Technical Vignette to Accompany 'Towards reduction in bias in epidemic curves...'

Burstyn I, Goldstein ND, Gustafson P
03/04/2020

- There are five public files: This .Rmd document, two versions of its pdf output (Alberta and Philadelphia), and two csv files (three-columns: date, positive, negative) for Alberta and Philadelphia. respectively.
- Note the "switch" below to produce either AB or PH output.
- Note the "switch" below to echo the R commands or not in the pdf output.
- Note the "switch" below to additionally produce separate pdf files for manuscript figures.

```
## which jurisdiction
JRSDCT <- "AB"
#JRSDCT <- "PH"
SHOW.CODE <- F
### switch to T if want R code echoed in pdf output
### if true, some plots also output to separate pdf files
require(rjags)
require(MCMCvis)
Head and Tail of series
head(dta) # start of series
##
          date positive negative
## 1 3/6/2020
                      1
     3/7/2020
                              275
## 3 3/8/2020
                      3
                              440
## 4 3/9/2020
                      6
                              718
                      6
## 5 3/10/2020
                              966
## 6 3/11/2020
                              961
tail(dta) # end of series
##
           date positive negative
## 17 3/22/2020
                      29
                              2613
## 18 3/23/2020
                       36
                              2713
## 19 3/24/2020
                      50
                              3131
## 20 3/25/2020
                      51
                              1842
## 21 3/26/2020
                      31
                              1121
## 22 3/27/2020
                      11
                               593
```

Proportion positive $(Y^*/n \text{ time-series})$, with 95% confidence intervals, and knot indicators

Hyperparameter settings

r.hi

[1] 0.15 0.15 0.15 0.15 0.15

sn.lo

[1] 0.6 0.6 0.6 0.6 0.6

sn.hi

[1] 0.9 0.9 0.9 0.9 0.9

sp.lo

[1] 0.95


```
if (MS.PLOTS) {
pdf.PG(paste("figD_", JRSDCT,".pdf", sep=""),1,1, ttlspc=T)
plot(0,0, type="n", xlim=c(0,T.end), ylim=c(0.5,1),
     xlab=paste("Day (",dta$date[1]," - ",dta$date[T.end],")",sep=""),
     ylab="Sensitivity")
points(knts, sn.lo, type="1", lty=3)
points(knts, sn.hi, type="1", 1ty=3)
 \texttt{col.start.sn} \leftarrow (1:(\dim(\texttt{mc.opt})[2]))[\texttt{colnames}(\texttt{mc.opt}) == "\texttt{sn.kn}[1]"] 
for (i in ndx) {
  points(knts, mc.opt[i,col.start.sn:(col.start.sn+num.kn-1)],
          type="1", col="grey")
points(knts,
  apply(mc.opt[,col.start.sn:(col.start.sn+num.kn-1)], 2, mean),
  lwd=2, col="red",type="1")
graphics.off()
}
```


MCMCtrace(opt.JAGS, params="sn.wt", pdf=F)


```
MCMCsummary(opt.JAGS, params="sp")
##
                                 2.5%
                                             50%
                                                    97.5% Rhat n.eff
                         sd
           mean
## sp 0.9972062 0.002033311 0.9934424 0.9971814 0.999954 2.73 12269
MCMCsummary(opt.JAGS, params="sn.kn")
##
                 mean
                                       2.5%
                                                  50%
                                                          97.5% Rhat
## sn.kn[1] 0.7350775 0.06691689 0.6232664 0.7308379 0.8650010
                                                                   1 268767
## sn.kn[2] 0.7347717 0.05611043 0.6368958 0.7320895 0.8449025
                                                                   1 208377
## sn.kn[3] 0.7364389 0.05148116 0.6414402 0.7354924 0.8385708
                                                                   1 124740
## sn.kn[4] 0.7362086 0.05475999 0.6385351 0.7343735 0.8428179
                                                                      84222
## sn.kn[5] 0.7383877 0.06700753 0.6246440 0.7349296 0.8664369
                                                                      78706
MCMCsummary(opt.JAGS, params="r.kn")
##
                                sd
                                           2.5%
                                                         50%
                                                                  97.5% Rhat
                  mean
## r.kn[1] 0.012047994 0.007109043 6.874656e-04 0.011684745 0.02709576 1.54
## r.kn[2] 0.002581179 0.002489939 3.601088e-05 0.001600873 0.00826866 2.17
## r.kn[3] 0.009210991 0.003494209 2.424321e-03 0.009374064 0.01550139 1.82
## r.kn[4] 0.007290613 0.003092047 1.579697e-03 0.007294986 0.01292531 2.01
## r.kn[5] 0.033767114 0.005258096 2.404442e-02 0.033577931 0.04451041 1.22
##
            n.eff
## r.kn[1] 128548
## r.kn[2] 145251
## r.kn[3]
           33665
## r.kn[4]
            30237
## r.kn[5]
          60724
```

MCMCsummary(opt.JAGS, params="y")

				0 =0/	= 0.07			
##		mean		2.5%	50%			n.eff
##	y[1]	0.9512531	0.685132	0	1	2	1.91	776352
##	y[2]	2.1508569	1.419213	0	2	5	1.38	179163
##	y[3]	2.9411700	1.844370	0	3	7	1.53	124260
##	y[4]	4.8912831	2.865913	0	5	10	1.94	71230
##	y [5]	4.2909281	3.317457	0	4	10	2.67	179310
##	y[6]	2.4721438	2.823617	0	1	8	2.67	222383
##	y[7]	2.2966250	1.895633	0	2	7	1.65	140497
##	y[8]	6.7109231	3.724769	1	6	14	1.99	44952
##	y [9]	14.8797275	6.603743	3	15	26	2.19	26404
##	y[10]	9.8316075	4.405578	2	10	18	1.70	46851
##	y[11]	17.2453162	6.329350	4	18	28	1.93	29684
##	y[12]	10.6327381	4.630779	2	11	20	1.58	46082
##	y[13]	25.0367556	9.359721	7	25	41	2.08	25088
##	y[14]	27.0224969	10.238391	8	27	44	2.19	21505
##	y[15]	27.6870300	10.988876	7	28	46	2.17	22810
##	y[16]	23.9750144	10.223442	5	24	42	2.07	26030
##	y[17]	30.1794150	8.370464	15	30	46	1.88	30521
##	y[18]	41.0295494	8.872692	24	41	58	1.69	34120
##	y[19]	59.7394169	10.832149	40	60	81	1.57	36833
##	y[20]	56.8610544	8.612546	40	57	74	1.54	40964
##	y[21]	36.5040413	5.746914	26	36	48	1.31	58481
##	y[22]	15.4063994	3.424147	9	15	23	1.10	104174