

Feature Selection and Related Approaches

CSCI 4181 / 6802 Module 1-FEAT

The big picture

Module 1 Lecture 1 + today

Overview

1. So many features!!!

2. Feature selection – choosing the best subset of variables

3. Feature extraction – merging components of variables

tgggagcacgccaagatgtcccttgtgactgtccccttctaccagaagagacataggcacttcgaccagtcctaccgtaatattcaaacacggtacctgctggac: agcacgcaggaagatgaggagcaggagaacagaagcaggtaccagtccctggtggccgcctatggtgaggccaagcgacagcgcttcctcagcgagctggcccac cacctggcacgctcccaggcccgcgacaagctggacaaatacgccattcagcagatgatggaggacaagctggcctgggagagacacacatttgaagagcggata atcctggtgcggctgcgatcccacaccgtctgggagaggatgtctgtgaaactctgcttcaccgtgcaaggatttcccacgcccgtggtgcagtggtacaaagat caggeggetgaacegggaaagtacaggattgagageaactatggegtacacacactggagateaacagggeagaetttgaegacactgegacataeteageagtg ggacaagtgtccaccaacgcggcggtggtggtgagaaggttccggggagacgaggaaccattccgttcggtgggactcccgattggattgcccctgtcatcgatg ttcgacqtccaqtttttggaqaagtttggggtcaccttcaggagggaaggcgagacggtcactctcaagtgcaccatgctggtgacgccggacctgaagcgggtg: rtggtaccgcgatgacgtgctgttgaaagagtccaagtggacgaagatgttctttggagaaggccaggcctccctgtccttcagccacctgcacaaggacgacgag ıcgcatcgtgtctcggggcggcgtcagcgaccacagcgccttcctgtttgtcagagatgctgacccgctggtcacaggggcccccggtgcacccatggacttgcag cgggactacgtcatcgtgacctggaagccgcccaacaccaccactgagagccccgtcatgggctattttgtggaccgatgtgaagtaggaacgaataattgggtg tggcagagagtcaacgcccagacggctgtgagatccccgagatatgccgtgtttgacctcatggaagggaagtcttatgtgttccgagtgctgtcagcaaaccgg: .ccttcggagataacgtcccccattcaggcccaggatgtgaccgttgtcccttctgctccgggtcgggttcttgcttcccgaaacaccaagacgtcggtggtggtg acqqqaqaqcaqtacatcttccqaqtcaaqqcqqtcaatqctqtqqqqatqaqtqaaaattcccaqqaatcaqacqtcataaaaqtqcaqqccqcactcaccqtc: gggattacgetecteaactgtgacggecactecatgacecteggetggaaggteeegaaatteagtggtggetegeecateetgggetactacetggacaagegt aactggcacgaggtcaattcctcacccagcaaaccgacaatcctaacggtggacggcttgacggaaggctcactctacgagttcaaaatcgccgccgtcaacctg. ccctcagatcccagtgagcacttcaagtgtgaggcctggaccatgccggagcccggtcctgcctacgacttgacgttctgtgaggtcagggacacgtccttggtc cctgtgtactccggcagcagccctgtttctggatatttcgtggacttcagggaggaggatgctggagagtggatcactgtaaatcagacgacaacagccaaccgt: .gacctgcagcaaggtaagacctatgtcttcagggtccgggcagtcaatgcaaatggcgtggggaagccctcagacacgtcggagcctgtgctggtagaggcgaga atcagtgctggtgtcgatgaacaaggcaacatctatctgggcttcgactgccaggaaatgacagacgcgtctcagttcacctggtgtaaatcctacgaggagatt rtttaaaatcgaaaccgtgggggatcactccaagctgtacttaaagaatccggataaggaggatttagggacttactccgtgtctgtaagtgatacagacggagtg ctggacccagaagagctcgagcgtttgatggcattgagcaatgaaataaagaaccccacaattcctctgaaatcggaattagcttatgagattttttgataagggg. ${\tt ctccaggctgagcacttatcaccagatgccagctaccgatttattattaacgacagagaagtctctgacagcgagatacacagaattaaatgtgacaaagctact}$.gaggctgagtttcaaaggaaagaatttctcaggaaacaaggccctcattttgctgagtacttgcactgggatgtcacggaagaatgtgaagttcgacttgtttgc aagaaagaaaccgttttcaaatggctcaaggatgatgttctgtatgaaacggagacactgcctaacctggagaggggaatctgtgagctcctcatcccaaagttg: :ggtgaatacaaggcaaccttgaaagatgacagaggccaagatgtgtccatccttgaaatagctggcaaagtgtatgatgatatgatttttggcaatgagtagagtc tcgccactgaaggtactctgcaccccagaaggaatacgacttcagtgtttcatgaagtattttacagacgaaatgaaagtgaactggtgtcacaaagatgctaag. cttgacctgtccggacaagcttttgatgaagcatttgcagaattccagcaattcaaagctgctgcttttgcagagaagaatcgtggcaggttgatcggcggcttg: So, let's represent some DNA aaatatgc .cacactagcattttcacgggtgtggggcacatgggtgtggcacctggacgtgtgcagcatgtggcggtctgtgtgtaagccaccgtgcttctcttttggggggccgcg .gaaatcctggctgtcgaggctttgaagcatgtgttacctggttaagcttgttttctcttgctttaggcaaataaaagtttaaaaaatcaaaaaaagcattgagca

