Binôme 2 :

**COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage**  Date

12/11/2013

Nom du répertoire :

|   | n | A | 0  |   | TA T |
|---|---|---|----|---|------|
| D | К | A | (T | U | IN   |

Document de référence : Manuel Utilisateur DRAGON-VERSION4

Travaillez dans un dossier « dragon »

### 1/jdd A - cellule REP 900MW (rep900.d)

### **Consignes**

La commande de lancement de DRAGON est un alias : « ./dragon.sh <jddFile> », où « <jddFile >» spécifie le nom du fichier de jdd à calculer qui doit être impérativement contenu dans un dossier nommé « data » dans le répertoire courant.

Lancer le jdd « rep900.d »

| Questions                                                                                                                                                                   | <u>Réponses</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Quel est le Keff obtenu ? Retouvez le laplacien géométrique dans le jdd et indiquez la dimension caractéristique d'un cœur critique constitué d'un réseau de cette cellule. |                 |
| Dessinez la géométrie modélisée. Indiquez en particulier sur le schéma :      Les dimensions     Le nom des milieux     Les températures des milieux                        |                 |
| Quelle est la densité du modérateur ?                                                                                                                                       |                 |
| La fraction volumique de modérateur     La fraction volumique de combustible                                                                                                |                 |

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage Date

12/11/2013

Nom du répertoire :

Binôme 2:

| Cor | ısig | nes |
|-----|------|-----|
|     | _    |     |

#### **Effet DOPPLER**

Créez deux jdd identiques au jdd A à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le rep900.dop\_p10.d)
- moins élevée de 10°C (nommez le rep900.dop\_m10.d)

| Questions                                      | <u>Réponses</u>                                       |
|------------------------------------------------|-------------------------------------------------------|
| Quels sont les Keff obtenus ?                  | Nom du fichier Keff rep900.dop_p10.d rep900.dop_m10.d |
| Calculez le coefficient Doppler de la cellule. |                                                       |

## **Consignes**

#### **Effet MODERATEUR**

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/H2O\_Tables/abaques.xlsx» permet de calculer la densité de l'eau légère en fonction de la température pour différentes pressions.



Créez deux jdd identiques au jdd A à l'exception de la température (et donc de la densité) du modérateur, sachant que la pression dans le circuit primaire en fonctionnement est de 155 bars:

- plus élevée de 10°C (nommez le rep900.mod\_p10.d)
- moins élevée de 10°C (nommez le rep900.mod\_m10.d)

Binôme 2:

COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage

Date

12/11/2013

Nom du répertoire :

| Questions                                                                                                                                  | <u>Réponses</u>                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Placez sur la courbe ci-contre les 3 points de fonctionnement et faites apparaître les valeurs de densité de l'eau.                        | 850 800 750 650 650 250 260 270 280 290 300 310 320 330 340 350 T (°C) |
| Quels sont les Keff obtenus ?  Calculez le coefficient Modérateur de la cellule dans les deux unités usuelles :  • (Δk/k)/(g/c³)  • pcm/°C | Nom du fichier Keff rep900.mod_p10.d rep900.mod_m10.d                  |

## **Consignes**

### Efficacité du BORE

Créez deux jdd identiques au jdd A à l'exception de la concentration en bore, enrichi à 20% en B10, dans le modérateur :

- de 10 ppm (nommez le rep900.bore\_p10.d)
- de 100 ppm (nommez le rep900.bore\_p100.d)

| <u>Questions</u>              | <u>Réponses</u>     |  |
|-------------------------------|---------------------|--|
| Quels sont les Keff obtenus ? |                     |  |
|                               | Nom du fichier Keff |  |
|                               | rep900. bore_p10.d  |  |
|                               | rep900. bore_p100.d |  |
|                               |                     |  |

