

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA FEMEC 41070 INSTRUMENTAÇÃO

Módulo 3: Análise Dinâmica de Sinais

Prof. Dr. José Jean-Paul Zanlucchi de Souza Tavares

Revisão	Data	Responsável	Observação
1	08/11/20	Prof. Jean Tavares	

ÍNDICE

Sumário

1. Introdução	
2. Objetivos	
3. Características Estáticas e Dinâmicas de Instrumentos	6
4. Coleta de dados com a placa NI USB-6008	10
5. Atividades	14

Índice de ilustrações

Figura 1 – Sinal analógico (a) e seu valor discretizado no tempo com período T_s (b)	7
Figura 2 – Sinal analógico amostrado com diversas periodicidades. Ta $1 < Tm$ (a), Ta $2 = Tm$	(b)
e Ta3> Tm (c)	8
Figura 3 – Tela do ícone Data Acquisition	10
Figura 4 – Tela inicial do Data Acquisition.	10
Figura 5 – Identificação da placa como Dev3	11
Figura 6 – Definição das características do hardware utilizado	11
Figura 7 – Detalhes utilizado para aquisição de dados.	12
Figura 8 – Código em MATLAB para coleta de 10000 pontos numa frequência de 10000Hz.	.14

1. Introdução

São denominados de sensores os dispositivos que convertem uma grandeza física de qualquer espécie em outro sinal que possa ser transmitido a um elemento indicador, para que este mostre o valor da grandeza que está sendo medida ou que seja inteligível para o elemento de comparação de um sistema de controle. Os elementos sensores são denominados transdutores quando convertem a grandeza de entrada para uma grandeza elétrica, como corrente, tensão ou resistência elétrica.

Como existem sinais analógicos e sinais discretos a serem controlados num sistema, os sensores também devem indicar variações de grandezas analógicas e discretas.

- Sinal discreto ou digital: sinal quantificado que indica a existência ou não de um evento. Pode assumir os valores zero ou um ou uma combinação destes.
- Sinal analógico: sinal cuja informação pode assumir qualquer valor dentro de uma determinada faixa (*range*).

Portanto podem-se classificar os sensores de acordo com a natureza do sinal de saída em:

- Sensores discretos: Os sensores discretos são utilizados para monitorar a ocorrência ou não de um determinado evento. Apresentam em sua saída dois estados distintos como ligado (*on*) ou desligado (*off*) ou a presença ou ausência de determinada grandeza elétrica.
- Sensores analógicos: são utilizados para monitorar uma grandeza física em uma faixa contínua de valores estabelecidos entre os limites mínimo e máximo. Apresentam em sua saída um sinal de tensão ou corrente ou resistência proporcional a grandeza física sensoriada.

Um sistema de medição, devido aos seus diversos elementos, sempre apresenta incertezas nos valores medidos.

Todo sistema de medição está sujeito a incertezas (erros de medição), e o que torna um sistema melhor em relação ao outro é a diminuição deste erro em um nível que seja aceitável para uma aplicação específica.

2. Objetivos

Esta atividade prática tem como objetivo familiarizar o aluno com os tipos de erros de sinais harmônicos e periódicos.

Os objetivos específicos desse módulo são:

- 2.1) Fazer análise de espectro de frequência de sinais senoidais;
- 2.2) Fazer análise de espectro de frequência de sinais quadrados;
- 2.3) Analisar os erros encontrados nas amostras disponibilizadas.

3. Características Dinâmicas de Sinais de Instrumentos

Inicialmente vamos apresentar os principais termos utilizados na caracterização dinâmica de instrumentos.

Relação Sinal/Ruído: É a relação entre a potência de um sinal qualquer entregue na saída do instrumento e a potência do sinal de ruído, medida como o sinal de saída com informação de entrada nula. Isto é, se a amplitude da grandeza física medida for igual à zero, e o sensor entregar um sinal de uma amplitude determinada, esse sinal é considerado como ruído. Esta relação pode ser expressada também em termos percentuais ou em dB (decibéis), unidade que representa vinte vezes o logaritmo da relação sinal/ruído.

