deep-learning 笔记

徐世桐

基本定义 1

label 标签:输出结果, \hat{y} 为计算得到的结果,y 为实际测量结果

feature 特征:用于预测标签的输入变量, $x_i^{(i)}$ 为第 i 组 sample 第 j 号特征

sample 样本:一组特征的取值和对应的标签输出

batch: batch size 个 sample 被分为一组,进行向量化的计算,称 B

hyperparameter 超参数:人为设定的参数。如样本个数(批量大小 batch size)|B|,学习率 η 。少数 情况下通过学习得到

W 一层 layer 的权重矩阵行数 = 前层节点数,列数 = 当前层节点数 全连接层 fully-connected layer/稠密层 dense layer: 此层所有节点都分别和前一层所有节点连接

softmax 函数: $softmax(Y) = \frac{exp(y)}{\sum_{y' \in Y} exp(y')}$, 将数值输出转化为概率值, 1. 值为正 2. 值总和为 1 cross entropy 交叉熵

定义: 分部 p 和分部 q 间的 cross entropy $H(p,q) = -E_p(\log(q))$ 。为 expected value of $\log(q)$ with respect to distribution p

公式: $H(y^{(i)}, \hat{y}^{(i)}) = -\sum_{i \in B} y^{(i)} log(\hat{y}^{(i)})$

使用:联系两个值概率分部间的差异,即可将数值输出 \hat{y} 和分类结果y直接做对比

仍可和 softmax 同时使用, softmax 将可能性先转换为正数并和为 1, 随后使用 cross entropy 指数加权移动平均

$$y_t = \gamma y_{t-1} + (1 - \gamma)x_t$$

linear regression 线性回归

习率的平均值

当使用平方代价函数:

$$\theta_{i} = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x_{i}^{(j)} (x_{1}^{(j)} \theta_{1} + x_{2}^{(j)} \theta_{2} + \dots + const - y^{(j)}) = \theta_{i} - \frac{\eta}{|B|} \sum_{i \in B} x^{(i)} (\hat{y}^{(j)} - y^{(j)})$$

$$const = const - \frac{\eta}{|B|} \sum_{i \in B} (x_{1}^{(j)} \theta_{1} + x_{2}^{(j)} \theta_{2} + \dots + const - y^{(i)}) = const - \frac{\eta}{|B|} \sum_{i \in B} (\hat{y}^{(j)} - y^{(j)})$$

对样本 i 的偏导数向量为
$$\nabla_{\theta}J^{(i)}(\theta)=\begin{bmatrix}x_1^{(i)}\\x_2^{(i)}\\...\\1\end{bmatrix}(\hat{y}^{(i)}-y^{(i)})$$
 交叉熵代价函数: $J(\theta)=\frac{1}{|B|}\sum_{i\in B}H(y^{(i)},\hat{y}^{(i)})$

softmax 线性回归: 单层神经网络,使用 softmax 代价函数 过拟合问题

1. 权重衰减:在代价函数中惩罚高权重的值,尽可能使所有权重值减小新代价函数 = $J(\theta) + \frac{\lambda}{2} \sum_{w \in W} w^2$,即 $J(\theta) + \frac{\lambda}{2}*$ 所有权重的平方和。 λ 为超参数,决定权重衰减的程度

2. 丢弃法

每一权重(不包括 const)有 p 的几率 $\theta'=0$,有 1-p 的几率 $\theta'=\frac{\theta}{1-p}$ 为了得到确切的值,在测试模型时较少使用

