Curvas e superfícies

Computação Gráfica

Tópicos

- *Representações
 - *Pontos, Analíticas, paramétricas, não-paramétricas
- *Curvas
 - *Hermite
 - *Bézier
 - *Splines
 - *Curvas racionais
- *Superfícies
 - *Revolução, Deslocamento
 - *Hermite, Bézier, B-Spline
 - *NURBS e NURMS

Representação por pontos

Representação por pontos

*Mais ou menos pontos dependendo da precisão desejada

Representação por pontos

Representação analítica

- *Uso de fórmulas matemáticas
- *Mais precisa
- *Compacta
- *Facilita o cálculo de novos pontos e de propriedades como área e inclinação
- *Não-paramétricas
 - *Explícitas
 - *implícitas
- *Paramétricas

Não-paramétricas

*X em função de Y e vice-versa

$$y = f_x(x)$$
 ou $x = f_y(y)$

*Semicírculo

$$y = \sqrt{10^2 - x^2}$$
 ou $x = \sqrt{10^2 - y^2}$

*Uma reta

$$y = 2x - 1$$
 ou $x = \frac{1}{2}(y+1)$

Não-paramétrica

*Explícita

$$y = ax^{2} + bx + c$$

$$P(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x^{1} + a_{0}$$

*Fáceis de combinar, derivar, integrar e calcular o valor em um ponto.

*Implícita

$$f(x,y) = 0$$

 $ax^2 + bxy + cy^2 + dx + ey + f = 0$

Não-paramétrica implícita

$$\begin{cases} F_1(x, y, z) = 0 \\ F_2(x, y, z) = 0 \end{cases}$$

Representação paramétrica

$$x = 10 \cos \theta = f_x(\theta)$$

 $y = 10 \sin \theta = f_y(\theta)$

*reta

$$x = t+1 = f_x(t)$$

$$y = 2t+1 = f_y(t)$$

Representação paramétrica

$$*P(t) = (x(t), y(t))$$

*Tangente:

$$P'(t) = (x'(t), y'(t))$$

*Inclinação:

$$\frac{dy}{dx} = \frac{dy / dt}{dx / dt} = \frac{y'(t)}{x'(t)}$$

Cônica	Forma Paramétrica	Forma Implícita
Elipse	$x = a \cos \theta$	x^2 y^2
	$y = b sen \theta$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$
Parábola	$x = at^2$, $y = 2at$	$y^2 - 4ax = 0$
Hipérbole	$x = a \cosh \theta$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$
	$y = b senh \theta$	$\frac{a^2}{a^2} + \frac{b^2}{b^2} - 1 = 0$

Paramétricas e não para métricas

- *Charles Hermite (1822 1901)
- *Polinômios de terceira ordem

$$x(t) = P_x = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = P_y = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = P_z = a_z t^3 + b_z t^2 + c_z t + d_z$$

- *Dois pontos (início e fim) P1 e P2
- *Dois vetores tangentes (Saída e chegada) T1 e T2 *Direção, sentido e magnitude

$$x(t) = P_x = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = P_y = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = P_z = a_z t^3 + b_z t^2 + c_z t + d_z$$

$$x(t) = \begin{bmatrix} t^3 & t^2 & t^1 & 1 \end{bmatrix} \begin{vmatrix} a_x \\ b_x \\ c_x \\ d_x \end{vmatrix} = T C_x$$

$$y(t) = \begin{bmatrix} t^3 & t^2 & t^1 & 1 \end{bmatrix} \begin{vmatrix} a_y \\ b_y \\ c_y \\ d_y \end{vmatrix} = T C_y$$

$$z(t) = \begin{bmatrix} t^3 & t^2 & t^1 & 1 \end{bmatrix} \begin{vmatrix} a_z \\ b_z \\ c_z \\ d_z \end{vmatrix} = T C_z$$

