Relazione progetto SIS

5/02/2022

Indice

$\operatorname{Circuito} \mathrm{FSM} + \mathrm{D}$	3
Traccia	3
Interfaccia del circuito	3
Architettura generale	4
Segnali interni	5
Macchina a stati finiti (FSM)	5
Transizioni	5
Grafo delle transizioni (STG)	6
Unità di elaborazione (Data path)	7
Conteggio dei cicli	7
Modifica del pH	8
Verifica della neutralità	8
Verifica degli errori	9
Unità completa	9
Simulazioni di esempio	11

Circuito FSM + D

Abbiamo sviluppato un circuito che controlla un meccanismo chimico, il cui scopo è portare una soluzione con un pH iniziale noto ad un valore di neutralità.

Traccia

Il valore del pH viene espresso in valori compresi tra 0,00 e 14,0: nell'intervallo [0,00, 7,00) si trovano i valori acidi, mentre in quello (8,00, 14,0] si trovano i valori basici, infine i valori inclusi in [7,00, 8,00] sono considerati neutrali. Tutti gli altri valori non sono accettabili e comportano un errore.

Il sistema è quindi dotato di due valvole: la prima può decrementare il valore del pH di 0.25 in un singolo ciclo di clock, mentre la seconda lo può incrementare di 0.50 nello stesso periodo di tempo.

Figura 1: Illustrazione del circuito

Interfaccia del circuito

Il circuito accetta i seguenti segnali di ingresso:

Ingresso	Descrizione	
RST	Ordina al circuito di tornare allo stato iniziale. Prevale su qualsiasi	
	altro ingresso.	
START	Ordina al circuito di leggere il valore presente nell'ingresso PH[8].	
PH_INIZIALE[8]	Rappresentazione del valore iniziale assunto dal pH della soluzione.	

L'ingresso PH_INIZIALE[8] è un byte codificato in virgola fissa con 4 bit dedicati alla

parte intera.

Il circuito produce i seguenti segnali di uscita:

Uscita	Descrizione
FINE_OPER.	Indica che il sistema ha completato le operazioni. Ovvero il pH è neutro.
ERRORE_SENSORE	Indica che il sistema ha ricevuto in ingresso un valore di pH non accettabile.
VALVOLA_ACIDO	Richiede l'apertura della valvola che decrementa il valore del pH.
VALVOLA_BASICO	Richiede l'apertura della valvola che incrementa il valore del pH.
PH_FINALE[8]	Rappresentazione del valore finale assunto dal pH della soluzione.
NCLK[8]	Rappresentazione del numero di cicli utilizzati per completare le operazioni.

L'uscita PH_FINALE[8] è un byte codificato esattamente come l'ingresso PH_INIZIALE[8], mentre il byte NCLK[8] viene codificato in **modulo**.

Architettura generale

Il sistema implementa il modello FSMD, cioè collega una $macchina\ a\ stati\ finiti\ (detta\ FSM)$ con un'unità $di\ elaborazione\ (chiamata\ Data\ path).$

Il compito della macchina a stati è quello di contestualizzare i calcoli eseguiti dall'unità di elaborazione, viceversa quest'ultima ha il ruolo di aiutare la macchina a determinare in che stato transitare.

Figura 2: Diagramma del circuito

Segnali interni

Il collegamento tra i due sottosistemi avviene grazie allo scambio di segnali di stato e controllo; i primi vengono emessi dalla macchina a stati verso l'elaboratore, i secondi seguono il percorso inverso.

I segnali di stato utilizzati sono i seguenti:

Segnale	Descrizione
RESET	Ordina all'elaboratore di reinizializzare i valori.
INIZIO_OPER.	Comunica all'elaboratore che è appena stato inserito un pH.
TIPO_PH	Permette all'elaboratore di determinare come modificare il pH.
STOP_OPER.	Comunica all'elaboratore di non modificare i valori memorizzati.

I segnali di controllo utilizzati sono i seguenti:

Segnale	Descrizione
ERRORE NEUTRO	Comunica alla macchina che il valore del pH non è accettabile. Comunica alla macchina che il valore del pH ha raggiunto la neutralità.

Macchina a stati finiti (FSM)

Abbiamo individuato cinque stati per questa macchina, cioè:

- 1. Reset: stato iniziale nel quale il circuito attende il pH in ingresso;
- 2. Errore: il valore del pH appena inserito non è valido;
- 3. Acido: il valore del pH attuale è inferiore a 7,00;
- 4. Basico: il valore del pH attuale è superiore a 8,00;
- 5. Neutro: il valore del pH ha raggiunto un valore incluso in [7,00, 8,00].

