Comparison of Dynamical Heterogeneity in Hard-Sphere and Attractive Glass Formers[†]

David R. Reichman

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

Eran Rabani

School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Phillip L. Geissler*

Department of Chemistry, University of California, and Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Received: November 30, 2004; In Final Form: March 16, 2005

Using molecular dynamics simulations, we have determined that the nature of dynamical heterogeneity in jammed liquids is very sensitive to short-ranged attractions. Weakly attractive systems differ little from dense hard-sphere and Lennard-Jones fluids. Particle motion is punctuated and tends to proceed in steps of roughly a single particle diameter. Both of these basic features change in the presence of appreciable short-ranged attractions. Transient periods of particle mobility and immobility cannot be discerned at intermediate attraction strength, for which structural relaxation is greatly enhanced. Strong attractions, known to dramatically inhibit relaxation, restore bimodality of particle motion. But in this regime, transiently mobile particles move in steps that are significantly more biased toward large displacements than those in the case of weak attractions. This modified feature of dynamical heterogeneity, which cannot be captured by conventional mode coupling theory, verifies recent predictions from a model of spatially correlated facilitating defects.

Dynamical heterogeneity is perhaps the most revealing feature of relaxation in deeply supercooled liquids. A high-temperature fluid is dynamically homogeneous in the sense that the local environment restricting fluctuations of any given particle is, for all important purposes, identical to that surrounding any other particle, even on the short time scales of basic microscopic motions. The distribution $P(\delta \mathbf{r},t)$ of particle displacements, $\delta \mathbf{r}$, as a function of time t, provides a quantitative measure of such uniformity. Results of molecular dynamics simulations indicate that $P(\delta \mathbf{r},t)$ is Gaussian over a wide range of displacements, as would be expected from a mean-field perspective, for typical dense fluids.¹ The microscopic environments constraining particle motion in a glassy material are by contrast profoundly nonuniform, even on the long time scales of large-wavelength relaxation.²⁻⁵ This fact has been clearly demonstrated by experiments that focus on dynamics of single probe molecules⁶ or subsets of molecules in a pure liquid that relax more slowly than the average.^{7,8} As a result, $P(\delta \mathbf{r},t)$ develops substantial weight in the wings, reflected in appreciably nonzero values of the non-Gaussian parameter $\alpha_2(t) = (3/5)\langle \delta r^4(t) \rangle / \langle \delta r^2(t) \rangle^2 - 1$. Microscopy studies of colloidal suspensions have confirmed this expectation.9

Through extensive computer simulations, a detailed picture of dynamical heterogeneity in simple jammed liquids (e.g., a binary mixture of Lennard-Jones spheres) has developed.¹⁰ At low temperatures, the majority of particles are confined within cages, composed of neighboring particles, that may persist for

very long times. Eventually, a rare, collective rearrangement frees a particle from its cage, transiently allowing it to move rapidly over distances comparable to a particle diameter. Since such a displacement itself facilitates local rearrangement, transient mobility appears to propagate continuously and with some degree of directionality. Schematic models of glassiness have been constructed with only these features in mind. ^{11–13} They account for a surprising variety of anomalous behaviors and yield unique scaling predictions for the length and time scales characterizing relaxation. ^{13–15}

These basic features of dynamical heterogeneity have little to do with the identity of particles comprising a glassy material or with the interactions between them. They have been reported for many model atomic liquids as well as for viscous silica, a network-forming liquid that vitrifies with qualitatively different temperature dependence.¹⁶ It is therefore tempting to presume that the scenario sketched above is universal among supercooled molecular liquids.^{12,17}

When interactions between particles in a simple liquid are augmented by strong attractions ranging over a small fraction of the particle diameter, spatially averaged dynamical quantities change in nontrivial ways. ^{18–21} This situation has been realized experimentally by adding linear chain molecules to suspensions of colloidal particles, whose direct interactions are almost purely repulsive. ²² By varying ϕ_p , one can tune the fluid from purely repulsive to strongly attractive. For a large colloid volume fraction, ϕ_c , and vanishing attraction strength ($\phi_p = 0$), the suspension is in essence a dense hard-sphere fluid with the basic phenomenology of simple supercooled liquids. As ϕ_p increases, however, relaxation accelerates significantly, such that a hard-sphere glass can be "melted" by adding attractions. ¹⁸ Beyond a

 $^{^\}dagger$ Originally submitted for the "David Chandler Festschrift" published as the April 14, 2005, issue of *J. Phys. Chem. B* (Vol. 109, No. 14).

