ $I_F = 200$ mA for all types

	Devices	are	ider	ntified	by	a c	ode	on	the	body	of	the	devi	ce	
FMM	Z5232 .														8
FMM	Z5233 .														8
FMM:	Z5234 .														8
FMM	Z5235 .														8
FMM	Z5236 .												•		8
FMM	25237 .											•	•		8
FMM	Z5238 .									• •	•	•	•		8
FMM	25239 .					Ċ			•	• •	• •	•	•		8
FMM	25240 .					Ċ		•	• •	• •		•	•		8
FMMZ	25241 .							•		• •		:	•		8
FMM	25242 .					•		•		• •	•	•	•		8
	25243 .	•	•	• •	٠.	•		•	• •	• •		•			8
	Z5244 .	•	• •	• •		•		•	• •			•	•		8
	75015	:	• •			•		•	٠.	• •	• •	•	•		8
	25246 .	•				•	•	•	٠.	• •	٠.	•	•		8
	25247 .	•		• •	• •	•		•	٠.	• •		•	•		8
	75040	:	• •	• •		•		•	• •	• •	٠.	•	•		
	25249 .	•	• •	• •		•		•	٠.	• •	٠.	•	•		8
	25250 .	•			• •	•		•	٠.	٠.	٠.		•		8
FMMZ		•			• •	٠		•	• •	٠.	٠.				8
	75252	•	٠.	• •	٠.	•			٠.			•	•		8
	75757	•		• •		•		•	٠.			•			8
	75754	•	• •	• •	٠.	•		•			٠.				8
		•		• •		•		•	٠.						8
		•		• •	٠.	•		•	٠.						8
		•						•							8
FIVIM	25257 .													:	8

High speed switching diodes

HD2A HD3A HD4A

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	HD2A/3A/4A	Unit
Continuous reverse voltage	V _R	75	V
Forward current	ir I _F	100	mA

CHARACTERISTICS (at $T_i = 25$ °C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Breakdown voltage	V _{BR}	85	_	٧	I _R = 100μA
Forward voltage	V _F	0.5 —	0.715 1.0	V	I _F = 1mA I _F = 10mA
Reverse current	I _R		1.0 60	μ Α μ Α	V _R =75V V _R =75V, T _j =125°C
Total capacitance	Ст	_	4	pF	V _R =0, f=1MHz
Reverse recovery time	t _{rr}	Ту	/p 6	ns	I _F = 10mA, I _R = 10mA I _{rr} = 1mA,

PIN CONFIGURATIONS

Devices are identified by a code on the body of the device													
HD2A													5D
HD3A HD4A		• •					• •			• •	• •		4D
IIDTA		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	/D

NPN silicon planar high voltage transistor

HT2

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	90	V
Collector-Emitter Voltage	V _{CEO}	80	V
Emitter-Base Voltage	V _{EBO}	5	V
Collector Current	I _C	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	90	_	_	٧	I _C =10μA,
Collector-emitter breakdown voltage	V _{(BR)CEO}	80	-	_	٧	I _C =2mA
Emitter-base breakdown voltage	V _{(BR)EBO}	5	_	_	٧	I _E =10μA
Collector cut-off currents	Ісво	_	_	100	nA	V _{CB} =80V, I _E =0
	I _{CES}	_	_	100 5	nΑ μΑ	$V_{CE} = 80V, V_{BE} = 0$ $V_{CE} = 80V, V_{BE} = 0$ $T_j = 125 ^{\circ}C$
	I _{CEX}	-	-	10	μΑ	$V_{CE} = 80V, V_{BE} = 0.2V$ $T_j = 85$ °C
	I _{EBO}	_	_	200	nA	V _{EB} =4V
Static forward current transfer ratio	h _{fe}	25 30 50 30	- - -	_ _ _		$\begin{array}{l} I_{C} = 100 \mu A, \ V_{CE} = 1V \\ I_{C} = 1 \ mA, \ V_{CE} = 1V \\ I_{C} = 10 \ mA, \ V_{CE} = 1V \\ I_{C} = 50 \ mA, \ V_{CE} = 1V \end{array}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	-	750	mV	I _C =50mA, I _B =5mA
Base-emitter saturation voltage	V _{BE(sat)}	_		1.1	٧	$I_C = 50 \text{ mA}, I_B = 5 \text{ mA}$
Output capacitance	Copo	-	_	10	pF	V _{CB} = 10V, I _E = 0 f = 1 MHz
Transition frequency	f _T	60	-	_	MHz	V _{CE} =5V, I _C =10mA f=10MHz
Switching times	t _{on} t _{off}	_		500 2000	ns ns	I _C = 10mA I _{B1} = I _{B2} = 1 mA

	Devices are identified by a code on the body of the device														
HT2			٠											2T	

PNP silicon planar high voltage transistor

HT3

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	- 90	V.
Collector-Emitter Voltage	V _{CEO}	-80	٧
Emitter-Base Voltage	V _{EBO}	-5	٧
Collector Current	Ic	100	mA

CHARACTERISTICS (at 25°C ambient temperature unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	V _{(BR)CBO}	-90	-	_	V	$I_C = -10 \mu A$
Collector-emitter breakdown voltage	V _{(BR)CEO}	-80	-	_	V	$I_C = -2 \mathrm{mA}$
Emitter-base breakdown voltage	V _{(BR)EBO}	-5	-	_	٧	$I_E = -10 \mu\text{A}$
Collector cut-off currents	I _{CBO}	_	_	-100	nA	$V_{CB} = -80V, I_{E} = 0$
	I _{CES}	-	_	-100 -5	nΑ μΑ	$V_{CE} = -80V, V_{BE} = 0$ $V_{CE} = -80V, V_{BE} = 0$ $T_j = 125$ °C
	I _{CEX}	_	_	-10	μΑ	$V_{CE} = -80V$ $V_{BE} = -0.2V$, $T_j = 85$ °C
•	I _{EBO}	_	_	-200	nA	$V_{BE} = -4V$
Static forward current transfer ratio	h _{FE}	30 35 50 30	1411	_ _ _		$\begin{split} &I_{C} = -100\mu\text{A}, \ V_{CE} = -1\text{V} \\ &I_{C} = -1 \text{ mA}, \ V_{CE} = -1\text{V} \\ &I_{C} = -10 \text{ mA}, \ V_{CE} = -1\text{V} \\ &I_{C} = -50 \text{ mA}, \ V_{CE} = -1\text{V} \end{split}$
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	- 750	mV	$I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Base-emitter saturation voltage	$V_{BE(sat)}$	_	_	-1.1	V	$I_C = -50 \text{ mA}, I_B = -5 \text{ mA}$
Output capacitance	C _{obo}	-	-	10	pF	$V_{CB} = -10V, I_E = 0$ f = 1 MHz
Transition frequency	f _T	50	-	_	MHz	$V_{CE} = -5V, I_{C} = -10 \text{ mA}$ f = 10 MHz
Switching times	t _{on} t _{off}	-	_	500 1000	ns ns	$I_{C} = -10 \text{ mA}$ $I_{B1} = I_{B2} = -1 \text{ mA}$

	Dev	ices	are ic	lentif	ied	by	a code	on	the	bod	dy of	the	devid	e		
HT3						٠.							٠		3T	

VN10LF

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	60	V
Continuous drain current (at T _A = 25°C)	I _D	0.15	Α
Pulse drain current	I _{DM}	3	Α
Gate-source voltage	V _{GS}	± 20	V

CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	60	_	V	$I_D = 100 \mu\text{A}, \ V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	0.8	2.5	V	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	100	nΑ	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	10	μΑ	$V_{DS} = Max. rating, V_{GS} = 0V$
On-state drain current (1)	I _{D(on)}	750	_	mA	$V_{DS} = 15V, V_{GS} = 10V$
Static drain-source on-state	R _{DS(on)}	_	5	Ω	$I_D = 500 \text{mA}, \ V_{GS} = 10 \text{V}$
resistance (1)		_	7.5	Ω	$I_D = 200 \text{mA}, \ V_{GS} = 5 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	100	_	mS	$V_{DS} = 15V, I_{D} = 500 \text{ mA}$
Input capacitance (2)	C _{iss}	_	60	pF)
Common source output capacitance (2)	C _{oss}	_	25	pF	$\begin{cases} V_{DS} = 25V, V_{GS} = 0V \\ f = 1 \text{ MHz} \end{cases}$
Reverse transfer capacitance (2)	C _{rss}	_	5	pF	
Turn-on time (2) (3)	t _(on)		10	ns	V -15V I -0.6A
Turn-off time (2) (3)	t _{off}	_	10	ns	$V_{DD} = 15V, I_{D} = 0.6A$

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s, Duty cycle \leqslant 2%.

