# <u>ARQUITECTURA DE LAS COMPUTADORAS</u> Ejercicios de CIRCUITOS LÓGICOS para dar en clases

1) Dada la siguiente tabla de verdad, obtener la 1er. forma canónica algebraica y la numérica, el circuito y la 2da. forma canónica numérica y algebraica de la función:

| Α | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

RESPUESTA: 
$$Y = A' \cdot B' \cdot C + A' \cdot B \cdot C' + A \cdot B' \cdot C$$
 
$$Y = Y (A,B,C) = \sum_3 m_i (1,2,5)$$
 
$$Y = \prod_3 M_i (0,3,4,6,7)$$

$$Y = (A+B+C) \cdot (A+B'+C') \cdot (A'+B+C) \cdot (A'+B'+C) \cdot (A'+B'+C')$$



Otra forma de hacer el circuito:



2) Dado el siguiente circuito, obtener la 1er. forma canónica algebraica y la numérica, la 2da. forma canónica numérica y algebraica y la tabla de verdad de la función respectiva:



RESPUESTA:  $F = A' \cdot B \cdot C + A \cdot B' \cdot C + A \cdot B \cdot C$ 

$$F = \sum_3 m_i (3,5,7)$$

$$F = \prod_3 M_i (0,1,2,4,6)$$

$$F = (A+B+C) \cdot (A+B+C') \cdot (A+B'+C) \cdot (A'+B+C) \cdot (A'+B'+C)$$

| A | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
|   |   |   |   |

3) Escribir la expresión algebraica de la función del siguiente circuito:



RESPUESTA:  $Y = \{ (B + C)' \oplus [(D \oplus A) \cdot (B \cdot C \cdot D)'] \oplus D \}'$ 

4) Hacer el circuito de la siguiente función:

$$F = (C' + D.E) . A . B + (A.B + C'.E) . C$$

## RESPUESTA:



5) Dada la siguiente función, escribir la tabla de verdad de la misma:

$$F_3 = A \cdot B + C$$

## **RESPUESTA:**

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

6) Dada la siguiente función, escribir su 1er. f. canónica:

$$F_4 = A . B . C . D' + A . B . C'$$

RESPUESTA: 
$$F = \sum_{4} m_i (14,12,13)$$

$$F = A.B.C.D' + A.B.C'.D' + A.B.C'.D$$

7) Escribir la expresión algebraica y la 1er. f. canónica de la función cuyo circuito es el siguiente:



RESPUESTA: 
$$F = (B \oplus C) + A \cdot B \cdot C' = B' \cdot C + B \cdot C' + A \cdot B \cdot C'$$

$$F = \sum_3 m_i (1, 5, 2, 6)$$

$$F = A'.B'.C + A.B'.C + A'.B.C' + A.B.C'$$

8) Escribir la 2da. forma canónica numérica y la algebraica de la siguiente función:

$$F = (A.B.C)' + (A \oplus B)$$

## RESPUESTA:

| A B C | (A.B.C)' | $A \oplus B$ | F |
|-------|----------|--------------|---|
| 0 0 0 | 1        | 0            | 1 |
| 0 0 1 | 1        | 0            | 1 |
| 0 1 0 | 1        | 1            | 1 |
| 0 1 1 | 1        | 1            | 1 |
| 1 0 0 | 1        | 1            | 1 |
| 1 0 1 | 1        | 1            | 1 |
| 1 1 0 | 1        | 0            | 1 |
| 1 1 1 | 0        | 0            | 0 |

$$F = \prod_3 M_i (7) \qquad \qquad F = \overline{A} + \overline{B} + \overline{C}$$

9) Dada la siguiente función, dibujar el circuito correspondiente:

$$Y = \sum_3 m_i (2,3,5,6)$$

# **RESPUESTA:**



10) Dada la siguiente función, determinar la 1er. f. c. numérica y la 2da. algebraica:

$$F(A,B,C) = A$$

RESPUESTA: 
$$F = \sum_{3} m_{i} (4, 5, 6, 7)$$

$$\rightarrow$$
 F =  $\prod_3 M_i$  (0, 1, 2, 3)

$$\rightarrow$$
 F = (A+B+C). (A+B+ $\overline{C}$ ). (A+ $\overline{B}$ +C). (A+ $\overline{B}$ + $\overline{C}$ )

11) Dado el siguiente circuito, determinar la 1er. f. c. numérica de la función:



