Business Report - 3

PG Program in Data Science and Business Analytics

submitted by

Sangram Keshari Patro

BATCH:PGPDSBA.O.AUG24.B

Contents

1	Obje	ective	4										
2	Data	a Description	4										
3	Data Overview												
	3.1	6											
	3.2	Structure and type of data											
	3.3	Statistical summary	5										
4	Expl	loratory Data Analysis	5										
	4.1	Univariate Analysis	5										
		4.1.1 Numerical columns	5										
		4.1.2 Categorical columns	8										
	4.2	Bivariate Analysis											
		4.2.1 Numerical variables	ç										
		4.2.2 Categorical vs numerical variables	10										
5	Data	a preprocessing and Model building	14										
	5.1	Model 1	14										
	5.2	Testing the assumptions of linear regression model											
		5.2.1 No Multicollinearity											
		5.2.2 TEST FOR LINEARITY AND INDEPENDENCE											
		5.2.3 TEST FOR NORMALITY for Model 3											
		5.2.4 TEST FOR HOMOSCEDASTICITY											
	5.3	Model 3											
	5.4	Final model(model 4) performance evaluation											
6	Δcti	ionable Insights & Recommendations	22										

List of Figures

1	Dataframe	4
2	Table depicting the datatype and Non-Null values in each column.	5
3	Statistical summary of the data	5
4	Histogram and boxplot of 'views_content' column	5
5	Histogram and boxplot of 'views_trailer' column	6
6	Histogram and boxplot of "visitors" column	7
7	Histogram and boxplot of 'ad impression' column	7
8	Barchart of 'genre', 'season', 'dayofweek' and 'major sports event' column	8
9	Heatmap of all numerical variables	9
10	Pairplot of all numerical variables	10
11	Boxplot and histplot for various aspects across different genre	11
12	Boxplot and histplot for various aspects across different days of week	12
13	Boxplot and histplot for various aspects across different season	13
14	Model 1	14
15	Model 2	
16	Residual plots	17
17	Test for normality for Model 3	19
18	Model 3	
19	Model 4	
20	Test for normality and homoscedacity for final model 4	

List of Tables

1	Comparison of Models based on AIC and BIC	18
2	Comparison of Models based on AIC and BIC	22

1 Objective

ShowTime is an OTT service provider and offers a wide variety of content (movies, web shows, etc.) for its users. They want to determine the driver variables for first-day content viewership so that they can take necessary measures to improve the viewership of the content on their platform. Some of the reasons for the decline in viewership of content would be the decline in the number of people coming to the platform, decreased marketing spend, content timing clashes, weekends and holidays, etc. They have hired you as a Data Scientist, shared the data of the current content in their platform, and asked you to analyze the data and come up with a linear regression model to determine the driving factors for first-day viewership.

2 Data Description

The data contains the different factors to analyze for the content. The detailed data dictionary is ws, in millions, of the content

- 1. visitors: Average number of visitors, in millions, to the platform in the past week.
- 2. ad_impressions: Number of ad impressions, in millions, across all ad campaigns for the content (both running and completed).
- 3. major_sports_event: Indicates if there was any major sports event on the day.
- 4. genre: Genre of the content.
- 5. dayofweek: Day of the week on which the content was released.
- 6. season: Season during which the content was released.
- 7. views trailer: Number of views, in millions, of the content trailer.
- 8. views content: Number of first-day views, in millions, of the content.

3 Data Overview

3.1 Importing necessary libraries and the dataset

The dataframe is printed. It has 1000 rows & 8 columns.

	visitors	${\sf ad_impressions}$	major_sports_event	genre	dayofweek	season	views_trailer	views_content
0	1.67	1113.81	0	Horror	Wednesday	Spring	56.70	0.51
1	1.46	1498.41	1	Thriller	Friday	Fall	52.69	0.32
2	1.47	1079.19	1	Thriller	Wednesday	Fall	48.74	0.39
3	1.85	1342.77	1	Sci-Fi	Friday	Fall	49.81	0.44
4	1.46	1498.41	0	Sci-Fi	Sunday	Winter	55.83	0.46

Figure 1: Dataframe

3.2 Structure and type of data

Data is explored further. Data doesn't have any duplicate rows.

