Algorithm and Data Structure Analysis (ADSA)

Skip Lists

History

Invented by William Pugh (1990)

- A probabilistic data structure likely to replace balanced trees as the implementation method for many applications.
- Algorithms have the same asymptotic expected time bounds as balanced trees and are simpler.

Skip Lists

Sorted list of items, using a hierarchy of linked lists that connect increasingly sparse subsequences of the items.

Skip Lists

Theorem (without proof) Let S be a skip list containing n elements.

The expected*...

- •Runtime of a search is $O(\log n)$
- •Height of the skip list is $O(\log n)$
- •Number of pointers is $O(2n + \lfloor \log n \rfloor + 3)$

^{*}large deviations extremely unlikely

Search(x)

- 1. Start at highest level.
- 2. If next element $\leq x \rightarrow go$ to next element else $\rightarrow go$ descend one level

(similar to a search in a binary tree)

Split(x)

- 1. Search *x*.
- 2. Update pointers:
 - Pointers S_1 from $x \rightarrow point to <math>\infty$
 - Pointers S_2 "over" x → point to ∞
 - Introduce new head for 2nd list, and have it point to where S₁ and S₂ pointed to.

Example Concatenate

Example Concatenate

Delete(x)

- 1. Search *x*.
- 2. Update pointers:

Pointers S through $x \rightarrow point to where x pointed to at the corresponding levels.$

Example Delete(13)

Example Delete(13)

Example Delete(13)

Insert(x)

- 1. Search for *x*.
- 2. Flip coins to set the height h.

Insert(x)

- 1. Search for x.
- 2. Flip coins to set the height h.

Flip a coin until "head". If h trials are needed, the height of x is h. Thus, the probability for height h is $(1/2)^h$ and the expected height is

$$\sum_{1 \le h \le \infty} h \cdot (1/2)^h = 2$$

Insert(x)

- 1. Search for x.
- 2. Flip coins to set the height h.
- 3. Update pointers. Note that element x with h will be present in layers 1, ..., h.

Then, for each layer l:

If $l > h \rightarrow$ do nothing,

else \rightarrow we know the pointers "going through x" and update those to point to x and from x to the subsequent element.

h=2 (2 trials to get a 'head')

$$h=2$$

h=5 (5 trials to get a 'head')

$$h=5$$

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
- Fact 1: The probability of getting *i* consecutive heads when flipping a coin is $1/2^i$
- Fact 2: If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*

- Consider a skip list with n entries
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - By Fact 2, the expected size of list S_i is $n/2^i$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^i} = n \sum_{i=0}^{h} \frac{1}{2^i} < 2n$$

Thus, the expected space usage of a skip list with n items is O(n)

Height

- The running time of the search is affected by the height h of the skip lists
- We show that with high probability, a skip list with n items has height O(log n)
- We use the following additional probabilistic fact:
- Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np*

- Consider a skip list with *n* entires
 - By Fact 1, we insert an entry in list S_i with probability $1/2^i$
 - By Fact 3, the probability that list S_i has at least one item is at most $n/2^i$
- By picking $i = \operatorname{clog} n$, we have that the probability that $S_{\operatorname{clog} n}$ has at least one entry is at most

$$n/2^{\text{clog }n} = n/n^{\text{c}} = 1/n^{\text{c-1}}$$

 Thus a skip list with n entries has height at most O(log n) with probability at least 1 - 1/n^{c-1}that is asymptotically 1 for large constant c.