^{*} Author to whom correspondence should be addressed. Phone: (510) 642-8716. Fax: (510) 643-5623. E-mail: geissler@cchem.berkeley.edu.

Figure 1. (a) Diffusion constant D as a function of polymer volume fraction ϕ_p . In each case, D was computed from the mean-squared displacement averaged over particle size. Inset: Potential energy of interaction V(r) as a function of the distance r between two particles with radius a for the values of ϕ_p that we have studied numerically. From the least negative minimum of V(r) to the most negative minimum, these values are $\phi_p = 0.05, 0.15, 0.2, 0.25, 0.3, 0.35$, and 0.375. (b) Non-Gaussian parameter $\alpha_2(t)$ as a function of time t.

certain value of ϕ_p , relaxation becomes instead more sluggish as more polymer is added, leading to revitrification at large ϕ_p . The changes in liquid structure, as gauged by the static structure factor, that accompany this dynamical scenario are slight compared to changes expected near phase separation.

In this paper, we examine whether the peculiar behavior of attractive colloids reflects fundamental changes in the nature of dynamical heterogeneity. Although extensive computational work has been done to characterize such heterogeneity in simple liquids, previous simulations of materials with short-ranged attractions have not focused on correlated microscopic motions. For this purpose, we have adopted the model of Puertas et al. for polymer-mediated interactions between colloids. 19,20 The effective interaction potential between a pair of colloids separated by distance r, described in detail in refs 21 and 22, is plotted in Figure 1 for the values of ϕ_p we have studied. Interactions consist of a short-ranged repulsion parametrized by the sum of the particle radii, a short-ranged attraction that mimics the polymer-induced depletion interaction, and a slowly varying, long-ranged repulsion designed to prohibit phase separation.²³ The effective range and form of each term are precisely as given in refs 21 and 22. We have focused on weakly polydisperse systems, in which these radii are drawn from a uniform distribution, $p(R) = (2 \delta a)^{-1} \theta [R - (a - \delta a)] \theta [(a + \delta$ δa) – R], with mean a and half-width $\delta a = a/10$. The Heaviside function $\theta(x)$ is defined as usual to be 1 for $x \ge 0$ and 0 for x < 0. In this paper, all quantities with units of length have been scaled by the mean radius a, and quantities with units of time have been scaled by 19 $t_0 = \sqrt{8ma^2/3k_BT}$. Here, m is a particle's mass, k_B is Boltzmann's constant, and T is temperature. We have used standard methods of molecular dynamics to propagate equilibrated systems of 1000 periodically replicated colloidal particles, stochastically rescaling colloid momenta every 101 time steps to maintain a Boltzmann distribution at reduced temperature T=4/3. We have investigated a single colloid volume fraction $\phi_c=(4\pi N/3V)a^3(1+(\delta a/a)^2)=0.55$ and several polymer volume fractions (i.e., attraction strengths as plotted in Figure 1) ranging from $\phi_p=0.05$ to $\phi_p=0.375$. Although many dynamical features change dramatically in this span of thermodynamic state points, the metastable limit of liquid—vapor phase separation is well removed. 20