RTA.: a) 
$$F = (A \oplus B \oplus C \oplus D) + A.B.\overline{C}$$

F = 1 cuando uno, o los dos sumandos valen "1"

Analizando:

$$F_1 = A.B. \bar{C} = A.B. \bar{C}.D + A.B. \bar{C}.\bar{D} \rightarrow F_1 = \sum_4 m_i (13, 12)$$

 $F_2 = (A \oplus B \oplus C \oplus D)$ ' marca paridad par  $\rightarrow$  busco cuándo hay paridad par:

$$F_2 = \sum_4 m_i (0, 3, 5, 6, 9, 10, 12, 15)$$

$$\Rightarrow$$
 F = F<sub>1</sub> + F<sub>2</sub> =  $\sum_{4}$  m<sub>i</sub> (0, 3, 5, 6, 9, 10, 12, 13, 15)

b) O bien, puede resolverse haciendo la tabla de verdad.

12) Escribir la 2da. f. c. numérica y algebraica de la siguiente función lógica:

$$Y = (A \oplus B) \cdot C + (A \cdot B + B \cdot C)' \cdot A$$

RTA.: 
$$Y = (A \oplus B) \cdot C + (A \cdot B + B \cdot C)' \cdot A$$
 $Y_1 \qquad Y_2$ 

| A | В | C | (A ⊕ B) // | Y 1 | /// A.B | // B . C // | (A.B+B.C)' // | Y 2 | Y |
|---|---|---|------------|-----|---------|-------------|---------------|-----|---|
| 0 | 0 | 0 | 0          | 0   | 0       | 0           | 1             | 0   | 0 |
| 0 | 0 | 1 | 0          | 0   | 0       | 0           | 1             | 0   | 0 |
| 0 | 1 | 0 | 1          | 0   | 0       | 0           | 1             | 0   | 0 |
| 0 | 1 | 1 | 1          | 1   | 0       | 1           | 0             | 0   | 1 |
| 1 | 0 | 0 | 1          | 0   | 0       | 0           | 1             | 1   | 1 |
| 1 | 0 | 1 | 1          | 1   | 0       | 0           | 1             | 1   | 1 |
| 1 | 1 | 0 | 0          | 0   | 1       | 0           | 0             | 0   | 0 |
| 1 | 1 | 1 | 0          | 0   | 1       | 1           | 0             | 0   | 0 |

$$Y = \prod_3 M_i (0, 1, 2, 6, 7)$$

$$Y = (A+B+C) \cdot (A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+\overline{B}+C) \cdot (\overline{A}+\overline{B}+\overline{C})$$

13) Dada F(A,B,C) = A'.B.C+A.B.C'+A'.B.C'+A.B'.C'+A.B.C, encontrar la 2da. Forma Canónica y el circuito que ésta representa.

RTA.: 
$$F = \Sigma_3 m_i (3, 6, 2, 4, 7) = \Sigma_3 m_i (2, 3, 4, 6, 7)$$

$$\rightarrow$$
 F=  $\Pi_3$  M<sub>i</sub>(0,1,5)

2a F.C.N.

$$F = (A+B+C).(A+B+C').(A'+B+C')$$

2a F.C.A.



14) Dado el circuito, encontrar la función lógica respectiva y la 1er. F.C. y la T. De V.



RTA.: F = (A'+B+C).(A+B'+C').(A+B)

**→**  $F = \Pi_3 M_i (4,3,1,0)$ 

→  $F = \Sigma_3$  m<sub>i</sub> (2,5,6,7)

1er.F.C.N.

F= A'.B.C'+A.B'.C+A.B.C'+A.B.C

1er.F.C.A.

| Α | В | C | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
|   |   |   |   |

## **MINIMIZACIÓN**

## MINIMIZACIÓN POR ÁLGEBRA DE BOOLE:

Simplificar, hasta llegar a la mínima expresión, utilizando las leyes del álgebra de Boole (pueden existir o no, varios caminos diferentes para resolver cada ejercicio, aquí mostraremos una sola forma para resolverlos) y comprobar que verifique la tabla de verdad:

1) 
$$F = \Sigma_4 m_i (5,7,13,15) = A'.B.C'.D + A'.B.C.D + A.B.C'.D + A.B.C.D =$$
  