*Para P1, t=0

$$P1_x = [0 \ 0 \ 0 \ 1] C_x$$

 $P1_y = [0 \ 0 \ 0 \ 1] C_y$
 $P1_z = [0 \ 0 \ 0 \ 1] C_z$

$$*(P1_x, P1_y, P1_z) = (d_x, d_y, d_z)$$

*Para P2, t=1

$$x(1) = [1 \ 1 \ 1 \ 1] C_x$$

 $y(1) = [1 \ 1 \ 1 \ 1] C_y$
 $z(1) = [1 \ 1 \ 1 \ 1] C_z$

*(P2_x, P2_y, P2_z) =
$$(a_x + b_x + c_x + d_x)$$

* $a_y + b_y + c_y + d_y$
* $a_z + b_z + c_z + d_z$

*Para T1,

$$x'(t) = P'_{x} = 3a_{x}t^{2} + 2b_{x}t + c_{x}$$
 $x'(t) = P'_{x} = [3t^{2} \ 2t \ 1 \ 0]C_{x}$
 $y'(t) = P'_{y} = 3a_{y}t^{2} + 2b_{y}t + c_{y}$ $y'(t) = P'_{y} = [3t^{2} \ 2t \ 1 \ 0]C_{y}$
 $z'(t) = P'_{z} = 3a_{z}t^{2} + 2b_{z}t + c_{z}$ $z'(t) = P'_{z} = [3t^{2} \ 2t \ 1 \ 0]C_{z}$

$$x'(0) = T1_x = [0 \ 0 \ 1 \ 0]C_x = c_x$$

 $y'(0) = T1_y = [0 \ 0 \ 1 \ 0]C_y = c_y$
 $z'(0) = T1_z = [0 \ 0 \ 1 \ 0]C_z = c_z$

$$*(T1_x, T1_y, T1_z) = (c_x, c_y, c_z)$$

$$x'(t) = P'_{x} = [3t^{2} 2t 1 0]C_{x}$$

 $y'(t) = P'_{y} = [3t^{2} 2t 1 0]C_{y}$
 $z'(t) = P'_{z} = [3t^{2} 2t 1 0]C_{z}$

*Para T2,

$$x'(1) = T2_x = [3 \ 2 \ 1 \ 0]C_x$$

 $y'(1) = T2_y = [3 \ 2 \ 1 \ 0]C_y$
 $z'(1) = T2_z = [3 \ 2 \ 1 \ 0]C_z$

*
$$(T2_x, T2_y, T2_z) = (3a_x + 2b_x + c_x,$$

* $3a_y + 2b_y + c_y,$
* $3a_z + 2b_z + c_z)$

$$Pl_x = [0 \ 0 \ 0 \ 1] C_x$$

 $Pl_y = [0 \ 0 \ 0 \ 1] C_y$
 $Pl_z = [0 \ 0 \ 0 \ 1] C_z$

$$x(1) = [1 \ 1 \ 1 \ 1] C_x$$

 $y(1) = [1 \ 1 \ 1 \ 1] C_y$
 $z(1) = [1 \ 1 \ 1 \ 1] C_z$

$$x'(0) = T1_x = [0 \ 0 \ 1 \ 0]C_x = c_x$$

 $y'(0) = T1_y = [0 \ 0 \ 1 \ 0]C_y = c_y$
 $z'(0) = T1_z = [0 \ 0 \ 1 \ 0]C_z = c_z$

$$x'(1) = T2_x = [3 \ 2 \ 1 \ 0]C_x$$

 $y'(1) = T2_y = [3 \ 2 \ 1 \ 0]C_y$
 $z'(1) = T2_z = [3 \ 2 \ 1 \ 0]C_z$

$$\begin{bmatrix} P=1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{x} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} C_{x} = H^{-1}C_{x}$$

$$\begin{bmatrix} P = 1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{x} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} C_{x} = H^{-1}C_{x}$$

$$C_{X} = HH^{-1}C_{X} = H\begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{X} \qquad H = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$H = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$x(t) = TC_{x} = TH \begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{x} = THG_{x}$$

