Implementation of an Iterative Linear Quadratic Regulator (iLQR)

Gabriel Desfrene Antoine Groudiev

January 14, 2025

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

General formulation

Dynamics function:

$$x_{t+1} = f(x_t, u_t)$$

- Goal: minimize a quadratic cost function
- Cost function:

$$J(u) = \sum_{t=0}^{T-1} \left(x_t^{\top} Q x_t + u_t^{\top} R u_t \right) + \frac{1}{2} (x_T - x^*)^{\top} Q_f(x_T - x^*)$$

- Q: state cost matrix
- Q_f : final state cost matrix
- R: control cost matrix

Example: Simple Pendulum

- State: $x = [\theta \ \dot{\theta}]$
- Control: u, torque applied to the pendulum
- Dynamics: physical laws (simulator)
- Target: $x = [0 \ 0]$
- Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_2$, $Q = 0_2$, $R = rI_1$

Example: Cartpole

- State: $x = [y \ \theta \ \dot{y} \ \dot{\theta}]$
- Control: u, force applied to the cart
- Dynamics: physical laws (simulator)
- Target: $x = [0 \ 0 \ 0 \ 0]$
- Cost function:

$$J(u) = \frac{1}{2} \left(\theta_f^2 + \dot{\theta}_f^2 + y_f^2 + \dot{y}_f^2 \right) + \frac{1}{2} \int_0^T r u^2(t) dt$$

corresponding to $Q_f = I_4$, $Q = 0_4$, $R = rI_1$

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

General idea

- iLQR is an iterative algorithm
- Start with an initial trajectory
- Iteratively improve it using a local linear approximation
- Stop when the trajectory converges

Linearizing the dynamics

The equation $x_{t+1} = f(x_t, u_t)$ is linearized (at each step) as:

$$\delta x_{t+1} = A_t \delta x_t + B_t \delta u_t$$

with:

- A_t : Jacobian of f with respect to x evaluated at (x_t, u_t)
- B_t : Jacobian of f with respect to u evaluated at (x_t, u_t)

We are in LQR (Linear Quadratic Regulator, cf. TP5) setup!

Trajectory refinement using LQR

- 1. Forward pass: compute the successive states (x_t) for the current controls (u_t) , and the corresponding cost J
- 2. **Backward pass**: compute the gains, i.e. how much we should change the controls in each direction to minimize the cost
- 3. Forward rollout: apply the gains to the controls to obtain a new trajectory
- 4. Repeat until convergence

Computing the Jacobians

Finite differences method

We want to compute:

- $A_t=rac{\partial f}{\partial x}(x_t,u_t)$, i.e. how much the state at time t+1 changes when we slightly change the state at time t
- $B_t=rac{\partial f}{\partial u}(x_t,u_t)$, i.e. how much the state at time t+1 changes when we slightly change the control at time t

In a black box setting, we can use finite differences:

$$[A_t]_i \approx \frac{f(x_t + \varepsilon e_i, u_t) - f(x_t - \varepsilon e_i, u_t)}{2\varepsilon}$$
$$[B_t]_i \approx \frac{f(x_t, u_t + \varepsilon e_i) - f(x_t, u_t - \varepsilon e_i)}{2\varepsilon}$$

for some small ε and the canonical basis (e_i)

Computing the Jacobians

Using Pinocchio

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

What language to use?

Python

- Easy to use
- Bindings for many libraries
- Embarrassingly slow

C++

- Fast
 - Not very funny

Rust

- Fast
- Very funny

From Rust to Python, and the other way around

API Basic usage

Problem statement

The iLQR algorithm

Our implementation

Demonstration time

Demonstration time!

Problem statement

The iLQR algorithm

Our implementation

Demonstration time