31. (a) Direção reversa (b) Número de bobinas duplas

33.
$$3x - y + 3z = 3$$
 35. $\frac{\sqrt{3}}{2}x - \frac{1}{2}y + z = \frac{\pi}{3}$

37.
$$-x + 2z = 1$$
 39. $3\sqrt{14}$ **41.** $\sqrt{14}\pi$

43.
$$\frac{4}{15}(3^{5/2}-2^{7/2}+1)$$
 45. $(2\pi/3)(2\sqrt{2}-1)$

47.
$$\frac{13}{2}\sqrt{21} + \frac{17}{4}[\ln(2 + \sqrt{21}) - \ln\sqrt{17}]$$
 49. 4

51.
$$A(S) \le \sqrt{3}\pi R^2$$
 53. 13.9783

57.
$$\frac{45}{8}\sqrt{14} + \frac{15}{16}\ln[(11\sqrt{5} + 3\sqrt{70})/(3\sqrt{5} + \sqrt{70})]$$

(c)
$$\int_0^{2\pi} \int_0^{\pi} \sqrt{36} \, \sin^4 u \, \cos^2 v + 9 \, \sin^4 u \, \sin^2 v + 4 \cos^2 u \, \sin^2 u \, du \, dv$$

61.
$$4\pi$$
 63. $2a^2(\pi-2)$

EXERCÍCIOS 16.7

1. 49,09 **3.** 900
$$\pi$$
 5. $11\sqrt{14}$ **7.** $\frac{2}{3}(2\sqrt{2}-1)$

9.
$$171\sqrt{14}$$
 11. $\sqrt{21/3}$ **13.** $364\sqrt{2}\pi/3$

15.
$$(\pi/60)(391\sqrt{17}+1)$$
 17. 16π **19.** 1

5.
$$(\pi/60)(391\sqrt{17}+1)$$
 17. 16π **19.** 12 **21.**

23.
$$\frac{713}{180}$$
 25. $-\frac{4}{3}\pi$ **27.** 0 **29.** 48 **31.** 2π +

37.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} [P(\partial h/\partial x) - Q + R(\partial h/\partial z)] dA, \text{ onde}$$

D = projeção de S no plano xz

41. (a)
$$I_z = \iint_S (x^2 + y^2) \rho(x, y, z) dS$$
 (b) $4.329\sqrt{2}\pi/5$

43. 0 kg/s **45.**
$$\frac{8}{3}\pi a^3 \varepsilon_0$$
 47. 1 248 π

EXERCÍCIOS 16.8

3. 0 **5.** 0 **7.**
$$-1$$
 9. 80π

11. (a)
$$81\pi/2$$

(c)
$$x = 3 \cos t$$
, $y = 3 \sin t$,
 $z = 1 - 3(\cos t + \sin t)$,
 $0 \le t \le 2\pi$

17. 3

EXERCÍCIOS 16.9

5.
$$\frac{9}{2}$$
 7. $9\pi/2$ **9.** 0 **11.** $32\pi/3$ **13.** 2π

15.
$$341\sqrt{2}/60 + \frac{81}{20} \arcsin(\sqrt{3}/3)$$

17.
$$13\pi/20$$
 19. Negativa em P_1 , positiva em P_2

21. div
$$\mathbf{F} > 0$$
 em quadrantes I, II; div $\mathbf{F} < 0$ em quadrantes III, IV

CAPÍTULO 16 REVISÃO

Teste Verdadeiro-Falso

- 1. Falso 3. Verdadeiro 5. Falso
- 7. Falso **9.** Verdadeiro 11. Verdadeiro

Exercícios

3. $6\sqrt{10}$ **1.** (a) Negativa (b) Positiva

7.
$$\frac{110}{3}$$
 9. $\frac{11}{12} - 4/e$ **11.** $f(x, y) = e^y + xe^{xy}$ **13.** 0

