Algebra de Boole y simplificación de funciones lógicas

Capítulo 4

Contenido

- 1. Expresiones y operaciones Booleanas
- 2. Propiedades y Reglas del Algebra de Boole
- 3. Teoremas de DeMorgan
- 4. Análisis booleano de circuitos lógicos
- 5. Simplificación mediante el álgebra de Boole
- 6. Formas estándar de las expresiones booleanas
- 7. Mapas de Karnaugh
- 8. Simplificación de una SOPs mediante el mapa de Karnaugh
- 9. Simplificación de un POSs mediante el mapa de Karnaugh

Expresiones y operaciones Booleanas

- Variable: Símbolo que representa magnitudes lógicas. (0 ó 1).
- **Literal**: Es una variable o el complemento de una variable.

Expresiones y operaciones Booleanas

Suma booleana ≡OR

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

Multiplicación booleana ≡
 AND

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

- Conmutativa
- Asociativa
- Distributiva

• Propiedad conmutativa de la suma:

$$A + B = B + A$$

Propiedad conmutativa del producto:

$$A \bullet B = B \bullet A$$

• Asociativa de la suma:

$$A + (B + C) = (A + B) + C$$

Asociativa del producto:

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

• Distributiva:

$$A(B + C) = AB + AC$$

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

5.
$$A + A = A$$
 11. $A + \overline{A}B = A + B$

12.
$$(A + B)(A + C) = A + BC$$

• Regla 1

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

• Regla 2

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

• Regla 3

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 4

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 5

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

• Regla 6

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

• Regla 7

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 8

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 9

• Regla 10: A + AB = A

A	В	AB	A + AB	$A \rightarrow \bigcirc$
0	0	0	0	4
0	1	0	0	$B \longrightarrow$
1	0	0	1	
1	1	1	1	A straight connection

$$A + AB = A (1+B)$$
 Ley distributiva
= $A \cdot 1$ Regla 2: $(1+B)=1$
= A Regla 4: $A \cdot 1=A$

Α	В	Х	Α	В	X
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table

OR Truth Table

• Regla 11: $A + \overline{AB} = A + \overline{B}$

A	В	ĀB	A + AB	A + B	$A \longrightarrow$
0	0	0	0	0	
0 1	1 0	0	1	1 1	$A \longrightarrow $
1	1	0	1 1	1	$B \longrightarrow B$
			equ	ıal 🎞	

$$A + \overline{AB} = (A + AB) + \overline{AB}$$
 $R10: A = A + AB$
 $= (AA + AB) + \overline{AB}$ $R7: A = A.A$
 $= AA + AB + \overline{AA} + \overline{AB}$ $R8: Sumar A.\overline{A} = 0$
 $= (A + \overline{A})(A + B)$ Factor común
 $= 1.(A + B)$ $R6: A + \overline{A} = 1$
 $= A + B$ $R4: A.1 = A$

Α	В	Χ	Α	В	Χ
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

OR Truth Table

AND Truth Table

• Regla 12: (A + B)(A + C) = A + BC

A	В	С	A + B	A+C	(A + B)(A + C)	ВС	A + BC	$A + \bigcup$
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	$C \longrightarrow$
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	$A \longrightarrow$
1	1	0	1	1	1	0	I	$B \longrightarrow C$
1	1	1	1	1	1	1	1	
					<u> </u>	equal		

$$(A+B).(A+C) = AA + AC + AB + BC$$
 distributiva
 $= A + AC + AB + BC$ R7: A.A = A
 $= A(1+C) + AB + BC$ factor común
 $= A.1 + AB + BC$ R2: $1+C=1$
 $= A(1+B) + BC$ factor común
 $= A.1 + BC$ R2: $1+B=1$
 $= A+BC$ R4: A.1 = A

Α	В	Χ	Α	В	Χ
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table OR Truth Table

Teoremas de DeMorgan

• Teorema 1

$$\overline{XY} = \overline{X} + \overline{Y}$$

• Teorema 2

$$\overline{X + Y} = \overline{X}\overline{Y}$$

Recuerda:

"Parte la barra, cambia la operación"

Analisis booleano de Circuitos

Expresion booleana y tabla de verdad de un circuito lógico

A E	3 C	$D \rightarrow$	A(B+CD)
0 0	0 (0	0
0 0	0 (1	0
0 (1	0	0
••••			••••
1 () 1	0	0
1 (1	1	1
1 1	L 0	0	1
1 1	L 0	1	1
1 1	L 1	0	1
1 1	1	1	1

Ejemplo

Ejemplo: Extracción de la expresión booleana de un sistema a partir de su diagrama lógico

A partir del siguiente circuito lógico se nos pide que obtengamos su expresión booleana equivalente.