=  $A'.B.D.(C'+C) + A.B.D.(C'+C) = B.D$ 

Para demostrar que la función del resultado es equivalente a la función dada como enunciado, puede realizarse la tabla de verdad, o la parte de la misma que nos interesa:

| ABCD    | decimal |
|---------|---------|
| 0 1 0 1 | 5       |
| 0 1 1 1 | 7       |
| 1 1 0 1 | 13      |
| 1 1 1 1 | 15      |

$$\begin{aligned} 2) \ F &= \Sigma_3 \ m_i \ (0,1,2,3,4,5) = \underline{A'.B'.C'+A'.B'.C} + \ \overline{A'.B.C'+A'.B.C} + \underline{A.B'.C'+A.B'.C} = \\ &= A'.B'.(C'+C) + A'.B.(C'+C) + A.B'.(C'+C) = A'.B'+A'.B+A.B' = \\ &I) &= \underline{A'.B'+A'.B} + \overline{A.B'} + \underline{A'.B'} = A'.(B'+B) + B'.(A'+A) = A' + B' = (A.B)' \\ &(II) &= \underline{A'.B'+A'.B+A.B'} = A'.(B'+B) + AB' = A'+A.B' = A' + B' = (A.B)' \end{aligned}$$

(III) = 
$$A' \cdot B' + A' \cdot B + A \cdot B' = B' \cdot (A' + A) + A' \cdot B = B' + A' \cdot B = B' + A' = (B \cdot A)'$$

$$F = A'.B'.C + A.B'.C' + A.B'.C + A.B.C' = B'.C.(A'+A) + A.C'.(B'+B) = B'.C + A.C'$$

O bien, trabajando por los "0": 
$$F = (A+B+C).(A+B'+C).(A+B'+C').(A'+B'+C') = (A+C).(B'+C') = (A+C).(B'+C') = (A+C).(B'+C')$$

$$\begin{split} 4) \ F &= \Pi_3 \ M_i(0,1,4,7) = (\underline{A+B+C}).(\underline{A+B+C'}).(\underline{A'+B+C}).(\underline{A'+B+C'}) = \\ &= (\underline{A+B+C.C'}) \cdot (\underline{A.A'+B+C}) \cdot (\underline{A'+B'+C'}) = (\underline{A+B}) \cdot (\underline{B+C}).(\underline{A'+B'+C'}) = \\ &(I) \quad = (\underline{B+A.C}) \cdot (\underline{B'+(A.C)'}) = \underline{B.(A.C)'+(A.C).B'} = \underline{B} \oplus (\underline{A.C}) \\ &(II) \quad = (\underline{B+A.C}) \cdot (\underline{A \cdot B \cdot C}) \cdot$$

5) 
$$Y = A'.B'.C'.D' + \underline{A'.B.C'.D' + A'.B + A'.B.C'.D + B} =$$

$$= A'.B'.C'.D' + B.(A'.C'.D' + A' + A'.C'.D + 1) = A'.B'.C'.D' + B = B'.(A + C + D)' + B =$$

$$= B + (A + C + D)'$$



$$Y = \overline{A'.B'.C' + A'.B.C'} + \overline{A.B'.C'} + A.B.C = A'.C'.(B'+B) + B'.C'.(A'+A) + A.B.C =$$

$$= A'.C' + B'.C' + A.B.C = C'.(A'+B') + C.A.B = C'(A.B)' + C.A.B = (C \oplus (A.B))'$$

8) =  $\Sigma_4$  m<sub>i</sub> (4,5,6,12,13,14) , y dibujar el circuito mínimo.

$$F = \underline{A'.B.C'.D'+A'.B.C'.D} + \underline{A'.B.C.D'} + \underline{A.B.C'.D'+A.B.C'.D'+A.B.C'.D+A.B.C.D'} =$$

$$= A'.B.C'.(D'+D) + B.C.D'.(A'+A) + A.B.C'.(D'+D) =$$

$$= A'.B.C'+B.C.D'+A.B.C' = B.C.D'+B.C'.(A'+A) = B.C.D'+B.C' =$$

$$= B.(C.D'+C') = B.(D'+C') = B.(D.C)'$$



10) 
$$Y = A'.B'.C'.D' + A'.B + A'.B'.C.D + B' + A'.B.C'.D' =$$
  
= A'.B.  $(1 + C'.D') + B'.(A'.C'.D' + A'.C.D + 1) = A'.B + B' = A' + B' = (A.B)'$ 

$$\begin{split} &11) \ F = \Sigma_4 \ m_i \ (0, 1, 3, 4, 5, 7, 11, 15) = \ A'.B'.C'.D' + A'.B'.C'.D + A'.B'.C.D + A'.B.C'.D' + A'.B.C.D + A'.B.C.D + A.B'.C.D + A.B.C.D = \\ &= A'.B'.C'.(D'+D) + A'.B.C'.(D'+D) + B'.C.D.(A'+A) + B.C.D.(A'+A) = \\ &= A'.B'.C' + A'.B.C' + B'.C.D + B.C.D = A'.C'.(B'+B) + C.D.(B'+B) = \\ &= A'.C' + C.D = (A+C)' + C.D \end{split}$$

