Zusammenfassung Topologie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein metrischer Raum (X, d) besteht aus einer Menge X und einer Abbildung $d: X \times X \to \mathbb{R}_{>0}$, sodass f.a. $x, y, z \in X$ gilt:

• $d(x,y) = 0 \iff x = y$ • d(x,y) = d(y,x) (Symmetrie)

• d(x,z) < d(x,y) + d(y,z)(△-Ungleichung)

Def. Für einen metrischen Raum (X,d) und eine Teilmenge $A \subset X$ ist $(A, d|_A)$ ein metrischer Raum und $d|_A$ heißt induzierte Metrik.

Def. Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ heißt **stetig**, falls für alle $x \in X$ gilt:

 $\forall \epsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x, x') < \delta \implies d_X(f(x), f(x')) < \epsilon.$

Def. Die offene Kugel von Radius ϵ um $x \in X$ ist

$$B_{\epsilon}(x) := \{ p \in X \mid d(p, x) < \epsilon \}.$$

Def. Eine Teilmenge $U \subset X$ eines metrischen Raumes heißt offen. falls für alle $u \in U$ ein $\epsilon > 0$ existiert mit $B_{\epsilon}(u) \subset U$.

Proposition. Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen ist genau dann offen, wenn für alle offenen Teilmengen $U \subset Y$ das Urbild $f^{-1}(U) \subset X$ offen ist.

Def. Ein topologischer Raum (X, \mathcal{T}) besteht aus einer Menge Xund einer Menge $\tau \subset \mathcal{P}(X)$ mit den Eigenschaften

 $\bullet \ \emptyset \in \mathcal{T} \quad \bullet \ \forall U, V \in \mathcal{T} : U \cap V \in \mathcal{T} \qquad \bullet \ \forall S \subset \mathcal{T} : \bigcap_{U \in \mathcal{T}} U \in \mathcal{T}$

Die Elemente von \mathcal{T} werden offene Teilmengen von X genannt. Eine Teilmenge $A \subset X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist.

Bsp. Die diskrete Topologie auf einer Menge X ist $\mathcal{T} = \mathcal{P}(X)$.

Bsp. Die Klumpentopologie auf einer Menge X ist $\mathcal{T} = \{\emptyset, X\}$.

Def. Die Menge der offenen Teilmengen eines metrischen Raumes heißt von der Metrik induzierte Topologie.

Def. Sei (X, \mathcal{T}) ein topologischer Raum und $A \subset X$. Dann heißt

$$\mathcal{T}|_A := \{ U \cap A \,|\, U \in \mathcal{T} \}$$

Unterraumtopologie oder von \mathcal{T} induzierte Topologie.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt metrisierbar, falls eine Metrik auf X existiert, sodass die von der Metrik induzierte Topologie mit \mathcal{T} übereinstimmt.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt **Hausdorffsch**, falls gilt:

$$\forall x, y \in X : x \neq y \implies \exists U, V \in \mathcal{T} : x \in U \land y \in V \land U \cap V = \emptyset.$$

Proposition. Metrisierbare topologische Räume sind Hausdorffsch.

Def. Eine Abbildung $f: X \to Y$ zwischen topologischen Räumen (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) heißt **stetig**, falls gilt

$$\forall U \in \mathcal{T}_Y : f^{-1}(U) \in \mathcal{T}_X.$$

Bemerkung. Ist $f: X \to Y$ stetig und $A \subset X$, so ist auch $f|_A:A\to Y$ stetig.

Def. Falls $f: X \to Y$ bijektiv ist und sowohl f als auch f^{-1} stetig sind, so heißt f ein **Homöomorphismus**.

Def. Zwei topologische Räume X und Y heißen homöomorph (notiert $X \cong Y$), wenn ein Homöomorphismus zwischen X und Y existiert.

Satz. Für $n \neq m$ sind \mathbb{R}^n und \mathbb{R}^m nicht homöomorph.

Def. Sei X eine Menge und $\mathcal{T}, \mathcal{T}'$ Topologien auf X. Dann sagen wir \mathcal{T} ist gröber als $\mathcal{T}':\iff \mathcal{T}'$ ist feiner als $\mathcal{T}:\iff \mathcal{T}\subset \mathcal{T}'$.

Def. Eine Menge $\mathcal{B} \subset \mathcal{T}$ offener Teilmengen eines topologischen Raumes heißt

- Basis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von Mengen aus \mathcal{B} ist.
- Subbasis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von Mengen ist, von denen jede Schnitt endlich vieler Mengen aus \mathcal{B} ist.

Bspe. • Sei (X, d) ein metrischer Raum. Dann ist $\mathcal{B} := \{B_{\epsilon}(x) \mid x \in X, \epsilon > 0\}$ eine Basis der induzierten Topologie

• $\mathcal{B} := \{B_{\epsilon}(x) \mid x \in \mathbb{Q}^n, \epsilon \in \mathbb{Q}_+\}$ ist eine abzählbare Basis von $(\mathbb{R}^n, \mathbf{d_{eukl}}).$

Proposition. Jede Teilmenge $\mathcal{B} \subset \mathcal{P}(X)$ ist Subbasis von genau einer Topologie \mathcal{T} von X.

Def. Die Topologie heißt die von \mathcal{B} erzeugte Topologie.