初始化参数

- **1.MXNet 默认随机初始化**: 所有权重 $\sim N(0,1)$ 的 normal distribution, 所有 const 取 0
- **2.Xavier 随机初始化**: 对一全连接层,输入个数 a,输出个数 b,则所有参数 $\sim U(-\sqrt{\frac{6}{a+b}},\sqrt{\frac{6}{a+b}})$ **预处理数据集**
 - 1. 特征标准化: $x' = \frac{x-\mu}{\sigma}$, 即统计中 z 值
- **2. 离散值转换成指示特征**: 对于一个可取值为 A, B, C 的离散输入值,转换成 3 个数值输入。即如果原输入为 A,转换后 3 个数值输入为 1,0,0。原离散值为 B 则转换后为 0,1,0 结构
 - 将训练集分组,每组 batch_size 个 sample。
 - 对这个 batch 的数据进行向量化计算,计算 loss,斜率,调用优化函数。
- 即每一 batch 使用相同的权重偏差。一次训练一共只遍历一次所有 sample,共 $\frac{sample_size}{|B|}$ 次向量化计算

activation function 只出现在 hidden layer 的输出,输出层无需 activation function 梯度下降的过程中一直使用真实梯度,无需减小学习率

3 convolutional neural network 券积神经网络

互相关运算:

输入一个二维数组,和二维核 kernel 进行互相关运算,得到二维数组

二维核/卷积核/filter 过滤器:在输入数组上滑动,每次和二维数组矩阵一部分按元素相乘求和,作为输出矩阵的元素

二维卷积层:

将输入和卷积核做互相关运算,结果加上 const 作为输出

特征图:输出矩阵可看做是输入矩阵的表征,称特征图

感受野 receptive field:

对输出矩阵一元素 x, 所有可能影响其值的输入矩阵元素称感受野感受野可能大于实际输入的矩阵边界

填充 padding:

在输入矩阵外侧添加全零元素,使得输出矩阵的维度增加,由于可用的感受野增加。 常使用奇数 kernel,添加 $\lfloor \frac{kernel}{2} \rfloor$ 的填充,使得输出矩阵和输入矩阵纬度一样

步幅 stride:

定义每次感受野向左/向下移动的纬度

多通道输入输出:

当输入的数据包含多个矩阵,即多通道输入,例: RGB 图像有 3 个输入通道 对 c_i 输入, c_o 输出的卷积层, kernel shape 为 $(c_o, c_i, 700)$ 行数,列数)

每一输入通道有唯一的 kernel $(c_i, 行数, 列数)$ 对应,进行互相关运算后结果矩阵相加,作为一条输出通道的结果

多组 $(c_i, 行数, 列数)$ 分别产生输出通道的结果矩阵,则有 c_o 条输出通道

池化层:

作用: 1 为了防止当输入变化时,输出立即随之更改。2 减少计算量

池化窗口,同卷积层的感受野。限定某块输入被同时考虑,同样有 stride,可对输入 padding

- 1. 最大池化层: 取池化窗口内最大的输入
- 2. 平均池化层: 取池化窗口平均值

多输入通道间池化结果不相加,即输入通道数 = 输出通道数

LeNet 卷积神经网络

1. 使用 2 组卷积计算层激活函数层池化层

输出通道数分别为 6, 16。卷积层 kernel 为 (5,5), 步幅为 1, 无 padding 激活函数层对每一元素做 sigmoid 池化层窗口 (2,2), 步幅为 2

2. 使用 3 组全连接层

节点数 120 84 10, 使用 sigmoid 激活函数

将(批量大小,通道数, height, width)看做(批量大小,通道数*height*width)处理

AlexNet 深度卷积神经网络:

除输出层和丢弃层,全部使用 relu 做激活函数

卷积部分

- 2 组包含 pooling 的卷积计算
- nn.Conv2D(96, kernel_size=11, strides=4, activation='relu')
- nn.MaxPool2D(pool_size=3, strides=2)
- nn.Conv2D(256, kernel_size=5, padding=2, activation='relu')
- nn.MaxPool2D(pool_size=3, strides=2)
- 3 组仅 pooling 一次的卷积计算, 高输出通道, 低卷积窗口
- nn.Conv2D(384, kernel_size=3, padding=1, activation='relu')
- nn.Conv2D(384, kernel_size=3, padding=1, activation='relu')
- nn.Conv2D(256, kernel_size=3, padding=1, activation='relu')
- nn.MaxPool2D(pool_size=3, strides=2)

