PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/40, 15/86, C07K 14/18, A61K 39/12, C12N 7/01, 7/00, 5/10

(11) International Publication Number:

WO 96/40933

(43) International Publication Date:

19 December 1996 (19.12.96)

(21) International Application Number:

PCT/US96/09209

A1

(22) International Filing Date:

6 June 1996 (06.06.96)

(30) Priority Data:

08/483.292

7 June 1995 (07.06.95)

US

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) Agents: SPRATT, Gwendolyn, D. et al.; Needle & Rosenberg,

Suite 1200, 127 Peachtree Street, N.E., Atlanta, GA 30303-

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

- (71) Applicants: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institute of Health, Office of TechnologyTransfer, Suite 305, 6011 Executive Boulevard, Rockville, MD 20852 (US). MAHIDOL UNIVERSITY AT SALAYA [TH/TH]; 25/25 Phutthamonthon 4, Nakhonpathom 73170 (TH).
- (72) Inventors: BHAMARAPRAVATI, Natth; Mahidol University at Salaya, Nakhonchaisri, Nakhonpathom 73170 (TH). BUTRAPET, Siritorn; 396/27 Soi Watsuna Naram, Bangkok-Noi, Bangkok 10700 (TH). CHANG, Jeffrey; 4237 Beaver Creek, Fort Collins, CO 80526 (US). GUBLER, Duane, J.; 717 Dartmouth Trail, Fort Collins, CO 80525 (US). HALSTEAD, Scott, B.; 5901 Montrose Road, Rockville, MN 20852 (US). KINNEY, Richard; 2914 Brumbaugh Drive, Fort Collins, CO 80526 (US). TRENT, Dennis, W.; 8002 Lions Crest Way, Gaithersburg, MD 20879 (US).

(54) Title: INFECTIOUS DENGUE 2 VIRUS PDK-53 AS QUADRAVALENT VACCINE

Construction of DEN-2 Infectious cDNA Clone 5' C pr M E NS1 2A 2B NS3 4A 4B NS5 3' Viral mRNA Synthesize and clone RT/PCR products 77 Splice RT/PCR clones at unique sites (^)

(57) Abstract

The invention relates to infectious cDNA clones for Dengue 2 virus, strain 16681, and its live, attenuated vaccine derivative, PDK-53 (DEN-2 PDK-53). The invention also relates to infectious cDNA clones for chimeric viruses characterized as expressing structural genes of a Dengue 1, Dengue 3, or Dengue 4 attenuated virus in the context of the nonstructural genes of the Dengue 2 PDK-53 virus (DEN-2/1, DEN-2/3, DEN-2/4). The invention further relates to genetic constructs encoding these cDNAs, and host cells containing these constructs. The invention moreover relates to quadravalent vaccines providing immunity against all four serotypes of dengue virus comprising DEN-2 PDK-53 infectious clone derivative, DEN-2/1, DEN-2/3, or DEN-2/4 viruses, and related methods of immunization.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			-		
AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑŪ	Australia	GN	Guinea	NE	Niger
BB	Barbedos	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	freland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KR	Кепуа	RO	Romania
BY	Belanıs	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	8Z	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Maaritania	VN	Viet Nam
					

WO 96/40933 PCT/US96/09209

INFECTIOUS DENGUE 2 VIRUS PDK-53 AS QUADRAVALENT VACCINE

5

Field of the Invention

The invention relates to infectious cDNA clones for Dengue 2 virus, strain 16681, and its live, attenuated vaccine derivative, PDK-53 (DEN-2 PDK-53). The invention also relates to infectious cDNA clones for chimeric 10 viruses characterized as expressing structural genes of a Dengue 1, Dengue 3, or Dengue 4 attenuated virus in the context of the nonstructural genes of the Dengue 2 PDK-53 virus (DEN-2/1, DEN-2/3, DEN-2/4). The invention further relates to genetic constructs encoding these cDNAs, and 15 host cells containing these constructs. The invention moreover relates to quadravalent vaccines providing immunity against all four serotypes of dengue virus comprising DEN-2 PDK-53 infectious clone derivative, DEN-2/1, DEN-2/3, or DEN-2/4 viruses, and related methods of 20 immunization.

Background of the Invention

Arthropod-borne viruses (arboviruses) are a diverse

25 group of viruses that have been lumped together on the
basis of their ecological niche, which involves cycles of
transmission between vertebrate hosts and arthropod
vectors such as mosquitos and ticks. The prototype
arbovirus is yellow fever virus, a flavivirus, which was

30 isolated in 1927. In the 1950s, the Rockefeller
Foundation established a number of field stations in

WO 96/40933 PCT/US96/09209

2

various tropical countries for the purpose of isolating new viruses. The 1985 International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates contains registrations for 504 discrete arboviruses, 124 of which have caused disease in humans. Thirty-four viruses of the Flavivirus genus (family Flaviviridae) of arboviruses are human pathogens (Karabatsos, 1985). (All publications cited hereunder are incorporated herein by reference.)

10 According to a 1992 World Health Organization (WHO)
press release (Press Release WHO/74, November 24, 1992),
dengue hemorrhagic fever is one of the most important and
increasing mosquito-transmitted infections in the world,
with more than 85 countries in Asia, the Pacific Islands,
15 Africa, Central America, and South America being
threatened with dengue outbreaks. Dengue fever was known
in the past as "breakbone fever" due to the severe
muscular and joint pain that accompanied the high fever
during this infection. Dengue is an under-reported
20 disease: it is thought that millions of cases occur each
year.

Dengue (DEN) viruses, which are flaviviruses, are classified antigenically into 4 serotypes (DEN-1, DEN-2, DEN-3, and DEN-4). Multiple serotypes are now endemic in most countries in the tropics. DEN viruses are transmitted to humans principally by Aedes aegypti mosquitos throughout much of the tropical and subtropical region of the world. Viruses of all four serotypes infect humans and cause clinically inapparent infection or illness ranging from dengue fever to severe and often

fatal dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). DHF/DSS has been associated epidemiologically and experimentally with immune enhancement of virus replication by preexisting, subneutralizing levels of heterotypic antibody. About 90% or more of patients with DHF/DSS are children who are 14 years old or younger (Halstead, 1970; Halstead, 1988). Case fatality rates in untreated individuals can be as high as 15-20%. Between 1956 and 1978, hospitalization of more than 350,000 dengue patients and about 12,000 deaths in Southeast Asia were 10 reported to the WHO (Halstead, 1980). More recent dengue epidemics in Asia, the Pacific islands, the Americas, and Africa indicate that the incidence, with up to 40 million cases annually, and geographic distribution of the disease is increasing in Aedes aeqypti-infested areas of the world 15 (Halstead, 1984; Gubler, 1988; Brandt, 1990).

Since eradication of Aedes aegypti mosquitos appears to be practically infeasible, development of safe, effective vaccines against all four serotypes of DEN virus is a WHO priority (Gubler, 1988; Brandt, 1988; Brandt, 1990). Since the level of DEN virus replication in certified cell cultures yields insufficient antigenic mass to produce effective inactivated vaccines, priorities are given to developing effective live, attenuated vaccine viruses and using a variety of expression systems such as recombinant vaccinia or avipox virus (live vaccine), recombinant baculovirus (subunit vaccine), and recombinant E. coli (subunit vaccine) to express certain genes of the DEN viral genome (Brandt, 1988; Brandt, 1990).

4

Flaviviruses are enveloped RNA viruses 45 to 50 nm in diameter that contain a single-stranded, positive-sense capped RNA genome of approximately 11 kb. The RNA genome does not have a 3'-terminal poly(A) tail. Because the genetic molecule of flaviviruses is positive or messenger RNA (mRNA)-sense, naked genomic RNA injected, transfected, or electroporated into mammalian or invertebrate cells is capable of associating directly with the ribosomal protein synthetic machinery of the cell. All of the viral proteins are translated from the inserted viral genomic mRNA. These virus-specified proteins then replicate the viral genome, resulting in intracellular virus maturation and release of infectious virus from the transfected cell.

The gene organization of the flavivirus mRNA genome,

illustrated below, is 5'-noncoding region (5'-NC)-capsidpremembrane/membrane (prM/M)-envelope (E)-nonstructural
protein 1 (NS1)-NS2A-NS2B-NS3-NS4A-NS4B-NS5-3'-noncoding
region (3'-NC). The structural proteins capsid, prM/M,
and E and nonstructural proteins are translated as a large
precursor polyprotein molecule from a single long open
reading frame in the mRNA genome. The individual mature
viral proteins are processed from the polyprotein by both
cell and virus specified proteases (Westaway et al., 1985;
Coia et al., 1988; Speight and Westaway, 1989; Rice et

al., 1985).

Genome Organization of Dengue Virus and Other Flaviviruses

C M E NS1 2A 2B NS3 4A 4B NS5 3'-N	С
------------------------------------	---

10

25

30

The structural proteins are those viral proteins that are incorporated into the mature virion. The virion consists of an icosahedral capsid (C) that packages the viral genomic mRNA (nucleocapsid). The nucleocapsid is surrounded by a cell-derived lipid membrane into which the envelope (E) and mature membrane (M) proteins are imbedded. The virus-specific nonstructural genes, NS1-NS5, are expressed in the cytoplasm of the infected cell and are involved in the replication and maturation of the viral RNA genome and viral proteins.

The E glycoprotein of the virus is exposed to the environment and is involved in attachment and entry of the virus into the cell. The E protein is the primary viral immunogen against which the infected vertebrate host develops virus-specific neutralizing antibody. The E gene is the most common target for development of molecular systems to express the encoded E glycoprotein. However, immunization with various purified nonstructural genes of the virus have been shown to elicit protective immunity against challenge with wild-type virus, probably via cytotoxic T-cell mediated lysis of infected cells which express viral nonstructural proteins on the cell surface.

Vaccination can be one of the most cost effective ways to prevent dengue fever and DHF/DSS. Since 1979 the WHO has supported research on dengue vaccine development at the Mahidol University in Bangkok, Thailand (Press Release WHO/74, November 24, 1992). Investigators at Mahidol University have developed four live, attenuated candidate vaccine viruses, one for each of the four serotypes, by serial passage of the virulent parent

WO 96/40933 PCT/US96/09209

6

viruses in primary dog kidney (PDK) or fetal rhesus lung (FRhL) cell culture (Yoksan et al., 1986; Bhamarapravati et al., 1987). Phase 1 and Phase 2 clinical trials in Thailand have demonstrated that the vaccine is both safe and immunogenic in humans. The vaccines now need to be tested for efficacy in large numbers of children (Press Release WHO/74, November 24, 1992). To preclude the possible severe DHF/DSS immune enhancement phenomenon in vaccinees who might be infected naturally with a heterologous serotype of wild-type DEN virus following immunization with a single serotype of vaccine virus, it is essential that humans be vaccinated with a quadravalent vaccine to provide immunity against all four serotypes of the virus.

15

20

25

10

Summary of the Invention

The invention provides a quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a DEN-2 PDK-53 infectious clone-derived virus.

The invention also provides a quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/1 virus.

The invention further provides a quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/3 virus.

The invention moreover provides a quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/4 virus.

10

15

25

30

The invention additionally provides a quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising DEN-2 PDK-53 infectious clone-derived and chimeric DEN-2/1, DEN-2/3, and DEN-2/4 viruses.

In another aspect, the invention provides a method of immunization in which a desired immune response is produced against all four serotypes of dengue virus comprising the step of administering to a subject a quadravalent vaccine comprising DEN-2 PDK-53 infectious clone-derived and chimeric DEN-2/1, DEN-2/3, and DEN-2/4 viruses.

In yet another aspect, the invention provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681.

The invention also provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus of a strain characterized as replicating to high titer in cell culture.

The invention further provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681, having the identifying characteristics of ATCC 69826.

In still another aspect, the invention provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681, attenuated derivative, PDK-53.

The invention also provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus attenuated derivative,

WO 96/40933 PCT/US96/09209

8

characterized as replicating to high titer in cell culture.

The invention further provides a composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681, attenuated derivative, PDK-53, having the identifying characteristics of ATCC 69825.

In another aspect, the invention provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/1 virus, wherein the virus is characterized as expressing the prM and E genes of a DEN-1 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus. The DEN-1 attenuated virus may be DEN-1 PDK-13.

10

20

25

The invention also provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2 virus, wherein the virus is characterized as expressing the antigenicity of a DEN-1 attenuated virus.

In yet another aspect, the invention provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/3 virus, wherein the virus is characterized as expressing the prM and E genes of a DEN-3 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus. The DEN-3 attenuated virus may be DEN-3 PGMK30/FRhL-3.

The invention also provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2 virus, wherein the virus is

characterized as expressing the antigenicity of a DEN-3 attenuated virus.

In still another aspect, the invention provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/4 virus, wherein the virus is characterized as expressing the prM and E genes of a DEN-4 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus. The DEN-4 attenuated virus may be DEN-4 PDK-48.

The invention also provides a composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2 virus, wherein the virus is characterized as expressing the antigenicity of a DEN-4 attenuated virus.

Additionally, the invention provides a genetic construct comprising a DNA sequence operably encoding the polyprotein of DEN-2 virus, strain 16681. The polyprotein may be the polyprotein encoded by the nucleotide sequence of SEQ ID NO:1.

The invention also provides a genetic construct comprising a DNA sequence operably encoding at least one protein of DEN-2 virus, strain 16681. The protein may be a protein encoded by the nucleotide sequence of SEQ ID NO:

1.

25 Further, the invention provides a genetic construct comprising a DNA sequence operably encoding the polyprotein of DEN-2 virus, strain 16681, attenuated derivative, PDK-53. The polyprotein may be the polyprotein encoded by the nucleotide sequence of SEQ ID NO:2.

WO 96/40933 PCT/US96/09209

10

The invention also provides a genetic construct comprising a DNA sequence operably encoding at least one protein of DEN-2 virus, strain 16681, attenuated derivative, PDK-53. The protein may be a protein encoded by the nucleotide sequence of SEQ ID NO: 2.

Moreover, the invention provides a genetic construct comprising a DNA sequence operably encoding at least one structural protein of DEN-1 PDK-13. The structural protein may be a structural protein encoded by the nucleotide sequence of SEQ ID NO: 124.

10

15

20

30

In another aspect, the invention provides a genetic construct comprising a DNA sequence operably encoding at least one structural protein of DEN-3 PGMK30/FRhL-3. The structural protein may be a structural protein encoded by the nucleotide sequence of SEQ ID NO: 125.

In still another aspect, the invention provides a genetic construct comprising a DNA sequence operably encoding at least one structural protein of DEN-4 PDK-48. The structural protein may be a structural protein encoded by the nucleotide sequence of SEQ ID NO: 126.

In yet another aspect, the invention includes a host cell comprising any of the above genetic constructs.

25 <u>Brief Description of the Drawings</u>

Figure 1: Strategy for construction of the full genome-length cDNA clone of DEN-2 virus. Using PCR technology, cDNA is amplified from the genomic RNA of the virus and cloned. Subclones are spliced together at unique, overlapping restriction enzyme sites to construct

the full genome-length clone. Numbered arrows upstream (right arrows) and downstream (left primers used to amplify the cDNA in PCR reactions.

Figure 2: Transcription of genomic mRNA from the full-length infectious cDNA clone of DEN-2 virus. The recombinant plasmid is linearized at the unique XbaI site at the 3'-end of the genomic cDNA. Bacteriophage T7 RNA polymerase recognizes the T7 promoter engineered at the 5'-end of the cDNA and transcribes full-length viral mRNA from the cDNA template.

5

10

15

Figure 3: Restriction enzyme sites identified in the nucleotide sequence of the RNA genome of DEN-2 16681 virus. Locations for the sites are indicated by the genome nucleotide numbers. Restriction enzymes that cleave the DEN-2 genomic cDNA at only a single location are listed vertically at the top of the figure. The resolution of the RENZ graph is 97.5 nucleotides per dot.

Figure 4: Growth curve of DEN-2 16681 virus in C6/36 mosquito cells.

Figure 5: (A) Polaroid prints showing RT/PCR amplification of the entire mRNA genome of DEN-2 virus, strain 16681, in the form of 5 cDNA amplicons. The molecular weight marker (MW) consists of linear, double-stranded DNA markers of various base pair (bp) lengths.
The top 2 gels show 5-μl aliquots of the original RT/PCR reactions. The bottom two gels show 10% of the yield following HMC agarose gel purification of the remaining 95-μl reaction aliquots. (B) Primers (amplimers) used in the RT/PCR reactions and the expected sizes of the

Figure 6: EcoRI restriction enzyme digests of F2,
F2-Sal, Sal-F2, and F3 miniprep recombinant plasmid DNA.
Plasmids from individual colonies resulting from
transformation with independent ligated, recombinant

5 plasmid molecules are numbered. The insert in the single
F2-8 plasmid was too small and was discarded. The
remaining recombinant plasmids contained cDNA inserts of
expected size. As expected, F2-Sal cDNA contained two
internal EcoRI sites; the Sal-F2 and F3 plasmids contained
10 a single internal EcoRI site. EcoRI digestion of the
recombinant plasmids regenerated linearized, wild-type
3.9-kb pCRII vector. For an undetermined reason, one of
the EcoRI sites in plasmid F3-1 did not cut.

Figure 7: Schematic diagram showing the genomic
locations of DEN-2 16681 virus-specific cDNA clones.
Clones indicated with asterisks were spliced together at
the indicated restriction enzyme sites to construct the
full genome-length cDNA clone. Black horizontal bars
indicate clone regions that were sequenced. Light gray
regions of horizontal bars indicate clone regions that
were not sequenced.

Figure 8: (A) Effect of adding Taq extender reagent to PCR reactions. The 5.2-kbp amplicon of St. Louis encephalitis virus was readily obtained by extended PCR (+) but not by standard PCR (-). (B) Agarose gel electropherogram showing DEN-2 PDK-53 F1, F2, and F3 amplicons derived by extended PCR.

Figure 9: Schematic diagram showing the genome locations of errors identified in the cDNA clones of DEN-2

30 16681. Errors are indicated by short vertical tick marks.

20

25

30

Figure 10: Schematic diagram illustrating the approximate genome locations of the nucleotide discrepancies between the data of Applicants and those of Blok et al. (1992) for the sequence of the genome of DEN-2 virus, strain 16681.

Figure 11: Nucleotide sequence of the genome of DEN2 strain 16681 virus. Differences between the data
determined by Blok et al. (1992) (DEN-2-16681.BLOK) and
those obtained by Applicants (DEN-2-16681.RK). The genome
10 nucleotide positions of the sequence differences are
listed vertically. The solid squares indicate those
nucleotide differences that also encode amino acid
substitutions. The remaining nucleotide differences are
either silent, encoding the same amino acid, or lie within
15 the 5'-noncoding (5'-NC) or 3'-noncoding region (3'-NC).

Figure 12: Schematic diagram showing the DEN-2 PDK-53 virus-specific cDNA clones and the approximate locations of cDNA errors (vertical tick marks) identified by nucleotide sequence analyses. Clones marked with an asterisk were used in the construction of the DEN-2 PDK-53 virus-specific full-length cDNA clone. Clone #19 had a 203-bp deletion (horizontal line).

Figure 13: Schematic summary of the DEN-2 16681 vs.

PDK-53 virus sequencing projects. Arrows indicate the nucleotide differences detected between the two genomes.

Triangles indicate those nucleotide changes that resulted in amino acid substitutions.

Figure 14: Finalized nucleotide and amino acid sequence of the RNA genome of DEN-2 virus, strain 16681 (SEQ ID NO:1). The nucleotide and amino acid mutations

that were determined to have occurred in DEN-2 virus. strain PDK-53, are indicated at the appropriate positions (SEQ ID NO:2). The EcoRI, SstI, Mull, and T7 promoter sites that were engineered immediately preceding the 5'terminal nucleotide of the virus-specific genomic cDNA are The start positions of the viral genes and noncoding regions (5'-NC and 3'-NC) are shown. Potential sites of Asn-linked glycosylation (Asn-X-Ser or Thr, where X = any amino acid) in prM, E, and NS1 are indicated by asterisks. The deduced amino acid sequence is indicated 10 in standard single-letter abbreviation: A = Ala, C = Cys, D = Asp, E = Glu, F = Phe, G = Gly, H = His, I = Ile, K =Lys, L = Leu, M = Met, N = Asn, P = Pro, Q = Gln, R = Arg, S = Ser, T = Thr, V = Val, W = Trp, Y = Tyr.

- Figure 15: Construction of intermediate clone F2 by 15 ligating the F2-Sal SphI/HpaI fragment and Sal-F2 HpaI/KpnI fragment into pUC18. The resulting F2 clone contained a nonsilent cDNA error at genome nucleotide position 1730.
- 20 Figure 16: Correction of the intermediate F2 clone. A new PCR amplicon was cloned and sequenced. SphI/HpaI fragment of this clone was spliced into F2 to construct F2-C having the correct nucleotide at genome position 1730.
- 25 Figure 17: Construction of the intermediate F1/3/4/5 cDNA clone for DEN-2 16681 virus. The thick solid black bars indicate DEN-2 virus-specific cDNA, illustrated with the RENZ sites of the MCS of the plasmid. The RENZ sites used in each step of the splicing strategy are indicated in underlined, bold characters. The top half of the 30

figure shows construction of F1/3/4/5-pUC18. The bottom portion of the figure illustrates the making of F1/3/4/5pUC19. The final step in the construction of the full genome-length cDNA clone involved the ligation of the F2-C SphI/KpnI cDNA fragment into plasmid containing cDNA 5 F1/3/4/5 and cut with RENZs SphI/KpnI. Although F2-C cDNA could not be cloned into F1/3/4/5-pUC18, it was readily cloned into F1/3/4/5-pUC19. The pUC18 plasmid containing a small insert of cDNA made for Venezuelan equine 10 encephalitis (VEE) virus was used simply to move F1 and F4/5 into pUC18 in a 3-molecule ligation reaction. VEE virus-specific cDNA was spliced out during this process. Arrowheads under cDNA bars indicate orientation of mRNA-sense cDNA strand.

- 15 Figure 18: Orientation specific cloning of full genome-length cDNA of DEN-2 16681 virus into the multiple cloning site of pUC19. Although the full-length cDNA was readily cloned in pUC19, multiple attempts to insert the cDNA into pUC18 failed. Presumably, interaction of the cDNA with pUC18-specific gene transcripts, translation of a toxic DEN-2 polypeptide, or translation of a toxic pUC18/DEN-2 fusion polypeptide produced deleterious effects in E. coli. Large arrows indicate orientation of mRNA-sense cDNA strands in the pUC plasmid backbone.

 25 Smaller arrows indicate orientations of the lac Z and
- ampicillin genes as well as the origin of replication.

 DEN-2 insert is indicated by a thick solid black line.

Figure 19: Insertion of the MCS of plasmid pUC19
into pBR322 in both orientations to construct pBRUC-138
30 and pBRUC-139. The pUC18 HindIII (blunt-ended = BL)/EcoRI

MCS fragment was ligated into pBR322 cut with AvaI (BL)/EcoRI to construct pBRUC-138. The pUC18 EcoRI (BL)/HindIII MCS fragment was ligated into pBR322 cut with AvaI (BL)/HindIII to make pBRUC-139. In both cases, the tetracycline gene of pBR322 was removed. pBRUC-138 = 2992-bp (61-bp MCS + 2931-bp pBR322 deletion vector). pBRUC-139 = 3022-bp (61-bp MCS + 2961-bp pBR322 deletion vector). Orientations of ORI, ROP, and the Amp gene are indicated.

10 Figure 20: Construction of pD2/IC-30P, the full genome-length cDNA clone of DEN-2 16681 virus, in plasmid pBR322 (pBRUC-139 (SphI-) derivative). The F3/4/5 clone cDNA was ligated into pBRUC-139 first (Top of Figure), followed by F1-E and F2-C. Viable, infectious DEN-2 virus was successfully obtained from viral mRNA transcribed from this clone.

Figure 21: Construction of pD2/IC-130V, the full genome-length cDNA clone of DEN-2 PDK-53 virus. A nonsilent error in cDNA clone F3-3C was corrected by splicing in a correct BstBI/NheI fragment from clone F3.5-20 The resulting corrected clone F3-3CC was spliced into the 16681 F345-F clone in pBRUC-139. cDNA fragments F1-79B, F2-16B, and the recombinant F3/4/5 vector DNA were spliced together in a single ligation reaction to produce pD2/IC-130V. The NheI site occurs at genome nucleotide 25 position 6646. Therefore, the PDK-53 virus-specific fulllength cDNA clone contains the parental 16681 virusspecific nucleotide at position 8571. This nucleotide difference is silent; it does not encode an amino acid change. Other than the 8571 position, DEN-2 16681 and 30

PDK-53 viruses are identical in nucleotide sequence from nucleotide position 6646 to the 3' terminus of the genome.

Figure 22: Agarose gel electropherogram of viral genomic mRNA extracted from gradient-purified, wild-type

5 DEN-2 16681 virus and Venezuelan equine encephalitis (VEE) virus. The quantity of RNA loaded onto the gel ranged from 22 ng to 383 ng. The stock RNA was quantitated spectrophotometrically at 260 nm. The genome-length RNA band is clearly visible between the 4153-bp and 6788-bp MW

10 marker bands. Bands were visualized by incorporating 200 ng/ml of ethidium bromide stain in the gel and electrophoresis buffer.

Figure 23: Transcription of RNA from pVE/IC-92 (VEE virus clone) and pD2/IC-20 (DEN-2 16681 virus clone).

- Transcription reaction conditions (100 ng linearized DNA template, 12.5 mM DTT, 2.7 u/μl RNasin, 0.15 mM NTPs, 3.3 U/μl T7 RNA polymerase (Stratagene) in commercial buffer (Stratagene)) yielded high quantity and quality of infectious mRNA transcripts from the pVE/IC-92 clone and 3'-end truncation products of that clone. However, these reaction conditions failed to permit transcription of RNA from the pD2/IC-20 clone or two of its 3'-end transcription products (clone linearized at the NsiI or
- pve/IC-92 plasmid linearized at the MluI (3'-terminal), SphI, Tth111I, HindIII, SalI, and StuI sites in the cDNA clone yielded RNA transcripts of 11447, 11377, 7541, 2407, 1620, and 674 base length, respectively (the more intense, prominent bands in these gel lanes).

MroI site instead of at the 3'-terminal XbaI site).

30

Figure 24: Transcription of RNA from the DEN-2 16681 cDNA clone pD2/IC-20. (A) Transcription of RNA using different quantities of linearized plasmid template (a,b). The cap analog m7G(5')ppp(5')A was not included in the reaction. (B) Transcription of 5'-capped RNA with inclusion of cap analog in the reaction. Transcription was accomplished with the Ampliscribe transcription kit from Epicentre Technologies. T7 pol = bacteriophage T7 RNA polymerase.

infectious viral mRNA from XbaI-linearized DEN-2 16681
plasmid pD2/IC-30P (A and D replicate clones resulting
from independent bacterial colonies transformed with the
recombinant pBRUC/DEN-2 plasmid) and PDK-53 plasmid

15 pD2/IC-130V (F and J replicates). Genomic "viral RNA"
extracted from gradient-purified wild-type DEN-2 16681
virus was electrophoresed in lanes 2 and 10. Aliquots of
transcription reactions sampled before (T7 RNA polymerase
"-") and after (T7 Pol "+") addition of T7 RNA polymerase
are shown. Only the linearized plasmid DNA template is
observed in the absence of the polymerase.

Figure 26: Transcription of RNA from pD2/IC-20, pD2/IC-30P, and pD2/IC-130V in the presence or absence of T7 RNA polymerase or cap analog in the transcription reaction. All lanes shown are on a single gel. Transcription was performed with the Ampliscribe transcription kit.

Figure 27: Derivation tree for the construction of the DEN-2 16681 and PDK-53 virus-specific full genomelength cDNA clones pD2/IC-30P and pD2/IC-130V,

WO 96/40933 PCT/US96/09209

19

respectively, and chimeric 16681/PDK-53 clones derived from the two prototype clones.

Figure 28: Genotype maps of DEN-2 16681 and PDK-53 virus-specific full genome-length cDNAs and their chimeric derivatives. The scale at the top indicates relative 5 genome nucleotide position in thousands. The graph resolution is 119.1444 bp/dot. cDNA regions contributed by the parental DEN-2 16681 virus are indicated by solid black bars. Regions derived from the DEN-2 PDK-53 vaccine virus are indicated by stippled bars. The 8 mutations 10 identified by sequence analyses of the genomes of the 16681 and PDK-53 viruses are indicated. specific 5-noncoding nucleotides are indicated in lower case characters. The amino acids encoded by the virus-15 specific nucleotide mutations in the protein coding region of the genome are indicated in upper case, single-letter amino acid abbreviation.

Figure 29: Results of spot-sequencing PCR amplicons amplified from seed stocks of viruses derived from full genome-length cDNA clones. Dots indicate nucleotide sequence identity to the DEN-2 16681 virus. The expected virus-specific nucleotides for the genotype of each virus are shown. Those nucleotide positions that have actually been confirmed by sequence analysis are indicated by underlined nucleotide base characters. The actual genome nucleotide positions are indicated at the bottom of the Figure.

20

25

30

Figure 30: Recombinant full-length pD2/IC-30P-A and pD2/IC-130V-F plasmids extracted from 1-ml aliquots of E. coli TB-1 cultures submitted to ATCC.

WO 96/40933

20

Figure 31: Partial nucleotide sequences of candidate vaccine viruses:

DEN-1 16007 PDK-13 (D1.VAC) (SEQ ID NO: 124)
DEN-2 16681 PDK-53 (D2.VAC) (see SEQ ID NO: 2)

5 DEN-3 16562 PGMK-30/FRhL-3 (D3.VAC) (SEQ ID NO: 125)
DEN-4 1036 PDK-48 (D4.VAC) (SEQ ID NO: 126)
aligned with the nucleotide and deduced amino acid
sequences of DEN-2 16681 virus (see SEQ ID NO:1). Dots in the DEN-1, DEN-3, and DEN-4 sequences signify identity

10 with the DEN-2 sequence.

Figure 32: Partial amino acid sequences of candidate vaccine viruses:

DEN-1 16007 PDK-13 (D1.VAC) (SEQ ID NO: 124)

DEN-2 16681 PDK-53 (D2.VAC) (see SEQ ID NO: 2)

DEN-3 16562 PGMK-30/FRhL-3 (D3.VAC) (SEQ ID NO: 125)

DEN-4 1036 PDK-48 (D4.VAC) (SEQ ID NO: 126)

aligned with the deduced amino acid sequence of DEN-2

16681 virus (see SEQ ID NO:1). Dots in the DEN-1, DEN-3, and DEN-4 sequences signify identity with the DEN-2

20 sequence.

Figure 33: Mutagenesis analysis of the 5' end of the prM gene. The 447-452 sequence ("AACCAC" in DEN-2) can be mutated to "CTCGAG" in all four DEN viruses to create a XhoI site for cassette splicing. This modification

25 results in conservative Thr-Thr to Ser-Ser substitutions at amino acid positions prM 4-5 in DEN-2 virus. By creating this XhoI site, all four viruses will contain the sequence FHLSSR at amino acid positions prM 1-6 (see Figure 32). Nucleotide mutations that are necessary to create the XhoI site are indicated by bold, underlined

characters in the nucleotide sequences of D2.VAC, D1.VAC, D3.VAC, and D4.VAC and their respective primers designed for amplification in PCR.

Figure 34: Mutagenesis analysis of the 3' end of the E gene. The 2344-2349 sequence ("TCACGC" in DEN-2) can be 5 mutated to "TCTAGA" in all four DEN viruses to create a XbaI site for cassette splicing. This modification results in no amino acid change in DEN-2 at this site, but substitutions do occur in the other three viruses. creating this XhoI site, all four viruses will contain the 10 sequence SRS at amino acid positions E 470-472 (see Figure 32). Nucleotide mutations that are necessary to create the XbaI site are indicated by bold, underlined characters in the nucleotide sequences of D2.VAC, D1.VAC, D3.VAC, and 15 D4.VAC and their respective primers designed for amplification in PCR.

Figure 35: Construction of DEN-2 PDK-53 cassette plasmids pF1-Xho and pF2-Xba. (A) pF1-Xho: Clone PCR cDNA amplicons F1-prM5' and F1-prM3' into TA-vector. Sequence 20 and splice correct clones together at the SphI site in the TA-vector to construct pF1-prM53 (not shown). Subclone the prM53 cDNA into SstI/SphI-cut pF1-E (see Figure 20) to construct pF1-Xho. (B) pF2-Xba: Clone PCR cDNA amplicons F2-E5' and F2-E3' into TA-vector. Splice correct clones together at the XbaI site in the TA-vector to construct 25 pF2-E53 (not shown). Subclone the SphI/HpaI E53 cDNA fragment into pF2-16B (see Figure 21), which itself is subcloned into pBRUC-139 between the SphI/KpnI sites (not shown), to construct pF2-Xho. PCR amplimer designations 30 are underlined. Solid black bars indicate newly

synthesized and sequence-characterized cDNA. Stippled bar indicates previously synthesized cDNA. Graph resolution = 64.1857 nucleotides/dot.

Figure 36: Construction of chimeric plasmids containing the prM and E genes (XhoI-XbaI cDNA fragment) of DEN-1, DEN-3, or DEN-4 candidate vaccine virus within the genetic background of DEN-2 PDK-53 virus. pD2V-CAS12 was constructed by ligating the SstI/SphI fragment of pF1-Xho and SphI/KpnI fragment of pF2-Xba (see Figure 33) into a truncated form of pD2/IC-130V (see Figure 21). pD2/IC-10 130V was truncated by restricting the full-length clone at the NsiI-4696 and 3'-end XbaI sites, blunt-ending with T4 DNA polymerase, and religating. This procedure removed genome nucleotides 4696-10723, thereby removing the XhoI-15 5426 and 3'-end XbaI sites, which would otherwise interfere with construction of chimeric plasmid cassettes using XhoI and XbaI sites. The cassette strategy employs PCR amplification of DEN-1, DEN-3, and DEN-4 cDNAs containing the prM and E genes; cutting the amplicons with XhoI/XbaI; cloning resulting fragments into pD2V-CAS12 to 20 construct pD1V-CAS12, pD3V-CAS12, and pD4V-CAS12 chimeric cassettes; confirming the chimeric XhoI/XbaI insert by nucleotide sequence analysis; and then subcloning the SstI/KpnI fragment of the chimeric cassette into pD2/IC-130V to construct the chimeric full genome-length cDNA clones from which chimeric DEN-2/1, -2/3, and -2/4 viruses are derived. The genetic background of DEN-2 PDK-53 virus is illustrated by the solid black bars. The heterologous DEN-1, DEN-3, and DEN-4 cDNA inserts are indicated by the 30 stippled bars. The pBRUC-139 plasmid backbone is not

10

15

illustrated for pD1V-CAS12, pD3V-CAS12, or pD4V-CAS12 chimeric plasmid. Resolution = 110.5464 bp/dot.

Detailed Description of the Invention

We developed a quadravalent vaccine by initially constructing a full genome-length infectious cDNA clone for DEN-2 virus. We chose serotype 2 of DEN virus because virus strains of this serotype generally replicate to high titer in cell culture. We chose to develop an infectious clone for the 16681 strain of DEN-2 virus because the candidate vaccine viruses developed by Mahidol University are currently the best live, attenuated vaccine virus candidates in terms of immunogenic efficacy and lack of reactogenicity in vaccinees. We developed an infectious cDNA clone of the 16681 strain, which is the parent to the DEN-2 PDK-53 candidate vaccine virus developed at Mahidol University, to permit engineering of second and later generation live, attenuated DEN vaccine viruses.

virulent parental 16681 strain obtained from the Division of Vector-Borne Infectious Diseases (DVBID) of the Centers for Disease Control and Prevention (CDC) virus collection. We synthesized cDNA from the DEN-2 16681 viral RNA. The immediate objective was to obtain an accurate full genomelength infectious cDNA clone of the 16681 strain of DEN-2 virus, since it was essential to develop a reliable experimental system to permit routine genetic engineering of the cDNA and recovery of virus. Our approach involved using polymerase chain reaction (PCR) technology to create cDNA clones that could be spliced together to construct a

single full genome-length clone (Figure 1) from which full-length, infectious DEN-2 genomic mRNA could be transcribed (Figure 2).

The first full-length sequence-characterized cDNA clone, designated pD2/IC-20, was constructed in the high copy number pUC19 plasmid vector. Successful transcription of genome-length DEN-2 16681 viral RNA from pD2/IC-20 was clearly demonstrated by agarose gel electrophoresis of the transcription reaction product. However, RNA transcribed from this particular clone failed 10 to yield infectious virus. It was determined that cDNA errors had occurred during the clone manipulations. then decided to reconstruct the full-length clone in the low copy number pBR322 plasmid. The full-length cDNA of DEN-2 16681 virus was successfully moved into pBR322 to 15 construct pD2/IC-30P. Full-length, infectious DEN-2 16681 genomic RNA was subsequently transcribed from pD2/IC-30P.

The DEN-1 PDK-13, DEN-2 PDK-53, DEN-3 PGMK-30/FRhL-3, and DEN-4 PDK-48 vaccine viruses were obtained from Mahidol University. Our goal involved replacement of the 20 entire genomic cDNA backbone of the DEN-2 16681 fulllength clone with the cognate cDNA cloned from the genome of the DEN-2 PDK-53 candidate vaccine virus. The prM and E genes of the DEN-2 PDK-53 virus are then replaced with the prM and E genes of the DEN-1 PDK-13, DEN-3 25 PGMK30/FRhL-3, and DEN-4 PDK-48 candidate vaccine viruses to construct chimeric DEN-2/1, DEN-2/3, and DEN-2/4 viruses containing the nonstructural genes of the DEN-2 PDK-53 virus and the prM and E genes of the heterologous DEN viruses. 30

	쁜	3N-2	T	K-33	Intectious	CUNA	Clone Backbon	ie						
	L	С	L	М	Е		NS1	2A	2B	NS3	4A	4B	NS5	3'-NC
			r	тМ	Е		DEN-1 PDK-	13		-				
5 .							•							
			Γ,	rМ	Е		DEN-3 PCMI	(30ÆD H	J _3					
prM E DEN-3 PGMK30/FRhL-3														
			г				1							
			P	rM	<u>E</u>		DEN-4 PDK-4	! 8						

10 It is contemplated that chimeric, infectious clonederived DEN-2/1, DEN-2/3, and DEN-2/4 viruses will result in immediate improvement in the efficacy of a quadravalent vaccine. Our preliminary data from Mahidol University 15 indicate that very small amounts of the DEN-2 PDK-53 vaccine virus were required to infect and immunize humans. However, the DEN-1, DEN-3, and DEN-4 vaccine virus candidates had approximately 30-fold to 2000-fold lower infectivity for humans. The low infective efficacies of the DEN-1, DEN-3, and DEN-4 viruses create significant 20 problems in terms of vaccine efficacy in eliciting seroconversion in vaccinees, as well as problems of vaccine production for mass vaccination programs, since a large volume, up to 1 ml, of undiluted cell culturederived vaccine virus must be administered to achieve even 25 minimal levels of infectivity for these viruses. the increased infectivity of the DEN-2 PDK-53 vaccine virus is likely due to more efficient virus replication, and since this replicative efficacy is controlled by the nonstructural proteins of the virus, then chimeric vaccine 30 viruses that express the relevant immunogenic structural proteins of DEN-1, DEN-3, or DEN-4 virus in the context of replication control by the nonstructural gene products of

the DEN-2 PDK-53 virus should replicate better and be more infective and immunogenic in human vaccinees than the original DEN-1, DEN-3, and DEN-4 vaccine viruses containing nonchimeric genotypes.

5

A quadravalent vaccine is obtained upon completion of the following steps:

- (1) A full genome-length infectious cDNA clone for a

 DEN-2 virus, strain 16681, is constructed.
 - (2) A full genome-length infectious cDNA clone for a DEN2-16681 attenuated derivative, PDK-53, is constructed, preferably by substituting the genomic cDNA backbone of the DEN2-16681 full length clone with the corresponding cDNA cloned from the genome of the DEN-2 PDK-53 candidate vaccine virus.
- 20

25

15

viruses are subjected to PCR amplification of cDNA from extracted genomic RNA, and chimeric infectious cDNA clones expressing the prM and E genes of DEN-1, DEN-3, and DEN-4 viruses, respectively, in the context of the nonstructural genes of the DEN-2 PDK-53 virus are constructed.

- (4) The infectious clone-derived chimeric DEN-2/1, DEN-2/3, and DEN-2/4 vaccine viruses are tested to ensure that they:
- 5 (a) Are viable;
 - (b) Express appropriate virus-specific immunogens;
 - (c) Replicate to sufficient titer in cell
 culture;
- (d) Are infectious and immunogenic for humans; and
 - (e) Retain phenotypic markers of attenuation.

There is no good animal model for investigating

dengue pathogenesis. DEN viruses are naturally transmitted between mosquitos and humans. Although lower primates can be infected with these viruses, they do not develop the clinical profiles that occur in humans.

Infectious clone-derived viruses can be compared to their more virulent parental strains using certain in vitro and in vivo markers:

In Vitro Markers:

Plaque size in cell culture;

Temperature sensitivity;

Cytopathic effects (CPE) in LLC-MK₂ cells; and

Replication in macrophages.

In Vivo Markers:

Virulence by intracranial route in mice; Viremia in monkeys;

Virulence by intracranial route in monkeys; and Elicitation of neutralizing antibodies in animals.

Infectious cDNA clones are expressed, the resulting
RNA transcripts are transfected into permissible cells,
and the live, attenuated viruses are formulated into
vaccines.

Additionally, the DEN-2 PDK-53 and chimeric DEN-2/1, DEN-2/3, and DEN-2/4 infectious cDNA clones can by
themselves confer immunity by DNA immunization, a form of gene therapy involving the direct inoculation of naked DNA into the host such that its expression produces an immune response (e.g., Ulmer et al., 1993 (DNA immunization protected against influenza); Cox et al., 1993 (DNA immunization protected against herpesvirus); Xiang et al., 1994 (DNA immunization protected against rabies); Sedegah et al., 1994 (DNA immunization protected against malaria)).

