

NCERT solutions for class 9 Maths Polynomials Ex 2.3

Q1. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by

(i)
$$x + 1$$

(ii)
$$x - \frac{1}{2}$$

(iv)
$$x + \pi$$

(v)
$$5 + 2x$$

Ans: (i)x+1

We need to find the zero of the polynomial x+1.

$$x+1=0$$
 $\Rightarrow x=-1$

While applying the remainder theorem, we need to put the zero of the polynomial x + 1 in the polynomial $x^3 + 3x^2 + 3x + 1$, to get

$$p(x) = x^3 + 3x^2 + 3x + 1$$

$$p(0) = (-1)^3 + 3(-1)^2 + 3(-1) + 1$$

=0

Therefore, we conclude that on dividing the polynomial $x^3 + 3x^2 + 3x + 1$ by x + 1, we will get the remainder as **o**.

(ii)
$$x - \frac{1}{2}$$

We need to find the zero of the polynomial $x - \frac{1}{2}$.

$$x - \frac{1}{2} = 0$$
 $\Rightarrow x = \frac{1}{2}$

While applying the remainder theorem, we need to put the zero of the polynomial $x - \frac{1}{2}$ in

the polynomial $x^3 + 3x^2 + 3x + 1$, to get

$$p(x) = x^3 + 3x^2 + 3x + 1$$

$$p\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right) + 1$$

$$= \frac{1}{8} + 3\left(\frac{1}{4}\right) + \frac{3}{2} + 1$$

$$= \frac{1+6+12+8}{8}$$

$$= \frac{27}{8}$$

Therefore, we conclude that on dividing the polynomial $x^3 + 3x^2 + 3x + 1$ by $x - \frac{1}{2}$, we will get the remainder as $\frac{27}{8}$.

(iii)x

We need to find the zero of the polynomial x.

$$x = 0$$

While applying the remainder theorem, we need to put the zero of the polynomial x in the polynomial $x^3 + 3x^2 + 3x + 1$, to get

$$p(x) = x^3 + 3x^2 + 3x + 1$$

$$p(0)=(0)^3+3(0)^2+3(0)+1$$

=1

Therefore, we conclude that on dividing the polynomial $x^3 + 3x^2 + 3x + 1$ by x, we will get the remainder as 1.

(iv)
$$x + \pi$$

We need to find the zero of the polynomial $x + \pi$.

$$x + \pi = 0$$
 $\Rightarrow x = -\pi$

While applying the remainder theorem, we need to put the zero of the polynomial $x^{+}\pi$ in the polynomial $x^{3} + 3x^{2} + 3x + 1$, to get

$$p(x) = x^3 + 3x^2 + 3x + 1$$

$$p(-\pi) = (-\pi)^3 + 3(-\pi)^2 + 3(-\pi) + 1$$

$$=-\pi^3+3\pi^2-3\pi+1.$$

Therefore, we conclude that on dividing the polynomial $x^3 + 3x^2 + 3x + 1$ by $x + \pi$, we will get the remainder as $-\pi^3 + 3\pi^2 - 3\pi + 1$.

(v)
$$5 + 2x$$

We need to find the zero of the polynomial 5+2x

$$5+2x=0$$
 $\Rightarrow x=-\frac{5}{2}$

While applying the remainder theorem, we need to put the zero of the polynomial 5+2x in the polynomial x^3+3x^2+3x+1 , to get

$$p(x) = x^3 + 3x^2 + 3x + 1$$

$$p\left(-\frac{5}{2}\right) = \left(-\frac{5}{2}\right)^3 + 3\left(-\frac{5}{2}\right)^2 + 3\left(-\frac{5}{2}\right) + 1$$

$$= -\frac{125}{8} + 3\left(\frac{25}{4}\right) - \frac{15}{2} + 1$$

$$= -\frac{125}{8} + \frac{75}{4} - \frac{15}{2} + 1$$

$$= \frac{-125 + 150 - 60 + 8}{8}$$

$$=-\frac{27}{4}$$
.

Therefore, we conclude that on dividing the polynomial x^3+3x^2+3x+1 by 5+2x, we will get the remainder as $-\frac{27}{4}$.

Q2. Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.

Ans: We need to find the zero of the polynomial x-a.

$$x-a=0$$
 $\Rightarrow x=a$

While applying the remainder theorem, we need to put the zero of the polynomial x-a in the polynomial x^3-ax^2+6x-a , to get

$$p(x) = x^3 - ax^2 + 6x - a$$

$$p(a) = (a)^{3} - a(a)^{2} + 6(a) - a$$
$$= a^{3} - a^{3} + 6a - a$$
$$= 5a$$

Therefore, we conclude that on dividing the polynomial $x^3 - ax^2 + 6x - a$ by x - a, we will get the remainder as 5a.

Q3. Check whether 7 + 3x is a factor of $3x^3 + 7x$.

Ans: We know that if the polynomial $^{7+3x}$ is a factor of $^{3x^3+7x}$, then on dividing the polynomial $^{3x^3+7x}$ by $^{7+3x}$, we must get the remainder as 0.

We need to find the zero of the polynomial 7+3x

$$7 + 3x = 0 \qquad \Rightarrow x = -\frac{7}{3}$$

While applying the remainder theorem, we need to put the zero of the polynomial 7 + 3x in the polynomial $3x^3 + 7x$, to get

$$p(x) = 3x^{3} + 7x$$

$$= 3\left(-\frac{7}{3}\right)^{3} + 7\left(-\frac{7}{3}\right) = 3\left(-\frac{343}{27}\right) - \frac{49}{3}$$

$$= -\frac{343}{9} - \frac{49}{3} = \frac{-343 - 147}{9}$$

$$= \frac{-490}{9}.$$

We conclude that on dividing the polynomial $3x^3 + 7x$ by 7 + 3x, we will get the remainder as $\frac{-490}{9}$, which is not 0.

Therefore, we conclude that 7 + 3x is not a factor of $3x^3 + 7x$.

********* END *******