

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Carmo Lança (mcl@fct.unl.pt),

Margarida Lima (mmal@fct.unl.pt),

Rui Borges (rcb@fct.unl.pt)

Enunciados dos Problemas

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

Estruturas Cristalinas

- **1** Para as estruturas cúbica simples (CS), cúbica de corpo centrado (CCC) e cúbica de faces centradas (CFC), calcule:
- a) a relação entre o parâmetro de rede a e o raio atómico.
- b) O número de átomos por célula unitária.
- c) o espaço ocupado por um átomo em cada estrutura.
- 2 Calcule o factor de empacotamento atómico das estruturas CS, CCC e CFC.
- **3 a)** A densidade do Al é 2,70 g/cm³. O peso atómico é 26,98 (g/mol). Calcular os parâmetros da rede CFC do Al.
- **b)** A densidade do Fe- α é 7,87 g/cm³. O peso atómico é 55,85 (g/mol). Calcular os parâmetros da rede CCC do Fe- α .
- c) A densidade do Mg é 1,741 g/cm³. O peso atómico é 24,31 (g/mol). Calcular os parâmetros da rede HC do Mg.
- 4 Considere uma estrutura cúbica simples:
- a) Desenhe os planos com os seguintes índices de Miller i) (001), ii) (110), iii) (111)
- **b)** Sobre cada um dos planos anteriores desenhe, respetivamente, as direções: i) [210], ii) $[\bar{1}11]$ e iii) $[10\bar{1}]$
- **5** O Pb possui estrutura Cúbica de Faces Centradas (CFC) e o seu parâmetro de rede é $a_{Pb} = 4,95$ Å. Quantos átomos por mm² existem nos planos (100) e (111) do chumbo?
- **6** O cobre tem uma estrutura CFC e um raio atómico de 1,278 Å. Quantas camadas de planos $\{100\}$ existem ao longo da espessura de uma película de 1 μ m de espessura. Suponha que os planos (001) são paralelos às superfícies superior e inferior da película.

Difração de raios X

- **7** Sabendo que os critérios para determinar a existência de difração por parte de uma família de planos são na estrutura:
 - cúbica simples (CS): todos os índices possíveis
 - cúbica de corpo centrado (CCC): soma dos índices par
- cúbica de faces centradas (CFC): índices todos pares ou todos ímpares assinale abaixo nas colunas correspondentes as reflexões possíveis para cada caso.

N	h	k	Ι	CS	CFC	CCC
1	1	0	0			
2	1	1	0			
3	1	1	1			
4	2	0	0			
5	2	1	0			
6	2	1	1			
8	2	2	0			
9	2	2	1			
9	3	0	0			
10	3	1	0			
11	3	1	1			
12	2	2	2			

- **8** Os elementos do Grupo IV-A da tabela periódica apresentam uma estrutura cristalina designada de diamante em que as reflexões ocorrem nos planos nos quais os índices (hkl) são: i) todos ímpares ou ii) todos pares e h+k+l = 4n, i.e., a soma é um múltiplo de 4. Determine as posições 20 em que deverá obter os primeiros 12 picos de difração do Si (a_{silício} = 5,4309 Å), utilizando o comprimento de onda da radiação $K\alpha_{Mo} = 0,71073$ Å e $K\alpha_{Cu} = 1,5406$ Å.
- **9 a)** Usando a lei de Bragg, calcule os ângulos de difração 2θ para os três primeiros picos do Fe- α (CCC) obtidos com uma ampola de cobre e com uma ampola de crómio.
- **b)** Compare os dados obtidos a partir destes cálculos com os valores do espectro do aço ferramenta H13.

Dados:
$$r_{Fe}$$
 = 1,24 Å; $\lambda K \alpha_{Cu}$ = 1,54 Å; $\lambda K \alpha_{Cr}$ = 2,29 Å

10 – Considere uma estrutura cúbica simples. Liste por ordem crescente de densidade atómica os seguintes planos: {100}, {110}, {210}, {111}, {211}, {311}, {221}.

11 – Considere os seguintes ângulos de difração para os primeiros três picos do padrão de difração de raios X de um metal. Utilizou-se radiação monocromática que possui um

comprimento de onda de 0,1542 nm.

a) Determinar se esta estrutura cristalina é CFC ou CCC, ou nenhuma delas, justificando a sua escolha.

Ordem dos picos	Ângulo de difração		
	(20)		
1º	38,6		
2º	55,7		
3º	70,0		

b) com base na seguinte tabela identifique qual dos metais possui esse padrão de difração

Metal	Estrutura	Raio atómico	
	cristalina	(nm)	
Alumínio	CFC	0,1431	
Cadmio	HC	0,1490	
Crómio	CCC	0,1249	
Cobalto	HC	0,1253	
Cobre	CFC	0,1278	
Ouro	CFC	0,1442	
Ferro-α	CCC	0,1241	
Chumbo	CFC	0,1750	
Molibdénio	CCC	0,1363	
Níquel	CFC	0,1246	
Platina	CFC	0,1387	
Prata	CFC	0,1445	
Tântalo	CCC	0,1430	
Titânio-α	HC	0,1445	
Tungsténio	CCC	0,1371	
Zinco	HC	0,1332	

Estruturas Cristalinas - Interstícios, Impurezas

12 – Quais são as posições intersticiais de maior volume nas redes CCC e CFC? Calcular o raio máximo dos átomos que podem entrar nessas posições.

13 – Calcule o raio do maior interstício na rede do ferro-γ (CFC). O raio atómico do ferro na rede CFC é 0,129 nm e os maiores interstícios surgem em posições do tipo

$$(\frac{1}{2},0,0); (0,\frac{1}{2},0); (0,0,\frac{1}{2}), etc.$$

- 14 Nos metais de estrutura CFC o escorregamento dá-se em planos do tipo {111} ao longo de direções <110> paralelas a esses planos. Escreva todas as combinações possíveis de plano e direção de escorregamento para estes metais.
- Usando os dados da tabela, compare o grau de solubilidade no estado sólido dos seguintes elementos no cobre: Zn, Pb, Si, Ni, Al e Be.

Elemento	Raio atómico nm	Estrutura cristalina	electronegatividade	Valência
Cobre	0,128	CFC	1,8	+2
Zinco	0,133	HC	1,7	+2
Chumbo	0,175	CFC	1,6	+2, +4
Silício	0,117	Cúbica Diamante	1,8	+4
Níquel	0,125	CFC	1,8	+2
Alumínio	0,143	CFC	1,5	+3
Berílio	0,114	HC	1,5	+2