COMPLEXIDADE COMPUTACIONAL

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 13 de julho de 2022

Iago Carvalho

Departamento de Ciência da Computação

INTRODUÇÃO

De forma ampla, podemos dizer que um problema é fácil ou difícil

- \bigcirc *Fácil*: tratável, tempo polinomial: O(p(n))
- O *Difícil*: intratável, tempo exponencial: $O(c^n)$, onde c > 1

Problemas fáceis

- Caminho mínimo
- Árvore geradora mínima
- Componentes conexos
- Programação linear
- Números primos
- O ...

Problemas difíceis

- Caminho máximo
- Árvore de Steiner
- Satisfabilidade
- Programação inteira
- Caixeiro viajante
- $\circ \dots$

CLASSES DE PROBLEMAS

Problemas fáceis podem ser resolvidos em tempo polinomial

Considera-se que estão na classe P

Problemas difíceis não podem ser resolvidos em tempo polinomial

- Tempo exponencial
- Considera-se que estão na classe NP

EXISTEM ALGORITMOS POLINOMIAIS PARA PROBLEMAS EM NP?

REDUTIBILIDADE EM PROBLEMAS NP

Um problema em $N\!P$ pode ser transformado em outro problema em $N\!P$ em tempo polinomial

Esta premissa também é válida para problemas em P

Caso encontre-se um algoritmo polinomial para um problema em NP, então todos os problemas em NP poderão ser resolvidos em tempo polinomial

Problemas de decisão são a base para o estudo de classes de complexidade

Um problema de decisão aceita duas respostas

- Sim
-) Não

A classe NP contém problemas de decisão onde esta pergunta (sim, não) pode ser respondida em tempo polinomial

Verificar a solução ≠ computar a solução

Problema do caminho mínimo: existe um caminho entre A e G com peso menor ou igual a k?

E com peso maior do que k?

Problema do caminho mínimo: existe um caminho entre A e G com peso menor ou igual a k? \rightarrow $F\'{a}cil$

E com peso maior do que $k? \rightarrow Difícil$

Problema do caminho hamiltoniano: existe um caminho que passe por todos os vértices do grafo uma única vez?

Grau dos vértices ≤ 2 : \rightarrow *Fácil*

Caso contrário: → Difícil

DETERMINISMO E NÃO-DETERMINISMO

Um *algoritmo determinista* é aquele em que o resultado de cada operação é definido de forma única

- No mundo real, só existem algoritmos determinísticos
- Todos os algoritmos que vocês já implementaram até hoje são determinísticos

Um *algoritmo* **não** *determinista* é capaz de, magicamente, escolher a melhor resposta instantaneamente

Escolhe dentre um conjunto de respostas possíveis

FUNÇÃO ESCOLHE

Obter o menor número de uma matriz

- O Algoritmo determinista: O(n * m)
- Algoritmo não-determinista: *O*(1)
 - Função escolhe

83	67	39	85	11	21	87
25	48	74	7	15	74	90
13	10	87	57	3	75	36
19	47	89	48	16	7	81
79	40	68	70	25	59	96

DETERMINISMO E NÃO-DETERMINISMO

Uma máquina de Turing determinística é um dispositivo de computação capaz de rodar somente algoritmos determinísticos

Processadores atuais

Já uma máquina de Turing não determinística é aquela capaz de rodar algoritmos determinísticos e não-determinísticos

- Computação quântica
- Quantum-Dot Cellular Automata

P: Conjunto de problemas que podem ser resolvidos em tempo polinomial por uma máquina de Turing determinística

NP: Conjunto de problemas que podem ser resolvidos em tempo polinomial por uma máquina de Turing não-determinística

É fácil perceber que $P \subseteq NP$

Entretanto, um dos maiores problemas em computação (e da matemática) é provar

- \bigcirc P = NP?
- \bigcirc $P \neq NP$?

