

Maths Expertes

Pour le 30/04/2024

2024-04-29

Lucas Duchet-Annez

LHB 2023/2024 *101* Maths Expertes Lucas Duchet-Annez

1 Exercices

1.1 Numéro 47 page 172

Montrer que pour tout entier naturel n, le nombre $n^{11} - n$ est divisible par 33

1.1.1 Méthode 1

n est un entier naturel et 11 est un nombre premier, ainsi d'après le corollaire du petit théorème de Fermat $n^{11}-n\equiv 0\,\mathrm{mod}\,11.$

De plus 3 est aussi un nombre premier, donc $n^3 - n \equiv 0 \mod 3$

$$n^{11} = (n^3)^3 \times n^2$$
 Par conséquent $n^3 \equiv n \mod 3$ et $(n^3)^3 \equiv n^3 \mod 3 \equiv n \mod 3$ Donc $n^{11} \equiv n \times n^2 \mod 3 \equiv n^3 \mod 3 \equiv n \mod 3$

Alors il existe un entier k tel que $n^{11}-n=11\times k$ et il existe un entier k' tel que $n^{11}-n=3\times k'$ Ainsi $3\times k'=11\times k$. Ainsi 3k' divise 11k et 3k' divise $3k'\Rightarrow 3$ divise 11k or 3 et 11 sont deux nombres premiers $\Leftrightarrow \operatorname{pgcd}(3;11)=1$

Selon le théorème de Gauss 3 divise k

Soit k = 3k'' avec k'' un entier relatif : $11 \times 3k'' = 3 \times k'$

$$\Leftrightarrow 11 \times k'' = k'$$

$$n^{11} - n = 3 \times k' \Leftrightarrow$$

$$n^{11} - n = 3 \times 11 \times k''$$

$$\Leftrightarrow n^{11} - n = 33k''$$

Par conséquent $n^{11} - n$ est divisible par 33

1.1.2 Méthode 2

n est un entier naturel et 11 est un nombre premier, ainsi d'après le corollaire du petit théorème de Fermat $n^{11}-n\equiv 0$ mod 11.

De plus 3 est aussi un nombre premier, donc $n^3-n\equiv 0\,\mathrm{mod}\,3$

$$n^{11} = (n^3)^3 \times n^2$$
 Par conséquent $n^3 \equiv n \mod 3$ et $(n^3)^3 \equiv n^3 \mod 3 \equiv n \mod 3$ Donc $n^{11} \equiv n \times n^2 \mod 3 \equiv n^3 \mod 3 \equiv n \mod 3$

$$n^{11} - n \equiv 0 \mod 3$$
 Donc $n^{11} - n$ divisible par 3

or $33 = 11 \times 3$ donc 33 a pour facteurs premiers 11 et 3 et 33 = ppcm(11,3) Comme $n^{11} - n$ est divisible par 3 et par 11 il est aussi divisible par 33