# Kezdőlap

# Kurzussal kapcsolatos információk

# Tárgyfelelős

Dr. Galambos Péter peter.galambos@irob.uni-obuda.hu

#### Oktatók

Nagy Tamás tamas.daniel.nagy@irob.uni-obuda.hu

Détár Borsa detar.borsa@gmail.com

# Órarendi információk

| Csoport                | Időpont            | Terem   |
|------------------------|--------------------|---------|
| 1. csoport ea. és lab. | Péntek 10:45-13:45 | BA.1.10 |
| 2. csoport ea. és lab. | Péntek 14:00-17:00 | BA.1.10 |

### Féléves ütemezés

| Okt.<br>hét | Dátum      | Témakör                                                                         | Számonkérés |
|-------------|------------|---------------------------------------------------------------------------------|-------------|
| 1.          | márc.<br>3 | Követelmények ismertetése. ROS<br>bevezetés. Fejlesztőkörnyezet<br>felállítása. | -           |

| Okt.<br>hét | Dátum       | Témakör                                                                                                                                                                         | Számonkérés |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.          | márc.<br>10 | Fejlesztőkörnyezet felállítása. Linux alapok. ROS 1 és ROS 2. Egyszerű próbakódok futtatása. ROS package. Az alapvető ROS kommunikáció, publisher és subscriber implementálása. | -           |
| 3.          | márc.<br>17 | Python alapok. ROS kommunikáció implementációjának gyakorlása, példafeladatok megoldása.                                                                                        | -           |
| 4.          | márc.<br>24 | Robotikai alapfogalmak, da Vinci<br>sebészrobot programozása<br>szimulált környezetben I.                                                                                       | -           |
| 5.          | márc.<br>31 | Verziókövetés, Git. Projekt labor I.                                                                                                                                            | -           |
| 7.          | ápr. 14     | Roslaunch, ROS paraméter szerver. Rosbag.                                                                                                                                       | -           |
| 8.          | ápr. 21     | Saját üzenetek definiálása. ROS<br>service, ROS action fogalma,<br>felhasználása.                                                                                               | ZH1         |
| 9.          | ápr. 28     | Kinematika, inverz kinematika,<br>szimulált robotkar programozása<br>csukló-, és munkatérben I.                                                                                 | -           |
| 10.         | máj. 5      | URDF, webes felületek illesztése:<br>RosBridge és RoslibJS.                                                                                                                     | -           |
| 11.         | máj. 12     | Kálmán-szűrő. Szenzoros adatok<br>gyűjtése és feldolgozása ROS<br>környezetben.                                                                                                 | -           |
| 12.         | máj. 19     | Szenzorfúzió Kálmán-szűrővel.<br>Odometria-IMU szenzorfúzió                                                                                                                     | -           |

| Okt.<br>hét | Dátum   | Témakör                                 | Számonkérés                                 |
|-------------|---------|-----------------------------------------|---------------------------------------------|
|             |         | implementációja mobil robot platformra. |                                             |
| 13.         | máj. 26 | Projekt labor II.                       | ZH2                                         |
| 14.         | jún. 2  | Kötelező programok bemutatása.          | Pót ZH                                      |
| 14+1.       | jún. 9  | -                                       | Aláíráspótló: <b>csak</b><br><b>kötprog</b> |



#### **Warning**

A félév során az ütemezés változhat!

# Követelmények

### Kötelező program

- Bizonyítottan saját munka
- Értékelhető eredményeket produkáljon
- Pontozás: a megoldás teljessége, megfelelő ROS kommunikáció alkalmazása, program célszerű szerkezete, az implementáció minősége, a kód dokumentálása

### Évközi jegy

A jelenlét az órákon kötelező (min 70%).

A félév elfogadásának feltétele, hogy mind a két ZH, mind a kötelező program értékelése legalább elégséges. A **két ZH közül** az **egyik** az utolsó héten **pótolható**. Az aláíráspótló vizsga alkalmával a kötelező program bemutatása pótolható.

