Linear Algebra Notations

• Vector:
$$\mathbf{x} = [x_1, \dots, x_d]^{\top} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
• product: $\langle \mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rangle = \mathbf{x}^{(1)^{\top}} \mathbf{x}^{(2)} = \sum_{i=1}^d x_i^{(1)} x_i^{(2)}$
• norm: $||\mathbf{x}||_2 = \sqrt{\mathbf{x}^{\top}} \mathbf{x} = \sqrt{\sum_i x_i^2}$ (Euclidean)

• Matrix: $\mathbf{X} = \begin{bmatrix} X_{1,1} & \dots & X_{1,m} \\ \vdots & \vdots & \vdots \\ X_{n,1} & \dots & X_{n,m} \end{bmatrix}$
• product: $(\mathbf{X}^{(1)} \mathbf{X}^{(2)})_{i,j} = \mathbf{X}_{i,\cdot}^{(1)} \mathbf{X}_{\cdot,j}^{(2)} = \sum_k X_{i,k}^{(1)} X_{k,j}^{(2)}$
• norm: $||\mathbf{X}||_F = \sqrt{\mathrm{trace}(\mathbf{X}^{\top}\mathbf{X})} = \sqrt{\sum_i \sum_j X_{i,j}^2}$ (Frobenius)

- Trace of matrix: $\operatorname{trace}(\mathbf{X}) = \sum_{i} X_{i,i}$
 - trace of products:

$$\operatorname{trace}(\mathbf{X}^{(1)}\mathbf{X}^{(2)}\mathbf{X}^{(3)}) = \operatorname{trace}(\mathbf{X}^{(3)}\mathbf{X}^{(1)}\mathbf{X}^{(2)}) = \operatorname{trace}(\mathbf{X}^{(2)}\mathbf{X}^{(3)}\mathbf{X}^{(1)})$$

- Determinant
 - ullet of triangular matrix: $\det\left(\mathbf{X}
 ight) = \prod_{i} \mathbf{X}_{i,i}$
 - ullet of transpose of matrix: $\det\left(\mathbf{X}^{ op}
 ight) = \det\left(\mathbf{X}
 ight)$
 - ullet of inverse of matrix: $\det\left(\mathbf{X}^{-1}
 ight) = \det\left(\mathbf{X}
 ight)^{-1}$
 - ullet of product of matrix: $\det{(\mathbf{X}^{(1)}\mathbf{X}^{(2)})} = \det{(\mathbf{X}^{(1)})}\det{(\mathbf{X}^{(2)})}$

- Orthogonal matrix: $\mathbf{X}^{\top} = \mathbf{X}^{-1}$
- Positive definite matrix: $\mathbf{v}^{\top}\mathbf{X}\mathbf{v} > 0 \quad \forall \mathbf{v} \in \mathbb{R}^d$
 - if « ≥ » , then positive semi-definite

Better Explanation for Positive Definite Matrix: https://www.math.utah.edu/ ~zwick/Classes/Fall2012 2270/Lectures/Lecture33 with Examples.pdf

• Set of linearly dependent vectors $\{\mathbf{x}^{(t)}\}$:

$$\exists \mathbf{w}, t^* \text{ such that } \mathbf{x}^{(t^*)} = \sum_{t \neq t^*} w_t \mathbf{x}^{(t)}$$

- Rank of matrix: number of linear independent columns
- Range of a matrix:

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \exists \mathbf{w} \text{ such that } \mathbf{x} = \sum_j w_j \mathbf{A}_{\cdot,j} \}$$

Null space of a matrix:

$$Null(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

Some Better Explanations on these terms:

Set of Linearly Dependent Vectors: https://www.sciencedirect.com/topics/mathematics/linearly-dependent

Table 4.1. Equivalent conditions for a subset S of a vector space to be linearly independent or linearly dependent

Linear Independence of S	Linear Dependence of S	Source
If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$ = 0, then $a_1 = a_2 = \dots = a_n = 0$. (The zero vector requires zero coefficients.)	If $S = \{\mathbf{v}_1,, \mathbf{v}_n\}$, then $a_1\mathbf{v}_1 + + a_n\mathbf{v}_n = 0$ for some scalars $a_1, a_2,, a_n$, with some $a_i \neq 0$. (The zero vector does not require all coefficients to be zero.)	Definition
No vector in S is a finite linear combination of other vectors in S.	Some vector in S is a finite linear combination of other vectors in S.	Theorem 4.8 and Remarks after Example 14
For every $\mathbf{v} \in S$, we have $\mathbf{v} \notin \operatorname{span}(S - \{\mathbf{v}\})$.	There is a $\mathbf{v} \in S$ such that $\mathbf{v} \in \text{span}(S - \{\mathbf{v}\})$.	Alternate characterization
For every $\mathbf{v} \in S$, $\operatorname{span}(S - \{\mathbf{v}\})$ does not contain all the vectors of $\operatorname{span}(S)$.	There is some $\mathbf{v} \in S$ such that $\operatorname{span}(S - \{\mathbf{v}\}) = \operatorname{span}(S)$.	Exercise 12
If $S = \{\mathbf{v}_1,, \mathbf{v}_n\}$, then for each $k \mathbf{v}_k \notin \text{span}(\{\mathbf{v}_1,, \mathbf{v}_{k-1}\})$. (Each \mathbf{v}_k is not a linear combination of the previous vectors in S .)	If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, some \mathbf{v}_k can be expressed as $\mathbf{v}_k = a_1\mathbf{v}_1 + \dots + a_{k-1}\mathbf{v}_{k-1}$. (Some \mathbf{v}_k is a linear combination of the previous vectors in S .)	Exercise 22
Every vector in span(S) can be uniquely expressed as a linear combination of the vectors in S.	Some vector in span(S) can be expressed in more than one way as a linear combination of the vectors in S.	Theorem 4.9 and Theorem 4.10
Every finite subset of S is linearly independent.	Some finite subset of S is linearly dependent.	Definition when S is infinite

