CURSO BÁSICO DE FÍSICA TEÓRICA

Volumen 2: Física Teórica 1 [Electromagnetismo]

E.F. Lavia y Colaboradores

versión 0.1

18 de febrero 2016

Contenidos

1	Con	nceptos fundamentales de electromagnetismo	1		
	1.1	.1 Ecuaciones de Maxwell			
	1.2	Electrostática	1		
		1.2.1 Conservación de la carga	2		
	1.3	Interacción magnética	3		
		1.3.1 Fuerza de un circuito sobre otro	4		
	1.4	Teorema de Helmholtz	5		
	1.5 Ley de Gauss				
		1.5.1 Gauges	6		
		1.5.2 Delta de Dirac	7		
		1.5.3 reflexión	8		
	1.6	El potencial vector	9		
	1.7	Unicidad de problemas de potencial	10		
2	Teo	rema de Green	11		
	2.1	Imágenes y método de Green	11		
		2.1.1 El Método de Green	11		
	2.2	Funciones de Green	13		
		2.2.1 Green para el problema externo de una esfera	14		
	2.3	Algunos campos	15		
	2.4	Notas método de Green	15		
	2.5	Condiciones de contorno	17		
	2.6	Desarrollo multipolar	19		
	2.7	Dipolo eléctrico	21		
		2.7.1 Inteacción de un campo externo con una distribución			
		de carga	22		
		2.7.2 Capa dipolar	23		
		2.7.3 Momento dipolar por unidad de volumen	25		
	2.8	El potencial vector	26		
		2.8.1 interpretacion del momento magnético	28		

		2.8.2 Interacción del campo magnético con una distribucio de corriente		29				
	2.9	Pertubación por un conductor sobre un campo eléctrico unifo		30				
3	Método de separación de variables							
	3.1	Separación de variables		33				
	3.2	Detalles sobre solución de problemas de potencial		35				
	3.3	Expansiones ortonormales		37				
		3.3.1 Prolongación analítica		38				
		3.3.2 Comentario multipolos		39				
	3.4	Armónicos esféricos		39				
4	Exp	ansión en un campo multipolar		41				
	4.1	Desarrollo multipolar		41				
	4.2	Dipolo		41				
	4.3	Campo dipolar		41				
5	Fenómenos dependientes del tiempo							
	5.1	Medios magnéticos		42				
		5.1.1 Teorema de Thomson		43				
	5.2	Magnetización		43				
	5.3	Tensor de Maxwell		43				
		5.3.1 Ejemplos del tensor de Maxwell		43				
6	Ondas planas							
	6.1	Polarización de ondas		46				
	6.2	Reflexión y refracción de ondas en medios		47				
	6.3	Campo electromagnético en un medio conductor 47						
	6.4	Transformación de vectores		47				
		6.4.1 Intervalos		47				
		6.4.2 Transcurso del tiempo en un sistema con V grande		47				
7	Rela	Relatividad especial						
	7.1	Transformación de los campos		51				
	7.2	Especie de tiro oblicuo		52				
	7.3	cuadrivelocidad		52				
8	Can	npos de cargas en movimiento		5 3				
	8.1	Potenciales retardados		53				
	8.2	Ejemplo de antena		54				
	8.3	Campos de una partícula cargada en movimiento		54				
	8.4	Campo de una carga en movimiento		54				

8.5	Cálculo	o de potencia irradiada	54
8.6	Frenad	o magnético	54
	8.6.1	Esponja electromagnética	54

Conceptos fundamentales de electromagnetismo

1.1 Ecuaciones de Maxwell

Son ecuaciones lineales de modo que vale la superposición (con **E**, **B** y cualquier vector relacionado linealmente con ellos).

$$\begin{split} \nabla \cdot \mathbf{D} &= 4\pi \rho_{\ell} \qquad \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial B}{\partial t} \qquad \nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J}_{\ell} + \frac{1}{c} \frac{\partial D}{\partial t} \\ \mathbf{F} &= q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right) \end{split}$$

Los vectores pueden ser polares (tienen físicamente bien definido el sentido) o axiales (se les atribuye un sentido por convención).

Las ecuaciones son invariantes ante transformaciones del tipo: rotación y reflexión espacial y temporal.

1.2 Electrostática

La ley de Coulomb reza que

$$\mathbf{F}_{12} = q_1 q_2 \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3}$$

que es la fuerza sobre 1 debido a 2. De la ley de Coulomb se puede definir

$$\mathbf{E}_{12}(\mathbf{x}_1) \equiv \mathbf{F}_{12}/q_1$$

y tomando $\mathbf{x}_1 \equiv \mathbf{x}$ y haciendo el límite $q_1 \to 0$ se tiene

$$\mathbf{E}(\mathbf{x}) = \sum_{i=1}^{N} q_i \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3}$$

que es el campo eléctrico y que en el paso al continuo resulta

$$\mathbf{E}(\mathbf{x}) = \int_{V'} \rho(\mathbf{x}) \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3} dV'$$

siendo $\mathbf x$ punto campo y $\mathbf x_i$ punto fuente.

Figura 2.1

1.2.1 Conservación de la carga

La carga total sale de una integral

$$Q = \int_{V'} \rho(\mathbf{x'}) dV'$$

como muestra la imagen y si el volumen es fijo podemos tomar la derivada con respecto al tiempo que pasa el interior como derivada parcial,

$$\frac{dQ}{dt} = \int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = -\int_{S \equiv \partial V'} \mathbf{J} \cdot d\mathbf{S}$$

Figura 2.2

y el miembro extremo derecho se debe a que si la carga varía es a consecuencia de que se va en forma de flujo. Aplicando el teorema de la divergencia en el miembro derecho,

$$\int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = - \int_{V'} \nabla \cdot \mathbf{J} \, dV'$$

lo cual vale para todo volumen y entonces esto significa que

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

que es la ecuación de continuidad de la carga. Si fuera $\nabla \cdot \mathbf{J} = 0$ esto significa que las líneas de \mathbf{J} no tienen principio ni fin.

1.3 Interacción magnética

Cuando se da $\nabla \cdot \mathbf{J} = 0$ hablamos de una corriente estacionaria (no hay acumulación de carga en ninguna parte). Las corrientes estacionarias producen efectos magnéticos dados por la ley de Biot-Savart

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\Gamma} \frac{Id\ell' \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$

que es válida para un circuito Γ , que es una curva que se recorre en sentido CCW. En el caso de un volumen la expresión es

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\mathbf{x}'} \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV'$$

mientras que la fuerza sobre un circuito Γ es

$$F = \frac{1}{c} \int_{\Gamma} I d\ell \times \mathbf{B}$$

y sobre un volumen

$$F = \frac{1}{c} \int_{V} \mathbf{J} \times \mathbf{B} dV$$

La transformación entre estas integrales puede hacerse merced al siguiente razonamiento,

$$Id\ell \times \mathbf{B} = \mathbf{J} \cdot d\mathbf{S}d\ell \times \mathbf{B} = \cos(\theta)dS\mathbf{J}d\ell \times \mathbf{B} =$$
$$\mathbf{J} \times \mathbf{B}\cos(\theta)dSd\ell = \mathbf{J} \times \mathbf{B}d\mathbf{S} \cdot d\ell = \mathbf{J} \times \mathbf{B}dV$$

1.3.1 Fuerza de un circuito sobre otro

La fuerza de un circuito 2 sobre otro circuito 1 puede calcularse con un poco de paciencia como sigue

$$\begin{split} F_{12} &= \frac{1}{c} \int_{\Gamma_1} I_1 d\ell_1 \times \left\{ \frac{1}{c} \int_{\Gamma_2} \frac{I_2 d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_1 \times \left\{ \frac{d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_2 \left\{ \frac{d\ell_1 \cdot (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} - \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left\{ d\ell_1 \cdot d\ell_2 \right\} \end{split}$$

donde el primer término se comprueba nulo si se reescribe utilizando que

$$\frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} = \nabla_{\mathbf{x}_2} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|} = -\nabla_{\mathbf{x}_1} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

de manera que entonces

$$-\int_{\Gamma_2} d\ell_2 \int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

donde se ve que es nula la última integral dado que

$$\int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} = 0.$$

Entonces, se tiene

$$F_{12} = -\frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left(d\ell_1 \cdot d\ell_2 \right)$$

que vale lo mismo si intercambiamos Γ_1 con Γ_2 en la integración. Podemos decir que con corrientes estacionarias vale el principio de acción y reacción: las fuerzas son iguales y de sentido opuesto.