Ejemplo: Construcción de la Tabla de Verdad a partir de la expresión

booleana

- Un circuito lógico puede describirse mediante una tabla de verdad.
- Evaluar la expresión booleana para todas las posibles combinaciones de valores de las variables de entrada

Row	Х	Υ	Z	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Ejemplo

A partir de la siguiente expresión Booleana se nos pide que obtengamos su diagrama lógico equivalente.

$$C = A.B + \overline{\overline{A.B}} + (A + B)$$

Formas estándar de las expresiones

booleanas o de sumas (POS) Suma de productos (SOP)

Ejemplo: X = AB + BCD + AC

- Para cualquier expresión lógica existe una forma estándar SOP y POS equivalente
- Se denominan formas canónica o estándar a las SOP y POS en las que todas las variables aparecen en cada uno de los terminos:

Ejemplo:

$$\overline{A}\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}\overline{D}$$

Conversión SOPs y POS - Tablas de Verdad

Suma de Productos

Producto de sumas

```
A B C X Suma

0 0 0 0 (A+B+C)

0 0 1 1

0 1 0 0 (A+B'+C)

0 1 1 0 (A+B'+C')

1 0 0 1

1 0 1 0 (A'+B+C')

1 1 0 0 (A'+B+C')

1 1 1 1

X = (A+B+C) (A+B'+C) (A+B'+C')

(A'+B+C') (A'+B'+C)
```

Forma estándar o canónica

 Cualquier función Booleana se puede expresar como suma de miniterminos (minterms) o como producto de maxiterminos (maxterms) y a estas formas se les dice que están en forma estándar o canónica (el conjunto completo de variables del dominio está representado en cada término).

A	В	C	D	minterms
0	0	0	0	
0	0	1	1	$ar{A}ar{B}C$
0	1	0	0	
0	1	l	0	
1	0	0	1	$Aar{B}ar{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

$F=\Sigma_{A,B,C}$ (1,	4, 7) =	A'B'C +	AB'C'	+ ABC
------------------------	---------	---------	-------	-------

A	В	\boldsymbol{C}	D	Maxiterms
0	0	0	0	A + B+ C
0	0	1	1	A . B. O
0	1	0	0	A + B'+ C
0	1	l	0	A +B'+ C'
1	0	0	1	
1	0	1	0	A'+ B + C'
1	1	0	0	A'+ B' + C
1	1	1	1	

 $F = \Pi_{A.B.C}(0, 2, 3, 5, 6) = (A+B+C)(A+B'+C)(A+B'+C')(A'+B+C')(A'+B'+C)$

Forma canónica y normalizada

- Se llama término canónico de una función lógica a todo producto o suma de literales en los cuales aparecen todas la variables en su forma directa o complementada.
- Los términos canónicos producto reciben el nombre de "minitérminos"
- Los términos canónicos suma reciben el nombre de "maxitérminos"
- Una función de BOOLE está en forma canónica cuando se expresa como suma de minitérminos o producto de maxotérminos.
- Dos funciones lógicas son equivalentes si, y solo si, sus formas canónicas son idénticas.
- La expresión algebraica en suma de productos o productos de sumas en la que no todos los términos son canónicos recibe el nombre de normalizada

Ejemplos:

$$\label{eq:formanicada} F_{1}\left(X,\,Y,\,Z\right) = XY + X'YZ'$$

$$F_2(X, Y, Z) = (X' + Y' + Z)(X + Y' + Z)(X + Y + Z)$$
Forma canónica

Forma canónica de la suma de productos

- La metodología empleada en la **transformación** de una suma de productos a su forma canónica se basa en la regla 6, que establece que una variable sumada con su complemento es siempre igual a 1; A + A' = 1. Los pasos son los siguientes:
 - Los términos producto que no contengan la(s) variable(s) del dominio, multiplicarlos por un término formado por dicha variable más el complemento de la misma (regla 6).
 - Repetir el paso 1 para todos los términos de la expresión que no contengan todas las variables (o sus complementos) del dominio. Resolver los términos intervenidos.

