COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 1)

Consider a simple coffee vending machine:

- The vending machine takes R1, R2 and R5 coins as an input
- Coffee will be released after at least R7 have been inserted
- The machine does not give change

Modelling questions:

- What are the possible "states" of the machine?
- How does the insertion of coins change the "state" of the machine?

Example of accepted input: 1,5,2

Example of rejected input: 2, 1, 2, 1

Abstract Example

Consider the following abstract machine:

• The machine takes finite sequences of bits as an input, e.g.

00101111010100011101011001000

which we call an input string

• The machine only accepts input strings that end with **00**

Such a machine can be modelled as a deterministic finite automaton (DFA)

Deterministic Finite Automaton for Abstract Example

Figure: DFA that accepts only strings ending with 00

- start state: q_0 , accepting state: q_2
- transitions show how an input changes the state of the DFA

Deterministic Finite Automaton for Abstract Example

Figure: DFA that accepts only strings ending with 00

- start state: q_0 , accepting state: q_2
- transitions show how an input changes the state of the DFA
- accepted inputs: 00, 0000, 110100, ...
- non-accepted inputs: 111, 1001, 00110, . . .

DFA: Formal Definition

Definition

A deterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$, where

- Q is a finite set, whose elements are called *states*,
- Σ is a finite set, called the *alphabet*;
 - the elements of Σ are called *symbols*,
- $\delta: Q \times \Sigma \to Q$ is a function, called the *transition function*,
- q is an element of Q; it is called the start state,
- \bullet F is a subset of Q; the elements of F are called accept states.

DFA: Formal Definition

Definition

A deterministic finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$, where

- Q is a finite set, whose elements are called *states*,
- Σ is a finite set, called the *alphabet*;
 - the elements of Σ are called *symbols*,
- $\delta: Q \times \Sigma \to Q$ is a function, called the *transition function*,
- q is an element of Q; it is called the start state,
- \bullet F is a subset of Q; the elements of F are called accept states.

DFA Graphically and Formally

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0, 1\}$$

•
$$q = q_0$$

•
$$F = \{q_2\}$$

The transition function δ :

	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_0

Deterministic Finite Automaton for the Vending Machine

Consider the vending machine example:

•
$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$$

•
$$\Sigma = \{R1, R2, R5\}$$

- q_0 is the start state, $q = q_0$
- $F = \{q_7\}$
- δ is given by (complete for homework):

	R1	R2	R5
q_0	q_1	q_2	q ₅
q_1	q_2	q 3	9 6
q_2	<i>q</i> ₃	q_4	<i>q</i> ₇

Abstract Example 2

Consider the following extension of our earlier abstract example:

- The machine takes finite sequences of bits as an input
- The machine only accepts inputs that either end with **00** or with **11**

Model this machine as a deterministic finite automaton

This can be done by extending and modifying the DFA for Abstract Example $\boldsymbol{1}$

• q0 : last processed bit was not 0

• q1 : last processed bit was 0, but second last bit was not 0

• q2 : last two processed bits were 0

- q0 : last processed bit was not 0
- q2 : last two processed bits were 0
- q3 : last processed bit was 1, but second last bit was not 1
- q4 : last two processed bits were 1

- q0 : no bits processed yet
- q2 : last two processed bits were 0
- q3 : last processed bit was 1, but second last bit was not 1
- q4 : last two processed bits were 1

- q0 : no bits processed yet
- ullet q1 : last processed bit was 0, but second last bit was not 0
- q2 : last two processed bits were 0
- q3 : last processed bit was 1, but second last bit was not 1
- q4 : last two processed bits were 1

Language of an Automaton

A language is a set of strings over an alphabet.

The language L(M) of an automaton M is the set of all input strings accepted by M.

General form:

$$L(M) = \{ w : \text{string } w \text{ accepted by } M \}$$

For our abstract Example 2 we get:

$$L(M) = \{w : \text{ string } w \text{ ends with a } 00 \text{ or } 11\}$$

Subsequently, we will formally define what acceptance is.

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton and let $w = w_1 \dots w_n$ be a string over Σ . A **run** of M over w is a sequence of states q_0, \dots, q_n such that

- $q_0 = q$,
- $\delta(q_i, w_{i+1}) = q_{i+1}$, for all i < n. (the transitions along q_0, \ldots, q_n are labelled with w_1, \ldots, w_n)

A string w is **accepted** by M if the following holds for the run over w:

• $q_n \in F$.

Otherwise a string is **rejected** by M.

Note that a string w may be the empty string, denoted by $w = \epsilon$. In this case the run over w consists of the start state only.