(2) Sample test.

De	vices	are	ident	ified	by a	code	on t	he b	ody o	of the	devi	ce		
VN10LF													MY	

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

Fig 1. Typical saturation characteristics

Fig 9. Normalised $R_{DS(on)}$ and $V_{GS(th)} \ v \ temperature$

Silicon variable capacitance diodes

ZC830A ZC836A SERIES

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Reverse breakdown voltage	V _{BR}	25	_		٧	$I_R = 10\mu A$
Reverse leakage current	I _R	_	_	0.02	μΑ	$V_R = 20V$
Temperature coefficient of capacitance	η	_	0.03	0.04	% per °C	V _R =3V f=1MHz

TUNING CHARACTERISTICS (at 25°C ambient temperature).

		al capacitan =2V, f=1M		Figure of Merit Minimum Ω	Tuning rat	tio, C ₂ /C ₂₀ MHz)
Type No.	Min.	Nom.	Max.	(V _R =3V f=50MHz)	Min.	Max.
ZC830A	9.0	10	11.0	300	4.5	6.0
ZC831A	13.5	15	16.5	300	4.5	6.0
ZC832A	19.8	22	24.2	200	5.0	6.5
ZC833A	29.7	33	36.3	200	5.0	6.5
ZC834A	42.3	47	51.7	200	5.0	6.5
ZC835A	61.2	68	74.8	100	5.0	6.5
ZC836A	90.0	100	110.0	100	5.0	6.5

Devices are also available with 5% and 20% tolerances. No suffix - $\pm\,20\%$ (e.g. ZC830). Suffix B - $\pm\,5\%$ (e.g. ZC830B).

		 	by a	 	 , c	 		
ZC830,A,B		 	٠	 	 	 	J	1
ZC831,A,B		 		 	 	 	J	3
ZC832,A,B		 		 	 	 	J	4
ZC833,A,B	٠	 		 	 	 	J	2
ZC834,A,B		 		 	 	 	. J	
ZC835,A,B		 ٠		 	 		J	
ZC836,A,B		 		 			J. J	7

Schottky barrier diodes

ZC2800E ZC2810E ZC2811E ZC5800E

The ZC2810E is not recommended for NEW DESIGNS.

CHARACTERISTICS (at 25°C ambient temperature).

Development	Time	Symbol	Min.	Max.	Unit	Test Conditions
Parameter	Type	Symbol	IVIIII.	iviax.	Oill	lest conditions
Breakdown Voltage	ZC2800E ZC2810E ZC2811E ZC5800E	V _{BR}	70 20 15 50	- - -	> > >	
Reverse leakage current	ZC2800E ZC2810E ZC2811E ZC5800E	I _R	_ _ _ _	200 100 100 200	nA nA nA nA	V _R = 50V V _R = 15V V _R = 10V V _R = 35V
Forward voltage	ZC2800E ZC2810E ZC2811E ZC5800E	V _F	_ _ _ _	410 410 410 410	mV mV mV	
Forward current	ZC2800E ZC2810E ZC2811E ZC5800E	I _F	15 35 20 15	 	mA mA mA	$ \} V_F = 1V $
Capacitance	ZC2800E ZC2810E ZC2811E ZC5800E	Ст	_ _ _ _	2.0 1.2 1.2 2.0	pF pF pF pF	$ \begin{cases} V_R = 0V \\ f = 1MHz \end{cases} $
Effective minority lifetime	ZC2800E ZC2810E ZC2811E ZC5800E	τ	- - - -	100 100 100 100	ps ps ps ps	See test diagram

Note: Matched pairs or quads of diodes can be supplied on request.

STANDARD MATCHING SPECIFICATIONS:

ZC2800E, ZC5800E Max. \triangle V=20mV, I_F=0.5 to 5.0mA Max. \triangle C=0.2pF, V_R=0V

ZC2810E, ZC2811E

Max. $\triangle V = 20$ mV, $I_F = 1$ to 10mA Max. $\triangle C = 0.2$ pF, $V_R = 0$ V

EFFECTIVE CARRIER LIFETIME ($_{\mathcal{T}}$) TEST

The signal generator is set to 54MHz and the sampling scope is set to 20mV/cm. The R.F. amplifier output is adjusted to give 5 cm. peak forward deflection, corresponding to a peak forward

current through the diode of 20mA. Under these conditions the waveform appearing on the oscilloscope will be as shown below.

The amplitude au is directly related to effective minority lifetime, with 1 cm. of amplitude

corresponding to 500ps lifetime.

TYPICAL CHARACTERISTICS

Devices are identified by a code on the body of the device ZC2800E E6 ZC2810E E7 ZC2811E E8 ZC5800E E9

ZVN3306F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	60	٧ .
Continuous drain current (at T _A = 25°C)	I _D	0.15	Α
Pulse drain current	I _{DM}	3	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	60	_	-, '	V	$I_D = 1 \text{ mA}, V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	0.8	_	2.4	٧	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	,	_	20	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain	IDSS	-	_	0.5	μΑ	$V_{DS} = Max. rating, V_{GS} = 0V$
current		_	_	50	μΑ	$V_{DS} = 0.8 \times Max$. rating $V_{GS} = 0V$ (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	750	· — .	_	mA	$V_{DS} = 18V, V_{GS} = 10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	_	5	Ω	$I_D = 500 \text{mA}, \ V_{GS} = 10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	150	_	_	mS	$V_{DS} = 18V, I_D = 500 \text{ mA}$
Input capacitance (2)	C _{iss}	_	. —	35	pF)
Common source output capacitance (2)	C _{oss}		* _	25	pF	$V_{DS} = 18V, V_{GS} = 0V$ f = 1 MHz
Reverse transfer capacitance (2)	C _{rss}	-	_	8	pF	
Turn-on delay time (2) (3)	t _{d(on)}	_	3	5	ns)
Rise time (2) (3)	t _r	_	4	7	ns	V _{DD} ≈ 18V, I _D = 500 mA
Turn-off delay time (2) (3)	t _{d(off)}	-	4	6	ns	> V _{DD} ~ 10 V, 1 _D = 300111A
Fall time (2) (3)	t _f		5	8	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s, Duty cycle \leqslant 2%.

(2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

SOURCE-DRAIN DIODE CHARACTERISTICS.

Parameter	Symbol	Тур.	Unit	Conditions
Diode forward voltage (1)	V _{SD}	0.85	٧	V _{GS} =0V, I _S =270mA
Reverse recovery time	t _{rr}	90	ns	V _{GS} =0V, I _F =270mA I _R =100mA

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle≤2%.

