Question 1

Let K < H < G be subgroups. Show that [G:K] = [G:H][H:K]

Solution: Assuming that [G:H] and [H:K] is finite. By definition, [H:K] is the number of left coset of K in H, so let n = [G:H], we know that $\{g_1H, g_2H, \ldots, g_nH\}$ forms a partition of G. and let m = [H:K] so that $\{h_1K, h_2K, \ldots, h_mK\}$ forms a partition of H.

Now, let $\bar{\cup}$ denote the operation union, which an assertion that the set is disjoint. Then, $g_i(h_1K \bar{\cup} h_2K \bar{\cup} \cdots \bar{\cup} h_mK)$ a left coset of H in G. Moreover, for each value of i, we must get a disjoint set, since it is a member of the partition of G mentioned above. Therefore,

$$g_1(h_1K \ \bar{\cup} \ h_2K \ \bar{\cup} \ \cdots \ \bar{\cup} \ h_mK) \ \bar{\cup} \ \cdots \ \bar{\cup} \ g_n(h_1K \ \bar{\cup} \ h_2K \ \bar{\cup} \ \cdots \ \bar{\cup} \ h_mK) = G$$

and by distributing the g_i inside of the parentheses, a partition of G into cosets of K is created.

Note: Cconsider any $g_i h_j K$ and $g_{i'} h_{j'}$. If $i \neq i'$ that $g_i h_j K$ is in a partition g_i of G but $g_{i'} h_{j'} K$ cannot be in the same coset in G, as it would contradict that the set of $\{g_i H\}$ forms a partition. Similarly, if $j \neq j'$ then $g_i h_j K$ would be in the partition $h_j K$ of $g_i H$ but $g_{i'} h_{j'} K$ cannot be in the same coset even if $g_{i'} H = g_i H$ as it would contradict that $\{h_j\}$ partitions H. So $g_i h_j K \cap g_{i'} h_{j'} K = \emptyset$ whenever $(i, j) \neq (i', j')$

Since the parition has nm elements, [G:K] = nm = [G:H][H:K] by definition.

Otherwise, if [G:H] or [H:K] is infinite, then there G should be partition into an infinite number of partitions by K Hence, [G:K] should be infinite, and [G:K] = [G:H][H:K] still holds, taking that multiplication with infinite number returns infinite number.

Question 2

Assume that both H and K have finite index in G. Prove that $H \cap K$ has finite index in G.

Solution: Firstly, if H and K have finite index in G, then denote the index of H as n and the index of K as m. Then, there is a partition of G into disjoint $\{g_1H, g_2H, \ldots, g_nH\}$ and a partition of G into dishoint $\{g_1'K, g_2'K, \ldots, g_m'K\}$.

Consider if gK = K and gH = H, then $g \in K$ and $g \in H$, which means $g \in H \cap K$. Now,

$$\{g_1,\ldots,g_n\}(H\cap K) = \{g_1\ldots,g_n\}H\cap \{g_1,\ldots,g_n\}K = \{g_1,\ldots,g_n\}K$$

Since it is possible to choose g_1 so that $g_1 \in H \cap K$ without loss of generality. So $\{g_1, \ldots, g_n\} (H \cap K) = \{g_1, \ldots, g_n\} K$ but $g_1 \in K$. So $\{g_1(H \cap K), \ldots, g_n(H \cap K)\}$ must cover a partition of K into cosets of $H \cap K$ in the sense that it might cover some other cosets of K. However, the size of the set of coset of $(H \cap K)$ that partitions K must be less than or equal to n, hence finite.

Now, since $[K: H \cap K]$ is finite, [G: K] is finite, and $K \cap H < K < G$ as subgroup. Then the problem 1 asserts that $[G: H \cap K]$ is finite.

Question 3

Show that $S_n = \langle (1\ 2), (1\ 2\ 3\cdots n) \rangle$ for all $n \geq 2$

Solution: For n=2, $S_2=\langle (1\ 2)\rangle$ trivially, as $(1\ 2)^2=id$.