Resposta em Frequência: Qualquer sistema eletrônico que manuseia sinais elétricos tem suas limitações em frequência, isto é, sinais em determinadas frequências são reproduzidos e em outras não. Não é diferente no caso dos sensores. Se a grandeza física medida variar sua amplitude com urna determinada frequência, é possível que o sinal elétrico entregue pelo sensor reproduza essas mudanças com a amplitude adequada, mas se a frequência dessas mudanças na grandeza física aumentar, é possível que o sinal de saída entregue pelo sensor diminua sua amplitude em função da frequência dessas mudanças. Desta forma, define-se a resposta em frequência de um sensor como a faixa do espectro que este consegue reproduzir. O diagrama de Bode é usualmente utilizado para representar essa informação. Pela teoria de Bode, define-se a faixa de passagem, ou largura da faixa, como o intervalo de frequências em que, para uma determinada amplitude de entrada, a potência do menor sinal de saída é maior ou igual à metade da potência do maior sinal. Por consequência, a relação entre as amplitudes do menor sinal e o maior sinal é 0,707 (l/VZ), ou, expressado em decibéis, - 3 dB.

Se vamos especificar um instrumento para medir uma variável controlada de dinâmica rápida, precisamos de um instrumento de medida com velocidade de resposta maior que a da variável medida, caso contrário, a dinâmica do instrumento poderá interferir consideravelmente na dinâmica do sistema de controle da malha, introduzindo atrasos e provocando oscilações na resposta.

Comportamento Dinâmico

A análise do comportamento dinâmico de um instrumento pode ser feita a partir de um modelo matemático e/ou a partir de dados provenientes de testes aplicados no instrumento. A caracterização dos principais tipos de resposta dinâmica é feita a partir dos modelos matemáticos dos instrumentos, geralmente na forma de equações diferenciais. A ordem da equação diferencial define o tipo de resposta, por exemplo, de primeira ou de segunda ordem.

O sinal a ser analisado é, obrigatoriamente, digitalizado. A Figura 1 apresenta um sinal analógico (a) e seu sinal discretizado com periodicidade T_s (b).

Figura 1 – Sinal analógico (a) e seu valor discretizado no tempo com período T_s (b)

Há de se destacar o Teorema de Amostragem de Nyquist, o qual define "um sinal limitado em frequência com energia finita, que não tem nenhuma componente espectral acima da frequência f_m [Hz], é descrito de maneira completa especificando-se os valores de sinal em instantes de tempo menores ou iguais a $1/(2.f_m)$ segundos". Em outras palavras, pode-se escrever:

$$f_0 \ge 2 f_m \tag{3}$$

onde f_0 é a frequência de amostragem e f_m é a frequência medida.

Da mesma forma "um sinal limitado em frequência com energia finita, que não tem nenhuma componente espectral acima da frequência f_m [Hz], pode ser completamente recuperado a partir do conhecimento de suas amostras tomadas à taxa de $2.f_m$ amostras/segundos". Ou seja, numa análise do espectro de frequências, apenas frequências inferiores a $f_0/2$ seriam devidamente detectadas pela amostra do sinal.

A taxa de amostragem de amostras /segundos, para uma largura de banda de f_m [Hz], é denominada "taxa de Nyquist" e seu inverso: T_m [segundos], é denominado "intervalo de Nyquist".

