Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	13 November 2022	
Team ID	PNT2022TMID25739	
Project Name Project – Smart waste management system for metropolitan cities		
Maximum Marks	4 Marks	

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Detailedbininventory.	The map shows all monitored bins and stands, and
		Street View from Google can be used to visit them at
		any time. Bins are shown as green, orange or red
		circles. The Dashboard shows bin details, such as waste
		type and last measurement. You can see bin details in
		the Dashboard – capacity, waste type, last
		measurement, GPS location and collection schedule or
		pick recognition.
FR-2	Realtimebinmonitoring.	The Dashboard displays real-time data on fill-levels of
		bins monitored by smart sensors. In addition to the % of
		fill-level, based on the historical data, the tool predicts
		when the bin will become full, one of the functionalities
		that are not included even in the best waste
		management software Sensors recognize picks as well;
		so you can check when the bin was last collected. With
		real-time data and predictions, you can eliminate the
	5 11: 1: 1:	overflowing bins and stop collecting half-empty ones
FR-3	Realtimebinmonitoring.	The tool considers the average distance depo- bin
		discharge in the area. The tool assigns bin a rating(1-
FR-4	A dissable adiatable at a se	10) and calculates distance from depo-bin discharge.
FK-4	Adjustbindistribution.	Based on the historical data, you can adjust bin capacity
		or location where necessary. Identify areas with either dense or sparse bin distribution
FR-5	Eliminateinefficientpicks.	Eliminate the collection of half-empty bins. The sensors
1111-5	Liminatementericiempicks.	recognize picks. By using real-time data on fill-levels and
		pick recognition, we can show you how full the bins you
		collect are. The report shows how full the bin was when
		picked. You immediately see any inefficient picks below
		80% full.
FR-6	Planwastecollectionroutes	The tool semi-automates waste collection route
		planning. Based on current bin fill-levels and predictions
		of reaching full capacity, you are ready to respond and
		schedule waste collection. You can compare planned vs.
		executed routes to identify any Inconsistencies

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	IoT device verifies that usability is a special and
		important perspective to analyze user requirements,
		which can further improve the design quality. In the
		design process with user experience as the core, the
		analysis of users' product usability can indeed help
		designers better understand users' potential needs
		in waste management, behavior and experience.
NFR-2	Security	Use usable bottles Use reusable grocery bags
		Purchase wisely and recycle Avoid single use food
		and drink containers.
NFR-3	Reliability	Smart waste management is also about creating
		better working conditions for waste collectors and
		drivers. Instead of driving the same collection routes
		and servicing empty bins, waste collectors will spend
		their time more efficiently, taking care of bins that
NFR-4	Performance	need servicing. The Smart Sensors use ultrasound technology to
INFR-4	Performance	measure the fill levels(along with other data)in bins
		several times a day. Using a variety of IoT
		networks((NBIoT, GPRS), the sensors send the data
		to Sansone's Smart Waste Management Software
		System, a powerful cloud-based platform, for data-
		driven daily operations, available also as a waste
		management app. Customers are hence provided
		data-driven decision making, and optimization of
		waste collection routes, frequencies, and vehicle
		loads resulting Inroute reduction by atleast 30%.
NFR-5	Availability	By developing &deploying re silient hardware and
		Beautiful software weem powercities, businesses
		,and countries to manage wastes matter.
NFR-6	Scalability	Using smartwastebinsreducethenumberofbinsinsi de
		town,citiescozweabletomonitorthe
		garbage24/7morecosteffectandscalabilitywhenwemo
		vetosmarter