Semantic & Neural Rendering & SLAM

Research Notes & Literature Review

Shuqi XIAO

July 3, 2024

Outline

- 1 3DGS-based SLAM
 - MonoGS

- 2 Semantic 3DGS
 - Feature-3DGS
 - LangSplat
 - CLIP-GS

1

3DGS-based SLAM

Timeline

3DGS-based SLAM

MonoGS

Framework

- through the extended differentiable rendering pipeline
- by a direct optimization against fixed 3D Gaussians,
- with some tricks to be more adaptive to brightness and more robust to noise.

- through the extended differentiable rendering pipeline,
- by a direct optimization against fixed 3D Gaussians
- with some tricks to be more adaptive to brightness and more robust to noise

- through the extended differentiable rendering pipeline,
- by a direct optimization against fixed 3D Gaussians,
- with some tricks to be more adaptive to brightness and more robust to noise

- through the extended differentiable rendering pipeline,
- by a direct optimization against fixed 3D Gaussians,
- with some tricks to be more adaptive to brightness and more robust to noise.

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mu_i = \pi \left(\mathbf{T}_{cw} \cdot \mu_w \right) \qquad (2) \qquad \qquad \Sigma_i = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_w \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \boldsymbol{\mu_{w}} \right) \qquad (2) \qquad \qquad \Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}} \qquad (3)$$

$$\stackrel{}{\triangleright} \mathbb{P}^{3}, 3D(\text{world}) \text{ mean}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \underline{\mu_{w}} \right) \qquad (2) \qquad \qquad \Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$

$$\in \mathrm{SE}(3), \text{ camera pose}$$

$$(3)$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \boldsymbol{\mu}_{w} \right) \quad (2) \qquad \qquad \Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \boldsymbol{\Sigma}_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$

$$\in \mathbb{SE}(3), \text{ camera pose}$$

$$\text{projection}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \mu_{w} \right) \quad (2) \qquad \qquad \Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}} \qquad (3)$$

$$\downarrow \in \mathbb{P}^{3}, 3D(\text{world}) \text{ mean}$$

$$\in SE(3), \text{ camera pose}$$

$$projection$$

$$\in \mathbb{P}^{2}, 2D(\text{image}) \text{ mean}$$

(3)

Firstly, let's review the projection of 3D Gaussians.

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\Sigma_{i} = \mathbf{J}_{\pi} \ \mathbf{R}_{cw} \ \Sigma_{w} \ \mathbf{R}_{cw}^{T} \mathbf{J}_{\pi}^{T}$$

$$(3)$$

$$\mathbb{R}^{3 \times 3}, 3D(\text{world}) \text{ covariance}$$

$$\in SO(3), \text{ rotation component of } \mathbf{T}_{cw}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

$$\Sigma_{i} = \begin{array}{c|c} \mathbf{J}_{\pi} & \mathbf{R}_{cw} & \boldsymbol{\Sigma}_{w} & \mathbf{R}_{cw}^{T} \mathbf{J}_{\pi}^{T} & \text{(3)} \\ & & & \in \mathbb{R}^{3\times3}, \, \text{3D(world) covariance} \\ & & \in \text{SO(3), rotation component of } \mathbf{T}_{cw} \\ & & \in \mathbb{R}^{2\times3}, \, \text{Jacobian of the linear approximation of } \boldsymbol{\pi} \end{array}$$

$$\mathcal{N}\left(\mu_{\mathsf{w}}, \Sigma_{\mathsf{w}}\right) \stackrel{\pi}{\mapsto} \mathcal{N}\left(\mu_{\mathsf{i}}, \Sigma_{\mathsf{i}}\right) \tag{1}$$

The chain rule,

$$\frac{\partial \mu_i}{\partial \mathbf{T}_{cw}} = \frac{\partial \mu_i}{\partial \mu_c} \frac{\partial \mu_c}{\partial \mathbf{T}_{cw}} \tag{4}$$

$$\frac{\partial \Sigma_{i}}{\partial \mathbf{T}_{cw}} = \frac{\partial \Sigma_{i}}{\partial \mathbf{J}_{\pi}} \frac{\partial \mathbf{J}_{\pi}}{\partial \mu_{c}} \frac{\partial \mu_{c}}{\partial \mathbf{T}_{cw}} + \frac{\partial \Sigma_{i}}{\partial \mathbf{R}_{cw}} \frac{\partial \mathbf{R}_{cw}}{\partial \mathbf{T}_{cw}}$$
(5)

The Lie Algebra,

$$\frac{\partial \mu_c}{\partial \mathbf{T}_{cw}} = \begin{bmatrix} \mathbf{I} & -\mu_c^{\times} \end{bmatrix} \tag{6}$$

$$\frac{\partial \mathbf{R}_{cw}}{\partial \mathbf{T}_{cw}} = \begin{bmatrix} \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,1) \\ \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,2) \\ \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,3) \end{bmatrix}$$
(7)

The chain rule,

$$\frac{\partial \mu_i}{\partial \mathbf{T}_{cw}} = \frac{\partial \mu_i}{\partial \mu_c} \frac{\partial \mu_c}{\partial \mathbf{T}_{cw}} \tag{4}$$

$$\frac{\partial \Sigma_{i}}{\partial \mathbf{T}_{cw}} = \frac{\partial \Sigma_{i}}{\partial \mathbf{J}_{\pi}} \frac{\partial \mathbf{J}_{\pi}}{\partial \mu_{c}} \frac{\partial \mu_{c}}{\partial \mathbf{T}_{cw}} + \frac{\partial \Sigma_{i}}{\partial \mathbf{R}_{cw}} \frac{\partial \mathbf{R}_{cw}}{\partial \mathbf{T}_{cw}}$$
(5)

The Lie Algebra,

$$\frac{\partial \mu_c}{\partial \mathbf{T}_{cw}} = \begin{bmatrix} \mathbf{I} & -\mu_c^{\times} \end{bmatrix} \tag{6}$$

$$\frac{\partial \mathbf{R}_{cw}}{\partial \mathbf{T}_{cw}} = \begin{bmatrix} \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,1) \\ \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,2) \\ \mathbf{0} & -\mathbf{R}_{cw}^{\times}(:,3) \end{bmatrix}$$
(7)

Keyframe Management:

- Classic strategies, e.g. covisibility & overlap, from DSO [5].
- Off-the-shelf occlusion-aware Gaussian visibility is leveraged to construct metrics

key method (trick) (convention)
(arXiv, 2016) DSO: Direct Sparse Odometry
(CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Keyframe Management:

- Classic strategies, e.g. covisibility & overlap, from DSO [5].
- Off-the-shelf occlusion-aware Gaussian visibility is leveraged to construct metrics

Keyframe Management:

- Classic strategies, e.g. covisibility & overlap, from DSO [5].
- Off-the-shelf occlusion-aware Gaussian visibility is leveraged to construct metrics.