Erros de Amostragem

1) Erro de *Alising* ou Frequência Fantasma: Na prática os sinais não são estritamente limitados em banda, isso provoca sempre algum grau de subamostragem que provoca um efeito conhecido como *aliasing*, ou frequência fantasma, que pode ser entendido como um "sinal falso" ou "falsa informação", que surge quando a taxa de amostragem é inferior a taxa de Nyquist. Um

exemplo de erro de frequência fantasma ocorre quando $f_0 < 2.f_m$. Nesse caso, ao se aplicar uma transformada de Fourier no sinal obtido, uma frequência fantasma aparecerá antes de $f_0/2$ com distante f_m - $f_0/2$, como se fosse a frequência f_m espelhada em $f_0/2$. A Figura 2 mostra um sinal senoidal sendo amostrado com taxas próximas ao limite de Nyquist. Nota-se claramente que no caso em que $Ta1 < T_m$ é possível obter amostras capazes de identificar a frequência do sinal, porém, se a diferença for muito pequena, o valor da amplitude ficará comprometido. No caso em que $Ta2 = T_m$ é possível notar que os valores de amostras se repetem e, caso se obtenha o valor onde a amostra é igual a zero, nada se poderá analisar. Caso contrário, será possível detectar apenas a frequência. No caso em que $Ta3 > T_m$ será coletado amostras que identificarão um sinal totalmente distinto daquele desejado para ser amostrado. Para se evitar o efeito da frequência fantasma é altamente recomendável que seja colocado um filtro do tipo passa-baixa com frequência de corte igual ou inferior à frequência medida antes da captura do sinal.

Figura 2 – Sinal analógico amostrado com diversas periodicidades. Ta1 < Tm(a), Ta2 = Tm(b) e Ta3 > Tm(c).

2) Erro de quantização: Há também o erro de quantização do sinal que depende do número de bits utilizados para obtenção da amostra. A Equação (4) apresenta a

fórmula para cálculo do erro de quantização. Como o sinal é discretizado, os valores coletados terão uma resolução mínima definida pelo erro de quantização.

$$Erro_{quantização} = \frac{1}{2^{n\'umero\ de\ bits}} \tag{4}$$

3) Erro de Vazamento: Além desses dois erros ainda existe o erro de vazamento, que ocorre quando a frequência a ser medida f_m não é múltipla da menor resolução de frequência, no caso, d_f , dado pela Equação (5).

$$d_f = \frac{f_m}{n} \tag{5}$$

onde n é o número de amostras coletadas.

É possível perceber que o valor da frequência de amostragem f_0 e o número de amostras n deve ser especificado cuidadosamente para que o sinal amostrado possa ser útil no processo em que será utilizado.

4. Coleta de dados com a placa NI USB-6008

A coleta dos dados foi realizada com a placa NI USB-6008 por meio da porta USB do computador.

Atenção: É obrigatória a instalação do NI DAQ 16.0 para que o sistema operacional reconheça a placa, bem como instalar o *Data Acquisition Toolbox* para que o Matlab possa obter os dados da placa.

A partir daqui apenas MATLAB2014a ou mais atual será capaz de realizar os comandos.

Após adequar o software para uso desse hardware, pelo Matlab, ao se clicar em *Data Acquisition* é aberta a janela mostrada nas Figuras 3 e 4.

Figura 3 – Tela do ícone Data Acquisition

Figura 4 – Tela inicial do *Data Acquisition*

Ao se conectar via cabo USB o computador com a placa NI USB-6008, o mesmo será reconhecido como um DevX, onde X=1..n, sendo $n \in \mathbb{N}$. A Figura 5 apresenta a tela onde a placa foi identificada como Dev3.

Figura 5 – Identificação da placa como Dev3

Ao se utilizar o *Data Acquisition* é necessário definir qual o tipo, dispositivo e medida a ser coletada. No caso desse módulo será utilizado *Analogic Input*, USB-6008(*Analogic Input*) e *Voltage*. Além disso, deve-se identificar qual entrada analógica será utilizada, a saber, *a0* (Figura 6).

Figura 6 – Definição das características do hardware utilizado

Basta clicar em *Create* para definir as características da aquisição de dados. Os dois parâmetros que serão utilizados e alterados serão *Numbers of Scans* (ou número de amostras) e *Rate* (ou frequência). A Figura 7 apresenta esses detalhes.

