<u>ICC204 - Aprendizagem de Máquina e Mineração de Dados</u>

Ensembles

Prof. Rafael Giusti rgiusti@icomp.ufam.edu.br

Objetivos da aula

- Compreender o que são ensembles e por que eles provavelmente funcionam para um problema de classificação
- Compreender as condições para que um classificador-base seja adequado em um *ensemble*
- Aprender os métodos utilizados para introduzir diversidade em um ensemble
- Explorar algoritmos conhecidos que introduzem diversidade em *ensembles*

Leitura recomendada

- Sobre o aprendizado de ensembles e boosting
 - Rusell e Norvig. "Inteligência Artificial: uma Abordagem Moderna". 2ª Edição. Seção 18.4.
 - Bishop. "Pattern Recognition and Machine Learning". Capítulo 14, em particular as seções 14.2 e 14.3.

- Realidade: muitos problemas práticos podem ser resolvidos com o uso de técnicas de aprendizagem de máquina:
 - Redes Neurais, SVM, Árvore de Decisão...
- Objetivos da solução: desenvolver um método...
 - Robusto e bem adaptado ao problema a ser solucionado.
 - Com alta taxa de reconhecimento e com pouco custo computacional

- Problemas com a solução:
 - A criação de um método robusto e bem adaptado ao problema a ser solucionado é uma tarefa complexa
 - Tempo de treinamento longo
 - Necessidade de muitos dados iniciais para o treinamento
 - Teorema No Free Lunch

- Problemas com a solução:
 - Teorema No Free Lunch
 - Nenhum algoritmo pode ser considerado melhor do que os outros se a superioridade não for demonstrada sobre todas as possíveis classes de problemas

- Ensembles, comitês ou conjuntos de classificadores
 - Combinação de diferentes modelos para uma mesma tarefa de classificação
 - Substituem um modelo extremamente robusto e preciso por modelos simples e aproximadamente corretos
 - Os modelos que compõem o *ensemble* são chamados classificadores-base

Fonte:

https://www.toptal.com/m achine-learning/ensemblemethods-machine-learning

- Intuitivamente, a motivação para *ensembles* parece trivial
 - Considere um conjunto com 5 classificadores -base com voto majoritário simples
 - Isto é, cada classificador vota em uma classe e o *ensemble* responde com o voto mais frequente
 - Esse *ensemble* só irá classificar incorretamente um exemplo se ao menos 3 classificadores-base cometerem erros

Probabilidade de um ensemble cometer erro em função da probabilidade de erro dos classificadores-base e do número de classificadores-base.

- Essa análise é bastante simplificada, pois assume que os erros dos classificadores-base são independentes
 - Porém, se houver uma expectativa razoável de que a correlação entre os erros seja baixa, nós nos aproximamos dessa situação ideal
- Mais formalmente, existem justificativas, baseadas no conceito de aprendizado como busca, para o sucesso de um *ensemble*

- Existem três justificativas para o uso de um ensemble
 - Estatística: combinação de soluções que parecem ser igualmente boas
 - Computacional: combinação de diferentes mínimos locais
 - Representational: combinação de aproximações que, aparentemente, não são individualemente boas

- Existem três justificativas para o uso de um ensemble
 - Estatística: combinação de soluções que parecem ser igualmente boas

- Existem três justificativas para o uso de um ensemble
 - Computacional: combinação de diferentes mínimos locais

- Existem três justificativas para o uso de um ensemble
 - Representational: combinação de aproximações que, aparentemente, não são individualemente boas

- Para que possamos nos aproximar da situação ideal de *ensembles*, é necessário que
 - A probabilidade de erro de cada classificador-base seja razoavelmente baixa
 - A correlação entre os erros dos classificadores -base também deve ser razoavelmente baixa
- Em outras palavras, classificadores-base devem ser corretos e diversos

• Os *ensembles* devem ser coleções de classificadores que sejam

Diversos

• Se todos os classificadores-base aproximarem a função-conceito da mesma forma, então o ensemble terá o mesmo desempenho que qualquer um dos classificadores-base

• Os *ensembles* devem ser coleções de classificadores que sejam

Corretos

• Se todos os classificadores-base tiverem um erro muito elevado, então o *ensemble* também irá produzir uma classificação incorreta

- O grande desafio da construção de *ensembles* é manter um equilíbrio entre acurácia e diversidade
- Métodos de criação de ensembles frequentemente incorporam algum mecanismo de manutenção da diversidade

Slide: Prof.^a Eulanda Miranda

Slide: Prof.^a Eulanda Miranda

Inputs: $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ %Training data set

 $L_1,...,L_T$ %Learning methods

Learning Process: for i=1...T

 $\{C_i = L_i(D)\}$ %Train one base classifier

calculate α_i } %Calculate weight of the base classifier

end if

Output: %Final classifier

 $C(x) = \sum_{i=1}^{T} \alpha_i C_i(x)$

An example of the representation of a simple ensemble method

Fonte: ANNA JUREK, YAXIN BI, SHENGLI WU and CHRIS NUGENT. A survey of commonly used ensemble-based classification techniques. The Knowledge Engineering Review, Vol. 29:5, 551–581, 2013.

