Collegiate Men's Basketball Team and Fatigue

Objective

- Tasked with determining how to identify/flag players who may be physically unprepared for a game
- Data from a variety of tests and software systems
 - Make data insights accessible to coaches and staff
- Goal was to create an application/dashboard that would allow strength and conditioning coaches to see which players may be fatigued

Background: Force Plate Testing

- Challenges with STRIVE technology
 - EMG sensors not as reliable across a season
- Men's basketball team force plate tests twice a week
 - Usually Monday/Wednesday
 - Countermovement jump
- Research focused in finding associations
 between fatigue and variables from countermovement
 jumps
- Performed a principal component analysis on variables that were commonly associated with fatigue

Variables of Interest

- Peak Power / BM
- RSI Modified
- CMJ Stiffness
- Concentric Impulse 100ms
- Concentric Mean Power / BM
- Concentric Peak Force / BM
- Concentric RPD / BM overall, 100ms, 50ms
- Contraction Time
- Eccentric Duration
- Eccentric Peak Force / BM
- Eccentric Peak Power / BM
- Force at Zero Velocity

- Jump Height (Impulse Momentum in inches)
- 3 Asymmetry Variables, Concentric Mean
 Force, Eccentric Braking RFD, Force at Zero Velocity

- Individual athlete vs positional average
 - Performed a linear regression
- Correlation analysis
 - Compiled a list of variables that relates strongly to metrics of interest
 - Labeled games home and away to add variables to account for this
- Determined "best" force plate trial
 Verification
 - Incorporated data from STRIVE and the available +/- from basketball sports scientist

- Linear Regression Insights: Positional Significance
 - CMJ Stiffness N/m shows significance across positions: Big, Guard and Wing
 - Similarly, during linear regression analysis for positional significance, notable observations were made

Position	Most Significant	Significant	Least Significant
Big	CMJ Stiffness, RSI Modified, Peak Power / BM, Eccentric Peak Force, Eccentric Peak Power	Eccentric duration, Jump Height – Impulse Momentum	Concentric Mean Power
Guard	CMJ Stiffness, RSI Modified, Concentric Mean Power, Concentric Impulse, Peak Power/ BM, Eccentric deceleration	Jump Height – Impulse Momentum	Eccentric Peak Force
Wing	CMJ Stiffness, Jump Height – Impulse Momentum, Concentric Mean Power	Eccentric Peak Force	

- Began with determining what data from force plate testing would be included in analysis
 - How to quantify the "best jump" from each day rather than averaging across trials and missing changes between dates
 - Determined which force plate test dates were close enough to a game to provide useful information

Do Players Typically Achieve Peak Power in Different Trials? 80 Peak Power over Body Mass Trial 🛱 Trial 1 中 Trial 2 🛱 Trial 3 50

Trial Analysis Conclusion

- Determined how many days max of both RSI Modified and Peak Power/BM occurred in same trial on individual basis
 - Team average: 48%
- Calculated difference in Peak Power and RSI for test dates where variables maxed in different trials
- Determined how many test dates a player's RSI mod was outside of one standard deviation of mean if max Peak
 Power trial was used
 - 91% of the time, using only trial where Peak
 Power/BM is maximized will capture maximum
 RSI Mod value or value within one standard
 deviation of max on that day

- Created summary graphs for each variable we chose to show the results from each jump
- Determined data that is useful
 - Streamlined STRIVE data into two files that have dates that relate to the highest load of the week for each game week
 - Accelerometer and muscle load files

- Performed significance tests to see which variables differed significantly between Force Plate tests that occurred before and after games
 - Peak Power over Body Mass, RSI Modified, Concentric Impulse
 - Also performed on number of days test was carried out before and after games

Implementation into Dashboard

- Chose PowerBI because it is accessible for coaches and can link easily with SharePoint datasets along with future APIs
- Dashboard went through many iterations before we landed on a final design
- Experimented with using R visualizations in PowerBI

Player Fatigue Monitoring Dashboard Demo

Moving forward

- Implement other data sources into dashboard
 - Strive, Motion Capture, Lift data
- Implement R-Studio visualizations and trial analysis into PowerBI dashboard
- Aggregate +/- scores to use in modeling process for important variables across data sources
 - Increased ability to help performance
- Increase accuracy as more data for new players is added
 - Better data collection processes

Team Average Number of Acclerations and Decelerations by Strive Event \times Month 150 -January February Average Number of Accelerations March October November December Average Team External Load 350-400 400-450 75 -450-500 500-550 550-600 100 120 140 160 180

Average Number of Decelerations

Number of High Decelerations and High Accelerations by External Load

Accelerations and Decelerations Classified as 'High' by Strive

