

Cartesian composition of $\Gamma-$ reset single valued neutrosophic automata

N. Mohanarao¹ and V. Karthikeyan²*

Abstract

Cartesian composition of Γ - reset single valued neutrosophic automata(SVNA) are introduce, prove that cartesian composition of Γ - reset SVNA is Γ - reset SVNA.

Keywords

Single Valued neutrosophic set, Single Valued neutrosophic automaton, Γ - reset, Cartesian Composition.

AMS Subject Classification

03D05, 20M35, 18B20, 68Q45, 68Q70, 94A45.

Article History: Received 13 October 2020; Accepted 21 December 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries
3	Single Valued Neutrosophic Automata2264
4	$\Gamma-$ Reset Single Valued Neutrosophic Automata 2264
5	
5.1	Definition
5.2	Definition
6	Conclusion
	References

1. Introduction

The theory of neutrosophy and neutrosophic set was introduced by Florentin Smarandache in 1999 [2]. The fuzzy sets was introduced by Zadeh in 1965[5]. A neutrosophic set N is a set where each element of the universe has a degree of truth, indeterminacy and falsity respectively and which lies in the non standard unit interval $]0^-, 1^+[$. Wang *et al*. [3] introduced the notion of single valued neutrosophic sets.

The fuzzy automaton was introduced Wee [4]. The concept of single valued neutrosophic finite state machine was introduced by Tahir Mahmood [1]. Cartesian composition of Γ - reset single valued neutrosophic automata(SVNA) are introduce and studied their properties. Finally, prove that

cartesian composition of Γ - reset SVNA is Γ - reset SVNA.

2. Preliminaries

Definition 2.1. [1] A fuzzy automata is triple $F = (S, A, \alpha)$ where S, A are finite non empty sets called set of states and set of input alphabets and α is fuzzy transition function in $S \times A \times S \rightarrow [0, 1]$.

Definition 2.2. [1] A fuzzy automata is triple $F = (S, A, \alpha)$ where S, A are finite non empty sets called set of states and set of input alphabets and α is fuzzy transition function in $S \times A \times S \rightarrow [0, 1]$.

Definition 2.3. Neutrosophic Set [2] Let U be the universe of discourse. A neutrosophic set (NS) N in U is characterized by a truth membership function η_N , an indeterminacy membership function ζ_N and a falsity membership function ρ_N , where η_N , ζ_N , and ρ_N are real standard or nonstandard subsets of $]0^-, 1^+[$. That is

 $N = \{\langle x, (\eta_N(x), \zeta_N(x), \rho_N(x)) \rangle, x \in U,$

 $\eta_N, \zeta_N, \rho_N \in]0^-, 1^+[]$ and with the condition $0^- \leq \sup \eta_N(x) + \sup \zeta_N(x) + \sup \rho_N(x) \leq 3^+$.

we need to take the interval [0,1] for technical applications instead of $]0^-,1^+[$.

Definition 2.4. Single Valued Neutrosophic Set [2]

Let U be the universe of discourse. A single valued neutrosophic set (NS) N in U is characterized by a truth membership function η_N , an indeterminacy membership function ζ_N and a

¹Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamilnadu, India.

² Department of Mathematics, Government College of Engineering, Dharmapuri, Tamilnadu, India.

^{*}Corresponding author: 1 mohanaraonavuluri@gmail.com; 2vkarthikau@gmail.com

falsity membership function ρ_N . $N = \{\langle x, (\eta_N(x), \zeta_N(x), \rho_N(x)) \rangle, x \in U, \eta_N, \zeta_N, \rho_N \in [0, 1]. \}$

3. Single Valued Neutrosophic Automata

Definition 3.1. [1]

F=(S,A,N) is called single valued neutrosophic automaton (SVNA for short), where S and A are non-empty finite sets called the set of states and input symbols respectively, and $N=\{\langle \eta_N(x),\zeta_N(x),\rho_N(x)\rangle\}$ is an SVNS in $S\times A\times S$. The set of all words of finite length of A is denoted by A^* . The empty word is denoted by E, and the length of each $X\in A^*$ is denoted by |X|.

