Kathmandu University Department of Computer Science and Engineering Dhulikhel, Kavre

A Project Report on "Even Number Separation"

[Code No:COMP 231]

Submitted by:

Abiral Adhikari (02)

Aakriti Banjara (05)

Nischal Baral (06)

Prashant Manandhar(30)

Samir Wagle (60)

Submitted to:

Dr. Gajendra Sharma Department of Computer Science and Engineering

Submission Date: 15/05/2023

Problem/Task

Write an assembly language program to separate even numbers from the given list of 50 numbers and store them in another list starting from 2200H. Assume the starting address of the 50 number list is 2100H

Instructions Used

- LXI Load immediate data to register a pair. It loads a register pair with a 16-bit instantaneous value. Using the instruction LXI H, 2100H, the value 2100H is loaded into the H and L registers.
- MVI Move immediate data to register. It loads an 8-bit immediate value to a register. For example, MVI B, 50 loads the value 50 to the B register.
- MOV Move data between registers/memory locations. It transfers data between registers or memory locations. In the case of MOV A, M, the information from the memory location indicated to by the HL register pair is transferred to the accumulator register.
- ADI Add immediate data to accumulator. The accumulator register gains an 8-bit instantaneous value as a result. For instance, ADI 7H increases the accumulator's value by 7H.
- INX Increment register pair. A 16-bit register pair is increased. For instance, the HL register pair is increased by INX H.
- DCR Decrement register/memory location. An 8-bit register or memory location is decreased. DCR B, for instance, decreases the B register.
- JNZ Jump if not zero. If the zero flag is not set, it leaps to a specific point in the memory. For instance, if the zero flag is not set, JNZ loop jumps to the memory location designated as "loop."
- ANI Logical AND immediate data with accumulator. It does a logical AND operation between the accumulator register and an 8-bit instantaneous value. For instance, ANI

01H executes a logical AND operation between the value 01H and the accumulator register.

- STAX Store accumulator data to memory. The memory address pointed to by the register pair receives the contents of the accumulator register. As an illustration, the DE register pair points to the memory address where STAX D holds the contents of the accumulator register.
- HLT Halt the CPU. It halts the running of the program. HLT, for instance, halts the running of the program.

Flowchart

Figure 1: Flowchart

Procedure/Methods

- The starting memory address where the data is placed is used by the program to initialize the H register. It is set to 2100H in this instance.
- The B register, which serves as a counter for the loop, is initialized by the program with a value of 50.
- The C register is initialized by the program with the value 7H (7 in hexadecimal).
- The program then starts a loop that uses the H register as the memory address to obtain a number from memory.
- The software uses the accumulator register to add the value 7H to the retrieved number before storing the outcome back in memory.
- The next number is read from memory by the program, which then uses the accumulator register to add the value 13H (or 13 in hexadecimal) to it before writing the result back to memory.
- The H register is increased by the program to point to the following memory location.
- The B register counter is decreased by one by the program.
- The B register counter is verified to be zero by the software. If not, the loop is completed by returning to step 4.
- The program terminates if the B register counter is 0.
- The starting memory address where the data is placed is used by the program to initialize the H register. It is set to 2100H in this instance.
- The starting memory address where the result data will be stored is used to initialize the D register by the application. It is set to 2200H in this instance.
- The C register is filled with the value 50H, or 80 in decimal, by the program.
- The program then starts a loop that uses the H register as the memory address to obtain a number from memory.
- Using the AND operator and the mask value of 01H, the software determines whether the retrieved number is even present.
- If the recovered number is even, the software uses the STAX instruction to store it in the memory address indicated to by the D register.
- To point to the subsequent result memory address, the software advances the D register.
- The H register is increased by the program to point to the following memory location.
- The C register counter is decreased by one by the program.
- The C register counter is verified to be zero by the program. If not, the loop is completed by returning to step 4.
- The program terminates if the C register counter is 0.

Source Code

Mnemonic		Comments		
	LXI H, 2100H	Initialize H register with starting memory address		
	MVI B, 32H	Set the counter to 50 Loads the value 7H (7 in hexadecimal) into the register C		
	MVI C, 7H			
Loop:	MOV A, M	Move the number at current memory location to the accumulator		
	ADI 7H	Adds the value 7H (7 in hexadecimal) to the accumulator register		
	MOV M, A	Move the updated number back to current memory location		
	INX H	Increment memory address		
	DCR B	Decrement the counter		
	MOV M, A	Moves the contents of the accumulator register to the memory location pointed by the HL register pair		
	MOV A, M	Move the number at current memory location to accumulator		
	ADI 13H	Adds the value 13H (13 in hexadecimal) to the accumulator register		
	MOV M, A	Move the updated number back to current memory location		

	INX H	Increment memory address		
	DCR B	Decrement the counter		
	MOV M, A	Moves the contents of the accumulator register to the memory location pointed by the HL register pair		
	JNZ loop Jump back to loop until the counter be			
	•	·		
	LXI H, 2100H	Initialize H register with starting memory address		
	LXI D, 2200H	Initialize memory pointer 2		
	MVI C, 50H	Initialize counter		
BACK:	MOV A, M	Get the number		
	ANI 01H	Check for even number		
	JNZ SKIP	If ODD, don't store		
	MOV A, M	Get the number		
	STAX D	Store the number in result list		
	INX D	Increment pointer 2		
SKIP	INX H	Increment pointer I		
	DCR C	Decrement counter		
	JNZ BACK	If not zero, repeat		
	HLT	Stop		

Assembler Output

Code	Mnemonic	Comments			
21 00 21	LXI H, 2100H	Initialize H register with starting memory address			
06 32	MVI B, 32H	Set the counter to 50			
0E 07	MVI C, 7H	Loads the value 7H (7 in hexadecimal) into the register C			
7E	loop: MOV A, M	Move the number at current memory location to the accumulator			
C6 07	ADI 7H	Adds the value 7H (7 in hexadecimal) to the accumulator register			
77	MOV M, A	Move the updated number back to current memory location			
23	INX H	Increment memory address			
05	DCR B	Decrement the counter			
77	MOV M, A	Moves the contents of the accumulator register to the memory location pointed by the HL register pair			
7E	MOV A, M	Move the number at current memory location to accumulator			
C6 13	ADI 13H	Adds the value 13H (13 in hexadecimal) to the accumulator register			
77	MOV M, A	Move the updated number back to current memory location			
23	INX H	Increment memory address			
05	DCR B	Decrement the counter			
77	MOV M, A	Moves the contents of the accumulator register to the memory location pointed by the HL register pair			
C2 07 08	JNZ loop	Jump back to loop until the counter becomes 0			
21 00 21	LXI H, 2100H	Initialize H register with starting memory address			
11 00 22	LXI D, 2200H	Initialize memory pointer 2			
0E 50	MVI C, 50H	Initialize counter			
7E	BACK: MOV A, M	Get the number			

E6 01	ANI 01H	Check for even number			
C2 29 08	JNZ SKIP	If ODD, don't store			
7E	MOV A, M	Get the number			
12	STAX D	Store the number in result list			
13	INX D	Increment pointer 2			
23	SKIP: INX H	Increment pointer I			
0D	DCR C	Decrement counter			
C2 20 08	JNZ BACK	If not zero, repeat			
76	HLT	Stop			

Output

When the address is 2100H for input of 50 number needed for the arranging . which is shown below:

Figure 1: Memory block for showing 50 number input

The list after filtering out the even number is shown in figure below which was stored in address 2200H:

Figure 3: Memory block showing filtered out numbers

The flag and register output are shown below:

Figure 4: Register and Flag of status