ZVN3310F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	100	V
Continuous drain current (at T _A = 25°C)	I _D	0.1	Α
Pulse drain current	I _{DM}	2	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	100	-	_	٧	$I_D = 1 \text{ mA}, V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	0.8	_	2.4	٧	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	_	20	nA	$V_{GS} = \pm 20V, \ V_{DS} = 0V$
Zero gate voltage drain	I _{DSS}	_	_	1	μΑ	$V_{DS} = Max.$ rating, $V_{GS} = 0V$
current		_	_	50	μΑ	V_{DS} =0.8×Max. rating V_{GS} =0V (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	500	_	_	mA	$V_{DS} = 25V, V_{GS} = 10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	_	10	Ω	$I_D = 500 \text{mA}, \ V_{GS} = 10 \text{V}$
Forward transconductance (1) (2)	g _{fs}	100	_	_	mS	$V_{DS} = 25V, I_{D} = 500 \text{ mA}$
Input capacitance (2)	C _{iss}	_	_	40	pF)
Common source output capacitance (2)	C _{oss}	_	_	15	pF	$V_{DS} = 25V, V_{GS} = 0V$
Reverse transfer capacitance (2)	C _{rss}	_	_	5	pF	
Turn-on delay time (2) (3)	t _{d(on)}	_	3	5	ns)
Rise time (2) (3)	t _r	_	5	7	ns	$V_{DD} \approx 25V, I_D = 500 \text{ mA}$
Turn-off delay time (2) (3)	t _{d(off)}	_	4	6	ns	V _{DD} ≈ 25V, I _D =500IIIA
Fall time (2) (3)	t _f	_	5	7	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle ≤ 2%.

(2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

SOURCE-DRAIN DIODE CHARACTERISTICS.

Parameter	Symbol	Тур.	Unit	Conditions
Diode forward voltage (1)	V _{SD}	0.82	V	$V_{GS} = 0V, I_{S} = 200 \text{ mA}$

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle≤2%.

ZVN3320F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	200	V
Continuous drain current (at T _A = 25°C)	I _D	0.06	Α
Pulse drain current	I _{DM}	1	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

LECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Drain-source breakdown voltage	BV _{DSS}	200	_	_	V .	$I_D = 1 \text{ mA}, V_{GS} = 0V$	
Gate-source threshold voltage	V _{GS(th)}	1	_	3	V	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$	
Gate body leakage	I _{GSS}	_	0.1	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
Zero gate voltage drain	I _{DSS}	_	_	10	μΑ	$V_{DS} = Max. rating, V_{GS} = 0V$	
current		-	_	50	μΑ	$V_{DS} = 0.8 \times Max$. rating $V_{GS} = 0V$ (T=125°C) (2)	
On-state drain current (1)	I _{D(on)}	250	_	_	mA	$V_{DS} = 25V, V_{GS} = 10V$	
Static drain-source on-state resistance (1)	R _{DS(on)}	-	-	25	Ω	$I_D = 100 \text{mA}, \ V_{GS} = 10 \text{V}$	
Forward transconductance (1) (2)	g _{fs}	75	_	_	mS	$V_{DS} = 25V, I_{D} = 100 \text{ mA}$	
Input capacitance (2)	C _{iss}	_	-	45	pF	١	
Common source output capacitance (2)	C _{oss}	_	_	18	pF	$\begin{cases} V_{DS} = 25V, V_{GS} = 0V \\ f = 1 \text{ MHz} \end{cases}$	
Reverse transfer capacitance (2)	C _{rss}	_	-	5	pF		
Turn-on delay time (2) (3)	t _{d(on)}	T -	_	5	ns)	
Rise time (2) (3)	t _r			7	ns	$V_{DD} = 25V, I_{D} = 100 \text{ mA}$	
Turn-off delay time (2) (3)	t _{d(off)}	-	_	6	ns	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Fall time (2) (3)	t _f	_		6	ns	J	

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle ≤ 2%.

(2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

ZVN4106F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	60	V
Continuous drain current (at T _A = 25°C)	I _D	0.2	Α
Pulse drain current	I _{DM}	3	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	60	_	V	$I_D = 1 \text{ mA}, V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	1.3	3	V	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	10	μА	$V_{DS} = Max. rating, V_{GS} = 0V$
		_	50	μΑ	V_{DS} =0.8×Max. rating V_{GS} =0V (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	1	_	Α	$V_{DS} = 25V, V_{GS} = 10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	2.5	Ω	$I_D = 500 \text{mA}, \ V_{GS} = 10 \text{V}$
		-	5	Ω	$I_D = 200 \text{mA}, V_{GS} = 5V$
Forward transconductance (1) (2)	g _{fs}	150	-	mS	$V_{DS} = 25V, I_{D} = 500 \text{ mA}$
Input capacitance (2)	C _{iss}	_	35	pF)
Common source output capacitance (2)	C _{oss}	_	25	pF	V _{DS} = 25V, V _{GS} = 0V f = 1 MHz
Reverse transfer capacitance (2)	C _{rss}	_	8	pF] - 1 1011 12
Turn-on delay time (2) (3)	t _{d(on)}	_	5	ns)
Rise time (2) (3)	t _r	_	7	ns	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Turn-off delay time (2) (3)	t _{d(off)}	-	6	ns	$V_{DD} = 25V, I_D = 500 \text{ mA}$
Fall time (2) (3)	t _f	_	8	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle ≤ 2%.

⁽²⁾ Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

P-channel enhancement mode vertical DMOS FET

ZVP1320F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	-200	V
Continuous drain current (at T _A = 25°C)	I _D	-0.035	Α
Pulse drain current	I _{DM}	-0.4	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	-200	_	V	$I_D = -1 \text{ mA}, V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	-1.5	-3.5	٧	$I_D = -1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	20	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	-10	μΑ	V _{DS} =Max. rating, V _{GS} =0V
		_	-50	μΑ	V_{DS} =0.8×Max. rating V_{GS} =0V (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	-100		mA	$V_{DS} = -25V, V_{GS} = -10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	80	Ω	$I_D = -50 \text{mA}, \ V_{GS} = -10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	25	_	mS	$V_{DS} = -25V$, $I_{D} = -50 \text{ mA}$
Input capacitance (2)	C _{iss}	_	50	pF	
Common source output capacitance (2)	C _{oss}	_	15	pF	$\begin{cases} V_{DS} = -25V, V_{GS} = 0V \\ f = 1 \text{ MHz} \end{cases}$
Reverse transfer capacitance (2)	C _{rss}	_	5	pF	
Turn-on delay time (2) (3)	t _{d(on)}	_	8	ns	
Rise time (2) (3)	t _r	_	8	ns] v ~ 25V - 50m4
Turn-off delay time (2) (3)	t _{d(off)}	_	8	ns	$V_{DD} \approx -25V$, $I_D = -50 \text{ mA}$
Fall time (2) (3)	t _f	_	16	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle≤2%.

(2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and $< 5\,\mathrm{ns}$ rise time on a pulse generator.

