# Characteristic Parameters and Special Trapezoidal Words

Alma D'Aniello Alessandro De Luca

Università di Napoli Federico II

12th International Conference on Words Loughborough University, September 13th, 2019

#### Outline

- Basic Notions
  - Characteristic Parameters
  - Trapezoidal Words
- Main Results
  - Closed (vs. Open) Prefixes
  - Characterizing Special Trapezoidal Words
- Conclusions



# The Parameters $H_w$ , $K_w$ , $L_w$ , $R_w$

Recall that a factor u of a word w is left (resp. right) special if xu, yu (resp. ux, uy) are factors of w for some letters  $x \neq y$ .





# The Parameters $H_{w}$ , $K_{w}$ , $L_{w}$ , $R_{w}$

Recall that a factor u of a word w is left (resp. right) special if xu, yu (resp. ux, uy) are factors of w for some letters  $x \neq y$ .

#### Notation

Let w be a finite word. Then:

- $L_w$  (resp.  $R_w$ ) denotes the shortest length for which w has no left (resp. right) special factors;
- $H_w$  (resp.  $K_w$ ) denotes the length of the shortest unioccurrent





# The Parameters $H_{w}$ , $K_{w}$ , $L_{w}$ , $R_{w}$

Recall that a factor u of a word w is left (resp. right) special if xu, yu (resp. ux, uy) are factors of w for some letters  $x \neq y$ .

#### Notation

Let w be a finite word. Then:

- $L_w$  (resp.  $R_w$ ) denotes the shortest length for which w has no left (resp. right) special factors;
- $H_w$  (resp.  $K_w$ ) denotes the length of the shortest unioccurrent prefix (resp. suffix) of w.





# Example

For

$$w = aaaabbba$$

we have:

- $L_w = 3$ , as bb is a left special factor of maximal length;
- $H_w = 4$ , as the prefix aaaa is unioccurrent whereas aaa



# Example

For

$$w = aaaabbba$$

we have:

- $L_w = 3$ , as bb is a left special factor of maximal length;
- $H_w = 4$ , as the prefix aaaa is unioccurrent whereas aaais not;
- $R_w = 4$ ,  $K_w = 2$ .



# Example

For

$$w = aaaabbba$$

we have:

- $L_w = 3$ , as bb is a left special factor of maximal length;
- $H_w = 4$ , as the prefix aaaa is unioccurrent whereas aaais not;
- $\bullet$   $R_w = 4$ ,  $K_w = 2$ .





### Theorem (de Luca 1999 etc.)

Let  $w \in A^*$  and  $\{R_w, K_w\} = \{m, M\}$ , with  $m \leq M$  and  $\operatorname{card} A > 1$ . The factor complexity  $f_w(n)$  of w is

$$\max\{R_w, K_w\} = \max\{L_w, H_w\}.$$





### Theorem (de Luca 1999 etc.)

Let  $w \in A^*$  and  $\{R_w, K_w\} = \{m, M\}$ , with  $m \leq M$  and card A > 1. The factor complexity  $f_w(n)$  of w is

- strictly increasing for n < m;</li>
- nondecreasing for  $m < n \le M$ ;

$$\max\{R_w, K_w\} = \max\{L_w, H_w\}.$$





### Theorem (de Luca 1999 etc.)

Let  $w \in A^*$  and  $\{R_w, K_w\} = \{m, M\}$ , with  $m \leq M$  and card A > 1. The factor complexity  $f_w(n)$  of w is

- strictly increasing for  $n \leq m$ ;
- nondecreasing for  $m < n \le M$ ;
- strictly decreasing (of exactly 1 at each step) when

$$\max\{R_w, K_w\} = \max\{L_w, H_w\}.$$





### Theorem (de Luca 1999 etc.)

Let  $w \in A^*$  and  $\{R_w, K_w\} = \{m, M\}$ , with  $m \leq M$  and card A > 1. The factor complexity  $f_w(n)$  of w is

- strictly increasing for n < m;
- nondecreasing for  $m < n \le M$ ;
- strictly decreasing (of exactly 1 at each step) when  $M < n \le |w|$ .

$$\max\{R_w, K_w\} = \max\{L_w, H_w\}.$$





### Theorem (de Luca 1999 etc.)

Let  $w \in A^*$  and  $\{R_w, K_w\} = \{m, M\}$ , with  $m \leq M$  and card A > 1. The factor complexity  $f_w(n)$  of w is

- strictly increasing for n < m;
- nondecreasing for m < n < M;
- strictly decreasing (of exactly 1 at each step) when  $M < n \le |w|$ .

