NAME

CUTEST_udimsh – CUTEst tool to determine the number of nonzeros required to store the sparse Hessian matrix in coordinate format.

SYNOPSIS

```
CALL CUTEST_udimsh( status, nnzh )

For real rather than double precision arguments, instead

CALL CUTEST_udimsh_s( ... )

and for quadruple precision arguments, when available,
```

CALL CUTEST_udimsh_q(...)

DESCRIPTION

The CUTEST_udimsh subroutine determine the number of nonzeros required to store the Hessian matrix of the objective function of the problem decoded from a SIF file by the script *sifdecoder* at the point X. This Hessian matrix is stored as a sparse matrix in coordinate format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to the simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable.

ARGUMENTS

The arguments of CUTEST udimsh are as follows

```
status [out] - integer
```

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

nnzh [out] - integer

the number of nonzero elements in the matrix.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

```
CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,
```

N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications 60:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment,

I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,

ACM TOMS, 21:1, pp.123-160, 1995.

cutest_cdimsh(3M), sifdecoder(1).