To contrast features of dynamical heterogeneity unique to attractive systems with those generic to simple supercooled liquids, we have selected a colloid density for which relaxation is already very slow for $\phi_{\rm p}=0$. The self-diffusion constant $D(\phi_p)$, plotted in Figure 1 as a function of ϕ_p , thus evinces the re-entrant behavior we have described. Specifically, D increases by 2 orders of magnitude as ϕ_p approaches 0.25 and then decreases sharply for higher polymer concentrations. The equal proximity of weakly attractive ($\phi_p = 0.05$) and strongly attractive $(\phi_p = 0.375)$ states to their respective glass transitions resolves to some degree the ambiguity inherent in comparing thermodynamically dissimilar systems. To compare relaxation mechanisms at intermediate values of ϕ_p , we must take into account the great diversity of diffusivities. Here, we examine time evolution over intervals scaled such that the overall extent of relaxation is comparable for each state. We use several different measures of the extent of relaxation, including $\alpha_2(t)$, meansquared particle displacement, and the dynamic structure factor. Although these choices are somewhat arbitrary, they paint a consistent picture of changes in dynamical heterogeneity induced by short-ranged attractions.

The non-Gaussian parameter, plotted in Figure 1b as a function of time for several values of ϕ_p , indicates that short-ranged attractions effect changes more profound than simply a renormalized average time or length scale. ^{19,20} The peak of $\alpha_2(t)$ roughly locates the time of maximum dynamical heterogeneity. We denote the time corresponding to this peak as t^* . The dependence of t^* on ϕ_p closely mirrors that of the diffusion constant, reflecting a global change in relaxation time. But the shape and scale of $\alpha_2(t)$ also change significantly with attraction strength. Most notably, the peak height $\alpha_2(t^*)$ declines by nearly an order of magnitude as ϕ_p approaches 0.25, then grows rapidly for larger values of ϕ_p . This evolution strongly suggests a change in the character of microscopic dynamics. ¹⁹

The full distribution of particle displacements or of their logarithm, $\tilde{P}[\log (|\delta \mathbf{r}|),t]$, over a specific time interval (of duration t) provides a more detailed picture of microscopic rearrangements. Figure 2 shows a plot of $\tilde{P}[\log (|\delta \mathbf{r}|),\tau_0]$ for states representative of weak attractions ($\phi_p = 0.05$), strong attractions ($\phi_p = 0.375$), and intermediate attraction strength ($\phi_p = 0.25$). Since relaxation rates vary greatly among these three states, we have followed Cates et al. among motion over time intervals $\tau_0(\phi_p)$ yielding the same mean-squared displacement, $10a^2$. As reflected by $\alpha_2(t)$, the distributions at $\phi_p = 0.05$ and $\phi_p = 0.375$ are highly non-Gaussian, exhibiting distinct populations of especially mobile and especially immobile particles. Cates et al. have reported a similar bimodal distribution of $\log(|\delta r|^2)$ for strongly attractive colloids at much

Figure 2. Distributions $\tilde{P}[\log |\delta \mathbf{r}|, \tau_0]$ of the logarithm of particle displacements $|\delta \mathbf{r}|$ at time τ_0 . Results are shown for polymer volume fractions $\phi_p = 0.05$, 0.375, and 0.25 and for a Gaussian distribution of $\delta \mathbf{r}$. Times $\tau_0(\phi)$ and the width of the reference distribution were chosen to obtain a consistent mean-squared displacement, $\langle |\delta \mathbf{r}|^2 \rangle = 10a^2$.

lower densities ($\phi_c = 0.4$) and have suggested that such bimodality is a unique feature of glassy systems with strong attractive interactions. Multipeaked van Hove distribution functions, however, have been reported several times for systems lacking short-ranged attractions.^{25–27} Indeed, Figure 2 demonstrates that the distinction between mobile and immobile particles is in fact *more* pronounced when attractions are almost negligibly weak. Bimodally distributed particle displacements thus appear to be a feature common to many sluggish systems.

The glassy states with weak and strong attractions also share a degree of structure in $\tilde{P}[\log{(|\delta r|)},\tau_0]$ within the subpopulation of mobile particles. For $\phi_p=0.05$, particles clearly tend to move in discrete steps of approximately integer multiples of a typical particle diameter, 2a. This feature highlights the decoupling of diffusion and structural relaxation in jammed liquids. Although fluctuations in local environment may permit a particle to move out of its cage, density correlations persist such that the newly formed cage has a well-defined spatial relationship with the original. Stepwise motion is much less pronounced at high ϕ_p .

