CS3230 Tutorial 1

AY 25/26 Sem 1—github/omgeta

Q1). (a) Prove
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \implies f(n) \in o(g(n))$$

1. Suppose
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

2.
$$\forall \epsilon > 0, \exists n_0 > 0 \text{ s.t. } \forall n \geq n_0, \frac{f(n)}{g(n)} < \epsilon$$

3.
$$f(n) < \epsilon g(n)$$

4. Let
$$c = \epsilon$$
, $f(n) < c g(n)$

5. By definition,
$$f(n) \in o(g(n))$$

(b) Prove
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty \implies f(n) \in O(g(n))$$

1. Suppose
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$
, then $\lim_{n\to\infty}\frac{f(n)}{g(n)}=k$ for some finite k

2. By definition of limit,
$$\forall \epsilon > 0, \exists n_0 > 0, \forall n \geq n_0, |\frac{f(n)}{g(n)} - k| < \epsilon$$

3.
$$-\epsilon < \frac{f(n)}{g(n)} - k < \epsilon$$

4.
$$\frac{f(n)}{g(n)} - k < \epsilon$$

5.
$$f(n) < (k + \epsilon)g(n)$$

6.
$$\therefore \exists c = k + \epsilon > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \le cg(n)$$

7. By definition,
$$f(n) \in O(g(n))$$

(c) Prove
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0 \implies f(n) \in \Omega(g(n))$$

1. Suppose
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$
, then $\lim_{n\to\infty}\frac{f(n)}{g(n)}=k$ for some finite k

2. By definition of limit,
$$\forall \epsilon>0, \exists n_0>0, \forall n\geq n_0, \ |\frac{f(n)}{g(n)}-k|<\epsilon$$

3.
$$-\epsilon < \frac{f(n)}{g(n)} - k < \epsilon$$

4.
$$-\epsilon < \frac{f(n)}{g(n)} - k$$

5.
$$(k - \epsilon)g(n) < f(n)$$

6.
$$\therefore \exists c = k - \epsilon > 0, \exists n_0 > 0, \forall n \ge n_0, cg(n) \le f(n)$$

7. By definition,
$$f(n) \in \Omega(g(n))$$

(d) Prove
$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \implies f(n) \in \Theta(g(n))$$

(e) Prove
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \implies f(n) \in \omega(g(n))$$

1. Suppose
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$

2.
$$\forall k \in \mathbb{R}, \exists n_0 > 0, \forall n \ge n_0, \frac{f(n)}{g(n)} > k$$

3.
$$\forall k \in \mathbb{R}^+, \exists n_0 > 0, \forall n \ge n_0, \ f(n) > kg(n)$$

4. By definition,
$$f(n) \in \omega(g(n))$$

- Q2). (a) Reflexivity: Let c = 1
 - (b) Transitivity: for O, Ω, Θ apply substitution; for o, ω use limit rules
 - (c) Symmetry: if $c_1g(n) \le f(n) \le c_2g(n)$, divide to get $\frac{f(n)}{c_2} \le g(n) \le \frac{f(n)}{c_1}$
 - (d) Complementarity: for O, Ω , if $f(n) \leq cg(n)$ then $g(n) \geq \frac{f(n)}{c}$ and vice versa; likewise o, ω
- Q3). (a.) True; $3^{n+1} = 3 \cdot 3^n \le 3 \cdot 3^n$, so let c = 4 and $n_0 = 1$
 - (b.) False; $4^n = 2^{2n} = 2^n \cdot 2^n$, so we have 2^n which is not a constant factor
 - (c.) True; $n-1 \leq \lfloor n \rfloor \leq n \implies \log(n-1) \leq \log \lfloor n \rfloor \leq \log n \implies 2^{\log(n-1)} \leq 2^{\log \lfloor n \rfloor} \leq n \implies \frac{n}{2} \leq n-1 \leq 2^{\log \lfloor n \rfloor} \leq n \implies 2^{\log n} \in \Theta(n)$
 - (d.) True; $(n+a)^i = \sum_{r=0}^n \binom{i}{r} n^{i-r} a^r \le \sum_{r=0}^i \binom{i}{r} n^i a^r = n^i \sum_{r=0}^i \binom{i}{r} 1^{i-r} a^r = n^i (1+a)^i$, so $(n+a)^i \le (1+a)^i \cdot n^i$ where $(1+a)^i$ is clearly a constant
- Q4). Since $2^{\log_2 n} = n$
 - (a.) True O(n); by reflexivity
 - (b.) True $\Omega(n)$; by reflexivity
 - (c.) False $\Theta(\sqrt{n})$; by previous two statements is $\Theta(n)$
 - (d.) False $\omega(n)$; let c = 1, then $cn \nleq n$
- Q5). $f_1, f_5 < f_4 < f_3 < f_2$