1.4 Teorema de Helmholtz

Nos dice que un campo vectorial está completamente determinado por su divergencia y su rotor. Por ejemplo, para un campo eléctrico

$$\mathbf{E} = \int_{V'} \rho \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3} dV' = -\int_{V'} \rho \nabla_{\mathbf{x}} \frac{1}{|\mathbf{x} - \mathbf{x}'|} dV' = -\nabla_{\mathbf{x}} \int_{V'} \frac{\rho}{|\mathbf{x} - \mathbf{x}'|} dV' =$$

y esta última es la integral de Poisson

$$\mathbf{E} = -\nabla_{\mathbf{x}}\phi(\mathbf{x}).$$

Entonces E es un gradiente y por ello

$$\nabla \times \mathbf{E} = 0$$

de manera que $\bf E$ es conservativo, cumple $\int {\bf E} \cdot d\ell = 0$ o lo que es lo mismo, $\bf E$ es irrotacional. Hemos hecho la construcción de un potencial electrostático.

1.5 Ley de Gauss

Figura 5.3

$$\mathbf{E} \cdot \hat{n} = q \frac{\cos(\theta)}{r^2}$$

y el ángulo sólido es

$$\mathbf{E} \cdot \hat{n}dS = q \frac{\cos(\theta)}{r^2} dS$$

$$\mathbf{E} \cdot \hat{n} dS = q d\Omega \qquad \longrightarrow \qquad \int_{S \equiv \partial V} \mathbf{E} \cdot \hat{n} \ dS = q \int_{S} d\Omega = \begin{cases} 0 & \text{carga exterior} \\ 4\pi & \text{carga interior} \end{cases}$$

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \sum_{i} q_{i}$$

La ley de Gauss es

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi Q_{n}$$

donde Q_n es la carga neta dentro de la superficie S. Al continuo pasa como

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \int_{V} \rho \, dV$$

de manera que

$$\int_{V} \boldsymbol{\nabla} \cdot \mathbf{E} \ dV = \int_{V} 4\pi \rho \, dV$$

y entonces

$$\nabla \cdot \mathbf{E} = 4\pi \rho.$$

Por otro lado si ${\bf E}$ es el gradiente de un potencial ϕ se tiene

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla^2 \phi = 4\pi \rho$$

y se desprenden las ecuaciones de Poisson,

$$\nabla^2 \phi = -4\pi \rho$$

y de Laplace

$$\nabla^2 \phi = 0$$

que es el caso particular de la anterior con cargas nulas.

La solución de la ecuación no homogénea es suma de una solución del homogéneo más una solución particular. La carga está relacionada a la solución particular.

1.5.1 Gauges

Dado que $\nabla \cdot \mathbf{B} = 0$ entonces existe un \mathbf{A} tal que

$$\nabla \times A = \mathbf{B}$$

pero para caracterizar totalmente el ${\bf A}$ tengo la libertad de definir a conveniencia

$$\nabla \cdot \mathbf{A} \equiv$$
 "el gauge".

Casos particulares importantes son el gauge de Coulomb,

$$\nabla \cdot \mathbf{A} = 0$$

de manera que como

$$\nabla \times (\nabla \times A) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

se llega para el potencial electromagnético, bajo el gauge de Coulomb, a que

$$\nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{J}$$

$\mathbf{E} = \int_{V'} \frac{\rho(\mathbf{x'})(\mathbf{x} - \mathbf{x'})}{ \mathbf{x} - \mathbf{x'} ^3} dV'$	$\mathbf{B} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x'}) \times (\mathbf{x} - \mathbf{x'})}{ \mathbf{x} - \mathbf{x'} ^3} dV'$
Ley de Gauss	Ley de Ampere
$\int_{S} \mathbf{E} \cdot d\mathbf{S} = 4\pi Q_{n}$	$\int_{\Gamma} \mathbf{B} \cdot d\ell = \frac{4\pi}{c} I_c$
$\nabla \cdot \mathbf{E} = 4\pi \rho$ $\nabla \times E = 0$	$\nabla \cdot \mathbf{B} = 0$ $\nabla \times B = \frac{4\pi}{c} \mathbf{J}$
$\mathbf{E} = -\mathbf{ abla}\phi$	$\mathbf{B} = \mathbf{\nabla} \times A$

Tabla 1.1

La operación de tomar rotor y el producto vecrtorial cambian el carácter de los vectores: de polares pasan a axiales y viceversa.

La fuerza general sobre una distribución de carga es

$$\mathbf{F} = \int_{V'} \rho \mathbf{E} dV' + \frac{1}{c} \int_{V'} \mathbf{J} \times \mathbf{B} dV'.$$

1.5.2 Delta de Dirac

Una densidad de carga puntual se puede escribir mediante una delta de Dirac de acuerdo a

$$\rho(\mathbf{x'}) = q \, \delta(\mathbf{x} - \mathbf{x'}) = \begin{cases} 0 & \mathbf{x} \neq \mathbf{x'} \\ \infty & \mathbf{x} = \mathbf{x'} \end{cases}$$

siendo las dimensiones de la delta las de $1/L^3$ y cumpliéndose

$$\begin{split} \int_{V'} \delta(\mathbf{x}-\mathbf{x}') dV' &= 1 \\ \delta(\mathbf{x}-\mathbf{x}') &= \frac{1}{h_1 h_2 h_3} \delta(q_1-q_1') \delta(q_2-q_2') \delta(q_3-q_3') \end{split}$$

donde q_1,q_2 y q_3 son coordenadas curvilíneas generales y $h_1h_2h_3$ es el jacobiano de la transformación. Luego

$$\int f(\mathbf{x})\delta'(\mathbf{x} - \mathbf{x}_0)dx = -f'(\mathbf{x}_0)$$

1.5.3 reflexión

Un vector polar sufre reflexión especular mientras que un vector axial (*pseu-dovector*) sufre una antireflexión especular. Ver la figura.

Figura 5.4

Una reflexión más una rotación permite eliminar componentes de campo. Una simetría más una rotación-traslación permite eliminar dependencias.

Lo primero que debe hacerse es escribir bien la ${\bf J}$ a partir del dato de la corriente (que es el que se suele tener) mediante

$$i = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

En cambio, para A es más fácil usar

$$\mathbf{B} = \mathbf{\nabla} \times A$$

y despejar de aquí la ecuación diferencial que emplear

$$\mathbf{A} = \frac{1}{c} \int_{V} \frac{\mathbf{J}}{|\mathbf{x} - \mathbf{x}'|} dV$$

1.6 El potencial vector

Por la ley de Biot y Savart,

$$\mathbf{B} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x'}) \times (\mathbf{x} - \mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|^3} dV' = \mathbf{\nabla}_x \times \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|} dV'$$

de modo que

$$\mathbf{A} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'$$
 (6.1)

pero

$$\mathbf{A}' \equiv \mathbf{A} + \mathbf{\nabla} \Psi$$

es tan buen potencial vector como \mathbf{A} puesto que los rotores verifican $\nabla \times A = \nabla \times A' = \mathbf{B}$, de lo cual extraemos en conclusión que el potencial vector está definido a menos del gradiente de una función escalar.

Tomándole el rotor a (6.1) y considerando $\nabla' \cdot \mathbf{J}(\mathbf{x}') = 0$ lo cual se verifica si la corriente es estacionaria se tiene

$$\nabla \times B = \frac{4\pi}{c} \mathbf{J}(\mathbf{x})$$

y entonces

$$\int_{S} \mathbf{\nabla} \times B \cdot d\mathbf{S} = \frac{4\pi}{c} \int_{S} \mathbf{J}(\mathbf{x}) \cdot d\mathbf{S}$$

y por el teorema de Stokes arribamos a

$$\int_{\Gamma - \partial S} \mathbf{B} \cdot d\ell = \frac{4\pi}{c} I_{\Gamma}$$

que es la ley de Ampere. Notemos que I_Γ es la corriente concatenada por el lazo $\Gamma.$ Además

$$\nabla \times B = \nabla \times (\nabla \times A) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

pero utilizando el gauge de Coulomb es $\boldsymbol{\nabla}{\cdot}\mathbf{A}=0$ y entonces

$$\nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{J}$$

que es una ecuación de Poisson vectorial.

Magnetostática y electrostáctica son gobernadas por ecuaciones de Poisson para potenciales ${\bf A},\phi$ y el problema entonces se reduce a resolverlas para luego hallar los campos por derivación.

