(11) EP 0 646 022 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 28.09.2005 Bulletin 2005/39
- (21) Application number: 93916449.7
- (22) Date of filing: 08.06.1993

- (51) Int CI.7: **A61L 27/00**, A61K 38/18, A61K 6/00
- (86) International application number: PCT/US1993/005446
- (87) International publication number: WO 1993/025246 (23.12.1993 Gazette 1993/30)

(54) PROSTHETIC DEVICES HAVING ENHANCED OSTEOGENIC PROPERTIES

PROTHESEN MIT ERHÖHTEN OSTEOGENEN EIGENSCHAFTEN PROTHESES A PROPRIETES OSTEOGENES ACCRUES

- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL

 PT SE
- (30) Priority: 16.06.1992 US 901703
- (43) Date of publication of application: 05.04.1995 Bulletin 1995/14
- (73) Proprietor: STRYKER CORPORATION Natick, MA 01760-0053 (US)
- (72) Inventors:
 - RUEGER, David, C.
 Hopkinton, MA 01748 (US)
 - KUBERASAMPATH, Thangavel Medway, MA 02053 (US)
 - OPPERMAN, Hermann Medway, MA 02053 (US)
 - OZKAYNAK, Egnin Milford, MA 01757 (US)

- (74) Representative: Price, Vincent Andrew et al Fry Heath & Spence LLP The Gables Massetts Road Horley Surrey RH6 7DQ (GB)
- (56) References cited:

EP-A- 0 106 946 EP-A- 0 182 483 EP-A- 0 361 896 EP-A- 0 413 492 EP-A- 0 470 305 WO-A-88/00205 WO-A-91/05802 DE-A- 2 534 593

- WOZNEY ET AL: 'Novel regulators of bone formation...' SCIENCE vol. 242, 1988, pages 1528
 1533
- ARTHUR HAM: 'Histology', 1969, LIPPINCOTT COMPANY, PHILIDELPHIA * page 388 - page 432
- ROSEN ET AL CONNECTIVE TISSUE RESEARCH vol. 20, 1989, pages 313 - 319
- WANG ET AL PNAS vol. 85, 1988, pages 9484 -9488

Description

15

20

25

30

35

40

45

Background of the Invention

[0001] Regeneration of skeletal tissues is thought to be regulated by specific protein factors that are naturally present within bone matrix. When a bone is damaged, these factors stimulate cells to form new cartilage and bone tissue which replaces or repairs lost or damaged bone. Regeneration of bone is particularly important where prosthetic implants are used without bonding cement to replace diseased bone, as in hip replacement. In these cases, formation of a tight bond between the prosthesis and the existing bone is very important, and successful function depends on the interaction between the implant and the bone tissue at the interface.

[0002] Bone healing can be stimulated by one or more osteogenic proteins which can induce a developmental cascade of cellular events resulting in endochondral bone formation. Proteins stimulating bone growth have been referred to in the literature as bone morphogenic proteins, bone inductive proteins, osteogenic proteins, osteogenin or osteoinductive proteins.

[0003] U.S. 4,968,590 (November 6, 1990) discloses the purification of "substantially pure" osteogenic protein from bone, capable of inducing endochondral bone formation in a mammal when implanted in the mammal in association with a matrix, and having a half maximum activity of at least about 25 to 50 nanograms per 25 milligrams of implanted matrix. Higher activity subsequently has been shown for this protein, e.g., 0.8-1.0 ng of osteogenic protein per mg of implant matrix, as disclosed in U.S. Patent 5,011,691. This patent also disclosed a consensus DNA sequence probe useful for identifying genes encoding osteogenic proteins, and a number of human genes encoding osteogenic proteins identified using the consensus probe, including a previously unidentified gene referred to therein as "OP1" (osteogenic protein-1). The consensus probe also identified DNA sequences corresponding to sequences termed BMP-2 Class I and Class II ("BMP2" and "BMP4" respectively) and BMP3 in International Appl. No. PCT/US87/01537. The osteogenic proteins encoded by these sequences are referred to herein as "CBMP2A," "CBMP2B", and "CBMP3", respectively. U.S. 5,011,691 also defined a consensus "active region" required for osteogenic activity and described several novel biosynthetic constructs using this consensus sequence which were capable of inducing cartilage or bone formation in a mammal in association with a matrix.

[0004] These and other researchers have stated that successful implantation of the osteogenic factors for endochondral bone formation requires that the proteins be associated with a suitable carrier material or matrix which maintains the proteins at the site of application. Bone collagen particles which remain after demineralization, guanidine extraction and delipidation of pulverized bone have been used for this purpose. Many osteoinductive proteins are useful cross-species. However, demineralized, delipidated, guanidine-extracted xenogenic collagen matrices typically have inhibited bone induction in vivo. Sampath and Reddi (1983) Proc. Natl. Acad. Sci. USA, 80: 6591-6594. Recently, however, Sampath et al. have described a method for treating demineralized guanidine-extracted bone powder to create a matrix useful for xenogenic implants. See, U.S. 4,975,526 (December 4, 1990). Other useful matrix materials include for example, collagen; homopolymers or copolymers of glycolic acid, lactic acid, and butryic acid, including derivatives thereof; and ceramics, such as hydroxyapatite, tricalcium phosphate and other calcium phosphates. Combinations of these matrix materials also may be useful.

[0005] Orthopedic implants have traditionally been attached to natural bone using bone cement. More recently, cementless prostheses have been used, in which the portion of the prosthesis that contacts the natural bone is coated with a porous material. M. Spector, J. Arthroplasty, 2(2):163-176 (1987); and Cook et al., Clin. Orthoped. and Rel. Res., 232: 225-243 (1988). Cementless fixation is preferred because biological fixation of the prosthesis is stronger when osseointegration is achieved. The porous coatings reportedly stimulate bone ingrowth resulting in enhanced biological fixation of the prosthesis. However, there are several problems with porous-coated prostheses. For example, careful prosthetic selection is required to obtain a close fit with the bone to ensure initial mechanical stabilization of the device, and surgical precision is required to ensure initial implant-bone contact to promote bone ingrowth. Porous coated implants have not resulted in bone ingrowth in some instances, for example, in porous coated tibial plateaus used in knee replacements. A prosthetic implant that results in significant bone ingrowth and forms a strong bond with the natural bone at the site of the join would be very valuable.

[0006] The current state of the art for the anchoring of embedded implants such as dental implants also is unsatisfactory. Typically, dental implant fixation first requires preparing a tooth socket in the jawbone of an individual for prosthesis implantation by allowing bone ingrowth into the socket void to fill in the socket. This preparatory step alone can take several months to complete. The prosthesis then is threaded into the new bone in the socket and new bone is allowed to regrow around the threaded portion of the implant embedded in the socket. The interval between tooth extraction and prosthetic restoration therefore can take up to eight months. In addition, threading the prosthesis into bone can damage the integrity of the bone. Prosthetic dental implants that can improve osseointegration and reduce the time and effort for fixation would be advantageous.

Summary of the Invention

10

15

20

25

30

35

40

45

50

55

[0007] The present invention relates to the subject matter of the claims. The invention may find application in a method of enhancing the growth of bone at the site of implantation of a prosthesis to form a bond between the prosthesis and the existing bone. As used herein, a prosthesis is understood to describe the addition of an artificial part to supply a defect in the body. The method involves coating or otherwise contacting all or a portion of the prosthesis that will be in contact with bone with a substantially pure osteogenic protein. A prosthesis is coated with the osteogenic protein and then implanted in the individual at a site wherein the bone tissue and the surface of the prosthesis are maintained in close proximity for a time sufficient to permit enhanced bone tissue growth between the tissue and the implanted prosthesis. The osteogenic protein associated with the implanted prosthesis stimulates bone growth around the prosthesis and causes a stronger bond to form between the prosthesis and the existing bone than would form between the prosthesis and the bone in the absence of the protein.

[0008] In a preferred embodiment of the invention a prosthetic device, such as an artificial hip replacement device, e.g., a metallic device made from titanium, for example, is first coated with an osteogenic material which induces bone ingrowth. When the device is subsequently implanted into the individual, bone growth around the site of the implant is enhanced, causing a strong bond to form between the implant and the existing bone. The method results in enhanced biological fixation of the prosthesis in the body, which is particularly important for weight bearing prostheses. Prostheses defining a microporous surface structure are locked in place as bone formation occurs within the micropores. The metal or ceramic prosthesis itself defines such a structure.

[0009] The implant may have a shape defining one or more indentations to permit bone ingrowth. The indentations are preferably transverse to the longitudinal axis of the implant. In general, the longitudinal axis of the implant will be parallel to the longitudinal axis of the bone which has been treated to receive the implant. New bone grows into the indentations thereby filling them, integrates with the surface of the implant as described above, and integrates with existing bone. Thus, the prosthesis can be more tightly fixed into the orifice, and "latched" or held in place by bone growing into the indentations, and by osseointegration of new bone with the surface of the implant, both of which are stimulated by the osteogenic protein.

[0010] In a specific embodiment, a dental implant is used to replace missing teeth. The implant typically comprises a threaded portion which is fixed into the jawbone and a tooth portion configured to integrate with the rest of the patient's teeth. The implant is coated with osteogenic protein and threaded or screwed into a tooth socket in the jawbone prepared to receive it (e.g., bone has been allowed to grow into and fill the socket void.) In a particularly preferred embodiment, the socket is prepared to receive the implant by packing the void with a bone growth composition composed of osteogenic protein dispersed in a suitable carrier material. The combination of osteogenic protein and carrier is referred to herein as an "osteogenic device." The osteogenic protein promotes osseointegration of the implant into the jawbone without first requiring bone growth to fill the socket, and without requiring that the prosthesis be threaded into existing bone, which may weaken the integrity of the the existing bone. Accordingly, the time interval between tooth extraction and prosthetic restoration is reduced significantly. It is anticipated that prosthetic restoration may be complete in as little time as one month. In addition, the ability of the osteogenic protein to promote osseointegration of the prosthesis will provide a superior anchor.

[0011] The invention results in enhanced biological fixation of the prosthesis. A strong bond is formed between the existing bone and the prosthesis, resulting in improved mechanical strength at the joining site. Higher attachment strength means that the prosthesis will be more secure and permanent, and therefore will be more comfortable and durable for the patient.

Brief Description of the Drawing

[0012] The sole Figure of the drawing schematically depicts a cross-sectional view of a portion of a prosthesis implanted in a femur and illustrates the latching action of bone ingrowth in accordance with an embodiment of the invention.

Detailed Description of the Invention

[0013] Described herein is a method for enhancing osseointegration between a prosthesis and natural bone in an individual at the site of implantation of the prosthesis. The method involves providing a prosthesis to a site of implantation together with substantially pure osteogenic protein such that the osteogenic protein is in contact with all or a portion of the implanted prosthesis. The protein promotes osseointegration of the prosthesis and the bone, resulting in a strong bond having improved tensile strength.

[0014] Osteogenic proteins which are useful in the present invention are described hereinafter.

[0015] The natural-sourced osteogenic protein in its mature, native form is a glycosylated dimer having an apparent

5

10

15

molecular weight of about 30 kDa as determined by SDS-PAGE. When reduced, the 30 kDa protein gives rise to two glycosylated peptide subunits having apparent molecular weights of about 16 kDa and 18 kDa. In the reduced state, the protein has no detectable osteogenic activity. The unglycosylated protein, which also has osteogenic activity, has an apparent molecular weight of about 27 kDa. When reduced, the 27 kDa protein gives rise to two unglycosylated polypeptides having molecular weights of about 14 kDa to 16 kDa. The recombinantly-produced osteogenic protein describes a class of dimeric proteins capable of inducing endochondral bone formation in a mammal comprising a pair of polypeptide chains, each of which has an amino acid sequence sufficiently duplicative of the sequence of the biosynthetic constructs or COP-5 Or COP-7, (SEQ. ID NOS.3 and 4), such that said pair of polypeptide chains, when disulfide bonded to produce a dimeric species is capable of inducing endochondral bone formation in a mammal. As defined herein, "sufficiently duplicative" is understood to describe the class of proteins having endochondral bone activity as dimeric proteins implanted in a mammal in association with a matrix, each of the subunits having at least 60% amino acid sequence homology in the C-terminal cysteine-rich region with the sequence of OPS (residues 335 to 431, SEQ. ID No. 1). "Homology" is defined herein as amino acid sequence identity or conservative amino acid changes within the sequence, as defined by Dayoff, et al., Atlas of Protein Sequence and Structure; vol.5, Supp.3, pp. 345-362, (M.O. Dayoff, ed. Nat'l Biomed. Research Fdn., Washington, D.C., 1979.) Useful sequences include those comprising the C-terminal sequences of DPP (from Drosophila), VgI (from Xenopus), Vgr-1 (from mouse), the OP1 and OP2 proteins, the CBMP2, CBMP3, and CBMP4 proteins (see U.S. Pat. No. 5,011,691 and U.S. Patent No. 5,266,683, the disclosures of both of which are hereby incorporated by reference, as well as the proteins referred to as BMP5 and BMP6 (see WO90/11366, PCT/US90/01630.) A number of these proteins also are described in WO88/00205, U.S. Patent No. 5,013,649 and WO91/18098. Table I provides a list of the preferred members of this family of osteogenic proteins.

TABLE I -

25	OSTEOGENIC	PROTEIN SEQUENCES
25	hOP1 -	DNA sequence encoding human OP1 protein (Seq. ID No. 1 or 3). Also referred to in related applications as "OP1", "hOP-1" and "OP-1".
	OP1 -	Refers generically to the family of osteogenically active proteins produced by expression of part or all of the hOP1 gene. Also referred to in related applications as "OPI" and OP-1".
30	hOP1-PP -	Amino acid sequence of human OP1 protein (prepro form), Seq. ID No. 1, residues 1-431. Also referred to in related applications as "OP1-PP" and "OPP".
35	OP1-18Ser -	Amino acid sequence of mature human OP1 protein, Seq. ID No. 1, residues 293-431. N-terminal amino acid is serine. Originally identified as migrating at 18 kDa on SDS-PAGE in COS cells. Depending on protein glycosylation pattern in different host cells, also migrates at 23kDa, 19kDa and 17kDa on SDS-PAGE. Also referred to in related applications as "OP1-18".
	OPS -	Human OP1 protein species defining the conserved 6 cysteine skeleton in the active region (97 amino acids, Seq. ID No. 1, residues 335-431). "S" stands for "short".
	OP7 -	Human OP1 protein species defining the conserved 7 cysteine skeleton in the active region (102 amino acids, Seq. ID No. 1, residues 330-431).
40	OP1-16Ser -	N-terminally truncated mature human OP1 protein species. (Seq. ID No. 1, residues 300-431). N-terminal amino acid is serine; protein migrates at 16kDa or 15kDa on
		SDS-PAGE, depending on glycosylation pattern. Also referred to in related applications as "OP-16S".
45	OP1-16Leu -	N-terminally truncated mature human OP1 protein species, Seq. ID No. 1, residues 313-431. N-terminal amino acid is leucine; protein migrates at 16 or 15kDa on SDS-PAGE, depending on glycosylation pattern. Also referred to in related applications as "OP-16L".
50	OP1-16Met -	N-terminally truncated mature human OP1 protein species, Seq. ID No. 1, residues 315-431. N-terminal amino acid is methionine; protein migrates at 16 or 15kDa on SDS-PAGE, depending on glycosylation pattern. Also referred to in related applications as "OP-16M".
30	OP1-16A1a -	N-terminally truncated mature human OP1 protein species, Seq. ID No. 1, residues 316-431. N-terminal amino acid is alanine, protein migrates at 16 or 15 kDa on SDS-PAGE, depending on glycosylation pattern. Also referred to in related applications as "OP-16A".
55	OP1-16Val -	N-terminally truncated mature human OP1 protein species, Seq. ID No. 1, residues 318-431. N-terminal amino acid is valine; protein migrates at 16 or 15 kDa on SDS-PAGE, depending on glycosylation pattern. Also referred to in related applications as "OP-16V".

TABLE I - (continued)

	OSTEOGENIC	PROTEIN SEQUENCES
5	mOP1 -	DNA encoding mouse OP1 protein, Seq. ID No. 8. Also referred to in related applications as "mOP-1".
	mOP1-PP -	Prepro form of mouse protein, Seq. ID No. 8, residues 1-430. Also referred to in related applications as "mOP-1-PP".
	mOP1-Ser -	Mature mouse OP1 protein species (Seq. ID No. 8, residues 292-430). N-terminal amino acid is serine. Also referred to in related applications as "mOP1" and "mOP-1".
10	mOP2 -	DNA encoding mouse OP2 protein, Seq. ID No. 12. Also referred to in related applications as "mOP-2".
	mOP2-PP -	Prepro form of mOP2 protein, Seq. ID No. 12, residues 1-399. Also referred to in related applications as "mOP-2-PP".
15	mOP2-Ala -	Mature mouse OP2 protein, Seq. ID No. 12, residues 261-399. N-terminal amino acid in alanine. Also referred to in related applications as "mOP2" and "mOP-2".
	hOP2 -	DNA encoding human OP2 protein, Seq. ID No. 10. Also referred to in related applications as "hOP-2".
	hOP2-PP -	Prepro form of human OP2 protein, Seq. ID No. 10, res. 1-402). Also referred to in related applications as "hOP-2-PP".
20	hOP2-Ala -	Possible mature human OP2 protein species: Seq. ID No. 10, residues 264-402. Also referred to in related applications as "hOP-2".
	hOP2-Pro -	Possible mature human OP2 protein species: Seq. ID No. 10, residues 267-402. N-terminal amino acid is proline. Also referred to in related applications as "hOP-2P".
25	hOP2-Arg -	Possible mature human OP2 protein species: Seq. ID No. 10, res. 270-402. N-terminal amino acid is arginine. Also referred to in related applications as "hOP-2R".
	hOP2-Ser -	Possible mature human OP2 protein species: Seq. ID No. 10, res. 243-402. N-terminal amino acid is serine. Also referred to in related applications as "hOP-2S".
	Vgr-1-fx	C-terminal 102 amino acid residues of the murine "Vgr-1" protein (Seq. ID No. 7).
30	СВМР2А	C-terminal 101 amino acid residues of the human BMP2A protein. (Residues 296-396 of Seq. ID No. 14).
	СВМР2В	C-terminal 101 amino acid residues of the human BMP2B protein. (Seq. ID No. 18).
	ВМР3	Mature human BMP3 (partial sequence, Seq. ID No. 16. See U.S. 5,011,691 for C-terminal 102 residues, "CBMP3.")
35	BMP5-fx	C-terminal 102 amino acid residues of the human BMP5 protein. (Seq ID No. 20).
	BMP6-fx	C-terminal 102 amino acid residues of the human BMP6 protein. (Seq ID No. 21).
	COP5	Biosynthetic ostegenic 96 amino acid sequence (Seq. ID No. 3).
	COP7	Biosynthetic osteogenic 96 amino acid sequence (Seq. ID No. 4).
40	DPP-fx	C-terminal 102 amino acid residues of the Drosophila "DPP" protein (Seq. ID No. 5).
	Vgl-fx	C-terminal 102 amino acid residues of the Xenopus "Vgl" protein (Seq. ID No. 6).