Se existem algoritmos polinomiais deterministas para todos os problemas em NP, então P=NP

Muitos problemas em NP podem ou não pertencer a P

- Não conhecemos algoritmos polinomiais para eles
- Isto não quer dizer que tais algoritmos não existam

Se conseguirmos provar que um problema não pertence a P, então não precisaríamos mais procurar algoritmos eficientes para os problemas em NP

Ninguém nunca conseguiu provar algo semelhante

Como não existe tal prova, então existe a esperança de que P=NP

TRANSFORMAÇÃO POLINOMIAL

Sejam P_1 e P_2 dois problemas de decisão

Suponha que exista um algoritmo A_2 que resolva o problema P_2

Caso seja possível transformar P_1 em P_2 (e vice-versa), então podemos utilizar o algoritmo A_2 para resolver o problema P_1

Transformações devem ser polinomiais

TRANSFORMAÇÃO POLINOMIAL - CONJUNTO INDEPENDENTE

Seja G=(V,E) um grafo. O conjunto independente $V'\subseteq V$ é tal que $i,j\in V'\iff (i,j)\notin E$

- \bigcirc V' é um grafo totalmente desconectado
- \bigcirc Todos par de vértices em V' não é adjacente

$$V' = \{0, 1, 2, 6\}$$

TRANSFORMAÇÃO POLINOMIAL - CLIQUE

Seja G = (V, E) um grafo. O clique $V' \subseteq V$ é tal que $i, j \in V' \iff (i, j) \in E$

- \bigcirc V' é um subgrafo completo de G
- \bigcirc Todos par de vértices em V' é adjacente

$$V' = \{1, 3, 4\}$$

TRANSFORMAÇÃO POLINOMIAL

Seja P_1 o problema do clique e P_2 o problema do conjunto independente

- O Seja G = (V, E) uma instância de P_1
- \bigcirc Seja $\overline{G} = (V, E)$ uma instância de P_2
- \bigcirc É possível transformar G em \overline{G} em tempo polinomial
- \bigcirc É possível transformar \overline{G} em G em tempo polinomial

Mostre que G possui um clique de tamanho $\geq k$ se e somente se \overline{G} possui um conjunto independente de tamanho $\geq k$

TRANSFORMAÇÃO POLINOMIAL

Se existe um algoritmo que resolve o conjunto independente em tempo polinomial, ele pode ser utilizado para resolver clique também em tempo polinomial

Diz-se que clique ∝ conjunto independente

 \bigcirc $P_1 \propto P_2$ indica que P_1 é polinomialmente transformável em P_2

Esta relação é transitiva

 $\bigcirc P_1 \propto P_2$ e $P_2 \propto P_3$, então $P_1 \propto P_3$

Dois problemas P_1 e P_2 são polinomialmente equivalentes se e somente se $P_1 \propto P_2$ e $P_2 \propto P_1$

CLASSE NP-COMPLETO

Um problema de decisão P_1 é dito ser NP-completo se

- 1. $P_1 \in NP$
- 2. Para todo problema $P' \in NP$ -Completo, temos que $P' \propto P_1$

Este $\it framework$ pode ser utilizado para provar que um problema é $\it NP$ -Completo

- São os problemas difíceis
- Omplexidade $O(c^n)$, onde
 - \circ c > 1
 - n é o tamanho da entrada

DIFERENTES COMPLEXIDADES COMPUTACIONAIS

DIFERENTES COMPLEXIDADES COMPUTACIONAIS

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(n)	O(n log n)	O(n ²)	O(n ³)	O(2 ⁿ)
1	1	1	1	1	1	1	2
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

COMO RESOLVER PROBLEMAS NP-COMPLETOS

Usar algoritmos exponenciais eficientes

- Técnicas baseadas em podas
- Branch-and-bound

Utilizar heurísticas, meta-heurísticas ou algoritmos aproximativos

Assunto das próximas aulas