Теория вероятностей. Лекция двадцать шестая Моменты остановки и фильтрация

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

08.05.2019

Что разобрали:

- Марковские цепи с дискретным временем
- Марковские цепи с непрерывным временем
- Фильтрация и моменты остановки
- Мартингалы
- Предельные теоремы для стационарных процессов
- Примеры процессов

Однородные марковские цепи с непрерывным временем Пусть $t \in [0, +\infty)$ — непрерывное время, X_t принимает значения в $\{1, \ldots, r\}$.

Случайный процесс X_t называется однородной марковской цепью с непрерывным временем (марковской очередью), если для всех $0 \le t_1 < t_2 < \ldots < t_n < \tau$ и всех $i_1,\ldots,i_n,j \in \{1,\ldots,r\}$

$$p_{inj}(\tau - t_n) = \mathbb{P}(X_{\tau} = j | X_{t_n} = i_n, X_{t_{n-1}} = i_{n-1}, \dots, X_{t_1} = i_1)$$

для некоторой, зависящей от лишь от промежутка времени, матрицы $P(t) = (p_{kj}(t))_{k,j=1,\dots,r}.$

Пусть также корректно заданы
$$q_{ij} = \lim_{t \downarrow 0} \frac{p_{ij}(t) - \delta_{ij}}{t}$$
. Тогда для $Q = (q_{ij})_{i,j=1,\dots,r}$ имеем $P(t) = e^{tQ}$, то есть
$$\frac{dP(t)}{dt} = P(t)Q, \qquad \frac{dP(t)}{dt} = QP(t) \text{ (уравнения Колмогорова)}.$$

Создать марковскую цепь из уравнения. Доппостроения

Пусть даны $P(t)=e^{tQ}$ и некоторое начальное распределение p^0 . Определим случайные величины $\xi,\ \tau_i^n$ и $\eta_i^n,\ i\in\{1,\dots,r\},\ n\in\mathbb{N}$ правилами:

- lacktriangledown ξ принимает значения $\{1,\ldots,r\}$ в силу p^0 ;
- ② au_i^n случайная величина на $[0,\infty)$ с распределением $Exp(-q_{ii})$;
- η_i^n принимает значения $\{1,\ldots,r\}\setminus\{i\}$ с вероятностями $\mathbb{P}(\eta_i^n=j)=-q_{ij}/q_{ii};$
- lacktriangle все случайные величины ξ , au_i^n и η_i^n независимы.

Здесь ξ определяет начальное состояние,

 au_i^n и η_i^n — время от (n-1)-го до n-го прыжка и состояние после n-го прыжка, если после (n-1)-го прыжка было состояние i,

Создать марковскую цепь из уравнения. Результат

Положим $\xi^0 \stackrel{\triangle}{=} \xi$, $\theta^0 \stackrel{\triangle}{=} 0$, а затем, если ξ^{n-1} и θ^{n-1} построены, примем:

$$\theta^n\stackrel{\triangle}{=} \theta^{n-1} + \tau^n_{\xi^{n-1}}, \ \xi^n = \eta^n_{\xi^{n-1}}.$$

Теперь случайный процесс X_t , заданный правилами $X_t \stackrel{\triangle}{=} \xi^{n-1}$ при $t \in [\theta^{n-1}, \theta^n)$, является однородной марковской цепью с непрерывным временем с начальным распределением p^0 и матрицей переходов $P(t) = e^{tQ}$.

Пример цепи с непрерывным временем

Предположим, что у нас есть r устройств (серверов), каждый из которых может обработать не более одного запроса. Если все серверы загружены, отправляется отказ, а запрос не обрабатывается. Запросы поступают независимо; вероятность поступления каждого следующего запроса определяется экспоненциальным распределением с параметром λ , время ответа (обработки запроса) также случайно и распределено экспоненциально с параметром μ . Серверы также независимы. Найдите вероятность того, что очередной запрос не будет обработан.

