Lecture 05:

Unsupervised Learning

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units
Spring 2025

So far, there has been a **training** data set and a **test** data set...
... but maybe there are ways to learn *without* training data

So far, there has been a **training** data set and a **test** data set...

... but maybe there are ways to learn without training data

<u>Outline</u>

- K means
- GMM
- trees

<u>Outline</u>

- K - means

- GMM

- trees

<u>idea:</u>

a) assign k means randomly

b) calculate *distance* from each point to each mean

c) assign each point to its closest mean

d) update the means accordingly

<u>idea:</u>

problem: k = number of cluster, is a hyperparameter. How do I know the correct value for k?

- \rightarrow silhouette Ψ
- distance d_1 of a data point x_0 to its assigned cluster S_i vs distance d_2 to closest cluster (here S_i)

$$\Psi(x_0) = \begin{cases} 0 & \text{if } d_1 = 0\\ \frac{d_2 - d_1}{max[d_1; d_2]} \end{cases}$$

- average over all points $\rightarrow \psi_{tot}$

$$\begin{array}{ll} \text{if} & \psi_{tot} = 0.75 \, \dots 1.00 & \rightarrow \text{ well clustered} \\ \psi_{tot} = 0.50 \, \dots 0.75 & \rightarrow \text{ medium clustered} \\ \psi_{tot} = 0.25 \, \dots 0.50 & \rightarrow \text{ poorly clustered} \\ \psi_{tot} < 0.25 & \rightarrow \text{ data has no structure} \\ \end{array}$$

cluster S_i

problem: k is a hyperparameter. How do I know the correct value for k?

- \rightarrow silhouette Ψ
- distance d_1 of a data point x_0 to *its assigned cluster* S_i vs distance d_2 to *closest cluster* (here S_i)

$$\Psi(x_0) = \begin{cases} 0 & \text{if } d_1 = 0\\ \frac{d_2 - d_1}{max[d_1; d_2]} \end{cases}$$

- average over all points $\rightarrow \psi_{tot}$

$$\psi_{tot} = 0.75 \dots 1.00$$
 \rightarrow well clustered $\psi_{tot} = 0.50 \dots 0.75$ \rightarrow medium clustered $\psi_{tot} = 0.25 \dots 0.50$ \rightarrow poorly clustered $\psi_{tot} < 0.25$ \rightarrow data has no structure


```
our standard libraries
import pandas as pd
import matplotlib.pyplot as plt
                                                                    for having different
import numpy as np
                                                                    distances available
import seaborn as sns
from pyclustering.utils.metric import *
from nltk.cluster.kmeans import KMeansClusterer
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn import datasets
                                                  calculating silhouette
      calling the famous "iris" data set
                                                coefficient for different k
                                                                     performing k-means
```

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from pyclustering.utils.metric import *
from nltk.cluster.kmeans import KMeans(
                                           Iris plants dataset
from sklearn.metrics import silhouette
from sklearn import datasets
                                           **Data Set Characteristics:**
                                               :Number of Instances: 150 (50 in each of three classes)
iris = datasets.load_iris()
                                               :Number of Attributes: 4 numeric, predictive attributes and the class
                                               :Attribute Information:

    sepal length in cm

iris.DESCR
                                                   - sepal width in cm
                                                    petal length in cm
                                                    petal width in cm
                                                   - class:
                                                          - Iris-Setosa
                                                                                ideal world: three distinct cluster
                                                          - Iris-Versicolour
                                                          - Iris-Virginica
                                               :Summary Statistics:
                                               sepal length: 4.3 7.9 5.84
                                                                              0.83
                                                                                     0.7826
                                               sepal width: 2.0 4.4 3.05
                                                                              0.43 -0.4194
                                               petal length: 1.0 6.9 3.76
                                                                              1.76
                                                                                     0.9490 (high!)
```

petal width:

0.1 2.5

1.20

0.76

0.9565 (high!)

iris = datasets.load_iris()

iris.DESCR

Iris Versicolor

Iris Setosa

Iris Virginica

