UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 2 (parte I v II)

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

Ejercicio 1 Sea $f: \mathcal{X} \to \mathcal{Y}$ una función. Demuestra que $F: \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y})$ y $G: \mathcal{P}(\mathcal{Y}) \to \mathcal{P}(\mathcal{X})$ definidas como: F(A) = f(A) y $G(A) = f^{-1}(A)$, son funciones.

Ejercicio 2 Sean $f: A \to C$ y $g: A \to B$ funciones. Demostrar que existe una función $h: B \to C$ tal que $f = h \circ g$ si y solo si para cada $x, y \in A$ g(x) = g(y) implica f(x) = f(y).

Ejercicio 3 Sean $A \neq \emptyset$ y $B \neq \emptyset$ conjuntos. Para cualquier conjunto C y cualesquiera funciones $f_1: C \to A$ y $f_2: C \to B$ existe una única función $f: C \to A \times B$ tal que $f_1 = p_1 \circ f$ y $f_2 = p_2 \circ f$. (Las funciones f_1 y f_2 se denominan funciones coordenadas)

Ejercicio 4 Demuestra que si $I \neq \emptyset$ y algún $A_{\alpha} = \emptyset$ si y solo si $\prod_{\alpha \in I} A_{\alpha} = \emptyset$.

Ejercicio 5 Sea $I \neq \emptyset$ un conjunto de índices. Considera dos familias indizadas $\{A_{\alpha}\}_{\alpha \in I}$ y $\{B_{\alpha}\}_{\alpha \in I}$. Demuestra lo siguiente:

1. Si $A_{\alpha}\subseteq B_{\alpha}$ para cada $\alpha\in I,$ entonces

$$\prod_{\alpha\in I}A_\alpha\subseteq\prod_{\alpha\in I}B_\alpha$$

.

2. El recíproco de 1 se cumple si $\prod_{\alpha \in I} A_\alpha \neq \emptyset$

Ejercicio 6 Sea la relación E en \mathcal{R}^2 definida por $E = \{((x_1,y_1),(x_2,y_2))|\ y_1-x_1^2=y_2-x_2^2\}$. Demuestre que E es de equivalencia y describa las clases de equivalencia.

Ejercicio 7 Sea R una relación reflexiva y transitiva. Defina \approx en A por $a \approx b$ si y sólo si $(a,b) \in R$ y $(b,a) \in R$.

- (a) Muestre que \approx es una relación de equivalencia en A.
- (b) Si \leq se define por $[a] \leq [b]$ si y sólo si $(a,b) \in R$; muestre que $(A/\approx, \leq)$ es un conjunto ordenado.

Ejercicio 8 Sea R un orden en A. Pruebe que R^{-1} es también un orden en A (denominado dual de R) y para $B \subseteq A$ se cumple que

- (a) a es el mínimo elemento de B en R^{-1} si y sólo si a es el máximo elemento de B en R.
- (b) Similarmente para minimal y maximal, y supremo e ínfimo.

Ejercicio 9 Muestre que h es un isomorfismo entre (A, \leq) y (B, \preceq) si y sólo si h y h^{-1} preservan el orden.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

EXAMEN: Tarea 2 (parte I y II)
	-	•

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:_

Ejercicio 10 Sea A ordenado por \leq , y $B \subseteq A$. Demuestra lo siguiente:

- (a) B tiene a lo más un elemento mínimo.
- (b) El elemento mínimo de B (si existe) es también minimal.
- (c) Si B es una cadena, entonces todo elemento minimal de B es también un mínimo.