I claim:

1	A surgical probe, comprising:
2	a relatively short shaft defining a distal region and a proxima
3	region;
4	a coagulation element defining a coagulation elemen
5	configuration on the distal region of the relatively short shaft; and
6	a stimulation element defining a stimulation elemen
7	configuration on the distal region of the relatively short shaft, the stimulation
8	element configuration being different than the coagulation elemen
9	configuration.
1	 A surgical probe as claimed in claim 1, wherein the stimulation
2	element comprises a stimulation electrode.
1	 A surgical probe as claimed in claim 2, wherein the coagulation
2	element comprises a coagulation electrode.
1	4. A surgical probe as claimed in claim 3, wherein the coagulation
2	electrode defines a coagulation electrode length, the stimulation electrode
3	defines a stimulation electrode length, and the coagulation electrode length is
4	greater than the stimulation electrode length.
1	 A surgical probe as claimed in claim 1, wherein the stimulation
2	element comprises a stimulation electrode pair.
1	6. A surgical probe as claimed in claim 1, wherein the coagulation
2	element comprises at least two longitudinally spaced coagulation electrodes,
3	the respective size and spacing of the at least two coagulation electrodes
4	being such that simultaneous transmission of energy thereby to an indifferent
5	electrode will produce an area of coagulated tissue that spans the at least two
3	coagulation electrodes.

1	A surgical probe as claimed in claim 1, wherein the coagulation
2	element comprises a plurality of longitudinally spaced coagulation elements
3	and the stimulation element comprises a plurality of located between
4	respective pairs of adjacent coagulation elements.
1	8. A surgical probe as claimed in claim 1, wherein at least a portion
2	of the distal region of the relative short shaft is malleable.
1	9. A surgical probe as claimed in claim 1, further comprising:
2	a handle associated with the proximal region of the relatively
3	short shaft.
1	10. A surgical probe as claimed in claim 1, wherein the stimulation
2	element is located distally of the coagulation element.
1	11. A surgical method, comprising the steps of:
2	forming a lesion with a coagulation element on a distal region of
3	a relatively short shaft; and
4	applying stimulation energy to tissue with a stimulation element
5	on the distal region of the relatively short shaft after the step of forming a
6	lesion with a coagulation element.
1	12. A surgical method as claimed in claim 11, further comprising the
2	step of:
3	placing the distal region of the relatively short shaft directly
4	against tissue.
1	13. A surgical method as claimed in claim 11, further comprising the
2	steps of:
3	inserting a portion of the relatively short shaft into a patient by
4	way of an opening formed during one of a thoracotomy, median sternotomy,
5	or thoracostomy; and
6	placing the distal region of the relatively short shaft directly
7	against tissue.

1	14. A surgical method as claimed in claim 11, wherein the step o
2	forming a lesion comprises forming a lesion by transmitting coagulation
3	energy to tissue with an electrode on a distal region of a relatively short shaft.
1	15. A surgical method as claimed in claim 11, wherein the step o
2	applying stimulation energy to tissue comprises applying stimulation energy to
3	tissue on one side of the lesion with a stimulation element on the distal region
4	of the relatively short shaft, the method further comprising the step of:
5	monitoring tissue on the other side of the lesion to determine
6	whether the tissue stimulation produced a local activation on the other side of
7	the lesion.
1	16. A surgical method as claimed in claim 11, wherein the step of
2	applying stimulation energy to tissue comprises applying stimulation energy to
3	tissue within the lesion, the method further comprising the step of:
4	monitoring tissue in spaced relation to the lesion to determine
5	whether the tissue stimulation produced a local activation in spaced relation to
6	the lesion.
1	17. A surgical method as claimed in claim 16, further comprising the
2	step of:
3	selecting a predetermined stimulation energy level that
4	corresponds to tissue stimulation to a predetermined depth;
5	wherein the step of applying stimulation energy to tissue
3	comprises applying stimulation energy at the predetermined level to tissue
7	within the lesion.
l	18. A surgical method as claimed in claim 11, wherein the step of
2	applying stimulation energy to tissue comprises applying stimulation energy to
3	tissue with a stimulation element on the distal region of the relatively short
ļ	shaft after the step of forming a lesion with a coagulation element and without
5	substantially moving the relatively short shaft.