В качестве моделирующей марковской цепи выберем цепь, в которой X_t равно количеству занятых серверов, т.е. $X_t \in \{0, 1, ..., r\}$. Заметим, что если все серверы свободны, то вероятность того, что придет запрос, распределена экспоненциально с параметром λ , если iсерверов заняты, то вероятность того, что хоть один сервер освободится, распределена также экспоненциально с параметром $i\mu$.

Пример. Матрица Колмогорова

Получаем матрицу Колмогорова $Q = (q_{ij})_{i,j=0,\dots,r}$

с еще не найденными $\gamma(i)$. Воспользовавшись $\sum_j q_{ij}$ = 0, имеем

Пример. Стационарное распределение

решая πQ = 0, находим единственное стационарное распределение π = $C(1,\lambda/\mu,\lambda^2/2\mu^2,\lambda^3/6\mu^3,\ldots,\lambda^{r-1}/(r-1)!\mu^{r-1},\lambda^r/r!\mu^r)$, откуда вероятность отказа равна $\pi_r = \frac{(\lambda/\mu)^r}{r!\sum_{j=0}^r (\lambda/\mu)^j/j!}$.

Пример. Обратная задача

Пусть, начиная с некоторого момента, Вы наблюдаете некоторую часть запросов, время поступления каждого, время обработки, знаете процент отказов по ним. Можете ли Вы найти λ , μ и, самое главное, количество серверов r, предполагая, что наблюдаемые Вами запросы имеют те же характеристики, что и остальные...

- 1. Как оценить μ ?
- 2. Как, предполагая известным λ , оценить r?
- 3. Какие события надо уметь отслеживать по ходу дела, чтобы все-таки оценить λ ?
- 4. В какой момент нужно остановиться, если Вам достаточно знать r лишь с вероятностью 90%...

Фильтрация

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, и время пробегает значения из $T \subset \mathbb{R}_+$, например $T = \mathbb{R}_+$ или $T = \mathbb{N} \cup \{0\}$. Никакого процесса еще нет...

Чтобы описать события, произошедшие до момента $t \in T$ включительно, рассмотрим понятие "фильтрация".

Набор σ -подалгебр $(\mathcal{F}_t)_{t\in T}$ алгебры \mathcal{F} называют фильтрацией [иногда потоком алгебр], если для всех $s\leq t$ $\mathcal{F}_s\subset \mathcal{F}_t$.

При этом, четверку $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$ называют также фильтрованным вероятностным пространством.

Подумать: будет ли являться фильтрацией $(\mathcal{F}_{t+} \stackrel{\triangle}{=} \cap_{\tau > t} \mathcal{F}_{\tau})_{t \in T}$?

В качестве "обычных условий" на $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$ дополнительно также предполагают, что \mathcal{F}_0 содержит все \mathbb{P} -пренебрежимые множества, а $\mathcal{F}_{t+} \equiv \mathcal{F}_t$.

Естественная фильтрация

Пусть $(\mathcal{F}_t)_{t\in T}$ – фильтрация, $(X_t)_{t\in T}$ – случайный процесс.

Будем говорить, что $(X_t)_{t\in T}$ согласовано с $\{\mathcal{F}_t\}_{t\in T}$, если для каждого $t\in T$ \mathcal{F}_t -измерима случайная величина $\omega\mapsto X_t(\omega)$. Говорят, что процесс $(X_t)_{t\in T}$ прогрессивно измерим, если для всех $t\in T$ $\mathcal{B}([0,t])\otimes \mathcal{F}_t$ -измеримы отображения $[0,t]\times\Omega\ni (s,\omega)\mapsto X_s(\omega)$.

Говорят, что $(\mathcal{F}_t)_{t\in T}$ – естественная фильтрация для процесса $(X_t)_{t\in T}$, если \mathcal{F}_t – наименьшая σ -алгебра, относительно которой для всех $s\leq t$ измеримы случайные величины X_s .

Подумать: В случае дискретного времени естественной фильтрацией для процесса X_t является $(\sigma(X_0, X_1, \ldots, X_t))_{t \in T}$.

