1 定义 1

1 定义

- 1.1 R 中稠密
- 1.2 数列收敛
- 1.3 上界、下界、有界数列
- 1.4 子列
- 1.5 数列趋向 ±∞数列正 (负) 无穷大的定义.
- 1.6 单调数列
- 1.7 基本列
- 1.8 上下确界
- 1.9 开覆盖
- 1.10 上下极限

2 实数

任何分数一定是有尽小数或无尽循环小数。 每一个实数都可以用有理数去逼近到任意精确的程度。 有理数集 Q 在 R 中是稠密的。

3 数列极限

定理 3.1 如果数列 $\{a_n\}$ 收敛,则它只有一个极限。

定理 3.2 收敛数列是有界的。

定理 3.3 设收敛数列 $\{a_n\}$ 的极限是 a,那么 $\{a_n\}$ 的任何一个子列都收敛于 a。

3 数列极限 2

推论 3.3.1 数列 $\{a_n\}$ 收敛的充分必要条件是它的偶数项子列 $\{a_{2n}\}$ 和奇数项子列 $\{a_{2n-1}\}$ 都收敛,并且有相同的极限。

定理 3.4 (极限的四则运算)设 $\{a_n\}$ 与 $\{b_n\}$ 都是收敛数列,则 a_n+b_n , a_nb_b 也是收敛数列。如果 $\lim_{n\to\infty}b_n\neq 0$,则 $\{a_n/b_n\}$ 也收敛,并且有:

- 1. $\lim_{n\to\infty} a_n + b_n = \lim_{n\to\infty} a_n$;
- 2. $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$, 特别的, 如果 c 是常熟, 便有 $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$;
- 3. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, 其中 \lim_{n\to\infty} b_n \neq 0.$

定理 3.5 (夹逼定理) 设 $a_n \le b_n \le c_n (n \in N_*)$, 如果 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 那么 $\lim_{n \to \infty} b_n = a$

定理 3.6 保号性

- 1. 设 $\lim_{n\to\infty} a_n = a, \alpha, \beta$ 满足 $\alpha < a < \beta$, 那么当 n 充分大时, 有 $a_n > \alpha$; 同样, 当 n 充分大时, 有 $a_n < \beta$
- 2. 设 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$, 且 a < b, 那么当 n 充分大时,一定有 $a_n < b_n$.
- 3. 设 $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b,$ 并且当 n 充分大时 $a_n\leq b_n,$ 那么有 $a\leq b.$

命题 3.1 无穷大的性质

- 1. 如果 $\{a_n\}$ 是无穷大, 那么 $\{a_n\}$ 必然无界.
- 2. 从无界数列中一定能选出一个子列是无穷大.
- 3. 如果 $\lim_{n\to\infty}a_n=+\infty$ (或 $-\infty,\infty$), 那么对 $\{a_n\}$ 的任意子列 $\{a_{k_n}\}$, 也有

$$\lim_{n\to\infty} a_{k_n} = +\infty(\mathbf{x} - \infty, \infty)$$

4. 如果
$$\lim_{n\to\infty} a_n = +\infty$$
, $\lim_{n\to\infty} b_n = +\infty$, 那么
$$\lim_{n\to\infty} (a_n + b_n) = +\infty$$
, $\lim_{n\to\infty} a_n b_n = +\infty$

3 数列极限 3

 $5. \{a_n\}$ 是无穷大的充分必要条件是 $\{1/a_n\}$ 为无穷小.

定理 3.7 单调有界数列一定有极限.

定理 3.8 (闭区间套定理) 设 $I_n = [a_n, b_n] (n \in N^*)$, 并且 $I_1 \supset I_2 \supset I_3 \supset \cdots \supset I_n \supset I_{n+1} \supset \cdots$. 如果这一列区间的长度 $\langle I_n \langle = b_n - a_n \to 0 (n \to \infty),$ 那么交集 $\bigcap_{n=1}^{\infty} I_n$ 含有唯一的一点.

定理 3.9 自然对数的底是无理数.

引理 3.1 从任一数列中必可取出一个单调数列.

定理 3.10 (列紧性定理) 从任何有界数列必可选出一个收敛子列.

定理 **3.11** (Cauchy 收敛定理) 一个数列收敛的充分必要条件是, 它是基本列.

定理 3.12 (确界定理) 非空有上界的集合必有上确界. 非空有下界的集合必有下确界.

命题 **3.2**
$$-sup(-E) = infE$$
 或 $sup(-E) = -infE$

定理 3.13 (紧致性定理,有限覆盖定理,Heine-Borel 定理) 设 [a,b] 是一个有限闭区间,并且它有一个开覆盖 $\{I_{\lambda}\}$,那么从这个开区间族必可选出有限个成员 (\mathcal{F}) 来,这有限个开区间所成的族仍是 [a,b] 的开覆盖.

定理 3.14 设 $\{a_n\}$ 为一数列,E 为 $\{a_n\}$ 所有极限点组成的集合, a^* 为上极限. 那么:

- 1. $a^* \in E$;
- 2. $\exists x > a^*$,则存在 $N \in N^*$,使得当 $n \leq N$ 时,有 $a_n < x$;
- 3. a* 是满足前两条性质的唯一数.

对下极限 a_* 也有类似定理.

定理 3.15 设 $\{a_n\},\{n\}$ 是两个数列.

1. $\liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$

3 数列极限 4

2.
$$\lim_{n\to\infty} a_n = a$$
 当且仅当 $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = a$;

3. 若 N 是某个正整数, 当 n>N 时, $a\leq b_n$, 那么

$$\liminf_{n\to\infty}a_n\leq \liminf_{n\to\infty}b_n, \limsup_{n\to\infty}a_n\leq \limsup_{n\to\infty}b_n$$

定理 3.16 对数列
$$\{a_n\}$$
, 定义 $\alpha_n = \inf_{k \geq n} a_k$, $\beta_n = \sup_{k \geq n} a_k$, 那么:

- 1. $\{\alpha_n\}$ 是递增数列, $\{\beta_n\}$ 是递减数列;
- 2. $\lim_{n \to \infty} \alpha_n = a_*, \lim_{n \to \infty} \beta_n = a^*.$