'Slide: Prof.a Eulanda Miranda

- Devemos manipular os dados ou os modelos de forma a **introduzir diversidade** no *ensemble*
- Podemos manipular...
 - Os dados de entrada, utilizando reamostragem dos exemplos de treinamento
 - O espaço de características, utilizando reamostragem do espaço de atributos
 - Os membros do conjunto, utilizando modelos heterogêneos

- O ensemble necessita também de uma estratégia de combinação das classificações individuais
 - Para problemas em que os exemplos possuem um único rótulo, normalmente recorre-se a estratégias de voto
 - Cada classificador vota em uma classe
 - Os votos são combinados
 - Exemplos: moda e *argmax* de pesos sobre os votos

- O ensemble também pode ter como base modelos de regressão
 - Nesse caso a estratégia de combinação deve ser uma função que obtenha uma variável-alvo numérica
 - Exemplo: média simples

- As rotulações individuais dos classificadores-base devem ser combinadas em uma classificação do ensemble
 - Uma simples estratégia é o voto majoritário

- Alternativamente, pode-se empregar um voto ponderado
 - Nem todos os classificadores são igualmente bons em resolver um problema
 - Os classificadores com maior capacidade de generalização podem ter maior peso na determinação do ensemble

 No voto ponderado, cada classificador atribui um peso ao seu voto

- Pesos estáticos
 - Ao construir os modelos, utiliza-se reamostragem para estimar o desempenho do classificador
 - A acurácia de cada classificador é o peso do seu voto
 - Classificadores que generalizaram melhor ao reamostrarmos os exemplos de treinamento têm mais peso

- Pesos dinâmicos
 - Ao classificar um novo exemplo, cada classificador calcula um peso dinamicamente com base na sua "confiança" da rotulação
 - Por exemplo, em um modelo de vizinhos mais próximos, o inverso da distância entre o exemplo e os protótipos pode ser um peso
 - Podemos também estimar a probabilidade de cada classe para o Naive Bayes

Introdução de diversidade

- Podemos introduzir diversidade no ensemble manipulando os dados, as características ou os classificadores-base
- Algumas estratégias incluem
 - Usar modelos distintos para introduzir diversidade nos membros do conjunto
 - Reamostrar os exemplos (e.g., bagging) para obter diferentes "visões" do espaço de decisão

Introdução de diversidade

- Algumas estratégias incluem
 - Ponderar os exemplos (e.g., boosting) para aprender modelos cada vez mais aptos a corrigir os erros detectados na fase de aprendizado
 - Combinar classificadores em sequência (e.g., stacking) para obter meta-classificadores que aprendem a ponderar o viés de cada modelo
 - Amostrar o espaço de características (e.g., florestas aleatórias) para obter modelos focados em diferentes dimensões dos dados

Ensembles heterogêneos

- Introduz diversidade ao *ensemble* empregando manipulando os **membros do conjunto**
- Espera-se que diferentes modelos tenham baixa correlação entre seus erros
 - Por exemplo, combinar um modelo de separação linear com um modelo probabilístico
 - Combinar modelos com diferentes capacidades para obter diferentes graus de generalização do mesmo problema

Ensembles heterogêneos

- Os classificadores-base do ensemble podem ser
 - Modelos diferentes
 - Por exemplo, um *ensemble* de árvores de decisão, SVM e *k*-NN
 - Induzidos com hiperparâmetros distintos
 - Exemplo: todos os classificadores-base são modelos SVM, mas cada um é induzido com um parâmetro distinto de C

Bagging

- Manipulação dos dados de entrada
 - Baseado em *boostrap*
 - Bagging = bootstrap aggregation learning

Bagging

- De cada iteração bootstrap, gera-se um classificador
 - Em vez de apenas utilizar os classificadores para estimar o erro médio, guarda-se cada classificador gerado
 - Esses classificadores comporão o *ensemble*
 - Pode-se utilizar o erro estimado de cada classificador como peso de seus votos

Bagging

- O bagging pode produzir ensembles bastante robustos, porém é necessário utilizar classificadores instáveis
 - Um classificador é instável se uma pequena alteração nos dados podem alterar substancialmente o modelo induzido
 - Exemplo: árvores de decisão

Florestas aleatórias

- Introduz diversidade manipulando o espaço de características
- Deriva do bagging
 - Utiliza sub-amostragem de exemplos
 - Utiliza sub-amostragem de atributos
 - Para cada nó da árvore, seleciona um conjunto de atributos aleatórios
 - Para um espaço com p atributos, pode-se selecionar \sqrt{p} atributos

