

TIGER ELECTRONIC CO.,LTD

74HC595D / 74HC595V / 74HC595P

8-Bit Shift Registers with Output Latches

General Description

The 74HC595 high speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

Features

• Low quiescent current: 80μA maximum

Low input current: 1μA maximum

• 8-bit serial-in, parallel-out shift register with storage

• Wide operating voltage range: 2V–6V

Cascadable

Shift register has direct clear

• Guaranteed shift frequency: DC to 30 MHz

• Package: SOP16(74HC595D), TSSOP16(74HC595V), DIP16(74HC595P)

Connection Diagram

Pin Function

Pin	Name	I/O	Description
15, 1~7	QA~QH	O	8 bit 3-STATE Output
8, 16	GND, VCC	_	Grond, Supply
9	Q'H	O	Serial Output
10	SCLR	I	Shift Register cleared
11	SCK	I	Shift Register clocked
12	RCK	I	Output Register clocked
13	G	I	Output state control
14	SER	I	Data input

Truth Table

RCK	SCK	SCLR	G	Description
X	X	X	Н	QA to QH = 3-STATE
X	X	L	L	Shift Register cleared, Q'H =0
X	†	Н	L	Shift Register clocked, Q _N = Qn-1, Q0= SER
†	X	Н	L	Contents of Shift Register transferred to output latches

Logic Diagram

Timing Diagram

Absolute Maximum Ratings

Parameter	Symbol	Scope	Unit
Supply Voltage	V_{CC}	-0.5~7.0	V
DC Input Voltage	$V_{ m IN}$	-1.5~V _{CC} +1.5	V
DC Output Voltage	$ m V_{OUT}$	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Current	I_{OUT}	±35	mA
DC V _{CC} or GND Current	I_{CC}	±70	mA
Power Dissipation	P_{D}	600	mW
Storage Temperature Range	$T_{ m STG}$	-65~150	${\mathbb C}$

Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Supply Voltage	V_{CC}		2	6	V
DC Input or Output Voltage	V_{IN} , V_{OUT}		0	V_{CC}	V
		V _{CC} =2.0V		1000	
Input Rise or Fall Times	$t_{\rm r}$, $t_{\rm f}$	V _{CC} =4.5V		500	ns
		V _{CC} =6.0V		400	
Operating Temperature Range	T_{A}		-40	+85	$^{\circ}$

Electrical Characteristics

DC Characteristics

Symbol	Parameter	Condition	\mathbf{v}_{cc}	T _A =	25°C	T _A =25 to 85°C	T _A =-55 to 125℃	Unit
2,7-2-3-2				typ Guaranteed Limits				
	Minimum High		2V		1.5	1.5	1.5	
V_{IH}	Level		4.5V		3.15	3.15	3.15	V
	Input Voltage		6V		4.2	4.2	4.2	
***	Maximum Low		2V		0.5	0.5	0.5	
$ m V_{IL}$	Level Input		4.5V		1.35	1.35	1.35	V
	Voltage		6V		1.8	1.8	1.8	
	Minimum High	**	2V	2.0	1.9	1.9	1.9	
	Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	4.5V	4.5	4.4	4.4	4.4	V
	Output Voltage	I _{OUT} ≤20μA	6V	6	5.9	5.9	5.9	
$ m V_{OH}$		$V_{IN} = V_{IH} \text{ or } V_{IL}$	4.5V	4.2	3.98	3.84	3.7	
	Q _H	$ \mid I_{OUT} \mid \le 4.0 \text{mA} $ $ \mid I_{OUT} \mid \le 5.2 \text{mA} $	6V	5.2	5.48	5.34	5.2	V
	Q _A to Q _H	$\begin{aligned} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ &\mid I_{OUT} \mid \le 6.0 \text{mA} \\ &\mid I_{OUT} \mid \le 7.8 \text{mA} \end{aligned}$	4.5V	4.2	3.98	3.84	3.7	. V
	QAW QII		6.0V	5.7	5.48	5.34	5.2	
	Maximum	$V_{IN} = V_{IH}$ or V_{IL}	2V	0	0.1	0.1	0.1	V
	LOW Level	$ I_{OUT} \le 20 \mu A$	4.5V	0	0.1	0.1	0.1	
	Output Voltage	1001 320μ/1	6V	0	0.1	0.1	0.1	
V	Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\mid I_{OUT} \mid \le 4.0 \text{mA}$ $\mid I_{OUT} \mid \le 5.2 \text{mA}$	4.5V	0.2	0.26	0.33	0.4	V
$V_{ m OL}$			6V	0.2	0.26	0.33	0.4	
	0.4.0	$V_{IN} = V_{IH}$ or V_{IL}	4.5V	0.2	0.26	0.33	0.4	V
	Q _A to Q _H	$ \mid I_{OUT} \mid \le 6.0 \text{mA} $ $ \mid I_{OUT} \mid \le 7.8 \text{mA} $	6V	0.2	0.26	0.33	0.4	
${ m I_{IN}}$	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6V		±0.1	±1.0	±1.0	μА
I_{OZ}	Maximum 3-STATE Output Leakage	$V_{OUT} = V_{CC}$ or GND $\overline{G} = V_{IH}$	6V		±0.5	±5.0	±10	μΑ
I_{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0\mu A$	6V		8.0	80	160	μΑ

AC Characteristics (V $_{CC}\!=\!5V$, $T_A\!=\!25\,^{\circ}\!\!C$, $t_r\!=\!t_f\!=\!6ns)$