$$G_{h} = \begin{bmatrix} P1_{x} & P1_{y} & P1_{z} \\ P2_{x} & P2_{y} & P2_{z} \\ T1_{x} & T1_{y} & T1_{z} \\ T2_{x} & T2_{y} & T2_{z} \end{bmatrix}$$

$$y(t) = TC_{y} = TH \begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{v} = THG_{y}$$

$$z(t) = TC_z = TH \begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix} = THG_z$$

$$P(t) = ((2t^3 - 3t^2 + 1), (-2t^3 + 3t^2), (t^3 - 2t^2 + t), (t^3 - t^2))\begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}$$

$$P1=(-1,0), P1=(1,0), T1=(0,2), T2=(0,-2)$$

- *Pierre Bézier *Renault
- *As tangentes das curvas são determinadas por pontos e não vetores
- *A curva fica completamente dentro do polígono convexo determinado pelos pontos de controle

*Todos os **B** pontos influenciam toda a curva

$$P(t) = \sum_{i=0}^{n} B_i J_{n,i}(t) \qquad 0 \le t \le 1$$

$$J_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

*Propriedade normalizante

$$\sum_{i=0}^{n} J_{n,i}(t) = 1, \quad 0 \le t \le 1$$

*Usando três pontos de controle (n=2)

$$P(t) = B_0 J_{2,0}(t) + B_1 J_{2,1}(t) + B_2 J_{2,2}(t)$$

$$J_{2,0} = \frac{2!}{0!2!} t^0 (1-t)^2 = (1-t)^2 = 1-2t+t^2$$

$$J_{2,1} = \frac{2!}{1!1!}t^{1}(1-t)^{1} = 2t(1-t) = 2t - 2t^{2}$$

$$J_{2,2} = \frac{2!}{2!0!} t^2 (1-t)^0 = t^2$$

*Usando três pontos de controle (n=2)

$$P(t) = B_0 J_{2,0}(t) + B_1 J_{2,1}(t) + B_2 J_{2,2}(t)$$

$$P(t) = (1-t)^2 B_0 + 2t(1-t) B_1 + t^2 B_2$$

$$P(t) = [(1-t)^{2} 2t(1-t)t^{2}] \begin{bmatrix} B_{0} \\ B_{1} \\ B_{2} \end{bmatrix} \qquad P(t) = [t^{2}t 1] \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} B_{0} \\ B_{1} \\ B_{2} \end{bmatrix}$$

*Usando quatro pontos de controle (n=3)

$$P(t) = (1-t)^3 B_0 + 3t(1-t)^2 B_1 + 3t^2(1-t) B_2 + t^3 B_3$$

$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

- *Poucos pontos difícil ajuste fino
- *Muitos pontos funções muito complexas
- *Solução:
 - *Combinar curvas simples

Continuidade de curvas

*Co: Curvas se encontram

*C1: Curvas se encontram e a primeira derivada é igual nesse ponto (mesma inclinação)

*C2: Curvas se encontram e a segunda derivada é igual nesse ponto (mesma curvatura)

Continuidade de curvas

B-Spline

*Curva (geralmente) não passa pelos pontos de controle

*A não ser que seja uma reta

B-Spline

*O parâmetro k altera a ordem do polinômio *k gera funções de ordem (k-1) e continuidade (k-2)

$$P(t) = \sum_{i=1}^{n+1} B_i N_{i,k}(t)$$

$$N_{i,1}(t) = \begin{cases} 1 & para \ t_i \le t < t_{i+1} \\ 0 & nos \ demais \ intervalos \end{cases}$$

$$N_{i,k}(t) = \left(\frac{t - t_i}{t_{i+k-1} - t_i}\right) N_{i,k-1}(t) + \left(\frac{t_{i+k} - t}{t_{i+k} - t_{i+1}}\right) N_{i+1,k-1}(t)$$

