

Figura 1:

La seguente tabella di D-H modella la struttira portante del robot antromorfo di fig. 1:

link	a (m)	α	d (m)	θ
1	0	$\frac{\pi}{2}$	0	θ_1
2	0.9	0	0	θ_2
3	0.9	0	0	θ_3

I sistemi di riferimento (0) e (b) sono legati dalla seguente matrice di rototraslazione:

$$\hat{R}_0^b = \begin{pmatrix} 1 & 0 & 0 & 0.5 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rispetto al SR_b sono assegnati i seguenti 3 punti :

$$P_{1} = \begin{pmatrix} 0.8 \\ 0.8 \\ 0.5 \end{pmatrix}; P_{2} = \begin{pmatrix} 1.2 \\ 0.8 \\ 0.5 \end{pmatrix}; P_{3} = \begin{pmatrix} 1.0 \\ 1.2 \\ 0.5 \end{pmatrix};$$

Si determinino gli andamenti temporali delle variabili di giunto (posizione e velocita) affinchè l'origine del SR_3 :

- 1. descriva un triangolo secondo la sequenza $P_1 -> P_2 -> P_3 -> P_1$
- 2. descriva una circonferenza passante per i punti $P_1 -> P_2 -> P_3 -> P_1$

in entrambi i casi il tempo totale di percorrenza della curva deve essere di 40sec.

P.S. - le distanze sono espresse in metri; gli angoli in radianti.