Момент остановки

Случайную величину au, принимающую значения в $T \cup \{+\infty\}$, называют моментом остановки (относительно фильтрации $\{\mathcal{F}_t\}_{t \in T}$), если для всех $t \in T$ событие $\{\tau \leq t\} = \{\omega \,|\, \tau(\omega) \leq t\}$ лежит в \mathcal{F}_t .

Подумать: докажите, что все неотрицательные константы — моменты остановки.

Подумать: перевернется ли мир, если в качестве определения момента остановки взять " $\{ \tau < t \}$ лежит в \mathcal{F}_t "?

Важный пример

Пусть $T=\mathbb{N},\ \Omega$ — множество функций $\omega:\mathbb{N}\to\{-1,1\},$ \mathcal{F}_n — наименьшая σ -алгебра, содержащая множества

$$\{\omega = (\omega_1, \omega_2, \dots, \omega_n, \dots) : \omega_1 = a_1, \dots, \omega_n = a_n\}$$

для всех наборов a.

Подумать: что здесь можно взять за \mathcal{F} ?

Подумать: пока мы не задавали \mathbb{P} , принципиально ли это? Здесь моментами остановки являются

$$\tau(\omega) \stackrel{\triangle}{=} \min \left\{ n : \sum_{i=1}^{n} \omega_i = 3 \right\}, \ \sigma(\omega) = \min \{ n : \omega_n = -1 \}.$$

Подумать: всегда ли (не) является моментом остановки

$$\sigma'(\omega) = \min\{n : \omega_{n+1} = -1\}?$$

Если момента остановки уже два...

Hапомним $x \lor y = \max\{x,y\}$, $x \land y = \min\{x,y\}$.

Лемма 4. Если σ и τ – моменты остановки, то $\sigma \wedge \tau$ — тоже момент остановки.

Для доказательства достаточно увидеть

$$\{\sigma \wedge \tau \leq t\} = \{\sigma \leq t\} \cup \{\tau \leq t\} \in \mathcal{F}_t.$$

Подумать: будет ли верен аналогичный факт для $\sigma \lor \tau$, $\sigma + 1$, $\sigma + \tau$?

Пусть время непрерывно. Введем момент первого после s попадания процесса в $A \subset \mathbb{R}$: $\tau_A^s(\omega) \stackrel{\triangle}{=} \inf\{t \geq s \,|\, \exists t > s \,X_t(\omega) \in A\}$ Предложение 23. Пусть согласованный с $(\mathcal{F}_t)_{t \in T}$ случайный процесс $(X_t)_{t \in T}$ для почти всех ω имеет траектории $t \mapsto X_t(\omega)$, имеющие предел слева и непрерывные справа. Предположим, что X_t принимает лишь натуральные значения. Тогда $\tau_{\{i\}}^s$ является моментом остановки для всех $s \in \mathbb{R}$, $i \in \mathbb{N}$.

Доказательство. Заметим, что

$$\left\{\tau_{\{i\}}^{s} \leq t\right\} = \bigcup_{u \in \{t\} \cup (\mathbb{Q} \cap (s,t))} \left\{X_{u} = i\right\} \in \mathcal{F}_{t}. \qquad \forall s, t \in T, s < t.$$

Подумать: где в доказательстве использовались cádlág траектории (имеют предел слева и непрерывны справа "continue á droite, limite á gauche")?

Подумать: пройдет ли это доказательство для момента первого попадания в некоторое множество A без предположения дискретности $(X_t \in \mathbb{N})$? А если это множество A открыто, или замкнуто?

Легко видеть, что любой момент остановки можно представить в виде

$$\bar{\tau}_B(\omega) \stackrel{\triangle}{=} \inf\{t \mid \exists t \in T(t,\omega) \in B\}$$

подходящим выбором $B \subset T \times \Omega$.

Предложение 23'.[без д-ва] Пусть выполнены обычные условия на $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, \mathbb{P})$, а некоторое множество $B \subset T \times \Omega$ прогрессивно измеримо (то есть для всех $t \in T$ \mathcal{F}_t -измеримы функции $\omega \to 1_B(t, \omega)$). Тогда $\bar{\tau}_B$ является моментом остановки.

