Lecture 14: Proof of channel coding theorem

- ullet Achievability: when R < C, exists zero error code
- ullet Converse: zero error code must have R < C

Channel coding theorem

Theorem. (Shannon, 1948) For a DMC

- 1. all rates below capacity R < C are achievable.
- 2. Converse: any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \to 0$ must have $R \leq C$.

Joint typical decoding

- ullet Decoder find \hat{W} if $(X^n(\hat{W}),Y^n)$ is jointly typical
- \bullet No confusion: no more than $X^n(\hat{W})$ jointly typical with Y^n

Proof for achievability

- ullet calculate the probability of error averaged over all codes randomly generated according to p(x)
- Average P_e does not depend on which index was sent
- \bullet For typical X^n , two type of errors
- (a) (X^n, Y^n) not jointly typical
- (b) (\tilde{X}^n, Y^n) is typical, but $\tilde{X}^n \neq X^n$
- Use AEP to bound (a) and (b)
- Conditional probability of error

$$\lambda_i = P\{g(Y^n) \neq i | X^n = x^n(i)\}$$

Proof for converse

ullet Use Fano's inequality to lower bound P_e

Implications of the theorem

- It shows that there exist good codes with exponentially small probability of error for long block length
- it does not provide a way to construct the best codes
- random code, without structure, very difficult to code (look-up table)
- property of capacity achieving codes
- example of capacity achieving: noisy typewriter
- new capacity achieving code: polar codes (2009)