Tema 3 (Parte 1) : Comentation director del robot

TEORIA

$$x = q_2 \cos q_1$$

 $y = q_2 \sin q_1$
 $z = 0$
 $[nox] = Rot_2(q_1)$

X =	Licos qi + La cos	(9,+9)
Y =	l, cas q, + l2 cas l, sen q, + l2 sen	(9,+92)
2 =	0	
I no	- 7 = Bot - 19.	1.0.

T (q, qn)=	°A. (9.) · 'A2 (92)	n-1 An (9n)
------------	---------------------	-------------

i	ම ැ	di	Q;	d
1				
2				
17.0				
ť				

- Bit Robustin solve et eje Z orginal husta que et X original sea paralelo al X Ghal.
- di l'Traslación en el eje Z orginal hasta que ambas ejes X sion convientes.
- at 8 Traslavoir en el gr X Gnal hasta que consider ambos cityenes de los sistemas de referencia.
- ot: " Robert sobre el eje X Gral para que los ejes Z concidan.

EJEMPLOS

1 Obtener la matrie de transtormación T en 3D para el robot angular de 2 GDL de la Gigura.

$${}^{\circ}A_{i} = P_{oliz}\left(q_{i}\right) \cdot T\left(l_{11}, 0, 0\right) = \begin{pmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & l_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}c_{1} \\ s_{2} & c_{3} & c_{4} & 0 & l_{1}c_{1} \\ s_{3} & c_{4} & 0 & l_{1}c_{2} \\ s_{4} & c_{5} & c_{5} & 0 & l_{1}c_{1} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & 0 & l_{1}c_{2} \\ s_{5} & c_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} & c_{5} \\ s_{5} & c_{5} \\ s_{5} & c_{5} & c_{5} \\ s_{5} \\ s_{5} & c_{5} \\ s_$$

$$A_{2} = R_{0}L_{2}(q_{2}) \cdot T((z_{1}, 0, 0)) = \begin{pmatrix} C_{2} - S_{2} & 0 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & L_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} C_{2} - S_{2} & 0 & L_{2}C_{2} \\ S_{2} & C_{2} & 0 & L_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} c_{12} & -s_{12} & 0 & c_{1}c_{1} + c_{2}c_{12} \\ s_{12} & c_{12} & 0 & c_{1}s_{1} + c_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times = c_{1}c_{1} + c_{2}c_{12} \\ y = c_{1}s_{1} + c_{2}s_{12} \\ z = 0$$

(2) Resolución del problema cinemático directo con Denaurt - Hartenberg (DH)

	111		A SAME AND ADDRESS OF THE PARTY	
ĭ	Ot	di	Ql	di
1	9.+90°	LI	0	90°
2	92-900	L2+L3	L4	90°
3	0	93	0	0

$$IA_2 = \begin{pmatrix} 5en(q_2) & 0 & -cos(q_2) & LYsen(q_2) \\ -cos(q_2) & 0 & -sen(q_2) & -LYcos(q_2) \\ 0 & i & 0 & L2 + L3 \end{pmatrix}$$

$${}^{\circ}A_{i} = \begin{pmatrix} -\sec(q_{i}) & 0 & \cos(q_{i}) & 0 \\ \cos(q_{i}) & 0 & \sec(q_{i}) & 0 \\ 0 & 1 & 0 & \text{L1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}A_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} = \begin{pmatrix} - *cn \{q_{1}\} sen \{q_{2}\} & cos \{q_{1}\} & cos \{q_{2}\} sen \{q_{1}\} & cos \{q_{1}\} \{L2 + L3\} - L4 sen \{q_{1}\} sen \{q_{2}\} + q_{3} cos \{q_{2}\} sen \{q_{1}\} \\ cos \{q_{1}\} sen \{q_{2}\} & sen \{q_{1}\} & cos \{q_{1}\} cos \{q_{2}\} & sen \{q_{1}\} \{L2 + L3\} + L4 cos \{q_{1}\} sen \{q_{2}\} - q_{3} cos \{q_{1}\} cos \{q_{2}\} \\ - cos \{q_{2}\} & O & - sen \{q_{2}\} & L1 - L4 cos \{q_{2}\} - q_{3} sen \{q_{2}\} \end{pmatrix}$$

(3) Obto	in la repri	esentación	grille	del robot
	ů	Ot	dr	ou	di
	1	9.	0	0'5	0
	2	92	0	0'3	-90°
	2	9.	0'2	0	0

9 Obtén la tabla de parametros D-H correspondiente al robot all'indica con giro terminal de la Gyura, inficando sus GDL y resuelve su cinemistra directos.