Transizioni

Lo stato iniziale della macchina è quello di *Reset*, da questo può spostarsi solamente quando riceve il segnale START = 1, in quel caso:

- Quando il segnale di controllo ERRORE vale 1 transita nello stato di Errore;
- Quando il bit più significativo del segnale PH[8] vale 0 e non sono presenti errori, transita nello stato Acido;
- Quando il bit più significatico del segnale PH[8] vale 1 e non sono presenti errori, transita nello stato *Basico*.

La macchina si sposta nello stato Neutro quando il segnale di controllo NEUTRO vale 1, infine, da ognuno degli stati può tornare a quello iniziale quando riceve il segnale RST = 1.

Segnali della macchina I segnali utilizzati dalla macchina a stati sono i seguenti in ordine di presentazione:

Segnali	D'ingresso	D'uscita
Esterni	RST START PH_INIZIALE[8]	FINE_OPERAZIONE ERRORE_SENSORE VALVOLA_ACIDO VALVOLA_BASICO
Interni	ERRORE NEUTRO	RESET INIZIO_OPERAZIONE TIPO_PH STOP_OPERAZIONE

Grafo delle transizioni (STG)

Replicando il comportamento sopra descritto, abbiamo quindi costruito il seguente grafo delle transizioni:

Figura 3: Macchina a stati

Transizione di esempio La transizione dallo stato Reset verso Basico avviene quando:

- \bullet il segnale RST equivale a 0;
- il segnale START equivale ad 1;
- il bit più significativo di PH_INIZIALE[8] vale 1;
- ullet il segnale <code>ERRORE</code> equivale a <code>O</code>.

Viene ignorato il segnale NEUTRO perché il circuito deve prima memorizzare il valore e solo in un ciclo successivo è in grado di rilevare la sua eventuale neutralità; infatti la macchina a stati non è in grado di raggiungere lo stato *Neutro* senza prima transitare per *Acido* o *Basico*.

Nel codice sorgente tale transizione viene descritta come:

```
011----0- Reset Basico 00100110
```

Unità di elaborazione (Data path)

Abbiamo suddiviso l'unità di elaborazione in più sottoproblemi risolti da delle componenti specifiche:

- 1. Contatore dei cicli: memorizza ed incrementa il numero di cicli impiegati;
- 2. Modificatore del pH: aggiorna il valore del pH;
- 3. Verificatore di neutralità: determina se il valore del pH è interno a [7,00, 8,00];
- 4. Verificatore di errore: determina se il valore del pH è superiore a 14,0.

Conteggio dei cicli

Il contatore è composto da: un registro, tre multiplexer ed un sommatore ad 8 bit.

Figura 4: Contatore dei cicli

È un componente dedicato esclusivamente al calcolo dell'uscita NCLK[8], mentre gli altri collaborano tra loro sia per determinare i segnali di controllo, che soprattutto per calcolare l'uscita PH_FINALE[8].

Incrementa di 1 il valore memorizzato nel registro ad ogni ciclo ad eccezione dei casi in cui riceve il segnale STOP = 1. Invece, quando l'ingresso RESET equivale ad 1, indipendentemente dal valore dell'altro, azzera il valore memorizzato nel registro.

Modifica del pH

Il modificatore è composto da: un sommatore, un sottrattore ed un multiplexer ad 8 bit.

Figura 5: Modificatore del pH

Modifica il valore dell'ingresso PH[8] in funzione del segnale TIPO_PH, cioé:

- nel caso in cui TIPO_PH equivale a 0 incrementa il pH di 0,50;
- nel caso in cui TIPO_PH equivale ad 1 decrementa il pH di 0,25.

Verifica della neutralità

Il componente è composto da: un maggiore ed un minore ad 8 bit ed una porta NOR.

Figura 6: Verificatore di neutralità

Verifica il valore dell'ingresso PH_INIZIALE[8], cioè:

- se questo è incluso in [7,00, 8,00] allora restituisce 1, cioè vero;
- altrimenti restituisce 0 cioè falso.

Verifica degli errori

Il componente è composto da un maggiore ad 8 bit.