Definition 3.2. [1]

F = (S, A, N) be an SVNA. Define an SVNS $N^* = \{\langle \eta_{N^*}(x), \zeta_{N^*}(x), \rho_{N^*}(x) \rangle \}$ in $S \times A^* \times S$ by

$$\eta_{N^*}(q_i, \, \boldsymbol{\varepsilon}, \, q_j) = \begin{cases} 1 & \text{if } q_i = q_j \\ 0 & \text{if } q_i \neq q_j \end{cases}$$

$$\zeta_{N^*}(q_i, \, \varepsilon, \, q_j) = \begin{cases} 0 & \text{if } q_i = q_j \\ 1 & \text{if } q_i \neq q_j \end{cases}$$

$$\rho_{N^*}(q_i, \ \varepsilon, \ q_j) = \begin{cases} 0 & \text{if } q_i = q_j \\ 1 & \text{if } q_i \neq q_j \end{cases}$$

 $\begin{array}{l} \eta_{N^*}(q_i, xy, q_j) = \vee_{q_r \in \mathcal{Q}} [\eta_{N^*}(q_i, x, q_r) \wedge \eta_{N^*}(q_r, y, q_j)], \\ \zeta_{N^*}(q_i, xy, q_j) = \wedge_{q_r \in \mathcal{Q}} [\zeta_{N^*}(q_i, x, q_r) \vee \zeta_{N^*}(q_r, y, q_j)], \\ \rho_{N^*}(q_i, xy, q_j) = \wedge_{q_r \in \mathcal{Q}} [\rho_{N^*}(q_i, x, q_r) \vee \rho_{N^*}(q_r, y, q_j)], \\ \forall q_i, q_j \in \mathcal{S}, \\ x \in A^* \ and \ y \in A. \end{array}$

4. Γ – Reset Single Valued Neutrosophic Automata

Definition 4.1. Let F = (S, A, N) be an SVNA. If F is said to be deterministic SVNA then for each $q_i \in Q$ and $x \in A$ there exists unique state q_j such that $\eta_{N^*}(q_i, x, q_j) > 0$. $\zeta_{N^*}(q_i, x, q_j) < 1$, $\rho_{N^*}(q_i, x, q_j) < 1$.

Definition 4.2. Let F = (S, A, N) be an SVNA. If F is said to be connected SVNA if for all $q_i, q_j \in S$ there exists $x \in A$ such that $\eta_N(q_i, x, q_j) > 0$. $\zeta_{N^*}(q_i, u, q_j) < 1$, $\rho_{N^*}(q_i, u, q_j) < 1$. (or) $\eta_N(q_j, x, q_i) > 0$. $\zeta_{N^*}(q_j, x, q_i) < 1$, $\rho_{N^*}(q_j, x, q_i) < 1$.

Definition 4.3. Let F = (S,A,N) be an SVNA. If F is said to be strongly connected SVNA if for all $q_i,q_j \in S$ there exists $u \in A^*$ such that $\eta_{N^*}(q_i,u,q_j) > 0$. $\zeta_{N^*}(q_i,u,q_j) < 1$, $\rho_{N^*}(q_i,u,q_j) < 1$. Equivalently, F is strongly connected if it has no proper subautomaton.

Definition 4.4. Let $\Theta = p_1, p_2, ..., p_z$ be a partition of the states set S such that if $\eta_{N^*}(q_i, x, q_j) > 0$. $\zeta_{N^*}(q_i, x, q_j) < 1$, $\rho_{N^*}(q_i, x, q_j) < 1$. for some $x \in A$ then $q_i \in p_s$ and $q_j \in p_{s+1}$. Then Θ will be called periodic partition of order $z \geq 2$. An SVNA F is periodic of period $z \geq 2$ if and only if $z = Maxcard(\Theta)$ where this maximum is taken over all periodic partitions Θ of F. If F has no periodic partition, then F is called aperiodic. Throughout this paper we consider aperiodic SVNA.

Definition 4.5. Let F = (S, A, N) be an SVNA. We say that F is said to be Γ - reset if there exists a word $w \in A^*$, $q_j \in S$ and a real number Γ with $\Gamma \in (0, 1]$ such that $\eta_{N^*}(q_i, w, q_j) \geq \Gamma > 0$, $\zeta_{N^*}(q_i, w, q_j) \leq \Gamma < 1$, $\rho_{N^*}(q_i, w, q_j) \leq \Gamma < 1$ $\forall q_i \in S$.