全连接层部分

- 两 hidden layer 全连接层使用丢弃法
- nn.Dense(4096, activation="relu"), nn.Dropout(0.5)
- nn.Dense(4096, activation="relu"), nn.Dropout(0.5)
- nn.Dense(10) // 根据需求改变输出层节点,原论文为 1000

VGG 使用重复元素网络

VGG 基础块

数个 (3,3)kernel 1 填充卷积层 + 1 个 (2,2) 窗口 2 步幅池化层 VGG 神经网络由数个 VGG 块 + 数个全连接层组成

例: VGG-11

包含结构为 (1, 64) (1, 128) (2, 256) (2, 512) (2, 512) 5 层 VGG 块 (n, m) 代表此 VGG 块使用 n 层卷积层,各有 m 通道和 3 层全连接层,实现同 AlexNet 的全连接层部分共 8 层卷积层 +3 层全连接层,所以称 VGG-11

NiN 神经网络

NiN 块

1 个自定义卷积层 + 2 层 (1, 1)kernel 卷积层, 3 层卷积层都不包含池化层,都有同样通道数自定义卷积层可设置 kernel,步幅,填充。(1, 1)除了通道数可设置,其余固定为默认值 NiN 神经网络有多组 (NiN 块 + 池化层)每一 NiN 块后有池化层

例: NiN 模型

- NiN 块部分

nin_block(96, kernel_size=11, strides=4, padding=0)

nn.MaxPool2D(pool_size=3, strides=2)

nin_block(256, kernel_size=5, strides=1, padding=2)

nn.MaxPool2D(pool_size=3, strides=2)

nin_block(384, kernel_size=3, strides=1, padding=1)

nn.MaxPool2D(pool_size=3, strides=2)

- 在 NiN 块部分结束后加入丢弃层

nn.Dropout(0.5)

- 转化为对应分类个数的输出

nin_block(10, kernel_size=3, strides=1, padding=1)

nn.GlobalAvgPool2D() // 全局平均池化层,每一通道取矩阵所有元素的平均值nn.Flatten() // 将四维的输出转成二维的输出,其形状为(批量大小,10)

GoogLeNet 含并行结构神经网络

Inception 块

图 5.8: Inception块的结构

结构表示: $(n_1, (n_{21}, n_{22}), (n_{31}, n_{32}), n_4)$

第一线路使用 n1 通道

第二线路第一卷积层使用 n_{21} 通道, 第二层卷积层使用 n_{22} 通道 1 填充

第三线路第一卷积层使用 n_{31} 通道, 第二层卷积层使用 n_{32} 通道 2 填充

第四线路第一池化层使用 (3, 3) 窗口 1 填充, 第二层卷积层使用 n4 通道

4 CNN 优化方法 5

每一卷积层都使用 relu 激活函数

所有层输出作为不同通道结果,即最终有 $n_1 + n_{22} + n_{32} + n_4$ 通道

GoogLeNet 结构:

- 5 个串联模块,每一卷积层使用 relu 激活函数,每一模块间使用步幅 2 (3,3) 窗口 1 填充池化层
- 1. 64 通道 (7, 7)kernel 2 步幅 3 填充卷积层 + 池化层
- 2. 64 通道 (1,1)kernel 卷积层 + 64 * 3 通道 (3,3)kernel 1 填充卷积层 + 池化层
- 3. 串联 2 inception 块 + 池化层, 分别有结构

(64, (96, 128), (16, 32), 32)

(128, (128, 192), (32, 96), 64)

4. 串联 5 inception 块 + 池化层

(192, (96, 208), (16, 48), 64)

(160, (112, 224), (24, 64), 64)

(128, (128, 256), (24, 64), 64)

(112, (144, 288), (32, 64), 64)

(256, (160, 320), (32, 128), 128)

5. 串联 2 inception 块 + 全局平均池化层

(256, (160, 320), (32, 128), 128)