Now, for
$$n > 2$$
, notice that $(1 \ 2 \ 3 \cdots n)^{k-1} = \begin{pmatrix} 1 & 2 & \cdots & k-1 & k & \cdots & n \\ k & k+1 & \cdots & n & 1 & \cdots & k-1 \end{pmatrix}$ and that
$$(1 \ 2 \cdots n)^{-k} (12) (1 \ 2 \cdots n)^k = (1 \ 2 \cdots n)^{-k} \begin{pmatrix} 1 & 2 & \cdots & k-1 & k & k+1 & \cdots & n \\ k & k+1 & \cdots & n & 2 & 1 & \cdots & k-1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & \cdots & k & k+1 & \cdots & n \\ 1 & 2 & \cdots & k+1 & k & \cdots & n \end{pmatrix}$$

Now, A transposition $(a\ b)$ is the product $(b-1\ b)\cdots(a+1\ a+2)(a\ a+1)(a+1\ a+2)\cdots(b-1\ b)$ Therefore, $(a\ b)$ for any a,b is in the group $\langle (1\ 2),(1\ l2\cdots n)\rangle$

Now, since S_n is generated by transposition, $S_n = \langle (a \ b) \mid \forall a, b \rangle$, then S_n is generated by $\langle (1 \ 2), (1 \ 2 \cdots n) \rangle$

Question 4

Let G be a group of order pq, where p and q are primes. Prove that every proper subgroup of G is cyclic.

Solution: Firstly, we know that G is not trivial, as if it is the case, the order of G will be $1 \neq pq$ for any prime p, q. Let S be a subgroup of G, then by lagrange's theorem, |G| = [G:S]|S|, which means that |S| = 1, p, or q must hold. If |S| = 1, then S is trivially cyclic. Otherwise, An assumption that |S| = p can be made without loss of generality.

Consider an element $s \in S$ such that s is not the identity. Now, $\langle s \rangle < S$ and $|\langle s \rangle| > 1$, so $|\langle s \rangle|$ must divides |S| by the lagrange's theorem. However, since |S| = p, then $|\langle s \rangle|$ must be p.

Since $|S| = |\langle s \rangle|$ with $\langle s \rangle \leq S$, then, $S = \langle s \rangle$ is generated by one element, hence cyclic.

Question 5

Find a homomorphism $\phi: G \to H$ such that the image of ϕ is not normal in H.

Solution: Let $H = D_6 = \{1, r, r^2, f, fr, fr^2\}$. Then, consider $\phi : G = \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\} \to \{1, f\}$ be a homomorphism where

$$\phi(\bar{0}) = 1$$
$$\phi(\bar{1}) = f$$

Then ϕ is a homomorphism since $\bar{0}$ is the identity of G and 1 is the identity of H. and $\phi(\bar{1}+\bar{1})=\phi(\bar{0})=1=f\cdot f=\phi(\bar{1})\cdot\phi(\bar{1})$ Then, im $\phi=\{1,f\}$ and $rfr^{-1}=r^2f\not\in\{1,f\}$. This asserts that im ϕ is not normal in H.

Question 6

Show that every subgroup of index 2 is normal.

Solution: Let S be a subgroup of G with index 2. Then the coset $\{S, gS\}$ partitions G for some element $g \in G$. Note that $g \notin S$, since otherwise, gS = S contradicts that S has index 2.

Now, consider the right coset Sg. We know that $g \notin S$. By assuming that $\exists s \in S, sg \in S$, we get $s^{-1}sg = g \in S$ by closure of S since sg and s^{-1} are both in S. Therefore, $\forall s \in S, sg \notin S$ Since $\{S, gS\}$ partitions G, and $Sg \neq S$ with $Sg \subset G$. The only possibility is that Sg = gS. Thus, S must be normal.

Question 7

Let $\phi: G \to G'$ be an epimorphism and $H \lhd G'$ a normal subgroup. Prove that $\phi^{-1}(H) \lhd G$ and $(G/\phi^{-1}(H)) \simeq G'/H$.

Solution: Consider $\varphi: G' \to G'/H$ such that $\varphi: g' \mapsto g'H$, then the homomorphism is an epimorphism since for every $g'H \in G'/H$, there is such g' that $\varphi(g') = g'H$. Consider $\ker \varphi = \{h \mid \varphi(h) = H\} = \{h \mid h \in H\} = H$. This means that $\varphi \circ \varphi: G \to G'/H$ with $\varphi \circ \varphi: g \mapsto \varphi(g)H$ is an epimorphism with

$$\ker(\varphi \circ \phi) = \{ h \mid \phi(h) \in H \} = \phi^{-1}(H)$$

Then by the first isomorphism theorem, $G'/\ker(\varphi \circ \phi) \simeq \operatorname{im}(\varphi \circ \phi)$, Hence $G/\phi^{-1}(H) \simeq G/H$

Question 8

Let m be a positive integer. Show that the map $\phi: \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$ given by $q + \mathbb{Z} \mapsto mq + \mathbb{Z}$ is a homomorphism and find $\ker(\phi)$

Solution: Consider the given definition of ϕ . Let [q] denotes the equivalent class of $q + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} . In other words, [q] = q + n for some integer n. Then for [q] = [q'],

$$\exists n \quad \phi([q]) = [mq] = [mq + mn] = [mq'] = \phi([q'])$$

asserts that ϕ is well defined.

