Adrian Pilarczyk

Algorytm sztucznej kolonii pszczół (ABC)

1. Wprowadzenie

Algorytm sztucznej kolonii pszczół (ABC) [1] jest oparty na inteligentnym zachowaniu pszczół miodnych. Został wprowadzony przez Karaboge w 2005 roku w celu optymalizacji problemów numerycznych. Celem algorytmu jest dążenie do najlepszych rozwiązań za pomocą mechanizmu wyszukiwania sąsiadów. Poszukuje się najlepszego rozwiązania ze wszystkich przy jednoczesnym eliminowaniu słabych wartościowo.

2. Założenia algorytmu

Algorytm ABC jest podzielony na cztery fazy [4] działania oraz pszczoły na trzy grupy gatunkowe: pracujące, obserwujące oraz zwiadowcze. Każde źródło pokarmu dla nich jest możliwym rozwiązaniem rozważanego problemu. Ilość jest równa liczebności pszczół pracujących i obserwujących [3]. Również wyróżniamy parametry początkowe:

- N liczbę źródeł pożywienia (populacja).
- M liczba prób nektaru aż do jego wyczerpania.
- C_{max} maksymalną liczbę cykli algorytmu.
- -i, k numer źródła pożywienia.
- j wymiar, w którym znajduje się rozwiązanie.

Algorytm wyznacza współrzędne pożywienia (x_i^j) , z wykorzystaniem następującej zależności:

$$x_i^j = x_{min}^j + rand[0, 1](x_{max}^j - x_{min}^j)$$

gdzie:

- x_i^j $(i \in \{1,...,N\})$ jest położeniem źródła pożywienia w j-wymiarowej przestrzeni.
- rand[0,1] jest funkcją generującą liczby przypadkowe w zakresie [0,1].

Również powtarzamy C_{max} liczbę cykli algorytmu lub do momentu jego zakończenia.

3. Rodzaje pszczół i ich zależności

3.1. Pszczoła pracująca

Grupa pszczół, która szuka pokarmu tam, gdzie zapamiętała, że jest go najwięcej. Oceniają przy tym w uproszczeniu odległość od ula (v_i^j) oraz jakość nektaru $(F(v_i^j))$ za pomocą zależności:

$$v_i^j = x_i^j + rand[-1, 1](x_i^j - x_k^j)$$

gdzie:

- $-v_i^j$ $(i \in \{1,...,N\})$ jest kolejnym położeniem źródła pożywienia w j-wymiarowej przestrzeni.
- -rand[-1,1] jest funkcją generującą liczby przypadkowe w zakresie [-1,1].
- $-k \in \{1, ..., N\}, k \neq i$

Jeśli nowe źródło okaże się efektywniejsze niż ostatnio zapamiętane $(F(v_i^j) > F(x_i^j))$, wtedy pszczoła zapamiętuje nowe miejsce, zapominając jednocześnie o poprzednim. W przeciwnym razie stare źródło zostaje zachowane. Gdy wszystkie pracujące pszczoły powrócą do ula, dzielą się informacjami z pszczołami obserwującymi za pomocą tańca.

3.2. Pszczoła obserwator

Po otrzymaniu informacji, preferencje wyboru źródła pożywienia zależą od ilości nektaru $F(x_i^j)$. Wybierają rozwiązanie najbardziej efektywne za pomocą wzoru:

$$p_{i} = \frac{F(x_{i}^{j})}{\sum_{i=1}^{N} F(x_{i}^{j})}$$

Jeśli ilość nektaru w nowym źródle pożywienia jest większa $(F(v_i^j) > F(x_i^j)$, to wówczas postępuje jak pszczoła pracująca. Zastępuje stare źródło nowym $(x_i^j = v_i^j)$. Gdy miejsce pożywienia jest w pełni wykorzystane, wszystkie związane z nim pszczoły opuszczają je i stają się zwiadowcami.

3.3. Pszczoła zwiadowca

Jeżeli źródło pożywienia jest wykorzystane po M próbach lub nie następuje poprawa jakości następnych rozwiązań $(F(v_i^j) < F(x_i^j))$, pszczoła zwiadowca zaczyna poszukiwać nowych współrzędnych. Wyznaczają to za pomocą zależności:

$$x_i^j = x_{min}^j + rand[0, 1](x_{max}^j - x_{min}^j)$$

gdzie:

- x_{min}^{j} dolna granica współrzędnych w j-wymiarze.
- x_{max}^{j} górna granica współrzędnych w j-wymiarze.

Po znalezieniu nowego źródła dodaje się je do puli rozwiązań. Owad, który je znalazł, staje się pszczołą pracującą [2].

4. Przebieg algorytmu

Poniżej znajdują się uproszczone kroki algorytmu [5]:

- 1. Zdefiniowanie parametrów poczatkowych algorytmu.
- 2. Losowanie współrzednych rozwiązań.
- 3. Pętla:
 - a) Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - b) Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - c) Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru
 - d) Usunięcie z pamięci współrzędnych, do których pszczoły nie będą wracać.
 - e) Wysłanie pszczół zwiadowczych w celu odkrycia nowych źródeł pożywienia.
 - f) Zapamiętanie najlepszego źródła pokarmu ze wszystkich rozwiązań możliwych.
- 4. Powtarzaj aż do ukończenia N.

5. Zastosowanie algorytmu [5]

Algorytm sztucznej kolonii pszczół często stosuję się do problemów optymalizacyjnych. Swoje powodzenie znajduje w bioinformatyce, problemach wysyłek ekonomicznych lub projektach inżynierskich.

6. Podsumowanie

Działanie algorytmu ABC nie jest skomplikowanym procesem. Opiera się na prostych krokach, w których możemy zmienić parametry początkowe. Szerokie zastosowanie nawet w złożonych funkcjach pozwala na zwalczenie problemów z optymalizacją. Jednak brak w nim wykorzystywania większej ilości informacji, która mogłaby rozwiąć rozwiązanie problemu.

Bibliografia

- [1] D. Karaboga, B. Akay A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation 214 (2009) p.108–132
- [2] M. Tomera Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, ISSN 2353-1290, Nr 46/2015
- [3] Ahmed Fouad Ali, Artificial Bee Colony algorithm, 2014, online:https://www.slideshare.net/afar1111/swarm-intelligance-4[08.03.2022]
- [4] D. Karaboga, Artificial bee colony algorithm, 2010, online:http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm?ref=https://githubhelp.com[05.03.2022]
- [5] Nayak V.R. Artificial Bee Colony Algorithm, Dnyanganga College Of Engineering and Research, Pune 41 [2014-15]