By contrast, the shape of $\tilde{P}[\log |\delta r|, \tau_0]$ at $\phi_p = 0.25$ is nearly that of a Gaussian, plotted for reference in Figure 2. There is evidence neither of a distinct population of immobile particles nor of stepwise motion. The statistics of single-particle displacements at intermediate attraction strength thus more strongly resemble those of a dynamically homogeneous fluid at lower density than those of a nonattractive fluid at the same density. The simplest conclusion is that the $\phi_p = 0.25$ system is in essence dynamically uniform. Evidence exists, however, that correlated motions of neighboring particles do show signs of dynamical heterogeneity.²⁸ This situation could be expected if particle displacements were dominated by movement of clusters transiently stabilized by attractions.²⁸ Heterogeneity associated with formation and decay of a cluster would not have a strong signature in $\tilde{P}[\log |\delta \mathbf{r}|, \tau_0]$ due to translation of the cluster as a whole.

The essence of a dynamical heterogeneity perspective on glassy liquids is that relaxation over any short interval is driven by a small subset of particles that are temporarily much more mobile than the average. The statistics of extreme displacements should therefore be revealing of basic relaxation mechanisms. Here, we focus on particles among the 5% most mobile over an interval of length $t^* \ll \tau_0$. We judge mobility in this case by monitoring the largest displacement $|\delta \mathbf{r}|_{max}$ of a particle from its position at the beginning of each interval. Distributions of

Figure 3. Distributions $P^{(>)}(|\delta \mathbf{r}|_{\max}, t^*)$ of maximum displacements for the 5% most mobile particles. We use as a measure of mobility $|\delta \mathbf{r}|_{\max}$, the *largest* displacement a particle undergoes (from its position at time t) during the time interval t to $t+t^*$. Distributions and displacements have been scaled to coincide at the peak of $P^{(>)}$. A scaled extreme displacement distribution is also plotted for a perfectly Brownian system of 1000 particles.

maximum displacement magnitudes for these especially mobile particles, $P^{(>)}(|\delta \mathbf{r}|_{\max},t^*)$, are plotted in Figure 3 for each of the polymer volume fractions we have studied. For purposes of comparison, we have scaled $|\delta \mathbf{r}|_{\max}$ by its most likely value $r_0(\phi_{\rm p})$ for each $\phi_{\rm p}$.

For reference, we have included in Figure 3 an extreme value distribution $\mathcal{D}_{B}^{(>)}(|\delta \mathbf{r}|)$ that would be obtained for a Brownian analogue of our system. Because maximum displacements are not easily defined for fractal trajectories, we consider in this case the displacement of a particle $|\delta \mathbf{r}|$ from its initial position only at the end of an interval. The interval length is in fact arbitrary, determining only the overall scale of the displacements, which is irrelevant for the comparison in Figure 3. In detail, we computed $\mathcal{D}_{B}^{(>)}(|\delta \mathbf{r}|)$ by repeatedly drawing N=1000 displacements from a Gaussian distribution with unit variance in all three dimensions, each time adding the 0.05N largest values to a histogram. $\mathcal{D}_{B}^{(>)}(|\delta \mathbf{r}|)$ is therefore a superposition of extreme value distributions

$$\mathcal{L}_{\mathrm{B}}^{(>)}(|\delta\mathbf{r}|) = \sum_{j=1}^{0.05N} g_{j}(|\delta\mathbf{r}|)$$

Here, $g_j(|\delta \mathbf{r}|)$ is the probability density for observing $|\delta \mathbf{r}|$ as the *j*th largest value in a sample of size *N*. In the limit $N \to \infty^{29}$

$$g_j(x) = \frac{j^j}{(j-1)!} \exp[j\bar{x}_j(x-\bar{x}_j) - je^{\bar{x}_j(x_j-\bar{x}_j)}]$$

where $\bar{x}_j = \sqrt{2\ln(j/N)}$. Because convergence to this asymptotic limit is slow, however, we have chosen to construct $\mathcal{L}_B^{(>)}(|\delta \mathbf{r}|)$ from direct sampling.