By symmetry, the same holds when  $\{m, M\} = \{L_w, H_w\}$ . In particular, it follows that

$$\max\{R_w, K_w\} = \max\{L_w, H_w\}.$$





#### Theorem (de Luca 1999)

• For all w.

$$|w| \ge R_w + K_w$$
 and  $|w| \ge L_w + H_w$ .

If w is a factor of a Sturmian word, then

$$|w| = R_w + K_w = L_w + H_w$$



#### Theorem (de Luca 1999)

• For all w.

$$|w| \ge R_w + K_w$$
 and  $|w| \ge L_w + H_w$ .

If w is a factor of a Sturmian word, then

$$|w| = R_w + K_w = L_w + H_w.$$



#### Theorem (de Luca 1999)

• For all w.

$$|w| \ge R_w + K_w$$
 and  $|w| \ge L_w + H_w$ .

If w is a factor of a Sturmian word, then

$$|w| = R_w + K_w = L_w + H_w.$$



#### Theorem (de Luca 1999)

• For all w.

$$|w| \ge R_w + K_w$$
 and  $|w| \ge L_w + H_w$ .

If w is a factor of a Sturmian word, then

$$|w| = R_w + K_w = L_w + H_w.$$

However, some non-Sturmian words such as *aabb* also verify the equality...



# A Finite Analogue of Sturmian Words

#### Definition

A word w is trapezoidal if  $|w| = R_w + K_w$ (or equivalently, if  $|w| = L_w + H_w$ ).





# A Finite Analogue of Sturmian Words

#### Definition

A word w is trapezoidal if  $|w| = R_w + K_w$ (or equivalently, if  $|w| = L_w + H_w$ ).

#### Theorem (D'Alessandro 2002)

w is trapezoidal  $\iff f_w(n) \le n+1$  for all  $n \ge 0$ .





Central words are the palindromic prefixes of standard Sturmian words, and enjoy remarkable characterizations such as:

### Theorem (de Luca, Mignosi 1994 etc.)

- A word w is central if and only if it can be written as  $a^n$ ,  $b^n$ , or uabv = vbau for some n > 0, words u, v, and letters  $a \neq b$ .
- 2 w is central if and only if it has two coprime periods p, a such



Central words are the palindromic prefixes of standard Sturmian words, and enjoy remarkable characterizations such as:

### Theorem (de Luca, Mignosi 1994 etc.)

- A word w is central if and only if it can be written as  $a^n$ ,  $b^n$ , or uabv = vbau for some n > 0, words u, v, and letters  $a \neq b$ .
- w is central if and only if it has two coprime periods p, a such that |w| = p + q - 2.



Central words are the palindromic prefixes of standard Sturmian words, and enjoy remarkable characterizations such as:

### Theorem (de Luca, Mignosi 1994 etc.)

- A word w is central if and only if it can be written as  $a^n$ ,  $b^n$ , or uabv = vbau for some n > 0, words u, v, and letters  $a \neq b$ .
- w is central if and only if it has two coprime periods p, a such that |w| = p + q - 2.



Central words are the palindromic prefixes of standard Sturmian words, and enjoy remarkable characterizations such as:

### Theorem (de Luca, Mignosi 1994 etc.)

- A word w is central if and only if it can be written as  $a^n$ ,  $b^n$ , or uabv = vbau for some n > 0, words u, v, and letters  $a \neq b$ .
- w is central if and only if it has two coprime periods p, a such that |w| = p + q - 2.

