Příklad 5.1:

Vypočtěte hodnotu odporu R₁.

$$U_{AK} = 0.7V$$

$$I_A = 2mA$$

$$U_{CC} = 3,3V$$

Řešení:

Sestavíme obvodovou rovnici proudové smyčky I_A (2. Kirchhoffův zákon)

Součet svorkových napětí prvků elektrického obvodu v libovolné uzavřené smyčce se rovná nule.

$$-U_{CC}+I_A\cdot R_1+U_{AK}=0$$

Vypočteme R₁.

$$R_1 = \frac{U_{CC} - U_{AK}}{I_A},$$

$$R_1 = \frac{3.3 - 0.7}{2.10^{-3}} = 1300 \ [\Omega]$$

Příklad 5.2:

Určete pracovní bod P₀ diody v obvodu.

 $R_1=2k\Omega$, $U_{CC}=3V$

K dispozici je VA charakteristika diody.

Řešení:

Sestavíme obvodovou rovnici proudové smyčky I_A

$$-U_{CC} + I_A \cdot R_1 + U_{AK} = 0$$

Z rovnice vyjádříme proud I_A, čímž získáme základní tvar rovnice **zatěžovací přímky**:

$$I_A = \frac{U_{CC} - U_{AK}}{R_1} = \frac{U_{CC}}{R_1} - \frac{U_{AK}}{R_1} = I_K - \frac{1}{R_1} \cdot U_{AK}$$
, kde

 $I_K = U_{CC}/R_1$

je proud nakrátko a

 $-1/R_1$

je směrnice (sklon) zatěžovací přímky

Do rovnice dosadíme hodnoty ze zadání:

$$I_A = \frac{3}{2000} - \frac{U_{AK}}{2000} = 1,5.10^{-3} - 0,5.10^{-3} \cdot U_{AK}$$

Zatěžovací přímku vyneseme do charakteristiky

Dva body krajní zatěžovací přímky:

1. Proud nakrátko:

 $U_{AK} = 0 \Rightarrow I_A = I_K = 1.5 mA$

Pracovní bod diody P_0 najdeme jako průsečík zatěžovací přímky a VA charakteristiky diody. Hodnoty U_{AK} a I_A diody v pracovním bodě pak odečteme na příslušných osách.

Příklad 5.3:

Určete hodnotu R₁ tak, aby bylo U₂=1,5V při U_{CC}=3,3V K dispozici je VA charakteristika diod, předpokládejte, že obě diody mají shodnou VA charakteristiku.

Řešení:

Oběma diodami protéká shodný proud. Za předpokladu, že mají obě diody shodné VA charakteristiky, bude při shodném proudu na každé z diod také shodný úbytek napětí, tedy jedna polovina napětí U₂.

$$U_2 = 2 \cdot U_{AK} \rightarrow U_{AK} = U_2/2 = 1,5 / 2 = 0,75 \text{ V}$$

Pro výpočet hodnoty odporu R_1 potřebujeme dále zjistit velikost proudu I_A v pracovním bodě diod. Na VA charakteristice najdeme pracovní bod diody pro U_{AK} =0,75V a odečteme velikost proudu I_A v pracovním bodě.

Sestavíme obvodovou rovnici proudové smyčky I_A.

$$-U_{CC} + I_A \cdot R_1 + U_2 = 0$$
$$U_2 = 2 \cdot U_{AK}$$

Vyjádříme R₁ a vypočteme jeho hodnotu.

$$R_1 = \frac{U_{CC} - 2 \cdot U_{AK}}{I_A}$$

$$R_1 = \frac{3.3 - 2 \cdot 0.75}{3.10^{-3}} = 600 \ [\Omega]$$

Příklad 5.4:

Určete hodnotu výstupního napětí U₂ předchozího obvodu, zatíženého R₂=1kΩ.

Řešení:

Lineární část obvodu zjednodušíme z hlediska svorek výstupního napětí U_2 dle Theveninova teorému:

$$U_i = \frac{U_1 \cdot R_2}{R_1 + R_2} = \frac{3.3 \cdot 1k}{600 + 1k} = 2.06 \text{ [V]}$$

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{600 \cdot 1k}{600 + 1k} = 375 \ [\Omega]$$

Dále potřebujeme sestrojit zatěžovací přímku, určit pracovní bod diod a odečíst hodnotu napětí U_{AK} . Napětí U_2 je pak jeho dvojnásobkem. Problém je ale v tom, že máme k dispozici VA charakteristiku jedné diody. Situaci můžeme řešit dvěma způsoby.

