W2 Version 4.0 Release Notes

November 18, 2016

Scott A. Wells
Department of Civil and Environmental Engineering
Portland State University
wellss@pdx.edu

The code, updates and further information on the W2 model are available from the following web page (subject to change):

http://www.cee.pdx.edu/w2

Table of Contents

W2 Version 4.0 Release Notes	1
The Model Package	3
How to Run the Model for the First Time	4
How to Set-Up and Run a Model Application	4
How to Use Batch Processing and the Command Line with CE-QUAL-W2	6
How to include relative directory paths for input and output files	7
W2 Known Issues	8
W2 V4.0 Bug Fixes, Enhancements, and User Manual Changes	10
W2 Planned Enhancements	14
Differences between Version 4.0 and Version 3.72	14
Differences between Version 3.72 and Version 3.71	15
Differences between Version 3.71 and Version 3.7	15
Differences between Version 3.7 and Version 3.6	15
Differences between Version 3.6 and Version 3.5	25
Differences between Version 3.2 and Version 3.5	27
Differences between Version 3.1 and Version 3.2	38

BUG FIXES AND ENHANCEMENTS BETWEEN VERSIONS	42
W2 V3.7 Bug Fixes, Enhancements and User Manual Changes	42
W2 V3.6 Bug Fixes, Enhancements, and User Manual Changes	58
W2 V3.5 Bug Fixes, Enhancements, and User Manual Changes	72
W2 V3.2 Bug Fixes. Enhancements, and User Manual Changes	89

THE MODEL PACKAGE

Download model package from http://www.cee.pdx.edu/w2

After downloading the model package, you will end up with a directory structure as shown below:

examples	4/29/2016 2:15 PM	File folder	
Excel macro utility for writing files in W2 for	4/29/2016 2:15 PM	File folder	
executables	4/29/2016 2:15 PM	File folder	
Sediment diagenesis documentation	4/29/2016 2:15 PM	File folder	
source	4/29/2016 2:15 PM	File folder	
USGS documentation for using USGS Auto P	4/29/2016 2:15 PM	File folder	
USGS Examples for using USGS Auto Port Se	4/29/2016 2:15 PM	File folder	
W2ControlGUI	4/29/2016 2:15 PM	File folder	
W2tools post-processor integrated with W2c	4/29/2016 2:16 PM	File folder	
waterbalance	4/29/2016 2:16 PM	File folder	
₩2V3 manual40_rev5.pdf	4/19/2016 10:42 AM	PDF File	14,350 KB

These are descriptions of the subdirectories and files:

- 1. <u>Examples</u> Model application examples include DeGray Reservoir, Spokane River, Spokane River (input files in csv format), Columbia Slough estuary, and a sediment diagenesis example.
- 2. <u>Executables</u> The executables for the preprocessor and the model in this directory were compiled using Intel Fortran XE 14 compiler and have both 32- and 64-bit versions. These executables must be placed into the directories of the model input files or be used with the command-line for setting the default directory where the model files reside.
- 3. W2ControlGUI The W2Control GUI was compiled using Visual Basic 6. The GUI directory also has an installation routine for W2Control. There is a "setup.exe" routine that installs the Visual Basic W2 V3.7 Model Preprocessor called W2CONTROL which is also compatible with the V4 model. Once installed, the GUI preprocessor is able to aid the model user in setting up the Control File and in evaluating and changing the bathymetry of the system. This preprocessor does not automatically set-up the bathymetry of the system, nor does it provide post-processing support. A lot of effort is required to properly set-up the model bathymetry prior to using the Bathymetry editor within W2Control. A user manual in pdf format is included in this directory. Also, a separate executable, W2Control, is provided in case an earlier version has already been installed. Note that this GUI is a part of the install routine for W2Tools now.
- 4. <u>W2Tools</u> This is the new W2 post-processor by Dynamic Solutions-International, LLC (www.ds-international.biz). They have provided an installation routine that includes both the post-processor and the W2ControlGUI. When the user selects W2L output (the old VPL output), the resulting post-processing file is used by W2Tool for all post-processing tasks that include contour plots, animations, profile plots and time series plots. A brief user manual is included showing many of the features of this post-processor as well as a directory that shows how to take field data and plot field data and model results in the post-processor. There is a zip file with an example from DeGray reservoir on how to include model predictions versus field data for reservoir profiles.
- 5. <u>Source</u> This directory contains the source code for the preprocessor and model written in Fortran. The compiler settings and files necessary to compile using the Intel compiler are also included using the Intel Fortran

compiler. Generally, we use the following compiler settings: /O2 [maximum speed in Intel] and default real is double precision. Also, for the following subroutines we had to use /O1 optimization: init-cond.f90 and init-uelws.f90. For the preprocessor, the windows source code is compiled using a QuickWin application rather than a console application. We use the debug version for the released executable. The generic preprocessor code should work compiled as a console application.

- 6. <u>Waterbalance</u> This is the windows waterbalance utility that is described in the user manual. The purpose of this code is to approximate the waterbalance for a reservoir or lake by computing flows (positive and negative) that will allow the model predicted water level to agree to water level data for a reservoir.
- 7. Excel macro utility for writing files in W2 format from Excel This directory contains an Excel macro that aids in writing our CE-QUAL-W2 compatible files from within Excel. There is a short user manual describing how to use the macro. This macro was developed by Jeffrey Gregory, Civil Engineer, USACE, Nashville District.
- 8. <u>W2V3 manual4_revX.pdf</u> User Manual in searchable pdf format where X is the revision number.
- 9. **W2_Version_4_Release_Notes.pdf** [Coming soon] Release notes in pdf format.
- 10. <u>USGS Documentation for the Auto Port Selection Algorithm</u> Technical report for the new USGS algorithm for auto port selection.
- 11. <u>USGS Model examples for the Auto Port Selection</u> 4 example problems using the USGS algorithm for auto port selection
- 12. <u>Sediment diagenesis documentation</u> reports and documents explaining the sediment diagenesis model in Version 4.

How to Run the Model for the First Time

In order to run the DeGray Reservoir example, copy the model executables for the executables/w2 model (for example w2_v4_64.exe) and executables/w2 preprocessor (for example preW2-v4_64.exe) from the executables directory to the examples/DeGray Reservoir directory. Double click the preprocessor executable to run the preprocessor. This produces several output files such as a warning file (pre.wrn) and an error file (pre.err) if there were any errors. If adjustments were made to input files, rerun the preprocessor until there are no more errors. Once this has completed, double click the w2 model executable. The model will run with a dialog box showing the progress of the simulation. Once it completes, you can then evaluate the model results by examining output files for evaluation and post-processing.

HOW TO SET-UP AND RUN A MODEL APPLICATION

1. Construct all boundary condition files

These files include flow rates, temperatures, and concentrations for all inflows, meteorological conditions for each waterbody, water levels for head BCs, shading for each segment, wind sheltering file for segments as a f(time), outflow rates, withdrawal rates, and precipitation files.

Look in an example directory and notice all the files with the 'npt' extension. These are input files that the user must construct. Examine several of the files: the meteorological file (usually **met*.npt**, but the model user can name it anything) and a flow file (usually **q*.npt** where q implies flow rate) by opening a text editor to look at the file structure. There will also be other input files as described in the User Manual, such as temperature and water quality input files. We recommend using the program Notepad++ as a text editor. Notepad++ is a much more powerful than Notepad which is part of Windows.

How do you develop these files? One could use Excel (or equivalent) to set up all the input files. For example, open a new Excel worksheet. Let's develop a flow input file for the model. The 1st 2 lines are comment lines. Enter a descriptive comment on the 1st line like: 'Inflow #1 2003'. Skip a line or row. On row 3 add the column headers: 1st column type 'JDAY', 2nd column type 'Q(m3/s)'. On row 4 enter a Julian day, like 1.5 (this corresponds to January 1 at 12 noon) and a corresponding flow like 10.0 (enter decimal points). On row 5 enter 365. and 15. The model has the option of linearly interpolating or viewing these as step functions. How do we save this in the correct text format for W2? For many of the input files one can use a csv format or a fixed format. To save this in the fixed format, select all the worksheet and set the column widths all to 8 characters. Then File/SaveAs, choose a "prn" file, but in the file name enter the desired file name in quotes, such as "qin_test.npt" with the quotes. Then click OK. This will save a file with an acceptable format and appropriate file name extension for W2. To output this in csv format, there is an output option in Excel for writing it as a csv file. Remember that the first character in line 1 must be a '\$' for a csv formatted file.

A simpler method of writing out files in either fixed format or in csv format is using the Excel macro utility provided on the PSU CE-QUAL-W2 website developed by Jeffrey Gregory in the Excel macro file w2 tools L.xlam.

2. Develop the Model Grid

This involves developing a bathymetry file for each water body. Use a text editor to open the existing bathymetry file for DeGray Reservoir (**bth.npt**). Now open the GUI Interface (do this by using the file **W2Control37.exe**) and click on CON for the control file and BTH for the bathymetry editor. You can view the bathymetry graphically with views of the side, top and end of the segments by clicking on appropriate buttons.

Note that the model also now uses "csv" file format so that the grid can be viewed and edited directly in Excel rather than the older, more cumbersome bathymetry file format. The new csv format is shown in a file named **bth1.csv** in the **Spokane River csv input format** directory. An example of the bathymetry format for a csv file for a reservoir is shown below. More details are provided in the CE-QUAL-W2 User Manual.

How does one develop the bathymetry file?

a. Obtain x,y,z topographic data

- b. For reservoirs or rivers one can take DEM data and merge it with x,y,z topographic data of your waterbody in GIS or Surfer
- c. Create centerline and grid spacing in x for each model branch
- d. Draw polygons around each model segment and create a Volume-area-elevation curve for each segment.
- e. After choosing an appropriate vertical layer spacing, compute segment widths for each vertical layer for each segment using for example that B= [Volume in layer]/($\Delta x \Delta z$)
- f. Assemble all the layer widths for each segment into the file compatible with the CE-QUAL-W2 model Note also that using cross-sections directly for computing segment widths at various elevations is also appropriate if the cross-section is representative of the model segment.

3. Edit the Control File

The main control file, **w2_con.npt**, is the central file for describing how the model will run. This file tells the code when the model starts, ends, where the inflows/outflows are located, names of files, kinetic parameters, and items you cannot even imagine. Open this file in a text editor or open it using the GUI **W2Control37.exe**

4. Run the Preprocessor

This file, preW2-4_64.exe, checks for model errors in the control file, bathymetry file, and all boundary condition files. Double click on the executable and look at the preprocessor screen. This file writes out between 1 and 3 files: pre.opt (an echo of input data and other useful items), pre.err (if fatal errors), and pre.wrn (if warnings). Make sure you look at pre.wrn and pre.err files.

5. Run the W2 Model

The file **w2_v4_64.exe** is the W2 model code. Double click on the w2 executable and notice the dialog box and the dynamic animation boxes for the simulation.

6. Evaluate OUTPUT files or Model Results

CE-QUAL-W2 outputs files have an extension 'opt'. Open the file **snp.opt** (a snapshot file) using a text editor. There are other files you can use with Excel for easy plotting, such as TSR files and Spreadsheet files. The CPL output from the model can also be used directly with Tecplot360 from www.tecplot.com for animating the results. Animation of results and contour plots can also be shown using the free w2tools post-processor.

How to Use Batch Processing and the Command Line with CE-QUAL-W2

The W2 model preprocessor and executable are both command line aware meaning that users can execute the programs from any directory and set the default model directory. This might be especially helpful if one has 2 linked models that one wants to run independently rather than in one large model.

So let's say that you have 2 directories: c:\w2\LakeA and c:\w2\RiverBelowLakeA that have all the required input files. If you have the W2 model and preprocessor executable in the c:\w2 directory, you can execute the preprocessor using a batch file, let's say checkW2.bat, that contains the following lines of text:

```
prew2-v4_64.exe "c:\w2\LakeA" prew2-v4_64.exe "c:\w2\RiverBelowLakeA"
```

Executing this batch file would run the preprocessor for both directories. In each case the model user must close the dialog box for the next command to be executed. This is by design since we want you to look at the results of the preprocessor to see if anything is amiss.

Since the outflow from LakeA goes into the RiverBelowLakeA, the following batch file, let's say **runW2.bat**, runs the models and copies files from one directory to the other:

```
w2_v4_64.exe "c:\w2\LakeA"
copy " c:\w2\LakeA\qwd.opt" "c:\w2\RiverBelowLakeA\qin.npt" /Y
copy " c:\w2\LakeA\twd.opt" "c:\w2\RiverBelowLakeA\tin.npt" /Y
copy " c:\w2\LakeA\cwd.opt" "c:\w2\RiverBelowLakeA\cin.npt" /Y
w2 v4 64.exe "c:\w2\ RiverBelowLakeA"
```

Note that by setting the parameter **CLOSEC** to **ON** in **w2_con.npt**, the dialog boxes close when a simulation is completed (and no user intervention is required). The quotation marks are there in case you have any spaces in your file names or directories. The '/Y' flag means that the copy command overwrites the file in the target directory without prompting the model user for permission.

HOW TO INCLUDE RELATIVE DIRECTORY PATHS FOR INPUT AND OUTPUT FILES

Instead of having all your model files in one directory, one can organize some of them by subdirectories. You can specify relative paths in the control file w2_con.npt for both input and output files. Let's say that your model directory is c:\w2\LakeA and you want to create a subdirectory for the input files and some of the output files. So create subdirectories such as:

```
    c:\w2\LakeA\Inflows -- the flow, temperature and concentration input files for both the branch inflow, tributaries, and distributed inflow
    c:\w2\LakeA\Inputs -- shading file, bathymetry file, wind sheltering file
    c:\w2\LakeA\output_tsr -- tsr file outputs
    c:\w2\LakeA\output_snp - snapshot file outputs
```

So in the section of the control file, w2_con.npt, where filenames are given, use the '.\' to specify a file directory starting from the current directory. Hence, for the shading and wind sheltering file, you would specify

CIN FILE	CINFN
And similarly for output file paths:	
SNP FILE WB 1 .\output_snp\snp_wb1.opt	SNPFN
	
TSR FILE	TSRFN

W2 Known Issues

The following list shows known bugs and issues with the current release of the code - these are being addressed in the next release:

#	Item	Description
1	Water levels in a "bowl"	If water levels decrease in a waterbody shaped like a "bowl", the removal of model layers as the water level decreases will cause the model to bomb if an upstream segment dries up.
2	Pipes under high head	The pipes algorithm does not handle well high-head, high-speed, dynamic flow conditions in a pipe as a result of numerical stability.
3	Time step limitation in a complex system model	The time step for stability in a system model is governed by the lowest time step for numerical stability. If you have a very dynamic river with several reservoirs, the time step for the river will control. This can result in very long run times. One can still break apart the model and run the pieces separately using the WDOUT files to provide boundary conditions for downstream waterbodies.
4	Partitioning	The partitioning coefficient for sorption is currently constant for all organic and inorganic compartments
5	Internal weir at a Dam segment	Putting an internal weir at a Dam segment does not affect the outflow from the selective withdrawal structure. One must limit selective withdrawal rather than use an internal weir at the dam segment. Remember the internal weir works for the right-hand-face of a model layer.

#	Item	Description
6	W2 multiple file error check	If the model user accidentally enters duplicate file names for an input file, the w2 executable will "bomb" because it will try to read the file in more than once. The first use of the file will lock its availability for the second instance. The W2 error message that comes on the screen (traceback error) should mention the file name that has problems. The W2 preprocessor should catch this potential error.
7	Raising level of spillway/weir above grid	The preprocessor will say there is an error if the user raises the weir, spillway, gate, water level control or any other hydraulic element above the current top-of-the-grid. The w2 code will still run properly though. But more correctly, the model user should increase the DZ of the upper-most layer to a value that would eliminate this problem. Keep in mind that the segment widths from the top layer then extend upward at that same width.
8	Internal weirs	The internal weir algorithm does not work when all vertical layers of a segment are blocked by the weir.
9	Multiple dams into one downstream reach	Currently, the code will allow one dam inflow to a downstream branch by a user-specified outflow file. The code though does allow multiple dams inflowing to a common downstream branch if the outflow is specified as a hydraulic structure.
10	Problems reading file in GUI or in W2 preprocessor of in W2 model	Sometimes the control file or bathymetry file or an input file cannot be read properly a program. This can be a result of the text editor used to produce the file or file conversions that occur when transferring files from workstations running Linux or from email. There may be a problem with the end of line character in the file. For Windows files, the standard end of line is a carriage return followed by a line feed: <cr><lf>. For UNIX systems it is usually only a Line Feed <lf>. To convert this from a UNIX system to a Windows system text file, use Notepad++ (a free windows text editor), go to EDIT/EOL Conversion and select Windows. Another issue common in reading text files is that the editor adds 'tabs'. All 'tabs' must be converted to 'spaces' for the file to be read properly.</lf></lf></cr>

W2 V4.0 BUG FIXES, ENHANCEMENTS, AND USER MANUAL CHANGES

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
1	PREW2	Additional model checks	Additional model checks were added for Profile and Spreadsheet output model segments	6/7/16
2	User Manual	Updated	User Manual Rev 6 was released with many minor updates and better explanatory text	6/7/16
3	W2	Restart	Fixed restart to work for epiphyton and macrophytes. This was broken in case a model user used RESTART. Fixed restart for mass balance for nutrients output in the file massbal.opt.	6/7/16
4	W2	Location of compiler info file	Fixed location of W2 compiler information in case of using command line aware directory. File was written to the location of the model executable rather than the command line aware directory.	6/7/16
5	Waterbalan ce	Update for Version 4	The waterbalance utility uses a model tsr file for reading in water level over time. Since the Version 4 file format was updated with comma delimeted output files, the waterbalance utility has been updated. This utility is not compatible with earlier versions.	6/10/16
6	W2	Sediment Diagenesis	Initialized the sediment width (sedcellwidth) in subroutine CEMASedimentDiagenesis.	6/11/16
7	W2	Screen output	The text fields in the Windows dialog box may 'overflow' if you have more than 160 tributaries. The field size was increased to avoid this possibility. Old code: CHARACTER(1000):: TEXT1 New code: CHARACTER(1700):: TEXT1	6/24/16
8	W2	Profile output	The longitudinal profile output added depth at a segment as part of the longitudinal output. User Manual updated also.	7/11/2016
9	W2	Profile output	Changed file name of longitudinal file output from integer of the Julian day to Julian day in F8.2 format in case of multiple outputs on one day	7/16/2016
10	W2	TSR output	Changed TSR file so that the first 11 lines of header are eliminated to facilitate graphing. Also, the name of the filetype in the control file is now read and used for the output file. Hence, using the TSR FILENAME of 'tsr.csv' will produce csv files that are immediately opened in Excel for viewing again making it easier for post-processing.	8/1/2016

#	Code: W2 or PREW2 or GUI	PREW2 or Enhancement				
11	PRE	Met file checks	The preprocessor has been enhanced with more model file checks. This program now has summaries of meteorological data (min, max, average) for each waterbody in the pre.opt file as well as further logical checks on values of these averages. These summaries are another check on the correctness of the input met data file. A typical result in pre.opt is shown below: Meteorological Data Input Summary Parameter Waterbody Average Value Maximum Minimum Minimum	10/30/16		
12	PRE	Distributed concentration checks	Added checks for average, min, and max inflow concentrations for all distributed tributaries. These are written out to the pre.opt file	11/1/16		
13	PRE	Bug fix	For LPR file inputs for temperature, the preprocessor reports an error when using LPR input. The code incorrectly used KT rather than KTWB(JW). [This also affects V3.7 preprocessor.]	11/9/2016		
14	W2	Model update	The model executables were updated from Intel Fortran Compiler # 14 to Intel Fortran compiler # 17. Also, the flag to initialize all variables to zero was enforced. There are many variables in the new sediment diagenesis model that need to be explicitly set to zero. These will be made in the future so that setting this flag will be unnecessary. There have been rare instances in using the 32 bit code in 32 bit Windows that there were issues with initialization using the sediment diagenesis model.	11/17/2016		
15						
16						
17						
18						
19						

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
20				
21				
22				
23				
24				
25				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				
60				
61				
62				
63				

W2 PLANNED ENHANCEMENTS

The following list shows planned enhancements:

#	Item	Description
1	Sediment Diagenesis	Complex sediment diagenesis model
2	Simultaneous water level solution	Currently, water surface is solved branch-by-branch. The new technique will involve solving all water surfaces for the system or waterbody simultaneously.
3	W3	3D version of W2
4	Hypoheric flow algorithm	Groundwater-surface water interaction
5	Sediment channel bottom heating algorithm	Dynamic heat transfer between channel bottom and stream

Other items that have been explored but not implemented in the release version include:

- 1. Updated control file in csv format rather than in text format so that users can easily edit the control file in Excel or another spreadsheet program
- 2. A smarter fetch calculation algorithm
- 3. Updates to the selective withdrawal algorithm for multiple withdrawals
- 4. Particle transport algorithm
- 5. Fish bioenergetics model and fish volitional movement model

DIFFERENCES BETWEEN VERSION 4.0 AND VERSION 3.72

Version 4 is file compatible with Version 3.72, even though there are new options in the main control file, w2_con.npt, and new input files whose presence or absence is detected by the model. For example, for ICEC control the options now include ON, ONWB, and OFF, where ONWB is a new option. New input files include a file for sediment diagenesis, 'W2_CEMA_Input.npt', and a file for the dynamic alkalinity calculation, 'pH_buffering.npt'

Control file differences are in the Generic Constituent Section of the Code where new variables were added to the control file to allow for phot-degradation and the new N2 state variable for TDG:

GENERIC CGQ10 CG0DK CG1DK CGS CGLDK CGKLF CGS

```
CG 1 0.00000 0.00000 0.00000 0.00000 1.03400 -1.0000 ! TDG
CG 2 0.00000 -1.0000 0.00000 0.00000 0.00000 0.00000
CG 3 1.04000 0.00000 1.40000 0.00000 0.00000 0.00000 0.00000
```

DIFFERENCES BETWEEN VERSION 3.72 AND VERSION 3.71

These 2 codes are file compatible. Besides a few bug fixes since the last release of Version 3.71, Version 3.72 includes the USGS automatic port selection code. This can be activated by setting SELECTC='USGS' in the control file w2_con.npt. In Version 3.71, only 'ON' or 'OFF' were input variables for SELECTC. If one sets SELECTC='USGS', the format of the file w2_selective.npt is also changed from Version 3.71. Details of this and examples are provided in the User's Manual and on-line.

