BJT Amplifier Biasing

Biasing

Good Biasing circuit: Bias point is stable against variations in temperature, current gain β , supply voltage etc, power efficient, low cost

Variations to watch out for

(1)
$$\frac{dV_{BE}}{dT} \cong -2mV / ^{o} C$$

Different biasing circuit for discrete and monolithic (IC) circuit implementation

Resistors and capacitors are 'cheap' and transistors are relatively more expensive.

Higher value resistors (M Ω) are expensive and capacitors in pF range only are possible. Passive components are expensive, while transistors are cheap!

A good biasing circuit for discrete implementation

Every Circuit is a solution to one or more set of problems!

Evolution of circuit from simple to complex

BJT amp-1

Bias the Transistor in Forward Active Mode

Apply the signal at the base and Connect the load

$$I_{C} \cong I_{S} \times \exp(\frac{V_{BE}}{V_{T}}) \qquad \Delta I_{C} \cong I_{S} \times \exp(\frac{V_{BE}}{V_{T}}) \times \frac{\Delta V_{BE}}{V_{T}} \qquad (\frac{\Delta I_{C}}{I_{C}}) = (\frac{\Delta V_{B}}{V_{B}}) \times (\frac{V_{BE}}{V_{T}})$$

Biasing is very sensitive to the biasing voltage and temperature

BJT amp-2

$$I_{B} = \frac{V_{B} - V_{BE}}{R_{B}}$$
$$I_{C} = \beta \times I_{B}$$

$$\frac{\Delta I_C}{I_C} = \frac{-\Delta V_{BE} + \Delta V_B}{V_B - V_{BE}}$$

$$\frac{dV_{BE}}{dT} = -2mV/^{\circ}C$$

$$\Delta V_{BE}$$
= 100 mV

$$V_B - V_{BE} >> 100 \text{ mV}$$

Why use a capacitor at the output?

$$V_{CE} = V_{CC} - I_C R_C$$

$$V_{CE} = \frac{V_{CC} - I_C R_C}{1 + R_C / R_L}$$

It may become difficult to obtain the desired value of V_{CE} and bias point becomes load dependent.

Example-1

Bias or quiescent (Q) Point:

$$I_{CQ} = 1mA; \quad V_{CEQ} = 2.5V$$

Design:

$$\begin{split} I_{\scriptscriptstyle B} = & \frac{V_{\scriptscriptstyle B} - V_{\scriptscriptstyle BE}}{R_{\scriptscriptstyle B}}; I_{\scriptscriptstyle C} = \beta \times I_{\scriptscriptstyle B} \\ V_{\scriptscriptstyle CE} = & V_{\scriptscriptstyle CC} - I_{\scriptscriptstyle C} \times R_{\scriptscriptstyle C} \\ I_{\scriptscriptstyle B} R_{\scriptscriptstyle B} > & 1 V \end{split}$$

$$R_B = 430k\Omega$$
; $R_C = 2.5k\Omega$

Small Signal Analysis (Mid Frequency Range)

Small Signal Analysis

$$v_{be} = \frac{r_{\pi}}{r_{\pi} + R_B} v_s$$

$$v_o = - g_m v_{be} \times (r_o || R_C || R_L)$$

$$A_{v} = -\left(\frac{r_{\pi}}{r_{\pi} + R_{B}}\right) \quad g_{m} \times (r_{o} \parallel R_{C} \parallel R_{L})$$

Example-1

Problem

$$A_V \cong \left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) g_m R_L$$

$$\left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) = \frac{V_T / I_B}{(V_T / I_B) + R_B} = \frac{V_T}{V_T + I_B R_B}$$

A large fraction of input gets dropped across R_B

Another Problem

How do we connect vs and V_{B} in series when one terminal of both is ground?

Solution

Bypass resistance R_B from the path of the input signal

Small Signal Model

$$A_{v} = -g_{m} \times r_{0} \parallel R_{C} \parallel R_{L}$$

$$\cong -g_{m} \times R_{C} \parallel R_{L}$$

$$g_m \times R_C = \frac{I_C \times R_C}{V_T}$$