Varianta 1: Nejdřív sestrojíme VA charakteristiku svou sériově zapojených diod a vyneseme zatěžovací přímku. Napětí v pracovním bodě pak bude rovno výstupnímu napětí U_2 .

Varianta 2: Jelikož jsou v obvodu dvě shodné diody, kterými protéká stejný proud, můžeme náhradní obvod rozdělit na dvě symetrické části a sestavit rovnici zatěžovací přímky pro jednu polovinu obvodu a výstupní napětí vypočíst jako dvojnásobek U_{AK}."

Zatěžovací přímka pro jednu symetrickou polovinu obvodu:

$$I_A = \frac{U_i / 2 - U_{AK}}{R_i / 2} = \frac{2,06 / 2}{375 / 2} - \frac{U_{AK}}{375 / 2_1} = 5,5.10^{-3} - 5,3.10^{-3} \cdot U_{AK}$$

Vyneseme do charakteristiky zatěžovací přímku, odečteme U_{AK} v pracovním bodě.

$$U_{AK} = 0.7 [V]$$

Výstupní napětí je potom:

$$U_2 = 2 \cdot U_{AK} = 1,4 \ [V]$$

Příklad 5.5:

Určete pracovní bod P_0 Zenerovy diody v obvodu. R_1 =200 Ω , U_{CC} =15V K dispozici je VA charakteristika diody.

Řešení:

Orientaci napětí U_{AK} a proudu I_A zvolíme v souladu s VA charakteristikou Zenerovy diody. U diod obecně je značí kladný směr proudu a napětí propustnou orientaci. V našem obvodu je Zenerova dioda zapojena v závěrném směru. Proto hodnoty napětí a proudu budou nabývat záporných hodnot. Sestavíme obvodovou rovnici proudové smyčky I_A

$$U_{CC} + I_A \cdot R_1 + U_{AK} = 0$$

$$I_A = \frac{-U_{CC} - U_{AK}}{R_1} = -\frac{U_{CC}}{R_1} - \frac{U_{AK}}{R_1} = -\frac{15}{200} - \frac{U_{AK}}{200}$$

$$I_A = -75.10^{-3} - 5.10^{-3} U_{AK}$$

Do charakteristiky vyneseme zatěžovací přímku. Dva mezní body zatěžovací přímky:

1. Napětí naprázdno:
$$I_A = 0 \Rightarrow U_{AK} = -15V$$

2. Proud nakrátko:
$$U_{AK} = 0 \Rightarrow I_A = \frac{U_{CC}}{R_1} = -75mA$$

$$I_A \text{ (mA)} \\ 40$$

$$I_A = 0 \Rightarrow U_{AK} = -15V$$

$$I_A = 0 \Rightarrow I_A = \frac{U_{CC}}{R_1} = -75mA$$

$$I_A \text{ (mA)} \\ 40$$

$$I_A = 0 \Rightarrow I_A = \frac{U_{CC}}{R_1} = -75mA$$

Pracovní bod diody P_0 je průsečík zatěžovací přímky a VA charakteristiky diody. Hodnoty U_{AK} a I_A diody v pracovním bodě odečteme na příslušných osách.

Příklad 5.6:

Určete pracovní bod P₀ Zenerovy diody v obvodu. $R_1=200\Omega$, $R_2=400\Omega$, $U_{CC}=15V$ K dispozici je VA charakteristika diody.

