Econometria de Séries Temporais

VAR: decomposição da variância e causalidade de Granger

João Ricardo Costa Filho

"The most important questions of life are, for the most part, really only problems in probability."

Laplace (1812)

"In God we trust. All others must bring data."

William Edwards Deming

Decomposição da variância

Já sabemos que podemos reescrever um VAR(1) como um VMA(∞).

$$X_t = \mu + \sum_{j=0}^{\infty} \Phi_1^j e_{t-j}.$$

Já sabemos que podemos reescrever um VAR(1) como um VMA(∞).

$$X_t = \mu + \sum_{j=0}^{\infty} \Phi_1^j e_{t-j}.$$

(Note que o Bueno (2012) utilizou \bar{X} ao invés de μ).

Defina
$$\Psi_j=\Phi_1^iA^{-1}\left[egin{array}{c}\sigma_y0\\0\sigma_z\end{array}
ight].$$

$$X_t=\mu+\sum_{i=0}^\infty\Psi_j\varepsilon_{t-j}.$$

Defina
$$\Psi_j=\Phi^i_1A^{-1}\left[egin{array}{c}\sigma_y0\\0\sigma_z\end{array}
ight].$$

$$X_t=\mu+\sum_{j=0}^\infty\Psi_j\varepsilon_{t-j}.$$

Trabalhemos com n = 2. Temos, portanto:

Defina
$$\Psi_j=\Phi_1^iA^{-1}\left[egin{array}{c}\sigma_y0\\0\sigma_z\end{array}
ight].$$

$$X_t=\mu+\sum_{i=0}^\infty\Psi_j\varepsilon_{t-j}.$$

Trabalhemos com n = 2. Temos, portanto:

$$\begin{bmatrix} y_t \\ z_t \end{bmatrix} = \begin{bmatrix} \mu_y \\ \mu_z \end{bmatrix} + \sum_{j=0}^{\infty} \begin{bmatrix} \psi_{j,11}\psi_{j,12} \\ \psi_{j,21}\psi_{j,22} \end{bmatrix} \begin{bmatrix} \varepsilon_{yt-j} \\ \varepsilon_{zt-j} \end{bmatrix}.$$

4

Defina o erro de previsão como $X_{t+h} - E[X_{t+h}]$.

Defina o erro de previsão como $X_{t+h} - E[X_{t+h}]$. Temos que

$$X_{t+h} - E[X_{t+h}] = \sum_{j=0}^{h-1} \Psi_j \varepsilon_{t+h-j}.$$

F

Defina o erro de previsão como $X_{t+h} - E[X_{t+h}]$. Temos que

$$X_{t+h} - E[X_{t+h}] = \sum_{j=0}^{h-1} \Psi_j \varepsilon_{t+h-j}.$$

Portanto, o erro de previsão de y_{t+h} é dado por:

5

Defina o erro de previsão como $X_{t+h} - E[X_{t+h}]$. Temos que

$$X_{t+h} - E[X_{t+h}] = \sum_{j=0}^{h-1} \Psi_j \varepsilon_{t+h-j}.$$

Portanto, o erro de previsão de y_{t+h} é dado por:

$$y_{t+h} - E_t [y_{t+h}] = \psi_{0,11} \varepsilon_{yt+h} + \psi_{1,11} \varepsilon_{yt+h-1} + \dots + \psi_{h-1,11} \varepsilon_{yt+1} + \psi_{0,12} \varepsilon_{zt+h} + \psi_{1,12} \varepsilon_{zt+h-1} + \dots + \psi_{h-1,12} \varepsilon_{zt+1}$$

Variância (Bueno 2012)

Ao passarmos o operador variância dos dois lados, temos:

VAR
$$[y_{t+h}] = \sigma_y^2 \left(\psi_{0,11}^2 + \psi_{1,11}^2 + \dots + \psi_{h-1,11}^2 \right) + \sigma_z^2 \left(\psi_{0,12}^2 + \psi_{1,12}^2 + \dots + \psi_{h-1,12}^2 \right).$$

6

Variância (Bueno 2012)

Ao passarmos o operador variância dos dois lados, temos:

VAR
$$[y_{t+h}] = \sigma_y^2 \left(\psi_{0,11}^2 + \psi_{1,11}^2 + \dots + \psi_{h-1,11}^2 \right) +$$

 $+ \sigma_z^2 \left(\psi_{0,12}^2 + \psi_{1,12}^2 + \dots + \psi_{h-1,12}^2 \right).$