Device	s are	ident	ified	by a	code	on t	he b	ody o	f the	devi	ce	
ZVP1320F												МТ

P-channel enhancement mode vertical DMOS FET

ZVP3306F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	-60	V
Continuous drain current (at $T_A = 25$ °C)	I _D	-0.09	Α
Pulse drain current	I _{DM}	-1.6	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	-60	_	V	$I_D = -1 \text{ mA}, \ V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	-1.5	-3.5	V	$I_D = -1 \text{ mA}, \ V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	20	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	-0.5	μΑ	V_{DS} = Max. rating, V_{GS} = 0V
		_	-50	μΑ	V_{DS} =0.8×Max. rating V_{GS} =0V (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	-400	_	mA	$V_{DS} = -18V, V_{GS} = -10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	14	Ω	$I_D = -200 \text{mA}, \ V_{GS} = -10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	60	_	mS	$V_{DS} = -18V, I_{D} = -200 \text{mA}$
Input capacitance (2)	C _{iss}	_	50	pF)
Common source output capacitance (2)	C _{oss}	_	25	pF	V _{DS} = -18V, V _{GS} = 0V f = 1 MHz
Reverse transfer capacitance (2)	C _{rss}	-	8	pF	J ** 1 Will 12
Turn-on delay time (2) (3)	t _{d(on)}	_	8	ns)
Rise time (2) (3)	t _r	_	8	ns	101/1
Turn-off delay time (2) (3)	t _{d(off)}	_	8	ns	$V_{DD} \approx -18V$, $I_{D} = -200 \text{mA}$
Fall time (2) (3)	t _f	_	8	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle≤2%.

⁽²⁾ Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

P-channel enhancement mode vertical DMOS FET

ZVP3310F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	SOT-23	Unit
Drain-source voltage	V _{DS}	-100	V
Continuous drain current (at $T_A = 25$ °C)	I _D	-0.075	Α
Pulse drain current	I _{DM}	-1.2	Α
Gate-source voltage	V _{GS}	± 20	V

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions
Drain-source breakdown voltage	BV _{DSS}	-100	_	٧	$I_D = -1 \text{ mA}, V_{GS} = 0V$
Gate-source threshold voltage	V _{GS(th)}	-1.5	-3.5	٧	$I_D = -1 \text{ mA}, V_{DS} = V_{GS}$
Gate body leakage	I _{GSS}	_	20	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
Zero gate voltage drain current	I _{DSS}	_	-1	μΑ	V _{DS} =Max. rating, V _{GS} =0V
		-	-50	μΑ	V_{DS} =0.8×Max. rating V_{GS} =0V (T=125°C) (2)
On-state drain current (1)	I _{D(on)}	-300	_	mA	$V_{DS} = -25V, V_{GS} = -10V$
Static drain-source on-state resistance (1)	R _{DS(on)}	_	20	Ω	$I_D = -150 \text{mA}, \ V_{GS} = -10 \text{V}$
Forward transconductance (1) (2)	9 _{fs}	50	_	mS	$V_{DS} = -25V$, $I_{D} = -150 \text{ mA}$
Input capacitance (2)	C _{iss}	_	50	pF)
Common source output capacitance (2)	C _{oss}	_	15	pF	$V_{DS} = -25V, V_{GS} = 0V$ f = 1 MHz
Reverse transfer capacitance (2)	C _{rss}	_	5	pF] - 1 (4)112
Turn-on delay time (2) (3)	t _{d(on)}	_	8	ns)
Rise time (2) (3)	t _r	-	8	ns	
Turn-off delay time (2) (3)	t _{d(off)}	- 1	8	ns	$V_{DD} \approx -25V$, $I_{D} = -150 \text{ mA}$
Fall time (2) (3)	t _f	_	8	ns	J

⁽¹⁾ Measured under pulsed conditions. Width=300µs, Duty cycle ≤ 2%.

(2) Sample test.

⁽³⁾ Switching times measured with 50Ω source impedance and < 5 ns rise time on a pulse generator.

Devices	are	ident	ified	by a	code	on	the b	ody o	the	devi	ce	
ZVP3310F												MR

N-channel enhancement mode vertical DMOS FET

ADVANCE PRODUCT INFORMATION

2N7002

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	2N7002	Unit
Drain-source voltage	V _{DS}	60	٧
Continuous drain current (at T _A = 25°C)	I _D	115	mA
Pulsed drain current	I _{DM}	800	mA
Gate-source voltage	V _{GS}	± 40	٧
Maximum power dissipation (at T _A = 25°C)	P _D	200	mW
Operating/storage temperature range	T _j , T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (at T=25°C unless otherwise stated).

Parameter	Symbol	Min.	Max.	Unit	Conditions	
Drain-source breakdown voltage	BV _{DSS}	60	_	٧	$I_D = 10 \mu\text{A}, \ V_{GS} = 0V$	
Gate-source threshold voltage	V _{GS(th)}	1.0	2.5	٧	$I_D = 250 \mu A, V_{DS} = V_{GS}$	
Gate body leakage	I _{GSS}	_	100	nΑ	$V_{GS} = \pm 20V, V_{DS} = 0V$	
Zero gate voltage drain current	I _{DSS}	_	1	μΑ	$V_{DS} = Max. rating, V_{GS} = 0V$	
		_	500	μΑ	V_{DS} = Max. rating, V_{GS} = 0V (T=125°C) (2)	
On-state drain current (1)	I _{D(on)}	500	_	mΑ	$V_{DS} = 25V, V_{GS} = 10V$	
Static drain-source on-state	V _{DS(on)}		3.75	٧	$V_{GS} = 10V, I_D = -500 \text{ mA}$	
voltage (1)		_	0.375	٧	$V_{GS} = 5V, I_D = 50 \text{ mA}$	
Static drain-source on-state	R _{DS(on)}	_	7.5	Ω	$I_D = 500 \text{mA}, V_{GS} = 10 \text{V}$	
resistance (1)		_	7.5	Ω	$I_D = 50 \text{ mA}, V_{GS} = 5V$	
Forward transconductance (1) (2)	g _{fs}	80	_	mS	$V_{DS} = 25V, I_{D} = 500 \text{ mA}$	
Input capacitance (2)	C _{iss}	_	50	pF		
Common source output capacitance (2)	C _{oss}	_	25	pF	$V_{DS} = 25V, V_{GS} = 0V$	
Reverse transfer capacitance (2)	C _{rss}	_	5	pF		
Turn-on time (2)	t _(on)	_	20	ns	V _{DD} ≈ 30V, I _D =200mA	
Turn-off time (2)	t _(off)		20	ns	$\begin{cases} V_{DD} \approx 30V, I_{D} = 200 \text{ mA} \\ R_{g} = 25\Omega, R_{L} = 150\Omega \end{cases}$	

⁽¹⁾ Measured under pulsed conditions. Width=300 μ s, Duty cycle \leqslant 2%. (2) Sample test.

D	evices are id	lentified by	a code o	n the boo	dy of the	device	
2N7002							702

OTHER DISCRETE SURFACE MOUNT COMPONENTS

- 1. SOT-223
- 2. SOT-89
- 3. E-LINE (Centre Collector/Drain) 'SM'
 - 4. E-LINE (Centre Base/Gate) 'M1'

SOT-223 1

GENERAL INFORMATION

As surface mount continues to increase its penetration throughout the world of electronics, the SOT-223 is one of many surface mount packages which are the driving force behind this phenomenal growth.

The package is capable of housing semiconductor crystals up to 2.5 x 2.5mm offering power capabilities up to and above 2W (subject to mounting).

Designed in a similar fashion to the very popular SOT-23 package, it ensures that it is fully compatible with all industry standard wave and reflow soldering techniques.

The initial range of SOT-223 products covers mainly bipolar types plus selected MOSFETs. The complete bipolar range combines the Zetex pioneered 'Matrix' chip design together with the rugged SOT-223 package, giving the circuit designer maximum flexibility in designing wholly surface mount circuits using a proven, reliable and rugged product.

Features of SOT-223

- ★ Power Capabilities up to 2W R_{th(j-amb)} 60°C/W R_{th(j-case)} 15°C/W
- ★ Can accommodate chip sizes up to 2.5 by 2.5mm.
- ★ Compatible with industry standard assembly techniques.
- * Footprint compatibility with D-PAK.

NEW PRODUCTS

The continued evolution of new products means that our range is constantly updated. If your particular requirement is not covered herein, please do not hesitate to contact us for new product information.