DIFFERENCES BETWEEN VERSION 3.71 AND VERSION 3.7

There is only one change in the control file between Version 3.7 and 3.71. There is a new option for outlet structures – dynamic centerline elevation. In the control file, there is an ON/OFF option after declaring the # of structures for each branch:

EDDY VISC WB 1	AZC TKE	AZSLC IMP	AZMAX 1.00000	FBC 3	E 9.53500			BOUNDFR 0.00000	TKECAL IMP
N STRUC	NSTR	DYNELEV							
BR1	17	ON							
BR2	0	OFF							
BR3	0	OFF							
STR INT	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC	STRIC

If these fields are missing the model will assume that DYNELEV=OFF.

DIFFERENCES BETWEEN VERSION 3.7 AND VERSION 3.6

Even though there are some cases where a Version 3.7 executable will run Version 3.6 and Version 3.5 files fine, there are updates required to the w2_con.npt file that need to be made. The preprocessor will catch these errors.

Control file changes: w2_con.npt

The main changes to the W2 control file are additional flags to turn ON/OFF new control file options and the addition of new state variables for water quality, BOD-N and BOD-P for each BOD group.

Below is a list of changes in the control file with the card image header for each line changed (highlighted options are new in V3.7). Descriptions of these new features are in the W2 User's Manual.

1. MISCELL

MISCELL	NDAY	SELECTC	HABTATC	ENVIRPC	AERATEC	INITUWL
	100	770	ON	ON	ON	OFF

Five new variables, SELECTC, HABITATC, ENVIRPC, AERATEC, and INITUWL, are 5 new control variables that turn ON/OFF the use of automatic selective withdrawal, fish habitat volumes, environmental performance criteria, artificial aeration,

and the initial water surface and velocity computations, respectively. If using an old Version 3.6 control file, all of these would default to 'OFF' if they were left blank. Also the model preprocessor would flag these are missing variables.

2. DLT CON

DLT CON NDT DLTMIN DLTINTR
1 1.00000 OFF

where DLTINTR is a control for interpolating the the time step DLTMAX and DLTF rather than use as a step function

3. BRANCH G

BRANCH G US DS UHS DHS UQB DQB NLMIN SLOPE SLOPEC Br 1 2 59 0 0 0 0 1 0.0 0.0

where SLOPEC is the hydraulic equivalent slope for a river channel that affects the momentum equation.

4. GATE WEIR

GATE WEIR GTA1 GTB1 GTA2 GTB2 DYNVAR GTIC
Gate1 1.00000 1.50000 1.50000 FLOW ON

where GTIC is an interpolation control for the specified DYNVAR for the GATE-WEIR.

5. Dynamic pipe

PIPES IUPI IDPI EUPI LATPIC DYNPIPE EDPI WPI DLXPI FMINPI FPI Pi 1 24 28 28.0 27.0 0.5 230.0 0.065 DOWN ON

where DYNPIPE controls whether the pipe is controlled by time series of an ON/OFF or partially open gate

6. Dynamic pump

PUMPS 1 IDPU WTHLC DYNPUMP EPU STRTPU ENDPU EONPU EOFFPU QPU 111 440. DOWN 1.00 366. 441.0 435.0 1.0

where DYNPUMP controls the EPU, EONPU, EOFFPU, and QPU over time by reading in a time series file

7. INIT CND

INIT CND TEMPI ICEI WTYPEC GRID WB 1 -1.0000 0.00000 FRESH REC'

where GRIDC controls whether the grid is interpreted as rectangular in depth or trapezoidal.

8. CST ACTIVE [Note that this change only appears if NBOD>0]

CST ACTIVE CAC

TDS	ON
Gen1	ON
Gen2	OFF
Gen3	OFF
Gen4	OFF
Gen5	OFF
ISS1	ON
PO4	ON
NH4	ON
NO3	ON
DSI PSI	OFF
	OFF
FE	OFF
LDOM	ON
RDOM	ON
LPOM	ON
RPOM	ON
1CBOD	ON
2CBOD	ON
3CBOD	ON
4CBOD	ON
5CBOD	ON
6CBOD	ON
7CBOD	ON
8CBOD	ON
9CBOD	ON
10CBOD	ON
1CBODP	ON
2CBODP	ON
3CBODP	ON
4CBODP	ON
5CBODP	ON
6CBODP	ON
7CBODP	ON
8CBODP	ON
9CBODP	ON
10CBODP	ON
1CBODN	ON
2CBODN	ON
3CBODN	ON
4CBODN	ON
5CBODN	ON
6CBODN	ON
7CBODN	ON
8CBODN	ON
9CBODN	ON
10CBODN	ON
ALG1	ON
ALG2	ON
ALG3	ON
DO	ON
TIC	ON
ALK	ON
Z001	OFF
LDOM_P	ON
RDOM_P	ON
LPOM_P	ON
RPOM_P	ON
LDOM_N	ON
RDOM_N	ON
LPOM_N	ON
RPOM_N	ON

9. CST ICON, CST PRIN, CIN CON, CTR CON, CDT CON and CPR CON

CST ICON	C2IWB	C2IWB	C2IWB	C2IWB	C2IWB	C2IWB	C2IWB	C2IWB	C2IWB
TDS	0.0								
AGE	0.0								
TRACER	0.0								
COL1	0.0								
Conduct	0.0								
Chlorine	0.0								
ISS1	0.0								
PO4	0.03								
NH4	0.01								
NOx	0.3								
DSi	0.0								
PSi	0.0								
TFe	0.0								
LDOM	0.1								
RDOM LPOM	0.1								
RPOM	0.1								
1CBOD	0.0								
2CBOD	0.0								
3CBOD	0.0								
4CBOD	0.0								
5CBOD	0.0								
6CBOD	0.0								
7CBOD	0.0								
8CBOD	0.0								
9CBOD	0.0								
10CBOD	0.0								
1CBODP	0.0								
2CBODP	0.0								
3CBODP	0.0								
4CBODP	0.0								
5CBODP	0.0								
6CBODP	0.0								
7CBODP 8CBODP	0.0								
9CBODP	0.0								
10CBODP	0.0								
1CBODN	0.0								
2CBODN	0.0								
3CBODN	0.0								
4CBODN	0.0								
5CBODN	0.0								
6CBODN	0.0								
7CBODN	0.0								
8CBODN	0.0								
9CBODN	0.0								
10CBODN	0.0								
ALG1	0.1								
ALG2	0.1								
ALG3	0.1								
DO TITC	12.0								
TIC	5.0 19.8								
ALK ZOO1	0.0								
LDOM P	0.0005								
RDOM_I	0.0005								
LPOM P	0.0005								
RPOM P	0.0005								
LDOM N	0.0080								
RDOM N	0.0080								
_									

LPOM_N RPOM_N	0.0080								
CST PRIN	CPRWBC	CDDWBC	CPRWBC	CDDWBC	CDDWBC	CDDWRC	CDDWBC	CDDWBC	CPRWBC
TDS	ON	CIKWDC	CIKWDC	CIKWDC	CLIWDC	CINWDC	CINWDC	CINWDC	CINWDC
AGE	ON								
TRACER	ON								
COL1	ON								
Conduct	ON								
Chlorine	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NOx	ON								
DSi	OFF								
PSi TFe	OFF OFF								
LDOM	ON								
RDOM	ON								
LPOM	ON								
RPOM	ON								
1CBOD	ON								
2CBOD	ON								
3CBOD	ON								
4CBOD	ON								
5CBOD	ON								
6CBOD	ON								
7CBOD	ON								
8CBOD	ON								
9CBOD 10CBOD	ON ON								
10CBOD 1CBODP	ON								
2CBODP	ON								
3CBODP	ON								
4CBODP	ON								
5CBODP	ON								
6CBODP	ON								
7CBODP	ON								
8CBODP	ON								
9CBODP	ON								
10CBODP 1CBODN	ON ON								
2CBODN	ON								
3CBODN	ON								
4CBODN	ON								
5CBODN	ON								
6CBODN	ON								
7CBODN	ON								
8CBODN	ON								
9CBODN	ON								
10CBODN	ON								
ALG1 ALG2	ON ON								
ALG3	ON								
DO	ON								
TIC	ON								
ALK	ON								
Z001	OFF								
LDOM_P	ON								
RDOM_P	ON								
LPOM_P	ON								
RPOM_P	ON								
LDOM_N	ON								

RDOM N	ON								
LPOM N	ON								
RPOM N	ON								
_									
CIN CON	CINBRC	CINBRC	CINBRC	CINBRC	CINBRC	CINBRC	CINBRC	CINBRC	CINBR
TDS	ON	ON							
AGE	OFF	OFF							
TRACER	OFF	OFF							
COL1	OFF	OFF							
Conduct	ON	ON							
Chlorine	OFF	OFF							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							
5CBOD	ON	ON							
6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD	ON	ON							
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON ON							
5CBODP 6CBODP	ON ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON							
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
		OFF							
Z001	OFF								
LDOM_P	ON.	ON							
LDOM_P RDOM_P		ON ON							
LDOM_P	ON	ON							

LDOM N	ON	ON							
RDOM N	ON	ON							
LPOM N	ON	ON							
RPOM N	ON	ON							
_									
CTR CON	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC
TDS	ON	ON							
AGE	OFF	OFF							
TRACER	ON	ON							
COL1	ON	ON							
Conduct	ON	ON							
Chlorine	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							
5CBOD	ON	ON							
6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD	ON	ON							
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON ON							
8CBODN	ON	ON							
9CBODN 10CBODN	ON ON	ON							
ALG1	ON	ON							
ALG1 ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM P	ON	ON							
RDOM P	ON	ON							
LPOM P	ON	ON							
_									

RPOM P	ON	ON							
LDOM N	ON	ON							
RDOM N	ON	ON							
LPOM N	ON	ON							
RPOM N	ON	ON							
_									
CDT CON	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC
TDS	ON	ON							
AGE	OFF	OFF							
TRACER	ON	ON							
COL1	ON	ON							
Conduct	ON	ON							
Chlorine	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							
5CBOD	ON	ON							
6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD 10CBOD	ON	ON							
10CBOD 1CBODP	ON ON	ON ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON							
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM_P	ON	ON							
RDOM_P	ON	ON							

LPOM P	OM	ONT							
_	ON	ON							
RPOM_P	ON	ON							
LDOM_N	ON	ON							
RDOM_N	ON	ON							
LPOM_N	ON	ON							
RPOM_N	ON	ON							
CPR CON	CPRBRC								
TDS	ON	ON							
AGE	OFF	OFF							
TRACER	ON	ON							
COL1	ON	ON							
Conduct	ON	ON							
Chlorine	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NOx	ON	ON							
DSi DG:	OFF	OFF							
PSi	OFF	OFF							
TFe	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
1CBOD	ON	ON							
2CBOD	ON	ON							
3CBOD	ON	ON							
4CBOD	ON	ON							
5CBOD	ON	ON							
6CBOD	ON	ON							
7CBOD	ON	ON							
8CBOD	ON	ON							
9CBOD		ON							
	ON								
10CBOD	ON	ON							
1CBODP	ON	ON							
2CBODP	ON	ON							
3CBODP	ON	ON							
4CBODP	ON	ON							
5CBODP	ON	ON							
6CBODP	ON	ON							
7CBODP	ON	ON							
8CBODP	ON	ON							
9CBODP	ON	ON							
10CBODP	ON	ON							
1CBODN	ON	ON							
2CBODN	ON	ON							
3CBODN	ON	ON							
4CBODN	ON	ON							
5CBODN	ON	ON							
6CBODN	ON	ON							
7CBODN	ON	ON							
8CBODN	ON	ON							
9CBODN	ON	ON							
10CBODN	ON	ON							
ALG1	ON	ON							
ALG2	ON	ON							
ALG3	ON	ON							
DO	ON	ON							
TIC	ON	ON							
ALK	ON	ON							
Z001	OFF	OFF							
LDOM_P	ON	ON							
_									

RDOM_P	ON	ON
LPOM_P	ON	ON
RPOM_P	ON	ON
LDOM_N	ON	ON
RDOM_N	ON	ON
LPOM_N	ON	ON
RPOM_N	ON	ON

New control files

Based on the options the user turns ON or OFF, new control files are required. These new control files are named:

- 1. w2_selective.npt new variables controlling the selective withdrawal algorithm to select temperature targets
- 2. w2_habitat.npt new variables controlling fish habitat limits for temperature and dissolved oxygen and surface and segment volume weighted eutrophication state variables
- 3. w2_envirpf.npt new variables controlling setting environmental performance criteria
- 4. w2_aerate.npt variables describing use of dissolved oxygen addition to enhance dissolved oxygen levels through diffusers

Details of these new control files are in the CE-QUAL-W2 User Manual.

DIFFERENCES BETWEEN VERSION 3.6 AND VERSION 3.5

Version 3.6 can be run without changing any of the input files, even though the preprocessor will identify errors in the control file because of missing variables. Below is a highlighted list of locations in the file w2_con.npt where additional variables have been added. There are no other changes in the input files for Version 3.6.

The TKE algorithm has been updated with new algorithms that match experimental tank data for kinetic energy and dissipation. This is based on a Master's degree project by Sam Gould at Portland State University. A new user option is the TKE1 algorithm, in add addition to the legacy algorithm TKE. This results in several new input variables on the following line of the w2_con.npt file that are only active if TKE1 is chosen for AZC:

EDDY VISC	AZC	AZSLC	AZMAX	FBC	E	ARODI	STRCKLR	BOUNDFR	TKECAL
WB 1	W2	IMP	1.00000	3	9.535	0.430	24.0	10.00	IMP

The roughness height of the water for correction of the vertical velocity wind profile is now a user-defined input, z_0 . Prior to this the model had hardwired the value of z_0 =0.003 m for wind speed correction at 2m (for evaporation where wind height at 2 m is typical) and z_0 =0.01 m for wind at 10 m (for shear stress calculations where wind height of 10 m is typical). For consistency, both conversions now use the same value of roughness height. If the user does not specify the value of z_0 (for example if he/she leaves the spaces blank for z_0 using a V3.5 control file), the code uses 0.001 m.

```
        HYD COEF
        AX
        DX
        CBHE
        TSED
        FI
        TSEDF
        FRICC
        ZC

        WB 1
        1.00000
        1.00000
        0.30000
        11.5000
        0.01000
        1.00000
        MANN
        0.001
```

A new option for output is in the format required for TECPLOT. For TECPLOT animation there is only a flag in the CPL output line. This allows for easy model animation of the variables U, W, T, RHO, and all active constituents at the frequency specified by the CPL file as a function of distance and elevation.

```
CPL PLOT CPLC NCPL TECPLOT WB 1 ON 1 ON
```

A new variable for determining the fraction of NO3-N that is diffused into the sediments that becomes organic matter, or SED-N was introduced. According to one study, only about 37% of NO_3 -N that diffuses into the sediments becomes incorporated into organic matter in the sediments. The rest is denitrified.

NITRATE	NO3DK	NO3S	FN03SED
Wb 1	0.05	0.0	0.37
Wb 2	0.05	0.0	0.37

In V3.5 the model computed an average decay coefficient of the sediments based on what was deposited. The user now has the option to dynamically compute that decay rate or to have it fixed and controlled by the model user. A new variable was introduced called DYNSEDK which is either ON/OFF to allow or not allow dynamic computation of the sediment decay rate.

SEDIMENT	SEDC	PRNSC	SEDCI	SEDK	SEDS	FSOD	FSED	SEDBR	DYNSEDK
Wb 1									
Wh 2	ON	ON	0.0	0.1	0.0	1.0	1.0	0.001	TTO

The User can now specify the # of processors to use on the host computer. Most users find that setting NPROC=2 gets the best results. Sometimes setting this greater than 2 results in slower model performance. Also, the CLOSEC control closes the windows dialog box after the model completes its simulation. This is useful in using the windows version of the release code in batch simulations. These are specified in the control file as follows:

GRID	NWB	NBR	IMX	KMX	NPROC	CLOSEC
	1	4	66	117	2	ON

DIFFERENCES BETWEEN VERSION 3.2 AND VERSION 3.5

The differences in V3.5 and V3.2 input files are found in the control file: **w2_con.npt** and in the **graph.npt** file. All other files are the same between the 2 versions.

w2_con.npt

Below is an example of parts of the control file from V3.5 where all new variables are highlighted. Most of these changes have to do with the new zooplankton, macrophyte, and new state variables added to the model. See the User Manual for a list of changes between V3.2 and V 3.5 in the version history. Also there were some deletions from the V3.2 w2_con.npt file. These are shown below.

New variables added to the control file are highlighted

New variable	es added	l to the co	ntrol file	are highl	<u>ighted</u>			
· IN/OUTFL	NTR	NST	NI T IAI	NWD	NGT	NSP	NPI	NPU
IN/OUIFL	1	1	NIM 0	0	0	0	0	0
	1	Τ	U	U	U	U	U	U
CONSTITU	NGC	NSS	NAL	NEP	NBOD	NMC	NZP	
001101110	5	1	1	1	5	0	1	
	Ü	-	-	-	Ü	<u> </u>	=	
MISCELL	NDAY							
	100							
•								
CST COMP	CCC	LIMC	CUF					
	ON	ON	10					
CST ACTIVE	CAC							
TDS	OFF							
Gen1	ON							
Gen2	OFF							
Gen3	OFF							
Gen4	OFF							
Gen5	OFF							
ISS1	OFF							
PO4 NH4	OFF							
NO3	OFF OFF							
DSI	OFF							
PSI	OFF							
FE	OFF							
LDOM	OFF							
RDOM	OFF							
LPOM	OFF							
RPOM	OFF							
BOD1	OFF							
BOD2	OFF							
BOD3	OFF							
BOD4	OFF							
BOD5	OFF							
ALG1	OFF							
DO	OFF							

TIC ALK ZOO1 LDOM P RDOM P LPOM P LPOM P LDOM N RDOM N RDOM N	OFF OFF OFF OFF OFF OFF OFF OFF								
CST DERI DOC POC TOC DON PON TON TKN TN DOP POP TOP TP APR CHLA ATOT %DO TSS TISS CBOD pH CO2 HCO3 CO3	CDWBC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CDWBC							
CST FLUX TISSIN TISSOUT PO4AR PO4AG PO4AP PO4ER PO4EG PO4EP PO4POM PO4DOM PO4SED PO4SOD PO4SET NH4NITR NH4AR NH4AG NH4AP NH4ER NH4EG NH4EP NH4EP NH4POM NH4DOM NH4OM NH4SED	CFWBC OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CFWBC							

```
NH4SOD
             OFF
NO3DEN
             OFF
NO3AG
             OFF
NO3EG
             OFF
NO3SED
             OFF
DSIAG
             OFF
DSIEG
             OFF
DSIPIS
             OFF
DSISED
             OFF
DSISOD
             OFF
DSISET
             OFF
PSIAM
             OFF
PSINET
             OFF
             OFF
PSIDK
             OFF
FESET
FESED
             OFF
LDOMDK
             OFF
LRDOM
             OFF
             OFF
RDOMDK
LDOMAP
             OFF
LDOMEP
             OFF
LPOMDK
             OFF
LRPOM
             OFF
RPOMDK
             OFF
LPOMAP
             OFF
LPOMEP
             OFF
LPOMSET
             OFF
RPOMSET
             OFF
CBODDK
             OFF
DOAP
             OFF
DOAR
             OFF
             OFF
DOEP
             OFF
DOER
DOPOM
             OFF
DODOM
             OFF
DOOM
             OFF
DONITR
             OFF
DOCBOD
             OFF
DOREAR
             OFF
DOSED
             OFF
DOSOD
             OFF
TICAG
             OFF
TICEG
             OFF
SEDDK
             OFF
SEDAS
             OFF
SEDLPOM
             OFF
SEDSET
             OFF
SODDK
             OFF
CST ICON C2IWB
                  C2IWB C2IWB
                                 C2IWB C2IWB C2IWB C2IWB
                                                                         C2IWB
        0.00000
TDS
         0.00000
Gen1
Gen2
         0.00000
         0.00000
Gen3
Gen4
         0.00000
Gen5
         0.00000
         0.00000
ISS1
PO4
         0.03000
NH4
         0.01000
NO3
         0.30000
DSI
         0.00000
PSI
         0.00000
         0.00000
```

```
LDOM
         0.10000
RDOM
         0.10000
LPOM
         0.10000
RPOM
         0.10000
BOD1
         0.00000
BOD2
         0.00000
BOD3
         0.00000
BOD4
         0.00000
BOD5
         0.00000
ALG1
         0.10000
DO
         12.0000
TIC
         5.00000
ALK
         19.8000
Z001
      0.1000
LDOM_P
          0.0005
RDOM_P
          0.0005
LPOM_P
          0.0005
RPOM P
          0.0005
LDOM N
          0.0080
RDOM N
          0.0080
LPOM N
          0.0080
RPOM N 0.0080
CST PRIN CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC CPRWBC
TDS
             OFF
Gen1
             ON
Gen2
             OFF
Gen3
             OFF
Gen4
             OFF
             OFF
Gen5
ISS1
             OFF
PO4
             OFF
NH4
             OFF
NO3
             OFF
DSI
             OFF
PSI
             OFF
FΕ
             OFF
LDOM
             OFF
RDOM
             OFF
LPOM
             OFF
RPOM
             OFF
BOD1
             OFF
BOD2
             OFF
BOD3
             OFF
BOD4
             OFF
BOD5
             OFF
ALG1
             OFF
DO
             OFF
TIC
             OFF
ALK
             OFF
Z001
             OFF
LDOM P
             OFF
RDOM_P
             OFF
LPOM_P
             OFF
RPOM_P
             OFF
LDOM_N
             OFF
RDOM_N
             OFF
LPOM N
             OFF
RPOM_N
             OFF
CIN CON
          CINBRC
                 CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC CINBRC
TDS
             ON
Gen1
             OFF
```

Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NO3	ON								
DSI	OFF								
PSI	OFF								
FE	OFF								
LDOM	ON								
RDOM	ON								
LPOM	ON								
RPOM	ON								
BOD1	ON								
BOD2	ON								
BOD3	ON								
BOD4	ON								
BOD5	ON								
ALG1	ON								
DO	ON								
TIC	ON								
ALK	ON								
Z001	OFF								
LDOM P	OFF								
RDOM P	OFF								
LPOM P	OFF								
RPOM P	OFF								
LDOM N	OFF								
RDOM_N	OFF								
LPOM_N	OFF								
RPOM_N	OFF								
amp aou	amp.mp.a	amnmna	~=====	ampmpa	~====	~~~~~	amnmn a	~====	
CTR CON	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC	CTRTRC
TDS	ON	ON							
Gen1	OFF	OFF							
Gen2	ON	ON							
Gen3	ON	ON							
Gen4	ON	ON							
Gen5	ON	ON							
ISS1	ON	ON							
PO4	ON	ON							
NH4	ON	ON							
NO3	ON	ON							
DSI	OFF	OFF							
PSI	OFF	OFF							
FE	OFF	OFF							
LDOM	ON	ON							
RDOM	ON	ON							
LPOM	ON	ON							
RPOM	ON	ON							
BOD1		ON							
	ON								
BOD2	ON	ON							
BOD3	ON	ON							

ON

ON

ON

ON

ON

ON OFF ON

ON

ON

ON

ON ON OFF

BOD4

BOD5

ALG1

DO

TIC

ALK

Z001

LDOM_P OFF

RDOM_P	OFF	OFF							
LPOM_P	OFF	OFF							
RPOM_P	OFF	OFF							
LDOM_N	OFF	OFF							
RDOM_N	OFF	OFF							
LPOM_N	OFF	OFF							
RPOM_N	OFF	OFF							
CDT CON	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTBRC	CDTB:
TDS	ON								
Gen1	OFF								
Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NO3	ON								
DSI	OFF								
PSI	OFF								
FE	OFF								
LDOM	ON								
RDOM	ON								
LPOM	ON								
RPOM	ON								
BOD1	ON								
BOD2	ON								
BOD3	ON								
BOD4 BOD5	ON ON								
ALG1	ON								
DO DO	ON								
TIC	ON								
ALK	ON								
Z001	OFF								
LDOM P	OFF								
RDOM P	OFF								
LPOM_P	OFF								
RPOM_P	OFF								
LDOM_N	OFF								
RDOM_N	OFF								
LPOM_N	OFF								
RPOM_N	OFF								
CPR CON	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBRC	CPRBF
TDS	ON								
Gen1	OFF								
Gen2	ON								
Gen3	ON								
Gen4	ON								
Gen5	ON								
ISS1	ON								
PO4	ON								
NH4	ON								
NO3	ON								
DSI	OFF								
PSI	OFF								
FE T DOM	OFF								
LDOM RDOM	ON ON								
LPOM	ON								
RPOM	ON								
IVE OIM	OIN								

BOD1 BOD2 BOD3 BOD4 BOD5 ALG1 DO TIC ALK ZOO1 LDOM_P RDOM_P LPOM_P LPOM_P LPOM_N RDOM_N RDOM_N RPOM_N	ON ON ON ON ON ON ON ON OFF OFF OFF OFF								
EX COEF WB 1	EXH20 0.45000	EXSS 0.01000				EXIC OFF			
ALG EX	EXA 0.10000	EXA	EXA	EXA	EXA	EXA			
ZOO EX	EXZ	EXZ	EXZ	EXZ	EXZ	EXZ			
	0.2	0.2	0.2						
MACRO EX	EXM	EXM	EXM	EXM	EXM	EXM			
	0.0100								
	0.00000 1.04000 0.00000	CG0DK -1.0000 0.00000 0.00000 0.00000	0.00000 0.50000 0.00000	0.00000 0.00000 0.00000 0.00000					
S SOLIDS SS1		SEDRC OFF	TAUCR 0.00						
ALGAL RAT			AE 0.02000	AM 0.05000	AS 0.04000				ASAT 50.0000
ALGAL TEN									
ALG STOI ALG1									
EPIPHYTE EPI1			EPIC	EPIC	EPIC	EPIC	EPIC	EPIC	EPIC
EPI PRIN EPI1			EPRC	EPRC	EPRC	EPRC	EPRC	EPRC	EPRC
EPI INIT EPI1			EPICI	EPICI	EPICI	EPICI	EPICI	EPICI	EPICI
EPI RATE EPI1									
EPI HALF	ESAT	EHS	ENEQN	ENPR					

EPI STOI EP EN FC ESI ECHLA EPOM EFII 0.00500 0.08000 0.45000 0.00000 65.0000 0.80000 ZOOP RATE ZG ZR ZM ZM ZEFF PREFF ZOOMIN ZSZE ZGG1 1.50 0.10 0.010 0.50 0.50 0.0100 0.30 ZOOP ALGO PREFA	EPI1	50.0000	40.0000	2	0.00200					
EPII 0.00500 0.08000 0.45000 0.00000 65.0000 0.80000 COOP RATE	EPI TEMP EPI1									
ZOOL 1.50 0.10 0.010 0.50 0.50 0.0100 0.30 ZOOP ALGP PREFA D. O.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	EPI STOI EPI1									
ZOOF ALGE PREEA PREFA PR	ZOOP RAT	E ZG	ZR	ZM	ZEFF	PREFP	ZOOMIN	ZS2P		
ZOOP ZOOP PREFZ PR	Zoo1	1.50	0.10	0.010	0.50	0.50	0.0100	0.30		
ZOOP ZOOP FREFZ PREFZ PR	ZOOP ALG	P PREFA	PREFA	PREFA	PREFA	PREFA	PREFA	PREFA	PREFA	PREFA
ZOOP TEMP	Z001	1.00	0.50	0.50						
ZOOP TEMP	ZOOP ZOO	P PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ	PREFZ
0.0	Zoo1	0.00	0.00	0.00						
ZOOP STOI ZP ZN ZC	ZOOP TEM	P ZT1	ZT2	ZT3	ZT4	ZK1	ZK2	ZK3	ZK4	
MACROPHYT MACWBC		0.0	15.0	20.0	36.0	0.1	0.9	0.98	0.100	
MACROPHYT MACWEC MACWEC MACWEC MACWEC MACWEC MACWEC MACWEC MACWEC MACK MACWEC MACK MACK MACK MACK MACK MACK MACK MAC	ZOOP STO	I ZP	ZN	ZC						
MAC INI MACWECI MACWEC										
MAC INI MACWECI MACWEC	MACROPHY	T MACWRC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC	MACWBC
MAC INI MACWBCI MACWBC	Mac1				THIONDO	THIOMEC	THIOMEO	THIOMEC	THIOWEC	THICKNEO
MAC INI MACWBCI MACWBC	MAC PRIN	T MPRWRC	MPRWRC	MPRWRC	MPRWRC	MPRWRC	MPRWRC	MPRWRC	MPRWRC	MPRWRC
Mac RATE MG MR MM MSAT MHSP MHSN MHSC MPOM LRPMAC Mac 1 0.30 0.05 0.05 30.0 0.0 0.0 0.0 0.9 0.2 MAC SED PSED NSED MAC 1 0.5 0.5 MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.08000 0.45000 0.18000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	Mac1				FIL IWEC	FIL IWDC	FIL IWDC	HITWE	FIL RWDC	THE RWIDO
Mac RATE MG MR MM MSAT MHSP MHSN MHSC MPOM LRPMAC Mac 1 0.30 0.05 0.05 30.0 0.0 0.0 0.0 0.9 0.2 MAC SED PSED NSED MAC 1 0.5 0.5 MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.08000 0.45000 0.18000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC INT	MACWRCT	MACWROT	MACWROT	MACWROT	MACWROT	MACWRCT	MACWROT	MACWRCT	MACWRCT
MAC SED PSED NSED MAC 1 0.5 0.5 MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000						MACWDCI	MACWDCI	MACWDCI	MACMBCI	MACWDCI
MAC SED PSED NSED MAC 1 0.5 0.5 MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000										
MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC DAME	МС	MD	MM	мелп	мисъ	MUCN	мисс	MDOM	T D DMA C
MAC DIST MBMP MMAX Mac 1 40.0 500.0 MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC RATE Mac 1									
MAC DRAG CDSTEM DWV DMSA ANORM MAC 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 MAC 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC MAC 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	Mac 1 MAC SED	0.30 PSED	0.05 NSED							
MAC DRAG CDSTEM DWV DMSA ANORM Mac 1 2.0 7e4 8.00 0.80 MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	Mac 1	0.30 PSED	0.05 NSED							
MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 MAC 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC MAC 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	Mac 1 MAC SED MAC 1 MAC DIST	0.30 PSED 0.5	0.05 NSED 0.5 MMAX							
MAC TEMP MT1 MT2 MT3 MT4 MK1 MK2 MK3 MK4 Mac 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	Mac 1 MAC SED MAC 1	0.30 PSED 0.5	0.05 NSED 0.5 MMAX							
MAC 1 7.0 15.0 24.0 34.0 0.1 0.99 0.99 0.01 MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG	PSED 0.5 MBMP 40.0	0.05 NSED 0.5 MMAX 500.0	0.05 DMSA	30.0 ANORM					
MAC STOICH MP MN MC Mac 1 0.005 0.08 0.45 DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1	PSED 0.5 MBMP 40.0	0.05 NSED 0.5 MMAX 500.0	0.05 DMSA	30.0 ANORM					
DOM LDOMDK RDOMDK LRDDK WB 1 0.10000 0.00100 0.00100 POM LPOMDK RPOMDK LRPDK POMS WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC DRAG MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0	0.05 NSED 0.5 MMAX 500.0 DWV 7e4	DMSA 8.00	30.0 ANORM 0.80	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
DOM LDOMDK RDOMDK LRDDK WB 1	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0	0.05 NSED 0.5 MMAX 500.0 DWV 7e4	DMSA 8.00	30.0 ANORM 0.80	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0	DMSA 8.00 MT3 24.0	30.0 ANORM 0.80	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0	DMSA 8.00 MT3 24.0	30.0 ANORM 0.80	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1 0.08000 0.00100 0.00100 0.10000 OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08	DMSA 8.00 MT3 24.0 MC 0.45	30.0 ANORM 0.80	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
OM STOIC ORGP ORGN ORGC ORGSI WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOIMAC 1 DOM WB 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100	30.0 ANORM 0.80 MT4 34.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1 0.00500 0.08000 0.45000 0.18000 OM RATE OMT1 OMT2 OMK1 OMK2 WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOIL MAC 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100	30.0 ANORM 0.80 MT4 34.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOI MAC 1 DOM WB 1 POM WB 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100	30.0 ANORM 0.80 MT4 34.0	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
WB 1 4.00000 30.0000 0.10000 0.99000	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOI MAC 1 DOM WB 1 POM WB 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000 ORGP	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100	30.0 ANORM 0.80 MT4 34.0 POMS 0.10000 ORGSI	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
CDAN WDAN TDAN DDAN CDANG	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOIL MAC STOIL MAC 1 DOM WB 1 POM WB 1 OM STOIC WB 1	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000 ORGP 0.00500	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100 ORGN 0.08000	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100 ORGC 0.45000	30.0 ANORM 0.80 MT4 34.0 POMS 0.10000 ORGSI 0.18000	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
CBOD KBOD TBOD RBOD <mark>CBODS</mark>	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOIL MAC STOIL MAC 1 DOM WB 1 POM WB 1 OM STOIC	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000 ORGP 0.00500	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100 ORGN 0.08000 OMT2	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100 ORGC 0.45000	30.0 ANORM 0.80 MT4 34.0 POMS 0.10000 ORGSI 0.18000 OMK2	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	
CDOD 1000 KDOD CDODO	MAC SED MAC 1 MAC DIST MAC 1 MAC DRAG MAC 1 MAC TEMP MAC 1 MAC STOIL MAC STOIL MAC 1 DOM WB 1 POM WB 1 OM STOIC WB 1 OM RATE	0.30 PSED 0.5 MBMP 40.0 CDSTEM 2.0 MT1 7.0 CH MP 0.005 LDOMDK 0.10000 LPOMDK 0.08000 ORGP 0.00500	0.05 NSED 0.5 MMAX 500.0 DWV 7e4 MT2 15.0 MN 0.08 RDOMDK 0.00100 RPOMDK 0.00100 ORGN 0.08000 OMT2	DMSA 8.00 MT3 24.0 MC 0.45 LRDDK 0.00100 LRPDK 0.00100 ORGC 0.45000	30.0 ANORM 0.80 MT4 34.0 POMS 0.10000 ORGSI 0.18000 OMK2	0.0 MK1	0.0 MK2	0.0 MK3	0.9 MK4	

```
0.04180 1.01470 1.00000
BOD 1
                                0.0
BOD 2
       0.13020 1.01470 1.00000
                                0.0
       0.04690 1.01470 1.00000
                                0.0
BOD 4
       0.08800 1.01470 1.00000
                                0.0
BOD 5
       0.05000 1.01470 1.00000
                                0.0
CBOD STOIC BODP
                BODN
                        BODC
BOD 1
      0.00500 0.08000 0.45000
BOD 2
       0.00500 0.08000 0.45000
      0.00500 0.08000 0.45000
BOD 3
      0.00500 0.08000 0.45000
BOD 4
      0.00500 0.08000 0.45000
BOD 5
PHOSPHOR PO4R PARTP
WB 1
      0.00100 0.00000
AMMONIUM NH4R NH4DK
WB 1
      0.00100 0.50000
NH4 RATE NH4T1 NH4T2 NH4K1 NH4K2
       5.00000 25.0000 0.10000 0.99000
WB 1
NITRATE NO3DK NO3S
WB 1
       0.05000 0.00000
NO3 RATE NO3T1 NO3T2 NO3K1 NO3K2
WB 1 5.00000 25.0000 0.10000 0.99000
STLTCA
         DSIR PSIS PSIDK PARTSI
WB 1
       0.10000 0.00000 0.30000 0.20000
TRON
          FER
                  FES
WB 1
       0.10000 0.00000
SED CO2
         CO2R
WB 1 0.10000
STOICH 1 O2NH4
               020M
WB 1 4.57000 1.40000
STOICH 2 O2AR
ALG1 1.10000 1.40000
STOICH 3 O2ER
               O2EG
      1.10000 1.40000
EPI1
STOICH 4 O2ZR
Z001 1.10000
STOICH 5 O2MR O2MG
MAC1 1.1 1.4
O2 LIMIT
          KDO
       0.10000
SEDIMENT
        SEDC SEDPRC SEDCI SEDK
                                      SEDS
                                            FSOD FSED
                                                           SEDBR
                                       0.1 1.00000 1.00000
WB 1
          ON
               ON 0.00000 0.10000
                                                             0.2
SOD RATE SODT1 SODT2 SODK1 SODK2
WB 1 4.00000 30.0000 0.10000 0.99000
           SOD
                  SOD
                         SOD
                              SOD
                                       SOD
                                              SOD
                                                      SOD
                                                             SOD
                                                                    SOD
S DEMAND
           0.6
                  0.6
                         0.6
                             0.6
                                       0.6
                                              0.6
                                                      0.6
                                                             0.6
                                                                    0.6
```

	0 6	0 6	0 6	0 6	0 6	0.6	0 6	0 6	0 6
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	0.6								
REAERATION	TYPE	EQN#	COEF1	COEF2	COEF3	COEF4			
WB1	LAKE	6							

<u>Lines removed from the V3.2 control file:</u> These are a result of eliminating the pumpback and line printer settings.

Here is the part of the V3.2 control file that was deleted:

DST TRIB	DTRC								
Br 1	ON								
Br 2	ON								
Br 3	OFF								
Br 4	OFF								
Br 5	OFF								
PUMPBACK -	JBG	KTG	KBG	JBP	KTP	KBP			
	0								
PRINTER	LJC								
	IV								
HYD PRINT		HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC	HPRWBC
NVIOL	OFF	OFF							
U	ON	ON							

Graph.npt file changes. These changes are a result of the new state variables in W2 and are highlighted below.

