

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

Assignment

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati

	Dataflow Problem X
Domain	?
Direction	?
	?
	?
Transfer function	?
Meet Operation (△)	?
Boundary Condition	?
Initial interior points	?

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema

	Iterazione 1		Iterazione 2		Iterazione 3	
	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	<>	<>				
BB2						
BB3						

1) Very Busy Expressions very busy in questo punto?

Quali espressioni sono

- Un'espressione è very busy in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- Un'espressione *a+b* è **very busy** in un punto p se a+b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi
 - Ci interessa l'insieme di espressioni disponibili (available) all'inizio del blocco B
 - L'insieme dipende dai percorsi che cominciano al punto p prima di B

2) Dominator Analysis

- In un CFG diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y
- Annotiamo ogni basic block Bi con un insieme DOM[Bi]
 - Bi ∈ DOM[Bj] se e solo se Bi domina Bj
- Per definizione un nodo domina sé stesso
 - Bi ∈ DOM[Bi]

$$DOM[F] = \{A, C, F\}$$

3) Constant Propagation

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo n del CFG è un insieme di coppie del tipo <variabile, valore costante>.
- Se abbiamo la coppia <x, c> al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

3) Constant Propagation

 NOTA: L'analisi di CP riesce a determinare il valore costante di espressioni binarie in cui uno o entrambi gli operandi siano delle variabili il cui valore costante sia noto:

•
$$x = 12$$

•
$$y = x - 2 \rightarrow y = 10$$

•
$$z = w + x \rightarrow z = 17$$

 Tenere conto di questo aspetto nel determinare le equazioni

