Scientific Report on Modeling Tumor Growth in the Patient

Cedric Gerdes, John Kunkee, John Williams February 12th, 2021

Problem and Data

On February 1st, the patient was found by MRI to have a malignant tumor of volume 650 cubic millimeters in the suprasellar cavity of the brain. Another MRI was performed a week later on February 8th which measured the tumor's volume to have grown to 810 cubic millimeters. The goal of this report is to give and explain a mathematical model for the tumor's growth which is both simple and accurate enough to advise the specialists at AOS, Inc. on the treatment of the patient.

Model

A Gompertz curve is the generally excepted mathematical model for the growth of tumors large enough to detect and typically subject to some constraint.[1] The constraint in this scenario is the volume of the suprasellar cavity, which is 3,200 cubic millimeters. We therefore apply it here as

$$\frac{dV(t)}{dt} = rV(t)\ln(\frac{k}{V(t)})\tag{1}$$

where V(t) is the volume of the tumor in cubic millimeters as a function of time, r and k are constants, and t is time, which is measured in days with t=0 referring to February 1st. By analysis shown later, we find

$$V(t) = e^{-\frac{A}{e^{rt}}} \tag{2}$$

where A is some constant. Then, from the measurements on February 1st and 8th respectively,

$$V(0) = 650 \text{mm}^3 \tag{3}$$

$$V(7) = 810 \text{mm}^3 \tag{4}$$

Analyses

Returning to equation (1), separating variables, and using properties of logs, we have

$$\frac{dV(t)}{V(t)(\ln(k) - \ln(V(t)))} = r dt \tag{5}$$

We integrate both sides, using a u-substitution on the left with $u=\ln(V(t))$, $du=\frac{dV(t)}{V(t)}$, to find

$$-\ln(\ln(\frac{k}{V(t)})) = rt + C \tag{6}$$

Simplifying this we find equation (2)

$$V(t) = e^{-\frac{A}{e^{rt}}}$$

where $A=e^C$ which is some constant. Now to find the constant k we return to the original equation and observe that since the volume of the tumor is constrained to 3200 cubic millimeters, then the change in volume when V(t)=3200 is 0. We also know that r must be nonzero, otherwise the tumor wouldn't have grown by this model, so k must equal 3200 so that $\ln(\frac{k}{V(t)})=0$ when V(t)=3200. Then, to find A, notice that V(0)=650 so

$$V(0) = 650 = \frac{3200}{e^{\frac{A}{e^0}}}$$

$$A = \ln(\frac{3200}{650}) \approx 1.5939$$

Then, to find r, notice that V(7) = 810 so

$$V(7) = 810 = \frac{3200}{e^{\frac{1.5939}{e^{7r}}}}$$

$$\frac{1.5939}{e^{7r}} = \ln(\frac{3200}{810})$$

$$r = \frac{\ln(\frac{1.5939}{\ln(\frac{3200}{810})})}{7} \approx 0.02122$$

Summary

Bibliography

[1] Fornalski, K. W., Reszczyńska, J., Dobrzyński, L., Wysocki, P., & Janiak, M. K. (2020). Possible Source of the Gompertz Law of Proliferating Cancer Cells: Mechanistic Modeling of Tumor Growth. Acta Physica Polonica A, 138(6), 854–862. https://doi.org/10.12693/aphyspola.138.854