Introduction to the Programming for Oceanography

Course Objectives

Learning the common concepts of computer programming languages through Python

Learning some of useful Python tools to analyze oceangraphic data

Python Language

'a large heavy-bodied nonvenomous constrictor snake'

"Python is powerful... and fast; plays well with others; runs everywhere; is friendly easy to learn; is open."

https://www.python.org/about/

Python Language (Wikipedia)

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than possible in languages such as C++ or Java.

https://en.wikipedia.org/wiki/Python_(programming_language)

Python for Science

Perkel (2015). Programming: Pick up Python. Nature, 518.

a general-purpose language (C, C++) vs. MATLAB and R

less painful for beginners to learn than other options.

The community aspect is particularly important to Python's growing adoption.

It also has a very mature package ecosystem around it.

Core packages for scientific programmers: NumPy, SciPy (linear algebra, differential equations), SymPy, matplotlib and pandas.

The Jupyter Notebook ("a coder's lab notebook") allows users to interleave data, code and explanatory text in a single browser-based page, rather than in separate files.

Some of the core packages (http://scipy.org)

SciPy (pronounced "Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science, and engineering. In particular, these are some of the core packages:

NumPy Base N-dimensional array package

SciPy library Fundamental library for scientific computing

Matplotlib Comprehensive 2D Plotting

IP[y]:
IPython

IPython Enhanced Interactive Console

Sympy Symbolic mathematics

pandas Data structures & analysis

http://www.numpy.org http://matplotlib.org http://ipython.org http://pandas.pydata.org

Textbook I

Downey, A. B. (2015). Think Python 2e (2nd ed.). O'Reilly Media, Inc..

One of Free Books by Allen Downey.

You can download the PDF at

http://greenteapress.com/wp/think-python-2e/

19 chapters in 192 pages.

Why does Downey write free textbooks?

Textbook manifesto

"Students should read and understand textbooks." http://greenteapress.com/wp/textbook-manifesto/

You are expected to read the textbooks, to run the codes, to summarize the contents, and to submit the summary in Jupyter Notebook format at every class.

Textbook II

McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O'Reilly Media, Inc...

a Korean translation of the book

Setting up a Python Environment

Install 'Anaconda' (Python 3.5) at https://www.continuum.io/downloads

Navigator, IPython, Spyder, Jupyter

Jupyter Notebook Tour

'Chapter 1 of Downey (2015).ipynb'

Start from the Help menu

User Interface Tour

Keyboard Shortcuts

Evaluation

Quizzes and Assignments: 60%

Team project: 30%

Attendance: 10%

Noteworthy dates

2016-09-15 추석

2016-09-20 Xiamen

2016-09-22 Xiamen

2016-10-25 중간고사

2016-10-27 추계해양학회

2016-12-08 프로젝트 발표

What do you want to do with Python?

Homeworks

Post a summary of chapter 1 in Jupyter notebook on the class bulletin board (http://bada.ocean.pusan.ac.kr)

Bring many questions in the next class