Řešení:

Lineární část obvodu zjednodušíme z hlediska svorek výstupního napětí U2 dle Theveninova teorému:

$$U_i = \frac{U_1 \cdot R_2}{R_1 + R_2} = \frac{15 \cdot 400}{200 + 400} = 10 \text{ [V]}$$

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{200 \cdot 400}{200 + 400} = 133 \ [\Omega]$$

$$U_i + I_A \cdot R_i + U_{AK} = 0$$
$$- U_i - U_{AK} \qquad U_i$$

$$I_A = \frac{-U_i - U_{AK}}{R_i} = -\frac{U_i}{R_i} - \frac{U_{AK}}{R_i} = -\frac{10}{133} - \frac{U_{AK}}{133}$$

$$I_A = -75.10^{-3} - 7.5.10^{-3} U_{AK}$$

Do charakteristiky vyneseme zatěžovací přímku. Dva mezní body zatěžovací přímky:

1. Napětí naprázdno:
$$I_A = 0 \Rightarrow U_{AK} = -10V$$

2. Proud nakrátko:
$$U_{AK} = 0 \Rightarrow I_A = \frac{U_{CC}}{R_1} = -75 \text{mA}$$

$$40$$

$$20$$

$$-14 - 12 - 10 - 8 - 6 - 4 - 2$$

$$I_A = 0 \Rightarrow U_{AK} = -10V$$

$$P_0 = \begin{bmatrix} U_{AK} = -9, 2V; I_A = -6 \text{mA} \end{bmatrix}$$

$$-40$$

Pracovní bod diody P₀ je průsečík zatěžovací přímky a VA charakteristiky diody. Hodnoty U_{AK} a I_A diody v pracovním bodě odečteme na příslušných osách.

 I_A (mA)

-60

-80

Příklad 5.7:

Pro zadané hodnoty napětí U_1 určete hodnoty napětí U_2 , je-li R_1 = R_2 = $1k\Omega$. Uvažujte VA charakteristiku diody dle obrázku. Dále určete proud diodou D_1 a proudy odpory R_1 a R_2 .

Řešení a):

Při U₁=+10V je napětí U_{AK} diody záporné, dioda nevede proud.

Pracovní bod diody se nachází v závěrné oblasti VA charakteristiky.

Jelikož charakteristika (aproximace konstantním zdrojem)

předpokládá v závěrném směru nulový závěrný proud, diodu nahradíme rozpojenými svorkami.

Výstupní napětí U₂ potom bude:

$$U_2 = U_1 \frac{R_2}{R_1 + R_2} = 10 \frac{1000}{1000 + 1000} = 5 [V]$$

Proudy:

Proud diodou D₁ je nulový. Proud odpory R₁ a R₂ je shodný a vypočteme jej z rovnice smyčky I₁:

$$-U_1 + R_1 \cdot I_1 + R_2 \cdot I_1 = 0 \implies I_1 = \frac{U_1}{R_1 + R_2} = \frac{10}{1000 + 1000} = 5 \text{ [mA]}$$

Řešení b):

Při U₁=–10V je napětí U_{AK} diody kladné, dioda vede proud.

Pracovní bod diody se nachází v propustné oblasti VA charakteristiky.

Dle přiložené charakteristiky nahradíme diodu zdrojem napětí 0,7V. Orientace náhradního zdroje napětí je v souladu s polarizací diody.

Výstupní napětí potom bude:

$$U_2 = -0.7 \text{ [V]}$$

Proudy:

V souladu s 1. a 2. Kirchhoffovým zákonem si zvolíme orientaci proudů v obvodu a sestavíme rovnice.

Rovnice smyčky I₁:

Rovnice smyčky I₂:

Rovnice uzlu l₁,l₂,l₃:

 $-U_1+I_1.R_1-I_3.R_2=0$

 $-U_2-I_3.R_2=0$

 $I_1 + I_2 + I_3 = 0$

Z rovnice smyčky I₂ určíme **proud odporem R₂**:

$$I_3 = -\frac{U_2}{R_2} = -\frac{-0.7}{1000} = 0.7 \text{ [mA]}$$

Z rovnice smyčky I_1 určíme **proud odporem R_1**:

$$I_1 = \frac{I_3.R_2 + U_1}{R_1} = -\frac{0.7.10^{-3} \cdot 1000 - 10}{1000} = -9.3 \text{ [mA]}$$

Z rovnice uzlu dopočítáme proud diodou D1 (resp. zdrojem U_2):

$$I_2 = -I_1 - I_3 = 9.3 \text{mA} - 0.7 \text{mA} = 8.6 \text{ [mA]}$$