Maria Ubero Gonzalez

Ondes électromagnétiques dans les milieux conducteurs

LP 29

Modèle de Drude

- * Les électrons de conduction n'ont aucune interaction entre eux et peuvent être traités comme des particules indépendantes.
- * Les électrons n'interagissent pas avec les ions du réseau, sauf au niveau des collisions.
- Les ions du réseau cristallin sont supposés fixes.

Régimes du conducteur en fonction de la pulsation

- 1. **Régime A** : ARQS et hypothèse d'électroneutralité vérifiées.
- 2. **Régime B** : L'électroneutralité n'est pas vérifiée de sorte que l'eq de M.G ne peut pas être simplifiée. L'ARQS peut en théorie être proposée.
- 3. **Régime C** : Ni l'ARQS ni l'hypothèse d'électroneutralité sont vérifiées. Aucune simplification des équations de Maxwell n'est autorisée.

Conductivité et épaisseur de peau

	Conductivité (10.E6 S/m)	Épaisseur de peau à 50Hz	Épaisseur de peau À 1MHz
Argent	62,1		
Cuivre	5,87	9,2 mm	65 μm
Or	44,2		
Aluminium	36,9		

Equation de dispersion (cas général)

Equation de Maxwell-Ampère

$$\vec{rot}\underline{\vec{B}} = \mu_0 \underline{\gamma}\underline{\vec{E}} + \epsilon_0 \mu_0 \frac{\partial \underline{\vec{E}}}{\partial t} = \mu_0 (\underline{\gamma} + iw\epsilon_0)\underline{\vec{E}}$$

Même forme que dans un milieu vide de charge et de courant à condition de remplacer \mathcal{E}_0 par $\underline{\mathcal{E}}$

$$\vec{rot}\underline{\vec{B}} = \epsilon_0 \mu_0 \left(1 + \frac{\gamma}{iw\epsilon_0} \right) iw\underline{\vec{E}} = \epsilon_0 \mu_0 \left(1 + \frac{\gamma}{iw\epsilon_0} \right) \frac{\partial \underline{\vec{E}}}{\partial t}$$

$$\underline{\epsilon} = \epsilon_0 \left(1 + \frac{\gamma}{iw\epsilon_0} \right)$$

On obtient l'équation de dispersion :

$$\underline{k}^2 = \underline{\epsilon}\mu_0 w^2 = \frac{w^2}{c^2} \left(1 + \frac{\underline{\gamma}}{iw\epsilon_0} \right) = \frac{w^2}{c^2} - i \frac{\mu_0 \gamma_0 w}{1 + i\tau w}$$

Exemple: une feuille d'aluminium comme écran

Un téléphone enfermé dans une feuille d'aluminium recevra-t-il les appels ?

- * Perméabilité magnétique du vide = $1,26.10^{-6}$ H/m
- * Conductivité de l'aluminium = 3,8.10⁷ S/m
- * Épaisseur de la feuille = $2,5.10^{-5}$ m

Conclusion-résumé (exemple du cuivre)

- 1. **Régime A** : ARQS et hypothèse d'électroneutralité vérifiées.
- 2. **Régime B** : L'électroneutralité n'est pas vérifiée de sorte que l'eq de M.G ne peut pas être simplifiée. L'ARQS peut en théorie être proposée.
- 3. **Régime C** : Ni l'ARQS ni l'hypothèse d'électroneutralité sont vérifiées. Aucune simplification des équations de Maxwell n'est autorisée.