Now, consider

$$\phi([a] + [b]) = \phi([a + b]) = m[a + b] = [ma + mb] = [ma] + [mb] = \phi([a]) + \phi([b])$$

With the above equation, $\phi([a] + [b]) = \phi([a]) + \phi([b])$, so ϕ is a homomorphism.

Lastly, consider $\ker \phi = \{ [q] \mid \phi([q]) = [0] \}$. It follows that $\ker \phi = \{ [q] \mid [mq] = 0 \}$. However, [mq] = 0 is the same as $mq \in \mathbb{Z}$, and $q = \frac{a}{h}$ for some $a, b \in \mathbb{Z}$. Now, $mq \in \mathbb{Z}$ means that $m^{\frac{a}{h}} \in \mathbb{Z}$, which is true whenever b|m.

So $\ker \phi = \left\{ \left[\frac{a}{b} \right] \mid b | m, a \in \mathbb{Z} \right\}$. Note that for $a \geq b$, $\left[\frac{a}{b} \right] = \left[\frac{a-b}{b} \right]$. And similarly for $a \leq -b$. Therefore, $\ker \phi = \left\{ \left[\frac{a}{b} \right] \mid a, b \in \mathbb{Z}, b | m, -b < a < b \right\}$

Question 9

Let $K \triangleleft G$ and $H \triangleleft G'$ be a normal subgroups. Show that $K \times H \triangleleft G \times G'$ and $(G \times G')/(K \times H) \simeq (G/K) \times (G'/H)$.

Solution: Firstly, for any any $(g, g') \in G \times G'$,

$$(g,g')K \times H = (g,g') \{ (k,h) \mid k \in K, h \in H \} = gK \times g'H = Kg \times Hg' = K \times H(g,g')$$

Therefore, $K \times H$ is a normal subgroup of $G \times G'$

Now, consider φ , a homomorphism from $G \times G'$ to $(G/K) \times (G'/H)$ where $\varphi : (g, g') \mapsto (gK, g'H)$. Then, since K and H are normal subgroups, it is clear that φ is surjective, as $\{gK\}$ partitions G, so $\varphi_G : g \mapsto gK$ is surjective, and similar for H.

For ker φ , consider that $\varphi((g, g')) = e$ means that gK = e and g'H = e. This situation happens when $g \in K$ and $g' \in H$, hence, when $(g, g') \in K \times H$.

Therefore, by the first isomorphism theorem, $(G \times G')/\ker \varphi \simeq \operatorname{im} \varphi$, which in this case is $(G \times G')/(K \times H) \simeq (G/K) \times (G'/H)$

Question 10

Let G be a group of order p^2 , where p is a prime. Show that either G is cyclic or every nontrivial element of G has order p.

Solution: For a group G of order p^2 , if not every nontrivial element of G has order p, then there must be some element g that the order of g is not p and not 1.

Claim 1

For a finite group G, every element $g \in G$, |g| divides |G|.

Proof: For an element g with order n, $\langle g \rangle$ is a subgroup of G. Moreover, $|\langle g \rangle| = n$ since for $1 \leq i, j \leq n$ if $i \neq j$ then $g^i \neq g^j$. This follows from the fact that if $g^i = g^j$ then $g^i - j = g^0$, thus i - j = 0 or i - j | n. However, since $\langle g \rangle$ is a subgroup of G, then $n = |\langle g \rangle|$ divides |G| by lagrange's theorem. Hence, the order of g divides |G|. \square

However, by claim 1, $|g| \mid |G|$, so |g| = 1, p, or p^2 must hold. From the assumption, there must be an element g such that $g \neq p$, and $g \neq 1$. So $\exists g$, $|g| = p^2$. Since there is such element g, then $|\langle g \rangle| = p^2$, so G must be generated by g. Hence, G is cyclic.

Therefore, a group G is either cyclic, or the assumption that not all nontrivial elements are order p does not hold. Which is translated naturally into the question statement, which means that $\langle g \rangle = G$.