Data	columns (total 8 co	lumns):	
#	Column	Non-Null Count	Dtype
0	visitors	1000 non-null	float64
1	ad_impressions	1000 non-null	float64
2	major_sports_event	1000 non-null	int64
3	genre	1000 non-null	object
4	dayofweek	1000 non-null	object
5	season	1000 non-null	object
6	views_trailer	1000 non-null	float64
7	views_content	1000 non-null	float64
dtype	es: float64(4), int6	4(1), object(3)	

Figure 2: Table depicting the datatype and Non-Null values in each column.

3.3 Statistical summary

	count	mean	std	min	25%	50%	75%	max
visitors	1000.0	1.69331	0.182420	1.41	1.5500	1.70	1.830	1.97
ad_impressions	1000.0	1411.04096	236.672877	1010.87	1210.3300	1383.58	1623.670	1830.34
views_trailer	1000.0	66.91559	35.001080	30.08	50.9475	53.96	57.755	199.92
views_content	1000.0	0.47340	0.105914	0.22	0.4000	0.45	0.520	0.89

Figure 3: Statistical summary of the data

From this table we can observe that there are outliers in the columns.

4 Exploratory Data Analysis

4.1 Univariate Analysis

4.1.1 Numerical columns

• views_content

Figure 4: Histogram and boxplot of 'views_content' column

Observations:

The distribution of first-day views (views_content) is approximately normal with a slight positive skew. The mean first-day views are around 0.47 million. The median is close to the mean, indicating a roughly symmetric distribution. The range of first-day views spans from approximately 0.2 million to 0.9 million, with some content achieving exceptionally high viewership.

Insights:

Most content has moderate viewership on the first day, with a few notable outliers. ShowTime could analyze high-performing content to identify factors driving higher viewership, such as genre or marketing, to apply these insights to other content.

views_trailer

Figure 5: Histogram and boxplot of 'views trailer' column

Observations:

The distribution of trailer views is positive skewed. Mean trailer views are around 67 million, with the median around 54 million which is lower than the mean. Trailer views range from 30 million to about 200 million, with most values between 40 and 70 million.

Insights:

The consistency in trailer views suggests that trailers generate stable interest among viewers. Increasing the visibility or promotion of trailers may help drive higher anticipation and, consequently, first-day views.

visitors

Figure 6: Histogram and boxplot of "visitors" column

Observations:

The visitors distribution has a mean of approximately 1.7 million to the platform in the past week. The median is close to the mean. Visitor counts range from 1.4 million to 2 million, suggesting consistent platform traffic in the past week. There are no outliers in the dataset.

Insights:

ShowTime has a steady visitor base, but not all visitors engage with new content. Encouraging these visitors to view new releases, possibly through notifications or recommendations, could significantly increase first-day views.

• ad impression

Figure 7: Histogram and boxplot of 'ad impression' column

Observations:

The ad impression distribution has a mean of approximately 1411 million to the platform in the past week. The median is close to the mean. There are no outliers in the dataset.

4.1.2 Categorical columns

 $Figure~8:~Barchart~of~'genre'~,~'season',~'dayofweek'~and~'major_sports_event'~column$

Observations

- The day of the week bar chart indicates that Friday has the highest count, followed by Wednesday.
 Tuesday and Monday have the lowest counts i.e. Most of the contents are released on Friday and Tuesday.
- 2. The **season bar chart** shows relatively even distribution across all seasons, with **Winter** having the highest count, closely followed by **Fall**, **Spring**, and **Summer**.
- 3. The contents by ShowTime feature various genres, all of which have equal weightage, with Comedy content being released the most frequently.

Insights

- 1. The company may consider focusing marketing efforts more heavily on weekends too apart Fridays to maximize audience engagement.
- 2. The even distribution of counts across seasons indicates that activities or events are spread throughout the year. This suggests that seasonal trends have minimal impact on the data, so the company may maintain a consistent approach throughout the year.
- 3. The content released on days when major sports events occur should be minimized, as it currently accounts for 40

4.2 Bivariate Analysis

4.2.1 Numerical variables

Heatmap

Figure 9: Heatmap of all numerical variables

Key Insights: -

- (a) **Views_content** has a strong positive correlation with **views_trailer** (0.75), suggesting that customers who watch trailers are highly likely to watch the content as well.
- (b) The average number of **visitors** to the platform last week shows a moderate positive correlation (0.24) with **Views content**.
- (c) Interestingly, ad_impressions does not show a strong correlation with Views_content, highlighting the need to reconsider the type or platform of advertisements being used.

• Pairplot

Figure 10: Pairplot of all numerical variables

This graph explains that customers watching trailer mostly prefer to watch the content too as the correlation is high.

