Quiz, 10 questions

Introduction to deep learning
Yes! The digitalization of our society has played a huge role in this.
Quiz, 10 questions

Neural Networks are a brand new field.

Un-selected is correct

We have access to a lot more computational power.

Correct
Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.

1/1 point

3.

Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that $Iaspoduction\ to\ deep\ learning$

Quiz, 10 questions

	Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.
Corre Yes,	as discussed in Lecture 4.
	Faster computation can help speed up how long a team takes to iterate to a good idea.
Corre Yes,	as discussed in Lecture 4.
	It is faster to train on a big dataset than a small dataset.
Un-s	elected is correct
	Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

T . Cauudab . *	. 1	1 .
Intfoduction	to doon	laarning
muuuuu	to accp	rearring.

Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster Quiz, to questions

Correct

Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

1/1 point

5.

Which one of these plots represents a ReLU activation function?

Figure 1:

Figure 2:

Figure 3:

Correct

Correct! This is the ReLU activation function, the most used in neural networks.

Figure 4:

1/1 point

6.

Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer. True/False?

Correct

Yes. Images for cat recognition is an example of "unstructured" data.

1/1 point

7.

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources. True/False?

True

False

Correct

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.

1/1 point

8

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)

It can be trained as a supervised learning problem.

Correct

Yes. We can train it on many pairs of sentences x (English) and y (French).

It is strictly more powerful than a Convolutional Neural Network (CNN).

Un-selected is correct

Quiz, 10 questions

Correct

Yes. An RNN can map from a sequence of english words to a sequence of french words.

RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....

Un-selected is correct

1/1 point

9.

In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the input to the algorithm
 - y-axis is outputs.
- x-axis is the amount of data
 - y-axis (vertical axis) is the performance of the algorithm.

Quiz, 10 questions				
x-axis is the amount of data				
y-axis is the size of the model you train.				
x-axis is the performance of the algorithm				
• y-axis (vertical axis) is the amount of data.				
1/1 point				
10.				
Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)				
Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.				
Un-selected is correct				
Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.				
Correct				
Yes. Bringing more data to a model is almost always beneficial.				
Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.				
Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.				
Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.				
Un-selected is correct				

Quiz, 10 questions

