

Aprendizado por Reforço

Métodos de Monte Carlo (parte 3)

Recapitulação das aulas passadas

Algorithm 5.1: MC Basic (a model-free variant of policy iteration)

Initialization: Initial guess π_0 .

Goal: Search for an optimal policy.

For the kth iteration (k = 0, 1, 2, ...), do

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

Collect sufficiently many episodes starting from (s, a) by following π_k *Policy evaluation:*

 $q_{\pi_k}(s,a) \approx q_k(s,a) =$ the average return of all the episodes starting from (s,a)

Policy improvement:

$$a_k^*(s) = \arg\max_a q_k(s, a)$$

 $\pi_{k+1}(a|s) = 1$ if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise

Recapitulação das aulas passadas

Algorithm 5.2: MC Exploring Starts (an efficient variant of MC Basic)

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a) = 0 and $\operatorname{Num}(s,a) = 0$ for all (s,a).

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0, a_0) and ensure that all pairs can be possibly selected (this is the exploring-starts condition). Following the current policy, generate an episode of length T: $s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T$.

Initialization for each episode: $g \leftarrow 0$

For each step of the episode, $t = T - 1, T - 2, \dots, 0$, do

$$g \leftarrow \gamma g + r_{t+1}$$

 $\mathsf{Returns}(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) + g$

 $\operatorname{\mathsf{Num}}(s_t, a_t) \leftarrow \operatorname{\mathsf{Num}}(s_t, a_t) + 1$

Policy evaluation:

 $q(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) / \mathsf{Num}(s_t, a_t)$

Policy improvement:

 $\pi(a|s_t) = 1$ if $a = \arg\max_a q(s_t, a)$ and $\pi(a|s_t) = 0$ otherwise

Recapitulação das aulas passadas

• Tanto o MC Básico quanto o MC com inícios exploratórios (Exploring Starts) exigem que haja um número suficientemente grande de episódios iniciando de cada par estado-ação (s, a).

Algorithm 5.1: MC Basic (a model-free variant of policy iteration)

Initialization: Initial guess π_0 .

Goal: Search for an optimal policy.

For the kth iteration (k = 0, 1, 2, ...), do

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

Algorithm 5.2: MC Exploring Starts (an efficient variant of MC Basic)

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a)0 and Num(s, a) = 0 for all (s, a).

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0, a_0) and ensure that all pairs can be possibly selected (this is the exploring-starts condition). Following the

Como dispensar a condição de que todos os pares (estado, ação) sejam utilizados como ponto de partida dos episódios?

Política suave

- Política estocástica.
- Possui uma probabilidade positiva de escolher qualquer ação em qualquer estado.
- Em um único episódio suficientemente longo é possível visitar todos os pares (estado, ação) várias vezes.
- <u>Condição de inícios exploratórios pode ser descartada</u>, pois não é necessário gerar muitos episódios iniciando de diferentes pares (estado, ação).
- Política ∈-gulosa (∈-greedy)
 - Possui maior probabilidade de escolher a ação gulosa (com maior valor de ação).
 - Mantém uma mesma probabilidade não nula de escolher qualquer outra ação.

- Política ←gulosa (←greedy)
 - Formulação

$$\pi(a|s) = \begin{cases} 1 - \frac{\epsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)| - 1), & \text{ação gulosa} \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{qualquer outra das } (|\mathcal{A}(s)| - 1) \text{ ações} \end{cases}$$

- $|\mathcal{A}(s)|$: número de ações disponíveis no estado s.
- $\epsilon=0$: política ϵ -gulosa se torna puramente gulosa.
- $\epsilon = 1$: probabilidade de escolher qualquer ação é igual a $\frac{\epsilon}{|\mathcal{A}(s)|}$ (distribuição uniforme).
- $0 \le \epsilon \le 1$: probabilidade da ação gulosa é sempre maior ou igual ao de escolher qualquer outra ação.

$$1 - \frac{\epsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1) = 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|} \ge \frac{\epsilon}{|\mathcal{A}(s)|}$$

