COMMUNICATION PROTOCOLS REVERSE ENGINEERING

LECTURE 1

Hello World

BY: OMAR MEKKAWY

MY LINKEDIN: HTTPS://WWW.LINKEDIN.COM/IN/OMAR-MEKKAWY/

GITHUB: HTTPS://GITHUB.COM/RXTXINV/COMMUNICATION_PROTOCOLS_REVERSE_ENGINEERING_COURSE/

MY WEBSITE: HTTPS://OMAR-MEKKAWY.NET - HTTPS://OMAR-MEKKAWY.COM

FACEBOOK: HTTPS://WWW.FACEBOOK.COM/OMARMEKKAWYOFFICIAL/

LECTURE 1 AGENDA

- What is the Logic Analyzer ?
- What is the importance of the logic analyzer?
- The physical components of the logic analyzer.
- The Software interface.
- Why using Arduino in this course ?
- Example 1 (LED Blink)
- Example for Sniffing UART Protocol.

WHAT IS THE IMPORTANCE OF THE LOGIC ANALYZER

• Its importance:

• Useful tool when **learning the communication protocols** (UART, I²C, SPI, 1-Wire, CAN, LIN, SMBus, I²S).

- Useful tool when debugging the embedded hardware.
- Useful tool when trying to reverse-engineer the communication protocols for a product.
- Capturing the data for later use and documentation purposes.
- Its considered as a skill for most of the embedded systems companies.
- Supported Protocols:

Supported Protocols

- I²C, SPI, 1-Wire, CAN, I²S PCM, JTAG, LIN, Modbus, SMBus, ... more.
- Support 8 Digital Channels with sampling rate up to 24Ms/S.

Async Serial Hide 1-Wire Atmel SWI BISS C CAN DMX-512 HD44780 HDLC HDMI CEC I2S / PCM ITAG LIN **MDIO** Manchester Midi Modbus PS/2 Keyboard/Mouse **SMBus** SWD Simple Parallel UNI/O

USB LS and FS

- Components of the Saleae Logic 8 (Chinese Clone)
 - Cypress CY7C68013A Microcontroller.
 - 74HC245 (Octal Bus Transceiver) used for level shifting and protection.
 - 24C02B EEPROM.

24C02B

24MHz Crystal

Cypress CY7C68013A

8051 Inside ?!

74HC245

Maximum Input Voltage = 5V

The 74HC245; 74HCT245 is an 8-bill transceiver with 3-state outputs. The device features an output enable (OE) and send/receive (DIR) for direction control. A HIGH on OE causes the outputs to assume a high-impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Current Limiting Resistors

100 Ohm Resistor Network

74HC245

Channel 0 LED

Pin1 Index Pointed By Arrow

Pin1 Index
Pointed By
Arrow

THE SOFTWARE INTERFACE

- Software Installing & How To Use:
 - Download the software Saleae Logic 1.2.18 and install it like any program.

THE SOFTWARE INTERFACE

ANNOTATIONS

Used for:

Adding Bookmarks, timing markers, and various measurements

ANALYZERS

Used for:

Adding one/many protocol analyzer(s) to the digital channels.

Async Serial I2C SPI Hide 1-Wire Atmel SWI BiSS C CAN DMX-512 HD44780 HDLC HDMI CEC I2S / PCM JTAG LIN MDIO Manchester Midi Modbus PS/2 Keyboard/Mouse **SMBus** SWD Simple Parallel UNI/O USB LS and FS

Remove all

DECODED PROTOCOLS

Used for:

- Showing the decoded results of the protocol analyzers once the data has been processed.
- Search within the decoded data.

Decoded UART Data

Decoded UART Data

Used for:

- Controlling the channels (Trigger, Zoom, Sort channels, Hide Channels)
- Controlling the data capture (Sampling Rate, Sampling Duration)

Used for:

- Controlling the channels (Trigger, Zoom, Sort channels, Hide Channels)
- Controlling the data capture (Sampling Rate, Sampling Duration)

Hover on and drag (up/down) to move the channel

Used for:

- Controlling the channels (Trigger, Zoom, Sort channels, Hide Channels)
- Controlling the data capture (Sampling Rate, Sampling Duration)

Used for:

- Controlling the channels (Trigger, Zoom, Sort channels, Hide Channels)
- Controlling the data capture (Sampling Rate, Sampling Duration)

Used for:

- Controlling the channels (Trigger, Zoom, Sort channels, Hide Channels)
- Controlling the data capture (Sampling Rate, Sampling Duration)

Click on to choose triggering settings for the channel

WHY USING ARDUINO IN THIS COURSE?

- In this course, I am interested in (Communication protocols Reverse Engineering). I will not write codes for communication protocols.
- Arduino is a simple prototyping platform with standard APIs.
- Arduino boards are everywhere, cheap, and affordable.

EXAMPLE 1 (LED BLINK)

This example blinks a LED every 1 second, lets record its GPIO data.

EXAMPLE 1 (LED BLINK)

EXAMPLE 1 (LED BLINK)

EXAMPLE 2 (LED BLINK + UART)

This example generates a pulse with duration of 10ms on LED and sends "Hello World"

EXAMPLE 2 (LED BLINK + UART)

This example blinks a LED every 1 second, lets record its GPIO data.

EXAMPLE 2 (LED BLINK + UART)

This example blinks a LED every 1 second, lets record its GPIO data.