Moreover, infectious cDNA clones are exquisite tools

25 for studying the molecular biology of virus structure,
function, and replication. This has been amply
demonstrated for many RNA viruses in the literature,
including Venezuelan equine encephalitis virus as reported
by Kinney et al. (1989). A successful infectious cDNA

30 clone of DEN-2 virus permits important investigations of

dengue virus replication, pathogenesis, and antigenic structure. Infectious clone cDNA templates permit the directed engineering of virus vaccines. Directed sitespecific, nonrandom mutations can readily be made in infectious cDNA clones, and therefore in clone-derived viruses, using a wide variety of DNA modification enzymes, restriction endonucleases, and in vitro mutagenesis methods. DNA is easier to manipulate than RNA, and the 10-3 error rate of DNA replication is much lower than the 10-3 - 10-4 error rate produced by RNA polymerases. Infectious cDNA clones permit direct analyses of the phenotypic effects of individual and cumulative mutations in the viral genome. An infectious cDNA clone provides a "gold standard" reference sequence for a vaccine.

15

20

Particular aspects of the invention may be more readily understood by reference to the following examples, which are intended to exemplify the invention, without limiting its scope to the particular exemplified embodiments.

WO 96/40933

30

EXAMPLES

Information:

5

Most of the background, protocols, and recipes used in recombinant DNA work can be found in Molecular Cloning:

A Laboratory Manual (Sambrook et al., 1989), and Current Protocols in Molecular Biology (Ausubel et al., 1989).

10

15

20

Viruses:

The virulent parental DEN-2 16681 strain was immediately available in the DVBID collection of viruses. We received the DEN-1 PDK-13, DEN-2 PDK-53, DEN-3 PGMK-30/FRhL-3, and DEN-4 PDK-48 vaccine viruses from Mahidol University. The DEN vaccine viruses were passaged in primary dog kidney (PDK) cells because this cell culture is included among those cell types that are certified for human use by the Bureau of Biologics, US Food and Drug Administration (Yoksan et al., 1986). The virus strain designations are shown below:

			Vaccine
25		Parent	Derivative
	<u>Virus</u>	Strain	Strain
	DEN-1	16007	PDK-13
	DEN-2	16681	PDK-53
30	DEN-3	16562	PGMK-30/FRhL-3

DEN-4

1036

PDK-48

PDK = primary dog kidney cells

FRhL = fetal rhesus lung cells

5 PGMK = primary green monkey kidney cells

DEN-1 16007 Parent

- ▶ Recovered from serum of a patient with hemorrhagic fever and shock in Thailand in 1964
- 10 ► Passaged 3X in BS-C-1 cells, 1X in LLC-MK₂ cells
 - ▶ Passaged 2X in Toxorhynchites amboinensis mosquitos
 - ► PDK-1

1

PDK-43 Vaccine

15

DEN-2 16681 Parent

- ► Recovered from serum of a patient with hemorrhagic fever and shock in Thailand in 1964
- ► Passaged 3X in BS-C-1 cells, 1X in LLC-MK₂ cells
- 20 Passaged 2X in Toxorhynchites amboinensis mosquitos
 - ► PDK-1

1

PDK-53 Vaccine

25 <u>DEN-3 16562 Parent</u>

- ► Recovered from serum of a patient with hemorrhagic fever and shock in the Philippines in 1964
- Passaged 3X in BS-C-1 cells, 1X in $LLC-MK_2$ cells
- ▶ Passaged 2X in Toxorhynchites amboinensis mosquitos
- 30 ► PGMK-1

PGMK-30

DEN-3 virus grown in PGMK cells replicated to very low titer in

PDK FRhL-3 Vaccine

cells (Yoksan et al., 1986)

5

DEN-4 1036 Parent

- Recovered from serum of a patient with dengue fever in Indonesia in 1976
- Passed 4X in Aedes aegypti mosquitos
- 10 ► PDK-1

PDK-48

ı

The DEN-2 full-length cDNA clone was derived from the DVBID seed of DEN-2 16681 virus, which had the passage history:

Human

3X BS-C-1 cells

20 2X LLC-MK₂ cells

2X T. amboinensis mosquitos

4X C6/36 cells (Aedes albopictus)

Complementary DNA (cDNA) was amplified by RT/PCR

25 directly, without further cell culture passage, from virus present in vaccine vials of the DEN-1 PDK-43, DEN-2 PDK-53, DEN-3 PGMK-30/FRhL-3, and DEN-4 PDK-48 viruses.

Stock virus seed was prepared from virus-infected cells grown in 75 or 150 cm² plastic tissue culture flasks.

30 The culture medium was clarified by centrifugation for 30

min at 10,000 rpm in a Sorvall GSA rotor, bringing the final concentration of fetal bovine serum (FBS) to 10% (v/v), and then freezing the clarified virus suspension in aliquots of 0.5 - 1.0 ml at -70°C. Gradient purified DEN-2 16681 virus was prepared according to the method of Obijeski et al. (1976) as reported by Kinney et al. (1983).

Cell Lines:

10

Infectious virus was derived from the infectious cDNA clones by electroporation of BHK-21-15 (baby hamster kidney-21, clone 15) cells with transcribed viral RNA. Viruses were also grown in LLC-MK2 monkey kidney cells, Vero African green monkey kidney cells, and C6/36 mosquito 15 cells (Aedes albopictus C6 cells, clone 36, Igarashi (1978)). All four cell lines were grown in Eagle's minimal essential medium (MEM) supplemented with 10% (v/v)heat-inactivated (56°C for 30 min) FBS, 1.25 g/L of sodium bicarbonate, 100 units/ml of penicillin G, and 100 $\mu g/ml$ 20 of streptomycin sulfate. Confluent cell monolayers grown in plastic tissue culture flasks were infected by decanting the growth medium, permitting the virus inoculum to adsorb for 1.5 h at 37°C, and then adding MEM 25 containing 5% FBS. For plaque titration of viruses, confluent cell monolayers in plastic 6-well trays were inoculated with 200 μ l of the appropriate dilution of virus. Virus was adsorbed to the cell monolayer for 1.5 h at 37 °C. The cells were then overlaid with 3 ml of 1% 30 (w/v) Noble agar (maintained at 40°C) in MEM lacking

phenol red pH indicator and containing 2% FBS and 0.01% (w/v) DEAE-dextran. Following incubation for 6 days at 37 °C in a 5% CO_2 atmosphere, a second 1-ml agar overlay containing 50 μ g/ml of neutral red vital stain was added. Viral plaques were counted 2-5 days later.

E. coli:

The E. coli K-12 strains used in this project included XL1-Blue, MC-1061, SURE, JM101, and TB-1. 10 Recombinant plasmid containing full genome-length cDNA of DEN-2 virus was successfully replicated in E. coli XL1-Blue, MC-1061, and TB-1. Flavivirus cDNA, particularly the gene region encoding the envelope glycoprotein, is troublesome in E. coli. Bacteria hosting the recombinant 15 plasmid containing the full-length cDNA clone grew slowly and were often difficult to streak for isolation on agar plates containing selective antibiotic. Transformation efficiencies were sometimes improved somewhat by 20 incubation of agar plates at 30°C or ambient temperature rather than at 37°C. Bacterial stocks were stored frozen at -70°C in 10% (v/v) glycerol.

Precautions for Working with RNA:

25

30

RNA is a fragile molecule that is very readily degraded by the many ubiquitous RNases present in the environment. Many of these RNases are resistant to treatment with detergents and heat, including autoclaving. All reagents and materials that contacted the viral RNA in

this project were RNase-free to avoid degradation of the viral RNA by these ubiquitous, very stable enzymes. investigator wore tight-fitting gloves, maintained all reagents on ice, used a plastic tool to open the lids of microtubes, used individually packaged pipets, preferably 5 plastic for aqueous solutions, disposable plasticware which is generally RNase-free before opening, and used "For RNA Only" microtubes, Gilson micropipetors (P-10, P-20, P-100, P-200, P-1000) and tips with aerosol barriers. Use of recycled glassware was avoided. Weigh boats, 10 magnetic stirrers, and pH meters were not used. Chemicals were weighed in sterile, RNase-free disposable plastic 50ml centrifuge tubes, and solutions were adjusted to the appropriate pH by aliquoting a small volume of the solution onto pH paper. Whenever possible, commercially 15 prepared, guaranteed RNase-free reagents were purchased. Otherwise, newly-opened chemicals were reserved "For RNA Only". Water and stock salt solutions, except for those containing Tris, were treated overnight with 0.1% (v/v)diethylpyrocarbonate (DEPC) to inactivate RNases via 20 alkylation and then autoclaved for 20 min. It is advisable to use the best sterile technique when working with RNA.

25 Extraction of Viral Genomic RNA from Virus Seed:

Virus seeds containing at least 106 PFU (plaque forming units)/ml of virus are ideal for providing appropriate yields of RNA. Seed with virus titer of 104 or lower can be problematic in terms of yielding sufficient

25

RNA. For these low-titer seeds it is best to pool the yields of several extracted seed aliquots.

RNA extraction involved the addition of 200 μ l of cold RNA lysis buffer (4 M guanidine isothiocyanate, 25 mM sodium citrate, pH 7.0, 0.5% (w/v) sarkosyl, and 100 mM beta-mercaptoethanol), and 30 μl of 3 M sodium acetate, pH 5.2, to an empty RNase-free 1.5-ml microtube on ice. In a biosafety cabinet, 200 μ l of DEN virus seed was added to the microtube and mixed vigorously for 30 sec with a mechanical mixer. The tube was centrifuged briefly to 10 pellet the liquid; then 400 μ l of cold phenol (commercially supplied by AMRESCO) equilibrated to pH 4.5 and 80 μ l of cold chloroform were added. The tube was mixed vigorously for 30 sec, placed on ice for 15 min, mixed again, then centrifuged for 1 min at maximum speed 15 in a refrigerated microcentrifuge to separate the aqueous and organic phases. The top aqueous phase containing the extracted RNA was transferred to a fresh 1.5-ml microtube on ice, 400 μ l of cold isopropanol was added, and the tube was incubated for at least 1 h or overnight at -20°C. RNA was precipitated by centrifugation for 10 min at maximum speed at 4°C. The supernatant was removed with a pipet rather than by decantation and rinsed with 500 μ l of 75% (v/v) ethanol. After spinning again for 10 min, the ethanol was removed with a pipet. The tube was centrifuged again briefly and the residual liquid was removed with a micropipet. The RNA pellet was air dried briefly, resuspended in 50 μl of cold RNase-free dH₂O, and stored frozen. For seeds containing low virus titer, the

RNA pellets in 3-6 microtubes were pooled in a total volume of 50 μ l.

RT/PCR Synthesis of Dengue Virus-Specific cDNA Fragments

5

Full-length genomic mRNA was extracted directly from 200 μ l of DEN virus seed. The standard reverse transcriptase/polymerase chain reaction (RT/PCR) was performed in a 100- μ l reaction solution containing 5-18 μ l of the extracted viral RNA, 1 μ l each of 100 μ M stock 10 solutions (stored frozen in dH2O) of the upstream mRNAsense primer-amplimer and downstream complementary-sense primer-amplimer, 10 μ l of 10% standard PCR buffer (500 mM KCl, 100 mM Tris-HCl, pH 8.5, 15 mM MgCl₂ and 0.1% (w/v) gelatin), 8.0 μ l of 2.5 mM dNTPS (2.5 mM each of dATP, 15 dCTP, dGTP, and dTTP; Pharmacia-LKB), 0.5 μ l of 1 M dithiothreitol (DTT), 0.5 μ l of RNase inhibitor (RNasin, 40 U/ μ l, Boehringer-Mannheim), 0.5 μ l of Taq DNA polymerase (5 U/ μ l, Perkin-Elmer), and 0.5 μ l of RAV-2 reverse transcriptase (18 $\mathrm{U}/\mu\mathrm{l}$, Takara). The reaction 20 solution was made as two components:

		PCR Reaction Mix:	10.0 µl 8.0 µl 0.5 µl	1 M DTT
5		•	0.5 μ l 0.5 μ l	RNasin (40 U/ μ l) Taq DNA Polymerase (5
				$U/\mu 1$)
			0.5 μ l	RAV-2 RT (18 U/μ1)
			$60.0 \mu 1$	RNase-Free dH ₂ O
		·	80.0 μ l	Reaction Mix for 1
10				reaction. Make more
				than needed for all
				reaction tubes. Store
				excess at -70°C for
15				reuse.
	*	Template/Primer Mix:	18.0 μ l	DEN-2 RNA Template
		· · · · · · · · · · · · · · · · · · ·	1.0 µl	100 μM Up-Amplimer
			$1.0 \mu 1$	100 μM Down-Amplimer
			20.0 μ 1	
20				•
	•	Reaction Solution:	80.0 μ 1	PCR Reaction Mix
			20.0μ l	Template/Primer Mix
			100.0 μ l	In a thin-walled, 200-
25				μ l microtube.
45				

The RT/PCR reactions in thin-wall 200- μ l microtubes (Phenix Research Products) were incubated without oil overlay in a Perkin-Elmer Model 9600 thermocycler according to the following program:

```
50 °C for 60 min = First strand cDNA synthesis by reverse transcriptase

94°C for 4 min
50°C for 1 min
72°C for 5 min

94°C for 30 sec
55°C for 30 sec
72°C for 5 min
Delta +10 sec/cycle

30 Cycles
```

Following completion of the RT/PCR reactions, $5-\mu l$ aliquots of each of the $100-\mu l$ reactions were analyzed by agarose gel electrophoresis. The DNA bands in the agarose gel were stained in ethidium bromide (500 ng/ml) solution and visualized on an ultraviolet light box. Since extraneous non-target cDNA bands are often amplified in addition to the target cDNA molecules, the remaining 95 μl of each RT/PCR reaction was electrophoresed in a larger, preparative agarose gel, and the target cDNA was stained briefly, excised with a razor blade, and physically extracted from the agarose slice.

High-Melt-Crush (HMC) Extraction of DNA from Agarose:

An agarose gel slice containing DNA was placed in a 15 1.5-ml microtube and crushed thoroughly with a spatula or pestle. The volume of the crushed agarose was brought to 400-500 μ l with TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM disodium EDTA) and 400 μ l of phenol (supplied by AMRESCO), pH 8, was added. The agarose suspension was 20 mixed vigorously using a mechanical mixer, frozen, thawed and mixed, frozen, thawed and mixed, and then centrifuged for 10 min at maximum speed at 4°C. The top aqueous phase was transferred to a fresh microtube, extracted with 400 μ l of phenol:chloroform:isoamyl alcohol (25:24:1) and 25 centrifuged for 2 min. The top aqueous phase was transferred to a fresh tube and extracted with 700 μ l of diethyl ether or chloroform. If chloroform was used, the top phase was again transferred to a fresh tube after a brief spin to separate phases. The DNA was precipitated 30

for at least 30 min at -70°C or overnight at -20°C following addition of 2.5 volumes (essentially filling the microtube) of 95% ethanol containing 300 mM ammonium acetate and 10 mM MgCl₂. The DNA was pelleted at 4°C by centrifugation for 20 min at maximum speed. The liquid was decanted, and the DNA pellet was rinsed with 500 μ l of 75% ethanol, air-dried briefly, dissolved in 30 μ l of TE buffer, and stored frozen or in the refrigerator. A 3- μ l aliquot of the extracted DNA was analyzed for purity and quantity by agarose gel electrophoresis. Generally, 20-80% of the DNA loaded onto a gel can be recovered from the gel by this method.

Agarose Gels:

15

10

5

DNA was analyzed by electrophoresis in 1% (w/v) agarose gels run in TBE buffer (100 mM Tris-HCl, pH 8, 91 mM boric acid, and 20 mM disodium EDTA). DNA bands were visualized by staining the gel in water containing 500 ng/ml of ethidium bromide and exposure to ultraviolet light. Gels used for analyzing RNA transcripts were made with RNase-free reagents. Ethidium bromide stain was incorporated in the gel and running buffer so that the RNA bands could be visualized immediately. To obtain gel-purified DNA fragments, DNA was electrophoresed in 0.7% (w/v) agarose gels made with genetic technology grade Seakem agarose (FMC) or with biotechnology grade agarose (3:1 high resolution blend, AMRESCO).

Cloning of Dengue Virus-Specific cDNA Fragments:

Some DNA polymerases add an extra "A" nucleotide 5 overhang at the 3'-end of synthesized DNA strands. Taq DNA polymerase does this. To enable the cloning of DNA molecules synthesized using Taq DNA polymerase, TAcloning vectors have been engineered (Marchuk et al., 1991). These vectors generally have a single "T" overhang engineered at the 3'-terminus of EcoRV-cut, blunt-ended, 10 linearized plasmid vector. The EcoRV site occurs within the multiple cloning site (MCS) of the plasmid. The MCS is a series of contiguous, unique restriction enzyme (RENZ) sites engineered into a vector plasmid to permit subcloning of exogenous DNA fragments following 15 restriction with a variety of RENZs. The HMC-purified DEN cDNA amplicons were cloned into the 3900-bp pCRII (Invitrogen), the 2887-bp pT7Blue(R) (pT7Blue, Novagen), or the 3003-bp pGEM-5Zf (Promega) TA-vector plasmid. 20 RENZ sites available in the MCS region of these TAvectors, as well as the RENZ sites of the MCS of the general purpose cloning plasmids, pUC18 and pUC19, used in this project are shown below.

42

RENZ Sites Present in the MCS of Several Cloning Vectors

				-	
	pUC18	pUC19	pT7Blue	pCRII	pGEM-5Zf
5					
			T 7	SP6	T 7
	EcoRI	HindIII	HindIII	NsiI	ApaI
	SstI	SphI	BspMI	HindIII	AatII
	KpnI	PstI	SphI	KpnI	SphI
10	SmaI	SalI	PstI	SstI	NcoI
	BamHI	XbaI	Sse8387I	BamHI	SstII
	XbaI	BamHI	SalI	SpeI	EcoRV
	SalI	SmaI	AccI	BstXI	SpeI
	PstI	KpnI	HincII	EcoRI	NotI
15	SphI	SstI	XbaI	ECORV	PstI
	HindIII	EcoRI	SpeI	EcoRI	SalI
			NdeI	PstI	NdeI
			EcoRV	BstXI	SacI
			BamHI	NotI	BstXI
20			AvaI	AvaI	NsiI
•			SmaI	SphI	SP6
			KpnI	NsiI	•
			SacI	XbaI	
			BanII	ApaI	
25	·		EcoRI	T 7	

The pUC18/19 plasmids possess identical MCS sites in reverse orientation in the plasmid backbone. Their purpose is to permit cloning of DNA in either orientation into the plasmid using the same pair of RENZs - this

reversibility was exploited in this project. The TAvectors used here all possessed T7 and/or SP6 bacteriophage RNA promoters to enable RNA transcription from cloned DNA. These promoters were not used in this project. All of the plasmids contain the gene for ampicillin resistance. They also contained the $lac\ Z$ portion of the E. coli lac operon. This permits color discrimination between bacterial colonies that receive a recombinant or a wild-type plasmid. In the presence of IPTG and X-gal, bacterial colonies that are transformed 10 with a wild-type plasmid lacking a cDNA insert develop a blue color, whereas cells that receive a recombinant plasmid with cDNA cloned into the MCS of the plasmid are white. Agar plates contained 800 μg of IPTG and 800 μg of 15 X-gal.

Fifty to 100 ng of HMC-purified amplicon was ligated to 50 ng of the pCRII vector using the TA-vector cloning kit supplied by Invitrogen exactly as specified by the instructions supplied with the kit. Frozen,

- 20 transformation competent E. coli INVαF' cells, supplied with the Invitrogen kit and stored at -70°C, were transformed with the ligated DNA as described in the kit instructions. The transformed cells were plated on YTA₅₀ agar plates (8 g of DIFCO tryptone, 5 g of DIFCO yeast extract, 5 g of NaCl, and 15 g of BACTO agar per liter of
- extract, 5 g of NaCl, and 15 g of BACTO agar per liter of dH₂O) containing 50 μg/ml of ampicillin. Only bacterial cells transformed with the pCRII plasmid, which contains an ampicillin resistance gene, grow on this medium. The agar plates were incubated at 37°C overnight.

Similarly, cDNA was ligated to the other TA-vectors or to pUC18/19 cut with the appropriate RENZ(s). Ligations were performed at room temperature or at 12°C. E. coli XL1-Blue, SURE, TB-1, or MC-1061 cells were transformed by electroporation and plated on YTA_{50} plates. Electroporation was performed according to Dower et al. (1988) using cuvettes with a 2-cm electrode gap in a Bio-Rad Gene Pulser set at 2.5 kV voltage, 25 μF capacitance, and 200 ohms resistance. Electroporation-competent cells were prepared by growing a fresh bacterial culture to an 10 optical density of 0.5-0.7 at 600 nm. The cells from 1.5 - 3 L of culture were pelleted by centrifugation for 10 min at 4°C and 5000 rmp in a Sorvall GSA rotor, pooled, washed twice in 1 mM Hepes buffer, and resuspended in 2 ml of 10% (v/v) sterile glycerol per L of original culture. 15 The concentrated cells in glycerol were stored at -70°C.

Bacterial colonies were transferred to 2 ml of 2XYT-Amp₅₀ broth (16 g of tryptone, 20 g of yeast extract, and 5 g of NaCl per liter of dH₂O) and incubated overnight with shaking at 300 rpm at 37°C in a floor model incubator - shaker (model Innova 4300, New Brunswick). Recombinant plasmid was extracted from these 2-ml minicultures and analyzed by agarose gel electrophoresis for the presence of cDNA insert. Recombinant plasmids are larger than wild type vector plasmid because of the cDNA insert, and they migrate more slowly than wild type plasmid in agarose gels.

All of the DEN-2 16681 virus-specific cDNA amplicons were cloned into the pCRII TA-vector. Aliquots of insert-positive miniprep plasmids were digested with the

15

20

restriction enzyme EcoRI. Since the pCRII MCS contains two EcoRI recognition sites (palindromic hexameric sequence GAATTC) on either side of the EcoRV cDNA cloning site, this RENZ cleaved the cDNA insert from the plasmid vector and cleaved any EcoRI sites that were present within the cDNA itself. The EcoRI-restricted DNA was analyzed by agarose gel electrophoresis to determine that the cloned cDNA was of appropriate size. In our experience, cloning of PCR-derived cDNA amplicons 2000 bp or smaller in size into the TA-vector is efficient. Cloning amplicons larger than 3500 bp into the TA-vector can be very difficult.

After screening, certain of the miniprep plasmids were selected for further analysis. Their corresponding bacterial minicultures were streaked for isolation on YTA₅₀ plates, and an isolated colony was inoculated into 50-200 ml of YTA₅₀ broth to grow up a preparative amount of recombinant plasmid. The preparative scale for the extraction of the plasmid was essentially identical to that for minipreps except for scaled up volumes.

Extraction of Plasmid DNA from Minicultures of E. coli:

White colonies containing recombinant plasmid were picked with a sterile toothpick and shaken overnight at 300 rpm in 2 ml of 2X-YTA₅₀ broth. Each miniculture was decanted into a 1.5-ml microtube, and the cells were pelleted by centrifugation at 6000 rpm for 2 min. The supernatant was aspirated, and the cell pellet was resuspended gently by up/down micropipeting in 200 μl of

GTE buffer (50 mM glucose, 25 mM Tris-HCl, pH 8.0, and 25 mM disodium EDTA) and then mixed with 300 μ l of lysis buffer (0.2 N NaOH, 1% (w/v) sodium dodecylsulfate (SDS)). After incubation on ice for 5 min, 300 μ l of cold potassium acetate solution (3 M potassium acetate, 7 M acetic acid, pH 4.8) was added, and the solution was chilled for 5 min on ice and then centrifuged at maximum speed for 10 min at 4°C. The supernatant was poured into a fresh microtube, RNase A was added to 20 μ g/ml, and the 10 mixture was incubated at 37°C for 30 min. The sample was extracted twice with 600 μ l of chloroform and centrifuged for 1 min at maximum speed at room temperature. The DNA pellet was dissolved in 32 μ l of dH₂O. Eight μ l of 4M NaCl and 40 μ l of 13% (w/v) PEG-8000 was added, and the mixed solution was incubated for 5 min on ice. The sample was 15 centrifuged for 15 min at maximum speed at 4°C, the liquid was aspirated with a micropipet , and the pellet was rinsed with 500 μ l of 75% ethanol. The air dried pellet was dissolved in 30 μ l of dH₂O and stored frozen until 20 used.

Extraction of Plasmid DNA from Large Cultures of E. coli:

Preparative-scale plasmid extraction was performed by inoculating 100 ml of 2X-YTA₅₀ broth with 2 ml of an overnight culture of *E. coli*. The culture was shaken overnight at 300 rpm and 37°C. The cells were pelleted by centrifugation for 10 min at 5000 rpm in a Sorvall GSA rotor and resuspended in 6 ml of cold GTE buffer. Nine ml of a freshly made solution of 0.2 N NaOH and 1% (w/v) SDS

The sample was incubated for 5 min on ice, was added. then 9 ml of cold 3 M potassium acetate solution was added. After another 5-min incubation on ice, the tube was centrifuged for 20 min at 10,000 rpm at room temperature and the supernatant was transferred to a fresh 5 30-ml glass tube. RNase A was added to 20 μ g/ml, and the sample was incubated for 30 min at 37°C and then extracted twice with 6 ml of chloroform. Twelve ml of roomtemperature isopropanol was added and the tube was 10 centrifuged immediately for 20 min at 10,000 rpm at room temperature. The supernatant was decanted, and the DNA pellet was rinsed with 1 ml of 75% ethanol, air dried briefly, and resuspended in 480 μl of dH_2O . The DNA was precipitated by addition of 120 μ l of 4 M NaCl and 600 μ l of 13% PEG-8000, incubation for 5 min on ice, and 15 centrifugation for 15 min at maximum speed at 4°C. The DNA pellet was rinsed with 500 μ l of 75% ethanol, air dried briefly, rehydrated in TE buffer, and stored frozen.

20 Nucleotide Sequence Analysis of the Dengue cDNA Clones:

Nucleotide sequence analyses of DEN-2 16681 cDNA clones #1-#15 were performed by cloning EcoRI restriction fragments of each clone into the single-stranded

25 bacteriophage M13mp18 or M13mp19. Since this is not the current method of choice for sequencing, the method will be described only briefly here. The procedure used for the extraction of plasmid DNA from bacterial cells was also used to extract the intracellular double-stranded

30 replicative form (RF) DNA of M13 from bacteriophage-

20

25

30

infected E. coli JM101 cells. The RF DNA was linearized at the EcoRI site of the MCS and ligated to the DEN-2 HMCpurified EcoRI cDNA restriction fragments. Electroporation-competent E. coli JM101 cells were 5 transformed by electroporation and plated onto H-agar plates (10 g of DIFCO tryptone, 5 g of NaCl, 15 g of BACTO agar, and 1% (w/v) thiamine per liter of dH₂O) containing 800 μ g each of isopropyl- β -D-galactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (BCIG or X-gal). The electroporated cells were mixed with 300 μ l of a fresh logarithmic culture of JM101 cells and 3 ml of warm (51°C) top H-agar containing 9 g/L of agar and then poured onto the H-agar plates. Cells that were transfected with recombinant DNA supported replication of 15 recombinant M13 virus, resulting in the formation of bacteriophage plaques in the JM101 cell lawn on the agar The IPTG/BCIG histochemistry of the system permitted identification of white plaques containing recombinant bacteriophage into which cDNA had been ligated into the EcoRI site of the MCS, whereas wild-type nonrecombinant M13 bacteriophage produced blue plaques. Isolated plaques were picked, inoculated into 3 ml of a fresh, pre-logarithmic phase culture of JM101, and shaken at 37°C for 8-16 h. The minicultures were clarified by centrifugation in 1.5-ml microtubes, the bacteriophage particles were precipitated with PEG-8000, and the singlestranded, circular bacteriophage DNA was isolated from the virions by phenol extraction. The recombinant, circular, single-stranded bacteriophage DNA was sequenced by the

dideoxynucleotide termination method. Sequencing kits can

be purchased from various commercial vendors. Radioactive 32P-dCTP or 35S-dCTP was incorporated into the strands synthesized in the sequencing reactions. Sequencing was accomplished with many DEN-2 virus-specific primers designed to sequence the entire genome. The sequence reactions were electro-phoresed in 6% (w/v) polyacrylamide gels, which were dried onto filter paper and overlaid with X-ray film. The DNA bands of the autoradiographs were read by the investigator, and the data was entered into a sequence project data spreadsheet. This sequencing method 10 has been used extensively in the past (e.g., Kinney et al., 1986; Johnson et al., 1986; Deubel et al., 1986; Deubel et al., 1988; Kinney et al., 1989; Trent et al., 1987).

15 Nucleotide sequencing was also performed by the current method of direct sequencing of double-stranded plasmid DNA by the dideoxynucleotide termination method using the Applied Biosystems Taq DyeDeoxy Terminator Cycle Sequencing Kit, cycle sequencing in the Model 9600 20 thermocycler according to the instruction manual supplied with the kit, and analyzing the DNA sequence on an ABI Model 373A DNA sequencing apparatus. Sequencing reactions in 200- μ l thin-walled microtubes contained 9.5 μ l of reaction mix (buffer, the four dideoxynuleotides, and Tag 25 polymerase supplied in the kit), 7.0 μ l of double or single-stranded template DNA (150 pg/bp), and 3.2 µl of 10 μ M sequencing primer (32 pmol). After mixing, the reactions were placed in a Perkin-Elmer Model 9600 thermocycler, and programmed cycle sequencing was 30 performed for 25 cycles of incubation at 96°C for 15 sec,

50

50°C for 15 sec, and 60°C for 4 min. Strand extension was performed at 60°C rather than 72°C because the fluorescent dye-labeled dideoxynucleotide terminators are heat sensitive. The reaction was then applied to a Centrisep gel column (Princeton Separations) to remove unincorporated dye-labeled dideoxynucleotides according to the instructions supplied with the columns. The eluted DNA was vacuum dried for 1 h using a Savant Speed Vac Concentrator and stored at -70°C. The DNA was hydrated with 5 μ l of deionized formamide and 1 μ l of 50 mM disodium EDTA, then heated in an aluminum block for 2 min at 90°C. A $3-\mu l$ aliquot of the denatured DNA sample was applied to one of 24 wells of a polyacrylamide-urea gel in an Applied Biosystems 373A DNA sequencer. The color-coded sequence chromatograph was read by visual inspection, and the resulting nucleotide sequence was entered into a computer-maintained sequence data spreadsheet. sequencing kit incorporates dideoxynucleotide terminators that are each labeled with a unique fluorescent dye that permits laser detection of all four terminators in a single polyacrylamide gel lane in the Model 373 sequencer. The data was recorded in the form of colored chromatograms that are easily read by the investigator. Single-stranded recombinant M13 DNA can also be sequenced in this manner.

25

10

15

20

Extraction of M13 Single-Stranded DNA for Sequencing:

White bacteriophage plaques containing recombinant M13 DNA were picked with sterile toothpicks and placed into 2-ml slightly turbid (less than 0.15 A_{600}) cultures of

E. coli JM101. The cultures were shaken at 300 rmp and 37°C overnight and then clarified by centrifugation in microtubes at maximum speed for 10 min at room temperature. One ml of the supernatant was transferred to a fresh 1.5-ml microtube containing 200 µl of sterile 20% (w/v) PEG-8000 in 250 mM NaCl. The tubes were mixed by inversion, incubated for 15 min at room temperature, and centrifuged at maximum speed for 5 min at room temperature. The PEG supernatant was removed completely, 10 and the DNA pellet was resuspended in 300 μ l of TE buffer. An equal volume of pH 8-buffered phenol was added, and the solution was mixed vigorously several times during a period of 20 min at room-temperature. The tube was centrifuged for 5 min at room temperature, and the top aqueous phase was transferred to a fresh 1.5-ml microtube. 15 After sequential extraction with phenol:chloroform:isoamyl alcohol and chloroform, the DNA was precipitated by adding 2.5 volumes of 95% ethanol containing 300 mM ammonium acetate and 10 mM MgCl, and incubating at -20°C overnight. 20 The tube was centrifuged at maximum speed for 15 min at 4°C, and the supernatant was decanted. Following a rinse with 500 μ l of 75% ethanol, the DNA was air dried briefly, resuspended in 60 μ l of TE buffer, and stored at 4°C.

25 Primers:

30

Primer design was based on the sequence of DEN-2 virus, strain 16681, published by Blok et al. (1992), and DEN-2 virus, Jamaican strain 1409, as reported by Deubel et al. (1986) and Deubel et al. (1988).

Primers were synthesized by the Biotechnology Core Facility at the CDC in Atlanta, Georgia. We received the dried primers via mail and adjusted them to a concentration of 100 μM in dH_2O . The designations and sequences of all of the primers-amplimers used in this project are listed in Appendix A.

To amplify the 3'-end of the DEN-2 virus genome, a downstream amplimer was designed that was complementary to the published sequence of the 3' terminus of the genome. A unique XbaI restriction enzyme site was incorporated at 10 the 5' end of this amplimer to provide a unique site to permit linearization of the recombinant plasmid containing the full-length cDNA clone at the 3' terminus of the cloned genomic cDNA. This linearization was necessary to obtain appropriately terminated DEN virus-specific run-off 15 RNA transcripts from the cDNA clone in transcription reactions with bacteriophage T7 RNA polymerase. Linearization at this 3'-terminal XbaI site resulted in the incorporation of a 5-nucleotide TCTAG extension to the 3' terminus of the genomic mRNA transcribed from the full-20 length cDNA clone of DEN-2 16681 virus, and a 4-nucleotide CTAG extension to the 3' terminus of RNA transcribed from the DEN-2 PDK-53 cDNA clone. The difference between the two cDNA clones in the length of the extraneous 3'-terminal extension was due to the differently designed 3'-terminal amplimers used to obtain the 3' end genomic cDNA amplicon. Amplimer cD2-10687.XBA or cD2-10687.X2 was used to amplify and clone the 3'-terminal portion of DEN-2 16681 or PDK-53 virus, respectively.

53

The promoter for the bacteriophage T7 RNA polymerase was engineered at the 5' terminus of the cloned genomic cDNA by incorporating the recognition sequence of the T7 RNA polymerase into the sequence of the 5'-terminal upstream, mRNA-sense amplicon D2-SMT71 immediately preceding the 5'-terminal nucleotide of the DEN-2 viral genome. This design ensured that the T7 RNA polymerase initiated RNA transcription at the 5'-terminal nucleotide of the DEN-2 virus-specific cDNA (Milligan et al., 1987).

5

10

15

30

Amplimers for PCR reactions were designed to take advantage of RENZ sites identified within the nucleotide sequence of the genome of DEN-2 16681 virus. cDNA molecules were amplified to permit ligation or splicing together of overlapping contiguous cDNA clones at shared, overlapping, unique RENZ sites (Figure 3).

Transcription of Genomic mRNA from DEN Virus-Specific Full-Length cDNA Clones:

The recombinant plasmid containing the full-length cDNA clone was prepared for RNA transcription by linearization at the unique XbaI site located at the 3' terminus of the cloned genomic cDNA. The restriction reaction containing the XbaI-restricted plasmid was extracted sequentially with phenol:chloroform:isoamyl alcohol and chloroform and then precipitated. The DNA was redissolved in 50 µl of TE buffer and digested with proteinase K at a concentration of 1 mg/ml for 1 h at 37°C to hydrolyze contaminating RNases. The sample was then extracted twice with "For RNA Only"

phenol:chloroform:isoamyl alcohol buffered to pH 8,

30

extracted twice with chloroform to remove traces of phenol, and precipitated by adding one-tenth volume of RNase-free 3 M sodium acetate, pH 5.2, and 2.5 volumes of ethanol and incubating for at least 1 h at -70°C or overnight at -20°C.

DEN-2 virus-specific genomic RNA was transcribed from the linearized cDNA template using a commercial T7 transcription kit (Ampliscribe T7 transcription kit, Epicentre Technologies). Transcription reactions were performed for 2 h at 37°C in RNase-free 1.5-ml microtubes in 20-µl reactions containing 100-1000 ng of linearized DNA template, 7.5 mM each of CTP, GTP, and UTP, 0.75 mM ATP, 2.7 mM m⁷GpppA cap analog, 6.7 mM DTT, 2.0 µl of a 10% concentration of a proprietary buffer supplied with the commercial kit, and 2.0 µl of the proprietary Ampliscribe enzyme solution supplied with the kit. Reaction solutions were used directly and without further treatment to transfect BHK-21 cells.

20 Transfection of BHK-21 Cells with Genomic RNA Transcripts:

BHK-21 clone 15 cells were transfected with RNA transcripts by electroporation (Liljeström et al., 1991). Fresh cultures of BHK-21 cells were grown to 90% confluency, rinsed twice with cold RNase-free phosphate buffered saline (PBS), and released from the plastic by incubation with 3 ml of commercial trypsin-EDTA solution (GIBCO-BRL). The cells were pelleted by low-speed centrifugation at 1200 rpm for 5 min in a Beckman GPKR centrifuge. The cells were washed twice with cold PBS,

55

resuspended in cold PBS and kept on ice. The cells were counted using a hemacytometer and microscope, and the cell concentration was adjusted to 10' cells/ml. One-half ml of the washed, adjusted cells were mixed with each transcription reaction solution in 1.5-ml microtubes on The mixture was transferred to a cold electroporation cuvette with 0.2-cm electrode gap, which was placed in the cuvette holder of the Bio-Rad Gene Pulser. The cells were shocked twice using settings of 1.5 kV voltage, 25 μFD of capacitance, and resistance set 10 to infinity. The shocked cells were incubated for 10 min at room temperature and then added to 75 cm2 tissue flasks containing 20 ml of MEM containing 10% FBS. Transfected cell cultures were incubated at 37°C for 5-8 days until CPE was evident in the cell monolayer and/or expression of 15 DEN virus-specific antigens was identified in an aliquot of the cell monolayer scraped from the flask using DEN virus-specific mouse hyperimmune ascitic fluid or monoclonal antibodies in indirect immunofluorescence 20 tests.

RESULTS

Replication of DEN-2 16681 Virus:

DEN-2 16681 virus replicates to high titer in cell culture. The CDC virus seed used in this study contained 2.0 X 10⁷ plaque forming units (PFU)/ml. This titer was determined by plaque titration of the seed virus in monolayer cultures of Vero cells. This seed titered 1.3 X 10⁴ PFU/ml in LLC-MK₂ cells. A growth curve for this virus

10

25

was determined in C6/36 Aedes albopictus cell culture (Figure 4). This level of replication is quite high for a flavivirus. The DEN-2 16681 virus is eminently suitable to serve as the parent to an infectious cDNA clone of DEN virus.

The DEN-2 PDK-53 vaccine virus, taken directly from a vaccine vial obtained from Mahidol University, contained 3.4 X 10⁴ PFU/ml of virus, as titrated in Vero cell monolayers, and 1.5 X 10⁴ PFU/ml as titrated in LLC-MK₂ cell monolayers.

RT/PCR Amplification and Cloning of DEN-2 16681 cDNA:

The entire genome of DEN-2 virus, parental strain

15 16681, was amplified from genomic RNA in the form of 5
cDNA clones of various sizes (T7-F1, F2, F3, F4, and F5).

PCR amplification with 5 sets of upstream and downstream amplimers yielded the predicted amplicon sizes in PCR reactions. Figure 5 shows the migration of these cDNA

20 fragments in agarose gels.

Recombinant plasmids, obtained by ligating the cDNA amplicons into the pCRII TA-vector, were extracted from minicultures derived from transformed E. coli XL1-Blue colonies. Uncut plasmids were screened for the presence of cDNA insert by comparing their mobility in agarose gels with the mobility of uncut wild-type pCRII vector plasmid. Selected plasmids were then restricted with the restriction enzyme EcoRI to confirm the size of the inserted cDNA fragment. EcoRI digests of F2-Sal, Sal-F2,

25

and F3 plasmids derived from independent transformed bacterial colonies are shown in Figure 6.

The following 15 DEN-2 16681 virus-specific cDNA clones, shown schematically in Figure 7, were selected for nucleotide sequence analysis:

	Gl ene	RT/PCR		
	<u>Clone</u>	Amplic	on	
	1	F1	- A8	
	2	F1	- A21	
10	3	F1	- A25	
	4	F1	- A26	
	5	F2-Sal	- AA2-4	
	· 6	F2-Sal	- AA2-8	
	7	Sal-F2	- AA3-3	
15	8	Sal-F2	- AA3-4	
	9	F3	- AA4-4	
	10	F3	- AA4-6	
	11	F4	- 10	
	12	F4	- 12	
20	13	F 5	- AA6-1	
	14	F 5	- AA6-2	
	15	F5	- AA6-4	

RT/PCR Amplification and Cloning of DEN-2 PDK-53 cDNA:

The entire genome of DEN-2 virus, vaccine strain PDK-53, was amplified from genomic RNA in the form of 23 cDNA clones of various sizes. Even though the PDK-53 vaccine contained only about 104 PFU/ml of virus, we were able to routinely amplify cDNA from RNA that was extracted directly from this seed virus. To accomplish this, we routinely use the "extended PCR method", incorporating the Taq extender reagent (Stratagene) in the PCR reactions. We had previously shown that the Taq extender

58

significantly enhanced yields of large molecular weight amplicons in the PCR amplification of the nonstructural genes of the flavivirus, St. Louis encephalitis virus (Figure 8A). For extended PCR reactions, reaction

5 mixtures were made as for standard PCR reactions, but the standard PCR buffer was replaced with the Taq extender buffer and 1 unit of AmpliTaq DNA polymerase (Perkin-Elmer) and 1 unit of the Taq extender enzyme per kbp of expected amplicon size was included in the reaction.

10 Figure 8B shows the correct agarose gel migration of large cDNA amplicons F1 (containing the T7 RNA polymerase promoter at the 5' end of the mRNA-sense strand of the amplicon), F2, and F3 obtained by PCR amplification using DEN-2 PDK-53 viral genomic RNA as template. The standard

The PDK-53 PCR products were cloned into the pGEM-5Zf TA-vector (Promega) or the pT7Blue(R) TA-vector (Novagen). Although we seemed to have the best cloning efficiency of PCR amplicons in the pCRII TA-vector, the other vector kits were less expensive and worked well. The cloning efficiency of PCR products into the TA-vector decreased rapidly as amplicon size increased beyond 2000 bp.