Reminder

All possible degenerate characters of length 1 to (say) 10

```
\{A,B,C,...,V\} \{AA,AB,...,VV\} ... \{AAAAAAAAA,AAAAAAAAAAA,...,VVVVVVVVVV\}
```

So...

$$15^{1} + 15^{2} + 15^{3} + 15^{4} + 15^{5} + 15^{6} + 15^{7} + 15^{8} + 15^{9} + 15^{10}$$

$$\approx 15^{10}$$

$$\approx 5.8 \times 10^{11}$$

Hmmm.

Problem?

- •An excessively high-dimensional set of features / parameters is:
 - Computationally intractable
 - Fertile ground for overfitting
 - Hard to understand!

Curse of Dimensionality

1-D: 42% of data captured.

2-D: 14% of data captured.

t = 0

REGULARIZATION

• In basic terms, one or more procedures that puts "pressure" on a model to be simple

Need to BALANCE accuracy vs. complexity

• Super-super general form:

$$Score = Accuracy - \lambda \times Complexity$$

Dimensionality Reduction: One ticket to model simplification

Define range of representations (e.g.

compositional vectors up to size k, Markov models up to size m, structural features)

Identify individual features that are most useful for classification

Feature SELECTION

Extract essential shared components from sets of features

Feature EXTRACTION

Classification technique

Model search	Advantages	Disadvantages	Examples		
Filter	Univariate				
FS space Classifier	Fast Scalable Independent of the classifier Multivariate	Ignores feature dependencies Ignores interaction with the classifier	χ ² Euclidean distance <i>i</i> -test Information gain, Gain ratio (Ben-Bassat, 1982)		
Classifier	Models feature dependencies Independent of the classifier Better computational complexity than wrapper methods	Slower than univariate techniques Less scalable than univariate techniques Ignores interaction with the classifier	Correlation-based feature selection (CFS) (Hall, 1999) Markov blanket filter (MBF) (Koller and Sahami, 1996) Fast correlation-based feature selection (FCBF) (Yu and Liu, 2004)		
Wrapper	Deterministic				
FS space Hypothesis space (Classifier)	Simple Interacts with the classifier Models feature dependencies Less computationally intensive than randomized methods Randomized	Risk of over fitting More prone than randomized algorithms to getting stuck in a local optimum (greedy search) Classifier dependent selection	Sequential forward selection (SFS) (Kittler, 1978) Sequential backward elimination (SBE) (Kittler, 1978) Plus q take-away r (Ferri et al., 1994) Beam search (Siedelecky and Sklansky, 1988)		
	Less prone to local optima Interacts with the classifier Models feature dependencies	Computationally intensive Classifier dependent selection Higher risk of overfitting than deterministic algorithms	Simulated annealing Randomized hill climbing (Skalak, 1994) Genetic algorithms (Holland, 1975) Estimation of distribution algorithms (Inza et al., 2000)		
Embedded FS U hypothesis space Classifier	Interacts with the classifier Better computational complexity than wrapper methods Models feature dependencies	Classifier dependent selection	Decision trees Weighted naive Bayes (Duda et al., 2001) Feature selection using the weight vector of SVM (Guyon et al., 2002; Weston et al., 2003)		

