Niveau :1me Master M A S

Facult e de SEI Département de Mathématiques Module : Programmation Linéaire

Corrigée de la feuille d'exercices N 2

Exercice 1 L'optimum est un clairement obtenu en un sommet. Ce point est a l'intersection des droites :

$$2x_2 = 19$$
 et $7x_1 - 2x_2 = 107$.

Par conséquent, la solution optimale est $x^* = (18, 9.5)$ et la valeur de la fonction objectif est $z^* = 4 \times 18 + 9.5 = 81.5$.

Exercice 2 Cherchons le dual (D) de (P1)

$$(D1) \iff \begin{cases} z (\max) = 6y_1 + 2y_2 - 2y_3 \\ 2y_1 + y_2 + y_3 \ge -2 \\ y_1 - y_2 - 3y_3 \ge -1 \\ -3y_1 + 2y_2 - 2y_3 \ge 1 \\ 6y_1 + 2y_2 - 2y_3 \ge 1 \\ y_i \ de \ signe \ qcq, \ i = 1, 2, 3 \end{cases}$$

verifions que $x^* = (3,0,1,3)^{\top}$ est une solution admissible de (P1)

$$2 \times 3 + 0 - 3 \times 1 + 3 = 6$$
$$3 - 0 + 2 \times 1 - 3 = 2$$
$$3 - 3 \times 0 - 2 \times 1 - 3 = -2$$

Cherchons y^* solution admissible du dual avec (x^*, y^*) vérifie le théorème des écatrs complémentaires,

$$\left\{ \begin{array}{l} x_1^* = 3 > 0 \\ x_2^* = 1 > 0 \\ x_3^* = 3 > 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} 2y_1^* + y_2^* + y_3^* = -2 \\ -3y_1^* + 2y_2 - 2y_3^* = 1 \\ 6y_1^* + 2y_2^* - 2y_3^* = 1 \end{array} \right. \Longrightarrow y^* = \left(-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3} \right)^\top.$$

On vérifie que y* est solution admissible de (D1). Rest à vérifier la contrainte (2) du dual

$$-\frac{1}{3} + \frac{2}{3} - 3\left(-\frac{2}{3}\right) \ge -1$$

Coclusions : $(x^*, y^*) \in S_{(P1)} \times S_{(D1)}$ vérifie le théorème des écatrs complémentaires, alors x^* est une solution optimal de (P1).

Exercice 3 1. La forme standard

$$(PS) \begin{cases} z(\max) = 5x_1 + 4x_2 + 3x_3 \\ 3x_1 + 4x_2 + 2x_3 + x_4 = 90 \\ 2x_1 + x_2 + x_3 + x_5 = 40 \\ x_1 + 3x_2 + 2x_3 + x_6 = 80 \\ x_i \ge 0, \ i = 1, ..., 6 \end{cases}$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{b}_i	V.b
3	4	2	1	0	0	90	\mathbf{x}_4
2*	1	1	0	1	0	40	\mathbf{x}_5
1	3	2	0	0	1	80	\mathbf{x}_6
5	4	3	0	0	0	0	$-\mathbf{z}$
0	5:2 1:2 5:2 3:2	$\frac{1}{2}$	1	$\frac{3}{2}$ $\frac{1}{2}$	0	30	\mathbf{x}_4
1	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	0	$\frac{1}{2}$	0	20	\mathbf{x}_1
0	$\frac{5}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	1	60	\mathbf{x}_6
0	$\frac{3}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$ $-\frac{5}{2}$ $-\frac{3}{5}$	0	-100	-z
0	1	$\frac{1}{2}$ $\frac{1}{5}$ $\frac{2}{5}$	$\frac{2}{5}$	$-\frac{3}{5}$	0	12	\mathbf{x}_2
1	0	$\frac{2}{5}$	$-\frac{1}{5}$	$\frac{4}{5}$	0	14	\mathbf{x}_1
0	0	1*	-1	1	1	30	\mathbf{x}_6
0	0	$\frac{1}{5}$	$-\frac{3}{5}$	$-\frac{8}{5}$ $-\frac{4}{5}$	0	-118	-z
0	1	0	3 5 1 5	$-\frac{4}{5}$	$-\frac{1}{5}$	6	\mathbf{x}_2
1	0	0	$\frac{1}{5}$	$\frac{2}{5}$	$-\frac{1}{5}$ $-\frac{2}{5}$	2	\mathbf{x}_1
0	0	1	-1	1	1	30	\mathbf{x}_3
0	0	0	$-\frac{2}{5}$	$-\frac{9}{5}$	$-\frac{1}{5}$	-124	-z

La base $B=\{1,2,3\}$ est optimale. La solution correspondante est : $x_1=2, x_2=6, x_3=30$ et z=124.