PCR reaction also worked for a number of DEN-2 PDK-53

15

20

amplifications.

The following 23 DEN-2 PDK-53 virus-specific cDNA clones were selected for nucleotide sequence analysis:

	CLONE	RT/PCR AMPLICON	Expected Amplicon Length	<u>Up-Amplimer</u>	Down-Amplimer
5	1	F- 5	1552-bp	D2-SMT71	cD2-1510
	2	F1-7	II		π
	3	F1-9	n		u
	4	F1-75A	H		11
	5	F1-79B	u		Ħ
10	6	F2-14	3355-bp	D2-1261	cD2-4615
•	7	F2-16B	н		Ħ
	8	F3-33	2676-bp	D2-4257	cD2-6932
	19	F3-3C	16		я
	10	F4-9	2373-bp	D2-6493	cD2-8865
15	11	F4.9-22	2937-bp	D2-6493	cD2-9429
	12	F4.9-53	u		u .
	13	F4.5-1	1897-bp	D2-8440	cD2-10337
	14	F4.5-2	н		u
	15	F4.5-6	п		R
20	16	F4.5-7	11		11
	17	F5-72	1914-bp	D2-8773	cD2-10687.X2
	18	F5-77	Ħ		11
	19	F5-78	11		
	20	F3.5-4	1375-bp	D2-6046	cD2-7420
25	21	F3.5-6	n		11
	22	F3.5-19	36		н
	23	F3-3K	2676-bp	D2-4257	cD2-6932

30 Nucleotide Sequence Analyses of DEN-2 16681 cDNA Clones:

EcoRI fragments of the 15 DEN-2 16681 virus-specific cDNA clones were subcloned into the single-stranded bacteriophage M13mp18 or M13mp19 for sequencing. Sequencing of the entire viral genome was performed manually using radioisotopic labeling and exposure,

60

development, and reading of autoradiographs. The data was read from the films and entered by hand into a sequence data spreadsheet.

The locations of observed cDNA artifacts or "errors" dictated the splicing strategy of subclones to construct the full genome-length clone. If the nucleotide at a particular position of one cDNA clone differed from the nucleotides at that same position in 2 or more independent clones, then the nucleotide in the first clone was deemed to be an error. If only 2 cDNA clones were sequenced for a given region of the genome and they differed in sequence at a particular position, then if one of the cDNA clones agreed with the sequence data of Blok et al. (1992), then the clone containing the nucleotide that was in agreement with the latter investigators was deemed to be correct. The approximate locations of the cDNA errors identified in the 16681 clones are illustrated in Figure 9.

10

15

20

25

30

The full genome-length cDNA clone of DEN-2 16681 virus was first constructed in pUC19. Unfortunately, RNA transcribed from this clone was not infectious. When over 90% of the full-length cDNA in the clone was resequenced, it was determined that several mutations had occurred during splicing and cloning manipulations of the subclones in E. coli. One of these mutations was a base deletion in the NS4B gene. This deletion would cause a frameshift of the amino acid sequence, resulting in ribosomal translation of a nonsense polypeptide downstream of the mutation point. This fatal deletion, by itself, would explain the noninfectious nature of the RNA transcribed from the first full-length clone in pUC19.

The final, correct cDNA subclones (F1-E, F2-E, F3/4/5-F) that were incorporated into the full-length, successfully-infectious clone of 16681 virus were reanalyzed by direct sequencing of the double-stranded plasmid DNA via the thermocycling method using the Taq DyeDeoxy Terminator Cycle Sequencing Kit. Sequence analysis was performed using the automated 373A DNA sequencing machine. The color-coded sequence chromatograms were read by the investigator and the data was entered manually into a computer-based spreadsheet.

10

15

20

We independently confirmed the sequence of the 5'terminal 32 nucleotides of the DEN-2 16681 viral genome.

A 5'-end RNA-cDNA hybrid molecule, made with primer cD2996 and reverse transcriptase, was 3'-tailed with dCTP and
annealed to dGTP-tailed, PstI-cut M13mp19 RF DNA. One of
the resulting M13 clones had a cDNA run-off product
containing the 5'-terminal end of the genome. The 5'-end
sequence was identical to that published for DEN-2 1409
(Deubel et al., 1988) and DEN-2 16681 (Blok et al., 1992).
We have not independently confirmed the sequence of the
3'-terminal 36 nucleotides of DEN-2 16681 virus or the 5'or 3'-terminal nucleotides of DEN-2 PDK-53 virus.

We sequenced uncloned, PCR-derived amplicon cDNA fragments directly for the following regions of the DEN-2 16681 viral genome: nucleotides 70-260, 330-870, 890-1690, 1890-3720, 3770-4050, 4080-4320, and the 3'-terminal 9990-10686. Unlike the sequencing of cloned DNA, direct analysis of PCR amplicons provides sequence information for the majority population of amplified cDNA molecules,

62

and therefore for the majority population of template RNA molecules.

We observed very early in the project that the nucleotide sequence of DEN-2 16681 virus that we

5 determined at the CDC laboratory differed significantly from the sequence of DEN-2 16681 virus as published by Blok et al. (1992). Our nucleotide sequence differed from that published by Blok et al. (1992) at 60 nucleotide positions, which were located throughout the genome.

10 Amino acid substitutions were encoded by 26 of these nucleotide differences. The approximate genomic locations of the nucleotide differences are illustrated in the schematic diagram in Figure 10. The exact nucleotide positions of the discrepancies are shown in Figure 11.

15

20

25

Nucleotide Sequence Analyses of DEN-2 PDK-53 cDNA Clones:

The DEN-2 PDK-53 virus-specific cDNA clones were analyzed by direct sequencing of the double-stranded plasmid DNA by the thermocycling method using the Taq DyeDeoxy Terminator Cycle Sequencing Kit. The 3'-end sequence from nucleotide position 10290-10686 was also determined by direct sequencing of PCR-derived amplicon cDNA. Sequence analysis was performed using the automated 373A DNA sequencing machine. The color-coded sequence chromatograms were read by the investigator and the data was entered manually into a computer-based spreadsheet. The approximate locations of the cDNA errors identified in the PDK-53 cDNA clones are illustrated in Figure 12.

63

Our determination of the nucleotide sequence of DEN-2 PDK-53 virus differed significantly from the PDK-53 genomic sequence published by Blok et al. (1992). The latter investigators reported a total of 53 nucleotide differences that encoded 27 amino acid mutations between 5 the nucleotide sequences of the genome of DEN-2 16681 virus and that of its vaccine derivative, PDK-53 virus. They reported the following nonsilent mutations: 1 in the capsid, 2 in prM, 1 in M, 3 in E, 3 in NS1, 3 in NS2A, 2 in NS2B, 3 in NS3, 3 in NS4A, 3 in NS4B, and 3 in NS5. We 10 detected only 8 nucleotide mutations between the genomes of these two virus strains. One mutation occurred in the 5'-NC region of the genome, while 7 nucleotide mutations, 4 of which encoded amino acid substitutions, occurred in the coding region of the genome as shown in Figure 13 and ... 15 the following table.

Table: Summary of nucleotide differences between the genomes of DEN-2 16681 virus and its vaccine derivative virus, strain PDK-53.

			Genome				
10	Genome	Genome		Nucleotide		Amino Acid_	
10	Position	<u>Gene</u>	16681	<u>PDK-53</u>	16681	PDK-53	
	5 7ª	5'-NC	С	T	-	-	
	524ª	prM-29	A	T	Asp	Val	
15	2055ª	E-373	С	T	Phe	Phe	
	2579ª	NS1-53	G	A	Gly	Asp	
	4018	NS2A-151	C	T	Leu	Phe	
	5547	NS3-342	T	С	Arg	Arg	
	6599*	NS4A-75	G	С	${ t Gly}$	Ala	
20	8571ª	NS5-334	C	T	Val	Val	

a 16681 vs. PDK-53 difference agrees with Blok et al. (1992)

The few nucleotide positions where our data and those of Blok et al. (1992) agreed, in terms of sequence differences between the 16681 and PDK-53 viral genomes, were distributed throughout the genome. The entire genome of DEN-2 16681 virus was cloned and sequenced before we received the PDK-53 vaccine virus at our laboratory.

Except for the 3'-terminal cDNA clones #17-#19, every PDK-53 virus-specific cDNA clone constructed in our laboratory contained at least one nucleotide position of 16681/PDK-53 sequence difference confirmed by both ourselves and Blok et al. (1992). Therefore, our PDK-53 virus-specific cDNA clones did not result from contamination of PDK-53specific PCR reactions with 16681 virus-specific cDNA template. Our PDK-53 virus-specific cDNA clones, which also contained the many sequence discrepancies between our data and those of Blok et al. (1992), encoded the 10 nucleotide sequence from the 5' terminus to nucleotide position 10337 of the genome of PDK-53 virus. The 3'terminal 387 nucleotides (10337-10723) of DEN-2 PDK-53 virus were identical to those of the parental 16681 virus. Since none of the PDK-53 virus-specific cDNA clones 15 covering this region of the genome contained a point of confirmed 16681/PDK-53 sequence difference, we repeated the PCR amplification of the 3' terminus of the PDK-53 virus genome. This was done to ensure that the 3'terminal cDNA clones #17-#19 did not result from PCR 20 reactions contaminated by 16681 virus-specific DNA template. The PCR reaction components were pipetted in a room in which DEN cloning had not been performed previously, using new micropipetors, newly opened pipet tips with aerosol barrier, and freshly made stock 25 reagents. Direct sequencing of the resulting doublestranded PCR cDNA amplicon confirmed that the 3'-387 nucleotides of DEN-2 PDK-53 virus was indeed identical to the 3' terminus of the 16681 parent.

66

The finalized nucleotide sequence of DEN-2 virus, strain 16681, including the nucleotide and amino acid mutations identified for DEN-2 PDK-53 virus, is shown in Figure 14.

5

30

Construction of DEN-16681 Full-Length Clone in pUC19:

For the construction of the full genome-length cDNA clone of DEN-2 16681 virus, 5 of the sequence-10 characterized PCR-amplified cDNA subclones were selected for splicing. However, clone #5 contained a cDNA "error" that was not readily spliced out with the existing clones. This error, which was a C-to-T mutation at nucleotide position 1730 and encoded a nonsilent Thr-to-Ile amino acid substitution at E-265, was incorporated into the F2 15 construct. The intermediate F2 construct was the result of splicing the F2-Sal clone (#5) SphI/HpaI fragment to the Sal-F2 clone (#7) HpaI/KpnI fragment in the MCS of plasmid pUC18 (Figure 15). To correct the error, a new 20 PCR amplicon was made using primers D2-1261 and cD2-2955. Resulting clones in the TA-vector were sequenced, and the correct SphI/HpaI fragment of a new clone was substituted for the faulty SphI/HpaI fragment of the original F2 construct (Figure 16). The corrected F2 clone was 25 designated F2-C.

The relevant cDNA clones of DEN-2 16681 virus were spliced together via a series of intermediate ligation products in the MCS of pUC18 to yield F1/3/4/5, which contained all of the genome except for the SphI-KpnI 1380-4493 region present in clone F2-C. Multiple attempts to

ligate the F2-C SphI/KpnI cDNA fragment into F1/3/4/5 in pUC18 failed. The cDNA insert of F1/3/4/5-pUC18 was then transferred to the MCS of pUC19, resulting in F1/3/4/5-pUC19. This operation simply reversed the orientation of the cDNA insert within the context of the pUC plasmid. Ligation of SphI/KpnI-cut F1/3/4/5-pUC19 and F2-C SphI/KpnI insert readily yielded transformants in E. coli X11-Blue that contained the full-length cDNA clone F1/2/3/4/5-pUC19, which was designated pD2/IC-20. The detailed splicing procedures for pD2/IC-20 are illustrated in Figure 17. The orientation-specific cloning of the full genome-length cDNA in pUC19 rather than pUC18 is diagrammed in Figure 18.

The full genome-length cDNA of DEN-2 16681 virus was cloned into the MCS of pUC19. Apparent full genome-length 15 viral mRNA was transcribed from linearized pD2/IC-20. This transcribed product failed to yield infectious virus following electroporation of BHK-21 cells. Most of the cDNA in the pD2/IC-20 clone was resequenced, and several cloning artifacts, including a fatal single-nucleotide 20 deletion, were identified. Original subunit intermediate cDNA constructs in pUC18 were resequenced to confirm that they possessed the correct sequence and corrected where necessary. The corrected primary cDNA clones F1, F2-C, and F3/4/5 were then ligated into the low-copy plasmid 25 pBR322, rather than the high copy-number pUC18 plasmid. It was envisioned that the cDNA would be more stable in a slower-replicating plasmid in E. coli.

To enable more straightforward cloning into pBR322, 30 the MCS of pUC19 was spliced into the pBR322 plasmid (Figure 19). This resulted in plasmids pBRUC-138 and pBRUC-139 containing the pUC MCS in both orientations within the pBR322 plasmid backbone. The SphI site was removed from both pBRUC plasmids by cutting with SphI, blunt ending of the cut ends using T4 DNA polymerase, and then ligating the ends back together. This was necessary for the construction of the full-length cDNA clone because SphI is one of the cDNA restriction/splicing sites for the clone.

The F3/4/5-F cDNA clone of DEN-2 16681 virus, which had been verified by sequence analysis, was cloned into pBRUC-139 (SphI) (Figure 20). Following this ligation, the F1-E and F2-C cDNA clone fragments were also moved into the pBR322 backbone to construct the full genome-length cDNA clone, pD2/IC-30P (Figure 20). This recombinant plasmid was replicated successfully in both TB-1 and MC-1061 strains of E. coli.

Construction of DEN-2 PDK-53 Infectious cDNA Clone:

20

25

30

The full-length infectious clone of DEN-2 16681 virus was used in the construction of the infectious clone for PDK-53 virus. Since the 3'-noncoding regions of the genomes of both viruses are identical, and the amino acid sequences of the translated precursor polyproteins encoded by genome nucleotide positions 6646-10269 are identical in both viruses, the infectious clone of PDK-53 virus was constructed using the 16681 3'-end cDNA from the NheI site at nucleotide position 6646 to the 3' terminus of the genome (Figure 21). After correcting a cDNA error in the

PDK-53 F3-3C subunit clone, this fragment and the F2-16B cDNA fragment were ligated into the infectious clone backbone to construct the DEN-2 PDK-53 virus-specific full-length cDNA clone, pD2/IC-130V (Figure 21).

5

Transcription of Viral mRNA from DEN-2 Infectious cDNA Clones:

Viral genomic RNA extracted from gradient-purified virions was analyzed by nondenaturing RNA agarose gel 10 electrophoresis to observe the level of RNA degradation and the limits of detectability by ethidium bromide staining. Figure 22 shows an agarose gel electropherogram for 22-383 ng of viral genomic RNA obtained from purified preparations of wild-type DEN-2 16681 virus and wild-type 15 Venezuelan equine encephalitis (VEE) virus, strain Trinidad donkey. Although degradation of the RNA is visible as a spectrum of smaller molecular weight nucleic acid (smear in Figure 22), definite full-genome length RNA 20 bands are clearly visible. This smear of nucleic acid is probably also due, in part, to multiple conformations of the single-stranded RNA molecules which migrate through the gel at different rates. The relative gel migration of the single-stranded RNA does not correlate directly with the sizes of the double-stranded molecular weight marker 25 DNA bands (MW, Figure 22); the VEE and DEN-2 viral genomes are 11,447 and 10,723 nucleotides in length, respectively. BHK-21 and C6/36 cells were transfected successfully by electroporation with 2000, 500, 100, 10, 1, and 0.1 ng of 30 viral genomic RNA extracted from purified VEE or DEN-2

70

16681 virus, as indicated by development of CPE, expression of viral proteins detected by indirect immunofluorescence tests using virus-specific antibody, and/or by plaque titration of infectious virus from the transfected-cell culture medium. RNA quantities of 1 ng or less were essentially undetectable in the ethidium bromide-stained agarose gel system we used. Therefore, authentic RNA transcripts derived from full genome-length cDNA and visualized in agarose gel electropherograms of transcription reactions should be infectious for BHK-21 cells by electroporation.

5

10

25

Investigators previously constructed an infectious cDNA clone for VEE virus as reported by Kinney et al. (1989). RNA transcription reaction conditions that

15 yielded high quantity and quality of infectious mRNA transcripts from the pVE/IC-92 infectious clone of VEE virus failed in multiple attempts to transcribe RNA from the pD2/IC-20 clone of DEN-2 16681 virus. Figure 23 shows an agarose gel electropherogram that demonstrates

20 successful transcription of RNA from the VEE clone, but not pD2/IC-20.

In an attempt to improve RNA transcription from the DEN-2 clone, commercial transcription kits were purchased. The Megascript transcription kit supplied by Ambion also failed to transcribe RNA from the DEN clone. However, the Ampliscribe kit obtained from Epicentre Technologies enabled efficient transcrip-tion of RNA from the DEN-2 clone (Figure 24).

The success of the Ampliscribe kit apparently was due
to the high concentration of ribonucleotides and a very

5

10

25

30

71

high, but proprietary, concentration of T7 RNA polymerase. The RNA transcribed from pD2/IC-20 was not infectious. However, viral mRNA transcribed from DEN-2 16681 clone pD2/2-IC30P and PDK-53 clone pD2/IC-130V was infectious (Figure 25).

Viral mRNA transcripts from both replicates of pD2/IC-30P (A and D) and pD2/IC-130V (F and J) were infectious, producing viable infectious virus in electroporated BHK-21 cells. Figure 26 shows RNA transcripts from pD2/IC-20, pD2/IC-30P, and pD2/IC-130V.

Construction of DEN-2 16681/PDK-53 Chimeric cDNA Clones:

Several chimeric full-length cDNA clones were derived

from the pD2/IC-30P and pD2/IC-130V clones. All clones
were constructed in the pBRUC-139 derivative of the pBR322
plasmid vector. E. coli strains XL1-Blue, MC-1061, and
TB-1 were successfully transformed with ligated
recombinant plasmids containing full genome-length cDNA.

Viable virus was derived from all of the indicated clones.

The evolutionary tree for the chimeric viruses is

diagrammed in Figure 27.

Details concerning the splicing strategies for the chimeric clones are shown in Figure 28. Appropriate cDNA fragments were cut and ligated together at the internal SalI, SphI, KpnI, and NheI sites as well as at the 5'-SstI and 3'-XbaI sites.

Viable prototype and chimeric viruses were derived from each of the clones indicated in Figure 28 by electroporation of BHK-21 cells with viral genome-length

72

mRNA transcribed from linearized plasmids. Seed stocks of these viruses were prepared by centrifuge-clarification of the cell culture medium, adjustment of the FBS concentration to 10%, and freezing of seed aliquots at -70°C. Virus concentrations were determined by plaque titration of the virus seeds in monolayer cultures of Vero cells. The results of these virus titrations are shown in the following table.

Table.	Plaque titration of DEN-2 16681 and PDK-53
	stock seed viruses and chimeric viruses
	recovered from BHK-21 cells transfected
	with infectious clone-derived viral mRNA
	transcripts.

10	Virus	(PFU/ml)			Ge:	no	ty:	pe'	a	<u>.</u>
	DEN-2 16681 DEN-2 PDK-53	8.0 X 10 ⁷ 5.1 x 10 ³					L F			
15	D2/IC-30P-A D2/IC-30P-A2	3.6 X 10 ⁵ 1.7 X 10 ⁵					:			
	D2/IC-130V-F D2/IC-130V-J	4.0 X 10 ⁵ 2.2 X 10 ⁵	t t	V V		D D	F F		A A	
20	D2/IC-130V2-1 D2/IC-130V2-7	2.8 X 10 ⁵ 8.8 X 10 ⁴	t t	V V			:		A A	
25	D2/IC-31-12 D2/IC-31-15	2.1 X 10 ⁵ 3.2 X 10 ⁵	t t	V V		:				
23	D2/IC-32-A D2/IC-32-G	1.4 X 10 ⁶ 1.2 X 10 ⁶					F F			
30	D2/IC-33-C D2/IC-33-P	9.6 X 10 ⁴ 1.9 X 10 ⁵			:		:		A A	
	D2/IC-321-L D2/IC-321-N	1.1 X 10 ⁶ 7.6 X 105	t t	V V		D D	F F			
35	D2/IC-323-B D2/IC-323-I	7.2 X 10 ⁵ 8.8 X 10 ⁵					F F			
	D2/IC-31-57-5	2.4 X 10 ⁵	t						•	•
40	D2/IC31-524-D	3.2 X 104	C	v		•				•

Genotype is designated in small case for the virus-specific 5'-noncoding nucleotide and in upper case single-letter amino acid abbreviation for amino acids encoded by virus -specific nucleotide mutations. Dots represent nucleotide or amino acid sequence identity with DEN-2 16681 virus.

To establish the validity of the clone-derived chimeric viruses, relevant genomic cDNA fragments were amplified directly from seed viruses by PCR and spotsequenced. The results are shown in Figure 29. validation process is ongoing. Except for D2/IC-31-524 virus, appropriate cDNA insert regions in chimeric viruses have been confirmed by sequence analysis. Except for D2/IC-30P, D2/IC-130V, and D2/IC-31-57, which have been fully confirmed, clone-derived chimeric viruses have yet 10 to be spot-sequenced in a recipient clone-derived cDNA region to definitely establish the chimeric nature of the virus. The recipient clone is the recombinant plasmid backbone into which a cDNA fragment, the insert fragment, from a heterologous donor clone is spliced. Where duplicate clone-derived viruses were obtained, both 15 viruses of a given genotype were spot-sequenced, and both gave the same result, which is shown in Figure 29.

Submission of pD2/IC-30P and pD2/IC-130V to ATCC:

20

Patent deposits of the full genome-length cDNA clones of DEN-2 16681 and PDK-53 viruses were submitted to the American Type Culture Collection (ATCC), Rockville, Maryland, U.S.A. Both pD2/IC-30P-A and pD2/IC-130V-F were grown overnight in E. coli TB-1 cells. Six cryogenic vials containing 1 ml each of frozen cell culture in 10% glycerol were submitted by dry ice shipment. Prior to shipment, plasmid was extracted from a 1 ml aliquot of each virus-specific culture. The recombinant full-length

75

plasmid was recovered from the cells as shown in Figure 30.

The pD2/IC-30P-A deposit with the ATCC was assigned accession number ATCC 69826, and the pD2/IC-130V-F deposit with the ATCC was assigned accession number ATCC 69825.

Date of deposit was May 25, 1995.

Construction of Chimeric DEN-2/1, -2/3, and -2/4 Infectious Clones:

5

10 We contemplate deriving chimeric DEN-2/1, DEN-2/3, and DEN-2/4 viruses from recombinant full genome-length cDNA clones containing the genetic background of DEN-2 PDK-53 virus and the prM and E genes of the DEN-1, DEN-3, and DEN-4 candidate vaccine viruses, respectively. To 15 accomplish this, the prM and E genes of the vaccine viruses were amplified by PCR. Because our laboratory has been establishing a sequence database to analyze the molecular epidemiology of several flaviviruses, including all of the serotypes of dengue virus, the primers used for cDNA amplification in the PCR were readily available at 20 our laboratory. The amplified cDNA molecules were sequenced directly, thus providing the sequence of the population of virions in the virus seed. The amplified cDNA amplicons for the DEN-1, DEN-3, and DEN-4 vaccine viruses have all been cloned into the pGEM-5Zf TA-vector. The cloned cDNA has not been analyzed by sequencing, since it will be necessary to rederive the cDNA amplicons by PCR to incorporate appropriate RENZ cleavage sites within the amplicon for splicing into the full-length cDNA backbone of DEN-2 PDK-53 virus. The partial nucleotide sequences 30

of the genomes of the DEN-1, DEN-3, and DEN-4 vaccine viruses were aligned with the DEN-2 PDK-53 sequence. All four sequences are aligned with the nucleotide sequence of DEN-2 16681 virus and its deduced amino acid sequence in Figure 31. The deduced amino acid sequences of the DEN viruses are aligned in Figure 32.

It is readily evident from the aligned nucleotide sequence data that useful restriction enzyme sites in the DEN-2 virus-specific cDNA are not conserved in the DEN-1, 10 DEN-3, and DEN-4 viruses. Therefore, splicing sites must be engineered into the cDNA to enable the splicing of heterotypic DEN-1, DEN-3, and DEN-4 prM and E genes into the DEN-2 backbone. It is not yet clear precisely how the nonstructural proteins of flaviviruses interact with the structural proteins during intracellular maturation of the 15 virus. Furthermore, the interaction of the capsid protein with the genomic mRNA molecule in the nucleocapsid of the virion has not been defined. However, coexpression of the E and prM proteins has been more successful than expression of E alone in expression systems in vitro. 20 DEN-2 nonstructural proteins are involved in all virusspecific intracellular polyprotein processing and replication of viral mRNA, and the predominant portion of the mRNA genome interacting with the capsid protein is presumably, but not necessarily, DEN-2 virus-specific. 25 For these reasons, our strategy is to splice in the prM and E genes of DEN-1, DEN-3, and DEN-4 viruses very precisely, while maintaining the DEN-2 context of the bracketing capsid and NS1 protein regions.

WO 96/40933

The strategies for creating XhoI and XbaI splice sites at the 5' end of the prM gene and near the 3' end of the E gene are illustrated in detail in Figures 33 and 34, respectively. Briefly, mutagenic primers containing the appropriate RENZ site are utilized in PCR reactions to synthesize new cDNA for the prM and E genes of all four viruses. A DEN-2 PDK-53 virus-specific cDNA cassette plasmid, designated pD2V-CAS12, containing the genome region from the 5' terminus through nucleotide position 10 4696 is constructed via intermediate plasmid constructs pF1-Xho and pF2-Xba as illustrated in Figures 35 and 36. The XhoI/XbaI cDNA fragments cut directly from DEN-1, DEN-3, and DEN-4 virus-specific amplicons synthesized by PCR using the mutagenic primers are ligated into the pD2V-15 CAS12 cassette plasmid to create subclone chimeras. SstI/KpnI fragment of the resulting pD1V-CAS12, pD3V-CAS12, and pD4V-CAS12 cassettes are moved into pD2/IC-130V restricted with SstI/KpnI to create the chimeric full genome-length cDNA clones (Figure 36).

20

Discussion:

Infectious cDNA clones permit the directed engineering of viral genomes. Depending on their viability in terms of ability to replicate in cell culture, infectious clone-derived viruses can be modified by incorporating point mutations, multiple mutations, deletions, gene regions of related or heterologous viruses, or nonviral genes. Infectious cDNA clones have been developed for many RNA viruses, including flaviviruses DEN-4 (Lai et al., 1991), yellow fever (Rice

78

et al., 1989), Kunjin (Khromykh and Westaway, 1994),
Japanese encephalitis (Sumiyoshi et al., 1992), and TBE
(unpublished data). We describe herein the development of
infectious cDNA clones for DEN-2 16681 virus and its
candidate vaccine derivative, strain PDK-53. We also
describe the construction of chimeric viruses,
incorporating the prM and E genes of candidate DEN-1, DEN3, and DEN-4 vaccine viruses within the genetic background
of the DEN-2 PDK-53 vaccine virus.

Although the candidate vaccine viruses developed at 10 Mahidol University are currently the best live DEN virus vaccine candidates in terms of immunogenicity and safety in adult humans, the DEN-1, DEN-3, and DEN-4 vaccine viruses replicate poorly in cell culture and possess low 15 infectivity in humans, requiring up to 2000-fold more PFU of virus to infect and immunize humans than is needed for the DEN-2 PDK-53 vaccine virus. The low infectivities of these viruses have significant implications for vaccine production in cell culture, potentially decreased immunogenic efficacy, and more rapid inactivation under 20 conditions of a poorly maintained cold chain in tropical countries where dengue viruses are endemic.

The purpose of engineering chimeric DEN vaccine viruses is to enhance the replicative ability and immunogenicity of the DEN-1, DEN-3, and DEN-4 vaccine viruses. A primary assumption has been that the attenuated DEN-2 PDK-53 vaccine virus replicates to appropriate levels in cell culture. In fact, it does appear that the genome of DEN-2 PDK-53 virus is eminently suited to serve as the genetic backbone for chimeric

25

viruses containing the prM and E genes of DEN-1, DEN-3, and DEN-4 vaccine viruses. We have recently completed growth curves for DEN-2 16681 virus, DEN-2 PDK-53 virus, and their infectious clone derivative viruses in LLC-MK₂ cells.

The viruses were titrated in Vero cell monolayers. These data are shown in the following table:

		Maximum	Maximum
		Titer	Titer
	Virus	(PFU/ml)	at Day
	DEN-2 16681	2.6 x 108	10
	D2/IC-30P-A	1.7 X 10 ⁷	8
	D2/IC-30P-A2	6.6 X 107	7
	DEN-2 PDK-53	3.8 X 107	9
	D2/IC-130V-F	2.9 X 107	7
	D2/IC-130V-J	1.7 X 107	7

The DEN-2 PDK-53 virus and its infectious clone derivative viruses grow to approximately 10' PFU/ml in LLC-MK₂ cells, about as well as the DEN-2 16681 virus.

A second assumption is that the chimeric DEN viruses will be viable and the DEN-2 PDK-53 virus-specific replication machinery will significantly increase

25 replication of the chimeric viruses in cell culture and increase their infectivity and immunogenicity in humans relative to the wild-type vaccine viruses. The high degree of conservation of amino acid sequences among the polyproteins of the four DEN viruses should ensure that

30 the chimeric viruses will be viable. The level of

80

replication attained by the chimeric DEN viruses is determined empirically, as was determined for the DEN-2 PDK-53 infectious clone derivative virus.

Bray et al. (1991) constructed chimeric DEN-4/1 and DEN-4/2 viruses that appeared to appropriately express DEN-1 and DEN-2 structural protein antigens in the genetic background of DEN-4 virus. These investigators spliced much of the 5'-noncoding region, and the capsid, prM and E genes of DEN-1 or DEN-2 virus into the full-length cDNA 10 clone of DEN-4 virus. The near 3'-terminal splice site they chose in the E gene is very close to that proposed by us in our project. These chimeric viruses replicated very slowly relative to the wild-type viruses. The authors attributed this slow replication to possible suboptimal 15 gene expression, assembly, and/or maturation due to incompatibility of heterotypic genes or RNA packaging in the nucleocapsid. Another possibility is that cDNA errors may have been incorporated into their constructs. contrast, Pletnev et al. (1993) engineered chimeric 20 viruses between DEN-4 virus and tick-borne encephalitis (TBE) virus, which is a very distant flavivirus relative of DEN viruses. Thus, DEN virus chimeras may be derived that are viable.

A third assumption is that our chimeric DEN viruses

will express the appropriate structural protein antigens
of DEN-1, DEN-3, and DEN-4 viruses, and that vaccinees
will respond with development of appropriate serum titers
of DEN-1, DEN-3, and DEN-4 neutralizing antibodies
following immunization with the chimeric viruses. We

describe the insertion of the prM and E genes of DEN-1,

81

DEN-3, and DEN-4 viruses into the DEN-2 clone. Thr-to-Ser amino acid substitutions near the amino terminus of the prM protein in DEN-2, DEN-2/1, DEN-2/3, and DEN-2/4 viruses resulting from mutagenesis to create the XhoI site of the cassettes should be conservative in nature and affect the phenotype of derived viruses minimally, if at all. Alternatively, a unique MluI site (ACGCGT) could be created via a single, silent A-to-G point mutation at nucleotide position 453 in the DEN-2 clone. The MluI site immediately preceding the T7 promoter could easily be eliminated by cutting the clone with MluI, blunt-ending, and religation. The clone-derived DEN-2 and chimeric viruses would then have the prM amino-terminal sequence "FHLTTR."

10

15 The carboxyl-terminal 24 amino acids of the E glycoprotein of all of the infectious clone-derived viruses will be those of the DEN-2 PDK-53 virus. Therefore, the E protein of all of the chimeric viruses will have amino acid mutations in this region. Yet, the 20 carboxyl-terminal 39 amino acids of the DEN virus E protein comprise membrane-spanning, transmembrane domains. In all enveloped viruses, the transmembrane domains of the integral viral proteins of related viruses are quite variable in amino acid sequence. It has often been noted 25 that the important conserved feature of amino acids in this domain lies in their hydrophobic, "lipid-loving" nature rather than in the absolute sequence. Creation of a MroI site (TCCGGA) or a unique AgeI site (ACCGGT) at nucleotide positions 2281-2286 in the DEN-2 clone would

result in amino acids "SG" or "TG", respectively, at positions E-449 and E-450 in the clone-derived viruses.

The E protein of all flaviviruses share a similar gross tertiary structure that is indicated by the absolute conservation of the 6 Cys residues in the prM protein and in the 12 Cys residues in the ectodomain (the region located on environment side of the viral lipid envelope) of the E protein of DEN, Japanese encephalitis, West Nile, Murray Valley encephalitis, St. Louis encephalitis,

- 10 Kunjin, yellow fever, TBE, Langat, and Powasson flaviviruses (data not shown). Cys residues are involved in intrachain Cys-Cys disulfide bonds that determine the overall structure of the protein. We fully expect the DEN-2/1, DEN-2/3, and DEN-2/4 chimeric viruses to be
- viable and to replicate more efficiently than the wildtype DEN-1, DEN-3, and DEN-4 vaccine viruses, respectively. Furthermore, chimeric recombinants involving the genetic backbone of one flavivirus and the structural genes of a variety of different flaviviruses
- may also be viable, as has been demonstrated for DEN-4/TBE virus recombinants (Pictnev et al., 1993). Such recombinant viruses offer the potential opportunity to engineer chimeric vaccine viruses for a number of flavivirus-associated diseases within the genetic
- 25 background of a single flavivirus. The X-ray crystallographic structure of the E glycoprotein of TBE flavivirus has recently been published (Rey et al., 1995). This development has significant implications for the future design of flavivirus molecular vaccines.

A fourth assumption is that the chimeric DEN viruses will retain the attenuated phenotype of the wild-type DEN-1, DEN-3, and DEN-4 vaccine viruses, despite enhanced replicative efficacy provided by the more efficient nonstructural genes and 5' and 3' noncoding regions of the 5 DEN-2 PDK-53 virus. This presupposes that DEN-2 PDK-53 virus has attenuating mutations in the noncoding regions or in the nonstructural genes and/or that attenuating mutations occur in the prM/E region of the genomes of DEN-1, DEN-3, and DEN-4 viruses. Mutations in essentially any 10 region of the viral genome may be capable of attenuating a virulent virus. This has been demonstrated for a number of viruses including polio virus, VEE virus, and Theiler's virus. Noncoding as well as protein coding regions may be involved in attenuation. Attenuating mutations in the 15 envelope proteins of enveloped viruses are common (Barrett et al., 1990).

The nucleotide mutations in DEN-2 PDK-53 virus at genome nucleotide positions 57 (5'-noncoding region), 524

20 (prM), 2579 (NS1), 4018 (NS2A), and 6599 (NS4A) may be involved in attenuation of the virus. Unless the prM amino acid mutation is the only mutation affecting virulence of the virus, the DEN-2 PDK-53 genetic background, within which the structural genes from heterologous viruses will be expressed, does itself possess genotypic markers of attenuation. We can determine the genetic loci involved in the attenuation of the DEN-2 PDK-53 virus by analyzing DEN-2 16681/PDK-53 recombinant viruses derived from chimeric 16681/PDK-53

identified:

full-length clones. The E gene of DEN-2 PDK-53 virus contains no attenuating mutations.

Although investigators have sequenced the structural genes of numerous DEN-3 virus strains (e.g., Lanciotti et al., 1994), none have sequenced the DEN-3 16562 virus, parent to the DEN-3 PCMK-30/FRhL-3 vaccine virus. After determining the sequences of the prM and E genes of this virus, we can establish if any amino acid mutations have occurred within these genes in the DEN-3 vaccine virus. By comparison, nucleotide sequence information for the 10 parental DEN-1 and DEN-4 viruses have been determined (unpublished data (parental DEN-1 virus); Lanciotti et al., submitted for publication (parental DEN-4 virus)). The nucleotide sequences of the E gene of DEN-4 1036 virus and both prM and E genes of DEN-1 16007 virus have been 15 determined. The following amino acid mutations were

-				
		_	Amino	Acid
		E Protein		
	Virus	Amino Acid	Parent	Vaccine
5	type	Position	Strain	Strain
	DEN-1	E-130	Val .	Ala
		E-203	Glu	Lys
		E-204	Arg	Lys
10		E-225	Ser	Leu
		E-384	Ala	Glu
		E-477	Met	Val
	DEN-4	E-345	Glu	Lys
15 _		E-364	Val	Ala

There were six amino acid mutations in the E protein of DEN-1 16007 PDK-13 virus and 2 mutations in that of DEN-4 1036 PDK-48 virus. There were no amino acid substitutions 20 in the prM protein of the DEN-1 vaccine virus. Glu-to-Lys and Lys-to-Glu amino acid substitutions, as occur at DEN-1 E-203 and DEN-4 E-345, are common motifs in sequence comparisons between parent viruses and their vaccine derivatives. It is likely that the heterologous prM/E 25 cDNA inserts in recombinant full-length cDNA clones will transport genetic loci of attenuation into the chimeric DEN-2/1, DEN-2/3, and DEN-2/4 virus derivatives. The optimum scenario for the chimeric viruses involves increased replication ability in the presence of genetic loci of attenuation in the heterologous DEN-1, DEN-3, and

DEN-4 structural gene inserts within the genetic background of the DEN-2 PDK-53 virus.

Nucleotide sequence analysis of expressed genes is essential. The error rate in the original RT/PCR derived cDNA clones of DEN-2 16681 virus was 8.2×10^{-4} , that is 1 cDNA error for every 1227 nucleotides of cloned, sequenced In a previous sequencing project involving VEE virus and employing classical, non-PCR cDNA synthesis methodology, the error rate was calculated to be 3.9 x 10-4 or 1 error for every 2543 nucleotides of cloned, sequenced 10 These errors are due to nucleotide incorporation errors by reverse transcriptase during first strand cDNA synthesis and perhaps to the cloning of individual variants within the original population of virions. Unlike many DNA polymerases, RNA polymerases and reverse 15 transcriptase have no editing function. Incorrect nucleotides incorporated during strand elongation are not detected or removed before continuing. The Tag DNA polymerase is also known to incorporate errors into PCR amplicons. Thus, at least 4-8 cDNA "errors" can be 20 expected to occur in 10 kb of cloned cDNA. We have observed the incorporation of spurious in-frame termination codons (TAA, TAG, TGA) in cDNA clones derived from both VEE and DEN viruses. Premature termination of amino acid translation would result in a truncated protein 25 and would undoubtedly be a lethal mutation for a candidate infectious clone. Much of the utility of genes expressed in vitro is compromised when those genes are not characterized by sequence analysis. If cDNA errors occur

in candidate infectious cDNA clones, it may be difficult

to determine if phenotypic effects of directed mutations are due to the engineered mutation, to cDNA errors, or to synergistic action or compensation between errors and engineered mutations.

5 Wiktor et al. (1984) reported that two cDNA errors caused spurious amino acid substitutions in rabies virus glycoprotein expressed in recombinant vaccinia virus and resulted in expression of non-authentic rabies glycoprotein. After sequence analysis and correction of the cDNA, expression of authentic rabies glycoprotein was 10 obtained. A faulty cDNA clone may behave as expected in one circumstantial context, yet behave very inappropriately and be highly misleading in a different context. A faulty structural gene cDNA clone of the 15 virulent VEE Trinidad donkey (TRD) virus that was expressed in recombinant vaccinia virus was essentially authentic by monoclonal antibody analysis of expressed VEE virus-specific proteins and by protection of immunized mice from challenge with virulent VEE virus (Kinney et 20 al., 1988a; Kinney et al., 1988b). However, incorporation of this cDNA clone into an infectious cDNA clone of VEE virus completely abrogated the virulence of the clonederived virus, whereas the corrected cDNA fragment resulted in derivation of virulent virus (Kinney et al., 25 1993).

Although Lai et al. (1991) originally derived their infectious clone of DEN-4 virus from sequence characterized subunit cDNA clones (Zhao at el., 1986; Mackow et al., 1987), the original full-length clone was not infectious (Lai et al., 1991). While these

investigators indicated that they sequenced both strands of much of the cloned genomic cDNA, they did not indicate that they sequenced more than a single clone for a given cDNA region. Nucleotides encoding cDNA errors will be confirmed on both cDNA strands, but will not be identified as errors unless the sequences of two or more independent cDNA clones covering the same region of the genome are sequenced. The functional full-length clone of DEN-4 virus was obtained by repeated splicing of large new cDNA fragments into the full-length clone until a functional clone was obtained. The authors did not indicate that the newly cloned regions were characterized by nucleotide sequence analysis (Lai et al., 1991). It is probable that the slowed replication of the DEN-4/1 and DEN-4/2 chimeric viruses relative to wild-type viruses reported by Bray et al. (1991) is due to the presence of cDNA artifacts within the full-length cDNA clone. The critical importance of accurate nucleotide sequence characterization of genes expressed in vitro, particularly when those genes are expressed in the form of infectious cDNA clones, is still not widely appreciated by many in the molecular biology field.

10

15

20

25

30

Although putative nucleotide sequences for the genomes of DEN-2 16681 and DEN-2 PDK-53 viruses have been reported in the literature (Blok et al., 1992), our sequence results indicate that the published data is highly flawed. Blok et al. (1992) reported 53 nucleotide mutations between the two viruses; we determined only 8 mutations. We analyzed at least two independent cDNA clones for regions covering the entire genomes of both

25

30

viruses. The DEN-16681 sequencing project was completed prior to receiving the DEN-2 PDK-53 virus in our laboratory, and the nucleotide sequence of the PDK-53 virus was determined from cDNA amplified directly from virus present in vaccine vials.

