STT 811

In-Class Assignment 13

This problem will use the Heart dataset, with AHD as the target.

1. Split the data into training and test datasets (with a 75/25 split).

```
split_pct <- 0.75
n <- length(heart$AHD)*split_pct # train size
row_samp <- sample(1:length(heart$AHD), n, replace = FALSE)
train <- heart[row_samp,]
test <- heart[-row_samp,]</pre>
```

2. Build a decision tree model based on Thal, RestBP, and Age.

```
Heart_tree <- tree(as.factor(AHD) - RestBP + Age + as.factor(Thal), data = train)
```

3. Plot the tree.

4. Create the confusion matrix and give the accuracy.

```
confusionMatrix(tree_pred, as.factor(test$AHD))

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 24 18
Yes 12 22

Accuracy: 0.6053
95% CI: (0.4865, 0.7156)
No Information Rate: 0.5263
P-Value [Acc > NIR]: 0.1028

Kappa: 0.2149

Mcnemar's Test P-Value: 0.3613

Sensitivity: 0.6667
Specificity: 0.5500
Pos Pred Value: 0.5714
Neg Pred Value: 0.6471
Prevalence: 0.4737
Detection Rate: 0.3158
Detection Prevalence: 0.5526
Balanced Accuracy: 0.6083

'Positive' Class: No
```

5. Try some other combinations of inputs. See if the new inputs appear in the tree. If so, calculate their confusion matrix.

Confusion Matrix and Statistics Reference Prediction No Yes No 28 Yes 13 26 Accuracy : 0.7105 95% CI: (0.5951, 0.8089) No Information Rate: 0.5395 P-Value [Acc > NIR] : 0.001725 Kappa: 0.4223 Mcnemar's Test P-Value : 0.522431 Sensitivity: 0.6829 Specificity: 0.7429 Pos Pred Value: 0.7568 Neg Pred Value: 0.6667 Prevalence: 0.5395 Detection Rate: 0.3684 Detection Prevalence: 0.4868 Balanced Accuracy: 0.7129 'Positive' Class : No