T-PMTH-402 - Math. appliquées à l'info. Chapitre 7 - La complexité algorithmique

Jean-Sébastien Lerat Jean-Sebastien.Lerat@heh.be

Haute École en Hainaut

2019-2020

Plan

- Introduction
 - Définition
 - Notation
- 2 Classe
- Calcul
 - Cas simples
 - Condition
 - Itération

- 4 Complexité
 - Meilleur des cas
 - Pire des cas
 - Cas moyen
- 5 Exercices

Introduction

Les objectifs de ce chapitre sont

- d'évaluer la faisabilité d'exécution d'algorithmes afin de déterminer s'ils s'exécutent dans un temps raisonnable;
- 2 comparer l'efficacité de deux algorithmes.

Définition

Complexité

La **complexité** d'un algorithme est une fonction qui exprime le nombre d'opérations fondamentales effectuées par cet algorithme sur un ensemble de données |D|=n

<u>Note</u> : la complexité permet d'estimer le temps de calcul d'un algorithme.

Définition

Complexité

La complexité d'un algorithme est une fonction qui exprime le nombre d'opérations fondamentales effectuées par cet algorithme sur un ensemble de données |D| = n

Note : la complexité permet d'estimer le temps de calcul d'un algorithme.

Exemple de temps de calculs

Nombre d'opérations	1Ghz	3Ghz	
$4,1015 \times 10^9$	\approx 6,7 semaines	$\approx 2, 2$ semaines	
$7,7245 imes 10^6$	pprox 2 heures	pprox 43 minutes	

Note: la complexité exprime donc la faisabilité d'exécution dans un temps raisonnable indépendamment de la puissance de calcul non parallélisé.

Notation

La complexité d'un algorithme se décline sous trois évaluations :

Meilleur des cas noté $o(\bullet)$ correspond à la complexité minimal, c'est-à-dire quand les données sont favorables à l'algorithme.

Cas moyen noté $\theta(\bullet)$ correspond à la complexité moyenne, c'est-à-dire sur des données quelconques.

Pire des cas noté $O(\bullet)$ correspond à la complexité maximale, c'est-à-dire quand les données sont défavorables à l'algorithme.

La notation $\Theta(\bullet)$ peut être utilisée dans le cas où $o(\bullet) = \theta(\bullet) = O(\bullet)$.

Remarque

Le calcul de complexité peut également être utilisé afin d'estimer l'espace mémoire nécessaire au lieu du temps d'exécution.

Plan

- Introduction
 - Définition
 - Notation
- Classe
- Calcul
 - Cas simples
 - Condition
 - Itération

- 4 Complexité
 - Meilleur des cas
 - Pire des cas
 - Cas moyen
- Exercices

Temps

Noms

```
Constante O(a)
Logarithmique O(\log(n))
Quasi-linéaire O(n \log(n))
Linéaire O(n)
Quadratique O(n^2)
Polynomiale O(n^p)
Exponentielle O(a^n)
Factorielle O(n!)
```

Noms

```
Constante O(a) \Leftrightarrow O(1)
Logarithmique O(\log(n))
Quasi-linéaire O(n \log(n))
Linéaire O(n)
Quadratique O(n^2)
Polynomiale O(n^p)
Exponentielle O(a^n) \Leftrightarrow O(2^n)
Factorielle O(n!)
```

La complexité n'est exprimée qu'avec le terme englobant, le plus significatif.

Par exemple: $2n! + 4^2 + 3$

Plan

- Introduction
 - Définition
 - Notation
- Classe
- Calcul
 - Cas simples
 - Condition
 - Itération

- 4 Complexité
 - Meilleur des cas
 - Pire des cas
 - Cas moyen
- Exercices

Allocation

L'allocation correspond à la demande d'un espace mémoire dans la pile d'exécution.

Exemple d'allocation en C

int number;

Affectation

L'affectation correspond à l'accès d'une adresse mémoire et de l'écriture de cette valeur

Exemple d'affectation en C

number = 5;

Initialisation

L'initialisation correspond à une déclaration et à une affectation.

Exemple d'initialisation en C

```
int number = 5;
```

Cas simples -O(1)

Accès

L'accès à une variable nécessite un accès à la pile. L'accès à un tableau nécessite un calcul d'adresse.

Exemple d'accès en C

array [42];

$$address(array) + 42$$

Modification

La modification est une affectation. La modification d'une cellule d'un tableau nécessite au préalable un calcul d'adresse.