[0016] The members of this family of proteins share a conserved six or seven cysteine skeleton in this region (e.g., the linear arrangement of these C-terminal cysteine residues is conserved in the different proteins.) See, for example, OPS, whose sequence defines the six cysteine skeleton, or OP7, a longer form of OP1, comprising 102 amino acids and whose sequence defines the seven cysteine skeleton.) In addition, the OP2 proteins contain an additional cysteine residue within this region.

[0017] This family of proteins includes longer forms of a given protein, as well as species and allelic variants and biosynthetic mutants, including addition and deletion mutants and variants, such as those which may alter the conserved C-terminal cysteine skeleton, provided that the alteration still allows the protein to form a dimeric species having a conformation capable of inducing bone formation in a mammal when implanted in the mammal in association with a matrix. In addition, the osteogenic proteins of this invention may include forms having varying glycosylation patterns and varying N-termini, may be naturally occurring or biosynthetically derived, and may be produced by expression of recombinant DNA in procaryotic or eucaryotic host cells. The proteins are active as a single species (e.g., as homodimers), or combined as a mixed species.

50

55

[0018] A particularly preferred embodiment of the proteins useful in the prosthetic devices of this invention includes proteins whose amino acid sequence in the cysteine-rich C-terminal domain has greater than 60% identity, and pref-

erably greater than 65% identity with the amino acid sequence of OPS.

5

10

15

25

30

35

40

45

[0019] Described herein are osteogenic proteins comprising species of polypeptide chains having the generic amino acid sequence herein referred to as "OPX" which accommodates the homologies between the various identified species of the osteogenic OP1 and OP2 proteins, and which is described by the amino acid sequence of Sequence ID No. 22. [0020] Also described herein are nucleic acids and the osteogenically active polypeptide chains encoded by these nucleic acids which hybridize to DNA or RNA sequences encoding the active region of OP1 or OP2 under stringent hybridization conditions. As used herein, stringent hybridization conditions are defined as hybridization in 40% formamide, 5 X SSPE, 5 X Denhardt's Solution, and 0.1% SDS at 37°C overnight, and washing in 0.1 X SSPE, 0.1% SDS at 50°C.

[0021] Also described herein are nucleic acids and the osteogenically active polypeptide chains encoded by these nucleic acids which hybridize to the "pro" region of the OP1 or OP2 proteins under stringent hybridization conditions. As used herein, "osteogenically active polypeptide chains" is understood to mean those polypeptide chains which, when dimerized, produce a protein species having a conformation such that the pair of polypeptide chains is capable of inducing endochondral bone formation in a mammal when implanted in a mammal in association with a matrix or carrier.

[0022] Given the foregoing amino acid and DNA sequence information, the level of skill in the art, and the disclosures of U.S. Patent 5,011,691 and published PCT specification US 89/01469, published October 19, 1989, the disclosures of which are incorporated herein by reference, various DNAs can be constructed which encode at least the active domain of an osteogenic protein useful in this invention, and various analogs thereof (including species and allelic variants and those containing genetically engineered mutations), as well as fusion proteins, truncated forms of the mature proteins, deletion and addition mutants, and similar constructs. Moreover, DNA hybridization probes can be constructed from fragments of any of these proteins, or designed de novo from the generic sequence. These probes then can be used to screen different genomic and cDNA libraries to identify additional osteogenic proteins useful in the invention.

[0023] The DNAs can be produced by those skilled in the art using well known DNA manipulation techniques involving genomic and cDNA isolation, construction of synthetic DNA from synthesized oligonucleotides, and cassette mutagenesis techniques. 15-100mer oligonucleotides may be synthesized on a DNA synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer. The DNA then may be electroeluted from the gel. Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified by PAGE.

[0024] The DNA from appropriately identified clones then can be isolated, subcloned (preferably into an expression vector), and sequenced. Plasmids containing sequences of interest then can be transfected into an appropriate host cell for protein expression and further characterization. The host may be a procaryotic or eucaryotic cell since the former's inability to glycosylate protein will not destroy the protein's morphogenic activity. Useful host cells include <u>E. coli</u>, <u>Saccharomyces</u>, the insect/baculovirus cell system, myeloma cells, CHO cells and various other mammalian cells. The vectors additionally may encode various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred signal sequences for protein secretion, and the like.

[0025] The DNA sequence encoding the gene of interest also may be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation. The recombinant osteogenic protein also may be expressed as a fusion protein. After being translated, the protein may be purified from the cells themselves or recovered from the culture medium. All biologically active protein forms comprise dimeric species joined by disulfide bonds or otherwise associated, produced by folding and oxidizing one or more of the various recombinant polypeptide chains within an appropriate eucaryotic cell or in vitro after expression of individual subunits. A detailed description of osteogenic proteins expressed from recombinant DNA in E. coli is disclosed in U.S. Serial No. 422,699 filed October 17, 1989, the disclosure of which is incorporated herein by reference. A detailed description of osteogenic proteins expressed from recombinant DNA in numerous different mammalian cells is disclosed in U.S. Serial No. 569,920 filed August 20, 1990, the disclosure of which is hereby incorporated by reference.

[0026] Alternatively, osteogenic polypeptide chains can be synthesized chemically using conventional peptide synthesis techniques well known to those having ordinary skill in the art. For example, the proteins may be synthesized intact or in parts on a solid phase peptide synthesizer, using standard operating procedures. Completed chains then are deprotected and purified by HPLC (high pressure liquid chromatography). If the protein is synthesized in parts, the parts may be peptide bonded using standard methodologies to form the intact protein. In general, the manner in which the osteogenic proteins are made can be conventional and does not form a part of this invention.

[0027] The osteogenic proteins useful in the present invention are proteins which, when implanted in a mammalian body, induce the developmental cascade of endochondral bone formation including recruitment and proliferation of mesenchymal cells, differentiation of progenitor cells, cartilage formation, calcification of cartilage, vascular invasion, bone formation, remodeling and bone marrow differentiation. The osteopenic protein in contact with the present pros-

theses can induce the full developmental cascade of endochondral bone formation at the site of implantation essentially as it occurs in natural bone healing.

[0028] The prostheses of the invention may be stainless steel, titanium, molybdenum, cobalt, chromium and/or alloys or oxides of these metals. Such oxides typically comprise a thin, stable, adherent metal oxide surface coating. The prostheses are preferably formed from porous metals to permit infiltration of the bone, but non-porous materials also can be used. Porous metallic materials for use in prostheses are described, for example, by Spector in J. Arthroplasty, 2(2):163-176 (1987), and by Cook et al. in Clin. Orthoped. and Rel. Res., 232:225-243 (1988), the teachings of both of which are hereby incorporated herein by reference. Metallic prostheses may be used for major bone or joint replacement and for repairing non-union fractures, for example, where the existing bone has been destroyed by disease or injury.

[0029] In a preferred embodiment of the present device and method, the prosthesis is coated with a material which enhances bone ingrowth and fixation, in addition to the protein. Materials which are useful for this purpose are biocompatible, and preferably in vivo biodegradable and non-immunogenic. Such materials include, for example, collagen, hydroxyapatite, homopolymers or copolymers of glycolic acid lactic acid, and butyric acid and derivatives thereof, tricalcium phosphate or other calcium phosphates, metal oxides, (e.g., titanium oxide), and demineralized, guanidine extracted bone.

[0030] The present coated prostheses are prepared by applying a solution of the protein, and optionally, hydroxylapatite or other material to all or a portion of the prosthesis. The protein can be applied by any convenient method, for example, by dipping, brushing, immersing, spraying or freeze-drying. Hydroxylapatite is preferably applied by a plasma spraying process. The protein is preferably applied by immersing the prostheses in a solution of the protein under conditions appropriate to induce binding or precipitation of the protein from solution onto the implant. The amount of protein which is applied to the implant should be a concentration sufficient to induce endochondral bone formation when the prosthesis is implanted in the recipient. Generally a concentration in the range of at least 5μg protein per 3.4cm² surface area is sufficient for this purpose. If hydroxylapatite or other carrier material is used, it is applied to the prosthesis in an amount required to form a coating of from about 15μ to about 60μ thick. A layer about 25μ thick of hydroxylapatite has been used to improve implant fixation, as shown in the exemplification.

[0031] The prosthesis may comprise a device configured for insertion into an orifice prepared to receive the prosthesis. In this embodiment, as illustrated in the Figure, the interior of a bone 10 is hollowed out in preparation for insertion of the implant 12. The implant has a contoured surface design 14 defining plural indentations 16 to permit ingrowth of bone into the indentations. The indentations are preferably transverse to the longitudinal axis 18 of the implant. The contoured portion to be inserted in the orifice may be coated with osteogenic protein as described above. Osteogenic protein combined with a matrix material 20 is packed into the orifice with the prosthetic implant, thereby surrounding it. Stimulated by the osteogenic protein, new bone grows into the indentations 16 and becomes integrated with the surface of the implant 12 and with preexisting bone 10 as described above. Thus, the prosthesis is both mechanically and biologically fixed in place, and axial movement of the implant relative to the bone requires shearing of bone tissue. Matrix material 20 can be any of the materials described above for coating the prosthesis for enhancing bone growth and fixation, e.g., collagen, hydroxyapatite, homopolymers or copolymers of glycolic acid lactic acid, and butyric acid and derivatives thereof, tricalcium phosphate or other calcium phosphates, metal oxides and demineralized, guanidine extracted bone. Matrix materials for use with osteogenic proteins which can be used in the present embodiment are those described, for example, in U.S. Patent 5,011,691 and U.S. Patent No. 5,266,683, the teachings of which are hereby incorporated by reference.

[0032] The prothesis illustrated in the Figure is particularly useful for dental and other implants where at last part of the prosthesis is to be embedded into bone tissue. Packing the orifice, e.g., tooth socket, with an "osteogenic device," e.g., osteogenic protein in combination with a matrix material, provides a solid material in which to embed the prosthesis without requiring that the device be threaded into existing bone. Moreover, the osteogenic protein stimulates endochondral bone formation within the socket and into and around the implant, thereby obviating the previously required step of first allowing bone ingrowth into the socket in order to provide a suitable surface into which to implant the prosthesis. Accordingly, using the method and devices of the invention, strong fixation of an implanted prosthesis may be achieved in a fraction of the time previously required, significantly shortening the time interval between tooth extraction and prosthetic restoration. In addition, this treatment may expand the use of implant therapy and enhance success rates by eliminating a surgical procedure, reducing the amount of bone lost following tooth extraction, permitting the insertion of longer implants and minimizing prosthetic compromises necessitated by alveolar ridge resorption.

[0033] The invention will be further illustrated by the following Exemplification which is not intended to be limiting in any way.

5

10

15

20

25

30

35

40

EXEMPLIFICATION

Example 1

5

10

15

20

25

Metal Implant Fixation

[0034] Cylindrical implants 18mm in length and 5.95 ± 0.05 mm in diameter were fabricated from spherical Co-Cr-Mo particles resulting in a pore size of 250-300 μ m and a volume porosity of 38-40%. A highly crystalline, high density and low porosity hydroxylapatite (HA) coating was applied by plasma spray process to one-half of the length of each of the implants. The coating thickness was 25 μ m and did not alter the porous coating morphology.

[0035] In the initial study, three implants were treated with a partially purified bovine OP (bOP) preparation. The bOP was naturally sourced OP extracted from cortical bone and partially purified through the Sephacryl-300 HR step in the purification protocol as described in Sampath et al. (1990), J. Biol. Chem., 265: 13198-13205. 200µl aliquots of 4 M guanidine-HCl, 50 mM Tris-HCl, pH 7.0, containing approximately 80 µg bOP were added to each implant in an eppendorf tube. After overnight incubation at 4°C the protein was precipitated and the implant washed with 80% ethanol. The implants were subsequently freeze dried. Two implants without bOP served as the controls.

[0036] The implants were evaluated in one skeletally mature adult mongrel dog (3-5 years old, 20-25Kg weight) using the femoral transcortical model. Standard surgical techniques were used such that the animal received the five implants in one femur. At three weeks the dog was sacrificed and the femur removed.

[0037] The harvested femur was sectioned transverse to the long axis such that each implant was isolated. Each implant was sectioned in half to yield one HA-coated and one uncoated push-out sample. Interface attachment strength was determined using a specifically designed test fixture. The implants were pushed to failure with a MTS test machine at a displacement rate of 1.27 mm/minute. After testing, all samples were prepared for standard undecalcified histologic and microradiographic analyses. The sections (4 sections from each implant) were qualitatively examined for the type and quality of tissue ingrowth, and quantitatively evaluated for % bone ingrowth with a computerized image analysis system. The mechanical and quantitative histological data is shown in Table II.

TABLE II

METAL IMPLANTS - bOP													
	3 WE	EKS											
	HA-Coated Uncoated												
	Interface Shear	Strength, MPa											
Control	9.70	3.40											
	(n=2)	(n=2)											
Protein	10.75	4.08											
(bOP)	(n=3)	(n=3)											
	Percent Bor	ne Ingrowth											
Control	42.56	37.82											
	(n=4)	(n=4)											
Protein	51.66	46.38											
(bOP)	(n=4)	(n=4)											

[0038] Both the mechanical and histological data suggested that bOP enhanced osseointegration of the implants. Both the HA-coated and uncoated implants showed an increase of shear strength and bone ingrowth compared with untreated controls. Moreover, the HA-coated implants appeared to show significant enhancement compared to the uncoated implant. The histological sections directly showed a greater number of cells between the metal pores.

[0039] The positive results of the initial implant study prompted a more detailed study. Twenty-seven implants were treated with a recombinant human OP1 protein. The OP1 protein was produced by transformed CHO cells. Details for the recombinant production of OP1 are disclosed in USSN 841,646, incorporated hereinabove by reference. The protein was purified to contain as the major species the protein designated OP1-18Ser (Seq. ID No. 1, residues 293-431), and about 30% truncated forms of OP1 (e.g., OP1-16Ser, OP1-16Leu, OP1-16Met, OP1-16Ala and OP1-16Val). The protein was greater than 90% pure. The implants were immersed for 30 minutes in 200 μ l 50% ethanol/0.01% TFA containing 5 μ g recombinant protein and the solution frozen in an ethanol/dry ice bath while the formulation tube was rolled. The tubes were subsequently freeze dried. Nineteen implants were also prepared by treatment with ethanol/TFA without

30

35

40

45

50

the OP1 protein by the same procedure.

5

10

15

20

25

30

35

40

55

[0040] In test implants, it was found that OP1 could be extracted from treated implants with 8M urea, 1% Tween 80, 50mM Tris, pH 8.0 and analyzed by HPLC. By this method, it was shown that all of the OP1 in the formulation tubes bound to the implant under the conditions employed. Furthermore, since the test implants were half coated with HA, additional implants were obtained to independently evaluate the binding of OP1 to each of these surfaces. Initial binding studies showed that the OP1 binds more readily to the HA than to the uncoated metal.

[0041] The implants for the second study were evaluated in skeletally mature adult mongrel dogs using the femoral transcortical model. Standard aseptic surgical techniques were used such that each animal received five implants bilaterally. Implantation periods of three weeks were used. The mechanical and quantitative histological data are shown in Table III. Three HA-coated and uncoated configurations were evaluated: controls (no treatment), precoat samples (formulated without OP1) and the OP1 samples.

TABLE III

		17 1D CC 117											
METAL IMPLANTS - OP-1													
INTERFACE SHEAR ATTACHMENT STRENGTH, MPA PERCENT BONE INGROWTH													
	3 Weeks:		3 Weeks:										
	HA-coated	Uncoated	HA-coated	Uncoated									
Control	7.59±2.99	6.47±1.23	44.98±12.57	41.66±11.91									
	(n=10)	(n=10)	(n=24)	(n=24)									
Precoat	7.85±3.43	6.49±2.20	40.73±16.88	39.14±16.18									
	(n=9)	(n=9)	(n=24)	(n=24)									
Protein	8.69±3.17	6.34±3.04	48.68±16.61	47.89±11.91									
(hOP-1)	(n=17)	(n=17)	(n=24)	(n=24)									

[0042] Mechanical testing results demonstrated enhanced attachment strength for the HA-coated samples as compared to the uncoated samples. At three weeks the greatest fixation was observed with the HA-coated implant with protein.

[0043] Histologic analysis demonstrated greater bone ingrowth for all HA-coated versus uncoated samples although the differences were not significant. The percent bone ingrowth was greatest for the HA-coated and uncoated implants with the protein present. Linear regression analysis demonstrated that attachment strength was predicted by amount of bone growth into the porous structure, presence of HA coating, and presence of protein.

