《数值计算方法》课程

解方程组

非线性方程组解法

胡建芳

(研究方向: 计算机视觉)

http://sdcs.sysu.edu.cn/content/5143

计算机学院

课程回顾

■ 正定矩阵:

矩阵分解

A=R'R,

最速下降法

共轭梯度法

A是某类特殊矩阵,例如上三角矩阵,下三角矩阵, 对角矩阵,对称正定矩阵,怎么求解?

不动点迭代法:

问题: F(x) 实函数向量. 求F(x)=0的近似解。

基本思想方法:

(1) 先将
$$F(x)=0$$
化为等价方程 $x=G(x)$ (6.1)

(2) 从某个初始向量x⁽⁰⁾出发,作向量序列(x^(k))

$$x^{(k+1)} = G(x^{(k)})$$
 (迭代公式) (6.3)

其中 $x = (x_1, x_2, \dots, x_n)^T$, $G(x) = (g_1(x), g_2(x), \dots, g_3(x))^T$ 。(6.3) 式称为

简单迭代或单点迭代或单步迭代法。映射G(x)称为迭代映射。

世迭代或単点迭代或单步迭代法。映射
$$G(x)$$
称为迭代假设每个 g_i 有连续的二阶导数: $\frac{\partial g_i}{\partial x_p \partial x_q}$, $1 \le i, p, q \le n$ 。

$$G(x) 在点x的F-导数为: G'(x) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}$$

■ 不动点迭代法:

设 $x^* = (x_1^*, x_2^*, \dots, x_n^*,)$ 是(6.1) 的解,则称 x^* 为G(x)的不动点。 当迭代(6.3) 收敛时,极限点 \tilde{x} 又是G(x)的连续点,则 $\tilde{x} = \lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} G(x^{(k)}) = G(\lim_{k \to \infty} x^{(k)}) = G(\tilde{x})$ 即 \tilde{x} 是G(x)的一个不动点。

■ 不动点迭代收敛性:

定义4 若对 $\forall x, y \in D$,存在常数L < 1,成立 $\|G(x) - G(y)\| \le L \|x - y\|$ 则映射G(x)在区域D上称为压缩的。常数L称为压缩因子。 (6.4)

定理12 (压缩不动点定理) 设映射G(x)在区域D上满足:

- $(1) G(x) \in D, \forall x \in D;$
- (2) G(x)在区域D上是压缩映射,压缩因子为L; 则对 $\forall x^{(0)} \in D$,简单迭代(6.3)产生的序列 $\{x^{(k)}\}$ 收敛于G(x)在区域D上的唯一不动点 x^* ,且有误差估计:

$$||x^* - x^{(k)}|| \le \frac{L^k}{1 - L} ||x^{(1)} - x^{(0)}||, k = 0, 1, \cdots$$
 (6.5)

■ 不动点迭代收敛性:

证明: 由条件(1)知所有的 $x^{(k)}$ 全在D内,序列 $\{x^{(k)}\}_{k=0}^{\infty}$ 有定义。 首先证明G(x)在区域D上有唯一不动点 当k > 0时, $\|x^{(k+1)} - x^{(k)}\| = \|G(x^{(k)}) - G(x^{(k-1)})\|$ $\leq L \parallel x^{(k)} - x^{(k-1)} \parallel \leq \cdots \leq L^k \parallel x^{(1)} - x^{(0)} \parallel$ 当m > k时 $\|x^{(m)} - x^{(k)}\| = \|\sum_{j=k}^{m-1} (x^{(j+1)} - x^{(j)})\| \le \sum_{k=j=k}^{m-1} \|(x^{(j+1)} - x^{(j)})\|$ (6.6)则对 $\forall p,q \geq k, 有 \| x^{(p)} - x^{(q)} \| < \varepsilon$. 因此序列 $\{x^{(k)}\}_{k=0}^{\infty}$ 收敛到某个 $x^* \in D$ 。 又因G(x)在区域D上是压缩映射,在x*处连续,所以x*是G(x)的一个 不动点: $x^* = \lim_{k \to \infty} x^{(k+1)} = \lim_{k \to \infty} G(x^{(k)}) = G(\lim_{k \to \infty} x^{(k)}) = G(x^*)$

■ 不动点迭代收敛性:

■ 不动点迭代收敛性:

定理13 (局部收敛定理) 若映射G(x)在不动点x*的 δ 邻域 $D_{\delta} = \{x \mid || x - x^* \mid | \le \delta\} \subset D$ 上满足对 $\forall x \in D_{\delta}$,有 $|| G(x) - x^* \mid | \le L || x - x^* \mid |$,0 < L < 1, (6.8) 则对 $\forall x^{(0)} \in D_{\delta}$,由 $x^{(k+1)} = G(x^{(k)})$ 产生的迭代序列 $\{x^{(k)}\}$ 收敛于 x^* ,且有误差估计: $|| x^* - x^{(k)} || \le L^k || x^* - x^{(0)} || , k = 0,1, \cdots$ (6.9) 对(6.6)式求m $\to \infty$ 时的极限即得(6.5)式.