5. Cartesian Composition of $\Gamma-$ Reset Single Valued Neutrosophic Automata

5.1 Definition

Let $F_i = (S_i, A_i, N_i)$ be SVNA, i = 1, 2 and let $A_1 \cap A_2 = \phi$. Let $F_1 \circ F_2 = (S_1 \times S_2, A_1 \cup A_2, N_1 \circ N_2)$, where

$$(\eta_{N_1} \circ \eta_{N_2})((q_i, q_j), x, (q_k, q_l)) = \begin{cases} \eta_{N_1}(q_i, x, q_k) \\ \text{if } x \in A_1, q_j = q_l \\ \eta_{N_2}(q_j, x, q_l) \\ \text{if } x \in A_2, q_i = q_k \\ 0 \\ \text{otherwise} \end{cases}$$

$$(\zeta_{N_1} \circ \zeta_{N_2})((q_i,q_j),x,(q_k,q_l)) = egin{cases} \zeta_{N_1}(q_i,x,q_k) \ ext{if } x \in A_1,\, q_j = q_l \ \zeta_{N_2}(q_j,x,q_l) \ ext{if } x \in A_2,\, q_i = q_k \ 0 \ ext{otherwise} \end{cases}$$

$$(\rho_{N_1} \circ \rho_{N_2})((q_i, q_j), x, (q_k, q_l)) = \begin{cases} \rho_{N_1}(q_i, x, q_k) \\ \text{if } x \in A_1, q_j = q_l \\ \rho_{N_2}(q_j, x, q_l) \\ \text{if } x \in A_2, q_i = q_k \\ 0 \\ \text{otherwise} \end{cases}$$

 $\forall (q_i, q_j), (q_k, q_l) \in S_1 \times S_2, x \in A_1 \cup A_2$. Then $F_1 \circ F_2$ is called the Cartesian composition of $F_1 \circ F_2$.

5.2 Definition

Let $F_i = (S_i, A_i, N_i)$ be SVNA, i = 1, 2 and let $A_1 \cap A_2 = \phi$. Let $F_1 \circ F_2 = (S_1 \times S_2, A_1 \cup A_2, N_1 \circ N_2)$, be the cartesian composition of F_1 and F_2 . Then $\forall w \in A_1^* \cup A_2^*, w \neq \varepsilon$.

$$(\eta_{N_1^*} \circ \eta_{N_2^*})((q_i, q_j), w, (q_k, q_l)) = \begin{cases} \eta_{N_1^*}(q_i, w, q_k) \\ \text{if } w \in A_1^*, q_j = q_l \\ \eta_{N_2^*}(q_j, w, q_l) \\ \text{if } w \in A_2^*, q_i = q_k \\ 0 \\ \text{otherwise} \end{cases}$$

$$(\zeta_{N_1^*} \circ \zeta_{N_2^*})((q_i, q_j), w, (q_k, q_l)) = \begin{cases} \zeta_{N_1^*}(q_i, w, q_k) \\ \text{if } w \in A_1^*, q_j = q_l \\ \zeta_{N_2^*}(q_j, w, q_l) \\ \text{if } w \in A_2^*, q_i = q_k \\ 0 \\ \text{otherwise} \end{cases}$$

$$(\rho_{N_1^*} \circ \rho_{N_2^*})((q_i, q_j), w, (q_k, q_l)) = \begin{cases} \rho_{N_1^*}(q_i, w, q_k) \\ \text{if } w \in A_1^*, q_j = q_l \\ \rho_{N_2^*}(q_j, w, q_l) \\ \text{if } w \in A_2^*, q_i = q_k \\ 0 \\ \text{otherwise} \end{cases}$$

 $\forall (q_i, q_j), (q_k, q_l) \in S_1 \times S_2, \ w \in A_1^* \cup A_2^*$. Then $F_1 \circ F_2$ is called the Cartesian composition of $F_1 \circ F_2$.

Theorem 5.1. Let $F_i = (S_i, A_i, N_i)$ be SVNA, i = 1, 2 and let $A_1 \cap A_2 = \phi$.

Let $F_1 \circ F_2 = (S_1 \times S_2, A_1 \cup A_2, N_1 \circ N_2)$, be the cartesian composition of F_1 and F_2 .