B-Spline

```
*o/o=0
*Os valores de t, chamados de nós obedecem às seguintes condições:
    *t deve estar em ordem ascendente
    *Um mesmo valor de t não pode aparecer mais que k vezes.

*Uma B-Spline tem
    *(n+1) pontos de controle B
    *Grau (k-1)
    *E m nós onde m=n+k
```

B-Splines

*Exemplo de interpolação de segunda ordem (k-1=2) com três pontos (n+1=3)

B-Spline uniforme e periódica

$$*t = [-2 \ 0 \ 2 \ 4 \ 6]$$

 $*t = [0 \frac{1}{4} \frac{1}{2} \frac{3}{4} \ 1]$

Splines não periódicas

- *Valores repetidos nos extremos com multiplicidade k
- *Nós internos igualmente espaçados

Ordem(k)	Nº de nós(m)	Vetor de nós não-periódicos
2	6	0 0 1 2 3 3
3	7	000 1222
4	8	00001111

Splines não uniformes

Catmull-Rom Splines

- *Passa por todos os pontos de controle
- *Continuidade C1

$$q(t) = \frac{1}{2} \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} * \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} * \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

```
*Curvas de Bézier

*glEnable(GL_MAP1_VERTEX_3);

*glMap1f(GL_MAP1_VERTEX_3, 0, 1, 3, 5, ctrlpoints);

*glEvalCoord1f(i);
```



```
glBegin(GL_LINE_STRIP);
for(i=0;i<=30;i++)
      glEvalCoord1f(i/30);
glEnd();</pre>
```


Superfícies

*Representações como em curvas *Por pontos, paramétricas, etc.

Esfera com centro (x_0, y_0, z_0)

Equação: $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$

Parabolóide Hiperbólico

Equação: $\frac{X^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$

Superfícies por revolução

*O objeto que gera a superfície pode ser uma reta, ou curva qualquer.

Superfícies geradas por deslocamento

- *Curva a ser deslocada: C(t)
- *Caminho a ser percorrido: M(s)

$$P(t, s) = C(t) \times M(s)$$

Interpolação bilinear

$$E = (1 - v) A + v D$$

$$F = (1 - v) B + v C$$

Interpolação bilinear

$$P(u,v) = (1 - u) E + u F$$

$$P(u,v) = (1-u)(1-v)A + (1-u)vD + u(1-v)B + uvC$$

 $P(u,v)=(1-v) \ U_0(u) + v \ U_1(u)$

 $P(u,v)=(1-u) \ \lor_0(v) + u \ \lor_1(v)$

Superfícies Paramétricas Bicúbicas

$$P(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} P_{ij} B_{i}(u) B_{j}(v)$$

Relembrando

- *Curva Hermite

*Curva Hermite
*Depende dos pontos e
$$x(t) = TC_x = TH$$

$$\begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_x = THG_x$$
suas tangentes

$$y(t) = TC_{y} = TH\begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_{y} = THG_{y}$$

$$z(t) = TC_z = TH \begin{bmatrix} P1 \\ P2 \\ T1 \\ T2 \end{bmatrix}_z = THG_z$$

Superfícies de Hermite

$$P(s,t) = S H G_h H^T T^T$$

$$G_{h} = \begin{bmatrix} P(0,0) & P(0,1) & \frac{\partial P}{\partial t}(0,0) & \frac{\partial P}{\partial t}(0,1) \\ P(1,0) & P(1,1) & \frac{\partial P}{\partial t}(1,0) & \frac{\partial P}{\partial t}(1,1) \\ \frac{\partial P}{\partial s}(0,0) & \frac{\partial P}{\partial s}(0,1) & \frac{\partial^{2} P}{\partial s \partial t}(0,0) & \frac{\partial^{2} P}{\partial s \partial t}(0,1) \\ \frac{\partial P}{\partial s}(1,0) & \frac{\partial P}{\partial s}(1,1) & \frac{\partial^{2} P}{\partial s \partial t}(1,0) & \frac{\partial^{2} P}{\partial s \partial t}(1,1) \end{bmatrix}$$