Gaussian Management:

- Insertion: triggered by keyframing, followed by Gaussian initialization.
- Pruning: to remove unstable/incorrect Gaussians by covisibility in a monocular setting

key method (trick) (convention)
(arXiv, 2016) DSO: Direct Sparse Odometry
(CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Gaussian Management:

- Insertion: triggered by keyframing, followed by Gaussian initialization.
- Pruning: to remove unstable/incorrect Gaussians by covisibility in a monocular setting

Gaussian Management:

- Insertion: triggered by keyframing, followed by Gaussian initialization.
- Pruning: to remove unstable/incorrect Gaussians by covisibility in a monocular setting.

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online

- 3 How should we select keyframes?
 - non-redundant and observing the same area
 - spanning a wide baseline for better multi-view constraints

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Inteasible to optimize jointly on all frames online

- 3 How should we select keyframes?
 - non-redundant and observing the same area
 - spanning a wide baseline for better multi-view constraints

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.

- 3 How should we select keyframes?
 - non-redundant and observing the same area
 - spanning a wide baseline for better multi-view constraints

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.

- 3 How should we select keyframes?
 - non-redundant and observing the same area
 - spanning a wide baseline for better multi-view constraints

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.
 (a trade-off between efficiency and accuracy/robustness/...)
- 3 How should we select keyframes?
 - non-redundant and observing the same area
 - spanning a wide baseline for better multi-view constraints

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.
 (a trade-off between efficiency and accuracy/robustness/...)
- 3 How should we select keyframes?
 - non-redundant and observing the same area.
 - spanning a wide baseline for better multi-view constraints.

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.
 (a trade-off between efficiency and accuracy/robustness/...)
- 3 How should we select keyframes?
 - non-redundant and observing the same area.
 - spanning a wide baseline for better multi-view constraints.

- What is keyframing or keyframe management?
 - A strategy of selecting and utilizing a crucial subset of frames.
- 2 Why do we need keyframing?
 - Infeasible to optimize jointly on all frames online.
 (a trade-off between efficiency and accuracy/robustness/...)
- 3 How should we select keyframes?
 - non-redundant and observing the same area.
 - spanning a wide baseline for better multi-view constraints.

Small Gaussian Covisibility

Condition i, Keyframe Registration

$$\frac{\mathbf{v}\left(\mathcal{G}, \mathcal{F}_{i}\right) \cap \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{j}\right)|}{\mathbf{v}\left(\mathcal{G}, \mathcal{F}_{i}\right) \cup \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{j}\right)|} < \tau_{1}$$
(8)

Small Gaussian Covisibility

Condition i, Keyframe Registration

$$\frac{|\mathbf{v}\left(\mathcal{G},\mathcal{F}_{i}\right)\cap\mathbf{v}\left(\mathcal{G},\mathcal{F}_{j}\right)|}{|\mathbf{v}\left(\mathcal{G},\mathcal{F}_{i}\right)\cup\mathbf{v}\left(\mathcal{G},\mathcal{F}_{j}\right)|}<\tau_{1}$$
(8)

Small Gaussian Covisibility

Condition i, Keyframe Registration

$$\frac{\left| \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{i}\right) \cap \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|}{\left| \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{i}\right) \cup \mathbf{v}\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|} < \tau_{1}$$

$$(8)$$

Small Gaussian Covisibility

Condition i, Keyframe Registration

$$\frac{\left|\mathbf{v}\left(\mathcal{G},\mathcal{F}_{i}\right)\cap\mathbf{v}\left(\mathcal{G},\mathcal{F}_{j}\right)\right|}{\left|\mathbf{v}\left(\mathcal{G},\mathcal{F}_{i}\right)\cup\mathbf{v}\left(\mathcal{G},\mathcal{F}_{j}\right)\right|}<\tau_{1}}<\tau_{1}$$
the previous keyframe
$$\uparrow$$

$$(8)$$

Small Gaussian Covisibility

Condition i, Keyframe Registration

$$\frac{\left| v\left(\mathcal{G},\mathcal{F}_{i}\right) \cap v\left(\mathcal{G},\mathcal{F}_{j}\right) \right|}{\left| v\left(\mathcal{G},\mathcal{F}_{i}\right) \cup v\left(\mathcal{G},\mathcal{F}_{j}\right) \right|} < \tau_{1}$$
the previous keyframe
$$\frac{\left| v\left(\mathcal{G},\mathcal{F}_{i}\right) \cup v\left(\mathcal{G},\mathcal{F}_{j}\right) \right|}{\left| \text{the current frame} \right|}$$

$$(8)$$

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\|\mathbf{t}_{\mathcal{F}_{i},\mathcal{F}_{j}}\right\|_{2}}{\bar{D}_{\mathcal{F}_{i},\mathcal{F}_{j}}} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i},\mathcal{F}_{j}} = \frac{1}{2HW} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w)$$

$$\tag{9}$$

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\| \begin{array}{c} \mathbf{E}^{3}, \text{ translation from } \mathcal{F}_{i} \text{ to } \mathcal{F}_{j} \\ \hline \left\| \begin{array}{c} \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \end{array} \right\|_{2} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}} = \frac{1}{2HW} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w) \end{array}$$
(9)

