A Consideration of Inflatable Circles

Robert L. Read *email: read.robert@gmail.com Megan Cadena †email: megancad@gmail.com

September 15, 2019

1 Introduction

This is a study of the basic math of inflatable spheres as a tool for soft robotics. We begin with a study in two dimension to simplify the problem. Our final goal is to analyze three dimensional soft robots composed of inflatable spheres.

2 Problem I: Circles in Fixed Postions

A very simplified version of the problem is to imagine that a two-dimensional plane. Instead of spheres, we will assume we have circles of changable radius. This is in fact realistic of a soft robot constrained to a plane.

Eventually we hope to have circles pressing against each other, or tangent or "kissing". However, the problem is a bit simpler if we assume we have two circles, each of which is constrained to have its center on the a vertical line (see Figure 1.) We place the circle C_1 with radius r_1 on the x=-1 line, and assume that it rests on a shelf or plane on the x-axis. Assume the C_2 circle whose radius if r_2 is on the x=1 line.

Let A the intersection of the tangent line supported by the inflatable circles with the x-axis. Call the distance of A on the x-axis x. Let ψ be the angle formed by the circle centers with the x axis (measured counterclockwise).

^{*}read.robert@gmail.com

 $^{^{\}dagger} megancad@gmail.com$

Figure 1: Problem I: Fixed Circles Centers

$$\tan \psi = \frac{r_1}{x - 1} = \frac{r_2}{x + 1} \tag{1}$$

$$r_2(x-1) = r_1(x+1) (2)$$

$$r_2x - r_2 = r_1x + r_1 (3)$$

$$r_2x - r_1x = r_1 + r_2 (4)$$

$$x(r_2 - r_1) = r_1 + r_2 (5)$$

$$x(r_2 - r_1) = r_1 + r_2$$

$$x = \frac{r_1 + r_2}{r_2 - r_1}$$
(5)

$$\tan 2\psi = \frac{y}{x} \tag{7}$$

$$2\psi = \arctan \frac{r_1}{\frac{r_1 + r_2}{r_2 - r_1} - 1}$$

$$\psi = \frac{\arctan \frac{r_1}{\frac{r_1 + r_2}{r_2 - r_1} - 1}}{2}$$
(8)

$$\psi = \frac{\arctan \frac{r_1}{\frac{r_1 + r_2}{r_2 - r_1} - 1}}{2} \tag{9}$$

(10)

Problem II: Tangent Circles