4.2.2 Categorical vs numerical variables

• 'genre' vs 'views_content'

Figure 11: Boxplot and histplot for various aspects across different genre

Observations:

The distributions across different genres are quite similar, exhibiting a right-skewed pattern. These distributions generally peak around 0.4 to 0.5 million view counts, with a range between 0.3 and 0.8 million view counts. Among all genres, Sci-Fi has the highest mean and median content views, while the Thriller genre has the lowest content views.

Insights:

Show Time should focus on adding more Sci-Fi content to their platform, as it attracts higher view-

ership, and consider producing similar content. Additionally, since ad impressions are lowest for the Thriller genre, resulting in minimal content views, ShowTime should work on strategies to boost the viewership of Thriller movies on their platform. Ad impressions for Sci-Fi are significantly higher compared to other genres, resulting in increased view counts. The pattern of median content views aligns closely with ad impressions across genres, except for Comedy and Romance. This suggests that increasing ad impressions for Comedy genre as compared to Romance genre could help boost content views for Comdedy genre more effectively.

• 'dayofweek' vs 'views content'

Figure 12: Boxplot and histplot for various aspects across different days of week

Observations:

The distributions across different days of the week vary significantly, with a right-skewed pattern. Content views are higher on Wednesdays, Saturdays, and Sundays. Ad impressions are higher on Wednesdays, Fridays, Mondays, and Sundays.

Insights:

ShowTime should consider increasing advertisements on Saturdays, as these days attract higher viewership. Additionally, ad impressions are lowest on Thursdays, leading to minimal content views. While content views on Fridays are relatively low, a significant amount of money is being spent on advertisements on that day. This should be adjusted, with more advertisements allocated to Wednesdays, Saturdays, and Sundays to optimize impact.

• 'season' vs 'views content'

Figure 13: Boxplot and histplot for various aspects across different season

Observations:

• The distributions across different season are quite similar, exhibiting a right-skewed pattern.

• Content views are higher on summer and winter seasons. Ad impressions are higher on fall, summer and winter seasons.

Insights:

- ShowTime should consider increasing advertisements on Spring seaons, as it attracts higher viewership.
- While content views on Fall are relatively low, a significant amount of money is being spent on advertisements on that season. This should be adjusted, with more advertisements allocated to summer and winter seasons to optimize impact.
- The number of visitors during summer in the past week was lower than in winter, yet content views remained high. This suggests that allocating more budget to advertisements in summer compared to winter could be beneficial.

5 Data preprocessing and Model building

The dataset contains no missing or duplicate values. Outliers in the "visitors" and "ad impressions" columns have been addressed, but outliers in "trailer views" and "content views" have not been treated, as doing so would negatively impact the model's performance. Removing outliers from these two columns resulted in an R^2 value of approximately 0.5, whereas retaining the outliers produced an R^2 value of around 0.78.

We have splited the data for training and testing purposes. The model summary is as follows.