- Manipulação dos dados de entrada
- Utiliza múltiplos níveis de classificadores e um meta-classificador
 - Classificadores no nível 0 são os classificadores -base
 - No nível 1 está um meta-classificador que irá decidir a classe do *ensemble* observando as respostas individuais dos classificadores-base

Exemplo sintético

Exemplo sintético

- Exemplo sintético
 - O k-NN e o SVM compõem o nível O do *ensemble*
 - No nível 1 poderíamos ter um segundo modelo (exemplo: outro SVM) que utiliza os atributos originais e também as saídas dos classificadores--base como atributos de entrada

Boosting

- O termo boosting refere-se a um conjuto de estratégias utilizadas para tornar aprendizes fracos em aprendizes melhores
 - Em particular, um dos métodos mais populares para *ensembles* é o AdaBoost (*Adaptive Boosting*)
- Para compreender o *boosting*, precisamos entender o conceito de **conjunto de dados com peso**

- Técnica de ensemble baseada em manipulação dos dados de entrada
 - O conjunto de dados com peso $D = \{(X_1, y_1, w_1), (X_2, y_2, w_2), ..., (X_N, y_N, w_N)\}$ é, inicialmente, equivalente a um conjunto não ponderado
 - Isto é, $w_i = 1/N$ para todos os exemplos
 - Em cada iteração, um classificador y^j é induzido e os pesos são ajustados de acordo com o erro de y^j

- Técnica de ensemble baseada em manipulação dos dados de entrada
 - O objetivo é que cada classificador y
 i "foque no erro" cometido pelos classificadores anteriores
 - O peso pode ser diretamente utilizado na função de perda do modelo ou os exemplos com maior peso podem ser duplicados
 - Os pesos dos exemplos incorretamente classificados são aumentados em cada passo

• Exemplo:

- A cada iteração, uma amostra de treinamento é selecionada aleatoriamente com repetição
 - Semelhante ao *bootstrap*, mas com distribuição dependente dos pesos
 - Amostras com maior peso têm maior probabilidade de serem selecionadas!

• Exemplo:

- Um modelo y^j é induzido e guardado
- As instâncias incorretamente classificadas por y^j
 são ajustadas para que os pesos w_i(j+1) sejam
 maiores
- Na iteração seguinte, o classificador y^(j+1) será induzido para "aprender os conceitos que y^j não conseguiu absorver"

Exemplos

Modelo

Pesos reajustados

Exemplos

Modelo

Pesos reajustados

- Ao final, o Adaboost terá produzido uma coleção de classificadores-base
- O resultado do *ensemble* pode ser o voto simples ou ponderado de cada classificador

- Ao final, o Adaboost terá produzido uma coleção de classificadores-base
- O resultado do *ensemble* pode ser o voto simples ou ponderado de cada classificador

 A combinação de classificadores com baixa acurácia através do AdaBoost pode produzir um ensemble de alta acurácia


```
function ADABOOST(examples, L, K) returns a weighted-majority hypothesis
  inputs: examples, set of N labeled examples (x_1, y_1), \ldots, (x_N, y_N)
           L, a learning algorithm
           K, the number of hypotheses in the ensemble
  local variables: w, a vector of N example weights, initially 1/N
                    h, a vector of K hypotheses
                    z, a vector of K hypothesis weights
  for k = 1 to K do
      \mathbf{h}[k] \leftarrow L(examples, \mathbf{w})
```

```
for k = 1 to K do \mathbf{h}[k] \leftarrow L(examples, \mathbf{w})
error \leftarrow 0
for j = 1 to N do \mathbf{if} \ \mathbf{h}[k](x_j) \neq y_j \ \mathbf{then} \ error \leftarrow error \ + \ \mathbf{w}[j]
for j = 1 to N do \mathbf{if} \ \mathbf{h}[k](x_j) = y_j \ \mathbf{then} \ \mathbf{w}[j] \leftarrow \mathbf{w}[j] \cdot error/(1 - error)
\mathbf{w} \leftarrow \mathbf{NORMALIZE}(\mathbf{w})
\mathbf{z}[k] \leftarrow \log (1 - error)/error
return Weighted-Majority(\mathbf{h}, \mathbf{z})
```

Ensembles

Resumo

- Produzem coleções de classificadores que podem exceder a capacidade individual de um indutor de
 - Evitar o overfitting
 - Induzir modelos que exigiriam treinamento excessivamente longo
 - Representar modelos mais complexos do que a capacidade da linguagem

Ensembles

- Dificuldades
 - É extremamente importante garantir que os classificadores-base serão diversos
 - Deve-se tomar cuidado para que a introdução de diversidade não prejudique a acurácia dos classificadores-base
 - Os classificadores devem ter erros independentes