1.7 Unicidad de problemas de potencial

Si dos problemas satisfacen iguales condiciones de contorno entonces en el recinto encerrado por ese contorno tienen igual solución.

Si en un recinto R

$$\phi_1|_{cont} = \phi_2|_{cont} \tag{7.1}$$

pero se da para el interior de R que $\phi_1 \neq \phi_2$ entonces se tiene sucesivamente

$$\begin{split} U &\equiv \phi_1 - \phi_2 & \pmb{\nabla} U = \pmb{\nabla} \phi_1 - \pmb{\nabla} \phi_2 \\ & \pmb{\nabla}^2 U = \pmb{\nabla}^2 \phi_1 - \pmb{\nabla}^2 \phi_2 = -4\pi\rho + 4\pi\rho = 0 \\ & \pmb{\nabla} \cdot (U \pmb{\nabla} U) = U \left(\pmb{\nabla} \cdot \pmb{\nabla} U \right) + \pmb{\nabla} U \cdot \pmb{\nabla} U \\ & \int_V \pmb{\nabla} \cdot (U \pmb{\nabla} U) \, dV = \int_V U \pmb{\nabla}^2 U + (\pmb{\nabla}^2 U)^2 dV = \int_V (\pmb{\nabla}^2 U)^2 dV \end{split}$$

llegando al último miembro porque el potencial U cumple la ecuación de Laplace. Luego,

$$\int_{V} (\nabla^{2} U)^{2} dV = \int_{S} U \nabla U \cdot d\mathbf{S} = 0$$

habiéndose pasado a la integral de superficie por el teorema de la divergencia y anulando el valor global porque U en el contorno es nula (recuérdese (7.1)). Además,

$$\nabla U \cdot d\mathbf{S} \longrightarrow \frac{\partial U}{\partial \hat{n}} \Big|_{cont}$$

luego,

$$\nabla U = 0$$
 $\nabla \phi_1 = \nabla \phi_2$

y entonces

$$\phi_1 = \phi_2$$
.

a menos, por supuesto, de una constante.

Teorema de Green

2.1 Imágenes y método de Green

El método de las imágenes es un procedimiento gráfico de encontrar problemas equivalentes simulando con cargas extras (cargas imagen) las condiciones de contorno.

Figura 1.1

Los problemas que ilustra la figura satisfacen iguales condiciones de contorno en el recinto punteado, entonces sus soluciones internas son la misma: $\phi_1=\phi_2$ por unicidad.

2.1.1 El Método de Green

El concepto tras el método de Green es evaluar el ϕ de una carga puntual ante cierta configuración de contornos conductores. Es una excitación elemen-

tal.

Restando entre sí

$$\nabla \cdot (\phi \nabla \psi) = \phi \nabla^2 \psi + \nabla \phi \cdot \nabla \psi$$

y

$$\nabla \cdot (\psi \nabla \phi) = \psi \nabla^2 \phi + \nabla \psi \cdot \nabla \phi$$

e integrando ambos miembros y utilizando el teorema de la divergencia, se llega

$$\int_{V} \left[\phi \nabla^{2} \psi - \psi \nabla^{2} \phi\right] dV = \int_{S} \left[\phi \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \phi\right] dS,$$

que es la segunda identidad de Green.

Consideremos lo que llamaremos caso A, según vemos en figura, caracterizado según

$$\rho_{int}$$
 $\mathbf{x}' \in R, \mathbf{x} \in R$

Figura 1.2

$$\psi = \frac{1}{|\mathbf{x} - \mathbf{x}'|} \qquad \nabla^2 \psi = -4\pi \delta(\mathbf{x} - \mathbf{x}')$$
$$-\phi(\mathbf{x})4\pi + \int_V 4\pi \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' = \int_S \left(\phi \frac{\partial \psi}{\partial n} - \frac{1}{|\mathbf{x} - \mathbf{x}'|} \frac{\partial \phi}{\partial n}\right) dS$$

donde estamos usando la abreviatura $\nabla \phi \cdot \mathbf{n} = \partial \phi / \partial n$ que es la derivada normal en la superficie. Despejando

$$\phi(\mathbf{x}) = \int_{V} \frac{\rho(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|} \ dV' + \frac{1}{4\pi} \int_{S} \left(\frac{1}{|\mathbf{x} - \mathbf{x'}|} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \left[\frac{1}{|\mathbf{x} - \mathbf{x'}|} \right] \right) \ dS,$$

donde la primer integral es debido a las cargas internas y la segunda al efecto de las cargas fuera del reciento R.

Recordemos que las condiciones tipo Dirichlet corresponden a $\phi|_S$ y las tipo Neumann a $\partial\phi/\partial\hat{n}|_S$.

El caso B, según figura, corresponde a

$$\rho_{int} \qquad \mathbf{x}' \notin R, \mathbf{x} \in R$$

y

$$\int_{V} \frac{\rho(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|} \ dV' = \frac{1}{4\pi} \int_{S} \left(\phi \frac{\partial}{\partial n} \left[\frac{1}{|\mathbf{x} - \mathbf{x'}|} \right] - \frac{1}{|\mathbf{x} - \mathbf{x'}|} \frac{\partial \phi}{\partial n} \right) \ dS,$$

la integral de superficie proviene de las cargas fuera de R que producen campo en el interior R.

Figura 1.3

Hemos tomado $\psi=1/|\mathbf{x}-\mathbf{x}'|$ que verifica [1]; interpretándose ψ como el potencial de una carga puntual unitaria.

$$\nabla^2 \frac{1}{|\mathbf{x} - \mathbf{x'}|} = -4\pi \delta(|\mathbf{x} - \mathbf{x'}|)$$

podemos tomar

$$G \equiv \frac{1}{|\mathbf{x} - \mathbf{x'}|} + f(\mathbf{x}, \mathbf{x'})$$

donde G es la función de Green.

$$\nabla^2 G = -4\pi\delta(\mathbf{x}, \mathbf{x}') + \nabla^2 f$$

donde F satisface Laplace (si el reciento no incluye a \mathbf{x}'). Con $\nabla^2 f(\mathbf{x}, \mathbf{x}')$.

Entonces $f(\mathbf{x}, \mathbf{x}')$ representan la o las imágenes necesarias para que G cumpla el contorno necesario $G_D|_S=0$.

2.2 Funciones de Green

$$\phi(\mathbf{x}) = \int_{V'} G(\mathbf{x}, \mathbf{x}') \rho(\mathbf{x}') \, dV' + \frac{1}{4\pi} \int_{S'} \left(G(\mathbf{x}, \mathbf{x}') \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} G(\mathbf{x}, \mathbf{x}') \right) \, dS', \tag{2.1}$$

Pero para poder utilizar (2.1) necesito tener un solo tipo de condiciones de contorno, de manera que según sean

$$\begin{aligned} \text{Dirichlet} & & \begin{cases} G_D : \nabla^2 G_D = -4\pi \delta(\mathbf{x}, \mathbf{x}') \\ G_D|_{contornodeR} = 0 \\ \phi|_S \\ \phi(\mathbf{x}) = \int_{V'} G_D \rho \, dV' - \frac{1}{4\pi} \int_S \phi|_S \frac{\partial}{\partial n} G_D \, dS' \end{cases} \end{aligned}$$

donde la condición de contorno de G equivale, en el contexto físico del electromagnetismo, a reemplazar el contorno por un conductor metálico puesto a tierra. Entonces G es el potencial de la configuración de conductores con el contorno puesto a tierra frente a una carga puntual con magnitud unitaria.

La función de Green da la geometría del problema.

$$\frac{\partial \phi_1}{\partial n}|_S - \frac{\partial \phi_2}{\partial n}|_S = -4\pi\sigma \qquad \qquad \phi_2|_S = \phi_1|_S$$

$$\begin{aligned} \text{Neumann} & \begin{cases} G_N : \nabla^2 G_N = -4\pi \delta(\mathbf{x}, \mathbf{x}') \\ \nabla G_N \cdot \hat{n}|_S = -\frac{4\pi}{S} \\ \frac{\partial \phi}{\partial n}|_S \\ \phi(\mathbf{x}) = &<\phi>|_S + \int_{V'} G_N \rho \, dV' + \frac{1}{4\pi} \int_S G_N|_S \frac{\partial G_N}{\partial n} \; dS \end{cases} \end{aligned}$$

2.2.1 Green para el problema externo de una esfera

En este problema las condiciones adecuadas son las de Dirichlet, ver Figura y podemos escribir la función de Green como

Figura 2.4

$$G = \frac{1}{|\mathbf{r} - D\hat{r}'|} - \frac{a/D}{|\mathbf{r} - a^2/D\hat{r}'|} \qquad G|_{r=a}$$

sujeta a que

$$q' = -qa/D$$
 $d = a^2/D$

Figura 2.5 G_D es el potencial de la configuración (a) y se evalúa teniendo en cuenta la otra (b) que se resuelve casualmente por imágenes. La (c) se resuelve alterando las condiciones.