5.1 Model 1

			Dep. Variable:	views_conte	ent R-squ	uared:		0.775	
			Model:	(OLS Adj.	R-squared:		0.768	
			Method:	Least Squar		atistic:		108.3	
				Sat, 16 Nov 20		(F-statistic):			
			Time:	16:42	U	Likelihood:		1024.2	
			No. Observations:		550 AIC:			-2006.	
			Df Residuals:	(529 BIC:			-1912.	
			Df Model:		20				
	feature	VIF	Covariance Type:	nonrobu					
0	const	145.408592	=======================================	coef	std err	t	n	[0.025	0.0751
	visitors			COET	stu en	· ·	P> t	[0.025	0.975]
1	ad impressions	1.027710 1.039782	const	0.0258	0.024	1.070	0.285	-0.022	0.073
2	_ '		visitors	0.1548	0.011	14.143	0.000	0.133	0.176
3	views_trailer	1.035394	ad impressions	-8.752e-07	8.64e-06	-0.101	0.919	-1.78e-05	1.61e-05
4	major_sports_event_yes	1.083391	views trailer	0.0023	6.04e-05	38.707	0.000	0.002	0.002
5	genre_Comedy	1.921503	major_sports_event_ye	s -0.0613	0.004	-14.393	0.000	-0.070	-0.053
6	genre_Drama	1.911886	genre_Comedy	0.0114	0.008	1.350	0.178	-0.005	0.028
7	genre_Horror	1.845480	genre_Drama	0.0116	0.009	1.333	0.183	-0.006	0.029
8	genre_Others	2.549471	genre_Horror	0.0074	0.009	0.847	0.397	-0.010	0.025
9	genre_Romance	1.761568	genre_Others	0.0056	0.008	0.739	0.460	-0.009	0.020
10	genre Sci-Fi	1.817227	genre_Romance	-0.0020	0.009	-0.220	0.826	-0.019	0.016
11	genre_Thriller	1.888895	genre_Sci-Fi	0.0101	0.009	1.149	0.251	-0.007	0.027
12	dayofweek Monday	1.059507	genre_Thriller	0.0048	0.009	0.550	0.582	-0.012	0.022
13	dayofweek Saturday	1.151651	dayofweek_Monday dayofweek Saturday	0.0306 0.0580	0.014 0.008	2.236 7.533	0.026 0.000	0.004 0.043	0.057 0.073
14	dayofweek Sunday	1.147846	dayofweek_Saturday dayofweek Sunday	0.0345	0.008	4.091	0.000	0.043	0.073
15	dayofweek Thursday	1.185335	dayofweek_Sunday dayofweek Thursday	0.0169	0.003	2.399	0.017	0.003	0.031
16	dayofweek Tuesday		dayofweek_Tuesday	0.0250	0.007	1.628	0.104	-0.005	0.055
	, – ,	1.071421	dayofweek Wednesday	0.0456	0.005	9.432	0.000	0.036	0.055
17	dayofweek_Wednesday	1.333738	season Spring	0.0234	0.006	4.060	0.000	0.012	0.035
18	season_Spring	1.575481	season Summer	0.0443	0.006	7.514	0.000	0.033	0.056
19	season_Summer	1.592312	season_Winter	0.0291	0.006	5.065	0.000	0.018	0.040
20	season_Winter	1.602733							

(a) Model summary

	RMSE	MAE	R-squared	Adj. R-squared	MAPE		RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	0.050051	0.039293	0.774969	0.767445	8.830589	(0.051085	0.040841	0.769931	0.755201	8.914241

(b) Model Performance on train data

(c) Model Performance on test data

View_counts = 0.025755954218990795 + (0.15479798531328332)*(visitors) + (-8.751800999103212e-07)*(ad_impressions) + (0.00233706181227939)*(views_trailer) + (-0.061317774474314676)*(major_sports_event_yes) + (0.011428201612989995)*(genre_Comedy) + (0.01164571413860957)*(genre_Drama) + (0.007411579149033405) *(genre_Horror) + (0.005552040053479907)*(genre_Others) + (-0.0019530201076793374)*(genre_Romance) + (0.010099086222761115)*(genre_Sci-Fi) + (0.004751552 092982891)*(genre_Thriller) + (0.03059292899060472)*(dayofweek_Monday) + (0.0579709959930875)*(dayofweek_Saturday) + (0.03446085468072264)*(dayofweek_Sunday) + (0.01692323992153946)*(dayofweek_Thursday) + (0.0249761721449454)*(dayofweek_Tuesday) + (0.04560173218269493)*(dayofweek_Wednesday) + (0.023368820 57626128)*(season_Spring) + (0.04430825834540765)*(season_Summer) + (0.029065021735611256)*(season_Winter)

Figure 14: Model 1

The R-squared value tells us that our model can explain 77.5% of the variance in the training set.

- The coefficients tell us how one unit change in X can affect y.
- The sign of the coefficient indicates if the relationship is positive or negative.
- In this data set, for example, an increase of 1 visitor occurs with a 0.1548 increase in view count or in other words 1 million view counts can be increased by $\frac{1}{.1548} \approx 6.45 \sim 6.5$ million visitors visiting the platform in the past week and a unit increase in major sports event occurs with a 0.0568 million decrease in the view count. Similarly, the same explanation applies to the other coefficients as well.
- Multicollinearity occurs when predictor variables in a regression model are correlated. This
 correlation is a problem because predictor variables should be independent. If the collinearity
 between variables is high, we might not be able to trust the p-values to identify independent
 variables that are statistically significant.
- When we have multicollinearity in the linear model, the coefficients that the model suggests are unreliable.
- (a) **Null hypothesis** Contribution of the column i.e. the coefficient is zero.
- (b) Alternate hypothesis Contribution of the column i.e. the coefficient is not zero.

If p-value is > 0.05 then we accept our null hypothesis.