Then $\forall w_1 \in A_1^*, w_2 \in A_2^*$

$$(\eta_{N_1^*} \circ \eta_{N_2^*})((q_i, q_j), w_1 w_2, (q_k, q_l)) = \eta_{N_1^*}(q_i, w_1, q_k) \wedge \eta_{N_2^*}(q_j, w_2, q_l)$$

$$(\zeta_{N_1^*}^{\gamma_1} \circ \zeta_{N_2^*})((q_i, q_j), w_1 w_2, (q_k, q_l)) = \zeta_{N_1^*}(q_i, w_1, q_k) \vee \zeta_{N_2^*}(q_j, w_2, q_l)$$

$$(\rho_{N_1^*} \circ \rho_{N_2^*})((q_i, q_j), w_1 w_2, (q_k, q_l)) = \rho_{N_1^*}(q_i, w_1, q_k) \vee \rho_{N_2^*}(q_j, w_2, q_l)$$

Proof. Let
$$w_1 \in A_1^*$$
, $w_2 \in A_2^*$, $(q_i,q_j),(q_k,q_l) \in S_1 \times S_2$. If $w_1 = \varepsilon = w_2$, then $w_1w_2 = \varepsilon$. Suppose $(q_i,q_j) = (q_k,q_l)$. Then $q_i = q_k$ and $q_j = q_l$. Hence,

$$(\eta_{N_1^*} \circ \eta_{N_2^*})((q_i, q_j), w_1 w_2, (q_k, q_l)) = 1 = \eta_{N_1^*}(q_i, w_1, q_k) \land \eta_{N_2^*}(q_j, w_2, q_l)$$

$$(\zeta_{N_1^*} \circ \zeta_{N_2^*})((q_i, q_j), w_1 w_2, (q_k, q_l)) = 0 = \zeta_{N_1^*}(q_i, w_1, q_k) \vee \zeta_{N_2^*}(q_j, w_2, q_l)$$

$$\begin{aligned} &\zeta_{N_1^*}(q_1,w_2,q_l) \\ &(\zeta_{N_1^*}\circ\zeta_{N_2^*})((q_i,q_j),w_1w_2,(q_k,q_l)) = 0 = \zeta_{N_1^*}(q_i,w_1,q_k) \lor \\ &\zeta_{N_1^*}(q_j,w_2,q_l) \end{aligned}$$

Suppose $(q_i, q_j) \neq (q_k, q_l)$. Then either $q_i \neq q_k$ or $q_j \neq q_l$. Then

$$\begin{split} &\eta_{N_1^*}(q_i,w_1,q_k) \, \wedge \, \eta_{N_2^*}(q_j,w_2,q_l) = 0, \\ &\zeta_{N_1^*}(q_i,w_1,q_k) \, \vee \, \zeta_{N_2^*}(q_j,w_2,q_l) = 1 \text{ and } \\ &\rho_{N_1^*}(q_i,w_1,q_k) \, \vee \, \rho_{N_2^*}(q_j,w_2,q_l) = 1. \\ &\text{If } x = \varepsilon \text{ and } y \neq \varepsilon \text{ or } x \neq \varepsilon \text{ and } y = \varepsilon \text{ then the result is holds.} \\ &\text{Now} \end{split}$$

$$\begin{split} (\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{k},q_{l})) &= \\ \vee_{(q_{r},q_{s}) \in S_{1} \times S_{2}} \left\{ (\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1},(q_{r},q_{s})) \wedge \right. \\ (\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{r},q_{s}),w_{2},(q_{k},q_{l})) &\} \\ &= \vee_{q_{r} \in S_{1}} \left\{ (\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{r},q_{l})) \wedge \right. \\ (\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{r},q_{l}),w_{2},(q_{k},q_{l})) &\} \\ &= \eta_{N_{1}^{*}}(q_{i},w_{1},q_{k}) \wedge \eta_{N_{2}^{*}}(q_{j},w_{2},q_{l}). \end{split}$$

$$\begin{split} &(\zeta_{N_{1}^{*}}\circ\zeta_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{k},q_{l})) = \\ &\wedge_{(q_{r},q_{s})\in S_{1}\times S_{2}}\left\{(\zeta_{N_{1}^{*}}\circ\zeta_{N_{2}^{*}})((q_{i},q_{j}),w_{1},(q_{r},q_{s}))\vee\\ &(\zeta_{N_{1}^{*}}\circ\zeta_{N_{2}^{*}})((q_{r},q_{s}),w_{2},(q_{k},q_{l}))\right\} \\ &= \wedge_{q_{r}\in S_{1}}\left\{(\zeta_{N_{1}^{*}}\circ\zeta_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{r},q_{l}))\vee\\ &(\zeta_{N_{1}^{*}}\circ\zeta_{N_{2}^{*}})((q_{r},q_{l}),w_{2},(q_{k},q_{l}))\right\} \\ &= \zeta_{N_{1}^{*}}(q_{i},w_{1},q_{k})\,\vee\,\zeta_{N_{2}^{*}}(q_{j},w_{2},q_{l}). \end{split}$$