Customer Specifications

Devices may be supplied against 'in-house' specifications to suit individual customer requirements for:

- * Non-standard Electrical or Environmental Specifications.
- * Customer Procurement Specifications.

TAPE AND REEL INFORMATION

The complete range of SOT-223 devices is available on 12mm tape for use with automatic placement equipment. Available on either 7in. or 13in. reels, ordering information is as follows:

e.g. FZT649TA 7in. reel 1000 components/reel. FZT649TC 13in. reel 2500 components/reel.

Tape Specification

MAXIMUM THERMAL RATINGS

Junction Temperature15	O ₀ C
Operating and Storage Temperature 55°C to +15	0°C

PACKAGE OUTLINE DETAILS

511.5	Millin	netres	Inc	hes		
DIM	Min.	Max.	Min.	Max.		
Α	6.3	6.7	0.248	0.264		
В	3.3	3.7	0.130	0.146		
С	_	1.7	_	0.067		
D	0.6	0.8	0.024	0.031		
Е	2.9	3.1	0.114	0.122		
F	0.24	0.32	0.009	0.013		
G	4.61	MOM	0.181	NOM		
Н	0.85	1.05	0.033	0.041		
K	0.02	0.10	0.0008	0.004		
L	6.7	7.3	0.264	0.287		
М	2.31	MOM	0.0905 NOM			

PIN CONNECTIONS

PAD LAYOUT

SOT-223 1

THERMAL DATA

The power dissipation is dependent on many factors that must be taken into consideration in the initial board design. The board material, the board surface, metal thickness, pad area and the proximity to other heat generating components all have a bearing on the device dissipation capability.

Thermal Ratings and Power Dissipation

	FR-4
θJA (°C/W)	55
θJC (°C/W)	15
θCA (°C/W)	40
PD (mW)	2.2W

Typical Example: Die Size = 41×41 mils

FR4 = 1" \times 1" \times 0.060" P_D = T_{J(max.)} - TA/R θ JA

NPN TRANSISTORS (INCLUDING DARLINGTON)

Туре	V _{CBO} V	V _{CEO}	I _{C(cont)} A	I _{CM} A	P _{tot} W	h _F Min./Max.	-	Ma	$V_{CE(sat)}$ Max. at I_C/I_B Volts mA		Comple- ment
FZT657	300	300	0.5	1.0	2.0	50/-	100/5	0.5	100/10	30	FZT757
FZT655	150	150	1.0	2.0	2.0	50/- 20/-	500/5 1000/5	0.5 0.5	500/50 1000/200	30 30	FZT755
FZT605*	140	120	2.0	4.0	2.0	5K/- 2K/100K	500/5 1000/5	1.0 1.5	250/0.25 1000/1.0	150	FZT705*
FZT653	120	100	2.0	6.0	2.0	100/300 25/-	500/2 2000/2	0.3 0.5	1000/100 2000/200	140 140	FZT753
FZT651	80	60	3.0	6.0	2.0	80/- 40/-	1000/2 2000/2	0.3 0.6	1000/100 3000/300	140	FZT751
FZT649	35	25	3.0	8.0	2.0	100/300 15/-	1000/2 6000/2	0.3 0.6	1000/100 3000/300	150	FZT749

^{*}Darlington

PNP TRANSISTORS (INCLUDING DARLINGTON)

Туре	V _{CBO} V	V _{CEO} V	I _{C(cont)} A	I _{CM} A	P _{tot} W	h _{FE} Min./Max. at I _C /V _{CE} mA/Volts			V _{CE(sat)} x. at I _C /I _B mA	f _T Min. MHz	Comple- ment
FZT757	-300	-300	-0.5	-1.0	2.0	50/-	-100/-5	-0.5	-100/-10	30	FZT657
FZT755	-150	-150	-1.0	-2.0	2.0	50/- 20/-	-500/-5 -1000/-5	-0.5 -0.5	-500/-50 -1000/-200	30	FZT655
FZT705*	-140	-120	-2.0	-4.0	2.0	3K/30k 2K/-	-1000/-5 -2000/-5	-1.3 -2.5	-1000/-1.0 -2000/-2.0	100	FZT605*
FZT753	-120	-100	-2.0	-6.0	2.0	100/300 25/-	-500/-2 -2000/-2	-0.3 -0.5	-1000/-100 -2000/-200	100	FZT653
FZT751	-80	-60	-3.0	-6.0	2.0	80/- 40/-	-1000/-2 -2000/-2	-0.3 -0.6	-1000/-100 -3000/-300	100	FZT651
FZT749	-5	-25	-3.0	-8.0	2.0	100/300 15/-	-1000/-2 -6000/-2	-0.3 -0.6	-1000/-100 -3000/-300		FZT649

^{*}Darlington

MOSFETs

Туре	BV _{DSS}	I _D	I _{DM}	P _{tot}	۱ Min.	V _{GS(th)} ∕ at ∣ Max.	: I _D mA	Ω a Max.	R _{DS(on)} t I _D	V _{GS}	Comple- ment
N-channel ZVN2106G	60	0.7	8	2	0.8	2.4	1.0	2.0	1.0	10	ZVP2106G
P-channel ZVP2106G	-60	-0.45	-4	2	-1.5	-3.5	-1.0	5.0	-0.5	-10	ZVN2106G

Competition Part		SS REFERENCE GUIL	
	Zetex Part	Competition Part	Zetex Part
MOTOROLA (ALL		BDS948 BF720	FZT751
MJD29 MJD29C	FZT653	BF721	FZT657* FZT657*
MJD30	FZT653 FZT753	BF722	FZT757*
MJD30C	FZ1753 FZT753	BF723	FZT757*
MJD31	FZT653	BSP15	FZT757*
MJD31C	FZT653	BSP16	FZT757*
MJD32	FZT753	BSP19	FZT657*
MJD32C	FZT753	BSP20	FZT657*
MJD41	FZT653	BSP30 BSP31	FZT753*
MJD42C MJD47	FZT753 FZT657	BSP32	FZT753* FZT753*
MJD112	FZT605	BSP33	FZT753*
MJD117	FZT705	BSP40	FZT653*
MJD200	FZT651	BSP41	FZT653*
MJD201	FZT751	BSP42	FZT653*
MJD340	FZT657	BSP43	FZT653*
MJD350	FZT757	BSP50 BSP51	FZT605*
PHILIPS		BSP52	FZT605* FZT605*
· -	F3T3F0*	BSP60	FZT705*
BCP51 BCP52	FZT753* FZT753*	BSP61	FZT705*
BCP53	FZT753*	BSP62	FZT705*
BCP54	FZT653*	BSP88	ZVNL120G
BCP55	FZT653*	BSP89 BSP92	ZVNL120G
BCP56	FZT653*	B5F92	ZVP2120G
BCP68 BCP69	FZT649*	SIEMENS	
BDS60	FZT749* FZT705	BCP28	FZT705+
BDS60A	FZT705	BCP29	FZT605+
BDS60B	FZT705	BCP48	FZT705+
BDS60C	FZT705	BCP49	FZT605+
BDS61	FZT605	BCP51 BCP52	FZT753*
BDS61A BDS61B	FZT605 FZT605	BCP52 BCP53	FZT753* FZT753*
BDS61C	FZT605	BCP54	FZT653*
BDS77	FZT653	BCP55	FZT653*
BDS78	FZT753	BCP56	FZT653*
BDS201	FZT653	BCP68	FZT649*
BDS202 BDS203	FZT753 FZT653	BCP69 BF720	FZT749* FZT657*
BDS203	FZT753	BF721	FZT657*
BDS933	FZT653	BF722	FZT757*
BDS934	FZT753	BF723	FZT757*
BDS935	FZT653	BFN36	FZT657*
BDS936	FZT753	BFN37	FZT757*
BDS937 BDS938	FZT653 FZT753	BFN38 BFN39	FZT657* FZT757*
BDS939	FZT653	BSP50	FZT605*
BDS940	FZT753	BSP51	FZT605*
BDS941	FZT655	BSP52	FZT605*
BDS942	FZT755	BSP60	FZT705*
BDS943 BDS944	FZT649 FZT749	BSP61	FZT705*
BDS944 BDS945	FZ1749 FZT651	BSP62 BSP88	FZT705* ZVNL120
BDS946	FZT751	BSP89	ZVNL120 ZVNL120
BDS947	FZT651	BSP92	ZVP2120

^{*}Improved Electrical Performance †Higher current, lower h_{FE} alternative

GENERAL INTRODUCTION

The SOT-89 package offers the designer a solution to his requirements where a surface mount package, requiring 1 watt power dissipation, assembled using Reflow Techniques, is required.

