Arrays and Structures The Sparse Matrix Data Type

Joseph Chuang-Chieh Lin (林莊傑)

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Outline

The Sparse Matrix ADT

Outline

The Sparse Matrix ADT

An $m \times n$ Matrix

• An $m \times n$ matrix with m rows and n columns.

$$\begin{bmatrix} -27 & 3 & 4 \\ 6 & 82 & -2 \\ 109 & -64 & 11 \\ 12 & 8 & 9 \\ 48 & 27 & 47 \end{bmatrix}$$

An $m \times n$ Matrix

• An $m \times n$ matrix with m rows and n columns.

$$\begin{bmatrix} -27 & 3 & 4 \\ 6 & 82 & -2 \\ 109 & -64 & 11 \\ 12 & 8 & 9 \\ 48 & 27 & 47 \end{bmatrix}$$

• Totally 15 elements with 15 nonzero entries.

An $m \times n$ Matrix

• An $m \times n$ matrix with m rows and n columns.

$$\left[\begin{array}{cccccccc} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 28 & 0 & 0 & 0 \end{array}\right]$$

An $m \times n$ Matrix

• An $m \times n$ matrix with m rows and n columns.

• Totally 36 elements with only 8 nonzero entries.

An $m \times n$ Matrix

• An $m \times n$ matrix with m rows and n columns.

- Totally 36 elements with only 8 nonzero entries.
- How to efficiently store this sparse matrix?

Remarks & The Idea

- The standard representation of a matrix is a two-dimensional array defined as a [MAX_ROWS] [MAX_COLS].
 - We can locate quickly any element by writing a[i][j].

Remarks & The Idea

- The standard representation of a matrix is a two-dimensional array defined as a [MAX_ROWS] [MAX_COLS].
 - We can locate quickly any element by writing a[i][j].
- Let's consider alternative forms of representation for the matrix.

Remarks & The Idea

- The standard representation of a matrix is a two-dimensional array defined as a [MAX_ROWS] [MAX_COLS].
 - We can locate quickly any element by writing a[i][j].
- Let's consider alternative forms of representation for the matrix.
 - Store only nonzero elements of the matrix.

The Sparse Matrix ADT (1/2)

T 15	0	0	22	0	-15]
0	11	3	0	0	0
0	0	0	-6	0	0
0	0	0	0	0	0
91	0	0	0	0	0
	0	28	0	0	0

\triangleright	A[0]	6	6	8
ir	ndex, #	rows.	# cols.	# nonzeros

	Row	Col	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	3	22
A[3]	0	5	-15
A[4]	1	1	11
A[5]	1	2	3
A[6]	2	3	-6
A[7]	4	0	-91
A[8]	5	2	-28

The Sparse Matrix ADT (2/2)

```
#define MAX_TERMS 101
// maximum number of items + 1

typedef struct {
   int col;
   int row;
   int value;
} term;
```

	Row	Col	Value
A[0]	6	6	8
A[1]	0	0	15
A[2]	0	3	22
A[3]	0	5	-15
A[4]	1	1	11
A[5]	1	2	3
A[6]	2	3	-6
A[7]	4	0	-91
A[8]	5	2	-28

Arrays and Structures: Sparse Matrix ADT

Discussions

