Gravità - Pendolo semplice

Ali Matteo, Broggi Diana, Cantarini Giulia

1 misure con una oscillazione completa

Per la lunghezza abbiamo ricavato le seguenti misure in metri:

0.553	0.553	0.551	0.552	0.554	0.553	0.552	

$$\bar{L} = \sum_{i=1}^{N} \frac{L_i}{N} = 0.5526m$$

$$\sigma_L = \sum_{i=1}^{N} \frac{(L_i - \bar{L})^2}{N - 1} = 0.0010m$$

calcolando l'errore sulla media come $\sigma_m=\frac{\sigma_L}{\sqrt{N}}$ otteniamo la misura della lunghezza: L = (0.5526 ± 0.0004)m.

Per la massa del piombino abbiamo ricavato le seguenti misure in grammi:

$$\bar{M} = \sum_{i=1}^{N} \frac{M_i}{N} = 49.743g$$

$$\sigma_M = \sum_{i=1}^{N} \frac{(M_i - \bar{M})^2}{N - 1} = 0.016g$$

calcolando l'errore sulla media come $\sigma_m=\frac{\sigma_M}{\sqrt{N}}$ otteniamo la misura della massa: M = (49.743 ± 0.006) g.

Le misure del diametro del piombino in metri sono:

0.018	0.019	0.018	0.018	0.0178	0.0181	0.018	0.019	0.0185
0.0178	0.018	0.0187	0.019	0.018	0.019			

$$\bar{d} = \sum_{i=1}^{N} \frac{d_i}{N} = 0.0183m$$

$$\sigma_d = \sum_{i=1}^{N} \frac{(d_i - \bar{d})^2}{N - 1} = 0.0005m$$

calcolando l'errore sulla media come $\sigma_m=\frac{\sigma_M}{\sqrt{N}}$ otteniamo la misura del diametro: d = (0.0183 ± 0.0001) m.

Per il periodo abbiamo ricavato le seguenti misure in secondi:

1.46	1.33	1.50	1.47	1.48	1.44	1.52	1.46	1.45	1.50	1.58	1.32	1.54	1.49	1.49
1.42	1.57	1.51	1.53	1.50	1.46	1.48	1.54	1.54	1.60	1.43	1.52	1.45	1.41	1.48
1.38	1.57	1.54	1.56	1.36	1.47	1.49	1.41	1.40	1.48	1.42	1.46	1.59	1.58	1.47
1.40	1.49	1.57	1.49	1.47	1.44	1.48	1.60	1.48	1.47	1.53	1.47	1.50	1.39	1.50
1.55	1.38	1.45	1.42	1.55	1.60	1.49	1.67	1.53	1.64	1.49	1.56	1.53	1.47	1.55
1.36	1.46	1.55	1.56	1.55	1.59	1.41	1.53	1.57	1.48	1.39	1.54	1.54	1.58	1.54
1.46	1.56	1.47	1.51	1.60	1.55	1.52	1.50	1.44	1.53					

$$\bar{T}$$
=1.496s $\sigma_T = 0.067s \Rightarrow T = (1.496 \pm 0.007) s$

Tabella1: Tabella riassuntiva con lunghezza, massa e periodo

	media	σ	σ_m	misura
L	0.5526	0.0010	0.0004	0.553 ± 0.0004
M	49.743	0.016	0.006	49.743 ± 0.006
D	0.0183	0.0005	0.0001	0.0183 ± 0.0001
Т	1.496	0.067	0.007	1.496 ± 0.007

Istogramma e funzione densità di probabilità attesa

per valutare quantitativamente l'accordo tra le misure effettuate e la funzione di Gauss è necessario svolgere un test:

il test del chi quadro

Essendo il periodo una variabile continua abbiamo dovuto discutere i valori considerando degli intervalli:

i valori attesi A_k per la gaussiana sono stati calcolati moltiplicando la probabilità (nota) di trovare un valore nell'intervallo k-esimo per il numero di misure totali.