#### Example

abaaba is central, whereas abba is not.



#### A Known Characterization

#### Theorem (D'Alessandro 2002)

A word  $w \in A^*$  is trapezoidal non-Sturmian if and only if

$$w = pxux \cdot yuyq$$

where u is central,  $A = \{x, y\}$ , and  $p, q \in A^*$  are such that pxux (resp. yuyq) has the same period as ux (resp. yu).

Also, in such a case  $R_w = |pxux|$  and  $K_w = |yuyq|$ .

#### Example

For all  $n, m \ge 0$ , the word  $a^n(ba)^m$  is trapezoidal; it is not Sturmian if and only if  $n \ge 3$  and  $m \ge 2$ .



9/19

### A Known Characterization

#### Theorem (D'Alessandro 2002)

A word  $w \in A^*$  is trapezoidal non-Sturmian if and only if

$$w = pxux \cdot yuyq$$

where u is central,  $A = \{x, y\}$ , and  $p, q \in A^*$  are such that pxux(resp. yuyq) has the same period as ux (resp. yu).

Also, in such a case  $R_w = |pxux|$  and  $K_w = |yuyg|$ .



#### A Known Characterization

#### Theorem (D'Alessandro 2002)

A word  $w \in A^*$  is trapezoidal non-Sturmian if and only if

$$w = pxux \cdot yuyq$$

where u is central,  $A = \{x, y\}$ , and  $p, q \in A^*$  are such that pxux(resp. yuyq) has the same period as ux (resp. yu).

Also, in such a case  $R_w = |pxux|$  and  $K_w = |yuyq|$ .

#### Example

For all  $n, m \ge 0$ , the word  $a^n(ba)^m$  is trapezoidal; it is not Sturmian if and only if  $n \ge 3$  and  $m \ge 2$ .



# Closed vs. Open

#### Definition

A word is closed (aka periodic-like, complete return) if it has a factor that occurs exactly twice, as a prefix and as a suffix. Otherwise, it is open.



# Closed vs. Open

#### Definition

A word is closed (aka periodic-like, complete return) if it has a factor that occurs exactly twice, as a prefix and as a suffix. Otherwise, it is open.

#### Example

aababbaa is closed, but aababbaaa is open.



10/19



# Closed vs. Open

#### Definition

A word is closed (aka periodic-like, complete return) if it has a factor that occurs exactly twice, as a prefix and as a suffix. Otherwise, it is open.

#### Example

aababbaa is closed, but aababbaaa is open.

The open/closed duality for prefixes (oc-sequence) has been used to study structural properties of finite and infinite words. For instance...

# OC-Sequence of Sturmian Words

#### Theorem (DL, Fici, Zamboni 2017)

An infinite word w is standard Sturmian if and only if

$$OC_{\mathbf{w}} = \prod_{n \geq 0} 1^{k_n} 0^{k_n},$$

i.e., if every run of consecutive closed prefixes is followed by an equally long run of open prefixes.

Here the *n*th symbol of the sequence  $OC_w$  is 1 if the prefix  $\mathbf{w}_{[n]}$  of length n is closed, and 0 otherwise.



If w is trapezoidal, then  $\{L_w, H_w\} = \{R_w, K_w\}$ . More precisely,

### Theorem (Bucci, DL, Fici 2013)

Let w be trapezoidal. Then:

- $H_w = K_w$  and  $L_w = R_w$  if w is closed;
- $H_w = R_w$  and  $L_w = K_w$  if w is open.

Our first idea is to refine this further, using prefixes (i.e., the oc-sequence) and their parameters.





If w is trapezoidal, then  $\{L_w, H_w\} = \{R_w, K_w\}$ . More precisely,

### Theorem (Bucci, DL, Fici 2013)

Let w be trapezoidal. Then:

- $H_w = K_w$  and  $L_w = R_w$  if w is closed;
- $H_w = R_w$  and  $L_w = K_w$  if w is open.