NEW PRODUCTS

The continued evolution of new products means that our range is constantly updated. If your particular requirement is not covered herein, please do not hesitate to contact us for new product information.

Customer Specifications

Devices may be supplied against 'in-house' specifications to suit individual customer requirements for:

- ★ Non-standard Electrical or Environmental Specifications
- ★ Customer Procurement Specification

TAPE AND REEL INFORMATION

The complete range of SOT-89 devices is available on 12mm tape for use with automatic placement equipment. Available on either 7" or 13" reels, ordering information as follows:

e.g. BCX56TA 7" Reel 1000 components/reel BCX56TC 13" Reel 2500 components/reel

Tape specification complies with Industry standards.

PACKAGE OUTLINE DETAILS

	MILLIN	METRES	INC	HES
DIM. A B C D F G H K	MIN.	MAX.	MIN.	MAX
Α	4.40	4.60	0.173	0.181
В	_	4.25		0.167
С	1.40	1.60	0.55	0.63
D	=	2.60	_	0.102
F	0.25	0.39	0.0098	0.015
G	0.40	0.65	0.016	0.026
Н	1.50	1.70	0.059	0.067
K	2.60	2.85	0.91	0.112
L	2.90	3.10	0.114	0.122
N	1.40	1.60	0.55	0.63

PIN CONNECTIONS

PAD LAYOUT

Туре	V _{CBO}	V _{CEO}	I _C mA	P _{tot} mW	h _F min./max.	at I _C /V _{CE} mA/volts	v max Volts	CE(sat) c. at I _C /I _B mA	f _T typ. MHz
NPN BCX56 BCX55 BCX54 BCX68	100 60 45 20	80 60 45 20	1000 1000 1000 1000	1000 1000 1000 1000	40/250 40/250 40/250 85/375	150/2 150/2 150/2 500/1	0.5 0.5 0.5 0.5	500/50 500/50 500/50 1000/100	100 100 100 100
PNP BCX53 BCX52 BCX51 BCX69	100 60 45 20	80 60 45 20	1000 1000 1000 1000	1000 1000 1000 1000	40/250 40/250 40/250 40/250 85/375	150/2 150/2 150/2 500/1	0.5 0.5 0.5 0.5	500/50 500/50 500/50 1000/100	125 125 125 100

CENTRE COLLECTOR E-LINE 'SM'

The E-line S.M. outline provides designers with the wide choice of Zetex E-line and Super E-line transistors in a surface mountable form compatible with the SOT-89 footprint. Direct electrical equivalents of popular SOT-89 types are available in E-line S.M.

In many applications E-line S.M. can be used to replace SOT-194, SOT-223 and DPAK.

SOLDERING RECOMMENDATIONS

Reflow soldering

E-line S.M. packages may be placed in any orientation using reflow techniques.

To maintain the position of the component, it may be advisable to glue the device prior to reflow.

Wave soldering

The preferred orientation for wave soldering is with the feet facing the wave. The component may also be positioned at right angles to the wave. An extra sacrificial pad may be necessary to avoid bridging between the leads when used in this orientation.

Gluing recommendations

Glue dots at either side of the package are recommended.

TAPE FEATURES

- Conforms to EIA 481. Rev A and IEC 286
- Start of tape will have 63 to 70 sealed empty pockets
- End of tape on reel hub will have 26 min. sealed empty pockets
- 7" reel to hold 500 components
- 13" reel to hold 3000 components
- Peel off strength of cover tape is 0.4 ± 0.3 newtons measured at 175°-180° with respect to the component carrier along the longitudinal axis of the carrier tape. The peel-off speed shall be 120 ± 5mm/min.
- Semi-conductive carrier tape resistivity less than $10^7\Omega/\Box$

ORDERING INFORMATION

FXT651SMTA 7" Reel 500/RL. FXT651SMTC 13" Reel 3000/RL.

RECOMMENDED FOOTPRINTS FOR WAVE AND REFLOW SOLDERING

	А	В	С	D	
Wave soldering	1.0	0.5	1.5 60	4.0 160	mm mils
Reflow soldering	0.8	0.7 28	1.2 48	3.8 150	mm mils

Centre Collector E-line SM Medium Power

			Max. Cont.	N	lax. V _{CE(}	sat)		h _{FE}	at	Mir	ı. f _T	P _{tot} at T _{amb} =25°C	
Туре	V _{CBO}	V _{CEO}	I _C mA	v	I _C mA	I _B	Min.	Max.	I _C mA	MHz	I _C	=25°C mW	Complement
NPN													
FXT455SM	160	140	1000	0.2	150	15	100	300	150	100	50	1000	FXT555SM
FXT453SM	120	100	1000	0.2	150	15	40	200	150	150	50	1000	FXT553SM
FXT56SM	100	80	1000	0.5	500	50	40	250	150	150	50	1000	FXT53SM
FXT451SM	80	60	1000	0.5	150	15	50	150	150	150	50	1000	FXT551SM
FXT55SM	60	60	1000	0.5	500	50	40	250	150	150	50	1000	FXT52SM
FXT450SM	60	45	1000	0.5	150	15	100	300	150	50	50	1000	FXT550SM
FXT54SM	45	45	1000	0.5	500	50	40	250	150	150	50	1000	FXT51SM
FXT449SM	50	30	1000	0.5	1000	100	100	300	500	150	50	1000	FXT549SM
FXT68SM	25	20	1000	0.5	1000	100	85	375	500	150	50	1000	FXT69SM
PNP				١		_							
FXT557SM	300	300	500	0.3	50	5	50	300	50	75	50	1000	
FXT555SM	160	150	1000	0.3	100	10	50	300	300	100	50	1000	FXT455SM
FXT553SM	120	100	1000	0.3	150	15	50	200	150	150	50	1000	FXT453SM
FXT53SM	100	80	1000	0.5	500	50	40	250	150	150	50	1000	FXT56SM
FXT551SM	80	60	1000	0.5	150	15	50	150	150	150	50	1000	FXT451SM
FXT52SM	60	60	1000	0.5	500	50	40	250	150	150	50	1000	FXT55SM
FXT550SM	60	45	1000	0.5	150	15	100	300	150	150	50	1000	FXT450SM
FXT51SM	45	45	1000	0.5	500	50	40	250	150	150	50	1000	FXT54SM
FXT549SM	35	30	1000	0.5	1000	100	100	300	1000	100	100	1000	FXT449SM
FXT69SM	25	20	1000	0.5	1000	100	85	375	500	150	50	1000	FXT68SM