The scaled distributions in Figure 3 reveal a monotonic trend toward broadly distributed mobile particle displacements as attraction strength increases. For weak attractions, the large-displacement tail of $P^{(>)}(|\delta \mathbf{r}|_{\max},t^*)$ is attenuated relative to a simple Brownian fluid. For strong attractions, this tail is greatly enhanced. Although the overall shape of the full displacement distribution for intermediate attraction strength is roughly Gaussian, statistics of the extreme subensemble demonstrate that mobile particles nonetheless execute larger jumps (relative to

Figure 4. Representative trajectories of particles whose displacements in the xy-plane over a time interval τ_{α} are much smaller or much larger in magnitude than average. Particle traces have been projected onto this plane for graphical simplicity. Left panels depict dynamics of a strongly attractive system, $\phi_p = 0.375$. Particles among the 5% least mobile are shown in panel a, while particles among the 5% most mobile are shown in panel b. Right panels correspond to a weakly attractive system, $\phi_p = 0.05$. Again, trajectories exhibiting extremely small displacements are plotted in panel (c). Trajectories exhibiting extremely large displacements are plotted in panel (d).

the average) than in a Brownian reference system. This fact is consistent with the attraction-enhanced large-displacement tail of $\tilde{P}[\log |\delta \mathbf{r}|, \tau_0]$ plotted in Figure 2.

The comparison in Figure 3 emphasizes changes in the shape of displacement distributions. Because we have scaled distance by different lengths for different values of $\phi_{\rm p}$, these results do not directly imply that transiently mobile particles execute larger jumps in space in the case of strong attractions. They instead reflect the breadth of particle motion relative to the mean, a feature that could reflect tightening of particle cages as well as growth of facilitated regions. More direct evidence for both of these trends is provided by scrutinizing the trajectories of individual particles.

The routes traced by several particles are plotted in Figure 4 for the smallest and largest values of ϕ_p . We have chosen the duration of displayed trajectories to be τ_{α} , the time required for correlation of density fluctuations over length scales comparable to a particle diameter to decay by a factor of 3. Dynamics over this time scale, which is much larger than t^* in both cases, exhibit the full character of particle motion. This choice also allows a straightforward comparison of dynamics for weak and strong attractions, since the corresponding values of τ_{α} are very similar ($\tau_{\alpha} \approx 8 \times 10^3$ for $\phi_{p} = 0.05$ and $\tau_{\alpha} \approx$ 10^4 for $\phi_p = 0.375$). The depicted excursions of extremely immobile (Figure 4, top panels) and extremely mobile (Figure 4, bottom panels) particles reinforce the dynamical features that we have gleaned from probability distributions. The 5% least mobile particles exhibit only small fluctuations about their initial positions, both for $\phi_{\rm p}=0.375$ (Figure 4a) and for $\phi_{\rm p}=0.05$ (Figure 4c), even over this long time scale. The cages that constrain these particles' motion are clearly smaller in the case of strong attractions. The 5% most mobile particles, however, move several particle diameters during the same interval. For

the case of weak attractions in Figure 4d, the discrete nature of particle motion and correlations between subsequent cages are immediately evident. Trajectories are qualitatively different for the case of strong attractions in Figure 4b. Here, mobile particles explore much more diffuse regions. Domains of facile particle motion are clustered in space and markedly elongated, with asymmetries apparently correlated over several particle radii.