Hydrodynamic, constituent, and derived constituent names, formats, multipliers, and array viewer controls

	FMTH	HMULT	HMIN	HMAX	HPLTC	#
Timestep violations [NVIOL]	(I10)	1.0	-1.0	1.0	OFF	1
Horizontal velocity [U], m/s (1PE10.1)	1.0	1000	0.15	OFF	2
Vertical velocity [W], m/s (1PE10.1)	1.0	1E-6	-0.01	OFF	3
Temperature [T1], <o></o> C	(F10.2)	1.0	-10.0	-26.0	ON	4
Density [RHO], g/m^3	(F10.3)	1.0	997.0	1005.0	OFF	5
Vertical eddy viscosity [AZ], m^2/s	(F10.3)	1.0	-1E-08	0.01	OFF	6
Velocity shear stress [SHEAR], $1/s^2$	(F10.3)	1.0	-1E-08	0.01	OFF	7
<pre>Internal shear [ST], m^3/s</pre>	(F10.3)	1.0	-1E-08	0.01	OFF	8
Bottom shear [SB], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	9
Longitudinal momentum [ADMX], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	10
Longitudinal momentum [DM], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	11
Horizontal density gradient [HDG], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	12
Vertical momentum [ADMZ], m^3/s	(F10.3)	1.0	-1E-08	0.01	OFF	13
Horizontal pressure gradient [HPG], m^3/s	(F10.3)	1.0	-1E-08	10.0	OFF	14
Gravity term channel slope [GRAV], m^3/s	(F10.3)	1.0	0.0	0.0	OFF	15
	FMTC	CMULT	CMIN	CMAX	CPLTC	#
TDS, g/m^3	(F10.3)	1.0	-1.0	200.0	OFF	1
Age, days	(F10.3)	1.0	-1.0	-200.0	ON	2
Tracer, g/m^3	(F10.3)	1.0	-20.000	100.0	OFF	3
Bacteria, col/100ml	(F10.3)	1.0	-20.000	100.0	OFF	4
Conductivity, mhos	(F10.3)	1.0	-20.000	100.0	OFF	5
Chloride, mg/l	(F10.3)	1.0	-20.000	100.0	OFF	6

ISS, g/m^3	(F10.3)	1.0	-20.000	100.0	OFF	7
Phosphate, g/m^3	(F10.3)	1000.0	-1.0	500.0	OFF	8
Ammonium, g/m^3	(F10.3)	1000.0	-0.1000	300.0	OFF	9
Nitrate-Nitrite, g/m^3	(F10.3)	1.0	-0.1000	5.0	OFF	10
Dissolved silica, g/m^3	(F10.3)	1.0	-1.0	10.0	OFF	11
Particulate silica, g/m^3	(F10.3)	1.0	-0.2000	15.0	OFF	12
Total iron, g/m^3	(F10.3)	1.0	-0.1000	2.0	OFF	13
Labile DOM, g/m^3	(F10.3)	1.0	-0.1000	-3.0	OFF	14
Refractory DOM, g/m^3	(F10.3)	1.0	-0.1000	-4.0	OFF	15
Labile POM, g/m^3	(F10.3)	1.0	-0.1000	-3.0	OFF	16
Refractory POM, g/m^3	(F10.3)	1.0	-0.1000	-4.0	OFF	17
CBOD1, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	18
CBOD2, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	19
CBOD3, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	20
CBOD4, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	21
CBOD5, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	22
Algae, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	23
Dissolved oxygen, g/m^3	(F10.3)	1.0	-0.0100	-1.0	OFF	24
Inorganic carbon, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	25
Alkalinity, g/m^3	(F10.3)	1.0	-0.0100	3.0	OFF	26
zooplankton1, mg/m^3	(g10.3)	1000.0	-0.0100	1.0	OFF	27
LDOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	28
RDOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	29
LPOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	30
RPOM P, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	31
LDOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	32
RDOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	33
LPOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF OFF	34
		1000.0	0.0	1.0	OFF	
LPOM N, mg/m^3	(g10.3)	1000.0	0.0	1.0	OFF	34
LPOM N, mg/m ³ RPOM N, mg/m ³	(g10.3) (g10.3)	1000.0	0.0	1.0	OFF OFF	34 35
LPOM N, mg/m^3 RPOM N, mg/m^3CDNAME	(g10.3) (g10.3) FMTCD	1000.0 1000.0 CDMULT	0.0 0.0 CDMIN	1.0 1.0 CDMAX	OFF OFF CDPLTC	34 35 #
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3)	1000.0 1000.0 CDMULT 1.0	0.0 0.0 CDMIN -1.0	1.0 1.0 CDMAX 25.0	OFF OFF CDPLTC OFF	34 35 # 1
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0	1.0 1.0 CDMAX 25.0 50.0	OFF OFF CDPLTC OFF OFF	34 35 # 1 2
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0	1.0 1.0 CDMAX 25.0 50.0 25.0	OFF OFF CDPLTC OFF OFF	34 35 # 1 2 3
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0	1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0	OFF OFF CDPLTC OFF OFF OFF	34 35 # 1 2 3 4
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0	1.0 1.0 CDMAX 25.0 50.0 25.0 25.0	OFF OFF CDPLTC OFF OFF OFF OFF	34 35 # 1 2 3 4 5
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0 50.0	OFF OFF CDPLTC OFF OFF OFF OFF OFF OFF	34 35 # 1 2 3 4 5 6
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 25.0 50.0 15.0	OFF OFF CDPLTC OFF OFF OFF OFF OFF OFF OFF	34 35 # 1 2 3 4 5 6
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 50.0 15.0 25.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0 25.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) FMTCD (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 1000.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 25.0 25.0 25.0 25.0 25.0 50.0 15.0 25.0 -1.0 5.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 50.0 15.0 25.0 -1.0 5.0 20.0 5.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 15.0 25.0 15.0 20.0 5.0 20.0 60.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 50.0 15.0 25.0 -1.0 5.0 20.0 5.0 145.0 60.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0 5.0 20.0 5.0 145.0 60.0 50.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 50.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
LPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 50.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 9.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
EPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 145.0 60.0 50.0 10.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
EPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 15.0 25.0 15.0 20.0 5.0 20.0 5.0 20.0 60.0 50.0 145.0 60.0 50.0 10.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
EPOM N, mg/m^3 RPOM N, mg/m^3	(g10.3) (g10.3) (g10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3) (F10.3)	1000.0 1000.0 CDMULT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 0.0 CDMIN -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	1.0 1.0 1.0 CDMAX 25.0 25.0 25.0 25.0 15.0 25.0 -1.0 5.0 20.0 5.0 20.0 5.0 145.0 60.0 50.0 10.0	OFF	34 35 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DIFFERENCES BETWEEN VERSION 3.1 AND VERSION 3.2

There are minor differences in 2 input files between the 2 versions: **w2_con.npt** and the **graph.npt** file. All other files are the same between the 2 versions.

w2_con.npt

The only section where there is a slight difference in the control file is in the section where the inorganic suspended solids group settling velocities are entered. In Version 3.1, this section looks like this:

ALG EX	EXA	EXA	EXA	EXA	EXA	EXA			
	0.10000								
GENERIC	CGQ10	CG0DK	CG1DK	CGS					
CG 1	0.00000	-1.0000	0.00000	0.00000					
CG 2	0.00000	0.00000	0.00000	0.00000					
CG 3	1.04000	0.00000	0.50000	0.00000					
CG 4	0.00000	0.00000	0.00000	0.00000					
CG 5	0.00000	0.00000	0.00000	0.00000					
S SOLIDS	SSS								
	1.50000								
ALGAL RA	TE AG	AR	AE	AM	AS	AHSP	AHSN	AHSSI	ASAT
ALG1	2.00000	0.12000	0.02000	0.05000	0.04000	0.00500	0.00500	0.00000	50.0000

In Version 3.2, there is now a sediment resuspension capability for wind driven resuspension along the shores of lakes and reservoirs. The Version 3.2 control file has the following lines in this same section of the control file:

ALG EX	EXA	EXA	EXA	EXA	EXA	EXA			
	0.10000								
GENERIC	CG010	CG0DK	CG1DK	CGS					
GENERIC	~								
CG 1	0.00000	-1.0000	0.00000	0.00000					
CG 2	0.00000	0.00000	0.00000	0.00000					
CG 3	1.04000	0.00000	0.50000	0.00000					
CG 4	0.00000	0.00000	0.00000	0.00000					
CG 5	0.00000	0.00000	0.00000	0.00000					
S SOLIDS	SSS	SEDRC	TAUCR						
SS1	1.50000	OFF	0.00						
ALGAL RA	TE AG	AR	AE	AM	AS	AHSP	AHSN	AHSSI	ASAT
ALG1	2.00000	0.12000	0.02000	0.05000	0.04000	0.00500	0.00500	0.00000	50.0000

For Version 3.2, SSS is the settling velocity for particle group 1, SEDRC is the control which turns ON or OFF sediment resuspension, and TAUCR is the critical shear stress at which resuspension occurs. For Version 3.2, each line represents 1 SS group, while in Version 3.1, each group settling velocity is in the next 8 columns moving across the page.

graph.npt

The graph file controls output formatting and the graphing parameters used in Array Viewer (only for the PC platform). The files have been rearranged significantly. A Version 3.1 graph file is shown below:

Constituent, hydrodynamic, and derived constituent names, formats, multipliers, and array viewer controls CMIN CMAX CPLTC # TDS g/m^3 or Salinity kg/m^3 1.00000 -1.0000 200.000 OFF 1 Generic Constituent, g/m^3, #1 1.00000 -1.0000 -200.00 ON 2 Generic Constituent, g/m^3, #1

Generic Constituent, g/m^3, #2

Generic Constituent, g/m^3, #3

Generic Constituent, g/m^3, #3

Generic Constituent, g/m^3, #4

Generic Constituent, g/m^3, #4

Generic Constituent, g/m^3, #5

Suspended solids, g/m^3, #1

Phosphate, g/m^3

Ammonium, g/m^3

Dissolved silica, g/m^3

Particulate silica, g/m^3

Total iron, g/m^3

1.00000 -1.0000 -2.0000

1.0000 -1.0000 -3.0000

1.00000 -1.0000 -5.0000

1.00000 -0.1000 -5.0000

1.00000 -0.1000 -5.0000

1.00000 -0.2000 15.0000

1.00000 -0.2000 15.0000

1.00000 -0.2000 15.0000

1.00000 -0.2000 15.0000 OFF 3 OFF 4 OFF 5 OFF 6 OFF 7 OFF OFF 9 OFF 10 OFF 11 OFF 12 OFF 13 14 Labile DOM, q/m^3 1.00000 -0.1000 -3.0000 OFF 1.00000 -0.1000 -3.0000 1.00000 -0.1000 4.00000 1.00000 -0.1000 3.00000 1.00000 -0.1000 4.00000 1.00000 -0.1000 10.0000 1.00000 -0.1000 10.0000 1.00000 -0.1000 10.0000 1.00000 -0.1000 10.0000 1.00000 -0.1000 10.0000 1.00000 -0.1000 10.0000 1.00000 -0.1000 15.0000 1.00000 -1.0000 10.0000 15 Refractory DOM, q/m^3 OFF 16 OFF Labile POM, g/m^3 17 OFF Refractory POM, g/m^3 18 CBOD, g/m^3, #1 OFF 19 CBOD, g/m^3 , #2 OFF #3 20 CBOD, g/m^3 , OFF CBOD, g/m^3 , #4 21 OFF CBOD, g/m^3 , OFF 22 Algae, g/m^3, #1 OFF 23 Dissolved oxygen, g/m^3 OFF 24 Inorganic carbon, g/m^3 1.00000 -1.0000 10.0000 OFF 25 Alkalinity, g/m^3 1.00000 -1.0000 200.000 OFF 26 HMAX HPLTC HFMT HMIN Timestep violations [NVIOL] (F10.0) -1.0000 100000 OFF
Horizontal velocity [U], m/s (1PE10.1) -0.0100 0.10000 ON
Vertical velocity [W], m/s (1PE10.1) -1.0E-06 0.01000 OFF
Temperature [T1], <o/>
Density [RHO], g/m^3 (F10.2) 997.000 1005.00 OFF
Vertical eddy viscosity [AZ], m^2/s (1PE10.1) -1E-08 0.00100 OFF
Velocity shear stress [SHEAR], 1/s^2 (1PE10.1) -1E-08 0.01000 OFF
Internal shear [ST], m^3/s (1PE10.1) -1E-08 0.01000 OFF
Bottom shear [SB], m^3/s (1PE10.1) -1E-08 0.01000 OFF (F10.0) -1.0000 100000 OFF ON ON 5 6 7 8 (1PE10.1) -1E-08 0.01000 OFF 9 Bottom shear [SB], m^3/s Longitudinal momentum [ADMX], m^3/s (1PE10.1) -1E-08 0.01000 Longitudinal momentum [DM], m^3/s (1PE10.1) -1E-08 0.01000 OFF 10 OFF 11 Horizontal density gradient [HDG], m^3/s (1PE10.1) -1E-08 0.01000 OFF 12 Vertical momentum [ADMZ], m^3/s (1PE10.1) -1E-08 0.01000 OFF 13 Horizontal pressure gradient [HPG], m^3/s (1PE10.1) -1E-08 0.01000 OFF Gravity term channel slope [GRAV], m^3/s (1PE10.1) -1E-08 10.0000 OFF 15 CDMIN CDMAX CDPLTC # Dissolved organic carbon, g/m^3 1.00000 -1.0000 3.00000 OFF 1 OFF 2. 1.00000 -1.0000 50.0000 Total organic carbon, g/m^3 OFF 3 OFF 4 OFF 5 OFF 6

OFF

Total nitrogen, g/m^3	1.00000 -1.0000	50.0000	OFF	8
Dissolved organic phosphorus, mg/m^3	1000.00 -1.0000	15.0000	OFF	9
Particulate organic phosphorus, mg/m^3	1000.00 -1.0000	15.0000	OFF	10
Total organic phosphorus, mg/m^3	1000.00 -1.0000	25.0000	OFF	11
Total phosphorus, mg/m^3	1000.00 -1.0000	-1.0000	OFF	12
Algal production, g/m^2/day	1.00000 -1.0000	5.00000	OFF	13
Chlorophyll a, mg/m^3	1000.00 -1.0000	-70.000	OFF	14
Total algae, g/m^3	1.00000 -1.0000	5.00000	OFF	15
Oxygen % Gas Saturation	1.00000 -5.0000	145.000	OFF	16
Total suspended Solids, g/m^3	1.00000 -1.0000	60.0000	OFF	17
Total Inorganic Suspended Solids, g/m^3	1.00000 -1.0000	50.0000	OFF	18
Carbonaceous Ultimate BOD, g/m^3	1.00000 -1.0000	20.0000	OFF	19
рн	1.00000 6.00000	9.00000	OFF	20
CO2	1.00000 -1.0000	10.0000	OFF	21
HCO3	1.00000 -1.0000	10.0000	OFF	22
CO3	1.00000 -1.0000	10.0000	OFF	23

An example of the same graph file but for Version 3.2 is shown below:

Hydrodynamic, constituent, and derived constituent names, formats, multipliers, and array viewer controls

	FMTH	HMULT	HMIN	HMAX	HPLTC	#
Timestep violations [NVIOL]	(I10)	1.0	-1.0	1.0	OFF	1
Horizontal velocity [U], m/s	(Z10.8)	1.0	1000	0.15	ON	2
Vertical velocity [W], m/s	(Z10.8)	1.0	1E-6	-0.01	OFF	3
Temperature [T1], <o></o> C	(Z10.8)	1.0	-10.0	-26.0	ON	4
Density [RHO], q/m^3	(Z10.8)	1.0	997.0	1005.0	OFF	5
Vertical eddy viscosity [AZ], m^2/s	(Z10.8)	1.0	-1E-08	0.01	OFF	6
Velocity shear stress [SHEAR], 1/s^2	(Z10.8)		-1E-08	0.01	OFF	7
Internal shear [ST], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	8
Bottom shear [SB], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	9
Longitudinal momentum [ADMX], m^3/s	(Z10.8)		-1E-08	0.01	OFF	10
Longitudinal momentum [DM], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	11
Horizontal density gradient [HDG], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	12
Vertical momentum [ADMZ], m^3/s	(Z10.8)	1.0	-1E-08	0.01	OFF	13
Horizontal pressure gradient [HPG], m^3/s	(Z10.8)		-1E-08	10.0	OFF	14
Gravity term channel slope [GRAV], m^3/s	(Z10.8)	1.0	0.0	0.0	OFF	15
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	, , , ,					
	FMTC	CMULT	CMIN	CMAX	CPLTC	#
TDS, g/m^3	(Z10.8)	1.0	-1.0	200.0	OFF	1
Age, days	(Z10.8)	1.0	-1.0	-200.0	ON	2
Tracer, g/m^3	(Z10.8)	1.0	-20.000	100.0	OFF	3
Bacteria, col/100ml	(Z10.8)	1.0	-20.000	100.0	OFF	4
Conductivity, mhos	(Z10.8)	1.0	-20.000	100.0	OFF	5
Chloride, mg/l	(Z10.8)	1.0	-20.000	100.0	OFF	6
ISS, g/m^3	(Z10.8)	1.0	-20.000	100.0	OFF	7
Phosphate, g/m^3	(Z10.8)	1000.0	-1.0	500.0	OFF	8
Ammonium, g/m^3	(Z10.8)	1000.0	-0.1000	300.0	OFF	9
Nitrate-Nitrite, g/m^3	(Z10.8)	1.0	-0.1000	5.0	OFF	10
Dissolved silica, g/m^3	(Z10.8)	1.0	-1.0	10.0	OFF	11
Particulate silica, g/m^3	(Z10.8)	1.0	-0.2000	15.0	OFF	12
Total iron, g/m^3	(Z10.8)	1.0	-0.1000	2.0	OFF	13
Labile DOM, g/m^3	(Z10.8)	1.0	-0.1000	-3.0	OFF	14
Refractory DOM, g/m^3	(Z10.8)	1.0	-0.1000	-4.0	OFF	15
Labile POM, g/m^3	(Z10.8)	1.0	-0.1000	-3.0	OFF	16
Refractory POM, g/m^3	(Z10.8)	1.0	-0.1000	-4.0	OFF	17
CBOD1, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	18
CBOD2, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	19
CBOD3, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	20
CBOD4, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	21
CBOD5, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	22

Algae, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	23
Dissolved oxygen, g/m^3	(Z10.8)	1.0	-0.0100	-1.0	OFF	24
Inorganic carbon, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	25
Alkalinity, g/m^3	(Z10.8)	1.0	-0.0100	3.0	OFF	26
CDNAME	FMTCD	CDMULT	CDMIN	CDMAX	CDPLTC	#
Dissolved organic carbon, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	1
Particulate organic carbon, g/m^3	(F10.3)	1.0	-1.0	50.0	OFF	2
Total organic carbon, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	3
Dissolved organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	4
Particulate organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	25.0	OFF	5
Total organic nitrogen, g/m^3	(F10.3)	1.0	-1.0	50.0	OFF	6
Total Kheldahl Nitrogen, g/m^3	(F10.3)	1.0	-1.0	15.0	OFF	7
Total nitrogen, g/m^3	(F10.3)	1.0	-1.0	15.0	OFF	8
Dissolved organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	25.0	OFF	9
Particulate organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	-1.0	OFF	10
Total organic phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	5.0	OFF	11
Total phosphorus, mg/m^3	(F10.3)	1000.0	-1.0	20.0	OFF	12
Algal production, g/m^2/day	(F10.3)	1.0	-1.0	5.0	OFF	13
Chlorophyll a, mg/m^3	(F10.3)	1.0	-5.0	145.0	OFF	14
Total algae, g/m^3	(F10.3)	1.0	-1.0	60.0	OFF	15
Oxygen % Gas Saturation	(F10.3)	1.0	-1.0	50.0	OFF	16
Total suspended Solids, g/m^3	(F10.3)	1.0	-1.0	5.0	OFF	17
Total Inorganic Suspended Solids, g/m^3	(F10.3)	1.0	-1.0	20.0	OFF	18
Carbonaceous Ultimate BOD, g/m^3	(F10.3)	1.0	5.0	9.0	OFF	19
рН	(F10.3)	1.0	-1.0	10.0	OFF	20
CO2	(F10.3)	1.0	-1.0	10.0	OFF	21
HCO3	(F10.3)	1.0	-1.0	10.0	OFF	22
CO3	(F10.3)	0.0	0.0	0.0	OFF	23

In Version 3.2, the user has format control of all output variables, as well as MULT control (see User Manual). In Version 3.1, some groups had one but not the other. Also, in Version 3.2, the groups (HNAME, CNAME, CDNAME) were reordered.

BUG FIXES AND ENHANCEMENTS BETWEEN VERSIONS

There have been many updates and bug fixes between Version 3.6 and Version 3.7 that were part of the development of Version 3.7. These have not been documented. Since the release of the non-beta version of Version 3.7, we have kept a list of code fixes and enhancements. Also, we have included below a series of tables with code fixes for Version 3.6 and earlier versions as a reference to earlier versions.

W2 V3.7 Bug Fixes, Enhancements and User Manual Changes

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
1	W2	Fish habitat limits	Changed temperature and DO criteria from t2(k,i) <fishtemph(ii).and.t2(k,i)>fish templ(ii).and.o2(k,i)>fishdo(ii) to t2(k,i)<=fishtemph(ii).and.t2(k,i)>fishtempl(ii).and.o2(k,i)>=fishdo(ii) This update is reflected in the manual. Hence the high temperature limit and the dissolved oxygen minimum is less than or equal to given value rather than less than.</fishtemph(ii).and.t2(k,i)>	8/7/2012
2	W2	Structure, gate, pump, pipe, withdrawal output files	Added code to ensure that if flow is '0' in an outlet structure, that the corresponding temperature and concentration in the outlet file is written as '-99.0'. Previously this was not fully implemented in the code. Code such as this was inserted in several places in the subroutine outputa2.f90: IF(QGT(JS)==0.0)THEN TAVGW(JWD)=-99.0 CAVGW(JWD,:)=-99.0 CDAVGW(JWD,:)=-	8/13/2012
3	PREW2	Format updates	Several output updates were made for warnings and errors	8/16/2012

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
4	Resource files for W2	Compiling files	Updated some corrupted resource files that were used to compile the source code. Also, zipped up source code and compiler settings together so that file locations are correct for using the Intel compiler.	9/12/2012
5	W2 and PREW2	Read csv files	By inserting the character '\$' as the first character of the first line, the following files can now be read in free-format or csv format: met, lpr, vpr, wsc, met, cin, ctr, cdtr, cpre, qot, and qwd. This is described in a Word document that accompanies the download package. The preprocessor has also been updated for file checks. This is part of the Version 3.71 update.	9/12/2012
6	W2	Read input file	An input format bug was fixed for a system with more than 9 waterbodies. DO JD=1,NDC !READ (CON,'(A8,(:9A8))') CDNAME2(JD),(CDWBC(JD,JW), JW=1,NWB) READ (CON,'(A8,(:9A8):/(8X,(:9A8)))') CDNAME2(JD),(CDWBC(JD,JW), JW=1,NWB) !cb 9/13/12 END DO READ (CON,'(/)') ! DO JF=1,NFL do jf=1,73 ! Fix this later !READ (CON,'(A8,(:9A8))') KFNAME2(JF),(KFWBC(JF,JW), JW=1,NWB) READ (CON,'(A8,(:9A8):/(8X,(:9A8)))') KFNAME2(JF),(KFWBC(JF,JW), JW=1,NWB) !cb 9/13/12 END DO This had the effect of turning OFF output for derived constituents for waterbody 10.	9/13/2012
7	GUI	Time series elevation	The GUI read in values of ETSR as integers rather than real numbers. This was fixed.	10/30/12
8	W2	Spillways Lateral	Lateral spillways when connected to other model segments were sometimes not connecting as a tributary to the downstream segment. This has been fixed.	10/30/12
9	W2	W2Tools output	In place of the Vector Plot Output (VPL), a new output was added that allows use of the W2Tools post-processing package. This is part of the Version 3.71 update.	10/30/12

