Information Storage and Retrieval

CSCE 670
Texas A&M University
Department of Computer Science & Engineering
Instructor: Prof. James Caverlee

Link Analysis: PageRank 7 February 2017

PageRank

Origins of PageRank: Citation Analysis

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- Two ways of measuring similarity of two scientific articles
 - Cocitation similarity: The two articles are cited by the same articles.
 - Bibliographic coupling similarity:
 The two articles cite the same articles

Origins of PageRank: Citation Analysis

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Sounds circular, but can be formalized in a well-defined way.
 - This is basically Pagerank.
 - Pagerank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Key observation: Citation in scientific literature = Web link

Link-based ranking

- Query processing with link-based ranking:
 - First retrieve all pages meeting the query (say venture capital)
 - Order these by their link popularity (= citation frequency, first generation)
- ... or by Pagerank (second generation)

- Simple link popularity (= number of inlinks of a page) is easy to spam.
- Why?

Pagerank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page O
 - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a longterm visit rate - use this as the page's score.
- PageRank = steady state probability= long-term visit rate

Markov chains

- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix \mathbf{P} .
- state = page
- At each step, we are in exactly one of the states.
- For $1 \le i, j \le n$, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.

Markov chains

- Clearly for all i, $\sum_{j=1}^{n} P_{ij} = 1$
- Markov chains are abstractions of random walks

Example web graph

Link matrix for example

	q_0	q_1	q_2	q_3	q_4	q_5	q_{6}
q_0	0	0	1	0	0	0	0
q_1	0	1	1	0	0	0	0
q_2	1	0	1	1	0	0	0
q_3	0	0	0	1	1	0	0
q_4	0	0	0	0	0	0	1
q_{5}	0	0	0	0	0	1	1
q_{6}	0	0	0	1	1	0	1

Transition probability matrix P

	q_0	q_1	q_2	q_3	q_4	9 5	q_6
q_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
q_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
q_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
q_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
q_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
q_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
q_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Long-term visit rate

- Recall: PageRank = long-term visit rate
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.

Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - 10% a parameter.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end
- Even without dead-ends, a graph may not have well-defined long-term visit rates
- More generally, we require that the Markov chain be ergodic

Ergodic Markov chains

- A Markov chain is <u>ergodic</u> iff it is irreducible and aperiodic
 - Irreducibility. Roughly: there is a path from any page to any other page
 - Aperiodicity. Roughly. The pages cannot be partitioned such that the random walker visits the partitions sequentially
 - A non-ergodic Markov chain:

Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

Formalization of "visit": Probability vector

- A probability (row) vector $\mathbf{x} = (x_1, ..., x_n)$ tells us where the walk is at any point.
- E.g., (000... I...000) means we're in state *i*.

More generally, the vector $\mathbf{x} = (x_1, \dots x_n)$ means the walk is in state i with probability x_i .

$$\sum_{i=1}^n x_i = 1.$$

Change in probability vector

- If the probability vector is $\mathbf{X} = (X_1, \dots, X_n)$ at this step, what is it at the next step?
- Recall that row *i* of the transition prob. Matrix P tells us where we go next from state *i*.
- So from X, our next state is distributed as XP.

Steady state example

- The steady state looks like a vector of probabilities $\mathbf{a} = (a_1, \dots a_n)$:
 - a_i is the probability that we are in state i.

What is the steady state in this example?

Steady state example

- The steady state looks like a vector of probabilities $\mathbf{a} = (a_1, \dots a_n)$:
 - a_i is the probability that we are in state i.

For this example, $a_1 = 1/4$ and $a_2 = 3/4$.

How do we compute this vector?

- Let $\mathbf{a} = (a_1, \dots a_n)$ denote the row vector of steady-state probabilities.
- If we our current position is described by a, then the next step is distributed as aP.
- But \mathbf{a} is the steady state, so $\mathbf{a} = \mathbf{a} \mathbf{P}$.
- Solving this matrix equation gives us a.
 - So a is the (left) eigenvector for P.
 - (Corresponds to the "principal" eigenvector of P with the largest eigenvalue.)
 - Transition probability matrices always have largest eigenvalue I.

