Lec. 14 (11/68/2022) Duality (Ch. 5) Any (possibly nonconvex) optimization problem: $p^* := \min_{\underline{x} \in \mathbb{R}^n} f_o(\underline{x})$ s.t. $f_i(\underline{x}) \leq 0$, $i=1,\ldots,m$ h(x) = 0, j = 1, ..., pWe say this problem is the "primal problem" (original)

Construct Lagrangian
$$\square$$
 where: $\underline{\times} \in \mathbb{R}^n$
 $\underline{\wedge} \in \mathbb{R}^m$
 $\underline{\wedge} \in \mathbb{R}^$

Lagrange multipliers

$$f_0(\underline{x}) + \langle \underline{\lambda}, f(\underline{x}) \rangle + \langle \underline{v}, \underline{h}(\underline{x}) \rangle$$

$$f(\underline{x}) = \begin{pmatrix} f_1(\underline{x}) \\ \vdots \\ f_m(\underline{x}) \end{pmatrix}, \quad \underline{h}(\underline{x}) = \begin{pmatrix} h_1(\underline{x}) \\ \vdots \\ h_k(\underline{x}) \end{pmatrix}$$

Lagrange dual (function): $g: \mathbb{R}^m \times \mathbb{R}^p \longrightarrow \mathbb{R}$ defined as the unconstrained minimum

of Lover $x \in \mathbb{R}^n$

Why CONCAUE Function: because g, by def ... is pointwise inj of affine. (Lec. 9, p.11) Notice that even when the primal problem is nonconvex, still $g(\lambda, 2)$ is concave in $(\Delta, 2)$.

Relation between g(J, 2) and p^* Statement: $4 \leq R^m$ and $4 \geq R^p$ we have: $3(\lambda, 2) \leq p^*$ Lower bound on the answer of the primal problem Let $\widetilde{\chi}$ be a fearible point for the primal problem and $\underline{\lambda} \in \mathbb{R}_{>0}^m$. uext pg.

Tun: (\widetilde{z}) + (\widetilde{z}) fo (~) to both Adding sides $(\widetilde{\varkappa}, \lambda, v) \leq$ $\left[\left(\frac{x}{\lambda}, \lambda, \frac{y}{\lambda}\right) \leq \right]$ [[笔]人 $\frac{2}{2}$ =: g(1,2)

Since
$$g(\lambda, 2) \leq f_0(2) + \chi$$
 fearible

Hunefore, $g(\lambda, 2) \leq p^*$ (Provedi)

If $g(\lambda, 2) = -\omega$, then $-\omega \leq p^*$.

Example: $\chi \in \mathbb{R}^n$ where $A \in \mathbb{R}^p \times n$
 $\chi \in \mathbb{R}^n$ $\chi \in \mathbb{R}^n$

Lagrangian
$$L(\underline{x},\underline{v}) = \underline{x}^{T}\underline{x} + \langle \underline{v}, \underline{A}\underline{x} - \underline{b} \rangle$$

$$= \underline{x}^{T}\underline{x} + \underline{v}^{T}(\underline{A}\underline{x} - \underline{b})$$

dom(L) =
$$\mathbb{R}^n \times \mathbb{R}^p$$

 $g(y) = inf L(x, y)$
 $x \in \mathbb{R}^n$ Convex quadratic f^x in x
unconstrained minimization

"Set the derivative of L w. $v.t. \propto = 0$ " and solve for minimizer x^{opt} .

$$\nabla_{\underline{x}} \left[(\underline{x}, \underline{v}) \right] = 2\underline{x}^{ort} + A^{T}\underline{v} = 0$$

$$\underline{x} = \underline{x}^{ort}$$

$$\Rightarrow \times^{\circ Pt} = - \frac{1}{2} A^{\top} \frac{1}{2}$$

$$g(\mathcal{V}) = L\left(X = -\frac{1}{2}A^{T}\mathcal{V}, \frac{\mathcal{V}}{2}\right)$$

$$= -\frac{1}{4}\mathcal{V}^{T}(AA^{T})\mathcal{V} - b^{T}\mathcal{V}$$
indeed concave quadratic

over \mathbb{R}^{p}

$$Our lower bound, for this problem, become:
$$-\frac{1}{4}\mathcal{V}^{T}(AA^{T})\mathcal{V} - b^{T}\mathcal{V} \leq p^{*} + \mathcal{V} \in \mathbb{R}^{p}$$

$$\leq nd \text{ of example.}$$$$

.. Substitute bach:

 $g(\lambda, 2) \leq p^* + \lambda \in \mathbb{R}^m$ Y JERP lightest (ower sound. sup $g(\lambda, 2) \leq p^*$ $\lambda \in \mathbb{R}^m$ 2 C RP Call this scalar/amwer &* Convex optimization problem ! called the Lagrange dual problem problem is

So far, de know:

... We always have the inequality: d* < P* Optional value of the Lagrange dud Optional value of the primal (possibly (convex) problem nonconvex) problem Weak duality Theorem: (Primal may be nonconvex) Always, J* <p* Always, $d^* \leq p^*$ Duality gap = $p^* - d^* - \omega d^*$ $+\omega$ We say "strong duality" holds when $d^* = p^*$ Sufficient conditions for strong duality:

(If primal problem is convex + (---.)

Then strong duality holds. Constraint qualification

One "constraint qualification" condition is called the "Slatter's condition": Primal problem: min fo(x)
x \in \mathbb{R}^h f; (≥) ≤ 0 \fi=1,..,m h; (x) =0 \fill j=1,...) Bx E relative interior (dom) Slater's 8.t. f. (x) <0 \ti=1, \ldots, m

(provided f: \are nonlinear) Condition

strict fealibility

(If) " convex primal" + " Slatter's Condition" $\int_{-\infty}^{\infty} dx = p^{*}$. o If $f_i(x)$ are linear in x, then S(ater's) condition \Longrightarrow primal feasibility

Corollary: LPs & QPs have strong duality.

Notice that even when the primal problem is convex, the dual problem is a different convex problem with different dimension