Problem 1

a) Let $f(n) = n^3 - 21n^2 + 100$. For c = 101 and $n_0 = 1$, we have for all $n \ge n_0$, $f(n) \le cn^3$.

Moreover, $f(n) = n^2(n-21) + 100$ so for all $n \ge 21$, $f(n) \ge 0$.

So, for c = 101 and $n_0 = 21$, we have for all $n \ge n_0$, $0 \le f(n) \le cn^3$.

b) Let $f(n) = (n+10)^3$ and $g(n) = n^3$. Let us prove separately that $f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$.

First, $(n+10)^3 \ge n^3$, so $f(n) \in \Omega(g(n))$. Second, for $n_0 = 10$ and for all $n \ge n_0$, $f(n) = (n+10)^3 \le (2n)^3 = 8n^3$. This implies $f(n) \in O(g(n))$.

- c) Let c > 0 be any constant. Let n_0 be an integer such that $1000/c < \log(n_0)$, e.g. $n_0 = \lfloor 2^{1000/c} \rfloor + 1$ where $\lfloor r \rfloor$ is the greatest integer lesser or equal to r. Then for all $n \ge n_0$, $0 \le 1000n < cn \log(n)$.
- d) On the one hand, $n! = n(n-1)\cdots 2\cdot 1$ and on the other hand $n^n = \underbrace{n\cdots n}_{n-1}$

Therefore $nn! \leq n^n$ for all positive integer n.

Let c > 0 be any constant and n_0 be any integer such that $1/n_0 < c$, e.g. $n_0 = \lfloor 1/c \rfloor + 1$. Then for all $n \ge n_0$, we get $0 \le n! \le 1/nn^n < cn^n$.

e) Notice that $P(r) = \sum_{i=2^{r-1}+1}^{2^r} 1$ $i \ge \sum_{i=2^{r+1}}^{2^{r+1}} 1/2^{r+1} \ge 1/2$. Therefore $H(2^r) \ge \sum_{i=1}^r P(r) \ge r/2$ and $H(n) \in \omega(1)$.

Problem 2

- a) $-1 \le \cos(2n) \le 1$ so for all $(n, 3n^3) \le f(n) \le 7n^3$ and $f(n) \in \Theta(n^3)$. Using the maximum rule on Θ , we get $g(n) \in \Theta(n^3)$. Therefore $f(n) \in \Theta(g(n))$ (use for instance $f(n) = \Theta(n^3)$ and $n^3 = \Theta(g(n))$).
- b) Consider the ratio $f(n)/g(n) = \log(n)^3/n$ and let us show that its limit is 0 when $n \to \infty$.

For this matter, we will prove the more general result : for any $\varepsilon > 0$, $\log(n)/n^{\varepsilon} \to_{n\to\infty} 0$.

Using L'Hopital's rule, we get $\lim_{n\to\infty}\frac{\log(n)}{n^{\varepsilon}}=\lim_{n\to\infty}\frac{1/n}{\varepsilon n^{\varepsilon-1}}=\lim_{n\to\infty}\frac{1}{\varepsilon n^{\varepsilon}}=0$

Now we can use this result : $\log(n)^3/n = (\log(n)/n^{1/3})^3 \xrightarrow[n \to \infty]{} 0.$

c) Consider the ratio $f(n)/g(n) = (n)^{\frac{1}{100}}/(\log n)^2$ and show that its limit is ∞ when $n \to \infty$ as before.

Problem 3

a) False. Consider $f(n) = \begin{cases} 1 & \text{if } n \text{ even} \\ n & \text{otherwise} \end{cases}$ and g(n) = 1.

- b) True. Consider the ratio r(n) := f(n)/g(n) which is defined for all n since g is a positive function. By definition of O, there exists c > 0 and n_0 such that for all $n \ge n_0$, $r(n) \le c$. It remains to take the maximum of c and of all the values of r(n) for $n < n_0$ to get a universal bound.
- c) False. Take $f(n) = \log(n)$ and $g(n) = 2\log(n)$. Then $2^{f(n)} = n$ and $2^{g(n)} = n$ n^2 .
- d) True. $h(n) \in \Theta(g(n))$ implies $g(n) \in \Theta(h(n))$. Use $f(n) \in \Theta(g(n))$ to get $f(n) \in \Theta(h(n))$. Multiply by the well-defined function 1/h(n) to get $f(n)/h(n) \in \Theta(1)$.
- e) Let $h(n) = \max(f(n), g(n))$ and $l(n) = \min(f(n), g(n))$. Then $\frac{f(n)g(n)}{f(n)+g(n)} = \frac{l(n)h(n)}{l(n)+h(n)}$. Since $h(n)+l(n) \in \Theta(h(n))$, we get $\frac{f(n)g(n)}{f(n)+g(n)} \in \Theta(l(n))$ as claimed.