### Félév végi jegy

 $(Jegy = (ZH1 + ZH2 + 2 \times K\"{o}tProg) / 4)$ 

#### Bejczy Antal Intelligens Robottechnikai Központ (BARK)





# ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT

Ĭ

https://irob.uni-obuda.hu

#### irob-saf

(iRob Surgical Automation Framework)



https://github.com/ABC-iRobotics/irob-saf

### PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform

# Kurzussal kapcsolatos információk

# Tárgyfelelős

Dr. Galambos Péter peter.galambos@irob.uni-obuda.hu

### Oktatók

Nagy Tamás tamas.daniel.nagy@irob.uni-obuda.hu

Détár Borsa detar.borsa@gmail.com

# Órarendi információk

| Csoport                | Időpont            | Terem   |
|------------------------|--------------------|---------|
| 1. csoport ea. és lab. | Péntek 10:45-13:45 | BA.1.10 |
| 2. csoport ea. és lab. | Péntek 14:00-17:00 | BA.1.10 |

# Féléves ütemezés

| Okt.<br>hét | Dátum       | Témakör                                                                                                                                                                         | Számonkérés |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.          | márc.<br>3  | Követelmények ismertetése. ROS<br>bevezetés. Fejlesztőkörnyezet<br>felállítása.                                                                                                 | -           |
| 2.          | márc.<br>10 | Fejlesztőkörnyezet felállítása. Linux alapok. ROS 1 és ROS 2. Egyszerű próbakódok futtatása. ROS package. Az alapvető ROS kommunikáció, publisher és subscriber implementálása. | -           |
| 3.          | márc.<br>17 | Python alapok. ROS kommunikáció implementációjának gyakorlása, példafeladatok megoldása.                                                                                        | -           |
| 4.          | márc.<br>24 |                                                                                                                                                                                 | -           |

| Okt.<br>hét | Dátum       | Témakör                                                                                                   | Számonkérés                                 |
|-------------|-------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|
|             |             | Robotikai alapfogalmak, da Vinci<br>sebészrobot programozása<br>szimulált környezetben I.                 |                                             |
| 5.          | márc.<br>31 | Verziókövetés, Git. Projekt labor I.                                                                      | -                                           |
| 7.          | ápr. 14     | Roslaunch, ROS paraméter szerver. Rosbag.                                                                 | -                                           |
| 8.          | ápr. 21     | Saját üzenetek definiálása. ROS service, ROS action fogalma, felhasználása.                               | ZH1                                         |
| 9.          | ápr. 28     | Kinematika, inverz kinematika,<br>szimulált robotkar programozása<br>csukló-, és munkatérben I.           | -                                           |
| 10.         | máj. 5      | URDF, webes felületek illesztése:<br>RosBridge és RoslibJS.                                               | -                                           |
| 11.         | máj. 12     | Kálmán-szűrő. Szenzoros adatok<br>gyűjtése és feldolgozása ROS<br>környezetben.                           | -                                           |
| 12.         | máj. 19     | Szenzorfúzió Kálmán-szűrővel.<br>Odometria-IMU szenzorfúzió<br>implementációja mobil robot<br>platformra. | -                                           |
| 13.         | máj. 26     | Projekt labor II.                                                                                         | ZH2                                         |
| 14.         | jún. 2      | Kötelező programok bemutatása.                                                                            | Pót ZH                                      |
| 14+1.       | jún. 9      | -                                                                                                         | Aláíráspótló: <b>csak</b><br><b>kötprog</b> |



A félév során az ütemezés változhat!

# Követelmények

### Kötelező program

- Bizonyítottan saját munka
- Értékelhető eredményeket produkáljon
- Pontozás: a megoldás teljessége, megfelelő ROS kommunikáció alkalmazása, program célszerű szerkezete, az implementáció minősége, a kód dokumentálása

### Évközi jegy

A jelenlét az órákon kötelező (min 70%).

A félév elfogadásának feltétele, hogy mind a két ZH, mind a kötelező program értékelése legalább elégséges. A **két ZH közül** az **egyik** az aláíráspótló vizsga alkalmával **pótolható**.



Félév végi jegy

 $(Jegy = (ZH1 + ZH2 + 2 \times K\"{o}tProg) / 4)$ 

Bejczy Antal Intelligens Robottechnikai Központ (BARK)





ÓBUDAI EGYETEM

BEJCZY ANTAL INTELLIGENS ROBOTTECHNIKAI KÖZPONT https://irob.uni-obuda.hu

### irob-saf

(iRob Surgical Automation Framework)



https://github.com/ABC-iRobotics/irob-saf

# PlatypOUs

https://github.com/ABC-iRobotics/PlatypOUs-Mobile-Robot-Platform