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\|\begin{array}{c} \in \mathbb{R}^{3}, \text{ translation from } \mathcal{F}_{i} \text{ to } \mathcal{F}_{j} \\ \hline \left\|\begin{array}{c} \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \end{array}\right\|_{2} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}} = \frac{1}{2HW} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w) \end{array}$$
(9)

 $\in \mathbb{R}$, the median depth

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\| \begin{array}{c} \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \\ \hline \bar{\mathbf{D}}_{\mathcal{F}_{i}\mathcal{F}_{j}} \end{array} \right\|_{2}}{\bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}}} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}} = \frac{1}{2HW} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w)$$

$$\uparrow \text{ depth of pixel } (h, w)$$

 $\in \mathbb{R}$, the median depth

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\| \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \right\|_{2}}{\left\| \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \right\|_{2}} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}} = \frac{1}{2 H W} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w)$$

$$\stackrel{\text{image height}}{=} \left\| \mathbf{f}_{i} \right\|_{2} = \frac{1}{2 H W} \left\| \mathbf{f}_{i} \right\|_{2} =$$

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoCS: Gaussian Splatting SLAM

Condition ii, Keyframe Registration

Translation from the previous keyframe w.r.t. to the median depth reaches a threshold.

$$\frac{\left\| \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \right\|_{2}}{\left\| \mathbf{t}_{\mathcal{F}_{i}\mathcal{F}_{j}} \right\|_{2}} > \tau_{2}, \quad \bar{D}_{\mathcal{F}_{i}\mathcal{F}_{j}} = \frac{1}{2 H W} \sum_{h=0}^{\{\mathcal{F}_{i},\mathcal{F}_{j}\}} \sum_{h=0}^{H} \sum_{w=0}^{W} d(h, w)$$

$$\underline{\mathbf{d}}_{\mathbf{p}} = \mathbf{d}_{\mathbf{p}} = \mathbf{d}_$$

In practice, $\tau_2=0.04$. Additionally, evaluate the Gaussian covisibility only if the relative translation is not too small (>0.02) for efficiency. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

Beyond Window Capacity

Condition i, Keyframe Remova

Remove one of previous keyframes

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes that minimize the impact on the overall baseline length.

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes that minimize the impact on the overall baseline length.

$$\mathcal{F}^* = \underset{\mathcal{F} \in \mathcal{W}}{\operatorname{arg\,max}} \ l\left(\mathcal{W} \setminus \{\mathcal{F}\}\right) \tag{10}$$

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes that minimize the impact on the overall baseline length.

$$\mathcal{F}^* = \underset{\mathcal{F} \in \mathcal{W}}{\operatorname{arg max}} \ \mathbb{I}\left(\mathcal{W} \setminus \{\mathcal{F}\}\right), \quad \mathbb{I}\left(\mathcal{W}\right) = \sum_{i=1}^{|\mathcal{W}|} \sum_{j=1}^{i} \left\|\mathbf{t}_{\mathcal{F}_i \mathcal{F}_j}\right\|$$
(10)

Beyond Window Capacity

Condition i, Keyframe Removal

Remove one of previous keyframes that minimize the impact on the overall baseline length.

$$\mathcal{F}^* = \underset{\mathcal{F} \in \mathcal{W}}{\operatorname{arg \, max}} \ l\left(\mathcal{W} \setminus \left\{\mathcal{F}\right\}\right), \quad l\left(\mathcal{W}\right) = \sum_{i=1}^{|\mathcal{W}|} \sum_{j=1}^{i} \left\|\mathbf{t}_{\mathcal{F}_i \mathcal{F}_j}\right\|$$
(10)

Remark: for the best multi-view constraints.

Condition ii, Keyframe Removal

Remove multiple previous keyframes if the "Gaussian overlap coefficient" drops below a threshold.

Condition ii, Keyframe Removal

Remove multiple previous keyframes if the "Gaussian overlap coefficient" drops below a threshold

Condition ii, Keyframe Removal

Remove multiple previous keyframes if the "Gaussian overlap coefficient" drops below a threshold.

Condition ii, Keyframe Removal

Remove multiple previous keyframes if the "Gaussian overlap coefficient" drops below a threshold.

$$\frac{\left| v\left(\mathcal{G}, \mathcal{F}_{i}\right) \cap v\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|}{\min\left(\left| v\left(\mathcal{G}, \mathcal{F}_{i}\right) \right|, \left| v\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|\right)} < \tau_{4}$$
(11)

Condition ii, Keyframe Removal

Remove multiple previous keyframes if the "Gaussian overlap coefficient" drops below a threshold.

$$\frac{\left| v\left(\mathcal{G}, \mathcal{F}_{i}\right) \cap v\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|}{\min\left(\left| v\left(\mathcal{G}, \mathcal{F}_{i}\right) \right|, \left| v\left(\mathcal{G}, \mathcal{F}_{j}\right) \right|\right)} < \tau_{4}$$
(11)

Remark: not observing the same area.

- Why do we need "Gaussian insertion"?
 - SLAM is for robotic exploration.

■ When do we need "Gaussian insertion"?

Keyframing

Condition i, Gaussian Insertion

Insertion is triggered for every new keyframe.

- Why do we need "Gaussian insertion"?
 - SLAM is for robotic exploration.

■ When do we need "Gaussian insertion":

Keyframing

Condition i, Gaussian Insertior

Insertion is triggered for every new keyframe.

- Why do we need "Gaussian insertion"?
 - SLAM is for robotic exploration.

■ When do we need "Gaussian insertion"?

Keyframing

Condition i, Gaussian Insertion

Insertion is triggered for every new keyframe

- Why do we need "Gaussian insertion"?
 - SLAM is for robotic exploration.

■ When do we need "Gaussian insertion"?

Keyframing

Condition i, Gaussian Insertion

Insertion is triggered for every new keyframe.

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach

If Depth Unavailable

Gaussian Initialization

- for pixels with depth: use the rendered depth and assign a "low" covariance...
- m for pixels w/o depth: use the median of rendered depth and assign a "high" covariance.

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach.

If Depth Unavailable

Gaussian Initialization

- for pixels with depth: use the rendered depth and assign a "low" covariance.
- m for pixels w/o depth: use the median of rendered depth and assign a "high" covariance.