2.

$$A^{-1} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & -\frac{2}{5} \\ -1 & 1 & 1 \end{pmatrix}$$

3. Le dual

$$(PL) \begin{cases} w(\min) = 90\lambda_1 + 40\lambda_2 + 80\lambda_3 \\ 3\lambda_1 + 2\lambda_2 + \lambda_3 \ge 5 \\ 4\lambda_1 + \lambda_2 + 3\lambda_3 \ge 4 \\ 2\lambda_1 + \lambda_2 + 2\lambda_3 \ge 3 \\ \lambda_i \ge 0, \ i = 1, 2, 3 \end{cases}$$

4. $\lambda^* = \left(\frac{2}{5}, \frac{9}{5}, \frac{1}{5}\right)^{\top}$ est une solution admissible car,

$$3\left(\frac{2}{5}\right) + 2\left(\frac{9}{5}\right) + \frac{1}{5} = 5 \ge 5$$

$$4\left(\frac{2}{5}\right) + \frac{9}{5} + 3\left(\frac{1}{5}\right) = 4 \ge 4$$

$$2\left(\frac{2}{5}\right) + \frac{9}{5} + 2\left(\frac{1}{5}\right) = 3 \ge 3$$

5. $w^* = 90\left(\frac{2}{5}\right) + 40\left(\frac{9}{5}\right) + 80\left(\frac{1}{5}\right) = 124 = z^*$, ainsi λ^* est une solution optimale de (D).

6. La base $B = \{1, 2, 3\}$ est optimale pour (P)

$$\begin{pmatrix} 4 & 3 & 2 \\ 1 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 90 + \alpha \\ 40 \\ 80 \end{pmatrix}$$

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 2 \\ 1 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 90 + \alpha \\ 40 \\ 80 \end{pmatrix}$$

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & -\frac{2}{5} \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 90 + \alpha \\ 40 \\ 80 \end{pmatrix}$$

$$\left\{\begin{array}{ll} b_1 = \frac{3}{5} \left(10 + \alpha\right) \geq 0 \\ b_2 = 10 + \alpha \geq 0 \\ b_3 = 30 - \alpha \geq 0 \end{array}\right. \implies \left\{\begin{array}{ll} \alpha \geq -10 \\ \alpha \geq -10 \\ \alpha \leq 30 \end{array}\right. \implies -10 \leq \alpha \leq 30$$

Exercice 4

$$(PL) \Leftrightarrow \begin{cases} z = \min x_1 + 3x_2 + 2x_3 \\ x_1 - 5x_2 + 7x_3 + x_4 = -8 \\ -2x_1 + 4x_2 - 2x_3 + x_5 = 2 \\ x_1 - 3x_2 + 2x_3 + x_6 = -2 \\ x_i \ge 0, \ i = 1, ..., 6 \end{cases}$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	s.m	V.b
-1	5	-7^{*}	1	0	0	-8	\mathbf{x}_4
2	-4	2	0	1	0	2	\mathbf{x}_5
-1	3	-2	0	0	1	-2	\mathbf{x}_6
1	3	2	0	0	0	0	$-\mathbf{z}$
$\frac{1}{7}$	$-\frac{5}{7}$	1	$-\frac{1}{7}$	0	0	$\frac{8}{7}$	\mathbf{x}_3
$\frac{12}{7}$	$-\frac{18}{7}^*$	0	$\frac{2}{7}$	0	0	$-\frac{2}{7}$	\mathbf{x}_5
$-\frac{5}{7}$	$\frac{11}{7}$	0	$-\frac{2}{7}$	0	1	$\frac{2}{7}$	\mathbf{x}_6
$\frac{5}{7}$	$\frac{31}{7}$	0	$\frac{2}{7}$	0	0	$-\frac{16}{7}$	-z
$-\frac{1}{3}$	0	1	$-\frac{2}{9}$	$-\frac{5}{18}$	0	$\frac{11}{9}$	\mathbf{x}_3
$-\frac{1}{3}$ $-\frac{2}{3}$	1	0	$-\frac{1}{9}$	$-\frac{7}{18}$	0	$\frac{1}{9}$	\mathbf{x}_2
$\frac{1}{3}$	0	0	$-\frac{1}{9}$	11	1	$\frac{1}{9}$	\mathbf{x}_6
$\frac{1}{3}$	0	0	$\frac{1}{2}$	$\frac{\overline{18}}{\overline{36}}$	0	$-\frac{25}{9}$	-z