12) 
$$F = \Pi_4 M_i (0, 2, 5, 7, 13, 15) =$$

$$=(A+B+C+D).(A+B+C'+D).(A+B'+C+D').(A+B'+C'+D').(A'+B'+C+D').(A'+B'+C'+D')=$$

$$=(A + B + D + C.C').(A + B' + D' + C.C').(A' + B' + D' + C.C') =$$

$$= (A+B+D).(A+B'+D').(A'+B'+D') = (A+B+D).(A.A'+B'+D') =$$

$$= (A+B+D).(B'+D') =$$

$$(I) = (BD)' \cdot (A+B+D)$$

$$(II) = A.B'+A.D'+B.D'+D.B'= (por 9 a) = A.B'+B.D'+D.B'=$$

(a) = 
$$A.B'+(B \oplus D)$$

(b) = B' . 
$$(A + D) + (B \oplus D)$$

$$(c) = B' \cdot (A + D) + B \cdot D'$$

$$(III) = A.B' + A.D' + B.D' + D.B' =$$

(a) = A. 
$$(B'+D') + (B \oplus D) = A. (B.D)' + (B \oplus D)$$

(b) = 
$$D' + (A + B) + B' \cdot (A + D)$$

O bien:



$$S = A'.C + A'.B + A.B'.C = C.(A'+A \cdot B') + A'.B = C. A'+C \cdot B'+A'.B = (I)(por 9a) = A'.B + B'.C$$

$$(II)=A'.B+C.(A'+B')=A'.B+C.(A.B)'$$

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0

0 1

1 1 0

1 1 1

17)

$$F = A.B.C + A.B'.C + A.B.C' + A'.B.C + A'.B'.C' =$$

$$= A.B.(C+C') + A.C.(B+B') + B.C.(A+A') + A'.B'.C' =$$

$$= A.B + A.C + B.C + A'.B'.C' = A.B + C.(A+B) + C'.(A+B)' =$$

1

1

 $= A.B + (C \oplus (A+B))$ 

O bien:

$$F = (A + B + C') \cdot (A + B' + C) \cdot (A' + B + C) = [A + (B + C') \cdot (B' + C)] \cdot (A' + B + C) =$$

$$= [A + B \cdot C + B' \cdot C')] \cdot (A' + B + C) = [A + (B \oplus C)'] \cdot (A' + B + C)$$

O también:

$$F = (A + B + C') \cdot (A + B' + C) \cdot (A' + B + C) =$$

$$= [A + (B + C') \cdot (B' + C)] \cdot [C + (A + B') \cdot (A' + B)] =$$

$$= [A + B \cdot C + B' \cdot C')] \cdot [C + A \cdot B + B' \cdot A')] = [A + (B \oplus C)'] \cdot [C + (A \oplus B)']$$

O: 
$$F = (A + B + C') \cdot (A + B' + C) \cdot (A' + B + C) = (A + B + C') \cdot [C + (A + B') \cdot (A' + B)] = (A + B + C') \cdot [C + A \cdot B + B' \cdot A')] = (A + B + C') \cdot [C + (A \oplus B)']$$

18) 
$$F = B.C.D + A'.B'.C'.D + A'.B'.C'.D' + B'.C.D =$$
  
=  $C.D.(B+B') + A'.B'.C'.(D+D') = C.D + A'.B'.C' = C.D + (A+B+C)'$ 

20) Dada la siguiente tabla, construir la tabla de verdad completa. Desarrollar la función por minterms y por maxterms. Simplificarlas. Dibujar circuito mínimo.

| A B C | F |
|-------|---|
| 0 0 0 | 1 |
| 0 0 1 | 1 |
| 1 0 0 | 1 |

RTA.:

