Part II assignment 6: due Nov 13

Graded

Student

Scott A. Fullenbaum

Total Points

30 / 30 pts

Question 1

15.2 5 / 5 pts

✓ - 0 pts Correct

- **0 pts** D_n has extra normal subgroups for each divisor of n, not just 2, but that is difficult to see from only D_4 and D_5
- **0.5 pts** Did not find the subgroups of general D_n

Question 2

15.3 5 / 5 pts

✓ - 0 pts Correct

- 1 pt Did not show the subgroups are normal

Question 3

15.14 5 / 5 pts

✓ - 0 pts Correct

Question 4

15.15 5 / 5 pts

✓ - 0 pts Correct

- **0.5 pts** It is unclear which groups your isomorphism is between, partly because you claim $G\cong \mathbb{Z}$ but also $H\cong \mathbb{Z}_2$ is a subgroup of G
- **0 pts** If $\langle gH \rangle = G/H$ then $\langle g \rangle H = \mathbb{Z} \times \mathbb{Z}_2$ because g commutes with every element of H. It covers all of G because $|G| = |G/H| \cdot |H|$
- **0.5 pts** When checking that a function $f:A\times B\to C$ is a homomorphism you need to show that for all $(a_1,b_1),(a_2,b_2)\in A\times B$, $f(a_1a_2,b_1b_2)=f(a_1,b_1)f(a_2,b_2)$. Otherwise you are not actually checking the group operation.
- **0.5 pts** It is important to also explain why the \mathbb{Z}_2 subgroup is central
- 0.5 pts Problems defining isomorphism

Kernel of. homomorphism is normal

5 / 5 pts

- ✓ 0 pts Correct
 - **0.5 pts** Showed normal-ness but not subgroup-ness
 - **0.5 pts** Homomorphisms are not, in general, injective or surjective
 - **0.5 pts** Issues with proof that kernel is a subgroup

Question 6

Quotients of the infinite cyclic group

5 / 5 pts

✓ - 0 pts Correct

Question assigned to the following page: 1						

M/45 HW 06K5.9-13 so con't be normal toreven no we see how as the consugarte to the er? but as over we have < > > 0 € (2) 33 and < (27 U € (and this is a proper subgroup. So in general CAlso notati n=odd & normal Subgrap is Crk. K divides n = even =7 Crks where Kdivides n, alone (12 is | 0 ≤ i ≤ 1/2-13 U < 12 > and 5 = <17, <1.7, <1.2, 57, <12, 57, <12,

Questions assigned to the following page: $\underline{2}$ and $\underline{3}$						

15.8) So the possible Subscenos
of Que. (Caichy's thin and Varble) normal, and all Q are normal Z={a+7/ /26 B} et x & Q/2 50 X = a+ 7/ then a= M/n where, M, 05 Z and 1 to So n X = m + Z nx=m+ Z, but as m EZ, then m+ Z= Z which is the identity so XI < n, Meaning every element has finite order G=Eat Q 3 or more Suppose XGIR/Q and IXI= n, and X=a+ Q Them XX Mac ax QX anat Q= Q as so na isralinal, this is a contradiction as a is irrational, so every non-trivial dement wof 1R/6 will have infinite

Questions assigned to the following page: <u>4</u> and <u>5</u>						

of H commutes where that what what was G= 7/x 7/2 of w.t. of Kerd is ago ed: a, b \(\) Kerd is ago \(\) (ab) = \(\) (a) \(\) (b) = \(\) So ab \(\) Kerd \(\) (ve: Trivial Extra! Kerd = 2 x 6 6 0 chaskerd, show, a' & Kod Car')= p(a) =e'=e Kord resect.

Question assigned to the following page: <u>6</u>							

So Kernel is a subgroup To show normal, wit s for he Ker By Athon (5.36) every subgroup of a cyclic subgroup must be cyclic subgroups of I are 12/ nGZ/ clearly 12/15 cyclic, generated as this is ally low, as It is a belian, then all subgroups are normal, so n It normal subgroups of the form It/n I where n 52 If are of the form It/n I where n 52