定理14 (局部收敛定理) 若映射G(x)在不动点x*处有F导数 $G'(x^*)$,而且其谱半径小于1: $\rho(G'(x^*))<1$,则存在 $\delta>0$,只要 $x^{(0)}\in D_\delta$,由 $x^{(k+1)}=G(x^{(k)})$ 产生的迭代序列 $\{x^{(k)}\}$ 收敛于 x^* 。

不动点迭代举例:

$$\begin{cases} 3x_1 - \cos x_1 - \sin x_2 = 0 \\ 4x_2 - \sin x_1 - \cos x_2 = 0 \end{cases}$$

要求满足精度
$$e(k) = \frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} \le 10^{-12}$$

解: 设
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $G(x) = \begin{pmatrix} \frac{1}{3}(\cos x_1 + \sin x_2) \\ \frac{1}{4}(\sin x_1 + \cos x_2) \end{pmatrix}$

要求满足精度
$$e(k) = \frac{\|x - x - \|_{\infty}}{\|x^{(k)}\|_{\infty}} \le 10^{-12}$$
解: 设 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $G(x) = \begin{pmatrix} \frac{1}{3}(\cos x_1 + \sin x_2) \\ \frac{1}{4}(\sin x_1 + \cos x_2) \end{pmatrix}$ 其中, $A = \begin{pmatrix} -\frac{1}{3}\sin \xi_1 & \frac{1}{3}\cos \xi_2 \\ \frac{1}{4}\cos \eta_1 & -\frac{1}{4}\sin \eta_2 \end{pmatrix}$, $\therefore \|A\|_{\infty} \le \frac{7}{12}$

则方程组可以改写成 x = G(x), 并且对于任意的 $x \in \mathbb{R}^2$, $y \in \mathbb{R}^2$,

$$||G(x) - G(y)|| = \left\| \frac{1}{3} (\cos x_1 - \cos y_1 + \sin x_2 - \sin y_2) \right\|_{\infty}$$

$$\frac{1}{4} (\sin x_1 - \sin y_2 + \cos x_2 - \cos y_2) \right\|_{\infty}$$

$$= ||A(x-y)||_{\infty} \le ||A||_{\infty} ||x-y||_{\infty} \le \frac{7}{12} ||x-y||_{\infty}$$

■ 不动点迭代举例:

其中,
$$A = \begin{pmatrix} -\frac{1}{3}\sin\xi_1 & \frac{1}{3}\cos\xi_2 \\ \frac{1}{4}\cos\eta_1 & -\frac{1}{4}\sin\eta_2 \end{pmatrix}$$
, $\therefore \|A\|_{\infty} \le \frac{7}{12}$

因此,任取初始向量 $x^{(0)} \in R$,简单迭代法产生序列 $\{x^{(k)}\}$ 收敛于原方程组的唯一解。

迭代公式
$$\begin{cases} x_1^{(k+1)} = \frac{1}{3} \left(\cos x_1^{(k)} + \sin x_2^{(k)} \right) \\ x_2^{(k+1)} = \frac{1}{4} \left(\sin x_1^{(k)} + \cos x_2^{(k)} \right) \end{cases}$$

k	x_1^k	x_2^k	e(k)
0	1.000000000000	1.000000000000	
1	0.460591096892	0.345443322669	1.421123164881
2	0.411467922913	0.346350778276	0.119385184710
4	0.414178646247	0.337726634268	0.010*******
26	0.415169427139	0.336791217026	0.000000000005
27	0.415169427139	0.336791217025	0.000000000002
28	0.415169427139	0.336791217025	0.000000000001

■ 牛顿迭代法:

基本思想: 非线性方程局部线性化(化繁为简)

非线性方程组 F(x)=0 (7.1) ,其精确解或真解为 x^* .

