Chapter 3

Combining Factors and Spreadsheet Functions

LEARNING OUTCOMES

- 1. Shifted uniform series
- 2. Shifted series and single cash flows
- 3. Shifted gradients

Shifted Uniform Series

A shifted uniform series starts at a time other than period 1

The cash flow diagram below is an example of a shifted series

Series starts in period 2, not period 1

Shifted series
usually
require the use
of
multiple factors

Remember: When using P/A or A/P factor, P_A is always *one year ahead* of first A

When using F/A or A/F factor, F_A is in same year as last A

Example Using P/A Factor: Shifted Uniform Series

The present worth of the cash flow shown below at i = 10% is:

(a) \$25,304

(b) \$29,562

(c) \$34,462

(d) \$37,908

Solution:

(1) Use P/A factor with n = 5 (for 5 arrows) to get P₁ in year 1

(2) Use P/F factor with n = 1 to move P_1 back for P_0 in year 0

 $P_0 = P_1(P/F,10\%,1) = A(P/A,10\%,5)(P/F,10\%,1) = 10,000(3.7908)(0.9091) = $34,462$ Answer is (c)

Example Using F/A Factor: Shifted Uniform Series

How much money would be available in year 10 if \$8000 is deposited each year in years 3 through 10 at an interest rate of 10% per year?

Cash flow diagram is:

Solution: Re-number diagram to determine $\dot{n} = 8$ (number of arrows)

$$F_A = 8000(F/A, 10\%, 8)$$

= 8000(11.4359)
= \$91,487

Shifted Series and Random Single Amounts

For cash flows that include *uniform series* and *randomly placed single amounts*:

Uniform series procedures are applied to the series amounts

Single amount formulas are applied to the one-time cash flows

The resulting values are then *combined* per the problem statement

The following slides illustrate the procedure

Example: Series and Random Single Amounts (1)

Find the present worth in year 0 for the cash flows shown using an interest rate of 10% per year.

First, re-number cash flow diagram to get n for uniform series: $\hat{n} = 8$

Example: Series and Random Single Amounts (2)

Use P/A to get P_A in year 2: $P_A = 5000(P/A, 10\%, 8) = 5000(5.3349) = $26,675$

Move P_A back to year 0 using P/F: $P_0 = 26,675(P/F,10\%,2) = 26,675(0.8264) = $22,044$

Move \$2000 single amount back to year 0: $P_{2000} = 2000(P/F, 10\%, 8) = 2000(0.4665) = 933

Now, add P_0 and P_{2000} to get P_T : $P_T = 22,044 + 933 = $22,977$

Example Worked a Different Way

(Using F/A instead of P/A for uniform series)

The same re-numbered diagram from the previous slide is used

Solution: Use F/A to get F_A in actual year 10: $F_A = 5000(F/A, 10\%, 8) = 5000(11.4359) = $57,180$

Move F_A back to year 0 using P/F: $P_0 = 57,180(P/F,10\%,10) = 57,180(0.3855) = $22,043$

Move \$2000 single amount back to year 0: $P_{2000} = 2000(P/F, 10\%, 8) = 2000(0.4665) = 933

Now, add two P values to get P_T : $P_T = 22,043 + 933 = $22,976$

Same as before

As shown, there are usually multiple ways to work equivalency problems

Example: Series and Random Amounts

Convert the cash flows shown below (black arrows) into an equivalent annual worth A in years 1 through 8 (red arrows) at i = 10% per year.

Approaches:

- 1. Convert all cash flows into P in year 0 and use A/P with n = 8
- **2. Find F in year 8** and use A/F with n = 8

Solution:

Solve for F:
$$F = 3000(F/A,10\%,5) + 1000(F/P,10\%,1)$$

= $3000(6.1051) + 1000(1.1000)$
= \$19,415
Find A: $A = 19,415(A/F,10\%,8)$
= $19,415(0.08744)$
= \$1698

Shifted Arithmetic Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Present worth P_G is located 2 periods before gradient starts

Must use multiple factors to find P_T in actual year 0

To find equivalent A series, find P_T at actual time 0 and apply (A/P,i,n)

Example: Shifted Arithmetic Gradient

John Deere expects the cost of a tractor part to increase by \$5 per year beginning 4 years from now. If the cost in years 1-3 is \$60, determine the *present worth in year 0* of the cost through year 10 at an interest rate of 12% per year.

Solution: First find P_2 for G = \$5 and base amount (\\$60) in actual year 2

$$P_2 = 60(P/A, 12\%, 8) + 5(P/G, 12\%, 8) = $370.41$$

Next, move P₂ back to year 0

$$P_0 = P_2(P/F, 12\%, 2) = $295.29$$

Next, find P_{Δ} for the \$60 amounts of years 1 and 2

$$P_A = 60(P/A, 12\%, 2) = $101.41$$

Finally, add P_0 and P_A to get P_T in year 0

$$P_T = P_0 + P_A = $396.70$$

Shifted Geometric Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Equation yields P_q for all cash flows (base amount A₁ is included)

Equation (i
$$\neq$$
 g): $P_g = A_1 \{1 - [(1+g)/(1+i)]^n/(i-g)\}$

For negative gradient, change signs on both g values

There are no tables for geometric gradient factors

Example: Shifted Geometric Gradient (1)

Weirton Steel signed a 5-year contract to purchase water treatment chemicals from a local distributor for \$7000 per year. When the contract ends, the cost of the chemicals is expected to increase by 12% per year for the next 8 years. If an initial investment in storage tanks is \$35,000, determine the equivalent present worth in year 0 of all of the cash flows at i = 15% per year.

Example: Shifted Geometric Gradient (2)

Gradient starts between actual years 5 and 6; these are gradient years 1 and 2. P_g is located in gradient year 0, which is actual year 4

$$P_g = 7000\{1 - [(1+0.12)/(1+0.15)]^9/(0.15-0.12)\} = \$49,401$$

Move P_q and other cash flows to year 0 to calculate P_T

$$P_T = 35,000 + 7000(P/A, 15\%, 4) + 49,401(P/F, 15\%, 4) = $83,232$$

Negative Shifted Gradients

For negative arithmetic gradients, change sign on G term from + to -

General equation for determining P:
$$P = present worth of base amount $-P_G$

Changed from $+ to -$$$

For negative geometric gradients, change signs on both g values

Changed from
$$+$$
 to $-$
$$P_g = A\mathbf{1}\{\mathbf{1} - [(\mathbf{1} - \mathbf{g})/(\mathbf{1} + \mathbf{i})]^n/(\mathbf{i} + \mathbf{g})\}$$
 Changed from $-$ to $+$

All other procedures are the same as for positive gradients

Example: Negative Shifted Arithmetic Gradient

For the cash flows shown, find the future worth in year 7 at i = 10% per year

Solution: Gradient G first occurs between actual years 2 and 3; these are gradient years 1 and 2 P_G is located in gradient year 0 (actual year 1); base amount of \$700 is in gradient years 1-6

$$\begin{split} P_G &= 700(P/A, 10\%, 6) - 50(P/G, 10\%, 6) = 700(4.3553) - 50(9.6842) = \$2565 \\ F &= PG(F/P, 10\%, 6) = 2565(1.7716) = \$4544 \end{split}$$

Summary of Important Points

P for shifted uniform series is *one period ahead* of first A; n is equal to number of A values

F for shifted uniform series is in same period as last A; n is equal to number of A values

For gradients, *first change* equal to G or g occurs between gradient years 1 and 2

For negative arithmetic gradients, change sign on G from + to -

For negative geometric gradients, change sign on g from + to -