Example 2

[0044] Titanium frequently is used to fabricate metal prostheses. The surface of these prostheses comprise a layer of titanium oxide. Therefore, titanium oxide itself was evaluated for its ability to serve as a carrier for OP-1 and in general for its biocompatibility with the bone formation process. The in vivo biological activity of implants containing a combination of titanium oxide and OP-1 (Sequence ID No. 1, residues 293-431) was examined in rat subcutaneous and intramuscular assays. Implants contained 0, 6.25, 12.5, 25 or 50 μg of OP-1 formulated onto 30 mg of titanium oxide. [0045] Implants were formulated by a modification of the ethanol/TFA freeze-drying method. Titanium oxide pellets were milled and sieved to a particle size of 250-420 microns. 30 mg of these particles were mixed with 50 μl aliquots of 45% ethanol, 0.09% trifluoroacetic acid containing no OP-1 or various concentrations of OP-1. After 3 hours at 4 °C, the samples were frozen, freeze-dried and implanted into rats.

[0046] After 12 days in vivo the implants were removed and evaluated for bone formation by alkaline phosphatase specific activity, calcium content and histological evidence. The results showed that OP-1 induced the formation of bone at each concentration of OP-1 at both the subcutaneous and intramuscular implant sites. No bone formed without OP-1 added to the titanium oxide. The amount of bone as quantitated by calcium content of the implants was similar to that observed using bone collagen carriers. Therefore titanium is a useful carrier for osteogenic proteins and is biocompatible with the bone formation process.

Equivalents

[0047] One skilled in the art will be able to ascertain, using no more than routine experimentation, many equivalents to the subject matter described herein. Such equivalents are encompassed by the following claims.

SEQUENCE LISTING

[0048]

5	(1) GENERAL INFORMATION:
	(i) APPLICANT:
10	 (A) NAME: Creative BioMolecules, Inc. (B) STREET: 35 South Street (C) CITY: Hopkinton (D) STATE: Massachusetts (E) COUNTRY: United States
15	(F) POSTAL CODE (ZIP): 01748 (G) TELEPHONE: 1-508-435-9001 (H) TELEFAX: 1-508-435-0454 (I) TELEX:
20	 (A) NAME: Stryker Biotech (B) STREET: One Apple Hill (C) CITY: Natick (D) STATE: Massachusetts (E) COUNTRY: United States
25	(E) COUNTRY. Officed States (F) POSTAL CODE (ZIP): 01760 (G) TELEPHONE: 1-508-653-2280 (H) TELEFAX: 1-508-653-2770 (I) TELEX:
30	(ii) TITLE OF INVENTION: PROSTHETIC DEVICES HAVING ENHANCED OSTEOGENIC PROPERTIES (iii) NUMBER OF SEQUENCES: 22
	(iv) CORRESPONDENCE ADDRESS:
3 5 4 0	 (A) ADDRESSEE: Creative BioMolecules, Inc. (B) STREET: 35 South Street (C) CITY: Hopkinton (D) STATE: MA (E) COUNTRY: USA (F) ZIP: 01748
10	(v) COMPUTER READABLE FORM:
45	 (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentln Release #1.0, Version #1.25
50	(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
55	(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: PITCHER ESQ, EDMUND R (B) REGISTRATION NUMBER: 27,829

	(C) REFERENCE/DOCKET NUMBER: STK-057
	(ix) TELECOMMUNICATION INFORMATION:
5	(A) TELEPHONE: 617/248-7000
	(2) INFORMATION FOR SEQ ID NO:1:
10	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 1822 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: cDNA
	(iii) HYPOTHETICAL: NO
20	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE:
?5	(A) ORGANISM: HOMO SAPIENS (F) TISSUE TYPE: HIPPOCAMPUS
	(ix) FEATURE:
30	 (A) NAME/KEY: CDS (B) LOCATION: 491341 (C) IDENTIFICATION METHOD: experimental (D) OTHER INFORMATION: /function= "OSTEOGENIC PROTEIN" /product= "OP1" /evidence= EXPERIMENTAL /standard_name= "OP1"
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
10	
\$5	
50	

	GGT	GCGG(GCC (CGGA	GCCC	GG A	GCCC	GGGT	A GC	GCGT	AGAG	CCG	GCGC	G AT	t Hi: l	s Val	3/
5	CGC Arg	TCA Ser 5	CTG Leu	CGA Arg	GCT Ala	GCG Ala	GCG Ala 10	CCG Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCA Ala	105
10	CCC Pro 20	CTG Leu	TTC Phe	CTG Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC Ala	CTG Leu	GCC Ala	GAC Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	153
15	GAG Glu	GTG Val	CAC His	TCG Ser	AGC Ser 40	TTC Phe	ATC Ile	CAC His	CGG Arg	CGC Arg 45	CTC Leu	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG Arg	201
	CGG Arg	GAG Glu	ATG Het	CAG Gln 55	CGC Arg	GAG Glu	ATC Ile	CTC Leu	TCC Ser 60	ATT Ile	TTG Leu	Gjy	TTG Leu	CCC Pro 65	CAC His	CGC Arg	249
20	CCG Pro	CGC Arg	CCG Pro 70	CAC His	CTC Leu	CAG Gln	GGC Gly	AAG Lys 75	CAC His	AAC Asn	TCG Ser	GCA Ala	CCC Pro 80	ATG Met	TTC Phe	ATG Het	297
25	CTG Leu	GAC Asp 85	CTG Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Met 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	GGC Gly 95	GGC Gly	GGG Gly	CCC Pro	GGC Gly	345
30	GGC Gly 100	CAG Gln	GGC Gly	TTC Phe	TCC Ser	TAC Tyr 105	CCC Pro	TAC Tyr	AAG Lys	GCC Ala	GTC Val 110	TTC Phe	AGT Ser	ACC Thr	CAG Gln	GGC Gly 115	393

5	CCC Pro	CCT Pro	CTG Leu	GCC Ala	AGC Ser 120	CTG Leu	CAA Gln	GAT Asp	AGC Ser	CAT His 125	TTC Phe	CTC Leu	ACC Thr	GAC Asp	GCC Ala 130	GAC Asp	· 441
	ATG Het	GTC Val	ATG Het	AGC Ser 135	TTC Phe	GTC Val	AAC Asn	CTC Leu	GTG Val 140	GAA Glu	CAT His	GAC Asp	AAG Lys	GAA Glu 145	TTC Phe	TTC Phe	489
10	CAC His	CCA Pro	CGC Arg 150	TAC Tyr	CAC His	CAT His	CGA Arg	GAG Glu 155	TTC Phe	CGG Arg	TTT Phe	GAT Asp	CTT Leu 160	TCC Ser	AAG Lys	ATC Ile	537
15	CCA Pro	GAA Glu 165	GGG Gly	GAA Glu	GCT Ala	GTC Val	ACG Thr 170	GCA Ala	GCC Ala	GAA Glu	TTC Phe	CGG Arg 175	ATC Ile	TAC Tyr	AAG Lys	GAC Asp	585
20	TAC Tyr 180	ATC Ile	CGG Arg	GAA Glu	CGC Arg	TTC Phe 185	GAC Asp	AAT Asn	GAG Glu	ACG Thr	TTC Phe 190	CGG Arg	ATC Ile	AGC Ser	GTT Val	TAT Tyr 195	633
20	CAG Gln	GTG Val	CTC Leu	CAG Gln	GAG Glu 200	CAC His	TTG Leu	GGC Gly	AGG Arg	GAA Glu 205	TCG Ser	GAT Asp	CTC Leu	TTC Phe	CTG Leu 210	CTC Leu	681
25	GAC Asp	AGC Ser	CGT Arg	ACC Thr 215	CTC Leu	TGG Trp	GCC Ala	TCG Ser	GAG Glu 220	GAG Glu	GGC Gly	TGG Trp	CTG Leu	GTG Val 225	TTT Phe	GAC Asp	729
30	ATC Ile	ACA Thr	GCC Ala 230	ACC Thr	AGC Ser	AAC Asn	CAC His	TGG Trp 235	GTG Val	GTC Val	AAT Asn	CCG Pro	CGG Arg 240	CAC His	AAC Asn	CTG Leu	777
	GGC Gly	CTG Leu 245	CAG Gln	CTC Leu	TCG Ser	GTG Val	GAG Glu 250	ACG Thr	CTG Leu	GAT Asp	GGG Gly	CAG Gln 255	AGC Ser	ATC Ile	AAC Asn	CCC Pro	825
35	AAG Lys 260	Leu	GCG Ala	GGC Gly	CTG Leu	ATT Ile 265	Gly	CGG Arg	CAC His	GGG Gly	CCC Pro 270	CAG Gln	AAC Asn	AAG Lys	CAG Gln	CCC Pro 275	873
40	TTC Phe	ATG Het	GTG Val	GCT Ala	Phe	Phe	Lys	Ala	Thr	Glu	Val	His	Phe	CGC Arg	Ser	116	921
	CGG Arg	TCC Ser	ACG Thr	GGG Gly 295	AGC Ser	AAA Lys	CAG Gln	CGC Arg	AGC Ser 300	CAG Gln	AAC Asn	CGC Arg	TCC Ser	AAG Lys 305	ACG Thr	CCC Pro	969
45	AAG Lys	AAC Asn	CAG Gln 310	GAA Glu	GCC Ala	CTG Leu	CGG Arg	ATG Het 315	GCC Ala	AAC Asn	GTG Val	GCA Ala	GAG Glu 320	AAC Asn	AGC Ser	AGC Ser	1017

5	AGC Ser	GAC Asp 325	CAG Gln	AGG Arg	CAG Gln	GCC Ala	TGT Cys 330	AAG Lys	AAG Lys	CAC His	GAG Glu	CTG Leu 335	TAT Tyr	GTC Val	AGC Ser	TTC Phe	•	1065
	CGA Arg 340	GAC Asp	CTG Leu	GCC	TGG Trp	CAG Gln 345	GAC Asp	TGG Trp	ATC Ile	ATC Ile	GCG Ala 350	CCT Pro	GAA Glu	GGC Gly	TAC Tyr	GCC Ala 355		1113
10	GCC Ala	TAC Tyr	TAC Tyr	TGT Cys	GAG Glu 360	GGG Gly	GAG Glu	TGT Cys	GCC Ala	TTC Phe 365	CCT Pro	CTG Leu	AAC Asn	TCC Ser	TAC Tyr 370	ATG Het		1161
15	AAC Asn	GCC Ala	ACC Thr	AAC Asn 375	CAC His	GCC Ala	ATC Ile	GTG Val	CAG Gln 380	ACG Thr	CTG Leu	GTC Val	CAC His	TTC Phe 385	ATC Ile	AAC Asn		1209
20	CCG Pro	GAA Glu	ACG Thr 390	GTG Val	CCC Pro	AAG Lys	CCC Pro	TGC Cys 395	TGT Cys	GCG Ala	CCC Pro	ACG Thr	CAG Gln 400	CTC Leu	AAT Asn	GCC Ala		1257
	ATC Ile	TCC Ser 405	GTC Val	CTC Leu	TAC Tyr	TTC Phe	GAT Asp 410	GAC Asp	AGC Ser	TCC Ser	AAC Asn	GTC Val 415	ATC Ile	CTG Leu	AAG Lys	AAA Lys		1305
25	TAC Tyr 420	AGA Arg	AAC Asn	ATG Met	GTG Val	GTC Val 425	CGG Arg	GCC Ala	TGT Cys	GGC Gly	TGC Cys 430	CAC His	TAGO	TCCI	CC			1351
	GAGA	ATTO	CAG A	CCCI	TTGG	G GC	CAAC	TTT	TC1	rgga1	CCT	CCAT	TGCI	cc c	CTT	GCCAG		1411
30	GAAC	CAGO	CAG A	CCAA	CTGC	C TI	TTG	GAG#	CCI	TCCC	CTC	CCTA	ATCCC	CA A	CTTI	CAAAGG		1471
	TGT	GAGAG	TA 7	TAGO	GAAAC	A TO	GAGC#	GCAT	OTA 7	GCTI	TTG	ATC	GTTT	TT (CAGTO	GCAGC		1531
	ATC	CAATO	GAA C	CAAGA	TCCI	CA CA	AGCT	CTGC	AGO	CAAA	LACC	TAGO	CAGGA	AA A	LAAAA	LACAAC		1591
35	GCAT	DAAAT	GAA A	TAAL	GCCC	G GC	CCAGO	TCAT	TGC	CTGC	GAA	GTC	CAGO	CA 1	CCAC	GGACT	•	1651
	CGTT	TCCA	GA C	GTAA	LATT/	CG AC	CGCC	TAC	. V.	·:AGC	CCA	CCCA	GCCG	TG C	GAGG	AAGGG		1711
40	GGCC	TGGC	CAA C	GGG1	rcccc	CA CA	TTGC	STGT	TGI	rgcg#	LAAG	GAAA	ATTO	AC C	CCGGA	AGTTC		1771
	CTGI	TAAT/	LAA 7	rgtc/	CAAI	A A?	ACG/	latg/	ATC	AAA/	AAA	AAA	AAAA	AA A	1			1822

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 431 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

55

45

	Het 1	His	Val	Arg	Ser 5	Leu	Arg	Ala	Ala	Ala 10	Pro	His	Ser	Phe	Val 15	Ala
5	Leu	Trp	Ala	Pro 20	Leu	Phe	Leu	Leu	Arg 25	Ser	Ala	Leu	Ala	Asp 30	Phe	Sei
	Leu	Asp	Asn 35	Glu	Val	His	Ser	Ser 40	Phe	Ile	His	Arg	Arg 45	Leu	Arg	Ser
10	Gln	Glu 50	Arg	Arg	Glu	Het	Gln 55	Arg	Glu	Ile	Leu	Ser 60	Ile	Leu	Gly	Leu
15	Pro 65	His	Arg	Pro	Arg	Pro 70	His	Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80
	Het	Phe	Het	Leu	Asp 85	Leu	Tyr	Asn	Ala	Het 90	Ala	Val	Glu	Glu	Gly 95	Gly
20	Gly	Pro	Gly	Gly 100	Gln	Gly	Phe	Ser	Tyr 105	Pro	Tyr	Lys	Ala	Val 110	Phe	Ser
	Thr	Gln	Gly 115	Pro	Pro	Leu	Ala	Ser 120	Leu	Gln	Asp	Ser	His 125	Phe	Leu	Thr
25	Asp	Ala 130	Asp	Het	Val	Het	Ser 135	Phe	Val	Asn	Leu	Val 140	Glu	His	Asp	Lys
	Glu 145	Phe	Phe	His	Pro	Arg 150	Tyr	His	His	Arg	Glu 155	Phe	Arg	Phe	Asp	Leu 160
30	Ser	Lys	Ile	Pro	Glu 165	Gly	Glu	Ala	Val	Thr 170	Ala	Ala	Glu	Phe	Arg 175	Ile
	Tyr	Lys	Asp	Tyr 180	Ile	Arg	Glu	Arg	Phe 185	Asp	Asn	Glu	Thr	Phe 190	Arg	Ile
35	Ser	Val	Tyr 195	Gln	Val	Leu _.	Gln	Glu 200	His	Leu	Gly	Arg	Glu 205	Ser	Asp	Leu
40	Phe	Leu 210	Leu	Asp	Ser	Arg	Thr 215	Leu	Trp	Ala	Ser	Glu 220	Glu	Gly	Trp	Leu
	Val 225	Phe	Asp	Ile	Thr	Ala 230	Thr	Ser	Asn	His	Trp 235	Val	Val	Asn	Pro	Arg 240
45	His	Asn	Leu	Gly	Leu 245	Gln	Leu	Ser	Val	Glu 250	Thr	Leu	Asp	Gly	Gln 255	Ser
	Ile	Asn	Pro	Lys 260	Leu	Ala	Gly	Leu	Ile 265	Gly	Arg	His	Gly	Pro 270	Gln	Asn

55		Pro	Pro	Gly	Ty: 20	Gl:	n Ala	a Ph	е Ту	r C;	ys H S	is G	ly (Glu (Cys	Pro 30	Phe	Pro
50		1		Val		5					1	U					15	
	((xi) SE	QUEN	NCE D	ESCF	RIPTIC	N: SE	EQ ID	NO:3	:								
45		(B) LOC	IE/KE` ATION IER IN	l: 19	6	N: /nc	ote= "(COP-5	5"								
	((ix) FE	ATUR	E:														
40	(·		ILE TY														
35		(B (C) TYP) STR	GTH: 9 E: ami ANDE OLOG	no ac	id SS: sir												
25	ı			CE CH				S:										
30	(2) 11	NFOR	MATIC	ON FO	R SE	A DI C	10:3:											
	Leu	Lys	Lys	Tyr 420	Arg	Asn	Het	Val	Val 425	Arg	Ala	Cys	Gly	Cys 430	His			
25	Leu	Asn	Ala	Ile	Ser 405	Val	Leu	Tyr	Phe	Asp 410	Asp	Ser	Ser	Asn	Val 415	Ile	?	
	Phe 385	Ile	Asn	Pro	Glu	Thr 390	Val	Pro	Lys	Pro	Cys 395	Cys	Ala	Pro	Thr	G1r 400	1)	
20	Ser	Tyr 370	Het	Asn	Ala	Thr	Asn 375	His	Ala	Ile	Val	Gln 380	Thr	Leu	Val	H15	\$	
	Gly	Tyr	Ala 355	Ala	Tyr	Tyr	Cys	Glu 360	Gly	Glu	Cys	Ala	Phe 365	Pro	Leu	ASI	1	
15	Val	Ser	Phe	Arg 340	Asp	Leu	Gly	Trp	Gln 345	Asp	Trp	Ile	Ile	Ala 350	Pro	Glı	1	
	Asn	Ser	Ser	Ser	Asp 325	Gln	Arg	Gln	Ala	Cys 330	Lys	Lys	His	Glu	335	Ty	r	
10	Lys 305	Thr	Pro	Lys	Asn	Gln 310	Glu	Ala	Leu	Arg	Met 315	Ala	Asn	Val	Ala	G1: 326	<u>u</u>	
5	Arg	Ser 290	Ile	Arg	Ser	Thr	Gly 295	Ser	Lys	Gln	Arg	Ser 300	Gln	Asn	a Arg	; Se	r	
	Lys	Gln	Pro 275	Phe	Het	Val	Ala	Phe 280	Phe	Lys	Ala	Thr	G1u 285	Val	. HIS	rne	9	