'Filter' Methods

Consider the individual impact of variables before using the classifier (typically using a simple screening criterion)

- Variable RELEVANCE
- Variable REDUNDANCY

RELEVANCE

Max Separation

Mutual Information — an expression of redundancy

For two categorical variables X and Y:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) \, p(y)} \right)$$

Probability that two classes are seen together in this dataset

Independent probabilities of each class

How much does knowing y tell us about the value of x (or vice versa?)

Also applicable to continuous variables (integrals)

Example: tRNA Sequences

123...456

(1) UCG...CGA

(2) UUC...GAA

(3) AUG...CAU

(4) ACC...GGU

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) \, p(y)} \right)$$

- (1) UCG...CG
- (2) UUC...GAA
- (3) AUG...CAU
- (4) ACC...GGU

Col 1 vs col 4

Col 1 vs col 6

$$I = 4[0.25 \times \log_2(0.25 / 0.25)]$$

$$= 0$$

(complete independence)

$$I = 2[0.5 \times \log_2(0.5 / 0.25)]$$

(complete redundancy)

Minimum Redundancy – Maximum Relevance (MRMR)

- Minimum redundancy: select variables that are largely independent, as assessed by
 - Low mutual information
 - Minimal correlation
 - Maximal Euclidean distance

• Maximum relevance: select variables that are good classifiers!

MRMR aims to maximize either

(relevance – redundancy) OR

(relevance / redundancy)

Using a greedy approach.

Wrapper Methods

Same idea as filter methods, but instead of having a quick screening process, feedback from the full classifier is used to select variables

Example: recursive feature elimination

 What factors are the best predictors of UTI?

• Try recursive feature elimination

183 patients 17 clinical features 1 microbiological feature 70 immunological features

183 patients

Features with >5% missing

excluded

Figure S2: Feature selection among immunological markers using different UTI classification guidelines. POETIC: Point of care testing for urinary tract infection in primary care, PHE: Public Health England, EAU: European Association of Urology, AUC: Area under the ROC curve, RF: Random forest and SVM: Support vector machine

Messages:

- Small, interpretable sets yay!
- The choice of classifier can make a BIG difference

Embedded methods

- Optimize variable set during model training
- Tend to be faster than wrappers
- Let's think about univariate regression:

$$y = mx + b$$

$$y = mx + b + \varepsilon$$

Optimization:

choose m, b such that the sum of squared errors is minimized

Multiple regression

• General form:

- So many possible predictors!
 - Plenty of opportunities to overfit
 - Spurious relationships make it hard to interpret coefficients

Two ways to deal with this

• LASSO: aggressively prune variables

$$= \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \ \underbrace{\|y - X\beta\|_2^2}_{\operatorname{Loss}} + \lambda \underbrace{\|\beta\|_1}_{\operatorname{Penalty}}$$

- Linear penalty aggressively sets many coefficients to zero (equivalent to removing variables)
- Large λ : big penalty, fewer variables

Two ways to deal with this

• Ridge regression: penalize coefficients less aggressively

$$= \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \ \underbrace{\|y - X\beta\|_2^2}_{\operatorname{Loss}} + \lambda \underbrace{\|\beta\|_2^2}_{\operatorname{Penalty}}$$

- Squared penalty aggressively sets many coefficients to zero (equivalent to removing variables)
- Large λ : big penalty, smaller coefficients (but more non-zero variables)

So

 Do you want to keep fewer variables (hard decisions) or more variables (weak decisions?)