El caso (c) de la Figura se resuelve con

$$\begin{split} -\frac{V}{4\pi} \int_{S} \frac{\partial G}{\partial n} dS &= -\frac{V}{4\pi} \int_{S} \boldsymbol{\nabla} G \cdot d\mathbf{S} = -\frac{V}{4\pi} \int_{V} \nabla^{2} G \, dV \\ &= -\frac{V}{4\pi} (-4\pi) \int_{V} \delta(\mathbf{x} - \mathbf{x'}) \, dV = V \end{split}$$

2.3 Algunos campos

En distribuciones infinitas de carga la integral de Poisson diverge pero ello se debe a que en realidad no existen distribuciones infinitas de carga.

2.4 Notas método de Green

Función de Green libre (sin contornos) lleva directo a la integral de Poisson

$$G(\mathbf{x}, \mathbf{x'}) = \frac{1}{|\mathbf{x} - \mathbf{x'}|}$$

entonces

$$\phi(\mathbf{x}) = \int_{V} \rho \, G \, dV = \int_{V'} \frac{\rho(\mathbf{x})}{|\mathbf{x} - \mathbf{x}'|} dV'$$

Figura 3.6

$$\begin{split} \nabla^2 \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) &= 4\pi \delta(\mathbf{x} - \mathbf{x}') \\ G(\mathbf{x}, \mathbf{x}') &= \frac{1}{|\mathbf{x} - \mathbf{x}'|} + f(\mathbf{x}, \mathbf{x}') &\quad \text{con} \quad \nabla^2 f(\mathbf{x}, \mathbf{x}') = 0 \quad \text{si} \quad \mathbf{x} \neq \mathbf{x}' \end{split}$$

Para condiciones de Neumann se toma:

$$\nabla G_N|_S = -\frac{4\pi}{S} = \frac{\partial G}{\partial n}\Big|_S$$

la integral

$$-\frac{1}{4\pi}\int_S \phi|_S \left.\frac{\partial G}{\partial n}\right|_S dS$$

no se puede anular con

$$\left. \frac{\partial G}{\partial n} \right|_S = 0$$

salvo que el volumen de integración no contenga a $\mathbf{x}=\mathbf{x}'$ en cuyo caso: se excluye $\mathbf{x}=\mathbf{x}'$ de la integración.

$$-\frac{1}{4\pi}\int_{S}\phi|_{S}\left.\frac{\partial G}{\partial n}\right|_{S}dS = \frac{1}{S}\int_{S}\phi|_{S}dS = <\phi>|_{S}$$

que es el valor promedio de ϕ en la superficie S.

Se suele tomar la superficie $S \to \infty$ de modo que resulte nulo $<\phi>|_S$. Se toma el volumen V rodeado por dos superficies una cerrada y finita y la otra en infinito entonces

$$<\phi>|_{S}=0$$
 $\frac{\partial G}{\partial n}|_{S}=0$

esto es el llamado problema exterior.

2.5 Condiciones de contorno

La ley de Gauss nos dice

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q_n$$

para el cilindrito de la figura

$$\begin{split} (\mathbf{E_2} - \mathbf{E_1}) \cdot \hat{n} \Delta S &= 4\pi\sigma\Delta S \\ (\mathbf{E_2} - \mathbf{E_1}) \cdot \hat{n} &= 4\pi\sigma \\ \mathbf{\nabla} \times E &= 0 \Rightarrow \int_{\Gamma} \mathbf{E} \cdot d\ell = 0 = (\mathbf{E_2} - \mathbf{E_1}) \cdot d\ell = (\mathbf{E_1} + \mathbf{E_2}) \cdot \hat{n} \times \hat{\eta} d\ell \end{split}$$

donde esto vale en electrostática (nula la integral de línea del campo $\mathbf{E})$ y además

$$\hat{n} \times \hat{\eta} = \frac{d\ell}{d\ell}$$

Figura 5.7

y puesto que vale la permutación

$$0 = (-\mathbf{E}_2 + \mathbf{E}_1) \cdot (\hat{n} \times \hat{\eta}) \longrightarrow 0 = \hat{\eta} \cdot ((-\mathbf{E}_2 + \mathbf{E}_1) \times \hat{n})$$

de modo que la componente tangencial es continua y entonces

$$\begin{split} \hat{n}\times(\mathbf{E_2}-\mathbf{E_1}) &= 0\\ E_{2\hat{n}}-E_{1\hat{n}} &= 4\pi\sigma \qquad \qquad E_{2\hat{t}}-E_{1\hat{t}} &= 0\\ &-\boldsymbol{\nabla}\phi_2\cdot\hat{n} + \boldsymbol{\nabla}\phi_1\cdot\hat{n} &= 4\pi\sigma \end{split}$$

$$\frac{\nabla(\phi_2 - \phi_1) \cdot \hat{n}}{4\pi} = \sigma$$
$$\sigma = \frac{1}{4\pi} \frac{\partial(\phi_1 - \phi_2)}{\partial n}$$

esta es la densidad de carga inducida sobre la frontera entre medios. Para los medios magnéticos

$$\begin{split} \boldsymbol{\nabla} \times \boldsymbol{H} &= \frac{4\pi}{c} \mathbf{J}_l \\ \int_{S} (\boldsymbol{\nabla} \times \boldsymbol{H}) \cdot d\mathbf{S} &= \int_{S} \frac{4\pi}{c} \mathbf{J}_l \cdot d\mathbf{S} = \frac{4\pi}{C} \mathbf{g}_l \cdot \hat{\boldsymbol{s}} d\ell \end{split}$$

donde hicimos la transformación

$$\int \mathbf{H} \cdot d\ell = (\mathbf{H}_2 - \mathbf{H}_1) \cdot d\ell$$

y donde recordemos que la altura de Γ tiene a cero.

$$\frac{4\pi}{c}\mathbf{g}_{l}\cdot\mathbf{s}=(-\mathbf{H}_{2}+\mathbf{H}_{1})\cdot(\hat{n}\times\hat{s})d\ell$$

$$\frac{4\pi}{c}\mathbf{g}_l\cdot\mathbf{s}\,d\ell = (\mathbf{H}_1 - \mathbf{H}_2\times\hat{n})\cdot\hat{s}d\ell$$

Figura 5.8

de manera que

$$\frac{4\pi}{c}\mathbf{g}_{l} = \hat{n} \times (\mathbf{H}_{2} - \mathbf{H}_{1})$$

$$\begin{split} \hat{n} \times \hat{s} &= \frac{d\ell}{d\ell} \\ B_{2\hat{n}} - B_{1\hat{n}} &= 0 \qquad \qquad H_{2\hat{t}} - H_{1\hat{t}} = \frac{4\pi}{c} g_l \\ \int_S \mathbf{B} \cdot d\mathbf{S} &= 0 \Rightarrow (\mathbf{B}_2 - \mathbf{B}_1) \cdot \hat{n} = 0 \end{split}$$

2.6 Desarrollo multipolar

$$\phi(\mathbf{x}) = \int_{V'} \frac{\rho(\mathbf{x})}{|\mathbf{x} - \mathbf{x'}|} \, dV'$$

Cuando la expresión es muy complicada podemos desarrollarla en una serie de potencias

$$\phi(\mathbf{x}) = \frac{Q}{|\mathbf{x}|} + \frac{\mathbf{x} \cdot \mathbf{p}}{|\mathbf{x}|^3} + \sum_{i,j}^3 \frac{1}{2|\mathbf{x}|^5} x_i Q_{ij} x_j$$

donde está centrado en el origen de coordenadas. El último término, matricialmente sería

$$\frac{1}{2} \frac{\mathbf{x}^t Q \mathbf{x}}{|\mathbf{x}|^5}$$

y es el término cuadrupolar.