Centre Collector E-line SM Super E-line

Type	Co		Max. Cont. I _C	Max.	M	ax. V _{CE(} at	sat)		h _{FE}	at	Min	. f _T at	P _{tot} at T _{amb} = 25°C	Complement
.,,,,	V	V	mA	A	v	I _C mA	I _B mA	Min.	Max.	I _C mA	MHz	I _C mA	mW	Complement
NPN														
FXT657SM	300	300	500	1	0.5	100	10	50	_	100	30	10	1000	FXT757SM
FXT655SM	150	150	1000	2	0.5	1000	200	50	_	500	30	10		
FXT653SM	120	100	2000	6	0.3	1000	100	100	300	500	140	100	1000	
FXT651SM	80	60	2000	6	0.3	1000	100	100	300	500	140	100	1000	
FXT649SM	35	25	2000	6	0.3	1000	100	100	300	1000			1000	
PNP														
FXT757SM	300	300	500	1	0.5	100	10	50		100	30	10	1000	FXT657SM
FXT755SM	150	150	1000	2	0.5	1000	200	50	_	500	30	10	1000	FXT655SM
FXT753SM	120	100	2000	6	0.3	1000	100	100	300	500	100	100	1000	FXT653SM
FXT751SM	80	60	2000	6	0.3	1000	100	100	300	500	100		1000	FXT651SM
FXT749SM	35	25	2000	6	0.3	1000	100	100	300	1000	100	100	1000	FXT649SM

Centre Collector E-line SM RF Transistors

Tuno	v	v	Max. Cont.	N	lax. V _{CE(sa} at	t)	h _{FE} at			P _{out} at		
Туре	V _{CBO}	V _{CEO} V	'c mA	V	I _C mA	I _B mA	Min.	Max.	I _C mA	mW	f MHz	
NPN FXT3866SM	55	30	400	1.0	100	20	15	200	50	700	400	

3 CENTRE COLLECTOR E-LINE 'SM'

Centre Collector E-line SM NPN Darlingtons

Tuno	v	v	Max. Cont.	M	ax. V _{CE(s} at	at)		h _{FE}	at	Max.	I _{CBO} at	P _{tot} at T _{amb} = 25°C
Туре	V _{CBO}	V _{CEO}	'c mA	V	I _C mA	I _B mA	Min.	Max.	I _C mA	nA	V _{CB}	mW
FXT601BSM	180	160	1000	1.2	1000	10	2k	100K	500	100	160	1000
FXT605SM	140	120	1000	1.5	1000	1	2k	100k	1000	100	120	1000
FXT603SM	100	80	1000	1.0	1000	1	2k	100k	1000	100	80	1000
FXT38CSM	80	60	1000	1.25	800	8	10k	-	500	100	60	1000

Centre Collector E-line SM High Voltage Transistors

Туре	V _{CBO}	V _{CEO}	Max.	Ma	ax. V _{CE(}	sat)		h _{FE}	at	Max.		P _{tot} at T _{amb} =25°C	
1,400	A CRO	V	"C mA	V	I _C mA	I _B mA	Min.	Max.	I _C mA	μ Α	V _{CB}	mW	
NPN													
FXTA42SM	300	300	500	0.5	20	2.0	40	_	10	0.10	200	680	FXTA92SM
PNP													
FXTA92SM	300	300	500	0.5	20	2.0	40	_	10	0.25	200	680	FXTA42SM

Centre Collector E-line SM Switching Transistors

Туре	V _{CEO}	Max.	Max	k. V _{CE(}	sat)		h _{FE}	at	Min a		swit	Max. ching	times at	Complement
. ,,,,,	V	mA	v	I _C mA	I _B mA	Min.	Max.	I _C mA	MHz	I _C mA	t _{on} ns	t _{off} ns	I _C mA	
NPN														
FXT2222ASM	40	800	1.0	500	50	100	300	150	300	20	35	285	150	FXT2907ASM
FXT3904SM	40	200	0.2	10	1	100	300	10	300	10	70	250	10	FXT3906SM
FXT2222SM	30	800	1.6	500	50	100	300	150	250	20	35	285	150	FXT2907SM
PNP														
FXT2907ASM	60	600	1.6	500	50	100	300	150	200	50	50	110	150	FXT2222ASM
FXT3906SM	40	200	0.25	10	1	100	300	10	250	10	70	300	10	FXT3904SM
FXT2907SM	40	600	1.6	500	50	100	300	150	200	15	50	110	150	FXT2222SM

Centre Collector E-line SM Mosfets

Part Number	BV _{DSS}	I _D	I _{DM}	V Min.	V _{GS(th)} a Max.	t I _D mA	Ω a Max.	R _{DS(on)} t I _D mA	V _{GS}	P _D W
N Channel							•	1000	40	0.7
ZVN4206C P Channel	60	600	8	1.3	3	1	2	1000	10	0.7
ZVP2106C	60	280	4	1.5	3.5	1	5	500	10	0.7

CENTRE BASE E-LINE 'M1'

The package that offers you more POWER and PERFORMANCE to meet your Surface Mount Requirements.

The range of E-Line M1 products has been specially selected to meet current and future design requirements

POWER

The improved chip construction, together with void free die attach and silicone encapsulant has given a device with a true 1W dissipation at 25°C, this allows a practical power dissipation of up to 1.5W when the collector lead is soldered to an equivalent of 1 square inch of copper.

PERFORMANCE

As a direct result of special design features, Super E-Line transistors out perform similar types of plastic transistors. In addition to the wide range of industry types Zetex has produced 3 ranges that fully exploit the unique features of E-Line.

Super E-Line ZTX650 and ZTX750 series

The ultimate performance in E-Line, featuring:

- Peak Current = 6 amps
- Continuous current $(I_C) = 2$ amps
- Low saturation voltage
- 1.5 watt practical power dissipation
- 1 watt dissipation at T_{amb} = 25°C
- Voltages up to 300 volts (V_{CEO})
- Fast switching
- Excellent gain linearity

Super E-Line Darlington ZTX600 series

- 1A continuous current
- V_{CEO} up to 160V
- Guaranteed hee specification up to 1A
- 1.5 watt practical power dissipation

Medium power E-Line, ZTX450/ZTX550 series

- Collector current (I_C)=1 amp
- Peak current = 2 amp
- hee specified up to 1 amp
- P_{tot}=1 watt at T_{amb}=25°C Voltages up to 300 volts (V_{CEO})

E-LINE "M1" IN TAPE FOR SURFACE MOUNTING

Super E-line transistors can be supplied with M1 lead form in 16mm embossed carrier tape suitable for automatic placement in Surface Mount Applications. The E-line M1 is particularly uesful when the application requires power dissipation in excess of that obtainable with SOT-23.

The M1 option provides designers with the wide choice of Zetex E-line and Super E-line transistors in Surface Mountable form.

TAPE FEATURES

- Conforms to EIA 481, REV A.
- Start of tape will have 63 to 70 sealed empty pockets.
- End of tape on reel hub will have 26 min. sealed empty pockets.
- 7" reel to hold 500 components.
- 13" reel to hold 3000 components.
- Peel off strength of cover tape is 0.4 ± 0.3 newtons measured at 175°-180° with respect to the component carrier along the longitudinal axis of the carrier tape. The peel-off speed shall be 120 ± 5 mm/min.
- Semi-conductive carrier tape resistivity less than $10^{7}\Omega/\Box$.
- Ordering information:
 e.g. ZTX751M1TA 7" Reel 500/Reel.
 e.g. ZTX751M1TC 13" Reel 3000/Reel.