(384, (192, 384), (48, 128), 128)

6. 全连接层, 节点数和分类类别数相

4 CNN 优化方法

批量归一化 batch normalization

1. 对全连接层做批量归一

处于输入的仿射变换和激活函数间,即输出 = $\phi(BN(x))$

- 1. 对于批量仿射 x = Wu + b,求标准化 $\hat{x}_i = \frac{x_i \mu}{\sqrt{\sigma^2 + \epsilon}}$ 。 μ 和 σ 都为此组仿射变换的结果
- 2. $BN(x) = \gamma * \hat{x}_i + \beta$, γ 拉伸 β 偏移。* + 为按元素加法乘法
- 2. 对卷积层做批量归一

处于卷积计算和激活函数间,卷积计算 -> 批量归一 -> 激活函数 -> 池化层

各通道独立计算,各有独立拉伸 γ 偏移 β 。

 σ , μ 为此通道一批量内所有矩阵的所有元素的总体方差, 平均值

得到 σ , μ 后对此通道此批量内所有元素求标准化

最终对此通道每一 sample 标准化的结果拉伸偏移

ResNet 残差网络

残差块

训练时期望输出为 f(x) - x,而非直接使用 f(x) 期望输出。得到 f(x) - x 后 +x 得到 f(x)

- 1. 卷积层 (批量归一) + relu + 卷积层 (批量归一) 得到 f(x) x
- 2. f(x) x + (1, 1) 卷积层对 (x) 卷积结果 + relu 激活函数

第一卷积层: (3, 3)kernel 1 填充 (通道数步幅自定义)

第 234 组残差组第一残差块第一卷积层步幅为 2, 否则为 1

第二卷积层: (3, 3)kernel 1 填充 1 步幅 (通道数自定义)

5 RNN 循环神经网络 6

(1,1) 卷积层: (通道数步幅自定义)

第 234 组残差组第一残差块使用 (1, 1) 卷积层, 步幅为 2, 否则直接 +x

3 层卷积层通道数共享同一自定义值,要求 2 层卷积层输入输出通道数一致

ResNet-18 模型: 共 18 卷积层

- 1. 64 通道 (7, 7)kernel 2 步幅 3 填充批量归一卷积层 + (3, 3) 窗口 2 步幅 1 填充最大池化层
- 2. 4 组残差块,每组包含多个残差块

第一组2个残差块输出通道数和1中输出通道数一致

第二三四组各 2 个残差块输出通道数为前一层通道数 *2

3. 全局平均池化层 + 对应输出结果数全连接层

DenseNet 稠密连接网络

类似 ResNet 残差网络,+x 步变为 concat x 连在输出结果后,即 x 直接传向下一层 **稠密块**

多组 (批量归一 + relu + (3, 3)kernel 1 填充卷积层 + concat x) 卷积层通道数相同 concat 操作为在通道纬度的 concat, 即输入 x 作为额外输出通道。

增长率 = 输出通道 - 输入通道 = 卷积层通道数

过渡层

批量归一 + relu + (1, 1) 卷积层 + (2, 2) 窗口 2 步幅平均池化层 使用 (1, 1) 卷积层减小通道数,2 步幅平均池化层减小矩阵大小 卷积层通道数 = 输出通道数 / 2

DenseNet 模型

- 1. 64 通道 (7, 7)kernel 2 步幅 3 填充批量归一卷积层 + (3, 3) 窗口 2 步幅 1 填充最大池化层
- 2. 4 组稠密块,由 3 个过渡层分隔
 - 4 层稠密块卷积层数可以不相同
- 3. 批量归一 + relu + 全局平均池化层 + 对应输出结果数全连接层

5 RNN 循环神经网络

记录数据状态,根据以往状态和当前输入决定输出

n 阶马尔科夫链: 一个词的出现仅和前 n 个词有关

语言模型: 词序 $(w_1, w_2, ..., w_T)$ 的出现可能性为

 $P(w_1, w_2, ..., w_T) \approx \prod_{t=1}^{T} P(w_t | w_{t-(n-1)}, ..., w_{t-1})$