- Política ϵ -gulosa (ϵ -greedy)
 - Seleção de ação:
 - Sorteia-se um número aleatório $x \in [0,1]$ de uma distribuição uniforme.
 - $x \ge \epsilon$: ação gulosa
 - $x < \epsilon$: ação aleatória (incluindo a ação gulosa) com probabilidade $\frac{\epsilon}{|\mathcal{A}(s)|}$
 - Probabilidade total de selecionar a ação gulosa:

$$1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$$

Probabilidade de selecionar qualquer outra ação:

$$\frac{\epsilon}{|\mathcal{A}(s)|}$$

$MC \in Guloso (\in Greedy)$

- Melhoria da política
 - MC Básico ou MC com inícios exploratórios

$$\pi_{k+1}(s) = \underset{\pi \in \Pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \, q_{\pi_k}(s, a)$$

- Π: conjunto de todas as políticas possíveis
- Solução: política determinística gulosa

$$\pi_{k+1}(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{cases}, \quad a_k^*(s) = \underset{a}{\operatorname{argmax}} q_{\pi_k}(s, a)$$

Melhoria da política

MC ∈-guloso

$$\pi_{k+1}(s) = \underset{\pi \in \Pi_{\epsilon}}{\operatorname{argmax}} \sum_{a} \pi(a|s) \, q_{\pi_{k}}(s, a)$$

- Π_{ϵ} : conjunto de todas as políticas ϵ -gulosas possíveis para um dado valor de ϵ .
- Solução:

$$\pi_{k+1}(a|s) = \begin{cases} 1 - \frac{|\mathcal{A}(s)| - 1}{|\mathcal{A}(s)|} \epsilon, & a = a_k^*(s) \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & a \neq a_k^*(s) \end{cases}, \quad a_k^*(s) = \underset{a}{\operatorname{argmax}} q_{\pi_k}(s, a)$$

Algorithm 5.3: MC ϵ -Greedy (a variant of MC Exploring Starts)

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a)=0 and $\operatorname{Num}(s,a)=0$ for all (s,a). $\epsilon\in(0,1]$

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0, a_0) (the exploring starts condition is not required). Following the current policy, generate an episode of length

 $T: s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T.$

Initialization for each episode: $g \leftarrow 0$

For each step of the episode, $t = T - 1, T - 2, \dots, 0$, do

$$g \leftarrow \gamma g + r_{t+1}$$

 $\mathsf{Returns}(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) + g$

 $\operatorname{\mathsf{Num}}(s_t, a_t) \leftarrow \operatorname{\mathsf{Num}}(s_t, a_t) + 1$

Policy evaluation:

 $q(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) / \mathsf{Num}(s_t, a_t)$

Policy improvement:

Let $a^* = \arg \max_a q(s_t, a)$ and

$$\pi(a|s_t) = \begin{cases} 1 - \frac{|\mathcal{A}(s_t)| - 1}{|\mathcal{A}(s_t)|} \epsilon, & a = a^* \\ \frac{1}{|\mathcal{A}(s_t)|} \epsilon, & a \neq a^* \end{cases}$$

Podemos garantir a obtenção de políticas ótimas?

- Podemos garantir a obtenção de políticas ótimas?
 - O algoritmo pode convergir para uma política ϵ -gulosa que é ótima no conjunto Π_{ϵ} .
 - A política será apenas ótima dentro de Π_{ϵ} , mas pode não ser ótima no conjunto Π .

• Exemplo do algoritmo MC ϵ -guloso

- Mundo em grade de 5x5
- $r_{forbidden} = r_{boundary} = -1$, $r_{target} = 1$, $\gamma = 0.9$, $\epsilon = 0.5$.
- 1 episódio por iteração, cada episódio com $10^6\,$ passos

(a) Initial policy
Métodos de Monte Carlo (parte 3)

(b) After the first iteration

(c) After the second iteration

15

- Explorar versus Usufruir
 - Dilema fundamental no aprendizado por reforço.
 - Explorar: permitir que a política experimente diferentes ações, de modo que todas possam ser avaliadas.
 - Usufruir: seguir a ação com o maior valor de ação (ação gulosa).
- A estimativa atual pode ser imprecisa por exploração insuficiente.
 - É necessário continuar explorando enquanto se aproveitam as melhores estimativas, para evitar descartar ações que poderiam ser ótimas.
- Políticas ϵ -greedy
 - Propõem um equilíbrio entre esses dois objetivos.
 - Tendem a escolher a melhor ação conhecida (usufruir), mas ainda oferecem uma chance de selecionar outras ações (explorar).
 - Balancear explorar/usufruir: sacrificar um pouco um objetivo para alcançar o outro.