Problem 4

a) Let $n=2^r$. Then

Let
$$n = 2^r$$
. Then
$$f(n) = \sum_{i=0}^r 4^i \left(\frac{2^r}{2^i}\right)^{\theta} = 2^{r\theta} \sum_{i=0}^r (4/2^{\theta})^i = \begin{cases} 2^{r\theta} (r+1) & = n^2 (\log(n)+1) & \text{if } \theta = 2\\ 2^{r\theta} \frac{1}{1-1/2} & = n^3 (2-1/n) & \text{if } \theta = 3 \end{cases}$$

- b) If $\theta = 2$ then $g(n) \in \Theta(n^2 \log(n))$. If $\theta = 3$ then $g(n) \in \Theta(n^3)$.
- c) Since f(n) is increasing, we get $f(2^{r-1}) \leq f(n) \leq g(n) = f(2^r)$ where r = $\lceil \log_2(n) \rceil$. Therefore $f(2^{n-1})/f(2^r) \leqslant f(n)/g(n) \leqslant 1$. Since $f(2^{r-1})/f(2^r) \in$ $\Theta(1)$ in both cases $\theta = 2, 3$, we conclude $f(n) = \Theta(g(n))$ and

$$f(n) \in \begin{cases} \Theta(n^2 \log(n)) & \text{if } \theta = 2\\ \Theta(n^3) & \text{if } \theta = 3 \end{cases}.$$

Problem 5

1. Denote by s_i the value of s after i loop iteration. We take $s_0 = n$. Assume that our program never ends. Let i be an integer. If s_i is even then $s_{i+1} =$ $s_i/2$ and $s_{i+2} \leqslant s_{i+1} + 1 = s_i/2 + 1$. If s_i is odd then $s_{i+2} = (s_i + 1)/2 \leqslant s_i/2$ $s_i/2 + 1$.

We know that $s_i > 2$ because otherwise, the program would stop at this step or the next step. Now, if $s_i > 2$, then $s_{i+2} \leq s_i/2 + 1 < s_i$. So the sequence $(s_{2n})_{n\in\mathbb{N}}$ is a strictly decreasing sequence of positive integer. Contradiction.

2. If $s_i \leq 3$ then $s_{i+2} \leq s_i/2 + 1 \leq s_i(1/2 + 1/3) = (5/6)s_i$. Consider the sequence $s_0, s_2, \ldots, s_{2k}, \ldots$ and let s_{2k} be the first element of this sequence such that $s_{2k} < 3$. Then

$$3 \leqslant s_{2(k-1)} \leqslant (5/6)s_{2(k-2)} \leqslant \dots \leqslant (5/6)^{k-1}s_0 = (5/6)^{k-1}n$$

and so $(\log(3) - \log(n)) \leq (k-1)\log(5/6)$. The real $\log(5/6)$ is negative, so we get

$$k-1 \leqslant \frac{(\log(3) - \log(n))}{\log(5/6)} = \frac{(\log(n) - \log(3))}{\log(6/5)} \in \Theta(\log(n)).$$

Now, either $s_{2k} \leq 1$ or $s_{2k} = 2$ and we need at most one more iteration for the program to terminate. Finally, the total number of iteration is lesser than or equal to $2k+1 \in \Theta(\log(n))$.

Problem 6

Let $\mathcal{C}(A[1...n])$ be the cost of algorithm max-element on input A. Then,

$$\mathcal{C}(A[1\ldots n]) = \begin{cases} d_1 & \text{if } n=1\\ d_2 + \mathcal{C}(A[2\ldots n]) & \text{if } A[1] > \max - \text{element}(A[2\ldots p])\\ d_3 + 2\mathcal{C}(A[2\ldots n]) & \text{otherwise} \end{cases}$$
 or some integers $d_1 \leqslant d_2 \leqslant d_3$.

for some integers $d_1 \leq d_2 \leq d_3$.

• Best case: Intuitively, $\mathcal{C}(A[1\dots n])=d_2+\mathcal{C}(A[2\dots n])$ is the best that can happen. By unrolling the recursion, one get $\mathcal{C}(A[1\dots n])=2\Theta(1)+\mathcal{C}(A[3\dots n])=\dots=(n-1)\Theta(1)+\mathcal{C}(A[n\dots n])\in\Theta(n).$ It corresponds to input A sorted in decree

$$\mathcal{C}(A[1\dots n]) = 2\Theta(1) + \mathcal{C}(A[3\dots n]) = \dots = (n-1)\Theta(1) + \mathcal{C}(A[n\dots n]) \in \Theta(n)$$

It corresponds to input A sorted in decreasing order.

To actually prove it, we proceed by induction. Let us prove that the best complexity on inputs of size n is attained for decreasing A:

Initialization : All inputs of size are "decreasing".

Inductive step: The best complexity is obtained when $A[1] > \max - \text{element}(A[2 \dots n])$: $\mathcal{C}(A[1\ldots n]) = d_2 + \mathcal{C}(A[2\ldots n])$. By recursion hypothesis, $A[2\ldots n]$ must be decreasing to minimize the complexity. Therefore $A[1 \dots n]$ is decreas-

• Worst case: Similarly, we can prove that $\mathcal{C}(A[1 \dots n]) = d_3 + \mathcal{C}(A[2 \dots n])$ leads to the worst case complexity. Then,

$$C(A[1...n]) = (1+2)d_3 + 4C(A[4...n]) = \dots = (1+2+\dots+2^{n-1})d_3 + 2^nC(A[n...n]) = \Theta(2^n).$$

This complexity is attained for increasing A.