

Лекция 3

Аффинные отображения

Содержание лекции:

В этой лекции мы рассмотрим свойства отображений аффинных пространсв, которые сохраняют аффинную структуру. Эти отображения называются аффинными. Их структура весьма проста, но в приложениях играет исключительно важную роль. Мы приближемся к аффинной геометрии.

Ключевые слова:

Аффиное отбражение, дифференциал, биективность аффинного отображения, изоморфизм аффинных пространств, аффинная зависимость, аффинно-линейная функция, многообразие уровня.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

3.1 Основные определения

Пусть $\mathbb{A}_{\mathbb{k}} = (\mathbb{S}_A, \mathbb{V}_A, +), \ \mathbb{B}_{\mathbb{k}} = (\mathbb{S}_B, \mathbb{V}_B, +)$ - аффинные пространства.

Аффинным отображением пространства $\mathbb{A}_{\mathbb{k}}$ в пространство $\mathbb{B}_{\mathbb{k}}$ называется всякое отображение, обладающее свойством

$$\sigma(P + \vec{u}) = \sigma(P) + \varphi(\vec{u}), \quad P \in \mathbb{A}_{\mathbb{k}}, \quad \vec{u} \in \mathbb{V}_A(\mathbb{k}),$$

где $\varphi \in \mathrm{Hom}_{\Bbbk}(\mathbb{V}_A, \mathbb{V}_B)$ - линейное отображение.

Лемма 3.1. Отображение φ однозначно определяется по σ :

$$\varphi\left(\overrightarrow{PQ}\right) = \overrightarrow{\sigma(P)\sigma(Q)}$$

Действительно, пусть $Q \in \mathcal{A}$, тогда

$$\sigma(Q) = \sigma\left(P + \overrightarrow{PQ}\right) = \sigma(P) + \varphi\left(\overrightarrow{PQ}\right).$$

 \parallel Отображение φ называется **дифференциалом** отображения σ и обозначается $d\sigma$.

Пример 3.1. Примеры аффинных преобразований:

1. параллельный перенос $\varphi = t_{\vec{w}}$:

$$t_{\vec{w}}(P+\vec{v}) = (P+\vec{w}) + \vec{v}$$

2. преобразование поворота $\varphi = r_{\theta}$:

$$r_{\theta}(P + \vec{v}) = P + R_{\theta}(\vec{v}).$$

 $Nota\ bene$ Векторизация пространств $\mathbb{A}_{\mathbb{k}}$ и $\mathbb{B}_{\mathbb{k}}$ относительно точек O и O' соответственно дает:

$$\sigma(\vec{r}) = d\sigma(\vec{r}) + \vec{b}, \quad \vec{b} = \overrightarrow{O'\sigma(O)} \in \mathbb{V}_B(\mathbb{k}),$$

где $\overrightarrow{r} = \overrightarrow{OP}$ - радиус вектор точки $P \in \mathbb{A}_{\Bbbk}$.

Действительно, прямой проверкой можно убедиться, что

$$\sigma(P) = \sigma(O + \overrightarrow{OP}) = \sigma(O) + d\sigma(\overrightarrow{OP}),$$

$$\sigma(\overrightarrow{OP}) \triangleq \overrightarrow{O'\sigma(P)} = \overrightarrow{O'\sigma(O)} + d\sigma(\overrightarrow{OP}) \quad \Rightarrow \quad \sigma(\overrightarrow{r}) = d\sigma(\overrightarrow{r}) + \overrightarrow{b}.$$

Лемма 3.2. Пусть $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ - аффинное отображение, тогда

$$\sigma\left(\sum_{i=0}^{m} \alpha^{i} P_{i}\right) = \sum_{i=0}^{m} \alpha^{i} \sigma(P_{i}),$$

для любой барицентрической линейной комбинации системы точек $\{P_i\}_{i=0}^m$.

Векторизация пространства А_к дает следующую цепочку равенств:

$$\sigma\left(\sum_{i=0}^{m}\alpha^{i}\overrightarrow{OP_{i}}\right) = \sigma\left(\sum_{i=0}^{m}\alpha^{i}\overrightarrow{OP_{i}}\right) + \overrightarrow{b} = \sum_{i=0}^{m}\alpha^{i}(d\sigma(\overrightarrow{OP_{i}}) + b) = \sum_{i=0}^{m}\alpha^{i}\sigma(\overrightarrow{OP_{i}}).$$

3.2 Изоморфизм аффинных пространств

Лемма 3.3. Аффинное отображение $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ биективно тогда и только тогда, когда его дифференциал биективен.