$$\begin{split} (\rho_{N_{1}^{*}} \circ \rho_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{k},q_{l})) &= \\ \wedge_{(q_{r},q_{s}) \in S_{1} \times S_{2}} \{(\rho_{N_{1}^{*}} \circ \rho_{N_{2}^{*}})((q_{i},q_{j}),w_{1},(q_{r},q_{s})) \vee \\ (\rho_{N_{1}^{*}} \circ \rho_{N_{2}^{*}})((q_{r},q_{s}),w_{2},(q_{k},q_{l})) \} \\ &= \wedge_{q_{r} \in S_{1}} \{(\rho_{N_{1}^{*}} \circ \rho_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{r},q_{l})) \vee \\ (\rho_{N_{1}^{*}} \circ \rho_{N_{2}^{*}})((q_{r},q_{l}),w_{2},(q_{k},q_{l})) \} \\ &= \rho_{N_{1}^{*}}(q_{i},w_{1},q_{k}) \vee \rho_{N_{2}^{*}}(q_{j},w_{2},q_{l}). \end{split}$$

Theorem 5.2. Let $F_i = (S_i, A_i, N_i)$ be SVNA, i = 1, 2 and let $A_1 \cap A_2 = \phi$. If F_1 and F_2 are Γ - reset SVNA then cartesian composition of $F_1 \circ F_2$ is Γ - reset SVNA.

Proof. Let $F_i = (S_i, A_i, N_i)$, i = 1, 2 be Γ − reset SVNA. Then there exists a word $w_1 \in A^*$, $q_j \in S_1$ and $w_2 \in A^*$, $q_l \in S_2$ a real number Γ with Γ ∈ (0,1] such that $η_{N_1^*}(q_i, w_1, q_k) \ge Γ > 0$, $ζ_{N_1^*}(q_i, w_1, q_k) \le Γ < 1$, $ρ_{N_1^*}(q_i, w, q_k) \le Γ < 1 \ \forall q_i \in S_1$. $η_{N_2^*}(q_j, w_2, q_l) \ge Γ > 0$, $ζ_{N_2^*}(q_j, w_2, q_l) \le Γ < 1$, $ρ_{N_3^*}(q_j, w_2, q_l) \le Γ < 1 \ \forall q_j \in S_2$.

Now,

$$\begin{split} &(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w,(q_{k},q_{l})) = \\ &(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1}w_{2},(q_{k},q_{l})),w = w_{1}w_{2} \\ &= \vee_{(q_{r},q_{s}) \in S_{1} \times S_{2}} \{(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1},(q_{r},q_{s})) \wedge \\ &(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{r},q_{s}),w_{2},(q_{k},q_{l})) \} \\ &= \vee_{q_{r}} \in S_{1} \{(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{i},q_{j}),w_{1},(q_{r},q_{j})) \wedge \\ &(\eta_{N_{1}^{*}} \circ \eta_{N_{2}^{*}})((q_{r},q_{j}),w_{2},(q_{k},q_{l})) \} \\ &= \eta_{N_{1}^{*}}(q_{i},w_{1},q_{k}) \wedge \eta_{N_{2}^{*}}(q_{j},w_{2},q_{l}). \end{split}$$

Hence, the cartesian composition of $F_1 \circ F_2$ is Γ -reset SVNA.

6. Conclusion

Cartesian composition of Γ - reset single valued neutrosophic automata(SVNA) are introduce, prove that cartesian composition of Γ - reset SVNA is Γ - reset SVNA.

References

- [1] T. Mahmood, and Q. Khan, Interval neutrosophic finite switchboard state machine, *Afr. Mat.* 20(2)(2016),191-210.
- [2] F. Smarandache, A Unifying Field in Logics, Neutrosophy: *Neutrosophic Probability, set and Logic, Rehoboth: American Research Press,* (1999).
- [3] H. Wang, F. Smarandache, Y.Q. Zhang, and R. Sunderraman *Single Valued Neutrosophic Sets*, Multispace and Multistructure, 4(2010), 410–413.
- [4] W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification Ph.D. Thesis, Purdue University, (1967).
- ^[5] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3)(1965),338–353.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666

X