One way of computing a

- Recall, regardless of where we start, we eventually reach the steady state **a**.
- Start with any distribution (say $\mathbf{x} = (10...0)$).
- After one step, we're at xP;
- after two steps at \mathbf{xP}^2 , then \mathbf{xP}^3 and so on.
- "Eventually" means for "large" k, $xP^k = a$.
- Algorithm: multiply X by increasing powers of
 P until the product looks stable.

Power method: example

Two-node example:
$$\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$$

$$\vec{x}P = (0.25, 0.75)$$

$$\vec{x}^2 P = (0.25, 0.75)$$

Convergence in one iteration!

Pagerank summary

- Preprocessing:
 - Given graph of links, build matrix **P**.
 - From it compute **a**.
 - The entry a_i is a number between 0 and 1: the PageRank of page i.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-independent.

Web graph example

Transition matrix

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
q_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
q_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
q_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
q_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
q_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
q_{6}	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Transition matrix with teleporting

	q_0	q_1	q_2	q_3	q_4	q_5	q_{6}
q_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
q_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
q_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
q_3	0.02	0.02	0.02	0.45	0.45	0.02	0.02
q_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
q_{5}	0.02	0.02	0.02	0.02	0.02	0.45	0.45
q_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method

	\vec{X}	$\vec{x}P^1$	$\vec{x}P^2$	$\vec{x}P^3$	$\vec{x}P^4$	<i>x</i> ₽ ⁵	$\vec{x}P^6$	$\vec{x}P^7$	$\vec{x}P^8$	$\vec{x}P^9$	$\vec{x}P^{10}$	$\vec{x}P^{11}$
q_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05
											0.04	
q_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11
q_3	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25
q_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21
q 5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
q 6	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30

- Write down the probability transition matrix, assuming alpha = 5/6
- Suppose we use the power method to solve, what is one possible initial distribution we could use as input?
- Suppose we use an initial distribution different from the one you suggested. Will the choice have any impact on the PageRank calculation?

PageRank issues

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query video service
 - The Yahoo home page (i) has a very high PageRank and
 (ii) contains both words.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable
- In practice: rank according to weighted combination of many factors, including raw text match, anchor text match, PageRank and many other factors

How important is PageRank?

- Frequent claim: Pagerank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text indexing and zone weighting, phrases . . .
 - Rumor has it that Pagerank in its original form (as presented here) has a negligible impact on ranking!
 - However, variants of a page's pagerank are still an essential part of ranking.
 - Addressing link spam is difficult and crucial

Topic-specific PageRank

Topic Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories
 - Teleport to a page uniformly at random within the chosen category
- Sounds hard to implement: can't compute PageRank at query time!

Topic Specific Pagerank [Have02]

- Implementation
 - <u>offline</u>: Compute pagerank distributions wrt to individual categories
 - Query independent model as before
 - Each page has multiple pagerank scores one for each
 ODP category, with teleportation only to that category
- online: Distribution of weights over categories computed by query context classification
 - Generate a dynamic pagerank score for each page weighted sum of category-specific pageranks

Influencing PageRank ("Personalization")

- Input:
 - Web graph W
 - influence vector V

 $V : (page \rightarrow degree of influence)$

- Output:
 - Rank vector r: (page → page importance wrt v)
- $\mathbf{r} = PR(W, \mathbf{v})$

Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Interpretation of Composite Score

 For a set of personalization vectors {v_j}

$$\sum_{j} [\mathbf{w}_{j} \cdot PR(W, \mathbf{v}_{j})] = PR(W, \sum_{j} [\mathbf{w}_{j} \cdot \mathbf{v}_{j}])$$

 Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt V_j

Interpretation

Teleport with 10% probability to a Sports page

Interpretation

10% Health teleportation

Interpretation

pr = (0.9 PR_{sports} + 0.1 PR_{health}) gives you: 9% sports teleportation, 1% health teleportation