Выберем начала отсчета O и O' в $\mathbb{A}_{\mathbb{k}}$ и $\mathbb{B}_{\mathbb{k}}$ так, чтобы $\sigma(O)=O'$. Тогда отображение σ в векторизованной форме будет совпадать со своим дифференциалом $d\sigma$, откуда следует доказательство утверждения.

Лемма 3.4. Пусть $\varphi: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ - биективное аффинное отображение. Тогда σ^{-1} является также аффинным отображением, причем $d(\sigma^{-1}) = (d\sigma)^{-1}$.

Пусть отображение $\sigma:\mathbb{A}_{\Bbbk}\to\mathbb{B}_{\Bbbk}$ задается парой $(d\sigma,\vec{b})$ в том смысле, что

$$\sigma(\vec{r}) = d\sigma(\vec{r}) + \vec{b}.$$

Пусть отображение $\chi: \mathbb{B}_{\mathbb{k}} \to \mathbb{A}_{\mathbb{k}}$ также задается парой $(d\chi, \vec{c})$, тогда

$$\chi \circ \sigma \leftrightarrow (d\chi, \vec{c}) \circ (d\sigma, \vec{b}) = (d\chi \circ d\sigma, d\chi(\vec{b}) + \vec{c}),$$

Откуда сразу получаем:

$$\sigma^{-1} \leftrightarrow (d\sigma^{-1}, -d\sigma^{-1}(\vec{b})),$$

иными словами

$$\sigma^{-1}(\vec{r}) = d\sigma^{-1}(\vec{r}) - d\sigma^{-1}(\vec{b}).$$

Изоморфизмом аффинных пространств называется биективное аффинное отображение.

АФФИННЫЕ ОТОБРАЖЕНИЯ

Лемма 3.5. Аффинные пространства изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

При аффинном отображении $\sigma: \mathbb{A}_{\mathbb{k}} \to \mathbb{B}_{\mathbb{k}}$ всякая плоскость $\mathbb{P}_k = P_0 + \mathbb{U}(\mathbb{k})$ пространства $\mathbb{A}_{\mathbb{k}}$ переходит в плоскость $\sigma(\mathbb{P}_{\mathbb{k}}) = \sigma(P_0) + d\sigma(\mathbb{U})$ пространства $\mathbb{B}_{\mathbb{k}}$. Если σ - биективно, то dim $\mathbb{P}_{\mathbb{k}} = \dim \sigma(\mathbb{P}_{\mathbb{k}})$.

Лемма 3.6. При изоморфизме $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ системы точек $\{P_i\}_{i=0}^m$ и $\{\sigma(P_i)\}_{i=0}^m$ аффинно зависимы или аффинно независимы одновременно.

Тривиально проверяется рассмотрением соответствующих наборов радиус-векторов.

3.3 Аффинно-линейные функции

Аффинно-линейной функцией на аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ называется отображение $f: \mathbb{A}_{\mathbb{k}} \to \mathbb{k}$, обладающее свойством:

$$f(P + \vec{v}) = f(P) + \alpha(\vec{v}), \quad P \in \mathbb{A}_{\mathbb{k}}, \quad \vec{v} \in \mathbb{V}(\mathbb{k}).$$

Nota bene В векторизованной форме с началом в точке $O \in \mathbb{A}_k$, аффинно-линейная функция f записывается в виде:

$$f(\vec{r}) = \alpha(\vec{r}) + b, \quad b \in \mathbb{k}, \quad b = f(O).$$

или в координатах:

$$f(\xi^1, \xi^2, \dots, \xi^n) = \sum_{i=1}^n a_i \xi^i + b.$$

Nota bene Многообразия уровня f(P) = c аффинно линейной функции представляют собой параллельные гиперплоскости с направляющим подпространством, задаваемым уравнением $df(\vec{v}) = 0$.

Лемма 3.7. Барицентрические координаты - это аффинно-линейные функции.

Пусть $\{\xi^i\}_{i=0}^n$ - барицентрические координаты относительно системы точек $\{P_i\}_{i=0}^n$. Возьмем точку P_0 за начало отсчета и векторизуем пространство \mathcal{A} . Тогда $\{\xi^i\}_{i=1}^n$ - будут координатами относительно базиса $\{\overline{P_0P_i}\}_{i=1}^n$. Следовательно, $\{\xi^i\}_{i=1}^n$ - аффиннолинейные функции. Так как $\xi^0=1-\sum_{i=1}^n\xi^i$, то ξ^0 - также аффинно-линейная функция. \blacktriangleleft