	A Y2	Y3 [2] [7 × × 7 0 9
de	20 9 9 Y	23	24
() [Zo 1 10 Xo	93	

7	0:	dt	Q.t	di
1	9.	۲.	0	0
2	90°	dz	0	90°
3	0	da	0	0
4	94	(4	0	0

$$cA_{i} = \begin{pmatrix} cas(q_{i}) & -scn(q_{i}) & 0 & 0 \\ scn(q_{i}) & cas(q_{i}) & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & l_{i} \\ 0 & 0 & 0 & i \end{pmatrix} = \begin{pmatrix} cas(q_{i}) & -scn(q_{i}) & 0 & 0 \\ scn(q_{i}) & cas(q_{i}) & 0 & 0 \\ 0 & 0 & i & l_{i} \\ 0 & 0 & 0 & i \end{pmatrix}$$

$$1_{A_2} = \begin{pmatrix} \cos(90^\circ) & -\sin(90^\circ) & 0 & 0 \\ \sin(90^\circ) & \cos(90^\circ) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_{4} = \begin{pmatrix} \cos(q_{4}) & -\cos(q_{4}) & 0 & 0 \\ \cos(q_{4}) & \cos(q_{4}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_{4}) & -\sin(q_{4}) & 0 & 0 \\ \sin(q_{4}) & \cos(q_{4}) & 0 & 0 \\ \cos(q_{4}) & \cos(q_{4}) & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{6}A_{1} {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} = \begin{pmatrix} -\sec{(q_{1})}\cos{(q_{4})} & \sec{(q_{1})}\sec{(q_{4})} & \cos{(q_{1})} & \cos{(q$$

5) Representación germetrica del robit manipulador industrial de 6 ejes Kuka KAS SIXX R650.

ĩ	97	di	at	de
1	9,	335	75	90°
2	92+900	0	270	0
3	93	0	90	90°
4	94+1800	295	0	90°
5	9s + 180°	0	0	900
6	96	90	0	0

t	Ct	di	at	di
1	9,-90°	152	0	90°
2	92+900	120	244	0
3	93	-93	213	0
4	94+900	83	0	90°
5	95 + 180°	83	0	90°
6	96	92	0	0

Área de Tecnología Electrónica

EJERCICIOS DEL TEMA 3 PARTE 1

Cinemática directa del robot

Ejercicio 1. Obtén la representación gráfica del robot de definido por la siguiente tabla de parámetros de Denavit-Hartenberg. Indica sus GDL y cada tipo de articulación teniendo en cuenta que las variables articulares aparecen en color rojo. Resuelve su cinemática directa.

i	θί	di	a _i	αί
1	q ₁	11	0	90
2	q ₂	0	l ₂	0
3	q ₃	0	l ₃	0

Ejercicio 2. Obtén la representación gráfica del robot de definido por la siguiente tabla de parámetros de Denavit-Hartenberg. Indica sus GDL y cada tipo de articulación. Argumenta si esta configuración de robot recibe algún nombre. Por último, resuelve su cinemática directa.

i	θί	di	ai	αί
0	0	0.5	0	0
1	q ₁	0	0.7	0
2	q ₂	0	0.7	0
3	0	q ₃	0	0
4	Q4	0	0	0

Nota: La fila i = 0 representa la base (fija) del robot

Ejercicio 3. Extrae la tabla de parámetros de Denavit-Hartenberg y resuelve la cinemática directa del robot con una articulación prismática y tres de rotación (tipo R-R-T) de la figura:

Área de Tecnología Electrónica

Ejercicio 4. La figura indica las dimensiones, en mm, de los eslabones que componen el robot industrial ABB IRB 120, y la posición y orientación de los seis sistemas de referencia del robot. Con ellos, extrae la tabla de parámetros de Denavit-Hartenberg del IRB 120.