F(x)在x*邻近有连续的F导数F'(x*),F'(x*)非奇异,即 $\det F'(x*) \neq 0$ 。

并设 $x^{(k)}$ 是(7.1)的第一个近似解。且F(x)在点 $x^{(k)}$ 有F导数 $F'(x^{(k)})$,

则仿射映射 $y = L(x) = F(x^{(k)}) + F'(x^{(k)})(x - x^{(k)})$

是映射(函数)y=F(x)的局部近似。用L(x)近似F(x),用L(x)=0的解

作为 (7.1) 的改进解,即 $x^{(k+1)} = x^{(k)} - [F'(x^{(k)})]^{-1}F(x^{(k)})$ (det $F'(x^{(k)}) \neq 0$)

$$x^{(k+1)} = x^{(k)} - [F'(x^{(k)})]^{-1}F(x^{(k)}) \quad (\det F'(x^{(k)}) \neq 0)$$

从某 $x^{(0)}$ 出发,利用上式不断改进得

Newton迭代公式:

$$x^{(k+1)} = x^{(k)} - [F'(x^{(k)})]^{-1}F(x^{(k)})$$

■ 牛顿迭代法收敛性:

局部超线性收敛定理

定理15 如果F(x)在解x*邻近有连续的F导数,且 $\det F'(x*) \neq 0$ 。则存在 $\delta > 0$ 、只要 $\|x^{(0)} - x^*\| \leq \delta$,Newton迭代生成的序列{ $x^{(k)}$ }: 超线性收敛于 x^* ,即

$$\lim_{k \to \infty} \frac{\|x^{(k+1)} - x^*\|}{\|x^{(k)} - x^*\|} = 0.$$
 (7.6)

牛顿法不仅收敛且在一般情况下收敛速度较快,是二阶收敛。

定理16 (Newton法局部二阶收敛性)如果F(x)的每个分量在解 x^* 邻近有二阶连续偏导数, $\det F'(x^*) \neq 0$ 。则存在 $\delta > 0$,只要 $\|x^{(0)} - x^*\| \leq \delta$,Newton序列至少二阶收敛于 x^* ,即

$$||x^{(k+1)} - x^*|| \le C ||x^{(k)} - x^*||^2, k = 0,1,2,\dots$$
 (7.8)

■ 牛顿法改进:下山法

牛顿法收敛速度快,但对初值 x_0 要求苛刻。在实际应用中不容易确定,有时往往由于初值选取不当而使迭代不收敛. Newton 下山法是一种降低对初值要求的修正的牛顿法.

引理2 若 $F(x) \neq 0$, $F'(x) \neq 0$,则一定存在 $\Delta > 0$,当 $0 < t \le \Delta$ 时,成立 $\|F(x - t[F'(x)]^{-1}F(x))\| < \|F(x)\|$ (7.9)

下山法: Newton法的修正方向 $-[F'(x)]^{-1}F(x)$ 是F(x)在x点的下山方向。在牛顿法中引进下山因子: $\omega_k \in (0,1)$,从而由 $x^{(k+1)} = x^{(k)} - \omega_k [F'(x^{(k)})]^{-1}F(x^{(k)}), \quad k = 0,1,2,\cdots$

使 || F(x⁽⁰⁾) || >|| F(x⁽¹⁾) || > · · · 呈下山状态。

通常取 $\omega_k \in \{1, \frac{1}{2}, \frac{1}{4}, \cdots\}$,使 $\|F(x^{(k)} - 2^{-i}[F'(x^{(k)})]^{-1}F(x^{(k)})\| \|F(x^{(k)})\|$ 成立的最大值。

■ 牛顿法改进: Broyden方法

牛顿法需要计算一阶导,即雅可比矩阵,当函数不可导时, 怎么办?

- 1. 给定初值 $x^0 \in \mathbb{R}^n$, 初始矩阵 $A_0 \in \mathbb{R}^{n \times n}$ 及精度 ϵ , 令 k := 0.
- 2. 如果 $||F(x^k)|| > \epsilon$

2.1.
$$s^k = -A_k^{-1} F(x^k)$$
,

2.2.
$$x^{k+1} = x^k + s^k$$
,

2.3.
$$y^k = F(x^{k+1}) - F(x^k)$$
,

2.4.
$$A_{k+1} = A_k + \frac{(y^k - A_k s^k)(s^k)^T}{(s^k)^T s^k}$$
,

$$2.5. k := k + 1.$$

作业

■ 作业:

四、(上机题)分别用 Newton 法和 Broyden 法求解下面非线性方程组

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - 0.5 = 0 \\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0 \\ e^{-x_1 x_2} + 20x_3 + \frac{1}{3}(10\pi - 3) = 0 \end{cases}$$

(要求:用 Matlab 编程,并附上源代码及迭代五次的

结果,初值可取(0.1,0.1,-0.1))

基础知识

THE END