

Derivative (that definition)
$$f'(a)=\frac{df}{dx}\bigg|_{x=a}=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}.$$
 If the limit does not exist, then the derivative is not defined at a .

find definition explaints that the derivative is the rate of change of the output with respect it. The next definition is smith.
$$|f'(a)| = \frac{df}{dx} \Big|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Derivatives (second administration)
$$f'(a) = \frac{df}{dx}\Big|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$
 If the limit does not exist, then the derhative is not defined at a .

The derivative of
$$f(x)$$
 at $x=a$, $f'(a)$, is the constant C such that for any variation to the liquid h , the following holds:
$$f(a+h)=f(a)+Ch+O(h^2).$$
 That is, $f'(a)$ is the first order variation of the output. If no such C exists, then the derivative fore one relativ.

To show the equivalence, one can do a little algebra to see that
$$\frac{f(a+h)-f(a)}{h}=C+O(h).$$
 Then taking the limit on both sides $u_h \to 0$ shows that $C=f'(a)$. Example, living the record and third definitions above, compute the derivative of $f(x)=x^a$, where n is described in the constraint of $f(x)=x^a$.

Using the binomial expansion and the above definition, one finals
$$f'(\alpha) = \lim_{n \to \infty} \frac{(a+h)^n - a^n}{\alpha^n + ma^{n-1}h} \cdot O(h^2) - a^n}{h}$$

$$= \lim_{n \to \infty} \frac{a^{n-1}h_n \cdot O(h^2) - a^n}{h}$$

$$= \lim_{n \to \infty} \frac{na^{n-1}h_n \cdot O(h^2)}{h}$$

$$= \lim_{n \to \infty} \frac{na^{n-1}h_n \cdot O(h)}{h}$$

$$= \lim_{n \to \infty} \frac{na^{n-1}h_n \cdot O(h)}{h}$$
Using the shold definition, and upto the binomial expansion, one writes
$$f(\alpha + h) = (a^{n-1}h_n \cdot O(h^2),$$
so $f'(\alpha) = na^{n-1}$

so
$$f'(a)=na^{n-1}$$
. Example Tried the derivative of c' using the third definition. Nide
Note that $c^{a+b}=c^a\cdot c^b$. Using our broadedge of the Taylor series for c^b , we have

 $a^{b} = e^{a}e^{h}$ $= e^{a}(1 + h + O(h^{2}))$ $= e^{a} + e^{a}h + O(h^{2}),$ $e = a, b e^{a}.$

and so the derivative of
$$e^x$$
, evaluated at $x=a$, is e^a . Example Find the derivative of $\cos x$ using the third definition. Hint: use the identity

we de ℓ entailed in x=a, by ℓ . We have ℓ and ℓ in ℓ in the blantity of $\cos x$ and ℓ be the definition. First use the blantity $\cos (a+h)=\cos (a)\cos (h)-\sin (a)\sin (h)$, where extrity and our boundage of Taylor series, we find $\cos (a+h)=\cos (a)\cos (h)-\sin (a)\sin (h)$ $\cos (a+h)=\cos (a)\cos (h)$ $\cos (a+h)=\cos (a)\cos (h)$ $\cos (a+h)=\cos (a)\cos (h)$ $\cos (a+h)=\cos (a)\cos (h)$

$$= \cos(a) (1 + O(h^2)) - \sin(a) (1 + O(h^2))$$

 $= \cos(a) - \sin(a)h + O(h^2),$

from wite
$$\begin{split} f(a+h) &= \sqrt{a+h} \\ &= \sqrt{a}\sqrt{1+\frac{h}{a}}. \end{split}$$
 Now, recalling the binerial series $(1+x)^p = 1+\alpha x + O(x^2)$, we find
$$\sqrt{a}\sqrt{1+\frac{h}{a}} &= \sqrt{a}\left(1+\frac{1h}{2a} + O(k^2)\right) \\ &= \sqrt{a}+\frac{1}{2\sqrt{a}}h + O(k^2). \end{split}$$

$$a = \sqrt{a} + \frac{2a}{2\sqrt{a}}h + O(h^2),$$
 and so the derivative of \sqrt{x} , evaluated at $x=a$, is $\frac{1}{2\sqrt{a}}$

on for the derivative of
$$y=f(x)$$
. The best options are
$$\frac{df}{dx} \quad \text{or} \quad \frac{dy}{dx},$$
 e irput is x and the output is $f(x)$ or y , respectively, and have the advantage of requiring less writing, but they is

$$f'$$
 or \dot{y} or df .

RING CONSTANT

 $\frac{dx}{dt}$ and $a = \frac{dv}{dt}$

$$v = \frac{1}{dt}$$
 and $u = \frac{1}{dt}$

$$I = \frac{dQ}{dt}$$
.

$$\tau_P = k \frac{d[I]}{dt}$$

 $\lambda = \frac{d(\text{stress})}{d(\text{strain})}$

 $ess = \mu \frac{d(velocity)}{d(height)}$.

ginal tax rate = $\frac{d(tax)}{d(income)}$

- A princip expension, P_i is a function of true, f_i is represented by $p(f_i) = g^{i}$. When is the particle is easy P_i is constant p_i is a function of the first p_i is a function of the principle presents the buildings or machines used by a business of physical capital" represents the rate of change of or aptital (inclinately, if you increase the size of your fact pay or creater). A particular model tells to that the out of capital K, by $Y = AK^n L^{1-\alpha}$, where A is a Constant between 0 and 1. Determinately, and α is a constant between 0 and 1. Determinately, and α is a constant between 0 and 1. Determinately and α is a constant between 0 and 1. Determinately and α is a constant between 0 and 1. Determinately α is a constant between 0 and 1. Determinately α is a constant between 0 and 1. Determinately α is a constant between 0 and 1. Determinately α is a constant between 0 and 1. Determinately α is a constant between 0 and 1.