Figura 7 – Detalhes utilizado para aquisição de dados.

Para se adquirir os dados é só clicar em *Collect Data*. Os dados coletados podem ser salvos em arquivos por meio de *File -> Save Data*.

Figura 8 – Código em MATLAB para coleta de 10000 pontos numa frequência de 10000Hz.

```
%% Setup Session, Add Channels and Configure Parameters
% Create the data acquisition session
daqSession = daq.createSession('ni');
% Create analog input channel with board ID 'Dev2', Channel 'ai0',
measuring 'Voltage'
daqSession.addAnalogInputChannel('Dev2', 'ai0', 'Voltage');
% Set property value
daqSession.NumberOfScans = 10000;
% Set property value
daqSession.Rate = 10000;
%% Data Acquisition and Plotting
% Start the acquisition
disp('Acquiring data...');
[data, time] = daqSession.startForeground();
%número de pontos
n=length(data);
%obtenção da frequência de amostragem
dt1=time(1,1);
dt2=time(2,1);
dt=dt2-dt1;
f=1/dt;
%variação de frequência
df=f/n;
%vetor de frequências
f1=0:df:(n-1)*df;
```

Outra solução é criar arquivo do tipo MATLAB ao clicar em *File -> Generate MATLAB Code*. A Figura 8 mostra um código do MATLAB para aquisição de 10.000 dados com frequência de aquisição de 10.000Hz.

Note que os dados serão gravados no vetor *data*, e o tempo que cada um foi adquirido está no vetor *time*. Esses dados podem ser gravados em arquivo do tipo txt (ver módulo 1).

O cálculo da média e desvio desses vetores pode ser feito por meio dos seguintes comandos:

```
mediaData = mean(data); % calcula a média dos dados coletados
desvData = std(data); % calcula o desvio dos dados coletados
```

Também é possível calcular achatamento (*kurtosis*), assimetria (*skewness*) e o intervalo da amostra, conforme já ensinado no módulo 1.

O intervalo de confiança pode ser calculado pelos seguintes comandos:

```
t = tinv((1+\alpha)/2, n-1); % calcula o valor de t student 
D=t*desvData/sqrt(n) % calcula a variação do intervalo de confiança
```

A transformada de Fourier utiliza do comando:

```
X=fft(data,n)*2/n; %cálculo da transformada de Fourier
```

Para plotar os resultados obtidos, utilize os seguintes comandos:

```
% Plot the acquired data in a new figure window
figure(1);
plot(time, data);
title('Dados Originais Coletados em função do tempo')
%Plota o espectro de frequências
figure(2);
plot(f1,abs(X));
title('Expectro de Frequência')
```

Para se concluir o código é necessário fechar o objeto *daqSession* com os seguintes comandos:

```
daqSession.release();
delete(daqSession);
clear daqSession;
```

5. Atividades

Relatório (6 Pontos)

 a) Faça análise de espectro de um sinal senoidal e outra de um sinal quadrático com Vpico a pico de 5V e de frequência e parâmetros de amostragem indicada na Tabela 1. (2,5 pontos)

Tabela 1: Quadro de Frequências de Sinal e Amostragem

Tipo	Frequência	Frequência	Número de	df
	Sinal	de Coleta	Amostras	
	$5V_{pk-pk}$			
Senoidal	2KHz	10KHz	100000	0,1 Hz
	2KHz		1024	9,76562Hz
	8KHz		100000	0,1 Hz
Quadrada	2KHz	10KHz	10000	1 Hz
	2KHz		1024	9,76562Hz

- b) Refaça a atividade utilizando os dados com o filtro passa baixa. Avalie os efeitos de *alisasing* (fantasma) e vazamento (2,5 pontos).
- c) Sabendo que a placa da National tem 12 bits, calcule o erro de quantização.(1 pontos)