There are now only two classes of infectious clones developed for vaccine flaviviruses that have themselves been administered to humans: the infectious clone of yellow fever virus, vaccine strain 17D (Rice et al., 1989; Hahn et al., 1987; Rice et al., 1985), and the DEN-1, DEN-10 2, DEN-3, and DEN-4 vaccine derivative infectious clones described herein. Both classes of infectious clones have the important advantage of being derived from vaccine viruses that have been tested for efficacy and safety in The yellow fever 17D virus vaccine has long been 15 humans. one of the most effective human vaccines developed; immunization with this virus provides lifelong immunity. In the case of DEN virus, it is essential that vaccines provide immunity against infection by all four serotypes of the virus. DEN-1, DEN-2, DEN-3, and DEN-4 vaccine 20 viruses have been developed at Mahidol University, Bangkok, Thailand. All four vaccine viruses have been tested in humans and have been demonstrated to be immunogenic and safe for human adults.

Replicating vaccines in the form of live, attenuated viruses offer distinct advantages in terms of immunogenic efficacy due to replicative amplification of viral antigens (antigenic mass) in the vaccinees and replication in appropriate target tissues. Inactivated or subunit antigens usually suffer from a lack of sufficient

antigenic mass and subsequent failure to stimulate an effective immune response. Expression of proteins in recombinant vaccinia virus, which replicates primarily at the site of inoculation, may provide protection against parenteral challenge with virulent virus, but may not protect against an aerosol challenge. This was demonstrated for VEE virus when it was shown that recombinant vaccinia virus expressing the structural proteins of VEE virus protected mice from intraperitoneal challenge, but not intranasal challenge, with virulent VEE 10 virus (Kinney et al., 1988b). Immunization with the live, attenuated VEE TC-83 vaccine virus, on the other hand, provided immunity against both parenteral challenge (immunity provided by circulating serum IgG antibody) and intranasal challenge (mucosal, IgA-base immunity) with 15 virulent VEE virus. Furthermore, the level of immunity, as measured by titers of VEE virus-specific neutralizing antibody, were considerably higher in TC-83 virusimmunized mice and horses (the natural epidemic host for VEE virus) than in animals immunized with recombinant 20 vaccinia/VEE virus (Kinney et al., 1988b; Bowen et al., 1992). Similar results have been reported for vaccinia/influenza A virus recombinants in rodents (Smith et al., 1986). Furthermore, a replicating vaccine virus provides the appropriate T-cell epitopes to stimulate 25 cell-mediated immunity as well as humoral immunity. Tcell epitopes may be lacking in subunit vaccines. In short, vaccination with a safe live, attenuated vaccine virus provides the optimal immunization of a natural infection in terms of the type and level of immunity 30

PCT/US96/09209 WO 96/40933

5

91

elicited and the repertoire of viral antigens involved in generating the immune response.

To use the DEN viruses described herein as vaccine candidates, it is necessary to rederive the viruses by transfection of a cell line, such as primary dog kidney, certified for human use under conditions of good laboratory practice and management to ensure the avoidance of potential adventitious agents that might be present in uncertified cell lines. Although the cDNA-derived viruses originate from candidate vaccine viruses that have 10 undergone testing in humans, they require recertification by analysis for possible in vitro phenotypic markers of attenuation and by safety testing in small animals and probably nonhuman primates. All investigative studies involving the pathogenesis of DEN virus are hampered by 15 the unavailability of a suitable animal model. Certain in vitro characteristics are apparently associated with attenuation of DEN viruses, but the only definitive test is vaccine trial in human volunteers. Vaccine trails would presumably follow those of the original wild-type 20 vaccine viruses developed at Mahidol University. protocol includes titration of the individual vaccine virus candidates in adult human volunteers to determine the minimal infectious/immunogenic dose for each virus. This is followed by immunization trials with different 25 bivalent and trivalent combinations of vaccine virus. final test is the quadravalent vaccine composed of appropriate doses of all four vaccine viruses. If the preliminary trials are successful, larger trials are scheduled, and the vaccine viruses are tested in children, 30

who are the primary target for vaccine delivery.

We describe herein a preferred method to develop an infectious cDNA clone for a flavivirus. Optimally, a wild-type vaccine virus serves as the template for the clone construction. Large cDNA fragments are amplified from the genomic mRNA by PCR using virus-specific primers and directly cloned into a TA-vector or into the MCS of a low-copy number plasmid following restriction of the amplicon cDNA. The low-copy pBRUC-139 vector contains the MCS of pUC19 to permit convenient cloning of cDNA using a variety of RENZ sites. Other low-copy plasmids are available. The bacteriophage T7 or SP6 promoter is usually engineered into the 5'-terminal mRNA-sense amplimer, and a unique RENZ site for linearization of the recombinant plasmid containing the full-length cDNA must 15 be engineered into the 3-terminal complementary (negative) - sense amplimer. Exhaustive nucleotide analysis of the cDNA clones is desirable.

REFERENCES

- Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. SMith, and K. Struhl. 1989. <u>Current Protocols in Molecular Biology</u>. (2 volumes). Greene Publishing Associates and Wiley-Interscience, John Wiley and Sons, New York.
- 10 Barrett, A.D.T., L.M. Dunster, T.N. Ledger, C.A. Gibson, B.K. Sil, P.G. Sanders, E.A. Gould, and P.D. Minor. 1990. Evidence that the envelope protein of flaviviruses encodes determinants of attenuation and virulence. In: Vaccines 90. (Eds: F. Brown, R.M. Chanock, H.S. Ginsberg, and R.A. Lerner) Cold Spring Harbor Laboratory, New York, 101-104.
- Bhamarapravati, N., S. Yoksan, T. Chayaniyayothin, S.
 Angsubphakorn, and A. Bunyaratvej. 1987. Immunization
 with a live attenuated dengue-2-virus candidate
 vaccine (16681-PDK 53): clinical, immunological, and
 biological responses in adult volunteers. Bull.
 World Health Org. 65:189-195.
- 25 Blok, J., S.M. McWilliam, H.C. Butler, A.J. Gibbs, G. Weiller, B.L. Herring, A.C. Hemsley, J.G. Aaskov, S. Yoksan, and N. Bhamarapravati. Virology 187:573-590.
- Bowen, R.A., W.A. Short, C.B. Cropp, J.H. Mathews, J.T.

 Roehrig, R.M. Kinney, J.C. DeMartini, and D.W. Trent.

 1992. Protection of horses immunized with
 recombinant vaccinia- Venezuelan equine encephalitis
 vaccine. Vaccine Research 1:111-121.
- 35 Brandt, W.E. 1988. Current approaches to the development of dengue vaccines and related aspects of the molecular biology of flaviviruses. J. Infect. Dis. 157:1105-1111.
- 40 Brandt, W.E. 1990. Development of dengue and Japanese encephalitis vaccines. J. Infect. Dis. 162:577-583.

94

Bray, M., and C.-J. Lai. 1991. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc. Natl. Acad. Sci. USA 88:10342-10346.

5

- Coia, G., M.D. Parker, G. Speight, M.E. Byrne, and E.G. Westaway. 1988. Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specifiec proteins. J. Gen. Virol. 69:1-21.
- Cox et al. 1993. Bovine Herpesvirus 1: Immune Responses in Mice and Cattle Injected with Plasmid DNA. J. Virol. 67:5664.

15

10

Deubel, V., R.M. Kinney, and D.W. Trent. 1986. Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155:365-377.

20

- Deubel, V., R.M. Kinney, and D.W. Trent. 1988. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology 165:234-244.
- Dower, W.J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. **Nucl. Acids Res.** 16:6127-6145.

30

25

- Gubler, D.J. 1988. Dengue. In <u>The Arboviruse:</u>
 <u>Epidemiology and Ecology</u>, vol. II, T.P. Monath (ed.),
 pp. 223-260, CRC Press, Inc., Boca Raton, Florida.
- Hahn, S.H., J.M. Dalrymple, J.H. Strauss, and C.M. Rice. 1987. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc. Natl. Acad. Sci. USA 84:2019-2023.

10

- Halstead, S.B., S. Udomsakdi, P. Simasthien, P. Singharaj, P. Sukhavachana, and A. Nisalak. 1970. Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses. Yale J. Biol. Med. 42:261-275.
- Halstead, S.B., and P. Simasthien. 1970. Observations related to the pathogenesis of dengue hemorrhagic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale J. Biol. Med. 42:276-292.
- Halstead, S.B. 1984. Dengue haemorrhagic fever a public health problem and a field for research. Bull. World Health Org. 58:1-21.
 - Halstead, S.B. 1984. Selective primary health care: strategies for control of disease in the developing world. XI. Dengue. Rev. Infect. Dis. 5:25264.
 - Halstead, S.B. 1988. Pathogenesis of dengue: challenges to molecular biology. **Science** 239:476-481.
- Igarashi, A. 1978. Isolation of a Singh's Aedes
 25 albopictus cell clone sensitive to dengue and
 chikungunya viruses. J. Gen. Virol. 40:531-544.
- Karabatsos, N. 1985. <u>International Catalogue of</u>

 <u>Arboviruses, Including Certain Other Viruses of</u>

 30. <u>Vertebrates</u>. American Society of Tropical Medicine and Hygiene, San Antonio, Texas.
- Kinney, R.M., D.W. Trent, and J.K. France. 1983.

 Comparative immunological and biochemical analyses of viruses in the Venezuelan equine encephalitis complex. J. Gen. Virol. 64:135-147.
- Kinney, R.M., J.J. Esposito, B.J.B. Johnson, J.T. Roehrig, J.H. Mathews, A.D.T. Barrett, and D.W. Trent. 1988a.

 Recombinant vaccinia virus/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins. J. Gen. Virol. 69:3005-3013.

- Kinney, R.M., J.J. Esposito, J.H. Mathews, B.J.B. Johnson, J.T. Roehrig, A.D.T. Barrett, and D.W. Trent. 1988b. Recombinant vaccinia virus/Venezuelan equine encephalitis (VEE) virus protects mice from peripheral VEE virus challenge. J. Virol. 62:4697-4702.
- Kinney, R.M., G.-J. Chang, K.R. Tsuchiya, J.M. Sneider, J.T. Roehrig, T.M. Woodward, and D.W. Trent. 1993. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J. Virol. 67:1269-1277.
- 15 Khromykh, A.A., and E.G. Westaway. 1994. Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J. Virol. 68.4580-4588.
- 20 Lai, C.-J., B. Zhao, H. Hori, and M. Bray. 1991. Infectius RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc. Natl. Acad. Sci. USA 88:5139-5143.
- 25 Lanciotti, R.S., J.G. Lewis, D.J. Gubler, and D.W. Trent. 1994. Molecular evolution and epidemiology of dengue-3 viruses. J. Gen. Virol. 75:65-75.
- Lanciotti, R.S., D.J. Gubler, and D.W. Trent.

 (submitted). Molecular evolution and phylogeny of dengue-4 viruses. J. Gen. Virol. (submitted).
- Mackow, E., Y. Makino, B. Zhao, Y.-M. Zhang, L. Markoff,
 A. Buckler-White, M. Guiler, R. Chanock, and C.-J.

 Lai. 1987. The nucleotide sequence of dengue type 4
 virus: analysis of genes coding for nonstructural
 proteins. Virology 159:217-228.
- Marchuk, D., D. Mitchell, A. Saulino, and F.S. Collins.

 1991. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products.

 Nucl. Acids Res. 19:1154

- Milligan, J.F., D.R. Groebe, G.W. Witherell, and O.C. Uhlenbeck. 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucl. Acids. Res. 15:8783-8798.
- Obijeski, J.F., D.H.L. Bishop, F.A. Murphy, and E.L. Palmer. 1976. Structural proteins of La Crosse virus. J. Virol. 19:985-997.
- 10 Pletnev, A.G., M. Bray, and C.-J. Lai. 1993. Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J. Virol. 67:4956-49063.
- 15 Rey, F.A., F.X. Heinz, C. Mandl, C. Kunz, and S.C. Harrison. 1995. The envelope glycoprotein from tick-brone encephalitis virus at 2 A resolution.

 Nature 375:291-298.
- 20 Rice, C.M., E.M. Lenches, S.R. Eddy, S.J. Shin, R.L. Sheets, and J.H. Strauss. 1985. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726-735.
- Rice, C.M., R. Levis, J.H. Strauss, and H.V. Huang. 1987. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J. Virol. 61:3809-3819.
- Rice, C.M., A. Grakoui, R. Galler, and T.J. Chambers.

 1989. Transcription of infectious yellow fever RNA
 from full-length cDNA templates produced by in vitro
 ligation. New Biol. 1:285-296.
- Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989.

 Molecular Cloning: A Laboratory Manual. Second
 Edition (3 volumes). Cold Spring Harbor Laboratory
 Press, Cold Spring Harbor, New York.
 - Sedegah et al. 1994. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc. Natl. Acad. Sci. USA 91:9519.

Smith, G.L., Jr., J.R. Bennik, J.W. yewdell, P.A. Small, Jr., B.R. Murphy, and B. Moss. 1986. Vaccinia virus recombinants expressing influenza virus genes, p. 375-389. In Options for the control of influenza. AP.P. Kendal and P.A. Patriarca (ed.), Alan R. Liss, Inc., New York.

- Speight, G., G. Coia, M.D. Parker, and E.G. Westaway. 1988. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 10 of the flavivirus Kunjin and their cleavage sites. 1988. J. Gen. Virol. 69:23-34.
- Speight, G., and G. Westaway. 1989. Positive 15 identification of NS4A, the last of the hypothetical nonstructural proteins of flaviviruses. Virology 170:299-301.
- Sumiyoshi, H., C.H. Hoke, and D.W. Trent. 1992. Infectious 20 Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J. Virol. 66:5425-5431.
- Trent, D.W., R.M. Kinney, B.J.B. Johnson, A.V. Vorndam, 25 J.A. Grant, V. Deubel, C.M. Rice, and C. Hahn. 1987. Partial nucleotide sequence of St. Louis encephalitis virus RNA: structural proteins, NS1, ns2a, and ns2b. Virology 156:293-304.
- 30 Ulmer et al. 1993. Heterologous Protection Against Influenza by Injection of DNA encoding a Viral Protein. Science 259:1745.
- Westaway, E.G., M.A. Brinton, S. Ya. Gaidamovich, M.C. Horzinek, A. Igarashi, L. Kääriänen, D.K. Lvov, J.S. 35 Porterfield, P.K. Russell, and D. W. Trent. 1985. Flaviviridae. Intervirol. 24:183-192.
- Wiktor, T.J., R.I. MacFarlan, K.J. Reagan, B. Dietzshold, P.J. Curtis, W.H. Wunner, M.-P. Kieny, R. Lathe, J.-40 P. Lecocq, M. Mackett, B. Moss, and H. Koprowski. 1984. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 81:7194-7198.

PCT/US96/09209

- Xiang et al. 1994. Vaccination with a Plasmid Vector Carrying the Rabies Virus Glycoprotein Gene Induces Protective Immunity against Rabies Virus. Virology 199:132.
- Yoksan, S., N. Bhamarapravati, and S.B. Halstead. 1986.

 Dengue virus vaccine development: study on biological markers of uncloned dengue 1-4 viruses serially passaged in primary kidney cells. In Arbovirus

 Research in Australia, Proceedings of the Fourth Symposium. T.D. St. George, B.H. Kay, and J. Blok (eds.), pp 35-38. CSIRO/QIMR, Brisbane, Australia.
- Zhao, B., E. Mackow, A. Buckler-White, L. Markoff, R.M.
 Chanock, C.-J. Lai, and Y. Makino. 1986. Cloning of full-length dengue Type 4 viral DNA sequences:
 analysis of genes coding for structural proteins.
 Virology 155:77-88.

APPENDIX A

PRIMERS DESIGNED FOR DEN-2 CLONING/SEQUENCING PROJECT:

27/+

27/-

21

22

D2-996

cD2-996

SEQ.			
ID	nn flein	mer/sense	SEOUENCE
NO:	PRIMER	MER/SENSE	SAUGINGS
3	pUC/M13-P5	25/+	5'-CCCAGTCACGACGTTGTAAAACGAC-3'
4	pUC/M13-P5B	27/+	5'-GGATGTGCTGCAAGGCGATTAAGTTGG-3'
5	pUC/M13-P3	25/+	5'-TGAGCGGATAACAATTTCACACAGG-3'
6	pUC/M13-P3B	27/-	5'-GGCTTTACACTTTATGCTTCCGGCTCG-3'
7	D2-1-ECO.T7 75/+		5'-GCGGATATTG/GAATTC/TCTAGA/ AATTTAATACGACTCACTATA/ AGTTGTTAGTCTACGTGGACCGACAAAGACAG-3' (5'-Fill /EcoRl /Xbal/T7 Promoter/
			5'-end of DEN-2)
8	D2-SMT71	77/+	5'-CCAGT/GAATTC/GAGCTC/ACGCGT/ AAATTTAATACGACTCACTATA/ AGTTGTTAGTCTACGTGGACCGACAAAGACAG-3'
			(5'-Fill/EcoRI/SstI/MluI/T7 Promoter/ 5'-end of DEN-2)
9	D2-1	24/+	5'-AGTTGTTAGTCTACGTGGACCGAC-3'
10	D2-28	34/+	5'-GACAGATTCTTTGAGGGAGCTGAGCTCAACGTAG-3'
11	D2-134	28/+	5'-TCAATATGCTGAAACGCGAGAGAAACCG-3'
12	cD2-250	26/-	5'-GGGATTGTTAGGAAACGAAGGAACGC-3'
13 ,	D2-274	32/+	5'-CCACCAACAGCAGGGATACTGAAAAGATGGGG-3'
14	cD2-378	25/-	5'-TGCAGATCTGCGTCTCCTATTCAAG-3'
15	D2-528	25/+	5'-CGTGAACATGTGTACCCTCATGGCC-3'
16	cD2-616	26/-	5'-TTGCACCAACAGTCAATGTCTTCAGG-3'
17	D2-616	25/+	5'-ACCAGAAGACATAGATTGTTGGTGC-3'
18	cD2-618	25/-	5'-GCACCAACAGTCTATGTCTTCTGGC-3'
19	cD2-771	25/-	5'-ATGTTTCCAGGCCCCTTCTGATGAC-3'
20	D2-847	25/+	5'-GCAGCAATCCTGGCATACACCATAG-3'

5'-GGTTGACATAGTCTTAGAACATGGAAG-3'

5'-CTTCCATGTTCTAAGACTATGTCAACC-3'

SEQ.		•	101
NO:	PRIMER	MER/SENSE	SEQUENCE
23	D2-1005	35/+	5'-GTCTTAGAACATGGAAGTTGTGTGACGACGATGGC-3'
24	D2-1141	25/+	5'-ACAACAGAATCTCGCTGCCCAACAC-3'
25	D2-1211	25/+	5'-GCAAACACTCCATGGTAGACAGAGG-3'
26	cD2-1211	25/-	5'-CCTCTGTCTACCATGGAGTGTTTGC-3'
27	cD2-1227	27/-	5'-CCACATCCATTTCCCCATCCTCTGTCT-3'
28	D2-1261	30/+	5'-GGAAAGGGAGCCATTGTGACCTGTGCTATG-3'
29	D2-1416	28/+	5'-GGAAATCAAAATAACACCACAGAGTTCC-3'
30	cD2-1503	34/-	5'-CTGCAGCAACACCATCTCATTGAAGTCGAGGCCC-3'
31	D2-1510	25/+	5'-GACTTCAATGAGATGGTGCTGC-3'
32	cD2-1510	25/+	5'-GCAGCAGCACCATCTCATTGAAGTC-3'
33	D2-1546	28/+	5'-AAGCTTGGCTGGTGCACAGGCAATGGTT-3'
34	cD2-1567	27/-	5'-TGGTAACGGCAGGTCTAGGAACCATTG-3'
35	D2-1777	23/+	5'-GGACATCTCAAGTGCAGGCTGAG-3'
36	cD2-1777	23/+	5'-CTCAGCCTGCACTTGAGATGTCC-3'
37	D2-1863	27/+	5'-GAAGGAAATAGCAGAAACACAACATGG-3'
38	cD2-1888	33/-	5'-CCCTTCATATTGTACTCTGATAACTATTGTTCC-3'
39	D2-2047	32/+	5'-CCTCCATTCGGAGACAGCTACATCATCATAGG-3'
40	cD2-2047	32/-	5'-CCTATGATGATGTAGCTGTCTCCGAATGGAGG-3'
41	D2-2170	29/+	5'-ATGGCCATTTTAGGTGACACAGCCTGGGA-3'
42	cD2-2200	27/ -	5'-TGTAAACACTCCTCCCAGGGATCCAAA-3'
43	D2-2308	29/+	5'-CTCATAGGAGTCATTATCACATGGATAGG-3'
44	cD2-2504	35/-	5'-GGGGATTCTGGTTGGAACTTATATTGTTCTGTCC-3'
45	cD2-2622	30/-	5'-TGATTCAATTCTGGTGTTATTTGTTTCCAC-3'
46	D2-2702	25/+	5'-AAGGAATCATGCAGGCAGGAAAACG-3'
47	cD2-2864	22/-	5'-ACTTCCA <u>G</u> CGA <u>G</u> TTCCAAGCTC-3' A A
48	D2-2992	25/+	5'-AACAGAGCCGTCCATGCCGATATGG-3'
49	cD2-3105	22/-	5'-TCCATTGCTCCAAAGGGTGTGT-3' G
50	D2-3236	25/+	5'-AGCTTGAGATGGACTTTGATTTCTG-3'

SEQ. ID		•	102
NO:	PRIMER	mer/sense	SEOUENCE
51	cD2-3410	22/-	5'-GGTCTGATTTCCATCCCGTACC-3'
52	D2-3621	23/+	5'-GTCCTTTAGAGACCTGGGAAGAG-3'
53	cD2-3739	25/-	5'-GTTTTCTCAAGAGTAGTCCAGCTGC-3' C
54	D2-3905	25/+	5'-ATCAATTGGCAGTGACTATCATGGC-3'
55	cD2-4002	25/-	5'-TGTTAAGA <u>G</u> CAGTGG <u>A</u> GAAACGGAC-3' A G
56	cD2-4060	25/-	5'-GATTGAGACCTTTGATCGTCAACGC-3'
57	D2-4214	25/+	5'-TGACAGGACCATTAGTGGCTGGAGG-3'
58	D2-4257	34/+	5'-CGTGCTCACTGGACGATCGGCCGATTTGGAACTG-3'
59	cD2-4323	24/-	5'-GGGCTGCTTCCTGATATTTCTGCC-3' C
60	D2-4497	25/+	5'-CCTGTGGGAAGTGAAGAAACAACGG-3'
61	cD2-4557	30/-	5'-GCTCCATCTTCCAGTTCAGCCTTTCCCATG-3'
62 .	cD2-4615	25/-	5'-CTCCGGCTCCATCTGAGAGTATCC-3' G G A
63	D2-4746	25/+	5'-CCTAATATCATATGGAGGAGGCTGG-3'
64	D2-4792	25/+	5'-GAAGGAGAAGTCCAGGTATTGG-3'
65	cD2-4922	25/-	5'- <u>C</u> TGTCGA <u>C</u> AATTGGAGATCCTGACG-3' T T
66	D2-4994	25/+	5'-GTGGAGCATATGTGAGTGCTATAGC-3'
67	D2-5124	25/+	5'-TCTGACTATGGCCGGAAGGTATCTC-3'
68	D2-5173	25/+	5'-ACATTAATCTTGGCCCCCACTAGAG-3'
69	cD2-5272	19/-	5'-CGATCTCCCGCCCGGTGTG-3' A
70	cD2-5318	25/-	5'-CTAACTGGTGATAGCAGCCTCATGG-3'
71	cD2-5656	27/-	5'-CCTACTGAGTTGTATCACTTTCTTTCC-3'
72	cD2-5891	26/-	5'-TGGATTTCTTCCTATTCTCCCTCTTC-3'
73	D2-5770	25/+	5'-TTCAAGGCTGAGAGGGTTATAGACC-3'
74	D2-6152	25/+	5'-TCTGGTTGGCCTACAGAGTGGCAGC-3'
75	cD2-6252	27/-	5 ' - CCTTCTTTTGTCCAGATTTC <u>C</u> ACTTCC - 3 ' A

SEQ. ID			103
No:	PRIMER	mer/sense	SEQUENCE
76	D2-6493	35/+	5'-GCGTACAACCATGCTCTCAGTGAACTGCCGGAGAC-3'
77	cD2-6605	24/-	5'-TTCCCAGGGTCATCTTCCCTAT <u>A</u> C-3' G
78	cD2-6624	31/-	5'-GATGCTAGCCGTGATTATGCAGCACATTCCC-3'
79	D2-6748	25/+	5'-AAACAGAGAACACCCCAAGACAACC-3'
80	cD2-6932	21/-	5'-CGGCATACAGCGTCCATGCTG-3'
81	D2-7055	25/+	5'-GTCTCGGGAAAGGATGGCCATTGTC-3'
82	cD2-7195	25/-	5'-CTCTGGTTGCTTTTGCTTGAAGTCC-3' A G G
83	cD2-7217	27/-	5'-CCGCCGCTGCTCTTTTCTGAGCTTCTC-3'
84	D2-7378	25/+	5'-AGGACTACATGGGCTCTGTGTGAGG-3'
85	cD2-7515	19/-	5'-GAGAAGTCCAGCTCCGGCC-3'
86	D2-7769	25/+	5'-AGAGAAACATGGTCACACCAGAAGG-3'
87	cD2-7885	22/-	5'-GTTCTTCGTGTCCTGGTCCTCC-3'
88	D2-8165	25/+	5'-GGAAATATGGAGGAGCCTAGTGAGG-3'
89	cD2-8210	22/-	5'-ACCCAGTACATCTCATGTGTGG-3'
90	D2-8428	28/+	5'-GAGCATGAAACATCATGGCACTATGACC-3'
91	D2-8440	25/+	5 ' -TCATGGCACTATGACCAAGACCACC-3 '
92	cD2-8529	22/-	5'-CAGTCTGACCACTCCGTTCACC-3' C A G
93 -	D2-8773	25/+	5'-AAGGTGAGAAGCAATGCAGCCTTGG-3'
94	D2-8798	29/+	5'-GGGCCATATTCACTGATGAGAACAAGTGG-3'
95	cD2-8865	22/-	5'- <u>TCTTTCCC</u> TGTCAACCAGCTCC-3' C T
96	D2-9046	25/+	5'-AATGAAGATCACTGGTTCTCCAGAG-3'
97	D2-9131	25/+	5'-ACGTGAGCAAGAAAGAGGGAGGAGC-3'
98	cD2-9166	22/-	5'-TGTCCCATCCTGCTGTGTCATC-3' A G
99 100	cD2-9234 D2-9344	30/- 25/+	5'-GCTAGTTTCTTGTGTTCTCCTTCCATGTGG-3' 5'-TCATATCGAGAAGAGACCAAAGAGG-3'
101	cD2-9429	24/-	5'-ACTCCTTCTCCCTCCATCTGTCTG-3'

SEQ.			104
NO:	PRIMER	MER/SENSE	SEQUENCE
102	cD2-9438	27/-	5'-ATGCTTTTGAAGATTCCTTCTCCCTCC-3' A C
103	CD2-9468	32/-	5'-GCACAGCGATTTCTTCTGTGATTGTTAGGTGC-3'
104	D2-9645	25/+	5'-ACAATGGGAACCTTCAAGAGGATGG-3'
105	D2-9656.BAM	45/+	5'-TTATCACATT/GGATCC/TTCAAGAGGATGGA ATGATTGGACACAAG-3'
			(5'-Fill/BamHI/DEN-2 Sequence)
106	cD2-9668	28/-	5'-CAGAAGGGCACTTGTGTCCAATCATTCC-3'
107	cD2-9779	21/-	5'-CTCC <u>C</u> TGGGA <u>A</u> ATTCGGGCTC-3' T G
108	cD2-9796	28/-	5'-CCGTCTCCCGCAAAGACCACCCTGCTCC-3'
109	cD2-9796.XBA	44/-	5'-TTATCACCTA/TCTAGA/CCGTCTCCC GCAAAGACCACCCTGCTCC-3'
110	cD2-9913	26/-	5'-GTTGGAACCCAATGTGATGGTACTGC-3'
111	D2-9937	25/+	5'-ACAAGTCGAACAACCTGGTCCATAC-3'
112	cD2-9977	21/-	5'-GCATGTCTTCCGTCGTCATCC-3' T
113	cD2-10003	25/-	5'-CTTGAATCCACACCCTGTTCCAGAC-3'
114	D2-10203	25/+	5'-ATACACAGATTACATGCCATCCATG-3'
115	cD2-10261	21/-	5'-TTTTGC <u>C</u> TTCTACCACAG <u>G</u> AC-3' T A
116	D2-10289	25/-	5'-GAAACAAGGCTAGAAGTCAGGTCGG-3'
117	cD2-10337	23/-	5'-GACGGGGCTCACAGGTAGCATAG-3'
118	D2-10418	25/+	5'-GCCTGTAGCTCCACCTGAGAAGGTG-3'
119	D2-10470	25/+	5'-GGAAGCTGTACGCATGGCGTAGTGG-3'
120	cD2-10530	19/-	5'-GGGCCCCGTTGTTGCTGC-3' A
121	cD2-10687	59/-	5'-AGAACCTGTTGATTCAACAGCACCATTCCATTTTCTG-3'
122	cD2-10687.XBA	59/-	5'-TTATCACCTA/GCATGC/TCTAGA/ AGAACCTGTTGATTCAACAGCACCATTCCATTTTCTG-3'
			(5'-Fill/SphI/XbaI/ 3'-End DEN-2 Sequence)
123	cD2-10687.X2	52/-	5'-TTATCACCTA/TCTAGA/ GAACCTGTTGATTCAACAGCACCATTCCATTTTCTG-3'
			(5'-Fill/XbaI/ 3'-End DEN-2 Sequence)

105

While particular embodiments of the invention have been described in detail, it will be apparent to those skilled in the art that these embodiments are exemplary rather than limiting, and the true scope of the invention is that defined within the attached claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: MAHIDOL UNIVERSITY Bangkok, Thailand

The United States of

America, as represented by the Secretary, Department of Health and Human Services c/o Centers for Disease Control and

Prevention

Technology Transfer Office

Mail Stop E-67 1600 Clifton Road Atlanta, Georgia 30333

- (ii) TITLE OF THE INVENTION: INFECTIOUS CDNA CLONES FOR DENGUE 2 VIRUS ...
- (iii) NUMBER OF SEQUENCES: 137
- (iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: NEEDLE & ROSENBERG, P.C.

(B) STREET: Suite 1200, 127 Peachtree Street, NE

- (C) CITY: Atlanta
- (D) STATE: GA (E) COUNTRY: USA
- (F) ZIP: 30303
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS (D) SOFTWARE: FastSEQ Version 1.5
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: U.S. Serial No. 08/483,292
 (B) FILING DATE: 7 Jun 1995

 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER:

 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Spratt, Gwendolyn D.
 (B) REGISTRATION NUMBER: 36,016
 (C) REFERENCE/DOCKET NUMBER: 14114.0179/P
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 404-688-0770 (B) TELEFAX: 404-688-9880

 - (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10723 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (ix) FEATURE:

- - (A) NAME/KEY: Coding Sequence (B) LOCATION: 97...10269 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AGTTGTT: GTTCTAA	AGT CTAC CAG TTT	GTGGAC TTAATT	CGACAA AGAGAG	AGAC CAGA	AGA TCT	CTG	ATG	AGGG AAT Asn	AAC	CAA	CGG	AAA	60 114
AAG GCG Lys Ala	AAA AAG Lys Asi 10	ACG CO	T TTC	Asn	ATG Met 15	CTG Leu	AAA Lys	CGC Arg	GAG Glu	AGA Arg 20	AAC Asn	CGC Arg	162
GTG TCG Val Ser	ACT GTO Thr Val 25	CAA CA Gln Gl	n Leu	ACA Thr 30	AAG Lys	AGA Arg	TTC Phe	TCA Ser	CTT Leu 35	GGA Gly	ATG Met	CTG Leu	210
CAG GGA Gln Gly 40	CGA GGA	CCA TI	A AAA u Lys 45	CTG Leu	TTC Phe	ATG Met	GCC Ala	CTG Leu 50	GTG Val	GCG Ala	TTC Phe	CTT Leu	258
CGT TTC Arg Phe 55	CTA AC	ATC CO : Ile Pr 60	o Pro	ACA Thr	GCA Ala	GGG Gly	ATA Ile 65	TTG Leu	AAG Lys	AGA Arg	TGG Trp	GGA Gly 70	306
ACA ATT	AAA AA Lys Ly:	A TCA AJ s Ser Ly 75	A GCT s Ala	ATT Ile	AAT Asn	GTT Val 80	TTG Leu	AGA Arg	GGG Gly	TTC Phe	AGG Arg 85	AAA Lys	354
GAG ATT	GGA AG Gly Ar	G ATG CT g Met Le	G AAC eu Asn	Ile	TTG Leu 95	AAT Asn	AGG Arg	AGA Arg	CGC Arg	AGA Arg 100	TCT Ser	GCA Ala	402
GGC ATG	ATC AT Ile Il 105	r ATG C	G ATT eu Ile	CCA Pro 110	ACA Thr	GTG Val	ATG Met	GCG Ala	TTC Phe 115	CAT His	TTA Leu	ACC Thr	450
ACA CGT Thr Arg 120	AAC GG Asn Gl	A GAA CO y Glu Pi	CA CAC TO His 125	ATG Met	ATC Ile	GTC Val	AGC Ser	AGA Arg 130	CAA Gln	GAG Glu	AAA Lys	GGG Gly	498

AAA Lys 135	AGT Ser	CTT Leu	CTG Leu	TTT Phe	AAA Lys 140	ACA Thr	GAG Glu	GAT Asp	GGC Gly	GTG Val 145	AAC Asn	ATG Met	TGT Cys	ACC Thr	CTC Leu 150	546
ATG Met	GCC Ala	ATG Met	GAC Asp	CTT Leu 155	GGT Gly	GAA Glu	TTG Leu	TGT Cys	GAA Glu 160	GAC Asp	ACA Thr	ATC Ile	ACG Thr	TAC Tyr 165	AAG Lys	594
TGT Cys	CCC Pro	CTT Leu	CTC Leu 170	AGG Arg	CAG Gln	AAT Asn	GAG Glu	CCA Pro 175	GAA Glu	GAC Asp	ATA Ile	GAC Asp	TGT Cys 180	TGG Trp	TGC Cys	642
AAC Asn	TCT Ser	ACG Thr 185	TCC Ser	ACG Thr	TGG Trp	GTA Val	ACT Thr 190	TAT Tyr	GGG Gly	ACG Thr	TGT Cys	ACC Thr 195	ACC Thr	ATG Met	GGA Gly	690
GAA Glu	CAT His 200	AGA Arg	AGA Arg	GAA Glu	AAA Lys	AGA Arg 205	TCA Ser	GTG Val	GCA Ala	CTC Leu	GTT Val 210	CCA Pro	CAT His	GTG Val	GGA Gly	738
ATG Met 215	GGA Gly	CTG Leu	GAG Glu	ACA Thr	CGA Arg 220	ACT	GAA Glu	ACA Thr	TGG Trp	ATG Met 225	TCA Ser	TCA Ser	GAA Glu	GGG Gly	GCC Ala 230	786
Trp	Lys	His	Val	Gln 235	Arg	Ile	Glu	Thr	Trp 240	Ile	TTG Leu	Arg	His	Pro 245	Gly	834
Phe	Thr	Met	Met 250	Ala	Ala	Ile	Leu	Ala 255	Tyr	Thr	ATA Ile	Gly	Thr 260	Thr	His	882
Phe	Gln	Arg 265	Ala	Leu	Ile	Phe	11e 270	Leu	Leu	Thr	GCT Ala	Val 275	Thr	Pro	Ser	930
Met	Thr 280	Met	Arg	Cys	Ile	Gly 285	Met	Ser	Asn	Arg	GAC Asp 290	Phe	Val	Glu	Gly	978
GTT Val 295	TCA Ser	GGA Gly	GGA Gly	AGC Ser	TGG Trp 300	GTT Val	GAC Asp	ATA Ile	GTC Val	TTA Leu 305	GAA Glu	CAT His	GGA Gly	AGC Ser	TGT Cys 310	1026
GTG Val	ACG Thr	ACG Thr	ATG Met	GCA Ala 315	AAA Lys	AAC Asn	AAA Lys	CCA Pro	ACA Thr 320	TTG Leu	gat Asp	TTT Phe	GAA Glu	CTG Leu 325	ATA Ile	1074
AAA Lys	ACA Thr	GAA Glu	GCC Ala 330	AAA Lys	CAG Gln	CCT Pro	GCC Ala	ACC Thr 335	CTA Leu	AGG Arg	AAG Lys	TAC Tyr	TGT Cys 340	ATA Ile	GAG Glu	1122
GCA Ala	AAG Lys	CTA Leu 345	ACC Thr	AAC Asn	ACA Thr	ACA Thr	ACA Thr 350	GAA Glu	TCT Ser	CGC Arg	TGC Cys	CCA Pro 355	ACA Thr	CAA Gln	GGG Gly	1170

				-												
											TTC Phe 370					1218
TCC Ser 375	ATG Met	GTA Val	GAC Asp	AGA Arg	GGA Gly 380	TGG Trp	GGA Gly	AAT Asn	GGA Gly	TGT Cys 385	GGA Gly	CTA Leu	TTT Phe	GGA Gly	AAG Lys 390	1266
											AAA Lys					1314
											ACC Thr					1362
											GAC Asp					1410
											ATC Ile 450					1458
TTG Leu 455	ACA Thr	GGT Gly	TAT Tyr	GGC Gly	ACT Thr 460	GTC Val	ACA Thr	ATG Met	GAG Glu	TGC Cys 465	TCT Ser	CCA Pro	aga arg	ACG Thr	GGC Gly 470	1506
											GAA Glu					1554
CTG Leu	GTG Val	CAC His	AGG Arg 490	CAA Gln	TGG Trp	TTC Phe	CTA Leu	GAC Asp 495	CTG Leu	CCG Pro	TTA Leu	CCA Pro	TGG Trp 500	TTG Leu	CCC Pro	1602
GGA Gly	GCG Ala	GAC Asp 505	ACA Thr	CAA Gln	GGG Gly	TCA Ser	AAT Asn 510	TGG Trp	ATA Ile	CAG Gln	AAA Lys	GAG Glu 515	ACA Thr	TTG Leu	GTC Val	1650
											GTT Val 530					1698
TCC Ser 535	CAA Gln	GAA Glu	GGG Gly	GCC Ala	ATG Met 540	CAC His	ACA Thr	GCA Ala	CTT Leu	ACA Thr 545	GGG Gly	GCC Ala	ACA Thr	GAA Glu	ATC Ile 550	1746
CAA Gln	ATG Met	TCA Ser	TCA Ser	GGA Gly 555	AAC Asn	TTA Leu	CTC Leu	TTC Phe	ACA Thr 560	GGA Gly	CAT His	CTC Leu	AAG Lys	TGC Cys 565	AGG Arg	1794
											TCA Ser					1842
											GAA Glu					1890

ACA A Thr I 6	TA le 00	GTT Val	ATC Ile	AGA Arg	GTG Val	CAA Gln 605	TAT Tyr	GAA Glu	GGG Gly	GAC Asp	GGC Gly 610	TCT Ser	CCA Pro	TGC Cys	AAG Lys	1938
ATC C Ile P 615	CT	TTT Phe	GAG Glu	ATA Ile	ATG Met 620	GAT Asp	TTG Leu	GAA Glu	AAA Lys	AGA Arg 625	CAT His	GTC Val	TTA Leu	GGT	CGC Arg 630	1986
CTG A Leu I	TT (le	ACA Thr	GTC Val	AAC Asn 635	CCA Pro	ATT Ile	GTG Val	ACA Thr	GAA Glu 640	AAA Lys	GAT Asp	AGC Ser	CCA Pro	GTC Val 645	AAC Asn	2034
ATA G Ile G	AA Slu	GCA Ala	GAA Glu 650	CCT Pro	CCA Pro	TTC Phe	GGA Gly	GAC Asp 655	AGC Ser	TAC Tyr	ATC Ile	ATC Ile	ATA Ile 660	GGA Gly	GTA Val	2082
GAG C Glu P	,LO	GGA Gly 665	CAA Gln	CTG Leu	AAG Lys	CTC Leu	AAC Asn 670	TGG	TTT Phe	AAG Lys	AAA Lys	GGA Gly 675	AGT Ser	TCT Ser	ATC Ile	2130
GGC C Gly G	CAA Sln 80	ATG Met	TTT Phe	GAG Glu	ACA Thr	ACA Thr 685	ATG Met	AGG Arg	GGG Gly	GCG Ala	AAG Lys 690	AGA Arg	ATG Met	GCC Ala	ATT Ile	2178
TTA G Leu G 695	GT Gly	GAC Asp	ACA Thr	GCC Ala	TGG Trp 700	GAT Asp	TTT Phe	GGA Gly	TCC Ser	TTG Leu 705	GGA Gly	GGA Gly	GTG Val	TTT Phe	ACA Thr 710	2226
TCT A Ser I	TA [le	GGA Gly	AAG Lys	GCT Ala 715	CTC Leu	CAC His	CAA Gln	GTC Val	TTT Phe 720	GGA Gly	GCA Ala	ATC Ile	TAT Tyr	GGA Gly 725	GCT Ala	2274
GCC T Ala P	rrc Phe	AGT Ser	GGG Gly 730	GTT Val	TCA Ser	TGG Trp	ACT Thr	ATG Met 735	AAA Lys	ATC Ile	CTC Leu	ATA Ile	GGA Gly 740	GTC Val	ATT Ile	2322
ATC A	ACA Thr	TGG Trp 745	ATA Ile	GGA Gly	ATG Met	AAT Asn	TCA Ser 750	CGC Arg	AGC Ser	ACC Thr	TCA Ser	CTG Leu 755	TCT Ser	GTG Val	ACA Thr	2370
CTA G Leu V	GTA Val 760	TTG Leu	GTG Val	GGA Gly	ATT Ile	GTG Val 765	ACA Thr	CTG Leu	TAT Tyr	TTG Leu	GGA Gly 770	GTC Val	ATG Met	GTG Val	CAG Gln	2418
GCC G Ala A 775	GAT Asp	AGT Ser	GGT Gly	TGC Cys	GTT Val 780	GTG Val	AGC Ser	TGG Trp	AAA Lys	AAC Asn 785	AAA Lys	GAA Glu	CTG Leu	AAA Lys	TGT Cys 790	2466
GGC A	AGT Ser	GGG Gly	ATT Ile	TTC Phe 795	ATC Ile	ACA Thr	GAC Asp	AAC Asn	GTG Val 800	CAC His	ACA Thr	TGG Trp	ACA Thr	GAA Glu 805	CAA Gln	2514
TAC A	AAG Lys	TTC Phe	CAA Gln 810	CCA Pro	GAA Glu	TCC Ser	CCT Pro	TCA Ser 815	AAA Lys	CTA Leu	GCT Ala	TCA Ser	GCT Ala 820	ATC Ile	CAG Gln	2562
AAA G Lys <i>A</i>	GCC Ala	CAT His 825	GAA Glu	GAG Glu	GGC Gly	ATT Ile	TGT Cys 830	GGA Gly	ATC Ile	CGC Arg	TCA Ser	GTA Val 835	ACA Thr	AGA Arg	CTG Leu	2610