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

$$F = A'.B'.C' + A'.B'.C + A.B'.C' =$$

I) = 
$$A'.B'.(C'+C) + B'.C'.(A'+A) = A'.B' + B'.C' = B'.(A'+C') = B'.(A.C)' = (B+A.C)'$$

II) = A'.B'.
$$(C'+C)$$
 + A. B'.C' = A'.B' + A.B'.C' = B'. $(A'+AC')$  = B'. $(A'+C')$  = B'. $(A.C)'$  =  $(B+A.C)'$ 

$$F = (A + B' + C) \cdot (A + B' + C') \cdot (A' + B + C') \cdot (A' + B' + C) \cdot (A' + B' + C') =$$

$$= (A + B' + C.C') \cdot (A' + C' + B.B') \cdot (A' + B' + C.C') = (A + B') \cdot (A' + C') \cdot (A' + B') =$$

$$= B' \cdot (A' + C') = B' \cdot (AC)' = (B + A.C)'$$



# **MINIMIZACIÓN POR MAPA DE KARNAUGH:**

<u>Ejercicios</u>: Repetiremos algunos de los ejercicios dados en minimización por Álgebra de Boole.

1)  $F = \Sigma_4 \text{ mi } (5,7,13,15) = A'.B.C'.D+A'.B.C.D+A.B.C'.D+A.B.C.D$ 

| АВ  |     |     |     |     |
|-----|-----|-----|-----|-----|
| C D | 0 0 | 0 1 | 1 1 | 1 0 |
| 0 0 |     |     |     |     |
| 0 1 |     | 1   | 1   |     |
| 1 1 |     | 1   | 1   |     |
| 1 0 |     |     |     |     |

 $F = B \cdot D$ 

2)  $F = \Sigma_3 \text{ mi } (0,1,2,3,4,5) = A'.B'.C'+A'.B'.C+A'.B.C'+A'.B.C+A.B'.C'+A.B'.C$ 

|   | АВ |     |     |     |     |
|---|----|-----|-----|-----|-----|
| С |    | 0 0 | 0 1 | 1 1 | 1 0 |
|   | 0  | 1   | 1   |     | 1   |
|   | 1  | 1   | 1   |     | 1   |

 $F = A' + B' = (A \cdot B)'$ 

| 3) |   |   |   |   |
|----|---|---|---|---|
|    | A | В | С | F |
|    | 0 | 0 | 0 | 0 |
|    | 0 | 0 | 1 | 1 |
|    |   | 1 |   | 0 |
|    | 0 | 1 | 1 | 0 |
|    | 1 | 0 | 0 | 1 |
|    | 1 | 0 | 1 | 1 |
|    | 1 | 1 | 0 | 1 |
|    | 1 | 1 | 1 | 0 |



 $F = A \cdot C' + B' \cdot C$ 



$$F = (A+B).(B+C).(A'+B'+C')=$$

$$= (B+A.C).(B'+(A.C)') =$$

$$= B.(A.C)' + (A.C).B' = B \oplus (A.C)$$

#### O BIEN:



$$F = A'.B + B.C' + A.B'.C =$$

$$= B.(A'+C') + C.A.B' = B.(A.C)' + A.C.B' =$$

$$= B \oplus (A.C)$$

## OTRA RESPUESTA, para el primer caso:

$$F = (A+B).(B+C).(A'+B'+C') = (B + A.C).(A . B . C)'$$

#### 5) Y= A'.B'.C'.D'+A'.B.C'.D'+A'.B+A'.B.C'.D+B



$$Y = B + A' . C' . D' = B + (A + C + D)'$$

## 6) Y = A.B.C'+A.B'.C.D+A.B'.C.D'+A'.B'.C.D+A'.C



$$Y = A'.C + B'.C + A.B.C' =$$
  
=  $C.(A.B)' + C'.A.B =$   
=  $C \oplus (A.B)$ 



Y = A'.B'.C'+A'.B.C'+A.B'.C'+A.B.C



$$Y = B'.C' + A'.C' + A.B.C =$$
  
=  $(C \oplus (A.B))'$ 

 $8)F=\Sigma_4\,m_i\,(4,\,5,\,6,\,12,\,13,\,14)\,$  , y dibujar el circuito mínimo.



$$F = B.C' + B.D' = B. (C' + D') =$$
  
= B. (C.D)'