5.2 Testing the assumptions of linear regression model

We will be checking the following Linear Regression assumptions:

- No Multicollinearity
- Linearity of variables
- Independence of error terms
- Normality of error terms
- No Heteroscedasticity

5.2.1 No Multicollinearity

Variance inflation factors measure the inflation in the variances of the regression parameter estimates due to collinearities that exist among the predictors. It is a measure of how much the variance of the estimated regression coefficient β_k is "inflated" by the existence of correlation among the predictor variables in the model. We can clearly observe the vif of all the factors are less than 3. Hence we can look into the p-values and then drop the columns which are not statistically significant.

				OLS Reg	ressi	on Res	sults			
			Dep. Variable:	views_conte	nt	===== R-squa	red:	======	0.772	
			Model:	0	LS .	Adj. F	t-squared:		0.768	
			Method:	Least Squar	es	F-stat	istic:		196.6	
			Date:	Sat, 16 Nov 20	24	Prob (F-statistic):		1.41e-196	
			Time:	16:59:	09	Log-Li	kelihood:		1020.2	
			No. Observations:	6	50	AIC:			-2016.	
			Df Residuals:	6	38	BIC:			-1963.	
			Df Model:		11					
			Covariance Type:	nonrobu	st					
					====			======		
				coef	std	err	t	P> t	[0.025	0.975]
	feature	VIF	const	0.0335	0	.019	1.718	0.086	-0.005	0.072
0	const	95.414752	visitors	0.1537	0	.011	14.149	0.000	0.132	0.175
1	visitors	1.013861	views_trailer	0.0023	5.98	e-05	39.037	0.000	0.002	0.002
2	views_trailer	1.018334	major_sports_event_ye	es -0.0616	0	.004	-14.772	0.000	-0.070	-0.053
3	major_sports_event_yes	1.040906	dayofweek_Monday	0.0305	0	.014	2.247	0.025	0.004	0.057
4	dayofweek_Monday	1.043717	dayofweek_Saturday	0.0571	0	.008	7.485	0.000	0.042	0.072
5	dayofweek_Saturday	1.135693	dayofweek_Sunday	0.0324	0	.008	3.896	0.000	0.016	0.049
6	dayofweek_Sunday	1.119728	dayofweek_Thursday	0.0154	0	.007	2.212	0.027	0.002	0.029
7	dayofweek_Thursday	1.161694	dayofweek_Wednesday	0.0452	0	.005	9.528	0.000	0.036	0.054
8	dayofweek_Wednesday	1.285127	season_Spring	0.0239	0	.006	4.191	0.000	0.013	0.035
9	season_Spring	1.544629	season_Summer	0.0439	0	.006	7.559	0.000	0.033	0.055
10	season_Summer	1.548045	season_Winter	0.0304	0	.006	5.349	0.000	0.019	0.041
11	coacon Winton	1 570/100								

(a) Model summary

	RMSE	MAE	R-squared	Adj. R-squared	MAPE		RMSE	MAE	R-squared	Adj. R-squared	MAPE			
0	0.05048	0.039486	0.771101	0.767155	8.845579	0	0.051637	0.041431	0.764936	0.757286	9.055561			
	(b) Model Performance on train data							(c) Model Performance on test data						

View_counts = 0.03345832276267558 + (0.15368466239808792)*(visitors) + (0.0023354539674109785)*(views_trailer) + (-0.061631103365330564)*(major_sports_event_yes) + (0.030481686264103303)*(dayofweek_Monday) + (0.05714656661505086)*(dayofweek_saturday) + (0.032380950465093754)*(dayofweek_sunday) + (0.015433114921408614)*(dayofweek_Thursday) + (0.0451748635632742)*(dayofweek_Wednesday) + (0.0238643166479003)*(season_Spring) + (0.043911296611955544)*(season_Summer) + (0.030353496722740486)*(season_Winter)

Figure 15: Model 2

- ullet Dropping the high p-value predictor variables has not adversely affected the model performance as R^2 is unchanged.
- This shows that these variables do not significantly impact the target variable.

5.2.2 TEST FOR LINEARITY AND INDEPENDENCE

Why the test?

- Linearity describes a straight-line relationship between two variables, predictor variables must have a linear relation with the dependent variable. How to check linearity?
- Make a plot of fitted values vs residuals. If they don't follow any pattern (the curve is a straight line), then we say the model is linear otherwise model is showing signs of non-linearity. How to fix if this assumption is not followed?

We can try different transformations. I have plotted the pairplot between all the parameters to observe any pattern in the data and observed that 'views_content' is non-linear to 'views_trailer'. Hence we try taking squareroot of 1 column and re-consider the model again.