If w is trapezoidal, then  $\{L_w, H_w\} = \{R_w, K_w\}$ . More precisely,

### Theorem (Bucci, DL, Fici 2013)

Let w be trapezoidal. Then:

- $H_w = K_w$  and  $L_w = R_w$  if w is closed;
- $H_w = R_w$  and  $L_w = K_w$  if w is open.



12/19



If w is trapezoidal, then  $\{L_w, H_w\} = \{R_w, K_w\}$ . More precisely,

### Theorem (Bucci, DL, Fici 2013)

Let w be trapezoidal. Then:

- $H_w = K_w$  and  $L_w = R_w$  if w is closed;
- $H_w = R_w$  and  $L_w = K_w$  if w is open.

Our first idea is to refine this further, using prefixes (i.e., the oc-sequence) and their parameters.





# Parameters and the OC-Sequence

#### Lemma

Let w be a word and x a letter. Then:

- $H_{wx} = H_w + 1$  if wx is closed, and  $H_{wx} = H_w$  if wx is open;
- ② if wx is trapezoidal, then  $L_{wx} = L_w$  whenever wx is closed,

# Parameters and the OC-Sequence

#### Lemma

Let w be a word and x a letter. Then:

- $H_{wx} = H_w + 1$  if wx is closed, and  $H_{wx} = H_w$  if wx is open;
- 2 if wx is trapezoidal, then  $L_{wx} = L_w$  whenever wx is closed, and  $L_{wx} = L_w + 1$  if wx is open.

## Parameters and the OC-Sequence

#### Lemma

Let w be a word and x a letter. Then:

- $\bullet$   $H_{wx} = H_w + 1$  if wx is closed, and  $H_{wx} = H_w$  if wx is open;
- 2 if wx is trapezoidal, then  $L_{wx} = L_w$  whenever wx is closed, and  $L_{wx} = L_w + 1$  if wx is open.

## Parameters and the OC-Sequence

#### Lemma

Let w be a word and x a letter. Then:

- $H_{wx} = H_w + 1$  if wx is closed, and  $H_{wx} = H_w$  if wx is open;
- ② if wx is trapezoidal, then  $L_{wx} = L_{w}$  whenever wx is closed, and  $L_{wx} = L_w + 1$  if wx is open.

In other words,  $H_w$  is the number of closed prefixes of w, and if w is trapezoidal,  $L_w$  is the number of its open prefixes.

## Parameters and the OC-Sequence

#### Lemma

Let w be a word and x a letter. Then:

- $H_{wx} = H_w + 1$  if wx is closed, and  $H_{wx} = H_w$  if wx is open;
- 2 if wx is trapezoidal, then  $L_{wx} = L_w$  whenever wx is closed, and  $L_{wx} = L_w + 1$  if wx is open.

In other words,  $H_w$  is the number of closed prefixes of w, and if w is trapezoidal,  $L_w$  is the number of its open prefixes.

### Corollary

Let wx be a trapezoidal word,  $x \in A$ . Then  $K_{wx} = K_w + 1$  and  $R_{wx} = R_w$ , unless w is open and wx is closed or vice versa, in which case  $K_{wx} = R_w + 1$  and  $R_{wx} = K_w$  instead.

## Proposition

Let wx be a trapezoidal word,  $x \in A$ . Then

- if w is closed and wx is open, then  $L_w < H_w$ ;
- 2 if w is open and wx is closed, then  $H_w \leq L_w$ .

$$OC_w = 100111111000$$

## Proposition

Let wx be a trapezoidal word,  $x \in A$ . Then

- if w is closed and wx is open, then  $L_w < H_w$ ;
- 2 if w is open and wx is closed, then  $H_w \leq L_w$ .

$$OC_w = 100111111000.$$

## Proposition

Let wx be a trapezoidal word,  $x \in A$ . Then

- if w is closed and wx is open, then  $L_w < H_w$ ;
- 2 if w is open and wx is closed, then  $H_w \leq L_w$ .

$$OC_w = 10011111000.$$

As w is trapezoidal, the difference H-L increases (resp. decreases) by 1 at each closed (resp. open) prefix.