$$A_k = NP_k = N \int_{a_k}^{a_{k+1}} G(x, X, \sigma)$$

	intervallo	numero osservazioni	valore atteso
1	$x \leq \bar{T} - \sigma$	16	16
2	$\bar{T} - \sigma < x \le \bar{T}$	35	34
3	$\bar{T} < x < \bar{T} + \sigma$	34	34
4	$\bar{T} + \sigma \le x$	15	16

$$\chi^2 = \sum_{i=1}^4 \frac{(O_k - A_k)^2}{A_k} = 0.092$$

Abbiamo calcolato il chi quadro ridotto come: $\tilde{\chi^2} = \frac{\chi^2}{d} = 0.09$ dove d è il numero dei gradi di libertà, ovvero 1 in questo caso.

La probabilità che le misure osservate siano affette principarlmente da errori casuali è $P_d(\tilde{\chi}^2 \geq \tilde{\chi}_o^2) \simeq 100\%$ (da valori tabulati).

2 misure con 10 oscillazioni complete

I valori del periodo ottenuti misurando il tempo impiegato dal pendolo per compiere 10 oscillazini complete:

1	I									15.25
Т	1.521	1.516	1.527	1.536	1.528	1.517	1.512	1.52	1.518	1.525

Tabella 2: Tabella riassuntiva dei periodi in secondi

	media	σ	σ_m	misura
T1	1.496	0.067	0.007	1.496 ± 0.007
T10	1.522	0.007	0.002	1.522 ± 0.002

3 interpolazione dei dati

Tabella3: Misure del periodo relative alla lunghezza

	lunghezza	Δt	T
1	0.5526 ± 0.0004	15.220 ± 0.022	1.522 ± 0.002
2	0.896 ± 0.001	19.115 ± 0.012	1.911 ± 0.001
3	1.052 ± 0.001	20.737 ± 0.015	2.074 ± 0.001
4	0.733 ± 0.001	17.363 ± 0.016	1.736 ± 0.002

Rappresentiamo i grafici delle seguenti funzioni che esprimono T in funzione di l:

 $(a)T = \frac{2\pi}{\sqrt{g}}\sqrt{l}$

$$(b)ln(T) = ln(\frac{2\pi}{\sqrt{g}}) + \frac{1}{2}ln(l)$$

$$(c)T^2 = \frac{4\pi^2}{q}l$$

Abbiamo studiato quest'ultima relazione lineare tra T^2 e l che è del tipo y = Bx dove il coefficiente angolare B dipende dalla costante gravitazionale g.

Applichiamo il metodo dei minimi quadrati pesati considerando l'incertezza sulle x trascurabile e $\sigma_y = 2T\sigma_T$. Dove σ_T è pari a $\frac{\sigma_{\Delta t}}{10}$.

$$B = \frac{N\left(\sum \frac{x_i y_i}{\sigma_{y_i}^2}\right) - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{y_i}{\sigma_{y_i}^2}}{\Delta} \qquad \sigma_B = \sqrt{\frac{\sum \frac{1}{\sigma_{y_i}^2}}{\Delta}}$$

$$con \quad \Delta = N(\sum \frac{x_i^2}{\sigma_{y_i}^2}) - (\sum \frac{x_i}{\sigma_{y_i}^2})^2$$

Abbiamo calcolato anche il valore dell'intercetta per assicurarci che fosse prossimo allo zero:

$$A = \frac{\sum \frac{(x_i)^2}{\sigma_{y_i}^2} \sum \frac{(y_i)^2}{\sigma_{y_i}^2} - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{x_i y_i}{\sigma_{y_i}^2}}{\Delta} = 0.11s^2 \qquad \sigma_A = \sqrt{\frac{\sum \frac{x^2}{\sigma_{y_i}^2}}{\Delta}} = 0.01s^2$$

.