5	Leu	Ala	Asp 35	His	Phe	Asn	Ser	Thr 40	Asn	His	Ala	Val	. Val 45	Gln	Thr	: Le	1
v	Val	Asn 50	Ser	Va]	. Asn	Ser	Lys 55	Ile	Pro	Lys	Ala	60	Cys	. Val	Pro	Thi	r
10	Glu 65	Leu	Ser	Ala	Ile	Ser 70	Het	Leu	Tyr	Leu	Asp 75	Glu	Asn	Glu	Lys	80	L
	Val	Leu	Lys	Asn	Tyr 85	Gln	Glu	Het	Val	Val 90	Glu	Gly	Cys	Gly	Cys 95	Arg	3
15	(2) INFOI	RMAT	ION F	OR S	EQ ID I	NO:4:											
	(i) SE	QUE	NCE (CHAR	ACTER	RISTIC	S:										
20	(B) TY C) ST	PE: ar	mino a EDNE	ESS: si												
25	(ii) M	OLEC	ULE	TYPE:	proteir	ו											
	(ix) F	EATU	IRE:														
30	(B) LO D) OT		ON: 1 INFOR													
25										-3	_		•		7 1 -	v- 1	47
35		Leu 1	Tyr	Val	Asp	Phe 5	Ser	Asp	Val	GIŸ	10	ASN	ASP	Trp	116	15	ALG
40		Pro	Pro	Gly	Tyr 20	His	Ala	Phe	Tyr	Cys 25	His	Gly	Glu	Cys	Pro 30	Phe	Pro
40		Leu	Ala	Asp 35	His	Leu	Asn .	Ser	Thr 40	Asn	His	Ala	Val	Val 45	Gln	Thr	Leu
45	(Val	Asn 50	Ser	Val	Asn	Ser	Lys 55	Ile	Pro	Lys	Ala	Cys 60	Cys	Val	Pro	Thr
		G1u 65	Leu	Ser	Ala	Ile	Ser 70	Het	Leu	Tyr	Leu	Asp 75	Glu	Asn	Glu	Lys	Val 80
50	•	Val	Leu	Lys	Asn	Tyr 85	Gln	Glu	Ket	Val	Val 90	Glu	Gly	Cys	Gly	Cys 95	Arg

(2) INFORMATION FOR SEQ ID NO:5:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 102 amino acids

		(C)	STR	ANDE	ino ac EDNES SY: lin	SS: sir	ngle									
5	(i	i) MOl	_ECU	LE TY	/PE: p	orotein	1									
	(\	/i) OR	IGINA	AL SO	URCE	Ξ:										
10		(A)	ORG	ANIS	M: DF	ROSO	PHILA	A MEL	.ANO	GAST	ER					
	(i	x) FEA	ATUR	E:												
15		(B)	LOC	OITA	Y: Pro N: 11 IFORI		N: /la	ıbel= l	DPP-F	=x						
	()	d) SEC	QUEN	ICE D	ESCF	RIPTIC	ON: S	EQ ID	NO:5	5:						
20													_	_		
	Cys 1	Arg	Arg	His	Ser 5	Leu	Tyr	Val	Asp	Phe 10	Ser	Asp	Val	Gly	Trp 15	Asp
25	Asp	Trp	Ile	Val 20	Ala	Pro	Leu	Gly	Tyr 25	Asp	Ala	Tyr	Tyr	Cys 30	His	Gly
	Lys	Cys	Pro 35	Phe	Pro	Leu	Ala	Asp 40	His	Phe	Asn	Ser	Thr 45	Asn	His	Ala
30	Val	Val 50	Gln	Thr	Leu	Val	Asn 55	Asn	Asn	Asn	Pro	Gly 60	Lys	Val	Pro	Lys
	Ala 65	Cys	Cys	Val	Pro	Thr 70	Gln	Leu	Asp	Ser	Val 75	Ala	Het	Leu	Tyr	Leu 80
35	Asn	Asp	Gln	Ser	Thr 85	Val	Val	Leu	Lys	Asn 90	Tyr	Gln	Glu	Het	Thr 95	Val
	Val	Gly	Cys	Gly 100	Cys	Arg										
40	(2) IN	FORM	1ATIO	N FO	R SE	Q ID N	10:6:									
	(i)) SEQ	UENC	CE CH	IARA	CTER	ISTIC	S:								
45		(B) (C)	TYPE STRA	E: ami ANDE	no ac	SS: sir										
50	ı (ii) MOL	.ECU	LE TY	/PE: p	rotein	1									
	(v	i) ORI	IGINA	L SO	URCE	Ξ:										
		(A)	ORG	ANIS	M: XE	NOPU	JS									
55	(i:	x) FEA	ATURI	Ē:												
		(A)	NAM	E/KE	Y: Pro	tein										

(B) LOCATION: 1..102

(A) NAME/KEY: Protein (B) LOCATION: 1..102

(D) OTHER INFORMATION: /label= VGR-1-FX

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	(XI) SEQUENCE DESCRIPTION: SEQ ID NO:6: Cys Lys Lys Arg His Leu Tyr Val Glu Phe Lys Asp Val Gly Trp Gln 15 Asn Trp Val Ile Ala Pro Gln Gly Tyr Het Ala Asn Tyr Cys Tyr Gly Glu Cys Pro Tyr Pro Leu Thr Glu Ile Leu Asn Gly Ser Asn His Ala Ile Leu Gln Thr Leu Val His Ser Ile Glu Pro Glu Asp Ile Pro Leu Pro Cys Cys Val Pro Thr Lys Het Ser Pro Ile Ser Het Leu Phe Tyr 80 Asp Asn Asn Asp Asn Val Val Leu Arg His Tyr Glu Asn Het Ala Val 95															
5	(xi)	SEQU	IENCE	DES	CRIPT	ION: S	SEQ IC	ONO:6	5 :							
	Cys 1	Lys	Lys	Arg	His 5	Leu	Tyr	Val	Glu	Phe 10	Lys	Asp	Val	Gly	Trp 15	Gln
10	Asn	Trp	Val		Ala	Pro	Gln	Gly	Tyr 25	Het	Ala	Asn	Tyr	Cys 30	Tyr	Gly
	Glu	Cys		Tyr	Pro	Leu	Thr	Glu 40	Ile	Leu	Asn	Gly	Ser 45	Asn	His	Ala
15	Pro Cys Cys Val Pro Thr Lys Met Ser Pro Ile Ser Met Leu Phe Ty 65 70 75 80															Leu
20	Pro Cys Cys Val Pro Thr Lys Met Ser Pro Ile Ser Met Leu Phe Ty 65 Asp Asn Asp Asn Val Val Leu Arg His Tyr Glu Asn Met Ala Va															Tyr 80
	Pro Cys Cys Val Pro Thr Lys Het Ser Pro Ile Ser Het Leu Phe Ty 65 70 75 80 Asp Asn Asp Asn Val Val Leu Arg His Tyr Glu Asn Het Ala Va															Val
25	Asp	Glu	Cys	Gly 100	Cys	Arg										
	(2) INF	ORMA'	TION I	FOR S	EQ ID	NO:7	:									
30	(i) S	SEQUE	ENCE	CHAR	ACTE	RISTI	CS:									
		(B) T	YPE: a TRAN	amino : DEDN	ESS: s		3									
35		(D) T	OPOL	OGY: I	linear											
	(ii)	MOLE	CULE	TYPE	: prote	in										
40	(vi)	ORIG	INAL S	SOUR	CE:											
		(A) O	RGAN	IISM: N	MURIE	DAE										
	(ix)	FEAT	URE:													

50

Cys Lys Lys His Gly Leu Tyr Val Ser Phe Gln Asp Val Gly Trp Gln 5 Asp Trp Ile Ile Ala Pro Xaa Gly Tyr Ala Ala Asn Tyr Cys Asp Gly 20 25 30 Glu Cys Ser Phe Pro Leu Asn Ala His Het Asn Ala Thr Asn His Ala 10 Ile Val Gln Thr Leu Val His Val Met Asn Pro Glu Tyr Val Pro Lys Pro Cys Cys Ala Pro Thr Lys Val Asn Ala Ile Ser Val Leu Tyr Phe 15 Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Het Val Val Arg Ala Cys Gly Cys His 20

100

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1873 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: MURIDAE (F) TISSUE TYPE: EMBRYO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 104..1393
 - (D) OTHER INFORMATION: /function="OSTEOGENIC PROTEIN" /product= "MOP1" /note= "MOP1 (CD-
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

25

30

35

40

45

	CTG	CAGCA	AG 3	CGACC	TCGC	G T	GTGC	SACCO	CTC	CCC1	rGCC	CCCT	CCGC	CTG (CACC	TGGGG		60
5	CGG	CGCGC	GC (CCGGI	CCCC	CC GC	GATCO	GCGCC	TAC	GAGCO	CGC	GCG	ATG Het 1	CAC His	GTG Val	CGC Arg	:	115
10	TCG Ser 5	CTG Leu	CGC Arg	GCT Ala	GCG Ala	GCG Ala 10	CCA Pro	CAC His	AGC Ser	TTC Phe	GTG Val 15	GCG Ala	CTC Leu	TGG Trp	GCG Ala	CCT Pro 20	1	163
	CTG Leu	TTC Phe	TTG Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC Ala	CTG Leu	GCC Ala	GAT Asp 30	TTC Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	GAG Glu	3	211
15	GTG Val	CAC His	TCC Ser	AGC Ser 40	TTC Phe	ATC Ile	CAC His	CGG Arg	CGC Arg 45	CTC Leu	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG Arg	CGG Arg	2	259
20	GAG Glu	ATG Het	CAG Gln 55	CGG Arg	GAG Glu	ATC Ile	CTG Leu	TCC Ser 60	ATC Ile	TTA Leu	GGG Gly	TTG Leu	CCC Pro 65	CAT His	CGC Arg	CCG Pro	3	307
25	CGC	CCG Pro 70	CAC His	CTC Leu	CAG Gln	GGA Gly	AAG Lys 75	CAT His	AAT Asn	TCG Ser	GCG Ala	CCC Pro 80	ATG Het	TTC Phe	ATG Net	TTG Leu	3	355
	GAC Asp 85	CTG Leu	TAC Tyr	AAC Asn	GCC Ala	ATG Het 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	AGC Ser 95	GGG Gly	CCG Pro	GAC Asp	GGA Gly	CAG Gln 100		403
30	GGC Gly	TTC Phe	TCC Ser	TAC Tyr	CCC Pro 105	TAC Tyr	AAG Lys	GCC Ala	GTC Val	TTC Phe 110	AGT Ser	ACC Thr	CAG Gln	GGC	CCC Pro 115	CCT Pro	4	451
35	TTA Leu	GCC Ala	AGC Ser	CTG Leu 120	CAG Gln	GAC Asp	AGC Ser	CAT His	TTC Phe 125	CTC Leu	ACT Thr	GAC Asp	GCC Ala	GAC Asp 130	ATG Het	GTC Val	4	499
40	ATG Net	Ser	Phe	GTC Val	Asn	Leu	Val	Glu	His	Asp	Lys	Glu	Phe	Phe	CAC His	CCT Pro		547
	CGA Arg	TAC Tyr 150	CAC His	CAT His	CGG Arg	GAG Glu	TTC Phe 155	CGG	TTT Phe	GAT Asp	CTT Leu	TCC Ser 160	AAG Lys	ATC	CCC	GAG Glu	9	595
45	GGC Gly 165	Glu	CGG	GTG Val	ACC	GCA Ala 170	GCC Ala	GAA Glu	TTC Phe	AGG Arg	ATC Ile 175	Tyr	AAG Lys	GAC Asp	TAC Tyr	ATC Ile 180	(643

5	CGG Arg	GAG Glu	CGA	TTT Phe	GAC Asp 185	AAC Asn	GAG Glu	ACC Thr	TTC Phe	CAG Gln 190	ATC Ile	ACA Thr	GTC Val	TAT Tyr	CAG Gln 195	GTG Val	691
	CTC Leu	CAG Gln	GAG Glu	CAC His 200	TCA Ser	GGC Gly	AGG Arg	GAG Glu	TCG Ser 205	GAC Asp	CTC Leu	TTC Phe	TTG Leu	CTG Leu 210	GAC Asp	AGC Ser	739
10	CGC Arg	ACC Thr	ATC Ile 215	TGG Trp	GCT Ala	TCT Ser	GAG Glu	GAG Glu 220	GGC Gly	TGG Trp	TTG Leu	GTG Val	TTT Phe 225	GAT Asp	ATC Ile	ACA Thr	787
15	GCC Ala	ACC Thr 230	AGC Ser	AAC Asn	CAC His	TGG Trp	GTG Val 235	GTC Val	AAC Asn	CCT Pro	CGG Arg	CAC His 240	AAC Asn	CTG Leu	GGC Gly	TTA Leu	835
20	CAG Gln 245	CTC Leu	TCT Ser	GTG Val	GAG Glu	ACC Thr 250	CTG Leu	GAT Asp	GGG Gly	CAG Gln	AGC Ser 255	ATC Ile	AAC Asn	CCC Pro	AAG Lys	TTG Leu 260	883
	GCA Ala	GGC Gly	CTG Leu	ATT Ile	GGA Gly 265	CGG Arg	CAT His	GGA Gly	CCC Pro	CAG Gln 270	AAC Asn	AAG Lys	CAA Gln	CCC Pro	TTC Phe 275	ATG Net	931
25	GTG Val	GCC Ala	TTC Phe	TTC Phe 280	AAG Lys	GCC Ala	ACG Thr	GAA Glu	GTC Val 285	CAT His	CTC Leu	CGT Arg	AGT Ser	ATC Ile 290	CGG Arg	TCC Ser	979
30	ACG Thr	GGG Gly	GGC Gly 295	AAG Lys	CAG Gln	CGC Arg	AGC Ser	CAG Gln 300	AAT Asn	CGC Arg	TCC Ser	AAG Lys	ACG Thr 305	CCA Pro	AAG Lys	AAC Asn	1027
	CAA Gln	GAG Glu 310	GCC Ala	CTG Leu	AGG Arg	ATG Het	GCC Ala 315	AGT Ser	GTG Val	GCA Ala	GAA Glu	AAC Asn 320	AGC Ser	AGC Ser	AGT Ser	GAC Asp	1075
35	CAG Gln 325	AGG Arg	CAG Gln	GCC Ala	TGC Cys	AAG Lys 330	AAA Lys	CAT His	GAG Glu	CTG Leu	TAC Tyr 335	GTC Val	AGC Ser	TTC Phe	CGA Arg	GAC Asp 340	1123
40	CTT Leu	GGC Gly	TGG Trp	CAG Gln	GAC Asp 345	TGG Trp	ATC Ile	ATT Ile	GCA Ala	CCT Pro 350	GAA Glu	GGC Gly	TAT Tyr	GCT Ala	GCC Ala 355	TAC Tyr	1171
45	TAC Tyr	TGT Cys	GAG Glu	GGA Gly 360	GAG Glu	TGC Cys	GCC Ala	TTC Phe	CCT Pro 365	CTG Leu	AAC Asn	TCC Ser	TAC Tyr	ATG Het 370	AAC Asn	GCC Ala	1219
	ACC Thr	AAC Asn	CAC His 375	GCC Ala	ATC Ile	GTC Val	CAG Gln	ACA Thr 380	CTG Leu	GTT Val	CAC His	TTC Phe	ATC Ile 385	AAC Asn	CCA Pro	GAC Asp	1267

5	ACA GTA CCC AAG CCC TGC TGT GCG CCC ACC CAG CTC AAC GCC ATC TCT Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu Asn Ala Ile Ser 390 395 400	1315
	GTC CTC TAC TTC GAC GAC AGC TCT AAT GTC GAC CTG AAG AAG TAC AGA Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Asp Leu Lys Lys Tyr Arg 410 415 420	1363
10	AAC ATG GTG GTC CGG GCC TGT GGC TGC CAC TAGCTCTTCC TGAGACCCTG Asn Het Val Val Arg Ala Cys Gly Cys His 425 430	1413
15	ACCTITGCGG GGCCACACCT TTCCAAATCT TCGATGTCTC ACCATCTAAG TCTCTCACTG	1473
15	CCCACCTTGG CGAGGAGAC AGACCAACCT CTCCTGAGCC TTCCCTCACC TCCCAACCGG	1533
	AAGCATGTAA GGGTTCCAGA AACCTGAGCG TGCAGCAGCT GATGAGCGCC CTTTCCTTCT	1593
20	GGCACGTGAC GGACAAGATC CTACCAGCTA CCACAGCAAA CGCCTAAGAG CAGGAAAAAT	1653
	GTCTGCCAGG AAAGTGTCCA GTGTCCACAT GGCCCCTGGC GCTCTGAGTC TTTGAGGAGT	1713
	AATCGCAAGC CTCGTTCAGC TGCAGCAGAA GGAAGGGCTT AGCCAGGGTG GGCGCTGGCG	1773
25	TCTGTGTTGA AGGGAAACCA AGCAGAAGCC ACTGTAATGA TATGTCACAA TAAAACCCAT	1833
	GAATGAAAAA AAAAAAAAA AAAAAAAAA AAAAGAATTC	1873
30	(2) INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 430 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln Glu Arg Arg Glu Het Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu

40

45

E	65	nis	AIR	PIO	AIG	70	nış	Leu	GIII	GLY	75		11311	50.		80
5	Met	Phe	Het	Leu	Asp 85	Leu	Tyr	Asn	Ala	Met 90	Ala	Val	Glu	Glu	Ser 95	Gly
10	Pro	Asp	Gly	Gln 100	Gly	Phe	Ser	Tyr	Pro 105	Tyr	Lys	Ala	Val	Phe 110	Ser	Thr
	Gln	Gly	Pro 115	Pro	Leu	Ala	Ser	Leu 120	Gln	Asp	Ser	His	Phe 125	Leu	Thr	Asp
15	Ala	Asp 130	Het	Val	Het	Ser	Phe 135	Val	Asn	Leu	Val	Glu 140	His	Asp	Lys	Glu
	Phe 145	Phe	His	Pro	Arg	Tyr 150	His	His	Arg	Glu	Phe 155	Arg	Phe	Asp	Leu	Ser 160
20	Lys	Ile	Pro	Glu	Gly 165	Glu	Arg	Val	Thr	Ala 170	Ala	Glu	Phe	Arg	Ile 175	Tyr
25	Lys	Asp	Tyr	Ile 180	Arg	Glu	Arg	Phe	Asp 185	Asn	Glu	Thr	Phe	Gln 190	Ile	Thr
	Val	Tyr	Gln 195	Val	Leu	Gln	Glu	His 200	Ser	Gly	Arg	Glu	Ser 205	Asp	Leu	Phe
30	Leu	Leu 210	Asp	Ser	Arg	Thr	Ile 215	Trp	Ala	Ser	Glu	Glu 220	Gly	Trp	Leu	Val
	Phe 225	Asp	Ile	Thr	Ala	Thr 230	Ser	Asn	His	Trp	Val 235	Val	Asn	Pro	Arg	His 240
35	Asn	Leu	Gly	Leu	Gln 245	Leu	Ser	Val	Glu	Thr 250	Leu	Asp	Gly	Gln	Ser 255	Ile
40	Asn	Pro	Lys	Leu 260	Ala	Gly	Leu	Ile	Gly 265	Arg	His	Gly	Pro	Gln 270	Asn	Lys
			275			•		280					Val 285			
45		290					295					300	Asn			
	305		·			310					315		Val			320
50				·	325					330			Glu		335	
55	Ser	Phe	Arg	Asp 340	Leu	Gly	Trp	Gln	Asp 345	Trp	Ile	Ile	Ala	Pro 350	Glu	Gly

	Tyr	Ala	355	lyr	TAT	Cys	GIU	360	GIU	cys	NAG	1110	365					
5	Tyr	Met 370	Asn	Ala	Thr	Asn	His 375	Ala	Ile	Val	Gln	Thr 380	Leu	Val	His	Phe		
10	Ile 385	Asn	Pro	Asp	Thr	Val 390	Pro	Lys	Pro	Cys	Cys 395	Ala	Pro	Thr	Gln	Leu 400		
	Asn	Ala	Ile	Ser	Val 405	Leu	Tyr	Phe	Asp	Asp 410	Ser	Ser	Asn	Val	Asp 415	Leu		
15	Lys	Lys	Tyr	Arg 420	Asn	Het	Val	Val	Arg 425	Ala	Cys	Gly	Cys	His 430				
	(2) IN	FORM	ATION	I FOR	SEQ	ID NO:	:10:											
20	(i)) SEQI	JENC	E CHA	RACT	ERIST	rics:											
		(B)	TYPE: STRA	nucle	ic acid	: single												
25		, ,			': linea													
	(ii	i) MOL	ECUL	E TYP	E: cDi	NA												
30	(v	i) ORI	GINAL	SOU	RCE:													
						o sapie PPOC	ens AMPU	S										
35	(iː	x) FEA	TURE	:														
		(B) (D)	LOCA		4901		/funct	ion= "	OSTE	OGEN	IIC PR	ROTEII	N" /pro	oduct=	"hOP	2-PP" /:	note= "h(OP2
40	(×	i) SEC	UENO	CE DE	SCRIF	PTION	: SEQ	ID NC):10:									
	GGCGG	CGGC	A GA	GCAG	GAGT	GGCT	GGAG	GA G	CTGTC	CTTC	GAG	CAGG	AGG 7	rggc#	CGGC	A	60	
45	GGGCT	GGAG	G GC	TCCC.	ratg	AGTG	GCGG	AG A	CGGC	CCAGG	AGG	CGCT	GA (GCAA(AGCT	C	120	
	CCACA	CCGC	A CC	AAGC	GGTG	GCTG	CAGG	AG C	rcgco	CCATC	GCC	CCTG	CGC 1	rgcto	GGAC	С	180	
50	GCGGC	CACA	G CC	GGAC.	rggc	GGGT	'ACGG	CG G	CGAC	AGAGG	CAT	TGGC	CGA (GAGT	CCAG	T	240	
	CCGCA																300	
	GACAG																360	
55	CGCCC	CGCC	C CG	CCGC	CCGC	CGCC	CGCC	GA G	CCCAC	GCCTC	CTI	GCCG	rcg (GGCC	TCCC	С	420	

	AGGCCC	TGGG	TCGG	CCGC	G AC	GCCGA	ATGC(G CG	CCCG	CTGA	GCG	CCCC	AGC :	TGAG(CGCCCC	480
5	CGGCCT	CGCC A	TG A(et Tl	CC G(CG C	rc co eu Pi	CC G(ro G) 5	GC CO Ly Pa	CG C	rc T(eu Ti	rp L	rc C eu L 10	rg G eu G	GC C	rg eu	528
10	GCG CT Ala Le	TA TGC u Cys .5	GCG Ala	CTG Leu	GGC Gly	GGG Gly 20	GGC Gly	GGC Gly	CCC Pro	GGC Gly	CTG Leu 25	CGA Arg	CCC Pro	CCG Pro	CCC Pro	576
15	GGC TO Gly Cy 30	T CCC	CAG Gln	CGA Arg	CGT Arg 35	CTG Leu	GGC Gly	GCG Ala	CGC Arg	GAG Glu 40	CGC Arg	CGG Arg	GAC Asp	GTG Val	CAG Gln 45	624
	CGC GA	G ATC u Ile	CTG Leu	GCG Ala 50	GTG Val	CTC Leu	GGG Gly	CTG Leu	CCT Pro 55	GGG Gly	CGG Arg	CCC Pro	CGG Arg	CCC Pro 60	CGC Arg	672
20	GCG CC	A CCC	GCC Ala 65	GCC Ala	TCC Ser	CGG Arg	CTG Leu	CCC Pro 70	GCG Ala	TCC Ser	GCG Ala	CCG Pro	CTC Leu 75	TTC Phe	ATG Het	720
25	CTG GA	C CTG p Leu 80	Tyr	CAC His	GCC Ala	ATG Het	GCC Ala 85	GGC Gly	GAC Asp	GAC Asp	GAC Asp	GAG Glu 90	GAC Asp	GGC Gly	GCG Ala	768
30	CCC GC Pro Al	G GAG a Glu 5	CGG Arg	CGC Arg	CTG Leu	GGC Gly 100	CGC Arg	GCC Ala	GAC Asp	CTG Leu	GTC Val 105	ATG Het	AGC Ser	TTC Phe	GTT Val	816
•	AAC AT Asn He 110	G GTG	GAG Glu	CGA Arg	GAC Asp 115	CGT Arg	GCC Ala	CTG Leu	GGC Gly	CAC His 120	CAG Gln	GAG Glu	CCC	CAT His	TGG Trp 125	864
35	AAG GA Lys Gl	G TTC u Phe	CGC	TTT Phe 130	GAC Asp	CTG Leu	ACC Thr	CAG Gln	ATC Ile 135	CCG Pro	GCT Ala	GGG Gly	GAG Glu	GCG Ala 140	GTC Val	912
40	ACA GO	T GCG a Ala	GAG Glu 145	TTC Phe	CGG Arg	ATT Ile	TAC Tyr	AAG Lys 150	GTG Val	CCC Pro	AGC Ser	ATC Ile	CAC His 155	CTG Leu	CTC Leu	960
45	AAC AG Asn Ar	G ACC g Thr 160	CTC Leu	CAC His	GTC Val	AGC Ser	ATG Met 165	TTC Phe	CAG Gln	GTG Val	GTC Val	CAG Gln 170	GAG Glu	CAG Gln	TCC Ser	1008
	AAC AC Asn Ar	g Glu	TCT Ser	GAC Asp	TTG Leu	TTC Phe 180	TTT Phe	TTG Leu	GAT Asp	CTT Leu	CAG Gln 185	ACG Thr	CTC Leu	CGA Arg	GCT Ala	1056

5	GGA Gly 190	GAC Asp	GAG Glu	GGC Gly	TGG Trp	CTG Leu 195	GTG Val	CTG Leu	GAT Asp	GTC Val	ACA Thr 200	GCA Ala	GCC Ala	AGT Ser	GAC Asp	TGC Cys 205	· 110	14
	TGG Trp	TTG Leu	CTG Leu	AAG Lys	CGT Arg 210	CAC His	AAG Lys	GAC Asp	CTG Leu	GGA Gly 215	CTC Leu	CGC Arg	CTC Leu	TAT Tyr	GTG Val 220	GAG Glu	115	i2
10	Thr	Glu	Asp	Gly 225	His	AGC Ser	Val	ASP	230	GIY	ren	ALG	uly	235		- -,	120	0)
15	Gln	Arg	Ala 240	Pro	Arg	TCC Ser	Gln	G1n 245	rro	rne	vai	AGT	250	THE	1116		124	.8
20	Ala	Ser 255	Pro	Ser	Pro	ATC Ile	Arg 260	Thr	PTO	Arg	WIG	265	urg	110	Deu		129	≀6
	AGG Arg 270	Arg	CAG Gln	CCG Pro	AAG Lys	AAA Lys 275	AGC Set	AAC Asn	GAG Glu	CTG Leu	CCG Pro 280	CAG Gln	GCC Ala	AAC Asn	CGA Arg	CTC Leu 285	134	,4
25	CCA Pro	GGG Gly	ATC Ile	TTT Phe	GAT Asp 290	GAC Asp	GTC Val	CAC His	GGC Gly	TCC Ser 295	CAC His	GGC Gly	CGG Arg	CAG Gln	GTC Val 300	TGC Cys	139)2
30	CGT Arg	CGG	CAC His	GAG Glu 305	CTC Leu	TAC Tyr	GTC Val	AGC Ser	TTC Phe 310	CAG Gln	GAC Asp	CTC	GGC Gly	TGG Trp 315	CTG Leu	GAC Asp	144	۰0
35	TGG Trp	GTC Val	ATC Ile 320	GCT Ala	CCC	CAA Gln	GGC Gly	TAC Tyr 325	TCG Ser	GCC	TAT Tyr	TAC Tyr	TGT Cys 330	GAG Glu	GGG Gly	GAG Glu	148	18
	Cys	Ser 335	Phe	Pro	Leu	GAC Asp	Ser 340	Cys	Het	Asn	Ala	345	ASN	nis	ATA	116	153	16
40	CTG Leu 350	Gln	TCC Ser	CTG Leu	GTG Val	CAC His 355	CTG Leu	ATG Met	AAG Lys	CCA Pro	AAC Asn 360	YTY	GTC Val	CCC	AAG Lys	GCG Ala 365	158	34
45	TGC Cys	TGT Cys	GCA Ala	CCC	ACC Thr 370	AAG Lys	CTG Leu	AGC Ser	GCC	ACC Thr 375	Ser	GTG Val	CTC Leu	TAC	TAT Tyr 380	Asp	163	32
50	AGC Sei	AGC Ser	AAC Asn	AAC Asn 385	Val	ATC	CTG Leu	CGC	Lys 390	Ala	CGC	AAC Asn	ATG Het	GTG Val 395	GTC Val	AAG Lys	168	30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

180

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

15	Met 1	Thr	Ala	Leu	Pro 5	Gly	Pro	Leu	Trp	Leu 10	Leu	Gly	Leu	Ala	Leu 15	Cys
	Ala	Leu	Gly	Gly 20	Gly	Gly	Pro	Gly	Leu 25	Arg	Pro	Pro	Pro	Gly 30	Cys	Pro
20	Gln	Arg	Arg 35	Leu	Gly	Ala	Arg	Glu 40	Arg	Arg	Asp	Val	Gln 45	Arg	Glu	Ile
	Leu	Ala 50	Val	Leu	Gly	Leu	Pro 55	Gly	Arg	Pro	Arg	Pro 60	Arg	Ala	Pro	Pro
25	Ala 65	Ala	Ser	Arg	Leu	Pro 70	Ala	Ser	Ala	Pro	Leu 75	Phe	Het	Leu	Asp	Leu 80
30	Tyr	His	Ala	Het	Ala 85	Gly	Asp	Asp	Asp	Glu 90	Asp	Gly	Ala	Pro	Ala 95	Glu
	Arg	Arg	Leu	Gly 100	Arg	Ala	Asp	Leu	Val 105	Met	Ser	Phe	Val	Asn 110	Het	Val
35	Glu	Arg	Asp 115	Arg	Ala	Leu	Gly	His 120	Gln	Glu	Pro	His	Trp 125	Lys	Glu	Phe
	Arg	Phe 130	Asp	Leu	Thr	Gln	Ile 135	Pro	Ala	Gly	Glu	Ala 140	Val	Thr	Ala	Ala
40	Glu 145	Phe	Arg	Ile	Tyr	Lys 150	Val	Pro	Ser	Ile	His 155	Leu	Leu	Asn	Arg	Thr 160
	Leu	His	Val	Ser	Met 165	Phe	Gln	Val	Val	Gln 170	Glu	Gln	Ser	Asn	Arg 175	Glu
45	Ser	Asp	Leu	Phe		Leu	Asp	Leu	Gln 185		Leu	Arg	Ala	Gly 190	Asp	Glu

185

190

5

5	Gly	Trp	Leu 195	Val	Leu	Asp	Val	Thr 200	Ala	Ala	Ser	Asp	Cys 205	Trp	Leu	Leu
	Lys	Arg 210	His	Lys	Asp	Leu	Gly 215	Leu	Arg	Leu	Tyr	Val 220	Glu	Thr	Glu	Asp
10	Gly 225	His	Ser	Val	Asp	Pro 230	Gly	Leu	Ala	Gly	Leu 235	Leu	Gly	Gln	Arg	Ala 240
	Pro	Arg	Ser	Gln	Gln 245	Pro	Phe	Val	Val	Thr 250	Phe	Phe	Arg	Ala	Ser 255	Pro
15	Ser	Pro	Ile	Arg 260	Thr	Pro	Arg	Ala	Val 265	Arg	Pro	Leu	Arg	Arg 270	Arg	Gln
	Pro	Lys	Lys 275	Ser	Asn	Glu	Leu	Pro 280	Gln	Ala	Asn	Arg	Leu 285	Pro	Gly	Ile
20	Phe	Asp 290	Asp	Val	His	Gly	Ser 295	His	Gly	Arg	Gln	Val 300	Cys	Arg	Arg	His
25	Glu 305	Leu	Tyr	Val	Ser	Phe 310	Gln	Asp	Leu	Gly	Trp 315	Leu	Asp	Trp	Val	Ile 320
	Ala	Pro	Gln	Gly	Tyr 325	Ser	Ala	Tyr	Tyr	Cys 330	Glu	Gly	Glu	Cys	Ser 335	Phe
30	Pro	Leu	Asp	Ser 340	Cys	Het	Asn	Ala	Thr 345	Asn	His	Ala	Ile	Leu 350	Gln	Ser
·	Leu	Val	His 355	Leu	Het	Lys	Pro	Asn 360	Ala	Val	Pro	Lys	Ala 365	Cys	Cys	Ala
35	Pro	Thr 370	Lys	Leu	Ser	Ala	Thr 375	Ser	Val	Leu	Tyr	Tyr 380	Asp	Ser	Ser	Asn
40	Asn 385	Val	Ile	Leu	Arg	Lys 390	Ala	Arg	Asn	Het	Val 395	Val	Lys	Ala	Cys	Gly 400
40	Cys	His														

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1926 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: MURIDAE
- (F) TISSUE TYPE: EMBRYO
- (ix) FEATURE:

45

50

(A) NAME/KEY: CDS

(B) LOCATION: 93..1289

(D) OTHER INFORMATION: /function= "OSTEOGENIC PROTEIN" /product= "mOP2-PP" /note= "mOP2 cDNA"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

	GCC	AGGC4	ACA (GGTG	CGCCC	ST C	rgg t (CTC	c cc	GICT(SGCG	TCAC	GCCG	AGC (CCGA	CCAGCT	60
10	ACC	AGTG	GAT (GCGC	CCG	C TO	GAAA(GTCC	G AG	ATG Net 1	GCT Ala	ATG Net	CGT Arg	CCC Pro 5	GGG Gly	CCA Pro	113
15	CTC Leu	TGG Trp	CTA Leu 10	TTG Leu	GGC Gly	CTT Leu	GCT Ala	CTG Leu 15	TGC Cys	GCG Ala	CTG Leu	GGA Gly	GGC Gly 20	GGC Gly	CAC His	GGT Gly	161
20	CCG Pro	CGT Arg 25	CCC Pro	CCG Pro	CAC His	ACC Thr	TGT Cys 30	CCC Pro	CAG Gln	CGT Arg	CGC Arg	CTG Leu 35	GGA Gly	GCG Ala	CGC Arg	GAG Glu	209
	CGC Arg 40	CGC Arg	GAC Asp	ATG Met	CAG Gln	CGT Arg 45	GAA Glu	ATC Ile	CTG Leu	GCG Ala	GTG Val 50	CTC Leu	GGG Gly	CTA Leu	CCG Pro	GGA Gly 55	257
25	CGG Arg	CCC Pro	CGA Arg	CCC Pro	CGT Arg 60	GCA Ala	CAA Gln	CCC Pro	GCC Ala	GCT Ala 65	GCC Ala	CGG Arg	CAG Gln	CCA Pro	GCG Ala 70	TCC Ser	305
30	GCG Ala	CCC Pro	CTC Leu	TTC Phe 75	ATG Het	TTG Leu	GAC Asp	CTA Leu	TAC Tyr 80	CAC His	GCC Ala	ATG Het	ACC Thr	GAT Asp 85	GAC Asp	GAC Asp	353
	GAC Asp	GGC Gly	GGG Gly 90	CCA Pro	CCA Pro	CAG Gln	GCT Ala	CAC His 95	TTA Leu	GGC Gly	CGT Arg	GCC Ala	GAC Asp 100	CTG Leu	GTC Val	ATG Het	401
35	AGC Ser	TTC Phe 105	GTC Val	AAC Asn	ATG Het	GTG Val	GAA Glu 110	CGC Arg	GAC Asp	CGT Arg	ACC Thr	CTG Leu 115	GGC Gly	TAC Tyr	CAG Gln	GAG Glu	449
40	CCA Pro 120	His	TGG Trp	AAG Lys	GAA Glu	TTC Phe 125	CAC His	TTT Phe	GAC Asp	CTA Leu	ACC Thr 130	CAG Gln	ATC Ile	CCT Pro	GCT Ala	GGG Gly 135	497
45	GAG Glu	GCT Ala	GTC Val	ACA Thr	GCT Ala 140	GCT Ala	GAG Glu	TTC Phe	CGG Arg	ATC Ile 145	TAC Tyr	AAA Lys	GAA Glu	CCC Pro	AGC Ser 150	ACC Thr	545
.0																	

