Theorem 4.2.1

Fix a modulus m. Let a, b, c, d be integers such that

$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$.

Then we have

$$a + b \equiv c + d \pmod{m}$$
 and $ab \equiv cd \pmod{m}$.

Theorem 4.2.1

Fix a modulus m. Let a, b, c, d be integers such that

$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$.

Then we have

$$a+b\equiv c+d\pmod{m}$$
 and $ab\equiv cd\pmod{m}$.

Proof. (Product) Suppose $a - c = k_1 m$ and $b - d = k_2 m$. Then

$$ab = (c + k_1 m)(d + k_2 m) = cd + (k_1 d + k_2 c + k_1 k_2 m)m.$$

Hence, $m \mid ab - cd$.

The previous theorem tells us that the congruence class of the sum/product is independent of the choice of representatives. We thus are able to define the *addition* and *multiplication* of congruence classes.

Definition 4.2.2

The sum of two congruence classes $[a]_m$ and $[b]_m$ is $[a+b]_m$. The product of two congruence classes $[a]_m$ and $[b]_m$ is $[ab]_m$.

Definition 4.2.2

The sum of two congruence classes $[a]_m$ and $[b]_m$ is $[a+b]_m$. The product of two congruence classes $[a]_m$ and $[b]_m$ is $[ab]_m$.

Example 4.2.3

$$[1234567]_{10} \cdot [20230208]_{10} =$$

$$[7]_{0} \cdot [8]_{0} = [56]_{0} = [6]_{0}$$

Definition 4.2.4

The residue set \mathbb{Z}/m together with the addition and multiplication of congruence classes and the neutral elements $\mathbf{0} := [0]_m$ and $\mathbf{1} := [1]_m$ of them respectively, is called the residue ring modulo m.

We have a residue map:

$$\pi_m \colon \mathbb{Z} \longrightarrow \mathbb{Z}/m \colon a \mapsto [a]_m$$

respecting their structures.

We can translate problems on \mathbb{Z} through π_m . Note that this map is not bijective, hence solving problems on \mathbb{Z}/m doesn't mean solving problems on \mathbb{Z} . However, since any solution in \mathbb{Z} will *descend* to a solution in \mathbb{Z}/m , it is convenient to use modular arithmetic to disprove problems on \mathbb{Z} .

$$a^2 + b^2 = 3c^2 \quad mod 9$$

We can translate problems on \mathbb{Z} through π_m . Note that this map is not bijective, hence solving problems on \mathbb{Z}/m doesn't mean solving problems on \mathbb{Z} . However, since any solution in \mathbb{Z} will *descend* to a solution in \mathbb{Z}/m , it is convenient to use modular arithmetic to disprove problems on \mathbb{Z} .

Example 4.2.5

If $X^2 + Y^2 = 3Z^2$ has any integer solution, then it descends to a solution in $\mathbb{Z}/4$. But we can verify that there is no such a solution in $\mathbb{Z}/4$.

Definition 4.2.6

Fix a modulus m. A congruence class α is a unit in \mathbb{Z}/m if there is a congruence class β such that $\alpha\beta=1$. The class β is called the multiplicative inverse of α . Suppose a and b are representatives of α and β respectively. Then we say a is (multiplicative) invertible modulo m and b is a multiplicative inverse of a modulo m.

Definition 4.2.6

Fix a modulus m. A congruence class α is a unit in \mathbb{Z}/m if there is a congruence class β such that $\alpha\beta=1$. The class β is called the multiplicative inverse of α . Suppose a and b are representatives of α and β respectively. Then we say a is (multiplicative) invertible modulo m and b is a multiplicative inverse of a modulo m.

Example 4.2.7

 $2 \cdot 3 \equiv 2 \cdot 8 \equiv 1 \pmod{5}$. Hence, 2 is (multiplicative) invertible modulo 5, and 3 and 8 are two multiplicative inverse of 2 modulo 5.

Theorem 4.2.8

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

Theorem 4.2.8

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

Proof. a is invertible modulo m

 \iff there is $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{m}$

Theorem 4.2.8

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

Proof. *a* is invertible modulo *m*

 \iff there is $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{m}$

 \iff there is $b \in \mathbb{Z}$ such that $m \mid ab - 1$

Theorem 4.2.8

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

Proof. *a* is invertible modulo *m*

- \iff there is $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{m}$
- \iff there is $b \in \mathbb{Z}$ such that $m \mid ab 1$ $\implies ab 1 = -m R$
- the Diophantine equation aX + mY = 1 has integer solutions. ab+mk=1

Theorem 4.2.8

Fix a modulus m. An integer a is invertible modulo m if and only if a is coprime to m.

Proof. a is invertible modulo m

- \iff there is $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{m}$
- \iff there is $b \in \mathbb{Z}$ such that $m \mid ab 1$
- \iff the Diophantine equation aX + mY = 1 has integer solutions.

The last is equivalent to gcd(a, m) = 1 by the Bézout's identity. \Box

Question (Linear congruent equation)

Find integer $x \in \mathbb{Z}$ such that

$$ax \equiv b \pmod{m}$$
.

Equivalently, find congruence class $X \in \mathbb{Z}/m$ such that

$$[a]_m \cdot X = [b]_m. \qquad \mathbf{X} = [a] \cdot [b]$$

Question (Linear congruent equation)

Find integer $x \in \mathbb{Z}$ such that

$$ax \equiv b \pmod{m}$$
.

Equivalently, find congruence class $X \in \mathbb{Z}/m$ such that

$$[a]_m \cdot X = [b]_m.$$

Theorem 4.2.9 (Cancelling)

If a is invertible modulo m, then

$$a \cdot x \equiv a \cdot y \pmod{m} \Longrightarrow x \equiv y \pmod{m}$$
.

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

$$37 = 2 \cdot 15 + 7$$

$$15 = 2 \cdot 7 + 1$$

$$7 = 7 \cdot 1 + 0$$

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

$$37 = 2 \cdot 15 + 7$$
 $15 = 2 \cdot 7 + 1$

$$7 = 7 \cdot 1 + 0$$

$$1 = 15 - 2 \cdot 7$$

$$= 15 - 2 \cdot (37 - 2 \cdot 15)$$

$$= 5 \cdot 15 - 2 \cdot 37.$$

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

1. Verify if 15 is coprime to 37.

$$37 = 2 \cdot 15 + 7$$
 $1 = 15 - 2 \cdot 7$
 $15 = 2 \cdot 7 + 1$
 $1 = 15 - 2 \cdot (37 - 2 \cdot 15)$
 $15 = 7 \cdot 1 + 0$
 $15 = 2 \cdot 7 + 1$
 $15 = 2 \cdot 7 + 1$

2. Find a multiplicative inverse of 15 modulo 37.

Example 4.2.10

Solve: $15 \cdot x \equiv 4 \pmod{37}$.

$$37 = 2 \cdot 15 + 7$$
 $1 = 15 - 2 \cdot 7$
 $15 = 2 \cdot 7 + 1$ $= 15 - 2 \cdot (37 - 2 \cdot 15)$
 $7 = 7 \cdot 1 + 0$ $= 5 \cdot 15 - 2 \cdot 37$.

- 2. Find a multiplicative inverse of 15 modulo 37.
- 3. Cancelling:

$$15 \cdot x \equiv 4 \pmod{37} \Longrightarrow x \equiv 5 \cdot 4 \equiv 20 \pmod{37}.$$

$$x \equiv \text{``[5"]}^{-1} \cdot 4$$