i	X	у	x^2	xy	$\frac{1}{\sigma_{y_i}^2}$
numero della prova	lunghezza	T^2	l^2	lT^2	g_1
1	0.553	2.316	0.305	1.280	21681
2	0.896	3.654	0.802	3.272	50269
3	1.052	4.300	1.106	4.522	26148
4	0.733	3.015	0.538	2.211	33603
N = 4	$\sum_{i=1}^{N} x = 3.233$	$\sum_{i=1}^{N} y = 13.285$	$\sum_{i=1}^{N} (x^2) = 2.752$	$\sum_{i=1}^{N} (xy) = 11.287$	$\sum_{i=0}^{4} \frac{1}{\sigma_{y_i}^2} = 131701$

$$\Rightarrow$$
 $B = (3.968 \pm 0.017)s^2/m$

retta interpolata dei dati in Tabella3

calcolo dell'accelerazione gravitazionale

Poichè la relazione considerata finora è: $T^2=\frac{4\pi^2}{g}l$, possiamo calcolare il valore di g corrispondente al coefficiente angolare della retta interpolata:

$$g = \frac{4\pi^2}{B} = 9.950 m/s^2$$

L'incertezza su questa misura si calcola usando la formula: $\sigma_g = \left|f^{'}(\bar{x})\right| \sigma_B = 0.0446 m/s^2. \text{ Allora g risulta: } g = (9.95 \pm 0.04) m/s^2$

4 analisi degli errori sistematici

Il risultato ottenuto per l'accelerazione di gravità si discosta apprezzabilmente da quello atteso:

$$t = \frac{|g_{osservata} - g_{attesa}|}{\sigma_q} = 3.5$$

Una spiegazione possibile per questa problematica risiede nella formula approssimativa utilizzata per esprimere T in funzione di l, che idealizza il fenomeno trascurando i seguenti fatti fisici:

l'angolo utilizzato non aveva ampiezza inifintesima

Stimiamo di aver effettutato le misurazioni del periodo allontanando il pendolo dalla posizione di equilibrio di un angolo di $9.5^\circ=0.166 rad$:

$$T_1 = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{\theta^2}{16}\right)$$

$$\Rightarrow T_1 - T_0 = T_0 \left(1 + \frac{\theta^2}{16}\right) - T_0 = T_0 \frac{\theta^2}{16} = 0.00172T_0$$

L'errore sistematico relativo sulla misura di T_0 è dunque 0.00172, questa discrepanza non è trascurabile rispetto agli errori considerati sulle misure del periodo (Tabella3).

Calcoliamo dunque g come
$$\frac{4\pi^2}{B} \left(1 + \frac{\theta^2}{16}\right)^2 \pm \frac{4\pi^2}{B^2} \left(1 + \frac{\theta^2}{16}\right)^2 \sigma_B = 9.98 \pm 0.04 m/s^2$$
.

la massa del piombino appeso non è puntiforme

Consideriamo il piombino una massa sferica di raggio r e massa M:

$$T_2 = 2\pi \sqrt{\frac{I}{Mgl}}$$

dove
$$I = Ml^2 + \frac{2}{5}Mr^2$$

L'errore sistematico relativo $\frac{T_2-T_0}{T_0}$ dipende dalla lunghezza: $\sqrt{\frac{1+\frac{2}{5}\frac{L^2}{r^2}}{1}}-1$

Errori relativi calcolati rispetto a ogni lunghezza:

	lunghezza (m)	$\frac{\sigma_{T_0}}{T_0}$ sistematico	$\frac{\sigma_{T_0}}{T_0}$ casuale
1	0.5526 ± 0.0004	0.000055	0.0013
2	0.896 ± 0.001	0.000021	0.00052
3	1.052 ± 0.001	0.000015	0.00048
4	0.733 ± 0.001	0.000031	0.0012

In questo caso l'errore sistematico relativo è trascurabile rispetto all'errore casuale relativo sui tempi osservati, quindi non abbiamo corretto la nostra stima di g.