| Binôme 1 :                                                                                                                                                                                                                                                                                                               | ·          | COMPTI                |            | DII TO NOO               | Date       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|------------|--------------------------|------------|
| billome 1                                                                                                                                                                                                                                                                                                                | 1          | COMPTE RENDU - TP N°2 |            | Dute                     |            |
| Binôme 2 :                                                                                                                                                                                                                                                                                                               | 1          |                       |            | re-réaction              | 12/11/2013 |
| Nom du répert                                                                                                                                                                                                                                                                                                            | oire :     | Echel                 | le Ass     | semblage                 |            |
| Calculez l'efficacit<br>dans la cellule en<br>concentrations.                                                                                                                                                                                                                                                            |            |                       |            |                          |            |
| <u>Consignes</u>                                                                                                                                                                                                                                                                                                         |            |                       |            |                          |            |
| Coefficient DENSITE-MODERATEUR  Créez quatre jdd identiques au jdd A à l'exception de la concentration en bore, enrichi à 20% en B10, et de la température du modérateur, en combinant :  • des concentrations en bore :  • de 10 ppm  • de 100 ppm  • des températures :  • plus élevée de 10°C  • moins élevée de 10°C |            |                       |            |                          |            |
| Questions                                                                                                                                                                                                                                                                                                                |            | Répon                 | <u>ses</u> |                          |            |
| Quels sont les Kef                                                                                                                                                                                                                                                                                                       | f obtenu   | ıs ?                  |            | Alexander College        | v.ff       |
|                                                                                                                                                                                                                                                                                                                          |            |                       | <u> </u>   | Nom du fichier           | Keff       |
|                                                                                                                                                                                                                                                                                                                          |            |                       | <u> </u>   |                          |            |
|                                                                                                                                                                                                                                                                                                                          |            |                       | <u> </u>   |                          |            |
|                                                                                                                                                                                                                                                                                                                          |            |                       | <u> </u>   |                          |            |
|                                                                                                                                                                                                                                                                                                                          |            |                       | <u> </u>   |                          |            |
| Calculez le coeffic                                                                                                                                                                                                                                                                                                      | ient Der   | ositá-Modárateur      |            |                          |            |
| de la cellule en proconcentrations.                                                                                                                                                                                                                                                                                      |            |                       |            |                          |            |
| Recherchez la cor<br>maximale admissi<br>intrinsèque de ce                                                                                                                                                                                                                                                               | ible vis-à | -vis de la sureté     |            |                          |            |
| <u>Consignes</u>                                                                                                                                                                                                                                                                                                         |            |                       |            |                          |            |
|                                                                                                                                                                                                                                                                                                                          | oid final  | ultime d'une central  |            | ond aux conditions norma |            |

**COMPTE RENDU - TP N°2 Coef. de Contre-réaction** 

Binôme 2:

Echelle Assemblage

12/11/2013

Nom du répertoire :

| Questions                                                                                                                                                                       | Réponses        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Quel est le Keff obtenu ?                                                                                                                                                       |                 |
| Quel est le besoin en anti-réactivité po<br>amener le cœur d'une condition de<br>fonctionnement à une condition d'arrê<br>froid ultime ?<br>Recherchez la concentration en bore |                 |
| permettant d'avoir une marge<br>d'antiréactivité de 1000 pcm dans cett<br>cellule en condition d'arrêt à froid.                                                                 | е               |
| 2/ jdd B - cellule SuperPhe                                                                                                                                                     | nix (spx.d)     |
| <u>Consignes</u>                                                                                                                                                                |                 |
| Lancer le jdd « spx.d »                                                                                                                                                         |                 |
| <u>Questions</u>                                                                                                                                                                | <u>Réponses</u> |
| Quel est le Keff obtenu ?<br>Quelle est la dimension caractéristique<br>d'un cœur critique constitué d'un rése<br>de cette cellule.                                             |                 |
| Dessinez la géométrie modélisée. Indiquez en particulier sur le schéma :  Les dimensions  Le nom des milieux  Les températures des milieux                                      |                 |
| Calculez :  La fraction volumique de caloporteur  La fraction volumique de combustible                                                                                          |                 |

**COMPTE RENDU - TP N°2** 

Coef. de Contre-réaction Echelle Assemblage Date

12/11/2013

Nom du répertoire :

