hMDS: The Next Step for Multi-Document Summarization

3. retrieve source

documents by

information nuggets

Markus Zopf, Maxime Peyrard, Judith Eckle-Kohler | Research Training Group AIPHES

hMDS in a nutshell

- novel heterogeneous multi-document summarization corpus
- poses new challenges for summarization systems
- vel construction approach makes corpus construction easy
- get more information at https://github.com/AIPHES/hMDS

Traditional Corpus Construction

2. identify important information in source documents

3. write a proper summary

problems:

- for high text quality, professional writers are require
- exponential complexity to read all documents
- domain knowledge required to estimate importance
 - → time-consuming + expensive

executed e.g. for DUC 2004 / TAC 2008

> very homogeneous corpora: only English newswire source documents, always 100 word summaries, etc.

Reversing Traditional Corpus Construction

advantages:

1. select a

summary

 high-quality summary already available e.g. Wikipedia featured articles: well-written, comprehensive, well-researched, stable

information

- \rightarrow no text to write \rightarrow no professional writer needed
- importance of information already assessed → no topic knowledge needed
- executable without human interaction?

result of corpus creation:

- heterogeneous, multi-genre source documents
- variable length source documents & summaries
- noisy source documents

Dimensions of Heterogeneity

Genres & Textual Heterogeneity

Lots of different text genres microblog encyclopedic short organization

dialogues scientific

encyclopedic long

Textual Heterogeneity

based on Jensen-Shannon (JS) divergence of word distributions $TH_{IS}(topic) =$ doc ∈ topic

	<i>h</i> MDS	DUC 04	TAC 08
Avg. TH _{JS}	0.3815	0.3019	0.3188

Corpus | hMDS-M | hMDS-A | hMDS-V | DUC 04 | TAC 08

Optimal 0.4960 0.4845 0.5018 0.1876 0.2540

Random 0.0732 0.0594 0.0450 0.0435 0.0458

0.1192

0.0652

ROUGE-2 scores

0.0797

0.2293 0.2267 0.2082 0.0900 0.1107

0.0603

0.0939 0.0805 0.0766 0.0657 0.0572

Observation:

LexRank 0.1273

LSA

TF-IDF

0.0689

different text genres introduce high textual heterogeneity

Document Lengths

Summaries

Corpus	Avg. Length (Words)	Relativ SD
hMDS	245.55 ± 132.94	0.54
DUC 04	118.11 ± 6.38	0.05
TAC 08	109.33 ± 7.01	0.06

Source Documents

Corpus	Avg. Length (Words)	Relativ SD
hMDS	1863.59 ± 3928.91	2.11
DUC 04	672.14 ± 6.38	0.75
TAC 08	589.20 ± 7.01	0.82

Observation:

- Documents in *h*MDS longer
- *h*MDS higher standard deviation
 - also in summaries!

Summarization Experiments

0.0773

0.0696

Conclusions

- optimal scores much higher in *h*MDS
- ICSI performs best
- reference systems better suited to summarize classical datasets
- larger gap to optimum: go for it!
- LEAD (usually strong) performs poorly compared to reference systems
- performance decreases if more noise is present $(M \rightarrow A \rightarrow V)$

Distribution of ROUGE Scores

Observation:

- DUC and TAC very similar
- hMDS much more poor sentences/noise
 - → harder to summarize

Challenge accepted!

get more information at github.com/AIPHES/hMDS

current work on *h*MDS:

- 1. adding German topics
- 2. automating construction approach

0.0715

0.0430