Autômatos:

1) Considere o autômato finito determinístico, AFD, A = ($\{0, 1, 2, 3\}$, $\{a, b\}$, M, 0, 3), em que a função de transição ou de mudança de estados M é representada pela seguinte tabela :

M	а	b
0	0	1
1	1	2
2	2	3
3	3	

- a) Represente graficamente o autômato A.
- b) Identifique e determine a expressão regular que traduz a linguagem gerada pelo autômato A
- **2)** Considere o autômato finito determinístico, AFD, A = ({ 0, 1, 2 }, { a, b}, M, 0, 2), em que a função de transição ou de mudança de estados M é representada pela seguinte tabela :

M	а	b
0	1	0
1	2	1
2	1	2

- a) Representa graficamente o autômato A.
- b) Determine a linguagem gerada pelo autômato A.
- 3) Determine um AFD sobre o alfabeto A={0, 1}, no qual este AFD aceita as cadeias que terminam num 1 ou em 00 depois do último 1.
- **4)** Considere-se por exemplo um interruptor on-off. Se está off e se se pressiona, passa a on. Se está on e se se pressiona, passa a off. Ele terá por isso dois estados, o on (A) e o off (F). Simule a representação através de um AFD e determine:

Q, conjunto de estados internos:

- Σ , alfabeto de entrada:
- δ , função de transição:

q0, é o estado inicial:

F, o estado final:

Grafo deste AFD:

5) Dado o seguinte AFD, determine a linguagem aceita por este AFD e faça seu grafo.

$$M=(Q, S, 6, \Sigma, q0,F)$$
 com

Q = $\{q0,q1,q2\}$, $\Sigma = \{0,1\}$, F = $\{q2\}$ e δ é definida pela Tabela abaixo:

M	0	1
q0	q1	q0
q1	q2	q0
q2	q1	q0

- 6) Desenhe um AFD que em $\Sigma = \{a,b\}$ aceite todas as cadeias que tenham sequencias de três ou mais a's.
- 7) Desenhar o autômato que aceita no mesmo alfabeto {a, b} qualquer cadeia que tenha uma sequência de três a's ou uma sequência de três b's.
- 8) Faça o grafo de um AFND que aceita a seguinte linguagem:

$$L(M) = \{ (10)^n : n >= 0 \}$$

9) Faça o grafo de um AFND que aceita a seguinte linguagem:

$$L(M) = {a^3} \cup {a ^2n: n>=1}$$