```
loading & exploring the data:
iris = datasets.load_iris()
iris.DESCR
iris.feature_names
iris.target_names
['sepal length (cm)', four features → 4D
                                             array(['setosa', 'versicolor', 'virginica']
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']
```

check out the Jupyter Notebook Walk_Through_Kmeans

- plotting the data
- running k-means
- evaluating the result

```
['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)']
```

4D dataset → plotting two components

- plotting the data
 - running k-means
- evaluating the result

pick here is Euclidean

```
plotting the data
nClust
                                                                         running k-means
rep
                                                                         evaluating the result
            = distance_metric(type_metric.EUCLIDEAN)
dist
                                                                       we need to "guess" the
                                                                         number of cluster
my model
             = KMeansClusterer(nClust, distance = dist,\
                 repeats = rep,\
                                                                        the initial means are
                 avoid_empty_clusters = True)
                                                                         assigned randomly.
                                                                           > repeat the
PredLabels = my_model.cluster(X2D,\
                                                                          procedure 25 times
                 assign clusters = True)
                                                                          → avoiding local
                                                                              minimum,
Center
             = my model.means()
                                                                          The features are
                                                                        meassured in cm, i. e.
                                                                       the correct distance to
```


- plotting the data
- running k-means
- evaluating the result

density

cluster assignment after k-means

- plotting the data
- running k-means
- evaluating the result

we run k-means now for the **full 4D** dataset + evaluate clustering with silhouette

silhouette_score(X, Labels)

- plotting the data
- running k-means
 - evaluating the result

accuracy for 4D k = 3: 90%

summary:

- simple and fast
- unsupervised
- k has to be given \rightarrow silhouette for determining best k
- problems if cluster have unusual shapes (elongated, hollow inside, scattered)

topics for the discussion/office hour:

- What is a *distance*?
- Which are different distances?
- When to use which distance?

<u>Outline</u>

- K - means

- GMM

- trees

Gaussian Mixture Models

one feature
$$N_1(x_1) = \frac{1}{\sqrt{2\pi \sigma_{x1}^2}} \exp{-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_{x1}}\right)^2}$$

two features

$$\Sigma = \begin{pmatrix} \sigma_{x_1}^2 & cov(x_1, x_2) \\ cov(x_2, x_1) & \sigma_{x_2}^2 \end{pmatrix}$$
 covariance matrix

$$\begin{pmatrix} x_1 - \mu_{\chi 1} \\ x_2 - \mu_{\chi 2} \end{pmatrix}^T \Sigma^{-1} \begin{pmatrix} x_1 - \mu_{\chi 1} \\ x_2 - \mu_{\chi 2} \end{pmatrix}$$
 see PCA lecture

$$N_2(x_1, x_2) = \frac{1}{2\pi \det(\Sigma)^{1/2}} \exp\left[-\frac{1}{2} \left[\left(\frac{x_1 - \mu_{x1}}{x_2 - \mu_{x2}} \right)^T \Sigma^{-1} \left(\frac{x_1 - \mu_{x1}}{x_2 - \mu_{x2}} \right) \right] \right]$$

Gaussian Mixture Models

$$N_k(x_2 ... x_n) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right]$$

vectors x and μ

two features, *k*=3 components

Gaussian Mixture Models

two features, *k*=3 components

four features, *k*=3 components

Gaussian Mixture Models

idea: fitting the data to a GMM → analytical functions to **calculate** probabilities for labels

<u>different algorithms:</u> - Bayesian

- Expectation Maximization

- ...