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach.

If Depth Unavailable

Gaussian Initialization

- for pixels with depth: use the rendered depth and assign a "low" covariance
- $_{\odot}$ for pixels $\mathrm{w/o}$ depth: use the median of rendered depth and assign a "high" covariance.

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach.

If Depth Unavailable

Gaussian Initialization

- for pixels with depth: use the rendered depth and assign a "low" covariance
- for pixels w/o depth: use the median of rendered depth and assign a "high" covariance.

In practice, "low": 0.2σ ; "high": 0.5σ , where σ is the standard deviation of the rendered depth map. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach.

If Depth Unavailable

Gaussian Initialization

- for pixels with depth: use the rendered depth and assign a "low" covariance.
- for pixels w/o depth: use the median of rendered depth and assign a "high" covariance

In practice, "low": 0.2σ ; "high": 0.5σ , where σ is the standard deviation of the rendered depth map. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

- How do we insert Gaussians?
 - Gaussian insertion is Gaussian initialization.

If Depth Available

Gaussian Initialization

Back-project in a per-pixel, per-Gaussian approach.

If Depth Unavailable

Gaussian Initialization

Leverage the rendered depth map.

- for pixels with depth: use the rendered depth and assign a "low" covariance.
- for pixels w/o depth: use the median of rendered depth and assign a "high" covariance.

In practice, "low": 0.2σ ; "high": 0.5σ , where σ is the standard deviation of the rendered depth map. (CVPR Highlight, 2024) MonoGS: Gaussian Splatting SLAM

- Why do we need "Gaussian Pruning"?
 - if depth unavailable, too many incorrect newly inserted Gaussians.

Condition i, Gaussian Pruning

Low opacity Gaussians are pruned.

$$\{\mathcal{G}_i \in \mathcal{G} \mid \alpha(\mathcal{G}_i) < \tau_{\alpha}\}$$

Low Gaussian Covisibility

Condition ii, Gaussian Pruning

If no pruning, although the majority of incorrect Gaussians vanish quickly in following optimization, there are some survivals.

In practice, $\tau_{\alpha} = 0.7$.

In practice, the pruned Gaussians are inserted in the last 3 keyframes and unobserved by any other 3 keyframes in the sliding window.

- Why do we need "Gaussian Pruning"?
 - if depth unavailable, too many incorrect newly inserted Gaussians.

Condition i, Gaussian Pruning

Low opacity Gaussians are pruned.

$$\{\mathcal{G}_i \in \mathcal{G} \mid \alpha(\mathcal{G}_i) < \tau_\alpha\}$$

(12)

Low Gaussian Covisibility

Condition ii, Gaussian Pruning

If no pruning, although the majority of incorrect Gaussians vanish quickly in following optimization, there are some survivals.

In practice, $\tau_{\alpha}=$ 0.7.

In practice, the pruned Gaussians are inserted in the last 3 keyframes and unobserved by any other 3 keyframes in the sliding window.

- Why do we need "Gaussian Pruning"?
 - if depth unavailable, too many incorrect newly inserted Gaussians.

Condition i, Gaussian Pruning

Low opacity Gaussians are pruned.

$$\{\mathcal{G}_i \in \mathcal{G} \mid \alpha(\mathcal{G}_i) < \tau_\alpha\} \tag{12}$$

Low Gaussian Covisibility

Condition ii, Gaussian Pruning

If no pruning, although the majority of incorrect Gaussians vanish quickly in following optimization, there are some survivals.

In practice, $\tau_{\alpha}=$ 0.7.

In practice, the pruned Gaussians are inserted in the last 3 keyframes and unobserved by any other 3 keyframes in the sliding window.

- Why do we need "Gaussian Pruning"?
 - if depth unavailable, too many incorrect newly inserted Gaussians.

Condition i, Gaussian Pruning

Low opacity Gaussians are pruned.

$$\{\mathcal{G}_i \in \mathcal{G} \mid \alpha(\mathcal{G}_i) < \tau_\alpha\} \tag{12}$$

Low Gaussian Covisibility

Condition ii, Gaussian Pruning

If no pruning, although the majority of incorrect Gaussians vanish quickly in following optimization, there are some survivals.

In practice, $\tau_{\alpha} = 0.7$.

In practice, the pruned Gaussians are inserted in the last 3 keyframes and unobserved by any other 3 keyframes in the sliding window.

■ Why do we need mapping in **3DGS** SLAM?

- Why do we need mapping in **3DGS** SLAM?
 - Local: Optimize newly inserted 3D Gaussians.
 - Global: Reconstruct a globally 3D-coherent structure.

- Why do we need mapping in **3DGS** SLAM?
 - Local: Optimize newly inserted 3D Gaussians.
 - Global: Reconstruct a globally 3D-coherent structure.

- Why do we need mapping in **3DGS** SLAM?
 - Local: Optimize newly inserted 3D Gaussians.
 - Global: Reconstruct a globally 3D-coherent structure.

$$\underset{\mathcal{G},\left\{\mathbf{T}_{cw}(\mathcal{F}_{k})|\mathcal{F}_{k}\in\mathcal{W}\right\}}{\operatorname{argmin}}\sum_{\mathcal{F}_{k}}^{\mathcal{W}}\mathcal{L}_{pho}\left(\mathcal{F}_{k}\right)\tag{13}$$

Random Recall

$$\underset{\mathcal{G}}{\operatorname{argmin}} \sum_{\mathcal{F}_{k}}^{\mathcal{W}} \mathcal{L}_{pho} \left(\mathcal{F}_{k} \right)$$
3D Gaussians
$$(13)$$

Random Recall

$$\underset{\mathcal{G}}{\operatorname{argmin}} \sum_{\mathcal{F}_{k}}^{\mathcal{W}} \mathcal{L}_{pho}\left(\mathcal{F}_{k}\right) \tag{13}$$

$$\underset{\mathcal{G}}{\mathcal{G}}, \left\{ T_{cw}(\mathcal{F}_{k}) \middle| \mathcal{F}_{k} \in \mathcal{W} \right\} \qquad \qquad \uparrow \text{ camera poses of keyframes in the sliding window}$$

