Question 2

Anshika Raman Roll No: 210050014 Kushal Agarwal Roll No: 210100087 Kavan Vavadiya Roll No: 210100166

October 23, 2024

Minimized Direction e

We want to minimize the quantity:

$$\sum_{i=1}^{N} \|\mathbf{x}_i - \bar{\mathbf{x}} - (\mathbf{e} \cdot (\mathbf{x}_i - \bar{\mathbf{x}}))\mathbf{e}\|^2,$$

which represents the sum of squared distances between each vector \mathbf{x}_i and its projection along the direction \mathbf{e} . This projection removes the variation along \mathbf{e} , leaving only the residual error orthogonal to \mathbf{e} .

Let $\mathbf{y}_i = \mathbf{x}_i - \bar{\mathbf{x}}$ represent the centered data. The goal is to minimize the residual error:

$$\|\mathbf{y}_i - (\mathbf{e}^{\mathsf{T}}\mathbf{y}_i)\mathbf{e}\|^2 = \mathbf{y}_i^{\mathsf{T}}\mathbf{y}_i - (\mathbf{e}^{\mathsf{T}}\mathbf{y}_i)^2$$

Summing over all vectors:

$$\sum_{i=1}^{N} \|\mathbf{y}_i - (\mathbf{e}^{\top}\mathbf{y}_i)\mathbf{e}\|^2 = \sum_{i=1}^{N} \mathbf{y}_i^{\top}\mathbf{y}_i - \sum_{i=1}^{N} (\mathbf{e}^{\top}\mathbf{y}_i)^2$$

Thus, the minimization of the residual error is equivalent to maximizing the second term:

$$\sum_{i=1}^N (\mathbf{e}^ op \mathbf{y}_i)^2 = \mathbf{e}^ op \left(\sum_{i=1}^N \mathbf{y}_i \mathbf{y}_i^ op
ight) \mathbf{e} = \mathbf{e}^ op \mathbf{C} \mathbf{e}$$

Hence, we want to maximize $\mathbf{e}^{\top}\mathbf{C}\mathbf{e}$, where \mathbf{C} is the covariance matrix of the dataset. The vector \mathbf{e} that maximizes this expression is the eigenvector of \mathbf{C} corresponding to its largest eigenvalue λ_1 .

Direction f Perpendicular to e

Next, we want to find a direction \mathbf{f} that is perpendicular to \mathbf{e} and maximizes $\mathbf{f}^{\top}\mathbf{C}\mathbf{f}$. Since the eigenvectors of a symmetric matrix like \mathbf{C} form an orthogonal set, the vector \mathbf{f} must be an eigenvector of \mathbf{C} that is orthogonal to \mathbf{e} .

Let the eigenvalues of \mathbf{C} be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$. We have already found that \mathbf{e} corresponds to the largest eigenvalue λ_1 .

To maximize $\mathbf{f}^{\top}\mathbf{C}\mathbf{f}$ subject to the constraint $\mathbf{f}^{\top}\mathbf{e} = 0$, we must choose \mathbf{f} to be the eigenvector corresponding to the second-largest eigenvalue λ_2 , since it provides the maximum possible value of $\mathbf{f}^{\top}\mathbf{C}\mathbf{f}$ while being orthogonal to \mathbf{e} .

Extension to the Third Direction g

Given the assumption $\operatorname{rank}(\mathbf{C}) > 2$, we know that there are at least three non-zero eigenvalues. Therefore, there exists a third eigenvector \mathbf{g} , orthogonal to both \mathbf{e} and \mathbf{f} . We now extend the argument to a third direction \mathbf{g} , which is perpendicular to both \mathbf{e} and \mathbf{f} , and maximizes $\mathbf{g}^{\mathsf{T}}\mathbf{C}\mathbf{g}$. Since \mathbf{g} is constrained to be a unit vector (i.e., $\|\mathbf{g}\| = 1$), we maximize the quadratic form subject to this normalization constraint. As before, by the orthogonality of the eigenvectors of \mathbf{C} , the vector \mathbf{g} must be an eigenvector of \mathbf{C} that is orthogonal to both \mathbf{e} and \mathbf{f} . The vector \mathbf{g} that maximizes $\mathbf{g}^{\mathsf{T}}\mathbf{C}\mathbf{g}$, subject to $\|\mathbf{g}\| = 1$, is the eigenvector corresponding to the third-largest eigenvalue λ_3 . Conclusion:

- 1. The direction \mathbf{f} that is orthogonal to \mathbf{e} and maximizes $\mathbf{f}^{\top}\mathbf{C}\mathbf{f}$ is the eigenvector corresponding to the second-largest eigenvalue λ_2 of \mathbf{C} .
- 2. The direction \mathbf{g} , which is orthogonal to both \mathbf{e} and \mathbf{f} and is a unit vector, maximizes $\mathbf{g}^{\mathsf{T}}\mathbf{C}\mathbf{g}$ and is the eigenvector corresponding to the third-largest eigenvalue λ_3 , given that rank(\mathbf{C}) > 2.