Exercice 5 1. Le dual du problème posé est :

$$\begin{cases} \min w = 4\lambda_1 + 3\lambda_2 + 5\lambda_3 + \lambda_4 \\ \lambda_1 + 4\lambda_2 + 2\lambda_3 + 3\lambda_4 \ge 7 \\ 3\lambda_1 + 2\lambda_2 + 4\lambda_3 + \lambda_4 \ge 6 \\ 5\lambda_1 - 2\lambda_2 + 4\lambda_3 + 2\lambda_4 \ge 5 \\ -2\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 \ge -2 \\ 2\lambda_1 + \lambda_2 + 5\lambda_3 - 2\lambda_4 \ge 3 \\ \lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0 \end{cases}$$

2. La troisième contrainte du problème primal n'est pas saturée. Donc la variable duale associée à cette contrainte est null : $\lambda_3=0$

$$\lambda_{1} (x_{1} + 3x_{2} + 5x_{3} - 2x_{4} + 2x_{5} - 4)$$

$$= \lambda_{1} (0 + 3 \times \frac{4}{3} + 5 \times \frac{2}{3} - 2 \times \frac{5}{3} + 2 \times 0 - 4) = \lambda_{1} \times 0 = 0$$
on ne peut rien dire
$$\lambda_{2} (4x_{1} + 2x_{2} - 2x_{3} + x_{4} + x_{5} - 3)$$

$$= \lambda_{2} (4 \times 0 + 2 \times \frac{4}{3} - 2 \times \frac{2}{3} + \frac{5}{3} + 0 - 3) = \lambda_{2} \times 0 = 0$$
on ne peut rien dire
$$\lambda_{3} (2x_{1} + 4x_{2} + 4x_{3} - 2x_{4} + 5x_{5} - 5)$$

$$= \lambda_{3} (2 \times 0 + 4 \times \frac{4}{3} + 4 \times \frac{2}{3} - 2 \times \frac{5}{3} + 5 \times 0 - 5)$$

$$= \lambda_{3} \times \frac{-1}{3} = 0 \Longrightarrow \lambda_{3} = 0$$

$$\lambda_{4} (3x_{1} + x_{2} + 2x_{3} - x_{4} - 2x_{5} - 1)$$

$$= \lambda_{4} (3 \times 0 + \frac{4}{3} + 2 \times \frac{2}{3} - \frac{5}{3} - 2 \times 0 - 1) = \lambda_{4} \times 0 = 0$$
on ne peut rien dire

D'autre part, les varaibles x_2, x_3 et x_4 sont strictement positives. Ce qui implique que la deuxième, la troisième et la quatrième contrainte duales sont saturées.

On obtient donc le système suivante :

$$\begin{cases} 3\lambda_1 + 2\lambda_2 + 4\lambda_3 + \lambda_4 = 6 \\ 5\lambda_1 - 2\lambda_2 + 4\lambda_3 + 2\lambda_4 = 5 \\ -2\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 = -2 \end{cases}$$

Comme $\lambda_3 = 0$, le système précédent devient

$$\begin{cases} 3\lambda_1 + 2\lambda_2 + \lambda_4 = 6 \\ 5\lambda_1 - 2\lambda_2 + 2\lambda_4 = 5 \\ -2\lambda_1 + \lambda_2 - \lambda_4 = -2 \end{cases}$$

En résolvant ce système, on obtient :

$$\lambda_1 = 1, \quad \lambda_2 = 1, \quad \lambda_3 = 0, \quad \lambda_4 = 1$$

Cette solution ne satisfait pas la dernière contrainte du problème dual. Elle n'est donc pas réalisable et par suite la solution primale proposée n'est pas optimale.

