Sustainability numericals

GCV/NCV - Calorific Value Numericals Calone: Amount of heat required to raise the temperature of one gram of water. through one degree centigrade. 1000 cal = | Kcal 2 Types:--> GCV or HCV -> LCV or NCV Gross or High Calonific Value Low or Net Calorific Value.

Mi

A sample of coal contains C=761., N=1.5%, H=5%,

0=16.2%; S=0.3% & ash=1.0%. Calculate

the HCV& GCV of coal.

GCV= 1 [8080C+34500(H-0)+2240S]

= 1 [8080x76+34500(5-16.2)+2240x0.3)

= 1 [8080x76+34500(5-16.2)+2240x0.3)

GCV= 71-73.895 Kcal/Kg

Combustion Numericals

6.12 Numericals on Combustion

(A) Calculation of Amount of Air (Weight Basis)

Problem 1

A coal sample contains C = 65%, H = 13%, O = 6%, S = 4%, N = 2%. Calculate the minimum amount of air needed for complete combustion of 1 kg of coal.

(M.U. May 2008)

% by weight	Weight of and
65	Weight of each per kg of fue
13	65 / 100 = 0.65
6	13 / 100 = 0.13
2	6/100=0.06
4	Does not contribute 4 / 100 = 0.04
	65

Amount of air required
$$=\frac{100}{23} [2.67 \text{ C} + 8 \text{ H} + 5 - 0] \text{ kg}$$

 $=\frac{100}{23} [2.67 \times 0.65 + 8 \times 0.13 + 0.04 - 0.06] \text{ kg}$
 $=\frac{100}{23} [1.7355 + 1.04 - 0.02] \text{ kg}$
 $=\frac{100}{23} [2.7555] \text{ kg}$
 $=11.98 \text{ kg}$

Ans.: Weight of air needed for combustion of 1 kg of fuel = 11.98 kg.

Problem 2

der .

A coal sample was found to contain the following constituents: C = 81%. O = 8%, S = 1%, H = 5%, N = 1%, ash = 4%. Calculate the minimum amount of air required for complete combustion of 2 kg of coal.

(M.U. May 2010)

Solution :

Constituent	% by weight	Weight of each per kg of fur
e	81	81 / 100 = 0.81
0	8	8/100 = 0.08
S	1	1 / 100 = 0.01
н	5	5/100 = 0.05
N	1	Does not contribute

Amount of air required =
$$\frac{160}{23}$$
 [2.67 C + 8H + S - O] kg
= $\frac{100}{23}$ [2.67 × 0.81 + 8 × 0.05 + 0.01 - 0.08] kg
= $\frac{100}{23}$ [2.163 + 0.4 + 0.01 - 0.08] kg
= $\frac{100}{23}$ [2.493] kg
= 10.839 kg

Amount of air required for 2 kg of coal

$$= 21.68 \, \text{kg}$$

Ans.: Amount of air needed for 2 kg of coal = 21.68 kg

Problem 3

..

Calculate weight of air needed for complete combustion of 1 kg of coal containing C = 72%, H = 10%, O = 9%, N = 3% and remaining being ash. (M.U. Dec. 2011)

Solution:

Constituent	% by weight	Weight of each per kg of fuel
C-	72	72/100 = 0.72
я	10	107 100 = 0.01
.0	9	9/100 = 0.09

Amount of air required =
$$\frac{100}{23}$$
 [2.67 C + 8 H + S - O] kg
= $\frac{100}{23}$ [2.67 × 0.72 + 8 × 0.1 - 0.09] kg
= $\frac{100}{23}$ [1.9224 + 0.8 - 0.09] kg
= $\frac{100}{23}$ [2.6324] kg.
= 11.45 kg

Ans. : Weight of air required for combustion of 1 kg of coal = 11.45 kg.

Problem 4

A coal sample was found to contain the following constitutents:

Calculate the minimum weight of air required at STP for complete combustion of [kg of the coal sample.

[M.U. Dec. 2019]

Solution:

Constituent	% by weight	Weight of each per kg of fuel
C.	81	81/100 = 0.81
C. H.	6	6/100 = 0.06
S	1	1/100 = 0.01
N	2	Does not contribute
0	6	6/100 = 0.06
Ash	4	Does not contribute

Amount of air required =
$$\frac{100}{23}$$
 [2.67 C + 8 H + S - O] kg
= $\frac{100}{23}$ [2.67 × 0.81 + 8 × 0.06 + 0.01 - 0.06] kg
= $\frac{100}{23}$ [2.1627 + 0.48 - 0.05] kg
= $\frac{100}{23}$ [2.5927] kg
= 11.273 kg

Ans.: Weight of air required for combustion of 1 kg of coal = 11.273 kg.