Verifica il valore dell'ingresso PH_INIZIALE[8], cioè:

- se questo è superiore a 14,0, allora restituisce 1, cioè vero;
- altrimenti restituisce 0 cioè falso.

Figura 7: Verificatore di errore

Unità completa

È composta da: due registri, quattro multiplexer ad 8 bit, un modificatore, un verificatore di errore ed uno di neutralità.

Coordina gli altri componenti tramite registri e multiplexer aggiuntivi.

Corpo principale Quando sia il segnale INIZIO_OPERAZIONE che RESET valgono 0 il circuito continua ad elaborare il valore inserito precedentemente, al contrario:

- se RESET equivale ad 1, indipendentemente dagli altri ingressi, il circuito restituisce un byte azzerato;
- oppure, se INIZIO_OPERAZIONE vale 1 restituisce il segnale PH_INIZIALE[8];

Questo valore viene quindi analizzato tramite il *Verificatore di errore* per determinare se la codifica è accettabile, viene restituito se il segnale STOP_OPERAZIONE equivale ad 1 e viene finalmente memorizzato nel registro.

Nel ciclo di clock successivo il circuito utilizza il Modificatore del pH per aggiornare il valore, e ancora:

- quando il valore del segnale di stato STOP_OPERAZIONE equivale a 0 restituisce il valore modificato;
- altrimenti se equivale ad 1 restituisce il valore memorizzato.

Infine usufruisce del *Verificatore di neutralità* per determinare se il valore è neutro ed indirizza il nuovo risultato all'interno dei multiplexer iniziali.

Il segnale di uscita PH_FINALE[8] non viene restituito finché il segnale STOP_OPERAZIONE non quivale ad 1: in quel caso restituisce il valore prodotto dai multiplexer iniziali.

Contatore Il circuito utilizza il *Contatore dei cicli* per riuscire a determinare quante operazioni ha impiegato per raggiungere il risultato. Il segnale di uscita NCLK[8] non viene restituito finché il segnale STOP_OPERAZIONE non diviene uguale ad 1.

Segnali dell'unità I segnali utilizzati dall'unità a stati sono i seguenti in ordine di presentazione:

Segnali	D'ingresso	D'uscita
Esterni	PH_INIZIALE[8]	PH_FINALE[8] NCLK[8]
Interni	RESET INIZIO_OPERAZIONE TIPO_PH STOP_OPERAZIONE	ERRORE NEUTRO

Figura 8: Unità di elaborazione

Il registro ad 1 bit che memorizza il segnale TIPO_PH è presente per evitare di creare un ciclo all'interno del circuito e renderlo non deterministico.

Sostituendo il contenuto dei componenti all'interno del corpo principale otteniamo il seguente circuito:

Figura 9: Unità di elaborazione

Il Contatore dei cicli invece è un componente autonomo e abbiamo scelto di non includerlo in questa immagine per problemi di spazio, è comunque presente all'interno del circuito.

Simulazioni di esempio

Dopo aver progettato i due sottosistemi abbiamo provato alcuni flussi di esecuzione: il primo vede come ingresso un pH pari a 5,75 che quindi impiega 4 cicli per completare l'operazione con un pH finale di 5,75; nel secondo invece abbiamo tentato di inserire un pH non valido e dopo aver segnalato l'errore non ha elaborato oltre.

```
# Inserendo RST = 0, START = 1, PH = 5,75.
sis> simulate 0 1 0 1 0 1 1 1 0 0
# Otteniamo VALVOLA_BASICO = 1.
Network simulation:
Outputs: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Next state: 0010111000000001010
# Inserendo tutti i valori a O.
sis> simulate 0 0 0 0 0 0 0 0 0
# Prosegue con l'elaborazione.
Network simulation:
Next state: 0011001000000010010
# Inserendo tutti i valori a O.
sis> simulate 0 0 0 0 0 0 0 0 0 0
# Proseque con l'elaborazione.
Network simulation:
Outputs: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Next state: 00110110000000011010
# Inserendo tutti i valori a O.
sis> simulate 0 0 0 0 0 0 0 0 0
# Proseque con l'elaborazione.
Network simulation:
Outputs: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Next state: 0011101000000100010
# Inserendo tutti i valori a O.
sis> simulate 0 0 0 0 0 0 0 0 0
# Otteniamo FINE_OPERAZIONE = 1, PH = 7,25, NCLK = 4.
Network simulation:
Outputs: 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0
```

Next state: 0011101000000100001