Figure 16: Residual plots

Residual Analysis

Model 2:

- The residuals show a visible curve (non-linear pattern), especially towards higher fitted values.
- This suggests that Model 2 might be missing some non-linear relationships or has some other specification issues.

Model 3:

- The residuals appear more randomly scattered with a lesser tendency to show a trend.
- There is slight heteroscedasticity, but it is not very pronounced.

AIC and BIC

1. Akaike Information Criterion (AIC)

Definition: Measures model quality, penalizing complexity to avoid overfitting. **Formula:**

$$AIC = -2\ln(L) + 2k$$

Where:

- ln(L): Log-likelihood of the model.
- k: Number of parameters (including intercept).

Interpretation: Lower AIC is better. Penalizes complex models to ensure simplicity.

2. Bayesian Information Criterion (BIC)

Definition: Similar to AIC but applies a stronger penalty for complexity, based on Bayesian principles. **Formula:**

$$BIC = -2\ln(L) + k\ln(n)$$

Where:

• ln(L): Log-likelihood.

• k: Number of parameters.

• n: Number of observations.

Interpretation: Lower BIC is better. Stronger penalty than AIC, especially for large n.

3 Comparison

• AIC: Penalizes complexity less, works well with small datasets.

• BIC: Stronger penalty, prefers simpler models with large datasets.

4. When to Use

• AIC: Focus on prediction; small sample size.

• BIC: Focus on simplicity; large sample size.

Model Comparison

Model	AIC	BIC
Model 2	-2016.42	-1962.70
Model 3	-2021.22 (lower AIC)	-1963.02 (lower BIC)

Table 1: Comparison of Models based on AIC and BIC

Conclusion: Model 3 is preferred due to its lower AIC and BIC, indicating a better trade-off between fit and complexity.

5.2.3 TEST FOR NORMALITY for Model 3

What is the test?

- Error terms/residuals should be normally distributed.
- If the error terms are not normally distributed, confidence intervals may become too wide or narrow. Once confidence interval becomes unstable, it leads to difficulty in estimating coefficients based on minimization of least squares.

What does non-normality indicate?

- It suggests that there are a few unusual data points which must be studied closely to make a better model. How to check the Normality?
- It can be checked via QQ Plot residuals following normal distribution will make a straight line plot, otherwise not.
- Another test to check for normality is the Shapiro-Wilk test.
- How to Make residuals normal?
- We can apply transformations like log, exponential, arcsinh, etc as per our data.

Figure 17: Test for normality for Model 3

The Shapiro-Wilk test can also be used for checking the normality. The null and alternate hypotheses of the test are as follows:

Null hypothesis - Data is normally distributed.

Alternate hypothesis - Data is not normally distributed.

The Shapiro-Wilk test yields a p-value of 0.295, which is greater than 0.05. Thus, we can conclude that the residuals follow a normal distribution.

5.2.4 TEST FOR HOMOSCEDASTICITY

- **Homoscedacity** If the variance of the residuals are symmetrically distributed across the regression line , then the data is said to homoscedastic.
- **Heteroscedacity** If the variance is unequal for the residuals across the regression line, then the data is said to be heteroscedastic. In this case the residuals can form an arrow shape or any other non symmetrical shape.

Why the test?

- The presence of non-constant variance in the error terms results in heteroscedasticity. Generally, non-constant variance arises in presence of outliers. How to check if model has Heteroscedasticity?
- Can use the goldfeldquandt test. If we get p-value > 0.05 we can say that the residuals are homoscedastic, otherwise they are heteroscedastic. How to deal with Heteroscedasticity?

Can be fixed via adding other important features or making transformations.

The p-value for the Goldfeld-Quandt test is 0.134, indicating that we fail to reject the null hypothesis. This suggests that the residuals exhibit homoscedasticity.