TAPE SPECIFICATION

4

CENTRE BASE E-LINE 'M1'

E-LINE "M1" SPECIFICATIONS (BIPOLAR)

Super E-line M1 Transistors

	1 1 1 1		Max.					h _{FE}	at	Min	. f _T	P _{tot} at T _{amb} =25°C		
Туре	V _{CBO}	V _{CEO}	I _C	I _{CM}	v	I _C mA	I _B	Min.	Max.	I _C mA	MHz	I _C mA	=25°C mW	Complement
NPN														
ZTX657M1	300	300	500	1	0.5	100	10	50	_	100	30	10	1000	ZTX757M1
ZTX655M1	150	150	1000	2	0.5	1000	200	50	_	500	30	10	1000	ZTX755M1
ZTX653M1	120	100	2000	6	0.3	1000	100	100	300	500	140	100	1000	ZTX753M1
ZTX651M1	80	60	2000	6	0.3	1000	100	100	300	500	140	100	1000	ZTX751M1
ZTX649M1	35	25	2000	6	0.3	1000	100	100	300	1000	150	100	1000	ZTX749M1
PNP														
ZTX757M1	300	300	500	1	0.5	100	10	50	_	100	30	10	1000	ZTX657M1
ZTX755M1	150	150	1000	2	0.5	1000	200	50	_	500	30	10	1000	ZTX655M1
ZTX753M1	120	100	2000	6	0.3	1000	100	100	300	500	100	100	1000	ZTX653M1
ZTX751M1	80	60	2000	6	0.3	1000	100	100	300	500	100	100	1000	ZTX651M1
ZTX749M1	35	25	2000	6	0.3	1000	100	100	300	1000	100	100	1000	ZTX649M1

Medium Power E-line M1 Transistors

			Max. Cont.	Ma	ax. V _{CE(sa}	et)		h _{FE}	at	Min	. f _T	P _{tot} at T _{amb} = 25°C	
Туре	V _{CBO}	V _{CEO}	l _C mA	V	I _C mA	I _B	Min.	Max.	I _C	MHz	I _C	=25°C mW	Complement
NPN													
ZTX455M1	160	140	1000	0.7	150	15	100	300	150	100	50	1000	ZTX555M1
ZTX453M1	120	100	1000	0.7	150	15	40	200	150	150	50	1000	ZTX553M1
ZTX451M1	80	60	1000	0.35	150	15	50	150	150	150	50	1000	ZTX551M1
ZTX450M1	60	45	1000	0.25	150	15	100	300	150	50	50	1000	ZTX550M1
ZTX449M1	50	30	1000	0.5	1000	100	100	300	500	150	50	1000	ZTX549M1
PNP													
ZTX557M1	300	300	500	0.3	50	5	50	300	50	75	50	1000	_
ZTX555M1	160	150	1000	0.3	100	10	50	300	300	100	50	1000	ZTX455M1
ZTX553M1	120	100	1000	0.7	150	15	40	200	150	150	50	1000	ZTX453M1
ZTX551M1	80	60	1000	0.35	150	15	50	150	150	150	50	1000	ZTX451M1
ZTX550M1	60	45	1000	0.25	150	15	100	300	150	150	50	1000	ZTX450M1
ZTX549M1	35	25	1000	0.5	1000	100	100	300	1000	100	100	1000	ZTX449M1

NPN Super E-line M1 Darlingtons

Туре	V _{CBO}	V _{CEO}	Max. Cont.	M	ax. V _{CE(s}	at)		h _{FE}	at	Max.	I _{CBO} at	P _{tot} at T _{amb} = 25°C
.,,,,	A CRO	V	nA	٧	I _C mA	I _B mA	Min.	Max.	I _C mA	nA	V _{CB}	mW
ZTX601AM1	180	160	1000	1.1	500	5	2k	20k	500	10	160	1000
ZTX601BM1	180	160	1000	1.1	500	5	20k	100k	500	10	160	1000
ZTX605M1	140	120	1000	1.5	1000	1	2k	100k	1000	100	120	1000
ZTX603M1	100	80	1000	1.0	1000	1	2k	100k	1000	100	80	1000

High Voltage E-line M1 Transistors

Туре	V _{CBO}	V _{CEO}	Max.	Ma	x. V _{CE}	(sat)		h _{FE}	at	Max.		P _{tot} at T _{amb} =25°C	Complement
	V	V	mA	V	I _C mA	I _B mA	Min.	Max.	I _C mA	μA	V _{CB}	mW	Complement
NPN MPSA42M1 PNP	300	300	500	0.5	20	2.0	40	-	10	0.10	200	680	MPSA92M1
MPSA92M1	300	300	500	0.5	20	2.0	40	_	10	0.25	200	680	MPSA42M1

E-LINE M1 SPECIFICATIONS (MOSFETs)

'N' Channel Small Signal Mosfets

Part Number	BV _{DSS}	I _D	I _{DM}	V Min.	V _{GS(th)} a Max.	t I _D	Ω a Max.	R _{DS(on)} et I _D mA	V _{GS}	P _D W
ZVN0545AM1	450	90	0.6	1	3	1	50	100	10	0.7
ZVN2535AM1	350	90	1	1	3	1	35	100	10	0.7
BS107PM1	200	120	2	_	_	_	23	25	2.6	0.5
ZVN2120AM1	200	180	2	1	3	1	10	250	10	0.7
ZVN2110AM1	100	320	6	0.8	2.4	1	4	1000	10	0.7
ZVN4206AM1	60	600	8	1.3	3	1	1.5	500	5	0.7
ZVN2106AM1	60	450	8	0.8	2.4	1	2	1000	10	0.7

CENTRE BASE E-LINE 'M1'

'P' Channel Small Signal MOSFETs

Part Number	BV _{DSS}	mA	I _{DM}	V Min.	V _{GS(th)} at Max.	l _D	Ω a	R _{DS(on)} at I _D	V _{GS}	P _D
71/20545444	450				(88) 15 Da	127			10	
ZVP0545AM1	-450	-45	-0.4	-1.5	-4.5	-1	150	-50	-10	0.7
ZVP0535AM1	-350	- 50	-0.48	- 1.5	-4.5	-1	100	-50	-10	0.7
ZVP2120AM1	-200	-120	-1.2	-1.5	-3.5	+1/	25	-150	-10	0.7
ZVP2110AM1	-100	-230	-3	-1.5	-3.5	- 1	8	-375	-10	0.7
ZVP2106AM1	-60	- 280	-4:	-1.5	-3.5	-1/	5	-500	-10	0.7

Low Threshold N-Channel MOSFETs

Part Number	BV _{DSS}	I _D	I _{DM}	V Min.	V _{GS(th)} a Max.	t I _D	Ω a Max.	R _{DS(on)} t I _D mA	V _{GS}	P _D W
ZVNL535AM1	350	90	0.8	0.5	1.5	1	40	50	3	0.7
ZVNL120AM1	200	180	2	0.5	1.5	1	10	125	3	0.7

Pin Connections

D G S

E-line with M1 lead form MOSFETs

CBBE

E-line with M1 lead form BIPOLAR

CENTRE BASE E-LINE 'M1'

4

TYPICAL CHARACTERISTICS

NOTES

NOTES

Zetex plc

Fields New Road, Chadderton, Oldham, OL9 8NP, United Kingdom Telephone: 061-627 5105 (Sales), 061-627 4963 (General Enquiries) Facsimile: 061-627 5467 Telex: 668038

A Telemetrix PLC Group Company

Zetex GmbH

Drosselweg 30, 8000 München 82 Telefon: (089) 430 90 29 Fax: (089) 439 37 64

Zetex Inc.

87 Modular Avenue, Commack NY11725 Telephone: (516) 543-7100 Fax: (516) 864-7630

Zetex (Asia) Ltd.

47 Seabee Lane, Discovery Bay, Hong Kong Telephone: 987 9555 Fax: 987 9595

1.24.4	La tribe Contra