Symbol	Parameter	Condition	Тур	Guaranteed Limit	Unit
f_{MAX}	Maximum Operating Frequency of SCK		50	30	MHz
t _{PHL} t _{PLH}	Maximum Propagation Delay, SCK to QH'	C _L =45pF	12	20	ns
t _{PHL} t _{PLH}	Maximum Propagation Delay, RCK to QA thru QH	C _L =45pF	18	30	ns
t _{PZH} t _{PZL}	Maximum Output Enable Time from G to QA thru QH	$R_L=1k\Omega$ $C_L=45pF$	17	28	ns
t _{PHZ} t _{PLZ}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_L=1k\Omega$ $C_L=5pF$	15	25	ns
t_{S}	Minimum Setup Time from SER to SCK			20	ns
t_{S}	Minimum Setup Time from SCLR to SCK			20	ns
t_{S}	Minimum Setup Time from SCK to RCK			40	ns
t _H	Minimum Hold Time from SER to SCK			0	ns
$t_{ m W}$	Minimum Pulse Width of SCK or RCK			16	ns

AC Characteristics (V_{CC} =2.0 \sim 6.0V, C_L =50pF, t_r = t_f =6ns)

Symb	D .	G 114	T 7	T _A =25℃		T _A =25 to 85°C	T _A =-55 to 125℃	T T •
ol	Parameter	Condition	V_{CC}	Тур		Guaranteed	Limit	Unit
	Maximum		2V	10	6	4.8	4.0	
f_{MAX}	Operating	$C_L = 50 pF$	4.5V	45	30	24	20	MHz
	Frequency		6V	50	35	28	24	
		$C_L = 50 pF$	2V	58	210	265	315	
	Maximum Propagation Delay from	$C_L = 150 pF$	2V	83	294	367	441	ns
$t_{ m PHL}$		C _L =50pF	4.5V	14	42	53	63	
$t_{\rm PLH}$		$C_L = 150 pF$	4.5V	17	58	74	88	ns
	SCK to QH	C _L =50pF	6V	10	36	45	54	
		$C_L = 150 pF$	6V	14	50	63	76	ns
	Maximum	$C_L = 50 pF$	2V	70	175	220	265	
	Propagation	$C_L = 150 pF$	2V	105	245	306	368	ns
$t_{ m PHL}$	Delay from	$C_L = 50 pF$	4.5V	21	35	44	53	
t_{PLH}	RCK to QA thru	$C_L = 150 pF$	4.5V	28	49	61	74	ns
	QH	C _L =50pF	6V	18	30	37	45	ns

		C _L =150pF	6V	26	42	53	63	
	ximum		2V		175	221	261	
4	Propagation		4.5V		36	44	52	
t _{PHL} t _{PLH}	delay from SCLR to QH		6V		30	37	44	ns
		$R_L=1k\Omega$	2V	75	175	220	265	
	Maximum	C_L =50pF C_L =150pF	2V	100	245	306	368	ns
t_{PZH}	Output Enable	$C_L = 50 pF$	4.5V	15	35	44	53	12 G
$t_{ m PZL}$	from \overline{G} to QA thru QH	$C_L = 150 pF$	4.5V	20	49	61	74	ns
	unu QH	$C_L = 50pF$	6V	13	30	37	45	
		$C_L = 150 pF$	6V	17	42	53	63	ns
	Maximum		2V	75	175	220	265	
t_{PHZ}	Output Disable	$R_L=1k\Omega$	4.5V	15	35	44	53	ng
t_{PLZ}	Time from \overline{G} to QA thru QH	$C_L = 50 pF$	6V	13	30	37	45	ns
	Minimum Setup		2V		100	125	150	
	Time		4.5V		20	25	30	1
t_{S}	from SER to SCK		6V		17	21	25	ns
	Minimum		2V		50	63	75	
+	Removal Time		4.5V		10	13	15	ns
$t_{ m R}$	from SCLR to SCK		6V		9	11	13	115
	Minimum Setup		2V		100	125	150	
4	Time		4.5V		20	25	30	n a
t_{S}	from SCK to RCK		6V		17	21	26	ns
	Minimum Hold		2V		5	5	5	
t_{H}	Time		4.5V		5	5	5	ns
	SER to SCK		6V		5	5	5	
	Minimum Pulse		2V	30	80	100	120	
,	Width		4.5V	9	16	20	24	
t_{W}	of SCK or SCLR		6V	8	14	18	22	ns
	Maximum Input		2V		1000	1000	1000	
	Rise and		4.5V		500	500	500	
$t_{\rm r}$ $t_{\rm f}$	Fall Time, Clock		6V		400	400	400	ns
t _{THL}	Maximum		2V	25	60	75	90	
$t_{ m TLH}$	Output		4.5V	7	12	15	18	ns

	Rise and Fall							
	Time		6V	6	10	13	15	
	QA–QH							
	Maximum		2V		75	95	110	
4	Output		4.5V		15	19	22	
t _{THL}	Rise & Fall							ns
t_{TLH}	Time		6V		13	16	19	
	QH							
	Power	$\overline{G} = V_{CC}$ $\overline{G} = GND$		90				
	Dissipation							
C_{PD}	Capacitance,			150				pF
	Outputs	G=GND		130				
	Enabled							
C	Maximum Input			5	10	10	10	m.E
C_{IN}	Capacitance			3	10	10	10	pF
	Maximum							
C_{OUT}	Output			15	20	20	20	pF
	Capacitance							

Package Dimension

SOP16

TSSOP16

DIP16