### Proposition

Let wx be a trapezoidal word,  $x \in A$ . Then

- if w is closed and wx is open, then  $L_w < H_w$ ;
- 2 if w is open and wx is closed, then  $H_w \leq L_w$ .

## Example

Let w = baabaababab. Then  $w_{[n]}$  is closed for n = 1 and  $4 \le n \le 8$ , while open otherwise, i.e.,

$$OC_w = 10011111000.$$

### Proposition

Let wx be a trapezoidal word,  $x \in A$ . Then

- if w is closed and wx is open, then  $L_w < H_w$ ;
- 2 if w is open and wx is closed, then  $H_w \leq L_w$ .

## Example

Let w = baabaababab. Then  $w_{[n]}$  is closed for n = 1 and  $4 \le n \le 8$ , while open otherwise, i.e.,

$$OC_w = 10011111000.$$

As w is trapezoidal, the difference H-L increases (resp. decreases) by 1 at each closed (resp. open) prefix.

## Sturmian Special Words

## Theorem (de Luca, Mignosi 1994)

A finite Sturmian word w is strictly bispecial, i.e., such that awa, awb, bwa, bwb are all Sturmian, if and only if it is central.



## Sturmian Special Words

## Theorem (de Luca, Mignosi 1994)

A finite Sturmian word w is strictly bispecial, i.e., such that awa, awb, bwa, bwb are all Sturmian, if and only if it is central.

#### Theorem (de Luca 1997)

w is such that wa, wb (resp. aw, bw) are both Sturmian if and only if it is a suffix (resp. prefix) of a central word.





## The Simple Bispecial Case

### Theorem (Fici 2014)

 $w \in A^*$  is such that aw, bw, wa, wb are all Sturmian if and only if

$$w = (uxy)^n u$$

for some central word  $u, n \ge 0$ , and  $A = \{x, y\}$ .

- right special factor, left special factor,
- repeated prefix, and repeated suffix





## The Simple Bispecial Case

### Theorem (Fici 2014)

 $w \in A^*$  is such that aw, bw, wa, wb are all Sturmian if and only if

$$w = (uxy)^n u$$

for some central word  $u, n \ge 0$ , and  $A = \{x, y\}$ .

In particular, for n = 1 we obtain semicentral words, which can be equivalently defined by the fact that the longest

- right special factor, left special factor,
- repeated prefix, and repeated suffix

all coincide (Bucci, DL, Fici 2013).





# Right (or Left) Special Trapezoidal Words

#### Theorem

A trapezoidal word w is right special if and only if

- w is a suffix of a central word, or
- w = pxuxyu for a central word u, letters  $x \neq y$ , and a word psuch that pxux has the same period as ux.

athat is, such that wa, wb are both trapezoidal



# Right (or Left) Special Trapezoidal Words

#### Theorem

A trapezoidal word w is right special if and only if

- w is a suffix of a central word, or
- w = pxuxyu for a central word u, letters  $x \neq y$ , and a word psuch that pxux has the same period as ux.

athat is, such that wa, wb are both trapezoidal

A symmetrical characterization holds for left special trapezoidal words.



## Strictly Bispecial Ones

Our last main result extends de Luca and Mignosi's characterization.

#### Theorem

A trapezoidal word w is strictly bispecial if and only if it is central or semicentral.





- Characterize the oc-sequences of trapezoidal words, or even just of non-standard Sturmian words;
- Extend Fici's characterization of bispecial Sturmian words to



- Characterize the oc-sequences of trapezoidal words, or even just of non-standard Sturmian words;
- Extend Fici's characterization of bispecial Sturmian words to the trapezoidal case.



- Characterize the oc-sequences of trapezoidal words, or even just of non-standard Sturmian words;
- Extend Fici's characterization of bispecial Sturmian words to the trapezoidal case.



- Characterize the oc-sequences of trapezoidal words, or even just of non-standard Sturmian words;
- Extend Fici's characterization of bispecial Sturmian words to the trapezoidal case.

## Thank You