											TTG Leu 850					2658
											GGA Gly					2706
											CAG Gln					2754
											ATG Met					2802
											GAA Glu					2850
	_	_	-	_							GTT Val 930					2898
											TTG Leu					2946
											GCC Ala					2994
											GAA Glu					3042
											GAA Glu					3090
His					His					Asn	GGA Gly 010					3138
				Pro					Gly		GTG Val			His		3186
TAT Tyr	AGA Arg	CCA Pro	Gly	TAC Tyr 035	CAT His	ACA Thr	CAA Gln	Ile	ACA Thr 040	GGA Gly	CCA Pro	TGG Trp	His	CTA Leu 045	GGT Gly	3234
		Glu					Phe				ACA Thr	Thr				3282
ACT Thr	Glu	GAC Asp 065	TGC Cys	GGA Gly	AAT Asn	Arg	GGA Gly 070	CCC Pro	TCT Ser	TTG Leu	AGA Arg 1	ACA Thr 075	ACC Thr	ACT Thr	GCC Ala	3330

TCT GGA AAA CTC ATA ACA GAA TGG TGC TGC CGA TCT TGC ACA TTA CCA Ser Gly Lys Leu Ile Thr Glu Trp Cys Cys Arg Ser Cys Thr Leu Pro 1080 1085 1090	•
CCG CTA AGA TAC AGA GGT GAG GAT GGG TGC TGG TAC GGG ATG GAA ATG Pro Leu Arg Tyr Arg Gly Glu Asp Gly Cys Trp Tyr Gly Met Glu Ile 1095 1100 1105	3
AGA CCA TTG AAG GAG AAA GAA GAG AAT TTG GTC AAC TCC TTG GTC ACA Arg Pro Leu Lys Glu Lys Glu Glu Asn Leu Val Asn Ser Leu Val The 1115 1120 1125	3474
GCT GGA CAT GGG CAG GTC GAC AAC TTT TCA CTA GGA GTC TTG GGA ATC Ala Gly His Gly Gln Val Asp Asn Phe Ser Leu Gly Val Leu Gly Met 1130 1135 1140	3522 :
GCA TTG TTC CTG GAG GAA ATG CTT AGG ACC CGA GTA GGA ACG AAA CATA Ala Leu Phe Leu Glu Glu Met Leu Arg Thr Arg Val Gly Thr Lys His	r 3570
GCA ATA CTA CTA GTT GCA GTT TCT TTT GTG ACA TTG ATC ACA GGG AACA Ala Ile Leu Leu Val Ala Val Ser Phe Val Thr Leu Ile Thr Gly Ass 1160 1165 1170	3618 1
ATG TCC TTT AGA GAC CTG GGA AGA GTG ATG GTT ATG GTA GGC GCC ACT Met Ser Phe Arg Asp Leu Gly Arg Val Met Val Met Val Gly Ala Th	
ATG ACG GAT GAC ATA GGT ATG GGC GTG ACT TAT CTT GCC CTA CTA GC. Met Thr Asp Asp Ile Gly Met Gly Val Thr Tyr Leu Ala Leu Leu Ala 1195 1200 1205	A 3714 a
GCC TTC AAA GTC AGA CCA ACT TTT GCA GCT GGA CTA CTC TTG AGA AAA Ala Phe Lys Val Arg Pro Thr Phe Ala Ala Gly Leu Leu Arg Lys 1210 1215 1220	G 3762 S
CTG ACC TCC AAG GAA TTG ATG ATG ACT ACT ATA GGA ATT GTA CTC CT Leu Thr Ser Lys Glu Leu Met Met Thr Thr Ile Gly Ile Val Leu Leu 1225 1230 1235	3810
TCC CAG AGC ACC ATA CCA GAG ACC ATT CTT GAG TTG ACT GAT GCG TT. Ser Gln Ser Thr Ile Pro Glu Thr Ile Leu Glu Leu Thr Asp Ala Le 1240 1245 1250	A 3858
GCC TTA GGC ATG ATG GTC CTC AAA ATG GTG AGA AAT ATG GAA AAG TA Ala Leu Gly Met Met Val Leu Lys Met Val Arg Asn Met Glu Lys Ty 1255 1260 1265 127	ŗ
CAA TTG GCA GTG ACT ATC ATG GCT ATC TTG TGC GTC CCA AAC GCA GT Gln Leu Ala Val Thr Ile Met Ala Ile Leu Cys Val Pro Asn Ala Va 1275 1280 1285	G 3954 1
ATA TTA CAA AAC GCA TGG AAA GTG AGT TGC ACA ATA TTG GCA GTG GT Ile Leu Gln Asn Ala Trp Lys Val Ser Cys Thr Ile Leu Ala Val Va 1290 1295 1300	G 4002
TCC GTT TCC CCA CTG CTC TTA ACA TCC TCA CAG CAA AAA ACA GAT TG Ser Val Ser Pro Leu Leu Leu Thr Ser Ser Gln Gln Lys Thr Asp Tr 1305 1310 1315	G 4050 P

Ile	CCA Pro 1320	TTA Leu	GCA Ala	TTG Leu	Thr	ATC Ile 325	AAA Lys	GGT Gly	CTC Leu	Asn	CCA Pro 330	ACA Thr	GCT Ala	ATT Ile	TTT Phe	4098
CTA Leu 1335	ACA Thr	ACC Thr	CTC Leu	Ser	AGA Arg 1340	ACC Thr	AGC Ser	AAG Lys	Lys	AGG Arg 345	AGC Ser	TGG Trp	CCA Pro	Leu	AAT Asn 350	4146
GAG Glu	GCT Ala	ATC Ile	Met	GCA Ala 355	GTC Val	GGG Gly	ATG Met	Val	AGC Ser 360	ATT Ile	TTA Leu	GCC Ala	Ser	TCT Ser 1365	CTC Leu	4194
CTA Leu	AAA Lys	Asn	GAT Asp 1370	ATT Ile	CCC Pro	ATG Met	Thr	GGA Gly 375	CCA Pro	TTA Leu	GTG Val	Ala	GGA Gly 380	GGG Gly	CTC Leu	4242
CTC Leu	Thr	GTG Val 1385	TGC Cys	TAC Tyr	GTG Val	Leu	ACT Thr 1390	GGA Gly	CGA Arg	TCG Ser	GCC Ala	GAT Asp 395	TTG Leu	GAA Glu	CTG Leu	4290
Glu	AGA Arg 1400	GCA Ala	GCC Ala	GAT Asp	Val	AAA Lys 1405	TGG Trp	GAA Glu	GAC Asp	Gln	GCA Ala 410	GAG Glu	ATA Ile	TCA Ser	GGA Gly	4338
AGC Ser 1415	AGT Ser	CCA Pro	ATC Ile	Leu	TCA Ser 1420	ATA Ile	ACA Thr	ATA Ile	Ser	GAA Glu 1425	GAT Asp	GGT Gly	AGC Ser	Met	TCG Ser 1430	4386
ATA Ile	AAA Lys	AAT Asn	Glu	GAG Glu 1435	GAA Glu	GAA Glu	CAA Gln	Thr	CTG Leu 1440	ACC Thr	ATA Ile	CTC Leu	Ile	AGA Arg 1445	ACA Thr	4434
GGA Gly	TTG Leu	Leu	GTG Val 1450	ATC Ile	TCA Ser	GGA Gly	Leu	TTT Phe 1455	CCT Pro	GTA Val	TCA Ser	Ile	CCA Pro 1460	ATC Ile	ACG Thr	4482
GCA Ala	Ala	GCA Ala 1465	TGG Trp	TAC Tyr	CTG Leu	Trp	GAA Glu 1470	GTG Val	AAG Lys	AAA Lys	CAA Gln	CGG Arg 475	GCC Ala	GGA Gly	GTA Val	4530
Leu	TGG Trp 1480	GAT Asp	GTT Val	CCT Pro	Ser	CCC Pro 1485	CCA Pro	CCC Pro	ATG Met	Gly	AAG Lys 1490	GCT Ala	GAA Glu	CTG Leu	GAA Glu	4578
GAT Asp 1495	Gly	GCC Ala	TAT Tyr	Arg	ATT Ile 1500	AAG Lys	CAA Gln	AAA Lys	Gly	ATT Ile 1505	CTT Leu	GGA Gly	TAT Tyr	Ser	CAG Gln 1510	4626
ATC Ile	GGA Gly	GCC Ala	Gly	GTT Val 1515	Tyr	AAA Lys	GAA Glu	Gly	ACA Thr 1520	TTC Phe	CAT His	ACA Thr	Met	TGG Trp 1525	CAT His	4674
GTC Val	ACA Thr	Arg	GGC Gly 1530	GCT Ala	GTT Val	CTA Leu	Met	CAT His 1535	AAA Lys	GGA Gly	AAG Lys	Arg	ATT Ile 1540	GAA Glu	CCA Pro	4722
TCA Ser	Trp	GCG Ala 1545	Asp	GTC Val	AAG Lys	Lys	GAC Asp 1550	CTA Leu	ATA Ile	TCA Ser	TAT	GGA Gly 1555	GTÅ	GGC Gly	TGG Trp	4770

Lys	TTA Leu 560	GAA Glu	GGA Gly	GAA Glu	Trp	AAG Lys 1565	GAA Glu	GGA Gly	GAA Glu	Glu	GTC Val 570	CAG Gln	GTA Val	TTG Leu	GCA Ala	4818
CTG Leu 1575	GAG Glu	CCT Pro	GGA Gly	Lys	AAT Asn 1580	CCA Pro	AGA Arg	GCC Ala	Val	CAA Gln 585	ACG Thr	AAA Lys	CCT Pro	Gly	CTT Leu 1590	4866
TTC Phe	AAA Lys	ACC Thr	Asn	GCC Ala 595	GGA Gly	ACA Thr	ATA Ile	Gly	GCT Ala 600	GTA Val	TCT Ser	CTG Leu	Asp	TTT Phe 1605	TCT Ser	4914
CCT Pro	GGA Gly	Thr	TCA Ser 610	GGA Gly	TCT Ser	CCA Pro	ATT Ile	ATC Ile 615	GAC Asp	AAA Lys	AAA Lys	Gly	AAA Lys 1620	GTT Val	GTG Val	4962
GGT Gly	Leu	TAT Tyr 625	GGT Gly	AAT Asn	GGT Gly	Val	GTT Val 630	ACA Thr	AGG Arg	AGT Ser	Gly	GCA Ala 635	TAT Tyr	GTG Val	AGT Ser	5010
Ala	ATA Ile 640	GCC Ala	CAG Gln	ACT Thr	Glu	AAA Lys 1645	AGC Ser	ATT Ile	GAA Glu	Asp	AAC Asn 650	CCA Pro	GAG Glu	ATC Ile	GAA Glu	5058
GAT Asp 1655	GAC Asp	ATT Ile	TTC Phe	Arg	AAG Lys 1660	AGA Arg	AGA Arg	CTG Leu	Thr	ATC Ile 1665	ATG Met	GAC Asp	CTC Leu	His	CCA Pro 1670	5106
GGA Gly	GCG Ala	GGA Gly	Lys	ACG Thr 675	AAG Lys	AGA Arg	TAC Tyr	Leu	CCG Pro 1680	GCC Ala	ATA Ile	GTC Val	Arg	GAA Glu 1685	GCT Ala	515 4
ATA Ile	AAA Lys	Arg	GGT Gly 690	TTG Leu	AGA Arg	ACA Thr	TTA Leu	ATC Ile 1695	TTG Leu	GCC Ala	CCC Pro	Thr	AGA Arg 1700	GTT Val	GTG Val	5202
GCA Ala	Ala	GAA Glu 1705	ATG Met	GAG Glu	GAA Glu	Ala	CTT Leu 1710	AGA Arg	GGA Gly	CTT Leu	Pro	ATA Ile 715	AGA Arg	TAC Tyr	CAG Gln	5250
Thr	CCA Pro 1720	GCC Ala	ATC Ile	AGA Arg	Ala	GAG Glu 1725	CAC His	ACC Thr	GGG Gly	Arg	GAG Glu 1730	ATT Ile	GTG Val	GAC Asp	CTA Leu	5298
ATG Met 1735	TGT Cys	CAT His	GCC Ala	Thr	TTT Phe 1740	Thr	ATG Met	AGG Arg	Leu	CTA Leu 1745	TCA Ser	CCA Pro	GTT Val	Arg	GTG Val 1750	5346
CCA Pro	AAC Asn	TAC Tyr	Asn	CTG Leu 1755	ATT Ile	ATC Ile	ATG Met	Asp	GAA Glu 1760	GCC Ala	CAT His	TTC Phe	Thr	GAC Asp 1765	CCA Pro	5394
GCA Ala	AGT Ser	Ile	GCA Ala 1770	GCT Ala	AGA Arg	GGA Gly	TAC Tyr	ATC Ile 1775	TCA Ser	ACT Thr	CGA Arg	Val	GAG Glu 1780	ATG Met	GGT Gly	5442
GAG Glu	Ala	GCT Ala 1785	GGG Gly	ATT Ile	TTT Phe	Met	ACA Thr 1790	GCC Ala	ACT Thr	CCC Pro	Pro	GGA Gly 1795	AGC Ser	AGA Arg	GAC Asp	5490

Pro	TTT Phe 1800	CCT Pro	CAG Gln	AGC Ser	Asn	GCA Ala 805	CCA Pro	ATC Ile	ATA Ile	Asp	GAA Glu 1810	GAA Glu	AGA Arg	GAA Glu	ATC Ile	5538
				Trp					Glu		GTC Val			Phe		5586
GGG Gly	AAG Lys	ACT Thr	Val	TGG Trp 1835	TTC Phe	GTT Val	CCA Pro	Ser	ATA Ile 840	AAA Lys	GCA Ala	GGA Gly	Asn	GAT Asp 1845	ATA Ile	5634
GCA Ala	GCT Ala	Cys	CTG Leu 1850	AGG Arg	AAA Lys	AAT Asn	Gly	AAG Lys 855	AAA Lys	GTG Val	ATA Ile	Gln	CTC Leu 1860	AGT Ser	AGG Arg	5682
AAG Lys	Thr	TTT Phe 865	GAT Asp	TCT Ser	GAG Glu	Tyr	GTC Val 870	AAG Lys	ACT Thr	AGA Arg	ACC Thr 1	AAT Asn 875	GAT Asp	TGG Trp	GAC Asp	5730
Phe					Asp					Gly	GCC Ala 890					5778
GAG Glu 1895	AGG Arg	GTT Val	ATA Ile	Asp	CCC Pro 900	AGA Arg	CGC Arg	TGC Cys	Met	AAA Lys 1905	CCA Pro	GTC Val	ATA Ile	Leu	ACA Thr 1910	5826
GAT Asp	GGT Gly	GAA Glu	Glu	CGG Arg 1915	GTG Val	ATT Ile	CTG Leu	Ala	GGA Gly 1920	CCT Pro	ATG Met	CCA Pro	Val	ACC Thr 1925	CAC His	5874
TCT Ser	AGT Ser	Ala	GCA Ala 1930	CAA Gln	AGA Arg	AGA Arg	Gly	AGA Arg 1935	ATA Ile	GGA Gly	AGA Arg	Asn	CCA Pro 1940	AAA Lys	AAT Asn	5922
GAG Glu	Asn	GAC Asp 945	CAG Gln	TAC Tyr	ATA Ile	Tyr	ATG Met 1950	GGG Gly	GAA Glu	CCT Pro	CTG Leu	GAA Glu 955	AAT Asn	GAT Asp	GAA Glu	5970
Asp	TGT Cys 1960	GCA Ala	CAC His	TGG Trp	Lys	GAA Glu 1965	GCT Ala	AAA Lys	ATG Met	Leu	CTA Leu 970	GAT Asp	AAC Asn	ATC Ile	AAC Asn	6018
ACG Thr 1975	Pro	GAA Glu	GGA Gly	Ile	ATT Ile 980	CCT Pro	AGC Ser	ATG Met	Phe	GAA Glu 1985	CCA Pro	GAG Glu	CGT Arg	Glu	AAG Lys 1990	6066
GTG Val	GAT Asp	GCC Ala	Ile	GAT Asp 1995	GGC Gly	GAA Glu	TAC Tyr	Arg	TTG Leu 2000	AGA Arg	GGA Gly	GAA Glu	Ala	AGG Arg 2005	AAA Lys	6114
ACC Thr	TTT Phe	Val	GAC Asp 2010	TTA Leu	ATG Met	AGA Arg	Arg	GGA Gly 2015	GAC Asp	CTA Leu	CCA Pro	Val	TGG Trp 2020	TTG Leu	GCC Ala	6162
TAC Tyr	Arg	GTG Val 2025	GCA Ala	GCT Ala	GAA Glu	Gly	ATC Ile 2030	AAC Asn	TAC Tyr	GCA Ala	GAC Asp	AGA Arg 2035	AGG Arg	TGG Trp	TGT Cys	6210

Phe	GAT Asp 2040	GGA Gly	GTC Val	AAG Lys	Asn	AAC Asn 2045	CAA Gln	ATC Ile	CTA Leu	Glu	GAA Glu 2050	AAC Asn	GTG Val	GAA Glu	GTT Val	6258
GAA Glu 2055	ATC Ile	TGG Trp	ACA Thr	Lys	GAA Glu 2060	GGG Gly	GAA Glu	AGG Arg	Lys	AAA Lys 2065	TTG Leu	AAA Lys	CCC Pro	Arg	TGG Trp 2070	6306
TTG Leu	GAT Asp	GCT Ala	Arg	ATC Ile 2075	TAT Tyr	TCT Ser	GAC Asp	Pro	CTG Leu 2080	GCG Ala	CTA Leu	AAA Lys	Glu	TTT Phe 2085	AAG Lys	6354
		Ala					Ser				AAC Asn	Leu				6402
ATG Met	Gly	AGG Arg 2105	CTC Leu	CCA Pro	ACC Thr	Phe	ATG Met	ACT Thr	CAG Gln	AAG Lys	GCA Ala	AGA Arg 2115	GAC Asp	GCA Ala	CTG Leu	6450
Asp	AAC Asn 2120	TTA Leu	GCA Ala	GTG Val	Leu	CAC His 2125	ACG Thr	GCT Ala	GAG Glu	Ala	GGT Gly 2130	GGA Gly	AGG Arg	GCG Ala	TAC Tyr	6498
AAC Asn 2135	CAT His	GCT Ala	CTC Leu	Ser	GAA Glu 2140	CTG Leu	CCG Pro	GAG Glu	Thr	CTG Leu 145	GAG Glu	ACA Thr	TTG Leu	Leu	TTA Leu 2150	6546
CTG Leu	ACA Thr	CTT Leu	Leu	GCT Ala 155	ACA Thr	GTC Val	ACG Thr	Gly	GGG Gly 2160	ATC Ile	TTT Phe	TTA Leu	Phe	TTG Leu 2165	ATG Met	6594
AGC Ser	GGA Gly	Arg	GGC Gly 2170	ATA Ile	GGG Gly	AAG Lys	Met	ACC Thr 2175	CTG Leu	GGA Gly	ATG Met	Cys	TGC Cys 2180	ATA Ile	ATC Ile	6642
ACG Thr	Ala	AGC Ser 2185	ATC Ile	CTC Leu	CTA Leu	Trp	TAC Tyr 190	GCA Ala	CAA Gln	ATA Ile	CAG Gln	CCA Pro 195	CAC His	TGG Trp	ATA Ile	6690
Ala	GCT Ala 2200	TCA Ser	ATA Ile	ATA Ile	Leu	GAG Glu 2205	TT:T Phe	TTT Phe	CTC Leu	Ile	GTT Val 2210	TTG Leu	CTT Leu	ATT Ile	CCA Pro	6738
GAA Glu 2215	CCT Pro	GAA Glu	AAA Lys	Gln	AGA Arg 2220	ACA Thr	CCC Pro	CAA Gln	Asp	AAC Asn 2225	CAA Gln	CTG Leu	ACC Thr	Tyr	GTT Val 2230	6786
GTC Val	ATA Ile	GCC Ala	Ile	CTC Leu 235	ACA Thr	GTG Val	GTG Val	Ala	GCA Ala 2240	ACC Thr	ATG Met	GCA Ala	Asn	GAG Glu 2245	ATG Met	6834
GGT Gly	TTC Phe	Leu	GAA Glu 2250	AAA Lys	ACG Thr	AAG Lys	Lys	GAT Asp 2255	CTC Leu	GGA Gly	TTG Leu	Gly	AGC Ser 2260	ATT Ile	GCA Ala	6882
ACC Thr	Gln	CAA Gln 2265	CCC Pro	GAG Glu	AGC Ser	Asn	ATC Ile 270	CTG Leu	GAC Asp	ATA Ile	GAT Asp	CTA Leu 275	CGT Arg	CCT Pro	GCA Ala	6930

TCA GCA TGG ACG CT Ser Ala Trp Thr Le 2280	G TAT GCC GTG G u Tyr Ala Val 1 2285	GCC ACA ACA TTT Ala Thr Thr Phe 2290	GTT ACA CCA ATG Val Thr Pro Met	6978
TTG AGA CAT AGC AT Leu Arg His Ser Il 2295	T GAA AAT TCC : e Glu Asn Ser : 2300	TCA GTG AAT GTG Ser Val Asn Val 2305	TCC CTA ACA GCT Ser Leu Thr Ala 2310	7026
ATA GCC AAC CAA GC Ile Ala Asn Gln Al 231	a Thr Val Leu !	ATG GGT CTC GGG Met Gly Leu Gly 2320	AAA GGA TGG CCA Lys Gly Trp Pro 2325	7074
TTG TCA AAG ATG GA Leu Ser Lys Met As 2330	p Ile Gly Val 1	CCC CTT CTC GCC Pro Leu Leu Ala 335	ATT GGA TGC TAC Ile Gly Cys Tyr 2340	7122
TCA CAA GTC AAC CC Ser Gln Val Asn Pr 2345	C ATA ACT CTC A o Ile Thr Leu ! 2350	Thr Ala Ala Leu	TTC TTA TTG GTA Phe Leu Leu Val 355	7170
GCA CAT TAT GCC AT Ala His Tyr Ala Il 2360	C ATA GGG CCA (e Ile Gly Pro (2365	GGA CTC CAA GCA Gly Leu Gln Ala 2370	AAA GCA ACC AGA Lys Ala Thr Arg	7218
GAA GCT CAG AAA AG Glu Ala Gln Lys Ar 2375	A GCA GCG GCG (g Ala Ala Ala (2380	GGC ATC ATG AAA Gly Ile Met Lys 2385	AAC CCA ACT GTC Asn Pro Thr Val 2390	7266
GAT GGA ATA ACA GT Asp Gly Ile Thr Va 239	l Ile Asp Leu i	GAT CCA ATA CCT Asp Pro Ile Pro 2400	TAT GAT CCA AAG Tyr Asp Pro Lys 2405	7314
TTT GAA AAG CAG TT Phe Glu Lys Gln Le 2410	u Gly Gln Val I	ATG CTC CTA GTC Met Leu Leu Val 415	CTC TGC GTG ACT Leu Cys Val Thr 2420	7362
CAA GTA TTG ATG AT Gln Val Leu Met Me 2425	G AGG ACT ACA t t Arg Thr Thr t 2430	Trp Ala Leu Cys	GAG GCT TTA ACC Glu Ala Leu Thr 435	7410
TTA GCT ACC GGG CC Leu Ala Thr Gly Pr 2440	C ATC TCC ACA to Ile Ser Thr 1	TTG TGG GAA GGA Leu Trp Glu Gly 2450	AAT CCA GGG AGG Asn Pro Gly Arg	7458
TTT TGG AAC ACT AC Phe Tro Asn Thr Th 2455	C ATT GCG GTG ' r lle Ala Val ' 2460	TCA ATG GCT AAC Ser Met Ala Asn 2465	ATT TTT AGA GGG Ile Phe Arg Gly 2470	7506
AGT TAC TTG GCC GG Ser Tyr Leu Ala Gl 247	y Ala Gly Leu	CTC TTT TCT ATT Leu Phe Ser Ile 2480	ATG AAG AAC ACA Met Lys Asn Thr 2485	7554
ACC AAC ACA AGA AG Thr Asn Thr Arg Ar 2490	g Gly Thr Gly	AAC ATA GGA GAG Asn Ile Gly Glu 495	ACG CTT GGA GAG Thr Leu Gly Glu 2500	7602
AAA TGG AAA AGC CG Lys Trp Lys Ser Ar 2505	A TTG AAC GCA g Leu Asn Ala 2510	Leu Gly Lys Ser	GAA TTC CAG ATC Glu Phe Gln Ile 2515	7650

TAC AAG AAA AGT GGA Tyr Lys Lys Ser Gly 2520	ATC CAG GAA GTG Ile Gln Glu Val 2525	GAT AGA ACC TT Asp Arg Thr Le 2530	A GCA AAA GAA u Ala Lys Glu	7698
GGC ATT AAA AGA GGA Gly Ile Lys Arg Gly 2535	GAA ACG GAC CAT Glu Thr Asp His 2540	CAC GCT GTG TC His Ala Val Se 2545	G CGA GGC TCA or Arg Gly Ser 2550	7746
GCA AAA CTG AGA TGG Ala Lys Leu Arg Trp 2555	Phe Val Glu Arg	AAC ATG GTC AC Asn Met Val Th 2560	A CCA GAA GGG r Pro Glu Gly 2565	7794
AAA GTA GTG GAC CTC Lys Val Val Asp Leu 2570	GGT TGT GGC AGA Gly Cys Gly Arg 2575	GGA GGC TGG TC Gly Gly Trp Se	A TAC TAT TGT r Tyr Tyr Cys 2580	7842
GGA GGA CTA AAG AAT Gly Gly Leu Lys Asn 2585	GTA AGA GAA GTC Val Arg Glu Val 2590	AAA GGC CTA AC Lys Gly Leu Th 259	r Lys Gly Gly	7890
CCA GGA CAC GAA GAA Pro Gly His Glu Glu 2600	CCC ATC CCC ATG Pro Ile Pro Met 2605	TCA ACA TAT GG Ser Thr Tyr Gl 2610	G TGG AAT CTA y Trp Asn Leu	7938
GTG CGT CTT CAA AGT Val Arg Leu Gln Ser 2615	GGA GTT GAC GTT Gly Val Asp Val 2620	TTC TTC ATC CC Phe Phe Ile Pr 2625	G CCA GAA AAG O Pro Glu Lys 2630	7986
TGT GAC ACA TTA TTG Cys Asp Thr Leu Leu 2635	Cys Asp Ile Gly	GAG TCA TCA CC Glu Ser Ser Pr 2640	A AAT CCC ACA o Asn Pro Thr 2645	8034
GTG GAA GCA GGA CGA Val Glu Ala Gly Arg 2650	ACA CTC AGA GTC Thr Leu Arg Val 2655	CTT AAC TTA GT Leu Asn Leu Va	A GAA AAT TGG l Glu Asn Trp 2660	8082
TTG AAC AAC AAC ACT Leu Asn Asn Asn Thr 2665	CAA TTT TGC ATA Gln Phe Cys Ile 2670	AAG GTT CTC AA Lys Val Leu As 267	n Pro Tyr Met	8130
CCC TCA GTC ATA GAA Pro Ser Val Ile Glu 2680	AAA ATG GAA GCA Lys Met Glu Ala 2685	CTA CAA AGG AA Leu Gln Arg Ly 2690	A TAT GGA GGA s Tyr Gly Gly	8178
GCC TTA GTG AGG AAT Ala Leu Val Arg Asn 2695	CCA CTC TCA CGA Pro Leu Ser Arg 2700	AAC TCC ACA CA Asn Ser Thr Hi 2705	T GAG ATG TAC s Glu Met Tyr 2710	8226
TGG GTA TCC AAT GCT Trp Val Ser Asn Ala 2715	Ser Gly Asn Ile	GTG TCA TCA GT Val Ser Ser Va 2720	G AAC ATG ATT 1 Asn Met Ile 2725	8274
TCA AGG ATG TTG ATC Ser Arg Met Leu Ile 2730	AAC AGA TTT ACA Asn Arg Phe Thr 2735	ATG AGA TAC AA Met Arg Tyr Ly	G AAA GCC ACT S Lys Ala Thr 2740	8322
TAC GAG CCG GAT GTT Tyr Glu Pro Asp Val 2745	GAC CTC GGA AGC Asp Leu Gly Ser 2750	GGA ACC CGT AA Gly Thr Arg As 275	n Ile Gly Ile	8370

Glu	AGT Ser 2760	GAG Glu	ATA Ile	CCA Pro	Asn	CTA Leu 2765	GAT Asp	ATA Ile	ATT Ile	Gly	AAA Lys 2770	AGA Arg	ATA Ile	GAA Glu	AAA Lys	8418
ATA Ile 2775	AAG Lys	CAA Gln	GAG Glu	His	GAA Glu 2780	ACA Thr	TCA Ser	TGG Trp	CAC His	TAT Tyr 2785	GAC Asp	CAA Gln	GAC Asp	His	CCA Pro 2790	8466
			Trp					Ser	TAT Tyr 2800				Gln			8514
TCA Ser	GCA Ala	Ser	TCC Ser 2810	ATG Met	GTC Val	AAC Asn	Gly	GTG Val 2815	GTC Val	AGG Arg	CTG Leu	Leu	ACA Thr 2820	AAA Lys	CCT Pro	8562
	Asp					Val			ATG Met		Met					8610
Pro					Arg				GAG Glu	Lys						8658
				Glu					CTA Leu 2					Ala		8706
			Lys					Lys	AAG Lys 2880				Met			8754
		Glu					Val		AGC Ser			Ala				8802
	Phe					Lys			TCG Ser		Arg					8850
Asp					Glu				AAG Lys	Glu						8898
				Glu					AAC Asn 2					Arg		8946
AAG Lys	AAG Lys	CTA Leu	Gly	GAA Glu 955	TTC Phe	GGC Gly	AAG Lys	Ala	AAA Lys 2960	GGC Gly	AGC Ser	AGA Arg	Ala	ATA Ile 2965	TGG Trp	8994
TAC Tyr	ATG Met	Trp	CTT Leu 1970	GGA Gly	GCA Ala	CGC Arg	Phe	TTA Leu 1975	GAG Glu	TTT Phe	GAA Glu	Ala	CTA Leu 2980	GGA Gly	TTC Phe	9042
TTA Leu	Asn	GAA Glu 2985	GAT Asp	CAC His	TGG Trp	Phe	TCC Ser	AGA Arg	GAG Glu	AAC Asn	Ser	CTG Leu 1995	AGT Ser	GGA Gly	GTG Val	9090

Glu					His					ATT						9138
				Gly					Asp	GAC Asp 3025				Trp		9186
			Thr					Lys		GAA Glu			Val			9234
CAC His	ATG Met	Glu	GGA Gly 3050	GAA Glu	CAC His	AAG Lys	Lys	CTA Leu 3055	GCC Ala	GAG Glu	GCC Ala	Ile	TTC Phe 3060	AAA Lys	CTA Leu	9282
	Tyr					Val				AGA Arg	Pro					9330
Thr					Ile					CAA Gln						9378
				Gly					Thr	AAT Asn 3105				Gln		9426
			Met					Val		AAA Lys			Gln			9474
		Thr					Val			TGG Trp		Ala				9522
	Glu					Met				GGA Gly	Asp					9570
Lys	CCT Pro 3160	TTA Leu	GAT Asp	GAC Asp	Arg	TTC Phe 3165	GCA Ala	AGC Ser	GCT Ala	TTA Leu	ACA Thr 3170	GCT Ala	CTA Leu	AAT Asn	GAC Asp	9618
ATG Met 3175	GGA Gly	AAG Lys	ATT Ile	Arg	AAA Lys 3180	GAC Asp	ATA Ile	CAA Gln	Gln	TGG Trp 185	GAA Glu	CCT Pro	TCA Ser	Arg	GGA Gly 3190	9666
			Trp					Phe		TCA Ser			Phe			9714
		Met					Val			GTT Val		Cys				9762
GAT Asp	Glu	CTG Leu 3225	ATT Ile	GGC Gly	AGA Arg	Ala	CGA Arg 1230	ATC Ile	TCC Ser	CAA Gln	Gly	GCA Ala 235	GGG Gly	TGG Trp	TCT Ser	9810

Leu					Cys					Tyr	GCC Ala 3250				AGC Ser	9858
				His					Arg		GCG Ala			Ala		9906
			Val					Val			AGT Ser		Thr			9954
		His					Trp				GAA Glu	Asp				10002
	Trp					Ile					TGG Trp					10050
Thr					Trp					Tyr	TTG Leu 3330					10098
				Gly					Leu		AGC Ser			Thr		10146
GCA Ala	AAG Lys	AAC Asn	Ile	CAA Gln 3355	GCA Ala	GCA Ala	ATA Ile	Asn	CAA Gln 360	GTT Val	AGA Arg	TCC Ser	Leu	ATA Ile 3365	GGC Gly	10194
		Glu					Met				AAA Lys	Arg				10242
			Glu					Trp	TAGA	AAGC	CAA A	ACTA	ACA!	rg a <i>i</i>	ACAAG(3 10297
TCCA GCCT TACC AATC GACC	AGGA GCATO GGGG CCCC CCAGO	CA CACCA TO SCT CACCA CACACA CACCA C	GTCC TAAA CACC TAGT CAACA	AGAA TGAC TGAC TGGAC CGAC	G TO SA AG ST AG SA TG	AGGC GTGT GCGGT AAGC AGCAT	AGTA CATC AAAA TAGA TGTA	CGG ATA AATA GAG GTG ACG	AATO CCGO GACO TCGO CTGO	GAG CCT TGG GAA	TAGO GCCA CCCT AAGO AGAC	TTGA CAAA TACA ACTA CAGA	AGT I ACC I AAA T AGA (AGA T	AAACT ATGGA CGCA GTTA CCTC	CCCCG PATGCA LAGCTG LGCAAC LGAGGA CCTGTC CCAACA	10357 10417 10477 10537 10557 10657 10717

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10723 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:

PCT/US96/09209

122

(ix) FEATURE:

(A) NAME/KEY: Coding Sequence (B) LOCATION: 97...10269 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

		-							-							
										ATG		AAC	CAA	CGG	AATGTA AAA Lys	60 114
						TTC Phe										162
						CTG Leu										210
Gln						AAA Lys 45										258
CGT Arg 55	TTC Phe	CTA Leu	ACA Thr	Ile	CCA Pro 60	CCA Pro	ACA Thr	GCA Ala	GGG Gly	ATA Ile 65	TTG Leu	AAG Lys	AGA Arg	TGG Trp	GGA Gly 70	306
						GCT Ala										354
						AAC Asn										402
GGC Gly	ATG Met	ATC Ile 105	ATT Ile	ATG Met	CTG Leu	ATT Ile	CCA Pro 110	ACA Thr	GTG Val	ATG Met	GCG Ala	TTC Phe 115	CAT His	TTA Leu	ACC Thr	450
						CAC His 125										498
						ACA Thr										546
ATG Met	GCC Ala	ATG Met	GAC Asp	CTT Leu 155	GGT Gly	GAA Glu	TTG Leu	TGT Cys	GAA Glu 160	GAC Asp	ACA Thr	ATC Ile	ACG Thr	TAC Tyr 165	AAG Lys	594
						AAT Asn										642
NAC Xaa	TCT Ser	ACG Thr 185	TCC Ser	ACG Thr	TGG Trp	GTA Val	ACT Thr 190	TAT Tyr	GGG Gly	ACG Thr	TGT Cys	ACC Thr 195	ACC Thr	ATG Met	GGA Gly	690

															GGA Gly	738
	GGA Gly														GCC Ala 230	786
TGG Trp	AAA Lys	CAT His	GTC Val	CAG Gln 235	AGA Arg	ATT Ile	GAA Glu	ACT Thr	TGG Trp 240	ATC Ile	TTG Leu	AGA Arg	CAT His	CCA Pro 245	GGC Gly	834
TTC Phe	ACC Thr	ATG Met	ATG Met 250	GCA Ala	GCA Ala	ATC Ile	CTG Leu	GCA Ala 255	TAC Tyr	ACC Thr	ATA Ile	GGA Gly	ACG Thr 260	ACA Thr	CAT His	882
	CAA Gln															930
ATG Met	ACA Thr 280	ATG Met	CGT Arg	TGC Cys	ATA Ile	GGA Gly 285	ATG Met	TCA Ser	AAT Asn	AGA Arg	GAC Asp 290	TTT Phe	GTG Val	GAA Glu	GGG Gly	978
	TCA Ser															1026
	ACG Thr															1074
	ACA Thr															1122
GCA Ala	AAG Lys	CTA Leu 345	ACC Thr	NAC Xaa	ACA Thr	ACA Thr	ACA Thr 350	GAA Glu	TCT Ser	CGC Arg	TGC Cys	CCA Pro 355	ACA Thr	CAA Gln	GGG Gly	1170
	CCC Pro 360															1218
	ATG Met											_				1266
	GGC Gly															1314
	AAA Lys				_	-										1362
	CAC His															1410

GGC	AAG Lys 440	GAA Glu	ATC Ile	AAA Lys	ATA Ile	ACA Thr 445	CCA Pro	CAG Gln	AGT Ser	TCC Ser	ATC Ile 450	ACA Thr	GAA Glu	GCA Ala	GAA Glu	1458
TTG Leu 455	ACA Thr	GGT Gly	TAT Tyr	GGC Gly	ACT Thr 460	GTC Val	ACA Thr	ATG Met	GAG Glu	TGC Cys 465	TCT Ser	CCA Pro	AGA Arg	ACG Thr	GGC Gly 470	1506
	GAC Asp															1554
CTG Leu	GTG Val	CAC His	AGG Arg 490	CAA Gln	TGG Trp	TTC Phe	CTA Leu	GAC Asp 495	CTG Leu	CCG Pro	TTA Leu	CCA Pro	TGG Trp 500	TTG Leu	CCC Pro	1602
GGA Gly	GCG Ala	GAC Asp 505	ACA Thr	CAA Gln	GGG Gly	TCA Ser	AAT Asn 510	TGG Trp	ATA Ile	CAG Gln	AAA Lys	GAG Glu 515	ACA Thr	TTG Leu	GTC Val	1650
	TTC Phe 520															1698
	CAA Gln															1746
	ATG Met															1794
	AGA Arg															1842
	GGA Gly															1890
	ATA Ile 600															1938
	CCT Pro															1986
	ATT Ile						-		_					_		2034
	GAA Glu															2082
	CCG Pro															2130

GGC Gly	CAA Gln 680	ATG Met	TTT Phe	GAG Glu	ACA Thr	ACA Thr 685	ATG Met	AGG Arg	GGG Gly	GCG Ala	AAG Lys 690	AGA Arg	ATG Met	GCC Ala	ATT Ile	2178
										TTG Leu 705						2226
										GGA Gly						2274
										ATC Ile						2322
										ACC Thr						2370
										TTG Leu						2418
										AAC Asn 785						2466
										CAC His						2514
TAC Tyr	AAG Lys	TTC Phe	CAA Gln 810	CCA Pro	GAA Glu	TCC Ser	CCT Pro	TCA Ser 815	AAA Lys	CTA Leu	GCT Ala	TCA Ser	GCT Ala 820	ATC Ile	CAG Gln	2562
AAA Lys	GCC Ala	CAT His 825	GAA Glu	GAG Glu	GAC Asp	ATT Ile	TGT Cys 830	GGA Gly	ATC Ile	CGC Arg	TCA Ser	GTA Val 835	ACA Thr	AGA Arg	CTG Leu	2610
GAG Glu	AAT Asn 840	CTG Leu	ATG Met	TGG Trp	AAA Lys	CAA Gln 845	ATA Ile	ACA Thr	CCA Pro	GAA Glu	TTG Leu 850	AAT Asn	CAC His	ATT Ile	CTA Leu	2658
										ACA Thr 865						2706
ATC Ile	ATG Met	CAG Gln	GCA Ala	GGA Gly 875	AAA Lys	CGA Arg	TCT Ser	CTG Leu	CGG Arg 880	CCT Pro	CAG Gln	CCC Pro	ACT Thr	GAG Glu 885	CTG Leu	2754
AAG Lys	TAT Tyr	TCA Ser	TGG Trp 890	AAA Lys	ACA Thr	TGG Trp	GGC Gly	AAA Lys 895	GCA Ala	AAA Lys	ATG Met	CTC Leu	TCT Ser 900	ACA Thr	GAG Glu	2802
TCT Ser	CAT His	NAC Xaa	CAG Gln	ACC Thr	TTT Phe	CTC Leu	ATT Ile	GAT Asp	GGC Gly	CCC Pro	GAA Glu	ACA Thr	GCA Ala	GAA Glu	TGC Cys	2850
		905					910					915				