Exemple de modification en C

$$array[42] = 5;$$

$$address(array) + 42 \Leftrightarrow 42$$

Opérations

Chaque opération nécessite un traitement via le CPU. Les opérations sont plus ou moins rapide en fonction du nombre de portes logiques à opérer (généralement basé sur des portes NAND).

Exemple d'opération en C

```
4 + 2;
number * array[42];
```

Exemple de condition en C

```
if(a < b){
    // bloc d'instructions 1
} else if(a > b){
    // bloc d'instructions 2
} else {
    // bloc d'instructions 3
}
```

- $o(\bullet) = o(\min(o(bloc d'instructions 1), o(bloc d'instructions 2), o(bloc d'instructions 3))$
- $O(\bullet) = O(\max(O(\text{bloc d'instructions 1}), O(\text{bloc d'instructions 2}), O(\text{bloc d'instructions 3}))$
- $\theta(ullet) = heta(rac{1}{|A| imes|B|} \sum_{a \in A, b \in B} ext{nombres d'opérations avec } a, b)$

Itération (boucle)

Exemple de boucles

```
int i, j;
for (i=0; i<10; i++)
   i = 0;
    // bloc d'instruction 1
    while (j < 5)
        // bloc d'instruction 2
        j += 1;
```

 $\theta(10 \times (bloc d'instruction 1 + 5 \times bloc d'instruction 2))$

Plan

- Introduction
 - Définition
 - Notation
- Classe
- 3 Calcul
 - Cas simples
 - Condition
 - Itération

- 4 Complexité
 - Meilleur des cas
 - Pire des cas
 - Cas moyen
- Exercices

Complexité

$$array = [1, 2, 3, 4]$$

Meilleur des cas $(o(\bullet))$

Quel est le meilleur des cas?

Quel est sa complexité?

```
def insertionSort(array):
    sortedArray = [ None ] * len(array) # O(1)
    for (pos,element) in enumerate(array):
        sortedArray[position] = element # O(1)
        while(pos > 0 and element < sortedArray[position -1]):
            sortedArray[pos], sortedArray[pos-1] = sortedArray[
            pos - 1] , sortedArray[pos] # O(1)
            pos = pos - 1 # O(1)
        return sortedArray # O(1)</pre>
```

Meilleur des cas $(o(\bullet))$

La liste est déjà triée :

$$array = [1, 2, 3, 4]$$

```
def insertionSort(array):
    sortedArray = [ None ] * len(array) # O(1)
    for (pos,element) in enumerate(array):
        sortedArray[position] = element # O(1)
        while(pos > 0 and element < sortedArray[position -1]):
            sortedArray[pos],sortedArray[pos-1] = sortedArray[
        pos - 1] , sortedArray[pos] # O(1)
            pos = pos - 1 # O(1)
    return sortedArray # O(1)</pre>
```

Pas besoin de la seconde boucle . . .

Meilleur des cas $(o(\bullet))$

La liste est déjà triée :

$$array = [1, 2, 3, 4]$$

```
def insertionSort(array):
    sortedArray = [ None ] * len(array) # O(1)
    for (pos, element) in enumerate(array):
        sortedArray[position] = element # O(1)
    return sortedArray # O(1)
```

$$|array| = n \Rightarrow o(n)$$

Quel est le pire des cas?

Quel est sa complexité?

```
def insertionSort(array):
    sortedArray = [ None ] * len(array) # O(1)
    for (pos,element) in enumerate(array):
        sortedArray[position] = element # O(1)
        while(pos > 0 and element < sortedArray[position -1]):
            sortedArray[pos],sortedArray[pos-1] = sortedArray[pos - 1] , sortedArray[pos] # O(1)
            pos = pos - 1 # O(1)
    return sortedArray # O(1)</pre>
```

Pire des cas $(O(\bullet))$

La liste est déjà triée dans le sens inverse : array = [4, 3, 2, 1]

```
def insertionSort(array):
    sortedArray = [None] * len(array) # O(1)
    for (pos, element) in enumerate(array):
        sortedArray[position] = element # O(1)
        while (pos > 0 and element < sorted Array [position -1]):
            sortedArray[pos], sortedArray[pos-1] = sortedArray[
   pos - 1, sortedArray[pos] # O(1)
            pos = pos - 1 \# O(1)
    return sortedArray \# O(1)
```

La seconde boucle est utilisée à chaque fois.