Los momentos son el momento dipolar,

$$\mathbf{p} = \int_{V} \mathbf{x} \, \rho(\mathbf{x}) \, dV$$

el momento monopolar

$$Q = \int_V \rho(\mathbf{x}) dV$$

que es la carga total, y el momento cuadrupolar

$$Q_{ij} = \int_{V} \rho(\mathbf{x}) \left[3x_i x_j - \delta_{ij} |\mathbf{x}|^2 \right] \; dV$$

El momento cuadrupolar refleja apartamiento de la esfera perfecta, los momentos dipolar y cuadrupolar indican desbalance de carga. Asimismo $Q_{ij}=Q_{ji}$ es simétrico por ser producto de vectores polares. Es siempre diagonalizable. Tiene traza nula,

$$Q_{xx} + Q_{yy} + Q_{zz} = 0$$

Figura 6.9

se da también que $Q_{ij}(i\neq j)$ mide desbalance lejos de los ejes. Una esfera con ρ uniforme tiene todos los momentos multipolares nulos salvo el monopolo.

Una simetría de reflexión implica que el ${f p}_\perp=0$ donde la notación significa perpendicular al plano. Esto es así porque no hay desbalance. Para una simetría de revolución $Q_{xx}=Q_{yy}$ entonces el Q_{ij} puede darse con un sólo número.

Si en una distribución dada, los momentos multipolares hasta el orden $\ell-1$ son nulos entonces el momento multipolar de orden ℓ no depende del origen de coordenadas.

Figura 6.10

En la figura vemos que no ambos no tienen desbalance de carga respecto del origen; el disco uniformemente cargado tendrá monopolo no nulo y dipolo nulo (siempre respecto del origen), los anillos cargados con carga opuesta tendrán monopolo y dipolo nulos (respecto del origen y de cualquier otro punto). Pero si muevo las distribuciones se tendrá desbalance el disco pero no los anillos.

Para átomos en general son monopolo, dipolo neutros; el cuadrupolo se da con un solo número. En la Figura tenemos un elipsoide con densidad de carga ρ uniforme. Tiene simetría de revolución de modo que el momento cuadripolar es un número. $Q_{zz}=0$ puesto que una esfera no tiene desbalance, entonces $\overrightarrow{Q}=0$

Figura 6.11

2.7 Dipolo eléctrico

$$\phi(\mathbf{x}) = \frac{\mathbf{p} \cdot \mathbf{x}}{|\mathbf{x}|^3}$$

si está en el origen, y

$$\phi(\mathbf{x}) = \frac{\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0)}{|\mathbf{x} - \mathbf{x}_0|^3}$$

si está en un punto \mathbf{x}_0

$$\mathbf{E}(\mathbf{x}) = \frac{3\mathbf{p} \cdot \hat{n}}{|\mathbf{x} - \mathbf{x}_0|^3} \hat{n} - \frac{\mathbf{p}}{|\mathbf{x} - \mathbf{x}_0|^3}$$

donde debemos notar que ${\bf p}$ no depende de ${\bf x}.$

Figura 7.12 Dipolo centrado en el origen.

$$\phi(\mathbf{x}) = \frac{p\hat{z} \cdot r\hat{r}}{r^3} = \frac{p}{r^2}\cos(\theta)$$

siendo

$$\begin{split} \hat{n} &= \frac{\mathbf{x} - \mathbf{x}_0}{|\mathbf{x} - \mathbf{x}_0|} \\ \mathbf{E}(r, \theta) &= \frac{2p\cos(\theta)}{r^3} \hat{r} + \frac{p\sin(\theta)}{r^3} \hat{\theta} \end{split}$$

tiene simetría de revolución, puesto que no depende de $\hat{\phi}$.

Las líneas de campo cuplen que $d\ell$ a través de una línea de campo es tal que

$$d\ell \parallel \mathbf{E} \quad \Rightarrow \quad \mathbf{E} \times d\ell = 0$$

la línea de campo sigue la dirección del campo. En el caso del dipolo no tendrán componente en $\hat{\phi}$ (como es de esperar).

2.7.1 Inteacción de un campo externo con una distribución de carga

Si tenemos un campo E con sus fuentes lejos,

Figura 7.13

y que cumple $\nabla\cdot {\bf E}=0$ y $\nabla\times E=0$ (irrotacionalidad), se da la siguiente fuerza sobre la distribución

$$\mathbf{F} = \int_{V} \rho(\mathbf{x}) \, \mathbf{E}(\mathbf{x}) \, dV,$$

y si ${\bf E}$ no varía demasiado en V, entonces podemos representar bien por una serie

$$E^{\ell}(\mathbf{x}) = E^{\ell} + x_j \partial_j E^{\ell} + \frac{1}{2} x_j x_k \partial_j \partial_k E^{\ell}$$

entonces

$$F_i = \int_V \rho E_i dV \approx E_i \int_V \rho dV + \int_V \rho x_j \partial_j E_i dV + \frac{1}{2} \int_V \rho x_j x_k \partial_j \partial_k E_i dV$$

o bien

$$F_i = \int_V \rho E_i dV \! \approx E_i q + (\mathbf{p} \cdot \boldsymbol{\nabla}) E_i + \mathbf{x} \cdot [(\mathbf{x} \cdot \boldsymbol{\nabla}) \boldsymbol{\nabla} E_i]$$

de lo cual extraemos que el campo interactúa con la carga, el gradiente del campo interactúa con el dipolo y la divergencia del campo interactúa con el cuadrupolo. Un campo uniforme entonces no hace fuerza sobre un dipolo. Para un campo inhomogéneo, el torque $\mathbf{T} = \mathbf{x} \times \mathbf{F}$ se puede escribir como

$$T = qx \times E = p \times E$$

donde $\mathbf{p} \equiv q\mathbf{x}$ es el momento dipolar y vemos que el torque tiende a centrar el dipolo según la dirección del campo \mathbf{E} aunque no lo logra por la agitación térmica.

La energía de un dipolo será

$$U = -\mathbf{p} \cdot \mathbf{E}$$

entonces

$$\mathbf{F} = -\boldsymbol{\nabla} U = \boldsymbol{\nabla} (\mathbf{p} \cdot \mathbf{E}) = (\mathbf{p} \cdot \boldsymbol{\nabla}) \mathbf{E} + (\mathbf{E} \cdot \boldsymbol{\nabla}) \mathbf{p} + \mathbf{p} \times (\boldsymbol{\nabla} \times E) + \mathbf{E} \times (\boldsymbol{\nabla} \times \mathbf{p})$$

siendo los últimos tres términos nulos según lo que consideramos previamente de manera que

$$\mathbf{F} = (\mathbf{p} \cdot \mathbf{\nabla}) \mathbf{E}.$$

2.7.2 Capa dipolar

El potencial de un dipolo es

$$\phi(\mathbf{x}) = \frac{\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0)}{|\mathbf{x} - \mathbf{x}_0|^3}$$

y el potencial de una capa dipolar

$$\phi(\mathbf{x}) = \int_{S} \frac{\mathbf{D}(\mathbf{x}') \cdot (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \, dS'$$

siendo ${f D}$ el momento dipolar por área que viene de acuerdo a la definición

$$D = \lim_{\substack{\sigma \to \infty \\ \epsilon \to 0}} \ \sigma \epsilon$$

refiérase a la ilustración bajo esta línea

Veamos algún detalle más sobre la capa dipolar, que está ilustrado en la Figura siguiente.

$$\frac{\mathbf{D}\cdot(\mathbf{x}-\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|^3}dS = \frac{D\cdot(\mathbf{x}-\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|^3}d\mathbf{S} = -\frac{D\cos(\theta)}{|\mathbf{x}-\mathbf{x}'|^2}dS = -\frac{D\cos(\theta)}{r^2}dS$$

Figura 7.14

$$\frac{\mathbf{D} \cdot (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dS = -Dd\Omega$$

puesto que

$$\phi(\mathbf{x}) = -D \int_{S} d\Omega \qquad \qquad \frac{\cos(\theta)}{r^2} dS \equiv d\Omega$$