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
10	W2	User Manual	The User Manual has been updated with the new model features as shown in 5 and 9 above. In addition a separate user manual file shows how to use the w2tools post-processor. This is in the directory for W2tools. This is the version 3.71 update.	10/30/12
11	W2	Water quality and temperature	A new calculation technique was added that eliminates calling the Tri-diagonal subroutine. These were built into the temperature and water quality subroutines. This change results in improvements in computational speed of from less than 5% to over 20% for water quality models with lots of water quality state variables.	10/30/2012
12	PREW2	More checks	Added more error trapping for input files. This is an effort for the error trapping to occur before the code bombs. Fixed a couple of regression errors as a result of this fix.	11/2/2012,
13	Excel macro utility		Added an Excel macro utility to aid in writing out input files to CE-QUAL-W2	11/5/2012

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
14	W2	Withdrawal subroutine	Fixed an IF test that used the wrong variable in the dynamic port allocation algorithm. Also added code to allow the code to test for temperatures at the outlet levels specified.	11/13/12
			Deleted line of code is underlined followed by the fix. DO J=1,NUMTSPLT !REODERING OUTLETS SO THAT HIGHEST ELEVATION STRUCTURE ON TOP (ASSUMING 2 SPLIT OUTLETS) ! IF(TCNTR(J) == ' ST')THEN IF(TSPLTCNTR(J) == ' ST')THEN ! cb 11/11/12 IF(ESTR(JSTSPLTT(J,1),TSPLTJB(J)) < ESTR(JSTSPLTT(J,2),TSPLTJB(J)))THEN JSTSPLT(J,2) = JSTSPLTT(J,2) JSTSPLT(J,2) = JSTSPLTT(J,1) END IF ! ELSE IF(TCNTR(J) == ' WD')THEN ELSE IF(TSPLTCNTR(J) == ' WD')THEN ! cb 11/11/12 IF(EWD(JSTSPLTT(J,1)) < EWD(JSTSPLTT(J,2)))THEN	
			IF(TSPLTJB(J) == JB .AND. TSPLTCNTR(J) == ' ST')THEN QALL=0.0 DO JJ=1,NOUTS(J) QALL=QALL+QSTR(JSTSPLT(J,JJ),TSPLTJB(J)) ! SUM UP ALL THE FLOWS ELR = SINA(JB)*DLX(DS(JB))*0.5 DO K=KTWB(JW),KB(DS(JB)) IF (EL(K,DS(JB))-ELR < ESTR(JSTSPLT(J,JJ),TSPLTJB(J))) EXIT !SW 10/17/01 END DO KSTR = K-1 KSTRSPLT(JJ) = MIN(KSTR,KB(DS(JB))) ENDDO DO JJ=1,NOUTS(J) ! cb 11/11/12 dividing total flow between outlets for temperature test QSTR(JSTSPLT(J,JJ),TSPLTJB(J)) = qall/real(nouts(j))	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
15	W2	Reading in names of WQ variables	In case a user does not enter the units in graph.npt, the code improperly parses the WQ variable name. In this case the output name is a blank. To avoid this issue, extra code was added to preserve the variable name even if no units were added to the graph.npt list. L1 = SCAN (CNAME(JC),',')+2 IF(L1 == 2)L1=43 ! SW 12/3/2012 Implies no comma found L2 = SCAN (CNAME(JC)(L1:43),' ')+L1 IF(L2 > 43)L2=43 ! SW 12/3/2012 CUNIT(JC) = CNAME(JC)(L1:L2) CNAME1(JC) = CNAME(JC)(1:L1-3) CNAME3(JC) = CNAME1(JC) DO WHILE (L3 < L1-3)	12/3/2012
16	PREW2	SEDS and SEDK	The variable names were switched in reading the control file in the preprocessor perhaps leading to incorrect warnings/errors being tagged. The proper order was restored: !READ (CON,'(/A8/(8X,2A8,6F8.0,A8))', ERR=400) AID, (SEDC(JW), PRNSC(JW), SEDCI(JW), seds(jw), SEDDK(JW), FSOD(JW), & ! FSED(JW), sedbr(jw), DYNSEDK(JW), JW=1,NWB) SW 6/1/07 READ (CON,'(/A8/(8X,2A8,6F8.0,A8))', ERR=400) AID, (SEDC(JW), PRNSC(JW), SEDCI(JW),	12/30/12
17	Excel macro utility w2tool	Integer/Long variables	Some loose ends were corrected in the Visual Basic code built into the Excel macros.	1/2/2013
18	W2	TDG output	A series of code changes were made to fix some issues that arose for computing the impact of a structure on downstream TDG. These fixes were made in subroutines Withdrawal, outputa2w2tools, w2modules, and hydroinout. These affected calculation of output of dissolved gas concentration for output files for spillways or gates that had dissolved gas equation.	1/23/2013

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
19	W2	Reading in dynamic extinction coefficient	For temperature only studies, the model did not update the dynamic light extinction coefficient correctly. This has been fixed by the added code below: DO JW=1, NWB IF (READ_EXTINCTION(JW)) GAMMA(:, US(BS(JW)):D S(BE(JW))) = EXH2O(JW) ! SW 1/28/13 KT = KTWB(JW) IF (.NOT. NO_HEAT(JW)) THEN	1/28/2013
20	W2	Input format when 9 WBs	A specific input read error occurred when 9 waterbodies were present as a result of an earlier bug fix: The new read statements occur in 2 places: READ (CON, '(A8,9A8,/(:8X,9A8)))') CDNAME2(JD), (CDWBC(JD,JW), JW=1,NWB) !cb 9/13/12 sw 2/18/13 READ (CON, '(A8,9A8,/(:8X,9A8)))') KFNAME2(JF), (KFWBC(JF,JW), JW=1,NWB) !cb 9/13/12 sw2/18/13	2/18/13
21	PREW2	More checks added	Additional checks were added to warn users of gaps in meteorological data when interpolation may be inappropriate.	2/20/2013
22	W2 User Manual	Updated	Updated User Manual – many small additions and edits – REV3.	2/20/2013
23	PREW2	Improved an error check	Updated an error check for choosing inactive segments for ISNP output	3/21/2013
24	PREW2	More checks added	Added checks for inflow temperature and tributary temperatures	3/28/2013

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
28	W2 tools Excel macro	Update	More robust tools release	6/21/2013
29	PRE-W2	Label error	A label error for one spillway error was fixed. It mistakenly used 'gate'.	7/2/2013
30	W2	CPL output	A slight change in output format for the 'raw' cpl output file format was made. No change was made in the tecplot output format. DO I=CUS(JB), DS(JB) WRITE (CPL(JW), '(A38/(9(F10.3,2X)))') CDNAME(CDN(JD,JW)), (CD(K,I,CDN(JD,JW))*CDMULT(CDN(JD,JW)), K=KTWB(JW), KB(I)) ! cb 6/28/13 end do !WRITE (CPL(JW), '(A38/(9(F10.3,2X)))') CDNAME(CDN(JD,JW)), ((CD(K,I,CDN(JD,JW))*CDMULT(CDN(JD,JW)), & ! SW 8/12/06 !K=KTWB(JW), KB(I)), I=CUS(JB), DS(JB)) ! CB 1/03/05	7/31/13
31	W2	Read input file	A regression error that cropped up when there were 9 or greater than 10 waterbodies has been fixed. This had to do with reading in derived and flux variables in the control file. DO JD=1,NDC If (nwb < 10) READ (CON, '(A8, (:9A8))') CDNAME2(JD), (CDWBC(JD,JW), JW=1,NWB) If (nwb >= 10)	8/13/13
32	W2	New compiler	Upgraded to the Intel XE 13.1.3.198 compiler. New W2 executables for 32 bit and 64 bit.	8/13/13
33	W2	INIT WL	An error was fixed in the initial water level computation program for rivers. The code below should have the subscript JB instead of J. DO JJW=1, NWB DO JJB=BS (JJW), BE (JJW) IF (DHS (JB) > US (JJB) .AND. DHS (J) < DS (JJB)) THEN JBD=JJB END IF END DO	8/20/13

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
34	W2	INIT WL	There was an index error with gates in the initial water level computation. The old code is shown below: IF (ELWS (ID) < WSUP) THEN IF (ELWS (IDSP (JS)) > WSUP) WSUP = ELWS (IDSP (JS)) ! CHECKING TO SEE IF DOWNSTREAM WS ELEVATION ISN'T ALREADY 'HIGH' ELWS (ID) = WSUP The new code is IF (ELWS (IDGT (JG)) > WSUP) WSUP = ELWS (IDGT (JG)) ! CHECKING TO SEE IF DOWNSTREAM WS ELEVATION ISN'T ALREADY 'HIGH' WX 8/21/13	8/21/2013
35	W2	GATE	Cleaning up some code in the gate algorithm. Old code: IF (A2GT(JG) /= 0.0 .AND. IDGT(JG) /= 0.0) THEN New code: IF (A2GT(JG) /= 0.0 .AND. IDGT(JG) /= 0) THEN	8/21/2013
36	W2	TSS computation	Updated the computation for the derived variable TSS to include zooplankton and the particulate form of CBOD. A formula was added to the User Manual reflecting this change. New code includes IF (CBODS (IBOD) > 0.0) TOTSS (K, I) = TOTSS (K, I) + CBOD (K, I, IBOD) / O2OM (JW) ! SW 9/5/13 Added particulate CBOD to TSS computation TOTSS (K, I) = TOTSS (K, I) + ZOO (K, I, JZ) ! SW 9/5/13 Added zooplankton to TSS computation	9/6/2013

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug
"	PREW2 or	Enhancement	Description of Bug/ Limancement	Fixed or
	GUI	Туре		Enhancemen
				t added
37	W2	Spillway-LAT	When a spillway was defined with IDSP=0 and LAT, a	9/11/2013
37	VV2	Spiriway LAT	tributary was defined incorrectly. The new code is	3/11/2013
			shown below:	
			IF (IDSP(JS) /= 0)then ! cb 9/11/13	
			JTT = JTT+1	
			QTR(JTT) = QSP(JS) ITR(JTT) = IDSP(JS)	
			PLACE_QTR(JTT) = PDSPC(JS) == '	
			DENSITY' SPECIFY QTR(JTT) = PDSPC(JS) == '	
			SPECIFY'	
			IF (SPECIFY_QTR(JTT)) THEN	
			ELTRT(JTT) = ETDSP(JS) ELTRB(JTT) = EBDSP(JS)	
			END IF	
			JBTR(JTT) = JBD end if ! cb 9/11/13	
38	W2	32 bit exe on	Recompiled with new settings from Visual Studio 2012	9/11/2013
		XP	to (hopefully) run on XP systems with 32 bit OS	3, ==, ====
		AF	, , , , , , , , , , , , , , , , , , ,	
39	W2	End	Added new close open files in the end_simulation	9/25/13
		Simulation	subroutine. This is merely cleaning up the code to be	
			consistent in closing all open files when a 'Stop' is	
			executed. This should have no effect on the end user.	
			Part of this new code is shown below:	
			<pre>IF(SELECTC == ' ON')then ! SW</pre>	
			9/25/13 New Section on closing files ifile=1949	
			do jb=1,nbr	
			<pre>if(nstr(jb) > 0)then ifile=ifile+1</pre>	
			close(ifile)	
			endif	
			enddo if(nwd > 0)then	
			ifile=ifile+1	
			<pre>close(ifile) endif</pre>	
			endif	
			IF (DOWNSTREAM_OUTFLOW) THEN	
			JFILE=0	
			DO JWD=1,NIWDO CLOSE(WDO(JWD,1))	
			CLOSE(WDO(JWD,2))	
			IF (CONSTITUENTS) THEN CLOSE (WDO(JWD,3))	
			END IF	
			IF (DERIVED_CALC) THEN	
			CLOSE(WDO(JWD,4)) END IF	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug
	PREW2 or	Enhancement		Fixed or
	GUI	Туре		Enhancemen
		,,		t added
40	W2	Pumps – Lateral	Fixed several sections of code in the PUMP algorithm in the hydroinout.f90 routine. Under some conditions such as specifying "Lateral", the PUMP algorithm may not have moved the water from the upstream to the downstream segment correctly. This has been fixed and tested. Part of the code changes are shown below: IF (LATERAL_PUMP(JP)) THEN ELW = EL(KTWB(JWU), IUPU(JP))- Z(IUPU(JP))*COSA(JBU) ! JWW = JWW+1 ! SW 9/25/13 ! JBWD(JWW) = JBU ! IWD(JWW) = JUPU(JP) ELSE ELW = EL(KTWB(JWU), IUPU(JP))- Z(IUPU(JP))*COSA(JBU)- SINA(JBU)*DLX(IUPU(JP))*0.5 ! JSS(JBU) = JSS(JBU)+1 ! SW 9/25/13 END IF IF (PUMPON(JP)) THEN JLAT = 1 JWW = JWW+1 ! SW 9/25/13 CALL LATERAL_WITHDRAWAL ! (JWW) QSS(K,I) = QSS(K,I)-QSW(K,JWW) END DO IF (IDPU(JP) /= 0) THEN ! MOVED CODE SW 9/25/13 JTT = JTT+1 ELSE JSS(JBU) = JSS(JBU) = JSS(JBU)+1 ! SW 9/25/13 KTSW(JSS(JBU),JBU) = KTPU(JP)	9/25/13

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
41	W2	Clean up memory issues	A series of minor memory issues were cleaned up. This should have no impacts on current model runs. These were usually uninitialized memory. Code changes made include: READ (CON,'(/)') KFNAME2=' ' ! SW 9/27/13 INITIALIZE ENTIRE ARRAY KFWBC =' ' ! SW 9/27/13 INITIALIZE ENTIRE ARRAY READ (CON,'(//(:8X,918))') (KBWD(JW), JW=1,NWD); TRC=' ' ! SW 9/27/13 INITIALIZATION SINCE ALLOCATION IS TO NTRT READ (CON,'(//(:8X,9A8))') (TRC(JT), JT=1,NTR) EHSN(JE), EHSSI(JE), JE=1,NEP) SW 9/27/13 READ (CON,'(//(8X,2F8.0,18,F8.0))') (ESAT(JE), EHS(JE), ENEON(JE), ENPR(JE), ENEON(JE), ENPR(JE), EX(JE), E	9/27/13

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
42	W2	CPL output	Code was added to eliminate writing out the habitat index to the CPL file for Tecplot when HABITATC is OFF. IF(I /= DS(JB)+1)THEN IF(HABTATC == 'ON')THEN WRITE (CPL(JW), 9999) X1(I), ELWS(I), U(K,I), WRITE (CPL(JW), 9999) X1(I), ELWS(I), U(K,I), HAB(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ELSE WRITE (CPL(JW), 9999) X1(I), ELWS(I), U(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ENDIF ELSE XDUM=-99.0 WRITE (CPL(JW), 9999) X1(I), ELWS(I), XDUM, XDUM, XDUM, XDUM, XDUM, XDUM, JJ=1,NAC) ENDIF DO K=KTWB(JW), KMX-1 IF(I /= DS(JB)+1 .AND. K <= KB(I))THEN IF(HABTATC == 'ON')THEN WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHM(K,I), U(K,I), WK(K,I), T1(K,I), RHO(K,I), HAB(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ELSE WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHM(K,I), U(K,I), WK,I), T1(K,I), RHO(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ENDIF IF(K == KB(I))THEN IF(HABTATC == 'ON')THEN WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHB(K,I), U(K,I), WK,I), T1(K,I), RHO(K,I), HAB(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ELSE WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHB(K,I), U(K,I), WK,I), T1(K,I), RHO(K,I), HAB(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ELSE WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHB(K,I), U(K,I), T1(K,I), RHO(K,I), HAB(K,I), (C2(K,I,CN(JC)), JC=1,NAC) ELSE WRITE (CPL(JW), 9999) X1(I), ELWS(I)-DEPTHB(K,I), U(K,I), T1(K,I), RHO(K,I), C2(K,I,CN(JC)), JC=1,NAC) ENDIF WRITE (CPL(JW), *)'TITLE="CE-QUAL-W2"' IF(HABTATC == 'ON')THEN WRITE (CPL(JW), 19233) (CNAME2(CN(JN)), JN=1,NAC) ELSE WRITE (CPL(JW), 19233) (CNAME2(CN(JN)), JN=1,NAC)	9/28/13
			ENDIF! sw 9/28/13 19233 FORMAT('VARIABLES="Distance, m","Elevation, m","U","W","T","RHO", "HABITAT" ', <nac>(',"',A8,'"')) 19234 FORMAT('VARIABLES="Distance, m","Elevation, m","U","W","T","RHO" ',<nac>(',"',A8,'"'))! sw 9/28/13</nac></nac>	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
43	W2	SPECIFY TRIB	In specifying the elevation between top and bottom for an inflow tributary, the code put the inflow 1 layer below it should have been in many cases. This has been fixed by the additional code shown below: IF (SPECIFY_QTR(JT)) THEN KTTR(JT) = 2 DO WHILE (EL(KTTR(JT),I) > ELTRT(JT)) DO WHILE (EL(KTTR(JT),I) > ELTRT(JT) .and. EL(KTTR(JT)+1,I) > ELTRT(JT)) ! SW 10/3/13 KTTR(JT) = KTTR(JT)+1 END DO	10/3/2013
44	W2	CWO or CWDO output	Fixed a format overflow in writing out concentrations in a withdrawal output file. IF (QWDO(J) /= 0.0) CWDO(CN(JC),J) = CWDO(CN(JC),J)/QWDO(J) WRITE (CWDOC(CN(JC)),'(F8.3)') CWDO(CN(JC),J) ! SW 9/23/13 Changed format from G8.3 to F8.3 to avoid format overflow CWDOC(CN(JC)) = ADJUSTR(CWDOC(CN(JC))) IF (QWDO(J) /= 0.0) CDWDO(CDN(JD,JW),J) = CDWDO(CDN(JD,JW),J)/QWDO(J) WRITE (CDWDOC(CDN(JD,JW)),'(F8.3)') CDWDO(CDN(JD,JW),J) ! SW 9/23/13 Changed format from G8.3 to F8.3 to avoid format overflow CDWDOC(CDN(JD,JW)) = ADJUSTR(CDWDOC(CDN(JD,JW)))	10/4/2013
45	W2 and PREW2	Inflow, Tributary, Distributary and Shade inputs	Added csv file format as a new file input format for flow and temperature files for inflows, tributaries and distributed tributaries. Also, the shade file is now in csv file format. This enhancement includes updates to the preprocessor and W2 codes. Also several minor bug fixes were made on the Preprocessor.	7/15/14
46	W2	Resuspension of inorganic solids	A resuspension formula was corrected. See the code change below: HS = 0.283 *U2/G*0.283*TANH (COEF1) *TANH (COEF2/TANH (COEF1)) !TS = 2.0*PI*U2/G*1.2* TANH (COEF3) *TANH (COEF4/TANH (COEF3)) TS = 2.0*PI*sqrt(U2)/G*1.2* TANH (COEF3) *TANH (COEF4/TANH (COEF3)) ! cb 5/9/14	7/15/14
47	W2	Tecplot output	When the user sets CPL output for Tecplot, the output format when HABITAC=OFF was incorrect. This has been fixed.	7/15/14

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
48	PREW2	Warnings	Fixed a name inconsistency for developing warnings for input concentrations ! IF (NAME /= 'Residence time' .AND. NAME /= 'Water age') THEN IF (NAME /= 'Residence time' .AND. NAME /= 'AGE') THEN ! SW 7/15/14 CALL WARNINGS	7/15/14
49	W2	TSR filename	The filename in w2_con.npt for TSR is used for the output filenames. In order to account for complex paths that include more than one '.', the following change was made with the BACK=.TRUE. command which checks from the right-hand-side rather than left-hand-side of the character string ! L1 = SCAN(TSRFN, '.') L1 = SCAN(TSRFN, '.', BACK=.TRUE.)	8/22/14
50	PREW2	Hydraulic structure warnings	Added many new hydraulic structure warnings (gates, spillways, pumps, pipes, internal weirs) for cases where KBSTR was less than KB and fixed a few error messages for these structure checks.	9/10/14
51	W2	TSR output	The time series file has added the surface heat flux terms (net, short wave solar net, long wave radiation net, back radiation heat flux, evaporation heat flux, conductive heat flux) to the output. The manual was also updated.	1/15/15
52	W2	Interpolation of wind direction	In some cases, the wind direction interpolation was incorrect. Code was added to reduce the wind direction angle to less than 2*pi before the interpolation is performed and to consider another possible interpolation case. Thanks to Wenwei Xu for pointing this out. New code is shown below: ! CONVERT PHIO AND PHINX TO LESS THAN 2*PI SW 2/13/15 DO WHILE(PHIO(JW)>2.*PI)	2/13/15

