eton ew, stinu non ntod ers x_1,y_1 are both non units . We note that $x_1 \mid x$ and $x_2 \mid x$ and $x_1 \mid x$ and $x_2 \mid x$ and $x_2 \mid x$ and $x_3 \mid x$ and $x_4 \mid x$ and $x_4 \mid x$ and $x_4 \mid x$ and $x_5 \mid x$

perty of R, $x = x^{1}x^{2} \text{ where } x^{1}|r \text{ and } x^{2}|s -----(c)$ Similarly $y = y^{1}y^{2}$, where $y^{1}|r \text{ and } y^{2}|s -----(d)$

Similarly y = y'y'', where y'|r and y''|s -----(d) Further $y'|y_1,x'|x_1$ and $(x_1,y_1) = 1$ implies that (x',y') = 1. But since r is a rigid element x'|y' or y'|x' which is possible only if one of x',y' is a unit -----(e). Similarly we conclude that either of x'',y'' is a unit---(f).

x = x'x'' , x'' is a non unit and is an associate of x_1 but then y'' is a non unit y' is a unit and so we conclude that

Let x' be a unit, then since x, is a non unit and

 $y' \mid r$ where y' is an associate of x_1 .

I.e. there exist two co-prime elements x_1, y_1 such that $y_1 | x$ and $x_1 | s$. But since r and s are non co-prime rigid elements $r_1 | s$. But since r and s are non co-prime rigid elements $r_1 | s$ or s | r by (1) above. And in both cases $x_1 | s$ and $y_1 | s$ become factors of s rigid non unit (e.g. x_1, y_1 are factors of s if $r_1 | s$ because $y_1 | r$ and $r_1 | s$ i.e. $y_1 | s$ while $x_1 | s$ is assumed) but this being in contradiction with $(x_1, y_1) = 1$ implies that the assumption x | y and y | x is wrong and z is a rigid non unit.

(3) Let $P(r) = \{ x \in R : (x, r) \neq 1 \}$.

Because of (1) above, if x and y are non co-prime to r and if $(x,r) = d_1$ (y,r) = d_1 then, being factors of a rigid non unit $d|d_1$ or $d_1|d$. Consequently if $d_1|d$ then $d_1|x,y$ and so $d_1|x+y$, similarly if $d|d_1$, d|x+y. In other words if $x \in P(r)$ then $x+y \in P(r)$, woreover if $x \in P(r)$ then $x \in P(r)$ then x