Exercice 6 1.

x_1	x_2	x_3	x_4	x_5	x_6	s.m	v.b
1	2	3	0	0	1	5	x_1
0	4	1	0	1	2	11	x_5
0	3	4	1	0	2	8	x_4
0	5	4	0	0	3	0	-z
x_1	x_2	x_3	x_4	x_5	x_6	s.m	v.b
$\frac{1}{2}$	1	$\frac{3}{2}$	0	0	$\frac{1}{2}$	$\frac{5}{2}$	x_2
-2	0	-5	0	1	0	1	x_5
$-\frac{3}{2}$ $-\frac{5}{2}$	0	$-\frac{1}{2}$	1	0	$\frac{1}{2}$	$\frac{1}{2}$	x_4
$-\frac{5}{2}$	0	$-\frac{5}{2}$	0	0	$\frac{1}{2}$	$-\frac{25}{2}$	-z
x_1	x_2	x_3	x_4	x_5	x_6	s.m	v.b
2	1	2	-1	0	0	2	x_2
-2	0	-5	0	1	0	1	x_5
-3	0	-1	2	0	1	1	x_6
-1	0	-3	-1	0	0	-13	-z

Tous les couts réduits sont négatifs ou nuls. \implies solution optimale x = (0, 2, 0, 0, 1, 1) de valeur $z^* = 13$.

- 2. $B = \{2, 5, 6\}$
- 3. On prend $\lambda^{\top} = c_B^{\top} A_B^{-1}$:

$$A_{B} = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 1 & 2 \\ 3 & 0 & 2 \end{pmatrix} \Longrightarrow A_{B}^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ -2 & 1 & 0 \\ -3 & 0 & 2 \end{pmatrix}$$
$$\Longrightarrow \lambda^{\top} = \begin{pmatrix} 5 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & -1 \\ -2 & 1 & 0 \\ -3 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

- 4. On vérifie bien que x est primal-admissible.
 - Par construction on sait déjà que $c^{\top}x = \lambda^{\top}b$

En effet
$$c^{\top}x = 13 = \lambda^{\top}b$$

- Reste donc à vérifier que λ est duale-admissible :

Ecrivons le duale :

$$\begin{cases} \min w = 5\lambda_1 + 11\lambda_2 + 8\lambda_3 \\ \lambda_1 \ge 0 \\ 2\lambda_1 + 4\lambda_2 + 3\lambda_3 \ge 5 \\ 3\lambda_1 + 1\lambda_2 + 4\lambda_3 \ge 4 \\ \lambda_3 \ge 0 \\ \lambda_2 \ge 0 \\ \lambda_1 + 2\lambda_2 + 2\lambda_3 \ge 3 \end{cases}$$

 $\lambda^{\top} = (1, 0, 1)$ est bien dual-réalisable

x et λ sont donc bien des solutions optimales recherchées.

5. Rappelons que les couts réduits sont $:d_N^{\top} = c_N^{\top} - \underbrace{c_B^{\top} A_B^{-1}}_{\lambda^{\top}} A_N$

On obtient donc:

$$d_N^\top = (0\ 4\ 0) - (1\ ,0,\ 1) \left(\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{array}\right) = (-1\ ,-3,\ -1)$$

Il est logique que tous les couts réduits sont négatifs, puisque x est une solution optimale! (problème max)

Exercice 7 — $R\'{e}alisabilit\'{e}$:

 $Ax = \alpha_1 Ax_1 + \alpha_2 Ax_2 + \dots + \alpha_k Ax_k$

Etant donné que $x_1, x_2, ..., x_k$ sont solutions de (P) alors $Ax_i = b$. Ainsi,

$$Ax = \alpha_1 b + \alpha_2 b + \dots + \alpha_k b$$
$$= b \times \sum_{i=1}^k \alpha_i = 1$$
$$= b$$

- Optimalit'e :

 $cx = \alpha_1 cx_1 + \alpha_2 cx_2 + \dots + \alpha_k cx_k$

Etant donné que $x_1, x_2, ..., x_k$ sont solutions de (P) alors $cx_i = z$. Ainsi,

$$cx = \alpha_1 z + \alpha_2 z + \dots + \alpha_k z$$
$$= z \times \sum_{i=1}^k \alpha_i = 1$$
$$= z$$

D'où

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k \quad \text{ où } \quad \alpha_i \in [0, 1] \quad et \sum_{i=1}^k \alpha_i = 1$$

est solution de (P).