You can have it all with Elastic Net!

$$\hat{eta} \equiv \operatorname*{argmin}_{eta} (\|y - Xeta\|^2 + \lambda_2 \|eta\|^2 + \lambda_1 \|eta\|_1).$$
Regression Ridge LASSO

•
$$\lambda_1 + \lambda_2 = 1$$

- Large λ_1 : stronger LASSO
- Large λ₂: stronger ridge

Example: predictive value of gene expression in cancer

- mRNA-seq: sequence a random sample of the RNA expressed inside a set of cells
- Compare expression levels between two categories of subjects (e.g., cancer vs. control)
- Try out various combinations of LASSO + ridge

- How well do the trained models perform?
- How many genes are retained?

Renal carcinoma

Feature Extraction

Try to condense n variables into < n derived variables or 'metavariables'

Simple example: remove 1 of 2 identical variables from a data set

Principal Components Analysis (Pearson, 1901)

 Assume that there is (not necessarily complete) redundancy among variables in the data set

• We want to create *metavariables* that capture this redundancy

http://commons.wikimedia.org/wiki/File:Pudel_miniatura_342.jpg

The covariance matrix

$$Cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

	AAAAA	AAAAAC	AAAAAG
AAAAA	Var(AAAAAA,A AAAAA)	Cov(AAAAAC,A AAAAA)	Cov(AAAAAG, AAAAAA)
AAAAAC	Cov(AAAAAA,A AAAAC)	Var(AAAAAC,A AAAAC)	Cov(AAAAAG, AAAAAC)
AAAAAG	Cov(AAAAAA,A AAAAG)	Cov(AAAAAC,A AAAAG)	Var(AAAAAG,A AAAAG)

Eigenvectors and eigenvalues

Diagonalize C using the matrix V

	AAAAAA	AAAAAC	AAAAAG
AAAAAA	Var(AAAAAA,	Cov(AAAAAC,	Cov(AAAAAG,
	AAAAAA)	AAAAAA)	AAAAAA)
AAAAAC	Cov(AAAAAA,	Var(AAAAAC,	Cov(AAAAAG,
	AAAAAC)	AAAAAC)	AAAAAC)
AAAAAG	Cov(AAAAAA,	Cov(AAAAAC,	Var(AAAAAG,
	AAAAAG)	AAAAAG)	AAAAAG)

The eigenvectors capture **shared elements of covariance**from the original variables
The eigenvectors are mutually **orthogonal**

Graphical depiction of eigenvectors

Choosing components

Sort by eigenvalue

Component 1 captures the greatest amount of shared covariance from the original data (proportional to the corresponding eigenvalue)

Scree plot

Graphical view

Input: estimated bacterial species frequencies for 21 mouse fecal samples

Plot of first two principal components (with % of variance explained)

Loadings or What am ILooking At?

The contribution of each variable to each component

	Component 1	Component 2
AAAAA	0.9	0.03
AAAAAC	0.8	-0.007
AAAAAG	0.84	0.01
•••		
GGACCT	0.02	0.15
GGACGA	-0.01	-0.14

Limitation of feature extraction methods: what exactly is signified by component i?

Interpretation-friendly techniques

The component vectors can be collectively *rotated* to simplify the loadings

Variable	Factor 1	Factor 2	Variable	Factor 1	Factor 2
WORK_1 WORK_2 WORK_3 HOME 1	.654384 .715256 .741688 .634120	.564143 .541444 .508212 563123	WORK_1 WORK_2 WORK_3 HOME 1	.862443 .890267 .886055 .062145	.051643 .110351 .152603 .845786
HOME_1 HOME_2 HOME_3	.706267 .707446	572658 525602	HOME_1 HOME_2 HOME_3	.107230 .140876	.902913 .869995
Expl.Var Prp.Totl	2.891313 .481885	1.791000 .298500	Expl.Var Prp.Totl	2.356684 $.392781$	2.325629 .387605

Summary

1. We can generate as many features as we want from DNA and protein sequences

2. Not all of these will be USEFUL or INDEPENDENT predictors

3. We should therefore reduce the complexity of the problem using good design and reduction methods