1

2	the step of forming a forming a lesion comprises forming a
3	lesion with a two spaced coagulation elements on a distal region of a
4	relatively short shaft; and
5	the step of stimulating tissue comprises stimulating tissue with a
6	stimulation element between the coagulation elements after the step of
7	forming a lesion.
1	20. A surgical method, comprising the steps of:
2	forming a lesion with a coagulation element on a distal region of
3	a relatively short shaft; and
4	monitoring local tissue activation with an element on the distal
5	region of the relatively short shaft after the step of forming a lesion with a
6	coagulation element.
1	21. A surgical method as claimed in claim 20, wherein the step of
2	forming a lesion comprises forming a lesion that defines a perimeter around a
3	tissue region with a coagulation element on a distal region of a relatively short
4	shaft.
1	22. A surgical method as claimed in claim 21, wherein the step of
2	monitoring local tissue activation comprises monitoring local tissue activation
3	in within the tissue region with an element on the distal region of the relatively
4	short shaft.
1	23. A surgical method as claimed in claim 20, further comprising the
2	step of:
3	placing the distal region of the relatively short shaft directly
4	against tissue.
1	24. A surgical method as claimed in claim 20, further comprising the
2	steps of:
3	inserting a portion of the relatively short shaft into a patient by
4	way of an opening formed during one of a thoracotomy, median sternotomy,
5	or thoracostomy; and

6	placing the distal region of the relatively short shaft directly
7	against tissue.
1	25. A surgical method as claimed in claim 20, wherein the step o
2	forming a lesion comprises forming a lesion by transmitting coagulation
3	energy to tissue with an electrode on a distal region of a relatively short shaft.
1	26. A surgical method as claimed in claim 20, wherein the step of
2	monitoring local tissue activation comprises wherein the step of monitoring
3	local tissue activation with an electrode on the distal region of the relatively
4	short shaft.
1	27. A surgical system, comprising:
2	a source of coagulation energy;
3	a source of stimulation energy; and
4	a surgical probe, adapted to be operably connected to the
5	source of coagulation energy and the source of stimulation energy, including a
6	relatively short shaft defining a distal region and a proximal region, a
7	coagulation element defining a coagulation element configuration on the distal
8	region of the relatively short shaft, and a stimulation element defining a
9	stimulation element configuration on the distal region of the relatively short
10	shaft, the stimulation element configuration being different than the
11	coagulation element configuration.
1	28. A surgical system as claimed in claim 27, further comprising:
2	a coagulation energy line connected to the coagulation element
3	and to a coagulation energy connector configured to be connected to the
4	source of coagulation energy; and
5	a stimulation energy line connected to the stimulation element
6	and to a stimulation energy connector configured to be connected to the
7	source of stimulation energy

1	29. A surgical system as claimed in claim 28, wherein the
2	coagulation energy connector and stimulation energy connector define
3	different configurations.
1	30. A surgical system as claimed in claim 28, further comprising:
2	a handle associated with the proximal region of the relatively
3	short shaft;
4	wherein the coagulation energy connector is carried by the
5	handle and the stimulation energy line extends through the handle.
1	31. A surgical system as claimed in claim 27, wherein the
2	stimulation element comprises a stimulation electrode.
1	32. A surgical system as claimed in claim 31, wherein the
2	coagulation element comprises a coagulation electrode.
1	33. A surgical system as claimed in claim 32, wherein the
2	coagulation electrode defines a coagulation electrode length, the stimulation
3	electrode defines a stimulation electrode length, and the coagulation electrode
4	length is greater than the stimulation electrode length.
1	34. A surgical system as claimed in claim 27, wherein the
2	coagulation element comprises at least two longitudinally spaced coagulation
3	electrodes, the respective size and spacing of the at least two coagulation
4	electrodes being such that simultaneous transmission of energy thereby to an
5	indifferent electrode will produce an area of coagulated tissue that spans the
3	at least two coagulation electrodes.
I	35. A surgical system as claimed in claim 27, wherein at least a
2	portion of the relative short shaft is malleable.

stimulation energy apparatus for monitoring electrical impulses sensed by the

A surgical system as claimed in claim 27, wherein the source of

36.

stimulation element.

1 2

3

37. A surgical system as claimed in claim 27, wherein the coagulation element comprises a plurality of longitudinally spaced coagulation elements and the stimulation element comprises a plurality of located between respective pairs of adjacent coagulation elements.

 38. A surgical system as claimed in claim 27, wherein the coagulation element comprises a pair of longitudinally spaced coagulation elements and the stimulation element is located between the coagulation elements.