Random Recall

Random Recall

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

$$\mathcal{L}_{iso} = \sum_{i=1}^{|\mathcal{G}|} \|\mathbf{s}(\mathcal{G}_i) - \bar{\mathbf{s}}(\mathcal{G}_i)\|_1, \tag{14}$$

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

$$\mathcal{L}_{iso} = \sum_{i=1}^{|\mathcal{G}|} \|\mathbf{s}(\mathcal{G}_i) - \bar{\mathbf{s}}(\mathcal{G}_i)\|_1, \tag{14}$$

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

$$\mathcal{L}_{iso} = \sum_{i=1}^{|\mathcal{G}|} \|\mathbf{s}(\mathcal{G}_i) - \bar{\mathbf{s}}(\mathcal{G}_i)\|_1, \tag{14}$$

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

$$\mathcal{L}_{iso} = \sum_{i=1}^{|\mathcal{G}|} \|\mathbf{s}(\mathcal{G}_i) - \bar{\mathbf{s}}(\mathcal{G}_i)\|_1, \tag{14}$$

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

 $\in \mathbb{N}$, total number of Gaussians

$$\mathcal{L}_{iso} = \sum_{i=1}^{n} \|\mathbf{s}(\mathcal{G}_i) - \bar{\mathbf{s}}(\mathcal{G}_i)\|_1,$$

(14)

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

 $\begin{array}{c}
\in \mathbb{N}, \text{ total number of Gaussians} \\
\in \mathbb{R}^{3}, \text{ scale of } i\text{-th Gaussian} \\
\downarrow |\mathcal{G}| \\
\mathcal{L}_{iso} = \sum_{i=1}^{n} \|\mathbf{s}(\mathcal{G}_{i}) - \bar{\mathbf{s}}(\mathcal{G}_{i})\|_{1},
\end{array} \tag{14}$

- Why do we need "isotropic regularization"?
 - Observation: isotropic Gaussians behave better than anisotrophic.
 - Analysis: no constraints on the elongation along the viewing ray direction, even with depth.

Overall Optimization for Mapping

$$\underset{\mathcal{G},\left\{\mathbf{T}_{cw}(\mathcal{F}_{k})\mid\mathcal{F}_{k}\in\mathcal{W}^{+}\right\}}{\operatorname{argmin}}\sum_{\mathcal{F}_{k}}^{\mathcal{W}^{+}}\mathcal{L}_{pho}\left(\mathcal{F}_{k}\right)+\lambda_{iso}\mathcal{L}_{iso}$$
(15)

Semantic 3DGS

Consensus

Lift 2D foundation models to 3D scene-specific Gaussians under 2D supervision.

^{1. 2}D foundation models: CLIP, SAM, DINO, etc.

^{2.} Interactivity: manipulation, edit, localization, query, simulation, etc.

Semantic 3DGS

Feature-3DGS

Figure 1: Overview of Feature 3DGS

- Semantic Rendering Pipeline
 - Differentiable rendering of Gaussian-wise latent semantic features.
- Dimensionality Alignmen

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

Figure 1: Overview of Feature 3DGS

- Semantic Rendering Pipeline
 Differentiable rendering of Gaussian-wise latent semantic features.
- Speed-up module
 Dimensionality Alignment.

(16)

$$\mathbb{R}^{N \times D} \mapsto \mathbb{R}^{H \times W \times D}$$

- representation
- 2 projection
- Blending
- 4 rasterization
- 5 inverse rendering

$$\mathbb{R} \xrightarrow{N} \times D \mapsto \mathbb{R}^{H \times W \times D}$$
number of 3D Gaussians (16)

- representation
- 2 projection
- 3 blending
- 4 rasterization
- 5 inverse rendering

- representation
- 2 projection
- B blending
- 4 rasterization
- 5 inverse rendering

- representation
- 2 projection
- B blending
- 4 rasterization
- 5 inverse rendering

- representation
- 2 projection
- B blending
- 4 rasterization
- inverse rendering

5 things,

- representation
- 2 projection
- B blending
- 4 rasterization
- inverse rendering

5 things,

- representation
- 2 projection
- B blending
- 4 rasterization
- 5 inverse rendering

5 things,

- representation
- 2 projection
- 3 blending
- 4 rasterization
- 5 inverse rendering

To render semantic embeddings, i.e.

5 things,

- representation
- 2 projection
- 3 blending
- 4 rasterization
- 5 inverse rendering

To render semantic embeddings, i.e.

5 things,

- representation
- 2 projection
- Blending
- 4 rasterization
- 5 inverse rendering

To render semantic embeddings, i.e.

5 things,

- representation
- 2 projection
- 3 blending
- 4 rasterization
- 5 inverse rendering

$$G_i = \{\mathbf{x}, \mathbf{q}, \mathbf{s}, \alpha, \mathbf{c}, \mathbf{f}\}$$
(17)

n: the maximal order of spherical harmonics to represent a color channel. In practice, n=4.

$$\mathcal{G}_{i} = \{\mathbf{x}, \mathbf{q}, \mathbf{s}, \alpha, \mathbf{c}, \mathbf{f}\}$$
(17)

optimizable attributes of a 3D Gaussian

n: the maximal order of spherical harmonics to represent a color channel. In practice, n=4.

n: the maximal order of spherical harmonics to represent a color channel. In practice, n=4.

(17)

n: the maximal order of spherical harmonics to represent a color channel. In practice, n=4.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

(17)

n: the maximal order of spherical harmonics to represent a color channel. In practice, n=4.