Ejemplo

- Convertir la expresión booleana ABC' + BC + A' a su forma canónica.
 - El dominio de la expresión es el conjunto de variables A, B y C. Se observa la falta de formato estándar para el segundo y tercer término producto. Sobre ellos se aplicará el procedimiento, para luego volver a agrupar toda la expresión:
- Término BC
 - BC = BC \cdot (A+A') = ABC + A'BC
- Término A'
 - A' = A'(C+C') = A'C+A'C'; la expresión aún no tiene el formato canónico, entonces multiplicamos cada término por (B+B')
 A'C(B+B') +A'C'(B+B') = A'BC + A'B'C + A'BC' + A'B'C'

ABC' + BC + A' = ABC + A'BC + A'BC + A'B'C + A'BC' + A'B'C'

Forma canónica del producto de

- La metodología empleada en la **transformación** de un producto de sumas a su forma canónica se basa en la regla 8, que establece que una variable multiplicada por su complemento es siempre igual a 0; AA' = 0. Los pasos son los siguientes:
 - Los términos suma que no contengan la(s) variable(s) del dominio, sumarlos un término formado por dicha variable y su complemento según regla 8.
 - Aplicar la regla 12: A + BC = (A+B)(A+C)
 - Repetir el paso 1 para todos los términos de la expresión que no contengan todas las variables (o sus complementos) del dominio.
- Ejemplo
 - Convertir la expresión booleana (A+B'+C)(B'+C+D')(A+B'+C+D') a su forma canónica.
 - Término A+B'+C
 - A+B'+C = A+B'+C+DD' = (A+B'+C+D)(A+B'+C+D')
 - Término B'+C+D'
 - B'+C+D' = B'+C+D'+AA' =(A+ B'+C+D')(A'+ B'+C+D')

$$(A+B'+C)(B'+C+D')(A+B'+C+D') =$$

= $(A+B'+C+D)(A+B'+C+D')(A+B'+C+D')(A'+B'+C+D')$

Simplificación mediante algebra de Boole

La simplificación consiste en implementar una función con el menor número de puertas posible

- Proporcionan un Método sistemático de minimización de expresiones booleanas
- Adecuadamente aplicado proporciona expresiones mínimas SOP o POS
- Es una forma de representación equivalente a la tabla de verdad
- Es la "receta" que emplearemos habitualmente

Método de trabajo Mapas de Karnaugh

 Proporciona un método sistemático de simplificación de sentencias booleanas generando expresiones mínimas ('receta de simplificación')

CARACTERÍSTICAS

- Útiles para expresiones de dos, tres, cuatro y cinco variables
- Es una matriz de 2º celdas en la que cada una representa un valor binario de las variables de entrada.
- El orden de los valores en filas y columnas es tal que celdas adyacentes difieren únicamente en una varible
- La simplificación de una determinada expresión consiste en agrupar adecuadamente las celdas
- Un número mayor de variables exige el uso de un método llamado Quine-McClusky

PASOS A SEGUIR

- Obtener la función lógica en suma de productos canónica
- Representar en el mapa de Karnaugh la función algebraica o tabla de verdad que se desee representar
- Agrupar unos (<u>maximizar el tamaño de los grupos minimizando el número es estos</u>):
 - Un grupo tiene que contener 1, 2, 4, 8 o 16 celdas
 - Cada celda del grupo tiene que ser adyacente a una o mas celdas del grupo sin necesidad de que todas las celdas del grupo sean adyacentes entre sí.
 - Incluir siempre en cada grupo el mayor número posible de 1s
 - Cada 1 del mapa tiene que estar incluido en al menos un grupo. Los 1s que ya pertenezcan a un grupo pueden estar incluidos en otro, siempre que los grupos que se solapen contengan 1s no comunes.
- Simplificar:
 - Eliminar variables que aparecen complementadas y sin complementar dentro del mismo grupo

Ejemplo con 3 variables

Con 4 variables

Mapas de Karnaugh para SOPs no estandares

A' -	+ AB' +	ABC'
000	100	110
001	101	
010		
011		

Simplificación de suma de productos mediante mapas de Karnaugh (I)

AB	D 00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1
(d)				0

Simplificación de suma de productos mediante mapas de Karnaugh (II)

- Cada grupo da lugar a un termino
- En el término no aparecen las variables que en la tabla aparecen complementadas y no complementadas

- a) AB + BC + A'B'C'
- b) B' + A'C' + AC
- c) A'B + A'C' + AB'D
- d) D' + AB'C + BC'

Simplificación de producto de sumas mediante mapas de Karnaugh (I)

Simplificación de producto de sumas mediante mapas de Karnaugh (II)

(b) Standard SOP: $\overline{ABCD} + \overline{ABCD} + \overline{ABCD$

(c) Minimum SOP: $AC + BC + BD + \overline{B}\overline{C}\overline{D}$

Conversión entre SOPs y POSs mediante el mapa de Karnaugh

Simplificación de suma de productos mediante mapas de Karnaugh con condiciones "indiferentes"

Inputs	Output
ABCD	Y
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1 0 0 0	1
1 0 0 1	1
1 0 1 0	X
1 0 1 1	X
1 1 0 0	X
1 1 0 1	X
1 1 1 0	X
1 1 1 1	X

Don't cares

(a) Truth table

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD