Hardware for Machine Learning Lecture 6: Dataflow Sophia Shao

How Many Computers to Identify a Cat? 16,000

"Presented with 10 million digital images found in YouTube videos, what did Google's brain do? What millions of humans do with YouTube: looked for cats."

"Nvidia's Al journey started at Joanie's Cafe in Palo Alto, California, in 2010. "We got into Al after a breakfast meeting I had with Andrew Ng," says Dally. At that breakfast, Ng, a well known Al researcher who was working with Google Brain at the time, explained how Google was training Al systems to recognise photos of cats with the help of 16,000 central processing units, or CPUs. After pointing out next to no one has 16,000 CPUs at their disposal, Dally laid down a challenge. "I bet we could do this with way fewer GPUs," he said to Ng."

https://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html https://www.dclsearch.com/blog/2019/02/nvidias-got-a-cunning-plan-to-keep-powering-the-ai-revolution

Hardware for Machine Learning

Review

- Deep neural networks typically have a sequence of convolutional, fully-connected, pooling, batch normalization, and activation layers.
- Convolution is one of the fundamental kernel in DNNs.
 - 2-D convolution
 - Stride and padding
 - 3-D convolution with input/output channels
 - Batch size
- Convolution can be calculated in different ways.
 - Direct, GEMM, FFT-based, Winograd-based.

Convolution Loop Nest


```
for (n=0; n<N; n++) {
                                 for each output activation
  for (k=0; k<K; k++) {
    for (p=0; p<P; p++) {
      for (q=0; q<Q; q++) {
        OA[n][k][p][q] = 0;
        for (r=0; r<R; r++) {
                                            convolution window
          for (s=0; s<S; s++) {
            for (c=0; c<C; c++) {
              h = p * stride - pad + r;
              w = q * stride - pad + s;
              OA[n][k][p][q] +=
                            IA[n][c][h][w]
                            * W[k][c][r][s];
        OA[n][k][p][q] = Activation(OA[n][k][p][q]);
```


Option 1: Direct Convolution


```
for (n=0; n<N; n++) {
  for (k=0; k<K; k++) {
    for (p=0; p<P; p++) {
      for (q=0; q<Q; q++) {
        OA[n][k][p][q] = 0;
        for (r=0; r<R; r++) {</pre>
          for (s=0; s<S; s++) {
            for (c=0; c<C; c++) {
              h = p * stride - pad + r;
              w = q * stride - pad + s;
              OA[n][k][p][q] +=
                            IA[n][c][h][w]
                            * W[k][c][r][s];
        OA[n][k][p][q] = Activation(OA[n][k][p][q]);
```


Option 2: GEMM

Converting convolution to GEMM via im2col

Convolution

GEMM

Weight

Input Activation

Output Activation

Option 2: GEMM

Converting convolution to GEMM via im2col

Convolution

GEMM (w/ data duplication)

Weight

Input Activation

Η

Output Activation

Option 3: FFT-based Convolution

Convolution theorem:

convolution in the time domain is equivalent to pointwise multiply in the frequency domain.

$$fst g=\mathcal{F}^{-1}ig\{\mathcal{F}\{f\}\cdot\mathcal{F}\{g\}ig\}$$

The asterisk denotes convolution, not multiplication.

Eyeriss tutorial

Option 3: FFT-based Convolution

Option 3: FFT-based Convolution

Option 4: Winograd Transform

- Re-association of intermediate values to reduce # of multiplications.
- Works well for 3x3 convolution.

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$
(5)

where

$$m_1 = (d_0 - d_2)g_0$$
 $m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$
 $m_4 = (d_1 - d_3)g_2$ $m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$

Before: 6 MULs, 4 ADDs

After:

• IA (d): 4 ADDs

• W (g): 3 ADDs, 2 MULs

• OA (m): 4 MULs, 4 ADDs

$$Y = A^T [(Gg) \odot (B^T d)]$$
 (6)

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{3} \end{bmatrix}^{T}$$

$$(7)$$

Dataflow

- Core Principles:
 - Locality
 - Parallelism
- Dataflow Taxonomy
 - Output-stationary
 - Weight-stationary

Locality: Data Movement Cost

Locality: Memory Access in DNNs

Locality: Memory Access in DNNs

- Worst case: all memory R/W are DRAM accesses
- Example: AlexNet [NIPS 2012] has 724M MACs -> 2896M DRAM accesses required.

Locality: Temporal and Spatial Reuse

- **Temporal** reuse: the same data is used more than once over time by the same consumer.
- Spatial reuse: the same data is used by more than one consumer at different spatial locations of the hardware.

Locality: Memory Hierarchy

 Temporal reuse: the same data is used more than once over time by the same consumer.

Parallelism: Parallel MAC Units

Parallelism: Spatial Data Reuse

• Spatial reuse: the same data is used by more than one consumer at different spatial locations of the hardware.

Administrivia

- Lab 2 out today.
 - More involved than Lab 1.
 - Start early.