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
53	W2	Withdrawal	Stewart Rounds: Extra check to avoid divide by zero in withdrawal algorithm (this or similar code occurs in 4 subroutines in withdrawal.f90) IF ((ELSTR-HSWB) > EL(KBOT+1,ID)) THEN DLRHOB = ABS(RHO(KSTR,ID)-RHO(KBOT,ID)) ELSE IF ((EL(KBOT+1,ID)-ELR) == ELSTR) THEN ISR 03/24/13 DLRHOB = NONZERO ISR 03/24/13 ELSE DLRHOB = ABS(RHO(KSTR,ID)-RHO(KBOT,ID))* RHO(KBOT,ID))*HSWB/(ELSTR-(EL(KBOT+1,ID)-ELR))	4/9/2015
54	W2	SELECTC	The USGS has developed a new automatic port selection algorithm. In the control file, w2_con.npt, one can use the new algorithm by setting SELECTC='USGS'. The old algorithm is used when this is set to SELECTC='ON'. There is new documentation in the User Manual for this new algorithm.	4/9/2015
55	W2	Restart output	Added code to write out a restart file (rso.opt) at the end of a run if restart_output is ON.	4/9/15
56	W2 Examples	Added example problems	Added new example problem for the Spokane River using new csv file inputs and 4 example problems for using the USGS auto-port algorithm	4/9/15
57	W2	Restart for file volume_wbX. opt	The file handler was not closed properly for volume_wbX.opt. Fixed it with additional code in endsimualtion.f90: if(nwd > 0)then ifile=ifile+1 close(ifile) endif do jw=1,nwb ! sw 4/20/15 ifile=ifile+1 ! sw 4/20/15 close(ifile) ! sw 4/20/15 enddo ! sw 4/20/15	4/20/15
58	W2	W2selective.n pt	Changed input format for critical temperatures for the output file volume_wbX.opt from a maximum of 10 waterbodies to 100. READ(1010, '(8X,100F8.0)')(TEMPCRIT(JW, J), JW=1, NWB) ! NOTE MAX OF 100 WATERBODIES SW 4/20/15	4/20/15
59	W2	Resuspension of SS	Changed DO loop index in suspended solids resuspension in water_quality.f90 from DO K=KT-1,KB(I)-1 to DO K=KT+1,KB(I)-1 ! cb 9/29/14	5/14/2015

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
60	W2	Wind at 2 m	The W2 model computes the wind at a 2 m height based on the used defined measurement height of the wind for evaporation computations. The formula for computing this variable was using a step function of the wind data rather than interpolation of the wind data when the user chose to interpolate meteorological data. For meteorological input data at short time intervals this is a very minor change. For meteorological data at large time intervals (like a day), this could affect the amount of evaporation. Hence, the calculation below was moved from the TVDS routine to the main routine so that the interpolated wind would be used. WIND2(I)=WIND(JW)*WSC(I)*DLOG(2.0D0/Z0(JW))/DLOG(WINDH(JW)/Z0(JW))	5/21/15
61	W2	TSR output	The TSR file output now also includes a volume weighted vertical average temperature for the segment that the TSR file is located. The manual has been updated also.	6/1/15
62	W2	Writing over output files	In some intermittent cases, when the dialog box closes, the model reinitializes some of the output files (effectively deleting the output). The following line of code was adding at the beginning of the main W2 code to prevent this: !** Task 1: Inputs ** !*********************************	6/26/15
63	W2	Output order for kinetic fluxes	The output columns for DOAR and DOER were switched in the output file kflux_jw*.opt. The model code was changed to fix this. ! DOAR => KF(:,:,56); DOEP => KF(:,:,57); DOER => KF(:,:,58); DOPOM => KF(:,:,59); DODOM => KF(:,:,60) DOEP => KF(:,:,56); DOAR => KF(:,:,57); DOER => KF(:,:,58); DOPOM => KF(:,:,59); DODOM => KF(:,:,60) ! cb 9/16/2015	9/16/15

W2 V3.6 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
1	W2	TKE1 model	The variable STRICK was incorrectly allocated as an INTEGER rather than REAL.	10/11/2008
2	W2	PIPE	Code was streamlined in the subroutine ZBRENT where calls were made directly to CDFUNC rather than through the dummy function FUNC	10/11/2008
3	W2 Manual	Z0	The User Manual had Z0 in an incorrect line in the control file (w2_con.npt). The write up and example control file in the User Manual were corrected.	10/28/2008
4	W2	Longitudinal profile input	The W2 program did not read initial constituent concentrations in the longitudinal profile file when CCC was 'OFF'. This has been fixed.	12/4/2008
5	W2	TECPLOT output	When using TECPLOT output for multiple waterbodies, the output format did not allow loading the information into TECPLOT. Fixed.	1/26/2009
6	W2	Epiphyton input	For entering vertical profile data for periphyton, there was an index error: OLD CODE: IF (VERT_EPIPHYTON(JW,JE)) EPD(:,I,JE) = EPIVP(K,JW,JE) NEW CODE: IF (VERT_EPIPHYTON(JW,JE)) EPD(:,I,JE) = EPIVP(:,JW,JE)	5/21/2009
7	PreW2	Constituent loads	An enhancement was added to the Preprocessor to compute loads in kg/day for all inflow, tributary and distributed tributaries. Also, these are summed up for the model application. These are shown in the file "pre.opt". These are approximate loads since the concentration data are used to set the frequency of loading update. Flow rates at the time of the concentration input data are used to compute load.	5/21/2009

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug
	PREW2 or	Enhancement		Fixed or
	GUI	Туре		Enhancemen
				t added
8	W2	Gas transfer at spillways	A couple code fixes in the hydroinout.f90 subroutine: (1) CGAS needed to be initialized in some cases to CGAS=C2(K,ID,CN(JC)) prior to calling the subroutine TOTAL_DISSOLVED_GAS for use in the Butts and Evans (1983) equation: NEW CODE: CGAS=C2 (K, ID, CN (JC)) ! MM 5/21/2009 (2) Change logic in several lines from IF(CAC(NDO) == 'ON' to IF(CAC(NDO) == 'ON' and. CN(JC) == NDO NEW CODE: IF (CN (JC) == NDO .AND. CAC (NDO) == 'ON' .AND. GASSPC (JS) == 'ON'	5/21/2009
			.AND. QSP(JS) > 0.0) THEN ! MM 5/21/2009	
9	W2	Reaeration from dams	An error was found in the formulae from Butts and Evans (1983). OLD CODE: DB = SAT-C DA = DB*(1.0+0.38*AGASGT(N)*BGASGT(N)*CGASGT(N)*(1.0-0.11*CGASGT(N))*(1.0+0.046*T)) C = SAT-DA NEW CODE: DA = SAT-C ! MM 5/21/2009 DA: Deficit upstream DB = DA/(1.0+0.38*AGASSP(N)*BGASSP(N)*CGASSP(N)*(1.0-0.11*CGASSP(N))*(1.0+0.046*T)) ! DB: deficit downstream C = SAT-DB	5/21/2009

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
10	W2	Order of flux parameters	The order of flux parameters in the User Manual and output were incorrect. The control file has them in this order: RPOMSET CBODDK DOAP DOAR DOEP DOER DOPOM DODOM Whereas the code assumed they were in this order: RPOMSET CBODDK DOAP DOEP DOEP DOEP DOEP DOEP DOAR DOEP DOEP DOAR DOEP DOAR DOEP DOAR DOEP DOAR DOEP DOAR DOEN DOOM This has been corrected. The User Manual and control file order is now reflected in the W2 code.	6/2/2009
11	Pre	False errors for inflow location	The preprocessor sometimes gave false errors in the pre.err for tributary, internal weirs, pipes, and other hydraulic features saying that the pipe or tributary was below the elevation of the bottom of the segment. The W2 model ran fine even with this error message given in the preprocessor. This has been fixed. Example of OLD CODE: IF (EBTR(JT) < EL(KB(ITR(JT)+1),ITR(JT))) THEN CALL ERRORS WRITE (ERR,FMTFI) 'Inflow placement bottom elevation [EBTR=',EBTR(JT),'] < bottom active cell elevation for tributary ',JT New CODE: IF (EBTR(JT) < EL(KB(ITR(JT))+1,ITR(JT))) THEN CALL ERRORS WRITE (ERR,FMTFI) 'Inflow placement bottom elevation [EBTR=',EBTR(JT),'] < bottom active cell elevation for tributary ',JT	6/18/09

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
12	Pre	Additional error checking	Additional error checking was added to help debug an error in the bathymetry file when the problem was in the branch connectivity specifically BS and BE. Also, a false error was given when the temperature had an isothermal initial condition, constituents were OFF, and an initial concentration was set to "-2". This was fixed.	6/22/09
13	Pre	Command line processing and working directory displayed for windows	In the windows version of the preprocessor, the user can now supply a command line argument that sets the working directory of the code. Hence, one does not need to copy the preprocessor into every directory. In a batch file, for example, one can execute the following command: preW2_ivf.exe "C:\scott\w2workshop\2009 workshop\waterqual\problem3" The preprocessor now uses the supplied directory (in double quotes) as the working directory for all the files. The command line argument has one blank space between the end of the executable and the first quote. Also, the working directory is now displayed at the top of the window. Additional checks were also added for checking the grid linkage.	9/12/09
14	W2	# of processors	The model user can now control the # of physical processors the model uses. At this point, dual-processor model runs have shown an improvement of about 20% over a single processor. But, QUAD processors usually are slower. It is recommended that NPROC be set to 2 in the control file. The user can experiment on his/her own system. If this is not set by the user or is left blank, the model still runs but sets it to 2 processors. GRID NWB NBR IMX KMX NPROC CLOSEC 1 1 23 22 ON	9/12/09

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
15	W2	Command line processing for windows	In the windows version of the w2 model, the user can now supply a command line argument that sets the working directory of the code. Hence, one does not need to copy the model executable into every directory. In a batch file, for example, one can execute the following command: W2_ivf.exe "C:\scott\w2workshop\2009 workshop\waterqual\problem3" The w2 model now uses the supplied directory (in double quotes) as the working directory for all the files. The command line argument has one blank space between the end of the executable and the first quote. The working directory is displayed in a text box in the window.	9/12/09
16	W2	W2 window closed at end of successful execution	At the end of a windows run, the windows dialog box waits for the user to press 'close' to exit the window. This allows the user to examine the final run parameters. In the w2_con.npt file there is now an option to close this window when the run has completed. If this option is not set, then the dialog box will stay until the user clicks 'close'. This allows for efficient batch processing of the model, especially if user in conjunction with command line processing mentioned in #15. GRID NWB NBR IMX KMX NPROC CLOSEC 1 1 23 22 0 ON When CLOSEC is set to ON, then the dialog box will disappear once the run finishes. If it is set to OFF, then the dialog box will remain until the user clicks 'close'.	9/12/09
17	User Manual	Updates	Updates and changes to the control file (#13-#16) were reflected in an updated User Manual.	9/12/09

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date E Fixed Enhancement t added	Bug or en
18	GUI	Updates	The GUI was updated with the following: (1) new control file parameters NPROC and CLOSEC were added (see #14 and 16). There is also a SELECTC that will be used in V3.7 that has been included – ignore it for now. (2) The GUI also can be controlled by command line passing of the working directory and file. In a batch program or from the command line in a DOS box you can execute the GUI as follows: "C:\scott\research\corps of engineers\tomcole\w2code\GUI36\w2control\w2control36.exe" C:\scott\w2workshop\2009 workshop\waterqual\problem1\w2_con.npt The first string in quotes executes the GUI. The command line argument is NOT in quotes. This program was developed in VB6 and does not take quotes around the command line. Note that this is different than the FORTRAN command line argument. So the above command will open the GUI and load the control file automatically.	9/12/09	
			 (3) A text box now shows the file path and name of the file that you are working on (4) In file open, earlier all *.npt files were shown. Since only "w2_con.npt" files are loaded into the GUI, only the "w2_con.npt" file was shown for opening. 		

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date	Bug
	PREW2 or	Enhancement		Fixed	or
	GUI	Туре		Enhancen	nen
				t added	
19	W2	Gates,	Whenever DOWN was specified for a gate, spillway or	9/25/09	
		spillways,	pump, the model estimated the water level at the end		
		pipes	of the segment, rather than using the branch center		
			water level. This is important in sloping river systems		
			where a long segment may have a water surface		
			elevation drop between the segment center and the		
			edge. In the past this was computed assuming the slope		
			of the channel. This was updated to estimate the water surface elevation using linear interpolation rather than		
			the grid slope. Below is an example of the code fix – in		
			this case for GATES:		
			this case for GATES.		
			OLD CODE:		
			ELIU=ELWS(IUGT(JG))-		
			SINA(JBUGT(JG))*DLX(IUGT(JG))*0.5		
			NEW CODE:		
			ELIU= ELWS(IUGT(JG)) + (ELWS(IUGT(JG))-		
			ELWS(IUGT(JG)-		
			1))/(0.5*(DLX(IUGT(JG))+DLX(IUGT(JG)-		
20	W2	New	1)))*DLX(IUGT(JG))*0.5 A new executable was made using a new release of	0/25/00	
20	VVZ		Intel Version 11 compiler that corrected problems with	9/25/09	
		executable	Windows 7 applications.		
			ννιτιαύνιο / αμμιτατίστιο.		

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
21	W2	ICE cover	There were a couple logic errors in the ice cover	10/20/09
		algorithm	algorithm. These were corrected below:	
			<pre>!************ Ice thickness</pre>	
			<pre>ICETH(I) = 0.0</pre>	
			<pre>IF (.NOT. ALLOW_ICE(I))</pre>	
			<pre>ICETH(I) = 0.0</pre>	
			3/27/08 SW ICESW(I) = 0.0	
			ELSE ICESW(I) = 1.0 ENDIF	
			ICETHU = 0.0 ICETH1 = 0.0 ICETH2 = 0.0	
			IF (ICETH(I) < ICE_TOL AND. ICETH(I) > 0.0) ICETH(I) = ICE_TOL ELSE	
			IF(TERM_BY_TERM(JW))CALL EQUILIBRIUM_TEMPERATURE ! SW 10/20/09 Must call this first otherwise ET and CSHE are 0	
			HIA = 0.2367*CSHE(I)/5.65E-8 ! JM 11/08 convert SI units of m/s to English (btu/ft2/d/F) and then back to SI W/m2/C	
			! ICETH(I) = MAX(0.0,ICETH(I)+DLT*((RIMT- ET(I))/(ICETH(I)/RK1+1.0/HIA)-(T2(KT,I)- RIMT))/RHOIRL1 ! OLD CODE	
			<pre>ICETH(I) = MAX(0.0,ICETH(I)+DLT*((RIMT- ET(I))/(ICETH(I)/RK1+1.0/HIA)- HWI(JW)*(T2(KT,I)-RIMT))/RHOIRL1) ! SW 10/20/09 Revised missing HWI(JW)</pre>	
			ICE(I) = ICETH(I) > 0.0 ICESW(I) = 1.0 IF (ICE(I)) THEN ! TFLUX = 2.392E-	
			7*(RIMT-T2(KT,I))*BI(KT,I)*DLX(I) ! OLD CODE	
			TFLUX = 2.392E- 7*HWI(JW)*(RIMT-T2(KT,I))*BI(KT,I)*DLX(I) ! SW 10/20/09 Revised missing HWI(JW)	
			+TFLUX TSSICE(JB) =	
			TSSICE(JB)+TFLUX*DLT ICESW(I) = 0.0 END IF	
			END IF END DO END IF	
			END IF	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
22	W2	Gates output in QWD file	The following bug was found in defining which branch a gate was located. This affected the output for the withdrawals at a location where there were gates that were not tied to other branches. Old code: JWUGT (JG) = JW IF (IDGT (JG) > 0) THEN DO JB=1, NBR IF (IDGT (JG) >= US (JB) .AND. IDGT (JG) <= DS (JB)) EXIT END DO JBDGT (JG) = JB DO JW=1, NWB IF (JB >= BS (JW) .AND. JB <= BE (JW)) EXIT END DO JWDGT (JG) = JW else ! BUG FIX 9/27/07 jbdgt (jp) = 1 jwdgt (jp) = 1 END IF	3/24/10
			<pre>New code: JWUGT(JG) = JW</pre>	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug
	PREW2 or	Enhancement		Fixed or
	GUI	Туре		Enhancemen
				t added
23	PreW2	Reading of	Reading in of the WSC file was limited to only 100 dates	3/26/10
		WSC	in the preprocessor. This limitation was fixed by the	
			code shown below:	
			! DO J=1,100 28995 continue ! cb 3/26/10 READ	
			(NPT, '(10F8.0:/(8X,9F8.0))', END=29000)	
			SDAY, (WSC(I), I=1, IMX)	
			IF (SDAY <= SDAYO) THEN CALL ERRORS	
			WRITE (ERR, '(3(A, F0.3))')	
			'Julian date ',SDAY,' <= previous date of	
			',SDAYO,' in '//WSCFN END IF	
			DO I=1,IMX	
			IF(WSC(I) <= 0.0) THEN	
			CALL ERRORS WRITE (ERR,'(A,F0.3,A,I4,A)')	
			'Julian date ',SDAY,': WSC AT	
			SEG(I)=',I,' <= 0.0 in '//WSCFN	
			ENDIF IF (WSC(I) > 2.0) THEN	
			CALL WARNINGS	
			WRITE (WRN, '(A, F0.3, A, I4, A) ') 'Julian day ', SDAY, ': WSC(I) AT	
			SEG(I)=',I,' > 2.0 in '//WSCFN	
			END IF	
			<pre>IF (WSC(I) > 0.0 .and. wsc(i) < 0.5) THEN</pre>	
			CALL WARNINGS	
			WRITE (WRN, '(A, F0.3, A, I4, A) ')	
			'Julian day ',SDAY,': WSC(I) AT SEG(I)=',I,' < 0.5 in '//WSCFN	
			END IF	
			ENDDO	
			SDAYO=SDAY ! ENDDO	
24	PreW2	Check on LAT	go to 28995 ! cb 3/26/10 Added an enhancement to do a check in case a spillway,	3/26/10
- '	1	or DOWN	pipe, pump, or gate was specified as 'DOWN'. In all	-, -0, -0
		OI DOWN	cases where 'DOWN' is specified, the segment that the	
			hydraulic structure originates must be at the end of a	
			branch. Additional logic was added to check for this in	
			all the hydraulic structures.	
25	W2 Manual	Light	Added more text to the section on computation of light	4/13/2010
25	vv Z ivialiual	_	extinction and inserted a missing reference. Revised an	7/ 13/ 2010
		extinction, ice	equation for clarity in ICE algorithm and added more	
			explanation on how to estimate HICE.	
20	\\\\2\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Drosinitation	-	4/14/2010
26	W2 Manual	Precipitation	The units of precipitation are in m/s. The example	4/14/2010
		input file	precipitation input file was changed to more realistic	
			values.	