## 9) F = A'.B'.C'.D'+A'.B'.C'.D+A'.B.C.D'+A'.B.C.D+A.B.C



$$F = B.C + A'.B'.C'$$
  
=  $BC + (A+B+C)'$ 

#### 10)Y= A'.B'.C'.D'+A'.B+A'.B'.C.D+B'+A'.B.C'.D'



$$Y = B' + A' = (B . A)'$$

## 11) $F = \Sigma_4 m_i (0,1,3,4,5,7,11,15)$



$$F = C \cdot D + A' \cdot C' = (A + C)' + C \cdot D$$

## 12) $F = \Pi_4 M_i (0,2,5,7,13,15)$

$$F = (B'+D') \cdot (A+B+D)$$
  
=  $(B \cdot D)' \cdot (A+B+D)$ 

O bien: 
$$F = A.B' + A.D' + B.D' + D.B' = (por 9a) = A.B' + B.D' + D.B' = A.B' + (B \oplus D)$$

Otra forma de resolverlo:



$$F = A.B' + B.D' + B'.D = (I) = A.B' + (B \oplus D)$$
  
 $(II) = B'. (A + D) + B.D'$ 

También podría ser:



$$F = B . D' + B' . D + A . D' = (I) = A . D' + (B \oplus D)$$
 
$$(II) = D' . (A + B) + B' . D$$

13) Y= A'.B'.C'.D'+A'.B'.C'.D+A'.B'+A'.B'.C.D+B



Trabajando con "0"  $\rightarrow$  Y = A' + B

## 14) F= A'.B'.C'.D+A'.B.C'.D+A'.B+A'.B.D'+A'.B.C'+D



$$F = A'$$
.  $B + D$ 



S = A'.C+A'.B+A.B'.C



$$S = A'.B + B'.C$$

16) Y= A'.B'C'.D+A'.B'.C.D+A'.B.C'.D+A'.B.C.D+A'.B.C

$$Y = A'. D + A'. B. C = A'. (D + B. C)$$

| 1 | 7 | ١ |
|---|---|---|
| 1 | 1 | , |

| Α | В | C | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |



$$F = A'.B'.C' + A.B + B.C + A.C$$

$$F = A.B+C.(A+B)+C'(A+B)'=A.B+(C \oplus (A+B))'$$

O bien: F= A´.B´.C´+ A.B + B.C + A.C = B´.A´. C´+B (A + C) + A.C = = B´.A´. C´+B (A'.C')' + A.C = B 
$$\oplus$$
 (A'.C') + A.C = = [ B  $\oplus$  (A + C)'] + A.C

Trabajando con los "0":



$$F = (A + B' + C) \cdot (A' + B + C) \cdot (A + B + C')$$

No se logró minimizar. Hay que trabajarlo con lógica de Boole.

(I) = 
$$[A+(B+C').(B'+C)].(A'+B+C) =$$
  
=  $[A+B.C+B'.C'].(A'+B+C) = [A+(B \oplus C)'].(A'+B+C)$ 

(II) = 
$$(A+B+C')$$
.  $[C+(A+B').(A'+B)] =$   
=  $(A+B+C')$ .  $[C+A.B+B'.A'] = (A+B+C')$ .  $[C+(A \oplus B)']$ 

(III) = 
$$[A+(B+C').(B'+C)].[C+(A+B').(A'+B)] =$$
  
=  $[A+B.C+B'.C'].[C+A.B+B'.A'] =$   
=  $[A+(B\oplus C)'].[C+(A\oplus B)']$ 

18) F= B. C. D+ A'. B'.C'. D + A'.B'.C'.D'+B'.C. D



$$F = C. D + A'. B'. C'$$
  
=  $C. D + (A + B + C)'$ 

19) F= A'.B'.C'+A.B.C.D+B.C'.D+A'.C.D+A.B'.D+B.C'.D

$$F = D + A'. B'.C'$$
  
=  $D + (A + B + C)'$ 

Trabajando con los "0":

$$F = (C' + D) \cdot (A' + D) \cdot (B' + D) = D + (C' \cdot A' \cdot B') = D + (C + A + B)'$$

20) Dada la siguiente tabla, construir la tabla de verdad completa. Minimizarla. Dibujar circuito mínimo:

| A B C | F |
|-------|---|
| 0 0 0 | 1 |
| 0 0 1 | 1 |
| 1 0 0 | 1 |

RTA.:

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |



$$F = A'.B' + B'.C' =$$
  
=  $B' \cdot (A' + C') = B' \cdot (A \cdot C)' =$   
=  $(B + (A \cdot C))'$ 

Trabajando con los ceros:



$$F = B' \cdot (A' + C') = B' \cdot (A \cdot C)' = [B + (A \cdot C)]'$$



21) F= A'. B'. C'. D'+A. B'.C'. D' + A'. B'.C. D'+A. B'.C. D'



$$F = B' \cdot D' = (B + D)'$$