Dataflow

- Core Principles:
 - Locality
 - Parallelism
- Dataflow Taxonomy
 - Output-stationary
 - Weight-stationary

Data Reuse in DNN

- Total # of MACs:
 - RSCPQK
- Input Activation
 - Size: HWC
 - Reuse:~RSK
- Weight
 - Size: RSCK
 - Reuse: PQ
- Output Activation
 - Size: PQK
 - Reuse: RSC

Dataflow

- Defines the execution order of the DNN operations in hardware.
 - Computation order
 - Data movement order
- Loop nest is a compact way to describe the execution order, i.e., dataflow, supported in hardware.
 - for: temporal for, describes the temporal execution order.
 - spatial for: describes parallel execution.

1D Convolution Example


```
for (q=0; q<Q; q++) {
  for (s=0; s<S; s++) {
    OA[q] += IA[q+s] * W[s];
  }
}</pre>
```

Output Stationary (OS) Dataflow

```
Weight

Output
Activation

A B C

S

Q
```

```
for (s=0; s<S; s++) {
  for (q=0; q<Q; q++) {
    OA[q] += IA[q+s] * W[s];
  }
}</pre>
```

Weight Stationary (WS) Dataflow

Single Processing Element (PE) Setup

Buffer Access Pattern (OS)

Buffer Access Pattern (OS)


```
for (q=0; q<Q; q++) { // Q =9
  for (s=0; s<S; s++) { // S=4
    OA[q] += IA[q+s] * W[s];
  }
}</pre>
```


Observation: Single output is reused S times.

Single Processing Element (PE) Setup

Buffer Access Pattern (WS)

Buffer Access Pattern (WS)

Review

- Last lecture: core computation in DNN
- This lecture: execution order of the core computation
 - Core principles:
 - Locality and Parallelism
 - Dataflow
 - Defines the execution order of DNNs
 - Represented using a loop nest
 - for: temporal order
 - spatial_for: spatial order/parallelism
 - Output-stationary and weight-stationary dataflow
- Next lecture: hardware realization of the core computation

What we had before:

```
for (n=0; n<N; n++) {
  for (k=0; k<K; k++) {
    for (p=0; p<P; p++) {</pre>
      for (q=0; q<Q; q++) {</pre>
        OA[n][k][p][q] = 0;
        for (r=0; r<R; r++) {
          for (s=0; s<S; s++) {
            for (c=0; c<C; c++) {
              h = p * stride - pad + r;
              w = q * stride - pad + s;
               OA[n][k][p][q] +=
                          IA[n][c][h][w]
                             * W[k][c][r][s];
```


Change temporal ordering

```
for (n=0; n<N; n++)
  for (r=0; r<R; r++) {</pre>
    for (s=0; s<S; s++) {
      for (c=0; c<C; c++) {</pre>
        for (k=0; k<K; k++) {</pre>
          float curr w = W[r][s][c][k];
          for (p=0; p<P; p++) {
             for (q=0; q<Q; q++) {
               h = p * stride - pad + r;
               w = q * stride - pad + s;
               OA[n][k][p][q] +=
                          IA[n][c][h][w]
                             * curr w;
```


Apply spatial parallelism

```
for (n=0; n<N; n++) {
  for (r=0; r<R; r++) {
   for (s=0; s<S; s++)
      spatial for (c=0; c<C; c++) {</pre>
        spatial for (k=0; k<K; k++) {</pre>
          float curr w = W[r][s][c][k];
          for (p=0; p<P; p++) {
            for (q=0; q<Q; q++) {
               h = p * stride - pad + r;
               w = q * stride - pad + s;
               OA[n][k][p][q] +=
                          IA[n][c][h][w]
                             * curr w;
```


Apply temporal tiling

```
for (n=0; n<N; n++) {
  for (r=0; r<R; r++) {
  for (s=0; s<S; s++) {</pre>
      for (c t=0; c t<C/16; c t++) {
        for (k t=0; k t<K/64; k t++) {</pre>
          spatial_for (c_s=0; c_s<16; c_s++) {</pre>
            spatial for (k s=0; k s<64; k s++) {</pre>
               int curr c = c t * 16 + c s;
               int curr k = k t * 64 + k s;
               float curr w = W[r][s][curr c][curr k];
              for (p=0; p<P; p++) {
                 for (q=0; q<Q; q++) {
                   h = p * stride - pad + r;
                   w = q * stride - pad + s;
                   OA[n][curr k][p][q] +=
                             IA[n][curr c][h][w]
                             * curr w;
     } } }
```


NVDLA Dataflow (nvdla.org)

```
for (n=0; n<N; n++) {
  for (r=0; r<R; r++) {
  for (s=0; s<S; s++) {
      for (c t=0; c t<C/16; c t++) {
        for (k t=0; k t<K/64; k t++) {</pre>
          spatial for (c s=0; c s<16; c s++) {
            spatial for (k s=0; k s<64; k s++) {</pre>
              int curr c = c t * 16 + c s;
              int curr k = k t * 64 + k s;
              float curr w = W[r][s][curr c][curr k];
              for (p=0; p<P; p++) {
                for (q=0; q<Q; q++) {
                  h = p * stride - pad + r;
                  w = q * stride - pad + s;
                  OA[n][curr k][p][q] +=
                            IA[n][curr c][h][w]
                            * curr w;
     } } }
```

