Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Recursion & Induction

RECURSION

Recursion & Induction

Recursion

• The Coin Problem

Hanoi Towers

Line to process a paper

Compute Queue Length

- 1) Mary gets in line
- 2) She wonders how many people before her?
- 3) Mary asks Frank (in front of her)
 - Could you please tell how many people ahead of you?
- 4) Now, Frank has the same problem
 - But Frank was able to find out there are 8
- 5) Now Mary knows there are 9 people in front

Recursive Program

Algorithm:

```
numberOfPeopleInFront(F): -
if there is no one before A:
  return 0

F ← number of people before A
  return numberOfPeopleInFront(F) + 1
```

Factorial Function

Definition:

• For a positive integer *n*, its factorial is the product of

integers from 1 to n.
•
$$5! = 1 \times 2 \times 3 \times 4 \times 5 = 120 = 4! \times 5$$

Recursive definition:

$$n! = \begin{cases} 1 & \text{if } n = 1 \\ n \times (n-1)! & \text{if } n > 1 \end{cases}$$

$$h! = R 4! = 21 (A3!)$$

Iterative Program

iterate 1

Recursive Program

```
def factorial(n):
    assert(n > 0)
    if n == 1
      return 1
    else:
      return n * factorial(n - 1)
```

Termination

- Must make sure that recursive program (or definition) terminates after finite number of steps
- Achieved by decreasing some parameter until it reaches the base case
 - line length: line of the length decreases by 1 with each recursive call, until it becomes 1
 - Factorial: *n* decreases by 1

Example of Infinite Recursion

- In theory:
 - will never stop, parameters increase to infinity
- In practice:
 - will cause error message
 - "Stack overload" or "Recursion depth exceeded"

More Examples of Infinite Recursion

No base case:

```
def factorial(n):
    return n * factorial(n - 1)
```

Parameter do not change:

```
def infinite(n):
    if n == 1 ×
        return 0
    return 1 + infinite(n)
```

More Examples (Not so serious :D)

To understand recursion, one must first understand recursion

Google is even in with the fun

Recursion & Induction – The Coin Problem

Recursion

• The Coin Problem

Hanoi Towers

The Coin Problem

Problem

Prove that any amount starting from 8 **ewans** can be paid for using only 3 **ewans** and 5 **ewans**.

$$-8 = 3+5, 9=3+3+3, 10=5+5, 11=3+3+5$$

- looks promising, seems possible
- How to be sure it will always be possible?-

Recursion & Induction – The Coin Problem

Speculation

8 can be definitely be done

- Speculation forming a theory without firm, solid concrete proof or evidence
- 11 is also possible by adding one 3 ewan coin
 - -11 = 8 + 3
 - same principle for 14, 17, 20, etc...
- Same for 9, keep on adding a 3 ewan coin
 - will give 12, 15, 18, 21, etc
- Checking 10 ewans, still keep adding 3 ewan coins
 - we'll get 13, 16, 19, 22, etc

Recursion & Induction – The Coin Problem

Recursive Program

```
def change(amount):
    assert(amount >= 8)
    if amount == 8:
        return [3, 5]
    if amount == 9:
        return [3, 3, 3]
    if amount == 10:
        return [5, 5]

- coins = change(amount - 3)
- coins.append(3)
    return coins
```

Recursion & Induction – Hanoi Towers

Recursion

• The Coin Problem

Hanoi Towers

Hanoi Towers

Problem

There are 3 sticks with *n* discs sorted by size on one of the sticks. The goal is to move all *n* disks to another stick subject to 2 constraints: (1) move one disk at a time, and (2) don't put a larger disk over a smaller one.

https://en.wikipedia.org/wiki/Tower_of_Hanoi#/media/File:Tower_of_Hanoi.jpeg

Recursion & Induction – Hanoi Towers

Can it be done?

- For what value of *n* is this possible?
 - For all!
- How can we be sure?
 - Design a recursive program that will solve the puzzle for every value of *n*

Recursion & Induction – Hanoi Towers

Simplest scenario, n=1 disk

Introduction to Discrete Math

Recursion & Induction – Hanoi Towers

n=2 Disks Scenario

Recursion & Induction – Hanoi Towers

How about for *n* disks? Let's speculate

Recursion & Induction – Hanoi Towers

n-1 disks? Let's do it recursively

Move n-1 disks recursively

Move largest disk to free stick

Move n-1 disks recursively until done

Summary

- A solution has been proposed for all values of n:
 - Base scenario: possible for disks = 1
 - Therefore, it is possible for disks = 2
 - Therefore, it is possible for disks = 3, ... until disks = n
 - Or putting it other way, It is possible to solve *n*, solve first for *n-1*
 - Therefore, it is possible for n-1
 - Therefore, it is possible for n 2; ... until n = 1
- recursion & induction
- recursion: method of defining/implementing something
 - induction: mathematical method of proving something

Thank you.