Para las condiciones de contorno se da lo siguiente

$$\begin{split} E_2^{\hat{n}} - E_1^{\hat{n}} &= 4\pi\sigma \\ - \nabla (\phi_2 - \phi_1) \cdot \hat{n} &= 4\pi\sigma \\ \frac{\partial \phi_1 - \phi_2}{\partial \hat{n}} &= 4\pi\sigma \\ \phi_1 - \phi_2 &= 4\pi\sigma\epsilon \end{split}$$

desde donde deducimos que el potencial tiene un salto al surcar la capa dado por $\,$

$$\phi_2 - \phi_1 = 4\pi D$$

Figura 7.15

2.7.3 Momento dipolar por unidad de volumen

El potencial de un dipolo es

$$\phi(\mathbf{x}) = \frac{\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$

y el potencial de muchos de ellos sale de la integración

$$\phi(\mathbf{x}) = \int_{V} \frac{\mathbf{P}(\mathbf{x}') \cdot (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^{3}} dV$$

donde \mathbf{P} es la llamada polarización, el momento dipolar por unidad de volumen, siendo V un volumen que incluye a la zona de polarización (ver Figura).

$$\phi(\mathbf{x}) = \int_{V} \mathbf{P}(\mathbf{x}') \cdot \mathbf{\nabla}' \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) dV$$

y si usamos el teorema de la divergencia para convertir una de las integrales resulta

$$\phi(\mathbf{x}) = \int_{S} \frac{\mathbf{P}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \, dS - \int_{V} \frac{\boldsymbol{\nabla}' \cdot \mathbf{P}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \, dV$$

lo que habilita a pensar en como que

$$\mathbf{P}\cdot\hat{\boldsymbol{n}}\equiv\boldsymbol{\sigma}_{P}$$

está presente en el borde del cuerpo polarizado, y en su interior existe

$$-\nabla \cdot \mathbf{P} \equiv \rho_P$$

siempre que $\nabla \cdot \mathbf{P} \neq 0$ es decir que la polarización no sea homogénea.

Figura 7.16

Figura 7.17

2.8 El potencial vector

Haremos una especie de desarrollo multipolar del potencial vector \mathbf{A} ,

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{V} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'$$

pero como se puede escribir

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} \approx \frac{1}{|\mathbf{x}|} + \frac{\mathbf{x} \cdot \mathbf{x}'}{|\mathbf{x}|^3}$$

en torno a $\mathbf{x}' = 0$ será

$$\begin{split} \mathbf{A}(\mathbf{x}) &= \frac{1}{c} \int_{V} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x}|} \, dV' + \frac{1}{c} \frac{\mathbf{x}}{|\mathbf{x}|^{3}} \cdot \int_{V} \mathbf{x}' \mathbf{J}(\mathbf{x}') \, dV' \\ \mathbf{A}(\mathbf{x}) &= \frac{1}{c|\mathbf{x}|} \int_{V} \mathbf{J}(\mathbf{x}') \, dV' + \frac{1}{c} \frac{\mathbf{x}}{|\mathbf{x}|^{3}} \cdot \int_{V} \mathbf{x}' \mathbf{J}(\mathbf{x}') \, dV' \end{split}$$

Recordar que Biot & Savart es para densidad de corriente estacionaria, i.e. $\nabla \cdot \mathbf{J} = 0$

y el primer término es nulo lo cual puede verse porque sale integrando con alguna identidad (?) y usando que $\nabla \cdot \mathbf{J} = 0$. Correspondería al orden monopolar y el hecho de que sea nulo refleja la no existencia de monopolos.

$$\mathbf{A}(\mathbf{x}) = \left[\left(\frac{1}{2c} \int_V \mathbf{x}' \times \mathbf{J} \, dV \right) \times \mathbf{x} \right] \frac{1}{|\mathbf{x}|^3}$$

y si definimos el paréntesis como m (momento magnético) entonces

$$\mathbf{A}(\mathbf{x}) = \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^3}$$

en el origen, y

$$\mathbf{A}(\mathbf{x}) = \frac{\mathbf{m} \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$

en \mathbf{x}' , las cuales son expresiones a primer orden y que utilizan el gauge de Coulomb, $\nabla \cdot \mathbf{A} = 0$.

De esta manera tendremos

$$\mathcal{M}(\mathbf{x'}) = \frac{1}{2c} \left[\mathbf{x'} \times \mathbf{J}(\mathbf{x'}) \right]$$

que es la magnetización o densidad de momento magnético, y entonces el momento magnético pasa a ser

$$\mathbf{m} = \int_{\mathcal{U}} \mathcal{M}(\mathbf{x'}) \, dV'.$$

Se puede trabajar con el potencial vector así

$$\boldsymbol{\nabla}\times\boldsymbol{A}=\boldsymbol{\nabla}\times\left(\frac{\mathbf{m}\times\mathbf{x}}{|\mathbf{x}|^3}\right)=\left(\frac{\mathbf{x}}{|\mathbf{x}|^3}\cdot\boldsymbol{\nabla}\right)\mathbf{m}-(\mathbf{m}\cdot\boldsymbol{\nabla})\frac{\mathbf{x}}{|\mathbf{x}|^3},$$

la cual luego de mucho álgebra vectorial se puede llevar a la forma

$$\mathbf{B} = \frac{3(\mathbf{m} \cdot \hat{n})\hat{n} - \mathbf{m}}{|\mathbf{x}|^3},$$

que nos dice que bien lejos cualquier distribución de corriente localizada presenta como ${\bf B}$ el campo magnético de un dipolo magnético dado por ${\bf m}({\bf x})$. Esta aproximación corresponde, por supuesto, al primer orden del desarrollo.

2.8.1 interpretacion del momento magnético

Se puede pensar m como una espira.

$$dA = \frac{xd\ell\sin(\alpha)}{2}$$

siendo el área orientada

$$\mathbf{A} = \frac{1}{2} \int_{\Gamma} \mathbf{x} \times d\ell$$

y entonces

$$\mathbf{m} = \frac{I}{c}\mathbf{A}$$

Figura 8.18

Desde volumen a espira hacemos la transformación del modo usual,

$$\mathbf{m} = \frac{1}{2c} \int_V \mathbf{x} \times \mathbf{J}(\mathbf{x}) \, dV = \frac{1}{2c} \int_\Gamma \mathbf{x} \times \, d\ell$$

usando que

$$\mathbf{J} \, dV = J d\ell dS = \frac{I}{dS} d\ell dS = I \, d\ell$$

A modo de ejemplo, para una espira circular de radio r es

$$m = \frac{i}{c}\pi r^2.$$

2.8.2 Interacción del campo magnético con una distribución de corriente

Hacemos una expansión de Taylor del campo \mathbf{B} con $|\mathbf{x}| \ggg |\mathbf{x}'|$,

$$\mathbf{B} = \mathbf{B}_0 + (\mathbf{x} \cdot \boldsymbol{\nabla}) \mathbf{B}$$

y entonces como la fuerza es

$$\mathbf{F} = \frac{1}{c} \int_{V} \mathbf{J}(\mathbf{x'}) \times \mathbf{B}(\mathbf{x'}) \, dV'$$

resulta que

Figura 8.19

$$\mathbf{F} = \frac{1}{c} \int_{V} \mathbf{J} \times \mathbf{B}_{0} \, dV' + \frac{1}{c} \int_{V} \mathbf{J} \times (\mathbf{x}' \cdot \nabla) \mathbf{B} \, dV'$$

siendo el primer término nulo.

$$\mathbf{F} = \boldsymbol{\nabla} \times (\mathbf{B} \times \mathbf{m}) = (\mathbf{m} \cdot \boldsymbol{\nabla}) \mathbf{B} = (\mathbf{m} \cdot \boldsymbol{\nabla}) \mathbf{B} = \boldsymbol{\nabla} (\mathbf{m} \cdot \mathbf{B})$$

Si el campo es homogéneo la fuerza es nula, pero como $\mathbf{F} = - \mathbf{\nabla} U$

$$\begin{split} F_m &= \boldsymbol{\nabla} (\mathbf{m} \cdot \mathbf{B}) \quad \Rightarrow \quad U_M = -\mathbf{m} \cdot \mathbf{B} \\ F_e &= \boldsymbol{\nabla} (\mathbf{p} \cdot \mathbf{E}) \quad \Rightarrow \quad U_e = -\mathbf{p} \cdot \mathbf{E} \end{split}$$

siendo $U_{m,e}$ la energía de los dipolos en campos externos.