Rank of Matrix A: https://stattrek.com/matrix-algebra/matrix-rank.aspx
Range and Null Space of a Matrix: https://math.stackexchange.com/questions/2037602/what-is-range-of-a-matrix

· Eigenvalues and eigenvectors

$$\{\lambda_i, \mathbf{u}_i \mid \mathbf{X}\mathbf{u}_i = \lambda_i \mathbf{u}_i \text{ and } \mathbf{u}_i^\top \mathbf{u}_j = 1_{i=j}\}$$

- Properties
 - lacksquare can write $\mathbf{X} = \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^ op$
 - determinant of **any** matrix: $\det(\mathbf{X}) = \prod_i \lambda_i$
 - lacktriangleright positive definite if $\lambda_i > 0 \quad \forall i$
 - rank of matrix is the number of non-zero eigenvalues

More info on these at the Matrix Cookbook Pg30.

Probability

- Probability space: triplet (Ω, \mathcal{F}, P)
 - $ightharpoonup \Omega$ is the space of possible outcomes
 - $ightarrow \mathcal{F}$ is the space of possible events
 - $oldsymbol{ ilde{P}}$ is a probability measure mapping an $oldsymbol{ extit{event}}$ to its probability [0,1]
 - example: throwing a die
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - $e=\{1,5\}\in\mathcal{F}$ (i.e. die is either 1 or 5)
 - $P(\{1,5\}) = \frac{2}{6}$
- · Properties:

I.
$$P(\{\omega\}) \ge 0 \quad \forall \omega \in \Omega$$
 2. $\sum_{\omega \in \Omega} P(\{\omega\}) = 1$

- Joint distribution: p(X = x, O = o, S = s) (p(x, s, o) for short)
 - the probability of a complete assignment of many random variables
 - example: p(X = 1, O = 1, S = 0) = 0
- Marginal distribution: $p(o,s) = \sum_{x} p(x,o,s)$
 - the probability of a partial assignment
 - example: $p(O=1, S=0) = \frac{1}{6}$
- Conditional distribution: p(S = s | O = o)
 - the probability of some variables, assuming an assignment of other variables
 - example: $p(S=1|O=1) = \frac{2}{3}$

Joint Distribution: https://www.statisticshowto.com/joint-probability-distribution/

Marginal Distribution: https://www.statisticshowto.com/probability-and-statistics/statistics-

definitions/marginal-distribution/

Conditional Distribution: https://www.statisticshowto.com/conditional-distribution/, Marginal

distribution and conditional distribution | AP Statistics | Khan Academy

Statistics

· Sample mean:

$$\widehat{\boldsymbol{\mu}} = \frac{1}{T} \sum_t \mathbf{x}^{(t)}$$

· Sample variance:

$$\widehat{\boldsymbol{\sigma}}^2 = \frac{1}{T-1} \sum_t (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}})^2$$

Sample covariance matrix:

$$\widehat{\Sigma} = \frac{1}{T-1} \sum_{t} (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}}) (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}})^{\top}$$

These estimators are unbiased, i.e.:

$$\mathrm{E}[\widehat{\boldsymbol{\mu}}] = \boldsymbol{\mu} \ \mathrm{E}[\widehat{\sigma}^2] = \sigma^2 \ \mathrm{E}\left[\widehat{\Sigma}\right] = \Sigma$$

Machine Learning

• Critical points: $\{\mathbf{x} \in \mathbb{R}^d \mid \nabla_{\mathbf{x}} f(\mathbf{x}) = 0\}$

• Curvature in direction \mathbf{v} : $\mathbf{v}^{ op}
abla_{\mathbf{x}}^2 f(\mathbf{x}) \mathbf{v}$

Types of critical points:

 $lackbox{local minima:} \mathbf{v}^{\top} \nabla_{\mathbf{x}}^2 f(\mathbf{x}) \mathbf{v} > 0 \quad \forall \mathbf{v} \quad \text{(i.e. } \nabla_{\mathbf{x}}^2 f(\mathbf{x}) \text{ positive definite)}$

 $\mathbf{v}^{\top} \nabla_{\mathbf{x}}^2 f(\mathbf{x}) \mathbf{v} < 0 \quad \forall \mathbf{v} \quad \text{(i.e. } \nabla_{\mathbf{x}}^2 f(\mathbf{x}) \text{ negative definite)}$

• saddle point: curvature is positive in certain directions and negative in others

- Parametric model: its capacity is fixed and does not increase with the amount of training data
 - examples: linear classifier, neural network with fixed number of hidden units, etc.
- Non-parametric model: the capacity increases with the amount of training data
 - examples: k nearest neighbors classifier, neural network with adaptable hidden layer size, etc.