(17)

 $[\]it n$: the maximal order of spherical harmonics to represent a color channel. In practice, $\it n=4$.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

 $[\]it n$: the maximal order of spherical harmonics to represent a color channel. In practice, $\it n=4$.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

 $[\]it n$: the maximal order of spherical harmonics to represent a color channel. In practice, $\it n=4$.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

 $[\]it n$: the maximal order of spherical harmonics to represent a color channel. In practice, $\it n=4$.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\mu_i = \pi \left(\mathbf{T}_{cw} \cdot \mu_w \right) \tag{18}$$

$$\Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$
 (19)

$$\mu_i = \pi \left(\begin{array}{c} \mathbf{T}_{\mathit{CW}} & \mathbf{\mu}_{\mathit{W}} \end{array} \right) \quad \text{(18)}$$
 $\in \mathbb{P}^3$, 3D(world) mean $\in \mathrm{SE}(3)$, camera pose

$$\Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$
(19)

$$\Sigma_i = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_w \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$
 (19)

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \mu_{w} \right)$$
 (18)
$$\downarrow \in \mathbb{P}^{3}, 3D(\text{world}) \text{ mean}$$

$$\in SE(3), \text{ camera pose}$$

$$\text{projection}$$

$$\in \mathbb{P}^{2}, 2D(\text{image}) \text{ mean}$$

$$\Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \Sigma_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$
 (19)

$$\Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \mathbf{\Sigma}_{w} \mathbf{R}_{cw}^{\mathrm{T}} \mathbf{J}_{\pi}^{\mathrm{T}}$$

$$\in \mathbb{R}^{3 \times 3}, 3D(\text{world}) \text{ covariance}$$

$$(19)$$

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\Sigma_{i} = \mathbf{J}_{\pi} \mathbf{R}_{cw} \mathbf{\Sigma}_{w} \mathbf{R}_{cw}^{T} \mathbf{J}_{\pi}^{T}$$

$$(19)$$

$$\mathbb{R}^{3 \times 3}, 3D(\text{world}) \text{ covariance}$$

$$\in SO(3), \text{ rotation component of } \mathbf{T}_{cw}$$

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\mu_{i} = \pi \left(\mathbf{T}_{cw} \cdot \mu_{w} \right)$$
 (18)
$$\stackrel{}{\longleftarrow} \mathbb{P}^{3}, 3D(\text{world}) \text{ mean}$$

$$\in SE(3), \text{ camera pose}$$

$$\text{projection}$$

$$\in \mathbb{P}^{2}, 2D(\text{image}) \text{ mean}$$

$$\mathbf{f}(h, w) = \sum_{i=1}^{N} T_i \alpha_i \mathbf{f}_i(h, w), \quad T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$
 (20)

$$\frac{\mathbf{f}(h, w)}{\mathbf{f}(h, w)} = \sum_{i=1}^{N} T_i \alpha_i \mathbf{f}_i(h, w), \quad T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$
semantic feature on pixel (h, w) (20)

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\mathbf{f}(h, w) = \sum_{i=1}^{N} T_{i} \alpha_{i} \mathbf{f}_{i}(h, w) , \quad T_{i} = \prod_{j=1}^{i-1} (1 - \alpha_{j})$$
semantic feature on pixel (h, w) semantic feature of i -th Gaussian on pixel (h, w)

(CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\mathbf{f}(h, w) = \sum_{i=1}^{N} T_{i} \alpha_{i} \mathbf{f}_{i}(h, w), \quad T_{i} = \prod_{j=1}^{i-1} (1 - \alpha_{j})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

$$\mathbf{f}(h, w) = \sum_{i=1}^{N} \mathbf{T}_{i} \alpha_{i} \mathbf{f}_{i}(h, w), \quad \mathbf{T}_{i} = \prod_{j=1}^{i-1} (1 - \alpha_{j})$$
semantic feature on pixel (h, w)
opacity of i -th Gaussian
background opacity for i -th Gaussian

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

- Divide the screen space into tiles (CUDA thread blocks)
- Group the Gaussians by view frustum and tile index
- Sort the Gaussians by front-to-back depth order.
- Blend each pixel within a tile in parallel (CUDA threads).

- Divide the screen space into tiles (CUDA thread blocks).
- Group the Gaussians by view frustum and tile index
- 3 Sort the Gaussians by front-to-back depth order
- 4 Blend each pixel within a tile in parallel (CUDA threads).

- Divide the screen space into tiles (CUDA thread blocks).
- **2** Group the Gaussians by view frustum and tile index.
- 3 Sort the Gaussians by front-to-back depth order
- Blend each pixel within a tile in parallel (CUDA threads).

- Divide the screen space into tiles (CUDA thread blocks).
- **2** Group the Gaussians by view frustum and tile index.
- Sort the Gaussians by front-to-back depth order.
 - Blend each pixel within a tile in parallel (CUDA threads).

- Divide the screen space into tiles (CUDA thread blocks).
- **2** Group the Gaussians by view frustum and tile index.
- 3 Sort the Gaussians by front-to-back depth order.
- Blend each pixel within a tile in parallel (CUDA threads).

In practice, 16×16 blocks.

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L} = \mathcal{L}_{appearance} + \gamma \mathcal{L}_{semantics} \tag{21}$$

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L} = \mathcal{L}_{appearance} + \gamma \mathcal{L}_{semantics} \tag{21}$$

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L} = \mathcal{L}_{\textit{appearance}} + \gamma \mathcal{L}_{\textit{semantics}} \tag{21}$$

$$\mathcal{L}_{appearance} = (1 - \lambda)\mathcal{L}_1\left(\mathbf{C}, \hat{\mathbf{C}}\right) + \lambda \mathcal{L}_{D-SSIM}\left(\mathbf{C}, \hat{\mathbf{C}}\right)$$
 (22)

(23)

In practice, $\gamma = 1$, $\lambda = 0.2$.

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L}_{appearance} = (1 - \lambda)\mathcal{L}_{1}\left(\mathbf{C}, \hat{\mathbf{C}}\right) + \lambda\mathcal{L}_{D-SSIM}\left(\mathbf{C}, \hat{\mathbf{C}}\right)$$
(22)

(23)

In practice, $\gamma = 1$, $\lambda = 0.2$.