Mediante identidades vectoriales podemos llegar a una expresión

$$\begin{split} \mathbf{F} &= -\mathbf{\nabla} \times \frac{1}{c} \int_{V} \mathbf{J}(\mathbf{x}' \cdot \mathbf{B}) dV' = -\mathbf{\nabla} \times \frac{1}{2c} (-\mathbf{B}) \times \int_{V} \mathbf{x} \times \mathbf{J} dV' = \\ \mathbf{F} &= \mathbf{\nabla} \times \mathbf{B} \times \frac{1}{2c} \int_{V} \mathbf{x} \times \mathbf{J} dV' \\ \mathbf{F} &= \mathbf{\nabla} \times (\mathbf{B} \times \mathbf{m}) = \mathbf{\nabla} (\mathbf{m} \cdot \mathbf{B}) \end{split}$$

La fuerza de un campo ${\bf B}$ externo sobre una distribución de corrientes es el gradiente de cierta energía

$$\mathbf{F} = \mathbf{\nabla}(\mathbf{m} \cdot \mathbf{B}) = (\mathbf{m} \cdot \mathbf{\nabla})\mathbf{B}$$

de donde se ve claramente que si ${\bf B}$ es uniforme entonces la fuerza es nula. ${\bf m}$ es una constante que depende de la distribución de corrientes.

2.9 Pertubación por un conductor sobre un campo eléctrico uniforme

Se tiene un campo uniforme con $Q,R \to \infty$ pero con $2Q/R^2 = cte$, según se ve en la Figura.

El potencial ϕ de la esfera es constante por ser conductor. Puedo definir

$$\phi|_{esf} \equiv 0$$

pues $\phi(\infty) \neq 0$ porque hay densidad de carga ρ en el infinito.

Para la carga superior,

$$\phi_1 = \frac{-Q}{|\mathbf{x} - R\hat{z}|} + \frac{a/RQ}{|\mathbf{x} - a^2/R\hat{z}|}$$

mientras que para la inferior

$$\phi_2 = \frac{Q}{|\mathbf{x} + R\hat{z}|} + \frac{a/RQ}{|\mathbf{x} + a^2/R\hat{z}|}$$

Recordemos que

$$(1+\alpha)^{(-1/2)} \approx 1 - \frac{1}{2}\alpha \qquad \alpha \ll 1$$

y podemos trabajar el denominador

$$\begin{split} |\mathbf{x} - R\hat{z}| &= \sqrt{x^2 + R^2 - 2Rx\cos(\theta)} \\ \frac{1}{|\mathbf{x} - R\hat{z}|} &= \frac{1}{\sqrt{x^2 + R^2 - 2Rx\cos(\theta)}} = \frac{1}{R(1 + x^2/R^2 - 2x/R\cos(\theta))^{(1/2)}} \\ \frac{1}{|\mathbf{x} - R\hat{z}|} &\approx \frac{1}{R} \left(1 + \frac{x}{R}\cos(\theta)\right) \end{split}$$

Figura 9.20

de manera que luego

$$\begin{split} \phi(r) &\approx Q \left[\frac{1}{R} \left(1 + \frac{x}{R} \cos(\theta) \right) + \frac{a}{Rx} \left(1 + \frac{a^2}{Rx} \cos(\theta) \right) + \\ & \frac{1}{R} \left(1 - \frac{x}{R} \cos(\theta) \right) - \frac{a}{Rx} \left(1 - \frac{a^2}{Rx} \cos(\theta) \right) \right] \\ \phi(x) &\approx -\frac{2Qx}{R^2} \cos(\theta) + \frac{2a^3Q}{R^2x^2} \cos(\theta) \end{split}$$

y haciendo $x \equiv r$ y tomando el límite,

$$\phi(r) = -E_0 r \cos(\theta) + E_0 \frac{a^3}{r^2} \cos(\theta)$$

y la carga total sobre la esfera es nula puesto que estuvo aislada todo el tiempo. Respecto de la Figura, si hacemos un Gauss en la zona indicada se obtiene $Q_n=0$, entonces $\phi(r=a)=0$.

Figura 9.21

El segundo término es como un dipolo puntual,

$$E_0 \frac{a^3}{r^2} \cos(\theta) = E_0 \frac{a^3 \hat{z} \cdot \mathbf{r}}{r^3}$$

donde

$$\mathbf{p} \equiv E_0 a^3 \hat{z}$$

Método de separación de variables

3.1 Separación de variables

Separamos los problemas en regiones donde vale $\nabla^2 \phi = 0$ entonces las fronteras tendrán la $\rho(\mathbf{x}')$ en general en forma de σ, λ .

Para coordenadas cartesianas intentaremos resolver $\nabla^2\phi=0,$ es decir

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

pidiendo

$$\phi(x,y,z) = X(x)Y(y)Z(z)$$

de manera que

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0 \qquad -\alpha^2 - \beta^2 + \gamma^2 = 0 \quad \Rightarrow \gamma^2 = \alpha^2 + \beta^2$$

cada término es una constante. La solución general es

$$\phi(x,y,z) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m,n} \mathrm{e}^{\pm i \alpha_m x} \mathrm{e}^{\pm i \beta_n y} \mathrm{e}^{\pm i \sqrt{\alpha_m^2 + \beta_n^2} z}$$

donde habrá que adaptar según las condiciones de contorno. Se da que $A_{m,n}$ es una constante general y hay condiciones periódicas en x,y

$$Ae^{\pm i\alpha x} = A_{\alpha}\cos(\alpha x) + B_{\alpha}\sin(\alpha x)$$

corresponde a condiciones de potencial periódicas, cuando necesito dos ceros por ejemplo (ver ilustración lateral –que falta–)

$$A\mathrm{e}^{\pm\gamma z} = A_{\gamma}\cosh(\gamma z) + B_{\gamma}\sinh(\gamma z)$$

corresponde a atravesar densidades de carga.

Para coordenadas esféricas es

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r^2\frac{\partial\phi}{\partial r}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial}{\partial\theta}\left(\sin(\theta)\frac{\partial\phi}{\partial\theta}\right) + \frac{1}{r^2\sin(\theta)}\frac{\partial^2\phi}{\partial\varphi^2} = 0$$

proponiéndose la separación

$$\phi(r, \theta, \varphi) = R(r)\Theta(\theta)Q(\varphi)$$

siendo

$$Y(\theta, \varphi) = \Theta(\theta)Q(\varphi)$$

un armónico esférico. Tenemos un oscilador armónico en φ ,

$$Q = e^{\pm i \alpha \varphi}$$

si usamos $0 \le \varphi \le 2\pi$ de modo que $\alpha \in \mathbb{Z}$ y entonces $\alpha = m$, con simetría azimutal es m = 0 (rotación en φ),

$$Q = G\varphi + H$$
 G, H ctes.

Para las otras funciones será

$$R(r) = A_\ell r^\ell + B_\ell R^{-\ell-1}$$

$$\Theta(\theta) = C_\ell P_\ell^m(\cos(\theta)) + D_\ell Q_\ell^m(\cos(\theta))$$

siendo P_ℓ^m polinomio de Legendre, que verifica la fórmula de Rodrigues

$$P_\ell(x) = \frac{1}{2^\ell \ell!} \frac{d^\ell}{dx^\ell} [x^2 - 1]^\ell$$

con $P_\ell(\cos(\theta))$ polinomio de Legendre de primera especie, y $Q_\ell(\cos(\theta))$ de segunda especie. Los $\{P_\ell\}$ son un conjunto completo y ortogonal en $-1 \le x \le 1$ o bien en $0 \le \theta \le \pi$.

Los $\{Q_\ell^m(\cos(\theta))\}$ tienen problemas en $\theta=0, \theta=\pi$ (eje z) de manera que si está el eje z no podemos usar Q_ℓ^m ; en estos problemas sólo podemos usar $P_\ell^m(\cos(\theta))$.

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_{\ell} r^{\ell} + B_{\ell} r^{-\ell-1} \right] \left[C_{\ell} P_{\ell}^{m} + D_{\ell} Q_{\ell}^{m} \right] \left[E_{m} \cos(m\phi) + F_{m} \sin(m\phi) \right]$$

y en el caso particular m=0

$$\phi(r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\infty}^{\infty} \left[A_{\ell} r^{\ell} + B_{\ell} r^{-\ell-1} \right] \left[C_{\ell} P_{\ell}^{m} + D_{\ell} Q_{\ell}^{m} \right] \left[G_{0} \phi + H_{0} \right]$$

Las constantes $A_\ell, B_\ell, C_\ell, D_\ell, E_m, F_m$ se ajustan con el $\phi(r \to \infty)$, $\phi(r \to 0)$, $\phi(z=1)$ y $\phi(z=-1)$.