Most of the qualitative changes in dynamical heterogeneity that we have reported can be understood as consequences of changing spatial patterns of structural defects.³⁰ Models based on dynamical heterogeneity typically assume that the subtle defects that enable local relaxation are sufficiently sparse as to be statistically independent (despite significant correlations in defect dynamics). We have proposed that an important effect of short-ranged attractions is to introduce nonnegligible spatial correlations among such facilitating entities.³¹ In particular, defects should aggregate with increasing attraction strength as an indirect result of particle clustering. We argue that the overall defect concentration (loosely analogous to free volume) should remain roughly constant if particle density is held fixed, since loosening structure in one region must be accompanied by tightening in others. Microscopic regions of mobility thus grow in size but become still more sparse. This picture accounts for the broadening distributions of mobile particle displacements that we have computed. Particle trajectories depicted in Figure 4 make the agreement especially vivid. The limited spatial extent of facilitating defects in a hard-sphere glass cuts off the range of available displacements. Clustering of these defects as attractions are introduced provides increasingly extended loose regions for mobile particles to explore. Our numerical results provide strong evidence for segregation of jammed and unjammed regions of attractive liquids at high density. Such segregation is an obvious feature of attractive colloids at low $\phi_{\rm c}$, which form stable (though likely nonequilibrium) gel-like networks. In that case, the spacing between dense regions of the network establishes a minimum length scale for dynamical heterogeneity. It is remarkable that remnants of this behavior persist at a high-packing fraction, where spatial heterogeneity of liquid structure is subtle.

In summary, the change in dynamics induced by short-ranged attractions in a dense model liquid is dramatic even on the microscopic scale. Our results reveal three distinct regimes of dynamical heterogeneity. For weak attractions, mobilized particles make discrete jumps between cage structures, which may remain correlated over many jump times. For a range of intermediate attraction strengths, Gaussian particle displacement statistics suggest instead very fluid and uniform motion. The role of attractions in this regime, we suggest, is to bind small transient clusters that move on a time scale comparable to their lifetimes. Strong attractions restore some discreteness of particle displacements, presumably because transient clusters are too large to move appreciably on pertinent time scales.

Intuitively, one expects the structural changes that drive "attractive" glassiness to be associated with transient particle clusters, which may be poorly connected in space. We have demonstrated that the microscopic dynamical changes induced by short-ranged attractions are much more conspicuous. On the basis of observed spatial patterns of particle motion, we have further offered an explanation for how these changes come about and how they could generate the peculiar phenomenology of attractive colloids. Our results are consistent with a kinetic facilitation picture of supercooled liquids, provided that spatial correlations among facilitating defects are taken into account. Although extended loose domains permit large particle displacements, their growth depletes mobility in surrounding areas, which in turn inhibits relaxation of domain interfaces. We are pursuing further calculations to confirm this clustering of mobility in dense environments and to characterize the correlated fluctuations underlying fluidity at intermediate attraction strength.

Acknowledgment. We thank Laura Kaufman for useful discussions. We acknowledge the National Science Foundation (D.R.R.), the Department of Energy (P.L.G.), and the United States—Israel Binational Science Foundation (Grant No. 2002100 to D.R.R and E.R.) for financial support. D.R.R. is a Camille Dreyfus Teacher—Scholar and an Alfred P. Sloan Foundation Fellow.

References and Notes

- (1) Balucani, U.; Zoppi, M. Dynamics of the Liquid State; Oxford: New York, 1994.
- (2) Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Phys. Rev. Lett. 1997, 79, 2827–2830.
- (3) Donati, C.; Douglas, J. F.; Kob, W.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. *Phys. Rev. Lett.* **1998**, *80*, 2338–2341.
 - (4) Perera, D. N.; Harrowell, P. Phys. Rev. E 1996, 54, 1652–166.
 - (5) Yamamoto, R.; Onuki, A. Phys. Rev. E 1998, 58, 3515-3529.
- (6) Deschenes, L. A.; Vanden Bout, D. A. Science **2001**, 292, 255–258
 - (7) Russell, E. V.; Israeloff, N. E. Nature 2000, 408, 695-698.
- (8) Reinsberg, S. A.; Qiu, X. H.; Wilhelm, M.; Spiess, H.; Ediger, M. J. Chem. Phys. **2001**, 114, 7299–7302.
- (9) Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Science 2000, 287, 627–631.
- (10) Donati, C.; Glotzer, S. C.; Poole, P. H.; Kob, W.; Plimpton, S. J. *Phys. Rev. E* **1999**, *60*, 3107–3119.
 - (11) Butler, S.; Harrowell, P. J. Chem. Phys. 1991, 95, 4454-4465.
- (12) Garrahan, J. P.; Chandler, D. Proc. Nat. Acad. Sci. U.S.A. 2003, 100, 9710-9714.
 - (13) Garrahan, J. P.: Chandler, D. Phys. Rev. Lett. 2002, 89, 035704.
- (14) Whitelam, S.; Berthier, L.; Garrahan, J. P. Phys. Rev. Lett. 2002, 92, 185705.