50

5	CAC His	CCG Pro	CTC Leu	AAC Asn 155	ACA Thr	ACC Thr	CTC Leu	His	ATC Ile 160	AGC Ser	ATG Met	TTC Phe	GAA Glu	GTG Val 165	GTC Val	CAA Gln	593
10	GAG Glu	CAC His	TCC Ser 170	AAC Asn	AGG Arg	GAG Glu	TCT Ser	GAC Asp 175	TTG Leu	TTC Phe	TTT Phe	TTG Leu	GAT Asp 180	CTT Leu	CAG Gln	ACG Thr	641
10	CTC Leu	CGA Arg 185	TCT Ser	GGG Gly	GAC Asp	GAG Glu	GGC Gly 190	TGG Trp	CTG Leu	GTG Val	CTĠ Leu	GAC Asp 195	ATC Ile	ACA Thr	GCA Ala	GCC Ala	689
15	AGT Ser 200	Asp	CGA Arg	TGG Trp	CTG Leu	CTG Leu 205	AAC Asn	CAT His	CAC His	AAG Lys	GAC Asp 210	CTG Leu	GGA Gly	CTC Leu	CGC Arg	CTC Leu 215	737
20	TAT Tyr	GTG Val	GAA Glu	ACC Thr	GCG Ala 220	GAT Asp	GGG Gly	CAC His	AGC Ser	ATG Met 225	GAT Asp	CCT Pro	GGC Gly	CTG Leu	GCT Ala 230	GGT Gly	785
	CTG Leu	CTT Leu	GGA Gly	CGA Arg 235	CAA Gln	GCA Ala	CCA Pro	CGC Arg	TCC Ser 240	AGA Arg	CAG Gln	CCT Pro	TTC Phe	ATG Met 245	GTA Val	ACC Thr	833
25	TTC Phe	TTC Phe	AGG Arg 250	GCC Ala	AGC Ser	CAG Gln	AGT Ser	CCT Pro 255	GTG Val	CGG Arg	GCC Ala	CCT Pro	CGG Arg 260	GCA Ala	GCG Ala	AGA Arg	881
30	CCA Pro	CTG Leu 265	AAG Lys	AGG Arg	AGG Arg	CAG Gln	CCA Pro 270	AAG Lys	AAA Lys	ACG Thr	AAC Asn	GAG Glu 275	CTT Leu	CCG Pro	CAC His	CCC	929
35	AAC Asn 280	Lys	CTC	CCA Pro	GGG Gly	ATC Ile 285	TIT Phe	GAT Asp	GAT Asp	GGC Gly	CAC His 290	GGT Gly	TCC Ser	CGC Arg	GGC Gly	AGA Arg 295	977
	GAG Glu	GTT Val	TGC Cys	CGC Arg	AGG Arg 300	CAT His	GAG Glu	CTC Leu	TAC Tyr	GTC Val 305	AGC Ser	TTC Phe	CGT Arg	GAC Asp	CTT Leu 310	GGC Gly	1025
40	TGG Trp	CTG Leu	GAC Asp	TGG Trp 315	GTC Val	ATC Ile	GCC Ala	CCC Pro	CAG Gln 320	GGC Gly	TAC Tyr	TCT Ser	GCC Ala	TAT Tyr 325	TAC Tyr	TGT Cys	1073
45	GAG Glu	GGG Gly	GAG Glu 330	TGT Cys	GCT Ala	TTC Phe	CCA Pro	CTG Leu 335	GAC Asp	TCC Ser	TGT Cys	ATG Het	AAC Asn 340	GCC Ala	ACC Thr	AAC Asn	1121
50	CAT His	GCC Ala 345	ATC Ile	TTG Leu	CAG Gln	TCT Ser	CTG Leu 350	GTG Val	CAC His	CTG Leu	ATG Met	AAG Lys 355	CCA Pro	GAT Asp	GTT Val	GTC Val	1169

5	CCC AAG GCA TGC TGT GCA CCC ACC AAA CTG AGT GCC ACC TCT GTG CTG Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr Ser Val Leu 360 375	1217
	TAC TAT GAC AGC AGC AAC AAT GTC ATC CTG CGT AAA CAC CGT AAC ATG Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg Lys His Arg Asn Het 380 385	1265
10	GTG GTC AAG GCC TGT GGC TGC CAC TGAGGCCCCG CCCAGCATCC TGCTTCTACT Val Val Lys Ala Cys Gly Cys His 395	1319
	ACCTTACCAT CTGGCCGGGC CCCTCTCCAG AGGCAGAAAC CCTTCTATGT TATCATAGCT	1379
15	CAGACAGGGG CAATGGGAGG CCCTTCACTT CCCCTGGCCA CTTCCTGCTA AAATTCTGGT	1439
	CTTTCCCAGT TCCTCTGTCC TTCATGGGGT TTCGGGGCTA TCACCCCGCC CTCTCCATCC	1499
	TCCTACCCCA AGCATAGACT GAATGCACAC AGCATCCCAG AGCTATGCTA ACTGAGAGGT	1559
20	CTGGGGTCAG CACTGAAGGC CCACATGAGG AAGACTGATC CTTGGCCATC CTCAGCCCAC	1619
	AATGGCAAAT TCTGGATGGT CTAAGAAGGC CCTGGAATTC TAAACTAGAT GATCTGGGCT	1679
25	CTCTGCACCA TTCATTGTGG CAGTTGGGAC ATTTTTAGGT ATAACAGACA CATACACTTA	1739
25	GATCAATGCA TCGCTGTACT CCTTGAAATC AGAGCTAGCT TGTTAGAAAA AGAATCAGAG	1799
	CCAGGTATAG CGGTGCATGT CATTAATCCC AGCGCTAAAG AGACAGAGAC AGGAGAATCT	1859
30	CTGTGAGTTC AAGGCCACAT AGAAAGAGCC TGTCTCGGGA GCAGGAAAAA AAAAAAAAAC	1919
•	GGAATTC	1926
35	(2) INFORMATION FOR SEQ ID NO:13:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 399 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
1 10 15

Ala Leu Gly Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln 20 25 30

40

45

5	Arg	Arg	Leu 35	Gly	Ala	Arg	Glu	Arg 40	Arg	ASP	net	CIU	45	GIU	116	rec
•	Ala	Val 50	Leu	Gly	Leu	Pro	Gly 55	Arg	Pro	Arg	Pro	Arg 60	Ala	Gln	Pro	Ala
10	Ala 65	Ala	Arg	Gln	Pro	Ala 70	Ser	Ala	Pro	Leu	Phe 75	Het	Leu	Asp	Leu	Tyr 80
	His	Ala	Het	Thr	Asp 85	Asp	Asp	Asp	Gly	Gly 90	Pro	Pro	Gln	Ala	His 95	Leu
15	Gly	Arg	Ala	Asp 100	Leu	Val	Het	Ser	Phe 105	Val	Asn	Het	Val	Glu 110	Arg	Asp
20	Arg	Thr	Leu 115	Gly	Tyr	Gln	Glu	Pro 120	His	Trp	Lys	Glu	Phe 125	His	Phe	Asp
20	Leu	Thr 130	Gln	Ile	Pro	Ala	Gly 135	Glu	Ala	Val	Thr	Ala 140	Ala	Glu	Phe	Arg
25	11e 145	Tyr	Lys	Glu	Pro	Ser 150	Thr	His	Pro	Leu	Asn 155	Thr	Thr	Leu	His	11e 160
	Ser	Het	Phe	Glu	Val 165	Val	Gln	Glu	His	Ser 170	Asn	Arg	Glu	Ser	Asp 175	Leu
30	Phe	Phe	Leu	Asp 180	Leu	Gln	Thr	Leu	Arg 185	Ser	Gly	Asp	Glu	Gly 190	Trp	Leu
•			195			Ala		200					205			
35		210				Arg	215					220				
40	225	-		·		Ala 230					235					240
	Arg	Gln	Pro	Phe	Het 245	Val	Thr	Phe	Phe	Arg 250	Ala	Ser	Gln	Ser	Pro 255	Val
45	Arg	Ala	Pro	Arg 260	Ala	Ala	Arg	Pro	Leu 265	Lys	Arg	Arg	Gln	Pro 270	Lys	Lys
	Thr	Asn	Glu 275	Leu	Pro	His	Pro	Asn 280	Lys	Leu	Pro	Gly	Ile 285	Phe	Asp	Asp
50	Gly	His 290	Gly	Ser	Arg	Gly	Arg 295	Glu	Val	Cys	Arg	Arg 300	His	Glu	Leu	Tyr
55	Val 305	Ser	Phe	Arg	Asp	Leu 310	Gly	Trp	Leu	Asp	Trp 315	Val	Ile	Ala	Pro	Gln 320

5		Gly	Tyr	Ser	Ala	325	lyr	Cys	GIU	GIA	330	Cys	NIG	1116	110	335	лэр	
		Ser	Cys	Het	Asn 340	Ala	Thr	Asn	His	Ala 345	Ile	Leu	Gln	Ser	Leu 350	Val	His	
10		Leu	Het	Lys 355	Pro	Asp	Val	Val	Pro 360	Lys	Ala	Cys	Cys	Ala 365	Pro	Thr	Lys	
		Leu	Ser 370	Ala	Thr	Ser	Val	Leu 375	Tyr	Tyr	Asp	Ser	Ser 380	Asn	Asn	Val	Ile	
15		Leu 385	Arg	Lys	His	Arg	Asn 390	Met	Val	Val	Lys	Ala 395	Cys	Gly	Cys	His		
20	(2) IN	FORM	IOITAI	N FOR	SEQ	ID NO	:14:											
	(i)	SEQ	UENC	E CHA	ARACT	ERIS	TICS:											
25		(B) (C)	TYPE STRA	: nucle	260 ba eic acid NESS ′: linea	l : singl												
	(ii) MOL	.ECUL	E TYF	E: cD	NA												
30	(ii	i) HYF	POTHE	ETICA	L: NO													
	(i)	v) AN1	ΓI-SEN	ISE: N	0													
) E	(v	i) ORI	GINAL	. sou	RCE:													
35		(A)	ORGA	NISM	: нон	O SAF	PIENS											
	(i)	k) FEA	TURE	:														
10		(B) (D)		TION:	9119		/funct	tion= "	OSTE	OGEN	IIC PR	ROTEIN	\" /pro	duct=	"BMP	2A" /no	ote= "BMP2	!A
15	(x	i) SEC	QUENC	CE DE	SCRIF	PTION	SEQ	ID NC):14:									
50	GGTCG	ACC A	ATG G iet V	TG G	CC GG la Gl	G AC	C CGC	TGT Cys	CTT Leu	CTA Leu	GCG 'Ala	TTG C Leu I	TG C eu L	TT CO eu Pr	CC co	5	0	
-	CAG G Gln V	TC C	rc cr eu Le	G GG u Gl	c GGC y Gly 20	, Ala	GCT Ala	GGC Gly	CTC (Leu \	Val P 25	CG G	AG CI lu Le	rg GG	C CGC y Arg 30	5	9	8	

5	AGG Arg	AAG Lys	TTC Phe	GCG Ala	GCG Ala 35	GCG Ala	TCG Ser	TCG Ser	GGC Gly	CGC Arg 40	CCC Pro	TCA Ser	TCC Ser	CAG Gln	CCC Pro 45	TCT Ser	146
	GAC Asp	GAG Glu	GTC Val	CTG Leu 50	AGC Ser	GAG Glu	TTC Phe	GAG Glu	TTG Leu 55	CGG Arg	CTG Leu	CTC Leu	AGC Ser	ATG Met 60	TTC Phe	GGC Gly	194
10	CTG Leu	AAA Lys	CAG Gln 65	AGA Arg	CCC Pro	ACC Thr	CCC Pro	AGC Ser 70	AGG Arg	GAC Asp	GCC Ala	GTG Val	GTG Val 75	CCC Pro	CCC Pro	TAC Tyr	242
15	ATG Het	CTA Leu 80	GAC Asp	CTG Leu	TAT Tyr	CGC Arg	AGG Arg 85	CAC His	TCG Ser	GGT Gly	CAG Gln	CCG Pro 90	GGC Gly	TCA Ser	CCC Pro	GCC Ala	290
20	CCA Pro 95	GAC Asp	CAC His	CGG Arg	TTG Leu	GAG Glu 100	AGG Arg	GCA Ala	GCC Ala	AGC Ser	CGA Arg 105	GCC Ala	AAC Asn	ACT Thr	GTG Val	CGC Arg 110	338
	AGC Ser	TTC Phe	CAC His	CAT His	GAA Glu 115	GAA Glu	TCT Ser	TTG Leu	GAA Glu	GAA Glu 120	CTA Leu	CCA Pro	GAA Glu	ACG Thr	AGT Ser 125	GGG Gly	386
25	AAA Lys	ACA Thr	ACC Thr	CGG Arg 130	AGA Arg	TTC Phe	TTC Phe	TTT Phe	AAT Asn 135	TTA Leu	AGT Ser	TCT Ser	ATC Ile	CCC Pro 140	ACG Thr	GAG Glu	434
30	GAG Glu	TTT Phe	ATC Ile 145	ACC Thr	TCA Ser	GCA Ala	GAG Glu	CTT Leu 150	CAG Gln	GTT Val	TTC Phe	CGA Arg	GAA Glu 155	CAG Gln	ATG Net	CAA Gln	482
	GAT Asp	GCT Ala 160	TTA Leu	GGA Gly	AAC Asn	AAT Asn	AGC Ser 165	AGT Ser	TT3 Phe	CAT His	CAC His	CGA Arg 170	ATT Ile	AAT Asn	ATT Ile	TAT Tyr	530
35	GAA Glu 175	ATC Ile	ATA Ile	AAA Lys	CCT Pro	GCA Ala 180	ACA Thr	GCC Ala	AAC Asn	TCG Ser	AAA Lys 185	TTC Phe	CCC Pro	GTG Val	ACC Thr	AGT Ser 190	578
40	CTT Leu	TTG Leu	GAC Asp	ACC Thr	AGG Arg 195	TTG Leu	GTG Val	AAT Asn	CAG Gln	AAT Asn 200	GCA Ala	AGC Ser	AGG Arg	TGG Trp	GAA Glu 205	AGT Ser	626
45	TTT Phe	GAT Asp	GTC Val	ACC Thr 210	CCC Pro	GCT Ala	GTG Val	ATG Met	CGG Arg 215	TGG Trp	ACT Thr	GCA Ala	CAG Gln	GGA Gly 220	CAC His	GCC Ala	674
	AAC Asn	CAT His	GGA Gly 225	TTC Phe	GTG Val	GTG Val	GAA Glu	GTG Val 230	GCC Ala	CAC His	TTG Leu	GAG Glu	GAG Glu 235	AAA Lys	CAA Gln	GGT Gly	722

5	GTC Val	TCC Ser 240	AAG Lys	AGA Arg	CAT His	GTT Val	AGG Arg 245	ATA Ile	AGC Ser	AGG Arg	TCT Ser	TTG Leu 250	CAC His	CAA Gln	GAT Asp	GAA Glu	770
	CAC His 255	AGC Ser	TGG Trp	TCA Ser	CAG Gln	ATA Ile 260	AGG Arg	CCA Pro	TTG Leu	CTA Leu	GTA Val 265	ACT Thr	TTT	GGC Gly	CAT His	GAT Asp 270	818
10	GGA Gly	AAA Lys	GGG	CAT His	CCT Pro 275	CTC Leu	CAC His	AAA Lys	AGA Arg	GAA Glu 280	AAA Lys	CGT Arg	CAA Gln	GCC Ala	AAA Lys 285	CAC His	866
15	AAA Lys	CAG Gln	CGG Arg	AAA Lys 290	CGC Arg	CTT Leu	AAG Lys	TCC Ser	AGC Ser 295	TGT Cys	AAG Lys	AGA Arg	CAC His	CCT Pro 300	TTG Leu	TAC Tyr	914
	GTG Val	GAC Asp	TTC Phe 305	AGT Ser	GAC Asp	GTG Val	GGG Gly	TGG Trp 310	AAT Asn	GAC Asp	TGG Trp	ATT Ile	GTG Val 315	GCT Ala	CCC Pro	CCG Pro	962
20	GGG Gly	TAT Tyr 320	CAC His	GCC Ala	TTT Phe	TAC Tyr	TGC Cys 325	CAC His	GGA Gly	GAA Glu	TGC Cys	CCT Pro 330	TTT Phe	CCT Pro	CTG Leu	GCT Ala	1010
25	GAT Asp 335	CAT His	CTG Leu	AAC Asn	TCC Ser	ACT Thr 340	AAT Asn	CAT His	GCC Ala	ATT Ile	GTT Val 345	CAG Gln	ACG Thr	TTG Leu	GTC Val	AAC Asn 350	1058
	TCT Ser	GTT Val	AAC Asn	TCT Ser	AAG Lys 355	ATT Ile	CCT Pro	AAG Lys	GCA Ala	TGC Cys 360	TGT Cys	GTC Val	CCG Pro	ACA Thr	GAA Glu 365	CTC Leu	1106
30	AGT Ser	GCT Ala	ATC Ile	TCG Ser 370	ATG Het	CTG Leu	TAC Tyr	CTT Leu	GAC Asp 375	GAG Glu	AAT Asn	GAA Glu	AAG Lys	GTT Val 380	GTA Val	TTA Leu	1154
35	AAG Lys	AAC Asn	TAT Tyr 385	CAG Gln	GAT Asp	ATG Met	GTT Val	GTG Val 390	GAG Glu	GGT Gly	TGT Cys	GGG Gly	TGT Cys 395	CGC Arg			1196
	TAG	CACAC	GCA A	TAAA	CAAA1	ra c <i>i</i>	\TAA/	TATA	A TAT	[ATA]	ATA	TATA	TTT	rag <i>i</i>	AAAA	AAGAAA	1256
10	AAA	4															1260

