Knowledge and Retrieval Modeling Hierarchies

Hierarchies in KGs

Anti/symmetry ... how about transitivity?

 (camel, is-a, mammal) and (mammal, is-a, animal) ⇒ (camel, is-a, animal)

 Popular KG type systems: FIGER, GFT, DbPedia, TypeNet

 None of the KG embedding methods discussed thus far handle hierarchies

Two views of embedding hierarchies

- Embed a hierarchy (DAG) in a space with a distance such that distances on DAG are approximately preserved by distance in the embedding space
 - Euclidean → Poincaré balls, hyperbolic embeddings
- Encode DAG nodes so that ancestor-descendant queries can be answered efficiently
 - Gaussian, order and box embeddings
- Should work with incomplete supervision
- Should play well with other embeddings

Low-distortion graph embeddings

- Each node v in graph G = (V, E) embedded to $x(v) \in \mathbb{R}^D$
- Graph distance between $u, v \in V$ is $d_G(u, v)$
- Distortion of embedding g is given by

$$\operatorname{distor}(x,G) = \frac{\max_{u,v} \frac{\|x(u) - x(v)\|}{d_G(u,v)}}{\min_{u,v} \frac{\|x(u) - x(v)\|}{d_G(u,v)}}$$
Maximum stretch
Minimum stretch

• Distortion of G is \inf_{x} distor(g, G)

Euclidean distortion facts

- With large enough D, any graph with n nodes can be embedded in \mathbb{R}^D with $O(\log n)$ distortion
- Any connected planar graph can be embedded in \mathbb{R}^2 with O(n) distortion; trees with $O(\sqrt{n})$
- With large enough D, any tree can be embedded in \mathbb{R}^D with $O(\log \log n)$ distortion
- Binary trees can be embedded in a line with $O\left(\frac{n}{\log n}\right)$ distortion
- Binary trees can be embedded in \mathbb{R}^D with $O\left(\frac{n^{1/D}}{\log n}\right)$ distortion
- Distortion of $(1 + \epsilon)$ is possible in hyperbolic space

Poincaré disk, hyperbolic space

- $\operatorname{acosh}(a) = \ln(a + \sqrt{a^2 + 1})$
- Points *x*, *y* strictly inside unit circle
- Hyperbolic distance $d_H(x,y) = \operatorname{acosh} \left[1 + 2 \frac{\|x-y\|}{(1-\|x\|^2)(1)}\right]$
- As x, y approach perimeter $d_H \to \infty$
- Natural tree embedding
- Precision bits not free!

WordNet nouns in Poincaré disk

- As expected, generic synsets near disk center, specific near periphery
- What do applications (e.g., QA) need?
 - "scientists who played musical instruments"
 - "mammals living in the desert"
- word2vec ↔ Poincaré?

Toward order embeddings

- Computing Euclidean or hyperbolic distance between items not the only choice
- Denote partial order by "x < y" meaning x is a descendant of y
- In case of a tree, associate with each item x the in-order traversal interval I(x)
 - I(B) = [2,3], I(A) = [1,10],I(D) = [5,6]
 - $I(x) \subset I(y) \Leftrightarrow x < y$

Nodes of a tree can be embedded in one dimension to answer ancestordescendant queries in constant time.

Apex of axis-aligned open cones

- Item x represented by $u_x \in \mathbb{R}^D$
- $oldsymbol{\cdot} oldsymbol{u}_{\chi}$ is the apex of an open cone
- $x \prec y \Leftrightarrow u_x \geq u_y$, elementwise
- Design training loss function
 - Notation: $ReLU(a) = [a]_+ = max\{0, a\}$
 - If x < y, $\| \text{ReLU}(u_y u_x) \|$, i.e. all D dims must satisfy constraint
 - If $x \not\prec y$, ReLU $[\alpha \|\text{ReLU}(u_y u_x)\|]$

Margin

Does not recognize asymmetry in losses

Addressing loss asymmetry

- If x < y, then for all dim d, want $u_x[d] \ge u_y[d]$
 - E.g., $\ell_+(x,y) = \max_{d \in [D]} \text{ReLU}(u_y[d] u_x[d])$
- If $x \not\prec y$, then for some d, want $u_x[d] < u_y[d]$
 - $\ell_{-}(x,y) = \min_{d \in [D]} \operatorname{ReLU}\left(\alpha \operatorname{ReLU}\left(u_{y}[d] u_{x}[d]\right)\right)$
- All open cones and their intersections have same measure of volume (unlike in-order intervals)
 - ... even though Politicians \(\beta \) People
- Hard to model negative correlation
 - X is-a fruit, or X is-not-a scientist

(Hyper)rectangle/box embeddings

- Each type/item x characterized by interval $I_x[d] = [b_{x,d}, h_{x,d}]$ for each dimension d
- Want $I_x[d] \subseteq I_y[d] \ \forall d$, iff x < y
- Learning to lay out Venn diagrams