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
27	W2	ICE	Added code to account for the need to compute long wave radiation in case user chose the equilibrium temperature approach. Fixed subscript error in ice melt computation. Also, made the variable TICE double precision since it is assumed double precision in the call to Surface_terms. New code: IF (ICE(I)) THEN TICE = TAIR(JW) DEL = 2.0 J = 1	4/19/10
			<pre>if(tair(jw).ge.5.0) then ! SW 4/19/10 RANLW(JW) = 5.31E- 13*(273.15+TAIR(JW))**6*(1.0+0.0017*CLOUD (JW)**2)*0.97</pre>	
			RN1=SRON(JW)/(REFL*RHOWCP)*SHADE(I)*(1.0-ALBEDO(JW))*BETAI(JW)+RANLW(JW) ! SW 4/19/10 DO WHILE (DEL > 1.0 .AND. J < 500) CALL SURFACE_TERMS (TICE) RN(I) = RN1-RB(I)- RE(I)-RC(I) ! 4/19/10	
			! RN(I) = SRON(JW)/(REFL*RHOWCP)*SHADE(I)*(1.0- ALBEDO(JW))*BETAI(JW)+RANLW(JW)-RB(I)- RE(JW)-RC(I) ! OLD CODE DEL = RN(I)+RK1*(RIMT-TICE)/ICETH(I) IF (ABS(DEL) > 1.0) TICE = TICE+DEL/500.0 J = J+1 END DO	
28	W2	Evaporation	Units for EV in the SNP file were given in m/s but were actually m^3/s	4/21/10

#	Code: W2 or PREW2 or	Fix or Enhancement	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen
	GUI	Туре		t added
29	W2	Ice	In the ice melt algorithm, SRON should not have been divided by RHOCP in computing RN1 and DEL in the DO WHILE loop should have been ABS(DEL) rather than DEL: RN1=SRON(JW)/REFL*SHADE(I)*(1.0-ALBEDO(JW))*BETAI(JW)+RANLW(JW) ! SW 4/19/10 eliminate spurious division of SRO by RHOCP DO WHILE (ABS(DEL) > 1.0 .AND. J < 500) ! SW 4/21/10 Should have been ABS of DEL CALL SURFACE_TERMS (TICE)	4/21/2010
30	PRE	Constituent loading	The output from the preprocessor in the pre.opt file for constituent loading was in kg rather than the output header of kg/day. The output was updated to kg/day by adding the following lines of code: cdtload(incdt(1:NACdt(Jb), Jb), jb) = cdtload (incdt(1:NACdt(Jb), Jb), jb) / (jday-tstart) ! CB 5/10/10 Change units to kg/day ctrload(trcn(1:NACtr(Jt), Jt), jt) = ctrload(trcn(1:NACtr(Jt), Jt), jt) / (JDAY-TSTART) !CB 5/11/10 convert to units of kg/day	5/10/10

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
31	W2	Gate, spillways, pipes	In the case where the user has specified that the flow is DOWN, in the case of reverse flow, the model did not assign the flow correctly if the user had no other tributaries or withdrawals specified in the control file. For this rare event, additional code was written to account for this fact. Also, a logic error was discovered in reverse flow for spillways and gates. This was corrected. New code added to hydroinout.f90: JWW = NWD withdrawals = jww > 0 ! 6/4/10 SW JTT = NTR tributaries = jtt > 0	6/4/10

#	Code: W2 or PREW2 or GUI	Fix or Enhancement Type	Description of Bug/Enhancement	Date Bug Fixed or Enhancemen t added
32	W2	Branch intersections with multiple waterbodies	In cases where there are branch intersections between waterbodies, it was possible that the variable KBI and KB were incorrectly set. Here is the fix: Move the statement defining KBI in the subroutine init-geom.f90 to the place shown below (delete the earlier reference): IF (B(K,ID+1) == 0.0) B(K,ID+1) = B(K-1,ID+1) IF (IEXIT == 1) EXIT END IF END IF END DO END DO ! SW 1/23/06 END DO ! SW 1/23/06 END DO ! SW 1/23/06 KBI = KB ! SW 10/30/2010 !**** Upstream active segment and single layer ! 1/23/06 entire section moved SW DO JW=1,NWB KT = KTWB(JW) DO JB=BS(JW),BE(JW)	10/30/2010
33	W2	SS resuspension	The code index was incorrect in the loop for computing resuspension. This led in some compilers to an infinite loop. The corrected code is shown below: SSSS (KT, I, J) = - SSS (J) *SS (KT, I, J) *BI (KT, I) /BH2 (KT, I) +SSR ! DO K=KT-1, KB (I) -1 DO K=KT, KB (I) -1 ! JP 2/3/12 IF (SEDIMENT_RESUSPENSION (J)) THEN Thanks to James Pasley for this bug report/fix.	2/3/2012

W2 V3.5 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
1	W2	Zooplank-ton-	Sign error in the zooplankton grazing on algae	8/23/06
		algae	term	
2	W2	Input/output	Format for I/O was changed to allow better	8/23/06
			decimal precision of output	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
3	W2	Sediment	The sediment settling rate was accidentally	10/26/06
		settling rate	used for POM settling. This was fixed. The old	
			and new code lines are shown below:	
			OLD:	
			sedsum =	
			sedsum+seds(JW)*(LPOM(K,I)*lpomdk(jw)+ RPOM(K,I)*rpomdk(jw))*BI(K,I)/BH2(K,I)	
			*(1.0-BI(K+1,I)/BI(K,I))	
			NEW:	
			sedsum = sedsum+poms(JW)*(LPOM(K,I)*lpomdk(jw)+	
			RPOM(K,I)*rpomdk(jw))*BI(K,I)/BH2(K,I)	
			*(1.0-BI(K+1,I)/BI(K,I)) ! cb 10/22/06	
			This was an issue in the SEDIMENT,	
			SEDIMENT C, SEDIMENT P, SEDIMENT	
			N, and SEDIMENT DECAY RATE	
			subroutines.	
4	W2	Sediment	An algorithm was added for sediment burial.	11/30/06
		burial	This is now a new parameter in the sediment	
			part of the control file. An updated user	
			manual description is forthcoming. The	
			sediment burial rate SEDB (day-1) can be	
			specified in the "SEDIMENT" card section of	
			the control file. A different burial rate can be	
			specified for each water body.	
			OLD/NEW line (example):	
			! SED(K, I) =	
			MAX(SED(K,I)+(LPOMEP(K,I)+SEDAS(K,I)+S	
			EDOMS(K, I) +SEDNS(K, I) - SEDD(K, I))*DLT, 0.0)	
			SED(K,I) =	
			MAX(SED(K,I)+(sedem+SEDAS(K,I)+sedcb(k,i)+SEDOMS(K,I)+SEDNS(K,I)-SEDD(K,I)-	
			sedbr(k,i))*DLT,0.0) ! cb 11/30/06	
5	Control File	Add burial rate	This is the change in #4 above implemented in	
		for sediment	the control file. The new variable SEDBR is	
		model	added in f8 format after the FSED variable.	
			SEDBR: sediment burial rate in units of per	
			day.	
			SEDIMENT SEDC SEDPRC SEDCI SEDK	
			SEDIMENT SEDC SEDPRC SEDCI SEDK SEDS FSOD FSED SEDBR	
			WB 1 ON ON 0.00000 0.10000	
			0.1 1.00000 1.00000 1.0	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
6	W2	Sediment	If a model added and subtracted layers that	4/18/07
		heating and	resulted in segment addition and subtraction,	
		sediment	there was the possibility that sediment fluxes	
		processes	were incorrectly computed.	
			In the NO3 subroutine:	
			Old code:	
			NO3SED(K,I) = NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I) -BI(K+1,I))/BH2(K,I)	
			New code:	
			if(k == kb(i)) then	
			NO3SED(K,I) =	
			NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I))/BH2(K,I)	
			else	
			NO3SED(K,I) = NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I)-	
			BI(K+1,I))/BH2(K,I)	
			endif	
			New code added in sediment routine:	
			if (k == kb(i)) then ! SW 4/18/07	
			SODD (K, I) =	
			SOD(I)/BH2(K,I)*SODTRM(K,I)*BI(K,I)	
			else	
			SODD(K,I) = SOD(I)/BH2(K,I)*SODTRM(K,I)*(BI(K,I)-	
			BI(K+1,I))	
			Endif	
			New code added in suspended solids routine:	
			if(k == kb(i))then	
			SSR =	
			EPSILON*DLX(I)*BI(K,I)/VOL(K,I) else	
			SSR = EPSILON*DLX(I)*(BI(K,I)-	
			BI(K+1,I))/VOL(K,I)	
			Endif	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
6	PREW2 or	Enhance-	<pre>New code added for heat flux to channel bottom: if (kt == kb(i)) then</pre>	or Enhance-
			/BH2(K,I)	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
7	W2	Zoo-plankton	Several fixes in the zooplankton routine were	5/21/07
		fixes	made. Many thanks to Dr. Kellie Vache,	
			Institute for Landscape Ecology and Resources	
			Management (ILR) Justus-Liebig-University	
			Giessen Heinrich-Buff-Ring 26 35392 Giessen,	
			Germany, for finding these which are	
			documented below:	
			DO K=KT, KB(I)	
			do $jz = 1$, nzp	
			zgztot=0.0 !kv 5/9/2007	
			do jjz = 1,nzp	
			! $zooss(k,i,jz) =$	
			(zmu(k,i,jz)*zeff(jz)-zrt(k,i,jz)- zmt(k,i,jz))*zoo(k,i,jz) -	
			zgz(k,i,jz,jjz)*zoo(k,i,jz)!	
			omnivorous zooplankton	
			zgztot=zgztot+zgz(k,i,jz,jjz)*zoo(k,i,	
			jz) !kv 5/9/2007	
			end do zooss(k,i,jz)=	
			(zmu(k,i,jz)*zeff(jz)-zrt(k,i,jz)-	
			zmt(k,i,jz))*zoo(k,i,jz) - zgztot ! kv 5/9/2007	
			end do	
			do jjz = 1, nzp	
			! tgraze(k,i,jz) = tgraze(k,i,jz) +	
			prefz(jz,jjz)*zoo(k,i,jjz)	
			tgraze(k,i,jz) =	
			tgraze(k,i,jz) +	
			<pre>prefz(jjz,jz)*zoo(k,i,jjz) !cb 5/17/2007</pre>	
			end do	
			do jjz = 1,nzp ! omnivorous zooplankton	
			$\frac{1}{2} = \frac{1}{1} \frac{1}{12} = \frac{1}{12} \frac{1}{12} = \frac{1}{12} $	
			<pre>Zmu(K,I,jz)*ZOO(K,I,jz)*prefZ(jz,jjz)/ tgraze(K,I,jz)</pre>	
			ZGZ(k,i,jjz,jz)	
			= Zmu(K,I,jz)*ZOO(K,I,jz)*prefZ(jjz,jz)/ tgraze(K,I,jz) !kv 5/9/2007	
8	PRE	More checks	end do Added checks for Sediment burial rate and	6/2/2007
	, IVE	WIGHT CHECKS	some further checks on grid geometry; added	5,2,2007
			output on SEDS and SEDBR to the pre.opt file;	
			fixed condition where NZP had to equal 1 to	
			work.	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or GUI	Enhance- ment Type		or Enhance- ment Added
9	W2	Array deallocation	The deallocate command on line 7557 was commented out to avoid a deallocation error when the 'STOP' button is pushed during execution on a PC. ! deallocate (sedbr, sedbrp, sedbrn, sedbrc) ! SW 6/4/07 No need to deallocate pointers	6/4/2007
10	W2	Initialization of IUT	For code setting up an external head BC, the variable IUT was not initialized before it was used. This was fixed below: !**** Boundary bottom layers !	6/17/2007
			THEN !cb 6/12/07 KB(IU-1) = K; EXIT !cb 6/12/07 END IF	
11	W2	CBOD settling	The CBOD settling rate earlier was not converted from m/d in the control file to m/s in the code. Added code: cbods = cbods/day !cb 7/23/07	7/23/07

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
12	W2	TSR output	The surface width was not correctly being	7/26/07
			output. Changed BI(KT) to BI(KTWB(JW)).	
			FIX:	
			BI(KTWB(JW),I),SHADE(I),ICETH(I),(ADJU STR(C2CH(JAC)),JAC=1,NAC),	
			& ! CB 7/26/07	
13	PREW2	Pumps	The pump control for DOWN or LAT was not	8/14/07
			being checked properly, also a check on IUPUC	
			was incorrect. Fixed.	
14	W2	Algae	The logic for negative settling velocities for	8/27/07
			algae had an error.	
			Old code:	
			$! \qquad ASR(K,I,JA) = -$	
			AS(JA)*(ALG(K+1,I,JA)*B(K+1,I)/(B(K,I) *H2(K,I))-	
			ALG(K,I,JA))*BI(K,I)/BH2(K,I)	
			New code:	
			ASR(K,I,JA) = -	
			AS (JA) * (ALG (K+1, I, JA) *BI (K+1, I) /BH2 (K,	
			I)-ALG(K,I,JA)*BI(K,I)/BH2(K,I))	
			!SP 8/27/07	
			Shwet Prakash	
15	GUI	NZOOP	When # of zooplankton was set equal to zero,	9/17/07
			there was an array dimensioning error that	
			caused the writing of the control file to only	
			proceed part way. Fixed.	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or GUI	Enhance- ment Type		or Enhance- ment Added
16	W2	Open channel	Variable passed between subroutines had	10/4/07
		flow	inconsistent declaration between routines. ! REAL, ALLOCATABLE, DIMENSION(:) :: Y, D, B, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD	
			REAL, ALLOCATABLE, DIMENSION(:) :: Y, B, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD ! cb 10/1/07	
			! ALLOCATE (Y(NN), V(NN), CAREA(NN), TOPW(NN), BELEV(NN), Q(NN), VOLD(NN), YOLD(NN), D(NN), B(NN))	
			ALLOCATE (Y(NN), V(NN), CAREA(NN), TOPW(NN), BELEV(NN), Q(NN), VOLD(NN), YOLD(NN), B(NN)) ! cb 10/1/07	
			! DEALLOCATE (Y, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD, D, B, YT, VT, VPR, YPR, TAREA, TOPWT, RT, INDX, AL, DAA)	
			DEALLOCATE (Y, V, CAREA, TOPW, BELEV, Q, VOLD, YOLD, B, YT, VT, VPR, YPR, TAREA, TOPWT, RT, INDX, AL, DAA) ! cb 10/1/07	
17	W2	TKE model	The TKE algorithm had several bugs that have	10/4/07
			been fixed, these included making the loop	
			over layers go to KBMIN (rather than KB), the	
			original code overwrote the boundary	
			conditions when using the Thomas algorithm,	
			the original code overwrote vertical eddy	
			viscosity at the bed during the averaging	
			process, Δz_k changed to $\Delta z_{k+1/2}$, TKE array	
			was initialized to zero, TKE was implemented	
			in add/sub layers like AZ. Many of these fixes	
			are a result of the work of Sam Gould (Gould,	
			2006) who wrote an MS project report at PSU entitled "k-e Turbulence Model." Further	
			recommendations by Gould (2006) will be	
			incorporated into the next version of CE-QUAL-W2.	
			The old code is shown below as a reference to the new code in the release version.	
			OLD CODE ENTRY CALCULATE_TKE	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
	GUI	ment Type	USTAR SQRT(1.25*CZ(I)*WIND10(I)**2/RHO(KT,I) IF (MANNINGS_N(JW)) THEN HRAD = BHR1(KT,I)/(BR(KTI(I),I)- BR(KT+1,I)+2.*AVH1(KT,I)) if (macrophyte_on.and.mannings_n(jw)) th en call macrophyte_friction(hrad,fric(i),effri c,kt,i) gc2=g*effric*effric/hrad**0.33333333 else if(.not.macrophyte_on.and.mannings_n(j w)) then gc2=g*fric(i)*fric(i)/hrad**0.33333333 end if ELSE GC2 = 0.0 IF (FRIC(I) /= 0.0) GC2 = G/(FRIC(I)*FRIC(I)) END IF USTARB SQRT(GC2)*ABS(0.5*(U(KT,I)+U(KT,I-1))) TKE(KT,I,1) = 0.5*(3.33*(USTAR*USTAR+USTARB*USTARB)+ TKE(KT,I,1))*(BH2(KT,I)/BH1(KT,I)) TKE(KT,I,2) = 0.5*(USTAR*USTAR*USTAR+USTARB*USTARB*U STARB*5.0/H1(KT,I)+TKE(KT,I,2))*(BH2(K T,I)/BH1(KT,I)) DO K=KT+1,KB(I)-1 BOUK = MAX(AZ(K,I)*G*(RHO(K+1,I)-RHO(K,I))/(H(K,JW)*RHOW),0.0) PRDK = AZ(K,I)*(0.5*(U(K,I)+U(K,I-1)-U(K+1,I)-U(K+1,I-1))/H(K,JW))**2.0 PRHE = 10.0*GC2**1.25*ABS(0.5*(U(K,I)+U(K,I-1)))**4.0/(0.5*B(K,I))**2.0	ment Added
			<pre>IF (MANNINGS_N(JW)) THEN ! v3.5 start</pre>	
			<pre>if (macrophyte_on.and.mannings_n(jw))th en</pre>	
			<pre>gc2=g*effric*effric/hrad**0.33333333 else</pre>	
			gc2=g*fric(i)*fric(i)/hrad**0.33333333 end if	

#	Code: W2 or PREW2 or	Fix or Enhance-	Description of Bug/Enhancement	Date Bug Fixed or Enhance-
	GUI	ment Type		ment Added
#	PREW2 or	Enhance-	<pre>! v3.5 end END IF PRHK GC2/(0.5*B(K,I))*ABS(0.5*(U(K,I)+U(K,I-1)))**3.0 UNST = PRDK-TKE(K,I,2) UNSE = 1.44*TKE(K,I,2)/TKE(K,I,1)*PRDK- 1.92*(TKE(K,I,2)/TKE(K,I,1)*TKE(K,I,2)) TKE(K,I,1) TKE(K,I,1) = TKE(K,I,1) = TKE(K,I,2) = TKE(K,I,1) = TKE(KB(I),I,2) = TKE(K,I) = TKE(K,I) = TC(K,I) = TC(K,I,I) = TC(K,I,</pre>	or Enhance-
			! Center at cell faces DO K=KT,KB(I)-1 AZ(K,I) = 0.5*(AZ(K,I)+AZ(K+1,I)) AZ(K,I) = MAX(AZMIN,AZ(K,I)) AZ(K,I) = MIN(AZMAX(JW),AZ(K,I)) DZ(K,I) = MAX(DZMIN,FRAZDZ*AZ(K,I)) END DO	
18	W2	Restart	Added TKE to restart variables written out and read in.	10/5/07

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
19	GUI	ET	The equilibrium temperature option in the	10/9/07
			drop down menu was 'EQT' rather than 'ET'.	
			Fixed.	
20	W2	Sediment	The SEDIMENT subroutine did not have any	10/15/07
			computational mistakes, just an error in	
			assigning all array variables to the value at K,I.	
			This resulted in excessive computational time.	
			The fix is shown below:	
			OLD	
			sedbr = sedb(jw)*sed(k,i)	
			NEW	
			sedbr(K,I) = sedb(jw)*sed(k,i)	
21	W2	TKE	Turbulence model had an improper averaging	12/17/07
			between layers. A new temporary variable was	
			defined to temporarily store the values for AZ	
			prior to averaging to the bottom/top of the	
			layers and the horizontal layers. This also	
			affected the computation of DZ. Fixed.	
			New code defined AZT and allocated memory	
			for it, such that	
			AZT(K, I) = 0.00+mvr(k, I, 1)+mvr(k, I, 1)/mvr(k	
			0.09*TKE(K,I,1)*TKE(K,I,1)/TKE(K,I,2)	
			and	
			AZ(K,I) =	
			0.5*(AZT(K,I)+AZT(K+1,I))	
			Similarly for the horizontal averaging and for	
			DZ. Also, the values of DZ were fixed to be at	
			the bottom of a cell and AZ was fixed to be at	
			the bottom right-hand edge of a cell as shown	
			below:	
			CE-QUAL-W2 coordinate system ★ p,Φ.P.B	
			Segment V.A., D., V.D. A.	
			Layer I I II	
			z=0.	
			kt k ★ H ₁ =Δ2,	
			Δχ.	
			z=h at bottom	
-				

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
22	W2	SS settling	The incorrect cell width was used for SSSO. BI(KT,I) was changed to BI(K,I).	12/17/07
			OLD CODE: SSSO(K,I) = (TOTSSO+FES(JW)*FPFE(K,I))*BI(K T,I)/BH2(K,I)*DO1(K,I) FPSS(K,I) = FPSS(K,I)*TISS(K,I) NEW CODE: SSSO(K,I) = (TOTSSO+FES(JW)*FPFE(K,I))*BI(K ,I)/BH2(K,I)*DO1(K,I) FPSS(K,I) =	
			FPSS(K,I)*TISS(K,I)	
23	W2	Initial-ization of one-layer	The definition of KBMIN was not updated if the model started out in some segments with only one_layer. This has been fixed. Added code highlighted: DO I=IU,ID IF (KB(I)-KT < NL(JB)- 1) IUT = I+1 ONE_LAYER(I) = KT == KB(I) END DO CUS(JB) = IUT ! reinitialize KBMIN DO I=IU-1,ID KBMIN(I) == MIN(KB(I),KB(I+1)) END DO KBMIN(ID+1) = KBMIN(ID) !**** Areas and bottom widths	12/17/07
			IF (.NOT. TRAPEZOIDAL(JW)) THEN	

	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
24	GUI W2	Bottom processes	This is a couple more fixes related to bug fix #6 above. The Denitrification rate and epiphyton burial rates could be affected based on unique combinations of adding/subtracting segments that left the value of BI in an inactive layer below KB defined incorrectly. In order to prevent the possibility of problems, the following fixes were made: Old Code: SedNO3 (K, I)	ment Added 12/17/2007