17.
$$-8\pi$$
 25. $\frac{1}{6}(27-5\sqrt{5})$ **27.** $(\pi/60)(391\sqrt{17}+1)$

29.
$$-64\pi/3$$
 33. $-\frac{1}{2}$ **37.** -4 **39.** 21

CAPÍTULO 17

EXERCÍCIOS 17.1

1.
$$y = c_1 e^{3x} + c_2 e^{-2x}$$
 3. $y = c_1 \cos 4x + c_2 \sin 4x$

5.
$$y = c_1 e^{2x/3} + c_2 x e^{2x/3}$$
 7. $y = c_1 + c_2 e^{x/2}$

9.
$$y = e^{2x}(c_1 \cos 3x + c_2 \sin 3x)$$

11.
$$y = c_1 e^{(\sqrt{3}-1)t/2} + c_2 e^{-(\sqrt{3}+1)t/2}$$

13.
$$P = e^{-t} \left[c_1 \cos\left(\frac{1}{10}t\right) + c_2 \sin\left(\frac{1}{10}t\right) \right]$$

17.
$$y = 2e^{-3x/2} + e^{-x}$$
 19. $y = e^{-2x/3} + \frac{2}{3}xe^{-2x/3}$

21.
$$y = e^{3x}(2\cos x - 3\sin x)$$

23.
$$y = \frac{1}{7}e^{4x-4} - \frac{1}{7}e^{3-3x}$$
 25. $y = 5\cos 2x + 3\sin 2x$

27.
$$y = 2e^{-2x} - 2xe^{-2x}$$
 29. $y = \frac{e-2}{e-1} + \frac{e^x}{e-1}$

31. Sem solução

33. (b)
$$\lambda = n^2 \pi^2 / L^2$$
, *n* um inteiro positivo; $y = C \operatorname{sen}(n\pi x / L)$

35. (a)
$$b - a \neq n\pi$$
, n qualquer inteiro

(b)
$$b - a = n\pi e \frac{c}{d} \neq e^{a-b} \frac{\cos a}{\cos b}$$
 a menos que $\cos b = 0$, então

$$\frac{c}{d} \neq e^{a-b} \frac{\operatorname{sen} a}{\operatorname{sen} b}$$

(c)
$$b - a = n\pi$$
 e $\frac{c}{d} = e^{a-b} \frac{\cos a}{\cos b}$ a menos que $\cos b = 0$, então

$$\frac{c}{d} = e^{a-b} \frac{\sin a}{\sin b}$$

EXERCÍCIOS 17.2

1.
$$y = c_1 e^{3x} + c_2 e^{-x} - \frac{7}{65} \cos 2x - \frac{4}{65} \sin 2x$$

3.
$$y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{13}e^{-2x}$$

5.
$$y = e^{2x}(c_1 \cos x + c_2 \sin x) + \frac{1}{10}e^{-x}$$

7.
$$y = \frac{3}{2}\cos x + \frac{11}{2}\sin x + \frac{1}{2}e^x + x^3 - 6x$$

9.
$$y = e^x(\frac{1}{2}x^2 - x + 2)$$

As soluções são assintóticas a $y_p = \frac{1}{10}\cos x + \frac{3}{10}\sin x \text{ quando}$ $x \rightarrow \infty$. Exceto por y_p , todas as soluções aproximam-se de ∞ ou $-\infty$ quando $x \rightarrow -\infty$.

13.
$$y_p = Ae^{2x} + (Bx^2 + Cx + D)\cos x + (Ex^2 + Fx + G)\sin x$$

15.
$$y_p = Axe^x + B\cos x + C\sin x$$

17.
$$y_p = xe^{-x} [(Ax^2 + Bx + C)\cos 3x + (Dx^2 + Ex + F)\sin 3x]$$

19.
$$y = c_1 \cos(\frac{1}{2}x) + c_2 \sin(\frac{1}{2}x) - \frac{1}{3}\cos x$$