5.3 Model 3

				OLS Regr	ression Re	esults			
			Dep. Variable:	views conter	nt R-squ	uared:		0.775	
			Model:	- 01	LS Adj.	R-squared:		0.770	
			Method:	Least Square	es F-sta	atistic:		182.3	
			Date:	Sun, 17 Nov 202	24 Prob	(F-statistic):		7.33e-197	
			Time:	15:59:4	49 Log-l	_ikelihood:		1023.6	
			No. Observations:	65	50 AIC:			-2021.	
			Df Residuals:	63	BIC:			-1963.	
			Df Model:	1	12				
			Covariance Type:	nonrobus	st				
			=======================================	coef	std err	t	P> t	[0.025	0.975]
			const	-0.1330	0.067	-1.980	0.048	-0.265	-0.001
			visitors	0.1533	0.011	14.175	0.000	0.132	0.175
			views_trailer	0.0005	0.001	0.701	0.483	-0.001	0.002
			major_sports_event_ye	s -0.0629	0.004	-15.037	0.000	-0.071	-0.055
			dayofweek_Monday	0.0287	0.014	2.119	0.034	0.002	0.055
	feature	VIF	dayofweek_Saturday	0.0572	0.008	7.523	0.000	0.042	0.072
0		1145.116186	dayofweek_Sunday	0.0326	0.008	3.938	0.000	0.016	0.049
1	visitors	1.014056	dayofweek_Thursday	0.0147	0.007	2.121	0.034	0.001	0.028
2	views trailer	145.511376	dayofweek_Wednesday	0.0448	0.005	9.488	0.000	0.036	0.054
3	major sports event yes	1.054886	season_Spring	0.0248	0.006	4.359	0.000	0.014	0.036
4	dayofweek Monday	1,046542		0.0444	0.006	7.676	0.000	0.033	0.056
5	dayofweek Saturday	1,135698	season_Winter	0.0301	0.006	5.336	0.000	0.019	0.041
6	dayofweek Sunday	1.119829	views_trailer_sq	0.0363	0.014	2.588	0.010	0.009	0.064
7	dayofweek_Thursday	1.163413					======	=======	
8	dayofweek_Wednesday	1.286290	Omnibus:	2.86		in-Watson:		2.016	
9	season_Spring	1.550343	Prob(Omnibus):	0.23		ue-Bera (JB):		2.680	
10	season_Summer	1.549801		0.13		` '		0.262	
11	season_Winter		Kurtosis:	3.17				2.58e+03	
12	views trailer sa	145.740291	=======================================					========	

(a) Model summary

RMS	E MAI	R-squared	Adj. R-squared	MAPE		RMSE	MAE	R-squared	Adj. R-squared	MAPE		
0 0.05010	1 0.039362	0.774526	0.769918	8.820493	0	0.050358	0.040247	0.776434	0.767784	8.833591		
(b) Model Performance on train data						(c) Model Performance on test data						

View_counts = -0.13300112523075014 + (0.1532960908166131)*(visitors) + (0.0004991639606274113)*(views_trailer) + (-0.06287701873377341)*(major_sports_eve nt_yes) + (0.02866310022717379)*(dayofweek_Monday) + (0.05718528728778898)*(dayofweek_Saturday) + (0.03258383648259437)*(dayofweek_Sunday) + (0.014741522633178503)*(dayofweek_Thursday) + (0.044807260634074926)*(dayofweek_Wednesday) + (0.02475667172646963)*(season_Spring) + (0.04441538891477993)*(season_Summer) + (0.030147521579935166)*(season_Winter) + (0.03633200300044395)*(views_trailer_sq)

(d) Equation of the model

Figure 18: Model 3

Despite the high VIF values for 'views_trailer_sq' and 'views_trailer' both variables have been retained in the model. This decision considers the observed patterns in the pairplot, the lower AIC and BIC values of Model 3, and the overall improvement in model performance metrics such as RMSE, MAE, MAPE, and Adjusted R^2 . We also note that 'views_trailer' has a p-value of 0.483. Therefore, we exclude this column to develop Model 4.