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L}_{appearance} = (1 - \lambda)\mathcal{L}_{1} \left(\mathbf{C}, \hat{\mathbf{C}} \right) + \lambda \mathcal{L}_{D-SSIM} \left(\mathbf{C}, \hat{\mathbf{C}} \right)$$
(22)

$$\mathcal{L}_{semantics} = \mathcal{L}_1\left(\mathbf{F}, \hat{\mathbf{F}}\right) = \sum_{h=1}^{H} \sum_{w=1}^{W} \|\mathbf{f}(h, w) - \hat{\mathbf{f}}(h, w)\|_1$$
 (23)

In practice, $\gamma = 1$, $\lambda = 0.2$.

Inverse rendering: guided by image-wise photometric loss,

$$\mathcal{L}_{appearance} = (1 - \lambda)\mathcal{L}_{1}\left(\mathbf{C}, \hat{\mathbf{C}}\right) + \lambda\mathcal{L}_{D-SSIM}\left(\mathbf{C}, \hat{\mathbf{C}}\right)$$
(22)

$$\mathcal{L}_{semantics} = \mathcal{L}_1 \left(\mathbf{F}, \, \hat{\mathbf{F}} \right) = \sum_{h=1}^{H} \sum_{w=1}^{W} \|\mathbf{f}(h, w) - \hat{\mathbf{f}}(h, w)\|_1$$
inferred semantic feature map

(23)

In practice, $\gamma = 1$, $\lambda = 0.2$.

Too inefficient to embed naively,

- 1 High dimension: latent features in large foundation models
- Large quantities: millions of Gaussians in a scene.

- \blacksquare Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$
- Alignment: to align the dimensionalities using a lightweight decoder.

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1 imes 1 convolutional layer or a fully-connected layer.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

Too inefficient to embed naively,

- High dimension: latent features in large foundation models.
- 2 Large quantities: millions of Gaussians in a scene.

- lacksquare Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$
- Alignment: to align the dimensionalities using a lightweight decoder.

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1×1 convolutional layer or a fully-connected layer.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

Too inefficient to embed naively,

- 1 High dimension: latent features in large foundation models.
- 2 Large quantities: millions of Gaussians in a scene.

Solution

 \blacksquare Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$

Alignment: to align the dimensionalities using a lightweight decoder.

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1×1 convolutional layer or a fully-connected layer.

⁽CVPR Highlight, 2024) Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields

Too inefficient to embed naively,

- High dimension: latent features in large foundation models.
- 2 Large quantities: millions of Gaussians in a scene.

- **1** Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$.
- Alignment: to align the dimensionalities using a lightweight decoder.

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1×1 convolutional layer or a fully-connected layer.

Too inefficient to embed naively,

- High dimension: latent features in large foundation models.
- 2 Large quantities: millions of Gaussians in a scene.

- **I** Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$.
- Alignment: to align the dimensionalities using a lightweight decoder

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1×1 convolutional layer or a fully-connected layer.

Too inefficient to embed naively,

- High dimension: latent features in large foundation models.
- 2 Large quantities: millions of Gaussians in a scene.

- **I** Compactness: to embed Gaussians with more compact vectors, $\dim = D' < D$.
- 2 Alignment: to align the dimensionalities using a lightweight decoder.

D = 512 in CLIP: D = 256 in SAM.

In practice, D' = 128

Lightweight decoder: In practice, a 1×1 convolutional layer or a fully-connected layer.

- Inefficiency
 - "Speed-up module" is not enough,

- 2 3D Inconsistency & Inaccuracy
 - 2D foundation models are still 2D

- Inefficiency
 - "Speed-up module" is not enough,

- 2 3D Inconsistency & Inaccuracy
 - 2D toundation models are still 2L

- Inefficiency
 - $\hfill \hfill \hfill$
- 2 3D Inconsistency & Inaccuracy
 - 2D foundation models are still 2D

- Inefficiency
 - $\hfill \hfill \hfill$
- 2 3D Inconsistency & Inaccuracy
 - 2D foundation models are still 2D.

- Inefficiency
 - ullet "Speed-up module" is not enough, $\dim = 128 \mbox{ embedding for millions of Gaussians}.$
- 2 3D Inconsistency & Inaccuracy
 - 2D foundation models are still 2D.

Semantic 3DGS

LangSplat

Figure 2: Overview of LangSplat

- Accuracy: SAM outputs to enhance CLIP features.
 - CLIP: image-aligned training leads to "point-ambiguity".
 - SAM: pixel-aligned & object-centered & multi-granularity.

Figure 2: Overview of LangSplat

- Accuracy: SAM outputs to enhance CLIP features.
 - CLIP: image-aligned training leads to "point-ambiguity".
 - SAM: pixel-aligned & object-centered & multi-granularity.

Figure 2: Overview of LangSplat

- Accuracy: SAM outputs to enhance CLIP features.
 - CLIP: image-aligned training leads to "point-ambiguity".
 - SAM: pixel-aligned & object-centered & multi-granularity.

Figure 2: Overview of LangSplat

- Accuracy: SAM outputs to enhance CLIP features.
 - CLIP: image-aligned training leads to "point-ambiguity".
 - SAM: pixel-aligned & object-centered & multi-granularity.

Figure 2: Overview of LangSplat

2 Efficiency: an auto-encoder to compress latent features.

More complexity and better compression,
 compared with "speed-up module" in Feature 3DGS [8].

Figure 2: Overview of LangSplat

- **2** Efficiency: an auto-encoder to compress latent features.
 - More complexity and better compression,
 compared with "speed-up module" in Feature 3DGS [8].

Semantic 3DGS

CLIP-GS

Figure 3: Overview of CLIP-GS

- Efficiency: unify semantic features within an object by leveraging SAM.
- Consistency: supervise consecutive frames by video segmentation.

Figure 3: Overview of CLIP-GS

- **1** Efficiency: unify semantic features within an object by leveraging SAM.
- 2 Consistency: supervise consecutive frames by video segmentation

Figure 3: Overview of CLIP-GS

- Efficiency: unify semantic features within an object by leveraging SAM.
- **2** Consistency: supervise consecutive frames by video segmentation.

