# **Object Detection API on Tensorflow for Demo**

## **Main Repositories**

DockerHub: <a href="https://hub.docker.com/u/qhub">https://github.com/qpjkw/tfod ces2019.git</a> Tensorflow Object Detection API: <a href="https://github.com/tensorflow/models/tree/master/research/object\_detection">https://github.com/tensorflow/models/tree/master/research/object\_detection</a>

## **Build container images**

Make sure you have already imported the customized docker image into container station. You can pull images from Dockerhub repository. In this tutorial, we recommend GPU-based docker image.

### **CUDA 9:**

```
docker pull qhub/tfod-ces2019:1.0-gpu
```

## **CUDA 10:**

Download dockerfile and put to NAS Public folder: DockerFile-CUDA10

```
cd /share/Public
docker build --rm --tag=qhub/tfod-ces2019:1.13-gpu --file=Dockerfile-GPU .
```

# Starting a container

### Use command

And then instantiate a container via the below command.

### CUDA 9:

```
docker run --rm -it --name ces2019gpu --ipc=host -p 28888:8888 -p 26006:6006 --device /dev/nvidia0:/dev/nvidia0 --device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm -v /share/CACHEDEV1_DATA/.qpkg/NVIDIA_GPU_DRV/usr/:/usr/local/nvidia qhub/tfod-ces2019:1.0-gpu
```

### **CUDA 10:**

```
docker run --rm -it --name ces2019gpu --ipc=host -p 28888:8888 -p 26006:6006 --device /dev/nvidia0:/dev/nvidia0 --device /dev/nvidiactl:/dev/nvidiactl --device /dev/nvidia-uvm:/dev/nvidia-uvm -v /share/CACHEDEV1_DATA/.qpkg/NVIDIA_GPU_DRV/usr/:/usr/local/nvidia qhub/tfod-ces2019:1.13-gpu
```

## Use web GUI

## CUDA 9:

1. Search docker image from docker hub



2. Choice docker image tag (version)



3. Change page to Advanced Settings



4. Setting port forwarding



### 5. Mount GPU card



#### 6. Created container



**CUDA 10:** 

1. Change to **images** page and create qhub/tfod-ces2019:1.13-gpu container



2. Change page to Advanced Settings



3. Setting port forwarding



4. Mount GPU card



#### 5. Created container



You now can surf the web link to use jupyter notebook (online IDE). http://<IP>:28888/?token="(fetch from terminal)"



## **Training**

The /object\_detection/data folder contains the training dataset (train.tfrecords) and the validation dataset (val.tfrecords) after preprocessing (classification mark and encoding into TFRecord format).

Script reference : <a href="https://github.com/qpjkw/tfod">https://github.com/qpjkw/tfod</a> ces2019/blob/master/object detection/start object detection n.sh

Executing start\_object\_detection.sh will first:

- 1. Generate training config (set\_training\_configuration.py) for Dataset pre-processing
- 2. Execute Tensorboard to view the training status (start\_tensorboard.sh)
- 3. Start retraining. (model\_main.py)
- 4. Generate new model + labelfile

Execute the bash script to start a training. You can open a terminal by clicking the buttons [new > terminal]. After you open a terminal, copy the below command and paste on it to start a retraining task.



You now can surf the web link to monitor training progresses via Tensorboard.

### http://<IP>:26006"



After the training, you can find the model (.pb) on /notebooks/object\_detection/model.

If you stop the training unexpectedly, you can type the above starting training command to continue the training.

# Inference

Back to jupyter notebook editor, you can edit the notebook object\_detection\_demo.ipynb to demo the object detection on images (the below image is the example).