CCC Pro	AAC Asn 920	ACA Thr	AAT Asn	AGA Arg	GCT Ala	TGG Trp 925	TAA Asn	TCG Ser	TTG Leu	GAA Glu	GTT Val 930	GAA Glu	GAC Asp	TAT Tyr	GGC Gly	2898
TTT Phe 935	GGA Gly	GTA Val	TTC Phe	ACC Thr	ACC Thr 940	AAT Asn	ATA Ile	TGG Trp	CTA Leu	AAA Lys 945	TTG Leu	AAA Lys	GAA Glu	AAA Lys	CAG Gln 950	2946
GAT Asp	GTA Val	TTC Phe	TGC Cys	GAC Asp 955	TCA Ser	AAA Lys	CTC Leu	ATG Met	TCA Ser 960	GCG Ala	GCC Ala	ATA Ile	AAA Lys	GAC Asp 965	AAC Asn	2994
										ATA Ile						3042
										ATT Ile						3090
His					His					AAT Asn						3138
				Pro					Gly	CCA Pro 025				His		3186
TAT Tyr	AGA Arg	CCA Pro	Gly	TAC Tyr 1035	CAT His	ACA Thr	CAA Gln	Ile	ACA Thr 040	GGA Gly	CCA Pro	TGG Trp	His	CTA Leu 045	GGT Gly	3234
AAG Lys	CTT Leu	Glu	ATG Met 050	GAC Asp	TTT Phe	GAT Asp	Phe	TGT Cys 055	GAT Asp	GGA Gly	ACA Thr	Thr	GTG Val 1060	GTA Val	GTG Val	3282
ACT Thr	Glu	GAC Asp 065	TGC Cys	GGA Gly	AAT Asn	Arg	GGA Gly 070	CCC Pro	TCT Ser	TTG Leu	Arg	ACA Thr 075	ACC Thr	ACT Thr	GCC Ala	3330
Ser	GGA Gly 080	AAA Lys	CTC Leu	ATA Ile	Thr	GAA Glu 085	TGG Trp	TGC Cys	TGC Cys	CGA Arg 1	TCT Ser 090	TGC Cys	ACA Thr	TTA Leu	CCA Pro	3378
CCG Pro 1095	CTA Leu	AGA Arg	TAC Tyr	Arg	GGT Gly 100	GAG Glu	GAT Asp	GGG Gly	Cys	TGG Trp 105	ŢAC Tyr	GGG Gly	ATG Met	Glu	ATC Ile 110	3426
AGA Arg	CCA Pro	TTG Leu	Lys	GAG Glu 115	AAA Lys	GAA Glu	GAG Glu	Asn	TTG Leu 120	GTC Val	AAC Asn	TCC Ser	Leu	GTC Val 125	ACA Thr	3474
GCT Ala	GGA Gly	His	GGG Gly 130	CAG Gln	GTC Val	GAC Asp	Asn	TTT Phe 135	TCA Ser	CTA Leu	GGA Gly	Val	TTG Leu 140	GGA Gly	ATG Met	3522
GCA Ala	Leu	TTC Phe 145	CTG Leu	GAG Glu	GAA Glu	Met	CTT Leu 150	AGG Arg	ACC Thr	CGA Arg	Val	GGA Gly 155	ACG Thr	AAA Lys	CAT	3570

GCA ATA CTA CTA GTT GCA GTT TCT TTT GTG ACA TTG ATC ACA GGG AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	AC 3618 sn
ATG TCC TTT AGA GAC CTG GGA AGA GTG ATG GTT ATG GTA GGC GCC AG Met Ser Phe Arg Asp Leu Gly Arg Val Met Val Met Val Gly Ala Tl 1175 1180 1185 119	hr
ATG ACG GAT GAC ATA GGT ATG GGC GTG ACT TAT CTT GCC CTA CTA GGMet Thr Asp Asp Ile Gly Met Gly Val Thr Tyr Leu Ala Leu Leu Al 1195 1200 1205	CA 3714 la
GCC TTC AAA GTC AGA CCA ACT TTT GCA GCT GGA CTA CTC TTG AGA AA A	
CTG ACC TCC AAG GAA TTG ATG ATG ACT ACT ATA GGA ATT GTA CTC CT Leu Thr Ser Lys Glu Leu Met Met Thr Thr Ile Gly Ile Val Leu Le 1225 1230 1235	rc 3810 eu
TCC CAG AGC ACC ATA CCA GAG ACC ATT CTT GAG TTG ACT GAT GCG TT. Ser Gln Ser Thr Ile Pro Glu Thr Ile Leu Glu Leu Thr Asp Ala Le 1240 1245 1250	
GCC TTA GGC ATG ATG GTC CTC AAA ATG GTG AGA AAT ATG GAA AAG TA Ala Leu Gly Met Met Val Leu Lys Met Val Arg Asn Met Glu Lys To 1255 1260 1265 126	γŗ
CAA TTG GCA GTG ACT ATC ATG GCT ATC TTG TGC GTC CCA AAC GCA GTG GIn Leu Ala Val Thr Ile Met Ala Ile Leu Cys Val Pro Asn Ala Val 1275 1280 1285	
ATA TTA CAA AAC GCA TGG AAA GTG AGT TGC ACA ATA TTG GCA GTG GT Ile Leu Gln Asn Ala Trp Lys Val Ser Cys Thr Ile Leu Ala Val Va 1290 1295 1300	rg 4002 al
TCC GTT TCC CCA CTG TTC TTA ACA TCC TCA CAG CAA AAA ACA GAT TC Ser Val Ser Pro Leu Phe Leu Thr Ser Ser Gln Gln Lys Thr Asp Ti 1305 1310 1315	
ATA CCA TTA GCA TTG ACG ATC AAA GGT CTC AAT CCA ACA GCT ATT TILE Pro Leu Ala Leu Thr Ile Lys Gly Leu Asn Pro Thr Ala Ile Pro 1320 1325 1330	TT 4098 ne
CTA ACA ACC CTC TCA AGA ACC AGC AAG AAA AGG AGC TGG CCA TTA AA Leu Thr Thr Leu Ser Arg Thr Ser Lys Lys Arg Ser Trp Pro Leu As 1335 1340 1345 135	sn
GAG GCT ATC ATG GCA GTC GGG ATG GTG AGC ATT TTA GCC AGT TCT CT Glu Ala Ile Met Ala Val Gly Met Val Ser Ile Leu Ala Ser Ser Le 1355 1360 1365	rc 4194 eu
CTA AAA AAT GAT ATT CCC ATG ACA GGA CCA TTA GTG GCT GGA GGG CT Leu Lys Asn Asp Ile Pro Met Thr Gly Pro Leu Val Ala Gly Gly Le 1370 1375 1380	rC 4242 eu
CTC ACT GTG TGC TAC GTG CTC ACT GGA CGA TCG GCC GAT TTG GAA CT Leu Thr Val Cys Tyr Val Leu Thr Gly Arg Ser Ala Asp Leu Glu Le 1385 1390 1395	rg 4290 eu

Glu	AGA Arg 1400				Val	Lys 1405				Gln						4338
				Leu		ATA Ile			Ser					Met		4386
			Glu			GAA Glu		Thr					Ile			4434
		Leu				GGA Gly	Leu					Ile				4482
	Ala					TGG Trp					Gln					4530
Leu					Ser	CCC Pro 1485				Gly						4578
				Arg		AAG Lys			Gly					Ser		4626
			Gly			AAA Lys		Gly					Met			4674
		Arg				CTA Leu	Met					Arg				4722
	Trp					AAA Lys					Tyr					4770
Lys					Trp	AAG Lys 565				Glu						4818
				Lys		CCA Pro			Val					Gly		4866
	_		Asn			ACA Thr		Gly			_	_	Asp		_	4914
CCT Pro	GGA Gly	Thr	TCA Ser 610	GGA Gly	TCT Ser	CCA Pro	Ile	ATC Ile 615	GAC Asp	AAA Lys	AAA Lys	Gly	AAA Lys 620	GTT Val	GTG Val	4962
GGT Gly	Leu	TAT Tyr 625	GGT Gly	AAT Asn	GGT Gly	GTT Val 1	GTT Val 630	ACA Thr	AGG Arg	AGT Ser	Gly	GCA Ala 635	TAT Tyr	GTG Val	AGT Ser	5010

Ala					Glu					Asp	AAC Asn 1650				GAA Glu	5058
				Arg					Thr		ATG Met			His		5106
			Lys					Leu			ATA Ile		Arg			5154
		Arg					Leu				CCC Pro	Thr				5202
	Ala					Ala					CCA Pro					5250
Thr					Ala					Arg	GAG Glu 730					5298
				Thr					Leu		TCA Ser			Arg		5346
			Asn					Asp			CAT His		Thr			5394
		Ile					Tyr				CGA Arg	Val				5442
GAG Glu	Ala	GCT Ala 1785	GGG Gly	ATT Ile	TTT Phe	Met	ACA Thr 790	GCC Ala	ACT Thr	CCC	CCG Pro 1	GGA Gly 795	AGC Ser	AGA Arg	GAC Asp	5490
Pro					Asn					Asp	GAA Glu 810					5538
				Trp					Glu		GTC Val			Phe		5586
GGG Gly	AAG Lys	ACT Thr	Val	TGG Trp 835	TTC Phe	GTT Val	CCA Pro	Ser	ATA Ile 840	AAA Lys	GCA Ala	GGA Gly	Asn	GAT Asp 845	ATA Ile	5634
GCA Ala	GCT Ala	Cys	CTG Leu 850	AGG Arg	AAA Lys	AAT Asn	Gly	AAG Lys 855	AAA Lys	GTG Val	ATA Ile	Gln	CTC Leu 860	AGT Ser	AGG Arg	5682
AAG Lys	Thr	TTT Phe 1865	GAT Asp	TCT Ser	GAG Glu	Tyr	GTC Val 870	AAG Lys	ACT Thr	AGA Arg	ACC Thr 1	AAT Asn 875	GAT Asp	TGG Trp	GAC Asp	5730

TTC GTG GTT ACA ACT GAC ATT TCA GAA ATG GGT GCC AAT TTC AAG GCT Phe Val Val Thr Thr Asp Ile Ser Glu Met Gly Ala Asn Phe Lys Ala 1880 1885 1890	5778
GAG AGG GTT ATA GAC CCC AGA CGC TGC ATG AAA CCA GTC ATA CTA ACA Glu Arg Val Ile Asp Pro Arg Arg Cys Met Lys Pro Val Ile Leu Thr 1895 1900 1905 1910	5826
GAT GGT GAA GAG CGG GTG ATT CTG GCA GGA CCT ATG CCA GTG ACC CAC Asp Gly Glu Glu Arg Val Ile Leu Ala Gly Pro Met Pro Val Thr His 1915 1920 1925	5874
TCT AGT GCA GCA CAA AGA AGA GGG AGA ATA GGA AGA AAT CCA AAA AAT Ser Ser Ala Ala Gln Arg Arg Gly Arg Ile Gly Arg Asn Pro Lys Asn 1930 1935 1940	5922
GAG AAT GAC CAG TAC ATA TAC ATG GGG GAA CCT CTG GAA AAT GAT GAA Glu Asn Asp Gln Tyr Ile Tyr Met Gly Glu Pro Leu Glu Asn Asp Glu 1945 1950 1955	5970
GAC TGT GCA CAC TGG AAA GAA GCT AAA ATG CTC CTA GAT AAC ATC AAC Asp Cys Ala His Trp Lys Glu Ala Lys Met Leu Leu Asp Asn Ile Asn 1960 1965 1970	6018
ACG CCA GAA GGA ATC ATT CCT AGC ATG TTC GAA CCA GAG CGT GAA AAG Thr Pro Glu Gly Ile Ile Pro Ser Met Phe Glu Pro Glu Arg Glu Lys 1975 1980 1985 1990	6066
GTG GAT GCC ATT GAT GGC GAA TAC CGC TTG AGA GGA GAA GCA AGG AAA Val Asp Ala Ile Asp Gly Glu Tyr Arg Leu Arg Gly Glu Ala Arg Lys 1995 2000 2005	6114
ACC TTT GTA GAC TTA ATG AGA AGA GGA GAC CTA CCA GTC TGG TTG GCC Thr Phe Val Asp Leu Met Arg Arg Gly Asp Leu Pro Val Trp Leu Ala 2010 2015 2020	6162
TAC AGA GTG GCA GCT GAA GGC ATC AAC TAC GCA GAC AGA AGG TGG TGT Tyr Arg Val Ala Ala Glu Gly Ile Asn Tyr Ala Asp Arg Arg Trp Cys 2025 2030 2035	6210
TTT GAT GGA GTC AAG AAC AAC CAA ATC CTA GAA GAA AAC GTG GAA GTT Phe Asp Gly Val Lys Asn Asn Gln Ile Leu Glu Glu Asn Val Glu Val 2040 2045 2050	6258
GAA ATC TGG ACA AAA GAA GGG GAA AGG AAG AAA TTG AAA CCC AGA TGG Glu Ile Trp Thr Lys Glu Gly Glu Arg Lys Lys Leu Lys Pro Arg Trp 2055 2060 2065 2070	6306
TTG GAT GCT AGG ATC TAT TCT GAC CCA CTG GCG CTA AAA GAA TTT AAG Leu Asp Ala Arg Ile Tyr Ser Asp Pro Leu Ala Leu Lys Glu Phe Lys 2075 2080 2085	6354
GAA TTT GCA GCC GGA AGA AAG TCT CTG ACC CTG AAC CTA ATC ACA GAA Glu Phe Ala Ala Gly Arg Lys Ser Leu Thr Leu Asn Leu Ile Thr Glu 2090 2095 2100	6402
ATG GGT AGG CTC CCA ACC TTC ATG ACT CAG AAG GCA AGA GAC GCA CTG Met Gly Arg Leu Pro Thr Phe Met Thr Gln Lys Ala Arg Asp Ala Leu 2105 2110 2115	6450

GAC Asp	AAC Asn 2120	Leu	GCA Ala	GTG Val	Leu	CAC His 2125	ACG Thr	GCT Ala	GAG Glu	Ala	GGT Gly 2130	GGA Gly	AGG Arg	GCG Ala	TAC Tyr	6498
AAC Asn 2135	CAT His	GCT Ala	CTC Leu	Ser	GAA Glu 2140	CTG Leu	CCG Pro	GAG Glu	Thr	CTG Leu 2145	GAG Glu	ACA Thr	TTG Leu	Leu	TTA Leu 2150	6546
CTG Leu	ACA Thr	CTT Leu	Leu	GCT Ala 2155	ACA Thr	GTC Val	ACG Thr	Gly	GGG Gly 2160	ATC Ile	TTT Phe	TTA Leu	Phe	TTG Leu 2165	ATG Met	6594
AGC Ser	GCA Ala	Arg	GGC Gly 2170	ATA Ile	GGG Gly	AAG Lys	Met	ACC Thr 2175	CTG Leu	GGA Gly	ATG Met	Cys	TGC Cys 2180	ATA Ile	ATC Ile	6642
ACG Thr	GCT Ala	AGC Ser 2185	ATC Ile	CTC Leu	CTA Leu	Trp	TAC Tyr 2190	GCA Ala	CAA Gln	ATA Ile	Gln	CCA Pro 2195	CAC His	TGG Trp	ATA Ile	6690
Ala	GCT Ala 2200	TCA Ser	ATA Ile	ATA Ile	Leu	GAG Glu 2205	TTT Phe	TTT Phe	CTC Leu	Ile	GTT Val 2210	TTG Leu	CTT Leu	ATT Ile	CCA Pro	6738
GAA Glu 2215	CCT Pro	GAA Glu	AAA Lys	Gln	AGA Arg 2220	ACA Thr	CCC Pro	CAA Gln	Asp	AAC Asn 2225	CAA Gln	CTG Leu	ACC Thr	Tyr	GTT Val 2230	6786
GTC Val	ATA Ile	GCC Ala	Ile	CTC Leu 2235	ACA Thr	GTG Val	GTG Val	Ala	GCA Ala 2240	ACC Thr	ATG Met	GCA Ala	Asn	GAG Glu 2245	ATG Met	6834
GGT Gly	TTC Phe	Leu	GAA Glu 250	AAA Lys	ACG Thr	AAG Lys	Lys	GAT Asp 255	CTC Leu	GGA Gly	TTG Leu	Gly	AGC Ser 2260	ATT Ile	GCA Ala	6882
ACC Thr	CAG Gln	CAA Gln 265	CCC Pro	GAG Glu	AGC Ser	Asn	ATC Ile 270	CTG Leu	GAC Asp	ATA Ile	Asp	CTA Leu 275	CGT Arg	CCT Pro	GCA Ala	6930
Ser	GCA Ala 2280	TGG Trp	ACG Thr	CTG Leu	Tyr	GCC Ala 285	GTG Val	GCC Ala	ACA Thr	Thr	TTT Phe 290	GTT Val	ACA Thr	CCA Pro	ATG Met	6978
TTG Leu 2295	AGA Arg	CAT His	AGC Ser	Ile	GAA Glu 2300	AAT Aşn	TCC Ser	TCA Ser	Val	AAT Asn 2305	GTG Val	TCC Ser	CTA Leu	Thr	GCT Ala 310	7026
ATA Ile	GCC Ala	AAC Asn	Gln	GCC Ala 315	ACA Thr	GTG Val	TTA Leu	Met	GGT Gly 320	CTC Leu	GGG Gly	AAA Lys	Gly_	TGG Trp 2325	CCA Pro	7074
TTG Leu	TCA Ser	Lys	ATG Met 330	GAC Asp	ATC Ile	GGA Gly	Val	CCC Pro	CTT Leu	CTC Leu	GCC Ala	Ile	GGA Gly 340	TGC Cys	TAC Tyr	7122
TCA Ser	CAA Gln 2	GTC Val 345	AAC Asn	CCC Pro	ATA Ile	Thr	CTC Leu 350	ACA Thr	GCA Ala	GCT Ala	Leu	TTC Phe 355	TTA Leu	TTG Leu	GTA Val	7170

GCA Ala	CAT His 2360	Tyr	GCC Ala	ATC Ile	Ile	GGG Gly 2365	CCA Pro	GGA Gly	CTC Leu	Gln	GCA Ala 2370	Lys	GCA Ala	ACC Thr	AGA Arg	7218
GAA Glu 2375	Ala	CAG Gln	AAA Lys	Arg	GCA Ala 2380	GCG Ala	GCG Ala	GGC Gly	Ile	ATG Met 2385	AAA Lys	AAC Asn	CCA Pro	ACT	GTC Val 2390	7266
GAT Asp	GGA Gly	ATA	Thr	GTG Val 2395	ATT Ile	GAC Asp	CTA Leu	Asp	CCA Pro 2400	ATA Ile	CCT Pro	TAT Tyr	Asp	CCA Pro 2405	AAG Lys	7314
TTT	GAA Glu	Lys	CAG Gln 2410	TTG Leu	GGA Gly	CAA Gln	Val	ATG Met 2415	CTC Leu	CTA Leu	GTC Val	Leu	TGC Cys 2420	GTG Val	ACT Thr	7362
CAA Gln	Val	TTG Leu 2425	ATG Met	ATG Met	AGG Arg	Thr	ACA Thr 2430	TGG Trp	GCT Ala	CTG Leu	Cys	GAG Glu 2435	GCT Ala	TTA Leu	ACC Thr	7410
Leu	GCT Ala 2440	ACC Thr	GGG Gly	CCC Pro	Ile	TÇC Ser 2445	ACA Thr	TTG Leu	TGG Trp	Glu	GGA Gly 2450	AAT Asn	CCA Pro	GGG Gly	AGG Arg	7458
TTT Phe 2455	TGG Trp	AAC Asn	ACT Thr	Thr	ATT Ile 2460	GCG Ala	GTG Val	TCA Ser	Met	GCT Ala 2465	AAC Asn	ATT Ile	TTT Phe	AGA Arg	GGG Gly 2470	7506
AGT Ser	TAC Tyr	TTG Leu	Ala	GGA Gly 2475	GCT Ala	GGA Gly	CTT Leu	Leu	TTT Phe 2480	TCT Ser	ATT Ile	ATG Met	Lys	AAC Asn 2485	ACA Thr	7554
		Thr					Gly					Thr		GGA Gly		7602
	Trp					Asn					Ser			CAG Gln		7650
Tyr	AAG Lys 2520	AAA Lys	AGT Ser	GGA Gly	Ile	CAG Gln 2525	GAA Glu	GTG Val	GAT Asp	Arg	ACC Thr 2530	TTA Leu	GCA Ala	AAA Lys	GAA Glu	7698
				Gly					His					GGC Gly 2		7746
GCA Ala	AAA Lys	CTG Leu	Arg	TGG Trp 555	TTC Phe	GTT Val	GAG Glu	Arg	AAC Asn 560	ATG Met	GTC · Val	ACA Thr	Pro	GAA Glu 2565	GGG Gly	7794
AAA Lys	GTA Val	Val_	GAC Asp 570	CTC Leu	GGT Gly	TGT Cys	Gly_	AGA Arg 575	GGA Gly	GGC Gly	TGG Trp	Ser	TAC Tyr 580	TAT Tyr	TGT Cys	7842
	Gly					Arg_					Leu			GGA Gly		7890

CCA GG Pro G1 260	y His	GAA GAA Glu Glu	CCC AT Pro Il 260	e Pro M	TG TCA et Ser	ACA TAT Thr Tyr 2610	GGG TGG Gly Trp	AAT Asn	CTA 7938 Leu
GTG CG Val Ar 2615	T CTT g Leu	Gln Ser	GGA GT Gly Va 2620	r GAC G' l Asp Va	al Phe	TTC ATC Phe Ile 2625	CCG CCA Pro Pro	Glu	AAG 7986 Lys 630
TGT GA Cys As	C ACA p Thr	TTA TTG Leu Leu 2635	Cys As	C ATA GO p Ile G	GG GAG ly Glu 2640	TCA TCA Ser Ser	Pro Asn	CCC Pro 2645	ACA 8034 Thr
GTG GA Val Gl	ı Ala	GGA CGA Gly Arg 650	ACA CT	C AGA G Arg Va 265	al Leu	AAC TTA Asn Leu	GTA GAA Val Glu 2660	AAT Asn	TGG 8082 Trp
TTG AA Leu As:	AAC . ASn . 2665	AAC ACT Asn Thr	CAA TT Gln Ph	TTGC AT Cys II 2670	TA AAG le Lys	GTT CTC Val Leu	AAC CCA Asn Pro 2675	TAT A	ATG 8130 Met
CCC TC. Pro Se: 268	r Val :	ATA GAA Ile Glu	AAA AT Lys Me 268	Glu Al	CA CTA la Leu	CAA AGG Gln Arg 2690	AAA TAT Lys Tyr	GGA (GGA 8178 Gly
GCC TTA Ala Let 2695	A GTG	Arg Asn	CCA CTO Pro Les 2700	C TCA CO	g Asn	TCC ACA Ser Thr 2705	CAT GAG His Glu	Met !	FAC 8226 Fyr 710
TGG GTA	A TCC	AAT GCT Asn Ala 2715	TCC GGG Ser Gly	AAC AT	TA GTG le Val 2720	TCA TCA Ser Ser	Val Asn	ATG 2 Met 3 2725	ATT 8274 Ele
TCA AGG Ser Arg	Met 1	TTG ATC Leu Ile 730	AAC AGA	TTT AC Phe Th 273	r Met	AGA TAC Arg Tyr	AAG AAA Lys Lys 2740	GCC A	ACT 8322 Thr
TAC GAG	CCG (2) Pro 1 2745	GAT GTT Asp Val	GAC CTO Asp Let	GGA AG Gly Se 2750	GC GGA er Gly	ACC CGT Thr Arg	AAC ATC Asn Ile 2755	GGG 1	ATT 8370 Lle
GAA AG: Glu Sei 2760	Glu :	ATA CCA Ile Pro	AAC CTA Asn Let 276	Asp Il	A ATT e Ile	GGG AAA Gly Lys 2770	AGA ATA Arg Ile	GAA A Glu I	AAA 8418 Lys
		Glu His			p His	TAT GAC Tyr Asp 785		His E	
TAC AAA Tyr Lys	ACG T	rgg gca rrp Ala 2795	TAC CAT	GGT AG Gly Se	C TAT Tyr 2800	GAA ACA Glu Thr	Lys Gln	ACT C Thr C	GGA 8514 Sly
TCA GCA Ser Ala	Ser S	rcc ATG Ser Met 310	GTC AAC Val Asr	GGA GT Gly Va 281	l Val	AGG CTG Arg Leu	CTG ACA Leu Thr 2820	AAA (CT 8562 Pro
TGG GAO	C GTT (Val V 2825	GTC CCC Val Pro	ATG GTG Met Val	ACA CA Thr Gl 2830	G ATG n Met	GCA ATG Ala Met 2	ACA GAC Thr Asp 835	ACG A	CT 8610 hr

Pro F	Professional Control of Control o	A CAA y Gln	CAG Gln	Arg	GTT Val 2845	TTT Phe	AAA Lys	GAG Glu	AAA Lys	GTG Val 2850	Asp	ACG Thr	AGA	ACC Thr	8658
CAA G Gln G 2855	SAA CCG Slu Pro	AAA Lys	Glu	GGC Gly 2860	ACG Thr	AAG Lys	AAA Lys	Leu	ATG Met 2865	Lys	ATA Ile	ACA Thr	Ala	GAG Glu 2870	8706
TGG C	TT TG(eu Tr	Lys	GAA Glu 2875	TTA Leu	GGG Gly	AAG Lys	Lys	AAG Lys 2880	Thr	CCC	AGG Arg	Met	TGC Cys 2885	ACC Thr	8754
AGA G Arg G	AA GAA lu Glu	TTC Phe 2890	ACA Thr	AGA Arg	AAG Lys	Val	AGA Arg 2895	AGC Ser	AAT Asn	GCA Ala	Ala	TTG Leu 2900	GGG Gly	GCC Ala	8802
ATA T Ile P	TC ACT he Thr 2905	Asp	GAG Glu	AAC Asn	Lys	TGG Trp 2910	AAG Lys	TCG Ser	GCA Ala	Arg	GAG Glu 2915	GCT Ala	GTT Val	GAA Glu	8850
GAT A Asp S 29	GT AGG er Arg 20	TTT Phe	TGG Trp	Glu	CTG Leu 925	GTT Val	GAC Asp	AAG Lys	Glu	AGG Arg 2930	AAT Asn	CTC Leu	CAT His	CTT Leu	8898
GAA G Glu G 2935	GA AAG ly Lys	TGT Cys	Glu	ACA Thr 940	TGT Cys	GTG Val	TAC Tyr	Asn	ATG Met 2945	ATG Met	GGA Gly	AAA Lys	Arg	GAG Glu 2950	8946
AAG A	AG CTA ys Leu	Gly	GAA Glu 955	TTC Phe	GGC Gly	AAG Lys	Ala	AAA Lys 2960	GGC Gly	AGC Ser	AGA Arg	Ala	ATA Ile 965	TGG Trp	8994
TAC AT	TG TGG et Trp	CTT Leu 2970	GGA Gly	GCA Ala	CGC Arg	Phe	TTA Leu 975	GAG Glu	TTT Phe	GAA Glu	Ala	CTA Leu 1980	GGA Gly	TTC Phe	9042
TTA A	AT GAA sn Glu 2985	GAT Asp	CAC His	TGG Trp	Phe	TCC Ser 990	AGA Arg	GAG Glu	AAC Asn	Ser	CTG Leu 1995	AGT Ser	GGA Gly	GTG Val	9090
GAA GO Glu Gl 300	GA GAA ly Glu 00	GGG Gly	CTG (Leu	His :	AAG Lys 005	CTA Leu	GGT Gly	TAC Tyr	Ile	CTA Leu 1010	AGA Arg	GAC Asp	GTG Val	AGC Ser	9138
AAG AA Lys Ly 3015	AA GAG ys Glu	GGA Gly	Gly_	GCA A Ala 1 020	ATG '	TAT :	GCC Ala	Asp_	GAC Asp 025	ACC Thr	GCA Ala	GGA Gly	Trp	GAT Asp 030	9186
ACA AC	GA ATC	Thr	CTA (Leu (035	GAA (Glu	GAC 1	KKA /	Lys_	AAT Asn 040	GAA Glu	GAA Glu	ATG Met	Val	ACA Thr 045	AAC Asn	9234
CAC AT His Me	et Glu	GGA Gly 3050	GAA (Glu !	CAC A	AAG A Lys 1	Lys	CTA Leu 055	GCC Ala	GAG Glu	GCC Ala	Ile ː	TTC Phe 060	AAA Lys :	CTA Leu	9282
ACG TA Thr Ty	AC CAA r Gln 3065	AAC Asn	AAG (Lys \	GTG (Val V	/al /	CGT (Arg 1	GTG (Val	CAA Gln	AGA Arg	Pro	ACA (Thr :	CCA . Pro .	AGA (GGC Gly	9330

ACA GTA ATG GAC ATC ATA TCG AGA AGA GAC CAA AGA GGT AGT GGA CAA Thr Val Met Asp Ile Ile Ser Arg Arg Asp Gln Arg Gly Ser Gly Gln 3080 3085 3090	9378
GTT GGC ACC TAT GGA CTC AAT ACT TTC ACC AAT ATG GAA GCC CAA CTA Val Gly Thr Tyr Gly Leu Asn Thr Phe Thr Asn Met Glu Ala Gln Leu 3095 3100 3105 3110	9426
ATC AGA CAG ATG GAG GGA GAA GGA GTC TTT AAA AGC ATT CAG CAC CTA Ile Arg Gln Met Glu Gly Glu Gly Val Phe Lys Ser Ile Gln His Leu 3115 3120 3125	9474
ACA ATC ACA GAA GAA ATC GCT GTG CAA AAC TGG TTA GCA AGA GTG GGG Thr lle Thr Glu Glu lle Ala Val Gln Asn Trp Leu Ala Arg Val Gly 3130 3135 3140	9522
CGC GAA AGG TTA TCA AGA ATG GCC ATC AGT GGA GAT GAT TGT GTG Arg Glu Arg Leu Ser Arg Met Ala Ile Ser Gly Asp Asp Cys Val Val 3145 3150 3155	9570
AAA CCT TTA GAT GAC AGG TTC GCA AGC GCT TTA ACA GCT CTA AAT GAC Lys Pro Leu Asp Asp Arg Phe Ala Ser Ala Leu Thr Ala Leu Asn Asp 3160 3165 3170	9618
ATG GGA AAG ATT AGG AAA GAC ATA CAA CAA TGG GAA CCT TCA AGA GGA Met Gly Lys Ile Arg Lys Asp Ile Gln Gln Trp Glu Pro Ser Arg Gly 3175 3180 3185 3190	9666
TGG AAT GAT TGG ACA CAA GTG CCC TTC TGT TCA CAC CAT TTC CAT GAG Trp Asn Asp Trp Thr Gln Val Pro Phe Cys Ser His His Phe His Glu 3195 3200 3205	9714
TTA ATC ATG AAA GAC GGT CGC GTA CTC GTT GTT CCA TGT AGA AAC CAA Leu Ile Met Lys Asp Gly Arg Val Leu Val Val Pro Cys Arg Asn Gln 3210 3215 3220	9762
GAT GAA CTG ATT GGC AGA GCC CGA ATC TCC CAA GGA GCA GGG TGG TCT Asp Glu Leu Ile Gly Arg Ala Arg Ile Ser Gln Gly Ala Gly Trp Ser 3225 3230 3235	9810
TTG CGG GAG ACG GCC TGT TTG GGG AAG TCT TAC GCC CAA ATG TGG AGC Leu Arg Glu Thr Ala Cys Leu Gly Lys Ser Tyr Ala Gln Met Trp Ser 3240 3255 3250	9858
TTG ATG TAC TTC CAC AGA CGC GAC CTC AGG CTG GCG GCA AAT GCT ATT Leu Met Tyr Phe His Arg Arg Asp Leu Arg Leu Ala Ala Asn Ala Ile 3255 3260 3265 3270	9906
TGC TCG GCA GTA CCA TCA CAT TGG GTT CCA ACA AGT CGA ACA ACC TGG Cys Ser Ala Val Pro Ser His Trp Val Pro Thr Ser Arg Thr Thr Trp 3275 3280 3285	9954
TCC ATA CAT GCT AAA CAT GAA TGG ATG ACA ACG GAA GAC ATG CTG ACA Ser Ile His Ala Lys His Glu Trp Met Thr Thr Glu Asp Met Leu Thr 3290 3295 3300	10002
GTC TGG AAC AGG GTG TGG ATT CAA GAA AAC CCA TGG ATG GAA GAC AAA Val Trp Asn Arg Val Trp Ile Gln Glu Asn Pro Trp Met Glu Asp Lys 3305 3310 3315	10050

Thr	CCA Pro 3320	GTG Val	GAA Glu	TCA Ser	Trp	GAG Glu 3325	GAA Glu	ATC Ile	CCA Pro	Tyr	TTG Leu 3330	GGG Gly	AAA Lys	AGA Arg	GAA Glu	10098
GAC Asp 3335	CAA Gln	TGG Trp	TGC Cys	Gly	TCA Ser 3340	TTG Leu	ATT Ile	GGG Gly	Leu	ACA Thr 3345	AGC Ser	AGG Arg	GCC Ala	ACC Thr	TGG Trp 3350	10146
GCA Ala	AAG Lys	AAC Asn	Ile	CAA Gln 3355	GCA Ala	GCA Ala	ATA Ile	Asn	CAA Gln 3360	GTT Val	AGA Arg	TCC Ser	Leu	ATA Ile 3365	GGC Gly	10194
AAT Asn	GAA Glu	Glu	TAC Tyr 3370	ACA Thr	GAT Asp	TAC Tyr	Met	CCA Pro 375	TCC Ser	ATG Met	AAA Lys	Arg	TTC Phe 3380	AGA Arg	AGA Arg	10242
GIU	Glu 3	G1u 385	Glu	Ala	Gly	Val	Leu 390	Trp								10297
CTAG	AAGI	CA G	GTCG	GATI	'A AG	CCAT	AGTA	CGG	AAA	AAAC	TATO	CTAC	CT (TGAG	CCCCG	10357
TCCA	AGGA	ICG I	TAAA	AGAA	G TC	AGGC	CATC	: ATA	AATO	CCA	TAGO	TTGA	GT A	AACT	ATGCA	10417
TACC	CARC	CT C	CACC	TGAG	A AG	GTGT	'AAAA	TAA A	CCGC	GAG	GCCA	CAAA	ICC A	ITGGA	AGCTG	10477
AAUC	CATE	100 0	TAGI	GGAU	T AG	CGGT	TAGA	GAG	GACC	CCT	CCCI	TACA	L AA	CGCA	GCAAC	10537
CYCC	ccc	ירכ ע ירכ א	ANGU Koka	A A A A	A TG	ノンススカ	TGTA	GIU	TUGU	TGG	AAGG	ACTA	IGA G	GTTA	GAGGA	
TCCT GGTT	CAGC	AT C	ATTC	CAGG	C AC	AGAA	CGCC	AGA	AAAT	GGA GGA	ATGG	TGCT	GT T	CCTG GAAT	CTGTC	10657 10717 10723
		(2)	TNF	ОВМА	ጥፐርአነ	ברום.	STO	TD	NO · 3	l •				•	•	

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 25 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDENESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO

- (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCCAGTCACG ACGTTGTAAA ACGAC

25

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 27 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE:
- (vi) ORIGINAL SOURCE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGATGTGCTG CAAGGCGATT AAGTTGG	27
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TGAGCGGATA ACAATTTCAC ACAGG	25
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
GGCTTTACAC TTTATGCTTC CGGCTCG	27
(2) INFORMATION FOR SEQ ID NO:7:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GCGGATATTG GAATTCTCTA GAAATTTAAT ACGACTCACT ATAAGTTGTT AGTCTACGTG GACCGACAAA GACAG	60 7 5
(2) INFORMATION FOR SEQ ID NO:8:	

(i) SEQUENCE CHARACTERISTICS:

WO 96/40933

138

PCT/US96/09209

(A) LENGTH: 77 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
CCAGTGAATT CGAGCTCACG CGTAAATTTA ATACGACTCA CTATAAGTTG TTAGTCTTGGACCGACA AAGACAG	FACG 60 77
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
AGTTGTTAGT CTACGTGGAC CGAC	24
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GACAGATTCT TTGAGGGAGC TGAGCTCAAC GTAG	34
(2) INFORMATION FOR SEQ ID NO:11:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA	

(111) HIPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	-
TCAATATGCT GAAACGCGAG AGAAACCG	28
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GGGATTGTTA GGAAACGAAG GAACGC	26
(2) INFORMATION FOR SEQ ID NO:13:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CCACCAACAG CAGGGATACT GAAAAGATGG GG	32
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
TGCAGATCTG CGTCTCCTAT TCAAG	25
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CGTGAACATG TGTACCCTCA TGGCC	25
(2) INFORMATION FOR SEQ ID NO:16:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
TTGCACCAAC AGTCAATGTC TTCAGG	26
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
ACCAGAAGAC ATAGATTGTT GGTGC	25
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:	

WO 96/40933 PCT/US96/09209

(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
GCACCAACAG TCTATGTCTT CTGGC	25
(2) INFORMATION FOR SEQ ID NO:19:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
ATGTTTCCAG GCCCCTTCTG ATGAC	25
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GCAGCAATCC TGGCATACAC CATAG	25
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO	

(iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GGTTGACATA GTCTTAGAAC ATGGAAG	27
(2) INFORMATION FOR SEQ ID NO:22:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
CTTCCATGTT CTAAGACTAT GTCAACC	27
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTCTTAGAAC ATGGAAGTTG TGTGACGACG ATGGC	35
(2) INFORMATION FOR SEQ ID NO:24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
ACAACAGAAT CTCGCTGCCC AACAC	25

(2) INFORMATION FOR SEQ ID NO:25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GCAAACACTC CATGGTAGAC AGAGG	25
(2) INFORMATION FOR SEQ ID NO:26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
CCTCTGTCTA CCATGGAGTG TTTGC	25
(2) INFORMATION FOR SEQ ID NO:27:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CCACATCCAT TTCCCCATCC TCTGTCT	27
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GGAAAGGGAG GCATTGTGAC CTGTGCTATG	30
(2) INFORMATION FOR SEQ ID NO:29:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GGAAATCAAA ATAACACCAC AGAGTTCC	28
(2) INFORMATION FOR SEQ ID NO:30:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
CTGCAGCAAC ACCATCTCAT TGAAGTCGAG GCCC	34
(2) INFORMATION FOR SEQ ID NO:31:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
GACTTCAATG AGATGGTGCT GCTGC	25
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	• ,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	•
GCAGCAGCAC CATCTCATTG AAGTC	25
(2) INFORMATION FOR SEQ ID NO:33:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
AAGCTTGGCT GGTGCACAGG CAATGGTT	28
(2) INFORMATION FOR SEQ ID NO:34:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
TGGTAACGGC AGGTCTAGGA ACCATTG	27
(2) INFORMATION FOR SEQ ID NO:35:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	•
GGACATCTCA AGTGCAGGCT GAG	23
(2) INFORMATION FOR SEQ ID NO:36:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
CTCAGCCTGC ACTTGAGATG TCC	23
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GAAGGAAATA GCAGAAACAC AACATGG	27
(2) INFORMATION FOR SEQ ID NO:38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA	

(iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
CCCTTCATAT TGTACTCTGA TAACTATTGT TCC	33
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CCTCCATTCG GAGACAGCTA CATCATCATA GG	32
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
CCTATGATGA TGTAGCTGTC TCCGAATGGA GG	32
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
ATGGCCATTT TAGGTGACAC AGCCTGGGA	29
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
TGTAAACACT CCTCCCAGGG ATCCAAA	27
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(11) MOLECULE TYPE: CDNA (111) HYPOTHETICAL: NO (111) ANTISENSE: NO (111) FRAGMENT TYPE: (111) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CTCATAGGAG TCATTATCAC ATGGATAGG	29
(2) INFORMATION FOR SEQ ID NO:44:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
GGGGATTCTG GTTGGAACTT ATATTGTTCT GTCC	34
(2) INFORMATION FOR SEQ ID NO:45:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
TGATTCAATT CTGGTGTTAT TTGTTTCCAC	30
(2) INFORMATION FOR SEQ ID NO:46:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
 (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
AAGGAATCAT GCAGGCAGGA AAACG	25
(2) INFORMATION FOR SEQ ID NO:47:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
ACTTCCAGCG AGTTCCAAGC TC	22
(2) INFORMATION FOR SEQ ID NO:48:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	

(iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	48:
AACAGAGCCG TCCATGCCGA TATGG	25
(2) INFORMATION FOR SEQ ID NO:49:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	49:
TCCATTGCTC CAAAGGGTGT GT	22
(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	50:
AGCTTGAGAT GGACTTTGAT TTCTG	25
(2) INFORMATION FOR SEQ ID NO:51:	•
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	٠
GGTCTGATTT CCATCCCGTA CC	22
(2) INFORMATION FOR SEQ ID NO:52:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52: .	
GTCCTTTAGA GACCTGGGAA GAG	23
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
GTTTTCTCAA GAGTAGTCCA GCTGC	25
(2) INFORMATION FOR SEQ ID NO:54:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
ATCAATTGGC AGTGACTATC ATGGC	25
(2) INFORMATION FOR SEQ ID NO:55:	

PCT/US96/09209 WO 96/40933

152

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
TGTTAAGAGC AGTGGAGAAA CGGAC	25
(2) INFORMATION FOR SEQ ID NO:56:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GATTGAGACC TTTGATCGTC AACGC	25
(2) INFORMATION FOR SEQ ID NO:57:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
TGACAGGACC ATTAGTGGCT GGAGG	25
(2) INFORMATION FOR SEQ ID NO:58:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: CDNA

WO 96/40933

(111) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
CGTGCTCACT GGACGATCGG CCGATTTGGA ACTG	4
(2) INFORMATION FOR SEQ ID NO:59:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
GGGCTGCTTC CTGATATTTC TGCC 2	4
(2) INFORMATION FOR SEQ ID NO:60:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
CCTGTGGGAA GTGAAGAAAC AACGG	5
(2) INFORMATION FOR SEQ ID NO:61:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
GCTCCATCTT CCAGTTCAGC CTTTCCCATG	30
(2) INFORMATION FOR SEQ ID NO:62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
CTCCGGCTCC AATCTGAGAG TATCC	25
(2) INFORMATION FOR SEQ ID NO:63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
CCTAATATCA TATGGAGGAG GCTGG	25
(2) INFORMATION FOR SEQ ID NO:64:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	•
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
GAAGGAGAAG AAGTCCAGGT ATTGG	25
(2) INFORMATION FOR SEQ ID NO:65:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
CTGTCGACAA TTGGAGATCC TGACG	25
(2) INFORMATION FOR SEQ ID NO:66:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
GTGGAGCATA TGTGAGTGCT ATAGC	25
(2) INFORMATION FOR SEQ ID NO:67:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
TCTGACTATG GCCGGAAGGT ATCTC	25
(2) INFORMATION FOR SEQ ID NO:68:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