称 n 元语法,每一 w_t 为一时间步中出现的词

循环神经网络

隐藏层 $H_t = \phi(X_t W_{xh} + H_{t-1} W_{hh} + b_h)$

 $H_{t-1}W_{hh}$ 项将隐藏层前一次输出纳入此次计算

输出 $O = HW_{hq} + b_q$

处理语言模型:将每一文字转化为索引,使用索引做训练参数集

采样方式:

BATCH_SIZE 每次采集的样本数

NUM_STEPS 每个样本包含的时间步数,

1 随机采样:

6 代码算法优化 7

[1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16]

将所有样本分为头尾相连的组,每组有相等可能性被取值,每次随机取 BATCH_NUM 组训练来自不同批量的样本时不能将前一次隐藏层结果纳入计算

2 相邻取样:

 $[1\ 2\ 3\ 4\]\ [5\ 6\ 7\ 8\]\ [9\ 10\ 11\ 12\]\ [13\ 14\ 15\ 16]$

[17 18 19 20] [21 22 23 24] [25 26 27 28] [29 30 31 32]

将样本填入 BATCH_NUM 行矩阵,再分为 (BATCH_NUM, NUM_STEPS) 的小矩阵,每次每个小矩阵有等可能性被选择

仅需在训练一开始初始化隐藏层结果,而非在每一批量开始初始化

裁剪梯度

将所有参数拼接成向量 g, 进行裁剪: $g' = min(\frac{\theta}{||g||}, 1)g$

困惑度

= exp(交叉熵损失函数值)

** RNN 实现 **

通过时间反向传播

有关时间步的损失函数: $L = \frac{1}{T} \sum_{t=1}^{T} l(o_t, y_t)$

** 反向传播公式 **

GRU 门控循环单元

替代原计算隐藏状态方法, 应对梯度衰减

reset gate 重置门 update gate 更新门:

得到上一层影藏层结果 H_{t-1} 当前时间步输入 X_t

隐藏层
$$R_t = \sigma(X_t W_{rr} + H_{t-1} W_{hr} + b_r)$$

更新层
$$Z_t = \sigma(X_t W_{xz} + H_{t-1} W_{hz} + b_z)$$

W 为权重参数 b 为偏差参数 σ 为 sigmoid 函数

候选隐藏状态

候选隐藏状态 $\tilde{H}_t = tanh(X_t W_{xh} + (R_t \odot H_{t-1})W_{hh} + b_h)$

○ 为按元素相乘,使得重置门中对应位置值为 0 的元素被丢弃

隐藏状态

$$H_t = Z_t \odot H_{t-1} + (1 - Z_t) \odot \tilde{H}_t$$

** LSTM 长短期记忆门控循环网络 **

6 代码算法优化

Stochastic Gradient Decent 随机梯度下降: 采样方法

每次迭代随机选择一个**样本**,得到权重针对此样本的斜率进行梯度下降而不是求参数针对所有样本的代价函数斜率。开销从O(n)变为O(1)

即任取的样本 j,SGD 迭代为 $\theta_i = \theta_i - \eta \frac{dJ^{(j)}(\theta)}{d\theta_i}$

batch gradient descent 小批量随机梯度下降:采样方法

每次迭代随机选择一组样本 B, 计算参数关于 B 的代价函数斜率

重复采样: 允许 B 中重复出现同一样本。反之不重复采样

随迭代次数增加,学习率可减小,使学习率和斜率的乘积方差减小

动量法: 迭代方法

解决固定一学习率值无法同时满足多个参数的学习率范围,导致某些参数发生学习太慢,某些参数 不断越过最优解

定义:

向量 v_t 为第 t 次迭代每一参数的速度变量

向量 xt 为第 t 次迭代参数向量

向量 q_t 为第 t 次迭代每一参数的斜率

迭代:

$$v_t = \gamma v_{t-1} + \eta_t g_t$$

$$x_t = x_{t-1} - v_t$$

AdaGrad 算法: 迭代方法

根据参数斜率调整学习率

定义向量 s_t 为第 t 次迭代累加变量,累计每一参数的斜率平方和

迭代:

$$s_t = s_{t-1} + g_t \odot g_t$$

$$x_t = x_{t-1} - \frac{\eta}{\sqrt{s_t + \epsilon}} \odot g_t$$

即每一参数有变量记录所有斜率历史,每次迭代时 学习率/斜率历史 l2 norm

由于累加变量斜率历史, 学习率始终降低, 造成学习缓慢

RMSProp 算法: 迭代方法

解决 AdaGrad 末期学习率过低问题

迭代:

 $s_t = \gamma s_{t-1} + (1 - \gamma) g_t \odot g_t$ 即对 s_t 按元素平方做指数加权

 x_t 同 AdaGrad 算法

AdaDelta 算法: 迭代方法

解决 AdaGrad 末期学习率过低问题,不使用超参数

定义:

向量 g'_t 记录参数变化量

向量 Δx_t 对 g'_t 按平方做指数加权

迭代:

$$s_t = \gamma s_{t-1} + (1 - \gamma)g_t \odot g_t$$
 \square RMSProp

$$\Delta x_t = \gamma \Delta x_{t-1} + (1-p)g_t' \odot g_t'$$
 Δx_t 初始化为全零向量

$$g_t' = \sqrt{\frac{\Delta x_t + \epsilon}{s_t + \epsilon}} \odot g_t$$

$$x_t = x_{t-1} - g'_t$$
 g'_t 即参数变化率

7 Deep Feedforward Network (Deep Learning 第 6 章笔记)

SVM 支持向量机

仍通过 $w^Tx + b$ 得到输出,输出仅表示 identity,正值说明有 identity,负值说明没有

依据: 一个平面的公式为 $\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$,则当计算 $w^T x + b$ 得到值后,>0 则为平面上方的数据点,<0 为下方数据点

kernel trick

kernel method 将数据集表示成相近的两个数据点一组的集合 (x_i, x_j) , kernel method 将一对数据变为单一数据点 $x = k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$

kernel method 使用 ϕ 转换数据的纬度,而点乘化简后无需先计算 $\phi(x_i),\phi(x_j)$ 即可得到新数据点 x manifold hypothesis:

当训练数据集合包含大量无规律的数据,则将其中大部分视为无效数据,并只关心落在一个 manifold 上的数据。

例: 生成图像文字声音时数据大多很集中, 当像素文字随机分布时生成图像大多无意义

deep feedforward network/feedforward neural network/multilayer perceptrons MLP:

找到 θ 使得 $f(x;\theta)$ 最接近数据 y 值。 f^* 为最理想的 f, 即 $f^*(x) = y$ 。 θ 可为多个参数,如 $f(x;w,b) = x^Tw + b$

$$f^*(x) = f^{(3)}(f^{(2)}(f^{(1)}(x))), \ f^{(1)}$$
 为 network 第一层。每一 $f^{(i)}(x) = \phi(x;\theta)^T w$

神经网络

1. 结构:

输入层没有 weight,第一 hidden layer 得到所有输入层的值。

hidden layer 和输出层所有输出都为 0/1, 非连续的值

- 2. 一层 hidden layer 计算方法: $f^{(i)}(x; W, c) = \sigma(W^T x + c)$
 - x 为前一层的输出向量,输入层 x 即为训练参数向量。
 - c为此层常数向量

 $z = W^T x$ 为一层 hidden layer 对输入取得的中间值向量,称 logit。 $a = \sigma(z+c)$ 为对 z+c 每一元素取 σ 的结果向量,a 即此层的输出。