References

References i

- [1] N. Keetha, J. Karhade, K. M. Jatavallabhula, et al., SplaTAM: Splat, track & map 3d gaussians for dense RGB-d SLAM, Apr. 16, 2024. arXiv: 2312.02126 [cs]. [Online]. Available: http://arxiv.org/abs/2312.02126 (visited on 05/20/2024) (cit. on p. iv).
- [2] C. Yan, D. Qu, D. Wang, et al., GS-SLAM: Dense visual SLAM with 3d gaussian splatting, Nov. 21, 2023. arXiv: 2311.11700[cs]. [Online]. Available: http://arxiv.org/abs/2311.11700 (visited on 12/26/2023) (cit. on p. iv).
- [3] V. Yugay, Y. Li, T. Gevers, and M. R. Oswald, Gaussian-SLAM: Photo-realistic dense SLAM with gaussian splatting, Mar. 22, 2024. arXiv: 2312.10070[cs]. [Online]. Available: http://arxiv.org/abs/2312.10070 (visited on 03/27/2024) (cit. on p. iv).
- [4] H. Matsuki, R. Murai, P. H. J. Kelly, and A. J. Davison, *Gaussian splatting SLAM*, Apr. 14, 2024. arXiv: 2312.06741[cs]. [Online]. Available: http://arxiv.org/abs/2312.06741 (visited on 05/20/2024) (cit. on p. iv).
- [5] J. Engel, V. Koltun, and D. Cremers, "Direct sparse odometry," in arXiv:1607.02565, Jul. 2016 (cit. on pp. xxvii–xxix).
- [6] J.-C. Shi, M. Wang, H.-B. Duan, and S.-H. Guan, Language embedded 3d gaussians for open-vocabulary scene understanding, Nov. 30, 2023. arXiv: 2311.18482[cs]. [Online]. Available: http://arxiv.org/abs/2311.18482 (visited on 06/08/2024) (cit. on pp. xcv–xcvii).
- [7] M. Qin, W. Li, J. Zhou, H. Wang, and H. Pfister, LangSplat: 3d language gaussian splatting, Dec. 26, 2023. arXiv: 2312.16084[cs]. [Online]. Available: http://arxiv.org/abs/2312.16084 (visited on 02/23/2024) (cit. on pp. xcv-xcvii).
- [8] S. Zhou, H. Chang, S. Jiang, et al., Feature 3dgs: Supercharging 3d gaussian splatting to enable distilled feature fields, Apr. 8, 2024. arXiv: 2312.03203[cs]. [Online]. Available: http://arxiv.org/abs/2312.03203 (visited on 05/22/2024) (cit. on pp. xcv-xcvii, clxiv, clxv).
- [9] M. Ye, M. Danelljan, F. Yu, and L. Ke, Gaussian grouping: Segment and edit anything in 3d scenes, Dec. 1, 2023. arXiv: 2312.00732[cs]. [Online]. Available: http://arxiv.org/abs/2312.00732 (visited on 01/02/2024) (cit. on pp. xcv-xcvii).

References ii

- [10] J. Cen, J. Fang, C. Yang, et al., Segment any 3d gaussians, Dec. 1, 2023. arXiv: 2312.00860[cs]. [Online]. Available: http://arxiv.org/abs/2312.00860 (visited on 03/12/2024) (cit. on pp. xcv-xcvii).
- [11] B. Dou, T. Zhang, Y. Ma, Z. Wang, and Z. Yuan, CoSSegGaussians: Compact and swift scene segmenting 3d gaussians with dual feature fusion, Jan. 30, 2024. arXiv: 2401.05925 [cs]. [Online]. Available: http://arxiv.org/abs/2401.05925 (visited on 06/08/2024) (cit. on pp. xcv-xcvii).
- [12] J. Guo, X. Ma, Y. Fan, H. Liu, and Q. Li, Semantic gaussians: Open-vocabulary scene understanding with 3d gaussian splatting, Mar. 22, 2024. arXiv: 2403.15624[cs]. [Online]. Available: http://arxiv.org/abs/2403.15624 (visited on 05/20/2024) (cit. on pp. xcv-xcvii).
- [13] R.-Z. Qiu, G. Yang, W. Zeng, and X. Wang, Feature splatting: Language-driven physics-based scene synthesis and editing, Apr. 1, 2024. arXiv: 2404.01223[cs]. [Online]. Available: http://arxiv.org/abs/2404.01223 (visited on 06/08/2024) (cit. on pp. xcv-xcvii).
- [14] G. Liao, J. Li, Z. Bao, et al., CLIP-GS: CLIP-informed gaussian splatting for real-time and view-consistent 3d semantic understanding, Apr. 22, 2024. arXiv: 2404.14249[cs]. [Online]. Available: http://arxiv.org/abs/2404.14249 (visited on 05/20/2024) (cit. on pp. xcv–xcvii).
- [15] Y. Qu, S. Dai, X. Li, et al., GOI: Find 3d gaussians of interest with an optimizable open-vocabulary semantic-space hyperplane, May 27, 2024. arXiv: 2405.17596[cs]. [Online]. Available: http://arxiv.org/abs/2405.17596 (visited on 06/08/2024) (cit. on p. xcv).
- [16] M.-B. Jurca, R. Royen, I. Giosan, and A. Munteanu, RT-GS2: Real-time generalizable semantic segmentation for 3d gaussian representations of radiance fields, May 28, 2024. arXiv: 2405.18033[cs]. [Online]. Available: http://arxiv.org/abs/2405.18033 (visited on 06/08/2024) (cit. on pp. xcv-xcvii).
- [17] B. Xiong, X. Ye, T. H. E. Tse, K. Han, S. Cui, and Z. Li, SA-GS: Semantic-aware gaussian splatting for large scene reconstruction with geometry constrain, May 28, 2024. arXiv: 2405.16923 [cs]. [Online]. Available: http://arxiv.org/abs/2405.16923 (visited on 06/08/2024) (cit. on p. xcv).

References iii

[18] Y. Ji, H. Zhu, J. Tang, et al., FastLGS: Speeding up language embedded gaussians with feature grid mapping, Jun. 3, 2024. arXiv: 2406.01916[cs]. [Online]. Available: http://arxiv.org/abs/2406.01916 (visited on 06/08/2024) (cit. on pp. xcv-xcvii).