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton and let $w = w_1 \dots w_n$ be a string over Σ . A **run** of M over w is a sequence of states q_0, \dots, q_n such that

- $q_0 = q$,
- $\delta(q_i, w_{i+1}) = q_{i+1}$, for all i < n. (the transitions along q_0, \ldots, q_n are labelled with w_1, \ldots, w_n)

Example:

For input *w*= 101100

The corresponding run is q_0 , q_0 , q_1 , q_0 , q_0 , q_1 , q_2

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton and let $w = w_1 \dots w_n$ be a string over Σ . A **run** of M over w is a sequence of states q_0, \dots, q_n such that

- $q_0 = q$,
- $\delta(q_i, w_{i+1}) = q_{i+1}$, for all i < n. (the transitions along q_0, \ldots, q_n are labelled with w_1, \ldots, w_n)

A string w is **accepted** by M if the following holds for the run over w:

• $q_n \in F$.

Otherwise a string is **rejected** by M.

Note that a string w may be the empty string, denoted by $w = \epsilon$. In this case the run over w consists of the start state only.

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton and let $w = w_1 \dots w_n$ be a string over Σ . A **run** of M over w is a sequence of states q_0, \dots, q_n such that

- $q_0 = q$,
- $\delta(q_i, w_{i+1}) = q_{i+1}$, for all i < n. (the transitions along q_0, \ldots, q_n are labelled with w_1, \ldots, w_n)

Example:

For input *w*= 101100

The corresponding run is q_0 , q_0 , q_1 , q_0 , q_0 , q_1 , q_2

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton and let $w = w_1 \dots w_n$ be a string over Σ . A **run** of M over w is a sequence of states q_0, \dots, q_n such that

- $q_0 = q$,
- $\delta(q_i, w_{i+1}) = q_{i+1}$, for all i < n. (the transitions along q_0, \ldots, q_n are labelled with w_1, \ldots, w_n)

A string w is **accepted** by M if the following holds for the run over w:

• $q_n \in F$.

Otherwise a string is **rejected** by M.

Note that a string w may be the empty string, denoted by $w = \epsilon$. In this case the run over w consists of the start state only.

Regular Languages

Definition

Let $M = (Q, \Sigma, \delta, q, F)$ be an automaton. The **language** L(M) of M is the set of all strings that are accepted by M:

$$L(M) = \{w : w \text{ is a string over } \Sigma \text{ and } M \text{ accepts } w\}$$

Definition

A language L is called **regular**, if there exists a finite automaton M such that

$$L = L(M)$$
.

How to prove that a language L is regular? Construct finite automaton M with L(M) = L (proof by construction).

Is the following language regular? Is there an M with L(M) = L?

 $L = \{ w \text{ over } \{0,1\} : \text{the third last symbol of } w \text{ is } 1 \}$

Is the following language regular? Is there an M with L(M) = L?

$$L = \{ w \text{ over } \{0,1\} : \text{the third last symbol of } w \text{ is } 1 \}$$

Idea for the construction of M with L(M) = L:

• we can observe that each string accepted by M must be of the form $w = \dots \mathbf{1} \mathbf{y} \mathbf{z}$ where $y, z \in \{0, 1\}$

Is the following language regular? Is there an M with L(M) = L?

$$L = \{ w \text{ over } \{0,1\} : \text{the third last symbol of } w \text{ is } 1 \}$$

Idea for the construction of M with L(M) = L:

- we can observe that each string accepted by M must be of the form $w = \dots \mathbf{1} \mathbf{y} \mathbf{z}$ where $y, z \in \{0, 1\}$
- we use the binary numbered states q_{000}, \ldots, q_{111} for M
- the digits shall represent the last three symbols along a run of M:

$$q_{xyz}$$

the last symbol was z, the second last was y, the third last was x

Is the following language regular? Is there an M with L(M) = L?

$$L = \{ w \text{ over } \{0,1\} : \text{the third last symbol of } w \text{ is } 1 \}$$

Idea for the construction of M with L(M) = L:

- we can observe that each string accepted by M must be of the form $w = \dots \mathbf{1} \mathbf{y} \mathbf{z}$ where $y, z \in \{0, 1\}$
- we use the binary numbered states q_{000}, \ldots, q_{111} for M
- the digits shall represent the last three symbols along a run of M:

q_{xyz}

the last symbol was \mathbf{z} , the second last was \mathbf{y} , the third last was \mathbf{x}

- we start in q_{000} (no 1's encountered so far)
- the accepting states are $q_{100}, q_{101}, q_{110}, q_{111}$

$$L = \{ w \text{ over } \{0,1\} : \text{the third last symbol of } w \text{ is } 1 \}$$
 $M \text{ with } L(M) = L.$

Definition

A language L is called **regular**, if there exists a finite automaton M such that

$$L = L(M)$$
.