

Introdução aos Sistemas Distribuídos

Como chegámos aqui?

Razões para a distribuição?

- Distribuição geográfica
 - Organização com instalações em Lisboa, Paris, ...
 - Ligação entre organizações independentes
- Extensibilidade, modularidade
 - Crescimento gradual
- Partilha de recursos
 - Troca de informação entre departamentos, empresas

Razões para a distribuição?

- Maior disponibilidade
 - Replicação
- Maior desempenho
 - Distribuição da carga
- Out-Sourcing
 - Acesso a competências de entidades externas
 - e.g. especializadas em fornecer segurança (e.g. VeriSign);
 Servidores AAA

O que tornou os Sistemas Distribuídos tão importantes?

- Requisitos Empresariais
 - Novas necessidades empresariais suportadas por novas tecnologias
 - Necessidade de integração do negócio
 - Digitalização do negócio
- Evolução Tecnológica de ...
 - Redes de Computadores
 - Computadores Pessoais
 - Sistemas Abertos
 - Arquitectura de Computadores
 - Aplicações em rede

Evolução das Redes de Computadores

- Redes Telefónicas
- Linhas Dedicadas fornecidas pelos
 Operadores de Telecomunicações
- Oferta de Redes de dados pelos operadores públicos
 - -X.25
 - RDIS
 - ATM
- Redes locais
- Internet
- ADSL, Rede de Televisão por Cabo
- GPRS, UMTS, WiFi, WiMax

Evolução dos computadores pessoais

• Actualmente:

- Equipamentos simples, completos e autónomos
- Baixo custo
- Interface atraente e simples
- Mercado dominado por Wintel
- Miríade de aplicações
- Os PDA e os telefones móveis são computadores
- Todos os equipamentos sofisticados têm computadores
- Cartões inteligentes, tags RFID são computadores (ainda com recursos muito limitados)

Consequências:

- Computadores em todos os postos de trabalho, distribuídos pelas organizações
- Confiança dos utilizadores em soluções descentralizadas
- Facilidade de desenvolvimento de aplicações departamentais e pessoais
- Independência de departamentos em relação à informática central
- Quando mal gerido
 - Caos de aplicações
 - Difícil de manter e administrar

Evolução de Sistemas Abertos

- Normalização oficial e de facto em muitos aspectos chave
 - Computadores pessoais (Wintel)
 - Protocolos de rede (TCP/IP, WWW, W3C, OASIS)
 - Servidores Unix, Windows-NT, Mainframes IBM MVS
 - Acesso a bases de dados (SQL, ODBC)
 - Interligação de aplicações (DCOM, CORBA)
 - Web Services SOAP, XML
- Consequências
 - Tecnologia disponível
 - Grande número de alternativas
 - Preços competitivos

Tudo somado dá...

- Todos os computadores ligados à rede local
- Todas as redes locais interligadas entre si
- Alto débito, baixo preço
- Interligação de todos os computadores
 - empresas, organizações, domésticos, ...
- Interligação de todos os dispositivos
 - Laptops, telemóveis, PDA, automóvel, frigoríficos, ...
- Interligação de cartões inteligentes, Tags RFID, etc.

- Rede de Comunicação Aberta
- Alteração do padrão de utilização dos serviços de telecomunicações
- Desenvolvimento de Standards de facto que permitiram criar novas forma de trocar informação – HTTP, HTML, XML
- Criação de ambientes de desenvolvimento simplificados
 - e.g.: PHP, Pearl
- Escalabilidade no crescimento da rede

Date	Computers	Web servers
1979, Dec.	188	0
1989, July	130,000	0
1999, July	56,218,000	5,560,866
2003, Jan.	171,638,297	35,424,956

Computadores na internet com endereços IP registados

Desafios da distribuição

TED Talk by Danny Hillis The Internet could crash. We need a Plan B

http://www.ted.com/talks/danny hillis the internet could crash we need a plan b

- Quais são os desafios da distribuição mencionados no video?
 - Discussão na próxima aula

Desafios: Heterogeneidade

- Num sistema distribuído pode existir grandes diferenças a nível de:
 - Redes
 - Hardware
 - Sistemas operativos
 - Linguagens de programação
 - Implementações por programadores diferentes

Desafios: Sistemas Abertos

 Necessário disponibilizar a especificação e documentação das interfaces dos componentes do sistema

Desafios: Segurança

- Intrusos podem ler mensagens em trânsito, injectar novas mensagens
- Não existe controlo sobre o software sistema e aplicações remotas

Desafios: Escalabilidade

 Sistema distribuído deverá continuar a funcionar de forma eficaz mesmo que haja um crescimento significativo no número de recursos e no número de clientes

Desafios: Tratamento de Falhas

- Modelo de faltas mais complexo
 - Máquinas falham independentemente
 - Redes podem perder pacotes, trocar a sua ordem, ...
- Conhecimento parcial do estado do sistema
 - Das outras máquinas, só se sabe realmente que uma mensagem chegou, ou não chegou
 - Uma mensagem n\u00e4o chegou porque
 - Se perdeu?
 - O emissor falhou?
 - O emissor está muito lento ?
 - Podemos nunca saber ao certo!!

Desafios: Concorrência

- Utilizadores podem aceder e modificar recurso ao mesmo tempo
 - Atender 1 cliente de cada vez não seria escalável nem eficiente...
- Dados têm que permanecer consistentes
- Mais difícil de realizar mecanismos atómicos de sincronização, coordenação
- Mutexes, semáforos, monitores distribuídos normalmente não estão disponíveis
 - no caso de sistemas operativos não distribuídos

Desafios: Transparência

- de acesso: acesso a recursos deve ser feito pelas mesmas operações, quer sejam locais quer remotos
- de localização: cliente deve
 conseguir ter acesso aos recursos
 mesmo que não saiba a sua
 localização física
- de concorrência: vários processos devem operar concorrentemente sem interferências.
- de replicação: deve ser possível
 ter múltiplas instâncias de um
 mesmo recurso sem que os clientes
 reparem
 - •Para melhor fiabilidade e desempenho

- -De falhas: eventuais falhas devem ser toleradas e escondidas dos utilizadores e aplicações
- De mobilidade: os clientes e os recursos devem poder mover-se dentro do sistema sem que isso afecte a operação dos mesmos
- -De desempenho: deve ser possível reconfigurar o sistema para melhorar desempenho à medida que a carga varie
- De escala: sistema deve ser capaz de se expandir em escala sem que para tal seja preciso alterar a estrutura do sistema nem os seus algoritmos

Desafios: Qualidade de serviço (QoS)

- Cliente que usa serviço distribuído tem expectativas de QoS, por exemplo sobre:
 - Fiabilidade do serviço
 - Segurança do serviço
 - Desempenho do serviço
- Muitas vezes, o cliente paga por determinado nível de QoS
- Sistema deve estar preparado para que, quando surgem mudanças no ambiente onde opera, se adapta de forma a manter a QoS prometida

Desafios: Dificuldade de programação

- Comunicação exclusivamente por mensagem
- Modelo de programação mais difícil
- Novos tipos de erros (timeout, ...)

Vint Cerf Actually, the Internet's going to be just fine

http://blog.ted.com/vint-cerf-actually-the-internets-going-to-be-just-fine/

