Einfürung in die Algebra Hausaufgaben Blatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 14, 2024)

Problem 1. Bestimmen Sie alle Isomorphietypen für Gruppen der Ordnung $45 = 3^2 \cdot 5$.

Proof. Wir betrachten die Zahl der 3- bzw. 5-Sylowgruppen n_3 bzw. n_5 . Es gilt

$$n_3 \equiv 1 \pmod{3}$$

$$n_3|5$$

$$n_5 \equiv 1 \pmod{5}$$

$$n_5|9$$

Die einzige Lösung ist $n_3 = 1$ und $n_5 = 1$. Da die Zahlen 1 sind, sind die Untergruppen normal. Sei A die 3-Sylowgruppe und B die 5-Sylowgruppe. Die Gruppen müssen sich trivial schneiden, weil die Ordnung alle Elemente darin ein Teiler von der Gruppenordnung sein müssen.

Da $9 \times 5 = 45$, ist |AB| = 45, also AB ist einfach die ganze Gruppe. Da $n_3 = n_5 = 1$, sind die Untergruppen normal. Es folgt daraus, dass die ganze Gruppe (isomorph zu) $A \times B$ ist.

Also ist jetzt die Frage: Wie viele Gruppen der Ordnung 5 und 9 gibt es?

Es gibt nur eine (bis auf Isomorphie) eindeutige Gruppe der Ordnung 5, weil 5 eine Primzahl ist, also es enthält ein Element der Ordnung 5, was ein Erzeuger ist. Daher ist die Gruppe C_5 .

Wir wissen aus der vorherigen Übungsblatt, dass eine Gruppe der Ordnung 3^2 abelsch ist. Dann ist eine Gruppe der Ordnung 9 ein direktes Produkt von zyklische Gruppen von Primpotenzordnung. Die einzige Möglichkeit ist $C_3 \times C_3$. Natürlich ist C_9 auch eine Gruppe der Ordnung 9.

Insgesamt gibt es nur zwei Gruppen der Ordnung 45: $C_5 \times C_9$ und $C_5 \times C_3 \times C_3$. \square

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 2. Seien N und U zwei Gruppen. Zeigen Sie: Genau dann gilt $N \rtimes_{\phi} U = N \times U$, wenn $\phi_u = \mathrm{id}_N$ für alle $u \in U$ gilt.

Proof. Die beide Gruppen sind auf der Menge $N \times U$ (kartesisches Produkt von Mengen) definiert. Jetzt die Rückrichtung: Falls $\phi_u = \mathrm{id}_N$ für alle N gilt, ist das Produkt

$$(n_1, u_1) \circ (n_2, n_2) = (n_1 \phi_{u_1}(n_2), u_1 u_2) = (n_1 n_2, u_1 u_2)$$

für alle $n_1, n_2 \in N, u_1, u_2 \in U$. Dann bekommen wir per Definition das direktes Produkt. Sei jetzt $N \rtimes_{\phi} U = N \times U$. Dann stimmen alle Produkte überein. Sei $u_1, u_2 \in U$ und $n_1, n_2 \in N$. Es gilt

$$(n_1\phi_{u_1}(n_2), u_1u_2) = (n_1n_2, u_1u_2)$$

insbesondere

$$n_1\phi_{u_1}(n_2)=n_1n_2.$$

Aus der Kurzungsregel folgt

$$\phi_{u_1}(n_2) = n_2.$$

Da u_1, u_2, n_1, n_2 beliebig waren, muss dies für alle u_1, n_2 gelten, also $\phi_{u_1} = \mathrm{id}_N$ für alle $u_1 \in U$.

Problem 3. Von einer Gruppe *G* seien bekannt:

- (1) Sie habe Ordnung $p^2 \cdot q^2$ mit zwei verschiedenen Primzahlen $p, q \in \mathbb{P}$.
- (2) Die q-Sylowgruppe Q von G sei normal.
- (3) p Sei kein Teiler von |Aut(Q)|.

Zeigen Sie, dass G abelsch ist.

(Hinweis: Denken Sie an semidirekte Produkte. Verwenden Sie an geeigneter Stelle Übung 2.)

Proof. Sei die *p*-Sylowgruppe bzw. *q*-Sylowgruppe von *G P* bzw. *Q*. Es gilt |P||Q| = |G|, also G = PQ. Da *Q* normal ist, ist $G \cong Q \rtimes P$.

- Problem 4. (a) Zeigen Sie, dass jede abelsche Gruppe der Ordnung 100 ein Element der Ordnung 10 enthält
 - (b) Zeigen Sie, dass A_4 keine Untergruppe der Ordnung 6 besitzt (vgl. auch Bemerkung 2.29 im Skript).