5.4 Final model(model 4) performance evaluation

				OLS F	Regres	sion Resu	ults			
			Dep. Variable:	views_cor	ntent	R-squar	 red:		0.774	
			Model:		OLS	Adj. R	-squared:		0.770	
			Method:	Least Squ	iares	F-stati	istic:		199.0	
			Date:	Sun, 17 Nov	2024	Prob (F	F-statisti	c):	6.48e-198	
			Time:	17:0	7:52	Log-Lik	kelihood:		1023.4	
			No. Observations:		650	AIC:			-2023.	
			Df Residuals:		638	BIC:			-1969.	
			Df Model:		11					
			Covariance Type:	nonro	bust					
					=====					
				coef	S	td err	t	P> t	[0.025	0.975]
	feature	VIF								
0	const	113.683358	const	-0.1777		0.021	-8.399	0.000		-0.136
1	visitors	1.013792	visitors	0.1532		0.011	14.171	0.000		0.174
2	major sports event yes	1.041906	major_sports_event_y			0.004	-15.215	0.000		-0.055
3	dayofweek Monday	1.043740	dayofweek_Monday	0.0282		0.014	2.087	0.037		0.055
4	dayofweek Saturday	1.135694	dayofweek_Saturday	0.0572		0.008	7.528	0.000		0.072
5	dayofweek Sunday	1.119713	dayorweek_banday	0.0326		0.008	3.946	0.000		0.049
6	dayofweek Thursday	1.162031	dayofweek_Thursday	0.0146		0.007	2.099	0.036		0.028
7	dayofweek_Mednesday	1.285236	dayofweek_Wednesday	0.0447		0.005	9.476	0.000		0.054
8	season Spring	1.544140	season_Spring	0.0250		0.006	4.414	0.000		0.036
9	season Summer	1.547473	season_Summer	0.0446		0.006	7.712	0.000		0.056
10	season Winter	1.570713	season_Winter	0.0301		0.006	5.334	0.000		0.041
11	views trailer sq	1.019936	views_trailer_sq	0.0461	-	0.001	39.306	0.000	0.044	0.048
11	views_craffer_sq	1.019930			=====					
			(a)	Model summa	ary					
	RMSE MAE R-square	d Adj. R-s	quared MAPE	RMSE	MAE	R-squar	ed Adi. F	R-squared	MAPE	
0.0	5012 0.039397 0.77435	9	•	0.050238 0.0	40141	0.7774	3	0.769576	23.772465	
	(b) Model Perforn	in data	(c) Мо	del Perfo	rmance on	test data			

(d) Equation of the model

Figure 19: Model 4

Figure 20: Test for normality and homoscedacity for final model 4

Model	AIC	BIC
Model 2	-2016.42	-1962.70
Model 3	-2021.22 (lower AIC than Model 2)	-1963.02 (lower BIC than Model 2)
Model 4	-2022.72 (lowest AIC)	-1968.99 (lowest BIC)

Table 2: Comparison of Models based on AIC and BIC

Conclusion

Model 4 is the preferred model as it achieves the lowest AIC and BIC values, indicating the best balance between model fit and complexity among the compared models.

This is our final model with every condition satisfied along with the model assumptions. This decision considers the observed patterns in the pairplot, the lower AIC and BIC values of Model 4, and the overall improvement in model performance metrics such as RMSE, MAE, MAPE, and Adjusted \mathbb{R}^2 . This model satisfies both Shapiro and Goldfeld-Quandt test as well.

- We can see that RMSE on the train and test sets are comparable. So, our model is not suffering from overfitting.
- MAE indicates that our current model is able to predict view counts within a mean error of 0.04 units on the test data.
- Hence, we can conclude the model "Model4" is good for prediction as well as inference purposes.

6 Actionable Insights & Recommendations

- (a) With our linear regression model, we have been able to capture \sim 77.4% of the variation in our data.
- (b) The model indicates that the most significant predictors of the number of first-day views, in millions, of the content are the following:
 - visitors

- existance of major sports event (on the day of content release).
- dayofweek (Monday, Wednesday, Thursday, Saturday and Sunday)
- Season (Spring, Summer, Winter)
- views trailer

(The p-values for these predictors are less than 0.05 in our final model.)

(a) 3. an increase of 1 visitor occurs with a 0.1532 increase in view count or in other words 1 million view counts can be increased by $\frac{1}{.1532} \approx 6.53 \sim 6.5$ million visitors visiting the platform in the past week

It is important to note here that the predicted values are square(views_trailer) and therefore coefficients have to be converted accordingly to understand their influence on view counts. It is important to note here that correlation is not equal to causation.

- 4. If there is any one major sports event on the day of content release then there is 0.063 million decrease in view counts
- 5. The categorical variables are a little hard to interpret. It can be seen that all the dayofweek_category variables in the dataset have a positive relationship with the view counts, and the magnitude of this positive relationship is high for Wednesday, Sunday and Saturday as already visualized through a boxplot(12).
- 6.It can be seen that all the season_category variables in the dataset have a positive relationship with the view counts, and the magnitude of this positive relationship is high for Summer, Winter and Spring respectively following the same pattern as already visualized through the boxplot(??).
- 4. As the number of views, in millions, of the content trailer increases, the number of first-day views, in millions, of the content also increases.

Our final Linear Regression model has a MAPE of 23% on the test data, which means that we are able to predict within 23% of the content views. This is a very good model and we can use this model for the benefit of the company.