Pour chaque élément i que l'on va insérer parmi les n éléments, il faudra effectuer n-i échange dans la seconde boucle :

$$O(0+1+2+3...) = O\left(\frac{n(n-1)}{2}\right)$$

Le terme englobant est n^2 car $\frac{n(n-1)}{2} = \frac{1}{2}(n^2 - n)$

Cas moyen $(\Theta(\bullet))$

Qu'en est-il de la complexité du cas moyen?

```
def insertionSort(array):
    sortedArray = [ None ] * len(array) # O(1)
    for (pos,element) in enumerate(array):
        sortedArray[position] = element # O(1)
        while(pos > 0 and element < sortedArray[position -1]):
            sortedArray[pos], sortedArray[pos-1] = sortedArray[
        pos - 1] , sortedArray[pos] # O(1)
            pos = pos - 1 # O(1)
        return sortedArray # O(1)</pre>
```

Cas moyen $(\Theta(\bullet))$

Moyenne des complexités sur toutes les combinaisons possibles de la liste $\left[4,3,2,1\right]$

⇔ liste à moité triée, à moitié non-trié

 \Leftrightarrow Comme le pire des cas divisé par deux (à moitié triée) $\Rightarrow O\left(\frac{1}{2}\frac{n(n-1)}{2}\right) \Rightarrow O(n^2)$

Plan

- Introduction
 - Définition
 - Notation
- Classe
- Calcul
 - Cas simples
 - Condition
 - Itération

- 4 Complexité
 - Meilleur des cas
 - Pire des cas
 - Cas moyen
- Exercices

Exercices – Tri en bulles

```
def bubbleSort(array):
    for repeat in range(len(array) - 1):
        for pos in range(1, len(array)):
            if (array[pos] < array[pos - 1]):
                 array[pos], array[pos - 1] = array[pos - 1],
            array[pos]
    return array</pre>
```

Exercices – Tri rapide

```
def partition(array, left, right):
             = arrav[right]
       pivot
      sortedPos = left
      for j in range(left, right):
           if(array[i] <= pivot):</pre>
                array[sortedPos], array[j] = array[j], array[
6
      sorted Pos 1
               sortedPos += 1
      array [sortedPos], array [right] = array [right], array [
      sorted Pos 1
      return sortedPos
10
  def quickSort(array,left=0,right=None):
      if (right is None): right = len(array)-1
      if(left < right):</pre>
           pivotPos = partition(array, left, right)
14
           quickSort(array, left, pivotPos -1)
           quickSort (array, pivotPos+1, right)
16
      return arrav
```

Exercices – Tri par fusion

```
def mergeSort(array):
      n = len(array)
      if (n <= 1): return array
      division = n >> 1
      part1 = mergeSort(array[: division])
      part2 = mergeSort(array[division:])
      posPart1, posPart2 = len(part1) - 1, len(part2) - 1
      while (posPart1 \geq= 0 and posPart2 \geq= 0):
          n -= 1
9
           if (part1[posPart1] > part2[posPart2]):
               array[n] = part1[posPart1]
               posPart1 = 1
           else ·
               array[n] = part2[posPart2]
               posPart2 = 1
      while (posPart1 >= 0):
           array[n] = part1[posPart1]
           posPart1 -= 1
19
      while (posPart2 >= 0):
           array[n] = part2[posPart2]
           posPart2 = 1
      return arrav
```

Exercices – Tri par tas

```
def heapify(array, subTree, size):
       left = (subTree << 1) + 1
       right = left + 1
       minNode = subTree
       if(left < size and array[left] < array[minNode]): minNode = left</pre>
       if(right < size and array[right] < array[minNode]): minNode = right</pre>
6
       if (minNode != subTree):
           array [subTree], array [minNode] = array [minNode], array [subTree]
8
           heapify (array, minNode, size)
           if(not subTree == 0):
                parent = subTree >> 1
                if (subTree \% 2 == 0): parent -= 1
                heapify (array, parent, size)
14
  def heapSort(array):
       for i in range (len (array) >> 1, -1, -1):
16
           heapify(array, i, len(array))
       size = len(array)
18
       while (size > 1):
           size = 1
           array [0], array [size] = array [size], array [0]
           heapify (array .0. size)
       return array
```

Solutions

Algorithme de tri	o(•)	$\theta(ullet)$	<i>O</i> (•)
en bulles	o(n ²)	$\theta(n^2)$	$O(n^2)$
par insertion	o(n)	$\theta(n^2)$	$O(n^2)$
par rapide	$o(n\log(n))$	$\theta(n\log(n))$	$O(n^2)$
par fusion	$o(n\log(n))$	$\theta(n\log(n))$	$O(n\log(n))$
par tas	$o(n\log(n))$	$\theta(n\log(n))$	$O(n\log(n))$