WO 96/40933

(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
ACATTAATCT TGGCCCCCAC TAGAG	25
(2) INFORMATION FOR SEQ ID NO:69:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
CGATCTCCCG CCCGGTGTG	19
(2) INFORMATION FOR SEQ ID NO:70:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
CTAACTGGTG ATAGCAGCCT CATGG	25
(2) INFORMATION FOR SEQ ID NO:71:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

WO 96/40933

PCT/US96/09209

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
CCTACTGAGT TGTATCACTT TCTTTCC	27
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
TGGATTTCTT CCTATTCTCC CTCTTC	26
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	•
TTCAAGGCTG AGAGGGTTAT AGACC	25
(2) INFORMATION FOR SEQ ID NO:74:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
TCTGGTTGGC CTACAGAGTG GCAGC	25
(2) INFORMATION FOR SEQ ID NO:75:	

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		. ,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	•	
CCTTCTTTTG TCCAGATTTC CACTTCC	•	27
(2) INFORMATION FOR SEQ ID NO:76:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:		
GCGTACAACC ATGCTCTCAG TGAACTGCCG GAGAC		35
(2) INFORMATION FOR SEQ ID NO:77:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:		
TTCCCAGGGT CATCTTCCCT ATAC		24
(2) INFORMATION FOR SEQ ID NO:78:		
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: cDNA		

(iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
GATGCTAGCC GTGATTATGC AGCACATTCC C	31
(2) INFORMATION FOR SEQ ID NO:79:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
AAACAGAGAA CACCCCAAGA CAACC	25
(2) INFORMATION FOR SEQ ID NO:80:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
CGGCATACAG CGTCCATGCT G	21
(2) INFORMATION FOR SEQ ID NO:81:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
GTCTCGGGAA AGGATGGCCA TTGTC	25
(2) INFORMATION FOR SEQ ID NO:82:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
CTCTGGTTGC TTTTGCTTGA AGTCC	25
(2) INFORMATION FOR SEQ ID NO:83:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
CCGCCGCTGC TCTTTCTGA GCTTCTC	27
(2) INFORMATION FOR SEQ ID NO:84:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
AGGACTACAT GGGCTCTGTG TGAGG	25
(2) INFORMATION FOR SEQ ID NO:85:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
GAGAAGTCCA GCTCCGGCC	19
(2) INFORMATION FOR SEQ ID NO:86:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
AGAGAAACAT GGTCACACCA GAAGG	25
(2) INFORMATION FOR SEQ ID NO:87:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
GTTCTTCGTG TCCTGGTCCT CC	22
(2) INFORMATION FOR SEQ ID NO:88:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
GGAAATATGG AGGAGCCTAG TGAGG	25
(2) INFORMATION FOR SEQ ID NO:89:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
ACCCAGTACA TCTCATGTGT GG	22
(2) INFORMATION FOR SEQ ID NO:90:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
 (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
GAGCATGAAA CATCATGGCA CTATGACC	28
(2) INFORMATION FOR SEQ ID NO:91:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
TCATGGCACT ATGACCAAGA CCACC	25
(2) INFORMATION FOR SEQ ID NO:92:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
CAGTCTGACC ACTCCGTTCA CC	22
(2) INFORMATION FOR SEQ ID NO:93:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
AAGGTGAGAA GCAATGCAGC CTTGG	25
(2) INFORMATION FOR SEQ ID NO:94:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
GGGCCATATT CACTGATGAG AACAAGTGG	29
(2) INFORMATION FOR SEQ ID NO:95:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH. 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	
TCTTTCCCTG TCAACCAGCT CC	22
(2) INFORMATION FOR SEQ ID NO:96:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:	
AATGAAGATC ACTGGTTCTC CAGAG	25
(2) INFORMATION FOR SEQ ID NO:97:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:	
ACGTGAGCAA GAAAGAGGGA GGAGC	25
(2) INFORMATION FOR SEQ ID NO:98:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO	

WO 96/40933 PCT/US96/09209

(iv) ANTISENSE: NO	
(v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
· ·	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
TGTCCCATCC TGCTGTGTCA TC	22
(2) INFORMATION FOR SEQ ID NO:99:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
GCTAGTTTCT TGTGTTCTCC TTCCATGTGG	30
(2) INFORMATION FOR SEQ ID NO:100:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
TCATATCGAG AAGAGACCAA AGAGG	25
(2) INFORMATION FOR SEQ ID NO:101:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
እ ርጭርርጭጥር ርርጭርር ጥርጥር	24

WO 96/40933

(2) INFORMATION FOR SEQ ID NO:102:	••
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
ATGCTTTTGA AGATTCCTTC TCCCTCC	27
(2) INFORMATION FOR SEQ ID NO:103:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
GCACAGCGAT TTCTTCTGTG ATTGTTAGGT GC	32
(2) INFORMATION FOR SEQ ID NO:104:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
ACAATGGGAA CCTTCAAGAG GATGG	25
(2) INFORMATION FOR SEQ ID NO:105:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
TTATCACATT GGATCCTTCA AGAGGATGGA ATGATTGGAC ACAAG	45
(2) INFORMATION FOR SEQ ID NO:106:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
CAGAAGGGCA CTTGTGTCCA ATCATTCC	28
(2) INFORMATION FOR SEQ ID NO:107:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	
CTCCCTGGGA AATTCGGGCT C	21
(2) INFORMATION FOR SEQ ID NO:108:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:</pre>	

WO 96/40933

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
CCGTCTCCCG CAAAGACCAC CCTGCTCC	28
(2) INFORMATION FOR SEQ ID NO:109:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
TTATCACCTA TCTAGACCGT CTCCCGCAAA GACCACCCTG CTCC	44
(2) INFORMATION FOR SEQ ID NO:110:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
GTTGGAACCC AATGTGATGG TACTGC	26
(2) INFORMATION FOR SEQ ID NO:111:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
ACAAGTCGAA CAACCTGGTC CATAC	25
(2) INFORMATION FOR SEQ ID NO:112:	

PCT/US96/09209

169

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
!	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
((xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
GCATGT(CTTC CGTCGTCATC C	21
	(2) INFORMATION FOR SEQ ID NO:113:	
((i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
((ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
((xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
CTTGAA:	TCCA CACCCTGTTC CAGAC	25
	(2) INFORMATION FOR SEQ ID NO:114:	
ı	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
1	(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
ı	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
ATACAC	AGAT TACATGCCAT CCATG	25
	(2) INFORMATION FOR SEQ ID NO:115:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

WO 96/40933

PCT/US96/09209

(iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
TTTTGCCTTC TACCACAGGA C	21
(2) INFORMATION FOR SEQ ID NO:116:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
GAAACAAGGC TAGAAGTCAG GTCGG	. 25
(2) INFORMATION FOR SEQ ID NO:117:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
GACGGGGCTC ACAGGTAGCA TAG	23
(2) INFORMATION FOR SEQ ID NO:118:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
GCCTGTAGCT CCACCTGAGA AGGTG	25
(2) INFORMATION FOR SEQ ID NO:119:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
GGAAGCTGTA CGCATGGCGT AGTGG	25
(2) INFORMATION FOR SEQ ID NO:120:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
GGGCCCCCGT TGTTGCTGC	19
(2) INFORMATION FOR SEQ ID NO:121:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
AGAACCTGTT GATTCAACAG CACCATTCCA TTTTCTG	37
(2) INFORMATION FOR SEQ ID NO:122:	

WO 96/40933 PCT/US96/09209

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
TTATCACCTA GCATGCTCTA GAAGAACCTG TTGATTCAAC AGCACCATTC CATTTTCTG	59
(2) INFORMATION FOR SEQ ID NO:123:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
TTATCACCTA TCTAGAGAAC CTGTTGATTC AACAGCACCA TTCCATTTTC TG	52
(2) INFORMATION FOR SEQ ID NO:124:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2394 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (ix) FEATURE:</pre>	
(A) NAME/KEY: Coding Sequence (B) LOCATION: 12394 (D) OTHER INFORMATION:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
AGA TTC TCA AAA GGA TTG CTC TCA GGC CAA GGA CCC ATG AAA TTG GTG Arg Phe Ser Lys Gly Leu Leu Ser Gly Gln Gly Pro Met Lys Leu Val 1 5 10 15	48

ATG Met	GCT Ala	TTC Phe	ATA Ile 20	GCA Ala	TTC Phe	TTA Leu	AGA Arg	TTT Phe 25	CTA Leu	GCC Ala	ATA Ile	CCC Pro	CCA Pro 30	ACA Thr	GCA Ala		96
GGA Gly	ATT Ile	TTG Leu 35	GCT Ala	AGA Arg	TGG Trp	GGC Gly	TCA Ser 40	TTC Phe	AAG Lys	AAG Lys	AAT Asn	GGA Gly 45	GCG Ala	ATT Ile	AAA Lys	14	44
GTG Val	TTA Leu 50	CGG Arg	GGT Gly	TTC Phe	AAG Lys	AGA Arg 55	GAA Glu	ATC Ile	TCA Ser	AAC Asn	ATG Met 60	CTA Leu	AAC Asn	ATA Ile	ATG Met	19	92
AAC Asn 65	AGG Arg	AGG Arg	AAA Lys	AGA Arg	TCC Ser 70	GTG Val	ACC Thr	ATG Met	CTC Leu	CTT Leu 75	ATG Met	CTG Leu	CTG Leu	CCC Pro	ACA Thr 80	24	40
					CTG Leu											28	88
GTT Val	AGC Ser	AAG Lys	CAG Gln 100	GAA Glu	AGA Arg	GGA Gly	AAG Lys	TCA Ser 105	CTT Leu	TTG Leu	TTC Phe	AAG Lys	ACC Thr 110	TCT Ser	GCA Ala	33	36
GGT Gly	GTC Val	AAC Asn 115	ATG Met	TGC Cys	ACC Thr	CTC Leu	ATT Ile 120	GCG Ala	ATG Met	GAT Asp	TTG Leu	GGA Gly 125	GAG Glu	TTG Leu	TGT Cys	31	84
GAG Glu	GAC Asp 130	ACG Thr	ATG Met	ACC Thr	TAC Tyr	AAA Lys 135	TGC Cys	CCC Pro	CGG A rg	ATC Ile	ACT Thr 140	GAG Glu	GCG Ala	GAA Glu	CCA Pro	4:	32
GAT Asp 145	GAC Asp	GTT Val	GAC Asp	TGT Cys	TGG Trp 150	TGC Cys	AAT Asn	GCC Ala	ACG Thr	GAC Asp 155	ACA Thr	TGG Trp	GTG Val	ACC Thr	TAT Tyr 160	48	80
GGA Gly	ACG Thr	TGC Cys	TCT Ser	CAA Gln 165	ACT Thr	GGC Gly	GAA Glu	CAC His	CGA Arg 170	CGA Arg	GAC Asp	AAA Lys	CGT Arg	TCC Ser 175	GTC Val	52	28
GCA Ala	TTG Leu	GCC Ala	CCA Pro 180	CAC His	GTG Val	GGG Gly	CTT Leu	GGC Gly 185	CTA Leu	GAA Glu	ACA Thr	AGA Arg	GCC Ala 190	GAA Glu	ACG Thr	5	76
TGG Trp	ATG Met	TCC Ser 195	TCT Ser	GAA Glu	GGT Gly	GCT Ala	TGG Trp 200	AAA Lys	CAG Gln	ATA Ile	CAA Gln	AAA Lys 205	GTA Val	GAG Glu	ACT Thr	6:	24
TGG Trp	GCT Ala 210	CTG Leu	AGA Arg	CAT His	CCA Pro	GGA Gly 215	TTC Phe	ACG Thr	GTG Val	ATA Ile	GCC Ala 220	CTT Leu	TTT Phe	CTA Leu	GCA Ala	6'	72
CAT His 225	GCC Ala	ATA Ile	GGA Gly	ACA Thr	TCC Ser 230	ATC Ile	ACC Thr	CAG Gln	AAA Lys	GGG Gly 235	ATC Ile	ATT Ile	TTC Phe	ATT Ile	TTG Leu 240	7:	20
CTG Leu	ATG Met	CTG Leu	GTA Val	ACA Thr 245	CCA Pro	TCT Ser	ATG Met	GCC Ala	ATG Met 250	CGA	TGC Cys	GTG Val	GGA Gly	ATA Ile 255	GGC Gly	7	68

	AGA Arg														GTG Val	816
	CTG Leu															864
ACA Thr	CTG Leu 290	GAC Asp	ATT	GAA Glu	CTC Leu	TTG Leu 295	AAG Lys	ACG Thr	GAG Glu	GTC Val	ACA Thr 300	AAC Asn	CCT Pro	GCA Ala	GTT Val	912
	CGT Arg															960
	AGA Arg															1008
	AAC Asn															1056
	TGT Cys															1104
	TGT Cys 370															1152
	TAT Tyr															1200
	AAT Asn															1248
	CCT Pro															1296
GAT Asp	TGT Cys	TCA Ser 435	CCT Pro	AGG Arg	ACA Thr	GGG Gly	CTA Leu 440	GAT Asp	TTT Phe	AAC Asn	GAG Glu	ATG Met 445	GTG Val	TTG Leu	CTG Leu	1344
ACA Thr	ATG Met 450	AAA Lys	AAG Lys	AAA Lys	TCA Ser	TGG Trp 455	CTT Leu	GTC Val	CAC His	AAA Lys	CAG Gln 460	TGG Trp	TTT Phe	CTA Leu	GAC Asp	1392
	CCA Pro															1440
	AGA Arg															1488

	GTC GTA CTA Val Val Let 500				la Met 1			1536
	GCG ACA GAN		Thr Se					1584
	CTA AAA TGO Leu Lys Cys			t Asp Ly				1632
	TAT GTG ATC Tyr Val Met 550	Cys Thr						1680
	ACC CAG CAS Thr Gln His 565			u Val G				1728
	GCA CCA TGO Ala Pro Cys 580				hr Gln			1776
	CAG AAT GGG Gln Asn Gly		Ile Th					1824
	AAA CCA GTO Lys Pro Val			a Glu Pr				1872
	GTG GTA GGA Val Val Gly 630	Ala Gly						1920
TTC AAG AAA Phe Lys Lys	GGA AGC AGC Gly Ser Ser 645	TATA GGG	AAA AT Lys Me 65	t Phe G	AA GCA A lu Ala S	ACT GCC Thr Ala 655	CGA Arg	1968
GGA GCA CGA Gly Ala Arg	AGG ATG GCC Arg Met Ala 660	ATT CTG	GGA GA Gly As 665	C ACC GO	la Trp 1	GAC TTC Asp Phe 670	GGT Gly	2016
	GGA GTG TTG Gly Val Phe		Met Gl					2064
TTT GGA ACT Phe Gly Thr 690	GCA TAT GGA Ala Tyr Gly	Val Leu 695	TTT AG Phe Se	r Gly Va	TT TCT : al Ser : 00	TGG ACC	ATG Met	2112
AAA ATA GGA Lys Ile Gly 705	ATA GGG ATT	Leu Leu	ACA TG	G CTA GO TO Leu GI 715	GA TTA A ly Leu A	AAT TCA Asn Ser	AGG Arg 720	2160
AAC ACG TCC Asn Thr Ser	CTT TCG GTG Leu Ser Val 725	ATG TGC Met Cys	ATC GC Ile Al 73	a Val Gl	GC ATG (ly Met \	GTC ACA Val Thr 735	CTG Leu	2208

	CTA Leu								2256
	GGC Gly								2304
	CAC His 770								2352
-	CTA Leu	 	 	 	 	 	 		2394

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2145 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (ix) FEATURE:

- - (A) NAME/KEY: Coding Sequence (B) LOCATION: 1...2145 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

		TTC Phe						48
		 AAG Lys	 	 	 	 	 	96
		CAC His						144
	 	 GAA Glu	 	 	 	 	 	192
		TGC Cys 70						240

															GAG Glu	288
CCT Pro	GAA Glu	GAC Asp	ATT Ile 100	GAC Asp	TGC Cys	TGG Trp	TGC Cys	AAC Asn 105	CTT Leu	ACA Thr	TCG Ser	ACA Thr	TGG Trp 110	Val	ACT Thr	336
TAT Tyr	GGA Gly	ACA Thr 115	TGC Cys	AAT Asn	CAA Gln	GCT Ala	GGA Gly 120	GAG Glu	CAT His	AGA Arg	CGC Arg	GAT Asp 125	AAG Lys	AGA Arg	TCA Ser	384
GTG Val	GCG Ala 130	TTA Leu	GCT Ala	CCC Pro	CAT His	GTT Val 135	GGC Gly	ATG Met	GGA Gly	CTG Leu	GAC Asp 140	ACA Thr	CGC Arg	ACT Thr	CAA Gln	432
ACC Thr 145	TGG Trp	ATG Met	TCG Ser	GCT Ala	GAA Glu 150	GGA Gly	GCT Ala	TGG Trp	AGA Arg	CAA Gln 155	GTC Val	GAG Glu	AAG Lys	GTA Val	GAG Glu 160	480
ACA Thr	TGG Trp	GCC Ala	CTT Leu	AGG Arg 165	CAC His	CCA Pro	GGG Gly	TTT Phe	ACC Thr 170	ATA Ile	CTA Leu	GCC Ala	CTA Leu	TTT Phe 175	CTT Leu	528
GCC Ala	CAT His	TAC Tyr	ATA Ile 180	GGC Gly	ACT Thr	TCC Ser	TTG Leu	ACC Thr 185	CAG Gln	AAA Lys	GTG Val	GTT Val	ATT Ile 190	TTT Phe	ATA Ile	576
CTA Leu	TTA Leu	ATG Met 195	CTG Leu	GTT Val	ACC Thr	CCA Pro	TCC Ser 200	ATG Met	ACA Thr	ATG Met	AGA Arg	TGT Cys 205	GTA Val	GGA Gly	GTA Val	624
GGA Gly	AAC Asn 210	AGA Arg	GAT Asp	TTT Phe	GTG Val	GAA Glu 215	GGC Gly	CTA Leu	TCG Ser	GGA Gly	GCT Ala 220	ACG Thr	TGG Trp	GTT Val	GAC Asp	672
GTG Val 225	GTG Val	CTC Leu	GAG Glu	CAC His	GGT Gly 230	GGG Gly	TGT Cys	GTG Val	ACT Thr	ACC Thr 235	ATG Met	GCT Ala	AAG Lys	AAC Asn	AAG Lys 240	720
Pro CCC	ACG Thr	CTG Leu	GAC Asp	ATA Ile 245	GAG Glu	CTT Leu	CAG Gln	AAG Lys	ACC Thr 250	GAG Glu	GCC Ala	ACC Thr	CAA Gln	CTG Leu 255	GCG Ala	768
ACC Thr	CTA Leu	AGG Arg	AAG Lys 260	CTA Leu	TGC Cys	ATT Ile	GAG Glu	GGA Gly 265	AAA Lys	ATT Ile	ACC Thr	AAC Asn	ATA Ile 270	ACA Thr	ACC Thr	816
			TGT Cys													864
GAC Asp	CAG Gln 290	AAC Asn	TAC Tyr	GTG Val	TGT Cys	AAG Lys 295	CAT His	ACA Thr	TAC Tyr	GTG Val	GAC Asp 300	AGA Arg	GGC Gly	TGG Trp	GGA Gly	912
			GGT Gly													960

TTT	CAA Gln	TGT Cys	TTA Leu	GAA Glu 325	TCA Ser	ATA Ile	GAG Glu	GGA Gly	AAA Lys 330	GTG Val	GTG Val	CAA Gln	CAT His	GAG Glu 335	AAC Asn	1008
CTC Leu	AAA Lys	TAC Tyr	ACC Thr 340	GTC Val	ATC Ile	ATC Ile	ACA Thr	GTG Val 345	CAC His	ACA Thr	GGA Gly	GAC Asp	CAA Gln 350	CAC His	CAG Gln	1056
					CAG Gln											1104
					ATT Ile											1152
					GGT Gly 390											1200
					TGG Trp											1248
CCC Pro	CTA Leu	CCA Pro	TGG Trp 420	ACA Thr	TCA Ser	GGA Gly	GCT Ala	ACA Thr 425	GCA Ala	GAA Glu	ACA Thr	CCA Pro	ACT Thr 430	TGG Trp	AAC Asn	1296
					GTG Val											1344
					GGA Gly											1392
					ATC Ile 470											1440
GGG Gly	CAC His	TTA Leu	AAA Lys	TGT Cys 485	AGA Arg	CTC Leu	AAG Lys	ATG Met	GAC Asp 490	AAA Lys	TTG Leu	GAA Glu	CTC Leu	AAA Lys 495	GGG Gly	1488
ATG Met	AGC Ser	TAT Tyr	GCA Ala 500	ATG Met	TGC Cys	TTG Leu	GGT Gly	AGC Ser 505	TTT Phe	GTG Val	TTG Leu	AAG Lys	AAA Lys 510	GAA Glu	GTC Val	1536
TCC Ser	GAA Glu	ACG Thr 515	CAG Gln	CAT His	GGG Gly	ACA Thr	ATA Ile 520	CTC Leu	ATT Ile	AAG Lys	GTT Val	GAG Glu 525	TAC Tyr	AAA Lys	GGG Gly	1584
AAA Lys	GAT Asp 530	GCA Ala	CCC Pro	TGC Cys	AAG Lys	ATT Ile 535	CCT Pro	TTC Phe	TCC Ser	ACG Thr	GAG Glu 540	GAT Asp	GGA Gly	CAA Gln	GGA Gly	1632
					AGA Arg 550											1680

				GCT Ala				1728
				AAA Lys 585				1776
				ATG Met				1824
Ala				GAC Asp				1872
GTG Val 625				GGG Gly				1920
GGG Gly								1968
ATT Ile								2016
ACT Thr	 	 	 	 	 	 	 	 2064
CTG Leu								2112
GGC Gly 705								2145

(2) INFORMATION FOR SEQ ID NO:126:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2175 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (ix) FEATURE:

- - (A) NAME/KEY: Coding Sequence (B) LOCATION: 1...2175 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

															ATA Ile	•	48
1	200	טונם	****	5	U.J	U	200		10	*****	275	,,,,,	110	15	116		
					AAG Lys										AAC Asn		96
					ACG Thr										GTA Val		144
					TCA Ser												192
					GGG Gly 70												240
					CTC Leu												288
					AAA Lys												336
					TGC Cys												384
ACA Thr	TAC Tyr 130	ACC Thr	CAG Gln	AGC Ser	GGA Gly	GAA Glu 135	CGG Arg	AGA Arg	CGA Arg	GAG Glu	AAG Lys 140	CGC Arg	TCA Ser	GTA Val	GCT Ala		432
					GGA Gly 150												480
					GCT Ala												528
					GGA Gly												576
					GGA Gly											ı	624
					TCC Ser											I	672

AGA GA Arg A 225																720
CTA G			ly													768
TTG GA		he G														816
AGA AG Arg T	hr T	AT TO Yr C	GC ys	ATT Ile	GAA Glu	GCC Ala	TCA Ser 280	ATA Ile	TCA Ser	AAC Asn	ATA Ile	ACC Thr 285	ACG Thr	GCA Ala	ACA Thr	864
AGA TO Arg Cy 29																912
CAG TI Gln Ty 305																960
TGT G(Cys G)			he (1008
TGT TO Cys Se		ly L														1056
TAC AC	hr V															1104
AAT GA Asn As 31	AC AC Sp T) 70	CA TO	cc /	AAT Asn	CAT His	GGA Gly 375	GTT Val	ACA Thr	GCC Ala	ACG Thr	ATA Ile 380	ACT Thr	CCC Pro	AGG Arg	TCA Ser	1152
CCA TO Pro Se 385																1200
TGT GA			rg :													1248
ATG AM	AA A ys L	ys L	AA i ys 1 20	ACA Thr	TGG Trp	CTT Leu	GTG Val	CAT His 425	AAG Lys	CAA Gln	TGG Trp	TTT Phe	TTG Leu 430	GAT Asp	CTA Leu	1296
CCT CT Pro Le	eu P	CA TO TO T: 35	GG /	ACA Thr	GCA Ala	GGA Gly	GCA Ala 440	GAC Asp	ACA Thr	TCA Ser	GAG Glu	GTT Val 445	CAC His	TGG Trp	AAT Asn	1344
TAC ALTYR LY	AA G ys G 50	AG A	GA A	ATG Met	GTG Val	ACA Thr 455	Phe	AAG Lys	GTT Val	CCT Pro	CAT His 460	GCC Ala	AAG Lys	AGA Arg	CAG Gln	1392

											ATG Met				CTC Leu 480		1440
											AAT Asn						1488
GGA Gly	CAT His	CTC Leu	AAG Lys 500	TGC Cys	AAA Lys	GTC Val	CGT	ATG Met 505	GAG Glu	AAA Lys	TTG Leu	AGA Arg	ATC Ile 510	AAG Lys	GGA Gly		1536
											ATT Ile						1584
GCA Ala	GAA Glu 530	ACA Thr	CAG Gln	CAT His	GGG Gly	ACA Thr 535	ACA Thr	GTG Val	GTG Val	AAA Lys	GTC Val 540	AAG Lys	TAT Tyr	GAA Glu	GGT Gly		1632
											AGA Arg						1680
					Arg						CCT Pro						1728
											CCC Pro						1776
											ACA Thr						1824
											TCC Ser 620						1872
											TGG Trp					•	1920
											GTG Val					•	1968
											TCA Ser					2	2016
											ACG Thr					2	2064
											GGA Gly 700					2	2112

(iv) ANTISENSE: NO
(v) FRAGMENT TYPE:
(vi) ORIGINAL SOURCE:

183

CTG GGC TTC ACA GTT CAA GCA GAG ATG GGT TGT GTG GTG TCA TGG AGT Leu Gly Phe Thr Val Gln Ala Glu Met Gly Cys Val Val Ser Trp Ser 705 715 720 2160 GGG AAA GAA TTG AGG 2175 Gly Lys Glu Leu Arg (2) INFORMATION FOR SEQ ID NO:127: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127: CACTACCGCA AGGTAGAGAG CTCGGCATTG CCTCTTGGTG 40 (2) INFORMATION FOR SEQ ID NO:128: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128: 40 GTGATGGCGT TCCATCTCTC GAGCCGTAAC GGAGAACCAC (2) INFORMATION FOR SEQ ID NO:129: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO

(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 129.	
GCCCTGGCGT TCCATCTCTC GAGCCGAGGG GGAGAGCCGC	40
(2) INFORMATION FOR SEQ ID NO:130:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
ACACTTGCTT TCCACCTCTC GAGCCGAGAT GGAGAGCCGC	40
(2) INFORMATION FOR SEQ ID NO:131:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:	
GTAATGGCGT TTCACCTCTC GAGCAGAGAT GGCGAACCCC	40
(2) INFORMATION FOR SEQ ID NO:132:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
CCTATCCTTA CTTAAGATCT TCGTGGAGTG ACAGAC	36

(2) INFORMATION FOR SEQ ID NO:133:	••
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	•
GGATAGGAAT GAATTCTAGA AGCACCTCAC TGTCTG	36
(2) INFORMATION FOR SEQ ID NO:134:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
CCGCAGAGAT CGTTTTCCTG CCTGCATGAT TCC	33
(2) INFORMATION FOR SEQ ID NO:135:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 36 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA (iii) HYPOTHETICAL: NO (iv) ANTISENSE: NO (v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
CCGATCCTAA TTTAAGATCT TTGTGCAGGG AAAGCC	36
(2) INFORMATION FOR SEQ ID NO:136:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE:	
(iii) HYPOTHETICAL:	NO
(iv) ANTISENSE: NO	
() TD 3 C1450 M	

(v) FRAGMENT TYPE: (vi) ORIGINAL SOURCE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

CCTATCCCAA CTTGAGATCT TTATGAAGAT ACAGTA

36

(2) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 36 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO (v) FRAGMENT TYPE:

(vi) ORIGINAL SOURCE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

CCTAACCGTG CTTGAGATCT TTGTGAAGTT ACCGAC

20

WHAT IS CLAIMED IS:

- 1. A quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a DEN-2 PDK-53 infectious clone-derived virus.
- 2. A quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/1 virus.
 - 3. A quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/3 virus.
 - 4. A quadravalent vaccine providing immunity against all four serotypes of dengue virus comprising a chimeric DEN-2/4 virus.
- 5. A quadravalent vaccine providing immunity

 15 against all four serotypes of dengue virus comprising DEN
 2 PDK-53 infectious clone-derived and chimeric DEN-2/1,

 DEN-2/3, and DEN-2/4 viruses.
 - 6. A method of immunization in which a desired immune response is produced against all four serotypes of dengue virus comprising the step of administering to a subject a quadravalent vaccine comprising DEN-2 PDK-53 infectious clone-derived and chimeric DEN-2/1, DEN-2/3, and DEN-2/4 viruses.
- 7. A composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681.
 - 8. A composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus of a

strain characterized as replicating to high titer in cell culture.

- 9. A composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681, having the identifying characteristics of ATCC 69826.
- 10. A composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus, strain 16681, attenuated derivative, PDK-53.
- 11. A composition of matter comprising a full genome-length infectious cDNA clone for a DEN-2 virus attenuated derivative, characterized as replicating to high titer in cell culture.
- 12. A composition of matter comprising a full
 15 genome-length infectious cDNA clone for a DEN-2 virus,
 strain 16681, attenuated derivative, PDK-53, having the
 identifying characteristics of ATCC 69825.
- 13. A composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/1 virus, wherein said virus is characterized as the expressing prM and E genes of a DEN-1 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus.
- 14. The composition of matter of Claim 13, wherein 25 said DEN-1 attenuated virus is DEN-1 PDK-13.
 - 15. A composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2 virus, wherein said virus is characterized as expressing the antigenicity of a DEN-1 attenuated virus.

- 16. A composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/3 virus, wherein said virus is characterized as expressing the prM and E genes of a DEN-3 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus.
- 17. The composition of matter of Claim 16, wherein said DEN-3 attenuated virus is DEN-3 PGMK30/FRhL-3.
- 18. A composition of matter comprising a full
 genome-length infectious cDNA clone of a chimeric DEN-2
 virus, wherein said virus is characterized as expressing
 the antigenicity of a DEN-3 attenuated virus.
- 19. A composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2/4 virus, wherein said virus is characterized as expressing the prM and E genes of a DEN-4 attenuated virus in the context of the nonstructural genes of the DEN-2 PDK-53 virus.
- 20. The composition of matter of Claim 19, wherein 20 said DEN-4 attenuated virus is DEN-4 PDK-48.
 - 21. A composition of matter comprising a full genome-length infectious cDNA clone of a chimeric DEN-2 virus, wherein said virus is characterized as expressing the antigenicity of a DEN-4 attenuated virus.
- 25. A genetic construct comprising a DNA sequence operably encoding the polyprotein of DEN-2 virus, strain 16681.
 - 23. The genetic construct of Claim 22, wherein said polyprotein is the polyprotein encoded by the nucleotide sequence of SEQ ID NO:1.

WO 96/40933 PCT/US96/09209

- 24. A genetic construct comprising a DNA sequence operably encoding at least one protein of DEN-2 virus, strain 16681.
- 25. The genetic construct of Claim 24, wherein said protein is a protein encoded by the nucleotide sequence of SEO ID NO: 1.
 - 26. A genetic construct comprising a DNA sequence operably encoding the polyprotein of DEN-2 virus, strain 16681, attenuated derivative, PDK-53.
- 27. The genetic construct of Claim 26, wherein said polyprotein is the polyprotein encoded by the nucleotide sequence of SEQ ID NO:2.
 - 28. A genetic construct comprising a DNA sequence operably encoding at least one protein of DEN-2 virus, strain 16681, attenuated derivative, PDK-53.

15

- 29. The genetic construct of Claim 28, wherein said protein is a protein encoded by the nucleotide sequence of SEQ ID NO: 2.
- 30. A genetic construct comprising a DNA sequence
 20 operably encoding at least one structural protein of DEN-1
 PDK-13.
 - 31. The genetic construct of Claim 30, wherein said structural protein is a structural protein encoded by the nucleotide sequence of SEQ ID NO: 124.
- 25 32. A genetic construct comprising a DNA sequence operably encoding at least one structural protein of DEN-3 PGMK30/FRhL-3.
 - 33. The genetic construct of Claim 32, wherein said structural protein is a structural protein encoded by the nucleotide sequence of SEQ ID NO: 125.

WO 96/40933 PCT/US96/09209

- 34. A genetic construct comprising a DNA sequence operably encoding at least one structural protein of DEN-4 PDK-48.
- 35. The genetic construct of Claim 34, wherein said structural protein is a structural protein encoded by the nucleotide sequence of SEQ ID NO: 126.
 - 36. A host cell comprising the genetic construct of any of Claims 22-35.

SUBSTITUTE SHEET (RULE 26)

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

C M E NSI 2A 2B NS3 4A 4B NSS 3' 12B 208 398 131 2244 5 5 5 5 5 5 5 5 5							-	•	3658 4732 8566 3658 4493 5761 9382 6858 6915 7646		
NS1 2A 2B NS3 4A 4B NS5 1	3,] :	:	:	:	:	:	:	: ,	; ,	; :
NS1 2A 2B NS3 4A 4B NS5 1		:	:	:	:	:	:	:	:	:	
NSI 28 NS3 48 48 NS5 -3 4 5 6 7 8 9 -3 20		°	:	:		:	:	:	:	:	
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:	:	:	:	:	:	:	•	:	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		1:	:	:	:	:	:	:	•	:	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:	:	:		:	:	•	•	: ~-	<u>:</u> :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		! :	:	:	:	:	:	•	•	38	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	35		:	•	:	:	:	:	•	• 0	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	ž	:		•	:	:	:	•	:	:	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5] :	:	•	:	:	•	:		-	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:	:	•		:	:	:	26	:	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			:	:	:	:	:	:	. 00	•	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	.	:	:		:	:	•	•	•	•	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		l :	:	:	:	:	:		•	:	: o -:
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:	•	•	<u>.</u>	:	:	•	•	:	64:
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	6	:	:	•	•	:	:	•	•	:	: -:
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	₹		•	•	<u>.</u>	:	:	: -	<u>-</u>	:	: 12:
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			•	•		:	•	- 3:	-	:	· 69
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	•		•	•	:	:	:	68	:	•	: œ :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	4		•	:	:	:	:	:	:	:	. 85
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			:	:	:	:	:	•	:	•	: œ :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			:	:	:	:	:	:	•	:	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:	•	•	•	:			•	•	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		:		•	•	:	:	•	•	:5-	- :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	_	:	:	:		<u>.</u>	:		•	57	: :
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	18.		:	:	2	:	:	: 2		•	
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	-		:	:	m	:	- 52	- 10	•	:	
3 - 4 - 44 - 44 - 44 - 44 - 44 - 44 - 4		N	:	:		:	: 5			<u>.</u>	
3 - 4 - 44 - 44 - 44 - 44 - 44 - 44 - 4			<u>:</u>	:		:	-	•	3	. ღ-	- :
3907 3907 3958 3658 3658	83		:	:	:	:	•	:	4	4	
33 - 33 - 34 - 3 - 3 - 3 - 3 - 3 - 3 - 3	.,,		:	:	:			:	•		: :
33 - 33 - 34 - 3 - 3 - 3 - 3 - 3 - 3 - 3	_	-	•	•	:	:5-	<u>-</u>	•	:	:	: :
	21		:	•	•	. 6	:	:	· φ -	-œ-	- :
		:	:	•	•	• • • • • • • • • • • • • • • • • • • •	:	:	9	98	
		:	•	•		:	•	•	•	•	: :
		<u>۔</u> ا	:	•		:	•	•	•	•	: :
	[8]	: '	:	•		:	•	•	•	:	
	-	l :	:	•		•	:	•	•	:	: :
PmlI 208 398 1531 2244 Xcml 2284 Xcml 2003 MunI 328 3551 Aval BaaHl 8934 BglII () ()		1	•	•	:	•	•	:	•	:	
PmlI 208 398 1531 224 Xcml Xhol 228 Asel 328 351 Aval Baall ()		l :		:-	•	:	•	•	•	:	: :
PmlI 208 398 1531 PstI		-0	:			· m -	<u>.</u>	- 12-	-	:	: :
PmlI 208 398 1531 XcmI XhoI 228 MunI 328 AvaI 88 394 BglI () () () () () () () () () (:	•		•	:8	:	35	•	:	: :
PmlI 208 398 1531 PstI.	M	1		:		ă	•		•	:	: :
PmlI 208 398 11 PstI.	!	1 :	33	:	Ĭ	:		•	•	:	: :
PmlI		1 :	: =	:	÷	:	•	•	•	:	
PmlI] <u>:</u>	:	•	•	:	•	•	•	•	: :
	_]	•	•	:	:	:	•	•	•	
PmlI 208 396 PstI. . Xcml XhoI MunI 328 AseI BsaHI BanI	-= -	:	<u>.</u>		:	:	:	•		•	
PmlI 208 3 PstI.[.]. Xcmi Xhoi Muni 33 Asei Avai BsaHI Bani		-	. 6		:	:	. 60 -	÷	:	•	9.
PmlI 208 PstI. Xcml . XhoI . MunI AseI AvaI BsaHI BsaHI BSAII	۱ ۵	∤ ∶	• [7]	•	•	:	. 6	:	•	•	·
Pmli 2 Psti Xcml Xhoi Muni Asel Aval Bsal Bsal		-		-				٠.	. :	₫.	ığ H
			111	Ĭ.	ĕ	<u> </u>	Ę	9			an Ji
			£	9	×	₹ :	Ē (Ž ,	•	ã	ų ų.