```
my_model = GaussianMixture(n_components = k, random_state = 0).fit(X)
```

```
Center = my_model.means_
```

PredLabels = my_model.predict(X)

setting initial labels randomly

versicolor

we run k-means now for the **full 4D** dataset + evaluate clustering with silhouette

accuracy for 4D k = 3: 93%

topics for the discussion/office hour:

- EM algorithm
- mean, variance and covariance in more detail

<u>Outline</u>

- K - means

- GMM

- trees

- What is a tree?
- Different kinds of trees...?
- How to build a tree?
- Why do we need trees?
- Examples...

trees are a subclass of graphs (but: not fully connected → "hierarchy", no loops):

- a) unrooted, undirected multinary tree
- b) rooted, undirected multinary tree
- c) unrooted, directed multinary tree
- d) rooted, undirected binary tree

N timepoints

each sample s is a vector of N rows, hence, a data point in N-D

constructing trees:

- calculating a distance between each pair of samples

Question: What could be a proper distance definition here?

...once a distance has been defined...

→ find the closest pair

$$t_4$$
 $t_1 = t_4 = \frac{1}{2}d(s_1, s_4)$
 s_4 s_1

constructing trees:

- calculating a distance between each pair of samples

	s_1	s_2	s_3	s_4	<i>S</i> ₅	<i>s</i> ₆
s_1	0	$d(s_1,s_2)$	$d(s_1,s_3)$	$d(s_1,s_4)$	$d(s_1,s_5)$	$d(s_1, s_6)$
S_2		0	$d(s_2,s_3)$	$d(s_2,s_4)$	$d(s_2,s_5)$	$d(s_2, s_6)$
S_3			0	$d(s_3, s_4)$	$d(s_3,s_5)$	$d(s_3, s_6)$
S_4				0	$d(s_4, s_5)$	$d(s_4, s_6)$
<i>S</i> ₅					0	$d(s_5, s_6)$
s_6						0

- \rightarrow treat it as a new cluster $s_{1,4}$
- → use average of distance from cluster elements

$$\begin{bmatrix} t_4 & s_7 \\ s_4 & s_1 \end{bmatrix}$$
 $t_1 = t_4 = \frac{1}{2}d(s_1, s_4)$

constructing trees:

→ find the closest pair (now including the cluster)

- calculating a distance between each pair of samples

	s_1	s_2	s_3	s_4	<i>s</i> ₅	<i>s</i> ₆
s_1	0	$d(s_1,s_2)$	$d(s_1, s_3)$	$d(s_1,s_4)$	$d(s_1,s_5)$	$d(s_1, s_6)$
s_2		0	$d(s_2,s_3)$	$d(s_2,s_4)$	$d(s_2,s_5)$	$d(s_2, s_6)$
s_3			0	$d(s_3, s_4)$	$d(s_3,s_5)$	$d(s_3, s_6)$
S_4				0	$d(s_4,s_5)$	$d(s_4, s_6)$
s_5					0	$d(s_5, s_6)$
s_6						0
-						

$$t_4 \begin{bmatrix} s_7 \\ s_4 \end{bmatrix} t_1 = t_4 = \frac{1}{2}d(s_1, s_4)$$

constructing trees:

 \rightarrow and so on....

- calculating a distance between each pair of samples

$$d(s_7, s_8) = \frac{d(s_5, s_7) + d(s_6, s_7)}{2} = \frac{d(s_1, s_5) + d(s_4, s_5) + d(s_1, s_6) + d(s_4, s_6)}{4}$$

constructing trees:

- calculating a distance between each pair of samples

	s_1	s_2	s_3	S_4	<i>s</i> ₅	s ₆
s_1	0	$d(s_1,s_2)$	$d(s_1, s_3)$	$d(s_1,s_4)$	$d(s_1,s_5)$	$d(s_1, s_6)$
s_2		0	$d(s_2, s_3)$	$d(s_2, s_4)$	$d(s_2,s_5)$	$d(s_2, s_6)$
s_3			0	$d(s_3,s_4)$	$d(s_3,s_5)$	$d(s_3, s_6)$
S_4				0	$d(s_4, s_5)$	$d(s_4, s_6)$
S ₅					0	$d(s_5, s_6)$
s ₆						0

....finally

→ Unweighted Pair Group Method
Using Arithmetic Averages (UPGMA)

constructing trees:

→ Unweighted Pair Group Method
Using Arithmetic Averages (UPGMA)

<u>note</u>: sometimes these diagrams might be misleading when interpreting the distances between the nodes

Python libraries:

libraries from the Bio package

similar to UPGMA

Berkeley Machine Learning Algorithms:

Python libraries:

also most heatmap tools have some abilities to construct trees:

sns.clustermap

topics for the discussion/office hour:

- distances
- random forest
- graphs

see also

Walk_Through_Tree.ipynb

for more details

Unsupervised Learning

there is a lot more...

Thank you very much for your attention!