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 396 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

50

	Het 1	Val	Ala	Gly	Thr 5	Arg	Cys	Leu	Leu	Ala 10	Leu	Leu	Leu	Pro	15	val
5	Leu	Leu	Gly	Gly 20	Ala	Ala	Gly	Leu	Val 25	Pro	Glu	Leu	Gly	Arg 30	Arg	Lys
	Phe	Ala	Ala 35	Ala	Ser	Ser	Gly	Arg 40	Pro	Ser	Ser	Gln	Pro 45	Ser	Asp	Glu
10	Val	Leu 50	Ser	Glu	Phe	Glu	Leu 55	Arg	Leu	Leu	Ser	Het 60	Phe	Gly	Leu	Lys
15	Gln 65	Arg	Pro	Thr	Pro	Ser 70	Arg	Asp	Ala	Val	Val 75	Pro	Pro	Tyr	Het	Leu 80
	Asp	Leu	Tyr	Arg	Arg 85	His	Ser	Gly	Gln	Pro 90	Gly	Ser	Pro	Ala	Pro 95	Asp
20	His	Arg	Leu	Glu 100	Arg	Ala	Ala	Ser	Arg 105	Ala	Asn	Thr	Val	Arg 110	Ser	Phe
	His	His	Glu 115	Glu	Ser	Leu	Glu	Glu 120	Leu	Pro	Glu	Thr	Ser 125	Gly	Lys	Thr
25	Thr	Arg 130	Arg	Phe	Phe	Phe	Asn 135	Leu	Ser	Ser	Ile	Pro 140	Thr	Glu	Glu	Phe
30	Ile 145	Thr	Ser	Ala	Glu	Leu 150	Gln	Val	Phe	Arg	Glu 155	Gln	Het	Gln	Asp	Ala 160
	Leu	Gly	Asn	Asn	Ser 165	Ser	Phe	His	His	Arg 170	Ile	Asn	Ile	Tyr	Glu 175	Ile
35	Ile	Lys	Pro	Ala 180	Thr	Ala	Asn	Ser	Lys 185	Phe	Pro	Val	Thr	Ser 190	Leu	Leu
	Asp	Thr	Arg 195	Leu	Val	Asn	Gln	Asn 200	Ala	Ser	Arg	Trp	Glu 205	Ser	Phe	Asp
40	Val	Thr 210	Pro	Ala	Val	Het	Arg 215	Trp	Thr	Ala	Gln	Gly 220	His	Ala	Asn	His
	Gly 225	Phe	Val	Val	Glu	Val 230	Ala	His	Leu	Glu	Glu 235	Lys	Gln	Gly	Val	Ser 240
45	Lys	Arg	His	Val	Arg 245	Ile	Ser	Arg	Ser	Leu 250	His	Gln	Asp	Glu	His 255	Ser

	Trp	Ser	Gln	Ile 260	Arg	Pro	Leu	Leu	Val 265	Thr	Phe	Gly	His	Asp 270	Gly	Ly:
5	Gly	His	Pro 275	Leu	His	Lys	Arg	Glu 280	Lys	Arg	Gln	Ala	Lys 285	His	Lys	Gli
10	Arg	Lys 290	Arg	Leu	Lys	Ser	Ser 295	Cys	Lys	Arg	His	Pro 300	Leu	Tyr	Val	Ası
	Phe 305	Ser	Asp	Val	Gly	Trp 310	Asn	Asp	Trp	Ile	Val 315	Ala	Pro	Pro	Gly	Ty:
15	His	Ala	Phe	Tyr	Cys 325	His	Gly	Glu	Cys	Pro 330	Phe	Pro	Leu	Ala	Asp 335	His
	Leu	Asn	Ser	Thr 340	Asn	His	Ala	Ile	Val 345	Gln	Thr	Leu	Val	Asn 350	Ser	Va]
20	Asn	Ser	Lys 355	Ile	Pro	Lys	Ala	Cys 360	Cys	Val	Pro	Thr	Glu 365	Leu	Ser	Ala
25	Ile	Ser 370	Het	Leu	Tyr	Leu	Asp 375	Glu	Asn	Glu	Lys	Val 380	Val	Leu	Lys	Asr
2.5	Tyr 385	Gln	Asp	Het	Val	Val 390	Glu	Gly	Cys	Gly	Cys 395	Arg				

- 30 (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
- 45 (ix) FEATURE:

35

40

50

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..327
- (D) OTHER INFORMATION: /product= "MATURE hBMP3 (PARTIAL)" /note= "THIS PARTIAL SE-QUENCE OF THE MATURE HUMAN BMP3 PROTEIN INCLUDES THE FIRST THREE CYSTEINES OF THE CONSERVED 7 CYSTEINE SKELETON. SEE U.S. PAT. NO. 5,011,691 FOR 102 C-TERHINAL SEQUENCE (CBMP3.)"
- (ix) FEATURE:
 - (A) NAME/KEY: intron (B) LOCATION: 328..574

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5	Arg 1	Ala	Ser	Lys	Ile 5	Glu	Tyr	Gin	ıyr	10		wsh	010	,41	15	020	4	8
10	Glu	Arg	Lys	Pro 20	Tyr	Lys	Thr	Leu	25	GIA	261	GIY	110	30	Ly 3	AGT Ser	9	6
	AAG Lys	AAT Asn	AAA Lys 35	AAG Lys	AAA Lys	CAG Gln	AGA Arg	AAG Lys 40	GGG Gly	CCT Pro	CAT His	CGG Arg	AAG Lys 45	AGC Ser	CAG Gln	ACG Thr	14	4
15	CTC Leu	CAA Gln 50	TTT Phe	GAT Asp	GAG Glu	CAG Gln	ACC Thr 55	CTG Leu	AAA Lys	AAG Lys	GCA Ala	AGG Arg 60	AGA Arg	AAG Lys	CAG Gln	TGG Trp	19	2
20	ATT Ile 65	GAA Glu	CCT Pro	CGG Arg	AAT Asn	TGC Cys 70	GCC Ala	AGG Arg	AGA Arg	TAC Tyr	CTC Leu 75	AAG Lys	GTA Val	GAC Asp	TTT Phe	GCA Ala 80	24	0
25	GAT Asp	ATT lle	GGC Gly	TGG Trp	AGT Ser 85	GAA Glu	TGG Trp	ATT Ile	ATC Ile	TCC Ser 90	CCC Pro	AAG Lys	TCC Ser	TTT Phe	GAT Asp 95	GCC Ala	28	8
	TAT Tyr	TAT Tyr	TGC Cys	TCT Ser 100	GGA Gly	GCA Ala	TGC Cys	CAG Gln	TTC Phe 105	CCC Pro	ATG Met	CCA Pro	AAG Lys	GTA	GCCA'	ITG	33	7
30	TTC	rctg:	rcc :	IGTA(CTTA	CT T	CCTA!	TTTC	C AT	TAGT	AGAA	AGA	CACA:	TTG A	ACTA	AGTTA	.G 39	7
	TGT	GCAT	ATA (GGGG	GTTT	GT G	raag:	IGTT:	r GT(GTTT	CCAT	TTG	CAAA	ATC (CATT	GGGAC	C 45	7
	CTT	ATTT	ACT .	ACAT	rcta.	AA C	CATA	ATAG	G TA	TAT	GGTT	ATT	CTTG	GTT :	ICTC:	AATTI	T 51	7
35											AGAA						57	4

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 109 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Arg Ala Ser Lys Ile Glu Tyr Gln Tyr Lys Lys Asp Glu Val Trp Glu 1 5 10 15

40

45

	Glu	Arg	Lys	Pro 20	Туг	Lys	Thr	ren	25	GIY	261	GIY	FFO	30	Lys	261
5	Lys	Asn	Lys 35	Lys	Lys	Gln	Arg	Lys 40	Gly	Pro	His	Arg	Lys 45	Ser	Gln	Thr
10	Leu	Gln 50	Phe	Asp	Glu	Gln	Thr 55	Leu	Lys	Lys	Ala	Arg 60	Arg	Lys	Gln	Trp
	Ile 65	Glu	Pro	Arg	Asn	Cys 70	Ala	Arg	Arg	Tyr	Leu 75	Lys	Val	Asp	Phe	Ala 80
15	Asp	Ile	Gly	Trp	Ser 85	Glu	Trp	Ile	Ile	Ser 90	Pro	Lys	Ser	Phe	Asp 95	Ala
	Tyr	Tyr	Cys	Ser 100	Gly	Ala	Cys	Gln	Phe 105	Pro	Het	Pro	Lys			
20	(2) INF	ORMA	ATION	FOR:	SEQ II	O NO:	18:									
	(i)	SEQU	ENCE	CHA	RACTI	ERIST	ICS:									
25		(B) T (C) S	YPE: STRAN	nuclei NDEDN	88 bas c acid NESS: linear	single										
30	(ii)	MOLE	CULE	TYPE	E: cDN	IA										
	(iii) HYP(OTHE	TICAL	: NO											
35	(iv) ANTI	-SENS	SE: NO)											
	(vi) ORIC	SINAL	SOUR	RCE:											
40					HOMO E: HIP		IENS MPUS	3								
40	(ix) FEAT	URE:													
45		(B) L (C) I (D) (OCAT DENT OTHER	IFICAT R INFO	10316 TION N DRMA	METHO TION: A	DD: exp /functions (CDN)	on= "C		OGENI	C PR	OTEIN	" /prod	duct= "	ВМР2	B" /evidence= EX-
50	(xi) SEQ	UENC	E DES	CRIP	TION:	SEQ II	D NO:	18:							
	GAAT	rcggg	G CA	GAGG	AGGA	GGGA	\GGGA	GG G	AAGG	AGCGC	GGA	GCCC	GGC (CCGG	AAGCI	A 60
	GGTG	AGTGT	G GC	ATCC	GAGC	TGAC	GGAC	GC G	AGCC:	rgaga	CGC	CGCT	GCT (CTC	CGGCI	G 120
55	AGTA:	CTAG	C TI	GTCT	CCCC	GATO	GGAT	TC C	CGTC	CAAGC	TAT	CTCG	AGC (CTGC	AGCGC	C 180

	ACAGTC	CCCG	GCCCT	rcgc	CC AC	GTT	CACTO	G CAA	ACCG:	MTCA	GAG	GTCC	CCA (GGAG	CTGCTG	240
5	CTGGCG	AGCC	CGCTA	ACTG	CA GO	GAC	TAT	GAC	GCCA:	TCC	GTA	GTGC	CAT (CCCG	AGCAAC	300
	GCACTG	CTGC A	AGCT	rccc	C AC	CCT	TCC/	A GC	AAGT:	TGT	TCA	AGAT	rgg (CTGT	CAAGAA	360
10	TCATGG	ACTG '	TAT:	[ATA]	rg co	CTTG	rrtt(C TGT	CAAC	GACA	CC A	ATG A Het 1	ATT (CCT (Pro (GCT	414
15	AAC CGAASN Arg	ATG Het	CTG Leu	ATG Het	GTC Val 10	GTT Val	TTA Leu	TTA Leu	TGC Cys	CAA Gln 15	GTC Val	CTG Leu	CTA Leu	GGA Gly	GGC Gly 20	462
	GCG AGG	CAT His	GCT Ala	AGT Ser 25	TTG Leu	ATA Ile	CCT	GAG Glu	ACG Thr 30	GGG Gly	AAG Lys	AAA Lys	AAA Lys	GTC Val 35	GCC Ala	510
20	GAG AT	CAG Gln	GGC Gly 40	CAC His	GCG Ala	GGA Gly	GGA Gly	CGC Arg 45	CGC Arg	TCA Ser	GGG Gly	CAG Gln	AGC Ser 50	CAT His	GAG Glu	558
25	CTC CTC Leu Lei	CGG Arg 55	GAC Asp	TTC Phe	GAG Glu	GCG Ala	ACA Thr 60	CTT Leu	CTG Leu	CAG Gln	ATG Met	TTT Phe 65	GGG Gly	CTG Leu	CGC Arg	606
30	CGC CGC Arg Arg	g Pro	CAG Gln	CCT Pro	AGC Ser	AAG Lys 75	AGT Ser	GCC Ala	GTC Val	ATT Ile	CCG Pro 80	GAC Asp	TAC Tyr	ATG Met	CGG Arg	654
30	GAT CT Asp Let 85	TAC Tyr	CGG Arg	CTT Leu	CAG Gln 90	TCT Ser	GGG Gly	GAG Glu	GAG Glu	GAG Glu 95	GAA Glu	GAG Glu	CAG Gln	ATC Ile	CAC His 100	702
35	AGC ACT	GGT Gly	CTT Leu	GAG Glu 105	TAT Tyr	CCT Pro	GAG Glu	CGC Arg	CCG Pro 110	GCC Ala	AGC Ser	CGG Arg	GCC Ala	AAC Asn 115	ACC Thr	750
40	GTG AGG	G AGC Ser	Phe	His	His	Glu	Glu	CAT His 125	CTG Leu	GAG Glu	AAC Asn	ATC Ile	CCA Pro 130	GGG Gly	ACC Thr	798
	AGT GA	A AAC 1 Asn 135	TCT Ser	GCT Ala	TTT Phe	CGT Arg	TTC Phe 140	CTC Leu	TTT Phe	AAC Asn	CTC Leu	AGC Ser 145	AGC Ser	ATC Ile	CCT Pro	846
45	GAG AAG Glu Ass 150	ı Glu	GTG Val	ATC Ile	TCC Ser	TCT Ser 155	GCA Ala	GAG Glu	CTT Leu	CGG Arg	CTC Leu 160	TTC Phe	CGG Arg	GAG Glu	CAG Gln	894

5	GTG Val 165	GAC Asp	CAG Gln	GGC Gly	CCT Pro	GAT Asp 170	TGG Trp	GAA Glu	AGG Arg	GGC Gly	TTC Phe 175	CAC His	CGT Arg	ATA Ile	AAC Asn	ATT Ile 180	٠	942
	TAT Tyr	GAG Glu	GTT Val	ATG Het	AAG Lys 185	CCC Pro	CCA Pro	GCA Ala	GAA Glu	GTG Val 190	GTG Val	CCT Pro	GGG	CAC His	CTC Leu 195	ATC Ile		990
10	ACA Thr	CGA Arg	CTA Leu	CTG Leu 200	GAC Asp	ACG Thr	AGA Arg	CTG Leu	GTC Val 205	CAC His	CAC His	AAT Asn	GTG Val	ACA Thr 210	CGG Arg	TGG Trp	1	038
15	GAA Glu	ACT Thr	TTT Phe 215	GAT Asp	GTG Val	AGC Ser	CCT Pro	GCG Ala 220	GTC Val	CTT Leu	CGC Arg	TGG Trp	ACC Thr 225	CGG Arg	GAG Glu	AAG Lys	1	086
20	CAG Gln	CCA Pro 230	AAC Asn	TAT Tyr	GGG Gly	CTA Leu	GCC Ala 235	ATT Ile	GAG Glu	GTG Val	ACT Thr	CAC His 240	CTC Leu	CAT His	CAG Gln	ACT Thr	1	134
20	CGG Arg 245	ACC Thr	CAC His	CAG Gln	GGC	CAG Gln 250	CAT His	GTC Val	AGG Arg	ATT Ile	AGC Ser 255	CGA Arg	TCG Ser	TTA Leu	CCT Pro	CAA Gln 260	1	182
25	GGG Gly	AGT Ser	GGG Gly	AAT Asn	TGG Trp 265	GCC Ala	CAG Gln	CTC Leu	CGG Arg	CCC Pro 270	CTC Leu	CTG Leu	GTC Val	ACC Thr	TTT Phe 275	GGC Gly	1:	230
30	CAT His	GAT Asp	GGC Gly	CGG Arg 280	GGC Gly	CAT His	GCC Ala	TTG Leu	ACC Thr 285	CGA Arg	CGC Arg	CGG Arg	AGG Arg	GCC Ala 290	AAG Lys	CGT Arg	13	278
	AGC Ser	CCT Pro	AAG Lys 295	CAT His	CAC His	TCA Ser	CAG Gln	CGG Arg 300	GCC Ala	AGG Arg	AAG Lys	AAG Lys	AAT Asn 305	AAG Lys	AAC Asn	TGC Cys	13	326
35	CGG Arg	CGC Arg 310	CAC His	TCG Ser	CTC Leu	TAT Tyr	GTG Val 315	GAC Asp	TTC Phe	AGC Ser	GAT Asp	GTG Val 320	GGC Gly	TGG Trp	AAT Asn	GAC Asp	13	374
40	TGG Trp 325	ATT Ile	GTG Val	GCC Ala	CCA Pro	CCA Pro 330	GGC Gly	TAC Tyr	CAG Gln	GCC Ala	TTC Phe 335	TAC Tyr	TGC Cys	CAT His	GGG Gly	GAC Asp 340	10	422
45	TGC Cys	CCC Pro	TTT Phe	CCA Pro	CTG Leu 345	GCT Ala	GAC Asp	CAC His	CTC Leu	AAC Asn 350	TCA Ser	ACC Thr	AAC Asn	CAT His	GCC Ala 355	ATT Ile	14	470
45	GTG Val	CAG Gln	ACC Thr	CTG Leu 360	GTC Val	AAT Asn	TCT Ser	GTC Val	AAT Asn 365	TCC Ser	AGT Ser	ATC Ile	CCC Pro	AAA Lys 370	GCC Ala	TGT Cys	1!	518