Superfícies de Bézier

$$P(s,t) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,j} J_{i,n}(s) J_{j,m}(t) \quad 0 \le s,t \le 1$$

$$P(s,t) = S M_B G_b M_B^T T^T,$$

$$\mathbf{M}_{B} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{\mathrm{B}} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad G_{\mathrm{B}} = \begin{bmatrix} P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\ P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\ P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\ P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3} \end{bmatrix}$$

Superfícies de Bézier

Superfícies B-Spline

$$P(s,t) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,j} N_{i,k}(s) N_{j,1}(t)$$

$$P(s,t) = S M_{s} G_{s} M_{s}^{T} T^{T}$$

$$M_{s} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}$$

Superfícies Racionais

P (s, t) =	Forma Inteira	Forma Racional
Bézier	$\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,j} J_{i,n}(s) J_{j,m}(t)$	$\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} B_{i,j} J_{i,n}(s) J_{j,m}(t)$
		$\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} J_{i,n}(s) J_{j,m}(t)$
B-Spline	$\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,j} N_{i,k}(s) N_{j,l}(t)$	$\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} N_{i,k}(s) N_{j,l}(t) B_{i,j}$
		$\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} N_{i,k}(s) N_{j,l}(t)$

NURBS

- *Non-Uniform Rational B-Splines Surfaces
- *Exclusivo para modelagem em computador
- *Geralmente grau 3
 - *Permite C2
- *Versátil pois pode representar superfícies diferentes
 - $*Ex: W_{i,j} = 1$

NURBS

NURBS em OpenGL

```
*Knots[8] = {0,0,0,0,1,1,1,1};
*float ctlPoints[4][4][3]={
      \{\{-4, 4, 0\}, \{-2, 4, 0\}, \{2, 4, 0\}, \{4, 4, 0\}\},\
     \{\{-4, 2, 0\}, \{-2, 2, -H\}, \{2, 2, H\}, \{4, 2, 0\}\},\
     \{\{-4,-2,0\},\{-2,-2,-H\},\{2,-2,H\},\{4,-2,0\}\},
    {{-4,-4,0},{-2,-4,0},{2,-4,0},{4,-4,0}}
* gluNurbsSurface(nurbSurface,
            8,Knots,8,Knots,
            4*3,3,&ctlPoints[0][0][0],
            4,4,GL MAP2 VERTEX 3);
 gluEndSurface(nurbSurface);
```

NURBS em OpenGL

```
*GLUnurbsObj *nurbSurface;

*nurbSurface = gluNewNurbsRenderer();

* gluNurbsProperty(nurbSurface,GLU_DISPLAY_MODE,GLU_FILL);

* gluBeginSurface(nurbSurface);

* gluNurbsSurface(nurbSurface,

* 8,Knots,8,Knots,

* 4*3,3,&ctlPoints[o][o][o],

* 4,4,GL_MAP2_VERTEX_3);

* gluEndSurface(nurbSurface);
```

Superfície Bézier em OpenGL

```
*glEnable(GL MAP2 VERTEX 3);
*float ctlPoints[4][4][3]={
     \{\{-4, 4, 0\}, \{-2, 4, 0\}, \{2, 4, 0\}, \{4, 4, 0\}\},\
   {{-4, 2,0},{-2, 2,-H},{2, 2,H},{4, 2, 0}},
   {{-4,-2,0},{-2,-2,-H},{2,-2,H},{4,-2, 0}},
   {{-4,-4,0},{-2,-4,0},{2,-4,0},{4,-4,0}}
* glMap2f(GL MAP2 VERTEX 3,
          0, 1, 3, 4,
          0, 1, 12, 4,
          &ctlPoints[0][0][0]);
* glMapGrid2f(40, 0.0, 1.0, 40, 0.0, 1.0);
* glEvalMesh2(GL FILL,0,40,0,40);
```