Binôme 2:

| <b>Consignes</b> |
|------------------|
|------------------|

#### **Effet DOPPLER**

Créez deux jdd identiques au jdd B à l'exception de la température du combustible (pastille + gaine):

- plus élevée de 10°C (nommez le spx.dop\_p10.d)
- moins élevée de 10°C (nommez le spx.dop\_m10.d)

| Questions                                      | <u>Réponses</u>                                 |
|------------------------------------------------|-------------------------------------------------|
| Quels sont les Keff obtenus ?                  | Nom du fichier Keff spx.dop_p10.d spx.dop_m10.d |
| Calculez le coefficient Doppler de la cellule. |                                                 |

### **Consignes**

#### **Effet de DILATATION SODIUM**

L'abaque fourni à l'adresse « ~jacquet/physor-smr-cnam/cours2/Sodium\_Tables/abaques.xlsx» permet de calculer le coefficient de dilatation du sodium liquide en fonction de la température pour différentes pressions.



Créez deux jdd identiques au jdd B à l'exception de la température (et donc de la densité) du modérateur, sachant que la pression dans le circuit primaire en fonctionnement est de 1 bar:

- plus élevée de 10°C (nommez le spx.nadil\_p10.d)
- moins élevée de 10°C (nommez le spx.nadil \_m10.d)

Binôme 2 :

**COMPTE RENDU - TP N°2 Coef. de Contre-réaction Echelle Assemblage**  Date

12/11/2013

Nom du répertoire :

# **Questions** Réponses Placez sur la courbe ci-contre les 3 points de fonctionnement et faites apparaitre les valeurs de densité de sodium 920 900 (kg/m3) **은** 860 840 820 800 T (°C) Quels sont les Keff obtenus? Nom du fichier Keff spx.nadil\_p10.d spx.nadil\_m10.d Calculez le coefficient de dilatation sodium de la cellule dans les deux unités usuelles : $(\Delta k/k)/(g/c^3)$ pcm/°C

## **Consignes**

#### Effet de VIDANGE SODIUM

Créez un jdd semblable au jdd B en réduisant la densité de sodium aux valeurs suivantes :

- 90% de sa valeur nominale : vidange de 10% (nommez le spx.vid10.d)
- 50% de sa valeur nominale : vidange de 50% (nommez le spx. vid50.d)
- 0% de sa valeur nominale : vidange totale (nommez le spx. vid100.d)

Le \$ est une unité de réactivité très utilisée à l'international. Elle vaut la fraction des neutrons retardés, soit environ 370 pcm pour une cellule SuperPhénix neuve.

Binôme 2:

**COMPTE RENDU - TP N°2** 

# Coef. de Contre-réaction **Echelle Assemblage**

Nom du répertoire :

Date

12/11/2013

| Questions                                                                                                                                                           |                 | <u>Réponses</u> |      |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------|--------------------|--|
| Quels sont les Keff obtenu<br>Calculez le coefficient de v                                                                                                          |                 |                 |      |                    |  |
|                                                                                                                                                                     |                 | Nom du fichier  | Keff | Coef. Vidange (\$) |  |
|                                                                                                                                                                     |                 | spx. vid10.d    |      |                    |  |
|                                                                                                                                                                     |                 | spx. vid50.d    |      |                    |  |
|                                                                                                                                                                     |                 | spx. vid100.d   |      |                    |  |
|                                                                                                                                                                     |                 |                 |      |                    |  |
| Consignes                                                                                                                                                           | ,               |                 |      |                    |  |
| Question SuperBonus : SPX à froid<br>Soyez malin chez vous.                                                                                                         |                 |                 |      |                    |  |
| Questions                                                                                                                                                           |                 | <u>Réponses</u> |      |                    |  |
| Dans le cas d'un refroidissement total du<br>primaire de SuperPhenix jusqu'aux<br>conditions normales de température et de<br>pression, quelle est l'état du cœur ? |                 |                 |      |                    |  |
| Dans quelle condition une pourrait arriver ?                                                                                                                        | telle situation |                 |      |                    |  |
|                                                                                                                                                                     |                 |                 |      |                    |  |