Ejercicio 5. El robot de la figura tiene qi coordenadas articulares y su TCP está centrado en el extremo del elemento terminal.

- a) Extrae su representación de Denavit-Hartenberg, dibujando los sistemas de referencia Si necesarios de acuerdo al estándar D-H (puedes usar la figura para representar los Si)
- b) Resuelve su cinemática directa sólo para la posición (x,y,z) del elemento terminal.

Robótica Industrial

Área de Tecnología Electrónica

Ejercicio 6. Las figuras muestran la geometría y dimensiones de un robot manipulador industrial de 6 ejes Kuka KR 16, usado para operaciones de soldadura. Su TCP está centrado en el extremo del elemento terminal, y puede rotar.

- a) Dibuja un boceto del robot que incluya los sistemas de referencia Si de acuerdo al estándar Denavit-Hartenberg. Puedes utilizar offsets, pero debes justificarlo.
- b) Extrae su representación de Denavit-Hartenberg,

Apuntes Robolica Industrial &

Tena 3 (Parte 1) & Chematica Streets del robot

EJERCICIOS

1)				
1	0:	di	Q;	ott
1	۹,	۲,	0	90°
2	92	0	(2	0
3	93	0	L ₃	0

$${}^{\circ}A_{i} = \begin{pmatrix} \cos(q_{1}) & -\sin(q_{1}) & \circ & \circ \\ \cos(q_{1}) & \cos(q_{1}) & \circ & \circ \\ \circ & \circ & i & \circ \\ \circ & \circ & \circ & i \end{pmatrix}, \begin{pmatrix} 1 & \circ & \circ & \circ \\ \circ & i & \circ & \circ \\ \circ & \circ & i & i \\ \circ & \circ & \circ & i \end{pmatrix}, \begin{pmatrix} 1 & \circ & \circ & \circ \\ \circ & i & \circ & \circ \\ \circ & \circ & i & i \\ \circ & \circ & \circ & i \end{pmatrix}, \begin{pmatrix} 1 & \circ & \circ & \circ \\ \circ & \cos(q_{0}) & -\sin(q_{0}) & \circ \\ \circ & \cos(q_{0}) & -\sin(q_{0}) & \circ \\ \circ & \cos(q_{0}) & -\cos(q_{1}) & \circ \\ \circ & \cos(q_{0}) & -\cos(q_{1}) & \circ \\ \circ & \cos(q_{0}) & -\cos(q_{1}) & \circ \\ \circ & \circ & \circ & i \end{pmatrix} = \begin{pmatrix} \cos(q_{1}) & \circ & \sin(q_{1}) & \circ \\ \cos(q_{1}) & \circ & -\cos(q_{1}) & \circ \\ -\cos(q_{1}) & \circ & -\cos(q_{1}) & \circ \\ -\cos(q_{1}) & -\cos(q_{1}) & -\cos(q_{1}) & -\cos(q_{1}) & \circ \\ -\cos(q_{1}) & -\cos$$

$$fA_2 = \begin{pmatrix} \cos(q_2) & -\sin(q_2) & 0 & 0 \\ \sin(q_1) & \cos(q_2) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 1_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_2) & -\sin(q_2) & 0 & 1_2 \cos(q_2) \\ \sin(q_2) & \cos(q_2) & 0 & 1_2 \cos(q_2) \\ \cos(q_2) & \cos(q_2) & 0 & 1_2 \cos(q_2) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} \cos(q_3) & -\sin(q_3) & 0 & 0 \\ -\sin(q_3) & \cos(q_3) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_3) & -\sin(q_3) & 0 & 0 \\ \cos(q_3) & \cos(q_3) & 0 & 0 \\ -\cos(q_3) & \cos(q_3) & 0 & 0 \\ \cos(q_3) & \cos(q_3) & 0 & 0 \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_3) & \cos(q_3) & \cos(q_3) \\ -\cos(q_$$