Ao dividirmos os dois lados por VAR $[y_{t+h}]$, obtemos:

$$1 = \frac{\sigma_y^2 \left(\psi_{0,11}^2 + \psi_{1,11}^2 + \dots + \psi_{h-1,11}^2 \right)}{\mathsf{VAR} \left[y_{t+h} \right]} + \frac{\sigma_z^2 \left(\psi_{0,12}^2 + \psi_{1,12}^2 + \dots + \psi_{h-1,12}^2 \right)}{\mathsf{VAR} \left[y_{t+h} \right]}.$$

6

Sejam y_t e z_t duas variáveis aleatórias estacionárias

Sejam y_t e z_t duas variáveis aleatórias estacionárias tais que os valores passados de z_t

Sejam y_t e z_t duas variáveis aleatórias estacionárias tais que os valores passados de z_t ajudam a melhorar as previsões para o valor corrente de y_t .

Sejam y_t e z_t duas variáveis aleatórias estacionárias tais que os valores passados de z_t ajudam a melhorar as previsões para o valor corrente de y_t . Dizemos, portanto, que z_t Granger-causa y_t .

Com base na regressão

$$z_t = \phi_{20} + \sum_{i=1}^{p} \phi_{i,21} y_{t-i} + \sum_{i=1}^{p} \phi_{i,22} z_{t-i} + e_{2t},$$

Com base na regressão

$$z_t = \phi_{20} + \sum_{i=1}^{p} \phi_{i,21} y_{t-i} + \sum_{i=1}^{p} \phi_{i,22} z_{t-i} + e_{2t}$$
, testa-se:

Com base na regressão

$$z_t = \phi_{20} + \sum_{i=1}^{p} \phi_{i,21} y_{t-i} + \sum_{i=1}^{p} \phi_{i,22} z_{t-i} + e_{2t}$$
, testa-se:

$$H_0: \phi_{1,21} = \phi_{2,21} = \cdots = \phi_{p,21} = 0$$

$$H_1: \phi_{i,21} \neq 0, i = 1, 2, \ldots, p,$$

Com base na regressão

$$z_t = \phi_{20} + \sum_{i=1}^p \phi_{i,21} y_{t-i} + \sum_{i=1}^p \phi_{i,22} z_{t-i} + e_{2t}$$
, testa-se:

$$H_0: \phi_{1,21} = \phi_{2,21} = \dots = \phi_{p,21} = 0$$

 $H_1: \phi_{i,21} \neq 0, i = 1, 2, \dots, p,$

com a seguinte estatística:

$$S_1 = rac{\left(e_{\gamma}^2 - e_{v}^2
ight)}{rac{p}{T-2p-1}} \stackrel{d}{
ightarrow} F(p, T-2p-1),$$

Será que z_t Granger-causa y_t ?

Será que z_t Granger-causa y_t ?

$$\begin{bmatrix} y_t \\ z_t \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 0,50 \\ 0,80,7 \end{bmatrix} \begin{bmatrix} \varepsilon_{yt-j} \\ \varepsilon_{zt-j} \end{bmatrix} + \begin{bmatrix} \varepsilon_t^y \\ \varepsilon_t^z \end{bmatrix}.$$

Será que z_t Granger-causa y_t ?

$$\begin{bmatrix} y_t \\ z_t \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 0,50 \\ 0,80,7 \end{bmatrix} \begin{bmatrix} \varepsilon_{yt-j} \\ \varepsilon_{zt-j} \end{bmatrix} + \begin{bmatrix} \varepsilon_t^y \\ \varepsilon_t^z \end{bmatrix}.$$

E z_t Granger-causa y_t ?

Causalidade de Granger ≠ exogeneidade

Se n > 2, o teste análogo se chama "teste de bloco-exogeneidade":

Se n > 2, o teste análogo se chama "teste de bloco-exogeneidade":

• A interpretação é mais desafiadora.

Se n > 2, o teste análogo se chama "teste de bloco-exogeneidade":

- A interpretação é mais desafiadora.
- Mesmo que a hipótese nula seja verdadeira, ainda sim, podem haver efeitos indiretos $(z_t o y_{1,t} o y_{2,t})$

Vamos aos dados!

Leia os livros e os artigos, não fique só com os slides!!!!

Referências

Bueno, Rodrigo De Losso da Silveira. 2012. *Econometria de Séries Temporais*. Cengage Learning.