LISTA 2. INDUÇÃO MATEMÁTICA

Exercício 1. Prove que para todo $m \in \mathbb{N}$,

$$m + 0 = 0 + m$$
.

Exercício 2. Prove que para todo $n, m \in \mathbb{N}$,

$$n + s(m) = s(n) + m.$$

Exercício 3. Prove que para todo $n, m \in \mathbb{N}$,

$$n+m=m+n$$
.

Dica: Fixe $m \in \mathbb{N}$ e prove a afirmação por indução em n. Use os dois exercícios anteriores. Não é obrigatório usar esta dica, desde que você forneça uma solução correta para este exercício.

Exercício 4. Prove que se $m \cdot n = 0$ então m = 0 ou n = 0.

Dica: Fixe m e use indução em n.

Exercício 5. Prove que se $m \cdot p = n \cdot p$ e $p \neq 0$ então m = n.

Dica: Use a propriedade de ordenação total de \mathbb{N} $(m \leq n \text{ ou } n \leq m)$ e o exercício anterior.

Exercício 6. Use indução para provar que

$$1+3+5+\cdots+(2n+1)=(n+1)^2$$

Exercício 7. Defina por indução 2^n e n! e prove que

- (i) $n! > 2^n$ para todo $n \ge 4$,
- (ii) $2^n \ge n^2$ para todo $n \ge 4$.

Exercício 8. Prove que, para todo $n, m \in \mathbb{N}$ com $n \geq m$, existem $q, r \in \mathbb{N}$ com r < m tais que $n = m \cdot q + r$.