Lo que permite esquivar el problema del punto singular en $x \equiv \cos(\theta) = 1$ es

$$\beta^2 = \ell(\ell+1) \qquad -\ell < m < \ell \qquad \alpha^2 = m^2$$

Recordemos las sumas de series

$$\frac{1}{1-z} = \sum_{\ell=0}^{\infty} z^{\ell} \qquad \frac{1}{1+z} = \sum_{\ell=0}^{\infty} (-1)^{\ell} z^{\ell} \qquad |z| < 1,$$

el polinomio asociado de Legendre

$$P_{\ell}^m(x) =)\frac{(-1)^m}{2^{\ell}\ell!}[1-x^2]^{m/2}\frac{d^{\ell+m}}{dx^{\ell+m}}[x^2-1]^{\ell}$$

que cumple

$$P_{\ell}(1) = 1$$
 $P_{\ell}(-1) = (-1)^{\ell}$ $\forall \ell$

con

$$\int_{-1}^{1} [P_{\ell}(x)]^2 \, dx = \frac{2}{2\ell + 1}$$

siendo la ortogonalidad

$$\int_0^{\pi} P_{\ell'}^m(\cos(\theta)) P_{\ell}^m(\cos(\theta)) \sin(\theta) d\theta = \delta_{\ell\ell'}$$

$$\int_{1}^{+1} P_{\ell'}^{m}(x) P_{\ell}^{m}(x) dx = \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \, \delta_{\ell\ell'}$$

En esféricas las constantes de separación están asociadas

$$R(r) \operatorname{con} \ell \qquad \Theta(\theta) \operatorname{con} \ell, m \qquad Q(\phi) \operatorname{con} m$$

3.2 Detalles sobre solución de problemas de potencial

Si el potencial es par en una coordenada, entonces uso funciones pares (cosenos). La continuidad del potencial

$$\phi_I(x=0) = \phi_{II}(x=0) =$$

y salto en el campo

$$\left.\frac{\partial \phi_I}{\partial x} - \frac{\partial \phi_{II}}{\partial x}\right|_{x=0} = -4\pi\sigma|_{x=0}$$

Figura 2.1

Si tengo condiciones periódicas en la coordenada irán senos y cosenos trigo-

nométricos, entonces se discretizan m,n y tengo $\sum_n \sum_m$ una serie de Fourier. Si tengo condiciones no periódicas en la coordenada irán seno, coseno hiperbólicos entonces tengo $\int dk$ integral de Fourier.

En general tomo

$$\alpha^2 + \beta^2 = \gamma^2$$

pudiéndose discretizar los k's luego. Se considera $\alpha^2 \equiv k_{\hat{e}_1}^2$ y así siguiendo con las otras dos.

Sobre la ecuación de salto en el campo aplicamos ortogonalidad y despejamos coeficientes en función de σ .

Detalle: el salto en el campo se hace siguiendo la normal, como se ilustra abajo

Figura 2.2

$$E_{I}^{\hat{n}} - E_{II}^{\hat{n}} = 4\pi\sigma \qquad \qquad -\frac{\partial\phi_{I}}{\partial x} + \frac{\partial\phi_{II}}{\partial x} = 4\pi\sigma$$

Para $k_{\hat{e}_1}^2$ en el caso discreto

$$\sum_{m=0}^{\infty}\cos(k_me_1)+\sin(k_me_1)$$

pero en el continuo

$$\int_{-\infty}^{\infty} e^{ike_1} dk$$

usamos $exp(ike_1)$ para que la integral converja en lugar de $(\cos(ke_1) + \sin(ke_1))$.

3.3 Expansiones ortonormales

$$\int_{-b}^{b} U_{n}^{*} U_{m} d\xi = \delta_{mn} \qquad U_{i} \ mathrmorton ormales$$

entonces en (a, b) se da que la serie

$$f(\xi) = \sum_{n=0}^{\infty} a_n U_n(\xi)$$

converge, donde

$$a_n = \int_a^b U_n^* f(\xi) d\xi.$$

La clausura es

$$\sum_{n=1}^{\infty} U_n^*(\mathbf{x}') U_n(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{x}')$$

Es útil el desarrollo

$$\frac{1}{|\mathbf{r}-\mathbf{r'}|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos(\gamma)}} = \sum_{\ell=0}^{\infty} \frac{r_<^{\ell}}{r_>^{\ell}} P_{\ell}(\cos(\gamma))$$

en polinomios de Legendre para el ángulo entre vectores en coordenadas esféricas. En coordenadas esféricas, donde $\gamma=\gamma(\theta,\phi)$ es el ángulo entre vectores, que surge del teorema del coseno.

Figura 3.3

3.3.1 Prolongación analítica

Consiste en *prolongar* una solución restringida por ejemplo en el eje polar a todo el resto del espacio pegándole los polinomios de Legendre. Lo ponemos en serie (pasamos un cálculo de F3 a una serie)

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2+a^2}} = \sum_{\ell=0}^{\infty} Q \frac{a^\ell}{r^{\ell+1}} P_\ell(0) \qquad r>a$$

$$\phi(r,\phi/2) = \frac{Q}{\sqrt{r^2 + a^2}} = \sum_{\ell=0}^{\infty} Q \frac{r^\ell}{a^{\ell+1}} P_\ell(0) \qquad r < a$$

y $P_\ell(0)$ tiene términos pares solamente (los impares son nulos).

Entonces

$$\phi(r, \phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \frac{r^{2n}}{a^{2n}} P_{2n}(0)$$

con

$$P_{2n}(0) = (-1)^n \frac{(2n-1)!}{2^n n!}$$

por lo tanto para todo el espacio será

$$\phi(r,\phi/2) = \frac{Q}{a} \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^{2n} P_{2n}(0) P_{2n}(\sin(\theta)) \qquad r < a$$

El hecho de que sólo vivan ℓ pares viene porque ϕ es par pues hay simetría de reflexión en el plano xy, lo que sucede de $(0, \pi/2)$ es igual a lo que sucede de $(\pi/2, \pi)$.

Los problemas con simetría de revolución en torno a \hat{z} pueden ser resueltos con el método de prolongación analítica. La idea central es que si dos soluciones

Figura 3.4

del potencial coinciden en un conjunto de puntos (como ser el eje azimutal) entonces deben ser la misma solución.

3.3.2 Comentario multipolos

Estos dos problemas son equivalentes, pero multipolarmente tienen desarrollos diferentes. El problema es que el metal a tierra tendrá carga hasta el infinito y entonces no podemos tener un radio de convergencia.

3.4 Armónicos esféricos

Figura 3.5

Figura 3.6

Figura 4.7

Capítulo 4

Expansión en un campo multipolar

- 4.1 Desarrollo multipolar
- 4.2 Dipolo
- 4.3 Campo dipolar

Fenómenos dependientes del tiempo

5.1 Medios magnéticos

Figura 1.1

Figura 1.2

5.1.1 Teorema de Thomson

Figura 1.3

5.2 Magnetización

Figura 2.4

5.3 Tensor de Maxwell

5.3.1 Ejemplos del tensor de Maxwell

Figura 2.5

Figura 2.6

Figura 3.7

Figura 3.8

Figura 3.9

Figura 3.10

Figura 3.11

Figura 3.12

Ondas planas

6.1 Polarización de ondas

Figura 1.1

Figura 2.2

Figura 2.3

6.2 Reflexión y refracción de ondas en medios

6.3 Campo electromagnético en un medio conductor

6.4 Transformación de vectores

6.4.1 Intervalos

6.4.2 Transcurso del tiempo en un sistema con V grande

Figura 2.4

Figura 2.5

Figura 3.6

Figura 3.7

Figura 3.8

Figura 3.9

Figura 4.10

Figura 4.11

Figura 4.12

Relatividad especial

7.1 Transformación de los campos

Figura 1.1

Figura 1.2

Figura 2.3

7.2 Especie de tiro oblicuo

7.3 cuadrivelocidad

Figura 3.4

Campos de cargas en movimiento

8.1 Potenciales retardados

Figura 1.1

Figura 1.2

Figura 1.3

- 8.2 Ejemplo de antena
- 8.3 Campos de una partícula cargada en movimiento
- 8.4 Campo de una carga en movimiento
- 8.5 Cálculo de potencia irradiada
- 8.6 Frenado magnético
- 8.6.1 Esponja electromagnética

Figura 2.4

Figura 2.5

Figura 3.7

Figura 3.8

Figura 4.9

Figura 4.10

Figura 5.11

Figura 5.12

Figura 6.13

Figura 6.14