- (15) Whitelam, S.; Garrahan, J. P. Facilitated spin models in one dimension: A real-space renormalization group study. cond-mat/0405647.
- (16) Vogel, M.; Glotzer, S. C. Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica. cond-mat/0404733.
 - (17) Berthier, L.; Garrahan, J. P. Unpublished work.
- (18) Dawson, K.; Foffi, G.; Fuchs, M.; Götze, W.; Sciortino, F.; Sperl, M.; Tartaglia, P.; Voigtmann, T.; Zaccarelli, E. *Phys. Rev. E* **2001**, *63*, 011401.
- (19) Puertas, A. M.; Fuchs, M.; Cates, M. E. *Phys. Rev. Lett.* **2002**, 88, 098301
- (20) Puertas, A. M.; Fuchs, M.; Cates, M. E. *Phys. Rev. E* **2003**, *67*, 031406.
- (21) Fabbian, L.; Götze, W.; Sciortino, F.; Tartaglia, P.; Thiery, F. Phys. Rev. E 1999, 59, R1347—R1350.
- (22) Pham, K. N.; Puertas, A. M.; Bergenholtz, J.; Egelhaaf, S. U.; Moussaid, A.; Pusey, P. N.; Schofield, A. B.; Cates, M. E.; Fuchs, M.; Poon, W. C. K. *Science* **2002**, *296*, 104–106.
- (23) The effect of such a term on the type of heterogeneous motion discussed here has not been unambiguously demonstrated. Nor is it clear that such a repulsion exists between colloidal particles studied in experiments
- (24) Cates, M. E.; Fuchs, M.; Kroy, K.; Poon, W. C. K.; Puertas, A. M. J. Phys.: Condens. Matter 2004, 16, S4861.
- (25) Schroder, T. B.; Sastry, S.; Dyre, J. C.; Glotzer, S. C. J. Chem. Phys. 2000, 112, 9384.
 - (26) Yamamoto, R.; Onuki, A. Phys. Rev. Lett. 1998, 81, 4915.
 - (27) Murarka, R. K.; Bagchi, B. Phys. Rev. E 2003, 67, 051504.
- (28) Reichman, D. R.; Rabani, E.; Geissler, P. L. Unpublished work.
- (29) Gumbel, E. J. Statistics of Extremes; Columbia University Press: New York, 1958.
- (30) After this work was submitted, we became aware of related work in press by Puertas, Fuchs, and Cates (which appeared as *J. Chem. Phys.* **2004**, *121*, 2813). That work also confirms the earlier central ideas contained in the theory of Geissler and Reichman (cond-mat/0402673). Their conclusions differ from those presented in this paper in that they view the bimodal distribution of particle displacements as indicative of a form of dynamical heterogeneity unique to systems with attractive interactions. We contend that this bimodality is generic to glassy systems. The study of Puertas et al. further differs from our own in focusing on a much lower volume fraction, for which there is no corresponding repulsive glassy state to compare. It is interesting that much of the behavior they reported exists even at the very high volume fractions studied here.
 - (31) Geissler, P. L.; Reichman, D. R. Phys. Rev. E. 2005, 71, 031206.