$$T = {}^{\circ}A_1 {}^{\circ}A_2 {}^{2}A_3 = \begin{pmatrix} \cos(q_1)\cos(q_2+q_3) & -\cos(q_1)\sin(q_2+q_3) & \sin(q_1) & \cos(q_1)\cos(q_2+q_3) + \log\cos(q_1)\cos(q_2) \\ \sin(q_1)\cos(q_2+q_3) & -\sin(q_1)\sin(q_2+q_3) & -\cos(q_1) & \cos(q_2+q_3) + \log\sin(q_2+q_3) + \log\cos(q_2) \\ \sin(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) + \log\cos(q_2+q_3) + \log\cos(q_2+q_3) \\ \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) + \log\cos(q_2+q_3) \\ \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) + \log\cos(q_2+q_3) \\ \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) \\ \cos(q_2+q_3) & \cos(q_2+q_3) \\ \cos(q_2+q_3) & \cos(q_2+q_3) & \cos(q_2+q_3) \\$$

$$^{6}A_{o} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0'5 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{e}_{A_{i}} = \begin{pmatrix} \cos(q_{i}) & -\sin(q_{i}) & 0 & 0 \\ \sin(q_{i}) & \cos(q_{i}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_{i}) & -\sin(q_{i}) & 0 & 0 & 0 \\ \cos(q_{i}) & \cos(q_{i}) & 0 & 0 & 0 \\ \cos(q_{i}) & \cos(q_{i}) & 0 & 0 & 0 \\ \cos(q_{i}) & \cos(q_{i}) & \cos(q_{i}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \omega_{1}(q_{2}) & -\omega_{1}(q_{2}) & 0 & 0 \\ \omega_{1}(q_{2}) & -\omega_{2}(q_{2}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \omega_{2}(q_{2}) & -\omega_{1}(q_{2}) & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$z_{A_3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 9_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$3 A_{4} = \begin{pmatrix} \cos (q_{4}) & -\sin (q_{4}) & 0 & 0 \\ \sin (q_{4}) & \cos (q_{4}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{8}A_{c} \circ A, {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} = \begin{pmatrix} \cos (q_{1} + q_{2} + q_{4}) & -\sin (q_{1} + q_{2} + q_{4}) & 0 & 0 \\ 5\cos (q_{1} + q_{2} + q_{4}) & \cos (q_{1} + q_{2} + q_{4}) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

ť	O:	de	o:	di
1	90"	9,	C,	0
2	92	0	(z	0
3	93+90°	0	0	90°
4	94	(3	0	0

$$e_{A_1} = \begin{pmatrix} cos(q0^*) & -ser(q0^*) & 0 & 0 \\ ser(q0^*) & cos(q0^*) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{\dagger}A_{2} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 0 \\ \sin{(q_{2})} & \cos{(q_{2})} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos{(q_{2})} & -\sin{(q_{2})} & 0 & 1 \\ \cos{(q_{2})} & \cos{(q_{2})} & 0 & 1 \\ \cos{(q_{2})} & \cos{(q_{2})} & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} \cos (q_3 + q_0^*) & -\sin (q_3 + q_0^*) & 0 & 0 \\ \cos (q_3 + q_0^*) & \cos (q_3 + q_0^*) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos (q_0^*) & -\sin (q_0^*) & 0 \\ 0 & \cos (q_0^*) & \cos (q_3^*) & 0 & \cos (q_3^*) & 0 \\ 0 & \cos (q_3^*) & 0 & \cos (q_3^*) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\sin (q_3^*) & 0 & \cos (q_3^*) & 0 \\ \cos (q_3^*) & 0 & \cos (q_3^*) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$3A_{44} = \begin{pmatrix} \cos(q_4) & -\sin(q_4) & 0 & 0 \\ \sin(q_4) & \cos(q_4) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(q_4) & -\sin(q_4) & 0 & 0 \\ \sin(q_4) & \cos(q_4) & 0 & 0 \\ \cos(q_4) & \cos(q_4) & 0 & 0 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{\circ}A, {}^{\circ}A_{2} {}^{2}A_{3} {}^{3}A_{4} = \begin{pmatrix} -\cos(q_{4})\cos(q_{2}+q_{3}) & \sin(q_{4})\cos(q_{2}+q_{3}) & -\sin(q_{2}+q_{3}) & -\cos(q_{2}+q_{3}) & -\cos(q_{2}+q_{3}$$