- Mundo em grade de 5x5
- $r_{forbidden} = -1$, $r_{boundary} = -10$, $r_{target} = 1$, $\gamma = 0.9$, $\epsilon = 0.5$.
- ullet 1 episódio por iteração, cada episódio com 10^6 passos

- Exemplo
- O que podemos observar?

Política ótima gulosa

	1	2	3	4	5
1	3.5	3.9	4.3	4.8	5.3
2	3.1	3.5	4.8	5.3	5.9
3	2.8	2.5	10.0	5.9	6.6
4	2.5	10.0	10.0	10.0	7.3
5	2.3	9.0	10.0	9.0	8.1

(a) A given ϵ -greedy policy and its state values: $\epsilon = 0$

(b) A given ϵ -greedy policy and its state values: $\epsilon = 0.1$

	1	2	3	4	5		1	2	3	4
1	+	+	→	+	†	1	-2.2	-2.4	-2.1	-1.7
2	‡	1	+	+	ţ	2	-2.5	-3.0	-3.3	-2.3
3	‡	++	†	+	†	3	-2.3	-3.3	-2.5	-2.8
4	‡	1-	Ф	-+	†	4	-2.5	-2.5	-2.8	-2.0
5	‡	+-	‡	++	++	5	-2.8	-3.2	-2.1	-2.3

(c) A given ϵ -greedy policy and its state values: $\epsilon = 0.2$

(d) A given ϵ -greedy policy and its state values: $\epsilon = 0.5$

1.4

1.7

1.9

2.2

2.7

-1.8

-2.0

-2.2

-2.4

-2.2

$MC \in -guloso$

- Mundo em grade de 5x5
- $r_{forbidden} = -1$, $r_{boundary} = -10$, $r_{target} = 1$, $\gamma = 0.9$.

5.3

6.6

- Exemplo
- O que podemos observar?

- (a) The optimal ϵ -greedy policy and its state values: $\epsilon = 0$
- (c) The optimal ϵ -greedy policy and its state values: $\epsilon = 0.2$

	1	2	3	4	5
1	-4.3	-5.5	-4.5	-2.6	-2.3
2	-5.6	-7.7	-7.7	-4.1	-2.4
3	-5.5	-9.0	-8.0	-5.6	-2.8
4	-6.8	-8.9	-9.4	-5.5	-4.2
5	-7.9	-10.1	-6.7	-5.1	-3.7

- (b) The optimal ϵ -greedy policy and its state values: $\epsilon = 0.1$
- (d) The optimal ϵ -greedy policy and its state values: $\epsilon = 0.5$

Exemplo

- A otimalidade das políticas ϵ -gulosas piora com o aumento de ϵ (valores de estado são menores).
 - Valor de estado do estado alvo diminui quando ϵ assume valores maiores.
 - ullet Em estados bons, aumenta ϵ aumenta a chance de visitar regiões ruins.
- Com o aumento de ϵ , políticas ϵ -gulosas ótimas tornam-se inconsistentes com a gulosa ótima.

$MC \in -guloso$

Exemplo – Exploração

inetrôpole DIGITAL

• O que podemos observar?

- Exemplo Exploração
- ullet A capacidade de exploração diminui quando ullet diminui.
- Estratégia útil:
 - Começar com ϵ alto e reduzir gradualmente
 - Garante exploração inicial e assegura a otimalidade da política final.

Resumo

Algoritmos MC

- MC Básico
 - Substitui avaliação de política baseada em modelo por uma estimação sem modelo.
- MC com inícios exploratórios
 - Variante do MC Básico
 - Usa a estratégia de primeira ou todas as visitas para melhorar a utilização das amostras.
- MC ϵ -guloso:
 - Variante MC com inícios exploratórios
 - Busca por políticas ϵ -gulosas (estocásticas) ao invés de gulosas (determinísticas).
 - Remove necessidade da condição de inícios exploratórios.
- Balanço explorar vs. usufruir
 - $\uparrow \epsilon$: mais exploração, menos usofruto
 - $\downarrow \epsilon$: mais usofruto, menos exploração

Referências

- Shiyu Zhao. Mathematical Foundations of Reinforcement Learning. Springer Singapore, 2025. [capítulo 5]
 - disponível em: https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning
- Richard S. Sutton e Andrew G. Barto. An Introduction Reinforcement Learning, Bradford Book, 2018. [capítulo 5]
 - disponível em: http://incompleteideas.net/book/the-book-2nd.html

Slides construídos com base nos livros supracitados, os quais estão disponibilizados publicamente pelos seus respectivos autores.