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
25	GUI W2	ment Type CBODS	If the user defined particulate CBOD that	ment Added 1/18/08
23	WZ	CBODS	settles to the bottom and had SED turned ON, the conversion from oxygen to organic matter was missing in the accumulation on the channel bottom or sides.	1,10,00
			OLD do jd=1,nbod SEDcb(K,I) = SEDcb(K,I)+MAX(cbods(jd),0.0)*cbod (K,I,Jd)*BI(K,I)/BH2(K,I)*(1.0- BI(K+1,I)/BI(K,I)) end do	
			<pre>NEW do jd=1,nbod SEDcb(K,I) = SEDcb(K,I)+MAX(cbods(jd),0.0)*(cbo d(K,I,Jd)/O2OM(JW))*BI(K,I)/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I)) ! 1/16/08 end do</pre>	
26	W2	SEDBR	Eliminated a redundant definition of SEDBR in the Sediment routine since it is already defined in the Kinetic rates subroutine.	1/18/08
27	W2	SEDDK	The first order sediment decay rate is an average of the decay rates of all the influxes of organic matter and their respective decay rates. There was an error in computing this average decay rate for CBOD treated as particulate. Code fix is shown below:	1/18/08
			<pre>do jd=1,nbod</pre>	
			<pre>NEW do jd=1,nbod</pre>	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
28	W2	SRO	There are some cases when segments	1/18/2008
			were added/subtracted that the value of	
			BI was not correctly initialized. This code is	
			a fix to prevent such occurrences:	
			OLD CODE: SRONET = SROIN-SROOUT SROSED = SROOUT*(1.0-BI(K+1,I)/BI(K,I))*TSEDF(JW)	
			<pre>NEW CODE: SRONET = SROIN-SROOUT if(k /= kb(i)) then ! SW 1/18/08 SROSED = SROOUT*(1.0- BI(K+1,I)/BI(K,I))*TSEDF(JW) else SROSED = SROOUT*TSEDF(JW) endif</pre>	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
29	W2	Water Quality	Added several calls to prevent	1/18/2008
			computation of kinetic variables if	
			epiphyton are defined in the control file	
			with NEP=1 or more but is not ACTIVE or	
			turned ON. If the kinetic expressions are	
			non-zero and the initial concentration is	
			given, then this could add source/sink	
			terms to the oxygen balance.	
			This is typical of the code changes – since	
			several of this type were made:	
			OLD CODE:	
			DO JE=1,NEP	
			PO4EG(K,I) =	
			PO4EG(K,I)+EGR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			PO4ER(K,I) =	
			PO4ER(K,I)+ERR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			END DO	
			NEW CODE:	
			IF (EPIPHYTON_CALC(JW,JE))then !	
			SW 1/18/2008	
			PO4EG(K,I) =	
			PO4EG(K,I)+EGR(K,I,JE)*EPC(K,I,JE)*EP(JE)	
			PO4ER(K,I) =	
			PO4ER(K,I)+ERR(K,I,JE)*EPC(K,I,JE)*EP(JE) endif	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
30	W2	Bottom processes	Continuation of bug fix #24 in such places as	1/18/2008
			<pre>New code: IF(K == KB(I))THEN</pre>	
			SEDAS(K,I) = SEDAS(K,I) +MAX(AS(JA),0.0)*ALG(K,I,JA) *xdum ! SW 1/18/08	
			SEDOMS(K,I) = pomS(JW)*(LPOM(K,I)+RPOM(K,I))*xdum !sw 1/18/08 cb 10/22/06 IF(K==KB(I))THEN ! SW 1/18/08 SEDSO = 0.0 ELSE SEDSO = sedS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I)) Endif	
			DO K=KT, KB(I) IF(K == KB(I))THEN xdum=BI(K,I)/BH2(K,I) ! SW 1/18/08 ELSE xdum=BI(K,I)/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I))	
			ENDIF DO JA=1,NAL SEDASP(K,I) = SEDASP(K,I) +MAX(AS(JA),0.0) *ap(ja) *ALG (K,I,JA) *xdum ! SW 1/18/08 END DO DO JE=1,NEP	
			<pre>IF (EPIPHYTON_CALC(JW, JE))LPOMEPp(K, I) = LPOMEPp(K, I) +EPOM(JE) *ep(je) * (EMR(K, I, JE) *EPC(K, I, JE))</pre>	
			This code is repeated similarly in many of the sediment routines.	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
31	W2	Add segment	The DEPTHM and DEPTHB were not	1/27/08
		initial-ization	initialized correctly when a segment was	
			added – this does not affect internal	
			computations, just output for SPR and SNP	
			files.	
			OLD CODE:	
			BKT(I) = BH1(KT,I)/H1(KT,I)	
			DEPTHB(K,I) = H1(KT,I) !	
			DEPTHM(K,I) = H1(KT,I)*0.5	
			NEW CODE:	
			BKT(I) = BH1(KT,I)/H1(KT,I)	
			DEPTHB(KT,I) = H1(KT,I) !	
			SW 1/27/08	
			DEPTHM(KT,I) = H1(KT,I)*0.5	
			! SW 1/27/08	

W2 V3.2 Bug Fixes, Enhancements, and User Manual Changes

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
1	W2	Waterbody-	When there was negative velocities at a	8/31/04
		waterbody	waterbody-waterbody connection, there was	
		connection	a possibility (dependent on the bathymetry of	
			the connection at the waterbody-waterbody	
			intersection) that there could be temperature	
			or concentration anomalies.	
2	W2	Lateral_	Added limit to the DLRHOMAX function:	1/25/05
		withdrawal	Old code:	
			DLRHOMAX=MAX(DLRHOT,DLRHOB)	
			New code:	
			DLRHOMAX=MAX(DLRHOT,DLRHOB,1.	
			0E-10)	
3	W2	Branch	Logic in branch connectivity set-up was fixed	1/25/05
		connectivity	Old code:	
			IF(UHS(JB) == DS(JJJB))EXIT	
			New code:	
			IF(abs(UHS(JB)) == DS(JJJB))EXIT	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
4	W2	Pumpback	Pumpback logic was corrected – this is legacy code that will probably be removed from later versions of W2 Old code: DO JB=1,NBR IF (JB == JBP) JWBP = JW END DO New code: DO JW=1,NWB DO JB=BS(JW),BE(JW) IF(JB == JBP) JWBP = JW END DO END DO	1/25/05
5	W2	CPL write	Switched order of implied DO loop on CPL write statement for output of constituents	1/25/05
6	W2	PRF write	Changed output format for PRF output for constituents from f10.2 to e13.6	1/25/05
7	W2	Heat balance	Added the Idso and Jackson long wave radiation equation when air temperatures are below 5C. The Swinbank model underpredicts long wave incoming radiation at low air temperatures by as much as 10%. The computation of long wave atmospheric radiation is done using the approach of Swinbank (1963) unless air temperatures are less than 5°C, when the Idso and Jackson (1969) formula is used (Wells, et al., 1982). The Swingbank formula for clear sky long wave atmospheric radiation is $\phi_{ac} = 5.31E - 13(T_a + 273)^6 \text{where units are W/m}^2, ^{\circ}\text{C} \text{ at 2 m height.}$ Below 40°F (5°C) the formula of Idso and Jackson is recommended (above 10°C both equations are almost identical): $\phi_{ac} = \sigma(T_a + 273)^4 \left(1 - 0.261 \exp(-7.77E - 4T_a^2)\right)$ where units are W/m² and T_a is in units of °C. The Stefan-Boltzmann constant = $5.62E-8$ W/m²/(°K)⁴.	1/25/05

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
7	W2	Layer addition algorithm	Mistyped subscript K instead of I: Old code:	3/2/05
		aigoritiiiii	IF (KB(I) > KBI(I)) THEN B(KB(K),I) = 0.0 DX(KB(I),I) = 0.0 KB(I) = KB(I)-1 IF (I /= DS(JB)+1) KBMIN(I) = MIN(KB(K),KB(I+1)) IF (I /= US(JB)-1) KBMIN(I-1) = MIN(KB(I-1),KB(I)) New Code: IF (KB(I) > KBI(I)) THEN B(KB(I),I) = 0.0 KB(I) = KB(I)-1 IF (I /= DS(JB)+1) KBMIN(I) = MIN(KB(I),KB(I)) KBMIN(I) = MIN(KB(I),KB(I+1)) ! SW 3/2/05 IF (I /= US(JB)-1) KBMIN(I-1) = MIN(KB(I-1),KB(I))	
8	W2	Variable	In some cases when there was a layer	3/9/05
		initialize-tion	subtraction and a time step violation	
			immediately afterward, the variable SW was	
			not initialized properly. This caused problems	
			in the Tomas Algorithm for the water surface	
			computation. The following line of code was added to the SUB layer algorithm:	
			SW(KT-1, IU-1:ID+1) = 0.0 !TC 3/9/05	
			Also, the variable AVHR was defined in the	
			Update variables for DS+1. The following new	
			code was added:	
			AVHR(KT, DS(JB)+1)=H1(KT, DS(JB)+1) !SW 03/08/05	

#	Code: W2 or PREW2 or	Fix or Enhance-	Description of Bug/Enhancement	Date Bug Fixed or Enhance-
	PREW2 or GUI	ment Type		or Enhance- ment Added
9	W2	Interpola-tion	Possible index error if there are multiple	5/10/05
		multipliers	waterbodies.	
			Old code: RATZ (K, JW) = AVH2 (K- 1, I) /AVH2 (K, I) CURZ1 (K, JW) =	
			2.0*H(K,JW)**2/(AVH2(K- 1,I)+AVH2(K,I))/AVH2(K-1,I) CURZ2(K,JW) = - 2.0*H(K,JW)**2/(AVH2(K-1,I)*AVH2(K,I))	
			CURZ3(K,JW) = 2.0*H(K,JW)**2/(AVH2(K- 1,I)+AVH2(K,I))/AVH2(K,I) END DO	
			New code: RATZ (K, JW) = AVH2 (K- 1, DS (BE (JW))) / AVH2 (K, DS (BE (JW)))	
			CURZ1 (K, JW) = 2.0*H(K, JW) **2/(AVH2 (K-1, DS (BE (JW))) +AVH2 (K, DS (BE (JW))) / AVH2	
			(K-1, DS (BE (JW))) CURZ2 (K, JW) = - 2.0*H (K, JW) **2/ (AVH2 (K-	
			1, DS (BE (JW))) *AVH2 (K, DS (BE (JW)))) CURZ3 (K, JW) =	
			2.0*H(K,JW)**2/(AVH2(K- 1,DS(BE(JW)))+AVH2(K,DS(BE(JW))))/AVH2 (K,DS(BE(JW)))	
10	W2	Spillway and	Older code in order to check if it was	5/10/05
		Gates	submerged or not used the elevation	
			difference relative to the channel bed on	
			either side of the weir, rather than the weir	
			crest. Also removed code line:	
			IF(ELDN>ESP(JS))DH+ELUP-ELDN	
11	W2	Reaeration	Corrected formula errors in Thackston and	5/10/05
			Krenkel formula:	
			Old code:	
			USTAR=SQRT (ADEPTH*SLOPE (JB) *32.2) **0.5 REAER(I) = 24.88*(1.0+SQRT(0.176*UAVG/SQRT (ADEPTH	
)))*USTAR	
			New code: USTAR=SQRT (ADEPTH*SLOPE (JB) *32.2)	
			REAER(I) = 24.88*(1.0+SQRT(0.176*UAVG/SQRT(ADEPTH	
)))*USTAR/ADEPTH	
			Similar changes were made to the updated Thackston model (Eqn 10)	
12	W2	Violations NV	The variable BI and VOL was not initialized	8/25/05
			properly during a time-step violation.	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
13	W2	ADD a layer	The variable BI was not initialized properly	8/25/05
			during an ADD layer.	
14	W2	TRIDIAG	Insert Deallocate Statement in Tridiag	10/17/05
		subroutine	SUBROUTINE TRIDIAG (A, V, C, D, S, E, N, U) USE PREC INTEGER, IN TENT (IN) :: S, E, N REAL (R8), DIMENSION(:), INTENT (IN) :: A(E), V(E), C(E), D(E) REAL, DIMENSION(:), INTENT (OUT) :: U(N) REAL (R8), ALLOCATABLE, DIMENSION(:) :: BTA, GMA ALLOCATE (BTA(N), GMA(N)) BTA(S) = V(S) GMA(S) = D(S) DO I=S+1, E BTA(I) = V(I)-A(I)/BTA(I-1)*C(I-1) GMA(I) = D(I)-A(I)/BTA(I-1)*GMA(I-1) END DO U(E) = GMA(E)/BTA(E) DO I=E-1,S,-1 U(I) = (GMA(I)-C(I)*U(I+1))/BTA(I) END DO Deallocate (BTA, GMA) < ! SW 10/17/05 END SUBROUTINE TRIDIAG	
15	W2	SUB layer	In SUB Layer/Sub Seg - eliminate	10/17/05
	- =		parentheses which caused a sign error IF (.NOT. TRAPEZOIDAL(JW)) THEN BI(KT,IU-1) = B(KTI(IU-1),I) H1(KT,IU-1) = H(KT,JW)- Z(IU-1) BH1(KT,IU-1) = B(KTI(IU-1)+I,IU-1)-Z(IU-1)*(OSA(JB))/COSA(JB) < - ! SR 10/17/05 IF (KT >= KB(IU-1)) BH1(KT,IU-1) = B(KT,IU-1)+I,KT BH1(KT,IU-1) = B(KT,IU-1)+I,KT BH1(KT,IU-1) = BH1(KT,IU-1) DO K=KTI(IU-1)+I,KT BH1(KT,IU-1) = BH1(KT,IU-1) 1)+BH1(K,IU-1) END DO ELSE	

16	W2	SLIB layer for	Layer SUB - improve model running in	10/17/05
10	VVZ		shallow segments	10/17/03
		shallow	<u>знаном зединенна</u>	
		systems	!** Water surface minimum thickness	
			DO JW=1,NWB	
			KT = KTWB (JW)	
			ZMIN (JW) = -1000.0 $KTMAX = 2 <$!	
			SR 10/17/05	
			DO JB=BS(JW),BE(JW)	
			DO I=CUS(JB), DS(JB)	
			IF(KB(I) > KTMAX) KTMAX = KB(I) < ! SR 10/17/05	
			KB(I) < SR 10/17/05 $ IF (Z(I) > ZMIN(JW)) THEN$	
			IZMIN(JW) = I	
			JBIZ = JB	
			$ END \qquad IF $ $ZMIN(JW) = MAX(ZMIN(JW), Z(I)) $	
			END DO	
			END DO	
			ADD_LAYER = ZMIN(JW) < -0.85*H(KT-	
			1,JW) .AND. KT /= 2 SUB_LAYER = ZMIN(JW)	
			> 0.60*H(KT,JW) .AND. KT < KTMAX <	
			! SR 10/17/05	
			!****** Upstream active segment IUT = US(JB)	
			IF (SLOPE(JB) /= 0.0) THEN	
			DO I=US(JB)-1,DS(JB)+1	
			IF (KB(I) < KT)THEN < ! SR 10/17/05	
			KB(I) = KT	
			B(KB(I),I) =	
			0.000001	
			DX(KB(I),I) = DXI(JW)	
			!***** Additional layer subtractions	
			ZMIN(JW) = -1000.0 DO JB=BS(JW), BE(JW)	
			DO I=CUS(JB), DS(JB)	
			ZMIN(JW) = MAX(ZMIN(JW), Z(I))	
			END DO END DO	
			SUB LAYER = ZMIN(JW) >	
			0.60*H(KT,JW) .AND. KT < KTMAX </th <th></th>	
			SR 10/17/05	
			END DO END DO	
			Also done for the initial set-up of the branch	
			geometry:	
			!**** Upstream active segment and single	
			layer	
			IF (SLOPE(JB) /= 0.0) THEN	
			DO I=US(JB)-1,DS(JB)+1 IF (KB(I) < KT) THEN <-	
			! .AND. I /= IZMIN(JW) SW	
			10/17/05	
			B(KT,I) = 0.000001	
<u> </u>				
17	W2	Shade	No errors just an improvement in	10/17/05
		algorithm	computational efficiency.	

#	Code: W2 or PREW2 or	Fix or Enhance-	Description of Bug/Enhancement	Date Bug Fixed or Enhance-
	GUI	ment Type		ment Added
			Delete this from the SHADING subroutine:	
			!** Set the angles for which topographic	
			shade data are available	
			DO II=1, IANG	
			ANG(II) = ((II-	
			1)*(360.0/FLOAT(IANG)))*PI/180.0 END DO	
			GAMMA = (2*PI)/IANG	
			and change the 2 occurrences of gamma to gama	
			(only in shading subroutine):	
			ANG2 = (TOPO(I, J+1) -	
			TOPO(I,J))/GAMA < ! SW 10/17/05	
			TOPOANG = TOPO(I,J)+ANG2*ANG1	
			ENDIF	
			END DO	
			IF (AZ00 > ANG(IANG) .AND. AZ00 <=	
			2*PI) THEN ANG1 = AZ00-ANG(IANG)	
			` ,	
			ANG2 = $(TOPO(I, 1) - TOPO(I, IANG))/GAMA$ SW 10/17/05</td <td></td>	
			ADD a line to the module SHADEC:	
			MODULE SHADEC	
			PARAMETER (IANG=18)	
			REAL, PARAMETER ::	
			GAMA=(3.1415926*2.)/REAL(IANG) < ! SW	
			10/17/05	
			REAL, DIMENSI ON(IANG):: ANG SW 10/17/05</td <td></td>	
			REAL, ALLOCATABLE,	
			DIMENSION(:)	
			A00, DECL, HH, TTLB, TTRB, C	
			LLB, CLRB < ! SW 10/17/05	
			REAL, ALLOCATABLE,	
			DIMENSION(:) ::	
			SRLB1, SRRB1, SRLB2, SRRB2, SRFJD1,	
			SRFJD2, SHADEI REAL, ALLOCATABLE, DIMENSION(:,:) :: TOPO	
			LOGICAL, ALLOCATABLE, DIMENSION(:) ::	
			DYNAMIC SHADE	
			DATA ANG /0.00000, 0.34907, 0.69813,	
			1.04720, 1.39626, 1.74533, 2.09440,	
			2.44346,&	
			2.79253, 3.14159, 3.49066, 3.83972,	
			4.18879, 4.53786, 4.88692, 5.23599, 5.58505, 5.93412/ < ! SW10/17/05	
			5.58505, 5.93412/ < ! SWIU/17/05 END MODULE SHADEC	
			Delete allocation statement for ang:	
			ALLOCATE	
			(SRLB1(IMX), SRRB1(IMX), SRLB2(IMX), S	
			RRB2(IMX), SRFJD1(IMX), SHADEI(IMX),	
			SRFJD2(IMX))	
			ALLOCATE (TOPO(IMX, IANG)) <	
			- !SW10/17/05	
			ALLOCATE (QSW(KMX,NWDT), CTR(NCT,NTRT),	
			HPRWBC (NHY, NWB)) Delete ang from the deallocate statement:	
			DEALLOCATE (TTLB, TTRB, CLLB, SRLB1	
			, SRRB1, SRLB2, SRRB2, SRFJD1,	
			SHADEI, SRFJD2, TOPO, QSW, CTR) <-	
			! SW 10/17/05	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
18	W2	Epiphyton	Several changes were made that corrected	5/26/06
		algorithm	errors in shallow systems where adding and	
			subtracting layers did not reinitialize	
			macrophyte layers when the current KT was	
			below KB; the epiphyton burial rate was	
			greater than specified in the control file;	
			epiphyton that are buried become part of the	
			1 st order organic sediment (as before);	
			epiphyton mortality now becomes part of the	
			LPOM pool (based on the EPOM fraction) and	
			is settled and transported downstream rather	
			than going into the organic 1 st order sediment	
			model directly. Currently this is non-	
			photosynthesizing – but we will change in the	
			next version.	
19	W2	ADD/SUB	There was a bug in addition and subtraction of	5/26/06
		layers	layers that led to water quality variables not	
			being initialized correctly during riverine	
			shallow flow	
20	User	Typos	The manual had a few typos that were	6/11/2006
	Manual	corrected	corrected.	
21	W2	Waterbody-	The subroutine Upstream_velocity under	6/29/2006
		waterbody	specific conditions did not maintain flwo	
		connection	continuity across a waterbody-waterbody	
			connection	
22	W2	SNP output	The algal limiting nutrient SNP output had a	6/30/2006
			bug under specific conditions in writing out	
			the information.	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
23	PREW2 or	Enhance-	If a model added and subtracted layers that resulted in segment addition and subtraction, there was the possibility that sediment fluxes were incorrectly computed. In the NO3 subroutine: Old code: NO3SED(K,I) = NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I))* -BI(K+1,I))/BH2(K,I) New code: if(k == kb(i)) then NO3SED(K,I) = NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I))/BH2(K,I) else NO3SED(K,I) = NO3(K,I)*NO3S(JW)*NO3TRM(K,I)*(BI(K,I))* BI(K+1,I))/BH2(K,I) endif New code added in sediment routine: if (k == kb(i)) then ! SW 4/18/07 SODD(K,I) = SODD(K,I) = SOD(I)/BH2(K,I)*SODTRM(K,I)*BI(K,I) else SODD(K,I) = SOD(I)/BH2(K,I)*SODTRM(K,I)*(BI(K,I) - BI(K+1,I)) Endif New code added in suspended solids routine:	or Enhance-
			<pre>New code added in suspended solids routine: if(k == kb(i)) then</pre>	

#	Code: W2 or PREW2 or GUI	Fix or Enhance- ment Type	Description of Bug/Enhancement	Date Bug Fixed or Enhance- ment Added
23			New code added for heat flux to channel bottom: if (kt == kb(i)) then	
			BI(K,I)/BH2(K,I)(1.0- BI(K+1,I)/BI(K,I)) endif if(k == kb(i))then ! SW 4/18/07 SEDOMS(K,I) = POMS(JW)*(LPOM(K,I)+RPOM(K,I))*BI(K,I) /BH2(K,I) SEDSO = POMS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I) else SEDOMS(K,I) = POMS(JW)*(LPOM(K,I)+RPOM(K,I))*BI(K,I) /BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I)) SEDSO = POMS(JW)*SED(K,I)*BI(K+1,I)/BH2(K,I)*(1.0-BI(K+1,I)/BI(K,I)) endif	

#	Code: W2 or	Fix or	Description of Bug/Enhancement	Date Bug Fixed
	PREW2 or	Enhance-		or Enhance-
	GUI	ment Type		ment Added
24	W2	Algae	The logic for negative settling velocities for	8/27/07
			algae had an error.	
			Old code:	
			$! \qquad \qquad ASR(K,I,JA) = -$	
			AS(JA)*(ALG(K+1,I,JA)*B(K+1,I)/(B(K,I)	
			*H2(K,I))-	
			ALG(K,I,JA))*BI(K,I)/BH2(K,I)	
			New code:	
			ASR(K,I,JA) = -	
			AS(JA)*(ALG(K+1,I,JA)*BI(K+1,I)/BH2(K,	
			I)-ALG(K,I,JA)*BI(K,I)/BH2(K,I))	
			!SP 8/27/07	
			Shwet Prakash	