$$d_{3} = 70$$

$$X_{2} = \frac{2}{90}$$

$$X_{2} = \frac{2}{90}$$

$$X_{3} = \frac{6}{90}$$

$$X_{4} = \frac{2}{90}$$

$$X_{5} = \frac{2}{90}$$

$$X_{7} = \frac{2}{90}$$

$$X_{15} = \frac{2}{90}$$

ť	01	d;	o.	di
	9,	290	0	-90°
1	02-90°	0	270	0
2	03	0	70	-90°
3	03		0	90°
4	04	302		
S	05	0	0	- 00°
6	06+180°	72	0	0

9:	di	ou	di
q,	L,	0	90°
9.+900	(z	0	90°
12.70		0	-90°
0	43		
94	0	0	90°
9.	(4+ls	0	0
	92+90°	9, L, 92+90° L2 0 93 94 0	q, l, o q ₂ +q ₀ e l ₂ o o q ₃ o q ₄ o o

$$c_{A_{1}} = \begin{pmatrix} cos(q_{1}) & -ser(q_{1}) & 0 & 0 \\ ser(q_{1}) & -ser(q_{1}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & ser(q_{0}^{*}) & -ser(q_{0}^{*}) & 0 \\ 0 & ser(q_{0}^{*}) & cos(q_{0}^{*}) & 0 \\ 0 & ser(q_{0}^{*}) & cos(q_{0}^{*}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} aec(q_{1}) & 0 & ser(q_{1}) & 0 \\ ser(q_{1}) & 0 & -ces(q_{1}) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$1A_{2} = \begin{pmatrix} \cos (q_{2} + q_{0}^{\circ}) & -\sin (q_{2} + q_{0}^{\circ}) & 0 & 0 \\ \sin (q_{2} + q_{0}^{\circ}) & \cos (q_{2} + q_{0}^{\circ}) & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos (q_{0}^{\circ}) & -\sin (q_{0}^{\circ}) & 0 \\ 0 & \cos (q_{0}^{\circ}) & \cos (q_{2}^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\sec (q_{2}) & 0 & \cos (q_{2}) & 0 \\ \cos (q_{2}) & 0 & \cos (q_{2}) & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$2A_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 93 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-90^\circ) & -\sin(-90^\circ) & 0 \\ 0 & \sin(-90^\circ) & \cos(-90^\circ) & 0 \\ 0 & \cos(-90^\circ) & \cos(-90^\circ) & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$3A_{4} = \begin{pmatrix} \exp(q_{4}) & -\sin(q_{4}) & 0 & 0 \\ \sin(q_{4}) & \cos(q_{4}) & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \cos(q_{0}) & 0 \\ 0 & \cos(q_{0}) & \cos(q_{0}) & 0 \\ 0 & \cos(q_{0}) & \cos(q_{0}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \exp(q_{1}) & 0 & \sin(q_{1}) & 0 \\ \sin(q_{1}) & 0 & \cos(q_{1}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = {}^{6}A_{1} {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} {}^{4}A_{5} = \begin{pmatrix} \times \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} -\cos(q_{1}) \sec(q_{2}) \sec(q_{4}) (k_{4} + k_{5}) + \csc(q_{1}) \cos(q_{2}) \cos(q_{4}) (k_{4} + k_{5}) + \sin(q_{1}) \cos(q_{2}) q_{3} \\ -\cos(q_{1}) \sec(q_{2}) \sin(q_{4}) (k_{4} + k_{5}) + \sin(q_{1}) \cos(q_{2}) \cos(q_{4}) (k_{4} + k_{5}) - \cos(q_{1}) k_{1} + \sin(q_{1}) \cos(q_{2}) q_{3} \\ -\cos(q_{2}) \sec(q_{4}) (k_{4} + k_{5}) + \sin(q_{2}) \cos(q_{4}) (k_{4} + k_{5}) + k_{1} + \sec(q_{2}) q_{3} \end{pmatrix}$$

6)

t	97	di	at	de
1	9,	675	260.	90°
Z	92+90°	0	690	0
3	93	0	170	90°
4	94	675	0	- 90°
5	qs	0	0	90°
6	96	200	0	0