Подумать: для любого прогрессивно измеримого процесса $(X_t)_{t \in S}$ и множества $A \in \mathcal{F}_s$, τ_A^s является моментом остановки в силу Предложения 23'.

Создай σ -алгебру по моменту остановки

Пусть au — момент остановки. Введем σ -алгебру событий, произошедших до au: $\mathcal{F}_{ au} \stackrel{\triangle}{=} \{A \in \mathcal{F} : A \cap \{ au \leq t\} \in \mathcal{F}_t$ для всех $t\}$.

- \mathcal{F}_{τ} σ -алгебра.
- au измеримо относительно $\mathcal{F}_{ au}$. Действительно, $\{ au \leq c\} \cap \{ au \leq t\} = \{ au \leq c \wedge t\} \in \mathcal{F}_t$ для всех $t \in T$ и любого $c \in \mathbb{R}$. Отсюда $\{ au \leq c\} \in \mathcal{F}_{ au}$.
- Если σ, τ моменты остановки и $\sigma \leq \tau$, то $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$. Для всех $t \in T$, $A \in \mathcal{F}_{\sigma}$ достаточно убедиться, что $A \cap \{\tau \leq t\} = B \cap \{\tau \leq t\} \in \mathcal{F}_{\tau}$ для $B = (A \cap \{\sigma \leq t\}) \cap \{\sigma \wedge t \leq \tau \wedge t\} \in \mathcal{F}_{t}$.
- [без д-ва] для всякого прогрессивно измеримого процесса X_t и конечного момента остановки au случайная величина $X_{ au}$ $\mathcal{F}_{ au}$ -измерима.

Мартингал

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $\{\mathcal{F}_t\}_{t \in T}$ – фильтрация.

Говорят, что согласованный с $\{\mathcal{F}_t\}_{t\in T}$ случайный процесс $(X_t)_{t\in T}$ —

ullet мартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s = \mathbb{E}(X_t|\mathcal{F}_s);$$

ullet субмартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \leq \mathbb{E}(X_t|\mathcal{F}_s);$$

ullet супермартингал, если все $\mathbb{E}|X_t|$ существуют и для $s \leq t$

$$X_s \geq \mathbb{E}(X_t | \mathcal{F}_s).$$

Примеры мартингалов

Пусть $Y-\mathcal{F}$ -интегрируемая случайная величина, тогда $X_s\stackrel{\triangle}{=}\mathbb{E}(Y|\mathcal{F}_s)$ является мартингалом в силу $\mathbb{E}(Y|\mathcal{F}_s)=\mathbb{E}(\mathbb{E}(Y|\mathcal{F}_t)|\mathcal{F}_s)$ при $s\leq t$.

В случае дискретного времени, для процесса $(X_n)_{n\in\mathbb{N}}$ иногда берут по умолчанию его естественную фильтрацию $(\sigma(X_0,X_1,\ldots,X_n))_{n\in\mathbb{N}}$. В этом случае определение мартингала можно переписать до

$$X_{n-1} = \mathbb{E}(X_n | X_0, \dots, X_{n-1}) \quad \forall n \in \mathbb{N}.$$

На пять минут...

- 1. Убедитесь, для любых квадратных матриц A матрицы A и e^A коммутируют.
- 2. Вы решили эмулировать цепь Маркова X_t с непрерывным временем, имеющую инфинитезимальную матрицу переходных вероятностей Q, с помощью цепи Маркова $Y_n^{(\delta)}$ с дискретным временем. Вы выбрали малый шаг $\delta>0$ и желаете обеспечить $Y_n^{(\delta)} \approx X_{\delta n}$ (на самом деле даже $Y_{\lfloor t/\delta \rfloor}^{(\delta)} \stackrel{d}{\to} X_t$ при $\delta \downarrow 0$ для всех положительных t).

Подберите переходную матрицу для $Y_n^{(\delta)}$.