W 为此层参数矩阵, 行数 = 前层节点数, 列数 = 当前层节点数

X 为多个参数点的训练集中前一层的输出矩阵, 行数为数据点个数, 列数为前一层节点数

XW 当 W 对参数集矩阵操作时,每行向量 z_i^T 此时为一层 hidden layer 各节点对第 i 参数点的中间值向量。对每行 $+c^T$ 并分别取 σ 得到输出矩阵, a_{ij} 为当使用第 i 个参数点时此层第 j 节点的输出

cross entropy

分部 p 和分部 q 间的 cross entropy $H(p,q) = -E_p(\log(q))$ 。为 expected value of log(q) with respect to distribution p

cost function

当使用 maximum likelihood 估计参数时,cost function $J(\theta)$ 为训练输入参数的分部和训练结果参数的分部间 cross-entropy: $J(\theta) = -E_{x,y \sim training_dataset}(log(p_{model}(y|x)))$

对于每一在训练集内的 (x, y),求 $log(p_{model}(y|x))$,并求 expected value。 $p_{model}(y|x)$ 即训练得到的 y 关于 x 的分部

例: 当 model 为 $y = N(f(x; \theta), 1)$ 正则分部时, $J(\theta) = -E_{x,y \sim data}(y - f(x; \theta))^2 + const$ output layer

当输出层的结果和不为 1 时,代表数据没有被准确分到某一类中,使用 exponentiation and normalisation

normalisation 后结果 $p=\frac{\tilde{p}}{\sum \tilde{p'}}$,为 \tilde{p} 在所有结果中占的比例。 \tilde{p} 为未 normalise 值假设输出层结果 $\tilde{P}(y|x)$ 有 $log(\tilde{P}(y|x))=yz$

$$ilde{P}(y|x) = exp(yz)$$
 $P(y|x) = \frac{exp(yz)}{\sum_{y'=0}^1 y'z}$,称 softmax function $P(y|x) = \sigma((2y-1)z)$,y,y'为训练目标结果,所以 $\sum_{y'=0}^1$ 包含所有 y'

当 z_i 为 dominant,并对应期望的输出项。 $\log softmax(z)_i = 0$ 。则此项不产生高 $\cos t$,否则产生 $\cos t$ 。

对 softmax function 使用 log likelihood 原因: log $softmax(z)_i = z_i - log \sum_i exp(z_i)$.

hidden unit

代表一个 hidden layer 节点的激发函数。

1. rectified linear unit: g(x) = max(0, x)

无法用于 gradient based learning, 由于一阶导为 0

基于 rectified linear unit 的优化: g(x) = max(0, x) + a * min(0, x)

a = -1: absolute value rectifier

a 为极小值: leaky ReLU

a 为可学习值: Parametric ReLU, PReLU

2. Maxout units

将 x 分为多组,每组 h(x) 为组内最高值

backward propagation

一种计算 gradient 的方法,区别于使用 gradient 进行学习的 stochastic gradient descent 算法:

```
After the forward computation, compute the gradient on the output layer: m{g} \leftarrow \nabla_{m{y}} J = \nabla_{m{y}} L(\hat{m{y}}, m{y}) for k = l, l - 1, \ldots, 1 do Convert the gradient on the layer's output into a gradient into the prenonlinearity activation (element-wise multiplication if f is element-wise): m{g} \leftarrow \nabla_{m{a}^{(k)}} J = m{g} \odot f'(m{a}^{(k)}) Compute gradients on weights and biases (including the regularization term, where needed): \nabla_{m{b}^{(k)}} J = m{g} + \lambda \nabla_{m{b}^{(k)}} \Omega(\theta) \nabla_{m{W}^{(k)}} J = m{g} \ h^{(k-1)^\top} + \lambda \nabla_{m{W}^{(k)}} \Omega(\theta) Propagate the gradients w.r.t. the next lower-level hidden layer's activations: m{g} \leftarrow \nabla_{m{h}^{(k-1)}} J = m{W}^{(k)^\top} m{g} end for
```