5	TGT C	al P	CC A	CT G/ hr G]	AA CT Lu Le	G AG u Se	T GC r Al 38	a Il	C TC e Se	C AT	G CT(t Le	385	r Lei	GAT 1 Asi	GAC Glu	3	1566
	TAT O	AT A Sp L	AG G ys V	TG GI al Va	TA CT	G AA u Ly 39	s As	T TA n Ty	T CA	G GAO	G ATO u Het 400	: Va.	A GTA	A GAC	GG/ Gly	\ 7	1614
10	TGT G Cys G 405				GAGAT	CAGG	CAG	TCCT	TGA ·	GGAT	AGAC#	AG A	(ATA	CACAC			1666
15	ACACA	CACA	C AC	ACCAC	CATA	CACC	ACAC	AC A	CACG	TTCC	C ATC	CAC	CAC	CCAC	CACAC	CTA	1726
	CACAC	ACTG	C TT	CCTT	ATAG	CTGG	ACTT	TT A	TTTA	AAAA	A AAA	AAA	AAAA	AAAC	CCGA	LAT	1786
	TC																1788
20	(2) INFO	RMAT	ION F	OR SE	(Q ID N	IO:19:											
	(i) S	EQUE	NCE C	HARA	CTER	ISTICS	S:										
25		B) TY	PE: an	nino ad	cid	acids											
	(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein																
30	(xi) \$	(D) TOPOLOGY: linear															
35		Ile	Pro	Gly	_	Arg	Het	Leu	Het		Val	Leu	Leu	Cys		Val	
	Leu	Leu	Gly	Gly 20	Ala	Ser	His	Ala	Ser 25	Leu	Ile	Pro	Glu	Thr 30	Gly	Lys	
40	Lys	Lys	Val 35	Ala	Glu	Ile	Gln	Gly 40	His	Ala	Gly	Gly	Arg 45	Arg	Ser	Gly	
	Gln	Ser 50		Glu	Leu	Leu	Arg 55	Asp	Phe	Glu	Ala	Thr 60	Leu	Leu	Gln	Het	
45	Phe 65	Gly	Leu	Arg	Arg	Arg 70	Pro	Gln	Pro	Ser	Lys 75	Ser	Ala	Val	Ile	Pro 80	
50	Asp	Tyr	Het	Arg	Asp 85	Leu	Tyr	Arg	Leu	Gln 90	Ser	Gly	Glu	Glu	Glu 95	Glu	
	Glu	Gln	Ile	His 100	Ser	Thr	Gly	Leu	Glu 105	Tyr	Pro	Glu	Arg	Pro 110	Ala	Ser	
55	Arg	Ala	Asn 115	Thr	Val	Arg	Ser	Phe 120	His	His	Glu	Glu	His 125	Leu	Glu	Asn	

5	Ile	Pro 130	Gly	Thr	Ser	Glu	Asn 135	Ser	Ala	Phe	Arg	140	Leu	rne	ASN	rec
	Ser 145	Ser	Ile	Pro	Glu	Asn 150	Glu	Val	Ile	Ser	Ser 155	Ala	Glu	Leu	Arg	Leu 160
10	Phe	Arg	Glu	Gln	Val 165	Asp	Gln	Gly	Pro	Asp 170	Trp	Glu	Arg	Gly	Phe 175	His
	Arg	Ile.	Asn	Ile 180	Tyr	Glu	Val	Het	Lys 185	Pro	Pro	Ala	Glu	Val 190	Val	Pro
15	Gly	His	Leu 195	Ile	Thr	Arg	Leu	Leu 200	Asp	Thr	Arg	Leu	Val 205	His	His	Asn
20	Val	Thr 210	Arg	Trp	Glu	Thr	Phe 215	Asp	Val	Ser	Pro	Ala 220	Val	Leu	Arg	Trp
	Thr 225	Arg	Glu	Lys	Gln	Pro 230	Asn	Tyr	Gly	Leu	Ala 235	Ile	Glu	Val	Thr	His 240
25	Leu	His	Gln	Thr	Arg 245	Thr	His	Gln	Gly	Gln 250	His	Val	Arg	Ile	Ser 255	Arg
	Ser	Leu	Pro	Gln 260	Gly	Ser	Gly	Asn	Trp 265	Ala	Gln	Leu	Arg	Pro 270	Leu	Leu
	Val	Thr	Phe 275	Gly	His	Asp	Gly	Arg 280	Gly	His	Ala	Leu	Thr 285	Arg	Arg	Arg
35	Arg	Ala 290	Lys	Arg	Ser	Pro	Lys 295	His	His	Ser	Gln	Arg 300	Ala	Arg	Lys	Lys
	Asn 305	Lys	Asn	Cys	Arg	Arg 310	His	Ser	Leu	Tyr	Val 315	Asp	Phe	Ser	Asp	Val 320
40	Gly	Trp	Asn	Asp	Trp 325	Ile	Val	Ala	Pro	Pro 330	Gly	Tyr	Gln	Ala	Phe 335	Tyr
	Cys	His	Gly	Asp 340	Cys	Pro	Phe	Pro	Leu 345	Ala	Asp	His	Leu	Asn 350	Ser	Thr
4 5	Asn	His	Ala 355	Ile	Val	Gln	Thr	Leu 360	Val	Asn	Ser	Val	Asn 365	Ser	Ser	Ile
	Pro	Lys 370	Ala	Cys	Cys	Val	Pro 375	Thr	Glu	Leu	Ser	Ala 380	Ile	Ser	Het	Leu
50	Tyr 385	Leu	Asp	Glu	Tyr	Asp 390	Lys	Val	Val	Leu	Lys 395	Asn	Tyr	Gln	Glu	Het 400

Val Val Glu Gly Cys Gly Cys Arg

									4	UD						
5	(2) INF)RMAT	TION F	OR S	FO ID	NO·2	D·									
	, ,															
	(1) S	SEQUE	:NCE	CHAR	ACTE	RISTI	US:									
10				1: 102 mino a		acids										
		(C) S	TRANI	DEDNI DGY: I	ESS: s	single										
		` ,														
15	(ii) l	MOLE	CULE	TYPE	prote	ın										
	(vi)	ORIGI	NAL S	OUR	CE:											
20		(A) OI	RGAN	ISM: F	ОМО	SAPII	ENS									
20	(ix)	FEAT	JRE:													
		(A) N	AME/K	EY: P	rotein											
25				ON: 1. INFOI		ION: /r	note= '	'ВМР5	5"							
	(xi)	SEQU	ENCE	DESC	RIPT	ION: S	SEQ II) NO:2	0:							
	(^1)	OLGO	LIVOL	DEG	J. ()	.0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
30	Cys 1	Lys	Lys	His	Glu 5	Leu	Tyr	Val	Ser	Phe 10	Arg	Asp	Leu	Gly	Trp 15	Gln
	Asp	Trp	Ile	Ile 20	Ala	Pro	Glu	Gly	Tyr 25	Ala	Ala	Phe	Tyr	Cys 30	Asp	Gly
35	Glu	Cys	Ser 35	Phe	Pro	Leu	Asn	Ala 40	His	Het	Asn	Ala	Thr 45	Asn	His	Ala
40	Ile	Val 50	Gln	Thr	Leu	Val	His 55	Leu	Het	Phe	Pro	Asp 60	His	Val	Pro	Lys
	Pro 65	Cys	Cys	Ala	Pro	Thr 70	Lys	Leu	Asn	Ala	Ile 75	Ser	Val	Leu	Tyr	Phe 80
45	Asp	Asp	Ser	Ser	Asn 85	Val	Ile	Leu	Lys	Lys 90	Tyr	Arg	Asn	Het	Val 95	Val
	Arg	Ser	Cys	Gly 100	Cys	His										
50	(2) INF	ORMAT	rion f	OR S	EQ ID	NO:2	1:									
	(i) S	SFOUR	NCF	CHAR	ACTE	RISTI	CS:									

- - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein (vi) ORIGINAL SOURCE: (A) ORGANISM: HOMO SAPIENS (ix) FEATURE: (A) NAME/KEY: Protein 10 (B) LOCATION: 1..102 (D) OTHER INFORMATION: /note= "BMP6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: 15 Cys Arg Lys His Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly 20 25 30 20 Glu Cys Ser Phe Pro Leu Asn Ala His Het Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Leu Het Asn Pro Glu Tyr Val Pro Lys 25 50 Pro Cys Cys Ala Pro Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe 30 Asp Asp Asn Ser Asn Val Ile Leu Lys Lys Tyr Arg Trp Het Val Val Arg Ala Cys Gly Cys His 100 35 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 102 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 45

(ix) FEATURE:

50

55

(A) NAME/KEY: Protein

(B) LOCATION: 1..102

(D) OTHER INFORMATION: /label= OPX /note= "WHEREIN XAA AT EACH POS'N IS INDEPENDENTLY SELECTED FROM THE RESIDUES OCCURRING AT THE CORRESPONDING POS'N IN THE C-TER-MINAL SEQUENCE OF HOUSE OR HUMAN OP1 OR OP2 (SEE SEQ. ID NOS. 1,8,10 AND 12.)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Cys Xaa Xaa His Glu Leu Tyr Val Xaa Phe Xaa Asp Leu Gly Trp Xaa

Asp Trp Xaa Ile Ala Pro Xaa Gly Tyr Xaa Ala Tyr Tyr Cys Glu Gly
Glu Cys Xaa Phe Pro Leu Xaa Ser Xaa Het Asn Ala Thr Asn His Ala

Ile Xaa Gln Xaa Leu Val His Xaa Xaa Xaa Pro Xaa Xaa Val Pro Lys

Xaa Cys Cys Ala Pro Thr Xaa Leu Xaa Ala Xaa Ser Val Leu Tyr Xaa
65 Asp Xaa Ser Xaa Asn Val Xaa Leu Xaa Leu Xaa Ala Xaa Arg Asn Het Val Val

Xaa Ala Cys Gly Cys His

25 Claims

30

40

- 1. A metal or ceramic prosthesis which itself defines a microporous surface structure characterized in that the prosthesis is coated with a recombinantly-produced dimeric osteogenic protein comprising a pair of polypeptide chains, each of which has at least 60% amino acid sequence homology in the C-terminal cysteine-rich region with residues 335 to 431 of Seq. ID No. 1 (OPS), and wherein said pair of polypeptide chains, when disulphide bonded to produce a dimeric species, is capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix.
- 2. The prosthesis of claim 1 having a contoured implantable portion for insertion into an orifice and having plural indentations transverse to its longitudinal axis.
 - 3. The prosthesis of claim 1 or claim 2 wherein the prosthesis:
 - (a) is a dental implant; or
 - (b) comprises a stainless steel, titanium, molybdenum, cobalt, chromium and/or alloys or oxides of these metals.
 - 4. The prosthesis of any one of the preceding claims wherein the osteogenic protein is unglycosylated.
- 5. The prosthesis of any one of the preceding claims wherein one of the chains of said protein comprises an amino acid sequence sharing greater than 60% identity with an amino acid sequence comprising residues 335 to 431 of Seq. ID No. 1 (OPS).
 - 6. The prosthesis of claim 5 wherein the amino acid sequence of said chain of said protein comprises an amino acid sequence sharing greater than 65% identity with an amino add sequence comprising OPS.
 - 7. The prosthesis of claim 6 wherein the amino acid sequence of said chain of said protein comprises residues 335-431 of OPS.
- 55 8. The prosthesis of claim 5 wherein the protein is a homodimer, wherein both chains comprise the amino acid sequence of OPS.
 - 9. The prosthesis of claim 8 wherein both chains comprise the amino acid sequence of residues 293-431 of Seq. ID

No. 1 (OP1-18Ser).

- 10. The prosthesis of any one of claims 1-4 wherein the protein comprises the C-terminal sequence of DPP, VgI, Vgr-1, OP1, OP2, CBMP2, CBMP3, CBMP4, BMP5 or BMP6.
- 11. The prosthesis of any one of the preceding claims for biological fixation in the body.

Patentansprüche

10

15

5

- 1. Metall- oder Keramik-Prothese, die selbst eine mikroporöse Oberflächenstruktur festlegt, dadurch gekennzeichnet, dass die Prothese mit einem rekombinant hergestellten, dimeren osteogenetischen Protein beschichtet ist, das ein Paar Polypeptidketten umfasst, wobei jede in dem C-terminalen, Cystein-reichen Bereich mit den Resten 335 bis 431 der Seq. ID Nr. 1 (OPS) eine Aminosäuresequenz-Homologie von mindestens 60 % aufweist, und worin das Paar von Polypeptidketten, wenn zur Bildung einer dimeren Spezies über Disulfid-Brücken verbunden, eine endochondrale Knochenbildung induzieren kann, wenn in ein Säugetier mit einer Matrix assoziiert implantiert.
- 2. Prothese nach Anspruch 1, welche einen nachgeformten, implantierbaren Bereich zum Einfügen in eine Öffnung und mehrere Verzahnungen transversal zu ihrer Längs-Achse aufweist.

20

- 3. Prothese nach Anspruch 1 oder Anspruch 2, worin die Prothese
 - (a) ein Zahnimplantat ist; oder
 - (b) rostfreien Stahl, Titan, Molybdän, Kobalt, Chrom und/oder Legierungen oder Oxide dieser Metalle umfasst.

25

30

4. Prothese nach einem der vorstehenden Ansprüche, worin das osteogenetische Protein nicht glykolysiert ist.

 Prothese nach einem der vorstehenden Ansprüche, worin eine der Ketten des Proteins eine Aminosäuresequenz umfasst, die eine größer als 60%-ige Identität mit einer die Reste 335 bis 431 von Seq. ID Nr. 1 (OPS) umfassenden Aminosäuresequenz teilt.

- 6. Prothese nach Anspruch 5, worin die Aminosäuresequenz der Kette des Proteins eine Aminosäuresequenz umfasst, die eine größer als 65%-ige Identität mit einer OPS umfassenden Aminosäuresequenz teilt.
- Prothese nach Anspruch 6, worin die Aminosäuresequenz der Kette des Proteins die Reste 335-431 von OPS umfasst.
 - 8. Prothese nach Anspruch 5, worin das Protein ein Homodimer ist, worin beide Ketten die Aminosäuresequenz von OPS umfassen.

40

- 9. Prothese nach Anspruch 8, worin beide Ketten die Aminosäuresequenz der Reste 293-431 von Seq. ID Nr. 1 (OP1-18Ser) umfassen.
- **10.** Prothese nach einem der Ansprüche 1-4, worin das Protein die C-terminale Sequenz von DPP, Vgl, Vgr-1, OP1, OP2, CBMP2, CBMP3, CBMP4, BMP5 oder BMP6 umfasst.
 - Prothese nach einem der vorstehenden Ansprüche zur biologischen Befestigung im Körper.

50 Revendications

Une prothèse en métal ou en matière céramique qui a elle-même une structure à surface microporeuse caractérisée en ce que la prothèse est enduite d'une protéine ostéogène dimère produite par recombination comprenant une paire de chaînes de polypeptides, dont chacune a une homologie d'au moins 60% de la séquence d'acides aminés dans la région riche en cystéine terminal C avec les résidus 335 à 431 de la Seq. ID No. 1 (OPS), et où cette paire de chaînes de polypeptides, lorsqu'elle est liée par disulfure pour produire une espèce dimère, est capable d'induire une formation endochondrique d'os lorsqu'elle est implantée chez un mammifère en association avec une matrice.

- 2. Prothèse selon la revendication 1 comportant une partie profilée implantable pour l'insertion dans un orifice et comprenant une pluralité d'indents transversaux par rapport à son axe longitudinal.
- 3. Prothèse selon la revendication 1 ou la revendication 2 où la prothèse :
 - (a) est un implant dentaire; ou
 - (b) comprend un acier inoxydable, du titane, du molybdène, du cobalt, du chrome et/ou des alliages ou oxydes de ces métaux.
- 10 4. Prothèse selon l'une quelconque des revendications précédentes où la protéine ostéogène n'est pas glycosylée.
 - 5. Prothèse selon l'une quelconque des revendications précédentes où l'une des chaînes de cette protéine comprend une séquence d'acides aminés à identité supérieure à 60% par rapport à une séquence d'acides aminés comprenant les résidus 335 à 431 de la Seq. ID No. 1 (OPS).
 - 6. Prothèse selon la revendication 5 dans laquelle la séquence d'acides aminés de cette chaîne de cette protéine comprend une séquence d'acides aminés partageant plus de 65% d'identité avec une séquence d'acides aminés comprenant l'OPS.
- Prothèse selon la revendication 6 dans laquelle la séquence d'acides aminés de cette chaîne de cette protéine comprend les résidus 335-431 de l'OPS.
 - 8. Prothèse selon la revendication 5 dans laquelle la protéine est un homodimère, dans lequel les deux chaînes comprennent la séquence d'acides aminés de l'OPS.
 - 9. Prothèse selon la revendication 8 dans laquelle les deux chaînes comprennent la séquence d'acides aminés des résidus 293-431 de la Seq. ID No. (OP1-18Ser).
 - 10. Prothèse selon l'une quelconque des revendications 1 à 4 dans laquelle la protéine comprend la séquence terminal C de DPP, Vgl, Vgr-1, OP1, OP2, CBMP2, CBMP3, CBMP4, BMP5 ou BMP6.
 - 11. Prothèse selon l'une quelconque des revendications précédentes pour la fixation biologique dans le corps.

45

5

15

25

30

35

. 687