IGURE 3B

* M.O.I. = 0.004, 150cm2, 40 ml
FIGURE 4

SUBSTITUTE SHEET (RULE 26)

HWC

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

В	RT/PCR	Expected Amplicon		
	Amplicon	Length	<u>Up-Amplimer</u>	Down-Amplimer
	T7-F1	1552-bp	D2-SMT71	cD2-1503
	F2	3327-bp	D2-1261	cD2-4557
	F2-Sal	2742-bp	D2-1261	cD2-4002
	Sal-F2	2388-bp	D2-2170	cD2-4557
	F 3	2368-bp	D2-4257	cD2-6624
	P4	3304-bp	D2-6493	cD2-9796
	F 5	1032-bp	D2-9656	cD2-10687.Xba

FIGURE 5E

FIGURE 6

FIGURE 10

14/63

	· · · · · · · · · · · · · · · · · · ·		
	5'-NC Capsid	prM E NS1	NS2A
	1 1 2 2 2 3 4 6 7 0 3 1 2 3 2 9 9 7 3 2 0 6 6 1	1 3 6 7 4 0 5 0 4 8 1 3 5 1	3 3 3 3 3 3 3 3 3 6 6 7 8 8 8 8 8 9 1 4 7 0 0 2 2 8 1 5 6 8 9 2 4 7
DEN-2-16681.RK DEN-2-16681.BLOK	AAA ATGTTA GTG GAACAC	CC C C	C G A C T C T A T A C T C T C G
•	NS2A NS2B	NS3 NS4A	NS4B
	000 23 006 146 44 374	5 5 6 6 6 7 9 1 1 5 0 5 1 1 8 5 5 3 4 0	6 6 7 7 7 7 7 8 8 1 1 2 4 5 6 7 3 9 1 0 6 4 0 9 6 3 3 1
DEN-2-16681.RK DEN-2-16681.BLOK	CAA TT CGG	TTAA T CCCC C	C G T G A C A A A C C T T G
	NS5	3'-NC	
	8 8 9 9 9 9 9 9 9 9 9 9 5 9 2 2 3 5 5 6 6 7 4 3 0 2 0 9 9 2 2 3 2 1 7 1 3 1 2 0 1 2	9 0 0 0 0 0 0 0 8 3 6 6 6 6 6 4 3 3 4 5 5 5	1 1 0 0 6 6 5 7 9 3
DEN-2-16681.RK DEN-2-16681.BLOK	G G C A G C G T G T T C T C C G C C A C		

FIGURE 11

SUBSTITUTE SHEET (RULE 26)

NS5 **K83** | 2B NSI U

FIGURE 13

FIGURE

770 Tacatggatgtcatcagaagggcctggaaacatgtcca ۵ I ¢ M 4 Z O .1 M **0**3 60 Δ, 24 × 0 3 O H H ۲, 24 Ü ∝ œ 60 720 Castgocactcottccacatgtgggaatggga z ø > × × ρ, ĸ

FIGURE 14B

1780 1790 1800 AGGACATCTCAAGTGCAGGCTGAGA G H L K C R L R

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 Atgarangctacharacharactatatotacharacharachtanachtaracharacharatacharatacharatacharatacharatacharatacharatachar H D K L Q L K G M S Y S M C T G K F K V V K K I A K T Q H G T I V I

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 TCAGAGTGCAATATGAAGAGGGCGCTCTCCATGGAAGATATGGATTTGGAAAAAAGACATGTCTTAGGTCGCCTGATTACAGTCAAA R V Q Y B G D G S P C K I P F B I M D L B K R H V L G R L I T V N

2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 TIGGAICCTIGGGAGGAGTTIACAICIAIAGGAAAGGCICTCCACCAAGTCTTIGGAGCAATCIAIGGAGCTGCCTTCAGIGGGGTTCAIGGACTAI G S L. G G V F T S I G K A L H Q V F G A I Y G A A F S G V S W T H

2310 2320 2330 2340 2350 2360 2350 2370 2380 2390 2400 Garartcctcataggagtcattatcactarattcacgcagcactcatcactattagatagtaggaritgtgacactgirt K I L I G V I I F W I G M N S R S T S L S V T L V L V G I V T L Y

CANAGAACTGAAATGTGGCAGTGGGATTTTCATCACAGACAACGTGCACA K K L K C G S G I F I T D N V H T 2450 ICTGGAAAAAC W K N I

14C FIGURE

2570 2600
AGANAGCCCATGAAGAGGCATTTGTGGAATCCGCTCAGT
K A H E E G I C G I R S V 2610 2620 2630 2640 2650 2660 2670 <u>2680</u> 2690 2700 Aacaagactggagaatctgatgtggaaacaataacaataacaataacaataacaagaagacatc t r l b n l h w k q i t p b l n h i l s b n b v k l t i m t g d i i 3190 3200 CTATAGACCAGGCTA Ω, 3110 3120 3130 3140 3150 3160 3170 3180
AATCACACACCTCTGGAGCAATGGAAGAGTGCTAGAAAAGATGATAATATTCCAAAGAATCTGGACCAGTGTCTCAACAAAA
S H T L W S N G V L E S E M I I P K N L A G P V S Q H N φ-2560 TCAGCTATCCAG 8 A I Q 8 CATGGACAGAACAATACAAGCAACAGAATCCCCTTCAAAACTAGCTT
W T E Q Y K F Q P E S P S K L A S

FIGURE 14

3400 AGGTGAGG G E D 3610 3620 3630 3640 3650 3660 3670 3690 3690 3700 Acattgatcaccaggaacttaggaacatgatgatgatgataggagcgccactataccatgacatgacataggacgacgacgacttatc T L I T G N H S F R D L G R V H V G A T H T D D I G H G V T Y L 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 TGTACTCCTCTCCCAGAGCCATACTTGAGTTGAGTTGACTTAGCCTTAGGCATGATGGTCCTCAAAATGGTGAGAATATAGGAA V L L S Q S T I P E T I L E L T D A L A L G H H V L K N V R N H E 4140 4150 4160 4170 4180 4190 4200 ACCTGGCCATTAAATGAGGCAATGCTGGCAATGCTGAGCATTTTAGCCAGTTGCTGAGAAAASS WPLNEAINE A G W W S I L A S S L L K 3390 ATACA NS2B Ø 4110 4120 4130 AACAACCTCTCAAGAACCAGAAAAGAAAAGAAT T L S R T S K K R S 3330

FIGURE 14E

4610 4620 4630 4640 4650 4660 4670 4680 4680 4700 Aaaaaggattcttggatatccagatcggagccggagtttacaaagaacattccatacaatggccatgtcctaatgca k g i i g x s g i g a g v x k b g t f h t h h h v t r g a v i h h × æ 4890 * O 4880 J 4870 M × o X 4860 4850 4830 NS3 4820 4810

IGURE 14F

					23/63				
5200 NGTTG V V	5300 CTAAT L M	5330 5340 5350 5360 5370 5380 5390 5400 CTGCTATCACCAGTTAGAGTGCCAAACTACAGACCCAGCAAGT L L S P V R V P N Y N L I I M D E A H F T D P A S	420 5430 5440 5450 5460 5470 5480 5490 5500 Catctcaactcgagtgagggagggattttatgacagcactcccccgggaagcagagaccatttcctc I 8 T R V R H G R A A G I F H T A T P P G 8 R D P F P Q	5590 5600 AGGGAAGACTGITG G K T V W	5640 5650 5660 5670 5680 5690 5700 GCAGCTTGCCTGAGGAAAATGGAAAAGTGATACAACTCAGTAGGAAGACCTTTGATTCTGAG A A C L R K N G K K V I Q L 8 R K T F D S B	5800 2868C R R	5900 GGGAG G R	5930 5940 5950 5960 5970 5980 5990 6000 AATGACCAGTACATATACATGGGGAACCTCTGGAAAGAACTAAAATG N D Q Y I Y M G B P L E N D E D C A H W K E A K M	6100 IAGAG R G
CTAG	GGAC D	CCAG(CATT	GACT	GATT(D S	ACCC	AAGAC R G	GCTN	3CTTG
S190 CCCCA	5290 Attgt I V	5390 CAGAC	5490 AGACC D P	5590 GGGAA G K	5690 CCTTT	790 PATAG I D	890 3446	S990 AAGAA	6090 ATACC Y R
	GCAG!	TTCAC	GCAG	TARAG	AAGAC K T		AGCAC	TGGA.	SCGAA
5180 TAATCT	5280 CGGGCG G R	5380 GCCCAT A H	5480 CGGGAA	5580 XGATT D F	S680 AGTAGG	780 FGAGA	880 NGTGC S N	S980 GCACAC	6080 TTGATG
ACATT T L	100 S	53 XGAAGC	CCCC 4	S FCACG	CTCAC	Weed S	CTCT	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (CC) 11
5170 TTGAGAJ L R 1	5270 CTGAGC	5370 CATGGAC M D	5470 GCCACTO	SS70 NATGGG1	5670 Gatacau I Q	70 TTTCA	T H	5970 TGAAGAC E D	6070 GTGGATG V D A
661151	6A6CT	FATCA I M	ACAGO T A	SS ATGAN	AGTGA V I	SCCAA	58 CAGTG V	59. IGATG	AAGGT
2 00 ×	SO CATCA I R	60 CTGAT L I	50 FTATG	50 060AC	ANGAA K K	6663	So FATGO	60 GAAAA E N	SO PTGAA
5160 FATAAAA I K I	5260 CCAGCCN P A I	5360 ICAACCT	5460 Matete	5560 LATTCCG(S660 TOGANA G K	S7(CANA)	SBCCT CACCT	5960 TCTGGAN	6060 GAGCGT
200	200 4 1 1	AACT.	0 0 0 0 0 0	CTGGA W N	AAAAA K	o FFFC	OGCAG	GAACC	S CC
5150 CAGAGA. R E	5250 TACCAG	5350 TGCCAA	5450 GCAGC	E-CECTOC	5650 TGAGGA	575 rcaca D I	S85 ATTCT I L	5950 TGGGG	6050 STTCGA
ATAGT I V	FAAGA	CAGAG R V	OGTCA G M	CTGAA.	Tigoco o	CANC	20CTG >	Y H	GCAT
SGCCN A I	5240 CCAAT	5340	S440 IGATGG	SS40 MTCCC	5640 CAGCT	5740 GGTTA	5840 67600 8 R	5940	6040
CTTC	GACT	ATCAC	/6173G) *	ayayı Bayayı	TATAG	TTCG]	organ	CCAGE	ATCAT I I
S130 GATAC	5230 TAGAGG	5330 CTGCT	S430 CTCGA	5530 AGAAA K R	S630 AATGA	5730 GGGAC D	5830 AGATG	S930 AATGA N D	6030 MAGGN G
GAAGA K R	GCCCT	320 CCATGAGG	CTCAA S T	GATGA D E	CAGGA	TGATT D X	CTAAC	NTGAG	SCCAG P E
AGAQ T	5220 10GAA	5320 TACCA: T M	5420 FACAT	5520 CATA I	5620 33336 X A	5720 NCCAN	S820 CATA	S920 NANAA K N	6020 MCAC
SGGAA	X TGG	CATT	AGGATY G Y	CCAAT	GTAT	TAGAA	ACCAG7	ATCCA	CATCA
5110 5120 5130 5130 5140 5150 5160 5170 5180 5190 5200 CACCCAGGAGGAAAAACGAGAAAAAAAAAAAAAAAAA	5210 5220 5230 5240 5250 5260 5270 5280 5390 Togchgotgaantogaggaagaggacttccaataagataccaagcccaagccacaggaggagaattttcaataa a a b h b b b b b b b b b b b b b b b b	5310 5: GIGTCAIGCCACATITA C H A T F T	5410 5. NTAGCAGCTAGAGGATA I A A R G Y	T 5510 5520 5530 5540 5560 5570 5580 Agacantgcactatagatgaagatatcctgaactcgtggaattccggacatggatttaa 8 N A P I D B B R B I P B R S W N 8 G H B W V T D P K	5610 5620 5630 GTTCGTTCCAAGTATAAAAGCAGAAATGATATA F V P S I K A G N D I	5710 5720 5730 5740 5750 5760 5770 5780 5790 5800 Tatgecaagactagaacceagacteggetacaacteacatecagacacceagac X V K T R T N D W D F V V T T D I B R M G A N F K A B R V I D P R R	5810 5820 5830 5840 5850 5860 5870 5880 5890 5900 GCTGCATGAAACCAGTCATAACAAACAAAGAGAGAGTGATTCTGGCAGACCAATGAACAACAAACA	S910 S920 AATAGGAAGAATCCAAAAATGAG I G R N P K N E	CTCCTAGATAACATCAACT L L D N I N
ACCCA	36CAG	TGTCA C H	ragea A	SAGCA	rrcgr V V	ATGTC	CTGCA	ATAGG. [G	CTCCTAGA
ũ ≖	F	8	×Η	ž	5 ~	¥ ¥	ĕ	2	r G

6910 6920 6930 6940 6950 6960 6970 6980 6990 7000
ANCATCCTGGACATAGATCTGCTGCATCAGCATGTAGCATTGAAAATT
N I L D I D L R P A S A W T L Y A V A T T F V T P M L R H S I E N S 6110 6120 6130 6140 6150 6160 6170 6180 6190 6200 Gagaragararacattotagaratararagararacatacaraterogataracataragacatarakaracarakara e a r k t f v·d l h r r g d l p v w l a x r v a a b g i n y a d r 6410 6420 6430 6440 6450 6460 6470 6480 6490 6500 AAATGGGTAGGCTCCCAACCTTCATGACTAAAGGCAAGAAGAAAAGGCAACAAA M G R L P T F M T Q K A R D A L D M L A V L H T A B A G G R A Y N 6780 н 6770 9650 NheI . 6730 NS4B 6830

IGURE 14H

		•							
7100 TTCC	7200 ACTC L	7300 ATAC I P	7400 GTGA	7500 TTTT	7600 6686 6 88	7700 AAGG	7800 AGTA V	7900 CACG	8000 TATT L
CGGAG:	7150 7160 7170 7180 7190 7200 CTCACAGCAGCTCTTTTCTTATTGGTAGCCAGGACTC L T A A L F L L V A H Y A I I G P G L	ATCCA	reren L c	7470 7480 7490 7500 TEGAACACTACATTACAGTGTCAATGGCTAACATTTTT W N T T I A V S M A N I F	CGCITA	7690 7700 CCITAGCAAAGAAGG L A K E G	7760 7770 7780 7790 7800 CTGAGATGGTTCGTTGAGAAAGTA L R W F V E R N H V T P E G K V	CAGGA	CACAT
7090 GACAT D I	7190 TAGGG	7290 CCTAG L D	7390 TGGGC W A	7490 TGGCT	7590 Agaga E T	7690 TTAGC L A	7790 CAGAA	7890 AGGAC G P	7990 TGTGA C D
LAGATG	CATCA	ATTGA I D	ACTACA T T	GTCAA	ATAGG	GAACO	CACAC	AAAGG K G	AAAAG
7080 TGTCAA	7180 TTATGO Y A	7280 ACAGTG T V	7380 TGAGG	7480 F6C6G7	GGCAAC G N	7680 TCGATAGAA	7780 CATGG7 N V	7880 CTAACA L T	7980 3666AG P E
OCCAT	A H	GAATA	GATGA	ACCAT	MNSS GAACT	GGAAG	AGAAA R N	Magc	CATCC
7070 MOGATO	7170 TTGGTN	7270 PCGATG	7370 IGTATT	7470 AACACT N T	R G	7670 NATCCM I 0	7770 GTTGAG	7870 NAGTCA	7970 TTCTT
SOGGAN G K	TCTTA	AACTG1	ACTCAL	TTTGG	CACAAC T R	o Agtegi S G	ogrica	AAGAGA	GACGTT
7060 GTCTCG	7160	7260 AACCCAI	7360 GCGTGA	7460 GAGGIT R P	ACCAA T N	7660 AGAAAA K S	7760 GAGATGK R W	7860 AATGTA	7960 GAGTTGU V D
SO FAATGG	SO SO A A	SO ATGAAA K K	SO FCCTCT L C	SOCAGO P G	50 AACACA N T	SCTACA Y K	SO NAMACE K L	SO STARAG	S G
7050 NGTGTTA V L I	7150 CTCACAG	7250 SCATCATO	7350 CCTAGIC	7450 GGAAATC G N P	7550 PGAAGAA K N	7650 CCAGATC Q I	7750 TCAGCAN S A K	7850 3AGGACTI G. L	7950 FCTTCAA L Q
AAGCCAC A T	CATAACT	7240 GCGGCGG	7340 TAATGCT	GGGAA	7540 TCTATTA S I M	7640 GTGAATT	7740 acangac R G	7840 TATTGTGY Y C G	7940 Tagtgcg: V R
AACCAN	ACCCCA P I	12 NGCAGO	CAAGTA Q V	ATTGT L W	75 TITTC	76 LARAGI	T730 7740 7750 TCACGCTGTGTCGCGAGGCTCAGCAAAA H A V S R G S A K	78 X X	79 LATCTA
7030 ATAGCCI I A 1	AAGTCAN V N	7230 Garargi K R	7330 TTGGGAC L G C	7430 TCTCCAC S T	7530 ACTTCTC L L	7630 TTGGGAA L G K	ACGCTG1	7830 Crogrcy W S	7930 GGGTGGA G W N
MGCTA	rcac.	CTCAG	ACAGT	CCCAT	CTGGA	CGCAT	CATCA H H	AAAAA	ATATG
7020 CCTAAC L T	7120 TGCTAC	7220 Gagara	7320 TGAAAA E K	7420 Accese T G	7520 CCGGAG G A	7620 ATTGAN	7720 Accenc T D	7820 GCAGAGA R G	7920 GTCAAC S T
rototor v	TTCGA	AACCAC	AAGTT	TAGCT	7510 NGGGAGTTACTTGGG G S Y L A	S R	GAGAA	Trotto	CCCCATC
7010 NGTGAAT V N	7110 CITCTCGCCAI L L A I	7210 NAAAGC K A	7310 TATGATCCAM Y D P K	7410 GCTTTAACCTTAGG A L T L A	7510 INGTIA S Y	7610 ATGGAAAAG W K S	7710 NAGAGG	7810 GGACCTCGG' D L G	7910 CCATO
7010 7020 7030 7040 7050 7060 7070 7080 7090 7100 CCTCAGTGAATGTGCCTAACAGCCAAGCCACAGTGTTAATGGGTCTCGGGAAAGGATGGCATTGTCAAAGATGGAACATCGGAAGTTCC 8 V N V S L T A I A N Q A T V L M G L G K G W P L S K M D I G V P	7110 7120 7130 7140 CCTTCTCGCCATTGGATGCTACTCACCAAACCCAAAACTL	7210 7220 7230 7240 7250 7260 7270 7280 7290 7300 Caagcaaaagcaaccaagagagagagagagagagagagag	7310 7320 7330 7340 7350 7360 7370 7380 7390 7400 CTTATGATCCAAAGTTGAAAAGCAGTTGGGACAAGTAATGCTCCTAGCGTCTGGGCTCTGTGTGA Y D P K F E K Q L G Q V H L L V L C V T Q V L H H R T T W A L C E	7410 7420 7430 7450 7460 GGCTTTAACCTTAGCGGCCCATCTCCACACGAAATCCAGGGGTTTAA L T L A T G P I S T L W E G N P G R P	7510 7520 7590 7590 7600 7650 AGAGGAGTTGCTTTTCTATTATGAAGCAACCAACAAGAAGGGGAACTGGGAACATAGAAGAAGAGAGAG	7610 7620 7630 7640 7650 7660 7670 Agaaatggaaaagccattgggaaaaagtgaatccagatctacaagaaaagtggaatcca K w k s r l n a l g k s k p g i y k k s g i g	7710 7720 CATTAAAAAAGGAGAAAACGACCA I K R G B T D H	7810 7820 7830 7840 7850 7860 7870 7880 7890 7900 GTGGACCTCGGTTGTGGAGGTCATACTATTGTGGAGGACTANGAGAAGTCAAAGGCCTAACAAAAGGAGACCAGGACAGG V D L G C G R G G W S Y Y C G G: L K N V R R V K G L T K G G P G H E	7910 7920 7930 7940 7950 7960 7970 7980 7990 8000 Amganiccaticcatgecatatraggegestetteangtggagttgacstttetteatcccccagaaaagtgtacattatt B P I P H S T Y G W N L V R L Q S G V D V F P I P P E K C D T L L
	-		-	-		-			

8060 8070 8080 8090 8100 NAAGTCCTTAACTAGAAAAATTGGTTGAACAACAACACCAA R V L N N N T Q 8830 8840 8850 8860 8870 8880 8890 8900 NOTCGANGTCGGCACGTGAGGAGATAGTAGGTTTTGGGAGCTGGTTGACAAGGAAAGGAATCTCCATCTTGA W K S A R B A V B D S R F W R L V D K B R N L H L E ĸ 4 8010 8020 8030 8040 8050-GTGTGACATAGGGGAGTCATCACAAATCCCACAGTGGAAGCAGGAAGCAACA C D I G E S S P H P T V E A G R T **~** 0 TITIGGALTANAGOTICICAACCALAIAIGCCTCA CCATATTCACTGATGAGAACAA 8810

9520 9530 9540 9550 9560 9570 9580 9590 9600 AGTGGGGGGGGGGGAAACCITIAGAIGGTTCGCAAGCGCTTCGCAAGCGCTTCGCAAGCGCTTCGCAAGCGCTTCGCAAGCGCTT V G R E R L S R M A I S G D D C V V K P L D D R F A S A 9710 9720 9730 9740 9750 9760 9770 9780 9790 9800 ACCATTICCATGARGATGARGATGARGAGCCGAATCTCCAAGGAGC HER LINKDGRV LVVPCRVS ø Δ 3 0 4 ۵ « TGGCTTGGAGCACGCTTCTTAGAGTTTGAAGCCCTAGGATCTTAANTGAAGATCACTGGTTCTCCAGAGAGAACT W L G A R F L K F K A L G F L N K D H W F S R K N B æ Ω Ω o z < 9040 × ∞ 9030 AAACTGGTTAGCAAGA N W L A R 9510

e M O

10130

3'-30

CTAGAGCATGCTAGGTGATAA = Amplimer cD2-10687.xba CTAGATAGGTGATAA = Amplimer cD-10687.x2

10710 10720 grgcrotten of the Genomic mRNA

Kba.

FIGURE 14L

29/63

FIGURE 15

FIGURE 16

FIGURE 17A

FIGURE 17B

33/63 prM C NS5 ш NS1 8 8 28 NS3 4B 4A NS1 NS5 ш pUC 19 C Dr M က်

FIGURE 18

FIGURE 19

FIGURE 20A

FIGURE 20B

FIGURE 21A

FIGURE 21B

FIGURE 22

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIGURE 25

Linearized A RNA D2/1C--log 7T -ANR IstiV -D2/1C-Viral RNA MW-

FIGURE 26

SUBSTITUTE SHEET (RULE 26)

FIGURE 27

FIGURE 28

FIGURE

NS5 3'													
4A 4B	NheI												
NS3		υr	4	4	•	•	•	•	•	•	•	٠	∞
28	KpnI	a n	4	ㅂ	Ü	•	•	UI	•	ഥ	٠	•	4 N D D
2A		-0	•	S	Ü	•	•	U	•	U	•	•	iv iv 4 /~
NS1		0 F	4	H	•	•	H	•	H	H	•	•	40-0
		9 ⋖	4	⋖			⋖		⋖	⋖		:	01v
MA	sphī	υ⊢	4	H	•	ē	H	٠	-	-	•	•	NONN
prw	=	<-	4	H	-	H		•	—		4	-	ru vi ⁴.
<u></u>	SALI	u	4	H	-	H	•	•	H	•	H	•	nr
		DEN-2 16681 DEN-2 PDK-53	D2/IC-30P	02/1C-130V	D2/1C-130V2	02/10-31	D2/IC-32	02/10-33	D2/1C-321	D2/1C-323	02/10-31-57	02/10-31-524	

FIGURE 30

D2

02 03 04 04

20	Capsid 110 ATAACCAACGAAAA	180 190 200 Itccaacagacattctcact / Q Q L T K R F S L
6000	DZ ATAACCAACGGAAAAAACACGCCTTTCAATATGCTGAAAACGCGAGAGAAAACCGCGTGTCGACTGTGCAACAGCTGACAAAGAGATTCTCACT D1 D3 D4	Itgcaacagacagagattctcact aa

48/63

tggaatgctgcaggacgaggacgattaaaactgttcatggccctggtggcgttccttcgtttcctaacaatcccaacaacaggatattgaagaga A...t...ctca..c.a....ca.g...t.g.g....tt.ca.a..a..t.aa...t.aa..t.b.g.c.....ct.a...

D2

FIGURE 31A

TOGGGAACANTALAMANCHANACTATTAGAAGGGTTCAGAAAAAAATTGAACAACATTAGAAGGGTTCAGAAAAAATTGAACAAAAAATTTAGAAGGGTTCAGAAAAAAATTCAAAAAAAA
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 31B

	D2 CTTCTCAGGCAGAATGAGCCAGAAGACTGTTGGTGCAACTCTACGTGGGTAACTTATGGGACGTGTACCACCATGGGAAACATAGAA D1 GGACTGGCGATG.TTG.CGAAG.CACTTCAA.CTCCCC.	710 T 720 730 740 750 760 770 780 780 900 900 900 900 900 900 720 730 740 750 760 770 780 790 800 922 GAGARARARARARARARARARARARARARARARARARAR	D2 GAGANANAAGATCAGTGGCACTCGTTCCACATGTGGGAATGGGACTTGGAAACTGAAACCATGGATGTCATCAGAAGGGGCCTGGAAACATGTCCA D1 C C.T. C. C. T. G. C. T. C.	810 820 830 850 850 860 870 870 890 900 D2 GAGAATTGAAACTTGAACATCTGGCTTCAGGCTTCACATGAATGCTGGCATACACATAAAGAACGACATATCCAAAGAACGCTTCAAAAGCCCTGATT R I B T H P G F T H M A A I L A Y T I G T T H F Q R A L I	D2 GAGAATTGAAACTTGGATCTTGAGACATCCAGGCTTGATGGCAGCAATCCTGGCATACACCATAGGAACGACACATTTCCAAAGAGCCCTGATT D1 A.A.G.AGGCTCAGGACCTTT.TAC.TGAT.CATCACG.AGGA.C D3AGG.AGAGC.C.TGCAC.AAC.ACCT.T.TCC.TTACTT.CTTGACG.ATGG.T D4G.AG.GCAC.CA.CA.G.GC.CTG.T.TAT.TGTGGAAGGAAGC.A.TG.CT.C	910 920 930 E 950 960 970 960 970 980 1000 D2 TICATCITACTGACAGCTTCATTGACATGCGTTGCATAGGAATGTCAAATAGAGATTTGTGGAAGGGGTTCAGGAAGCTGGGTTG F I L T A V T P S H T H R C I G H S N R D F V E G V S G G S H V D	D2 ITCATCTTACTGACAGCTGTCACTCCTTCAATGACAATGCGTTAGGAATGTCAAATAGAGACTTTGTGGAAGGGGTTTCAGGAGGAAGCTGGGTTG D1TGTGCTGAATGCAG.G.GAAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAAGGCC
•		-	~~ ~	-	put ted fed	u	

FIGURE 31C

1010 2 ACATAGTCTTAGAA I V L E	D ACMINGICITAGAACHIGGAAGCIGACGACGAIGGCAAAAAACAAACCAAAC	1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 D2 CCTAAGGAAGTACTGTATAGGCAAAGCTAACCAACACAAGAATCTCGCTGCCCAACAAAAAGGGAACCCAAGCCTAAATGAAGAGCAGGAAAAA L R K Y C I B A K L T N T T T B S R C P T Q G B P S L N E B Q D K	D2 CCTAAGGAAGTACTGTATAGAGGCAAAGCTAACAACAACAACAACAGAATCTCGCTGCCCAACACACAGGGGAACCCAGCCTAAATGAAGGCACAAAA D1 T.GC.T.A.TG.C.T.A.T.A.T.A.T.A.C.C.C.C.C.T.GA.A.T. D3CTA.C.T.A.G.G.TTT.CC.G.AA.T	1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 D2 AGGITCGICTGCAAACACTCCAIGGIAGAAGAATGGGAAATGGACTATITGGAAAGGGAAGCAITGIGGTGCIGIGCIATGITCAGAIGCA R F V C K H S M V D R G W G N G C G L F G K G G I V T C A H F R C K	D2 AGGTTCGTCTGCNAACACTCCATGGTAGACAGAGGATAGGAATGGACTATTTGGAAAAGGGAGGCATTGTGACCTGTGCTATGTTCAGATGCA D1 .AC.T.GCGGAA.GT.C.G	D2 ANANGANCATGGANANGTIGIGCANCCAGANANCTIGGANINCACCATTGIGAINANCACCACTCAGGGGANGAGCATGCAGTCGGANATGACAC D1 TG.CA.AC.A.C.A.G.CA.ACTTAIC.AATI.AG.GA.AG.C.CGTCA.I.A.TCCCAGGG. D3 T.G.ATCA.A.GGAIGC.CA.G.CA.C.CA.GTGA.A.A.C.A.CCAGGAI. D4 CGGGG.AACC.II.GCAIIGC.I.A.GC.I.A.G.GTGGTCAAIA.CACCAA.CAG.GAA.GAAIAAATAAATAAAACAAAAAAAAAAAA

FIGURE 31D

2012 2 2012 2 2012 2 2012 2 2012 2 2012 2 2012 2 2012 2 2012 2 2012 2 2 2	1410 AGGAAACATGGCA G K H G K AGGAAAACATGGCA TAC.GAG TAC.GAG TCC.TAG TCT.TAG TT.T.G.T.TAG TT.T.G.T.TAG TT.T.AG TT.T.AG TT.G.T.T.AG TT.G.T.T.AG TT.G.T.T.AG TT.G.T.T.AG TCCGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AGAA.	
---	---	-------	--

20	1810 1820 1830 1840 1850 1860 1870 1880 1990 1900 ATGGACAAGCTACAAGGAATGTCATAGCAAGAATGCAAAACAAAAAAAA
0000	ATGGACHAGCTACAGGACAATGTCATACTCTATGTGCACAGGAAAGTTTAAAGTTGTAAGGAAATAGCAGAAACACAAACACAACATGGAACAATAGGTTA
02	1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 TCAGAGTGCAATATGAAGGGGACGCCTCTCCTTTTGAGATAATGGAAAAAAGACATGTCTTAGGTCGCCTGATTACAGTCAA R V Q Y E G D G S P C K I P F E I M D L E K R H V L G R L I T V N
02 03 04	TCRGRGTGCRATATGARGGGGRCGGCTCTCCATGCRARGATCAGGRTRATGGATTTGGRAAAAAAGACATGTCTTAGGTCGCCTGATTACAGTCAA .GCRGTAAAGR.B.G.ATCTCCCCRAGR.AGG.GC.RCCCAGAATGR.AT.AACT.AGTG.GCRA.R.ATG.ACTCTCC.CGGAGGACGG.C.A.GC.CR.AATCR.ACR.ACCCCCC
D2	T 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 CCCAATTGTGACAGAAAAAGAGAAAAGAAAAAAAAAAAA
02 01 03	CCCAATTGTGACAGAAAAAAGATAGCCCAGTCAAAACAGAACCTCCATTTGGAGACAGCTACATCATCATAGGAGTAGAGCCGGGACAACTGAAGC.ACAGTCA.AAT.T.GAGAGG.GGCGTGAAAA.GCTTA TG.GCA.GGG.GAGA.TTGTTGTTGTATAAG.ATA.T.GAAACAA.GCCTATT.G.CTGAGA.T.CCA.CTGACGTTGCGAG.GTGAAACA.TGC.T.A.CA
02	2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 CTCAACTGGTTAAGAAAGGAAGTGCCAAATGTGGGGGGGG
0000	CTCAACTGGTTTAAGAAAGTTCTATCGGCCAAATGTTTGAGACAAACAA

2210 2220 2230 2240 2250 2260 2270 2280 2290 23D0 22D0 22D0 22D0 22D0 22D0 22D0 22D	TTGGATCCTTGGG	2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 D2 GAAAATCCTCATAGGAGTCATATCACGGAATACGAATTCACGCAGCACCTCACTGTCTGT	2 GAANATCCTCATAGGAGTCATTATCACATGGALAGAATTCACGCAGCACCTCACTGTCTGTGACACTAGTATTGGTGGGAATTGTGACACTGTAT 1	2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 D2 TIGGGAGTCAIGGIGCAGGCGATAGTGGGTTGGTTGTGAGATGTGGTGGGAGTTGGGTTGGTGG	
D2	2000	05	0000	20	2002

2

FIGURE 31H

2002

D2 KNNGRKKAKNTPPNHLKRERNRVSTVQQLTKRFSLGHLQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRHLNILNRRRR D3K.L.S.QKV.FIASF.NG.KKR.SNS.I.K.KK D4 E	D2 SAGNINLIPTVAAPHLITRAGEPHKIVSRQEKGKSLLFWTEVQVNKCTLMAMDLGELCEDTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTHGEH D1 VT.LLL.AL. D3 TSLCLM.NL.ATLS.DR. GKN.R. D4 TITLLCAL. D6 TITLLCXIS.DL.AKH.R.RPTE.I.KIH.D.VVNTLX.QSR	D2 REKRESVALVPHYGMGLETRIETWHSEGAWKHYQRIETWILRHPGFTHMAAILAYIGTTHFQRALIFILLTAYTPSHTHRCIGMSNRDFYEGYSGSW D1 .DAAQI.XVAVI.FHASIT.KGIMLAVI.GAIAT. D3DADQARQ.EKVAIL.LFHYSLT.KVVMLAV.VGL.AT. D4T.SAAA.V.SNALL.GFNMQ.GITVF.V.ML.A.YGV.VGA.A.	D2 VDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYCIEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSHVDRGWGNGCGLFGKGGIVTCAMFR D1 .V	D2 CKKNHEGKVVQPENLEYTIVITPHSGEBHAVGNDTGKHGKEIKITPQSSITEAELTGYGGTTHECSPRIGLDFNEHVLLQHENKAWLVHRQWFLDLPLPW D1 .VTKLIA.YK.SVIV.V.T.DQ.QE.TETTATATS.IQ.D.DL.LDL.LDT.KK.SKK.SK D3 .LESIHKVI.V.T.DQ.QE.QGVTAA.TAI.PELGLT.LLT.KK.SKK.SK D4 .SGKIT.NLIVVVV.N.DTSNVTATR.PSV.VK.PD.EL.LD.E.S.II.MK.KK.TH.

FIGURE 32A

			_
600 ETQHGTI VV	700 ILGDTAW	800 IFITDNV	900 IGKAKNLS
590 S.LE.V. S.VLK.VS	690 Thrgakrua . A R	790 UKELKCGSG GR	890 BLKYSWKT6
SBO KGMSKSHCTG	620 630 680 690 700 FPELMDLEKRHVLGRLITVNPIVTEKDSPVNIEREPFGDSYIIIGVEPGQLKLNWFKKGSSIGGMFETTHRGAKRHAILGDTAW	T20 730 740 750 760 770 THEORYSTSLEVILVE TO	820 830 840 850 860 870 880 890 900 Sklasaiqkaheedicgirsvtrlenlmukqitpelnhilsenkvkltimtodikgimqagkrslrpqptelkyswktwgkakmls Kr. Sa G W GV
570 RLRMDKLQL KT. KE.	670 Glkinwpkk G	770 TELYLGVHVQ	870 Кріксінда
560 NLLPTGHLKC ITI.A ISI.A	660 SXIIIGVEPG VV.AGE7 .W.VIGD7	760 SVILVLVGIV MCIAH. .PSCIAI!	860 Bnwyllim
SSO ATRICHSSG T.GT. VDSGD.	650 IEAEPPGD	750 IIGANSRSTSL L.LN	850 TPELNHILS
540 Sgamhtalto	640 IVTEKDSPVN D.EK /K.EE LAENTN.AT.	740 KKLIGVITWI GILLI KRFLVI	840 Reenlawko
530 GDVVVLGSQE	630 VLGRLITVNP1 2NA ANAV	730 TLK. TL.GH.R.	830 EDICGIRSVTI GV
VTPKNPHAEKÇ	620 feindlekrhvi sto.ekgator ste.oggkah [r.vi.kk.]	720 19VFGAIXGAN 19VFGAIXGAN 11.5A.T.L	820 Sklasaiqkaheedi Kr. Sa G W Gv
NMICKETLVI F.NRCDL F.NRL	SPCKIPPED DA87 DA87	TSIGKALHO TSIGKALHO N.LHV	
510 520 530 540 550 560 570 580 590 600 LPGADIQGSNWIQKETLVIFKNPHAKKQDVVVLGSQEGAMHTALIGATEIQH8SGNLLFIGHLKCRLRWDKLQLKGMSYSNCTGKFKVVKEIAETQHGTI TSL.8QET.NRQDLTAET.GTTIL.A	610 620 690 690 690 700 VIRVQYECDGSPCKIPPEIRULEKRHVLGRLITVNPIVTEKDSPVNIERPEPFGDSYIIGVEPGGLKLNWFKKGSSIGGNPETTHRGAKRHAILGDTAW LVQ.KTDASTE.GGGRAFINAD.EKEVB.N.VTDAKA.AR L.K.E.K.K.DASTE.GGGRAFINA.V.K.EEE.N.VTGDKAI.YKA.AR	710 DFGSLGGVFTSIGKA IMI	810 Htwteqykpoperpersp.
0000	23312	0010	00000

	410 420 430 450 460 460 470 480 490 CAGGCATGATCATTATCAGAGACATCATTTAGAGAGACGTAACGAGACACACAC	480 490 TCGTCAGCAGAAG V S R O E
	F H L S S R TTCCATETEREDAGEGT	
	Xbot	
D2.VAC	CAGGCATGATCATTATGCTGATTCCAACAGTGATGGCGTTCCAACGAGCACAACCACACAACAACAACAACAACAACAAC	TOCHCACACACA
D1.VAC	TGACCCCC.GCTTCCATCTCTCTCTCTAGGCGAAGGGGGTAT.	A. T. A.
D3.VAC	.GCI.TGIC6AI.AGACAC.IIC <u>C.CI.GAGC</u> CGAG.IGG.GIGG.G.AGA.I.	T. GG. G. AGA. T.
D4.VAC	. GATA. CAT. GC. GTGCT	A. GGCA.A.T
Amplicon	Amplicon DEN-2 F1-prH5':	
Upstre	Upstream Primer= D2-SMT71	
Downstre	Downstream Primer=cD2-prK/Kho/447 = 3'-CACTACCGCAAGGTAGAGGT <u>CG</u> GCATTGCCTCTTGGTG-5' <u>{</u> S	(SEO ID NO: 127)
Amplicon.		
Upstre	Upstream Primer= D2-prW/Xho/447 = 5'-GTGATGGCGTTCCATCTCCATCTCTGAGGCGTAACGGAGAACCAC-3' (S	(SEO ID NO: 128)
Downstre		
Heterolog	Reterologous Amplicons for Chimeric Constructs:	
Upstre	Upstream Primer= D1-prM/Xho/447 = 5'-GCCCTGGCGTTCCATCT <u>CT</u> CGAGGGGAGAGGCCGC-3' <u>(SEO</u> ID NO: 129)	20 ID NO: 129)
	D3-prm/xho/447 = 5'-acacttgctttccac <u>ctcrcqagc</u> cgagatggaggcgc-3' <u>(SE</u>	(SEQ ID NO: 130)
	D4-prm/xho/447 = 5'-GTAATGGCGTTTCACGTGTCGAAGGAGGAGGAACCCC [SE	(SEQ ID NO: 131)

IGURE 33

2310 2320 2340 2350 2360 2370 2380 2390 GAMATCCTCATAGGACTATATCACATGGALAGGALTGGCAGCACCTCACTGTCTGTGAGACTTGGTGGGAATTGT K i L i G v i i t w i g h n s R s t s L s v t L v L v G i v	2370 2380 2390 GTGACACTAGTATTGGTGGGGAATTGT V T L V L V G I V	
N S R S AAITCIBORACC ECTAGA		
D2.VAC GAAAATCCTCATAGGAGTCATTATCACATCATTATCACATCATTATCACATCATTATCACATCAT		
D1.VACAGGAGA.TC.GC.GC.T.A. T.A. T.A. T.A.	3TGACACTAGTATTGGTGGGAATTGT	
D3.VACTGGATC.CT.ACGTC.TAOA.ATTTA	TGTGCA.CGCATCG	
D4.VAC T.GA.T.GTC.AG.GTTGT.C.CTA.G.A.T.A.G.A.	CECCIOCACACACACACACACACACACACACACACACACACA	
Amplicon DEN-2 72-E5's	drachGCTTGGAA.	
Upstream Primer= D2-1261		
Downstream Primer=cD2-8/Xba/2344 = 3'-CCINICCTINCTIANGAICTICGIGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG		
	TSE TO NO. 132)	
Upstream Primer= D2-E/Xba/2344 = 5'-GGAIAGGAAITCIAGAAGCACCICACTGTCTG-3' 'ss		
	-	
	1987 TO NOT 134)	
Downstream Primer D1-E/Xba/2344 = 3'-COGATCCTAATTTAAGATCTTTGTGCAGGGAAAGCC-5' (SE	-5' (SEO ID NO. 125'	
-	-	

FIGURE 34A

D2.VAC D1.VAC D3.VAC D4.VAC

FIGURE 34B

FIGURE 35A

FIGURE 35B

FIGURE 36

Intr-tional Application No PUI/US 96/09209

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/40 C12N15/86 C07K14/18 A61K39/12 C12N7/01 C12N7/00 C12N5/10 According to International Patent Classification (IPC) or to both national classification and IPC	
According to International Patent Classification (IPC) or to both national classification and IPC	
(2 0) or to over meterial challifearest and if C	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K C12N A61K	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched	
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT	<u>.</u>
Category * Citation of document, with indication, where appropriate, of the relevant passages Relev	ant to claim No.
P,X VACCINE, vol. 14, no. 4, March 1996, GUILDFORD GB, pages 329-336, XP000579824	,
VAUGHN, D.W. ET AL.: "Testing of a Dengue 2 live-attenuated vaccine (strain 16681 PDK 53) in ten american volunteers" see the whole document	
VIROLOGY, vol. 187, no. 4, April 1992, ORLANDO US, pages 573-590, XP000601641 BLOK, J. ET AL.: "Comparaison of Dengue -2 virus and its candidate vaccine derivative: sequence relationships with	2, 29,36
the Flaviviruses and other viruses" see the whole document 1	
-/	
X Further documents are listed in the continuation of box C.	
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance: E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed T' later document published after the international filing or priority date and not in conflict with the application invention C' and the priority date and not in conflict with the application invention T' later document published after the international filing or priority date and not in conflict with the application invention T' later document published after the international filing or priority date and not in conflict with the application invention T' later document published after the international filing or priority date and not in conflict with the application invention T' later document published after the international filing or priority date and not in conflict with the application invention T' later document published after the international filing or priority date and not in conflict with the application invention T' at document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taln document of particular relevance; the claimed invention cannot be considered novel or cannot be consid	ion but ng the tion t to nalone tion hen the docu-
ate of the actual completion of the international search Date of mailing of the international search report September 1996 23. 10. 96	
ame and mailing address of the ISA Authorized officer	
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Chambonnet, F	

+2

Int tional Application No
PUT/US 96/09209

(Continu	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 96/09209
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
,	WO,A,93 06214 (US ARMY) 1 April 1993	1
A i	See claims 40,63-68	
*	AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, vol. 47, no. 4 sup, 1992, pages 99-100, XP000600344 VAUGHN, D.W. ET AL.: "Phase I testing of a dengue-2 live-attenuated vaccine strain 16681 PDK 53 in american volunteers" see the whole document & 41st Annual Meeting of the American Society of Tropical Medicine and Hygiene Washington, USA November 15-19 1992	
	WO,A,92 03161 (US GOVERNMENT) 5 March 1992 see the whole document	1
\	WO,A,93 22440 (UNIV SINGAPORE ;TAN YIN HWEE (SG); FU JIANLIN (SG); TAN BOON HUAN) 11 November 1993 see the whole document	1,2,5,6, 13
	WO,A,92 03545 (VIROGENETICS CORP) 5 March 1992 see claims 1,9,10,16-23,26; example 13	1
	VIROLOGY, vol. 174, no. 2, February 1990, ORLANDO US, pages 479-493, XP002012813 RICO-HESSE, R.: "Molecular evolution and distribution of Dengue Viruses type 1 and 2 in nature" see the whole document	1
	JOURNAL OF GENERAL VIROLOGY, vol. 69, no. 6, June 1988, pages 1391-1398, XP000600928 GRUENBERG, A. ET AL.: "Partial nucleotide sequence and deduced amino acid sequence of the structural proteins of Dengue virus type 2, New Guinea C and PUO-218 strains" see the whole document	1

2

Form PCT/ISA/218 (continuation of second short) (July 1992)

Int dional Application No
Pur/US 96/09209

· C		Puf/US 96/09209			
ategory *	citation of decreases with individual and the citation of decreases with the citation of decreases with the citation of the				
	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.		
	VIROLOGY, vol. 162, no. 1, January 1988, ORLANDO US, pages 167-180, XP000600931 HAHN, Y.S. ET AL.: "Nucleotide sequence of Dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses" see the whole document		1		
	see the whole document				
}					
		İ			
ł					
		ŀ			
- 1		İ			
		Ì			
		•			
ĺ					

17

.2

Fremational application No.

PCT/US 96/09209

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: 6 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although this claim is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	4
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Information on patent tamily memoers

Int ional Application No PCT/US 96/09209

Patent document cited in search report	Publication date 01-04-93	Patent family member(s)		Publication date 18-04-96 27-04-93 01-04-93 06-07-94 15-12-94	
WO-A-9306214		AU-B- 667836 AU-B- 2691492 CA-A- 2116980 EP-A- 0604566 JP-T- 6511150			
WO-A-9203161	05-03-92	AU-B- US-A-	8762591 5494671	17-03-92 27-02-96	
WO-A-9322440	11-11-93	AU-B- CA-A- EP-A-	4257593 2134666 0638122	29-11-93 11-11-93 15-02-95	
WO-A-9203545	05-03-92	US-A- AU-B- AU-B- GB-A,B JP-T-	5514375 657711 8728791 2269820 6503227	07-05-96 23-03-95 17-03-92 23-02-94 14-04-94	