Entity–Relationship Data Model Tutorial

SWEN304/SWEN439 Trimester 1, 2021

Lecturer: Dr Hui Ma

Engineering and Computer Science

Entity-Relationship Model - Terminology

- The target of the database is regarded as consisting of entities and relationships
- An Entity type is used to describe a set of entities with the same set of attributes
- A Key is needed to uniquely identify the entities in an entity set
- An entity type E is defined by a finite, non-empty set of attribute attr(E), and a key id(E)
- write E=(attr(E),id(E)) with attr(E) the set of attributes and id(E) the key of E
- to indicate an attribute A with a domain D we write A:D, e.g. Name: STRING (sometime we omit)
- Example: CLIENT = ({Name, Birthday, Address, Phone}, {Name, Birthday})

 An entity type CLIENT with a set of attributes

 -Name Birthday
 - {Name, Birthday, Address, Phone}, and a key {Name, Birthday}

Entity-Relationship Model - Terminology

- Relationships are associations between entities, or objects that are derived from entities
- Relationships type is used to model a set of relationships that are described by the same set of components and attributes
- A Keys is needed to uniquely identify the relationships in a relationship set
- A Relationship type is defined by a set of components comp(R), a set of attributes attr(R), and a key $id(R) \subseteq comp(R) \cup attr(R)$ (a subset of its components and attributes)
- write R = (comp(R), attr(R), id(R))
- Example:

 $\texttt{RENTAL} = (\{\texttt{CLIENT}, \ \texttt{DVD}\}, \{\texttt{RentalDay}, \ \texttt{DueDay}\}, \{\texttt{DVD}, \texttt{RentalDay}\})$

RENTAL has a component set {CLIENT, DVD}, an attribute set {RentalDay, DueDay}, and a key {DVD, RentalDay}

Entity-Relationship Model - Terminology

- A relationship type is called recursive if it contains the same object type (Entity type or Relationship Type) more than once as a component
- Role names are used to distinguish the different occurrences of the same entity type in a recursive relationship type (in our example CHILD and PARENT)
- Example: DESCENDENT = ({Parent : PERSON, Child : PERSON}, ∅, {Parent : PERSON, Child : PERSON})

Higher-order Relationship Types

- A relationship type R is of order 1 if all its components are entity types
 - Example: Rental is of order 1, Client is of order 0
- ullet A relationship type R is of order ${f k}$ if its components have maximum order k-1
 - Example: relationship type GraduateStudent is of order 2
- For the sake of convenience, entity types and relationship types together are called object types
 - Entities and relationships are called objects
 - Entity sets and relationship sets are called object sets
 - ullet Entity types may be regarded as object types of order 0
 - ullet Object types of order k are just relationship types of order k

Cluster

- sometimes it is necessary to model alternatives
- ullet A cluster C represents an alternative among a collection of object types
 - let C be an alternative between given object types C_1, \ldots, C_m
 - for simplicity, the cluster can be denoted as $C=C_1\oplus\cdots\oplus C_m$
 - we call C_1, \ldots, C_m the components of the cluster C
- Example: $Employee = Lecturer \oplus Tutor \oplus General_Staff$
- ullet Every object of cluster type C is an object of exactly one of the object types in the alternative
- ullet A cluster is of order k if its components have maximum order k-1
- Example: cluster Hires is of order 3.

Extended Entity-Relationship Schema and Diagram

- An extended entity-relationship schema (extended ER schema, for short) is a finite set $\mathcal S$ of object types (entity types, relationship types, clusters), such that for every object type O in $\mathcal S$ all its components belong to $\mathcal S$, too
- An instance S^t of an extended ER schema S assigns each object type O an object set O^t , such that for each object o in the object set O^t and for every component O' of O the object o(O') belongs to the object set O'^t
- A extended entity-relationship diagram (extended ER diagram, for short) is a directed graph with a node for every entity type or relationship type
 - attributes in the ER diagram by attaching them to their entity or relationship type
 - keys in the ER diagram by underlining key attributes and by putting dots on key components
 - attribute domains in the ER diagram by adding them to the attributes
 - \bullet Convention: draw entity types as rectangles, draw relationship types as diamonds, draw clusters as \oplus

EER Diagram: An Example