Def. Sind (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume, so ist auch $(X \times Y, \mathcal{T}_X \otimes \mathcal{T}_Y)$ ein topologischer Raum mit der **Produkttopologie** $(\mathcal{T}_X \otimes \mathcal{T}_Y)$, die von

$$\mathcal{B} := \{U \times Y \mid U \in \mathcal{T}_X\} \cup \{X \times V \mid V \in \mathcal{T}_Y\} \quad \text{erzeugt wird.}$$

Proposition. • Die Projektionen $\pi_X: X \times Y \to X$ und $\pi_Y: X \times Y \to Y$ sind stetig bzgl. der Produkttopologie.

• Ist \mathcal{T} eine echt gröbere Topologie auf $X \times Y$ als die Produkttopologie, so sind die Projektionen π_{Y} und π_{Y} nicht beide stetig.

Def. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Dann erzeugt $\mathcal{T}_X \cup \mathcal{T}_Y$ die Summentopologie auf $X \cup Y$.

Bemerkung. Sie ist die feinste Topologie auf $X \cup Y$, sodass die beiden Inklusionen $i_{\mathbf{Y}}: X \hookrightarrow X \cup Y$ und $i_{\mathbf{Y}}: Y \hookrightarrow X \cup Y$ stetig sind.

Proposition. Seien X, Y, Z topologische Räume.

- Falls $X \cap Y = \emptyset$, so ist eine Abbildung $f: X \cup Y \to Z$ genau dann stetig, falls die beiden Kompositionen $f \circ i_X : X \to Z$ und $f \circ i_Y : Y \to Z$ stetig sind.
- Eine Abb. $g: Z \to X \cup Y$ ist genau dann stetig, wenn die beiden Kompositionen $\pi_X \circ q: Z \to X$ und $\pi_Y \circ q: Z \to Y$ stetig sind.

Def. Sei X ein topologischer Raum und $A \subset X$. Dann ist das Innere von A (notiert int(A)) die Vereinigung aller in A enthaltenen offenen Mengen.

Bemerkung. Als Vereinigung offener Mengen ist das Innere offen.

Def. Der Abschluss \overline{A} einer Menge $A \subset X$ ist der Durchschnitt aller abgeschlossenen Mengen von X, die A enthalten.

Bemerkung. Es gilt $\overline{A} = X \setminus (\operatorname{int}(X \setminus A))$.

Def. Es sei X ein topologischer Raum, $x \in X$ und $V \subset X$. Wir nennen V eine **Umgebung** von x, falls es eine offene Teilmenge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Proposition. Ein Punkt $x \in X$ liegt genau dann in \overline{A} , falls jede Umgebung von x einen Punkt aus A enthält.

Def. Der Rand einer Menge $A \subset X$ ist $\partial A := \overline{A} \setminus \operatorname{int}(A)$.

Proposition. Ein Punkt $x \in X$ liegt genau dann in ∂X , wenn jede Umgebung von x sowohl einen Punkt aus A wie einen Punkt aus $X \setminus A$ enthält.

Def. Ein topologischer Raum X heißt wegweise zusammen**hängend**, falls es für je zwei Punkte $x, y \in X$ eine stetige Abbildung $\gamma: [0,1] \to X \text{ mit } \gamma(0) = x \text{ und } \gamma(1) = y \text{ gibt.}$

Bspe. \bullet \mathbb{R}^n ist wegzusammenhängend

- $(\{p,q\},\{\emptyset,\{p\},\{p,q\}\})$ ist wegzusammenhängend!
- $]-\infty,0[\cup]0,\infty[\subset\mathbb{R}$ ist nicht wegzusammenhängend.

Def. Die Äquivalenzklassen von

 $x \sim y : \iff x, y \text{ lassen sich durch einen Weg verbinden.}$

heißen Wegzusammenhangskomponenten.

Proposition. Sei $f: X \to Y$ stetig und X wegzusammenhängend. Dann ist auch f(X) bzgl. der Unterraumtopologie wegzusammenhängend.

Def. Ein topologischer Raum X heißt zusammenhängend, falls X nicht disjunkte Vereinigung zweier nichtleerer offener Teilmengen ist.

Bspe. $\mathbb{Q} \subset \mathbb{R}$ und $\mathbb{R} \setminus \{0\}$ sind nicht zusammenhängend.

Proposition. Sei X ein topologischer Raum. Es sind äquivalent:

- X ist zusammenhängend.
- Für jede offene und abgeschlossene Menge $A \subset X$ gilt: $A \in \{X, \emptyset\}$.
- Jede stetige Abbildung $f: X \to \{0,1\}$ in den diskreten Raum mit zwei Elementen ist konstant.

Proposition. \bullet Sei $f: X \to Y$ stetig und X zusammenhängend, dann ist auch f(X) zusammenhängend.

• Sind A, B zusammenhängende Teilmengen eines topologischen Raumes X und gilt $A \cap B \neq \emptyset$, dann ist auch $A \cup B$ zusammenhängend.

Korollar. Folgende Relation ist eine Äquivalenzrelation auf X:

 $x \sim y : \iff x$ und y liegen beide in einem zusammenhängenden Unterraum von X.

Def. Die Äguivalenzklassen dieser Relation heißen Komponenten.

Bsp. Die Komponenten von $\mathbb{O} \subset \mathbb{R}$ sind genau die Ein-Punkt-Mengen. Trotzdem ist Q nicht diskret!

Proposition. Die Menge [0, 1] ist zusammenhängend.

Korollar. Wegzusammenhängende Räume sind zusammenhängend.

Proposition (ZWS). Sei $f:[0,1]\to\mathbb{R}$ stetig. Gilt f(0)<0 und f(1) > 0, so existiert ein $t \in [0, 1]$ mit f(t) = 0.