	Lloyd Louis
	TE Comps B
	9522
Q1	What is the significance of recognizing software requirements
	in the software engineering process?
	Recognizing software requirements is a critical step in the
Ans:	software engineering process as it lays the foundation for
	successful software development. Clear and comprehensive
	requirements ensure that developers understand what the
	software needs to achieve, guiding the entire development
	lifecycle. Accurate requirements minimize misunderstandings
	between stakeholders, reduce rework, and help in estimating
	resources, time, and costs. They facilitate effective
	communication between developers, designers, and clients,
	resulting in a product that aligns with user needs. Additionally,
	well-defined requirements enhance traceability, testing, and
	validation, ultimately leading to higher-quality software and
	increased customer satisfaction.

	Describe the main characteristics of different process mode
Q2	used in software development.
Ans:	Various process models are employed in software developmen
	each offering distinct characteristics to address specific
	project requirements.
	1. Waterfall Model: This linear, sequential model progresses
	through discrete phases like requirements, design,
	implementation, testing, and maintenance. It suits well-defin
	projects with stable requirements, but lacks flexibility for
	changes after initial stages.
	2. Agile Model: Agile methods (Scrum, Kanban) emphasize
	iterative development and collaboration. Projects are divided
	into small increments (sprints) with continuous feedback.
	Flexibility to adapt to changing requirements is a key featur
	3. Iterative Model: This cyclic approach involves repeating
	development phases in iterations. Each iteration produces a
	partial product incrementally, allowing for early user feedba
	and evolution of the product.
	4. Spiral Model: It combines iterative development and risk
	assessment. Projects progress through multiple cycles, each
	refining the product based on lessons learned and risk

analysis. Well-suited for large, complex projects.
5. V-Model (Verification and Validation Model): This model
correlates development phases with testing phases. Each
development stage is paired with a testing phase to ensure
thorough validation and verification.
6. Incremental Model: Development occurs in small,
manageable parts. Each part builds upon the previous
increment, leading to a complete system. Useful when early
deployment of partial functionalities is desired.
7. RAD (Rapid Application Development): Focuses on quickly
producing prototypes, involving users for feedback. Speedy
development is favored, often for time-sensitive projects.
8. DevOps: Combines development and operations, aiming for
continuous integration, delivery, and deployment. Automation,
collaboration, and rapid iteration are its defining traits.
9. Lean Development: Inspired by lean manufacturing, it aims
to eliminate waste and deliver value efficiently. Streamlining
processes and minimizing unnecessary features are its core
principles.

Q3	How does the Capability Maturity Model (CMM) contribute to
	improving software development processes?
Ans:	The Capability Maturity Model (CMM) is a framework that
	aids in enhancing software development processes by providing
	a structured path for organizations to improve their practices.
	CMM defines a five-level maturity scale, from initial (chaotic)
	to optimizing (innovative). It encourages organizations to
	assess and refine their processes systematically, promoting
	consistency and repeatability. By identifying weaknesses and
	areas for improvement, CMM guides organizations to higher
	levels of maturity where processes are well-defined, controlled,
	and continuously improved. This results in increased efficiency,
	better quality products, reduced risks, and improved project
	management. CMM's stepwise approach offers a roadmap for
	organizations to evolve, aligning their practices with industry
	best standards and achieving more predictable and successful
	software development outcomes.

Explain the differences between prescriptive process models
and evolutionary process models.
Prescriptive process models and evolutionary process models are
two distinct approaches in software development.
Prescriptive Process Models (e.g., Waterfall, V-Model) follow
a sequential, planned path. They emphasize detailed planning
upfront, with clear phases and predefined sequences. Each
phase must be completed before moving to the next, making
them suitable for projects with stable requirements. Changes
are difficult to accommodate after initial stages, potentially
leading to rigid development.
Evolutionary Process Models (e.g., Agile, Iterative, Spiral)
embrace flexibility and adaptability. They acknowledge that
requirements can evolve and change over time. These models
encourage iterative development, emphasizing collaboration and
feedback. Incremental changes are made in cycles, allowing for
continuous refinement and responding to user needs. This
approach suits projects where requirements are uncertain or
dynamic.

I

0.0	
Q5	Provide examples of situations where using a specific process
	model would be more suitable.
Ans:	The examples for the each specific models are as follows:
	1. Waterfall Model: The Waterfall model is suitable for projec
	with well-defined and stable requirements, like building a simp
	website. When the scope is clear and changes are unlikely, th
	linear phases ensure systematic development.
	2. Agile (Scrum): Agile is ideal for projects where requirement
	may evolve, such as software for a startup. Frequent iteration
	allow for quick adjustments, enabling the development team to
	respond to changing market needs.
	3. Spiral Model: For complex systems like aerospace
	applications, the Spiral model is apt. Its iterative nature
	accommodates risk analysis and gradual enhancements,
	providing a systematic way to manage evolving requirements
	and mitigating uncertainties.
	4. Rapid Application Development (RAD): When a customer
	needs a fast prototype, RAD is effective. For instance, creatin
	a prototype for user feedback in a mobile app development
	project before full-scale implementation.

