1ª Avaliação de Cálculo Numérico Prof. Glauber Cintra

Você deve enviar essa avaliação pelo Classroom até o dia 3/ago/2020 às 18h.

1) **(3 pontos)** Converta os números contidos na tabela abaixo para sua representação nos demais sistemas numéricos (represente no máximo 10 casas decimais).

	Decimal	Binário	Octal	Hexadecimal
Decimal	271,6275			
Binário		110101010,10101		
Octal			353,16	
Hexadecimal				3D,B5

2) **(1 ponto)** Resolva o sistema linear abaixo utilizando o *Método de Jordan* e exiba a matriz diagonal. Se o sistema for compatível, forneça uma solução do sistema. Caso contrário, indique que o sistema é incompatível.

$$x_1 - x_2 + 3x_3 = 17$$

 $2x_1 - 2x_2 + x_3 = 9$
 $-x_1 + x_2 - x_3 = -7$

3) (1 ponto) Resolva o sistema linear abaixo utilizando o Método da Pivotação Completa. Se o sistema for compatível, forneça uma solução do sistema. Caso contrário, indique que o sistema é incompatível.

$$2x_1 - x_2 + 4x_3 = 0$$

 $x_1 - x_2 + 2x_3 = -1$
 $-x_1 + 4x_2 + 2x_3 = 3$

4) **(3 pontos)** Resolva o sistema linear abaixo usando o *Método de Jacobi* e o *Método de Gauss-Seidel*. Em ambos os casos, utilize x_i = 0 (i = 1, 2, 3) como solução inicial. Pare após calcular 4 soluções aproximadas. Calcule o *determinante normalizado* do sistema linear e diga se o sistema é bem condicionado.

$$6x_1 - x_2 - 2x_3 = 11$$

 $x_1 - 4x_2 + x_3 = -2$
 $x_1 + 2x_2 + 4x_3 = 4$

5) **(2 pontos)** Usando a transformação explicada em sala de aula, a partir do sistema linear complexo abaixo obtenha um sistema linear com coeficientes reais e aplique o *Método de Gauss* para resolvê-lo. Em seguida, calcule a solução do sistema linear abaixo e exiba sua solução.

$$x_1 + (2 - i)x_2 = 8 - 2i$$

 $-x_1 + 3x_2 = 7 - i$