 5. V-Model: In safety-critical domains like medical devices, the
V-Model is fitting. It pairs each development phase with its
testing counterpart, ensuring thorough verification and
validation, crucial for compliance and reliability.
6. Lean Development: For startups aiming to minimize waste
and swiftly deliver value, Lean Development works. By focusing
 on core features and reducing unnecessary complexities, it
 accelerates product launch.

Q6	Compare and contrast the Waterfall model and Agile
	methodologies in terms of project planning and progress
	tracking.
Ans:	Waterfall Model:
	Project Planning:
	1. In Waterfall, project planning is comprehensive and occur
	primarily at the beginning. All requirements are gathered
	upfront and a detailed project plan is established.
	2. Project scope, schedule, and resources are fixed early on,
	making it less adaptable to changes.
	Progress Tracking:
	1. Progress is tracked through predefined milestones and
	deliverables set in the project plan.
	2. Each phase must be completed before moving to the next,
	with limited opportunity for adjustments.
	Agile Methodologies (e.g., Scrum):
	Project Planning:
	1. Agile planning is iterative and incremental. High-level the
	project progresses.

the project progresses.
2. Flexibility to adjust project scope, priorities, and
requirements in response to changing conditions.
Progress Tracking:
1. Progress is tracked through shorter timeframes called
sprints (typically 1-4 weeks).
2. Frequent communication and feedback loops with
stakeholders guide the development process.

Q7.	Apply process metrics to evaluate the efficiency and
	effectiveness of Waterfall Agile (bth Scrum & Kanban)
	methodologies, considering factors such as development speed
	adaptability to change and customer satisfaction.
Ans:	Waterfall Model:
	Efficiency:
	1. Development Speed: Generally slower due to its sequential
	nature. Each phase must be completed before moving to the
	next.
	2. Adaptability to Change: Limited adaptability, as changes a
	difficult to accommodate once a phase is completed.
	3. Customer Satisfaction: Can be mixed. If requirements are
	well-defined and aligned with customer needs, satisfaction
	might be high. However, lack of flexibility can lead to
	dissatisfaction if changes are needed.
	Effectiveness:
	1. Development Speed: Predictable in terms of milestones, but
	can face delays if initial estimates were inaccurate.
	2. Adaptability to Change: Low effectiveness in accommodation
	changes. Significant adjustments might require revisiting

earlier phases.
3. Customer Satisfaction: Effectiveness depends on how well
initial requirements match customer expectations. Less
effective if requirements evolve during development.
Agile (Scrum):
Efficiency:
1. Development Speed: Faster due to iterative nature, deliverin
functional increments in short sprints.
2. Adaptability to Change: High adaptability; changes are
expected and integrated smoothly during regular iterations.
3. Customer Satisfaction: Generally high due to continuous
collaboration and ability to adjust based on customer feedbac
Effectiveness:
1. Development Speed: Effectively delivers valuable increments
regularly, aligning with customer needs.
2. Adaptability to Change: Highly effective in responding to
changes, ensuring that evolving requirements are addressed.
3. Customer Satisfaction: Effective due to iterative feedback
loops and ability to prioritize features important to customers
Agile (Kanban):

	Efficiency:
	1. Development Speed: Balanced approach, with flexibility to
	adjust work in progress based on capacity.
	2. Adaptability to Change: High adaptability, as work items are
	pulled based on priority and capacity.
	3. Customer Satisfaction: Generally high due to real-time
	visibility and responsiveness to customer needs.
	Effectiveness:
	1. Development Speed: Effective in managing work and
	optimizing flow, leading to consistent delivery.
	2. Adaptability to Change: Highly effective in accommodating
	changes while maintaining a steady workflow.
	3. Customer Satisfaction: Effective due to continuous flow and
	adaptability, aligning with customer expectations.
Q8.	Justify the relevancy of the fallowing comparison for software
	development models.
Ans:	

ı

Date Page

22-8-23					
	Features	Waterfall	Incremental	Perototyping	Spiral
1		model	model	madel	model
	and the Lauten	tallo Janes	David - Direct	all liter	- Well
May May	Requirement	well well wall	Not well	Not well	Well
	specification	understood	understood	understood	Underston
	Understanding	Well Co	Not well		Well
	requirements	understood	understood	understood	Understan
trainer	waste de tre ma	The Internal Con	e Reinaleihoz		TO T
	Availability of	mi Noranda	yesus	yes	Yes
In.	neusable	se sienie es	u la readmen	d condess	100
	Components	, utio	por from the	= 0000 =00	
	Risk	Only at the	Nogusk	No risk 4	Yes
D.,	analysis land	beginning o	an analysis book		9
init	User betone	Only at the	Intermedi-	High!	High
	involvement	Only beginning	n ate oxaj	age time	7
	Implementation	Long	L Casilina	rear Less 110	Depende
<u> </u>	time 1110 2000	value castin	roadlegies in	And din A	on profit
	Residentiat B	ation, leading	end callaber	Leedback	1 0
	Flooribility	Rigid	Less	and High a	Flescible
	K scenes, fel	men feedbal	coulan cul		0
	Exportise	High . In	High a	medin	High
	negired				
-nf0_3 /	Cost	Yes	gellerance	all pliters	8
	control	465	and No	No	Yes
	Degates	\/ C0	,		,109
	Resource	Yes	408	No	Yes
	Control				